TIADPE

Location Based Services and mean/median denoising position data

Christian Fischer Pedersen Assistant Professor cfp@eng.au.dk

Section of Electrical and Computer Engineering
Department of Engineering
Aarhus University

November 25, 2014

Location based services

Moving average filtering position data

Location based services

Moving average filtering position data

Location based services

Location based services (LBS)

▶ (IT) Services that use location data to control service features

LBS application examples

Navigation

Route planning and emergency assistance

Tracking and locating

▶ Persons, pets and valuable assets

Social networking

Friend-finder and instant messaging

Billing and alerting

Road/parking billing and promotion alerting

Network operatorations

Location sensitive billing and wireless network optimization

LBS application examples (cont'd)

Figure: LBSs have increased dramatically with modern smart phones

LBS design challenges

Positioning technologies

Different levels of accuracy required for various services

Privacy

Users care about their privacy

Interoperability

How to scale from niche to mass market service

Emergency services

Reliability and accuracy if delivering emergency call locations

LBS concepts

Position

- Coordinates, e.g. WGS84 (most GPSs and Google maps)
- ► (56.158404, 10.199436800000058)

Location

- Descriptive location in the real world
- "Vesterbro Torv, DK-8000 Aarhus"

Location service

- Generation and delivery of location data
- "Where am I?"

Location based service

- Adds value to the location data
- "Show me the direction to Vesterbro Torv"

Examples of data sources for positioning

Data source examples

- GPS and A-GPS
- RSSI of WiFi, Bluetooth and Bluetooth LE
- GSM cell information

Common challenge

Often noisy and needs filtering

Methods for filtering positioning data include

- Moving average or median, exponential smoothing
- ► Low pass, Savitzky–Golay, Kalman

Location based services

Moving average filtering position data

Moving average filter

- Smooth short-term fluctuations and highlight long-term trends
- Signal of averages of neighbouring samples
- Size of neighbourhood is determined by window size, WS
- A one dimensional moving average filter is a difference eq.

$$y(n) = \frac{1}{WS} \Big(x(n-0) + x(n-1) + \dots + x(n-(WS-1)) \Big)$$

- Weights may be added according to application
- ▶ In d dimensions we average across a kernel, k, of size, n

WiFi received signal strength indicator (RSSI) data

Figure: Moving average filtered WiFi RSSI data (window size=5)

RSSI unit: Decibel-milliwatt [dBm]

- ▶ Power ratio in dB: Measured power referenced to 1 mW
- ▶ Absolute unit (for absolute power) as referenced to Watt
- A power level of 0 dBm corresponds to a power of 1 mW
- ▶ A 3 dB increase/decrease \approx doubling/halving the power
- Express power P in mW as x in dBm and vice versa

$$x = 10 \cdot \log_{10} \frac{P}{1 \text{mW}} \quad \Leftrightarrow \quad P = 1 \text{mW} \cdot 10^{x/10}$$

Some common RSSI levels

802.11/WiFi received signal power

- Max: -10 dBm $\approx 100 \cdot 10^{-6}$ W
- ► Min: -100 dBm $\approx 100 \cdot 10^{-15}$ W

GPS satellite received signal power

▶ Typical: -127.5 dBm $\approx 178 \cdot 10^{-18} \text{ W}$

Path estimation with synthetical GPS data

- ► Location example: GPS data corrupted by Gaussian noise
- ▶ Mean of n neighbouring samples (here n = 3)

Image restoration

▶ Noisy image mean filtered w/ $n \times n$ kernel (here n = 3)

Estimation

Difference between truth and estimation

Location based services

Moving average filtering position data

WiFi received signal strength indicator (RSSI) data

Figure: Moving median filtered WiFi RSSI data (window size=5)

Path estimation with synthetical GPS data

- ► Location example: GPS data corrupted by Gaussian noise
- ▶ Median of n neighbouring samples (here n = 3)

Image restoration

▶ Noisy image median filtered w/ $n \times n$ kernel (here n = 3)

