Ressource R1.05 Introduction aux bases de données et SQL

Lydia Boudjeloud-Assala

Professeure des Universités en Informatique

lydia.boudjeloud-assala@univ-lorraine.fr

Département Informatique - IUT Metz 2024-2025

Plan

- Algèbre relationnelle
- Introduction au langage SQL

Langage et algèbre relationnel

Un peu d'histoire

Un peu d'histoire

Le langage SQL (Structured Query Language)

 Il a fait l'objet de plusieurs normes ANSI/ISO dont la plus répandue aujourd'hui est la norme SQL2 qui a été définie en 1992.

Année	Nom	Appellation	Commentaires
<u>1986</u>	ISO/CEI 9075:1986	SQL-86 ou SQL-87	Édité par l'ANSI puis adopté par l'ISO en <u>1987</u> .
<u>1989</u>	ISO/CEI 9075:1989	SQL-89 ou SQL-1	Révision mineure.
<u>1992</u>	ISO/CEI 9075:1992	SQL-92 (en) alias SQL2	Révision majeure.
<u>1999</u>	ISO/CEI 9075:1999	SQL-99 (en) alias SQL3	Expressions rationnelles, requêtes récursives, déclencheurs, types non-scalaires et quelques fonctions orientées objet (les deux derniers points sont quelque peu controversés et pas encore largement implémentés).
2003	ISO/CEI 9075:2003	SQL:2003 (en)	Introduction de fonctions pour la manipulation XML, « window functions », ordres standardisés et colonnes avec valeurs auto-produites (y compris colonnes d'identité).
2008	ISO/CEI 9075:2008	<u>SQL:2008 (en)</u>	Ajout de quelques fonctions de fenêtrage (ntile, lead, lag, first value, last value, nth value), limitation du nombre de lignes (OFFSET / FETCH), amélioration mineure sur les types distincts, curseurs et mécanismes d'auto-incrémentation.
<u>2011</u>	ISO/CEI 9075:2011	SQL:2011 (en)	Ajout du support des tables temporelles (historisation automatique).

https://fr.wikipedia.org/wiki/Structured_Query_Language

Le langage SQL (Structured Query Language)

 Il a fait l'objet de plusieurs normes ANSI/ISO dont la plus répandue aujourd'hui est la norme SQL2 qui a été définie en 1992.

Année	Nom	Appellation	Commentaires
<u>2011</u>	ISO/CEI 9075:2011	<u>SQL:2011 (en)</u>	Ajout du support des tables temporelles (historisation automatique).
2016	ISO/IEC 9075:2016	SQL:2016	Ajout la correspondance des motifs de ligne et les fonctions de table polymorphes, ainsi que le support JSON tant attendu. La norme SQL a ajouté la prise en charge de JSON pour permettre l'interopérabilité avec les applications modernes et les nouveaux types de bases de données.
2019	ISO/IEC 9075:2019	SQL:2019	Elle a ajouté la partie qui définit la prise en charge des tableaux multidimensionnels dans SQL.
2023	ISO/IEC 9075:2023	SQL:2023	Une série de modifications du langage SQL existant, de nouvelles fonctionnalités pour JSON et l'introduction d'une nouvelle section pour les requêtes sur les graphes de propriétés pour définir et parcourir les graphes dans un SGBD relationnel.

Quelques rappels

MCD - MLD - Schéma Relationnel

Clients

NumClient
Nom
Prénom
Adresse
Code Postal
ville

Articles

CodeArticle
Désignation
Prix d'achat
Prix de vente

Schéma relationnel

Clients (<u>NumClient</u>, Nom, Prénom, Adresse, Code Postal, ville) Articles (<u>CodeArticle</u>, Désignation, Prix d'achat, Prix de vente) Commander (<u># NumClient</u>, <u># CodeArticle</u>)

Clients

NumClient

Nom Prénom Adresse Code Postal ville

MLD - MRD

Commander

NumClient # CodeArticle

Articles

CodeArticle

Désignation Prix d'achat Prix de vente

MCD - MLD - Schéma Relationnel

Schéma relationnel

Relations

Clients (<u>NumClient</u>, Nom, Prénom, Adresse, Code Postal, ville) Articles (<u>CodeArticle</u>, Désignation, Prix d'achat, Prix de vente) Commander (<u># NumClient</u>, <u># CodeArticle</u>)

Clients

NumClient

Nom
Prénom
Adresse
Code Postal
ville

MLD - MRD

Commander

NumClient # CodeArticle

Articles

<u>CodeArticle</u>

Désignation
Prix d'achat
Prix de vente

Tables Relations

Quelques rappels

relation Synonyme : table, tableau

nom	prénom	dateNaissance	sexe	taille	poids
Ah	Alice	1970-01-01	F	160	50
Beh	Bob	1970-01-03	М	175	70
Ceh	Charles	1980-02-05	М	183	85

```
Personne

nom texte / caractères
prénom texte / caractères
dateNaissance date
sexe texte / énumération...
taille numérique
poids numérique
```

Personne (nom, prénom, dateNaissance, Sexe, taille, poids)

Quelques rappels

Personne(nom , prénom , dateNaissance , Sexe , taille , poids)

attribut de la relation

schéma (description) de la relation, indépendant des données quelle contient :

nom de la relation, suivi de la liste de ses attributs entre parenthèse, éventuellement complété de leur domaine.

A quoi ça sert

```
geographie (
   numCommune, libelleCommune, chefLieuDepartement,
   numDepartement, libelleDepartement,
   numRegion, libelleRegion, population
);
```

libelle Commune	chefLieu Departement	num Departement	libelle Departement	num Region	libelle Region	population
Metz	oui	57	Moselle	44	Grand Est	
Thionville	non	57	Moselle	44	Grand Est	
	Commune	Commune Departement Metz oui	Commune Departement Departement Metz oui 57	Commune Departement Departement Departement Metz oui 57 Moselle	Commune Departement Departement Departement Region Metz oui 57 Moselle 44	Commune Departement Departement Departement Region Region Metz oui 57 Moselle 44 Grand Est

```
geographie (
   numCommune, libelleCommune, chefLieuDepartement,
   numDepartement, libelleDepartement,
   numRegion, libelleRegion, population
);
```

libelle Commune	chefLieu Departement	num Departement	libelle Departement	num Region	libelle Region	population
Metz	oui	57	Moselle	76	Occitanie	
Thionville	non	57	Moselle	44	Grand Est	
	Commune	Commune Departement Metz oui	Commune Departement Departement Metz oui 57	Commune Departement Departement Departement Metz oui 57 Moselle	Commune Departement Departement Region Metz oui 57 Moselle 76	Commune Departement Departement Region Region Metz Oui 57 Moselle 76 Occitanie

Anomalie:

1 département (Moselle) dans 2 régions différentes (Occitanie et Grand Est).

```
geographie (
   numCommune, libelleCommune, chefLieuDepartement,
   numDepartement, libelleDepartement,
   numRegion, libelleRegion, population
);
```

libelle Commune	chefLieu Departement	num Departement	libelle Departement	num Region	libelle Region	population
Metz	oui	58	Moselle	44	Grand Est	
Thionville	non	57	Moselle	44	Grand Est	
	Commune	Commune Departement Metz oui	Commune Departement Departement Metz Oui 58	Commune Departement Departement Departement Metz Oui 58 Moselle	Commune Departement Departement Departement Region Metz Oui 58 Moselle 44	Commune Departement Departement Region Region Metz Oui 58 Moselle 44 Grand Est

Anomalie:

1 département (Moselle) avec 2 numéros différents (57, 58).

```
geographie (
   numCommune, libelleCommune, chefLieuDepartement,
   numDepartement, libelleDepartement,
   numRegion, libelleRegion, population
);
```

num Commune	libelle Commune	chefLieu Departement	num Departement	libelle Departement	num Region	libelle Region	population
57001	Metz	oui	57	Moselle	44	Grand Est	
57672	Thionville	oui	57	Moselle	44	Grand Est	

Anomalie:

2 chef lieux de département (Metz, Thionville) pour 1 département (Moselle).

num Commune	libelle Commune	chefLieu Departement	num Departement	libelle Departement	num Region	libelle Region	population
57001	Metz	oui	57	Moselle	44	Grand Est	
57672	Thionville	non	57	Moselle	44	Grand Est	

Ces anomalies viennent notamment de l'existence de dépendances fonctionnelles transitives

 $num Commune \ \ \, \rightarrow \ \, libelle Commune, \ \, chef Lieu Departement, \ \, num Departement, \ \, libelle Departement, \ \, num Region, \ \, libelle Region, \ \, population$

numCommune → libelleCommune, chefLieuDepartement, numDepartement, population

numDepartement → libelleDepartement, numRegion

numCommune → libelleCommune, chefLieuDepartement, numDepartement, libelleDepartement, numRegion, libelleRegion, population
numCommune → libelleCommune, chefLieuDepartement, numDepartement, population

numDepartement → libelleDepartement, numRegion

numRegion → libelleRegion

```
numCommune → libelleCommune, chefLieuDepartement, numDepartement, libelleDepartement, numRegion, libelleRegion, population
numCommune → libelleCommune, chefLieuDepartement, numDepartement, population
                                            numDepartement → libelleDepartement, numRegion
                                                                             numRegion → libelleRegion
communes(<u>numCommune</u>, libelleCommune, chefLieuDepartement, #numDepartement, population);
departements(numDepartement, libelleDepartement, #numRegion);
regions(numRegion, libelleRegion);
```

```
numCommune → libelleCommune, chefLieuDepartement, numDepartement, libelleDepartement, numRegion, libelleRegion, population
numCommune → libelleCommune, chefLieuDepartement, numDepartement, population
                                             numDepartement → libelleDepartement, numRegion
                                                                               numRegion → libelleRegion
communes(<u>numCommune</u>, libelleCommune, chefLieuDepartement, #numDepartement, population);
departements(<u>numDepartement</u>, libelleDepartement, #numRegion);
regions(numRegion, libelleRegion);
                                                     1 table
```

Schéma d'une base de données = ensemble des schémas des relations

Ensemble de tables

communes(<u>numCommune</u>, libelleCommune, chefLieuDepartement, #numDepartement, population);
departements(<u>numDepartement</u>, libelleDepartement, #numRegion);
regions(<u>numRegion</u>, libelleRegion);

num Commune	libelle Commune	chefLieu Departement	num Departement	population
57001	Metz	oui	57	
57672	Thionville	non	57	

num Departement	libelle Departement	num Region
56	Morbihan	53
57	Moselle	44
58	Nievre	27

num Region	libelle Region
27	Bourgogne-Franche-Comté
44	Grand Est
53	Bretagne

communes

departements

regions

```
communes(numCommune, libelleCommune, chefLieuDepartement, #numDepartement, population);
departements(numDepartement, libelleDepartement, #numRegion);
regions(numRegion, libelleRegion);
```

num Commune	libelle Commune	chefLieu Departement	num Departement	population
57001	Metz	oui	57	
57672	Thionville	non	57	

num Departement	libelle Departement	num Region
56	Morbihan	53
57	Moselle	44
58	Nievre	27

num Region	libelle Region
27	Bourgogne-Franche-Comté
44	Grand Est
53	Bretagne

communes

departements

regions

Anomalies impossibles:

- 1 département (Moselle) dans 2 régions différentes (Occitanie et Grand Est).
- 1 département (Moselle) avec 2 numéros différents (57, 58).

communes(<u>numCommune</u>, libelleCommune, chefLieuDepartement, #numDepartement, population);
departements(<u>numDepartement</u>, libelleDepartement, #numRegion);
regions(<u>numRegion</u>, libelleRegion);

num Commune	libelle Commune	chefLieu Departement	num Departement	population
57001	Metz	oui	57	
57672	Thionville	non	57	

num Departement	libelle Departement	num Region
56	Morbihan	53
57	Moselle	44
58	Nievre	27

num Region	libelle Region
27	Bourgogne-Franche-Comté
44	Grand Est
53	Bretagne

communes

departements

regions

*il reste une anomalie possible :*1 département (Moselle) avec 2 chefs lieux.

```
communes(numCommune, libelleCommune, chefLieuDepartement, #numDepartement, population);
departements(numDepartement, libelleDepartement, #numRegion);
regions(numRegion, libelleRegion);
```

num Commune	libelle Commune	chefLieu Departement	num Departement	population
57001	Metz	oui	57	
57672	Thionville	non	57	

num Departement	libelle Departement	num Region
56	Morbihan	53
57	Moselle	44
58	Nievre	27

num Region	libelle Region
27	Bourgogne-Franche-Comté
44	Grand Est
53	Bretagne

communes

departements

regions

il reste une anomalie possible :

1 département (Moselle) avec 2 chefs lieux.

