## Clase 19 Pruebas no paramétricas

Diplomado en Análisis de Datos con R e Investigación reproducible para Biociencias.

Dr. José Gallardo Matus & Dra. Angélica Rueda Calderón

Pontificia Universidad Católica de Valparaíso

12 November 2022

#### PLAN DE LA CLASE

#### 1.- Introducción

- ¿Qué son las pruebas no paramétricas?.
- ► Test de Correlación no paramétrico.
- Pruebas de contraste no paramétrico.
- Prueba de asociación Chi cuadrado.

#### 2.- Práctica con R y Rstudio cloud

- Realizar pruebas no paramétricas.
- Realizar gráficas avanzadas con ggplot2.

## MÉTODOS NO PARAMÉTRICOS

- Conjunto diverso de pruebas estadísticas.
- ► El concepto de "no paramétrico" a veces es confuso, pues los métodos no paramétricos si estiman y someten a prueban hipótesis usando parámetros, pero no los de distribución normal.
- Se aplican usualmente para variables cuantitativas que no cumplen con el supuesto de normalidad y para variables cualitativas.
- Alternativamente se conocen como métodos de distribución libre.
- ► El concepto matemático de permutación está subyacente a muchos métodos no paramétricos y se utiliza para someter a prueba las hipótesis.

# SUPUESTOS DE LOS MÉTODOS NO PARAMÉTRICOS

- Las variables son independientes.
- Muestras independientes con idéntica distribución.
- No tienen supuestos acerca de la distribución de la variable (algunas asumen chi-cuadrado).
- La distribución del estadístico se estima muy a menudo por permutación.

## PRUEBA DE CORRELACIÓN NO PARAMÉTRICA

#### ¿Para que sirve?

Para estudiar asociación de dos variables, cuando no se cumple uno o varios supuestos de la correlación paramétrica:

- Las variables X e Y no son continuas.
- No existe relación lineal.
- La distribución conjunta de (X, Y) no es una distribución Bivariable normal.



## ESTUDIO DE CASO: Nº ESPERMIOS - PLOMO SANGUINEO

¿Cuáles son los supuestos que no se cumplen?



## **CORRELACIÓN NO PARAMÉTRICA**

- Se basa en calcular el ranking de las variables.
- Calculamos ranking para cada variable.

| Plomo sangre (X) | Nº espérmios (Y) | Ranking X | Ranking Y |
|------------------|------------------|-----------|-----------|
| 742              | 170              | 4         | 2         |
| 101              | 180              | 1         | 3         |
| 313              | 210              | 2         | 4         |
| 600              | 160              | 3         | 1         |

- Si la correlación es +, valores ordenados.
- Si la correlación en -, valores en orden inverso.
- ▶ Si la correlación es 0, valores desordenados.

## COEFICIENTE DE CORRELACIÓN DE SPEARMAN

#### ¿Cómo se calcula?

| Ranking X | Ranking Y | d  | $d^2$ |
|-----------|-----------|----|-------|
| 4         | 2         | 2  | 4     |
| 1         | 3         | -2 | 4     |
| 2         | 4         | -2 | 4     |
| 3         | 1         | 2  | 4     |

$$\rho = 1 - \frac{6 \sum d^2}{n(n^2 - 1)} =$$

$$\sum d^2 = 16$$

$$\rho = 1 - \frac{6 * 16}{4(4^2 - 1)} =$$

$$rho = -0.6$$

### **OTRAS CORRELACIONES POSIBLES**

▶ Recuerde que el muestreo aleatorio podría generar diferentes resultados.

Opción 1: Correlación negativa.

| Opción | 2: | Corre | lación | positiva. |
|--------|----|-------|--------|-----------|
|        |    |       |        |           |

| Ranking X | Ranking Y |
|-----------|-----------|
| 4         | 1         |
| 1         | 4         |
| 2         | 3         |
| 3         | 2         |
| ho= -1    |           |

| Ranking X  | Ranking Y |
|------------|-----------|
| 4          | 4         |
| 1          | 1         |
| 2          | 2         |
| 3          | 3         |
| $\rho = 1$ |           |

## ¿CUÁNTAS CORRELACIONES SON POSIBLES?

 Calculamos el número de permutaciones/correlaciones para 4 elementos.

```
factorial(4)
```

```
## [1] 24
```

- ► Las 24 permutaciones/correlaciones corresponden a nuestro espacio muestreal para 4 pares de variables.
- Esto es independiente de las variables utilizadas.

## **ESPACIO MUESTRAL**

► En nuestro experimento

$$\rho = -0.6$$

▶ 1 de 24 correlaciones posibles.

| -1   | -0.8 | -0.8 | -0.8 | -0.6 | -0.4 | -0.4 | -0.4 |
|------|------|------|------|------|------|------|------|
| -0.4 | -0.2 | -0.2 | 0    | 0    | 0.2  | 0.2  | 0.4  |
| 0.4  | 0.4  | 0.4  | 0.6  | 8.0  | 8.0  | 8.0  | 1    |

## DISTRIBUCIÓN MUESTRAL DE CORRELACIÓN

¿Cuántas correlaciones son >= 0.6 y <= -0.6?



