學研實習計畫 階段性成果報告

洪睿甫、彭彥霖、陳弘軒

2021-09-08

大綱

- 緣由
- 推薦方法概敘
 - Query-based recommendation vs. model-based recommendation
 - Accelerating the inference of model-based recommendation
 - Models: DIN, W&D, PNN, DeepFM
- Offline evaluation
 - 使用公開資料集的結果
 - 使用樂天資料集的結果
- 使用 online recommendation model 的經驗
 - 模型訓練方式
 - 模型部署方式
- 未來方向

緣由

- 樂天專案成效提升遇瓶頸
- VenRaaS垂直電商推薦需求各不同,希望發展「有自學能力」的推薦演算法
- 嘗試透過學研合作計畫,發展較大階差的技術突破
- 4/21拜訪弘軒與兩位同學, 討論此合作的想法
- 合作方式:
 - 由於樂天資料機密性因素,讓彥霖、睿甫進工研院,以實習身份參與合作
 - 一方面也因同學們需要一些時間學習,累積實作經驗
 - 請弘軒老師指導,有成果後,可再談 產學合作計畫

推薦方法概敘

Query-based recommendation

- 離線計算好各種推薦策略,將推薦策略存 入資料庫
- 上線後查詢資料庫,決定推薦清單
- E.g.,
 - 剛看完脣膏,應推薦什麼?
 - 百萬商品,故每個商品的推薦清單可事先計 算好
- 優點
 - 線上的計算量極低,可快速回應
- 缺點
 - 當推薦情境較多時,無法將所有可能情境全 部事先計算

Model-based recommendation

- 離線計算好推薦模型,儲存模型 (而非推薦 策略)
- 上線後模型依當時情境計算推薦清單
- E.g.,
 - 回假日、晴天、女性使用者、剛看過脣膏、化粧水,應推薦什麼?
 - 情境極多, 難以事先列舉所有可能性
- 優點
 - 可應付更多的情境
- 缺點
 - 上線後需要依情境做各種計算,故線上的計算量較高

加速 model-based recommendation 的推論時間

加速 model-based recommendation 的推論時間

- Candidate generating
 - 使用目前 ITRI 目前線上模型的推薦清單當作candidate items
 - 線下計算各個商品的candidate recommendation items
 - 線上僅需查表(快!)
- Re-ranking
 - o 重排 candidate item, 讓最可能被點擊(或購買) 的商品放在前面
 - 測試演算法
 - Wide & Deep (W&D)
 - Proceedings of the 1st workshop on deep learning for recommender systems 2016
 - Citations: 1481
 - Product-based Neural Networks (PNN)
 - ICDM 2016
 - Citations: 262
 - DeepFM
 - IJCAI 2017
 - Citations: 755
 - Deep interest network (DIN)
 - SIGKDD 2018
 - Citation: 446

An overview of W&D, PNN, DeepFM, and DIN

- W&D, PNN, DeepFM:使用當下資訊預測下一步
 - 使用 "目前" 商品的 feature、一個 "candidate 商品" 的 feature、及其他 feature (e.g., 使用者的資訊、或其他 contextual feature) 共同預測該 candidate item 是下一個被點擊的商品的機率
 - 舉例
 - 正在觀看商品 a, candidate items 包括: c1, c2, c3, 推薦演算法 f
 - 將 c1, c2, c3 依 f(a, c1), f(a, c2), f(a, c3) 的結果由高至低排列
- DIN:使用過去及當下資訊共同預測下一步
 - 使用 "目前" 商品的 feature、過去點擊過的商品的 feature、一個 "candidate 商品" 的 feature、及 其他 feature (e.g., 使用者的資訊、或其他 contextual feature) 共同預測該 candidate item 是下 一個被點擊的商品的機率
 - 舉例
 - 一個目前為止的 clickstream: [a1, a2, a3, a4], candidate items 包括: c1, c2, c3, 推薦演算法 f
 - 將 c1, c2, c3 依 f([a1, a2, a3, a4], c1), f([a1, a2, a3, a4], c2), f([a1, a2, a3, a4], c3) 的結果由高至低排列

User Behavior History

- Diverse:當使用者逛店商網站時會對很多商品都感興趣
- Local Activation:使用者是否會點擊推薦給他的廣告, 只取決於部分的行 為紀錄

Table 1: Examples of user behavior history from online product.

