CS201

MATHEMATICS FOR COMPUTER SCIENCE I

LECTURE 2

OUTLINE

1 Sets, Orders, and Proofs

Manindra Agrawal CS201: Lecture 2 2/14

- A set is denoted by curly braces with elements inside.
 - ► Examples: $\mathbb{Z} = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}$, $\{(x, y) \mid x \in \mathbb{R} \& y = x^2\}$
- If a is an element of A, it is denoted by $a \in A$.
- If B is a subset of A, it is denoted by $B \subseteq A$.
- If B is a subset of A and $B \neq A$, it is denoted by $B \subset A$. Such B is called a proper subset of A.

- A set is denoted by curly braces with elements inside.
 - ► Examples: $\mathbb{Z} = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}$, $\{(x, y) \mid x \in \mathbb{R} \& y = x^2\}$
- If a is an element of A, it is denoted by $a \in A$.
- If B is a subset of A, it is denoted by $B \subseteq A$.
- If B is a subset of A and $B \neq A$, it is denoted by $B \subset A$. Such B is called a proper subset of A.

- A set is denoted by curly braces with elements inside.
 - ► Examples: $\mathbb{Z} = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}$, $\{(x, y) \mid x \in \mathbb{R} \& y = x^2\}$
- If a is an element of A, it is denoted by $a \in A$.
- If B is a subset of A, it is denoted by $B \subseteq A$.
- If B is a subset of A and $B \neq A$, it is denoted by $B \subset A$. Such B is called a proper subset of A.

- A set is denoted by curly braces with elements inside.
 - ► Examples: $\mathbb{Z} = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}$, $\{(x, y) \mid x \in \mathbb{R} \& y = x^2\}$
- If a is an element of A, it is denoted by $a \in A$.
- If B is a subset of A, it is denoted by $B \subseteq A$.
- If B is a subset of A and $B \neq A$, it is denoted by $B \subset A$. Such B is called a proper subset of A.

- Union of two sets A and B is the set containing all elements belonging to either A or B. It is denoted by $A \cup B$.
- Intersection of two sets A and B is the set containing all elements belonging to both A and B. It is denoted by $A \cap B$.
- Subtraction of set B from A is the set containing all elements of A not belonging to B. It is denoted by $A \setminus B$.
- Symmetric difference of sets A and B is the set containing all elements of A and B that do not belong to both. It is denoted by $A \triangle B$.
- It is easy to see that

$$A\Delta B = (A \cup B) \setminus (A \cap B) = (A \setminus B) \cup (B \setminus A).$$

4/14

Manindra Agrawal CS201: Lecture 2

- Union of two sets A and B is the set containing all elements belonging to either A or B. It is denoted by $A \cup B$.
- Intersection of two sets A and B is the set containing all elements belonging to both A and B. It is denoted by $A \cap B$.
- Subtraction of set B from A is the set containing all elements of A not belonging to B. It is denoted by $A \setminus B$.
- Symmetric difference of sets A and B is the set containing all elements of A and B that do not belong to both. It is denoted by $A \triangle B$.
- It is easy to see that

$$A\Delta B = (A \cup B) \setminus (A \cap B) = (A \setminus B) \cup (B \setminus A).$$

- Union of two sets A and B is the set containing all elements belonging to either A or B. It is denoted by $A \cup B$.
- Intersection of two sets A and B is the set containing all elements belonging to both A and B. It is denoted by $A \cap B$.
- Subtraction of set B from A is the set containing all elements of A not belonging to B. It is denoted by $A \setminus B$.
- Symmetric difference of sets A and B is the set containing all elements of A and B that do not belong to both. It is denoted by $A\Delta B$.
- It is easy to see that

$$A\Delta B = (A \cup B) \setminus (A \cap B) = (A \setminus B) \cup (B \setminus A).$$

- Union of two sets A and B is the set containing all elements belonging to either A or B. It is denoted by $A \cup B$.
- Intersection of two sets A and B is the set containing all elements belonging to both A and B. It is denoted by $A \cap B$.
- Subtraction of set B from A is the set containing all elements of A not belonging to B. It is denoted by $A \setminus B$.
- Symmetric difference of sets A and B is the set containing all elements of A and B that do not belong to both. It is denoted by $A\Delta B$.
- It is easy to see that

$$A\Delta B = (A \cup B) \setminus (A \cap B) = (A \setminus B) \cup (B \setminus A).$$

