$9_{41} (K9a_{29})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle b+u,\ a-1,\ u^4-2u^3+4u^2-3u+1\rangle \\ I_2^u &= \langle b+u,\ a^2+au+2u^2+2a+2u+4,\ u^3+u^2+2u+1\rangle \\ I_3^u &= \langle -3u^5+11u^4-26u^3+35u^2+4b-28u+12,\ 3u^5-9u^4+20u^3-23u^2+8a+14u-4, \\ u^6-5u^5+14u^4-25u^3+28u^2-20u+8\rangle \\ I_4^u &= \langle -u^2b+b^2-2bu-2u,\ a-1,\ u^3+u^2+2u+1\rangle \\ I_5^u &= \langle b+u,\ a+1,\ u^4+2u^2-u+1\rangle \\ I_6^u &= \langle -au+b-u-1,\ -u^2a+a^2-au+3u^2-a+u+5,\ u^3+u^2+2u+1\rangle \end{split}$$

* 6 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 32 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle b+u, a-1, u^4-2u^3+4u^2-3u+1 \rangle$$

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ -u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u+1 \\ -u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u \\ -u^{2}+u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{2}-u+1 \\ u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{2}+1 \\ -u^{3}+u^{2}-u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u \\ u^{3}+u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u \\ u^{3}+u \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-3u^3 + 9u^2 18u + 15$

Crossings	u-Polynomials at each crossing
c_1, c_4, c_7	$u^4 - 3u^3 + 4u^2 - 2u + 1$
c_2, c_3, c_5 c_6, c_8, c_9	$u^4 - 2u^3 + 4u^2 - 3u + 1$

Crossings	Riley Polynomials at each crossing	
c_1, c_4, c_7	$y^4 - y^3 + 6y^2 + 4y + 1$	
c_2, c_3, c_5 c_6, c_8, c_9	$y^4 + 4y^3 + 6y^2 - y + 1$	

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.500000 + 0.363271I		
a = 1.00000	0.986960 + 0.735995I	7.28115 - 3.94298I
b = -0.500000 - 0.363271I		
u = 0.500000 - 0.363271I		
a = 1.00000	0.986960 - 0.735995I	7.28115 + 3.94298I
b = -0.500000 + 0.363271I		
u = 0.50000 + 1.53884I		
a = 1.00000	-10.8566 + 12.0989I	-2.78115 - 6.37988I
b = -0.50000 - 1.53884I		
u = 0.50000 - 1.53884I		
a = 1.00000	-10.8566 - 12.0989I	-2.78115 + 6.37988I
b = -0.50000 + 1.53884I		

II. $I_2^u = \langle b + u, a^2 + au + 2u^2 + 2a + 2u + 4, u^3 + u^2 + 2u + 1 \rangle$

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} a \\ -u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} a - u \\ -u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{2}a - 2au + 2 \\ -u^{2}a + u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u^{2}a - 5au - 2u^{2} - 2a - 4u \\ -2u^{2}a - 3au - 2u^{2} - a - u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u \\ -u^{2} - u - 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u \\ -u^{2} - u - 1 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $4au + 8u^2 + 4a + 12u + 10$

Crossings	u-Polynomials at each crossing
c_1, c_7	$(u^3 + u^2 - 1)^2$
$c_2, c_3, c_6 \ c_8$	$(u^3 + u^2 + 2u + 1)^2$
c_4	$u^6 - 7u^5 + 24u^4 - 47u^3 + 54u^2 - 32u + 8$
c_5, c_9	$u^6 - 5u^5 + 14u^4 - 25u^3 + 28u^2 - 20u + 8$

