Lecture notes

These lecture notes are not guaranteed to be 100% correct and they are possibly not exactly identical to the lecture. However, in case you find any errors, please feel free to send a mail to Andy: awiese@dii.uchile.cl

- pivot of Simplex algorithm
 - given basis B, compute b.f.s. $x = (x_B, x_N)$
 - compute reduced costs \bar{c} . If $\bar{c} \geq 0$ then x is optimal, STOP. Otherwise select variable x_j with $\bar{c}_j < 0$
 - compute direction d. If $d \ge 0$ then OPT= $-\infty$, STOP.
 - compute θ^* and determine index ℓ such that $y_{B(\ell)} = 0$ where $y = x + \theta^* d^j$
 - form new basis by replacing $x_{B(\ell)}$ with x_j

Theorem 1. Assume $P \neq \emptyset$, every basic feasible solution is nondegenerate, and that the algorithm is initialized with a basic feasible solution. Then it terminates after a finite number of iterations. At termination, there are the following two possibilities:

- We have an optimal basis B and an associated basic feasible solution which is optimal.
- We have found a vector d satisfying Ad = 0, $d \ge 0$, and $c^T d < 0$, and thus LP is unbounded (i.e., $OPT = -\infty$).
- Proof:
- If algorithm terminates in step 2 then we are optimal because $\bar{c} \geq 0$.
- If algorithm terminates in step 3 then we are at basic feasible solution x and found a direction $d^j \geq 0$ with

$$- \text{ with } Ad^{j} = 0$$

$$- \Rightarrow x + \theta d^{j} \in P \text{ for all } \theta > 0$$

$$- c^{T} d^{j} = \bar{c}_{j} < 0$$

$$- \text{ cost of } x + \theta d^{j} \text{ is } c^{T} (x + \theta d^{j}) = c^{T} x + \theta \underbrace{c^{T} d^{j}}_{<0}$$

$$- \Rightarrow LP \text{ is unbounded}$$

- Termination:
- non-degeneracy: always $\theta^* > 0$
- cost at new point $x + \theta d^j$ is $c^T(x + \theta d^j) = c^T x + \theta \underbrace{c^T d^j}_{<0} < c^T x$
- ullet \Rightarrow in each pivot the objective value strictly decreases
- \Rightarrow no vertex is visited twice
- only finite number of vertices \Rightarrow only finite number of iterations

1 Degenerate problems

- stepsize θ^* can be zero.
 - then new solution is same as old one (but with different basis) \Rightarrow no progress
 - (happens if $d_i^j < 0$ but basic variable $x_i = 0$)
- simplex algorithm can cycle and stay forever in the same solution
- idea: use smarter pivoting rule!
- (pivoting rule tells me what decision to take if I have a choice
- degrees of freedom
 - select variable to enter the basis (among those with negative \bar{c}_j)
 - select variable to leave basis (if more than one option)
- Bland's rule
 - 1. find smallest j for which $\bar{c}_i < 0$ and let x_i enter the basis
 - 2. out of all variables x_i tied for leaving basis choose variable x_i with smallest i
 - finite number of iterations guaranteed
- There are also other pivoting rules that guarantee finite number of iterations

2 Find initial basic feasible solution

- Simplex requires basic feasible solution to start
- how to find? \leadsto with another LP

given problem	Generate new (artificial) problem
minimize $c^T x$	minimize $\sum_{i=1}^{m} y_i$
s.t. $Ax = b$	s.t. $Ax + y = b$
$x \ge 0$	$x \ge 0$
assume w.l.o.g. that $b \ge 0$ (can be achieved by multiplying rows by -1)	$y \ge 0$

- if x feasible solution to given problem \Rightarrow (x,0) is feasible sol. to new problem with zero cost
- $\bullet \Rightarrow$ optimal solution to new problem has cost zero
- if optimal solution (x^*, y^*) to new problem has non-zero cost \Rightarrow given problem is infeasible
- Phase I
 - solve artificial problem: start vertex: x = 0, y = b is basic feasible solution
 - initial basis consists of all y-variables
 - let (x, y) optimal solution to new problem
 - * if $y \neq 0$ then given problem is infeasible
 - * if y = 0 then x is feasible solution to given problem
 - let (x,0) be optimal basic feasible solution to new problem with basis B

- if B contains only x-variables \Rightarrow x is basic solution with basis B for given problem
- assume B contains only k < m x-variables
- in (x,0) only the variables $x_{B(1)},...,x_{B(k)}$ can be non-zero and $\sum_{i=1}^k A_{B(i)}x_{B(i)}=b$
- columns $A_{B(1)}, ..., A_{B(k)}$ are linearly independent
- we can find indices B'(k+1),...,B'(m) such that $A_{B(1)},...,A_{B(k)},A_{B'(k+1)},...,A_{B'(m)}$ are linearly independent
- -B' = (B(1), ..., B(k), B'(k+1), ..., B'(m)) is basis for x in given problem

• Phase II

- solve given problem
- start with x and basis B'

3 Simplex running time

- each iteration in polytime
 - compute A_B^{-1} : $O(m^3)$ steps
 - compute reduced costs \bar{c} : O(nm) (recall that $\bar{c} = c^T c_B^T A_B^{-1} A$)
 - compute direction d and index $\ell \colon O(m^2) \ (d_B^j = -A_B^{-1}A_j)$
 - compute new point and new basis: O(n)
 - overall: $O(m^3 + nm)$ (recall that $m \le n$)
- number of iterations: depends on pivoting rule, can be exponential (=slow)
- no rule known that guarantees polynomial running time
- but: Simplex is very fast in practise
- Unknown: is there path between any two vertices of length poly(n, m)?
- Hirsch conjecture: always exists path of length m-n.
- False: [Santos 2010] \exists polytope in \mathbb{R}^{43} with m = 86 where two vertices are 44 steps apart.