User	Behavior History	Candidate Ad
Young Mother	woolen coat, T-shirts, earrings, children's coat leather handbag, miniskirt, sports underwear	long sleeved jacket
Swimmer	bathing suit, kickboard, swimming cap, travel book tent, potato chips, nuts, potato chips, ice cream	goggle

DIN

Inputs from User

Inputs from Ad

Activation Unit

(Output) **DIN** model Softmax (2) PReLU/Dice (80) PReLU/Dice (200) Concat & Flatten Activation Weight SUM Pooling Linear (1) PRelu/Dice (36) Concat Goods 1 Weight Goods 2 Weight Goods N Weight Inputs Activation Activation Activation Unit Unit Unit Out Product Concat Concat Concat Concat Concat Concat Embedding Layer

Goods 1

User Profile

Features

Goods 2

User Behaviors

Goods N

Deep Interest Network

Candidate Context

Features

Ad

DeepFM

● Linear模型:

泛化能力弱, 沒辦法學習未出現過或是較高階的商品組合

● Deep模型:

學習潛在規則. 推導出從未見過的商品組合

Factorization Machine:

善於處理高度稀疏的資料, 比起線性模型更省時間

DeepFM Model

Wide & Deep

Wide & Deep

- The Wide Part
 - for memorization
 - 擅長記住training data中的特例
 - o Input features:
 - categorical features
 - transformed features (cross-product of categorical features)
- The Deep Part
 - for generalization
 - 學習潛在規則,對未知input做預測
 - Input features:
 - continuous features
 - categorical features (convert to embedding vectors)

Product-based Neural Networks

Product-based Neural Networks

- 由內積/外積運算產生複雜signal來學習潛在規則
- Input features:
 - categorical features (convert to embedding vectors)
- Product layer
 - linear signal
 - 原始signal
 - o product signal (二次)
 - 由linear signal互相內積/外積產生
- (linear signal + product signal)當作下層hidden layer輸入

Offline evaluation

- 1. Evaluation 1: 在 open datasets 使用新方法做 re-ranking
- 2. Evaluation 2: 在樂天資料集使用新方法做 re-ranking
- 3. Evaluation 3: 在樂天資料集使用新方法+ITRI目前的推薦方法做 re-ranking

Offline evaluation 1: 公開資料集

- criteo_small (2.7MB): 8,000 + 2,000 (train/eval data)
- criteo medium (261MB): 800,000 + 200,000 (train/eval data)
- criteo_large (2.3GB): 8,000,000 + 2,000,000 (train/eval data)
- ipinyou_2997 (155MB): 312,438 + 156,064 (train/eval data)
- ipinyou_3386 (912MB): 747,647 + 300,929 (train/eval data)
- Amazon-electron_review(1G): 1,689,188
- MovieLens1m(23.4 MB): 1,000,000

Offline evaluation 1: 公開資料集

使用公開資料集的原因:

- 1. 取得樂天資料前先做測試
- 2. 熟悉各模型的使用方式
- 3. 確認模型可得到接近論文回報的 AUC 數值

AUC score	Criteo (medium)	Criteo (large)	iPinyou (medium)	iPinyou (all)	Amazon	Movielens
DIN				0.5791	0.6242	0.7365
PNN	0.6932	0.7913	0.6366	0.5717	0.6332	0.6747
DeepFM	0.7018	0.7905	0.5905	0.6026	0.62	0.6832
W&D	0.7033	0.7896	0.6	0.5793	0.62	0.6755

Offline evaluation 2: 樂天資料集 - DIN

validation set

uid	gid	next_gid	clickstream	candidate_item
1	a1	a2	[a1]	[c1,c2,c3]
1	a2	а3	[a1,a2]	[c4,c5,c6]
1	a3	a4	[a1,a2,a3]	[c7,c8,c9]

weblog

uid	gid
1	a1
1	a2
1	a3
1	a4

Offline evaluation 2: 樂天資料集 - PNN / DeepFM / W&D

validation set

uid	gid	next_gid	candidate_item	categ_code	agent	device
1	a1	a2	[c1,c2,c3]	x	у	Z
1	a2	a3	[c4,c5,c6]			
1	а3	a4	[c7,c8,c9]			

weblog

uid	gid
1	a1
1	a2
1	а3
1	a4

Offline evaluation 2: 樂天資料集

訓練:4/1 - 4/30, 測試:5/1 (top-k accuracy)

	Candidate	DIN	PNN	DeepFM	W&D
top5	0.2351	0.1179	0.142	0.1396	0.1404
top10	0.3239	0.2132	0.2351	0.2339	0.2336
top15	0.3722	0.2913	0.3083	0.3082	0.3066

● 訓練:4/1 - 5/1, 測試:5/2 (top-k accuracy)

	Candidate	DIN	PNN	DeepFM	W&D
top5	0.2387	0.138	0.1226	0.1209	0.123
top10	0.329	0.2251	0.1944	0.1921	0.195
top15	0.3798	0.2971	0.2774	0.2717	0.2758

Offline evaluation 2: 樂天資料集 (cont')

● 訓練:4/1 - 5/2, 測試:5/3 (top-k accuracy)

	Candidate	DIN	PNN	DeepFM	W&D
top5	0.2255	0.1251	0.098	0.098	0.0982
top10	0.313	0.21	0.1549	0.1565	0.1551
top15	0.3618	0.2787	0.2254	0.2225	0.2266

● 訓練:4/1 - 5/3, 測試:5/4 (top-k accuracy)

	Candidate	DIN	PNN	DeepFM	W&D
top5	0.2305	0.1297	0.0985	0.1024	0.0986
top10	0.3203	0.214	0.156	0.1631	0.1575
top15	0.3681	0.2836	0.2266	0.2329	0.2247