Crossings	Riley Polynomials at each crossing		
c_1, c_7	$(y^3 - y^2 + 2y - 1)^2$		
c_2, c_3, c_6 c_8	$(y^3 + 3y^2 + 2y - 1)^2$		
c_4	$y^6 - y^5 + 26y^4 - 49y^3 + 292y^2 - 160y + 64$		
c_5, c_9	$y^6 + 3y^5 + 2y^4 - 25y^3 + 8y^2 + 48y + 64$		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.215080 + 1.307140I		
a = -0.407481 - 0.986732I	-4.93480 - 5.65624I	-2.00000 + 5.95889I
b = 0.215080 - 1.307140I		
u = -0.215080 + 1.307140I		
a = -1.37744 - 0.32041I	-9.07239 - 2.82812I	-8.52927 + 2.97945I
b = 0.215080 - 1.307140I		
u = -0.215080 - 1.307140I		
a = -0.407481 + 0.986732I	-4.93480 + 5.65624I	-2.00000 - 5.95889I
b = 0.215080 + 1.307140I		
u = -0.215080 - 1.307140I		
a = -1.37744 + 0.32041I	-9.07239 + 2.82812I	-8.52927 - 2.97945I
b = 0.215080 + 1.307140I		
u = -0.569840		
a = -0.71508 + 1.73159I	-0.79722 - 2.82812I	4.52927 + 2.97945I
b = 0.569840		
u = -0.569840		
a = -0.71508 - 1.73159I	-0.79722 + 2.82812I	4.52927 - 2.97945I
b = 0.569840		

III.
$$I_3^u = \langle -3u^5 + 11u^4 + \dots + 4b + 12, \ 3u^5 - 9u^4 + 20u^3 - 23u^2 + 8a + 14u - 4, \ u^6 - 5u^5 + 14u^4 - 25u^3 + 28u^2 - 20u + 8 \rangle$$

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -\frac{3}{8}u^{5} + \frac{9}{8}u^{4} + \dots - \frac{7}{4}u + \frac{1}{2} \\ \frac{3}{4}u^{5} - \frac{11}{4}u^{4} + \dots + \frac{7}{4}u - \frac{5}{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} \frac{3}{8}u^{5} - \frac{13}{8}u^{4} + \dots + \frac{21}{4}u - \frac{5}{2} \\ \frac{3}{4}u^{5} - \frac{11}{4}u^{4} + \dots + \frac{7}{4}u - 3 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} \frac{5}{8}u^{5} - \frac{19}{8}u^{4} + \dots + \frac{23}{4}u - 3 \\ -\frac{3}{4}u^{5} + \frac{13}{4}u^{4} + \dots + \frac{17}{2}u + 5 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} \frac{1}{8}u^{5} - \frac{7}{8}u^{4} + \dots + \frac{15}{4}u - 1 \\ \frac{3}{4}u^{5} - \frac{13}{4}u^{4} + \dots + \frac{19}{2}u - 5 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -\frac{1}{8}u^{5} + \frac{5}{8}u^{4} + \dots + \frac{13}{8}u^{2} - \frac{1}{2}u \\ -u^{5} + \frac{7}{2}u^{4} - \frac{17}{2}u^{3} + 11u^{2} - \frac{19}{2}u + 5 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u \\ u^{3} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u \\ u^{3} + u \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-u^5 + u^4 2u^3 + u^2 4u + 6$

Crossings	u-Polynomials at each crossing
c_1, c_4	$(u^3 + u^2 - 1)^2$
$c_2, c_5, c_6 \ c_9$	$(u^3 + u^2 + 2u + 1)^2$
c_{3}, c_{8}	$u^6 - 5u^5 + 14u^4 - 25u^3 + 28u^2 - 20u + 8$
c ₇	$u^6 - 7u^5 + 24u^4 - 47u^3 + 54u^2 - 32u + 8$

Crossings	Riley Polynomials at each crossing
c_1, c_4	$(y^3 - y^2 + 2y - 1)^2$
c_2, c_5, c_6 c_9	$(y^3 + 3y^2 + 2y - 1)^2$
c_3, c_8	$y^6 + 3y^5 + 2y^4 - 25y^3 + 8y^2 + 48y + 64$
<i>C</i> ₇	$y^6 - y^5 + 26y^4 - 49y^3 + 292y^2 - 160y + 64$

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.407481 + 0.986732I		
a = -0.203741 + 0.493366I	-0.79722 + 2.82812I	4.52927 - 2.97945I
b = 0.569840		
u = 0.407481 - 0.986732I		
a = -0.203741 - 0.493366I	-0.79722 - 2.82812I	4.52927 + 2.97945I
b = 0.569840		
u = 1.37744 + 0.32041I		
a = -0.357540 - 0.865797I	-4.93480 + 5.65624I	-2.00000 - 5.95889I
b = 0.215080 + 1.307140I		
u = 1.37744 - 0.32041I		
a = -0.357540 + 0.865797I	-4.93480 - 5.65624I	-2.00000 + 5.95889I
b = 0.215080 - 1.307140I		
u = 0.71508 + 1.73159I		
a = -0.688719 - 0.160205I	-9.07239 + 2.82812I	-8.52927 - 2.97945I
b = 0.215080 + 1.307140I		
u = 0.71508 - 1.73159I		
a = -0.688719 + 0.160205I	-9.07239 - 2.82812I	-8.52927 + 2.97945I
b = 0.215080 - 1.307140I		

