Weak Law of Large Numbers

Theorem (WLLN). If $\{X_1,...,X_n\}$ are iid with $E|X_i| < \infty$ and then $\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i \to_p E(X_i)$.

Proof. Without loss of generality, we can set $E(X_i) = 0$ (by recentering X_i on its expectation). We need to show that for all $\delta > 0$ and $\eta > 0$ there is some $\overline{n} < \infty$ so that for all $n \geq \overline{n}$, $P(|\overline{X}_n| > \delta) \leq \eta$. Fix δ and η . Set $\varepsilon = \delta \eta/3$. Pick $C < \infty$ large enough so that

$$E(|X|1(|X|>C)) \le \varepsilon \tag{1}$$

(where $1(\cdot)$ is the indicator function) which is possible since $E|X| < \infty$. Then set

$$\overline{n} \ge 4C^2/\varepsilon^2. \tag{2}$$

Define the random vectors

$$W_{i} = X_{i}1 (|X_{i}| \leq C) - E(X_{i}1 (|X_{i}| \leq C))$$

$$Z_{i} = X_{i}1 (|X_{i}| > C) - E(X_{i}1 (|X_{i}| > C)).$$

Since X_i is iid, W_i and Z_i are also.

By Jensen's inequality and (1),

$$|E(X_i 1(|X_i| > C))| \le E(|X_i| 1(|X_i| > C)) \le \varepsilon.$$

By the triangle inequality and (1),

$$E|\overline{Z}_n| \le E|Z_i| \le E|X_i| 1(|X_i| > C) + |E(X_i 1(|X_i| > C))| \le 2\varepsilon.$$

Note that $|W_i| \leq 2C$. Thus (crudely) $EW_i^2 \leq 4C^2$. Since the W_i are iid and mean zero,

$$E\overline{W}_{n}^{2} = \frac{EW_{i}^{2}}{n} \le \frac{4C^{2}}{n} \le \varepsilon^{2}$$

the final inequality holding for $n \geq \overline{n}$ by (2). Thus by Jensen's inequality

$$(E|\overline{W}_n|)^2 \le E\overline{W}_n^2 \le \varepsilon^2.$$

Finally, by Markov's inequality, the fact that $\overline{X}_n = \overline{W}_n + \overline{Z}_n$, the triangle inequality, and these two bounds,

$$P\left(\left|\overline{X}_{n}\right| > \delta\right) \leq \frac{E\left|\overline{X}_{n}\right|}{\delta} \leq \frac{E\left|\overline{W}_{n}\right| + E\left|\overline{Z}_{n}\right|}{\delta} \leq \frac{3\varepsilon}{\delta} = \eta,$$

the equality by the definition of ε . We have shown that for any $\delta > 0$ and $\eta > 0$ there is some $\overline{n} < \infty$ so that for all $n \ge \overline{n}$, $P(|\overline{X}_n| > \delta) \le \eta$, as needed.

Strong Law of Large Numbers

Theorem (SLLN). If $\{X_1,...,X_n\}$ are iid with $E|X_i| < \infty$ and $EX_i = \mu$ then $\overline{X}_n \to_{a.s.} \mu$ as $n \to \infty$.

Classical proofs of strong laws are based on convergence results from analysis. Two powerful results are known as the Toeplitz Lemma and the Kronecker Lemma.

A **Toeplitz array** $\{a_{ni}\}$ satisfies the following three characteristics:

- (i) For all $n \ge 1$, $\sum_{i=1}^{\infty} |a_{ni}| \le c < \infty$ (ii) As $n \to \infty$, $\sum_{i=1}^{\infty} a_{ni} \to 1$
- (iii) For all $i \geq \overline{1}$, as $n \to \infty$, $a_{ni} \to 0$

An example of a Toeplitz array is $a_{ni} = 1/n$ if $i \le n$, else $a_{ni} = 0$.

Toeplitz Lemma. If $\{a_{ni}\}$ is a Toeplitz array and x_n is a real sequence such that $x_n \to x$ as $n \to \infty$ then as $n \to \infty$

$$y_n = \sum_{i=1}^{\infty} a_{ni} x_i \to x.$$

Proof: Using property (ii) WLOG assume x=0. Fix $\varepsilon>0$ and pick N so that $|x_i|\leq \varepsilon/2c$ for all $i \geq N$. Then by property (i)

$$|y_n| \leq \sum_{i=1}^{N} |a_{ni}| |x_i| + \sum_{i=N+1}^{\infty} |a_{ni}| |x_i|$$

$$\leq \sum_{i=1}^{N} |a_{ni}| |x_i| + \varepsilon/2$$

$$\leq \varepsilon$$

the final inequality holding for n sufficiently large by property (iii).

