German Credit Data Exploration_2

Dr. Prashant Mishra
3/26/2018

1. Import the Clean data

```
We already have a clean file "german_credit_full.csv" to import.
```

```
credit_dataset <- read.csv("german_credit_full.csv",stringsAsFactors = TRUE)
str(credit_dataset)</pre>
```

```
## 'data.frame':
                    1000 obs. of 21 variables:
## $ Class
                               : Factor w/ 2 levels "Bad", "Good": 2 1 2 2 1 2 2 2 1 ...
## $ CheckingAccountStatus
                               : Factor w/ 4 levels "0.to.200", "gt.200", ...: 3 1 4 3 3 4 4 1 4 1 ...
## $ Duration
                               : int 6 48 12 42 24 36 24 36 12 30 ...
                               : Factor w/ 5 levels "Critical", "Delay", ...: 1 4 1 4 2 4 4 4 1 ....
## $ CreditHistory
## $ Purpose
                               : Factor w/ 10 levels "Business", "DomesticAppliance", ..: 7 7 3 4 5 3 4 1
## $ Amount
                               : int 1169 5951 2096 7882 4870 9055 2835 6948 3059 5234 ...
## $ SavingsAccountBonds
                               : Factor w/ 5 levels "100.to.500", "500.to.1000", ...: 5 4 4 4 4 5 2 4 3 4
                               : Factor w/ 5 levels "0.to.1", "1.to.4", ...: 4 2 3 3 2 2 4 2 3 5 ...
   $ EmploymentDuration
## $ InstallmentRatePercentage: int 4 2 2 2 3 2 3 2 2 4 ...
## $ Personal
                               : Factor w/ 4 levels "Female.NotSingle",..: 4 1 4 4 4 4 4 2 3 ...
## $ OtherDebtorsGuarantors
                               : Factor w/ 3 levels "CoApplicant",...: 3 3 3 2 3 3 3 3 3 ...
## $ ResidenceDuration
                               : int 4234444242 ...
                               : Factor w/ 4 levels "CarOther", "Insurance", ..: 3 3 3 2 4 4 2 1 3 1 ...
## $ Property
## $ Age
                               : int 67 22 49 45 53 35 53 35 61 28 ...
## $ OtherInstallmentPlans
                               : Factor w/ 3 levels "Bank", "None", ...: 2 2 2 2 2 2 2 2 2 2 ...
## $ Housing
                               : Factor w/ 3 levels "ForFree", "Own", ...: 2 2 2 1 1 1 2 3 2 2 ....
## $ NumberExistingCredits
                               : int 2 1 1 1 2 1 1 1 1 2 ...
                               : Factor w/ 4 levels "Management.SelfEmp.HighlyQualified",..: 2 2 4 2 2
## $ NumberPeopleMaintenance
                              : int 1 1 2 2 2 2 1 1 1 1 ...
## $ Telephone
                               : int 1000010100...
## $ ForeignWorker
                               : int 1 1 1 1 1 1 1 1 1 1 ...
colnames(credit_dataset)
##
   [1] "Class"
                                    "CheckingAccountStatus"
   [3] "Duration"
##
                                    "CreditHistory"
## [5] "Purpose"
                                    "Amount"
## [7] "SavingsAccountBonds"
                                    "EmploymentDuration"
## [9] "InstallmentRatePercentage"
                                    "Personal"
## [11] "OtherDebtorsGuarantors"
                                    "ResidenceDuration"
## [13] "Property"
                                    "Age"
```

[17] "NumberExistingCredits"
[19] "NumberPeopleMaintenance"

[15] "OtherInstallmentPlans"

"Housing" "Job"

[21] "ForeignWorker"

2. Explore Class vs Checking Account Status, Credit History and Employment Duration

```
library(gmodels)
CrossTable(credit_dataset$CheckingAccountStatus, credit_dataset$Class)
##
    Cell Contents
## |-----|
## | Chi-square contribution |
## | N / Row Total |
        N / Col Total |
## |
    N / Table Total |
## Total Observations in Table: 1000
##
##
                            | credit_dataset$Class
## credit_dataset$CheckingAccountStatus | Bad | Good | Row Total |
  -----|-----|-----|
##
                      0.to.200 |
                                105 | 164 |
                            ##
##
  -----|----|----|
                       gt.200 | 14 | 49 | 63 |
                               1.270 | 0.544 | | 0.222 | 0.778 | 0.063 | 0.047 | 0.070 |
##
##
                                0.014 | 0.049 |
                              135 | 139 | 274 |
33.915 | 14.535 | |
                        lt.0 |
##
                           ##
                            | 0.493 | 0.507 |
##
                            0.450 |
                                        0.199 |
                                      0.139 |
                                0.135 |
                        ##
##
                               0.153 |
                                        0.497 |
                               0.046 l
                                        0.348 l
                  Column Total | 300 | 700 | 1000 | 0.300 | 0.700 |
##
```

