CS113 LAB 3 - Example 3.3

Example 3.3

Show that $\sim (p \to q) \equiv p \land (\sim q)$

	(r 1) r (1)												
p	q	$(p \to q)$	$\sim (p \to q)$	$\sim q$	$(p \land \sim q)$	$(\sim (p \to q) \leftrightarrow (p \land \sim q))$							
F	F	T	F	${ m T}$	F	Т							
F	$\mid T \mid$	Τ	F	\mathbf{F}	F	T							
T	F	F	${ m T}$	${ m T}$	T	Γ							
$\mid T \mid$	$\mid T \mid$	T	F	F	F	Т							

Notice that ProofPower automatically applied the double-negation rule

$$\sim (p \to q) \equiv \sim (\sim p \lor q)$$
$$\equiv \sim (\sim p) \land (\sim q)$$
$$\equiv p \land (\sim q) \blacksquare$$

(Conditional) (De Morgan's)

(Double Negation)

:) val
$$T = \neg \neg (p \Rightarrow q) \Leftrightarrow \neg (\neg p \lor q) \neg : TERM$$

:) val conditional = $\vdash \neg (p \Rightarrow q) \Leftrightarrow \neg (\neg p \lor q) : THM$
:) val $L1 = \neg (p \Rightarrow q) \vdash \neg (\neg p \lor q) : THM$
:) val it = $\neg (p \Rightarrow q) \vdash p \land \neg q : THM$

Example 3.5

Show that $p \to q \equiv \sim q \to \sim p$

p	q	$(p \rightarrow q)$	$\sim q$	$\sim p$	$(\sim q \rightarrow \sim p)$	$((p \to q) \leftrightarrow (\sim q \to \sim p))$
F	F	Т	Т	Т	T	T
F	$\mid T \mid$	T	F	Γ	T	T
T	F	F	${ m T}$	F	F	T
Т	$\mid T \mid$	Т	F	F	${ m T}$	T

Notice that ProofPower automatically applied conditional rule and double-negation rule

$$p \to q \equiv (\sim p) \lor q$$

$$\equiv \sim [p \land (\sim q)]$$

$$\equiv \sim [(\sim q) \land p]$$

$$\equiv [\sim (\sim q)] \lor (\sim p)$$

$$\equiv q \lor (\sim p)$$

$$\equiv \sim q \to \sim p \blacksquare$$

(Conditional)
(De Morgan's)
(Commutative)
(De Morgan's)
(Double Negation)
(Conditional)

```
 \begin{vmatrix} val \ L0 = asm\_rule \ \lceil \ p \Rightarrow q \ \rceil; \\ val \ L1 = rewrite\_rule \ [\Rightarrow\_thm] \ L0; \\ val \ T = \lceil \neg p \lor q \Leftrightarrow \neg (p \land \neg q) \ \rceil; \\ val \ demorgan = prove\_rule \ [\ ] \ T; \\ val \ L2 = rewrite\_rule \ [demorgan] \ L1; \\ val \ T = \lceil \ p \land \neg q \Leftrightarrow \neg q \land p \ \rceil; \\ val \ commutative = prove\_rule \ [\ ] \ T; \\ val \ L3 = rewrite\_rule \ [commutative] \ L2; \\ val \ L4 = rewrite\_rule \ [\neg\_\land\_thm] \ L3; \\ val \ T = \lceil \ q \lor \neg p \Leftrightarrow \neg q \Rightarrow \neg p \ \rceil; \\ val \ conditional = prove\_rule \ [\ ] \ T; \\ rewrite\_rule \ [conditional] \ L4;
```

```
:) val L1 = p \Rightarrow q \vdash \neg p \lor q: THM

:) val T = \ulcorner \neg p \lor q \Leftrightarrow \neg (p \land \neg q)\urcorner: TERM

:) val demorgan = \vdash \neg p \lor q \Leftrightarrow \neg (p \land \neg q): THM

:) val L2 = p \Rightarrow q \vdash \neg (p \land \neg q): THM

:) val T = \ulcorner p \land \neg q \Leftrightarrow \neg q \land p\urcorner: TERM

:) val commutative = \vdash p \land \neg q \Leftrightarrow \neg q \land p: THM

:) val L3 = p \Rightarrow q \vdash \neg (\neg q \land p): THM

:) val L4 = p \Rightarrow q \vdash q \lor \neg p: THM

:) val T = \ulcorner q \lor \neg p \Leftrightarrow \neg q \Rightarrow \neg p\urcorner: TERM

:) val conditional = \vdash q \lor \neg p \Leftrightarrow \neg q \Rightarrow \neg p: THM

:) val it = p \Rightarrow q \vdash \neg q \Rightarrow \neg p: THM
```

