Лекция 4: Редици от реални числа - последна част. Граници на функции

1 Подредици и точки на сгъстяване. Теорема на Болцано-Вайерщрас (принцип за компактност)

Понятията "точка на сгъстяване" и "подредица" са тясно свързани, както ще се убедим след малко. Важно е да си дадете точна сметка за разликата между "граница" и "точка на сгъстяване".

Дефиниция 1.1. Точка на сгъстяване

Нека $\{a_n\}_{n=1}^{\infty} \subset \mathbb{R}$ и $a \in \mathbb{R}$. Казваме, че a е точка на сгъстяване на $\{a_n\}_{n=1}^{\infty}$, ако във всяка околност на a има безброй много членове на редицата. Формално, за всяко U - околност на точката a множеството $\{n \in \mathbb{N} : a_n \in U\}$ е безкрайно.

Забележете, че броим индексите! Помислете за точките на сгъстяване на $0, 1, 0, 1, \ldots$

Твърдение 1.2. Ако $a_n \xrightarrow[n \to \infty]{} a$, то а е точка на сеъстяване на редицата $\{a_n\}_{n=1}^{\infty}$, при това единствена.

Доказателство. Границата е точка на сгъстяване, защото кофинитните множества винаги са безкрайни. Допускаме, че съществува друга точка на сгъстяване $b \in \mathbb{R}, a \neq b$. Ако U е околност на a и V е околност на b, такива че $U \cap V = \emptyset$, то можем да приложим дефинициите за сходяща редица и да достигнем до противоречие с дефиницията за точка на сгъстяване:

$$\underbrace{\{n\in\mathbb{N}:a_n\in U\}}_{\text{кофинитно}} \Rightarrow \underbrace{\{n\in\mathbb{N}:a_n\not\in U\}}_{\text{крайно}}\supset \underbrace{\{n\in\mathbb{N}:a_n\in V\}}_{\text{безкрайно}}$$

Очевидно безкрайно множество няма как да се съдържа в крайно множество. Включването се дължи на факта, че $U \cap V = \emptyset$ влече $\mathbb{R} \setminus U \supset V$.

Пример 1.3. Като пример можем да разгледаме $a_n \xrightarrow[n \to \infty]{} a, b_n \xrightarrow[n \to \infty]{} b \ (a \neq b)$ и редицата $a_1, b_1, a_2, b_2, \ldots, a_n, b_n, \ldots$ Лесно се съобразява, че именно границите a и b на горните редици са точки на сгъстяване на новата редица. Можем да посочим и растяща редица, която няма точки на сгъстяване - $1, 2, 3, \ldots, n, \ldots$

Пример 1.4. Знаем, че множеството от рационалните числа \mathbb{Q} е изброимо и следователно може да бъде подредено в редица, нека например

$$\mathbb{Q} = \{q_1, q_2, \dots, q_n, \dots\}$$

Съобразете, че всяко реално число е точка на сгъстяване на горната редица.

Дефиниция 1.5. Подредица

Ако от редица $\{a_n\}_{n=1}^{\infty}$ задраскаме част от членовете така, че да останат безброй много членове и запазим реда на останалите, получаваме подредица на първоначалната. Еквивалентно, всяка строго растяща (безкрайна) редица от естествени числа $n_1 < n_2 < n_3 < \cdots < n_k < \cdots$ задава подредица $\{a_{n_k}\}_{k=1}^{\infty}$ на $\{a_n\}_{n=1}^{\infty}$.

Да си спомним дефиницията на редица като изображение $a:\mathbb{N}\longrightarrow\mathbb{R}$. Сега казваме, че всяка нейна подредица е композиция на някакво строго растящо изображение $n:\mathbb{N}\longrightarrow\mathbb{N}$ и на $a:\mathbb{N}\longrightarrow\mathbb{R}$:

$$k \mapsto n_k \mapsto a_{n_k}$$

Твърдение 1.6. Нека $\{a_n\}_{n=1}^{\infty}$ е сходяща редица от реални числа и $\{a_{n_k}\}_{k=1}^{\infty}$ е нейна подредица. Тогава $\{a_{n_k}\}_{k=1}^{\infty}$ е сходяща към границата на $\{a_n\}_{n=1}^{\infty}$.

