

信息安全数学基础

--- 环(1)

信数课题组

北京邮电大学

上次课回顾

目录

- 环的定义
- ② 环同态与同构
- ③ 子环
 - 子环的定义
 - 理想和商环

设 R 是具有两种运算 (通常表示为加法和乘法) 的非空集合. 如果 下面的条件成立:

- (i) R 对于加法构成一个交换群.
- (ii) (结合律) 对任意的 $a,b,c \in R$, 有 (ab)c = a(bc).
- (iii) (分配律) 对任意的 $a,b,c \in R$, 有 $(a+b)c = ac + bc \quad \text{和} \quad a(b+c) = ab + ac.$

则 R 叫作环.

例 7.1.1 整数环 $(\mathbb{Z}, +, \cdot)$

- (i) (ℤ, +) 构成交换群. 即满足:
 - ① 封闭性:
 - (2) 结合律;
 - ③ 单位元 (零元) 0;
 - ④ a 的逆为 -a, 负元;
 - ⑤ 交換律 a + b = b + a.
- (ii) (ℤ,·) 构成半群. 即满足:
 - ① 封闭性, $a \cdot b \in \mathbb{Z}$, $\forall a, b \in \mathbb{Z}$;
 - ② 结合律 (ab)c = a(bc).
- (iii) 满足分配律: $\forall a, b, c \in \mathbb{Z}$, $\begin{cases} a(b+c) = ab + ac, \\ (b+c)a = ba + ca. \end{cases}$

$$(b+c)a = ba + ca.$$

∴ (ℤ, +, ⋅) 是环.

如果环 R 还满足: 对任意的 $a,b \in R$, 有 ab = ba, 则 R 叫作交换环.

如果环 R 还满足: 对任意的 $a,b \in R$, 有 ab = ba, 则 R 叫作交换环.

定义 7.1.3

如果环 R 中有一个元素 $e = 1_R$ 使得: 对任意的 $a \in R$, 有 $a1_R = 1_R a = a$,

则 R 叫作有单位元环.

如果环 R 还满足: 对任意的 $a,b \in R$, 有 ab = ba, 则 R 叫作交换环.

定义 7.1.3

如果环R中有一个元素 $e=1_R$ 使得: 对任意的 $a \in R$,有 $a1_R=1_Ra=a$,

则 R 叫作有单位元环.

例 7.1.2 实数环 $(\mathbb{R}, +, \cdot)$ 有单位元, 则 \mathbb{R} 叫做有单位元的环.

设 R 是一个环, 则

- (i) 对任意的 $a \in R$, 有 0a = a0 = 0.
- (ii) 对任意的 $a, b \in R$, 有 (-a)b = a(-b) = -ab.
- (iii) 对任意的 $a, b \in R$, 有 (-a)(-b) = ab.
- (iv) 对任意的 $n \in \mathbb{Z}$, 任意的 $a, b \in R$, 有 (na)b = a(nb) = nab.
- (v) 对任意的 $a_i, b_j \in R$, 有

$$\left(\sum_{i=1}^n a_i\right)\left(\sum_{j=1}^m b_j\right) = \sum_{i=1}^n \sum_{j=1}^m a_i b_j.$$

设 R 是一个环, 则

- (i) 对任意的 $a \in R$, 有 0a = a0 = 0.
- (ii) 对任意的 $a, b \in R$, 有 (-a)b = a(-b) = -ab.
- (iii) 对任意的 $a, b \in R$, 有 (-a)(-b) = ab.
- (iv) 对任意的 $n \in \mathbb{Z}$, 任意的 $a, b \in R$, 有 (na)b = a(nb) = nab.
- (v) 对任意的 $a_i, b_j \in R$, 有

$$\left(\sum_{i=1}^n a_i\right)\left(\sum_{j=1}^m b_j\right) = \sum_{i=1}^n \sum_{j=1}^m a_i b_j.$$

证: (i) 因为
$$0a = (0+0)a = 0a + 0a$$
, 所以 $0a = 0$. 同理, $a0 = 0$.

(ii) 因为

$$(-a)b + ab = ((-a) + a)b = 0b = 0, a(-b) + ab = a((-b) + b) = a0 = 0,$$

所以 (-a)b = a(-b) = -ab.

(iii), (iv) 和 (v) 可由 (i) 和 (ii) 得到.

设 R 是有单位元的环. 设 n 是正整数, $a,b,a_1,\cdots,a_r \in R$.

- (i) 如果 ab = ba, 则 $(a+b)^n = \sum_{k=0}^n \frac{n!}{k!(n-k)!} a^k b^{n-k}$.
- (ii) 如果 $a_i a_j = a_j a_i, 1 \leq i, j \leq r,$ 则 $(a_1 + \dots + a_r)^n = \sum_{i_1 + \dots + i_r = n} \frac{n!}{i_1! \dots i_r!} a_1^{i_1} \dots a_r^{i_r}.$

设 R 是有单位元的环. 设 n 是正整数, $a,b,a_1,\cdots,a_r \in R$.

(i) 如果
$$ab = ba$$
, 则 $(a+b)^n = \sum_{k=0}^n \frac{n!}{k!(n-k)!} a^k b^{n-k}$.

(ii) 如果
$$a_i a_j = a_j a_i, 1 \leq i, j \leq r, \mathbb{N}$$

$$(a_1 + \dots + a_r)^n = \sum_{i_1 + \dots + i_r = n} \frac{n!}{i_1! \dots i_r!} a_1^{i_1} \dots a_r^{i_r}.$$

证: (i) 对
$$n$$
 用数学归纳法. 当 $n = 1$ 时, 结论显然. 假设对 $n = s$ 时成立, 即有 $(a+b)^s = \sum_{k=0}^s \frac{s!}{k!(s-k)!} a^k b^{s-k}$. 则对 $n = s+1$ 时有 $(a+b)^{s+1}$

$$= (a+b)^s (a+b) = \left(\sum_{k=0}^s \frac{s!}{k!(s-k)!} a^k b^{s-k}\right) (a+b)$$

$$ab = ba \sum_{k=0}^s \frac{s!}{k!(s-k)!} a^{k+1} b^{s-k} + \sum_{k=0}^s \frac{s!}{k!(s-k)!} a^k b^{s-k+1}$$

$$= a^{s+1} + b^{s+1} + \sum_{k=0}^{s-1} \left(\frac{s!}{k!(s-k)!} a^{k+1} b^{s-k} + \frac{s!}{(k+1)!(s-k-1)!} a^{k+1} b^{s-k}\right)$$

(ii) 对 r 用数学归纳法. 当 r=2 时即为 (i) 的结论, 已经证明.

