

ĺ	Corrigé du conc	ours national commun 2009	$Fili\`ere:MP$
Ī	188 Massira 1A	Marrakech Tel 024 34 30 09 Mprep	a@menara.ma Physique I

Problème I : Optique

 $1^{\rm \`ere}$ Partie : Etude et propriétés des télescopes

1.1.— Question de cours

1.1.1.-

• Approximation de l'optique géométrique est valable lorsque les dimensions d des ouvertures considérées sont très grandes devant la longueur d'onde λ ($d \gg \lambda$). On néglige le phénomène de diffraction.

1.1.2.-

• Un système optique centré est un système qui possède une symétrie de révolution autour d'un axe optique (symétrie cylindrique)

1.1.3.-

- Approximation de Gauss : les rayons lumineux sont <u>peu inclinés</u> et <u>peu écartés</u> par rapport à l'axe optique principal (rayons paraxiaux).
- Propriétés : le système optique dans les condition de GAUSS est stigmatique et aplanétique (approché).

1.2.- Etude d'un miroir sphérique

1.2.1.-

- Foyer objet F : c'est le point sur l'axe optique dont l'image par le miroir est à l'infini.
- Position du foyer objet : d'après la relation de conjugaison $(A \equiv F , A' \to \infty)$ on a $\overline{SF} = \frac{\overline{SC}}{2}$
- Foyer image F': c'est l'image, par le miroir, d'un point qui est sur l'axe optique à l'infini.
- Position du foyer image : d'après la relation de conjugaison $(A \to \infty, A' \equiv F')$ on a $\overline{SF'} = \frac{\overline{SC}}{2}$
- La distance focale f est : $f = -\frac{R}{2}$

1.2.2.-

1.2.2.1.— Construction géométrique de l'image A'B':

1.2.2.2.-

• Position de A' : $A \to \infty$ sur l'axe, donc $A' \equiv F'$ soit : $\overline{SA'} = -\frac{R}{2}$

Position de B': $B \to \infty$ hors axe, donc B' se trouve dans le plan focal image (en dessous de A' si B est au dessus de l'axe $(\alpha < 0)$).

- Dans les conditions de Gauss (α faible) on a (schéma 1.2.2.1) : $\overline{A'B'} = \frac{R}{2} \alpha$
- L'image est <u>réelle</u> (renversée).

1.2.2.3.— $\overline{A'B'}$ est proportionnelle à R, donc il faut choisir le rayon R grand pour avoir une grande image.

1.2.2.4.– Application numérique : $\alpha=2''=2\times 4,89.10^{-6}~{\rm rad}$, $R=28,76~{\rm m}$ \Rightarrow $\overline{A'B'}=140\,\mu{\rm m}$

Remarque : Dans l'enoncé 1.2.2, B est au dessus de l'axe optique, donc α doit être négatif!!

1.2.3.-

- Pour voir les deux points images A' et B' sur la CCD il faut que $|\overline{A'B'}| \ge \sqrt{2}h \Rightarrow \boxed{\alpha \ge \frac{2\sqrt{2}h}{R} = \alpha_{\min}}$
- Application numérique : $\alpha_{\min} = \sqrt{2} \times 0, 128'' = \sqrt{2} \times 6, 25.10^{-7} \text{ rad}$.

1.3.- Etude du télescope Cassegrain

1.3.1.-

- $A \to \infty$ donc : $A_1 \equiv F_1$ (foyer image du miroir M_1)
- A_2 est le foyer du télescope.
- \bullet A_2 est l'image de F_1 par le miroir \mathcal{M}_2 donc : $\frac{1}{S_2A_2}+\frac{1}{S_2F_1}=\frac{2}{S_2C_2}$

or : $\overline{S_2C_2} = -R_2$ et $\overline{S_2F_1} = \overline{S_2S_1} + \overline{S_1F_1} = d - \frac{R_1}{2}$

soit:

$$\overline{S_2 A_2} = \frac{R_2}{2} \frac{R_1 - 2d}{R_2 - R_1 + 2d}$$

• Application numérique : $\overline{S_2 A_2} = 15,05\,\mathrm{m}$

1.3.2.— Construction géométrique :

1.3.3.-

• D'après **1.2.2.2.**
$$\Rightarrow$$
 $\overline{A_1B_1} = \frac{R_1}{2} \alpha$

• puisque
$$\gamma = \frac{\overline{A_2 B_2}}{\overline{A_1 B_1}} \quad \Rightarrow \quad \overline{A_2 B_2} = \gamma \frac{R_1}{2} \alpha$$

