Digital Logic Design + Computer Architecture

Sayandeep Saha

Assistant Professor
Department of Computer
Science and Engineering
Indian Institute of Technology
Bombay

Baby Step

- Let's go back to the days when we were 2 years old...
 - Learning numbers again....but in a new way...

Numbers in Computing

- We normally use the decimal number system.
- But computers understand only bits...
- How to compute on bits??

Generalization of Number Representation

- Numbers are represented in a "base".
- Decimal (Base 10): $953.78_{10} = 9 \times 10^2 + 5 \times 10^1 + 3 \times 10^0 + 7 \times 10^{-1} + 8 \times 10^{-2}$
- Binary (Base 2): $1011.11_2 = 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 1 \times 2^0 + 1 \times 2^{-1} + 1 \times 2^{-2} \\ = 8 + 0 + 2 + 1 + \frac{1}{2} + \frac{1}{4} = 11\frac{3}{4} = 11.75\frac{10}{10}$
- The general case base b number: $(N)_b = a_{q-1}b^{(q-1)} + a_{q-2}b^{(q-2)} + \dots + a_2b^2 + a_1b^1 + a_0b^0 + a_{-1}b^{-1} + \dots + a_{-p}b^{-p}, \quad 0 \le a_i < b, b > 1$
 - $a_{(q-1)}$ is called the Most Significant Digit (MSD)
 - a_(-p) is called the Least Significant Digit (MSD)
 - $a_{(-1)}$ $a_{(-p)}$ are digits in the fractional part.

Generalization of Number Representation

	E	Base		
2	4	8	10	12
0000	0	0	0	0
0001	1	1	1	1
0010	2	2	2	2
0011	3	3	3	3
0100	10	4	4	4
0101	11	5	5	5
0110	12	6	6	6
0111	13	7	7	7
1000	20	10	8	8
1001	21	11	9	9
1010	22	12	10	α
1011	23	13	11	β
1100	30	14	12	10
1101	31	15	13	11
1110	32	16	14	12
1111	33	17	15	13

Base Conversion

- Octal (b=8) to Decimal (b=10): $(432.2)_8 = 4 \times 8^2 + 3 \times 8^1 + 2 \times 8^0 + 2 \times 8^{-1} = (282.25)_{10}$
- Binary (base 2) to Decimal (b=10): $(1010.011)_2 = 2^3 + 2^1 + 2^{-2} + 2^{-3} = (10.375)_{10}$
- General Rule: for $b_1 > b_2$

$$(N)_{b_1} = a_{q-1}b_2^{q-1} + a_{q-2}b_2^{q-2} + \dots + a_1b_2^1 + a_0b_2^0$$

$$\frac{(N)_{b_1}}{b_2} = \underbrace{a_{q-1}b_2^{q-2} + a_{q-2}b_2^{q-3} + \dots + a_1}_{Q_0} + \underbrace{\frac{a_0}{b_2}}_{Q_0}$$

$$\left(\frac{Q_0}{b_2}\right)_{b_1} = \underbrace{a_{q-1}b_2^{q-3} + a_{q-2}b_2^{q-4} + \cdots}_{Q_1} + \underbrace{\frac{a_1}{b_2}}_{Q_1}$$

Base Conversion: Decimal to...

To Binary:

To Octal:

Base Conversion: Fractions

To Binary:

	Integer		Fraction	Coefficient
$(0.6875) \times 2 =$	1	+	0.3750	$a_{-1} = 1$
$0.3750 \times 2 =$		+	0.7500	$a_{-2} = 0$
$0.7500 \times 2 =$	1	+	0.5000	$a_{-3} = 1$
$0.5000 \times 2 =$	1	+	0.0000	$a_{-4} = 1$

 $(0.513)_{10} = (0.406517...)_8$

Answer: $(0.6875)_{10} = (0.a_{-1}a_{-2}a_{-3}a_{-4})_2 = (0.1011)_2$

To Octal:

$$0.513 \times 8 = 4.104$$

$$0.104 \times 8 = 0.832$$

$$0.832 \times 8 = 6.656$$

$$0.656 \times 8 = 5.248$$

$$0.248 \times 8 = 1.984$$

$$0.984 \times 8 = 7.872$$

• Simplest way of converting from base b_1 to b_2 , is to convert from b_1 to base 10 and then base 10 base b_2 .

