нияу "мифи"

НИРС

по теме: "Классификация медицинских текстов на наличие побочных эффектов при помощи методов машинного обучения"

Группа: М19-117

Студент: Кайгородов Александр

Преподаватели: Сбоев А.Г., Рыбка Р.Б.

Введение	2
Данные для решения задачи	3
Опыт решения задач	5
Материалы	7
Предварительная обработка текста.	7
Подходы на базе методов машинного обучения	8
Подходы на основе нейронных сетей.	8
Метрика качества	9
Модели	10
Классические модели	10
Модели на основе нейронных сетей	11
LSTM	12
CNN	14
LSTM+CNN	15
Результаты	17
Настройка гиперпараметров в Hyperopt и Hyperas	18
CNN уровень символов + hyperas	18
CNN уровень символов + hyperopt	19
LSTM+CNN и hyperopt	20
Заключение	20

Введение

Тематика представленных наборов твитов склоняется к написанию отзыва о какомлибо медицинском препарате, побочные эффекты которого нужно занести в базу данных для фармакологических служб. Правильное извлечение огромного числа выявленных побочных эффектов может значительно улучшить разработку новых лекарств, но проблема заключается в работе со сложной структурой информации представленной в виде естественного языка.

Для решения данной задачи можно прибегать к использованию машинного обучения, в частности нейронных сетей. Использование классических базовых методов МЛ допустимо, но использование глубинного обучения представляется наиболее приоритетным в данном случае, т.к позволяет получать большую точность при предсказании.

Данная научно-исследовательская работа посвящена исследованию методов машинного обучения с сравнением эффективности работы как классических методов так и методов с использованием нейронных сетей для решения задач классификации текстов.

Для исследования методов поставлены следующие цели:

- 1. Добыть данные и провести их предобработку
- 2. Построить модели нейросетевых и классических подходов машинного обучения
- 3. Обучить модели
- 4. Получить точности работы моделей
- 5. Сравнить полученные точности и обозначить наилучшие модели

В качестве данных для исследования были взяты материалы открытого соревнования проводимого Пенсильванским медицинским институтом.

О соревновании

"Social Media Mining for Health Applications (#SMM4H) Shared Task 2020"

Задания данного соревнования включают в себя задачи тематики NLP, распространяющиеся на практические цели из сферы здравоохранения. Общая суть указанных заданий данного соревнования окружена вопросами извлечения информации из больших наборов твитов, написанных пользователями в сети.

Основная группа задач данного соревнования сводится к следующим пунктам.

- 1. Классификация твита на наличие или отсутствие побочного эффекта (ADR)
- 2. Выделение спана для конкретного побочного эффекта
- 3. Нормализация побочного эффекта (строгое формулирование)
- 4. Соотнесение полученного ADR с идентификатором базы данных MedDRA.

В данной работе для исследования выбрана задача из программы соревнования 2020 года:

(названия и описания тасков оставляются в оригинальном виде)

- Task 2: Automatic classification of multilingual tweets that report adverse effects
 - Training data: 25,672 tweets (2,374 "positive" tweets; 23,298 "negative" tweets)
 - Test data: ~5,000 tweets. (! в действительности полученных данных меньше)

Оригинальная ссылка на соревнование: <u>#SMM4H Shared Task 2020</u>

Данные для решения задачи

Данные, предоставленные организаторами соревнований, содержат посты пользователей твиттера - "твиты", и разбиты на 2 датасета. Первый содержит N твитов и разметку твитов по классам:

- Есть побочный эффект действия препарата (ADR) указанного в твите
- Побочный эффект действия препарата отсутствует

Второй датасет содержит информацию о локальном присутствии ADR в приложенном твите. Используется термин SPAN, которые подразумевает границы написанного ADR-а в виде информации об индексе символов начала и конца описанного эффекта.

Пример твита из второго датасета:

@fibby1123 are you on paxil .. i need help - ADR отсутсвтует

@flatchests it has nothing to do with any of that~ apparently seroquel makes you gain alot of weight - ADR присутствует

Пример твита из третьего датасета:

dis lady has the worst cough i wish i had a lozenge - ADR отсутсвтует

@luckystubbs reppin zoloft&seroquel since last november. i'm hella gainin weight too awesome i'm fat and can't cum i own - ADR присутствует (fat), спан = [101, 104]

Факт дисбаланса данных является очень важным при обучении модели. Проблема существует и в одном из действительных датасетов.

