Basics for Enhanced Visualization: 3D/Data Dimensionality reduction

Rodrigo Cabral Polytech Nice - Data Science cabral@unice.fr

Outline

- 1. Introduction
- 2. Principal component analysis and its kernel version
- 3. Multidimensional scaling and ISOMAP
- Neighborhood structure preservation
- 5. Conclusions

- Example: New York Times corpus
- 1.8 million articles with tagged subjects: politics, economy, music, visual arts etc.
- We can assign to each tagged article a vector with the histogram of its words.

- Example: New York Times corpus
- 1.8 million articles with tagged subjects: politics, economy, music, visual arts etc.
- We can assign to each tagged article a vector with the histogram of its words.
- Objective: can we visualize the data to see if the articles can be clustered by subject?

- Example: subset of New York Times corpus
- ▶ 57 articles about visual arts (A) and 45 articles about music (M).
- ▶ For this subset we have 4431 different words.

- Example: subset of New York Times corpus
- ▶ 57 articles about visual arts (A) and 45 articles about music (M).
- For this subset we have 4431 different words.
- An example of data would be

Article	Tag	Word frequency							
		"abandoned"		"art"		"composers"		"opera"	
1	Α	0		0.001		0		0	
2	M	0		0		0.002		0.001	

- Example: subset of New York Times corpus
- An example of data would be

Article	Tag	Word frequency								
		"abandoned"		"art"	•••	"composers"		"opera"		
1	Α	0		0.001		0		0		
2	M	0		0		0.002		0.001		

- ► Each word correspond to a variable ⇒
 each text is a point in the 4431-dimensional space!
- Problem: how can we visualize it?

- Problem: how can we visualize it?
- Solution:
 - Map the points from the high dimensional space with D dimensions (D=4431) to a low dimensional space with d

 D, such that most of the information is retained.
 - 2. The low dimensional space can then be mapped to visual aesthetics: space, color, size, shape *etc*. Often *d* = 2 and aesthetics are spaces (scatter plot).

- Problem: how can we visualize it?
- Solution:
 - Map the points from the high dimensional space with D dimensions (D=4431) to a low dimensional space with d

 D, such that most of the information is retained.
 - 2. The low dimensional space can then be mapped to visual aesthetics: space, color, size, shape *etc*. Often *d* = 2 and aesthetics are spaces (scatter plot).
- 1. is **dimensionality reduction** and it is the subject of this lecture.
- 2. is visual mapping and it is related to perception.
 - ► The meaning of what is "information" quantitatively is what changes from one method to another.

kernel version

Principal component analysis and its

Minimizing reconstruction error with a linear transformation

- ▶ $\mathbf{x}_i \in \mathbb{R}^D$: the i-th point in the high-dimensional space.
- ▶ $\mathbf{y}_i \in \mathbb{R}^d$: the i-th point in the low dimensional space.

$$\mathbf{y}_i = \mathbf{L}\mathbf{x}_i$$

- ▶ $\mathbf{L} \in \mathbb{R}^{d \times D}$: linear mapping (matrix).
- ► Rows of L are orthogonal: $LL^T = I_d$

Minimizing reconstruction error with a linear transformation

- $\mathbf{x}_i \in \mathbb{R}^D$: the i-th point in the high-dimensional space.
- ▶ $\mathbf{y}_i \in \mathbb{R}^d$: the i-th point in the low dimensional space.

$$\mathbf{y}_i = \mathbf{L}\mathbf{x}_i$$

- ▶ $\mathbf{L} \in \mathbb{R}^{d \times D}$: linear mapping (matrix).
- ► Rows of L are orthogonal: $LL^T = I_d$
- Reconstruction: it can be shown that optimal reconstruction in the original space is

$$\hat{\mathbf{x}}_i = \mathbf{L}^\mathsf{T} \mathbf{y}_i$$

Minimizing reconstruction error with a linear transformation

 Objective: minimize the total reconstruction error in the original space.

minimize
$$\sum_{i=1}^{N} \|\mathbf{x}_i - \hat{\mathbf{x}}_i\|_2^2 = \sum_{i=1}^{N} \|\mathbf{x}_i - \mathbf{L}^\mathsf{T} \mathbf{L} \mathbf{x}_i\|_2^2$$
 with respect to
$$\mathbf{L}$$
 subject to
$$\mathbf{L} \mathbf{L}^\mathsf{T} = \mathbf{I}_d$$

Minimizing reconstruction error with a linear transformation

minimize
$$\sum_{i=1}^{N} \|\mathbf{x}_i - \hat{\mathbf{x}}_i\|_2^2 = \sum_{i=1}^{N} \|\mathbf{x}_i - \mathbf{L}^\mathsf{T} \mathbf{L} \mathbf{x}_i\|_2^2$$
 with respect to
$$\mathbf{L}$$
 subject to
$$\mathbf{L} \mathbf{L}^\mathsf{T} = \mathbf{I}_d$$

Solution: L = [U]_{1:d}^T where [U]_{1:d} are the *d* columns of U from the SVD of X = [x₁ ··· x_N] = UΣV^T corresponding to the the *d* largest singular values.

