$11a_{43} \ (K11a_{43})$

Ideals for irreducible components 2 of $X_{\mathtt{par}}$

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

$$\begin{split} I_1^u &= \langle -u^9 - 2u^8 - 3u^7 - 2u^6 - 3u^5 + 2u^4 + 2u^3 + 4u^2 + 4d, \ u^9 + u^8 + u^7 - u^6 + u^5 - 3u^4 - 2u^3 + 4c + 4u, \\ &- u^9 - 2u^8 - 3u^7 - 2u^6 - u^5 + 4u^3 + 4u^2 + 4b, \ u^9 + u^8 + u^7 - u^6 - u^5 - 3u^4 - 2u^3 - 2u^2 + 4a + 4u, \\ &u^{11} + u^{10} + 2u^9 + u^8 + 2u^7 - 3u^6 - 3u^5 - 4u^4 - 4u^2 + 4u + 4 \rangle \\ I_2^u &= \langle 3u^{15} + 3u^{14} + \dots + 4d - 4, \ 2u^{16} + u^{15} + \dots + 4c + 2, \\ &u^{14} + 2u^{12} + 3u^{10} + 2u^9 + 2u^8 + 2u^7 + u^6 + 6u^5 + 5u^4 + 4u^3 + 4b + 4, \ 2u^{15} + 4u^{14} + \dots + 4a + 10, \\ &u^{17} + 2u^{16} + \dots - 2u - 2 \rangle \\ I_3^u &= \langle 3u^{15} + 3u^{14} + \dots + 4d - 4, \ 2u^{16} + u^{15} + \dots + 4c + 2, \\ &- u^{15} - u^{14} - 3u^{13} - 2u^{12} - 5u^{11} - 3u^{10} - 7u^9 - 2u^8 - 5u^7 - 3u^6 - 10u^5 - 11u^4 - 7u^3 - 2u^2 + 4b + 2u + 2u^6 - 3u^{15} + \dots + 4a - 2, \ u^{17} + 2u^{16} + \dots - 2u - 2 \rangle \\ I_4^u &= \langle 2u^{16} + 5u^{15} + \dots + 4d + 14u, \\ &- u^{15} - 2u^{13} - 5u^{11} - 2u^{10} - 6u^9 - 2u^8 - 7u^7 - 8u^6 - 9u^5 - 6u^4 - 2u^3 - 6u^2 + 4c - 12u - 4, \\ &- u^{15} - u^{14} - 3u^{13} - 2u^{12} - 5u^{11} - 3u^{10} - 7u^9 - 2u^8 - 5u^7 - 3u^6 - 10u^5 - 11u^4 - 7u^3 - 2u^2 + 4b + 2u + 2u^{15} - 2u^{16} - 3u^{15} + \dots + 4a - 2, \ u^{17} + 2u^{16} + \dots - 2u - 2 \rangle \\ I_5^u &= \langle -2a^2cu + a^2c + cau + a^2u - 4ca - 2cu - a^2 + 2au + 2d + 5c + a - u + 1, \\ &- u^2cu + u^2c - 4cau - u^2u + c^2 + 3ca + 2cu + au - 2c - 3a - u + 2, \ -a^2u + a^2 - au + b - a + 2, \\ &- u^3 - 2a^2u + 3au - u, \ u^2 - u + 1 \rangle \\ I_1^v &= \langle a, \ d, \ c + 1, \ b + 1, \ v + 1 \rangle \\ I_9^v &= \langle c, \ d + 1, \ b, \ a - 1, \ v + 1 \rangle \\ I_9^v &= \langle c, \ d + 1, \ b, \ a - 1, \ v + 1 \rangle \\ I_9^v &= \langle c, \ d + 1, \ b, \ a - 1, \ v + 1 \rangle \\ I_9^v &= \langle c, \ d + 1, \ b, \ a - 1, \ v + 1 \rangle \\ I_9^v &= \langle c, \ d + 1, \ b, \ a - 1, \ v + 1 \rangle \\ I_9^v &= \langle c, \ d + 1, \ b, \ a - 1, \ v + 1 \rangle \\ I_9^v &= \langle c, \ d + 1, \ b, \ a - 1, \ v + 1 \rangle \\ I_9^v &= \langle c, \ d + 1, \ b, \ a - 1, \ v + 1 \rangle \\ I_9^v &= \langle c, \ d + 1, \ b, \ a - 1, \ v + 1 \rangle \\ I_9^v &= \langle c, \ d + 1, \ b, \ a - 1, \ v + 1 \rangle \\ I_9^v &= \langle c, \ d + 1, \ b, \ a - 1, \ v + 1 \rangle \\ I_9^v &= \langle c, \$$

 $I_4^v = \langle a, da + c + 1, dv - 1, cv + a + v, b + 1 \rangle$

 $I_3^v = \langle a, d+1, c-a, b+1, v+1 \rangle$

^{* 8} irreducible components of $\dim_{\mathbb{C}} = 0$, with total 77 representations.

^{* 1} irreducible components of $\dim_{\mathbb{C}} = 1$

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$\begin{array}{l} \text{I. } I_1^u = \langle -u^9 - 2u^8 + \dots + 4u^2 + 4d, \ u^9 + u^8 + \dots + 4c + 4u, \ -u^9 - 2u^8 + \dots + 4u^2 + 4b, \ u^9 + u^8 + \dots + 4a + 4u, \ u^{11} + u^{10} + \dots + 4u + 4 \rangle \end{array}$$

