Bài giảng môn học Đại số A₁

Chương 3:

KHÔNG GIAN VECTO

Lê Văn Luyện

lvluyen@yahoo.com

 $\verb|http://www.math.hcmus.edu.vn/\sim|v|uyen/09tt|$

Đại học Khoa Học Tự Nhiên Tp. Hồ Chí Minh

Nội dung

Chương 3. KHÔNG GIAN VECTO

- 1. Không gian vectơ
- 2. Tổ hợp tuyến tính
- 3. Cơ sở và số chiều của không gian vectơ
- 4. Không gian vectơ con
- 5. Không gian nghiệm của hệ phương trình tuyến tính
- 6. Tọa độ và ma trận chuyển cơ sở

1. Không gian vectơ

Định nghĩa. Cho V là một tập hợp với phép toán +. V được gọi là **không gian vectơ** trên \mathbb{R} nếu mọi $u, v, w \in V$ và $\alpha, \beta \in \mathbb{R}$ ta có 8 tính chất sau:

- (1) u+v = v+u;
- (2) (u+v)+w = u+(v+w);
- (3) tồn tại $0 \in V : u+0 = 0+u = u;$
- (4) tồn tại $\mathbf{u'} \in V : \mathbf{u'} + u = u + \mathbf{u'} = 0;$
- (5) $(\alpha\beta)u = \alpha(\beta u);$
- (6) $(\alpha + \beta)u = \alpha u + \beta u;$
- (7) $\alpha(u+v) = \alpha u + \alpha v;$
- (8) 1.u = u.

Khi đó ta gọi:

- mỗi phần tử $u \in V$ là một vecto.
- mỗi số $\alpha \in \mathbb{R}$ là một \boldsymbol{vo} hướng.
- vecto 0 là *vecto không*.
- vecto u' là **vecto đối** của u.

Ví dụ. Xét
$$V = \mathbb{R}^n = \{(x_1, x_2, \dots, x_n) \mid x_i \in \mathbb{R} \forall, i \in \overline{1, n}\}.$$

Với $u = (a_1, a_2, \dots, a_n), \ v = (b_1, b_2, \dots, b_n) \in \mathbb{R}^n$ và $\alpha \in R$, ta định nghĩa phép cộng + và nhân . vô hướng như sau:

- $u+v = (a_1 + b_1, a_2 + b_2, \dots, a_n + b_n);$
- $\alpha u = (\alpha a_1, \alpha a_2, \dots, \alpha a_n).$

Khi đó \mathbb{R}^n là không gian vectơ trên \mathbb{R} . Trong đó:

- \triangleright Vecto không là $\mathbf{0} = (0, 0, \dots, 0);$
- \triangleright Vecto đối của u là $-\mathbf{u} = (-a_1, -a_2, \dots, -a_n)$.

Ví dụ. Tập hợp $M_{m\times n}(\mathbb{R})$ với phép cộng ma trận và nhân ma trận với một số thực thông thường là một không gian vectơ trên \mathbb{R} . Trong đó:

- Vecto không là ma trận không
- \triangleright Vecto đối của A là -A.

Ví dụ. Tập hợp

$$\mathbb{R}[x] = \{ p(x) = a_n x^n + \ldots + a_1 x + a_0 \mid n \in \mathbb{N}, a_i \in \mathbb{R}, i \in \overline{1, n} \}$$

gồm các đa thức theo x với các hệ số trong \mathbb{R} là một không gian vectơ trên \mathbb{R} với phép cộng vectơ là phép cộng đa thức thông thường và phép nhân vô hướng với vectơ là phép nhân thông thường một số với đa thức.

Ví dụ. Tập hợp $\mathbb{R}_n[x]$ gồm các đa thức bậc nhỏ hơn hoặc bằng n theo x với các hệ số trong \mathbb{R} là một không gian vectơ trên \mathbb{R} .

Ví dụ. Cho
$$V = \{(x_1, x_2, x_3) \in \mathbb{R}^3 \mid 2x_1 + 3x_2 + x_3 = 0\}.$$

Khi đó V là không gian vectơ trên \mathbb{R} .

Ví dụ. Cho
$$W = \{(x_1, x_2, x_3) \in \mathbb{R}^3 \mid x_1 + x_2 - 2x_3 = 1\}.$$

Khi đó W không là không gian vecto, vì

$$u = (1, 2, 1) \in W, v = (2, 3, 2) \in W,$$

nhưng
$$u + v = (3, 5, 3) \notin W$$

Mệnh đề. Cho V là một không gian vectơ trên \mathbb{R} . Khi đó với mọi $u \in V$ và $\alpha \in \mathbb{R}$, ta có

- i) $\alpha u = 0 \Leftrightarrow (\alpha = 0 \ hay \ u = 0);$
- ii) (-1)u = -u.

2. Tổ hợp tuyến tính

- 1.1 Tổ hợp tuyến tính
- 1.2 Độc lập và phụ thuộc tuyến tính

2.1 Tổ hợp tuyến tính

Định nghĩa. Cho $u_1,u_2,\ldots,u_m\in V.$ Một tổ hợp tuyến tính của u_1,u_2,\ldots,u_m là một vectơ có dạng

$$u = \alpha_1 u_1 + \alpha_2 u_2 + \ldots + \alpha_m u_m$$
 với $\alpha_i \in \mathbb{R}$

Khi đó, đẳng thức trên được gọi là $dang \ biểu \ diễn$ của u theo các vecto u_1, u_2, \ldots, u_m .

Ví dụ.

- Vecto u = (4, 4, 2) là tổ hợp tuyến tính của các vecto $u_1 = (1, -1, 2), u_2 = (2, 3, -1), u_3 = (0, 1, -2),$ vì $u = u_1 + 2u_2 u_3.$
- Vecto ${\color{red}0}$ luôn luôn là một tổ hợp tuyến tính của $u_1,u_2,...,u_m$ vì

$$0 = 0u_1 + 0u_2 + \ldots + 0u_m$$
.

Hỏi. Làm cách nào để biết u là tổ hợp tuyến tính của $u_1, u_2, ..., u_m$?

Ta có u là tổ hợp tuyến tính của $u_1, u_2, ..., u_m$ khi phương trình

$$u = \alpha_1 u_1 + \alpha_2 u_2 + \ldots + \alpha_m u_m \quad (*)$$

có nghiệm $\alpha_1, \alpha_2, \dots \alpha_m \in \mathbb{R}$.

Xét trường hợp không gian \mathbb{R}^n . Giả sử

Khi đó (*)
$$\Leftrightarrow$$

$$\begin{cases} u_{11}\alpha_1 + u_{12}\alpha_2 + \dots + u_{1m}\alpha_m &= b_1; \\ u_{21}\alpha_1 + u_{22}\alpha_2 + \dots + u_{2m}\alpha_m &= b_2; \\ \dots & \dots & \dots \\ u_{n1}\alpha_1 + u_{n2}\alpha_2 + \dots + u_{nm}\alpha_m &= b_n; \end{cases}$$
(**)

Ma trận hóa (**) ta được
$$\begin{pmatrix} u_{11} & u_{12} & \dots & u_{1m} & b_1 \\ u_{21} & u_{22} & \dots & u_{2m} & b_2 \\ \dots & \dots & \dots & \dots \\ u_{n1} & u_{n2} & \dots & u_{nm} & b_n \end{pmatrix}$$

Tức là

$$(u_1^\top \ u_2^\top \ \dots \ u_m^\top \mid u^\top)$$

Như vậy, để kiểm tra u là tổ hợp tuyến tính của $u_1, u_2, ..., u_m$ trong \mathbb{R}^n ta làm như sau:

- Lập ma trận hóa $(u_1^\top\ u_2^\top\ \dots\ u_m^\top\ |\ u^\top)$ (1)
-
 Nếu (1) vô nghiệm, kết luận u không phải là tổ hợp tuyến tính của $u_1, u_2, ..., u_m$.
 - ⊳ Nếu (1) có nghiệm $\alpha_1, \alpha_2, \dots \alpha_m$ thì u là tổ hợp tuyến tính và có dạng biểu diễn theo là u_1, u_2, \dots, u_m :

$$u = \alpha_1 u_1 + \alpha_2 u_2 + \ldots + \alpha_m u_m$$

Ví dụ. Xét xem u = (-3, 1, 4) có là tổ hợp tuyến tính của các vecto $u_1 = (1, 2, 1), u_2 = (-1, -1, 1), u_3 = (-2, 1, 1)$ hay không?

Giải.
$$(u_1^\top \ u_2^\top \ u_3^\top \ | \ u^\top) = \left(\begin{array}{ccc|c} 1 & -1 & -2 & -3 \\ 2 & -1 & 1 & 1 \\ 1 & 1 & 1 & 4 \end{array} \right)$$

$$\frac{d_2 := d_2 - 2d_1}{d_3 := d_3 - d_1} \leftarrow \begin{pmatrix} 1 & -1 & -2 & | & -3 \\ 0 & 1 & 5 & | & 7 \\ 0 & 2 & 3 & | & 7 \end{pmatrix} \xrightarrow{d_1 := d_1 + d_2} \begin{pmatrix} 1 & 0 & 3 & | & 4 \\ 0 & 1 & 5 & | & 7 \\ 0 & 0 & -7 & | & -7 \end{pmatrix}$$

$$\frac{d_3 := \frac{-1}{7}d_3}{d_1 := d_1 - 3d_3} \begin{pmatrix}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 2 \\
0 & 0 & 1 & 1
\end{pmatrix}.$$

Hệ phương trình có nghiệm duy nhất $(\alpha_1; \alpha_2; \alpha_3) = (1; 2; 1)$.

Vậy u là tổ hợp tuyến tính của u_1, u_2, u_3 .

Dạng biểu diễn của u là $u = u_1 + 2u_2 + u_3$.

Ví dụ. Xét xem u = (4,3,5) có là tổ hợp tuyến tính của các vectơ $u_1 = (1,2,5), u_2 = (1,3,7), u_3 = (-2,3,4)$ hay không?

$$\begin{aligned} \mathbf{Gi\acute{a}i.} & \ (u_1^\top \ u_2^\top \ u_3^\top \ | \ u^\top) = \begin{pmatrix} 1 & 1 & -2 & | \ 4 \\ 2 & 3 & 3 & | \ 3 \\ 5 & 7 & 4 & | \ 5 \end{pmatrix} \\ & \frac{d_2 := d_2 - 2d_1}{d_3 := d_3 - 5d_1} & \begin{pmatrix} 1 & 1 & -2 & | & 4 \\ 0 & 1 & 7 & | & -5 \\ 0 & 2 & 14 & | & -15 \end{pmatrix} \xrightarrow{d_1 := d_1 - d_2} & \begin{pmatrix} 1 & 0 & -9 & | & 9 \\ 0 & 1 & 7 & | & -5 \\ 0 & 0 & 0 & | & -5 \end{pmatrix} \end{aligned}$$

Hệ vô nghiệm vì 0x + 0y + 0z = -5. Vậy u không là tổ hợp tuyến tính của u_1, u_2, u_3 .

Ví dụ. Xét xem u = (4,3,10) có là tổ hợp tuyến tính của các vecto $u_1 = (1,2,5), u_2 = (1,3,7), u_3 = (-2,3,4)$ hay không?

