CS294-248 Special Topics in Database Theory Unit 9: Datalog

Dan Suciu

University of Washington

Announcement

• Project presentations: Thursday, Nov. 30th, 9:30am, Calvin 146

 By Monday: please add your tentative topic here: https://tinyurl.com/43mdvwzy

• You can change the topic later, as you wish.

Outline

• Today: Basic Datalog

• Thursday: Extensions with Negation

Review

Motivation

• FO and its fragments cannot express simple, "easy" queries:

► Transitive closure

► Parity ("Is |*R*| even?")

• Datalog: extends CQs with recursion

Datalog Syntax

Review

- A program P = set of rules.
- A rule is a CQ: $H := A_1 \wedge A_2 \wedge \cdots$
- Extensional Database Predicates
 EDBs
- Intensional Database Predicates IDBs

```
T(X,Y) := E(X,Y)

T(X,Y) := T(X,Z) \land E(Z,X)
```

Poset (partially ordered set) (P, \leq) . We assume P has a minimal element \perp .

 $f: P \to P$ is monotone if $x \le y \Rightarrow f(x) \le f(y)$.

x is a *pre-fixpoint* if $f(x) \leq x$

x is a post-fixpoint if $f(x) \ge x$

x is a *fixpoint* if f(x) = x;

What are the pre-, post-, fixpoints?

Pre-fixpoints:

Post-fixpoints:

Fixpoints:

What are the pre-, post-, fixpoints?

Pre-fixpoints: 1,2,3,6,7,8,9

Post-fixpoints:

Fixpoints:

What are the pre-, post-, fixpoints?

Pre-fixpoints: 1,2,3,6,7,8,9

Post-fixpoints: 0,1,4,5,6,7

Fixpoints:

What are the pre-, post-, fixpoints?

Pre-fixpoints: 1,2,3,6,7,8,9

Post-fixpoints: 0,1,4,5,6,7

Fixpoints: 1,6,7

What are the pre-, post-, fixpoints?

Pre-fixpoints: 1,2,3,6,7,8,9

Post-fixpoints: 0,1,4,5,6,7

Fixpoints: 1,6,7

Does every monontone f have a fixpoint? A pre-fixpoint?

What are the pre-, post-, fixpoints?

Pre-fixpoints: 1,2,3,6,7,8,9

Post-fixpoints: 0,1,4,5,6,7

Fixpoints: 1,6,7

Does every monontone f have a fixpoint? A pre-fixpoint?

No:
$$f:(\mathbb{N},\leq)\to(\mathbb{N},\leq)$$
, $f(x)=x+1$.

What are the pre-, post-, fixpoints?

Pre-fixpoints: 1,2,3,6,7,8,9

Post-fixpoints: 0,1,4,5,6,7

Fixpoints: 1,6,7

Does every monontone f have a fixpoint? A pre-fixpoint?

No: $f:(\mathbb{N},\leq)\to(\mathbb{N},\leq)$, f(x)=x+1.

Theorem

If the least pre-fixpoint exits then the least fixpoint exists and they are equal.

What are the pre-, post-, fixpoints?

Pre-fixpoints: 1,2,3,6,7,8,9

Post-fixpoints: 0,1,4,5,6,7

Fixpoints: 1,6,7

Does every monontone f have a fixpoint? A pre-fixpoint?

No:
$$f:(\mathbb{N},\leq)\to(\mathbb{N},\leq), f(x)=x+1.$$

Theorem

If the least pre-fixpoint exits then the least fixpoint exists and they are equal.

Proof: $z \stackrel{\text{def}}{=} \text{least pre-fixpoint.}$

What are the pre-, post-, fixpoints?

Pre-fixpoints: 1,2,3,6,7,8,9

Post-fixpoints: 0,1,4,5,6,7

Fixpoints: 1,6,7

Does every monontone f have a fixpoint? A pre-fixpoint?

No:
$$f:(\mathbb{N},\leq)\to(\mathbb{N},\leq), f(x)=x+1.$$

Theorem

If the least pre-fixpoint exits then the least fixpoint exists and they are equal.

Proof: $z \stackrel{\text{def}}{=} \text{least pre-fixpoint.}$

$$f(z) \leq z$$

Dan Suciu

What are the pre-, post-, fixpoints?

Pre-fixpoints: 1,2,3,6,7,8,9

Post-fixpoints: 0,1,4,5,6,7

Fixpoints: 1,6,7

Does every monontone f have a fixpoint? A pre-fixpoint?

No:
$$f:(\mathbb{N},\leq)\to(\mathbb{N},\leq)$$
, $f(x)=x+1$.

Theorem

If the least pre-fixpoint exits then the least fixpoint exists and they are equal.

Proof: $z \stackrel{\text{def}}{=} \text{least pre-fixpoint.}$

$$f(z) \le z$$
 $f(f(z)) \le f(z)$

Dan Suciu

What are the pre-, post-, fixpoints?

Pre-fixpoints: 1,2,3,6,7,8,9

Post-fixpoints: 0,1,4,5,6,7

Fixpoints: 1,6,7

Does every monontone f have a fixpoint? A pre-fixpoint?

No:
$$f:(\mathbb{N},\leq)\to(\mathbb{N},\leq)$$
, $f(x)=x+1$.

Theorem

If the least pre-fixpoint exits then the least fixpoint exists and they are equal.

Proof: $z \stackrel{\text{def}}{=} \text{least pre-fixpoint.}$

$$f(z) \le z$$
 $f(f(z)) \le f(z)$

f(z) pre-fixpoint

Dan Suciu

Topics in DB Theory: Unit 97

Fall 2023

What are the pre-, post-, fixpoints?

