Union Bound

$$Pr\left[\bigcap_{i=1}^{n}A_{i}\right] \leq \bigcap_{i=1}^{n}Pr(A_{i})$$
 requality only halds if mutually exclusive $A_{i} \cap A_{i} = \emptyset$ $\forall i,j$

Conditional Probability

Total Probability Theorem

$$P_r(A) = \sum_{i=1}^{k} P_r(A \cap E_i)$$

Example of Partition for k=4

Bayes Rule

Want to find "ground truth" that gave this observation.

Example: Binary Symmetric Channel

$$P_r(X=0) = P_r(X=1) = \frac{1}{2}$$

$$Pr(Y=1|X=0]=p$$

If Y=0, what is
$$\hat{X}_{opt}$$
?

wrong if
$$\hat{X}=1 \rightarrow Y=0$$

 $\hat{X}=0$ Pr(error) = Pr($X=1|Y=0$)

or

$$\begin{array}{ll}
X = 1 & \text{wrong if } \hat{X} = 0 \rightarrow Y = 1 \\
X = 1 & \text{Pr(error)} = Pr(X = 0 | Y = 1)
\end{array}$$

Want the answer which is LESS likely to be wrong?

$$Pr(error) = \frac{Pr(X=1) Pr(Y=0|X=1)}{Pr(X=1) Pr(Y=0|X=1) + Pr(X=0) Pr(Y=1|X=0)} = \frac{\frac{1}{2}P}{\frac{1}{2}P + \frac{1}{2}(1-p)}$$

Independence

Two events, A, Az, are independent if Pr(A, nAz) = Pr(A,)Pr(Az)

Can be extended:

Events
$$\{A_1, A_2, ..., A_n\}$$
 are independent if $Pr(A_1, nA_2, ..., A_n) = Pr(A_1) Pr(A_2) \cdots Pr(A_k) \forall k \in \mathbb{Z}$

Note: Pairwise independence) independence!

Example: IL = {0,1,2,3}; all occur w/ equal probability

BUT
$$Pr(A)Pr(B)Pr(c) = \left(\frac{1}{2}\right)^3 = \frac{1}{8}$$
!

Random Variables

Given $(\Omega, \mathcal{F}, Pr)$ a random variable is a function $X: \Omega \to \mathbb{R}$ such that $\forall x \in \mathbb{R}, \{\omega \mid X(\omega) \leq x\} \in \mathcal{F} \subseteq \Omega$

Example: Throw two dice: d_1, d_2 $\Sigma = \{(1,1), ..., (6,6)\} \quad \text{we each event occurring wo pr of 1/36}$ Define $X = \max(d_1, d_2) - \min(d_1, d_2)$

$$Pr(X=3) = Pr(\{\omega \mid X(\omega)=3\})$$
= $Pr(\{(1,4), (2,5), (3,6), (4,1), (5,2), (6,3)\})$
= $\frac{1}{6}$ \(\begin{align*} \text{6 outcomes} \\ 36 \text{ total outcomes} \end{align*}

Cumulative Distribution Function

The CDF is defined as

Throw a die

Probability Mass Function

For a discrete r.v.

ie Die

