qz2266_primary_regression tree_random forest

Qing Zhou

2023-05-04

Data preparation

Data partition

Next, we split the dataset into two parts: training data (80%) and test data (20%).

```
set.seed(2266)
trainRows <- createDataPartition(y = covid$recovery_time, p = 0.8, list = FALSE)

# Training data
covid_train = covid[trainRows, ]
x_train = model.matrix(recovery_time~.,covid)[trainRows, -1]
y_train = covid$recovery_time[trainRows]
# Test data
covid_test = covid[-trainRows, ]
x_test = model.matrix(recovery_time~.,covid)[-trainRows, -1]
y_test = covid$recovery_time[-trainRows]

# create cross-validation objects
ctrl1 <- trainControl(method = "cv")</pre>
```

(a) Regression tree

Build a regression tree on the training data to predict the response. Create a plot of the tree.

```
## cp
## 3 0.002918356
```

```
# plot of the complexity parameter
ggplot(rpart.fit, highlight = TRUE)
```



```
# importance
plot(varImp(rpart.fit, scale = TRUE))
```



```
# create a plot of the tree
rpart.plot(rpart.fit$finalModel)
```


- The root node is bmi over or under 34.
- The optimal cp is 0.002918356.
- The pruned tree based on the optimal cp value is plotted as above. It's quite complicated with 15 terminal nodes and 14 splits.
- The model indicated that the variables bmi has the highest predictive power, followed by vaccine1, age, and sbp.

(b) Random forest

Perform random forest on the training data. Report the variable importance and the test error.

rf.fit\$bestTune

```
## mtry splitrule min.node.size
## 24     4 variance     6
```

- Using ranger method, we perform Random Forest algorithm with minimum node size 6 and 4 selected predictors.
- It is a common practice to investigate the variables with the greatest predictive power once a random forest model has been trained. These important variables play a crucial role in determining the outcome, and their values can have a substantial impact on the results. Conversely, variables with low importance may be omitted from the model, leading to a streamlined model that is more efficient in terms of fitting and prediction accuracy.

- Calculate and graph variable importance using permutation and impurity metrics.
- The model using impurity method indicated that the variables bmi has the highest predictive power, followed by ldl, sbp, and age. Their values were the most significant in determining recovery_time. This suggests that these variables play a crucial role in influencing the Covid recovery time. Moreover, vaccinated status, race and smoking or not also contributes to the outcome.
- Similarly, The model using permutation method indicated that the variables bmi has the highest predictive power, followed by vaccine, gender, severity, hypertension and sbp.

```
# test error
pred.rf <- predict(rf.fit, newdata = covid_test)
RMSE(pred.rf, covid_test$recovery_time)</pre>
```

[1] 25.54926

• The test error of the model is 25.54926

(c) Boosting

Perform boosting on the training data. Report the variable importance and the test error.

```
data = covid_train,
    method = "gbm",
    tuneGrid = bst.grid,
    trControl = ctrl1,
    verbose = FALSE)

ggplot(bst.fit, highlight = TRUE)
```


Max Tree Depth → 1 → 2 → 3

bst.fit\$bestTune

```
## n.trees interaction.depth shrinkage n.minobsinnode ## 9 2000 3 0.005 1
```

We use the gradient boosting method implemented with gbm in caret package.

```
# variable importance
summary(bst.fit$finalModel, las = 2, cBars = 11, cex.names = 0.6)
```



```
##
                                   rel.inf
                           var
## bmi
                           bmi 64.83239479
## ldl
                                9.18542162
                           ldl
## sbp
                           sbp
                                6.07576347
## age
                                5.93877097
                           age
## vaccine1
                      vaccine1
                                4.90865739
## gender1
                       gender1
                                3.53209189
## severity1
                     severity1 2.33722407
## race4
                         race4 0.77066076
## smoking1
                      smoking1 0.64037527
## smoking2
                      smoking2 0.51373728
## hypertension1 hypertension1 0.45089717
## race3
                         race3
                                0.42357711
## race2
                         race2 0.36420571
## diabetes1
                     diabetes1
                                0.02622248
```

```
# test error
pred.bst <- predict(bst.fit, newdata = covid_test)
RMSE(pred.bst, covid_test$recovery_time)</pre>
```

[1] 25.13826

- The most important variables for gradient boosting are still bmi. Other important variables include ldl, sbp and age.
- The test error for boosting is 25.13826, smaller than the test error for random forest.

•