1.3.4.-

• La focal du télescope est :
$$f = \frac{\overline{A_2B_2}}{\alpha}$$
 \Rightarrow $f = \gamma \frac{R_1}{2}$

1.3.5.-

• D'après 1.3.1. on a :
$$F' \equiv A_2$$
, d'où $\overline{S_1F'} = \overline{S_1A_2} = \overline{S_1S_2} + \overline{S_2A_2} \Rightarrow \overline{S_1F'} = -d + \overline{S_2A_2}$

- Le grandissement de M_2 est : $\gamma = -\frac{\overline{S_2 A_2}}{\overline{S_2 F_1}}$ car A_2 est l'image de F_1 par le miroir M_2 . Avec : $\overline{S_2 A_2} = 15,05$ m et $\overline{S_2 F_1} = \overline{S_2 S_1} + \overline{S_1 F_1} = d \frac{R_1}{2} = -1,98$ m

Avec :
$$\overline{S_2 A_2} = 15,05 \text{ m}$$
 et $\overline{S_2 F_1} = \overline{S_2 S_1} + \overline{S_1 F_1} = d - \frac{R_1}{2} = -1,98 \text{ m}$ d'où : $\boxed{\gamma = 7,6}$

- La focale du télescope est : $f = 109, 3 \,\mathrm{m}$
- $\bullet \ \overline{A_2 B_2} = 1,06 \,\mathrm{mm}$
- Conclusion: avec le télescope, l'image finale est plus grande qu'avec un seul miroir (7,6 fois plus grande).

1.3.6.-

• Pour avoir les deux images A_2 et B_2 sur la matrice CCD il faut que : $|\overline{A_2B_2}| \ge \sqrt{2}h$, d'où : $\alpha \ge \frac{2\sqrt{2}h}{\gamma R_1} = \alpha'_{\min}$

AN :
$$\alpha'_{\min} = \sqrt{2} \times 8,23.10^{-8} \text{ rad} = \sqrt{2} \times 0,017''$$
.

- $\alpha'_{\min} < \alpha_{\min}$ Avec le télescope, on obtient <u>une résolution plus grande</u>.

2^{ème} Partie: Diffraction par une fente

2.1.— Montage de diffraction à l'infini (montage à 2 lentilles) :

2.2.— Principe de HUYGENS-FRESNEL:

- Les surfaces élémentaires dΣ d'une surface d'onde (d'une source primaire S) se comportent comme des sources secondaires d'amplitude proportionnelle à d Σ et à $\underline{s}_{\rm source}$
- Les sources secondaires sont cohérentes.

2.3.— La diffraction à l'infini (de Fraunhofer) est obtenue lorsque :

- la source est à l'infini (rejetée à l'infini par la lentille L_1)
- l'observation se fait à l'infini (L_2 ramène la figure de diffraction de l'infini à son plan focal image).

Remarque : La diffraction de Fraunhofer est obtenue aussi dans un plan conjugué de la source en utilisant une seule lentille.

2.4.-

- La signification de "grande dimension" suivant OY est : $b \gg \lambda$
- \bullet Conséquence : on peut négliger la diffraction suivant la direction OY.

2.5.-

2.5.1.— La différence de marche est :

 $\delta(M) = (SPM) - (SOM) = -nX\sin(\alpha) + nX\sin(\theta)$ (car α est algébrique, il est négatif sur le schéma). Puisque on est dans les conditions de Gauss (α et θ sont faibles) alors : $\delta(M) = n(\theta - \alpha)X$, soit :

$$\delta(M) = n \left(\frac{x}{f} - \alpha\right) X$$

2.5.2.— Calcul de l'amplitude A(M):

$$\underline{A}(M) = \underline{K} \int_{-\frac{a}{2}}^{\frac{a}{2}} \exp\left[-j\frac{2\pi}{\lambda_0}n\left(\frac{x}{f} - \alpha\right)X\right]dX$$
$$= \underline{K} \frac{\left[e^{\left[-j\frac{2\pi}{\lambda_0}n\left(\frac{x}{f} - \alpha\right)X\right]}\right]_{-\frac{a}{2}}^{\frac{a}{2}}}{\left[-j\frac{2\pi}{\lambda_0}n\left(\frac{x}{f} - \alpha\right)\right]}$$

d'où:

$$\underline{\underline{A}}(M) = \underline{\underline{K}}a \sin xc \left[\frac{\pi a}{\lambda_0} n \left(\frac{x}{f} - \alpha \right) \right]$$

2.6.— L'intensité lumineuse I(M):

 \bullet On a : $I(M) = kA(M)\underline{A}^*(M),$ d'où :

$$I(M) = I(x) = I_0 \left[\sin c \left(\frac{\pi a}{\lambda_0} n \left(\frac{x}{f} - \alpha \right) \right) \right]^2$$

• Avec $I_0 = ka^2 |\underline{K}|^2$

Remarque : il y a une erreur dans l'enoncé : il y a ' $-\alpha$ ' au lieu de ' $+\alpha$ ' dans l'argument de sin c car α est choisi algébrique!

