编号: UG016

等级:公开

# 数据通信接口协议

Protocol

#### 简介

本《数据通信接口协议》适用于北云科技全系列产品。本手册为通用版本,请用户根据实际购买产品的型号、配置,针对不同需求选择参考阅读。

bynavitz

bynavitā

bynavit

bynav北岩

bynavit





# 修订状态页

| 日期       | 版本   | 修订说明                                                                                                                                                             | 修订人签署   |
|----------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 20210126 | 1.0  | 修订改版                                                                                                                                                             | Ljh、zwb |
| 20210201 | 1.1  | 1、增加 rtcm 消息, 2、增加星历及观测数据, 3、修改指令消息概述部分文字, 4、增加 log 指令说明, 5、标注 SETINSAXIS 为弃用(未删), 6、删除 setinsprofile 中 LAND_PLUS 及 marine_plus 类型 7、标注 pashr 为*, 8、标注 enuavr 为* | Ljh     |
| 20210205 | 1.2  | 完善星历部分,增加 canconfig、ccomconfig、j1939config 语句                                                                                                                    | Ljh     |
| 20210205 | 1.3  | 1、增加 headingoffset<br>2、梳理取值范围(Ecutoff,SNRCUTOFF 未完善)<br>3、修改 inscalstatus<br>4、统一消息类型命名,统一 ASCII 及二进制格式命名                                                       | Ljh     |
| 20210208 | 1.4  | 梳理取值范围(Ecutoff, SNRCUTOFF)                                                                                                                                       | Ljh     |
| 20210220 | 1.5  | <ol> <li>删除 SETINSAXIS</li> <li>Pashr 增加*,仅支持组合导航设备</li> <li>增加自定义消息 ID,以适配二进制消息</li> <li>Corrimu 增加*,仅支持组合导航设备</li> <li>增加 heading2a</li> </ol>                 | Ljh     |
| 20210222 | 1.6  | 1、 修改 ENUAVR,insconfig 部分文字说明<br>2、 增加 flashdnaa<br>3、 增加姿态角度取值范围                                                                                                | Ljh、zwb |
| 20210225 | 1.7  | 更改 frequencyout,disable                                                                                                                                          | zwb     |
| 20210303 | 1.8  | 1、 更改短格式同步头<br>2、 补充数据类型                                                                                                                                         | Ljh     |
| 20210311 | 1.9  | 更改部分指令生效方式                                                                                                                                                       | Ljh     |
| 20210317 | 1.10 | 更改 workfreqs                                                                                                                                                     | Zwb     |
| 20210318 | 1.11 | 增加 psrvel、velsmooth、bestutm                                                                                                                                      | Ljh     |
| 20210324 | 1.12 | 修改星历及观测数据 Binary 格式偏移量                                                                                                                                           | Ljh     |



|     | avit T                  | 录<br>一avdt石 |
|-----|-------------------------|-------------|
| 1 ; | 指令及消息格式概述               | 8           |
| 2 ; | 消息格式                    | 8           |
|     | 2.1 ASCII 格式            | 8           |
|     | 2.1.1 NMEA 格式           | 9           |
|     | 2.1.2 自定义 ASCII 格式      | 10          |
|     | 2.1.2.1 标准格式 ASCII 信息结构 | 10          |
|     | 2.1.2.2 短格式 ASCII 信息结构  | 12          |
|     | 2.2 自定义二进制格式            | 13          |
|     | 2.2.1 标准格式二进制信息结构       | 13          |
|     | 2.2.2 短格式二进制信息结构        | 15          |
|     | 2.3 数据类型                | 17          |
| 3 : | 指令                      | 18          |
|     | 3.1 通用指令                |             |
|     | 3.1 AUTH                |             |
|     | 5, 7.6                  |             |
|     | 3.1.2 CANCONFIG         |             |
|     |                         |             |
|     |                         |             |
|     |                         | 20          |
|     |                         | 20          |
|     | ·                       | 21          |
|     |                         | 22          |
|     |                         | 22          |
|     | 3.1.10 IPCONFIG         | 23          |



|   | 3.1.11 J1939CONFIG    |    |
|---|-----------------------|----|
|   | 3.1.12 LOG            | 24 |
|   | 3.1.13 NTRIPCONFIG    | 25 |
|   | 3.1.14 OUTPUTSOURCE   | 26 |
|   | 3.1.15 QUALITYCHECK   | 26 |
|   | 3.1.16 REBOOT         | 27 |
|   | 3.1.17 RESET          |    |
|   | 3.1.18 SAVECONFIG     |    |
|   | 3.1.19 SERIALCONFIG   | 28 |
|   | 3.1.20 SET            | 28 |
|   | 3.1.21 SETBASELINE    | 29 |
|   | 3.1.22 TRANS          | 30 |
|   | 3.1.23 UNLOG/UNLOGALL | 30 |
| 3 | 3.2 GNSS 指令           | 31 |
|   | 3.2.1 ECUTOFF         | 31 |
|   | 3.2.2 FIX             | 31 |
|   | 3.2.3 FRESET          | 32 |
|   | 3.2.4 GPSREFWEEK      | 33 |
|   | 3.2.5 HEADINGOFFSET   | 33 |
|   | 3.2.6 NMEATALKER      | 34 |
|   | 3.2.7 PJKPARA         | 35 |
|   | 3.2.8 RTKTIMEOUT      | 35 |
|   | 3.2.9 RTKTYPE         | 36 |
|   | 3.2.10 SAVEEPHDATA    | 36 |
|   | 3.2.11 SETGLOIFB      | 37 |
|   | 3.2.12 SNRCUTOFF      | 37 |
|   |                       |    |



| 3.2.13 VELSMOOTH         |    |
|--------------------------|----|
| 3.2.14 WORKFREQS         |    |
| 3.2.15 DGPSTXID          | 39 |
| 3.3 组合导航指令               | 40 |
| 3.3.1 INSCALIBRATE*      | 40 |
| 3.3.2 RAWIMUOUT*         | 40 |
| 3.3.3 SETALIGNMENTVEL*   |    |
| 3.3.4 SETINSPROFILE*     | 41 |
| 3.3.5 SETINSROTATION*    | 42 |
| 3.3.6 SETINSTRANSLATION* | 43 |
| 3.3.7 SETINSTYPE*        | 44 |
| 3.3.8 SETINSUPDATE*      | 44 |
| 4 消息                     | 45 |
| 4.1 NMEA 格式消息            | 45 |
| 4.1.1 ATR                | 45 |
| 4.1.2 BYINS              | 46 |
| 4.1.3 DOP                | 48 |
| 4.1.4 FPD                | 49 |
| 4.1.5 GGA                | 50 |
| 4.1.6 GSA                | 51 |
| 4.1.7 GST                | 52 |
| 4.1.8 GSV                | 53 |
| 4.1.9 HDT                | 54 |
| 4.1.10 HPD               | 54 |
| 4.1.11 NTR               | 56 |
| 4.1.12 ORI               | 57 |



|     | 4.1.13 PASHR*        | 57 |
|-----|----------------------|----|
|     | 4.1.14 PTNL AVR      | 58 |
|     | 4.1.15 PTNL PJK      | 59 |
|     | 4.1.16 RMC           | 60 |
|     | 4.1.17 TRA           | 61 |
|     | 4.1.18 VTG           | 62 |
|     | 4.1.19 ZDA           | 63 |
| 4.2 | 自定义格式消息              | 64 |
|     | 4.2,1 BESTPOS        | 64 |
|     | 4.2.2 BESTGNSSPOS    |    |
|     | 4.2.3 BESTUTM        | 72 |
|     | 4.2.4 BESTGNSSVEL    | 74 |
|     | 4.2.5 CORRIMUDATA*   | 75 |
|     | 4.2.6 CORRIMUDATAS*  | 76 |
|     | 4.2.7 HEADING        | 77 |
|     | 4.2.8 HEADING2       | 78 |
|     | 4.2.9 INSATT*        | 79 |
|     | 4.2.10 INSCALSTATUS* | 81 |
|     | 4.2.11 INSPOS*       | 82 |
|     | 4.2.12 INSPTNLPJKS*  | 83 |
|     | 4.2.13 INSPVA*       | 84 |
|     | 4.2.14 INSPVAS*      | 86 |
|     | 4.2.15 INSPVAX*      | 87 |
|     | 4.2.16 INSSPD*       | 90 |
|     | 4.2.17 INSSTDEV*     | 91 |
|     | 4 2 18 INSVEL*       | 92 |



|     | 4.2.19 MARKTIME,MARK2TIME | 93  |
|-----|---------------------------|-----|
|     | 4.2.20 PSRVEL             | 95  |
|     | 4.2.21 RAWIMU*            | 96  |
|     | 4.2.22 RAWIMUS*           | 98  |
|     | 4.2.23 RAWIMUSX*          | 99  |
|     | 4.2.24 RAWIMUX*           | 100 |
| 4.3 | 3 配置查询                    | 101 |
|     | 4.3.1 AUTHORIZATION       | 101 |
|     | 4.3.2 BYCHECK             | 102 |
|     | 4.3.3 BYCONFIG            | 104 |
|     | 4.3.4 CCOMCONFIG          | 104 |
|     | 4.3.5 COMCONFIG           | 105 |
|     | 4.3.6 FLASHDNA            |     |
|     | 4.3.7 FLASHDNAA           |     |
|     | 4.3.8 ICOMCONFIG          | 107 |
|     | 4.3.9 INSCONFIG*          | 108 |
|     | 4.3.9.1 简化格式              | 108 |
|     | 4.3.9.2 ASCII 格式          | 110 |
|     | 4.3.10 IPCONFIG           | 115 |
|     | 4.3.11 IPSTATUS           | 116 |
|     | 4.3.12 LOGLIST            | 116 |
|     | 4.3.12.1 简化格式             | 116 |
|     | 4.3.12.2 ASCII 格式         | 118 |
|     | 4.3.12.3 二进制格式            | 119 |
|     | 4.3.13 NMEATALKER         | 120 |
|     | 4 3 14 NTRIPCONFIG        | 120 |



|       | 4.3.15 PJKPARA                    | 121 |
|-------|-----------------------------------|-----|
|       | 4.3.16 REFSTATION/ REFSTATIONINFO |     |
|       | 4.3.17 REFSTATIONA                | 123 |
|       | 4.3.18 RTKCONFIG                  | 123 |
|       | 4.3.19 SHIFTDATUM                 | 124 |
|       | 4.3.20 VERSION                    | 125 |
| 4.4   | 其他格式消息                            | 126 |
|       | 4.4.1 ENU                         | 126 |
|       | 4.4.2 ENUAVR*                     | 128 |
|       | 4.4.3 KSXT                        | 129 |
| 4.5 F | RTCM 格式消息                         | 131 |
|       | 4.5.1 RTCM 数据                     | 131 |
|       | 4.5.2 RTCM 数据帧结构                  |     |
|       | 4.5.3 北云设备支持 RTCM 消息类型介绍          |     |
|       | 4.5.3.1 基准站支持 RTCM 消息类型           | 131 |
|       | 4.5.3.2 流动站支持 RTCM 消息类型           | 134 |
| 4.6   | 星历及观测数据                           | 134 |
|       | 4.6.1 消息内容                        | 134 |
|       | 4.6.2 配置输出                        |     |
|       | 4.6.3 信息格式                        | 135 |
|       | 4.6.4 输出消息                        | 135 |
|       | 4.6.4.1 bdsephemerisb             | 135 |
|       | 4.6.4.2 galephemerisb             | 137 |
|       | 4.6.4.3 gpsephemb                 | 139 |
|       | 4.6.4.4 gloephemerisb             | 141 |
|       | 4.6.4.5 qzssephemerisb            | 143 |



| 4.6.4.6 rangecmpb  | 145      |
|--------------------|----------|
| 4.6.4.6 rangechips | bynavita |
|                    |          |
|                    |          |
|                    |          |
|                    |          |



## 1 指令及消息格式概述

bynavitz 北云系列产品根据传输性质和功能,将数据分为指令和消息。输入以完成设备操作配 置的数据称之为指令,输出含有解算结果、设备状态信息等内容的数据称之为消息。

指令根据使用场景不同分为通用指令、GNSS 指令及组合导航指令。消息根据消息类 别分为 NMEA 格式消息、自定义格式消息、配置查询结果、其他格式消息、RTCM 格式消 息,以及星历及观测数据。

其中,对于自定义格式消息,当输入 ASCII 命令请求输出日志时,消息类型由消息名 称末尾附加的字符指示。 "A"表示消息是 ASCII, "B"表示二进制。在发出二进制命 令时,输出消息类型取决于消息的二进制头中的位格式。

## 2 消息格式

#### 2.1 ASCII 格式

用户和计算机可直接查看 ASCII 信息, 所有 ASCII 信息都遵循下面的一般约定:

- 1. 每条信息前导符为 "#" 、 "\$" 或 "%";
- 2. 每条消息或指令的可变长度依赖于数据量和格式;
- 3. 所有数据字段以","分隔,但有两种例外情形:
- 第一种情况是, 自定义格式消息标头 (Header) 的最后一个字段后是 ";", 表 明数据信息的开始;
- 第二种情况是,最后一个字段后是"\*",表明数据信息的结束。
- 4. 每条消息结尾都有一个以"\*"开始的十六进制数字和用来表示该行结束的换行回 车符, (如\*1234ABCD[CR][LF])。十六进制数是该条消息所有字符的 32 位 CR C 校验和, 但不包括"#"、"\*"及其之后的 8 位 CRC 数字。
- 5. 一个 ASCII 字符串是一个字段,该字符串包含在双引号中(如"ASCII strin q")。如果一个分隔符包含在双引号中,那么该字符串仍然是一个字段,且该 分隔符将被忽略(如 "xxx,xxx" )。在字符串中出现双引号将为非法。



6. 如果接收机探测到错误的输入信息,将返回出错信息。

#### 2.1.1 NMEA 格式

NMEA 格式消息定义了接口消息的一般形式,任何接口消息都包含以下要素:

NMEA 格式消息 ASCII 信息的结构:

\$--<消息类型标识>,<数据字段>,<数据字段>,.....,<数据字段>\*<校验和><CR><LF>

表 2-1 NMEA 标准消息格式说明

| 字段                                     | 字段说明                                                |
|----------------------------------------|-----------------------------------------------------|
| \$/!                                   | 起始符(ASCII 码字符为 0x24),消息开始的标志。                       |
|                                        | 卫星系统类别,用于区分北斗、GPS、兼容输出信息类别。                         |
|                                        | BD-北斗                                               |
|                                        | GP-GPS                                              |
|                                        | GN-兼容                                               |
| 消息类型标                                  | 用于区分消息种类和功能。固定宽度为 3 位的英文字符,建议使用大写英文字母。本             |
| 识                                      | 协议中定义了参数消息、询问消息和专用消息三类消息。                           |
| , 93                                   | 字段分隔符(ASCII 码字符为 0x2C),分隔消息中多个字段。                   |
|                                        | 每个消息可包含多个被字段分隔符","分开的数据字段。除特殊说明外,数据字段中              |
| ************************************** | 只允许使用除保留字符 (表 1-2) 外的可打印 ASCII 码字符。数据传输时,只有通过分      |
| 数据字段                                   | 隔符","确定数据字段在一条消息中的位置,即通过对分隔符的计数来确定字段位置,             |
|                                        | 而不应从消息的开始对接收到的字符的总个数来计数。                            |
| *                                      | 校验和定界符。为数据内容和校验和字段的分隔符。                             |
| 拉瓜和                                    | 校验和为消息中"\$"和"*"之间(不含符号"\$"和"*")全部字符按字节异或的结果,        |
| 校验和                                    | 前 4 比特和后 4 比特的 16 进制数分别以 ASCII 码表示(0~9, A~F), 高位在前。 |
| <cr><lf></lf></cr>                     | 终止符(ASCII 码字符为 0x0D0A)。标志一个消息的结束。                   |

注释①:一条消息能传输长度最多为 1024 个字节,在 "\$"和<CR><LF>间最多为 1021 个字节(不含校验定界符"\*"与校验和)。

表 2-2 保留字符

| 保留字符 | 十六进制 | 十进制 | 含义 |
|------|------|-----|----|
|      |      |     |    |



| <cr></cr>   | OD | 13  | 回车——消息定界符结束。   |
|-------------|----|-----|----------------|
| <lf></lf>   | OA | 10  | 换行。            |
| \$          | 24 | 36  | 参数消息定界符开始。     |
| *           | 2A | 42  | 校验和字段定界符。      |
| ,           | 2C | 44  | 数据字段定界符。       |
| \           | 5C | 92  | 预留。            |
| ۸           | 5E | 94  | 用十六进制表示的编码定界符。 |
| ~           | 7E | 126 | 预留。            |
| <del></del> | 7F | 127 | 预留。            |

#### 2.1.2 自定义 ASCII 格式

自定义 ASCII 格式消息信息格式定义了接口格式消息的一般形式,任何接口格式消息都包含以下要素:

#### 消息结构:

header; data field..., data field... \*xxxxxxxx[CR][LF]

#### 2.1.2.1 标准格式 ASCII 信息结构

#### 示例 1:

#BESTPOSA,COM3,0,0.0,FINESTEERING,1975,393343.000,00000000,0000,757;

#### 示例 1 说明:

| ID | 示例           | 描述                                  |
|----|--------------|-------------------------------------|
| 0  | #BESTPOSA    | 数据 ID。                              |
| 1  | СОМЗ         | 输出数据的串口。                            |
| 2  | 0            | 本消息的第几条,0表示只有一条。                    |
| 3  | 0.0          | 接收机 CPU 空闲率(%)。                     |
| 4  | FINESTEERING | 固定 FINESTEERING。                    |
| 5  | 1975         | GPSWeek 自 1980.1.6 至当前的星期数(GPS 时间)。 |
| 6  | 393343.000   | 自本周日 00:00:00 至当前的秒数(GPS 时间)。       |

电话: +86-731-85058117 www.bynav.com **10 / 154** 



| 7 | 00000000 | 固定填 0。   |
|---|----------|----------|
| 8 | 0000     | 预留。      |
| 9 | 757      | 接收机软件版本。 |

#### 示例 2:

#HEADINGA,COM3,0,0,FINESTEERING,1975,394129.000,00000000,0000,757;

#### 示例 2 说明:

| ID | 示例           | 描述                                  |
|----|--------------|-------------------------------------|
| 0  | #HEADINGA    | 数据ID。                               |
| 1  | СОМЗ         | 输出数据的串口。                            |
| 2  | 0            | 本消息的第几条,0表示只有一条。                    |
| 3  | 0.0          | 接收机 CPU 空闲率(%)。                     |
| 4  | FINESTEERING | 固定 FINESTEERING。                    |
| 5  | 1975         | GPSWeek 自 1980.1.6 至当前的星期数(GPS 时间)。 |
| 6  | 393343.000   | 自本周日 00:00:00 至当前的秒数(GPS 时间)。       |
| 7  | 00000000     | 固定填 0。                              |
| 8  | 0000         | 预留。                                 |
| 9  | 757          | 接收机软件版本。                            |

#### ASCII 信息标头(Header)结构:

header;data field...,data field...\*xxxxxxxx[CR][LF]

ASCII 信息标头(Header)结构的描述如下表:

表 2-3 ASCII 信息标头(Header)结构说明

| ID | 字段      | 类型   | 描述                                                       | 可选字段 |
|----|---------|------|----------------------------------------------------------|------|
| 0  | Sync    | Char | 同步字符, ASCII 信息始终以一个"#"字符开始。                              | Ν    |
| 1  | Message | Char | 本手册中log 或命令的ASCII名称。                                     | N    |
| 2  | Port    | Char | 产生log 信息的接口名称。字符串由接口名称加以x的后缀组成, x 是1-31 的数字,则用来表示虚拟接口。若未 | Υ    |



|    |                     |        | 指示虚拟接口,则假定虚拟接口为0。                                  |   |
|----|---------------------|--------|----------------------------------------------------|---|
|    |                     | W.     | 用于多条log 输出。这是一个从N-1 到0 的递减数字,                      |   |
| 3  | Sequence #          | Long   | 0 意味着最后1 条。多数log 信息同一时间只有1 条,                      | N |
|    |                     |        | 这种情况该值为 0。                                         |   |
| 4  | % Idle Time         | Float  | 处理器空闲时间的最小百分比,每秒计算 1 次。                            | Υ |
| 5  | Time Status         | Enum   | GPS 时间质量。当前取值Unknown 或Fine,前者表明接收机还未能计算出准确的GPS 时间。 | Y |
| 6  | Week                | Ulong  | GPS 周数。                                            | Y |
| 7  | Seconds             | GPSec  | GPS 周内秒,精确到 ms。                                    | Y |
| 8  | Receiver Statu<br>s | Ulong  | 8 位十六进制的数字,用来表示各种硬件和软件部分的状态。                       | Υ |
| 9  | Reserved            | Ulong  | 预留。                                                | Υ |
| 10 | Receiver            | Ulong  | 0 - 65535 的值用来表示接收机固件的创建号。                         | Υ |
| 10 | s/w Version         | otorig | 0 過度用不及外接状制固計的規模等。                                 |   |
| 11 | ;                   | Char   | 该字符表示标头(Header)结束。                                 | N |

#### 2.1.2.2 短格式 ASCII 信息结构

#### 短格式 ASCII 信息标头(Header)结构:

short header;data field...,data field...,data field...\*xxxxxxxx[CR][LF]

| 短格式 | 短格式 ASCII 信息标头(Header)结构的描述如下表:  |        |                       |  |  |  |  |
|-----|----------------------------------|--------|-----------------------|--|--|--|--|
|     | 表 2-4 短格式 ASCII 信息标头(Header)结构说明 |        |                       |  |  |  |  |
| ID  | ID 字段 描述                         |        |                       |  |  |  |  |
| 1   | % Char 短格式 ASCII 信息始终以一个"%"字符开始。 |        |                       |  |  |  |  |
| 2   | Message                          | Char   | 本手册中消息或指令的短格式ASCII名称。 |  |  |  |  |
| 3   | Week                             | Ushort | GNSS 周数。              |  |  |  |  |
| 4   | Seconds                          | GPSec  | GNSS 周内秒,精确到 ms。      |  |  |  |  |
| 5   | ; and                            | Char   | 该字符表示短格式标头(Header)结束。 |  |  |  |  |



#### 2.2 自定义二进制格式

二进制消息是严格的机器可读格式。当传输的数据量相当高时,该格式更优。由于二进制数据相对于 ASCII 数据,体量要小得多。较小的消息大小允许由接收方的通信端口发送和接收更大数量的数据。

#### 2.2.1 标准格式二进制信息结构

所有标准格式二进制消息的结构遵循这里所指出的一般约定:

#### 1、基本格式:

Header: 2 个同步字节加上一般长为 26 字节的标头信息。长度可变,可扩展。长度始终需要查验。

数据:可变。

CRC: 4 字节。

2、两个同步字节始终是:

表 2-5 二进制格式同步字节说明

| Byte | 说明 | 十六进制 | 十进制 |
|------|----|------|-----|
| 第一个  | 固定 | AA   | 170 |
| 第二个  | 固定 | 44   | 68  |

- 3、CRC 为 32 位 CRC(CRC 算法请参阅 32 位 CRC), 它对所有数据包括报头执行。
- 4、标准格式标头(Header)如下表所示:

表 2-6 二进制格式信息标准格式标头(Header)结构说明

| 字段 | 字段类型 | 描述                                                | 二进制格式 | 二进制字节            | 二进制偏移 |
|----|------|---------------------------------------------------|-------|------------------|-------|
| 1  | Sync | 十六进制 0xAA                                         | Char  | 1                | 0     |
| 2  | Sync | 十六进制 0x44                                         | Char  | 1                | 1     |
| 3  | 协议类型 | bit 0-3=保留,默认为 0<br>bit 4=消息格式<br>0=保留<br>1=二进制格式 | Char  | ¹av <sup>1</sup> | 2     |



|    |           | bit 5-6=保留,默认为 0                       |        |      |    |
|----|-----------|----------------------------------------|--------|------|----|
|    |           | bit 7-8=二进制格式类型                        |        | -11  | 15 |
|    | hVNav     | 01=保留                                  | hV     | Java |    |
|    |           | 10=标准格式二进制                             |        |      |    |
|    |           | 11=短格式二进制                              |        |      |    |
|    |           | 00=保留                                  |        |      |    |
|    |           | (此处为 0x12)                             |        |      |    |
| 4  | Header 长度 | Header 长度                              | UChar  | 1    | 3  |
| 5  | 消息 ID     | 消息 ID 号                                | Ushort | 2    | 4  |
|    |           | bit 0-4=测量源 1                          |        |      |    |
|    |           | bit 5-6=格式                             |        |      |    |
|    |           | 00=二进制                                 |        |      |    |
|    |           | 01=自定义 ASCII                           |        |      |    |
| 6  | 消息类型      | 10=简化格式,NMEA                           | Char   | 1    | 6  |
|    | bynay     | 11=预留                                  | loV[   | 1977 |    |
|    |           | bit 7=响应位                              | D)     |      |    |
|    |           | 0=原始消息                                 |        |      |    |
|    |           | 1=响应消息                                 |        |      |    |
| 7  | 端口        | 见表 1-7                                 | UChar  | 1    | 7  |
| 8  | 消息长度      | 消息主体的字节长度,不包                           | Ushort | 2    | 8  |
|    | NJO CKIZ  | 括 header 和 CRC                         |        | 194  |    |
|    |           | 用于多条 log 输出。这是一                        |        |      |    |
| 9  | 序列号       | 个从 N-1 到 0 的递减数字,<br>0 意味着最后 1 条。多数 lo | Ushort | 2    | 10 |
|    |           | g 信息同一时间只有1条,                          |        |      |    |
|    |           | 这种情况该值为 0。                             |        |      |    |
| 10 | 空闲时间      | 处理器空闲时间的最小百分<br>比,每秒计算 1 次。            | Uchar  | 1    | 12 |
| 11 | 时间质量      | 当前取值 Unknown 或 Fin                     | Enum   | 1    | 13 |



|    |         | e, 前者表明接收机还未能计<br>算出准确的 GPS 时间。 |        | -11     | 15 |
|----|---------|---------------------------------|--------|---------|----|
| 12 | 周数      | GNSS 周数                         | Ushort | 2       | 14 |
| 13 | 周内秒数    | GNSS 周内秒,精确到 ms。                | GPSec  | 4       | 16 |
| 14 | 接收机状态   | 8 位十六进制的数字,用来表示各种硬件和软件部分的状态。    | Ulong  | 4       | 20 |
| 15 | 预留      | 预留                              | Ushort | 2       | 24 |
| 16 | 接收机固件版本 | 0~65535 的值用来表示接收机固件的创建号。        | Ushort | 2 3 1 3 | 26 |

表 1-7 详细端口标识符说明

| ID | 端口名称     | 十六进制数值 | 十进制数值 | 描述       |
|----|----------|--------|-------|----------|
| 1  | NO_PORTS | 0x0    | 0     | 空        |
| 2  | THISPORT | 0xC0   | 192   | 当前端口     |
| 3  | COM1     | 0x20   | 32    | COM1 端口  |
| 4  | COM2     | 0x40   | 64    | COM2 端口  |
| 5  | СОМЗ     | 0x60   | 96    | COM3 端口  |
| 6  | ICOM1    | 0xFA0  | 4000  | ICOM1 端口 |
| 7  | ICOM2    | 0x10A0 | 4256  | ICOM2 端口 |
| 8  | ICOM3    | 0x11A0 | 4512  | ICOM3 端口 |
| 9  | ICOM4    | 0x15A0 | 5536  | ICOM4 端口 |
| 10 | CCOM1    | 0x16C7 | 5831  | CCOM1 端口 |
| 11 | CCOM2    | 0x16C8 | 5832  | CCOM2 端口 |
| 12 | CCOM3    | 0x16C9 | 5833  | CCOM3 端口 |
| 13 | CCOM4    | 0x16CA | 5834  | CCOM4 端口 |

#### 2.2.2 短格式二进制信息结构

所有短格式二进制消息的结构遵循这里所指出的一般约定:



#### 1、基本格式:

Header: 2个同步字节加上 10 字节的头信息。

数据:可变。

CRC: 4 字节。

#### 2、两个同步字节始终是:

表 2-8 二进制格式同步字节说明

| Byte | 说明 | 十六进制 | 十进制 |
|------|----|------|-----|
| 第一个  | 固定 | AA   | 170 |
| 第二个  | 固定 | 44   | 68  |

- 3、CRC 为 32 位 CRC(CRC 算法请参阅 32 位 CRC),它对所有数据包括报头执行。
- 4、短格式标头(Header)如下表所示:

表 1-9 二进制格式信息短格式标头(Header)结构说明

| 字段 | 字段类型 | 描述                                                                                                                    | 二进制格式 | 二进制字节 | 二进制偏移 |
|----|------|-----------------------------------------------------------------------------------------------------------------------|-------|-------|-------|
| 1  | Sync | 十六进制 0xAA                                                                                                             | Char  | 1     | 0     |
| 2  | Sync | 十六进制 0x44                                                                                                             | Char  | 1     | 1     |
| 3  | 协议类型 | bit 0-3=保留,默认为 0 bit 4=消息格式 0=保留 1=二进制格式 bit 5-6=保留,默认为 0 bit 7-8=二进制格式类型 01=保留 10=标准格式二进制 11=短格式二进制 00=保留 (此处为 0x13) | Char  | navi  | 2     |
| 4  | 消息长度 | 消息主体的字节长度,不包括                                                                                                         | Uchar | 1     | 3     |



|   |       | header 和 CRC     |        |   |   |
|---|-------|------------------|--------|---|---|
| 5 | 消息 ID | 消息 ID 号          | Ushort | 2 | 4 |
| 6 | 周数    | GNSS 周数          | Ushort | 2 | 6 |
| 7 | 周内秒数  | GNSS 周内秒,精确到 ms。 | GPSec  | 4 | 8 |

#### 2.3 数据类型

表 2-10 字段类型

| 类型       | 二进制字节数 | 描述                                                                                   |
|----------|--------|--------------------------------------------------------------------------------------|
| Int      | 4      | 整型                                                                                   |
| Float    | 4      | 单精度浮点(±3.4E38)                                                                       |
| Double   | 8      | 双精度浮点(±1.7E308)                                                                      |
| Long     | 4      | 长整型(-2147483648~+2147483647)                                                         |
| Ulong    | 4      | 无符号长整型(+0~+4294967295)                                                               |
| Short    | 2      | 短整型(-32768~+32767)                                                                   |
| Ushort   | 2      | 无符号短整型(+0~+65535)                                                                    |
| Char     | 1      | 字符(-128~+127)                                                                        |
| Uchar    | 1      | 无符号字符(+0~+255)                                                                       |
| Enum     | 4      | 枚举类型                                                                                 |
| String   | n      | 字符串                                                                                  |
| Hex      | n      | 十六进制                                                                                 |
| HexUlong | 4 5 5  | 十六进制格式的无符号整数(+0~+4294967295)                                                         |
| GPSec    | 4      | 这种类型有两种不同的格式,这取决于您是否请求二进制或 ASCII 格式输出。 对于二进制,输出以毫秒为单位,是一个长整型。 对于 ASCII,输出以秒为单位,是浮点类型 |







## 3 指令

# 3.1 通用指令

#### 3.1.1 AUTH

增加或消除授权。

格式:

AUTH Switch [AUTHSTR]

示例:

AUTH ADD E40F99631670CA4F205EB67FE0D2B048

#### 说明:

| ID | 格式       | 示例                               | 描述           |
|----|----------|----------------------------------|--------------|
| 1  | AUTH     | AUTH                             | 授权指令标识       |
|    | 2 Switch | ADD                              | 增加授权         |
| 2  |          | REMOVE                           | 清除授权         |
| 2  | ALITUSTD | F40F00621670CA4F20FFB67FF0D2D040 | 授权码,清除授权时此项置 |
| 3  | AUTHSTR  | E40F99631670CA4F205EB67FE0D2B048 | 空            |

注:本指令保存并重启设备后生效。

#### 3.1.2 CANCONFIG

配置 CAN 端口的硬件参数。

格式:

CANCONFIG Port Switch [Speed]

示例:

**CANCONFIG CAN2 ON 500K** 

| ID | 格式        | 示例        | 描述                 |
|----|-----------|-----------|--------------------|
| 1  | CANCONFIG | CANCONFIG | 配置 CAN 端口的硬件参数标识   |
| 2  | Port      | CAN1      | 端口号,可为 CAN1 和 CAN2 |



| 2 | Constants | ON   | 打开端口                           |
|---|-----------|------|--------------------------------|
| 3 | 3 Switch  | OFF  | 关闭端口                           |
| 4 | Speed     | 500K | 物理 CAN 端口速度,单位:位/秒,默认为 500K,可选 |

注:本指令保存并重启设备后生效。

#### 3.1.3 CCOMCONFIG

将 CAN 端口绑定到 J1939 节点,并为 CCOM 端口发送和接收的消息指定 CAN 协议、PGN、优先级和地址。J1939 节点相关信息详见 3.1.11。

#### 格式:

CCOMCONFIG Port Node Protocol [PGN [Priority [Address]]]

#### 示例:

CCOMCONFIG CCOM1 NODE1 CAN10 0 6 18

#### 说明:

| ID | 格式         | 示例         | 描述                                                                   |
|----|------------|------------|----------------------------------------------------------------------|
| 1  | CCOMCONFIG | CCOMCONFIG | CCOM 配置标识                                                            |
| 2  | Port       | ссом1      | 端口号,可为 CCOM1、CCOM2、CCOM3、CCOM4                                       |
| 3  | Node       | NODE1      | 节点名称,要使用的 J1939 节点,可将 CCOM 端口绑定到与节点关联的 CAN 名称或地址                     |
| 4  | Protocol   | CAN10      | 协议名称,目前支持 CAN10 与 J1939                                              |
| 5  | PGN        | 0          | 参数组编号,需符合 J1939 协议定义,上述指定的 CCOM端口所输出的全部消息均将包含本 PGN 值,且仅接收带有此 PGN 的消息 |
| 6  | Priority   | 6          | 优先级,传输消息的默认 CAN 消息优先级,0 优先级最高                                        |
| 7  | Address    | 18         | 地址                                                                   |

注: 本指令保存并重启设备后生效。

#### 3.1.4 DMICONFIG

查询和配置各 DMI 杆臂的轮速协议和输出端口。不带参数时用于查询当前配置。

#### 格式:

DMICONFIG DMINum Switch [Protocol] [Port]

#### 示例:

电话: +86-731-85058117 www.bynav.com **19 / 154** 

20 / 154



DMICONFIG DMI1 ENABLE EXT\_VEL\_XXX\_FRONT\_LEFT CCOM1 DMICONFIG DMI2 ENABLE EXT\_VEL\_XXX\_FRONT\_RIGHT CCOM1 DMICONFIG DMI3 ENABLE EXT\_VEL\_XXX\_REAR\_LEFT CCOM1 DMICONFIG DMI4 ENABLE EXT\_VEL\_XXX\_REAR\_RIGHT CCOM1

#### 说明:

| ID | 格式        | 示例                    | 描述                        |
|----|-----------|-----------------------|---------------------------|
| 1  | DMICONFIG | DMICONFIG             | DMI 配置标识                  |
| _  | DMINI     | DAMI                  | DMI 杆臂编号,可为 DMI1~4,分别对应左前 |
| 2  | DMINum    | DMI1                  | 轮、右前轮、左后轮和右后轮             |
|    | Christia  | ENABLE                | 启用                        |
| 3  | 3 Switch  | DISABLE               | 禁用                        |
|    |           | EXT_VEL_XXX_FRONT_LEF | 轮速协议名称,名称中 XXX 为代指,请与我    |
| 4  | Protocol  | Т                     | 司确认实际协议名称                 |
| 5  | PORT      | CCOM1                 | 端口号,可为 CCOM1~4            |

注:本指令保存并重启设备后生效。

#### 3.1.5 DNSCONFIG

配置以太网的 DNS 服务器。

#### 格式:

DNSCONFIG NumDNSServers IP\_Address

#### 示例:

DNSCONFIG 1 192.168.1.5

#### 说明:

| ID              | 格式         | 示例              | 描述                            |
|-----------------|------------|-----------------|-------------------------------|
| 1               | DNSCONFIG  | DNSCONFIG       | 配置以太网的 DNS 服务器标识              |
|                 |            | 0               | 设置 DNS 服务器数量为 0,此时不需要设置 IP 地址 |
| 2 NumDNSServers | 1          | 设置 DNS 服务器数量为 1 |                               |
| 3               | IP_Address | 192.168.1.5     | 主 DNS 服务器的地址                  |

注:本指令生效后,可通过 SAVECONFIG 命令将相关配置保存到 FLASH 中。 ynavitz

#### 3.1.6 DUALANTENNAPOWER

查询和配置双天线模式。不带参数时用于查询当前配置。

21 / 154



格式:

**DUALANTENNAPOWER** [Switch]

示例:

**DUALANTENNAPOWER OFF** 

#### 说明:

| ID | 格式                   | 示例               | 描述        |
|----|----------------------|------------------|-----------|
| 1  | DUALANTENNAPOWE<br>R | DUALANTENNAPOWER | 双天线模式控制标识 |
|    | Cuitab               | ON               | 开启双天线     |
| 2  | Switch               | OFF              | 关闭双天线     |

注:本指令生效后,可通过 SAVECONFIG 命令将相关配置保存到 FLASH 中。

#### 3.1.7 FREQUENCYOUT

hynavitz cej 查询和配置输出脉冲信号。不带参数时用于查询当前配置。

格式:

FREQUENCYOUT [Switch] [PluseWidth Period Edge] [Instance]

示例:

