Complexe Analyse

Luc Veldhuis

6 Maart 2017

Vraag

Op welke manier moet integratie gedefinieerd worden zodat het de inverse is van differentiatie?

Definitie

Zij
$$w: t \in [a, b] \rightarrow \mathbb{C}$$
, $w(t) = u(t) + iv(t)$.

- De afgeleide van w is gedefinieerd als $\frac{d}{dt}w = w'(t) = u'(t) + iv'(t)$. Dus we bekijken $\mathbb C$ als $\mathbb R^2$ en w is afleidbaar als u,v dat zijn.
- $\int_a^b w(t)dt = \int_a^b u(t)dt + i \int_a^b v(t)dt \in \mathbb{C}$.

Voorbeeld

$$w(t) = e^{it} \Leftarrow u(t) = \cos(t), v(t) = \sin(t).$$

 $\int_0^{\pi} e^{it} dt = \int_0^{\pi} \cos(t) dt + i \int_0^{\pi} \sin(t) dt = [\sin(t)]_0^{\pi} + i[-\cos(t)]_0^{\pi} = 2i$

Stelling

Zij
$$w, W : [a, b] \to \mathbb{C}$$
. Het geldt $w = W' \Leftrightarrow \int_a^b w(t) dt = [W(t)]_a^b$

Bewijs

$$w = u + iv$$
, $W = U + iV$.
 $\int_{a}^{b} w(t)dt = [U(t)]_{a}^{b} + i[V(t)]_{a}^{b} = [W]_{a}^{b}$

Definitie

Een **contour** is een equivalentieklasse van stukwijs differentieerbaare afbeeldingen $w:[a,b]\to\mathbb{C}$, waarbij w en $z:[a',b']\to\mathbb{C}$ equivalent worden genoemd, als zij gelijk zijn modulo reparametrisatie, dus dat er een $\phi:[a,b]\to[a',b']$ bestaat met $w=z\circ\phi$ met $\phi'(t)>0$ en we schrijven $C=\{z=z(t)|t\in[a,b]\}.$

Voorbeeld

$$C_1 = \{z(t) = e^{it} | 0 \le t \le 2\pi\}$$

$$C_{-1} = \{z(t) = e^{-it} | 0 \le t \le 2\pi\}$$

$$C_2 = \{z(t) = e^{2it} | 0 \le t \le 2\pi\}$$

Deze 3 contouren hebben dezelfde verzameling van punten in \mathbb{C} , maar niet hetzelfde als contour.

Als C_2 loopt tot $0 \le t \le \pi$, dan is dit wel hetzelfde als C_1 .

Definitie

De **lengte** van een contour is gedefinieerd als $L = \int_a^b |z'(t)| dt$ voor $C : \{z = z(t) | a \le t \le b\}.$

De lengte van C is onafhankelijk van de gekozen parametrisatie:

Zij
$$w:[a',b']\to\mathbb{C}$$
, $w=z\circ\phi$, dan $\int_{a'}^{b'}|w'(\tau)|d\tau=\int_a^b|z'(t)|dt$

Definitie

C wordt **gesloten** genoemd als w(a) = w(b).

Voorbeeld

 C_1 , C_{-1} , C_2 zijn gesloten contouren.

Definitie (continue integraal)

Zij $f: D \to \mathbb{C}$ continu en $C \subseteq D$ een contour.

We definiëren $\int_C f(z)dz = \int_a^b f(z(t)) \cdot z'(t)dt$

Voorbeeld

- $f(z) = \frac{1}{z}$, $C_1 = \{z(t) = e^{it} | 0 \le t \le \pi\}$, $C_2 = \{z(t) = e^{-it} | 0 \le t \le \pi\}$. $\int_{C_1} f(z) dz = \int_0^{\pi} f(z(t)) \cdot z'(t) dt = \int_0^{\pi} e^{-it} i e^{it} dt = \int_0^{\pi} i dt = \pi i$ $\int_{C_2} f(z) dz = \int_0^{\pi} -e^{it} i e^{-it} dt = \int_0^{\pi} -i dt = -\pi i$ Neem $C = \{z = e^{it} | 0 \le t \le 2\pi\} = \{z = e^{2it} | 0 \le t \le \pi\}$. Dit geeft $\int_C f(z) dz = 2\pi i$
- f(z) = z met C_1 , C_2 zoals net. $\int_{C_1,2} f(z) dz = \int_0^{\pi} f(z(t)) \cdot z'(t) dt = \int_0^{\pi} e^{\pm it} \pm i e^{\pm it} dt = \pm i \int_0^{\pi} e^{\pm 2it} dt = \pm i \left[\frac{1}{2it} e^{\pm 2it}\right]_0^{\pi} = 0$
- f(z) = z, $C = \{z = z(t) | t \in [a, b]\}$ (willekeurig) $\int_{C} f(z) dz = \int_{a}^{b} z(t) \cdot z'(t) dt = \int_{a}^{b} \frac{d}{dt} (\frac{1}{2}(z(t))^{2}) dt = \frac{1}{2} [z(t)^{2}]_{a}^{b} = \frac{1}{2} (z(b)^{2} - z(a)^{2})$

Voorbeeld

Het 3e voorbeeld werkt inderdaad voor voorbeeld 2.

$$(z_1=1,z_2=-1).$$

Definitie

Zij $f: D \to \mathbb{C}$ analytisch. Een analytische functie $F: D \to \mathbb{C}$ wordt anti-afgeleide (**primitieve**) genoemd, van f genoemd als F' = f.

Voorbeeld

• $F(z) = \frac{z^2}{2}$ is een primitieve van f(z) = z. (Op constante na)

Stelling (fundamental theorem of complex analysis

Zij $f: D \to \mathbb{C}$ met primitieve F, dan geldt

$$\int_{C} f(z)dz = \int_{z_{1}}^{z_{2}} f(z)dz = F(z_{2}) - F(z-1)$$

waarbij C van z_1 naar z_2 loopt $(C = \{z = z(t) | a \le t \le b\}$ met $z(a) = z_1$, $z(b) = z_2$).

De integraal $\int_C f(z)dz$ hangt alleen af van begin en eindpunt.

Opmerking

Omdat $\int_C \frac{1}{z} dz$ wel afhangt van de gekozen contour heeft $f(z) = \frac{1}{z}$ geen primitieve.

Let op! $\log(z)' = \frac{1}{z}$ maar log is meerwaardig, dus niet toegestaan.

Bewijs

$$F(z(b)) - F(z(a)) = \int_a^b \frac{d}{dt} (F(z(t))) dt = \int_a^b f(z(t)) z'(t) dt = \int_C f(z) dz \text{ met } \frac{d}{dt} (F(z(t))) = \frac{d}{dt} (U(z(t))) + i \frac{d}{dt} (V(z(t))) = \frac{d}{dt} (U(x(t) + iy(t))) + i \frac{d}{dt} (V(x(t) + iy(t))) \text{ (Cauchy Riemann vergelijkingen gebruiken, en je komt uit) waarbij } F = U + iV, z = x + iy, f = u + iv.$$