# [Aula 17] Reconhecimento das LLC – Algoritmo de Earley

Prof. João F. Mari joaof.mari@ufv.br

[Aula 17] Reconhecimento das LLC - Algoritmo de Earley

SIN 131 – Introdução à Teoria da Computação (PER-3)

#### **BIBLIOGRAFIA**

- MENEZES, P. B. Linguagens formais e autômatos,
   6. ed., Bookman, 2011.
  - Capítulo 7.
  - + Slides disponibilizados pelo autor do livro.



#### **ROTEIRO**

- Algoritmo de Earley
- **DEFINIÇÃO:** Algoritmo de Earley
- EXEMPLO: Algoritmo de Earley

Prof. João Fernando Mari ( joaof.mari@ufv.br )

8

[Aula 17] Reconhecimento das LLC - Algoritmo de Earley

SIN 131 – Introdução à Teoria da Computação (PER-3)

## Algoritmo de Earley

- Algoritmo de Earley (1968)
  - Possivelmente o mais rápido algoritmo para reconhecimento de LLC;
  - Tempo de processamento proporcional a:
    - Em geral: |w|<sup>3</sup>
    - Gramáticas não-ambíguas: |w|<sup>2</sup>
    - Muitas gramáticas de interesse prático: |w|

AN EFFICIENT CONTEXT-FREE PARSING ALGORITHM

Jay Earley

Computer Science Department Carnegie-Mellon University Pittsburgh, Pennsylvania August, 1968

Submitted to Carnegie-Mellon University in partial fulfillment of the requirements for the degree of Doctor of Philosophy

### Algoritmo de Earley

- Ideia do algoritmo:
  - Algoritmo top-down;
  - Parte de uma GLC sem produções vazias:
  - A partir do símbolo inicial:
    - Executa sempre a derivação mais à esquerda;
    - Cada ciclo gera um terminal
      - Comparado com o símbolo da entrada
      - SUCESSO: construção do conjunto de produções que, potencialmente, pode gerar o próximo símbolo.

Prof. João Fernando Mari ( joaof.mari@ufv.br )

5

[Aula 17] Reconhecimento das LLC - Algoritmo de Earley

SIN 131 – Introdução à Teoria da Computação (PER-3)

## **DEFINIÇÃO:** Algoritmo de Earley

- Seja G uma GLC sem produções vazias:
  - -G = (V, T, P, S)
- E w é a palavra a ser verificada:
  - w =  $a_1a_2...a_n$  palavra a ser verificada.
- O marcador "•":
  - Antecedendo a posição, em cada produção, que será analisada;
  - na tentativa de gerar o próximo símbolo terminal.
- O sufixo "/u":
  - Adicionado a cada produção;
  - O u-ésimo ciclo em que passou a ser considerada.

## **DEFINIÇÃO:** Algoritmo de Earley

- Etapa 1: construção de D<sub>o</sub>: primeiro conjunto de produções
  - Produções que partem de S (1)
  - Produções que podem ser aplicadas (2)
    - Em sucessivas derivações mais à esquerda (a partir de S)

```
1. D_0 = \emptyset
2. para toda S \rightarrow \alpha \in P faça (1)
3. D_0 = D_0 U { S \rightarrow \bullet \alpha/0 }
4. repita para toda A \rightarrow \bullet B\beta/0 \in D_0 faça (2)
5. para toda B \rightarrow \phi \in P faça
```

6.  $D_0 = D_0 \cup \{B \rightarrow \bullet \phi/0 \}$ 

7. até que o cardinal de D<sub>0</sub> não aumente

Prof. João Fernando Mari ( joaof.mari@ufv.br )

\_\_\_\_\_/

[Aula 17] Reconhecimento das LLC - Algoritmo de Earley

SIN 131 – Introdução à Teoria da Computação (PER-3)

## **DEFINIÇÃO:** Algoritmo de Earley

- Etapa 2: construção dos demais conjuntos de produção:
  - n = |w| conjuntos de produção a partir de D<sub>0</sub>
  - ao gerar a<sub>r</sub>, constrói D<sub>r</sub>: produções que podem gerar a<sub>r</sub>+1

```
para r variando de 1 até n faça
                                                                                                  (1)
2.
            D_r = \emptyset;
            para toda A \rightarrow \alpha \cdot a_r \beta/s \in D_{r-1} faça
3.
                                                                                                  (2)
4.
                 D_r = D_r \cup \{ A \rightarrow \alpha a_r \cdot \beta / s \};
5.
            repita
6.
                para toda A \rightarrow \alpha \cdot B\beta/s \in D_r faça
                                                                                                  (3)
7.
                     para toda B \rightarrow \phi \in P faça
8.
                          D_r = D_r U \{ B \rightarrow \bullet \phi/r \}
                para toda A \rightarrow \alpha \cdot /s de D<sub>r</sub> faça
9.
                                                                                                  (4)
                     para toda B \rightarrow \beta \cdot A\phi/k \in D_s faça
10.
                          \texttt{D}_{\texttt{r}} \; = \; \texttt{D}_{\texttt{r}} \; \; \textbf{U} \; \; \{ \; \; \texttt{B} \; \rightarrow \; \beta \texttt{A} \hspace{0.1em} \bullet \hspace{0.1em} \phi \hspace{0.1em} / \hspace{0.1em} k \; \; \}
11.
12.
            até que o cardinal de D<sub>r</sub> não aumente
```