Анализ баланса классов для второго датасета показал:

Во втором датасете присутствует дисбаланс (довольно выраженный) в сторону меток об отсутствии adr в твите. Этот факт важно это учитывается при оценке модели.

Анализ баланса классов для второго датасета показал:

В дальнейших исследованиях, второй датасет будет использован в качестве дополнения ко второму.

Проведем анализ этих датасетов относительно друг друга. (на первой картинке data2 and data3_train, на второй data2+(data3_train+data3_validation))

Size of d1:	20216	Size of d1:	20216
Size of d2:	1812	Size of d2:	2215
Not in d2:	19265	Not in d2:	19067
Not in d1:	861	Not in d1:	1066
Intercept:	951	Intercept:	1149
Intercept.	931		

В итоге имеется следующее распределение:

Dataset	ADR	No ADR
Dataset 2	1903	18641
Dataset 3	1464	778

Опыт решения задач

Организаторы предоставили ссылку на сборник статей с воркшопа предыдущего года, на котором можно легко ознакомиться с работами других участников. Задания остались в той же тематике, но слегка изменили свои формулировки и все подходы и методы, описанные там не распространяются на текущее соревнование. Тем не мене, работы опубликованные в этом сборнике могут оказаться весьма полезными для ознакомления с работающими подходами и при оценке свой модели относительно полученных ранее. Это даст лучшее представление об эффективности проделанной работы.

LINK -> <u>WORKSHOP</u> (https://www.aclweb.org/anthology/W19-32.pdf)

Наибольший интерес представляют подходы победителей соревнований предыдущих лет. Я выбрал работу одного из участников https://www.aclweb.org/anthology/W19-3207.pdf

В работе говорится об эффективности применения классических методов при решении задачи классификации.

В отдельной части работы описывается подход при решении задачи классификации твитов обозначенной как TASK 1.

В качестве используемых методов выбраны:

- SVM (далее будут изложены подробности метода). Для представления слов использован метод представления мешка слов (BOW). Также был применен метод sent2vec для численного представления твитов.
- В качестве главного решения, в работе выдвигается использование классификатора на основе архитектуры BERT которая была получена при помощи архитектуры трансформера и логистической регрессии в качестве классификатора.

Для оценки результатов использования моделей использовались критерии качества: f1-measure (F1), precision (P), recall (R). Полученные результаты оценок представлены в таблице.

В работе приведены следующие оценки качества выполненной модели:

Run name	F1	P	R
KFU NLP, BERT	57.38	69.14	49.04
KFU NLP, SVM	51.64	56.2	47.76
Average scores	50.19	53.51	50.54

Table 1: Text classification results on the Task 1 test set.

Данные оценки взяты в качестве мерки сравнения полученной мной модели.

Материалы

Предварительная обработка текста.

На этапе подготовки твитов для использования в моделях проводилась процедура предобработки данных. В качестве основных подходов при токенизации и векторизации были применены следующие методы:

- TF-IDF
- FastText

TF-IDF (TF — term frequency, IDF — inverse document frequency) статистическая мера, используемая для оценки важности слова в контексте документа, являющегося частью коллекции документов или корпуса. Вес некоторого слова пропорционален частоте употребления этого слова в документе и обратно пропорционален частоте употребления слова во всех документах коллекции.

FastText - библиотека разработанная компанией Facebook для получения эмбеддингов слов. Классификатор FastText библиотеки gensim использует по умолчанию следующие параметры обработки: model: Архитектура CBOW, Skipgram. (CBOW по умолчанию).

По существу, FastText обрабатывает текст там же подходом что и метод word2vec, но его ключевое отличие заключается в том что обработка уже идет на уровне символов. Это дает возможность использовать в качестве векторного представления слова которые ранее не оказывались в словаре.

Иллюстрация скользящего окна word2vec.

