ex experience

Maria 20894

FINAL REPORT

DEVELOPMENT OF A WEIGHT/SIZING DESIGN SYNTHESIS COMPUTER PROGRAM

VOLUME III
USER MANUAL

MCDONNELL DOUGLAS ASTRONAUTICS COMPANY "EAST

MCDONNELL DOUGLAS

CORPORATION

FINAL REPORT

DEVELOPMENT OF A WEIGHT/SIZING DESIGN SYNTHESIS COMPUTER PROGRAM

28 FEBRUARY 1973

MDC E0746

VOLUME III USER MANUAL

SUBMITTED TO
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
LYNDON B. JOHNSON SPACE CENTER
HOUSTON, TEXAS 77058

CONTRACT NAS 9-12989

PREPARED BY:

J. M. GARRISON, STUDY MANAGER

APPROVED BY:

S. MORGAN MANAGER WEIGHTS

MCDONNELL DOUGLAS ASTRONAUTICS COMPANY - EAST

Saint Louis, Missouri 63166 (314) 232-0232

MCDONNELL DOUGL

CORPORATION

FOREWORD

The Weight/Sizing Design Synthesis Computer Program was developed by McDonnell Douglas Astronautics Company - East under Contract NAS 9-12989 for the National Aeronautics and Space Administration, Lyndon B. Johnson Space Center, Houston, Texas. The contract involved a study to derive basic weight estimation relationships for those elements of the Space Shuttle vehicle which contribute a significant portion of the inert weight. These relationships measure the pacing parameters of load, geometry, material, and environment. The weight estimation relationships are then combined into the Weight/Sizing Design Synthesis Computer Program.

This report is submitted in three volumes:

- I Program Formulation
- II Program Description
- III User Manual

This volume contains the Program User's Manual, which provides the user verbal description of the processes simulated, data input procedures, output data, and values present in the program.

ACKNOWLEDGEMENTS

The following McDonnell Douglas Astronautics Company - East personnel were the major contributors to the technical contents of this study:

L. M. Gnojewski/R. W. Ridenour Program Coding/Assembly Integration

B. A. Grob External Tank and Empirical Equations

J. J. Morgan Wing

J. M. Garrison Structure Models

The Technical Monitor for the National Aeronautics and Space Administration. Mr. Norman A. Piercy, of the Engineering Technology Branch provided valuable guidance and direction throughout the study.

REPORT MDC E0746 VOLUME III 28 FEBRUARY 1973

DEVELOPMENT OF A WEIGHT/SIZING DESIGN SYNTHESIS COMPUTER PROGRAM — FINAL REPORT

Table of Contents

Sectio	on Title	Page
1.	ESPER Input Data Setup	1-1
2.	ESPER Input Variables	2-1
3.	ESPER Program Description and Options	3-1
4.	Configuration Data and Geometry Definitions	4-1
5.	ESPER Output Parameters	5-1
6.	ESPER Output	6-1
	APPENDIX A	A-1

LIST OF PAGES

TITLE

ii through iv

1-1 through 1-3

2-1 through 2-23

3-1 through 3-16

4-1 through 4-7

5-1 through 5-10

6-1 through 6-10

A-1 through A-21

1. ESPER INPUT DATA SETUP

The input data required to run ESPER is in NAMELIST form. With NAMELIST input, the user can input numeric data without FORTRAN statements. Each input record specifies exactly which variable is being input, rather than requiring the input data to interface with an internal input list. This form of inputting data not only enables the user to make changes to the data file with a minimum effort, but it also provides the ability to input information without knowing in advance which items are going to be processed. The NAMELIST block name (x) is a single variable name that refers to a specific list of variables or array names into which (or from which) the data is transferred. The form of the NAMELIST statement is:

NAMELIST/ $x/v_1, v_2, v_3, \dots, v_M$

where

x =the name of the NAMELIST block,

 V_{i} = the scalars or array names that are to be inputted.

To make the mundane task of inputting data into ESPER more palettable and less cumbersome for the user, the data file required by ESPER has been broken down into FIVE distinct blocks. These blocks of data are a logical attempt to group the data functionally to the various models in the program. A description of these data blocks follows:

- NAMELIST/PERF/ This block contains the PERFORMANCE oriented parameters (T/W's, thrust's, ..., etc.)
- 2. NAMELIST/ORB/ This block contains the ORBITER oriented parameters (OAMS eng wt., FTU's, ..., etc.)
- 3. NAMELIST/OAERO/ This block contains the ORBITER AERO-SURFACE parameters (ASPECT RATIO, AREAS, ..., etc.)
- 4. NAMELIST/SRM/ This block contains the SRM oriented parameters (DIAMETER, DENSITIES, ..., etc.)
- 5. NAMELIST/EXT/ This block contains the EXTERNAL-TANK oriented parameters (HYDROGEN BIAS, CONE ANGLE, ..., etc.)

A description of a typical set of data follows:

1. b PERF

The first card specifies the beginning of the PERFORMANCE data. The first column in this card and all remaining cards must be left blank.

- 2. b PROPBG = 1000000., PROPOG = 500000., BCANT = 8.5 This line is representative of the data included in the PERFORMANCE data block.
- 3. b END
 This card signifies the end of the PERFORMANCE data block.
- 4. b ORB This card signifies the beginning of the ORBITER data block.
- 5. b AOI = 15., HTV = 100., LTV = 155., TMIN = .035

 This line is representative of the data included in the ORBITER data block.
- 6. b END
 This card signifies the end of the ORBITER data block.
- 7. b OAERO

 This card signifies the beginning of the ORBITER AERO-SURFACE data block.
- 8. b AR (1) = 2.19, SG(1) = 3200., LAMB(1) = .21

 This line is representative of the data included in the ORBITER AEROSURFACE data block.
- 9. b END

 This card signifies the end of the ORBITER AERO-SURFACE data block.
- 10. b SRM

 This card signifies the beginning of the SRM data block.
- 11. b RHOP = .065, DIA = 162., MIAX = 78., MAAX = 78.

 This line is representative of the data included in the SRM data block.
- 12. b END

 This card signifies the end of the SRM data block.
- 13. b EXT

 This card signifies the beginning of the EXTERNAL-TANK data block.
- 14. b DI = 0.0, LI = 1000., LD = 4.98235, NR = 25

 This line is representative of the data included in the EXTERNAL TANK data block.
- 15. b END

 This card signifies the end of the EXTERNAL TANK data block.

Additional cases may be run by repeating each block name with the changed data. At least one piece of data must appear with each block name. A sample input file is shown on the following page.

	=M.1101.=	
1 • 000	EXAMPLE	1
2.000	PROPBG+1000000+,PROPAG+800000.,ECANTEB+5.ACANTY=3.5	
000+F	8CANTP=17.0,NRENGR=P.0,NRFNGB=R.O,THBSL=R917000. THCSL=R9B000THBVI=470000TER:4918	
5.000	FTWG1+0	
6.000	F1XHRD+0+G11sPBS+2+G+941sPBV+273+241sP8BS+359+5	
7.000 8.000	ISP85V=491+2.SCD=840+25tW=1+674 H=0+0+DvC4RR=1185+2+1NC=28+55sTAGV=4874+9+REL=1+0	
9.000	DVCBN=+0125,0VCNST=3425360+,MATCH=0+0,MR=A+	
	BMSDYTe10008MSDYP.49508MS1SP.310.7.8MR.1.45	
11.0nn	SENS=0.0.LONGP=1.6	
12:000 13:000	GROWED.O.MINGLW.O.O	
14.000	SARB	
15.000	ARI-15HTV=100.: TV=15KH8=110L8=235L1=747NA=.8	
17.000	XZE:3/FS=1:4/HF=2R8+HL=145: X=0+0,K1=2+8,SFW=+278+2VC=2912-,PC=14+7/Q+680+/SND=30+6	
18.000		
19.000	TAUS=22300.;FF=10300000.;LFS=20DELP=1.4.FAB=69000.	
20 ± 000 21 • 000	RWDBs:1;TAVBsP2300;RMDFs:1;K2s4;SWs41;K7=0;K3=2;K4=0; ACO=1764;FAF=69000;SAW=RO9;FAP8=69000;TAUPB=2P300;	
	DFACE1.3.FTE10300000.4RHATPs.1.RHAPBs.1.K68120.	
24.000	NCTPS=4.74;NCA=54.;FWDTPS=1.7R,FWDA=1442.;CTTPS=0.0;CTA=0.0	
	CSTPS=0+C,CSA=0+0,CBTPS+0+0,CBA=0,Q,ATTPS=1+22,ATA=1750+	
25.0nn 26.0nn	AGTPS=1,22;AGA=1600,ABTPS=2,97,ABA=2079,JASTPS=6,6 BASA#371,,TPSC0N#275,JWGTPS=1,E95,WGPLE=.059	
27.000	WI ETPS-9-3-TI TPS-1-23-TLPLE-+099-TLETPS-4-61	
28.000.	MCSTPS=0.0/MCSA+0.0.WACRN=2.02.TACRN=2.02.184=0.0.18TPS=0.0	
29.00n 30.00n	JBC=3476,,LD1=300,,LD1PS=1,0,PR81=0,0,PR81PS=0.0,PR8C=13x2. PPC=x9,,HYC=77,,SC4=118,,SC1PS=1:0,SHI=42x0,,SWC=0.0,WSI=52.	
31.000	PAGB-1., SPI-0., HHFAD-1350., BHFAD-2000., HULL-37.	,
32.000	BULL#22FTU#95000RH0#.286.MATL#1.HCLEN#20BCLEN#20.	
33.000	HFLEN=77. DELFN=172. CPL G1=1.	
35 • 000	_DFNSF#5%.7zDFNS8 <u>##Q#?#RH8T#.16_FTUT#13500</u> n.#PRE\$8M##16Q. _RH8P#.16,FTUP#135non.#8M\$FNG#39Q.,PR8PSY#647##M8DULF#1071.	
36.000		•
37 • 0nn	ACSENG#1910.,ACSSYS#900.,ACSM60#910.,6R8M15#0.0	
000 + RF	LGFTU=780000.1LGVSL+150.1LGLC+95.1LGLS+117.1BRCF+315000.	
39+000	LGDIA=33.,AX2=106x.,AX3=1200.,LNDDKK=0+0 F:XDMT=00.,BUNC1=,12PERS9N=12SC.,BRESD=2985.,BRESV=878.	
41.000	PLBADU-51612.9.PLBADD-40000.	
42.000	FIXBRB # O + O + FIXWAR + O + O	
47.000 000.44	PPWR=3912.;HYDRK=0.0.ELFCK=0.;SURFK=0.0;AV18N8=4455.0 ECLS8=4093-;PPR8V=1742-;8RIFL=3872;;TABPR8=0.0	
45+000	SENO	•
- 46.COD	ANAERO	1ST CASE WHICH
47 • Onn	A9(1)+2-19/SG(1)+3220-/LAMB(1)+-21/T6CR(1)+-09/T6CT(()+-12	IS THE BASELINE CASE
48.0nn 49.0nn	BCT(1)=17.5,THETA(1)=10.,NZ(1)=3.75,DELP(1)=296.,LH(1)=0.0 PTBXC(1)=,43,PTBXF(1)=,494,CB(1)=,47,RHB(1)=,10,FA(1)=64394.	
50.000	CS(1)=.0005,TAU(1)=22320.,TEMP(1)=70.,UWW(1)=0.0,CSR(1)=.67	
51 • Onn	TMIN(1) 03.ULE(1) -1.60.WLF(1) -0.0.CLE(1) 1.AICP 306.ATLP -1.	
52.000		
53.000 54.000	8:P1(1)=0,0,8LP2(1)=0.0,8CM1(1)=0.0 KFAS==68:UMA:L=1:75;WM6S=0:3M!NGK=0:0;SMGDR=190:	
55 000	AR(2)=1.44/SG(2)=435./LAMB(2)=,44,TBCR(2)=.107/TBCT(2)=.09	i i
		{
56+000	BCT(2)=0THETA(2)=3NZ(2)=0JELP(2)=4.7LH(2)=0.	
57 • 00n	PTBXC(2)=C+,PTBXE(2)=+62,CB(2)=+67,RH8(2)=+1.FA(2)+64394.	
54.00n	C9(2) - 0005, TAU(2) - 22320 - TEMP(2) - 70, UWW(2) +0 - CSR(2) - A7	(
	IMIN(2)=.03.ULE(2)=1.6.WLE(2)=0.0.CLE(2)=.1.RDCe.eg.URS=1.75 FM5DU(2)=10000000WC1(2)=0.0.WC2(2)=0.0.CM1(2)=0.0	· · · · · · · · · · · · · · · · · · ·
41 - 0nn	Bi P1(2)=0.0.8LP2(2)=0.0.8CM1(2)=0.0	ļ
62+000	RUDUL=7.1.VTVC=0.n.LVT=n.n.SPRUG=1.0.TAILK=0.0	ĺ
43.00n 44.00n	SEND SCRM	
	RHOP-OAS, DIA-147. MIAXARI. MAXARI. MEBRA1000.	
66+000	F991.4;FTUP256000.;AT92884;;RHAM=.283;INT=.1;NP=.76397	
47.0cm	NJ#5.0.WNRZ01.0.NER011.0.AP+37ECCF01.5A	The first was extended and an extended a
47+000 68+000 69+000		
68.000 69.000 70.000	NJ#5.0.WN#Ze1.0.NFR=11.0.AP=37RCCF=1.5R PC=873.3.NDM+=15TC=5775TDFR=2ROVRI=161VSD=161. AASE=10LF=200RUNC1=0.035.F1XDWT=0.0.RRISP=235WE1=0.0 BSRMC=0.0.SRVIC=0.0.SRMC=3500.	
68.000 69.000 70.000	NJ#5.0,WNBZ#1.0,NFR#11.0,AP#37RCCF#1.5R PC#833.3,NDM##15.,TC#5775.,TDFR#7RO.VRI#141.,VSD#141. AA9E#10.LF#200.,RUNC1#0.035.F1XDWT#0.0,RRISP#235.,WEJ#0.D BGRMC#0.6,SR*MC#6.0,GRMCC#3500. F1XBBB#0.025IMPBB#3.0	
68.000 69.000 70.000	NJ#5.0.WN#Ze1.0.NFR=11.0.AP=37RCCF=1.5R PC=873.3.NDM+=15TC=5775TDFR=2ROVRI=161VSD=161. AASE=10LF=200RUNC1=0.035.F1XDWT=0.0.RRISP=235WE1=0.0 BSRMC=0.0.SRVIC=0.0.SRMC=3500.	
68.000 69.000 70.000 - 71.000 72.000 73.000 74.000	NJ85.0.WNRZet.0.NCRet1.02.APe37ECCFe1.5E PC=R33.3.NDHae1ETC=8775.,TDFR=PRO.PRIE161VSD=161. AAGE:IN-LF=PRO.PRUNCI=PR.N35.F1%WT=0.0PRRISP=235WEI=0.D BRRMC=0.0.SRMCC=0.0.SRMCC=3500. FTXBBB=0.025IMPBB=2.0 EFND BFNT BFNT BT90Li=1000LD=0NR=CND=61THETA=30HHI=100.	
68.000 69.000 70.000 71.000 72.000 73.000 74.000	NJ85.0.WNR261.0.NCRe11.02.APe37RCCFe1.5R PC=R33.3.NDH=11s.TC=8775TDFS=7R0VRIs1=1VSD=1+1. AA5E=10LF=200RUNC1=0.035.F1XDWT=0.02.RRISP=235WEJ=0.0 BRRW=0.s0.SR**IC=0.02.RRRC=3500. F1X88880.02SIMPB883.0 EFXB8880.02SIMPB883.0 EFXB8880.00SIMPB883.0 EFXB8880.02SIMPB883.0 EFXB8880.00SIMPB883.0 EFXB8880	
68.00n 69.0nn 70.00n - 71.0nn 72.0nn 74.0nn 75.0nn 76.0nn	NJ#5.0.WN#Ze1.0.NFRe11.2.APe37RCCFe1.5R PC=R33.3.NDH=15.7C68775.7DFR=7R0.VRI=161.VSDe141. ASFe10.JF=20.0.RUNC1+0.035.F1XWT=0.0.RRISP=235.WE1+0.0 BCRMC=0.0.SRMTC=0.0.CRMRC=350D. F1XBBBe0.025IMFBB=3.0. EXTD D10.JL=1000.JLD=0.NR=0.ND=41.THE7A=30.WHI=100. MR146.JUPRS=20.JL=20.JL=41.01.FBPRFS=37.JBPRES=22.FUPRFS=38. BUPRS=20.JL=0.JF=0.JF=04.JLCDM=20.BLWD=3.BW=1.K=:15	
68.0nn 69.0nn 70.0nn 71.0nn 72.0nn 73.0nn 74.0nn 75.0nn 27.0nn	NJ85.0.WNR261.0.NCRe11.02.APe37RCCFe1.5R PC=R33.3.NDH=11s.TC=8775TDFS=7R0VRIs1=1VSD=1+1. AA5E=10LF=200RUNC1=0.035.F1XDWT=0.02.RRISP=235WEJ=0.0 BRRW=0.s0.SR**IC=0.02.RRRC=3500. F1X88880.02SIMPB883.0 EFXB8880.02SIMPB883.0 EFXB8880.00SIMPB883.0 EFXB8880.02SIMPB883.0 EFXB8880.00SIMPB883.0 EFXB8880	
68.0nn 69.0nn 70.0nn 71.0nn 72.0nn 73.0nn 74.0nn 74.0nn 77.0nn 78.0nn 79.0nn	NJ85.0.WNRZet.0.NCRet1.02.APe378Co.CFe1.58 PC=R33.3.NDHaifs.TC=S775.,TDFR=PRO.PRISP=235.WEIFO.D BRRMC=10.1.F=200.RUNCi=n1.035.F1%WT=0.0.RRISP=235.WEIFO.D BRRMC=10.0.SRMCC=3500. F1XBBB=0.02.STMPBB=2.0. END BRYT D1=0.1.F=1000.JLD=0.NR=0.ND=11.,THETA=30.JHHI=100. MRIas.JDFRG=10.797-LA=1.01.FBPRRC=373.JPRESP22.FUPRFS=38. BIPRFS=20.JLF=0.NF=0.JCD=30.BLMD=3.JMD=1.K=-15 HBIAS=1500.JF=0.NF=0.JML=1.01.UCTPS=.R8=2.LCTPS=.7365 CYTES=.R8=6.JNTPS=.R969.DMTPS=.S149.FIXDWT=0.JUPP=.075	
68.0nn 69.0nn 70.0cn 71.0cn 72.0cn 73.0cn 75.0cn 75.0cn 74.0cn 78.0cn 79.0cn	NJ85.0.WNR261.0.NCRe11.0.APP37RCCFe1.5R PC=R33.3.NDHa=15.,TC=8775.,TDFS=R0VRI=161VSD=161. ASTEID:.LF=200RUNC1#01.035.F1XDWT=0.0.RRISP=235WE1#0.D BSRMC=0.0.SRMTC=0.0.SRMRC=3500. F1X888e0.02SIMPB8=0.0 &FND &FXT D190L=1000LD=0NR=0ND=61.,THETA=30HHI=100. MR186UPFR8=1:0297.LA=1.01.F8PRFS=378PRES=22FUPRFS=38. 8:IPPRS=20LE=0NF=04LCD=20BLMD=3BX=1K=15 MBIASSISO0.#SFSI=64.MXL=16KT=2FURA60000.EV15500000. RH3=102.TM1v=028.NCTPS=1.101.UCTPS=.R466.LCTPS=.7365 CYTPS=6876.INTPS=.R469.DMTPS=5149.FIXDWT=01.GUPT=6.075 CYTPS=06FCTISP=260.AVIGNT=R00MISCT=0AFT=00HT=0.6496	
68.0nn 69.0nn 70.0nn 71.0nn 72.0nn 73.0nn 74.0nn 74.0nn 77.0nn 78.0nn 79.0nn	NJ85.0.WNRZet.0.NCRet1.02.APe378Co.CFe1.58 PC=R33.3.NDHaifs.TC=S775.,TDFR=PRO.PRISP=235.WEIFO.D BRRMC=10.1.F=200.RUNCi=n1.035.F1%WT=0.0.RRISP=235.WEIFO.D BRRMC=10.0.SRMCC=3500. F1XBBB=0.02.STMPBB=2.0. END BRYT D1=0.1.F=1000.JLD=0.NR=0.ND=11.,THETA=30.JHHI=100. MRIas.JDFRG=10.797-LA=1.01.FBPRRC=373.JPRESP22.FUPRFS=38. BIPRFS=20.JLF=0.NF=0.JCD=30.BLMD=3.JMD=1.K=-15 HBIAS=1500.JF=0.NF=0.JML=1.01.UCTPS=.R8=2.LCTPS=.7365 CYTES=.R8=6.JNTPS=.R969.DMTPS=.S149.FIXDWT=0.JUPP=.075	
68.00n 70.00n 71.00n 71.00n 73.00n 73.00n 74.00n 75.00n 74.00n 77.00n 81.00n 87.00n	NJ85.0.WNR261.0.NCRe11.0.APe37RCCFe1.5R PC=873.3.NDH=18.TC=8775.,TDFS=780.VRIe101.VSD=101. A375e10.LF=200.RUNC1e0.035.F1XDWT=0.0.RRISP=235.WE170.D BSRMC=0.0,SRMC=0.0.SRMC=3500. F1X88880.0.4SIMP8883.0 EXNO EXNO EXNO EXNO EXNO EXNO EXNO EXN	
68.0nn 69.0nn 70.0cn 71.00cn 71.00cn 73.0cn 74.0cn 75.0cn 74.0cn 77.0cn 79.0cn 80.0cn 80.0cn 81.0cn 82.0cn 82.0cn	NJ85.0.WNR261.0.NCRe11.02.APe378C0.CF61.58 PC=R33.3.NDHaifs.TC=8775.,TDFR=PR0.,VRIe161.,VSD=161. AA9E610.LF=200.,RUNC190.035.F1%WT=0.0.RRISP=235.,WE190.D BCRMC=0.0.SKYIC60.0.CRMCC=3500. F1X8888.0.025IMP888.0.0. END BCRMC=0.0.SIMP888.0.0. END BCRMC=0.0.F1000VD=0NR=0ND=61.,THETA=30HHI=100. MRIesUPFR861.0297.LA=1.01.F8PRRC=373PRESP22FUPRFS=38. BUPRFS=0JF=0F=0.4.LC0M=0BLMD=3BN=1K=.15 MBIAS=1500FS\$1.0.NKLm1.0.NKS=3.2.FTUR60000E\$10500000. RH3:.10TMIv=028.NCTPS=1.01.UCTPS=.R60LCTPS=.7365. CYTPS=.R876.INTPS=.R869.DMTPS=.S149.FIXDWT=00GUP=.075 RFTDV=200RRTISP=260AVI6NT=A00MISCT=0AFT=0HRI=.6496 RX1=0RXP=0RXL=0UPFRF=1.03 SIMPTK=0.0 ECND ECPER	
68.00n 70.00n 71.00n 71.00n 71.00n 73.00n 74.00n 75.00n 76.00n 76.00n 78.00n 78.00n 78.00n 78.00n 78.00n 78.00n 78.00n 78.00n	NJ85.0.WNR261.0.NCRe11.0.APe37RCCFe1.5R PC=873.3.NDH=18.TC=8775.,TDFS=780.VRIe101.VSD=101. A375e10.LF=200.RUNC1e0.035.F1XDWT=0.0.RRISP=235.WE170.D BSRMC=0.0,SRMC=0.0.SRMC=3500. F1X88880.0.4SIMP8883.0 EXNO EXNO EXNO EXNO EXNO EXNO EXNO EXN	
68.0nn 69.0nn 70.0cn 71.00n 71.00n 73.0nn 73.0nn 75.0nn 76.0nn 77.0nn 78.0nn	NJ85.0.WNRZet.0.NCRet1.02.APe378CCFe1.58 PC=873.3.NDHa=15TC=8775.,TDFR=280VRI=161VSD=161. A375:10LF=200RUNC1=01.035.F1%WT=0.0.RRISP=235WE170.D BRRMC=0.0.SRYIC=0.0.CRMRC=3500. FTXB88:0.025IMPB8:0.0 END BRID BRID BRID BRID BRID BRID BRID BRI	
68.00n 70.00n 71.00n 71.00n 71.00n 73.00n 73.00n 74.00n 75.00n 74.00n 80.00n 81.00n 81.00n 82.00n 84.00n 85.00n 86.00n 87.00n	NJ85.0.WNR261.0.NCRe11.02.AP937RCCFe1.5R PC=R33.3.NDHa15TC=8775.,TDFS=350.VRI=161VSD=161. AA7E=10LF=200.,RUNC1=0.035.F1XDWT=0.0.RRISP=235WE.170.D BSRMC=0.0.SRMC=0.0.SRMC=0.3500. F1XBBB=0.02.SIMPBB=0.0 BFND BFND BFNT D180.LI=1000.LD=0NR=0ND=61THETA=30HHI=100. MRI46UPFRB=1.0297.L4=1.01.FBPRFS=373BPRES=22FUPRFS=38. 51PRFS=20LI=00DF=0LE=0DF=0DE=0DEHDP3BM=1K=15 BRIASSISO0FSE1.6ANXLAT.6ANXSA2.3.FTU866000.ET0500000. RW3=102.TM10=.028.NCTPS=1.101.UCTPS=.R466.LCTPS=.7365 CYTPS=6876.INTPS=.R469.DMTPS=.5149.FIXDWT=0GUP=.075 RTTOV=200RRTISP=260AVI6NT=200MISCT=0AFT=0HRI=1.6496 RX1=0RX2=0RXL=0UPFRF=1.03 END ROERF STAGV=5000.	
68.0nn 69.0nn 70.0cn 71.00n 71.00n 73.0nn 74.0nn 75.0nn 74.0nn 77.0nn 78.0nn 80.0cn 81.0nn 85.0nn 86.0nn 87.0nn 87.0nn 87.0nn 87.0nn	NJ85.0.WNR261.0.NCRe11.0.AP937RCCFe1.5R PC=873.3.NDH=15.,TC=8775.,TDFS=780.VRIe101.VSD=161. A375e10.LF=200.,RUNC1#01.035.F1X0WT=0.0.RRISP=235.WF.170.D BCRMC=0.0.SRMCC=0.0.CRMCC=3500. F1X88880.0.02SIMPB883.0. &FVD &FXT D1=0.LI=1000.JLD=0NR=0ND=1.,TMETA=30MHI=100. MR146.UPF9881.0797.LA#1.01.FBPRER#37BPRES#72FUPRFS#38. ##################################	
68.0nn 69.0nn 70.0nn 71.0nn 71.0nn 73.0nn 73.0nn 74.0nn 74.0nn 74.0nn 74.0nn 60.0nn 81.0nn 82.0nn 84.0nn 84.0nn 84.0nn 84.0nn 87.0nn 87.0nn 87.0nn 87.0nn	NJ85.0.WNR261.0.NCRe11.2.AP=378CCFe1.58 PC=873.3.NDHa18.TC.5775.,TDFS=780.VRI=161.VSD=161. ASTEIN.LF=200.RUNC1#01.035.F1XOWT=0.0.RRISP=235.WE170.D BCRMC=0.0.SKMCC0.0.CRMCC=3500. FTX88880.0.2SIMP880.0. &FND &FXT D180.L1=1000.JLD=00.NR=0.ND=41.,TMETA=70.WHI=100. MR184.UPFR801.0P97.LA*1.01.F8PRFR8378PRES=22.FUPRFS=38. 81PRFS=20.JL=00.NF=0C4.LCD*20.BLKMD=3.BS-1.K*=15. BRIASSISO0.#FSE14.MNLA*LA*NSA2.2.FTUA6A000.E1.K*=15. BRIASSISO0.#FSE14.MNLA*LA*NSA2.3.FTUA6A000.E1.K*=15. BRIASSISO0.#FSE14.MNLA*LA*NSA2.3.FTUA6A000.GUP*=.075. CYTPS=.6876.INTPS=.8469.DMTPS=.5149.FIXDWT#01.GUP*=.075. RYTOV=200.*RRTISP=260.*AVI6NT#200.*MISCT#00.*AFT#00.*HR1=46496. RX1=00.*RX2=0.*RXL=00.*UPFRF=1.03. END &FND &FND &FND &FRB ZND CASE WHICH CHANGES ARF(1)=2-19 ZND CASE WHICH CHANGES ARF(1)=2-19 STAGING VELOCITY FROM	
68.0nn 69.0nn 70.0cn 71.00n 71.00n 72.0nn 73.0nn 74.0nn 75.0nn 74.0nn 77.0nn 78.0nn 60.0nn 80.0nn 80.0nn 87.0nn	NJ85.0.WNR261.0.NCRe11.02.AP9378CCF61.58 PC=R33.3.NDHae18TC=8775.,TDFR=970VRIe161VSD=161. A376:01LF=970RUNC199.0355F1%WT=0.0.RRISP=235WE190.D BCRMC=9.0.SKYIC60.0.CRMCC=3500. FTXB8860.025IMP8883.0. END BFXT D1=00LI=1000LD=00NR=0ND=61THETA=300HHI=100. MRIesUPFR861.0297.LA=1.01.F8PRRS63373PRE8272FUPFFS=38. BIPARS=970LF=00FF=26LCDM=30BLKMD=3BW=1K=.15 HBIAS=100FS=1.A.NXLm1.A.NXS33.2.FTU#66000EV10500000. RH30.107.TM10=092.NCTPC=1.01.UCTPS=.R660.LCTPS=.7365 CYTPSU-6876.NTPS=.R669.DMTPSS.5149.FIXUFE0GUP=.075 RFTDV=9200RRTISP=2601.AVI6NT=800MISCT=0AFT=00HR!=.6496 RX1=00RX2=0RXL=00UPFRF=1.03 SIMPTK=0.0 END END STAGW=5000. END ARE8 ARI=15. ARND ARRB	
68.0nn 70.0nn 71.0nn 71.0nn 71.0nn 73.0nn 73.0nn 73.0nn 75.0nn 75.0nn 76.0nn 78.0nn 80.0nn 81.0nn 82.0nn 83.0nn 84.0nn 87.0nn 88.0nn 88.0nn 88.0nn 89.0nn 99.0nn 99.0nn 99.0nn	NJ85.0.WNR261.0.NCRe11.02.AP=378CCFe1.5A	
68.00n 59.0nn 70.0cn 71.00n 71.00n 73.0nn 73.0nn 74.0nn 74.0nn 74.0nn 78.0cn 78.0cn 80.0cn 81.0nn 87.0cn 85.0nn 87.0cn 85.0nn 87.0cn 91.0cn 91.0cn 92.0cn	NJ85.0.WNR261.0.NCRe11.02.AP9378CCF61.58 PC=R33.3.NDHae18TC=8775.,TDFR=970VRIe161VSD=161. A376:01LF=970RUNC199.0355F1%WT=0.0.RRISP=235WE190.D BCRMC=9.0.SKYIC60.0.CRMCC=3500. FTXB8860.025IMP8883.0. END BFXT D1=00LI=1000LD=00NR=0ND=61THETA=300HHI=100. MRIesUPFR861.0297.LA=1.01.F8PRRS63373PRE8272FUPFFS=38. BIPARS=970LF=00FF=26LCDM=30BLKMD=3BW=1K=.15 HBIAS=100FS=1.A.NXLm1.A.NXS33.2.FTU#66000EV10500000. RH30.107.TM10=092.NCTPC=1.01.UCTPS=.R660.LCTPS=.7365 CYTPSU-6876.NTPS=.R669.DMTPSS.5149.FIXUFE0GUP=.075 RFTDV=9200RRTISP=2601.AVI6NT=800MISCT=0AFT=00HR!=.6496 RX1=00RX2=0RXL=00UPFRF=1.03 SIMPTK=0.0 END END STAGW=5000. END ARE8 ARI=15. ARND ARRB	
68.00n 70.00n 71.00n 71.00n 71.00n 73.00n 74.00n 75.00n 76.00n 60.00n 81.00n 82.00n 83.00n 84.00n 87.00n 89.00n 89.00n 89.00n 99.00n 99.00n 99.00n	NJ85.0.WNR261.0.NCRe11.0.APP37RCCFe1.5R PC=R33.3.NDHa=15TC=8775.,TDFS=R00.VRI=161VSD=161. AA7E=10LF=200.,RUNC1=0.035.F1X0WT=0.0.RRISP=235WE.170.D BCRMC=0.0.SRMC=0.0.CRMCC=3500. FTX88880.0.2SIMP88=0.0 &FND &FXT D1=00.LI=1000LD=00NR=0ND=61THETA=30HHI=100. MR144UPFR8=1.0297.LA=1.01.F8PRFC=378PRES=22FUPRFS=38. 61 PRFS=20LI=00NF=04LCON=20BLKHD=3BX=1K=15 BHR14S=1500FSU*1.ALNXLA=2ETU86A000ET15000000. RH3=100.TM V=028.NCTPC=1.101.UCTPS=.R464.LCTPS=.7365 CYTPS=6876.INTPS=.R969.DMTPS=.5149.FIXDWT=00GUP=.075 RTTOV=200RRISP=260AVI6NT=200MISCT=0AFT=00HRI=:6496 RX1=00.RRX=00RXL=0UPFRF=1.03 &FND &FND &FND &FRD AFR8 AAFI=15. &FND &FND AFR8 AAFI=15. &FND &FND AFR8 AAFI=15. &FND AFR9 AFY0 A874 FT/SEC TO 5000 FT/SEC RM9P=.0Aa &FND &FND &FND &FND &FND &FND AFY FT/SEC TO 5000 FT/SEC	
68.0nn 70.0nn 71.0nn 71.0nn 71.0nn 73.0nn 75.0nn 75.0nn 76.0nn 76.0nn 78.0nn 78.0nn 80.0nn 81.0nn 82.0nn 82.0nn 83.0nn 84.0nn 85.0nn 88.0nn 89.0nn 99.0nn 99.0nn 99.0nn	NJ85.0.WNR261.0.NCRe11.02.AP9378CCF61.5A PC08733.3.NDMae18TC08775.,TDFR09760.VRI0161VSD0161. A376:01LF09700.RUNC190.0355F1%WT00.0.RRISP0235WE190.D BCRMC00.0.SRMCC00.0.CRMCC03500. FTXB8860.025IMP88000. END BFXT D100L101000LD00NR00ND041TMETA030MHI0100. MR146UPF7861.0207.LA01.01.F8PRRE337BPRE5272FUPFF5038. MB14850500F581.ANXLA1.ANXS33.2.FTUR66000EV10500000. RH30.107.TM10.007.MCTPC01.101.UCTP50.RA06.LCTP507365. CYTP50.8876.INTPS0R059.DMT950.5149.FIXUT00GUP0.075 RFTDV09200RRTISP02600.AV16NT000MISCT00AFT00MR106496. RX100RX200RXL00UPFRF01.03 S1MPTK00.0 END END AAF98 AAF155. END AAF98 AAF155. END AAF98 AAF155. END AAF98 AAF150AAF90AAF90AAF90AAF7000AAF70000000000	

