

$$A(x \to x') = \min\left(1, \frac{\pi(x')Q(x' \to x)}{\pi(x)Q(x \to x')}\right)$$

$$A(x \to x') = \min\left(1, \frac{\pi(x')Q(x' \to x)}{\pi(x)Q(x \to x')}\right) = \min\left(1, \frac{\pi(x')}{\pi(x)}\right)$$

$$A(x \to x') = \min\left(1, \frac{0.27}{0.07}\right) = \min(1, 3.87)$$

$$A(x \to x') = \min\left(1, \frac{0.27}{0.07}\right) = \min(1, 3.87)$$

$$A(x \to x') = \min\left(1, \frac{0.28}{0.27}\right) = \min(1, 1.01)$$

$$A(x \to x') = \min\left(1, \frac{0.28}{0.27}\right) = \min(1, 1.01)$$

$$A(x \to x') = \min\left(1, \frac{0.04}{0.28}\right) = \min(1, 0.13)$$

$$A(x \to x') = \min\left(1, \frac{0.04}{0.28}\right) = \min(1, 0.13)$$

$$A(x \to x') = \min\left(1, \frac{0.20}{0.28}\right) = \min(1, 0.73)$$

$$A(x \to x') = \min\left(1, \frac{0.20}{0.28}\right) = \min(1, 0.73)$$

$$Q(x \to x') = \mathcal{N}(x, 1)$$

$$Q(x \to x') = \mathcal{N}(x, 1)$$

$$Q(x \to x') = \mathcal{N}(x, 0.1^2)$$

$$Q(x \to x') = \mathcal{N}(x, 10^2)$$

Recall Gibbs sampling

Recall Gibbs sampling

$$x_1^{k+1} \sim p(x_1 \mid x_2 = x_2^k, x_3 = x_3^k)$$
 $x_2^{k+1} \sim p(x_2 \mid x_1 = x_1^{k+1}, x_3 = x_3^k)$
 $x_3^{k+1} \sim p(x_3 \mid x_1 = x_1^{k+1}, x_2 = x_2^{k+1})$

Recall Gibbs sampling

Lets make it parallel

$$x_1^{k+1} \sim p(x_1 \mid x_2 = x_2^k, x_3 = x_3^k)$$
 $x_2^{k+1} \sim p(x_2 \mid x_1 = x_1^{k+1}, x_3 = x_3^k)$
 $x_3^{k+1} \sim p(x_3 \mid x_1 = x_1^{k+1}, x_2 = x_2^{k+1})$

Recall Gibbs sampling

Lets make it parallel

$$x_1^{k+1} \sim p(x_1 \mid x_2 = x_2^k, x_3 = x_3^k)$$
 $x_2^{k+1} \sim p(x_2 \mid x_1 = x_1^k, x_3 = x_3^k)$
 $x_3^{k+1} \sim p(x_3 \mid x_1 = x_1^k, x_2 = x_2^k)$

Recall Gibbs sampling

Lets make it parallel

It's wrong now, but can correct with Metropolis Hastings!

$$x_1^{k+1} \sim p(x_1 \mid x_2 = x_2^k, x_3 = x_3^k)$$
 $x_2^{k+1} \sim p(x_2 \mid x_1 = x_1^k, x_3 = x_3^k)$
 $x_3^{k+1} \sim p(x_3 \mid x_1 = x_1^k, x_2 = x_2^k)$

Rejection sampling applied to Markov Chains

Pros:

You can choose among family of Markov Chains

Rejection sampling applied to Markov Chains

Pros:

- You can choose among family of Markov Chains
- Works for unnormalized densities

Rejection sampling applied to Markov Chains

Pros:

- You can choose among family of Markov Chains
- Works for unnormalized densities
- Easy to implement

Rejection sampling applied to Markov Chains

Pros:

- You can choose among family of Markov Chains
- Works for unnormalized densities
- Easy to implement

Cons:

Samples are still correlated

Rejection sampling applied to Markov Chains

Pros:

- You can choose among family of Markov Chains
- Works for unnormalized densities
- Easy to implement

Cons:

- Samples are still correlated
- Have to choose among family of Markov Chains ©