Project 4 - Main Script

Boxuan Zhao, Zixuan Guan, Zheren Tang, Yingxin Zhang, Jihan Wei 3/22/2017

ABSTRACT

In this project, our team was assigned two papers (Paper 3 and Paper 6) that proposed two algorithms concerning name disambiguation and we implemented these two algorithms in R code and we have also proposed evaluation methods to compare these algorithms. Generally, Paper 3 discussed the Spectral Clustering using QR decomposition and Paper 6 proposed a constraint-Based Probabilistic Framework. For evaluation, we compared the two methods based on the results from the Confusion Matrix and the running time. In this file, we will present our data reading, preprocessing, algorithm implements as well as evaluation results. Also, further discussion for Paper 6 will also be included.

Step 0: Load the packages, specify directories

```
# Here replace it with your own path or manually set it in RStudio to the lib folder
#setwd("D:/Columbia University/Spring2017-Applied Data Science/Project_4_Bz2290/Spr2017-proj4-team13/lib")
#Relevant packages
list.of.packages = c("expm", "pacman", "text2vec", "stringr")
new.packages <- list.of.packages[!(list.of.packages %in% installed.packages()[,"Package"])]</pre>
if(length(new.packages))
 install.packages(new.packages)
}
library("expm")
## Loading required package: Matrix
## Attaching package: 'expm'
## The following object is masked from 'package:Matrix':
##
##
     expm
library("pacman")
library("text2vec")
library("stringr")
```

Step 1: Load and process the data

For each record in the dataset, there are some information we want to extract and store: canonical author id, coauthors, paper title, publication venue title. In our main.rmd file, you will find our programs for input of each data file which have been proprocessed by our functions stored in "dataclean.R" under the lib folder.

```
#Preprocess our data files
source("../lib/dataclean.R")
#Read in our data files
source("../lib/dataInput.R")
```

Step 2: Feature design

Following the section 3.1 in the paper, we want to use paper titles to design features for citations. As the notation used in the paper, we want to find a m-dimensional citation vector α_i for each citation i, i = 1, ..., n. In this dataset, n = 244. We study "TF-IDF" (term frequency-inverse document frequency) as suggested in the paper.

TF-IDF is a numerical statistics that is intended to reflect how important a word is to a document in a collection or corpus. It is often used as a weighting factor in information retrieval, text mining, and user modeling. The TF-IDF value increases proportionally to the number of times a word appears in the document, but is offset by the frequency of the word in the corpus, which helps to adjust for the fact that some words appear more frequently in general.

```
\begin{aligned} \text{TF}(t) &= \frac{\text{Number of times term } t \text{ appears in a document}}{\text{Total number of terms in the document}} \\ \text{IDF}(t) &= \log \frac{\text{Total number of documents}}{\text{Number of documents with term } t \text{ in it}} \\ \text{TF-IDF}(t) &= \text{TF}(t) \times \text{IDF}(t) \end{aligned}
```

For Paper 3:

Construct our feature design for paper 3 with resepct to Coauthor, Title and Journal

For Paper 6:

We also used the TF-IDF matrix, but we combined all the information, and used the normalized version of the matrix.

Firstly, source functions and read data:

```
#####Preparetion,Data Loading and Preliminary Analysis#####
folder.path="../data/namecsv/"
##Sourse all functions:
functions=list.files(path = "../lib/paper6",pattern = "*.[Rr]")
for(i in 1:length(functions)){
  source(paste("../lib/paper6/",functions[i],sep=""))
}
#Get all files and load them
authores=list.files(path = folder.path, pattern = "*.csv")
authores<-substr(authores, start=1, stop=nchar(authores)-4)
rawdata<-as.list(1:length(authores))</pre>
names(rawdata)<-authores</pre>
for (i in authores){
   rawdata[[i]]<-read.csv(paste(folder.path,i,".csv",sep = ""),header = T,as.is=T)</pre>
}
##change the raw data to matrixes:
X_all<-lapply(rawdata,Create_X)</pre>
```

Then we can choose the interested author:

```
##chosen is the user-specified data set name
chosen<-"MBrown"

data<-rawdata[[chosen]]

X<-X_all[[chosen]]

True_Author<-data$AuthorID

Split_coauthor<-split_coauthor(data)</pre>
```

Step 3: Clustering

For Paper 3:

First of all, we perofrom the spectral cluster with QR decomposition on the data sets

For Paper 6:

We implement the algorithm from paper 6 to analysis our data set.

```
##If you want to rerun our algorithm, please set it as TRUE:
##Otherwise, we will load the pre-saved answers:
retrain<-F ##Basically for shorter time for kniting the pdf
####Get Constrian Matrix:
if (retrain){
  n < -nrow(X)
  Constraint <- matrix (NA, n, n)
  for(i in 1:n){
  Constraint[i,]<-sapply(1:n,constraint,paper2=i,Split_coauthor)</pre>
  ##Initilization:
  answer<-initialization(data,X)
  ##EM Steps:
  cluster <- answer $ cluster
  cluster2<-cluster
  A<-answer$A
  m=0
  a1<-Sys.time()
  while(any(cluster!=cluster2)|(m==0)){
    cluster<-cluster2</pre>
    M_step<-mstep(cluster=cluster, X=X, A=A, ita=0.01)
    A<-M_step$A
    centroids<-M_step$centroids
    m=m+1
    cluster2<-estep_fixed_clusters2(cluster=cluster,X=X,centroids=centroids,A=A)</pre>
```

```
cluster2<-as.numeric(factor(cluster2))
}
a2<-Sys.time()
cat("The training time is",a2-a1)
cat("The iteration number is",m)
}</pre>
```

Step 4: Evaluation

The evaluation will be two fold, the first part of our evaluation will be base on the performance of our model in paper 3 using different features (i.e. coauthor, paper, and journal). We applied the evaluation based on the following methods:

Let M be the set of machine-generated clusters, and G the set of gold standard clusters. Then, in the table, for example, a is the number of pairs of entities that are assigned to the same cluster in each of M and G. Hence, a and d are interpreted as agreements, and b and c disagreements. When the table is considered as a confusion matrix for a two-class prediction problem, the standard "Precision", "Recall", "F1", and "Accuracy" are defined as follows.

$$\begin{aligned} & \text{Precision} = \frac{a}{a+b} \\ & \text{Recall} = \frac{a}{a+c} \\ & \text{F1} = \frac{2 \times \text{Precision} \times \text{Recall}}{\text{Precision} + \text{Recall}} \\ & \text{Accuracy} = \frac{a+d}{a+b+c+d} \end{aligned}$$

```
source('../lib/evaluation measures.R')
spec_eva <- function(author,result){</pre>
  matching <- matching_matrix(author$AuthorID,result)</pre>
  perform <- performance_statistics(matching)</pre>
  return(as.data.frame(perform))
eva_df <- data.frame()</pre>
for(i in 1:14){
  eva_df <- rbind(eva_df,spec_eva(author_name[[i]],spec_coauthor[[i]]))</pre>
  eva_df <- rbind(eva_df,spec_eva(author_name[[i]],spec_title[[i]]))</pre>
  eva_df <- rbind(eva_df,spec_eva(author_name[[i]],spec_journal[[i]]))</pre>
}
rownames(eva_df) <- c("AGupta_coauthor","AGupta_paper","AGupta_journal",</pre>
                        "AKumar_coauthor", "AKumar_paper", "AKumar_journal",
                        "CChen_coauthor", "CChen_paper", "CChen_journal",
                       "DJohnson_coauthor", "DJohnson_paper", "DJohnson_journal",
                        "JLee_coauthor", "JLee_paper", "JLee_journal",
                       "JMartin_coauthor", "JMartin_paper", "JMartin_journal",
                       "JRobinson_coauthor", "JRobinson_paper", "JRobinson_journal",
                       "JSmith_coauthor", "JSmith_paper", "JSmith_journal",
                        "KTanaka_coauthor", "KTanaka_paper", "KTanaka_journal",
                        "MBrown_coauthor", "MBrown_paper", "MBrown_journal",
                       "MJones_coauthor", "MJones_paper", "MJones_journal",
                       "MMiller_coauthor", "MMiller_paper", "MMiller_journal",
                       "SLee_coauthor", "SLee_paper", "SLee_journal",
                        "YChen_coauthor", "YChen_paper", "YChen_journal")
write.csv(eva_df, file = "../output/paper3/eva.csv")
```

