Selecting

- Selecting of data or information is a critical function in digital systems and computers
- Circuits that perform selecting have:
 - A set of information inputs from which the selection is made
 - A single output
 - A set of control lines for making the selection
- Logic circuits that perform selecting are called multiplexers

Multiplexers

- A multiplexer selects information from an input line and directs the information to an output line
- A typical multiplexer has n control inputs $(S_{n-1}, ... S_0)$ called selection inputs, 2^n information inputs $(I_{2^n-1}, ..., I_0)$, and one output Y
- A multiplexer can be designed to have m information inputs with $m < 2^n$ as well as n selection inputs

Multiplexer (cont.)

- "Selects" binary information from one of many input lines and directs it to a single output line.
- Also know as the "selector" circuit,
- Selection is controlled by a particular set of inputs lines whose # depends on the # of the data input lines.
- For a 2ⁿ-to-1 multiplexer, there are 2ⁿ data input lines and n selection lines whose bit combination determines which input is selected.

Multiplexer (cont.)

2-to-1 MUX Design

- Since $2 = 2^1$, n = 1
- The single selection variable S has two values:
 - \blacksquare S = 0 selects input I_0
 - \blacksquare S = 1 selects input I_1
- The equation:

$$Y = S'I_0 + SI_1$$

The circuit:

s V
10 TOTAL
11
Y = 1 ₀ S' +1 ₁ S

S	Υ
0	10
1	11

4-to-1 MUX Design

S1	S0	Υ
0	0	10
0	1	11
1	0	12
1	1	13

8-to-1 MUX Design

Select Inputs		Output	
\$2	S1	S0	Y
0	0	0	D0
0	0	1	D1
0	1	0	D2
0	1	1	D3
1	0	0	D4
1	0	1	D5
1	1	0	D6
1	1	1	D7

De-Multiplexers

- De-Multiplexer is a combinational circuit that performs the reverse operation of Multiplexer.
- It has single input, 'n' selection lines and maximum of 2ⁿ outputs. The input will be connected to one of these outputs based on the values of selection lines.
- Since there are 'n' selection lines, there will be 2ⁿ possible combinations of zeros and ones. So, each combination can select only one output.

1-to-4 De-MUX Design

Selection Inputs		Outputs			
S ₁	S ₀	Y ₃	Y ₂	Y ₁	Υ ₀
0	0	0	0	0	I
0	1	0	0	I	0
1	0	0	I	0	0
1	1	I	0	0	0

$$Y_3=s_1s_0I$$

$$Y_2 = s_1 s_0{'}I$$

$$Y_1={s_1}'s_0I$$

$$Y_0 = s_1{}'s_0{}'I$$

