Introduction to Numerical Analysis HW3

Yu Cang 018370210001

June 10, 2018

1 CANTOR'S SET

1.	<i>Proof.</i> As C_i is closed and C is the intersection of these closed sets, C is closed. It's clear that C is bounded. Thus, by Heine-Borel theorem, C is compact.	
2.	<i>Proof.</i> Suppose $x \in C_m$, $y \in C_n$ and $x < y$. There are 2^m subsets in C_m and the length of each subset is $\frac{1}{3^m}$. Also, there are 2^n subsets in C_n and the length of each subset is $\frac{1}{3^n}$. As $C \subset C_m \cap C_n$, suppose $m \le n$, there must exist a subset in C_n s.t. $x \in C_n$. If x and y lie in the same subset of C_n , with further division of the subset, there will be a gap between x and y , thus, there exists an element z lies in the gap and satisfies $x < z < y$. If x and y lie in different subsets of C_n , denoted as $C_{n,i}$ and $C_{n,j}$, it's obvious that such z exists in the gap between $C_{n,i}$ and $C_{n,j}$ and satisfies $x < z < y$.	i. Il
3.	a) 0 b) <i>Proof.</i> As there are 2^n subsets in C_n and the length of each subset is $\frac{1}{3^n}$, thus th Lebesgue measure of C_n is the sum of the Lebesgue measure of each closed subset. Thus $\lambda(C_n) = (\frac{2}{3})^n$. As $C = \bigcap_{n=1}^{\infty} C_n$, then $\lambda(C) \leq \lambda(C_n) = (\frac{2}{3})^n$, thus $\lambda(C) = 0$.	
4.	a) <i>Proof.</i> As the end points of each subset in C_n is not removed in any subdivision thus C is not empty.	1,

b) $x = \sum_{i=1}^{\infty} \frac{a_i}{3^i}, \text{ with } a_i \in \{0, 2\}$ (1.1)

- c) Consider the i th digit in elemnet s_i , it will be possible to construct such an element that the i th digit is different from that in s_i , thus s is not included in the original list.
- d) *Proof.* Suppose C is countable, express each $x \in C$ in ternary form, then each digit in x is either 0 or 2. Thus, the choice of each digit appears to be binary. Consider the i-th digit in elemnet x_i , it will be possible to construct such an element t, whose i-th digit is different from that in x_i (complementary). Thus t is not included in the original list, which implies the assumption fails.
- 5. Althouth *C* is uncountable, but the measure of its complement is 1, which is illustrated below, thus the measure of *C* is 0.

$$\lambda(C^{c}) = \frac{1}{3} + 2 * \frac{1}{9} + \dots$$

$$= \frac{1}{3} \sum_{i=0}^{\infty} (\frac{2}{3})^{i}$$

$$= \frac{1}{3} \lim_{n \to \infty} \frac{1 - (2/3)^{n}}{1 - (2/3)}$$

$$= 1$$
(1.2)

2 CANTOR'S FUNCTION

1.

2.

3.

4.

3 TAYLOR'S THEOREM

1.

2.

4 CONVERGENCE OF RATIONALS TO IRRATIONALS

1.

2.

3.