Giải.
$$(u_1^{\top} \ u_2^{\top} \ u_3^{\top} \mid u^{\top}) = \begin{pmatrix} 1 & 1 & -2 & 4 \\ 2 & 3 & 3 & 3 \\ 5 & 7 & 4 & 10 \end{pmatrix}$$

$$\frac{d_2 := d_2 - 2d_1}{d_3 := d_3 - 5d_1} \leftarrow \begin{pmatrix} 1 & 1 & -2 & | & 4 \\ 0 & 1 & 7 & | & -5 \\ 0 & 2 & 14 & | & -10 \end{pmatrix} \xrightarrow{d_1 := d_1 - d_2} \begin{pmatrix} 1 & 0 & -9 & | & 9 \\ 0 & 1 & 7 & | & -5 \\ 0 & 0 & 0 & | & 0 \end{pmatrix}$$

Nghiệm của hệ là $(\alpha_1; \alpha_2; \alpha_3) = (9 + 9t, -5 - 7t, t)$

Vậy u là tổ hợp tuyến tính của u_1, u_2, u_3 .

Dạng biểu diễn của u là $u = (9 + 9t)u_1 + (-5 - 7t)u_2 + tu_3$.

Ví dụ. Trong không gian \mathbb{R}^4 cho các vectơ $u_1 = (1, 1, 1, 1);$ $u_2 = (2, 3, -1, 0);$ $u_3 = (-1, -1, 1, 1).$ Tìm điều kiện để vectơ u = (a, b, c, d) là một tổ hợp tuyến tính của $u_1, u_2, u_3.$

Giải.

$$(u_1^\top \ u_2^\top \ u_3^\top \ | \ u^\top) = \begin{pmatrix} 1 & 2 & -1 & a \\ 1 & 3 & -1 & b \\ 1 & -1 & 1 & c \\ 1 & 0 & 1 & d \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & -1 & a \\ 0 & 1 & 0 & b - a \\ 0 & -3 & 2 & c - a \\ 0 & -2 & 2 & d - a \end{pmatrix}$$

$$\rightarrow \left(\begin{array}{ccc|c} 0 & 2 & -1 & a \\ 0 & 1 & 0 & -a+b \\ 0 & 0 & 2 & -4a+3b+c \\ 0 & 0 & 2 & -3a+2b+d \end{array}\right) \rightarrow \left(\begin{array}{ccc|c} 0 & 2 & -1 & a \\ 0 & 1 & 0 & -a+b \\ 0 & 0 & 2 & -4a+3b+c \\ 0 & 0 & 0 & a-b-c+d \end{array}\right).$$

Để u là một tổ hợp tuyến tính của u_1,u_2,u_3 thì hệ có nghiệm, tức là

$$a + d = b + c.$$

2.2 Độc lập và phụ thuộc tuyến tính

Dịnh nghĩa. Cho $u_1, u_2, \ldots, u_m \in V$. Xét phương trình

$$\alpha_1 u_1 + \alpha_2 u_2 + \ldots + \alpha_m u_m = 0. \tag{*}$$

- Nếu (*) chỉ có nghiệm tầm thường $\alpha_1 = \alpha_2 = \ldots = \alpha_m = 0$ thì ta nói u_1, u_2, \ldots, u_m (hay $\{u_1, u_2, \ldots, u_m\}$) độc lập tuyến tính.
- Nếu ngoài nghiệm tầm thường, (*) còn có nghiệm khác thì ta nói u_1, u_2, \ldots, u_m (hay $\{u_1, u_2, \ldots, u_m\}$) phụ thuộc tuyến tính.

Nói cách khác,

- ▶ Nếu phương trình (*) có nghiệm duy nhất thì u_1, u_2, \dots, u_m độc lập tuyến tính.
- Nếu phương trình (*) có vô số nghiệm thì u_1, u_2, \ldots, u_m phụ thuộc tuyến tính.

Ví dụ. Trong không gian \mathbb{R}^3 cho các vectơ $u_1 = (1, 2, -3)$; $u_2 = (2, 5, -1)$; $u_3 = (1, 1, -9)$. Hỏi u_1, u_2, u_3 độc lập hay phụ thuộc tuyến tính?

Giải. Xét phương trình

$$\alpha_{1}u_{1} + \alpha_{2}u_{2} + \alpha_{3}u_{3} = 0$$

$$\Leftrightarrow \alpha_{1}(1, 2, -3) + \alpha_{2}(2, 5, -1) + \alpha_{3}(1, 1, -9) = (0, 0, 0)$$

$$\Leftrightarrow \begin{cases} \alpha_{1} + 2\alpha_{2} + \alpha_{3} = 0; \\ 2\alpha_{1} + 5\alpha_{2} + \alpha_{3} = 0; \\ -3\alpha_{1} - \alpha_{2} - 9\alpha_{3} = 0. \end{cases}$$

Ma trận hóa hệ phương trình, $A = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 5 & 1 \\ -3 & -1 & -8 \end{pmatrix}$.

Ta có r(A)=3 nên hệ có nghiệm duy nhất. Suy ra u_1,u_2,u_3 độc lập tuyến tính.

Ví dụ. Trong không gian \mathbb{R}^3 cho các vecto $u_1 = (1,1,1); u_2 = (2,1,3);$ $u_3 = (1, 2, 0)$. Hỏi u_1, u_2, u_3 độc lập hay phụ thuộc tuyến tính?

Giải. Xét phương trình

$$\alpha_1 u_1 + \alpha_2 u_2 + \alpha_3 u_3 = \mathbf{0}$$

$$\Leftrightarrow (\alpha + 2\alpha_2 + \alpha_3, \alpha + \alpha_2 + 2\alpha_3, \alpha + 3\alpha_2) = (0, 0, 0)$$

$$\Leftrightarrow \begin{cases} \alpha_1 + 2\alpha_2 + \alpha_3 = 0 \\ \alpha_1 + \alpha_2 + 2\alpha_3 = 0 \\ \alpha_1 + 3\alpha_2 = 0 \end{cases}$$

Ma trận hóa hệ phương trình, $A = \begin{pmatrix} 1 & 2 & 1 \\ 1 & 1 & 2 \\ 1 & 2 & 0 \end{pmatrix}$.

Ta có r(A) = 2 nên hệ vô số nghiệm. Suy ra u_1, u_2, u_3 phụ thuộc tuyến tính.

Nhận xét. Họ vectơ u_1, u_2, \dots, u_m phụ thuộc tuyến tính khi và chỉ khi tồn tại vectơ u_i là tổ hợp tuyến tính của các vectơ còn lại. Thật vậy,

Nếu u₁, u₂,..., u_m phụ thuộc tuyến tính thì có α₁, α₂,...,
α_m ∈ ℝ không đồng thời bằng 0 sao cho ∑_{j=1}^m α_ju_j = 0. Giả sử
α_i ≠ 0, khi đó

$$u_i = -\frac{1}{\alpha_i} \sum_{j \neq i} \alpha_j u_j.$$

• Nếu có u_i sao cho $u_i = \sum_{j \neq i} \beta_j u_j$ thì $\sum_{j=1}^m \beta_j u_j = 0$, trong đó $\beta_i = -1 \neq 0$, điều này chứng tổ u_1, u_2, \ldots, u_m phụ thuộc tuyến tính.

Mệnh đề. Cho V là không gian vectơ trên \mathbb{R} và $S = \{u_1, u_2, \dots, u_m\}$ là tập hợp các vectơ thuộc V. Khi đó

- Nếu S phụ thuộc tuyến tính thì mọi tập chứa S đều phụ thuộc tuyến tính.
- Nếu S độc lập tuyến tính thì mọi tập con của S đều độc lập tuyên tính.

Hệ quả. Cho u_1, u_2, \ldots, u_m là m vectơ trong \mathbb{R}^n . Gọi A là ma trận có được bằng cách xếp u_1, u_2, \ldots, u_m thành các dòng. Khi đó u_1, u_2, \ldots, u_m độc lập tuyến tính khi và chỉ khi A có hạng là r(A) = m.

Từ Hệ quả trên ta sẽ xây dựng thuật toán kiểm tra tính độc lập tuyến tính của các vectơ trong \mathbb{R}^n

Thuật toán kiểm tra tính độc lập tuyến tính của các vectơ trong \mathbb{R}^n

Bước 1: Lập ma trận A bằng cách xếp u_1, u_2, \dots, u_m thành các dòng.

Bước 2: Xác định hạng r(A) của A.

- ightharpoonup Nếu r(A)=m thì u_1,u_2,\ldots,u_m độc lập tuyến tính.
- ightharpoonup Nếu r(A) < m thì u_1, u_2, \dots, u_m phụ thuộc tuyến tính.

Trường hợp m=n, ta có A là ma trận vuông. Khi đó có thể thay Bước 2 bằng Bước 2' sau đây:

Bước 2': Tính định thức $\det A$.

- ightharpoonup Nếu $\det A \neq 0$ thì u_1, u_2, \dots, u_m độc lập tuyến tính.
- ▶ Nếu detA = 0 thì u_1, u_2, \dots, u_m phụ thuộc tuyến tính.

Ví dụ. Trong không gian \mathbb{R}^5 cho các vectơ $u_1 = (1, 2, -3, 5, 1)$; $u_2 = (1, 3, -13, 22, -1)$; $u_3 = (3, 5, 1, -2, 5)$. Hãy xét xem u_1, u_2, u_3 độc lập tuyến tính hay phụ thuộc tuyến tính.

Giải.

$$\text{Lập} \quad A = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} = \begin{pmatrix} 1 & 2 & -3 & 5 & 1 \\ 1 & 3 & -13 & 22 & -1 \\ 3 & 5 & 1 & -2 & 5 \end{pmatrix}
 \frac{d_2 := d_2 - d_1}{d_3 := d_3 - 3d_1} \quad \begin{pmatrix} 1 & 2 & -3 & 5 & 1 \\ 0 & 1 & -10 & 17 & -2 \\ 0 & -1 & 10 & -17 & 2 \end{pmatrix}
 \frac{d_3 := d_3 + d_2}{d_3 := d_3 + d_2} \quad \begin{pmatrix} 1 & 2 & -3 & 5 & 1 \\ 0 & 1 & -10 & 17 & -2 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

Ta có r(A) = 2 < 3. Suy ra u_1, u_2, u_3 phụ thuộc tuyến tính.

Ví dụ. Trong không gian \mathbb{R}^3 cho các vecto

$$u_1 = (2m+1, -m, m+1);$$

 $u_2 = (m-2, m-1, m-2);$
 $u_3 = (2m-1, m-1, 2m-1).$

Tìm điều kiện để u_1, u_2, u_3 độc lập tuyến tính.

Giải. Lập
$$A = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} = \begin{pmatrix} 2m+1 & -m & m+1 \\ m-2 & m-1 & m-2 \\ 2m-1 & m-1 & 2m-1 \end{pmatrix}$$
 Ta có
$$|A| = \begin{vmatrix} 2m+1 & -m & m+1 \\ m-2 & m-1 & m-2 \\ 2m-1 & m-1 & 2m-1 \end{vmatrix} \xrightarrow{c_1:=c_1-c_3} \begin{vmatrix} m & -m & m+1 \\ 0 & m-1 & m-2 \\ 0 & m-1 & 2m-1 \end{vmatrix} = \frac{c_0 + 1}{m-1} m - \frac{1}{2m-1} = m(m-1)(m+1).$$

Do đó u_1, u_2, u_3 độc lập tuyến tính khi và chỉ khi

$$|A| \neq 0 \Leftrightarrow m(m-1)(m+1) \neq 0 \Leftrightarrow m \neq 0 \text{ và } m \neq \pm 1.$$

3. Cơ sở và số chiều của không gian vectơ

- 3.1 Tập sinh
- 3.2 Cơ sở và số chiều

3.1 Tập sinh

Định nghĩa. Cho V là không gian vectơ và $S \subset V$. S được gọi là $t\hat{q}p$ sinh của V nếu mọi vectơ u của V đều là tổ hợp tuyến tính của S. Khi đó, ta nói S sinh ra V hoặc V được sinh bởi S, ký hiệu $V = \langle S \rangle$.