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -\frac{1}{4}u^{9} - \frac{1}{4}u^{8} + \dots + \frac{1}{2}u^{2} - u \\ \frac{1}{4}u^{9} + \frac{1}{2}u^{8} + \dots - u^{3} - u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -\frac{1}{4}u^{9} - \frac{1}{4}u^{8} + \dots + \frac{1}{2}u^{2} + 1 \\ \frac{1}{4}u^{9} + \frac{1}{4}u^{7} + \frac{1}{4}u^{5} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} \frac{1}{4}u^{8} + \frac{1}{2}u^{7} + \dots - \frac{1}{2}u^{2} - u \\ \frac{1}{4}u^{10} + \frac{1}{4}u^{9} + \dots - \frac{1}{2}u^{4} + u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -\frac{1}{4}u^{9} - \frac{1}{4}u^{8} + \dots + \frac{1}{2}u^{3} - u \\ \frac{1}{4}u^{9} + \frac{1}{2}u^{8} + \dots - \frac{1}{2}u^{3} - u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -\frac{1}{4}u^{10} + \frac{1}{4}u^{9} + \dots - \frac{1}{2}u^{3} - u^{2} \\ -\frac{1}{4}u^{10} - \frac{1}{4}u^{9} + \dots + \frac{1}{2}u^{3} - u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -\frac{1}{4}u^{8} - \frac{1}{2}u^{7} + \dots + u^{2} + u \\ -\frac{1}{4}u^{10} - \frac{1}{4}u^{9} + \dots + \frac{1}{2}u^{3} - u^{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} \frac{1}{2}u^{6} + \frac{1}{2}u^{4} + \frac{1}{2}u^{2} - u \\ \frac{1}{2}u^{8} + \frac{1}{2}u^{7} + \dots - \frac{1}{2}u^{3} - u^{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} \frac{1}{2}u^{6} + \frac{1}{2}u^{4} + \frac{1}{2}u^{2} - u \\ \frac{1}{2}u^{8} + \frac{1}{2}u^{7} + \dots - \frac{1}{2}u^{3} - u^{2} \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-u^{10} 3u^9 4u^8 5u^7 4u^6 u^5 + 3u^4 + 4u^3 + 2u^2 + 4u 10$

Crossings	u-Polynomials at each crossing		
$c_1, c_4, c_5 \\ c_6, c_8, c_{10}$	$u^{11} - u^{10} - 2u^9 + 3u^8 + 3u^7 - 5u^6 + 4u^4 - 2u^2 + 2u + 1$		
c_2, c_9, c_{11}	$u^{11} + 5u^{10} + \dots + 8u + 1$		
c_{3}, c_{7}	$u^{11} + u^{10} + 2u^9 + u^8 + 2u^7 - 3u^6 - 3u^5 - 4u^4 - 4u^2 + 4u + 4$		

Crossings	Riley Polynomials at each crossing
c_1, c_4, c_5 c_6, c_8, c_{10}	$y^{11} - 5y^{10} + \dots + 8y - 1$
c_2, c_9, c_{11}	$y^{11} + 7y^{10} + \dots + 40y - 1$
c_{3}, c_{7}	$y^{11} + 3y^{10} + \dots + 48y - 16$

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.981646 + 0.091031I		
a = 0.527474 + 0.160953I		
b = -0.259189 + 0.777251I	-0.38453 + 3.51380I	-10.33478 - 7.33311I
c = -0.366942 - 0.136098I		
d = 0.177956 + 0.945407I		
u = 0.981646 - 0.091031I		
a = 0.527474 - 0.160953I		
b = -0.259189 - 0.777251I	-0.38453 - 3.51380I	-10.33478 + 7.33311I
c = -0.366942 + 0.136098I		
d = 0.177956 - 0.945407I		
u = 0.360685 + 1.114550I		
a = 0.621176 - 0.836924I		
b = 0.410237 + 0.659760I	3.72768 - 0.41249I	-4.65663 - 1.55838I
c = 0.074184 - 1.245440I		
d = 0.569474 + 1.085660I		
u = 0.360685 - 1.114550I		
a = 0.621176 + 0.836924I		
b = 0.410237 - 0.659760I	3.72768 + 0.41249I	-4.65663 + 1.55838I
c = 0.074184 + 1.245440I		
d = 0.569474 - 1.085660I		
u = -1.053240 + 0.696446I		
a = 0.436462 - 0.109397I		
b = -1.04374 - 1.24892I	-5.36867 - 9.54355I	-15.3185 + 7.2879I
c = -1.44166 + 0.27329I		
d = 1.58561 + 1.00769I		
u = -1.053240 - 0.696446I		
a = 0.436462 + 0.109397I		
b = -1.04374 + 1.24892I	-5.36867 + 9.54355I	-15.3185 - 7.2879I
c = -1.44166 - 0.27329I		
d = 1.58561 - 1.00769I		

	Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u =	0.306817 + 1.268500I		
a =	0.136985 + 1.403680I		
b = -	0.369008 - 1.314180I	3.91373 - 8.22510I	-8.34823 + 8.49377I
c = -	0.860509 + 0.304947I		
d = -	0.184720 - 0.266859I		
u =	0.306817 - 1.268500I		
a =	0.136985 - 1.403680I		
b = -	0.369008 + 1.314180I	3.91373 + 8.22510I	-8.34823 - 8.49377I
c = -	0.860509 - 0.304947I		
d = -	0.184720 + 0.266859I		
u = -	0.809328 + 1.127750I		
a = -	0.58283 - 1.50488I		
b = -	1.16377 + 1.41429I	-3.9531 + 16.3093I	-14.3050 - 10.3392I
c = -	0.19914 + 1.98351I		
d =	1.51573 - 1.89641I		
u = -	0.809328 - 1.127750I		
a = -	0.58283 + 1.50488I		
b = -	1.16377 - 1.41429I	-3.9531 - 16.3093I	-14.3050 + 10.3392I
c = -	0.19914 - 1.98351I		
d =	1.51573 + 1.89641I		
u = -	-0.573171		
a =	0.721466		
b = -	-0.149048	-0.805061	-12.0740
c =	0.588134		
d = -	-0.328093		

$$\begin{array}{l} \text{II. } I_2^u = \langle 3u^{15} + 3u^{14} + \dots + 4d - 4, \ 2u^{16} + u^{15} + \dots + 4c + 2, \ u^{14} + 2u^{12} + \\ \dots + 4b + 4, \ 2u^{15} + 4u^{14} + \dots + 4a + 10, \ u^{17} + 2u^{16} + \dots - 2u - 2 \rangle \end{array}$$