- Cardinality of a finite set A denotes the number of elements in it. It is denoted by |A|.
- This notion, when extended to infinite sets, leads to many interesting conclusions.
- Let us define the cardinality of set of integers, \mathbb{Z} , as \aleph_0 .
- Is the cardinality of set of even integers, denoted as 2ℤ, different?
 Since 2ℤ ⊂ ℤ , |2ℤ | cannot be more than №.
- How does one compare cardinalities of infinite sets?

- Cardinality of a finite set A denotes the number of elements in it. It is denoted by |A|.
- This notion, when extended to infinite sets, leads to many interesting conclusions.
- Let us define the cardinality of set of integers, \mathbb{Z} , as \aleph_0 .
- Is the cardinality of set of even integers, denoted as 2ℤ, different?
 Since 2ℤ ⊂ ℤ, |2ℤ| cannot be more than ℵ₀.
- How does one compare cardinalities of infinite sets?

- Cardinality of a finite set A denotes the number of elements in it. It is denoted by |A|.
- This notion, when extended to infinite sets, leads to many interesting conclusions.
- Let us define the cardinality of set of integers, \mathbb{Z} , as \aleph_0 .
- Is the cardinality of set of even integers, denoted as 2ℤ, different?
 Since 2ℤ ⊂ ℤ, |2ℤ| cannot be more than ℵ₀.
- How does one compare cardinalities of infinite sets?

- Cardinality of a finite set A denotes the number of elements in it. It is denoted by |A|.
- This notion, when extended to infinite sets, leads to many interesting conclusions.
- Let us define the cardinality of set of integers, \mathbb{Z} , as \aleph_0 .
- Is the cardinality of set of even integers, denoted as $2\mathbb{Z}$, different?
 - ▶ Since $2\mathbb{Z} \subset \mathbb{Z}$, $|2\mathbb{Z}|$ cannot be more than \aleph_0 .
- How does one compare cardinalities of infinite sets?

- Cardinality of a finite set A denotes the number of elements in it. It is denoted by |A|.
- This notion, when extended to infinite sets, leads to many interesting conclusions.
- Let us define the cardinality of set of integers, \mathbb{Z} , as \aleph_0 .
- Is the cardinality of set of even integers, denoted as $2\mathbb{Z}$, different?
 - ▶ Since $2\mathbb{Z} \subset \mathbb{Z}$, $|2\mathbb{Z}|$ cannot be more than \aleph_0 .
- How does one compare cardinalities of infinite sets?

- If A and B are both finite, then their cardinalities can be easily compared since they are positive numbers.
- If exactly one of them is infinite, then the infinite set has higher cardinality than finite set.
- To compare cardinalities when both are infinite, we define the notion of bijection.
- Mapping $f: A \mapsto B$ is a bijection if the following properties are satisfied:
 - ▶ f is one-to-one: for any $a \neq a' \in A$, $f(a) \neq f(a')$.
 - ightharpoonup f is onto: for any $b \in B$, there exists an $a \in A$ such that f(a) = b.
- If f is a bijection mapping A to B, f^{-1} is a bijection mapping B to A.

- If A and B are both finite, then their cardinalities can be easily compared since they are positive numbers.
- If exactly one of them is infinite, then the infinite set has higher cardinality than finite set.
- To compare cardinalities when both are infinite, we define the notion of bijection.
- Mapping $f: A \mapsto B$ is a bijection if the following properties are satisfied:
 - ▶ f is one-to-one: for any $a \neq a' \in A$, $f(a) \neq f(a')$.
 - ▶ f is onto: for any $b \in B$, there exists an $a \in A$ such that f(a) = b.
- If f is a bijection mapping A to B, f^{-1} is a bijection mapping B to A.

- If A and B are both finite, then their cardinalities can be easily compared since they are positive numbers.
- If exactly one of them is infinite, then the infinite set has higher cardinality than finite set.
- To compare cardinalities when both are infinite, we define the notion of bijection.
- Mapping $f: A \mapsto B$ is a bijection if the following properties are satisfied:
 - f is one-to-one: for any a ≠ a' ∈ A, f(a) ≠ f(a').
 f is onto: for any b ∈ B, there exists an a ∈ A such that f(a) = b.
- If f is a bijection mapping A to B, f^{-1} is a bijection mapping B to A.

