PCT

ORGANISATION MONDIALE DE LA PROPRIETE INTELLECTUELLE Bureau international

DEMANDE INTERNATIONALE PUBLIEE EN VERTU DU TRAITE DE COOPERATION EN MATIERE DE BREVETS (PCT)

(51) Classification internationale des brevets 7 :

C08B 11/00, 15/00

A1

(11) Numéro de publication internationale:

WO 00/15667

(43) Date de publication internationale:

23 mars 2000 (23.03.00)

(21) Numéro de la demande internationale: PCT/FR99/02148

(22) Date de dépôt international: 9 septembre 1999 (09.09.99)

(30) Données relatives à la priorité:

98/11507

15 septembre 1998 (15.09.98) FR

(71) Déposant (pour tous les Etats désignés sauf US): RHO-DIA CHIMIE [FR/FR]; 25, quai Paul Doumer, F-92408 Courbevoie Cedex (FR).

(72) Inventeurs; et

- (75) Inventeurs/Déposants (US seulement): LADOUCE, Laurence [FR/FR]; 112, avenue du Général Michel Bizot, F-75012 Paris (FR). FLEURY, Etienne [FR/FR]; 26, rue Taillepied, F-69540 Irigny (FR). GOUSSE, Cécile [FR/FR]; 8, allée de la Roseraie, F-38240 Meylan (FR). CANTIANI, Robert [FR/FR]; 7, rue Molière, F-69006 Lyon (FR). CHANZY, Henri [FR/FR]; 37, rue Doyen Gosse, F-38700 La Tronche (FR). EXCOFFIER, Gérard [FR/FR]; 142, chemin de la Margotte, F-38140 Vaulnaveys-le-Haut (FR).
- (74) Mandataire: DUBRUC, Philippe; Rhodia Services, Direction de la Propriété Industrielle, 25, quai Paul Doumer, F-92408 Courbevoie Cedex (FR).

(81) Etats désignés: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZA, ZW, brevet ARIPO (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), brevet eurasien (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), brevet européen (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), brevet OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Publiée

Avec rapport de recherche internationale.

- (54) Title: CELLULOSE MICROFIBRILS WITH MODIFIED SURFACE, PREPARATION METHOD AND USE THEREOF
- (54) Titre: MICROFIBRILLES DE CELLULOSE A SURFACE MODIFIEE, LEUR PROCEDE DE PREPARATION, ET LEUR UTILISATION

(57) Abstract

The invention concerns cellulose microfibrils with modified surface, characterised in that the hydroxyl functions present at the surface of the microfibrils are etherified with at least an organic compound comprising at least a function capable of reacting with said hydroxyl functions, and the degree of surface substitution (DSs) is at least 0.05. The invention also concerns a method for obtaining said microfibrils and their use as agent for modifying viscosity, texture and/or as reinforcing filler.

(57) Abrégé

La présente invention a pour objet les microfibrilles de cellulose à surface modifiée, caractérisées en ce que les fonctions hydroxyles présentes à la surface des microfibrilles sont étherifiées par au moins un composé organique comprenant au moins une fonction pouvant réagir avec lesdites fonctions hydroxyles, et en ce que le degré de substitution de surface (DSs) est d'au moins 0,05. L'invention a également pour objet un procédé d'obtention desdites microfibrilles, ainsi que leur utilisation comme agent viscosant, texturant et/ou charge de renfort.

UNIQUEMENT A TITRE D'INFORMATION

Codes utilisés pour identifier les Etats parties au PCT, sur les pages de couverture des brochures publiant des demandes internationales en vertu du PCT.

AL	Albanie	ES	Espagne	LS	Lesotho	SI	Slovénie
AM	Arménie	FI	Finlande	LT	Lituanie	SK	Slovaquie
AT	Autriche	FR	France	LU	Luxembourg	SN	Sénégal
AU	Australie	GA	Gabon	LV	Lettonie	SZ	Swaziland
AZ	Azerbaïdjan	GB	Royaume-Uni	MC	Monaco	TD	Tchad
BA	Bosnie-Herzégovine	GE	Géorgie	MD	République de Moldova	TG	Togo
BB	Barbade	GH	Ghana	MG	Madagascar	TJ	Tadjikistan
BE	Belgique	GN	Guinée	MK	Ex-République yougoslave	TM	Turkménistan
BF	Burkina Faso	GR	Grèce		de Macédoine	TR	Turquie
\mathbf{BG}	Bulgarie	HU	Hongrie	ML	Mali	TT	Trinité-et-Tobago
BJ	Bénin	IE	Irlande	MN	Mongolie	UA	Ukraine
BR	Brésil	IL	Israël	MR	Mauritanie	UG	Ouganda
BY	Bélarus	IS	Islande	MW	Malawi	US	Etats-Unis d'Amérique
CA	Canada	IT	Italie	MX	Mexique	$\mathbf{U}\mathbf{Z}$	Ouzbékistan
CF	République centrafricaine	JP	Japon	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Pays-Bas	YU	Yougoslavie
CH	Suisse	KG	Kirghizistan	NO	Norvège	zw	Zimbabwe
CI	Côte d'Ivoire	KP	République populaire	NZ	Nouvelle-Zélande		
CM	Cameroun		démocratique de Corée	PL	Pologne		
CN	Chine	KR	République de Corée	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Roumanie		
CZ	République tchèque	LC	Sainte-Lucie	RU	Fédération de Russie		
DE	Allemagne	LI	Liechtenstein	SD	Soudan		
DK	Danemark	LK	Sri Lanka	SE	Suède		
$\mathbf{E}\mathbf{E}$	Estonie	LR	Libéria	\mathbf{SG}	Singapour		

10

15

20

25

30

35

MICROFIBRILLES DE CELLULOSE A SURFACE MODIFIEE, LEUR PROCEDE DE PREPARATION, ET LEUR UTILISATION

La présente invention a pour objet des microfibrilles de cellulose à surface modifiée, leur procédé de préparation, et leur utilisation.

Elle a également pour objet des compositions comprenant des microfibrilles de cellulose à surface modifiée.

D'une manière générale, la cellulose native est une chaîne d'unités D-anhydroglucopyranose liées entre elles en positions β -1,4. Le degré de polymérisation (DP) de ladite chaîne peut varier de quelques centaines à plusieurs milliers d'unités monomères selon la source utilisée. A l'état natif, les liaisons hydrogènes intermoléculaires favorisent une association parallèle des chaînes de cellulose entre elles pour former des microfibrilles de structures plus ou moins cristallines et dont le diamètre peut varier de 10 Å à 500 Å.

Ces microfibrilles sont des matériaux bien connus qui sont déjà proposés, en général, pour modifier la rhéologie des milieux dans lesquels elles sont introduites.

Dans le cas des milieux fluides aqueux ou organique du type de ceux destinés à l'obtention notamment des compositions cosmétiques, de fluides de forage etc., les microfibrilles peuvent modifier la viscosité et/ou la texture du milieu, voire son profil rhéologique.

Dans les milieux fortement visqueux et solides, du type de ceux destinés à être mis en oeuvre dans les matériaux thermoplastiques, thermodurcissables, élastomères, et les mastics, les microfibrilles peuvent modifier les propriétés mécaniques et notamment servir de charge de renfort.

Les propriétés mécaniques intéressantes des microfibrilles sont attribuées à leur structure particulière ; elles présentent un caractère hydrophile important dû à la présence des fonctions hydroxyles en surface de la microfibrille.

Cependant, l'utilisation de ces microfibrilles n'est pas sans inconvénient.

En effet, le caractère hydrophile qui peut être souhaitable pour certaines applications par exemple en milieux aqueux et/ou hydrophile, peut constituer une entrave aux différentes applications souhaitées en milieux organique et/ou hydrophobe.

Par exemple, en milieu organique et/ou hydrophobe, les microfibrilles ne se dispersent pas et on assiste à des phénomènes d'agglomération et de floculation, dus à l'incompatibilité de ces dernières avec le milieu organique dans lequel elles se trouvent ; les microfibrilles possédant un caractère fortement hydrophile auront naturellement tendance à floculer et à s'agglomérer dans un milieu organique à caractère hydrophobe.

10

15

20

25

30

35

Suite à ces phénomènes, plus particulièrement en milieu organique, les microfibrilles ne seront plus en mesure d'exercer leur fonction d'agent texturant viscosant et/ou de charge de renfort.

La présente invention a pour but de proposer des microfibrilles de cellulose qui, tout en ayant conservé leurs aspects morphologiques et cristallins initiaux et donc toutes les propriétés mécaniques intéressantes qui en découlent, présentent un caractère hydrophile nettement atténué.

L'invention a également pour but de proposer des microfibrilles dispersables dans un milieu organique.

Ces buts sont atteints par la présente invention qui a pour objet des microfibrilles de cellulose à surface modifiée, caractérisées en ce que les fonctions hydroxyles présentes à la surface des microfibrilles sont étherifiées par au moins un composé organique comprenant au moins une fonction pouvant réagir avec lesdites fonctions hydroxyles, et en ce que le degré de substitution de surface (DSs) est d'au moins 0,05.