假设 $r \leq m$ 时结论成立. 当 r = m + 1 时,由 (i) 及归纳假设得 $(a_1 + \cdots + a_m + a_{m+1})^n = ((a_1 + \cdots + a_m) + a_{m+1})^n$

$$=\sum_{i=1,2,\ldots,n}^{n}\frac{n!}{i_{m+1}!(n-i_{m+1})!}(a_1+\cdots+a_m)^{n-i_{m+1}}a_{m+1}^{i_{m+1}}$$

$$=\sum_{i_{m+1}=0}^{n}\frac{n!}{i_{m+1}!(n-i_{m+1})!}\sum_{i_1+\cdots+m=n-i_{m+1}}\frac{(n-i_{m+1})!}{i_1!\cdots i_m!}a_1^{r_1}\cdots a_m^{i_m}a_{m+1}^{i_{m+1}}$$

$$=\sum_{i_1+\dots+m+i_{m+1}=n}\frac{n!}{i_1!\dots i_m!i_{m+1}!}a_1^{r_1}\dots a_m^{i_m}a_{m+1}^{i_{m+1}}, 即对 r=m+1 结论成立.$$

设 a 是环 R 中的一个非零元, 如果存在非零元 $b \in R$ (对应地, 有 $c \in R$) 使得 ab = 0 (对应地, 有 ca = 0), 则称 a 为左零因子 (对应地, 为 右零因子). 如果同时为左零因子和右零因子, 则称 a 为零因子.

设 a 是环 R 中的一个非零元, 如果存在非零元 $b \in R$ (对应地, 有 $c \in R$) 使得 ab = 0 (对应地, 有 ca = 0), 则称 a 为左零因子 (对应地, 为 右零因子). 如果同时为左零因子和右零因子, 则称 a 为零因子.

例 7.1.3 针对 $(\mathbb{Z}_6, +, \cdot)$, 其中 $\mathbb{Z}_6 = \mathbb{Z}/6\mathbb{Z} = \{[0], [1], [2], [3], [4], [5]\}$ = $\{0, 1, 2, 3, 4, 5\} = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}\}$, "+" 是 \oplus_6 , "·" 是 \otimes_6 . :: [2][3] = [0] = [3][2].

∴ [2] 是零因子, [3] 是零因子.

综述: \mathbb{Z}_6 是一个交换环, [a][b] = [b][a]; 有单位元 [1]; 有零因子环.

 $(\mathbb{Z}_6,+,\cdot)$ 是一个有零因子, 单位元的交换环.

设 a 是环 R 中的一个非零元, 如果存在非零元 $b \in R$ (对应地, 有 $c \in R$) 使得 ab = 0 (对应地, 有 ca = 0), 则称 a 为左零因子 (对应地, 为 右零因子). 如果同时为左零因子和右零因子, 则称 a 为零因子.

例 7.1.3 针对
$$(\mathbb{Z}_6, +, \cdot)$$
, 其中 $\mathbb{Z}_6 = \mathbb{Z}/6\mathbb{Z} = \{[0], [1], [2], [3], [4], [5]\}$
= $\{0, 1, 2, 3, 4, 5\} = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}\}$, "+" 是 \oplus_6 , "·" 是 \otimes_6 .
:: $[2][3] = [0] = [3][2]$.

- ∴ [2] 是零因子, [3] 是零因子.
- 综述: \mathbb{Z}_6 是一个交换环, [a][b] = [b][a]; 有单位元 [1]; 有零因子环.
- $\mathbb{Z}_{6},+,\cdot$) 是一个有零因子, 单位元的交换环.
- 例 7.1.4 针对 (\mathbb{Z}_5 , +, ·), 其中 $\mathbb{Z}_5 = \mathbb{Z}/5\mathbb{Z} = \{[0], [1], [2], [3], [4]\}$ = $\{0, 1, 2, 3, 4\} = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}\}$, "+"是 \oplus_5 , "·"是 \otimes_5 . \mathbb{Z}_5 是一个交换环, [a][b] = [b][a]; 有单位元 [1]; 无零因子环.

设 a 是有单位元 1_R 的环 R 中的一个元, 如果存在 $b \in R$ 使得 $ab = 1_R$, 则称 a 为左逆元. 这时, b 叫做 a 的右逆元. 如果同时为左逆元和右逆元, 则称 a 为逆元.

设 a 是有单位元 1_R 的环 R 中的一个元, 如果存在 $b \in R$ 使得 $ab = 1_R$, 则称 a 为左逆元. 这时, b 叫做 a 的右逆元. 如果同时为左逆元和右逆元, 则称 a 为逆元.

例 7.1.5 有理数 \mathbb{Q} , (\mathbb{Q} , +, ·) 满足

- 1) (Q,+) 交换加群.
- 2) (ℚ, ·) 半群.
- 3) 满足分配律.
- \therefore (\mathbb{Q} , +, ·) 是环, 有单位元 1, 无零因子, \forall $a \in \mathbb{Q} \setminus \{0\}$, 逆元存在 $a^{-1} = \frac{1}{a}$.

希望一些环具有整数环 ℤ 的类似性质.

定义 7.1.6

设 R 是一个交换环, 如果 R 中有单位元, 但没有零因子, 则称 R 为 **整环**.

希望一些环具有整数环 ℤ 的类似性质.

定义 7.1.6

设 R 是一个交换环, 如果 R 中有单位元, 但没有零因子, 则称 R 为 整环.

例 7.1.6 整数 \mathbb{Z} , $(\mathbb{Z}, +, \cdot)$; 有理数 \mathbb{Q} , $(\mathbb{Q}, +, \cdot)$ 均为整环.

希望一些环具有整数环 ℤ 的类似性质.

定义 7.1.6

设 R 是一个交换环, 如果 R 中有单位元, 但没有零因子, 则称 R 为 整环.

例 7.1.6 整数 \mathbb{Z} , $(\mathbb{Z}, +, \cdot)$; 有理数 \mathbb{Q} , $(\mathbb{Q}, +, \cdot)$ 均为整环.

我们也希望整数环的整除性也可以应用到环上.

设 R 是一个交换环, $a,b \in R, b \neq 0$. 如果一个元素 $c \in R$ 使得 a = bc, 就称 b 整除 a 或者 a 被 b 整除, 记作 $b \mid a$.

- (i) 当 b 整除 a 时, 把 b 叫做 a 的因子, 把 a 叫作 b 的倍元. 称环 R 中对于乘法有逆元的元素为单位. 如果 b, c 都不是单位, 就称 b 为 a 的真因子.
- (ii) 对于环 R 中的非零元 a, 如果 a 不是单位, 且没有真因子, 则称 a 为不可约元或既约元. 也就是说, 如果有元素 b, $c \in R$ 使得 a = bc, 则 b 或 c 一定是单位.
- (iii) 设 p 是环 R 中的非零元, 如果 p 不是单位, 且当 $p \mid ab$ 时, 有 $p \mid a$ 或 $p \mid b$, 则称 p 为素元.
- (iv) 对于环 R 中的两个元素 $a,b \in R$, 如果存在单位 $u \in R$ 使得 a = ub, 则称 $a,b \in R$ 为相伴的, 称 a 为 b 的相伴元. 单位和 a 的相伴元 也都是 a 的因子, 但不是真因子, 称这两类因子为 a 的平凡因子.

设 R 为交换环, 如果 R 中有单位元, 且每个非零元都是可逆元, 即 R 对于加法构成一个交换群, $R^* = R \setminus \{0\}$ 对于乘法构成一个交换群, 且 R 中的加法和乘法运算满足分配律, 则称 R 为一个域.