Pre-fixpoints: 1,2,3,6,7,8,9

Post-fixpoints: 0,1,4,5,6,7

Fixpoints: 1,6,7

Does every monontone f have a fixpoint? A pre-fixpoint?

No:
$$f: (\mathbb{N}, \leq) \to (\mathbb{N}, \leq)$$
, $f(x) = x + 1$.

Theorem

If the least pre-fixpoint exits then the least fixpoint exists and they are equal.

Proof: $z \stackrel{\text{def}}{=} \text{least pre-fixpoint.}$

$$f(z) \le z$$
 $f(f(z)) \le f(z)$

$$f(z)$$
 pre-fixpoint

$$f(z) = z$$

Dan Suciu

Kleene's Sequence

$$\left| f^{(0)} \stackrel{\mathsf{def}}{=} \bot \qquad f^{(t+1)} \stackrel{\mathsf{def}}{=} f(f^{(t)}) \right| \quad f^{(0)} \le f^{(1)} \le f^{(2)} \le \cdots$$

Fact

If z is any pre-fixpoint, then $f^{(t)} < z$ for all t.

Proof by induction: $\perp \leq z$ and $f^{(t+1)} = f(f^{(t)}) \leq f(z) \leq z$.

Kleene's Sequence

$$f^{(0)} \stackrel{\mathsf{def}}{=} \bot \qquad f^{(t+1)} \stackrel{\mathsf{def}}{=} f(f^{(t)}) \qquad f^{(0)} \le f^{(1)} \le f^{(2)} \le \cdots$$

Fact

If z is any pre-fixpoint, then $f^{(t)} \le z$ for all t.

Proof by induction: $\bot \le z$ and $f^{(t+1)} = f(f^{(t)}) \le f(z) \le z$.

Is $\bigvee_{t>0} f^{(t)}$ the least fixpoint?

Kleene's Sequence

$$f^{(0)} \stackrel{\text{def}}{=} \bot \qquad f^{(t+1)} \stackrel{\text{def}}{=} f(f^{(t)}) \qquad f^{(0)} \le f^{(1)} \le f^{(2)} \le \cdots$$

Fact

If z is any pre-fixpoint, then $f^{(t)} \le z$ for all t.

Proof by induction: $\bot \le z$ and $f^{(t+1)} = f(f^{(t)}) \le f(z) \le z$.

Is $\bigvee_{t>0} f^{(t)}$ the least fixpoint?

Not always. Two problems:

- $\bigvee_{t>0} f^{(t)}$ may not exists.
- Even if it exists, we may have $f(\bigvee_{t\geq 0} f^{(t)}) \neq \bigvee_{t\geq 0} f^{(t)}$.

We will circumvent by requiring finite rank

[Stanley, 1999]

A chain of rank r is a sequence $x_0 < x_1 < \cdots < x_r$.

[Stanley, 1999]

A chain of rank r is a sequence $x_0 < x_1 < \cdots < x_r$.

The rank of a poset (P, \leq) is the largest k s.t. there exists a chain of length k in P.

Note: rank may be ∞ .

[Stanley, 1999]

A chain of rank r is a sequence $x_0 < x_1 < \cdots < x_r$.

The rank of a poset (P, \leq) is the largest k s.t. there exists a chain of length k in P.

Note: rank may be ∞ .

• What is the rank of $(\{0,1\},\leq)$?

[Stanley, 1999]

A chain of rank r is a sequence $x_0 < x_1 < \cdots < x_r$.

The rank of a poset (P, \leq) is the largest k s.t. there exists a chain of length k in P.

Note: rank may be ∞ .

• What is the rank of $(\{0,1\},\leq)$?

r=1.

[Stanley, 1999]

A chain of rank r is a sequence $x_0 < x_1 < \cdots < x_r$.

The rank of a poset (P, \leq) is the largest k s.t. there exists a chain of length k in P.

Note: rank may be ∞ .

- What is the rank of $(\{0,1\},\leq)$?
- What is the rank of $(\mathcal{P}(A), \subseteq)$?

r = 1.

Dan Suciu

[Stanley, 1999]

A chain of rank r is a sequence $x_0 < x_1 < \cdots < x_r$.

The rank of a poset (P, \leq) is the largest k s.t. there exists a chain of length k in P.

Note: rank may be ∞ .

- What is the rank of $(\{0,1\},\leq)$?
- What is the rank of $(\mathcal{P}(A), \subseteq)$?

r = 1.

$$r = |A|$$
.

Dan Suciu

[Stanley, 1999]

A chain of rank r is a sequence $x_0 < x_1 < \cdots < x_r$.

The rank of a poset (P, \leq) is the largest k s.t. there exists a chain of length k in P.

Note: rank may be ∞ .

• What is the rank of $(\{0,1\},\leq)$?

r = 1.

• What is the rank of $(\mathcal{P}(A), \subseteq)$?

$$r = |A|$$
.

• What is the rank of $(P_1, <_1) \times (P_2, <_2)$?

[Stanley, 1999]

A chain of rank r is a sequence $x_0 < x_1 < \cdots < x_r$.

The rank of a poset (P, \leq) is the largest k s.t. there exists a chain of length k in P.

Note: rank may be ∞ .

- What is the rank of $(\{0,1\},\leq)$?
- What is the rank of $(\mathcal{P}(A), \subseteq)$?
- What is the rank of $(P_1, \leq_1) \times (P_2, \leq_2)$?

$$r = 1$$
.

$$r = |A|$$
.

$$r = r(P_1) + r(P_2).$$

Fixpoints in Posets of Finite Ranks

$$f^{(0)} \stackrel{\mathsf{def}}{=} \bot \qquad f^{(t+1)} \stackrel{\mathsf{def}}{=} f(f^{(t)}) \qquad f^{(0)} < f^{(1)} < f^{(2)} < \cdots \le f^{(r)} = f^{(r+1)}$$

Theorem

If P has finite rank r then $lfp(f) = f^{(r)}$.

