Learning from data: Linear Regression

Christian Forssén¹

Morten Hjorth-Jensen^{2,3}

¹Department of Physics, Chalmers University of Technology, Sweden

²Department of Physics, University of Oslo

³Department of Physics and Astronomy and National Superconducting Cyclotron Laboratory, Michigan State University

Aug 30, 2020

1 Linear regression

1.1 Why Linear Regression (aka Ordinary Least Squares)

Fitting a continuous function with linear parameterization in terms of the parameters $\boldsymbol{\theta}$.

- Often used for fitting a continuous function!
- Gives an excellent introduction to central Machine Learning features with understandable pedagogical links to other methods like Neural Networks, Support Vector Machines etc
- Analytical expression for the fitting parameters θ
- Analytical expressions for statistical propertiers like mean values, variances, confidence intervals and more
- Analytical relation with probabilistic interpretations
- Easy to introduce basic concepts like bias-variance tradeoff, cross-validation, resampling and regularization techniques and many other ML topics
- Easy to code! And links well with classification problems and logistic regression and neural networks
- Allows for easy hands-on understanding of gradient descent methods

Regression analysis, overarching aims.

© 2018-2020, Christian Forssén. Released under CC Attribution-NonCommercial 4.0 license

Regression modeling deals with the description of the sampling distribution of a given random variable y and how it varies as function of another variable or a set of such variables $\mathbf{x} = [x_0, x_1, \dots, x_{n-1}]^T$. The first variable is called the **dependent**, the **outcome** or the **response** variable while the set of variables \mathbf{x} is called the **independent** variable, or the **predictor** variable or the **explanatory** variable.

A regression model M aims at finding a likelihood function $p(\boldsymbol{y}|\boldsymbol{x}, M, \mathcal{D}_n)$ that is the conditional distribution for \boldsymbol{y} given the independent variable \boldsymbol{x} and a model M that has been trained on a data set \mathcal{D}_n . The data set consists of:

- n cases $i = 0, 1, 2, \dots, n-1$
- Response variable y_i with i = 0, 1, 2, ..., n 1. These are sometimes referred to as target, dependent or outcome.
- For each case there will be p so-called explanatory (independent or predictor) variables $\boldsymbol{x}_i = [x_{i0}, x_{i1}, \dots, x_{ip-1}]$ with $i = 0, 1, 2, \dots, n-1$ and explanatory variables running from 0 to p-1. See below for more explicit examples.

The goal of the regression analysis is to extract/exploit a relationship between y and x or to infer causal dependencies, and to make fits, and predictions, and many other things.

The p explanatory variables for the n cases in the data set are normally represented by a matrix \mathbf{X} .

The matrix **X** is called the *design matrix*. In addition, each case is also represented by its *response variable* y. The aim of regression analysis is to explain y in terms of X through a functional relationship like $y_i = f(\mathbf{X}_i, *)$.

It is common to assume a linear relationship between X and y. This assumption gives rise to the *linear regression model* where $\theta = [\theta_0, \dots, \theta_{p-1}]^T$ are the regression parameters. Linear regression gives us a set of analytical equations for the parameters θ_i .

Example: Liquid-drop model for nuclear binding energies.

In order to understand the relation among the predictors p, the set of data \mathcal{D}_n and the target (outcome, output etc) \boldsymbol{y} , consider the model we discussed for describing nuclear binding energies.

There we assumed that we could parametrize the data using a polynomial approximation based on the liquid drop model. Assuming

$$BE(A, N, Z) = a_0 + a_1 A + a_2 A^{2/3} + a_3 Z^2 A^{-1/3} + a_4 (N - Z)^2 A^{-1},$$

we have five predictors, that is the intercept (constant term, aka bias), the A dependent term, the $A^{2/3}$ term and the $Z^2A^{-1/3}$ and $(N-Z)^2A^{-1}$ terms. Although the predictors are somewhat complicated functions of A, N, Z, we note that the p=5 regression parameters $\theta=(a_0,a_1,a_2,a_3,a_4)$ enter linearly. Furthermore we have n cases. It means that our design matrix is a $p\times n$ matrix \boldsymbol{X} .