## PRUEBA DE HIPÓTESIS DE CORRELACIÓN

| Hipótesis                                               | Verdadera cuando |
|---------------------------------------------------------|------------------|
| H <sub>0</sub> : X e Y mutuamente independientes        | ho = 0           |
| $\mathbf{H_1}$ : X e Y no son mutuamente independientes | ho  eq 0         |

$$p = 10 / 24$$
  
 $p = 0.4167$ 

No se rechaza  $H_0$  porque p=0.416 es mayor a 0.05

## PRUEBA DE CORRELACIÓN CON R

```
# Crea objetos X e Y
X \leftarrow c(742,101,313,600)
Y \leftarrow c(170,180,210,160)
# Realiza test de correlación
cor.test(X,Y, method = "spearman",
         alternative = "two.sided")
##
    Spearman's rank correlation rho
##
##
## data: X and Y
## S = 16, p-value = 0.4167
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
## rho
## -0.6
```

# COMPARACIÓN DE MUESTRAS INDEPENDIENTES

#### ¿Para qué sirve?

Para comparar dos muestras con idéntica distribución, con diferentes medianas y sin normalidad.

Usualmente para variables discretas.



## PRUEBA DE MANN-WHITNEY (W)

Estudio de caso: Formación de biofilm  $(\mu m^2)$  de Staphylococcus epidermidis en presencia de plasma humano. Fuente: Skovdal et a. 2021

| Tratamiento con plasma (T) | Control sin plasma (C) |
|----------------------------|------------------------|
| 9                          | 4                      |
| 12                         | 5                      |
| 13                         | 6                      |

## CÁCULO ESTADÍSTICO MANN-WHITNEY (W)

#### ¿Cómo se calcula el estadístico W?

Como la diferencia de los ranking entre tratamiento y control

| Tratamiento (T) | Control (C) | Ranking T   | Ranking C  |
|-----------------|-------------|-------------|------------|
| 9               | 4           | 4           | 1          |
| 12              | 5           | 5           | 2          |
| 13              | 6           | 6           | 3          |
|                 |             | $\sum = 15$ | $\sum = 6$ |

$$W = 15 - 6 = 9$$

Máxima diferencia posible entre T y C.

## ¿CUÁNTAS COMBINACIONES SON POSIBLES?

¿Cuántas combinaciones son posibles?

2 resultados posibles de 20

Control mayor que tratamiento.

Tratamiento mayor que Control.

| Т   | С   |
|-----|-----|
| 1   | 4   |
| 2   | 5   |
| 3   | 6   |
| 6   | 15  |
| W = | - 9 |

| Т   | С |
|-----|---|
| 2   | 1 |
| 5   | 3 |
| 6   | 4 |
| 13  | 8 |
| W = | 5 |
|     |   |

## DISTRIBUCIÓN MUESTRAL DE W



## PRUEBA DE HIPÓTESIS DE MANN-WHITNEY

#### Hipótesis

 $H_0$ : Tratamiento = Control  $H_1$ : Tratamiento > Control

Resultado obtenido W=9.

p = 1/20

p = 0.05

No se rechaza  $H_0$  porque p=0.05

### PRUEBA DE MANN-WHITNEY CON R

# Crea objetos tratamiento y control

```
t \leftarrow c(9, 12, 13)
c \leftarrow c(0, 4, 6)
# Realiza prueba de Mann-Whitney
wilcox.test(t, c, alternative = "g",
            paired = FALSE)
##
   Wilcoxon rank sum exact test
##
##
## data: t and c
## W = 9, p-value = 0.05
## alternative hypothesis: true location shift is greater
```

## **COMPARACIÓN DE MUESTRAS PAREADAS**

#### ¿Para que sirve?

Para comparar dos muestras *pareadas* con idéntica distribución, con diferentes medianas y sin normalidad.



## PRUEBA DE WILCOXON MUESTRAS PAREADAS

Estudio de caso: Gonadotrofina en trucha 7 y 14 días **post ovulación.** 

¿Aumenta la gonadotrofina post ovulación?

| Trucha | 7 días | 14 días | d | Ranking con signo |
|--------|--------|---------|---|-------------------|
| 1      | 45     | 49      | 4 | 2                 |
| 2      | 41     | 50      | 9 | 4                 |
| 3      | 47     | 52      | 5 | 3                 |
| 4      | 52     | 50      | 2 | -1                |