Ví dụ. Trong không gian \mathbb{R}^3 , cho

$$S = \{u_1 = (1, 1, 1); u_2 = (1, 2, 1); u_3 = (2, 3, 1)\}.$$

Hỏi S có là tập sinh của \mathbb{R}^3 không?

Giải. Với $u=(x,y,z)\in\mathbb{R}^3$, kiểm tra xem u có là tổ hợp tuyến tính của u_1,u_2,u_3 không?

Ta lập hệ phương trình

$$(u_1^\top \ u_2^\top \ u_3^\top \ | \ u^\top) = \left(\begin{array}{ccc|c} 1 & 1 & 2 & x \\ 1 & 2 & 3 & y \\ 1 & 1 & 1 & z \end{array} \right) \rightarrow \left(\begin{array}{ccc|c} 1 & 1 & 2 & x \\ 0 & 1 & 1 & -x + y \\ 0 & 0 & -1 & -x + z \end{array} \right).$$

Hệ có nghiệm. Suy ra u là tổ hợp tuyến tính của u_1, u_2, u_3 . Vậy S là tập sinh của \mathbb{R}^3 .

Ví dụ. Trong không gian \mathbb{R}^3 , cho

$$S = \{u_1 = (1, 1, -1); u_2 = (2, 3, 1); u_3 = (3, 4, 0)\}.$$

Hỏi S có là tập sinh của \mathbb{R}^3 không?

Giải. Với $u=(x,y,z)\in\mathbb{R}^3$, ta lập hệ phương trình

$$(u_1^\top \ u_2^\top \ u_3^\top \ | \ u^\top) = \left(\begin{array}{cc|c} 1 & 2 & 3 & x \\ 1 & 3 & 4 & y \\ -1 & 1 & 0 & z \end{array} \right) \rightarrow \left(\begin{array}{cc|c} 1 & 2 & 3 & x \\ 0 & 1 & 1 & -x+y \\ 0 & 0 & 0 & 4x-3y+z \end{array} \right).$$

Với $u_0 = (1, 1, 1)$ thì hệ trên vô nghiệm.

Vậy u_0 không là tổ hợp tuyến tính của u_1, u_2, u_3 . Suy ra S không là tập sinh của \mathbb{R}^3 .

Ví dụ. Trong không gian $\mathbb{R}_2[x]$, cho

$$S = \{f_1 = x^2 + x + 1; f_2 = 2x^2 + 3x + 1; f_3 = x^2 + 2x + 1\}.$$

Hỏi S có là tập sinh của $\mathbb{R}_2[x]$ không?

Giải. Với $f = ax^2 + bx + c \in \mathbb{R}_2[x]$, kiểm tra xem f có là tổ hợp tuyến tính của f_1, f_2, f_3 không?

Xét phương trình $\alpha_1 f_1 + \alpha_2 f_2 + \alpha_3 f_3 = f$.

$$\Leftrightarrow \begin{cases} \alpha_1 + 2\alpha_2 + \alpha_3 = a; \\ \alpha_1 + 3\alpha_2 + 2\alpha_3 = b; \\ \alpha_1 + \alpha_2 + \alpha_3 = c. \end{cases}$$

Ma trận hóa,
$$\tilde{A} = \begin{pmatrix} 1 & 2 & 1 & a \\ 1 & 3 & 2 & b \\ 1 & 1 & 1 & c \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & 1 & a \\ 0 & 1 & 1 & -a+b \\ 0 & 0 & 1 & -2a+b+c \end{pmatrix}$$

Hệ có nghiệm. Vậy f là tổ hợp tuyến tính của f_1, f_2, f_3 . Suy ra S là tập sinh của $\mathbb{R}_2[x]$.

3.2 Cơ sở và số chiều

Dinh nghĩa. Cho V là không gian vecto và \mathcal{B} là con của V. \mathcal{B} được goi là một $c\sigma s \dot{\sigma}$ của V nếu \mathcal{B} là một tập sinh và \mathcal{B} độc lập tuyến tính.

Ví du. Trong không gian \mathbb{R}^3 , cho

$$\mathcal{B} = \{u_1 = (1, 1, 1); u_2 = (1, 2, 1); u_3 = (2, 3, 1)\}.$$

Kiểm tra \mathcal{B} là cơ sở của \mathbb{R}^3 .

Giải. \mathcal{B} là tập sinh của \mathbb{R}^3 . (theo ví du trên)

Kiểm tra \mathcal{B} độc lập tuyến tính.

Lập ma trận
$$A = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 \\ 2 & 3 & 1 \end{pmatrix}.$$

Ta có r(A) = 3 (hoặc |A| = -1). Suy ra \mathcal{B} độc lập tuyến tính. Vậy \mathcal{B} là cơ sở của \mathbb{R}^3 .

Ví dụ. Trong không gian \mathbb{R}^3 , cho

$$S = \{u_1 = (1, 1, -2); u_2 = (2, 3, 3); u_3 = (5, 7, 4)\}.$$

Hỏi S có là cơ sở của \mathbb{R}^3 không?

Ví dụ. Trong không gian \mathbb{R}^3 , cho

$$S = \{u_1 = (1, 1, -1); u_2 = (2, 1, 0); u_3 = (1, 1, 0); u_4 = (1, -4, 1)\}.$$

Hỏi S có là cơ sở của \mathbb{R}^3 không?

Ví dụ. Trong không gian $\mathbb{R}_2[x]$, cho

$$S = \{f_1 = x^2 + x + 1; f_2 = 2x^2 + x + 1; f_3 = x^2 + 2x + 2\}$$

Hỏi S có là cơ sở của $R_2[x]$ không?

4□ > 4□ > 4 = > 4 = > = *)4(i)

Số chiều

Bổ đề. Giả sử V sinh bởi m vectơ, $V = \langle u_1, u_2, \dots, u_m \rangle$. Khi đó mọi tập hợp con độc lập tuyến tính của V có không quá m phần tử.

Hệ quả. Giả sử V có một cơ sở \mathcal{B} gồm n vectơ. Khi đó mọi cơ sở khác của V hữu hạn và có đúng n vectơ.

Định nghĩa. Cho V là không gian vectơ, $s\acute{o}$ chiều của V, ký hiệu là $\dim V$, là số vectơ của tập cơ sở. Trong trường hợp vô hạn chiều, ta ký $\dim V = \infty$.

Ví dụ. Trong không gian \mathbb{R}^3 , cho

$$\mathcal{B} = \{u_1 = (1, 1, 1); u_2 = (1, 2, 1); u_3 = (2, 3, 1)\}.$$

Khi đó \mathcal{B} là cơ sở của \mathbb{R}^3 . Do đó dim $\mathbb{R}^3 = 3$.

Ví dụ. Trong không gian \mathbb{R}^n , xét $\mathcal{B}_0 = \{e_1, e_2, \dots, e_n\}$, trong đó

Với $u=(x_1,x_2,\ldots,x_n)\in\mathbb{R}^n$. Ta có

$$u = x_1e_1 + x_2e_2 + \dots + x_ne_n.$$

Do đó \mathcal{B}_0 là tập sinh của \mathbb{R}^n . Mặt khác \mathcal{B}_0 độc lập tuyến tính nên \mathcal{B}_0 là cơ sở của \mathbb{R}^n . \mathcal{B}_0 được gọi là **cơ sở chính tắc** của \mathbb{R}^n . Như vậy

$$dim\mathbb{R}^n = n$$

Ví dụ. Không gian vectơ $M_{m \times n}(\mathbb{R})$ có cơ sở

$$\mathcal{B}_0 = \{ E_{ij} \mid , i \in \overline{1.m}, j \in \overline{1,n} \},$$

trong đó E_{ij} là ma trận loại $m \times n$ chỉ có một hệ số khác 0 duy nhất là hệ số 1 ở dòng i cột j. Do đó $M_{m \times n}(\mathbb{R})$ hữu hạn chiều và

$$\dim M_{m\times n}(\mathbb{R})=mn.$$

Ví dụ. Không gian $\mathbb{R}_n[x]$ gồm các đa thức theo x bậc không quá n với hệ số trong \mathbb{R} , là không gian vectơ hữu hạn chiều trên \mathbb{R} có $\dim \mathbb{R}_n[x] = n+1$ với cơ sở $\mathcal{B}_0 = \{1, x, \dots, x^n\}$.

Ví dụ. Không gian $\mathbb{R}[x]$ gồm tất các đa thức theo x với hệ số trong \mathbb{R} , là không gian vectơ vô hạn chiều trên \mathbb{R} với cơ sở $\mathcal{B}_0 = \{1, x, x^2, \ldots\}$.

$\mathbf{H}\mathbf{\hat{e}}$ quả. Cho V là không gian vectơ có dimV = n. Khi đó

- i) Mọi tập con của V chứa nhiều hơn n vectơ thì phụ thuộc tuyến tính.
- ii) Mọi tập con của V chứa ít hơn n vecto không sinh ra V.

Bổ đề. Cho S là một tập con độc lập tuyến tính của V và $u \in V$ là một vectơ sao cho u không là tổ hợp tuyến tính của S. Khi đó tập hợp $S_1 = S \cup \{u\}$ độc lập tuyến tính.

Định lý.

Cho V là một không gian vectơ hữu hạn chiều với $\dim V = n$. Khi đó

- i) Mọi tập con độc lập tuyến tính gồm n vectơ của V đều là cơ sở của V.
- ii) Mọi tập sinh của V gồm n vectơ đều là cơ sở của V.

Nhận diện cơ sở của không gian V có $\dim V = n$

Vì $\mathrm{dim}V=n$ nên mọi cơ sở của V phải gồm n vectơ. Hơn nữa, nếu $S\subset V$ và số phần tử của S bằng n thì

S là cơ sở của $V \Leftrightarrow S$ độc lập tuyến tính.

 $\Leftrightarrow S$ là tập sinh của $V\!.$

Ví dụ. Kiểm tra tập hợp nào sau đây là cơ sở của không gian vectơ của \mathbb{R}^3 ?

- a) $B_1 = \{u_1 = (1, 2, 3), u_2 = (2, 3, 4)\}.$
- b) $B_2 = \{u_1 = (2, 1, 3), u_2 = (2, 1, 4), u_3 = (2, 3, 1), u_4 = (3, 4, 5)\}.$
- c) $B_3 = \{u_1 = (1, -2, 1), u_2 = (1, 3, 2), u_3 = (-2, 1, -2)\}$
- d) $B_4 = \{u_1 = (2, -1, 0), u_2 = (1, 2, 3), u_3 = (5, 0, 3)\}$

Giải.

a) b) B_1, B_2 không phải là cơ sở của \mathbb{R}^3 vì số vectơ không bằng 3.

c)
$$B_3 = \{u_1 = (1, -2, 1), u_2 = (1, 3, 2), u_3 = (-2, 1, -2)\}$$

Lập $A = \begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{pmatrix} = \begin{pmatrix} 1 & -2 & 1 \\ 1 & 3 & 2 \\ \vdots & \vdots & \vdots \\ 2 & 1 & 2 \end{pmatrix}$.