IV.
$$I_4^u = \langle -u^2b + b^2 - 2bu - 2u, \ a - 1, \ u^3 + u^2 + 2u + 1 \rangle$$

$$a_{3} = \begin{pmatrix} 1\\0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0\\u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1\\-u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1\\b \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} b+1\\b \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u\\bu+u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{2}b+2bu+b+2u+1\\u^{2}b+2bu+2u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{2}+1\\u^{2}b+u^{2}+b \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u\\-u^{2}-u-1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u\\-u^{2}-u-1 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $4u^2b + 4bu + 8u^2 + 4b + 12u + 10$

Crossings	u-Polynomials at each crossing		
c_1	$u^6 - 7u^5 + 24u^4 - 47u^3 + 54u^2 - 32u + 8$		
c_2, c_6	$u^6 - 5u^5 + 14u^4 - 25u^3 + 28u^2 - 20u + 8$		
c_3,c_5,c_8 c_9	$(u^3 + u^2 + 2u + 1)^2$		
c_4, c_7	$(u^3 + u^2 - 1)^2$		

Crossings	Riley Polynomials at each crossing		
c_1	$y^6 - y^5 + 26y^4 - 49y^3 + 292y^2 - 160y + 64$		
c_2, c_6	$y^6 + 3y^5 + 2y^4 - 25y^3 + 8y^2 + 48y + 64$		
c_3, c_5, c_8 c_9	$(y^3 + 3y^2 + 2y - 1)^2$		
c_4, c_7	$(y^3 - y^2 + 2y - 1)^2$		

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.215080 + 1.307140I		
a = 1.00000	-4.93480 - 5.65624I	-2.00000 + 5.95889I
b = -1.37744 + 0.32041I		
u = -0.215080 + 1.307140I		
a = 1.00000	-9.07239 - 2.82812I	-8.52927 + 2.97945I
b = -0.71508 + 1.73159I		
u = -0.215080 - 1.307140I		
a = 1.00000	-4.93480 + 5.65624I	-2.00000 - 5.95889I
b = -1.37744 - 0.32041I		
u = -0.215080 - 1.307140I		
a = 1.00000	-9.07239 + 2.82812I	-8.52927 - 2.97945I
b = -0.71508 - 1.73159I		
u = -0.569840		
a = 1.00000	-0.79722 - 2.82812I	4.52927 + 2.97945I
b = -0.407481 + 0.986732I		
u = -0.569840		
a = 1.00000	-0.79722 + 2.82812I	4.52927 - 2.97945I
b = -0.407481 - 0.986732I		

V.
$$I_5^u = \langle b+u, \ a+1, \ u^4+2u^2-u+1 \rangle$$

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -1 \\ -u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u - 1 \\ -u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u \\ u^{2} + u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{2} + u + 1 \\ u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u^{2} - 1 \\ -u^{3} - u^{2} - u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u \\ u^{3} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u \\ u^{3} + u \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-3u^3 3u^2 6u 3$

Crossings	u-Polynomials at each crossing
c_1, c_4, c_7	$u^4 + u^3 + 1$
c_2, c_5, c_8	$u^4 + 2u^2 + u + 1$
c_3, c_6, c_9	$u^4 + 2u^2 - u + 1$

Crossings	Riley Polynomials at each crossing
c_1, c_4, c_7	$y^4 - y^3 + 2y^2 + 1$
c_2, c_3, c_5 c_6, c_8, c_9	$y^4 + 4y^3 + 6y^2 + 3y + 1$

