Příklady k procvičení

podklad pro výuku předmětu TECHNOLOGIE III - OBRÁBĚNÍ

Příklad 1 - ŘEZNÁ RYCHL. A OBJEMOVÝ SOUČINITEL TŘÍSEK PŘI PROTAHOVÁNÍ

Doporučený objemový výkon protahovacího stroje, na kterém se vyrábí pouzdro pro drážkovaný hřídel, je $Q_W = 215 \text{ [cm}^3.\text{min}^{-1}]$. Polotovarem pro pouzdro je součást s otvorem $\varnothing D = 100 \text{ [mm]}$ ve kterém se protahováním vyrobí i = 12 [1] stejných drážek hloubky a = 7 [mm] šířky b = 12 [mm] a délky l = 40 [mm]. Délka řezné a kalibrovací části vnitřního protahovacího trnu činí l_{ŘK} = 3 400 [mm]. Náběh a přeběh trnu zanedbejte. Po obrobení x = 800 [1] součástí bylo zjištěno, že volně ložené třísky zaujímají objem $V_t = 2,580 \text{ [m}^3]$. Pro daný případ obrábění určete :

a) maximální možnou řeznou rychlost protahovacího nástroje

 $v_c = ? [m.min^{-1}],$ w = ? [1].

b) objemový součinitel třísky

Příklad 2 - TEORETICKÁ DRSNOST POVRCHU PŘI SOUSTRUŽENÍ

Užitečný výkon potřebný pro soustružení je P_{UŽ} = 6,00 [kW]. Jaká bude při obrábění hodnota teoretické drsnosti povrchu Rtt = ? [µm], jestliže soustružíme hřídel Ø D = 160 [mm] z materiálu, jehož měrný řezný odpor je $k_s = 2 300$ [MPa] soustružnickým nožem s $r_E = 0.50$ [mm] za následujících řezných podmínek : hloubka záběru $a_0 = 5$ [mm], otáčky n = 280 [min⁻¹].

Příklad 3 - MAXIMÁLNÍ OTÁČKY PŘI FRÉZOVÁNÍ VÁLCOVOU FRÉZOU

Na kopírovací frézce FKH 80 se válcovou frézou Ø D = 70 [mm] s přímými zuby z = 12 [1] frézuje součást z oceli, jejíž měrný řezný odpor je k_s = 1 800 [MPa]. Šířka součásti je b = 100 [mm], hloubka záběru $a_0 = 6$ [mm] a posuv na zub $f_z = 0.12$ [mm]. Motor pohánějící vřeteno frézky má výkon $P_M = 7.5$ [kW] a účinnost η = 0,8 [1]. Rozsah otáček vřetene frézky n = 36, 45, 56, 71, 89, 113, 142, 179, 226, 284, 358, 451, 568, 716, 902, 1137, 1433, 1805 [min⁻¹]. Pro uvedený případ frézování určete:

- maximální počet zubů frézy v záběru

z' = ? [1],

- jaké nejvyšší otáčky z uvedené řady je možno nastavit

 $n_{MAX} = ? [min^{-1}].$

Při výpočtu použijte přibližnou metodu, kdy zuby v záběru odebírají třísku tloušťky a_{STR}.

(Pomůcka:

 $\sin\frac{\phi_{\text{MAX}}}{2} = \sqrt{\frac{a_{p}}{D}}$

Příklad 4 - VÝROBA DRÁŽEK NA AUTOMATICKÉM SOUSTRUHU

Úkolem je za 1 hodinu zajistit výrobu drážek (zápichů) u n_{ZAD} = 200 [1] součástí na automatickém soustruhu. Průměr součásti Ø D = 70 [mm], drážka je hluboká h = 7 [mm] a široká b = 10 [mm]. Pro obrábění je k dispozici zapichovací soustružnický nůž, na stroji je nastaven posuv fot = 0,25 [mm] a otáčky n = 360 [min⁻¹]. Při určování času je třeba uvažovat náběh l_n = 1,25 [mm]. Vedlejší čas pro každou součást činí $t_{A11} = 12 [s]$.

a) Sečtením strojního a vedlejšího času určete jednotkový čas

 $t_A = ? [s].$

b) Kolik součástí lze za 1 hodinu maximálně obrobit

 $n_{HOD} = ? [1].$

c) Je možné úkol splnit

 $n_{HOD} > n_{ZAD}$?