- If A and B are both finite, then their cardinalities can be easily compared since they are positive numbers.
- If exactly one of them is infinite, then the infinite set has higher cardinality than finite set.
- To compare cardinalities when both are infinite, we define the notion of bijection.
- Mapping $f : A \mapsto B$ is a bijection if the following properties are satisfied:
 - ▶ f is one-to-one: for any $a \neq a' \in A$, $f(a) \neq f(a')$.
 - ▶ f is onto: for any $b \in B$, there exists an $a \in A$ such that f(a) = b.
- If f is a bijection mapping A to B, f^{-1} is a bijection mapping B to A.

- If A and B are both finite, then their cardinalities can be easily compared since they are positive numbers.
- If exactly one of them is infinite, then the infinite set has higher cardinality than finite set.
- To compare cardinalities when both are infinite, we define the notion of bijection.
- Mapping $f : A \mapsto B$ is a bijection if the following properties are satisfied:
 - ▶ f is one-to-one: for any $a \neq a' \in A$, $f(a) \neq f(a')$.
 - ▶ f is onto: for any $b \in B$, there exists an $a \in A$ such that f(a) = b.
- If f is a bijection mapping A to B, f^{-1} is a bijection mapping B to A.

- If A and B are both finite, then their cardinalities can be easily compared since they are positive numbers.
- If exactly one of them is infinite, then the infinite set has higher cardinality than finite set.
- To compare cardinalities when both are infinite, we define the notion of bijection.
- Mapping $f : A \mapsto B$ is a bijection if the following properties are satisfied:
 - ▶ f is one-to-one: for any $a \neq a' \in A$, $f(a) \neq f(a')$.
 - ▶ f is onto: for any $b \in B$, there exists an $a \in A$ such that f(a) = b.
- If f is a bijection mapping A to B, f^{-1} is a bijection mapping B to A.

DEFINITION

Set A and B, finite or infinite, have the same cardinality if there exists a bijection between them.

- For finite sets, this definition matches with the standard one.
- For infinite sets, it allows us to compare the cardinalities of two sets.

DEFINITION

Set A and B, finite or infinite, have the same cardinality if there exists a bijection between them.

- For finite sets, this definition matches with the standard one.
- For infinite sets, it allows us to compare the cardinalities of two sets.

DEFINITION

Set A and B, finite or infinite, have the same cardinality if there exists a bijection between them.

- For finite sets, this definition matches with the standard one.
- For infinite sets, it allows us to compare the cardinalities of two sets.

- \bullet \mathbb{Z} and $2\mathbb{Z}$:
 - f(n) = 2n is a bijection between them.
 - ▶ Hence, they have the same cardinality!
- ullet Q and \mathbb{Z} :
 - $f(\frac{m}{n})=2^m\cdot(2n+1)$ is a one-to-one map from $\mathbb Q$ to $\mathbb Z$
 - ightharpoonup g(n)=n is a one-to-one map from $\mathbb Z$ to $\mathbb Q$
 - We now prove Cantor-Bernstein-Schroeder theorem to show that their cardinalities are the same.

- \mathbb{Z} and $2\mathbb{Z}$:
 - f(n) = 2n is a bijection between them.
 - ▶ Hence, they have the same cardinality!
- ullet Q and \mathbb{Z} :
 - $f(\frac{m}{n}) = 2^m \cdot (2n+1)$ is a one-to-one map from \mathbb{Q} to \mathbb{Z} .
 - ▶ g(n) = n is a one-to-one map from \mathbb{Z} to \mathbb{Q} .
 - We now prove Cantor-Bernstein-Schroeder theorem to show that their cardinalities are the same.

- \bullet \mathbb{Z} and $2\mathbb{Z}$:
 - f(n) = 2n is a bijection between them.
 - ▶ Hence, they have the same cardinality!
- ullet Q and \mathbb{Z} :
 - $f(\frac{m}{n}) = 2^m \cdot (2n+1)$ is a one-to-one map from \mathbb{Q} to \mathbb{Z} .
 - g(n) = n is a one-to-one map from \mathbb{Z} to \mathbb{Q} .
 - We now prove Cantor-Bernstein-Schroeder theorem to show that their cardinalities are the same.