Ta có $\det A=3$. Suy ra B_3 độc lập tuyến tính. Mặt khác số vectơ của B_3 bằng $3=\dim\mathbb{R}^3$ nên B_3 là cơ sở của \mathbb{R}^3

d)
$$B_4 = \{u_1 = (2, -1, 0), u_2 = (1, 2, 3), u_3 = (5, 0, 3)\}$$

Lập
$$A = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} = \begin{pmatrix} 2 & -1 & 0 \\ 1 & 2 & 3 \\ 5 & 0 & 3 \end{pmatrix}.$$

Ta có $\det A = 0$. Suy ra B_4 không độc lập tuyến tính. Vì vậy B_4 không là cơ sở của \mathbb{R}^3

Ví dụ. Trong không gian $\mathbb{R}_2[x]$, cho

$$S = \{f_1 = x^2 + x + 1; f_2 = 2x^2 + 3x + 1; f_3 = x^2 + 2x + 1\}.$$

Hỏi S có là cơ sở của $\mathbb{R}_2[x]$ không?

Giải. Vì dim $R_2[x]=3$ và số phần tử của S bằng 3 nên S là cơ sở của $\mathbb{R}_2[x]$ khi S độc lập tuyến tính hoặc S là tập sinh.

Cách 1. Kiểm tra S độc lập tuyến tính.

Xét phương trình $\alpha_1 f_1 + \alpha_2 f_2 + \alpha_3 f_3 = 0$

$$\Leftrightarrow \left\{ \begin{array}{cccccc} \alpha_1 & + & 2\alpha_2 & + & \alpha_3 & = & 0 \\ \alpha_1 & + & 3\alpha_2 & + & 2\alpha_3 & = & 0 \\ \alpha_1 & + & \alpha_2 & + & \alpha_3 & = & 0 \end{array} \right.$$

Ma trận hóa,
$$\tilde{A} = \begin{pmatrix} 1 & 2 & 1 & 0 \\ 1 & 3 & 2 & 0 \\ 1 & 1 & 1 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

Hệ có nghiệm duy nhất $\alpha_1=\alpha_2=\alpha_3=0$. Vậy S độc lập tuyến tính. Suy ra S là cơ sở của $\mathbb{R}_2[x]$.

Cách 2. Kiểm tra S là tập sinh. ◆ Xem lại ví dụ

Ví dụ. Trong không gian \mathbb{R}^3 , cho

$$S = \{u_1 = (1, m-2, -2), u_2 = (m-1, 3, 3), u_3 = (m, m+2, 2)\}.$$

Tìm điều kiệm m để S là cơ sở của \mathbb{R}^3 .

Giải. Do số phần tử của S bằng 3 nên S là cơ sở của \mathbb{R}^3 khi S độc lập tuyến tính.

Lập
$$A = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} = \begin{pmatrix} 1 & m-2 & -2 \\ m-1 & 3 & 3 \\ m & m+2 & 2 \end{pmatrix}$$
. Ta có $\det A = m-m^2$.

Suy ra, S độc lập tuyến tính khi $\det A \neq 0$. Như vậy, để S là cơ sở của \mathbb{R}^3

 $\mathbb{R}^3 \text{ thì } m \neq 0 \text{ và } m \neq 1.$

4. Không gian vectơ con

- 4.1 Định nghĩa
- 4.2 Không gian sinh bởi tập hợp
- 4.3 Không gian dòng của ma trận
- 4.4 Không gian tổng

4.1 Định nghĩa

Định nghĩa. Cho W là một tập con khác \emptyset của V. Ta nói W là một không gian vecto' con (gọi tắt, không gian con) của V, ký hiệu $W \leq V$, nếu W với phép toán (+,.) được hạn chế từ V cũng là một không gian vecto trên \mathbb{R} .

Ví dụ. $W = \{0\}$ và V là các vectơ con của V. Ta gọi đây là các **không gian con tầm thường** của V.

Định lý. Cho W là một tập con khác \emptyset của V. Khi đó các mệnh đề sau tương đương:

- i) $W \leq V$.
- ii) Với mọi $u, v \in W$; $\alpha \in \mathbb{R}$, ta có $u + v \in W$ và $\alpha u \in W$.
- iii) Với mọi $u, v \in W$; $\alpha \in \mathbb{R}$, ta có $\alpha u + v \in W$.

Ví dụ. Cho $W = \{(x_1, x_2, x_3) \in \mathbb{R}^3 \mid 2x_1 + x_2 - x_3 = 0\}$. Hỏi W có là không gian con của \mathbb{R}^3 không?

Giải.

Ta có $W \subset \mathbb{R}^3$.

$$0 = (0,0,0) \in W \text{ (vì } 2.0 + 0 - 0 = 0).$$
 Suy ra $W \neq \emptyset$.
Với mọi $u = (x_1, x_2, x_3) \in W$, nghĩa là $2x_1 + x_2 - x_3 = 0$, $v = (y_1, y_2, y_3) \in W$ nghĩa là $2y_1 + y_2 - y_3 = 0$

và $\alpha \in \mathbb{R}$. Ta có

•
$$u + v = (x_1 + y_1, x_2 + y_2, x_3 + y_3)$$
. Ta có
$$2(x_1 + y_1) + (x_2 + y_2) - (x_3 + y_3) = (2x_1 + x_2 - x_3) + (2y_1 + y_2 - y_3) = 0 + 0 = 0.$$
 Suv ra $u + v \in W$. (1)

•
$$\alpha u = (\alpha x_1, \alpha x_2, \alpha x_3)$$
. Ta có $2\alpha x_1 + \alpha x_2 - \alpha x_3 = \alpha (2x_1 + x_2 - x_3) = \alpha 0 = 0$. Suy ra $\alpha u \in W$. (2)

Từ (1) và (2) suy ra $W \leq \mathbb{R}^3$.

Nhận xét. Cho V là không gian vectơ và $W \subset V$. Khi đó:

- $N\acute{e}u\ W\ l\grave{a}\ không\ gian\ con\ của\ V\ thì\ 0\in W.$
- $N\acute{e}u \ 0 \notin W$ thì W không là không gian con của V.

Ví dụ. Cho $W = \{(x_1, x_2, x_3) \in \mathbb{R}^3 \mid 3x_1 + 2x_2 - 4x_3 = 1\}$. Hỏi W có là không gian con của \mathbb{R}^3 không?

Giải. Ta có $0 = (0,0,0) \notin W$ (vì $3.0 + 2.0 - 4.0 = 0 \neq 1$). Suy ra W không là không gian con của \mathbb{R}^3 .

Ví dụ. Cho $W = \{(x_1, x_2, x_3) \in \mathbb{R}^3 \mid x_1 = 2x_2x_3\}$. Hỏi W có là không gian con của \mathbb{R}^3 không?

Giải. Với u = (2, 1, 1) và v = (4, 2, 1). Ta có $u, v \in W$.

 $u+v=(6,3,2)\notin W$ (vì $6\neq 2.3.2$). Suy ra W không là không gian con của \mathbb{R}^3 .

Định lý. Nếu W_1, W_2 là không gian con của V thì $W_1 \cap W_2$ cũng là một không gian con của V.

Chứng minh.

- $W_1 \cap W_2 \subset V$ (vì $W_1 \subset V$, $W_2 \subset V$)
- $0 \in W_1 \cap W_2 \text{ (vì } 0 \in W_1, 0 \in W_2)$
- Với mọi $u, v \in W_1 \cap W_2; \alpha \in \mathbb{R}$.

Vì
$$u, v \in W_1$$
 nên $\alpha u + v \in W_1$ (vì $W_1 \leq V$).

Vì
$$u, v \in W_1$$
 nên $\alpha u + v \in W_2$ (vì $W_2 \leq V$).

Suy ra $\alpha u + v \in W_1 \cap W_2$.

Vậy
$$W_1 \cap W_2 \leq V$$
.

Dịnh lý. $Nếu <math>W_1, W_2$ là không gian con của V, ta định nghĩa

$$W_1 + W_2 = \{w_1 + w_2 \mid w_1 \in W_1, w_2 \in W_2\}.$$

Khi đó $W_1 + W_2$ cũng là một không gian con của V.

Chứng minh.

- $W_1 + W_2 \subset V$ (vì $W_1 \subset V$, $W_2 \subset V$)
- $0 = 0 + 0 \in W_1 + W_2 \text{ (vì } 0 \in W_1, 0 \in W_2)$
- Với mọi $u = u_1 + u_2, v = v_1 + v_2 \in W_1 + W_2; \alpha \in \mathbb{R}.$

Vì
$$u_1, v_1 \in W_1$$
 nên $\alpha u_1 + v_1 \in W_1$ (vì $W_1 \leq V$).

Vì
$$u_2, v_2 \in W_1$$
 nên $\alpha u_2 + v_2 \in W_2$ (vì $W_2 \leq V$).

Ta có

$$\alpha u + v = \alpha(u_1 + u_2) + (v_1 + v_2) = (\alpha u_1 + v_1) + (\alpha u_2 + v_2) \in W_1 + W_2.$$

Vây $\alpha u + v \in W_1 + W_2.$

 $V_{ay} W_1 + W_2 \le V.$

4.2 Không gian con sinh bởi tập hợp

Định lý. Cho V là không gian vectơ trên \mathbb{R} và S là tập con khác rỗng của V. Ta đặt W là tập hợp tất cả các tổ tuyến tính của S. Khi đó:

- i) $W \leq V$.
- ii) W là không gian nhỏ nhất trong tất cả các không gian con của V mà chứa S.

Không gian W được gọi là không gian con sinh bởi S, ký hiệu $\mathbf{W} = \langle \mathbf{S} \rangle$. Cụ thể, nếu $S = \{u_1, u_2, \dots, u_m\}$ thì

$$W = \langle S \rangle = \{ \alpha_1 u_1 + \alpha_2 u_2 + \dots + \alpha_m u_m \mid \alpha_i \in \mathbb{R} \}$$

Ví dụ. Trong không gian \mathbb{R}^2 , ta xét $S = \{u = (1,2)\}$. Khi đó $W = \langle S \rangle = \{a(1,2) \mid a \in \mathbb{R}\} = \{(a,2a) \mid a \in \mathbb{R}\}.$

Ví dụ. Trong không gian \mathbb{R}^3 , ta xét

$$S = \{u_1 = (1, 2, 1), u_2 = (-1, 2, 0)\}.$$

Khi đó

$$\langle S \rangle = \{ tu_1 + su_2 \mid t, s \in \mathbb{R} \} = \{ (t - s, 2t + 2s, t) \mid t, s \in \mathbb{R} \}$$

Nhận xét. Vì không gian sinh bởi S là không gian nhỏ nhất chứa S nên ta quy ước $\langle \emptyset \rangle = \{0\}$.

Ví dụ. Trong không gian \mathbb{R}^3 , cho

$$W = \{ (a+2b, a-b, -a+2b) \mid a, b \in \mathbb{R} \}$$

- a) Chứng minh W là không gian con của \mathbb{R}^3 .
- b) Tìm một tập sinh của W.

Giải. a) Ta có $0 \in W$ vì 0 = (0,0,0) = (0+2.0,0-0,-0+2.0)

Với
$$u, v \in W$$
 và $\alpha \in \mathbb{R}$,
$$u = (a_1 + 2b_1, a_1 - b_1, -a_1 + 2b_1) \text{ với } a_1, b_1 \in \mathbb{R}$$

$$v = (a_2 + 2b_2, a_2 - b_2, -a_2 + 2b_2) \text{ với } a_2, b_2 \in \mathbb{R}. \text{ Khi đó:}$$

•
$$u + v = ((a_1 + a_2) + 2(b_1 + b_2), (a_1 + a_2) - (b_1 + b_2)$$

 $, -(a_1 + a_2) + 2(b_1 + b_2)) \in W \text{ (vì } a_1 + a_2, b_1 + b_2 \in \mathbb{R}).$

• $\alpha u = (\alpha a_1 + 2\alpha b_1, \alpha a_1 - \alpha b_1, -\alpha a_1 + 2\alpha b_1) \in W$ (vì $\alpha a_1, \alpha b_1 \in \mathbb{R}$).

