Foundations of Mathematics

Ninth Homework:

Due 8 November 2022

Definition: The *Fibonacci sequence* $\{f_n \mid n \geq 1\}$ is defined by $f_1 = f_2 = 1$ and for $n \geq 2$, $f_{n+1} = f_n + f_{n-1}$.

Read: Chapters 7 and 8 in Fourth edition. (Chapter 8 in fourth edition is Chapter 7 in third. The new Chapter 7 in Fourth edition is a review of proof techniques.)

- 1. Look up the term *Pythagrean triple* (it is in our book). Investigate the following
 - Conjecture. For each natural number n, the numbers $f_n f_{n+3}$, $2f_{n+1} f_{n+2}$, and $(f_{n+1}^2 + f_{n+2}^2)$ form a Pythagorean triple.

If true, provide a proof, and if false, a counterexample.

- 2. Find (and prove) a formula for f_{n+5} in terms of f_n and f_{n+1} . Use this formula to give a proof by induction that for all $n \in \mathbb{N}$ the Fibonacci number f_{5n} is a multiple of f_n .
- 3. Explore the relation between f_k and f_{kn} for small values of k, and make a conjecture.
- 4. Find natural numbers a and b such that $a^2 + b^2 = 10$, and then natural numbers c and d such that $c^2 + d^2 = 10^2$.

Prove the following statement by mathematical induction: For every natural number n, there are natural numbers x and y such that $x^2 + y^2 = 10^n$.

- 5. Suppose that a and b are integers such that a + b is even. Prove that there exist integers x and y such that $x^2 y^2 = ab$.
- 6. Prove or disprove.
 - (a) Let A, B, C, and D be sets with $A \subseteq C$ and $B \subseteq D$. If A and B are disjoint, then C and D are disjoint.
 - (b) Every even integer can be expressed as the sum of two odd integers.
- 7. Prove or disprove.
 - (a) There is a real number solution of the equation $x^4 + x^2 + 1 = 0$.
 - (b) There exist positive integers a and b such that $a^2 b^2 = 101$.
- $8. \,$ Evaluate the proof of the following statement.

Statement. Let $x, y, z \in \mathbb{Z}$ be such that 3x + 5y = 7z. If at least one of x, y, or z is odd, then at least one of x, y, or z is even.

Proof. Let $x, y, z \in \mathbb{Z}$ be such that 3x + 5y = 7z. Assume, to the contrary, that none of x, y, or z is odd andthat none of x, y, or z is even. This is impossible.