Minimizing reconstruction error with a linear transformation

- This is principal component analysis (PCA).
- The rows of L correspond to the orthogonal directions with most data variation:

principal axes or principal components.

The reduced dimension observations are $\mathbf{y}_i = [\mathbf{\Sigma}]_{1:d} [\mathbf{V}^T]_i$:

principal components scores.

Minimizing reconstruction error with a linear transformation

- This is principal component analysis (PCA).
- The rows of L correspond to the orthogonal directions with most data variation:

principal axes or principal components.

- The reduced dimension observations are $\mathbf{y}_i = [\mathbf{\Sigma}]_{1:d} [\mathbf{V}^T]_i$:

 principal components scores.
- Relative squared reconstruction error: $\varepsilon = \frac{\operatorname{trace}([\Sigma]_{d+1:D})}{\operatorname{trace}(\Sigma)}$
- It works well if data lies in a low dimensional subspace: line or a plane!

Example of PCA

Application to the subset of the NYT corpus:

- Subset is almost linearly separable.
- We can use a linear SVM if we want to classify articles.
- Relative reconstruction error is quite high: 0.8

 which increases the hope of linear separability.

A more difficult example

Can we reduce the dimension of these data to have separable classes?

A more difficult example

Can we reduce the dimension of these data to have separable classes?

 No, there is no linear subspace structure. All directions have equal variation.

Reconstruction in a transformed space

▶ To make PCA non linear, we transform the variables with a non linear function $\Phi(\cdot)$

Reconstruction in a transformed space

- ▶ To make PCA non linear, we transform the variables with a non linear function $\Phi(\cdot)$
- This leads to a different reconstruction problem:

minimize
$$\sum_{i=1}^{N} \|\Phi(\mathbf{x}_i) - \tilde{\mathbf{x}}_i\|_2^2 = \sum_{i=1}^{N} \|\Phi(\mathbf{x}_i) - \mathbf{L}^\mathsf{T} \mathbf{L} \Phi(\mathbf{x}_i)\|_2^2$$
 with respect to
$$\mathbf{L}$$
 subject to
$$\mathbf{L} \mathbf{L}^\mathsf{T} = \mathbf{I}_d$$

Reconstruction in a transformed space

minimize
$$\sum_{i=1}^{N} \|\Phi(\mathbf{x}_i) - \tilde{\mathbf{x}}_i\|_2^2 = \sum_{i=1}^{N} \|\Phi(\mathbf{x}_i) - \mathbf{L}^\mathsf{T} \mathbf{L} \Phi(\mathbf{x}_i)\|_2^2$$
 with respect to
$$\mathbf{L}$$
 subject to
$$\mathbf{L} \mathbf{L}^\mathsf{T} = \mathbf{I}_d$$

Reconstruction in a transformed space

minimize
$$\sum_{i=1}^{N} \|\Phi(\mathbf{x}_i) - \tilde{\mathbf{x}}_i\|_2^2 = \sum_{i=1}^{N} \|\Phi(\mathbf{x}_i) - \mathbf{L}^\mathsf{T} \mathbf{L} \Phi(\mathbf{x}_i)\|_2^2$$
 with respect to
$$\mathbf{L}$$
 subject to
$$\mathbf{L} \mathbf{L}^\mathsf{T} = \mathbf{I}_d$$

Solution: L = [Ũ]_{1:d}^T
 where [Ũ]_{1:d} are the *d* columns of Ũ from the SVD of
 Φ(X) = [Φ(x₁) ··· Φ(x_N)] = ŨΣVT corresponding to the the *d* largest singular values.

Reconstruction in a transformed space

- In practice, we are interested in the eigenvalue decomposition of a kernel matrix **K** with elements $\mathbf{K}(\mathbf{i}, \mathbf{j}) = \Phi(\mathbf{x}_i)^T \Phi(\mathbf{x}_j)$.
- Thus, if we want we can define a kernel function K(x, x') instead of Φ. This is often the case.
- Example: radial basis kernel function

$$\mathbf{K}(\mathbf{x}, \mathbf{x}') = \exp\left(-\frac{\|\mathbf{x} - \mathbf{x}'\|_2^2}{2\sigma^2}\right)$$

 σ is a parameter to be defined.