Vậy $u + v, \alpha u \in W$. Suy ra $W \leq \mathbb{R}^3$.

b) Ta có
$$W = \{(a+2b, a-b, -a+2b) \mid a, b \in \mathbb{R}\}$$

= $\{a(1, 1, -1) + b(2, -1, 2) \mid a, b \in \mathbb{R}\}$

Vì mọi vectơ thuộc W đều là tổ hợp tuyến tính của $u_1 = (1,1,-1), u_2 = (2,-1,2)$ nên $S = \{u_1,u_2\}$ là tập sinh của W.

Định lý. Cho V là không gian vectơ và S_1, S_2 là tập con của V. Khi đó, nếu mọi vectơ của S_1 đều là tổ hợp tuyến tính của S_2 và ngược lại thì $\langle S_1 \rangle = \langle S_2 \rangle$

Chứng minh. Vì mọi vectơ của S_1 đều là tổ hợp tuyến tính của S_2 nên $S_1 \subset \langle S_2 \rangle$. Mặt khác $\langle S_1 \rangle$ là không gian nhỏ nhất chứa S_1 nên $\langle S_1 \rangle \subset \langle S_2 \rangle$. Lý luận tương tự ta có $\langle S_2 \rangle \subset \langle S_1 \rangle$.

Ví dụ. Trong không gian \mathbb{R}^3 cho

$$S_1 = \{u_1 = (1, -1, 4), u_2 = (2, 1, 3)\},\$$

$$S_2 = \{u_3 = (-1, -2, 1), u_4 = (5, 1, 10)\}.$$

Chứng minh $\langle S_1 \rangle = \langle S_2 \rangle$.

Định lý. [về cơ sở không toàn vẹn] Cho V là một không gian vectơ hữu hạn chiều và S là một tập con độc lập tuyến tính của V. Khi đó, nếu S không là cơ sở của V thì có thể thêm vào S một số vectơ để được một cơ sở của V.

Ví dụ. Trong không gian \mathbb{R}^4 , cho

$$S = \{u_1 = (1, 0, 2, 1), u_2 = (1, 0, 4, 4)\}.$$

Chứng tỏ S độc lập tuyến tính và thêm vào S một số vectơ để S trở thành cơ sở của \mathbb{R}^4 .

Giải. Lập
$$A = \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 2 & 1 \\ 1 & 0 & 4 & 4 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 2 & 1 \\ 0 & 0 & 2 & 3 \end{pmatrix}.$$

Ta có r(A)=2 bằng số vectơ của S. Suy ra S độc lập tuyến tính.

Dựa vào A ta có thể thêm vào S hai vecto

$$u_3 = (0, 1, 0, 0), u_4 = (0, 0, 0, 1).$$

Rỗ ràng $S = \{u_1, u_2, u_3, u_4\}$ đltt. Suy ra S là cơ sở của \mathbb{R}^4 .

Định lý. Cho V là một không gian vectơ hữu hạn chiều sinh bởi S. Khi đó tồn tại một cơ sở \mathcal{B} của V sao cho $\mathcal{B} \subseteq S$. Nói cách khác, nếu S không phải là một cơ sở của V thì ta có thể loại bỏ ra khỏi S một số vectơ để được một cơ sở của V.

Ví dụ. Trong không gian \mathbb{R}^3 , cho W sinh bởi

$$S = \{u_1 = (1, 1, 1), u_2 = (2, 1, 3), u_3 = (1, 2, 0)\}.$$

Tìm một tập con của S để là cơ sở của W.

Giải. Xét phương trình

$$\alpha_1 u_1 + \alpha_2 u_2 + \alpha_3 u_3 = \mathbf{0}$$

$$\Leftrightarrow (\alpha + 2\alpha_2 + \alpha_3, \alpha + \alpha_2 + 2\alpha_3, \alpha + 3\alpha_2) = (0, 0, 0)$$

$$\Leftrightarrow \begin{cases} \alpha_1 + 2\alpha_2 + \alpha_3 = 0 \\ \alpha_1 + \alpha_2 + 2\alpha_3 = 0 \\ \alpha_1 + 3\alpha_2 = 0 \end{cases}$$

Ma trận hóa hệ phương trình,

$$A = \left(\begin{array}{ccc} 1 & 2 & 1 \\ 1 & 1 & 2 \\ 1 & 3 & 0 \end{array}\right) \rightarrow \left(\begin{array}{ccc} 1 & 2 & 1 \\ 0 & -1 & 1 \\ 0 & 1 & -1 \end{array}\right) \rightarrow \left(\begin{array}{ccc} 1 & 0 & 3 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{array}\right).$$

Suy ra hệ có nghiệm là $\alpha_1 = -3t, \alpha_2 = t, \alpha_3 = t$. Vậy

$$-3tu_1 + tu_2 + tu_3 = 0.$$

Cho t = 1, ta có $-3u_1 + u_2 + u_3 = 0$ nên

$$u_2 = 3u_1 - u_3.$$

Suy ra u_2 là tổ hợp tuyến tính của u_1, u_3 . Do đó $\{u_1, u_3\}$ là tập sinh của W, hơn nữa nó độc lập tuyến tính nên nó là cơ sở của W.

4.3 Không gian dòng của ma trận

Định nghĩa. Cho ma trận $A = (a_{ij}) \in M_{m \times n}(\mathbb{R})$

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}.$$

Đặt

và

$$W_A = \langle u_1, u_2, \dots, u_m \rangle.$$

Ta gọi u_1, u_2, \ldots, u_m là các **vectơ dòng** của A, và W_A là **không gian dòng** của A.

Bổ đề. Nếu A và B là hai ma trận tương đương dòng thì $W_A = W_B$, nghĩa là hai ma trận tương đương dòng có cùng không gian dòng.

Định lý. Giả sử $A \in M_{m \times n}(\mathbb{R})$. Khi đó, dim $W_A = r(A)$ và tập hợp các vectơ khác không trong dạng ma trận bậc thang của A là cơ sở của W_A .

 \mathbf{V} í dụ. Tìm số chiều và một cơ sở của không gian dòng của ma trận

$$A = \begin{pmatrix} 1 & 2 & -1 & 1 \\ 2 & 5 & 1 & 4 \\ 5 & 11 & -2 & 8 \\ 9 & 20 & -3 & 14 \end{pmatrix}.$$

Giải.
$$A = \begin{pmatrix} 1 & 2 & -1 & 1 \\ 2 & 5 & 1 & 4 \\ 5 & 11 & -2 & 8 \\ 9 & 20 & -3 & 14 \end{pmatrix} \sim \begin{pmatrix} 1 & 2 & -1 & 1 \\ 0 & 1 & 3 & 2 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

Suy ra $\dim W_A = r(A) = 3$ và một cơ sở của W_A là

$${u_1 = (1, 2, -1, 1); u_2 = (0, 1, 3, 2); u_3 = (0, 0, 0, 1)}.$$

Thuật toán tìm số chiều và cơ sở của một không gian con của \mathbb{R}^n khi biết một tập sinh

Giả sử $W = \langle u_1, u_2, \dots, u_m \rangle \leq \mathbb{R}^n \ (u_1, u_2, \dots, u_m \text{ không nhất thiết độc lập tuyến tính}). Để tìm số chiều và một cơ sở của <math>W$ ta tiến hành như sau:

Bước 1. Lập ma trận A bằng cách xếp u_1, u_2, \ldots, u_m thành các dòng.

Bước 2. Dùng các phép BĐSCTD đưa A về dạng bậc thang R.

Bước 3. Số chiều của W bằng số dòng khác 0 của R (do đó bằng r(A)) và các vectơ dòng khác 0 của R tạo thành một cơ sở của W.

Ví dụ. Cho W sinh bởi $S = \{u_1, u_2, u_3, u_4\}$ trong đó $u_1 = (1, 2, 1, 1);$ $u_2 = (3, 6, 5, 7);$ $u_3 = (4, 8, 6, 8);$ $u_4 = (8, 16, 12, 20).$ Tìm một cơ sở của không gian W.

Giải. Lập

$$A = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 1 & 1 \\ 3 & 6 & 5 & 7 \\ 4 & 8 & 6 & 8 \\ 8 & 16 & 12 & 20 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & 1 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

Do đó W có $\dim W = 3$ và có một cơ sở

$${v_1 = (1, 2, 1, 1); v_2 = (0, 0, 1, 2); v_3 = (0, 0, 0, 1)}.$$

Nhận xét. Vì dimW=3, hơn nữa, có thể kiểm chứng u_1,u_2,u_4 độc lập tuyến tính nên ta cũng có $\{u_1,u_2,u_3\}$ là một cơ sở của W.

Ví dụ. Tìm một cơ sở cho không gian con của \mathbb{R}^4 sinh bởi các vectơ u_1, u_2, u_3 , trong đó $u_1 = (1, -2, -1, 3); u_2 = (2, -4, -3, 0); u_3 = (3, -6, -4, 4).$

Giải. Lập

$$A = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} = \begin{pmatrix} 1 & -2 & -1 & 3 \\ 2 & -4 & -3 & 0 \\ 3 & -6 & -4 & 4 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -2 & -1 & 3 \\ 0 & 0 & -1 & -6 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

Do đó có $\dim W = 3$ và có một cơ sở

$${v_1 = (1, -2, -1, 3); v_2 = (0, 0, -1, -6); v_3 = (0, 0, 0, 1)}.$$

Nhận xét. Trong ví dụ trên, vì r(A) = 3 nên u_1, u_2, u_3 độc lập tuyến tính, và do đó $\{u_1, u_2, u_3\}$ cũng là một cơ sở của W.

4.4 Không gian tổng

Định lý. Cho V là không gian vectơ trên \mathbb{R} và W_1, W_2 là không gian con của V. Khi đó:

- i) $W_1 + W_2$ là không gian con của V.
- ii) Nếu $W_1 = \langle S_1 \rangle$ và $W_2 = \langle S_2 \rangle$ thì

$$W_1 + W_2 = \langle S_1 \cup S_2 \rangle.$$

Ví dụ. Trong không gian \mathbb{R}^4 cho các vecto $u_1 = (1, 2, 1, 1);$ $u_2 = (3, 6, 5, 7);$ $u_3 = (4, 8, 6, 8);$ $u_4 = (8, 16, 12, 16);$ $u_5 = (1, 3, 3, 3);$ $u_6 = (2, 5, 5, 6);$ $u_7 = (3, 8, 8, 9);$ $u_8 = (6, 16, 16, 18).$

Đặt $W_1=\langle u_1,u_2,u_3,u_4\rangle$ và $W_2=\langle u_5,u_6,u_7,u_8\rangle$. Tìm một cơ sở và xác định số chiều của mỗi không gian W_1,W_2 và W_1+W_2 .

Giải.