Offline evaluation 2: 樂天資料集 (cont')

● 訓練:4/1 - 5/4, 測試:5/5 (top-k accuracy)

	Candidate	DIN	PNN	DeepFM	W&D
top5	0.2347	0.1356	0.1013	0.0992	0.1006
top10	0.322	0.2213	0.1594	0.157	0.1585
top15	0.3687	0.289	0.2248	0.2268	0.2271

- 對原本舊方法的candidate排序和新方法的預測分數作權重平均
- 舊方法的candidate list產生分數
 - 排序從最開始到結束, 分數由 1開始遞減
 - 遞減的分數為1/n,n為candidate list的gid數

● 訓練:4/1 - 4/30, 測試:5/1 (top-k accuracy)

	Candidate	DIN	PNN	DeepFM	W&D
top5	0.2351	0.252 (+7.2%)	0.236	0.236	0.2358
top10	0.3239	0.334 (+3.1%)	0.3265	0.3269	0.3269
top15	0.3722	0.379 (+1.8%)	0.3756	0.3752	0.3755

● 訓練:4/1 - 5/1, 測試:5/2 (top-k accuracy)

	Candidate	DIN	PNN	DeepFM	W&D	
top5	0.2351	0.2376	0.2423 (+3.1%)	0.2415	0.2422	
top10	0.3239	0.331	0.3341	0.3337	0.3356 (+3.6%)	
top15	0.3722	0.380	0.3832	0.3826	0.3834 (+3.0%) ²⁶	j

● 訓練:4/1 - 5/2, 測試:5/3 (top-k accuracy)

	Candidate	DIN	PNN	DeepFM	W&D
top5	0.2255	0.224	0.2283	0.2276	0.2296 (+1.8%)
top10	0.313	0.315	0.3177	0.3159	0.319 (+1.9%)
top15	0.3618	0.362	0.3642	0.3634	0.3646 (+0.8%)

● 訓練:4/1 - 5/3, 測試:5/4 (top-*k* accuracy)

						7
	Candidate	DIN	PNN	DeepFM	W&D	
top5	0.2305	0.231	0.2334	0.2338 (+1.4%)	0.2332	
top10	0.3203	0.321	0.3248	0.3251 (+1.5%)	0.3246	
top15	0.3681	0.3684	0.3686	0.3697 (+0.4%)	0.3688	27

● 訓練:4/1 - 5/4, 測試:5/5 (top-k accuracy)

	Candidate	DIN	PNN	DeepFM	W&D
top5	0.2255	0.233	0.2375 (+5.3%)	0.237	0.2375 (+5.3%)
top10	0.313	0.323	0.3264	0.3255	0.3268 (+4.4%)
top15	0.3618	0.370	0.3702	0.3692	0.3711 (+2.6%)

使用 online recommendation:經驗1 -- 訓練方式

- 直接訓練 4/1 4/30 所有的 weblog 所花的時間極長
- 使用 incremental training
 - 載入到前一天為止的模型
 - 只用本日的 weblog 繼續訓練模型
 - 訓練完後存下模型 (供明日訓練時繼續載入使用)
- 實際只用一天的 weblog 做 incremental training 的訓練時間:
 - DIN: 10個epoch, 每個epoch約在660-800 sec
 - PNN: 10個epoch, 每個epoch約在78-96 sec
 - DeepFM 10個epoch, 每個epoch約在78-99 sec
 - W&D 10個epoch, 每個epoch約在80-100 sec

使用 online recommendation:經驗2 -- 部署方式

• TF Serving vs Flask

	說明	優點
TF Serving	Tensorflow 官方支援的模型 部署方式	高吞吐量 (throughput)
Flask	Web 框架	對輸入/輸出做靈活的前處理/ 後處理

使用 online recommendation:經驗2 -- 部署方式

TF serving :

- 針對 model 部署成 api 的部分做過優化
- 輸入輸出格式固定,沒有彈性,資料需要在前端做處理,

ex:模型輸出為每個 click stream pair的預測分數, 排序要到前端做。

使用 online recommendation:經驗2 -- 部署方式

Flask:

- 輸入輸出格式有彈性,可以透過 flask調整成模型輸入的格式, 再輸入到模型做預測,預測完的分數也是在 flask處理, 得到重排完的推薦清單再把結果回傳到前端。
- 花費時間:2000筆request 花費185.78sec, 平均0.092sec/筆

Future work -- 提高模型的 CTR

● 模型面

- 改變 deep learning 模型 (e.g, 模型層數)
- 調整超參數
- 調整 ensemble 的策略

● 資料面

- 加長訓練資料的天數(目前只用大約一個月的訓練資料)
- Feature engineering

觀察

○ 推薦成功/失敗的實例有什麼特性?

Future work -- 嘗試不同的線上部署方式

- TF serving + Flask :
 - model使用TF serving部署,輸入前先透過flask調整成模型輸入的格式,再跟 TF serving做request,預測完的分數也是在flask處理,
 得到重排完的推薦清單再把結果輸出回前端。

-END-