Algorithms: Subset Sum (Dynamic Programming)

Model 1: Some sets

$$A = \{1,2,3,5,7\}$$

$$B = \{4,16,19,23,25,72,103\}$$

$$C = \{3,34,6,17\}$$

$$D = \{\}$$

- 1 For each number below, say whether each set has some subset which adds up to the given number. For example, *A* and *C* have subsets which add up to 7 ({7} and {5,2} respectively), but *B* and *D* do not.
- (a) 9
- (b) 16
- (c) o

In general, consider the following problem, called the Subset Sum problem:

- Input:
 - a set $\{x_1, \ldots, x_n\}$ of *n* positive integers, and
 - a positive integer *S*.
- **Output**: is there a subset of $\{x_1, \ldots, x_n\}$ whose sum is exactly *S*?
- 2 Describe a brute-force algorithm for solving this problem.
- 3 What is the running time of your brute-force algorithm?
- 4 Use your brute-force algorithm to decide whether there is any subset of *C* which adds up to 54. What about 55?

Yes, the first element is x_1 , not x_0 . This is a deliberate choice which will come in handy later.

Let's see how to attack this problem using dynamic programming. Step 1: Break the problem into subproblems and make a recurrence.

- We can make the problem simpler by restricting ourselves to only using *some* of the x_i . For example, a subproblem might look like "Can we find a subset of only $\{x_1, \ldots, x_k\}$ that adds up to S?" for some $k \leq n$.
- However, by itself this doesn't help: just knowing whether we can add up to S using only x_1, \ldots, x_k doesn't tell us whether we can add up to S using x_1, \ldots, x_n . In particular, in order to add up to S we might need to use some of the elements from x_1, \ldots, x_k in addition to some of the other elements. We can fix this by generalizing along another dimension as well: we need to know whether we can add up not just to *S* itself, but to *any* sum $0 \le s \le S$. That is, a subproblem now looks like "Can we find a subset of only $\{x_1, \ldots, x_k\}$ that adds up to s?" for some $k \le n$ and $s \le S$.

Define canAddTo(k, s) to be a true or false value which is the answer to the question, "Is there a subset of only the first *k* elements $\{x_1, \ldots, x_k\}$ which adds up to exactly s?"

- 5 Consider set $A = \{1, 2, 3, 5, 7\}$ from Model 1 again. Number the elements starting from 1, that is, $x_1 = 1$, $x_2 = 2$, ..., $x_5 = 7$. Evaluate each expression below as true or false, and give a brief justification for each.
- (a) canAddTo(5, 16)
- (b) canAddTo(4, 16)
- (c) canAddTo(4,9)
- (d) canAddTo(3,1)
- (e) canAddTo(3,0)

(f)	canAddTo(0,2)	
(g)	canAddTo(0,0)	
of de	let's come up with a recurrence for $canAddTo$ in the etermining whether there is a subset of $X = \{x_1, \ldots, x_n\}$ sup to S .	~
6 Fi	ll in base cases for canAddTo:	
•	canAddTo(k,0) =	for all $k \ge 0$,
	because we can always	<u>.</u>
•	canAddTo(0,s) =	for all $s > 0$,
	because there's no way to	<u> </u>
s ex th	ow consider $canAddTo(k, s)$ in the general case, when > 0 . That is, we are trying to find whether we can a factly s if we're only allowed to use x_1, \ldots, x_k . In ord is problem down into subproblems, we would need and/or s . Fill in the following steps.	dd up to er to break
•	If, then we definitely cannot use x subset adding to s , because it is too	y allowed
	same as	·
•	Otherwise, we have two choices: we can try to use a of our subset or not. If we don't use it, it is the same previous case. If we do use it, then in order to comp	e as the

adding to s we have to make a subset using only _____

which adds up to	

8 Use your reasoning above to write down a complete recursive definition of canAddTo. Don't forget the base cases!

Step 2: Memoize.

9	Explain why it would be extremely slow to directly evaluate
	canAddTo(n, S) as a recursive function.

- 10 *canAddTo* takes a *pair* of values as input: $0 \le k \le n$ and $0 \le s \le S$. How many possible such pairs are there?
- Of course there are infinitely many pairs of numbers; this question is really asking about how many different inputs to recursive calls we might possibly see after calling canAddTo(n, S).
- 11 If we wanted to memoize the results of canAddTo by storing the output corresponding to each possible input, what data structure should we use? Draw a picture.
- 12 How big is this data structure?
- 13 In what order can we fill in the data structure, so that we never try to fill in a value before filling in other values it depends on?
- 14 How long does it take to fill in each value?
- 15 Therefore, what is the running time of this dynamic programming algorithm?
- 16 Is this faster than your answer to Question 3?

Hint: this is a trick question.

17 Write some code (using either pseudocode or a language of your choice) to compute canAddTo(n, S) using the approach outlined here.