Least Fixpoint Semantics of a Datalog Program P

 $I = \text{an EDB instance}, A \stackrel{\text{def}}{=} ADom(I).$

If R has arity k, then an instance is $R \in \mathcal{P}(A^k)$.

Least Fixpoint Semantics of a Datalog Program P

 $I = \text{an EDB instance}, A \stackrel{\text{def}}{=} ADom(I).$

If R has arity k, then an instance is $R \in \mathcal{P}(A^k)$.

If IDB predicates have arities $k_1, k_2, ...$ then an IDB instance is $J \in \mathcal{P}(A^{k_1}) \times \mathcal{P}(A^{k_2}) \times \cdots$

Least Fixpoint Semantics of a Datalog Program P

 $I = \text{an EDB instance}, A \stackrel{\text{def}}{=} ADom(I).$

If R has arity k, then an instance is $R \in \mathcal{P}(A^k)$.

If IDB predicates have arities $k_1, k_2, ...$ then an IDB instance is $J \in \mathcal{P}(A^{k_1}) \times \mathcal{P}(A^{k_2}) \times \cdots$

Immediate Consequence Operator:

$$T_P: \mathcal{P}(A^{k_1}) \times \mathcal{P}(A^{k_2}) \times \cdots \to \mathcal{P}(A^{k_1}) \times \mathcal{P}(A^{k_2}) \times \cdots$$

The semantics of the datalog program P is $lfp(T_p)$.

Naive Evaluation Algorithm

$$J^{(0)}:=\emptyset$$
 for $t=0,\infty$ $J^{(t+1)}:=T_P(J^{(t)})$ if $J^{(t+1)}=J^{(t)}$ break

Notice: $J^{(0)} \subseteq J^{(1)} \subseteq \cdots$ is Kleene's sequence.

Theorem

The Naive Algorithm takes $O(ADom(I)^k)$ iterations, where I is the EDB instance and k is the largest arity of any IDB.

Data complexity is in PTIME.

Examples in Datalog

Overview

• We have seen Transitive Closure. Can we write something different?

Regular expressions, CFGs.

• Same generation.

AND/OR reachability.

Find nodes reachable from 1 with a path labeled with $(aab|aaac)^*$

Find nodes reachable from 1 with a path labeled with $(aab|aaac)^*$ EDB graph:

Find nodes reachable from 1 with a path labeled with $(aab|aaac)^*$ EDB graph:

Find nodes reachable from 1 with a path labeled with $(aab|aaac)^*$ EDB graph: Automaton:

Find nodes reachable from 1 with a path labeled with $(aab|aaac)^*$ EDB graph: Automaton:

a s2 a s3 a s3 a c s4

EDB graph:

Regular Expressions

Find nodes reachable from 1 with a path labeled with $(aab|aaac)^*$

1 a 2 a 3 c 6

$$Q2(Y) := Q1(X) \wedge E(X, Y, 'a')$$

Find nodes reachable from 1 with a path labeled with $(aab|aaac)^*$

EDB graph:

Automaton:

$$Q1(1) := Q3(Y) := Q2(X) \land E(X, Y, 'a')$$

$$Q2(Y) := Q1(X) \wedge E(X, Y, 'a')$$

Find nodes reachable from 1 with a path labeled with $(aab|aaac)^*$ EDB graph: Automaton:

$$Q1(1) := Q2(Y) := Q1(X) \land E(X, Y, 'a')$$

 $Q3(Y) := Q2(X) \land E(X, Y, 'a')$ $Q1(Y) := Q3(X) \land E(X, Y, 'b')$

Find nodes reachable from 1 with a path labeled with $(aab|aaac)^*$ EDB graph: Automaton:

$$Q1(1)$$
:- $Q2(Y)$:- $Q1(X) \wedge E(X, Y, 'a')$
 $Q3(Y)$:- $Q2(X) \wedge E(X, Y, 'a')$ $Q1(Y)$:- $Q3(X) \wedge E(X, Y, 'b')$
 $Q4(Y)$:- $Q3(X) \wedge E(X, Y, 'a')$ $Q1(Y)$:- $Q4(X) \wedge E(X, Y, 'c')$

Find nodes reachable from 1 with a path labeled with $(aab|aaac)^*$ EDB graph: Automaton:

$$Q1(1):$$
 $Q2(Y):=Q1(X) \land E(X,Y,'a')$ $Q3(Y):=Q2(X) \land E(X,Y,'a')$ $Q1(Y):=Q3(X) \land E(X,Y,'b')$ $Q4(Y):=Q3(X) \land E(X,Y,'a')$ $Q1(Y):=Q4(X) \land E(X,Y,'c')$ Answer(X):=Q1(X)

• Automaton need not be deterministic.

- Automaton need not be deterministic.
- Also CFG. E.g language of parentheses: $S \to \epsilon |SS| aSb$. How?

- Automaton need not be deterministic.
- Also CFG. E.g language of parentheses: $S \to \epsilon |SS| aSb$. How?

$$S(X,X)$$
 :- Node(X)
 $S(X,Y)$:- $S(X,Z) \land S(Z,Y)$
 $S(X,Y)$:- $E(X,U,'a') \land S(U,V) \land E(V,Y,'b')$

- Automaton need not be deterministic.
- Also CFG. E.g language of parentheses: $S \to \epsilon |SS| aSb$. How?

$$S(X,X) := Node(X)$$

 $S(X,Y) := S(X,Z) \land S(Z,Y)$
 $S(X,Y) := E(X,U,'a') \land S(U,V) \land E(V,Y,'b')$

• Exercise**: non-CFG, e.g. the language $\{a^nb^nc^n \mid n \in \mathbb{N}\}$.