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -\frac{1}{2}u^{15} - u^{14} + \dots - 7u - \frac{5}{2} \\ -\frac{1}{4}u^{14} - \frac{1}{2}u^{12} + \dots - u^{3} - 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -\frac{1}{2}u^{15} - u^{14} + \dots - 8u - \frac{5}{2} \\ -\frac{3}{4}u^{14} - \frac{3}{2}u^{12} + \dots - 2u^{3} - 1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -\frac{1}{2}u^{15} - \frac{5}{4}u^{14} + \dots - 7u - \frac{7}{2} \\ -\frac{1}{4}u^{16} - \frac{1}{2}u^{14} + \dots - 3u^{2} - u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -\frac{1}{2}u^{16} - \frac{1}{4}u^{15} + \dots - \frac{1}{2}u - \frac{1}{2} \\ -\frac{3}{4}u^{15} - \frac{3}{4}u^{14} + \dots + \frac{3}{2}u + 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -\frac{1}{4}u^{16} - \frac{3}{4}u^{14} + \dots - \frac{3}{2}u - \frac{1}{2} \\ -\frac{1}{4}u^{16} - u^{15} + \dots + \frac{3}{2}u + 1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} \frac{1}{2}u^{16} + u^{15} + \dots + \frac{11}{4}u^{2} - \frac{1}{2} \\ -\frac{1}{4}u^{16} - u^{15} + \dots + \frac{3}{2}u + 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -\frac{1}{2}u^{15} - u^{14} + \dots - \frac{15}{2}u - 3 \\ -\frac{1}{2}u^{14} - u^{12} + \dots - u^{3} - 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -\frac{1}{2}u^{15} - u^{14} + \dots - \frac{15}{2}u - 3 \\ -\frac{1}{2}u^{14} - u^{12} + \dots - u^{3} - 1 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$2u^{16} + 4u^{15} + 6u^{14} + 8u^{13} + 8u^{12} + 14u^{11} + 10u^{10} + 12u^9 + 4u^8 + 10u^7 + 20u^6 + 26u^5 + 16u^4 - 4u^3 - 10u^2 - 8u - 16$$

Crossings	u-Polynomials at each crossing		
c_1, c_4	$u^{17} - 5u^{15} + \dots + 3u^2 - 4$		
c_2	$u^{17} + 10u^{16} + \dots + 24u + 16$		
c_3, c_7	$u^{17} + 2u^{16} + \dots - 2u - 2$		
c_5, c_6, c_8 c_{10}	$u^{17} - 2u^{16} + \dots - u + 1$		
c_9, c_{11}	$u^{17} + 8u^{16} + \dots + 3u + 1$		

Crossings	Riley Polynomials at each crossing
c_1, c_4	$y^{17} - 10y^{16} + \dots + 24y - 16$
c_2	$y^{17} - 10y^{16} + \dots + 800y - 256$
c_3, c_7	$y^{17} + 6y^{16} + \dots + 8y - 4$
c_5, c_6, c_8 c_{10}	$y^{17} - 8y^{16} + \dots + 3y - 1$
c_9, c_{11}	$y^{17} + 4y^{16} + \dots - 13y - 1$

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.742615 + 0.650908I		
a = -1.40070 - 2.38570I		
b = -1.30236 + 0.73752I	-6.94910 - 1.22724I	-18.1485 + 0.8551I
c = -0.757942 + 1.169930I		
d = 1.088610 + 0.211420I		
u = -0.742615 - 0.650908I		
a = -1.40070 + 2.38570I		
b = -1.30236 - 0.73752I	-6.94910 + 1.22724I	-18.1485 - 0.8551I
c = -0.757942 - 1.169930I		
d = 1.088610 - 0.211420I		
u = -0.834865 + 0.265014I		
a = 0.511597 - 0.109110I		
b = -0.597254 - 0.693509I	-0.670307 - 0.433874I	-9.43166 - 0.87540I
c = 0.800041 - 0.146031I		
d = -0.807482 - 0.323646I		
u = -0.834865 - 0.265014I		
a = 0.511597 + 0.109110I		
b = -0.597254 + 0.693509I	-0.670307 + 0.433874I	-9.43166 + 0.87540I
c = 0.800041 + 0.146031I		
d = -0.807482 + 0.323646I		
u = 0.976738 + 0.562668I		
a = 0.583366 - 0.363840I		
b = 0.537642 - 0.360420I	-2.67943 + 4.64771I	-12.43915 - 4.11695I
c = 0.879539 + 0.321552I		
d = -1.09988 + 0.90044I		
u = 0.976738 - 0.562668I		
a = 0.583366 + 0.363840I		
b = 0.537642 + 0.360420I	-2.67943 - 4.64771I	-12.43915 + 4.11695I
c = 0.879539 - 0.321552I		
d = -1.09988 - 0.90044I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.003992 + 0.842342I		
a = 0.444102 - 0.000358I		
b = -1.56684 - 0.00455I	-1.98005 - 1.46955I	-8.36417 + 4.66528I
c = 0.054218 - 0.565099I		
d = -0.672214 + 0.818183I		
u = -0.003992 - 0.842342I		
a = 0.444102 + 0.000358I		
b = -1.56684 + 0.00455I	-1.98005 + 1.46955I	-8.36417 - 4.66528I
c = 0.054218 + 0.565099I		
d = -0.672214 - 0.818183I		
u = -0.656745 + 1.004700I		
a = 0.422901 - 0.058229I		
b = -1.64195 - 0.84395I	-5.86965 + 6.57063I	-15.2601 - 6.4345I
c = -0.374228 + 1.227350I		
d = 1.64609 - 1.04829I		
u = -0.656745 - 1.004700I		
a = 0.422901 + 0.058229I		
b = -1.64195 + 0.84395I	-5.86965 - 6.57063I	-15.2601 + 6.4345I
c = -0.374228 - 1.227350I		
d = 1.64609 + 1.04829I		
u = -0.110097 + 1.246510I		
a = 0.487558 + 1.065780I		
b = 0.185932 - 1.001000I	4.74481 + 2.71165I	-6.15758 - 3.13710I
c = 0.792244 - 0.317990I		
d = 0.132799 + 0.325259I		
u = -0.110097 - 1.246510I		
a = 0.487558 - 1.065780I		
b = 0.185932 + 1.001000I	4.74481 - 2.71165I	-6.15758 + 3.13710I
c = 0.792244 + 0.317990I		
d = 0.132799 - 0.325259I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.578864 + 1.116300I		
a = -0.25417 - 1.67482I		
b = -0.84436 + 1.27067I	1.75994 + 5.51158I	-7.74874 - 3.84490I
c = 0.33097 - 1.54877I		
d = -0.92580 + 1.26344I		
u = -0.578864 - 1.116300I		
a = -0.25417 + 1.67482I		
b = -0.84436 - 1.27067I	1.75994 - 5.51158I	-7.74874 + 3.84490I
c = 0.33097 + 1.54877I		
d = -0.92580 - 1.26344I		
u = 0.718492 + 1.129370I		
a = 0.527514 - 0.625770I		
b = 0.827540 + 0.397027I	-0.88663 - 10.83370I	-11.10622 + 7.41261I
c = 0.03532 + 1.64508I		
d = -1.31198 - 1.54232I		
u = 0.718492 - 1.129370I		
a = 0.527514 + 0.625770I		
b = 0.827540 - 0.397027I	-0.88663 + 10.83370I	-11.10622 - 7.41261I
c = 0.03532 - 1.64508I		
d = -1.31198 + 1.54232I		
u = 0.463897		
a = -10.6443		
b = -1.19672	-4.54799	-20.6880
c = -1.52034		
d = -0.100298		