Les restes organiques provenant des composés organiques étherifiants fixés en surface des microfibrilles assurent une meilleure compatibilité de la microfibrille avec le milieu organique dans lequel elle est dispersée. Le caractère hydrophile des microfibrilles est en conséquence nettement atténué, et elles peuvent donc contrôler les propriétés rhéologiques du milieu.

A ce stade, il est important de définir le terme "dispersabilité".

Dans le cadre de la présente invention, le terme "dispersabilité" désigne les microfibrilles modifiées en surface, qui, une fois introduites dans un milieu organique, sont capables de se disperser sous faible cisaillement, et de former une dispersion non floculante.

En d'autres termes, les microfibrilles de l'invention sont rendues dispersables par une hydrophobisation superficielle des fonctions hydroxyles : leur morphologie initiale est conservée et on observe toujours un arrangement cristallin.

Au sens de l'invention un "milieu organique" désigne un milieu constitué d'un liquide ou d'un mélange de liquides organiques et/ou hydrophobes inertes, dans lequel les microfibrilles "non modifiées" ne se dispersent pas. Lorsqu'il s'agit d'un mélange de liquides, ils seront de préférence miscibles. A titre indicatif, on peut citer :

- les alcools comme l'éthanol, l'isopropanol, le butanol, l'hexanol, l'octanol;
- les aldéhydes et les cétones comme le butyraldéhyde, l'acétone, la méthyléthyle cétone, la 4-méthyl-2-pentanone;
- les éthers cycliques ou acycliques comme le diéthyle éther et ses homologues supérieures, le dioxane, le tétrahydrofurane ;
- les solvants halogénés comme le dichloro-, dibromo-, diiodo- méthane, le chloroforme, le bromoforme, le tétrachlorure de carbone;

10

15

20

25

30

35

- les alcanes cycliques ou acycliques comme le pentane, l'hexane, l'octane, le dodécane, le cyclopentane, le cyclopentane ;
- les solvants aromatiques éventuellement substitués comme le benzène, le toluène, le chlorobenzène, le bromobenzène ;
- les acétates d'alkyle comme l'acétate de méthyle, l'acétate d'éthyle, l'acétate de propyle, l'acétate de butyle, l'acétate de pentyle ;
- les esters d'acides gras comme le myristate d'isopropyle, les esters méthyliques de l'acide palmitique, l'acide stéarique, l'acide arachidique, l'acide gras d'huile de soja, colza, maïs, tournesol, arachide.

Les microfibrilles de cellulose peuvent être d'origine quelconque, par exemple d'origine végétale, bactérienne, animale, fongique ou amibienne, de préférence végétale, bactérienne, ou animale.

Comme exemple de sources animales de cellulose on peut citer les animaux de la famille des tuniciers.

Les sources végétales de cellulose peuvent être le bois, le coton, le lin, la ramie, certaines algues, le jute, la pulpe de betterave sucrière, les citrus (citrons, orange, pamplemousse), ou analogues.

Quelle que soit l'origine des microfibrilles, elles présentent avantageusement un rapport L/D supérieur à 15, avantageusement supérieur à 50, plus particulièrement supérieur à 100, et de préférence supérieur à 500 et un diamètre moyen (D) compris entre 10 Å et 500 Å, avantageusement entre 15 Å et 200 Å, plus particulièrement entre 15 Å et 70 Å, de préférence entre 18 Å et 40 Å, L représentant la longueur des microfibrilles et D leur diamètre moyen.

Les microfibrilles peuvent être obtenues à partir des sources cellulosiques citées précédemment par de différents procédés déjà décrits dans la littérature. Parmi ces procédés, on peut se référer par exemple aux procédés décrits dans les demandes de brevet européen EP 0726356, EP 0102829, ou le brevet américain U.S. 4481076, dont les enseignements à ce sujet sont incorporés ici.

Selon un mode de réalisation particulièrement avantageux de la présente invention, les microfibrilles sont obtenues en mettant en oeuvre le procédé qui va être décrit ci-dessous.

Plus particulièrement, ce procédé est effectué sur de la pulpe de végétaux à parois primaires, comme par exemple de la pulpe de betterave après que celle-ci a subi une étape d'extraction préalable du saccharose, selon les méthodes connues de la technique.

Ainsi, le procédé comprend les étapes suivantes :

(a) première extraction acide ou basique, à l'issue de laquelle on récupère un premier résidu solide,

10

15

20

25

30

35

- (b) éventuellement seconde extraction effectuée dans des conditions alcalines du premier résidu solide, à la suite de quoi, est récupéré un second résidu solide,
 - (c) lavage du premier ou du second résidu solide.
 - (d) éventuellement blanchiment du résidu lavé,
- (e) dilution du troisième résidu solide obtenu à l'issue de l'étape (d) de manière à obtenir un taux de matières sèches compris entre 2 et 10 % en poids,
 - (f) homogénéisation de la suspension diluée.

Dans l'étape (a), on entend par "pulpe" de la pulpe humide, déshydratée, conservée par ensilage ou partiellement dépectinée.

L'étape d'extraction (a) peut être effectuée en milieu acide ou en milieu basique.

Pour une extraction acide, la pulpe est mise en suspension dans une solution d'eau pendant quelques minutes de façon à homogénéiser la suspension acidifiée à un pH compris entre 1 et 3, de préférence entre 1,5 et 2,5.

Cette opération est mise en oeuvre avec une solution concentrée d'un acide tel que l'acide chlorhydrique ou l'acide sulfurique.

Cette étape peut être avantageuse pour éliminer les cristaux d'oxalate de calcium qui peuvent être présents dans la pulpe, et qui, du fait de leur caractère abrasif important, peuvent causer des difficultés dans l'étape d'homogénéisation.

Pour une extraction basique la pulpe est ajoutée à une solution alcaline d'une base, par exemple de la soude ou de la potasse, de concentration inférieure à 9 % en poids, plus particulièrement inférieure à 6 % en poids. De préférence, la concentration de la base est comprise entre 1 et 2 % en poids.

On pourra ajouter une faible quantité d'un agent antioxydant soluble dans l'eau, tel que le sulfite de sodium Na_2SO_3 , afin de limiter les réactions d'oxydation de la cellulose.

L'étape (a) est effectuée en général à une température comprise entre environ 60°C et 100°C, de préférence comprise entre environ 70°C et 95°C.

La durée de l'étape (a) est comprise entre environ 1 heure et environ 4 heures.

Lors de l'étape (a), il se produit une hydrolyse partielle avec libération et solubilisation de la majeure partie des pectines et des hémicelluloses, tout en préservant la masse moléculaire de la cellulose.

Le résidu solide est récupéré à partir de la suspension provenant de l'étape (a) en mettant en oeuvre des méthodes connues. Ainsi, il est possible de séparer le résidu solide par centrifugation, par filtration sous vide ou sous pression, avec les toiles filtrantes, ou les filtres-presses par exemple, ou encore par évaporation.

On soumet éventuellement le premier résidu solide obtenu à une seconde étape d'extraction, effectuée dans des conditions alcalines.

10

15

20

25

30

35

On met en oeuvre une seconde étape d'extraction, étape (b), lorsque la première a été conduite dans des conditions acides. Si la première extraction a été effectuée dans des conditions alcalines, la seconde étape n'est que facultative.

Selon le procédé, cette seconde extraction est effectuée avec une base, de préférence choisie parmi la soude et la potasse, dont la concentration est inférieure à environ 9 % en poids, de préférence comprise entre environ 1 % et environ 6 % en poids.

La durée de l'étape d'extraction alcaline est comprise entre environ 1 et environ 4 heures. Elle est de préférence égale à environ 2 heures.

A l'issue de cette seconde extraction, si elle a lieu, on récupère un second résidu solide.

Dans l'étape (c) le résidu provenant de l'étape (a) ou (b) est lavé abondamment à l'eau afin de récupérer le résidu de matériau cellulosique.

Le matériau cellulosique de l'étape (c) est ensuite facultativement blanchi, dans l'étape (d), selon les méthodes classiques. Par exemple, on peut effectuer un traitement au chlorite de sodium, à l'hypochlorite de sodium, au peroxyde d'hydrogène à raison de 5-20 % par rapport à la quantité de matières sèches traitée.

Différentes concentrations d'agent de blanchiment peuvent être utilisées, à des températures comprises entre environ 18°C et 80°C, de préférence entre environ 50°C et 70°C.

La durée de cette étape (d) est comprise entre environ 1 heure et environ 4 heures, de préférence entre environ 1 et environ 2 heures.

On obtient alors un matériau cellulosique contenant entre 85 et 95 % en poids de cellulose.

A l'issue de cette étape de blanchiment, il peut être préférable de laver abondamment la cellulose avec de l'eau.

