Problema n° 823

Sea:

- 1.-ABC un triángulo
- 2.- (I) el círculo inscrito de ABC.
- 3. D, E dos puntos sobre la recta BC tal que (B,C,D,E)=-1
- 4 F, X los pies de las perpendiculares a EI, y a BC por D, I.
- 5.- (U) el círculo con diámetro DI
- 6.- Y el segundo punto de intersección de (U) e (I).

Demostrar: Y, F y A son colineales.

Aymé, J. L. (2016): Comunicación personal

Solution proposée par Philippe Fondanaiche

Sans perte de généralité on pose XI = 1.

Soient les angles $\angle BIX = \beta$, $\angle XID = \delta$, $\angle XIC = \gamma$ et $\angle XIE = \varepsilon$.

On en déduit $BX = tan(\beta) = u$, $XC = tan(\gamma) = v$, $XD = tan(\delta) = w$ et $XE = tan(\epsilon) = x$.

Les points (B,C,D,E) forment une divison harmonique. Il en résulte que EC/EB = DC/DB soit $\frac{x-v}{x+u} = \frac{v-w}{w+u}$.

D'où la relation [R]:
$$v = \frac{ux + uw + 2wx}{2u + w + x}$$

On détermine successivement les coordonnées des points A,Y et F en fonction des paramètres u,v,w et x.

Coordonnées de A

Le point A est à l'intersection des droites AB et AC qui déterminent respectivement des angles de $180^{\circ} - 2\beta$ et de 2γ avec l'axe des abscisses.

On en déduit les coordonnées de A:
$$x_A = \frac{v - u}{1 - uv}$$
 et $y_A = \frac{2uv}{uv - 1}$

Coordonnées de Y

Le point Y est le symétrique de X par rapport à la droite ID qui détermine l'angle δ par rapport à l'axe des ordonnées XI.

On en déduit les coordonnées de Y:
$$x_Y = \frac{2w}{1+w^2}$$
 et $y_Y = \frac{2w^2}{1+w^2}$

Coordonnées de F

Le point F est à l'intersection de la droite EI qui détermine l'angle ϵ avec l'axe des ordonnées et de la perpendiculaire issue de D à cette droite.

On en déduit les coordonnées de F:
$$x_F = \frac{x(1+wx)}{1+x^2}$$
 et $y_F = \frac{x(x-w)}{1+x^2}$

Les points A,F et Y sont alignés si les pentes des droites AY et FY sont identiques.

Pente de la droite AY

Elle est déterminée par le rapport
$$p_{AY} = \frac{x_A - x_Y}{y_A - y_Y}$$
.

Si l'on tient compte de la relation [R], le calcul de
$$p_{AY}$$
 conduit à la relation $p_{AY} = \frac{1 - wx}{w + x}$.

On constate que le terme en u n'apparaît plus et que p_{AY} dépend seulement de w et de x.

Pente de la droite YF

Elle est déterminée par le rapport
$$p_{YF} = \frac{x_Y - x_F}{y_Y - y_F}$$
.

Ce rapport est égal à
$$\frac{2w(1+x^2)-x(1+wx)(1+w^2)}{2w^2(1+x^2)-x(x-w)(1+w^2)}$$
 qui après simplification par le facteur commun

$$w^2x + 2w - x$$
 tant au numérateur qu'au dénominateur se ramène à $\frac{1-wx}{w+x}$.

On en conclut
$$p_{AY} = p_{YF}$$
. Cqfd