$$\begin{array}{l} \text{III. } I_3^u = \langle 3u^{15} + 3u^{14} + \dots + 4d - 4, \ 2u^{16} + u^{15} + \dots + 4c + 2, \ -u^{15} - u^{14} + \dots + 4b + 4, \ -2u^{16} - 3u^{15} + \dots + 4a - 2, \ u^{17} + 2u^{16} + \dots - 2u - 2 \rangle \end{array}$$

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} \frac{1}{2}u^{16} + \frac{3}{4}u^{15} + \dots - \frac{1}{2}u + \frac{1}{2} \\ \frac{1}{4}u^{15} + \frac{1}{4}u^{14} + \dots - \frac{1}{2}u - 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} \frac{1}{4}u^{15} + \frac{1}{2}u^{13} + \dots + \frac{1}{2}u + 1 \\ -\frac{1}{4}u^{15} - \frac{3}{4}u^{13} + \dots - \frac{1}{2}u^{2} - \frac{1}{2}u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} \frac{1}{2}u^{16} + u^{15} + \dots - u - \frac{1}{2} \\ -\frac{3}{4}u^{16} - u^{15} + \dots + \frac{3}{2}u + 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -\frac{1}{2}u^{16} - \frac{1}{4}u^{15} + \dots - \frac{1}{2}u - \frac{1}{2} \\ -\frac{3}{4}u^{15} - \frac{3}{4}u^{14} + \dots + \frac{3}{2}u + 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -\frac{1}{4}u^{16} - \frac{3}{4}u^{14} + \dots - \frac{3}{2}u - \frac{1}{2} \\ -\frac{1}{4}u^{16} - u^{15} + \dots + \frac{3}{2}u + 1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} \frac{1}{2}u^{16} + u^{15} + \dots + \frac{11}{4}u^{2} - \frac{1}{2} \\ -\frac{1}{4}u^{16} - u^{15} + \dots + \frac{3}{2}u + 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -\frac{1}{2}u^{16} - \frac{3}{2}u^{14} + \dots - \frac{5}{2}u^{2} - \frac{1}{2}u \\ -u^{15} - u^{14} + \dots - 2u^{2} + 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -\frac{1}{2}u^{16} - \frac{3}{2}u^{14} + \dots - \frac{5}{2}u^{2} - \frac{1}{2}u \\ -u^{15} - u^{14} + \dots - 2u^{2} + 1 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$2u^{16} + 4u^{15} + 6u^{14} + 8u^{13} + 8u^{12} + 14u^{11} + 10u^{10} + 12u^9 + 4u^8 + 10u^7 + 20u^6 + 26u^5 + 16u^4 - 4u^3 - 10u^2 - 8u - 16$$

Crossings	u-Polynomials at each crossing
$c_1, c_4, c_6 \ c_8$	$u^{17} - 2u^{16} + \dots - u + 1$
c_2, c_9	$u^{17} + 8u^{16} + \dots + 3u + 1$
c_3, c_7	$u^{17} + 2u^{16} + \dots - 2u - 2$
c_5, c_{10}	$u^{17} - 5u^{15} + \dots + 3u^2 - 4$
c_{11}	$u^{17} + 10u^{16} + \dots + 24u + 16$

Crossings	Riley Polynomials at each crossing
c_1, c_4, c_6 c_8	$y^{17} - 8y^{16} + \dots + 3y - 1$
c_2, c_9	$y^{17} + 4y^{16} + \dots - 13y - 1$
c_3, c_7	$y^{17} + 6y^{16} + \dots + 8y - 4$
c_5, c_{10}	$y^{17} - 10y^{16} + \dots + 24y - 16$
c_{11}	$y^{17} - 10y^{16} + \dots + 800y - 256$