La suspension résultante, éventuellement blanchie, est ensuite rediluée dans de l'eau à raison de 2 à 10 % de matières sèches (étape (e)), avant de subir une étape d'homogénéisation (étape (f)), comprenant au moins un cycle.

L'étape d'homogénéisation correspond à un mixage, broyage ou toute opération de cisaillement mécanique élevé, suivie d'un ou plusieurs passages de la suspension de cellules à travers un orifice de petit diamètre, soumettant la suspension à une chute de pression d'au moins 20 mPa et à une action de cisaillement à vitesse élevée suivie d'un impact de décélération à vitesse élevée.

Le mixage ou broyage est, par exemple, effectué par passage(s) au mixeur ou broyeur pendant une durée allant de quelques minutes à environ une heure, dans un appareil de type tel un WARING BLENDOR équipé d'une hélice à quatre pales ou broyeur à meule ou tout autre type de broyeur, tel un broyeur colloïdal.

10

15

20

25

30

35

L'homogénéisation proprement dite sera avantageusement effectuée dans un homogénéiseur du type MANTON GAULIN dans lequel la suspension est soumise à une action de cisaillement à vitesse et à pression élevées dans un passage étroit et contre un anneau de choc.

On peut aussi citer le MICRO FLUIDIZER qui est un homogénéiseur principalement constitué d'un moteur à air comprimé qui va créer de très fortes pressions, d'une chambre d'interaction dans laquelle s'effectuera l'opération d'homogénéisation (cisaillement élongationnel, chocs et cavitations) et d'une chambre basse pression qui permet la dépressurisation de la dispersion.

La suspension est introduite dans l'homogénéisateur de préférence après préchauffage à une température comprise entre 40 et 120°C, de préférence comprise entre 85 et 95°C.

La température de l'opération d'homogénéisation est maintenue entre 95 et 120°C, de préférence supérieure à 100°C.

La suspension est soumise dans l'homogénéisateur à des pressions comprises entre 20 et 100 mPa, et de préférence supérieures à 50 mPa.

L'homogénéisation de la suspension cellulosique est obtenue par un nombre de passages pouvant varier entre 1 et 20, de préférence entre 2 et 5, jusqu'à l'obtention d'une suspension stable.

L'opération d'homogénéisation peut avantageusement être suivie d'une opération de cisaillement mécanique élevé, par exemple dans un appareil tel l'ULTRA TURRAX de SYLVERSON.

Une fois obtenues, les microfibrilles vont subir une réaction d'étherification.

Dans le cadre de la présente invention, le terme "étherification" est employé au sens large et désigne les réactions dans lesquelles les fonctions hydroxyles O-H peuvent être transformées en O-Y, notamment :

- les réactions de silylation (Y = -SiR₁R₂R₃),
- les réactions d'étherification (Y = -R₄),
- les condensations avec des isocyanates (Y = -CO-NH-R₅),
- les condensations ou substitutions avec des oxydes d'alkylène $(Y = -CH_2-CH(R_6)-OH)$,
- les condensations ou substitutions avec des glycidyles $(Y = -CH_2-CH(OH)-CH_2-O-R_7)$.

Le composé organique comprenant au moins une fonction pouvant réagir avec les fonctions hydroxyles se trouvant à la surface des microfibrilles, sera également appelé dans la suite de l'exposé, composé organique étherifiant ou agent d'étherification.

L'agent d'étherification est avantageusement choisi parmi les agents de silylation, les isocyanates, les agents d'alkylation halogénés, les oxydes d'alkylène et/ou les glycidyles.

Les agents de silylation peuvent être choisis parmi :

- les halogénoalkylsilanes de formule : R₃R₂R₁Si-X, R₂R₁Si(X)₂, R₁Si(X)₃ ;
- les disilazanes de formule : R₃R₂R₁N-Si-NR₁R₂R₃ ;
- les N-silylacétamides de formule : CH₃-CO-NH-SiR₁R₂R₃ ; et
- les alkoxysilanes de formule : R₃R₂R₁Si-OR, R₂R₁Si(OR)(OR₃) ;

dans lesquels

5

- 10 R, R₁, R₂, et R₃, identiques ou différents, peuvent être choisis parmi les radicaux hydrocarbonés linéaires, ramifiés, ou cycliques éventuellement substitués, saturés ou insaturés, comportant de 1 à 30 atomes de carbone, et
 - X est un atome d'halogène choisi parmi le chlore, le brome, ou l'iode.

Les radicaux R, R₁, R₂, et R₃ pouvant être choisis parmi le méthyle, l'éthyle, le propyle, l'isopropyle, le butyle, le sec-butyle, le tert-butyle, le pentényle, l'hexyle, le cyclohexyle, l'octyle, le nonyle, le décyle, le dodécyle, l'undécyle, le nonadécyle, l'eicosyle (C-20), le docosyle (C-22), l'octacosyle (C-28), le triacontanyle (C-30). le vinyle, l'allyle, le phényle, le styryle, le naphtyle.

A titre d'agent de silylation, on peut citer plus particulièrement :

20

parmi les halogénoalkylsilanes : le chlorodiméthylisopropyle silane. le chlorodiméthylbutyle silane, le chlorodiméthyloctyle silane, le chlorodiméthyloctadécyle silane. le chlorodiméthylphényle silane, le chlorodiméthylphényle silane, le chloro hexenyle-1-diméthyle silane. le dichlorohexylméthyle silane, le dichloroheptylméthyle silane, le trichlorooctyle silane;

25

15

parmi les disilazanes, l'hexaméthyle disilazane, 1,3-divinyl-1,1.3,3-tétraméthyle disilazane, 1,3-divinyl-1,3-diphényl-1,3-diméthyle disilazane, 1,3-N-dioctyltétraméthyle disilazane, diéthyltétraméthyle disilazane, N-dipropyltétraméthyle disilazane,

30

- N- dibutyltétraméthyle disilazane, 1,3-di(para-tertiobutylphénéthyl)tétraméthyle disilazane :
- parmi les N-silylacétamides, le N-triméthylsilylacétamide. le N-méthyldiphénylsilylacétamide, le N-triéthylacétamide;

35

parmi les alkoxysilanes, le tert-butyldiphényle méthoxysilane, l'octadécyldiméthyle méthoxysilane, le diméthyloctyle méthoxysilane, l'octylméthyle diméthoxysilane, l'octyle triméthoxysilane, le triméthyle éthoxysilane, l'octyle triéthoxysilane,

10

15

20

25

30

35

L'étherification des fonctions hydroxyle des microfibrilles peut aussi se faire par des agents d'alkylation halogénés de formule R_4 -X, dans laquelle X est un atome d'halogène choisi parmi le chlore, le brome, et l'iode, et R_4 est un radical hydrocarboné répondant à la même définition que R, R_1 , R_2 , et R_3 .

Plus particulièrement, parmi les agents d'alkylation halogénés, on peut citer :

- le chloro- propane, butane ;
- le bromo- propane, hexane, heptane ; et
- l'iodo- méthane, éthane, octane, octadécane, benzène.

L'agent d'étherification peut, en outre, être un isocyanate de formule R_5 -NCO, dans laquelle R_5 est un radical hydrocarboné répondant à la même définition que R_1 , R_2 , et R_3 .

L'isocyanate est avantageusement choisi parmi, l'isocyanate de butyle, l'isocyanate de tert-butyle, l'isocyanate de pentyle, l'isocyanate de dodécyle, l'isocyanate d'octadécyle, le phénylisocyanate.

Les oxydes d'alkylène peuvent également être utilisés comme agent d'étherification. Dans les oxydes d'alkylène de formule :

le R_6 peut représenter un radical hydrocarboné répondant à la même définition que R_1 , R_2 , et R_3 .

A titre d'exemple, on peut citer le 1,2-époxybutane, 1,2-époxyhexane, 1,2-époxydécane, 1,2-

L'agent d'étherification peut aussi être un glycidyle de formule :

dans laquelle le R_7 peut représenter un radical hydrocarboné répondant à la même définition que R, R_1 , R_2 , et R_3 .

Plus particulièrement, le glycidyle peut être choisi parmi le méthyle glycidyle éther, le propylglycidyle éther, le butylglycidyle éther, le méthyl-2-butylglycidyle éther, l'éthylhexyle glycidyle éther, l'octylglycidyle éther, le laurylglycidyle éther, le benzylglycidyle éther.

Les fonctions hydroxyles des microfibrilles peuvent être étherifiées avec un seul type d'agent d'étherification parmi ceux mentionnés ci-dessous, ou avec des agents d'étherification de nature différente.

Dans le cas d'une étherification par des agents de nature différente, l'étherification peut avoir lieu soit en une, soit en plusieurs réaction(s) successives, ce qui conduirait à l'obtention de microfibrilles comportant en surface des restes organiques différents.

10

15

20

L'une des caractéristiques essentielles des microfibrilles modifiées en surface est leur degré de substitution de surface (DSs).