设 R 为交换环, 如果 R 中有单位元, 且每个非零元都是可逆元, 即 R 对于加法构成一个交换群, $R^* = R \setminus \{0\}$ 对于乘法构成一个交换群, 且 R 中的加法和乘法运算满足分配律, 则称 R 为一个域.

例 7.1.7 有理数 \mathbb{Q} , $(\mathbb{Q}, +, \cdot)$ 是域, 称为有理数域. 实数 \mathbb{R} , $(\mathbb{R}, +, \cdot)$ 是域, 称为实数域. 复数 \mathbb{C} , $(\mathbb{C}, +, \cdot)$ 是域, 称为复数域.

设 R 为交换环, 如果 R 中有单位元, 且每个非零元都是可逆元, 即 R 对于加法构成一个交换群, $R^* = R \setminus \{0\}$ 对于乘法构成一个交换群, 且 R 中的加法和乘法运算满足分配律, 则称 R 为一个域.

- 例 7.1.7 有理数 \mathbb{Q} , $(\mathbb{Q}, +, \cdot)$ 是域, 称为有理数域. 实数 \mathbb{R} , $(\mathbb{R}, +, \cdot)$ 是域, 称为实数域. 复数 \mathbb{C} , $(\mathbb{C}, +, \cdot)$ 是域, 称为复数域.
- **例** 7.1.8 设 p 是素数, $\mathbb{Z}_p = \{[0], [1], [2], \dots, [p-1]\}$, 对 $(\mathbb{Z}_p, +, \cdot)$, 有
 - (i) $(\mathbb{Z}_p, +)$ 是交换加群.
 - (ii) (\mathbb{Z}_p^* ,·) 是交换乘群.
 - (iii) $\forall a, b, c \in \mathbb{Z}_p, a \cdot (b+c) = a \cdot b + a \cdot c.$
 - $(\mathbb{Z}_p,+,\cdot)$ 构成域.

例 7.1.9 $GF(2) = \{[0], [1]\}$ 称为二元域.

在 $(GP(2), +, \cdot)$ 中,

- + 即 "⊕₂", "模 2 加", 可由数字信号的"异或"实现;
- ·即" $⊗_2$ ", "模 2 乘", 可由数字信号的"与"实现.

所以, 二元域 GF(2) 是信息科学技术领域及信息安全领域应用最多的域之一.

本节讨论两个环之间的关系.

定义 7.2.1

设 R, R' 是两个环. 如果映射 $f: R \to R'$ 满足以下条件:

- (i) 对任意的 $a, b \in R$, 有 f(a + b) = f(a) + f(b);
- (ii) 对任意的 $a, b \in R$, 有 f(ab) = f(a)f(b), 则称 f 为环同态.

如果f是一对一的,则称f为单同态; 如果f是满的,则称f为满同态; 如果f是一一对应的,则称f为同构.

本节讨论两个环之间的关系.

定义 7.2.1

设 R, R' 是两个环. 如果映射 $f: R \to R'$ 满足以下条件:

- (i) 对任意的 $a, b \in R$, 有 f(a + b) = f(a) + f(b);
- (ii) 对任意的 $a, b \in R$, 有 f(ab) = f(a)f(b), 则称 f 为环同态.

如果f是一对一的,则称f为单同态;如果f是满的,则称f为满同态;如果f是一一对应的,则称f为同构.

定义 7.2.2

设 R, R' 是两个环, 如果存在一个 R 到 R' 的同构, 则称 R 与 R' 为环同构.

定义 7.2.3

设 R 是一个环. 若存在一个最小正整数 n 使得对任意 $a \in R$, 都有 $na = \underbrace{a + \cdots + a}_{n} = 0,$

则称环 R 的特征为 n. 若不存在这样的正整数, 则称环 R 的特征为 0.

定义 7.2.3

设 R 是一个环. 若存在一个最小正整数 n 使得对任意 $a \in R$, 都有 $na = \underbrace{a + \cdots + a}_{n} = 0,$

则称环R的特征为n. 若不存在这样的正整数,则称环R的特征为0.

例 7.2.1
$$n = 5, \mathbb{Z}_5 = \{[0], [1], [2], [3], [4]\}.$$
 $5[1] = [1] + [1] + [1] + [1] + [1] = [0],$ 且对于任意 $0 < m \le 4, m[1] \ne [0].$ 另有 $5[0] = [0], 5[2] = 0, 5[3] = 0, 5[4] = 0.$ $\therefore (\mathbb{Z}_5, +, \cdot)$ 的特征为 $n = 5.$

定义 7.2.3

设 R 是一个环. 若存在一个最小正整数 n 使得对任意 $a \in R$, 都有 $na = \underbrace{a + \cdots + a}_{n} = 0,$

则称环 R 的特征为 n. 若不存在这样的正整数,则称环 R 的特征为 0.

例 7.2.1
$$n = 5, \mathbb{Z}_5 = \{[0], [1], [2], [3], [4]\}.$$

 $5[1] = [1] + [1] + [1] + [1] + [1] = [0],$
且对于任意 $0 < m \le 4, m[1] \ne [0].$
另有 $5[0] = [0], 5[2] = 0, 5[3] = 0, 5[4] = 0.$
 $\therefore (\mathbb{Z}_5, +, \cdot)$ 的特征为 $n = 5.$

- 注: ① 无零因子环 R 的特征是有限整数 n, 那么 n 是一个素数.
- ② 在没有零因子的环 *R* 里, 所有不等于零的元, 对于加法来说, 阶都是一样的.

设 R 是有单位元的交换环. 如果环 R 的特征是素数 p, 则对任意 $a,b\in R$, 有 $(a+b)^p=a^p+b^p$.

设 R 是有单位元的交换环. 如果环 R 的特征是素数 p, 则对任意 $a,b\in R$, 有 $(a+b)^p=a^p+b^p$.

证: 我们有 $(a+b)^p = a^p + b^p + \sum_{k=1}^{p-1} \frac{p!}{k!(p-k)!} a^k b^{p-k}$. 对于 $1 \leq k \leq p-1$, 有 (p,k!(p-k)!) = 1, 从而 $p \mid p \cdot \frac{(p-1)!}{k!(p-k)!}$. 这样, 由 R 的特征 p 为素数得到 $\frac{p!}{k!(p-k)!} a^k b^{p-k} = 0$. 因此, 结论成立.

设 R 是有单位元的交换环. 如果环 R 的特征是素数 p, 则对任意 $a,b\in R$, 有 $(a+b)^p=a^p+b^p$.

证: 我们有 $(a+b)^p = a^p + b^p + \sum_{k=1}^{p-1} \frac{p!}{k!(p-k)!} a^k b^{p-k}$. 对于 $1 \leqslant k \leqslant p-1$, 有 (p,k!(p-k)!) = 1, 从而 $p \mid p \cdot \frac{(p-1)!}{k!(p-k)!}$. 这样, 由 R 的特征 p 为素数得到 $\frac{p!}{k!(p-k)!} a^k b^{p-k} = 0$. 因此, 结论成立.

定理 7.2.2

如果域 K 的特征不为零,则其特征必为素数.

