APPENDIX

A. Proof of Theorem 1

Theorem 1. The DORC problem is NP-hard.

Fig. 3: DORC Transformation to Vertex Cover

Proof. We prove the conclusion by constructing a reduction from the VERTEX COVER problem, which is one of Karp's 21 NP-complete problems [18]. Given an arbitrary graph G(U, E) with |U| vertices and |E| edges, a vertex cover is a subset $C \subseteq U$ such that for each edge $(u_i, u_j) \in E$, C contains at least one of u_i or u_j .

We next transform the aforementioned VERTEX COVER problem on G(U,E) into a specific DORC problem on a set of points \mathcal{P} , with the following mapping from G(U,E) to \mathcal{P} . For each edge $(u_i,u_j)\in G(U,E)$, we map it to two points $v_i,v_j\in\mathcal{P}$ with $\delta(v_i,v_j)=\varepsilon$. Moreover, for each point $v_i\in\mathcal{P}$ mapped from $u_i\in G(U,E)$, we further introduce $\eta-l-2$ data points overlaid at a location $r_i\in\mathcal{P}$, one data point at a location $q_i\in\mathcal{P}$, and η data points overlaid at a location $o_i\in\mathcal{P}$, where l is the number of edges connected to u_i in G(U,E) and $l<\eta< n$. Simultaneously, for each $v_i\in\mathcal{P}$, we define the distances between these newly introduced points in \mathcal{P} as follows: $\delta(v_i,r_i)=\varepsilon$, $\delta(r_i,q_i)=\varepsilon$, and $\delta(q_i,o_i)=\varepsilon$. Note that all other pairs of points have distances $\delta(*,*)\gg\varepsilon$. This transformation can be done in polynomial time.

Note that all newly introduced points are non-noise points and all v_i are noise points. This is because points in locations o_i and q_i are all core points, with $\eta+1$ and $2\eta-l-1$ neighbors, respectively. Points in location r_i within the ε -neighborhood of core point q_i are border points. However, each v_i , having $1+l+(\eta-l-2)=\eta-1$ neighbors, is identified as a noise point. With such transformation, we can prove that G(U,E) has a vertex cover if and only if there is a feasible repair on \mathcal{P} , by the following:

If graph G has a vertex cover C of size |C|=k, then a repair λ modifying k points with cost $\Delta(\lambda)=k\varepsilon$ is feasible. For each $u_i\in C$ (corresponding to $v_i\in \mathcal{P}$), setting $\lambda(q_i)=r_i$ ensures that v_i acquires η neighbors and becomes a core point. By the vertex cover definition, for each $u_j\notin C$, there must be a $u_i\in C$ having an edge with u_j . The corresponding v_j falls in the ε -neighborhood of core point v_i and becomes a border point, eliminating all noise points.

Conversely, suppose that there exists a λ such that $\Delta(\lambda) = k\varepsilon$ and $k < |C^*|$, where C^* is a minimum vertex cover. As

aforementioned, only all v_i are noise points. First, the repairing must happen between $(v_i, v_j), (v_i, r_i), (r_i, q_i)$ or (q_i, o_i) , given distances of other pairs $\gg \varepsilon$. Moreover, repairing between $(v_i, v_j), (v_i, v_j)$ cannot eliminate noise points v_i , since the number of neighbors of v_i will not increase. Repairing between (q_i, o_i) or from r_i to q_i cannot upgrade the corresponding r_i to core point, and thus cannot make v_i non-noise. Thus, the only feasible repairing is $\lambda(q_i) = r_i$. This repair makes v_i a core point and makes all v_j with $\delta(v_i, v_j) \le \varepsilon$, i.e., $(u_i, u_j) \in E$, become border points. Since we need to repair at least $|C^*|$ points to cover all the edges with cost $|C^*|\varepsilon$, it contradicts any claim that fewer repairs can achieve the same result. \square

B. Proof of Proposition 2

Proposition 2. For $\eta=2$, there is a PTIME algorithm for solving the DORC problem.

Proof. In the case of $\eta=2$, a point can only either be a core (with at least two ε -neighbors) or a noise (with itself as the only ε -neighbor). By repairing a noise point p_i to any point $\lambda(p_i)=p_j$, both $\lambda(p_i)$ and p_i upgrade to core points.

In the PTIME algorithm for the minimum EDGE COVER problem [12], we interpret the relationships of noises with other points. The algorithm greedily picks a noise p_i with $\min_{1 \leq i \leq n, 1 \leq j \leq n, i \neq j} w(p_i, p_j)$ to repair in each step, and forms an optimal solution when no noise points remain.

