

Statistik

CH.3 - Maßzahlen

2024 | | Prof. Dr. Buchwitz, Sommer, Henke

Wirgeben Impulse

Lernziele

- Erlernen der Grundfähgikeiten zum Beschreiben von Datenmengen mit Hilfe statistischer Maßzahlen.
- Einteilung statistischer Maßzahlen in Lage-, Streuungs- und Konzentrationsmaße.
- Verdeutlichen der Anwendung mit Hilfe von R.

Maßzahlen

Ziel der folgenden Maßzahlen ist die Reduktion der Daten auf Kennzahlen, die einen Großteil der wesentlichen Informationen der zugrundeliegenden statistischen Variablen enthalten.

- Lagemaße: Beschreiben das Zentrum / die Mitte einer Beobachtungsreihe
- Streuungsmaße: Beschreiben die Abweichung vom Zentrum einer Häufigkeitsverteilung.
- Konzentrationsmaße: Beschreiben, wie sich die Summe der Merkmalswerte der Beobachtungsreihe auf die Untersuchungseinheiten verteilt.

Inhaltsübersicht

- 1 Lagemaße
- 2 Streuungsmaße
- 3 Konzentrationsmaße

Beispiel

Die folgenden Daten bilden das Gewicht (*in kg*) von zufällig ausgewählten Kugeln aus der Produktion einer Fabrik für Bowlingkugeln ab.

- Handelt es sich bei den vorliegenden Daten um eine Stichprobe oder um eine Grundgesamtheit?
- Welches Skalenniveau weisen die gezeigten Daten auf?
- Wie könnte man die Daten beschreiben?

	i = 1	i = 2	i = 3	i = 4	i = 5	i = 6	i = 7	i = 8
		3.367						
blue	9.741	11.935	7.040	10.220	11.478	5.697	9.213	5.004

5

Beispiel

Gewicht von 8 roten und 8 blauen Kugeln

Übersicht: Lagemaße

Lagemaß	Symbol	Berechnung
Modus	\bar{X}_{Modus}	$h_{Modus} \geq h_{j}$
Median	\bar{X}_{Median}	$x_{\frac{n+1}{2}}$ oder $\frac{1}{2}(x_{\frac{n}{2}} + x_{\frac{n}{2}+1})$
Quantil	Q_α	Wert der Verteilungsfunktion
Arithmetisches Mittel	\bar{x}	$\frac{1}{n}\sum_{i=1}^{n}X_{i}$
Geometrisches Mittel	\bar{X}_{geo}	$\sqrt[n]{x_1 \cdot x_2 \cdot \ldots \cdot x_n}$
Harmonisches Mittel	Χ̄ _{harm}	$\frac{n}{\sum_{i=1}^{n} 1/x_i}$

Achtung: Nicht jede Maßzahl ist für jede Art der *Skalierung* und damit nicht für jede Variable (sinnvoll) bestimmbar.

Modus

Definition: Modus

Der Modus oder Modalwert ist die häufigste Ausprägung einer Verteilung.

- Der Modus kann für beliebig skalierte Variablen bestimmt werden.
- Bei klassierten Daten wird die am häufigsten auftretende Klasse als Modalklasse bezeichnet.
- Der Modus kann mit Hilfe der R-Funktion modal() aus dem fhswf Paket berechnet werden.

Median

Definition: Median

Sind $x_1 \le x_2 \le \ldots \le x_n$ die der Größe nach geordneten Beobachtungswerte eines metrisch skalierten Merkmals X, ergibt sich der **Median** \bar{x}_{Median} als

$$\bar{\mathbf{x}}_{Median} = \begin{cases} \mathbf{x}_{\frac{n+1}{2}} & \text{falls } n \text{ ungerade} \\ \frac{1}{2} (\mathbf{x}_{\frac{n}{2}} + \mathbf{x}_{\frac{n}{2}+1}) & \text{falls } n \text{ gerade} \end{cases}$$

- Der Median wird auch als Zentralwert bezeichnet.
- Der Median teilt die Daten in zwei gleich große Hälften.
- Kann für metrisch und ordinal skalierte Merkmale verwendet werden.
- Ist robust gegenüber Ausreißern.
- R-Funktion: median()

9

Quantile

Definition: Quantil

Das α —Quantil eines Merkmals ist der Wert, unterhalb dessen ein vorgegebener Anteil α aller Beobachtungswerte der Verteilung liegt. Dieser Wert ergibt sich aus der (empirischen) Verteilungsfunktion S().

$$S(Q_{\alpha}) = \alpha$$

- Quantile sind Verallgemeinerungen des Medians, dieser ist Q_{0.5}.
- Einige Gruppen von Quantilen haben spezielle Namen
 - ▶ Quartile: Q_{0.25}, Q_{0.5}, Q_{0.75}
 - Percentile: Q_{0.01}, Q_{0.02}, Q_{0.03}, Q_{0.04}, . . .
- R-Funktion: quantile()

Boxplot

Der Boxplot oder Box-Whisker-Plot ist eine grafische Darstellung von Minimum, 1. Quartil, Median, 3. Quartil und Maximum.

