

Kuliah Teori Bahasa dan Automata Program Studi Ilmu Komputer Fasilkom UI

Prepared by:

Suryana Setiawan

Bahasa-bahasa Reguler adalah Countably Infinite

- Untuk bahasa-bahasa dengan $|\Sigma| = d$ dan |K| = n, banyaknya kemungkinan FSM tersebut adalah berhingga
 - Upper bound: bany. δ berbeda \times bany. Kem. accepting state berbeda \rightarrow $(n^{(n \times d)}) \times 2^n$
 - Contoh untuk n = 2, dan d = 2 terdapat maksimum $16 \times 4 = 64$ kemungkinan DFSM yang berbeda.
 - Jadi semua kemungkinan FSM dengan semua kemungkinan harga *n* adalah *countably infinite*.
- Karena untuk satu bahasa reguler minimal satu atau lebih FSM yang dapat menerimanya, maka bahasabahasa reguler juga *countably infinite*.

Bahasa-bahasa Non Reguler adalah Uncountable

- Untuk suatu Σ , seluruh kemungkinan string yang dapat dibuat dari Σ adalah Σ^* dan bahasa-bahasa dari Σ adalah power set dari Σ^* .
- Karena Σ^* adalah countably infinite, maka power set dari Σ^* uncountable, berarti semua bahasa dari Σ adalah uncountable.
- Karena bahasa-bahasa Σ adalah uncountable sementara bahasa-bahasa reguler adalah countably infinite, maka bahasa-bahasa nonreguler adalah uncountable.

Bahasa-bahasa Finite

- Bahasa-bahasa finite (berhingga) adalah reguler
- Irisan dua bahasa nonreguler bisa juga finite.
 - Contoh: $\{a^nb^n \mid n \ge 0\} \cap \{b^na^n \mid n \ge 0\} = \{\epsilon\}$
- Bahasa finite bisa memiliki string sangat banyak!
 - Contoh: $\{w \in \{0-9\}^* \mid w \text{ nomor-nomor SIM card di Indonesia}\}$

Sifat-sifat Closure

- Bahasa reguler bersifat closure terhadap operasi union, konkatenasi dan Kleene Star
 - Sudah jelas dalam definisinya!
- Bahasa reguler bersifat closure terhadap operasi komplemen, irisan, set-difference, reverse, dan substitusi symbol.
 - Lihat slide-slide berikutnya

Closure thd Operasi Komplemen

- Dibuktikan dengan menemukan DFSM M_2 yang bekerja berlawanan dengan DFSM M_1 , dimana M_1 mesin untuk menerima bahasa reguler L.
 - Jika $M_1 = \{K, \Sigma, \delta, s, A\}$ maka $M_1 = \{K, \Sigma, \delta, s, K-A\}$ accepting state menjadi nonaccepting state, sementara nonaccepting state menjadi accepting state.

Closure thd Operasi Irisan

• Jika M_1 dan M_2 masing-masing untuk bahasa-bahasa reguler L_1 dan L_2 ,

$$L_1 \cap L_2 = L(M_1) \cap L(M_2) = \neg(\neg L(M_1) \cup \neg L(M_2))$$

 Karena operasi komplemen dan operasi union pada bahasa reguler bersifat closure maka ruas kanan adalah juga bahasa reguler sehingga bahasa reguler juga closure terhadap irisan.

Closure thd Operasi Set-Difference

• Jika M_1 dan M_2 masing-masing untuk bahasa-bahasa reguler L_1 dan L_2 ,

$$L_1 - L_2 = L(M_1) - L(M_2) = L(M_1) \cap \neg L(M_2)$$

 Karena operasi komplemen dan operasi irisan pada bahasa reguler bersifat closure maka ruas kanan adalah juga bahasa reguler sehingga bahasa reguler juga closure terhadap set-difference.

Closure thd Operasi Reverse

• Diskusikan!

Closure thd Substitusi Symbol

• Diskusikan!