Nom	_		
Prénom		Note	
Groupe		11000	

Algorithmique INFO-SUP S2 Partiel nº 2 (P2) 22 mai 2019 Feuilles de réponses

1	
2	
3	
4	
5	

Réponses 1 (La taille en plus – 4 points)

Spécifications:

La fonction copyWithSize(B), avec B un arbre binaire "classique" (BinTree), retourne une copie de B avec la taille renseignée en chaque nœud (BinTreeSize).

Réponses 2 (Ajout avec mise à jour de la taille - 4 points)

Spécifications:

La fonction addwithsize (B, x), ajoute x en feuille dans l'arbre binaire de recherche B (BinTreeSize) sauf si celui-ci est déjà présent. Elle retourne un couple : (l'arbre résultat, un booléen indiquant si l'insertion a eu lieu).

Réponses 3 (Médian - 7 points)

1. B ABR de n éléments dont le $k^{\grave{e}me}$ élément $(1 \leq k \leq n)$ se trouve en racine :

$$taille(g(B)) = \underbrace{\hspace{1cm}}_{}$$

$$taille(d(B)) = \underbrace{\hspace{1cm}}_{}$$

ЕРІТА

OPÉRATIONS

 $kieme: Arbre Binaire \times Entier \rightarrow Nœud$ $m\acute{e}dian: Arbre Binaire \rightarrow Nœud$

PRÉCONDITIONS

kieme (A, k) est-défini-ssi $1 \le k \le taille(A)$ $m\acute{e}dian$ (A) **est-défini-ssi** A \neq arbrevide

Α	X	ю	М	$\mathbf{E}^{\mathbf{s}}$

 $A \neq arbrevide \Rightarrow m\'edian (A) = kieme (A, (taille (A)+1) div 2)$

3. Spécifications:

La fonction nthBST(B, k) avec B un ABR non vide et $1 \le k \le taille(B)$, retourne l'arbre dont la racine contient le $k^{\grave{e}me}$ élément de B .

${\bf Sp\'{e}cifications}:$

La fonction $\operatorname{median}(B)$ retourne la valeur médiane de l'ABR B s'il est non vide, la valeur None sinon.

$R\'{e}ponses$ 4 (AVL -3 points)

Arbre créé par insertions de 5, 15, 20, 2, 4, 1 :	
Arbre après ajout de $32, 25, 22$:	

$R\'{e}ponses~5~(AVL$ - $R\'{e}$ -équilibrage - 3~points)

Spécifications:

La fonction rebalancing(A) prend en paramètre un AVL non vide A dont la racine a un déséquilibre dans [-2,2]. Elle effectue si nécessaire une rotation pour ré-équilibrer A. Elle retourne un couple : l'arbre éventuellement modifié et un booléen indiquant si l'arbre a changé de hauteur.

