# The Third Assignment

3190102721 Xu Shengze

#### Problem 1.

a) Calculate the probability to measure the first qubit is state 1 when we have the following 2-qubit system:

$$\begin{pmatrix} \frac{1}{2} \\ \frac{-i}{2} \\ \frac{i}{2} \\ \frac{-1}{2} \end{pmatrix}$$

b) Calculate the probability to measure the second qubit is state 0 when we have the following 2-qubit system:

$$\begin{pmatrix} \frac{1}{3} \\ \frac{i\sqrt{2}}{3} \\ \frac{2-i}{3} \\ \frac{-1}{3} \end{pmatrix}$$

c) Calculate the probability to measure the state 11 when we have the following 2-qubit system:

$$\begin{pmatrix} 0\\ \frac{1}{3}\\ \frac{-i}{3}\\ \frac{2-i\sqrt{3}}{3} \end{pmatrix}$$

**Answer 1.** By definition, for a 2-qubit system  $x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix}$ , it means the correspond-

 $\text{ing state } |x\rangle = x_0 |00\rangle + x_1 |01\rangle + x_2 |10\rangle + x_3 |11\rangle, \text{ and we have } |x_0|^2 + |x_1|^2 + |x_2|^2 + |x_3|^2 = 1.$ 

So the probability to measure the state 00 is  $|x_0|^2$ , 01 is  $|x_1|^2$ , 10 is  $|x_2|^2$ , 11 is  $|x_3|^2$ . According to this conclusion, we will solve the three problems in the question.

1

a)  $|x\rangle=\frac{1}{2}|00\rangle+\frac{-i}{2}|01\rangle+\frac{i}{2}|10\rangle+\frac{-1}{2}|11\rangle$ . The probability is calculated as follows.

$$|\frac{i}{2}|^2 + |\frac{-1}{2}|^2 = \frac{1}{2}$$

b)  $|x\rangle = \frac{1}{3}|00\rangle + \frac{i\sqrt{2}}{3}|01\rangle + \frac{2-i}{3}|10\rangle + \frac{-1}{3}|11\rangle$ . The probability is calculated as follows.

$$\left|\frac{1}{3}\right|^2 + \left|\frac{2-i}{3}\right|^2 = \frac{2}{3}$$

c)  $|x\rangle = \frac{1}{3}|01\rangle + \frac{-i}{3}|10\rangle + \frac{2-i\sqrt{3}}{3}|11\rangle$ . The probability is calculated as follows.

$$|\frac{2 - i\sqrt{3}}{3}|^2 = \frac{7}{9}$$

### Problem 2.

a) Implement the following classical circuit reversibly:



This circuit can be expressed as ((NOT A) AND (A OR B)) OR (A OR B)

b) Implement this circuit as a quantum circuit by using additional qubits, Toffoli gates and NOT gates.

Remark: in task b) you can consider transforming OR operator into combination of AND and NOT operators by using de-Morgan laws.

### Answer 2.

a) The circuit is as shown below.



## b) As shown below.



**Problem 3.** Implement the quantum circuit that takes values of 8 qubits as input and puts the result of their multiplication in output qubit (which means output is equal to 1 only if all 8 qubits are in state 1; otherwise output is equal to 0). For this task use only Toffoli gates. For this implementation you will need ancilla qubits. Please try to make a circuit that has 15 qubits (8 for input, 6 ancillas and 1 for output).

**Answer 3.** The circuit is shown as follows.



**Problem 4.** Analyze behavior of Grover's Search when we have 4 elements and 2 of them are marked. What will be the outcome if we do the measurement after

- a) 1 iteration of Grover's Search for such setting?
- b) 2 iterations of Grover's Search for such setting?
- c) 3 iterations of Grover's Search for such setting?
- d) 4 iterations of Grover's Search for such setting?

Bonus points if you explain behavior of Grover's Search for cases where exactly half of elements in search space is marked.

**Answer 4.** The following answers refer to a Chinese textbook on quantum algorithms.

Without loss of generality, we suppose that there are N elements in total and M of them are marked. Then we can represent the state as  $|\xi\rangle = \frac{1}{\sqrt{N}} \sum_{x=0}^{N-1} |x\rangle$ , where each x represents one element.

Let  $S = \{x | \text{the state } |x\rangle \text{ is marked} \}$ , then |S| = M. We define the normalized state as follow,

$$|\alpha\rangle \equiv \frac{1}{\sqrt{N-M}} \sum_{x \notin S} |x\rangle$$

$$|\beta\rangle \equiv \frac{1}{\sqrt{M}} \sum_{x \in S} |x\rangle$$

simple algebraic operations show that the initial state can be re-expressed as follow,

$$|\xi\rangle = \sqrt{\frac{N-M}{N}} |\alpha\rangle + \sqrt{\frac{M}{N}} |\beta\rangle$$

Let  $\cos \frac{\theta}{2} = \sqrt{\frac{N-M}{N}}$ , then the initial state is  $|\xi\rangle = \cos \frac{\theta}{2} |\alpha\rangle + \sin \frac{\theta}{2} |\beta\rangle$ , record the initial state as  $|\psi_0\rangle$ .

a) Let's explain the process of one iteration of Grover's search.