Le degré de substitution de surface (DSs) se définit généralement comme le nombre de fonctions hydroxyles en surface substitué par unité de glucose. Il s'obtient à partir du degré de substitution moyen global : DS, à partir de la formule générale :

$$(DSs) = (DS) / (Cs/Ct)$$

dans laquelle Cs représente les chaînes de surface et Ct représente les chaînes totales.

Le DS moyen global s'obtient par la détermination de la concentration pondérale de tout ou partie du groupement greffé par réaction d'étherification, et en appliquant la formule générale suivante :

$$DS = (162 \times Y) / [(g \times 100) - (G \times Y)]$$

dans laquelle

- y représente le pourcentage pondéral par rapport au poids total du produit gréffé de la partie analysée (ce peut être ainsi, le % p/p d'un hétéroatome, mesuré par analyse élémentaire, ou bien encore le % p/p d'un groupement mesuré par une technique chromatographique),
- g représente le poids moléculaire de la partie analysée (dans le cas d'un hétéroatome, il s'agira du poids moléculaire de cet hétéroatome ; dans le cas d'un groupement donné, il s'agira du poids moléculaire du groupement),
- G représente le poids moléculaire total du groupement greffé par étherification.

Les degrés de substitution de surface (DSs) calculés ci-dessous, permettent une meilleure compréhension de cette méthode de détermination.

25 Calcul du (DSs) pour les agents de silylation :

Dans le cas où les groupes hydroxyles de surface des microfibrilles sont modifiés par un agent de silylation, par exemple un halogénoalkylsilane, en particulier le chlorodiméthylisopropyle silane, la substitution de n hydrogène par n groupes alkylsilanes, en particulier le diméthylisopropylesilyle, conduit à la formule brute du composé final suivante :

$$C_{(6+5n)}H_{(10+12n)}Si_nO_5$$

de masse molaire M = 162 + 100n ; 162 étant la masse molaire d'une unité d'hexose. Le pourcentage de silicium sera donc :

% Si = y =
$$\frac{28n}{162 + 100n}$$
 x 100

à partir duquel il est possible d'obtenir le degré de substitution global (DS) qui sera alors :

Le degré de substitution (DSs) est ensuite obtenu à partir du rapport des Cs (nombre de chaînes en surface) et Ct (nombre de chaînes total) :

$$(DSs) = (DS) / (Cs/Ct)$$

le rapport Cs/Ct étant de 0,77 dans le cas des microfibrilles de betteraves, le (DSs) sera alors égal :

10
$$(DSs) = (DS) / 0.77$$

Calcul du (DSs) pour les réactifs isocyanate :

Dans le cas de la modification des groupes hydroxyles de surface des microfibrilles cellulosiques par un réactif isocyanate tel que défini précédemment, la substitution de n hydrogène par n groupes alkyluréthanes, par exemple l'octyluréthane, la formule brute du composé final sera la suivante :

$$C_{(6+9n)}H_{(10+17n)}N_nO_{(5+n)}$$

correspondant à une masse molaire M = 162 + 155n; 162 étant la masse molaire d'une unité d'hexose.

Le pourcentage d'azote sera donc :

$$\% N = y = 14n \times 100$$

162 + 155n

à partir duquel il est possible d'obtenir le degré de substitution global (DS) :

$$DS = 162y$$
 $1400 - 155y$

Le degré de substitution (DSs) est ensuite obtenu à partir du rapport des C_S (nombre de chaînes en surface) et C_t (nombre de chaînes total) qui est de 0,77 dans le cas des microfibrilles de betteraves :

$$(DSs) = (DS) / 0.77$$

Calcul du (DSs) pour les agents d'alkylation halogénés, les oxydes d'alkylènes, ou les glycidyles :

La substitution de n hydrogène des groupes hydroxyles de surface des microfibrilles cellulosiques par n groupements alkyles provenant d'un halogénoalkyle, comme le butyle provenant par exemple du chlorobutane, conduit à une formule brute du composé final qui sera :

$$C_{(6+4n)}H_{(10+8n)}O_5$$

30

15

10

15

20

25

30

35

correspondant à une masse molaire M = 162 + 56n ; 162 étant la masse molaire d'une unité d'hexose.

Si on dose y % en poids de motif butyle (C_4H_9) par rapport au produit de départ, le DS global sera obtenu avec la formule suivante :

$$DS = 162 \text{ y} \times 1$$
 100-y

Pour obtenir le (DSs), il faut comme précédemment utiliser la formule :

$$(DSs) = (DS) / (Cs/Ct)$$

Lorsque l'agent d'étherification est un agent de silylation ou un isocyanate le degré de substitution de surface peut être déterminé par l'analyse élémentaire classique.

Dans le cas où l'étherification est effectuée par des agents d'alkylation halogénés, des oxydes d'alkylènes, ou des glycidyles, le (DSs) peut être déterminé par le dosage des groupements alkyles avantageusement selon la méthode de Zeisel, décrite dans Analytical Chemistry No. 13, p. 2172, 1979. Cette méthode consiste à dégrader la liaison éther à 140°C en présence de l'iodure d'hydrogène (HI), et de doser les iodures correspondants par chromatographie en phase gazeuse.

Les groupements alkyles peuvent également être déterminés par la Résonance Magnétique Nucléaire de ¹³C, selon la méthode décrite par Y. Tezuka : Determination of substituent distribution in cellulose ether by mean of ¹³C NMR study on their acetylated derivatives, Makromol. Chem. 191, p. 681, 1990.

Le degré de substitution de surface (DSs) est d'au moins 0,05, avantageusement compris entre 0,1 et 1, et plus particulièrement compris entre 0,2 et 0,7.

L'invention a également pour objet un procédé de fabrication de microfibrilles de cellulose à surface modifiée, telles que décrites précédemment, à partir de microfibrilles de cellulose obtenues par fibrillation d'un matériau contenant des fibres de cellulose, caractérisé en ce qu'il consiste à :

i - mouiller et/ou disperser les microfibrilles de cellulose dans un milieu liquide et non déstructurant de la microfibrille de cellulose,

ii - ajouter dans la dispersion un agent d'étherification ou un mélange d'agents d'étherification des fonctions hydroxyles de la cellulose, et éventuellement un catalyseur et/ou un activateur de la réaction d'étherification,

iii - arrêter la réaction d'étherification après obtention du degré de substitution (DSs) souhaité,

iv - séparer les microfibrilles ainsi obtenues du milieu réactionnel.

Par milieu non déstructurant de la microfibrille de cellulose, on entend un milieu dans lequel la microfibrille conserve son caractère cristallin natif.

10

15

20

25

30

35

Ainsi, les microfibrilles sont d'abord dispersées dans un milieu liquide - étape (i). Avantageusement, ce liquide ne doit pas solubiliser la cellulose, ni avoir un effet négatif sur la structure des microfibrilles de cellulose.

Comme liquides convenables, on peut citer les éthers aliphatiques et/ou cycliques notamment l'éther éthylique et le tétrahydrofuranne; les hydrocarbures aliphatiques éventuellement halogénés notamment l'hexane, le xylène, le perchloroéthylène; les hydrocarbures aromatiques éventuellement halogénés notamment le toluène, la pyridine; les alcools notamment l'isopropanol, le butanol; et l'eau; ces liquides pouvant être seuls ou en mélange.

Après dispersion des microfibrilles, dans l'étape (ii). un agent d'étherification ou un mélange d'agents d'étherification est ajouté dans le milieu, avantageusement avec un catalyseur et/ou un activateur d'étherification.

Les agents d'étherification sont choisis parmi ceux décrits précédemment.

Les catalyseurs d'étherification peuvent être choisis dans le groupe comprenant, par exemple, l'imidazole, la pyridine, le triéthylamine, le fluorure de tétrabutylammonium hydrate, le chlorure de triméthylsilyle, la soude, la potasse, les dérivés d'étain comme par exemple l'octaonate d'étain, dilauréate d'étain.

Comme agent activateur de la réaction d'étherification des microfibrilles de cellulose, la soude, la potasse, la pyridine peuvent être cités à titre d'exemple.

En fonction du choix du ou des composé(s) organique(s) étherifiant(s), l'homme du métier saura choisir le catalyseur et/ou l'activateur le(s) mieux adapté(s), ainsi que leur(s) concentration(s) aussi bien par rapport au milieu liquide dispersant que par rapport aux microfibrilles.

La nature et la concentration du catalyseur et/ou de l'activateur seront choisises de manière à éviter la destruction de la microfibrille.

Selon un mode de réalisation particulier, les étapes (i) et (ii) peuvent être éventuellement concomitantes.

La réaction d'étherification est avantageusement menée sous agitation et éventuellement en atmosphère inerte.

La réaction d'étherification est réalisée à la température adéquate pendant une durée déterminée selon le degré de substitution en surface (DSs) souhaité. La température sera choisie en tenant compte de la nature de l'agent d'étherification et de sa réactivité.

L'arrêt d'étherification - étape (iii) - est obtenu, par exemple, soit par addition d'un composé, avantageusement, de l'eau, rendant inactif l'agent d'éthérification, soit par refroidissement et/ou dilution du milieu, soit par épuisement du ou des agents d'étherification.

