ltccmockexam.tex

LONDON TAUGHT COURSE CENTRE: MOCK EXAMINATION, 2008 MEASURE-THEORETIC PROBABILITY

Q1. A.

- (i) The generating function of a random variable X with non-negative integer values is P(s), or $P_X(s)$, $:= \sum_{n=0}^{\infty} P(X=n)s^n$. Show that if X, Y are independent with generating functions P_X , P_Y , then X + Y has generating function $P_{X+Y}(s) = P_X(s).P_Y(s)$.
- (ii) A random variable X has the *Poisson* distribution with parameter λ , $X \sim P(\lambda)$, if $P(X = n) = e^{-\lambda} \lambda^n / n!$, n = 0, 1, 2, ... Show that $P_X(s) = e^{-\lambda(1-s)}$.
- (iii) If X, Y are independent, Poisson with parameters λ , μ , show that X + Y is Poisson with parameter $\lambda + \mu$.
- (iv) Show that $EX = \lambda$. Hence, given that X + Y is Poisson, find its parameter without calculation.

В.

- (i) Define a Poisson point process with parameter λ , $Ppp(\lambda)$.
- (ii) If $X = (X_t)$, $Y = (Y_t)$ are independent Poisson point processes with parameters λ , μ , show that X + Y is a $Ppp(\lambda + \mu)$.
- (iii) Given that X + Y is a Ppp, find its parameter without calculation.
- Q2. Let $s_1, \sigma_2 > 0$, and let B_1, B_2 be independent standard Brownian motions. Write

$$X_t := (\sigma_1 B_1(t) + \sigma_2 B_2(t)) / (\sigma_1^2 + \sigma_2^2)^{1/2}.$$

Find the mean and covariance of X. Deduce that X is standard Brownian motion.

NHB