Appendix

A Multi-Window Multi-Head Attention

```
def WinAttention(Q, K, V, win_i):
    n, d_k = Q.shape[-2:]
# partition inputs along patch dimension
# into non-overlapping windows
Q = Q.reshape(-1, win_i, d_k)
K = K.reshape(-1, win_i, d_k)
V = V.reshape(-1, win_i, d_k)
# compute self-attention
X = softmax(Q.(K.transpose()) / sqrt(d_k)).V
# reshape results
X = X.reshape(-1, n, d_k)
return X
```

Figure 5: Pseudocode for WinAttention

B Experimental Details and Hyperparameters

In this section, we provide additional experimental details. Apart from AudioSet, all other datasets are obtained directly from the HEAR where they are pre-processed to 16000 Hz and distributed in a standard format.

Similar to [32], our effective learning rate $(lr_{\rm eff})$ depends on the base learning rate $(lr_{\rm base})$ and the batch size as follows: $lr_{\rm eff} = lr_{\rm base} * \frac{{\rm batch \, size}}{256}$. In early experiments, we did not find strong augmentations at pre-training time to improve downstream performance, hence no augmentations are used. For more details, refer to Table 3. As previously mentioned, hear-eval-kit was used for downstream experiments, and along with the details provided here should allow for consistent, reproducible downstream experimentation.

Table 3: **Pre-training (PT) and Downstream (FT) hyperparameters.** *: For ViT-L and ViT-H based models, smallest batch size that didn't give OOM was used.

Configuration	AS-5k Pre-training	Downstream
Optimizer	AdamW	Adam
Optimizer momentum	$\beta_1 = 0.9, \beta_2 = 0.999$	$\beta_1 = 0.9, \beta_2 = 0.95$
Weight decay	0.05	N/A
Base learning rate	0.000015	0.0001
Learning rate schedule	linear-warmup + cosine decay	fixed
Minimum learning rate	0.0	0.0001
Dropout	0.	0.25
Warm-up epochs	10	N/A
Epochs	100	500
Early Stopping	N/A	20
Batch size	1024*	1024
Accelerators	8x TPU-v3 cores	1 Nvidia-A40

The code for feature extraction and running downstream experiments for our default configurations as well as the corresponding pre-trained weights can be found at https://github.com/lo997NeurIPS23/10997_mwmae.

https://hearbenchmark.com/hear-tasks.html

https://github.com/hearbenchmark/hear-eval-kit

C Detailed Ablation Results

Table 4: Results from Patch size ablation experiments. ViT-B encoder was used for all experiments. n denotes total number of patches, and h denotes the number of attention heads in each decoder transformer block.

Model	ВО	CD	ESC-50	LC	Mri-S	Mri-T	NS-5h	SC-5h	F50K	VL	s(m)
Patch Size	Patch Size=(8×16), n=125, h=4										
MAE	94.9±0.8	70.2±0.3	80.4±0.5	66.0±0.3	97.4±0.1	97.7±0.1	65.9±0.7	88.9±0.5	49.4±0.1	40.6±0.5	85.9±0.3
MW-MAE	95.9±0.5	72.3±0.2	81.2±0.3	68.4±0.3	97.3±0.1	97.8±0.1	67.4±0.8	90.0±0.3	50.8±0.1	41.9±0.5	88.0±0.2
Patch Size	Patch Size= (4×16) , $n=250$, $h=8$										
MAE	96.2±0.3	72.2±0.2	80.9±0.4	67.3±0.3	97.4±0.1	98.3±0.1	68.3±0.4	89.4±0.3	50.4±0.1	43.1±0.9	88.1±0.2
MW-MAE	96.0±0.5	73.1±0.3	81.2±0.4	68.8±0.2	97.4±0.1	97.9±0.1	69.3±0.6	90.9±0.2	51.2±0.2	44.2±0.9	89.2±0.2
Patch Size	$=(8\times8), n=$	=250, h=8									
MAE	96.1±0.6	72.5±0.2	81.3±0.2	66.0±0.3	97.5±0.1	98.1±0.0	68.5±0.7	89.5±0.4	50.2±0.1	42.3±0.5	87.7±0.2
MW-MAE	96.3±0.4	73.0±0.1	82.6±0.3	69.3±0.3	97.5±0.1	98.1±0.1	70.3±0.8	90.5±0.1	51.4±0.1	42.3 ± 0.5	89.4±0.1
Patch Size	$=(4\times8), n=$	=500, h=12									
MAE	96.7±0.2	71.3±0.3	79.0±0.4	67.8±0.3	97.7±0.0	98.5±0.0	68.7±0.4	89.0±0.4	49.8±0.2	39.2±0.7	87.2±0.1
MW-MAE	95.6±0.7	74.1±0.2	81.9±0.3	70.1±0.3	97.6±0.1	98.2±0.1	72.0±0.7	91.2±0.3	51.6±0.1	44.0±0.8	90.3±0.2
Patch Sizes	$=(5\times5), n=$	=640, h=16									
MAE	96.0±0.4	70.9±0.2	80.9±0.4	67.6±0.4	97.6±0.1	98.4±0.0	69.3±0.4	88.4±0.3	49.3±0.2	37.7±0.6	86.8±0.2
MW-MAE	96.6±0.4	73.8±0.4	82.0±0.3	70.1±0.4	97.5±0.1	98.3±0.1	72.9±0.5	91.7±0.2	51.3±0.1	44.2±0.6	90.6±0.1

