Kommunikationssysteme

(Modulcode 941306)

Prof. Dr. Andreas Terstegge

Die Vermittlungsschicht im Internet

Routing im Internet

"Das Weiterleiten (Routing) erfüllt die wichtige Aufgabe, einzelne Teilstrecken des Kommunikationsnetzes verbinden, dass eine Ende-zu-Ende-Kommunikation zwischen den angeschlossenen Teilnehmern möglich wird."

Das Routing kann in zwei Teilprozesse zerlegt werden:

- Das eigentliche Routing (die Control-Plane) ist verantwortlich für Wegewahl, mit der die Ende-zu-Ende-Kommunikation erreicht wird
- Das **Weiterleiten** (engl. *forwarding*) der Pakete (die Data-Plane) gemäß den Vorgaben der Control-Plane

Die Forwarding-Entscheidung wird für jedes Paket durchgeführt

- Unabhängig von vorherigen Entscheidungen
- Entscheidung auf Basis der Zieladresse

Das Optimalitätsprinzip

- Das Internet ist im weitesten Sinne ein Graph **Knoten**: Netzwerk-Elemente (Rechner/Router etc.) Kanten: Existierende physikalische Verbindungen
- Gesucht wird der (eindeutige) Quelle-Senke-Baum mit den 'kürzesten' Verbindungen von beliebigen Quellen (Blätter) zum Ziel (Wurzel)

Routing - Kostenfunktion eines Weges

Was bedeutet eigentlich ,kürzester Weg'?

- Geringste Anzahl ,hops' ?
- Schnellste Verbindung?
- Physisch kürzeste Verbindung?
- Maximierung des Datendurchsatzes ?

Es gibt noch weitere Qualitätsmaße für ein 'gutes' Routing' die sich ggf. widersprechen:

korrekt, einfach, robust, stabil, fair, effizient

Für die weiteren Folien nehmen wir ein quantifizierbares **Gewicht** für jede Kante an, das sich i.d.R. nicht kurzfristig ändert.

Lösung des Optimierungsproblems: **Dijkstra Algorithmus**

Ansatz:

- Ausgehend von der Quelle wird mit jedem Schritt ein neuer Knoten hinzugenommen
- Die Auswahl des Knotens geschieht so, dass der Knoten selektiert wird, der mit die günstigste Anbindung erlaubt
- Damit teilt sich der Graph in zwei Teile auf:
 - Eine Menge N' von Knoten für die der günstigste Weg schon ermittelt wurde
 - Eine Menge von Knoten, für die der Weg noch zu ermitteln ist
- Ordnung innerhalb der direkten Verbindungen zwischen diesen zwei Mengen bringt die Lösung
 - O Auswahl des kleinsten Wertes
 - Es kann keinen günstigeren Weg geben

FH AACHEN UNIVERSITY OF APPLIED SCIENCES

Lösung des Optimierungsproblems: Dijkstra Algorithmus (,Shortest Path')

Der 'kürzeste' Weg von A nach D soll berechnet werden.

Hier: Die ersten 6 Iterationen

Routing im realen Kontext

Verschicken von Paketen

- Jeder Rechner und jeder Router hat eigene Weiterleitungstabelle
 - > Wird bei der Versendung jedes einzelnen Paketes konsultiert
 - > Zieladresse im IP-Paket bestimmt, welcher Weg gewählt wird
- Kann statisch konfiguriert werden (z.B. im eigenen lokalen Netz via DHCP oder mittels Kommandos)
- Router im Backbone sollen <u>auf Änderungen</u> im Netz reagieren können
 - > Statische Konfiguration unmöglich
 - > Wie kommen die Router dynamisch zu ihren Tabellen?

→ Routing-Protokolle

 Router unterhalten sich und tauschen Informationen über Verbindungen im Netz aus!

Routing im realen Kontext

Zwei große Klassen von Routing-Verfahren:

- ohne Kenntnis der gesamten Netztopologie
 - → Distanzvektoralgorithmen
- mit Kenntnis der gesamten (zumindest im AS) vorhandenen Netztopologie
 - → Link-State Routing
- Innerhalb der AS werden heute Routing-Protokolle eingesetzt, die Link-State-Routing realisieren.
- Bei den Inter-AS Protokollen kommen auch noch Distanzvektoralgorithmen zum Einsatz (Verbergen der Struktur des AS).

Distanzvektoralgorithmen

Grundidee:

- Jeder Router schickt regelmäßig (z.B. alle 30s) seinen Nachbarn einen Distanzvektor, der die (geschätzten) Kosten zu allen anderen Knoten im Netz enthält.
- Jeder Router aktualisiert daraufhin seine eigene Liste mit den Kosten zu den anderen Knoten und wählt dabei den Weg mit den geringsten Kosten

→ Bellman-Ford-Algorithmus

 Grundlage des Routing im ARPANET und im Internet im Protokol RIP (Routing Information Protocol) verwendet

Bellman-Ford Algorithmus

Definiere

 $c_{x}(v) := Kosten zum Nachbarn v von x aus$

 $d_{x}(y) :=$ Kosten des günstigsten Weges von x nach y

Gibt es einen Weg zwischen x und y und sind x und y nicht direkt verbunden, dann muss es einen Nachbarn v von x geben für den gilt:

$$d_{x}(y) = \min \{c_{x}(v) + d_{v}(y)\}$$

hierbei wird das Minimum über alle Nachbarn von x genommen.

