Laporan Ujian Tengan Semester Machine Learning

Disusun untuk memenuhi Ujian Tengah Semester mata kuliah Machine Learning

Oleh:

HAPIZ ILHAM MAULANA 222310041

Kelas:

TI-21-KA

PROGRAM STUDI TEKNOLOGI INFORMASI FAKULTAS INFORMATIKA DAN PARIWISATA INSTITUT BISNIS DAN INFORMATIKA KESATUAN BOGOR

2024

DAFTAR ISI

DAFTAR ISI	
ATRIBUT	1
1.1 Prediktor	1
1.2 Label	1
STATISTIK DESKRIPTIF	2
2.1 Sebelum Pengisian Missing Values dan Standarisasi	2
2.2 Setelah Pengisian Missing Values dan Standarisasi	3
Model Klasifikasi Decision Tree	
Model Clustering K-Means	6

ATRIBUT

1.1 Prediktor

Berikut adalah daftar atribut beserta jenis atribut yang terdapat dalam dataset:

No.	Nama Atribut	Jenis Atribut	Tipe Atribut	Deskirpsi
1	battery_power	Numerik	Continuous	-
2	blue	Kategorik	Binary	Memiliki Nilai 0 dan 1
3	clock_speed	Numerik	Continuous	-
4	dual_sim	Kategorik	Binary	Memiliki Nilai 0 dan 1
5	fc	Numerik	Continuous	-
6	four-g	Kategorik	Binary	Memiliki Nilai 0 dan 1
7	int_memory	Numerik	Continuous	-
8	m_dep	Numerik	Continuous	-
9	mobile_wt	Numerik	Continuous	-
10	n_cores	Numerik	Continuous	-
11	рс	Numerik	Continuous	-
12	px_height	Numerik	Continuous	-
13	px_width	Numerik	Continuous	-
14	ram	Numerik	Continuous	-
15	sc_h	Numerik	Continuous	-
16	sc_w	Numerik	Continuous	-
17	talk_time	Numerik	Continuous	-
18	three_g	Kategorik	Binary	Memiliki Nilai 0 dan 1
19	touch_screen	Kategorik	Binary	Memiliki Nilai 0 dan 1
20	wifi	Kategorik	Binary	Memiliki Nilai 0 dan 1

1.2 Label

Kerja sama merupakan tindakan kolaboratif antara dua atau lebih entitas, baik individu, perusahaan, maupun negara, untuk mencapai tujuan yang sama. Dalam konteks bisnis,

No.	Nama Atribut	Jenis Atribut	Tipe Atribut	Deskirpsi
1	price range	Kategorik		Memiliki Nilai 0. 1. 2. 3

STATISTIK DESKRIPTIF

2.1 Sebelum Pengisian Missing Values dan Standarisasi

Statistik deskriptif merupakan cabang dari statistik untuk mendeskripsikan dan merangkum data. Contoh hal umum yang biasa dilakukan di dalam tipe statistik ini seperti pembuatan graph, dan menghitung berbagai macam pengukuran data seperti Mean. Sebelum dilakukan praproses data, pada dataset masih terdapat missing values yang perlu diisi