Table 5: Effect of encoder size on performance. Patch size of 4×16 was used for all experiments.

Model	ВО	CD	ESC-50	LC	Mri-S	Mri-T	NS-5h	SC-5h	F50K	VL	s(m)
Encoder=V	/iT-T										
MAE	95.6±0.5	63.2±0.2	70.1±0.5	64.6±0.3	97.1±0.1	97.4±0.1	66.4±0.7	74.3±0.8	41.6±0.1	26.4±0.6	77.6±0.3
MW-MAE	93.3±1.0	64.4±0.2	71.9±0.5	65.5±0.3	97.1±0.1	97.6±0.1	68.1±0.4	77.0±0.6	43.4±0.1	28.6±1.1	79.0±0.3
Encoder=V	/iT-M										
MAE	95.2±0.7	69.5±0.2	77.8±0.3	67.4±0.3	97.4±0.0	98.0±0.1	66.6±0.7	88.0±0.4	48.1±0.1	38.3±0.8	85.3±0.2
MW-MAE	95.9±0.3	71.8±0.3	80.3±0.4	69.7±0.1	97.2±0.1	97.8±0.1	68.1±0.5	88.8±0.6	49.6±0.1	39.8±0.8	87.5 ± 0.2
Encoder=V	/iT-B										
MAE	96.2±0.3	72.2±0.2	80.9±0.4	67.3±0.3	97.4±0.1	98.3±0.1	68.3±0.4	89.4±0.3	50.4±0.1	43.1±0.9	88.1±0.2
MW-MAE	96.0±0.5	73.1±0.3	81.2±0.4	68.8 ± 0.2	97.4±0.1	97.9±0.1	69.3±0.6	90.9±0.2	51.2±0.2	44.2±0.9	89.2±0.2
Encoder=V	/iT-L										
MAE	95.8±0.6	72.4±0.1	79.7±0.3	66.8±0.4	97.5±0.1	98.2±0.1	69.5±0.6	90.9±0.2	50.7±0.1	43.6±0.4	88.3±0.2
MW-MAE	95.7±0.5	75.5±0.2	82.5±0.5	70.1±0.3	97.4±0.0	98.1±0.1	70.7±0.6	93.2±0.1	53.3±0.1	51.9±0.8	92.3±0.2
Encoder=V	/iT-H										
MAE	96.8±0.2	71.1±0.2	78.3±0.4	67.1±0.2	97.5±0.0	98.5±0.0	67.6±0.6	89.6±0.1	49.5±0.2	40.0±0.7	86.9±0.1
MW-MAE	96.8±0.2	74.8±0.1	81.6±0.4	69.5±0.4	97.4±0.0	98.2±0.1	70.8±0.5	92.4±0.2	52.1±0.1	47.5±0.6	91.1±0.2

Table 6: Effect of decoder depth on downstream performance. ViT-B encoder, patch size of 4×16 were used for each experiment.