Solutions to I_5^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.343815 + 0.625358I		
a = -1.00000	-2.15173 + 3.38562I	-3.15611 - 4.97381I
b = -0.343815 - 0.625358I		
u = 0.343815 - 0.625358I		
a = -1.00000	-2.15173 - 3.38562I	-3.15611 + 4.97381I
b = -0.343815 + 0.625358I		
u = -0.343815 + 1.358440I		
a = -1.00000	-7.71788 - 2.37936I	-1.34389 + 0.72682I
b = 0.343815 - 1.358440I		
u = -0.343815 - 1.358440I		
a = -1.00000	-7.71788 + 2.37936I	-1.34389 - 0.72682I
b = 0.343815 + 1.358440I		

$$\begin{aligned} & \text{VI.} \\ I_6^u = \langle -au+b-u-1, \ -u^2a+a^2-au+3u^2-a+u+5, \ u^3+u^2+2u+1 \rangle \end{aligned}$$

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} a \\ au + u + 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} au + a + u + 1 \\ au + u + 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -au + 2u^{2} - a + u + 3 \\ -u^{2} - 2 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{2}a + au + 2u^{2} + 2u + 3 \\ u^{2}a + au + u - 1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} au - u^{2} - 1 \\ u^{2}a + au + a + u + 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u \\ -u^{2} - u - 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u \\ -u^{2} - u - 1 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = -2

Crossings	u-Polynomials at each crossing
c_1, c_4, c_7	$(u^3 + u^2 - 1)^2$
c_2, c_3, c_5 c_6, c_8, c_9	$(u^3 + u^2 + 2u + 1)^2$

Crossings	Riley Polynomials at each crossing
c_1, c_4, c_7	$(y^3 - y^2 + 2y - 1)^2$
c_2, c_3, c_5 c_6, c_8, c_9	$(y^3 + 3y^2 + 2y - 1)^2$

Solutions to I_6^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.215080 + 1.307140I		
a = -0.947279 + 0.320410I	-4.93480	-2.00000
b = 0.569840		
u = -0.215080 + 1.307140I		
a = 0.069840 + 0.424452I	-4.93480	-2.00000
b = 0.215080 + 1.307140I		
u = -0.215080 - 1.307140I		
a = -0.947279 - 0.320410I	-4.93480	-2.00000
b = 0.569840		
u = -0.215080 - 1.307140I		
a = 0.069840 - 0.424452I	-4.93480	-2.00000
b = 0.215080 - 1.307140I		
u = -0.569840		
a = 0.37744 + 2.29387I	-4.93480	-2.00000
b = 0.215080 - 1.307140I		
u = -0.569840		
a = 0.37744 - 2.29387I	-4.93480	-2.00000
b = 0.215080 + 1.307140I		

VII. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_4, c_7	$(u^{3} + u^{2} - 1)^{6}(u^{4} - 3u^{3} + 4u^{2} - 2u + 1)(u^{4} + u^{3} + 1)$ $\cdot (u^{6} - 7u^{5} + 24u^{4} - 47u^{3} + 54u^{2} - 32u + 8)$
c_2, c_5, c_8	$(u^{3} + u^{2} + 2u + 1)^{6}(u^{4} + 2u^{2} + u + 1)(u^{4} - 2u^{3} + 4u^{2} - 3u + 1)$ $\cdot (u^{6} - 5u^{5} + 14u^{4} - 25u^{3} + 28u^{2} - 20u + 8)$
c_3, c_6, c_9	$(u^{3} + u^{2} + 2u + 1)^{6}(u^{4} + 2u^{2} - u + 1)(u^{4} - 2u^{3} + 4u^{2} - 3u + 1)$ $\cdot (u^{6} - 5u^{5} + 14u^{4} - 25u^{3} + 28u^{2} - 20u + 8)$

VIII. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_4, c_7	$(y^3 - y^2 + 2y - 1)^6 (y^4 - y^3 + 2y^2 + 1)(y^4 - y^3 + 6y^2 + 4y + 1)$ $\cdot (y^6 - y^5 + 26y^4 - 49y^3 + 292y^2 - 160y + 64)$
c_2, c_3, c_5 c_6, c_8, c_9	$((y^3 + 3y^2 + 2y - 1)^6)(y^4 + 4y^3 + 6y^2 - y + 1)(y^4 + 4y^3 + \dots + 3y + 1)$ $\cdot (y^6 + 3y^5 + 2y^4 - 25y^3 + 8y^2 + 48y + 64)$