eva_df

```
##
                                    recall
                      precision
                                                   f1
                                                      accuracy
                      0.7064466 0.46835830 0.5632767 0.9295032
## AGupta_coauthor
##
  AGupta_paper
                      0.2551846 0.15047386 0.1893150 0.8749065
                      0.1604241 0.22574136 0.1875587 0.8101668
##
  AGupta_journal
## AKumar_coauthor
                      0.2441605 0.19284137 0.2154876 0.6996222
##
  AKumar_paper
                      0.3536902 0.21460107 0.2671246 0.7480942
## AKumar_journal
                      0.2466457 0.64348786 0.3566061 0.5032719
  CChen_coauthor
                      0.4224443 0.29242672 0.3456120 0.9453266
## CChen_paper
                      0.2713341 0.11359919 0.1601490 0.9411745
## CChen_journal
                      0.1251820 0.09196125 0.1060304 0.9234386
## DJohnson_coauthor
                      0.8301258 0.59682827 0.6944057 0.8538236
## DJohnson_paper
                      0.4384660 0.20078761 0.2754417 0.7060479
## DJohnson_journal
                      0.3140730 0.23575116 0.2693337 0.6440588
  JLee_coauthor
                      0.5898543 0.43341983 0.4996795 0.9791131
                      0.2601685 0.13357222 0.1765186 0.9700092
## JLee_paper
                      0.1428167 0.12479921 0.1332015 0.9609133
## JLee_journal
                      0.5373134 0.47368421 0.5034965 0.9086229
##
  JMartin_coauthor
## JMartin_paper
                      0.1697861 0.20888158 0.1873156 0.8227156
##
  JMartin_journal
                      0.1764108 0.57072368 0.2695146 0.6973938
## JRobinson_coauthor 0.3422039 0.43538388 0.3832109 0.8024600
                      0.2446913 0.35717692 0.2904226 0.7539992
##
  JRobinson_paper
##
  JRobinson_journal
                      0.2884268 0.30424416 0.2961244 0.7961420
##
  JSmith_coauthor
                      0.8908362 0.60096287 0.7177367 0.9484130
## JSmith_paper
                      0.3510421 0.24506316 0.2886319 0.8681648
##
  JSmith_journal
                      0.1948824 0.38548878 0.2588860 0.7591252
                      0.6436914 0.37161490 0.4711983 0.8108914
## KTanaka_coauthor
## KTanaka_paper
                      0.5262416 0.33027523 0.4058404 0.7807433
                      0.2946669 0.64187023 0.4039090 0.5704584
## KTanaka_journal
## MBrown_coauthor
                      0.3823147 0.54210203 0.4483986 0.8133815
## MBrown_paper
                      0.3806356 0.31653350 0.3456376 0.8323013
                      0.1638942 0.36939152 0.2270495 0.6480908
## MBrown_journal
                      0.5888228 0.52580166 0.5555306 0.8823285
## MJones_coauthor
                      0.2390791 0.43002761 0.3073071 0.7288684
## MJones_paper
                      0.2115966 0.43087704 0.2838159 0.6958717
## MJones_journal
## MMiller_coauthor
                      0.8739247 0.66346939 0.7542923 0.8499043
## MMiller_paper
                      0.5416736 0.55020408 0.5459055 0.6821510
## MMiller_journal
                      0.3990009 0.51074830 0.4480115 0.5629651
                      0.6263633 0.45709398 0.5285061 0.9681622
## SLee_coauthor
## SLee_paper
                      0.3000901 0.11866863 0.1700802 0.9547905
## SLee_journal
                      0.3001564 0.16872565 0.2160206 0.9521918
## YChen_coauthor
                      0.6535327 0.39018600 0.4886361 0.9479362
  YChen_paper
                      0.3013238 0.11611207 0.1676297 0.9264872
                      0.1886077 0.08101162 0.1133407 0.9191950
## YChen_journal
```

Result For Paper6:

Then we implement the code we written from paper 6 for the evaluation

```
#answer_eva<-evalu(True_Author, cluster2)</pre>
```

Paper 6 evaluation results:

Comparasion between two methods:

Then we start to compare the two papers using same evaluation methods. Since we do not want to produce a length report, we only use some of the data set to demonstrate what we foul during the development of this project

First of all, we compare two algorithms using each of the three features (Coauthor, Paper, Journal) using AKumar data set:

.,		Final Result		Time	Itaration	
	Precision	Final Result	0.400		Iteration	0
N #1				16.47min		3
Mbrown	Recall		0.633			
	F1		0.507			
	Accuracy		0.885			
		First Deside		I ₊ .	I:	
	B	Final Result	0.4.07	Time	Iteration	
	Precision			43.31988 mins		3
Akumar	Recall		0.465			
	F1		0.246			
	Accuracy		0.781			
		Final Result		Time	Iteration	
	Precision		0.41	5.97min		3
Jmartin	Recall		0.55			
Jillar em	F1		0.47			
	Accuracy		0.91			
		Final Result		Time	Iteration	
	Precision		0.39	14.37 mins		2
JRobinsion	Recall		0.58			
	F1		0.47			
	Accuracy		0.87			
		Final Result		Time	Iteration	
	Precision		0.25	375mins		4
DJohnson	Recall		0.75			
	F1		0.38			
	Accuracy		0.77			
		Final Result		Time	Iteration	
	Precision		0.421	44.877		1
KTanaka	Recall		0.794			
	F1		0.551			
	Accuracy		0.801			

