

Exercise 12.3

Q.1 Prove that the bisectors of the angles of base of an isosceles triangle intersect each other on its altitude.

Given

ΔΑΒC

 $\overline{AB} = \overline{AC}$ Due to isosceles triangle

Bisect $\angle B$ and $\angle C$ to intersect at point O Join A to D and extend to BC at D \overline{AD} is the altitude of $\triangle ABC$ $\overline{AD} \perp \overline{BC}$

Proof

Proof	
Statements	Reasons
In ΔABC	
$\overline{AB} \cong \overline{AC}$	Given
$\angle B \cong \angle C$	Due to isosceles triangle opposite angle are congruent
$\frac{1}{2}\mathbf{m}\angle\mathbf{B} = \frac{1}{2}\mathbf{m}\angle\mathbf{C}$	Dividing both side by 2
∠1 ≅ ∠3	
$\triangle ABO \leftrightarrow \triangle ACO$	
AO = AO	
$\overline{AB} = \overline{AC}$	
$\overline{\mathrm{BO}} \cong \overline{\mathrm{CO}}$	Given
$\Delta ABO \cong \Delta ACO$	Due to isosceles triangle
$\Delta ABD \leftrightarrow \Delta ACD$	
$\overline{AD} \cong \overline{AD}$	
∠7 ≅ ∠8	
$\overline{AB} \cong \overline{AC}$	
$\Delta ABD \cong \Delta ACD$	
∠5+∠6 = 180	
$\angle 5 = \angle 6 = 90^{\circ}$	
So $\overline{AD} \perp \overline{BC}$	Supplementary angles
AD Passes from point O	

Q.2 Prove that the bisectors of two exterior and third interior angle of a triangle are concurrent

Given

ΔΑΒC

Exterior angles are $\angle ABQ$ and $\angle BAP$ \overrightarrow{AT} and \overrightarrow{BS} intersect each other at point O therefore join O to C

Draw the angle bisecter of C

∠1 ≅ ∠2

Construction

 $\overrightarrow{OM} \perp \overrightarrow{CQ}, \overrightarrow{OL} \perp \overrightarrow{AB}, \overrightarrow{ON} \perp \overrightarrow{CP}$

Proof

Statements	Reasons
<u>ON</u> ≅ <u>OM</u> (i)	
OL≅OM(ii)	
$\overline{ON} \cong \overline{OL}$	
Hence Angle Bisector of C	Comparing equation (i) and (ii)
i,e $\angle 1 \cong \angle 2$	

Last Updated: September 2020

Report any mistake at freeilm786@gmail.com

[WEBSITE: WWW.FREEILM.COM] [EMAIL: FREEILM786@GMAIL.COM] [PAGE: 2 OF 2]