Plan de cours détaillé pour ECN 6338: Analyse numérique en économie

William McCausland

19/10/2021

Documents obligatoires

Manuel principal

• Kenneth Judd, "Numerical Methods in Economics"

Livres gratuits supplémentaires

- Devroye (1986), "Non-Uniform Random Number Generation"
- Train (2009), "Discrete Choice Methods with Simulation", 2nd edition

Manuels sur les prélables économiques et statistiques

- Avinash K. Dixit (1990), "Optimization in Economic Theory" Papiers
- Geweke and Durham (2019), "Sequentially adaptive Bayesian learning algorithms for inference and optimization"

Divers pages Wikipédia et les diapos du professeur

Évaluation

Les éléments de l'évaluation sont

- 1. Environ dix intérrogations de dix minutes (20%)
- 2. Quatres exercices computationelles (40%)
- 3. Un projet computationnel (15%)
- 4. Un examen final (25%)

Matière organisée par cours

Cours 1, Introduction

Matières

- 1. Le gradient et les matrices hessienne et jacobienne
- 2. La décomposition de Jordan
- 3. L'analyse (de la complexité) des algorithmes
- 4. L'analyse des erreurs numériques
- 5. Le parallélisme

Lectures

1. Judd, Chapitre 1

- 2. Judd, Chapitre 2
- 3. Page Wikipédia sur P et NP
- 4. Page Wikipédia sur l'algorithme de Strassen

Cours 2, La résolution de systèmes d'équation linéaires

Matières

- 1. Les décompositions LU, QR et Cholesky d'une matrice
- 2. Conditionnement
- 3. Méthodes directe pour la résolution de systèmes linéaires
- 4. Méthodes itératives pour la résolution de systèmes linéaires
- 5. Applications
 - a. Rotation des matrices de coefficients de pondération
 - b. Génération de variables aléatoires gaussiennes multivariées
 - c. Computation de la loi stationnaire d'une chain

Lectures

- 1. Judd: 3.1, 3.2, 3.5, 3.6, 3.8, 3.11
- 2. Diapos sur la génération de variablees aléatoires gaussiennes multivariées
- 3. Diapos sur l'identification and les rotations dans les modèles à facteurs

Cours 3, L'optimisation statique

Matières

- 1. Problèmes unidimensionels
- 2. Méthodes de comparaison
- 3. Méthode de Newton et ses raffinements
- 4. Programmation linéare
- 5. Programmation non-linéaire avec et sans contraintes
- 6. Applications:
 - a. la résolution de problèmes principal-agent
 - b. la computation d'équilibre de Nash equilibria des jeux du type action-discrète
 - c. maximisation de la vraisemblance pour un modèle GARCH

Lectures

- 1. Judd: 4.1, 4.2, 4.3, 4.4, 4.6, 4.7, 4.8, 4.9
- 2. Diapos sur la méthode maximimum de vraisemblance

Cours 4, la résolution de systèmes d'équation non-linéaires

Matières

- 1. La résolution d'équations univariées
 - a. la méthode de bisection
 - b. la méthode de Newton, la convergence, des règles d'arrêt
- 2. La résolution de systèmes d'équation
 - a. Itération Gauss-Jacobi et Gauss-Seidel
 - b. Itération point fixe
 - c. la méthodes de Newton et Broydon
- 3. Application: la computation d'équilibre de duopolie

Lectures

1. Judd: 5.1, 5.2, 5.3, 5.4, 5.5

Cours 5, des méthodes d'approximation des fonctions

Matières

- 1. Approximation locale, développement de Taylor, approximant de Padé
- 2. Suites de polynômes orthogonaux, approximation de moindres carrés
- 3. Approximation uniforme
- 4. Interpolation
- 5. Interpolation par morceaux, splines
- 6. Application: ?

Lectures

1. Judd: 6.1, 6.2, 6.3, 6.4, 6.5, 6.6, 6.8, 6.9

Cours 6, les méthodes déterministes d'intégration et de différentiation

Matières

- 1. Newton-Cotes
- 2. La quadrature unidimensionelle et multidimensionelle
- 3. Application : choix optimal de portefeuille

Lectures

1. Judd: 7.1, 7.2, 7.3, 7.5, 7.6, 8.2

Cours 7, quelques sujets prélalables

Matières

- 1. Maximum de vraisemblance
- 2. Inférence bavésienne
- 3. Programmation dynamique

Lectures

1.

Cours 8, la génération de variables aléatoires univariées

Matières

- 1. La génération de nombres pseudo-aléatoires et le Mersenne Twister
- 2. La génération de variables aléatoire non-uniformes
 - a. méthode de l'inverse de la fonction de répartition (avec exemple Weibull)
 - b. méthode de rejet (avec exemple gamma)
 - c. l'algorithme Ziggurat (avec exemple gaussien)
- 3. Les nombres quasi-aléatoires et les suites à discrépance faible
- 4. La génération directe faisable de quelques variables aléatoires multivariées (gaussiennes, dirichlet, wishart)
- 5. Application : intégration numérique

Lectures

- 1. Judd: 8.1, 8.2, 8.3
- 2. Page Wikipédia sur le Mersenne Twister
- 3. Page Wikipédia sur l'algorithme Ziggurat(https://en.wikipedia.org/wiki/Ziggurat_algorithm)
- 4. Devroye II.2 and II.3 (méthode de l'inverse de la fonction de répartition, méthode de rejet)

Cours 9, la génération de variables aléatoires multivariées

Matières

- 1. L'échantillonage préférentiel (importance sampling)
- 2. L'algorithme Metropolis-Hastings
- 3. L'échantillonage de Gibbs
- 4. Applications:
 - a. simulation postérieure
 - b. simulation de la valeur d'un vraisemblance du type mixed-logit

Lectures

- 1. Diapos
- 2. (Train?)

Cours 10, la simulation Monte Carlo séquentielle

Matières

- 1. La simulation séquentiel Monte Carlo
- 2. Familles d'algorithmes reliées
 - a. le recuit simulé (simulated annealing)
 - b. le filtre particulaire (particle filter)
- 3. Applications
 - a. maximum de vraisemblance pour un modèle GARCH avec un vraisemblance autrement infaisable.
 - b. inférence bayésienne pour le même modèle.

Lectures

1. Geweke et Durham (2019)

Cours 11, la solution des équations différentielles

Matières

Lectures

1. Judd, Chapitre 10

Cours 12, programmation dynamique en temps discret

Matières

Lectures

1. Judd, Chapitre 12

Cours 13, programmation dynamique en temps continu

Matières

Lectures

1. Judd, Chapitre 12