2.7.-

• Figure de diffraction ($\alpha < 0$):

- Caractéristiques :
 - La 'frange' centrale est deux fois plus large que les autres.
 - Sa largeur est proportionnelle à 1/a
 - -allongée selon ${\cal O}x$

2.8.-

• Allure de la courbe I(x) ($\alpha < 0$):

• Caractéristiques :

- La 'frange' centrale est deux fois plus large que les autres.

– L'intensité du maxima secondaire est 0,041 I_0

– Centrée sur $x_0 = \alpha f$

• L'intensité est maximale autour de l'image géomértique de la source : $x_{\text{max}} = \alpha f$

• Conclusion : L'image un point source n'est pas un point mais une tache de diffraction plus large, ce qui limite la résolution du télescope.

3^{ème} Partie : Phénomènes limitant le pouvoir de résolution

3.1.— La figure de diffraction à la même symétrie que l'objet diffractant (symétrie circulaire) donc elle est formé d'une tache circulaire entourée d'anneaux.

3.2.-

3.2.1.— La distance entre les deux maxima est $f \alpha$. D'près le critère de Rayleigh, les deux taches de diffraction sont séparées si $f \alpha \ge R_0$, soit :

$$D_1 \ge 1,22 \frac{\lambda_0}{n\alpha}$$

3.2.2.— La résolution angulaire :

D'après 3.2.1., on déduit :

$$\alpha \ge 1,22 \frac{\lambda_0}{nD_1} = \alpha'_{\min}$$

3.3.— Phénomènes limitant le pouvoir de résolution :

- la turbulence atmosphérique qui déforme le front d'onde des ondes lumineuses.
- la diffraction par la pupille d'entrée du télescope.
- les aberrations (géométriques et chromatiques)

La résolution des télecopes est limitée essentielement par la turbulence atmosphérique.

3.4.— Méthodes de correction :

- l'optique adaptative permet de corriger les effets de la turbulence atmosphérique
- l'apodisation permet d'atténuer les maxima secondaires de la tache de diffraction.
- 3.5.— L'utilisation des télescopes de grands diamètres permet de collecter plus de lumière afin de voir les objets célestes les moins brillants (qui sont assez loins).

4^{ème} Partie : Effet de la turbulence atmosphérique

4.1. Dimension de
$$C : [C] = L^3 M^{-1} \equiv \text{m}^3.\text{kg}^{-1}$$

4.2.– L'équation d'un gaz parfait est $\varrho = \frac{MP}{RT}$, d'où :

$$n = 1 + C\frac{M}{R} \frac{P}{T}$$

4.3.– Application numérique :
$$C = 2,44.10^{-4} \,\mathrm{m}^3.\mathrm{kg}^{-1}$$

4.4.– Expression de δn :

On a : $n = 1 + C \frac{M}{R} \frac{P}{T}$, d'où :

$$dn = C\frac{M}{R} \left(\frac{dP}{T} + Pd \left(\frac{1}{T} \right) \right)$$
$$= C\frac{M}{R} \left(\frac{dP}{T} - P\frac{dT}{T^2} \right)$$

soit:

$$\delta n = C \frac{M}{R} \left(\frac{\delta P}{T} - P \frac{\delta T}{T^2} \right)$$

4.5.— La surface d'onde = une surface où la phase φ d'one onde à la même valeur à un instant donné $(\varphi = cte)$.

4.6. Théorème de MALUS: Les rayons lumineux sont perpendiculaire aux surfaces d'ondes.

4.7.-

4.7.1.— Calcul de la phase $\varphi(x,z)$ (l'origine : $\varphi(x,0)=0$) :

• si 0 < z < e:

- si
$$|x| > \frac{r_0}{2} \Rightarrow \boxed{\varphi(x, z) = \frac{2\pi n}{\lambda_0} z}$$

- si $|x| < \frac{r_0}{2} \Rightarrow \boxed{\varphi(x, z) = \frac{2\pi (n + \delta n)}{\lambda_0} z}$

• si
$$z > e$$
:

- si $|x| < \frac{r_0}{2} \Rightarrow \varphi(x, z) = \frac{2\pi(z \, n + e \, \delta n)}{\lambda_0}$

