Comparison of Supervised Learning Methods

Machine Learning F21

Andreas Daasbjerg, Andreas Poulsen VGIS7 <u>adaasb18@student.aau.dk</u>, <u>ampo18@student.aau.dk</u> 16/11-21

Background

- Compare the supervised learning methods from the course
- By method
- By experiments
- Cifar-10 dataset
 - 50000 training samples
 - 10000 test samples
 - 10 classes
 - 3072 features

Background

- K-nearest Neighbors
- Decision Tree
- Linear Discriminant Analysis
- Support Vector Machines
- Neural Networks

Methods

- Dimensionality reduction through PCA
 - Proportion of Variance > 90%.
 - 3072 dimensions → 99 dimensions.

- K-Nearest Neighbors
 - Distance measure to classify sample.
 - Euclidean, Manhattan, Mahalanobis Distance.
 - Finding the optimal K-value.
 - Lazy Classification method.

Methods

Decision Trees

- Divides input space into two regions, $\leq \theta$ or $> \theta$.
 - Split criterion
 - θ -parameter of the model (threshold parameter).
 - Assign each region to a specific class.

- Linear Discriminant Analysis

- Assigning an input vector **x** to one of K discrete classes
- Input space divided into decision regions with decision boundaries

Chris Bishop, Pattern Recognition and Machine Learning, Springer, UK, 2006

Chris Bishop, Pattern Recognition and Machine Learning, Springer, UK, 2006

Methods

- Linear Support Vector Machine (LSVM)
 - The determination of the model parameters corresponds to a convex optimization problem.
 - Decision machine
 - Maximal margin, Dual Space, Kernel Trick
 - For the linearly separable case, the support vector algorithm simply looks for the separating hyperplane with largest margin.

Convolutional Neural Network

- Assumes that Inputs are image
 - Conv2d: ReLU filter.
 - Max_pooling2d: Downsampling 2x2 pool size
 - Flatten: Flatten matrix to 1-D
 - Dense: Reduce tensors to amount of classes in dataset.

Model:	"sequential"
--------	--------------

Layer (type)	Output Shape	Param #
conv2d (Conv2D)	(None, 30, 30, 32)	896
max_pooling2d (MaxPooling2D)	(None, 15, 15, 32)	0
conv2d_1 (Conv2D)	(None, 13, 13, 64)	18496
max_pooling2d_1 (MaxPooling 2D)	(None, 6, 6, 64)	0
conv2d_2 (Conv2D)	(None, 4, 4, 64)	36928
flatten (Flatten)	(None, 1024)	0
dense (Dense)	(None, 64)	65600
dense_1 (Dense)	(None, 10)	650

Total params: 122,570 Trainable params: 122,570 Non-trainable params: 0

Experiments

- K-Nearest Neighbor:
 - Computation of around 4 hours to find best k-value:
 - Fitting data from 2 clusters to 50000 clusters
 - Visualising error rate vs. K-plot would have given the optimum k-value.
 - Choosing the k-value giving the least amount of error.
 - Unknown error → Value never calculated.
 - K = 5, gave 38.15% accuracy.

- Decision Tree:
 - Opted to find the depth giving the best accuracy.
 - Accuracy ~31.5% with max depth of 8.

Experiments

- Linear Discriminant Analysis
 - Fitting the model on dimensionality reduced data (3072 → 99)
 - Yielding accuracy of ~40%

- Linear Support Vector Machine (LSVM)
 - Initializing SVM with linear kernel
 - Fitting on data with reduced dimensionality (99)
 - Took too long to fit, so no results yielded

Experiments

- Convolutional Neural Network (CNN)
 - Made with sequential model in TensorFlow
 - Trained for 10 epochs
 - Best accuracy 70.48%

Discussion - Methods

- Since the features of the dataset is only pixel-values, the classes could be overlapping
- Thus, linear classification models could have a hard time discriminating them

 KNN calculates distance to closest samples and classifies based on majority mixed classes result in bad accuracy

- CNN is great for images because of the convolution layer
- Detects patterns in images

Discussion - Experiments

CNN accuracy at 70%, substantially better than 40% from LDA

- All methods were tested in Google Colab with a maximum continuous runtime of 12 hours

 SVM not being able to compute could be the result of its quadratic programming, or it not dealing well with large sample sizes

- Estimating K, proved to take too long when computing from 2 → sample_size.
- KNN underperforms because of few features.

Conclusion

- CNN is good for image classification as a supervised learning method
- Linear models are not the greatest choice, if no features are extracted from the images beforehand