FREQUENCYOUT ENABLE 20000000 100000000 POSITIVE 1 FREQUENCYOUT DISABLE 1

| ID | 格式           | 示例           | 描述                                           |
|----|--------------|--------------|----------------------------------------------|
| 1  | FREQUENCYOUT | FREQUENCYOUT | 配置输出脉冲信号标识                                   |
| 2  | Switch       | DISABLE      | 关闭脉冲信号输出,仅配置 Instance 字段,详见示例                |
|    |              | ENABLE       | 使能脉冲信号输出                                     |
| 3  | PulseWidth   | 20000000     | 脉冲宽度,10ns 为单位,占空比=PulseWidth/Period,脉宽不能比周期大 |
| 4  | Period       | 100000000    | 周期,10ns 为单位,频率范围为 1Hz~20MHz                  |
| _  | Edua (1)     | POSITIVE     | 输出上升沿有效                                      |
| 5  | Edge         | NEGATIVE     | 输出下降沿有效                                      |
| 6  | Instance     | 1            | 0, EVENT_OUT (X1 该信号未引出)                     |



|                                             |  | 1, PPS |  |  |
|---------------------------------------------|--|--------|--|--|
| 注:本指令生效后,可通过 SAVECONFIG 命令将相关配置保存到 FLASH 中。 |  |        |  |  |
| 3.1.8 ICOMCONFIG                            |  |        |  |  |

#### 3.1.8 ICOMCONFIG

配置以太网传输层和应用层。

#### 格式:

ICOMCONFIG Port1 Protocol [IP Address]:Port2

#### 示例:

ICOMCONFIG ICOM1 TCP 192.168.8.151:2000

ICOMCONFIG ICOM1 TCP: 2000

#### 说明:

| ID | 格式               | 示例             | 描述                        |
|----|------------------|----------------|---------------------------|
| 1  | ICOMCONFIG       | ICOMCONFIG     | 配置以太网传输层/应用层标识            |
|    | Dort1            | ICOM1          | 接口名称,可为 ICOM1、ICOM2、ICOM3 |
|    | 2 Port1          |                | 和 ICOM4                   |
|    |                  | DISABLED       | 关闭网络服务                    |
| 3  | Protocol         | ТСР            | 使用 TCP                    |
|    | D)               | UDP            | 使用 UDP                    |
|    |                  |                | 主机 IP:端口号,主机 IP 缺省时,设备作为  |
| 4  | IP_Address:Port2 | _Address:Port2 | 服务器,监听指定端口号,否则作为客户        |
|    |                  |                | 端,主动连接主机 IP               |

注:本指令生效后,可通过 SAVECONFIG 命令将相关配置保存到 FLASH 中。

#### 3.1.9 INTERFACEMODE

设置串口输入输出格式。

#### 格式:

INTERFACEMODE Port Protocol1 Protocol2

#### 示例:

#### 说明:

| INT | ERFACEMODE COM1 | I BYNAV BYNAV |            |  |
|-----|-----------------|---------------|------------|--|
| 说明: |                 |               |            |  |
| ID  | 格式              | 示例            | 描述         |  |
| 1   | INTERFACEMODE   | INTERFACEMODE | 串口输入输出格式标识 |  |



| 2 | Port      | СОМ1  | 串口号,可为 COM1、COM2、COM3                                                   |  |  |
|---|-----------|-------|-------------------------------------------------------------------------|--|--|
|   |           | AUTO  | 设置输入协议为 ATUO, 即自动识别输入数据格式,                                              |  |  |
|   |           |       | 如控制指令、差分数据等                                                             |  |  |
|   |           | BYNAV | 设置输入协议为 BYNAV,即 NMEA-0183 格式                                            |  |  |
| 3 | Protocol1 | RTCM  | 设置输入协议为 RTCM 格式                                                         |  |  |
|   |           | LOG   | 设置输入协议为北云自定义调试信息格式                                                      |  |  |
|   |           | FPGA  | 设置输入协议为 FPGA,录制原始观测数据,数据量                                               |  |  |
|   |           |       | 大                                                                       |  |  |
|   |           |       | 设置输出协议为 AUTO,整机用作基站可同时输出 N                                              |  |  |
|   |           | AUTO  | MEA0-183 格式数据和差分数据,整机用作流动站时                                             |  |  |
|   |           |       | 设置输出协议为 AUTO,整机用作基站可同时输出 N                                              |  |  |
|   | Dyatasala | BYNAV | 设置输出协议为 AUTO,整机用作基站可同时输出 N<br>MEAO-183 格式数据和差分数据,整机用作流动站时<br>效果等同 BYNAV |  |  |
| 4 | Protocol2 | RTCM  | 设置输出协议为 RTCM 格式                                                         |  |  |
|   |           | LOG   | 设置输出协议为北云自定义调试信息格式                                                      |  |  |
|   |           | FPGA  | 设置输出协议为 FPGA,录制原始观测数据,数据量                                               |  |  |
|   |           |       | 大                                                                       |  |  |

注:本指令生效后,可通过 SAVECONFIG 命令将相关配置保存到 FLASH 中。 bynavitz

#### **3.1.10 IPCONFIG**

配置以太网静态或动态 TCP/IP 参数。

#### 格式:

IPCONFIG [InterfaceName] AddressMode [IP\_Address [Netmask [Gateway]]]

#### 示例:

| IPCOI | IPCONFIG ETHA STATIC 192.168.8.151 255.255.0.0 192.168.8.1 |               |                                       |  |
|-------|------------------------------------------------------------|---------------|---------------------------------------|--|
| 说明:   | 说明:                                                        |               |                                       |  |
| ID    | 格式                                                         | 示例            | 描述                                    |  |
| 1     | IPCONFIG                                                   | IPCONFIG      | 配置以太网参数标识                             |  |
| 2     | InterfaceNam<br>e                                          | ЕТНА          | 以太网接口的名称,默认 ETHA                      |  |
| 3     | AddressMode                                                | DHCP          | 使用动态 IP 地址                            |  |
| 4     | ID Addus s                                                 | STATIC        | 使用静态 IP 地址<br>IP 地址, 默认 192.168.8.151 |  |
| 4     | IP_Address                                                 | 192.168.8.151 |                                       |  |
| 5     | Netmask                                                    | 255.255.0.0   | 子网掩码,默认 255.255.0.0                   |  |
| 6     | Gateway                                                    | 192.168.8.1   | 网关,默认 192.168.8.1                     |  |



注:本指令生效后,可通过 SAVECONFIG 命令将相关配置保存到 FLASH 中。 bynavitz

#### 3.1.11 J1939CONFIG

配置 CAN J1939 网络级参数,例如名称、端口等。

#### 格式:

J1939CONFIG Node Port [CAN\_Address]

#### 示例:

#### 说明:

| J1939CONFIG NODE1 CAN1 AA<br>说明: |             | II AA       |                                                 |
|----------------------------------|-------------|-------------|-------------------------------------------------|
| ID                               | 格式          | 示例          | 描述                                              |
| 1                                | J1939CONFIG | J1939CONFIG | 配置CAN J1939 网络级参数标识                             |
| 2                                | Node        | NODE1       | 节点名称,需使用的J1939 节点,可将CCOM端口<br>绑定到与节点关联的CAN名称/地址 |
|                                  | Dovt        | CAN1        | <u>.</u>                                        |
| 3                                | Port        | CAN2        | 端口                                              |
| 4                                | CAN_Address | AA          | CAN地址,默认 0x0                                    |
| 注:本指令保存并重启设备后生效。                 |             |             |                                                 |

#### 3.1.12 LOG

配置设备按照特定触发方式和输出频率,从指定端口输出指定类型的消息。

#### 格式:

LOG [Port] Log Trigger [Period [Offset]] [Hold]

#### 示例:

LOG COM1 GPGGA ONTIME 1 0.5 HOLD LOG COM1 GPGGA ONCHANGED

| ID | 格式      | 示例    | 描述            |
|----|---------|-------|---------------|
| 1  | LOG     | LOG   | 请求输出消息标识      |
| 2  | Port    | сом1  | 端口            |
| 3  | Log     | GPGGA | 消息类型          |
| 4  | Trigger | ONCE  | 默认仅在消息可用时输出一次 |



|   | ONCHAN          |        | 输出当前消息,并在消息更改时继续输出                                                    |
|---|-----------------|--------|-----------------------------------------------------------------------|
|   |                 | ONMARK | 在 MARK1 检测到脉冲时输出                                                      |
|   |                 | ONNEW  | 配置消息仅在更新时输出                                                           |
|   | ONNEXT 仅输出下一条消息 |        | 仅输出下一条消息                                                              |
|   | ONTIME          |        | 按指定时间间隔输出,须添加消息输出周期,选填时间偏移量                                           |
| 5 | Period          | 1      | 消息输出周期,单位:秒,当 Trigger 为 ONTIME 时字段有效,<br>指定值低于最小测量周期时,指令无法生效并打印提示信息   |
| 6 | Offset          | 0.5    | 时间偏移量,单位:秒,当 Trigger 为 ONTIME 时字段有效,指<br>定值需小于消息输出周期,设置后输出时刻为周期与偏移量之和 |
| 7 | HOLD            | HOLD   | Unlog 指令无法停止                                                          |
| / | HOLD            | NOHOLD | Unlog 指令可以停止                                                          |

注:本指令生效后,可通过 SAVECONFIG 命令将相关配置保存到 FLASH 中。

#### 3.1.13 NTRIPCONFIG

配置 NTRIP 连接。

#### 格式

NTRIPCONFIG Port Type Protocol Endpoint Mountpoint UserName Password BindInterface

#### 示例:

NTRIPCONFIG NCOM1 CLIENT V1 192.168.1.88:8888 NTRIP BYNAV BYNAV ALL

#### 说明

| ID | 格式            | 示例                                 | 描述                     |  |
|----|---------------|------------------------------------|------------------------|--|
| 1  | NTRIPCONFIG   | NTRIPCONFIG                        | NTRIP 配置指令             |  |
| 2  | Port          | NCOM1                              | NTRIP 端口 (NCOM1/NCOM2) |  |
| 3  | Type          | DISABLED                           | 关闭指定端口                 |  |
| ٥  | Туре          | CLIENT                             | 将指定端口设置为 CLIENT 模式     |  |
| 4  | Protocol      | V1 NTRIP 协议类型(V1/V2),默认 V1         |                        |  |
| 5  | Endpoint      | 192.168.1.88:8888 NTRIP 连接 IP 及端口号 |                        |  |
| 6  | Mountpoint    | NTRIP                              | NTRIP 连接挂载点            |  |
| 7  | UserName      | BYNAV                              | 用户名                    |  |
| 8  | Password      | BYNAV 密码                           |                        |  |
| 9  | BindInterface | ALL                                | 绑定端口,固定为 ALL           |  |

注:本指令生效后,可通过 SAVECONFIG 命令将相关配置保存到 FLASH 中。



#### 3.1.14 OUTPUTSOURCE

查询和配置输出解算结果数据来源。不带参数时用于查询当前配置。受本指令影响的 消息有:

| NMEA 格式消息             | ATR、AVR、DOP、FPD、GGA、GSA、GST、GSV、HDT、HPD、NTR、ORI、PASHR、PTNLAVR、PTNLPJK、RMC、TRA、VTG、ZDA |  |
|-----------------------|---------------------------------------------------------------------------------------|--|
| 自定义格式消息               | BESTGNSSPOS、BESTPOS、BESTUTM、BESTXYZ、HEADING、HEADIN                                    |  |
| 日足人役以府总               | G2                                                                                    |  |
| 其他格式消息                | KSXT                                                                                  |  |
| 格式:                   |                                                                                       |  |
| OUTPUTSOURCE [Source] |                                                                                       |  |
|                       |                                                                                       |  |

#### 格式:

示例:

**OUTPUTSOURCE RAW** 

#### 说明:

| ID | 格式           | 示例                          | 描述                   |  |
|----|--------------|-----------------------------|----------------------|--|
| 1  | OUTPUTSOURCE | OUTPUTSOURCE 设置输出解算结果数据来源标识 |                      |  |
|    | bylle        | RAW                         | 原始 RTK 解算结果          |  |
|    | Same         | KF                          | KF 滤波后 RTK 解算结果      |  |
| 2  | Source       | INS                         | INS 解算结果*(仅支持组合导航产品) |  |
|    |              | ARTK                        | 测绘模式解算结果             |  |

注:本指令保存并重启设备后生效。

#### 3.1.15 QUALITYCHECK

查询或配置 QC 引擎。可在解算时对 RTK 结果进行验证,在遮挡环境下 RTK 初始化时, 能够加速固定或避免错误固定解,但会增加计算负担。不带参数时用于查询当前配置。

#### 格式:

QUALITYCHECK [Type] [Switch]

示例:

| QUALITYCHECK POS ON |    | N  |    |
|---------------------|----|----|----|
| 说明:                 |    |    |    |
| ID                  | 格式 | 示例 | 描述 |



| 1 | QUALITYCHECK | QUALITYCHECK | QC 引擎标识                    |  |
|---|--------------|--------------|----------------------------|--|
|   | Туре         | POS          | 定位 QC 引擎                   |  |
| 2 |              | ORI          | 定向 QC 引擎,暂不建议在组合导航产品中开启该引擎 |  |
|   | Switch       | ON           | 打开                         |  |
| 3 |              | OFF          | 关闭                         |  |

注:本指令保存并重启设备后生效。

#### **3.1.16 REBOOT**

ynavitz 程序重新加载。

格式:

REBOOT

示例:

**REBOOT** 

#### 说明:

| I<br>D | 示例     | 格式     | 描述         |
|--------|--------|--------|------------|
| 1      | REBOOT | REBOOT | 程序重新加载指令标识 |

#### 3.1.17 **RESET**

重启指令,重新加载上一次保存的配置。

格式:

**RESET** 

示例:

**RESET** 

#### 说明:

| I<br>D | 示例              | 格式    | 描述     |
|--------|-----------------|-------|--------|
| 1      | RESET           | RESET | 重启指令标识 |
| 3.1    | .18 SAVECONFIG  |       |        |
| 将当     | 前配置保存到 FLASH 中。 |       |        |

#### 3.1.18 SAVECONFIG



格式:

bynavitz SAVECONFIG

示例:

**SAVECONFIG** 

#### 说明:

| I<br>D | 示例               | 格式         | 描述         |
|--------|------------------|------------|------------|
| 1      | SAVECONFIG       | SAVECONFIG | 保存当前配置指令标识 |
| 3.1    | .19 SERIALCONFIG | by         | navit      |

#### 3.1.19 SERIALCONFIG

设置串口波特率。

格式:

SERIALCONFIG Port Baudrate

#### 说明:

| 示例:                     |              |              |                                                                           |
|-------------------------|--------------|--------------|---------------------------------------------------------------------------|
| SERIALCONFIG COM1 19200 |              |              |                                                                           |
| 说明:                     |              |              |                                                                           |
| ID                      | 格式           | 示例           | 描述                                                                        |
| 1                       | SERIALCONFIG | SERIALCONFIG | 串口波特率标识                                                                   |
| 2                       | Port         | COM1         | 串口号,可为 COM1、COM2、COM3                                                     |
| 3                       | Baudrate     | 19200        | 波特率,支持 4800、9600、19200、38400、5760<br>0、115200、230400、460800、576000、921600 |

注:本指令生效后,可通过 SAVECONFIG 命令将相关配置保存到 FLASH 中。 **3.1.20 SET** 

设置接收机工作相关参数。

格式:

**SET Option Parameter** bynavitz

示例:



#### 说明:

| SET              | OBSFREQ 2          |                           |                        |  |  |
|------------------|--------------------|---------------------------|------------------------|--|--|
| SET              | FPGARAWFR          | EQ 10                     |                        |  |  |
| SET              | SHIFTDATUM         | 1000                      |                        |  |  |
| 说明:              |                    |                           | bynavitz               |  |  |
| ID               | 格式                 | 示例                        | 描述                     |  |  |
| 1                | SET                | SET                       | 设置接收机工作相关参数标识          |  |  |
|                  |                    | ODCEDEO                   | 观测量频度,最低 2Hz(解算频度与观测量频 |  |  |
|                  |                    | OBSFREQ                   | 度一致,无需设置 PVTFREQ)      |  |  |
| 2                | Option             | FPGARAWFREQ               | 原始数据输出频度,最低 1Hz        |  |  |
|                  |                    | SHIFTDATUM                | 坐标系平移参数                |  |  |
|                  | Dy                 | PJKPARA                   | 投影参数,详见 3.2.7 PJKPARA  |  |  |
|                  |                    | 2                         | 观测量频度值                 |  |  |
|                  | Paramete           | 10                        | 原始数据输出频度值              |  |  |
| 3                | r                  | 0 0 0                     | 坐标系平移参数值 X、Y、Z         |  |  |
|                  |                    | 6378245 298.3 0 0 0 50000 | 投影参数值,详见 3.2.7 PJKPARA |  |  |
|                  |                    | 00.99923 EHT              |                        |  |  |
| 注:本指令保存并重启设备后生效。 |                    |                           |                        |  |  |
| 3.1              | 3.1.21 SETBASELINE |                           |                        |  |  |

#### 3.1.21 SETBASELINE

查询和设置双天线基线长度约束。不带参数时用于查询当前配置。

#### 格式:

SETBASELINE [Switch] [Baseline] [Redundancy]

#### 示例:

**SETBASELINE ON 1 0.03** 

| ID       | 格式          | 示例          | 描述                          |
|----------|-------------|-------------|-----------------------------|
| 1        | SETBASELINE | SETBASELINE | 设置双天线基线约束标识                 |
| 2        | Constants   | ON          | 打开双天线基线长度约束                 |
| 2 Switch | OFF         | 关闭双天线基线约束   |                             |
| 3        | Baseline    | 1           | 双天线基线长度,单位:米,支持长度范围 0.1-100 |
| ٦        | baseline    |             | *                           |



| 4     | Redundancy       | 0.03 | 余量,单位:米 |  |  |  |  |
|-------|------------------|------|---------|--|--|--|--|
| 注:本指  | 注:本指令保存并重启设备后生效。 |      |         |  |  |  |  |
| 3.1.2 | 2 TRANS          |      |         |  |  |  |  |

#### **3.1.22 TRANS**

打开或关闭串口数据透传。请注意,关闭指令仅支持大写字母。

#### 格式:

TRANS Switch [Port1] [Port2]

#### 示例:

TRANS ON COM1 COM2 TRANS OFF

#### 说明:

| ID       | 格式    | 示例     | 描述                    |
|----------|-------|--------|-----------------------|
| 1        | TRANS | TRANS  | 串口数据透传标识              |
| 2 Switch |       | ON     | 打开数据透传                |
|          | OFF   | 关闭数据透传 |                       |
| 3        | Port1 | COM1   | 串口号,可为 COM1、COM2、COM3 |
| 4        | Port2 | COM2   | 串口号,可为 COM1、COM2、COM3 |

#### 3.1.23 UNLOG/UNLOGALL

关闭端口的消息输出。

UNLOG [Port] Log UNLOGALL [Port]

#### 示例:

UNLOG COM3 GPGGA **UNLOG GPGGA** UNLOGALL COM3 UNLOGALL

|          | OGALL |  |       |
|----------|-------|--|-------|
| 17. DH . |       |  |       |
| 说明:      | hVIII |  | bylla |



|               |                                             |          | T                                                     |  |  |  |
|---------------|---------------------------------------------|----------|-------------------------------------------------------|--|--|--|
|               | UNLOG                                       | UNLOG    | 关闭消息输出标识,用以关闭指定端口的指定输出,包括基准站模式下的差分数据,其后不接端口号时则对当前端口生效 |  |  |  |
| 1             |                                             |          |                                                       |  |  |  |
|               |                                             |          | 关闭消息输出标识,用以关闭指定端口的全部输出,包括基                            |  |  |  |
|               | UNLOGALL                                    | UNLOGALL | 准站模式下的差分数据,其后不接端口号时则对全部端口生                            |  |  |  |
|               |                                             |          | 效                                                     |  |  |  |
| 2             | Port                                        | сомз     | 端口号,可为 COM1、COM2、COM3、ICOM1、ICOM2、IC                  |  |  |  |
| _             | roit                                        | (01/15   | OM3、ICOM4、CCOM1、CCOM2、NCOM1、NCOM2                     |  |  |  |
| 3             | Log                                         | GPGGA    | 输出的消息                                                 |  |  |  |
| 注: 本          | 注:本指令生效后,可通过 SAVECONFIG 命令将相关配置保存到 FLASH 中。 |          |                                                       |  |  |  |
| 3.2 GNSS 指令   |                                             |          |                                                       |  |  |  |
| 2.2.1.5017055 |                                             |          |                                                       |  |  |  |

#### 3.2 GNSS 指令

#### 3.2.1 ECUTOFF

设置参与解算的卫星的仰角门限,即卫星的最小仰角。不带参数时作用为查询当前配置。

#### 格式:

ECUTOFF [Elevation]

示例:

ECUTOFF 5

#### 说明:

| ID | 格式        | 示例      | 描述                     |
|----|-----------|---------|------------------------|
| 1  | ECUTOFF   | ECUTOFF | 设置最低参与解算卫星仰角门限(°)标识    |
| 2  | Elevation | 5       | 仰角门限,取值范围 0-90°, 默认 5° |

注:此命令生效后,可通过 SAVECONFIG 命令将相关配置保存到 FLASH 中。

#### 3.2.2 FIX

设置基站坐标。

#### 格式:

FIX [AUTO/POSITION/NONE]

#### 示例:



**FIX AUTO** 

FIX POSITION 28.234042909 112.888089727 91.0662

FIX NONE

#### 说明:

| ID                                          | 示例                            | 格式      | 描述                        |  |  |
|---------------------------------------------|-------------------------------|---------|---------------------------|--|--|
| 1                                           | FIX                           | FIX     | 设置基站坐标标识                  |  |  |
|                                             | AUTO                          | AUTO    | 将最近一次定位结果作为基准站坐标          |  |  |
| 2                                           | POSITION                      | POSITIO | 设置基准站坐标(纬经高)为指定值,当纬经高参数均为 |  |  |
| 2                                           | POSITION                      | N       | 0 时,其作用等同于 FIX NONE       |  |  |
|                                             | NONE                          | NONE    | 清除基站坐标,之后会将首次定位结果当作基准站坐标  |  |  |
| 3                                           | 28.234042909                  | [B]     | 设置基准站坐标(纬度)为指定值           |  |  |
| 4                                           | 112.888089727                 | [L]     | 设置基准站坐标(经度)为指定值           |  |  |
| 5                                           | 91.0662                       | [H]     | 设置基准站坐标(高程)为指定值           |  |  |
| 注:此命令生效后,可通过 SAVECONFIG 命令将相关配置保存到 FLASH 中。 |                               |         |                           |  |  |
| 3.2.3                                       | 3.2.3 FRESET                  |         |                           |  |  |
| ## <del>&lt;&gt;</del> **/                  | 世 <del>2 数 4. 注 ID ET</del> E |         |                           |  |  |

#### 3.2.3 FRESET

带参数为清除配置指令。

不带参数为恢复默认出厂设置。如果当前为基准站模式,则恢复基准站默认配置,如 果当前为流动站模式,则恢复流动站默认配置。

#### 格式:

FRESET [OPTION]

#### 示例:

FRESET STANDARD

#### 说明:

| ID | 示例       | 格式       | 描述                     |
|----|----------|----------|------------------------|
| 1  | FRESET   | FRESET   | 恢复默认配置(清除参数)标识         |
| 2  | STANDARD | STANDARD | 清除所有星历、历书、GLONASS 修正参数 |
| _  | EPHALM   | EPHALM   | 清除所有星历和历书              |



| GPSALMANAC    | GPSALMANAC        | 清除 GPS 历书          |
|---------------|-------------------|--------------------|
| GPSEPHEM      | GPSEPHEM          | 清除 GPS 星历          |
| GLOALMANAC    | GLOALMANAC        | 清除 GLONASS 历书      |
| GLOEPHEM      | GLOEPHEM          | 清除 GLONASS 星历      |
| QZSSALMANC    | QZSSALMANC        | 清除 QZSS 历书         |
| QZSSEPHEMERIS | QZSSEPHEMERI<br>S | 清除 QZSS 星历         |
| BDSALMANAC    | BDSALMANAC        | 清除北斗历书             |
| BDSEPHEMERIS  | BDSEPHEMERIS      | 清除北斗星历             |
| IONUTC        | IONUTC            | 清除电离层参数            |
| GLOIFB        | GLOIFB            | 清除 GLONASS 频间差校准参数 |
| BATCHTEST     | BATCHTEST         | 恢复批量测试默认配置         |

#### 3.2.4 GPSREFWEEK

设置 GPS 参考周,保存重启生效。不带参数时作用为查询当前配置。

#### 格式:

GPSREFWEEK [WEEKNUM]

#### 示例:

#### 说明:

| GPSREFWEEK 2553 |            |            |              |  |  |  |
|-----------------|------------|------------|--------------|--|--|--|
| 说明:             |            |            |              |  |  |  |
| ID              | 示例         | 格式         | 描述           |  |  |  |
| 1               | GPSREFWEEK | GPSREFWEEK | 设置 GPS 参考周标识 |  |  |  |
| 2               | 2553       | [WEEKNUM]  | GPS 参考周数     |  |  |  |

注:此命令生效后,可通过 SAVECONFIG 命令将相关配置保存到 FLASH 中。 bynavitz

#### 3.2.5 HEADINGOFFSET

添加航向和俯仰偏移值。



未修改的航向值表示主天线到从天线连线矢量与真北的夹角,顺时针方向为正。在某些安 装中,可能无法放置探测器天线在所需的位置,例如匹配车辆的前向方向。

#### 格式:

HEADINGOFFSET headingoffsetindeg [pitchoffsetindeg]

#### 示例:

HEADINGOFFSET 0 0

#### 说明:

| HEADI | HEADINGOFFSET 0 0 |                    |                          |  |  |  |  |  |
|-------|-------------------|--------------------|--------------------------|--|--|--|--|--|
| 说明:   |                   |                    |                          |  |  |  |  |  |
| ID    | 示例                | 格式                 | 描述                       |  |  |  |  |  |
| 1     | HEADINGOFFSET     | HEADINGOFFSET      | 添加航向和俯仰偏移值标识             |  |  |  |  |  |
| 2     | 0                 | headingoffsetindeg | 航向偏移值,单位°,-180.0 - 180.0 |  |  |  |  |  |
| 3     | 0                 | [pitchoffsetindeg] | 俯仰偏移值,单位°,-90.0 - 90.0   |  |  |  |  |  |

注:此命令生效后,可通过 SAVECONFIG 命令将相关配置保存到 FLASH 中。

#### 3.2.6 NMEATALKER

þynav:ta 设置 NMEA 输出消息头,即 GGA/RMC/ZDA 等消息头(GPGGA/GPRMC/GPZD A),保存重启生效。

#### 格式:

NMEATALKER [AUTO/GP/BD]

#### 示例:

NMEATALKER AUTO

| ID | 示例         | 格式         | 描述                                         |
|----|------------|------------|--------------------------------------------|
| 1  | NMEATALKER | NMEATALKER | 设置 NMEA 输出消息标头识                            |
| 2  | AUTO       | AUTO       | 仅 GPS 系统则设置为 GP, 仅北斗系统则设置为 B D, 多系统则设置为 GN |
|    |            | GP         | 设置为 GP                                     |



|                 | BD            | 设置为 BD           |
|-----------------|---------------|------------------|
| 注:此命令生效后,可通过 SA | VECONFIG 命令将相 | B关配置保存到 FLASH 中。 |
| 3.2.7 PJKPARA   |               |                  |

#### 3.2.7 PJKPARA

设置 PJK 投影参数。

#### 格式:

SET PJKPARA x x.x x.x x.x x x x x.a aaa

#### 示例:

SET PJKPARA 6378245 298.3 0 0 0 500000 0.99923 EHT

#### 说明:

| ID | 示例          | 格式          | 描述                 |
|----|-------------|-------------|--------------------|
| 1  | SET PJKPARA | SET PJKPARA | 设置 PJK 投影参数标识      |
| 2  | 6378245     | X           | 椭球长半轴,单位: m        |
| 3  | 298.3       | x.x         | 扁率倒数               |
| 4  | 0           | x.x         | 原点纬度,单位:度          |
| 5  | 0           | x.x         | 中央子午线,单位:度         |
| 6  | 0           | х           | 北偏移,单位: m          |
| 7  | 500000      | х           | 东偏移,单位: m          |
| 8  | 0.99923     | x.x         | 比例因子               |
| 9  | EHT         | aaa         | EHT: 椭球高; GHT: 海拔高 |

注:此命令生效后,可通过 SAVECONFIG 命令将相关配置保存到 FLASH 中。

#### 3.2.8 RTKTIMEOUT

设置差分龄期(s),保存重启生效,不带参数时作用为查询当前配置。该指令保存 重启生效。

#### 格式:

RTKTIMEOUT [DIFFAGE]

35 / 154 电话: +86-731-85058117 www.bynav.com



#### 示例:

#### 说明:

| 示例:           |                                             |            |                                       |  |  |
|---------------|---------------------------------------------|------------|---------------------------------------|--|--|
| RTKTIMEOUT 35 |                                             |            |                                       |  |  |
| 说明:           |                                             |            |                                       |  |  |
| ID            | 示例                                          | 格式         | 描述                                    |  |  |
| 1             | RTKTIMEOUT                                  | RTKTIMEOUT | 设置差分龄期(s)标识                           |  |  |
| 2             | 35                                          | [DIFFAGE]  | 差分龄期,默认配置为 30,建议配置为<60 的数值,支持范围 0-500 |  |  |
| 注: 此          | 注:此命令生效后,可通过 SAVECONFIG 命令将相关配置保存到 FLASH 中。 |            |                                       |  |  |
| 3.2.9 RTKTYPE |                                             |            |                                       |  |  |

#### 3.2.9 RTKTYPE

设置接收机工作模式,流动站: ROVER, 基准站 BASE。不带参数时作用为查询当前 配置。保存重启生效。

#### 格式:

RTKTYPE [ROVER/BASE]

#### 示例:

RTKTYPE ROVER

#### 说明:

| ID | 示例      | 格式           | 描述                 |
|----|---------|--------------|--------------------|
| 1  | RTKTYPE | RTKTYPE      | 设置接收机工作模式标识        |
| 2  | ROVER   | [ROVER/BASE] | 流动站:ROVER,基准站 BASE |

注:此命令生效后,可通过 SAVECONFIG 命令将相关配置保存到 FLASH 中。

#### 3.2.10 SAVEEPHDATA

保存当前使用星历

#### 格式:

**SAVEEPHDATA** navitz

#### 示例:

**SAVEEPHDATA** 

电话: +86-731-85058117 www.bynav.com 36 / 154



#### 说明:

| ID | 示例          | 格式          | 描述         |
|----|-------------|-------------|------------|
| 1  | SAVEEPHDATA | SAVEEPHDATA | 保存当前使用星历标识 |

#### 3.2.11 SETGLOIFB

对于不播发 GLO 频间差修正消息 1230 的基站接收机,可通过此指令,新添加通过 另外方式标校的基站接收机的 GLO 频间差,来使得该基站数据中的 GLO 系统可 用。否则,基站中的 GLO 观测量将不能固定模糊度。

#### 注意事项:

- 后带 4 个参数为,基准站厂商给定,用来设置 RTCM1230 CPB 值。
- 设备名称中最多允许一个空格,而且必须用'~'代替。
- 后带 60 个参数,设置每个 K 值的修正量。

#### 格式:

ynavitz SETGLOIFB [DEVICE NAME] x1 x2 x3 x4 [x5.....x60]

#### 示例:

SETGLOIFB TRIMBLE 16.348 16.348 16.348 16.348

#### 说明:

| ID | 示例            | 格式          | 描述                             |
|----|---------------|-------------|--------------------------------|
| 1  | SETGLOIFB     | SETGLOIFB   | 通过另外方式标校的基站接收机的 GLO 频间差        |
| 2  | TRIMBLE       | TRIMBLE     | 设备名称                           |
| 3  | 16.348 16.348 | x1 x2 x3 x4 | 后带 4 个参数为基准站厂商给定,用来设置 RTCM1230 |
|    | 16.348 16.348 | [x5x60]     | CPB 值。后带 60 个参数,设置每个 K 值的修正量。  |

注:此命令生效后,可通过 SAVECONFIG 命令将相关配置保存到 FLASH 中。

#### 3.2.12 SNRCUTOFF

设置卫星信号载噪比门限(dB),保存重启生效。

#### 格式:

电话: +86-731-85058117 www.bynav.com



SNRCUTOFF [SNR]

SNRCUTOFF 40

#### 说明:

| I | D      | 示例        | 格式        | 描述                                |  |
|---|--------|-----------|-----------|-----------------------------------|--|
| 1 |        | SNRCUTOFF | SNRCUTOFF | 设置卫星信号载噪比门限标识                     |  |
| 2 | )<br>- | 40        | SNR       | 卫星信号载噪比门限(dB),取值范围 0-50dB,默认 20dB |  |

注:此命令生效后,可通过 SAVECONFIG 命令将相关配置保存到 FLASH 中。

#### 3.2.13 VELSMOOTH

速度平滑窗口配置,配置后 GNSS 速度输出窗口内平均速度,可平滑 GNSS 速度数 值。保存重启生效。不带参数时可用于查询。

#### 格式:

VELSMOOTH [PERIOD]

示例:

VELSMOOTH 1.0

#### 说明:

| ID | 示例        | 格式        | 描述                |
|----|-----------|-----------|-------------------|
| 1  | VELSMOOTH | VELSMOOTH | 设置卫星信号载噪比门限(dB)标识 |
| 2  | 1.0       | PERIOD    | 平滑窗口时长,单位 s,默认 1s |

注:此命令生效后,可通过 SAVECONFIG 命令将相关配置保存到 FLASH 中。

#### 3.2.14 WORKFREQS

设置工作频点,保存重启生效。当 SYSTEM 字段省略时,指定配置系统为全系统, 此时需要一次性将所有需要配置频点写进去。不带参数时可查询当前频点配置。(请 在专业技术支持的指导下使用该指令)

#### 格式:

WORKFREQS [FREQ] [SYSTEM] [SOURCE]



#### 示例:

WORKFREQS B1IB2IB2AL1L2CL2PG1G2E1E5BI5 配置全系统工作频点
WORKFREQS L1L2C GPS MASTER 配置主天线 GPS 工作频点
WORKFREQS ALL ALL 启用全部可用频点和系统

#### WORKFREQS NONE QZSS 关闭 QZSS 系统

#### 说明:

| ID | 示例        | 格式        | 描述                                                                                              |
|----|-----------|-----------|-------------------------------------------------------------------------------------------------|
| 1  | WORKFREQS | WORKFREQS | 设置工作频点指令                                                                                        |
|    | bylle     |           | 指定频点:如 L1、L2C、B1I等,可通过指令查询可选频点,相关指令详见 4.3.1                                                     |
| 2  | L1L2C     | FREQ      | NONE: 停用所有频点                                                                                    |
|    |           |           | ALL:启用全部可用频点,此时 SYSTEM 字段只能选 ALL                                                                |
| 3  | GPS       | SYSTEM    | 需要配置的系统。可选项:GPS、GLONASS、GALILEO、BEIDOU、BEIDOU2、BEIDOU3、QZSS、IRNSS、ALL。<br>缺省或选填 ALL 表示启用全部可用系统。 |
| 4  | MASTER    | SOURCE    | MASTER 或缺省:主天线 SLAVE:从天线                                                                        |

注:此命令生效后,可通过 SAVECONFIG 命令将相关配置保存到 FLASH 中。

#### **3.2.15 DGPSTXID**

设置基准站 ID,不带参数时为查询基准站 ID。

#### 格式:

DGPSTXID RTCMV3 [Station ID]

#### 示例:

DGPSTXID RTCMV3(查询基站 ID)

DGPSTXID RTCMV3 1001 (配置基站 ID 为 1001)

bynavitz



#### 说明:

| ID | 示例              | 格式              | 描述          |
|----|-----------------|-----------------|-------------|
| 0  | DGPSTXID RTCMV3 | DGPSTXID RTCMV3 | 设置基准站 ID 标识 |
| 1  | 1001            | xxxx            | 基准站 ID      |

注①:此命令生效后,可通过 SAVECONFIG 命令将相关配置保存到 FLASH 中。

#### 3.3 组合导航指令

#### 3.3.1 INSCALIBRATE\*

初始化校准。

#### 格式:

INSCALIBRATE Offset Trigger [SDThreshold]

#### 示例:

INSCALIBRATE RBV NEW 0.5

#### 说明:

| ID | 示例           | 格式           | 描述                                                                               |
|----|--------------|--------------|----------------------------------------------------------------------------------|
| 1  | INSCALIBRATE | INSCALIBRATE | 初始化校准                                                                            |
| 2  | RBV          | Offset       | 校准整机坐标系到车体坐标系的旋转参数                                                               |
| 3  | NEW          | Trigger      | NEW,使用新的校准值覆盖上次的校准值<br>STOP,停止校准,使用得到的估算值<br>RESET,重置校准过程,恢复上次的出厂值(一般为000)或用户输入值 |
| 4  | 0.5          | SDThreshold  | 标准差(缺省时为默认值 0.5°)                                                                |

#### 3.3.2 RAWIMUOUT\*

配置接收机可在无法接收 GNSS 信号的情况下输出 IMU 原始数据。格式:



#### RAWIMUOUT [Switch]

#### 示例:

#### **RAWIMUOUT ON**

#### 说明:

| ID | 格式                  | 示例  | 描述            |
|----|---------------------|-----|---------------|
| 1  | RAWIMUOUT RAWIMUOUT |     | 指令标头          |
| 2  | Switch              | ON  | 打开 IMU 原始数据输出 |
| _  |                     | OFF | 关闭 IMU 原始数据输出 |

注:此命令生效后,可通过 SAVECONFIG 命令将相关配置保存到 FLASH 中。

#### 3.3.3 SETALIGNMENTVEL\*

配置对准所需的最小载体运动速度。

#### 格式:

SETALIGNMENTVEL Velocity

#### 示例:

SETALIGNMENTVEL 5.0

#### 说明:

| ID | 示例              | 格式              | 描述                      |
|----|-----------------|-----------------|-------------------------|
| 1  | SETALIGNMENTVEL | SETALIGNMENTVEL | 配置对准所需的最小载体运动速度         |
| 2  | 5.0             | Velocity        | 最小对准速度,默认 2m/s, 下限 1m/s |

