15a. Imagine a function f(n)=1 for all values of n. Then, we can say that $\nu(n)=\sum_{d\mid n}1=\sum_{d\mid n}f(d)$. Thus, by the Mobius inversion theorem, $\sum_{d\mid n}\mu(n/d)\nu(d)=f(n)=1$. This concludes the proof.

15b. Imagine a function f(n)=n for all values of n. Then, we can say that $\sigma(n)=\sum_{d\mid n}d=\sum_{d\mid n}f(d)$. Thus, by the Mobius inversion theorem, $\sum_{d\mid n}\mu(n/d)\sigma(d)=f(n)=n$. This concludes the proof.