回归算法及其应用

2019年7月20日

房价预测

监督式学习

回归问题

• 房价数据

面积 (x)	房价(y)
286.126	428.054
203.052	314.231
294.9	454.869
65.7734	102.841
•••	•••

• 训练样本

$$(x,y)$$

 $(x^{(i)},y^{(i)})$

如何表示f(x)

$$f(x) = wx + b$$

• 训练样本

面积 (x)	房价 (y)
286.126	428.054
203.052	314.231
294.9	454.869
65.7734	102.841
•••	

•
$$f(x) = wx + b$$

参数: w,b

如何确定?

$$\bullet f(x) = wx + b$$

$$w = 0.0$$

 $b = 1.5$

$$w = 0.5$$
$$b = 0.0$$

$$w = 0.5$$

 $b = 1.0$

准则:挑选w,b使得对训练样本 (x,y)的预测f(x)和y越接近越好

$$\min_{w,b} \frac{1}{m} \sum_{i=1}^{m} (f(x_i) - y_i)^2$$
目标公式

$$J(w,b) = \frac{1}{m} \sum_{i=1}^{m} (f(x_i) - y_i)^2$$
 代价函数

• 映射

$$f(x) = wx + b$$

• 参数

w, b

• 代价函数

$$J(w,b) = \frac{1}{m} \sum_{i=1}^{m} (f(x_i) - y_i)^2$$

目标

$$\min_{w,b} \frac{1}{m} \sum_{i=1}^{m} (f(x_i) - y_i)^2$$

问题简化

$$f(x) = wx$$

W

$$J(w) = \frac{1}{m} \sum_{i=1}^{m} (f(x_i) - y_i)^2$$

$$\min_{w} \frac{1}{m} \sum_{i=1}^{m} (f(x_i) - y_i)^2$$

J(w) (固定x,J(w)是一个关于w的函数)

• 映射

$$f(x) = wx + b$$

• 参数

w, b

• 代价函数

$$J(w,b) = \frac{1}{m} \sum_{i=1}^{m} (f(x_i) - y_i)^2$$

目标

$$\min_{w,b} \frac{1}{m} \sum_{i=1}^{m} (f(x_i) - y_i)^2$$

f(x) (固定w和b, f(x)是一个关于x的函数)

J(w,b) (固定x,J(w,b)是一个关于w,b的函数)

• 假设已有代价损失函数

$$J(w,b) = \frac{1}{m} \sum_{i=1}^{m} (f(x_i) - y_i)^2$$

目标

$$\min_{w,b} \frac{1}{m} \sum_{i=1}^{m} (f(x_i) - y_i)^2$$
w, b

- 求解框架
 - 变量w,b随机赋值
 - 变化w,b以减少J(w,b)的值,直到寻找到最优参数

• 梯度下降算法

• 梯度方向

$$\frac{\partial J(w,b)}{\partial w} = \frac{2}{m} \sum_{i=1}^{m} (wx^{(i)} + b - y^{(i)})x^{(i)}$$
$$\frac{\partial J(w,b)}{\partial b} = \frac{2}{m} \sum_{i=1}^{m} (wx^{(i)} + b - y^{(i)})$$

• 更新变量w,b

$$w = w - \alpha \frac{\partial J(w, b)}{\partial w}$$
$$b = b - \alpha \frac{\partial J(w, b)}{\partial b}$$

f(x) (固定w和b, f(x)是一个关于x的函数)

J(w,b) (固定x,J(w,b)是一个关于w,b的函数)

f(x) (固定w和b, f(x)是一个关于x的函数)

J(w,b) (固定x, J(w,b)是一个关于w,b的函数)

f(x) (固定w和b, f(x)是一个关于x的函数)

J(w,b) (固定x,J(w,b)是一个关于w,b的函数)

房价预测(进阶)