Příklad 5 - DODANÁ ENERGIE PŘI PODÉLNÉM SOUSTRUŽENÍ

Při podélném soustružení součásti o průměru Ø D = 100 [mm], délky I = 156 [mm], z litiny 24 24 25, jejíž měrný řezný odpor k_s = 1 200 [Mpa], byl použit stranový uběrací soustružnický nůž s úhlem nastavení $\kappa_{\rm r}$ = 90 [$^{\circ}$]. Obrábění probíhalo při řezné rychlosti $v_{\rm c}$ = 120 [m.min $^{-1}$] a posuvu na otáčku f $_{\rm ot}$ = 0,25 [mm]. Délka náběhu soustružnického nože činila I_0 = 2,0 [mm] a délku přeběhu uvažujte I_0 = 1,25 [mm]. Pro obrobení celé součásti byla spotřebována energie E_{DOD} = 300 000 [kJ].

a) Určete stroiní čas obrábění t_{A12} = ? [s].

b) Určete maximální hloubku záběru nástroje kterou bylo možno při obrábění nastavit.

 $a_p = ? [mm],$

Příklad 6 - STROJNÍ ČAS PŘI ČELNÍM FRÉZOVÁNÍ

Stroiní čas při hrubovacím obrábění součásti šířky A = 80 [mm] a délky B = 500 [mm] čelní frézou Ø D = 120 [mm] s počtem zubů z = 10 [1] je t_{A12} = 0,5 [min]. Obrábění probíhá s řeznou rychlostí v_c = 113,1 $[m.min^{-1}]$, s hloubkou záběru $a_0 = 2.0$ [mm] a s náběhem $I_0 = 2.0$ [mm] a přeběhem $I_0 = 1.17$ [mm], přičemž je fréza přesazena mimo střed obrobku o hodnotu e = 10 [mm]. Pro uvedený případ frézování určete:

a) Délku posuvného pohybu nástroje (délku záběru)

L = ? [mm]

- při stanovení délky záběru L zohledněte, že ve fázi hrubování nezáleží na drsnosti povrchu součásti.

b) Velikost posuvu na zub

 $f_z = ? [mm].$

c) Objemový výkon při frézování

 $Q_W = ? [cm^3.min^{-1}].$

Příklad 7 - INDEX OBROBITELNOSTI MATERIÁLU PŘI PODÉLNÉM SOUSTRUŽENÍ

Z konstrukčních důvodů bude nutno změnit materiál součásti z původní oceli 11 375 s indexem obrobitelnosti i₀ = 1,59 [1] na ocel 12 050 s indexem obrobitelnosti i₀ = 1,00 [1]. Jedná se o válcovou součást Ø D = 200 [mm], obráběnou soustružnickým nástrojem na délce I = 500 [mm]. Podmínky obrábění součásti z oceli 11 375 jsou :

- řezná rychlost $v_{c1} = 2,83 \text{ [m.s}^{-1}\text{]},$ - posuv na otáčku $f_{ot1} = 0.2 [mm],$ - hloubka záběru $a_p = 3.0 [mm],$ - náběh $I_n = 2.0 [mm],$ - přeběh $I_n = 1,27 \text{ [mm]}.$

Součást bude soustružena stejným nástrojem, jehož úhel nastavení hlavního ostří je κ_r = 60 [°] a u tohoto nástroje budeme požadovat stejnou trvanlivost břitu. Hloubka záběru, náběh i přeběh zůstanou zachovány. Pro uvedený případ soustružení určete:

a) Délku posuvného pohybu nástroje (délku záběru) L = ? [mm].b) Strojní čas obrábění při soustružení součásti z oceli 11 375 $t_{S1} = ? [s].$ $t_{S2} = ? [s].$ c) Strojní čas obrábění při soustružení součásti z oceli 12 050 d) O kolik procent se zvýší strojní čas soustružení při změně materiálu x = ? [%].

