What is claimed is:

A probe apparatus for testing a circuit chip, said probe apparatus comprising a probe group having two or more probes for independently conductively contacting a single terminal of said circuit chip.

5

1

2

3

4

2. The probe apparatus of claim 1, further comprising an electronic circuit capable of recognizing a test path resistance and correspondingly compensating a voltage drop of an operational signal passing through at least one of said probes.

5 6

2

3

The probe apparatus of claim 2, wherein said probe group comprises three probes and said electronic circuitry is capable of recognizing

4 5

6

7

a) a first path resistance of said resistance condition between said first and said second contacting means along said single test terminal;

8

b) a second path resistance of said resistance condition between said first and said third contacting means along said single test terminal;

10 11

12

13

c) a third path resistance of said resistance condition between said second and said third contacting means along said single test terminal; and

14

wherein said electronic circuitry is capable of compensating said voltage drop individually and in correspondence to one,

15 16

17

18

PRO-128

1	.9
2	20
2	21
	1
	2
	1 2 3 4 5 6
	4
	5
	6
	1
	2
	,3
	}
۱ <u>۵</u> ۱	2
	ر 3
~~::-	. •
1	$\backslash \cap$
1	\40'
	1 2
	1 2 3
	1 2 3 1
	1 2 3 1 2
	1 2 3 1 2 3
	1
	_
	1
	1 2
	1 2 3
	1 2 3 4 5
	1 2 3 4 5

two or three operational signal paths related to said probes.

- 4. The probe apparatus of claim 2, wherein said probe group comprises four probes and said electronic circuitry is capable of recognizing said test path resistance according to 4-Wire Ohm's Measurement.
- 5. The probe apparatus of claim 1, wherein at least one of said two or more probes is a buckling beam.
- 6. The probe apparatus of claim 1, wherein said probe group is bundled in a single perforation of a sheath being part of said probe apparatus.
 - 7. The probe apparatus of claim 6, wherein said single perforation is a long hole.
 - 8. The probe apparatus of claim 6, wherein said single perforation is a circular hole.
- 9. The probe apparatus of claim 1, wherein said two or more probes have probe tips essentially concentrically arranged in correspondence to a rotation axis of said single terminal having a rotationally symmetric and non planar contact surface such that said two or more probes contact said single terminal in a self centering fashion.
 - 10. The probe apparatus of claim 9, wherein said probe tips are essentially spherical.

1

2

16

1 2

3

5

6

7

8

9

10

11

11. A method for compensating a voltage drop of an operational signal passing through an operational signal path having a constant resistance and a variable resistance related to a contact quality of a probe and a terminal of said operational signal path, said method comprising the steps of:

- a) contacting said terminal with a group of two or more of said probes;
- b) recognizing a path resistance along said probes of said group, said terminal and interfaces between said probes and said terminal;
- c) deriving an operational signal path resistance from said path resistance; and
- d) compensating said voltage drop in correspondence to said operational signal path resistance.
 - 12. The method of claim 5, wherein said contacting is provided by said group including a first, a second and a third of said probes, wherein said recognizing includes recognizing a first, second and a third path resistance corresponding to said first, second and said third of said probes, and wherein said deriving includes deriving an absolute value of a first, second and third operational signal path resistance corresponding to said first, second and said third path resistance.

Sul