模块三 三角函数的图象性质

重点知识回顾

一、平移与伸缩变换

1. 平移(口诀: 左加右减, 上加下减)

$$\begin{cases} y = f(x) & \frac{\text{向左平移a^{\uparrow} \oplus \Box}}{\text{将x替换成}x + a} \\ y = f(x) & \frac{\text{向右平移a^{\uparrow} \oplus \Box}}{\text{将x替换成}x - a} \\ \end{cases} y = f(x) & \frac{\text{向右平移a^{\uparrow} \oplus \Box}}{\text{将x替换成}x - a} \\ y = f(x) & \frac{\text{同方平移a^{\uparrow} \oplus \Box}}{\text{解析式整体加}a} \\ y = f(x) & \frac{\text{同下平移a^{\uparrow} \oplus \Box}}{\text{解析式整体减}a} \\ y = f(x) & \frac{\text{同下平移a^{\uparrow} \oplus \Box}}{\text{解析式整体减}a} \\ y = f(x) & \frac{\text{同TP} \otimes \text{AP} \oplus \Box}{\text{MP} \otimes \text{AP} \oplus \Box} \\ y = f(x) & \frac{\text{NP} \otimes \text{AP} \oplus \Box}{\text{MP} \otimes \text{AP} \oplus \Box} \\ y = f(x) & \frac{\text{NP} \otimes \text{AP} \oplus \Box}{\text{MP} \otimes \text{AP} \oplus \Box} \\ y = f(x) & \frac{\text{NP} \otimes \text{AP} \oplus \Box}{\text{MP} \otimes \text{AP} \oplus \Box} \\ y = f(x) & \frac{\text{NP} \otimes \text{AP} \oplus \Box}{\text{MP} \otimes \text{AP} \oplus \Box} \\ y = f(x) & \frac{\text{NP} \otimes \text{AP} \oplus \Box}{\text{MP} \otimes \text{AP} \oplus \Box} \\ y = f(x) & \frac{\text{NP} \otimes \text{AP} \oplus \Box}{\text{MP} \otimes \text{AP} \oplus \Box} \\ y = f(x) & \frac{\text{NP} \otimes \text{AP} \oplus \Box}{\text{MP} \otimes \text{AP} \oplus \Box} \\ y = f(x) & \frac{\text{NP} \otimes \text{AP} \oplus \Box}{\text{MP} \otimes \text{AP} \oplus \Box} \\ y = f(x) & \frac{\text{NP} \otimes \text{AP} \oplus \Box}{\text{MP} \otimes \text{AP} \oplus \Box} \\ y = f(x) & \frac{\text{NP} \otimes \text{AP} \oplus \Box}{\text{MP} \otimes \text{AP} \oplus \Box} \\ y = f(x) & \frac{\text{NP} \otimes \text{AP} \oplus \Box}{\text{MP} \otimes \text{AP} \oplus \Box} \\ y = f(x) & \frac{\text{NP} \otimes \text{AP} \oplus \Box}{\text{MP} \otimes \text{AP} \oplus \Box} \\ y = f(x) & \frac{\text{NP} \otimes \text{AP} \oplus \Box}{\text{MP} \otimes \text{AP} \oplus \Box} \\ y = f(x) & \frac{\text{NP} \otimes \text{AP} \oplus \Box}{\text{MP} \otimes \text{AP} \oplus \Box} \\ y = f(x) & \frac{\text{NP} \otimes \text{AP} \oplus \Box}{\text{MP} \otimes \text{AP} \oplus \Box} \\ y = f(x) & \frac{\text{NP} \otimes \text{AP} \oplus \Box}{\text{MP} \otimes \Box} \\ y = f(x) & \frac{\text{NP} \otimes \text{AP} \oplus \Box}{\text{MP} \otimes \Box} \\ y = f(x) & \frac{\text{NP} \otimes \text{AP} \oplus \Box}{\text{MP} \otimes \Box} \\ y = f(x) & \frac{\text{NP} \otimes \Box}{\text{MP} \otimes \Box} \\ y = f(x) & \frac{\text{NP} \otimes \Box}{\text{MP} \otimes \Box} \\ y = f(x) & \frac{\text{NP} \otimes \Box}{\text{MP} \otimes \Box} \\ y = f(x) & \frac{\text{NP} \otimes \Box}{\text{MP} \otimes \Box} \\ y = f(x) & \frac{\text{NP} \otimes \Box}{\text{MP} \otimes \Box} \\ y = f(x) & \frac{\text{NP} \otimes \Box}{\text{MP} \otimes \Box} \\ y = f(x) & \frac{\text{NP} \otimes \Box}{\text{MP} \otimes \Box} \\ y = f(x) & \frac{\text{NP} \otimes \Box}{\text{MP} \otimes \Box} \\ y = f(x) & \frac{\text{NP} \otimes \Box}{\text{MP} \otimes \Box} \\ y = f(x) & \frac{\text{NP} \otimes \Box}{\text{MP} \otimes \Box} \\ y = f(x) & \frac{\text{NP} \otimes \Box}{\text{MP} \otimes \Box} \\ y = f(x) & \frac{\text{NP} \otimes \Box}{\text{MP} \otimes \Box} \\ y = f(x) & \frac{\text{NP} \otimes \Box}{\text{MP} \otimes \Box} \\ y = f(x) & \frac{\text{NP} \otimes \Box}{\text{MP} \otimes \Box} \\ y = f(x) & \frac{\text{NP} \otimes \Box}{\text{MP} \otimes \Box} \\ y = f(x) & \frac{\text{NP} \otimes \Box}{\text{MP} \otimes \Box} \\ y = f(x) & \frac{\text{NP} \otimes \Box}{\text{MP} \otimes \Box} \\ y = f(x) & \frac{\text{NP} \otimes \Box}{\text{MP} \otimes \Box} \\ y = f(x) & \frac{\text{NP} \otimes \Box}{\text{MP} \otimes \Box} \\ y = f(x) & \frac{\text{NP} \otimes \Box}{\text{MP} \otimes \Box} \\ y = f(x) & \frac{\text{NP} \otimes \Box}{\text{MP} \otimes \Box} \\$$