##

```
library(ggplot2)
pl1 = ggplot(credit_dataset, aes(x = CheckingAccountStatus, fill = Class));
pl2 = pl1 + geom_bar()
pl2 + theme(axis.text.x = element_text(angle = 90, hjust = 1))
```



```
pl3 = pl1 + geom_bar(position = "fill") + ylab("proportion")
pl3+ theme(axis.text.x = element_text(angle = 90, hjust = 1))
```


Two points:

- 1. It seems people who have Checking Account but only get amount between 0-200 DM are more likely to be a bad loan profile.
- 2. People who don't have a checking account might have account else where (other banks).

```
pl1 = ggplot(credit_dataset, aes(x = CheckingAccountStatus, fill = EmploymentDuration));
pl2 = pl1 + geom_bar()+facet_grid(~Class)
pl2+ theme(axis.text.x = element_text(angle = 90, hjust = 1))
```



```
pl2 = pl1 + geom_bar(position = "fill") + ylab("proportion")+facet_grid(~Class)
pl2 + theme(axis.text.x = element_text(angle = 90, hjust = 1))
```



```
pl1 = ggplot(credit_dataset, aes(x = CheckingAccountStatus, fill = CreditHistory));
pl2 = pl1 + geom_bar()+facet_grid(~Class)
pl2+ theme(axis.text.x = element_text(angle = 90, hjust = 1))
```



```
pl2 = pl1 + geom_bar(position = "fill") + ylab("proportion")+facet_grid(~Class)
pl2 + theme(axis.text.x = element_text(angle = 90, hjust = 1))
```


2. Explore Class vs Purpose, Personal and Property

CrossTable(credit_dataset\$Purpose,credit_dataset\$Class)

## ## ##		0.113 0.034	0.090 0.063	
## ##	DomesticAppliance	4 0.044	8 0.019	 12
## ## ##	 	0.333 0.013 0.004	0.667 0.011 0.008	0.012
## ## ##	Education	22 3.267	 28 1.400	 50
## ## ##	 	0.440 0.073 0.022	0.560 0.040 0.028	0.050
## ## ##	 Furniture.Equipment	58 0.252	 123	 181
## ## ##	 	0.320 0.193 0.058	0.680 0.176 0.123	
## ## ##	 NewCar	 89 5.035	 145 2.158	 234
## ## ##	 	0.380 0.297 0.089	0.620 0.207 0.145	0.234
## ## ##	 Others	5 0.544	 7 0.233	 12
## ## ##		0.417 0.017 0.005	0.583 0.010 0.007	0.012 0.012
## ## ##	Radio.Television	62 5.762	 218 2.469	 280
## ## ##	 	0.221 0.207 0.062	0.779 0.311 0.218	0.280
## ## ##	 Repairs		 14 0.127	 22
## ## ##	 	0.364 0.027 0.008	0.636 0.020 0.014	0.022
## ## ##	 Retraining	1 1.070	 8 0.459	 9
## ## ##	 	0.111 0.003 0.001	0.889 0.011 0.008	0.009
## ## ##	 UsedCar	 17 6.253	 86 2.680	 103
##	i	0.165		0.103

CrossTable(credit_dataset\$Personal,credit_dataset\$Class)