- \bullet \mathbb{Z} and $2\mathbb{Z}$:
 - f(n) = 2n is a bijection between them.
 - ▶ Hence, they have the same cardinality!
- ullet Q and \mathbb{Z} :
 - $f(\frac{m}{n}) = 2^m \cdot (2n+1)$ is a one-to-one map from \mathbb{Q} to \mathbb{Z} .
 - g(n) = n is a one-to-one map from \mathbb{Z} to \mathbb{Q} .
 - We now prove Cantor-Bernstein-Schroeder theorem to show that their cardinalities are the same.

CANTOR-BERNSTEIN-SCHROEDER THEOREM

THEOREM

If there exist one-to-one maps from A to B and vice-versa, then there is a bijection between A and B.

PROOF.

- Let $f: A \mapsto B$ and $g: B \mapsto A$ be one-to-one maps.
- Then, f^{-1} is a map from a subset of B to A and g^{-1} is a map from a subset of A to B.
- Since f and g are one-to-one, f^{-1} and g^{-1} are well-defined as maps.

Manindra Agrawal

THEOREM

If there exist one-to-one maps from A to B and vice-versa, then there is a bijection between A and B.

PROOF.

- Let $f: A \mapsto B$ and $g: B \mapsto A$ be one-to-one maps.
- Then, f^{-1} is a map from a subset of B to A and g^{-1} is a map from a subset of A to B.
- Since f and g are one-to-one, f^{-1} and g^{-1} are well-defined as maps.

CANTOR-BERNSTEIN-SCHROEDER THEOREM

THEOREM

If there exist one-to-one maps from A to B and vice-versa, then there is a bijection between A and B.

PROOF.

- Let $f: A \mapsto B$ and $g: B \mapsto A$ be one-to-one maps.
- Then, f^{-1} is a map from a subset of B to A and g^{-1} is a map from a subset of A to B.
- Since f and g are one-to-one, f^{-1} and g^{-1} are well-defined as maps.

THEOREM

If there exist one-to-one maps from A to B and vice-versa, then there is a bijection between A and B.

PROOF.

- Let $f: A \mapsto B$ and $g: B \mapsto A$ be one-to-one maps.
- Then, f^{-1} is a map from a subset of B to A and g^{-1} is a map from a subset of A to B.
- Since f and g are one-to-one, f^{-1} and g^{-1} are well-defined as maps.

• Define a chain as a sequence of alternating elements from A and B,

$$\ldots, a_{i-1}, b_{i-1}, a_i, b_i, a_{i+1}, b_{i+1}, \ldots$$

such that $g^{-1}(a_j) = b_j$ and $f^{-1}(b_j) = a_{j+1}$ for every j.

- A chain will be of infinite length (shown later), and there may be multiple, possibly infinite, chains are present.
- A key property is: any element of $A \cup B$ is present in one and only one chain:
 - ▶ It cannot be present in more than one chain since f^{-1} and g^{-1} are one-to-one
 - An element is trivially present in at least one chain.

10/14

Manindra Agrawal CS201: Lecture 2

• Define a chain as a sequence of alternating elements from A and B,

$$\ldots, a_{i-1}, b_{i-1}, a_i, b_i, a_{i+1}, b_{i+1}, \ldots$$

such that $g^{-1}(a_j) = b_j$ and $f^{-1}(b_j) = a_{j+1}$ for every j.

- A chain will be of infinite length (shown later), and there may be multiple, possibly infinite, chains are present.
- A key property is: any element of $A \cup B$ is present in one and only one chain:
 - ► It cannot be present in more than one chain since f⁻¹ and g⁻¹ are one-to-one
 - An element is trivially present in at least one chain.

• Define a chain as a sequence of alternating elements from A and B,

$$\ldots$$
, a_{i-1} , b_{i-1} , a_i , b_i , a_{i+1} , b_{i+1} , \ldots

such that $g^{-1}(a_j) = b_j$ and $f^{-1}(b_j) = a_{j+1}$ for every j.

