Revision – Part 1

Dr Tianxiang Cui

Boolean Logic

Elementary Logic Gates

$$A = \overline{A}$$

$$A \text{ AND } B = A \cdot B$$

$$A \text{ OR } B = A + B$$

$$A \text{ XOR } B = A \oplus B$$

$$A \text{ NAND } B = \overline{A \cdot B}$$

 $A NOR B = \overline{A + B}$

Collection of Elementary Logic Gates

4 4 N D D 4 D	•
$A AND B = A \cdot B$	-

A	В	$A \bullet B$
0	0	0
0	1	0
1	0	0
1	1	1

$$A OR B = A + B$$

A	В	A + B
0	0	0
0	1	1
1	0	1
1	1	1

A XOR B	$=A \oplus B$	

A	В	$A \oplus B$
0	0	0
0	1	1
1	0	1
1	1	0

$$A \ NAND \ B = \overline{A \cdot B}$$

A	В	$\overline{A \bullet B}$
0	0	1
0	1	1
1	0	1
1	1	0

$$A NOR B = \overline{A + B}$$

A	В	$\overline{A+B}$
0	0	1
0	1	0
1	0	0
1	1	0

Boolean Logic

All chips constructed from elementary logic gates

- Every chip can be built from a combination of:
 - AND
 - OR
 - NOT
 - No integration, division, differentiation...
 - "Canonical Representation"
- AND, OR and NOT can be built from NAND
- Therefore every possible chip can be built from just the NAND gates!!!!

George Boole, 1815-1864 ("A Calculus of Logic")

Boolean Function

- A Boolean function is a function that operates on binary inputs and return binary outputs
- Truth table is every possible function evaluation of the input variables
- [note 0 and 1 used to define false and true]
- Everything can be defined by a truth table

Composite Gates

$$f(A,B,C) = (A+B) \cdot \overline{C}$$

(A OR B) AND NOT C

 $C \leftarrow C$
 $C \leftarrow C$

Α	В	C	f(A,B,C)
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

Precedence

Precedence

Parentheses evaluated first

Then **Not**

Then **And**

Then Or

Not X Or Y And Z = (Not X) Or (Y And Z)

Not X And Y Or Z = ((Not X) And Y) Or Z

Brackets over-rule everything...use when in doubt

((Not (X)) And (Y)) Or (Z)

Laws of Boolean Algebra

1. Law of Identity

$$A = A$$

2. Commutative Law

 $A \cdot B = B \cdot A$

3. Associative Law

 $(A \cdot B) \cdot C = A \cdot (B \cdot C)$

4. Idempotent Law

 $A \cdot A = A$

5. Double Negative Law

 $\overline{A} = A$

6. Complementary Law

 $A \cdot \overline{A} = 0$

7. Law of Intersection

 $A \cdot 1 = A$

8. Law of Union

 $A + 1 = 1$

7. Law of Union

 $A + 1 = 1$

9. Distributive Law

 $A \cdot (B + C) = (A \cdot B) + (A \cdot C)$
 $A \cdot (B + C) = (A + B) \cdot (A + C)$

10. Law of Absorption

 $A \cdot (A + B) = A$

A \cdot (A \cdot B) = A + B

11. Law of Common Identities

 $A \cdot (\overline{A} + B) = AB$

A \cdot B = $\overline{A} + \overline{B}$

12. De Morgan's Law

 $\overline{A + B} = \overline{A} \cdot \overline{B}$

Simplify Boolean Expression

```
Not(Not(x) And Not(x Or y)) =
Not(Not(x) And (Not(x) And Not(y))) =
Not((Not(x) And Not(x)) And Not(y)) =
Not(Not(x) And Not(y)) =
Not(Not(x Or y)) =
                           double negation
x Or y
```

Boolean Arithmetic

Binary to Decimal

• Each binary digit corresponds to a power of 2:

Place	7 th	6 th	5 th	4 th	3^{rd}	2^{nd}	1 st	0^{th}
Weight	27	2 ⁶	2 ⁵	24	2^3	2 ²	2^1	2 ⁰
	= 128	= 64	= 32	= 16	= 8	=4	= 2	= 1

- Where the digit is 1, we add the corresponding weight
- Example: convert 1100 1010₂ into decimal

$$1100\ 1010_2 = 1 \times 128 + 1 \times 64 + 0 \times 32 + 0 \times 16$$
$$+ 1 \times 8 + 0 \times 4 + 1 \times 2 + 0 \times 1$$
$$= 128 + 64 + 8 + 2 = 202_{10}$$

Decimal to Binary

- Repeatedly divide by 2, until we reach 0
- The right/left-most binary digit is the first/last remainder
- E.g. $101_{10} = 1100101_2$

