Radar and Remote Sensing Equation Sheet

Rachel Middleton Rachel.Middleton@colorado.edu

Radar Fundamentals

1. Transmit Signal, T_x for a monostatic radar block diagram:

$$T_x(t) = A_0 U(t) \cos[2\pi f(t)t + \phi_{TX}(t)]$$

where:

 $A_0 = \text{amplitude}$

U(t) = pulse train signal

f(t) = transmit frequency

 $\phi_{TX}(t) = \text{transmit phase}$

2. Received Signal, R_x for a monostatic radar block diagram:

$$R_x(t) = k(A_0U(t - \nabla t)\cos[2\pi f(t - \nabla t) + \psi] + n(t))$$

where:

 ψ = the sum of the phase shifts of the target and with the radar

k =is order of 10^{-18}

3. The Radar Power Equation

$$P_r = \frac{P_t G_t G_r \lambda^2 \sigma}{(4\pi)^3 R^4}$$

where:

Pt – Transmitted power (at antenna terminals) [W]

Gt – Transmitter antenna gain [unitless]

R – Range to target [m]

RCS – Target's radar cross section (also expressed as σ) $[m^2]$

Gr – Receiver antenna gain [unitless]

Pr – Received power (at antenna terminals) [W]

$$\lambda = \frac{c}{f} = \text{wavelength [m]}$$

The following quantities can be derived from the RPE, see ASEN5245_01c_Radar_Fundamentals_2024_0118 for more equations

(a) Power density for an Isotropic Antenna

$$Q_i = \frac{P_t}{4\pi R^2} \text{ [Watts/}m^2\text{]}$$

where:

 Q_i is the incident power density for and isotropic antenna $(G_t = 1)$ $4\pi R^2$ is the area of a sphere

(b) Radar Cross Section (RCS)

$$\sigma(\theta, \phi) = \frac{P_{reflected}[W]}{Q_i[W/m^2]}[m^2]$$

- (c) Radiation Scattered by a Target
- (d) Power Backscattered by a Target
- (e) Power Density at Receive Antenna
- (f) Power Backscattered by Target
- (g) Power Collected by Receive Antenna
- (h) Received Power at Antenna Ports
- 4. Calculations in dB

$$P_{dB} = 10\log(\frac{P_{linear}}{P_0})$$

where:

 P_{linear} is a value in "linear" units and P_0 represents the reference value (typically 1)

When the reference has physical meaning, then 'dB' is replaced with a special units:

Reference to milli Watts $(P_0=10^{-3}W)~\mathrm{dBm}$

Reference to Watts dBW

Reference to square meters (RCS, λ ,) dBsm

Reference to isotropic radiator dBi

Reference to dipole radiator dBd

5. Pulse Radar Range

$$R_{target} = \frac{cT_{delay}}{2}$$
 [m]

where c is the speed of light, $3x10^8$

6. Pulse Radar Waveform

 τ [s] - the pulse width or duration the Tx is transmitting

 T_{IPP} or IPP - the inter-pulse period [s], time between pulses

 $PRF = 1/T_{IPP}$ [Hz] - the pulse repetition frequency

Duty Cycle =
$$100(\frac{\tau}{T_{IPP}})$$
 [%]

7. Range Resolution

$$\nabla R = R_2 - R_1 = c \frac{T_2 - T_1}{2} = c \frac{\delta t}{2}$$

where δt is the minimum time such that two targets at R1 and at R 2 will appear completely resolved

therefore:

$$\nabla R = \frac{c\tau}{2}$$

8. Unambiguous Range (Pulse Radar)

$$R_{max} = \frac{cT_{IPP}}{2}$$

Range aliasing implies that a target observed at range, $R_{obs} < R_{max}$ could have come from a different inter-pulse period

Noise and Losses

1. Noise Power of a Radar System

$$P_n = kT_{sys}B$$
 [W]

where:

 P_n is the noise power in Watts

k - Boltzmann's constant: $1.38x10^{-23}$ [J/K], note: [J] = [Watt second]

 T_{sys} - system noise temperature [K]

B - receiver bandwidth [Hz] (typically B $1/\tau$, where τ is the pulse width [s]

2. Random Antenna Noise

$$T_{sys} = T_{antenna} + T_e = (T_a + T_A) + T_e$$

 T_a - External noise. Noise picked up by the antenna (e.g., Galactic noise, sun, moon, ground and other thermal emitters. This noise is part of the antenna temperature

