

MISURA DELLA COSTANTE ELASTICA DI UNA MOLLA E DELL'ACCELERAZIONE DI GRAVITÀ

G. Galbato Muscio

L. Gravina

L. Graziotto

M. Rescigno

Gruppo B2.03

Esperienza di laboratorio 6~aprile~2017

Consegna della relazione 11 aprile 2017

Sommario

L'accelerazione di gravità g influenza il moto oscillatorio di una massa appesa ad una molla. Studiando il periodo e l'allungamento di essa, ne calcoliamo la costante elastica k e stimiamo g.

Indice

0	Cor	venzioni e formule	3
1	Sco	po e descrizione dell'esperienza	3
2	Ap ₁ 2.1 2.2	Strumenti	4 4
3	Seq 3.1 3.2 3.3	uenza Operazioni Sperimentali Verifica degli strumenti	4 4 4 8
4	Cor	nsiderazioni finali	10
5	5.1 5.2	Tabelle metodo 1	11 11 14
E	len	co delle tabelle	
E	1 2 3 4 5 6 7 8 9	Sintesi delle misure di periodo con 5 oscillazioni	5 7 11 12 12 12 14 15
	$\frac{1}{2}$	Istogramma periodo oscillazione di 5 dischetti	6

0 Convenzioni e formule

In questa relazione verranno usate le seguenti convenzioni:

- 1. sarà usato il punto [.] come separatore decimale;
- 2. l'approssimazione decimale della cifra 5 sarà fatta per eccesso;
- 3. al fine di migliorare la qualità dell'elaborazione dei dati, ogni grafico/istogramma prodotto a mano su carta millimetrata sarà riportato insieme al suo equivalente prodotto attraverso un software di analisi dati¹;
- 4. al fine di snellire la relazione e migliorarne la leggibilità, riporteremo nel corpo del documento solamente le tabelle riepilogative e dedicheremo un'appendice finale alle tabelle contenenti tutte le singole misure e i singoli risultati.

Inoltre, si farà riferimento alle seguenti formule:

1. media

$$\bar{x} = \frac{1}{N} \sum_{i=1}^{N} x_i;$$
 (1)

2. varianza

$$\sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \bar{x})^2; \tag{2}$$

3. deviazione standard

$$\sigma = \sqrt{\sigma^2}. (3)$$

1 Scopo e descrizione dell'esperienza

Una molla ideale di costante elastica k a cui è attaccata una massa m soggetta alla forza peso $m\vec{g}$, reagisce con una forza data dalla **Legge di Hooke**

$$\overrightarrow{F} = -k\overrightarrow{\Delta x},\tag{4}$$

e si porta nella posizione di equilibrio

$$x_{\rm eq} = x_0 + mg/k; (5)$$

spostando la massa dalla posizione di equilibrio, si origina un moto armonico di periodo

$$T = 2\pi\sqrt{m/k} \tag{6}$$

indipendente dall'ampiezza delle oscillazioni.

In questa esperienza calcoliamo in modo indiretto la costante elastica k della molla a partire dalle misure del periodo di oscillazione, e misurando la posizione di equilibrio in funzione della massa applicata, stimiamo la costante di accelerazione gravitazionale q.

Adottiamo due metodi diversi:

 $^{^{1}}$ In questo contesto i dati sono stati elaborati con il software di analisi R.

- 1. misuriamo ripetutamente periodo e allungamento e dai valori medi calcoliamo k e g;
- 2. misuriamo il periodo e l'allungamento in funzione della massa applicata e, graficamente, ricaviamo i coefficienti di proporzionalità tra determinati valori che ci consentono di estrarre k e g.

2 Apparato Sperimentale

2.1 Strumenti

- Molla appesa ad un supporto con carta millimetrata per misurarne l'allungamento [divisione 1 mm, incertezza 0.3 mm];
- \bullet Bilancia per la misura della massa dei campioni [risoluzione 0.1 g, incertezza 0.03 g, portata 2000 g];
- Cronometro a lettura digitale per le misure di periodo [risoluzione 0.01 s, incertezza 0.003 s];
- Squadra per ridurre l'errore di parallasse nella misura di allungamento.

