Generative and Multi-phase Learning for Computer Systems Optimization

Yi Ding, Nikita Mishra, Henry Hoffmann

Computer Systems Optimization

- Optimizing modern computer systems requires tradeoffs:
 - Deliver reliable performance
 - Minimize energy consumption

Computer Systems Optimization

- Optimizing modern computer systems requires tradeoffs:
 - Deliver reliable performance
 - Minimize energy consumption
- Resource management via system configuration:
 - Resources have complex, non-linear effects on performance and energy
 - Resource interactions create local optima

Computer Systems Optimization

- Optimizing modern computer systems requires tradeoffs:
 - Deliver reliable performance
 - Minimize energy consumption
- Resource management via system configuration:
 - Resources have complex, non-linear effects on performance and energy
 - Resource interactions create local optima
- How to find the optimal system configuration?

Example of a Configuration Space C

 $C \leftarrow \{Core \ assignment\} \times \{Clock \ speed \ assignment\} \times \{Memory \ controller\}$

Memory controller

Machine Learning to the Rescue

Machine Learning to the Rescue

- But...
 - Scarce data: expensive collection, limited range behavior

Machine Learning to the Resue

• But...

- Scarce data: expensive collection, limited range behavior
- Asymmetric benefits: only configs on optimal frontier useful

Machine Learning to the Resue

• But...

- Scarce data: expensive collection, limited range behavior → Generative model
- Asymmetric benefits: only configs on optimal frontier useful → Multi-phase sampling

Machine Learning to the Resue

- But...
 - Scarce data: expensive collection, limited range behavior → Generative model
 - Asymmetric benefits: only configs on optimal frontier useful → Multi-phase sampling

Problem Formulation

SRAD on ARM big.LITTLE system

	Model A	Model B
Optimal points	Just far enough	True data
Non-optimal points	True data	Very far
Goodness of fit	99%	0
Energy over optimal	22% 🗙	0 🔽

SRAD on ARM big.LITTLE system

Recommender Systems -> Learning by Examples

^{1.} Paragon: QoS-Aware Scheduling for Heterogeneous Datacenters. Christina Delimitrou and Christos Kozyrakis. (ASPLOS 2013)

^{2.} Quasar: Resource-Efficient and QoS-Aware Cluster Management. Christina Delimitrou and Christos Kozyrakis (ASPLOS 2014)

An Analogy

Users

	1	3	?	5	5			4
		5	4	4	2		1	2
	2		4		1	2	3	
vies	4	3		5		2	4	5
Movies		4	2	4	2	4		1
	2		4	1		3	2	3
	3	4		2	2		5	3
	1	3	3		2	4	2	

An Analogy

Outline

- Motivation
- Methods
- Experimental Results
- Conclusion

Generating Data for Accuracy

• Goal: different enough but still realistic to be plausible

Generating Data for Accuracy

- Goal: different enough but still realistic to be plausible
- How:
 - Random number generator → different but not plausible

Generating Data for Accuracy

- Goal: different enough but still realistic to be plausible
- How:
 - Random number generator → different but not plausible
 - Gaussian Mixture Model (GMM) → plausible but not different

K: number of components

 x_i : data points, i=1,...,N

w_k: weight of k-th component

Probability that x_i belongs to k-th

$$p(\mathbf{x}_i) = \sum_{k=1}^K w_k g(\mathbf{x}_i | \mu_k, \Sigma_k)$$

$$g(\mathbf{x}_i|\mu_k, \Sigma_k) = \frac{1}{(2\pi)^{\frac{D}{2}}|\Sigma_i|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(\mathbf{x}_i - \mu_k)^{\top} \Sigma_i^{-1}(\mathbf{x}_i - \mu_k)\right)$$

Computer System Configurations

Multi-phase Sampling

Input: Configuration-Application data matrix, Sampling budget N

Matrix Completion with Sample Size N/2

Known Applications

Multi-phase Sampling

Input: Configuration-Application data matrix, Sampling budget N

Matrix Completion with Sample Size N/2

Known Applications

Estimated
Behavior for New
Application

Multi-phase Sampling

Input: Configuration-Application data matrix, Sampling budget N

Matrix Completion with Sample Size N/2
Known Applications

Estimated Select N/2
Behavior for New Best Configs
Application

$$efficiency = \frac{estimated\ performance}{estimated\ power}$$

Multi-phase Sampling

Input: Configuration-Application data matrix, Sampling budget N

Matrix Completion with Sample Size N/2
Known Applications

Configurations

System

Computer

Estimated Select N/2
Behavior for New Best Configs
Application

Matrix Completion with N/2 original samples and N/2 estimated best configs Known Applications

Outline

- Motivation
- Methods
- Experimental Results
- Conclusion

Experimental Setup

	Mobile	Server
System	Ubuntu 14.04	Linux 3.2.0 system
Architecture	ARM big.LITTLE	Intel Xeon E5-2690
# Applications	21	22
# Configurations	128	1024

Learning Models and Frameworks

Learning Models	Category
MCGD	MC
MCMF	MC
Nuclear	MC
WNNM	MC
HBM	Bayesian

First comprehensive study of matrix completion (MC) algorithms for systems optimization task

Learning Models and Frameworks

Learning Models	Category
MCGD	MC
MCMF	MC
Nuclear	MC
WNNM	MC
НВМ	Bayesian

First comprehensive study of matrix completion (MC) algorithms for systems optimization task

Frameworks	Definitions
Vanilla	Basic learners
GM	Generative model
MP	Multi-phase sampling
MP-GM	Combine GM and MP

Improve Prediction Accuracy w/ GM

Average percentage points of accuracy improvement

		GM	MP	MP – GM
Mobile	Performance	1.8	1.4	2.3
Mobile	Power	4.3	0.6	3.4
Server	Performance	9.0	-0.2	-0.3
	Power	20.5	-0.4	0.1
Average		8.9	0.4	1.4

Improve Energy Savings w/ MP

Average energy improvement

	GM	MP	MP – GM
Mobile	-14%	41%	22%
Server	-22%	11%	-6.5%

<u>Yi Ding</u>, Nikita Mishra, and Henry Hoffmann. 2019. Generative and Multiphase Learning for Computer Systems Optimization. In The 46th Annual International Symposium on Computer Architecture (ISCA '19)