OM- Gradient based learning Problem Set Akshay Bankar 2019 2010 11 FILM-2)	C C C C C C C C C C
G.1 Function model	Herne And it is minimized using the gradient
- To a spread of disease title such as (OVID-19, a non-stationary)15 = 2 5 (y-f(x, p)) (y-f(x, p))
time-sories is a meterable model.	
- Non-stationary time-series; devices whose statistical properties change	In our case, the objective function is,
over time	In our case, the objective function is,
- Exponential models can be fit but these do not capply	
whenever rate of charge of quantity depends on quantity itself	The parameters a, b will be learned, iteratively
& Beasen for salesting non stationary process?	Using gradient descent this the update step in a
is ie the more people care infected, the higher the number	The parameters a, b will be learned, iteratively Using gradient descent this the update step in a iteration would be.
of newly infected people. But the trend can't go on	δ Z = 2 Σ (y: - a, e ^{bx}). (- ab e ^{bx} c)
forever as, once everyone is injected the growth rad must	
be zero. The extended midel taking the population 8,28	$\frac{\delta z}{\delta b} = 2 \sum_{i} \left(q_{i} - a b^{h \pi_{i}} \right) \left(-ab e^{b x_{i}} \right)$
into account is logistic growth model.	
- The growth rate change over time for following seasons-	And update of a b will be,
is Pool of people to infect shrinks as more & more people get infected	ak = ak 2 \ (y - ak) (- 2)
(ii) If the infection numbers become too large, actions of manures	pr+1 = pr - x = \(\frac{1}{2}\) \(\left(- 6px \frac{1}{2}\) \)
such as quarantine will be taken.	
(iii) After a while, a vaccine which prevents infections may be found.	Using Newton's method,
	The update step is given by
- The following model is adopted with a start window day No. y = a(rs). e b(rs). x	Bk+1 = Bx - f(x, Bx) f(x, Bx)
y = 9(7.), e 1	
Linear relationship is obtained by taking by	· · · · · · · · · · · · · · · · · · ·
() = () ((x)) + b(x) · x	2 \(\text{2} \left(\eta_1 - \frac{1}{2} \end{array} \left(- \frac{1}{2} \eta_1 \right) \)
The initial parameters log(a) & b are obtained by	b _{k+(} = b _k - α ξ (y, - f (y, β) 2 Σ (y, - aebex;) (-ebex,)
Murc-Penrose pseudo inverse (Least squere fitting of input X,y)	2 £ (4,5- ace 2) (- c 2)
- Non-linear least great not is used by loss function to obtain	
a bart-square fit.	
For a non-linear function with variable of 2 department parameters B	
f(N; B), the least square is, (or regidual)	
Ls, exi= 5 (y; -f (xi, p)2	
; (),	