$\tau_{1}^{\#2}{}_{\alpha}$	0	0	0	0	0	0	0
$\tau_{1^{-}}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2} \alpha t_{1}^{\#1} \alpha t_{1}^{\#2}$	0	0	0	0	0	0	0
$\sigma_{1}^{\#1}{}_{\alpha}$	0	0	0	$\frac{2}{k^2 (r_3 + 2 r_5)}$	0	0	0
$\tau_{1}^{\#1}{}_{\alpha\beta}$	$-\frac{i\sqrt{2}}{k(1+k^2)(2r_3+r_5)}$	$\frac{i(3k^2(2r_3+r_5)+2t_2)}{k(1+k^2)^2(2r_3+r_5)t_2}$	$\frac{3k^2(2r_3+r_5)+2t_2}{(1+k^2)^2(2r_3+r_5)t_2}$	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha\beta}$	$-\frac{\sqrt{2}}{k^2(1+k^2)(2r_3+r_5)}$	$\frac{3k^2(2r_3+r_5)+2t_2}{(k+k^3)^2(2r_3+r_5)t_2}$	$-\frac{i(3k^2(2r_3+r_5)+2t_2)}{k(1+k^2)^2(2r_3+r_5)t_2}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{\alpha\beta}$		$-\frac{\sqrt{2}}{k^2(1+k^2)(2r_3+r_5)}$	$\frac{i\sqrt{2}}{k(1+k^2)(2r_3+r_5)} \ .$	0	0	0	0
	$\sigma_{1}^{\#1} + ^{lphaeta}$	$\sigma_1^{#2} + \alpha \beta$	$\tau_{1}^{\#1} + \alpha \beta$	$\sigma_{1}^{\#1} +^{\alpha}$	$\sigma_{1}^{#2} + \alpha$	$\tau_{1}^{\#1} +^{\alpha}$	$\tau_{1}^{\#2} +^{\alpha}$

$f_{1^-}^{\#2}\alpha$							
$_{\chi}f_{1}^{\#}$			0)))	
$f_{1^{}}^{\#1}\alpha$	0	0	0	0	0	0	0
$\omega_{1}^{\#2}{}_{lpha}$)	0	0	0	0	0	0	0
$\omega_{1^{-}}^{\#1}{}_{\alpha}$	0	0	0	$\frac{1}{2} k^2 (r_3 + 2 r_5)$	0	0	0
$f_{1}^{\#1}{}_{\alphaeta}$	$\frac{1}{3}\bar{I}\sqrt{2}kt_2$	<u>i kt2</u> 3	$\frac{k^2 t_2}{3}$	0	0	0	0
$\omega_1^{\#_+^2}\alpha\beta$	$\frac{\sqrt{2} t_2}{3}$	t 2 3	$-\frac{1}{3}$ \bar{l} kt_2	0	0	0	0
$\omega_{1}^{\#1}\!$	k ² (;	$\frac{\sqrt{2} t_2}{3}$	$-rac{1}{3}$ i $\sqrt{2}$ kt ₂	0	0	0	0
	$\omega_{1}^{\#1} +^{\alpha\beta}$	$\omega_1^{\#2} + ^{\alpha\beta}$	$f_1^{\#1} + \alpha^{\beta}$	$\omega_{1^{\bar{-}}}^{\#1} +^{\alpha}$	$\omega_{1}^{\#2} +^{\alpha}$	$f_{1^{\bar{-}}}^{\#1} +^{\alpha}$	$f_{1}^{\#2} + ^{\alpha}$

