$MC458 - 1^{\underline{a}}$ Prova Modelo 1 - 27/3/2013

- 1. Descreva as suposições feitas usualmente ao analisar-se a a complexidade de um algoritmo. Isto é, descreva o modelo computacional e a métrica usada para expressar o custo da execução de um algoritmo e possibilitar sua comparação com outros algoritmos projetados para resolver o mesmo problema computacional.
- 2. Defina as classes de funções O(g(n)) e $\omega(g(n))$.
- 3. Dadas as duas colunas com funções de n abaixo, encontre, para cada função f(n) na coluna da esquerda, aquela função da coluna da direita que mais se aproxima de uma função g(n) para a qual $f(n) \in \Theta(g(n))$. Se houver mais do que uma, escolha qualquer delas. Justifique cada uma das suas escolhas.

(a)
$$a^{2} + 4n - 2$$
 (a) $a^{\log n} + n$
(b) $a^{2} + n$
(c) $a^{n+\epsilon} = n$
(d) $a^{n+\epsilon} = n$
(e) $a^{n+\epsilon} = n$
(f) $a^{n+\epsilon} = n$
(i) $a^{n+\epsilon} = n$
(ii) $a^{n+\epsilon} = n$
(ii) $a^{n+\epsilon} = n$
(iii) $a^{n+\epsilon} = n$
(iii

- 4. Mostre que $n \in \Omega(\log^2 n)$, exibindo constantes c e n_0 que satisfaçam a definição da classe $\Omega(\log^2 n)$.
- 5. Para as seguintes recorrências, diga quais satisfazem as condições do Teorema Master e quais não satisfazem. Para aquelas que satisfazem, dê a solução usando o Teorema. Para aquelas que não satisfazem, diga a razão.

(a)
$$T(n) = \begin{cases} 3T(n/2) + 2n, & n > 3, \\ 1, & n \le 3. \end{cases}$$

(b) $T(n) = \begin{cases} T(n/2) + T(n/3) + n, & n > 1, \\ 1, & n = 1. \end{cases}$
(c) $T(n) = \begin{cases} 3T(n/2) + \log n, & n > 1, \\ 1, & n = 1. \end{cases}$