Подходы на базе методов машинного обучения

Метод опорных векторов (SVM, support vector machine) — набор схожих алгоритмов обучения с учителем, использующихся для задач классификации и регрессионного анализа. Принадлежит семейству линейных классификаторов. (https://en.wikipedia.org/wiki/Support vector machine)

Многослойный перцептрон (MLP) - это класс искусственных нейронных сетей прямого распространения, состоящих как минимум из трех слоев: входного, скрытого и выходного. За исключением входных, все нейроны используют нелинейную функцию активации. (https://wiki.loginom.ru/articles/multilayered-perceptron.html)

Градиентный бустинг (GBM) — это техника машинного обучения для задач классификации и регрессии, которая строит модель предсказания в форме ансамбля слабых предсказывающих моделей, обычно деревьев решений. (https://neurohive.io/ru/osnovy-data-science/gradientyj-busting/)

ТРОТ - библиотека самостоятельно осуществляющая поиск подходящей модели с оптимизированными параметрами. Данных подход является очень универсальным и простым для программиста, но требует значительных вычислительных мощностей. Поиск решения осуществлялся для третьего датасета и сравнивался с наилучшей моделью отработавшей на втором датасете. Подробней о TPOT http://epistasislab.github.io/tpot/

Подходы на основе нейронных сетей.

LSTM - это искусственная нейронная сеть, содержащая LSTM-модули вместо или в дополнение к другим сетевым модулям. LSTM-модуль — это рекуррентный модуль сети, способный запоминать значения как на короткие, так и на длинные промежутки времени. Ключом к данной возможности является то, что LSTM-модуль не использует функцию активации внутри своих рекуррентных компонентов. Позволяет выявлять временные зависимости.

CNN - сверточная нейронная сеть. Свое название получила из-за применения операции свертки. Широко используется в сфере CV где рабочее пространство представлено двухмерными картинками, но также может быть применена в случае одномерной свертки.

Подробней о технологии можно узнать тут: https://en.wikipedia.org/wiki/Convolutional neural network

Метрика качества

В связи с тем что данные несбалансированные по классам, то оценка моделей по параметру ассигасу уже не будет являться объективной. В данном случае, для оценки качества модели применяется материка f1-score (F-мера).

Данная оценка основана на вычислении двух следующих параметров:

- Точность (precision)
- Полнота (recall)

$$Precision = rac{TP}{TP + FP}$$

$$Recall = rac{TP}{TP + FN}$$

В полученной таблице содержится информация сколько раз система приняла верное и сколько раз неверное решение по документам заданного класса. А именно:

- ТР истинно-положительное решение;
- TN истинно-отрицательное решение;
- FP ложно-положительное решение;
- FN ложно-отрицательное решение.

	oug i	Экспертная оценка		
Категория і		Положительная	Отрицательная	
0	Положительная	TP	FP	
Оценка системы	Отрицательная	FN	TN	

Модели

Классические модели

В качестве изучаемых классических моделей были построены следующие связки:

- TF-IDF + SVM
- TF-IDF + MLP
- TF-IDF + GMB
- FastText + SVM
- TPOT

Обучение описанных моделей проводилось на представленных датасетах. Топология применяемых методов и логика построения решения в целом представлена в приложениях к работе с кодом моделей.

Реализация представленных классических моделей исполнялась при использовании библиотеки scikit-learn.

При исследовании работоспособности классических моделей был применен метод кросс-валидации по фолдам. Данный подход позволяет получить более объективную оценку модели за счет использования имеющихся данных полностью. Полученный оценки моделей при таком подходе лучше отражают ее способность к решению задачи.

Во время исследований, среди используемых с TF-IDF моделей SVM, MLP и GBM было выявлено что в связке TFIDF + SVM лучшее сочетание качества и скорости обучения. Данная модель была применена при обучении на третьем датасете и сравнена с полученным результатом TPOT. Такое решение было принято в связи с слабыми вычислительными мощностями, которых не хватит для применения TPOT на втором датасете.

В результате исследования получены следующие значения качества используемых моделей.

MODEL	F1 score, %	Std
TFIDF + SVM	64.328	6.011
TFIDF + MLP	65.988	5.821
TFIDF + GBM	57.575	3.853
FastText + SVM	86.925	2.338
TFIDF + SVM (d3)	74.321	-
TFIDF + TPOT (d3)	75.177	-

Выводы: среди проведенных оценок, наилучшей на втором датасете оказалась модель с многослойным персептроном (MLP), но вычислительная способность такой модели не выглядит привлекательной, именно поэтому в качестве передовой модели мной была выбрана модель опорных векторов (SVM). Использование векторизации текста по методам FastText оказалось эффективней метода TFIDF.