Boxplot für die roten und blauen Kugeln

Aritmetisches Mittel

Definition: Arithmetisches Mittel

Sind x_1, \ldots, x_n die Beobachtungswerte eines metrisch skalierten Merkmals X, so errechnet sich das **arithmetische Mittel** durch

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

- Das arithmetische Mittel ist nur für metrisch skalierte Daten definiert!
- Ist eine Maßzahl, die empfindlich gegenüber Ausreißern ist.
- Das gewichtete arithmetische Mittel erlaubt die Bestimmung des arithmetischen Mittels für klassierte Daten.
- R-Funktion: mean()

Beispiel: Median und arithmetisches Mittel für die roten Kugeln

	i = 1	i = 2	i = 3	i = 4	i = 5	i = 6	i = 7	i = 8
red	1.747	3.367	1.329	6.191	3.659	1.359	3.975	4.477
blue	9.741	11.935	7.040	10.220	11.478	5.697	9.213	5.004

Gewicht von 8 roten und 8 blauen Kugeln

Beispiel: Median und arithmetisches Mittel für die roten Kugeln

```
# Ausgabe der Daten
red
  [1] 1.747 3.367 1.329 6.191 3.659 1.359 3.975 4.477
# Arithmetisches Mittel
mean(red)
## [1] 3.263
## Median
median(red)
## [1] 3.513
# Zusammenfassung wesentlicher Lagemaße
summary(red)
##
     Min. 1st Qu. Median Mean 3rd Qu.
                                              Max.
```

1.33 1.65 3.51 3.26 4.10 6.19

##

Geometrisches und Harmonisches Mittel

- Es gibt zahlreiche spezialisierte Mittelwerte wie das **geometrische Mittel** \bar{x}_{geo} und das **harmonische Mittel** \bar{x}_{harm} . Welcher Mittelwert genutzt werden muss, hängt von den zugrundeliegenden Daten ab.
- Ziel der Mittelwertbildung ist, die durchschnittliche Gesamtwirkung von n meist unterschiedlichen Werten mit einem einzigen Wert zu beschreiben.

Geometrisches Mittel:
$$\bar{x}_{geo} = \sqrt[n]{x_1 \cdot x_2 \cdot \ldots \cdot x_n} = \sqrt[n]{\prod_{i=1}^n x_i}$$

Harmonisches Mittel: $\bar{x}_{harm} = \frac{n}{\sum_{i=1}^n \frac{1}{x_i}}$

Anwendung: Geometrische Mittelwerte eigenen sich für Wachstumsraten, harmonische Mittelwerte für Geschwindigkeiten.

Beispiel: Geometrisches Mittel

[1] 121

```
# Das Wertpapier-Beispiel (Bitcoin) aus der Einführung liefert die folgenden
# Wertveränderungen (returns) für ersten 3 Jahre des Assets.
ret \leftarrow c(.12, .07, .01)
# Geometrisches Mittel
mean gm <- prod(1 + ret)^(1/length(ret))
mean_gm
## [1] 1.066
# Probe
(100 * prod(1 + ret)) # Wert nach 3 Perioden bei 100 Euro Startwert
## [1] 121
(100 * mean_gm^3) # Wert nach 3 Perioden berechnet mit x_{geom}
```

Schiefe

■ Wo liegen \bar{x} , \bar{x}_{Median} und \bar{x}_{Modus} bei den nachfolgend gezeigten Häufigkeitsverteilungen?

Schiefe

■ Wo liegen \bar{x} , \bar{x}_{Median} und \bar{x}_{Modus} bei den nachfolgend gezeigten Häufigkeitsverteilungen?

- Linksschiefe Häufigkeitsverteilung: $\bar{x} < \bar{x}_{Median} < \bar{x}_{Modus}$
- Symmetrische Häufigkeitsverteilung: $\bar{x} = \bar{x}_{Median} = \bar{x}_{Modus}$
- lacktriangle Rechtsschiefe Häufigkeitsverteilung: $ar{x} > ar{x}_{Median} > ar{x}_{Modus}$

Inhaltsübersicht

- 1 Lagemaße
- 2 Streuungsmaße
- 3 Konzentrationsmaße

Beispiel: Streuungsmaße

Übersicht: Streuungsmaße

Lagemaß	Symbol	Berechnung
Spannweite	R	$x_{max} - x_{min}$
Interquartilsabstand	IQR	$Q_{0.75} - Q_{0.25}$
(empirische) Varianz	s^2	$\frac{1}{n-1}\sum_{i=1}^{n}(x_i-\bar{x})^2$
Standardabweichung	S	$\sqrt{s^2}$
Variationskoeffizient	V	s/\bar{x}

Achtung: Nicht jede Maßzahl ist für jede Art der *Skalierung* und damit nicht für jede Variable (sinnvoll) bestimmbar.