设 R 是有单位元的交换环. 如果环 R 的特征是素数 p, 则对任意 $a,b\in R$, 有 $(a+b)^p=a^p+b^p$.

证: 我们有 $(a+b)^p = a^p + b^p + \sum_{k=1}^{p-1} \frac{p!}{k!(p-k)!} a^k b^{p-k}$. 对于 $1 \leq k \leq p-1$, 有 (p,k!(p-k)!) = 1, 从而 $p \mid p \cdot \frac{(p-1)!}{k!(p-k)!}$. 这样, 由 R 的特征 p 为素数得到 $\frac{p!}{k!(p-k)!} a^k b^{p-k} = 0$. 因此, 结论成立.

定理 7.2.2

如果域 K 的特征不为零,则其特征必为素数.

证: 设域 K 的特征为 n. 如果 n 不是素数,则存在整数 $1 < n_1, n_2 < n$ 使得 $n = n_1 \cdot n_2$. ∴ 对不等于零的元 a, $n_1 a \neq 0$, $n_2 a \neq 0$, 而 $(n_1 a)(n_2 a) = (n_1 n_2)a^2 = na^2 = 0$. 但域中没有零因子,与 $(n_1 a)(n_2 a) = 0$ 矛盾,所以 n 是素数.

目录

- □ 环的定义
- ② 环同态与同构
- ③ 子环
 - 子环的定义
 - 理想和商环

一个环 $(R,+,\cdot)$ 的非空子集 $S(S \subset R)$, 假如 S 对于环 R 的代数运算构成一个环, 则称 S 为 $(R,+,\cdot)$ 的子环. 相应地, 一个域 $(F,+,\cdot)$ 的非空子集 $S(S \subset F)$, 假如 S 对于域 F 的代数运算构成一个域, 则称 S 为 $(F,+,\cdot)$ 的子域.

一个环 $(R,+,\cdot)$ 的非空子集 S $(S\subset R)$,假如 S 对于环 R 的代数运算构成一个环,则称 S 为 $(R,+,\cdot)$ 的子环. 相应地,一个域 $(F,+,\cdot)$ 的非空子集 S $(S\subset F)$,假如 S 对于域 F 的代数运算构成一个域,则称 S 为 $(F,+,\cdot)$ 的子域.

例 7.3.1 整数环 $(\mathbb{Z}, +, \cdot)$ 是 $(\mathbb{Q}, +, \cdot)$ 的子环.

一个环 $(R,+,\cdot)$ 的非空子集 S $(S\subset R)$,假如 S 对于环 R 的代数运算构成一个环,则称 S 为 $(R,+,\cdot)$ 的子环. 相应地,一个域 $(F,+,\cdot)$ 的非空子集 S $(S\subset F)$,假如 S 对于域 F 的代数运算构成一个域,则称 S 为 $(F,+,\cdot)$ 的子域.

例 7.3.1 整数环 $(\mathbb{Z}, +, \cdot)$ 是 $(\mathbb{Q}, +, \cdot)$ 的子环.

例 7.3.2 证明: $\mathbb{Q}(\sqrt{2}) = \{a + b\sqrt{2} \mid a, b \in \mathbb{Q}\}$ 是 $(\mathbb{R}, +, \cdot)$ 的子环.

一个环 $(R,+,\cdot)$ 的非空子集 $S(S\subset R)$, 假如 S 对于环 R 的代数运算构成一个环, 则称 S 为 $(R,+,\cdot)$ 的子环. 相应地,一个域 $(F,+,\cdot)$ 的非空子集 $S(S\subset F)$, 假如 S 对于域 F 的代数运算构成一个域,则称 S 为 $(F,+,\cdot)$ 的子域.

例 7.3.1 整数环 $(\mathbb{Z}, +, \cdot)$ 是 $(\mathbb{Q}, +, \cdot)$ 的子环.

例 7.3.2 证明: $\mathbb{Q}(\sqrt{2}) = \{a + b\sqrt{2} \mid a, b \in \mathbb{Q}\}$ 是 $(\mathbb{R}, +, \cdot)$ 的子环.

证: 显然 $\mathbb{Q}(\sqrt{2})$ 非空, 是实数集合 \mathbb{Q} 的子集.

$$\forall x = a_1 + b_1 \sqrt{2}, y = a_2 + b_2 \sqrt{2} \in \mathbb{Q}(\sqrt{2}),$$

$$x-y = (a_1 + b_1\sqrt{2}) - (a_2 + b_2\sqrt{2}) = (a_1 - a_2) + (b_1 - b_2)\sqrt{2} \in \mathbb{Q}(\sqrt{2}),$$

$$x \cdot y = (a_1 + b_1 \sqrt{2}) \cdot (a_2 + b_2 \sqrt{2})$$

$$= (a_1a_2 + 2b_1b_2) + (a_1b_2 + a_2b_1)\sqrt{2} \in \mathbb{Q}(\sqrt{2}),$$

所以 $(\mathbb{Q}(\sqrt{2}),+,\cdot)$ 是 $(\mathbb{R},+,\cdot)$ 的子环.

目录

- □ 环的定义
- ② 环同态与同构
- ③ 子环
 - 子环的定义
 - 理想和商环

接下来讨论一种特别重要的子环, 就是理想. 理想在环论里的地位与正规子群在群论里的地位类似.

定义 7.3.2

设R是一个环,I是R的子环.

如果任意的 $r \in R$ 和任意的 $a \in I$, 都有 $ra \in I$, 则称 I 为 R 的左理想. 如果任意的 $r \in R$ 和任意的 $a \in I$, 都有 $ar \in I$, 则称 I 为 R 的右理想. 如果 I 同时为左理想和右理想, 则称 I 为 R 的理想.

接下来讨论一种特别重要的子环,就是理想. 理想在环论里的地位与正规子群在群论里的地位类似.

定义 7.3.2

设R是一个环,I是R的子环.

如果任意的 $r \in R$ 和任意的 $a \in I$, 都有 $ra \in I$, 则称 I 为 R 的左理想. 如果任意的 $r \in R$ 和任意的 $a \in I$, 都有 $ar \in I$, 则称 I 为 R 的右理想. 如果 I 同时为左理想和右理想, 则称 I 为 R 的理想.

定理 7.3.1

环 R 的非空子集 I 是左 (对应地, 右) 理想的充要条件是:

- (i) 对任意的 $a,b \in I$, 都有 $a-b \in I$.
- (ii) 对任意的 $r \in R$ 和对任意的 $a \in I$, 都有 $ra \in I$ (对应地, 有 $ar \in I$).

注: (1) "理想 ↔ 子环"的关系如下:

A. 理想一定是子环:由 (i) 可知理想 I 是一个加群,由 (ii) 可知 I 对于乘法是封闭的.

B. 由 (ii), 不仅要求 I 的两个元的乘积必须在 I 里, 而且进一步要求 I 的一个任意元与 R 的一个任意元的乘积都必须在 I 里. 所以一个理想 所适合的条件比一般子环要强些.

(2) 设 $(R, +, \cdot)$ 是一个环, $I \in R$ 的理想, 则 $I \in (R, +)$ 的正规子群.