2.2 Campioni

• 10 dischetti che si possono appendere alla molla.

3 Sequenza Operazioni Sperimentali

3.1 Verifica degli strumenti

Per quanto riguarda la molla, notiamo che applicando meno di tre dischetti questa non si deforma, dunque non possiamo compiere misure di allungamento o di periodo in tale circostanza (come vedremo nel paragrafo 3.3). Inoltre scegliamo di adottare un'incertezza di 0.3 mm per l'allungamento in quanto non riusciamo a interpolare tra meno di mezza tacca: la nostra risoluzione è dunque 0.5 mm e l'incertezza è pari a $0.5/\sqrt{3}=0.3$ mm. La bilancia può essere tarata prima di ogni misurazione e assumiamo come incertezza 0.3 volte la sua risoluzione. La misura del periodo non è compromessa dal tempo di reazione dello sperimentatore nell'azionare il cronometro in quanto stimiamo che l'intervallo tra l'inizio del fenomeno e la partenza del cronometro sia pari a quello tra la fine del fenomeno e lo stop del cronometro.

3.2 Metodo 1

Nel caso ideale potremmo usare l'equazione (6) per ricavare la costante elastica della molla a partire da una misura di massa e una di oscillazione, però il nostro non è un sistema ideale, in particolare la molla usata per l'esperimento non ha lunghezza a riposo nulla ed è dotata di massa non trascurabile. L'equazione (6) va quindi corretta per essere applicata alla nostra esperienza, in particolare va considerata nella massa totale anche quella propria della molla: per la configurazione fisica del nostro apparato sperimentale, però, questa massa ci

Tabella 1: Sintesi delle misure di periodo con 5 oscillazioni

	Media	δ
5 dischi	0.622	0.0019
10 dischi	0.845	0.0013

risulta ignota, ma avendo a disposizione due misure diverse di periodo possiamo eliminare dall'equazione questa variabile, infatti:

$$T_2^2 - T_1^2 = 4\pi^2 \frac{(m_2 - m_1)}{k},$$

da cui la costante elastica della molla reale

$$k = 4\pi^2 \frac{\Delta m}{\Delta(T^2)} \tag{7}$$

dove si è usata la notazione $\Delta(T^2)$ per indicare che è una differenza di quadrati e non un quadrato di differenza.

Analogamente a quanto appena detto, per poter calcolare l'accelerazione gravitazionale g è necessario correggere l'equazione (5) considerando che la molla ha una lunghezza a riposo x_{eq_0} e massa m_0 non trascurabile; si ricava

$$g = k \frac{\Delta x_{eq}}{\Delta (T^2)} = 4\pi^2 \frac{\Delta x_{eq}}{\Delta (T^2)} \tag{8}$$

dove si è usata la stessa notazione di sopra.

Misuriamo quindi la massa complessiva prima di 5 e poi di 10 campioni usando una bilancia di risoluzione non massima tra quelle a disposizione a causa della portata limitata di quella più accurata; per via della risoluzione al decimo di grammo ripetendo le misure non si apprezzano variazioni, le masse integrali dei campioni sono riportate nella Tabella 7. Misuriamo poi l'allungamento della molla quando ad essa vengono appesi i campioni, ripetendo le misure 5 volte ed ottenendo le misure riportate nella Tabella ??. Eseguiamo quindi 50 misure ripetute di 5 periodi di oscillazione e successivamente 5 misure ripetute di 50 periodi di oscillazione, applicando prima 5 e poi 10 campioni, riportiamo i risultati rispettivamente nella Tabella 3 e nella Tabella 4, ai quali associamo gli istogrammi in Figura 1 e in Figura 2.

Dalle misure prese è possibile calcolare immediatamente il periodo di oscillazione associato a 5 e a 10 campioni dividendo la misura di tempo misurata per il numero di oscillazioni contate; calcolando tale grandezza a partire dalla media delle misure associamo al singolo periodo un'incertezza data da

$$\delta_{\bar{T}} = \frac{1}{O} \sqrt{\frac{\sigma_T^2}{N} + u_T^2} \tag{9}$$

dove indichiamo con O il numero di oscillazioni contate e con N il numero di misure prese; sintetizziamo i risultati nella Tabella 1 per 5 oscillazioni e nella Tabella 2 per 50 oscillazioni.

