

UNIVERSIDAD DEL BÍO-BÍO

FACULTAD DE CIENCIAS DEPARTAMENTO DE MATEMÁTICA

Segundo Semestre 2022

$\frac{ FORMATIVO \ N^{\circ}1 - C\acute{A}LCULO \ I \ (220157)}{M\acute{O}DULO \ I}$

Pregunta 1 Establezca la veracidad o falsedad de cada una de las proposiciones siguientes. Cada enunciado falso cámbielo por una proposición verdadera correspondiente.

- a) Si x > 0 entonces $x^2 > x$
- b) Cuando se multiplican ambos lados de una desigualdad por el mismo número positivo, la desigualdad preserva su sentido.
- c) El valor absoluto de todo número real siempre es un número positivo.
- d) Si $|x^2| = |y^2|$ entonces x = y o bien x = -y
- e) Si 0 > x > y entonces |x| > |y|
- f) Una desigualdad cuadrática tiene dos soluciones, una solución o no tiene soluciones.
- g) Si x, y > 0 y x > y, entonces $\frac{1}{x} < \frac{1}{y}$

Solución:

- a) Falso, por ejemplo, tome x=0.5. Una proposición verdadera es: x>1 entonces $x^2>x$
- b) Verdadero
- c) Falso, el valor absoluto de todo número real siempre es número no negativo. (Recuerde que el valor absoluto del cero es cero)
- d) verdadero
- e) Falso. Si 0 > x > y entonces |x| < |y|
- f) Falso. Una desigualdad cuadrática tiene cero soluciones, una solución o un número infinito de soluciones.
- g) Verdadero

Luego

Solución:

UNIVERSIDAD DEL BÍO-BÍO

FACULTAD DE CIENCIAS

Segundo Semestre 2022

Pregunta 2 Jorge Iñigo elabora rompecabezas de madera; puede vender todos los que produce al precio de \$12 por unidad. Los costos de materia prima y mano de obra por unidad son de \$6 y los costos fijos semanales son \$1000. ¿Cuántos rompecabezas debe producir si desea obtener utilidades semanales de al menos \$500?

Solución: Sea el precio de venta 12x, tal que x es el número de unidades. Paralelamente el costo dado por COSTO = 6x + 1000. Si la utilidad debe ser al menos de \$500:

Se deben wender al menos 250 rompecabezas

Pregunta 3 Resuelva la siguiente inecuación cuadrática.

Nota; primero analiza si es factorizable en IR x+3=0 x=-3

Sean los puntos críticos x = -3 y x = -3

Finalmente se tiene $x \in]-\infty, -3[\cup]-2, +\infty[$

Pregunta 4 Resuelva la siguiente inecuación racional.

$$\frac{6}{x-2} \le x - 3$$

UNIVERSIDAD DEL BÍO-BÍO

FACULTAD DE CIENCIAS

DEPARTAMENTO DE MATEMÁTICA

Segundo Semestre 2022

Solución:

$$\frac{6}{x-2} \le x - 3$$

$$\frac{6}{x-2} - (x-3) \le 0$$

$$\frac{6 - (x-2)(x-3)}{x-2} \le 0$$

$$\frac{6 - (x^2 - 5x + 6)}{x-2} \le 0$$

$$\frac{6 - (x^2 - 5x + 6)}{x-2} \le 0$$

$$\frac{(x-6)(x-2)}{x-2} \le 0$$

$$\frac{(x-6)(x-2)}{x-2} \le 0$$

$$\frac{(x-6)(x-2)}{x-2} \le 0$$

$$\frac{(x-6)(x-2)}{x-2} \le 0$$

Entonces x = 0, x = 5 y x = 2 son puntos críticos.

		0		200		5	
(x)	-	0	+	+	+	+	+
(5-x)	+	+	+	+	+	0	-
(x-2)	-	-	-	0	+	+	+
$\frac{x(5-x)}{(x-2)}$	+	0	pu	ind	+	0	My

Finalmente la solución viene dada por $x \in [0, 2] \cup [5, +\infty[$.

Pregunta 5 Resuelva la siguiente inecuación aplicando las propiedades que correspondan.

$$\left|\frac{x}{2}+7\right| \ge 2$$

$$\left|\alpha\right| \ge b \quad b \in \mathbb{R}$$

$$\Rightarrow \alpha \ge b \quad \forall \alpha \le -b$$

Solución

$$|\frac{x}{2} + 7| \ge 2 \Longrightarrow \frac{x}{2} + 7 \le 2$$

$$\Longrightarrow \frac{x}{2} \le -9 \lor \frac{x}{2} \ge -5$$

$$\Longrightarrow x \le -18 \ (x \ge -10)$$

La solución es $x \in]-\infty, -18] \cup [-10, +\infty[$.

UNIVERSIDAD DEL BÍO-BÍO

FACULTAD DE CIENCIAS

DEPARTAMENTO DE MATEMÁTICA

Profesores: Paulina Llarena - Jenner Chapoñán - Efraín Nova Segundo Semestre 2022

Pregunta 6 Manuel Zamora, gerente de una distribuidora de televisores, sabe que a un precio de p dólares por unidad de cierto modelo pueden venderse x unidades al mes y la relación entre 'el precio y las unidades vendidas es p=1000-2x. ¿Cuántas unidades debe vender Manuel para que los ingresos mensuales sean de al menos \$45.000? El precio de ese modelo de televisor no puede ser menor a \$300.

Solución 50 televisores, no es válido 450

$$|000 \times -2x^2 - 45000 \ge 0$$

$$2x^{2} - 1000x + 45000 \leq 0$$

 $x^{2} - 500x + 22500 \leq 0$

		<i>5</i> 0		450	
(x - So)	١	0	+	+	+
(x-450)	Ą	-	-	Q	+
(x-5)(x-450)	+	O	World	0	+

1000-2 2300