101	Remainder
50	1
25	0
12	1
6	0
3	0
1	1
0	1

- Example: convert 163₁₀ into binary
- 10100011₂

Decimal to Binary (look-up table)

- $87 = 64 (64 = 2^6)$, the biggest 2ⁿ that 87 is divisible by) + 23 (reminder)
- 87 = 64 + 16 ($16 = 2^4$, the biggest 2^n that 23 is divisible by) + 7 (reminder)
- $87 = 64 + 16 + 4 (4 = 2^2)$, the biggest 2^n that 7 is divisible by 10^n (reminder)
- 87 = 64 + 16 + 4 + 2 ($2 = 2^{1}$, the biggest 2^{n} that 3 is divisible by) + 1 (reminder)
- $87 = 64 + 16 + 4 + 2 + 1(1 = 2^{0})$, the biggest 2^{n} that 1 is divisible by) + 0 (reminder)
- Stop when reminder = 0

Representing Negative Numbers

- So far, unsigned numbers
 - How are negative numbers represented on a computer?
- What we use in decimal notation
 - +/- and 0, 1, 2, · · ·
- Such a representation is called sign and magnitude
- For binary numbers define leftmost bit to be the sign
 - $0 \Rightarrow +, 1 \Rightarrow -$
 - Rest of bits can be numerical value of number
 - Hence, only seven bits are left in a byte (apart from the sign bit), the magnitude can range from 0000000 (0) to 1111111 (127)
- Problems?

One's Complement

- Alternatively, a system known as one's complement can be used to represent negative numbers
- A negative binary number is the bitwise NOT applied to it the "complement" of its positive counterpart
- E.g. the ones' complement form of 00101011 (43_{10}) becomes 11010100 (-43_{10})
- Still has two representations of 0: 00000000 (+0) and 11111111 (-0)
- The range of signed numbers using one's complement is represented by $-(2^{N-1}-1)$ to $(2^{N-1}-1)$ and ± 0
 - A conventional eight-bit byte is -127_{10} to $+127_{10}$ with zero being either 00000000 (+0) or 11111111 (-0)

Excess-n

- Excess-n, also called offset binary or biased representation, uses a prespecified number n as a biasing value
- A value is represented by the unsigned number which is n greater than the intended value
- Therefore 0 is represented by n, and -n is represented by the all-zeros bit pattern
- E.g. Excess-3
 - 0 is represented by 0011 (3)
 - +1 is represented by 0100 (4), +2 is represented by 0101(5)...
 - -1 is represented by 0010 (2), -2 is represented by 0001 (1)
 - -3 is represented by 0000 (0)

Two's Complement

- The two's complement of an N-bit binary number is defined as the complement with respect to 2^N
 - It is the result of subtracting the number from 2^N
 - -x is represented as 2^{N} -x
- There's a quicker way to calculate 2^N -x:
 - $x + (1's complement of x) = 2^N-1 (all 1 bits)$
 - 2^N -x = (1's complement of x) +1
 - Take the bitwise inverse (NOT) of x, then add 1 to result
- An N-bit two's-complement numeral system can represent every integer in the range $-(2^{N-1})$ to $+(2^{N-1}-1)$
 - One's complement: $-(2^{N-1}-1)$ to $(2^{N-1}-1)$
- The sum of a number and its two's complement will always equal 0 (the last digit is ignored)
 - The sum of a number and its one's complement will always equal -0 (all 1 bits)

Example of 4-Bit Signed Encodings

Sign and	Mag.
1111	-7
1110	-6
1101	-5
1100	_4
1011	-3
1010	-2
1001	-1
1000	-0
0000	+0
0001	+1
0010	+2
0011	+3
0100	+4
0101	+5
0110	+6
0111	+7

	0
Ones' Co	mp.
1000	-7
1001	-6
1010	-5
1011	-4
1100	-3
1101	-2
1110	-1
1111	-0
0000	+0
0001	+1
0010	+2
0011	+3
0100	+4
0101	+5
0110	+6
0111	+7

Two's Co	omp.
1000	-8
1001	-7
1010	-6
1011	-5
1100	-4
1101	-3
1110	-2
1111	-1
0000	0
0001	+1
0010	+2
0011	+3
0100	+4
0101	+5
0110	+6
0111	+7

Adder

- Build an Adder:
 - Half adder: adds two bits
 - Full adder: adds three bits
 - Adder: adds two integers

Half Adder

Add two single binary digits and provide the output plus a carry value

• It has two inputs, called A(a) and B(b), and two outputs S (sum) and C

(carry)

Half Adder

- Least significant bit in the addition is called sum (a+b)
- Most significant bit is called carry (carry of a+b)

a	b	Carry	Sum
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Never has a situation when sum and carry are both 1

Half Adder

a	b	Carry	Sum
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

• The common representation uses a XOR and a AND gate

Full Adder

- Add three single binary digits and provide the output plus a carry value
- It has three inputs, called A, B and Carry(in), and two outputs S (sum) and Carry(out)

