The circular restricted three body problem (CR3BP) is a special case of the three body problem. In the CR3BP (much like in Keplerian 2-body dynamics), we neglect the mass of satellite S, while treating the larger celestial body m_1 and smaller celestial body m_2 as point masses. Crucially, these bodies must orbit one another in circular orbits. In other words, they both orbit about their inertially fixed barycenter c at constant velocity and distance.

Figure 1: Geometry

The purple satellite is located by $\mathbf{r} = x\hat{\mathbf{x}} + y\hat{\mathbf{y}} + z\hat{\mathbf{z}}$, and the spheres are the celestial bodies. The xyz frame is not inertially stationary. Instead, they rotate with the larger bodies at a rate Ω . The origin c is the center of mass of m_1 and m_2 (and therefore inertially fixed). The xy plane defines the plane in which m_1 and m_2 orbit, so $\hat{\mathbf{z}}$ is defined by the direction of their angular momenta- the constant rotation at a rate Ω is a consequence of this. Note that \mathbf{r} is not constrained to the xy plane, but m_1 and m_2 definitionally are.

Useful Relations

We can also find a relationship between x_1, x_2, d, m_1 , and m_2 . Because c is the barycenter,

$$x_1 m_1 = x_2 m_2$$

$$\frac{x_1}{m_2} = \frac{x_2}{m_1}$$

or

We can use this to find that

$$\begin{split} \frac{x_1}{x_1+x_2} &= \frac{x_1/m_2}{x_1/m_2+x_2/m_2} \\ &= \frac{x_2/m_1}{x_2/m_1+x_2/m_2} \\ &= \frac{1/m_1}{1/m_1+1/m_2} \\ &= \frac{m_2}{m_2+m_1} \end{split}$$

Defining $d = x_1 + x_2$ as the distance between the two celestial bodies, and $M = m_1 + m_2$ as their total mass, we get that

$$\frac{x_1}{d} = \frac{m_2}{M}$$

and similarly

$$\frac{x_2}{d} = \frac{m_1}{M}$$

Which can be rewritten as

$$x_1 = \frac{x_2}{m_1} = \frac{d}{M}$$

Lastly, we will define two additional vectors r_1 and r_2 which point from the first and second body respectively to the satellite.

$$\boldsymbol{r_1} = (x + x_1)\,\hat{\boldsymbol{x}} + y\hat{\boldsymbol{y}} + z\hat{\boldsymbol{z}}$$

and

$$\boldsymbol{r_2} = (x - x_2)\,\boldsymbol{\hat{x}} + y\boldsymbol{\hat{y}} + z\boldsymbol{\hat{z}}$$

Now we will solve for Ω .

$$F_{\text{on2}} = -\frac{Gm_1m_2}{d^2}\hat{\boldsymbol{x}}$$

$$p_2\boldsymbol{a}_2^f = -\frac{Gm_1p_2}{d^2}\hat{\boldsymbol{x}}$$

$$\frac{\mathrm{d}^f}{\mathrm{d}t} \left(\frac{\mathrm{d}^f}{\mathrm{d}t}x_2\hat{\boldsymbol{x}}\right) = -\frac{Gm_1}{d^2}\hat{\boldsymbol{x}}$$

$$\frac{\mathrm{d}^f}{\mathrm{d}t} \left(\frac{\mathrm{d}^cx_2\hat{\boldsymbol{x}}}{\mathrm{d}t} + \Omega\hat{\boldsymbol{z}} \times x_2\hat{\boldsymbol{x}}\right) = -\frac{Gm_1}{d^2}\hat{\boldsymbol{x}}$$

$$\frac{\mathrm{d}^f}{\mathrm{d}t}\Omega x_2\hat{\boldsymbol{y}} = -\frac{Gm_1}{d^2}\hat{\boldsymbol{x}}$$

$$\frac{\mathrm{d}^c}{\mathrm{d}t}\Omega x_2\hat{\boldsymbol{y}} + \Omega\hat{\boldsymbol{z}} \times \Omega x_2\hat{\boldsymbol{y}} = -\frac{Gm_1}{d^2}\hat{\boldsymbol{x}}$$

$$-\Omega^2x_2\hat{\boldsymbol{x}} = -\frac{Gm_1}{d^2}\hat{\boldsymbol{x}}$$

$$\Omega^2x_2 = \frac{Gm_1}{d^2}$$

$$\Omega = \sqrt{\frac{G}{d^2}}\frac{m_1}{x_2}$$

$$\Omega = \sqrt{\frac{GM}{d^3}}$$

Defining μ conventionally as $\mu = GM$,

$$\Omega = \sqrt{\frac{\mu}{d^3}}$$

Kinematics

The transport theorem states that the inertial (fixed f frame) derivative of a vector u (expressed in the rotating c frame) is

$$\frac{\mathrm{d}^f \boldsymbol{u}}{\mathrm{d}t} = \frac{\mathrm{d}^c \boldsymbol{u}}{\mathrm{d}t} + \boldsymbol{\omega}^{cf} \times \boldsymbol{u}$$