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.742615 + 0.650908I		
a = 0.456798 - 0.077068I		
b = -1.144690 - 0.810574I	-6.94910 - 1.22724I	-18.1485 + 0.8551I
c = -0.757942 + 1.169930I		
d = 1.088610 + 0.211420I		
u = -0.742615 - 0.650908I		
a = 0.456798 + 0.077068I		
b = -1.144690 + 0.810574I	-6.94910 + 1.22724I	-18.1485 - 0.8551I
c = -0.757942 - 1.169930I		
d = 1.088610 - 0.211420I		
u = -0.834865 + 0.265014I		
a = 0.636187 + 0.240948I		
b = 0.130684 + 0.390145I	-0.670307 - 0.433874I	-9.43166 - 0.87540I
c = 0.800041 - 0.146031I		
d = -0.807482 - 0.323646I		
u = -0.834865 - 0.265014I		
a = 0.636187 - 0.240948I		
b = 0.130684 - 0.390145I	-0.670307 + 0.433874I	-9.43166 + 0.87540I
c = 0.800041 + 0.146031I		
d = -0.807482 + 0.323646I		
u = 0.976738 + 0.562668I		
a = 0.456039 + 0.109653I		
b = -0.902787 + 1.069590I	-2.67943 + 4.64771I	-12.43915 - 4.11695I
c = 0.879539 + 0.321552I		
d = -1.09988 + 0.90044I		
u = 0.976738 - 0.562668I		
a = 0.456039 - 0.109653I		
b = -0.902787 - 1.069590I	-2.67943 - 4.64771I	-12.43915 + 4.11695I
c = 0.879539 - 0.321552I		
d = -1.09988 - 0.90044I		

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.003992 + 0.842342I		
a = 1.18580 + 1.31498I		
b = -0.210717 - 0.521575I	-1.98005 - 1.46955I	-8.36417 + 4.66528I
c = 0.054218 - 0.565099I		
d = -0.672214 + 0.818183I		
u = -0.003992 - 0.842342I		
a = 1.18580 - 1.31498I		
b = -0.210717 + 0.521575I	-1.98005 + 1.46955I	-8.36417 - 4.66528I
c = 0.054218 + 0.565099I		
d = -0.672214 - 0.818183I		
u = -0.656745 + 1.004700I		
a = -0.46618 - 1.83030I		
b = -1.01520 + 1.16025I	-5.86965 + 6.57063I	-15.2601 - 6.4345I
c = -0.374228 + 1.227350I		
d = 1.64609 - 1.04829I		
u = -0.656745 - 1.004700I		
a = -0.46618 + 1.83030I		
b = -1.01520 - 1.16025I	-5.86965 - 6.57063I	-15.2601 + 6.4345I
c = -0.374228 - 1.227350I		
d = 1.64609 + 1.04829I		
u = -0.110097 + 1.246510I		
a = 0.360483 - 1.280850I		
b = -0.110904 + 1.152270I	4.74481 + 2.71165I	-6.15758 - 3.13710I
c = 0.792244 - 0.317990I		
d = 0.132799 + 0.325259I		
u = -0.110097 - 1.246510I		
a = 0.360483 + 1.280850I		
b = -0.110904 - 1.152270I	4.74481 - 2.71165I	-6.15758 + 3.13710I
c = 0.792244 + 0.317990I		
d = 0.132799 - 0.325259I		

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.578864 + 1.116300I		
a = 0.568056 + 0.689908I		
b = 0.662834 - 0.498844I	1.75994 + 5.51158I	-7.74874 - 3.84490I
c = 0.33097 - 1.54877I		
d = -0.92580 + 1.26344I		
u = -0.578864 - 1.116300I		
a = 0.568056 - 0.689908I		
b = 0.662834 + 0.498844I	1.75994 - 5.51158I	-7.74874 + 3.84490I
c = 0.33097 + 1.54877I		
d = -0.92580 - 1.26344I		
u = 0.718492 + 1.129370I		
a = -0.46497 + 1.57649I		
b = -1.03332 - 1.36799I	-0.88663 - 10.83370I	-11.10622 + 7.41261I
c = 0.03532 + 1.64508I		
d = -1.31198 - 1.54232I		
u = 0.718492 - 1.129370I		
a = -0.46497 - 1.57649I		
b = -1.03332 + 1.36799I	-0.88663 + 10.83370I	-11.10622 - 7.41261I
c = 0.03532 - 1.64508I		
d = -1.31198 + 1.54232I		
u = 0.463897		
a = 0.535599		
b = -0.751807	-4.54799	-20.6880
c = -1.52034		
d = -0.100298		

IV.
$$I_4^u = \langle 2u^{16} + 5u^{15} + \dots + 4d + 14u, -u^{15} - 2u^{13} + \dots + 4c - 4, -u^{15} - u^{14} + \dots + 4b + 4, -2u^{16} - 3u^{15} + \dots + 4a - 2, u^{17} + 2u^{16} + \dots - 2u - 2 \rangle$$

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} \frac{1}{2}u^{16} + \frac{3}{4}u^{15} + \dots - \frac{1}{2}u + \frac{1}{2} \\ \frac{1}{4}u^{15} + \frac{1}{4}u^{14} + \dots - \frac{1}{2}u - 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} \frac{1}{4}u^{15} + \frac{1}{2}u^{13} + \dots + \frac{1}{2}u + 1 \\ -\frac{1}{4}u^{15} - \frac{3}{4}u^{13} + \dots - \frac{1}{2}u^{2} - \frac{1}{2}u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} \frac{1}{2}u^{16} + u^{15} + \dots - u - \frac{1}{2} \\ -\frac{3}{4}u^{16} - u^{15} + \dots + \frac{3}{2}u + 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} \frac{1}{2}u^{16} - \frac{5}{4}u^{15} + \dots - 7u^{2} - \frac{7}{2}u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} \frac{1}{2}u^{11} + u^{9} + \dots + 2u + 1 \\ -\frac{1}{2}u^{16} - u^{15} + \dots - 7u^{2} - \frac{5}{2}u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} \frac{1}{2}u^{11} + u^{9} + \dots + \frac{1}{2}u - 1 \\ -\frac{1}{2}u^{16} - u^{15} + \dots - 7u^{2} - \frac{5}{2}u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} \frac{1}{2}u^{11} + u^{9} + \dots + \frac{5}{2}u + 1 \\ -\frac{1}{2}u^{16} - u^{15} + \dots - \frac{13}{2}u^{2} - 3u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} \frac{1}{2}u^{11} + u^{9} + \dots + \frac{5}{2}u + 1 \\ -\frac{1}{2}u^{16} - u^{15} + \dots - \frac{13}{2}u^{2} - 3u \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$2u^{16} + 4u^{15} + 6u^{14} + 8u^{13} + 8u^{12} + 14u^{11} + 10u^{10} + 12u^9 + 4u^8 + 10u^7 + 20u^6 + 26u^5 + 16u^4 - 4u^3 - 10u^2 - 8u - 16$$

