Learning from Data Lecture 2: Decision Tree, Vector Space Models, K-nearest neighbor

Malvina Nissim m.nissim@rug.nl room 1311.421

10 September 2018

1 / 25

Malvina Nissim LFD – Lecture 2 10 September 2018

Announcements!

- Strongly recommended Lab: Week 4 (Tuesday September 25th)
- Error in template:
 \bibliography{eacl2017} -> \bibliographystyle{eacl2017}

(some slides by Barbara Rosario)

Decision Tree for PlayTennis

a Decision Tree is a classifier in the form a tree structure.

4 / 25

Malvina Nissim LFD – Lecture 2 10 September 2018

a Decision Tree is a classifier in the form a tree structure.

Each node is either:

- a decision node:
- a leaf node:

Malvina Nissim LFD – Lecture 2 10 S

a Decision Tree is a classifier in the form a tree structure.

Each node is either:

- a decision node: specifies some test to be carried out on a single attribute-value
- a leaf node: indicates the value of the target attribute (=class) of examples

4 / 25

Malvina Nissim LFD – Lecture 2 10 September 2018

a Decision Tree is a classifier in the form a tree structure.

Each node is either:

- a decision node: specifies some test to be carried out on a single attribute-value
- a leaf node: indicates the value of the target attribute (=class) of examples

a decision tree can be used to classify a new instance: start at the root of the tree and move through it until a leaf node (= a class) is reached

Training Examples

Goal: learn when we can play Tennis and when we cannot

Day	Outlook	Temp.	Humidity	Wind	Play Tennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Weak	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cold	Normal	Weak	Yes
D10	Rain	Mild	Normal	Strong	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No 54

Decision Tree for PlayTennis

Decision Tree for PlayTennis

How do we build a decision tree that models the training set?

How do we build a decision tree that models the training set?

- crucial decision: select which attribute to test at each node in the tree.
- one must pick the attribute that is most useful for classifying examples.

NOTE: this is a top-down, greedy search that picks the best attribute and never looks back to reconsider earlier choices

5 / 25

Malvina Nissim LFD – Lecture 2 10 September 2018

How do we build a decision tree that models the training set?

- crucial decision: select which attribute to test at each node in the tree.
- one must pick the attribute that is most useful for classifying examples.

NOTE: this is a top-down, greedy search that picks the best attribute and never looks back to reconsider earlier choices

How do we build a decision tree that models the training set?

Two big choices:

- splitting: finding features and values to split on
- stopping: deciding when to stop

5 / 25

Malvina Nissim LFD – Lecture 2 10 September 2018

How do we build a decision tree that models the training set?

Two big choices:

- splitting: finding features and values to split on
- stopping: deciding when to stop
 - <u>criterion</u>: when all elements at one node have the same class, no need to split further

How do we build a decision tree that models the training set?

Two big choices:

- splitting: finding features and values to split on
 - <u>criterion</u>: choose the split that yields the <u>maximum information gain</u> (or the maximum reduction of uncertainty)
- stopping: deciding when to stop
 - <u>criterion</u>: when all elements at one node have the same class, no need to split further

How do we build a decision tree that models the training set?

Two big choices:

- splitting: finding features and values to split on
 - <u>criterion</u>: choose the split that yields the <u>maximum information gain</u> (or the <u>maximum reduction</u> of uncertainty)
- stopping: deciding when to stop
 - <u>criterion</u>: when all elements at one node have the same class, no need to split further

Note: in practice, one first builds a large tree and then prunes it back

what did we say was the **best split**?

what did we say was the **best split**?

- Information Gain is the mutual information between input attribute
 A and target variable Y
- Information Gain is the **expected reduction in entropy** of target variable Y for data sample S, due to sorting on variable A

- (feature) "cheerful" is found in
 - 70% of POSITIVE tweets
 - 25% of NEGATIVE tweets
- (feature) "emotion" is found in
 - 40% of POSITIVE tweets
 - 30% of NEGATIVE tweets

 Malvina Nissim
 LFD – Lecture 2
 10 September 2018
 7 / 25

Information Gain

Which test is more informative?