Where $\frac{\mathrm{d}^f}{\mathrm{d}t}$ denotes the derivative in the coordinates of the fixed frame f, and $\frac{\mathrm{d}^c}{\mathrm{d}t}$ denotes derivative in the coordinates of the rotating frame c, and $\boldsymbol{\omega}^{cf}$ denotes the angular velocity of c in f. For this case, $\boldsymbol{\omega}^{cf} = \Omega \hat{\boldsymbol{z}}$. We can find Ω

For the satellite's position in the CR3BP frame $\mathbf{r} = x\hat{\mathbf{x}} + y\hat{\mathbf{y}} + z\hat{\mathbf{z}}$, we will find the inertial acceleration to generate equations of motion.

$$\dot{\mathbf{r}} = \frac{\mathrm{d}^{c}\mathbf{r}}{\mathrm{d}t} + \boldsymbol{\omega}^{cf} \times \mathbf{r}$$

$$= \frac{\mathrm{d}^{c}}{\mathrm{d}t} (x\hat{\mathbf{x}} + y\hat{\mathbf{y}} + z\hat{\mathbf{z}}) + (\Omega\hat{\mathbf{z}} \times (x\hat{\mathbf{x}} + y\hat{\mathbf{y}} + z\hat{\mathbf{z}}))$$

$$= (\dot{x}\hat{\mathbf{x}} + \dot{y}\hat{\mathbf{y}} + \dot{z}\hat{\mathbf{z}}) + (\Omega x\hat{\mathbf{y}} - \Omega y\hat{\mathbf{x}})$$

$$= (\dot{x} - \Omega y)\hat{\mathbf{x}} + (\dot{y} + \Omega x)\hat{\mathbf{y}} + \dot{z}\hat{\mathbf{z}}$$

$$\begin{split} \ddot{\boldsymbol{r}} &= \dot{\boldsymbol{r}} \\ &= \frac{\mathrm{d}^c}{\mathrm{d}t} \left(\left(\dot{\boldsymbol{x}} - \Omega \boldsymbol{y} \right) \boldsymbol{\hat{x}} + \left(\dot{\boldsymbol{y}} + \Omega \boldsymbol{x} \right) \boldsymbol{\hat{y}} + \dot{\boldsymbol{z}} \boldsymbol{\hat{z}} \right) \\ &\quad + \Omega \boldsymbol{\hat{z}} \times \left(\left(\dot{\boldsymbol{x}} - \Omega \boldsymbol{y} \right) \boldsymbol{\hat{x}} + \left(\dot{\boldsymbol{y}} + \Omega \boldsymbol{x} \right) \boldsymbol{\hat{y}} + \dot{\boldsymbol{z}} \boldsymbol{\hat{z}} \right) \\ &= \left(\ddot{\boldsymbol{x}} - \Omega \dot{\boldsymbol{y}} \right) \boldsymbol{\hat{x}} + \left(\ddot{\boldsymbol{y}} + \Omega \dot{\boldsymbol{x}} \right) \boldsymbol{\hat{y}} + \ddot{\boldsymbol{z}} \boldsymbol{\hat{z}} \\ &\quad + \left(\left(\Omega \dot{\boldsymbol{x}} - \Omega^2 \boldsymbol{y} \right) \boldsymbol{\hat{y}} - \left(\Omega \dot{\boldsymbol{y}} + \Omega^2 \boldsymbol{x} \right) \boldsymbol{\hat{x}} \right) \\ &= \left(\ddot{\boldsymbol{x}} - 2\Omega \dot{\boldsymbol{y}} - \Omega^2 \boldsymbol{x} \right) \boldsymbol{\hat{x}} + \left(\ddot{\boldsymbol{y}} + 2\Omega \dot{\boldsymbol{x}} - \Omega^2 \boldsymbol{y} \right) \boldsymbol{\hat{y}} + \ddot{\boldsymbol{z}} \boldsymbol{\hat{z}} \end{split}$$

$$\ddot{\boldsymbol{r}} = \left(\ddot{\boldsymbol{x}} - 2\Omega \dot{\boldsymbol{y}} - \Omega^2 \boldsymbol{x} \right) \boldsymbol{\hat{x}} + \left(\ddot{\boldsymbol{y}} + 2\Omega \dot{\boldsymbol{x}} - \Omega^2 \boldsymbol{y} \right) \boldsymbol{\hat{y}} + \ddot{\boldsymbol{z}} \boldsymbol{\hat{z}} \end{split}$$