10

15

20

25

30

35

Les microfibrilles partiellement étherifiées sont alors extraites du milieu - étape (iv) - par tous moyens appropriés, notamment par lyophilisation, centrifugation, filtration, ou précipitation.

Les microfibrilles sont ensuite, avantageusement lavées et séchées.

Lorsque l'on souhaite fabriquer des microfibrilles modifiées en surface par des restes organiques différents, soit on répète les opérations décrites ci-dessus en ajoutant, dans l'étape (ii), à chaque fois un agent d'étherification différent, soit en traitant la dispersion de microfibrilles dans l'étape (ii), par un mélange d'agents d'étherification.

Ce principe s'applique également lorsque les étapes (i) et (ii) sont concomitantes.

La modification de surface des microfibrilles permet donc d'obtenir une très bonne dispersabilité et compatibilité avec les milieux organiques, qu'ils soient fluides, fortement visqueux ou solides.

Un autre objet de l'invention concerne l'utilisation des microfibrilles modifiées en surface conformément à l'invention, comme agents viscosant et/ou texturant des milieux fluides et/ou comme agent texturant et/ou charge de renfort des milieux fortement visqueux ou solides.

Elles peuvent être mises en oeuvre sous forme pulvérulente, ou sous forme de dispersion organique.

La présente invention a encore pour objet des compositions comprenant des microfibrilles de cellulose à surface modifiée telles que décrites précédemment ou telles qu'obtenues selon le procédé précité.

Les microfibrilles de l'invention peuvent exercer leur fonction d'agents viscosant dans les formulations cosmétiques, les fluides de forage, les peintures, les vernis, les colles, les encres, et en tant que charge de renfort dans les polymères notamment dans les matériaux thermoplastiques, thermodurcissables, les élastomères réticulés ou non, et les mastics.

La présente invention a également pour objet des compositions comprenant des microfibrilles à surface modifiée telles que décrites précédemment ou telles qu'obtenues selon le procédé précité.

Dans ces compositions, outre les microfibrilles, on peut ajouter les additifs habituels nécessaires à leur mise en oeuvre selon le domaine d'application comme par exemple des ingrédients de vulcanisation dans le cas particulier des élastomères, des agents de couplages, des plastifiants, des stabilisants, des lubrifiants, des pigments, etc.

Ces compositions peuvent être employées par exemple en tant que revêtements de sols, supports moteurs, pièces de chenilles de véhicules, semelles de chaussures,

10

15

20

25

30

35

galets de téléphérique, joints d'appareillages électroménagers, gaines, câbles, courroies de transmission.

Enfin, les compositions selon l'invention peuvent trouver applications en tant que séparateur de batterie.

Ainsi, la présente invention permet d'obtenir des compositions à base d'élastomère ou un alliage ou mélange d'élastomères, et de préférence vulcanisé, qui peuvent être utilisés dans toute partie du pneumatique.

Dans ce cas particulier, il est à noter que la teneur en association selon l'invention est telle que la teneur en microfibrilles dans la partie concernée du pneumatique peut aller jusqu'à 80 % en poids, plus particulièrement peut être comprise entre 0,1 et 50 % en poids par rapport au poids total de la composition.

Dans les autres applications, des teneurs plus faibles en microfibrilles peuvent être souhaitées. On peut par exemple envisager des compositions comprenant au plus 10 % en poids, avantageusement au plus 5 % en poids, et de préférence au plus 2 % en poids total par rapport au poids total de la composition.

Les exemples suivants illustrent l'invention sans toutefois en limiter la portée.

EXEMPLES

<u>EXEMPLE 1</u>: Ethérification des microfibrilles par le chlorodiméthylisopropyle silane

Environ 10 g d'une suspension aqueuse de microfibrilles de cellulose de parenchyme (de concentration égale à 2,3 % en poids/poids) sont placés dans un tube de centrifugeuse de capacité 100 cc dans lequel on ajoute ensuite environ 80 cc d'acétone.

Le mélange est alors centrifugé 30 minutes à 3700 tr/min. Le culot obtenu est remis en suspension dans l'acétone puis centrifugé pour éliminer le solvant. Cette dernière opération est répétée : 3 fois avec de l'acétone, 1 fois avec un mélange acétone/méthanol (50/50 v/v), 2 fois avec du toluène et une dernière fois avec du toluène anhydre. Le dernier culot est récupéré et mis en suspension dans 10 ml de toluène anhydre.

A la suite de cette opération, on détermine d'une part la teneur en matière sèche. par sèchage et pesée et d'autre part la teneur en eau résiduelle par dosage Karl Fischer (appareil muni d'un four Büchi chauffé à 150°C pendant 1 heure sous balayage à l'azote).

Dans cet exemple, la quantité de cellulose est de 0,158 g (0,975.10⁻³ moles) équivalent anhydroglucose, et la teneur en eau est 0,0181 g (1,0.10⁻³ moles).

10

15

20

25

La suspension est alors placée dans un réacteur et la quantité désirée de réactif est ajoutée de façon à avoir 2 moles de silane pour 1 groupement anhydroglucose de surface.

On ajoute ainsi 0,40 ml de chlorodiméthylisopropyle silane ayant un poids moléculaire de 136,7 et une densité de 0,869, et 0,174 g d'imidazole (2,55.10⁻³ moles).

Le mélange est alors agité dans le réacteur fermé, à température ambiante pendant 16 heures.

Ensuite, 70 ml d'un mélange de THF/méthanol (80/20 v/v) sont ajoutés : pour solubiliser le sel formé par la réaction entre l'imidazole et l'acide chlorhydrique dégagé au cours de la réaction et pour détruire le chlorosilane résiduel.

L'ensemble est alors centrifugé et le culot est lavé deux fois au THF et isolé par centrifugation.

Dosage de silicium - Détermination du (DSs)

Afin de pouvoir déterminer le (DSs) des microfibrilles, il faut procéder à un dosage de silicium. Pour cela préalablement à ce dosage, on traite une fraction du produit au soxlhet 48 heures dans le THF pour éliminer complètement les dimères formés. L'échantillon est ensuite dégradé par combustion dans une fiole de Schoniger puis déplacé par une solution aqueuse de NaOH N/10 et dosé par ICP.AES.

L'analyse de la teneur en silicium donne une valeur de 4,1 % ce qui conduit à un DS de surface égale à 0,36.

L'observation par microscopie indique que les microfibrilles ainsi "étherifiées" se présentent toujours sous la forme de fibres.

Celles-ci floculent en milieu aqueux mais sont dispersables dans le THF.

EXEMPLE 2: Comportement rhéologique

Le comportement rhéologique des suspensions dans le THF des microfibrilles obtenues dans l'exemple 1 a été étudié.

Les mesures sont réalisées sur des suspensions ayant une concentration de 0,1% poids/poids.

La viscosité () est mesurée sur un rhéomètre RFS 8400 en géométrie Couette (balayage en gradient de cisaillement entre 0,1 et 100 s⁻¹).

Elle est exprimée en mPa.s, sachant que celle du THF est de 1 mPa.s.

Les résultats sont récapitulés dans le Tableau I.

10

15

20

25

30

35

Т		h	leau	ŧ
	- 61	L	ıeau	1

à 0,1 sec ⁻¹	à 1 sec ⁻¹	à 10 sec ⁻¹	à 63,9 sec ⁻¹
475	90	19	7,1

On constate que les suspensions de microfibrilles de l'exemple 1 dans le THF présentent des viscosités élevées, et un comportement de type pseudo plastique (diminution de la viscosité lorsque le gradient de cisaillement augmente). Ce type de comportement est comparable à celui des microfibrilles non modifiées en surface dans l'eau.

<u>EXEMPLE 3</u>: Ethérification des microfibrilles par le chlorodiméthylisopropyle silane

Dans un litre de suspension aqueuse de microfibrilles de cellulose de parenchyme (de concentration égale à 2,3 %), on ajoute environ 5 litres d'acétone. Ce mélange conduisant à la floculation des microfibrilles cellulosiques est ensuite filtré de façon à éliminer le plus de solvant. L'opération est répétée: 3 fois avec de l'acétone, 1 fois avec un mélange acétone/toluène (50/50 v/v), 2 fois avec du toluène et 1 dernière fois avec du toluène anhydre. Le milieu est homogénéisé après chaque échange.

Le dernier gâteau est ensuite récupéré et mis en suspension dans 1,5 litres de toluène anhydre.

La quantité de matière sèche est de 19,5 g (0,120 moles) et la quantité d'eau résiduelle est de 0,195 (0,0108 moles).

La suspension est alors placée dans un réacteur et la quantité désirée de réactifs est ajoutée de façon à avoir 1,74 moles de silane pour 1 groupement anhydroglucose de surface.

On ajoute ainsi 27 ml de chlorodiméthylisopropyle silane (0,172 moles) et 16 g d'imidazole.

Le mélange est alors agité dans le réacteur fermé, à température ambiante pendant 16 heures.

