CPSC 335: Algorithm Engineering

Instructor: Dr. Doina Bein

- The complexity of some instances is less than or equal the worst case complexity
- Sometimes small instances do not follow the general trend
- Example: the minimum selection problem

input: a list L of $n \ge 0$ numbers

output: the minimum value among all elements in L

Algorithm that solves the problem:

```
def naïve_min (n, L):
    if L is empty, return 0
    else
    Let min = first element of L (there is one since n > 0)
    For each element in L do
        if (min > element) then let min = element
        Return min
```

Running time:

$$T = \begin{cases} 2 & if \ n = 0 \\ 2(n+1) & if \ n > 0 \end{cases}$$

This value is a function of n, so we call it:

$$T(n) = \begin{cases} 2 & if \ n = 0 \\ 2(n+1) & if \ n > 0 \end{cases}$$

- Note: When analyzing an algorithm, we assume that there is some threshold for the input size, beyond which the trend is established.
- Thus we ignore small inputs from our analysis

- The measurement of any resource (time, space) involves a hidden constant:
- When analyzing the time complexity, we compute the number of steps performed by the algorithm on the RAM model
- Each simple instruction takes a precise amount of CPU time on a given computer, and a set of simple instructions (such as an algorithm) will take a multiplicative time
- Takeaway: From the point of algorithms' efficiency, two functions $T_1(n)$ and $T_2(n) = c \cdot T_1(n)$ that differ by only a constant are considered equivalent.

Order of Growth or Rate of Growth

- The time complexity of an algorithm is measured in terms of its growth rate (i.e. order) as a function of input size
- Sometimes computing the exact running time is not worth the effort
- Ex: minimum selection problem in a list of size n

```
def naïve_min (n, L):
    if L is empty, return 0
    else
        Let min = first element of L (there is one since n > 0)
        For each element in L do
            if (min > element) then let min = element
            Return min
```

- The execution time is proportional to n, the size of the input
- Hence the execution time of Algorithm naïve_min is linear i.e. O(n) ("Big-Oh of n")

- We will define notation Big-Oh soon
- There are two simplifying assumptions that we make when analyzing the running time of an algorithm
 - 1. Only the leading term is considered
 - 2. Constants are ignored
- A solution that takes constant time has r.t. of O(1).
- An algorithm A is more efficient than another algorithm B if the w.c.r.t of A has a lower order of growth. Examples: n, log(n), n², n²log(n), n³, nⁿ

- There can be many functions between the consecutive functions shown
- $n^2 \le n^2 \log n \le n^3$
- $\log n \le \sqrt{n} \le n$
- So on

Asymptotic Notation for Growth of Functions

- For large inputs, only the order of growth is relevant. We say then that we are studying the asymptotic efficiency of algorithms
- We are concerned with how the running time of an algorithm increases with the size of the input in the limit (i.e. the size of the input increases without bound)
- An algorithm that is asymptotically more efficient beats the rest for all but very small inputs

Big-Oh (O) Notation

For a given function g(n), O(g(n)) denotes the set of functions f(n) (f(n) = O(g(n))) for which there exist two positive constants, c and n₀ such that f(n) ≤ c g(n) when n ≥ n₀.

The top efficiency classes

Notation	Name	Example
0(1)	constant	Evaluating one statement
$O(\log n)$	logarithmic	Searching a balanced search tree
O(n)	linear	For loop
$O(n \log n)$	"n-log-n"	Fast sorting algorithms such as heap sort or merge sort
$O(n^2)$	quadratic	Two nested for loops
$O(n^3)$	cubic	Three nested for loops
$O(c^n)$	exponential	All subsets of an n-element set
O(n!)	factorial	All permutations of an n-element sequence
111111111111111111111111111111111111111		

• Example 1: $f_1(n) = 10n + 5$, $f_2(n) = n^2$. Then $f_1(n) = O(f_2(n))$. Why?

$$10n + 5 \le c \cdot n^2$$
, n > n₀

Let us choose $n_0=1$ and c=15:

$$10n + 5 \le 15 \cdot n^2$$
, n > 1

Or
$$10n + 5 \le 10n^2 + 5n^2$$
, n > 1

This is trivially true.

 n^2 is an upper bound of 10n+5 $f_2(n)$ is an upper bound of $f_1(n)$.

• Example 2: Show that 10n + 100 = O(n)

Have f(n) = 10n + 100 and g(n) = n.

$$10n + 100 \le c \cdot n$$
, n > n₀

Let us choose $n_0=1$ and c=110:

$$10n + 100 \le 110 \cdot n$$
, n > 1

$$10n + 100 \le 10n + 100n$$
, n > 1

This is trivially true.

