

Universidade Federal de Pelotas

Centro de Desenvolvimento Tecnológico Bacharelado em Engenharia de Computação

Circuitos Digitais

Aula T10

Parte Operativa

Circuitos Combinacionais: Subtrator paralelo, somador/subtrator paralelo, somadores rápidos, multiplicador, deslocador.

Prof. Leomar S. Rosa Jr. leomarjr@ufpel.edu.br

Circuitos Combinacionais

Subtração Binária

Princípio Básico

A - B = A + (-B)

onde -B é o número B de sinal trocado

Computação UFPel Circuitos Digitais

Slide T10.2

Somador/Subtrator Paralelo

• Seria possível modificar este circuito, de modo que ele possa ser "programado" para ser somador ou subtrator?

Resposta: Positivo! Modificações necessárias:

- Substituir os inversores por "negadores controlados" (xors)
- Controlar o valor de c0 (0 para adição/1 para subtração)

Computação UFPel Circuitos Digitais

Slide T10.9

Implementação de Somadores

A Função OU Exlcusivo (XOR)

- A função XOR resulta 1 se um número ímpar de entradas valer 1
- Tem um papel importantíssimo na aritmética: implementa a soma (sem o transporte)

`			,
X	Υ	X⊕Y	$X \oplus Y = \overline{X} \cdot Y + X \cdot \overline{Y}$
0	0	0	X T
0	1	1	× =
1	0	1	x Y símbolo
1	1	0	

Computação UFPel Circuitos Digitais

Slide T10.12

Implementação de Somadores

O Problema da Propagação do Transporte (Carry Propagation)

Estimativa do atraso crítico do somador paralelo a partir de um dos SCs:

- Encontrar o caminho de maior atraso, que inicie por a0, b0, ou ci e termine em ci+1
- Encontrar o caminho de maior atraso, que inicie por ci e termine em ci+1

Computação UFPel Circuitos Digitais

Slide T10.13

Prof. Leomar S. Rosa Jr.

Circuitos Combinacionais

Analisando a Propagação do Carry

Pergunta: será que não é possível alterar a arquitetura do somador, de modo a "quebrar" ou reduzir tal interdependência?

A resposta é ...

SIM!!!

Computação UFPel Circuitos Digitais

Slide T10.14

Somadores Rápidos

Para reduzir o atraso na propagação do *carry* as seguintes abordagens podem ser usadas:

- Reduzir o atraso na geração do carry (aplicada nos somadores Manchester);
- 2. Diminuir o atraso da cadeia de propagação do *carry* (aplicada nos somadores *Carry-Lookahead*, *Carry-Select*, *Carry-Skip*, etc.);
- 3. Mudar o sistema de representação numérica.

Estas soluções investem em desempenho, mas resultam em acréscimo de recursos (número de transistores utilizados).

Computação UFPel Circuitos Digitais

Slide T10.15

Prof. Leomar S. Rosa Jr.

Circuitos Combinacionais

Somadores Carry Select

Princípio: dividir a adição em seções de 4 ou 8 bits e em cada seção, realizar a adição simultaneamente para os dois casos possíveis (carry in=0 e carry in=1)

- Em cada seção de adição são usados dois somadores (geralmente, ripple carry) idênticos e um multiplexador
- O multiplexador seleciona um dos dois resultados, utilizando como controle o carry out da seção anterior

Computação UFPel Circuitos Digitais

Slide T10.16

Multiplicação Binária (números sem sinal)

Exemplo 1: reorganizando...

Computação UFPel Circuitos Digitais

Slide T10.19

Prof. Leomar S. Rosa Jr.

Circuitos Combinacionais

Multiplicação Binária (números sem sinal)

Exemplo 2:

• Conclusão: n bits x m bits

n+m bits

Computação UFPel Circuitos Digitais

Slide T10.20

Multiplicação Binária (números sem sinal)

Mas como multiplicar 2 números de 1 bit cada?

- Resulta 1 sse os dois bits valem 1
- Nunca ocorre overflow!

operação E

Computação UFPel Circuitos Digitais

Slide T10.21

Prof. Leomar S. Rosa Jr.

Multiplicação Binária (números sem sinal)

Generalização

Computação UFPel Circuitos Digitais

Slide T10.22

Multiplicação Binária (números sem sinal)

Pergunta: qual é o custo de um multiplicador como este?

Resposta:

2 x custo do somador de 3 bits

+

9 x custo de uma AND de 2 entradas

Computação UFPel Circuitos Digitais

Slide T10.25

Prof. Leomar S. Rosa Jr.

Circuitos Combinacionais

Deslocamento de bits (shift)

Um deslocador (shifter) com uso de multiplexadores 2:1

- Se desloca=1, este circuito desloca cada bit uma posição para a esquerda
- Qual é o significado desta operação?

Computação UFPel Circuitos Digitais

Slide T10.26

Deslocamento de bits (shift)

Outro deslocador (shifter) com uso de multiplexadores 2:1

- Se desloca=1, este circuito desloca cada bit uma posição para a direita
- Qual é o significado desta operação?

Computação UFPel Circuitos Digitais

Slide T10.27