1/27	Product
Product Senceures	171
Goal: Défine product senceures on (1) the Cech-de Rham complex	$C^*(\mathcal{U}, \Omega^*)$
(2) the de Rham cohomology and (3) the Cech cohomology.	
Also discuss the product structures on a spectral sequen	ice.
(de Rham Cohomology)	
Z:= { closed forms}, B:= {exact forms}, on a mtd M	
$ \overline{Z} := \{ \text{closed forms} \}, \ \underline{B} := \{ \text{exact forms} \}, \text{ on a mfd } \underline{M} \} $ Recall that $d(\omega \Lambda \gamma) = (d\omega) \Lambda \gamma + (1) \text{deg } \omega \Lambda d\gamma \in \underline{\text{for any diff. form}} $ Thus, for $\omega, \gamma \in \overline{Z}$, $d(\omega \Lambda \gamma) = 0 \Lambda \gamma + (1) \text{deg } \omega$	s is and 7
$\omega \wedge \rho = \rho$	
while E. i.e. Z is a substing of \(\Omega^*(M)\) under multiple	icetion 1.
, to see, les, since n=dp, some p,	
Similarly, ThweB.	
lhus, B is an ideal of 7 and H* (M) = 7/15	the product
train IL (M) by (W) ATM1 - T. 1217	
	million 7 27 2
	11 by [w][7].
verine, on C'(U, (1)), where U: open conex of M,	
U: (111 06/0 C 111 05) > CPEY (29+5)	follows:
for $\omega \in C^{p}(\mathcal{U}, \Omega^{2}), \mathcal{I} \in C^{r}(\mathcal{U}, \Omega^{s}),$	(w and γ) terms on
((W U) (U & - x per) = (1) W (U do - dp) . 7 (U dp - x per) ,	where RHS
have been restricted to $\Omega^{2}(U_{x_{0}-x_{0}-x_{0}})$ and $\Omega^{3}(U_{x_{0}-x_{0}})$	

Punk:
In the definition of U above, we have regarded $C^p(U,\Omega^2) \stackrel{\text{def}}{=} TT\Omega^2(U_{do-dp})$ as
the collection of functions $\{U_{do-dp} | doc-cdp\} \stackrel{\text{W}}{=} U \Omega^2(U_{do-dp}) \otimes U \otimes (U_{do-dp}) \in \Omega^2(U_{do-dp})$

D'+D"=8+D", D"=(1) Pd.

D'into an autidentivation releanse Produce Semecures The sign (-1) is there to make PZ to this product structure. (Exercise 14.16) (X) For WEKPIR, 7 EK 815, we have (1) 5(wv7) = (5w) v1+(-1) degw wv (57). (2) D"(wu7) = (D"w) U7+(-1) degrow U(D"7) (3) D(wu7) = (Dw) U7+(+)degww U(D7). where def w=p+2. i.e. S, D" (and hence D) are antiderivation relative to the product structure, where the defree is the "aneidiaponel" defree P+2. We usually write w-7 or w7 for wv7. (C) (Each complex $C^*(\mathcal{U}, |R|)$)

Recall that $C^*(\mathcal{U}, |R|)$ is the kernel of $C^*(\mathcal{U}, \Omega^c)$. in the double complex in (b). Hence, it inherits the produce someoure from $C^*(\mathcal{U},\Omega^*)$. (It is closed under multiplication since elements in C*(U,IR) are exacely the locally const. functions). Explicitly, for w: p-cochein, 7: r-cochein, (w. M) do- aper = was ap Tap-aper. (2=0, elms, (-1) ar = 1). 13y (14.26), S: antiderivation relative to this product. =) The product structure reduces to homology level, making the Cech cohomology H*(U, IR) into a graded algebra.

Rmk: The construction also holds for eopo. X, giving product structure on the Cech cohomology H*(X,1R).

H*(U,IR) -> H*(V,IR), giving the direct limit H*(M,IR) an

For a retinement U>U, the retinement map induces an algebra hom.

Recall the inclusion maps $\underline{Y}: \Omega^*(M) \to C^*(\mathcal{U}, \Omega^*)$ $\underline{i}: C^*(\mathcal{U}, |R|) \to C^*(\mathcal{U}, \Omega^*).$ Product
Structure
P3

The product seniceure just defined in (a), (b), (c) will make these two maps into algebra hom.

These two maps will induce bijections, when \mathcal{U} is a good eoner, $H_{DR}^*(M) \simeq H_D\{C^*(\mathcal{U}, \Omega^*)\}$ and $H_{DR}^*(\mathcal{U}, \mathbb{R}) \cong H_D\{C^*(\mathcal{U}, \Omega^*)\}$.

Thus, $H_{DR}^{*}(M)$ and $H^{*}(U, |R|)$ are algebra iso,

": \mathcal{U} is a good coner :. $H^*(\mathcal{U}, |R|) \cong H^*(M, |R|)$. Hence, we have:

Thm (4.28)

The iso, between de Rham and Cech HDR (M) = H*(M, IR) is actually an algebra iso.

(d) (Product structure on spectral seq.)

<u>Assume</u> a double complex K has a product structure relative to which D is

an antiderivation.

i dy is induced from D and Er= Hdry (Er-1)

i. dr is an antiderivath on Er, Yr.

Thm (14.29)

assumptions about.

Then I spectral seq. (Ex, dr: Ex) Extracted g converging to HD(K) s.t.

D E22 = HP2 Ha(K)

Ex inherits the produce structure from Expreletive to Mich oly is an antidexination.

WARNING

Both EDD and HO(K) inherit product structures from K, but generally not ring iso.