Le chef lieu de département est une information sur le département : 1 département = 1 chef lieu

```
communes(numCommune, libelleCommune, chefLieuDepartement, #numDepartement, population);
departements(numDepartement, libelleDepartement, numCommuneChefLieu, #numRegion);
regions(numRegion, libelleRegion);
departements[numcommuneChefLieu] ⊆ communes[numCommune]
```

num Commune	libelle Commune	num Departement	population
57001	Metz	57	
57672	Thionville	57	

num Departement	libelle Departement	numCommune ChefLieu	num Region
56	Morbihan	56260	53
57	Moselle	57001	44
58	Nievre	58194	27

num Region	libelle Region
27	Bourgogne-Franche-Comté
44	Grand Est
53	Bretagne

communes

departements

regions

Anomalies impossibles :

- 1 département (Moselle) dans 2 régions différentes (Occitanie et Grand Est).
- •1 département (Moselle) avec 2 numéros différents (57, 58).
- •1 département avec 2 chefs lieux

```
communes(numCommune, libelleCommune, chefLieuDepartement, #numDepartement, population);
departements(numDepartement, libelleDepartement, numCommuneChefLieu, #numRegion);
regions(numRegion, libelleRegion);
departements[numcommuneChefLieu] ⊆ communes[numCommune] ← Contrainte d'Intégrité Référentielle
```

num Commune	libelle Commune	num Departement	population
57001	Metz	57	
57672	Thionville	57	

num Departement	libelle Departement	numCommune ChefLieu	num Region
56	Morbihan	56260	53
57	Moselle	57001	44
58	Nievre	58194	27

num Region	libelle Region
27	Bourgogne-Franche-Comté
44	Grand Est
53	Bretagne

communes

departements

regions

Anomalies impossibles :

- 1 département (Moselle) dans 2 régions différentes (Occitanie et Grand Est).
- •1 département (Moselle) avec 2 numéros différents (57, 58).
- •1 département avec 2 chefs lieux

Conséquences

Stocker les données dans plusieurs relations permet

- une meilleure qualité des données (cohérence, règles métiers)
- un accès plus rapide aux données

Conséquences

Stocker les données dans plusieurs relations permet

- une meilleure qualité des données (cohérence, règles métiers)
- un accès plus rapide aux données

. . .

Mais comment manipuler toutes ces données

Algèbre relationnelle :

- L'algèbre relationnelle est le support mathématique cohérent sur lequel repose le modèle relationnel
- L'algèbre relationnelle propose un ensemble d'opérations élémentaires formelles sur les relations dans le but de créer de nouvelles relations
- Ces opérations permettent de représenter des requêtes sur la base de données dont le résultat s'exprime sous la forme d'une relation (une table)

SQL:

L'algèbre relationnelle est le formalisme qui est au cœur du langage de requête de SQL

Arbre algébrique :

- Requête: Une question exprimée sous forme d'un programme d'opérations de l'algèbre relationnelle
- La requête peut être représentée par un arbre relationnel, ou arbre algébrique
 - Les nœuds correspondent aux représentations graphiques des opérations
 - Les arcs correspondent aux données liées par les opérations

Arbre algébrique :

- Requête: Une question exprimée sous forme d'un programme d'opérations de l'algèbre relationnelle
- La requête peut être représentée par un arbre relationnel, ou arbre algébrique
 - Les nœuds correspondent aux représentations graphiques des opérations
 - Les arcs correspondent aux données liées par les opérations

Arbre algébrique :

- Requête: Une question exprimée sous forme d'un programme d'opérations de l'algèbre relationnelle
- La requête peut être représentée par un arbre relationnel, ou arbre algébrique
 - Les nœuds correspondent aux représentations graphiques des opérations
 - Les arcs correspondent aux données liées par les opérations

Requête:

Noms et Prénoms des buveurs habitant Paris ayant bu du Chablis depuis le 1er janvier 1992

Arbre algébrique :

- Requête: Une question exprimée sous forme d'un programme d'opérations de l'algèbre relationnelle
- La requête peut être représentée par un arbre relationnel, ou arbre algébrique
 - Les nœuds correspondent aux représentations graphiques des opérations
 - Les arcs correspondent aux données liées par les opérations

Requête:

Noms et Prénoms des buveurs habitant Paris ayant bu du Chablis depuis le 1er janvier 1992

Arbre algébrique :

- Requête: Une question exprimée sous forme d'un programme d'opérations de l'algèbre relationnelle
- La requête peut être représentée par un arbre relationnel, ou arbre algébrique
 - Les nœuds correspondent aux représentations graphiques des opérations
 - Les arcs correspondent aux données liées par les opérations

Requête:

Noms et Prénoms des buveurs habitant Paris ayant bu du Chablis depuis le 1er janvier 1992

À partir des 3 tables (Relations) : BUVEURS, ABUS, VINS

Schéma Relationnel:

buveurs (<u>nb</u>, nom, prenom, adresse, type) **vins** (<u>nv</u>, cru, mill qualite, degre) **abus** (**#nb, #nv, date**, quantite)

Arbre algébrique :

- Requête : Une question exprimée sous forme d'un programme d'opérations de l'algèbre relationnelle
- La requête peut être représentée par un arbre relationnel, ou arbre algébrique
 - Les nœuds correspondent aux représentations graphiques des opérations
 - Les arcs correspondent aux données liées par les opérations

Requête:

Noms et Prénoms des buveurs habitant Paris ayant bu du Chablis depuis le 1er janvier 1992

À partir des 3 tables (Relations) : BUVEURS, ABUS, VINS

Schéma Relationnel:

BUVEURS (<u>MB</u>, NOM, PRENOM, ADRESSE, TYPE)
VINS (<u>NV</u>, CRU, MILL QUALITE, DEGRE)
ABUS (#NB, #NV, DATE, QUANTITE)

On peut distinguer trois familles d'opérateurs relationnels :

Les opérateurs unaires (Sélection, Projection) :

Ce sont les opérateurs les plus simples, ils permettent de produire une nouvelle table à partir d'une autre table.

Les opérateurs binaires ensemblistes (Union, Intersection, Différence) :

Ces opérateurs permettent de produire une nouvelle relation à partir de deux relations de même degré (nombre d'attributs) et de même domaine (l'ensemble des valeurs possibles des attributs).

Les opérateurs binaires ou n-aires (Produit cartésien, Jointure, Division) :

Ils permettent de produire une nouvelle table à partir de deux ou plusieurs autres tables.

Les notations ne sont pas standardisées en algèbre relationnelle.

Ce cours utilise des notations courantes, mais donc pas forcément universelles.

L'algèbre relationnelle va nous amener petit à petit au langage SQL.

On peut distinguer trois familles d'opérateurs relationnels :

Les opérateurs unaires (Sélection, Projection) :

Ce sont les opérateurs les plus simples, ils permettent de produire une nouvelle table à partir d'une autre table.

Les opérateurs binaires ensemblistes (Union, Intersection, Différence) :

Ces opérateurs permettent de produire une nouvelle relation à partir de deux relations de même degré (nombre d'attributs) et de même domaine (l'ensemble des valeurs possibles des attributs).

Les opérateurs binaires ou n-aires (Produit cartésien, Jointure, Division) :

Ils permettent de produire une nouvelle table à partir de deux ou plusieurs autres tables.

Les notations ne sont pas standardisées en algèbre relationnelle. Ce cours utilise des notations courantes, mais donc pas forcément universelles.

L'algèbre relationnelle va nous amener petit à petit au langage SQL.

On peut distinguer trois familles d'opérateurs relationnels :

Les opérateurs unaires (Sélection, Projection) :

Ce sont les opérateurs les plus simples, ils permettent de produire une nouvelle table à partir d'une autre table.

Les opérateurs binaires ensemblistes (Union, Intersection, Différence):

Ces opérateurs permettent de produire une nouvelle relation à partir de deux relations de même degré (nombre d'attributs) et de même domaine (l'ensemble des valeurs possibles des attributs).

Les opérateurs binaires ou n-aires (Produit cartésien, Jointure, Division) :

Ils permettent de produire une nouvelle table à partir de deux ou plusieurs autres tables.

Les notations ne sont pas standardisées en algèbre relationnelle. Ce cours utilise des notations courantes, mais donc pas forcément universelles. L'algèbre relationnelle va nous amener petit à petit au langage SQL (en parallèle).

Algèbre Relationnelle

La sélection (parfois appelée Restriction)

Génère une relation regroupant exclusivement toutes les occurrences de la relation R qui satisfont l'expression logique E

Notation : $\sigma_{(E)}R$

Il s'agit d'une opération unaire essentielle dont la signature est :

relation x expression logique → relation

La sélection permet de choisir (i.e. sélectionner) des lignes dans le tableau.

Le résultat de la sélection est donc une nouvelle relation qui a les mêmes attributs que R avec moins de lignes.

Si R est vide (i.e. ne contient aucune occurrence), la relation qui résulte de la sélection est vide.

SQL:

L'opérateur de sélection $\sigma_{(pr\'edicat)}(relation)$ se traduit tout simplement en SQL par la requête :

SELECT * FROM relation WHERE prédicat

La sélection (parfois appelée Restriction)

Exemple: σ_(Numéro≥5)Personne

Personne				
Numéro	Nom	Prénom		
5	Durand	Caroline		
1	Germain	Stan		
12	Dupont	Lisa		
3	Germain	Rose-Marie		

La sélection (parfois appelée Restriction)

Exemple: σ_(Numéro≥5)Personne

Personne				
Numéro	Nom	Prénom		
5	Durand	Caroline		
1	Germain	Stan		
12	Dupont	Lisa		
3	Germain	Rose-Marie		

La sélection (parfois appelée Restriction)

Exemple: σ_(Numéro≥5)Personne

SELECT * FROM Personne WHERE Numéro ≥ 5

Personne				
Numéro	Nom	Prénom		
5	Durand	Caroline		
1	Germain	Stan		
12	Dupont	Lisa		
3	Germain	Rose-Marie		

La sélection (parfois appelée Restriction)

Exemple: σ_(Numéro≥5)Personne

SELECT * FROM Personne WHERE Numéro ≥ 5

Personne				
Numéro	Nom	Prénom		
5	Durand	Caroline		
1	Germain	Stan		
12	Dupont	Lisa		
3	Germain	Rose-Marie		

σ _(Numéro≥5) Personne				
Numéro Nom Prénom				
5	Durand	Caroline		
12	Dupont	Lisa		

La sélection (parfois appelée Restriction)

Exemple: $\sigma_{\text{(Mill>1983)}}\text{VINS}$

VINS	Cru	Mill	Région	Qualité
	VOLNAY	1983	BOURGOGNE	Α
	VOLNAY	1979	BOURGOGNE	В
	CHENAS	1983	BEAUJOLAIS	Α
	JULIENAS	1986	BEAUJOLAIS	С

La sélection (parfois appelée Restriction)

Exemple: $\sigma_{\text{(Mill>1983)}}\text{VINS}$

La sélection (parfois appelée Restriction)

Exemple: $\sigma_{\text{(Mill>1983)}}\text{VINS}$

SELECT * FROM VINS WHERE Mill>1983

VINS	Cru	Mill	Région	Qualité
			BOURGOGNE	Α
	VOLNAY	1979	BOURGOGNE	В
	CHENAS	1983	BEAUJOLAIS	Α
	JULIENAS	1986	BEAUJOLAIS	С

La sélection (parfois appelée Restriction)

Exemple: $\sigma_{\text{(Mill>1983)}}\text{VINS}$

SELECT * FROM VINS WHERE Mill>1983

VINS	Cru	Mill	Région	Qualité
	VOLNAY	1983	BOURGOGNE	Α
	VOLNAY	1979	BOURGOGNE	В
	CHENAS	1983	BEAUJOLAIS	Α
	JULIENAS	1986	BEAUJOLAIS	С

VINS	Cru	Mill	Région	Qualité
	JULIENAS	1986	BEAUJOLAIS	С

La projection

La projection consiste à :

- supprimer les attributs autres que A₁,... A_n d'une relation
- éliminer les n-uplets en double apparaissant dans la nouvelle relation;

Notation : $\Pi_{(A1...An)}R$

Il s'agit d'une opération unaire essentielle dont la signature est :

relation x liste d'attributs → relation

La projection permet de choisir des colonnes dans le tableau.

Si R est vide, la relation qui résulte de la projection est vide, mais pas forcément équivalente (elle contient généralement moins d'attributs).