Full Adder

- Least significant bit in the addition is called sum (a+b+c_in)
- Most significant bit is called carry(out) (carry of a+b+c_in)

a	b	Carry(in)	Carry(out)	Sum
0	0	0	0	0
0	0 0		0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Full Adder: Implementation

Use two half adders to build a full adder

Sequential Logic and ALU

Sequential Logic Circuits

 Combinational chips compute functions that depend solely on combinations of their input values

- Sequential Logic Circuits
 - Output depends not only on the present value of its input signals but on the sequence of past inputs, the input history as well

Flip Flops

- The flip flop is the most elementary sequential element in the computer
- Data Flip Flop (DFF): the simplest state keeping gate (built-in)

Contains a single bit input and a single bit output

Flip Flops

- The gate outputs its previous input: out(t)= in(t-1)
- Implementation: a gate that can flip between two stable states:
 - Remembering 0/Remembering 1
 - Also can be made from looping NAND gates

Register

- A register is a storage device that can "store" or "remember" a value over time
- Typically is composed of flip flops
- 1-bit register:
 - Store (maintain) a bit
 - Until it is instructed to load(store) another bit

if
$$load(t)$$
 then $out(t+1) = in(t)$
else $out(t+1) = out(t)$

1-bit Register: Implementation

The select bit of the Mux can become the load bit!

Arithmetic Logical Unit

- A combinational circuit that performs arithmetic and bitwise operations on integers represented as binary numbers.
- Input the data and some code for the operation
- Output will be some data and any additional information
- ALUs perform simple functions, because of this they can be executed at high speeds (i.e., very short propagation delays)

The Arithmetic Logical Unit

The ALU computes a function on the two inputs, and outputs the result

f: one out of a family of pre-defined arithmetic and logical functions

- □ Arithmetic functions: integer addition, multiplication, division, ...
- □ logical functions: And, Or, Xor, ...

Which functions should the ALU perform? A hardware / software tradeoff.

The Hack ALU

- Operates on two 16-bit, two's complement values
- Outputs a 16-bit, two's complement value
- Which function to compute is set by six 1-bit inputs
- Computes one out of a family of 18 functions
- Also outputs two 1-bit values
 - if the ALU output is 0, zr is set to 1; otherwise zr is set to 0
 - If out<0, ng is set to 1; otherwise ng is set to 0

out			
0			
0 1			
-1			
X			
у			
!x			
x y !x !y -x			
- X			
-y x+1			
x+1			
y+1			
x-1			
y+1 x-1 y-1 x+y x-y y-x x&y x y			
х+у			
х-у			
y-x			
x&y			
x y			

The Hack ALU

To cause the ALU to compute a function, set the control bits to one of the binary combinations listed in the table.

control bits

zx	nx	zy	ny	f	no	out
1	0	1	0	1	0	0
1	1	1	1	1	1	1
1	1	1	0	1	0	-1
0	0	1	1	0	0	Х
1	1	0	0	0	0	у
0	0	1	1	0	1	!x
1	1	0	0	0	1	!y
0	0	1	1	1	1	-X
1	1	0	0	1	1	-y
0	1	1	1	1	1	x+1
1	1	0	1	1	1	y+1
0	0	1	1	1	0	x-1
1	1	0	0	1	0	y-1
0	0	0	0	1	0	x+y
0	1	0	0	1	1	x-y
0	0	0	1	1	1	y-x x&y
0	0	0	0	0	0	x&y
0	1	0	1	0	1	x y

Memory

Fetch-Decode-Execute Cycle

- At some level, every programmable processor implements a fetch-execute cycle
- Automatically implemented by processor hardware, allows processor to move through program steps
- Fetch The opcode for the instruction is fetched from memory
- Decode Opcode decoded to work what parts of the CPU are needed
- Execute CPU processes the instruction
- And repeat for the next instruction

Fetch-Execute Algorithm

```
Repeat {
  Fetch (PC):
     • Fetch the instruction word (at PC)

    Instruction decoded

    Calculate next instruction address

  Execute (ALU, Registers and Control):
     • Read operands
     • Executes the operations
     • Write/store results
```

Memory Hierarchy

• As it goes further, capacity and latency increase

Registers 1KB 1 cycle L1 data or instruction
Cache
32KB
2 cycles

L2 cache 2MB 15 cycles Memory 2GB 300 cycles

Disk
Magnetic Disk
1 TB
10M cycles

The Hack Computer: Main Parts

- Instruction memory (ROM)
- Memory (RAM)
 - Data memory
 - Screen (memory map)
 - Keyboard (memory map)
- CPU
- Computer (the logic that holds everything together)

The Hack Computer (Put Together)