First, perform operation O on the initial state, where  $O(a|\alpha\rangle + b|\beta\rangle) = a|\alpha\rangle - b|\beta\rangle$ , then the state will be changed to  $|\xi\rangle = \sqrt{\frac{N-M}{N}}|\alpha\rangle - \sqrt{\frac{M}{N}}|\beta\rangle = \cos\frac{\theta}{2}|\alpha\rangle - \sin\frac{\theta}{2}|\beta\rangle$ .

Similarly, the operation  $I-2|\xi\rangle\langle\xi|$  also performs a reflection on the plane  $|\xi\rangle$  defined by  $|\alpha\rangle$  and  $|\beta\rangle$ , denote this operation as P. We apply the above operation to the current state. This process is equivalent to a symmetrical transformation. After this step, the state becomes  $\cos\frac{3\theta}{2}|\alpha\rangle + \sin\frac{3\theta}{2}|\beta\rangle$ , which is just the state after one iteration of Grover's search. We find that the product of the two reflections constitutes a rotation.

Therefore, after one iteration of Grover's search, the state becomes  $|\psi_1\rangle = \cos\frac{3\theta}{2}|\alpha\rangle + \sin\frac{3\theta}{2}|\beta\rangle$ . According to  $N=4,\ M=2$ , we can solve  $\theta=\frac{\pi}{2}$ , and then we can get the

state representation as follows.

$$|\psi_1\rangle = -\frac{\sqrt{2}}{2}|\alpha\rangle + \frac{\sqrt{2}}{2}|\beta\rangle = -\frac{1}{2}\sum_{x\notin S}|x\rangle + \frac{1}{2}\sum_{x\in S}|x\rangle$$

So if we do the measurement after 1 iteration of Grover's Search for such setting, we will have the equal probability of  $\frac{1}{4}$  to get each state, each element as well.

For the case where iteration is greater than 1, we discuss and draw general conclusions. We can prove that after continuous application of G the state becomes as follows.

$$|\psi_k\rangle = G^k|\psi\rangle = \cos(\frac{2k+1}{2}\theta)|\alpha\rangle + \sin(\frac{2k+1}{2}\theta)|\beta\rangle$$

We use mathematical induction to prove this conclusion.

- (i) When k = 1, according to the above proof, the conclusion is established.
- (ii) Suppose the conclusion holds for k-1, then we have  $|\psi_{k-1}\rangle = \cos(\frac{2k-1}{2}\theta)|\alpha\rangle + \sin(\frac{2k-1}{2}\theta)|\beta\rangle$ . According to the above discussion, G can be regarded as the product of O and P, then we do the following operation.

$$|\psi_k\rangle = G|\psi_{k-1}\rangle = P(O|\psi_{k-1}\rangle)$$

$$= P(\cos(-\frac{2k-1}{2}\theta)|\alpha\rangle + \sin(-\frac{2k-1}{2}\theta)|\beta\rangle)$$

$$= \cos(\frac{2k+1}{2}\theta)|\alpha\rangle + \sin(\frac{2k+1}{2}\theta)|\beta\rangle$$

Therefore the conclusion holds for k, then the conclusion is correct. Below we apply this conclusion to solve problem b, c, d.

b) After 2 iterations of Grover's Search for such setting, there are the following results.

$$|\psi_2\rangle = -\frac{\sqrt{2}}{2}|\alpha\rangle - \frac{\sqrt{2}}{2}|\beta\rangle = -\frac{1}{2}\sum_{x\notin S}|x\rangle - \frac{1}{2}\sum_{x\in S}|x\rangle$$

c) After 3 iterations of Grover's Search for such setting, there are the following results.

$$|\psi_3\rangle = \frac{\sqrt{2}}{2}|\alpha\rangle - \frac{\sqrt{2}}{2}|\beta\rangle = \frac{1}{2}\sum_{x\notin S}|x\rangle - \frac{1}{2}\sum_{x\in S}|x\rangle$$

d) After 4 iterations of Grover's Search for such setting, there are the following results.

$$|\psi_4\rangle = \frac{\sqrt{2}}{2}|\alpha\rangle + \frac{\sqrt{2}}{2}|\beta\rangle = \frac{1}{2}\sum_{x\notin S}|x\rangle + \frac{1}{2}\sum_{x\in S}|x\rangle$$

For the three questions b, c and d, we have the same conclusion. If we do the measurement after either 2 or 3 or 4 iterations of Grover's Search for such setting, we will have the equal probability of  $\frac{1}{4}$  to get each state, each element as well.

**Bonus:** If half of elements in search space is marked, then  $M = \frac{N}{2}$ , so  $\theta = \frac{\pi}{2}$ , then based on the above discussion, we have the following conclusions.

$$|\psi_k\rangle = \pm \frac{\sqrt{2}}{2} |\alpha\rangle \pm \frac{\sqrt{2}}{2} |\beta\rangle = \pm \frac{1}{\sqrt{N}} \sum_{x \notin S} |x\rangle \pm \frac{1}{\sqrt{N}} \sum_{x \in S} |x\rangle$$

So when doing the measurement, we will have the equal probability of  $\frac{1}{N}$  to get each state, each element as well. It is the behavior of Grover's Search for this case.