O

SQL:

L'opérateur de projection $\Pi_{(A_1,\dots,A_n)}(relation)$ se traduit tout simplement en SQL par la requête :

SELECT DISTINCT A 1, ..., A n FROM relation

La projection

Exemple: $\Pi_{(Nom)}$ Personne

Personne				
Numéro	Nom	Prénom		
5	Durand	Caroline		
1	Germain	Stan		
12	Dupont	Lisa		
3	Germain	Rose-Marie		

La projection

Exemple: $\Pi_{(Nom)}$ Personne

Personne				
Numéro	Nom	Prénom		
5	Durand	Caroline		
1	Germain	Stan		
12	Dupont	Lisa		
3	Germain	Rose-Marie		

La projection

Exemple : $\Pi_{(Nom)}$ Personne

SELECT DISTINCT Nom FROM Personne

Personne				
Numéro	Nom	Prénom		
5	Durand	Caroline		
1	Germain	Stan		
12	Dupont	Lisa		
3	Germain	Rose-Marie		

La projection

Exemple : $\Pi_{(Nom)}$ Personne

SELECT DISTINCT Nom FROM Personne

Personne						
Numéro	Nom	Prénom				
5	Durand	Caroline				
1	Germain	Stan				
12	Dupont	Lisa				
3	Germain	Rose-Marie				

Π _(Nom) Personne
Nom
Durand
Germain
Dupont

La projection

Exemple : Π_(Cru, Région)Vins

VINS	Cru	Mill	Région	Qualité
	VOLNAY	1983	BOURGOGNE	Α
	VOLNAY	1979	BOURGOGNE	В
	CHENAS	1983	BEAUJOLAIS	Α
	JULIENAS	1986	BEAUJOLAIS	С

La projection

Exemple : $\Pi_{(Cru, Région)}$ Vins

VINS	Cru	Mill	Région	Qualité
	VOLNAY	1983	BOURGOGNE	Α
	VOLNAY	1979	BOURGOGNE	В
	CHENAS	1983	BEAUJOLAIS	Α
	JULIENAS	1986	BEAUJOLAIS	С

La projection

Exemple : $\Pi_{(Cru, Région)}$ Vins

SELECT DISTINCT Cru, Région FROM VINS

VINS	Cru	Mill	Région	Qualité
	VOLNAY	1983	BOURGOGNE	Α
	VOLNAY	1979	BOURGOGNE	В
	CHENAS	1983	BEAUJOLAIS	Α
	JULIENAS	1986	BEAUJOLAIS	С

La projection

Exemple : $\Pi_{(Cru, Région)}$ Vins

SELECT DISTINCT Cru, Région FROM VINS

VINS	Cru	Mill	Région	Qualité
			BOURGOGNE	Α
	VOLNAY	1979	BOURGOGNE	В
	CHENAS	1983	BEAUJOLAIS	Α
	JULIENAS	1986	BEAUJOLAIS	С

Cru	Région
VOLNAY	BOURGOGNE
CHENAS	BEAUJOLAIS
JULIENAS	BEAUJOLAIS

Produit cartésien

Le produit cartésien

Le produit cartésien est une opération portant sur deux relations R_1 et R_2 construit une troisième relation regroupant exclusivement toutes les possibilités de combinaison des occurrences des relations R_1 et

Notation : $R_1 \times R_2$

Il s'agit d'une opération binaire commutative essentielle dont la signature est :

relation x relation \rightarrow relation

- Le résultat du produit cartésien est une nouvelle relation qui a tous les attributs de R₁ et tous ceux de R₂.
- Si R₁ ou R₂ ou les deux sont vides, la relation qui résulte du produit cartésien est vide.
- Le nombre d'occurrences de la relation qui résulte du produit cartésien est le nombre d'occurrences de R₁ multiplié par le nombre d'occurrences de R₂.

SQL:

L'opérateur de produit cartésien relation1 × relation2 se traduit en SQL par la requête :

```
SELECT * FROM relation_1, relation_2
```

Produit cartésien

Le produit cartésien

SELECT * FROM Amie, Cadeau

Relation	on <i>Amie</i>	Relation	Cadeau		Rela	tion R	
Nom	Prénom	Article	Prix	Nom	Prénom	Article	Prix
Fourt	Lisa	livre	45	Fourt	Lisa	livre	45
Juny	Carole	poupée	25	Fourt	Lisa	poupée	25
		montre	87	Fourt	Lisa	montre	87
				Juny	Carole	livre	45
				Juny	Carole	poupée	25
				Juny	Carole	montre	87

La jointure

La jointure est une opération portant sur deux relations R_1 et R_2 construit une troisième relation regroupant exclusivement toutes les possibilités de combinaison des occurrences des relations R_1 et R_2 qui satisfont l'expression logique E.

Notation: $R_1 \bowtie_E R_2$

Il s'agit d'une opération binaire commutative dont la signature est : relation x relation x expression logique → relation

Si R₁ ou R₂ ou les deux sont vides, la relation qui résulte de la jointure est vide.

La jointure

- Elle peut être vue comme une extension du produit cartésien avec une condition permettant de comparer des attributs
- En fait, la jointure n'est rien d'autre qu'un produit cartésien suivi d'une sélection :

$$R_1 \bowtie ER_2 = \sigma_{(E)}(R_1 \times R_2)$$

• On peut également dire que le produit cartésien n'est rien d'autre qu'une jointure dans laquelle l'expression logique E est toujours vraie : $R_1 \times R_2 = R_1 \bowtie_{true} R_2$

SQL:

```
SELECT * FROM relation_1, relation_2 Produit cartésien

SELECT * FROM relation_1 JOIN relation_2 sans condition, JOIN est équivalent à un produit cartésien (produit croisé):
tous les couples de tuples possibles sont présents dans le résultat.

SELECT * FROM relation_1 CROSS JOIN relation_2
```

CROSS JOIN permet d'indiquer explicitement que l'on cherche à faire un produit cartésien

La jointure (avec une condition toujours vérifiée (vrais))

R = Famille ⋉	$((Age \le AgeC) \land (Fage))$	Prix < 50)) Cadeau
---------------	---------------------------------	--------------------

Rela	Relation Famille			Relation Cadeau		u
Nom	Prénom	Age		AgeC	Article	Prix
Fourt	Lisa	6		99	livre	30
Juny	Carole	42		6	poupée	60
Fidus	Laure	16		20	baladeur	45
				10	déguisement	15

La jointure (avec une condition toujours vérifiée (vrais))

R = Famille ⋈	((Age ≤ AgeC)	Λ (Prix < 50))	Cadeau
---------------	---------------	------------------------	--------

Relation Famille			Relation <i>Cadeau</i>		u
Nom	Prénom	Age	AgeC	Article	Prix
Fourt	Lisa	6	99	livre	30
Juny	Carole	42	6	poupée	60
Fidus	Laure	16	20	baladeur	45
			10	déguisement	15

Relation R										
Nom	Prénom	Age	AgeC	Article	Prix					
Fourt	Lisa	6	99	livre	30					
Fourt	Lisa	6	20	baladeur	45					
Fourt	Lisa	6	10	déguisement	15					
Juny	Carole	42	99	livre	30					
Fidus	Laure	16	99	livre	30					
Fidus	Laure	16	20	baladeur	45					

La jointure (avec une condition toujours vérifiée (vrais))

R = Famille \bowtie ((Age \leq AgeC) \land (Prix < 50)) Cadeau

Age ≤ AgeC

Prix < 50

Relation Famille			Relation Cadeau		
Nom	Prénom	Age	AgeC	Article	Prix
Fourt	Lisa	6	99	livre	30
Juny	Carole	42	6	poupée	60
Fidus	Laure	16	20	baladeur	45
			10	déguisement	15

Relation R									
Nom	Prénom	Age	AgeC	Article	Prix				
Fourt	Lisa	6	99	livre	30				
Fourt	Lisa	6	20	baladeur	45				
Fourt	Lisa	6	10	déguisement	15				
Juny	Carole	42	99	livre	30				
Fidus	Laure	16	99	livre	30				
Fidus	Laure	16	20	baladeur	45				

La jointure (avec une condition toujours vérifiée (vrais))

R = Famille ⋈	((Age ≤ AgeC)	Λ (Prix < 50))	Cadeau
---------------	---------------	------------------------	--------

Relation <i>Famille</i>			Relation <i>Cadeau</i>		
Nom	Prénom	Age	AgeC	Article	Prix
Fourt	Lisa	6	99	livre	30
Juny	Carole	42	6	poupée	60
Fidus	Laure	16	20	baladeur	45
			10	déguisement	15

Relation R										
Nom	Prénom	Age	AgeC	Article	Prix					
Fourt	Lisa	6	99	livre	30					
Fourt	Lisa	6	20	baladeur	45					
Fourt	Lisa	6	10	déguisement	15					
Juny	Carole	42	99	livre	30					
Fidus	Laure	16	99	livre	30					
Fidus	Laure	16	20	baladeur	45					

La jointure (avec une condition toujours vérifiée (vrais))

R = Famille \bowtie ((Age \leq AgeC) \land (Prix < 50)) Cadeau

Relation Famille			Relation <i>Cadeau</i>			
Nom	Prénom	Age	AgeC	Article	Prix	
Fourt	Lisa	6	99	livre	30	
Juny	Carole	42	6	poupée	60	
Fidus	Laure	16	20	baladeur	45	
			10	déguisement	15	

	Relation R									
Nom	Prénom	Age	AgeC	Article	Prix					
Fourt	Lisa	6	99	livre	30					
Fourt	Lisa	6	20	baladeur	45					
Fourt	Lisa	6	10	déguisement	15					
Juny	Carole	42	99	livre	30					
Fidus	Laure	16	99	livre	30					
Fidus	Laure	16	20	baladeur	45					

La jointure (avec une condition toujours vérifiée (vrais))

R = Famille \bowtie ((Age \leq AgeC) \land (Prix < 50)) Cadeau

SELECT * FROM Famille JOIN Cadeau ON Famille.Age≤Cadeau.AgeC AND Cadeau.Prix<50

$R = Famille \bowtie ((Age \leq AgeC) \land (Family AgeC)) \land (Family AgeC) \land (Family AgeC)$	Prix < 50)) Cadeau
---	--------------------

Relation <i>Famille</i>			Relation <i>Cadeau</i>			
Nom	Prénom	Age	AgeC	Article	Prix	
Fourt	Lisa	6	99	livre	30	
Juny	Carole	42	6	poupée	60	
Fidus	Laure	16	20	baladeur	45	
			10	déguisement	15	

	Relation R									
Nom	Prénom	Age	AgeC	Article	Prix					
Fourt	Lisa	6	99	livre	30					
Fourt	Lisa	6	20	baladeur	45					
Fourt	Lisa	6	10	déguisement	15					
Juny	Carole	42	99	livre	30					
Fidus	Laure	16	99	livre	30					
Fidus	Laure	16	20	baladeur	45					

La jointure (avec une condition toujours vérifiée (vrais))

R = Famille \bowtie ((Age \leq AgeC) \land (Prix < 50)) Cadeau

SELECT * FROM Famille JOIN Cadeau ON
Famille.Age≤Cadeau.AgeC AND Cadeau.Prix<50

SELECT * FROM Famille, Cadeau
WHERE Famille.Age≤Cadeau.AgeC AND Cadeau.Prix<50

Relation Famille			Relation Cadeau		
Nom	Prénom	Age	AgeC	Article	Prix
Fourt	Lisa	6	99	livre	30
Juny	Carole	42	6	poupée	60
Fidus	Laure	16	20	baladeur	45
			10	déguisement	15

Relation R								
Nom	Prénom	Age	AgeC	Article	Prix			
Fourt	Lisa	6	99	livre	30			
Fourt	Lisa	6	20	baladeur	45			
Fourt	Lisa	6	10	déguisement	15			
Juny	Carole	42	99	livre	30			
Fidus	Laure	16	99	livre	30			
Fidus	Laure	16	20	baladeur	45			

La jointure (avec une condition toujours vérifiée (vrais))

R = Famille \bowtie ((Age \leq AgeC) \land (Prix < 50)) Cadeau

SELECT * FROM Famille JOIN Cadeau ON
Famille.Age≤Cadeau.AgeC AND Cadeau.Prix<50

SQL2

SQL1

SELECT * FROM Famille, Cadeau

WHERE Famille.Age≤Cadeau.AgeC AND Cadeau.Prix<50

Relation Famille			Relation Cadeau		
Nom	Prénom	Age	AgeC	Article	Prix
Fourt	Lisa	6	99	livre	30
Juny	Carole	42	6	poupée	60
Fidus	Laure	16	20	baladeur	45
			10	déguisement	15

Relation R								
Nom	Prénom	Age	AgeC	Article	Prix			
Fourt	Lisa	6	99	livre	30			
Fourt	Lisa	6	20	baladeur	45			
Fourt	Lisa	6	10	déguisement	15			
Juny	Carole	42	99	livre	30			
Fidus	Laure	16	99	livre	30			
Fidus	Laure	16	20	baladeur	45			

Cas des jointures Variations sur la syntaxe

Exemple de situation

INE	nom	prenom	departement
1	Ah	Alice	SD
2	Beh	Bob	INFO
3	Ceh	Charlène	SD

departement	libelleDepartement	secteur	
SD	Science de données	tertiaire	
INFO	Informatique	secondaire	

etudiants

INE	nom	prenom	departement
1	Ah	Alice	SD
2	Beh	Bob	INFO
3	Ceh	Charlène	SD

<u>d</u>	e	p	a	r:	t	e	m	e	n	t	S	
		•										7

acpar cemerres					
departement	libelleDepartement	secteur			
SD	Science de données	tertiaire			
INFO	Informatique	secondaire			
		•			

etudiants **NATURAL JOIN** departements

departement	INE	nom	prenom	libelleDepartement	secteur
SD	1	Ah	Alice	Science de données	tertiaire
INFO	2	Beh	Bob	Informatique	secondaire
SD	3	Ceh	Charlène	Science de données	tertiaire

- On joint 2 tuples ssi <u>tous</u> les attributs de même nom dans les deux tables ont les mêmes valeurs
- Les attributs de jointure n'apparaissent qu'une fois, en début de relation
- Ici, il n y a que « département » qui est en commun, il apparait au début du résultat

La jointure naturelle

Famille NATURAL JOIN Cadeau

 $R = Famille \bowtie Cadeau ou R = Famille \bowtie_{Age} Cadeau$

Relation Famille					
Nom Prénom Age					
Fourt	Lisa	6			
Juny	Carole	40			
Fidus	Laure	20			
Choupy	6				

Relation Cadeau					
Age Article Prix					
40	livre	45			
6	poupée	25			
20	montre	87			

Relation R							
Age	Age Nom Prénom Article P						
6	Fourt	Lisa	poupée	25			
40	Juny	Carole	livre	45			
20	Fidus	Laure	montre	87			
6	Choupy	Emma	poupée	25			

VINS **NATURAL JOIN** LOCALISATION

VINS	Cru	Mill	Qualité
	VOLNAY	1983	Α
	VOLNAY	1979	В
	CHABLIS	1983	Α
$\triangleright\!\!\!<$	JULIENAS	1986	С

LOCALISATION	Cru	Région	QualMoy
	VOLNAY	BOURGOGNE	Α
1	CHABLIS	BOURGOGNE	Α
. ↓	CHABLIS	CALIFORNIE	В

VINSREG	Cru	Mill	Qualité	Région	QualMoy
	VOLNAY	1983	Α	BOURGOGNE	Α
	VOLNAY	1979	В	BOURGOGNE	Α
	CHABLIS	1983	Α	BOURGOGNE	Α
	CHABLIS	1983	Α	CALIFORNIE	В

La jointure naturelle

Une jointure naturelle est une jointure dans laquelle l'expression logique E est un test d'égalité entre les attributs qui portent le même nom dans les relations R_1 et R_2

Dans la relation construite, ces attributs ne sont pas dupliqués, mais fusionnés en une seule colonne par couple d'attributs, qui apparait au début.