1.2 Polynomial basis functions

Let us study a case from linear algebra where we aim at fitting a set of data $\mathbf{y} = [y_0, y_1, \dots, y_{n-1}]$. We could think of these data as a result of an experiment or a complicated numerical experiment. These data are functions of a variable x so that for the data set we have $\mathbf{x} = [x_0, x_1, \dots, x_{n-1}]$ and $y_i = y(x_i)$ with $i = 0, 1, 2, \dots, n-1$. The variable x_i could represent a physical quantity like time, temperature, position etc. We assume that y(x) is a smooth function.

Now, we don't know y(x) but we want to use the data that we have to fit a function which can allow us to make predictions for values of y which are not in the present set. The perhaps simplest approach is to assume we can parametrize our function in terms of a polynomial f(x) of degree p-1. Since we realize that our polynomial model might not represent y(x) perfectly we also add an error term

$$y = y(x) \to y(x_i) = f(x_i) + \epsilon_i = \sum_{i=0}^{p-1} \theta_i x_i^j + \epsilon_i,$$

where ϵ_i is the error in our approximation.

For every set of values y_i, x_i we have thus the corresponding set of equations

$$y_0 = \theta_0 + \theta_1 x_0^1 + \theta_2 x_0^2 + \dots + \theta_{p-1} x_0^{p-1} + \epsilon_0$$

$$y_1 = \theta_0 + \theta_1 x_1^1 + \theta_2 x_1^2 + \dots + \theta_{p-1} x_1^{p-1} + \epsilon_1$$

$$y_2 = \theta_0 + \theta_1 x_2^1 + \theta_2 x_2^2 + \dots + \theta_{p-1} x_2^{p-1} + \epsilon_2$$

$$\dots$$

$$y_{n-1} = \theta_0 + \theta_1 x_{n-1}^1 + \theta_2 x_{n-1}^2 + \dots + \theta_{p-1} x_{n-1}^{p-1} + \epsilon_{n-1}.$$

Defining the vectors

$$\mathbf{y} = [y_0, y_1, y_2, \dots, y_{n-1}]^T,$$

and

$$\boldsymbol{\theta} = [\theta_0, \theta_1, \theta_2, \dots, \theta_{p-1}]^T,$$

and

$$\boldsymbol{\epsilon} = [\epsilon_0, \epsilon_1, \epsilon_2, \dots, \epsilon_{n-1}]^T$$
,

and the design matrix

$$\boldsymbol{X} = \begin{bmatrix} 1 & x_0^1 & x_0^2 & \dots & \dots & x_0^{p-1} \\ 1 & x_1^1 & x_1^2 & \dots & \dots & x_1^{p-1} \\ 1 & x_2^1 & x_2^2 & \dots & \dots & x_2^{p-1} \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 1 & x_{n-1}^1 & x_{n-1}^2 & \dots & \dots & x_{n-1}^{p-1} \end{bmatrix}$$

we can rewrite our equations as

$$y = X\theta + \epsilon$$
.

The above design matrix is called a Vandermonde matrix.

General basis functions.

We are obviously not limited to the above polynomial expansions. We could replace the various powers of x with elements of Fourier series or instead of x_i^j we could have $\cos(jx_i)$ or $\sin(jx_i)$, or time series or other orthogonal functions. For every set of values y_i, x_i we can then generalize the equations to

$$y_0 = \theta_0 x_{00} + \theta_1 x_{01} + \theta_2 x_{02} + \dots + \theta_{p-1} x_{0p-1} + \epsilon_0$$

$$y_1 = \theta_0 x_{10} + \theta_1 x_{11} + \theta_2 x_{12} + \dots + \theta_{p-1} x_{1p-1} + \epsilon_1$$

$$y_2 = \theta_0 x_{20} + \theta_1 x_{21} + \theta_2 x_{22} + \dots + \theta_{p-1} x_{2p-1} + \epsilon_2$$

$$\dots$$

$$y_i = \theta_0 x_{i0} + \theta_1 x_{i1} + \theta_2 x_{i2} + \dots + \theta_{p-1} x_{ip-1} + \epsilon_i$$

$$\dots$$

$$y_{n-1} = \theta_0 x_{n-1,0} + \theta_1 x_{n-1,2} + \theta_2 x_{n-1,2} + \dots + \theta_{p-1} x_{n-1,p-1} + \epsilon_{n-1}.$$

We redefine in turn the matrix X as

$$\boldsymbol{X} = \begin{bmatrix} x_{00} & x_{01} & x_{02} & \dots & x_{0,p-1} \\ x_{10} & x_{11} & x_{12} & \dots & x_{1,p-1} \\ x_{20} & x_{21} & x_{22} & \dots & x_{2,p-1} \\ \dots & \dots & \dots & \dots & \dots \\ x_{n-1,0} & x_{n-1,1} & x_{n-1,2} & \dots & x_{n-1,p-1} \end{bmatrix}$$

and without loss of generality we rewrite again our equations as

$$y = X\theta + \epsilon$$
.