Crossings	u-Polynomials at each crossing
c_1, c_4, c_5 c_{10}	$u^{17} - 2u^{16} + \dots - u + 1$
c_2, c_{11}	$u^{17} + 8u^{16} + \dots + 3u + 1$
c_{3}, c_{7}	$u^{17} + 2u^{16} + \dots - 2u - 2$
c_{6}, c_{8}	$u^{17} - 5u^{15} + \dots + 3u^2 - 4$
<i>c</i> 9	$u^{17} + 10u^{16} + \dots + 24u + 16$

Crossings	Riley Polynomials at each crossing
c_1, c_4, c_5 c_{10}	$y^{17} - 8y^{16} + \dots + 3y - 1$
c_2, c_{11}	$y^{17} + 4y^{16} + \dots - 13y - 1$
c_{3}, c_{7}	$y^{17} + 6y^{16} + \dots + 8y - 4$
c_{6}, c_{8}	$y^{17} - 10y^{16} + \dots + 24y - 16$
<i>c</i> 9	$y^{17} - 10y^{16} + \dots + 800y - 256$

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.742615 + 0.650908I		
a = 0.456798 - 0.077068I		
b = -1.144690 - 0.810574I	-6.94910 - 1.22724I	-18.1485 + 0.8551I
c = -1.59606 + 0.84314I		
d = 3.08014 - 0.53548I		
u = -0.742615 - 0.650908I		
a = 0.456798 + 0.077068I		
b = -1.144690 + 0.810574I	-6.94910 + 1.22724I	-18.1485 - 0.8551I
c = -1.59606 - 0.84314I		
d = 3.08014 + 0.53548I		
u = -0.834865 + 0.265014I		
a = 0.636187 + 0.240948I		
b = 0.130684 + 0.390145I	-0.670307 - 0.433874I	-9.43166 - 0.87540I
c = 0.126137 + 0.313566I		
d = 0.284217 + 0.647378I		
u = -0.834865 - 0.265014I		
a = 0.636187 - 0.240948I		
b = 0.130684 - 0.390145I	-0.670307 + 0.433874I	-9.43166 + 0.87540I
c = 0.126137 - 0.313566I		
d = 0.284217 - 0.647378I		
u = 0.976738 + 0.562668I		
a = 0.456039 + 0.109653I		
b = -0.902787 + 1.069590I	-2.67943 + 4.64771I	-12.43915 - 4.11695I
c = -1.248760 - 0.438489I		
d = 1.50245 - 0.07666I		
u = 0.976738 - 0.562668I		
a = 0.456039 - 0.109653I		
b = -0.902787 - 1.069590I	-2.67943 - 4.64771I	-12.43915 + 4.11695I
c = -1.248760 + 0.438489I		
d = 1.50245 + 0.07666I		

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.003992 + 0.842342I		
a = 1.18580 + 1.31498I		
b = -0.210717 - 0.521575I	-1.98005 - 1.46955I	-8.36417 + 4.66528I
c = -0.00520 + 2.80579I		
d = 0.008617 - 0.945710I		
u = -0.003992 - 0.842342I		
a = 1.18580 - 1.31498I		
b = -0.210717 + 0.521575I	-1.98005 + 1.46955I	-8.36417 - 4.66528I
c = -0.00520 - 2.80579I		
d = 0.008617 + 0.945710I		
u = -0.656745 + 1.004700I		
a = -0.46618 - 1.83030I		
b = -1.01520 + 1.16025I	-5.86965 + 6.57063I	-15.2601 - 6.4345I
c = -1.54709 + 2.16200I		
d = 1.70703 - 0.63228I		
u = -0.656745 - 1.004700I		
a = -0.46618 + 1.83030I		
b = -1.01520 - 1.16025I	-5.86965 - 6.57063I	-15.2601 + 6.4345I
c = -1.54709 - 2.16200I		
d = 1.70703 + 0.63228I		
u = -0.110097 + 1.246510I		
a = 0.360483 - 1.280850I		
b = -0.110904 + 1.152270I	4.74481 + 2.71165I	-6.15758 - 3.13710I
c = -0.654988 - 0.910006I		
d = -0.154907 + 0.832377I		
u = -0.110097 - 1.246510I		
a = 0.360483 + 1.280850I		0.4555
b = -0.110904 - 1.152270I	4.74481 - 2.71165I	-6.15758 + 3.13710I
c = -0.654988 + 0.910006I		
d = -0.154907 - 0.832377I		

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.578864 + 1.116300I		
a = 0.568056 + 0.689908I		
b = 0.662834 - 0.498844I	1.75994 + 5.51158I	-7.74874 - 3.84490I
c = 0.119127 + 1.123250I		
d = 1.08705 - 0.99233I		
u = -0.578864 - 1.116300I		
a = 0.568056 - 0.689908I		
b = 0.662834 + 0.498844I	1.75994 - 5.51158I	-7.74874 + 3.84490I
c = 0.119127 - 1.123250I		
d = 1.08705 + 0.99233I		
u = 0.718492 + 1.129370I		
a = -0.46497 + 1.57649I		
b = -1.03332 - 1.36799I	-0.88663 - 10.83370I	-11.10622 + 7.41261I
c = -0.64982 - 1.72842I		
d = 1.23193 + 1.36601I		
u = 0.718492 - 1.129370I		
a = -0.46497 - 1.57649I		
b = -1.03332 + 1.36799I	-0.88663 + 10.83370I	-11.10622 - 7.41261I
c = -0.64982 + 1.72842I		
d = 1.23193 - 1.36601I		
u = 0.463897		
a = 0.535599		
b = -0.751807	-4.54799	-20.6880
c = 2.91332		
d = -5.49303		

$$\text{V. } I_5^u = \langle -2a^2cu + cau + \cdots + a + 1, \ a^2cu - 4cau + \cdots - 3a + 2, \ -a^2u - au + \cdots - a + 2, \ a^3 - 2a^2u + 3au - u, \ u^2 - u + 1 \rangle$$