Model	ВО	CD	ESC-50	LC	Mri-S	Mri-T	NS-5h	SC-5h	F50K	VL	s(m)
depth=1 MAE MW-MAE								88.5±0.2 90.2±0.3			
depth=2 MAE MW-MAE	,				,	,		90.0±0.2 90.6±0.2	.,		0.10-01-
depth=4 MAE MW-MAE						,		89.4±0.3 90.9±0.2			
depth=8 MAE MW-MAE	,				, _	,		89.9±0.3 91.3±0.2			

Table 7: Amount of pre-training dataset used v/s downstream performance.

Model	ВО	CD	ESC-50	LC	Mri-S	Mri-T	NS-5h	SC-5h	F50K	VL	s(m)
10% of AS	-5k										
MAE	93.6±0.7	51.3±0.2	49.5±0.3	48.4 ± 0.4	97.1±0.1	96.4±0.1	61.1±0.7	70.4±0.9	29.7±0.2	17.3±0.5	63.3±0.2
MW-MAE	94.1±0.3	63.9±0.3	67.1±0.3	60.5±0.2	97.3±0.1	97.6±0.0	64.4±0.5	82.0±0.4	40.9±0.2	30.1±1.1	77.2±0.3
25% of AS	-5k										
MAE	96.2±0.6	57.5±0.3	64.9±0.4	56.9±0.3	97.4±0.1	97.5±0.1	65.0±0.6	79.3±0.4	39.2±0.1	24.2±0.7	73.6±0.2
MW-MAE	96.1±0.5	68.0±0.2	75.5±0.4	67.2±0.3	97.3±0.1	98.0±0.1	65.9±0.4	86.5±0.2	46.4±0.1	35.7±0.6	83.8 ± 0.2
50% of AS	-5k										
MAE	97.2±0.3	65.5±0.3	74.1±0.3	64.3±0.3	97.5±0.1	98.1±0.1	67.0±0.6	85.3±0.6	45.1±0.1	32.4±0.8	81.9±0.2
MW-MAE	95.9±0.5	70.9±0.2	79.1±0.3	69.1±0.4	97.4±0.1	98.1±0.1	68.4±0.7	88.5±0.2	49.1±0.1	39.5±0.5	87.0±0.2
75% of AS	-5k										
MAE	95.3±0.5	70.2±0.2	79.0±0.3	67.4±0.2	97.4±0.1	98.1±0.1	67.4±0.6	88.8±0.3	49.2±0.1	39.5±0.7	86.2±0.2
MW-MAE	96.0±0.5	72.6±0.3	80.5±0.4	69.5±0.3	97.4±0.1	97.9±0.1	68.3±0.4	89.9±0.2	50.5±0.1	41.7±0.8	88.4 ± 0.2
100% of A	S-5k										
MAE	96.2±0.3	72.2±0.2	80.9 ± 0.4	67.3 ± 0.3	97.4±0.1	98.3±0.1	68.3±0.4	89.4±0.3	50.4±0.1	43.1±0.9	88.1±0.2
MW-MAE	96.0±0.5	73.1±0.3	81.2±0.4	68.8 ± 0.2	97.4±0.1	97.9±0.1	69.3±0.6	90.9±0.2	51.2±0.2	44.2±0.9	89.2±0.2

D High Resolution PWCCA Visualizations for better viewing

Figure 6: Encoder PWCCA correlation matrices

Figure 7: Decoder PWCCA correlation matrices

E Limitations

The direct limitations of our work are:

- 1. Pre-training data scale: As opposed to text corpus used in NLP [13] as well as speech representations [10, 14], AudioSet is several order of magnitudes smaller. While MW-MAEs demonstrate good performance characteristics in low-data scenarios, analysis on larger scales of data is definitely warranted.
- 2. Computational demands: transformer based models are computationally expensive to train, and despite their favourable generalization characteristics, MW-MAEs are no different. MW-MAEs and as well as previous works [31, 32] have showed the efficacy of MAEs when pretrained with AudioSet, however, training on longer duration audio data is still a challenge.