Kronecker Lemma. If b_n is an increasing real sequence with $b_n \to \infty$, and x_n is a real sequence such that $\sum_{i=1}^{\infty} x_i$ exists (that is, $\sum_{i=1}^{n} x_i$ converges to a finite limit as $n \to \infty$), then

$$\frac{1}{b_n} \sum_{i=1}^n b_i x_i \to 0.$$

Proof. Let $s_n = \sum_{i=1}^n x_i$ and define $s_0 = 0$ and $b_0 = 0$. Now

$$\sum_{i=1}^{n} b_{i} x_{i} = \sum_{i=1}^{n} b_{i} s_{i} - \sum_{i=1}^{n} b_{i} s_{i-1}$$

$$= \sum_{i=1}^{n} b_{i} s_{i} - \sum_{i=1}^{n} b_{i-1} s_{i-1} - \sum_{i=1}^{n} (b_{i} - b_{i-1}) s_{i-1}$$

$$= b_{n} s_{n} - \sum_{i=1}^{n} (b_{i} - b_{i-1}) s_{i-1}.$$

Thus

$$\frac{1}{b_n} \sum_{i=1}^n b_i x_i = s_n - \sum_{i=1}^n a_{ni} s_{i-1}$$
(3)

where

$$a_{ni} = \frac{b_i - b_{i-1}}{b_n}$$

and we define $a_{ni}=0$ for i>n. Note that $|a_{ni}|\leq 1$, $\sum_{i=1}^{\infty}a_{ni}=1$, and $a_{ni}\to 0$ as $n\to\infty$, so a_{ni} is a Toeplitz array. Since $s_n\to x$ then $\sum_{i=1}^na_{ni}s_{i-1}\to x$ by the Toeplitz Lemma and (3) converges to x-x=0.

We also need a strengthening of Markov's inequality.

Kolmogorov's Inequality. Assume $U_1, ..., U_n$ are independent (but not necessarily iid) with $EU_i = 0$. Set $S_j = \sum_{i=1}^j U_i$. Then for any $\lambda > 0$

$$P\left(\max_{1\leq i\leq n}|S_i|>\lambda\right)\leq \frac{ES_n^2}{\lambda^2}=\frac{1}{\lambda^2}\sum_{i=1}^n EU_i^2. \tag{4}$$

Proof: Define

$$I_{i-1} = \left\{ |S_i| > \lambda; \max_{j < i} |S_j| \le \lambda \right\},\,$$

the event that the sequence $|S_j|$ first exceeds λ at j=i. Since these events are disjoint,

$$P\left(\max_{1 \le i \le n} |S_i| > \lambda\right) = P\left(\bigcup_{i=1}^n I_{i-1}\right) = \sum_{i=1}^n P(I_{i-1}) \le \sum_{i=1}^n P(I_{i-1}|S_i| > \lambda) \le \lambda^{-2} \sum_{i=1}^n E(I_{i-1}S_i^2).$$
(5)

The first inequality holds since $I_{i-1} = 1$ implies $I_{i-1} |S_i| > \lambda$, and the last inequality is Markov's. Let $\tilde{U}_i = (U_1, ..., U_i)$ and note that

$$E\left(S_n^2\mid \tilde{U}_i\right) = E\left(S_i^2\mid \tilde{U}_i\right) + 2E\left(S_i(S_n - S_i)\mid \tilde{U}_i\right) + E\left((S_n - S_i)^2\mid \tilde{U}_i\right) = S_i^2 + E(S_n - S_i)^2 \geq S_i^2$$

so using iterated expectations,

$$E\left(I_{i-1}S_i^2\right) \le E\left(I_{i-1}E\left(S_n^2 \mid \tilde{U}_i\right)\right) = E\left(E\left(I_{i-1}S_n^2 \mid \tilde{U}_i\right)\right) = E\left(I_{i-1}S_n^2\right). \tag{6}$$

Together, (5) and (6) show that

$$\lambda^2 P\left(\max_{1\leq i\leq n}|S_i|>\lambda\right)\leq \sum_{i=1}^n E\left(I_{i-1}S_n^2\right)=E\left(\left(\sum_{i=1}^n I_{i-1}\right)S_n^2\right)\leq ES_n^2.$$

Given the Kronecker Lemma and Kolmogorov's inequality, it is straightforward to establish the SLLN if $Var(X) < \infty$.

Almost Sure Convergence Theorem. If

$$\sum_{i=1}^{\infty} \frac{Var(X_i)}{i^2} < \infty \tag{7}$$

then $\overline{X}_n \to 0$ almost surely.

Before we prove this theorem, we state the following implication.

Kolmogorov SLLN. If X_i is iid and $Var(X_i) < \infty$ then $\overline{X}_n \to 0$ almost surely.

Proof of Kolmogorov SLLN.

$$\sum_{i=1}^{\infty} \frac{Var(X_i)}{i^2} = Var(X_i) \sum_{i=1}^{\infty} \frac{1}{i^2} < \infty$$

since $\sum_{i=1}^{\infty} \frac{1}{i^2} = \pi^2/6 < \infty$. Then by the almost sure convergence theorem, $\overline{X}_n \to 0$ almost surely.

