Assignment-2 Q2 Report

Aryan Kumar M23CSA510

March 30, 2025

GitHub Repository:

https://github.com/Aryank47/Speech-Understanding-Assignment2

Abstract

This report presents a comprehensive study of audio signal analysis using Mel-Frequency Cepstral Coefficients (MFCCs) for 10 Indian languages. The study is divided into two major tasks: visual and statistical comparative analysis of MFCC spectrograms (Task A), and the development of a language classifier using MFCC features (Task B). The visual inspection of MFCCs helped uncover similarities and differences in acoustic patterns between languages, while the statistical analysis quantified these variations. A simple neural network classifier achieved a high accuracy of 87.85% on the test set, demonstrating the effectiveness of MFCCs in language identification tasks.

Contents

1	Introduction	2
2	Task A: MFCC Extraction and Comparative Analysis2.1 MFCC Spectrogram Visualization	2
3	Task B: Language Classification using MFCCs	10
	3.1 Preprocessing and Feature Engineering	10
	3.2 Model Architecture	10
	3.3 Training Dynamics	10
	3.4 Confusion Matrix and Accuracy	11
4	Discussion	12
	4.1 Acoustic Reflections in MFCCs	12
	4.2 Challenges with MFCC-based Classification	12
	4.3 Recommendations for Improvement	
5	References	13

1 Introduction

Indian languages exhibit a rich diversity in phonetic structure and acoustic features. Mel-Frequency Cepstral Coefficients (MFCCs), which model human auditory perception, offer a robust approach to capture and analyze such characteristics. This report explores MFCC-based representation for visual, statistical, and classification tasks on audio samples from 10 Indian languages.

2 Task A: MFCC Extraction and Comparative Analysis

2.1 MFCC Spectrogram Visualization

MFCCs were extracted for multiple audio samples from four selected languages: Bengali, Gujarati, Marathi, and Urdu. Two samples from each language were visualized to observe temporal variation and spectral energy distribution.

Figure 1: MFCC Spectrogram for Bengali (Sample 1)

Figure 2: MFCC Spectrogram for Bengali (Sample 2)

Observation: Bengali shows sharp low-frequency energy peaks in early MFCC coefficients with moderate variation over time.

Figure 3: MFCC Spectrogram for Gujarati (Sample 1)

Figure 4: MFCC Spectrogram for Gujarati (Sample 2)

Observation: Gujarati shows similar energy in low and mid bands with visible phonemerich transitions.

Figure 5: MFCC Spectrogram for Marathi (Sample 1)

Figure 6: MFCC Spectrogram for Marathi (Sample 2)

Observation: Marathi maintains consistent spectral energy with structured vowel distribution across time.

Figure 7: MFCC Spectrogram for Urdu (Sample 1)

Figure 8: MFCC Spectrogram for Urdu (Sample 2)

Observation: Urdu shows high clarity and distinction in phoneme structure with strong energy in lower coefficients.

MFCC Image Intensity Distributions

Figure 9: MFCC Image Intensity Distribution

2.2 Statistical MFCC Analysis

The mean and standard deviation were computed for each coefficient across all samples from the 10 languages. This statistical representation enables quantitative comparisons.

Figure 10: MFCC Mean Coefficients with Standard Deviation Shading for 10 Indian Languages

Figure 11: Mean Heatmap for 10 Indian Languages

Insights:

- **Telugu** and **Marathi** have high variance, indicating rich phoneme diversity.
- Tamil and Kannada show mid-frequency emphasis.
- Bengali, Hindi, and Urdu have stable profiles across MFCCs.
- Gujarati and Punjabi exhibit nearly overlapping mean curves, later reflected in classification confusion.

3 Task B: Language Classification using MFCCs

3.1 Preprocessing and Feature Engineering

- All audio was resampled to 16kHz.
- MFCCs (40 coefficients) were extracted and time-averaged.
- Features were normalized, and a train-validation-test split was performed.

3.2 Model Architecture

• Input: 40 MFCC features

• 1 Hidden Layer: 225 neurons, ReLU activation

• Output: 10-class Softmax

• Loss: CrossEntropyLoss, Optimizer: Adam

• EarlyStopping used to prevent overfitting

3.3 Training Dynamics

Figure 12: Training vs Validation Loss over Epochs

Observation: Loss steadily decreases. The gap between train and validation is minimal, confirming generalization.

3.4 Confusion Matrix and Accuracy

Figure 13: Confusion Matrix of Predicted vs Actual Labels

Final Test Accuracy: 87.85% Class-wise Insights:

- Urdu, Bengali, Hindi showed highest classification accuracy.
- Gujarati-Punjabi showed major confusion due to statistically similar MFCCs.
- Tamil, Telugu, Marathi maintained good separation.

4 Discussion

4.1 Acoustic Reflections in MFCCs

MFCCs effectively capture formants and phoneme energy. Languages like Tamil show strong mid-frequency energy, while Urdu exhibits consistent low-band strength. Variance trends correlate well with phonetic richness.

4.2 Challenges with MFCC-based Classification

- Speaker Variability: Differences in pitch, accent, and speaking speed can significantly affect MFCC values, even for the same language.
- Background Noise: Noisy environments distort spectral features, reducing classification accuracy.
- Regional Accents and Dialects: Pronunciation variation within the same language can cause MFCC shifts and intra-class variability.
- Temporal Averaging of MFCCs: While useful for simplicity, averaging removes time-based phonetic transitions that are important for language identity.
- Recording Quality and Devices: Different microphones and encoding formats can impact the consistency of extracted MFCC features.

4.3 Recommendations for Improvement

- Use CNNs or RNNs to model MFCC sequences.
- Augment data with noise and time-warping.
- Balance datasets to avoid class bias.

5 References

- 1. https://www.kaggle.com/code/islamic/audio-language-classification.
- 2. https://www.kaggle.com/code/kripa5661/audio-data-preprocessing.