注意: 左右平移的量是加在 x 上的,不是加在整个括号里的. 例如,将函数 $y=\sin(2x+\frac{\pi}{3})$ 右移 $\frac{\pi}{6}$ 个单位得到的是 $y=\sin[2(x-\frac{\pi}{6})+\frac{\pi}{3}]$,而不是 $y=\sin(2x+\frac{\pi}{3}-\frac{\pi}{6})$;上下平移的量是加在整个解析式后面的.

2. 伸缩

二、三角函数的图象性质

1. 正弦函数 $y = \sin x$ 和余弦函数 $y = \cos x$ 的性质

函数	$y = \sin x$	$y = \cos x$
图象	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
定义域	R	R
值域	[-1,1]	[-1,1]
周期性	最小正周期为2π	最小正周期为2π
奇偶性	奇函数	偶函数
单调性	单调递增区间: $[2k\pi - \frac{\pi}{2}, 2k\pi + \frac{\pi}{2}](k \in \mathbb{Z})$ 单调递减区间: $[2k\pi + \frac{\pi}{2}, 2k\pi + \frac{3\pi}{2}](k \in \mathbb{Z})$	单调递增区间: $[2k\pi - \pi, 2k\pi](k \in \mathbb{Z})$ 单调递减区间: $[2k\pi, 2k\pi + \pi](k \in \mathbb{Z})$
最值	$\stackrel{\cong}{=} x = 2k\pi + \frac{\pi}{2}(k \in \mathbf{Z})$ 时, $y_{\text{max}} = 1$ $\stackrel{\cong}{=} x = 2k\pi - \frac{\pi}{2}(k \in \mathbf{Z})$ 时, $y_{\text{min}} = -1$	当 $x = 2k\pi(k \in \mathbf{Z})$ 时, $y_{\text{max}} = 1$ 当 $x = 2k\pi + \pi(k \in \mathbf{Z})$ 时, $y_{\text{min}} = -1$
对称轴	$x = k\pi + \frac{\pi}{2}(k \in \mathbf{Z})$	$x = k\pi(k \in \mathbf{Z})$
对称中心	$(k\pi,0)(k\in\mathbf{Z})$	$(k\pi + \frac{\pi}{2}, 0)(k \in \mathbf{Z})$

2. 设 A>0 , $\omega>0$, 则函数 $y=A\sin(\omega x+\varphi)$ 和 $y=A\cos(\omega x+\varphi)$ 的性质如下表:

函数	$y = A\sin(\omega x + \varphi)$	$y = A\cos(\omega x + \varphi)$
定义域	R	R
值域	[-A,A]	[-A,A]
周期性	最小正周期为 $\frac{2\pi}{\omega}$	最小正周期为 $\frac{2\pi}{\omega}$
单调性	增区间: $2k\pi - \frac{\pi}{2} \le \omega x + \varphi \le 2k\pi + \frac{\pi}{2}(k \in \mathbf{Z})$	增区间: $2k\pi - \pi \le \omega x + \varphi \le 2k\pi (k \in \mathbb{Z})$
	减区间: $2k\pi + \frac{\pi}{2} \le \omega x + \varphi \le 2k\pi + \frac{3\pi}{2} (k \in \mathbf{Z})$	减区间: $2k\pi \le \omega x + \varphi \le 2k\pi + \pi (k \in \mathbf{Z})$
最值	$\stackrel{\text{"}}{=} \omega x + \varphi = 2k\pi + \frac{\pi}{2}(k \in \mathbf{Z}) \text{!} ; y_{\text{max}} = A$	
	$\stackrel{\text{def}}{=} \omega x + \varphi = 2k\pi - \frac{\pi}{2}(k \in \mathbf{Z}) \text{ iff }, y_{\min} = -A$	
对称轴	$\omega x + \varphi = k\pi + \frac{\pi}{2} (k \in \mathbf{Z})$	$\omega x + \varphi = k\pi(k \in \mathbf{Z})$
对称中心	$(\frac{1}{\omega}(k\pi - \varphi), 0)(k \in \mathbf{Z})$	$(\frac{1}{\omega}(k\pi + \frac{\pi}{2} - \varphi), 0)(k \in \mathbf{Z})$

3. 正切函数的图象及性质

(1) 正切函数 $y = \tan x$ 的图象:

(2) 正切函数的性质:

函数	$y = \tan x$	$y = A \tan(\omega x + \varphi)(A > 0, \omega > 0)$
定义域	$\{x \mid x \neq k\pi + \frac{\pi}{2}, k \in \mathbf{Z}\}$	$\{x \mid \omega x + \varphi \neq k\pi + \frac{\pi}{2}, k \in \mathbf{Z}\}\$
值域	R	R
最小正周期	π	$\frac{\pi}{\omega}$
奇偶性	奇函数	当 $\varphi = \frac{k\pi}{2} (k \in \mathbf{Z})$ 时为奇函数,否则为非奇非偶函数
增区间	$(k\pi - \frac{\pi}{2}, k\pi + \frac{\pi}{2})(k \in \mathbf{Z})$	$(\frac{1}{\omega}(k\pi - \frac{\pi}{2} - \varphi), \frac{1}{\omega}(k\pi + \frac{\pi}{2} - \varphi))(k \in \mathbf{Z})$
对称中心	$(\frac{k\pi}{2},0)(k\in\mathbf{Z})$	$(\frac{1}{\omega}(\frac{k\pi}{2}-\varphi),0)(k\in\mathbf{Z})$

第1节 求三角函数解析式 $f(x) = A\sin(\omega x + \varphi) + B$ ($\bigstar \star \star$)

内容提要

求三角函数解析式 $f(x) = A\sin(\omega x + \varphi) + B$ 的常见题型有恒等变换化简、根据图象求解析式等.

- 1. 恒等变换化简得到 $f(x) = A\sin(\omega x + \varphi) + B$: 一般分"拆"、"降"、"合"三步.
- ①拆: 若解析式中有 $\cos(2x-\frac{\pi}{6})$ 这类结构, 通常先拆开;
- ②降: 遇到 $\sin^2 x \cdot \cos^2 x \cdot \sin x \cos x$ 这些结构,可降次; ("拆"和"降"的顺序要视情况而定)
- ③合: 完成前两步后,通常就化为了 $f(x) = a\sin \omega x + b\cos \omega x + B$ 这类结构,最后可利用辅助角公式合并.
- 2. 根据图象求解析式 $f(x) = A\sin(\omega x + \varphi) + B$:
- ①用最大值或最小值求 A: $f(x)_{max} = |A|$;

②用最大值和最小值求
$$B$$
:
$$\begin{cases} f(x)_{\text{max}} = |A| + B \\ f(x)_{\text{min}} = -|A| + B \end{cases} \Rightarrow B = \frac{f(x)_{\text{max}} + f(x)_{\text{min}}}{2};$$

- ③用最小正周期 T 求 ω : $|\omega| = \frac{2\pi}{T}$;
- ④最值点求 φ :将函数图象上的最大值或最小值点代入解析式,求出 φ .若图象上没有标出最值点,也无法通过简单的推理得出最值点,则考虑代图象上的其它已知点求 φ .之所以首选最值点,是因为一个周期内,只有最大值或最小值点是唯一的,若代其它点,可能会有增根需要舍去.

典型例题

【例 1】已知函数
$$f(x) = \sin x \cos(x + \frac{\pi}{6})$$
 ,则 $f(x)$ 的最小正周期为_____,值域为_____.

【变式】(2019•浙江卷节选)设函数
$$f(x) = \sin x (x \in \mathbf{R})$$
,求函数 $y = [f(x + \frac{\pi}{12})]^2 + [f(x + \frac{\pi}{4})]^2$ 的值域.

