## Algebra: Chapter 0 Exercises Chapter 2, Section 3

## David Melendez

May 22, 2017

**Problem 3.1.** Let  $\varphi: G \to H$  be a morphism in a category  $\mathbf{C}$  with products. Explain why there is a unique morphism

$$(\varphi \times \varphi): G \times G \to H \times H$$

compatible in the evident way with the natural projections.

Solution. I'm going to assume the author means the following:

Since  $H \times H$  is a product in  $\mathbb{C}$ , we have that  $G \times G$  along with two "copies" of  $\varphi : G \to H$  admits a unique morphism  $(\varphi \times \varphi) : G \times G \to H \times H$  that makes the following diagram commute:



where  $\pi_{G_1}$  and  $\pi_{G_2}$  are the canonical projections of  $G \times G$  onto G.

**Problem 3.2.** Let  $\varphi: G \to H$  and  $\psi: H \to K$  be morphisms in a category with products, and consider morphisms between the products  $G \times G$ ,  $H \times H$ , and  $K \times K$  as in Exercise 3.1. Prove that

$$(\psi\varphi)\times(\psi\varphi)=(\psi\times\psi)(\varphi\times\varphi)$$

Solution. To demonstrate this result, first stare at this diagram, mapping  $G \times G$  to the product  $H \times H$  and  $H \times H$  to the product  $K \times H$ .

Compare it to the following diagram, mapping  $G \times G$  straight to  $K \times K$ :

$$G \xrightarrow{\psi\varphi} K$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$

$$G \times G \xrightarrow{(\psi\varphi)\times(\psi\varphi)} K \times K$$

$$\downarrow \qquad \qquad \downarrow$$

$$G \xrightarrow{\psi\varphi} K$$

Notice that we have morphisms  $(\psi\varphi) \times (\psi\varphi)$  and  $(\psi \times \psi)(\varphi \times \varphi)$  from  $G \times G$  to  $K \times K$ , both determined by the universal property for products with regards to  $K \times K$ . These must be equal per Problem 3.1.

**Problem 3.3.** Show that if G and H are both *abelian* groups, then  $G \times H$  satisfies the universal property for coproducts in  $\mathbf{Ab}$ .

Solution. That  $G \times H$  satisfies the universal property for coproducts in  $\mathbf{Ab}$  means the following:

Every triple  $(X, \delta_G, \delta_H)$  (as in the diagram) admits a unique morphism  $\sigma$  such that the following diagram commutes:



That is,

$$\sigma \delta_G = f_G$$
$$\sigma \delta_H = f_H$$

Define  $\sigma: G \times H \to X$  by

$$\sigma(g,h) = f_G(g) \cdot f_H(h)$$

Also define  $\delta_G: G \to G \times H \ \delta_H: H \to G \times H$  by

$$\delta_G(g) = (g, e_H)$$
  
$$\delta_G(h) = (e_G, h)$$

The proof that these are homomorphisms is trivial. To show that  $\sigma$  makes the diagram commute, note that

$$\sigma(\delta_G(g)) = \sigma(g, e_H)$$

$$= f_G(g) \cdot f_H(e_H)$$

$$= f_G(h)$$

The same proof applies to H.

This is where our groups being abelian comes in. We will show that  $\sigma$  is a homomorphism:

$$\sigma((g_1, h_1)(g_2, h_2)) = \sigma(g_1 g_2, h_1 h_2)$$

$$= f_G(g_1 g_2) \cdot f_H(h_1 h_2)$$

$$= f_G(g_1) g_G(g_2) f_H(h_1) f_H(h_2)$$

$$= (f_G(g_1) f_H(h_1)) (f_G(g_2) f_h(h_2))$$

$$= \sigma(g_1, h_1) \cdot \sigma(g_2, h_2)$$

 ${\rm done}$