Page Intentionally Left Blank

2. ESPER INPUT VARIABLES

Following is a complete listing of all the input parameters, together with their reference sources and their symbols for the ESPER program. These reference sources are an interface of ESPER with the Design Data Summary and the Group Weight Statements listed in the appendix. A page, column, line description is used as follows:

DDS 01, 2, 39

where

- 1. DDS = Design Data Summary
 - GWS = Group Weight Summary

FLUID INV = Fluid Inventory Table of Weight Report

- 2. 01 = Orbiter page no. 1
 - B1 = Booster page no. 1
 - ET1 = External tank page no. 1
- 3. 2 = Column no. or sequence of data entry on line
- 4. 39 = 1ine number

Proper use of these terms will assure consistency when using and/or generating data.

INPUT DATA SHEET					
Input Definition	Units	Reference Source Shuttle	Symbol	Data	
PERF PERFORMANCE DATA					
Booster Usable Propellant Weight Initial Guess (1000000 1bs)	Lb		PROPBG		
Orbiter Usable Propellant Weight Initial Guess (500000 lbs)	Lb		PROPOG		
Yaw Angle, Booster to Vehicle Centerline	Deg		B C ANT		
Yaw Angle, Outboard Engine to Orbiter Centerline	Deg	DDS 041	OCANTY		
Pitch Angle, Composite Thrust Vector	Deg	DDS 03106	OCANTP		
@ Launch to Orbiter Centerline		Launch c.g.			
Number of Engines, Booster	ND		NOENGB		
Number of Engines, Orbiter	ND	DDS 04130	NOENGO		
Thrust of Booster per Engine @ sea	Lb		THBSL		
level Thrust of Orbiter per Engine @ sea	Lb	DDS 04230	THOSL		
level Thrust of Orbiter per Engine, vacuum	Lb	DDS 04330	THOVI		
Throttle Factor (calculate using BBT)	ND	DDS 04138	TF		
Counter to Determine Thrust 1.0-Fix T/W and float THRUST 0.0-Fix THRUST and float T/W	ND		FT₩		
Counter to run Fixed Hardware (payload flots) 1.0-Fixed Hardware 0.0-Option Specified by User	ND ND		FIXHRD		
Specific Impulse Booster, sea level	Sec		ISPBS		
Specific Impulse Booster, vacuum	Sec		ISPBV		
Specific Impulse Orbiter, sea level	Sec	DDS 04530	ISPOBS		
Specific Impulse Orbiter, vacuum	Sec	DDS 04630	ISPOBV		

	·	ci (cont.)		· · · · · · · · · · · · · · · · · · ·
Input Definition	Units	Reference Source Shuttle	Symbol	Data
Ascent Ballistic Drag Coefficient	ND	DDS 01120	SCD	
Booster T/W at sea level	ND	·	BTW	
Launch Site Altitude	Ft	DDS 01221	н	
Drag Losses (obtained from fixed hardware run)	Ft/Sec	DDS 01119	DVCORR	
Angle of Inclination, launch	Deg	DDS 01121	INC	·
Staging Velocity (see REL)	Ft/Sec	DDS 01220	STAGV	
Counter to use Relative or Ideal Staging Velocity 1.0-Relative Staging Velocity 0.0-Ideal Staging Velocity	ND .		REL	
% of Total Velocity required for Flight Performance Reserves	%	DDS 01118	DVCON	
Velocity Correlation Factor (obtained from fixed hardware run)	ND		DVCNST	
Counter to use unknown baseline to solve for DVCORR and DVCNST 1.0-Velocity Correlation Const. Solution 0.0-Option Specified by User	ND		MATCH	
Total Velocity losses used by the program to obtain the correct velocity correlation constants	Ft/Sec		TLSSR	
Oxidizer/fuel ratio, ascent propellant -nominal value	ND	DDS 07141	MR	
OMS Propulsion Delta V for tank sizing	Ft/Sec	DDS 01122	OMSDVT	
OMS Propulsion Delta V for propellant	Ft/Sec		OMSDVP	
OMS Propulsion Specific Impulse	Sec	DDS 05804	OMSISP	
OMS Oxidizer/Fuel Ratio	ND	DDS 07441	OMR	

Input Definition	Units	Reference Source Shuttle	Symbol	Data
Counter to solve for Fixed Hardware Sensitivities 1.0-Fixed Hardware sensitivitie 0.0-Option specified by user	ND s		SENS	
Counter for Detailed Print Out 1.0-Detail Print Out 0.0-Short Print Out	ND		LONGP	
Counter for Vehicle Growth 0.0-Option Specified by user 1.0-Booster Growth 2.0-Orbiter Growth 3.0-Booster & Orbiter Growth 4.0-External Tank Growth	ND		GROW	
Incremental Booster Growth/Uncertainty	Lb	·	GROWB	
Incremental Orbiter Growth/Uncertainty	Lb		GROWO	
Two plus the number of one per-cent Growth/Uncertainty Increments to be added	ND		NI	
SRM Dry Weight	Lb		BBOWT	
Orbiter Lift Off Weight less OMS Propellant less Payload	Lb		OLLPLO	
External Tank Inert Weight	Lb		INERT	:
External Tank Dry Weight	LЪ		DRYWT	
External Tank Residual Propellant Wt	Lb		RESIDT	
Counter for running Minimum Glow 1.0-Minimum Glow 0.0-Option Specified by User			MINGLW	

INPUT DATA SHEET (CONT.)					
Input Definition	Units	Reference Source Shuttle	Symbol	. Data	
ORB ORBITER DATA (BODY)					
Angle of Intersection Composite Thrust Vector and Centerline of Tank	Deg	DDS 03115	AOI		
Height Composite Thrust Vector above Aft Interstage Attach Point	.In	DDS 03305 DDS 03306	HTV		
Length of Intersection between Composite Thrust Vector Gimbal and Aft Interstage Attach Point	In	DDS 03105 DDS 03106	LTV		
Height of Orbiter Lift Off CG above Aft Interstage Attach	In	DDS 01305 DDS 03306	НО		
Length of Orbiter Lift Off CG forward of Aft Interstage Attach	In	DDS 01105 DDS 03106	LO		
Length between forward and aft Interface Attach	In	DDS 01105(-) DDS 03104	LI		
Axial Limit Load Factor on Orbiter at critical condition	11D	DDS 01105 DDS 01110	NX		
Vertical limit load factor on Orbiter at critical condition	ND	DDS 01305 DDS 01110	NZ		
Factor of Safety	ND	DDS 0110	FS		
Average Height of Center Fuselage	In	DDS 02248	HF		
Average Height of Cargo Door Sill above Fuselage Bottom	In	DDS 03309 DDS 03310 and axis dia.	HI.		
Length forward Interstage Attach and forward Cargo Compt Bulkhead	In	DDS 03104 DDS 03109	Х -		
Unit weight of forward fuselage shell (calculate outside program)	PSF		к1		
Wetted Area Forward Fuselage	Ft ²	DDS 02141	SFW		
Volume of Pressurized Crew Cabin	Ft ³	DDS 02251	VC		

	,		,	
Input Definition	Units	Reference Source Shuttle	Symbo1	Data
Limit Pressure, Crew Compt.	Lb/In ²	DDS 02351	PC	
Max Dynamic Pr e ssure, Orbiter	Lb/Ft ²	DDS 01111	Q	
Area of NLG Doors		DDS 03113 DDS 03114	SND	
Extended Length of Nose Gear Struct	In	DDS 04307	LNG	
Artificial Allowable	Lb/In ²	DDS 02X49 and shell routine	FAL	
Minimum Thickness (calculate o utside program)	In		TMIN	
Density Material, Longerons	Lb/In ³	DDS 02X49 and shell routine	RHOL	
Density Material, shell	Lb/In ³	DDS 02X49 and shell routine	RHOS	
Material Shear Allowable, shell	Lb/In ²	DDS 02X49 and shell routine	TAUS	
Modulus Elasticity, frames	Lb/In ²	DDS 02X49 and shell routine	EF	
Average Frame Spacing (calculate outside program)	In		LFS	
Ultimate Design Pressure Differential in center section	Lb/In ²		DELP	
Material Allowable, bulkheads	Lb/In ²	DDS 02X49 and shell routine	FAB	
Density Material, bulkheads	Lb/In ³	DDS 02X49 and shell routine	RHOB	
Shear Allowable, bulkheads	Lb/In ²	DDS 02X49 and shell routine	TAUB	

Input Definition	Units	Reference Source Shuttle	Symbol	Data
Density Material, frames	Lb/In ³	DDS 02X49 and shell routine	RHOF	
Number of Payload Attach Points	ND		К2	
Windshield Area	Ft ²	DDS 02153	SW	
Forward Fuselage Misc. Weight	Lb		K 7	
Number of Cargo Door Hinges	ND	DDS 03272	К3	
Center Section Misc. Weight	Lb		К4	
Area Cargo Door	Ft ²	DDS 03122	ACD	
Artificial Allowable, frames	Lb/In ²	DDS 02X49 and shell routine	FAF	
Wetted Area Aft Fuselage	Ft ²	DDS 02341	SAW	
Artifical Allowable Gimbal Plan Bulkhead	Lb/In ²	DDS 02X49 and shell routine	FAPB	
Shear Allowable, Gimbal Bulkhead	Lb/In ²	DDS 02X49 and shell routine	TAUPB	
Dynamic Factor, Ascent Engines	ND		DFAC	
Modulus of Elasticity, thrust struct	Lb/In ²	DDS 02X49	ET	
Density Material, thrust structure	Lb/In ³	DDS 02X49	RHOTP	
Density Material, gimbal bulkhead	Lb/In ³	DDS 02X49	RHOPB	
Aft Section Misc Weight	Lb		К6	
(THERMO)				
Nose Cap TPS Unit Weight	Lb/Ft ²	DDS 03130	NCTPS	
Nose Cap Area	Ft ²	DDS 03830	NCA]
Fwd Crew Compt TPS Unit Weight	Lb/Ft ²	DDS 03132	FWDTPS	

THE	OI DATA	SHEET (Cont.)		
Input Definition	Units	Reference Source Shut t le	Symbol	Data
Fwd Crew Compt Area	Ft ²	DDS 03932	FWDA	1
Center Top TPS Unit Weight	Lb/Ft ²	DDS 03136	CTTPS	
Center Top Area	Ft ²	DDS 03936	CTA	
Center Side TPS unit Weight	Lb/Ft ²	DDS 03133	CSTPS	
Center Side Area	Ft ²	DDS 03 9 33	CSA	
Center Bottom TPS Unit Weight	Lb/Ft ²	DDS 03132	CBTPS	
Center Bottom Area	Ft ²	DDS 03933	СВА	
Aft Top TPS Unit Weight	Lb/Ft ²	DDS 03136	ATTPS	
Aft Top Area	Ft ²	DDS 031036	ATA	
Aft Side TPS Unit Weight	Lb/Ft ²	DDS 03133	ASTPS	
Aft Side Area	Ft ²	DDS 031033	ASA	
Aft Bottom TPS Unit Weight	Lb/Ft ²	DDS 03132	ABTPS	
Aft Bottom Area	Ft ²	DDS 031032	ABA	
Base TPS Unit Weight	Lb/Ft ²	DDS 03137	BASTPS	
Base Area	Ft ²	DDS 031037	BASA	
TPS Constant Weight	Lb		TPSCON	
Wing TPS Unit Weight	Lb/Ft ²	DDS 03532	WGTPS	
Leading Edge % Wing Wetted Area	%		WGPLE	
Wing Leading Edge TPS Unit Weight	Lb/Ft ²	DDS 03X28	WLETPS	
Tail TPS Unit Weight	Lb/Ft ²	DDS 03X34	TLTPS	
Leading Edge % Tail Wetted Area	%	DDS 02106	TLPLE	
Tail Leading Edge TPS Unit Weight	Lb/Ft ²	DDS 03X29	TLETPS	
Misc Control Surface TPS Unit Weight	Lb/Ft ²		MCSTPS	
Misc Control Surface Area	Ft ²		MCSA	

		(Cont.)		4
Input Definition	Units	Reference Source Shuttle	Symbol	Data
Airfoil Perimeter/Projected Length Wing	ND	DDS 01142	WACON	
Airfoil Perimeter/Projected Length Tail	ND		TACON	
Internal Body TPS Area	Ft ²	DDS 03455	IBA	
Internal Body TPS Unit Weight	Lb/Ft ²		IBTPS	
Internal Body TPS Constant	Lb		IBC	
Landing Docking Compt. TPS Area	Ft ²	DDS 03446	LDA	
Landing Docking Compt TPS Unit Weight	Lb/Ft ²		LDTPS	
Propulsion Compt TPS Area	Ft ²	DDS 03447	PROA	
Propulsion Compt TPS Unit Area	Lb/Ft ²		PROTPS	
Propulsion Compt TPS Constant	Lb		PROC	
Prime Power TPS Weight	Lb		PPC	
Hydraulic TPS Weight	Lb		НҮС	
Surface Control Compt TPS Unit Weight	Lb/Ft ³		SCTPS	
Surface Control Compt Area	Ft ²	DDS 03448	SCA	
Initial Baseline Vehicle Projected Area	Ft ²	DDS 01127	SWI	
Change to Initial Baseline Vehicle Projected Area	Ft ²		SWC	
Baseline W/S	Lb/Ft ²		WSI	

Input Definition	Units	Reference Source Shuttle	Symbol	Data
(ASCENT PROPULSION)				
POGO Supression Indicator 1.0-Positive 0.0-Negative	ND		POGO	
Series/Parallel Indicator 1.0-Series Burn 0.0-Parallel Burn	ND		SPI	
Height from top of H ₂ Tank to Engine Interface	In		HHEAD	
Height from top of 0 ₂ Tank to Engine Interface	In		OHEAD	
Hydr og en Tank Ullage Pressure	Lb/In ²		HULL	·
Oxygen Tank Ullage Pressure	Lb/In ²		OULL	
Ultimate Strength of Duct Material	Lb/In ²		FTU	
Density of Duct Material	Lb/In ³		RHO	
Minimum Gage Indicator 0.0-None 1.0-ARP735 & MDA CW-STL 2.0-MDACW-AL 3.0-MSFC-AL 4.0-MSFC-STL	ND		MATL	
Hydrogen combined flow-length of ducts	In		HCLEN	
Oxidizer combined flow-length of ducts	In		OCLEN	
Hydrogen engine hook-up- (ave/eng) length of ducts	In		HELEN	
Oxygen engine hook-up- (ave/eng) length of ducts	In		OELEN	
Coupling type indicator 1.0-Bolted 0.0-Vee-Band	ND		CPLGI	

Input Definition	Units	Reference Source Shuttle	Symbol	Data
(OMS SYSTEM)				
Density of Fuel	Lb/Ft ³	Fluid Inv.	DENSF	
Density of Oxidizer	Lb/Ft ³	Fluid Inv.	DENSO	
Ullage Pressure in Fuel Tank	Lb/In ²	DDS 05415 DDS 05515	PRESF	
Ullage Pressure in Oxidizer Tank	Lb/In ²	DDS 05416 DDS 05516	PRESO	
Material Allowable, tank	Lb/In ²	DDS 05416	FTUT	
Material Density, tank	Lb/In ³	DDS 04516	RHOT	
Ultimate Pressure, tank pressurization system	Lb/In ²	DDS 05417 DDS 05517	PRESOM	
Pressurization Tank Material Density	Lb/In ³	DDS 05317	RHOP	
Pressurization Tank Material Allowable	Lb/In ²	DDS 05317	FTUP	
Input OMS Module Weight	Lb	GWS 03239	MODULE	
Input OMS Engine Weight	Lb	GWS 03226	OMSENG	
Input OMS System Weight	Lb	GWS 03228	PROPSY	
(ACS SYSTEM)				
Input ACS Propellant Weight	LЪ		ACSPRO	
Ullage Pressure, ACS tank	Lb/In ²	DDS 05411 DDS 05511	ACSPRS	
Input ACS System Weight	Lb	GWS 03128	ACSSYS	
Input ACS Engine Weight	Lb	GWS 03126	ACSENG	·
Input ACS Module Weight	LЪ	GWS 03139	ACSMOD	
Density of the ACS Propellant	Lb/Ft ³	Fluid Inv.	ACSDEN	
(LANDING & DOCKING SYSTEM)				
Ultimate Strength of Strut Material	Lb/In ²		LGFTU	

Input Definition	Units	Reference Source Shuttle	Symbol	Data
Landing Touchdown Speed	Knots		LGVSL	
Extended Strut Length of Main Gear	In		LGLC	
Length from Ground Length to Trunion of Main Gear	In		LGLS	:
Landing Break Coefficient	Ft/Sec		BRCF	
Landing Parachute Diameter	Ft		LGDIA	
Auxiliary Sys. Deceleration System	Lb		AX2	
Auxiliary Sys. Separation System	Lb		AX3	
Landing Gear Miscellaneous Constant Weight	Lb		LNDDKK	
(MISC & SUBSYSTEMS)				
Misc Orbiter Subsystem Weight	Lb		ORBMIS	
Percent Orbiter Growth Uncertainty	%		OUNC1	
Orbiter Total Crew Weight	Lb		PERSON	
Optional Fixed Dry Weight GT.0.0-Floating Growth Uncertainty keeping total dry weight equal to number inputted. 0.0-Growth Uncertainty calculated as % of inert wt			FIXDWT	
Orbiter Residual Propellant Weight	Lb		ORESD	
Orbiter Reserve Propellant Weight	Lb		ORESV	
Payload delivered to Orbit	Lb		PLOADU	
Payload delivered at Landing	Lb		PLOADD	
Prime Power Weight	Lb		PPWR	
Hydraulic Weight Constant	Lb		HYDRK	
Electrical Weight Constant	Lb		ELECK	

Input Definition	Units	Reference Source Shuttle	Symbol	Data
Surface Control Weight Constant	Lb		SURFK	
Avionics Weight	Lb		AVIONO	
ECLS Weight	Lb		ECLSO	
Personnel Provision Weight	Lb	·	PPROV	
In Flight Losses	Lb		ORIFL	
Air-Breathing Propul. System Wt.	Lb		TABPRO	
Counter for Fixed Weight Orbiter 1.0-Fixed Weight Orbiter 0.0-User Specified Option	ND		FIXWOR	
Counter for Fixed Weight Orbiter and External Tank 1.0-Fixed System of Orbiter and External Tank 0.0-User Specified Option	ND		FIXORB	

Input Definition	Units	Reference Source Shuttle	Symbol	Data		
OAERO ORBITER AERO-SURFACE DATA				·		
(WING) Aspect Ratio	ND	DDS 01130 DDS 01539	AR(1)			
Aero Ref. Gross Wing Area	Ft ²	DDS 01130	SG(1)			
Planform Taper Ratio	ND	DDS 01540() DDS 01240	LAMB(1)			
Thickness Ratio at Root	ND	DDS 01241() DDS 01240	TOCR(1)			
Thickness Ratio at Tip	ND	DDS 01541() DDS 01540	TOCT(1)	·		
Span of Carrythrough	Ft	DDS 01339	BCT(1)			
Sweepback Angle @ 50% Chord	Deg	DDS 01145	THETA(1)			
Ultimate Vertical Load Factor	ND	DDS 01608	NZ(1)			
Equivalent Δp of Critical Loading		DDS 01146() Exposed Area	DELP(1)			
Horizontal Tail Load	Lb	DDS 02226	LH(1)			
Area of Carrythrough/Area Buried (THEOR.)	%		PTBXC(1)			
Area of Torque Box/Area Exposed	%		PTBXE(1)			
Shell Material Intercept	Lb/Ft ²	DDS 01431 and shell routine	CB(1)			
Density Material, torque box	Lb/In ³	DDS 01431 and shell routine	RHO(1)			
Artificial Allowable Covers	Lb/In ²	DDS 01431 and shell routine	FA(1)			
Shear Web Material Intercept	ND 2-14	DDS 01431 and shell routine	CS(1)			

		i (cont.)		
Input Definition	Units	Reference Source Shuttle	Symbol	Data
Shear Allowable	Lb/In ²	DDS 01431 and shell routine	TAU(1)	
Design Temperature, torque box	°F	DDS 01531	TEMP(1)	
Unit Wing Weight	Lb/Ft ²		UWW(1)	
Unit Rib Weight	Lb/Ft ²	Use CB	CSR(1)	
Maximum Thickness of Material	In		TMIN(1)	
Unit Weight of Leading Edge	Lb/Ft ²		ULE(1)	
Area of Leading Edge	Ft ²	DDS 01X32	WLE(1)	
Control Surface HL Fraction of Chord	ND		AICP(1)	
Control Surface Fraction of Exposed Span	ND		AILP(1)	
Le a ding Edge Fraction of Chord	ND	,	CLE(1)	
Modulus of Elasticity of Torque Box Material	Lb/Ft ²		EMODU(1)	
Concentrated Weight Input (2)	Lb		WC1(1)	
Concentrated Weight Input (2)	Lb		WC2(1)	
Concentrated Moment Input	Lb		CM1(1)	
Location of Concentrated Weight Input (1) to Orbiter Centerline	In		BLP1(1)	
Location of Concentrated Weight Input (2) to Orbiter Centerline	In		BLP2(1)	
Location of Concentrated Moment Input to Orbiter Centerline	In		BCM1(1)	
Unit Pressure on Elevon	Lb/Ft ²		KEAS	
Unit Weight, control surface shell	Lb/Ft ²		UWAIL	