Příklad 8 - OPTIMALIZACE ŘEZNÝCH PODMÍNEK NA SOUSTRUŽNICKÉM OBRÁBĚCÍM CENTRU

Na soustružnickém obráběcím centru je obráběna rotační součást z oceli 12 050.1 o průměru Ø D = 100 [mm] a délce I = 247 [mm]. Řezné podmínky při obrábění :

- hloubka záběru $a_0 = 4.0 \text{ [mm]},$ - posuv na otáčku $f_{ot1} = 0.5 [mm],$ - úhel nastavení hlavního ostří $\kappa_r = 90 [°],$ - náběh $I_n = 2.0 [mm],$ - přeběh $I_p = 1,00 \text{ [mm]}.$

Vedlejší čas pro každou součást činí t_{A11} = 7,4 [s]. Řezné rychlosti pro různé zadané trvanlivosti vypočítejte s použitím komplexního Taylorova vztahu pro výpočet v_c. Pro daný případ obrábění byla zjištěna hodnota konstanty $C_v = 1$ 583 [1], exponentu pro trvanlivost nástroje T : 1/m = 0,571 [1], exponentu pro posuv f_{ot} : $x_v = 0.46$ [1] a exponentu pro hloubku záběru a_p : $y_v = 0.10$ [1]. K obrábění je použit nástroj s břitovou destičkou P20, která má celkem i = 8 [1] břitů a nakupuje za cenu N_{VBD} = 384,00 [Kč]. Náklady na 1 hod. provozu stroje činí N_{STROJ} = 290,00 [Kč/hod] a hodinové náklady na řeznou kapalinu byly vyčísleny na N_{KAPAL} = 150,00 [Kč/hod]. Pro výše uvedený případ obrábění vypočítejte, jaké budou pro dvě uvažované trvanlivosti břitu :

```
A) T = 15,00 [min],
B) T = 20,00 \text{ [min]},
```

Příklad 9 - STROJNÍ ČAS PŘI BROUŠENÍ DO KULATA

Broušení rotační plochy na součásti z oceli 14 109.4 je při axiálním broušení na automatické hrotové brusce prováděno ve třech fázích - hrubování, hlazení a vyjiskřování. Součást se brousí na délce I = 120 [mm] z výchozího průměru \varnothing d₀ = 50,2 [mm] na konečný průměr \varnothing d₁ = 50,0 [mm]. Podmínky obrábění :

- průměr brousicího kotouče \varnothing D_s = 300 [mm], - šířka brousicího kotouče $B_s = 32 [mm],$ - otáčky brousicího kotouče $n_s = 35.00 [s^{-1}].$ fáze hrubování otáčky broušené součásti při hrubování $n_{WHR} = 2.0 [s^{-1}],$ - hrubovací hloubka záběru brousicího kotouče $a_{eHR} = 0.005 [mm],$ fáze hlazení - přídavek materiálu na hlazení uvažujte $H_{HL} = 0.005 [mm],$ - otáčky broušené součásti při hlazení $n_{wHL} = 1.5 [s^{-1}],$ $a_{eHL} = 0.001 [mm],$ - hladicí hloubka záběru brousicího kotouče fáze vyjiskřování - počet vyjiskřovacích záběrů $i_{zV} = 3 [1].$

Ve všech fázích broušení bude posuv obrobku na otáčku f_{ot} = 10 [mm] a ve všech fázích broušení uvažujte náběh a přeběh I_n = I_p = 2,0 [mm]. Přísuv brousicího kotouče do záběru probíhá v obou úvratích. Pro výše uvedený případ broušení vypočítejte :

a) Přídavek na hrubování $H_{HR} = ? [mm].$ b) Počet zdvihů a strojní čas pro fázi hrubování $i_{ZHR} = ? [1],$ c) Počet zdvihů a strojní čas pro fázi hlazení $i_{ZHL} = ? [1],$ d) Strojní čas pro fázi vyjiskřování $t_{A12HL} = ? [s].$ e) Celkový strojní čas $t_{A12} = ? [s].$