Модели на основе нейронных сетей

В процессе подготовки текста к работе с сетью был использован набор эмбеддингов "British National Corpus". Обработка текста происходила в следующем порядке. Токенизация -> формирование матрицы размерностью <u>Число_твитов</u> * <u>Макс_длина_предложения</u> (наполнение паддингом) -> выравнивае эмбеддинга по количеству участвующих слов в вычислениях

При загрузке в модель, каждое слово будет встречать слой эмбеддинга которые паддингами будем извлекать вектора из представленного эмбеддинга дял каждого слова и использовать в тренировке сети.

Тренировка и оценка моделей проходили на следующих размерах данных.

n_items_for_train = 500 n_items_for_test = 100 max_words = 2000

LSTM

В качестве принятой структуры нейронной сети использовались попытки реализовать два типа сетей, с классическим LSTM и двунаправленным LSTM (BI-LSTM).

- LSTM

Model: "sequential 1"

Layer (type)	Output Shape	Param #
embedding_1 (Embedding)	(None, 36, 300) 600300
lstm_2 (LSTM)	(None, 128)	219648
dense 3 (Dense)	(None, 1)	129

None

- двунаправленная LSTM

Model: "model_1"

Layer (type)	Output	Shape	Param #
input_1 (InputLayer)	(None,	36)	<u>0</u>
embedding_1 (Embedding)	(None,	36, 300)	600300
bidirectional_1 (Bidirection	(None,	128)	186880
dropout_1 (Dropout)	(None,	128)	0
batch_normalization_1 (Batch	(None,	128)	512
dense_1 (Dense)	(None,	32)	4128
dropout_2 (Dropout)	(None,	32)	0
batch_normalization_2 (Batch	(None,	32)	128
dense 2 (Dense)	(None,	1)	33

Total params: 791,981 Trainable params: 191,361 Non-trainable params: 600,620

lstm_10_10_0.21_0.18

Embedding может находится в состоянии Freez что означает что при тренировке сети, вектора слов изменяться не будут. В противном случае происходит дообучение уже имеющихся векторов представления слов.

В качестве попыток улучшения были применены следующие действия.

- Добавить второй слой эмбеддингов которые уже будет обучаться
- Использовать batch_generator

В первой модификации использовались те-же значения размеров данных Конфигурация модели:

Model: "model 1"

Layer (type)	Output	Shape	Param #	Connected to
input_1 (InputLayer)	(None,	36)	0	
input_2 (InputLayer)	(None,	36)	0	
embedding_1 (Embedding)	(None,	36, 300)	1200300	input_1[0][0]
embedding_2 (Embedding)	(None,	36, 300)	1200300	input_2[0][0]
bidirectional_1 (Bidirectional)	(None,	128)	186880	embedding_1[0][0] embedding_2[0][0]
concatenate_1 (Concatenate)	(None,	256)	0	<pre>bidirectional 1[0][0] bidirectional 1[1][0]</pre>
dropout_1 (Dropout)	(None,	256)	0	concatenate_1[0][0]
batch_normalization_1 (BatchNor	(None,	256)	1024	dropout_1[0][0]
dense_1 (Dense)	(None,	32)	8224	batch_normalization_1[0][0]
dropout_2 (Dropout)	(None,	32)	0	dense_1[0][0]
batch_normalization_2 (BatchNor	(None,	32)	128	dropout_2[0][0]
dense 2 (Dense)	(None,	1)	33	batch normalization 2[0][0]

Non-trainable params: 1,200,876

lstm 10 10 0.16 0.17

В качестве улучшения двунаправленной модели LSTM был применен метод тренировки с использованием батч-генератора. Для этого создан отдельный класс генератора данных для тренировки и реализован через метод библиотеки keras fit_generator. Код модели и класса генератора в приложении.

CNN

В качестве реализации сверточной сети были опробованы два подхода.

- Сверточная сеть работающая на уровне символов
- Сверточная сеть работающая на уровне слов

При предобработке данных для сверточной сети на уровне символов была использована простейшая прямая токенизация по символам всех твитов предварительно обработанных и представленных через лемматизатор который был применен для LSTM.