Problem 3.8

Show that $\sim (p \leftrightarrow q) \equiv (p \land \sim q) \lor (\sim p \land q)$

p	q	$(p \leftrightarrow q)$	$\sim (p \leftrightarrow q)$	$\sim q$	$(p \land \sim q)$	$\sim p$	$(\sim p \land q)$	$((p \land \sim q) \lor (\sim p \land q))$	$(\sim (p \leftrightarrow q) \leftrightarrow ((p \land \sim q) \lor (\sim p \land q)))$
F	F	Γ	F	T	F	T	F	F	T
F	$\mid T \mid$	F	${ m T}$	F	F	T	${ m T}$	${f T}$	T
T	F	F	${ m T}$	T	T	F	\mathbf{F}	${f T}$	m T
Т	Γ	Т	F	F	F	F	F	F	Т

Notice that ProofPower automatically applied biconditional rule

$$(p \leftrightarrow q) \equiv \sim [(p \to q) \land (q \to p)]$$

$$\equiv [\sim (p \to q)] \lor [\sim (q \to p)]$$

$$\equiv (p \land \sim q) \lor (\sim p \land q) \blacksquare$$

(Biconditional)

(De Morgan's)

(Conditional)

```
:) val L1 = \neg (p \leftrightarrow q) + \neg ((p \rightarrow q) \wedge (q \rightarrow p)): THM

:) val T = \neg ((p \rightarrow q) \wedge (q \rightarrow p)) \leftrightarrow \neg (p \rightarrow q) \vee \neg (q \rightarrow p)\neg: TERM

:) val demorgan = + \neg ((p \rightarrow q) \wedge (q \rightarrow p)) \leftrightarrow \neg (p \rightarrow q) \vee \neg (q \rightarrow p): THM

:) val L2 = \neg (p \leftrightarrow q) + \neg (p \rightarrow q) \vee \neg (q \rightarrow p): THM

:# val it = \neg (p \leftrightarrow q) + p \wedge \neg q \vee q \wedge \neg p: THM
```

Problem 3.11 Show using a chain of logical equivalences that $(p \to r) \land (q \to r) \equiv (p \lor q) \to r$

				-	\-	/ \-	, (= -/	
p	q	r	$(p \lor q)$	$((p \vee q) \to r)$	$(p \to r)$	$(q \rightarrow r)$	$((p \to r) \land (q \to r))$	$(((p \lor q) \to r) \leftrightarrow ((p \to r) \land (q \to r)))$
F	F	F	F	T	Τ	Т	T	T
F	F	T	F	${ m T}$	${ m T}$	Т	m T	${ m T}$
F	T	F	Т	\mathbf{F}	${ m T}$	F	F	T
F	T	T	Т	${ m T}$	Τ	Т	m T	T
T	F	F	Т	\mathbf{F}	F	Т	F	${ m T}$
T	F	T	Т	${ m T}$	${ m T}$	Т	m T	${ m T}$
T	T	F	Т	\mathbf{F}	F	F	F	${ m T}$
$\mid T \mid$	Т	$\mid T \mid$	Т	${ m T}$	${ m T}$	Т	ightharpoons T	m T

Notice that ProofPower automatically applied biconditional rule and conditional rule

$$(p \land q) \to r \equiv [\sim (p \lor q)] \lor r$$

$$\equiv [(\sim p) \land (\sim q)] \lor r$$

$$\equiv [\sim p \lor r] \land [(\sim q)] \lor r$$

$$\equiv (p \to r) \land (q \to r) \blacksquare$$

(Conditional)

(De Morgan's)

(Distributive)

(Conditional)

Problem 3.12

Show using a chain of logical equivalences that $p \leftrightarrow q \equiv (p \land q) \lor (\sim p \land \sim q)$

p	q	$(p \leftrightarrow q)$	$(p \wedge q)$	$\sim p$	$\sim q$	$(\sim p \land \sim q)$	$((p \land q) \lor (\sim p \land \sim q))$	$((p \leftrightarrow q) \leftrightarrow ((p \land q) \lor (\sim p \land \sim q)))$
F	F	T	F	T	T	T	${ m T}$	T
F	$\mid T \mid$	F	F	T	F	F	${ m F}$	T
\mathbf{T}	F	F	\mathbf{F}	F	Γ	F	${f F}$	T
Τ	$\mid T \mid$	T	${ m T}$	F	F	F	${ m T}$	Т