- Automaton need not be deterministic.
- Also CFG. E.g language of parentheses: $S \to \epsilon |SS| aSb$. How?

$$S(X,X)$$
 :- Node(X)
 $S(X,Y)$:- $S(X,Z) \wedge S(Z,Y)$
 $S(X,Y)$:- $E(X,U,'a') \wedge S(U,V) \wedge E(V,Y,'b')$

• Exercise**: non-CFG, e.g. the language $\{a^nb^nc^n\mid n\in\mathbb{N}\}$. (won't discuss in class)

$$T(X,X,Y,Y,Z,Z) := \mathsf{Node}(X) \land \mathsf{Node}(Y) \land \mathsf{Node}(Z) \\ T(X_1,X_2,Y_1,Y_2,Z_1,Z_2) := T(X_1,X_3,Y_1,Y_3,Z_1,Z_3) \land E(X_3,X_2,'a') \\ \land E(Y_3,Y_2,'b') \land E(Z_3,Z_2,'c') \\ \mathsf{Answer}(X,Y) := T(X,U,V,U,V,Y)$$

x, y are at the same generation if they have a common ancestor z at the same distance.

x, y are at the same generation if they have a common ancestor z at the same distance.

Find people at the same generation with Fred.

x, y are at the same generation if they have a common ancestor z at the same distance.

Find people at the same generation with Fred.

EDB graph:

x, y are at the same generation if they have a common ancestor z at the same distance.

Find people at the same generation with Fred.

EDB graph:

x, y are at the same generation if they have a common ancestor z at the same distance.

Find people at the same generation with Fred.

$$SG(X, X)$$
 :- Person(X)
 $SG(X, Y)$:-

EDB graph:

x, y are at the same generation if they have a common ancestor z at the same distance.

Find people at the same generation with Fred.

$$SG(X,X)$$
:- Person(X)
 $SG(X,Y)$:- ????

EDB graph:

x, y are at the same generation if they have a common ancestor z at the same distance.

Find people at the same generation with Fred.

$$SG(X,X)$$
 :- Person(X)
 $SG(X,Y)$:- $SG(U,V) \wedge E(U,X) \wedge E(V,Y)$

EDB graph:

x, y are at the same generation if they have a common ancestor z at the same distance.

Find people at the same generation with Fred.

$$SG(X,X)$$
:- $Person(X)$
 $SG(X,Y)$:- $SG(U,V) \wedge E(U,X) \wedge E(V,Y)$
 $Answer(X)$:- $SG('Fred',X)$

EDB graph:

• The examples so far are still just transitive at their essence! why?

 Recall that transitive closure is in NLOGSPACE. The next example goes beyond NLOGSPACE.

OR-nodes: unlimited AND-children

AND-nodes: two OR-children

OR-nodes: unlimited AND-children

AND-nodes: two OR-children

T(X, Y, Z):

OR-node X has AND-child with children Y, Z.

OR-nodes: unlimited AND-children

AND-nodes: two OR-children

T(X, Y, Z):

OR-node X has AND-child with children Y, Z.

Find all accessible nodes from a

OR-nodes: unlimited AND-children

AND-nodes: two OR-children

T(X, Y, Z):

OR-node X has AND-child with children Y, Z.

Find all accessible nodes from a

EDB graph:

1		
X	Y	Z
С	а	Ь
С	Ь	С
С	a	a
Ь	a	a

OR-nodes: unlimited AND-children

AND-nodes: two OR-children

T(X, Y, Z):

OR-node X has AND-child with children Y, Z.

Find all accessible nodes from a

EDB graph:

1		
X	Y	Z
С	а	Ь
С	ь	с
С	a	а
Ь	a	a

Answer: a, b, c.

OR-nodes: unlimited AND-children

AND-nodes: two OR-children

$$T(X, Y, Z)$$
:

OR-node X has AND-child with children Y, Z.

Find all accessible nodes from a

$$A(a)$$
:-
$$A(X) := T(X, Y, Z) \land A(Y) \land A(Z)$$

EDB graph:

I		
Χ	Y	Z
С	а	Ь
С	Ь	c
С	a	a
Ь	a	a

Answer: a, b, c.

- AGAP is PTIME-complete. Recall: NLOGSPACE ⊆ PTIME and inclusion is conjecture to be strict.
- It follows that datalog can express strictly more than transitive closure.
- The data complexity of datalog is in PTIME.
- Limitation of "pure" datalog: monotone queries only.
- Montone queries have huge potential for optimizations (next).

Optimizing Monotone Datalog

Outline

Semi-naive evaluation.

Asynchronous execution: also discuss grounding.

Will not discuss: Magic Set optimization

Naive, and Semi-naive

Naive

$$egin{aligned} J^{(0)} &:= \emptyset \ & ext{for } t = 0, \infty \ J^{(t+1)} &:= T_P(J^{(t)}) \ & ext{if } J^{(t+1)} &= J^{(t)} \ & ext{break} \end{aligned}$$