INPUT DATA SHEET (CORE.)						
Input Definition	Units	Reference Source Shuttle	Symbol	Data		
Counter for Calculating Wing Area GT.0.0-Size Wing Area using inputted W/S 0.0-Fixed inputted area	ND		wwos			
Wing Weight Constant	Lb		WINGK			
Area of Main Landing Gear Door	Ft ²		SMGDR			
(TAIL)	:					
Aspect Ratio	ND	DDS 02110 DDS 02103	AR(2)			
Aero Ref. Gross Tail A re a	Ft ²	DDS 02103	SG(2)			
Planform Taper Ratio	ND	DDS 02119() DDS 02116	LAMB(2)			
Thickness Ratio at Root	ND	DDS 02121() DDS 02116	TOCR(2)			
Thickness Ratio at Tip	ND	DDS 02123() DDS 02119	TOCT(2)			
Span of Carrythrough	Ft	DDS 02109() DDS 02110	BCT(2)			
Sweepback Angle @ 50% Chord	Deg	DDS 02125	THETA(2)			
Ultimate Vertical Load Factor	ND		NZ(2)			
Equivalent Normal Pressure	Lb/Ft ²	DDS 02126() DDS 02104	DELP(2)			
Horizontal Tail Load	Lb		LH(2)			
Torque Box Fraction of Chord	%	DDS 02105() DDS 02104	PTBXE(2)			
Torque Box Fraction of Chord- Carrythrough	%		PTBXC(2)			
Shell Material Intercept	Lb/Ft ²	DDS 02112 and shell routine	CB(2)			

INPUT DATA SHEET (CONT.)						
Input Definition	Units	Reference Source Shuttle	Symbol	Data		
Shell Material Density	Lb/In ³	DDS 02112 and shell routine	RHO(2)			
Artificial Allowable of Shell Material	Lb/In ²	DDS 02112 and shell routine	FA(2)			
Shear Material Intercept	ND	DDS 02112 and shell routine	CS(2)			
Artificial Shear Allowable	Lb/In ²	DDS 02112 and shell routine	TAU(2)			
Temperature @ Design Load	°F	DDS 02113	TEMP(2)			
Unit Tail Weight	Lb/Ft ²		UWW(2)			
Unit Rib Weight	Lb/Ft ²		CSR(2)			
Maximum Thickness of Material	In	,	TMIN(2)			
Unit Weight of Leading Edge	Lb/Ft ²		ULE (2)			
Area of Leading Edge	Ft ²	DDS 021106	WLE(2)			
Leading EDGE Fraction of Chord	ND		CLE(2)			
Modulus of Elasticity of Torque Box Material	NÐ		EMODU(2)			
Concentrated Weight Input (1)	Lb		WC1(2)			
Concentrated Weight Input (2)	Lb		WC2(2)	·		
Concentrated Moment Input	Ft-Lb		CM1(2)			
Location of Concentrated Weight Input (1) to Orbiter Centerline	In		BLP1(2)			
Location of Concentrated Weight Input (2) to Orbiter Centerline	In		BLP2(2)			
Location of Concentrated Weight Input to Orbiter Centerline	In		BCM1(2)	: :		

Input Definition	Units	Reference Source Shuttle	Symbol	Data
Rudder Fraction of Chord	ND	DDS 02107() DDS 02104	RDC	
Unit Weight Rudder Shell	Lb/Ft ²		URS	
Rudder Unit Loading/1000	Lb/In ²	DDS 06206	RUDUL	
Counter for Calculating Tail Area GT0.0-Size Tail Area using inputted vertical tail volume coefficient 0.0-Fixed inputted area	ND		UTVC	
Length V Tail C/4 to wing C/4	In		LVT	
Counter for Split Rudder 1.0-Split Rudder 0.0-Single Rudder	ND		SPRUD	
Tail Weight Constant	Lb		TAILK	

Input Definition	Units	Reference Source	Symbol Symbol	Data
		Shuttle		
EXT EXTERNAL TANK DATA				
Initial Guess at Tank Diameter	In		DI	
Initial Guess at Tank Length	In		LI	
Required L/D-Output is Resultant Length and Diameter	ND		LD	,
Nose Cap Radius	In	DDS ET1128	NR	
Nose Cap Diameter	In	DDS ET1125	ND	
Forward Cone Angle	Deg		THETA	
Initial Guess at Fuel Tank Length	In		нні	
Mixture Ratio, Oxidizer/Fuel	ND	DDS 07141	MRI	·
Percent Oxidizer Ullage (1+Dec.%)	ND	DDS ET1132	UPERO	·
Load Allowance (1+Dec.%)	ND	DDS ET1133	LA	
Fuel Operating Pressure	Lb/In ²	DDS ET1237	FOPRES	
Fuel Ullage Pressure	Lb/In ²	DDS ET1238	FUPRES	
Oxidizer Operating Pressure	Lb/In ²	DDS ET1137	OPRES	
Oxidizer Ullage Pressure	Lb/In ²	DDS ET1138	OUPRES	
Required Fixed Length-Output is Resultant Diameter	Lb/In ²		LF ·	
Required Fixed Diameter-Output is Resultant Length	In		DF	
Minimum Propellant Load	Lb	VOL I p.4-32	PROMIN	

Input Definition	Units	Reference Source Shuttle	Symbol	Data
Clearance Between Bulkheads	In	Cal. from station data	LCON	
Bulkhead Counter 1.0-Common Bulkhead 2.0-Separate Bulkhead 3.0-Alternate Bulkhead	ND		BLKHD	
Dummy Counter to test series burn point design 1.0-Parallel Burn 0.0-Series Burn	ND		ВХ	
Structural Space Allowance	In		К	
Percent Fuel Ullage(1+Dec %)	ND	DDS ET1232	UPERF	
Optional Fixed Fuel Bias	Lb		HBIAS	
Factor of Safety	ND	DDS ET1107	FS	
Lift Off Vertical Load Factor	ND	DDS ET1105	NXL	
Staging Vertical Load Factor	ND	DDS ET1106	NXS	
Material Tensile Strength	Lb/In ²	DDS ET1X34	FTU	
Material Modulus	Lb/In ²	DDS ET1X34	Е	
Material Density	Lb/In ³	DDS ET1X34	RHO	
Material Minimum Gauge	Iņ		TMIN	
Nose Cap TPS Unit Weight	Lb/Ft ²		NCTPS	
Upper Cone TPS Unit Weight	Lb/Ft ²		UCTPS	
Lower Cone TPS Unit Weight	Lb/Ft ²		LCTPS	
Cylinder (fuel tanks) TPS Unit Weight	Lb/Ft ²		CYTPS	

2012-0-1	INFUL DATA SHEET (CORC.)						
Input Definition	Units	Reference Source Shuttle	Symbol	Data .			
Interstage TPS Unit Weight	Lb/Ft ²		INTPS				
Aft Dome TPS Unit Weight	Lb/Ft ²		DMTPS				
Optional Fixed Dry Weight GT.0.0-Floating Growth Uncertainty keeping total dry weight equal to number inputted. 0.0-Growth Uncertainty calculated as a % of inert wt	Lb	·	FIXDWT				
Growth/Uncertainty (Dec %)	ND	:	GUP				
Retro Delta Velocity	Ft/Sec	DDS ET1148	RETDV				
Retro Rocket Isp	Sec	DDS ET1248	RTISP				
Avionics Constant Weight	LЪ		AVOINT				
Misc. Constant Weight	Lb		MISCT				
Counter for LOX Tank 1.0-Aft 0.0-Forward	ND		AFT				
Ratio of Blkhd Height to Blkhd Hemispherical Radius-HR/R	ND	DDS ET1X49 DDS ET1X50	HRI				
Orbiter Interstage Reaction Loads from Orbiter Module	Lb		RX1				
Orbiter Interstage Reaction Loads from Orbiter Module	Lb		RX2				
Orbiter Interstage Reaction Loads from Orbiter Module	Lb		RXL				
Simplified Tank Equation Counter 1.0-Simplified Equation 0.0-Detail Equation	ND		SIMPTK				
External Tank Inert Weight	Lb		INERT				
External Tank Dry Weight	Lb		DRYWT				
External Tank Residual Propellant Weight	Lb		RESIDT				

Input Definition	Units	Reference Source Shuttle	Symbol	Data
SRM SRM DATA				
Propellant Density	Lb/In ³	DDS B1110	RHOP	
Case Diameter	In	DDS B1X23	DIA	
Minor Axis of Elliposidal Dome	In	DDS B1226 DDS B1227	MIAX	
Major Axis of Elliposidal Dome	In	DDS B1X23	MAAX	
Maximum Expected Operating Pressure	Lb/In ²	DDS B1129	МЕОР	
Factor of Safety	ND	DDS B1130	FS	
Ultimate Tensile Strength	Lb/In ²	DDS B1132	FTU	
Nozzle Throat Area	In ²	DDS B1153	AT	
Case Material Density	Lb/In ³	DDS B1131	RHOM	
Insulation Thickness	In	DDS B1139	INT	
Propellant Loading Fraction	ND	DDS B1210	NP	
Number of Segment Points	ND	DDS B1139	NJ	
Counter for Nozzle Type 1.0-Gimballed 0.0-Fixed	ND		WNOZ	
Nozzle Expansion Ratio	ND	DDS B1452	NER	
Propellant Grain Port	In ²	DDS B1154	AP	
Thrust Coefficient		DDS B1155	CF	
Average Operating Chamber Pressure	Lb/In ²	DDS B1230	PC	
Nozzle Divergence Half Angle	Deg	DDS B1253	ND!IA	
Combustion Temperature	°F	DDS B1156	TC	
Case Design Temperature	°F	DDS B1133	TDES	

Input Definition	Units	Reference Source Shuttle	Symbol	Data
Velocity @ Retro Rocket Ignition	Ft/Sec	DDS B1343	VRI	
Velocity @ Water Impact	Ft/Sec	DDS B1243	VSD	
Average Angle of Orbiter Engines with X axis in X-Z plane	Deg		AAOE	
Distance from edge of Aft Skirt End to Orbiter Thrust Line	In		LF	
Percent Uncertainty	%		BUNC1	
Optional Fixed Dry Weight GT.0.0-Floating Growth uncertainty keeping total dry weight constant 0.0-Growth Uncertainty calculated as a % * Weight	Lb		FIXDWT	
Average Specific Impulse of Retro Rocket Propellant	Sec	DDS B1247	RRISP	
Counter for Joint Type 1.0-Neither end inhibited 0.0-One end inhibited	ND		WEI	
Basic SRM Weight Constant	Lb		BSRMC	
SRM Adapter Weight Constant	Lb		SRMIC	
SRM Recovery Weight Constant	Lb		SRMRC	
Counter to run Fixed Booster 1.0-Fix Booster Total Wt 0.0-Specified Option	ND		FIXBOO	
Simplified Booster Equation Indicator 1.0-Simplified Equation 0.0-Detail Equations	.ND		SIMPBO	
SRM Burn Out Weight	Lb		BBOWT	
SRM Dry Weight	Lb		BDRYWT	

Page Intentionally Left Blank

3. ESPER PROGRAM DESCRIPTION AND OPTIONS

This section describes the method of exercising the various options of the ESPER program.

3.0.1 ESPER Program - The ESPER program is a multi option sizing/synthesis program geared to the Solid Rocket Motor (SRM) booster, in parallel with an external hydrogen/oxygen tank Orbiter for either the easterly (28-1/2-degree inclination), polar (90-degree inclination), or resupply (55 degree inclination) missions.

The program has two primary options:

- (a) fixed hardware
- (b) iterative vehicle sizing

The fixed hardware option determines the payload capability of a given configuration. This allows the user to determine the effect on performance of configuration and/or criteria changes, either real or proposed.

The iterative vehicle sizing option physically sizes the vehicles for a given payload. It determines the size of the SRM and its propellant load and the size of the external tank and its corresponding propellant load. The iterative procedure will size the vehicle to the sizing criteria of a fixed-staging velocity or it will size the vehicle to a minimum Gross Lift Off Weight (GLOW). The minimimum GLOW option is provided as it is generally associated with a minimum cost operation.

In turn, either of the sizing requirements can be run with a fixed-thrust option in which both the booster and Orbiter thrust are set at given values and the propellant requirements are determined, or the Orbiter thrust can be fixed and the first stage thrust to weight ratio input. The fixed-thrust-to-weight option determines booster engine size plus the propellant requirements.

Each of the vehicles has several modes of analysis available. The Orbiter, external tank, and booster weight can be determined by the detail analysis, by detail analysis while maintaining a user input dry weight, or by no analysis, by simply utilizing an input weight to represent the vehicle. In addition, the external tank and the booster are represented by simplified equations in which the parameter of interest is curve-fit to determine the vehicle weight.

In addition to printing out the performance parameter, the option is available to print out the detail subsystems weights of each vehicle, providing a line-item comparison with the current Shuttle vehicle. The other option would be a simplified printout, containing only the vehicle dry or burnout weight as listed in the performance parameter.

Two performance subroutines are tied into the ESPER program to allow the user to determine growth characteristics or vehicle sensitivities.

Figure 3-1 presents a simplified flow chart of the ESPER program. The analytical program consists of three vehicle modules, two functional modules and three performance subroutines.

FIGURE 3-1 ESPER FLOW CHART

3.1 Option 1 - Fixed Hardware - This option determines the payload capability for a given configuration and physical characteristics through the use of the rocket equation ($\Delta V = gISP\ ln\ (MASS\ FRACTION)$). In this option, the configuration weights and propellant loadings, as well as the ascent engine characteristics, are input into ESPER. To complete the analysis, the configuration velocity losses ($\Delta V_{CONFIG} = \Delta V_{ORB} + \Delta V_{SRM} + \Delta V_{LOSSES}$) are determined from an empirical relationship derived from parametric-ascent trajectory shaping studies. These velocity losses were curve fit for ease of interpolation when running ESPER. When the configuration velocity correlation constants needed for the interpolation routine (DVCORR and DVCNST) are known, the velocity losses are calculated by ESPER. This option gives the user an invaluable tool by which the user can measure the impact on payload due to changes to a FIXED HARDWARE DESIGN. (For example, what is the change to the deliverable payload due to a 1-sec increase in orbiter ascent ISP.) An example data file is given as follows:

```
EXAMPLE 1
 1.000 KPERF
2.000 ..
        PROPBG#2812334 * * PROPAG#1259273 * * BCANT#8 * 5 * BCANTY#3 * 5
 3.000
        8CANTP#17.0, N8ENGR#2.0, N8FNG8#3.0, THBSL#3917000.
4.000
        THOV: #470000. THOSL #275000. TE #.4918
5.000
        FIXHRD=1.0/ISPBS=240.9/ISPBV=273.2/ISPBBS=359.5
6.000
        ISP88V#451 = 2.SCD##40. H=0.0.DVC8R#600.
7.000
        INC=28.5, DVCAN=.0125, DVCNST=3427166.
8 • 000
        RFL=1.0.BBQWT#463780..BLLPLB=186267..DRYWT=72260..RFSIDT#9580.
        BDRYWT=463780., aMsISP=310.7, aMsDVP=950., MR=6.0
9.000
        SENSED.O.LONGPED.O
10.000
11.000 MATCH#0.0
12.000 SEND
```

In this data file, it is important to note the following

- 1. PROPGB is the actual SRM usable propellant weight.
- 2. PROPOG is the actual Orbiter usable propellant weight burned in the 2nd stage.
- 3. FIXHRD must be equal to 1.0.
- 4. MATCH must be equal to 0.0.
- 5. LONGP must be equal to 0.0.

Generally, however, these velocity correlation constants (DVCORR and DVCNST) are not known, but the staging velocity and the total losses are usually readily available. A matching routine, based on a simplified newtonian iteration technique, is provided in the FIXED HARDWARE OPTION that will internally modify the existing velocity loss curve fits. This routine solves for the correct DVCORR and DVCNST that will satisfy the total losses and staging velocity constraints. Since DVCORR and DVCNST are required input parameters, this solution serves a dual purpose for the user, it not only allows ESPER to compute the velocity losses, but it also opens the door to the other options offered by ESPER. An example data file utilizing this matching routine is as follows:

```
EXAMPLES
```

```
1.000 KPERF
        PROPBG=2812334 .. PROPAGE1269272 .. BCANTER . B. SCANTY 43 . 5
2.000
3.000 BCANTP=17.0, NAENGR=2.0, NAFNGB=2.0. THBSL=3917000.
4.000 TH8V1=470000., TH8SL=375000... TF=.4918
5 • 000
        F:XHRD=1.0,ISPBS=240.9,ISPBV=273.2,ISPBBS=359.5
       19P88V=451+2.SCD=840+,H=0+0,DVCBRR=600+
6.000
       INC = 28.5. DVCAN = . 0125. DVCNST = 3427166 +
7.000
8.000 RFL=1.0.BBGWT=463780.JGL_PLB=186267.JDRYWT=72260.AFFSIDT=9580.
       BDRYWT=443780.JBMSISP=310.7,8MSDVP=950.JMR=6.0
9.000
        SENS=0.0.LONGP=0.0
10.000
        MATCH=1.0, STAGV=4874., TLSSR=6360.
11 • 000
12.000
        XEND.
```

This data file is exactly the same as the previous one with the following exceptions:

- 1. MATCH must now equal 1.0.
- 2. TLSSR and STAGV must be added. Where
 - A. TLSSR is the total velocity losses, and
 - B. STAGV is the relative staging velocity.
- 3. DUCØRR and DVCNST are required inputs, but merely serve as initial guesses to start the iteration.

- 3.1.2 Option 2 Orbiter This option contains the analytical and empirical weight estimation relationships necessary to completely define the Orbiter. These relationships are combined into separate models, each model fully describing a weight group from the NASA functional coding. The NASA weight report and design data, coupled with a three-view drawing of the Orbiter, supplies all the inputs necessary to analyze the configuration. To run a point design, it is necessary to determine the velocity correlation coefficients as described in Option 1, if they are not already known. The Orbiter option is then ready to be executed in its iterative mode. The primary purpose of this option is to provide the capability of analyzing an iterative vehicle to determine performance trades, and to lend direction to the overall design effort by answering such questions as:
 - what happens if the engine characteristics, such as orbiter thrust, booster thrust, or specific impulse are varied?
 - 2. is the staging velocity optimized?
 - 3. what is the minimum gross-weight vehicle for the users constraints?
 - 4. what is the effect of changes, to the primary construction material?
 - 5. how do geometric changes, such as aspect ratio, payload bay length, or width, effect the configuration?

The inputted parameters start the Orbiter Module iteration, for which liftoff weight, injected weight, etc. are calculated. These calculated weights modify the aerodynamic surfaces, which in turn modify the surface controls and hydraulics as well as the thermal protection system. The auxiliary propulsion system is affected by injected weight, and the landing gear by the landing loads. The body is modified by reactions from the above systems, which in turn changes the interstage loads which ripple changes back through the body. The entire module continues the iteration until a completely balanced system exists. This Orbiter option not only contains input constants, which allow the user to input weight changes without modifying the program, but also has three distinct modes of operation which are as follows:

- 1. Iterative Analysis
- 2. Iterative Analysis (Fixed Dry Weight)
- 3. Fixed Weight Orbiter

The iterative analysis mode is the primary mode of the Orbiter option. A typical data file for the mode is as follows:

EXAMPLE3

```
BFAJ
 1.000
 000.5
         ABIE15. AHT V-100. ALTV-155. ABE110. LB=235. ALIE747. ANXE.8
 3.000
        NZ4.3.FS=1.4.HF=258.HL=145.
 4.000
         X=0.01K1=2.81SFW=1278.1VC=2912.1PC=14.71Q=650.1SND=30.6
 5.000
        LNG=77., FAL=49000., TMIN=.035, RHOL=.1, RHOS=.1
 6.000
         TAUS#22300 * # FF10300000 . LFS#20 . DELP#1 . 4 . FAB = 69000 .
 7.000
         RH8B==1,TAUB=22300=,RH8F==1,K2=4=,SW=41=,K7=0-,K3=2-,K4=0-
         ACD=1764. FAF=69000. SAW=809. FAPB=69000. TAUPB=22300.
 8.000
 9.000
        DFAC=1.3,FT=10300000.,RH8TP=+1,RH8PB=-1,K6=120.
10.000
        NCTPS=4.74.NCA=54...EWDTPS=1.75.EWDA=1442...CTTPS=0.0.CTA=0.0
11.000
        CSTPS=0.0, CSA=0.0, CBTPS=0.0, CBA=0.0, ATTPS=1.22, ATA=1750.
12.000
         ASTPS=1.22/ASA=1600.ABTPS=2.97.ABA=2079.ABASTPS=6.6
        BASA=371., TPSCON=275., WGTPS=1.895. WGPLE=.059
13.000
14.0000
        WLETPS=9,3/TLTPS=1,23,TLPLE=,099,TLETPS=4,61
        MCSTPS=0.0,MCSA=0.0,WACAN=2.02,TAC6N=2.02,IBA=0.0,IBTPS=0.0
15.000
16 . 000
        IBC=3476., LDA=300., LDTPS=1.0, PRBA=0.0, PRBTPS=0.0, PRBC=1382.
17:000
        PPC=89.,HYC=77.,SCA=118.,SCTPS=1.0,SWI=4280.,SWC=0.0,WSI=52.
18.000
        PAGO = 1 . . SPI = 0 . . HHFAD = 1350 . . OHEAD = 2000 . . HULL = 37 .
         8ULL#22.,FTU=95000.,RH8.,286,MATL=1,HCLEN=20.,8CLEN=20.
19.000
20.000 HFLEN=77. SELEN=172. CPLG!=1.
        DFNSF=54.7.DFNSR=90.2.RH0T=.16.FTUT=135000.2PRES8M=8160.
21.000
        RHOP = 16 FTUP = 135000 - 20MSENG = 390 - 2ROPSY = 647 - 2MODULE = 1071 -
22.000
23.000
        PRESF#545.JPRFS6#545.JACSPR0#7280.JACSDEN#61#3JACSPRS#870.
         ACSENG#1310.ACSSYS#300.ACSMRD#910.ABRBMIS#0.0
24.000
25.000
        LGFTU=280000.,LGVSL=150.,LGLC=95.,LGLS=117.,BRCF=315000.
        LGDIAE33. AX281068. AX381200. LNDDKKEO.O
26.000
        F: XDWT=00. #8UNC1=.1 #PERS8N=1250. #ARESD=2985. #8RESV=878.
27.000
         PL8ADU#51612.9.PL8ADD#40000.
28.000
29.000
        FIXORD O. C.FIXWOR .O.O.
        PPWR=3912.4HYDRK=0.0.ELFCK=0.4SURFK=0.04AVIBNB=4455.0
30.000
31.000
        ECLS8#4093*, PPR8V=1742, .8R1FL#3872., TABPR8#0.0
32.000. SEND
33.000
        BRAERO
34.000
        AR(1)=2.19#SG(1)=3220##LAMB(1)##24#TBCR(1)##09#TBCT(1)#.12
        BCT(1)=17.5, THETA(1)=10., NZ(1)=3.75, DELP(1)=296., LH(1)=0.0
35.000
36.000
        PTBXC(1)=.43,PTBXF(1)=.594,CB(1)=.67,RH8(1)=.10,FA(1)=64394.
        Cs(1)=.0005, TAU(1)=22320., TEMP(1)=70., UWW(1)=0.0, CSR(1)=.67
37.000
38.000. TMIN(1) = .03.11E(1)=1.60.WLE(1)=0.0.CLE(1)=.1.AICP=.306.A1LP=1.
39.000
        EMBDU(1)=10000000, WC1(1)=0.0, WC2(1)=0.0, CM1(1)=0.0
40.000
        BLP1(1) = 0.0, BLP2(1) = 0.0, BCM1(1) = 0.0
        KFAS=+68,UWATL=1.75,WW8S=C.,WINGK=0.0,SMGDR=190.
41.000
        AR(2)=1.44#SG(2)=#35.#LAMB(2)=#44.TBCR(2)=#107#TBCT(2)=#09
42.000
43.000
        BCT(2)=0., THFTA(2)=3R.,NZ(2)=0.,DFLP(2)=447.,LH(2)=0.
44.000 PTBXC(2)=0.,PTBXE(2)=.42,CB(2)=.67,RHB(2)=.1,FA(2)=64394.
        Cs(2)=.0005, TAU(2)=22320., TEMP(2)=70., UWW(2)=0., CSR(2)=.67
45.000
        TMIN(2)=+03,ULE(2)=1.6,WLE(2)=0.CLE(2)=+1,RDC=+48,URS=1.75
46.000
47.000
        EMBDU(2)=100000000, WC1(2)=0.0, WC2(2)=0.0, CM1(2)=0.0
48.000 BLP1(2)=0.0,9LP2(2)=0.0,BCM1(2)=0.0
        RUDUL=3.1, VTVC=0.0, LVT=0.0, SPRUD=1.0, TAILK=0.0
49.000
50.000 .. &FND
```

In this data file, it is important to note the following:

- 1. FIXWØR must be 0.0
- 2. FIXØRB must be 0.0
- 3. WWØS must be contained in data set equal to either 0.0 or a value
- 4. VTVC must be contained in data set equal to either 0.0 or a value
- 5. SPRUD must be contained in data set equal to either 0.0 or a value
- 6. FIXDWT must be contained in data set and equal to 0.0