# **DEFINIÇÃO:** Algoritmo de Earley

- Etapa 3: condição de aceitação da entrada:
  - A palavra w é aceita se:
    - Uma produção da forma S  $\rightarrow \alpha$ •/0 pertence a D<sub>n</sub>
  - − S  $\rightarrow$  α•/0 é uma produção que:
    - Parte do símbolo inicial S;
    - Foi incluída em D<sub>0</sub> ("/0");
    - Todo o lado direito da produção foi analisado com sucesso:
      - ("•" está no final de α).
- Otimização do Algoritmo de Earley:
  - Os ciclos repita-até:
    - Podem ser restritos exclusivamente às produções recentemente incluídas em D<sub>r</sub> ou em D<sub>0</sub> ainda não-analisadas.

Prof. João Fernando Mari ( joaof.mari@ufv.br )

C

[Aula 17] Reconhecimento das LLC - Algoritmo de Earley

SIN 131 – Introdução à Teoria da Computação (PER-3)

## **EXEMPLO:** Algoritmo de Earley

- "Expressão simples" da linguagem Pascal
  - G = ({ E, T, F }, { +, \*, [, ], x }, P, E), na qual:
     P = { E → T | E+T,
  - $\qquad T \rightarrow F \mid T*F,$
  - $\qquad \mathsf{F} \to \mathsf{[E]} \mid \mathsf{x} \quad \mathsf{\}}$
- Reconhecimento da palavra w = x\*x:
  - -|w| = n = 3

### **EXEMPLO:** Algoritmo de Earley

- Reconhecimento da palavra x\*x:
  - D<sub>o</sub> (Etapa 1):
    - $E \rightarrow \bullet T/0$
    - $E \rightarrow \bullet E + T/0$
    - $T \rightarrow •F/0$
    - T → •T\*F/0
    - $F \rightarrow \bullet [E]/0$
    - $F \rightarrow \bullet x/0$

- (1) Produções que partem do símbolo inicial
- (2) Produções que podem ser aplicadas em derivação mais à esquerda a partir do símbolo inicial

```
G = (\{ E, T, F \}, \{ +, *, [, ], x \}, P, E)
P = \{ E \rightarrow T \mid E+T,
         T \rightarrow F \mid T*F
         F \rightarrow [E] \mid x \mid
```

```
1. D_0 = \emptyset
2. para toda S \rightarrow \alpha \in P faça
                                                                 (1)
      D_0 = D_0 \cup \{S \rightarrow \bullet \alpha/0\}
4. repita para toda A \rightarrow B\beta/0 \in D_0 faça (2)
5.
         para toda B \rightarrow \phi \in P faça
6.
              D_0 = D_0 \cup \{B \rightarrow \bullet \phi/0\}
7. até que o cardinal de D_0 não aumente
```

Prof. João Fernando Mari ( joaof.mari@ufv.br )

11

[Aula 17] Reconhecimento das LLC - Algoritmo de Earley

SIN 131 – Introdução à Teoria da Computação (PER-3)

## **EXEMPLO:** Algoritmo de Earley

- D₁: reconhecimento de x em <u>x</u>\*x

  - $F \rightarrow x \bullet / 0$  # x foi reduzido a F
- - $T \rightarrow T \bullet *F/0$
- $_{1''}$   $^{'}E \rightarrow T \bullet /0$
- $_{2''}$  E  $\rightarrow$  E•+T/0
- o'' − T → F•/0 # inclui todas as produções de D<sub>0</sub> que
  - referenciaram •F direta ou indiretamente #
  - movendo o marcador "•" #
  - um símbolo para a direita #

```
D_0:
```

- $E \rightarrow \bullet T/0$
- $E \rightarrow \bullet E + T/0$
- $T \rightarrow \bullet F/0$
- T → •T\*F/0
- $F \rightarrow \bullet [E]/0$
- $F \rightarrow \bullet x/0$

```
para r variando de 1 até n faça
                                                                                   (1)
   D_r = \emptyset;
   para toda A \rightarrow \alpha \cdot a_r \beta / s \in D_{r-1} faça
                                                                                   (2)
       D_r = D_r \cup \{A \rightarrow \alpha a_r \cdot \beta / s \};
   repita # 0, 1, 2
       para toda A \rightarrow \alpha \cdot B\beta/s \in D_r faça # '
                                                                                   (3)
           para toda B \rightarrow \phi \in P faça
              D_r = D_r \cup \{B \rightarrow \bullet \phi/r\}
       para toda A \rightarrow \alpha \cdot /s de D<sub>r</sub> faça # "
                                                                                   (4)
           para toda B \rightarrow \beta \cdot A\phi/k \in D<sub>s</sub> faça
              D_r = D_r U \{ B \rightarrow \beta A \cdot \phi / k \}
    até que o cardinal de D<sub>r</sub> não aumente
```

