CPSC 420 Lecture 18: Today's announcements:

- ► HW3 is on Gradescope, due Mar 9, 23:59
- Examlet 3 on Mar 17 in class. Closed book & no notes
- Reading: NP-hardness [by Erickson]

Today's Plan

NP-hardness

NP-hard, NP-complete

NP-hard: Problems A where if A can be solved in polynomial time then P = NP.

NP-complete: Decision problems A where $A \in NP$ -hard and $A \in NP$.

Our current guess of P, NP, co-NP, NP-hard, NP-complete

Cook-Levin Theorem

Theorem

Circuit satisfiability is NP-hard

Proof.

You don't need to know the proof but the idea is: Show how to encode the execution of any polynomial-time, non-deterministic Turing machine M on an input x as some boolean circuit that is satisfiable if and only if M outputs "Yes" on input x.

How do we show other problems are NP-hard?

Cook-Levin Theorem

Theorem

Circuit satisfiability is NP-hard

Proof.

You don't need to know the proof but the idea is: Show how to encode the execution of any polynomial-time, non-deterministic Turing machine M on an input x as some boolean circuit that is satisfiable if and only if M outputs "Yes" on input x.

How do we show other problems are NP-hard?

To prove problem A is NP-hard, show how to **reduce** (in polynomial time) an NP-hard problem to A.

Reduce Circuit Satisfiability to A means "Solve Circuit Satisfiability using an algorithm for A."

Equivalent circuit where AND and OR gates have two inputs.

3CNF formula satisfied iff circuit is satisfied.

Proof: Φ is satisfiable iff K is satisfiable

 $a - NOT \longrightarrow b \longmapsto (a \lor b) \land (\overline{a} \lor \overline{b}) \checkmark$

1. Replace AND gates that have k > 2 inputs with a logically equivalent binary tree of k - 1 AND gates. Same for OR.

- 2. Add new variables y_i to each gate output. $(3/4)_{\text{WPe}}$ in $(4/4)_{\text{WPe}}$
- 3. Use $\begin{array}{c}
 a \\
 b
 \end{array} \longrightarrow (\overline{a} \lor \overline{b} \lor c) \land (a \lor \overline{c}) \land (b \lor \overline{c}) \\
 a \\
 b
 \end{array} \longrightarrow (a \lor b \lor \overline{c}) \land (\overline{a} \lor c) \land (\overline{b} \lor c)$ Step 1

to ensure $y_i = \text{gate output for each AND, OR, NOT gate.}$

Proof: Φ is satisfiable iff K is satisfiable

4. Use

to convert two- or one-literal clauses into three-literal clauses.

Claim: Circuit K is satisfiable if and only if the resulting formula Φ is satisfiable.

Proof: K' with 2-input gates is logically equivalent to K \Rightarrow If an input x_1, \ldots, x_n satisfies circuit K', let y_i be the output of *i*th gate in K' on this input and let z_k be 0 or 1 for all k (it doesn't matter). This assignment satisfies Φ .

 \leftarrow If Φ has a satisfying assignment to its variables (x_i s, y_j s, and z_k s), the assignment to x_1, \dots, x_n satisfies circuit K.

3SAT is NP-complete

The previous reduction (from CircuitSat) proves that 3SAT is NP-hard.

To show 3SAT is NP-complete we need to show 3SAT is in NP.

3SAT is NP-complete

The previous reduction (from CircuitSat) proves that 3SAT is NP-hard.

To show 3SAT is NP-complete we need to show 3SAT is in NP.

A truth-assignment to the variables of a 3SAT formula that satisfies the formula (a proof of a "Yes" instance) can be checked in linear time by checking that each clause evaluates to True.

3SAT is NP-complete

The previous reduction (from CircuitSat) proves that 3SAT is NP-hard.

To show 3SAT is NP-complete we need to show 3SAT is in NP.

A truth-assignment to the variables of a 3SAT formula that satisfies the formula (a proof of a "Yes" instance) can be checked in linear time by checking that each clause evaluates to True.

Is SAT (clauses can have any number of literals) NP-complete?

SAT ∈ NP ⇒ SAT 16 NP-complete

Independent Set

An **independent set** is a set of vertices in a graph G that share no common edge.

IndependentSet takes graph G and integer k and outputs "Yes" if G has an independent set of size k and "No" otherwise.

Claim: IndependentSet is NP-hard.

Transform a 3CNF formula Φ into a graph G and integer k so that Φ is satisfied if and only if G has an independent set of size k.

Transform a 3CNF formula Φ into a graph G and integer k so that Φ is satisfied if and only if G has an independent set of size k.

$$\Phi = (a) \wedge (\overline{a} \vee \overline{b}) \wedge (a \vee c) \wedge (b \vee \overline{c} \vee d)$$

- 1. Create a vertex for every occurrence of a literal in a clause.
- 2. Create edges between every literal occurrence and its negation.
- 3. For each clause, create edges between all literals in the clause.
- 4. Let the size of the desired independent set k=# clauses

Claim: G contains an independent set of size k if and only if Φ is satisfiable.

- \Rightarrow Let S be an independent set of size k in G. S cannot contain two literal nodes from the same clause, so every one of the k clauses contains one literal in S. S cannot contain a literal node and its negation. Set all literals in S to true. This satisfies Φ .
- \Leftarrow Let A be a truth assignment satisfying Φ . Every clause contains at least one True literal. Pick one for each of the k clauses and let S be the set of corresponding vertices. Since A doesn't assign True to a literal and its negation, S is an independent set of size k.