Die Kosten der direkten Verbindung wird als bekannt angenommen

Distanzvektoralgorithmen

- Betrachtet wird Router J.
- Er kennt die Kosten (z.B. ms) zu den Routern A, I, H und K
- Er erhält Übertragungsvektoren von A, I, H und K

Distanzvektoralgorithmen

Vor- und Nachteile des Distanzvektoralgorithmus

Vorteile:

- Leicht zu implementieren, einfache Berechnung
- Neue, bessere Routen werden im Netz schnell propagiert

Nachteile:

 Der Ausfall von Routen/Routern führt zum "Count-to-Infinity" Problem:

A - B - C

Betrachte B: Router A fällt aus, bekommt aber von C gesagt, dass er einen Weg nach A kennt (<u>der allerdings über B führt,</u> was B nicht weiß...) → Die Kosten zum Weg nach A schaukeln sich langsam auf...

Distanzvektoralgorithmen: Count to Infinitiy

A	В	С	D	E	
	1	2	3	4	Initially
	3	2	3	4	After 1 exchange
	3	4	3	4	After 2 exchanges
	5	4	5	4	After 3 exchanges
	5	6	5	6	After 4 exchanges
	7	6	7	6	After 5 exchanges
	7	8	7	8	After 6 exchanges
		:			
	•	•	•	•	

Router A ist initial ,down', und dann ,up'

→ Neue Routen werden schnell gelernt und propagiert.

Router A ist initial ,up', und dann ,down'

→ Count to Infinity-Problem

Grundidee:

- Jeder Router führt die folgenden Schritte durch:
 - 1) Die Nachbarn und deren Netzadressen ermitteln
 - 2) Die Kosten zu jedem seiner Nachbarn festlegen
 - 3) Ein Paket zusammenstellen, in dem alles steht was bisher gelernt wurde
 - 4) Dieses Paket an alle anderen Router senden und von allen anderen Routern derartige Pakete empfangen
 - 5) Den kürzesten Pfad zu allen anderen Routern berechnen
- Dadurch wird die gesamte Topologie in jedem Router abgebildet. Anwendung des Dijkstra-Algorithmus möglich!

1) Die Nachbarn und deren Netzadressen ermitteln

Versenden von HELLO-Paketen

2) Die Kosten zu jedem seiner Nachbarn festlegen

- Z.B. über die reziproke Bandbreite der Verbindung
- Z.B. über spezielle ECHO-Pakete, die die Übertragungsdauer messen

3) Ein Paket zusammenstellen, in dem alles steht was bisher gelernt wurde

E		F			
Seq	Nr.	Seq	SeqNr.		
Alt	er	Alter			
Α	5	В	6		
С	1	D	7		
F	8	Е	8		

4) Dieses Paket an alle anderen Router senden und von allen anderen Routern derartige Pakete empfangen

- regelmäßig oder bei 'Ereignissen'
- Realisierung über Fluten (Broadcast)
- Versionierung durch Sequenznummern
- Altern der Pakete → keine unbegrenzte Lebensdauer

5) Den kürzesten Pfad zu allen anderen Routern berechnene

- z.B. über Dijkstra-Algorithmus

Vorteile:

- Optimale Lösung des Routings kann berechnet werden
- Gute Performance bei Änderungen des Netzwerkes

Nachteile:

- Höherer Rechenaufwand im Router
- Höhere Komplexität bei der Versendung der Link-State Pakete an alle andern Router und der Analyse der empfangenen Pakete
- Höhere Netzlast durch Routing Protokoll

Routing im Internet

- Routing im Internet muss höchst autonom und extrem dynamisch realisiert werden
- Das kann nur durch die bisher skizzierten Routing-Protokolle realisiert werden: Router unterhalten sich und tauschen Informationen aus
- Abgestuftes System:
 - Innerhalb eines Autonomen Systems kann man die gesamte Topologie wissen
 - Zwischen Autonomen Systemen sollte dies nicht Voraussetzung sein

- Interne Protokolle Intra-AS (OSPF, RIP, IS-IS)
- Externe Protokolle Inter-AS (BGP)

Übersicht Routing-Protokolle

Internet Routing-Protokolle:

RIP, RIP2: Intra-AS, Distance-Vector,

veraltet

Intra-AS, ursprünglich für DECnet, IS-IS:

danach ISO Standard und Grundlage

für OSPF, (Shortest Path First)

Intra-AS, Link-State, Unicast **OSPF:**

(Shortest Path First)

Border Gateway Protokol BGP:

Inter-AS, Distance-Vector

Routing: "lokal" vs. "global"

Jeder Rechner braucht eine Routing-Tabelle

Router im Internet

- > Meist Link-State-Verfahren (Dijkstra) wie OSPF innerhalb autonomer Systeme (Backbones)
- > Distance-Vector-Verfahren (Bellmann-Ford) zur Kopplung autonomer Systeme

Router in Firmen / Stadtnetzes

- > Können Link-State- oder Distance-Vector-Verfahren nutzen
- > Meist sinnvoller: statische Konfiguration
 - O Wenn es sowieso nur einen Pfad in den Backbone gibt, braucht man auch keine Informationen über mögliche Pfade auszutauschen
- > Endrechner
 - Statische Konfiguration oder per DHCP bezogene Informationen

Die Forwarding-Entscheidung im Detail

FH Aachen
Fachbereich 9 Medizintechnik und Technomathematik
Prof. Dr.-Ing. Andreas Terstegge
Straße Nr.
PLZ Ort
T +49. 241. 6009 53813
F +49. 241. 6009 53119
Terstegge@fh-aachen.de
www.fh-aachen.de