Spannweite

Definition: Spannweite

Die Breite eines Streubereichs nennt man Spannweite R. Sie ergibt sich aus dem Maximum und Minimum der Daten.

$$R = x_{max} - x_{min}$$

- Nachteil: Nur zwei extreme Werte gehen in die Berechnung ein, der Großteil der Daten bleibt ungenutzt.
- Die Spannweite hat keine eigene R-Funktion, kann aber einfach mittels max() und min() berechnet werden.

Interquartilsabstand

Definition: Interquartilsabstand

Der **Quartilsabstand** gibt die Größe des Bereiches zwischem dem oberen und dem unteren Quartil einer Verteilung an, in dem die mittleren 50% der Beobachtungen fallen.

$$IQR = Q_{0.75} - Q_{0.25}$$

- Zwischen dem oberen und dem unteren Quartil liegen 50% der Beobachtungen.
- Kann auch sinnvoll für ordinalskalierte Merkmale bestimmt werden.
- Ist robust in dem Sinne, dass der IQR weitgehend unempfindlich gegenüber Ausreißern ist.
- R-Funktion: IQR()

Varianz

Definition: Varianz

Die Varianz ist die mittlere quadrierte Abweichung vom arithmetischen Mittel.

$$s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2$$
 oder $s^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \bar{x})^2$

- Es gilt immer $s^2 \ge 0$
- Wird unterschiedlich für die Stichprobe und die Grundgesamtheit (Population) berechnet.
- Grundidee: Einbezug aller Abweichungen vom Mittelwert
- Beobachtungen, die weit von \bar{x} entfernt liegen, werden überproportional stark gewichtet.
- R-Funktion: var()

Standardabweichung

Definition: Standardabweichung

Die **Standardabweichung** ist die Wurzel aus der Varianz.

$$s = \sqrt{s^2}$$

- Weist die gleiche Maßeinheit wie die Daten auf
- Ist i.d.R. einfacher zu interpretieren als die Varianz.
- R-Funktion: sd()

Rechenbeispiel

Berechnung der Varianz der roten Kugeln aus dem Eingangsbeispiel.

\$i\$	\$x_i\$	\$x_i - \bar x\$	\$(x_i-\bar x)^2\$
1	1.747	-1.5158	2.2977
2	3.367	0.1044	0.0109
3	1.329	-1.9342	3.7410
4	6.191	2.9277	8.5712
5	3.659	0.3961	0.1569
,		4 0000	0./0.//
6	1.359	-1.9038	3.6246
7	3.975	0.7119	0.5069
8	4.477	1.2137	1.4732

$$n=8$$
 $\bar{x}=3.2629$ $\sum (x_i-\bar{x})=0$ $\sum (x_i-\bar{x})^2=20.3823$ $s^2=2.9118$

Rechenbeispiel

Berechnung der Varianz der blauen Kugeln aus dem Eingangsbeispiel.

\$i\$	\$x_i\$	\$x_i - \bar x\$	\$(x_i-\bar x)^2\$
1	9.741	0.9499	0.9022
2	11.935	3.1442	9.8858
3	7.040	-1.7508	3.0653
4	10.220	1.4285	2.0406
5	11.478	2.6866	7.2176
6	5.697	-3.0939	9.5725
7	9.213	0.4223	0.1783
8	5.004	-3.7866	14.3386

$$n=8$$
 $\bar{x}=8.7911$ $\sum (x_i-\bar{x})=0$ $\sum (x_i-\bar{x})^2=47.201$ $s^2=6.743$

Variationskoeffizient

Definition: Variationskoeffizient

Der **Variationskoeffizient** ist der Quotient aus Standardabweichung und arithmetischem Mittel.

$$V = \frac{s}{\bar{x}}$$

- Ist dimensionslos und vergleichbar
- Der Variationskoeffizient hat keine eigene R-Funktion, kann aber einfach mittels sd() und mean() berechnet werden.