• Tìm cơ sở của W_1

$$\text{Lập } A_1 = \left(\begin{array}{c} u_1 \\ u_2 \\ u_3 \\ u_4 \end{array} \right) = \left(\begin{array}{cccc} 1 & 2 & 1 & 1 \\ 3 & 6 & 5 & 7 \\ 4 & 8 & 6 & 8 \\ 8 & 16 & 12 & 16 \end{array} \right) \rightarrow \left(\begin{array}{cccc} 1 & 2 & 1 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array} \right).$$

Do đó W_1 có số chiều là 2 và một cơ sở là

$${v_1 = (1, 2, 1, 1); v_2 = (0, 0, 1, 2)}.$$

• Tìm cơ sở của W_2

$$\text{Lập } A_2 = \begin{pmatrix} u_5 \\ u_6 \\ u_7 \\ u_8 \end{pmatrix} = \begin{pmatrix} 1 & 3 & 3 & 3 \\ 2 & 5 & 5 & 6 \\ 3 & 8 & 8 & 9 \\ 6 & 16 & 16 & 18 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 3 & 3 & 3 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

Do đó W_2 có số chiều là 2 và một cơ sở là

$${v_3 = (1, 3, 3, 3); v_4 = (0, 1, 1, 0)}$$

• Tìm cơ sở của $W_1 + W_2$

Ta có $W_1 + W_2$ sinh bởi các vecto

$$v_1 = (1, 2, 1, 1); v_2 = (0, 0, 1, 2); v_3 = (1, 3, 3, 3); v_4 = (0, 1, 1, 0).$$

$$\text{Lập } A = \left(\begin{array}{c} v_1 \\ v_2 \\ v_3 \\ v_4 \end{array} \right) = \left(\begin{array}{cccc} 1 & 2 & 1 & 1 \\ 0 & 0 & 1 & 2 \\ 1 & 3 & 3 & 3 \\ 0 & 1 & 1 & 0 \end{array} \right) \rightarrow \left(\begin{array}{cccc} 1 & 2 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{array} \right).$$

Suy ra $W_1 + W_2$ có số chiều là 3 và một cơ sở là

$${w_1 = (1, 2, 1, 1); w_2 = (0, 1, 1, 0); w_3 = (0, 0, 1, 2)}.$$

5. Không gian nghiệm của hệ phương trình tuyến tính

- 5.1 Mở đầu
- 5.2 Tìm cơ sở của không gian nghiệm
- 5.3 Không gian giao

5.1 Mở đầu

Ví dụ. Cho W là tập tất cả các nghiệm (x_1, x_2, x_3, x_4) của hệ phương trình tuyến tính thuần nhất:

$$\begin{cases} x_1 + 2x_2 - 3x_3 + 5x_4 = 0; \\ x_1 + 3x_2 - 13x_3 + 22x_4 = 0; \\ 3x_1 + 5x_2 + x_3 - 2x_4 = 0; \\ 2x_1 + 3x_2 + 4x_3 - 7x_4 = 0. \end{cases}$$

Ma trận hóa hệ phương trình, ta có

$$A = \begin{pmatrix} 1 & 2 & -3 & 5 \\ 1 & 3 & -13 & 22 \\ 3 & 5 & 1 & -2 \\ 2 & 3 & 4 & -7 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 17 & -29 \\ 0 & 1 & -10 & 17 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

Vây hệ có nghiệm là

$$(x_1, x_2, x_3, x_4) = (-17t + 29s, 10t - 17s, t, s)$$
 với $t, s \in \mathbb{R}$

Do đó

$$\begin{split} W &= \{ \, (-17t + 29s, 10t - 17s, t, s) \, | \, t, s \in \mathbb{R} \} \\ &= \{ \, (-17t, 10t, t, 0) + (29s, -17s, 0, s) \, | \, t, s \in \mathbb{R} \} \\ &= \{ \, t(-17, 10, 1, 0) + s(29, -17, 0, 1) \, | \, t, s \in \mathbb{R} \} \end{split}$$

Đặt $u_1=(-17,10,1,0), u_2=(29,-17,0,1).$ Theo biểu thức trên, với $u\in W$ thì u là tổ hợp tuyến tính của $u_1,u_2.$ Suy ra

$$W = \langle u_1, u_2 \rangle.$$

Hơn nữa $\{u_1, u_2\}$ độc lập tuyến tính, nên $\{u_1, u_2\}$ là cơ sở của W. Suy ra $\dim W = 2$.

Nhận xét. Vectơ u_1 và u_2 có được bằng cách cho lần lượt t=1, s=0 và t=0, s=1. Ta gọi nghiệm u_1, u_2 được gọi là $nghiệm \ cơ \ bản$ của hệ.

Định lý. Gọi W là tập hợp nghiệm $(x_1, x_2, ..., x_n)$ của hệ phương trình tuyến tính thuần nhất

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0; \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = 0; \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = 0. \end{cases}$$

Khi đó, W là không gian con của \mathbb{R}^n và số chiều của W bằng số ẩn tự do của hệ.

Như vậy $W = \{u \in R^n \mid Au^\top = 0\}$ với A là ma trận cho trước và $u = (x_1, x_2, \dots, x_n)$

$5.2~{\rm Tìm}$ cơ sở của không gian nghiệm

Thuật toán

Bước 1. Giải hệ phương trình, tìm nghiệm tổng quát.

Bước 2. Lần lượt cho bộ ẩn tự do các giá trị $(1,0,\ldots,0),\ldots,(0,0,\ldots,1)$ ta được các nghiệm cơ bản u_1,u_2,\ldots,u_m .

Bước 3. Khi đó không gian nghiệm có cơ sở là $\{u_1, u_2, \dots, u_m\}$.

 \mathbf{V} í dụ. Tìm cơ sở và số chiều của không gian nghiệm sau

$$\begin{cases} x_1 + 2x_2 - 3x_3 + 5x_4 = 0; \\ x_1 + 3x_2 - 13x_3 + 22x_4 = 0; \\ 3x_1 + 5x_2 + x_3 - 2x_4 = 0; \\ 2x_1 + 3x_2 + 4x_3 - 7x_4 = 0, \end{cases}$$

Giải. Ma trận hóa hệ phương trình, ta có

$$\tilde{A} = \begin{pmatrix} 1 & 2 & -3 & 5 \\ 1 & 3 & -13 & 22 \\ 3 & 5 & 1 & -2 \\ 2 & 3 & 4 & -7 \end{pmatrix} \xrightarrow{d_2 := d_2 - d_1} \begin{pmatrix} 1 & 2 & -3 & 5 \\ 0 & 1 & -10 & 17 \\ 0 & -1 & 10 & -17 \\ 0 & -1 & 10 & -17 \end{pmatrix}$$
$$\xrightarrow{d_1 := d_1 - 2d_2} \xrightarrow{d_3 := d_3 + d_2} \begin{pmatrix} 1 & 0 & 17 & -29 \\ 0 & 1 & -10 & 17 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

Suy ra nghiệm của hệ là

$$u = (x_1, x_2, x_3, x_4) = (-17t + 29s, 10t - 17s, t, s) \text{ v\'oi } t, s \in \mathbb{R}.$$

Các nghiệm cơ bản của hệ là

$$u_1 = (-17, 10, 1, 0), u_2 = (29, -17, 0, 1).$$

Do đó, nếu W là không gian nghiệm thì $\mathcal{B} = \{u_1, u_2\}$ cơ sở của W và $\dim W = 2$.

5.3 Không gian giao

Cho V là không gian vectơ và W_1, W_2 là không gian con của V. Khi đó $W_1 \cap W_2$ là không gian con của V. Hơn nữa nếu $W_1 = \langle S_1 \rangle, W_2 = \langle S_2 \rangle$ thì $u \in W_1 \cap W_2$ khi và chỉ khi u là tổ hợp tuyến tính của S_1 và u là tổ hợp tuyến tính của S_2 .

Ví dụ. Trong không gian \mathbb{R}^4 cho các vecto $u_1=(1,2,1,1),$ $u_2=(1,2,2,3),\ u_3=(2,4,3,4),\ u_4=(1,3,3,3),\ u_5=(0,1,1,0).$ Đặt $W_1=\langle u_1,u_2,u_3\rangle,\ W_2=\langle u_4,u_5\rangle.$ Tìm cơ sở của không gian $W_1\cap W_2.$

Giải. Gọi $u=(x,y,z,t)\in W_1\cap W_2$

• Vì $u \in W_1$ nên u là tổ hợp tuyến tính của u_1, u_2, u_3 .

$$\left(\begin{array}{cc|c} u_1^\top & u_2^\top & u_3^\top \mid u^\top \end{array} \right) = \left(\begin{array}{cc|c} 1 & 1 & 2 & x \\ 2 & 2 & 4 & y \\ 1 & 2 & 3 & z \\ 1 & 3 & 4 & t \end{array} \right) \rightarrow \left(\begin{array}{cc|c} 1 & 1 & 2 & x \\ 0 & 1 & 1 & x - z \\ 0 & 0 & 0 & -2x + y \\ 0 & 0 & 0 & x - 2z + t \end{array} \right)$$

Suy ra để $u \in W_1$ thì -2x + y = 0 và x - 2z + t = 0 (1)

22/05/2010

• Vì $u \in W_2$ nên u là tổ hợp tuyến tính của u_4, u_5 .

$$\left(\begin{array}{cc|c} u_4^\top & u_5^\top & u^\top \end{array} \right) = \left(\begin{array}{cc|c} 1 & 0 & x \\ 3 & 1 & y \\ 3 & 1 & z \\ 3 & 0 & t \end{array} \right) \rightarrow \left(\begin{array}{cc|c} 1 & 0 & x \\ 0 & 1 & -3x + y \\ 0 & 0 & -y + z \\ 0 & 0 & -3x + t \end{array} \right)$$

Suy ra để
$$u \in W_2$$
 thì $-y + z = 0$ và $-3x + t = 0$ (2)

Từ (1) và (2) ta có

$$\begin{cases}
-2x + y & = 0 \\
x - 2z + t = 0 \\
-3x + t = 0
\end{cases}$$

Ma trận hóa
$$\tilde{A} = \begin{pmatrix} -2 & 1 & 0 & 0 \\ 1 & 0 & -2 & 1 \\ 0 & -1 & 1 & 0 \\ -3 & 0 & 0 & 1 \end{pmatrix}$$

$$\tilde{A} = \begin{pmatrix} -2 & 1 & 0 & 0 \\ 1 & 0 & -2 & 1 \\ 0 & -1 & 1 & 0 \\ -3 & 0 & 0 & 1 \end{pmatrix} \qquad \underbrace{\frac{d_1 := d_1 - d_4}{d_2 := d_2 - d_1}}_{\begin{array}{c} d_1 := d_1 - d_4 \\ 0 & -1 & 2 & 2 \\ 0 & -1 & 1 & 0 \\ 0 & 3 & 0 & -2 \end{pmatrix}}_{\begin{array}{c} d_2 := -d_2 \\ d_1 := d_1 - d_2 \\ \hline d_3 := d_3 - d_2 \\ d_4 := d_4 - 3d_2 \end{pmatrix}} \begin{pmatrix} 1 & 0 & -2 & 1 \\ 0 & 1 & 2 & -2 \\ 0 & 0 & 3 & -2 \\ 0 & 0 & -6 & 4 \end{pmatrix} \qquad \underbrace{\frac{d_3 := d_3 - d_4}{d_2 := d_2 - 2d_3}}_{\begin{array}{c} d_1 := d_1 + 2d_3 \\ d_2 := d_2 - 2d_3 \\ \hline d_2 := d_2 - 2d_3 \\ d_4 := d_4 + 6d_3 \end{pmatrix}}_{\begin{array}{c} 0 & 1 & 0 & -1/3 \\ 0 & 1 & 0 & -2/3 \\ 0 & 0 & 1 & -2/3 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Suy ra nghiệm của hệ là

$$u = (x, y, z, t) = (\frac{1}{3}a, \frac{2}{3}a, \frac{2}{3}a, a)$$
 với $a \in \mathbb{R}$.