Notation: $R_1 \bowtie R_2$

On peut préciser explicitement les attributs communs à R_1 et R_2 sur lesquels porte la jointure :

Notation: $R_1 \bowtie_{A1,...An} R_2$

La jointure naturelle

Généralement, R₁ et R₂ n'ont qu'un attribut en commun.

Dans ce cas, une jointure naturelle est équivalente à une équijointure dans laquelle l'attribut de R_1 et celui de R_2 sont justement les deux attributs qui portent le même nom.

Lorsque l'on désire effectuer une jointure naturelle entre R_1 et R_2 sur un attribut A_1 commun à R_1 et R_2 ,

Il vaut mieux écrire $R_1 \bowtie_{A1} R_2$ que $R_1 \bowtie R_2$

si R_1 et R_2 possèdent deux attributs portant un nom commun, A_1 et A_2 ,

 $R_1 \bowtie_{A1} R_2$ est bien une jointure naturelle sur l'attribut A_1 ,

Mais $R_1 \bowtie R_2$ est une jointure naturelle sur le couple d'attributs A_1 , A_2 ,

Ce qui produit un résultat très différent!

→ Quand on souhaite faire une jointure en conditionnant sur un attribut il est recommandé d'utiliser

JOIN USING

etudiants

INE	nom	prenom	departement
1	Ah	Alice	SD
2	Beh	Bob	INFO
3	Ceh	Charlène	SD

departement	libelleDepartement	secteur
SD	Science de données	tertiaire
INFO	Informatique	secondaire

etudiants JOIN departements USING(departement)

departement	INE	nom	prenom	libelleDepartement	secteur
SD	1	Ah	Alice	Science de données	tertiaire
INFO	2	Beh	Bob	Informatique	secondaire
SD	3	Ceh	Charlène	Science de données	tertiaire

- On joint 2 tuples ssi les attributs de même nom apparaissant dans **USING** ont les mêmes valeurs
- Les attributs de jointure n'apparaissent qu'une fois, en début de relation

etudiants

INE	nom	prenom	departement
1	Ah	Alice	SD
2	Beh	Bob	INFO
3	Ceh	Charlène	SD

departements

departement	libelleDepartement	secteur
SD	Science de données	tertiaire
INFO	Informatique	secondaire

etudiants **JOIN** departements

ON etudiants.departement = departements.departement

INE	nom	prenom	departement	departement	libelleDepartement	secteur
1	Ah	Alice	SD	SD	Science de données	tertiaire
2	Beh	Bob	INFO	INFO	Informatique	secondaire
3	Ceh	Charlène	SD	SD	Science de données	tertiaire

- On joint 2 tuples ssi les conditions de la clause ON sont satisfaites (vrais).
- On peut utiliser autre chose que l'égalité. Les attributs peuvent avoir des noms différents.
- Les attributs de jointure en provenance des deux tables apparaissent deux fois

communes(numCommune, libelleCommune, #numDepartement, population);
departements(numDepartement, libelleDepartement, communeChefLieu, #numRegion);

communes

num Commune	libelle Commune	num Departement	population
57001	Metz	57	
57672	Thionville	57	
56260	Vannes	56	
58194	Nevers	58	

departements

num Departement	libelle Departement	commune ChefLieu	num Region
56	Morbihan	56260	53
57	Moselle	57001	44
58	Nievre	58194	27

communes(<u>numCommune</u>, libelleCommune, #numDepartement, population);
departements(<u>numDepartement</u>, libelleDepartement, communeChefLieu, #numRegion);

communes

num Commune	libelle Commune	num Departement	population
57001	Metz	57	
57672	Thionville	57	
56260	Vannes	56	
58194	Nevers	58	

departements

num Departement	libelle Departement	commune ChefLieu	num Region
56	Morbihan	56260	53
57	Moselle	57001	44
58	Nievre	58194	27

communes(numCommune, libelleCommune, #numDepartement, population);
departements(numDepartement, libelleDepartement, communeChefLieu, #numRegion);
departements[communeChefLieu]

communes[numCommune]

communes

num Commune	libelle Commune	num Departement	population
57001	Metz	57	
57672	Thionville	57	
56260	Vannes	56	
58194	Nevers	58	

departements

num Departement	libelle Departement	commune ChefLieu	num Region
56	Morbihan	56260	53
57	Moselle	57001	44
58	Nievre	58194	27

communes(numCommune, libelleCommune, #numDepartement, population);
departements(numDepartement, libelleDepartement, communeChefLieu, #numRegion);
departements[communeChefLieu]

communes[numCommune]

communes

num Commune	libelle Commune	num Departement	population
57001	Metz	57	
57672	Thionville	57	
56260	Vannes	56	
58194	Nevers	58	

departements

	<u> </u>				
num Departement			num Region		
56	Morbihan	56260	53		
57	Moselle	57001	44		
58	Nievre	58194	27		

communes.numCommune = departements.communeChefLieu

communes departements

communes(numCommune, libelleCommune, #numDepartement, population);
departements(numDepartement, libelleDepartement, communeChefLieu, #numRegion);
departements[communeChefLieu]

communes[numCommune]

communes

num Commune	libelle Commune	num Departement	population
57001	Metz	57	
57672	Thionville	57	
56260	Vannes	56	
58194	Nevers	58	

departements

num Departement	libelle Departement	commune ChefLieu	num Region	
56	Morbihan	56260 53		
57	Moselle	57001	44	
58	Nievre	58194	27	

Résultat

libelleDepartement, libelleCommune

communes.numCommune =
departements.communeChefLieu

communes departements

communes(numCommune, libelleCommune, #numDepartement, population); departements(<u>numDepartement</u>, libelleDepartement, communeChefLieu, #numRegion); departements[communeChefLieu]
\(\sigma \) communes[numCommune]

communes

num Commune	libelle Commune	num Departement	population
57001	Metz	57	
57672	Thionville	57	
56260	Vannes	56	
58194	Nevers	58	

departements

num Departement	libelle Departement	commune ChefLieu	num Region
56	Morbihan	56260	53
57	Moselle	57001	44
58	Nievre	58194	27

communes

epai cements						
num Departement	libelle Departement	commune ChefLieu	num Region			
56	Morbihan	56260	53			
57	Moselle	57001	44			
58	Nievre	58194	27			

Résultat

libelleDepartement, libelleCommun

dommunes.numCommune = departements.communeChefLieu

departements

SELECT

libelleDepartement, libelleCommune AS chefLieu

FROM

communes JOIN departements

ON

```
communes.numCommune = departements.communeChefLieu ;
```

```
communes(<u>numCommune</u>, libelleCommune, #numDepartement, population);
departements(<u>numDepartement</u>, libelleDepartement, communeChefLieu, #numRegion);
departements[communeChefLieu] 

communes[numCommune]
```

communes

num Commune	libelle Commune	num Departement	population
57001	Metz	57	
57672	Thionville	57	
56260	Vannes	56	
58194	Nevers	58	

departements

num Departement	libelle Departement	commune ChefLieu	num Region	
56	Morbihan 56260		53	
57	Moselle	57001	44	
58	Nievre	58194	27	

Résultat

libelleDepartement, libelleCommun

departements.commune =

communes

departements

SELECT

libelleDepartement, libelleCommune AS chefLieu

FROM

communes JOIN departements

ON

communes.numCommune = departements.communeChefLieu ;

Recommandation: A utiliser si les attributs n'ont pas le même nom ou bien sur non égalité

JOIN (sans condition)

etudiants

	CCGGEGIICS						
INE	nom	prenom	departement				
1	Ah	Alice	SD				
2	Beh	Bob	INFO				
3	Ceh	Charlène	SD				

departements

departement	libelleDepartement	secteur
SD	Science de données	tertiaire
INFO	Informatique	secondaire

etudiants **JOIN** departements

INE	nom	prenom	departement	departement	libelleDepartement	secteur
1	Ah	Alice	SD	SD	Science de données	tertiaire
2	Beh	Bob	INFO	SD	Science de données	tertiaire
3	Ceh	Charlène	SD	SD	Science de données	tertiaire
1	Ah	Alice	SD	INFO	Informatique	secondaire
2	Beh	Bob	INFO	INFO	Informatique	secondaire
3	Ceh	Charlène	SD	INFO	Informatique	secondaire

- sans condition, JOIN est équivalent à un produit cartésien (produit croisé) :
- tous les couples de tuples possibles sont présents dans le résultat

CROSS JOIN (sans condition)

etudiants

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					
INE	nom	prenom	departement		
1	Ah	Alice	SD		
2	Beh	Bob	INFO		
3	Ceh	Charlène	SD		

<u>departements</u>

departement	libelleDepartement	secteur	
SD	Science de données	tertiaire	
INFO	Informatique	secondaire	

Résultat

etudiants CROSS JOIN departements

INE	nom	prenom	departement	departement	libelleDepartement	secteur
1	Ah	Alice	SD	SD	Science de données	tertiaire
2	Beh	Bob	INFO	SD	Science de données	tertiaire
3	Ceh	Charlène	SD	SD	Science de données	tertiaire
1	Ah	Alice	SD	INFO	Informatique	secondaire
2	Beh	Bob	INFO	INFO	Informatique	secondaire
3	Ceh	Charlène	SD	INFO	Informatique	secondaire

CROSS JOIN

Syntaxe SQL1 (virgule et WHERE)

Résultat Etudiants.depart = départements.départ Département

etudiants

INE	nom	prenom	departement
1	Ah	Alice	SD
2	Beh	Bob	INFO
3	Ceh	Charlène	SD

departement libelleDepartement

SD Science de données tertiaire

INFO Informatique secondaire

secteur

SELECT

*

FROM

etudiants, departements

WHERE

etudiants.departement = departements.departement ;

INE	nom	prenom	departement	departement	libelleDepartement	secteur
1	Ah	Alice	SD	SD	Science de données	tertiaire
2	Beh	Bob	INFO	INFO	Informatique	secondaire
3	Ceh	Charlène	SD	SD	Science de données	tertiaire

SQL un peu plus loin

Le langage SQL (Structured Query Language)

- Langage d'accès normalisé aux bases de données.
- Il est aujourd'hui supporté par la plupart des produits commerciaux que ce soit par les systèmes de gestion de bases de données micro tel que Access ou par les produits plus professionnels tels que Oracle.
- Il a fait l'objet de plusieurs normes ANSI/ISO dont la plus répandue aujourd'hui est la norme SQL2 qui a été définie en 1992.
- Le succès du langage SQL est dû essentiellement à sa simplicité et au fait qu'il s'appuie sur le schéma conceptuel pour énoncer des requêtes en laissant le SGBD responsable de la stratégie d'exécution.
- Le langage SQL propose un langage de requêtes.
- Le langage SQL ne possède pas la puissance d'un langage de programmation : entrées/sorties, instructions conditionnelles, boucles et affectations. Pour certains traitements il est donc nécessaire de coupler le langage SQL avec un langage de programmation plus complet.

Le langage SQL (Structured Query Language)

Définition

SQL est un langage relationnel,

il manipule donc des tables (i.e. des relations, c'est-à-dire des ensembles),

par l'intermédiaire de requêtes

qui produisent également des tables.

Le langage SQL (Structured Query Language)

Les instructions SQL sont regroupées en catégories en fonction de leur utilité et des entités manipulées.

Nous pouvons distinguer cinq catégories, qui permettent :

- 1. La définition des éléments d'une base de données (tables, colonnes, clés, index, contraintes...),
- 2. La manipulation des données (insertion, suppression, modification, extraction...),
- 3. La gestion des droits d'accès aux données (acquisition et révocation des droits),
- 4. La gestion des transactions,
- 5. Le SQL intégré.

Langage SQL

Structured Query Language

 DDL

Data Definition Language

DCL

Data Control Language

 DML

Data Manipulation Language

TCL

Transaction Control Language

Langage SQL

Structured Query Language

Définir les objets de la base de données : Tables, Vues, Déclencheurs, Procédures & Fonctions stockées.

Les instructions du LDD sont : CREATE, ALTER, DROP, AUDIT, NOAUDIT, ANALYZE, RENAME, TRUNCATE.