- A chain will be of infinite length (shown later), and there may be multiple, possibly infinite, chains are present.
- A key property is: any element of $A \cup B$ is present in one and only one chain:
 - It cannot be present in more than one chain since f^{-1} and g^{-1} are one-to-one
 - ▶ An element is trivially present in at least one chain.

• Define a chain as a sequence of alternating elements from A and B,

$$\ldots$$
, a_{i-1} , b_{i-1} , a_i , b_i , a_{i+1} , b_{i+1} , \ldots

such that $g^{-1}(a_j) = b_j$ and $f^{-1}(b_j) = a_{j+1}$ for every j.

- A chain will be of infinite length (shown later), and there may be multiple, possibly infinite, chains are present.
- A key property is: any element of $A \cup B$ is present in one and only one chain:
 - ▶ It cannot be present in more than one chain since f^{-1} and g^{-1} are one-to-one
 - ▶ An element is trivially present in at least one chain.

Manindra Agrawal CS201: Lecture 2 10/14

• Define a chain as a sequence of alternating elements from A and B,

$$\ldots, a_{i-1}, b_{i-1}, a_i, b_i, a_{i+1}, b_{i+1}, \ldots$$

such that $g^{-1}(a_j) = b_j$ and $f^{-1}(b_j) = a_{j+1}$ for every j.

- A chain will be of infinite length (shown later), and there may be multiple, possibly infinite, chains are present.
- A key property is: any element of $A \cup B$ is present in one and only one chain:
 - ▶ It cannot be present in more than one chain since f^{-1} and g^{-1} are one-to-one
 - ▶ An element is trivially present in at least one chain.

- For element $a \in A$, define length of chain at a to be the number of elements in the chain after a. The number can be infinite.
- Define mapping $h : A \mapsto B$ as:

$$h(a) = \left\{ egin{array}{c|c} f(a) & \text{length of chain at a is even or infinite} \\ g^{-1}(a) & \text{otherwise} \end{array} \right.$$

• We claim that *h* is the desired bijection.

- For element $a \in A$, define length of chain at a to be the number of elements in the chain after a. The number can be infinite.
- Define mapping $h: A \mapsto B$ as:

$$h(a) = \begin{cases} f(a) & \text{length of chain at } a \text{ is even or infinite} \\ g^{-1}(a) & \text{otherwise} \end{cases}$$

• We claim that *h* is the desired bijection.

11 / 14

- For element $a \in A$, define length of chain at a to be the number of elements in the chain after a. The number can be infinite.
- Define mapping $h: A \mapsto B$ as:

$$h(a) = \left\{ \begin{array}{c|c} f(a) & \text{length of chain at } a \text{ is even or infinite} \\ g^{-1}(a) & \text{otherwise} \end{array} \right.$$

• We claim that *h* is the desired bijection.

• h is one-to-one:

- ▶ Suppose h(a) = h(a').
- ▶ If h equals f or g^{-1} on both a and a' then a = a' since both f and g^{-1} are one-to-one.
- ▶ Suppose h(a) = f(a) and $h(a') = g^{-1}(a')$.
- ► Then length of chain at a' is odd and length of chain at a is two less and so also odd.
- ▶ Hence $h(a) = g^{-1}(a)$ by definition which contradicts the assumption.

Manindra Agrawal CS201: Lecture 2 12 / 14

• h is one-to-one:

- ▶ Suppose h(a) = h(a').
- ▶ If h equals f or g^{-1} on both a and a' then a = a' since both f and g^{-1} are one-to-one.
- ▶ Suppose h(a) = f(a) and $h(a') = g^{-1}(a')$.
- ► Then length of chain at a' is odd and length of chain at a is two less and so also odd.
- ▶ Hence $h(a) = g^{-1}(a)$ by definition which contradicts the assumption.

12 / 14

• h is one-to-one:

- ► Suppose h(a) = h(a').
- ▶ If h equals f or g^{-1} on both a and a' then a = a' since both f and g^{-1} are one-to-one.
- ► Suppose h(a) = f(a) and $h(a') = g^{-1}(a')$.
- ► Then length of chain at a' is odd and length of chain at a is two less and so also odd.
- ▶ Hence $h(a) = g^{-1}(a)$ by definition which contradicts the assumption.

