Module 1.1.1 Biological Macromolecules

- This mini-lecture will be about how biological macromolecules
 - are heteropolymers
 - are folded
 - have noncovalent interactions with many drugs
- At the end of this mini-lecture, you should be able to, at least at a very basic level, answer the following questions:
 - What are biological macromolecules made of?
 - What does it mean for a biological macromolecule to be folded?
 - How do most drugs interact with their targets?
- TODO: Introduce
 - energy landscape concepts
 - hydrophobicity as a driving force for folding
- TODO: Describe levels of protein stucture

Biological macromolecules are heteropolymers

- Polymers made of smaller building blocks monomers - that are covalently joined together
 - Homopolymers monomers repeat, e.g. in a plastic
 - Heteropolymers monomers do not exactly repeat
- Different types of macromolecules are made of different types of building blocks

$$\begin{array}{c|c} & & & \\ & & & \\ O & & & \\ H + O & & & \\ \end{array}$$

Polyethylene terephthalate, a homopolymer https://commons.wikimedia.org/wiki/File:Polyethyleneterephthalate.svg

The monomers are small organic molecules

- Proteins are made of
 - 20 standard amino acids
 - linked by peptide bonds
 - modifications, e.g.
 - post-translational modification
 - disulfide bonds
 - cofactors and prosthetic groups

The monomers are small organic molecules

- DNA and RNA are made of nucleic acids
- DNA usually forms a double helix
- RNA is more flexible and can have complex structure

https://en.wikipedia.org/wiki/Nucleic_acid#/media/File:Difference_DNA_RNA-EN.svg

Macromolecules can be tightly complexed

30S subunit from a bacterial ribosome, which is made of both protein and RNA

Many biological macromolecules are folded

"Folded" does not mean that they are completely rigid, but they are fairly well-defined.

Most drugs are small molecules that specifically interact with the folded structures

HIV protease with saquinavir

http://www.rcsb.org/pdb/101/motm_disscussed_entry.do?id=1hxb

Most drug-target interactions are noncovalent

- The interactions driving drug binding are primarily
 - steric van der Waals. atoms like to be close but not *too* close.
 - electrostatic like charges repel and opposite charges attract. H bonding often treated as electrostatic.
- Water can play an important role.
- Some drugs (like penicillin) bind to their targets covalently.

http://www.rcsb.org/pdb/101/motm_disscussed_entry.do?id=1hxb

Review Questions

- What are biological macromolecules made of?
- What does it mean for a biological macromolecule to be folded?
- How do most drugs interact with their targets?

Misc

• A beautiful short video on "A basic introduction to drugs, drug targets, and molecular interactions": https://www.youtube.com/watch?v=u49k72rUdyc