Après réaction, on introduit 2 litres de méthanol pour solubiliser le sel formé par la réaction entre l'imidazole et l'acide chlorhydrique dégagé au cours de la réaction et pour détruire le chlorosilane résiduel.

Le solvant est éliminé par filtration et on lave le gateau de filtration 2 fois de suite avec 2 litres d'acétone pour éliminer le silyléther formé.

Le gâteau est placé dans de l'eau, passé au rotavapor pour éliminer l'acétone résiduel et lyophilisé.

L'analyse de la teneur en silicium donne une valeur de 9 % ce qui conduit à un DS de surface égale à 1.

L'observation par microscopie indique que le produit se présente toujours sous la forme de microfibrilles.

Les microfibrilles ainsi modifiées forment des dispersions à température ambiante pour une concentration de 0,05 % p/p, obtenu directement par mélange entre la poudre et le liquide puis traité 2 minutes dans une cuve à ultrasons, lesquelles dispersions ne floculent pas dans les solvants suivants :

toluène

5

20

25

- diéthylether
- acétate de méthyle, éthyle, propyle, isobutyle, butyle et pentyle
- 10 chloroforme, dichlorométhane
 - Tétrahydrofurane
 - 1-butanol, 1-hexanol, 1-octanol
 - butaraldéhyde et isophorone
 - huile de colza et myristate d'isopropyle
- 15 Huile silicone 48 V 750

EXEMPLE 4: Ethérification des microfibrilles par le chlorodiméthylbutyle silane

Dans cet exemple, on reproduit le mode opératoire de l'exemple 1, dans lequel l'agent de silylation est remplacé par le chlorodiméthylbutyle silane.

Le poids moléculaire du chlorodiméthylbutyle silane est de 150,7 et sa densité de 0,875.

La quantité de cellulose dans cet exemple est de 0,115 g (0,709.10⁻³ moles) équivalent anhydroglucose (AHGU), et la teneur en eau est 0,0096 g (0,533.10⁻³ moles).

La quantité de chlorodiméthylbutyle silane est de 0,18 ml, et celle de l'imidazole est de 0,074 g (1,08.10⁻³ moles).

Lorsque la suspension de cellulose dans du toluène anhydre est placé dans le réacteur, la quantité désirée d'agent de silylation est ajoutée de façon à avoir 1 mole de silane pour 1 groupement anhydroglucose de surface.

L'analyse de la teneur en silicium donne une valeur de 1,9 % ce qui conduit à un DS de surface égale à 0,155.

L'observation par microscopie indique que les microfibrilles ainsi "étherifiées" se présentent toujours sous la forme de fibres.

Celles-ci floculent en milieu aqueux mais sont dispersables dans le THF.

10

25

30

35

EXEMPLE 5 : Ethérification des microfibrilles par le chlorodiméthyloctyle silane

Dans cet exemple, on reproduit le mode opératoire de l'exemple 1, dans lequel l'agent de silylation est remplacé par le chlorodiméthyloctyle silane.

Le poids moléculaire de chlorodiméthyloctyle silane est de 206,8 et sa densité de 0.873.

La quantité de cellulose dans cet exemple est de 0,213 g (1,315.10⁻³ moles) équivalent anhydroglucose (AHGU), et la teneur en eau est 0,017 g (0,944.10⁻³ moles).

La quantité de chlorodiméthyloctyle silane est de 0,70 ml, et celle de l'imidazole est de 0,202 mg (3.10⁻³ moles).

Lorsque la suspension de cellulose dans du toluène anhydre est placé dans le réacteur, la quantité désirée d'agent de silylation est ajoutée de façon à avoir 2 moles de silane pour 1 groupement anhydroglucose de surface.

L'analyse de la teneur en silicium donne une valeur de 5,2 % ce qui conduit à un 15 DS de surface égale à 0,57.

L'observation par microscopie indique que les microfibrilles ainsi "étherifiées" se présentent toujours sous la forme de fibres.

Celles-ci floculent en milieu aqueux mais sont dispersables dans le THF.

20 <u>EXEMPLE 6</u>: Ethérification des microfibrilles par le chlorodiméthyldodécyle silane

Dans cet exemple, on reproduit le mode opératoire de l'exemple 1, dans lequel l'agent de silylation est remplacé par le chlorodiméthyldodécyle silane.

Le poids moléculaire de chlorodiméthyldodécyle silane est de 262,9 et sa densité de 0,865.

La quantité de cellulose dans cet exemple est de 0,177 g (1,092.10⁻³ moles) équivalent anhydroglucose (AHGU), et la teneur en eau est 0,02 g (1,111.10⁻³ moles).

La quantité de chlorodiméthyldodécyle silane est de 0,85 ml, et celle de l'imidazole est de 0,190 mg (2,8.10⁻³ moles).

Lorsque la suspension de cellulose dans du toluène anhydre est placé dans le réacteur, la quantité désirée d'agent de silylation est ajoutée de façon à avoir 2 moles de silane pour 1 groupement anhydroglucose de surface.

L'analyse de la teneur en silicium donne une valeur de 4,2 % ce qui conduit à un DS de surface égale à 0,48.

L'observation par microscopie indique que les microfibrilles ainsi "étherifiées" se présentent toujours sous la forme de fibres.

Celles-ci floculent en milieu aqueux mais sont dispersables dans le THF.

EXEMPLES 7 : Ethérification des microfibrilles par l'isocyanate d'octyle

Dans cet exemple, on modifie la surface des microfibrilles par réaction des hydroxyles de surface avec de l'isocyanate d'octyle.

La première partie correspondant à l'échange de solvant entre l'eau et le toluène est identique à celle de l'exemple 1.

La suspension de microfibrille dans le toluène anhydre contient 0,167 g de cellulose (1,03.10⁻³).

Elle est alors placée dans un réacteur et on ajoute 1,2 ml d'isocyanate d'octyle de poids moléculaire égal à 155,2 et de densité égale à 0,88.

Le mélange est alors agité dans le réacteur fermé, à 80°C pendant 16 heures.

Après refroidissement, 70 ml de méthanol sont ajoutés. L'ensemble est alors centrifugé et le culot est lavé deux fois au THF puis à l'hexane.

L'analyse de la teneur en azote donne une valeur de 1,38 % ce qui conduit à un DS de surface égale à 0,25.

L'observation par microscopie indique que le produit se présente toujours sous la forme des fibres.

Celles-ci sont dispersables dans le THF.

20

25

5

10

EXEMPLE 8 : Utilisation dans un élastomère réticulé (vulcanisé)

Cet exemple a pour objet l'évaluation des propriétés de l'élastomère vulcanisé comprenant les microfibrilles modifiées issues de l'exemple 3 (composition B) comparées à celles d'un élastomère ne contenant pas de microfibrilles modifiées (composition A).

On prépare deux compositions d'élastomères suivantes :

	A (référence)	B (invention)
SBR (*)	90,1	73,5
Microfibrilles modifiées	-	18,4
antioxydant (**)	1,3	1,06
Acide Stéarique	2,25	1,84
Oxyde de Zinc	2,25	1,84
Diphénylguanidine	1,35	1,10
Sulfénamide(***)	1,8	1,47
Soufre	0,9	0,73

10

Les quantités sont exprimées en pourcent en poids par rapport au poids total de la composition.

- (*) Copolymère styrène butadiène synthétisé en solution (SBR Buna VSL 5525-1 / Bayer) contenant 27,3 % d'huile.
- (**) Antioxydant : N-(1,3-diméthyl-butyl)-N'-phényl-p-phénylènediamine.
 - (***) Sulfénamide : N-cyclohexyl-2-benzothiazole sulfénamide

Chaque composition est réalisée par un travail thermo-mécanique dans un malaxeur interne Brabender de 70 cm³, en une étape, pour une vitesse moyenne des palettes de 50 tours par minute, jusqu'à atteindre une température de 100°C en fin d'étape, et suivie d'une étape d'accélération et de finition sur mélangeur externe. La vulcanisation des compositions est adaptée aux cinétiques de vulcanisation de chaque mélange.

Les propriétés physiques des mélanges sont consignées dans le Tableau II ci-15 dessous.

Tableau II

, abida ii				
Propriétés	A (référence)	B (invention)		
Module 10% (MPa)	0,13	0,2		
Module 100% (MPa)	0,45	0,7		
Module 300% (MPa)	0,92	1,24		
déformation rupture	356%	474%		
contrainte rupture (MPa)	1,2	2,1		
Shore A 15s	22	31		

Les mesures sont effectuées selon les méthodes suivantes :

- traction: les modules sont mesurés sur les vulcanisats selon la norme NF T46002. Il est à noter que le module à 10%, 100 %, 300% dans les métiers du caoutchouc. fait référence à la contrainte mesurée respectivement à 10%, 100% ou 300% de déformation en traction.
- dureté Shore A 15s : la dureté Shore A 15s est mesurée selon la norme ASTM D2240, la valeur considérée est déterminée 15 secondes après l'application de la force.

