Дискретная математика: 7 февраля 2021 ориентированные графы и алгоритмы на графах.

Домашнее задание. Кирилл Сетдеков

- $\boxed{\mathbf{1}}$ Граф G изображен на рисунке выше.
- а) Найдите максимальную длину простого цикла в графе G. Укажите все различные простые циклы максимальной длины. (Достаточно предъявить ответ)

Ответ: Максимальная длина простого цикла в графе $G={\bf 3}.$ Есть два простых цикла в этом графе: (A,B,C,A) и (A,D,C,A)

- б) Найдите компоненты сильной связности графа G. (Достаточно предъявить ответ) Ответ: В этом графе есть 3 компоненты сильной связности: $\{A, B, C, D, G\}$; $\{E\}$; $\{F\}$
- **в)** Какое минимальное число рёбер необходимо добавить в граф G, чтобы он стал сильно связным? (Необходимо обоснование ответа)

Решение:

Сейчас граф не является сильно связанным, так как есть вершина F из которой нельзя добраться в другие.

Проверим для числа добавляемых ребер = 1.

Если мы сможем найти такие две вершины, так что после добавления ребра, вершина E и F будут достижимы из компоненты связности $\{A,B,C,D,G\}$ и наоборот, тогда мы получим граф с одной компонентой связности.

Проверим новое ребро (F, D).

Вместе с ним получается простой цикл (D, E, F, D). Вершины E и F входят в этот цикл \Rightarrow входят в одну компоненту связности. При этом их этого цикла можно попасть в компоненту связности $\{A, B, C, D, G\}$ и наоборот \Rightarrow в графе теперь одна компонента связности \Rightarrow граф стал сильно связным после добавление 1 ребра

Ответ:1 ребро, например (F, D)

2 Ациклический граф H изображен на рисунке выше. Осуществите топологическую сортировку вершин графа H. (Достаточно предъявить ответ. В ответе можно, например, указать последовательность вершин от меньшего номера к большему.)

Ответ: нумерация вершин, используя поиск в глубину, так что ребро ведет от меньшего номер вершины к большему. Каждой вершине сопоставлен номер: $\{(C,1),(A,2),(B,3),(G,4),(D,5),(F,6),(E,7)\}$

К остальным задачам необходимо привести решения с обоснованием.

3 Граф R изображен на рисунке выше. Верно ли, что граф L(R) гамильтонов? **Решение:**

Нарисуем L(R)

На основании доказанной теоремы "Если R имеет эйлеров цикл, то L(R) имеет как эйлеров, так и гамильтонов циклы нам достаточно доказать что в графе R есть эйлеров цикл.

В графе R все вершины имеют степень 2 или 4.

$$deg(v_i) \in \{\,2,4\,\}$$

 \Rightarrow все вершины имеют четную степень $\Rightarrow R$ имеет эйлеров цикл $\Rightarrow L(R)$ имеет гамильтонов цикл

Ответ: Граф L(R) имеет гамильтонов цикл согласно решению выше.

[4] На плоскости отмечено 15 точек, которые соединены 25 непересекающимися отрезками так, что от любой точки можно добраться до любой другой по этим отрезкам.

а) На сколько частей разбита плоскость этой фигурой?

Решение:

Из условия фигура нарисована на плоскости \Rightarrow это нарисован планарный граф. Для планарного графа выполняется

$$|V| - |E| + |F| = 2$$

, где |V|=15 - число вершин, |E|=25 - число ребер, |G| - число граней на плоскости.

$$25 - 15 + |F| = 2$$

 $|F| = 12$

Ответ: плоскость разбита на 12 частей фигурой

б) А на сколько частей разобьют плоскость 5 таких непересекающихся фигур?

Решение:

В пункте а) мы показали, что плоскость разбита на 12 частей. При этом 11 частей лежат внутри фигуры, и 1 - вне фигуры.

Если 5 фигур не пересекаются, то внутри них будет 5×11 частей плоскости и одна часть плоскости вне всех фигур.

$$11 \times 5 + 1 = 56$$

Ответ: плоскость разбита на 56 частей

Определение. Напомним, что *правильной раскраской* графа называется такое сопоставление каждой его вершине цвета, что любым двум смежным вершинам соответствуют разные цвета.

Кроме того, на занятии было доказано, что для правильной раскраски полного графа на n вершинах K_n необходимо n цветов.

