Magnetic **Cores for Switching** Power **Supplies**

Magnetics offers one-stop shopping for magnetic cores in a multitude of materials, sizes, and shapes.

Complete in-process capability, from raw materials to finished parts, assures you a wide selection of quality cores that meet the exacting specifications of components used in switching power supplies: (1) ferrites, tape cores, and nickel cut cores for the output transformer; (2) ferrites, powder cores and cut

cores for the regulator inductor; (3) ferrites and powder cores for filters; and (4) miniature tape cores and saturable cores for the drive transformer.

This brochure discusses the advantages and disadvantages of the various types of cores used in switching power supplies. A number of design articles are referenced in addition to a listing of other useful Magnetics literature. literature.

For the most complete line of magnetic cores, come to Magnetics.

MAGNETICS

	Section 1	2/
Power Su	pply	
of RO A	ssociates	

Power Supply Component	Desired Core Characteristics			
EMI Filter Common mode filter In-line filter	High permeability High saturation (B max)			
Power Factor Correction Inductor	High DC Bias Low losses			
Output transformer High frequency (20KHz & above)	Low losses			
Low frequency (10 KHz and below)	High saturation (B max)			
Mag Amp	High Br/Bm Low losses			
Regulating inductor	High saturation (B max)			

relatively low saturation levels; therefore, for a given flux density, a larger core cross-section is needed. This added core area increases copper losses (AC and DC); however, at 20 KHz and higher, the reduction in core loss obtained when using a ferrite is

Table 2 — Core Material Considerations

	Flux Density	Initial Perm.	Frequency* Range	Max. op. Temp.	Core Losses	Core Cost	Winding Cost	Temp. Stability	Mounting Flexibility
Ferrite Toroids MAGNETICS TM J Mat'I W Mat'I H Mat'I	4300 4300 4200	5000 10,000 15,000	to > MHz	100°C	lowest	low	high	fair	fair
Ferrite Shapes K Mat'l R Mat'l P Mat'l F Mat'l	4600 5000 5100 4700	1500 2300 2700 3000	to 2MHz to 200kHz to 100kHz to 100kHz	125°C 125°C 125°C 125°C	(1) (2) (3)		e 3 below fo		
MPP Cores	7000	14-550	< 1MHz	200°C	low	high	high	good	fair
50 Ni-50 Fe Powder Cores	15,000	60-200	< 1MHz	200°C	low	high	high	good	fair
KOOL Mμ® Powder Cores	11,000	60-125	< 1MHz	200°C	low	low	high	good	fair
Powdered Iron	9000	22-90	< 1MHz	200°C	high	lowest	high	fair	fair
Silicon-Fe Laminations	16,000	4000	< 1000Hz	300°C	highest	low	low	fair .	good
Ni/Fe Tape Cores Ni/Fe Bobbin Cores	7,000 to 15,000	to 100,000	to 100kHZ	200°C	low to medium	high	high	good	fair
Amorphous Tape Cores (iron-base)	16,000	10,000	to 500kHz	150°C	low	high	high	good	fair
Amorphous Tape Cores (cobalt-base)	5,000	to 100,000	to 500kHz	100°C	low	high	high	good	fair
Si-Fe Tape Cores	16,000	4000	<1000Hz	300°C	highest	medium	high	good	fair
Ni-Fe Cut Cores	15,000	15,000	to 100kHz	150°C	medium	high	low	good	fair

^{*}Frequency depends on adjusting operating flux density to levels that keep core losses to acceptable limits.

(1) Core losses decrease up to 100°C

(2) Core losses decrease up to 70°C, remain low to 100°C

(3) Low core losses at lower temperatures

Table 3 — Ferrite Core Comparative Geometry Considerations

	Core Cost	Bobbin Cost	Winding Cost	Winding Flexibility	Assembly	Mounting Flexibility**	Heat Dissipation	Shielding
Pot Core	high	low	low	good	simple	good	poor	excellent
Slab-sided Core	high	low	low	good	simple	good	good	good
E Core	low	low	low	excellent	simple	good	excellent	poor
EC Core	medium	medium	low	excellent	medium	fair	good	poor
Toroid	very low	none	high	fair	none	poor	good	good
PQ Core	high	high	low	good	simple	fair	good	fair

^{**}Hardware is required for clamping core halves together and mounting assembled core on a circuit board or chassis.

Table 4 — Output Transformers

Ferrites***	
(a) Pot Cores	1. Sh
	2. Bo
	3. Ha
	4. Mc

Advantages

- 1. Shielding excellent
 2. Bobbin winding (inexpensive)
 3. Hardware availability good
 4. Mounting and assembly easy
 5. Low loss materials available
 6. Printed circuit mounting available
 7. Can be gapped for specific inductance

Disadvantages

- 1. Size limitation
- 2. Heat confined
- 3. More expensive than other ferrites
- 4. Cannot handle large conductors

MAGNETICS . BUTLER, PA

^{***}See Table 3 on characteristics of various shapes.