Топология сверточной сети для уровня символов:

Layer (type)	0utput	Shape	Param #
input (InputLayer)	(None,	200)	0
embedding_1 (Embedding)	(None,	200, 69)	4830
convld_1 (ConvlD)	(None,	194, 256)	123904
activation_1 (Activation)	(None,	194, 256)	0
max_pooling1d_1 (MaxPooling1	(None,	64, 256)	0
conv1d_2 (Conv1D)	(None,	58, 256)	459008
activation_2 (Activation)	(None,	58, 256)	0
max_pooling1d_2 (MaxPooling1	(None,	19, 256)	0
convld_3 (ConvlD)	(None,	13, 256)	459008
activation_3 (Activation)	(None,	13, 256)	0
convld_4 (ConvlD)	(None,	7, 256)	459008
activation_4 (Activation)	(None,	7, 256)	0
max_pooling1d_3 (MaxPooling1	(None,	2, 256)	0
flatten_1 (Flatten)	(None,	512)	0
dense_1 (Dense)	(None,	200)	102600
dropout_1 (Dropout)	(None,	200)	0
dense_2 (Dense)	(None,	200)	40200
dropout_2 (Dropout)	(None,	200)	0
dense 3 (Dense)	(None,	2)	402

Total params: 1,648,960 Trainable params: 1,648,960 Non-trainable params: 0 Сверточная нейронная сеть на уровне слов использует ту же самую логику что и сверточная сеть на уровне символов, только на этот раз токенизация происходит на уровне слов по тому же самому обработанному набору.

Топология сверточной сети для уровня слов.

Model: "model_2"

Layer (type)	Output	Shape	Param #
input_3 (InputLayer)	(None,	36)	0
embedding_3 (Embedding)	(None,	36, 300)	1200300
conv1d_7 (Conv1D)	(None,	34, 300)	270300
dropout_8 (Dropout)	(None,	34, 300)	0
max_pooling1d_7 (MaxPooling1	(None,	17, 300)	0
convld_8 (ConvlD)	(None,	13, 300)	450300
dropout_9 (Dropout)	(None,	13, 300)	0
max_pooling1d_8 (MaxPooling1	(None,	6, 300)	0
convld_9 (ConvlD)	(None,	2, 300)	450300
dropout_10 (Dropout)	(None,	2, 300)	0
max_pooling1d_9 (MaxPooling1	(None,	2, 300)	0
flatten_3 (Flatten)	(None,	600)	0
dropout_11 (Dropout)	(None,	600)	0
batch_normalization_2 (Batch	(None,	600)	2400
dense_1 (Dense)	(None,	32)	19232
dropout_12 (Dropout)	(None,	32)	0
batch_normalization_3 (Batch	(None,	32)	128
2020 70 2020 70 2020	(None,	1)	33

CNN

LSTM+CNN

Совместное применение сверточной нейронной сети и сети LSTM. Предобработка данных осуществлялась аналогичным образом как и в предыдущих двух подпунктах.

Топология сети:

Model: "model_1"

Layer (type)	Output Shape	Param #	Connected to
nput_CHARS (InputLayer)	(None, 200)	Θ	
mbedding_3 (Embedding)	(None, 200, 69)	4830	input_CHARS[0][0]
convld_1 (ConvlD)	(None, 194, 256)	123904	embedding_3[0][0]
activation_1 (Activation)	(None, 194, 256)	0	conv1d_1[0][0]
max_pooling1d_1 (MaxPooling1D)	(None, 64, 256)	Θ	activation_1[0][0]
convld_2 (ConvlD)	(None, 58, 256)	459008	max_pooling1d_1[0][0]
activation_2 (Activation)	(None, 58, 256)	0	conv1d_2[0][0]
max_pooling1d_2 (MaxPooling1D)	(None, 19, 256)	Θ	activation_2[0][0]
convld_3 (ConvlD)	(None, 13, 256)	459008	max_pooling1d_2[0][0]
octivation_3 (Activation)	(None, 13, 256)	0	conv1d_3[0][0]
convld_4 (ConvlD)	(None, 7, 256)	459008	activation_3[0][0]
activation_4 (Activation)	(None, 7, 256)	Θ	conv1d_4[0][0]
max_pooling1d_3 (MaxPooling1D)	(None, 2, 256)	Θ	activation_4[0][0]
flatten_1 (Flatten)	(None, 512)	0	max_pooling1d_3[0][0]
dense_1 (Dense)	(None, 200)	102600	flatten_1[0][0]
input_1 (InputLayer)	(None, 36)	Θ	
input 2 (InputLayer)	(None, 36)	Θ	
dropout_1 (Dropout)	(None, 200)	0	dense 1[0][0]
embedding 1 (Embedding)	(None, 36, 300)	600300	input 1[0][0]
embedding 2 (Embedding)	(None, 36, 300)	600300	input 2[0][0]
dense 2 (Dense)	(None, 200)	40200	dropout 1[0][0]
oidirectional 1 (Bidirectional)	00000000000000000000000000000000000000	186880	embedding 1[0][0]
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(110110) 120)	100000	embedding_2[0][0]
dropout_2 (Dropout)	(None, 200)	0	dense_2[0][0]
concatenate_1 (Concatenate)	(None, 456)	0	bidirectional_1[0][0] bidirectional_1[1][0] dropout_2[0][0]
dropout_3 (Dropout)	(None, 456)	Θ	concatenate_1[0][0]
batch_normalization_1 (BatchNor	(None, 456)	1824	dropout_3[0][0]
dense_3 (Dense)	(None, 32)	14624	batch_normalization_1[0][0]
dropout_4 (Dropout)	(None, 32)	0	dense_3[0][0]
batch_normalization_2 (BatchNor	(None, 32)	128	dropout_4[0][0]
dense_4 (Dense)	(None, 1)	33	batch_normalization_2[0][0]

