Discrete Mathematics

Tutorial sheet

Set Theory

Question 1.

Describe the following sets by the listing method:

- 1. $\{n : n \in \mathbb{Z} \text{ and } 5 \le n < 8\}$
- 2. $\{3n : n \in \mathbb{Z} \text{ and } 5 \le n < 8\}$
- 3. $\{2^n : n \in \mathbb{Z} \text{ and } 5 \le n < 8\}$

Question 2.

Let $\sum = \{x, y\}$ be an alphabet. List the element of the set L_1 and L_2

- 1. L_1 is the language consisting of all strings over \sum of length less or equal to 4 that are palindromes.
- 2. L_2 is the language consisting of all strings over \sum of length less or equal to 3 in which all the x's appear to the left of all the y's.

Question 3.

Describe the following sets by giving a suitable universal set and rules of inclusion:

- 1. $\{4, 8, 12, 16, 20\}$
- 2. $\{0, 2, -2, 4, -4, \cdots\}$
- $3. \{2, 4, 8, 16, 32\}$
- 4. $\{1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \frac{1}{32}\}$

Question 4.

Let $X=\{f,g,h,i,k\}$ and $Y=\{d,g,h,k\}$ be subsets of a universal set $U=\{d,e,f,g,h,i,j,k,l\}$. Find each of the following:

- 1. \overline{X}
- $2. X \cap Y$

- 3. $X \cup \overline{Y}$
- 4. X Y
- 5. $X \oplus Y$
- 6. $\overline{(X \cap Y)}$

Question 5.

Let $A = \{2, \frac{1}{2}, \sqrt{2}\}$ and $B = \{x \in \mathbb{Q} : x \notin \mathbb{Z}\}$ be two sets. List the following sets:

$$A \cap B$$
, $A - B$, $A \cap \mathbb{R}$, $A \cap \mathbb{Z}$,

Question 6.

Let X and Y be two sets with $X = \{f, g, h, j, k\}$ and $Y = \{f, g\}$.

- 1. What is cardinality of X?
- 2. What is the total number of subsets of X?
- 3. Put the correct sign $\in \notin \subset \subseteq$ between the following pairs:

$$f X$$
, $Y X$, $X X$, $\emptyset X$, and $h Y$

Question 7.

Let X and Y be two sets of the universal set U.

- 1. Use Venn diagram to show to show that $\overline{X \cap Y} = \overline{X} \cup \overline{Y}$.
- 2. Use membership tables to prove that $\overline{X \cap Y} = \overline{X} \cup \overline{Y}$.

Question 8.

Let A and B and C be subsets of a universal set \mathcal{U} .

- 1. Draw a three binary digit labelled Venn diagram depicting A, B, C in such a way that they divide \mathcal{U} into 8 disjoint regions.
- 2. The subset $X \subseteq \mathcal{U}$ is defined by the following membership table:

A	B	C	X
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

Identify the region X on your diagram. Describe the region you have identified in set notation as simply as you can.

3. let Y be the set represented by the region 000, 011, 101, 110, and 111. Describe the set Y using the set notation,

Question 9.

Given three sets A, B and C, subsets of the universal set U. For each of each of the following Venn diagram write, in terms of A, B and C, the set representing the area coloured in yellow:

1.

2.

Question 10.

Let $A = \{t, u, v, w\}$ and let S_1 be the set of all subsets of A that do not contain w and S_2 be the set of all subsets of A that contain w.

- 1. Find S_1 and S_2 .
- 2. Are S_1 and S_2 disjoint?
- 3. Find $S_1 \cup S_2$.
- 4. What is the relation between $S_1 \cup S_2$ and $\mathcal{P}(A)$?

Question 11.

Let $A = \{1, 2\}$ and let $B = \{2, 3\}$. Find each of the following:

- 1. $\mathcal{P}(A \cap B)$
- 2. $\mathcal{P}(A \cup B)$
- 3. $\mathcal{P}(A \times B)$

Question 12.

Given three sets A, B and C. Prove that the expression $\overline{(A \cup B) \cap C} \cup \overline{B}$ is equivalent to $B \cap C$ by re-writing the expression using algebraic laws, state the name of each law used.

Question 13.

Given three sets A, B and C. Using set identities, prove that:

$$(A \cup B) - (C - A) = A \cup (B - C).$$

Question 14.

Given two sets A and B. Simplify $\overline{(\overline{A} \cup \overline{B})} - \overline{A}$.

Question 15.

Show that for all sets A and B, $\mathcal{P}(A) \cup \mathcal{P}(B) \subseteq \mathcal{P}(A \cup B)$.

Question 16.

Let A, B and C be three sets. Prove that if $C \subseteq (B - A)$ then $A \cap C = \emptyset$

End of questions