注:此命令生效后,可通过 SAVECONFIG 命令将相关配置保存到 FLASH 中。

#### 3.3.4 SETINSPROFILE\*

配置模型。

#### 格式:

SETINSPROFILE Profile

电话: +86-731-85058117 www.bynav.com **41 / 154** 



#### 示例:

SETINSPROFILE LAND

#### 说明:

| ID | 示例            | 格式            | ASCII 值         | 二进制数值 | 描述     |
|----|---------------|---------------|-----------------|-------|--------|
| 1  | SETINSPROFILE | SETINSPROFILE | SETINSPROFILE   | -     | 配置模型标识 |
|    |               | vita          | Default         | 0     | 基础模型   |
|    | by na         |               | LAND            | Vne   | 车载模型   |
|    | Dy            |               | MARINE          | 2     | 舰船模型   |
| 2  | LAND          | Profile       | FIXEDWING_BASIC | 3     | 固定翼模型  |
|    |               |               | Reserved        | 4     | 保留     |
|    |               |               | VTOL_BASIC      | 5     | 垂直起降模型 |
|    |               | utto          | RAIL_BASIC      | 6     | 轨道模型   |

注:此命令生效后,可通过 SAVECONFIG 命令将相关配置保存到 FLASH 中。

#### 3.3.5 SETINSROTATION\*

配置整机坐标系到其他坐标系的旋转参数。

#### 格式:

bynavitz SETINSROTATION INSRotation X Y Z [XSD YSD ZSD]

#### 示例:

SETINSROTATION RBV 1.0 2.0 3.0 0.05 0.05 0.05

#### 说明:

| ID | 示例             | 格式                 | 描述                   |
|----|----------------|--------------------|----------------------|
| 1  | SETINSROTATION | SETINSROTATIO<br>N | 配置整机坐标系到其他坐标系的旋转参数   |
| 2  | RBV            | INSRotation        | RBV,整机坐标系到车体坐标系的旋转参数 |

42 / 154 电话: +86-731-85058117 www.bynav.com



|     |                                             |     | USER,整机坐标系到用户定义坐标系的旋转参数         |  |  |
|-----|---------------------------------------------|-----|---------------------------------|--|--|
| 3   | 1.0                                         | X   | X 轴的旋转参数 (°) , -90 ~ +90        |  |  |
| 4   | 2.0                                         | Υ   | Y 轴的旋转参数 (°) , -180 ~ +180      |  |  |
| 5   | 3.0                                         | Z   | Z 轴的旋转参数 (°) , -180 ~ +180      |  |  |
| 6   | 0.05                                        | XSD | 可选,X 轴的旋转参数的标准差(°),默认 0.0, 0~45 |  |  |
| 7   | 0.05                                        | YSD | 可选,Y轴的旋转参数的标准差(°),默认 0.0, 0~45  |  |  |
| 8   | 0.05                                        | ZSD | 可选,Z轴的旋转参数的标准差(°),默认 0.0, 0~45  |  |  |
| 注:  | 注:此命令生效后,可通过 SAVECONFIG 命令将相关配置保存到 FLASH 中。 |     |                                 |  |  |
| 3.3 | 3.3.6 SETINSTRANSLATION*                    |     |                                 |  |  |

#### 3.3.6 SETINSTRANSLATION\*

配置整机坐标系到其他坐标系的杆臂。

#### 格式:

SETINSTRANSLATION INSTranslation X Y Z XSD YSD ZSD VEHICLE

#### 示例:

SETINSTRANSLATION ANT1 1.0 2.0 3.0 0.05 0.05 VEHICLE
SETINSTRANSLATION DMI1 1.0 3.0 7

#### 说明:

| ID | 示例                | 格式                | 描述                      |
|----|-------------------|-------------------|-------------------------|
| 1  | SETINSTRANSLATION | SETINSTRANSLATION | 配置整机坐标系到其他坐标系的杆臂        |
|    | LynaV)            |                   | ANT1,整机坐标系到(主)天线1的杆臂    |
|    | Dy                |                   | ANT2, 整机坐标系到(从)天线 2 的杆臂 |
|    |                   |                   | NHC,整机坐标系到车载约束模型位置      |
| 2  | ANT1              | INSTranslation    | (一般为后轮轴中心)的杆臂           |
|    |                   |                   | DMI1~4,整机坐标系到各轮速传感器的杆   |
|    |                   |                   | 臂                       |
|    | - 11              | 173               | USER,整机坐标系到用户定义坐标系的杆    |
|    | PAUU3A.           |                   | 臂,即更改输出结果位置到用户配置点       |
| 3  | 1.0               | Х                 | X 轴的杆臂(m), -100~ + 100  |



| 4 | 2.0                  | Υ          | Y 轴的杆臂(m), -100~ + 100     |
|---|----------------------|------------|----------------------------|
| 5 | 3.0                  | Z          | Z 轴的杆臂(m), -100~ + 100     |
| 6 | 0.05                 | XSD        | X 轴的杆臂的标准差 (m),0~10        |
| 7 | 0.05                 | YSD        | Y轴的杆臂的标准差(m),0~10          |
| 8 | 0.05                 | ZSD        | Z 轴的杆臂的标准差(m), 0~10        |
| 9 | VEHICLE              | InputFrame | VEHICLE,输入数据的坐标系为车体坐标<br>系 |
|   | <sub>tovina</sub> vi | 7          | IMUBODY,输入数据的坐标系为整机坐标系     |

注:此命令生效后,可通过 SAVECONFIG 命令将相关配置保存到 FLASH 中。

#### 3.3.7 SETINSTYPE\*

设置 IMU 类型,通常无需设置,自动识别 IMU 类型。不带参数时作用为查询当前配 置。

#### 格式:

SETINSTYPE IMUTYPE

#### 示例:

SETINSTYPE IMU-3

#### 说明:

| ID | 示例         | 格式         | 描述        |
|----|------------|------------|-----------|
| 1  | SETINSTYPE | SETINSTYPE | 设置 IMU 类型 |
| 2  | IMU-3      | IMUTYPE    | IMU 类型    |

注:此命令生效后,可通过 SAVECONFIG 命令将相关配置保存到 FLASH 中。

#### 3.3.8 SETINSUPDATE\*

配置滤波更新数据,如您不清楚该语句设置的内容,请勿使用该语句。 bynavitz

#### 格式:

SETINSUPDATE INSUpdate Trigger

#### 示例:

44 / 154 电话: +86-731-85058117 www.bynav.com



#### SETINSUPDATE ZUPT DISABLE

#### 说明:

| SETTIN | SETINSUPDATE ZUPT DISABLE |              |             |  |  |
|--------|---------------------------|--------------|-------------|--|--|
| 说明:    |                           |              |             |  |  |
| ID     | 示例                        | 格式           | 描述          |  |  |
| 1      | SETINSUPDATE              | SETINSUPDATE | 配置滤波更新数据    |  |  |
|        |                           |              | POS, 位置     |  |  |
|        |                           |              | ZUPT, 零速修正  |  |  |
| 2      | ZUPT                      | INSUpdate    | ADR, 载波相位   |  |  |
|        | - may It b                |              | ALIGN,双天线定向 |  |  |
|        | Dy                        |              | DMI, 距离测量装置 |  |  |
| 3      | DISABLE                   | Trigger      | DISABLE, 禁用 |  |  |
|        |                           |              | ENABLE, 启用  |  |  |

注:此命令生效后,可通过 SAVECONFIG 命令将相关配置保存到 FLASH 中。

#### 4 消息

带\*的消息仅支持组合导航终端。

#### 4.1 NMEA 格式消息

#### 4.1.1 ATR

定位和定向类导航消息。

推荐

bynavitz LOG GPATR ONTIME 1

#### ASCII 示例

\$GPATR,062743.00,4,0.000,-0.002,0.000,0.006,4,37.19,-76.84\*7F

#### 说明

| ID | 示例 | 格式 | 描述 |
|----|----|----|----|
|    |    |    |    |

45 / 154 电话: +86-731-85058117 www.bynav.com



| 1  | GPATR     | \$ATR     | 数据 ID                  |
|----|-----------|-----------|------------------------|
| 2  | 062743.00 | hhmmss.ss | UTC 时间                 |
| 3  | 4         | a0        | 定位状态,见注释①              |
| 4  | 0.000     | x1        | 基线长度,单位: m             |
| 5  | -0.002    | x2        | 北向距离 N, 单位: m          |
| 6  | 0.000     | х3        | 东向距离 E,单位:m            |
| 7  | 0.006     | x4        | 天向距离 U, 单位: m          |
| 8  | 4         | a1        | 定向状态,见注释①              |
| 9  | 37.19     | x5        | 偏航角,单位:度(取值范围 0°~360°) |
| 10 | -76.84    | х6        | 俯仰角,单位:度(取值范围-90°~90°) |
| 11 |           | -         | 保留位                    |
| 12 | *7F       | *hh       | 校验                     |

注释①: 0-表示无解; 1-表示单点定位解; 2-表示伪距差分解; 4-固定解; 5-浮点解。

#### **4.1.2 BYINS**

GNSS 和 INS 的位姿和速度消息,同时包含板卡编号和 GNSS 授时信息。

#### 推荐

#### LOG Port BYINS ONNEW

#### ASCII 示例

\$BYINS,SN101133140136,021938.17,94796.165,28.232455223,112.874930648,71.093,10.127, -0.040,1.424,0.002,0.003,-0.001,-0.247,0.019,9.817,0.016,0.084,0.158,-0.010,-0.006,- 0.010,6,4,54,1000000,0,0.000,0.003,0.010,0.001,112.8749301,28.2324561,69.22,1,000000,0 .003,0.002,-0.001\*57

| 字段 | 格式      | 示例      | 描述    |
|----|---------|---------|-------|
| 1  | \$BYINS | \$BYINS | 数据 ID |



| 2  | SNxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | SN101133140136 | 设备序列号,SN+12 位数字,见注释①     |
|----|----------------------------------------|----------------|--------------------------|
| 3  | hhmmss.ss                              | 021938.17      | UTC 时间,详见注释②             |
| 4  | x.x                                    | 94796.165      | GPS 周内秒,自本周日零时至当前的秒数     |
| 5  | x.x                                    | 28.232455223   | 组合导航纬度,单位:度              |
| 6  | x.x                                    | 112.874930648  | 组合导航经度,单位:度              |
| 7  | x.x                                    | 71.093         | 组合导航高程(椭球高), 单位: 米       |
| 8  | x.x                                    | 10.127         | 方位角, 单位: 度               |
| 9  | x.x                                    | -0.040         | 俯仰角,单位:度                 |
| 10 | x.x                                    | 1.424          | 横滚角,单位:度                 |
| 11 | x.x                                    | 0.002          | 前向速度,单位:米/秒              |
| 12 | x.x                                    | 0.003          | 右向速度,单位:米/秒              |
| 13 | x.x                                    | -0.001         | 天向速度,单位:米/秒              |
| 14 | x.x                                    | -0.247         | 原始右向轴加速度,单位:米/秒2         |
| 15 | x.x                                    | 0.019          | 原始前向轴加速度,单位:米/秒2         |
| 16 | x.x                                    | 9.817          | 原始天向轴加速度,单位:米/秒²         |
| 17 | x.x                                    | 0.016          | 原始右向轴角速度,逆时针为正,单位:度/秒    |
| 18 | x.x                                    | 0.084          | 原始前向轴角速度,逆时针为正,单位:度/秒    |
| 19 | x.x                                    | 0.158          | 原始天向轴角速度,逆时针为正,单位:度/秒    |
| 20 | x.x                                    | -0.010         | 校正右向轴角速度,逆时针为正,单位:度/秒    |
| 21 | x.x                                    | -0.006         | 校正前向轴角速度, 逆时针为正, 单位: 度/秒 |
| 22 | x.x                                    | -0.010         | 校正天向轴角速度,逆时针为正,单位:度/秒    |
| 23 | Х                                      | 6              | 组合导航定位状态,详见注释③           |
| 24 | х                                      | 4              | GNSS 定向状态,详见注释④          |
| 25 | xx                                     | 54             | 主天线收星数量                  |
| 26 | x.x                                    | 1000000        | 差分延迟                     |
| 27 | x.x                                    | 0              | 预留                       |
| 28 | x.x                                    | 0.000          | 预留                       |



| 29 | x.x                | 0           | 预留                        |
|----|--------------------|-------------|---------------------------|
| 30 | x.x                | 0.003       | 北向加速度,单位:米/秒 <sup>2</sup> |
| 31 | x.x                | 0.010       | 东向加速度,单位:米/秒 <sup>2</sup> |
| 32 | x.x                | 0.001       | 地向加速度,单位:米/秒 <sup>2</sup> |
| 33 | x.x                | 112.8749301 | GNSS 经度,单位:度              |
| 34 | x.x                | 28.2324561  | GNSS 纬度, 单位: 度            |
| 35 | x.x                | 69.22       | GNSS 高度, 单位: 米            |
| 36 | х                  | 1125        | GNSS 定位状态,详见注释⑤           |
| 37 | XXXXXX             | 000000      | 故障报警,详见注释⑥                |
| 38 | x.x                | 0.003       | 东向速度,单位:米/秒               |
| 39 | x.x                | 0.002       | 北向速度,单位:米/秒               |
| 40 | x.x                | -0.001      | 天向速度,单位:米/秒               |
| 41 | *hh                | *57         | \$与*之间所有 ASCII 字符的校验和     |
| 42 | <cr><lf></lf></cr> | 41-75       | 消息终结符(仅限ASCII格式)          |

注释①:无论接收机是否定位,此项始终不为空。

注释②: 非定位状态下, 此项为空。

注释③:0-未定位或无效解;1-单点定位;2-DGPS 差分定位;4-RTK 固定解;5-RTK 浮点解;6-INS

姿态解或 GNSS/INS 组合姿态解。

注释④: 0-无效解; 1-单点定位解; 2-伪距差分解; 4-固定解; 5-浮点解。

注释⑤: 0-未定位或无效解; 1-单点定位; 2-DGPS 差分定位; 4-RTK 固定解; 5-RTK 浮点解。

注释⑥: 各数字位分别对应 ABCDEF。A=0, IMU 正常; A=1, 陀螺有故障; A=2, 加表有故障;

A=3, 陀螺加表同时有故障; B=0, GNSS 正常; B=1, GNSS 失锁, 接收不到卫星数据; B=2, GNSS 板卡异常无输出; D=0, 导航正常; D=1, 导航输出异常; C、E和F预留。

#### 4.1.3 DOP

输出 DOP 值。

#### 推荐

LOG GPDOP ONTIME 1
33,0.61,1.10\*70

#### ASCII 示例

\$GPDOP,022518.00,1.03,0.61,0.83,0.61,1.19\*70



#### 说明

| ID | 示例        | 格式        | 描述             |
|----|-----------|-----------|----------------|
| 1  | \$GPDOP   | \$DOP     | 数据 ID          |
| 2  | 022518.00 | hhmmss.ss | UTC 时间         |
| 3  | 1.03      | x.x       | PDOP: 空间位置精度因子 |
| 4  | 0.61      | x.x       | HDOP: 水平位置精度因子 |
| 5  | 0.83      | x.x       | VDOP: 高程精度因子   |
| 6  | 0.61      | x.x       | TDOP: 钟差精度因子   |
| 7  | 1.19      | x.x       | GDOP: 几何精度因子   |
| 8  | *70       | *hh       | 校验             |

#### 4.1.4 FPD

定位定姿消息集。

#### 推荐

# LOG GPFPD ONTIME 1

#### ASCII 示例

\$GPFPD,1975,355908.00,296.248,-71.075,1.579,28.233170896,112.877141017,61.053,-0.157, 0.020,-0.021, 3.898,30,30,1\*4F

| ID | 示例            | 格式                   | 描述                      |
|----|---------------|----------------------|-------------------------|
| 1  | \$GPFPD       | \$FPD                | 数据 ID                   |
| 2  | 1975          | Xxxx                 | GPSWeek 自 1980.1.6 至当前的 |
| 2  |               |                      | 星期数(GPS 时间)             |
| 3  | 2. 2555000.00 | 自本周日 00:00:00 至当前的秒数 |                         |
| 5  | 3555908.00    | SSSSSS.SS            | (GPS 时间)                |
| 4  | 296.248       | x.x                  | 偏航角0~360°               |



| 5  | -71.075       | x.x  | 俯仰角-90~90°   |
|----|---------------|------|--------------|
| 6  | 1.579         | x.x  | 横滚角-180~180° |
| 7  | 28.233170896  | xx.x | 纬度-90~90°    |
| 8  | 112.877141017 | xx.x | 经度-180~180°  |
| 9  | 61.053        | xx.x | 高度,单位: m     |
| 10 | -0.157        | x.x  | 东向速度,单位: m/s |
| 11 | 0.020         | x.x  | 北向速度,单位: m/s |
| 12 | -0.021        | x.x  | 天向速度,单位: m/s |
| 13 | 3.898         | x.x  | 基线长度,单位: m   |
| 14 | 30            | Xx   | 天线1卫星数       |
| 15 | 30            | Xx   | 天线2卫星数       |
| 16 | 1             | а    | 解算状态,见注释①    |
| 17 | *4F           | *hh  | 校验           |

注释①: 0: 初始化; 1: GPS位置、速度和航向有效; 2: GPS位置和速度有效; 3: 纯惯性模式; 11: GPS差分、速度和航向有效; 12: GPS差分有效。

#### 4.1.5 GGA

接收机的时间、位置和定位相关数据。

#### 推荐

## LOG GPGGA ONTIME 1

#### ASCII 示例

\$GPGGA,120232.00,2813.9460312,N,11252.4959363,E,4,11,1.1,86.582,M,-17.043,M,1.000,090 9\*5A

#### 说明

| ID | 示例        | 格式        | 描述            |
|----|-----------|-----------|---------------|
| 1  | \$GPGGA   | \$GGA     | 数据 ID         |
| 2  | 120232.00 | hhmmss.ss | UTC 时间,格式见注释① |

电话: +86-731-85058117 www.bynav.com **50 / 154** 



| 3  | 2813.9460312  | ddff.ff  | 纬度,格式见注释②       |
|----|---------------|----------|-----------------|
| 4  | N             | а        | 纬度方向,N-北纬,S-南纬  |
| 5  | 11252.4959363 | dddff.ff | 经度,格式见注释③       |
| 6  | E             | a        | 经度方向,E-东经,W-西经  |
| 7  | 4             | х        | 解算状态,详见注释④      |
| 8  | 11            | xx       | 参与定位解算卫星数       |
| 9  | 1.1           | x.x      | HDOP: 水平位置精度因子  |
| 10 | 86.582        | x.x      | 海拔高             |
| 11 | М             | U        | 海拔高单位: m        |
| 12 | -17.043       | x.x      | 高程异常值,详见注释⑤     |
| 13 | М             | U        | 高程异常值单位: m      |
| 14 | 1.000         | x.x      | 差分龄期,详见注释⑥      |
| 15 | 0909          | xxxx     | 差分站台 ID 号,详见注释⑦ |
| 16 | *5A           | *hh      | 校验              |

注释①:小数点前,时分秒各占2位,小数点后为秒。

注释②: 28°13.9460312′, 取值范围为 0°~90°, 小数点前保留 2 位为分, 其余为度。

注释③: 112°52.4959363', 取值范围为 0°~180°, 小数点前保留 2位为分, 其余为度。

注释④: 0-无效解; 1-单点定位解; 2-伪距差分; 4-固定解; 5-浮动解。

注释⑤: CGCS-2000 大地高和海拔高的差距, "-"表示海平面低于 CGCS-2000 椭球面。

注释⑥: 单位为 s , 指距离上次接收到差分信号的时间。

注释⑦: 单点定位时 ID 为 0, RTK 时为所接收的差分数据来源基准站 ID。

#### 4.1.6 GSA

提供与 GNSS 接收机运行模式、参与解算的卫星和 DOP 值等相关信息。多个 GNSS 系统参与解算时,将输出多条 GSA 语句的方式。

本节适用于 7.57 版之后的固件。7.57 版固件请参考 NMEA 0183-Standard for Interfacing Marine Electronic Devices Version 4.10。

#### 推荐



### LOG GPGSA ONTIME 1 bynavitz

#### ASCII 示例

\$GPGSA,M,3,87,70,,,,,,1.2,0.8,0.9,1\*2A

#### 说明

| ID   | 格式       | 示例           | 描述                                    |
|------|----------|--------------|---------------------------------------|
| 1    | \$GSA    | \$GPGSA      | 数据 ID, 见注释①                           |
| 2    | a        | M            | A: 自动选择二维或三维模式<br>M: 手动,强制在二维或三维模式下运行 |
| 3    | x///al-  | 3            | 1: 固定解不可用; 2: 二维; 3: 三维               |
| 4-15 | xx       | 87,70,,,,,,, | 各 GNSS 系统参与解算卫星的 PRN 编号,共 12 个字段,见注释① |
| 16   | x.x      | 1.2          | 位置精度因子                                |
| 17   | x.x      | 0.8          | 水平精度因子                                |
| 18   | x.x      | 0.9          | 垂直精度因子                                |
| 19   | h        |              | GNSS 系统 ID,见注释②                       |
| 20   | *hh      | *2A          | 校验和                                   |
| 21   | [CR][LF] |              | 终止符                                   |

注释①:根据参与解算的 GNSS 系统不同,标头组成可能不同,如 GPGSA、GLGSA 等,如果有多个 系统同时参与解算,则显示为 GN。各 GNSS 系统中卫星 PRN 编号规则参见 NMEA 0183-Standard for Interfacing Marine Electronic Devices Version 4.11.

注释②: 1-GPS(GP), 2-GLONASS(GL), 3-Galileo(GA), 4-BDS(GB), 5-QZSS(GQ), 6bynavit IRNSS(GI), 7~F-保留。

#### 4.1.7 GST

GPS 伪距噪声统计,包括了三维坐标的标准偏差信息。

#### 推荐

bynavitz LOG GPGST ONTIME 1

#### ASCII 示例

\$GPGST,024603.00,3.2,6.6,4.7,47.3,5.8,5.6,22.0\*58



#### 说明

| ID | 示例        | 格式        | 描述                   |
|----|-----------|-----------|----------------------|
| 1  | \$GPGST   | \$GST     | 数据 ID                |
| 2  | 024603.00 | hhmmss.ss | UTC 时间,hhmmss(时分秒)格式 |
| 3  | 3.2       | x.x       | 用于导航计算的伪距标准偏差的平方根值   |
| 4  | 6.6       | x.x       | 椭球体长半轴标准偏差(单位:米)     |
| 5  | 4.7       | x.x       | 椭球体短半轴标准偏差(单位:米)     |
| 6  | 47.3      | x.x       | 椭球体长半轴方位(单位: 度)      |
| 7  | 5.8       | x.x       | 标准纬度偏差(单位:米)         |
| 8  | 5.6       | x.x       | 标准经度偏差(单位:米)         |
| 9  | 22.0      | x.x       | 标准高度偏差(单位:米)         |
| 10 | *58       | *hh       | 校验                   |

#### 4.1.8 **GSV**

输出可视的卫星状态,包括:可视的卫星数、卫星标识号、仰角、方位角及信噪比(SNR)值。

#### 推荐

#### LOG GPGSV ONTIME 1

#### ASCII 示例

\$GPGSV,3,3,10,26,82,187,47,28,43,056,46,,,,,,\*77

| ID | 示例      | 格式    | 描述          |
|----|---------|-------|-------------|
| 1  | \$GPGSV | \$GSV | 数据 ID       |
| 2  | 3       | X     | GSV 消息总数    |
| 3  | 3       | x     | 当前 GSV 消息序号 |
| 4  | 10      | xx    | 视野内卫星数      |



| 5 | 26           | xx  | 卫星号                |
|---|--------------|-----|--------------------|
| 6 | 82           | xx  | 卫星仰角,单位: 度         |
| 7 | 187          | xxx | 卫星方位角,单位: 度        |
| 8 | 47           | xx  | 信噪比                |
|   | 28,43,056,46 | -   | 重复 5~8 字段,表示其他卫星信息 |
|   | ,,,,,,,      |     | 见注释①               |
| n | *77          | *hh | 校验                 |

注释①: 每条消息最多传输 4 颗卫星的信息,如果需要输出信息的卫星不足 4 颗,按实际数目输出, 其余字段以逗号 (",")填充且每条消息中逗号的数目必须相同。

#### 4.1.9 HDT

输出方位角,以真北为参考。

#### 推荐

bynavitz LOG GPHDT ONTIME 1

#### ASCII 示例

\$GPHDT,98.397404,T\*39

#### 说明

| ID | 示例        | 格式    | 描述                     |
|----|-----------|-------|------------------------|
| 1  | GPHDT     | \$HDT | 数据 ID                  |
| 2  | 98.397404 | x.x   | 方位角,单位:度(取值范围 0°~360°) |
| 3  | Т         | Т     | 真北标志位                  |
| 4  | *39       | *hh   | 校验                     |

#### 4.1.10 HPD

GPS 定位定向消息集。 推荐





#### LOG GPHPD ONTIME 1

#### ASCII 示例

\$GPHPD,1975,355985.00,296.248,-71.075,292.096,28.233173291,112.877139847,61.040,-49
2.200,567.901,-28.918,-0.003,0.001,-0.006,-0.005,-0.003,-0.006,1.808,30,30,1\*4F

| ID | 示例            | 格式    | 描述                                |
|----|---------------|-------|-----------------------------------|
| 1  | \$GPHPD       | \$HPD | 数据 ID                             |
| 2  | 1975          | xxxx  | GPS week, 自1980-1-6至当前的星期数(GPS时间) |
| 3  | 355985.00     | x.x   | 自本周日00:00:00至当前的秒数(GPS时间)         |
| 4  | 296.248       | x.x   | 偏航角0~360°                         |
| 5  | -71.075       | x.x   | 俯仰角-90~90°                        |
| 6  | 292.096       | x.x   | 地速相对真北方向的夹角(0-359.99°)            |
| 7  | 28.233173291  | x.x   | 纬度, 单位: 度                         |
| 8  | 112.877139847 | x.x   | 经度,单位:度                           |
| 9  | 61.040        | x.x   | 高度,单位: m                          |
| 10 | -492.200      | x.x   | 移动站相对基站的东向距离,单位: m                |
| 11 | 567.901       | x.x   | 移动站相对基站的北向距离,单位: m                |
| 12 | -28.918       | x.x   | 移动站相对基站的天向距离,单位: m                |
| 13 | -0.003        | x.x   | 东向速度,单位: m/s                      |
| 14 | 0.001         | x.x   | 北向速度,单位: m/s                      |
| 15 | -0.006        | x.x   | 天向速度,单位: m/s                      |
| 16 | 0.005         | x.x   | 两次测量值间的东向速度差,单位: m/s              |
| 17 | -0.003        | x.x   | 两次测量值间的北向速度差,单位: m/s              |
| 18 | -0.006        | x.x   | 两次测量值间的天向速度差,单位: m/s              |
| 19 | 1.808         | x.x   | 基线长度, 单位: m                       |
| 20 | 30            | xx    | 定向天线可用星数                          |



| 21 | 30  | XX  | 定位天线可用星数  |
|----|-----|-----|-----------|
| 22 | 1   | a   | 解算状态,见注释① |
| 23 | *4F | *hh | 校验        |

注释①: 0:GPS 无效; 1:GPS 单点位置有效; 2:伪距差分; 4:RTK 固定解; 5:RTK 浮点解。

#### 4.1.11 NTR

输出差分后移动站离参考站的距离。

#### 推荐

## LOG GPNTR ONTIME 1

#### ASCII 示例

\$GPNTR,024404.00,1,17253.242,+5210.449,-16447.587,-49.685,0004\*40

| ID | 示例         | 格式        | 描述            |
|----|------------|-----------|---------------|
| 1  | \$GPNTR    | \$NTR     | 数据 ID         |
| 2  | 024404.00  | hhmmss.ss | UTC 时间        |
| 3  | 1          | a         | 解算状态,见注释①     |
| 4  | 17253.242  | x.x       | 距离参考站斜距 单位: m |
|    |            |           | X 方向平距: 单位: m |
| 5  | +5210.449  | x.x       | "+"表示在参考站北方向  |
|    | vna        |           | "-"表示在参考站南方向  |
|    |            |           | Y 方向平距: 单位: m |
| 6  | -16447.587 | x.x       | "+"表示在参考站东方向  |
|    |            |           | "-"表示在参考站西方向  |
|    |            |           | H 方向平距: 单位: m |
| 7  | -49.685    | x.x       | "+"表示在参考站上方   |
|    | wnaVJL     |           | "-"表示在参考站下方   |
| 8  | 0004       | xxx       | 差分站台 ID       |



| 9 | *40 | *hh | 校验 |
|---|-----|-----|----|
|   |     |     |    |

注释①: 0: 无效解; 1: 单点定位解; 2: 伪距差分; 4: 固定解; 5: 浮点解。

#### 4.1.12 ORI

定向数据。

#### 推荐

#### LOG GPORI ONTIME 1

#### ASCII 示例

ynavitz \$GPORI,072543.00,4,0.394429,190.051100,-01.078979,-0.005446,0.189967,-0.345625\*4E

#### 说明

| ID | 示例         | 格式        | 描述                     |
|----|------------|-----------|------------------------|
| 1  | \$GPORI    | \$ORI     | 数据 ID                  |
| 2  | 072543.00  | hhmmss.ss | UTC 时间                 |
| 3  | 4          | Х         | 解算状态,见注释①              |
| 4  | 0.394429   | x.x       | 基线长度,单位: m             |
| 5  | 190.051100 | x.x       | 方位角,单位:度(取值范围 0°~360°) |
| 6  | -01.078979 | x.x       | 俯仰角,单位:度(取值范围-90°~90°) |
| 7  | -0.005446  | X.X       | 基线向量的 x 分量, 单位: m      |
| 8  | 0.189967   | x.x       | 基线向量的 y 分量, 单位: m      |
| 9  | -0.345625  | x.x       | 基线向量的 z 分量, 单位: m      |
| 10 | *4E        | *hh       | 校验                     |

注释①: 0: 无解; 1: 单点解; 4: 固定解; 5: 浮点解。

#### 4.1.13 PASHR\*

输出定向类导航信息。 推荐

#### 推荐

57 / 154 电话: +86-731-85058117 www.bynav.com



#### LOG PASHR ONTIME 1

#### ASCII 示例

navit 5 \$PASHR,024224.00,37.186,T,0.000,-76.837,0.000,0.000,0.500,0.200,2\*10

#### 说明

| ID | 示例        | 格式        | 描述                       |
|----|-----------|-----------|--------------------------|
| 1  | \$PASHR   | \$PASHR   | 数据 ID                    |
| 2  | 024224.00 | hhmmss.ss | UTC 时间                   |
| 3  | 37.186    | x.x       | 方位角,单位:度(取值范围 0°~360°)   |
| 4  | Т         | Т         | 真北标志位                    |
| 5  | 0.000     | x.x       | 横滚角,单位:度(取值范围-180°~180°) |
| 6  | -76.837   | x.x       | 俯仰角,单位:度(取值范围-90°~90°)   |
| 7  | 0.000     | x.x       | 高程异常值(锁定为 0)             |
| 8  | 0.000     | x.x       | 横滚角标准差                   |
| 9  | 0.500     | x.x       | 俯仰角标准差                   |
| 10 | 0.200     | x.x       | 方位角标准差                   |
| 11 | 2         | a         | 解算状态,见注释①                |
| 12 | *10       | *hh       | 校验                       |

注释①: 0-无定位; 1-单点定位; 2-RTK 定位。

#### **4.1.14 PTNL AVR**

输出方位角。

#### 推荐

#### LOG PTNLAVR ONTIME 1

#### ASCII 示例

\$PTNL,AVR,032735.00,+37.1860,Yaw,-76.8374,Tilt,,,0.001,3,1.5,21\*36



#### 说明

| ID | 示例         | 格式         | 描述                     |
|----|------------|------------|------------------------|
| 1  | \$PTNL,AVR | \$PTNL,AVR | 数据 ID                  |
| 2  | 032735.00  | hhmmss.ss  | UTC 时间                 |
| 3  | +37.1860   | x.x        | 方位角,单位:度(取值范围 0°~360°) |
| 4  | Yaw        | Yaw        | 方位角标识                  |
| 5  | -76.8374   | x.x        | 俯仰角,单位:度(取值范围-90°~90°) |
| 6  | Tilt       | Tilt       | 俯仰角标识                  |
| 7  | (空)        | -          | 预留                     |
| 8  | (空)        | -          | 预留                     |
| 9  | 0.001      | x.x        | 基线长度,单位: m             |
| 10 | 3          | a          | 解算状态,见注释①              |
| 11 | 1.5        | x.x        | PDOP: 空间位置精度因子         |
| 12 | 21         | xx         | 参与解算卫星数                |
| 13 | *36        | *hh        | 校验                     |

注释①: 0:无效解; 1:GPS 单点解; 2: RTK 浮点解; 3:RTK 固定解; 4:伪距差分。

#### 4.1.15 PTNL PJK

直接输出投影后的平面坐标,方便第三方软件的使用。

#### 推荐

LOG PTNLPJK ONTIME 1

#### 示例

\$PTNL,PJK,022832.00,111617,+3125709.515,N,+684258.136,E,1,30,0.526,EHT+63.147,M\*7A

#### 说明

| ID | 示例         | 格式         | 描述    |
|----|------------|------------|-------|
| 1  | \$PTNL,PJK | \$PTNL,PJK | 数据 ID |

电话: +86-731-85058117 www.bynav.com **59 / 154** 



| 2  | 022832.00    | hhmmss.ss | UTC 时间             |
|----|--------------|-----------|--------------------|
| 3  | 111617       | mmddyy    | 日期,格式为月日年          |
| 4  | +3125709.515 | x.x       | X 坐标,单位: m         |
| 5  | N            | а         | X 坐标方向             |
| 6  | +684258.136  | x.x       | Y 坐标,单位: m         |
| 7  | Е            | а         | Y 坐标方向             |
| 8  | 1            | Х         | 解算状态,见注释①          |
| 9  | 30           | xx        | 参与解算的卫星数           |
| 10 | 0.526        | x.x       | HDOP 水平精度因子        |
| 11 | EHT+63.147   | ax.x      | 高度:EHT-大地高;GHT-海拔高 |
| 12 | М            | U         | 高度单位: m            |
| 13 | *7A          | *hh       | 校验                 |

bynavitz 注释①: 0: 无效解; 1: 单点定位解; 2: 伪距差分; 3: 固定解; 4: 浮点解。

#### 4.1.16 RMC

最简导航传输数据。

#### 推荐

#### LOG GPRMC ONTIME 1

#### ASCII 示例

\$GPRMC,020550.00,A,2813.9891299,N,11252.6278784,E,0.033,315.7,161117,0.0,E, A\*30

#### 说明

| ID | 示例        | 格式        | 描述                       |
|----|-----------|-----------|--------------------------|
| 1  | GPRMC     | \$RMC     | 数据 ID                    |
| 2  | 020250.00 | hhmmss.ss | UTC 时间                   |
| 3  | A         | a         | 定位状态: A - 有效定位, V - 无效定位 |

60 / 154 电话: +86-731-85058117 www.bynav.com



| 4  | 2813.9891299  | ddff.ff  | 纬度,见注释①                                   |
|----|---------------|----------|-------------------------------------------|
| 5  | N             | a        | 纬度方向:N - 北纬,S - 南纬                        |
| 6  | 11252.6278784 | dddff.ff | 经度,见注释②                                   |
| 7  | E             | a        | 经度方向:E - 东经,W - 西经                        |
| 8  | 0.033         | x.x      | 地面速度,单位: 节 (N)                            |
| 9  | 315.7         | x.x      | 地面航向,以真北为参考基准,沿顺时针方向至航向的角度。(取值范围 0°~360°) |
| 10 | 161117        | ddmmyy   | 日期,日月年                                    |
| 11 | 0.0           | x.x      | 磁偏角,单位:度                                  |
| 12 | E             | a        | 磁偏角方向                                     |
| 13 | А             | a        | 模式指示,见注释③                                 |
| 14 | *30           | *hh      | 校验                                        |

注释①: 28°13.99891299', 取值范围为 0°~90°小数点前保留 2位为分, 其余为度。

注释②: 112°52.6278784', 取值范围为 0°~180° 小数点前保留 2 位为分, 其余为度。

注释③: A=自主定位; D=差分; E=估算; F=浮点; M=手动输入; N=数据无效。

#### 4.1.17 TRA

方位角信息。

#### 推荐

LOG GPTRA ONTIME 1

#### ASCII 示例

\$GPTRA,063027.30,101.78,71.19,0.00,4,10,0.00,0004\*51

| 1       \$GPTRA       \$TRA       数据 ID         2       063027.30       hhmmss.ss       UTC 时间 | ID | 示例        | 格式        | 描述     |
|------------------------------------------------------------------------------------------------|----|-----------|-----------|--------|
| 2 063027.30 hhmmss.ss UTC 时间                                                                   | 1  | \$GPTRA   | \$TRA     | 数据 ID  |
|                                                                                                | 2  | 063027.30 | hhmmss.ss | UTC 时间 |



| 3  | 101.78 | x.x  | 方位角,单位:度(取值范围 0°~360°)   |
|----|--------|------|--------------------------|
| 4  | 71.19  | x.x  | 俯仰角,单位:度(取值范围-90°~90°)   |
| 5  | 0.00   | x.x  | 横滚角,单位:度(取值范围-180°~180°) |
| 6  | 4      | Х    | 解算状态,见注释①                |
| 7  | 10     | xx   | 参与解算的卫星数                 |
| 8  | 0.00   | x.x  | 差分龄期,单位:s                |
| 9  | 0004   | XXXX | 差分站台 ID                  |
| 10 | *51    | *hh  | 校验                       |