Lagrangian density $\frac{2}{3}t_2 \omega_{\kappa^{\lambda}}^{\ \kappa^{\lambda}} \omega_{\kappa^{\lambda}}^{\ \lambda} + \frac{1}{3}t_2 \omega_{\kappa^{\lambda}}^{\ \lambda} \omega_{\kappa^{\lambda}}^{\ \lambda} + f^{\alpha\beta} \tau_{\alpha\beta} + \omega^{\alpha\beta\chi} \sigma_{\alpha\beta\chi}^{-\frac{1}{2}} r_3 \partial_i \omega^{\kappa^{\lambda}}_{\ \kappa^{\lambda}} \partial^i \omega_{\lambda^{\alpha}}^{\ \alpha} - r_5 \partial_{\alpha} \omega_{\lambda^{\alpha}}^{\ \alpha} \partial_{\kappa} \omega^{\theta\kappa^{\lambda}} + r_3 \partial_{\theta} \omega_{\lambda^{\alpha}}^{\ \alpha} \partial_{\kappa} \omega^{\theta\kappa^{\lambda}} + r_5 \partial_{\alpha} \omega_{\lambda^{\alpha}}^{\ \alpha} \partial_{\kappa} \omega^{\kappa^{\lambda}} + r_5 \partial_{\alpha} \omega^{\kappa^{\lambda}} \partial_{\kappa} \omega^{\kappa^{\lambda}} \partial_{\kappa} \omega^{\kappa^{\lambda}} + r_5 \partial_{\alpha} \omega^{\kappa^{\lambda}} \partial_{\kappa} \omega^{\kappa^{\lambda}} + r_5 \partial_{\alpha} \omega^{\kappa^{\lambda}} \partial_{\kappa} \omega^{\kappa^{\lambda}} \partial_{\kappa} \omega^{\kappa^{\lambda}} + r_5 \partial_{\alpha} \omega^{\kappa^{\lambda}} \partial_{\kappa} \omega^{\kappa^{\lambda}} + r_5 \partial_{\alpha} \omega^{\kappa^{\lambda}} \partial_{\kappa} \omega^{\kappa^{\lambda}} + r_5 \partial_{\alpha} \omega^{\kappa^{\lambda}} \partial_{\kappa} \omega^{\kappa^{\lambda}} \partial_{\kappa} \omega^{\kappa^{\lambda}} + r_5 \partial_{\alpha} \omega^{\kappa^{\lambda}} \partial_{\kappa} \omega^{\kappa^{\lambda}} \partial_{\kappa} \omega^{\kappa^{\lambda}} + r_5 \partial_{\alpha} \omega^{\kappa^{\lambda}} \partial_{\kappa} \omega^{\kappa^{\lambda}} \partial_{\kappa} \omega^{\kappa^{\lambda}} \partial_{\kappa} \omega^{\kappa^{\lambda}} + r_5 \partial_{\alpha} \omega^{\kappa^{\lambda}} \partial_{\kappa} \omega^{\kappa^{\lambda}} \partial_{\kappa}$
$\frac{1}{2}r_3\partial_\alpha\omega_\lambda^{\ \alpha}{}_{\theta}\partial^\lambda\omega^{\theta\kappa}{}_{\kappa}+r_5\partial_\alpha\omega_\lambda^{\ \alpha}{}_{\theta}\partial^\lambda\omega^{\theta\kappa}{}_{\kappa}+\frac{1}{2}r_3\partial_\theta\omega_\lambda^{\ \alpha}{}_{\alpha}\partial^\lambda\omega^{\theta\kappa}{}_{\kappa}-r_5\partial_\theta\omega_\lambda^{\ \alpha}{}_{\alpha}\partial^\lambda\omega^{\theta\kappa}{}_{\kappa}$

 $\omega_{2}^{\#1} +^{lphaeta\chi}$

 $f_2^{#1} + \alpha \beta$

 $\omega_2^{\#1}$

	$\omega_0^{\#1}$	$f_{0^{+}}^{\#1}$	$f_{0}^{#2}$	$\omega_0^{\#1}$
$\omega_{0^+}^{\sharp 1}\dagger$	0	0	0	0
$f_{0}^{#1}\dagger$	0	0	0	0
$f_{0+}^{#2}\dagger$	0	0	0	0
$\omega_{0}^{\sharp 1}$ †	0	0	0	t_2

 $\begin{array}{c}
\sigma_{0}^{\#1} + \\
\tau_{0}^{\#1} + \\
\tau_{0}^{\#2} + \\
\sigma_{0}^{\#1} + \\
\end{array}$

0 0

 $\frac{1}{t^2}$

	#	1	1	1	3	3	3	m	2	2	25
Source constraints	SO(3) irreps	$\sigma_{0+}^{\#1} == 0$	$\tau_0^{\#1} = 0$	$\tau_0^{\#2} = 0$	$t_1^{\#^2 \alpha} == 0$	$t_{1}^{\#1}{}^{\alpha} == 0$	$\sigma_{1}^{\#2}{}^{\alpha} == 0$	$t_1^{\#1}\alpha\beta + ik \ \sigma_1^{\#2}\alpha\beta == 0$	$\sigma_{2}^{\#1}\alpha\beta\chi$ == 0	$t_2^{\#1}\alpha\beta == 0$	Total #:

?					
?	Quadratic pole				
$\stackrel{k^{\mu}}{\longrightarrow} ?$	Pole residue:	$-\frac{1}{r_3(2r_3+r_5)(r_3+2r_5)p^2} >$			
?	Polarisations:	2			

(No massive particles)