Доказателство. Нека $a_n \xrightarrow[n \to \infty]{} a$ и U е произволна околност на a. Тогава съществува $n_0 \in \mathbb{N}$ такова, че за всяко $n \geq n_0$ е в сила $a_n \in U$. Тъй като $n_1 < n_2 < \dots < n_k < \dots$ е строго растяща и безкрайна, съществува $k_0 \in \mathbb{N}$ такова, че $n_{k_0} \geq n_0$. Тогава за всяко $k \geq k_0$ имаме $n_k \geq n_{k_0} \geq n_0$ и следователно $a_{n_k} \in U$. Получихме, че $a_{n_k} \xrightarrow[n \to \infty]{} a$. □

Ето обещаната връзка между подредици и точки на сгъстяване:

Твърдение 1.7. Нека $\{a_n\}_{n=1}^{\infty} \subset \mathbb{R}$ и $a \in \mathbb{R}$. Твърдим, че a е точка на сезстяване на дадената редица точно тогава, когато съществува подредица $\{a_{n_k}\}_{k=1}^{\infty}$ на $\{a_n\}_{n=1}^{\infty}$, за която е изпълнено $a_{n_k} \xrightarrow[k \to \infty]{} a$.

Доказателство. Ако $\{a_{n_k}\}_{k=1}^{\infty}$ е подредица на $\{a_n\}_{n=1}^{\infty}$ и при това $a_{n_k} \xrightarrow[k \to \infty]{} a$, то ясно е, че a е точка на сгъстяване на $\{a_n\}_{n=1}^{\infty}$. Наистина, ако U е околност на a, то:

$${n \in \mathbb{N} : a_n \in U} \supset {n_k = n(k) \in \mathbb{N} : k \ge k_0}$$
,

защото след определен индекс k_0 всички членове на подредицата попадат в избраната околност на a.

Обратно, нека a е точка на сгъстяване за $\{a_n\}_{n=1}^{\infty}$. Интервалът (a-1,a+1) е околност на a. Тогава съществува $n_1 \in \mathbb{N}$ такова, че $a_{n_1} \in (a-1,a+1)$. Разглеждаме $\left(a-\frac{1}{2},a+\frac{1}{2}\right)$ околност на a. Понеже $\{n \in \mathbb{N}: a_n \in (a-1,a+1)\}$ е безкрайно (от дефиницията на точка на сгъстяване) и $\{1,2,\ldots,n_1\}$ е крайно, то съществува $n_2 > n_1$ с $a_{n_2} \in \left(a-\frac{1}{2},a+\frac{1}{2}\right)$.

Продължаваме с аналогични разсъждения и избираме индекси $n_1 < n_2 < \cdots < n_{k-1}$. На поредната стъпка имаме околност $\left(a-\frac{1}{k},a+\frac{1}{k}\right)$ на a. Понеже $\left\{n\in\mathbb{N}:a_n\in\left(a-\frac{1}{k},a+\frac{1}{k}\right)\right\}$ е безкрайно и $\{1,2,\ldots,n_{k-1}\}$ е крайно, то съществува $n_k>n_{k-1}$ такова, че $a_{n_k}\in\left(a-\frac{1}{k},a+\frac{1}{k}\right)$. По този начин построихме $n_1< n_2< n_3< \cdots < n_k< \ldots$ (и значи $\{a_{n_k}\}_{k=1}^\infty$ е подредица на $\{a_n\}_{n=1}^\infty$) така, че

$$|a_{n_k} - a| < \frac{1}{k} \xrightarrow[k \to \infty]{} 0 \Rightarrow a_{n_k} \xrightarrow[k \to \infty]{} a$$

С това доказателството е завършено.

Следващата теорема е изключително важна и често употребявана. Принципът за непрекъснатост и тук е ключов за верността на заключението.

Теорема 1.8. Теорема на Болцано-Вайерщрас (Принцип за компактност) Всяка ограничена редица има точка на сгъстяване. Еквивалентно, всяка ограничена редица има сходяща подредица.

Доказателство. Първо да съобразим, че ограничеността на $\{a_n\}_{n=1}^{\infty}$ влече съществуването на $b,c\in\mathbb{R}$ такива, че $a_n\in[b,c]$ $\forall\,n\in\mathbb{N}$. Да положим $b_0\coloneqq b,c_0\coloneqq c$. Разглеждаме интервалите $\left[b_0,\frac{b_0+c_0}{2}\right]$ и $\left[\frac{b_0+c_0}{2},c_0\right]$. Тогава поне едно от следните множества е безкрайно:

$$\left\{ n \in \mathbb{N} : a_n \in \left[b_0, \frac{b_0 + c_0}{2} \right] \right\}$$
$$\left\{ n \in \mathbb{N} : a_n \in \left[\frac{b_0 + c_0}{2}, c_0 \right] \right\}$$