$$(N)_{b_1} = a_{-1}b_2^{-1} + a_{-2}b_2^{-2} + \dots + a_{-p}b_2^{-p}$$

$$b_2 \cdot (N)_{b_1} = a_{-1} + a_{-2}b_2^{-1} + \dots + a_{-p}b_2^{-p+1}$$

• Convert (231.3)₄ to base 7

- Convert (231.4)₄ to base 7
- Ans:

$$(231.3)_4 = 2 \times 4^2 + 3 \times 4^1 + 1 \times 4^0 + 3 \times 4^{-1} = (45.75)_{10}$$

$$(63.5151\cdots)_7$$

• Convert (0.625)₁₀ to base 2

• Convert (0.625)₁₀ to base 2

$$.625 \times 2 = 1.25$$
 $intpart = 1$ $0.25 \times 2 = 0.5$ $intpart = 0$ $(.101)_2$ $0.5 \times 2 = 1.00$ $intpart = 1$

Octal and Hexadecimal Numbers

- Base 8 and base 16 are very useful in computing.
- Hex: 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F
- Binary to Hex/Octal and vice versa:

$$(673.124)_8 = (110 111 011 . 001 010 100)_2$$

 $6 7 3 1 2 4$
 $(306.D)_{16} = (0011 0000 0110 . 1101)_2$
 $3 0 6 D$

Octal and Hexadecimal Numbers

- Base 8 and base 16 are very useful in computing.
- Hex: 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F
- Binary to Hex/Octal and vice versa:

$$(673.124)_8 = (110 111 011 . 001 010 100)_2$$

 $6 7 3 1 2 4$
 $(306.D)_{16} = (0011 0000 0110 . 1101)_2$
 $3 0 6 D$

Binary Arithmetic

B_{i}	its	Sum Carry		Difference	Borrow	Product
a	b	a	+b	a -	$a \cdot b$	
0	0	0	0	0	0	0
0	1	1	0	1	1	0
1	0	1	0	1	0	0
1	1	0	1	0	0	1

Binary Arithmetic

Binary addition:

1111 = carries of 1
1111.01 =
$$(15.25)_{10}$$

0111.10 = $(7.50)_{10}$

$$10110.11 = (22.75)_{10}$$

Binary subtraction:

1 = borrows of 1
10010.11 =
$$(18.75)_{10}$$

01100.10 = $(12.50)_{10}$
00110.01 = $(6.25)_{10}$

Binary Arithmetic

Binary multiplication:

$$11001.1 = (25.5)_{10}$$

$$110.1 = (6.5)_{10}$$

$$110011$$

$$000000$$

$$110011$$

$$110011$$

$$10100101.11 = (165.75)_{10}$$

Binary division:

Complements

- Simplest way to represent negative numbers.
- The most intuitive way to represent a negative number is to use an extra bit for sign sign-magnitude representation
- But the computation with this representation is little complex, we'll see this later.
- Complements are more handy
- (b-1)'s complement of $(N)_b$: $(b^n 1) N$, where n is the number of digits.
- b's complement of $(N)_b$: $b^n N$, where n is the number of digits

Complements

- Let's say we want to compute $(1234)_{10} (110)_{10}$
- First we take the 10'complement of 110: $10^4 110 = 9890$ (Important!!! Number of digits has to be the same)
- Now add: 1234 + 9890 = 11124
- 11124 > 10000: so there will be an end carry in the addition just discard the carry
- 11124 —> 1124, which is the answer.
- Now, what is the purpose????

- 2's complement of $N: 2^n N$
- 1's complement of N: $(2^n 1) N$
- We have a super easy way to compute these: can you guess why?

- 2's complement of $N: 2^n N$
- 1's complement of N: $(2^n 1) N$
- We have a super easy way to compute these: can you guess why?
 - Observe that for any *n*
 - $(2^n 1)$ is basically 1111... n times.
 - Now if you subtract N, all the bits of N are flipped.
 - Example: 1111 1011 = 0100
 - So, we do not need to do any subtraction really, —just flip the bits.
 - 2's complement = 1's complement + 1

- Compute M N
- Step 1: compute 2's complement of N: $2^n N = comp(N) + 1$
- Step 2: $M + (2^n N) = 2^n + (M N)$
- Now if $M \ge N$: the sum will be $> 2^n$ so there will be a carry. Just discard it and output the result.
- If M < N the result is $2^n + (N M) < 2^n$. This is basically the 2's complement of (N M). No carry will be produced. The output will be 2's complement of the result, with a negative sign in the front.