W = suma de los ranking = 8

V = suma de casos positivos (aumenta) = 9

## DISTRIBUCIÓN MUESTRAL DE W

¿Cuántas combinaciones de signos (+ o -) son posibles?  $2^4 = 16$ 



## PRUEBA DE HIPÓTESIS DE WILCOXON

### Hipótesis

 $\textbf{H_0} \colon \, d = 0$ 

 $H_1$ : d > 0

$$p = 2/16$$

$$p = 0,125$$

No se rechaza  $\mathbf{H_0}$  porque p=0.125 es mayor a 0.05

### PRUEBA DE WILCOXON PAREADAS CON R

```
# Crea objetos pre y post
pre \leftarrow c(45, 41, 47, 52)
post \leftarrow c(49, 50, 52, 50)
# Realiza prueba de Wilcoxon
wilcox.test(post - pre, alternative = "greater")
##
    Wilcoxon signed rank exact test
##
##
## data: post - pre
## V = 9, p-value = 0.125
## alternative hypothesis: true location is greater than 0
# no es necesario indicar muestras pareadas
# pues estamos haciendo la resta en la función.
```

# COMPARACIÓN DE MÚLTIPLES MUESTRAS INDEPENDIENTES

#### ¿Para que sirve?

Para comparar múltiples muestras con idéntica distribución, con diferentes medianas y sin normalidad.



## ESTUDIO DE CASO: DAÑO EN PLANTAS DE NOGAL

**Besoain. 201**. Fertilizante Vitanica® RZ (con *Bacillus amyloliquefaciens*) tiene acción preventiva ante enfermedades fúngicas en nogal.



### PRUEBA DE KRUSKAL - WALLIS CON R

#### Hipótesis

 $\mathbf{H_0}$ : La distribución de los k grupos son iguales.  $\mathbf{H_1}$ : Al menos 2 grupos son distintos.

#### # Realiza prueba de kruskal

kruskal.test(IDr ~ Tratamientos, data=data) %>% pander()

Table 15: Kruskal-Wallis rank sum test: IDr by Tratamientos

| Test statistic | df | P value         |
|----------------|----|-----------------|
| 39.48          | 4  | 5.535e-08 * * * |

## PRUEBA DE DUNN PARA COMPARACIONES MULTIPLES

| Comparison | Z    | P.unadj | P.adj   |
|------------|------|---------|---------|
| T0 - T1    | 4.2  | 2.5e-05 | 0.00025 |
| T0 - T2    | 2.9  | 0.0036  | 0.036   |
| T1 - T2    | -1.3 | 0.19    | 1       |
| T0 - T3    | 1.7  | 0.095   | 0.95    |
| T1 - T3    | -2.5 | 0.011   | 0.11    |
| T2 - T3    | -1.2 | 0.22    | 1       |
| T0 - T4    | 5.7  | 9.3e-09 | 9.3e-08 |
| T1 - T4    | 1.5  | 0.13    | 1       |
| T2 - T4    | 2.8  | 0.0046  | 0.046   |
| T3 - T4    | 4.1  | 4.6e-05 | 0.00046 |

# PRUEBA DE ASOCIACIÓN VARIABLES CATEGÓRICAS

#### ¿Para que sirve?

Se utilizan para investigar la asociación de dos o más variables categóricas una de las cuales es una variable respuesta y la otra es una variable predictora.

| Tratamiento | Respuesta + | Respuesta - |
|-------------|-------------|-------------|
| Si          | а           | С           |
| No          | b           | d           |

#### ¿Cómo se calcula el estadístico Chi cuadrado?

$$X^2 = \sum \frac{(freq.obs. - freq.esp.)^2}{(freq.esperada)} = \sum \frac{(O - E)^2}{(E)}$$

### PRUEBA DE CHI CUADRADO

Esta prueba contrasta frecuencias observadas con las frecuencias esperadas de acuerdo con la hipótesis nula.

#### Hipótesis

 $\mathbf{H_0}$ : La variable predictora y la variable respuesta son independientes (Tratamiento = control)

**H**<sub>1</sub>: La variable predictora y la variable respuesta NO son independientes

#### **Supuestos:**

- Los datos provienen de una muestra aleatoria de la población de interés.
- El tamaño de muestra es lo suficientemente grande para que el número esperado en las categorías sea mayor 5 y que ninguna frecuencia sea menor que 1.

# ESTUDIO DE CASO: GERMINACIÓN DE SEMILLAS DE PEUMO

Chacon et al. 1998. Germinación depende de tamaño de semilla.



### PRUEBA CHI CUADRADO

datos

```
## Germinated No germinated
## small 13 17
## medium 23 7
## large 26 4

# Test de Chi-squared en R (chisq.test)
test<-chisq.test(datos, correct = FALSE)

test %>% pander()
```

Table 19: Pearson's Chi-squared test: datos

| Test statistic | df | P value        |
|----------------|----|----------------|
| 14.41          | 2  | 0.000742 * * * |

## PRÁCTICA ANÁLISIS DE DATOS

Guía de trabajo práctico disponible enRstudio.cloud.
 Clase\_19

### **RESUMEN DE LA CLASE**

Revisión de conceptos de estadística no paramétrica.

- Correlación de Spearman.
- Prueba de Man-Whitney.
- Prueba de Wilcoxon.
- Prueba de Kruskal Wallis + DUNN test.
- Prueba de Chi-cuadrado.