Naive, and Semi-naive

Naive

$J^{(0)} := \emptyset$

for
$$t = 0, \infty$$

$$J^{(t+1)} := T_P(J^{(t)})$$
if $J^{(t+1)} = J^{(t)}$

break

Semi-naive

$$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$$

Naive

$$J^{(0)} := \emptyset$$
for $t = 0, \infty$
 $J^{(t+1)} := T_P(J^{(t)})$
if $J^{(t+1)} = J^{(t)}$

break

Semi-naive

$$egin{aligned} J^{(0)} &:= \emptyset \ & ext{for} \ t = 0, \infty \ & \Delta^{(t)} &:= T_P(J^{(t)}) - J^{(t)} \ & J^{(t+1)} &:= J^{(t)} \cup \Delta^{(t)} \ & ext{if} \ \Delta^{(t)} &= \emptyset \ ext{break} \end{aligned}$$

w/ incremental computation

Optimizing Monotone Datalog

$$egin{aligned} J^{(0)} &:= \emptyset, \quad \Delta^{(0)} := T_P(\emptyset) \ & ext{for } t = 1, \infty \ & \Delta^{(t)} &:= T_P(J^{(t-1)} \cup \Delta^{(t-1)}) - J^{(t)} \ &= \Delta T_P(J^{(t-1)}, \Delta^{(t-1)}) - J^{(t)} \ & J^{(t+1)} &:= J^{(t)} \cup \Delta^{(t)} \ & ext{if } \Delta^{(t)} = \emptyset ext{ break} \end{aligned}$$

Naive

. .

$$egin{aligned} J^{(0)} &:= \emptyset \ & ext{for} \ \ t = 0, \infty \ & ext{} J^{(t+1)} &:= T_P(J^{(t)}) \ & ext{if} \ \ J^{(t+1)} &= J^{(t)} \end{aligned}$$

break

Semi-naive

$$egin{aligned} J^{(0)} &:= \emptyset \ & ext{for } t = 0, \infty \ & \Delta^{(t)} &:= T_P(J^{(t)}) - J^{(t)} \ & J^{(t+1)} &:= J^{(t)} \cup \Delta^{(t)} \ & ext{if } \Delta^{(t)} &= \emptyset ext{ break} \end{aligned}$$

w/ incremental computation

$$egin{aligned} \overline{J^{(0)}} := \emptyset, & \Delta^{(0)} := T_P(\emptyset) \ & ext{for } t = 1, \infty \ & \Delta^{(t)} := T_P(J^{(t-1)} \cup \Delta^{(t-1)}) - J^{(t)} \ & = \Delta T_P(J^{(t-1)}, \Delta^{(t-1)}) - J^{(t)} \ & J^{(t+1)} := J^{(t)} \cup \Delta^{(t)} \ & ext{if } \Delta^{(t)} = \emptyset ext{ break} \end{aligned}$$

Transitive Closure:

$$T(X,Y) := E(X,Y)$$

 $T(X,Y) := T(X,Z) \wedge E(Z,Y)$

Naive

valve

$$J^{(0)}:=\emptyset$$
 for $t=0,\infty$ $J^{(t+1)}:=T_P(J^{(t)})$ if $J^{(t+1)}=J^{(t)}$ break

Semi-naive

$$egin{aligned} J^{(0)} &:= \emptyset \ & ext{for} \ \ t = 0, \infty \ & \Delta^{(t)} &:= T_P(J^{(t)}) - J^{(t)} \ & J^{(t+1)} &:= J^{(t)} \cup \Delta^{(t)} \ & ext{if} \ \ \Delta^{(t)} &= \emptyset \ \ ext{break} \end{aligned}$$

w/ incremental computation

$$egin{aligned} J^{(0)} &:= \emptyset, \quad \Delta^{(0)} := T_P(\emptyset) \ & ext{for } t = 1, \infty \ & \Delta^{(t)} &:= T_P(J^{(t-1)} \cup \Delta^{(t-1)}) - J^{(t)} \ &= \Delta T_P(J^{(t-1)}, \Delta^{(t-1)}) - J^{(t)} \ & J^{(t+1)} &:= J^{(t)} \cup \Delta^{(t)} \ & ext{if } \Delta^{(t)} = \emptyset ext{ break} \end{aligned}$$

Transitive Closure:

$$T^{(0)}(X,Y) := ext{false}, \; \Delta^{(0)}(X,Y) := E(X,Y)$$

$$T(X, Y) := E(X, Y)$$

 $T(X, Y) := T(X, Z) \wedge E(Z, Y)$

 $T^{(0)}(X,Y) := \text{false}, \ \Delta^{(0)}(X,Y) := E(X,Y)$

Naive, and Semi-naive

Naive

-(0) -

$$J^{(0)}:=\emptyset$$
 for $t=0,\infty$ $J^{(t+1)}:=T_P(J^{(t)})$ if $J^{(t+1)}=J^{(t)}$ break

Semi-naive

$$egin{aligned} J^{(0)} &:= \emptyset \ & ext{for} \ t = 0, \infty \ & \Delta^{(t)} &:= \mathcal{T}_P(J^{(t)}) - J^{(t)} \ & J^{(t+1)} &:= J^{(t)} \cup \Delta^{(t)} \ & ext{if} \ \Delta^{(t)} &= \emptyset \ ext{break} \end{aligned}$$

w/ incremental computation

$$egin{aligned} J^{(0)} &:= \emptyset, \quad \Delta^{(0)} := T_P(\emptyset) \ & ext{for } t = 1, \infty \ & \Delta^{(t)} &:= T_P(J^{(t-1)} \cup \Delta^{(t-1)}) - J^{(t)} \ &= \Delta T_P(J^{(t-1)}, \Delta^{(t-1)}) - J^{(t)} \ & J^{(t+1)} &:= J^{(t)} \cup \Delta^{(t)} \ & ext{if } \Delta^{(t)} &= \emptyset ext{ break} \end{aligned}$$

T(X,Y) := E(X,Y)