• Let X = 1010100, Y = 1000011; compute X-Y and Y-X.

• Let X = 1010100, Y = 1000011; compute X-Y and Y - X.

2's complement of
$$Y = 1010100$$

$$Sum = 10010001$$
Discard end carry $2^7 = -10000000$
Answer: $X - Y = 0010001$

$$Y = 1000011$$
2's complement of $X = +0101100$

$$Sum = 1101111$$

There is no end carry.

Answer: Y - X = -(2's complement of 1101111) = -0010001

- Important!!! We are doing unsigned subtraction!!
- Food of thought: we can do the same with 1's complement too!!, then why 2's complement???

• Let X = 1010100, Y = 1000011; compute X-Y and Y - X.

$$X - Y = 1010100 - 1000011$$
 $X = 1010100$

1's complement of $Y = + 0111100$

Sum = 10010000

End-around carry $\rightarrow + 1$

Answer: $X - Y = 0010001$
 $Y - X = 1000011 - 1010100$
 $Y = 1000011$

1's complement of $X = + 0101011$

Sum = 1101110

There is no end carry.

Answer: $Y - X = -(1$'s complement of 1101110) = -0010001

• We can do the same with 1's complement too!!, then why 2's complement???

•	

	Positive			Negative Integers	ers		
	Integers		Sign and	2's Complement	1's Complement		
+N	(all systems)	-N	Magnitude	N *	N		
+0	0000	-0	1000		1111		
+1	0001	-1	1001	1111	1110		
+2	0010	-2	1010	1110	1101		
+3	0011	-3	1011	1101	1100		
+4	0100	-4	1100	1100	1011		
+5	0101	-5	1101	1011	1010		
+6	0110	-6	1110	1010	1001		
+7	0111	-7	1111	1001	1000		
		-8		1000			

• For signed magnitude, we use 4 bits to represent [-7,7] with the 4th bit being the sign bit

• We can do the same with 1's complement too!!, then why 2's complement???

	_
4	
•	

	Positive				
1 A/	Integers	Λ,	Sign and	2's Complement	1's Complement
+N	(all systems)	-N	Magnitude	N *	//
+0	0000	-0	1000		1111
+1	0001	-1	1001	1111	1110
+2	0010	-2	1010	1110	1101
+3	0011	-3	1011	1101	1100
+4	0100	-4	1100	1100	1011
+5	0101	-5	1101	1011	1010
+6	0110	-6	1110	1010	1001
+7	0111	-7	[1111]	1001	1000
		-8		1000	

- For 2's complement, we still use 4 bits to represent [-7,7]; but here the encoding is different.
- 1's complement has a negative 0

Signed Binary Numbers

- Leftmost bit is the sign bit 0 implies positive number and 1 implies negative number
- Signed magnitude representation of -9: 10001001
- **Signed 2's complement representation**: 11110111 take 2's complement of the positive number including the signed bit.
- Signed 2's complement is generally used for computer arithmetic

Signed Binary Numbers

Decimal	Signed-2's Complement	Signed-1's Complement	Signed Magnitude		
+7	0111	0111	0111		
+6	0110	0110	0110		
+5	0101	0101	0101		
+4	0100	0100	0100		
+3	0011	0011	0011		
+2	0010	0010	0010		
+1	0001	0001	0001		
+0	0000	0000	0000		
-0		1111	1000		
-1	1111	1110	1001		
-2	1110	1101	1010		
-3	1101	1100	1011		
-4	1100	1011	1100		
-5	1011	1010	1101		
-6	1010	1001	1110		
-7	1001	1000	1111		
-8	1000				

Signed Binary Numbers

- The addition of two signed binary numbers with negative numbers represented in signed-2's-complement form is obtained from the addition of the two numbers, including their sign bits. A carry out of the sign-bit position is discarded
- **Subtraction:** Take the 2's complement of the subtrahend (including the sign bit) and add it to the minuend (including the sign bit). A carry out of the sign-bit position is discarded.
- Therefore, computers need only one common hardware circuit to handle both signed and unsigned arithmetic.