4.7.2.— Equation de la surface d'onde est $\varphi = \varphi_0 = cte \Rightarrow \boxed{z = cte}$:

• si 0 < z < e:

- si
$$|x| > \frac{r_0}{2} \Rightarrow \boxed{z = \frac{\lambda_0}{2\pi n} \varphi_0}$$

- si $|x| < \frac{r_0}{2} \Rightarrow \boxed{z = \frac{\lambda_0}{2\pi (n + \delta n)} \varphi_0}$

• si z > e:

- si
$$|x| < \frac{r_0}{2} \Rightarrow \left| z = \frac{\lambda_0}{2\pi n} \varphi_0 - e \frac{\delta n}{n} \right|$$

dans chaque région la surface d'onde est un plan.

4.7.3. Tracé des surfaces d'ondes :

- Σ_1 une surface d'onde dans la zone z < 0.
- Σ_2 une surface d'onde dans la zone $z > e \left(\Delta \varphi = \frac{2\pi e}{\lambda_0} \delta n \right)$

4.7.3.-

- Conclusion : une variation de la température T et de la pression P entraine une variation δn de l'indice de réfraction n de l'atmosphère et par conséquence, une déformation des surfaces d'onde.
- Pour corriger les effets de la turbulence atmosphérique sur les d'ondes, on utilise des miroirs déformables au rythme de la déformation du front d'onde (c'est l'optique adaptative).

PROBLÈME II : ELECTRONIQUE

1^{ère} Partie : Etude théorique

1.1.— L'AO est en régime linéaire car la patte (—) est reliée à la sortie (réaction négative).

1.2.-

• Aux basse fréquences ($\omega \to 0$) les condensateurs sont équivalents à des interrupteurs ouverts, donc :

$$v_s \rightarrow v_B = 0 \text{ car } i^- = 0.$$

• Aux hautes fréquences $(\omega \to +\infty)$ les condensateurs sont équivalents à des interrupteurs fermés, donc :

$$v_s \to v_A = v_B = 0$$

• Conclusion : c'est un filtre passe-bande.

1.3.-

• Millman en A :

$$\boxed{\underline{v}_A = \frac{\frac{\underline{v}_e}{R_1} + jC\omega\underline{v}_B + jC\omega\underline{v}_s + \frac{0}{R_2}}{\frac{1}{R_1} + 2jC\omega + \frac{1}{R_2}}}$$

• puisque $v_B = 0$, alors :

$$\underline{v}_A = \frac{\frac{\underline{v}_e}{R_1} + jC\omega\,\underline{v}_s}{\frac{1}{R_1} + \frac{1}{R_2} + 2jC\omega}$$

• Millman en B :

$$\underline{v}_B = \frac{jC\omega\underline{v}_A + \frac{\underline{v}_s}{R_3}}{jC\omega + \frac{1}{R_3}}$$

• puisque $v_B = 0$, il vient :

$$\underline{v}_s = -j \, C \, \omega \, R_3 \, \underline{v}_A$$

1.4.– Expression de \underline{H} :

• En combinant les relations de 1.3., il vient :

$$-\left(\frac{1}{R_1} + \frac{1}{R_2} + 2jC\omega\right)\frac{\underline{v}_s}{jC\omega R_3} = \frac{\underline{v}_e}{R_1} + jC\omega\underline{v}_s$$

d'où:

$$\underline{H} = \frac{\underline{v}_s}{\underline{v}_e} = \frac{1}{R_1} \underbrace{\left(\underbrace{\frac{1}{R_1} + \frac{1}{R_2}}_{=\frac{1}{R_3'}} + 2jC\omega\right)}_{=\frac{1}{R_3'}} \underbrace{\frac{1}{jC\omega R_3} - jC\omega}$$

d'où:

$$\boxed{ \underline{H} = \frac{-\frac{R_3}{2R_1}}{1 - j\frac{1}{2R_3'C\omega} + j\frac{R_3C\omega}{2}} = \frac{H_0}{1 + jQ(x - 1/x)} }$$

• avec : $- H_0 = -\frac{R_3}{2R_1}$ $- Q = \sqrt{\frac{R_3}{4R_3'}}$ $- \omega_0 = \frac{1}{C\sqrt{R_1R_1'}}$