Equations of Motion

We can now generate the equations of motion

$$\begin{split} \sum_{i} \boldsymbol{F_i} &= m\ddot{\boldsymbol{r}} \\ \boldsymbol{F_1} &+ \boldsymbol{F_1} = m\ddot{\boldsymbol{r}} \\ -\frac{\mu_1 m}{r_1^3} \boldsymbol{r_1} &- \frac{\mu_2 m}{r_2^3} \boldsymbol{r_2} = m\ddot{\boldsymbol{r}} \\ -\frac{\mu_1}{r_1^3} \boldsymbol{r_1} &- \frac{\mu_2}{r_2^3} \boldsymbol{r_2} = \left(\ddot{x} - 2\Omega \dot{y} - \Omega^2 x\right) \hat{\boldsymbol{x}} + \left(\ddot{y} + 2\Omega \dot{x} - \Omega^2 y\right) \hat{\boldsymbol{y}} + \ddot{z}\hat{\boldsymbol{z}} \end{split}$$

We now write this as three equations, one each in x, y, and z

$$-\frac{\mu_1}{r_1^3}(x+x_1) - \frac{\mu_2}{r_2^3}(x-x_2) = \ddot{x} - 2\Omega\dot{y} - \Omega^2 x$$
$$-\frac{\mu_1}{r_1^3}y - \frac{\mu_2}{r_2^3}y = \ddot{y} + 2\Omega\dot{x} - \Omega^2 y$$
$$-\frac{\mu_1}{r_1^3}z - \frac{\mu_2}{r_2^3}z = \ddot{z}$$

Isolating the second derivatives,

$$\begin{split} \ddot{x} &= -\frac{\mu_1}{r_1^3}(x+x_1) - \frac{\mu_2}{r_2^3}(x-x_2) + 2\Omega \dot{y} + \Omega^2 x \\ \ddot{y} &= -\frac{\mu_1}{r_1^3} y - \frac{\mu_2}{r_2^3} y - 2\Omega \dot{x} + \Omega^2 y \\ \ddot{z} &= -\frac{\mu_1}{r_1^3} z - \frac{\mu_2}{r_2^3} z \end{split}$$

We can now substitute $\Omega = \sqrt{\frac{\mu}{d^3}} = \sqrt{\frac{\mu_1 + \mu_2}{d^3}}$

$$\begin{split} \ddot{x} &= -\frac{\mu_1}{r_1^3}(x+x_1) - \frac{\mu_2}{r_2^3}(x-x_2) + 2\sqrt{\frac{\mu}{d^3}}\dot{y} + \frac{\mu}{d^3}x \\ \ddot{y} &= -\frac{\mu_1}{r_1^3}y - \frac{\mu_2}{r_2^3}y - 2\sqrt{\frac{\mu}{d^3}}\dot{x} + \frac{\mu}{d^3}y \\ \ddot{z} &= -\frac{\mu_1}{r_1^3}z - \frac{\mu_2}{r_2^3}z \end{split}$$

We can also get rid of μ_2 and x_2

$$\begin{split} \ddot{x} &= -\frac{\mu_1}{r_1^3}(x+x_1) - \frac{\mu_2}{r_2^3}(x-d+x_1) + 2\sqrt{\frac{\mu}{d^3}}\dot{y} + \frac{\mu}{d^3}x \\ \ddot{y} &= -\frac{\mu_1}{r_1^3}y - \frac{\mu-\mu_1}{r_2^3}y - 2\sqrt{\frac{\mu}{d^3}}\dot{x} + \frac{\mu}{d^3}y \\ \ddot{z} &= -\frac{\mu_1}{r_1^3}z - \frac{\mu-\mu_1}{r_2^3}z \end{split}$$

Now, we will non-dimensionalize these to make the EOMs more general. The distance unit is $L=x_1+x_2$. The time unit is $T=\sqrt{d/\mu}$ (the inverse of angular velocity). To non-dimensionalize, we must cancel units. The mass unit is $M=m_1+m_2$

$$\begin{split} \ddot{x}\frac{T^2}{L} &= -\frac{\mu_1 \left(\frac{T^2}{L^3}\right)}{r_1^3 \left(\frac{1}{L}\right)^3} (x+x_1) - \frac{\mu_2}{r_2^3} (x-d+x_1) + 2\sqrt{\frac{\mu}{d^3}} \dot{y} + \frac{\mu}{d^3} x \\ \ddot{y}\frac{T^2}{L} &= -\frac{\mu_1 \left(\frac{T^2}{L^3}\right)}{r_1^3 \left(\frac{1}{L}\right)^3} y - \frac{\mu-\mu_1}{r_2^3} y - 2\sqrt{\frac{\mu}{d^3}} \dot{x} + \frac{\mu}{d^3} y \\ \ddot{z}\frac{T^2}{L} &= -\frac{\mu_1 \left(\frac{T^2}{L^3}\right)}{r_1^3 \left(\frac{1}{L}\right)^3} z - \frac{\mu-\mu_1}{r_2^3} z \end{split}$$