Simulating the Ising model using the Metropolis algorithm

Johan Nereng

Department of Physics, University of Oslo, Norway

Nov 21, 2018

- 1 Abstract
- 2 Introduction
- 3 Methods

$$\nabla^2 u(x,t) = \frac{\partial u(x,t)}{\partial t} \tag{1}$$

$$u_x x = u_t \tag{2}$$

L=1 Before approximating the derivatives, the PDE is discretized. The spacial domain, $x\in[0,1]$, is discretized over n grid points, such that $x_i=i\Delta x$, where $\Delta x=\frac{1}{n+1}$ of the function u(x,t), using ρ , where ρ is a dimensionless variable, so that

of the function u(x,t), using ρ , where ρ is a dimensionless variable, so that $u=u(\rho)$ and $\rho\in[0,1]$ \Longrightarrow $\rho=\frac{x}{L}$. Application of this dimensionless variable, together with grouping of other variables yields the following: $\frac{d^2u(\rho)}{d\rho^2}=-\frac{FL^2}{R}u(\rho)=-\lambda u(\rho).$

In order to numerically solve the problem, the range of ρ is discretized over N gridpoints, with a step length $h = \frac{\rho_{max} - \rho_{min}}{N}$, so that $\rho_i = ih$. The discrete approximation of the function u is defined as $u(x_i) = u_i$, with boundary conditions (B.C) $u_0 = u_{n+1} = 0$. The second derivative of u is approximated by using (??).

4 Algorithms