Ако първото от тях е безкрайно, избираме $b_1 \coloneqq b_0, c_1 \coloneqq \frac{b_0 + c_0}{2}$. Ако първото множество е крайно, второто множество задължително е безкрайно и тогава полагаме $b_1 \coloneqq \frac{b_0 + c_0}{2}, c_1 \coloneqq c_0$. Съсредоточаваме се в интервала $[b_1, c_1]$, в който има безброй членове на редицата, и продължаваме по аналогичен начин. Нека за някакво $k \in \mathbb{N} \cup \{0\}$ сме построили интервалите

$$[b_0, c_0] \supset [b_1, c_1] \supset [b_2, c_2] \supset \cdots \supset [b_k, c_k]$$

такива, че

 $\{n \in \mathbb{N} : a_n \in [b_k, c_k]\}$ е безкрайно множество.

и при това

$$c_i - b_i = \frac{c - b}{2^i} \,\forall i, \ 0 \le i \le k$$

Индукционната стъпка е естествена - разглеждаме множествата:

$$\left\{ n \in \mathbb{N} : a_n \in \left[b_k, \frac{b_k + c_k}{2} \right] \right\}$$
$$\left\{ n \in \mathbb{N} : a_n \in \left[\frac{b_k + c_k}{2}, c_k \right] \right\}$$

Ако първото от тези множества е безкрайно, полагаме $b_{k+1} \coloneqq b_k, c_{k+1} \coloneqq \frac{b_k + c_k}{2}$. Ако не, второто от двете множества е безкрайно (поради индукционното предположение), и тогава полагаме $b_{k+1} \coloneqq \frac{b_k + c_k}{2}, c_{k+1} \coloneqq c_k$. Сега имаме $[b_k, c_k] \supset [b_{k+1}, c_{k+1}], \{n \in \mathbb{N} : a_n \in [b_{k+1}, c_{k+1}]\}$ е безкрайно и при това:

$$c_{k+1} - b_{k+1} = \frac{c_k - b_k}{2} = \frac{c - b}{2^{k+1}}$$

В тази конструкция избирахме втория интервал само ако в първия има краен брой членове на редицата. Направихме това за определеност: ако и в двата интервала има безброй членове на редицата, спокойно можем да изберем кой да е от тях и индукционното предположение пак ще бъде в сила за новата стъпка.

И тъй, построихме редица от вложени един в друг интервали

$$[b_0, c_0] \supset [b_1, c_1] \supset [b_2, c_2] \supset \cdots \supset [b_k, c_k] \supset [b_{k+1}, c_{k+1}] \supset \cdots$$

Имаме

$$b_0 \le b_1 \le b_2 \le \cdots \le b_k \le b_{k+1} \le \cdots$$
 $c_0 \ge c_1 \ge c_2 \ge \cdots \ge c_k \ge c_{k+1} \ge \cdots$ Редиците $\{b_k\}_{k=1}^{\infty}$ и $\{c_k\}_{k=1}^{\infty}$ се схождат към a .

Наистина, тъй като $\{b_k\}_{k=1}^\infty$ е ограничена отгоре (от c_0) и растяща, тя е сходяща. Да означим границата и́ с a: $b_k \xrightarrow[k \to \infty]{} a$. От друга страна:

$$|c_k - a| \le |c_k - b_k| + |b_k - a| = \frac{c - b}{2^k} + |b_k - a| \xrightarrow[k \to \infty]{} 0 + 0 \Rightarrow c_k \xrightarrow[k \to \infty]{} a$$

Твърдим, че a е точка на сгъстяване на $\{a_n\}_{n=1}^{\infty}$. Наистина, нека $\varepsilon>0$ е произволно. Тъй като $(a-\varepsilon,a+\varepsilon)$ е околност на a, имаме

$$b_k \xrightarrow[k \to \infty]{} a \Rightarrow b_k \in (a - \varepsilon, a + \varepsilon) \ \forall k \ge k_1$$

$$c_k \xrightarrow[k \to \infty]{} a \Rightarrow c_k \in (a - \varepsilon, a + \varepsilon) \ \forall k \ge k_2$$

$$k_0 := \max\{k_1, k_2\} \begin{cases} b_{k_0} \in (a - \varepsilon, a + \varepsilon) \\ c_{k_0} \in (a - \varepsilon, a + \varepsilon) \end{cases}$$

Сега $a - \varepsilon < b_{k_0} < c_{k_0} < a + \varepsilon$. Следователно според конструкцията на интервалите $[b_k, c_k]$, $k \in \mathbb{N}$ множеството $\{n \in \mathbb{N} : a_n \in [b_{k_0}, c_{k_0}]\}$ е безкрайно и остава да съобразим, че

$$\{n \in \mathbb{N} : a_n \in [b_{k_0}, c_{k_0}]\} \subset \{n \in \mathbb{N} : a_n \in (a - \varepsilon, a + \varepsilon)\}$$

Това доказва, че a е точка на сгъстяване на редицата $\{a_n\}_{n=1}^{\infty}$.