Confrontando i risultati è evidente che le incertezze sui periodi calcolati a partire dalla misura di 50 oscillazioni sono minori di quelle sui periodi calcolati a

Figura 1: Istogramma periodo oscillazione di 5 dischetti

Figura 2: Istogramma periodo oscillazione di 10 dischetti

Tabella 2: Sintesi delle misure di periodo con 50 oscillazioni

	Media	δ
5 dischi	0.613	0.0004
10 dischi	0.841	0.0011

partire dalla misura di 5 oscillazioni, anche se nel primo caso sono state effettuate solamente 5 misure contro le 50 del secondo. Dall'equazione (7) ricaviamo

$$k_5 = 47714.525 \,\text{N/mm} = 47.714 \,\text{N/m},$$

 $k_{50} = 47024.450 \,\text{N/mm} = 47.024 \,\text{N/m},$

dove abbiamo usato prima il periodo calcolato su 5 oscillazioni e poi quello su 50. Entrambe queste misure indirette sono accompagnate da un'incertezza stimabile come

$$\delta_k = k \sqrt{\left(\frac{\delta_{\Delta \bar{m}}}{\Delta \bar{m}}\right)^2 + \left(\frac{\delta_{\Delta (\bar{T}^2)}}{\Delta \bar{T}}\right)^2},\tag{10}$$

dove

$$\delta_{\Lambda \bar{m}}^2 = 2u_m^2,\tag{11}$$

е

$$\delta_{\Delta(\bar{T}^2)}^2 = 4\left(\left(\bar{T}_2 \frac{\sigma_{T_1}}{N}\right)^2 + \left(\bar{T}_1 \frac{\sigma_{T_2}}{N}\right)^2 + \left(\bar{T}_1^2 + \bar{T}_2^2\right) u_T^2\right),\tag{12}$$

nelle quali l'incertezza sulle masse è data dalla sola incertezza strumentale per quanto detto prima sulla sensibilità della bilancia usata, mentre con $\sigma_{T_1}, \sigma_{T_2}$ abbiamo indicato le deviazioni standard sulle oscillazioni dei 5 e 10 campioni, con N si intende il numero di misure effettuate.

Dall'equazione (10) ricaviamo

$$\delta_{k_5} = 463.76 \,\text{N/mm},$$

 $\delta_{k_{50}} = 261.22 \,\text{N/mm}.$

Misurando il tempo di 5 oscillazioni, la miglior stima che possiamo dare della costante elastica della molla è

$$k_5 = (47.7 \pm 0.5) \, rac{ extbf{N}}{ extbf{m}},$$

con 50 oscillazioni la stima diventa invece

$$k_{50} = (47.0 \pm 0.3) \frac{\mathrm{N}}{\mathrm{m}}$$

Attraverso l'equazione (8) possiamo calcolare l'accelerazione gravitazionale g, utilizzando i risultati di entrambi i metodi otteniamo i due valori:

$$g_5 = 10\,040.712\,\text{mm/s}^2 = 10.041\,\text{m/s}^2,$$

 $g_{50} = 9895.500\,\text{mm/s}^2 = 9.900\,\text{m/s}^3.$

L'incertezza su queste misure indirette è data da

$$\delta_g = g\sqrt{\left(\frac{\delta_{\Delta x}}{\Delta x}\right)^2 + \left(\frac{\delta_{\Delta(\bar{T}^2)}}{\Delta(\bar{T}^2)}\right)^2}$$
 (13)

dove $\delta_{\Delta(\bar{T})^2}$ è quello di (12), mentre

$$\delta_{\Delta x}^2 = \frac{\sigma_{x_1}^2}{5} + \frac{\sigma_{x_2}^2}{5} + 2u_x^2$$

con $\sigma_{x_1}, \sigma_{x_2}$ le deviazioni standard sugli allungamenti con 5 e 10 campioni. Dall'equazione (13) si calcolano le due incertezze