Statis	tik Deskriptif	f Sebelum Pre	processing:			
	battery power		clock speed	dual sim	fc	\
count	1990.000000		2000.000000	2000.000000	2000.000000	
mean	1237.867839	0.4950	1.522250	0.509500	4.309500	
std	439.676029	0.5001	0.816004	0.500035	4.341444	
min	501.000000	0.0000	0.500000	0.000000	0.000000	
25%	850.250000	0.0000	0.700000	0.000000	1.000000	
50%	1225.000000	0.0000	1.500000	1.000000	3.000000	
75%	1615.000000	1.0000	2.200000	1.000000	7.000000	
max	1998.000000	1.0000	3.000000	1.000000	19.000000	
	four_g	int_memory	m_dep	mobile_wt	n_cores	\
count	2000.000000	1990.000000	2000.000000	1990.000000	2000.000000	
mean	0.521500	31.987940	0.501750	140.344221	4.520500	
std	0.499662	18.136427	0.288416	35.407114	2.287837	
min	0.000000	2.000000	0.100000	80.000000	1.000000	
25%	0.000000	16.000000	0.200000	109.000000	3.000000	
50%	1.000000	32.000000	0.500000	141.000000	4.000000	
75%	1.000000	48.000000	0.800000	170.000000	7.000000	
max	1.000000	64.000000	1.000000	200.000000	8.000000	
	рс	px_height	px_width	ram	sc_h	\
count	2000.000000	2000.000000	2000.000000	1990.000000	2000.000000	
mean	9.916500	645.108000	1251.515500	2124.991960	12.306500	
std	6.064315	443.780811	432.199447	1084.885362	4.213245	
min	0.000000	0.000000	500.000000	256.000000	5.000000	
25%	5.000000	282.750000	874.750000	1208.250000	9.000000	
50%	10.000000	564.000000	1247.000000	2146.500000	12.000000	
75%	15.000000	947.250000	1633.000000	3065.500000	16.000000	
max	20.000000	1960.000000	1998.000000	3998.000000	19.000000	
	55.11	+-114 +:	thuse a	tauch censon	wifi	
count	sc_w 2000.000000	talk_time 2000.000000	three_g 2000.000000	touch_screen 2000.000000		
count		11.011000			2000.000000	
mean std	5.767000		0.761500	0.503000	0.507000	
min	4.356398	5.463955 2.000000	0.426273	0.500116	0.500076	
min 25%	0.000000 2.000000	6.000000	0.000000 1.000000	0.000000	0.000000	
25% 50%		11.000000	1.000000	1.000000	1.000000	
	5.000000					
75%	9.000000	16.000000	1.000000	1.000000	1.000000	
max	18.000000	20.000000	1.000000	1.000000	1.000000	

2.2 Setelah Pengisian Missing Values dan Standarisasi

Pada praproses data yang dilakukan, yaitu memisahkan bagian atribut prediktor dengan label data menjadi dua variabel terpisah, dengan memisahkan bagian atribut prediktor dilakukan dengan pertama-tama membuat dua variabel, misalnya variabel X merupakan variabel yang berisi atribut prediktor yaitu atribut selain atribut price_range sehingga kita menghapus kolom price range pada variabel x. Untuk variabel Y ditetapkan kolom price_range yang digunakan sebagai atribut label.

Dari dataset yang didapatkan terdapat beberapa missing values. Untuk mengisi missing values dilakukan dengan menggunakan SimpleImputer dan nilai mean sebagai strategi pengisian nilai dengan inisialisasi SimpleImputer dan menetapkan strategi mean yang kemudian melakukan imputasi nilai dengan SimpleImputer yang telah diinisialisasikan yang dilanjutkan dengan menyeragamkan nilai dari masing – masing atribut dengan menggunakan metode StandardScaler

```
Statistik Deskriptif Setelah Pengisian Missing Values dan Standarisasi:
       battery_power
                              blue clock speed
                                                       dual sim
                                                                            fc \
       2.000000e+03 2.000000e+03 2.000000e+03 2.000000e+03 2.000000e+03
count
       -1.563194e-16 -1.243450e-17 -1.545430e-16 8.082424e-17 5.861978e-17
mean
       1.000250e+00 1.000250e+00 1.000250e+00 1.000250e+00 1.000250e+00
std
min
       -1.680562e+00 -9.900495e-01 -1.253064e+00 -1.019184e+00 -9.928904e-01
       -8.806122e-01 -9.900495e-01 -1.007906e+00 -1.019184e+00 -7.624947e-01
25%
50%
       -1.680370e-02 -9.900495e-01 -2.727384e-02 9.811771e-01 -3.017032e-01
75%
       8.578380e-01 1.010051e+00 8.307794e-01 9.811771e-01 6.198797e-01
       1.733620e+00 1.010051e+00 1.811412e+00 9.811771e-01 3.384628e+00
max
                                           m_dep
                                                                     n_cores
             four g
                      int memory
                                                    mobile wt
count 2.000000e+03 2.000000e+03 2.000000e+03 2.000000e+03 2.000000e+03
       1.048051e-16 5.684342e-17 -1.030287e-16 -3.765876e-16 -7.727152e-17
mean
      1.000250e+00 1.000250e+00 1.000250e+00 1.000250e+00 1.000250e+00
std
      -1.043966e+00 -1.658030e+00 -1.393304e+00 -1.709003e+00 -1.539175e+00
min
25%
      -1.043966e+00 -8.839717e-01 -1.046495e+00 -8.876966e-01 -6.647678e-01
50%
      9.578860e-01 0.000000e+00 -6.069151e-03 1.857225e-02 -2.275644e-01
75%
      9.578860e-01 8.853054e-01 1.034357e+00 8.398784e-01 1.084046e+00
      9.578860e-01 1.769944e+00 1.727974e+00 1.689505e+00 1.521249e+00
max
                        px_height
                                       px_width
                                                                         sc h
                 DC
                                                           ram
count 2.000000e+03 2.000000e+03 2.000000e+03 2.000000e+03 2.000000e+03
       1.403322e-16 1.181277e-16 6.084022e-17 -1.492140e-16 4.884981e-17
mean
      1.000250e+00 1.000250e+00 1.000250e+00 1.000250e+00 1.000250e+00
std
      -1.635631e+00 -1.454027e+00 -1.739251e+00 -1.727512e+00 -1.734608e+00
min
25%
      -8.109291e-01 -8.167289e-01 -8.719579e-01 -8.450354e-01 -7.849833e-01
      1.377252e-02 -1.828116e-01 -1.045034e-02 5.091091e-03 -7.276497e-02 8.384742e-01 6.810064e-01 8.828792e-01 8.642295e-01 8.768595e-01
75%
      1.663176e+00 2.963672e+00 1.727608e+00 1.731225e+00 1.589078e+00
                        talk time
                                         three_g touch_screen
                                                                         wifi
               SC W
count 2.000000e+03 2.000000e+03 2.000000e+03 2.000000e+03 2.000000e+03
     -5.506706e-17 1.421085e-16 1.421085e-17 -5.417888e-17
                                                                1.421085e-17
mean
      1.000250e+00 1.000250e+00 1.000250e+00 1.000250e+00 1.000250e+00
std
      -1.324131e+00 -1.649584e+00 -1.786861e+00 -1.006018e+00 -1.014099e+00
      -8.649215e-01 -9.173306e-01 5.596406e-01 -1.006018e+00 -1.014099e+00
25%
      -1.761069e-01 -2.013697e-03 5.596406e-01 9.940179e-01 9.860966e-01 7.423125e-01 9.133032e-01 5.596406e-01 9.940179e-01 9.860966e-01
50%
75%
      2.808756e+00 1.645557e+00 5.596406e-01 9.940179e-01 9.860966e-01
```