Важна забележка: От горното доказателство директно се получава, че ако $\{a_n\}_{n=1}^{\infty}$ е редица от реални числа и $b,c \in \mathbb{R}$ са такива, че $\{n \in \mathbb{N} : a_n \in [b,c]\}$ е безкрайно, то $\{a_n\}_{n=1}^{\infty}$ има точка на сгъстяване, която принадлежи на интервала [b,c].

Пример 1.9. Редицата $\left\{1,\frac{1}{2},2,\frac{1}{3},3,\frac{1}{4},4,\dots\right\}$ има единствена точка на сгъстяване 0, но не е ограничена и следователно не е сходяща. Да си припомним, че в Твърдение 1.2 доказахме, че сходящите редици имат единствена точка на сгъстяване. Примерът, който дадохме токущо, показва, че обратното твърдение на 1.2 не е вярно в общия случай.

Твърдение 1.10. Нека $\{a_n\}_{n=1}^{\infty}$ е ограничена редица от реални числа, която има единствена точка на съсстяване. Тогава редицата е сходяща.

Доказателство. Имаме, че $b \leq a_n \leq c \ \forall n \in \mathbb{N}$, тъй като редицата е ограничена. Нека $\varepsilon > 0$ и разгледаме околност $(a - \varepsilon, a + \varepsilon)$ на a - единствената точка на сгъстяване на $\{a_n\}_{n=1}^{\infty}$. Ще докажем, че a е граница на $\{a_n\}_{n=1}^{\infty}$. Допускаме, че това не е вярно. Тогава съществува $\varepsilon > 0$ такова, че извън $(a - \varepsilon, a + \varepsilon)$ има безброй много членове на редицата, т.е. че $\{n \in \mathbb{N} : a_n \notin (a - \varepsilon, a + \varepsilon)\}$ е безкрайно. Следователно или $\{n \in \mathbb{N} : a_n \in [b, a - \varepsilon]\}$, или $\{n \in \mathbb{N} : a_n \in [a + \varepsilon, c]\}$ е безкрайно. (Ако например $a + \varepsilon > c$, приемаме, че $[a + \varepsilon, c] = \emptyset$.) Използваме важната забележка, за да получим:

- Ако първото от двете множества е безкрайно, то съществува точка на сгъстяване d на $\{a_n\}_{n=1}^{\infty}$ такава, че $d \in [b, a \varepsilon] \Rightarrow d \neq a$.
- Ако второто от двете множества е безкрайно, то съществува d' точка на сгъстяване на $\{a_n\}_{n=1}^{\infty}$ такава, че $d' \in [a+\varepsilon,c] \Rightarrow d' \neq a$.

И в двата случая получаваме противоречие с единствеността на точката на сгъстяване a

2 Необходимо и достатъчно условие на Коши за сходимост на числови редици

Да си спомним, че една редица $\{a_n\}_{n=1}^{\infty}$ е сходяща, ако съществува реално число a такова, че $a_n \xrightarrow[n \to \infty]{} a$. В тази дефиниция освен редицата участва и границата, за която предполагаме, че е неизвестна. Добре е да разполагаме с условие за сходимост, в което участват само членовете на редицата, но не и евентуалната граница.

Дефиниция 2.1. Фундаментална редица

Казваме, че редицата $\{a_n\}_{n=1}^{\infty}$ е фундаментална, ако е изпълнено:

$$\forall \varepsilon > 0 \ \exists \ n_0 \in \mathbb{N} \ \forall \ m \ge n_0 \ \forall \ n \ge n_0 : |a_m - a_n| < \varepsilon.$$

Необходимото и достатъчно условие на Коши за сходимост на числова редица е друго условие, което по същество е еквивалентно на принципа на непрекъснатост.

Теорема 2.2. (Необходимо и достатъчно условие на Коши за сходимост на числова редица) Една редица от реални числа е сходяща точно тогава, когато е фундаментална.