The left-hand side of this equation is kwown. The error vector ϵ and the parameter vector θ are unknown quantities. How can we obtain the optimal set of θ_i values?

We have defined the matrix X via the equations

$$y_{0} = \theta_{0}x_{00} + \theta_{1}x_{01} + \theta_{2}x_{02} + \dots + \theta_{p-1}x_{0p-1} + \epsilon_{0}$$

$$y_{1} = \theta_{0}x_{10} + \theta_{1}x_{11} + \theta_{2}x_{12} + \dots + \theta_{p-1}x_{1p-1} + \epsilon_{1}$$

$$y_{2} = \theta_{0}x_{20} + \theta_{1}x_{21} + \theta_{2}x_{22} + \dots + \theta_{p-1}x_{2p-1} + \epsilon_{1}$$

$$\dots$$

$$y_{i} = \theta_{0}x_{i0} + \theta_{1}x_{i1} + \theta_{2}x_{i2} + \dots + \theta_{p-1}x_{ip-1} + \epsilon_{1}$$

$$\dots$$

$$y_{n-1} = \theta_{0}x_{n-1,0} + \theta_{1}x_{n-1,2} + \theta_{2}x_{n-1,2} + \dots + \theta_{p-1}x_{n-1,p-1} + \epsilon_{n-1}.$$

Note that the design matrix $X \in \mathbb{R}^{n \times p}$, with the predictors referring to the column numbers and the entries n being the row elements.

With the above we use the design matrix to define the approximation \tilde{y} via the unknown quantity θ as

$$\tilde{y} = X\theta$$

and in order to find the optimal parameters θ_i instead of solving the above linear algebra problem, we define a function which gives a measure of the spread between the values y_i (which represent hopefully the exact values) and the parameterized values \tilde{y}_i , namely

$$C(\boldsymbol{\theta}) = \frac{1}{n} \sum_{i=0}^{n-1} (y_i - \tilde{y}_i)^2 = \frac{1}{n} \left\{ (\boldsymbol{y} - \tilde{\boldsymbol{y}})^T (\boldsymbol{y} - \tilde{\boldsymbol{y}}) \right\},$$

or using the matrix \boldsymbol{X} and in a more compact matrix-vector notation as

$$C(\boldsymbol{\theta}) = \frac{1}{n} \left\{ (\boldsymbol{y} - \boldsymbol{X} \boldsymbol{\theta})^T (\boldsymbol{y} - \boldsymbol{X} \boldsymbol{\theta}) \right\}.$$

This function is one possible way to define the so-called **cost function**. It is also common to define the cost function as

$$C(\boldsymbol{\theta}) = \frac{1}{2n} \sum_{i=0}^{n-1} (y_i - \tilde{y}_i)^2,$$

since when taking the first derivative with respect to the unknown parameters θ , the factor of 2 cancels out.

The function

$$C(\boldsymbol{\theta}) = \frac{1}{n} \left\{ \left(\boldsymbol{y} - \boldsymbol{X} \boldsymbol{\theta} \right)^T \left(\boldsymbol{y} - \boldsymbol{X} \boldsymbol{\theta} \right) \right\},$$

can be linked to the variance of the quantity y_i if we interpret the latter as the mean value. When linking (see the discussion below) with the maximum likelihood approach, we will indeed interpret y_i as a mean value

$$y_i = \langle y_i \rangle = \theta_0 x_{i,0} + \theta_1 x_{i,1} + \theta_2 x_{i,2} + \dots + \theta_{n-1} x_{i,n-1} + \epsilon_i,$$

where $\langle y_i \rangle$ is the mean value. Keep in mind also that till now we have treated y_i as the exact value. Normally, the response (dependent or

outcome) variable y_i the outcome of a numerical experiment or another type of experiment and is thus only an approximation to the true value. It is then always accompanied by an error estimate, often limited to a statistical error estimate given by the standard deviation discussed earlier. In the discussion here we will treat y_i as our exact value for the response variable.

