РОССИЙСКИЙ УНИВЕРСИТЕТ ДРУЖБЫ НАРОДОВ

Факультет физико-математических и естественных наук Кафедра прикладной информатики и теории вероятностей

> Практикум по математической статистике Лабораторная работа №3

Тема: «Дисперсионный анализ»

Вариант 10

Выполнил

Студент: Феоктистов Владислав

Группа: НПМбд-01-196

№ с/б: 1032192939

Преподаватель: Матюшенко Сергей Иванович

МОСКВА

Цель работы: приобрести практические навыки применения дисперсионного анализа для решения конкретных задач с использованием статистического пакета SPSS.

Ход работы:

- 1. Повторил теоретические основы дисперсионного анализа, используя материалы учебного пособия.
- 2. Разобрал примеры использования SPSS для реализации дисперсионного анализа.
- 3. В приведенной ниже таблице даны значения урожайности картофеля (тыс. тонн с гектара) в зависимости от сорта картофеля (фактор А) и типа примененного удобрения (фактор В). С помощью двухфакторного дисперсионного анализа без повторных измерений необходимо выяснить:
 - а. значимы ли различия в средней урожайности различных сортов картофеля независимо от типа удобрения;
 - b. значимо ли влияние типа применяемого удобрения на урожайность независимо от сорта.

	B ₁	B ₂	B ₃	B ₄
A ₁	2.609	3.055	5.013	4.53
A ₂	4.191	4.452	5.683	4.647
A ₃	6.067	5.446	3.665	5.621

Решение. Согласно условию задачи исследуется влияние на урожайность (зависимую переменную) двух факторов – типа удобрений и сорта пшеницы. Выдвинем две нулевые гипотезы:

 $H_{0,A}$: различия в средней урожайности картофеля, вызванные влиянием типа удобрения (фактора A), выражены не более, чем различия, обусловленные случайными причинами.

 $H_{0,B}$: различия в средней урожайности картофеля, вызванные влиянием сорта (фактора В), выражены не более, чем различия, обусловленные случайными причинами.

Для начала запустим программу SPSS и в окне «Переменные» опишем все исходные данные (для столбцов с номинальной шкалой можно добавить значения для соответствующих уровней).

В окне «Данные» введем значения переменных согласно условию задачи, используя вышеприведенную таблицу. Первый столбец исходных данных отведем для значений урожайности картофеля, второй — тип удобрения, третий — для сорта картофеля.

	Урожайность	Удобрения	Сорт
1	2,609	1	1
2	4,191	1	2
3	6,067	1	3
4	3,055	2	1
5	4,452	2	2
6	5,446	2	3
7	5,013	3	1
8	5,683	3	2
9	3,665	3	3
10	4,530	4	1
11	4,647	4	2
12	5,621	4	3

Теперь можно провести двухфакторный дисперсионный анализ без повторных изменений.

После всех предварительных настроек «ОЛМ-одномерная», как показано на рисунках выше, нажимаем на кнопку «ОК» и получаем результаты расчета в виде таблиц и графиков.

Вначале выводится сводная таблица «Межгрупповые факторы», в которой приведены общие сведения об изучаемых факторах, присвоенных метках и о количестве наблюдений (N) по каждому фактору.

Одномерный дисперсионный анализ

Межгрупповые факторы

		Метка значения	М
Удобрения	1	B1	3
	2	B2	3
	3	B3	3
	4	B4	3
Сорт	1	A1	4
	2	A2	4
	3	A3	4

В таблице «Описательные статистики» содержатся средние значения и стандартные отклонения всех выборок, а также итоговые значения по всем данным.

Описательные статистики

Удобрения	Сорт	Для среднего	Стд. Отклонение	М	
B1	A1	2,60900	16	1	
	A2	4,19100	10	1	
	A3	6,06700		1	
	Bcero	4,28900	1,731082	3	
B2	A1	3,05500		1	
	A2	4,45200	pr.	1	
	А3	5,44600	10	1	
	Bcero	4,31767	1,201147	3	
B3	A1	5,01300		1	
	A2	5,68300		1	
	A3	3,66500		1	
	Bcero	4,78700	1,027807	3	
B4	A1	4,53000	74	1	
	A2	4,64700	70	1	
	А3	5,62100	3	1	
	Bcero	4,93267	,598978	3	
Bcero	A1	3,80175	1,151486	4	
	A2	4,74325	,653759	4	
	A3	5,19975	1,056041	4	
	Bcero	4,58158	1,073281	12	

Таблица «Оценки эффектов межгрупповых факторов» содержит результаты проверки основных гипотез двухфакторного дисперсионного анализа.

В данном случае имеем следующее:

- 1. Переменная «Удобрение» не оказывает статистически значимое влияние на распределение зависимой переменной «Урожайность», поскольку F=0.252 при Знач. = 0.858 (средние значения урожайности по типам удобрений составили: 4.289; 4.318; 4.787 и 4.933).
- 2. Переменная «Сорт» также не оказывает статистически значимое влияние на распределение зависимой переменной «Урожайность», поскольку F = 1,596, а 3нач. = 0,278 (средние значения урожайности по сортам: 3,802; 4,743 и 5,200).

Таким образом, мы останавливаемся на гипотезах $H_{0,A}$ и $H_{0,B}$ и приходим к выводу, что различия в средней урожайности картофеля, вызванные влиянием типа удобрения (фактор A) и сорта (фактор B), выражены не более, чем различия,

обусловленные случайными причинами, поэтому говорить о том какие сорта и удобрения лучше не имеет смысла.

Кроме того, можно заметить, что коэффициент детерминации имеет значение $R^2 = 0.397$, т.е. учтено влияние только 39.7% факторов, что достаточно мало, поэтому модель является плохой и ее нельзя использовать для дальнейших исследований.

Оценка эффектов межгрупповых факторов

Источник	Сумма квадратов типа III	CT.CB.	Средний квадрат	щ	Знч.	Частная Эта в Квадрате
Скорректированная модель	5,028ª	5	1,006	,789	,593	,397
Свободный член	251,891	1	251,891	197,730	,000	,971
Удобрения	,962	3	,321	,252	,858	,112
Сорт	4,066	2	2,033	1,596	,278	,347
Ошибка	7,643	6	1,274	85		06
Bcero	264,562	12				
Скорректированный итог	12,671	11				

а. R квадрат = ,397 (Скорректированный R квадрат = -,106)

Так как факторы «сорт» и «удобрения» не оказывают влияние на «урожайность», то выведенные в SPSS далее таблицы и графики различных оценок для анализа не имеют смысла, поэтому их вывод был исключен.

Вывод: приобрёл практические навыки применения дисперсионного анализа для решения конкретных задач с использованием статистического пакета SPSS.