Nghiệm cơ bản của hệ là $u_1 = (\frac{1}{3}, \frac{2}{3}, \frac{2}{3}, 1)$.

Suy ra
$$W_1 \cap W_2$$
 có cơ sở là $\{u_1 = (\frac{1}{3}, \frac{2}{3}, \frac{2}{3}, \frac{1}{3}, 1)\}.$

Định lý. Cho W_1, W_2 là hai không gian con hữu hạn chiều của V. Khi đó

$$\dim(W_1 + W_2) = \dim W_1 + \dim W_2 - \dim(W_1 \cap W_2).$$

6. Tọa độ và ma trận chuyển cơ sở

- 6.1 Tọa độ
- 6.2 Ma trận chuyển cơ sở

6.1 Tọa độ

Định nghĩa. Cho V là không gian vectơ và $\mathcal{B} = \{u_1, u_2, \dots, u_n\}$ là một cơ sở của V. Khi đó \mathcal{B} được gọi là **cơ sở được sắp** của V nếu thứ tự các vectơ trong \mathcal{B} được cố định. Ta thường dùng ký hiệu

$$(\mathbf{u}_1,\mathbf{u}_2,\ldots,\mathbf{u}_n)$$

để chỉ cơ sở được sắp theo thứ tự u_1, u_2, \ldots, u_n .

Định lý. Cho $\mathcal{B} = (u_1, u_2, \dots, u_n)$ là cơ sở của V. Khi đó mọi vectơ $u \in V$ đều được biểu diễn một cách duy nhất dưới dạng

$$u = \alpha_1 u_1 + \alpha_2 u_2 + \dots + \alpha_n u_n.$$

Chứng minh.

• Sự tồn tại. Vì \mathcal{B} là cơ sở của V nên \mathcal{B} là tập sinh. Với $u \in V$ thì u là tổ hợp tuyến tính của \mathcal{B} . Suy ra, tồn tại $\alpha_1, \alpha_2, \dots \alpha_n \in \mathbb{R}$ để

• Sự duy nhất.

Giả sử u có một dạng biểu diễn khác

$$u = \beta_1 u_1 + \beta_2 u_2 + \dots + \beta_n u_n.$$

Nghĩa là:

$$u = \alpha_1 u_1 + \dots + \alpha_n u_n = \beta_1 u_1 + \beta_2 u_2 + \dots + \beta_n u_n.$$

Khi đó

$$(\alpha_1 - \beta_1)u_1 + (\alpha_2 - \beta_2)u_2 + \dots + (\alpha_n - \beta_n)u_n = 0.$$

Do \mathcal{B} là cơ sở nên \mathcal{B} độc lập tuyến tính, ta có

$$\alpha_1 - \beta_1 = \alpha_2 - \beta_2 = \dots = \alpha_n - \beta_n = 0$$

hay

$$\alpha_1 = \beta_1, \alpha_2 = \beta_2, \dots, \alpha_n = \beta_n.$$

Điều này chứng tỏ u có một dạng biểu diễn duy nhất.

Tọa độ

Như vậy, nếu $\mathcal{B}=(u_1,u_2,\ldots,u_n)$ là cơ sở của V và $u\in V$ thì u sẽ có dạng biểu diễn duy nhất là:

$$u = \alpha_1 u_1 + \alpha_2 u_2 + \dots + \alpha_n u_n.$$

Ta đặt

$$[u]_{\mathcal{B}} = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{pmatrix}.$$

Khi đó $[\mathbf{u}]_{\mathcal{B}}$ được gọi là toa $d\hat{\rho}$ của u theo cơ sở \mathcal{B} .

Ví dụ. Trong không gian \mathbb{R}^3 , ta có cơ sở chính tắc

$$\mathcal{B}_0 = \{e_1 = (1,0,0), e_2 = (0,1,0), e_3 = (0,0,1)\}.$$

Với $u = (x_1, x_2, x_3)$ ta có: $u = x_1e_1 + x_2e_2 + x_3e_3$.

Suy ra
$$[u]_{\mathcal{B}_0} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = u^{\top}.$$

Nhận xét. Đối với cơ sở chính tắc $\mathcal{B}_0 = (e_1, e_2, \dots, e_n)$ của không gian \mathbb{R}^n và $u = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$ ta có

$$[u]_{\mathcal{B}_0} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = u^{\top}.$$

Ví dụ. Không gian $R_2[x]$ có cơ sở chính tắc là $\mathcal{B}_0 = \{x^2, x, 1\}.$

Với
$$f = ax^2 + bx + c$$
, ta có $[f]_{\mathcal{B}_0} = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$.

Phương pháp tìm $[u]_B$

Cho V là không gian vectơ có cơ sở là $\mathcal{B} = (u_1, u_2, \dots, u_n)$ và $u \in V$. Để tìm $[u]_B$ ta đi giải phương trình

$$u = \alpha_1 u_1 + \alpha_2 u_2 + \dots + \alpha_n u_n \quad (*)$$

với ẩn $\alpha_1, \alpha_2, \dots \alpha_n \in \mathbb{R}$. Do \mathcal{B} là cơ sở nên phương trình (*) có nghiệm duy nhất

$$(\alpha_1,\alpha_2,\ldots,\alpha_n)=(c_1,c_2,\ldots,c_n).$$

Khi đó
$$[u]_{\mathcal{B}} = \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{pmatrix}$$
.

Lưu ý. Khi $V = \mathbb{R}^n$, để giải phương trình (*) ta lập hệ

$$(u_1^\top u_2^\top \dots u_n^\top \mid u^\top)$$

Ví du. Trong không gian \mathbb{R}^3 , cho các vecto

$$u_1 = (1, 2, 1), u_2 = (1, 3, 1), u_3 = (2, 5, 3).$$

- a) Chứng minh $\mathcal{B} = (u_1, u_2, u_3)$ là một cơ sở của \mathbb{R}^3 .
- b) Tìm tọa độ của vecto $u = (a, b, c) \in \mathbb{R}^3$ theo cơ sở \mathcal{B} .

Giải.

a) Lập
$$A = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 1 \\ 1 & 3 & 1 \\ 2 & 5 & 3 \end{pmatrix}$$
. Ta có $|A| = 1$, suy ra u_1, u_2, u_3

độc lập tuyến tính. Vậy \mathcal{B} là cơ sở của \mathbb{R}^3 .

b) Với u = (a, b, c), để tìm $[u]_{\mathcal{B}}$ ta lập hệ phương trình

$$(u_1^{\top} \ u_2^{\top} \ u_3^{\top} \ | \ u^{\top}) \to \begin{pmatrix} 1 & 1 & 2 & a \\ 2 & 3 & 5 & b \\ 1 & 1 & 3 & c \end{pmatrix} \to \begin{pmatrix} 1 & 0 & 0 & 4a - b - c \\ 0 & 1 & 0 & -a + b - c \\ 0 & 0 & 1 & -a + c \end{pmatrix}$$

$$V_{ay} [u]_{\mathcal{B}} = \begin{pmatrix} 4a - b - c \\ -a + b - c \\ -a + c \end{pmatrix} .$$

$$V_{ay} [u]_{\mathcal{B}} = \begin{pmatrix} 4a - b - c \\ -a + b - c \end{pmatrix}$$

74 / 86

Ví dụ. Trong không gian $R_2[x]$ cho

$$f_1 = x^2 + x + 1, f_2 = 2x^2 + 3x + 1, f_3 = x^2 + 2x + 1.$$

- a) Chứng minh $\mathcal{B} = (f_1, f_2, f_3)$ là một cơ sở của $\mathbb{R}_2[x]$.
- b) Tìm tọa độ của vecto $f = x^2 + 3x + 3$ theo cơ sở \mathcal{B} .

c) Cho
$$[g]_B = \begin{pmatrix} 2 \\ 3 \\ -4 \end{pmatrix}$$
, tìm g?

Giải.

- a) Kiểm tra \mathcal{B} là cơ sở (tự làm)
- b) Với $f = x^2 + 3x + 3$, để tìm $[f]_B$ ta đi giải phương trình

$$f = \alpha_1 f_1 + \alpha_2 f_2 + \alpha_3 f_3$$

$$\Leftrightarrow \begin{cases} \alpha_1 + 2\alpha_2 + \alpha_3 = 1; \\ \alpha_1 + 3\alpha_2 + 2\alpha_3 = 3; \\ \alpha_1 + \alpha_2 + \alpha_3 = 3. \end{cases}$$

Ma trận hóa,
$$\tilde{A} = \begin{pmatrix} 1 & 2 & 1 & 1 \\ 1 & 3 & 2 & 3 \\ 1 & 1 & 1 & 3 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & -2 \\ 0 & 0 & 1 & 4 \end{pmatrix}$$

$$V_{ay} [f]_B = \begin{pmatrix} 1 \\ -2 \\ 4 \end{pmatrix}.$$

c) Ta có
$$[g]_B = \begin{pmatrix} 2 \\ 3 \\ -4 \end{pmatrix}$$
, suy ra $g = 2f_1 + 3f_2 - 4f_3$

$$g = 2(x^2 + x + 1) + 3(2x^2 + 3x + 1) - 4(x^2 + 2x + 1)$$

$$= 4x^2 + 3x + 1.$$

Mệnh đề. Cho \mathcal{B} là cơ sở của V. Khi đó, với mọi $u, v \in V, \alpha \in \mathbb{R}$ ta có:

- $[u+v]_{\mathcal{B}} = [u]_{\mathcal{B}} + [v]_{\mathcal{B}}$.
- $[\alpha u]_{\mathcal{B}} = \alpha [u]_{\mathcal{B}}$.

6.2 Ma trận chuyển cơ sở

\mathbf{Dinh} nghĩa. Cho V là một không gian vectơ và

$$\mathcal{B}_1 = (u_1, u_2, \dots, u_n), \mathcal{B}_2 = (v_1, v_2, \dots, v_n).$$

là hai cơ sở của V. Đặt

$$P = ([v_1]_{B_1} \ [v_2]_{B_1} \dots [v_n]_{B_1}).$$

Khi đó P được gọi là ma trận chuyển cơ sở từ cơ sở \mathcal{B}_1 sang cơ sở \mathcal{B}_2 và được ký hiệu $(\mathcal{B}_1 \to \mathcal{B}_2)$.

Ví dụ. Trong không gian \mathbb{R}^3 , cho

$$\mathcal{B} = (u_1 = (1, -2, 3), u_2 = (2, 3, -1), u_3 = (3, 1, 3))$$

là cơ sở của \mathbb{R}^3 . Gọi \mathcal{B}_0 là cở sở chính tắc của \mathbb{R}^3 . Khi đó

$$(\mathcal{B}_0 \to B) = ([u_1]_{\mathcal{B}_0} \ [u_2]_{\mathcal{B}_0} \ [u_3]_{\mathcal{B}_0}) = (u_1^\top \ u_2^\top \ u_3^\top) = \begin{pmatrix} 1 & 2 & 3 \\ -2 & 3 & 1 \\ 3 & -1 & 3 \end{pmatrix}$$

Nhận xét. Nếu $\mathcal{B} = (u_1, u_2, \dots, u_n)$ là một cơ sở của \mathbb{R}^n và \mathcal{B}_0 là cơ sở chính tắc của \mathbb{R}^n thì

$$(\mathcal{B}_0 \to B) = (u_1^\top \ u_2^\top \dots \ u_n^\top)$$

Phương pháp tìm $(\mathcal{B}_1 \to \mathcal{B}_2)$

Giả sử $\mathcal{B}_1 = (u_1, u_2, \dots u_n)$ và $\mathcal{B}_2 = (v_1, v_2, \dots v_n)$ là hai cơ sở của V. Ta thực hiện như sau:

- Cho u là vecto bất kỳ của V, xác định $[u]_{\mathcal{B}_1}$.
- Lần lượt thay thế u bằng $v_1, v_2, \dots v_n$ ta xác định được $[v_1]_{\mathcal{B}_1}, [v_2]_{\mathcal{B}_1}, \dots, [v_n]_{\mathcal{B}_n}.$

Khi đó

$$(\mathcal{B}_1 \to \mathcal{B}_2) = ([v_1]_{\mathcal{B}_1} \ [v_2]_{\mathcal{B}_1} \dots [v_n]_{\mathcal{B}_1})$$

Đặc biệt, khi $V = \mathbb{R}^n$, để xác định $(\mathcal{B}_1 \to \mathcal{B}_2)$ ta có thể làm như sau:

- Thành lập ma trận mở rộng $(u_1^\top\ u_2^\top\dots\ u_n^\top\ |\ v_1^\top\ v_2^\top\dots\ v_n^\top)$
- Dùng các phép biến đổi sơ cấp trên dòng đưa ma trận trên về dạng $(I_n|P)$.
- Khi đó $(\mathcal{B}_1 \to \mathcal{B}_2) = P$.

