СЕМ, 21.01.2023 Контролна работа 2

Tочната формула за оценка се формира в зависимост от резултатите. За приблизителна, може да използвате 2+ брой точки. Време за работа: 3 часа. Успех.

Ще считаме, че навсякъде работим върху вероятностно пространство  $(\Omega, \mathcal{F}, \mathbb{P})$ .

Да припомним, че рекурентното уравнение  $a_n = Aa_{n-1} + B$  има решение  $a_n = C_1A^n + C_2$ , където константите  $C_1$  и  $C_2$  се определят от началните условия.

Задача 1. Нека съвместната плътност на X и Y е  $f_{X,Y}(x,y)=cx^2+1$  за  $x,y\geq 0, x+2y\leq 1$  и 0 извън тази област, където c е някаква константа. Намерете:

- 1. (0.5 т.) c, плътността на X и очакването на Y;
- 2.  $(0.25 \text{ T.}) \mathbb{E}(Y|X=1/2);$
- 3. (0.25 т.) плътността на случайната величина Z = X + 2Y.

Задача 2. Магазин работи от 10:00 до 18:00. Нека моделираме времената на пристигане между последователни клиенти под 30 години в него като независими експоненциални величини със средно 5 минути и съответно времената между последователни клиенти над 30 години като независими експоненциални величини със средно 10 минути.

- 1. (0.5 т.) Каква е вероятността магазинът да бъде посетен от поне 100 клиенти под 30 години за 1 ден?
- 2. (0.25 т.) Намерете разпределението на времето до първия клиент за деня.
- 3. (0.25 т.) Можете да приемете, че времената между последователните хора са независими и са разпределени като случайната величина от  $2^1$ . Каква е вероятността магазинът да бъде посетен от поне 150 души за 1 ден?

**Задача 3.** Точка започва да се движи от началото на координатната система успоредно на някоя от осите, като всеки път избира равномерно една от посоките и се премества на 1 в съответната посока. На картинката по-долу може да видите примерна реализация на маршрут от 10 стъпки.



- 1. (0.5 т.) Каква е вероятността след 1000 стъпки х-координатата да бъде по-голяма от 10?
- 2. (0.5 т.) Намерете очакването<sup>2</sup> на квадрата от разстоянието до центъра след 100 стъпки.

**Задача 4.** Нека  $X_0 \sim Exp(1)$  и  $X_n = 2X_{n-1} + \epsilon_n$  за  $n \in \mathbb{N}$ , където  $\epsilon_n$  са незавивисими N(0,1) случайни величини.

- 1. (0.25 т.) Намерете  $\mathbb{E}X_n$  и  $DX_n$ .
- 2. (0.25 т.) Нека  $S_{n,1} = \sum_{i=1}^{n} (X_i 2X_{i-1})^2$  и  $S_{n,2} = \sum_{i=1}^{n} |X_i 2X_{i-1}|$ . Намерете  $\mathbb{E}S_{n,1}$  и  $\mathbb{E}S_{n,2}$ .
- 3. (0.5 т.) Можете ли да отговорите на въпросите от 1. и 2., когато  $\epsilon_i \sim N(1,2)$ ?

<sup>&</sup>lt;sup>1</sup>Бонус\*\*: Докажате го.

<sup>&</sup>lt;sup>2</sup>Бонус\*\*\*: и дисперсията!