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ u - 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} a^{2}u - a^{2} + au + a - 2 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -a^{2}u + a^{2} - a + 2 \\ 2a^{2}u - a^{2} - au + 3a + 2u - 4 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} a^{2}u - a^{2} + au + 2a - 2 \\ -2a^{2}u + a^{2} + au - 4a - 2u + 4 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} a^{2}cu - \frac{1}{2}cau + \cdots - \frac{1}{2}a - \frac{1}{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} \frac{1}{2}a^{2}cu + 2cau + \cdots + \frac{3}{2}c + \frac{3}{2}a \\ \frac{3}{2}a^{2}cu - \frac{5}{2}cau + \cdots - 2a - \frac{1}{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -a^{2}cu + \frac{1}{2}cau + \cdots + \frac{1}{2}a + \frac{1}{2} \\ \frac{3}{2}a^{2}cu - \frac{5}{2}cau + \cdots - 2a - \frac{1}{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} \frac{3}{2}cau + \frac{1}{2}a^{2}u + \cdots + \frac{3}{2}a + \frac{1}{2} \\ -\frac{3}{2}cau - \frac{1}{2}a^{2}u + \cdots - \frac{3}{2}a - \frac{3}{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} \frac{3}{2}cau + \frac{1}{2}a^{2}u + \cdots + \frac{3}{2}a + \frac{1}{2} \\ -\frac{3}{2}cau - \frac{1}{2}a^{2}u + \cdots - \frac{3}{2}a - \frac{3}{2} \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = 4u 14

Crossings	u-Polynomials at each crossing
$c_1, c_4, c_5 \\ c_6, c_8, c_{10}$	$(u^6 - 2u^4 + u^3 + u^2 - u + 1)^2$
c_2, c_9, c_{11}	$(u^6 + 4u^5 + 6u^4 + 3u^3 - u^2 - u + 1)^2$
c_3, c_7	$(u^2 - u + 1)^6$

Crossings	Riley Polynomials at each crossing
$c_1, c_4, c_5 \\ c_6, c_8, c_{10}$	$(y^6 - 4y^5 + 6y^4 - 3y^3 - y^2 + y + 1)^2$
c_2, c_9, c_{11}	$(y^6 - 4y^5 + 10y^4 - 11y^3 + 19y^2 - 3y + 1)^2$
c_3, c_7	$(y^2 + y + 1)^6$

Solutions to I_5^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.500000 + 0.866025I		
a = 0.741145 - 0.632163I		
b = 0.395862 + 0.291743I	-3.28987 - 2.02988I	-12.00000 + 3.46410I
c = 0.562490 + 0.528127I		
d = -1.77196 - 0.20576I		
u = 0.500000 + 0.866025I		
a = 0.741145 - 0.632163I		
b = 0.395862 + 0.291743I	-3.28987 - 2.02988I	-12.00000 + 3.46410I
c = 0.85024 + 2.21534I		
d = -1.091350 - 0.608709I		
u = 0.500000 + 0.866025I		
a = 0.439111 + 0.046276I		
b = -1.51194 + 0.59451I	-3.28987 - 2.02988I	-12.00000 + 3.46410I
c = -0.412728 - 1.011420I		
d = 0.863315 + 0.814466I		
u = 0.500000 + 0.866025I		
a = 0.439111 + 0.046276I		
b = -1.51194 + 0.59451I	-3.28987 - 2.02988I	-12.00000 + 3.46410I
c = 0.562490 + 0.528127I		
d = -1.77196 - 0.20576I		
u = 0.500000 + 0.866025I		
a = -0.18026 + 2.31794I		
b = -0.883917 - 0.886250I	-3.28987 - 2.02988I	-12.00000 + 3.46410I
c = -0.412728 - 1.011420I		
d = 0.863315 + 0.814466I		
u = 0.500000 + 0.866025I		
a = -0.18026 + 2.31794I		
b = -0.883917 - 0.886250I	-3.28987 - 2.02988I	-12.00000 + 3.46410I
c = 0.85024 + 2.21534I		
d = -1.091350 - 0.608709I		

Solutions to I_5^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.500000 - 0.866025I		
a = 0.741145 + 0.632163I		
b = 0.395862 - 0.291743I	-3.28987 + 2.02988I	-12.00000 - 3.46410I
c = 0.562490 - 0.528127I		
d = -1.77196 + 0.20576I		
u = 0.500000 - 0.866025I		
a = 0.741145 + 0.632163I		
b = 0.395862 - 0.291743I	-3.28987 + 2.02988I	-12.00000 - 3.46410I
c = 0.85024 - 2.21534I		
d = -1.091350 + 0.608709I		
u = 0.500000 - 0.866025I		
a = 0.439111 - 0.046276I		
b = -1.51194 - 0.59451I	-3.28987 + 2.02988I	-12.00000 - 3.46410I
c = -0.412728 + 1.011420I		
d = 0.863315 - 0.814466I		
u = 0.500000 - 0.866025I		
a = 0.439111 - 0.046276I		
b = -1.51194 - 0.59451I	-3.28987 + 2.02988I	-12.00000 - 3.46410I
c = 0.562490 - 0.528127I		
d = -1.77196 + 0.20576I		
u = 0.500000 - 0.866025I		
a = -0.18026 - 2.31794I		
b = -0.883917 + 0.886250I	-3.28987 + 2.02988I	-12.00000 - 3.46410I
c = -0.412728 + 1.011420I		
d = 0.863315 - 0.814466I		
u = 0.500000 - 0.866025I		
a = -0.18026 - 2.31794I		
b = -0.883917 + 0.886250I	-3.28987 + 2.02988I	-12.00000 - 3.46410I
c = 0.85024 - 2.21534I		
d = -1.091350 + 0.608709I		

VI.
$$I_1^v = \langle a, d, c+1, b+1, v+1 \rangle$$

$$a_3 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -1\\0 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} -1\\0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -12