Доказателство. Доказателството провеждаме в двете посоки:

$$\{a_n\}_{n=1}^{\infty}$$
 е сходяща $\Rightarrow \{a_n\}_{n=1}^{\infty}$ е фундаментална

Нека $a_n \xrightarrow[n \to \infty]{} a$ и $\varepsilon > 0$ е произволно. Тогава $\frac{\varepsilon}{2} > 0$ и следователно съществува $n_0 \in \mathbb{N}$ такова, че за всички $n \ge n_0$ е в сила $|a_n - a| < \frac{\varepsilon}{2}$. Да вземем кои да е две числа $m \ge n_0$ и $n \ge n_0$. Тогава:

$$\frac{|a_m - a| < \frac{\varepsilon}{2}}{|a_n - a| < \frac{\varepsilon}{2}} \Rightarrow |a_m - a_n| = |a_m - a + a - a_n| \le |a_m - a| + |a_n - a| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

$$\{a_n\}_{n=1}^\infty$$
е фундаментална $\Rightarrow \{a_n\}_{n=1}^\infty$ е сходяща

Преди всичко да покажем, че от фундаменталността на една редица следва нейната ограниченост. Наистина, да вземем $\varepsilon=15>0$. Тогава съществува $n_0\in\mathbb{N}$ такова, че за всички $n\geq n_0$ и за всички $m\geq n_0$ е в сила $|a_n-a_m|<15$. В частност, ако вземем $m=n_0$, получаваме, че за всички $n\geq n_0$ е в сила $|a_n-a_{n_0}|<15$. Следователно

$$a_n \in (a_{n_0} - 15, a_{n_0} + 15) \ \forall n \ge n_0$$
.

Избираме:

$$\begin{cases} b \coloneqq \min \left\{ a_1, a_2, a_3, \dots, a_{n_0 - 1}, a_{n_0} - 15 \right\} & \Rightarrow b \le a_n \ \forall \ n \in \mathbb{N} \\ c \coloneqq \max \left\{ a_1, a_2, a_3, \dots, a_{n_0 - 1}, a_{n_0} + 15 \right\} & \Rightarrow c \ge a_n \ \forall \ n \in \mathbb{N} \end{cases}$$

Следователно $\{a_n\}_{n=1}^{\infty}$ е ограничена.

Съгласно принципа за компактност съществува подредица $\{a_{n_k}\}_{k=1}^{\infty}$ на $\{a_n\}_{n=1}^{\infty}$, която е сходяща. Нека $a_{n_k} \xrightarrow[k \to \infty]{} a$. Ще докажем, че $a_n \xrightarrow[n \to \infty]{} a$.

Избираме произволно $\varepsilon > 0$. Идеята е да използваме подходящ член на подредицата, за да направим числото

$$|a_n - a| = |a_n - a_{n_k} + a_{n_k} - a| \le |a_n - a_{n_k}| + |a_{n_k} - a|$$

по-малко от ε за сметка на индекса n.

От фундаменталността на редицата имаме, че съществува $n_0 \in \mathbb{N}$ такова, че за всички $n \geq n_0$ и за всички $m \geq n_0$ е в сила $|a_n - a_m| < \frac{\varepsilon}{2}$. Тогава, ако k е толкова голямо, че $n_k \geq n_0$, и за всички $n \geq n_0$ ще получим $|a_n - a_{n_k}| < \frac{\varepsilon}{2}$, тоест ще направим първото събираемо малко. Да отбележим, че съществува $k_1 \in \mathbb{N}$ такова, че за всички $k \geq k_1$ е в сила $n_k \geq n_0$.

За да направим второто събираемо малко, трябва да използваме, че подредицата клони към a. Наистина, от $a_{n_k} \xrightarrow[k \to \infty]{} a$ и $\frac{\varepsilon}{2} > 0$ следва, че съществува $k_2 \in \mathbb{N}$ такова, че за всички $k \geq k_2$ е в сила $|a_{n_k} - a| < \frac{\varepsilon}{2}$.

Готови сме да фиксираме произволно $n \geq n_0$ (n_0 зависи само от ε). Избираме $k := \max\{k_1,k_2\}$. Тогава от $k \geq k_1$ имаме $|a_n - a_{n_k}| < \frac{\varepsilon}{2}$, а от $k \geq k_2$ имаме $|a_{n_k} - a| < \frac{\varepsilon}{2}$. Следователно

$$|a_n - a| = |a_n - a_{n_k} + a_{n_k} - a| \le |a_n - a_{n_k}| + |a_{n_k} - a| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

за всички $n \ge n_0$. С това доказателството е завършено.