12 / 14

• h is one-to-one:

- ▶ Suppose h(a) = h(a').
- ▶ If h equals f or g^{-1} on both a and a' then a = a' since both f and g^{-1} are one-to-one.
- ► Suppose h(a) = f(a) and $h(a') = g^{-1}(a')$.
- ► Then length of chain at a' is odd and length of chain at a is two less and so also odd.
- ▶ Hence $h(a) = g^{-1}(a)$ by definition which contradicts the assumption.

Manindra Agrawal

• h is onto:

▶ Any element $b \in B$ lies on an infinite length chain:

$$\dots, f(g(f(g(b)))), g(f(g(b))), f(g(b)), g(b), b, \dots$$

- ▶ If the length of the chain at $g(b) \in A$ is odd, h(g(b)) = b.
- ▶ If the length of the chain at g(b) is even or infinite, then $f^{-1}(b)$ exists and $h(f^{-1}(b)) = b$.

13 / 14

h is onto:

▶ Any element $b \in B$ lies on an infinite length chain:

$$\dots, f(g(f(g(b)))), g(f(g(b))), f(g(b)), g(b), b, \dots$$

- ▶ If the length of the chain at $g(b) \in A$ is odd, h(g(b)) = b.
- ▶ If the length of the chain at g(b) is even or infinite, then $f^{-1}(b)$ exists and $h(f^{-1}(b)) = b$.

13 / 14

h is onto:

▶ Any element $b \in B$ lies on an infinite length chain:

$$\dots, f(g(f(g(b)))), g(f(g(b))), f(g(b)), g(b), b, \dots$$

- ▶ If the length of the chain at $g(b) \in A$ is odd, h(g(b)) = b.
- ▶ If the length of the chain at g(b) is even or infinite, then $f^{-1}(b)$ exists and $h(f^{-1}(b)) = b$.

h is onto:

▶ Any element $b \in B$ lies on an infinite length chain:

$$\dots, f(g(f(g(b)))), g(f(g(b))), f(g(b)), g(b), b, \dots$$

- ▶ If the length of the chain at $g(b) \in A$ is odd, h(g(b)) = b.
- ▶ If the length of the chain at g(b) is even or infinite, then $f^{-1}(b)$ exists and $h(f^{-1}(b)) = b$.

COMPARING CARDINALITIES

- ullet Q and \mathbb{Z} :
 - $f(\frac{m}{n}) = 2^m \cdot (2n+1)$ is a one-to-one map from \mathbb{Q} to \mathbb{Z} .
 - g(n) = n is a one-to-one map from \mathbb{Z} to \mathbb{Q} .
 - ightharpoonup By Cantor-Bernstein-Schroeder Theorem, there is a bijection between $\mathbb Z$ and $\mathbb Q$ and hence they have the same cardinality.
- ullet \mathbb{R} and \mathbb{Z} :
 - ► Their cardinalities are not the same!
 - We prove this in next lecture.

Manindra Agrawal

COMPARING CARDINALITIES

- \bullet \mathbb{Q} and \mathbb{Z} :
 - $f(\frac{m}{n}) = 2^m \cdot (2n+1)$ is a one-to-one map from \mathbb{Q} to \mathbb{Z} .
 - g(n) = n is a one-to-one map from \mathbb{Z} to \mathbb{Q} .
 - ▶ By Cantor-Bernstein-Schroeder Theorem, there is a bijection between Z and Q and hence they have the same cardinality.
- ullet \mathbb{R} and \mathbb{Z} :
 - Their cardinalities are not the same
 - We prove this in next lecture.

COMPARING CARDINALITIES

- ullet Q and \mathbb{Z} :
 - $f(\frac{m}{n}) = 2^m \cdot (2n+1)$ is a one-to-one map from \mathbb{Q} to \mathbb{Z} .
 - g(n) = n is a one-to-one map from \mathbb{Z} to \mathbb{Q} .
 - ▶ By Cantor-Bernstein-Schroeder Theorem, there is a bijection between \mathbb{Z} and \mathbb{Q} and hence they have the same cardinality.
- \bullet \mathbb{R} and \mathbb{Z} :
 - ▶ Their cardinalities are not the same!
 - We prove this in next lecture.