Langage SQL

Structured Query Language

Manipulation des données de la base : **Sélectionner** (obtenir), **ajouter**, **supprimer** ou **modifier** des tuples Les instructions du LMD sont : INSERT, UPDATE, DELETE, SELECT, EXPLAIN, PLAN, LOCK TABLE.

Langage SQL

Structured Query Language

Qui a le droit de faire quelle opération sur les objets de la base de données ? (tables, vues, attributs, procédures & fonctions stockées, ...)

DCL
Data Control Language

Les instructions du DCL sont : GRANT, REVOKE.

Langage SQL

Structured Query Language

Gestion des transactions (implémentation des propriétés ACID ; **Atomicité**, **Cohérence**, **Isolation**, **Durabilité**)

Les instructions du TCL sont : COMMIT, SAVEPOINT, ROLLBACK, SET TRANSACTION

Langage SQL

Structured Query Language

Le **SQL** intégré (*Embedded SQL*)

permet d'utiliser SQL dans un langage de troisième génération (C, Java, Cobol, etc.) :

- déclaration d'objets ou d'instructions ;
- exécution d'instructions ;
- gestion des variables et des curseurs ;
- traitement des erreurs.

Les instructions du SQL intégré sont : DECLARE, TYPE, DESCRIBE, VAR, CONNECT, PREPARE, EXECUTE, OPEN, FETCH, CLOSE, WHENEVER.

Langage SQL

Structured Query Language

 DDL

Data Definition Language

DCL

Data Control Language

 DML

Data Manipulation Language

TCL

Transaction Control Language

Langage SQL

Structured Query Language

DDL

Data Definition Language

DCL
Data Control Language

DML

Data Manipulation Language

TCL
Transaction Control Language

Langage SQL

Structured Query Language

 DDL

Data Definition Language

DCL

Data Control Language

 DML

Data Manipulation Language

TCL

Transaction Control Language

Langage SQL

SELECT...

(obtenir des tuples)

INSERT INTO ...

(ajouter des tuples à une table)

UPDATE ...

(modifier les valeurs d'attributs de tuples)

DELETE FROM ...

(supprimer des tuples)

Généralités – littéraux textes

- Les *littéraux textes* sont entourés de *guillemets simples* (mais plusieurs SGBD permettent aussi l'usage de guillemets doubles).
- Si un guillemet simple apparaît dans le texte littéral, il faut l'échapper en le dédoublant.

Exemples:

- 'METZ'
- 'DE NIRO'
- 'l''éléphant'

Généralités – littéraux dates et heures

Les *littéraux temps* sont donnés entre guillemets simples, dans l'ordre heure, minute, seconde et dixième de seconde. Le séparateur de temps est le caractère deux-points ': ', sauf pour les dixièmes de secondes (caractère point '. ')

Exemples:

- '12:00:00.0'
- '18:00'

Les *littéraux dates* sont donnés entre guillemets simples, dans l'ordre année, mois, jour. Le séparateur de temps est le caractère tiret ' - '

Exemples:

- '2012-02-28'
- '1999-11-30'
- MS Access ne suit pas la norme pour la gestion des dates & heures.
- En fonction de la configuration, MySQL permet d'utiliser des guillemets simples ou doubles pour tous les littéraux (texte, date, temps).

Généralités – littéraux numériques

- Les littéraux numériques n'ont pas à être entourés de guillemets.
- Ils peuvent utiliser les chiffres, les caractères + et -, un séparateur décimal (le caractère ' . ') et la notation e pour les puissances de 10.
- Les littéraux sans point décimal sont traités comme des entiers,
- Les littéraux avec point décimal sont traités comme des réels (flottant)

Exemples:

- 12 *(entier)*
- 12.0 *(réel)*
- **+**12
- **■ -3.5**
- 2e3 **(2000)**

Généralités – Syntaxe générale d'une requête

Une requête se termine par un point-virgule ';'

```
SELECT nom, prenom FROM etudiants ;
```

Les mots-clés du langage SQL sont insensibles à la casse.

```
SELECT nom, prenom FROM etudiants;
select nom, prenom from etudiants;
```

```
nom ,
prenom
FROM
etudiants;
```

Une requête peut être écrite sur une ou plusieurs lignes.

Des blancs (espaces & tabulations) peuvent être ajoutés pour améliorer la lisibilité de la requête sans en perturber le fonctionnement.

Généralités – Syntaxe générale d'une requête

SQL Permet de commenter son code :

sous la forme de blocs de commentaires

ou bien sous forme de commentaires de fin de lignes.

```
SELECT nom, prenom FROM etudiants; -- requête 1
select nom, prenom from etudiants; -- requête 2
```

Généralités – Sensibilité à la casse

Dans *la norme*, *SQL est insensible à la casse des noms de tables et d'attributs*. ça n'est pas le cas pour certaines configurations liées au SGBD (MySQL/mariaDB).

Norme SQL:

```
etudiants(INE, nom, prenom, dateNaissance, sexe, ville, groupeTD, groupeTP)
=
ETUDIANTS(INE, NOM, PRENOM, DATENAISSANCE, SEXE, VILLE, GROUPETD, GROUPETP)
```

mysql/mariaDB (par défaut) :

```
etudiants(<u>INE</u>, nom, prenom, dateNaissance, sexe, ville, groupeTD, groupeTP)

#
ETUDIANTS(<u>INE</u>, NOM, PRENOM, DATENAISSANCE, SEXE, VILLE, GROUPETD, GROUPETP)
```

Structure générale d'une requête

SELECT

les attributs, littéraux ou combinaison/calculs à sélectionner, séparés par des virgules "les colonnes que l'on cherche à obtenir"

FROM

une relation (éventuellement construite à partir d'autres relations par jointure ou sous-requête) "la source des données à utiliser"

WHERE

Liste de prédicats, séparés par des connecteurs logiques (ET, OU, NON) permettant de filtrer (restreindre) les tuples à obtenir "les conditions à vérifier pour qu'un tuple apparaisse dans le résultat"

GROUP BY

attributs à utiliser pour faire des groupes de tuples, en vu d'appliquer des fonctions d'agrégat "les groupes de tuples à constituer pour les calculs statistiques"

HAVING

liste de prédicats, séparés par des connecteurs logiques (ET, OU, NON), permettant de filtrer (restreindre) les tuples à obtenir depuis la relation après groupement

"les conditions à vérifier sur les indicateurs statistiques"

ORDER BY

liste des attributs servant à ordonner (trier) les tuples obtenus

"ce qui va servir à déterminer comment trier les tuples"

Quelques prédicats à connaitre

Connecteurs logiques, par niveau de priorité : NOT, AND, OR

Opération	opérateur	Remarque
inférieur à	<	
supérieur à	>	
inférieur ou égal à	<=	
supérieur ou égal à	>=	
égal à	=	
différent de	<> ou bien connecteur NOT sur un test d'égalité.	Par exemple, le prédicat a<>b est équivalent au prédicat NOT a=b
entre et	BETWEEN AND	Par exemple age BETWEEN 18 AND 25 est un prédicat équivalent à age>=18 AND age<=25 mais se relit plus facilement
similaire à (valeurs textuelles)	LIKE	Peut s'utiliser avec des caractères jokers : _ (underscore / souligné) permettant de remplacer n'importe quel caractère, et % (pourcentage) permettant de remplacer 0, 1 ou plusieurs caractères.
test de nullité	IS NULL	
test de non nullité	IS NOT NULL ou bien NOT IS NULL	
test d'apparition dans une liste	IN (a, b, c,)	<pre>departementIUT IN ('SD', 'INFO') est équivalent à departementIUT = 'SD' OR departementIUT = 'INFO'</pre>

Relation (table) etudiants

etudiants(INE, nom, prenom, dateNaissance, sexe, ville, groupeTD, groupeTP)

INE	nom	prenom	dateNaissance	sexe	ville	groupeTD	groupeTP
1	Ah	Alice	2000-01-01	F	Metz	1	1
2	Beh	Bob	2004-03-25	Н	Metz	1	2
3	Ceh	Charlène	2004-04-28	F	Metz	1	2
4	Deh	Dexter	2004-05-12	Н	Nancy	1	1
5	Euh	Edwige	2005-06-06	F	Thionville	1	1
6	Effe	Franck	2003-12-13	Н	Nancy	2	3
7	Geay	Géraldine	2002-07-17	F	Nancy	2	4
8	Hache	Hubert	2003-12-15	Н	Metz	2	3
9	Ih	Isabelle	2005-10-01	F	Metz	2	4
10	Ji	Jonathan	2002-05-28	Н	Metz	2	3

```
SELECT
  nom,
  prenom,
  groupeTP
FROM
  etudiants
WHERE
  groupeTD = 2
ORDER BY
  groupeTP, nom, prenom;
```

INE	nom	prenom	dateNaissance	sexe	ville	groupeTD	groupeTP
1	Ah	Alice	2000-01-01	F	Metz	1	1
2	Beh	Bob	2004-03-25	Н	Metz	1	2
3	Ceh	Charlène	2004-04-28	F	Metz	1	2
4	Deh	Dexter	2004-05-12	Н	Nancy	1	1
5	Euh	Edwige	2005-06-06	F	Thionville	1	1
6	Effe	Franck	2003-12-13	Н	Nancy	2	3
7	Geay	Géraldine	2002-07-17	F	Nancy	2	4
8	Hache	Hubert	2003-12-15	Н	Metz	2	3
9	lh	Isabelle	2005-10-01	F	Metz	2	4
10	Ji	Jonathan	2002-05-28	Н	Metz	2	3

```
SELECT
  nom,
  prenom,
  groupeTP
FROM
  etudiants
WHERE
  groupeTD = 2
ORDER BY
```

groupeTP, nom, prenom;

```
table etudiants, instance initiale
```

INE	nom	prenom	dateNaissance	sexe	ville	groupeTD	groupeTP
1	Ah	Alice	2000-01-01	F	Metz	1	1
2	Beh	Bob	2004-03-25	Н	Metz	1	2
3	Ceh	Charlène	2004-04-28	F	Metz	1	2
4	Deh	Dexter	2004-05-12	Н	Nancy	1	1
5	Euh	Edwige	2005-06-06	F	Thionville	1	1
6	Effe	Franck	2003-12-13	Н	Nancy	2	3
7	Geay	Géraldine	2002-07-17	F	Nancy	2	4
8	Hache	Hubert	2003-12-15	Н	Metz	2	3
9	lh	Isabelle	2005-10-01	F	Metz	2	4
10	Ji	Jonathan	2002-05-28	Н	Metz	2	3

```
SELECT
  nom,
  prenom,
  groupeTP
FROM
  etudiants
WHERE
  groupeTD = 2
ORDER BY
  groupeTP, nom, prenom;
```

clause **SELECT**indique ce que l'on souhaite obtenir comme
tuple (ligne) dans le résultat de requête

INE	nom	prenom	dateNaissance	sexe	ville	groupeTD	groupeTP
1	Ah	Alice	2000-01-01	F	Metz	1	1
2	Beh	Bob	2004-03-25	Н	Metz	1	2
3	Ceh	Charlène	2004-04-28	F	Metz	1	2
4	Deh	Dexter	2004-05-12	Н	Nancy	1	1
5	Euh	Edwige	2005-06-06	F	Thionville	1	1
6	Effe	Franck	2003-12-13	Н	Nancy	2	3
7	Geay	Géraldine	2002-07-17	F	Nancy	2	4
8	Hache	Hubert	2003-12-15	Н	Metz	2	3
9	lh	Isabelle	2005-10-01	F	Metz	2	4
10	Ji	Jonathan	2002-05-28	Н	Metz	2	3

```
SELECT
  nom,
  prenom,
  groupeTP
FROM
  etudiants
WHERE
  groupeTD = 2
ORDER BY
  groupeTP, nom, prenom;
```

clause **SELECT**indique ce que l'on souhaite obtenir comme
tuple (ligne) dans le résultat de requête

nom	prenom	dateNaissance	sexe	ville	groupeTD	groupeTP
Ah	Alice	2000-01-01	F	Metz	1	1
Beh	Bob	2004-03-25	Н	Metz	1	2
Ceh	Charlène	2004-04-28	F	Metz	1	2
Deh	Dexter	2004-05-12	Н	Nancy	1	1
Euh	Edwige	2005-06-06	F	Thionville	1	1
Effe	Franck	2003-12-13	Н	Nancy	2	3
Geay	Géraldine	2002-07-17	F	Nancy	2	4
Hache	Hubert	2003-12-15	Н	Metz	2	3
lh	Isabelle	2005-10-01	F	Metz	2	4
Ji	Jonathan	2002-05-28	Н	Metz	2	3
	Ah Beh Ceh Deh Euh Effe Geay Hache Ih	Ah Alice Beh Bob Ceh Charlène Deh Dexter Euh Edwige Effe Franck Geay Géraldine Hache Hubert Ih Isabelle	Ah Alice 2000-01-01 Beh Bob 2004-03-25 Ceh Charlène 2004-04-28 Deh Dexter 2004-05-12 Euh Edwige 2005-06-06 Effe Franck 2003-12-13 Geay Géraldine 2002-07-17 Hache Hubert 2003-12-15 Ih Isabelle 2005-10-01	Ah Alice 2000-01-01 F Beh Bob 2004-03-25 H Ceh Charlène 2004-04-28 F Deh Dexter 2004-05-12 H Euh Edwige 2005-06-06 F Effe Franck 2003-12-13 H Geay Géraldine 2002-07-17 F Hache Hubert 2003-12-15 H Ih Isabelle 2005-10-01 F	Ah Alice 2000-01-01 F Metz Beh Bob 2004-03-25 H Metz Ceh Charlène 2004-04-28 F Metz Deh Dexter 2004-05-12 H Nancy Euh Edwige 2005-06-06 F Thionville Effe Franck 2003-12-13 H Nancy Geay Géraldine 2002-07-17 F Nancy Hache Hubert 2003-12-15 H Metz Ih Isabelle 2005-10-01 F Metz	Ah Alice 2000-01-01 F Metz 1 Beh Bob 2004-03-25 H Metz 1 Ceh Charlène 2004-04-28 F Metz 1 Deh Dexter 2004-05-12 H Nancy 1 Euh Edwige 2005-06-06 F Thionville 1 Effe Franck 2003-12-13 H Nancy 2 Geay Géraldine 2002-07-17 F Nancy 2 Hache Hubert 2003-12-15 H Metz 2 Ih Isabelle 2005-10-01 F Metz 2

```
SELECT
  nom,
  prenom,
  groupeTP
FROM
  etudiants
WHERE
  groupeTD = 2
ORDER BY
  groupeTP, nom, prenom;
```

clause **WHERE**indique quels prédicats doivent être vrais pour
qu'un tuple soit dans le résultat

