PROGRAMACIÓN EVOLUTIVA

Universidad Complutense de Madrid

Ingeniería del Software e Inteligencia Artificial

Pablo Villapún Martín Sandra Mondragón Lázaro

GRÁFICAS POR PROBLEMA

En esta práctica constamos de tres ejemplos de un mismo problema.

Problema 1

Este problema es el ofrecido por la práctica, con 3 pistas y 12 vuelos:

El **mejor individuo** es **11.25**. Al haber muchos individuos y ser un caso simple, llega muy rápido al mejor individuo (y por eso pareciera que la gráfica se queda estancada).

El peor individuo es de 337.5 y la media de 143.8.

El mejor individuo es **72114109165038** donde su colocación en pistas se refleja de la siguiente forma:

Pista 1			Pista 2			Pista 3		
vuelos	nombre	TLA	vuelos	nombre	TLA	vuelos	nombre	TLA
7	NW357	6.0	10	UA805	6.0	11	AA309	5.0
2	UA599	7.0	3	NW358	7.0	5	AA128	6.0
4	UA2987	9.0	8	AA129	8.0	0	UA138	9.0
9	UA2408	10.0						
1	UA532	15.0						
6	UA1482	16.5						

En este mismo problema, probando con menos individuos, podemos comprobar que sigue llegando correctamente a 11.25 pero ahora le cuesta más generaciones. Esto lo podemos comprobar en la siguiente imagen:

Problema 2

Este problema es inventado, con 10 pistas y 35 vuelos:

El **mejor individuo** es **9.0**. Este caso es más complejo, por lo que **tarda más en ejecutar**. Al ser más complejo también necesita de, o bien **más población**, o bien de **más generaciones** para poder **llegar al mejor individuo**.

El **peor individuo** (al usar truncamiento y élite) es de **35.5**, pero usando otros métodos de media suele rondar los 84.4.

La **media** es de 9.776 en este caso, pero de normal (sin elite ni truncamiento) **suele rondar** en **130 ó150**.

El mejor individuo es **22 20 28 24 27 11 0 3 34 15 18 19 25 19 8 9 5 6 30 17 10 12 7 31 1 23 4 21 33 2 14 16 13 32 26**, donde su colocación en pistas se refleja de la siguiente forma:

Pista 1			Pista 2			Pista 3		
vuelos	nombre	TLA	vuelos	nombre	TLA	vuelos	nombre	TLA
3	UA599	6.0	34	KEL321	6.0	20	EC653	4.0
8	NW357	7.0	29	AA252	7.0	5	AA309	5.0
						21	CON950	6.0
						13	UAJ205	7.0

	Pista 4			Pista 5			Pista 6	
TLA	vuelos	nombre	TLA	vuelos	nombre	TLA	vuelos	nombre
4.0	0	UA138	0.0	15	BABI65	3.0	22	202122
5.0	10	UA2987	6.0	9	UA2408	4.0	27	MICHI965
6.0	12	AA205	7.0	6	AA128	6.0	31	AA147
7.0				7	UA1482	7.0	23	SIM348
				26	PATS01	8.0		

Pista 7			Pista 8			Pista 9		
vuelos	nombre	TLA	vuelos	nombre	TLA	vuelos	nombre	TLA
25	PAT00	5.0	28	BS165	3.0	24	NDA00	3.0
30	AA365	6.0	17	MOV10	5.0	18	TEN1010	4.0
33	VIN456	7.0	1	AA129	6.0	2	UA532	5.0
32	AA789	8.0	4	NW358	7.0	14	UI142	6.0

Pista 10		
vuelos	nombre	TLA
11	UA805	3.0
19	NY459	4.0
16	PABI68	6.0

Problema 3

Este problema es inventado, con 7 pistas y 27 vuelos:

El **mejor individuo** es **5.25**. Este caso es más complejo, por lo que **tarda más en ejecutar**. Al ser más complejo también necesita de, o bien **más población**, o bien de **más generaciones** para poder **llegar al mejor individuo**.

El peor individuo es de 195.25 y la media es de 83.47.

