Faster Rates of Differentially Private stochastic Convex Optimization

Jinyan Su UESTC Lijie Hu KAUST

Di Wang KAUST

Work done at KAUST

Tsybakov Noise Condition (TNC)

Definition: (θ, λ) -TNC

•
$$\theta > 1, \lambda > 0$$

• Convex function $F(\cdot)$

$$w^* = \arg\min_{w \in \mathscr{C}} F(w)$$

•
$$F(w) - F(w^*) \ge \lambda ||w - w^*||_2^\theta, \forall w \in \mathscr{C}$$

Tsybakov Noise Condition (TNC)

Examples:

- λ -strongly convex: $(2, \frac{\lambda}{2})$ -TNC
- Weak strong convexity
- Error Bound(EB)
- Polyak-Lojasiewicz (PL) functions

DP-SCO

Stochastic Convex Optimization (SCO):

- Unknown distribution ${\mathcal P}$ over data universe ${\mathcal X}$
- Dataset $S = \{x_1, x_2, \dots, x_n\}$
- Convex set $\mathscr{C} \subseteq \mathbb{R}^d$
- Convex loss function $f: \mathscr{C} \times \mathscr{X} \to \mathbb{R}$
- Excess population loss: $\mathbb{E}_{x \sim \mathscr{P}}[f(\hat{w}, x)] \min_{w \in \mathscr{C}} \mathbb{E}_{x \sim \mathscr{P}}[f(w, x)]$

DP-SCO

Differential Privacy (DP)

- Neighboring Datasets $S, S^{'} \subseteq \mathcal{X}$
- Random algorithm: ${\mathscr A}$ with output space E
- \mathscr{A} is (ϵ, δ) -DP if $Pr(\mathscr{A}(S) \in E) \leq e^{\epsilon} Pr(\mathscr{A}(S') \in E) + \delta$

Previous results of DP-SCO

• Convex function:
$$O\left(\frac{1}{\sqrt{n}} + \frac{\sqrt{d\log(1/\delta)}}{n\epsilon}\right)$$

• Strongly convex function:
$$O\left(\frac{1}{n} + \frac{d \log(1/\delta)}{n^2 \epsilon^2}\right)$$

What makes strongly convex result better?

$$F(w) - F(w^*) \ge \frac{\lambda}{2} ||w - w^*||_2^2$$

TNC:
$$F(w) - F(w^*) \ge \lambda ||w - w^*||_2^{\theta}, \forall w \in \mathscr{C}$$

Contribution 1

Algorithms for TNC and their Excess population risk

1. Private Stochastic Approximation

$$\theta \geq 2$$
 & Projection into $\mathscr{C} \cap \mathbb{B}(\hat{w}_{k-1}, R_{k-1})$

2. Private Stochastic Approximation-II

Upper bound =

$$\left(\frac{\sqrt{\log n}}{\sqrt{n}} + \frac{\sqrt{d\log n}}{n\epsilon}\right)^{\frac{\theta}{\theta-1}}$$

Known θ

3. Iterated Phased-SGD

$$\theta \geq \bar{\theta} > 1$$

Upper bound =

$$\left(\frac{1}{\sqrt{n}} + \frac{\sqrt{d}}{n\epsilon}\right)^{\frac{\theta}{\theta - 1}}$$

Lower bound:

$$\Omega\left(\left(\frac{\sqrt{d}}{n\epsilon}\right)^{\frac{\theta}{\theta-1}}\right)$$

$$\theta \geq 2$$

Comparison to [Asi et al., 2021b]

- Different proofs
- [Asi et al., 2021b] Projection into a ball and a set
- Alternative algorithms

Contribution 2

Improved rate for strongly convex loss

• Assumptions: Non-negative smooth loss & Small optimal value $F(w^*)$

$$n > \kappa^{\tau}, \kappa = \frac{\beta}{\lambda}$$

• Faster-DPSGD-SC:
$$O\left(\frac{1}{n^{\tau}} + \frac{d}{n^2 \epsilon^2}\right)$$
 , $\tau > 1$

SC:
$$O\left(\frac{1}{n} + \frac{d}{n^2 \epsilon^2}\right)$$

Private Stochastic Approximation

(Sketch):

Partite the dataset equally into m parts

For
$$k = 1, \dots, m$$
 do

```
\hat{w}_k = \text{Phased-SGD}(\hat{w}_{k-1}, \mathcal{C} \cap \mathbb{B}(\hat{w}_{k-1}, R_{k-1}))
```

End

Main technique:

A shrinking ball centered at the output of the last iterate

Phased-SGD(w_0 , $\mathscr C$) [Feldman et al., 2020] Initial point w_0 For $i=1,\cdots,m$ do Compute the average iterate of PSGD: $\bar w_i$ (Projection into $\mathscr C$) Add noise: $w_i=\bar w_i+\xi_i$ End

Private Stochastic Approximation-II

(Sketch):

Partite the dataset equally into m parts

For
$$k = 1, \dots, m$$
 do

Use Phased-SGD-SC [Feldman et al., 2020] to solve

$$w^k = \arg\min F(w) + \frac{1}{2\gamma_k} ||w - w_{k-1}||_2^2$$

End

Main technique:

- 1. Additional strongly convex regularization
- 2. Solve with strongly convex version of phased-SGD

Iterated Phased-SGD

Main idea: reduction to the convex case

(Sketch):

Partite dataset into subsets $\{S_1, \dots, S_k\}$

For
$$t = 1, \dots, k$$
 do

 $w_t = \text{Phased-SGD}(w_{t-1}, \mathcal{C}) \text{ using } S_t$

(Initialized at the output of previous phase)

End

Phased-SGD(w_0 , $\mathscr C$) [Feldman et al., 2020] Initial point w_0 For $i=1,\cdots,m$ do Compute the average iterate of PSGD: $\bar w_i$ (Projection into $\mathscr C$) Add noise: $w_i=\bar w_i+\xi_i$ End

Faster-DPSGD-SC

(Sketch):

Split dataset into 2 equal subsets $|S_1| = |S_2|$

Perform the Iterated Phased-SGD on S_1 to return \hat{w}

Perform Epoch-DP-SGD on S_2

Open problems

Close the gap of
$$O\left(\frac{1}{n^{\frac{\theta}{2(\theta-1)}}}\right)$$
 between upper and lower bound

• Faster rate for other special class of functions, e.g., exponential concave

Thank you!