Reconstruction in a transformed space

Application to the previous dataset:

Reconstruction in a transformed space

- This is kernel PCA (kPCA).
- Great difficulty: how to choose the kernel?
- There are many methods that learn the kernel from the data.

Reconstruction in a transformed space

- This is kernel PCA (kPCA).
- Great difficulty: how to choose the kernel?
- There are many methods that learn the kernel from the data.
- Many nonlinear methods for dimensionality reduction can be seen as kPCA with a specific way of learning the kernel from data.
- Since a kernel is a measure of similarity and similarity may be meaningful only between neighbors, some methods use nearest neighbors.

Multidimensional scaling and ISOMAP

Preserving the distances

- We can consider that the information that should be retained after mapping should be the pairwise distances between data points.
- For points \mathbf{x}_i and \mathbf{x}_j , we have a distance $d_{i,j}$.
- We can then find the low dimensional mapped points with the following minimization problem:

minimize
$$\sum_{i,j} \left(d_{i,j} - \left\| \mathbf{y}_i - \mathbf{y}_j \right\|_2^2 \right)^2$$
 with respect to
$$\mathbf{y}_1, \, \cdots, \, \mathbf{y}_N$$
 subject to
$$\sum_{i=1}^N \left[\mathbf{y}_i \right]_k = 0, \text{ for all } k$$

Preserving the distances

- This is called multidimensional scaling (MDS).
- If $d_{i,j} = \|\mathbf{x}_i \mathbf{x}_j\|_2^2$, then it can be shown that \mathbf{y}_i are mapped to PCA scores.
- ► This method can also be applied to non Euclidean distances.

Geodesics

Suppose that data are clustered on a low dimensional manifold.

What is the relevant distance in this case?

Geodesics

The relevant distance may be different from the Euclidean distance. It can be the shortest distance on the manifold, a geodesic.

But how to evaluate the geodesic?

Approximation with nearest neighbors

- Nearest neighbors may give us an approximation:
 - Use the length of the shortest path on a neighborhood graph as distance.
 - 2. Apply multidimensional scaling to visualize the mapped points.

Approximation with nearest neighbors

- Nearest neighbors may give us an approximation:
 - Use the length of the shortest path on a neighborhood graph as distance.
 - 2. Apply multidimensional scaling to visualize the mapped points.

This method is called ISOMAP.

ISOMAP example: hands dataset

Data are hands images: each image is a vector (size of vector = number of pixels).

Neighborhood structure preservation

Precision and recall

- Visualization: visual neighborhood structure reflects actual data neighborhood structure.
- Implication on dimensionality reduction: neighborhood structure should be preserved after projection.

Precision and recall

- Visualization: visual neighborhood structure reflects actual data neighborhood structure.
- Implication on dimensionality reduction: neighborhood structure should be preserved after projection.
- We can use two quality measures from information retrieval:
 - 1. **Precision**: neighbors on the visualization are real neighbors.
 - 2. **Recall**: real neighbors are neighbors on the visualization.

Precision and recall

Original data set and projection: correct projection

Precision and recall

Original data set and projection: precision violation

Precision and recall

Original data set and projection: recall violation

Are your neighbors in the visualization true neighbors in the data?

- ▶ $D_k(\mathbf{x}_i)$: k-NN (k-Nearest neighbors) of \mathbf{x}_i in the data.
- ▶ $P_k(\mathbf{x}_i)$: k-NN of \mathbf{x}_i in the projection.
- $F_k(\mathbf{x}_i) = P_k(\mathbf{x}_i) \setminus D_k(\mathbf{x}_i).$

Precision

- ▶ Maximal precision: $P_k(\mathbf{x}_i) \subset D_k(\mathbf{x}_i)$
- Mean on i of $1 \frac{\#F_k(\mathbf{x}_i)}{\#P_k(\mathbf{x}_i)}$

Do you miss any neighbors in the visualization?

