

High Voltage Power MOSFET

IXTT02N450HV IXTH02N450HV

 V_{DSS} = 4500V I_{D25} = 200mA

 $R_{DS(on)} \leq 625\Omega$

N-Channel Enhancement Mode

Symbol	Test Conditions	Maximum Ratings	
V _{DSS}	T _J = 25°C to 150°C	4500	V
V_{DGR}	$T_J = 25^{\circ}\text{C to } 150^{\circ}\text{C}, R_{GS} = 1\text{M}\Omega$	4500	V
V _{gss}	Continuous	±20	V
V _{GSM}	Transient	±30	V
I _{D25}	T _C = 25°C	200	mA
I _{DM}	$T_{\rm C} = 25^{\circ}$ C, Pulse Width Limited by $T_{\rm JM}$	600	mA
P_{D}	T _c = 25°C	113	W
T _J T _{JM} T _{stg}		- 55 +150 150 - 55 +150	0° 0° 0°
T _L	Maximum Lead Temperature for Soldering Plastic Body for 10s	300 260	°C °C
M _d	Mounting Torque	1.13/10	Nm/lb.in
Weight	TO-268HV TO-247HV	4	g
	10-24/ N	0	g

$$G = Gate$$
 $D = Drain$
 $S = Source$ $Tab = Drain$

Features

- High Blocking Voltage
- High Voltage Packages

Advantages

- Easy to Mount
- Space Savings
- High Power Density

Applications

- High Voltage Power Supplies
- Capacitor Discharge Applications
- Pulse Circuits
- Laser and X-Ray Generation Systems

Symbol	Test Conditions		Characteristic Values			
$(T_J = 25^{\circ}C,$	Unless Otherwise Specifie	d)	Min.	Тур.	Max.	
V _{GS(th)}	$V_{_{DS}} = V_{_{GS}}, I_{_{D}} = 250 \mu A$		4.0		6.5	V
I _{GSS}	$V_{GS} = \pm 20V, V_{DS} = 0V$				±100	nA
I _{DSS}	$V_{DS} = 3.6kV, V_{GS} = 0V$				5	μΑ
	$V_{DS} = 4.5kV$				10	μΑ
	$V_{DS} = 3.6kV$	$T_J = 125^{\circ}C$		15		μΑ
R _{DS(on)}	$V_{GS} = 10V, I_{D} = 10mA, N$	Note 1			625	Ω

Symbol	Test Conditions	Chara	cteristic	Values
$(T_{J} = 25^{\circ}C, l)$	Jnless Otherwise Specified)	Min.	Тур.	Max.
g _{fs}	$V_{DS} = 50V$, $I_{D} = 50mA$, Note 1	90	150	mS
C _{iss}			246	pF
C _{oss}	$V_{GS} = 0V, V_{DS} = 25V, f = 1MHz$		19	pF
C _{rss}			5.8	pF
R_{g_i}	Gate Input Resistance		76	Ω
t _{d(on)}	Resistive Switching Times		17	ns
t _r	$V_{GS} = 10V, V_{DS} = 500V, I_{D} = 0.5 \cdot I_{D25}$		48	ns
$\mathbf{t}_{d(off)}$	00 50 5 520		28	ns
t,	$R_{_{\rm G}} = 10\Omega$ (External)		143	ns
Q _{g(on)}			10.6	nC
Q_{gs}	$V_{GS} = 10V$, $V_{DS} = 1kV$, $I_{D} = 0.5 \cdot I_{D25}$		3.3	nC
\mathbf{Q}_{gd}			5.5	nC
R _{thJC}				1.1 °C/W
R _{thCS}	TO-247HV		0.21	°C/W

Source-Drain Diode

SymbolTest ConditionsChar $(T_J = 25^{\circ}C, Unless Otherwise Specified)$ Min.		cteristic Values Typ. Max.		
I _s	V _{GS} = 0V		200	mA
I _{SM}	Repetitive, Pulse Width Limited by T_{JM}		800	mA
V _{SD}	$I_F = I_S$, $V_{GS} = 0V$, Note 1		1.5	V
t _{rr}	$I_{_{\rm F}} = 200 {\rm mA}, \; -{\rm di}/{\rm dt} = 50 {\rm A}/{\rm \mu s}, \; {\rm V}_{_{\rm R}} = 100 {\rm V}$	1.6		μs

1. Pulse test, $t \le 300\mu s$, duty cycle, $d \le 2\%$. Note:

TO-247HV Outline

IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.

Fig. 13. Forward-Bias Safe Operating Area

Fig. 14. Forward-Bias Safe Operating Area

