

Quick-Sort

Dr. Aiman Hanna Department of Computer Science & Software Engineering Concordia University, Montreal, Canada

These slides has been extracted, modified and updated from original slides of:
Data Structures and Algorithms in Java, 5th edition. John Wiley& Sons, 2010. ISBN 978-0-470-38326-1.
Data Structures and the Java Collections Framework by William J. Collins, 3rdedition, ISBN 978-0-470-48267-4.
Both books are published by Wiley.

Copyright © 2010-2011 Wiley
Copyright © 2010 Michael T. Goodrich, Roberto Tamassia
Copyright © 2011 William J. Collins
Copyright © 2011-2021 Aiman Hanna
All rights reserved

Coverage

Quick-Sort

Quick-Sort

- Quick-sort is a randomized sorting algorithm based on the divide-and-conquer paradigm:
 - Divide: pick a random element x (called pivot) and partition S into
 - L elements less than x
 - *E* elements equal *x*
 - G elements greater than x
 - Recur: sort L and G
 - Conquer: join *L*, *E* and *G*

Partition

- We partition an input sequence as follows:
 - We remove, in turn, each element y from S and
 - We insert y into L, E or G, depending on the result of the comparison with the pivot x
- Each insertion and removal is at the beginning or at the end of a sequence, and hence takes O(1) time
- □ Thus, the partition step of quick-sort takes O(n) time

```
Algorithm partition(S, p)
```

Input sequence *S*, position *p* of pivot **Output** subsequences *L*, *E*, *G* of the
elements of *S* less than, equal to,
or greater than the pivot, resp.

```
L, E, G \leftarrow \text{empty sequences}
x \leftarrow S.remove(p)
while \neg S.isEmpty()
y \leftarrow S.remove(S.first())
if y < x
L.addLast(y)
else if y = x
E.addLast(y)
else \{y > x\}
G.addLast(y)
return L, E, G
```

Quick-Sort Tree

- An execution of quick-sort is depicted by a binary tree
 - Each node represents a recursive call of quick-sort and stores
 - Unsorted sequence before the execution and its pivot
 - Sorted sequence at the end of the execution
 - The root is the initial call
 - The leaves are calls on subsequences of size 0 or 1

Quick-Sort Tree

Example:

Quick-Sort Tree

□ Example (Continues...):

Execution Example

Pivot selection

□ Partition, recursive call, pivot selection

□ Partition, recursive call, base case

□ Recursive call, ..., base case, join

Recursive call, pivot selection

□ Partition, ..., recursive call, base case

□ Join, join

Worst-case Running Time

- The worst case for quick-sort occurs when the pivot is the unique minimum or maximum element
- \Box One of L and G has size n-1 and the other has size 0
- The amount or work done at any depth proportional to the number of nodes at that depth. Hence, the running time in that case is proportional to the sum

$$n + (n-1) + ... + 2 + 1$$

□ Thus, the worst-case running time of quick-sort is $O(n^2)$

Expected Running Time

- \Box Consider a recursive call of quick-sort on a sequence of size s
 - Good call: the sizes of L and G are each less than 3s/4
 - Bad call: one of L and G has size greater than 3s/4

- □ A call is good with probability 1/2
 - 1/2 of the possible pivots cause good calls:

Expected Running Time, Part 2

- extstyle ext
- \Box For a node of depth i, we expect
 - i/2 ancestors are good calls (that is 1/2 the calls above)
 - The size of the input sequence for the current call is at most $(3/4)^{i/2}n$
- Therefore,
 - When the expected input size finally reaches one?
 - It does at depth $i = 2\log_{4/3}n$
 - i.e. n=100, $(3/4)^{\log_{4/3}(100)}$ 100=1
 - The expected height of the quick-sort tree is $O(\log n)$
- The amount or work done at the nodes of the same depth is O(n)
- Thus, the expected running time of quick-sort is $O(n \log n)$

total expected time: $O(n \log n)$

In-Place Quick-Sort

- Quick-sort can be implemented to run in-place
- In the partition step, we use replace operations to rearrange the elements of the input sequence such that
 - the elements less than the pivot have rank less than h
 - the elements equal to the pivot have rank between h and k
 - the elements greater than the pivot have rank greater than k
- The recursive calls consider
 - elements with rank less than h
 - elements with rank greater than k

Algorithm inPlaceQuickSort(S, l, r)

Input sequence S, ranks l and rOutput sequence S with the elements of rank between l and r rearranged in increasing order

if $l \ge r$

return

 $i \leftarrow$ a random integer between l and r $x \leftarrow S.elemAtRank(i)$ $(h, k) \leftarrow inPlacePartition(x)$ inPlaceQuickSort(S, l, h - 1)inPlaceQuickSort(S, k + 1, r)

In-Place Partitioning

Perform the partition using two indices to split S into L and E U G (a similar method can split E U G into E and G).

j k 3 2 5 1 0 7 3 5 9 2 7 9 8 9 7 <u>6</u> 9 (pivot = 6)

- Repeat until j and k cross:
 - Scan j to the right until finding an element $\geq x$.
 - Scan k to the left until finding an element < x.
 - Swap elements at indices j and k

Click here for a good illustrative example.

Summary of Sorting Algorithms

Algorithm	Time	Notes
selection-sort	$O(n^2)$	in-placeslow (good for small inputs)
insertion-sort	$O(n^2)$	in-placeslow (good for small inputs)
quick-sort	O(n log n) expected	 in-place, randomized fastest (good for large inputs) Quick-sort is often faster in practice than other O(n log n) algorithms.
heap-sort	$O(n \log n)$	in-placefast (good for large inputs)
merge-sort	$O(n \log n)$	sequential data accessfast (good for huge inputs)