Cost Function

We can measure the accuracy of our hypothesis function by using a **cost function**. This takes an average difference (actually a fancier version of an average) of all the results of the hypothesis with inputs from x's and the actual output y's.

 $J(\theta_0, \theta_1) = \frac{1}{2m} \left(\frac{1}{2m} \right)^2 = \frac{1}{2m$

To break it apart, it is $\frac{1}{2} \ker\{x\}$ where $\ker\{x\}$ is the mean of the squares of $h_{\theta}(x_i) - y_i$, or the difference between the predicted value and the actual value.

This function is otherwise called the "Squared error function", or "Mean squared error". The mean is halved $(\frac{1}{2})$ as a convenience for the computation of the gradient descent, as the derivative term of the square function will cancel out the $\frac{1}{2}$ term. The following image summarizes what the cost function does:

Complete