Split over whether Balance exceeds 50K

Less or equal 50K Over 50K

Split over whether applicant is employed

Unemployed

Employed

Information Gain

Impurity/Entropy (informal)

Measures the level of impurity in a group of examples

Impurity

Very impure group

Less impure

Minimum impurity

Entropy: a common way to measure impurity

• Entropy =
$$\sum_{i} -p_{i} \log_{2} p_{i}$$

p_i is the probability of class i

Compute it as the proportion of class i in the set.

```
16/30 are green circles; 14/30 are pink crosses log_2(16/30) = -.9; log_2(14/30) = -1.1
Entropy = -(16/30)(-.9) -(14/30)(-1.1) = .99
```

 Entropy comes from information theory. The higher the entropy the more the information content.

What does that mean for learning from examples?

2-Class Cases:

- What is the entropy of a group in which all examples belong to the same class?
 - entropy = 1 log₂1 = 0

not a good training set for learning

$$-$$
 entropy = -0.5 $\log_2 0.5 - 0.5 \log_2 0.5 = 1$

good training set for learning

Maximum impurity

Information Gain

- We want to determine which attribute in a given set of training feature vectors is most useful for discriminating between the classes to be learned.
- Information gain tells us how important a given attribute of the feature vectors is.
- We will use it to decide the ordering of attributes in the nodes of a decision tree.

Calculating Information Gain

Information Gain = entropy(parent) - [average entropy(children)]

Entire population (30 instances)

$$\frac{\text{child entropy}}{\text{entropy}} - \left(\frac{13}{17} \cdot \log \frac{13}{17}\right) - \left(\frac{4}{17} \cdot \log \frac{4}{17}\right) = 0.787$$

$$\frac{\text{child entropy}}{\text{entropy}} - \left(\frac{1}{13} \cdot \log \frac{1}{13}\right) - \left(\frac{12}{13} \cdot \log \frac{12}{13}\right) = 0.391$$

$$\frac{\text{child entropy}}{\text{entropy}} - \left(\frac{1}{13} \cdot \log \frac{1}{13}\right) - \left(\frac{12}{13} \cdot \log \frac{12}{13}\right) = 0.391$$

$$\frac{\text{child entropy}}{\text{entropy}} - \left(\frac{1}{13} \cdot \log \frac{1}{13}\right) - \left(\frac{12}{13} \cdot \log \frac{12}{13}\right) = 0.391$$

$$\frac{\text{child entropy}}{\text{entropy}} - \left(\frac{1}{13} \cdot \log \frac{1}{13}\right) - \left(\frac{12}{13} \cdot \log \frac{12}{13}\right) = 0.391$$

$$\frac{\text{child entropy}}{\text{entropy}} - \left(\frac{1}{13} \cdot \log \frac{1}{13}\right) - \left(\frac{12}{13} \cdot \log \frac{1}{13}\right) = 0.391$$

$$\frac{\text{child entropy}}{\text{entropy}} - \left(\frac{1}{13} \cdot \log \frac{1}{13}\right) - \left(\frac{12}{13} \cdot \log \frac{1}{13}\right) = 0.391$$

$$\frac{\text{child entropy}}{\text{entropy}} - \left(\frac{1}{13} \cdot \log \frac{1}{13}\right) - \left(\frac{1}{13} \cdot \log \frac{1}{13}\right) = 0.391$$

$$\frac{\text{child entropy}}{\text{entropy}} - \left(\frac{1}{13} \cdot \log \frac{1}{13}\right) - \left(\frac{1}{13} \cdot \log \frac{1}{13}\right) = 0.391$$

$$\frac{\text{child entropy}}{\text{entropy}} - \left(\frac{1}{13} \cdot \log \frac{1}{13}\right) - \left(\frac{1}{13} \cdot \log \frac{1}{13}\right) = 0.391$$