 $T(X,Y) := T(X,Z) \wedge E(Z,Y)$

$$\begin{array}{c} \text{for } t=1,\infty \\ \Delta^{(t)}(X,Y) := \end{array}$$

Naive

varve

$$egin{aligned} J^{(0)} &:= \emptyset \ & ext{for} \ \ t = 0, \infty \ & ext{} J^{(t+1)} &:= T_P(J^{(t)}) \ & ext{if} \ \ J^{(t+1)} &= J^{(t)} \end{aligned}$$

break

Semi-naive

$$J^{(0)} := \emptyset$$
 for $t = 0, \infty$ $\Delta^{(t)} := T_P(J^{(t)}) - J^{(t)}$ $J^{(t+1)} := J^{(t)} \cup \Delta^{(t)}$ if $\Delta^{(t)} = \emptyset$ break

w/ incremental computation

$$egin{aligned} J^{(0)} &:= \emptyset, \quad \Delta^{(0)} := T_P(\emptyset) \ & ext{for } t = 1, \infty \ & \Delta^{(t)} &:= T_P(J^{(t-1)} \cup \Delta^{(t-1)}) - J^{(t)} \ &= \Delta T_P(J^{(t-1)}, \Delta^{(t-1)}) - J^{(t)} \ J^{(t+1)} &:= J^{(t)} \cup \Delta^{(t)} \ & ext{if } \Delta^{(t)} = \emptyset ext{ break} \end{aligned}$$

$$T(X,Y) := E(X,Y)$$

 $T(X,Y) := T(X,Z) \wedge E(Z,Y)$

$$T^{(0)}(X,Y):= exttt{false},\ \Delta^{(0)}(X,Y):=E(X,Y)$$
 for $t=1,\infty$

$$\Delta^{(t)}(X,Y) := \Delta^{(t-1)}(X,Z) \wedge E(Z,Y) \wedge \neg T^{(t)}(X,Y)$$

Naive

· · · · ·

$$egin{aligned} J^{(0)} &:= \emptyset \ & ext{for} \ \ t = 0, \infty \ & ext{} J^{(t+1)} &:= T_P(J^{(t)}) \ & ext{if} \ \ J^{(t+1)} &= J^{(t)} \end{aligned}$$

break

Semi-naive

$$egin{aligned} \overline{J^{(0)}} &:= \emptyset \ & ext{for } t = 0, \infty \ & \Delta^{(t)} &:= T_P(J^{(t)}) - J^{(t)} \ & J^{(t+1)} &:= J^{(t)} \cup \Delta^{(t)} \ & ext{if } \Delta^{(t)} &= \emptyset ext{ break} \end{aligned}$$

w/ incremental computation

$$egin{aligned} \overline{J^{(0)}} &:= \emptyset, \quad \Delta^{(0)} := T_P(\emptyset) \ & ext{for } t = 1, \infty \ & \Delta^{(t)} &:= T_P(J^{(t-1)} \cup \Delta^{(t-1)}) - J^{(t)} \ &= \Delta T_P(J^{(t-1)}, \Delta^{(t-1)}) - J^{(t)} \ J^{(t+1)} &:= J^{(t)} \cup \Delta^{(t)} \ & ext{if } \Delta^{(t)} = \emptyset ext{ break} \end{aligned}$$

$$T(X,Y) := E(X,Y)$$

 $T(X,Y) := T(X,Z) \wedge E(Z,Y)$

$$T^{(0)}(X,Y):= exttt{false},\ \Delta^{(0)}(X,Y):=E(X,Y)$$
 for $t=1,\infty$

$$\Delta^{(t)}(X,Y) := \Delta^{(t-1)}(X,Z) \wedge E(Z,Y) \wedge \neg T^{(t)}(X,Y)$$

$$T^{(t+1)}(X,Y) := T^{(t)}(X,Y) \vee \Delta^{(t)}(X,Y)$$

if
$$\Delta^{(t)} = \emptyset$$
 break

Semi-naive is implemented by virtually all datalog systems.

Non-linear datalog rules have more complex delta-queries:

Exponential number of queries:

$$(A \cup \Delta A) \bowtie (B \cup \Delta B) \bowtie (C \cup \Delta C)$$

Semi-naive is implemented by virtually all datalog systems.

Non-linear datalog rules have more complex delta-queries:

Exponential number of queries:

$$(A \cup \Delta A) \bowtie (B \cup \Delta B) \bowtie (C \cup \Delta C) = (A \bowtie B \bowtie C) \cup \\ \cup (\Delta A \bowtie B \bowtie C) \cup \cdots \cup (\Delta A \bowtie \Delta B \bowtie C) \cup \cdots \cup (\Delta A \bowtie \Delta B \bowtie \Delta C)$$

Semi-naive is implemented by virtually all datalog systems.

Non-linear datalog rules have more complex delta-queries:

Exponential number of queries:

$$(A \cup \Delta A) \bowtie (B \cup \Delta B) \bowtie (C \cup \Delta C) = (A \bowtie B \bowtie C) \cup \cup (\Delta A \bowtie B \bowtie C) \cup \cdots \cup (\Delta A \bowtie \Delta B \bowtie C) \cup \cdots \cup (\Delta A \bowtie \Delta B \bowtie \Delta C)$$

Mix of old/new tables (issue: new tables are bigger):

$$(A \cup \Delta A) \bowtie (B \cup \Delta B) \bowtie (C \cup \Delta C)$$

Semi-naive is implemented by virtually all datalog systems.

Non-linear datalog rules have more complex delta-queries:

Exponential number of queries:

$$(A \cup \Delta A) \bowtie (B \cup \Delta B) \bowtie (C \cup \Delta C) = (A \bowtie B \bowtie C) \cup \cup (\Delta A \bowtie B \bowtie C) \cup \cdots \cup (\Delta A \bowtie \Delta B \bowtie C) \cup \cdots \cup (\Delta A \bowtie \Delta B \bowtie \Delta C)$$

Mix of old/new tables (issue: new tables are bigger):

```
(A \cup \Delta A) \bowtie (B \cup \Delta B) \bowtie (C \cup \Delta C) = (A \bowtie B \bowtie C) \cup \\ \cup (\Delta A \bowtie B \bowtie C) \cup ((A \cup \Delta A) \bowtie \Delta B \bowtie C) \cup ((A \cup \Delta A) \bowtie (B \cup \Delta B) \bowtie \Delta C)
```

Asynchronous Execution

• (Semi-) naive is synchronous: apply all rules to all tuples.