D'après le Tableau II, on constate que la composition contenant les microfibrilles modifiées en surface (composition B) conduit à des contraintes mécaniques et à des duretés nettement plus élevées par rapport à la composition de référence (composition A).

WO 00/15667 PCT/FR99/02148-

21

Il est remarquable de constater que le gain en module de la composition comprenant les microfibrilles de l'invention se produit sans nuire à la résistance à la rupture et à l'allongement à la rupture de la composition vulcanisée. Au contraire, en présence des microfibrilles, on constate une augmentation importante de la déformation à la rupture.

5

Cet exemple montre bien que les microfibrilles à surface modifiée ont été dispersées de manière homogène dans l'élastomère. De ce fait, elles conduisent à un gain important en terme de propriétés mécaniques par rapport à la référence.

10

15

20

REVENDICATIONS

- 1. Microfibrilles de cellulose à surface modifiée, caractérisées en ce que les fonctions hydroxyles présentes à la surface des microfibrilles sont éthérifiées par au moins un composé organique comprenant au moins une fonction pouvant réagir avec lesdites fonctions hydroxyles, et en ce que le degré de substitution de surface (DSs) est d'au moins 0,05.
- 2. Microfibrilles selon la revendication 1, caractérisées en ce que le degré de substitution de surface (DSs) est compris entre 0,1 et 1. et plus particulièrement 0,2 et 0,7.
- 3. Microfibrilles selon l'une des revendications 1 ou 2, caractérisées en ce que le composé organique comprenant au moins une fonction pouvant réagir avec les fonctions hydroxyles de la cellulose est choisi parmi les agents de silylation, les isocyanates, les agents d'alkylation halogénés, les oxydes d'alkylène, et/ou les glycidyles.
- 4. Microfibrilles selon la revendication 3, caractérisées en ce que l'agent de silylation est choisi parmi :
 - les halogénoalkylsilanes de formule : R₃R₂R₁Si-X, R₂R₁Si(X)₂, R₁Si(X)₃;
 - les disilazanes de formule : R₃R₂R₁N-Si-NR₁R₂R₃ ;
 - les N-silylacétamides de formule : CH₃-CO-NH-SiR₁R₂R₃ ; et
 - les alkoxysilanes de formule : R₃R₂R₁Si-OR, R₂R₁Si(OR)(OR₃) ;

dans lesquels

- 25 R, R₁, R₂, et R₃, identiques ou différents, peuvent être choisis parmi les radicaux hydrocarbonés linéaires, ramifiés, ou cycliques éventuellement substitués, saturés ou insaturés, comportant de 1 à 30 atomes de carbone, et
 - X est un atome d'halogène choisi parmi le chlore, le brome, ou l'iode.
- 5. Microfibrilles selon l'une des revendications 3 ou 4, caractérisées en ce que les radicaux R, R₁, R₂, et R₃ pouvant être choisis parmi le méthyle, l'éthyle, le propyle, l'isopropyle, le butyle, le sec-butyle, le tert-butyle, le pentényle, l'hexyle, le cyclohexyle, l'octyle, le nonyle, le décyle, le dodécyle, l'undécyle, le nonadécanoyle, l'eicosyle (C-20), le docosyle (C-22), l'octacosyle (C-28), le triacontanyle (C-30), le vinyle, l'allyle, le phényle, le styryle, le naphtyle.

WO 00/15667

5

10

15

20

25

30

- 6. Microfibrilles selon l'une quelconque des revendications 3 à 5, caractérisées en ce que l'agent de silylation est choisi :
 - parmi les halogénoalkylsilanes : le chlorodiméthylisopropyle silane, le chlorodiméthyloctyle chlorodiméthylbutyle silane, le silane. le chlorodiméthyldodécyle silane, le chlorodiméthyloctadécyle silane, le chlorodiméthylphényle silane, le chloro hexenyle-1-diméthyle silane, le dichlorohexylméthyle silane, le dichloroheptylméthyle silane, le trichlorooctyle silane ;
 - parmi les disilazanes, l'hexaméthyle disilazane, 1,3-divinyl-1,1,3,3-tétraméthyle disilazane, 1,3-divinyl-1,3-diphényl-1,3-diméthyle disilazane, 1,3-N-dioctyltétraméthyle disilazane, diisobutyltétraméthyle disilazane, diéthyltétraméthyle disilazane,
 - N- dibutyltétraméthyle disilazane, 1,3-di(para-tertiobutylphénéthyl)tétraméthyle disilazane;
 - parmi les N-silylacétamides, le N-triméthylsilylacétamide, le N-triéthylacétamide;
 - parmi les alkoxysilanes, le tert-butyldiphényle méthoxysilane, l'octadécyldiméthyle méthoxysilane, le diméthyloctyle méthoxysilane, l'octylméthyle diméthoxysilane, l'octyle triméthoxysilane, le triméthyle éthoxysilane, l'octyle triéthoxysilane.
- 7. Microfibrilles selon la revendication 3, carcatérisées en ce que l'agent d'alkylation halogéné est de formule R_4 -X, dans laquelle X est un atome d'halogène choisi parmi le chlore, le brome, et l'iode, et R_4 est un radical hydrocarboné répondant à la même définition que R, R_1 , R_2 , et R_3 .
- 8. Microfibrilles selon l'une des revendications 3 ou 7, caractérisées en ce que les agents d'alkylation halogénés, sont choisis parmi :
 - le chloro- propane, butane ;
 - le bromo- propane, hexane, heptane ; et
 - l'iodo- méthane, éthane, octane, octadécane, benzène.
- 9. Microfibrilles selon la revendication 3, caractérisées en ce que les isocyanates sont de formule R_5 -NCO, dans laquelle R_5 est un radical hydrocarboné répondant à la même définition que R, R_1 , R_2 , et R_3 .
- 10. Microfibrilles selon l'une des revendications 3 ou 9, caractérisées en ce que l'isocyanate est choisi parmi l'isocyanate de butyle, l'isocyanate de tert-butyle,

l'isocyanate de pentyle, l'isocyanate d'octyle, l'isocyanate de dodécyle, l'isocyanate d'octadécyle, le phénylisocyanate.

11. Microfibrilles selon la revendication 3 caractérisées en ce que l'oxyde d'alkylène est de formule :

dans laquelle le R_6 représente un radical hydrocarboné répondant à la même définition que R, R_1 , R_2 , et R_3 .

10

5

12. Microfibrilles selon l'une des revendications 3 ou 11, caractérisées en ce que les oxydes d'alkylène sont choisis parmi le 1,2-époxybutane, 1,2-époxyhexane, 1,2-époxydécane, le 1,2-époxydodécane, 1,2-époxyhexadécane, 1,2-époxyoctàne, 1,2-époxyoctène-7.

15

13. Microfibrilles selon la revendication 3, caractérisé en ce que le glycidyle est de formule :

20 (

dans laquelle le R_7 représente un radical hydrocarboné répondant à la même définition que R, R_1 , R_2 , et R_3 .

25

14. Microfibrilles selon l'une des revendications 3 ou 13, caractérisé en ce que le glycidyle est choisi parmi le méthyle glycidyle éther, le propylglycidyle éther, le butylglycidyle éther, le méthyl-2-butylglycidyle éther, l'éthylhexyle glycidyle éther, l'octylglycidyle éther, le laurylglycidyle éther, l'allylglycidyle éther, le benzylglycidyle éther.

30

- 15. Procédé de fabrication de microfibrilles de cellulose à surface modifiée selon l'une quelconque des revendications 1 à 14, à partir de microfibrilles de cellulose obtenues par fibrillation d'un matériau contenant des fibres de cellulose, caractérisé en ce qu'il consiste à :
 - *i* mouiller et/ou disperser les microfibrilles de cellulose dans un milieu liquide et non déstructurant de la microfibrille de cellulose.

- ii ajouter dans la dispersion un agent d'étherification ou un mélange d'agents d'étherification des fonctions hydroxyles de la cellulose, et éventuellement un catalyseur et/ou un activateur de la réaction d'étherification,
- iii arrêter la réaction d'étherification après obtention du degré de substitution
 (DS) souhaité,

- iv séparer les microfibrilles ainsi obtenues du milieu réactionnel.
- 16. Utilisation des microfibrilles selon l'une quelconque des revendications 1 à 14, comme agents viscosant et/ou texturant des milieux fluides et/ou comme agent texturant et/ou charge de renfort des milieux fortement visqueux ou solides.
- 17. Utilisation des microfibrilles selon l'une quelconque des revendications 1 à 14, comme agent viscosant dans les formulations cosmétiques, les fluides de forage, les peintures, les vernis, les colles, les encres.
- 18. Utilisation des microfibrilles selon l'une quelconque des revendications 1 à 14 comme charge de renfort dans les matériaux thermoplastiques, thermodurcissables, les élastomères réticulés ou non, et les mastics.
- 15 19. Composition comprenant des microfibrilles de cellulose à surface modifiée telles que définies à l'une quelconque des revendications 1 à 14, et telles qu'obtenues selon la revendication 15.

