Задача

Дискретная математика, ФИИТ, III семестр, экзамен

Доп. Вопрос № 16

Дополнением обыкновенного графа G = (V, E) называется граф $\bar{G} = (V, \bar{E})$, где \bar{E} — дополнение E. При каком минимальном числе вершин графы G и \bar{G} могут быть непланарными одновременно?

Решение

Чтобы граф был непланарным, надо, чтобы было $K_{3,3}$ или K_5 в составе графа. Значит уже точно 5 или 6 не получится. Проверим 7. Важно, чтобы при дополнении и обычном графе был $K_{3,3}$ или K_5 .

Если вершин 5:

- $K_{3,3}$ не может существовать ни в графе, ни в дополнении
- K_5 может быть только либо в дополнении, либо в графе Если вершин 6:
- $K_{3,3}$ может быть только либо в дополнении, либо в графе
- K_5 может быть только либо в дополнении, либо в графе Можно сделать из 9 вершин, чтобы в графе было $K_{3,3}$ и в дополнении $K_{3,3}$. Типа такого:

Но тогда уже можно сделать из 8 вершин $K_{3,3}$ и K_5 :

Если мы Возьмём 7 вершин, то мы не сможем построить такой граф, чтобы в нём был $K_{3,3}$, а в дополнении было K_5 , так как нам не хватит вершин для K_5 и нам придётся взять одну недостающую вершину из другой части $K_{3,3}$, что недопустимо, так как ломается $K_{3,3}$

В итоге, минимум 8 вершин