- $D_k(\mathbf{x}_i)$: k-NN of \mathbf{x}_i in the data.
- $P_k(\mathbf{x}_i)$: k-NN of \mathbf{x}_i in the projection.
- $M_k(\mathbf{x}_i) = D_k(\mathbf{x}_i) \setminus P_k(\mathbf{x}_i).$
- Recall
 - ▶ Maximal recall: $D_k(\mathbf{x}_i) \subset P_k(\mathbf{x}_i)$
 - ► Mean on i of $1 \frac{\#M_k(\mathbf{x}_i)}{\#P_k(\mathbf{x}_i)}$

Probabilistic neighborhood

- Trying to optimize precision and recall is difficult due to the highly nonlinear behavior of k-NN.
- We define a probabilistic measure of neighborhood as follows:

With respect to point \mathbf{x}_i , when we want to pick a point in its neighborhood, we will pick point \mathbf{x}_j with probability $p_{j|i}$, where

$$p_{j|i} = \frac{\exp\left(-\frac{d_D(\mathbf{x}_i, \mathbf{x}_j)^2}{\sigma^2}\right)}{\sum\limits_{j \neq i} \exp\left(-\frac{d_D(\mathbf{x}_i, \mathbf{x}_j)^2}{\sigma^2}\right)}$$

• $d_D(\mathbf{x}, \mathbf{x}')$ is a distance function and σ is a constant parameter.

Probabilistic neighborhood

The same can be defined for the mapped points:

$$q_{j|i} = \frac{\exp\left(-\frac{d_P(\mathbf{y}_i, \mathbf{y}_j)^2}{\sigma'^2}\right)}{\sum\limits_{j \neq i} \exp\left(-\frac{d_P(\mathbf{y}_i, \mathbf{y}_j)^2}{\sigma'^2}\right)}$$

- ▶ The probability distributions $p_{j|i}$ and $q_{j|i}$ contain the neighbor structure information.
- Preserve most of the neighborhood structure \implies pick \mathbf{y}_i such that $q_{j|i}$ is close to $p_{j|i}$

Probabilistic neighborhood

- Preserve most of the neighborhood structure \implies pick \mathbf{y}_i such that $q_{j|i}$ is close to $p_{j|i}$.
- A dissimilarity measure for probability distributions is the Kullback-Leibler divergence:

$$KL(p_i||q_i) = \sum_{j\neq i} p_{j|i} \log \frac{p_{j|i}}{q_{j|i}}$$

Probabilistic neighborhood

- Preserve most of the neighborhood structure \implies pick \mathbf{y}_i such that $q_{j|i}$ is close to $p_{j|i}$.
- A dissimilarity measure for probability distributions is the Kullback-Leibler divergence:

$$KL(p_i||q_i) = \sum_{j\neq i} p_{j|i} \log \frac{p_{j|i}}{q_{j|i}}$$

If we want to preserve the neighborhood structure, we have to consider the sum of the KL divergences for all points.

Stochastic neighbor embedding (SNE)

This leads us to the following optimization problem:

minimize
$$\sum_{i} \textit{KL}(p_i \| q_i) = \sum_{i} \sum_{j \neq i} p_{j|i} \log \frac{p_{j|i}}{q_{j|i}}$$
 with respect to
$$\mathbf{y}_1, \, \cdots, \, \mathbf{y}_N$$

- This method is called stochastic neighbor embedding (SNE).
- The minimization can be carried out using a gradient algorithm, since the cost function is smooth.

Neighborhood structure preservation SNE example: digits dataset

▶ Data are digits images: each digit is a 16 × 16 pixels image.

Precision and recall trade-off

- It can be shown that the previous minimization problem is an approximation of the maximization of the recall.
- If we want to approximately maximize the **precision** we should replace $KL(p_i||q_i)$ with $KL(q_i||p_i)$.
- We can also maximize a trade-off of both by minimizing their linear combination.

Neighbor retrieval visualizer (NeRV)

We get the following optimization problem:

$$\label{eq:minimize} \min \sum_{i} \left[\lambda \textit{KL}(p_i \| q_i) + (1 - \lambda) \textit{KL}(q_i \| p_i) \right]$$
 with respect to
$$\mathbf{y}_1, \, \cdots, \, \mathbf{y}_N$$
 where $\lambda \in [0, \, 1]$

- This method is called neighbor retrieval visualizer (NeRV).
- The parameter λ can be used to control the **recall/precision** trade-off.

Neighborhood structure preservation NeRV example: faces dataset

Data are faces images.

Source: Information Retrieval Perspective to Nonlinear Dimensionality Reduction for Data Visualization. Venna J. et al. Journal of Machine Learning Research. Volume 11, pages 451-490. 2010.

Conclusions

Conclusions

- Dimensionality reduction is a growing field within data science.
- It is a mandatory step if we want to visualize high dimensional data.
- When reducing dimensionality we should take into account what information should be retained.
- In the case of visualization this can be distances or neighborhood structure. But no clear definition of visual information exist.
- Remember: when you reduce dimensions some information is lost.