## **EXEMPLO:** Algoritmo de Earley

- $D_2$ : reconhecimento de \* em x $\underline{*}$ x
  - $T \rightarrow T* F/0$  # gerou \*; o próximo será gerado por F
  - F → •[E]/2 # inclui todas as produções de P que
- o' F  $\rightarrow$  •x/2 podem gerar o próximo terminal a partir de F #
- D₁:
  - $F \rightarrow x \bullet / 0$
  - $T \rightarrow F \bullet / 0$
  - $T \rightarrow T \bullet *F/0$
  - $E \rightarrow T \bullet / 0$
  - $E \rightarrow E \bullet + T/0$

G = ({ E, T, F }, { +, \*, [, ], x }, P, E)  
P = { E 
$$\rightarrow$$
 T | E+T,  
T  $\rightarrow$  F | T\*F,  
F  $\rightarrow$  [E] | x }

```
para r variando de 1 até n faça
                                                                                   (1)
   D_r = \emptyset;
   para toda A \rightarrow \alpha \cdot a_r \beta / s \in D_{r-1} faça
                                                                                   (2)
       D_r = D_r \cup \{ A \rightarrow \alpha a_r \cdot \beta / s \};
   repita # 0
       para toda A \rightarrow \alpha \cdot B\beta/s \in D_r faça # '
                                                                                  (3)
          para toda B \rightarrow \phi \in P faça
              D_r = Dr U \{ B \rightarrow \bullet \phi/r \}
       para toda A \rightarrow \alpha^{\bullet}/s de D<sub>r</sub> faça # "
                                                                                   (4)
          para toda B \rightarrow \beta \cdot A\phi/k \in D_s faça
              D_r = D_r \cup \{B \rightarrow \beta A \cdot \phi / k \}
   até que o cardinal de D<sub>r</sub> não aumente
```

Prof. João Fernando Mari ( joaof.mari@ufv.br )

[Aula 17] Reconhecimento das LLC - Algoritmo de Earley

SIN 131 – Introdução à Teoria da Computação (PER-3)

## **EXEMPLO:** Algoritmo de Earley

- $D_3$ : reconhecimento de x em x\*x
  - $F \rightarrow x \cdot /2$
- # x foi reduzido à F
- - $E \rightarrow T \bullet / 0$
- $_{1''}$  T  $\rightarrow$  T $\bullet *F/0$
- $_{2''}$  E  $\rightarrow$  E•+T/0
- $o''' T \rightarrow T*F \bullet / 0$  # incluído de D<sub>2</sub> (F  $\rightarrow$  x $\bullet$ /2); entrada reduzida à T # incluído de  $D_0$  (T  $\rightarrow$  T\*F•/0); entrada reduzida à E # incluído de  $D_0$  (pois  $T \rightarrow T*F\bullet/0$ )
  - # incluído de  $D_0$  (pois  $E \rightarrow T \bullet / 0$ )

- D<sub>r-1</sub> = D<sub>2</sub>:
  - $T \rightarrow T*\bullet F/0$
  - $F \rightarrow \bullet[E]/2$
  - $F \rightarrow \bullet x/2$
- $D_0$ :
  - E → •T/0
  - $E \rightarrow \bullet E + T/0$
  - $T \rightarrow \bullet F/0$
  - T → •T\*F/0
  - F → •[E]/0
  - $F \rightarrow \bullet x/0$

```
para r variando de 1 até n faça
                                                                                 (1)
   para toda A \rightarrow \alpha \cdot a_r \beta / s \in D_{r-1} faça
                                                                                 (2)
       D_r = D_r \cup \{ A \rightarrow \alpha a_r \cdot \beta / s \};
   repita # 0, 1, 2
       para toda A \rightarrow \alpha \cdot B\beta/s \in D_r faça # '
                                                                                 (3)
          para toda B \rightarrow \phi \in P faça
              D_r = D_r \cup \{B \rightarrow \bullet \phi/r\}
      para toda A \rightarrow \alpha \cdot /s de D<sub>r</sub> faça # "
                                                                                 (4)
          para toda B \rightarrow \beta \cdot A\phi/k \in D_s faça
              D_r = D_r U \{ B \rightarrow \beta A \cdot \phi / k \}
   até que o cardinal de D<sub>r</sub> não aumente
```

## **EXEMPLO:** Algoritmo de Earley

- A entrada w é aceita:
  - Pois w = x\*x foi reduzida a E e;
  - $-E \rightarrow T \bullet /0$  pertence a D<sub>3</sub>.

Prof. João Fernando Mari ( joaof.mari@ufv.br )

15

[Aula 17] Reconhecimento das LLC - Algoritmo de Earley

SIN 131 – Introdução à Teoria da Computação (PER-3)

#### [FIM]

- FIM:
  - [AULA 17] Propriedades e reconhecimento das LLC –
     Algoritmo de Earley
- Próxima aula:
  - [AULA 18] Linguagens recursivamente enumeráveis –
     Máquina de Turing