$$\frac{\text{child entropy}}{\text{entropy}} - \left(\frac{1}{13} \cdot \log \frac{1}{13}\right) - \left(\frac{1}{13} \cdot \log \frac{1}{13}\right) = 0.391$$

$$\frac{\text{child entropy}}{\text{entropy}} - \left(\frac{1}{13} \cdot \log \frac{1}{13}\right) - \left(\frac{1}{13} \cdot \log \frac{1}{13}\right) = 0.391$$

$$\frac{\text{child entropy}}{\text{entropy}} - \left(\frac{1}{13} \cdot \log \frac{1}{13}\right) - \left(\frac{1}{13} \cdot \log \frac{1}{13}\right) = 0.391$$

$$\frac{\text{child entropy}}{\text{entropy}} - \left(\frac{1}{13} \cdot \log \frac{1}{13}\right) - \left(\frac{1}{13} \cdot \log \frac{1}{13}\right) = 0.391$$

$$\frac{\text{child entropy}}{\text{entropy}} - \left(\frac{1}{13} \cdot \log \frac{1}{13}\right) - \left(\frac{1}{13} \cdot \log \frac{1}{13}\right) = 0.391$$

$$\frac{\text{child entropy}}{\text{entropy}} - \left(\frac{1}{13} \cdot \log \frac{1}{13}\right) - \left(\frac{1}{13} \cdot \log \frac{1}{13}\right) = 0.391$$

$$\frac{\text{child entropy}}{\text{entropy}} - \left(\frac{1}{13} \cdot \log \frac{1}{13}\right) - \left(\frac{1}{13} \cdot \log \frac{1}{13}\right) = 0.391$$

$$\frac{\text{child entropy}}{\text{entropy}} - \left(\frac{1}{13} \cdot \log \frac{1}{13}\right) - \left(\frac{1}{13} \cdot \log \frac{1}{13}\right) = 0.391$$

$$\frac{\text{child entropy}}{\text{entropy}} - \left(\frac{1}{13} \cdot \log \frac{1}{13}\right) = 0.391$$

$$\frac{\text{child entropy}}{\text{entropy}} - \left(\frac{1}{13} \cdot \log \frac{1}{13}\right) = 0.391$$

$$\frac{\text{child entropy}}{\text{entropy}} - \left(\frac{1}{13} \cdot \log \frac{1}$$

Information Gain= 0.996 - 0.615 = 0.38 for this split

Simple Example

Training Set: 3 features and 2 classes

X	Y	Z	С
1	1	1	I
1	1	0	I
0	0	1	II
1	0	0	II

How would you distinguish class I from class II?

X	Y	Z	C I
1	1	1	I
1	1	0	I
0	0	1	II II
1	0	0	II

Split on attribute X

If X is the best attribute, this node would be further split.

$$E_{child1} = -(1/3)log_2(1/3)-(2/3)log_2(2/3)$$

= .5284 + .39
= .9184

$$E_{parent} = 1$$

GAIN = 1 - (3/4)(.9184) - (1/4)(0) = .3112

Split on attribute Y

$$E_{parent} = 1$$

GAIN = 1 -(1/2) 0 - (1/2)0 = 1; BEST ONE

Split on attribute Z

$$Z=1 \qquad I \qquad I \qquad E_{child1}=1$$

$$Z=0 \qquad I \qquad E_{child2}=1$$

$$E_{parent} = 1$$

GAIN = 1 - (1/2)(1) - (1/2)(1) = 0 ie. NO GAIN; WORST ₁₃

Pruning

- grow decision tree to its entirety
- trim the nodes of the decision tree in a bottom-up fashion
- if generalisation error improves after trimming, replace sub-tree by a leaf node
- class label of leaf node is determined from majority class of instances in the sub-tree

Pruning

- grow decision tree to its entirety
- trim the nodes of the decision tree in a bottom-up fashion
- if generalisation error improves after trimming, replace sub-tree by a leaf node
- class label of leaf node is determined from majority class of instances in the sub-tree

For the experiments you can manipulate the following parameters:

- maximum number of leaves
- minimum number of samples per leaf
- (features)

Decision trees in scikit-learn

```
http://scikit-learn.org/stable/modules/tree.html
```

http://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html

◆ロト ◆個ト ◆差ト ◆差ト 差 めらゆ

Vector space model

the representation of a set of documents as vectors in a common space

(parts of some following slides are based on slides by Yannick Parmentier)

10 / 25

Malvina Nissim LFD – Lecture 2 10 September 2018

Vector space model

- Each term t of the dictionary is considered as a dimension
- A document d can be represented by the weight of each vocabulary term:

$$\vec{V}(d) = (w(t_1, d), w(t_2, d), \dots, w(t_n, d))$$

• Note that also raw frequency could be used (that's what we are doing)

11 / 25

Vector space model

- Each term t of the dictionary is considered as a dimension
- A document d can be represented by the weight of each vocabulary term:

$$\vec{V}(d) = (w(t_1, d), w(t_2, d), \dots, w(t_n, d))$$

Note that also raw frequency could be used (that's what we are doing)

representation of three documents using term raw frequencies: d_1 , d_2 , d_3

	d_1	d_2	<i>d</i> ₃
affection	115	58	20
jealous	10	7	11
gossip	2	0	6

Vector space model

- Each term t of the dictionary is considered as a dimension
- A document d can be represented by the weight of each vocabulary term:

$$\vec{V}(d) = (w(t_1, d), w(t_2, d), \dots, w(t_n, d))$$

Note that also raw frequency could be used (that's what we are doing)

representation of three documents using term raw frequencies: d_1 , d_2 , d_3

	d_1	d_2	d ₃
affection	115	58	20
jealous	10	7	11
gossip	2	0	6

• Question: how do we compute the similarity between documents?

Vector normalization and similarity

• Similarity between vectors

ightarrow inner product $ec{V}(d_1) \cdot ec{V}(d_2)$

12 / 25

Malvina Nissim LFD – Lecture 2 10 September 2018

Vector normalization and similarity

- Similarity between vectors \rightarrow inner product $\vec{V}(d_1) \cdot \vec{V}(d_2)$
- What about the length of a vector? Longer documents will be represented with longer vectors, but that does not mean they are more important
- Euclidian normalization (vector length normalization):

$$ec{v}(d) \ = \ rac{ec{V}(d)}{\|ec{V}(d)\|} \qquad ext{where} \ \|ec{V}(d)\| = \sqrt{\sum_{i=1}^n x_i^2}$$

Vector normalization and similarity

- Similarity between vectors \rightarrow inner product $\vec{V}(d_1) \cdot \vec{V}(d_2)$
- Similarity given by the cosine measure between normalized vectors:

$$sim(d_1, d_2) = \vec{v}(d_1) \cdot \vec{v}(d_2)$$

12 / 25

• $sim(d1, d2) = \vec{v}(d1) \cdot \vec{v}(d2)$ let's backtrack this:

$$\bullet \vec{v}(d1) \cdot \vec{v}(d2) = \sum_{i=1}^{n} d1_i d2_i$$

normalising for length:

$$ec{v}(d_i) = rac{ec{V}(d_i)}{\|ec{V}(d)\|}$$

Euclidean length:

$$\|\vec{V}(d)\| = \sqrt{\sum_{i=1}^{n} \vec{V}_{i}^{2}(d)}$$

- $sim(d1, d2) = \vec{v}(d1) \cdot \vec{v}(d2)$
- $\vec{v}(d1) \cdot \vec{v}(d2) = \sum_{i=1}^{n} d1_i d2_i$
- normalising for length:

$$ec{v}(d_i) = rac{ec{V}(d_i)}{\|ec{V}(d)\|}$$

• Euclidean length:

$$\|\vec{V}(d)\| = \sqrt{\sum_{i=1}^{n} \vec{V}_{i}^{2}(d)}$$

vocabulary	d1	d2	d3
1: affection	115	58	20
2: jealous	10	7	11
3: gossip	2	0	6

- $sim(d1, d2) = \vec{v}(d1) \cdot \vec{v}(d2)$
- $\vec{v}(d1) \cdot \vec{v}(d2) = \sum_{i=1}^{n} d1_i d2_i$
- normalising for length:

$$ec{v}(d_i) = rac{ec{V}(d_i)}{\|ec{V}(d)\|}$$

• Euclidean length:

$$\|\vec{V}(d)\| = \sqrt{\sum_{i=1}^{n} \vec{V}_{i}^{2}(d)}$$

vocabulary	d1	d2	d3
1: affection	115	58	20
2: jealous	10	7	11
3: gossip	2	0	6

$$\|\vec{V}(d1)\| = \sqrt{115^2 + 10^2 + 2^2}$$

- $sim(d1, d2) = \vec{v}(d1) \cdot \vec{v}(d2)$
- $\vec{v}(d1) \cdot \vec{v}(d2) = \sum_{i=1}^{n} d1_i d2_i$
- normalising for length:

$$ec{v}(d_i) = rac{ec{V}(d_i)}{\|ec{V}(d)\|}$$

Euclidean length:

$$\|\vec{V}(d)\| = \sqrt{\sum_{i=1}^{n} \vec{V}_{i}^{2}(d)}$$

vocabulary	d1	d2	d3
1: affection	115	58	20
2: jealous	10	7	11
3: gossip	2	0	6

$$\|\vec{V}(d1)\| = \sqrt{115^2 + 10^2 + 2^2}$$

$$\vec{v}(d1_1) = \frac{115}{\sqrt{115^2 + 10^2 + 2^2}} = 0.996$$

$$\vec{v}(d1_2) = \frac{10}{\sqrt{115^2 + 10^2 + 2^2}} = 0.087$$

$$\vec{v}(d1_3) = \frac{2}{\sqrt{115^2 + 10^2 + 2^2}} = 0.017$$

- $sim(d1, d2) = \vec{v}(d1) \cdot \vec{v}(d2)$
- $\bullet \vec{v}(d1) \cdot \vec{v}(d2) = \sum_{i=1}^{n} d1_i d2_i$
- normalising for length:

$$ec{v}(d_i) = rac{ec{V}(d_i)}{\|ec{V}(d)\|}$$

• Euclidean length:

$$\|\vec{V}(d)\| = \sqrt{\sum_{i=1}^{n} \vec{V}_{i}^{2}(d)}$$

vocabulary	d1	d2	d3
1: affection	115	58	20
2: jealous	10	7	11
3: gossip	2	0	6

$$\|\vec{V}(d2)\| = \sqrt{58^2 + 7^2 + 0}$$

$$\vec{v}(d2_1) = \frac{58}{\sqrt{58^2 + 7^2 + 0}} = 0.993$$

$$\vec{v}(d2_2) = \frac{7}{\sqrt{58^2 + 7^2 + 0}} = 0.120$$

$$\vec{v}(d2_3)=0$$

- $sim(d1, d2) = \vec{v}(d1) \cdot \vec{v}(d2)$
- $\bullet \vec{v}(d1) \cdot \vec{v}(d2) = \sum_{i=1}^{n} d1_i d2_i$
- normalising for length:

$$ec{v}(d_i) = rac{ec{V}(d_i)}{\|ec{V}(d)\|}$$

Euclidean length:

$$\|\vec{V}(d)\| = \sqrt{\sum_{i=1}^{n} \vec{V}_{i}^{2}(d)}$$

vocabulary	d1	d2	d3
1: affection	115	58	20
2: jealous	10	7	11
3: gossip	2	0	6

$$\|\vec{V}(d3)\| = \sqrt{20^2 + 11^2 + 6^2}$$

$$\vec{v}(d3_1) = \frac{20}{\sqrt{20^2 + 11^2 + 6^2}} = 0.847$$

$$\vec{v}(d3_2) = \frac{11}{\sqrt{20^2 + 11^2 + 6^2}} = 0.466$$

$$\vec{v}(d3_3) = \frac{6}{\sqrt{20^2 + 11^2 + 6^2}} = 0.254$$

$$\bullet \ sim(d1,d3) \ = \ \vec{v}(d1) \cdot \vec{v}(d3)$$

•
$$\vec{v}(d1) \cdot \vec{v}(d3) = \sum_{i=1}^{n} d1_i d3_i$$

$$[i=1]$$
 0.996 * 0.847+
 $[i=2]$ 0.087 * 0.466+
 $[i=3]$ 0.017 * 0.254 =
= 0.888

