Programmation avancée Structures cartésiennes

Walter Rudametkin

Walter.Rudametkin@polytech-lille.fr https://rudametw.github.io/teaching/

> Bureau F011 Polytech'Lille

> > CM₁

Tableaux

 Collections indicées d'informations de même type (homogène)

Types de données

char, short, int, long, long long, float, double, long double

Structures cartésiennes

- n-uplet d'informations de types quelconque rangées dans des champs
 - Informations complexes (composites)
 - Des « types de variables personnalisés »
- Notation

```
\begin{array}{c} \underline{type} & \langle \text{ST} \rangle = \underline{structure} \\ & \text{champ1: } \langle \text{T1} \rangle \\ & \text{champ2: } \langle \text{T2} \rangle \\ & & & \\ & & \text{champn: } \langle \text{Tn} \rangle \\ \\ \underline{fin} & & \\ \end{array}
```

Structures cartésiennes

Domaine des valeurs d'une structure

- Produit cartésien des domaines des champs
 - ${\color{red} \blacktriangleright} \ \mathsf{Dom}(ST) = \mathsf{Dom}(T_1) \times \mathsf{Dom}(T_2) \times \ldots \times \mathsf{Dom}(T_n)$
- Accès aux champs par notation pointée
 - ν :< ST >, accès au champs i ν.champ_i

Example

Structures cartésiennes

```
type Complexe = structure
        reelle, imag: Reel
fin
fonction plus(c1,c2) : Complexe
        donnees: c1,c2: Complexe
        locales: c: Complexe
        c.reelle := c1.reelle + c2.reelle
        c.imag := c1.imag + c2.imag
        résultat: c
finfonction
```

Utilisation:

```
c1,c2,c3 : Complexe
c3 := plus(c1,c2)
```

Structures imbriquées

- Le types des champs est quelconque
 - Ils peuvent même être des structures

```
fin

//F est une variable de type Fiche
F: Fiche
  //Les accès aux champs sont de type
  ⇒ F.date: Date ⇒ F.date.jour: Entier
  ⇒ F.emprunt: Ouvrage ⇒ F.emprunt.titre: Chaine
```

Tableaux de structures

Déclaration de structures en C

Le mot clé struct permet de définir des modèles de structures:

où:

- <désignateur> est le nom (facultatif) du modèle
- <declarations de champ> comme des déclarations de var mais sans initialisation

Exemples de structures en C

```
/* definition de la structure*/
struct date {int j,m,a;};
/*2 variables selon le modèle date*/
struct date d1, d2;
/*definition et utilisation immédiate*/
struct complexe {float reelle, imag;} c1, c2;
/*rappel du même modèle*/
struct complexe c3;
```

Définitions de synonymes de types (typedef)

typedef permet de donner des alias (synonymes) à des définitions de types dans toute zone déclarative :

```
typedef <un_type> <synonyme_du_type>
<un_type> a la même syntaxe qu'une déclaration de
variable, et <synonyme_du_type> désigne le nouveau
nom du type
```

- Donne des noms plus simples pour faciliter l'écriture et augmenter la lisibilité
- Examples:

```
typedef unsigned char octet;
typedef struct ma_structure * ptr_ma_struct;
typedef struct S S;
```

Tableaux de structures

```
Exemples:
                                Conséquences
typedef int * PtInt;
                                PtInt p; \Leftrightarrow int * p;
typedef int Matrice[10][20];
                                Matrice m; \Leftrightarrow int m[10][20];
typedef struct date Date;
                                Date d; ⇔ struct date d;
typedef struct {
                                Ouvrage o; ⇔ struct {
    int numero;
                                                     int numero;
    char titre[50];
                                                     char titre[50];
  Ouvrage;
                                                 } o;
```

Typedef rend superflu le nom du modèle (sauf dans le cas de structures récursives...).

Manipulations de structures: Exemple Date

```
typedef struct Date {int jour, mois, annee;} Date; /* option 1 */
typedef struct {int jour, mois, annee;} Date; /* option 2 */
Date d1 = {18,5,2012}; Date d2 = {24,12,2015}; /* variables */
sizeof(Date); /* taille de la structure Date = 3*sizeof(int) */
```

d1	18	05	2012
d2	24	12	2015

Sélection de champ : opérateur . de plus forte priorité

```
d1.jour = d2.jour;
scanf("%d",&d2.jour);
/* équivalent à scanf("%d", &(d2.jour)); */
```

Affectation entre structures

- Copie champs par champ (contrairement aux tableaux).
 - Attention aux pointeurs, "shallow copy"

```
Avec tableau
                                  Avec pointeur
struct Sarray {
                               struct Spointer {
         int p[3];
                               2
                                           int * p;
};
                               3 };
struct Sarray sa1, sa2;
                                  struct Spointer sp1, sp2;
                                  sp1.p = malloc(3*sizeof(*sp1.p));
sa1.p[0]=10; sa1.p[1]=20;
                               6 \text{ sp1.p}[0] = 10; \text{sp1.p}[1] = 20;
sa1.p[2]=30;
                               7 \text{ sp1.p[2]} = 30;
                               8
sa2 = sa1;
                                sp2 = sp1;
                                  free(sp1.p);
                              10
```

Quelles sont les différences ?