 T_A - Thermal Emission. Noise due to physical antenna temperature. Also part of the antenna temperature

 T_e - Receiver noise. Internally generated noise by Rx components (e.g., amplifiers, mixers). This noise is quantified by the Rx effective noise temperature

3. Radar Losses

$$L_{total} = L_{sys}L_{prop}$$
 where $L_{total} \geq 1$

Two kinds of losses may occur: Propagation Path Losses – losses associated with the propagation medium between target and radar, such as, atmospheric attenuation and multipath interference

System Losses – losses within the radar system itself, such as insertion loss, as waves propagate through the radar system. (Losses within the antenna are accounted for in the antenna efficiency)

efficiency, ρ is expressed as $L = \frac{1}{\rho}$

Losses are factored into the RPE as follows:
$$P_r = \frac{P_t G_t G_r \lambda^2 \sigma}{(4\pi)^3 L_{FSPL}^2 R^4}$$

where L_{FSPL} is the one-way propagation loss (notice this quantity squared is the two-way propagation loss)

4. Specific Attenuation Model for Rain

see reference doc: ITU-R P.838-1

$$\gamma_R = kR^{\alpha} [dB/km]$$

where γ_R is the specific attenuation for rain [dB/km]

k and α are frequency dependent constants tabulated for horizontal (H) and vertical (V) propagation polarizations

R is rain rate [mm/hr]

Then, we factor these losses into the RPE as:

$$P_r = \frac{P_t G_t G_r \lambda^2 \sigma}{(4\pi)^3 L_{FSPL}^2 L_{rain}^2 R^4}$$

where L_{rain} is the one-way propagation loss for rain (distance * attenuation rate) (notice this quantity squared is the two-way propagation loss)

Similar attenuation rates can be calculated for other atmospheric mediums, such as cloud and fog (Recommendation ITU-R P.840-3)

- 5. Coax Cable, Insertion loss (Attenuation) (a system loss)
- 6. Signal to Noise Ratio (SNR)

$$\hat{SNR} = \frac{P_r}{P_n} = \frac{P_t G^2 \lambda^2 \sigma}{(4\pi)^3 L_{sys} L_{prop}^2 R^4 k T_{sys} B}$$

3

7. Coherent integration

$$(SNR)_{coherent}(n_p) = n_p SNR(1)$$

where n_p is the number of consecutive pulses

8. Maximum Detectable Range

9. Fourier Transform (FT)

The Fourier transform can be viewed as a projection onto an orthogonal basis function.

Fourier Transform Pair:

$$F(\omega) = \int_{-\infty}^{\infty} f(t)e^{-j\omega t}dt \qquad \qquad X(f) = \int_{-\infty}^{\infty} f(t)e^{-j2\pi f t}dt$$

$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega)e^{j\omega t}d\omega \qquad \qquad x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(f)e^{j2\pi f t}df$$

The basis functions are the complex exponentials.

Note that both $F(\omega)$ and f(t) are continuous functions and can be either real or complex (as with I and Q voltages).

From Eulier's Identity, we can represent cosines and sines with complex exponentials.

Negative frequencies represent clockwise (CW) rotation on complex plane

Positive frequencies represent counter-clockwise (CCW) rotation on complex plane 11

Refer to ASEN5245_Intro_Matched_Filter_Compression_013024.pdf for examples and further explanation.

- 10. Pulse Compression Ratio [TODO]
- 11. Decoding Phase Modulation [TODO]

EM Basics

- 1. Electrostatics
 - Ohms Law: V = RI

where:

V = Voltage [V]

 $R = Resistance [\Omega]$

I = Current [Ampere]

• Electric Field

$$\vec{E} = \rho \vec{J}$$

where:

 $\vec{E} = \text{electric field [V/m]}$

 $\vec{J} = \text{current density } [A/m^2]$

 $\rho = \text{resistivity of the medium } [\Omega/m]$

 $\sigma = 1/\rho = \text{conductivity}$

where:

 $\epsilon_0 = \text{Permittivity of Free Space} = \frac{1}{36\pi} * 1^{-9} \text{ [Farads/m]}$

Dielectric Constant = $\epsilon = \epsilon_r \epsilon_0$

 $\vec{E} = \text{electric field [V/m]}$

 $\vec{D}=$ Electric Flux Desnsity: $\vec{D}=\epsilon\vec{E}$

r = Distance between the centers of the two charges [m]