Пример 2.3. Да разгледаме редицата с общ член $a_n = 1 + \frac{1}{2} + \dots + \frac{1}{n}$. Ясно е, че тази редица е строго растяща $(a_{n+1} = a_n + \frac{1}{n+1} > a_n)$. При това

$$a_{2^{k+1}} - a_{2^k} = \frac{1}{2^k + 1} + \frac{1}{2^k + 2} + \dots + \frac{1}{2^k + 2^k} > 2^k \cdot \frac{1}{2^{k+1}} = \frac{1}{2}$$

Виждаме, че $\{a_n\}_{n=1}^{\infty}$ не е фундаментална (няма как да удовлетворява условието за фундаменталност, ако $\varepsilon \leq \frac{1}{2}$). Следователно $\{a_n\}_{n=1}^{\infty}$ не може да бъде сходяща. Като използваме, че тази редица е растяща, получаваме и че тя не е ограничена отгоре.

3 Граници на функции - дефиниции на Коши и Хайне

Следващата ни цел е да въведем понятието "граница на функция, когато аргументът клони към x_0 " ($\lim_{x\to x_0} f(x)$). Интуицията би трябвало да бъде какво е поведението на втората координата на точка от графиката на функцията, когато първата координата се приближава към x_0 . Ще започнем с няколко съвсем неформални примера.

- **Пример 3.1.** Дефиниционната област на $f(x) = \frac{x^2-1}{x-1}$ е $Dom(f) = \mathbb{R} \setminus \{1\}$. Графиката на тази функция е права (графиката на g(x) = x+1), от която е извадена точката с координати (1,2). Ако една точка е върху тази графика и първата ѝ координата се приближава към 1, втората ѝ координата се приближава към 2: $\lim_{x\to 1} f(x) = 2$.
 - Да разгледаме функцията "цяла част на x": $f(x) = \lfloor x \rfloor$. Тя е дефинирана върху цялата реална права. Поведението на втората координата на точка от нейната графика (спомнете си как изглежда от лекции или си я нарисувайте), когато първата координата се приближава към цяло число, е различно в зависимост от това дали първата координата се приближава към цялото число отляво или отдясно. Съответно $\lim_{x\to x_0} f(x)$ не съществува, когато x_0 е цяло число.

• Функцията $f(x) = \sin \frac{1}{x}$ е с дефиниционна област $Dom(f) = \mathbb{R} \setminus \{0\}$. Тя няма граница при $x \to 0$ по по-сложна причина от ситуацията в предишния пример: ако изберем колкото искаме малка околност на нулата, върху графиката има точки с първа координата в тази околност и втора координата кое да е реално число в интервала [-1, 1].

Преди да въведем строго понятието "граница на функция, когато аргументът клони към x_0 ", трябва да имаме представа кога аргументът на функция с дефиниционна област $D \subset \mathbb{R}$ може "да се приближава към x_0 ".

Дефиниция 3.2. Точка на сгъстяване на $D \subset \mathbb{R}$

Нека $D \subset \mathbb{R}$ и $x_0 \in \mathbb{R}$. Казваме, че x_0 е точка на сгъстяване на D, ако за всяка околност U на x_0 множеството $U \cap D$ е безкрайно.

Пример 3.3. • Множеството от точките на сгъстяване на интервала $(3, +\infty)$ е интервалът $[3, +\infty)$.

- Множеството от точките на сгъстяване на $D \equiv (-\infty, -1] \cup (0, 1) \cup \{5\} \cup \{17 + \frac{1}{n} : n \in \mathbb{N}\}$ е $(-\infty, -1] \cup [0, 1] \cup \{17\}$.
- Правете разлика между точка на сгъстяване на редица от реални числа и точка на сгъстяване на множество (например множеството от членовете на дадена редица)! Например точките на сгъстяване на редицата $0, 1, 0, 1, \ldots$ са 0 и 1, а множеството $\{0, 1\}$ няма точки на сгъстяване.

Твърдение 3.4. Нека $D \subset \mathbb{R}, x_0 \in \mathbb{R}$. Тогава следните твърдения са еквивалентни:

- (a) x_0 е точка на сгъстяване на D.
- (б) Във всяка околност U на x_0 има точка от D, различна от x_0 ($(U \cap D) \setminus \{x_0\} \neq \emptyset$).
- (в) Съществува редица $\{x_n\}_{n=1}^{\infty} \subset D, x_n \neq x_0 \ \forall n \in \mathbb{N} \ makasa, че \ x_n \xrightarrow[n \to \infty]{} x_0.$
- (г) Съществува редица $\{x_n\}_{n=1}^{\infty} \subset D \setminus \{x_0\}$ такава, че $x_n \xrightarrow[n \to \infty]{} x_0$ и $|x_{n+1} x_0| < |x_n x_0|$ за всяко $n \in \mathbb{N}$.

Доказателство. (a) \Rightarrow (б) : Тривиално.