INE	nom	prenom	dateNaissance	sexe	ville	groupeTD	groupeTP
1	Ah	Alice	2000-01-01	F	Metz	1 🗶	1
2	Beh	Bob	2004-03-25	Н	Metz	1 💥	2
3	Ceh	Charlène	2004-04-28	F	Metz	1 🗙	2
4	Deh	Dexter	2004-05-12	Н	Nancy	1 💥	1
5	Euh	Edwige	2005-06-06	F	Thionville	1 🗙	1
6	Effe	Franck	2003-12-13	Н	Nancy	2 🗸	3
7	Geay	Géraldine	2002-07-17	F	Nancy	2 🗸	4
8	Hache	Hubert	2003-12-15	Н	Metz	2 🇸	3
9	lh	Isabelle	2005-10-01	F	Metz	2 🗸	4
10	Ji	Jonathan	2002-05-28	Н	Metz	2 🗸	3

```
SELECT
  nom,
  prenom,
  groupeTP
FROM
  etudiants
WHERE
  groupeTD = 2
ORDER BY
  groupeTP, nom, prenom;
```

clause **ORDER BY**

indique dans quel ordre doivent apparaître les tuples. ici on tri d'abord sur le groupe de TP, puis (si égalité) sur le nom et enfin sur le prénom

INE	nom	prenom	dateNaissance	sexe	ville	groupeTD	groupeTP
6	Effe	Franck	2003-12-13	Н	Nancy	2	3
8	Hache	Hubert	2003-12-15	Н	Metz	2	3
10	Ji	Jonathan	2002-05-28	Н	Metz	2	3
7	Geay	Géraldine	2002-07-17	F	Nancy	2	4
9	Ih	Isabelle	2005-10-01	F	Metz	2	4

→ requête -

```
SELECT
  nom,
  prenom,
  groupeTP
FROM
  etudiants
WHERE
  groupeTD = 2
ORDER BY
  groupeTP, nom, prenom;
```

Relation de départ

					-		
INE	nom	prenom	dateNaissance	sexe	ville	groupeTD	groupeTP
1	Ah	Alice	2000-01-01	F	Metz	1	1
2	Beh	Bob	2004-03-25	Н	Metz	1	2
3	Ceh	Charlène	2004-04-28	F	Metz	1	2
4	Deh	Dexter	2004-05-12	Н	Nancy	1	1
5	Euh	Edwige	2005-06-06	F	Thionville	1	1
6	Effe	Franck	2003-12-13	Н	Nancy	2	3
7	Geay	Géraldine	2002-07-17	F	Nancy	2	4
8	Hache	Hubert	2003-12-15	Н	Metz	2	3
9	lh	Isabelle	2005-10-01	F	Metz	2	4
10	Ji	Jonathan	2002-05-28	Н	Metz	2	3

Résultat

nom	prenom	groupeTP
Effe	Franck	3
Hache	Hubert	3
Ji	Jonathan	3
Geay	Géraldine	4
lh	Isabelle	4

```
SELECT
nom,
prenom,
groupeTP
FROM
etudiants
WHERE
groupeTD = 2
ORDER BY
groupeTP, nom, prenom;
```

Résultat Tri (groupeTP, nom, prenom) groupeTD=2 Nom, preom, groupeTP etudiants

Relation de départ

INE	nom	prenom	dateNaissance	sexe	ville	groupeTD	groupeTP
1	Ah	Alice	2000-01-01	F	Metz	1	1
2	Beh	Bob	2004-03-25	Н	Metz	1	2
3	Ceh	Charlène	2004-04-28	F	Metz	1	2
4	Deh	Dexter	2004-05-12	Н	Nancy	1	1
5	Euh	Edwige	2005-06-06	F	Thionville	1	1
6	Effe	Franck	2003-12-13	Н	Nancy	2	3
7	Geay	Géraldine	2002-07-17	F	Nancy	2	4
8	Hache	Hubert	2003-12-15	Н	Metz	2	3
9	lh	Isabelle	2005-10-01	F	Metz	2	4
10	Ji	Jonathan	2002-05-28	Н	Metz	2	3

Résultat

nom	prenom	groupeTP
Effe	Franck	3
Hache	Hubert	3
Ji	Jonathan	3
Geay	Géraldine	4
lh	Isabelle	4

```
SELECT
 *
FROM
 etudiants
WHERE
 dateNaissance > = '2005-01-01';
```

INE	nom	prenom	dateNaissance	sexe	ville	groupeTD	groupeTP
1	Ah	Alice	2000-01-01	F	Metz	1	1
2	Beh	Bob	2004-03-25	Н	Metz	1	2
3	Ceh	Charlène	2004-04-28	F	Metz	1	2
4	Deh	Dexter	2004-05-12	Н	Nancy	1	1
5	Euh	Edwige	2005-06-06	F	Thionville	1	1
6	Effe	Franck	2003-12-13	Н	Nancy	2	3
7	Geay	Géraldine	2002-07-17	F	Nancy	2	4
8	Hache	Hubert	2003-12-15	Н	Metz	2	3
9	lh	Isabelle	2005-10-01	F	Metz	2	4
10	Ji	Jonathan	2002-05-28	Н	Metz	2	3

```
SELECT
 *
FROM
 etudiants
WHERE
 dateNaissance > = '2005-01-01';
```

table etudiants, instance initiale

INE	nom	prenom	dateNaissance	sexe	ville	groupeTD	groupeTP
1	Ah	Alice	2000-01-01	F	Metz	1	1
2	Beh	Bob	2004-03-25	Н	Metz	1	2
3	Ceh	Charlène	2004-04-28	F	Metz	1	2
4	Deh	Dexter	2004-05-12	Н	Nancy	1	1
5	Euh	Edwige	2005-06-06	F	Thionville	1	1
6	Effe	Franck	2003-12-13	Н	Nancy	2	3
7	Geay	Géraldine	2002-07-17	F	Nancy	2	4
8	Hache	Hubert	2003-12-15	Н	Metz	2	3
9	lh	Isabelle	2005-10-01	F	Metz	2	4
10	Ji	Jonathan	2002-05-28	Н	Metz	2	3

```
SELECT
 *
FROM
 etudiants
WHERE
 dateNaissance > = '2005-01-01';
```

l'étoile (*)
indique d'utiliser tous les attributs de la relation,
dans l'ordre ou ils ont été définis.

INE	nom	prenom	dateNaissance	sexe	ville	groupeTD	groupeTP
1	Ah	Alice	2000-01-01	F	Metz	1	1
2	Beh	Bob	2004-03-25	Н	Metz	1	2
3	Ceh	Charlène	2004-04-28	F	Metz	1	2
4	Deh	Dexter	2004-05-12	Н	Nancy	1	1
5	Euh	Edwige	2005-06-06	F	Thionville	1	1
6	Effe	Franck	2003-12-13	Н	Nancy	2	3
7	Geay	Géraldine	2002-07-17	F	Nancy	2	4
8	Hache	Hubert	2003-12-15	Н	Metz	2	3
9	lh	Isabelle	2005-10-01	F	Metz	2	4
10	Ji	Jonathan	2002-05-28	Н	Metz	2	3

```
SELECT
 *
FROM
 etudiants
WHERE
 dateNaissance > = '2005-01-01';
```

les valeurs littérales de dates (littéraux dates) sont écrites au format YYYY-MM-DD et entre guillemets simples (simple quotte)

Sans les guillemets, ce serait 2003 (2005 moins 1 moins 1)

INE	nom	prenom	dateNaissance	sexe	ville	groupeTD	groupeTP
1	Ah	Alice	2000-01-01	F	Metz	1	1
2	Beh	Bob	2004-03-25	Н	Metz	1	2
3	Ceh	Charlène	2004-04-28	F	Metz	1	2
4	Deh	Dexter	2004-05-12	Н	Nancy	1	1
5	Euh	Edwige	2005-06-06	F	Thionville	1	1
6	Effe	Franck	2003-12-13	Н	Nancy	2	3
7	Geay	Géraldine	2002-07-17	F	Nancy	2	4
8	Hache	Hubert	2003-12-15	Н	Metz	2	3
9	lh	Isabelle	2005-10-01	F	Metz	2	4
10	Ji	Jonathan	2002-05-28	Н	Metz	2	3

```
SELECT
 *
FROM
 etudiants
WHERE
 dateNaissance > = '2005-01-01';
```

INE	nom	prenom	dateNaissance	sexe	ville	groupeTD	groupeTP
1	Ah	Alice	2000-01-01	F	Metz	1	1
2	Beh	Bob	2004-03-25	Н	Metz	1	2
3	Ceh	Charlène	2004-04-28	F	Metz	1	2
4	Deh	Dexter	2004-05-12	Н	Nancy	1	1
5	Euh	Edwige	2005-06-06	F	Thionville	1	1
6	Effe	Franck	2003-12-13	Н	Nancy	2	3
7	Geay	Géraldine	2002-07-17	F	Nancy	2	4
8	Hache	Hubert	2003-12-15	Н	Metz	2	3
9	lh	Isabelle	2005-10-01	F	Metz	2	4
10	Ji	Jonathan	2002-05-28	Н	Metz	2	3

```
SELECT
 *
FROM
 etudiants
WHERE
 dateNaissance > = '2005-01-01';
```

Résultat de la requête

INE	nom	prenom	dateNaissance	sexe	ville	groupeTD	groupeTP
5	Euh	Edwige	2005-06-06	F	Thionville	1	1
9	lh	Isabelle	2005-10-01	F	Metz	2	4

```
SELECT
 *
FROM
 etudiants
WHERE
 dateNaissance > = '2005-01-01';
```

Résultat de la requête

INE	nom	prenom	dateNaissance	sexe	ville	groupeTD	groupeTP
5	Euh	Edwige	2005-06-06	F	Thionville	1	1
9	lh	Isabelle	2005-10-01	F	Metz	2	4


```
SELECT
  IF(sexe='H', 'Monsieur', 'Madame') AS civilite,
  nom,
  prenom

FROM
  etudiants

WHERE
  groupeTD = 2 AND ville = 'Metz';
```

"les colonnes que l'on cherche à obtenir"

SELECT

```
IF(sexe='H', 'Monsieur', 'Madame') AS civilite,
nom,
prenom
```

FROM

etudiants

WHERE

```
groupeTD = 2 AND ville = 'Metz';
```

"les colonnes que l'on cherche à obtenir"

civilite	nom	prenom

SELECT

```
IF(sexe='H', 'Monsieur', 'Madame') AS civilite,
nom,
prenom
```

FROM

etudiants

WHERE

```
groupeTD = 2 AND ville = 'Metz';
```

"Créer un Alias"


```
        civilite
        nom
        prenom

        ...
        ...
        ...

        ...
        ...
        ...
```

« Si Sexe a comme valeur 'H' alors 'civilité' prend comme valeur 'Monsieur', dans le cas contraire, prend la valeur 'Madame' "

civilite	nom	prenom
	•••	•••
•••	•••	

SELECT

```
IF(sexe='H', 'Monsieur', 'Madame') AS civilite,
nom,
prenom
```

FROM

etudiants

WHERE

```
groupeTD = 2 AND ville = 'Metz';
```

civilite	nom	prenom

```
WHERE
```

```
groupeTD = 2 AND ville = 'Metz';
```

civilite	nom	prenom
•••	•••	

```
SELECT
IF(sexe='H', 'Monsieur', 'Madame') AS civilite,
nom,
prenom

FROM
etudiants

WHERE
groupeTD = 2 AND ville = 'Metz';
```

civilite	nom	prenom
•••	•••	

```
SELECT
IF(sexe='H', 'Monsieur', 'Madame') AS civilite,
nom,
prenom
```

FROM

etudiants

"les conditions à vérifier pour qu'un tuple apparaisse dans le résultat"

WHERE

```
groupeTD = 2 AND ville = 'Metz';

1er prédicat

connecteur logique "ET".
```

Les deux prédicats doivent être vrai pour que le tuple soit sélectionné

civilite	nom	prenom
•••	•••	

```
SELECT
IF(sexe='H', 'Monsieur', 'Madame') AS civilite,
nom,
prenom
```