注释①: 0: 无效解; 1: 单点定向解; 2: 伪距差分; 4: 固定解; 5: 浮点解。

#### 4.1.18 VTG

输出地面速度信息。

#### 推荐

LOG GPVTG ONTIME 1

#### ASCII 示例

\$GPVTG,134.395,T,134.395,M,0.019,N,0.035,K,A\*33

| ID | 示例      | 格式    | 描述                                  |
|----|---------|-------|-------------------------------------|
| 1  | \$GPVTG | \$VTG | 数据 ID                               |
| 2  | 134.395 | x.x   | 地面航向,以真北为参考基准,000~359.999°          |
| 3  | T       | U     | 真北标示符                               |
| 4  | 134.395 | x.x   | 地面航向,以磁北为参考基准,000~359.999°,见注释<br>① |
| 5  | М       | U     | 磁北标示符                               |
| 6  | 0.019   | x.x   | 水平运动速度 000~999, 单位: 节 (海里/小时)       |
| 7  | N       | U     | 单位,N 表示海里每小时                        |
| 8  | 0.035   | x.x   | 水平运动速度 000~999, 单位: 千米/小时           |



| 9  | К   | U   | 单位,K 表示千米/小时 |
|----|-----|-----|--------------|
| 10 | А   | U   | 定位状态,见注释②    |
| 11 | *33 | *hh | 校验           |

注释①:需硬件支持,硬件不支持时将以真北为参考基准。

注释②: A-自主定位; D-差分; E-估算; M-手动输入; N-数据无效。

#### 4.1.19 ZDA

描述 UTC 时间、日期和本地时区。

#### 推荐

bynavitz LOG GPZDA ONTIME 1

#### ASCII 示例

\$GPZDA,004401.00,16,11,2017,8,0\*6C

#### 说明

| 说明 |           |           |             |
|----|-----------|-----------|-------------|
| ID | 示例        | 格式        | 描述          |
| 1  | GPZDA     | \$ZDA     | 数据 ID       |
| 2  | 004401.00 | hhmmss.ss | UTC 时间      |
| 3  | 16        | xx        | 日           |
| 4  | 11        | xx        | 月           |
| 5  | 2017      | xxxx      | 年           |
| 6  | 8         | xx        | 填本地时区, 见注释① |
| 7  | 0         | xx        | 本时区分钟差,见注释① |
| 8  | *6C       | *hh       | 校验          |

注释①:因板卡无法自动获得本地时区和分钟差,故本地时区固定为东八区,本时区分钟差固定为0。







#### 4.2 自定义格式消息

#### 4.2.1 BESTPOS

输出最佳位置信息。

消息 ID: 42

推荐

#### LOG BESTPOSA ONTIME 1

#### ASCII 示例

bynavitz #BESTPOSA,COM3,0,0.0,FINESTEERING,1975,393343.000,000000000,0000,113;SOL COMPUTED, SINGLE, 28.23315179260, 112.87713400113, 79.7665, -17.0381, WGS84, 1.2 642,1.6209,2.1834,"0",0.000,0.022,28,27,27,27,0,00,30,13\*DB49BF3D

| 字段 | 字段类型          | 描述                                                                | 二进制    | 二进制 | 二进制  |
|----|---------------|-------------------------------------------------------------------|--------|-----|------|
| 子权 | 于权关生          | 油处                                                                | 格式     | 字节  | 偏移   |
| 1  | BESTPOS heade | Log 消息标准格式标头,详见 2.1.2.1<br>标准格式 ASCII 信息结构                        | -      | Н   | 0    |
| 2  | sol stat      | 解算状态, 见表 4-1 解算状态描述说明                                             | Enum   | 4   | Н    |
| 3  | pos type      | 定位状态,见表 4-2 定位状态描述说明                                              | Enum   | 4   | H+4  |
| 4  | lat           | 纬度, 单位: 度                                                         | Double | 8   | H+8  |
| 5  | lon           | 经度,单位:度                                                           | Double | 8   | H+16 |
| 6  | hgt           | 海拔高,单位: m                                                         | Double | 8   | H+24 |
| 7  | Undulation    | 高程异常值,单位: m, CGCS-2000大<br>地高和海拔高的差距, "-" 表示海平面<br>低于CGCS-2000椭球面 | Float  | 4   | H+32 |
| 8  | Datum ID      | 坐标系 ID 选定的参考坐标系                                                   | Enum   | 4   | H+36 |
| 9  | Lat σ         | 纬度标准差,单位: m                                                       | Float  | 4   | H+40 |
| 10 | Lon σ         | 经度标准差,单位: m                                                       | Float  | 4   | H+44 |
| 11 | Hgt σ         | 高度标准差,单位: m                                                       | Float  | 4   | H+48 |



| 12 | Stn ID                      | 差分站台ID号,单点定位时ID为0                                    | Char[4] | 4    | H+52 |
|----|-----------------------------|------------------------------------------------------|---------|------|------|
| 13 | Diff_age                    | 差分龄期,单位: s                                           | Float   | 4    | H+56 |
| 14 | Sol_age                     | 解算时间,单位: s                                           | Float   | 4    | H+60 |
| 15 | #SVs                        | 跟踪到的卫星数                                              | Uchar   | 1    | H+64 |
| 16 | #solnSVs                    | 参与解算的卫星数                                             | Uchar   | 1    | H+65 |
| 17 | #solnL1SVs                  | 参与解算的 L1/E1/B1 卫星数                                   | Uchar   | 1    | H+66 |
| 18 | #solnMultiSVs               | 参与解算的多频信号卫星数                                         | Uchar   | 1    | H+67 |
| 19 | Reserved                    | 预留                                                   | Hex     | 11.7 | H+68 |
| 20 | Ext sol stat                | 扩展解算状态,见表 4-3 扩展解算状态<br>描述说明                         | Hex     | 1    | H+69 |
| 21 | Galileo and BD<br>Ssig mask | Galileo 和 BeiDou 信号标志,见表 4-5<br>Galileo -BEIDOU 信号掩码 | Hex     | 1    | H+70 |
| 22 | GPS/GLONASS<br>sig mask     | GPS 和 GLONASS 信号标志, 见表 4-4<br>GPS-GLONASS 信号掩码       | Hex     | 1    | H+71 |
| 23 | xxx                         | 32-bitCRC 校验, 见表 4-6 32 位 CRC<br>校验算法代码 (C)          | Hex     | 4    | H+72 |
| 24 | [CR][LF]                    | 消息终结符(仅限 ASCII 格式)                                   | -       | -    | -    |

表 4-1 解算状态描述说明

| 二进制数值 | ASCII 值          | 描述                       |
|-------|------------------|--------------------------|
| 0     | SOL_COMPUTED     | 完全解算                     |
| 1     | INSUFFICIENT_OBS | 观测量不足                    |
| 2     | NO_CONVERGENCE   | 不收敛                      |
| 3     | SINGULARITY      | 参数矩阵异常                   |
| 4     | COV_TRACE        | 协方差超过最大值(>1000 米)        |
| 5     | TEST_DIST        | 测试距离超限(距离 10km,最多丢弃 3 次) |
| 6     | COLD_START       | 冷启动尚未完全解算                |
| 7     | V_H_LIMIT        | 高度或速度超过限值                |
| 8     | VARIANCE         | 方差超过限值                   |



| 9     | RESIDUALS         | 残差过大                                                                                                                                                                                    |
|-------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10-12 | Reserved          | 预留                                                                                                                                                                                      |
| 13    | INTEGRITY_WARNING | 残差过大使定位不可靠                                                                                                                                                                              |
| 14-17 | Reserved          | 预留                                                                                                                                                                                      |
| 18    | PENDING           | 当输入 FIX 位置命令时,接收器计算自己的位置,并确定位置是否有效。  Pending 意味着目前跟踪的卫星不够,无法验证输入到接收器的 FIX 位置是否有效。 在正常情况下,在 GNSS 接收机锁定其前几颗卫星之前,您应该只看到 Pending 启动几秒钟。 如果您的天线被阻塞(或没有插入),并且您已经输入了 FIX 位置命令,那么您可能会无限期地看到该状态。 |
| 19    | INVALID_FIX       | 使用 FIX 位置命令输入的位置无效                                                                                                                                                                      |
| 20    | UNAUTHORIZED      | 定位类型未经授权                                                                                                                                                                                |
| 21    | Reserved          | 预留                                                                                                                                                                                      |
| 22    | INVALID_RATE      | 此解决方案类型不支持所选的输出速率                                                                                                                                                                       |

表 4-2 定位状态描述说明

| 二进制数值 | ASCII 值          | 描述                              |
|-------|------------------|---------------------------------|
| 0     | NONE             | 未解算                             |
| 1     | FIXEDPOS         | 位置已由 FIX POSITION 命令固定          |
| 2     | FIXEDHEIGHT      | 位置已由 FIX HEIGHT 或 FIX AUTO 命令固定 |
| 3     | Reserved         | 预留                              |
| 4     | FLOATCONV        | 浮点载波相位模糊解                       |
| 5     | WIDELANE         | 宽巷模糊解                           |
| 6     | NARROWLANE       | 窄巷模糊解                           |
| 7     | Reserved         | 预留                              |
| 8     | DOPPLER_VELOCITY | 使用瞬时多普勒计算速度                     |



| 9-15  | Reserved           | 预留                          |
|-------|--------------------|-----------------------------|
| 16    | SINGLE             | 单点解                         |
| 17    | PSRDIFF            | 伪距差分                        |
| 18    | WAAS               | SBAS 解                      |
| 19    | PROPAGATED         | 由卡尔曼滤波器在没有新观测的情况下推算解        |
| 20-31 | Reserved           | 预留                          |
| 32    | L1_FLOAT           | L1 浮点解                      |
| 33    | IONOFREE_FLOAT     | 无电离层浮点解                     |
| 34    | NARROW_FLOAT       | 窄带浮点解                       |
| 35-47 | Reserved           | 预留                          |
| 48    | L1_INT             | L1 固定解                      |
| 49    | WIDE_INT           | 宽带固定解                       |
| 50    | NARROW_INT         | 窄带固定解                       |
| 51    | RTK_DIRECT_INS     | RTK 状态,其中 RTK 直接通过 INS 初始化  |
| 52    | INS_SBAS           | 天线校正后 INS 位置                |
| 53    | INS_PSRSP          | INS 伪距单点解-没有 DGPS 校正        |
| 54    | INS_PSRDIFF        | INS 伪距差分                    |
| 55    | INS_RTKFLOAT       | INS RTK 浮点解                 |
| 56    | INS_RTKFIXED       | INS RTK 固定解                 |
| 57-67 | Reserved           | 预留                          |
| 68    | PPP_CONVERGING     | 正在进行精密单点定位(TerraStar-C)解算   |
| 69    | PPP                | 精密单点定位(TerraStar-C)         |
| 70    | OPERATIONAL        | 精度在 UAL 范围内                 |
| 71    | WARNING            | 精度在 UAL 范围外,但在警告范围内         |
| 72    | OUT_OF_BOUNDS      | 解的精度在 UAL 极限之外              |
| 73    | INS_PPP_Converging | 正在进行 Ins PPP 解(TerraStar-C) |
| 74    | INS_PPP            | Ins PPP解 (TerraStar-C)      |
|       |                    | •                           |



| 77 | PPP_BASIC_CONVERGING      | 正在进行精密单点定位(TerraStar-L)解算   |
|----|---------------------------|-----------------------------|
| 78 | PPP_BASIC                 | 精密单点定位(TerraStar-L)         |
| 79 | INS_PPPP_BASIC_Converging | 正在进行 Ins PPP 解(TerraStar-L) |
| 80 | INS_PPPP_BASIC            | Ins PPP解 (TerraStar-L)      |

#### 表 4-3 扩展解算状态描述说明

| bit 位 | 掩码   | 描述                               |
|-------|------|----------------------------------|
| 0     | 0x01 | RTK 解算结果: 修正方案已确认 PDP 解算结果: 滑动解算 |
|       |      | 其他: 预留                           |
|       |      | 伪距电离层修正                          |
|       |      | 0 = 未知或默认的 Klobuchar 模型          |
|       |      | 1 = Klobuchar 广播                 |
| 1-3   | 0x0E | 2 = SBAS 广播                      |
|       |      | 3 = 多频解算                         |
| 6     | yne  | 3 = 多频解算<br>4 =伪距差分修正            |
|       |      | 5 = 混合电离层数值                      |
| 4     | 0x10 | RTK 辅助使能                         |
| 5     | 0x20 | 0 - 无天线警报                        |
|       | 0.00 | 1 - 天线信息缺失                       |
| 6-7   | 0xC0 | 预留                               |

### 表 4-4 GPS-GLONASS 信号掩码

| Bit | 掩码   | 描述              |
|-----|------|-----------------|
| 0   | 0x01 | GPS L1 用于解算     |
| 1   | 0x02 | GPS L2 用于解算     |
| 2   | 0x04 | GPS L5 用于解算     |
| 3   | 0x08 | 预留              |
| 4   | 0x10 | GLONASS L1 用于解算 |

电话: +86-731-85058117 www.bynav.com **68 / 154** 



| 5 | 0x20 | GLONASS L2 用于解算 |
|---|------|-----------------|
| 6 | 0x40 | GLONASS L3 用于解算 |
| 7 | 0x80 | 预留              |

表 4-5 Galileo-BDS 信号掩码

| Bit   | 掩码   | 描述                  |
|-------|------|---------------------|
| 0     | 0x01 | Galileo E1 用于解算     |
| 1     | 0x02 | Galileo E5A 用于解算    |
| 2     | 0x04 | Galileo E5B 用于解算    |
| 3     | 0x08 | Galileo ALTBOC 用于解算 |
| 4     | 0x10 | BDS B1 用于解算         |
| 5     | 0x20 | BDS B2 用于解算         |
| 6     | 0x40 | BDS B3 用于解算         |
| 7     | 0x80 | 预留                  |
| bynav |      | bynavi              |

表 4-6 32 位 CRC 校验算法代码 (C)

电话: +86-731-85058117 www.bynav.com



```
}
    return ulCRC;
}
Calculates the CRC-32 of a data block
ulCount: Number of bytes in the data block
ucBuff: Data block
unsigned long CalcBlockCRC32( unsigned long ulCount, unsigned char *ucBuff ) {
    unsigned long ulTmp1;
    unsigned long ulTmp2;
    unsigned long ulCRC = 0;
    while ( ulCount-- != 0 ) {
        ulTmp1 = ( ulCRC >> 8 ) & 0x00FFFFFFL;
        ulTmp2 = CalcCRC32Value( ((int) ulCRC ^ *ucBuff++ ) & 0xFF );
        ulCRC = ulTmp1 ^ ulTmp2;
    }
    return ulCRC;
```

#### 4.2.2 BESTGNSSPOS

输出最佳可用 GNSS 位置(无 INS)。

消息 ID: 1429

推荐

LOG Port BESTGNSSPOSA ONTIME 1

#### ASCII 示例

#BESTGNSSPOSA,ICOM4,0,0.0,FINESTEERING,2109,367696.000,00000000,0000,82;SOL COMP UTED,NARROW\_INT,28.23315515415,112.87713068512,82.5990,-17.0381,WGS84,0.0106,0.011 bynavitz 0,0.0250,"0",1.000,0.058,33,33,33,25,00,00,30,33\*9ea908f7



| 一色 | 字段类型                        | 描述                                                   | 二进制     | 二进制  | 二进制  |
|----|-----------------------------|------------------------------------------------------|---------|------|------|
| 字段 | 子枝类型                        | <b>抽</b> 处                                           | 格式      | 字节   | 偏移   |
| 1  | BESTGNSSPOS header          | Log 消息标准格式标头,详见 2.<br>1.2.1 标准格式 ASCII 信息结构          | Ile     | Н    | 0    |
| 2  | Sol Type                    | 解算状态, 见表 4-1 解算状态描述说明                                | Enum    | 4    | Н    |
| 3  | Pos Type                    | 位置类型,见表 4-2 定位状态描述说明                                 | Enum    | 4    | H+4  |
| 4  | Lat                         | 纬度 (°)                                               | Double  | 8    | H+8  |
| 5  | Lon                         | 经度 (°)                                               | Double  | 8    | H+16 |
| 6  | Hgt                         | 海平面上的高度(m)                                           | Double  | 8    | H+24 |
| 7  | Undulation                  | 高程异常值                                                | Float   | 4    | H+32 |
| 8  | Datum ID                    | 坐标系 ID                                               | Enum    | 4    | H+36 |
| 9  | Lat σ                       | 纬度标准差                                                | Float   | 4    | H+40 |
| 10 | Lon σ                       | 经度标准差                                                | Float   | 4    | H+44 |
| 11 | Hgt σ                       | 高度标准差                                                | Float   | 4    | H+48 |
| 12 | Stn ID                      | 基站 ID                                                | Char[4] | 4    | H+52 |
| 13 | Diff_age                    | 差分延迟时间(s)                                            | Float   | 4    | H+56 |
| 14 | Sol_age                     | 解算延迟时间(s)                                            | Float   | 4    | H+60 |
| 15 | #SVs                        | 跟踪卫星数                                                | Uchar   | 1    | H+64 |
| 16 | #solnSVs                    | 解算卫星数                                                | Uchar   | 176  | H+65 |
| 17 | #solnL1SVs                  | L1/E1/B1 解算卫星数                                       | Uchar   | 1    | H+66 |
| 18 | #solnMultiSVs               | 多频解算卫星数                                              | Uchar   | 1    | H+67 |
| 19 | Reserved                    | 预留                                                   | Uchar   | 1    | H+68 |
| 20 | Ext sol stat                | 扩展解算状态,见表 4-3 扩展解<br>算状态描述说明                         | Hex     | 1    | H+69 |
| 21 | Galileo and BDS<br>sig mask | Galileo 和 BDS 信号使用标志,<br>见表 4-5 Galileo-BDS 信号<br>掩码 | Hex     | 7567 | H+70 |

72 / 154



| 22 | GPS and GLONASS | GPS 和 GLONASS 信号使用标志,见表 4-4 GPS-GLONASS<br>信号掩码 | Hex | Htz | H+71 |
|----|-----------------|-------------------------------------------------|-----|-----|------|
| 23 | xxx             | 32-bitCRC 校验, 见表 4-6 32<br>位 CRC 校验算法代码 (C)     | Hex | 4   | H+72 |
| 24 | [CR][LF]        | 消息终结符(仅限 ASCII 格式)                              | -   | -   | -    |

#### **4.2.3 BESTUTM**

输出在 UTM 坐标系中最佳可用位置。

消息 ID: 726

推荐

#### LOG BESTUTMA ONTIME 1

#### ASCII 示例

#BESTUTMA,COM1,0,73.0,FINESTEERING,1419,336209.000,02000040,eb16,2724;SOL\_COMPUTE D,NARROW\_INT,11,U,5666936.4417,707279.3875,1063.8401,-16.2712,WGS84,0.0135,0.0084,0.0 173,"AAAA",1.000,0.000,8,8,8,8,0,01,0,03\*a6d06321

| 字段 | 字段类型           |                                             | 二进制    | 二进制 | 二进制  |
|----|----------------|---------------------------------------------|--------|-----|------|
| 子权 | 于权关室           | 油灰                                          | 格式     | 字节  | 偏移   |
| 1  | BESTUTM header | Log 消息标准格式标头,详见 2.1.<br>2.1 标准格式 ASCII 信息结构 | nav    | Н   | 0    |
| 2  | Sol Status     | 解算状态, 见表 4-1 解算状态描述说明                       | Enum   | 4   | Н    |
| 3  | Pos Type       | 速度类型, 见表 4-2 定位状态描述说明                       | Enum   | 4   | H+4  |
| 4  | Z#             | 经度区间数字编号                                    | Ulong  | 4   | H+8  |
| 5  | Zletter        | 纬度区间字母编号                                    | Ulong  | 4   | H+12 |
| 6  | Northing       | 北向距离(m), 北半球从赤道起算, 南半球从距离赤道 10000000        | Double | 8   | H+16 |



|    | 1t                          | 米处起算,即具有 10000000 米北向距离假定值的点。                             |         | At T |      |
|----|-----------------------------|-----------------------------------------------------------|---------|------|------|
| 7  | Easting                     | 东向距离(m),从每个经度区间中央子午线以西 500000 米处起算,即具有 500000 米东向距离假定值的点。 | Double  | 8    | H+24 |
| 8  | Hgt                         | 海拔高 (m)                                                   | Double  | 8    | H+32 |
| 9  | Undulation                  | 高程异常值(m)                                                  | Float   | 4    | H+40 |
| 10 | Datum ID#                   | 数据 ID 编号, 固定为 61 (WGS8<br>4)                              | Enum    | 4    | H+44 |
| 11 | Νσ                          | 北向距离标准差 (m)                                               | Float   | 4    | H+48 |
| 12 | Εσ                          | 东向距离标准差(m)                                                | Float   | 4    | H+52 |
| 13 | Hgt σ                       | 高程标准差(m)                                                  | Float   | 4    | H+56 |
| 14 | Stn ID                      | 基准站 ID                                                    | Char[4] | 4    | H+60 |
| 15 | Diff_age                    | 差分龄期 (s)                                                  | Float   | 4    | H+64 |
| 16 | Sol_age                     | 解算时间(s)                                                   | Float   | 4    | H+68 |
| 17 | #SV                         | 跟踪卫星数                                                     | Uchar   | 1    | H+72 |
| 18 | #SolnSV                     | 参与解算卫星数                                                   | Uchar   | 1    | H+73 |
| 19 | #GGL1                       | 播发 L1、B1 信号的 GPS、GLONASS 和 BDS 卫星中参与解算的卫星数                | Uchar   | 1    | H+74 |
| 20 | #SolnMultiSV                | 播发 L1、E1 和 B1 信号的卫星中参与解算的卫星数                              | Uchar   | 1    | H+75 |
| 21 | Reserved                    | 保留                                                        | Uchar   | 1    | H+76 |
| 22 | Ext Sol Stat                | 扩展解算状态, 见表 4-3 扩展解<br>算状态描述说明                             | Hex     | 1    | H+77 |
| 23 | Galileo and BDS Sig<br>Mask | Galileo 和 BDS 信号使用掩码,见<br>表 4-5 Galileo-BDS 信号掩<br>码      | Hex     | 11:2 | H+78 |



| 24 | GPS and GLONASS Sig Mask | GPS 和 GLONASS 信号使用掩码,<br>见表 4-4 GPS-GLONASS 信<br>号掩码 | Hex | Ht 7 | H+79 |
|----|--------------------------|------------------------------------------------------|-----|------|------|
| 25 | xxxx                     | 32 位 CRC 校验码(仅支持 ASCII<br>和二进制)                      | Hex | 4    | H+80 |
| 26 | [CR][LF]                 | 消息终止符(仅支持 ASCII)                                     | -   | -    | -    |

#### **4.2.4 BESTGNSSVEL**

输出最优 GNSS 速度信息(无 INS)。它还输出一个速度状态指示器,用于指示相应的数据是否有效。速度测量有时有一个与之相关的延迟。有效时间是日志中的时间标签减去延迟值。

消息 ID: 1430

推荐

## LOG Port BESTGNSSVELA ONTIME 1

#### ASCII 示例

#BESTGNSSVELA,ICOM4,0,0.0,FINESTEERING,2109,367811.000,00000000,0000,82;SOL\_COMPU TED,NARROW\_INT,0.000,1.000,0.0086,148.677046,0.0586,0.0\*2b4e3d94

| 字段 | 字段类型               | 描述                                          | 二进制   | 二进制 | 二进制  |
|----|--------------------|---------------------------------------------|-------|-----|------|
|    |                    |                                             | 格式    | 字节  | 偏移   |
| 1  | BESTGNSSVEL header | Log 消息标准格式标头,详见 2.<br>1.2.1 标准格式 ASCII 信息结构 | ņa-   | Н   | 0    |
| 2  | Sol Status         | 解算状态, 见表 4-1 解算状态描述说明                       | Enum  | 4   | Н    |
| 3  | Vel Type           | 速度类型,见表 4-2 定位状态描述说明                        | Enum  | 4   | H+4  |
| 4  | Latency            | 延迟                                          | Float | 4   | H+8  |
| 5  | Diff_age           | 差分延迟 (s)                                    | Float | 4   | H+12 |



| 6  | Hor Spd  | 水平速度(m/s)                                   | Double | 8 | H+16 |
|----|----------|---------------------------------------------|--------|---|------|
| 7  | Trk Gnd  | 前进方向与真北的夹角(°)<br>(取值范围 0°~360°)             | Double | 8 | H+24 |
| 8  | Vert Spd | 垂直速度(m/s),其中正值表示高度(上升)增加,负值表示高度(下降)减少       | Double | 8 | H+32 |
| 9  | Reserved | 预留                                          | Float  | 4 | H+40 |
| 10 | xxx      | 32-bitCRC 校验, 见表 4-6 32<br>位 CRC 校验算法代码 (C) | Hex    | 4 | H+44 |
| 11 | [CR][LF] | 消息终结符(仅限 ASCII 格式)                          |        | - | -    |

#### 4.2.5 CORRIMUDATA\*

输出校正后 IMU 原始数据。提供了 RAWIMU 修正重力、地球自转和传感器误差后的 IMU 数据,其中数值都是以 CORRIMUDATA 间隔 (sample) 为单位的增量值。输出频率不可 bynavitz 调,仅支持 ONNEW,按 IMU 标定频率输出。

消息 ID: 812

推荐

#### LOG Port CORRIMUDATAA ONNEW

#### ASCII 示例

#CORRIMUDATAA,ICOM4,0,0.0,FINESTEERING,2106,444279.000,00000000,0000,68;2106,44427 268\*b0429fcb

| 字段 | 字段类型               | 描述                                     | 二进制    | 二进制  | 二进制 |
|----|--------------------|----------------------------------------|--------|------|-----|
|    |                    |                                        | 格式     | 字节   | 偏移  |
| 1  | CORRIMUDATA header | Log消息标准格式标头,详见2.<br>1.2.1标准格式ASCII信息结构 | -      | Hale | 0   |
| 2  | Week               | GPS周                                   | ULong  | 4    | Н   |
| 3  | Seconds into Week  | 周内秒                                    | Double | 8    | H+4 |



| 4  | PitchRate       | X轴角度增量(rad/sample)      | Double | 8 | H+12  |
|----|-----------------|-------------------------|--------|---|-------|
| 5  | RollRate        | Y轴角度增量(rad/sample)      | Double | 8 | H+20  |
| 6  | YawRate         | Z轴角度增量(rad/sample)      | Double | 8 | H+28  |
| 7  | LateralAcc      | X轴速度增量(m/s/sample)      | Double | 8 | H+36  |
| 8  | LongitudinalAcc | Y轴速度增量(m/s/sample)      | Double | 8 | H+44  |
| 9  | VerticalAcc     | Z轴速度增量(m/s/sample)      | Double | 8 | H+52  |
| 10 | xxx             | 32-bit CRC校验, 见表 4-6 32 | Hex    | 4 | H+60  |
| 10 | XXX             | 位 CRC 校验算法代码 (C)        |        | 7 | 11100 |
| 11 | [CR][LF]        | 消息终结符(仅限ASCII格式)        | _      | _ | -     |

#### 4.2.6 CORRIMUDATAS\*

提供了 RAWIMU 修正重力、地球自转和传感器误差后的 IMU 数据,其中数值都是以 COR RIMUDATA 间隔(sample)为单位的增量值。输出频率不可调,仅支持 ONNEW,按 IM U 标定频率输出。(注意该消息的消息头为短格式消息头)

消息 ID: 813

#### 推荐

#### LOG Port CORRIMUDATASA ONNEW

#### ASCII 示例

 $\label{eq:correction} $$ \text{CORRIMUDATASA}, 2106, 444370.000; 2106, 444370.000000000, -0.000002805, -0.000008220, -0.000000018, 0.000042498, -0.000013335*a0a3d8d6$ 

| 字段 | 字段类型                | ## 5-8                                   | 二进制    | 二进制 | 二进制  |
|----|---------------------|------------------------------------------|--------|-----|------|
| 子权 |                     | 描述                                       | 格式     | 字节  | 偏移   |
| 1  | CORRIMUDATAS header | Log 消息短格式标头,见 2.1.2.<br>2 短格式 ASCII 信息结构 | -      | Н   | 0    |
| 2  | Week                | GPS 周                                    | ULong  | 4   | Н    |
| 3  | Seconds into Week   | 周内秒                                      | Double | 8   | H+4  |
| 4  | PitchRate           | X 轴角度增量(rad/sample)                      | Double | 8   | H+12 |
| 5  | RollRate            | Y 轴角度增量(rad/sample)                      | Double | 8   | H+20 |
| 6  | YawRate             | Z 轴角度增量(rad/sample)                      | Double | 8   | H+28 |
| 7  | LateralAcc          | X 轴速度增量(m/s/sample)                      | Double | 8   | H+36 |
| 8  | LongitudinalAcc     | Y 轴速度增量(m/s/sample)                      | Double | 8   | H+44 |



| 9  | VerticalAcc | Z 轴速度增量(m/s/sample)                         | Double | 8 | H+52 |
|----|-------------|---------------------------------------------|--------|---|------|
| 10 | xxx         | 32-bitCRC 校验, 见表 4-6 32<br>位 CRC 校验算法代码 (C) | Hex    | 4 | H+60 |
| 11 | [CR][LF]    | 消息终结符(仅限 ASCII 格式)                          |        | _ | -    |

#### **4.2.7 HEADING**

输出包含接收机运动的航向。航向是主天线到从天线的基线向量逆时针方向与真北的夹 角。

ynavit 2 消息 ID: 971

推荐

#### LOG HEADINGA ONTIME 1

#### ASCII 示例

#HEADINGA,COM3,0,0,FINESTEERING,1975,394129.000,00000000,0000,113;SOL\_COMPUTED,N ARROW\_INT,1.328605294,296.248487535,-71.075350314,0,0.200,0.500,"0000",29,24,29,7,00,00, 10,01\*63131FA1

| 字段 | 字段类型           | 描述                                          | 二进制格式   | 二进制字节 | 二进制偏移 |
|----|----------------|---------------------------------------------|---------|-------|-------|
| 1  | HEADING header | Log 消息标准格式标头,,详见 2.1.2.1<br>标准格式 ASCII 信息结构 | -       | Н     | 0     |
| 2  | sol stat       | 解算状态, 见表 4-1 解算状态描述说明                       | Enum    | 4     | Н     |
| 3  | pos type       | 定向类型,见表 4-2 定位状态描述说明                        | Enum    | 4     | H+4   |
| 4  | length         | 定向基线长度,单位: m                                | Float   | 4     | H+8   |
| 5  | heading        | 方位角,范围:0~360°                               | Float   | 4     | H+12  |
| 6  | pitch          | 俯仰角,范围:-90~90°                              | Float   | 4     | H+16  |
| 7  | Reserved       | 预留                                          | Float   | 4     | H+20  |
| 8  | hdg std dev    | 方位角标准差,单位:度                                 | Float   | 4     | H+24  |
| 9  | ptch std dev   | 俯仰角标准差,单位:度                                 | Float   | 4     | H+28  |
| 10 | stn ID         | 差分站台 ID 号,若不是差分为零                           | Char[4] | 4     | H+32  |
| 11 | #SVs           | 定向天线可见卫星数                                   | Uchar   | 1     | H+36  |
| 12 | #solnSVs       | 参与定向的卫星数                                    | Uchar   | 1     | H+37  |
| 13 | #obs           | 定向天线仰角以上的卫星数                                | Uchar   | 1     | H+38  |



| 14 | #multi           | 定向天线仰角以上的 L2 卫星数              | Uchar | 1     | H+39  |
|----|------------------|-------------------------------|-------|-------|-------|
| 15 | sol source       | 解算来源,见表 4-7 解算来源描述说明          | Hex   | 1     | H+40  |
| 16 | ext sol stat     | 扩展解算状态                        | Uchar | 1     | H+41  |
| 17 | Galileo and BeiD | Galileo 和 BeiDou 信号使用标志,见表    | Hov   | 1     | 11.42 |
| 17 | ou sig mask      | 4-5 Galileo -BEIDOU 信号掩码      | Hex   | I     | H+42  |
|    | GPS and GLONAS   |                               |       |       |       |
| 18 | S                | GPS 和 GLONASS 信号使用标志,见表       | Hex   | 1     | H+43  |
|    | ain manale       | 4-4 GPS-GLONASS 信号掩码          |       | -     |       |
|    | sig mask         |                               |       |       |       |
| 19 | xxxx             | 32-bitCRC 校验, 见表 4-6 32 位 CRC | Hex   | 4     | H+44  |
| '  | ^^^              | 校验算法代码 (C)                    | TICA  | 7 276 |       |
| 20 | [CR][LF]         | 消息终结符(仅限 ASCII 格式)            |       |       | _     |

表 4-7 解算来源描述说明

| Bit | 掩码   | 描述      |
|-----|------|---------|
| 0~1 | 0x03 | 预留      |
|     |      | 解算源天线:  |
| 2~3 | 0x0C | 0 = 主天线 |
|     |      | 1 = 从天线 |
| 4~7 | 0xF0 | 预留      |

#### **4.2.8 HEADING2**

输出包含接收机运动的航向。航向是主天线到从天线的基线向量逆时针方向与真北的夹 角。

ynavitz 消息 ID: 1335

推荐

## bynavitā LOG HEADING2A ONTIME 1

#### ASCII 示例

#HEADING2A,COM1,0,39.5,FINESTEERING,1622,422892.200,02040000,f9bf,6521;SOL COMPUT ED, NARROW\_INT, 0.927607417, 178.347869873, -1.3037414550.0, 0.261901051, 0.391376048, "R22 bynaviti 2","AAAA",18,17,17,16,0,01,0,33\*7be836f6



| 字段 | 字段类型                        | 描述                                                     | 二进制格式 | 二进制字节 | 二进制偏移 |
|----|-----------------------------|--------------------------------------------------------|-------|-------|-------|
| 1  | HEADING header              | Log 消息标准格式标头,,详见 2.1.2.1<br>标准格式 ASCII 信息结构            | 18.20 | Н     | 0     |
| 2  | sol stat                    | 解算状态, 见表 4-1 解算状态描述说明                                  | Enum  | 4     | Н     |
| 3  | pos type                    | 定向类型, 见表 4-2 定位状态描述说明                                  | Enum  | 4     | H+4   |
| 4  | length                      | 定向基线长度,单位: m                                           | Float | 4     | H+8   |
| 5  | heading                     | 方位角,范围: 0~360°                                         | Float | 4     | H+12  |
| 6  | pitch                       | 俯仰角,范围: -90~90°                                        | Float | 4     | H+16  |
| 7  | Reserved                    | 预留                                                     | Float | 4     | H+20  |
| 8  | hdg std dev                 | 方位角标准差,单位:度                                            | Float | 4     | H+24  |
| 9  | ptch std dev                | 俯仰角标准差,单位: 度                                           | Float | 4     | H+28  |
| 10 | rover stn ID                | 流动站ID号                                                 | Char  | 4     | H+32  |
| 11 | Master stn ID               | 差分站台 ID 号,若不是差分为零                                      | Char  | 4     | H+36  |
| 12 | #SVs                        | 定向天线可见卫星数                                              | Uchar | 1     | H+40  |
| 13 | #solnSVs                    | 参与定向的卫星数                                               | Uchar | 1     | H+41  |
| 14 | #obs                        | 定向天线仰角以上的卫星数                                           | Uchar | 1     | H+42  |
| 15 | #multi                      | 定向天线仰角以上的 L2 卫星数                                       | Uchar | 1     | H+43  |
| 16 | sol source                  | 解算来源,见表 4-7 解算来源描述说明                                   | Hex   | 1     | H+44  |
| 17 | ext sol stat                | 扩展解算状态                                                 | Uchar | 1     | H+45  |
| 18 | Galileo and BDS<br>sig mask | Galileo 和 BeiDou 信号使用标志,见表<br>4-5 Galileo -BEIDOU 信号掩码 | Hex   | 1     | H+46  |
| 19 | GPS and GLONASS             | GPS 和 GLONASS 信号使用标志,见表<br>4-4 GPS-GLONASS 信号掩码        | Hex   | 1     | H+47  |
| 20 | xxxx                        | 32-bitCRC 校验, 见表 4-6 32 位 CRC<br>校验算法代码 (C)            | Hex   | 4     | H+48  |
| 21 | [CR][LF]                    | 消息终结符(仅限 ASCII 格式)                                     |       | -     | -     |

#### 4.2.9 INSATT\*

该消息输出了姿态信息。默认姿态信息为整机坐标系相对于当地导航坐标系的姿态。除非用户自定义了输出坐标系。

消息 ID: 263

推荐

LOG Port INSATTA ONTIME 1



#### ASCII 示例

#INSATTA,ICOM4,0,0.0,FINESTEERING,2106,444520.000,00000000,0000,68;2106,444520.00000 0000,179.817646100,-0.384419858,0.601726410,INS\_ALIGNMENT\_COMPLETE\*127e6ba7

| 字段 | 字段类型                 | 描述                                          | 二进制<br>格式 | 二进制<br>字节 | 二进制偏移 |
|----|----------------------|---------------------------------------------|-----------|-----------|-------|
| 1  | INSATT header        | Log 消息标准格式标头,详见 2.1.2.1 标准格式 ASCII 信息结构     | -         | H         | 0     |
| 2  | Week                 | GPS 周                                       | Ulong     | 4         | Н     |
| 3  | Seconds into<br>Week | 周内秒                                         | Double    | 8         | H+4   |
| 4  | Roll                 | 横滚角(取值范围-180°~180°)                         | Double    | 8         | H+12  |
| 5  | Pitch                | 俯仰角(取值范围-90°~90°)                           | Double    | 8         | H+20  |
| 6  | Azimuth              | 航向角(取值范围 0°~360°)                           | Double    | 8         | H+28  |
| 7  | Status               | INS 解算状态,表 4-8 惯性导航状态说明                     | Enum      | 4         | H+36  |
| 8  | xxx                  | 32-bitCRC 校验, 见表 4-6 32 位 CRC<br>校验算法代码 (C) | Hex       | 4         | H+40  |
| 9  | [CR][LF]             | 消息终结符(仅限 ASCII 格式)                          | -         | -         | -     |