注: (1) "理想 ↔ 子环"的关系如下:

A. 理想一定是子环: 由 (i) 可知理想 I 是一个加群, 由 (ii) 可知 I 对于乘法是封闭的.

B. 由 (ii), 不仅要求 I 的两个元的乘积必须在 I 里, 而且进一步要求 I 的一个任意元与 R 的一个任意元的乘积都必须在 I 里. 所以一个理想 所适合的条件比一般子环要强些.

(2) 设 $(R, +, \cdot)$ 是一个环, I 是 R 的理想, 则 I 是 (R, +) 的正规子群.

注:一个环是不是一定有理想?

是!

至少有 2 个理想:

- (i) 零理想: $I = \{0\}$, 只含有零元的集合.
- (ii) 单位理想: I = R, R 本身.

例 7.3.4 两个理想的交集还是理想.

例 7.3.4 两个理想的交集还是理想.

证:设 H_1 与 H_2 是环R的两个理想.要证 $H_1 \cap H_2$ 是理想,只需证明:

- ② $\forall r \in R, a \in H_1 \cap H_2, ar \in H_1 \cap H_2, ra \in H_1 \cap H_2.$

例 7.3.4 两个理想的交集还是理想.

证: 设 H_1 与 H_2 是环 R 的两个理想. 要证 $H_1 \cap H_2$ 是理想, 只需证明:

- ② $\forall r \in R, a \in H_1 \cap H_2, ar \in H_1 \cap H_2, ra \in H_1 \cap H_2.$

事实上,

- ① 对于 $\forall a, b \in H_1 \cap H_2$, $factor a \in H_1, a \in H_2, b \in H_1, b \in H_2$.
- $\therefore H_1$ 是理想, $\therefore a-b \in H_1$.
- $\therefore a-b \in H_1 \cap H_2.$

例 7.3.4 两个理想的交集还是理想.

证:设 H_1 与 H_2 是环 R的两个理想.要证 $H_1 \cap H_2$ 是理想,只需证明:

- ② $\forall r \in R, a \in H_1 \cap H_2, ar \in H_1 \cap H_2, ra \in H_1 \cap H_2.$

事实上,

- ① 对于 $\forall a, b \in H_1 \cap H_2$, $factor a \in H_1, a \in H_2, b \in H_1, b \in H_2$.
- $\therefore H_1$ 是理想, $\therefore a-b \in H_1$.
- 又 $:: H_2$ 是理想, $:: a-b \in H_2$.
- $\therefore a-b \in H_1 \cap H_2.$
- ② 设 $\forall r \in R, \forall a \in H_1 \cap H_2, ∴ a \in H_1, a \in H_2.$
- \therefore H_1 是理想, \therefore $ar \in H_1, ra \in H_1$.
- 又: H_2 是理想,: $ar \in H_2, ra \in H_2.$
- $\therefore ar \in H_1 \cap H_2, ra \in H_1 \cap H_2.$

例 7.3.5 设 $\{A_j\}_{j\in J}$ 是环中的一族理想, 则 $\bigcap_{j\in J}A_j$ 也是一个理想.

例 7.3.5 设 $\{A_j\}_{j\in J}$ 是环中的一族理想, 则 $\bigcap_{j\in J} A_j$ 也是一个理想.

与此相关的,还有以下结论:

- ① 两个子群的交, 是子群.
- ② 两个正规子群的交, 是正规子群.
- ③ 两个子环的交, 是子环.
- ④ 两个子整环的交, 是子整环.
- ⑤ 两个子域的交, 是子域.
- ⑥ 两个理想的交, 是理想.

设 X 是环 R 的一个子集. 设 $\{A_j\}_{j\in J}$ 是环 R 中包含 X 的所有 (E) 理想, 则 $\bigcap_{j\in J} A_j$ 称为由 X 生成的 (E) 理想, 记作 (X). X 中的元素叫作理想 (X) 的生成元.

如果 $X = \{a_1, \dots, a_n\}$, 则理想 (X) 记作 (a_1, \dots, a_n) , 称为有限生成的理想. 由一个元素生成的理想 (a) 叫作主理想.

定理 7.3.2

环
$$(R,+,\cdot)$$
, $\forall a \in R$,由 a 生成的主理想可表示为如下形式的元素:
$$(a) = \left\{ \sum_{i=1}^{m} x_i a y_i + s a + a t + n a \mid x_i, y_i, s, t \in R, n \in \mathbb{N} \right\}.$$

定理 7.3.2

环 $(R,+,\cdot)$, $\forall a \in R$, 由 a 生成的主理想可表示为如下形式的元素:

$$(a) = \left\{ \sum_{i=1}^{m} x_i a y_i + s a + a t + n a \mid x_i, y_i, s, t \in R, n \in \mathbb{N} \right\}.$$

- 注: (i) 两个这种形式的元相减, 显然还是一个这种形式的元.
 - (ii) 对 $r \in R$, 左乘 (a) 的一个元, 也得到一个这种形式的元, 即 $[(rx_1)ay_1 + (rx_2)ay_2 + \cdots (rx_m)ay_m + rat] + (rs + nr)a.$
 - (iii) 同理, $\forall r \in R$, 用 r 右乘上面的任意一元, 情形一样. 所以, 包含 a 的理想为 (a), 或者由 a 生成的理想为 (a).

- 一个主理想 (a) 的元的形式, 并不是永远像上面那样复杂.
- ① 当 R 是交换环时, (a) 的元显然都可以写成 ra + na, $(r \in R, n \in \mathbb{Z})$.
- ② 当 R 有单位元的时候,(a) 的元都可以写成 $\sum x_i a y_i, x_i, y_i \in R$. 因为此时 $sa = sa \cdot I_R, at = I_r \cdot at, na = (nI_R)aI_R$.
- ③ 当 R 既是交换环, 又有单位元时, (a) 的元形式特别简单, 可以写成 ra $(r \in R)$.

- 一个主理想 (a) 的元的形式, 并不是永远像上面那样复杂.
- ① 当 R 是交换环时, (a) 的元显然都可以写成 ra + na, $(r \in R, n \in \mathbb{Z})$.
- ② 当 R 有单位元的时候,(a) 的元都可以写成 $\sum x_i a y_i, x_i, y_i \in R$. 因为此时 $sa = sa \cdot I_R, at = I_r \cdot at, na = (nI_R)aI_R$.
- ③ 当 R 既是交换环, 又有单位元时, (a) 的元形式特别简单, 可以写成 ra $(r \in R)$.

如果环R的所有理想都是主理想,则称R为主理想环.

- 一个主理想 (a) 的元的形式, 并不是永远像上面那样复杂.
- ① 当 R 是交换环时, (a) 的元显然都可以写成 ra + na, ($r \in R, n \in \mathbb{Z}$).
- ② 当 R 有单位元的时候,(a) 的元都可以写成 $\sum x_i a y_i, x_i, y_i \in R$. 因为此时 $sa = sa \cdot I_R, at = I_r \cdot at, na = (nI_R)aI_R$.
- ③ 当 R 既是交换环, 又有单位元时, (a) 的元形式特别简单, 可以写成 ra $(r \in R)$.

如果环R的所有理想都是主理想,则称R为主理想环.

