Soit $n \in \mathbb{N}^*$ et h_n la fonction définie sur \mathbb{R}_+ par :

$$\forall x \in \mathbf{R}_+ \quad h_n(x) = x^n \sqrt{\frac{x^3}{x+1}}.$$

1. La fonction h_n est continue sur son domaine et dérivable en tout point du **domaine** où le radicande ne s'annule pas. Ainis h_n est dérivable sur $\mathbf{R} +^*$ et pour tout entier naturel $n \ge 1$, par règles de calcul sur la dérivation :

$$h_n(x) = nx^{n-1} \sqrt{\frac{x^3}{x+1}} + x^n \frac{\frac{3x^2(x+1) - x^3}{(x+1)^2}}{2\sqrt{\frac{x^3}{x+1}}}$$

$$= \frac{x^{n-1}}{\sqrt{\frac{x^3}{x+1}}} \left(\frac{nx^3}{x+1} + \frac{x}{2} \frac{2x^3 + 3x^2}{(x+1)^2}\right) \quad \text{factoriser par } \frac{x^{n-1}}{\sqrt{\frac{x^3}{x+1}}}$$

$$= \frac{x^{n-1}}{\sqrt{\frac{x^3}{x+1}}} \left(2nx^3(x+1) + 2x^4 + 3x^2\right) \quad \text{factoriser par } \frac{1}{(x+1)^2}$$

$$= \frac{x^{n+2}}{\sqrt{\frac{x^3}{x+1}}} ((2n+1)x + 2n + 3)$$

Cette expression ne s'annule pas sur ${\bf R}$ +*. Comme f est continue sur ${\bf R}$ +, h_n est strictement croissante sur ${\bf R}$ +

- **2.** Puisque h_n est continue sur l'intervalle $I = \mathbf{R}_+$ et strictement croissante, elle réalise une bijection de I sur son image J = f(I) = I (simple calcul de limites). La fonction h_n^{-1} est continue de J dans I et bijective strictement croissante d'après encore le théorème de la bijection.
- **3.** Comme $1 \in J$ et que h_n est bijective de I sur J, l'équation $h_n(x) = 1$ admet bien une unique solution dans I.
- **4.** Par définition de h_n , $h_n(1) = \frac{1}{\sqrt{2}} < 1 = h_n(x_n)$. En composant cette dernière inégalité par h_n^{-1} qui est strictement croissante, on en déduit que $1 < x_n$.
- **5.** Il faut remarquer que :

$$\forall x \ge 0 \quad h_{n+1}(x) = x h_n(x).$$

En prenant $x = x_n$ dans cette relation, cela donne : $h_{n+1}(x_n) = x_n h_n(x_n)$. Or $h_n(x_n) = 1$, donc $h_{n+1}(x_n) = x_n$. Comme $x_n > 1$, cela donne $h_{n+1}(x_n) > 1$. Or il est vrai aussi que $1 = h_{n+1}(x_{n+1})$ par définition de la suite (x_n) . On en déduit que la dernière inégalité se réécrit : $h_{n+1}(x_n) > h_{n+1}(x_{n+1})$. En composant cette dernière inégalité par h_{n+1}^{-1} qui est strictement croissante, cela donne $x_n > x_{n+1}$. Comme le raisonnement est valable pour tout entier n, la suite (x_n) est strictement décroissante.

- **6.** La suite est décroissante et minorée par 1 d'après la question **4.** Elle est donc convergente par convergence monotone. Comme 1 est un minorant de la suite mais que ℓ est le plus grand minorant par ce même théorème de convergence monotone, on en déduit que $\ell \ge 1$.
- **7.** Il suffit de partir de la relation définissant x_n , à savoir

$$x_n^n \times \sqrt{\frac{x_n}{1 + x_n^3}} = 1,$$

de lui appliquer le logarithme membre à membre pour avoir le résultat.

Montrons ensuite que $\ell=1$. Dans la relation obtenue en 7. on peut passer à la limite : comme $(1+x_n)/x_n^3 \to \ell/(1+\ell^3) > 0$, cela donne par opérations : $\ell=e^0=1$.

8. On a donc $\varepsilon_n = x_n - 1$ Par définition de ε_n , on a $\varepsilon_n = o(1)$. La relation de 7. donne alors :

$$\varepsilon_n = \exp\left(\frac{1}{2n}\ln\left(\frac{2+\varepsilon_n}{(1+\varepsilon_n)^3}\right)\right) - 1$$

Le terme dans le logarithme tend vers 2, donc en le notant u par exemple, on a :

$$\varepsilon_n = \exp\left(\frac{1}{2n}\ln(u)\right) - 1 \quad \frac{\ln u}{2n} \to 0$$

Par équivalents usuels, cela donne :

$$\varepsilon_n \sim_{n\infty} \frac{1}{2n} \times \ln u$$

mais le second facteur tend vers ln 2 par continuité du logarithme et

$$\varepsilon_n \sim_{n\infty} \frac{\ln 2}{n}$$