表 4-8 惯性导航状态说明

| 二进制数值 | ASCII值                   | 描述                 |
|-------|--------------------------|--------------------|
| 0     | INS_INACTIVE             | 对准未激活              |
| 1     | INS_ALIGNING             | 正在进行粗对准            |
| 2     | INS_HIGH_ VARIANCE       | 较高协方差,姿态估计未收敛      |
| 3     | INS_ SOLUTION_ GOOD      | 对准完成结果较好           |
| 6     | INS_ SOLUTION_ FREE      | 卫星结果较差不可用          |
| 7     | INS_ ALIGNMENT_ COMPLETE | 粗对准完成              |
| 8     | DETERMINING_ ORIENTATION | 正在确定 IMU 轴与重力对齐    |
| 9     | WAITING_ INITIALPOS      | 等待位置解              |
| 10    | WAITING_ AZIMUTH         | 等待航向角              |
| 11    | INITIALIZING_ BIASES     | 在静态数据前 10 秒内估计初始偏差 |



| 12        | MOTION_ DETECT  | 尚未完全对准,但已检测到运动 |
|-----------|-----------------|----------------|
| 4.2.10 IN | SCALSTATUS*     | hynavitz       |
| 输出当前校》    | 。<br>生过程的状态和估计值 |                |

#### 4.2.10 INSCALSTATUS\*

输出当前校准过程的状态和估计值。

消息 ID: 1961

推荐

## ynavit<sup>z</sup> LOG INSCALSTATUSA ONTIME 1

#### ASCII 示例

#INSCALSTATUSA,ICOM4,0,0.0,FINESTEERING,2106,445650.000,00000000,0000,68;RBV,0.0000, 0.0000,0.0000,45.0000,45.0000,45.0000,INS\_CONVERGING,0\*d1c62c20

#### 说明

| 字段                                                         | 字段类型                   | 描述                                          | 二进制格式 | 二进制字节 | 二进制偏移 |
|------------------------------------------------------------|------------------------|---------------------------------------------|-------|-------|-------|
| 1                                                          | INSCALSTATUS<br>header | Log 消息标准格式标头,详见 2.1.2.1 标准格式 ASCII 信息结构     |       | Н     | 0     |
| 2                                                          | Offset Type            | 偏移量的类型,见表 4-9 偏移量类型说明                       | Enum  | 4     | Н     |
| 3                                                          | X Axis Offset          | 整机坐标系 X 轴的偏移,见注释①                           | Float | 4     | H+4   |
| 4                                                          | Y Axis Offset          | 整机坐标系 Y 轴的偏移                                | Float | 4     | H+8   |
| 5                                                          | Z Axis Offset          | 整机坐标系 Z 轴的偏移                                | Float | 4     | H+12  |
| 6                                                          | X Uncertainty          | 整机坐标系 X 轴的不确定性,见注释②                         | Float | 4     | H+16  |
| 7                                                          | Y Uncertainty          | 整机坐标系 Y 轴的不确定性                              | Float | 4     | H+20  |
| 8                                                          | Z Uncertainty          | 整机坐标系 Z 轴的不确定性                              | Float | 4     | H+24  |
| 9                                                          | Source Status          | 数据来源状态,见表 4-10 数据来源状态说明                     | Enum  | 4     | H+28  |
| 10                                                         | Calibration<br>Count   | 校准完成次数                                      | Ulong | 4     | H+32  |
| 11                                                         | xxx                    | 32-bitCRC 校验, 见表 4-6 32 位 CRC<br>校验算法代码 (C) | Hex   | 4     | H+36  |
| 12                                                         | [CR][LF]               | 消息终结符(仅限 ASCII 格式)                          | -     | 114   |       |
| 注释①:校准 RBV 时,三个轴向偏移的单位均为度。<br>注释②:校准 RBV 时,三个轴向不确定性的单位均为度。 |                        |                                             |       |       |       |

电话: +86-731-85058117 www.bynav.com 81 / 154



#### 表 4-9 偏移量类型说明

| 二进制数值 | ASCII 值 | 描述        |
|-------|---------|-----------|
| 1     | ANT1    | IMU 至天线杆臂 |
| 8     | ALIGN   | 对齐偏移      |
| 11    | RBV     | IMU 至车体偏移 |

#### 表 4-10 数据来源状态说明

| 二进制数值 | ASCII 值             | 描述                                          |
|-------|---------------------|---------------------------------------------|
| 1     | FROM_NVM            | 偏移值源自 NVM 中保存的参数                            |
| 2     | CALIBRATING         | 偏移值源自当前正在运行的校准过程                            |
| 3     | CALIBRATED          | 偏移值源自已完成的校准过程                               |
| 4     | FROM_ COMMAND       | 偏移值源自用户命令                                   |
| 5     | RESET               | 偏移值源自系统重置                                   |
| 6     | FROM_DUAL_ ANT      | 偏移值源自双天线定向结果                                |
| 7     | INS_ CONVERGING     | 偏移值源自初始输入值。校准过程暂停,直到 INS 结果收敛。              |
| 8     | INSUFFICIENT_ SPEED | 偏移值源自当前正在运行的校准过程。由于速度不够,暂停<br>校准。           |
| 9     | HIGH_ ROTATION      | 偏移值源自当前正在运行的校准过程。由于车辆高度旋转 <i>,</i><br>暂停校准。 |

#### 4.2.11 INSPOS\*

WGS84 坐标系下位置信息,默认输出为整机的导航中心,若用户设置了自定义输出点,则输出原点为用户自定义点。

消息 ID: 265

推荐

LOG Port INSPOSA ONTIME 1



#### ASCII 示例

#INSPOSA,ICOM4,0,0.0,FINESTEERING,2107,34578.000,00000000,03de,68;2107,34578.000000 000,28.23317171539,112.87712332635,81.4569,INS\_ALIGNMENT\_COMPLETE\*3070d086

#### 说明

| 字段 | 字段类型              | 描述                                          | 二进制格式  | 二进制字节 | 二进制偏移 |
|----|-------------------|---------------------------------------------|--------|-------|-------|
| 1  | INSPOS header     | Log 消息标准格式标头,详见 2.1.<br>2.1 标准格式 ASCII 信息结构 | -      | Н     | 0     |
| 2  | Week              | GPS 周                                       | Ulong  | 4     | Н     |
| 3  | Seconds into Week | 周内秒                                         | Double | 8     | H+4   |
| 4  | Lat               | 纬度 (°)                                      | Double | 8     | H+12  |
| 5  | Lon               | 经度 (°)                                      | Double | 8     | H+20  |
| 6  | Hgt               | 椭球高(m)                                      | Double | 8     | H+28  |
| 7  | Status            | INS 解算状态,表 4-8 惯性导航<br>状态说明                 | Enum   | 4     | H+36  |
| 8  | xxx               | 32-bitCRC 校验, 见表 4-6 32<br>位 CRC 校验算法代码 (C) | Hex    | 4     | H+40  |
| 9  | [CR][LF]          | 消息终结符(仅限 ASCII 格式)                          |        | _     | _     |

#### 4.2.12 INSPTNLPJKS\*

输出修正重力、地球自转和传感器误差后的 IMU 数据,惯导解算结果和投影后的平面坐标,平面投影相关参数设置详见 2.2 PJKPARA。

消息 ID: 0 (暂不支持二进制,未指定)

#### 推荐

#### LOG Port INSPTNLPJKSA ONTIME 1

#### ASCII 示例

%INSPTNLPJKSA,2140,543667.190;2140,543667.190,INS\_ALIGNMENT\_COMPLETE,NARROW\_INT, 0.004055394,-0.003153181,-0.006703759,0.000486768,-0.000326828,-0.000478564,28.23255 921255,112.87499481423,87.4105,3125639.183,684048.808,70.367,0.000496535,0.003006558, 0.000241381,114.633280830,179.502194734,0.016271861\*c0b7c8ec



| 字段 | 字段类型                | 描述                                        | 二进制    | 二进制 | 二进制   |
|----|---------------------|-------------------------------------------|--------|-----|-------|
| 丁权 | <b>丁权大</b> 至        | 加处                                        | 格式     | 字节  | 偏移    |
| 1  | INSPTNLPJKSA header | Log 消息短格式标头,见 2.1.2.2<br>短格式 ASCII 信息结构   | 191    | Н   | 0     |
| 2  | Week                | GPS 周                                     | Ulong  | 4   | Н     |
| 3  | Seconds into Week   | 周内秒 (s)                                   | Double | 8   | H+4   |
| 4  | Pos Type            | 位置信息类型                                    | Ulong  | 4   | H+12  |
| 5  | INS Status          | INS 解算状态,表 4-8 惯性导航<br>状态说明               | Ulong  | 4   | H+16  |
| 6  | Accl_X              | X 轴速度增量(m/s/sample)                       | Double | 8   | H+20  |
| 7  | Accl_Y              | Y轴速度增量(m/s/sample)                        | Double | 8   | H+28  |
| 8  | Accl_Z              | Z轴速度增量(m/s/sample)                        | Double | 8   | H+36  |
| 9  | PitchRate           | X 轴角度增量(rad/sample)                       | Double | 8   | H+44  |
| 10 | RollRate            | Y轴角度增量(rad/sample)                        | Double | 8   | H+52  |
| 11 | YawRate             | Z 轴角度增量(rad/sample)                       | Double | 8   | H+60  |
| 12 | Lat                 | 纬度 (°)                                    | Double | 8   | H+68  |
| 13 | Lon                 | 经度 (°)                                    | Double | 8   | H+76  |
| 14 | Hgt                 | 海拔高 (m)                                   | Double | 8   | H+84  |
| 15 | Pos_X               | 平面 X 坐标(m)                                | Double | 8   | H+92  |
| 16 | Pos_Y               | 平面 Y 坐标 (m)                               | Double | 8   | H+100 |
| 17 | Height              | 大地高 (m)                                   | Double | 8   | H+108 |
| 18 | North Velocity      | 北向速度(m/s)                                 | Double | 8   | H+116 |
| 19 | East Velocity       | 东向速度(m/s)                                 | Double | 8   | H+124 |
| 20 | Down Velocity       | 地向速度(m/s)                                 | Double | 8   | H+132 |
| 21 | Heading             | 航向角(取值范围 0°~360°)                         | Double | 8   | H+140 |
| 22 | Pitch               | 俯仰角(取值范围-90°~90°)                         | Double | 8   | H+148 |
| 23 | Roll                | 横滚角(取值范围-180°~180°)                       | Double | 8   | H+156 |
| 24 | xxx                 | 32-bitCRC 校验,见表 4-6 32<br>位 CRC 校验算法代码(C) | Hex    | 4   | H+160 |
| 25 | [CR][LF]            | 消息终结符(仅限 ASCII 格式)                        | -      | -   | -     |

#### 4.2.13 INSPVA\*

输出位置、速度和姿态信息。 bynavitz

消息 ID: 507

推荐



#### LOG Port INSPVAA ONTIME 1

#### ASCII 示例

#INSPVAA,ICOM4,0,0.0,FINESTEERING,2107,34642.000,00000000,03de,68;2107,34642.0000000 00,28.23317128813,112.87712303748,81.5374,-0.0060,-0.0437,0.0013,179.714439972,-0.3520 08098,1.265366582,INS\_ALIGNMENT\_COMPLETE\*3d5a8ba9

|    |                    |                                              | 二进制        | 二进制 | 二进制  |
|----|--------------------|----------------------------------------------|------------|-----|------|
| 字段 | 字段类型               | 描述                                           | 格式         | 字节  | 偏移   |
| 1  | INSPVA header      | Log 消息标准格式标头,详见 2.1.2.1<br>标准格式 ASCII 信息结构   | aV         | Н   | 0    |
| 2  | Week               | GPS 周                                        | Ulong      | 4   | Н    |
| 3  | Seconds into Wee k | 周内秒                                          | Doubl<br>e | 8   | H+4  |
| 4  | Lat                | 纬度 (°)                                       | Doubl<br>e | 8   | H+12 |
| 5  | Lon                | 经度 (°)                                       | Doubl<br>e | 8   | H+20 |
| 6  | Hgt                | 椭球高 (m)                                      | Doubl<br>e | 8   | H+28 |
| 7  | North Velocity     | 北向速度(m/s)                                    | Doubl<br>e | 8   | H+36 |
| 8  | East Velocity      | 东向速度(m/s)                                    | Doubl<br>e | 8   | H+44 |
| 9  | Up Velocity        | 天向速度(m/s)                                    | Doubl<br>e | 8   | H+52 |
| 10 | Roll               | 横滚角(取值范围-180°~180°)                          | Doubl<br>e | 8   | H+60 |
| 11 | Pitch              | 俯仰角(取值范围-90°~90°)                            | Doubl<br>e | 8   | H+68 |
| 12 | Azimuth            | 航向角(取值范围 0°~360°)                            | Doubl<br>e | 8   | H+76 |
| 13 | Status             | INS 解算状态,详见表 4-8 惯性导航状态说明                    | Enum       | 4   | H+84 |
| 14 | xxx                | 32-bitCRC 校验, 见表 4-6 32 位 CR<br>C 校验算法代码 (C) | Hex        | 4   | H+88 |
| 15 | [CR][LF]           | 消息终结符(仅限 ASCII 格式)                           | -          | _   | -    |



#### 4.2.14 INSPVAS\*

输出位置、速度和姿态信息。

消息 ID: 508

推荐

#### LOG Port INSPVASA ONTIME 1

#### ASCII 示例

%INSPVASA,2107,34875.000;2107,34875.0000000000,28.23316391985,112.87713071260,82.80 79,-0.0024,-0.0307,0.0003,179.757726111,-0.376524653,1.046861519,INS\_ALIGNMENT\_COMPL ETE\*7adc4cb9

| 字段 | 字段类型              | 描述                                         | 二进制<br>格式 | 二进制<br>字节 | 二进制<br>偏移 |
|----|-------------------|--------------------------------------------|-----------|-----------|-----------|
| 1  | INSPVAS header    | Log 消息短格式标头,见 2.1.2.2<br>短格式 ASCII 信息结构    | -         | H         | 0         |
| 2  | Week              | GPS 周                                      | Ulong     | 4         | Н         |
| 3  | Seconds into Week | 周内秒                                        | Double    | 8         | H+4       |
| 4  | Lat               | 纬度 (°)                                     | Double    | 8         | H+12      |
| 5  | Lon               | 经度 (°)                                     | Double    | 8         | H+20      |
| 6  | Hgt               | 椭球高 (m)                                    | Double    | 8         | H+28      |
| 7  | North Velocity    | 北向速度(m/s)                                  | Double    | 8         | H+36      |
| 8  | East Velocity     | 东向速度(m/s)                                  | Double    | 8         | H+44      |
| 9  | Up Velocity       | 天向速度(m/s)                                  | Double    | 8         | H+52      |
| 10 | Roll              | 横滚角(取值范围-180°~180°)                        | Double    | 8         | H+60      |
| 11 | Pitch             | 俯仰角(取值范围-90°~90°)                          | Double    | 8         | H+68      |
| 12 | Azimuth           | 航向角(取值范围 0°~360°)                          | Double    | 8         | H+76      |
| 13 | Status            | INS 解算状态,表 4-8 惯性导航状态说明                    | Enum      | 4         | H+84      |
| 14 | xxx               | 32-bitCRC 校验, 见表 4-6 32 位<br>CRC 校验算法代码(C) | Hex       | 4         | H+88      |
| 15 | [CR][LF]          | 消息终结符(仅限 ASCII 格式)                         | _         | - 11-7    |           |
|    | bynavi            |                                            | na        |           |           |



#### 4.2.15 INSPVAX\*

除了输出与 INSPVA 相同的位置、速度和姿态信息外,还输出其相应的标准差。

消息 ID: 1465

推荐

#### LOG Port INSPVAXA ONTIME 1

#### ASCII 示例

#INSPVAXA,ICOM4,0,0.0,FINESTEERING,2107,35489.000,00000000,03de,68;INS\_ALIGNMENT\_C OMPLETE,INS\_RTKFIXED,28.23316396165,112.87713086609,82.7966,-17.0382,0.0020,-0.0191, 0.0006,179.789714292,-0.387541550,1.405962922,0.0240,0.0168,0.0218,0.0047,0.0049,0.005 4,0.0553,0.0553,1.0818,000000000,0\*fd6e3a89

| 字段 | 字段类型           | 描述                                          | 二进制<br>格式 | 二进制字节 | 二进制偏移 |
|----|----------------|---------------------------------------------|-----------|-------|-------|
| 1  | INSPVAX header | Log 消息标准格式标头,详见 2.1.2.<br>1 标准格式 ASCII 信息结构 | naV       | HEZ   | 0     |
| 2  | INS Status     | INS 解算状态, 见表 4-8 惯性导航状态说明                   | Enum      | 4     | Н     |
| 3  | Pos Type       | 位置信息类型,见表 4-2 定位状态<br>描述说明                  | Enum      | 4     | H+4   |
| 4  | Lat            | 纬度 (°)                                      | Double    | 8     | H+8   |
| 5  | Lon            | 经度 (°)                                      | Double    | 8     | H+16  |
| 6  | Hgt            | 海拔高 (m)                                     | Double    | 8     | H+24  |
| 7  | Undulation     | 高程异常值(m)                                    | Float     | 4     | H+32  |
| 8  | North Velocity | 北向速度(m/s)                                   | Double    | 8     | H+36  |
| 9  | East Velocity  | 东向速度(m/s)                                   | Double    | 8     | H+44  |
| 10 | Up Velocity    | 天向速度(m/s)                                   | Double    | 8     | H+52  |
| 11 | Roll           | 横滚角(取值范围-180°~180°)                         | Double    | 8     | H+60  |
| 12 | Pitch          | 俯仰角(取值范围-90°~90°)                           | Double    | 8     | H+68  |
| 13 | Azimuth        | 航向角(取值范围 0°~360°)                           | Double    | 8     | H+76  |
| 14 | Lat σ          | 纬度标准差                                       | Float     | 4     | H+84  |
| 15 | Long σ         | 经度标准差                                       | Float     | 4     | H+88  |
| 16 | Height σ       | 高程标准差                                       | Float     | 4     | H+92  |
| 17 | North Vel σ    | 北向速度标准差                                     | Float     | 4     | H+96  |



| 18 | East Vel σ            | 东向速度标准差                                    | Float  | 4 | H+100 |  |  |
|----|-----------------------|--------------------------------------------|--------|---|-------|--|--|
| 19 | Up Vel σ              | 天向速度标准差                                    | Float  | 4 | H+104 |  |  |
| 20 | Roll σ                | 横滚角标准差                                     | Float  | 4 | H+108 |  |  |
| 21 | Pitch σ               | 俯仰角标准差                                     | Float  | 4 | H+112 |  |  |
| 22 | Azimuth σ             | 航向角标准差                                     | Float  | 4 | H+116 |  |  |
| 23 | Ext sol stat          | 扩展解算状态信息, 见表 4-11 组合<br>导航扩展解算状态描述说明       | Hex    | 4 | H+120 |  |  |
| 24 | Time Since Updat<br>e | 距上次位置更新时间(s)                               | Ushort | 2 | H+124 |  |  |
| 25 | xxx                   | 32-bitCRC 校验, 见表 4-6 32 位<br>CRC 校验算法代码(C) | Hex    | 4 | H+126 |  |  |
| 26 | [CR][LF]              | 消息终结符(仅限 ASCII 格式)                         | 10-    | - | _     |  |  |
|    |                       |                                            |        |   |       |  |  |

表 4-11 组合导航扩展解算状态描述说明

| 半字节 | Bit | 掩码         | 描述        | 取值范围        |
|-----|-----|------------|-----------|-------------|
|     | 0   | 0x0000001  | 位置更新      | 0=未使用 1=已使用 |
| N0  | 1   | 0x00000002 | 相位更新      | 0=未使用 1=已使用 |
|     | 2   | 0x00000004 | 零速更新      | 0=未使用 1=已使用 |
|     | 3   | 0x00000008 | 轮速计更新     | 0=未使用 1=已使用 |
|     | 4   | 0x00000010 | 对准(定向)更新  | 0=未使用 1=已使用 |
| N1  | 5   | 0x00000020 | 外部位置更新    | 0=未使用 1=已使用 |
|     | 6   | 0x00000040 | INS 解收敛标志 | 0=未收敛 1=已收敛 |
|     | 7   | 0x00000080 | 多普勒更新     | 0=未使用 1=已使用 |
|     | 8   | 0x00000100 | 伪距更新      | 0=未使用 1=已使用 |
| N2  | 9   | 0x00000200 | 速度更新      | 0=未使用 1=已使用 |
| 142 | 10  | 0x00000400 | 预留        |             |
|     | 11  | 0x00000800 | 航位推算更新    | 0=未使用 1=已使用 |
|     | 12  | 0x00001000 | 相位终止更新    | 0=未使用 1=已使用 |
| N3  | 13  | 0x00002000 | 地面航线更新    | 0=未使用 1=已使用 |
|     | 14  | 0x00004000 | 外部速度更新    | 0=未使用 1=已使用 |
|     | 15  | 0x00008000 | 外部海拔高更新   | 0=未使用 1=已使用 |



|     | 16 | 0x00010000 | 外部方位更新          | 0=未使用 1=已使用           |  |
|-----|----|------------|-----------------|-----------------------|--|
| N4  | 17 | 0x00020000 | 外部高度更新          | 0=未使用 1=已使用           |  |
| 114 | 18 | 0x00040000 | 预留              | byna                  |  |
|     | 19 | 0x00080000 | 预留              |                       |  |
|     | 20 | 0x00100000 | 流动站位置更新         | 0=未使用 1=已使用           |  |
| N5  | 21 | 0x00200000 | 流动站位置更新类型       | 0=非 RTK 更新 1=RTK 整数更新 |  |
| NS  | 22 | 0x00400000 | 预留              |                       |  |
|     | 23 | 0x00800000 | 预留              | - avita               |  |
|     | 24 | 0x01000000 | 启用估计偏差          | 0=静态启动偏差未估计(从零开始)     |  |
|     |    |            | VITALI MIGST    | 1=静态启动偏差已估计           |  |
| N6  | 25 | 0x02000000 | 对准方向已验证         | 0=未验证 1=已验证           |  |
|     | 26 | 0x04000000 | 对准指示 1          | 0=未设置,1=已设置。见说明       |  |
|     | 27 | 0x0800000  | 对准指示 2          | 0 = 未设置, 1 = 已设置。见说明  |  |
|     | 28 | 0x10000000 | 对准指示 3          | 0 = 未设置, 1 = 已设置。见说明  |  |
|     | 29 | 0x20000000 | NVM Seed 指示 1   | 0 = 未设置, 1 = 已设置      |  |
|     | 27 | 3/2000000  |                 | 见表 4-13 NVM Seed 指示说明 |  |
| N7  | 30 | 0x40000000 | NVM Seed 指示 2   | 0 = 未设置, 1 = 已设置      |  |
|     |    | 3/4000000  | TOTAL SECONDARY | 见表 4-13 NVM Seed 指示说明 |  |
|     | 31 | 0x80000000 | NVM Seed 指示 3   | 0 = 未设置, 1 = 已设置      |  |
|     |    | 3,0000000  | 7               | 见表 4-13 NVM Seed 指示说明 |  |
|     |    | Jan        |                 | byna                  |  |
|     |    |            |                 |                       |  |

表 4-12 对准指示说明

| Bits 26-28 数值 | Hex 值 | 完成对准类型 |
|---------------|-------|--------|
| 000           | 0x00  | 对准未完成  |
| 001           | 0x01  | 静态     |
| 010           | 0x02  | 动态     |
| 011           | 0x03  | 双天线    |



| 100 | 0x04 | 用户指令     |
|-----|------|----------|
| 101 | 0x05 | NVM Seed |

#### 表 4-13 NVM Seed 指示说明

| Bits 29-31 数值                         | Hex 值 | 完成对准类型                                                                              |  |  |  |
|---------------------------------------|-------|-------------------------------------------------------------------------------------|--|--|--|
| 000                                   | 0x00  | NVM Seed Inactive                                                                   |  |  |  |
| 001                                   | 0x01  | Seed stored in NVM is invalid                                                       |  |  |  |
| 010                                   | 0x02  | NVM Seed failed validation check                                                    |  |  |  |
| 011                                   | 0x03  | NVM Seed is pending validation (awaiting GNSS)                                      |  |  |  |
| 100                                   | 0x04  | NVM Seed Injected (includes error model data)                                       |  |  |  |
| 101                                   | 0x05  | NVM Seed data ignored due to a user-commande d filter reset or configuration change |  |  |  |
| 110                                   | 0x06  | NVM Seed error model data injected                                                  |  |  |  |
| 4.2.16 INSSPD*<br>该消息输出了水平和垂直方向的速度信息。 |       |                                                                                     |  |  |  |
| 消息 ID: 266                            |       |                                                                                     |  |  |  |

#### 4.2.16 INSSPD\*

推荐

#### LOG Port INSSPDA ONTIME 1

#### ASCII 示例

#INSSPDA,ICOM4,0,0.0,FINESTEERING,2107,37106.000,000000000,0000,68;2107,37106.00000 0000,5.233402789,0.014530860,-0.000531521,INS\_ALIGNMENT\_COMPLETE\*4ac6a980

| 字段 | 字段类型              | 描述                                          | 二进制<br>格式 | 二进制<br>字节 | 二进制偏移 |
|----|-------------------|---------------------------------------------|-----------|-----------|-------|
| 1  | INSSPD header     | Log 消息标准格式标头,详见 2.<br>1.2.1 标准格式 ASCII 信息结构 | -         | Hale      | 0     |
| 2  | Week              | GPS 周                                       | Ulong     | 4         | Н     |
| 3  | Seconds into Week | 周内秒                                         | Double    | 8         | H+4   |



| 4                                         | Trk Gnd          | 前进方向与真北的夹角(0~36<br>0°)                     | Double | 8 | H+12 |  |
|-------------------------------------------|------------------|--------------------------------------------|--------|---|------|--|
| 5                                         | Horizontal Speed | 水平方向速度(m/s)                                | Double | 8 | H+20 |  |
| 6                                         | Vertical Speed   | 垂直方向速度(m/s)                                | Double | 8 | H+28 |  |
| 7                                         | Status           | INS 解算状态,表 4-8 惯性导航<br>状态说明                | Enum   | 4 | H+36 |  |
| 8                                         | xxx              | 32-bitCRC 校验,见表 4-6 32<br>位 CRC 校验算法代码 (C) | Hex    | 4 | H+40 |  |
| 9                                         | [CR][LF]         | 消息终结符(仅限 ASCII 格式)                         | -      | - | -    |  |
| 4.2.17 INSSTDEV* 该消息输出了 INS 位置、速度和姿态的标准差。 |                  |                                            |        |   |      |  |

#### 4.2.17 INSSTDEV\*

消息 ID: 2051

推荐

#### LOG Port INSSTDEVA ONTIME 1

#### ASCII 示例

#INSSTDEVA,ICOM4,0,0.0,FINESTEERING,2107,37213.000,00000000,0000,68;0.0239,0.0168, 0.0220, 0.0068, 0.0067, 0.0057, 0.0497, 0.0497, 1.0741, 00000000, 0, 0, 00bffbbf, 0\*c607c0d6, 0.0220, 0.0068, 0.0067, 0.0057, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497, 0.0497

| 字段 | 字段类型             | 描述                                          | 二进制<br>格式 | 二进制<br>字节 | 二进制<br>偏移 |
|----|------------------|---------------------------------------------|-----------|-----------|-----------|
| 1  | INSSTDEV header  | Log 消息标准格式标头,详见 2.<br>1.2.1 标准格式 ASCII 信息结构 | -         | Н         | 0         |
| 2  | Lat σ            | 纬度标准差 (m)                                   | Float     | 4         | Н         |
| 3  | Lon σ            | 经度标准差 (m)                                   | Float     | 4         | H+4       |
| 4  | Hgt σ            | 高度标准差 (m)                                   | Float     | 4         | H+8       |
| 5  | North Velocity σ | 北向速度标准差(m/s)                                | Float     | 4         | H+12      |
| 6  | East Velocity σ  | 东向速度标准差(m/s)                                | Float     | 4         | H+16      |
| 7  | Up Velocity σ    | 天向速度标准差(m/s)                                | Float     | 4         | H+20      |
| 8  | Roll σ           | 横滚角标准差 (°)                                  | Float     | 4         | H+24      |
| 9  | Pitch σ          | 俯仰角标准差(°)                                   | Float     | 4         | H+28      |
| 10 | Azimuth σ        | 航向角标准差 (°)                                  | Float     | 4         | H+32      |



| 11                                 | Ext sol stat      | 扩展解算状态信息, 见表 4-11<br>组合导航扩展解算状态描述说明         | Ulong  | 4 | H+36 |  |
|------------------------------------|-------------------|---------------------------------------------|--------|---|------|--|
| 12                                 | Time Since Update | 上次 ZUPT 或位置更新后的时间                           | Ushort | 2 | H+40 |  |
| 13                                 | Reserved          | 预留                                          | Ushort | 2 | H+42 |  |
| 14                                 | Reserved          | 预留                                          | Ulong  | 4 | H+44 |  |
| 15                                 | Reserved          | 预留                                          | Ulong  | 4 | H+48 |  |
| 16                                 | xxxx              | 32-bitCRC 校验, 见表 4-6 32<br>位 CRC 校验算法代码 (C) | Hex    | 4 | H+52 |  |
| 17                                 | [CR][LF]          | 消息终结符(仅限 ASCII 格式)                          | -      | - | -    |  |
| 4.2.18 INSVEL* 该消息输出了当地导航坐标系的速度信息。 |                   |                                             |        |   |      |  |
| w -                                |                   |                                             |        |   |      |  |

### 4.2.18 INSVEL\*

消息 ID: 267

推荐

#### LOG Port INSVELA ONTIME 1

#### ASCII 示例

#INSVELA,ICOM4,0,0.0,FINESTEERING,2107,37289.000,00000000,0000,68;2107,37289.00000 0000,0.0099,-0.0082,-0.0014,INS\_ALIGNMENT\_COMPLETE\*7c7a85fb

#### 说明

| 字段 | 字段类型              | 描述                                          | 二进制<br>格式 | 二进制字节 | 二进制偏移 |
|----|-------------------|---------------------------------------------|-----------|-------|-------|
| 1  | INSVEL header     | Log 消息标准格式标头,详见 2.<br>1.2.1 标准格式 ASCII 信息结构 | -12       | H     | 0     |
| 2  | Week              | GPS 周                                       | Ulong     | 4     | Н     |
| 3  | Seconds into Week | 周内秒                                         | Double    | 8     | H+4   |
| 4  | North Velocity    | 北向速度(m/s)                                   | Double    | 8     | H+12  |
| 5  | East Velocity     | 东向速度(m/s)                                   | Double    | 8     | H+20  |
| 6  | Up Velocity       | 天向速度(m/s)                                   | Double    | 8     | H+28  |
| 7  | Status            | INS 解算状态,表 4-8 惯性导航<br>状态说明                 | Enum      | 4     | H+36  |
| 8  | xxx               | 32-bitCRC 校验, 见表 4-6 32<br>位 CRC 校验算法代码 (C) | Hex       | 4     | H+40  |
| 9  | [CR][LF]          | 消息终结符(仅限 ASCII 格式)                          | -         | -     | _     |

电话: +86-731-85058117 92 / 154 www.bynav.com



#### **4.2.19 IONUTC**

输出电离层模型参数和 UTC 时间参数。

#### 推荐

#### LOG IONUTCA ONTIME 1

#### ASCII 示例

#IONUTCA,COM3,0,97.2,FINESTEERING,2223,283558.000,00000000,0000,769;1.3038516044 61670e-08,2.235174179077148e-08,-5.960464477539063e-08,-1.192092895507813e-07,1. 06496000000000e+05,1.31072000000000e+05,-6.553600000000000e+04,-2.6214400000 00000e+05,2223,405504,-2.7939677238464400e-09,-1.243449788e-14,2185,7,18,18,0\*ed4 9f7a2

| 字段 | 字段类型             | 描述                                      | 二进制格式  | 二进制字节 | 二进制偏移 |
|----|------------------|-----------------------------------------|--------|-------|-------|
| 1  | IONUTC<br>header | Log 消息标准格式标头,详见 2.1.2.1 标准格式 ASCII 信息结构 | na     | Н     | 0     |
| 2  | a0               | Alpha 参数常数项                             | Double | 8     | Н     |
| 3  | a1               | Alpha 参数一阶项                             | Double | 8     | H+8   |
| 4  | a2               | Alpha 参数二阶项                             | Double | 8     | H+16  |
| 5  | a3               | Alpha 参数三阶项                             | Double | 8     | H+24  |
| 6  | b0               | Beta 参数常数项                              | Double | 8     | H+32  |
| 7  | b1               | Beta 参数一阶项                              | Double | 8     | H+40  |
| 8  | b2               | Beta 参数二阶项                              | Double | 8     | H+48  |
| 9  | b3               | Beta 参数三阶项                              | Double | 8     | H+56  |
| 10 | utc wn           | UTC 参考周                                 | Ulong  | 4     | H+64  |



| 11 | tot        | UTC 参数参考时间                                 | Ulong  | 4 | H+68  |
|----|------------|--------------------------------------------|--------|---|-------|
| 12 | A0         | 多项式 UTC 常数项                                | Double | 8 | H+72  |
| 13 | A1         | 多项式 UTC 一阶项                                | Double | 8 | H+80  |
| 14 | wn lsf     | 未来周                                        | Ulong  | 4 | H+88  |
| 15 | dn         | 星期(范围 1-7,周日为 1,周六为 7)                     | Ulong  | 4 | H+92  |
| 16 | deltat ls  | 因闰秒导致的时间增量                                 | Long   | 4 | H+96  |
| 17 | deltat lsf | 因闰秒导致的未来时间增量                               | Long   | 4 | H+100 |
| 18 | Reserved   | 保留                                         | -      | 4 | H+104 |
| 19 | xxxx       | 32-bit CRC 校验,见表 4-6 32 位 CRC<br>校验算法代码(C) | Hex    | 4 | H+108 |
| 20 | [CR][LF]   | 消息终结符(仅限 ASCII 格式)                         | -      | - | -     |

#### 4.2.20 MARKTIME, MARK2TIME

标记输入事件的时间,其中 MARKTIME 标记 IMU DR 时间,MARK2TIME 标记 EVENT\_IN 时间。

消息 ID: 231 (MARKTIME)

消息 ID: 616 (MARK2TIME)

推荐

LOG Port MARKTIMEA ONNEW

LOG Port MARK2TIMEA ONNEW

#### ASCII 示例

#MARK2TIMEA,ICOM4,0,0.0,FINESTEERING,2107,37368.803,00000000,0000,68;2107,37368.8 03115213,0.00000000e+00,0.00000000e+00,0.000000000,VALID\*1a85cfb5

| 字段   字段类型   描述   二进制   二进制   二进制 |
|----------------------------------|
|----------------------------------|



|    |                              |                                                | 格式     | 字节 | 偏移   |
|----|------------------------------|------------------------------------------------|--------|----|------|
| 1  | MARKTIME/MARK2TIME<br>header | Log 消息标准格式标头,详见<br>2.1.2.1 标准格式 ASCII 信息结<br>构 | nal    | H  | 0    |
| 2  | Week                         | GPS 参考周                                        | Long   | 4  | Н    |
| 3  | Seconds                      | 设备内部时钟测量的周内秒                                   | Double | 8  | H+4  |
| 4  | Offset                       | 设备时钟漂移(s), GPS 系统<br>时间=GPS 参考时间-时钟漂移          | Double | 8  | H+12 |
| 5  | Offset std                   | 时钟漂移标准差                                        | Double | 8  | H+20 |
| 6  | UTC Offset                   | UTC 时间=GPS 参考时间-时钟<br>漂移+UTC 漂移                | Double | 8  | H+28 |
| 7  | Status                       | 时钟状态, 见表 4-14 时钟模型状态说明                         | Enum   | 4  | H+36 |
| 9  | xxx                          | 32-bitCRC 校验, 见表 4-6 32<br>位 CRC 校验算法代码 (C)    | Ulong  | 4  | H+40 |
| 10 | [CR][LF]                     | 消息终结符(仅限 ASCII 格式)                             | -      | -  | -    |

表 4-14 时钟模型状态说明

| 时钟状态(二进制)     | 时钟状态(ASCII 值) | 描述            |  |  |  |
|---------------|---------------|---------------|--|--|--|
| 0             | VALID         | 时钟模型有效        |  |  |  |
| 1             | CONVERGING    | 时钟模型接近有效      |  |  |  |
| 2             | ITERATING     | 时钟模型正在进行有效性迭代 |  |  |  |
| 3             | INVALID       | 时钟模型无效        |  |  |  |
| 4.2.21 PSRVEL |               |               |  |  |  |
| 该消息输出伪距速      | 度信息。          |               |  |  |  |

#### **4.2.21 PSRVEL**

该消息提供了地面上接收机天线的实际速度和方向。速度测量有时有一个与之相关的延 迟。有效时间是日志中的时间标签减去延迟值。PSRVEL 中的速度由伪距滤波器确定。 伪距滤波器的速度由多普勒计算。速度状态表示不同程度的速度质量。为确保速度正 常,还必须检查速度解算状态。如果解算状态为非零,则速度可能无效。应注意的是, 接收器并不确定载体的指向(航向), 而是确定 GPS 天线相对于地面的运动方向。瞬时 多普勒速度的延迟总是 0.15 秒。延迟表示跟踪环路在大约 1g 加速度下引起的延迟估计 值。对于大多数用户,延迟可以假定为零(瞬时速度)。



消息 **ID:** 100

推荐

### ynavitā ynavitz LOG Port PSRVELA ONTIME 1

#### ASCII 示例

#PSRVELA,COM3,0,98.1,FINESTEERING,2149,348230.000,00000000,0000,757;SOL\_COMPUTE D,NARROW\_INT,0.000,0.000,0.0012,60.835538,0.0057,0\*a0039781