In order to find the parameters θ_i we will then minimize the spread of $C(\boldsymbol{\theta})$, that is we are going to solve the problem

$$\min_{oldsymbol{ heta} \in \mathbb{R}^p} rac{1}{n} \left\{ \left(oldsymbol{y} - oldsymbol{X} oldsymbol{ heta}
ight)^T \left(oldsymbol{y} - oldsymbol{X} oldsymbol{ heta}
ight)
ight\}.$$

In practical terms it means we will require

$$\frac{\partial C(\boldsymbol{\theta})}{\partial \theta_j} = \frac{\partial}{\partial \theta_j} \left[\frac{1}{n} \sum_{i=0}^{n-1} \left(y_i - \theta_0 x_{i,0} - \theta_1 x_{i,1} - \theta_2 x_{i,2} - \dots - \theta_{n-1} x_{i,n-1} \right)^2 \right] = 0$$

which results in

$$\frac{\partial C(\boldsymbol{\theta})}{\partial \theta_j} = -\frac{2}{n} \left[\sum_{i=0}^{n-1} x_{ij} \left(y_i - \theta_0 x_{i,0} - \theta_1 x_{i,1} - \theta_2 x_{i,2} - \dots - \theta_{n-1} x_{i,n-1} \right) \right] = 0$$

or in a matrix-vector form as $\,$

$$\frac{\partial C(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} = 0 = \boldsymbol{X}^T \left(\boldsymbol{y} - \boldsymbol{X} \boldsymbol{\theta} \right).$$

We can rewrite

$$\frac{\partial C(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} = 0 = \boldsymbol{X}^T \left(\boldsymbol{y} - \boldsymbol{X} \boldsymbol{\theta} \right),$$

as

$$\boldsymbol{X}^T \boldsymbol{y} = \boldsymbol{X}^T \boldsymbol{X} \boldsymbol{\theta},$$

and if the matrix X^TX is invertible we have the solution

$$\boldsymbol{\theta} = \left(\boldsymbol{X}^T \boldsymbol{X} \right)^{-1} \boldsymbol{X}^T \boldsymbol{y}.$$

We note also that since our design matrix is defined as $X \in \mathbb{R}^{n \times p}$, the product $X^T X \in \mathbb{R}^{p \times p}$. In the liquid drop model example from the Intro lecture, we had p = 5 ($p \ll n$) meaning that we end up with inverting a small 5×5 matrix. This is a rather common situation, in many cases we end up with low-dimensional matrices to invert, which allow for the usage of direct linear algebra methods such as $\mathbf{L}\mathbf{U}$ decomposition or **Singular Value Decomposition** (SVD) for finding the inverse of the matrix $X^T X$.

Small question: What kind of problems can we expect when inverting the matrix X^TX ?

1.3 Training scores

We can easily test our fit by computing various **training scores**. Several such measures are used in machine learning applications. First we have the **Mean-Squared Error** (MSE)

$$MSE(\boldsymbol{\theta}) = \frac{1}{n} \sum_{i=1}^{n} (y_{\text{data},i} - y_{\text{model},i}(\boldsymbol{\theta}))^{2},$$

where we have n training data and our model is a function of the parameter vector $\boldsymbol{\theta}$.

Furthermore, we have the **mean absolute error** (MAE) defined as.

$$MAE(\boldsymbol{\theta}) = \frac{1}{n} \sum_{i=1}^{n} |y_{\text{data},i} - y_{\text{model},i}(\boldsymbol{\theta})|,$$

And the R2 score, also known as coefficient of determination is

$$R2(\boldsymbol{\theta}) = 1 - \frac{\sum_{i=1}^{n} (y_{\text{data},i} - y_{\text{model},i}(\boldsymbol{\theta}))^{2}}{\sum_{i=1}^{n} (y_{\text{data},i} - \bar{y}_{\text{model}}(\boldsymbol{\theta}))^{2}},$$

where $\bar{y}_{\text{model}}(\theta) = \frac{1}{n} \sum_{i=1}^{n} y_{\text{model},i}(\theta)$ is the mean of the model predictions.

The χ^2 function.