##

Cell Contents

|------|

| N |

| Chi-square contribution |

| N / Row Total |

| N / Total |

| N / Table Total |

|------|

##

Total Observations in Table: 1000

##

##		credit_dataset\$Class		
##	credit_dataset\$Personal	Bad	Good	Row Total
## ##	Female.NotSingle	 109	 201	310
##		2.753	1.180	ĺ
##		0.352	0.648	0.310
##		0.363	0.287	I
##		0.109	0.201	
## ##	Male.Divorced.Seperated		 30	50
##	_	1.667	0.714	I
##		0.400	0.600	0.050
##	1	0.067	0.043	I
## ##		0.020	0.030	
##	Male.Married.Widowed	 	 67	92
##		0.245	0.105	I
##	J	0.272	0.728	0.092
##	1	0.083	0.096	I
## ##		0.025	0.067	
##	Male.Single	146		548
##		2.059	0.883	I
##		0.266	0.734	0.548
##		0.487	0.574	I
##		0.146	0.402	
## ##	Column Total	300	 700	1000
##		0.300	0.700	ĺ

```
##
CrossTable(credit_dataset$Property,credit_dataset$Class)
##
##
##
    Cell Contents
## |
## | Chi-square contribution |
## | N / Row Total | ## | N / Col Total |
      N / Table Total |
##
## Total Observations in Table: 1000
##
                     | credit_dataset$Class
## credit_dataset$Property | Bad | Good | Row Total |
## -----|-----|
              CarOther |
                          102 | 230 |
                         0.058 | 0.025 |
0.307 | 0.693 |
##
##
                                           0.332 |
##
                         0.340 | 0.329 |
                                 0.230 |
                          0.102 |
                -----|-----|
                        71 | 161 |
##
             Insurance |
                         0.028 | 0.012 |
                                              ##
##
                          0.306 |
                                   0.694 |
                          0.237 |
                                   0.230 |
                          0.071 |
                                    0.161
                          60 | 222 | 282 |
7.153 | 3.066 | |
                         60 l
            RealEstate |
##
##
                         0.213 |
                                  0.787 |
                                              0.282 |
                          0.200 |
                                   0.317 l
                                    0.222 |
                          0.060 |
               Unknown | 67 | 87 | 154 |
                         9.365 | 4.013 |
##
                     - 1
                                  0.565 |
                         0.435 |
##
##
                         0.223 |
                                   0.124 |
                          0.067 |
                                    0.087 |
                          300 l
                                    700 |
           Column Total |
                                             1000 |
                          0.300 |
                                  0.700 |
          -----|----|-----|
##
##
```

-----|-----|

##


```
pl1 = ggplot(credit_dataset, aes(x = Purpose, fill = Personal));
pl2 = pl1 + geom_bar()+facet_grid(~Class)
pl2+ theme(axis.text.x = element_text(angle = 90, hjust = 1))
```



```
pl2 = pl1 + geom_bar(position = "fill") + ylab("proportion")+facet_grid(~Class)
pl2 + theme(axis.text.x = element_text(angle = 90, hjust = 1))
```



```
pl1 = ggplot(credit_dataset, aes(x = Purpose, fill = Property));
pl2 = pl1 + geom_bar()+facet_grid(~Class)
pl2+ theme(axis.text.x = element_text(angle = 90, hjust = 1))
```



```
pl2 = pl1 + geom_bar(position = "fill") + ylab("proportion")+facet_grid(~Class)
pl2 + theme(axis.text.x = element_text(angle = 90, hjust = 1))
```


- 1. New Car loan seems to be worse than used car loans and any other loan.
- 2. Property doesn't seem to play a huge role as a deciding factor.

```
pl1 = ggplot(credit_dataset, aes(x = Purpose, y = Amount, color=Purpose));
pl2 = pl1 + geom_boxplot()+facet_grid(~Class)
pl2 + theme(axis.text.x = element_text(angle = 90, hjust = 1))
```



```
pl1 = ggplot(credit_dataset, aes(x = Personal, y = Amount, color=Personal));
pl2 = pl1 + geom_boxplot()+facet_grid(~Class)
pl2 + theme(axis.text.x = element_text(angle = 90, hjust = 1))
```



```
pl1 = ggplot(credit_dataset, aes(x = Job, y = Amount, color=Job));
pl2 = pl1 + geom_boxplot()+facet_wrap(~Class,ncol = 2)
pl2 + theme(axis.text.x = element_text(angle = 90, hjust = 1))
```



```
pl1 = ggplot(credit_dataset, aes(x = Housing, y = Amount, color=Class));
pl2 = pl1 + geom_boxplot()+facet_wrap(~Personal,ncol=2)
pl2 + theme(axis.text.x = element_text(angle = 90, hjust = 1))
```


- 1. Used car data show that that Female.NotSingle tend to take higher loan for Used car, and are more likely bad loans.
- 2. Unsual data for Others, we might need to get more data on that.

```
pl1 = ggplot(credit_dataset, aes(x = Personal, y = Amount, color=Class));
pl2 = pl1 + geom_boxplot()+facet_wrap(~Job,ncol=2)
pl2 + theme(axis.text.x = element_text(angle = 90, hjust = 1))
```


Male single, Unemployed and Unskilled— high risk 2. Female Not Single — Also high risk 3. Male Divored/Separated Unskilled Resident – high risk

```
pl1 = ggplot(credit_dataset, aes(x = Personal, y = Amount, color=Class));
pl2 = pl1 + geom_boxplot()+facet_wrap(~CheckingAccountStatus,ncol=2)
pl2 + theme(axis.text.x = element_text(angle = 90, hjust = 1))
```


Just some detective skill: We can see the outlier in NoCredit.AllPaid, Female.NotSingle. Some one from Highskilled, management or self employed category with checking account status between 0 to 200 took the loan for others category.