Asynchronous execution: apply some rules to some tuples.

• Simple principle: fair computation of a fixpoint.

Asynchronous Sequence

Posets
$$(P_1, \leq), (P_2, \leq)$$
, finite ranks, $f: P_1 \times P_2 \rightarrow P_1$, $g: P_1 \times P_2 \rightarrow P_2$.

Goal compute
$$lfp(f, g)$$
:

$$f(f(x,y),g(x,y)) = f(x,y)$$

Asynchronous Sequence

Posets $(P_1, \leq), (P_2, \leq)$, finite ranks, $f: P_1 \times P_2 \rightarrow P_1$, $g: P_1 \times P_2 \rightarrow P_2$.

Goal compute lfp(f, g):

$$(f(x,y),g(x,y))=(x,y)$$

Kleene's sequence:

$$(x^{(0)}, y^{(0)}) \stackrel{\text{def}}{=} (\bot, \bot) (x^{(t+1)}, y^{(t+1)}) \stackrel{\text{def}}{=} (f(x^{(t)}, y^{(t)}), g(x^{(t)}, y^{(t)}))$$

Every step is an fg-step.

Asynchronous Sequence

Posets $(P_1, \leq), (P_2, \leq)$, finite ranks, $f: P_1 \times P_2 \rightarrow P_1$, $g: P_1 \times P_2 \rightarrow P_2$.

Goal compute lfp(f, g):

$$f(x,y),g(x,y))=(x,y)$$

Kleene's sequence:

$$(x^{(0)}, y^{(0)}) \stackrel{\text{def}}{=} (\bot, \bot) (x^{(t+1)}, y^{(t+1)}) \stackrel{\text{def}}{=} (f(x^{(t)}, y^{(t)}), g(x^{(t)}, y^{(t)}))$$

Every step is an fg-step.

Asynchronous sequence:

$$\begin{aligned} &(u^{(0)}, v^{(0)}) \overset{\text{def}}{=} (\bot, \bot) \\ &(u^{(k+1)}, v^{(k+1)}) \overset{\text{def}}{=} \\ & \qquad \qquad \left\{ \begin{aligned} &(f(u^{(k)}, v^{(k)}), g(u^{(k)}, v^{(k)})) & \text{or} \\ &(f(u^{(k)}, v^{(k)}), v^{(k)}) & \text{or} \\ &(u^{(k)}, g(u^{(k)}, v^{(k)})) \end{aligned} \right. \end{aligned}$$

fg-step, or f-step, or g-step.

Fact 1: for any pre-fixpoint (x, y) of (f, g), $(u^{(k)}, v^{(k)}) \leq (x, y)$.

oboooooo

Fair Computation of a Fixpoint

Fact 1: for any pre-fixpoint (x, y) of (f, g), $(u^{(k)}, v^{(k)}) < (x, y).$

Sequence is fair if: $\forall k \exists m > k \exists n > k$ s.t:

- m is an f-step or fg-step, and
- n is a g-step or fg-step.

Fact 1: for any pre-fixpoint (x, y) of (f, g), $(u^{(k)}, v^{(k)}) \leq (x, y)$.

Sequence is fair if: $\forall k \exists m > k \exists n > k$ s.t:

- m is an f-step or fg-step, and
- n is a g-step or fg-step.

Fact 2: If the sequence is fair, then $\exists k \text{ s.t. } (u^{(k)}, v^{(k)}) = \mathsf{lfp}(f, g)$.

Fact 1: for any pre-fixpoint (x, y) of (f, g), $(u^{(k)}, v^{(k)}) < (x, y).$

Sequence is fair if: $\forall k \exists m > k \exists n > k$ s.t:

- m is an f-step or fg-step, and
- n is a g-step or fg-step.

Optimizing Monotone Datalog

0000000000

Fact 2: If the sequence is fair, then $\exists k \text{ s.t. } (u^{(k)}, v^{(k)}) = \mathsf{lfp}(f, g)$.

Proof suffices to prove: $\forall t \exists k, (x^{(t)}, v^{(t)}) < (u^{(k)}, v^{(k)}).$

Fact 1: for any pre-fixpoint (x, y) of (f, g), $(u^{(k)}, v^{(k)}) \leq (x, y)$.

Sequence is fair if: $\forall k \exists m > k \exists n > k$ s.t:

- m is an f-step or fg-step, and
- *n* is a *g*-step or *fg*-step.

Optimizing Monotone Datalog

0000000000

Fact 2: If the sequence is fair, then $\exists k \text{ s.t. } (u^{(k)}, v^{(k)}) = \mathsf{lfp}(f, g)$.

Proof suffices to prove: $\forall t \exists k, (x^{(t)}, y^{(t)}) \leq (u^{(k)}, v^{(k)}).$

$$(x^{(t+1)},y^{(t+1)}) = (f(x^{(t)},y^{(t)}),g(x^{(t)},y^{(t)})) \leq (f(u^{(k)},v^{(k)}),g(u^{(k)},v^{(k)}))$$

Fact 1: for any pre-fixpoint (x, y) of (f, g), $(u^{(k)}, v^{(k)}) < (x, y).$

Sequence is fair if: $\forall k \exists m > k \exists n > k$ s.t:

- m is an f-step or fg-step, and
- n is a g-step or fg-step.

