Revised: 1/12/2021

Summarizing Data I

Michael C. Hackett
Assistant Professor, Computer Science

Community
College
of Philadelphia

Scatterplots

• Scatterplots show the relationship between two numerical variables.

Total Income vs Loan Amount

plot function readr package

Scatterplots

```
library(readr)
county <- read_csv("county.csv")
plot(x=county$poverty,
        y=county$median_hh_income,
        main="Median Income vs Poverty Rate",
        xlab="Poverty Rate (Percent)",
        ylab="Median Income",
        type="p",
        col="blue")</pre>
```

Median Income vs Poverty Rate

Dot Plots

- A one variable scatterplot.
 - Best used with small data sets

stripchart function

Mean

- The **mean** (or average) is one method to find the center of a distribution.
 - The sum of the observed values divided by the total number of observed values.

• The mean is denoted by \bar{x}

$$\bar{x} = \frac{x_1 + x_2 + \dots + x_n}{n}$$

Mean

- More specifically, the *sample mean* is denoted by \bar{x}
- The *population mean* is denoted by μ

```
library(readr)
loan50 <- read_csv("loan50.csv")
mean(loan50$annual_income)
[1] 86170</pre>
```

mean function

```
> library(readr)
> loan50 <- read_csv("loan50.csv")
Parsed with column specification:
cols(
 state = col_character(),
 emp_length = col_double(),
 term = col_double().
 homeownership = col_character(),
 annual_income = col_double().
 verified_income = col_character(),
 debt_to_income = col_double(),
 total_credit_limit = col_double().
 total_credit_utilized = col_double(),
 num_cc_carrying_balance = col_double(),
 loan_purpose = col_character(),
 loan_amount = col_double(),
 grade = col_character(),
 interest_rate = col_double(),
 public_record_bankrupt = col_double(),
 loan_status = col_character(),
 has_second_income = col_logical().
 total_income = col_double()
> mean(loan50$annual_income)
[1] 86170
```

- In a histogram, observed values are placed into "bins".
 - Histograms show data density; Higher bars = fuller bins

hist function seq function

One bin at every 2.5 steps between 5 and 30

One bin at every step

One bin at every ten steps

Too much detail

Just right

Too little detail

Modality

- The modality of a distribution is one way to describe its shape
 - *Unimodal*: One prominent peak
 - Bimodal: Two prominent peaks
 - *Multimodal*: More than two prominent peaks
 - *Uniform*: No prominent peaks

Skew

- The **skew** of a distribution is another way to describe its shape
 - Right Skewed: The data trails off to the right
 - Left Skewed: The data trails off to the left
 - Symmetric: The data trails off in both directions (roughly) equally

• The distance of an observation from the mean is called **deviation**.

$$deviation = x_n - \bar{x}$$

```
> mean(loan50$annual_income)
[1] 86170
> sample_mean <- mean(loan50$annual_income)
> x6 <- loan50$annual_income[6]
> deviation <- x6 - sample_mean
> deviation
[1] -19170
```

• The average of the squared deviations from the mean is called the **variance** (s^2) .

$$s^{2} = \frac{(x_{1} - \bar{x})^{2} + (x_{2} - \bar{x})^{2} + \dots + (x_{n} - \bar{x})^{2}}{n - 1}$$

> variance <- var(loan50\$interest_rate)
> variance
[1] 25.52387

var function

- Measures how the data is dispersed around the mean
 - The greater the spread, the higher the variance is in relation to the mean

> variance [1] 25.52387

> standard_dev [1] 5.052115

• The square root of the variance is called the **standard deviation (s)**.

$$S = \sqrt{S^2}$$
 > variance <- var(loan50\$interest_rate) > variance

sd function

- Represents the typical deviation of observations from the mean
 - 70% of data will typically be within one standard deviation of the mean; 95% will be within two standard deviations

> standard_dev <- sd(loan50\$interest_rate)

• Symbols:

- Sample variance: s^2
- Sample standard deviation: s
- Population variance: σ^2
- Population standard deviation: σ

• The box plot summarizes a data set with five statistics.

Boxplot function

- 1. The **median** is the observation in the middle of all observations
 - If there are an even number of observations, the average of the two middle observations is used.
 - 50% of data fall above the median; the other 50% falls below it

- 2. The **third quartile** (Q_3 or "75th percentile") indicates where 75% of values in the data set fall under
 - 75% of observations fall below that line

- 3. The **first quartile** (Q_1 or "25th percentile") indicates where 25% of values in the data set fall under
 - 25% of observations fall below that line

- Together, they mark the boundaries of the interquartile range or IQR.
 - 75% of observations fall below to top line
 - 25% of observations fall below the bottom line
 - Thus, 50% of all observations will fall between them (in the box)

$$IQR = Q_3 - Q_1$$

4 and 5. The whiskers try to capture the data outside of the IQR

- At most, they can extend 1.5 \times IQR
- Max upper whisker = $Q_3 + 1.5 \times IQR$
- Max lower whisker = $Q_1 1.5 \times IQR$

 ${f \cdot}$ The lower whisker does not need to extend that far to capture the data below Q_1

- The upper whisker extends as far as it can go $(Q_3 + 1.5 \times IQR)$
- We can see there are data points still outside of its reach.
 - These two data points (distant from the rest of the data) could be classified as outliers

- Looking for outliers is useful for:
 - Identifying strong skew
 - Identifying data collection or data entry errors
 - Offering insight into interesting properties of the data

Summary function

- Median and IQR are **robust statistics** in that extreme outliers have little effect on their values.
- This example shows an observation being changed three times.
 - What effect will this have on the sample statistics?

- No impact on median and IQR measurements
- Did impact the mean and standard deviation measurements

	robust		not robust	
scenario	median	IQR	\bar{x}	s
original interest_rate data	9.93%	5.76%	11.57%	5.05%
move $26.3\% \rightarrow 15\%$	9.93%	5.76%	11.34%	4.61%
move $26.3\% \rightarrow 35\%$	9.93%	5.76%	11.74%	5.68%

- In symmetric distributions, the mean is typically used to describe the center
 - mean ~ median

- In skewed distributions or where extreme outliers are present, the median is typically used to describe the center
 - Right skewed: mean > median
 - Left skewed: mean < median

• For symmetric distributions, use \bar{x} and s to describe the center and spread

• For skewed distributions: use median and IQR to describe the center and spread