- M 7.3.6 整数环 $(\mathbb{Z},+,\cdot)$ 有单位元, 可交换, 元素 $1 \in \mathbb{Z}$, 则
 - (i) $(1) = \{r \cdot 1 \mid r \in \mathbb{Z}\} = \mathbb{Z}$, 单位理想.
 - (ii) $(0) = \{r \cdot 0 \mid r \in \mathbb{Z}\} = \{0\}$, 零理想.
- (iii) $(2) = \{r \cdot 2 \mid r \in \mathbb{Z}\} = \{$ 偶数 $\}$, 偶数环.

我们考虑陪集集合 $\{a+I,b+I,c+I,\cdots\} = R/I$ 组成的商集, 定义以下运算:

+:
$$(a+I) + (b+I) = (a+b) + I$$
,
·: $(a+I) \cdot (b+I) = (a \cdot b) + I$.

我们考虑陪集集合 $\{a+I,b+I,c+I,\cdots\} = R/I$ 组成的商集, 定义以下运算:

+:
$$(a+I) + (b+I) = (a+b) + I$$
,
·: $(a+I) \cdot (b+I) = (a \cdot b) + I$.
可知, $(R/I, +, \cdot)$ 满足:

我们考虑陪集集合 $\{a+I,b+I,c+I,\cdots\} = R/I$ 组成的商集, 定义以下运算:

+:
$$(a+I) + (b+I) = (a+b) + I$$
,
·: $(a+I) \cdot (b+I) = (a \cdot b) + I$.
可知, $(R/I, +, \cdot)$ 满足:

(i) (R/I,+) 构成商群, 可交换;

我们考虑陪集集合 $\{a+I,b+I,c+I,\cdots\} = R/I$ 组成的商集, 定义以下运算:

+:
$$(a+I) + (b+I) = (a+b) + I$$
,
·: $(a+I) \cdot (b+I) = (a \cdot b) + I$.
可知, $(R/I, +, \cdot)$ 满足:

- (i) (R/I,+) 构成商群, 可交换;
- (ii) (R/I,·) 构成半群:
 - i) 封闭性. $\forall a + I, b + I \in R/I, (a + I) \cdot (b + I) = (a \cdot b) + I \in R/I.$
 - ii) 结合律. $\forall a + I, b + I, c + I \in R/I$, 有 $[(a+I) \cdot (b+I)] \cdot (c+I) = [(ab) \cdot c] + I = [a \cdot (bc)] + I$ $= (a+I) \cdot [(b+I) \cdot (c+I)].$

(iii) 分配律:
$$\forall a + I, b + I, c + I \in R/I$$
, 有
$$(a + I) \cdot [(b + I) + (c + I)] = (a + I) \cdot [(b + c) + I] = [a(b + c)] + I$$

$$= [ab + ac] + I = (ab + I) + (ac + I)$$

$$= (a + I) \cdot (b + I) + (a + I) \cdot (c + I).$$

(iii) 分配律:
$$\forall a+I, b+I, c+I \in R/I$$
, 有
$$(a+I) \cdot [(b+I) + (c+I)] = (a+I) \cdot [(b+c) + I] = [a(b+c)] + I$$

$$= [ab+ac] + I = (ab+I) + (ac+I)$$

$$= (a+I) \cdot (b+I) + (a+I) \cdot (c+I).$$
 同理, $[(b+I) + (c+I)] \cdot (a+I) = (b+I) \cdot (a+I) + (c+I) \cdot (a+I).$

(iii) 分配律:
$$\forall a+I, b+I, c+I \in R/I$$
, 有
$$(a+I) \cdot [(b+I) + (c+I)] = (a+I) \cdot [(b+c) + I] = [a(b+c)] + I$$

$$= [ab+ac] + I = (ab+I) + (ac+I)$$

$$= (a+I) \cdot (b+I) + (a+I) \cdot (c+I).$$
 同理, $[(b+I) + (c+I)] \cdot (a+I) = (b+I) \cdot (a+I) + (c+I) \cdot (a+I).$ $\therefore (R/I, +, \cdot)$ 构成环, 称其为 R 关于 I 的**商环**.

(iii) 分配律:
$$\forall a+I, b+I, c+I \in R/I$$
, 有
$$(a+I) \cdot [(b+I) + (c+I)] = (a+I) \cdot [(b+c) + I] = [a(b+c)] + I$$

$$= [ab+ac] + I = (ab+I) + (ac+I)$$

$$= (a+I) \cdot (b+I) + (a+I) \cdot (c+I).$$
 同理, $[(b+I) + (c+I)] \cdot (a+I) = (b+I) \cdot (a+I) + (c+I) \cdot (a+I).$ $\therefore (R/I, +, \cdot)$ 构成环, 称其为 R 关于 I 的**商环**.

定理 7.3.3

设 R 是一个环, I 是 R 的一个理想, 则 R/I 对于加法运算 (a+I)+(b+I)=(a+b)+I

和乘法运算

$$(a+I)(b+I) = (ab) + I$$

构成一个环. 当 R 是交换环或有单位元时, R/I 也是交换环或有单位元.

解:
$$(3) = \{0,3\}, \mathbb{Z}_6 = \{0,1,2,3,4,5\}.$$

∴ Z₆ 关于 (3) 的陪集有 3 个,

$$\mathbb{U}(3) = 0 + (3) = \{0, 3\}, 1 + (3) = \{1, 4\}, 2 + (3) = \{2, 5\}.$$

故
$$\mathbb{Z}_6/(3) = \{(3), 1+(3), 2+(3)\}.$$

$$解: ∴ (3) = {0,3}, \mathbb{Z}_6 = {0,1,2,3,4,5}.$$

∴ Z₆ 关于 (3) 的陪集有 3 个,

$$\mathbb{U}(3) = 0 + (3) = \{0, 3\}, 1 + (3) = \{1, 4\}, 2 + (3) = \{2, 5\}.$$

故
$$\mathbb{Z}_6/(3) = \{(3), 1+(3), 2+(3)\}.$$

而由
$$(a+H)+(b+H)=(a+b)+H, (a+H)\cdot(b+H)=ab+H$$
 得

解:
$$(3) = \{0,3\}, \mathbb{Z}_6 = \{0,1,2,3,4,5\}.$$

∴ Z₆ 关于 (3) 的陪集有 3 个,

$$\mathbb{U}(3) = 0 + (3) = \{0, 3\}, 1 + (3) = \{1, 4\}, 2 + (3) = \{2, 5\}.$$

故
$$\mathbb{Z}_6/(3) = \{(3), 1+(3), 2+(3)\}.$$

而由 $(a+H) + (b+H) = (a+b) + H, (a+H) \cdot (b+H) = ab + H$ 得

例 7.3.7 做出环 \mathbb{Z}_6 关于主理想 $(3) = \{0,3\}$ 的商环 $\mathbb{Z}_6/(3)$ 的运算表.