Figure 1: Evaluation results

AKumar data set results:

<u>Akumar</u>						
		Paper 3		Paper 6		
Coauthor		Results	Time	Results	Time	
	Precision	0.23	~0.1 sec	0.75		
	Recall	0.2		0.27	1.996min	
	F1	0.21		0.4		
	Accuracy	0.69		0.52		
Title		Results	Time	Results	Time	
	Precision	0.35	~0.1 sec	0.18	13.91min	
	Recall	0.21		0.47		
	F1	0.27		0.26		
	Accuracy	0.75		0.78		
Journal		Results	Time	Results	Time	
	Precision	0.25	~0.1 sec	0.17		
	Recall	0.64		0.36	6.14min	
	F1	0.36		0.23	0.14[1][1]	
	Accuracy	0.5		0.76		

Figure 2: Evaluation results

Then, we also compare the two algorithm using a different data set KTanaka:

KTanaka data set results:

<u>KTanaka</u>					
		Paper 3		Paper 6	
Coauthor		Results	Time	Results	Time
	Precision	0.6	~0.1 sec	0.45	
	Recall	0.37		0.36	3.35min
	F1	0.46		0.4	
	Accuracy	0.79		0.69	
Title		Results	Time	Results	Time
	Precision	0.47		0.4	31.71 min
	Recall	0.38	0.1	0.76	
	F1	0.42	~0.1 sec	0.52	
	Accuracy	0.76		0.83	
Journal		Results	Time	Results	Time
	Precision	0.3		0.33	
	Recall	0.65	~0.1 sec	0.6	13.90min
	F1	0.41		0.43	13.9011111
	Accuracy	0.56		0.79	

Figure 3: Evaluation results

From the above two graphs, we can see that: In general, paper 3 is much faster than paper 6, and they both have satisfactory results. When only utilizing the coauthor information, Paper 3 seems to outperform Paper 6, while for Paper and Journal, Paper 6 has better performance.

We also have compared the two algorithms using all features:

JMartin data set results:

JMartin (All)						
	Рар	er 3	Paper 6			
	Final Result	Time Final Result Time		Time		
Precision	0.23		0.41			
Recall	0.53	0.07	0.55	F 07min		
F1	0.32	0.07sec	0.47	5.97min		
Accuracy	0.79		0.91			

Figure 4: Evaluation results

MBrown data set results:

MBrown (All)					
	Paper 3		Paper 6		
	Final Result	Time	Final Result	Time	
Precision	0.33		0.423		
Recall	0.47	11	0.633	1.C. 4.7 main	
F1	0.39	.11 sec	0.507	16.47min	
Accuracy	0.79		0.885		

Figure 5: Evaluation results

From the above two graphs, we can see that: When utilizing all Coauthor, Paper and Journal information, the performance of paper 6 increased. In terms of F1 and the accuracy, Paper 6 are much better. However, for paper 3. the running time is much faster, with acceptable performance. Therefore, the consumer may choose the method based on their needs.

Step 5: Further Observations of methods in paper 6

In addition to the above evaluation, we have also observed several interesting observations for algorithm introduced in paper 6 using c2 constraint.

What is the optimal weight?:

From tuning the first 50 lines for author MBrown, we figured out that the smaller the weight, the better the result. Although we get this conclusion, there should still be further discussions about how to set weight value if we could do deeper optimization.

		weight=1	weight=0.01
JMartin	Precision	0.1036184	0.4506579
	Recall	0.1536585	0.5744235
	F1	0.1237721	0.5050691
	Accuracy	0.8564994	0.91361

Discussion of weight cont'd:

Since we found that after EM algorithm, the accuracy does not approve a lot, then we found out that the problem may happens since we initial weight value as 1. Considering the larger the weight, the greater the impact of the constraint is, we reset the weight value to 0.01.

Normalized vs. Unormalized X?:

After carefully reading and discussing paper6, we first create an initial algorithm. But the result does not have a high accuracy, then we found out that the problem may happens since the X matrix is too sparse. Considering the equation of updating each parameter amm in A, we scaled X matrix, to made the differentiating function more reliable. After this optimization, we finally found that we could get better result as we hope to.

Performacne of different weight

Figure 6: Interesting results

		Scaled X	Sparse X
		After Initilization	After Initilization
MBrown	Precision	0.48	0.64
	Recall	0.66	0.48
	F1	0.57	0.55
	Accuracy	0.89	0.82
		Scaled X	Sparse X
		After Initilization	After Initilization
JRobinson	Precision	0.39	0.62
	Recall	0.58	0.26
	F1	0.47	0.37
	Accuracy	0.87	0.79

Figure 7: Interesting results