(б) \Rightarrow (в) : За произволно $n \in \mathbb{N}$ разглеждаме околност $\left(x_0 - \frac{1}{n}, x_0 + \frac{1}{n}\right)$ на x_0 :

$$\left[D \cap \left(x_0 - \frac{1}{n}, x_0 + \frac{1}{n}\right)\right] \setminus \{x_0\} \neq \emptyset \Rightarrow$$

$$\Rightarrow \exists x_n \in \left[D \cap \left(x_0 - \frac{1}{n}, x_0 + \frac{1}{n}\right)\right] \setminus \{x_0\} \Rightarrow x_n \in D, x_n \neq x_0, |x_n - x_0| < \frac{1}{n}$$

Следователно построихме $\{x_n\}_{n=1}^{\infty}\subset D,\, x_n\neq x_0\;\forall\, n\in\mathbb{N}\;$ и $|x_n-x_0|<\frac{1}{n}\xrightarrow[n\to\infty]{}0,\,$ откъдето следва $x_n\xrightarrow[n\to\infty]{}x_0.$

(в) \Rightarrow (г) : Знаем, че съществува редица $\{x_n\}_{n=1}^{\infty} \subset D \setminus \{x_0\}$, $x_n \xrightarrow[n \to \infty]{} x_0$. Ще построим нейна подредица, за която (г) е в сила. Предварително е ясно, че която и подредица на $\{x_n\}_{n=1}^{\infty}$ да вземем, тя ще клони към x_0 и всичките и́ членове ще се съдържат в

 $D\setminus\{x_0\}$. Нека означим $n_1:=1$. Тъй като $x_{n_1}\neq x_0$, имаме $|x_{n_1}-x_0|>0$ и следователно можем да изберем $n_2>n_1$ с $|x_{n_2}-x_0|<|x_{n_1}-x_0|$. Нека сме избрали $n_1< n_2<\cdots< n_k$ такива, че $|x_{n_i}-x_0|<|x_{n_{i-1}}-x_0|$ за всички $i,\ 2\leq i\leq k$. Отново $|x_{n_k}-x_0|>0$ и следователно $x_n\xrightarrow[n\to\infty]{}x_0$ влече съществуването на $\overline{n}\in\mathbb{N}$ такова, че за всяко $n\geq\overline{n}$ е в сила $|x_n-x_0|<|x_{n_k}-x_0|$. Избираме n_{k+1} такова, че $n_{k+1}\geq\overline{n}$ и $n_{k+1}>n_k$. Тогава $|x_{n_{k+1}}-x_0|<|x_{n_k}-x_0|$. По този начин построихме подредица $\{x_{n_k}\}_{k=1}^\infty$ на $\{x_n\}_{n=1}^\infty$ такава, че $|x_{n_{k+1}}-x_0|<|x_{n_k}-x_0|$ за всяко $k\in\mathbb{N}$.

 $(\Gamma) \Rightarrow (a)$: Знаем, че съществува редица $\{x_n\}_{n=1}^{\infty} \subset D \setminus \{x_0\}$ такава, че $x_n \xrightarrow[n \to \infty]{} x_0$ и $|x_{n+1} - x_0| < |x_n - x_0|$ за всяко $n \in \mathbb{N}$. Забележете, че последните неравенства влекат, че $x_n \neq x_m$ за произволен избор на $n \in \mathbb{N}$, $m \in \mathbb{N}$. Тогава за произволно $\varepsilon > 0$ имаме

$$(x_0 - \varepsilon, x_0 + \varepsilon) \cap D \supset \{x_n : |x_n - x_0| < \varepsilon\} \supset \{x_n : n \ge n_0\}$$

което е безкрайно.

Дефиниция 3.5. Граница на функция (във формата на Коши)

Нека $f:D\to\mathbb{R},\,D\subset\mathbb{R}$ и нека $x_0\in\mathbb{R}$ е точка на сгъстяване на D. Казваме, че функцията f има граница $L\in\mathbb{R}$, когато аргументът клони към x_0 (и пишем $\lim_{x\to x_0}f(x)=L$), ако за всяка околност U на L съществува околност V на x_0 такава, че за всяко $x\in V\cap D$, $x\neq x_0$ е в сила $f(x)\in U$.

Можем да формулираме тази дефиниция по еквивалентен начин: $\lim_{x\to x_0} f(x) = L$, ако за всяко $\varepsilon > 0$ съществува $\delta > 0$ такова, че за всички $x \in D \setminus \{x_0\}$, за които $|x - x_0| < \delta$, е в сила $|f(x) - L| < \varepsilon$.