解:
$$(3) = \{0,3\}, \mathbb{Z}_6 = \{0,1,2,3,4,5\}.$$

 \mathbb{Z}_6 关于 (3) 的陪集有 3 个,

$$\mathbb{U}(3) = 0 + (3) = \{0, 3\}, 1 + (3) = \{1, 4\}, 2 + (3) = \{2, 5\}.$$

故
$$\mathbb{Z}_6/(3) = \{(3), 1+(3), 2+(3)\}.$$

而由 $(a+H) + (b+H) = (a+b) + H, (a+H) \cdot (b+H) = ab + H$ 得

+	(3)	1+(3)	2+(3)			(3)	1+(3)	2+(3)
(3)	(3)	1+(3)	2+(3)	-	(3)	(3)	(3)	(3)
1+(3)	1+(3)	2+(3)	(3)		1+(3)	(3)	1+(3)	2+(3)
2+(3)	2+(3)	(3)	1+(3)		2+(3)	(3)	2+(3)	1+(3)

现在,给出环同态基本定理.

定理 7.3.4

设f是环R到环R'的同态,则f的核 kerf是R的理想. 反过来,设I是环R的理想. 令

$$s: R \to R/I,$$

 $a \mapsto a+I,$

则 s 是满同态映射 (称为 $R \rightarrow R/I$ 的自然同态), 且 ker s = I.

现在,给出环同态基本定理.

定理 7.3.4

设f是环R到环R'的同态,则f的核 kerf是R的理想. 反过来,设I是环R的理想. 令

$$s: R \to R/I,$$

 $a \mapsto a+I.$

则 s 是满同态映射 (称为 $R \to R/I$ 的自然同态), 且 ker s = I.

证: i) 对
$$\forall a, b \in \ker f$$
, $f(a) = f(b) = 0$.

$$\therefore f(a-b) = f(a) - f(b) = 0 - 0 = 0.$$

$$\therefore a - b \in \ker f$$
.

ii)
$$\forall r \in R, a \in \ker f, f(a) = 0.$$

$$\therefore f(ra) = f(r) \cdot f(a) = f(r) \cdot 0 = 0. \quad \therefore ra \in \ker f.$$

同理, $ar \in \ker f$.

综上, $\ker f \in R$ 的理想.

反过来, 对任意 $a,b \in R$, 有

$$s(a + b) = (a + b) + I = (a + I)(b + I) = s(a) + s(b),$$

 $s(ab) = ab + I = (a + I)(b + I) = s(a)s(b).$

而对任意 $(a+I) \in R/I$, 有原像 a, 故 s 为 R 到 R/I 的满同态. 进而, ker $s = \{a \mid a+I=I, a \in R\} = \{a \mid a \in I\} = I$.

反过来, 对任意 $a,b \in R$, 有

$$s(a + b) = (a + b) + I = (a + I)(b + I) = s(a) + s(b),$$

 $s(ab) = ab + I = (a + I)(b + I) = s(a)s(b).$

而对任意 $(a+I) \in R/I$, 有原像 a, 故 s 为 R 到 R/I 的满同态. 进而, ker $s = \{a \mid a+I = I, a \in R\} = \{a \mid a \in I\} = I$.

定理 7.3.5 (环同态基本定理)

设 f 是环 R 到环 R' 的同态,则存在唯一的 $R/\ker f$ 到像子环 f(R) 的同构 \bar{f} : $a+\ker f\mapsto f(a)$ 使得 $f=i\circ \bar{f}\circ s$,其中 s 是环 R 到商环 $R/\ker f$ 的自然同态, $i:c\mapsto c$ 是 f(R) 到 R' 的恒等映射,即有以下的交换图.

$$\begin{array}{ccc} R & \stackrel{f}{\longrightarrow} & R' \\ s \downarrow & & \uparrow i \\ R/\ker f & \stackrel{\bar{f}}{\longrightarrow} & f(R) \end{array}$$

イロト (部) (注) (注) (注) (注) (の()

设 P 是环 R 的理想. 如果 $P \neq R$, 且对任意理想 $A, B, AB \subset P$, 有 $A \subset P$ 或 $B \subset P$, 则称 P 为 R 的**素理想**.

设 P 是环 R 的理想. 如果 $P \neq R$, 且对任意理想 $A, B, AB \subset P$, 有 $A \subset P$ 或 $B \subset P$, 则称 P 为 R 的**素理想**.

定理 7.3.6

设 P 是环 R 的理想. 如果 $P \neq R$, 且对任意 $a,b \in R$, 当 $ab \in P$ 时, 有 $a \in P$ 或 $b \in P$, 则 P 是素理想.

反过来, 如果 P 是素理想, 且 R 是交换环, 则对于任意 $a,b \in R$, $ab \in P$, 有 $a \in P$ 或 $b \in P$.

设 P 是环 R 的理想. 如果 $P \neq R$, 且对任意理想 $A, B, AB \subset P$, 有 $A \subset P$ 或 $B \subset P$, 则称 P 为 R 的素理想.

定理 7.3.6

设 P 是环 R 的理想. 如果 $P \neq R$, 且对任意 $a,b \in R$, 当 $ab \in P$ 时, 有 $a \in P$ 或 $b \in P$, 则 P 是素理想.

反过来, 如果 P 是素理想, 且 R 是交换环, 则对于任意 $a,b \in R$, $ab \in P$, 有 $a \in P$ 或 $b \in P$.

证: 如果理想 A,B 使得 $AB \subset P, A \not\subset P$, 则存在元素 $a \in A, a \not\in P$. 对任意元素 $b \in B$, 根据假设, 从 $ab \in AB \subset P$ 及 $a \not\in P$ 可得到 $b \in P$. 这说明, $B \subset P$. 因此, P 是素理想.

设 P 是环 R 的理想. 如果 $P \neq R$, 且对任意理想 $A, B, AB \subset P$, 有 $A \subset P$ 或 $B \subset P$, 则称 P 为 R 的素理想.

定理 7.3.6

设 P 是环 R 的理想. 如果 $P \neq R$, 且对任意 $a,b \in R$, 当 $ab \in P$ 时, 有 $a \in P$ 或 $b \in P$, 则 P 是素理想.

反过来, 如果 P 是素理想, 且 R 是交换环, 则对于任意 $a,b \in R$, $ab \in P$, 有 $a \in P$ 或 $b \in P$.

证: 如果理想 A, B 使得 $AB \subset P, A \not\subset P$, 则存在元素 $a \in A, a \not\in P$. 对任意元素 $b \in B$, 根据假设, 从 $ab \in AB \subset P$ 及 $a \not\in P$ 可得到 $b \in P$. 这说明, $B \subset P$. 因此, P 是素理想.

反过来,设 P 是素理想,且 R 是交换环,则对任意 $a,b \in R$,满足 $ab \in P$,有 $(a)(b) = (ab) \subset P$.根据素理想的定义,有 $(a) \subset P$ 或 $(b) \subset P$.

事实上, $\forall a, b \in R$, 若 $ab \in \{0\}$, 即 ab = 0.

 $\therefore R$ 是整环, 无零因子. $\therefore a = 0$ 或 b = 0, 即 $a \in \{0\}$ 或 $b \in \{0\}$.

∴ {0} 是素理想.

事实上, $\forall a, b \in R$, 若 $ab \in \{0\}$, 即 ab = 0.