The (Fixed Dry Weight) Iterative Analysis mode of the Orbiter allows the user to run a point design. The growth/uncertainty of the Orbiter module is allowed to "float," i.e., vary either up or down to maintain a constant dry weight, physically sizing each system to the point design loads. A typical data file for this mode is as follows:

```
EXAMPLE4
 1.000
 0000.5
         ARI = 15 . . HT V = 1 CO . . L TV = 155 . . HB = 1 10 . . LB = 235 . . LI = 747 . . NX = . 8 . . .
         N7=.3,FS=1.4,HF=258..HL=145.
 3.000
 4.000
         X=0.02K1=2+8.SFW=127R+3VC=2912+3PC=14+73Q=650+2SND=30-6
 5.000
        LNG=77, FAL=49000. TMIN=.035, RH81 =.1. RH8S=.1
 6.000
         TAUS#223000, FF#10300000., LFS#20., DELP#1.4; FAB#69000.
         RH6B=.1,TAUB=22300.,RH0F=.1,K2=4.,SW=41.,K7=0.,K3=2.,K4=0.
 7.000
         ACD=1764., FAF=69000., SAW=809., FAPB=69000., TAUPB=22300...
 8.000
         DFAC=1.3.FT=10300000.JRH0TP=.1.RH8PB=.1.K6=120.
 9.000
10.000
         NCTPS=4.742NCA=54.2FWDTRS=1.25.EWDA=1.442.2CTTPS=0.02CTA=0.0
         CSTPS=0.0, CSA=0.0, CBTPS=0.0, CBA=0.0, ATTPS=1.22, ATA=1750.
11.000
         ASTPS=1.22/ASA=1600..ABTPS=2.97.ABA=2079..BASTPS=6.6
12.000
13.000
         BASA#371.,TPSCON=275.,WGTPS=1.R95,WGPLE#.059
         WI ETPS = 9 . 3. TI TPS = 1 . 23. TI PLE = . 099. TLETPS = 4.61
14.000
15.000
        MCSTPS=0.0,MCSA=0.0,WACRN=2.0P,TAC6N=2.0P,IBA=0.0,IBTPS=0.0
         IRC=3476., LDA=300., LDTPs=1.0, PR8A=0.0, PR8TPS=0.0, PR8C=1382.
16.000
17.000
         PPC=89.jHYC=77.jSCA=118.jSCTPS=1.0,SWI=4280.jSWC=0.0jWSI=52.
        PAGE=1., SPI=0., HHFAD=1350., ABHEAD=2000., HULL=37.
18.000
         BULL=22..FTU=95000..RH0=.286.MATL=1.HCLEN=20..BCLEN=20.
19.000
        HFLEN#77. DELFN#172. CPLG1#1.
20.000
         DFNSF=54.7/DFNS8=90.2/RH8T=.16/FTUT=135000./PRES8M=8160.
21.000
22.000
        RHOP=+16,FTUP=135000.,OMSFNGE390.,PROPSY#647.,MODULE=1071.
         PRESF#545.,PRFS8#545.,ACSPR8#7280.,ACSDEN#61.3,ACSPRS#870.
23.000
         ACSENG=1310., ACSSYS=3GO., ACSMBD#910., BRBM15#0.0
24.000
25.000
        LGFTU=280000., LGV9L=150., LGLC=95., LGLS=117., BRCF=315000.
26.000
        LGDIA=33.,AX2=106x.,AX3=1200.,LNDDKK=0.0
27.000
        F1XDWT=172668.18UNC1=0+0.PFRS6N=1250.18RFSD=2985.18RFSV=878.
        PLBADU=51612.9.PLBADD=40000.
28.000
        FIXERBED. OFFIXWERED. O
29.000
        PPWR=3912., HYDRK=0.0, ELECK=0., SURFK=0.0, AVION054455.0
30.000
31.000
        FCLS8=4093+, PPRAV=1742+, 8RIFL=3872+, TABPRA=0+0
32.000
33.000
        KAAFRO
         AR(1)=2.19/SG(1)=3220./LAMB(1)=21/TOCR(1)=.09/TOCT(1)=.12
34 . 000
        BCT(1)=17.5, THETA(1)=10., NZ(1)=3.75, DELP(1)=296., LH(1)=0.0
35 . 000
36.000
        PTBXC(1)=.43,PTBXF(1)=.594,CB(1)=.67,RH8(1)=.10,FA(1)=64394.
        Cs(1)=.0005, TAU(1)=22320., TEMP(1)=70, JUWW(1)=0.04CSR(1)=.67
37.000
        TMIN(1) = .03, ULE(1) = 1.60, WLE(1) = 0.0, CLE(1) = .1, AICP = .306, AILP=1.
38.000
        EMODU(1)=10000000.,WC1(1)=0.0,WC2(1)=0.0,CM1(1)=0.0
39.000
40.000
        BLP1(1) = 0.0, BLP2(1) = 0.0, BCM1(1) = 0.0
        KFAS=.68.UWA1L=1.75.WWBS=0.,WINGK=0.0,SMGDR=190.
41.000
42.000
        AR(2)=1.4448SG(2)=435.4LAMB(2)=.44.TOCR(2)=.107.TOCT(2)=.09
        BCT(2)=0.,THFTA(2)=3R.,NZ(2)=0.,DFLP(2)=447.,LH(2)=0.
43.000
        PTBXC(2) = 0 * , PTBXE(2) = 142, CB(2) = 67, RHB(2) = 1, FA(2) = 64394.
44 . 000
45.000
        Cs(2)=.0005, TAU(2)=22320., TEMP(2)=70., UWW(2)=0., CSR(2)=.67
46.000
        TMIN(2)=+03,ULE(2)=1.6,WLE(2)=0.0.CLE(2)=+1,RDC=+48,URS=1.75
        EMBDU(2)=10000000.,WC1(2)=0.0,WC2(2)=0.0,CM1(2)=0.0
47.000
        BLP1(2) =0.0, BLP2(2) =0.0, BCM1(2) =0.0
48.000
        RUDUL=3.1.VTVC=0.0.LVT=0.0.SPRUD=1.0.TAILK=0.0
49.000
50.000
        SEND
```

This file is exactly the same as the previous one except that FIXDWT must be equal to the desired Orbiter dry weight.

The Fixed-Weight Orbiter mode does exactly what the name implies. This option fixes the liftoff weight of the Orbiter, allowing the propellant and external tank to iterate. A typical data file for this mode is as follows:

EXAMPLES

- 1.000 KARB
- 2.000 FtXW0R=1.0/FtX0RB=0.0/0LLPL0=188778.31/W0PR0P=23965.85
- 3.000 PLBADU#51612.90
- 4.000 SEND

In this data file it is important to note the following:

- 1. FIXWØR must be equal to 1.0
- 2. FIXØRB must be equal to 0.0
- OLLPLØ must be equal to the Orbiter liftoff weight, less OMS propellant weight, and less payload.
- 4. WØPRØP is the OMS propellant weight.
- 5. PLØADU is the Orbiter payload
- 6. RX1, RX2, RXL-In the External Tank data block "EXT" must have values
- 3.1.3 Option 3 External Tank This option contains the analytical and empirical weight estimation relationships necessary to completely define the external tank. These relationships consist of many elements, the first of which is the basic sizing logic which consists of three basic general arrangement options and three separate iteration techniques, i.e., solve for specific tank dimensions as a function of volume requirements with either input or fixed length, fixed diameter, or fixed L/D design features, such as separate and common bulkhead and an alternate forward section design. A LOX aft option, which simply uses the generalized baseline LOX forward method, and sets mixture ratio to its inverse and switches the hydrogen and oxygen densities is also available.

The external tank module also includes a design loads model which considers ullage and head pressure, interstage reactions, and axial load factors. For simplicity as well as optimization, the external loads induced by tank attachment to Orbiters and boosters are considered located at major existing hard points, such as bulkhead attach rings.

Also, a multi station analysis method is included, whereby a number of body station cuts are examined to determine the effective unit load and corresponding material thickness required for pure unstiffened monocoque structure. Alternate material allowables may be input to handle variations in design temperature and other candidate construction techniques. The resultant material thicknesses are integrated over the total body area using the dimensional data from the sizing routine, to determine the total sidewall weight. The bulkheads are sized to their representative loads, i.e., internal or external pressure, and meridional and hoop forces. Splice rings and attachment structure are treated as discrete items, with major attention given to the redistributions of point loads and manufacturing processes such as welding.

The external tank thermal protection system is based on detailed MDAC point design data with input unit weights for alternate design concepts.

Other external tank subsystems are expressed as either input constants for such systems as avionics, or simplified sizing equations, where, for example, plumbing weight is a function of engine flow rate and overall tank length/diameter.

Detail loads and strength and weight analyses have been documented for the MDAC parallel burn, 1,530,800-1b propellant, load-point-design external tank. Therefore, this tank is used as the basis for the general methodology.

The basic structure and subsystems are correlated to the Phase B extension point-design studies of external tanks as well as the latest NR point-design tank. The Three external tank general-arrangement options used in the basic tank sizing routine are shown in Section 4 of this volume. This option, like the Orbiter option, has the capability of inputting constants, which allows the user to input weight changes without modifying the program. This option also contains four distinct modes of operation which are as follows:

- 1. Iterative Analysis
- 2. Iterative Analysis (Fixed Dry Weight)
- 3. Simplified Equation
- 4. Fixed Weight Tank

The Iterative Analysis mode is the primary mode of the external tank option, and a typical data file for this mode is as follows:

```
1.000
2.000
        DIRO. LIRIOCO ALDEDO. NREG. NDE41. THETARRO. HHIRIOC.
3.000
        MRI=6., UPFR0=1.0297, LA=1.01, F0PRFS=37., 0PRFS=22., FUPRFS=35.
4.000
        GUPRES=20.;LF=0.;DF=304.;LCBN=30.;BLKHD=3.;BX=1.;K=.15
5.000
        HRIAS=1500+,FS=1+4,NXL=1+4,NXS=3,3,FTU=64000+,E=10500000+
6.000
        RH9=.102,TMIN=.025,NCTPS=1.101,UCTPS=.8444,LCTPS=.7365
7.000
        CYTPS= .6526, INTPS= .8969, DMTPS= .5149, FIXDWT=0., GUP= .075
8.000
        RFTDV=200.JRFTISP=260.JAVIBNT=800.JMISCT=0.JAFT=0.JHR1=.6496
9.000
        RX1=0.,RX2=0.,RXL=0.,UPFRF=1.03
10.000
        SIMPTK=0.0
11.000
        &END
```

In this data file, it is important to note the following:

- 1. SIMPTK must be equal to 0.0.
- 2. FIXDWT must be contained in the data set, and equal to 0.0.
- 3. LD Fixed L/D case DI must be installed to start iteration LF and DF must equal 0.
- 4. LF Fixed length case DI must be initialized to start iteration DF and LD must equal 0.
- 5. DF Fixed diameter case LI must be initialized to start iteration LF and LD must equal 0.
- 6. PROMIN Minimum propellant load for tank iteration (see figure 4.18-1, Page 4-32 Volume 1) required input for fixed length or fixed L/D cases.

The iterative analysis (Fixed Dry Weight) mode of the external tank allows the user to run a point design. The growth/uncertainty of the external tank module is allowed to "float," i.e., vary either up or down to maintain a constant dry weight, physically sizing to a point design. A typical data file for this mode is as follows:

EXAMPLET

EXAMPLEA

```
SEXT
1.000
        DIEO. LIE1000. LDEO. NREO. ANDE41. THETA = 30. HHI=100.
000 . $
       MRI=A., UPFR0=1.0297.1 A=1.01. F0PRFS=37..0PRFS=22.. FUPRFS=35.
3.000
        OUPRES=20., LF=0., DF=304., LCON=30., BLKHD=3., BX=1., K=.15
4.000
        HBIAS=1500+,FS=1.4.NXL=1.4,NXS=3.3,FTU=64000.,E=10500000.
5.000
        RH8=.102.TMIN=.025.NCTPS=1.101.UCTPS=.8444.LCTPS=.7365
6.000
        CYTPS=.6526, INTPS=.8969, DMTPS=.5149, FIXDWT=73011., GUP=.075
7.000
        RETDV#200.*RETISP#260.*AVJONT#800.*MISCT#0.*AFT#0.*HRI#.6496
8.000
        RX1=0.,RX2=0.,RXL=0.,UPFRF=1:03
9.000
        STMPTK=0.0
10.000
        &FND
11.000
```

- 3.1.4 Option 4 (SRM) This option contains the analytical and empirical weight estimation relationships necessary to completely define the solid rocket motor (SRM) booster system. The NASA weight report and design data, coupled with a three-view drawing of the SRM, supplies all inputs necessary to analyze the configuration. Here again, it is important to note that the velocity correlation coefficients described in Option 1 must be calculated or known before this option can be executed. The primary purpose of this option is to provide the capability of optimizing the SRM by inputting a diameter and iterating on propellant load and engine characteristics. The iteration calculates SRM burnout weight and dry weight, which in turn modifies retro and parachute system weights, which in turn is rippled through the other weights. This entire module continues the iteration until a completely balanced system exists. If retro rockets are not used, the velocity at ignition (VRI) should be set equal to the velocity at water impact (VSI). This option also has the capability of inputting constants, which allows the user to input weight changes without modifying the program. The SRM option contains four distinct modes of operation which are as follows:
 - 1. Iterative Analysis
 - 2. Iterative Analysis (Fixed Day Weight)
 - 3. Simplified Equation
 - 4. Fixed Booster

The iterative analysis mode is the primary mode of the SRM option. A typical data file for this mode is as follows:

FXAMPLF10

```
1.000
       PH8P = 064 . PIA = 162 . . MTAX = 81 . . MAAX = 81 . . ME8P = 1000 .
2.000
       FG=1.4,FTU=254000.,AT=2884.,RHBM=.283,INT=.1.NP=.76397
3.000
       NJE5.0. WNRZ=1.0.NFR=11.2.AP=3750..CF=1.58
4 • 000
       PC=833.3,NDHa=15.,TC=5775.,TDFS=250.,VRI=141.,VSD=141.
5 + 000
       AABE#10., LF#200., BUNC1#0.035, FIXDWT#0.0, RRISP#235., WFI#0.0
6.000
       BGRMC=0.0.SRMTC=0.0.GRMRC=3500.
7.000
       FIXBBBBO.C.SIMPBBBO.O
8.000
       KEND
9.000
```

This file is exactly the same as the previous one except that FIXDWT must be equal to the desired external tank dry weight.

The simplified equation mode of the external tank greatly reduces computer run time as well as eliminating the 48 input variables required to run an iterative tank. A typical data file for this option is as follows:

EXAMPLES

In this data file, it is important to note the following:

- 1. FIXØRB In the Orbiter data block 'ORB' must be equal to 0.0
- 2. SIMPTK must be equal to 1.0
- 3. DF External Tank Diameter
- 4. GUP Growth Uncertainty (Dec %)

The Fixed Weight Tank mode fixes the weight of the Orbiter, the external tank and their ascent propellants. A typical data file for this mode is as follows: FXAMPLF9

1.000 &FXT 2.000 DRYWT=73011. RESIDT=5248. SIMPTK = 0.0 3.000 &FND

In this data file, it is important to note the following:

- 1. PRØPØG In the performance data block, 'PERF' must be equal to the total Orbiter ascent propellant (1st stage plus 2nd stage).
- 2. FIXORB In the Orbiter data block, 'ORB' must be equal to 1.0.
- 3. FIXWØR In the Orbiter data block, 'ORB' must be equal to 0.0.
- 4. DRYWT External Tank Dry Weight
- 5. RESIDT External Tank Residual Propellant Weight.
- 6. SIMPTK must be equal to 0.0.
- 7. Since this mode fixes both the Orbiter and External Tank, the 'ØRB' data block must be similar to Example 5 which is as follows:

FXAMPLES

1.000	KARB
2.000	F1XW6R=0.0.F1X6R8=1.0.81LPL8=188778.31.W8PR8P=23965.85
	PLBADU=51612.90
4.000	&FND

In this data file, it is important to note the following:

- 1. FIXBOO must be equal to 0.0.
- 2. SIMPBØ must be equal to 0.0.
- 3. FIXDWT must be equal to 0.0.

The iterative analysis (Fixed Dry Weight) mode of the SRM allows the user to run a point design. The growth/uncertainty of the external tank module is allowed to "float," i.e., vary either up or down to maintain a constant dry weight, physically sizing to a point design. A typical data file for this mode is as follows:

FXAMPLF11

```
-----
1.000
       KORM
2.000
       RHSP = . 064. DIA = 162. MIAXER1. MAAXER1. MESP=1000.
       FS=1.4,FTU=254000.,AT=2884.,RHAM=.283,INT=.1.NP=.76397
3.000
4 + 000
       NJ#5.0.WN8Z=1.0,NFR=11.2,AP=3750.CF=1.58
5.000
       PC=833.3,NDHa=15.,TC=5775.,TDFS=250.,VRI=141.,VSD=141.
6.000
       AABE #10 . LF #200 . BUNC1 #0.0 FIXDWT #435185 . 12 RRISP #235 . WFI #0.0
       BSRMC=0.0, SRM1C=0.0, SRMRC=3500.
7 • 000
8.000
       F1XB88=0.0.S1MPB8=0.0
9.000
       KEND
```

This file is exactly the same as the previous one except FIXDWT must be equal to the desired SRM dry weight.

The simplified equation mode of the SRM greatly reduces computer run time as well as eliminating the 39 input variables required to run an iterative booster. A typical data file for this option is as follows:

EXAMPLE 12

In this file, it is important to note the following:

- 1. SIMPBØ must be equal to 1.0
- 2. FIXBØØ must be equal to 0.0.
- 3. BYNCl is the Growth Uncertainty (Dec %)

The fixed booster mode fixes the burnout weight of the SRM as well as its ascent propellant. A typical data file for this mode is as follows:

EXAMPLE 13

```
1.000 &GRM
2.000 F:XB00=0.0.SIMPBO = 0.0,BB0WT=421E86.5.BDRYWT=425185.12
3.000 &FND
```

In this data file, it is important to note the following:

- 1. PROPBG In the performance data block 'PERF' must be equal to the total SRM ascent propellant.
- 2. FIXBØØ must be equal to 0.0.
- 3. BBØWT SRM Burnout Weight.
- 4. BDRYWT is the SRM Dry Weight.
- 5. SIMPBO must be equal to 0.0.
- 3.1.5 Option 5 Fixed Hardware Sensitivities This option was developed for the specific purpose of automating the task of assessing vehicle sensitivities. Theoretically, any sensitivity evaluation can be made by simply making two back-to-back runs through ESPER with the individual sensitivity element adjusted by the desired increment for the second case, and simply subtracting the resulting payloads and/or gross liftoff weights, and dividing by this increment.

Since this option is a part of ESPER, it utilizes the same ascent performance logic and ascent velocity equations. Thus, any output case from ESPER can take advantage of this option. The basic equations within this part of ESPER, however, are modified to contain discrete sensitivity increments (i.e., delta booster inert weight, delta Orbiter inert weight, delta booster ISP, etc).

The first input case is treated as a fixed hardware configuration and initializes and varies the basic configuration performance capability. The various sensitivity increments are applied one by one, and each sensitivity is calculated

separately against the initial case. To save the user the time and money involved in inputting, these sensitivity increments have been fixed in the program. Since this option can be run with any ESPER option, the user need only set SENS in the 'PERF' data file equal to 1.0.

- 3.1.6 Option 6 Growth This option enables the user to increase the reference configuration in four ways, increase the Orbiter only, increase the Booster only, increase Orbiter and Booster or increase the External Tank. An incremental weight is added per specified option and the configuration is resized. Since this option can also be run with any ESPER option, the user need only set GRØW equal to the option desired and input the following in the performance data block 'PERF'.
 - 1. GRØWB (Incremental booster growth desired)
 - 2. GRØWØ (Incremental orbiter growth desired)
 - 3. NI (Two plus the number of one percent uncertainty/growth increments to be added to the desired option)

This discussion has tried to familiarize the user with the versatility of ESPER. In essence, however, with combinations of its options, the versatility of ESPER is only limited to the ingenuity and imagination of the user.

A representation of the gamet of cases that can be executed by ESPER is shown by the following chart.

4. CONFIGURATION DATA AND GEOMETRY DEFINITIONS

The definitions and the development of various areas and other geometric orientated data used in ESPER are illustrated in the following:

- 1. Orbiter Definitions Wing
- (a) The wing theoretical area is the projected plan view area shown below:

(b) The wing exposed area is the projected plan view area shown below:

- (c) Total wing wetted area is the summation of the following:
 - o Wing Top Area
 - o Wing Bottom Area
 - o Wing Leading Edge Area
 - o Wing Trailing Edge Area

(d) FLAP AND AILERON AREAS ARE PROJECTED PLAN VIEW AREAS AND ARE PART OF THE WING EXPOSED AREA.

(d) Flap and aileron areas are projected plan view areas and are part of the wing exposed area.

(Vertical Tail)

(a) The theoretical and exposed vertical tail areas are identical. They are defined by taking a true area projection at the tail <u>C</u> as shown below. The rudder area is defined in the same manner.

- (b) Total vertical tail wetted area for each tail is the summation of the following:
 - o Vertical Tail Side Area (total)
 - o Vertical Tail Leading Edge Area
 - o Vertical Tail Trailing Edge Area

(Body)

(a) The location of the fuselage sections and some of the primary symbols used in ESPER are shown below:

LOCATION OF FUSELAGE SECTIONS

(TPS)

- (a) Total fuselage wetted area is the summation of the following:
 - o fuselage forward area
 - o fuselage center area
 - o fuselage aft area
 - o fuselage nose cap area

****** (SHADED AREA NOT COVERED BY TPS)**

(b) The fuselage base area is the projected end view area shown below:

(c) All aerosurface areas are calculated outside the module, and are inputted as total projected areas along with their appropriate airfoil constants. These airfoil constants can be obtained from the following graph.

AIRFOIL PERIMETERS

(d) Aerosurface area sections considered in ESPER are as follows:

TPS AEROSURFACE BREAKDOWN

2. External Tank Definitions

(a) The three external tank general arrangement options, used in the basic tank sizing routine, are illustrated below. It should be noted that most of the basic dimensional parameters have the same variable name for each of the three arrangements. Therefore, most of the sizing equations are identical for each option and only a few ESPER input variables need be changed.

The following figure depicts the recommended limits for tank geometry and propellant loading

EXTERNAL TANK OVERALL LENGTH vs USEABLE PROPELLANT LOAD MR = 6. LOX/LH₂ - LOX Fwd Separate Bulkhead Design

- 3. SRM Definitions
- (a) Illustrated below is a SRM depicting typical sectional cuts with various input parameters used in ESPER.

Page Intentionally Left Blank

5. ESPER OUTPUT PARAMETERS

Following is a complete listing of all the output parameters calculated and printed by ESPER.

OUTPUT DATA SHEET

Output Definition	Units	Symbol
(SHORT PRINT OUT)	1	
Inclination of Vehicle Orbit	Deg	INC
Total Ascent Velocity Losses	Ft/Sec	TOTLSS
Drag Velocity Losses	Ft/Sec	DVCORR
Velocity Correlation Factor	ND	DVCNST
Reference Ascent Velocity Losses up to Staging	Ft/Sec	х3
Effect of Inclination on Trajectory Shaping	Ft/Sec	X2
Altitude Adjustment Parameter to vary Velocity Losses from Sea Level to other Altitudes	Ft/Sec	DVALT
Gross Lift Off Weight/Ascent Ballistic Drag Coefficient	ND	WOSCD
Ascent Ballistic Drag Coefficient	ND	SCD
Yaw Angle, Booster to Vehicle Centerline	Deg	BCANT
SRM Burn Out Weight	Lb	BBOWT
SRM Dry Weight	Lb	BDRYWT
SRM Usable Ascent Propellant	Lb	PROPB
SRM Usable Ascent Propellant less Insulation	Lb	PWOI
SRM Lambda=SRM Usable Ascent Propellant/SRM Gross Lift Off Wt	ND	LAMB
Specific Impulse Booster, vacuum	Sec	ISPBV
Specific Impulse Orbiter, vacuum	Sec	ISPOBV
Weighted Average Specific Impulse of the SRM	Sec	ISPB
ISPB=(PROB * ISPBV + PROPO1 * ISPOBV)/PROPOT		1
Total Canted Sea Level Thrust SRM + Orbiter	Lb	тнвтс
Total SRM Sea Level Thrust	Lb	THBSLT
SRM Burn Time	Sec	ввт
Yaw Angle, Outboard Engine to Orbiter Centerline	Deg	OCANTY
Pitch Angle, Composite Thrust Vector	Deg	OCANTP
Orbiter Liftoff Weight less Payload less OMS Propellant Wt	Lb	OLLPLO
Payload Carried to Orbit	Гр	PLOADU
OMS Propellant Weight	LЪ	WOPROP
External Tank Inert Weight	LЪ	DRYWT
		i

Output Definition	Units	Symbol Symbol
External Residual Propellant Weight	Lb	RESIDT
Total Orbiter Usable Ascent Propellant	LЪ	PROPOT
Orbiter Usable Ascent Propellant burned in the 1st stage	ĽЪ	PROPO1
Orbiter Usable Ascent Propellant burned in the 2nd stage	LЪ	PROPO2
External Tank Lambda = Total Orbiter Usable Ascent Propellar Propellant/External Tank Gross Weight	t/ND	TLAMB
Total Orbiter canted thrust, vacuum	Lb	тнотс
Orbiter Flow Rate	Lb/Sec	FLOWR
Orbiter Gross Lift Off Weight	Lb	OGLOW
SRM Gross Lift Off Weight	Lb	BGLOW
Total Gross Lift Off Weight less Hold Down Propellant	Гр	GLOW
Hold Down Propellant Weight	Lb	OHOLD
Total Gross Lift Off Weight	Гр	TOTAL
Thrust/Weight of the Booster	ND	TOWB
Thrust/Weight of the Orbiter	ND	TOWO
Ideal Booster Staging Velocity	Ft/Sec	DVB
Relative Booster Staging Velocity	Ft/Sec	DVBRP
Delta V obtained from Flight Performance Reserves	Ft/Sec	DVFPR
Flight Performance Reserve Propellant Weight	Lb	FPRP
Nominal Required Delta V	Ft/Sec	DVR
Total Required Delta V	Ft/Sec	DVT
Total Calculated Delta V	Ft/Sec	DVTOTC
Required Orbiter Delta V	Ft/Sec	DVOWR
Calculated Orbiter Del t a V	Ft/Sec	DVONC

Output Definition	Units	Symbol
(DETAILED PRINT OUT-SRM)		
SRM Length	In	SRML
SRM Diameter	In	SRMD
Basic SRM Weight = WOASE + WJOINT + WNOZZ + WTTER + WINST + WIGN + BSRMC	Lb	BASSRM
SRM Unsegmented Case Weight	Lb	WCASE
SRM Case Segment Joint Weight	Lb	WJOINT
SRM Nozzle Weight	Lb	WNOZZ
SRM Thrust Termination Weight	Lb	WTTER
SRM Internal Insulation Weight	Lb	WINST
SRM Igniter Weight	LЪ	WIGN
Basic SRM Weight Constant	Lb	BSRMC
SRM Recovery System Weight = PWPAR + PWPI + PWRR + PWRP + PWWR + SRMRC	Lb	WRECOV
SRM Parachute Weight	Lb	PWPAR
SRM Parachute Installation Weight	Lb	PWPI
SRM Retro Rocket (including installation) Weight	LB	PWRR
SRM Retro Rocket Propellant Weight	Lb	PWRP
SRM Water Recovery Hardware Weight	Lb	PWWR
SRM Recovery Weight Constant	Lb	SRMRC
SRM Body Adapter Weight = PWFS + PWASLS + PWAS + PWNF + PWTN + PWAV + WNCTPS + SRM1C	Lb	SRMISS
SRM Forward Skirt Weight	Lb	PWFS
SRM Aft Skirt/Launch Structure Weight	Lb	PWASLS
SRM Attach/Separation Structure Weight	Lb	PWAS
SRM Nose Fairing Weight	Lb	PWNF
SRM Tunnel Weight	Lb	PWTN
SRM Avionics Weight	Lb	PWAV
SRM Nose Cone Thermal Protection Weight	Lb	WNCTPS
SRM Adapter Weight Constant	Lb	SRMIC
SRM Burn Out Weight less Growth Uncert.	Lb	PBOSLU
SRM Growth Uncertainty Weight	Lb	UNCERT
SRM Expendable Propellant Weight	Lb	EXPINS