Total params: 3,052,647 Trainable params: 2,451,371 Non-trainable params: 601,276

Результаты

В отличии от таблицы результатов представленной для результатов работы с классическими моделями, в данной таблице отсутствует показатель СКО для оценки, т.к использование кросс-валидации по фолдам представляется очень затратной. Взамен представлены значения матриц сопряженности получаемых результатов (confusion matrix).

Данная матрица описана в пункте "Метрика качества" и продемонстрирована в конце.

LSTM or CNN	F1-score	Confusion matrix
LSTM Embedding (freez=True)	0.73	114/32 49/105
LSTM Embedding (freez=False)	0.74	111/39 39/111
LSTM Embedding (freez=False) + Embedding (freez=True)	0.73	116/37 43/104
CNN char_lvl	0.42	72/84 90/54
CNN word_lvl	0.71	100/55 31/114
LSTM + CNN	0.77 (0.79 extended data 1200\400)	99/53 16/132

Вывод: наилучший результат получен на модели с совместным использованием LSTM сети и сверточной сети. Данное явление можно описать увеличением емкости модели и как следствие улучшение ее обобщающей способности.

Настройка гиперпараметров в Hyperopt и Hyperas

Получение лучших гиперпараметров используемых в сети определяющих как ее топологию так и свойства слоев в ней является одной из самой важных и трудоемких задач при проектировании сети. Метод определения этих гипер параметров зачастую сводится к простому перебору наиболее вероятных значений которые способны улучшить способность сети к обобщению с наименьшей ошибкой.

Для более комфортного подбора параметров можно использовать вспомогательные библиотеки hyperopt и hyperas. Первая является базой разработки, вторая является модифицированным и упрощенным вариантом первой специально для работы вместе с библиотекой keras.

Данные библиотеки автоматизируют поиск наилучших параметров с контролем качества получаемых сетей. На выходе получаем перечень наиболее подходящих значений которые в дальнейшем следует использовать на полном наборе данных для получения лучшего качества сети.

Контрольные значения на данный момент.

Model	F1-score
Supported vector machine	0.69
2EMB + LSTM + CNN	0.80

CNN уровень символов + hyperas

Получены следующие оптимальные параметры

'Dense': 2,	'Dense': hp.choice('Dense', [256, 512, 1024]),
'Dense_1': 2,	'activation': hp.choice('activation', ['relu', 'sigmoid']),
'Dropout': 0.6108763092812357,	'Dropout': hp.uniform('Dropout', 0, 1),
'Dropout_1': 0.7371698374615214,	'Dense_1': hp.choice('Dense_1', [256, 512, 1024]),
'activation': 0,	'activation_1': hp.choice('activation_1', ['relu', 'sigmoid']),
'activation_1': 0,	'Dropout_1': hp.uniform('Dropout_1', 0, 1),
'batch_size': 1,	'Optimizer': hp.choice('optimizer', ['rmsprop', 'adam', 'sgd']),
'optimizer': 2	'Batch_size': hp.choice('batch_size', [32, 64, 128]),

После проверки полученных подстановкой в изначальную модель, точность классификации увеличилась на 2 процента.