C. Proof of Proposition 3

Proposition 3. The optimal solution $\mathbf{x}^{\text{ILP}}, \mathbf{y}^{\text{ILP}}$ of ILP forms an optimal repair λ^{ILP} with the minimum repairing cost

$$\Delta(\lambda^{\text{ILP}}) = \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} x_{ij}^{\text{ILP}},$$

where $\lambda^{\text{ILP}}(p_i) = p_j$ iff $x_{ij}^{\text{ILP}} = 1, 1 \leq i \leq n, 1 \leq j \leq n$.

Proof. The correctness is obvious given that a point can only be repaired to one location (Formula 2) with cost weight $w_{ij} = w(p_i, p_j)$, and all the repaired points are either cores or in ε -neighborhood of some cores (Formulas 4 and 5).

D. Proof of Proposition 4

Proposition 4. For $\eta < n$, a feasible solution to the ILP problem always exists.

Proof. By simply repairing all the points to a single location say p_1 , we have $x_{i1} = 1$ and $y_1 = 1$, i.e., all the points become core points locating in p_1 after repairing.

E. Proof of Proposition 5

Proposition 5. When selecting noise point p_i to repair p_j , i.e., $|\mathcal{N} \setminus \mathcal{N}(p_j)| \geq (1 - y_j)\eta$, noise point p_i does not need to be repaired from location p_i to location p_j if the distance between them is less than ε , i.e., $\delta(p_i, p_j) \leq \varepsilon$.

Proof. Supposing that noise point p_i is repaired into location p_j , $C(p_j)$ would not change, since it already has $p_i \in C(p_j)$. And the count of ε -neighbors of p_j , i.e., $|C(p_j)|$ would not

Fig.7: Cases for updating y_l and y_k for points p_l and p_k

increase. Repairing p_i into p_j will only increase the repair cost with $\delta(p_i,p_j)$. Referring to the minimum change principle in data repairing, this repair is unnecessary. Thus, there is no need to move noise point p_i into point p_j when the distance between them is less than ε .

F. Proof of Proposition 6

Proposition 6. Consider repairing point p_i into another point p_j , i.e., $\lambda(p_i) = p_j$. Let \mathcal{N}_0 denote the noise set before repair, and let \mathcal{N} denote the noise set after repair. We have $\mathcal{N} \subset \mathcal{N}_0$.

Proof. Referring to Algorithm 2, ε -neighbors of p_i and p_j , i.e., points $p_l \in C(p_i)$ and points $p_k \in C(p_j)$, will be influenced when repairing p_i into p_j .

For $p_l \in C(p_i)$, consider the distance between p_l and p_j . If $\delta(p_l,p_j)>\varepsilon$, as shown in Figure 7 (a), y_l will decrease to $y_l=y_l-\frac{1}{\eta}$ after repair, because p_i is removed from p_l 's ε -neighborhood. Otherwise, if $\delta(p_l,p_j)\leq\varepsilon$, as shown in Figure 7 (b), y_l will not change after repair, because p_i is still in p_l 's ε -neighborhood. p_l can either be a border point or a noise point before repairing, since there is no need to repair p_i if p_l is a core point. With y_l stays the same or decrease, p_l 's point type remains unchanged.

For $p_k \in C(p_j)$, consider the distance between p_k and p_i . If $\delta(p_k,p_i)>\varepsilon$, as shown in Figure 7 (b), y_k will increase to $y_k=y_k+\frac{1}{\eta}$ after repair, because p_i becomes p_k 's new ε -neighbor. If $\delta(p_k,p_i)\leq \varepsilon$, as shown in Figure 7 (a), y_k will not change after repair, because p_i is still in p_k 's ε -neighborhood. There are three possible point types for p_k before repairing: core, border, or noise. If p_k is a core, it stays as a core. If p_k is a border, it either stays as a border or becomes a new core. If p_k is a noise, it either stays as as noise or becomes a border. This is because the number of ε -neighbors of p_k can only increase after repair.

In summary, after each repair, p_i either becomes a core or border point by moving into other locations, p_j becomes a core or stays as a border with y_j increased, $p_l \in C(p_i)$ stays as before, and $p_k \in C(p_j)$ has either the same y_k or an increased y_k . Thus, no new noise will be introduced.

G. Proof of Proposition 7

Proposition 7. The time complexity of the grid-based GDORC method is $O(nN_m + N\eta n)$, with $O(nN_m)$ being the time complexity of Algorithm 1 (INITIALIZATION) and $O(N\eta n)$ being the time complexity of Algorithm 2 (GDORC REPAIR).

