Hidden Markov Model (HMM)

$$P(S_1) = 0.6, \quad P(S_2) = 0.4$$

$$P(S_1 \to S_1) = 0.7$$
, $P(S_1 \to S_2) = 0.3$
 $P(S_2 \to S_1) = 0.4$, $P(S_2 \to S_2) = 0.6$

$$P(O_1|S_1) = 0.5, \quad P(O_2|S_1) = 0.5$$

 $P(O_1|S_2) = 0.1, \quad P(O_2|S_2) = 0.9$

. one following parameters: $P(S_1)=0.6,\quad P(S_2)=0.4$ • Transition Probabilities: $P(S_1\to S_1)=0.7,\quad P(S_1\to S_2)=0.3$ $P(S_2\to S_1)=0.4,\quad P(S_2\to S_2)=0.6$ • Emission Probabilities: $P(O_1|S_1)=0.5,\quad P(O_2|S_1)=0.5$ • $P(O_1|S_2)=0.1$. estion 1: Forward in the observating this Given the observation sequence $O = (O_1, O_2)$, compute the probability of observing this sequence using the Forward Algorithm. Specifically, compute:

$$P(O|\lambda) = \sum_{S_t} P(O, S_t|\lambda)$$

where λ represents the model parameters.

Question 2: Viterbi Algorithm Calculation

Given the same observation sequence $O = (O_1, O_2)$, determine the most probable hidden state sequence using the Viterbi Algorithm, i.e., find:

$$S^* = \arg\max_{S} P(S|O, \lambda)$$

where S^* is the most likely sequence of hidden states.