Формальные языки Домашнее задание 3 Виноградов Александр

Задание №1

1 шаг алгоритма - если KA неполный, то добавить сток. Добавим стоковое состояние ${\bf R}.$

Получаем следующую табличку, откуда видно, что можно объединить состояния A и D.

В итоге получаем следующий КА:

Задание №2

Задание №3

Воспользуемся стандартным алгоритмом для преобразования НКА \to ДКА. Но перед этим заметим, что КА, где вместо пути 1 \to 2 \to 4 путь 1 \to 4 по b - эквивалентен исходному.

Задание №4

Второе регулярное выражение задаёт любую строчку, оканчивающуюся на нечётное число \mathfrak{a} (Почему? Если в строке нет \mathfrak{b} , то получим \mathfrak{a} (\mathfrak{a} \mathfrak{a})*, если есть - набираем произвольную строку, пока не встретим последнюю \mathfrak{b} , далее дописываем нечётное число \mathfrak{a}).

Чтобы доказать требуемое - нужно показать, что 1 регулярка описывает все такие строки и не задаёт ничего лишнего.

- 1. Она не задаёт ничего лишнего, так как после подстроки $b \dots b$ всегда идёт a. А дальше мы умеем дописывать только aa, либо b^ka , либо ab^ka .
- 2. Почему можно получить любую строку с нечётным число $\mathfrak a$ на конце? Достаточно показать, что $((\mathfrak a \mid b) \ b^* \ \mathfrak a)^*$ задаёт любую строку с нечётным числом $\mathfrak a$ на конце. Это действительно так, произвольная строка имеет вид $\mathfrak a^{k_1}b^{k_2}\mathfrak a^{k_3}\dots$ Покажем, что $\mathfrak a^k$ можно набрать, давайте набирать по $\mathfrak a\mathfrak a$, если k чётное, то набрали, если нечётное, то на последнем шаге в $(\mathfrak a \mid b)$ выберем $\mathfrak a$, а после гарантированно идёт $\mathfrak b$.