FROM

etudiants

WHERE

```
groupeTD = 2 AND ville = 'Metz';
```


Attention aux spécificités SQL qui utilise une logique ternaire :

- vrai
- faux
- inconnu

En effet, SQL possède une valeur spécifique pour l'absence de valeur (ou les valeurs manquantes) : la valeur nulle (**null**)

Exemple de prédicats :

• 5 > 2 (c'est vrai)

• 8 <= 5 (c'est faux)

 \bullet 1 = 2 (c'est faux)

• 5 > null (c'est inconnu ; ni vrai, ni faux)

Attention aux spécificités de la valeur null

numEmploye	nom	prenom	salaire
100	Ah	Alice	2500
101	Beh	Bob	1700
102	Ceh	Charlène	null

Attention aux spécificités de la valeur null

numEmploye	nom	prenom	salaire
100	Ah	Alice	2500
101	Beh	Bob	1700
102	Ceh	Charlène	null

```
SELECT

COUNT(*)

FROM

employes;
```


Attention aux spécificités de la valeur null

numEmploye	nom	prenom	salaire
100	Ah	Alice	2500
101	Beh	Bob	1700
102	Ceh	Charlène	null

```
SELECT
COUNT(*)
FROM
employes;
```


Attention aux spécificités de la valeur null

numEmploye	nom	prenom	salaire
100	Ah	Alice	2500
101	Beh	Bob	1700
102	Ceh	Charlène	null

```
SELECT
COUNT(*)
FROM
employes;
```

```
SELECT

COUNT(*)

FROM

employes

WHERE

salaire <= 0 OR salaire >= 0;
```


Attention aux spécificités de la valeur null

numEmploye	nom	prenom	salaire
100	Ah	Alice	2500
101	Beh	Bob	1700
102	Ceh	Charlène	null

```
SELECT

COUNT(*)

FROM

employes;
```

```
SELECT COUNT(*)

FROM employes
WHERE salaire <= 0 OR salaire >= 0;
```


Attention aux spécificités de la valeur null

```
employes(numEmploye, nom, prenom, salaire);
```

numEmploye	nom	prenom	salaire
100	Ah	Alice	2500
101	Beh	Bob	1700
102	Ceh	Charlène	null

SQL et logique ternaire

Attention aux spécificités de la valeur null

numEmploye	nom	prenom	salaire
100	Ah	Alice	2500
101	Beh	Bob	1700
102	Ceh	Charlène	null

SQL et logique ternaire

Attention aux spécificités de la valeur **null**

numEmploye	nom	prenom	salaire
100	Ah	Alice	2500
101	Beh	Bob	1700
102	Ceh	Charlène	null

```
SELECT

COUNT(*)

FROM

employes

WHERE salaire IS NULL; -- IS NULL, et pas = NULL.

-- on ne peut pas être égal à une valeur inconnue

-- (de même pour <>, qui ne peut être utilisé)
```

Autres spécificités

Une chaîne de caractère vide n'est pas une valeur nulle

numEmploye	nom	prenom	salaire
100	Ah	Alice	2500
101	Beh		1700
102	Ceh	Charlène	null

```
FROM

employes

WHERE

prenom = ''; -- chaine vide, mais valeur connue
```

Autres spécificités

salaire

1700

Une chaîne de caractère vide n'est pas une valeur nulle

numEmploye	nom	prenom	salaire
100	Ah	Alice	2500
101	Beh		1700
102	Ceh	Charlène	null

SELECT				
	*	numEmploye	nom	prenom
FROM		101	Beh	
LUEDE	employes			
WHERE	prenom = '' ; -	- chaine vide	, mais valeur	connue

Opérateur LIKE pour les chaines de caractères et caractères joker

```
employes(numEmploye, nom, prenom, salaire);
```

numEmploye	nom	prenom	salaire
100	Ah	Alice	2500
101	Beh	Bob	1700
102	Ceh	Charlène	null

```
FROM
        employes
WHERE nom = 'B_h';
```

Opérateur LIKE pour les chaines de caractères et caractères joker

```
employes(numEmploye, nom, prenom, salaire);
```

numEmploye	nom	prenom	salaire
100	Ah	Alice	2500
101	Beh	Bob	1700
102	Ceh	Charlène	null

```
SELECT *
FROM
```

```
employes
WHERE nom = 'B_h';
```

numEmploye nom	prenom	salaire
----------------	--------	---------

Opérateur LIKE pour les chaines de caractères et caractères joker

employes(numEmploye, nom, prenom, salaire);

numEmploye	nom	prenom	salaire
100	Ah	Alice	2500
101	Beh	Bob	1700
102	Ceh	Charlène	null

SELECT

*

FROM

employes
WHERE nom = 'B_h';

numEmploye	nom	prenom	salaire
101	Beh	Bob	1700

Opérateur LIKE pour les chaines de caractères et caractères joker

```
employes(numEmploye, nom, prenom, salaire);
```

numEmploye	nom	prenom	salaire
100	Ah	Alice	2500
101	Beh	Bob	1700
102	Ceh	Charlène	null

```
FROM
employes
WHERE nom LIKE 'B_h';
```

numEmploye	nom	prenom	salaire
101	Beh	Bob	1700

Opérateur LIKE pour les chaines de caractères et caractères joker

employes(numEmploye, nom, prenom, salaire);

numEmploye	nom	prenom	salaire
100	Ah	Alice	2500
101	Beh	Bob	1700
102	Ceh	Charlène	null

FROM employes where nom LIKE 'B_h'; caractère joker remplaçant exactement 1 caractère numEmploye nom prenom salaire 101 Beh Bob 1700

Opérateur LIKE pour les chaines de caractères et caractères joker

```
employes(numEmploye, nom, prenom, salaire);
```

numEmploye	nom	prenom	salaire
100	Ah	Alice	2500
101	Beh	Bob	1700
102	Ceh	Charlène	null

```
* caractère joker remplaçant 0,1 ou plusieurs caractères

FROM

employes

WHERE nom LIKE '%a%';
```

Opérateur LIKE pour les chaines de caractères et caractères joker

employes(numEmploye, nom, prenom, salaire);

numEmploye	nom	prenom	salaire
100	Ah	Alice	2500
101	Beh	Bob	1700
102	Ceh	Charlène	null

* caractère joker remplaçant 0,1 ou plusieurs caractères

employes ↓
WHERE nom LIKE '%a%';

numEmploye	nom	prenom	salaire
100	Ah	Alice	2500
102	Ceh	Charlène	null

SQL

Obtenir des données à partir de plusieurs relations (modèle relationnel & jointures)

SELECT

les attributs, littéraux ou combinaison/calculs à sélectionner, séparés par des virgules "les colonnes que l'on cherche à obtenir"

FROM

une relation

(éventuellement construite à partir d'autres relations par jointure ou sous-requête)
"la source des données à utiliser"

WHERE

Liste de prédicats, séparés par des connecteurs logiques (ET, OU, NON) permettant de filtrer (restreindre) les tuples à obtenir.

"les conditions à vérifier pour qu'un tuple apparaisse dans le résultat"

GROUP BY

attributs à utiliser pour faire des groupes de tuples en vu d'appliquer des fonctions d'agrégat "les groupes de tuples à constituer pour les calculs statistiques"

HAVING

liste de prédicats, séparés par des connecteurs logiques (ET, OU, NON) permettant de filtrer(restreindre) les tuples à obtenir depuis la relation après groupement. "les conditions à vérifier sur les indicateurs statistiques"

ORDER BY

liste des attributs servant à ordonner (trier) les tuples obtenus.

"ce qui va servir à déterminer comment trier les tuples"

SQL

Pourquoi plusieurs tables ?

Exemple

num Commune	libelle Commune	chefLieu Departement	num Departement	libelle Departement	num Region	libelle Region	population
57001	Metz	oui	57	Moselle	44	Grand Est	
57672	Thionville	non	57	Moselle	44	Grand Est	

Pbs d'anomalies qui viennent de l'existence de dépendances fonctionnelles transitives

numCommune → libelleCommune, chefLieuDepartement, numDepartement, libelleDepartement, numRegion, libelleRegion, population

numCommune → libelleCommune, chefLieuDepartement, numDepartement, population

numDepartement → libelleDepartement, numRegion

Exemple

```
communes(numCommune, libelleCommune, #numDepartement, population);
departements(numDepartement, libelleDepartement, numCommuneChefLieu, #numRegion);
regions(numRegion, libelleRegion);
departements[numcommuneChefLieu] 
communes[numCommune]
```

num Commune	libelle Commune	num Departement	population
57001	Metz	57	
57672	Thionville	57	

num Departement	libelle Departement	numCommune ChefLieu	num Region
56	Morbihan	56260	53
57	Moselle	57001	44
58	Nievre	58194	27

num Region	libelle Region
27	Bourgogne-Franche-Comté
44	Grand Est
53	Bretagne

communes

departements

regions

Anomalies impossibles :

- 1 département (Moselle) dans 2 régions différentes (Occitanie et Grand Est).
- •1 département (Moselle) avec 2 numéros différents (57, 58).
- •1 département avec 2 chefs lieux

Stocker les données dans plusieurs relations permet

- une meilleure qualité des données (cohérence, règles métiers)
- un accès plus rapide aux données

Stocker les données dans plusieurs relations permet

- une meilleure qualité des données (cohérence, règles métiers)
- un accès plus rapide aux données

. . .

Mais

comment présenter toutes les données nécessaires dans une seule et même relation ?

```
geographie (
   numCommune, libelleCommune, chefLieuDepartement,
   numDepartement, libelleDepartement,
   numRegion, libelleRegion, population
);
```

1 tuple de la relation geographie représente les informations d'une commune.

```
communes(numCommune, libelleCommune, #numDepartement, population);
departements(numDepartement, libelleDepartement, communeChefLieu, #numRegion);
departements[communeChefLieu] 
communes[numCommune]
regions(numRegion, libelleRegion);
```

```
geographie (
   numCommune, libelleCommune, chefLieuDepartement,
   numDepartement, libelleDepartement,
   numRegion, libelleRegion, population
);
```

1 tuple de la relation geographie représente les informations d'une commune.

```
communes(numCommune, libelleCommune, #numDepartement, population);
departements(numDepartement, libelleDepartement, communeChefLieu, #numRegion);
departements[communeChefLieu] 
communes[numCommune]
regions(numRegion, libelleRegion);
```

"Donner la liste des départements avec leur population"

```
geographie (
    numCommune, libelleCommune, chefLieuDepartement,
    numDepartement, libelleDepartement,
    numRegion, libelleRegion, population
);
```

1 tuple de la relation geographie représente les informations d'une commune.

```
SELECT
     libelleDepartement,
     SUM(population) AS population_Departement
FROM
     geographie
GROUP BY
     libelleDepartement;
```

"Donner la liste des départements avec leur population"

```
SELECT
     libelleDepartement,
     SUM(population) AS population_Departement
FROM
          geographie
GROUP BY
     libelleDepartement;
```

num Commune	libelle Commune	chefLieu Departement	num Departement	libelle Departement	num Region	libelle Region	population
57001	Metz	oui	57	Moselle	44	Grand Est	pop _{Metz}
57672	Thionville	non	57	Moselle	44	Grand Est	pop _{Thionville}
56260	Vannes	oui	56	Morbihan	53	Bretagne	pop _{Metz}
56121	Lorient	non	56	Morbihan	53	Bretagne	pop _{Thionville}

```
communes(<u>numCommune</u>, libelleCommune, #numDepartement, population);
departements(<u>numDepartement</u>, libelleDepartement, communeChefLieu, #numRegion);
departements[communeChefLieu] ⊆ communes[numCommune]
regions(<u>numRegion</u>, libelleRegion);
```

```
SELECT
     libelleDepartement,
     SUM(population) AS population_Departement
FROM
GROUP BY
     libelleDepartement;
```

"Donner la liste des départements avec leur population"

```
communes(numCommune, libelleCommune, #numDepartement, population);
departements(numDepartement, libelleDepartement, communeChefLieu, #numRegion);
departements[communeChefLieu] ⊆ communes[numCommune]
regions(numRegion, libelleRegion);
```

num Commune	libelle Commune	num Departement	population
57001	Metz	57	
57672	Thionville	57	

num Departement	libelle Departement	chefLieu Departement	num Region
56	Morbihan	56260	53
57	Moselle	57001	44
58	Nievre	58194	27

num Region	libelle Region
27	Bourgogne-Franche-Comté
44	Grand Est
53	Bretagne

communes

departements

regions

```
communes(numCommune, libelleCommune, #numDepartement, population);
departements(numDepartement, libelleDepartement, communeChefLieu, #numRegion);
departements[communeChefLieu] ⊆ communes[numCommune]
regions(numRegion, libelleRegion);
```

num Commune	libelle Commune	num Departement	population
57001	Metz	57	
57672	Thionville	57	