2. Magnetostatics

- Biot-Savart Law: $\vec{B} = \mu \vec{H}$

where:

 $\vec{B} = \text{Magnetic flux density [Tesla]} = \vec{B} = \frac{\mu_0 I}{2\pi r}$

 \vec{H} = Magnetic field intensity [A/m]

 μ_0 = Permeability of free space $\approx 4\pi \times 10^{-7}\,\mathrm{T}$ m/A $\mu=\mu_r\mu_0$ and $\mu_r=1$ for this class I= Electric current [A] = $\frac{dq}{dt}$

 \vec{r} = Position vector from the length element to the point of observation [m]

3. Electromagnetics

Table 1-6: The three branches of electromagnetics.

Branch	Condition	Field Quantities (Units)
Electrostatics	Stationary charges	Electric field intensity E (V/m)
	$(\partial q/\partial t = 0)$	Electric flux density D (C/m ²)
		$\mathbf{D} = \mathbf{\varepsilon} \mathbf{E}$
Magnetostatics	Steady currents	Magnetic flux density B (T)
	$(\partial I/\partial t = 0)$	Magnetic field intensity H (A/m)
		$\mathbf{B} = \mu \mathbf{H}$
Dynamics	Time-varying currents	E, D, B, and H
(Time-varying fields)	$(\partial I/\partial t \neq 0)$	(E,D) coupled to (B,H)

Table 1-7: Constitutive parameters of materials.

Parameter	Units	Free-space Value	
Electrical permittivity ε	F/m	$\varepsilon_0 = 8.854 \times 10^{-12} \text{ (F/m)}$	
		$\simeq \frac{1}{36\pi} \times 10^{-9} \text{ (F/m)}$	
Magnetic permeability μ	H/m	$\mu_0 = 4\pi \times 10^{-7} \text{ (H/m)}$	
Conductivity o	S/m	O	

4. Maxwell's Equations

Table 6-1: Maxwell's equations.

Reference	Differential Form	Integral Form	
Gauss's law	$\nabla \cdot \mathbf{D} = \rho_{\mathbf{v}}$	$\oint_{S} \mathbf{D} \cdot d\mathbf{s} = Q$	(6.1)
Faraday's law	$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$	$\oint_C \mathbf{E} \cdot d\mathbf{l} = -\int_S \frac{\partial \mathbf{B}}{\partial t} \cdot d\mathbf{s}$	(6.2)†
No magnetic charges (Gauss's law for magnetism)	$\nabla \cdot \mathbf{B} = 0$	$\oint_{S} \mathbf{B} \cdot d\mathbf{s} = 0$	(6.3)
Ampère's law	$\nabla \times \mathbf{H} = \mathbf{J} + \frac{\partial \mathbf{D}}{\partial t}$	$\oint_C \mathbf{H} \cdot d\mathbf{I} = \int_S \left(\mathbf{J} + \frac{\partial \mathbf{D}}{\partial t} \right) \cdot d\mathbf{s}$	(6.4)
[†] For a stationary surface S.			

5. Phasor notation

$$\bar{F}(x,y,z;t) = F(x,y,z)\cos(\omega t + [k_x \cdot \hat{x} + k_y \cdot \hat{y} + k_z \cdot \hat{z}])$$

$$\bar{F}(x,y,z;t) = F(x,y,z)\cos(\omega t + \bar{k} \cdot \bar{x})$$

Euler's Identity:
$$Ae^{j\xi} = A\cos(\xi) + jA\sin(\xi)$$
 $j = \sqrt{-1}$
Real part: $Re(e^{j\xi}) = A\cos(\xi)$
 $F(x,y,z;t) = F(x,y,z)\cos(\omega t + \overline{k}.\overline{x}) = Re[F(x,y,z)e^{j\omega t} + \overline{y}\overline{k}.\overline{x}]$
 $= Re[F(x,y,z)e^{j\overline{k}.\overline{x}}e^{j\omega t}]$
 $= Re[F(x,y,z)e^{j\omega t}]$

6. Complex permittivity

E"= = 0; E= E'= E

7. Propagating Waves

HOW DO WAVES PROPAGNIE IN A CHARGE FREE

ENUIRONMENT?

$$\vec{V} = 0 = 0 = 0$$
 $\vec{V} = 0 = 0$
 \vec

Wave Propagation and Scattering

1.

Antenna Properties

1.

Scattering