#### 说明

| 字段 | 字段类型           | 描述                                          | 二进制<br>格式 | 二进制<br>字节 | 二进制<br>偏移 |
|----|----------------|---------------------------------------------|-----------|-----------|-----------|
| 1  | PSRVELA header | Log 消息标准格式标头,详见 2.1.2.<br>1 标准格式 ASCII 信息结构 | -         | Н         | 0         |
| 2  | Sol Status     | 解算状态,见表 4-1 解算状态描述<br>说明                    | Enum      | 4         | Н         |
| 3  | Vel Type       | 速度类型,见表 4-2 定位状态描述<br>说明                    | Enum      | 4         | H+4       |
| 4  | Latency        | 延迟                                          | Float     | 4         | H+8       |
| 5  | Diff_age       | 差分延迟 (s)                                    | Float     | 4         | H+12      |
| 6  | Hor Spd        | 水平速度(m/s)                                   | Double    | 8         | H+16      |
| 7  | Trk Gnd        | 前进方向与真北的夹角(°)<br>(取值范围 0°~360°)             | Double    | 8         | H+24      |
| 8  | Vert Spd       | 垂直速度(m/s),其中正值表示高度(上升)增加,负值表示高度(下降)减少       | Double    | 8         | H+32      |
| 9  | Reserved       | 预留                                          | Float     | 4         | H+40      |
| 10 | xxx            | 32-bitCRC 校验, 见表 4-6 32 位<br>CRC 校验算法代码 (C) | Hex       | 4         | H+44      |
| 11 | [CR][LF]       | 消息终结符(仅限 ASCII 格式)                          |           | -         | -         |

#### 4.2.22 RAWIMU\*

该消息提供原始 IMU 观察量,数据的参考原点为整机导航中心。输出频率不可调,仅支 , 可调, 持 ONNEW, 按 IMU 标定频率输出。

消息 ID: 268



#### 推荐

## LOG Port RAWIMUA ONNEW

#### ASCII 示例

#RAWIMUA,ICOM4,0,0.0,FINESTEERING,2107,37454.000,00000000,0000,68;2107,37454.0000 00000,00000000,-2116037,15254,-3991,1707,2161,3258\*ab408b44

#### 说明

| 字段 | 字段类型              | 描述                                          | 二进制<br>格式    | 二进制字节 | 二进制偏移 |
|----|-------------------|---------------------------------------------|--------------|-------|-------|
| 1  | RAWIMU header     | Log 消息标准格式标头,详见 2.<br>1.2.1 标准格式 ASCII 信息结构 | <u>n</u> e   | Н     | 0     |
| 2  | Week              | GPS 周                                       | Ulong        | 4     | Н     |
| 3  | Seconds into Week | 周内秒                                         | Double       | 8     | H+4   |
| 4  | IMU Status        | IMU 状态,目前默认为 0                              | Hex<br>Ulong | 4     | H+12  |
| 5  | Z Accel           | Z 轴的速度增量*                                   | Long         | 4     | H+16  |
| 6  | -Y Accel          | -Y 轴的速度增量*                                  | Long         | 4     | H+20  |
| 7  | X Accel           | X 轴的速度增量*                                   | Long         | 4     | H+24  |
| 8  | Z Gyro            | Z 轴的角度增量*                                   | Long         | 4     | H+28  |
| 9  | -Y Gyro           | -Y 轴的角度增量*                                  | Long         | 4     | H+32  |
| 10 | X Gyro            | X 轴的角度增量*                                   | Long         | 4     | H+36  |
| 11 | xxx               | 32-bitCRC 校验, 见表 4-6 32<br>位 CRC 校验算法代码 (C) | Hex          | 4     | H+40  |
| 12 | [CR][LF]          | 消息终结符(仅限 ASCII 格式)                          | -            | -     | -     |

\*单位为 LSB(Least Significant Bit),转换的比例因子与 IMU 型号有关。详见表 4-15 IMU 原始数据转换系数说明。

表 4-15 IMU 原始数据转换系数说明

| 设备        | IMU                           | 转换系数                     | 频率     | 比例因子                 |
|-----------|-------------------------------|--------------------------|--------|----------------------|
|           | Curo                          | 3.35276126861572e-05     |        | 3.35276126861572e-07 |
| X1-3/A1-3 | Gyro                          | °/s/LSB                  | 10011  | °/LSB                |
|           | Accel                         | 4.65661287307739e-06     | 100Hz  | 4.65661287307739e-08 |
|           |                               | m/s2/LSB                 |        | m/s/LSB              |
| X1-5/A1-5 | Gyro                          | 3.0517578125e-05 °/s/LSB | 12511- | 2.44140625e-07 °/LSB |
|           | -5 Accel 3.74094009399414e-06 |                          | 125Hz  | 2.99275207519531e-08 |



|           |       | m/s2/LSB             |        | m/s/LSB              |
|-----------|-------|----------------------|--------|----------------------|
| \\\       | Gyro  | 2.88991928100586e-05 |        | 2.31193542480469e-07 |
|           | Gyro  | °/s/LSB              | 12511- | °/LSB                |
| X1-6/A1-6 | Assol | 7.48188018798828e-06 | 125Hz  | 5.98550415039063e-08 |
|           | Accel | m/s2/LSB             |        | m/s/LSB              |

#### 4.2.23 RAWIMUS\*

该消息提供原始 IMU 观察量,数据的参考原点为整机导航中心。输出频率不可调,仅支 持 ONNEW,按 IMU 标定频率输出。(注意该消息的消息头为短格式消息头) bynavit

消息 ID: 325

#### LOG Port RAWIMUSA ONNEW

#### ASCII 示例

%RAWIMUSA,2107,37564.000;2107,37564.0000000000,00000000,-2111774,15617,-4719,293 bynavit<sup>Z</sup> 9,635,1057\*03104a49

| 字段 | 字段类型              | 描述                                          | 二进制格式        | 二进制字节 | 二进制偏移 |
|----|-------------------|---------------------------------------------|--------------|-------|-------|
| 1  | RAWIMUS header    | Log 消息短格式标头,见 2.1.2.2<br>短格式 ASCII 信息结构     | -            | Н     | 0     |
| 2  | Week              | GPS 周                                       | Ulong        | 4     | Н     |
| 3  | Seconds into Week | 周内秒                                         | Double       | 8     | H+4   |
| 4  | IMU Status        | IMU 状态,目前默认为 0                              | Hex<br>Ulong | 4     | H+12  |
| 5  | Z Accel           | Z 轴的速度增量*                                   | Long         | 4     | H+16  |
| 6  | -Y Accel          | -Y 轴的速度增量*                                  | Long         | 4     | H+20  |
| 7  | X Accel           | X 轴的速度增量*                                   | Long         | 4     | H+24  |
| 8  | Z Gyro            | Z轴的角度增量*                                    | Long         | 4     | H+28  |
| 9  | -Y Gyro           | -Y 轴的角度增量*                                  | Long         | 4     | H+32  |
| 10 | X Gyro            | X 轴的角度增量*                                   | Long         | 4     | H+36  |
| 11 | xxx               | 32-bitCRC 校验, 见表 4-6 32<br>位 CRC 校验算法代码 (C) | Hex          | 4     | H+40  |
| 12 | [CR][LF]          | 消息终结符(仅限 ASCII 格式)                          | _            | _     | _     |

98 / 154 电话: +86-731-85058117 www.bynav.com



\*单位为 LSB(Least Significant Bit),转换的比例因子与 IMU 型号有关。详见 bynavitz 表 4-15 IMU 原始数据转换系数说明。

#### **4.2.24 RAWIMUSX\***

该消息提供扩展型原始 IMU 观察量,相较 RAWIMU 额外提供了 IMU 相关信息,数据的 参考原点为整机导航中心。输出频率不可调,仅支持 ONNEW,按 IMU 标定频率输出。 (注意该消息的消息头为短格式消息头)

消息 ID: 1462

推荐

### hynavita LOG Port RAWIMUSXA ONNEW

#### ASCII 示例

%RAWIMUSXA,2107,37676.000;00,3,2107,37676.000000000,00000000,-2106390,13697,-578 0,3624,1446,1426\*6ae4f31b

| 字段 | 字段类型              | 描述                                                                 | 二进制格式        | 二进制字节    | 二进制偏移 |
|----|-------------------|--------------------------------------------------------------------|--------------|----------|-------|
| 1  | RAWIMUSX header   | Log 消息短格式标头,见 2.1.2.2<br>短格式 ASCII 信息结构                            | -            | Н        | 0     |
| 2  | Imu Info          | IMU 信息: Bit0 置 1 表示 IMU 故障; Bit1 置 1 表示 IMU 数据加密,不可使用; Bit2-7: 保留。 | Hex          | ,<br>jjt | H     |
| 3  | Imu Type          | IMU 类型,见表 4-16 IMU 类型<br>说明                                        | Uchar        | 1        | H+1   |
| 4  | Week              | GPS 周                                                              | UShort       | 2        | H+2   |
| 5  | Seconds into Week | 周内秒                                                                | Double       | 8        | H+4   |
| 6  | IMU Status        | IMU 状态,目前默认为 0                                                     | Hex<br>Ulong | 4        | H+12  |
| 7  | Z Accel           | Z 轴的速度增量*                                                          | Long         | 4        | H+16  |
| 8  | -Y Accel          | -Y 轴的速度增量*                                                         | Long         | 4        | H+20  |
| 9  | X Accel           | X 轴的速度增量*                                                          | Long         | 4        | H+24  |



| 10 | Z Gyro   | Z 轴的角度增量*                                   | Long | 4 | H+28 |
|----|----------|---------------------------------------------|------|---|------|
| 11 | -Y Gyro  | -Y 轴的角度增量*                                  | Long | 4 | H+32 |
| 12 | X Gyro   | X 轴的角度增量*                                   | Long | 4 | H+36 |
| 13 | xxx      | 32-bitCRC 校验, 见表 4-6 32<br>位 CRC 校验算法代码 (C) | Hex  | 4 | H+40 |
| 14 | [CR][LF] | 消息终结符(仅限 ASCII 格式)                          | -    | - | -    |

表 4-16 IMU 类型说明

| 二进制数值 | ASCII 值 | 设备型号      | IMU 型号        |
|-------|---------|-----------|---------------|
| 3     | 3       | X1-3/A1-3 | ADIS 16505    |
| 4     | 4       | X1-4/A1-4 | TDK IIM-46234 |
| 5     | 5       | X1-5/A1-5 | EPSON_G354    |
| 6     | 6       | X1-6/A1-6 | EPSON_G365    |
| 7     | 7       | X1-7/A1-7 | EPSON_G370    |

<sup>\*</sup>单位为 LSB(Least Significant Bit),转换的比例因子与 IMU 型号有关。详见表 4-15 IMU 原始数据转换系数说明。

#### 4.2.25 RAWIMUX\*

该消息提供扩展型原始 IMU 观察量,数据的参考原点为整机导航中心。输出频率不可调,仅支持 ONNEW,按 IMU 标定频率输出。

消息 ID: 1461

推荐

#### LOG Port RAWIMUXA ONNEW

#### ASCII 示例

#RAWIMUXA,ICOM4,0,0.0,FINESTEERING,2107,37613.000,00000000,0000,68;00,3,2107,3761 3.000000000,00000000,-2106169,13714,-5559,3570,1638,1782\*9d84ce36

| 字段 | 字段类型            | 描述                                      | 二进制<br>格式 | 二进制 字节 | 二进制<br>偏移 |
|----|-----------------|-----------------------------------------|-----------|--------|-----------|
| 1  | RAWIMUSX header | Log 消息短格式标头,见 2.1.2.2<br>短格式 ASCII 信息结构 | nal       | Н      | 0         |
| 2  | Imu Info        | IMU 信息:                                 | Hex       | 1      | Н         |



|    |                   | Bit 0 置 1 表示 IMU 故障          |        |       |        |
|----|-------------------|------------------------------|--------|-------|--------|
|    | -11               | Bit1 置 1 表示 IMU 数据加密,不       |        | 17    |        |
|    |                   | 可使用。                         |        |       |        |
|    |                   | Bit2-7: 保留                   |        |       |        |
| 3  | Imu Type          | IMU 类型, 见表 4-16 IMU 类型<br>说明 | Uchar  | 1     | H+1    |
| 4  | Week              | GPS 周                        | UShort | 2     | H+2    |
| 5  | Seconds into Week | 周内秒                          | Double | 8     | H+4    |
| 6  | IMIL Ctatus       | IMIL 化本 日益剛才先 O              | Hex    | 4     | 11.12  |
| 6  | IMU Status        | IMU 状态,目前默认为 0               | Ulong  | 4     | H+12   |
| 7  | Z Accel           | Z 轴的速度增量*                    | Long   | 4     | H+16   |
| 8  | -Y Accel          | -Y 轴的速度增量*                   | Long   | 4     | H+20   |
| 9  | X Accel           | X 轴的速度增量*                    | Long   | 4     | H+24   |
| 10 | Z Gyro            | Z 轴的角度增量*                    | Long   | 4     | H+28   |
| 11 | -Y Gyro           | -Y 轴的角度增量*                   | Long   | 4     | H+32   |
| 12 | X Gyro            | X 轴的角度增量*                    | Long   | 4     | H+36   |
| 12 |                   | 32-bitCRC 校验,见表 4-6 32 位     | Llev   | 4     | 11. 40 |
| 13 | XXX               | CRC 校验算法代码(C)                | Hex    | 4     | H+40   |
| 14 | [CR][LF]          | 消息终结符(仅限 ASCII 格式)           | -      | -4 47 |        |

<sup>\*</sup>单位为 LSB(Least Significant Bit),转换的比例因子与 IMU 型号有关。详见表 4-15 IMU 原始数据转换系数说明。

#### 4.3 配置查询

#### 4.3.1 AUTHORIZATION

输出当前板卡授权信息。仅支持单次输出。

#### 查询指令格式:

# LOG AUTHORIZATION ONCE

#### 查询结果示例:

AuthStr: 3745523D74C21D0DB7410D0B071AB2C8;

AuthMode: C1-8D;

Authorization: Permanent Licence;

InsEnable: FALSE;



DualAntEnable: TRUE;

RawOutEnable: TRUE;

AssistEnable: FALSE;

OdoEnable: FALSE;

MaxInsFreq: 125;

MaxRTKFreq: 5;

FrqMask: B1IB2IB1CB2AB2BL1L1CL2CL2PG1G2E1E5BE5A;

#### 查询结果说明:

|    | FrqMask: BTIB2IBTCB2AB2BLTLTCL2CL2PGTG2ETE5BE5A; |                                     |                              |  |  |  |  |  |
|----|--------------------------------------------------|-------------------------------------|------------------------------|--|--|--|--|--|
|    | NavSys:                                          | GPS GLONASS GALILEO BEIDOU QZSS;    |                              |  |  |  |  |  |
| 查询 | 查询结果说明:                                          |                                     |                              |  |  |  |  |  |
| ID | 示例                                               |                                     | 描述                           |  |  |  |  |  |
| 1  | AuthStr: 3745                                    | 523D74C21D0DB7410D0B071AB2C8;       | 授权码                          |  |  |  |  |  |
| 2  | AuthMode:                                        | C1-8D;                              | 授权板卡类型                       |  |  |  |  |  |
| 3  | Authorization                                    | Permanent Licence;                  | 授权有效期(GPS WEEK)              |  |  |  |  |  |
| 4  | InsEnable: F.                                    | ALSE;                               | INS 授权状态                     |  |  |  |  |  |
| 5  | DualAntEnabl                                     | e: TRUE;                            | 双天线授权状态                      |  |  |  |  |  |
| 6  | RawOutEnable                                     | e: TRUE;                            | 原始数据输出授权状态                   |  |  |  |  |  |
| 7  | AssistEnable:                                    | FALSE;                              | 组合导航辅助功能授权(自<br>检,杆臂测量,RBV等) |  |  |  |  |  |
| 8  | OdoEnable:                                       | FALSE;                              | 里程计轮速计功能授权                   |  |  |  |  |  |
| 9  | MaxInsFreq: 1                                    | 25;                                 | 最大 INS 结果输出频度                |  |  |  |  |  |
| 10 | MaxRTKFreq:                                      | 5;                                  | 最大 RTK 结果输出频度                |  |  |  |  |  |
| 11 | FrqMask:B1IB2                                    | 2IB1CB2AB2BL1L1CL2CL2PG1G2E1E5BE5A; | 接收频点授权                       |  |  |  |  |  |
| 12 | NavSys: GPS                                      | GLONASS GALILEO BEIDOU QZSS;        | 卫星系统授权                       |  |  |  |  |  |

#### **4.3.2 BYCHECK**

查询指令格式:



#### LOG BYCHECKA ONTIME 5

#### 查询结果示例:

#BYCHECKA,ICOM4,0,93.1,FINESTEERING,2218,441759.000,0000000000,0000,769;2960,2218,441759.000,1,1,1,0,1,1,1,1,1,1,0,1\*c97d0b4d

#### 查询结果说明:

| 字段 | 字段类型                  | 描述                                          | 二进制   | 二进制 | 二进制  |
|----|-----------------------|---------------------------------------------|-------|-----|------|
| 子权 | 子权关至                  | 油处                                          | 格式    | 字节  | 偏移   |
| 1  | BYCHECK header        | Log 消息标准格式标头,详见 2.<br>1.2.1 标准格式 ASCII 信息结构 | nav   | Н   | 0    |
| 2  | Runtime               | 接收机运行时间,单位 s                                | Int   | 4   | Н    |
| 3  | Week                  | GPS 周                                       | Int   | 4   | H+4  |
| 4  | SoW                   | 周内秒                                         | Float | 4   | H+8  |
| 5  | Dual Frequency        | 天线是否支持双频点*                                  | Int   | 4   | H+12 |
| 6  | Antenna Voltage       | 天线是否有馈电*                                    | Int   | 4   | H+16 |
| 7  | Glo Frequency Diff    | GLONASS 频间差是否校准*                            | Int   | 4   | H+20 |
| 8  | Work Frequency        | 工作频点是否匹配*                                   | Int   | 4   | H+24 |
| 9  | Base Station Position | 是否收到基准站坐标*                                  | Int   | 4   | H+38 |
| 10 | Base Antenna Block    | 基准站天线未受遮挡*                                  | Int   | 4   | H+32 |
| 11 | Diff Link             | 差分链路是否稳定*                                   | Int   | 4   | H+36 |
| 12 | Dual Base             | 未收到多基站数据*                                   | Int   | 4   | H+40 |
| 13 | Board Temperature     | 主板温度是否正常*                                   | Int   | 4   | H+44 |
| 14 | Rover Antenna Block   | 流动站天线未受遮挡*                                  | Int   | 4   | H+48 |
| 15 | Differential Data     | 是否接收到差分数据*                                  | Int   | 4   | H+52 |
| 16 | Base Position Error   | 基站坐标是否正常*                                   | Int   | 4   | H+56 |
| 17 | xxxx                  | 32-bitCRC 校验, 见表 4-6 32<br>位 CRC 校验算法代码 (C) | Hex   | 4   | H+60 |
| 18 | [CR][LF]              | 消息终结符(仅限 ASCII 格式)                          |       |     |      |



\*状态位: 0-否, 1-是, 2-状态不确定。

#### 4.3.3 BYCONFIG

输出当前时刻系统相关信息。

#### 查询指令格式:

#### LOG Port BYCONFIGA ONTIME 1

#### 查询结果示例:

#BYCONFIG,ICOM1,0,0.0,FINESTEERING,2105,565387.000,00000000,0000,64;1606.277,0A0 A473C44242E10B9EBEB718777B7A3,2105,55.412,rover\*f275111e

#### 查询结果说明:

| 字段 | 字段类型                  | 描述                                              | 二进制<br>格式    | 二进制<br>字节 | 二进制偏移 |
|----|-----------------------|-------------------------------------------------|--------------|-----------|-------|
| 1  | BYCONFIG header       | Log 消息标准格式标头,详见<br>2.1.2.1 标准格式 ASCII 信息<br>结构  | -            | H         | 0     |
| 2  | Runtime Seconds       | 系统运行时间                                          | Double       | 8         | Н     |
| 3  | DNA                   | 系统唯一序列号                                         | Uchar*<br>32 | 1*16      | H+8   |
| 4  | Authorization Gpsweek | 授权时间 GPS 周                                      | Ulong        | 4         | H+24  |
| 5  | Temperature           | 系统温度                                            | Double       | 8         | H+28  |
| 6  | Workmode              | 工作模式<br>(1: rover 2: base)                      | Ulong        | 4         | H+36  |
| 7  | xxxx                  | 32-bitCRC 校验, 见表 4-6 3<br>2 位 CRC 校验算法代码<br>(C) | Hex          | 4         | H+52  |
| 8  | [CR][LF]              | 消息终结符(仅限 ASCII 格式)                              |              |           |       |

#### 4.3.4 CCOMCONFIG

输出 CAN 通信接口配置。仅支持单次输出。

#### 查询指令格式:

LOG CCOMCONFIG ONCE



#### 查询结果示例:

| <b>'二木小</b> " | /y •  |       |        |   |    |         |          |  |
|---------------|-------|-------|--------|---|----|---------|----------|--|
| CCOM1         | NODE1 | J1939 | 126720 | 7 | FE | IN:NONE | OUT:NONE |  |
| CCOM2         | NONE  | NONE  | 0      | 0 | 0  | IN:NONE | OUT:NONE |  |
| ссомз         | NONE  | NONE  | 0      | 0 | 0  | IN:NONE | OUT:NONE |  |
| CCOM4         | NONE  | NONE  | 0      | 0 | 0  | IN:NONE | OUT:NONE |  |

#### 查询结果说明:

| ID | 示例       | 格式           | 描述                                                           |
|----|----------|--------------|--------------------------------------------------------------|
| 1  | CCOM1    | [PORT]       | 端口号,可为 CCOM1、CCOM2、CCOM3、CCOM4                               |
| 2  | NODE1    | [NODE]       | 节点名称                                                         |
| 3  | J1939    | [PROTOCOL]   | 协议名称                                                         |
| 4  | 126720   | [PGN]        | 参数组编号                                                        |
| 5  | 7        | [PRIORITY]   | 优先级                                                          |
| 6  | FE       | [ADDRESS]    | 地址                                                           |
| 7  | IN:NONE  | [IN:FORMAT]  | 输入协议类型,可为 RTCM、BYNAV、NONE、FPG<br>A、LOG、AUTO,详见 INTERFACEMODE |
| 8  | OUT:NONE | [OUT:FORMAT] | 输出协议类型,可为 RTCM、BYNAV、NONE、FPG<br>A、LOG、AUTO,详见 INTERFACEMODE |

#### 4.3.5 COMCONFIG

输出串口配置信息。仅支持单次输出。

#### 查询指令格式:

LOG COMCONFIG

#### 查询结果示例:

COM1 115200 N 8 1 IN:RTCM OUT:RTCM COM2 460800 N 8 1 IN:BYNAV OUT:BYNAV

COM3 115200 N 8 1 IN:AUTO OUT:AUTO

#### 查询结果说明:



| ID | 示例       | 格式         | 描述                                                       |
|----|----------|------------|----------------------------------------------------------|
| 1  | COM1     | Port       | 串口号,可为 COM1、COM2                                         |
| 2  | 115200   | Baudrate   | 波特率                                                      |
| 3  | N        | Parity     | 校验方式: 'N', 无校验, 'O', 奇校验, 'E', 偶校验                       |
| 4  | 8        | Databit    | 数据位,可为 7、8                                               |
| 5  | 1        | Stopbit    | 停止位,可为 1、2                                               |
| 6  | IN:RTCM  | IN:FORMAT  | 输入协议类型,可为 RTCM、BYNAV、NONE、FPGA、LOG、AUTO,详见 INTERFACEMODE |
| 7  | OUT:RTCM | OUT:FORMAT | 输出协议类型,可为 RTCM、BYNAV、NONE、FPGA、LOG、AUTO,详见 INTERFACEMODE |

#### 4.3.6 FLASHDNA

输出当前板卡唯一序列号。仅支持单次输出。

#### 查询指令格式:

# LOG FLASHDNA ONCE

#### 查询结果示例:

FlashDNA: 000000000EF6018D46888950B163E39;UniqueID: 000000000EF6018D4688 8950B163E39; 0

#### 查询结果说明:

| ID | 示例                                  | 格式                    | 描述                   |
|----|-------------------------------------|-----------------------|----------------------|
| 1  | FlashDNA                            | FlashDNA              | 序列号标识                |
| 2  | 000000000EF6018D46888950B163E3<br>9 | [FLASHDNA]            | 序列号                  |
| 3  | UniqueID                            | UniqueID              | ID 标识                |
| 4  | 000000000EF6018D46888950B163E3<br>9 | [UNIQUEID]            | ID                   |
| 5  | ° bynavite                          | [AUTH EXPIRATIO<br>N] | 授权到期标志: 0 未到期, 1 已到期 |



#### 4.3.7 FLASHDNAA

输出当前板卡唯一序列号。支持固定频率输出。(该语句暂无二进制格式输出)

#### 查询指令格式:

#### LOG FLASHDNAA ONTIME 1

#### 查询结果示例:

#FLASHDNAA,COM3,0,99.8,FINESTEERING,2146,110330.000,00000000000,754
;0000000000EF6018D469085293122F39,3130303133DD5120E459316193122F39
,0\*4c3b62b4

#### 查询结果说明:

| 字段 | 字段类型描述           |                                         |  |  |
|----|------------------|-----------------------------------------|--|--|
| 1  | FLASHDNAA header | Log 消息标准格式标头,详见 2.1.2.1 标准格式 ASCII 信息结构 |  |  |
| 2  | FLASHDNA         | FLASHDNA 序列号                            |  |  |
| 3  | UNIQUEID         | 板卡唯一 ID                                 |  |  |
| 4  | AuthState        | 授权状态 (0: 有效, 1: 过期)                     |  |  |
| 5  | xxx              | 32-bitCRC 校验,见表 4-6 32 位 CRC 校验算法代码 (C) |  |  |
| 6  | [CR][LF]         | 消息终结符(仅限 ASCII 格式)                      |  |  |
|    | 99               | עע                                      |  |  |

#### 4.3.8 ICOMCONFIG

显示当前以太网传输层/应用层配置。仅支持单次输出。

#### 查询指令格式:

LOG ICOMCONFIG ONCE

#### 查询结果示例:

ICOM1 TCP:1111 IN:AUTO OUT:AUTO

ICOM2 TCP: 2222 IN: AUTO OUT: AUTO

ICOM3 TCP:3333 IN: AUTO OUT: AUTO

ICOM4 TCP: 4444 IN: AUTO OUT: AUTO

| ID | 示例 | 格式 | 描述 |
|----|----|----|----|
|    |    |    |    |



| 1 | ICOM1         | Port       | 接口名称,可为 ICOM1、ICOM2、ICOM3、ICOM4                           |        |  |
|---|---------------|------------|-----------------------------------------------------------|--------|--|
| 2 |               | aVill'E    | DISABLE<br>D                                              | 关闭网络服务 |  |
| 3 | TCP           | Protocol   | ТСР                                                       | 使用 TCP |  |
| 4 |               |            | UDP                                                       | 使用 UDP |  |
| 5 | :1111         | Host:Port  | 主机:端口号,若主机字段为空,则设备作为服务器监听设置的端口号,若不为空则作为客户端,主动连接设置的地址      |        |  |
| 6 | IN: AUTO      | IN:FORMAT  | 输入协议类型,可为 RTCM、BYNAV、NONE、FPGA、LO G、AUTO,详见 INTERFACEMODE |        |  |
| 7 | OUT: AUT<br>O | OUT:FORMAT | 输出协议类型,可为 RTCM、BYNAV、NONE、FPGA、LO G、AUTO,详见 INTERFACEMODE |        |  |

#### 4.3.9 INSCONFIG\*

用于查询 INS 系统配置。简化格式仅支持单次输出。ASCII 格式支持固定频率输出。

#### 4.3.9.1 简化格式

#### 查询指令格式:

#### LOG INSCONFIG

#### 查询结果示例:

<INSCONFIG ICOM4 0 90.7 FINESTEERING 2131 450079.920 00000000 0000 741

- < IMU-3 0 10 0 LAND 0000021f AUTOMATIC ROVER FALSE 00000000 0 0
- < 0000000
- < 3
- < ANT1 VEHICLE 0.1000 -0.3800 0.1600 0.0500 0.0500 0.0500 FROM COMMAND
- < ANT2 VEHICLE 0.1000 0.3700 0.1600 0.0500 0.0500 0.0500 FROM\_COMMAND
- USER VEHICLE 0.1000 -0.3800 0.1600 0.0000 0.0000 0.0000 FROM\_COMMAND
- < 2
- < RBV IMUBODY 0.000000000 0.000000000 0.0500 0.0500 0.0500 FR OM\_COMMAND
- < USER IMUBODY 0.000000000 0.000000000 0.00000 0.0000 0.0000 F



| I   | ROM_NVM                                                                                                                                                                                                    |                                  |                                                                                                                 |  |  |  |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-----------------------------------------------------------------------------------------------------------------|--|--|--|
| 查询约 | 吉果说明:                                                                                                                                                                                                      | 10                               | - navita                                                                                                        |  |  |  |
| ID  | 示例                                                                                                                                                                                                         | 格式                               | 描述                                                                                                              |  |  |  |
| 1   | <insconfig 0="" 0000="" 00000000="" 20="" 2131="" 450079.9="" 741<="" 90.7="" finesteeri="" icom4="" ng="" td=""><td>INSCONFIG header</td><td>Log 消息标准格式标头,详见 2.1.2.1<br/>标准格式 ASCII 信息结构</td></insconfig> | INSCONFIG header                 | Log 消息标准格式标头,详见 2.1.2.1<br>标准格式 ASCII 信息结构                                                                      |  |  |  |
| 2   | IMU-3                                                                                                                                                                                                      | IMU Type                         | IMU 类型, 见表 4-16 IMU 类型说明                                                                                        |  |  |  |
| 3   | 0                                                                                                                                                                                                          | Mapping                          | 方向                                                                                                              |  |  |  |
| 4   | 10                                                                                                                                                                                                         | Initial Alignment<br>Velocity    | 用户设置的最小对准速度(单位: m/s,考虑速度精度原因,已将数值乘以10)                                                                          |  |  |  |
| 5   | 0                                                                                                                                                                                                          | Heave Window                     | 振动窗口(s)                                                                                                         |  |  |  |
| 6   | LAND                                                                                                                                                                                                       | Profile                          | 模型设置,见 SETINSPROFILE*                                                                                           |  |  |  |
| 7   | 0000021f                                                                                                                                                                                                   | Enabled Updates                  | 使能更新类型                                                                                                          |  |  |  |
| 8   | AUTOMATIC                                                                                                                                                                                                  | Alignment Mode                   | 系统对准模式,见表 4-17 系统对准模式说明                                                                                         |  |  |  |
| 9   | ROVER                                                                                                                                                                                                      | Relative INS<br>Output Frame     | 用户指定的相对 INS 向量坐标系, 见表4-18 用户指定的相对 INS 向量坐标系及方向说明                                                                |  |  |  |
| 10  | FALSE                                                                                                                                                                                                      | Relative INS<br>Output Direction | 用户指定的相对 INS 向量方向,见表4-18 用户指定的相对 INS 向量坐标系及方向说明                                                                  |  |  |  |
| 11  | 00000000                                                                                                                                                                                                   | INS Receiver Status              | INS 接收机状态:<br>首(低)字节-<br>按 INSResetEnum 重置 INS<br>第二字节-<br>=0x01, IMU 通信错误<br>=0x00, 正常<br>=其他, 保留<br>第三、四字节-保留 |  |  |  |
| 12  | 0                                                                                                                                                                                                          | Reserved                         | 预留                                                                                                              |  |  |  |
| 13  | 0                                                                                                                                                                                                          | Reserved                         | 预留                                                                                                              |  |  |  |
| 14  | 0                                                                                                                                                                                                          | Reserved                         | 预留                                                                                                              |  |  |  |
| 15  | 0                                                                                                                                                                                                          | Reserved                         | 预留                                                                                                              |  |  |  |



| 16 | 0            | Reserved                  | 预留                     |  |
|----|--------------|---------------------------|------------------------|--|
| 17 | 0            | Reserved                  | 预留                     |  |
| 18 | 0            | Reserved                  | 预留                     |  |
| 19 | 0            | Reserved                  | 预留                     |  |
| 20 | 0            | Reserved                  | 预留                     |  |
| 21 | 3            | Number of<br>Translations | 输入的转换数量                |  |
| 22 | ANT1         | Translation               | 转换类型, 见表 4-19 转换偏移类型说明 |  |
|    | - 11         |                           | 坐标系                    |  |
| 23 | VEHICLE      | Frame                     | (IMUBODY 或 VEHICLE)    |  |
| 24 | 0.1000       | X Offset                  | X 轴偏移(m)               |  |
| 25 | -0.3800      | Y Offset                  | Y轴偏移(m)                |  |
| 26 | 0.1600       | Z Offset                  | Z 轴偏移(m)               |  |
| 27 | 0.0500       | X Uncertainty             | X 轴的不确定性(m)            |  |
| 28 | 0.0500       | Y Uncertainty             | Y轴的不确定性(m)             |  |
| 29 | 0.0500       | Z Uncertainty             | Z 轴的不确定性 (m)           |  |
| 30 | FROM_COMMAND | Translation Source        | 转换来源,见表 4-10 数据来源状态说明  |  |
| 可变 | 2            | Number of Rotations       | 输入的旋转数量                |  |
| 可变 | RBV          | Rotation                  | 旋转类型, 见表 4-21 旋转偏移类型说明 |  |
| 可变 |              |                           | 坐标系                    |  |
|    | IMUBODY      | Frame                     | (IMUBODY 或 VEHICLE)    |  |
| 可变 | 0.000000000  | X Rotation                | X 轴旋转 (°)              |  |
| 可变 | 0.000000000  | Y Rotation                | Y 轴旋转 (°)              |  |
| 可变 | 0.000000000  | Z Rotation                | Z 轴旋转 (°)              |  |
| 可变 | 0.0500       | X Rotation Std Dev        | X 轴旋转参数标准差(°)          |  |
| 可变 | 0.0500       | Y Rotation Std Dev        | Y 轴旋转参数标准差 (°)         |  |
| 可变 | 0.0500       | Z Rotation Std Dev        | Z 轴旋转参数标准差 (°)         |  |
| 可变 | FROM_COMMAND | Rotation Source           | 旋转来源,见表 4-10 数据来源状态说明  |  |

## 4.3.9.2 ASCII 格式

# 查询指令格式:

LOG INSCONFIGA ONCE



#### 查询结果示例:

#INSCONFIGA,ICOM4,0,0.0,FINESTEERING,2107,34338.000,00000000,0000,68;X1-3,0,10,0,LAND\_BASIC,0000021f,AUTOMATIC,ROVER,FALSE,000000000,0,0,0,0,0,0,0,0,0,3,ANT1,VEHICLE,0.0140,-0.9800,0.2000,0.0010,0.0980,0.0200,FROM\_COMMAND,ANT2,VEHICLE,0.0140,0.9900,0.2000,0.0010,0.0990,0.0200,FROM\_COMMAND,USER,VEHICLE,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,

| 字段 | 字段类型                          | 描述                                                                                                           | 二进制格式  | 二进制字节   | 二进制偏移 |
|----|-------------------------------|--------------------------------------------------------------------------------------------------------------|--------|---------|-------|
| -  |                               | Log 消息标准格式标头,详见 2.                                                                                           |        |         | 0     |
| 1  | INSCONFIG header              | 1.2.1 标准格式 ASCII 信息结构                                                                                        | _      | H       | 0     |
| 2  | IMU Type                      | IMU 类型,见表 4-16 IMU 类型<br>说明                                                                                  | Enum   | 4       | Н     |
| 3  | Mapping                       | 方向                                                                                                           | Uchar  | 1       | H+4   |
| 4  |                               | 用户设置的最小对准速度<br>(单位:m/s)                                                                                      | Uchar  | 1 // lt | H+5   |
| 5  | Heave Window                  | 振动窗口(s)                                                                                                      | Ushort | 2       | H+6   |
| 6  | Profile                       | 模型设置, 见 3.3.4                                                                                                | Enum   | 4       | H+8   |
| 7  | Enabled Updates               | 使能更新类型                                                                                                       | Hex    | 4       | H+12  |
| 8  | Alianment Mode                | 系统对准模式, 见表 4-17 系统<br>对准模式说明                                                                                 | Enum   | 4       | H+16  |
| 9  | Relative INS Outpu<br>t Frame | 用户指定的相对 INS 向量坐标系,见表 4-18 用户指定的相对 INS 向量坐标系及方向说明                                                             | Enum   | 4       | H+20  |
| 10 | Relative INS Output Direction | 用户指定的相对 INS 向量方向,<br>见表 4-18 用户指定的相对 INS<br>向量坐标系及方向说明                                                       | Bool   | 4       | H+24  |
| 11 | INS Receiver Statu<br>s       | INS 接收机状态:<br>首(低)字节-<br>按 INSResetEnum 重置 INS<br>第二字节-<br>=0x01,IMU 通信错误<br>=0x00,正常<br>=其他,保留<br>第三、四字节-保留 | Hex    | 4       | H+28  |



| 12 | Reserved                   | 预留                         | Uchar | 1 | H+32     |
|----|----------------------------|----------------------------|-------|---|----------|
| 13 | Reserved                   | 预留                         | Uchar | 1 | H+33     |
| 14 | Reserved                   | 预留                         | N/A   | 2 | H+34     |
| 15 | Reserved                   | 预留                         | N/A   | 4 | H+36     |
| 16 | Reserved                   | 预留                         | N/A   | 4 | H+40     |
| 17 | Reserved                   | 预留                         | N/A   | 4 | H+44     |
| 18 | Reserved                   | 预留                         | N/A   | 4 | H+48     |
| 19 | Reserved                   | 预留                         | N/A   | 4 | H+52     |
| 20 | Reserved                   | 预留                         | N/A   | 4 | H+56     |
| 21 | Number of Transla<br>tions | 输入的转换数量                    | Ulong | 4 | H+60     |
| 22 | Translation                | 转换类型,见表 4-19 转换偏移<br>类型说明  | Enum  | 4 | variable |
| 23 | Frame                      | 坐标系<br>(IMUBODY 或 VEHICLE) | Enum  | 4 | variable |
| 24 | X Offset                   | X 轴偏移 (m)                  | Float | 4 | variable |
| 25 | Y Offset                   | Y轴偏移(m)                    | Float | 4 | variable |
| 26 | Z Offset                   | Z 轴偏移(m)                   | Float | 4 | variable |
| 27 | X<br>Uncertainty           | X 轴的不确定性(m)                | Float | 4 | variable |
| 28 | Y<br>Uncertainty           | Y 轴的不确定性(m)                | Float | 4 | variable |
| 29 | Z<br>Uncertainty           | Z 轴的不确定性(m)                | Float | 4 | variable |
| 30 | Translation Source         | 转换来源,见表 4-10 数据来源状<br>态说明  | Enum  | 4 | variable |
| 可变 | Number of Rotatio<br>ns    | 输入的旋转数量                    | Ulong | 4 | variable |
| 可变 | Rotation                   | 旋转类型,见表 4-21 旋转偏移<br>类型说明  | Enum  | 4 | variable |
| 可变 | Frame                      | 坐标系<br>(IMUBODY 或 VEHICLE) | Enum  | 4 | variable |
| 可变 | X Rotation                 | X 轴旋转 (°)                  | Float | 4 | variable |
| 可变 | Y Rotation                 | Y 轴旋转 (°)                  | Float | 4 | variable |
| 可变 | Z Rotation                 | Z 轴旋转 (°)                  | Float | 4 | variable |



| 可变 | X Rotation Std De<br>v | X 轴旋转参数标准差(°)                              | Float | 4 | variable |
|----|------------------------|--------------------------------------------|-------|---|----------|
| 可变 | Y Rotation Std De<br>v | Y 轴旋转参数标准差(°)                              | Float | 4 | variable |
| 可变 | Z Rotation Std De<br>v | Z 轴旋转参数标准差(°)                              | Float | 4 | variable |
| 可变 | Rotation Source        | 旋转来源,见表 4-10 数据来源状<br>态说明                  | Enum  | 4 | variable |
| 可变 | xxx                    | 32-bitCRC 校验,见表 4-6 32<br>位 CRC 校验算法代码 (C) | Hex   | 4 | variable |
| 可变 | [CR][LF]               | 消息终结符(仅限 ASCII 格式)                         | _     |   |          |