- Example 3: Show that $5n^3 + 100n \log n = O(n^3)$ $5n^3 + 100n \log n \le 105n^3$, n > 1 or, $5n^3 + 100n \log n \le 5n^3 + 100n^3$, n > 1 (This is trivially true.)
- Remark: $n^2 = O(n^3)$, $n^2 = O(n^4)$, $n^2 = O(n^3 \log n)$ and so on.

But $n^2 = O(n^2)$ is the tight upper bound

• Example 4: Prove that every polynomial $p(n) = a_k n^k + a_{k-1} n^{k-1} + a_{k-2} n^{k-2} + \cdots + a_0, \text{ with } a_k > 0 \text{ belongs to } O(n^k).$

Let SM be the sum of absolute values of all a_k , a_{k-1} , ..., a_0 .

Then we can write

$$p(n) = a_k n^k + a_{k-1} n^{k-1} + a_{k-2} n^{k-2} + \dots + a_0$$

$$\leq |a_k| n^k + |a_{k-1}| n^k + |a_{k-2}| n^k + \dots + |a_m|$$

$$\leq (|a_k| + |a_{k-1}| + \dots + |a_0|) n^k, \, n > 1$$

$$\leq SM \cdot n^k, \, n > 1$$
Thus $p(n) = O(n^k)$

• Example 5: Show that the statement $3n^2 + 2n + 10 = O(n)$ is false.

We can also write that $3n^2 + 2n + 10 \notin O(n)$.

Assume $3n^2 + 2n + 10 = O(n)$. Thus there exist c and n_0 such that $3n^2 + 2n + 10 \le c \cdot n$, $n > n_0$

Or,
$$3n + 2 + \frac{10}{n} \le c$$
, $n > n_0$

Remember that c is a constant. Also $3n + 2 + \frac{10}{n}$ gets arbitrarily very large for large values of n, thus it cannot be upper bounded by a constant. Contradiction.

- Example 6: Let α and β be real positive numbers such that $0 < \alpha < \beta$. Show that n^{α} is in $O(n^{\beta})$.
- How to solve this problem?
- We use the following theorem:

Theorem: If T and f are univariate complexity functions, f(n) > 0, $\lim_{n \to \infty} \frac{T(n)}{f(n)} = L$, and L is nonnegative and constant with respect to n then T(n) = O(f(n)).

Let $\beta - \alpha = \epsilon$, ϵ is positive.

We take to the limit $\lim_{n\to\infty}\frac{n^\alpha}{n^\beta}=\lim_{n\to\infty}\frac{n^\alpha}{n^{\alpha+\epsilon}}=\lim_{n\to\infty}\frac{1}{n^\epsilon}=0.$ L=0 is a non-negative constant with respect to n thus $n^\alpha=O(n^\beta).$

Using limits, show that:

- Show that $10n + 5 = O(n^2)$
- Show that 10n + 100 = O(n)
- Show that $5n^3 + 100n \log n = O(n^3)$
- Prove that every polynomial $p(n) = a_k n^k + a_{k-1} n^{k-1} + a_{k-2} n^{k-2} + \cdots + a_0, \text{ with } a_k > 0 \text{ belongs to } O(n^k).$
- 17 = O(18).

Remember that:

- We can drop additive constants
- We can drop multiplicative constants
- We can drop dominated terms (and keep only the dominating term); due to the

Lemma: For any complexity functions $f_0(n)$ and $f_1(n)$, $O(f_0(n) + f_1(n)) = O\left(max(f_0(n), f_1(n))\right)$ Thus $O(n^2 + 2^n) = O(2^n)$

We can drop floor and ceiling operators

Remember that:

(these can be proven by using calculus)

- Log functions grow more slowly than any power of n functions, including fractional power. i.e. $\log n \in O(n^{\alpha})$, $\alpha > 0$. In fact $\log n \in o(n^{\alpha})$, $\alpha > 0$
- Power of n grows more slowly than exponential functions such as 2^n

i.e.
$$n^k \in O(2^n)$$

In fact $n^k \in o(2^n)$

• $\log^k n \in O(n)$. In fact, $\log^k n \in o(n)$

Understanding the upper bound & lower bound of a function

Consider three functions

For large values of n,

 (i) f₁(n) is larger than f(n), and
 (ii) f₂(n) is smaller than f(n)

 We say that f₁(n) is an upper bound for f(n)
 We say that f₂(n) is a lower bound for f(n)

Upper bound is expressed as O(g(n))
 ("Big-Oh") and lower bound is expressed as Ω
 (g(n)) ("Big-Omega")