$$\delta_{g_5} = 122.76 \,\mathrm{mm/s^2} = 0.12 \,\mathrm{m/s^2},$$

 $\delta_{g_{50}} = 91.70 \,\mathrm{mm/s^2} = 0.09 \,\mathrm{m/s^2}.$

Con il periodo ricavato dalla misura di 5 oscillazioni, la miglior stima che possiamo dare dell'accelerazione gravitazionale è

$$g_5 = (10.04 \pm 0.12) \frac{\mathrm{m}}{\mathrm{s}^2},$$

mentre utilizzando il tempo di 50 oscillazioni la stima diventa

$$g_{50} = (9.90 \pm 0.09) \frac{\text{m}}{\text{s}^2}$$

3.3 Metodo 2

Adottiamo ora un metodo grafico per ricavare k e g: misuriamo in modo integrale la massa dei dischetti e dunque l'allungamento della molla aggiungendoli progressivamente. Eseguiamo al contempo per ogni campione aggiunto 20 misure ripetute del tempo impiegato per compiere 10 oscillazioni (i dati sperimentali raccolti sono riportati nelle tabelle 9, 7 e ??).

Poiché il quadrato del periodo di oscillazione e l'allungamento della molla sono direttamente proporzionali alla massa appesa ad essa, secondo coefficienti di proporzionalità legati alle costanti oggetto di indagine, in particolare

$$T^2 = T_0^2 + \alpha_1 m$$
$$x = \bar{x_0} + \alpha_2 m,$$

tracciamo il grafico (figura ??) di T^2 in funzione della massa m, e quello (figura ??) dell'allungamento in funzione della massa m. Estraiamo dunque i coefficienti angolari delle rette che meglio approssimano i punti sperimentali, chiamati rispettivamente α_1 e α_2 . Noti tali valori, possiamo calcolare la costante elastica dall'equazione

$$k = \frac{4\pi^2}{\alpha_1}$$

e l'accelerazione gravitazionale da

$$g = 4\pi^2 \frac{\alpha_2}{\alpha_1}.$$

Per il calcolo di $\alpha_1,$ scegliamo sulla retta interpolatrice (figura $\ref{eq:continuous}$ i seguenti punti

$$m_1 = 180.00 \,\mathrm{g}, \qquad T_1^2 = 0.20 \,\mathrm{s}^2;$$

 $m_2 = 810.00 \,\mathrm{g}, \qquad T_2^2 = 0.76 \,\mathrm{s}^2;$

dunque $\alpha_1 = (8.88 \pm 0.02) \times 10^{-4} \,\mathrm{s}^2/\mathrm{g}$. L'incertezza su questo valore è stata valutata ricordando che stiamo calcolando il rapporto tra $\Delta(T^2) = (T^2)_2 - (T^2)_1$ e $\Delta m = m_2 - m_1$, dunque si ha

$$\sigma_{\alpha_1} = \alpha_1 \sqrt{\left(\frac{\sigma_{\Delta(T^2)}}{\Delta(T^2)}\right)^2 + \left(\frac{\sigma_{\Delta m}}{\Delta m}\right)^2},$$

dove

$$\sigma_{\Delta(T^2)}^2 = (2T_2\delta_{T_2})^2 + (2T_1\delta_{T_1})^2,$$

usando come incertezza sul periodo $\delta_T = 10^{-1} \sqrt{(\sigma_T/\sqrt{20})^2 + u_T^2}$ (con σ_T la deviazione standard del punto sperimentale più vicino al punto della retta scelto e u_T l'incertezza strumentale sul periodo), e

$$\sigma_{\Delta m}^2 = 2\sigma_m^2$$

(con σ_m l'incertezza strumentale sulla massa). Perciò otteniamo la costante elastica della molla

$$k = (44.4 \pm 0.1) \frac{N}{m},$$

dove l'incertezza è stata valutata con l'equazione

$$\sigma_k = \frac{4\pi^2}{\alpha_1^2} \sigma_{\alpha_1}.$$

Per il calcolo di α_2 , scegliamo invece sulla retta interpolatrice (figura $\ref{eq:1}$) i seguenti punti