# 

| ASCII 值         | 二进制数值 | 描述                                       |
|-----------------|-------|------------------------------------------|
| UNAIDED         | 0     | 静态粗对准或动态对准方法可用。                          |
| AIDED_ TRANSFER | 2     | 使用双天线定向结果初始化方位角估计。                       |
| AUTOMATIC       | 3     | 根据双天线定向结果初始化姿态,执行常规静态粗对准或执行动态对准,以先可能的为准。 |
| STATIC          | 4     | 仅限静态粗对准方式                                |
| KINEMATIC       | 5     | 仅限动态粗对准方式                                |

#### 表 4-18 用户指定的相对 INS 向量坐标系及方向说明

| 分类        | ASCII 值    | 二进制数值 | 描述                       |
|-----------|------------|-------|--------------------------|
|           | ROVER      |       | ROVER-相对 ROVER 的 INS 坐标系 |
| 相对 INS 向量 | MASTER     | 2     | MASTER-相对基准站的 INS 坐标系    |
| 坐标系       | ECEF       | 3     | ECEF-地心地固坐标系             |
| 生物系       | ECEF       | 2     | <br> LOCALLEVEL-当地坐标系    |
|           | LOCALLEVEL | 4     | 默认设置为 ROVER              |
| 相对 INS 向量 | FALSE      | 0     | Rover 到 Master (默认)      |
| 方向        | TRUE       |       | Master 到 Rover           |

表 4-19 转换偏移类型说明

| ASCII 值 | 二进制数值 | 描述 |
|---------|-------|----|

电话: +86-731-85058117 www.bynav.com **113 / 154** 



| ANT1     | 1  | 从导航中心到主 GNSS 天线相位中心的偏移。                                                                               |
|----------|----|-------------------------------------------------------------------------------------------------------|
| ANT2     | 2  | 从导航中心到从 GNSS 天线相位中心的偏移。                                                                               |
| EXTERNAL | 3  | 从导航中心到外部位置源的偏移地点。这个偏移类型用于 EXTERNALPV<br>AS 命令(暂不支持)。                                                  |
| USER     | 4  | 从导航中心到用户输出的转换地点。这个偏移量移动 INSPVA、INSPOS、INSV<br>EL、INSATT 和 INSSPD 中的位置和速度信息,及其对应的短 header 格式和扩<br>展版本。 |
| MARK1    | 5  | 从导航中心到 MARK1 输出位置的平移。这个偏移量改变了 MARK1PVA(暂不<br>支持)中的位置和速度信息。                                            |
| MARK2    | 6  | 从导航中心到 MARK2 输出位置的平移。这个偏移量改变了 MARK2PVA(暂不<br>支持)中的位置和速度信息。                                            |
| GIMBAL   | 7  | 从导航中心到万向支架旋转中心的平移。                                                                                    |
| MARK3    | 9  | 从导航中心到 MARK3 输出位置的平移。这个偏移量改变了 MARK3PVA(暂不<br>支持)中的位置和速度信息。                                            |
| MARK4    | 10 | 从导航中心到 MARK4 输出位置的平移。这个偏移量改变了 MARK4PVA(暂不<br>支持)中的位置和速度信息。                                            |

表 4-20 坐标系说明

| ASCII 值   | 二进制数值           | 描述                   |  |  |  |  |
|-----------|-----------------|----------------------|--|--|--|--|
| IMUBODY   | 0               | 以整机/板卡坐标系为基准,以导航中心原点 |  |  |  |  |
| VEHICLE   | 1               | 以车体坐标系为基准,以导航中心原点    |  |  |  |  |
| bV        | 表 4-21 旋转偏移类型说明 |                      |  |  |  |  |
| ASCII 佶 - |                 | ±: <del>+</del>      |  |  |  |  |

| ASCII 值 | 二进制数值 | 描述                                                                                                      |  |
|---------|-------|---------------------------------------------------------------------------------------------------------|--|
| USER    | 4     | 从整机/板卡坐标系到用户输出坐标系的旋转。<br>这个偏移量会影响 INSPVA、INSPOS、INSVEL、INSATT 和 INSSPD 中<br>姿态信息,以及它们的短格式(header)和扩展版本。 |  |
| MARK1   | 5     | 从整机/板卡坐标系旋转到 MARK1 的所需输出。<br>此偏移旋转 MARK1PVA(暂不支持)中的姿态信息。                                                |  |

114 / 154 电话: +86-731-85058117 www.bynav.com



| MARK2 6 |    | 从整机/板卡坐标系旋转到 MARK2 的所需输出。<br>此偏移旋转 MARK2PVA(暂不支持)中的姿态信息。                                                              |
|---------|----|-----------------------------------------------------------------------------------------------------------------------|
| ALIGN   | 8  | 从整机/板卡坐标系旋转到校准双天线坐标系。<br>当使用带 SPAN 的双天线对准解决方案时,如果使用下一页的 SETINSTRAN<br>SLATION 命令提供了到主要和次要 GNSS 天线的平移偏移,则会自动计算此<br>偏移。 |
| MARK3 9 |    | 从整机/板卡坐标系旋转到 MARK3 的所需输出。<br>此偏移旋转 MARK3PVA(暂不支持)中的姿态信息。                                                              |
| MARK4   | 10 | 从整机/板卡坐标系旋转到 MARK4 的所需输出。<br>此偏移旋转 MARK4PVA(暂不支持)中的姿态信息。                                                              |
| RBV     | 11 | 从整机/板卡坐标系到车体坐标系的旋转。                                                                                                   |
| RBM     | 12 | 从整机/板卡坐标系旋转至万向节安装坐标系。                                                                                                 |

#### **4.3.10 IPCONFIG**

输出板卡网络配置。仅支持单次输出。

#### 查询指令格式:

LOG IPCONFIG ONCE

#### 查询结果示例:

IPCONFIG STATIC 192.168.8.130 255.255.0.0 192.168.1.9

| I<br>D | 示例            | 格式                | 描述                 |
|--------|---------------|-------------------|--------------------|
| 1      | IPCONFIG      | IPCONFIG          | IP 配置标识            |
| 2      | STATIC        | [AddressMod<br>e] | IP 类型: STATIC、DHCP |
| 3      | 192.168.8.130 | IPAddress         | IP 地址              |
| 4      | 255.255.0.0   | [NetMask]         | 子网掩码               |
| 5      | 192.168.1.9   | [GateWay]         | 网关                 |



#### **4.3.11 IPSTATUS**

该语句提供了 IP 地址、子网掩码、网关和 DNS 服务器的配置信息。仅支持单次输出。

#### 查询指令格式:

LOG Port IPSTATUSA ONCE

#### 查询结果示例:

#IPSTATUSA,ICOM4,0,0.0,FINESTEERING,2106,444455.800,00000000,0000,68;1,ETHA,"192. 168.8.130","255.255.0.0","192.168.1.9",0\*f276973e

#### 查询结果说明:

| 字段 | 字段类型                | 描述                                          | 二进制格式      | 二进制字节      | 二进制偏移                                       |
|----|---------------------|---------------------------------------------|------------|------------|---------------------------------------------|
| 1  | IPSTATUS he<br>ader | Log 消息标准格式标头,详见 2.<br>1.2.1 标准格式 ASCII 信息结构 | -          | H          | 0                                           |
| 2  | #IPRec              | 以太网端口序号                                     | Ulong      | 4          | Н                                           |
| 3  | Interface           | 以太网端口名称                                     | Enum       | 4          | H+4                                         |
| 4  | IP Address          | IP 地址                                       | String[16] | variable 1 | H+8                                         |
| 5  | Netmask             | 子网掩码                                        | String[16] | variable 1 | H+24                                        |
| 6  | Gateway             | 网关                                          | String[16] | variable 1 | H+40                                        |
| 7  | #DNSServer          | DNS 服务器序号                                   | Ulong      | 4          | H+4+(#IPRec×52)                             |
| 8  | IP Address          | DNS 服务器 IP 地址                               | String[16] | variable 1 | H+4+(#IPRec×52)+4                           |
| 9  | xxx                 | 32-bitCRC 校验,见表 4-6 32<br>位 CRC 校验算法代码 (C)  | Hex        |            | H+4+(#IPRec×52) +<br>4+(# DNSServer×1<br>6) |
| 10 | [CR][LF]            | 消息终结符(仅限 ASCII 格式)                          | _          | -          | - 114-75                                    |

#### **4.3.12 LOGLIST**

此语句列出当前正在输出消息的所有端口,及其正在输出的消息,输出到每个端口以及何时记录。仅支持单次输出。

#### 4.3.12.1 简化格式

#### 查询指令格式:

LOG LOGLIST

#### 查询结果示例:



<LOGLIST ICOM4 0 100.0 FINESTEERING 2144 7251.000 00000000 0000 754</p>

- <
- COM2 RTCM1074 ONTIME 1.000000 0.000000 NOHOLD

  COM2 RTCM1084 ONTIME
- <
- COM2 RTCM1094 ONTIME 1.000000 0.000000 NOHOLD <
- COM2 RTCM1114 ONTIME 1.000000 0.000000 NOHOLD <
- COM2 RTCM1124 ONTIME 1.000000 0.000000 NOHOLD <
- <
- COM2 RTCM1033 ONTIME 10.000000 0.000000 NOHOLD

  COM3 GPGGA ONTIME 1.22 <
- <
- ICOM1 GPGGA ONTIME 1.000000 0.000000 NOHOLD <
- ICOM4 BESTPOSA ONTIME 1.000000 0.000000 NOHOLD <
- ICOM4 HEADINGA ONTIME 1.000000 0.000000 NOHOLD <
- CCOM1 BESTPOSA ONTIME 1.000000 0.000000 NOHOLD

|     | TESTIT TIETETICAL SITTILE TISSUOSS SISSUOSS TISTISEE       |                |                              |  |  |  |  |
|-----|------------------------------------------------------------|----------------|------------------------------|--|--|--|--|
| <   | CCOM1 BESTPOSA ONTIME 1.000000 0.000000 NOHOLD             |                |                              |  |  |  |  |
| 查询结 | 查询结果说明:                                                    |                |                              |  |  |  |  |
| ID  | 示例                                                         | 格式             | 描述                           |  |  |  |  |
|     | <loglist 0<="" icom4="" td=""><td></td><td></td></loglist> |                |                              |  |  |  |  |
|     | 100.0 FINESTEERIN                                          |                | Log 消息标准格式标头,详见 2.1.2.1 标准格式 |  |  |  |  |
| 1   | G 2144 7251.000 0                                          | LOGLIST header | ASCII 信息结构                   |  |  |  |  |
|     | 0000000 0000 754                                           |                |                              |  |  |  |  |
| 2   | 12                                                         | # logs         | 消息个数,最大80                    |  |  |  |  |
| 3   | COM2                                                       | port           | 输出端口, 见表 1-7 详细端口标识符说明       |  |  |  |  |
| 4   | RTCM1074                                                   | message        | 消息名称                         |  |  |  |  |
|     |                                                            |                | 0 = ONNEW                    |  |  |  |  |
|     |                                                            |                | 1 = ONCHANGED                |  |  |  |  |
|     |                                                            |                | 2 = ONTIME                   |  |  |  |  |
| 5   | ONTIME                                                     | trigger        | 3 = ONNEXT                   |  |  |  |  |
|     |                                                            |                | 4 = ONCE                     |  |  |  |  |
|     |                                                            | 173            | 5 = ONMARK                   |  |  |  |  |
|     |                                                            |                | 详见 3.1.11                    |  |  |  |  |
| 6   | 1.000000                                                   | period         | 输出周期 (ONTIME 下可用)            |  |  |  |  |



| 7 | 0.000000 | offset | 时间偏移 (ONTIME 下可用) |  |
|---|----------|--------|-------------------|--|
|   |          | -75    | 0 = NOHOLD        |  |
| 8 | NOHOLD   | hold   | 1 = HOLD          |  |
|   |          |        | 详见 3.1.11         |  |
| 9 | 下一条消息    |        |                   |  |

#### 4.3.12.2 ASCII 格式

#### 查询指令格式:

#### LOG LOGLISTA ONCE

#### 查询结果示例:

#LOGLISTA,COM3,0,100.0,COARSE,2143,455743.800,00000000,0000,754;10,COM2,RTCM10 74,ONTIME,1.000000,0.000000,NOHOLD,COM2,RTCM1084,ONTIME,1.000000,0.000000,NOH OLD,COM2,RTCM1094,ONTIME,1.000000,0.000000,NOHOLD,COM2,RTCM1114,ONTIME,1.000 000,0.000000,NOHOLD,COM2,RTCM1124,ONTIME,1.000000,0.000000,NOHOLD,COM2,RTCM 1006,ONTIME,5.000000,0.000000,NOHOLD,COM2,RTCM1033,ONTIME,10.000000,0.000000, NOHOLD,COM2,GPGGA,ONTIME,1.000000,NOHOLD,ICOM1,GPGGA,ONTIME,1.0000 00,0.000000,NOHOLD,CCOM1,INSCAN10,ONTIME,1.000000,0.000000,NOHOLD\*e618828c

| 字段 | 字段类型           | 描述                             | 格式       |
|----|----------------|--------------------------------|----------|
|    |                | Log 消息标准格式标头,详见 2.1.2.1 标准格式 A |          |
| 1  | LOGLIST header | SCII 信息结构                      | -        |
| 2  | # logs         | 消息个数,最大 80                     | long     |
| 3  | port           | 输出端口, 见表 1-7 详细端口标识符说明         | Enum     |
| 4  | message        | 消息名称                           | Char [ ] |
|    | DVII           | 0 = ONNEW                      |          |
|    |                | 1 = ONCHANGED                  |          |
|    |                | 2 = ONTIME                     |          |
| 5  | trigger        | 3 = ONNEXT                     | Enum     |
|    |                | 4 = ONCE                       |          |
|    |                | 5 = ONMARK                     |          |
|    |                | 详见 3.1.11                      | 45       |
| 6  | period         | 输出周期 (ONTIME 下可用)              | double   |
| 7  | offset         | 时间偏移 (ONTIME 下可用)              | double   |



|      |          | 0 = NOHOLD                        |      |
|------|----------|-----------------------------------|------|
| 8    | hold     | 1 = HOLD                          | Enum |
|      | wnay.    | 详见 3.1.11                         |      |
| 9    | 下一条消息    | <u> </u>                          |      |
| न के | XXX      | 32-bitCRC 校验, 见表 4-6 32 位 CRC 校验算 | Hey  |
| 可变   |          | 法代码(C)                            | Hex  |
| 可变   | [CR][LF] | 消息终结符(仅限 ASCII 格式)                | _    |

# 4.3.12.3 二进制格式

#### 查询指令格式:

# LOG LOGLISTB ONCE

| 字段 | 字段类型             | 描述                                                                | 二进制格式  | 二进制字节            | 二进制偏移 |
|----|------------------|-------------------------------------------------------------------|--------|------------------|-------|
| 1  | LOGLIST hea      | Log 消息标准格式标头,详见表 1-6 二进<br>制格式信息标准格式标头(Header)结构说<br>明            |        | H<br>1F          | 0     |
| 2  | # logs           | 消息个数,最大 80                                                        | Ulong  | 4                | Н     |
| 3  | port             | 输出端口, 见表 1-7 详细端口标识符说明                                            | Enum   | 4                | H+4   |
| 4  | message          | 消息 ID                                                             | Ushort | 2                | H+8   |
| 5  | message typ<br>e | 11 = 保留 Bit 7 = 响应标志位 0 = 原始发消息 1 = 响应消息                          | Char   | aV <sup>jC</sup> | H+10  |
| 6  | Reserved         | 保留                                                                | Char   | 1                | H+11  |
| 7  | trigger          | 0 = ONNEW 1 = ONCHANGED 2 = ONTIME 3 = ONNEXT 4 = ONCE 5 = ONMARK | Enum   | 4<br>3VJE        | H+12  |



|      |          | 详见 3.1.11                                 |        |     |                       |
|------|----------|-------------------------------------------|--------|-----|-----------------------|
| 8    | period   | 输出周期 (ONTIME 下可用)                         | double | 8   | H+16                  |
| 9    | offset   | 时间偏移 (ONTIME 下可用)                         | double | 8   | H+24                  |
|      |          | 0 = NOHOLD                                |        |     |                       |
| 10   | hold     | 1 = HOLD<br>详见 3.1.11                     | Enum   | 4   | H+32                  |
| 11   | 下一条消息,   | 偏移量= H + 4 + (#logs x 32)                 |        |     |                       |
| 可变   | xxx      | 32-bitCRC 校验,见表 4-6 32 位 CRC<br>校验算法代码(C) | Hex    | 4   | H+4+ (#lo<br>gs x 32) |
| 4.3. | 13 NMEAT | ALKER                                     | byn    | 342 |                       |

#### 4.3.13 NMEATALKER

输出 NMEA 帧头。

#### 查询指令格式:

LOG NMEATALKER ONCE bynavitz

#### 查询结果示例:

NMEATALKER GP

#### 查询结果说明:

| I<br>D | 示例                 | 格式         | 描述          |  |  |  |  |
|--------|--------------------|------------|-------------|--|--|--|--|
| 1      | NMEATALKER         | NMEATALKER | NMEA 帧头配置标识 |  |  |  |  |
| 2      | GP                 | [HEADER]   | NMEA 帧头     |  |  |  |  |
| 4.3    | 4.3.14 NTRIPCONFIG |            |             |  |  |  |  |

#### 4.3.14 NTRIPCONFIG

输出 NTRIP 配置信息

#### 查询指令格式:

LOG NTRIPCONFIG ONCE

#### 查询结果示例:

NCOM1 CLIENT v1 192.168.1.88:8888 NTRIP BYNAV BYNAV IN:RTCM OUT:RTCM



NCOM2 DISABLED v1 IN:NONE OUT:NONE

#### 查询结果说明:

| I<br>D         | 示例                | 格式                | 描述                    |
|----------------|-------------------|-------------------|-----------------------|
| 1              | NCOM1             | PORT              | NTRIP 端口(NCOM1/NCOM2) |
| 2              | CLIENT            | DISABLED          | NTRIP 连接类型            |
|                | 22.2.             | CLIENT            |                       |
| 3              | V1                | PROTOCOL          | NTRIP 协议类型(V1/V2)     |
| 4              | 192.168.1.88:8888 | ENDPOINT          | NTRIP 连接 IP 及端口号      |
| 5              | NTRIP             | MOUNTPOINT        | NTRIP 连接挂载点           |
| 6              | BYNAV             | USER NAME         | 用户名                   |
| 7              | BYNAV             | PASSWORD          | 密码                    |
| 8              | ALL               | BINDINTERFAC<br>E | 绑定端口,固定为 ALL          |
| 4.3.15 PJKPARA |                   |                   |                       |

## **4.3.15 PJKPARA**

查询 PJK 投影参数。

#### 查询指令格式:

LOG PJKPARA

#### 查询结果示例:

PJK Paramter A:6378137.00; 1/F:298.257222101; B0:0.000000; L0:0.000000; N0:0.000; E0:500000.000; SCALE:1.000000; HEIGHTMODE:EHT;

| ID | 示例           | 格式           | 描述            |
|----|--------------|--------------|---------------|
| 1  | PJK Paramter | PJK Paramter | 查询 PJK 投影参数标识 |
| 2  | А            | А            | 椭球长半轴标识符      |



| 3  | 6378245.00    | X.X        | 椭球长半轴,单位: m        |
|----|---------------|------------|--------------------|
| 4  | 1/F           | 1/F        | 扁率倒数标识符            |
| 5  | 298.357222101 |            | 扁率倒数               |
| 6  | В0            | В0         | 原点纬度标识符            |
| 7  | 0.000000      | x.xxx      | 原点纬度,单位:度          |
| 8  | LO            | LO         | 中央子午线标识符           |
| 9  | 0.000000      | x.xxx      | 中央子午线,单位:度         |
| 10 | NO            | NO NO      | 北偏移标识符             |
| 11 | 0.000         | X.X        | 北偏移, 单位: m         |
| 12 | E0            | E0         | 东偏移标识符             |
| 13 | 500000.000    | x.x        | 东偏移,单位: m          |
| 14 | SCALE         | SCALE      | 比例因子标识符            |
| 15 | 1.000000      | x.x        | 比例因子               |
| 16 | HEIGHTMODE    | HEIGHTMODE | PJK 高程             |
| 17 | ÉHT           | XXX        | EHT: 椭球高; GHT: 海拔高 |

#### 4.3.16 REFSTATION/ REFSTATIONINFO

输出当前基站坐标,不带频度控制参数输出纬经高坐标,带频度控制参数则输出 ECEF坐标。

#### 查询指令格式:

LOG REFSTATION

LOG REFSTATIONINFO

LOG REFSTATION ONCE

LOG REFSTATIONINFO ONCE

#### 查询结果示例:

RefStation: 28.23243023 112.87494990 69.696

RefStation: -2186028.842 5181373.595 2999256.821



#### 查询结果说明:

| I<br>D | 示例                        | 格式         | 描述                     |
|--------|---------------------------|------------|------------------------|
| 1      | RefStation                | RefStation | 基站坐标标识                 |
| 2      | 28.23243023/ -2186028.842 | [B/X]      | BLH 坐标系经度/地心地固坐标系<br>X |
| 3      | 112.87494990/5181373.595  | [L/Y]      | BLH 坐标系纬度/地心地固坐标系<br>Y |
| 4      | 69.696/2999256.821        | [H/Z]      | BLH 坐标系高程/地心地固坐标系<br>Z |

#### 4.3.17 REFSTATIONA

该语句提供基准站坐标信息输出。(该语句暂无二进制格式输出)

#### 查询指令格式:

bynavitz LOG REFSTATIONA ONCE

#### 查询结果示例:

#REFSTATIONA,ICOM4,0,81.9,FINESTEERING,2129,440707.400,00000000,0000,742;0.000,0. 000,0.000\*f40f1626

#### 查询结果说明:

| 字段 | 字段类型                               | 描述                        | 二进制格式  | 二进制字节 | 二进制偏移 |  |  |
|----|------------------------------------|---------------------------|--------|-------|-------|--|--|
| 1  | REFSTATIONA hea                    | Log 消息标准格式标头,详见 2.1.      |        |       |       |  |  |
| l  | der                                | 2.1 标准格式 ASCII 信息结构       |        | Н     | U     |  |  |
| 2  | X                                  | 基站坐标(ECEF)                | Double | 4     | Н     |  |  |
| 3  | Υ                                  | 基站坐标(ECEF)                | Double | 4     | H+4   |  |  |
| 4  | Z                                  | 基站坐标(ECEF)                | Double | 4     | H+8   |  |  |
| _  | XXX                                | 32-bitCRC 校验, 见表 4-6 32 位 | Hex    | 4     | H+12  |  |  |
| 5  |                                    | CRC 校验算法代码(C)             |        |       |       |  |  |
| 6  | [CR][LF]                           | 消息终结符(仅限 ASCII 格式)        | _      | -     | -     |  |  |
|    | 4.3.18 RTKCONFIG<br>输出接收机 RTK 相关配置 |                           |        |       |       |  |  |

#### 4.3.18 RTKCONFIG



#### 查询指令格式:

# LOG RTKCONFIG ONCE

#### 查询结果示例:

RTK Type: ROVER

DualAnt: TRUE

OBS Intr: 0.20

FPGARaw Freq: 0.20

RTK Freq: B1IB2IL1L2CL2PG1G2

Elev Mask: 5.0 deg

Snr Mask: 20.0

NAVSYS: GPS GLONASS GALILEO BEIDOU QZSS IRNSS

#### 查询结果说明:

| I<br>D | 示例                                           | 格式           | 描述                     |
|--------|----------------------------------------------|--------------|------------------------|
| 1      | RTK Type: ROVER                              | RTK Type     | 接收机工作模式                |
| 2      | DualAnt: TRUE                                | DualAnt      | 双天线使能,TRUE 使能,FALSE 禁用 |
| 3      | OBS Intr:0.20                                | OBS Intr     | 观测量频度                  |
| 4      | FPGARaw Freq:0.20                            | FPGARaw Freq | 原属数据输出频度               |
| 5      | RTK Freq:B1IB2IL1L2CL2PG1G2                  | RTK Freq     | 跟踪卫星频点                 |
| 6      | Elev Mask:5.0 deg                            | Elev Mask    | 仰角门限                   |
| 7      | Snr Mask:20.0                                | Snr Mask     | 载噪比门限                  |
| 8      | NAVSYS:GPS GLONASS GALILEO BEIDOU QZSS IRNSS | NAVSYS       | 跟踪卫星系统                 |

#### **4.3.19 SHIFTDATUM**

输出坐标系平移参数 X, Y, Z

#### 查询指令格式:



# LOG SHIFTDATUM ONCE 0.000

#### 查询结果示例:

ShiftDatum: 0.000 0.000 0.000

#### 查询结果说明:

| I<br>D | 示例         | 格式         | 描述           |
|--------|------------|------------|--------------|
| 1      | ShiftDatum | ShiftDatum | 输出坐标系平移参数    |
| 2      | 0.000      | Х          | X 坐标平移(ECEF) |
| 3      | 0.000      | Y          | Y 坐标平移(ECEF) |
| 4      | 0.000      | Z          | Z 坐标平移(ECEF) |

#### **4.3.20 VERSION**

输出版本信息。

#### 查询指令格式:

LOG VERSION

#### 查询结果示例:

\$BDVER,V7.54\_0EC870\_T,19060377,21010633,21010525,21010643,20122624,20101504,20 073004,20122406\*71

| ID | 示例             | 格式           | 描述       |
|----|----------------|--------------|----------|
| 1  | \$BDVER        | \$VER        | 数据 ID    |
| 2  | V7.54_0EC870_T | ax.xx_hhhhhh | 固件版本号    |
| 3  | 19060377       | hhhhhhhh     | FPGA 版本号 |
| 4  | 21010633       | hhhhhhhh     | ARM 版本号  |
| 5  | 21010525       | hhhhhhhh     | PB 版本号   |
| 6  | 21010643       | hhhhhhhh     | 解算库版本号   |



| 7  | 20122624 | hhhhhhhh | 内核版本号       |
|----|----------|----------|-------------|
| 8  | 20101504 | hhhhhhhh | Web 服务器版本号  |
| 9  | 20073004 | hhhhhhhh | Web 界面版本号   |
| 10 | 20122406 | hhhhhhhh | Bootrom 版本号 |
| 11 | *71      | *hh      | 校验          |

# 4.4 其他格式消息

#### 4.4.1 ENU

输出不同滤波条件下,流动站相对于基准站的东向、北向、天向距离。

#### 推荐

#### LOG GPENU ONTIME 1

#### ASCII 示例

\$GPENU,120446.00,-1301.1411,-42.4221,10.2936,1,-1301.1396,-42.4226,10.2876,1,-1301.139 6,-42.4226,10.2876,0,-1301.1396,-42.4226,10.2876,0,-1301.1396,-42.4226,10.2876,0,-1301.1 396,-42.4226,10.2876,0,4,24,1.000\*47

#### 说明

| ID | 示例         | 格式        | 描述                  |
|----|------------|-----------|---------------------|
| 0  | \$GPENU    | \$ENU     | 数据 ID               |
| 1  | 120446.00  | hhmmss.ss | UTC 时间              |
| 2  | -1301.1411 | x.x       | De 东向距离,单位: m, 见注释① |
| 3  | -42.4221   | x.x       | Dn 北向距离,单位: m, 见注释② |
| 4  | 10.2936    | x.x       | Du 天向距离,单位: m, 见注释③ |
| 5  | 1          | a         | 滤波次数指示,1s 滤波输出      |
|    |            | G         | 滤波窗: 1, 见注释④        |
| 6  | -1301.1396 | x.x       | De 东向距离,单位: m       |
| 7  | -42.4226   | x.x       | Dn 北向距离,单位: m       |
| 8  | 10.2876    | x.x       | Du 天向距离,单位: m       |



| 9    | 1           |            | 滤波次数指示,1min 滤波输出   |
|------|-------------|------------|--------------------|
|      | av/It       | a          | 滤波窗: 60            |
| 10   | -1301.1396  | x.x        | De 东向距离,单位: m      |
| 11   | -42.4226    | x.x        | Dn 北向距离,单位: m      |
| 12   | 10.2876     | x.x        | Du 天向距离,单位: m      |
| 13   | 0           | a          | 滤波次数指示, 15min 滤波输出 |
|      | Ü           | a          | 滤波窗: 900           |
| 14   | -1301.1396  | X.X        | De 东向距离,单位: m      |
| 15   | -42.4226    | x.x        | Dn 北向距离,单位: m      |
| 16   | 10.2876     | x.x        | Du 天向距离,单位: m      |
| 17   | 0           | a          | 滤波次数指示, 1h 滤波输出    |
|      | U           | a          | 滤波窗: 3600          |
| 18   | -1301.1396  | x.x        | De 东向距离,单位: m      |
| 19   | -42.4226    | x.x        | Dn 北向距离,单位: m      |
| 20   | 10.2876     | x.x        | Du 天向距离,单位: m      |
| 21   | 0           | a          | 滤波次数指示,12h 滤波输出    |
|      | G .         | u<br>L     | 滤波窗: 43200         |
| 22   | -1301.1396  | x.x        | De 东向距离,单位: m      |
| 23   | -42.4226    | x.x        | Dn 北向距离,单位: m      |
| 24   | 10.2876     | x.x        | Du 天向距离,单位: m      |
| 25   | WILCO       | a          | 滤波次数指示, 24h 滤波输出   |
|      | C           | a a        | 滤波窗: 86400         |
| 26   | 4           | а          | 定位状态,见注释⑤          |
| 27   | 24          | xx         | 参与解算的卫星数           |
| 28   | 1.000       | x.x        | 差分龄期               |
| 29   | *47         | *hh        | 校验和                |
| 注释①: | 即流动站相对于基准站的 | ·<br>东向距离。 | byna               |
|      |             |            |                    |



注释②: 即流动站相对于基准站的北向距离。

注释③: 即流动站相对于基准站的天向距离。

注释④: 1表示滤波次数达到了设置的滤波窗口大小, 0表示滤波次数未达到设置的滤波窗口大小。

注释⑤: 0-未定位; 1-单点解; 4-固定解; 5-浮点解。

#### 4.4.2 **ENUAVR\***

主从天线在当地导航系中的位置均值,以及整机系在当地导航系中的姿态,主要用于杆 aynavitz 臂值计算。

#### 推荐

#### LOG ENUAVR ONTIME 1

#### ASCII 示例

#ENUAVR,COM1,0,0.0,FINESTEERING,2095,127522.000,00000000,0000,25;-1075.1430,-98.46 08,-8.6259,-1075.1430,-98.4610,-8.6258,-3.1407,-0.0016,58\*2865555d

#### 说明

| ID | 示例                     | 格式            | 描述                     |
|----|------------------------|---------------|------------------------|
|    | #ENUAVR,COM1,0,0.0,FIN |               | Log 消息标准格式标头,详见        |
| 0  | ESTEERING,2095,127522. | ENUAVR header | 2.1.2.1 标准格式 ASCII 信息结 |
|    | 000,00000000,0000,25;  |               | 构                      |
| 1  | 1075.1430              | ANT1 East     | 天线 1 东向位置 (m)          |
| 2  | -98.4608               | ANT1 North    | 天线 1 北向位置 (m)          |
| 3  | -8.6259                | ANT1 Up       | 天线 1 天向位置 (m)          |
| 4  | -1075.1430             | ANT2 East     | 天线 2 东向位置(m)           |
| 5  | -98.4610               | ANT2 North    | 天线 2 北向位置 (m)          |
| 6  | -8.6258                | ANT2 Up       | 天线 2 天向位置(m)           |
| 7  | -3.1407                | Roll          | 横滚角(0~360°)            |
| 8  | -0.0016                | Pitch         | 俯仰角(-90~90°)           |



| 9  | 58       | Count    | 计数                                          |
|----|----------|----------|---------------------------------------------|
| 10 | 2865555d | xxx      | 32-bitCRC 校验, 见表 4-6 3<br>2 位 CRC 校验算法代码(C) |
| 11 |          | [CR][LF] | 消息终结符(仅限 ASCII 格式)                          |

#### 4.4.3 KSXT

时间、定位定向、速度数据。 bynavitz

#### 推荐

# LOG KSXT ONTIME 1

#### ASCII 示例

\$KSXT,20191219093115.00,112.87713062,28.23315515,65.5618,0.00,0.00,336.65,0.010,,3,0, 0,23,-1075.146,-98.462,-8.618,-0.004,0.009,0.004,1.0,30,\*3FCF0C9B

#### 说明

| ID | 示例                | 格式                | 说明                                                                   |
|----|-------------------|-------------------|----------------------------------------------------------------------|
| 1  | \$KSXT            | \$KSXT            | 消息头                                                                  |
| 2  | 20191219093115.00 | yyyymmddhhmmss.ss | UTC 时间,如 2016040106284180<br>表示 2016年4月1日06时28分<br>41.80秒            |
| 3  | 112.87713062      | x.x               | 经度,小数点后8位,单位:度                                                       |
| 4  | 28.23315515       | x.x               | 纬度,小数点后8位,单位:度                                                       |
| 5  | 65.5618           | x.x               | 高度,小数点后4位,单位:米                                                       |
| 6  | 0.00              | x.x               | 方位角,两个天线的连线与正北方<br>向夹角(天线 1 定位,天线 2 辅助<br>定向),范围 0°~360°,小数点后<br>2 位 |
| 7  | 0.00              | x.x               | 俯仰角,范围-90°~90°,小数点后<br>2位                                            |
| 8  | 336.65            | x.x               | 速度角,车辆行进方向与正北方向                                                      |



|    |           |           | 夹角,0°~360°,小数点后2位                           |
|----|-----------|-----------|---------------------------------------------|
| 9  | 0.010     | x.x       | 速度,车辆行进方向速度,小数点<br>后 3 位,单位: km/h           |
| 10 | 28        | x.x       | 横滚角,范围-90°~90°,小数点后<br>2位                   |
| 11 | 3         | Х         | 卫星定位状态,详见注释①                                |
| 12 | 0         | Х         | 卫星定向状态,详见注释②                                |
| 13 | 0         | xx        | 定向天线当前参与解算的卫星数量                             |
| 14 | 23        | xx        | 定位天线当前参与解算的卫星数量                             |
| 15 | -1075.146 | x.x       | 东向位置坐标,以基站为原点的地理坐标系下的东向位置,单位为m,小数点后3位(如无为空) |
| 16 | -98.462   | x.x       | 北向位置坐标,以基站为原点的地理坐标系下的北向位置,单位为m,小数点后3位(如无为空) |
| 17 | -8.618    | x.x       | 天向位置坐标,以基站为原点的地理坐标系下的天向位置,单位为m,小数点后3位(如无为空) |
| 18 | -0.004    | x.x       | 东向速度,地理坐标系下的东向速度,小数点后 3 位,单位: km/h (如无为空)   |
| 19 | 0.009     | x.x       | 北向速度,地理坐标系下的北向速度,小数点后3位,单位:km/h(如无为空)       |
| 20 | 0.004     | x.x       | 天向速度,地理坐标系下的天向速度,小数点后 3 位,单位: km/h (如无为空)   |
| 21 | 1.0       | X.X       | 差分龄期                                        |
| 22 | 30        | xx        | 基准站卫星数                                      |
| 23 | (空)       |           | 预留                                          |
| 24 | *3FCF0C9B | *hhhhhhhh | 校验位,异或校验,十六进制字符                             |



|  | 串,从帧头开始校验 |
|--|-----------|
|--|-----------|

注释①: 0表示未定位,1表示单点定位,2表示RTK浮点解,3表示RTK固定解。

注释②: 0表示未定向, 1表示单点定向, 2表示 RTK 浮点解, 3表示 RTK 固定解。

#### 4.5 RTCM 格式消息

#### 4.5.1 RTCM 数据

RTCM 是一种普遍采用的数据传输格式,它是由国际海运事业无线电技术委员会提出 的,用于制定在差分全球导航定位系统和实时动态操作时使用的标准。

#### 4.5.2 RTCM 数据帧结构

RTCM 数据以帧的形式的传输, RTCM3.2 标准格式的帧结构如下表:

| 序号 | 数据内容                  | 比特数/bit | 备注                     |  |  |
|----|-----------------------|---------|------------------------|--|--|
| 1  | 同步码                   | 8       | 设为'11010011',十六进制为'D3' |  |  |
| 2  | 保留                    | 6       | 设为'000000'             |  |  |
| 3  | 信息长度                  | 10      | 数据信息的长度,以字节数表示         |  |  |
| 4  | 数据信息                  | 不定      | 最大 1023bytes,若不是整数字节,最 |  |  |
|    | 4       数据信息       不定 |         |                        |  |  |
| 5  | CRC                   | 24      | 校验                     |  |  |

