Awesome! This is a classic **statistical arbitrage** and **market-making** challenge involving baskets, ETFs, and their components. You'll need to think both like a trader and an engineer. Let's break this down into creative and practical strategies, ranging from simple to more advanced, highlighting common techniques *and* some novel ideas.

Strategy 1: Simple Cross-ETF Arbitrage (Part 1)

P Description:

This strategy trades **price mismatches between SEMIS_ETF_EU and SEMIS_ETF_US**, which track the same basket.

How it works:

- If SEMIS_ETF_US SEMIS_ETF_EU > threshold, sell US, buy EU.
- If SEMIS_ETF_EU SEMIS_ETF_US > threshold, sell EU, buy US.
- The **hedge** is **perfect** because they track the same components.
- Use **mid-prices** or best bid/ask depending on your latency and execution style.

Why it's commonly used:

- It's classic **ETF arbitrage**.
- Very low risk when executed fast.
- Easy to implement.

A Risks:

- Latency: if you don't execute both legs nearly simultaneously, you might get legged.
- **Execution cost**: make sure the spread covers fees/slippage.

Strategy 2: ETF vs. Basket Arbitrage (Part 2)

P Description:

Trade the ETF vs. its **implied value** based on the 3 underlying stocks:

 $basket_price=13(ASML+NVDA+AMD) \setminus \{basket_price\} = \setminus \{1\}\{3\}(ASML+NVDA+AMD)$

How it works:

- Calculate the **real-time basket value**.
- If ETF trades significantly above/below the basket price:

- Buy undervalued, sell overvalued.
- You must hedge by trading the 3 stocks in correct proportions.

Common but slightly harder:

- Used by index arbitrage desks.
- Incorporates more complexity but better opportunities.

Challenges:

- You need to get **inventory-balanced**: selling 1 ETF ≈ buying ½ of each stock.
- Different venues = different latencies, spreads, and order books.

Strategy 3: Market-Making with Dynamic Hedging (Part 3)

P Description:

Quote **tight bid/ask spreads** on ETFs, aiming to **earn the spread** and hedge dynamically using other instruments (like the other ETF or the 3 stocks).

How it works:

- Continuously quote on both sides of the market.
- If your order gets hit/lifted, hedge immediately with:
 - the other ETF, or
 - an equivalent basket of stocks.

Why this is powerful:

- You provide liquidity (often rewarded in real markets).
- You can **control your exposure** better.
- Profitable even in mean-reverting, flat markets.

Advanced:

- · Inventory risk management needed.
- Requires good models for **fair value**, **spread setting**, and **inventory decay**.

Strategy 4: Implied Volatility Arbitrage (Creative)

📌 Idea:

If you see **frequent fluctuations** or high volatility in one ETF relative to its components or the other ETF, you can **model implied volatility differences** and **fade the extremes**.

How it works:

- Compute **rolling volatility** or variance of each product.
- If ETF volatility diverges from that of the basket, fade the ETF.
- Trade toward the statistically expected mean.

Why it's creative:

- Few will look at **volatility arbitrage** in this challenge.
- Helps model dynamic pricing & market stress.

Strategy 5: Latency Arbitrage Across Venues (Creative)

📌 Idea:

Leverage the **lag** between US and EU instruments.

Mow it works:

- Assume one ETF reacts faster to news (e.g., SEMIS_ETF_US).
- Use **cross-correlation** and **lag analysis** to predict short-term moves in the EU ETF.

Tools to use:

- Sliding windows of returns.
- Cross-correlation lag prediction.
- Execution bots that lead lagging instruments.

@ Why it's fun:

- Exploits market microstructure inefficiencies.
- Gives a first-mover edge.

Strategy 6: Inventory-Based Reinforcement Learning Market Maker (Experimental)

📌 Idea:

Train a **simple RL agent** to quote prices while balancing inventory.

Mow it works:

- Agent state = current position, market spread, book imbalance.
- Actions = adjust quote prices or hedge inventory.
- Reward = P&L inventory penalty.

Experimental:

- Much harder to tune.
- May perform well in unpredictable microstructure.

Bonus: Signals to Explore

- **Order book imbalance** (difference in volume on bid/ask sides).
- Price momentum over short windows.
- **Time of day effects** (simulate if possible).
- Moving average of fair basket value vs. ETF prices.

Suggested Starting Order

- 1. Start with Strategy 1 (ETF arbitrage).
- 2. Move to Strategy 2 (ETF vs. basket).
- 3. Add Strategy 3 (market-making).
- 4. Explore creative add-ons (4–6) once you're stable.

Would you like Python pseudocode or a template to kickstart one of these strategies?