$$m_1 = 270.00 \,\mathrm{g},$$
 $x_1 = 15.0 \,\mathrm{mm};$
 $m_2 = 800.00 \,\mathrm{g},$ $x_2 = 129.0 \,\mathrm{mm};$

dunque $\alpha_2=(215.1\pm0.9)\,\mathrm{mm/g}$. Analogamente al caso precedente, l'incertezza su questo valore è stata calcolata con

$$\sigma_{\alpha_2} = \sqrt{\left(\frac{\sigma_{\Delta x}}{\Delta x}\right)^2 + \left(\frac{\sigma_{\Delta m}}{\Delta m}\right)^2} \cdot \alpha_2,$$

dove $\Delta x = x_2 - x_1$, $\Delta m = m_2 - m_1$, l'incertezza su Δm è la medesima usata nel calcolo sopra e

$$\sigma_{\Delta x} = \sqrt{2\delta_x^2},$$

con $\delta_x = \sqrt{\left(\sigma_x/\sqrt{5}\right)^2 + u_x^2}$, indicando con σ_x la deviazione standard sulle 5 misure di allungamento eseguite per ogni campione e con u_x l'incertezza di lettura sulla carta millimetrata. Otteniamo quindi l'accelerazione di gravità

$$g = (9.55 \pm 0.04) \frac{\mathrm{m}}{\mathrm{s}^2},$$

dove l'incertezza è stata propagata con l'equazione

$$\sigma_g = \sqrt{\left(\frac{\alpha_2}{\alpha_1^2}\sigma_{\alpha_1}\right)^2 + \left(\frac{4\pi^2}{\alpha_1}\sigma_{\alpha_2}\right)^2}.$$

Riteniamo che la causa principale della discrepanza dei valori trovati con i $valori \ veri$ provenga dalla qualità della nostra interpolazione manuale; infatti, utilizzando l'algoritmo di interpolazione del software R, ricaviamo valori più precisi dei coefficienti angolari, da cui si ottengono (assumendo le medesime incertezze calcolate poc'anzi)

$$k = (45.8 \pm 0.1) \frac{\text{N}}{\text{m}}$$
$$g = (9.84 \pm 0.04) \frac{\text{m}}{\text{s}^2},$$

ove osserviamo che l'accelerazione di gravità è in accordo con il valore vero di $9.81\,\mathrm{m/s^2}.$

Infine, sottolineiamo che con meno di tre dischetti appesi alla molla non è stato possibile compiere misure né di allungamento né di periodo, in quanto essa non si è deformata: deduciamo che appendendo uno o due dischetti ci troviamo al di sotto della *soglia di discriminazione*, per cui la molla non reagisce allo stimolo applicato.

4 Considerazioni finali

A questa latitudine, esperimenti ben più complessi e più precisi hanno dato all'accelerazione g il valore approssimato di $9.81\,\mathrm{m/s^2}$, i nostri risultati sono tutti compatibili con tale misura ad eccezione di quello ricavato partendo dal tempo di 5 oscillazioni, nonostante sia anche quello con incertezza relativa maggiore $(1.22\,\%)$; tale discrepanza può essere spiegata da un'eventuale errore sistematico nella lettura dell'allungamento della molla dalla posizione di riposo: eventuali errori casuali sarebbero stati, infatti, assorbiti dalla media. Con sicurezza possiamo affermare, infatti, che la maggior parte dell'incertezza viene dal metodo con cui abbiamo calcolato gli allungamenti: per quanto possa essere difficile stimare "ad occhio" la posizione di massima distanza dalla posizione di equilibrio, ripetendo numerose volte la misura le stime per eccesso hanno, in teoria, compensato quelle per difetto, per cui è difficile che sia questa la causa di tali valori.