\sim	٦mm	III	Δc
C	omm	un	てつ

num Departement	libelle Departement	chefLieu Departement	num Region
56	Morbihan	56260	53
57	Moselle	57001	44
58	Nievre	58194	27

departements

num Region	libelle Region
27	Bourgogne-Franche-Comté
44	Grand Est
53	Bretagne

regions

APRES

Conséquences

```
communes(numCommune, libelleCommune, #numDepartement, population);
departements(numDepartement, libelleDepartement, communeChefLieu, #numRegion);
departements[communeChefLieu] ⊆ communes[numCommune]
regions(numRegion, libelleRegion);
```

num Commune	libelle Commune	num Departement	population
57001	Metz	57	
57672	Thionville	57	

num Departement	libelle Departement	chefLieu Departement	num Region
56	Morbihan	56260	53
57	Moselle	57001	44
58	Nievre	58194	27

num Region	libelle Region
27	Bourgogne-Franche-Comté
44	Grand Est
53	Bretagne

communes

departements

jointure des tables communes et departements en utilisant l'attribut numDepartement

regions

```
communes(numCommune, libelleCommune, #numDepartement, population);
departements(numDepartement, libelleDepartement, communeChefLieu, #numRegion);
departements[communeChefLieu] ⊆ communes[numCommune]
regions(numRegion, libelleRegion);
```

num Commune	libelle Commune	num Departement	population
57001	Metz	57	
57672	Thionville	57	

num Departement	libelle Departement	chefLieu Departement	num Region
56	Morbihan	56260	53
57	Moselle	57001	44
58	Nievre	58194	27

num Region	libelle Region
27	Bourgogne-Franche-Comté
44	Grand Est
53	Bretagne

communes

departements

regions

jointure des tables communes et departements en utilisant l'attribut numDepartement

communes JOIN departements
USING (numDepartement)

APRES

Conséquences

```
communes(numCommune, libelleCommune, #numDepartement, population);
departements(numDepartement, libelleDepartement, communeChefLieu, #numRegion);
departements[communeChefLieu] ⊆ communes[numCommune]
regions(numRegion, libelleRegion);
```

num Commune	libelle Commune	num Departement	population
57001	Metz	57	
57672	Thionville	57	

num Departement	libelle Departement	chefLieu Departement	num Region
56	Morbihan	56260	53
57	Moselle	57001	44
58	Nievre	58194	27

num Region	libelle Region
27	Bourgogne-Franche-Comté
44	Grand Est
53	Bretagne

communes

departements

regions

jointure des tables communes et departements en utilisant l'attribut numDepartement

communes JOIN departements
USING (numDepartement)

num Departement	num Commune	libelle Commune	population	libelle Departement	chefLieu Departement	num Region
57	57001	Metz		Moselle	57001	44
57	57672	Thionville		Moselle	57001	44
56	56260	Vannes		Morbihan	56260	53
58	58194	Nevers		Nievre	58194	27

APRES

Conséquences

```
communes(numCommune, libelleCommune, #numDepartement, population);
departements(numDepartement, libelleDepartement, communeChefLieu, #numRegion);
departements[communeChefLieu] ⊆ communes[numCommune]
regions(numRegion, libelleRegion);
```

num Commune	libelle Commune	num Departement	population		num Departement	libelle Departement	chefLieu Departement	num Region
57001	Metz	57			56	Morbihan	56260	53
F7070	This wills				57	Moselle	57001	44
57672	Thionville	57		·	58	Nievre	58194	27

num Region	libelle Region
27	Bourgogne-Franche-Comté
44	Grand Est
53	Bretagne

communes

departements

regions

jointure des tables communes et departements en utilisant l'attribut numDepartement

communes JOIN departements
USING (numDepartement)

num Departement	num Commune	libelle Commune	population	libelle Departement	chefLieu Departement	num Region
57	57001	Metz		Moselle	57001	44
57	57672	Thionville		Moselle	57001	44
56	56260	Vannes		Morbihan	56260	53
58	58194	Nevers		Nievre	58194	27

```
communes(<u>numCommune</u>, libelleCommune, #numDepartement, population);
departements(<u>numDepartement</u>, libelleDepartement, communeChefLieu, #numRegion);
departements[communeChefLieu] ⊆ communes[numCommune]
regions(<u>numRegion</u>, libelleRegion);
```

```
SELECT
     libelleDepartement,
     SUM(population) AS population_Departement
FROM
GROUP BY
     libelleDepartement;
```

"Donner la liste des départements avec leur population"

```
communes(numCommune, libelleCommune, #numDepartement, population);
departements(numDepartement, libelleDepartement, communeChefLieu, #numRegion);
departements[communeChefLieu] ⊆ communes[numCommune]
regions(numRegion, libelleRegion);
```

```
SELECT
    libelleDepartement,
    SUM(population) AS population_Departement
FROM
    communes JOIN departements USING (numDepartement)
GROUP BY
    libelleDepartement;
```

"Donner la liste des départements avec leur population"

```
communes(numCommune, libelleCommune, #numDepartement, population);
departements(<u>numDepartement</u>, l<mark>ibelleDepartement</mark>, communeChefLieu, #numRegion);
departements[communeChefLieu] 
\( \sigma \) communes[numCommune]
regions(numRegion, libelleRegion);
SELECT
        libelleDepartement,
        SUM(population) AS population_Departement
FROM
         communes JOIN departements USING (numDepartement)
GROUP BY
        libelleDepartement;
```

```
communes(numCommune, libelleCommune, #numDepartement, population);
departements(numDepartement, libelleDepartement, communeChefLieu, #numRegion);
departements[communeChefLieu] ⊆ communes[numCommune]
regions(numRegion, libelleRegion);
```

```
SELECT

libelleDepartement,

SUM(population) AS population_Departement

FROM

GROUP BY

libelleDepartement;
```

GROUP BY

libelleRegion ;

Conséquences

```
communes(<u>numCommune</u>, libelleCommune, <u>#numDepartement</u>] population);
departements (numDepartement, libelleDepartement, communeChefLieu, #numRegion);
departements[communeChefLieu] <u></u> communes[numCommune]
regions (numRegion, libelleRegion);
SELECT
        libelleRegion,
       SUM(population) AS population_Region
FROM
```

```
communes(<u>numCommune</u>, libelleCommune, #numDepartement] population);
departements (numDepartement, libelleDepartement, communeChefLieu, #numRegion);
departements[communeChef<u>Lieu</u>] <u></u> communes[numCommune]
regions (numRegion, libelleRegion);
SELECT
       libelleRegion,
       SUM(population) AS population_Region
FROM
       communes
       JOIN departements USING (numDepartement)
       JOIN regions USING (numRegion)
GROUP BY
       libelleRegion ;
```

Fonctions d'agrégation

Les fonctions d'agrégation sont des fonctions idéales pour effectuer quelques statistiques de bases sur des tables.

Les principales fonctions sont les suivantes :

- SUM() pour calculer la somme sur un ensemble d'enregistrement
- AVG() pour calculer la moyenne sur un ensemble d'enregistrement
- COUNT() pour compter le nombre d'enregistrement sur une table ou une colonne distincte
- MAX() pour récupérer la valeur maximum d'une colonne sur un ensemble de ligne. Cela s'applique à la fois pour des données numériques ou alphanumérique
- MIN() pour récupérer la valeur minimum de la même manière que MAX()

Utilisation simple

L'utilisation la plus générale consiste à utiliser la syntaxe suivante :

SELECT fonction(colonne) FROM table

Opérateurs logiques

Les opérateurs logiques testent le caractère vrai ou faux d'une condition. Les opérateurs logiques, comme les opérateurs de comparaison, retournent un type de données **booléen** de valeur TRUE, FALSE ou UNKNOWN.

Opérateur	Signification
ALL	TRUE si tous les éléments d'un jeu de comparaisons sont TRUE.
AND	TRUE les deux expressions booléennes sont TRUE.
ANY	TRUE si n'importe quel élément d'un jeu de comparaison est TRUE.
BETWEEN	TRUE si l'opérande est situé dans une certaine plage.
EXISTS	TRUE si une sous-requête contient des lignes.
IN	TRUE si l'opérande est égal à un élément d'une liste d'expressions.
LIKE	TRUE si l'opérande correspond à un modèle.
NOT	Inverse la valeur de tout autre opérateur booléen.
OR	TRUE si l'une ou l'autre expression booléenne est TRUE.
SOME	TRUE si certains éléments d'un jeu de comparaisons sont TRUE.

Opérateurs arithmétiques

Les opérateurs arithmétiques exécutent des opérations mathématiques sur deux expressions d'un ou plusieurs types de données, à partir de la catégorie de type de données numérique.

Opérateur	Signification
+ (Ajout)	Addition
- (Soustraction)	Soustraction
* (Multiplication)	Multiplication
/ (Diviser)	Division
% (Modulo)	Retourne le reste entier d'une division. Par exemple, 12 % 5 = 2 parce que le reste de 12 divisé par 5 est 2.

Rappels JOIN

JOIN

etudiants

INE	nom	prenom	departement
1	Ah	Alice	SD
2	Beh	Bob	INFO
3	Ceh	Charlène	SD

departements

departement libelleDepartement		secteur
SD	Science de données	tertiaire
INFO	Informatique	secondaire

etudiants **JOIN** departements

INE	nom	prenom	departement	departement	libelleDepartement	secteur
1	Ah	Alice	SD	SD	Science de données	tertiaire
2	Beh	Bob	INFO	SD	Science de données	tertiaire
3	Ceh	Charlène	SD	SD	Science de données	tertiaire
1	Ah	Alice	SD	INFO	Informatique	secondaire
2	Beh	Bob	INFO	INFO	Informatique	secondaire
3	Ceh	Charlène	SD	INFO	Informatique	secondaire

- sans condition, JOIN est équivalent à un produit cartésien (produit croisé) : il est recommandé dans ce cas d'utiliser CROSS JOIN, et de ne pas utiliser JOIN seul
- tous les couples de tuples possibles sont présents dans le résultat

CROSS JOIN

etudiants

INE	nom	prenom	departement
1	Ah	Alice	SD
2	Beh	Bob	INFO
3	Ceh	Charlène	SD

departements

departement	departement libelleDepartement	
SD	Science de données	tertiaire
INFO	Informatique	secondaire

Résultat

etudiants CROSS JOIN departements

INE	nom	prenom	departement	departement	libelleDepartement	secteur
1	Ah	Alice	SD	SD	Science de données	tertiaire
2	Beh	Bob	INFO	SD	Science de données	tertiaire
3	Ceh	Charlène	SD	SD	Science de données	tertiaire
1	Ah	Alice	SD	INFO	Informatique	secondaire
2	Beh	Bob	INFO	INFO	Informatique	secondaire
3	Ceh	Charlène	SD	INFO	Informatique	secondaire

CROSS JOIN

permet d'indiquer explicitement que l'on cherche à faire un produit cartésien

NATURAL JOIN

etudiants

	C C G G E G I I C S						
INE	nom	prenom	departement				
1	Ah	Alice	SD				
2	Beh	Bob	INFO				
3	Ceh	Charlène	SD				

departement	libelleDepartement	secteur		
SD	Science de données	tertiaire		
INFO	Informatique	secondaire		

etudiants **NATURAL JOIN** departements

departement	INE	nom	prenom	libelleDepartement	secteur
SD	1	Ah	Alice	Science de données	tertiaire
INFO	2	Beh	Bob	Informatique	secondaire
SD	3	Ceh	Charlène	Science de données	tertiaire

- On joint 2 tuples ssi <u>tous</u> les attributs de même nom dans les deux tables ont les mêmes valeurs
- Les attributs de jointure n'apparaissent qu'une fois, en début de relation
- Ici, il n y a que « département » qui est en commun, il apparait au début du résultat

JOIN USING

etudiants

INE	nom	prenom	departement
1	Ah	Alice	SD
2	Beh	Bob	INFO
3	Ceh	Charlène	SD

<u>departements</u>

departement	libelleDepartement	secteur		
SD	Science de données	tertiaire		
INFO	Informatique	secondaire		

etudiants JOIN departements USING (departement)

departement	INE	nom	prenom	libelleDepartement	secteur
SD	1	Ah	Alice	Science de données	tertiaire
INFO	2	Beh	Bob	Informatique	secondaire
SD	3	Ceh	Charlène	Science de données	tertiaire

- On joint 2 tuples ssi les attributs de même nom apparaissant dans **USING** ont les mêmes valeurs
- Les attributs de jointure n'apparaissent qu'une fois, en début de relation

JOIN ON

etudiants

INE	nom	prenom	departement
1	Ah	Alice	SD
2	Beh	Bob	INFO
3	Ceh	Charlène	SD

departements

departement	libelleDepartement	secteur
SD	Science de données	tertiaire
INFO	Informatique	secondaire

etudiants **JOIN** departements ON etudiants.departement = departements.departement

INE	nom	prenom	departement	departement	libelleDepartement	secteur
1	Ah	Alice	SD	SD	Science de données	tertiaire
2	Beh	Bob	INFO	INFO	Informatique	secondaire
3	Ceh	Charlène	SD	SD	Science de données	tertiaire

- On joint 2 tuples ssi les conditions de la clause **ON** sont satisfaites (vrais).
- On peut utiliser autre chose que l'égalité. Les attributs peuvent avoir des noms différents.
- Les attributs de jointure en provenance des deux tables apparaissent deux fois

Bibliographie

- Bases de donnée, Georges Gardarin, Eyrolles, 2003
- Bases de données de la modélisation au SQL, Laurent Audibert Collection Ellipses, 2009
- SQL, Les fondamentaux du langage (avec exercices et corrigés), Anne-Christine BISSON -Collection Ressources Informatiques, 2024.
- https://learn.microsoft.com/fr-fr/sql/ (SQL Server 2022)