$$\begin{array}{l} 1. \ Pr(\alpha_1, \ \ldots, \ \alpha_n \ | \ \beta) = Pr(\alpha_1 | \ \alpha_2, \ \ldots, \ \alpha_n, \ \beta) \ * \ Pr(\alpha_2 | \ \alpha_3, \ \ldots, \ \alpha_n, \ \beta) \ * \ \ldots \ * \ Pr(\alpha_n | \ \beta) \\ = (Pr(\alpha_1, \ \alpha_2, \ \ldots, \ \alpha_n, \ \beta) / Pr(\alpha_2, \ \alpha_3, \ \ldots, \ \alpha_n, \ \beta)) \ * \ (Pr(\alpha_2, \ \alpha_3, \ \ldots, \ \alpha_n, \ \beta) / Pr(\alpha_3, \ \alpha_4, \ \ldots, \ \alpha_n, \ \beta)) \ * \ \ldots \ * \ (Pr(\alpha_{n-1}, \ \alpha_n, \ \beta) / Pr(\alpha_n, \ \beta)) \ * \ (Pr(\alpha_n, \ \beta) / Pr(\beta)) \\ = Pr(\alpha_1, \ \ldots, \ \alpha_n, \ \beta) \ / \ Pr(\beta) \ because \ like \ terms \ above \ cancel \ out \\ = Pr(\alpha_1, \ \ldots, \ \alpha_n \ | \ \beta) \end{array}$$

2. P(oil) = 0.5, P(gas) = 0.2, $P(\sim oil \& \sim gas) = 0.3$, P(positive|oil) = 0.9, P(positive|gas) = 0.3, $P(positive|\sim oil \& \sim gas) = 0.1$ P(oil | positive) = P(positive|oil) * P(oil)/P(positive) $P(positive) = P(positive|oil) * P(oil) + P(positive|gas) * P(gas) + P(positive|\sim oil \& \sim gas) * P(\sim oil \& \sim gas) = 0.9 * 0.5 + 0.3 * 0.2 + 0.1 * 0.3 = 0.54$ P(oil | positive) = 0.9 * 0.5 / 0.54 = 0.8333

3.


```
Coin = \{a, b, c\}
X_1 = \{\text{heads, tails}\}
X_2 = \{\text{heads, tails}\}
X_3 = \{\text{heads, tails}\}
Bell = \{\text{ring "on", ~ring "on"}\}
```

Coin:

P(a)	P(b)	P(c)
1/3	1/3	1/3

 X_1 :

Coin	P(heads)	P(tails)
a	0.2	0.8
b	0.4	0.6
С	0.8	0.2

X₂:

Coin	P(heads)	P(tails)
a	0.2	0.8
b	0.4	0.6
С	0.8	0.2

X_3 :			
X ₃ : Coin	P(heads)	P(tails)	
a	0.2	0.8	
b	0.4	0.6	
С	0.8	0.2	

Bell:

X_1	X_2	X ₃	P(ring "on")
heads	heads	heads	1
heads	heads	tails	0
heads	tails	heads	0
heads	tails	tails	0
tails	heads	heads	0
tails	heads	tails	0
tails	tails	heads	0
tails	tails	tails	1

4.
a)
Ind(A, {}, {B, E})
Ind (B, {}, {A, C})
Ind (C, {A}, {B, D, E})
Ind (D, {A, B}, {C, E})
Ind (E, {B}, {A, C, D, F, G})
Ind (F, {C, D}, {A, B, E})
Ind (G, {F}, {A, B, C, D, E, H})
Ind (H, {E, F}, {A, B, C, D, G})

b)

- d_separated(A, F, E) is **false** because if F is not in Z, there are non-converging paths from A to E and vice versa.
- d_separated(G, B, E) is **true** because if B is not in Z, there aren't non-converging paths from G to E or vice versa.
- d_separated(AB, CDE, GH) is **true** because if CDE is not in Z, there aren't non-converging paths from AB to GH or vice versa.

c)
$$Pr(a, b, c, d, e, f, g, h) = Pr(a) * Pr(c \mid a) * Pr(b) * Pr(d \mid a, b) * Pr(e \mid b) * Pr(f \mid c, d) * Pr(g \mid f) * Pr(h \mid e, f)$$

d)
$$Pr(A = 1, B = 1) = P(A=1) * P(B=1)$$
 because they are d-separated $= 0.2 * 0.7 = \textbf{0.14}$
 $Pr(E = 0 \mid A = 0) = P(E=0)$ because they are d-separated $= Pr(E=0|B=0) * P(B=0) + Pr(E=0|B=1) * P(B=1) = 0.1 * 0.3 + 0.9 * 0.7 = \textbf{0.66}$

5. a) $\alpha : A => B$

W	A	В	α
\mathbf{w}_0	T	T	T
\mathbf{W}_1	T	F	F
W ₂	F	T	T
W3	F	F	T

Models of α are $\{w_0, w_2, w_3\}$.

b)
$$Pr(\alpha) = 0.3 + 0.1 + 0.4 = 0.8$$

c) $Pr(A, B \mid \alpha)$:

<u>-)() -) -) - </u>				
A	В	$Pr(A, B \mid \alpha)$		
T	T	0.3/0.8 = 0.375		
T	F	0		
F	T	0.1/0.8 = 0.125		
F	F	0.4/0.8 = 0.5		

d)
$$Pr(A \Rightarrow \neg B \mid \alpha) = (0.1 + 0.4)/0.8 = 0.625$$