TP4 – Résistance d'entrée d'un voltmètre

Objectifs

- → Évaluer l'incertitude-type d'une grandeur s'exprimant en fonction d'autres grandeurs, dont les incertitudes-types sont connues, à l'aide d'une somme, d'une différence, d'un produit ou d'un quotient.
- \rightarrow Mesurer une tension : mesure directe au voltmètre numérique.
- → Mesurer une tension : mesure directe à l'ampèremètre.
- → Mesurer une résistance ou une impédance : mesure directe à l'ohmmètre.
- \rightarrow Mettre en évidence l'influence de la résistance d'entrée d'un voltmètre ou d'un ampèremètre sur les valeurs mesurées.

Trois méthodes pour mesurer une résistance

On s'intéresse à la mesure d'une résistance de $5\,\mathrm{M}\Omega,$ que le fabricant garantit avec une précision de $1\,\%.$

REA

1. Calculer l'incertitude-type u_{fab} associée à cette valeur.

REA VAL

- 2. Mesurer la valeur de cette résistance :
 - avec un ohmmètre;
 - avec le montage longue dérivation;
 - avec le montage courte dérivation.

VAL

3. Comparer ces trois mesures à la valeur indiquée par le fabricant.

ANA

4. Proposer une explication aux éventuels écarts observés.

Résistance d'entrée du voltmètre

5. Proposer et mettre en œuvre un protocole permettant de mesurer la résistance d'entrée du voltmètre, avec le matériel à votre disposition.

Document 1 - Montage longue et courte dérivation

Montage courte dérivation

Montage longue dérivation

Document 2 - Extrait de notice : multimètre Fluke

Spécifications

				<u> </u>		
(Reportez-vous au site Web de Fluke pour obtenir des spécifications détaillées)						
Fonctions	Maximum	Résolution	175	177	179	
Tension DC	1000 V	0,1 mV	±(0,15% + 2)	±(0,09% + 2)	±(0,09% + 2)	
Tension AC	1000 V	0,1 mV	±(1,0% + 3)	±(1,0% + 3)	±(1,0% + 3)	
Courant DC	10 A	0,01 mA	±(1,0% + 3)	±(1,0% + 3)	±(1,0% + 3)	
Courant AC	10 A	0,01 mA	$\pm(1,5\% + 3)$	±(1,5% + 3)	±(1,5% + 3)	
Résistance	50 MΩ	0,1 Ω	±(0,9% + 1)	±(0,9% + 1)	±(0,9% + 1)	
Capacité	10000 μF	1 nF	±(1,2% + 2)	±(1,2% + 2)	±(1,2% + 2)	
Fréquence	100 kHz	0,01 Hz	±(0,1% + 1)	±(0,1% + 1)	±(0,1% + 1)	
Température	-40 °C/+400 °C	0,1 °C			±(1,0% + 10)	

Les précisions indiquées sont les meilleures pour chaque fonction.

Document 3 – Extraits de notice : multimètre Metrix

Mesure de tension

Position du	Gammes	Précision	Impédance d'entrée	Protection	Résolution
commutateur					
mV	500 mV	0,05%L + 2UR	10 ΜΩ / 1 GΩ *	± 1100 VPK **	10 μV
	5 V	0,05%L + 2UR	11 MΩ	± 1100 VPK	100 μV
V_{DC}	50 V	0,05%L + 2UR	10 ΜΩ	± 1100 VPK	1 mV
	500 V	0,05%L + 2UR	10 ΜΩ	± 1100 VPK	10 mV
	1000 V	0,05%L + 2UR	10 ΜΩ	± 1100 VPK	100 mV

Mesure d'intensité

Position	Gammes	Précision	Chute de	Protection	Fusibles*	Résolution
commutateur			tension max			
	500 µA	0.2%L+5UR	700 mV	600 VRMS	F1 + F2	10 nA
μA mA	5 mA	0.2%L+2UR	700 mV	600 VRMS	F1 + F2	100 nA
	50 mA	0.05%L+2UR	700 mV	600 VRMS	F1 + F2	1 μΑ
	500 mA	0.2%L+2UR	1.5 V	600 VRMS	F1 + F2	10 μΑ
10 A	10 A	0.5%L+5UR	500 mV	600 VRMS	F2	1 mA

Mesure de résistance

500 Ω/ ┛	0.07 % L + 5 UR	1 mA	600 VRMS	10 mΩ
5 kΩ	0.07 % L + 2 UR	100 μΑ	600 VRMS	100 m $Ω$
50 kΩ	0.07 % L + 2 UR	10 μΑ	600 VRMS	1 Ω
500 kΩ	0.07 % L + 2 UR	1 μΑ	600 VRMS	10 Ω
5 MΩ**	0.3 % L + 2 UR	100 nA	600 VRMS	100 Ω
50 MΩ**	1 % L + 2 UR	50 nA	600 VRMS	1 kΩ

^{*} protection contre les surcharges réarmable automatiquement ** l'utilisation de fils très courts et blindés est vivement recommandée pour les mesures effectuées dans cette gamme (> 1 $M\Omega$).