Proof. Algorithm 1 first traverses each point on the cell level, with Line 1 going over each cell, and Line 3 going over each point in each cell, costing O(n) for n points. Then, it calculates each point's ε -neighbor cell in Line 8. Given cell width $\frac{\varepsilon}{\sqrt{d}}$, there are $O((2\lceil\sqrt{d}\rceil+1)^d)$ cells to check for each cell's ε -neighbor. After that, Line 9 checks for points in these neighbors, with each cell containing at most N_m points. In sum, we need to check $O((2\lceil\sqrt{d}\rceil+1)^dN_m)$ points to determine the status of each point. Since the dimensionality d is low, $O((2\lceil\sqrt{d}\rceil+1)^d)$ can be regarded as constant. Therefore, initialization on cell level takes $O(nN_m)$ time. Similarly, initialization on point level also takes $O(nN_m)$ time. To initialize supporting sets, every point is traversed again, with O(n) time. In summary, the time complexity of Algorithm 1 is $O(nN_m)$.

For repairing in Algorithm 2 (GDORC), Line 2 for finding point $p_j \in \mathcal{P}$ with the maximum $y_j < 1$ can be solved in $\mathcal{O}(1)$ time, by amortizing points \mathcal{P} into a constant space w.r.t. y values. After selecting a p_j to repair, there are at most η points to repair. Lines 4-12 will repeat $O(\eta)$ times. When there are sufficient noises, it takes $O(N_s)$ to find the nearest noise point with the minimum cell distance $\delta(u_j, u_i)$ in Line 5 every time. It costs O(1) to repair the selected p_i in Line 7 and update set status in Lines 8-11. In sum, when there are sufficient noise point for repairing, it takes $O(\eta N_s)$ to repair a p_j . With $N_s < N$, the time cost can be reduced to $O(\eta N)$.

When there are insufficient noises left to repair p_j into a core, Lines 17-20 allocate the remaining noises. For each remaining noise, it takes $O(N_c)$ to find the nearest core with the minimum cell distance $\delta(u_j,u_i)$ in Line 19. With at most η noises remained, it takes $O(\eta N_c)$ to repair all the remaining noises. With $N_c < N$, the time cost can be reduced to $O(\eta N)$.

In the worst case, every border point needs only one noise point to repair, so Line 1 runs $|\mathcal{N}|$ times. Since $|\mathcal{N}| << n$, Algorithm 2 costs $O(N\eta n)$.

H. Proof of Proposition 8

Proposition 8. Algorithm 2 (GDORC REPAIR) returns a feasible solution to the ILP problem, and is a factor- $\alpha\eta$ approximation with $\alpha = \frac{\delta_{\max}}{\delta_{\min}}$.

Proof. The correctness of the grid-based method is verified by Proposition 6 since Algorithm 2 (GDORC) can repair all noises without introducing new noises.

The repairing cost every time is no greater than δ_{\max} since Algorithm 2 repairs only the points in \mathcal{N} , i.e.,

$$\Delta(\lambda^{\text{GDORC}}) = \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} x_{ij} \le \delta_{\text{max}} |\mathcal{N}|.$$
 (8)

Furthermore, a noise point $p_i \in \mathcal{N}$ can be addressed with repairing p_i itself and its ε -neighbor p_j into a core point via repairing (with cost at least δ_{\min}). When repairing p_i or p_j

into a core point, it eliminates at most η noises. Considering all the $|\mathcal{N}|$ noise points, there are at least $\frac{|\mathcal{N}|}{\eta}$ points repaired, with cost no less than $\frac{|\mathcal{N}|}{\eta}\delta_{\min}$, i.e.,

$$\Delta(\lambda^{\text{ILP}}) \ge \frac{|\mathcal{N}|}{\eta} \delta_{\min}.$$
 (9)

With formulas (8) and (9), we can derive that

$$\frac{\Delta(\lambda^{\text{\tiny GDORC}})}{\Delta(\lambda^{\text{\tiny ILP}})} \leq \frac{\delta_{\max}}{\delta_{\min}} \eta,$$

it concludes the factor- $\alpha\eta$ approximation.

I. Proof of Proposition 9

Proposition 9. For $\eta=2$, Algorithm 2 (GDORC) is a factor- α approximation with $\alpha=\frac{\delta_{\max}}{\delta_{\min}}$.

Proof. With the proof of Proposition 2, a point is either a core point (with $y_j^{\text{LP}}=1$) or a noise point (with $y_j^{\text{LP}}=\frac{1}{2}$) in this special case. That means Line 2 in Algorithm 2 always selects a noise point in \mathcal{N} . It was repaired with another $p_i \in \mathcal{N}$ in Line 5 to Line 7 or moved to another $p_i \in \mathcal{P}_c$ in Line 18 to Line 20, where $\mathcal{P}_c < \mathcal{P} \setminus \mathcal{N}$ We have $\Delta(\lambda^{\text{GDORC}}) \leq (\delta_{\max}) \frac{|\mathcal{N}|}{2}$. Combining with Formula 9, where $\eta = 2$, it follows $\frac{\Delta(\lambda^{\text{GDORC}})}{\Delta(\lambda^{\text{ILP}})} \leq \alpha$.