Crossings	u-Polynomials at each crossing
c_1, c_5	u-1
$c_2, c_4, c_{10} \ c_{11}$	u+1
c_3, c_6, c_7 c_8, c_9	u

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4 c_5, c_{10}, c_{11}	y-1
c_3, c_6, c_7 c_8, c_9	y

Solutions to I_1^v	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
v = -1.00000		
a = 0		
b = -1.00000	-3.28987	-12.0000
c = -1.00000		
d = 0		

VII.
$$I_2^v=\langle c,\; d+1,\; b,\; a-1,\; v+1 \rangle$$

$$a_3 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -12

Crossings	u-Polynomials at each crossing
c_1, c_2, c_3 c_4, c_7	u
c_5, c_8, c_9 c_{11}	u+1
c_6, c_{10}	u-1

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_3 c_4, c_7	y
$c_5, c_6, c_8 \\ c_9, c_{10}, c_{11}$	y-1

Solutions to I_2^v		$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
v = -1.00000			
a = 1.00000			
b = 0)	-3.28987	-12.0000
c = 0)		
d = -1.00000			

$$\text{VIII. } I_3^v = \langle a, \ d+1, \ c-a, \ b+1, \ v+1 \rangle$$

$$a_3 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -12

Crossings	u-Polynomials at each crossing
c_1, c_6	u-1
c_2, c_4, c_8 c_9	u+1
c_3, c_5, c_7 c_{10}, c_{11}	u

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4 c_6, c_8, c_9	y-1
c_3, c_5, c_7 c_{10}, c_{11}	y

Solutions to I_3^v	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
v = -1.00000		
a = 0		
b = -1.00000	-3.28987	-12.0000
c = 0		
d = -1.00000		

IX. $I_4^v = \langle a, \ da + c + 1, \ dv - 1, \ cv + a + v, \ b + 1 \rangle$

(i) Arc colorings

$$a_3 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} v \\ 0 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} v \\ 0 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -1 \\ d \end{pmatrix}$$

$$a_9 = \begin{pmatrix} v - 1 \\ d \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 1 \\ -d \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -1 \\ d - 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -1 \\ d-1 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $d^2 + v^2 20$
- (iv) u-Polynomials at the component : It cannot be defined for a positive dimension component.
- (v) Riley Polynomials at the component : It cannot be defined for a positive dimension component.

Solution to I_4^v	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
$v = \cdots$		
$a = \cdots$		
$b = \cdots$	-4.93480	-19.9459 + 0.3728I
$c = \cdots$		
$d = \cdots$		

X. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_6	$u(u-1)^{2}(u^{6}-2u^{4}+u^{3}+u^{2}-u+1)^{2}$ $\cdot (u^{11}-u^{10}-2u^{9}+3u^{8}+3u^{7}-5u^{6}+4u^{4}-2u^{2}+2u+1)$ $\cdot (u^{17}-5u^{15}+\cdots+3u^{2}-4)(u^{17}-2u^{16}+\cdots-u+1)^{2}$
c_2, c_9, c_{11}	$ u(u+1)^{2}(u^{6} + 4u^{5} + 6u^{4} + 3u^{3} - u^{2} - u + 1)^{2} $ $ \cdot (u^{11} + 5u^{10} + \dots + 8u + 1)(u^{17} + 8u^{16} + \dots + 3u + 1)^{2} $ $ \cdot (u^{17} + 10u^{16} + \dots + 24u + 16) $
c_3, c_7	$\begin{vmatrix} u^{3}(u^{2} - u + 1)^{6} \\ \cdot (u^{11} + u^{10} + 2u^{9} + u^{8} + 2u^{7} - 3u^{6} - 3u^{5} - 4u^{4} - 4u^{2} + 4u + 4) \\ \cdot (u^{17} + 2u^{16} + \dots - 2u - 2)^{3} \end{vmatrix}$
c_4, c_8	$ u(u+1)^{2}(u^{6} - 2u^{4} + u^{3} + u^{2} - u + 1)^{2} $ $ \cdot (u^{11} - u^{10} - 2u^{9} + 3u^{8} + 3u^{7} - 5u^{6} + 4u^{4} - 2u^{2} + 2u + 1) $ $ \cdot (u^{17} - 5u^{15} + \dots + 3u^{2} - 4)(u^{17} - 2u^{16} + \dots - u + 1)^{2} $
c_5, c_{10}	$ u(u-1)(u+1)(u^{6}-2u^{4}+u^{3}+u^{2}-u+1)^{2} $ $ \cdot (u^{11}-u^{10}-2u^{9}+3u^{8}+3u^{7}-5u^{6}+4u^{4}-2u^{2}+2u+1) $ $ \cdot (u^{17}-5u^{15}+\cdots+3u^{2}-4)(u^{17}-2u^{16}+\cdots-u+1)^{2} $

XI. Riley Polynomials

Crossings	Riley Polynomials at each crossing
$c_1, c_4, c_5 \\ c_6, c_8, c_{10}$	$y(y-1)^{2}(y^{6} - 4y^{5} + 6y^{4} - 3y^{3} - y^{2} + y + 1)^{2}$ $\cdot (y^{11} - 5y^{10} + \dots + 8y - 1)(y^{17} - 10y^{16} + \dots + 24y - 16)$ $\cdot (y^{17} - 8y^{16} + \dots + 3y - 1)^{2}$
c_2, c_9, c_{11}	$y(y-1)^{2}(y^{6} - 4y^{5} + 10y^{4} - 11y^{3} + 19y^{2} - 3y + 1)^{2}$ $\cdot (y^{11} + 7y^{10} + \dots + 40y - 1)(y^{17} - 10y^{16} + \dots + 800y - 256)$ $\cdot (y^{17} + 4y^{16} + \dots - 13y - 1)^{2}$
c_3, c_7	$y^{3}(y^{2} + y + 1)^{6}(y^{11} + 3y^{10} + \dots + 48y - 16)$ $(y^{17} + 6y^{16} + \dots + 8y - 4)^{3}$