INTERNATIONAL SEARCH REPORT

Inte. onal Application No PCT/FR 99/02148

A. CLASSIF IPC 7	FICATION OF SUBJECT MATTER C08B11/00 C08B15/00		
	International Patent Classification (IPC) or to both national classificat	ion and IPC	
	SEARCHED cumentation searched (classification system followed by classification	n symbols)	
IPC 7	C08B	,,	
Documentat	ion searched other than minimum documentation to the extent that su	ich documents are included in the fields se	arched
Electronic da	ata base consulted during the international search (name of data bas	e and, where practical, search terms used)
C. DOCUME	ENTS CONSIDERED TO BE RELEVANT		
Category °	Citation of document, with indication, where appropriate, of the rele	vant passages	Relevant to claim No.
Δ.	LIO 07 12017 A (PHONE DOWNER CHIM	TC\	
Α	WO 97 12917 A (RHONE-POULENC CHIM 10 April 1997 (1997-04-10)	16)	
			1.0
Х	PATENT ABSTRACTS OF JAPAN vol. 007, no. 114 (C-166),		1-3
	18 May 1983 (1983-05-18)		
	& JP 58 034802 A (DAICEL KK),		
:	1 March 1983 (1983-03-01)		
	abstract & DATABASE WPI		
	Week 8314		
	Derwent Publications Ltd., London	, GB;	
	AN 83-33583k	1.70)	
	& JP 58 034802 A (DAICEL CHEM IND 1 March 1983 (1983-03-01)	LID),	
;	abstract		
		,	
	_	/	
TVI Sur	her documents are listed in the continuation of box C.	Y Patent family members are listed	in annex.
		A T desire family mornes of the fields	
° Special ca	ategories of cited documents :	"T" later document published after the inte- or priority date and not in conflict with	
	ent defining the general state of the art which is not dered to be of particular relevance	cited to understand the principle or th	
"E" earlier of filling of	document but published on or after the international date	"X" document of particular relevance; the cannot be considered novel or canno	
	ent which may throw doubts on priority claim(s) or is cited to establish the publication date of another	involve an inventive step when the do	ocument is taken alone
	n or other special reason (as specified) ent referring to an oral disclosure, use, exhibition or	cannot be considered to involve an in document is combined with one or me	ventive step when the
other	means ent published prior to the international filing date but	ments, such combination being obvio in the art.	us to a person skilled
	han the priority date claimed	"&" document member of the same patent	family
Date of the	actual completion of the international search	Date of mailing of the international se	arch report
3	December 1999	09/12/1999	
Name and	mailing address of the ISA	Authorized officer	
	European Patent Office, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk		
	Tel. (+31–70) 340–2040, Tx. 31 651 epo nl, Fax: (+31–70) 340–3016	Mazet, J-F	

INTERNATIONAL SEARCH REPORT

Inte. .onal Application No PCT/FR 99/02148

C.(Continu	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	101/11/ 93/02140		
Category °		Relevant to claim No.		
X	PATENT ABSTRACTS OF JAPAN vol. 011, no. 262 (C-442), 25 August 1987 (1987-08-25) & JP 62 064801 A (DAICEL CHEM IND LTD), 23 March 1987 (1987-03-23) abstract	1,3,9,10		

INTERNATIONAL SEARCH REPORT

information on patent family members

Inter onal Application No PCT/FR 99/02148

Patent document cited in search report		Publication date		atent family member(s)	Publication date
WO 9712917	Α	10-04-1997	FR AU BR CA CN CZ EP HU PL SK	2739383 A 7135896 A 9610815 A 2238390 A 1200128 A 9800948 A 0852588 A 9900752 A 328269 A 41298 A	04-04-1997 28-04-1997 13-07-1999 10-04-1997 25-11-1998 15-07-1998 15-07-1998 28-07-1999 18-01-1999
JP 58034802	Α	01-03-1983	JP JP	1692168 C 3002881 B	27-08-1992 17-01-1991
JP 62064801	Α	23-03-1987	 ЈР ЈР	1930410 C 6053763 B	12-05-1995 20-07-1994

RAPPORT DE RECHERCHE INTERNATIONALE

Den de Internationale No PCT/FR 99/02148

A. CLASSE CIB 7	MENT DE L'OBJET DE LA DEMANDE C08B11/00 C08B15/00		
		•	
Selon la clas	ssification internationale des brevets (CIB) ou à la fois selon la classificat	tion nationale et la CIB	
	NES SUR LESQUELS LA RECHERCHE A PORTE		
Documentat CIB 7	tion minimale consultée (système de classification suivi des symboles de C08B	a ciassement)	
Documentat	tion consultée autre que la documentation minimale dans la mesure où c	es documents relèvent des domaines s	ur lesquels a porté la recherche
Base de dor	nnées électronique consultée au cours de la recherche internationale (no	om de la base de données, et si réalisab	ole, termes de recherche utilisés)
C. DOCUM	ENTS CONSIDERES COMME PERTINENTS		
C. DOCUMI Catégorie °	Identification des documents cités, avec, le cas échéant, l'indication de	es passages pertinents	no. des revendications visées
A	WO 97 12917 A (RHONE-POULENC CHIMI) 10 avril 1997 (1997-04-10)	E)	
Х	PATENT ABSTRACTS OF JAPAN vol. 007, no. 114 (C-166), 18 mai 1983 (1983-05-18) & JP 58 034802 A (DAICEL KK),		1-3
	1 mars 1983 (1983-03-01) abrégé & DATABASE WPI Week 8314		
	Derwent Publications Ltd., London, AN 83-33583k & JP 58 034802 A (DAICEL CHEM IND 1 mars 1983 (1983-03-01)		
	abrégé		
	_/	'	
X Voir	r la suite du cadre C pour la fin de la liste des documents	X Les documents de familles de br	revets sont indiqués en annexe
° Catégorie	es spéciales de documents cités: "T	" document ultérieur publié après la dat	
consid	nent définissant l'état général de la technique, non idéré comme particulièrement pertinent	date de priorité et n'appartenenant p technique pertinent, mais cité pour c ou la théorie constituant la base de l'	omprendre le principe
"E" docum ou ap	nent antérieur, mais publié à la date de dépôt international "X près cette date	" document particulièrement pertinent; l être considérée comme nouvelle ou	l'inven tion revendiquée ne peut comme impliquant une activité
priorit	nent pouvant jeter un doute sur une revendication de té ou cité pour déterminer la date de publication d'une "Y citation ou pour une raison spéciale (telle qu'indiquée)	inventive par rapport au document co "document particulièrement pertinent; ne peut être considérée comme impl	onsidéré isolément l'inven tion revendiquée
"O" docum	i citation ou pour une raison speciale (leile qu'illuquee) nent se référant à une divulgation orale, à un usage, à exposition ou tous autres moyens	lorsque le document est associé à un documents de même nature, cette co	n ou plusieurs autres
"P" docum	nent publié avant la date de dépôt international, mais	pour une personne du métier t" document qui fait partie de la même fa	
	uelle la recherche internationale a été effectivement achevée	Date d'expédition du présent rapport	de recherche internationale
3	3 décembre 1999	09/12/1999	
Nom et adr	resse postale de l'administration chargée de la recherche internationale Office Européen des Brevets, P.B. 5818 Patentlaan 2	Fonctionnaire autorisé	
	NL – 2280 HV Rijswijk Tel. (+31–70) 340–2040, Tx. 31 651 epo nl, Fax: (+31–70) 340–3016	Mazet, J-F	

RAPPORT DE RECHERCHE INTERNATIONALE

Dem. 3 Internationale No
PCT/FR 99/02148

C.(suite) DOCUMENTS CONSIDERES COMME PERTINENTS					
Catégorie °	Identification des documents cités, avec, le cas échéant, l'indicationdes passages pertinents	no. des revendications visées			
(PATENT ABSTRACTS OF JAPAN vol. 011, no. 262 (C-442), 25 août 1987 (1987-08-25) & JP 62 064801 A (DAICEL CHEM IND LTD), 23 mars 1987 (1987-03-23) abrégé	1,3,9,10			

RAPPORT DE RECHERCHE INTERNATIONALE

Renseignements relatifs aux membres de familles de brevets

Den. .e internationale No PCT/FR 99/02148

Document brevet cité au rapport de recherche	Date de publication		
WO 9712917 A	10-04-1997	FR 2739383 A AU 7135896 A BR 9610815 A CA 2238390 A CN 1200128 A CZ 9800948 A EP 0852588 A HU 9900752 A PL 328269 A SK 41298 A	04-04-1997 28-04-1997 13-07-1999 10-04-1997 25-11-1998 15-07-1998 15-07-1998 28-07-1999 18-01-1999
JP 58034802 A	01-03-1983	JP 1692168 C JP 3002881 B	27-08-1992 17-01-1991
JP 62064801 A	23-03-1987	JP 1930410 C JP 6053763 B	12-05-1995 20-07-1994