矩阵 复习题

黄利兵

数学科学学院

2022年11月21日

本章总结

- 主要概念: 矩阵的加法, 数乘, 乘法, 迹, 可逆矩阵, 伴随矩阵, 分块矩阵, 初等矩阵, 分块初等变换.
- 重要算法: 初等变换法求逆矩阵.
- 基本结论:矩阵的一元运算(转置、取逆、取共轭、数乘等),二元运算(加法、乘法),以及作用在矩阵上的函数(迹、行列式、秩等)之间的关系.其中行列式的乘法定理,乘积与秩的关系需要重点掌握.(分块)初等变换与(分块)初等矩阵之间的关系.
- 核心方法: (涉及秩的问题) 利用相抵标准形; 利用线性方程组的理论; 适当构造分块矩阵; 扰动法

填空题

- 1. 若 4 阶方阵 A 的秩为 3, 则 A 的伴随矩阵的秩为______
- 2. 若 4 阶方阵 A 的行列式为 -2, 则 A 的伴随矩阵的行列式为

3. 若 $A = \begin{pmatrix} 1 & -1 \\ 2 & -3 \end{pmatrix}$, 则矩阵 $(A - 2E)^{-1}(A^2 - 4E)$ 的迹是______.

4. 若矩阵 X 满足 $\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ $X\begin{pmatrix} 2 & 0 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 3 \\ 2 & -1 \\ 1 & 0 \end{pmatrix}$, 则 $X^{\mathsf{T}}X$ 的迹是______.

- 5. 若 $A = \begin{pmatrix} 5 & -3 \\ 4 & -2 \end{pmatrix}$, 则 A^{100} 的第 2 行第 2 列元素是______.
- 6. 若 $A \in P^{2 \times 5}$, $B \in P^{5 \times 2}$ 满足 $AB = \begin{pmatrix} 3 & 2 \\ 2 & 1 \end{pmatrix}$, 则 E BA 的行列式 是______.

解答题 (一)

7. 设 A, B 为 3 阶方阵, A 可逆, 且 $2A^{-1}B = B - 4E$, 判断 A - 2E 是否可逆; 如果可逆, 求出它的逆矩阵.

4/12

解答题 (二)

8. 设
$$A = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$
, $B = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 0 \end{pmatrix}$. 试判断是否存在矩阵 C , 使得 $A = C^{\mathsf{T}}BC$; 如果存在, 写出一个这样的 C .

解答题 (三)

9.
$$\overline{A} = \begin{pmatrix} 1 & 2 & 3 & \cdots & n-1 & n \\ n & 1 & 2 & \cdots & n-2 & n-1 \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ 2 & 3 & 4 & \cdots & n & 1 \end{pmatrix}, \, \overline{x} \, A^{-1}.$$

6/12

解答题 (四)

10. 设
$$A$$
, B 分别为 3×2 和 2×3 矩阵, 且 $AB = \begin{pmatrix} -1 & 3 & -9 \\ 2 & 0 & 6 \\ 1 & -1 & 5 \end{pmatrix}$, 求 BA .

证明题 (一)

11. 在所有 2×2 复矩阵中, 考虑以下四个矩阵

$$E = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, I = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}, J = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, K = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}.$$

 $\Rightarrow H = \{aE + bI + cJ + dK | a, b, c, d \in \mathbb{R}\}.$

- (1) 证明 H 关于乘法封闭.
- (2) 证明 H 中非零元素一定可逆.

证明题 (二)

12. 设
$$A \in P^{n \times n}$$
, α , $\beta \in P^{n \times 1}$, 求证: $\det(A - \alpha \beta^{\mathsf{T}}) = \det(A) - \beta^{\mathsf{T}} A^* \alpha$.

9/12

证明题 (三)

13. 设 A, B, C, D 为 n 阶矩阵, 且 $AB^{\mathsf{T}} = BA^{\mathsf{T}}$, $CD^{\mathsf{T}} = DC^{\mathsf{T}}$, $AD^{\mathsf{T}} - BC^{\mathsf{T}} = E_n$. 求证: $A^{\mathsf{T}}D - C^{\mathsf{T}}B = E_n$.

证明题 (四)

14. 设 $A \in P^{m \times m}$, $B \in P^{n \times n}$, $X \in P^{m \times n}$ 满足 AX = XB. 如果有互素的多项式 $f, g \in P[x]$ 使得 f(A) = O, g(B) = O, 求证: X = O.

补充题

A1. (Frobenius 不等式) 设 $A \in P^{m \times n}$, $B \in P^{n \times r}$, $C \in P^{r \times s}$, 求证:

秩
$$(AB)$$
 + 秩 (BC) \leq 秩 (B) + 秩 (ABC) .

- A2. 若 n 阶方阵 A, B 满足 秩(ABA) =秩(B), 求证: 存在可逆矩阵 P, 使得 ABP = PBA.
- A3. 是否存在 A, B, $C \in SL_2(\mathbb{Z})$, 使得 $A^2 + B^2 = C^2$? 使得 $A^4 + B^4 = C^4$ 呢? (注: $SL_2(\mathbb{Z})$ 表示行列式为 1 的二阶整数矩阵构成的集合).
- A4. 设 n 阶复方阵 A, B_j , C_j 满足

$$A = \sum_{i=1}^{s} (B_i C_i - C_i B_i), \quad AB_j = B_j A, \quad 1 \le j \le s.$$

求证: $\operatorname{tr}(A^k) = 0, k = 1, 2, \cdots$

- A5. 设 A, B 为 n 阶实对称方阵, 求证: $tr((AB)^2) \le tr(A^2B^2)$.
- A6. 设 $A = (a_{ij})$ 是 n 阶反对称矩阵 (n) 为偶数), 证明

$$|A| = \left(\sum_{i=1}^{\tau(i_1 i_2 \cdots i_n)} a_{i_1 i_2} a_{i_3 i_4} \cdots a_{i_{n-1} i_n}\right)^2$$

这里 \sum 表示对所有满足 $i_1 < i_2, i_3 < i_4, \dots, i_{n-1} < i_n,$ 且 $i_1 < i_3 < \dots < i_{n-1}$ 的排列 i_1, i_2, \dots, i_n 求和.