Fact 2: If the sequence is fair, then $\exists k \text{ s.t. } (u^{(k)}, v^{(k)}) = \mathsf{lfp}(f, g).$

Proof suffices to prove: $\forall t \exists k, (x^{(t)}, v^{(t)}) < (u^{(k)}, v^{(k)}).$

$$\begin{aligned} &(x^{(t+1)},y^{(t+1)}) = (f(x^{(t)},y^{(t)}),g(x^{(t)},y^{(t)})) \leq (f(u^{(k)},v^{(k)}),g(u^{(k)},v^{(k)})) \\ &\leq (f(u^{(m)},v^{(m)}),g(u^{(n)},v^{(n)})) \end{aligned}$$

Fact 1: for any pre-fixpoint (x, y) of (f, g), $(u^{(k)}, v^{(k)}) \leq (x, y)$.

Sequence is fair if: $\forall k \exists m > k \exists n > k$ s.t:

- m is an f-step or fg-step, and
- *n* is a *g*-step or *fg*-step.

Fact 2: If the sequence is fair, then $\exists k \text{ s.t. } (u^{(k)}, v^{(k)}) = \mathsf{lfp}(f, g)$.

Proof suffices to prove: $\forall t \exists k, (x^{(t)}, y^{(t)}) \leq (u^{(k)}, v^{(k)}).$

$$\begin{aligned} &(x^{(t+1)},y^{(t+1)}) = (f(x^{(t)},y^{(t)}),g(x^{(t)},y^{(t)})) \leq (f(u^{(k)},v^{(k)}),g(u^{(k)},v^{(k)})) \\ &\leq (f(u^{(m)},v^{(m)}),g(u^{(n)},v^{(n)})) = (u^{(m+1)},v^{(n+1)}) \leq (u^{(p)},v^{(p)}) \\ &\qquad \qquad \text{where } p = \max(m,n) + 1. \end{aligned}$$

- Kleene's sequence has rank $(P_1) + \text{rank}(P_2)$; the asynchronous sequence could be as long as $\text{rank}(P_1) \times \text{rank}(P_2)$
- Application: nested recursion

$$\begin{aligned} \mathsf{lfp}(f,g) = & \ \mathsf{let} \ u = \mathsf{lfp}(\lambda x. \ \ \mathsf{let} \ v = \mathsf{lfp}(\lambda y.g(x,y)) \\ & \ \ \mathsf{in} \ (f(x,v),v)) \\ & \ \ \mathsf{in} \ (u,\mathsf{lfp}(\lambda y.g(u,y))) \end{aligned}$$

RHS is asynchronous sequence with steps $ggg\cdots fggg\cdots fggg\cdots$

• Immediate generalization to *n* posets $(P_1, \leq) \times \cdots (P_n, \leq)$.

Grounding of a Datalog Program

What are the posets $(P_1, \leq), (P_2, \leq), \ldots$ for a datalog program?

• Option 1: P_i is $(ADom^{k_i}, \subseteq)$ represents an IDB predicate.

• Option 2 (better): P_i is $(\{0,1\},\leq)$ represents an IDB tuple.

Example

$$R(X) := E(a, X)$$

 $R(X) := R(Z) \land E(Z, X)$

$$R(X) := E(a, X)$$

 $R(X) := R(Z) \land E(Z, X)$

EDB input graph:

Optimizing Monotone Datalog

$$R(X) := E(a, X)$$

 $R(X) := R(Z) \wedge E(Z, X)$

Grounded program:

$$R(a) := E(a, a)$$

$$R(a) := R(a) \wedge E(a, a)$$

$$R(a) := R(b) \wedge E(b, a)$$

$$R(b) := E(a,b)$$

$$R(b) := R(a) \wedge E(a,b)$$

$$R(b) := R(b) \wedge E(b, b)$$

EDB input graph:

Optimizing Monotone Datalog

Example

$$R(X) := E(a, X)$$

 $R(X) := R(Z) \wedge E(Z, X)$

Grounded program:

$$R(a) := E(a, a)$$

$$R(a) := R(a) \wedge E(a, a)$$

$$R(a) := R(b) \wedge E(b, a)$$

$$R(b) := E(a,b)$$

$$R(b) := R(a) \wedge E(a,b)$$

$$R(b) := R(b) \wedge E(b,b)$$

$$R(a) := E(a, a) \vee R(a) \wedge E(a, a) \vee R(b) \wedge E(b, a),$$

$$R(b) := E(a,b) \vee R(a) \wedge E(a,b) \vee R(b) \wedge E(b,b)$$

EDB input graph:

Optimizing Monotone Datalog

Example

$$R(X) := E(a, X)$$

 $R(X) := R(Z) \wedge E(Z, X)$

Grounded program:

$$R(a) := E(a, a)$$

$$R(a) := R(a) \wedge E(a, a)$$

$$R(a) := R(b) \wedge E(b, a)$$

$$R(b) := E(a,b)$$

$$R(b) := R(a) \wedge E(a,b)$$

$$R(b) := R(b) \wedge E(b,b)$$

$$R(a) := E(a,a) \vee R(a) \wedge E(a,a) \vee R(b) \wedge E(b,a),$$

$$R(b) := E(a,b) \vee R(a) \wedge E(a,b) \vee R(b) \wedge E(b,b)$$

The grounded program allows more fine-grained asynchronous execution.

EDB input graph:

Summary

- Main purpose of datalog is to add recursion.
- Least-fixpoint semantics; Kleene's sequence; Naive algorithm.
- Cool optimizations: semi-naive, magic-sets (difficult!), asynchronous evaluation.
- Can express PTIME-complete problems (AGAP).
- But limited to monotone queries.

Next lecture: adding negation to datalog.

Stanley, R. P. (1999).

Enumerative combinatorics. Vol. 2, volume 62 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge.

With a foreword by Gian-Carlo Rota and appendix 1 by Sergey Fomin.