Table 4 (Output Transformers continued)

		Advantages	Disadvantages
	(b) E Cores	1. Simple low cost winding 2. Heat dissipated readlly 3. Mounting hardware simple 4. Can mount in different directions 5. Printed circuit board mounting available 6. Assembly is simple 7. Cores are inexpensive 8. Large wires can be accommodated 9. Low profile available 10. Low loss materials available 11. Can be gapped for specific inductance	1. Shielding Is minimal
	(c) EC Cores	1. Round center leg provides shorter path length for windings, saving wire and reducing losses 2. Core can handle more power 3. Round center leg prevents bends in wire 4. Can accommodate large wires 5. Printed circuit mounting available 6. Mounting hardware available 7. Low loss materials available 8. Can be gapped for specific inductance	Shielding low More costly than E core Takes up more space
	(d) Slab-sided solid center post cores	Solid round center leg provides less core loss Easy and large exits for large conductors Standard hardware available Assembly simple Low profile is possible Low loss materials available Can be gapped for specific inductance	1. Shielding medium
.)	(e) PQ Cores	1. Optimum ratio of volume to winding area 2. Minimum core size for given design 3. Minimum assembled size for a given design 4. Minimum PC board area 5. Easy assembly 6. Printed circuit bobbin available 7. Cores operate cooler 8. Low loss materials available 9. Can be gapped for specific inductance	More expensive than E Cores
	(f) Toroids	 No radiating flux No accessories required Low loss materials available Cores can be gapped for specific inductance Cores have a large radius to prevent sharp bends in wires Cores can be painted with protective insulation to prevent shorting core to windings Cores are inexpensive High input impedance 	Toroidal winding equipment necessary Subjected to external stray fields Cores are prone to saturate if excitation is unbalanced
	Ni-Fe Tape Cores	 High flux density at lower frequencies Size can be small for a given power Wide temperature range (to 200°C) Can handle high power Unlimited range of sizes Can be gapped ' High input impedance 	Frequency limitation at high flux density (up to 20 KHz) More expensive than ferrites Need toroidal winding equipment Cores are prone to saturate if excitation is unbalanced
	Ni-Fe Cut Cores	Same as Ni-Fe tape wound cores Easy to wind and assemble Will not saturate easily due to gapping	More expensive than Ni-Fe tape cores

Table 4	(Output	Transformers	continued
---------	---------	---------------------	-----------

Amorphous Tape Wound Cores	Advantages 1. High flux density 2. Size can be small for a given power 3. Wide temperature range (to 150°C) 4. Can handle high power 5. Extremely low core losses 6. Frequency range to 100 KHz 7. Unlimited range of sizes 8. Can be gapped	Disadvantages 1. More expensive than ferrites 2. Need toroidal winding equipment			
Amorphous Cut Cores	Same as amorphous tape cores Easy to wind and assemble Will not saturate easily due to gapping	More expensive than amorphous tape cores			
Ni-Fe laminations	High flux at lower frequencies Easy to wind — bobbins available Size can be small Can handle high power Wide temperature range (to 200°C) Can be gapped	Must preassemble stack Assembly cost higher Frequency limitation at high flux density			

Table 5—Inductors

Molypermalloy Powder Cores	Advantages 1. Distributed air gap 2. Cores do not saturate easily 3. Permeability vs. DC bias remains high 4. Cores have a good radius and are painted with a protective insulation 5. Large energy storage capacity 6. Good temperature stability 7. No accessories required 8. Can wind few turns by hand inexpensively	Disadvantages 1. More expensive than ferrites 2. Toroidal winding equipment necessary for large number of turns			
50 Ni-50 Fe Powder Cores	Same as MPP cores Cores have a higher B _{max} -support large AC voltages without saturation occurring Filters can be made smaller in size, requiring fewer turns than molypermalloy or ferrite Large energy storage capacity—larger than MPP, powdered iron, or ferrites	1. Same as MPP cores			
Kool Mμ Powder Cores	Same as MPP cores and 50 Ni-50 Fe powder cores Cost between powdered iron and MPP Core losses significantly lower than powdered iron	Toroidal winding equip- ment necessary for large number of turns			
Gapped Ferrites (pot cores, shapes)	Cores are easy to gap Gapped cores will not saturate easily Winding is simplified, inexpensive	Cores require accessories such as bobbins, clamps			
(toroids) 1. Cores can be gapped, won't saturate 2. No accessories required 3. Cores have large radius to prevent sharp bends in wires 4. Cores can be painted with protective insulation to prevent shorting core to windings 5. Cores are inexpensive		 Toroidal winding equipment necessary Subjected to external stray fields 			
Powdered Iron	Low cost Large energy storage capacity	Losses are HIGHER than powdered cores or ferrites Takes up more space			
Silicon Laminations	Winding is easy Assembly is simple Energy storage capacity is large Inexpensive	Must preassemble stack Losses are highest of all material types			