C'è inoltre da ricordare che quanto detto nella sezione 1 è vero solo in parte: l'indipendenza del periodo dall'ampiezza di oscillazione (proprietà sulla quale abbiamo costruito la nostra esperienza) si verifica esclusivamente in un sistema ideale, cioè in un oscillatore senza attrito; la presenza dell'aria aggiunge invece all'equazione differenziale un termine dissipativo (dipendente dalla velocità) che rende l'oscillatore smorzato (in particolare, per via del poco attrito, è uno smorzamento sottocritico): questo rende il periodo non uniforme e non indipendente dall'ampiezza delle oscillazioni. Concludiamo però che tale approssimazione non influisca considerevolmente sulle nostre misure: la presenza di uno smorzamento ha fatto sì che i periodi misurati fossero leggermente più grandi di quelli ideali,

il che alla fine implica un'accelerazione gravitazionale più piccola di quella *reale*, ma evidentemente la sovrastima delle distanze di equilibrio (che invece ha avuto l'effetto opposto) è risultata molto più influente, e le nostre stime finali sono leggermente più grandi di quelle che ci saremmo aspettati.

5 Appendice: tabelle e grafici

5.1 Tabelle metodo 1

Tabella 3: Periodo di 5 oscillazioni

	5 dischi	10 dischi
	(± 0.003)	(± 0.003)
1	3.100	4.270
2	3.170	4.310
3	3.370	4.240
4	3.190	4.230
5	3.050	4.190
6	3.100	4.230
7	3.110	4.230
8	3.270	4.230
9	3.100	4.210
10	3.130	4.220
11	3.130	4.140
12	3.130	4.230
13	3.130	4.170
14	3.150	4.260
15	3.150	4.190
6	3.170	4.220
17	3.250	4.220
18	3.110	4.170
19	3.070	4.220
20	3.100	4.230
21	3.070	4.190
22	3.190	4.230
23	3.100	4.190
24	3.120	4.250
25	3.090	4.230
26	3.100	4.230
27	3.070	4.230
28	3.070	4.260
29	3.100	4.290
30	3.130	4.250
31	3.020	4.190
32	3.070	4.250
33	3.080	4.230
34	3.070	4.190
	~	11

Continua alla pagina successiva

Tabella 3 – Continua dalla pagina precedente

35	3.080	4.240
36	3.070	4.220
37	3.090	4.230
38	3.120	4.230
39	3.110	4.270
40	3.160	4.190
41	3.030	4.250
42	3.100	4.180
43	3.100	4.170
44	3.020	4.200
45	3.030	4.200
46	3.090	4.250
47	3.030	4.230
48	3.030	4.270
49	3.090	4.190
50	3.090	4.250

Tabella 4: Periodo di 50 oscillazioni

	5 dischi	5 dischi	10 dischi	10 dischi
	50 oscillazioni	1 oscillazione	50 oscillazioni	1 oscillazione
	(± 0.003)	(± 0.003)	(± 0.003)	(± 0.003)
1	30.670	0.613	42.110	0.842
2	30.690	0.614	42.160	0.843
3	30.600	0.612	41.920	0.838
4	30.610	0.612	41.930	0.839
5	30.690	0.614	42.140	0.843

Tabella 5: K ${\bf e}$ g ricavate da 5 misure di 50 oscillazioni

	K 50 oscillazioni	g 50 oscillazioni
1	46.8	9.84
2	46.6	9.74
3	47.5	9.98
4	47.5	9.92
5	46.7	10.00

Tabella 6: K e g ricavate da 50 misure di 5 oscillazioni

	K	g
	$\pm 1\mathrm{N/m}$	$\pm 1\mathrm{m/s^2}$
1	45.2	9.50
		Continua

Tabella 6

2	45.7	9.55
3	58.9	12.37
4	50.5	10.55
5	47.2	10.10
6	47.1	9.89
7	47.4	9.90
8	54.1	11.38
9	48.0	10.03
10	48.6	10.41
11	53.1	11.16
12	48.1	10.06
13	51.3	10.79
14	47.4	9.90
15	51.1	10.93
16	50.2	10.56
17	53.8	11.24
18	50.5	10.62
19	46.5	9.71
20	47.1	10.07
21	47.9	10.07
22	50.5	10.55
23	49.0	10.31
24	46.8	9.78
25	46.7	9.99
26	47.1	9.89
27	46.0	9.62
28	44.7	9.39
29	44.3	9.26
30	47.2	10.09
31	46.2	9.71
32	45.1	9.43
33	46.4	9.74
34	47.9	10.01
35	45.9	9.82
36	46.5	9.77
37	46.7	9.76
38	47.8	10.04
39	45.5	9.51
40	51.5	11.02
41	43.9	9.22
42	49.6	10.36
43	50.1	10.50 10.53
44	45.7	9.56
44	46.1	9.86
45 46		
40	45.8	9.62
	117	
47 48	$44.7 \\ 43.1$	$9.35 \\ 9.05$