1.5.-

- Aux hautes fréquences $(x \gg 1)$: $\underline{H} \approx \frac{H_0}{jQx} = \frac{H_0\omega_0}{Q} \frac{1}{j\omega}$: le montage à un caractère intégrateur.
- Aux basses fréquences $(x \ll 1)$: $\underline{H} \approx \frac{H_0}{-jQ/x} = \frac{H_0}{Q\omega_0} j\omega$: le montage à un caractère <u>dérivateur</u>.
- Aux hautes fréquences $(\underline{H} = \frac{H_0\omega_0}{Q} \frac{1}{j\omega}) \Rightarrow \underline{v}_s = \frac{H_0\omega_0}{Q} \frac{\underline{v}_e}{j\omega} \Rightarrow v_s(t) = \frac{H_0\omega_0}{Q} \int v_e(t) dt + cte$
- Aux basses fréquences $(\underline{H} = \frac{H_0}{Q\omega_0}j\omega) \Rightarrow \underline{v}_s = \frac{H_0}{Q\omega_0}j\omega\underline{v}_e \Rightarrow v_s(t) = \frac{H_0}{Q\omega_0}\frac{\mathrm{d}v_e(t)}{\mathrm{d}t}$

1.6.-

- Définition de la pulsation de coupure ω_c à -3 dB : $|\underline{\underline{H}}(\omega_c)| = \frac{|\underline{\underline{H}}|_{\text{max}}}{\sqrt{2}}$

$$- \omega_{c1} = \frac{\omega_0}{2} \left(\frac{1}{Q} + \sqrt{4 + \frac{1}{Q^2}} \right)$$
$$- \omega_{c2} = \frac{\omega_0}{2} \left(-\frac{1}{Q} + \sqrt{4 + \frac{1}{Q^2}} \right)$$

• La largeur de la bande passante : $\Delta \omega = \omega_{c1} - \omega_{c2} = \frac{\omega_0}{Q}$

1.7.-

• Application numérique : $\Delta f = 150 \,\mathrm{Hz}$

1.8.

1.8.1.-

• Le module de
$$\underline{H}$$
 est :
$$H(\omega) = \frac{|H_0|}{\sqrt{1 + Q^2 \left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega}\right)^2}}$$

• L'argument de
$$\underline{H}$$
 est : $\varphi(\omega) = \pi - \operatorname{Arctan}\left[Q(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega})\right]$

1.8.2.-

 $H(\omega)$ est maximale si son dénominateur est minimal donc pour : $\omega = \omega_0' = \omega_0$

• Allure de $H(\omega)$:

2^{ème} Partie : Analyse de Fourier

2.1.-

 $\bullet \ f \in \mathrm{BP} = \left[\tfrac{\omega_{c2}}{2\pi}, \tfrac{\omega_{c1}}{2\pi} \right] \Rightarrow \underline{v}_s = \underline{v}_e H(\omega) e^{j\varphi(\omega)} = E e^{j(\omega t - \pi/2)} H(\omega) e^{j\varphi(\omega)}, \, \mathrm{d}\text{`où}:$

$$v_s = Re(\underline{v}_s) = \frac{E|H_0|}{\sqrt{1 + Q^2 \left(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega}\right)^2}} \sin\left[2\pi ft + \varphi(\omega)\right]$$

et puisque $f = f_0$:

$$v_s = E|H_0|\sin[2\pi ft + \pi] = -E|H_0|\sin(2\pi ft)$$

2.2.— Pas de question!!

2.3.-

- Le signal possède une composante continue E/2
- La partie variable est impaire donc en sinus
- 2.4. Allure du spectre en fréquence :

2.5.-

• $f_0 = f \in \mathrm{BP}$ c'est la seule fréquence qui passe (p=0), donc :

$$v_s(t) = \frac{2E|H_0|}{\pi} \sin[2\pi f t + \varphi(f)] = -\frac{2E|H_0|}{\pi} \sin(2\pi f t)$$

2.6.-

Pour balayer le domaine de fréquence on peut faire varier R_3 ou C ce qui permet de déterminer les fréquences et les amplitudes des harmoniques, donc le spectre.

 $3^{\rm \`eme}$ Partie : Etude pratique

3.1.— Montage expérimentale :

- ${\bf 3.2.}-$ Etude du filtre :
 - $\,$ On utilise un signal sinusoïdal dont on fait changer la fréquence.
 - on mesure l'amplitude de v_s et de v_s et on déduit le module $H=\frac{V_s}{V_e}$. On mesure aussi le déphasage $\varphi=\varphi_s-\varphi_e$
- **3.3.** Si l'amplitude V_s de v_s dépasse $V_{sat}=15V,$ l'AO se sature.

3.4.-

- Le signal reste sinusoïdal si : $|\frac{dv_s}{dt}|_{\max} = V_s \omega \le \sigma \Rightarrow \boxed{\omega \le \frac{\sigma}{V_s} = \omega_1}$