Transfer daya maksimum

Arus yang mengalir pada Rs sama nilainya dengan arus yang mengalir pada Rb yaitu

$$I_s = I_b = \frac{A}{R_s + R_b}$$

$$I_s = I_b = \frac{A}{R_s + R_b}$$

$$I_s(t) = \frac{A}{R_s + R_b} \sin(2\pi f t)$$

Karena sumber sinyal Vs adalah tegangan AC berupa sinussoidal maka jelas arus yang mengalir pada Rs dan Rb juga arus AC sinussoidal.

Daya rata-rata pada beban Rb : $P_L = \frac{1}{2} (I_b)^2 R_b$

Misalkan amplituda tegangan A = 100 Volt , contoh hasil perhitungan untuk beberapa nilai Rs dan Rb sbb:

Rs	Rb	Is = Ib	PL
(Ohm)	(Ohm)	(Ampere)	(Watt)
100	10	0,90909	4,13
100	20	0,83333	6,94
100	30	0,76923	8,88
100	50	0,66667	11,11
100	80	0,55556	12,35
100	90	0,52632	12,47
100	100	0,50000	12,50
100	110	0,47619	12,47
100	120	0,45455	12,40
100	150	0,40000	12,00

Bila Rs = 200 Ohm, berapakah nilai Rb agar daya pada Rb yaitu PL mencapai maksimal?

Bila Rs = R Ohm, berapakah nilai Rb agar daya pada Rb yaitu PL mencapai maksimal?

Misalkan Rs = R dan Rb = x maka diperoleh persamaan

$$I_s = I_b = \frac{A}{R+X}$$
 ; $P_L = \frac{1}{2} \left(\frac{A}{R+X}\right)^2 X$

$$P_L = \frac{1}{2} \left(\frac{A}{R+X} \right)^2 X = \frac{A^2}{2} \frac{X}{R^2 + 2RX + X^2}$$

Perhatikan bahwa PL mencapai maksimum bila nilai

$$\frac{X}{R^2 + 2 R X + X^2}$$
 mencapai maksimum

Dicari nilai x agar fungsi : $y(x) = \frac{x}{R^2 + 2Rx + x^2}$ mencapai maksimum

Gunakan teori Kalkulus

 $y(x_c)$ mencapai nilai maksimum atau minimum bila :

Nilai turunan yaitu : $y'(x = x_c) = 0$

$$y(x) = \frac{x}{R^2 + 2 R x + x^2} = \frac{u(x)}{h(x)}$$

Maka:
$$y'(x) = \frac{u'(x) h(x) - h'(x) u(x)}{(h(x))^2}$$

$$u(x) = x \rightarrow u'(x) = 1$$

$$h(x) = R^2 + 2 R x + x^2 \rightarrow h'(x) = 2x + 2 R$$

Maka:
$$y'(x) = \frac{R^2 + 2Rx + x^2 - (2x + 2R)x}{(R^2 + 2Rx + x^2)^2}$$

$$y'(x) = 0$$
 bila : $R^2 + 2Rx + x^2 - (2x + 2R)x = 0$

Maka:
$$R^2 + 2 R x + x^2 = 2(x + R)x$$

$$(x + R)(x + R) = 2(x + R)x$$

$$(x + R) = 2x \rightarrow maka : x = R$$

Jadi bila x = R maka y(x = R) mencapai nilai maksimum

Artinya transfer daya maksimum terjadi bila Rb = Rs

Penyesuai impedansi bentuk L

Perhatikan gbr di bawah ini $\,$, dikehendaki daya yang diserap oleh beban $\,$ (R_L) mencapai maksimal pada frekuensi yang dikendaki $\,$, misal pada frekuensi $\,$ $f_{\,r}$