Notice that ProofPower automatically applied biconditional rule and conditional rule

$$\begin{split} p &\leftrightarrow q \equiv (p \to q) \wedge (q \to p) \\ &\equiv (\sim p \vee q) \wedge (\sim q \vee p) \\ &\equiv [\sim p \wedge (\sim q \vee p)] \vee [q \wedge (\sim q \vee p)] \\ &\equiv [(\sim p \wedge \sim q) \vee (\sim p \wedge p)] \vee [(q \wedge \sim q) \vee (q \wedge p)] \\ &\equiv [(\sim p \wedge \sim q) \vee c] \vee [c \vee (q \wedge p)] \\ &\equiv (\sim p \wedge \sim q) \vee (p \wedge q) \\ &\equiv (p \wedge q) \vee (\sim p \wedge \sim q) \blacksquare \end{split}$$

(Biconditional)

(Conditional)

(Distributive OR)

(Distributive AND)

(Contradiction)

(Identity)

(Commutative)

```
 | val \ L0 = asm\_rule \ \lceil \ (p \Leftrightarrow q) \ \rceil; 
 | val \ L1 = rewrite\_rule \ [\Leftrightarrow\_thm] \ L0; 
 | val \ L2 = rewrite\_rule \ [\Rightarrow\_thm] \ L1; 
 | val \ T = \lceil \ (\neg p \lor q) \land (\neg q \lor p) \Leftrightarrow (\neg p \land (\neg q \lor p)) \lor (q \land (\neg q \lor p)) \ \rceil; 
 | val \ distributiveOR = prove\_rule \ [] \ T; 
 | val \ L3 = rewrite\_rule \ [distributiveOR] \ L2; 
 | val \ T = \lceil \ (\neg p \land (\neg q \lor p)) \lor (q \land (\neg q \lor p)) \Leftrightarrow ((\neg p \land \neg q) \lor (\neg p \land p)) \lor ((q \land \neg q) \lor (q \land p)) \ \rceil; 
 | val \ distributiveAND = prove\_rule \ [] \ T; 
 | val \ L4 = rewrite\_rule \ [distributiveAND] \ L3; 
 | val \ T = \lceil \ ((\neg p \land \neg q) \lor (\neg p \land p)) \lor ((q \land \neg q) \lor (q \land p)) \Leftrightarrow ((\neg p \land \neg q) \lor F) \lor (F \lor (q \land p)) \ \rceil; 
 | val \ contradiction = prove\_rule \ [] \ T; 
 | val \ L5 = rewrite\_rule \ [contradiction] \ L4; 
 | val \ T = \lceil \ (\neg p \land \neg q) \lor (q \land p) \Leftrightarrow (p \land q) \lor (\neg p \land \neg q) \ \rceil; 
 | val \ commutative = prove\_rule \ [] \ T; 
 | val \ L6 = rewrite\_rule \ [commutative] \ L5;
```

```
:) val L1 = p \Leftrightarrow q \vdash (p \Rightarrow q) \land (q \Rightarrow p): THM
:) val L2 = p \Leftrightarrow q \vdash (\neg p \lor q) \land (\neg q \lor p): THM
:) val T = \lceil (\neg p \lor q) \land (\neg q \lor p) \Leftrightarrow \neg p \land (\neg q \lor p) \lor q \land (\neg q \lor p) \rceil: TERM
:) val distributiveOR = \vdash (\neg p \lor q) \land (\neg q \lor p) \Leftrightarrow \neg p \land (\neg q \lor p) \lor q \land (\neg q \lor p):
    THM
:) val L3 = p ⇔ q + ¬ p ∧ (¬ q ∨ p) ∨ q ∧ (¬ q ∨ p): THM
:) val T =
   TERM
:) val distributiveAND =
    \vdash \neg p \land (\neg q \lor p) \lor q \land (\neg q \lor p) \Leftrightarrow (\neg p \land \neg q \lor \neg p \land p) \lor q \land \neg q \lor q \land p:
    THM
:) val L4 = p ⇔ q + (¬ p ∧ ¬ q ∨ ¬ p ∧ p) ∨ q ∧ ¬ q ∨ q ∧ p: THM
:) val T = \Gamma(\neg p \land \neg q \lor \neg p \land p) \lor q \land \neg q \lor q \land p \Leftrightarrow (\neg p \land \neg q \lor F) \lor F \lor q \land p \neg:
    TERM
:) val contradiction =
    \vdash (\neg p \land \neg q \lor \neg p \land p) \lor q \land \neg q \lor q \land p \Leftrightarrow (\neg p \land \neg q \lor F) \lor F \lor q \land p: THM
:) val L5 = p ⇔ q + ¬ p ∧ ¬ q ∨ q ∧ p: THM
:) val T = \neg p \land \neg q \lor q \land p \Leftrightarrow p \land q \lor \neg p \land \neg q \neg: TERM
:) val commutative = ⊢¬p∧¬q∨q∧p ⇔ p∧q∨¬p∧¬q: THM
:) val L6 = p ⇔ q + p ∧ q ∨ ¬ p ∧ ¬ q: THM
```