 $\boxed{\bf 5}$ В некоторой компании 7 рабочих групп a,b,c,d,e,f и g. В пятницу необходимо провести собрания в каждой рабочей группе по отдельности, причем каждое собрание можно планировать в один из 4 временных слотов:

Кроме того, некоторые сотрудники участвуют сразу в нескольких группах:

- \bullet есть те, кто одновременно состоят в a,b,c и d;
- \bullet несколько сотрудников состоят в g, f и d одновременно;
- часть состоит в группах b, d и e одновременно;
- и еще один человек работает в e и f.

Собрания в разных группах можно проводить в одно и то же время, если нет сотрудников, которые в этот момент должны быть сразу на нескольких разных собраниях.

Получится ли провести все собрания в пятницу? Какое минимальное количество временных слотов необходимо?

Решение:

Будем представлять эту задачу как *правильная раскраска* раскраска графа в 4 цвета, где каждый цвет - это один из слотов, вершины графа - группы рабочих, а ребра обозначают, что между этими группами есть пересечение сотрудников.

Отдельно рассмотрим пункт "есть те, кто одновременно состоят в a,b,c и d". Ему соответствует утверждение, что граф из вершин a,b,c,d - полный K_4 граф \Rightarrow необходимо 4 цвета чтобы закрасить только эти 4 вершины. \Rightarrow для решения всей задачи нужно $n \geqslant 4$ цветов.

Попробуем построить правильную раскраску графа из 4 цветов:

Это решение соответствует правильной раскраске графа. Если каждый цвет сопоставить одному из временных интервалов - комбинация цвета/времени и групп этого цвета будет решением.

Ответ: Да, получится провести собрания в пятницу. Потребуется минимум 4 слота.

- **6** Напомним, что граф называется двудольным, если его можно правильно раскрасить в два цвета.
- а) Какое наибольшее число ребер может быть в простом двудольном графе на k белых и m чёрных вершинах? (В нем не должно быть ребер, соединяющих вершины одинакового цвета.)

Решение:

Для каждой из из белых вершин - максимальная возможная степень вершины будет равна m, если она соединена со всеми черными вершинами.

$$\sum_{v_i \in white} deg(v_i) = k \times m = |E|$$

Ответ: $k \times m$ ребер

б) Какое наибольшее количество рёбер может быть в двудольном графе на 2n вершинах? **Решение:**

Положим, белых вершин у нас x, тогда черных - 2n-x. Тогда максимальное число ребер в этом графе - x(2n-x).

Рассмотрим функцию f(x) = x(2n - x). Для уравнения x(2n - x) = 0 есть 2 корня:

$$\begin{cases} x_1 = 0 \\ x_2 = 2n \end{cases}$$

Максимум для параболы достигается между корнями, для x = n:

$$\max\{x(2n-x)\} = n^2; x = n$$

 \Rightarrow в двудольном графе на 2n вершинах максимум ребер будет при делении графа на 2 части по n вершин. И число ребер равно n^2 .

Ответ: n^2

- **7** Рассмотрим алфавит, состоящий только из двух букв a и b. Все возможные слова, которые можно получить в этом алфавите, назовем языком.
- а) Докажите, что в этом языке можно составить слово, в котором любая трехбуквенная комбинация этих двух букв $(aaa, aab, \ldots, bba, bbb)$ встречается ровно один раз.

Решение:

Составим граф G, вершинами которого будут все слова длины 3. Соединим ориентированным ребром два слова w_1 и w_2 , если последние две буквы w_1 совпадают с первыми двумя буквами w_2

Если слова соединены ребром, то их можно написать подряд с пересечением последних двух и первых двух букв (baa → aaa дает слово baaa). Таким образом, путь образует слово, в котором поочередно идут комбинации трех букв, соответствующие вершинам этого пути.

Тогда слову, в котором любая комбинация из трех букв встречается ровно один раз, соответствует путь, проходящий по всем вершинам ровно один раз.

Таким путем является, например, путь по вершинами в порядке их нумерации от 1 до 8.

Этот путь также оказался гамильтоновым циклом, поэтому можно составить такое слово, начиная с любой из трехбуквенных комбинаций.

Ответ: Можно. Слово baaababbba

б) Существует ли слово, которое удовлетворяет условию предыдущего пункта и начинается на *abba*? Если существует, то укажите его. Если не существует, то объясните, почему это невозможно.

Решение:

Так как мы начали наше слово на abba, в нем уже использована комбинация букв abb. Так как комбинация bbb может идти только после abb, то в слове начинающемся на abba будет дважды присутствовать как минимум комбинация $abb \Rightarrow$ нельзя составить слово с началом на abba в котором любая трехбуквенная комбинация встречается ровно один раз.

Ответ: Не существует.