Berarti pada frekuensi f_r tsb nilai $z^* = z_s$

INGAT Syarat matching:
$$Z^* = Z_s$$
, $Z_s = R_s + j \cdot 0 = R_s$

Karena Z_s resistip murni berarti $nilai Z^* harus = R_s$

Kita akan mencari nilai L dan C yang menghasilkan kondisi " match" pada frekuensi $oldsymbol{f_r}$

$$Z = L seri(paralel C dgn R_L)$$

$$paralel C dg R_L = Z_x = \frac{X_C R_L}{X_C + R_L}$$

$$\mathsf{Maka} \; : \; \; \mathbf{Z} = \mathbf{\textit{j}} \; \boldsymbol{\omega} \mathbf{\textit{L}} \; + \; \; \mathbf{\textit{Z}}_{x}$$

$$X_C=rac{1}{i\,\omega^C}$$
 ; $\omega=2\pi f$; $j=\sqrt{-1}$, missal kondisi match pada $\omega=\omega_r$

$$Z_{x} = \frac{\frac{1}{j \omega C} R_{L}}{\frac{1}{j \omega C} + R_{L}} = \frac{R_{L}}{(1 + j \omega C R_{L})} = \frac{R_{L} (1 - j \omega C R_{L})}{1 + \omega^{2} C^{2} R_{L}^{2}}$$

$$Z_{x} = \frac{R_{L} (1 - j \omega C R_{L})}{1 + \omega^{2} C^{2} R_{L}^{2}} = \frac{R_{L} - j \omega C R_{L}^{2}}{1 + \omega^{2} C^{2} R_{L}^{2}} = \frac{R_{L}}{1 + \omega^{2} C^{2} R_{L}^{2}} - \frac{j \omega C R_{L}^{2}}{1 + \omega^{2} C^{2} R_{L}^{2}}$$

$$Z = j \omega L + Z_x$$

$$Z = j \omega L + \frac{R_L}{1 + \omega^2 C^2 R_L^2} - \frac{j \omega C R_L^2}{1 + \omega^2 C^2 R_L^2}$$

$$Z = \frac{R_L}{1 + \omega^2 C^2 R_L^2} + j \omega L - \frac{j \omega C R_L^2}{1 + \omega^2 C^2 R_L^2}$$

Dari syarat di atas telah diketahui bahwa $oldsymbol{Z^*} harus = oldsymbol{R}_s$ pada $oldsymbol{\omega} = oldsymbol{\omega}_r$, jadi :

$$Z^* = \frac{R_L}{1 + \omega_r^2 C^2 R_L^2} - j \omega_r L + \frac{j \omega_r C R_L^2}{1 + \omega_r^2 C^2 R_L^2} = R_s \dots (1)$$

Perhatikan bahwa kondisi pers (1) hanya dapat dipenuhi untuk nilai ω tertentu

$$Z^* = \frac{R_L}{1 + \omega_r^2 C^2 R_L^2} - j \omega_r L + \frac{j \omega_r C R_L^2}{1 + \omega_r^2 C^2 R_L^2} = R_s \dots (1)$$

Perhatikan bahwa kesimpulannya:

1).
$$nilai : \frac{R_L}{1 + \omega_r^2 C^2 R_L^2} harus = R_s$$

2).
$$nilai: -j\omega_r L + \frac{j\omega_r C R_L^2}{1+\omega_r^2 C^2 R_L^2} harus = 0$$

Misal dikehendaki kondisi match terjadi pada frek 5 Mhz, berarti:

$$\omega_r = 2 \pi f_r = 2 \pi \times 2 \times 10^6$$

$$\frac{R_L}{1+\omega_r^2 C^2 R_L^2} = R_s$$
 , misalkan nilai R_S dan R_L telah ditentukan (diketahui)

Maka:
$$\frac{R_L}{R_s} = 1 + \omega_r^2 C^2 R_L^2$$

$$\frac{R_L}{R_S} - 1 = \omega_r^2 C^2 R_L^2$$

$$\frac{R_L - R_s}{R_s} = \omega_r^2 C^2 R_L^2 \quad maka : C = \sqrt{\frac{R_L - R_s}{\omega_r^2 C^2 R_L^2 R_s}} = \frac{1}{\omega_r R_L} \sqrt{\frac{R_L - R_s}{R_s}} = C$$
Jadi nilai C bisa dihitung dengan syarat : $R_L > R_s$