Output Definition	Units	Symbol
(DETAILED PRINT OUT-ORBITER)		
(AERO)		
Wing Gross Area	Ft ²	WSG
Wing Total Weight	Lb	WWT
Wing Basic Structure Weight = WTORBE + WTORBC + LEW + WTE	Lb	WBSTR
Wing Torque Box Exposed Weight	Lb	WTORBE
Wing Torque Box Carrythrough Weight	Lb	WTORBC
Wing Leading Edge Weight	Lb	LEW
Wing Trailing Edge Weight	Lb	WTE
Wing Secondary Structure Weight	L b	GPROV
Wing Main Landing Gear Provisions Weight	Lb	GPROV
Wing Control Surface Weight = WAS + WADR + WAH + WAP	Lb	WAIL
Wing C.S. Shell Weight	Lb	WAS
Wing C.S. Drive Rib Weight	Lb	WADR
Wing C.S. Hinge Weight	Lb	WAH
Wing C.S. Attach Weight	Lb	WAP
Wing Weight Constant	Lb	PWING K
Tail Gross Area	Ft ²	TSG
Tail Total Weight	Lb	TAIL
Tail Basic Structure Weight = TTORQB + TLE	Lb	TBSTR
Tail Torque Box Weight	Lb	TTORQB
Tail Leading Edge Weight	Lb	TLE
Tail Control Surface Weight = WRS + WRDR + WRH + WRP	Lb	WRUD
Tail C.S. Shell Weight	LЪ	WRS
Tail C.S. Drive Rib Weight	Lb	WRDR
Tail C.S. Hinge Weight	LЪ	WRH
Tail C.S. Attach Weight	LЪ	WRP
Tail Weight Constant	Lb	PTAILK
(BODY)		
Orbiter Body Group Total Weight	Lb	G37
Orbiter Basic Structure Weight = G1 + G11 + G25 + G10 + G27 + G12 + G26 + G15 + G2 + G3 + G6 + G16 + G17 + G32 + G34		
Body B.S. Fwd Sidewall Weight	Lb	G1
Body B.S. Ctr Sidewall Weight	Lb	G11

Output Definitions	Units	Symbol
Body B.S. Aft Sidewall Weight	Lb	G25
Body B.S. Ctr Longer Weight	Lb	G10
Body B.S. Aft Longer Weight	Lb	G27
Body B.S. Ctr Frame Weight	Lb	G12
Body B.S. Aft Frame Weight	Lb	G26
Body B.S. Ctr Bulkheads	Lb	G15
Body B.S. Crew Compt. Provision Weight	Lb	G2
Body B.S. Windshield Provision Weight	Lb	G3
Body B.S. Nose Wheel Well Provision Weight	Lb	G6
Body B.S. Payload Reaction Weight	Lb	G16
Body B.S. Wing Shear Provision Weight	Lb	G17
Body B.S. Thrust Structure Weight	Lb	G32
Body B.S. Tail Provision Weight	Lb	G34
Fwd Subtotal Weight	Lb	G8
Ctr Subtotal Weight	Lb	G18
Aft Subtotal Weight	Lb	G35
Orbiter Secondary Structure Weight = G19 + G22		
Body S.S. Cargo Door Shell	Lb	G19
Body S.S. Cargo Door Mechanism	Lb	G22
Orbiter Body Miscellaneous Weight (fwd)	Lb	G 7
Orbiter Body Miscellaneous Weight (Ctr)	Lb	G23
Orbiter Body Miscellaneous Weight (aft)	Lb	G33
Fwd Total Weight	Lb	G9
Ctr Total Weight	LЪ	G24
Aft Total Weight	Lb	G36
(THERMO)		•
Total TPS Weight	Lb	TOTTPS
Total Wing TPS Weight = WGWT + WGLEWT	Lb	TWGWT
Wing Surface Panel TPS Weight	Lb	WGWT
Wing Leading Edge TPS Weight	Lb	WGLEWT
Total Tail TPS Weight = TWT + TLEWT	Lb	TWT
Tail Surface Panel TPS Weight	Lb	TWT
Tail Leading Edge Weight	Lb	TLEWT

Output Definitions	Units	Symbol
Total Body TPS Weight = BLBTPS + BASEWT + IBTWT + PTPSCN	Lb	BTPSWT
Body TPS Panel Weight	Lb	BLBTPS
Body Base TPS Weight	ĽЪ	BASEWT
Body Internal TPS Weight	Lb	IBTWT
Body TPS Constant Weight	Lb	PTPSCN
Miscalleneous Control Surface TPS Weight	Lb	MSCWT
Landing and Docking TPS Weight	Lb	LDTWT
Propulsion TPS Weight	Lb	PROWT
Prime Power TPS Weight	Lb	PPPO
Hydraulics TPS Weight	Lb	РНҮС
Surface Controls TPS Weight	Lb	SCWT
(LANDING GEAR)	}	
Landing and Docking Total Weight	Lb	LNDDK
Nose Gear Weight = NG1 + NG2 + NG3	Lb	NGEAR
Nose Gear Rolling Gear Weight	Lb	NG1
Nose Gear Structure Weight	Lb	NG2
Nose Gear Controls Weight	Lb	NG3
Main Gear Weight = $MG1 + MG2 + MG3$	Lb	MGEAR
Main Gear Rolling Gear Weight	Lb	MG1
Main Gear Structure Weight	Lb	MG2
Main Gear Controls Weight	Lb	MG3
Auxiliary System Weight = AX1 + AX2 + AX3	Lb	AXGEAR
Aux. Deceleration Chute Weight	Lb	AX1
Aux. Separation System Weight	Lb	AX2
Aux. Handling and Manipulation System Weight	Lb	AX3
Landing and Docking System Constant Weight	LЪ	LNDDKK

Output Definition	Units	Symbol
(ASCENT PROPULSION)	_	
Main Ascent Propulsion Weight	Lb	TAPROP
M.A.P.Engine + Acc. Weight = ENG + TVC + CONTR + PRPUTL	Lb	ENGPAC
M.A.P. Engine Weight	Lb	ENG
M.A.P. Gimbal System Weight	Lb	TVC
M.A.P. Control Weight	Lb	CONTR
M.A.P. Propellant Utilization Weight	Lb	PR P UTL
M.A.P. Propellant System Weight = FAD + PRES + CHIL + PREVAL + FEEDS + DISC + MISC	Lb	PROSYS
M.A.P. Fill and Drain System Weight	Lb	FAD
M.A.P. Pressurization System Weight	Lb	PRES
M.A.P. Chill and Dump Line Weight	Lb	CHTL
M.A.P. Pre Valves Weight	Lb	PREVAL
M.A.P. Feed System Weight	Lb	FEEDS
M.A.P. Disconnects Weight	Lb	DISC
M.A.P. Miscellaneous Weight	LЪ	MISC
Air Breathing Propulsion System	Lb	TBPRO
(OMS-ACS SYSTEM)		
Total Auxiliary Propulsion System Weight	LЪ	WTAUX
Total ACS System Weight = ACSENG + ACSSYS + WTACK + ACSMOD	Lb	WTACS
ACS Thruster Weight	Lb	ACSENG

Output Definitions	Units	Symbols
ACS Prop. System Weight	Lb	ACSSYS
ACS Tank Weight	Lb	WTACK
ACS Module Weight	Lb	ACSMOD
Total OMS System Weight = OMSENG + PROPSY + WTOMTK, MODULE	Lb	WTOMS
OMS Thruster Weight	Lb	OMSENG
OMS Propulsion System Weight	Lb	PROPSY
OMS Tank Weight	Lb	WTOMTK
OMS Module Weight	Lb	MODULE
(SUBSYSTEMS)		
Prime Power Weight	Lb	PPWR
Electrical System Weight	Lb	ELEC
Hydraulic System Weight	Lb	HYDR
Surface Controls Weight	Lb	B URFC
Avionics Weight	Lb	AVIONO
Environmental Control Weight	Lb	ECLSO
Personnel Provision Weight	LЪ	PPROV
Growth/Uncertainty Weight	Lb	OUNCWT
Orbiter Dry Weight	Lb	ODRYWT
Personnel	Lb	PERSON
Orbiter Residual Propellant Weight	Lb	ORESD
Orbiter Payload delivered to orbit	Lb	PLOADU
Orbiter Inert Weight	Lb	TWNIO
Orbiter Reserve Propellant Weight	Lb	ORESU
Orbiter Inflight Losses	Lb	ORFIL
Orbiter ACS Propellant Weight	Lb	ACSPRO
Orbiter OMS Propellant Weight	Lb	WOPROP
Orbiter Trapped Propellant Weight	Lb	OTRAP
Orbiter Lift Off Weight	Lb	OLOWT
Orbiter Payload delivered at landing	Lb	PLOADD
Orbiter Landing Weight	Lb	OLANWT
Orbiter Injected Weight	Lb	OINJWT

Output Definitions (Detailed Print Out - Ext. Tank)	Units	Symbol
External Tank Length	In	EXTL
External Tank Diameter	In	EXTD
External Tank Body Group	Lb	BODGRP
External Tank Forward Tank Weight = FWDBLF + CONSCT + CYLSCT + AFTBLF	Lb	FWDTK
Forward Bulkhead Weight	Lb	FWDBLF
Conical Section Weight	Lb	CONSCT
Cylindrical Section Weight	Lb	CYLSCT
Aft Bulkhead Weight	Lb	AFTBLF
Inter Tank Section Weight	Lb	WINT
External Tank Aft Tank Weight = FWDBLAT + AFTCYL + AFTBLA	Lb	AFTNK
Forward Bulkhead Weight	Lb	FWDBLA
Cylindrical Section Weight	Lb	AFTCYL
Aft Bulkhead Weight	LЪ	AFTBLA
Orbiter Body Structure Tank Attach Weight	Lb	TWINT
Nose Fairing Weight	Lb	NOSFAR
Umbilical Panel Weight	Lb	UMBPNL
Tunnel Weight	LЪ	TUNNEL
Baffle Weight - LOX	Lb	BAFF
Induced Enviornmental Protection Weight = FAIRT + FCCTPS + TPSIN + ACYDM	Lb	TDTPS
Nose Fairing TPS Weight	Lb	FAIRT
Forward Cone and Cylinder TPS Weight	Lb	FCCTPS
Inter Tank TPS Weight	Lb	TPSIN
Aft Cylinder and Dome TPS Weight	Lb	ACYDM
External Tank Propellant System Weight = FEDSYS + PRSVNT + SUMP + PNPU	Lb	PROSY
Feed System Weight	Lb	FEDSYS
Pressurization and Vent Weight	Lb	PRSVNT
Sump and Vortex Control Weight	Lb	SUMP
Pneumatic and PU System Weight	Lb	PNPU
Subtotal Dry Weight	Lb	SUBDRY
Growth/Uncertainty Weight	Lb	Gΰ
Dry Weight of External Tank	Lb	DRYWT
Tank Undrainable Propellant Weight	Lb	UNDRAN

REPORT MDC E0746 VOLUME III 28 FEBRUARY 1973

DEVELOPMENT OF A WEIGHT/SIZING DESIGN SYNTHESIS COMPUTER PROGRAM — FINAL REPORT

Output Definitions	Units	Symbols
Feedline Trapped Propellant Weight	Lb	FEEDTR
Pressurant Propellant Weight	Lb	PRSURT
PU Bias Propellant Weight	Lb	FBIAS
Inert Weight of External Tank	Lb	INERT
Total Usable Ascent Propellant Weight	Lb	PROPOT
Total External Tank Gross Weight	Lb	GROSSW
Lambda = Total Usable Ascent Propellant/Total External Tank Gross Weight	ND	TLAMB

6. ESPER OUTPUT

The output options contained in ESPER are multivariant. This dependency lies with the user and what option of ESPER he has chosen to execute. However, the basic mainline output is either a simplified or detailed weight statement.

The simplified weight statement supplies the user with total vehicle weights and performance parameters, such as, TW, GLOW and ΔV . This option is best utilized in parametric studies where many cases are executed and detailed weights are not of prime importance. This can result in a substantial cost savings by reducing computer printout time.

The detailed weight statement exists in the form of the NASA Phase B functional weight grouping. By coding ESPER's detailed output in this form, the user obtains a direct line-by-line comparison of ESPER's data with the weight status report of the main line Shuttle program. This comparison will identify for NASA either which areas of the program need updating, or which elements of the reported weights require scrutiny.

Combinations of these two mainline options are numerous. (For example, if the user is running a fixed SRM and wishes to see details on the Orbiter, or if the user is running a fixed Orbiter and wishes to see details on the SRM, etc.) Examples of the simplified and detailed weight statements are as follows:

PARALLEL BURN FIXED I/W BOOSTER PAPAMETRIC STUDY EXTERNAL (H2-02) ORBITER BOOSTER - SOLID ROCKET MOTOR

****** WARNING LOOK AT T/W *******

INCLINATION OF ORBITER 28.50 DEGREES

> DV TOTAL LOSSES (6338.7) DVCNST 3425360.0 DV CORRECTION 1185.2 DV CURVE LOSSES 5153.5

-45.0 DV INC • 0 DV ALT

6099.4 SCD WZSCD 940.0

BOOSTER PARAMETERS

(CANT ANGLE = 8.5)

BURN OUT WEIGHT 419908.50 DRY WEIGHT 433448.50

PROPELLANT WEIGHT PROPB WOI 2708002.00 2721543.00

LAMBDA = .8663

ISP AV (273.2.451.2) 295.53

SEA LEVEL THRÚST 8576672.00 S.L. T BOO 7586006.00

124.91 BURN TIME

ORBITER PARAMETERS

(CANT ANGLE YAW: 3.5)

(CANT ANGLE PITCH=17.0)

LIFT OFF-PAY-OAMS 188208.75 PAYLOAD 51612.90 OAMS PROP WEIGHT 23909.07

EXT TANK PARAMETERS

EXT. TANK WI (DRY) EXT. TANK RESID. 72903.75 5238.03

ORB PROP PROPELLANT WEIGHT ISTSTAG PROP 2NDSTAG PROP 39035g.31 1640239.00 1249881.00

LAMB DA = . 9545

ISP 451.20

VACUUM THRUST 1408245.00 THRUST/ENG 470000. # ENG 3.

FLOW RATE

OGLOW= 1982010.000

3141451.000 BGLOW=

GLOW = 5123461.000

TOTAL= (INCLUDES HOLD DOWN PROP= 2076.5) 5126437.000

1041.67

I/W1 =1.674

T/W2 =.885

F.P.R. DELTA V 8889.51 385.46 IDEAL STAGING VELOCITY 9196.37 4874.51 F.P.R. PROP PEAL STAGING VELOCITY

NOMINAL REQUIRED VELOCITY 30937.45 TOTAL VELOCITY(INC 1% FPR) 31222.91 22333.40 ORBITER VELOCITY(CALC)

ORBITER VELOCITY(ACT) 22332.59

SOLID ROCKET MOTOR (SRM) WEIGHT SUMMARY (PER SRM)

LENGTH= 1191. DIAMETER= 162.

BASIC SRM WEIGHT CASE WEIGHT JOINT WEIGHT NOZZLE WEIGHT THRUST TERM WT. I NSULATION WEIGHT IGNITER WEIGHT BASIC SRM WT.CON.	(1635 g0.) 1001 g7. 5569. 45100. 3649. g537. 539.
SRM RECOVERY WEIGHT PARACHUTE WEIGHT PARACHUTE INSTAL. RETRO ROCKET PROPELLANT WEIGHT WATER REC. HWD.	(13072.) 5434. 3758. 0. 0. 380.
SRM REC.WT.CONST. SRM INTERSTAGE STRU. FORWARD SKIRT AFT SKIRT STRUCT ATTACH/SEP STRUCT NOSE FAIRING TUNNEL WEIGHT AVIONICS WEIGHT TPS WEIGHT SRM INTERS.CONST.	(3500 32743.) 2211. 10962. 17187. 1593. 136. 182. 472.
SUBTOTAL DRY WEIGHT GROWTH UNCERTAINTY	_	209395. 7329.
DRY WEIGHT EXPENDABLE PROP.	-	216724. -6770.
BURN OUT WEIGHT USABLE PROP WEIGHT		209954. 1360771.
TOTAL GROSS WEIGHT	(1570725.)
LAMBDA = WPROP/WGROSS = .86633		

TOTAL NO OF SRMS =2.

ORBITER WEIGHT SUMMARY

One	Z CEN WEIGHT	DOGMAN		
WING GROUP (AREA = 3220.)			(18820.)
BASIC STRUCTURE		13473.		
TORQUE BOX EXPOSE	8822.			
TORQUE BOX CARRY	3 876.			
LEADING EDGE	775.			
TRAILING EDGE	0.			
SECONDAPY STRUCTURE		1482.		
M.L.G. PROVISIONS	1482.			
CONTROL SURFACE		3864.		
SHELL	1179.			
DRIVE RIR	1628.			
HINGE	284.			
ATTACH	773.			
WING WEIGHT CONSTANT		0.		
TAIL GROUP (AREA: 435.)		•	(3721.)
BASIC STRUCTURE		1725.	`	0 /2 / 4 /
TORRIJE BOX	1571.	1125		
LEADING EDGE	153.			
CONTROL SURFACE	120.	1996.		
SHELL	731.	1990.		
DRIVE RIB	737.			
HINGE	129.			
ATTACH	_			
TAIL WEIGHT CONSTANT	399.	0		
BODY GROUP		0.	(31197.)
BODY GROUP	FWD	CTR	•	AFT
BASIC STRUCTURE	r w D	OIA		HF1
SIDEWALLS	3578.	3340.		1354.
LONGERONS	3210	1065.		400.
FRAMES	•	1488.		1066.
BULKHEADS	:	774.		1000.
CREW CPT. PROV.	5124.	114		
WINDSHIELD PROV.	1656.			
NOSE WHL. WEL PROV	226.			
PAYLOAD REACTION	220.	1200.		
WING SHEAR PROV.		556.		
THPUST STRUCTURE		220.		4003.
TAIL PROV.				159.
SUB TOTAL	10584.	8423.		6990
SECONDARY STRUCTURE	10764.	5420.		6440.
CARGO DOOR SHELL.		2796.		
CAPGO DOOR MECH.		2274.		
	0.			120
MISCELLANEOUS WIS. TOTAL	10584.	0. 13493.		120. 7110.
INDUCED ENVIRON. PROT.	10254.	12442	(31033.)
WING		9641.	•	31033.1
	7373.	9641.		
SURFACE PANELS				
LEADING EDGE	2269.	1070		
TAIL SUBTACE BANELS	0.05	1278.		
SHRFACE PANELS	905.			
LEADING EDGE	373.	10140		
BODY	10101	18148.		
RODY PANELS	12121.			
BASE	2276.			
INTERNAL TPS	3476.			
RODY CAST TPS WI.	2. 7 5 .	^		
MIS CONT. SURFACE		0.		
LAND + DOCKING		300.		
PROPULSION		1382.		
PRIME POWER		89.		
HYDRAULICS		77.		
SURFACE CONTROLS		IIR.		

LANDING & DOCKING		(11483.)
NOSE GEAR		1333.	., -
ROLL GEAR	559.		
STRUCTURE	274.		
CONTROLS	500.		
MAIN GEAR	>00 •	7574.	
-	4010	1314.	·
ROLL GEAR	4010.		
STRUCTURE	2566.		
CONTROLS	998.		
AUXILIARY SYSTEMS		2576.	
DECELERATION SYS	30g.	4	
SEPARATION SYS	1068.		
HANDLING & MANIP	1200.		•
MISCELLANEOUS		0.	
PROPULSION MAIN ASCENT		(27114.)
ENGINES+ACESSORIES		20847.	
ENGINES	18880.		
GIMBAL SYSTEM	1219.		
CONTROLS			
	73g.		
PROPELLANT UTILIZ	10.		
PROPELLANT SYSTEM		6267.	
FILL & DRAIN	773.		
PRESSURIZATION	1095.		
CHILL DUMP LINES	133.		
PRE VALVES	1088.		
FEED SYSTEM	1941.		
DISCONNECTS	488.		
MISCELLANEOUS	749.		*
PROPULSION AIR BREATH		(0.)
PROPULSION AUXILIARY		ċ	g190.)
ACS SYSTEM		3963.	7111017
THRUSTERS	1310.	0,900	
PROP. SYSTEM	300.		
	-		
TA NK	1443.		
MODULE	910.		
OAMS SYSTEM		4228.	
THRUSTERS	390.		
PROP. SYSTEM	647.		
T A NK	2120.		
MODULE	1071.		
PRIME POWER		(3912.)
ELECTRICAL		(4645.)
HYDRAULIC		(2264.)
SURFACE CONTROLS		(5511.)
AVIONICS		(4455.)
ENVIRONMENTAL CONTROL		ì	4093.)
PERSONNEL PROVISIONS		ć	1742.)
MISCELLANEOUS		(0.)
GROWTH/UNCERTAINTY		(13929.)
OU OMILLA DACEUTHI NI A		•	19969.)
DDV HEICHT		_	17000-
DRY WEIGHT		((172098.))

ORBITER MISSION HISTORY

DRY WEIGHT	(172098.)
PERSONNEL		1250.
ORB RESD PROP WT.		2985.
PAYLOAD UP		51613.
INERT WEIGHT	(227946.)
ORB RESV PROP WT.		g 7 8.
ORB INFLIGHT LOSSES		38 7 2.
ACS PROP WT		72 90 •
OAMS PROP WT		23909.
ORB TRAPED PROP WT		724.
GROSS WT(ORB-ONLY)	(263731.)
(LAND WT PAY=40000.)		
LANDING WEIGHT	(217211.)
(I NJE WT PAY=51613.)		
INJECTED WEIGHT	(263007.)

EXTERNAL TANK WEIGHT SUMMARY
ALTERNATE FWD SECTION(WITHOUT NOSE FAIRING)
SEPARATE BULKHEAD-LOX FWD

LENGTH= 2108. DIAMETER= 304.

		WEIGHT -LB.			WEIGHT -LB.	
BODY GROUP	ľ	53356.]	IND. ENVIRN. PROT. 1	7103.	3
FWD TANK .	(12459.)	NOSE FAIRING	0.	
FWD BULKHEAD		14.		FWD CONE & CYL.	0.	
CONICAL SECTION		2784.		INTER TANK	1534.	
CYLINDRICAL SECT	•	5385.		AFT CYL & DOME	1761879.	
AFT BULKHEAD		4276.				
INTER TANK SECT.	(5326.)	PROPELLANT SYSTEMS (3953.	3
AFT TANK	(24393.)	FEED SYSTEM	1753.	
FWD BULKHEAD		2579.		PRES. AND VENT	1742.	
CYLINDRICAL SECT	•	18827.		SUMPS & VORTEX CTL	220.	
AFT BULKHEAD		2976.		PNEUMATIC & PU SYS	237.	
ORB/BSTR/TANK ATT	• (10150.)			
NOSE FAIRING	(0.)	AVIONICS	g00.	3
UMBILICAL PANEL	(300.)	DEORBIT SYSTEM	2512.	1
TUNNEL	(MISCELLANEOUS	0.	
BAFFLES-LOX	(490.)			
				SUBTOTAL DRY WEIGHT	67724.	

SUBTOTAL DRY WEIGHT 67724.

	G	R	0	W	T	H	/	U	Ŋ	C	E	S	T	A	Ι	N	Ţ	Ÿ		ſ				5	0	7	Ö	•]	
-	-	-	-	-	-	_	-	_	_	-	-	-	-	_	_	-	-	-	_	-	_	_	_	_	-	-	-	-	-		-
	_	_				_	_	_		_													ė.	_	_	_					

DRY WEIGHT 72804.

RESIDUAL PROPELLANT[5238.]
TANK UNDRAINABLE 400.
FEEDLINE TRAPPED 103.
PRESSURANT 3235.
PU BIAS 1500.

INERT WEIGHT 78042.

USABLE PROPELLANT [1640239.]

TOTAL GROSS WEIGHT 1718280.