$$\vec{v}(d1_1) = \frac{115}{\sqrt{115^2 + 10^2 + 2^2}} = 0.996$$

$$\vec{v}(d1_2) = \frac{10}{\sqrt{115^2 + 10^2 + 2^2}} = 0.087$$

$$\vec{v}(d1_3) = \frac{2}{\sqrt{115^2 + 10^2 + 2^2}} = 0.017$$

$$\vec{v}(d3_1) = \frac{20}{\sqrt{20^2 + 11^2 + 6^2}} = 0.847$$

$$\vec{v}(d3_2) = \frac{11}{\sqrt{20^2 + 11^2 + 6^2}} = 0.466$$

$$\vec{v}(d3_3) = \frac{6}{\sqrt{20^2 + 11^2 + 6^2}} = 0.254$$

•
$$sim(d1, d2) = \vec{v}(d1) \cdot \vec{v}(d2)$$

•
$$\vec{v}(d1) \cdot \vec{v}(d2) = \sum_{i=1}^{n} d1_i d2_i$$

$$[i=1]$$
 0.996 * 0.993+
 $[i=2]$ 0.087 * 0.120+
 $[i=3]$ 0.017 * 0.000 =
= 0.999

$$\vec{v}(d1_1) = \frac{115}{\sqrt{115^2 + 10^2 + 2^2}} = 0.996$$

$$\vec{v}(d1_2) = \frac{10}{\sqrt{115^2 + 10^2 + 2^2}} = 0.087$$

 $\vec{v}(d1_2) = \frac{2}{\sqrt{100^2 + 10^2 + 2^2}} = 0.017$

$$\vec{v}(d1_3) = \frac{2}{\sqrt{115^2 + 10^2 + 2^2}} = 0.017$$

$$\vec{v}(d2_1) = \frac{58}{\sqrt{58^2 + 7^2 + 0}} = 0.993$$

$$\vec{v}(d2_2) = \frac{7}{\sqrt{58^2 + 7^2 + 0}} = 0.120$$

$$\vec{v}(d2_3)=0$$

summing up:

dictionary	$\vec{v}(d_1)$	$\vec{v}(d_2)$	$\vec{v}(d_3)$
affection	0.996	0.993	0.847
jealous	0.087	0.120	0.466
gossip	0.017	0	0.254

$$sim(d_1, d_2) = 0.999$$

 $sim(d_1, d_3) = 0.888$

New documents

• each new document *n* is represented using vectors in the same way

	d_1	d_2	d_3	n
affection	115	58	20	0
jealous	10	7	11	1
gossip	2	0	6	1

• $sim(n, d) = \vec{v}(n) \cdot \vec{v}(d)$

14 / 25

New documents

• each new document *n* is represented using vectors in the same way

	d_1	d_2	<i>d</i> ₃	n
affection	115	58	20	0
jealous	10	7	11	1
gossip	2	0	6	1
class	Α	Α	В	?

• $sim(n, d) = \vec{v}(n) \cdot \vec{v}(d)$

14 / 25

New documents

each new document n is represented using vectors in the same way

	d_1	d_2	d_3	n
affection	115	58	20	0
jealous	10	7	11	1
gossip	2	0	6	1
class	Α	Α	В	В

- $sim(n, d) = \vec{v}(n) \cdot \vec{v}(d)$
- with n = < jealous, gossip > we obtain:

$$\vec{v}(n) \cdot \vec{v}(d_1) = 0.074$$

 $\vec{v}(n) \cdot \vec{v}(d_2) = 0.085$
 $\vec{v}(n) \cdot \vec{v}(d_3) = 0.509$

Classifying new documents

- Basic idea: similarity cosines between the new document's vector and each classified document's vector; finally selection of the top K scores
- NB: the decisions of many vector space classifiers are based on a notion of distance.

