Paths of analysis*

Synthia

October 10, 2022

1 Analysis parameters

Analysis type: Automatic Retrosynthesis

Rules: none selected

Filters: Exclude Diastereoselecitve reactions, Tunnels, FGI, FGI with protec-

tions

Max. paths returned: 50

Max. iterations: 2000

Commercial:

1. Max. molecular weight - 1000 g/mol

2. Max. price - 1500 \$/g

Published:

- 1. Max. molecular weight 1000 g/mol
- 2. Popularity 5

My Stockroom:

1. Max. molecular weight - 1000 g/mol

Reaction scoring formula: TUNNEL_COEF*FGI_COEF*STEP*20+1000 000*(CONFLICT+NON SELECTIVITY+FILTERS+PROTECT)

Chemical scoring formula: SMALLER^ 3,SMALLER^ 1.5

Min. search width: 400

Max. reactions per product: 60

^{*}The results stated herein were generated using the proprietary platform owned and maintained by Grzybowski Scientific Inventions, Inc., a subsidiary of Merck KGaA, Darmstadt Germany. The results are provided on an as is basis, and shall be used solely in connection with the rights afforded in the license agreement and for no other purpose.

 ${f Strategies:}$ none selected

FGI Coeff: 0

Tunnels Coeff: 0

JSON Parameters: {}

2 Paths

5 paths found. Paths are sorted by score. Reactions are sorted in appearance order for each path.

2.1 Path 1

Score: 2250084.06

Figure 1: Outline of path 1

2.1.1 Aldehyde Formation

Substrates:

 $1. \ 2\hbox{-}[2\hbox{-}(methoxycarbonyl)\hbox{ethyl}]\hbox{-}2\hbox{-}phenyl\hbox{-}1,3\hbox{-}dioxolane$

Products:

 $1. \ \ 3\hbox{-}(2\hbox{-phenyl-}[1,3]\ dioxolan-2\hbox{-yl})\hbox{-propional dehyde}$

 $\textbf{Typical conditions:} \ \, \textbf{DIBAL.solvent e.g.} \ \, \textbf{DCM}$

Protections: none

Reference: 10.1039/C39940000483 and 10.1039/C3CC47867J and

10.1021/jo00222a054 and 10.1021/ja9934908 and 10.1021/jo902426z

Retrosynthesis ID: 28551

2.1.2 Tebbe Olefination

Substrates:

 $1. \ \ 3\hbox{-}(2\hbox{-phenyl-}[1,3] \hbox{dioxolan-}2\hbox{-yl})\hbox{-propional dehyde}$

Products:

1. C=CCCC1(c2cccc2)OCCO1

Typical conditions: Cp2TiCl2.AlMe3.toluene

Protections: none

Reference: 10.1016/j.tet.2007.03.015 and 10.1002/9780470638859.conrr617

2.1.3 Allylic oxidation to alcohol

Substrates:

1. C=CCCC1(c2cccc2)OCCO1

Products:

 $1. \ C{=}CC(O)CC1(c2cccc2)OCCO1$

Typical conditions: ArCOOOH or t-BuOOOH

Protections: none

 $\textbf{Reference:} \ \ \text{DOI:} \ \ \textit{10.1021/ja00458a072} \ \ \text{AND} \ \ \textit{10.1016/j.tetlet.2013.03.046} \ \ \text{AND}$

10.1039/b612423b

Retrosynthesis ID: 7603

2.1.4 Swern Oxidation

Substrates:

 $1. \ C{=}CC(O)CC1(c2cccc2)OCCO1$

${\bf Products:}$

$1. \ \mathrm{C=CC(=O)CC1} \\ (\mathrm{c2cccc2})\mathrm{OCCO1}$

 $\textbf{Typical conditions:} \ \, \text{oxalyl chloride.DMSO.DCM.NMe3.-40C}$

Protections: none

Reference: 10.1055/s-1990-27036

Retrosynthesis ID: 11163

2.1.5 Alkenylation-Aldol reaction of enones and enoate esters

Substrates:

1. C=CC(=O)CC1(c2cccc2)OCCO1

2. a,a,a-Trifluoro-p-tolualdehyde - available at Sigma-Aldrich

3. Bromoethylene - available at Sigma-Aldrich

Products:

 $1. \ C = CCC(C(=O)CC1(c2cccc2)OCCO1)C(O)c1ccc(C(F)(F)F)cc1 \\$

Typical conditions: 1.RCuLi.2.RCHO

Protections: none

Reference: 10.1016/S0040-4039(01)80891-1 AND 10.1016/S0040-4020(01)82115-3 AND 10.1021/jo2010186 AND 10.1021/jo101439h AND 10.1021/ja906241w

Retrosynthesis ID: 20547

2.1.6 Hydrolysis of ketals

Substrates:

 $1. \ C = CCC(C(=O)CC1(c2cccc2)OCCO1)C(O)c1ccc(C(F)(F)F)cc1 \\$

Products:

1. C=CCC(C(=O)CC(=O)c1cccc1)C(O)c1ccc(C(F)(F)F)cc1

Typical conditions: H2O.HCl

Protections: none

Reference: 10.1021/jo0159035 and 10.1021/jo00194a003 and

Retrosynthesis ID: 31013139

2.1.7 Keto-enol Tautomerism

Substrates:

 $1. \ C = CCC(C(=O)CC(=O)c1ccccc1)C(O)c1ccc(C(F)(F)F)cc1 \\$

Products:

 $1. \ C = CCC(C(=O)/C = C(\setminus O)c1cccc1)C(O)c1ccc(C(F)(F)F)cc1$

Typical conditions: solvent

Protections: none

Reference: 10.1021/ja01065a003 AND 10.1021/jo8012385

2.1.8 Synthesis of Thioketones using Lawesson's Reagent

Substrates:

- $1. \ C = CCC(C(=O)/C = C(\setminus O)c1cccc1)C(O)c1ccc(C(F)(F)F)cc1$
- 2. 4-methoxyphenyl-dithiophosphonsaeureanhydrid

Products:

 $1. \ C = CCC(C(=S)/C = C(\setminus O)c1ccccc1)C(O)c1ccc(C(F)(F)F)cc1$

Typical conditions: Lawesson's Reagent.neat.microwave

Protections: none

Reference: DOI: 10.1021/ol990629a

Retrosynthesis ID: 10798

2.2 Path 2

Score: 2250084.06

Figure 2: Outline of path 2

2.2.1 Alkenylation-Aldol reaction of enones and enoate esters

$$Br + O \rightarrow +$$

Substrates:

1. a,a,a-Trifluoro-p-tolualdehyde - available at Sigma-Aldrich

2. Bromoethylene - available at Sigma-Aldrich

3. 3-Buten-2-one - available at Sigma-Aldrich

Products:

1. C=CCC(C(C)=O)C(O)c1ccc(C(F)(F)F)cc1

Typical conditions: 1.RCuLi.2.RCHO

Protections: none

Reference: 10.1016/S0040-4039(01)80891-1 AND 10.1016/S0040-4020(01)82115-3 AND 10.1021/jo2010186 AND 10.1021/jo101439h AND 10.1021/ja906241w

Retrosynthesis ID: 20547

2.2.2 Condensation of methyl ketones with esters

Substrates:

- $1. \ C{=}CCC(C(C){=}O)C(O)c1ccc(C(F)(F)F)cc1 \\$
- 2. Methyl benzoate available at Sigma-Aldrich

Products:

$1. \ C = CCC(C(=O)CC(=O)c1ccccc1)C(O)c1ccc(C(F)(F)F)cc1 \\$

Typical conditions: NaOMe.MeOH

Protections: none

Reference: 10.1016/j.tetlet.2007.10.010 and 10.1016/j.tetlet.2013.09.025 and

10.1016/j.ejmech.2013.10.072 and 10.1002/ange.19921040631

Retrosynthesis ID: 4792

2.2.3 Keto-enol Tautomerism

Substrates:

 $1. \ C = CCC(C(=O)CC(=O)c1ccccc1)C(O)c1ccc(C(F)(F)F)cc1 \\$

Products:

 $1. \ C = CCC(C(=O)/C = C(\setminus O)c1cccc1)C(O)c1ccc(C(F)(F)F)cc1$

Typical conditions: solvent

Protections: none

Reference: 10.1021/ja01065a003 AND 10.1021/jo8012385

Retrosynthesis ID: 7781

2.2.4 Synthesis of Thioketones using Lawesson's Reagent

Substrates:

1. $C=CCC(C(=O)/C=C(\setminus O)c1cccc1)C(O)c1ccc(C(F)(F)F)cc1$

 $2.\ \, 4\hbox{-methoxyphenyl-} dithiophosphons a eurean hydrid$

Products:

 $1. \ C{=}CCC(C({=}S)/C{=}C(\backslash O)c1cccc1)C(O)c1ccc(C(F)(F)F)cc1$

Typical conditions: Lawesson's Reagent.neat.microwave

Protections: none

Reference: DOI: 10.1021/ol990629a

Retrosynthesis ID: 10798

2.3 Path 3

Score: 2250115.31

Figure 3: Outline of path 3

2.3.1 Aldol-like condensation with nitriles

Substrates:

1. a,a,a-Trifluoro-p-tolualdehyde - available at Sigma-Aldrich

2. 4-Pentenenitrile - available at Sigma-Aldrich

Products:

1. C=CCC(C#N)C(O)c1ccc(C(F)(F)F)cc1

Typical conditions: LDA.THF.cooling

Protections: none

Reference: 10.1039/B800634B and 10.1002/anie.201302613 and 10.1021/jm701319c and 10.1016/S0040-4020(98)00122-7 and 10.1021/jo025872t

Retrosynthesis ID: 23727

2.3.2 Blaise Reaction

Substrates:

1. Phenacyl bromide - available at Sigma-Aldrich

2. C=CCC(C#N)C(O)c1ccc(C(F)(F)F)cc1

Products:

 $1. \ C = CCC(C(=O)CC(=O)c1ccccc1)C(O)c1ccc(C(F)(F)F)cc1 \\$

 ${\bf Typical\ conditions:}\ {\bf Zn.TMSCl.THF\ then\ HCl}$

Protections: none

Reference: 10.1002/ejoc.201403402 Retrosynthesis ID: 10000153

2.3.3 Keto-enol Tautomerism

Substrates:

 $1. \ C = CCC(C(=O)CC(=O)c1ccccc1)C(O)c1ccc(C(F)(F)F)cc1$

Products:

 $1. \ C = CCC(C(=O)/C = C(\setminus O)c1ccccc1)C(O)c1ccc(C(F)(F)F)cc1$

Typical conditions: solvent

Protections: none

Reference: 10.1021/ja01065a003 AND 10.1021/jo8012385

Retrosynthesis ID: 7781

2.3.4 Synthesis of Thioketones using Lawesson's Reagent

Substrates:

- $1. \ C = CCC(C(=O)/C = C(\setminus O)c1ccccc1)C(O)c1ccc(C(F)(F)F)cc1$
- $2. \ \ 4\text{-methoxyphenyl-dithiophosphonsaeureanhydrid}$

Products:

 $1. \ C = CCC(C(=S)/C = C(\setminus O)c1cccc1)C(O)c1ccc(C(F)(F)F)cc1$

 ${\bf Typical\ conditions:}\ {\bf Lawesson's\ Reagent.neat.microwave}$

Protections: none

Reference: DOI: 10.1021/ol990629a

Retrosynthesis ID: 10798

2.4 Path 4

Score: 2250115.31

Figure 4: Outline of path 4

2.4.1 Condensation of esters with aldehydes

1. a,a,a-Trifluoro-p-tolualdehyde - available at Sigma-Aldrich

2. Methyl 4-pentenoate - available at Sigma-Aldrich

Products:

Substrates:

1. C=CCC(C(=O)OC)C(O)c1ccc(C(F)(F)F)cc1

Typical conditions: LDA.THF

Protections: none

Reference: 10.1016/j.bmcl.2005.02.066 and 10.3762/bjoc.9.175 and

10.1021/ol1016178

Retrosynthesis ID: 4788

2.4.2 Condensation of methyl ketones with esters

Substrates:

1. C=CCC(C(=O)OC)C(O)c1ccc(C(F)(F)F)cc1

2. Acetophenone - available at Sigma-Aldrich

Products:

 $1. \ C = CCC(C(=O)CC(=O)c1ccccc1)C(O)c1ccc(C(F)(F)F)cc1$

Typical conditions: NaOMe.MeOH

Protections: none

Reference: 10.1016/j.tetlet.2007.10.010 and 10.1016/j.tetlet.2013.09.025 and

10.1016/j.ejmech.2013.10.072 and 10.1002/ange.19921040631

Retrosynthesis ID: 4792

2.4.3 Keto-enol Tautomerism

Substrates:

 $1. \ C = CCC(C(=O)CC(=O)c1ccccc1)C(O)c1ccc(C(F)(F)F)cc1 \\$

Products:

 $1. \ C = CCC(C(=O)/C = C(\setminus O)c1cccc1)C(O)c1ccc(C(F)(F)F)cc1$

Typical conditions: solvent

Protections: none

Reference: 10.1021/ja01065a003 AND 10.1021/jo8012385

Retrosynthesis ID: 7781

2.4.4 Synthesis of Thioketones using Lawesson's Reagent

Substrates:

- $1. \ C = CCC(C(=O)/C = C(\setminus O)c1cccc1)C(O)c1ccc(C(F)(F)F)cc1$
- $2. \ \ 4\text{-methoxyphenyl-dithiophosphonsaeureanhydrid}$

Products:

1. $C=CCC(C(=S)/C=C(\setminus O)c1cccc1)C(O)c1ccc(C(F)(F)F)cc1$

Typical conditions: Lawesson's Reagent.neat.microwave

Protections: none

Reference: DOI: 10.1021/ol990629a

Retrosynthesis ID: 10798

2.5 Path 5

Score: 2250125.08

Figure 5: Outline of path 5

2.5.1 Condensation of esters with aldehydes

Substrates:

1. a,a,a-Trifluoro-p-tolualdehyde - available at Sigma-Aldrich

2. Methyl 4-pentenoate - available at Sigma-Aldrich

Products:

 $1. \ C{=}CCC(C({=}O)OC)C(O)c1ccc(C(F)(F)F)cc1 \\$

 $\textbf{Typical conditions:} \ \mathrm{LDA.THF}$

Protections: none

Reference: 10.1016/j.bmcl.2005.02.066 and 10.3762/bjoc.9.175 and

10.1021/ol1016178

Retrosynthesis ID: 4788

2.5.2 Acid catalyzed transesterification

Substrates:

 $1. \ C{=}CCC(C({=}O)OC)C(O)c1ccc(C(F)(F)F)cc1 \\$

Products:

1. C=CCC1C(=O)OC1c1ccc(C(F)(F)F)cc1

Typical conditions: H+

Protections: none

Reference: 10.1021/cr00020a004

Retrosynthesis ID: 50438

2.5.3 Ring opening of lactones with enolates

Substrates:

- 1. C=CCC1C(=O)OC1c1ccc(C(F)(F)F)cc1
- 2. Acetophenone available at Sigma-Aldrich

Products:

 $1. \ C = CCC(C(=O)CC(=O)c1ccccc1)C(O)c1ccc(C(F)(F)F)cc1 \\$

Typical conditions: LiHMDS.THF

Protections: none

Reference: 10.1021/ol801493w and 10.1021/ol403423r and 10.1021/ja061938g

and 10.1021/ja036521e

2.5.4 Keto-enol Tautomerism

Substrates:

 $1. \ C = CCC(C(=O)CC(=O)c1ccccc1)C(O)c1ccc(C(F)(F)F)cc1$

Products:

 $1. \ C = CCC(C(=O)/C = C(\setminus O)c1ccccc1)C(O)c1ccc(C(F)(F)F)cc1$

Typical conditions: solvent

Protections: none

Reference: 10.1021/ja01065a003 AND 10.1021/jo8012385

Retrosynthesis ID: 7781

2.5.5 Thionation of Carbonyl Compounds using PSCl3

Substrates:

- $1. \ C{=}CCC(C({=}O)/C{=}C(\backslash O)c1cccc1)C(O)c1ccc(C(F)(F)F)cc1$
- 2. Phosphorus thiochloride available at Sigma-Aldrich

Products:

 $1. \ C = CCC(C(=S)/C = C(\setminus O)c1cccc1)C(O)c1ccc(C(F)(F)F)cc1$

 $\textbf{Typical conditions:}\ \mathrm{NEt3.H2O.microwave.70\text{--}100C}$

Protections: none

Reference: DOI: 10.1021/jo7022069