Příklad 10 - TEPLO VZNIKLÉ PŘI VRTÁNÍ, VYHRUBOVÁNÍ A VYSTRUŽOVÁNÍ

Pro výrobu přesného průchozího otvoru délky $I=80\ [mm]\ v$ součásti z oceli 12 050, pro kterou byl v tabulkách vyhledán jednotkový měrný řezný odpor $k_{s1.1}=2$ 220 [MPa] a exponent m=0,14 [1], použijeme postupně šroubovitý vrták, výhrubník a výstružník. Pro uvedené úseky této výrobní operace určete :

a) tloušťku třísky a = ? [mm],b) řeznou sílu $F_c = ? [N],$ c) strojní čas $t_{A12} = ? [s],$ d) množství tepla, které bude přecházet do nástroje $Q_{NASTR} = ? [kJ].$ Pro všechny úseky uvažujte stejnou hodnotu náběhu $I_n = 2.0 [mm]$ a přeběhu nástroje $I_p = 1.0 [mm].$ Řezné podmínky při vrtání do plného materiálu : - průměr vrtáku \emptyset D = 28,25 [mm], - počet břitů nástroje i = 2[1], κ_r = 60 [$^{\circ}$], - úhel nastavení hlavního ostří otáčky $n = 250 [min^{-1}],$ - posuv na otáčku $f_{ot} = 0.15 [mm],$ Řezné podmínky při vyhrubování: - průměr výhrubníku \emptyset D = 29,75 [mm], - počet břitů nástroje i = 4 [1],- úhel nastavení hlavního ostří $\kappa_r = 45 [\degree],$ $n = 180 [min^{-1}],$ otáčky

- posuv na otáčku $f_{ot} = 0,4 \text{ [mm]},$ Řezné podmínky při vystružování :
- průměr výstružníku \varnothing D = 30,00 [mm],
- počet břitů nástroje i = 16 [1],
- úhel nastavení hlavního ostří $\kappa_r = 45 \text{ [°]},$
- otáčky n = 60 [min $^{-1}$],
- posuv na otáčku $\kappa_r = 0.8 \text{ [mm]},$

Při výpočtu lze předpokládat, že se veškerá energie vzniklá při obrábění přemění na teplo a že do nástroje bude při vrtání, vyhrubování i vystružování přecházet vždy x = 20 [%] z celkového tepla. Zanedbejte rozdíly výkonu v počáteční fázi obrábění.

ŘEŠENÍ:

Příklad 1 - ŘEZNÁ RYCHL. A OBJEMOVÝ SOUČINITEL TŘÍSEK PŘI PROTA a) maximální možnou řeznou rychlost protahovacího nástroje b) objemový součinitel třísky	AHOVÁNÍ v _c = 18,3 [m.min ⁻¹] w = 80 [1]
Příklad 2 - TEORETICKÁ DRSNOST POVRCHU PŘI SOUSTRUŽENÍ teoretická drsnost povrchu	Rtt = 12,4 [μm]
Příklad 3 - MAXIMÁLNÍ OTÁČKY PŘI FRÉZOVÁNÍ VÁLCOVOU FRÉZOU a) maximální počet zubů frézy v záběru b) jaké nejvyšší otáčky z uvedené řady je možno nastavit	z' = 2 [1] $n_{MAX} = 113 [min^{-1}]$
Příklad 4 - VÝROBA DRÁŽEK NA AUTOMATICKÉM SOUSTRUHU a) Sečtením strojního a vedlejšího času určete jednotkový čas b) Kolik součástí lze za 1 hodinu maximálně obrobit c) Je možné úkol splnit	$t_A = 17,5 [s]$ $n_{HOD} = 205 [1]$ $n_{HOD} > n_{ZAD} - ano$
Příklad 5 - DODANÁ ENERGIE PŘI PODÉLNÉM SOUSTRUŽENÍ a) strojní čas obrábění b) maximální hloubka záběru nástroje, kterou bylo možno nastavit	$t_{A12} = 100 [s]$ $a_p = 5.0 [mm]$