There is a direct correspondence between cosine similarity and Euclidean distance for length-normalised vectors, so it rarely matters whether the relatedness of two documents is expressed in terms of similarity or distance

15 / 25

Classification Using Vector Spaces

- In vector space classification, training set corresponds to a labeled set of points (equivalently, vectors)
- Premise 1: Documents in the same class form a contiguous region of space
- Premise 2: Documents from different classes don't overlap (much)
- Learning a classifier: build surfaces to delineate classes in the space

Documents in a Vector Space

Sec.14.1

Test Document of what class?

Test Document = Government

k-nearest neighbor

(some slides by Manning et al (2009), Intro to IR)

k Nearest Neighbor Classification

- kNN = k Nearest Neighbor
- To classify a document d:
- Define k-neighborhood as the k nearest neighbors of d
- Pick the majority class label in the kneighborhood

can you classify the star?

what is it most similar/close to?

can you classify the *star*? what is it most similar/close to (K = 3)?

can you classify the *star*? what is it most similar/close to (K = 5)?

can you classify the *star*? what is it most similar/close to (K = 9)?

can you classify the star? what is it most similar/close to (K = 15)?

Nearest-Neighbor Learning

- Learning: just store the labeled training examples D
- Testing instance x (under 1NN):
 - Compute similarity between x and all examples in D.
 - Assign x the category of the most similar example in D.
- Does not compute anything beyond storing the examples
- Also called:
 - Case-based learning
 - Memory-based learning
 - Lazy learning
- Rationale of kNN: contiguity hypothesis

k Nearest Neighbor

- Using only the closest example (1NN) subject to errors due to:
 - A single atypical example.
 - Noise (i.e., an error) in the category label of a single training example.
- More robust: find the k examples and return the majority category of these k
- k is typically odd to avoid ties; 3 and 5 are most common

Distance

- all instances correspond to points in an n-dimensional Euclidean space
- classification is done by comparing feature vectors of the different points

Crucial decisions:

A: how we calculate "distance" or "similarity"

B: how many points we take to measure A (K)

Distance

how to calculate "distance" or "similarity":

- an instance a is represented as $t_1(a), t_2(a), t_3(a), ... t_n(a)$
- the Euclidean distance d of two instances a and b is as follows

Euclidean distance :
$$d(a,b) = d(b,a) = \sqrt{\sum_{i=1}^{n} (t_i(a) - t_i(b))^2}$$

(also used: cosine similarity of tf.idf weighted vectors)

How to choose *K*

- experience/knowledge about a certain classification problem
- picking best K on development set or via cross-validation

19 / 25

Malvina Nissim LFD – Lecture 2 10 September 2018

kNN: Discussion

- No feature selection necessary
- No training necessary
- Scales well with large number of classes
 - Don't need to train n classifiers for n classes
- Classes can influence each other
 - Small changes to one class can have ripple effect
- May be expensive at test time
- In most cases it's more accurate than NB or Rocchio

KNN in scikit-learn

```
http://scikit-learn.org/stable/modules/neighbors.html
```

http://scikit-learn.org/stable/modules/neighbors.html#nearest-neighbors-classification

20 / 25

Linear versus Non Linear algorithms

 Linearly separable data: if all the data points can be correctly classified by a linear (hyperplanar) decision boundary

Linearly separable data

Non linearly separable data

Non linearly separable data

(Some) Algorithms for multi-class classification

- Linear
 - Parallel class separators: Decision Trees
 - Non parallel class separators: Naïve Bayes and Maximum Entropy
- Non Linear
 - K-nearest neighbors

Linear, parallel class separators (ex: Decision Trees)