 \mathbf{V} í dụ. Trong không gian \mathbb{R}^3 , cho hai cơ sở

$$\mathcal{B}_1 = (u_1 = (1, 1, 1), u_2 = (1, 2, 1), u_3 = (2, 3, 1))$$

và

$$\mathcal{B}_2 = (v_1 = (1, -3, 2), v_2 = (-1, -2, 4), v_3 = (3, 3, -2)).$$

Tìm ma trận chuyển cơ sở từ \mathcal{B}_1 sang \mathcal{B}_2 .

Giải. Cho $u=(a,b,c)\in\mathbb{R}^3$, xác định $[u]_{\mathcal{B}_1}$. Ta lập

$$(u_1^{\top} \ u_2^{\top} \ u_3^{\top} | u^{\top}) \rightarrow \begin{pmatrix} 1 & 1 & 2 & a \\ 1 & 2 & 3 & b \\ 1 & 1 & 1 & c \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & a - b + c \\ 0 & 1 & 0 & -2a + b + c \\ 0 & 0 & 1 & a - c \end{pmatrix}$$

Như vậy
$$[u]_{\mathcal{B}_1} = \begin{pmatrix} a-b+c \\ -2a+b+c \\ a-c \end{pmatrix}$$
.

Thay lần lượt u bởi v_1, v_2, v_3 ta được

$$[v_1]_{\mathcal{B}_1} = \begin{pmatrix} 6 \\ -3 \\ -1 \end{pmatrix}, [v_2]_{\mathcal{B}_1} = \begin{pmatrix} 5 \\ 4 \\ -5 \end{pmatrix}, [v_3]_{\mathcal{B}_1} = \begin{pmatrix} -2 \\ -5 \\ 5 \end{pmatrix}.$$

$$V_{3y}(\mathcal{B}_1 \to \mathcal{B}_2) = \begin{pmatrix} 6 & 5 & -2 \\ -3 & 4 & -5 \\ -1 & -5 & 5 \end{pmatrix}.$$

Cách khác

Lập ma trận mở rông

$$(u_{1}^{\top} \ u_{2}^{\top} \ u_{3}^{\top} \ | \ v_{1}^{\top} \ v_{2}^{\top} \ v_{3}^{\top}) \rightarrow \begin{pmatrix} 1 & 1 & 2 & 1 & -1 & 3 \\ 1 & 2 & 3 & -3 & -2 & 3 \\ 1 & 1 & 1 & 2 & 4 & -2 \end{pmatrix} \rightarrow$$

$$\begin{pmatrix} 1 & 0 & 0 & 6 & 5 & -2 \\ 0 & 1 & 0 & -3 & 4 & -5 \\ 0 & 0 & 1 & -1 & -5 & 5 \end{pmatrix} . \text{ Suy ra } (\mathcal{B}_{1} \rightarrow \mathcal{B}_{2}) = \begin{pmatrix} 6 & 5 & -2 \\ -3 & 4 & -5 \\ -1 & -5 & 5 \end{pmatrix} .$$

Định lý. Cho V là một không gian vectơ hữu hạn chiều và $\mathcal{B}_1, \mathcal{B}_2, \mathcal{B}_3$ là ba cơ sở của V. Khi đó

- i) $(\mathcal{B}_1 \to \mathcal{B}_1) = I_n$.
- ii) $\forall u \in V, [u]_{\mathcal{B}_1} = (\mathcal{B}_1 \to \mathcal{B}_2)[u]_{\mathcal{B}_2}.$
- iii) $(\mathcal{B}_2 \to \mathcal{B}_1) = (\mathcal{B}_1 \to \mathcal{B}_2)^{-1}$.
- iv) $(\mathcal{B}_1 \to \mathcal{B}_3) = (\mathcal{B}_1 \to \mathcal{B}_2)(\mathcal{B}_2 \to \mathcal{B}_3).$

Hệ quả. Cho $\mathcal{B}_1 = (u_1, u_2, \dots, u_n); \mathcal{B}_2 = (v_1, v_2, \dots, v_n)$ là hai cơ sở của không gian \mathbb{R}^n . Gọi \mathcal{B}_0 là cơ sở chính tắc của \mathbb{R}^n . Ta có

- i) $(\mathcal{B}_0 \to \mathcal{B}_1) = (u_1^\top \ u_2^\top \dots u_n^\top).$
- ii) $(\mathcal{B}_1 \to \mathcal{B}_0) = (\mathcal{B}_0 \to \mathcal{B}_1)^{-1}$.
- iii) $\forall u \in V, [u]_{\mathcal{B}_1} = (\mathcal{B}_0 \to \mathcal{B}_1)^{-1}[u]_{\mathcal{B}_0}.$
- iv) $(\mathcal{B}_1 \to \mathcal{B}_2) = (\mathcal{B}_0 \to \mathcal{B}_1)^{-1}(\mathcal{B}_0 \to \mathcal{B}_2).$

Ví dụ. Cho W là không gian con của \mathbb{R}^4 sinh bởi các vectơ:

$$u_1 = (1, 2, 2, 1), u_2 = (0, 2, 0, 1), u_3 = (-2, 3, -4, 1).$$

- a) Chứng minh $\mathcal{B} = (u_1, u_2, u_3)$ là một cơ sở của W.
- b) Cho u=(a,b,c,d), tìm điều kiện để $u\in W$. Khi đó tìm $[u]_{\mathcal{B}}$.
- c) Cho $v_1 = (1,0,2,0); v_2 = (0,2,0,1); v_3 = (0,0,0,1)$. Chứng minh $\mathcal{B}' = (v_1,v_2,v_3)$ cũng là một cơ sở của W. Tìm ma trận chuyển cơ sở từ \mathcal{B} sang \mathcal{B}' .

Giải.

a) Chứng minh $\mathcal{B} = (u_1, u_2, u_3)$ là một cơ sở của W.

Lập
$$A = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 2 & 1 \\ 0 & 2 & 0 & 1 \\ -2 & 3 & -4 & 1 \end{pmatrix}$$
. Ta có $r(A) = 3$, suy ra \mathcal{B}

độc lập tuyến tính. Vì $W = \langle \mathcal{B} \rangle$ nên \mathcal{B} là cơ sở của W.

b) Cho u = (a, b, c, d), tìm điều kiện để $u \in W$. Khi đó tìm $[u]_{\mathcal{B}}$.

Ta có $u \in W$ khi u là tổ hợp tuyến tính của \mathcal{B} .

Lập hệ phương trình

$$u_{1}^{\top} \ u_{2}^{\top} \ u_{3}^{\top} | u^{\top}) \rightarrow \begin{pmatrix} 1 & 0 & -2 & a \\ 2 & 2 & 3 & b \\ 2 & 0 & -4 & c \\ 1 & 1 & 1 & d \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & a+2b-4d \\ 0 & 1 & 0 & -a-3b+7d \\ 0 & 0 & 1 & b-2d \\ 0 & 0 & 0 & -2a+c \end{pmatrix}$$

Dựa vào hệ phương trình, để $u \in W$ thì -2a + c = 0. Suy ra

$$[u]_B = \left(\begin{array}{c} a+2b-4d\\ -a-3b+7d\\ b-2d \end{array}\right)$$

c) Cho $v_1=(1,0,2,0); v_2=(0,2,0,1); v_3=(0,0,0,1).$ Chứng minh $\mathcal{B}'=(v_1,v_2,v_3)$ cũng là một cơ sở của W. Tìm ma trận chuyển cơ sở từ \mathcal{B} sang $\mathcal{B}'.$

Ta thấy các vectơ v_1, v_2, v_3 đều thỏa điều kiện -2a + c = 0 nên theo câu a), các vectơ này thuộc W.

Mặt khác, dễ thấy rằng $\mathcal{B}' = (v_1, v_2, v_3)$ độc lập tuyến tính nên \mathcal{B}' cũng là cơ sở của W (do dim $W = |\mathcal{B}| = 3 = |\mathcal{B}'|$). Dùng kết quả ở câu b) ta có

$$[v_1]_{\mathcal{B}} = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}, [v_2]_{\mathcal{B}} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, [v_2]_{\mathcal{B}} = \begin{pmatrix} -4 \\ 7 \\ -2 \end{pmatrix}$$

Suy ra
$$(\mathcal{B} \to \mathcal{B}') = \begin{pmatrix} 1 & 0 & -4 \\ -1 & 1 & 7 \\ 0 & 0 & -2 \end{pmatrix}$$
.

Ví dụ. Trong không gian \mathbb{R}^3 , cho

$$S = (u_1 = (1, 1, 3), u_2 = (1, -2, 1), u_3 = (1, -1, 2))$$

$$T = (v_1 = (1, -2, 2), v_2 = (1, -2, 1), v_3 = (1, -1, 2))$$

- a) Chứng tỏ S và T là cơ sở của \mathbb{R}^3 .
- b) Tìm ma trận chuyển cơ sở từ S sang T (kí hiệu $(S \to T)$).
- c) Cho $u \in \mathbb{R}^3$ thỏa $[u]_T = \begin{pmatrix} 2 \\ -3 \\ -2 \end{pmatrix}$. Tính $[u]_S$.

Chứng tỏ S và T là cơ sở của \mathbb{R}^3

Ta có $\dim\mathbb{R}^3=3=$ số vec tơ của S. Do đó, S là cơ sở của \mathbb{R}^3 khi S độc

lập tuyến tính. Lập
$$A = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 3 \\ 1 & -2 & 1 \\ 1 & -1 & -2 \end{pmatrix}$$
. Ta có $r(A) = 3$,

suy ra S độc lập tuyến tính. Vậy S là cơ sở của \mathbb{R}^3 .

b) Tìm ma trận chuyển cơ sở từ S sang T (kí hiệu $(S \to T)$)

Lập ma trận mở rộng

c) Cho
$$u \in \mathbb{R}^3$$
 thỏa $[u]_T = \begin{pmatrix} 2 \\ -3 \\ -2 \end{pmatrix}$. Tính $[u]_S$.

Ta có
$$[u]_S = (S \to T)[u]_T = \begin{pmatrix} -1 & 0 & 0 \\ -1 & 1 & 0 \\ 3 & 0 & 1 \end{pmatrix} \begin{pmatrix} 2 \\ -3 \\ -2 \end{pmatrix} = \begin{pmatrix} -2 \\ -5 \\ -4 \end{pmatrix}.$$

86 / 86