Beispiel: Streuungsmaße

[1] 0.2954

```
# Ausgabe der Daten
blue
## [1] 9.741 11.935 7.040 10.220 11.478 5.697 9.213 5.004
# Spannweite
max(blue) - min(blue)
## [1] 6.931
## Varianz
var(blue)
## [1] 6.743
# Interquartilsabstand
IQR(blue)
## [1] 3.83
# Variationskoeffizient
sd(blue) / mean(blue)
```

Inhaltsübersicht

- 1 Lagemaße
- 2 Streuungsmaße
- 3 Konzentrationsmaße

Konzentration

Definition: Konzentration

Man spricht von Konzentration oder Ungleichheit, falls zu einem bestimmten Zeitpunkt ein relativ kleiner Anteil der Merkmalsträger einen hohen Anteil an der Summe der Merkmalswerte besitzt.

- Konzentration bzw. Ungleichheitsdiskussionen findet man häufig im Kontext von Einkommen oder Vermögen.
- Beispiel: In Deutschland besitzen 10% der Bevölkerung 90% des Vermögens.

Lorenzkurve

Definition: Lorenzkurve

Der Polygonzug durch die Punkte $P_0 = (0, 0)$ und $P_j = (k_j, l_j)$ mit j = 1, ..., q heißt **Lorenzkurve**.

$$k_j = \sum_{i=1}^{j} \frac{H_j}{n} = \sum_{i=1}^{j} h_j$$
 $l_j = \frac{\sum_{i=1}^{j} a_i H_i}{\sum_{i=1}^{q} a_i H_i}$

- Die Lorenzkurzve verläuft durch die Punkte (0,0) und (1,1)
- Die Lorenzkurve verläuft immer unterhalb der Winkelhalbierenden.
- Die Lorenzkurve ist winkelhalbierend, wenn alle Mermalsausprägungen gleich häufig vorkommen. Dann liegt keine Konzentration vor. Je weiter die Lorenzkurve sich von der Winkelhalbierenden entfernt, desto größer ist die Ungleichheit.
- R-Funktion: Lc() aus dem Zusatzpaket ineq

Beispiel

Wir betrachten vereinfachend die Einkommensverteilungen der folgenden drei sehr kleinen Länder.

```
A <- c(1000, 3000, 4000, 4000, 8000)
B <- c(2000, 2000, 4000, 8000)
C <- c(1000, 2000, 5000, 8000)
```

Beispiel

	j	\$a_j\$	\$k_j\$	\$l_j\$
1	0		0	0
1000	1	1000	0.2	0.05
3000	2	3000	0.4	0.2
4000	3	4000	0.8	0.6
8000	4	8000	1	1

Gini Koeffizient

Definition: Gini Koeffizient

Das Doppelte der Fläche zwischen der Lorenzkurve und der Winkelhalbierenden heißt **Gini-Koeffizient** G und wird als Konzentrationsmaß einer Häufigkeitsverteilung verwendet.

$$G = \sum_{i=1}^{n} (k_i + k_{i-1})(l_i - l_{i-1}) - 1$$

- Um den Gini-Koeffizienten zu berechnen, sind alle Stützpunkte der Lorenzkurve erforderlich. Es gilt $0 \le G \le \frac{n-1}{n} < 1$.
- Wenn die Lorenzkurve winkelhalbierend ist, gilt *G* = 0. In diesem Fall gibt es keine Einkommensunterschiede.
- Werden *alle* Ausgangswerte x_i mit einem Faktor a multipliziert, sodass $y_i = a \cdot x_i$, dann gilt $G_y = G_x$.
- R-Funktion: Gini() aus dem Zusatzpaket ineq

Lorenzkurve mit Gini-Koeffizient

Verständnisfragen

- Welche Lage- und Streuungsparameter eignen sich für ordinalskalierte Merkmale? Welche sind für nominalskalierte Merkmale geeignet?
- Welche Streuungsmaße berücksichtigen nur einzelne Beobachtungswerte der Häufigkeitsverteilung?
- Wie macht sich eine vollkommene Gleichheit in der Einkommensverteilung eines Landes in der Lorenzkurve bemerkbar? Wie groß ist dann der GINI-Koeffizient?

Verständnisfragen (Antworten)

- Welche Lage- und Streuungsparameter eignen sich für ordinalskalierte Merkmale? Welche sind für nominalskalierte Merkmale geeignet?
 - Ordinal: Median, Quantile, Modus, Quartilsabstände.
 - ▶ Nominal: Modus.
- Welche Streuungsmaße berücksichtigen nur einzelne Beobachtungswerte der Häufigkeitsverteilung?
 - ► Einzelne Beobachtungswerte: Spannweite
 - ▶ Alle Beobachtungswerte: alle weiteren, die vorgestellt wurden.
- Wie macht sich eine vollkommene Gleichheit in der Einkommensverteilung eines Landes in der Lorenzkurve bemerkbar? Wie groß ist dann der GINI-Koeffizient?
 - ▶ Winkelhalbierende, G = 0