Proof of Almost Sure Convergence Theorem. WLOG assume $EX_i = 0$. Let $U_i = i^{-1}X_i$. The Kronecker Lemma implies that if $S_n = \sum_{i=1}^n U_i$ converges to a finite random limit as $n \to \infty$, then $\overline{X}_n \to 0$. (To see this, set $x_i = U_i$ and $b_i = i$.) We now show that S_n converges almost surely as $n \to \infty$, so $\overline{X}_n \to 0$ almost surely.

One characterization of convergence is that S_n converges iff $S_{m+k} - S_m \to 0$ as $m, k \to \infty$. In other words, S_n converges if for all $\varepsilon > 0$, there is a sufficiently large $\overline{m} < \infty$ such that for all $m \geq \overline{m}$, $|S_{m+k} - S_m| < \varepsilon$ for all $k \geq 1$. But for all $\varepsilon > 0$ and $m < \infty$

Under (7), (9) tends to 0 as $m \to \infty$, as required. Note that inequality (8) is Kolmogorov's inequality (4).

For a proof of the SLLN without assuming the variance is finite, we need another intermediate result.

Lemma. $E|X| < \infty$ iff

$$\sum_{i=1}^{\infty} P(|X| > i) < \infty. \tag{10}$$

Proof. Let Y = |X|. By expansion

$$EY = \sum_{i=1}^{\infty} E(|X| 1 (i - 1 < Y \le i))$$

$$\leq \sum_{i=1}^{\infty} iE(1 (i - 1 < Y \le i))$$

$$= \sum_{i=1}^{\infty} iP(i - 1 < Y \le i)$$

$$= \sum_{i=1}^{\infty} iP(Y > i - 1) - \sum_{i=1}^{\infty} iP(Y > i)$$

$$= \sum_{i=1}^{\infty} (i + 1) P(Y > i) - \sum_{i=0}^{\infty} iP(Y > i)$$

$$= \sum_{i=1}^{\infty} P(Y > i)$$

Thus $\sum_{i=1}^{\infty} P(Y > i) < \infty$ implies $EY < \infty$. The converse can be shown similarly.

General Proof of SLLN. WLOG assume $EX_i = 0$. By the previous Lemma, $E|X_i| < \infty$ and X_i identically distributed implies

$$\sum_{i=1}^{\infty} P(|X_i| > i) < \infty. \tag{11}$$

The Borel-Cantelli Lemma states that (11) implies that $P(\{|X_i| > i\} \text{ infinitely often}) = 0$. This means that $\overline{X}_n \to 0$ almost surely iff

$$\frac{1}{n} \sum_{i=1}^{n} X_i 1 (|X_i| \le i) \to 0$$

almost surely, which occurs iff

$$\frac{1}{n} \sum_{i=1}^{n} \left[X_i 1 \left(|X_i| \le i \right) - E \left(X_i 1 \left(|X_i| \le i \right) \right) \right] \to 0$$

almost surely, since $EX_i = 0$ and identically distributed implies $E(X_i 1 (|X_i| \le i)) \to 0$ as $i \to \infty$, and an application of the Toeplitz Lemma yields

$$\frac{1}{n}\sum_{i=1}^{n}E\left(X_{i}1\left(\left|X_{i}\right|\leq i\right)\right)\rightarrow0.$$

By the almost sure convergence theorem, it is therefore sufficient to show that

$$\sum_{i=1}^{\infty} \frac{Var(X_{i}1(|X_{i}| \le i))}{i^{2}} \le \sum_{i=1}^{\infty} \frac{E(X_{i}^{2}1(|X_{i}| \le i))}{i^{2}} < \infty.$$

Let

$$A_j = \sum_{i=j}^{\infty} \frac{1}{i^2} \le \frac{2}{j}.$$

The inequality holds since for $j=1, A_1=\pi^2/6<2$, and for $j\geq 2$, by comparing A_j to the sum of rectangles beneath the curve x^{-2} ,

$$\sum_{i=j}^{\infty} \frac{1}{i^2} \le \int_{j-1}^{\infty} x^{-2} dx = \frac{1}{j-1} \le \frac{2}{j}.$$

Then by expanding and changing the order of summation

$$\sum_{i=1}^{\infty} \frac{E(X_i^2 1 (|X_i| \le i))}{i^2} = \sum_{i=1}^{\infty} \sum_{j=1}^{i} \frac{E(X_i^2 1 (j-1 < |X_i| \le j))}{i^2}$$

$$= \sum_{j=1}^{\infty} \sum_{i=j}^{\infty} \frac{E(X_i^2 1 (j-1 < |X_i| \le j))}{i^2}$$

$$= \sum_{j=1}^{\infty} E(X_i^2 1 (j-1 < |X_i| \le j)) A_j$$

$$\leq 2 \sum_{j=1}^{\infty} \frac{E(X_i^2 1 (j-1 < |X_i| \le j))}{j}$$

$$\leq 2 \sum_{j=1}^{\infty} E(|X_i| 1 (j-1 < |X_i| \le j))$$

$$= 2E|X| < \infty$$

which is what we wanted to show.