Jadi nilai $m{c}$ bisa dihitung dengan syarat : $m{R}_L > m{R}_s$

Dari syarat point 2):

$$-j\omega_r L + \frac{j\omega_r C R_L^2}{1+\omega_r^2 C^2 R_L^2} = 0$$
 maka nilai L dapat dihitung yaitu :

$$j \omega_r L = \frac{j \omega_r C R_L^2}{1 + \omega_r^2 C^2 R_L^2}$$
 jadi $L = \frac{C R_L^2}{1 + \omega_r^2 C^2 R_L^2}$, substitusikan nilai C

$$L = \frac{R_L^2 \frac{1}{\omega_r R_L} \sqrt{\frac{R_L - R_s}{R_s}}}{1 + \omega_r^2 R_L^2 \frac{1}{\omega_r^2 R_L^2} \frac{R_L - R_s}{R_s}} = \frac{\frac{R_L}{\omega_r} \sqrt{\frac{R_L - R_s}{R_s}}}{1 + \frac{R_L - R_s}{R_s}}$$

$$L = \frac{\frac{R_L}{\omega_r} \sqrt{\frac{R_L - R_s}{R_s}}}{\frac{R_s + R_L - R_s}{R_s}} = \frac{\frac{R_L}{\omega_r} \sqrt{\frac{R_L - R_s}{R_s}}}{\frac{R_L}{R_s}} = \frac{R_s}{\omega_r} \sqrt{\frac{R_L - R_s}{R_s}}$$

$$L = \frac{1}{\omega_r} \sqrt{R_s R_L - R_s^2} \quad atau \ \omega_r L = \sqrt{R_s R_L - R_s^2}$$

Misal sumber tegangan AC adalah:

 $V_{\scriptscriptstyle S}(t) = {m A} \, \sin({m \omega} {m t}) \, \, {\sf dan}$ misal: ${m R}_{L} = {m 5} \, {m R}_{s}$

Berapa daya disipasi pada beban $extbf{\emph{R}}_{ extbf{\emph{L}}}$?

Bila benar tercapai kondisi match maka haruslah disipasi pada $oldsymbol{R_L}$ = disipasi pada $oldsymbol{R_S}$

Jadi:
$$disipasi pada R_s = P_s = \frac{1}{2}(I_s)^2 R_s = disipasi pada R_L = P_L = \frac{1}{2}(I_L)^2 R_L$$
;

Factor pengali $\frac{1}{2}$ adalah karena sinyal berupa sinusoidal

Jadi
$$(I_s)^2 R_s$$
 harus = $(I_L)^2 R_L$; I_s = amplituda arus pada R_s

Kita buktikan

$$I_s = \frac{A}{R_s + Z} = \frac{A}{R_s + R_s} = \frac{A}{2R_s} maka :$$

$$(I_s)^2 R_s = \left(\frac{A}{2 R_s}\right)^2 R_s = \frac{A^2}{4 R_s}$$

Menggunakan hukum Kirchov pada phasor tegangan : $V_{R_s} + V_L + V_{R_L} = A$

$$I_sR_s + I_s j \omega L + V_{R_L} = A$$
;

$$\omega_{r} L = \sqrt{R_{s} R_{L} - R_{s}^{2}} = \sqrt{R_{s} 5 R_{s} - R_{s}^{2}} = \sqrt{4 R_{s}^{2}} = 2 R_{s}$$

$$V_{R_{L}} = A - I_{s} R_{s} - I_{s} j \omega_{r} L = A - I_{s} R_{s} - 2j I_{s} R_{s} = A - \frac{A}{2 R_{s}} R_{s} - 2j \frac{A}{2 R_{s}} R_{s}$$

$$V_{R_{L}} = A - \frac{A}{2} - jA = \frac{A}{2} - jA \quad ; \quad \text{amplituda tegangan pd } R_{L} = A_{R_{L}} = \sqrt{\left(\frac{A}{2}\right)^{2} + A^{2}}$$

