Optimization for Machine Learning Part I: An Introduction to Supervised Learning

Lionel Tondji

African Master's in Machine Intelligence

July 15, 2024

References for the lectures

Chapter 2. "Understanding Machine Learning: From Theory to Algorithms".

Pages 67 to 79. "Convex Optimization, Stephen Boyd".

Find mapping h that assigns the "correct" target to each input

$$h: x \in \mathbb{R}^n \to y \in \mathbb{R}$$

Labeled Data: The training set

$$y=-1$$
 means no/false \Downarrow Training Algorithm $\Longrightarrow \quad h:x\in\mathbb{R}^n o y\in\mathbb{R}$

Example: Linear Regression for Height

Labelled data: $x \in \mathbb{R}^2$, $y \in \mathbb{R}_+$, Male = 0, Female =1.

Example Hypothesis: Linear Model

$$h_w(x_1, x_2) = w_0 + x_1 w_1 + x_2 w_2 = \langle w, x \rangle$$

with $x_0 = 1$.

Example Training Problem:

$$\min_{w \in \mathbb{R}^3} \frac{1}{n} \sum_{i=1}^n (h_w(x_1^i, x_2^i) - y^i)^2$$

Linear Regression for Height

Other options aside from linear?

Parametrizing the Hypothesis

$$h_w(x) = \sum_{i=0}^d w_i x_i$$

Polinomial:

$$h_w(x) = \sum_{i,j=0}^{a} w_{ij} x_i x_j$$

Neural Net:

exe:

$$v_1 = \operatorname{sign}(w_{11}x_1 + w_{12}x_2)$$

$$v_4 = 1/(1 + \exp(w_{41}x_1 + w_{42}x_2))$$

Loss Functions

$$\min_{w \in \mathbb{R}^3} \frac{1}{n} \sum_{i=1}^n (h_w(x^i) - y^i)^2$$

Let $y_h := h_w(x)$. Loss Functions

$$\ell: \mathbb{R} \times \mathbb{R} \to \mathbb{R}_+$$

$$(x,y) \mapsto \ell(y_h,y)$$

The Training Problem

$$\min_{w \in \mathbb{R}^3} \frac{1}{n} \sum_{i=1}^n \ell(h_w(x^i), y^i)$$

Different the Loss Functions

Let
$$y_h := h_w(x)$$
.

- * Square Loss: $\ell(v_h, v) = (v_h - v)^2$
- Binary Loss:

$$\ell(y_h, y) = \begin{cases} 0, & \text{if } y_h = y, \\ 1, & \text{else} \end{cases}$$

* Hinge Loss: $\ell(y_h, y) = \max\{0, 1 - y_h y\}$

Exercise: Plot the binary and hinge loss function in when y = -1

Is a notion of Loss enough?

Fitting 1st order polynomial

$$h_w = \langle w, x
angle$$
 $w^* = arg \min_{w \in \mathbb{R}^d} rac{1}{n} \sum_{i=1}^n (h_w(x^i) - y^i)^2$

Fitting 2nd order polynomial

$$h_w = w_0 + w_1 x + w_2 x^2$$
 $w^* = arg \min_{w \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n (h_w(x^i) - y^i)^2$

Fitting 3rd order polynomial

$$h_w = \sum_{i=0}^3 w_i x^i$$

$$w^* = arg \min_{w \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n (h_w(x^i) - y^i)^2$$

Fitting 9th order polynomial

$$h_w = \sum_{i=0}^9 w_i x^i$$

$$w^* = arg \min_{w \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n (h_w(x^i) - y^i)^2$$

Regularization/Prior

Regularizor Functions

$$R: \mathbb{R}^d \to \mathbb{R}_+$$
 $w \mapsto R(w)$

General Training Problem

$$\min_{\mathbf{w} \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n \ell(h_{\mathbf{w}}(\mathbf{x}^i), \mathbf{y}^i) + \lambda R(\mathbf{w})$$

- First term : Goodness of fit, fidelity term ...etc
- Second term: Penalizes complexity
- ullet The constant λ : Controls tradeoff between fit and complexity

Example : $R(w) = ||w||_2^2, ||w||_1, ||w||_p$, other norms

Example: Ridge Regression

- **1** Linear hypothesis : $h_w(x) = \langle w, x \rangle$
- **2** L2 Regularizer : $R(w) = ||w||_2^2$
- **3** L2 Loss : $\ell(y_h, y) = (y_h y)^2$
- ⇒ Ridge Regression :

$$\min_{\mathbf{w} \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n (y^i - \langle \mathbf{w}, \mathbf{x}^i \rangle)^2 + \lambda \|\mathbf{w}\|_2^2$$

Example: Support Vector Machines

- **1** Linear hypothesis : $h_w(x) = \langle w, x \rangle$
- 2 L2 Regularizer : $R(w) = ||w||_2^2$
- **3** Hinge Loss : $\ell(y_h, y) = \max\{0, 1 y_h y\}$
- \Rightarrow SVM with soft margin :

$$\min_{\mathbf{w} \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n \max\{0, 1 - y^i \langle \mathbf{w}, \mathbf{x}^i \rangle\} + \lambda \|\mathbf{w}\|_2^2$$

Example: Logistic Regression

- **1** Linear hypothesis : $h_w(x) = \langle w, x \rangle$
- **2** L2 Regularizer : $R(w) = ||w||_2^2$
- **3** Logistic Loss : $\ell(y_h, y) = \ln(1 + e^{-yy_h})$
- \Rightarrow Logistic Regression :

$$\min_{\mathbf{w} \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n \ln(1 + e^{-y^i \langle \mathbf{w}, \mathbf{x}^i \rangle}) + \lambda \|\mathbf{w}\|_2^2$$

ML as seen by Optimizer

- Get the labeled data : $(x^1, y^1), \ldots, (x^n, y^n)$
- ② Choose a parametrization for hypothesis : $h_w(x)$
- **3** Choose a loss function : $\ell(h_w(x), y) \ge 0$
- Solve the training problem :

$$\min_{w \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n \ell(h_w(x^i), y^i) + \lambda R(w)$$

Test and Cross-validate. If fail, go back a few steps

The Statistical Learning Problem: The hard truth

Do we really care if the loss $\ell(h_w(x^i), y^i)$ is small on the **known** labelled data paris (x^i, y^i) ? **Nope**. We really want to have a small loss on new unlabelled Observations! Assume data sampled $(x, y) \sim \mathcal{D}$ where \mathcal{D} is an unknown distribution.

The Statistical Learning Problem: The hard truth

The statistical learning problem:

Minimize the expected loss over an unknown expectation

$$\min_{w \in \mathbb{R}^d} E_{(x,y) \sim \mathcal{D}} \big[\ell(h_w(x), y) \big]$$

Variance of sample mean:

$$\left| E_{(x,y)\sim\mathcal{D}} \left[\ell(h_w(x), y) \right] - \frac{1}{n} \sum_{i=1}^n \ell(h_w(x^i), y^i) \right|^2 = \mathcal{O}(\frac{1}{n})$$

Acknowledgements

Thanks for your attention!

