Assignment -3

Build CNN Model for Classification Of Flowers

Assignment Date	30 September 2022
Student Name	Preethi.B
Student Roll Number	211419104200
Maximum Marks	2 Marks

Question-1:

Download the dataset

Question-2:

Image Augmentation

Solution

from tensorflow.keras.preprocessing.image import ImageDataGenerator train_datagen=ImageDataGenerator(rescale=1./255,zoom_range=0.2,horizontal_flip=True,vertical_flip=True)

test_datagen=ImageDataGenerator(rescale=1./255)

Question-3:

Create model

Solution

from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense,Convolution2D,MaxPooling2D,Flatten model=Sequential()

Question-4:

Add Layers (Convolution, MaxPooling, Flatten, Dense-(Hidden Layers), Output)

Solution

a)Convolution Layer

 $model. add (Convolution 2D(32, (3,3), kernel_initializer = "random_uniform", activation = "relu", strides = (1,1), input_shape = (64,64,3)))$

b) MaxPooling Layer

model.add(MaxPooling2D(pool_size=(2,2)))

c) Flatten Layer

model.add(Flatten())

d) Dense(Hidden layer)

model.add(Dense(300,activation="relu"))
model.add(Dense(300,activation="relu"))

e) Output layer

model.add(Dense(5,activation="softmax"))

Question-5:

Compile The Model

Solution

model.compile(loss="categorical_crossentropy",metrics=['accuracy'],optimizer='adam')

```
- 5)Compile the model

[17] model.compile(loss-"categorical_crossentropy",metrics-['accuracy'],optimizer-"adar')
```

Question-6:

Fit The Model

Solution

 $model.fit(x_train,epochs=5,steps_per_epoch=len(x_train),validation_data=x_test,validation_steps=len(x_test))$

Question-7:

Save The Model

Solution

model.save("Flowers.h5")

```
→ 7)Save the model

→ model.seve(**Ibours.hb**)
```

Question-8:

Test The Model

Solution

import numpy as np

from tensorflow.keras.models import load_model

```
from tensorflow.keras.preprocessing import image model=load_model("Flowers.h5") img=image.load_img(r"/content/drive/MyDrive/Assignment 3/Flowers-Dataset/Testing/daisy/14333681205_a07c9f1752_m.jpg",target_size=(64,64)) x=image.img_to_array(img) x=np.expand_dims(x,axis=0) pred=model.predict(x) pred index=['daisy','dandelion','rose','sunflower','tulip'] index[np.argmax(pred)]
```