因而每帧 RTCM 数据的数据头固定为'1101 0011 0000 00', 十六进制显示为'D3 0 bynavitz

# 4.5.3 北云设备支持 RTCM 消息类型介绍

#### 4.5.3.1 基准站支持 RTCM 消息类型

北云基准站可输出的 RTCM 消息如下:

RTCM1003, GPS L1 和 L2 代码和相位

ynavitā RTCM1004, GPS L1 和 L2 码,相位和模糊度以及载波噪声比

RTCM1005,天线参考点的站坐标 XYZ



RTCM1006, 天线参考点和天线高度的站坐标 XYZ

RTCM1011, GLONASS L1 和 L2 代码和相位

RTCM1012, GLONASS L1 和 L2 码, 相位和模糊度以及载波噪声比

RTCM1074,全 GPS 伪距和载波相位加信号强度

RTCM1075,全 GPS 伪距,载波相位,多普勒和信号强度

RTCM1076,全 GPS 伪距和载波相位加信号强度(高分辨率)

RTCM1077, 全 GPS 伪距、载波相位、多普勒和信号强度(高分辨率)

RTCM1084,全 GLONASS 伪距和载波相位加信号强度

RTCM1085,全 GLONASS 伪距,载波相位,多普勒和信号强度

RTCM1086,全 GLONASS 伪距和载波相位加信号强度(高分辨率)

RTCM1087,全 GLONASS 伪距,载波相位,多普勒和信号强度(高分辨率)

RTCM1094,全伽利略伪距和载波相位加信号强度

RTCM1095,全伽利略伪距,载波相位,多普勒和信号强度

RTCM1096,全伽利略伪距和载波相位加信号强度(高分辨率)

bynavitz RTCM1097,全伽利略伪距,载波相位,多普勒和信号强度(高分辨率)

RTCM1104,全 SBAS 伪距和载波相位加信号强度

RTCM1105,全 SBAS 伪距,载波相位,多普勒和信号强度

RTCM1106,全 SBAS 伪距和载波相位加信号强度(高分辨率)

RTCM1107,全 SBAS 伪距,载波相位,多普勒和信号强度(高分辨率) bynavitz

RTCM1114,全 QZSS 伪距和载波相位加信号强度



RTCM1115,全 QZSS 伪距,载波相位,多普勒和信号强度

RTCM1116,全 QZSS 伪距和载波相位加信号强度(高分辨率)

RTCM1117,全 QZSS 伪距,载波相位,多普勒和信号强度(高分辨率)

RTCM1124, 全北斗伪距和载波相位加信号强度

RTCM1125,全北斗伪距,载波相位,多普勒和信号强度

RTCM1126,全北斗伪距和载波相位加信号强度(高分辨率)

RTCM1127,全北斗伪距,载波相位,多普勒和信号强度(高分辨率)

RTCM1134,全 IRNSS 伪距和载波相位加信号强度【北云自定义】

RTCM1135,全IRNSS伪距,载波相位,多普勒和信号强度【北云自定义】

RTCM1136,全 IRNSS 伪距和载波相位加信号强度(高分辨率)【北云自定义】

RTCM1137,全 IRNSS 伪距,载波相位,多普勒和信号强度(高分辨率)【北云自定义】

RTCM1019, GPS 星历

RTCM1020, GLONASS 星历

RTCM1042, 北斗星历

RTCM1044, QZSS 星历

RTCM1046, 伽利略星历

RTCM1048, IRNSS 星历【北云自定义】

RTCM1033, 接收机及天线描述

RTCM1230, GLONASS 相位偏差



#### 4.5.3.2 流动站支持 RTCM 消息类型

北云流动站除支持 Bynav 基准站可输出的 RTCM 消息外,还支持以下消息的解析:

RTCM1073, 紧凑型 GPS 伪距和载波相位

RTCM1083, 紧凑型 GLONASS 伪距和载波相位

RTCM1093, 紧凑伽利略伪距和载波相位

RTCM1103, 紧凑型 SBAS 伪距和载波相位

RTCM1113, 紧凑型 QZSS 伪距和载波相位

RTCM1123, 紧凑型北斗伪距和载波相位

#### 4.6 星历及观测数据

#### 4.6.1 消息内容

星历及观测数据使用以下消息:

表 4-22 输出消息说明

| 名称             | 输出内容        | 数据 ID |
|----------------|-------------|-------|
| bdsephemerisb  | 解析后 BDS 电文  | 1696  |
| galephemerisb  | 解析后 GAL 电文  | 1122  |
| gpsephemb      | 解析后 GPS 电文  | 7     |
| gloephemerisb  | 解析后 GLO 电文  | 723   |
| qzssephemerisb | 解析后 QZSS 电文 | 1336  |
| rangecmpb      | 压缩版卫星观测信息   | 140   |

#### 4.6.2 配置输出

● 配置串口输出观测数据(可转换为.obs 文件)

log comx rangecmpb ontime 1

数据频度可按需配置。

● 配置串口输出电文数据(可转换为.nav 文件)

log comx bdsephemerisb onchanged



log comx galephemerisb onchanged

log comx gpsephemb onchanged

log comx gloephemerisb onchanged

log comx gzssephemerisb onchanged

配置以上 5 条消息后,板卡会在各个卫星系统电文更新的时候输出该系统的电文(BDS) 电文更新 1h/次, GAL 电文更新 10min/次, GPS/QZSS 电文更新 2h/次, GLO 电文更 新 0.5h/次)。若保存数据时间较短,没有达到电文更新周期,可能没有接收到完整的 电文,可在点击开始保存数据后,发送一遍以上 5 条指令,板卡会输出当前的电文信 息。

以上 5 条指令均支持使用 ontime 控制输出频度, 如配置 ontime 1, 则消息每秒输出 一次,每次数据为一颗卫星的星历,全部卫星星历输出后,继续循环输出。

#### 4.6.3 信息格式

星历及观测数据输出采用二进制格式,具有统一的数据结构。每条消息由数据头和数据 主体构成,数据头的结构说明见表 1-6 二进制格式信息标准格式标头(Header)结构说 明。

### 4.6.4 输出消息

#### 4.6.4.1 bdsephemerisb

功能描述:输出 BDS 星历参数,每条消息为一颗星的星历。

| 数据 ID:1696。<br>输入控制指令:log comx bdsephemerisb onchanged |        |                                      |        |       |       |  |
|--------------------------------------------------------|--------|--------------------------------------|--------|-------|-------|--|
| 字段                                                     | 字段类型   | 描述                                   | 二进制格式  | 二进制字节 | 二进制偏移 |  |
| 0                                                      | 数据头    | 见表 1-6 二进制格式信息标准格式<br>标头(Header)结构说明 |        | Н     | 0     |  |
| 1                                                      | 卫星 ID  | BDS 卫星号                              | Ulong  | 4     | Н     |  |
| 2                                                      | 周      | 北斗周                                  | Ulong  | 4     | H+4   |  |
| 3                                                      | URA    | 用户测距精度 (m)                           | Double | 8     | H+8   |  |
| 4                                                      | Health | 卫星健康标志:                              | Ulong  | 4     | H+16  |  |

电话: +86-731-85058117 www.bynav.com



|    |       | T                         |        | 1   |       |
|----|-------|---------------------------|--------|-----|-------|
|    |       | 0=健康;                     |        | - 1 |       |
|    |       | 1=不健康                     |        |     | 7     |
| 5  | tgd1  | B1 群延迟 (s)                | Double | 8   | H+20  |
| 6  | tgd2  | B2 群延迟 (s)                | Double | 8   | H+28  |
| 7  | AODC  | 时钟数据期龄                    | Ulong  | 4   | H+36  |
| 8  | toc   | 时钟参考时间                    | Ulong  | 4   | H+40  |
| 9  | a0    | 时钟修正常数                    | Double | 8   | H+44  |
| 10 | a1    | 时钟修正一次项系数                 | Double | 8   | H+52  |
| 11 | a2    | 时钟修正二次项系数                 | Double | 8   | H+60  |
| 12 | AODE  | 星历数据期龄                    | Ulong  | 4   | H+68  |
| 13 | toe   | 星历参考时间                    | Ulong  | 4   | H+72  |
| 14 | RootA | 轨道长轴平方根                   | Double | 8   | H+76  |
| 15 | ecc   | 轨道离心率                     | Double | 8   | H+84  |
| 16 | ω     | 近地点角距                     | Double | 8   | H+92  |
| 17 | Δn    | 角速度校正                     | Double | 8   | H+100 |
| 18 | МО    | 平近点角                      | Double | 8   | H+108 |
| 19 | Ω0    | 升交点赤经                     | Double | 8   | H+116 |
| 20 | Ω     | 升交点赤经校正                   | Double | 8   | H+124 |
| 21 | i0    | 轨道倾角                      | Double | 8   | H+132 |
| 22 | IDOT  | 轨道倾角校正                    | Double | 8   | H+140 |
| 23 | Cuc   | 近地点角距摄动校正(余弦)             | Double | 8   | H+148 |
| 24 | Cus   | 近地点角距摄动校正 (正弦)            | Double | 8   | H+156 |
| 25 | Crc   | 轨道半径摄动校正(余弦)              | Double | 8   | H+164 |
| 26 | Crs   | 轨道半径摄动校正(正弦)              | Double | 8   | H+172 |
| 27 | Cic   | 轨道倾角摄动校正(余弦)              | Double | 8   | H+180 |
| 28 | Cis   | 轨道倾角摄动校正 (正弦)             | Double | 8   | H+188 |
| 29 | 校验    | 32-bitCRC 校验, 见表 4-6 32 位 | Ulong  | 4   | H+196 |



|    | CRC 校验算法代码 (C) |  |  |
|----|----------------|--|--|
| 30 | 消息终结符          |  |  |

# 4.6.4.2 galephemerisb

功能描述:输出 GAL 星历参数,每条消息为一颗星的星历。

数据 ID: 1122。

输入控制指令: log comx galephemerisb onchanged

| 字段 | 字段类型      | 描述                                   | 二进制格式 | 二进制字节 | 二进制偏移 |
|----|-----------|--------------------------------------|-------|-------|-------|
| 0  | 数据头       | 见表 1-6 二进制格式信息标准格式标头<br>(Header)结构说明 | yna   | Н     | 0     |
| 1  | 卫星 ID     | GAL 卫星号                              | Ulong | 4     | Н     |
| 2  | FNAV 标志   | FNAV 星历接收标志                          | Bool  | 4     | H+4   |
| 3  | INAV 标志   | INAV 星历接收标志                          | Bool  | 4     | H+8   |
|    |           | E1B 健康标志:                            |       | 1145  |       |
| 4  | E1BHealth | 0=未正确接收;                             | Uchar | V154  | H+12  |
|    | philip    | 1=正确接收                               | Alle  |       |       |
|    |           | E5a 健康标志:                            |       |       |       |
| 5  | E5aHealth | 0=未正确接收;                             | Uchar | 1     | H+13  |
|    |           | 1=正确接收                               |       |       |       |
|    |           | E5b 健康标志:                            |       | 11.5  |       |
| 6  | E5bHealth | 0=未正确接收;                             | Uchar | 1/167 | H+14  |
|    | phila     | 1=正确接收                               | yne   |       |       |
|    |           | E1B 数据有效标志:                          |       |       |       |
| 7  | E1BDVS    | 0=数据无效;                              | Uchar | 1     | H+15  |
|    |           | 1=数据有效                               |       |       |       |
|    |           | E5a 数据有效标志:                          |       |       |       |
| 8  | E5aDVS    | 0=数据无效;                              | Uchar | 1/167 | H+16  |
|    | byna      | 1=数据有效                               | yne   |       |       |



|    |         | E5b 数据有效标志:    |        |      |       |
|----|---------|----------------|--------|------|-------|
| 9  | E5bDVS  | 0=数据无效;        | Uchar  | 11.7 | H+17  |
|    | byna    | 1=数据有效         | VNG    |      |       |
| 10 | SISA    | 空间信号精度         | Uchar  | 1    | H+18  |
| 11 | 预留      |                | Uchar  | 1    | H+19  |
| 12 | IODNav  | 星历数据期龄         | Ulong  | 4    | H+20  |
| 13 | Toe     | 星历参考时间(s)      | Ulong  | 4    | H+24  |
| 14 | RootA   | 轨道长轴平方根        | Double | 8    | H+28  |
| 15 | Δn      | 角速度校正          | Double | 8    | H+36  |
| 16 | M0      | 平近点角           | Double | 8    | H+44  |
| 17 | есс     | 轨道离心率          | Double | 8    | H+52  |
| 18 | ω       | 近地点角距          | Double | 8    | H+60  |
| 19 | Cuc     | 近地点角距摄动校正(余弦)  | Double | 8    | H+68  |
| 20 | Cus     | 近地点角距摄动校正(正弦)  | Double | 8    | H+76  |
| 21 | Crc     | 轨道半径摄动校正(余弦)   | Double | 8    | H+84  |
| 22 | Crs     | 轨道半径摄动校正(正弦)   | Double | 8    | H+92  |
| 23 | Cic     | 轨道倾角摄动校正(余弦)   | Double | 8    | H+100 |
| 24 | Cis     | 轨道倾角摄动校正(正弦)   | Double | 8    | H+108 |
| 25 | i0      | 轨道倾角           | Double | 8    | H+116 |
| 26 | IDOT    | 轨道倾角校正         | Double | 8    | H+124 |
| 27 | Ω0      | 升交点赤经          | Double | 8    | H+132 |
| 28 | Ω       | 升交点赤经校正        | Double | 8    | H+140 |
| 29 | FNAVtoc | FNAV 时钟参考时间    | Ulong  | 4    | H+148 |
| 30 | FNAVa0  | FNAV 时钟修正常数    | Double | 8    | H+152 |
| 31 | FNAVa1  | FNAV 时钟修正一次项系数 | Double | 8    | H+160 |
| 32 | FNAVa2  | FNAV 时钟修正二次项系数 | Double | 8    | H+168 |
| 33 | INAVtoc | INAV 时钟参考时间    | Ulong  | 4    | H+176 |

139 / 154



| 34 | INAVa0   | INAV 时钟修正常数                                 | Double | 8    | H+180 |
|----|----------|---------------------------------------------|--------|------|-------|
| 35 | INAVa1   | INAV 时钟修正一次项系数                              | Double | 8    | H+188 |
| 36 | INAVa2   | INAV 时钟修正二次项系数                              | Double | 8    | H+196 |
| 37 | E1E5aBGD | E1E5a 群延迟(s)                                | Double | 8    | H+204 |
| 38 | E1E5bBGD | E1E5b 群延迟(s)                                | Double | 8    | H+212 |
| 39 | 校验       | 32-bitCRC 校验, 见表 4-6 32 位 CR<br>C 校验算法代码(C) | Ulong  | 4    | H+220 |
| 40 |          | 消息终止符                                       |        | Alti |       |

# 4.6.4.3 gpsephemb

功能描述:输出 GPS 星历参数,每条消息为一颗星的星历。

数据 ID: 7。

输入控制指令: log comx gpsephemb onchanged

| 字段 | 字段类型   | 描述                                   | 二进制格式  | 二进制字节          | 二进制偏移 |
|----|--------|--------------------------------------|--------|----------------|-------|
| 0  | 数据头    | 见表 1-6 二进制格式信息标准格式标<br>头(Header)结构说明 | yna    | V <sub>H</sub> | 0     |
| 1  | PRN    | GPS 卫星号                              | Ulong  | 4              | Н     |
| 2  | Tow    | GPS 周内秒                              | Double | 8              | H+4   |
| 3  | Health | 卫星健康标志:<br>0=健康;<br>1=不健康            | Ulong  | 4              | H+12  |
| 4  | IODE1  | 星历数据期号 1                             | Ulong  | 4              | H+16  |
| 5  | IODE 2 | 星历数据期号 2                             | Ulong  | 4              | H+20  |
| 6  | WN     | GPS 周计数                              | Ulong  | 4              | H+24  |
| 7  | Z WN   | Z 计数器的 GPS 周计数                       | Ulong  | 4              | H+28  |
| 8  | Toe    | 星历参考时间                               | Double | 8              | H+32  |
| 9  | Α      | 轨道长轴 (m)                             | Double | 8              | H+40  |
| 10 | Δn     | 角速度校正                                | Double | 8              | H+48  |



| 11 | М0   | 平近点角                                       | Double | 8   | H+56  |
|----|------|--------------------------------------------|--------|-----|-------|
| 12 | ecc  | 轨道离心率                                      | Double | 8   | H+64  |
| 13 | ω    | 近地点角距                                      | Double | 8   | H+72  |
| 14 | Cuc  | 近地点角距摄动校正(余弦)                              | Double | 8   | H+80  |
| 15 | Cus  | 近地点角距摄动校正(正弦)                              | Double | 8   | H+88  |
| 16 | Crc  | 轨道半径摄动校正(余弦)                               | Double | 8   | H+96  |
| 17 | Crs  | 轨道半径摄动校正(正弦)                               | Double | 8   | H+104 |
| 18 | Cic  | 轨道倾角摄动校正(余弦)                               | Double | 8   | H+112 |
| 19 | Cis  | 轨道倾角摄动校正(正弦)                               | Double | 8   | H+120 |
| 20 | i0   | 轨道倾角                                       | Double | 8   | H+128 |
| 21 | IDOT | 轨道倾角校正                                     | Double | 8   | H+136 |
| 22 | Ω0   | 升交点赤经                                      | Double | 8   | H+144 |
| 23 | Ω    | 升交点赤经校正                                    | Double | 8   | H+152 |
| 24 | IODC | 时钟数据期号                                     | Ulong  | 4   | H+160 |
| 25 | Toc  | 卫星时钟修正(s)                                  | Double | 8   | H+164 |
| 26 | Tgd  | 群波延时校正估计                                   | Double | 8   | H+172 |
| 27 | a0   | 时钟修正常数                                     | Double | 8   | H+180 |
| 28 | a1   | 时钟修正一次项系数                                  | Double | 8   | H+188 |
| 29 | a2   | 时钟修正二次项系数                                  | Double | 8   | H+196 |
| 30 | AS   | 反电子欺骗标志<br>0=错误<br>1=正确                    | Bool   | 4   | H+204 |
| 31 | N    | 平均角速度校正                                    | Double | 8   | H+208 |
| 32 | URA  | 用户测距精度                                     | Double | 8   | H+216 |
| 33 | 校验   | 32-bitCRC 校验,见表 4-6 32 位 CR<br>C 校验算法代码(C) | Ulong  | 4   | H+224 |
| 34 | WINS | 消息终止符                                      | WNS    | N - |       |



## 4.6.4.4 gloephemerisb

ynavit<sup>z</sup> 功能描述:输出 GLO 星历参数,每条消息为一颗星的星历。

数据 ID: 723。

输入控制指令: log comx gloephemerisb onchanged

| 字段 | 字段类型     | 描述                                             | 二进制格式  | 二进制字节 | 二进制偏移 |
|----|----------|------------------------------------------------|--------|-------|-------|
| 0  | 数据头      | 见表 1-6 二进制格式信息标准格式标头<br>(Header)结构说明           |        | Н     | 0     |
| 1  | sloto    | GLO 卫星号 (sloto +37)                            | Ushort | 2     | Н     |
| 2  | freq     | 卫星频率通道(0~20)                                   | Ushort | 2     | H+2   |
| 3  | sat type | 卫星类型: 0=GLO 卫星 Uchar 1 1= GLO_M 卫星 2= GLO_K 卫星 |        | H+4   |       |
| 4  | 预留       | WITE                                           |        |       | H+5   |
| 5  | 周        | 星历参考周(GPS)                                     | Ushort | 2     | H+6   |
| 6  | 周内秒      | 星历参考周内秒(GPS ms)                                | Ulong  | 4     | H+8   |
| 7  | leaps    | GPS 与 GLO 的整秒差<br>Ulong 4<br>(跳秒,可能不正确)        |        | 4     | H+12  |
| 8  | Nt       | 从最近一个闰年1月1日起的天数                                | Ushort | 2     | H+16  |
| 9  | 预留       | WITE                                           |        | 116   | H+18  |
| 10 | 预留       | 1                                              | Mile   | 1     | H+19  |
| 11 | issue    | 与星历参考时间的 15min 间隔数                             | Ulong  | 4     | H+20  |
| 12 | 健康标志     | 星历健康标志:<br>0~3=健康<br>4~15=不健康                  | Ulong  | 4     | H+24  |
| 13 | pos x    | 卫星 x 方向参考位置(PZ90, m)                           | Double | 8     | H+28  |
| 14 | pos y    | 卫星 y 方向参考位置(PZ90, m)                           | Double | 8     | H+36  |



| 15 | pos z  | 卫星 z 方向参考位置(PZ90,m)                       | Double  | 8     | H+44  |
|----|--------|-------------------------------------------|---------|-------|-------|
| 16 | vel x  | 卫星 x 方向参考速度(PZ90, m/s)                    | Double  | 8     | H+52  |
| 17 | vel y  | 卫星 y 方向参考速度(PZ90, m/s)                    | Double  | 8     | H+60  |
| 18 | vel z  | 卫星 z 方向参考速度(PZ90, m/s) Double 8           |         | H+68  |       |
| 19 | асс х  | 卫星 x 方向参考加速度(PZ90,m/s2) Double 8          |         | H+76  |       |
| 20 | асс у  | y 卫星 y 方向参考加速度(PZ90, m/s2) Double 8       |         | H+84  |       |
| 21 | acc z  | zc z 卫星 z 方向参考加速度(PZ90, m/s2) Double 8    |         | H+92  |       |
| 22 | Tau_N  | 卫星钟差                                      | Double  | 8     | H+100 |
| 23 | △Tau_N | 卫星钟差修正 Double 8                           |         | 8     | H+108 |
| 24 | Υ      | 卫星频偏 Double 8                             |         | H+116 |       |
| 25 | Tk     | 帧头的天内秒(GLO, s) Ulong 4                    |         | H+124 |       |
| 26 | Р      | 技术参数                                      | Ulong 4 |       | H+128 |
| 27 | Ft     | 用户测距精度 Ulong 4                            |         | H+132 |       |
| 28 | age    | 数据期龄 Ulong 4                              |         | H+136 |       |
| 29 | Flags  | 信息标志,见注 1                                 | Ulong   | 4     | H+140 |
| 30 | 校验     | 32-bitCRC 校验,见表 4-6 32 位 CRC<br>校验算法代码(C) | Ulong   | 4     | H+144 |
| 31 |        | 消息终止符                                     |         |       |       |

注 1: 最后 2bit 是 P1 标志符,表示星历参考时间 tb 的时间段的长度:

| P1 值 | tb 时间段长 |
|------|---------|
| 00   | 0min    |
| 01   | 30min   |
| 10   | 45min   |
| 11   | 60min   |

倒数第 3bit 是 P2 标志符,表示对应 tb 时间段的长度为 30 或 60min 时的值的奇偶性, bynaviliza bynavit<sup>z</sup>

0=偶数

1=奇数

142 / 154 电话: +86-731-85058117 www.bynav.com



倒数第 4bit 是 P3 标志符,表示该帧是提供关于 5 颗星还是 4 颗星的历书参数, bynavitz

0=4 颗

1=5 颗

#### 4.6.4.5 qzssephemerisb

功能描述:输出 QZSS 星历参数,每条消息为一颗星的星历。

数据 ID: 1336。

输入控制指令: log comx qzssephemerisb onchanged

| 字段   | 字段类型   | 描述                                   | 二进制格式  | 二进制字节 | 二进制偏移 |
|------|--------|--------------------------------------|--------|-------|-------|
| 0    | 数据头    | 见表 1-6 二进制格式信息标准格式标<br>头(Header)结构说明 | Ŋ.     | Н     | 0     |
| 1    | PRN    | QZSS 卫星号                             | Ulong  | 4     | Н     |
| 2    | Tow    | 子帧 0 的周内秒                            | Double | 8     | H+4   |
|      |        | 卫星健康标志:                              |        |       |       |
| 3    | Health | 0=健康;                                | Ulong  | 4     | H+12  |
| byna |        | 1=不健康                                | VNG    |       |       |
| 4    | IODE1  | 星历数据期号 1                             | Ulong  | 4     | H+16  |
| 5    | IODE 2 | 星历数据期号 2                             | Ulong  | 4     | H+20  |
| 6    | WN     | GPS 周计数                              | Ulong  | 4     | H+24  |
| 7    | Z WN   | Z 计数器的 GPS 周计数                       | Ulong  | 4     | H+28  |
| 8    | Toe    | 星历参考时间                               | Double | 8     | H+32  |
| 9    | A      | 轨道长轴 (m)                             | Double | 8     | H+40  |
| 10   | Δn     | 角速度校正                                | Double | 8     | H+48  |
| 11   | М0     | 平近点角                                 | Double | 8     | H+56  |
| 12   | ecc    | 轨道离心率                                | Double | 8     | H+64  |
| 13   | ω      | 近地点角距                                | Double | 8     | H+72  |
| 14   | Cuc    | 近地点角距摄动校正(余弦)                        | Double | 8     | H+80  |
| 15   | Cus    | 近地点角距摄动校正(正弦)                        | Double | 8     | H+88  |



| 16 | Crc          | 轨道半径摄动校正(余弦)                               | Double | 8   | H+96  |
|----|--------------|--------------------------------------------|--------|-----|-------|
| 17 | Crs          | 轨道半径摄动校正(正弦)                               | Double | 8   | H+104 |
| 18 | Cic          | 轨道倾角摄动校正(余弦)                               | Double | 8   | H+112 |
| 19 | Cis          | 轨道倾角摄动校正 (正弦)                              | Double | 8   | H+120 |
| 20 | i0           | 轨道倾角                                       | Double | 8   | H+128 |
| 21 | IDOT         | 轨道倾角校正                                     | Double | 8   | H+136 |
| 22 | Ω0           | 升交点赤经                                      | Double | 8   | H+144 |
| 23 | Ω            | 升交点赤经校正                                    | Double | 8   | H+152 |
| 24 | IODC         | 时钟数据期号                                     | Ulong  | 4   | H+160 |
| 25 | Тос          | 卫星时钟修正(s)                                  | Double | 8   | H+164 |
| 26 | Tgd          | 群波延时校正估计                                   | Double | 8   | H+172 |
| 27 | a0           | 时钟修正常数                                     | Double | 8   | H+180 |
| 28 | a1           | 时钟修正一次项系数                                  | Double | 8   | H+188 |
| 29 | a2 时钟修正二次项系数 |                                            | Double | 8   | H+196 |
|    | Mile         | 反电子欺骗标志                                    | Muc    |     |       |
| 30 | AS           | 0=错误                                       | Bool   | 4   | H+204 |
|    |              | 1=正确                                       |        |     |       |
| 31 | N            | 平均角速度校正                                    | Double | 8   | H+208 |
| 32 | URA          | 用户测距精度                                     | Double | 8   | H+216 |
|    | -01          | 星历有效时间:                                    |        | WHE | 4     |
| 33 | Fit Interval | 0=星历数据有效时间为 2h;                            | Uchar  | 1   | H+224 |
|    |              | 1=星历数据有效时间超过 2h                            |        |     |       |
| 34 | 预留 ——        |                                            | Uchar  | 1   | H+225 |
| 35 | 预留           |                                            | Uchar  | 1   | H+226 |
| 36 | 预留 ——        |                                            | Uchar  | 1   | H+227 |
| 37 | 校验           | 32-bitCRC 校验,见表 4-6 32 位 CR<br>C 校验算法代码(C) | Ulong  | 4   | H+228 |



| 38                |                         | 消息终止符 |  |  |  |  |
|-------------------|-------------------------|-------|--|--|--|--|
| 4.6.4.6 rangecmpb |                         |       |  |  |  |  |
| 功能描               | 功能描述:输出当前跟踪卫星的压缩原始观测数据。 |       |  |  |  |  |

# 4.6.4.6 rangecmpb

数据 ID: 140。

输入控制指令: log comx rangecmpb ontime 1

| 字段  | 字段类型     | (Header)结构说明       H         消息中包含卫星的数目       Ulong       4         第一颗星的观测数据,见注 1       -       24         下一颗星的观测数据       -       24          -       32-bit CRC 校验,见       Ulong       4 |       |    | 二进制偏移              |
|-----|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----|--------------------|
| 0   | Header   | 见表 1-6 二进制格式信息标准格式标头<br>(Header)结构说明                                                                                                                                                        |       | H  | 0                  |
| 1   | # obs    | 消息中包含卫星的数目                                                                                                                                                                                  | Ulong | 4  | Н                  |
| 2   | Range    | 第一颗星的观测数据,见注 1                                                                                                                                                                              | -     | 24 | H+4                |
| 3   | Next PRN | 下一颗星的观测数据                                                                                                                                                                                   | -     | 24 | H+28               |
|     | •••      |                                                                                                                                                                                             | -     |    | H+52               |
| n   | 校验       | 32-bit CRC 校验,见<br>表 4-6 32 位 CRC 校验算法代码(C)                                                                                                                                                 | Ulong |    | H+4+<br>(# obs*24) |
| n+1 |          | 消息终止符                                                                                                                                                                                       | DA    |    |                    |

#### 注 1: 一颗星的压缩原始数据共 192bits (24byte), 具体内容如下:

| Bit 编号 | Bit 长度 | 累计 bits | 描述                       |
|--------|--------|---------|--------------------------|
| 0~31   | 32     | 32      | 通道跟踪状态:见注 2 跟踪状态的 32bits |
| 32~59  | 28     | 60      | 多普勒频率(Hz)                |
| 60~95  | 36     | 96      | 伪距(m/128)                |
| 96~127 | 32     | 128     | ADR(累计多普勒,周)             |





|         |     |     | ADR (Accumulated Doppler Range) is calculated as follows:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
|---------|-----|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|         |     |     | ADR_ROLLS = (RANGECMP_PSR / WAVELENGTH + RANGECMP_ADR) / MAX_VALUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
|         |     |     | The state of the s |  |  |
|         |     |     | Fround to the closest integer  IF (ADR_ROLLS ≤ 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
|         |     |     | ADR_ROLLS = ADR_ROLLS - 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
|         |     |     | ELSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
|         |     |     | ADR_ROLLS = ADR_ROLLS + 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
|         |     |     | At this point integerise ADR_ROLLS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
|         |     |     | CORRECTED_ADR = RANGECMP_ADR - (MAX_VALUE*ADR_ROLLS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
|         |     |     | where                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
|         |     |     | ADR has units of cycles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
|         |     |     | WAVELENGTH = 0.1902936727984 for GPS L1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
|         |     |     | WAVELENGTH = 0.2442102134246 for GPS L2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
|         |     |     | MAX_VALUE = 8388608                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
|         |     |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|         | MIL |     | 伪距标准差(m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|         |     |     | Code StdDev-PSR (m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
|         |     |     | 0 0.050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
|         |     |     | 1 0.075                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
|         |     |     | 2 0.113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
|         |     |     | 3 0.169                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
|         |     |     | 4 0.253                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
|         |     |     | 5 0.380                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| 128~131 | 4   | 132 | 6 0.570                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| 120 131 | 7   | 132 | 7 0.854                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
|         |     |     | 8 1.281                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
|         |     |     | 9 2.375                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
|         |     |     | 10 4.750                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|         |     |     | 11 9.500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|         |     |     | 12 19.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
|         |     |     | 13 38.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
|         |     |     | 14 76.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
|         |     |     | 15 152.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|         |     |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 132~135 | 4   | 136 | ADR 标准差(累计多普勒,周)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
|         | WIL |     | 卫星号                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
|         |     |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|         |     |     | 1~32=GPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|         |     |     | 38~61=GLONASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| 136~143 | 8   | 144 | 1~36=Galileo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
|         |     |     | 1~40=BDS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|         |     |     | 193~202=QZSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
|         |     |     | 193~202=QZSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
|         |     |     | 1~7=NavIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |



| 144~164 | 21 | 165                               | 锁定时间(s)                 |
|---------|----|-----------------------------------|-------------------------|
| 165~169 | 5  | 170                               | 载噪比(dB-Hz),该数值加 20 为载噪比 |
| 1034109 |    | 范围在 20~51,≤20 均输出为 20,≥51 均输出为 51 |                         |
| 170~175 | 6  | 176                               | GLONASS 频带数             |
| 176~191 | 16 | 192                               | 预留                      |

## 注 2: 跟踪状态共 32bits (4byte) , 具体内容如下:

| Bit 编号 | Bit 长度 | 累计 bits | 描述         |
|--------|--------|---------|------------|
| БУ     |        |         | 跟踪状态:      |
|        |        |         | 0=空闲       |
|        |        |         | 1=搜索       |
|        |        |         | 2=宽频引导     |
|        |        |         | 3=窄频引导     |
| 0~4    | 5      | 5       | 4=相位锁定环路   |
| 0~4    |        | 5       | 6=通道引导     |
|        |        |         | 7=频率锁定环路   |
|        |        |         | 9=通道调整     |
|        |        |         | 10=码搜索     |
|        |        |         | 11=辅助位锁定环路 |
|        | avi    | 75      | 23=侧峰检测    |
| 5~9    | 5      | 10      | 卫星通道号      |
|        |        |         | 相位锁定标志     |
| 10     | 1      | 11      | 0=未锁定      |
|        |        |         | 1=锁定       |
|        |        |         | 校验已知标志     |
| 11     | 1,4    | 12      | 0=未知       |
| bV     | Uga.   |         | 1=已知       |



|       |      |     | 伪码锁定标志       |
|-------|------|-----|--------------|
| 12    | 1    | 13  | 0=未锁定        |
| hV    | Uan. |     | 1=锁定         |
|       |      |     | 相关器类型        |
|       |      |     | 0=N/A        |
|       |      |     | 1=标准相关       |
| 12.15 | 2    | 16  | 2=窄相关        |
| 13~15 | 3    | 16  | 3=预留         |
| hV    | uan. |     | 4=PAC        |
|       |      |     | 5=窄带 PAC     |
|       |      |     | 6=预留         |
|       |      |     | 卫星系统         |
|       |      |     | 0=GPS        |
|       | - 14 | 75  | 1=GLONASS    |
| by    | navy |     | 2=SBAS       |
| 16~18 | 3    | 19  | 3=Galileo    |
|       |      |     | 4=BDS        |
|       |      |     | 5=QZSS       |
|       |      |     | 6=NavIC      |
|       |      | -75 | 7=其他         |
| 19    | navy | 20  | 预留           |
| DY    |      |     | 分组标志         |
| 20    | 1    | 21  | 0=未分组        |
|       |      |     | 1=已分组        |
|       |      |     | 信号类型,与卫星系统有关 |
| 21~25 | 5    | 26  | GPS          |
| 21~23 | 5    | 20  | 0=L1 C/A     |
| Dy    |      |     | 5=L2P        |



|           | 9=L2P 加密       |
|-----------|----------------|
| 14:75     | 14=L5Q         |
| hynav     | 16=L1C         |
|           | 17=L2C         |
|           |                |
|           | GLONASS        |
|           | 0=L1 C/A       |
| 14:75     | 1=L2 C/A       |
| bynav     | 5=L2P          |
| D J       |                |
|           | SBAS           |
|           | 0=L1 C/A       |
|           | 6=L5I          |
| 4:5       |                |
| by nav    | Galileo        |
| Dy        | 2=E1C          |
|           | 6=E6B          |
|           | 7=E6C          |
|           | 12=E5a Q       |
| 4.5       | 17= E5b Q      |
| bynavi: 5 | 20=E5 AltBOC Q |
| DY        |                |
|           | BDS            |
|           | 0=B1D1         |
|           | 1=B2D1         |
| 4-75      | 2=B3D1         |
| bynavi 75 | 4=B1D2         |
| DY        | 5=B2D2         |



| 6=B3D2<br>7=B1C<br>9=B2a<br>10=B2b |  |
|------------------------------------|--|
| 9=B2a                              |  |
|                                    |  |
|                                    |  |
|                                    |  |
| QZSS                               |  |
| 0=L1 C/A                           |  |
| 14=L5Q                             |  |
| 16=L1C                             |  |
| 17=L2C                             |  |
|                                    |  |
| NavIC                              |  |
| 0=L5                               |  |
| 1117                               |  |
| 其他                                 |  |
| 19=L 频带                            |  |
| 26 1 27 预留                         |  |
| L1 为首要通道                           |  |
| 27 1 28 0=非首要                      |  |
| 1=首要                               |  |
| 载波相位测量值                            |  |
| 28 1 29 0=未加半周                     |  |
| 1=增加半周                             |  |
| 滤波器指示                              |  |
| 29 1 30 0=非数字滤波                    |  |
| 1=数字滤波                             |  |
| 11-73                              |  |
| PRN 锁定标志<br>30 1 31                |  |



|    |   |    | 1=锁定 |
|----|---|----|------|
|    |   |    | 通道分配 |
| 31 | 1 | 32 | 0=自动 |
|    |   |    | 1=强制 |

bynavitz

bynavitz

bynavitz

bynavitz

bynavitz

bynavitz

bynavit

bynavitz



#### 免责声明

本手册提供有关湖南北云科技有限公司(以下简称北云科技)产品的信息。手册并未以暗示、默许等任何形式转让本公司或任何第三方的专利、版权、商标、所有权等其下的任何权利或许可。除在产品的销售条款和协议中声明的责任之外,本公司概不承担其它任何责任。同时,北云科技对其产品的销售和使用不作任何明示或暗示的担保,包括但不限于对产品特定用途的适用性、适销性或对版权、著作权、专利权等知识产权的侵权责任等,均不作担保。对于不按手册要求连接或操作而产生的问题,本公司免责。必要时北云科技可能会对产品规格及产品描述进行修改,恕不另行通知。

对于本公司产品可能存在的某些设计缺陷或不妥之处,一经发现将改进而发生产品版本迭代,并因此可能导致产品与已出版的规格有所差异。如客户需要,可提供最新的产品规格。

版权所有 © 2013-2021, 湖南北云科技有限公司, 预留所有权利。