LAMBDA = WPROP/WGROSS = .9546

VEHICLE SENSITIVITIES

	ITEM	INCREMENT	ī	DELTA PAYLO	DAD	SENSITIVITY
	I NERT WT I NERT WT	10000.00		-10000.3 10000.0		-1.0 LB/LB -1.0 LB/LB -1.0
	INERT WT INERT WT	20000.00		-1595.2 1619.3	LB	07976 LB/LB 08097 LB/LB 08036
	PCCONST THRUS PCCONST THRUS			2344.7 -2332.0	LB	781.6 LB/SEC 777.3 LB/SEC 779.5
	PCCONST THRUS PCCONST THRUS			4056.7 -4057.2	LB	1352.2 LB/SEC 1352.4 LB/SEC 1352.3
	ISP(CONST FL			2270.7 -2261.7	LB	756.9 LB/SEC 753.9 LB/SEC 755.4
	ISP(CONST FL			4820.3 -4814.9		1606.8 LB/SEC 1605.0 LB/SEC 1605.9
BOOSTER BOOSTER	THRUST THRUST	2.00 -2.00		-118.0 110.2	LB	-59.0 LB/% -55.1 LB/% -57.0
ORBITER ORBITER	THRUST THRUST	3.00 -3.00			LB	1055.1 LB/% 1239.0 LB/% 1147.1
	PROPELLANT PROPELLANT	10000.00		820.8 -844.0	LB	.08208 LB/LB .08440 LB/LB .08324
-	PROPELLANT PROPELLANT	10000.00		509.1 -511.5	LB	.05091 LB/LB .05115 LB/LB .05103
	TANK LAMBDA TANK LAMBDA		LB/LB LB/LB	17692.4 -18066.0		17692.4 LB/.01
BOOSTER BOOSTER			LB/LB	2921.5 -2906.1		2921.5 LB/.01 2906.1 LB/.01 2913.8
	PROP+INERT W PROP+INERT W			2900.3 -8741.0		290.0 LB/% 874.1 LB/% 582.1
	PROP+INERT W PROP+INERT W			995g.0 -11076.1	LB	995.8 LB/% 1107.6 LB/% 1051.7
	ELTA V ELTA V	93.59		-2563.g 25g2.3	LB LB	-27.4 LB/FPS -27.6 LB/FPS -27.5
_	MANUEV DELTA MANUEV DELTA			-1000.0 1000.0	LB	-23.8 LB/FPS -23.9 LB/FPS -23.9
HO-TANK	GROWTH/UNCER GROWTH/UNCER GROWTH/UNCER	- 1.	7. 7. 7.	1392.9 677.2 328.1	LB LB	

SENSITIVITY OUTPUT STATEMENT

GLOW SENSITIVITIES

	ORBITER/TANK	BOOSTER
+ DELTA GLOW (LB) DUE TO:		
+ DELTA INERT WT (LB)	59.8	5.7
- DELTA ISP (SEC)	79548.	45724.
- DELTA THRUST (%)	72880.	-3240.
+ DELTA V TOTAL (FPS)	1611.	
+ DELTA V MANUEVER (FPS)	1402.	
DELTA GLOW/DELTA PAYLOAD (LB/LB)	59.	,8
DELTA HO-PROP/DELTA PAYLOAD	56,	.1
DELTA HO-TANK(DRY)/DELTA PAYLOAD	2.51	10

GROWTH STUDY ORBITER GROWTH

%	ORB PROP	DRY-MT	CORE-WT	THK-HT	UALID	STAGE	TZW(2)
.000	1560423.	398520.	265310.	62738.	YES	4897.	.951
.010	1580716.	398520.	266728.	63316.	YES	4830.	.937
.020	1602653.	398520.	268146.	63950.	YES	4752.	.922
.030	1626684.	398520.	269564.	64654.	YES	4677.	.906
.040	1653595.	398520.	270982.	65459.	YES	4593.	.890
.050	1684695.	398520.	272400.	66410.	YES	4499.	.871
.060	1722965.	398520.	273818.	67613.	YES	4378.	,849
.070	1777665.	398520.	275236.	69404.	YES	4226.	.821
.080	1863729.	398520.	276654.	72412.	YES	3991.	.779
		_	_		_		

GROWTH OUTPUT STATEMENT

GRONTH STUDY BOOSTER GRONTH

%	ORB PROP	DEN'-NT	CORE-WT	THK-HT	VALID	STAGE	TZW(2)
. 999	1560423.	398520.	265310.	62738.	YES	4897.	.951
.010	1565343.	402505.	265310.	62878.	YES	4872.	.948
.020	1570333.	406490.	265310.	63019.	YES	4843.	.944
.939	1575318.	410475.	265310.	63162.	YES	4824.	.941
.040	1580364.	414461.	265310.	63305.	YES	4793.	.938
.050	1585433.	418446.	265310.	63451.	YES	4763.	.935
.060	1590580.	422431.	265310.	63600.	YES	4742.	.931
.070	1595745.	426418.	265310.	63750.	YES	4718.	.928
.080	1600971.	438402.	265310.	63900.	YES	4690.	.925
. 999	1606257.	434336.	265310.	64054.	YES	4662.	.921
. 100	1611594.	438372.	265310.	64211.	YES	4634.	.918

GRONTH STUDY FIXED HO TANK CROWTH

7/	BOO GLON	DRY-HT	CORE-NT	This-HT	UALID	STAGE	T/H(2)	
.COO	3044594.	398531.	265310.	62737.	YES	4898.	1.951	
.010	3084468.	482698.	266728.	62737.	YES	4945.	.951	
.020	3125134.	406951.	268146.	62737.	YES	4996.	.951	
.039	3166136.	411247.	269564.	62737:	YES	5050.	.951	
. છેવેલ	3207450.	415575.	.270982.	62737.	YES	5092.	.951	
.050	3248580.	419864.	273400.	62737.	YES	5144.	.951	
.068	3290562.	424258.	273818.	62737.	YES	5189.	.951	
.070	3332236.	428688.	275236.	62737.	YES	5245.	.951	
. 888	3375472.	433153.	276654.	62737.	YES	5287.	. 951	
.090	3418444.	437653.	278072.	62737.	YES .	5344.	.951	
.100	3461786.	442198.	279490.	62737.	YES	5384.	. 951	

REPORT MDC E0746 VOLUME III 28 FEBRUARY 1973

APPENDIX A

GROUP WEIGHT STATEMENT

AND

DESIGN DATA SUMMARY

	······		GROUP	WEIGHT ST	ATEMENT	- 6	
CC	ONFIGURATION			BY		DATE	PAGE EO1
2	WING GROUP			CARRY	INTERM PANEL	OUTER PANEL	
3	BASIC STRUCT	TURE		1111000	1.73122	17.100	
- 4	TORQUE I	30X		(INCL F	USE)		t
5	LEADING						
6	TRAILING						
7	TİP		1				
8_	M.G. BAY						
9	M.G. BAY	-STRUCTURE	2]	
10		-DOORS					
11	GLOVE						
12	SECONDARY ST	RUCTURE					
13	FAIRINGS	FINISH.	MISC.				
14	ACCESS DOORS						
15	ELEVON				INNER	OUTER	
16	STRUCTUR	E					
17	MECHANIS	í					
18	BALANCE						
19	SUPPORTS	:					
20	TAIL GROUP					VERTICAL	
21	BASIC STRUCT	URE					
22	TORQUE						
23	LEADING						
24	TRAILING						
25	TIP	1					
26	SECONDARY ST	RUCTURE					
27	DOORS						
2 8	FAIRINGS	FINISH,	MISC.				<u> </u>
29	RUDDER				<u> </u>	J	
30	STRUCTUR	<u> </u>	<u> </u>				
31	MECHANIS	M. I					
32	BALANCE	WEIGHT					
33	SUPPORTS		<u> </u>				
34	BODY GROUP			FWD	CTR	AFT	
35	BASIC STRUCT	URE	<u> </u>				
36	SKIN/STR	INGERS	<u> </u>		<u> </u>	ļ	
37 38	LONGERON	S.1			; 		
	FRAMES				-	l _	
3 9	7	ACH-CARRY	THRU		_	!	
40	BULKHEAD		<u> </u>				
41	THRUST S	TRUCTURE	 				
42	CREW CABIN		 		_	ļ	
43	WINDOWS/I		 				
44	STRUCTUR	E <u> </u>				 	
45 46	AIRLOCK		 		<u> </u>	 	
46	HATCH		 		- !	 	
47	PAYLOAD DOOR						
48	STRUCTUR		 			 	
49	HINGES/M		 				
	BODY FLAP/SPI	CED BRAKE					
50	N. GEAR BAY	DI 1000 100 /100	70			 	
50 51	COOKEN AND COM	костонку МТ	<u>بر.</u>				<u> </u>
50 51 52	SECONDARY ST	VODE	1	1	I		
50 51 52 53	ACCESS DO	OORS	<u> </u>	_			
50 51 52 53 54	SECONDARY STI ACCESS DO EQUIPMEN	OORS					
50 51 52 53 54 55	ACCESS DO EQUIPMENT	OORS					

				GROUP W	ΕI		STATE			
	CON	VFIG	URATIO	ON		BY		DATE		PAGE 02
1 2		1 4	TNDUC	ED ENVIRONMENT PROTEC	TTON	WING	TAIL	BODY		‡ !
3		•		ERMAL PROTECTION		· (· · · ·)		()		
4				LEADING EDGE/NOSE CA	P					
5		:		SURFACE PNL-UPPER						
6		· 		-SIDE		-	·			<u> </u>
7		i		-LOWER						
8				-CONT. SU	RF					!
9				BASE PROTECTION		ļ	ļ			
. 10		• •	PF	ESSURE VENT PURCE SY	<u></u>				ļ	·
11		;	11/	TERNAL THERMAL CONTRO		1	1	<u></u>		
_ 12		1		· · · · · · · · · · · · · · · · · · ·			1	<u></u>		
13		:		l		 	:			!
14		•	-							
_ 15	-	•		CENTER BODY						· ···· · · · · · · · · · · · · · · · ·
16				RADIATOR			<u>:</u>	***************************************		
17 18				AVIONICS BAY		ļ <u></u>				
.19.		:	•	MAIN GEAR BAY		 	-			· ;
20				PODS - OMS		 	T		·	
21		. 1	· · · · · · ·	APU COMPARTMENT			ļ		• •	
22		i		HYDRAULIC BAY					•	
-23		; ··· ,					i !		·	· · · · · · · · · · · · · · · · · · ·
24	-		N/O				1			
25				TEOROID PROTECTION						*** * ****
26			• • • •							
27		. 5	LANDI	NG DOCKING		ROLLING	STRUCTUR			
. 28		:		IGHTING GEAR			()			
_29		: 		MAIN						·
_30	- :	<u>.</u>					-			
31		: • - • -		CKING						· · · · · · · · · · · · · · · · · · ·
32			AU	XILIARY SYSTEMS			ļi			
33 _34				DECELERATION CHUTES _			; ;			
34			· · · · · · · · · · · · · · · · · · ·	SEPARATION SYSTEM			! !	·		
. 35				HANDLING GEAR-CARGO	& MAN	IPULATOR_				
36	,	,		<u></u>						·
. 37				LSION - MAIN ASCENT						
_ 3 8				GINE & ACCESSORIES						,
39			· -	ENGINE (AS SUPPLIED)		ļ 				·
_ 40 _41.				GIMBAL SYSTEM PROPELLANT UTILIZATION			ļ 	 :		
_41				PROPELLANT UTILIZATIO		DT.C1/4"		 ;		
43		- ·	TN	STALLATION - DUCTS, SI	TROID	s		·	1	
44			PR	OPELLANT SYSTEM	4.00		FIEL	OXIDIZER		
45		· · · ·	``				:		·	
_46									1	:
_47.							i.			
. 48				INSTRUMENTATION						i
49				PRE-VALVES						:
				FEED SYSTEM						
-50 51				PROPELLANT MANAGEMENT						
52	اً]	SUPPORTS AND INSTALL						
53]		1				i			
_54										l
_55	-:									
_56.										
-57						<u> </u>	.			

GROUP WEIGHT STATEMENT CONFIGURATION 2 7 PROPULSION - AIR BREATHING ENGINE ACCESSORIES ENGINE (AS SUPPLIED) IGNITION & CONTROL SYS LUBRICATION SY (DRY) ACCESSORIES INSTALLATION, DUCTS, SHROUDS AIR INDUCTION ENGINE MOUNTING
NACELLES, PYLON (INCL___LB MECH) 10 11 12 EXHAUST SYSTEM PROPELLANT SYSTEM and the second s 13 FILL/DRAIN 14 _____ The second secon PRESSURIZATION/VENT 15 PUMP 16 17 TRANSFER SUPPORTS/INSTALLATION 18 19 TANKAGE-NON-INTEGRAL TANK INSUL SUPTS 20 21 8 PROPULSION - AUXILIARY ATT MANEU-22 VER CONTROL 24 THRUSTER INSTALLATION ________ THRUSTERS SUPPORTS, INSTALL
PROPELLANTS SY 26 FILL/DRAIN 28 **2**9 PRESSURIZATION 30 VENT FEED SYSTEM INSTRUMENTATION 33 GIMBALLING PROP CONDITION & CAUGE 35 **3**6 OXIDIZER FUEL ; INSULATION STRUCTURAL SUPPORTS 41 43 ENGINE/TURBINE ____ FUEL CELL ____ 45 CLECTRICAL CONVER CONTROL SUPPLY SION UNITS EQUIPMENT POWER SY ____ PRIMARY DISTRIBUTION CIRCUITRY
UTILITY SYSTEMS SYSTEM CIRCUITRY AVIONICS
MISSION SEQUENCING AVIONICS 53 ENVIRONMENTAL CONTROL PROPULSION SUPPORTS/INSTALLATION____

	GROUP	WEI	GHT S	TATE	MENT	
	CONFIGURATION		BY		DATE	PAGE 04
1	11 HYDRAULIC		SY#	SY#		
<u>~</u>	POWER SUPPLY	 		D1#		
- <u>1</u>	CONTROL CENTER	i I				
5	DISTRIBUTION SY					
6	TEMPERATURE CONTROL					
7	AUXILIARY SYSTEMS	į	1			
	SUPTS/INSTAL	l				
9						
_10	12 SURFACE CONTROLS					
11	COCKPIT CONTROLS		T			
. 12	FLIGHT CONTROL SY					SEE AVIONICS
13		PLUMB	ACTUATOR	FEEL SY	MECH	
14	ELEVON	TO THE SECOND SE				
. 15	RUDDER					
16	BODY FLAP		!			
. 17				; , , , , , , , , , , , , , , , , , , ,		
18	13 AVIONICS					
19	· · · · · · · · · · · · · · · · · · ·	()_	(¥)	():	()_	•
	GUID & NAV		<u>.</u> !			t de la companya del companya de la companya del companya de la co
21	COMMUNICATE		SEE ELECTRIC			·
22	INSTRUMENTATION		. မှု မြ			
	DISPLAYS		명			
24	MISSION SPECIAL STATE	<u> </u>	• ;			
25						·
2 6	1) WARETPONESTMENT COMMON	(nev)				
27 28	14 ENVIRONMENTAL CONTROL GAS SUPPLY SYSTEM	DKI)	ļ			
2 0	GAS MANAGEMENT/PURI					·
3 0	HEAT TRANSPORT SYSTE					
30 31	WATER MANAGEMENT SYS		()			
32	INSTRUMENTATION	ייים זכ	ii			
. 33	SUPPORTS/INSTALLATION	מל	1			
. 34	Optional Library	· · · · · · · · · · · · · · · · · · ·	·			
. 35	15 PERSONNEL PROVISIONS			·i		
_36	SEATS/RESTRAINT SYST	rem	1	!		
37	FIXED LIFE SUPPORT E					
38	EMERGENCY EQUIPMENT		1	1		
3 9	FURNISHINGS			i		
. 40 .	SUPPORT/INSTALLATION	v				
_41			<u>.i </u>			l
42	16 RANGE SAFETY AND ABORT		_ i			
43					i	
44	17 BALLAST		.i		i	
45				-	i	
46	18 GROWTH/UNCERTAINTY				·	
47 48	19 OPEN					
.40	13. OLEN		-		_ 	
49			1		t t	
50	CIPROPAT DOWN INTO	πn				
51 52	SUBTOTAL - DRY WEIGH					
72 52						
53 _54			1 i		ì	
ノ ^マ	·					'
56			 			
57			1		i	
/ 1			 			

AL TO	JRATION]	1	BY		DATE		PAG
	······································	USEFUL LO	AD AND GROSS	l]	7*****	1	1
	Demacs	TAILUI	MISSION		 	1/	1	+-
20	PERSON		}		()	1 ()	()	1
	PAS	EW (NO.) ESENGERS (NO.	· · · · · · · · · · · · · · · · · · ·	· ·				
		RSONAL GEAR/ACC	TESSORTES			ļ	i - ·	1
		TE SUPPORT	DODORALD .				1	
					l · -	·		1
21	CARGO		1				-	1
	V- 4.00						1	
22	ORDNAN	ICE						Ī
	,							
23	RESIDU	JAL & UNUSABLE	FLUIDS		()	()	()	(
_		ASCENT .	·			1		
		CRUISE .						1 .
		MANEUVER						1
		ATTITUDE CONTR	ROL					1
		ECS						
		EPS	· :			·		
		HYDRAULIC						
24	OPEN	. :						ł
~ 4	OFEN	•						1
	QI TE	BTOTAL - INERT	WEIGHT		()	()	1 / 1	1
			HDIOIL.				 	
25	RESERV	E FLUIDS				1]	_
-/		ASCENT]	
		CRUISE					`	1
		MANEUVER						
		ATTITUDE CONTR	OL				_	l
		ECS						
		EPS						1
		HYDRAULIC						l
	· ·							1
2 6		GHT LOSSES						
		ASCENT						l
		CRUISE						
		MANEUVER ATTITUDE CONTR	OT					
		ECS CONTR					j	
		EPS						l
		HYDRAULIC	·					
			: :					l
27	ASCENT	PROPELLANT		- [-			
~^		bnonne s						
28	CRUISE	PROPELLANT						
•	3443777	/Amm - DDODDET ::-			• • =			-
29		/ATT PROPELLAN	T					ŀ
		MANEUVER		÷ .				
		ATTITUDE CONTR		l		f ·		
GRO	SS WETC	HT @ LAUNCH-OR	BITTER			 		
עניע	<u>נובנית בע</u>	HUNCH-UN	E-LIMIN.					
	EXT	ernal tank @ L	AUNCH	1		[·	,	
		@ LAUNCH	•			l		
	SRM							
		RT ROCKETS @ L	AUNCH	· · · · · · · · · · · · · · · · · · ·				

-	,		DESI	GN D.	ATA	<u>SUMMA</u>	RY		,,
I	CONFIGURA	TION			BY		DATE		PAGE 01
-1	GENERA		,	1	111		11	 	I TOULOT
2		UCTURAL DAT	TA .	ļ	1	ł	:	:	•
		DESIGN	GROSS	CEN	TER OF GI	RAVITY	ULTIMA	TE LOAD FA	CTOR
4	j	מסדידדמא	WEIGHT	X			NX	NY	NZ
5	"Г	ASCENT							
6		ABORT							
7		ENTRY							
8		CRUISE							
9	L	LANDING						J	
_10		FACTOR OF S	SAFETY			MAX. DYN.			
_ 11			i		<u> </u>	MAX. Q,			
. 12	PER	FORMANCE DA	NTA		BOOSTER	}	ORBITE	R	
13		S.L. THRUST	_		,	-			
. 14		VACUUM THRU		<u></u>	· 	- .		-	
15		LIFT-OFF WE	EIGHT			_		-	
16		Burn-out we				•		-	
17		MAXIMUM T/W					. 		
_ 18		INERT WEIGH						BOOSTER .	
. 19		TOTAL ASCEN	IT 🛆 V REG	. fps		_ STAGING	△V:	fps .	
20		ON ORBIT MA	NEUVER A	V fps		_ FLIGHT :	PERF RES	ERVE fos	
_ 21		ascent ^{SC} D Launch inci			·	_ ORBITAL	ALTITUD	E, n mi.	
22		Launch inci	INATION,	DEG		_ LAUNCH	SITE ATL	FT.	
23	GEO	METRY DATA				······································	ORBITER	EXT. TANK	BOOSTER
24		AERODYNAMIC	REF. WIN	G AREA				,	
25		WETTED AREA	, SQ. FT.	(EXCLUDI	e nozzle)				
26		MOLDLINE VO	DLUME, CU.	FT. (EXC	CLUDE NOZ	ZLE)		-	
. 27		PLANFORM PR	ROJECTED, A	REA SQ. I	Т			•	
.28	WING				***************************************	O. WILLIAM		DAT	DEGTON
29	A 10173	A DOO TOOMS				OUTER			DESIGN
30		A-PROJECTED		THROUGH	PANEL	PANEL	MATERIA.	r/ Armoi	TEMP OF
31		TORQUE BOX							
32		LEADING EDG		:		. ———			
33 34	••	TRAILING ED							
25	•	CONTROL SUR							
35 36		GLOVE, FAIR UME - MOLDI		.					
37	. VOL	OME - MOTEL	THE CO. P			ROOT	BODY	PLANFORM	•
. 3 8		1	• !		. м. а. с.	THEOR	JUNCT	BREAK	שויי
39	SPA	N BETWEEN C	. פתפטעי		*********				
<u> ነ</u> ር	CHO								
40 41	. Сно	RD - LENGTH	- FT						
41		RD - LENGTH - THICKN						M. A. C. (STA)
41 42	AIR	RD - LENGTH - THICKN FOIL	ESS - FT.			LEADING	EDGE	M.A.C. (
41 42 43	AIR	RD - LENGTH - THICKN FOIL EDRAL ANGLE	FT FT.			LEADING SPAN @ D	EDGE IHEDRAL	BASE	
41 42 43 44	AIR DIH SWE	RD - LENGTH - THICKN FOIL EDRAL ANGLE EPBACK ANGL	FT ESS - FT. DEGREES; E 50%C			LEADING SPAN @ D	EDGE IHEDRAL		
41 42 43 44 45	AIR DIH SWE	RD - LENGTH - THICKN FOIL EDRAL ANGLE EPBACK ANGL	ESS - FT. DEGREES; E 50%C			LEADING SPAN @ D	EDGE IHEDRAL	BASE	
41 42 43 45 47	AIR DIH SWE	RD - LENGTH - THICKN FOIL EDRAL ANGLE EPBACK ANGL	ESS - FT. DEGREES; E 50%C			LEADING SPAN @ D	EDGE IHEDRAL	BASE	
41 42 43 44 45 47 48	AIR DIH SWE	RD - LENGTH - THICKN FOIL EDRAL ANGLE EPBACK ANGL	ESS - FT. DEGREES; E 50%C			LEADING SPAN @ D	EDGE IHEDRAL I	BASE	
412 43 44 45 467 49	AIR DIH SWE DES CRI	RD - LENGTH - THICKN FOIL EDRAL ANGLE EPBACK ANGL	I - FT IESS - FT. DEGREES; E 50%C DUNDS CONDITION			LEADING SPAN @ D	EDGE IHEDRAL I	BASE	
41 42 43 44 45 47 48	AIR DIH SWE DES CRI	RD - LENGTH - THICKN FOIL	I - FT IESS - FT. DEGREES; E 50%C DUNDS CONDITION			LEADING SPAN @ D	EDGE IHEDRAL I	BASE	
412 43 445 467 49 49 50	AIR DIH SWE DES CRI	RD - LENGTH - THICKN FOIL	FT IESS - FT. DEGREES; E 50%C DUNDS CONDITION			LEADING SPAN @ D	EDGE IHEDRAL I	BASE	
412 43 44 45 467 49	AIR DIH SWE DES CRI	RD - LENGTH - THICKN FOIL	F FT ESS - FT. DEGREES; E 50%C DUNDS CONDITION E			LEADING SPAN @ D	EDGE IHEDRAL I	BASE	
42 44 45 44 49 55 53	AIR DIH SWE DES CRI	RD - LENGTH - THICKN FOIL EDRAL ANGLE EPBACK ANGL IGN LOAD PO FICAL LOAD TROL SURFACE SURFACE ELEVON-IN	F FT ESS - FT. DEGREES; E 50%C DUNDS CONDITION E			LEADING SPAN @ D	EDGE IHEDRAL I REF REF	BASE	
4123445647890125555554	AIR DIH SWE DES CRI	RD - LENGTH - THICKN FOIL EDRAL ANGLE EPBACK ANGL IGN LOAD PO FICAL LOAD TROL SURFACE SURFACE ELEVON-IN	F FT ESS - FT. DEGREES; E 50%C DUNDS CONDITION E			LEADING SPAN @ D	EDGE IHEDRAL I REF REF	BASE	
4123445647890125554555555555555555555555555555555555	AIR DIH SWE DES CRI	RD - LENGTH - THICKN FOIL EDRAL ANGLE EPBACK ANGL IGN LOAD PO FICAL LOAD TROL SURFACE SURFACE ELEVON-IN	F FT ESS - FT. DEGREES; E 50%C DUNDS CONDITION E			LEADING SPAN @ D	EDGE IHEDRAL REF REF	BASE	
41234456478901255554	AIR DIH SWE DES CRI CON	RD - LENGTH - THICKN FOIL EDRAL ANGLE EPBACK ANGL IGN LOAD PO FICAL LOAD TROL SURFACE ELEVON-IN -OUT	F FT ESS - FT. DEGREES; E 50%C DUNDS CONDITION E			LEADING SPAN @ D	EDGE IHEDRAL REF REF	HL SPAN	