CNN уровень символов + hyperopt

Расчет сильно усложнен требуемыми вычислениями, при минимальной обработке получены параметры ценность которых сомнительна, но доказывает стремление к оптимизации

```
('batch_size', 1)
                                           'choice': hp.choice('layers', [1, 2, 3, 4]),
('dropout1', 0.6334371211063357)
                                           'pooling size1': hp.choice('pooling size1', [3]),
('dropout2', 0.36283182783153534)
                                           'pooling size2': hp.choice('pooling size2', [3, -1]),
('dropout3', 0.6297297987936828)
                                           'pooling_size3': hp.choice('pooling_size3', [3, -1]),
('dropout4', 0.6357503507027977)
                                           'pooling size4': hp.choice('pooling size4', [3, -1]),
('dropout5', 0.36563410317891387)
                                           'pooling size5': hp.choice('pooling size5', [3, -1]),
('hidden activation', 2)
                                           'dropout1': hp.uniform('dropout1', .25,.75),
('layers', 2)
                                           'dropout2': hp.uniform('dropout2', .25,.75),
                                           'dropout3': hp.uniform('dropout3', .25,.75),
('loss', 0)
                                           'dropout4': hp.uniform('dropout4', .25,.75),
('optimizer', 1)
('pooling size1', 0)
                                           'dropout5': hp.uniform('dropout5', .25,.75),
('pooling_size2', 0)
                                           'batch size': hp.choice('batch size', [32, 64]),
                                           'hidden_activation': hp.choice('hidden_activation', ['relu',
('pooling_size3', 1)
                                           'sigmoid', 'tanh', 'selu']),
('pooling size4', 0)
('pooling_size5', 1)
                                                  'optimizer': hp.choice('optimizer',['adadelta', 'adam',
                                           'rmsprop']),
                                                   'loss': hp.choice('loss', ['binary crossentropy']),
                                                   'nb epochs': 15,
                                                   'activation': 'relu',
                                                   'patience': 10
```

После подстановки, точность модели не изменилась. Для получения изменений стоит применить большее число экспериментов, что требует больше вычислительных мощностей.

LSTM+CNN и hyperopt

Наиболее сложная реализация с вычислительной точки зрения

```
('batch size', 1)
                                              'pooling size1': hp.choice('pooling size1', [3, 5]),
                                              'pooling_size2': hp.choice('pooling_size2', [3, 5]),
('dense size', 0)
                                              'dropout1': hp.uniform('dropout1', .25,.5),
('dropout1', 0.39461651019515437)
                                              'dropout2': hp.uniform('dropout2', .25,.5),
('dropout2', 0.7396057604413669)
                                              'dropout3': hp.uniform('dropout3', .25,.5),
('dropout3', 0.4408370824285548)
                                              'dense_size': hp.choice('dense_size', [32, 64, 128]),
('hidden activation', 1)
                                              'batch size': hp.choice('batch size', [32, 64]),
('hidden activation2', 1)
                                              'hidden activation': hp.choice('hidden activation', ['relu', 'sigmoid', 'tanh', 'selu']),
('loss', 0)
                                              'hidden_activation2': hp.choice('hidden_activation2', ['relu', 'sigmoid', 'tanh', 'selu']),
('optimizer', 2)
                                              'optimizer': hp.choice('optimizer',['adadelta', 'adam', 'rmsprop']),
('pooling_size1', 0)
                                                      'loss': hp.choice('loss', ['binary crossentropy']),
                                                      'epochs': 15,
('pooling size2', 0)
                                                      'activation': 'relu',
                                                      'patience': 5
```

Точность модели оказалась меньше. Решение может быть найдено увеличением числа экспериментов.

Заключение

По итогам проделанной работы , можно сделать несколько заключений, которые приведены в списке:

- Использование классических методов в задачах классификации текста возможно и имеет свои преимущества в виде более быстрых процессов обучения и детерминированности работы
- Для более качественных результатов рекомендуется применение технологий глубинного обучения
- Для применения глубинного обучения требуется большее количество исходных данных
- Для работы с глубинным обучением разумно использовать графические карты, в ином случае тренировка на обучающих данных может занять весьма продолжительное время
- Возможно совместное применение методов классического м.о. и глубинного.
- Предварительная обработка данных для обучений является крайне важным этапом, при ответственном подходе к которому можно улучшить качество полученного результата и ускорить обучение
- Возможно применение уже предобученных эмбеддингов

Лично для меня оказалось полезным более тесное ознакомление с применяемыми библиотеками, такими как scikit-learn, keras, tensorflow, pandas. Осуществлено практическое ознакомление с функциями и методами библиотек, были предприняты попытки модификации подходов. Изучены методы обработки естественного языка.