Příklad 6 - STROJNÍ ČAS PŘI ČELNÍM FRÉZOVÁNÍ

a) délka posuvného pohybu nástroje (délka záběru) $L = 530 \, [mm]$ b) posuv na zub $f_z = 0.35 \, [mm]$ c) objemový výkon při frézování $Q_W = 170 \, [cm^3.min^{-1}]$

Příklad 7 - INDEX OBROBITELNOSTI MATERIÁLU PŘI PODÉLNÉM SOUSTRUŽENÍ

a) délka posuvného pohybu nástroje (délka záběru) L = 505 [mm]b) strojní čas obrábění při soustružení součásti z oceli 11 375 $t_{S1} = 560,6 \text{ [s]}$ c) strojní čas obrábění při soustružení součásti z oceli 12 050 $t_{S2} = 891,4 \text{ [s]}$ d) procentuální zvýšení strojního času soustružení při změně materiálu x = 59 [%]

Příklad 8 - OPTIMALIZACE ŘEZNÝCH PODMÍNEK NA SOUSTRUŽNICKÉM OBRÁBĚCÍM CENTRU

a) hodinové náklady na nástroje (při variantě A a B)	N _{NÁSTR A} = 192 [Kč/hod]
	$N_{NASTRB} = 144 [Kč/hod]$
b) řezná rychlost (při variantě A a B)	$V_{cA} = 6,73 \ [m.s^{-1}]$
	$V_{cB} = 5,71 \ [m.s^{-1}]$
c) jednotkový čas (při variantě A a B)	$t_{AA} = 30,74 [s]$
	$t_{AB} = 34,90 [s]$
d) počet součástí vyrobených za jednu hodinu (při variantě A a B)	x _A = 117 [ks/hod]
	$x_{_B} = 103 [ks/hod]$
e) celkové náklady na soustružení jedné součásti (při variantě A a B)	$N_{ks A} = 5,40 [Kč/ks]$
(a varianta, kdy budou dosaženy nižší celkové náklady)	$N_{ks} = 5,67 [Kč/ks]$

Příklad 9 - STROJNÍ ČAS PŘI BROUŠENÍ DO KULATA

a) přídavek na hrubování	$H_{HR} = 0,095 [mm]$
b) počet zdvihů a strojní čas pro fázi hrubování	i _{zHR} = 19 [1]
	$t_{A12HR} = 148,2 [s]$
c) počet zdvihů a strojní čas pro fázi hlazení	i _{zHL} = 5 [1]
	$t_{A12HL} = 52,0 [s]$
d) strojní čas pro fázi vyjiskřování	$t_{A12V} = 31,2 [s]$
e) celkový strojní čas	$t_{A12} = 231,4 [s]$

Příklad 10 - TEPLO VZNIKLÉ PŘI VRTÁNÍ, VYHRUBOVÁNÍ A VYSTRUŽOVÁNÍ

ı	obrábění	črou	hovitým	vrtákom
1	oprapeni	Srou	noviivm	vnakem

a) tloušťka třísky	a = 0,065 [mm]
b) řezná síla	$F_c = 6.897,2 [N]$
c) strojní čas	$t_{A12} = 145,9 [s]$
d) množství tepla do nástroje	$Q_{NASTR} = 74,4 [kJ]$

II. obrábění výhrubníkem

a = 0,071 [mm]
$F_c = 965,0 [N]$
$t_{A12} = 69.8 [s]$
$Q_{NASTR} = 3,78 [kJ]$

III. obrábění výstružníkem

a) tloušťka třísky	a = 0,035 [mm]
b) řezná síla	$F_c = 364,5 [N]$
c) strojní čas	$t_{A12} = 103,9 [s]$
d) množství tepla do nástroje	$Q_{NASTR} = 0,69 [kJ]$