Quelques limites

- ▶ Pas de comparaisons (==, !=, >, <, ...)
- Pas d'opérateurs arithmétiques
- ► Pas de E/S (scanf, printf, ...)
- Pas de support de "deep copy" (pas de copie des valeurs "pointées", seulement les valeurs des pointeurs)
- Attention aux passage des structures dans des fonctions (passage-par-copie des structs, implique "Shallow Copy")

Beacoup de choses à programmer à la main !!!

Tableaux dans les structures

```
typedef struct {
    int numero;
    char titre[50];
    } Ouvrage;
Ouvrage x,y; //variables
```

```
numéro titre[o] titre[1] ··· ··· titre[49]

x int char char ··· char
```

../common-images/check.pdf

y = x

v.titre = x.titre
../common-images/attention.pdf

Et si titre était un char * ???

Tableaux dans les structures

```
../common-images/attention.pdf
                      ____ IMPOSSIBLE
v.titre = x.titre

    Copiez les caractères un par un

    Ou utilisez les fonctions de C dédiés : strcpy,

         strncpy, strncat, ...
  //attention aux caractères de fin de chaine '\0'
  strcpy(y.titre, x.titre);
  strncpy(y.titre, x.titre, 50); //donnez la taille
  v.titre[50 - 1] = '\0'; //garantir fin de chaine
  /* Ou concatener avec une chaine vide: */
  *y.titre = '\0'; strncat(y.titre, x.titre, 50-1);
```

Structures dans les structures

```
typedef struct {int numero; char titre[50];} Ouvrage;
typedef struct {int jour, mois, annee;} Date;
typedef struct Fiche {
         Ouvrage emprunt; //struct imbriquée
         Date date; //struct imbriquée
} Fiche;

//Déclaration et Initialization en 1:
Fiche f = {{23,"H. Potter"}, {12,5,2006}}; //C99
```

Accès aux champs

- f.date.jour de type int
- f.emprunt.titre de type char []

Tableaux de structures

Utilisation similaire aux tableaux "normaux"

```
Fiche tableau_fiches[3];
Ouvrage o1; Date d1;
//Fiche 1 : initialization des sous structures
o1.numero=23; strcpy(o1.titre,"H. Potter");
d1.jour=12 ; d1.mois=5; d1.annee=2006;
tableau_fiches[0].emprunt=o1; tableau_fiches[0].date=d1;
//Fiche 2 et Fiche 3
Fiche f2 = (Fiche) {{23,"H. Potter"}, {15,7,2006}};//C99
Fiche f3 = (Fiche) {{30,"Hamlet"}, {12,5,2006}}; //C99
tableau_fiches[1]=f2; tableau_fiches[2]=f3;
```

Accès aux champs

- ▶ tableau_fiches[2].date.mois de type int
- ▶ tableau_fiches[0].emprunt.titre de type char []

Tableaux de structures: initialisation avancé

Toujours pareil que pour les tableaux "normaux"

- Attention aux accolades, l'initialisation des sous structures et tableaux en nécessite aussi!
- Ça ne marche QUE si on définit et initialise toutes les variables d'un coup

Astuce

 Créer des fonctions utilitaires qui prennent des valeurs en paramètre et renvoient des structures

Passage de structures en paramètre

- Passage par valeur (données)
 - L'affectation entre structures étant possible, le passage par valeur ou en tant que résultat de fonction l'est aussi.

```
struct complexe {float reelle, imaq;};
  typedef struct complexe Complexe;
3
  /* Prend deux Complexe en paramètre,
     renvoi leur addition */
  Complexe plus (Complexe c1, Complexe c2) {
           Complexe r;
           r.reelle = c1.reelle + c2.reelle;
8
           r.imag = c1.imag + c2.imag;
           return r;
10
11
```

Passage de structures en paramètre

- Passage par pointeur/référence (données et résultat)
 - Exemple: translater un point en x

```
typedef struct {int x, y;} Point ;
  void translater (Point *pp, int dx) {
          (*pp).x = (*pp).x + dx;
          /* attention aux priorités */
  int main () {
          Point p;
          scanf("%d%d", &p.x, &p.y);
8
          translater(&p,10);
```

L'opérateur ->

L'écriture (*pp).x est très courante d'où l'opérateur '->' applicable à tout pointeur de structure:

```
pointeur \rightarrow champ \iff (*pointeur).champ
```

Exemple

```
void translater (Point *pp, int dx) {
          pp->x = pp->x + dx;
}
```