【例 2】如图是 $f(x) = A\sin(\omega x + \varphi)(A > 0, \omega > 0, |\varphi| < \frac{\pi}{2})$ 的部分图象,则 f(x) = .

【变式 1】已知函数 $f(x) = A\sin(\omega x + \varphi)(\omega > 0, |\varphi| < \frac{\pi}{2})$ 的部分图象如图所示,则()

(A)
$$f(x) = -4\sin(\frac{\pi}{8}x + \frac{\pi}{4})$$
 (B) $f(x) = 4\sin(\frac{\pi}{8}x - \frac{\pi}{4})$

(C)
$$f(x) = -4\sin(\frac{\pi}{8}x - \frac{\pi}{4})$$
 (D) $f(x) = 4\sin(\frac{\pi}{8}x + \frac{\pi}{4})$

(D)
$$f(x) = 4\sin(\frac{\pi}{8}x + \frac{\pi}{4})$$

【变式 2】(2020・新高考 I 卷)(多选)右图是函数 $y = \sin(\omega x + \varphi)$ 的部分图象,则 $\sin(\omega x + \varphi) = ()$

(A)
$$\sin(x + \frac{\pi}{3})$$
 (B) $\sin(\frac{\pi}{3} - 2x)$ (C) $\cos(2x + \frac{\pi}{6})$ (D) $\cos(\frac{5\pi}{6} - 2x)$

【变式 2】下图是函数 $f(x) = A\sin(\omega x + \varphi) + B(A > 0, \omega > 0, |\varphi| < \frac{\pi}{2})$ 的部分图象,则 $f(\frac{3\pi}{4}) = .$

强化训练

1.
$$(\bigstar \bigstar)$$
 设 $f(x) = 4\cos(2x - \frac{\pi}{6})\sin 2x$,则函数 $y = f(x)$ 的值域为.

2. (★★) 已知函数
$$f(x) = \sin^2(x + \frac{\pi}{3}) + \cos^2 x (x \in \mathbf{R})$$
,则 $f(x)$ 的最小正周期为_____,值域为_____.

3.
$$(2021 \cdot 全国甲卷 \cdot ★★★)$$
 已知函数 $f(x) = 2\cos(\omega x + \varphi)$ 的部分图象如图所示,则 $f(\frac{\pi}{2}) = .$

- 4. $(2022 \cdot 酒泉模拟 \cdot \star \star \star)$ 函数 $f(x) = A\sin(\omega x + \varphi)(A > 0, |\varphi| < \frac{\pi}{2})$ 的部分图象如图所示,则()
- (A) $f(x+\frac{\pi}{6})$ 为偶函数,且最小正周期为 2π
- (B) $f(x+\frac{\pi}{3})$ 为偶函数,且最小正周期为 2π
- (C) $f(x+\frac{\pi}{3})$ 为偶函数,且最小正周期为 π
- (D) $f(x+\frac{\pi}{6})$ 为偶函数,且最小正周期为 π

- 5. $(2022 \cdot 成都嘉祥模拟 \cdot \star \star \star)$ 已知函数 $f(x) = 2\sin(\omega x + \varphi)(\omega > 0)$ 的部分图象如图所示,且 $f(\frac{\pi}{4}) + f(\frac{7\pi}{12}) = 0$,则 $f(\frac{\pi}{12}) = ($)
- (A) $\frac{\sqrt{2}}{2}$ (B) $\frac{\sqrt{3}}{2}$ (C) $\sqrt{2}$ (D) $\sqrt{3}$

6. $(2022 \cdot 青岛模拟 \cdot \star \star \star)$ 已知函数 $f(x) = A\sin(\omega x + \varphi)(A > 0, \omega > 0, -\frac{\pi}{2} < \varphi < \frac{\pi}{2})$ 的部分图象如图所示, B、D 两点为 f(x) 图象上的一个最高点和最低点,直线 BC、DE 与 x 轴垂直,四边形 BCDE 是边长为 4 的正方形,则 f(x) =.

- 7. $(2020 \cdot$ 新课标 I 卷 ★★★)设 $f(x) = \cos(\omega x + \frac{\pi}{6})$ 在 $[-\pi, \pi]$ 的图象大致如下图,则 f(x) 的最小正周期为()
- (A) $\frac{10\pi}{9}$ (B) $\frac{7\pi}{6}$ (C) $\frac{4\pi}{3}$ (D) $\frac{3\pi}{2}$

- 点,若 $|OB|-|OA|=\frac{4\pi}{3}$,则 $\omega=$ ()
- (A) 1 (B) $\frac{1}{2}$ (C) 2 (D) $\frac{2}{3}$