I

- Common Mode -

Disadvantages

	Advantages	Disadvantages				
Ferrite Toroids	 High permeability (up to 10,000) provides high impedance to unwanted signals Cores have a large radius to prevent sharp bends in wires Cores can be painted with a protective insulation to prevent shorting core to windings Cores are inexpensive 	Toroidal winding equip- ment necessary				
Ferrite Shapes (Ungapped)	Winding is simplified High insulation is possible High permeability materials	 More expensive than toroid Required accessories such as bobbin, possibly clamp Lower effective permea- bility than toroids 				
	— In Line —					
Molypermalloy Powder Cores	Cores do not saturate easily Cores have a good radius and are painted with a protective insulation No accessories required Good temperature stability	Toroidal winding equipment required More expensive than ferrites				
50 Ni-50 Fe Powder Cores	 Same as MPP cores Cores have a higher B_{max}—support large AC voltages without saturations occurring Filters can be made smaller in size, requiring fewer turns than molypermalloy or ferrite 	1. Same as MPP cores				
Kool M _μ Powder Cores	 Same as MPP cores Core losses lower than the powdered iron Cost between powdered iron and MPP cores B_{max} is between MPP and 50 Ni-50 Fe 	Toroidal winding equip- ment required				
Gapped Ferrites (pot cores, shapes)	Cores are easy to gap Gapped cores will not saturate easily Winding is simplified	Cores require accessories such as bobbins, clamps				
(toroids)	 Cores can be gapped, won't saturate No accessories required Cores have a large radius to prevent sharp bends in wires Cores can be painted with protective insulation to prevent shorting core to windings Cores are inexpensive 	Toroidal winding equipment is necessary Subject to external radiation				
Powdered Iron	Low cost Relatively high flux density	Losses are higher than powdered cores or ferrites				
Silicon Laminations						

Additional Literature Available from Magnetics

Powder Cores (Moly Permalloy)
MAGNETICS ** Moly Permalloy Powder (MPP) cores have a distributed air gap structure, making them ideal for switching regulator applications since their DC bias characteristics allow them to be used at high drive levels without saturating. Composed of 80% nickel, balance iron and molybdenum, they are available in 26 physical sizes (.140* to 3* O.D.) and 10 different permeabilities (14 to 550).

Powder Cores (High Flux)
MAGNETICS * high flux (HF) powder cores are also distributed air gap cores made from a 50% nickel-50% iron alloy powder. HF cores have a saturation flux density of 15,000 gausses as compared to 7,000 gausses for standard MPP cores or 4500 gausses for ferrites. The core loss of HF powder cores is significantly lower than powdered iron cores.

HFC-01

(Continued)

Additional Literature (continued)

Powder Cores (Kool Mμ)
MAGNETICS * Kool Mμ* powder cores are distributed air gap cores made from a ferrous alloy powder. In high frequency applications, core losses of powdered iron cores can be a major factor in contributing to undesirable temperature rises. KOOL $\mathrm{M}\mu$ cores are ideal because their losses are significantly less, resulting in lower temperature rises. Available in sizes .140" to 1.84" O.D. KMC-02, KMC-S1

A comprehensive catalog on pot cores, toroids, E, U, and I cores, RM and RS cores, EP cores Critical Comparison of Ferrites with other Magnetic Materials CG-01-A

Tape Wound Cores

Tape wound cores and made from high permeability alloys of nickel-iron, grain oriented silicon-iron and cobalt-iron. They are available in over 1,000 standard and special sizes for a wide range of frequency applications.. Tape thicknesses range from 1/2 mil through 14 mils. Commonly used sizes are in stock for immediate shipment. Amorphous alloys present low loss and interesting characteristics ideal for switched mode supplies at frequencies to 500 kHz. TWC-400

Mag Amp Tape Wound Cores

Nickel-iron and amorphous cobalt-base alloys present low core losses and square B-H loops for mag amp regulation in switched mode pow supplies at frequencies to 500 kHz. TWC-400

Bobbin Cores

Bobbin cores are miniature tape cores manufactured from ultra-thin tape (.000125" to .001" thick), and are available in widths from .032" to .25" Wound on non-magnetic stainless steel bobbins, core diameters are available down to .050" or less.