Model Klasifikasi Decision Tree

Pada Analisa ini menggunakan algoritma Decision Tree sebagai model klasifikasi untuk analisis ini. Algoritma Decision Tree merupakan metode pembelajaran mesin yang digunakan untuk mengelompokkan data dengan mengandalkan serangkaian keputusan hierarkis yang terbentuk dalam struktur pohon. Keputusan-keputusan ini dibuat berdasarkan atribut dataset, yang membantu memprediksi label atau kategori tertentu.

Model Decision Tree dilatih menggunakan data pelatihan sebesar 85% dari dataset, dengan pengaturan random_state = 17 untuk memastikan hasil yang dapat direproduksi. Selanjutnya, model tersebut digunakan untuk melakukan prediksi pada data pengujian (15%). Akurasi model dihitung untuk mengukur tingkat keberhasilan dalam memprediksi kategori harga smartphone. Hasil akurasi yang diperoleh adalah sebesar 85.7%. Akurasi merupakan metrik yang mengukur sejauh mana model mampu memprediksi kategori yang benar.

> Accuracy: 0.856666666666667 Confusion Matrix: [[66 8 0 0] [761 5 0] [1 8 63 4] [0 0 10 67]] Classification Report: precision recall f1-score support 0.89 0.89 0.89 0.79 0.84 0.81 0

	1 0.79	0.84	0.81	/3
2	2 0.81	0.83	0.82	76
3	3 0.94	0.87	0.91	77
accuracy	y		0.86	300
macro avg	g 0.86	0.86	0.86	300
weighted av	g 0.86	0.86	0.86	300

74

Model Clustering K-Means

Dalam analisis ini, menggunakan algoritma K-Means untuk mengelompokkan data dalam analisis ini. Algoritma ini adalah salah satu metode clustering yang dimaksudkan untuk menggabungkan data ke dalam berbagai kelompok berdasarkan kesamaan karakteristik tertentu. Silhouette Coefficients digunakan untuk mengevaluasi kualitas pengelompokan data dalam cluster dengan berbagai jumlah cluster yang berbeda. Hasil evaluasi dengan Silhouette Coefficients adalah sebagai berikut:

Silhouette Score: 0.05746542779025056, dengan jumlah cluster 4