Quiz1

2024-02-15

Problem 1

Box Plot with Mean, 0.68-Quantile, and Outliers

Mean: 169.9048

0.68-Quantile: 175

Q1: 165

Q2 (Median): 171

Q3: 177

Outliers: 126

Normal Q-Q Plot

IQR: 12

Variance: 168.4905

Standard Deviation: 12.98039

Mean: 169.9048

Median: 171

The distribution is negatively skewed.

Problem 3

i

Observed value t1: 130.5769

P(|T1| <= |t1|): 1

ii

Observed value t2: 129.6081

P(|T2| <= |t2|): 1

iii

No they are not different because both are calculated based on chi-square distributions.

iv

t-distribution t3 = -0.984309 P(T3>t3) = 0.8316388

V

student t-distribution t4 = -0.38666112 P(T4>t4) = 0.648454

Problem 4

- i. Linear Combination of Normal Random Variables
- ii. Sum of Scaled Chi-Squared Random Variables

- iii. Ratio of Normal to Square Root of a Weighted Sum of Chi-Squared Variables
- iv. Ratio of Two Chi-Squared Variables

Problem 5

- i.
- ii. The first one is a normal distribution N(0,1) The second one is a chi-squared distribution.

iii.

The mathematical expectation of the first one is $\sigma 2$ and for the second one the (n-1)/n $\sigma 2$

iii. They are not independent and uncorellated because the covariance between mu squared and σ 2 is zero.