- \therefore R 是整环, 无零因子. \therefore a = 0 或 b = 0, 即 $a \in \{0\}$ 或 $b \in \{0\}$.
- :. {0} 是素理想.

例 7.3.9 设 p 是素数, 则 $P = (p) = p\mathbb{Z}$ 是 \mathbb{Z} 的素理想.

事实上, $\forall a, b \in R$, 若 $ab \in \{0\}$, 即 ab = 0.

 \therefore R 是整环, 无零因子. \therefore a = 0 或 b = 0, 即 $a \in \{0\}$ 或 $b \in \{0\}$.

∴ {0} 是素理想.

例 7.3.9 设 p 是素数, 则 $P = (p) = p\mathbb{Z}$ 是 \mathbb{Z} 的素理想.

证: $(p) = \{rp \mid r \in \mathbb{Z}, p \$ 是素数 $\}$.

对任意的整数 a,b, 若 $ab \in P = (p)$, 则 $p \mid ab$.

因为 p 是素数, 所以有 $p \mid a$ 或 $p \mid b$.

由此得到, $a \in P$ 或 $b \in P$.

根据定理 7.3.6, $P = (p) = p\mathbb{Z}$ 是 \mathbb{Z} 的素理想.

在有单位元 $1_R \neq 0$ 的交换环 R 中, 理想 P 是素理想的充要条件是 商环 R/P 是整环.

在有单位元 $1_R \neq 0$ 的交换环 R 中, 理想 P 是素理想的充要条件是 商环 R/P 是整环.

证: (i) 因为环 R 有单位元 $1_R \neq 0$, 所以 R/P 有单位元 $1_R + P$ 和零元 $0_R + P = P$. 又因为 P 是素理想, 所以 $1_R + P \neq P$.

在有单位元 $1_R \neq 0$ 的交换环 R 中, 理想 P 是素理想的充要条件是 商环 R/P 是整环.

- 证: (i) 因为环 R 有单位元 $1_R \neq 0$, 所以 R/P 有单位元 $1_R + P$ 和零元 $0_R + P = P$. 又因为 P 是素理想, 所以 $1_R + P \neq P$.
 - (ii) 现在说明 R/P 无零因子且可交换.

事实上, 若 (a+P)(b+P)=P, 则 ab+P=P. 因此, $ab\in P$. 但 P是交换环 R 的素理想, 根据定理 7.3.6, 得到 $a\in P$ 或 $b\in P$, 即 a+P=P 或 b+P=P 是 R/P 的零元. 而 R 是交换环, 则 R/P 可交换.

在有单位元 $1_R \neq 0$ 的交换环 R 中, 理想 P 是素理想的充要条件是 商环 R/P 是整环.

证: (i) 因为环 R 有单位元 $1_R \neq 0$, 所以 R/P 有单位元 $1_R + P$ 和零元 $0_R + P = P$. 又因为 P 是素理想, 所以 $1_R + P \neq P$.

(ii) 现在说明 R/P 无零因子且可交换.

事实上, 若 (a+P)(b+P)=P, 则 ab+P=P. 因此, $ab\in P$. 但 P是交换环 R 的素理想, 根据定理 7.3.6, 得到 $a\in P$ 或 $b\in P$, 即 a+P=P 或 b+P=P 是 R/P 的零元. 而 R 是交换环, 则 R/P 可交换. 故商环 R/P 是整环.

在有单位元 $1_R \neq 0$ 的交换环 R 中, 理想 P 是素理想的充要条件是 商环 R/P 是整环.

- 证: (i) 因为环 R 有单位元 $1_R \neq 0$, 所以 R/P 有单位元 $1_R + P$ 和零元 $0_R + P = P$. 又因为 P 是素理想, 所以 $1_R + P \neq P$.
 - (ii) 现在说明 R/P 无零因子且可交换.

事实上, 若 (a+P)(b+P)=P, 则 ab+P=P. 因此, $ab\in P$. 但 P是交换环 R 的素理想, 根据定理 7.3.6, 得到 $a\in P$ 或 $b\in P$, 即 a+P=P 或 b+P=P 是 R/P 的零元. 而 R 是交换环, 则 R/P 可交换. 故商环 R/P 是整环.

反过来, 对任意 $a,b \in R$, 满足 $ab \in P$, 有 (a+P)(b+P) = ab+P = P. 因为商环 R/P 是整环, 没有零因子, 所以 a+P=P 或 b+P=P. 由此得到, $a \in P$ 或 $b \in P$. 所以, 理想 P 是素理想.

设 M 是环 R 的 (\pm) 理想. 如果 $M \neq R$, 且对任意的理想 N, 使得 $M \subset N \subset R$, 有 N = M 或 N = R, 则称 M 为 R 的极大 (\pm) 理想.

设 M 是环 R 的 (\pm) 理想. 如果 $M \neq R$, 且对任意的理想 N, 使得 $M \subset N \subset R$, 有 N = M 或 N = R, 则称 M 为 R 的极大 (\pm) 理想.

定理 7.3.8

在有单位元的非零环 R 中, 极大 (左) 理想总是存在的. 事实上, R 的每个 (左) 理想 ($\neq R$) 都包含在一个极大 (左) 理想中.

设 M 是环 R 的 (\pm) 理想. 如果 $M \neq R$, 且对任意的理想 N, 使得 $M \subset N \subset R$, 有 N = M 或 N = R, 则称 M 为 R 的极大 (\pm) 理想.

定理 7.3.8

在有单位元的非零环 R 中, 极大 (\pm) 理想总是存在的. 事实上, R 的每个 (\pm) 理想 (\neq R) 都包含在一个极大 (\pm) 理想中.

定理 7.3.9

设 R 是一个理想, 如果 $R^2 = R$ (特别地, 如果 R 有单位元, 则 R 的 每个极大理想是素理想.

本课作业

- 1. 集合 $\{a+b\sqrt{5}\mid a,b\in\mathbb{Z}\}$ 关于实数中通常的加法与乘法是否构成环, 说明理由.
- 2. 设 R 是有单位元 e 的环, 证明 R 中的可逆元不是零因子.

3. 集合
$$S = \left\{ \begin{pmatrix} x & y \\ 0 & z \end{pmatrix} \mid x,y,z \in \mathbb{Z} \right\}$$
 按通常矩阵加法与乘法构成环. 令
$$\psi: \qquad S \qquad \to \mathbb{Z};$$

$$\begin{pmatrix} x & y \\ 0 & z \end{pmatrix} \mapsto z.$$

- 证明: $(1) \psi$ 为 S 到 \mathbb{Z} 的满同态;
 - (2) 求 ψ 的核 ker ψ , 并给出 $S/\text{ker }\psi$ 到 $\mathbb Z$ 的一个同构映射.
- 4. 设 R 是交换环, I 是 R 的理想. 令 $J = \{r \in R \mid \overline{r} \in \mathbb{N} \mid \overline{r} \in I\}$. 证明: J 是 R 的理想.

交流与讨论

电子邮箱:

陈秀波: xb_chen@bupt.edu.cn

徐国胜: guoshengxu@bupt.edu.cn

金正平: zhpjin@bupt.edu.cn