1 TAIL GROUP	0	CONFIGURATION		ВУ		DATE	PAGE 02
2 AREA - SQ. FT 3 ARRODIVANIC REFERENCE 4 SEPOSED 4 SEPOSED 5 TORQUE BOX 6 LEADING EDGE 7 THAILING EDGE 8 CONTROL SURFACE 9 SPAN - AERODYNAMIC REF. 10 SPAN - AERODYNAMIC REF. 11 VOLUME - CU. FT. 12 PRIMARY STRUCT MATERIAL 13 AIRFOIL DESCRIPTION 15 CHORD LENGTH - FT. 16 ROOT (AERO REF) 17 MAC 18 BODY JUNCTION 19 TIP 20 CHORD THICKNESS - FT 21 REAK 22 BREAK 23 TIP 24 DIHEDRAL ANGLE 50% 25 ESIGN LOAD - ULTIMATE 26 DESIGN LOAD - ULTIMATE 27 DESIGN LOAD - ULTIMATE 28 SAEEP BACK ANGLE 50% 29 TAIL LENGTH 25% MAC WING TO 25% MAC TAIL 30 CONTROL SURFACE 31 CONTROL SURFACE 32 STRUCTURAL MATERIAL RUDDER 33 FODY GROUP - STRUCTURE - WETTED 44 PODS/FAIRING 45 STATION - AFT 41 AREA - STRUCTURE - WETTED 44 STATION - AREA 45 STATION - AREA 46 LENGTH - MAX - FT 47 MIDTH - MAX - FT 48 HEIGHT - MAX - FT 49 PRIMARY STRUCTURE AREA 51 CREM CABEN 53 TRANSPARENT AREA 54 CRESSURLED COFT - AREA 55 LENGTH - MAX - FT 46 HEIGHT - MAX - FT 47 MIDTH - MAX - FT 48 HEIGHT - MAX - FT 49 PRIMARY STRUCTURE AREA 51 CREM CABEN 53 TRANSPARENT AREA			T				
2 AREA - SQ. FT 3 ARRODIVANIC REFERENCE 4 SEPOSED 4 SEPOSED 5 TORQUE BOX 6 LEADING EDGE 7 THAILING EDGE 8 CONTROL SURFACE 9 SPAN - AERODYNAMIC REF. 10 SPAN - AERODYNAMIC REF. 11 VOLUME - CU. FT. 12 PRIMARY STRUCT MATERIAL 13 AIRFOIL DESCRIPTION 15 CHORD LENGTH - FT. 16 ROOT (AERO REF) 17 MAC 18 BODY JUNCTION 19 TIP 20 CHORD THICKNESS - FT 21 REAK 22 BREAK 23 TIP 24 DIHEDRAL ANGLE 50% 25 ESIGN LOAD - ULTIMATE 26 DESIGN LOAD - ULTIMATE 27 DESIGN LOAD - ULTIMATE 28 SAEEP BACK ANGLE 50% 29 TAIL LENGTH 25% MAC WING TO 25% MAC TAIL 30 CONTROL SURFACE 31 CONTROL SURFACE 32 STRUCTURAL MATERIAL RUDDER 33 FODY GROUP - STRUCTURE - WETTED 44 PODS/FAIRING 45 STATION - AFT 41 AREA - STRUCTURE - WETTED 44 STATION - AREA 45 STATION - AREA 46 LENGTH - MAX - FT 47 MIDTH - MAX - FT 48 HEIGHT - MAX - FT 49 PRIMARY STRUCTURE AREA 51 CREM CABEN 53 TRANSPARENT AREA 54 CRESSURLED COFT - AREA 55 LENGTH - MAX - FT 46 HEIGHT - MAX - FT 47 MIDTH - MAX - FT 48 HEIGHT - MAX - FT 49 PRIMARY STRUCTURE AREA 51 CREM CABEN 53 TRANSPARENT AREA	<u> </u>	TATI CROIP	 	 	VERTICAL	HORTZ	
ABRODYNAMIC REFERENCE		AREA - SQ. FT	<u> </u>	<u> </u>	TATAL TOND	1101122	
EXPOSED	3		ICE				
6 LEADING EDGE 7 TRAILING EDGE 8 CONTROL SURFACE 9 SFAN - AERODYNAMIC REP. 10 SPAN - EXPOSED 11 VOLUME - CU, FT. 12 PRIMARY STRUCTURE - MATERIAL 13 AIRFOIL DESCRIPTION 14 AIRFOIL DESCRIPTION 15 CHORD LENGTH - FT. 16 ROOT (AERO, REF) 17 MAC 18 BODY JUNCTION 19 TIP 20 CHORD THICKNESS - FT 21 ROOT 22 BREAK 23 TIP 22 BREAK 23 TIP 24 DESIGN LOAD - ULITIMATE 25 SMEEP BACK ANGLE 50% 26 DESIGN LOAD - ULITIMATE 27 DESIGN LOAD - ULITIMATE 28 LEYAG 29 TAIL LENGTH 25% NAC MING TO 25% MAC TAIL 30 CONTROL SURFACE 31 CONTROL SURFACE 32 STRUCTURAL MATERIAL RUDDER 33 RUDDER 34 STRUCTURAL MATERIAL RUDDER 35 STATION - FORMARD 36 STATION - FORMARD 37 STATION - FORMARD 38 STATION - FORMARD 39 STATION - FORMARD 40 STATION - AFT 41 AREA - STRUCTURE - WETTED 42 - PODS/FARRING 44 SYOLUME - RESSURIZED CU FT 44 SYOLUME - RESSURIZED CU FT 45 - PODS/FARRING 46 LENGTH - PT 47 WIDTH - MAX - FT 48 HEIGHT - MAX - FT 49 PRIMARY STRUCTURAL MATERIAL 51 CREW CABIN 52 SINDRALS 53 TRANSPARENT AREA	4	1					
THAILING EDGE	5						
8	_6	LEADING EDGE	I				
SPAN - AERODYNAMIC REP.	_7			ļ			-
10	_8		<u> </u>	 	 		4
11			<u>'</u>	 			.
12	=		 	 	<u> </u>		
1			PTAT		- 		-
14				 			-
15		AIRFOIL DESCRIPTION	UN TIME	 			
16							
17					+		
18							1
19		BODY JUNCTION		1			!
20	19						1
22 BREAK 23 TIP	20	CHORD THICKNESS - FT					
TIP 24	21	ROOT					
DIHEDRAL ANGLE SWEEP BACK ANGLE 50%				<u> </u>			,
25		·-;··					:
DESIGN LOAD - ULTIMATE				 			···
DESIGN LOAD CONDITION LEYAC TAIL LENGTH 25% MAC WING TO 25% MAC TAIL CONTROL SURFACE SURFACE NO. TYPE AREA HL CHORD HL THICK HL SPAN LOAD LE RUDDER RUDDER STRUCTURAL MATERIAL RUDDER STRUCTURAL MATERIAL RUDDER STATION - FORWARD STATION - FORWARD STATION - AFT AREA - STRUCTURE - WETTED AREA - STRUCTURE TOTAL STRUCTURE TOTAL STRUCTURE TOTAL LENGTH - FT REIGHT - MAX - FT BEIGHT - MAX - FT STRUCTURAL MATERIAL PRESSURIZED COMPT AREA VOLUME ULT FRES PRIMARY EAPERIAN STRUCTURE TOTAL STRUCTURE MAX - FT STRU			!	 			
LEMAC TAIL LENGTH 25% MAC WING TO 25% MAC TAIL							-
TAIL LENGTH 25% MAC WING TO 25% MAC TAIL CONTROL SURFACE SURFACE NO. TYPE AREA EL CHORD HL THICK HL SPAN LOAD LB RUDDER RUDDER RUDDER FWD CENTER AFT BASE TOTAL STATION - FORWARD STATION - AFT AREA - STRUCTURE - WETTED PODS/FAIRING VOLUME - PRESSURIZED CU FT STRUCTURE TOTAL STRUCTURE TOTAL STRUCTURE TOTAL FWD CENTER AFT BASE TOTAL LENGTH - PODS/FAIRING LENGTH - FT FT FT FT FF FF FF FF FF FF		l .	1	<u> </u>			
CONTROL SURFACE SURFACE NO. TYPE AREA HL CHORD HL THICK HL SPAN LOAD LB RUDDER RUDDER BODY GROUP STATION - FORWARD STATION - AFT AREA - STRUCTURE - WETTED PODS/FAIRING VOLUME - PRESSURIZED CU FT STRUCTURE TOTAL STRUCTURE TOTAL LENGTH - FT HEIGHT - MAX - FT PRIMARY STRUCTURAL MATERIAL PRIMARY STRUCTURAL MATERIAL PRIMARY STRUCTURAL MATERIAL PRIMARY STRUCTURAL MATERIAL CONTROL OF PRESSURIZED COMPT AREA - VOLUME ULT FRES PRIMARY MATERIAL RESURIZED COMPT AREA - VOLUME ULT FRES PRIMARY MATERIAL CONTROL OF PRESSURIZED COMPT AREA - VOLUME ULT FRES PRIMARY MATERIAL CONTROL OF PRESSURIZED COMPT AREA - VOLUME ULT FRES PRIMARY MATERIAL TRANSPARENT AREA			NC TO SEA	MAC TOT		1	
CONTROL SURFACE SURFACE SURFACE NO. TYPE AREA HL CHORD HL THICK HL SPAN LOAD LB	⊆⊅ 30	TAIL IMMOIN ZOR MACHI		 <u> -</u> "\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			
SURFACE NO. TYPE AREA HL CHORD HL THICK HL SPAN LOAD LB		CONTROL SURFACE		· · · · · · · · · · · · · · · · · · ·			1
RUDDER		·	TYPE	AREA	HL CHORD HL	THICK HL SPAN	LOAD LB
STRUCTURAL MATERIAL RUDDER	33	RUDDER					
STRUCTURAL MATERIAL RUDDER	34						1
37 38 BODY GROUP 39 STATION - FORWARD 40 STATION - AFT 41 AREA - STRUCTURE - WETTED 42 - PODS/FAIRING 43 VOLUME - PRESSURIZED CU FT 44 - STRUCTURE TOTAL 45 - PODS/FAIRINGS 46 LENGTH - FT 47 WIDTH - MAX - FT 48 HEIGHT - MAX - FT 49 PRIMARY STRUCTURAL MATERIAL 50 PRESSURIZED COMPT AREA 51 CREW CABIN 52 SIDEWALLS 53 TRANSPARENT AREA	35	STRUCTURAL MATERIAL RUI	ODER				
BODY GROUP STATION - FORWARD STATION - AFT AREA - STRUCTURE - WETTED STATION - PODS/FAIRING STATION - PODS/FAIRING STATION - AFT STRUCTURE TOTAL STRUCTURE TOTAL STRUCTURE TOTAL STRUCTURE TOTAL STRUCTURE TOTAL STRUCTURE TOTAL FINANCE - PODS/FAIRINGS HEIGHT - MAX - FT HEIGHT - MAX - FT STRUCTURAL MATERIAL FOR PRIMARY STRUCTURAL MATERIAL CREW CABIN STATION - AFT AREA VOLUME ULT FRES PRIMARY MATERIAL STATION - AREA VOLUME ULT FRES PRIMARY MATERIAL STATION - AFT STATION - AFT BASE TOTAL AREA VOLUME ULT PRES PRIMARY MATERIAL STATION - AFT STATION - AFT BASE TOTAL AREA VOLUME ULT PRES PRIMARY MATERIAL TRANSPARENT AREA	3 6	· · · · · · · · · · · · · · · · · · ·					
STATION - FORWARD STATION - AFT	37						<u> </u>
40		_, BODY GROUP	- -	_FWD	CENTER A	FT BASE	iii TOTAL
AREA - STRUCTURE - WETTED	კ <u>ა</u>	COMPAND TO THE PROPERTY OF THE		!	· 		•,;
42 - PODS/FAIRING 43			!	1 .			
43	40	STATION - AFT	<u> </u>	1 -	<u> </u>		
STRUCTURE TOTAL	40 41	STATION - AFT AREA - STRUCTURE - WET	<u> </u>				
45 - PODS/FAIRINGS 46 LENGTH - FT 47 WIDTH - MAX - FT 48 HEIGHT - MAX - FT 49 PRIMARY STRUCTURAL MATERIAL 50 PRESSURIZED COMPT AREA VOLUME ULT PRESS PRIMARY MATERIAL 51 CREW CABIN 52 SIDEWALLS 53 TRANSPARENT AREA	40 41 42	STATION - AFT AREA - STRUCTURE - WET - PODS/FAIRING	TED				
46 LENGTH - FT 47 WIDTH - MAX - FT 48 HEIGHT - MAX - FT 49 PRIMARY STRUCTURAL MATERIAL 50 PRESSURIZED COMPT AREA VOLUME ULT PRESS PRIMARY MATERIAL 51 CREW CABIN 52 SIDEWALLS 53 TRANSPARENT AREA	40 41 42 43	STATION - AFT AREA - STRUCTURE - WET - PODS/FAIRING VOLUME - PRESSURIZED C	TED U FT				1
WIDTH - MAX - FT HE HEIGHT - MAX - FT HE PRIMARY STRUCTURAL MATERIAL OPRESSURIZED COMPT AREA VOLUME ULT PRESS PRIMARY MATERIAL CREW CABIN SIDEWALLS TRANSPARENT AREA	40 41 42 43	STATION - AFT AREA - STRUCTURE - WET - PODS/FAIRING VOLUME - PRESSURIZED C - STRUCTURE TOT	TED U FT AL				
PRIMARY STRUCTURAL MATERIAL PRESSURIZED COMPT AREA VOLUME ULT PRESS PRIMARY MATERIAL CREW CABIN SIDEWALLS TRANSPARENT AREA	40 41 42 43 44	STATION - AFT AREA - STRUCTURE - WET - PODS/FAIRING VOLUME - PRESSURIZED C - STRUCTURE TOT - PODS/FAIRINGS	TED U FT AL				
PRIMARY STRUCTURAL MATERIAL PRESSURIZED COMPT AREA VOLUME ULT PRESS PRIMARY MATERIAL CREW CABIN SIDEWALLS TRANSPARENT AREA	40 41 42 43 44 45	STATION - AFT AREA - STRUCTURE - WET - PODS/FAIRING VOLUME - PRESSURIZED C - STRUCTURE TOT - PODS/FAIRINGS LENGTH - FT	TED U FT AL				
50 PRESSURIZED COMPT AREA VOLUME ULT FRESS PRIMARY MATERIAL 51 CREW CABIN 52 SIDEWALLS 53 TRANSPARENT AREA	40 41 42 43 44 45 46	STATION - AFT AREA - STRUCTURE - WET - PODS/FAIRING VOLUME - PRESSURIZED C - STRUCTURE TOT - PODS/FAIRINGS LENGTH - FT WIDTH - MAX - FT	TED U FT AL				
52 SIDEWALLS 53 TRANSPARENT AREA	40 41 42 43 44 45 46 47	STATION - AFT AREA - STRUCTURE - WET - PODS/FAIRING VOLUME - PRESSURIZED C - STRUCTURE TOT - PODS/FAIRINGS LENGTH - FT WIDTH - MAX - FT HEIGHT - MAX - FT	TED U FT AL				
53 TRANSPARENT AREA	40 41 42 43 44 45 46 47 48 49	STATION - AFT AREA - STRUCTURE - WET - PODS/FAIRING VOLUME - PRESSURIZED C - STRUCTURE TOT - PODS/FAIRINGS LENGTH - FT WIDTH - MAX - FT HEIGHT - MAX - FT PRIMARY STRUCTURAL MAT PRESSURIZED COMPT	TED U FT AL			FRES PRIMARY	Marerlai
54	40 41 42 43 44 45 46 47 48 49	STATION - AFT AREA - STRUCTURE - WET - PODS/FAIRING VOLUME - PRESSURIZED C - STRUCTURE TOT - PODS/FAIRINGS LENGTH - FT WIDTH - MAX - FT HEIGHT - MAX - FT PRIMARY STRUCTURAL MAT PRESSURIZED COMPT	TED U FT AL			PRESS PRIMARY	Marerial
54 	40 41 42 43 44 45 46 47 48 49	STATION - AFT AREA - STRUCTURE - WET - PODS/FAIRING VOLUME - PRESSURIZED C - STRUCTURE TOT - PODS/FAIRINGS LENGTH - FT WIDTH - MAX - FT HEIGHT - MAX - FT PRIMARY STRUCTURAL MAT PRESSURIZED COMPT CREW CABIN SIDEWALLS	TED CU FT CAL ERIAL			PRES PRIMARY	MAPERIAL
	40 41 43 44 45 46 47 48 49	STATION - AFT AREA - STRUCTURE - WET - PODS/FAIRING VOLUME - PRESSURIZED C - STRUCTURE TOT - PODS/FAIRINGS LENGTH - FT WIDTH - MAX - FT HEIGHT - MAX - FT PRIMARY STRUCTURAL MAT PRESSURIZED COMPT CREW CABIN SIDEWALLS	TED CU FT CAL ERIAL			PRES PRIMARY	MAPERIAL

				DESI	GN D	ATAS	S U M M A	RY		
	CONFI	GURATION				BY		DATE		PAGE 03
1		ony (aosima	r.,			†		1		
. 2	, 251	DOY (CONT) LOCATION			·		Х	Y	Z	7
ر ا	•			PERSTAGE A	ATT ACH			 	 -4 -	4
5	•			PAGE ATTAC						1
. 6				THRUST VE						
. 7 . 8		NOSE	GEAR A	NTTACH						
		. MAIN	GEAR A	TTACH			.	 		
9				SILL - FO				·		4
10				AI	T	. 	ļ	·		.} -
11		N.G.	BAY -	FWD		<u> </u>			Í	·[
12		ania.				·			l ———	
13 14		CREW		- FWD BLK	7HD		ļ 	·		l
15	Αì	GLE - COM	POSITA	- AFT THRUST V	ECTOR TO	CL PAYLO	AD BAY LA	UNCH CONF	IG DEC	REES
16		CONTROL								
17				NO.	TYPE	AREA	HL CHORD	HL THICK	HL SPAN	LOAD, LB
18	•									
19										
20		L			<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>
21	•	DAME - 45						GES		
22		PAYLOAD	RAY DO	OCK: AREA						MATERIAL
23 24	T۱	יוואים רושיטוירוו	TDOMA	ב		····				
25	. TI,	DUCED ENV	MAX	INI PROTEC		<u> </u>	1		·····	
26	-		T		WING	<u> </u>	TAIL		BODY	•
		EXTERNAL	o _F	MATERIAL		CNT SRF		CNT SRF	DODI	
27 28	•	L. EDGE								
29							ł			
30		N. CAP	İ			1 .				
31		PANELS								
32		LWR	İ				ł	,		
33		·					<u> </u>		·	
34		SIDE					l			
3 5 3 6		UPR :		·		1	i .		-	
37	•	BASE		,	-	1		1	-	
3 7 3 8	•-		[,	[[[,	
39		W/S CYR	l		.		,	[. ,	
40	.	UNPROTEC	r_							
41	: 1	TOTAL							()	
42		VEHICLE V	WETTED	AREA .						
43		Taymon	NAT OF				COLOM	ABBA		י י
44			NAL TP		MAMPE.		COMPT TEMP OF	AREA		
45 46		COMPA	RTMENT		MATER:	IAL	TEMP OF	TNOOTWIE	D - SQ. F	r. 1
47						· · · · - · - · · · · · · · · · · · ·		:	·· · ·	
48	•					· · · · · · · · · · · · · · · · · ·				
49			i					•		'
56										
50 51			****							l
52							<u> </u>			
53								,		
.54	_									
.55										
.56.								···· ·		
57	İ				i			•		

		DESI	GN D	ATA S	UMMA	RY		
CONF	IGURATION			BY		DATE		PAGE 04
· I —	LANDING, RECOVER	SY DOCKT	i.	1	:		!	
		I DOCKE	GEAR	1	Υ	T~~~		1
		NO		STRUT	STROKE	PRIMARY	,	BRAKE
· 4 · ·	ALIGHTING GEAR		EXT FT.				L. AL/ALLOY	MATERIAL
6		VEH	EXT FT.	ILITA-PI	FT	MATERIA	MALIANT.	WATERIAL
– –	. MAIN GEAR				\ <u> </u>			
7 .	. NOSE GEAR	m ³	RES	STATIC	CPOIL	ND CONTAC	ym tym	
8		NO VEH		7	X	Y CONTAC	Z	+
9	144.75	NO VEH	2176	RADIUS	 ^-	 1	44	
10	MAIN	l					 	
11	NOSE	لـــــــــــــــــــــــــــــــــــــ			L	<u> </u>		
12			·		·		Cng	
_	LOADS - CRITE	SRIA REF.	101000		LANDING	SINK SPE	ED CPS	
14	STALL SPEE	aD, LDG.,	KNOTS		ANGLE O	r ATTACK,	LDG	
. 15	NOSE GEAR STE	SERING, INC	ـــــ	······································	ANTI SK	ID INCL.		
_ 16								
17	DOCKING	· · · · · · · · · · · · · · · · · · ·		,				
		,						
19		 		 				,
20		ii		ļ			·	
21	SEPARATION SYSTE	M			4 TOM	.:	·	
	MAXIMUM SEPAR							
23					!	•		· · · · · · · · · · · · · · · · · · ·
24	DECELERATION CHU) 1 Ei				i		
	NO./VEHICLE							
26				<u>!</u>	·	·		
27	PROPULSION - MAI	N_ASCENT.						.1
29					S. L.	VAC	RATIO	PRESS
	ENGINE, EA			-	a Time I	DATE: 0/0		
31	GIMBAL ANGLE				GIMBAL	RATE //S	EU	<u></u>
32	BURN TIME @ S	TAGE SEC.			THRUST	RANGE	70 10	——— 7º
33							/F	
34	FEED LINE DIA	THS IN	• ———		PRESSU			
35	FEED LINE DIA	<u>r 105 TA</u>	4 - V		PRESSUE	ANT LOS		
36 37	LOCATION TOUR DIE	COMPLECE	X	<u>1</u>	Z	4		
31	FEED LINE DIS					•		* · ·
38	GIMBAL ENG #1				J 	•}		• • • •
. 3 9 ::	GIMBAL ENG #2					-		••
40	GIMBAL ENG #3				l	7		• • • • •
41 .	PROPULSION - CRU		Milion town		101 110 1	TWDAGG		• •
42			THRUST		FUEL			
		,	SL STATI	C NOM CRU	IS TYPE	RATIO		
	ENGINE - EA		AT mTmi map	CDEED M	DANCE DE	702	L/D RAT	
45 46			MELLICE	. SEEED)M	wance Ki	 ₩	TAN KAT	
	CRUISE - NOMI	***						
47 48	- ENGI	· •			CT FOR "	מת מסוופת	SIGN COND	
	ENG THRUST SI	ــــ ۲۷ ـــــ			CL FOR 1	קת דפטעווי	PTGM COMD	
49	-	I NO/		VOL	MAMER	pppc	DITOCM	
-	MANUCACU.	NO/			MATER	PRES	BURST	1
	TANKAGE				IAL	SURE	FACTOR	
52 .	FUEL SY							1
53	PRESSURE S	OM I TOYOUT	TOTAL		MACRITE	L Stronger	DEA (EA)	-
	AIR INTAKE DU						REA (EA)_	
	AIR_INTAKE DU	CT DIA FT				-		···································
56 ,		·			·			
57		-				t	· 	

CONFIGURATION 1	N D		RY	
THRUSTERS LOCATION SY/NO. ENG X Y		PAG	DATE	PAGE 05
THRUSTERS LOCATION SY/NO. ENG X Y	i	i		Ĭ
## SY/NO. ENG X Y	V	ANSION CH	ISP	CHAMB
ACS	Υ]	RATIO PRI	STD/PLSE	PRESS
10 ACS				
10 ACS				
10 ACS		<u></u>	<u> </u>	L
10 ACS		URST NO	TANK	NO OF
12			PRES-PSI	TANKS
13				
MANEUVER 15				
FUEL 16				
16 OXIDIZER 17 PRESSURANT 18 19 20 21 9 PRIME POWER NO. SPECIFIC 22 23 BATTERIES 24 ENGINE/TURBINE 25 26 FUEL CELL 27 28 29 FUEL STORAGE TYPE TO SYSTEMS 31 32 33 10 ELECTRICAL POWER CONVERSION/DISTRIBLE 36 PEAK POWER (WATTS) 37 38 LOCATION 39 PRIME POWER COMPT 40 POWER DISTRIBUTION COMPT 41 42 43 11 HYDRAULIC POWER CONVERSION/DISTRIBLE 44 SYSTEM NOMINAL OPER PRESSURE 45 PEAK HORSEPOWER 46 SYSTEM OPERATING TEMPERATURE 47 NO. PUMP 48 SYSTEM PUMPS CPM 49 50 51 52 53 LOCATION				
18 19 20 21 9 PRIME POWER NO. SPECIFIC 22				
19				
20 21 9 PRIME POWER NO. SPECIFIC 22	<u>_</u>	I		
21 9 PRIME POWER NO. SPECIFIC				
BATTERIES 24 ENGINE/TURBINE 25 26 FUEL CELL 27 28 29 FUEL STORAGE TYPE TO SYSTEMS 31 32 33 10 ELECTRICAL POWER CONVERSION/DISTRIBLES 34 35 SYSTEM VOLTAGE 36 PEAK POWER (WATTS) 37 38 LOCATION 39 PRIME POWER COMPT 40 POWER DISTRIBUTION COMPT 41 42 43 11 HYDRAULIC POWER CONVERSION/DISTRIBLES 44 SYSTEM NOMINAL OPER PRESSURE 45 PEAK HORSEPOWER 46 SYSTEM OPERATING TEMPERATURE 47 NO. PUMP 48 SYSTEM PUMPS CPM 49 50 51 52 53 LOCATION	CIFIC	T	TOTAL	
25 26 27 28 29 FUEL STORAGE TYPE 30 SYSTEMS 31 32 33 10 ELECTRICAL POWER CONVERSION/DISTR 34 35 SYSTEM VOLTAGE 36 PEAK POWER (WATTS) 37 38 LOCATION 39 PRIME POWER COMPT 40 POWER DISTRIBUTION COMPT 41 42 43 11 HYDRAULIC POWER CONVERSION/DISTRI 44 SYSTEM NOMINAL OPER PRESSURE 45 PEAK HORSEPOWER 46 SYSTEM OPERATING TEMPERATURE 47 48 SYSTEM OPERATING TEMPERATURE 47 48 SYSTEM PUMPS 50 51 52 53 LOCATION		TYI	POWER	TYPE
25 26 27 28 29 FUEL STORAGE TYPE 30 SYSTEMS 31 32 33 10 ELECTRICAL POWER CONVERSION/DISTR 34 35 SYSTEM VOLTAGE 36 PEAK POWER (WATTS) 37 38 LOCATION 39 PRIME POWER COMPT 40 POWER DISTRIBUTION COMPT 41 42 43 11 HYDRAULIC POWER CONVERSION/DISTRI 44 SYSTEM NOMINAL OPER PRESSURE 45 PEAK HORSEPOWER 46 SYSTEM OPERATING TEMPERATURE 47 48 SYSTEM OPERATING TEMPERATURE 47 48 SYSTEM PUMPS 50 51 52 53 LOCATION		T-HRS.		
FUEL CELL 27 28 29 FUEL STORAGE TYPE TO SYSTEMS 31 32 33 10 ELECTRICAL POWER CONVERSION/DISTRICATION 34 35 SYSTEM VOLTAGE 36 PEAK POWER (WATTS) 37 38 LOCATION 39 PRIME POWER COMPT 40 POWER DISTRIBUTION COMPT 41 42 43 11 HYDRAULIC POWER CONVERSION/DISTRICATION 44 SYSTEM NOMINAL OPER PRESSURE 45 PEAK HORSEPOWER 46 SYSTEM OPERATING TEMPERATURE 47 48 SYSTEM PUMPS 50 51 52 53 LOCATION		HR		
27 28 29		THRS		- ·-·· ·- ·
28 29		TS		
30 SYSTEMS CONTROL STATE OF THE POWER CONVERSION DISTRIBUTION COMPT 40 POWER DISTRIBUTION COMPT 41 POWER DISTRIBUTION COMPT 41 SYSTEM NOMINAL OPER PRESSURE 45 PEAK HORSEPOWER 46 SYSTEM OPERATING TEMPERATURE 47 NO. PUMP 48 SYSTEM PUMPS CPM 49 50 51 52 53 LOCATION				
31 32 33 10 ELECTRICAL POWER CONVERSION/DISTRIBLE SYSTEM VOLTAGE 36 PEAK POWER (WATTS) 37 38 LOCATION 39 PRIME POWER COMPT 40 POWER DISTRIBUTION COMPT 41 42 43 11 HYDRAULIC POWER CONVERSION/DISTRIBLE 44 SYSTEM NOMINAL OPER PRESSURE 45 PEAK HORSEPOWER 46 SYSTEM OPERATING TEMPERATURE 47 NO. PUMP 48 SYSTEM PUMPS EPM 49 50 51 52 53 LOCATION	YPE	1	TANK	NO CE
33 10 ELECTRICAL POWER CONVERSION/DISTR 34 35 SYSTEM VOLTAGE 36 PEAK POWER (WATTS) 37 38 LOCATION 39 PRIME POWER COMPT 40 POWER DISTRIBUTION COMPT 41 42 43 11 HYDRAULIC POWER CONVERSION/DISTRI 44 SYSTEM NOMINAL OPER PRESSURE 45 PEAK HORSEPOWER 46 SYSTEM OPERATING TEMPERATURE 47 NO. PUMP 48 SYSTEM PUMPS EPM 49 50 51 52 53 LOCATION		ACTOR TAI	PRESS	TANKS
33 10 ELECTRICAL POWER CONVERSION/DISTR 34 35 SYSTEM VOLTAGE 36 PEAK POWER (WATTS) 37 38 LOCATION 39 PRIME POWER COMPT 40 POWER DISTRIBUTION COMPT 41 42 43 11 HYDRAULIC POWER CONVERSION/DISTRI 44 SYSTEM NOMINAL OPER PRESSURE 45 PEAK HORSEPOWER 46 SYSTEM OPERATING TEMPERATURE 47 NO. PUMP 48 SYSTEM PUMPS EPM 49 50 51 52 53 LOCATION				
34 35 SYSTEM VOLTAGE 36 PEAK POWER (WATTS) 37 38 LOCATION 39 PRIME POWER COMPT 40 POWER DISTRIBUTION COMPT 41 42 43 11 HYDRAULIC POWER CONVERSION/DISTRI 44 SYSTEM NOMINAL OPER PRESSURE 45 PEAK HORSEPOWER 46 SYSTEM OPERATING TEMPERATURE 47 NO. PUMP 48 SYSTEM PUMPS EPM 49 50 51 52 53 LOCATION	ON/DIST			
PEAK POWER (WATTS) 37 38 LOCATION 39 PRIME POWER COMPT 40 POWER DISTRIBUTION COMPT 41 42 43 11 HYDRAULIC POWER CONVERSION/DISTRI 44 SYSTEM NOMINAL OPER PRESSURE 45 PEAK HORSEPOWER 46 SYSTEM OPERATING TEMPERATURE 47 NO. PUMP 48 SYSTEM PUMPS CPM 49 50 51 52 53 LOCATION				
37 38 LOCATION 39 PRIME POWER COMPT 40 POWER DISTRIBUTION COMPT 41 42 43 11 HYDRAULIC POWER CONVERSION/DISTRI 44 SYSTEM NOMINAL OPER PRESSURE 45 PEAK HORSEPOWER 46 SYSTEM OPERATING TEMPERATURE 47 NO. PUMP 48 SYSTEM PUMPS CPM 49 50 51 52 53 LOCATION		DOY HAMM III	• IDOMAT	m unc
JOSEPH POWER COMPT LOCATION PRIME POWER COMPT LOCATION COMP	 :	RGY WATT-HR	i TOTAL	T-MS.
PRIME POWER COMPT 40 POWER DISTRIBUTION COMPT 41 42 43 11 HYDRAULIC POWER CONVERSION/DISTRI 44 SYSTEM NOMINAL OPER PRESSURE 45 PEAK HORSEPOWER 46 SYSTEM OPERATING TEMPERATURE 47 NO. PUMP 48 SYSTEM PUMPS CPM 49 50 51 52 53 LOCATION	· · · · · · · · · · · · · · · · · · ·		Z	
41 42 43 11 HYDRAULIC POWER CONVERSION/DISTRI 44 SYSTEM NOMINAL OPER PRESSURE 45 PEAK HORSEPOWER 46 SYSTEM OPERATING TEMPERATURE 47 NO. PUMP 48 SYSTEM PUMPS EPM 49 50 51 52 53 LOCATION				
42 43 11 HYDRAULIC POWER CONVERSION/DISTRI 44 SYSTEM NOMINAL OPER PRESSURE 45 PEAK HORSEPOWER 46 SYSTEM OPERATING TEMPERATURE 47 NO. PUMP 48 SYSTEM PUMPS GPM 49 50 51 52 53 LOCATION	COMPT			
11 HYDRAULIC POWER CONVERSION/DISTRI SYSTEM NOMINAL OPER PRESSURE FEAK HORSEPOWER FEAK HORSEPOWER NO. PUMP SYSTEM PUMPS GPM SYSTEM PUMPS GPM LOCATION				
44 SYSTEM NOMINAL OPER PRESSURE 45 PEAK HORSEPOWER 46 SYSTEM OPERATING TEMPERATURE 47 NO. PUMP 48 SYSTEM PUMPS GPM 49 50 51 52 53 LOCATION	N/DTSTR			
45 PEAK HORSEPOWER 46 SYSTEM OPERATING TEMPERATURE 47 NO. PUMP 48 SYSTEM PUMPS CPM 49 50 51 52 53 LOCATION			PSI	
47 NO. PUMP 48 SYSTEM PUMPS CPM 49 50 51 52 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				1
48 SYSTEM PUMPS EPA 49 50 51 52 LOCATION				·
49 -50 -51 -52 -53 LOCATION			ENIC CERTS	
50 51 52 1 IQCATION	1: P/		EMS SERV	····
51 52 53 LOCATION				
53 LOCATION	I	!		
				
