Simple Games

- Games: a mathematical formalism for rational interaction
- What is the best solution concept? (Nash Equilibrium)

Types of Uncertainty

Alleatory

Carlo Constant

Markov Decision Process

Epistemic (Static)

Reinforcement Learning

Epistemic (Dynamic)

POMDP

Interaction

Game

Normal Form Games

Α

- Alice and Bob are working on a homework assignment.
- They can either **share** or withhold their knowledge.
- If one player shares knowledge, the other benefits greatly, but the sharer also benefits by getting to test their knowledge

Alice's Payoffs

В

	S	W
S	4	2
W	3	1

Bob's Payoffs

В

	S	W
S	4	3
W	2	1

Bob

W

Alice

2, 3 4, 4 3, 2 W 1, 1

Called a **Normal Form**, **Simple**, or **Bimatrix** Game

Question for today: What **solution concept** should we use for games?

Dominant Strategies

Bob

Alice

	S	W
S	4, 4	2, 3
W	3, 2	1, 1

- **Dominant (Pure) Strategy**: Action *a* is a dominant strategy if it is a best response to every action taken by the other player.
- **Dominant Strategy Equilibrium**: Every player plays a dominant strategy

Definitions

- Action $a^i \in A^i$
- Joint Action $a=(a^1,\ldots,a^k)$
- All Other Actions $a^{-i}=(a^1,\ldots,a^{i-1},a^{i+1},\ldots,a^k)$
- Reward $R^i(a)$
- Joint Reward $R(a) = (R^1(a), \dots, R^k(a))$

Deterministic Best Response:

Action a^i is a deterministic best response

to
$$a^{-i}$$
 if $R^i(a^i,a^{-i}) \geq R^i({a^i}',a^{-i}) \quad orall {a^i}'$

Is the dominant strategy equilibrium always the best outcome for the players?

A more surprising example: The Prisoner's Dilemma

- 2 criminals are captured
- Each can either keep silent or testify
 - other keeps silent -> minor conviction (1 year)
 - other testifies -> major conviction: 4 years
 - testify -> 1 year removed from sentence

Player 1

Player	2
--------	---

	S	Т
S	-1, -1	-4, 0
Т	0, -4	-3, -3

- Dominant strategy for both players is to testify
- Dominant strategy equilibrium is a very bad social result (for the criminals)

Do all simple games have a dominant strategy equilibrium?

Collision Avoidance Game

Example: Airborne Collision Avoidance

Pure Nash Equilibrium: All players play a deterministic best response.

Which equilibrium is better?

Do all simple games have a pure Nash equilibrium?

Practice: Find Pure Nash Equilibria

	Player 2			
		a	b	c
Playor 1	a	4,4	2,5	0,0
Player 1	b	5,2	3,3	0,0
•	С	0,0	0,0	10,10

Missile Defense Game

Missile Defense (simplified)

No Pure Nash Equilibrium!

Need a broader solution concept: Mixed Nash equilibrium.

Vocabulary and Notation for **Mixed Strategies**

Single Player

Joint

$$a^i \in A^i$$

$$a \in A$$

$$\pi^i(a^i)$$

$$\pi(a) = \prod_i \pi^i(a^i)$$

$$R^i(a)$$

$$U^i(\pi) = \sum_a R^i(a)\pi(a)$$
 $U(\pi) = \sum_a R(a)\pi(a)$

$$U(\pi) = \sum_a R(a)\pi(a)$$

Two Player Zero Sum:

$$R^1(a) + R^2(a) = 0 \quad orall a$$

Best Response: Given a joint policy of all other agents, π^{-i} , a best response is a policy π^i that satisfies

$$U^{i}\left(\pi^{i},\pi^{-i}
ight)\geq U^{i}\left({\pi^{i}}',\pi^{-i}
ight)$$

for all other $\pi^{i'}$.

Missile Defense Game

Missile Defense (simplified)

• A *Nash equilibrium* is a joint policy in which all agents are following a best response

Rock-paper scissors

- 1. Guess the Nash Equilibrium argument
- 2. Make a qualitative argument that this is an NE based on best responses

		agent 2	
	rock	paper	scissors
rock	0,0	-1,1	1,-1
agent 1 paper	1, -1	0,0	-1,1
scissors	-1,1	1, -1	0,0

Every finite game has a Nash Equilibrium

Kakutani's fixed-point theorem

A correspondence $f: X \to X$ has a fixed point (i.e., $\mathbf{x} \in f(\mathbf{x})$ for some $\mathbf{x} \in X$) if all of the following conditions hold.

- X is a non-empty, closed, bounded, and convex set.
- (2) f(x) is non-empty for any x.
- (3) f(x) is convex for any x.
- (4) The set $\{(\mathbf{x}, \mathbf{y}) \mid \mathbf{y} \in f(\mathbf{x})\}$ is closed.
- Let x be a strategy profile, π .
- Let f be BR, that is, the best response operator
- A fixed point of BR is a Nash Equilibrium
- ullet The BR operator and policy space for finite games meet the conditions above
- ullet BR has a fixed point for every finite game, i.e. every finite game has a Nash Equilibrium

Calculating Mixed Nash

	Stag	Hare
Stag	4, 4	1, 3
Hare	3, 1	2, 2

- In a Mixed Nash Equilibrium, players must be *indifferent* between two or more actions
- (In large games, finding the support of the mixed strategies is the hard part)

General approach to find Nash Equilibria

minimize
$$\sum_{i} \left(U^{i} - U^{i}(\boldsymbol{\pi}) \right)$$
 subject to $U^{i} \geq U^{i}(a^{i}, \boldsymbol{\pi}^{-i})$ for all i, a^{i}
$$\sum_{a^{i}} \pi^{i}(a^{i}) = 1 \text{ for all } i$$

$$\pi^{i}(a^{i}) \geq 0 \text{ for all } i, a^{i}$$

Algorithms that use best response

Iterated Best Response: randomly cycle between agents who play the best response for the current policy (converges to Nash for certain narrow classes of games)

Fictitious Play:

1. Estimate maximum likelihood policies for opponents:

$$\pi^j(a^j) \propto N(j,a^j)$$

2. Play best response to estimated policy

(converges to Nash for wider class of games, notably zero-sum)

Battle of the Sexes Bach or Stravinsky

- Two people want to go to a concert
- P1 prefers Bach, P2 Stravinsky

Correlated Equilibr	ʻium
----------------------------	------

- A correlated joint policy is a single distribution over the joint actions of all agents.
- A *correlated equilibrium* is a correlated joint policy where no agent *i* can increase their expected utility by deviating from their current action to another.
- Easier to find than Nash equilibrium (Linear Program)

	В	S
В	2, 1	0,0
S	0, 0	1, 2

Recap

- Games provide a mathematical framework for analyzing interaction between rational agents
- Games may not have a single "optimal" solution; instead there are equilibria
- If every player is playing a best response, that joint policy is a Nash Equilibrium
- Every finite game has at least one Nash Equilibrium (pure or mixed)
- Mixed Nash equillibria occur when players are indifferent between two outcomes