Playing with dirichlet process

```
## Loading required package: dirichletprocess
## Loading required package: mvtnorm
## Loading required package: foreach
```

Questions on clusterParameters

```
## Generate 10 datapoints on 2D data space from two multinormals:
## one centred at (-1,-1), the other at (1,1),
## with sd = 0.1
datasize <- 10
y <- matrix(rnorm(n=2*datasize, mean=c(-1,-1,1,1), sd=0.1), nrow=datasize, ncol=2, byrow=TRUE)
у
                  [,2]
##
           [,1]
  [1,] -0.851 -1.000
## [2,] 1.138 0.962
## [3,] -0.982 -1.025
## [4,] 0.878 1.156
## [5,] -0.957 -1.120
## [6,] 1.105 0.869
## [7,] -1.069 -0.940
## [8,] 0.980 0.881
## [9,] -1.201 -0.999
## [10,] 1.052 0.925
## Create Dirichlet-process object, multinormal mixture:
dp <- DirichletProcessMvnormal(y)</pre>
## This object has clusterParameters, with specific values:
dp$clusterParameters
## $mu
  , , 1
##
##
         [,1]
                 [,2]
## [1,] 0.093 -0.0895
##
## $sig
## , , 1
##
        [,1] [,2]
## [1,] 1.17 1.06
## [2,] 1.06 1.07
```

Question: where do the clusterParameters in the initial Dirichlet-process object come from? Can they be

considered prior samples of the θ s, rather than posterior?

```
## Fit the first Dirichlet-process, save the result under a new name:
fitdp <- Fit(dp, its=1000, progressBar=FALSE)</pre>
```

The parameters in the first sample in the fitted object seem to be equal to the clusterParameters in the initial object:

fitdp\$clusterParametersChain[[1]]

```
## $mu
##
   , , 1
##
##
          [,1]
                   [,2]
##
   [1,] 0.093 -0.0895
##
##
## $sig
##
   , , 1
##
##
         [,1] [,2]
## [1,] 1.17 1.06
## [2,] 1.06 1.07
```

Question: in general, the clusterParameters of a fitted object are effectively the last samples of the Monte Carlo chain. Is this correct?

LikelihoodDP

This actually gives the matrix of probability densities of the data conditional on the clusterParameters (or equivalently the likelihood of the clusterParameters in view of the data)

$$(p(y_i|\theta_j, \text{hyperparameters}))_{ij}$$

as can be seen by an explicit calculation with dmvnorm:

```
## with LikelihoodDP
LikelihoodDP(fitdp)
```

```
##
           [,1]
                  [,2]
                         [,3]
                                [,4]
                                       [,5]
                                                 [,6]
                                                       [,7]
                                                               [,8]
                                                                      [,9]
                                                                            [,10]
    [1,] 0.2539 0.2539 0.2539 0.2539 0.2539 1.00e-05 0.2539 0.2539 0.2539 0.0533
##
    [2,] 0.1607 0.1607 0.1607 0.1607 0.1607 1.56e-02 0.1607 0.1607 0.1607 0.0718
  [3,] 0.2731 0.2731 0.2731 0.2731 0.2731 1.79e-05 0.2731 0.2731 0.2731 0.0336
  [4,] 0.0882 0.0882 0.0882 0.0882 0.0882 1.32e-01 0.0882 0.0882 0.0882 0.1415
   [5,] 0.1912 0.1912 0.1912 0.1912 0.1912 3.99e-06 0.1912 0.1912 0.1912 0.0365
  [6,] 0.1753 0.1753 0.1753 0.1753 0.1753 9.98e-03 0.1753 0.1753 0.1753 0.0780
  [7,] 0.3175 0.3175 0.3175 0.3175 0.3175 9.25e-05 0.3175 0.3175 0.3175 0.0233
  [8,] 0.2189 0.2189 0.2189 0.2189 0.2189 2.18e-02 0.2189 0.2189 0.2189 0.1141
   [9,] 0.2586 0.2586 0.2586 0.2586 0.2586 9.65e-05 0.2586 0.2586 0.2586 0.0129
## [10,] 0.1906 0.1906 0.1906 0.1906 0.1906 1.97e-02 0.1906 0.1906 0.1906 0.0936
unname(foreach(i=1:datasize, .combine='rbind') %:% # iterate over data
       foreach(j=1:datasize, .combine='cbind') %do% { #iterate over params
           dmvnorm(x=y[i,],
                   mean=fitdp$clusterParameters$mu[,,fitdp$clusterLabels[j]],
                   sigma=fitdp$clusterParameters$sig[,,fitdp$clusterLabels[j]],
```

```
checkSymmetry=FALSE, log=FALSE)
      })
##
           [,1]
                  [,2]
                         [,3]
                                [,4]
                                       [,5]
                                                [,6]
                                                       [,7]
                                                               [,8]
                                                                      [,9]
                                                                           [,10]
   [1,] 0.2539 0.2539 0.2539 0.2539 0.2539 1.00e-05 0.2539 0.2539 0.2539 0.0533
##
    [2,] 0.1607 0.1607 0.1607 0.1607 0.1607 1.56e-02 0.1607 0.1607 0.1607 0.0718
##
    [3,] 0.2731 0.2731 0.2731 0.2731 1.79e-05 0.2731 0.2731 0.2731 0.0336
    [4,] 0.0882 0.0882 0.0882 0.0882 0.0882 1.32e-01 0.0882 0.0882 0.0882 0.1415
##
   [5,] 0.1912 0.1912 0.1912 0.1912 0.1912 3.99e-06 0.1912 0.1912 0.1912 0.0365
##
   [6,] 0.1753 0.1753 0.1753 0.1753 0.1753 9.98e-03 0.1753 0.1753 0.1753 0.0780
   [7,] 0.3175 0.3175 0.3175 0.3175 0.3175 9.25e-05 0.3175 0.3175 0.3175 0.0233
##
##
   [8,] 0.2189 0.2189 0.2189 0.2189 0.2189 2.18e-02 0.2189 0.2189 0.2189 0.1141
## [9,] 0.2586 0.2586 0.2586 0.2586 0.2586 9.65e-05 0.2586 0.2586 0.2586 0.0129
## [10,] 0.1906 0.1906 0.1906 0.1906 0.1906 1.97e-02 0.1906 0.1906 0.1906 0.0936
```

Posterior predictive in conjugate multinormal case

question on PosteriorClusters: where are they drawn from? can they be used to draw from the prior? They also work in case of unfitted object: where are they drawn from?

What does ClusterLabelPredict do?

How do I draw prior probabilities from the process?