Tabella 6

49	48.7	10.17
50	45.8	9.79

5.2 Tabelle metodo grafico

Tabella 7: Misure integrali di massa

# campioni	massa [g]
	$\pm 0.03\mathrm{g}$
I	77.70
II	156.80
III	235.90
IV	314.50
V	392.50
VI	472.80
VII	551.80
VIII	629.00
IX	710.10
X	787.40

Tabella 8: 20 misure dei periodi di 10 oscillazioni misurati rispetto alle masse integrali, incertezza = ± 0.003

\overline{T}	I	II	III	IV	V	VI	VII	VIII	IX	X
1	0.000	0.000	4.970	5.580	6.180	6.710	7.160	7.670	8.000	8.540
2	0.000	0.000	4.870	5.500	6.030	6.670	7.170	7.600	8.090	8.430
3	0.000	0.000	4.890	5.590	6.090	6.730	7.170	7.530	8.000	8.470
4	0.000	0.000	4.900	5.540	6.150	6.700	7.140	7.630	8.000	8.490
5	0.000	0.000	4.840	5.630	6.100	6.720	7.240	7.670	7.950	8.470
6	0.000	0.000	4.830	5.560	6.100	6.730	7.180	7.620	7.870	8.490
7	0.000	0.000	4.830	5.650	6.090	6.720	7.160	7.660	8.010	8.470
8	0.000	0.000	4.960	5.590	6.070	6.690	7.200	7.610	8.010	8.470
9	0.000	0.000	4.920	5.540	6.090	6.690	7.210	7.570	7.970	8.500
10	0.000	0.000	4.970	5.520	6.000	6.670	7.180	7.600	7.970	8.530
11	0.000	0.000	4.970	5.530	6.090	6.740	7.220	7.680	7.980	8.530
12	0.000	0.000	4.920	5.590	6.030	6.710	7.130	7.610	8.060	8.540
13	0.000	0.000	4.970	5.570	6.060	6.700	7.190	7.580	8.010	8.460
14	0.000	0.000	4.860	5.590	6.050	6.660	7.190	7.580	7.990	8.460
15	0.000	0.000	4.830	5.460	6.030	6.740	7.220	7.710	7.970	8.560
16	0.000	0.000	4.930	5.590	6.100	6.720	7.130	7.620	7.990	8.470
17	0.000	0.000	4.990	5.430	6.050	6.650	7.190	7.590	8.010	8.430
18	0.000	0.000	4.930	5.500	6.070	6.680	7.130	7.690	8.030	8.490
19	0.000	0.000	4.860	5.570	6.030	6.710	7.210	7.630	7.980	8.470
20	0.000	0.000	4.930	5.570	6.030	6.670	7.160	7.640	8.100	8.440

Tabella 9: 5 misure dell'allungamento della molla sotto l'effetto della forza peso esercitata dalle masse integrali, incertezza = ± 0.5

$\overline{x_{eq}}$	I	II	III	IV	V	VI	VII	VIII	IX	X
1	0.0	0.0	7.5	24.0	42.0	58.5	76.0	92.0	110.0	126.0
2	0.0	0.0	7.5	24.5	41.5	58.0	75.5	92.0	110.0	125.5
3	0.0	0.0	8.0	25.0	41.0	58.0	75.5	92.0	111.0	126.0
4	0.0	0.0	8.0	24.0	41.0	59.0	75.5	91.5	111.0	125.5
5	0.0	0.0	7.5	24.5	41.5	59.0	75.5	92.0	110.0	125.5