El mejor individuo es 14 12 19 10 7 15 16 8 1 10 17 11 4 2 25 23 6 3 26 0 13 22 9 18 21 5 24 donde su colocación en pistas se refleja de la siguiente forma:

Pista 1			Pista 2			Pista 3		
vuelos	nombre	TLA	vuelos	nombre	TLA	vuelos	nombre	TLA
15	UA138	4.0	12	AA205	5.0	7	NY459	3.0
8	SIM348	6.0	20	MOV10	6.0	1	AA129	4.0
3	UA2408	7.0	25	NDA00	7.0	2	202122	6.0
22	EC653	9.0	0	UA599	8.0	13	UAJ205	7.0
21	UA532	10.5				18	PAT00	8.0

Pista 4			Pista 5			Pista 6			Pista 7		
vuelos	nombre	TLA	vuelos	nombre	TLA	vuelos	nombre	TLA	vuelos	nombre	TLA
16	UI142	3.0	14	NW357	4.0	17	PABI68	5.0	11	PATS01	4.0
10	TEN1010	4.0	19	BABI65	5.0	4	NW358	6.0	26	UA805	6.0
6	AA128	6.0	23	CON950	6.0	5	AA309	7.0			
			9	UA2987	7.0	24	UA1482	8.0			

CONCLUSIONES DE LA PRÁCTICA

- Dado que los valores del cromosoma no pueden repetirse entre sí, el resultado para problemas en los que el número de pistas y aviones son bajos la solución se encuentra mucho más prematuramente, ya que la combinación óptima tiene más posibilidades de aparecer al iniciar de forma aleatoria los individuos.
- La mutación heurística, a pesar de ser la más costosa en ejecución ya que tiene que realizar y comprobar todas las permutaciones de los valores seleccionados, incrementa la posibilidad de obtener mejores individuos ya que muta buscando la combinación óptima.
- Los métodos de selección que se quedan con los mejores individuos como truncamiento o torneo determinista hacen que la media tienda hacia valores más bajos ya que los individuos menos favorables son menos seleccionados.
- La probabilidad de mutación se debe incrementar para reflejarse mejor en la gráfica de evolución, ya que a diferencia de la práctica 1 donde dicha probabilidad determinaba si un solo gen mutaba, ahora sirve para determinar si un sólo individuo cambia, por lo que es razonable aumentar un poco su valor respecto a la anterior práctica.
- Existen varias posibles soluciones a cada problema, ya que hay óptimos representados por combinaciones parecidas pero que difieren en algún valor.
- Con problemas grandes es necesario de más generaciones (o de una mayor población) para que llegue al mejor individuo.

DETALLES DE IMPLEMENTACIÓN

algoritmoGenetico.cruces

Aquí encontramos todos los cruces dados. Partimos de una clase padre **Cruce** que tiene los métodos de cruzar y **buscarIndividuo** (este último sirve para buscar un individuo que no haya sido cruzado)

algoritmoGenetico.individuos

Aquí encontramos el **Individuo Avion.** Este individuo es el que codifica la ordenación de aviones a pista. En su método **getValor** se calcula de forma óptima el posicionamiento de los aviones. El **método** para **calcular el fitness** es con el **TEL más bajo entre todas las pistas.**

algoritmoGenetico.aviones

Aquí encontramos las clases donde se guarda información de los problemas. **InfoAvion** guarda la información de un vuelo (su peso y su nombre); **InfoPista** guarda el vuelo y el TLA asignado a ese vuelo (se utiliza para el cálculo del fitness); **TráficoAereo** es un **Singleton** que contiene las matrices con los datos de los distintos problemas (TEL, SEP y un array de InfoAvion).

La clase **GeneraTablaAvion** es una clase que sirve para abstraer la creación de la tabla de la interfaz gráfica, añadiendo columnas dada una información obtenida sobre el resultado final.

algoritmoGenetico

Aquí encontramos la clase de **AlgortimoGenético**, encargada del bucle principal del algoritmo. Contiene **métodos para la inicialización y configuración** del algoritmo además de **métodos de evaluación** que guardan la información para luego ser puesta en la **gráfica**. Aquí también se realiza la **tabla de aviones-pistas**.

algoritmoGenetico.mutacion

Aquí encontramos todas las mutaciones dadas. Partimos de una clase padre **Mutacion** que tiene el método de mutar.

algoritmoGenetico.seleccion

Aquí encontramos todas las selecciones dadas. Partimos de una clase padre **Seleccion** que tiene los métodos de seleccionar y **calculaFitness** (este último calcula el fitness de los individuos y los devuelve, en caso de tener negativos, desplazados).

GUI

Aquí encontramos la clase **UIAplication** encargada de generar la ventana de **Jframe** y la interfaz del algoritmo.

REPARTO DE TAREAS

Toda la parte del cálculo del fitness del individuo y de la información común (paquete aviones) fue hecho utilizando **pair-programming.** También el método de selección por ranking.

- **Sandra Mondragón**: Cruce CO, cruce CX, cruce OX, mutación heurística y mutación por inserción y cambios en la interfaz.
- **Pablo Villapún**: Cruce OXPP, cruce OXOP, cruce PMX, mutación intercambio y mutación inversión.