The Efficacy of Chaotic Neural Networks for Asymmetric Encryption of Audio Files

1st Patrick Pfenning

School of Computing and Data Science
Wentworth Institute of Technology
Boston, MA
pfenningp@wit.edu

Abstract—This document is a model and instructions for Lagran. This and the IEEEtran.cls file define the components of your paper [title, text, heads, etc.]. *CRITICAL: Do Not Use Symbols, Special Characters, Footnotes, or Math in Paper Title or Abstract.

Index Terms—component, formatting, style, styling, insert

I. INTRODUCTION

- A. History of Encryption
- B. Importance in Today's World

II. BACKGROUND

- A. What is Chaos?
 - Chaos is statistically indistinguishable from randomness [1]
 - Sensitivity to initial conditions
 - · Initial conditions used to build key
 - ..

B. Numeric Public-Key Algorithms

- RSA
- AES
- Triple DES
- Blowfish
- Twofish
- ...

III. LITERATURE REVIEW

[2]-[4]

IV. BUILDING THE NETWORK

- A. Chaotic Functions
 - Hénon map
 - Logistic map
 - Lorenz system
 - Tent map
 - · Horseshoe map
 - ...
- B. Network and Diagram

Outline inputs and hidden layers here

Fig. 1. Example CNN Architecture

V. ALGORITHM

- A. Key Generation
- B. Diffusion
- C. Encryption
- D. Decryption
- E. De-Diffusion

VI. EXPERIMENTATION AND RESULTS

Here we test our algorithm against several existing methods

- A. Processing Time and Complexity
- B. Histogram Analysis
- C. Correlation Analysis
- D. Peak Signal to Noise Ratio
- E. Encryption Quality
- F. Vulnerability to Attacks
- G. Key Sensitivity

VII. FUTURE WORK

VIII. CONCLUSION

IX. ACKNOWLEDGMENTS

REFERENCES

- [1] K. T. Alligood, T. D. Sauer, and J. A. Yorke, Chaos. Springer, 11 1996.
- [2] S. Lokesh and M. R. Kounte, "Chaotic neural network based pseudorandom sequence generator for cryptographic applications," pp. 1–5, 10
- [3] H. Hamdy and A. El-Zoghabi, "Public key cryptography based on chaotic neural network," 08 2014.
- [4] V. Gujral and S. Pradhan, "Cryptography using artificial neural networks," 01 2009.