$$A_{R_{L}} = \sqrt{\frac{5}{4}} A^{2} = A \sqrt{\frac{5}{4}} \quad ; \quad \text{amplituda arus pd } R_{L} = I_{L} = \frac{A_{R_{L}}}{R_{L}} = \frac{A\sqrt{\frac{5}{4}}}{R_{L}} = \frac{A}{5 R_{s}} = \frac{A}{2 \times \sqrt{5} R_{s}}$$

$$(I_{L})^{2} R_{L} = \left(\frac{A}{2 \times \sqrt{5} R_{s}}\right)^{2} 5 R_{s} = \frac{A^{2}}{4 \times 5 R_{s}^{2}} 5 R_{s} = \frac{A^{2}}{4 R_{s}} = (I_{s})^{2} R_{s} \quad \text{(terbukti)}$$

Penurunan rumus matching konfigurasi L dengan cara lain

 $\boldsymbol{Z_2}$ dipandang sbg impedansi sumber

$$Z_2 = R_s + j \omega L$$

Kondisi match bila:

$$Z_2 = Z_1^*$$
 atau $Z_2^* = Z_1$

Dengan menerapkan syarat : ${m Z_2}^{\mbox{*}} = {m Z_1}$ maka diperoleh :

$$R_{S} - j \omega_{r} L = \frac{\frac{R_{S}}{j \omega_{r} C}}{R_{S} + \frac{1}{j \omega_{r} C}} = \frac{R_{L}}{(1 + j \omega_{r} C R_{L})} = \frac{R_{L} (1 - j \omega_{r} C R_{L})}{1 + \omega_{r}^{2} C^{2} R_{L}^{2}} = \frac{R_{L}}{1 + \omega_{r}^{2} C^{2} R_{L}^{2}} - \frac{j \omega_{r} C R_{L}^{2}}{1 + \omega_{r}^{2} C^{2} R_{L}^{2}}$$

Maka:
$$R_s = \frac{R_L}{1 + \omega_r^2 C^2 R_L^2}$$
 dan $\omega_r L = \frac{\omega_r C R_L^2}{1 + \omega_r^2 C^2 R_L^2}$

Soal -1:

AC C RL

Pada gbr disamping diketahui:

Sumber tegangan:

$$V_s(t) = 10 \, \cos(2\pi \, \times 500000 \, t)$$

$$R_s=50\;Ohm\;\;;\;R_L=150\;Ohm$$

- 1). Hitung nilai L dan C agar daya rata-rata pada beban R_L mencapai maksimal
- 2). Berapa nilai daya rata-rata maksimal pada beban R_L tersebut
- 3). Berapa Amplituda tegangan sinyal pada beban pada kondisi match
- 4). Berapa nilai daya rata-rata pada beban R_L tersebut bila sumber sinyal berupa sinyal DC dengan tegangan 10 Volt
- 5). Berapa nilai daya rata-rata pada beban R_L tersebut bila sumber sinyal berupa sinyal AC dengan Amplituda 10 Volt , frekuensi 5 GHz .

SOLUSI:

1).
$$C = \frac{1}{\omega_r R_L} \sqrt{\frac{R_L - R_s}{R_s}}$$
 ; $L = \frac{1}{\omega_r} \sqrt{R_s R_L - R_s^2}$ $C = \frac{1}{2\pi \times 500000 \times 150} \sqrt{\frac{150 - 50}{50}} =$ $L = \frac{1}{2\pi \times 500000} \sqrt{50 \times 150 - 50^2} =$

2). Pada kondisi transfer daya maksimum maka $Z=R_s$, maka : Arus I_s yang mengalir pada R_s adalah sebesar $\frac{10}{R_s+Z}=\frac{10}{50+50}=0,1$ A Pada kondisi transfer daya maksimum : Nilai daya pd R_s = daya pada R_L Nilai daya rata-rata tsb sebesar = $P_S=\frac{1}{2}(I_S)^2\,R_S=P_L=\frac{1}{2}(I_L)^2\,R_L$

$$P_L = \frac{1}{2}(0,1)^2 \times 150 =$$