- Solves our problems of interpretation.
- How to represent a decimal digit with bits?
- Several encoding techniques can be used
- Note that we have 10 digits what is the minimum number of bits we need?

- Solves our problems of interpretation.
- How to represent a decimal digit with bits?
- Several encoding techniques can be used
- Note that we have 10 digits what is the minimum number of bits we need? 4
- But we can represent total 16 digits with 4 bits, so many different encodings are possible.
- Weighted code: If x_1 , x_2 , x_3 , x_4 are the binary digits, with weights w_1 , w_2 , w_3 , w_4 , then the decimal digit is:

$$N = w_4 x_4 + w_3 x_3 + w_2 x_2 + w_1 x_1$$

We say, the sequence (x_1, x_2, x_3, x_4) denotes the code word for N.

Decimal		$w_4w_3w_2w_1$												
digit	8	4	2	1		2	4	2	1		6	4	2	-3
0	0	0	0	0		0	0	0	0		0	0	0	0
1	0	0	0	1		0	0	0	1		0	1	0	1
2	0	0	1	0		0	0	1	0		0	0	1	0
3	0	0	1	1		0	0	1	1		1	0	0	1
4	0	1	0	0		0	1	0	0		0	1	0	0
5	0	1	0	1		1	0	1	1		1	0	1	1
6	0	1	1	0		1	1	0	0		0	1	1	0
7	0	1	1	1		1	1	0	1		1	1	0	1
8	1	0	0	0		1	1	1	0		1	0	1	0
9	1	0	0	1		1	1	1	1		1	1	1	1

BCD Self-complementing Codes

Self-complementing code: Code word of 9's complement of N obtained by interchanging 1's and 0's in the code word of N

Decimal		Exce	ess-	3		Cy	clic	
digit								
0	0	0	1	1	0	0	0	0
1	0	1	0	0	0	0	0	1
2	0	1	0	1	0	0	1	1
3	0	1	1	0	0	0	1	0
4	0	1	1	1	0	1	1	0
5	1	0	0	0	1	1	1	0
6	1	0	0	1	1	0	1	0
7	1	0	1	0	1	0	0	0
8	1	0	1	1	1	1	0	0
9	1	1	0	0	 0	1	0	0

Add 3 to BCD

Successive code words differ in only one digit

Decimal		Exce	ess-	3		Cy	clic	
digit								
0	0	0	1	1	0	0	0	0
1	0	1	0	0	0	0	0	1
2	0	1	0	1	0	0	1	1
3	0	1	1	0	0	0	1	0
4	0	1	1	1	0	1	1	0
5	1	0	0	0	1	1	1	0
6	1	0	0	1	1	0	1	0
7	1	0	1	0	1	0	0	0
8	1	0	1	1	1	1	0	0
9	1	1	0	0	 0	1	0	0

Add 3 to BCD

Successive code words differ in only one digit

Decimal		G_{i}	ray			Bin	ary	
number	g_3	g_2	g_1	g_0	b_3	b_2	b_1	b_0
0	0	0	0	0	0	0	0	0
1	0	0	0	1	0	0	0	1
2	0	0	1	1	0	0	1	0
3	0	0	1	0	0	0	1	1
4	0	1	1	0	0	1	0	0
5	0	1	1	1	0	1	0	1
6	0	1	0	1	0	1	1	0
7	0	1	0	0	0	1	1	1
8	1	1	0	0	1	0	0	0
9	1	1	0	1	1	0	0	1
10	1	1	1	1	1	0	1	0
11	1	1	1	0	1	0	1	1
12	1	0	1	0	1	1	0	0
13	1	0	1	1	1	1	0	1
14	1	0	0	1	1	1	1	0
15	1	0	0	0	1	1	1	1

Example:

Binary:

Gray:

Gray-to-binary:

- $b_i = g_i$ if no. of 1's preceding g_i is even
- $b_i = g_i$ ' if no. of 1's preceding g_i is odd

