Working with and Understanding Plot Types

Steven Braun

Data Analytics and Visualization Specialist

May 8, 2017

static — interactive chart — graph

plot — figure

visualization ——— infographic

5 minutes

Come up with as many ways possible to visually represent the following data:

5 minutes

Come up with as many ways possible to visually represent the following data:

27 73

How would we begin to taxonomize your responses?

Creating Taxonomies

- 1. Divide into 2 large groups
- 2. In each group, post all of your visualization responses on the wall

3. As a group, come up with a classification scheme (taxonomy) to categorize and organize your responses; be prepared to share with the class

A Taxonomy of Visualizations

Michelle Borkin, Azalea Vo, Zoya Bylinskii, Phillip Isola, Shashank Sunkavalli, Aude Oliva, & Hanspeter Pfister. What makes a visualization memorable? *IEEE Transactions on Visualization and Computer Graphics* (Proceedings of InfoVis 2013), 19, 12, 2306-2315.

Michelle Borkin, Azalea Vo, Zoya Bylinskii, Phillip Isola, Shashank Sunkavalli, Aude Oliva, & Hanspeter Pfister. What makes a visualization memorable? *IEEE Transactions on Visualization and Computer Graphics* (Proceedings of InfoVis 2013), 19, 12, 2306-2315.

Table Text Based

Table

ABC	1234	X45
Category	543.2109	7%
Group	45.67	45%
Unit	9876	98%
Class	123.78	12%

Text Chart

Title

- •Sed dignissim vehicula
- •Nisl quis congue
- •Sed vitae rhoncus odio
- •Integer at odio

Heading 1

"Nunc aliquam turpis at tellus varius hendrerit. Ut nec magna tortor. Proin adipiscing dolor eget odio semper ut commodo lacus imperdiet."

- Lorem

Heading 2

Aenean tincidunt sem vel massa cursus non tempus quam auctor. In nisi mi, commodo sit.

Amet rutrum vitae, fringilla non urna. Quisque sagittis ultrices sapien, quis posuere massa interdum quis.

Heading 3

- √Chart 1 √Chart 2
- ✓ Chart 3
- √Chart 4

Phrase Net

Word Cloud

Word Tree

What kinds of charts, graphs, and plots do you create in your research?

How do you know which kind of plot to use and when to use it?

Being critical practitioners of data visualization means thinking about information design as

constructed space

Data are manifold, and our choices of representation have a direct impact on their interpretation and use

data representation

data representation

Use the right chart type for the right kind of data

5 minutes

What kinds of visualizations do you use to communicate these kinds of data?

What conventions are commonly employed?

Bar charts, box plots, histograms

Distributions

Sets and intersections

Heatmaps

Pathway visualizations

Temporal data

Bar Charts, Box Plots, and Histograms

Bar charts are used to represent counts in data

Bar charts are effective because they encode quantitative data by length, which is a highly accurate encoding for making comparisons

Gehlenborg, Nils and Streit, Marc. Points of View: Bar charts and box plots. *Nature Methods* 11, 117 (2014)

When possible, order bar charts by descending magnitude to make them easier to read

(Prägnanz)

Bar charts are different from histograms,

which show binned distributions of populations or sets of data

https://bl.ocks.org/mbostock/3048450

Distributions

Box plots are ideal for communicating information about distributions in data

Sets and Intersections

Lex, Alexander and Gehlenborg, Nils. Points of View: Sets intersections. *Nature Methods* 11, 779 (2014)

Heat Maps

Pathway Visualizations

Encoding Temporal Data

WAYS OF ENCODING TIME

Position

Brightness and Saturation

Animation

An alternative to using animation is using small multiples to compare data over time