Cut Cores

MAGNETICS® cut cores are ideal for applications in which low core loss is desired and core saturation is undesirable. These cut cores are offered in a choice of soft magnetic materials including Orthonol® (50 nickel-50 iron) alloy, Permalloy 80 (80 nickel- 20 iron), & supermendur. MCC-100

General Information

"Inductor Design in Switching Regulators." An 8 page bulletin on the core selection and design procedure for power inductors SR-1 Power Transformer and Inductor Design TID-100 How to Select the Proper Core for Saturating Transformers Inverter Transformer Core Design and Material Selection TWC-S2 TWC-S3

Design Software

Common Mode Filter Inductor Design	CMF-2.1
Power Inductor Design	PDR-2.3
Nickel-Iron Laminations	LRC-2.2

Useful Design Articles

The following reference articles are quite informative in the design of switched mode power supplies:

Gerald L. Fawney, Inductors: MPP Toroids with DC Bias, Power Conversion International, September, 1982

Power Conversion International, September, 1982
Phillip E. Thibodeau, The Switcher Transformer: Designing it in One Try for Switching Power Supplies, Electronic Design, September 1, 1980
Slobodan Cuk, Basics of Switched-Mode Power Conversion: Topologies, Magnetics, and Control, Power Conversion International, July/August 1981 Part 1, October 1981 Part 2
Röbert Miller, Dr. A. Kusko, Thorleif Knutrud, Inductor Designs Easily Perform Delay and Switching Functions, EDN, February 5, 1977
Tomm V. Aldridge, Bichard M. Haas, Designing the Soft Induc-

Tomm V. Aldridge, Richard M. Haas, Designing the Soft Induc-

Clement A. Berard, Switching Power Supplies for Satellite

Clement A. Berard, Switching Power Supplies for Satellite Radiation Environments, Solid-State Power Conversion, September/October 1977

R.J. Haver, Switched Mode Power Supplies—Highlighting A 5-V, 40-A Inverter Design, Application Note AN-737, Motorola Semiconductor Products Inc.

R.J. Haver, A New Approach to Switching Regulators, Application Note AN-740, National Semiconductor Products Inc.

Application Note AN-719, Motorola Semiconductor Products Inc.

Jagdish Chopra, Squeeze More from Power Supplies, Electronic Design. 14, July 5, 1974 Jade Alberkrack, A Cost-Effective Approach to a 400 Watt Off-Line Switchmode Power Supply, Power Conversion Inter-

national, July/August 1981 Rihei Hiramatsu. Koosuke Harada, Tamotsu Ninomiya

Table 1 — Properties of Soft Magnetic Materials

	Initial	B max		Coeffici		Curie		0 - 1	Operation
Material	Perm. $\mu_{\rm o}$	Kilogausses	e x 10 ⁶	a x 10 ³	c x 10 ³	Temp. °C	Resistivity (ohm-cm)	μ _o Q at 100 kHz	Operating Frequencies
Fe .	250	22		-		770	10 x 10 ⁻⁶	-	60-1000 Hz
Si-Fe (unoriented)	400	20	870	120	75	740	50 x 10 ⁻⁶	-	60-1000 Hz
Si-Fe (oriented)	1500	20	**		•	740	50 x 10 ⁻⁶	•	60-1000 Hz
50-50 Ni Fe (grain-oriented)	2000	. 16	-	•		360	40 x 10 ⁻⁶	- '	60-1000 Hz
79 Permalloy	12,000 to 100,000	8 to 11	173	-	•	450	55 x 10 ⁻⁶	8000 to 12,000	1 kHz-75 kHz
AMORPHOUS Alloy B	3000	15-16			•	370	135 x 10 ⁻⁶		to 250 kHz
AMORPHOUS Alloy E	20,000	5-6.5			•	205	140 x 10 ⁻⁶	-	to 250 kHz
Permalloy powder	14 to 550	3	.01 to .04	.002	.05 to .1	450	1.	10,000	10 kHz-1 MHz
High Flux powder	14 to 160	15	-	•	-	360	-	•	10 kHz to 1 MHz
Kool Mu®powder	26	10	<u> </u>	-		740	<u>-</u>		to 10 MHz
•	to 125						Į.		
Iron powder	5 to 80	10	.002 to .04	.002 to .4	.2 to 1.4	770	10 ⁴	2000 to 30,000	100 kHz-100 MH
Ferrite-MnZn	750 to 15,000	3 to 5	.001	.002	.01	100 to 300	10 to 100	100,000 to 500,000	10 kHz-2 MHz
Ferrite-NiZn	10 to 1500	3 to 5		•	•	150 to 450	10 ⁶	30,000	200 kHz-100MH:
Co-Fe 50%	800	24		-		980	70 x 10 ⁻⁶		