Normally, the response (dependent or outcome) variable y_i is the outcome of a numerical experiment or another type of experiment and is thus only an approximation to the true value. It is then always accompanied by an error estimate, often limited to a statistical error estimate given by the standard deviation discussed earlier.

Introducing the standard deviation σ_i for each measurement y_i (assuming uncorrelated errors), we define the χ^2 function as

$$\chi^{2}(\boldsymbol{\theta}) = \frac{1}{n} \sum_{i=0}^{n-1} \frac{\left(y_{i} - \tilde{y}_{i}\right)^{2}}{\sigma_{i}^{2}} = \frac{1}{n} \left\{ \left(\boldsymbol{y} - \tilde{\boldsymbol{y}}\right)^{T} \boldsymbol{\Sigma}^{-1} \left(\boldsymbol{y} - \tilde{\boldsymbol{y}}\right) \right\},$$

where the matrix Σ is a diagonal $n \times n$ matrix with σ_i^2 as matrix elements.

In order to find the parameters θ_i we will then minimize the spread of

$$\frac{\partial \chi^2(\boldsymbol{\theta})}{\partial \theta_j} = \frac{\partial}{\partial \theta_j} \left[\frac{1}{n} \sum_{i=0}^{n-1} \left(\frac{y_i - \theta_0 x_{i,0} - \theta_1 x_{i,1} - \theta_2 x_{i,2} - \dots - \theta_{n-1} x_{i,n-1}}{\sigma_i} \right)^2 \right] = 0,$$

which results in
$$\frac{\partial \chi^2(\boldsymbol{\theta})}{\partial \theta_j} = -\frac{2}{n} \left[\sum_{i=0}^{n-1} \frac{x_{ij}}{\sigma_i} \left(\frac{y_i - \theta_0 x_{i,0} - \theta_1 x_{i,1} - \theta_2 x_{i,2} - \dots - \theta_{n-1} x_{i,n-1}}{\sigma_i} \right) \right] = 0,$$
 or in a matrix-vector form as

or in a matrix-vector form as

$$\frac{\partial \chi^{2}(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} = 0 = \boldsymbol{A}^{T} \left(\boldsymbol{b} - \boldsymbol{A} \boldsymbol{\theta} \right).$$

where we have defined the matrix $\mathbf{A} = \mathbf{X} \mathbf{\Sigma}^{-1/2}$ with matrix elements $a_{ij} = x_{ij}/\sigma_i$ and the vector \mathbf{b} with elements $b_i = y_i/\sigma_i$.

We can rewrite

$$\frac{\partial \chi^2(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} = 0 = \boldsymbol{A}^T \left(\boldsymbol{b} - \boldsymbol{A} \boldsymbol{\theta} \right),$$

$$A^Tb = A^TA\theta.$$

and if the matrix $\boldsymbol{A}^T\boldsymbol{A}$ is invertible we have the solution

$$\boldsymbol{\theta} = \left(\boldsymbol{A}^T \boldsymbol{A} \right)^{-1} \boldsymbol{A}^T \boldsymbol{b}.$$

If we then introduce the matrix

$$\boldsymbol{H} = \left(\boldsymbol{A}^T \boldsymbol{A}\right)^{-1}$$

we have then the following expression for the parameters θ_i (the matrix elements of \boldsymbol{H} are h_{ij})

$$\theta_j = \sum_{k=0}^{p-1} h_{jk} \sum_{i=0}^{n-1} \frac{y_i}{\sigma_i} \frac{x_{ik}}{\sigma_i} = \sum_{k=0}^{p-1} h_{jk} \sum_{i=0}^{n-1} b_i a_{ik}$$

We state without proof the expression for the uncertainty in the parameters θ_j as (we leave this as an exercise)

$$\sigma^2(\theta_j) = \sum_{i=0}^{n-1} \sigma_i^2 \left(\frac{\partial \theta_j}{\partial y_i}\right)^2,$$

resulting in

$$\sigma^2(\theta_j) = \sum_{i=0}^{n-1} \sigma_i^2 \left(\frac{\partial \theta_j}{\partial y_i}\right)^2,$$
 in
$$\sigma^2(\theta_j) = \left(\sum_{k=0}^{p-1} h_{jk} \sum_{i=0}^{n-1} a_{ik}\right) \left(\sum_{l=0}^{p-1} h_{jl} \sum_{m=0}^{n-1} a_{ml}\right) = h_{jj}!$$