Пример 3.6. Ще покажем, че $\lim_{x\to 0} \frac{\sin x}{x} = 1$. Първо да отбележим, че дефиниционната област на функцията $f(x) = \frac{\sin x}{x}$ е $(-\infty,0) \cup (0,+\infty)$ и следователно 0 е нейна точка на сгъстяване.

Основните неравенства, с които ще започнем, ще получим от геометрични съображения. Нека $x \in \left(0, \frac{\pi}{2}\right)$ е произволно. Означаваме с O(0,0) началото на координатната система, с A(1,0) пресечната точка на единичната окръжност с положителната част на абцисата, с $B(\cos x, \sin x)$ точка върху единичната окръжност, отговаряща на централен ъгъл x, и с $C(1, \operatorname{tg} x)$ пресечната точка на лъча OB с права през A, перпендикулярна на абцисата. Тогава лицето на триъгълника $\triangle OAB$ (равно на $\frac{1}{2} \cdot 1 \cdot \sin x$) не надминава лицето на сектора OAB от единичния кръг, което не надминава лицето на триъгълника $\triangle OAC$ (равно на $\frac{1}{2} \cdot 1 \cdot \operatorname{tg} x$). Съобразяваме колко е лицето на сектора OAB от единичния кръг, като забележим, че лицето на сектора от единичния кръг, отговарящо на централен ъгъл 2π , е π (знаете, че лицето на кръг с радиус r е πr^2), и тогава търсеното лице, което отговаря на централен ъгъл x, е $\frac{1}{2} \cdot x$. Получаваме неравенствата:

$$\frac{1}{2} \cdot 1 \cdot \sin x \le \frac{1}{2} \cdot x \le \frac{1}{2} \cdot 1 \cdot \operatorname{tg} x \quad \Rightarrow \quad \sin x \le x \le \operatorname{tg} x = \frac{\sin x}{\cos x}$$

Отчитайки, че всички количества са положителни, от горните неравенства за всички $x \in (0, \frac{\pi}{2})$ получаваме

$$\cos x \le \frac{\sin x}{x} \le 1 \quad \Rightarrow \quad 1 - 2\sin^2\frac{x}{2} \le \frac{\sin x}{x} \le 1$$

$$\Rightarrow \quad 0 \le 1 - \frac{\sin x}{x} \le 2\sin^2\frac{x}{2} \le 2\left(\frac{x}{2}\right)^2 = \frac{1}{2} \cdot x^2 \quad \text{за всяко } x \in \left(0, \frac{\pi}{2}\right)$$

$$\Rightarrow 0 \le 1 - rac{\sin x}{x} \le rac{1}{2} \cdot x^2$$
 за всяко $x \in \left(-rac{\pi}{2}, rac{\pi}{2}
ight) \setminus \{0\}$ заради четността на $rac{\sin x}{x}$ и x^2

Нека сега $\varepsilon>0$ е произволно. Полагаме $\delta:=\sqrt{2\varepsilon}$. За всяко $x\in(-\delta,\delta)\setminus\{0\}$ от горните пресмятания получаваме

$$\left| \frac{\sin x}{x} - 1 \right| < \varepsilon$$
 , с което сме доказали, че $\lim_{x \to 0} \frac{\sin x}{x} = 1$.

Завършваме лекцията с друга дефиниция на граница на функция, чиято еквивалентност с дефиницията на граница на функция във формата на Коши ще докажем след една седмица.

Дефиниция 3.7. Граница на функция (във формата на Хайне)

Нека $f:D\to\mathbb{R},\,D\subset\mathbb{R}$ и нека $x_0\in\mathbb{R}$ е точка на сгъстяване на D. Казваме, че функцията f има граница $L\in\mathbb{R}$, когато аргументът клони към x_0 , ако за всяка редица $\{x_n\}_{n=1}^\infty\subset D\setminus\{x_0\}$ от стойности на аргумента, която клони към x_0 , съответната редица от функционални стойности $\{f(x_n)\}_{n=1}^\infty$ клони към L.

$$\left(\ \forall \ \left\{ x_n \right\}_{n=1}^{\infty} \subset D \setminus \left\{ x_0 \right\}, \ x_n \xrightarrow[n \to \infty]{} x_0 : \ f(x_n) \xrightarrow[n \to \infty]{} L \ \right)$$

ЗАДАЧИ ЗА ОБМИСЛЯНЕ ВКЪЩИ (до следващата седмица):

Упражнение 3.8. Нека $\{a_n\}_{n=1}^{\infty}$ е редица от реални числа. Докажете, че $a_n \xrightarrow[n \to \infty]{} \infty$ тогава и само тогава, когато $\{a_n\}_{n=1}^{\infty}$ няма точка на сгъстяване.