-y			Z	
SERVICE CENTER				
56				
57				
SERVICE CENTER			Z	

					DATA				
CO1	NFIGURAT:	ION	<u> </u>		BY		DATE		PAGE 06
	12 <u>SURI</u>	FACE CONTRO	ors,	<u></u>	DESIGN	ACTUATOR			
	! !	<u>:</u>	·	MAX	HINGE	No./			TION (C.G.
	ļ -	ELEVONS			EC MOM ET/I	-T		Y	
	: I	RUDDER			,			t	- - ·
		SPEED BE		1				<u> </u>	
		1 01 222	-	· · · ··		!		·	
						1		1	i
	[·				ļ	<u> </u>
	13 AVIO	NICS	· 	ļ		l		ļ	
	• • • • • • • • • • • • • • • • • • •								
	•	-	i	i	1			;	.
•	-			1	!				
	:			 		I		: 	
			! 					·	· · · · · · · · · · · · · · · · · · ·
								L	
	14 ENV	RONMENTAL	CONTROL	· · · · · · · · ·	1	!			1
	ļ 	AS STORAGE			TANK VOL			BURST	NO. OF
		AS STORAGE PRIMARY	00	TYPE	CU FT	MATL	PRESS	FACTOR	TANKS
		SECONDAR			_				
• • •	-	DILUENT	`_ N2		- j	l		*	- 1
	· C	AS REQUIRE	MENT AVE	RAGE RAT	ES	·			
		METABOLI	[C		_LB MAN-DA	Y			
		LEAKAGE			LB DAY:				•
	1								
		PRESSURI	ZED VOLU	ME		.CU. FTF	OR REPRE	SSURIZAT:	ICN
	. <u></u>	PRESSURI LEAT TRANSE	ZED VOLU PORT SYST	MEEM_CAPAC	ZITY	.cu. ft. fo	OR REPRE	SSURIZATI BTU HR H	ION' PEAK
	. <u></u>	PRESSURI LEAT TRANSE	ZED VOLU PORT SYST	MEEM_CAPAC	ZITY	.cu. ft. fo	OR REPRE	SSURIZATI BTU HR H	ION' PEAK
		PRESSURI HEAT TRANSE RADIATOR AF	IZED VOLUPORT SYST	ME_ EM CAPAC :	SO. FT:	CU. FT. FO	OR REPRE	SSURIZAT ETU HR I MATER	ICN PEAK AVE RIAL
		PRESSURI HEAT TRANSE ADIATOR AF VATER MANAGE DRINKING	IZED VOLU PORT SYST REA REMENT SY WATER _	ME_ EM.CAPAC : STEM.CAI	SITY SO. FT: PACITY LB/MAN D	CU. FT. FO	OR REPRE	SSURIZAT ETU HR I MATER	ICN PEAK AVE RIAL
 	F	PRESSURI HEAT TRANSE RADIATOR AR VATER MANAGE DRINKING WASH/WAS	ZED VOLU PORT SYST REA JEMENT SY WATER _ ETE WATER	ME_ EM_CAPAC : STEM_CAI	SITY SO. FT: PACITY LB/MAN D	CU. FT. FO	OR REPRE	SSURIZAT ETU HR I MATER	ICN PEAK AVE RIAL
· · · · · · · · · · · · · · · · · · ·	F	PRESSURI HEAT TRANSE RADIATOR AF MATER MANAG DRINKING MASH/WAS COOLING	ZED VOLU PORT SYST REA JEMENT SY WATER _ ETE WATER	ME_ EM_CAPAC : STEM_CAI	SITY SO. FT: PACITY LB/MAN D	CU. FT. FO	OR REPRE	SSURIZAT ETU HR I MATER	ICN PEAK AVE RIAL
· · · · · · · · · · · · · · · · · · ·	F	PRESSURI HEAT TRANSE RADIATOR AR VATER MANAGE DRINKING WASH/WAS	ZED VOLU PORT SYST REA JEMENT SY WATER _ ETE WATER	ME_ EM_CAPAC : STEM_CAI	SITY SO. FT: PACITY LB/MAN D	CU. FT. FO	OR REPRE	SSURIZAT ETU HR I MATER	ICN PEAK AVE RIAL
	F	PRESSURI HEAT TRANSE RADIATOR AF MATER MANAG DRINKING MASH/WAS COOLING	ZED VOLU PORT SYST REA LEMENT SY B WATER STE WATER WATER WATER	ME_ EM_CAPAC : STEM_CAI	SITY SO. FT: PACITY LB/MAN D	CU. FT. FO	OR REPRE	SSURIZAT ETU HR I MATER	ICN PEAK AVE RIAL
	F	PRESSURI HEAT TRANSE RADIATOR AF HATER MANAG DRINKING MASH/WAS COOLING	ZED VOLU PORT SYST REA LEMENT SY B WATER STE WATER WATER WATER	ME_ EM_CAPAC : STEM_CAI	SITY SO. FT: PACITY LB/MAN D	CU. FT. FO	OR REPRE	SSURIZAT ETU HR I MATER	ICN PEAK AVE RIAL
	F	PRESSURI HEAT TRANSE RADIATOR AF HATER MANAG DRINKING MASH/WAS COOLING	ZED VOLU PORT SYST REA LEMENT SY B WATER STE WATER WATER WATER	ME_ EM_CAPAC : STEM_CAI	SITY SO. FT: PACITY LB/MAN D	CU. FT. FO	OR REPRE	SSURIZAT ETU HR I MATER	ICN PEAK AVE RIAL
	F PERS	PRESSURI HEAT TRANSE RADIATOR AF HATER MANAG DRINKING WASH/WAS COOLING COONNEL PROV	ZED VOLUPORT SYST	ME_EM_CAPAC	SITY SO. FT: PACITY LB/MAN D	CU. FT. FO	OR REPRE	SSURIZAT ETU HR I MATER	ICN PEAK AVE RIAL
	F PERS	PRESSURI HEAT TRANSE RADIATOR AF HATER MANAG DRINKING MASH/WAS COOLING	ZED VOLUPORT SYST	ME_EM_CAPAC	SO. FT: PACITY LB/MAN.E	CU. FT. FO	OR REPRE	SSURIZAT ETU HR I MATER	ICN PEAK AVE RIAL
	F PERS	PRESSURI HEAT TRANSE RADIATOR AF HATER MANAG DRINKING WASH/WAS COOLING COONNEL PROV	ZED VOLUPORT SYST	ME_EM_CAPAC	SO. FT: PACITY LB/MAN.E	CU. FT. FO	OR REPRE	SSURIZAT ETU HR I MATER	ICN PEAK AVE RIAL
	F PERS	PRESSURI HEAT TRANSE RADIATOR AF HATER MANAG DRINKING WASH/WAS COOLING COONNEL PROV	ZED VOLUPORT SYST	ME_EM_CAPAC	SO. FT: PACITY LB/MAN.E	CU. FT. FO	OR REPRE	SSURIZAT ETU HR I MATER	ICN PEAK AVE RIAL
	F PERS	PRESSURI HEAT TRANSE RADIATOR AF HATER MANAG DRINKING WASH/WAS COOLING COONNEL PROV	ZED VOLUPORT SYST	ME_EM_CAPAC	SO. FT: PACITY LB/MAN.E	CU. FT. FO	OR REPRE	SSURIZAT ETU HR I MATER	ICN PEAK AVE RIAL
	F PERS	PRESSURI HEAT TRANSE RADIATOR AF HATER MANAG DRINKING WASH/WAS COOLING COONNEL PROV	ZED VOLUPORT SYST	ME_EM_CAPAC	SO. FT: PACITY LB/MAN.E	CU. FT. FO	OR REPRE	SSURIZAT ETU HR I MATER	ICN PEAK AVE RIAL
	F PERS	PRESSURI HEAT TRANSE RADIATOR AF JATER MANAGE DRINKING MASH/WAS COOLING COONNEL PROV	ZED VOLUPORT SYST	ME_EM_CAPAC	SO. FT: PACITY LB/MAN.E	CU. FT. FO	OR REPRE	SSURIZAT ETU HR I MATER	ICN PEAK AVE RIAL
	F PERS	PRESSURI HEAT TRANSE RADIATOR AF JATER MANAGE DRINKING MASH/WAS COOLING COONNEL PROV	PORT SYST REA	ME_EM_CAPAC	SO. FT: PACITY LB/MAN.E	CU. FT. FO	OR REPRE	SSURIZAT ETU HR I MATER	ICN PEAK AVE RIAL
	F PERS	PRESSURI HEAT TRANSE RADIATOR AF JATER MANAGE DRINKING MASH/WAS COOLING COONNEL PROV	ZED VOLUPORT SYST REA	ME_EM_CAPAC	SO. FT: PACITY LB/MAN.E	CU. FT. FO	OR REPRE	SSURIZAT ETU HR I MATER	ICN PEAK AVE RIAL
	F PERS	PRESSURI HEAT TRANSE RADIATOR AF JATER MANAGE DRINKING MASH/WAS COOLING COONNEL PROV	PORT SYST REA	ME_EM_CAPAC	SO. FT: PACITY LB/MAN.E	CU. FT. FO	OR REPRE	SSURIZAT ETU HR I MATER	ICN PEAK AVE RIAL
	F PERS	PRESSURI HEAT TRANSE RADIATOR AF JATER MANAGE DRINKING MASH/WAS COOLING COONNEL PROV	ZED VOLUPORT SYST REA	ME_EM_CAPAC	SO. FT: PACITY LB/MAN.E	CU. FT. FO	OR REPRE	SSURIZAT ETU HR I MATER	ICN PEAK AVE RIAL
	F PERS	PRESSURI HEAT TRANSE RADIATOR AF JATER MANAGE DRINKING MASH/WAS COOLING COONNEL PROV	ZED VOLUPORT SYST REA	ME_EM_CAPAC	SO. FT: PACITY LB/MAN.E	CU. FT. FO	OR REPRE	SSURIZAT ETU HR I MATER	ICN PEAK AVE RIAL
	F PERS	PRESSURI HEAT TRANSE RADIATOR AF JATER MANAGE DRINKING MASH/WAS COOLING COONNEL PROV	ZED VOLUPORT SYST REA	ME_EM_CAPAC	SO. FT: PACITY LB/MAN.E	CU. FT. FO	OR REPRE	SSURIZAT ETU HR I MATER	ICN PEAK AVE RIAL

CONFIG	URATION	עב	SIGN	BY	SUM	DATE	:	PAC	E 07
	******			II.	,	1101111	<u> </u>	ILAG	E O
	BALLAST				·	•		• •	
	DESIGN	CONDITION		: `UD TCIM C		TDC @	i	<i>i</i>	
	DESTON	I C C FMV2IO					AFT		d.τ .
	NOMINA	C.G. ENVELO	IT BALLAST	. FND_	,o t	•	di.		, 701.
	NOMINA	L C.G. WITHO L C.G. WITH.	VI 222.101	LB BALL	AST =		%L		
· ·									
18	GROWTH			: 1	1	,		i	
•	CURREN	T ALLOWANCE . CTORS EST OF		LB		:		·	
	CONTRA	CTORS EST OF	ALLOWANCE	NEEDED	to guaran	TEE			
•	, COH	RENT PAYLOAD	AND GROSS				LB*		
	,							• • •	
•	* FOR	SYSTEM REQUI	REMENTS AS	DEFINED	BY	•		• •	
19	OPEN				•				
			1						
20	PERSONNEL		:			· · · · · ·			
	NO. OF	CREW PERSONNEL	; ·			PERCENT	ILE .		
	NO. OF	PERSONNEL	;						
	•	•	i						•
	CARGO				1				
	BAY DI	Α	FT					. CU F	T
	BAY LE	NGTH	FT .		. ,		•		
		•	:		: · · · -				
20	ODDMANOR	,	· · · - · ·		*		•	•	
22	ORDNANCE	•	1 1				•	•	
. 23	RESIDUAT.	FLUIDS - DEFI	INE WEIGHT	EST TMATT	ING RATTO	NAT.	•	•	•
			1						
24	OPEN		1		·				
05	DDGDDVA =						· •		
25	RESERVE F	LOTDS	: :		.	• • • • • •			
26	IN-FLIGHT	LOSSES	• • •						•
20	211-1 220111	DOUGLE			• • •		•		-
27 -	29 PROPI	ELLANTS EXPEN	IDED .		:				
				ASCENT	CRUISE	MANEUVER	RATTITUDE		
•		ER FUEL RATIO) <u>.</u> .						
		WEIGHT) VELOCITY REG	NID.	/ \		•	•		
	INE		μ	·/	•		•	•	
	LOSS			()		• • • • • • • • • • • • • • • • • • • •		• • •	•
		ANEUVER			•				
		GRAVITY							
	• –	RAG PRESSURE	<u>.</u>					.	
٠		BACK PRESSURE INGLE OF ATTA				•• •• • • • • • • •			
•		HT PERF RESE	-			• • • • • • • • • • • • • • • • • • • •			
	, PLIC	mr that and	; i			•		•	
: .	1	- 1							
. ! .									
			·- ·····	·					

EXTERNAL TANK

IGU	RATION			BY		DATE		PAGE ET
1	WING GROUP			<u> </u>		:		NOT APP
2	TAIL GROUP	- · · · · · · · ·					;	NOT APP
3	BODY GROUP				-			
•	BASIC STRUCT		NOSE	FWD TANK	INTER STAGE	AFT TANK		 -
	SIDEWALL BULKHEAD							
	BAFFLING	- AFT		!			· · · · · · · · · · · · · · · · · · ·	
	SKIRT ORBITER/TANK	ATTACH				:	· 	•
	TUNNELS UMBILICAL ST							-
	SECONDARY ST			i	• •			•
4	INDUCED ENVIRON			. FWD	INTER	AFT	·· · · · · · · · · · · · · · · · · · ·	
	SURFACE TPS			TANK				<u>. </u>
	ABLATOR INSULATOR						•	
	INSTALLAT BASE PROT				-		•	
5	LANDING, DOCKIN	G .		 	· · · · · · · · · · · · · · · · · · ·			NOT APP
6	PROPULSION - MA ENGINE SYSTE		nt	•	: 			
	RECIRCULA UTILIZATI	TION SY						·
	PNEUMATIC PROPELLANT F	s į				OVIDIZE	- D	
	FILL & DR	AIN .			FUEL		•	• •
	VENT SY VORTEX, F							
	SUPPORTS,							
7	PROPULSION - CR							NOT APP
8	PROPULSION - AU	XILIARY	•					
				; ;	: :	; · · · · · · · · · · · · · · · · ·	• • • • • • • • • • • • • • • • • • • •	
9	PRIME POWER	 			; - · · ·	: :		NOT APP
10	ELECTRICAL				i	· · · · · · · · · · · · · · · · · · ·		
	CONTROL UNIT	S .		 	: !	÷		<u>:</u>
11	HYDRAULIC						<u> </u>	NOT APP
2	SURFACE CONTROL	s ¦				†		NOT APP

EXTERNAL TANK
GROUP WEIGHT SUMMARY

FIGU	RATION			BY		DATE		PAGE
13	AVIONICS	;	Units	COOLING	. ANTENNA	INSTAL		
;		ļ · · · ·			<u> </u>		l	
14		COMMIDAL						
. 14	ENVIRONMENTAL		1	:			•	NOT AP
15	PERSONNEL PRO	V C				<u>-</u>	! !	NOT API
16	RANGE SAFETY,	ABORT		, 				NOT API
17	BALLAST						ļ	
18	: GROWTH/UNCERT	I A TRIMV					 	<u> </u>
10	GROWIN/ UNCERT	ALNTI			,			;
19	OPEN.				·			•
	SUBTOTAL -	DRY WEIG				· · · · ·		
20	PERSONNEL	, 		· · · 				NOT APE
21	CARGO							NOT API
22	ORDNANCE			ı				
23	RESIDUAL FLUI	DS .	· · ·					
	ASCENT PRO				!			
	· ·							
24	OPEN.	. !						
	SUBTOTAL -	INERT WE						
25	RESERVE FLUID	S .				. .		
	•			:				
	•							-
26	Inflight loss	ES						
27	PROPELLANT AS	Cent						
	,			:				
^ 0			:					
•	PROPELLANT - (:	· ·		: :			
29	PROPELLANT -	AUX	. :		:			
	: :	:		:				
EXTE	RNAL TANK GRO	! SS WEIGHT	2 LAUNCH			٠.		()
		1	1	-			٠:	<u> </u>
				;				

EXTERNAL TANK

	DESIGN D	ATA S	UMMA	R.Y		
	ONFIGURATION	BY		DATE	•	PAGE ET1
1 2	0 GENERAL			:	•	
	STRUCTURAL		ULTIMATE	LOAD	FACTOR	GROSS
. 4	DESIGN CONDITION		NX	NY	NZ.	WEIGHT
5 6	ASCENT-LIFT OFF -STAGE					
7			<u> </u>	 		
8	MAX DYNAMIC PRESSURE					·····
9	MAX ∝ q, PSF DEGREE		,		<u> </u>	
10	EVIDEDNAT MANUS TRUDE DO A CIDTO				·	
11 12	EXTERNAL TANK INERT FRACTIO		_			
13	1 WINGS		:		NOT API	LICABLE
14						
15 ,	2 TAIL		<u> </u>	<u> </u>	NOT API	PLICABLE
16				: 	<u> </u>	
17 18	3 BODY GROUP		PL/ID	TNTED	AFT	
19	LOCATION	NOSE	TANK	STAGE		SKIRT_
20	1					
. 21 .	-CONTOUR BREAK					
. 22	-AFT					·
.23	FORWARD ATTACH POINT AFT ATTACH POINT		,			
25	DIAMETER-FORWARD					-
26						
27	-AFT					
28	SPHERICAL RADIUS-CAP			·	i	
29 30	BULKHEAD-FWD-HT/RADIUS					
31	-AFT-HT/RADIUS VOLUMETRIC					
32	ULLAGE	:	*			
33		:	-			
. 34			·		·	- . [-
35	EXTERNAL TANK ML STRUCTURAL ALLOY					
. 36 . 37	OPERATING PRESSURE	· · · · · · · · · · · · · · ·	· ———	-	··	
38	ULLAGE PRESSURE	· · · · · · · · · · · · · · · · · · ·				_
39	4 INDUCED ENVIRONMENT					
	PROTECTED AREA	NOSE				
43						
44		_!		<u> </u>		
45			·			
46	5 LANDING RECOVERY DOCKING	1				·
47 48	RETRO ROCKET	Δ. v, 1ps	-or	TUV021	·	
49	KINO ROCKET		:			
50			ļ—	<u> </u>	·	-
51						••••••
52 52	FEED LINE DIA. LH2, IN FEED LINE DIA LOX, IN					
53 54						
55	· · · · · · · · · · · · · · · · · · ·		.	<u> </u>	· 	·
56		:	· 	 	L	
57				. 	<u> </u>	

EXTERNAL TANK

8 PROPULSION - AUXILIAN	RY		
9 PRIME POWER 10 ELECTRICAL CONV & DIS	RY		
9 PRIME POWER 10 ELECTRICAL CONV & DIS			
10 ELECTRICAL CONV & DIS			
10 ELECTRICAL CONV & DIS			
10 ELECTRICAL CONV & DIS			-
10 ELECTRICAL CONV & DIS			
		·	<u> </u>
	ED:		-
			· · · · · · · · · · · · · · · · · · ·
			1
11 HYDRAULIC CONV & DIST	RIBUTION		i
12 SURFACE CONTROLS		· · · · · · · · · · · · · · · · · · ·	NOT APPLICABLE
13 AVIONICS			1
13 AVIONICS			
	·		
· · · · · · · · · · · · · · · · · · ·			
14 ENVIRONMENTAL CONTROL			NOT APPLICABLE
15 PERSONNEL PROV			NOT APPLICABLE
TO TERMONNEE TROV			NOT ATTETORDED
16 RANGE SAFETY, ABORT		1	NOT APPLICABLE
17 BALLAST			
	·	;	
18 GROWTH/UNCERTAINTY			
			1
19 OPEN			
		i i	;
	i I		i
			· •
			<u> </u>
		, ,	· :
		·	<u> </u>
		<u> </u>	
			· [

SOLID ROCKET MOTOR BOOSTER
GROUP WEIGHT SUMMARY

CONFIGURATION	EIGHT SU	DATE	PAGE B1
1 2 1 WING			NOT APP
4 . 2 TAIL			NOT APP
6 3 BODY GROUP			
7 CASE 8 STRUCTURE			
	ł ·		
a complete and a comp			
2 ATTACH/SEPARATION STRUCT			
NOSE FAIRING			
4 TUNNEL		1	
5 INSTALLATION	•		
6 Indian marked promoting promoting	FON		
7 4 INDUCED ENVIRONMENT PROTECT		· · · · · · · · · · · · · · · · · · ·	
8 CASE 9 JOINTS			
O EXPENDED			· · · · · · · · · · · · · · · · · · ·
1			
2 5 LANDING, DOCKING			
3 PARACHUTE SYSTEM			
4 PARACHUTE		i	
			·
		,	
0 04.67.0		· · · · · · · · · · · · · · · · · · ·	
·	1		
OCONTROLS			
1 INSTALLATION			
2 RECOVERY HARDWARE			
7 - · · · · · · · · · · · · · · · · · ·			
4 6 PROPULSION ASCENT			
5 NOZZLE GIMBAL			· · · · ·
- TONTON			
8 THRUST TERMINATION SY			
9			
0			
1 7 PROPULSION - CRUISE			NOT APP
3 8 PROPULSION - AUXILIARY		-	
4	! 1		
5			
6			
7 9 PRIME POWER			NOT APP
8			
9 10 ELECTRICAL CONV & DIST			
			
1		• •	
2			
•			
δ			
7 12 SURFACE CONTROLS			NOT APP_

SOLID ROCKET MOTOR BOOSTER GROUP WEIGHT SUMMARY

FIG	URATION	BY		DATE	PAGE B	
13	AVIONICS	1	4			
; 		-	· 	<u>:</u>	<u> </u>	
						210m ADD
: .		ļ	_ 	<u> </u>	<u> </u>	
	PERSONNEL PROV				£	
16	RANGE SAFETY, ABORT	.		ļ	· ·	
17			<u> </u>	!		NOT APP
18	GROWTH/UNCERTAINTY	1	<u> </u>	:		
19	OPEN	<u> </u>		ļ		
:	SUB TOTAL	DRY WEIG	HT			
20	PERSONNEL	 			: 1	NOT APP
21	·					NOT APP
22	ORDNANCE		ļ			NOT APP
23	RESIDUAL FLUIDS	ļ		ļ		NOT APP
	OPEN	<u> </u>	1	ļ		NOT APP
:	SUB TOTAL	INERT WE	IGHT			
25	RESERVE FLUIDS					NOT APP
26						NOT APP
: 27	PROPELLANT - ASCENT					
2 8	PROPELLANT - CRUISE					NOT APP
	PROPELLANT	-	(NOT APP
: -			<u> </u>	<u> </u>		
; ;	SRM BOOSTER GROSS WEIG	HT @ LAUN	ICH		:	()
:						
			 -			
ļ		-		!		
 			<u> </u>	i		
•		-				
			i	- 		

SOLID ROCKET MOTOR BOOSTER DESIGN DATA SUMMARY PAGE B1 CONFIGURATION DATE **GENERAL** 0.0 ULTIVATE LOAD FACTOR STRUCTURAL WEIGHT DESIGN CONDITION NX NY ASCENT - LAUNCH 6 !_= STAGING (MAX NX) 8... 9_ DENSITY LOADING FRACTION WEIGHT FRACTION ..10_ SRM PROPELLANT NOT APPL .. 12 .. LL.O. WING _13 14 NOT APPL 2.0 TAIL _15 _16 3.0 BODY _17 _ 18_ __19.. GEOMETRY __20_ _ 21 LOCATIC _22 STATION DIA __23 FWD SKIRT CASE AFT SKIRT 24. FWD_BULKHEAD_HEIGHT _25 _26 AFT BULKHEAD HEIGHT ...27 WETTED AREA ...28 . 29 STRUCTURAL 30 CASE OPERATING PRESSURE - MAXIMUM **AVERAGE** CASE MATERIAL _31 _32. ULTIMATE TENSILE STRENGTH ALLOWABLE _CASE DESIGN TEMPERATURE: OF _33_ 34 NO. OF SEGMENT JOINTS __35 _FACTOR OF SAFETY EXTERNAL MOLD LINE VOLUME _.36._ INTERNAL CASE VOLUME ---37 _38 4.0 INDUCED ENVIRONMENT PROTECTION 39 INSULATION THICKNESS 40 _41 RETRO-ROCKET 5.0 LANDING DOCKING 42 PARACHUTE SYSTEM OPEN IMPACT IGNITION _43 VELOCITY _44_ __ALTITUDE TYPE NO./SRM DIA. _45. 46 47 STABILIZATION _48 PILOT _49 6.0 ASCENT_PROPULSION 110./_ THRUST THRUST EXP Igp ISP CHAMB __50. RATIO: S.L. VAC. _.51. VEHICLE VAC. PRESSURE S.L. _ 52 SRM = EaSQ. IN, DIVERGENCE HALF ANGLE ...53 NOZZLE-THROAT AREA -54 -55 -56 PROPELLANT GRAIN PORT AREA THRUST COMFFICIENT COMBUSTION TEMPERATURE GIMBALLED OR FIXED NOZZLE 57

SOLID ROCKET MOTOR BOOSTER

NFIGURATION		BY	mark mail and a fine from the	DATE	PAGE B2
7.0 PROPULSION CRUISE					NOT APPLICAT
8.0 PROPULSION AUXILIARY		Isp	THRUST	NO.	
	ΔV fps	AVE	TB	MOTORS	
RETRO ROCKET/SRM					
		 			
9.0 PRIME POWER					NOT APPL
10. ELECTRICAL CONV & DIS	T				
SYSTEMS SERVED	*	1			
		+			-
		-			
11. HYDRAULIC CONV & DIST					
SYSTEMS SERVED:		1			!
		 			
12. SURFACE CONTROLS		 			NOT APPL
13. AYIONICS		 			
		-			
14. ENVIRONMENTAL CONTROL					NOT APPL
+		-			NOT APPL
15. PERSONNEL PROV		 			NOT APPL
16. RANGE SAFETY, ABORT	·				NOT APPL
17. BALLAST				i	NOT APPL
					1101 231 110
18. GROWTH/UNCERTAINTY		 			
ALLOWANCE FOR GFEALLOWANCE FOR CFE		:			
19. THRU 26.		 +			NOT APPL
27. ASCENT PROPELLANT					
<u> </u>	LOADED	EXPENDED			
PROFELLANT - MAIN	יהיייהייה.	EVECUTED			
INSULATION					
 		<u> </u>			
ļ		 			
		1]	i	

Page Intentionally Left Blank

MCDONNELL DOUGLAS ASTRONAUTICS COMPANY . EAST

Saint Louis, Missouri 63166 (314) 232-0232

MCDONNELL DOUGLAS