Small data technique

Lecture 14

Changho Suh

January 26, 2024

DTs for regression, challenge of DTs & ensemble learning

Outline

1. Study DTs for regression.

2. Investigate a challenge that arises in DTs.

3. Explore a way to address the challenge:

Ensemble learning

DTs for regression

A motivating example

$$x \in \mathbf{R} \quad y \in \mathbf{R}$$

Observation

A natural attempt for separation

Observation in each split

A follow-up natural attempt

Decision tree

CART algorithm

k: feature index

 t_k : threshold

Step 1: Find (k, t_k) such that $J(k, t_k)$ is minimized.

$$J(k,t_k) = \frac{m_{\mathrm{left}}}{m} \mathrm{MSE}_{\mathrm{left}} + \frac{m_{\mathrm{right}}}{m} \mathrm{MSE}_{\mathrm{right}}$$

$$\mathsf{MSE}_{\mathsf{left}} := \frac{1}{m_{\mathsf{left}}} \sum_{i \in \mathsf{left}} (y^{(i)} - \bar{y}_{\mathsf{left}})^2 \qquad \bar{y}_{\mathsf{left}} = \frac{1}{m_{\mathsf{left}}} \sum_{i \in \mathsf{left}} y^{(i)}$$

CART algorithm

Step 1: Find (k, t_k) such that $J(k, t_k)$ is minimized.

$$J(k,t_k) = \frac{m_{\mathrm{left}}}{m} \mathrm{MSE}_{\mathrm{left}} + \frac{m_{\mathrm{right}}}{m} \mathrm{MSE}_{\mathrm{right}}$$

Step 2: Repeat Step 1 for each split:

$$MSE_{left} \underbrace{ MSE_{left,left} }_{MSE_{left,right}} \underbrace{ MSE_{right} }_{MSE_{right,right}} \underbrace{ MSE_{right,left} }_{MSE_{right,right}}$$

Stopping criteria & hyperparameters are the same as those of classification.

Challenge of DTs

Challenge

Sensitive to small variations of training data.

Example:

remove some points of

A solution to address variation sensitivity

Turns out:

Ensemble learning is a solution.

For the rest:

- 1. Study what ensemble learning is.
- 2. Study ond powerful ensemble method:

Random forests (RFs)

Ensemble learning

Debate on a decision

How to decide when we have diverse opinions?

Often rely on majority voting.

Wisdom of the crowd: An aggregated decision is often better than even an expert's answer.

Can expect in the predictor context:

An aggregating prediction based on many predictors

→ A better prediction relative to the best predictor.

Ensemble learning

Ensemble: A group of predictors

Ensemble learning:

A technique that aggregates predictions of the ensemble.

Hard voting: Declare the one that gets most votes.

Soft voting: Declare the one with **highest probability** averaged over predictors

A way to obtain ensemble

Train each predictor on a **different subset** of the training set.

How to construct different subsets?

1. A way to choose partial examples:

Bootstrap

2. A way to choose partial features:

Random subspace method

RF = Bootstrap + random subspace

Sampled uniformly at random *w/ replacement* training set bootstrap

RF = Bootstrap + random subspace

Sampled uniformly at random w/ replacement

Decision Tree (DT) w/ $\,D_1\,$

RF in picture

Look ahead

Study **RF** in depth:

- 1. Investigate hyperparameters;
- 2. Study a measure for model *interpretation*: **Feature Importance**