多变量线性回归

面积 (x ₁)	市中心距离(x2)	价格 (y)
92.6487	84.6225	210.063
276.64	54.7967	417.446
162.741	4.34897	275.893
173.522	9.96174	254.641
•••		

$$f(x_1, x_2) = w_1 x_1 + w_2 x_2 + b$$

多变量线性回归

• 映射

$$f(x) = w_1 x_1 + w_2 x_2 + b$$

• 参数

$$w_1, w_2, b$$

• 代价函数

$$J(w,b) = \frac{1}{m} \sum_{i=1}^{m} (f(x^{(i)}) - y^{(i)})^{2}$$

目标

$$\min_{w_1, w_2, b} \frac{1}{m} \sum_{i=1}^{m} (f(x^{(i)}) - y^{(i)})^2$$

多变量线性回归

• 梯度方向

$$\frac{\partial J(w_1, w_2, b)}{\partial w_1} = \frac{2}{m} \sum_{i=1}^{m} \left(w_1 x_1^{(i)} + w_2 x_2^{(i)} + b - y^{(i)} \right) x_1^{(i)}$$

$$\frac{\partial J(w_1, w_2, b)}{\partial w_2} = \frac{2}{m} \sum_{i=1}^{m} \left(w_1 x_1^{(i)} + w_2 x_2^{(i)} + b - y^{(i)} \right) x_2^{(i)}$$

$$\frac{\partial J(w_1, w_2, b)}{\partial b} = \frac{2}{m} \sum_{i=1}^{m} \left(w x^{(i)} + b - y^{(i)} \right)$$

• 更新变量w, b

$$w_1 = w_1 - \alpha \frac{\partial J(w_1, w_2, b)}{\partial w_1}$$

$$w_2 = w_2 - \alpha \frac{\partial J(w_1, w_2, b)}{\partial w_2}$$

$$b = b - \alpha \frac{\partial J(w_1, w_2, b)}{\partial b}$$

轨道预测 (课后作业1)

问题简化

噪声干扰

回归问题

特征

		1.00		_	V _			
Input	Output	1.00 -		90	χ_3			
$x^{(1)} = 0.03$	$y^{(1)} = 0.19$	0.75 - 0.50 -			\o_0			
$x^{(2)} = 0.78$	$y^{(2)} = -0.91$	0.25 -			1			
$x^{(3)} = 0.25$	$y^{(3)} = 0.88$	0.00 -	ø		\			,
		-0.25 -						
$x^{(15)} = 0.64$	$y^{(15)} = -0.91$	-0.50 -						þ
		-0.75 -				~	مرم	
		-1.00 -					<u> </u>	
			0.0	0.2	0.4	0.6	0.8	1.0

特征扩充

Input	Output	
$x^{(1)} = 0.03$	$y^{(1)} = 0.19$	
$x^{(2)} = 0.78$	$y^{(2)} = -0.91$	
$x^{(3)} = 0.25$	$y^{(3)} = 0.88$	
$x^{(15)} = 0.64$	$y^{(15)} = -0.91$	

	Input		Output
$x_1^{(1)} = 0.03$	$x_2^{(1)} = 0.001$	$x_3^{(1)} = 0.00005$	$y^{(1)} = 0.1907$
$x_1^{(2)} = 0.78$	$x_2^{(2)} = 0.608$	$x_3^{(2)} = 0.47455$	$y^{(2)} = -0.9118$
$x_1^{(3)} = 0.25$	$x_2^{(3)} = 0.0625$	$x_3^{(3)} = 0.01562$	$y^{(3)} = 0.8866$
			•••
$x_1^{(15)} = 0.64$	$x_2^{(15)} = 0.409$	$x_3^{(15)} = 0.26214$	$y^{(15)} = -0.9104$

 x_1 x_2 x_3

多项式拟合

Input			Output
$x_1^{(1)} = 0.03$	$x_2^{(1)} = 0.001$	$x_3^{(1)} = 0.00005$	$y^{(1)} = 0.1907$
$x_1^{(2)} = 0.78$	$x_2^{(2)} = 0.608$	$x_3^{(2)} = 0.47455$	$y^{(2)} = -0.9118$
$x_1^{(3)} = 0.25$	$x_2^{(3)} = 0.0625$	$x_3^{(3)} = 0.01562$	$y^{(3)} = 0.8866$
		•••	•••
$x_1^{(15)} = 0.64$	$x_2^{(15)} = 0.409$	$x_3^{(15)} = 0.26214$	$y^{(15)} = -0.9104$

$$y(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \ldots + w_M x^M = \sum_{j=0}^{\infty} w_j x^j$$

作业2

• 使用sklearn进行多变量房价预测