Linear, NON parallel class separators (ex: Naïve Bayes)

Non Linear (ex: k Nearest Neighbor)

bias vs variance

Bias vs. capacity – notions and terminology

- Consider asking a botanist: Is an object a tree?
 - Too much capacity, low bias
 - Botanist who memorizes
 - Will always say "no" to new object (e.g., different # of leaves)
 - Not enough capacity, high bias
 - Lazy botanist
 - Says "yes" if the object is green
 - You want the middle ground

(Example due to C. Burges)

kNN vs. Naive Bayes

- Bias/Variance tradeoff
 - Variance ≈ Capacity
- kNN has high variance and low bias.
 - Infinite memory
- NB has low variance and high bias.
 - Linear decision surface (hyperplane see later)

Overfitting

- too lazy botanist → everthing green is a tree
- too picky botanist → nothing he hasn't seen yet is a tree

22 / 25

Malvina Nissim LFD - Lecture 2 10 September 2018

Overfitting

- ullet too lazy botanist o everthing green is a tree
- ullet too picky botanist o nothing he hasn't seen yet is a tree
- ightarrow a model is overfitting when it fits the data too tightly, and it's modelling noise or error instead of generalising well
- \rightarrow how can we find this out?

22 / 25

Malvina Nissim LFD – Lecture 2 10 September 2018

Overfitting

- too lazy botanist \rightarrow everthing green is a tree
- too picky botanist → nothing he hasn't seen yet is a tree
- \rightarrow a model is overfitting when it fits the data too tightly, and it's modelling noise or error instead of generalising well
- \rightarrow how can we find this out?

observe error: learning curve on training vs test data

22 / 25

Malvina Nissim LFD - Lecture 2 10 September 2018

Learning Curves

what is a learning curve?

intuitively: we plot accuracy (or error rate) on one axis (y) and training size on the other (x)

Malvina Nissim LFD - Lecture 2 10 September 2018 23 / 25

Overfitting is Not Just Bad Generalization

Overfitting:

Going for lower and lower $E_{\rm in}$ results in higher and higher $E_{\rm out}$

More on bias vs. variance

Typical learning curve for high variance:

- Test error still decreasing as m increases. Suggests larger training set will help.
- · Large gap between training and test error.

Andrew Y. Ng

More on bias vs. variance

Typical learning curve for high bias:

- Even training error is unacceptably high.
- · Small gap between training and test error.

Andrew Y. Ng

Over- and Underfitting: Classification Example

Underfitting/Bias

- · Error on training set is high
- Simple hypothesis fails to generalize to new examples

Overfitting/Variance

- Error on training set is low
- Complex hypothesis fails to generalize to new examples

Learning algorithm performance

Fixes

- high variance
 - get more training examples
 - reduce number of features
 - (prune tree)
 - regularization
 - penalty for model complexity
 - aim at reducing training error while keeping validation error constant (NB: cross-validation)
 - works well for lots of features where each contributes a little bit to predicting y
- high bias
 - get more features

24 / 25

Generative vs Discriminative

Assume this task: to determine the language that someone is speaking

- generative approach: learn each language and determine to which language the speech belongs to
- discriminative approach: determine the linguistic differences without learning any language

Generative vs Discriminative

Assume this task: to determine the language that someone is speaking

- generative approach: learn each language and determine to which language the speech belongs to
 - generative because it can simulate values of any variable in the model
 - example algorithm:
- discriminative approach: determine the linguistic differences without learning any language
 - directly estimate posterior probabilities
 - no attempt to model underlying probability distributions
 - example algorithm:

Generative vs Discriminative

Assume this task: to determine the language that someone is speaking

- generative approach: learn each language and determine to which language the speech belongs to
 - generative because it can simulate values of any variable in the model
 - example algorithm: Naive Bayes
- discriminative approach: determine the linguistic differences without learning any language
 - directly estimate posterior probabilities
 - no attempt to model underlying probability distributions
 - example algorithm: k-nearest neighbor