Reg. No.			E 30 37.						
----------	--	--	----------	--	--	--	--	--	--

B.Tech. DEGREE EXAMINATION, NOVEMBER 2023

Fourth Semester

18CEC206T - HYDRAULIC ENGINEERING AND DESIGN

(For the candidates admitted from the academic year 2020-2021 & 2021-2022)

(i) **Part - A** should be answered in OMR sheet within first 40 minutes and OMR sheet should be handed over to hall invigilator at the end of 40th minute.

(ii)	Part - B & Part - C should be answered						13 No.
Time: 3	hours			Max. I	Marl	cs: 1	00
	$PART - A (20 \times 1)$	= 20 I	Marks)	Marks	BL	СО	РО
	Answer ALL Q						
1.	The dimension of pressure in MLT s			1	1	1	3
	(A) MLT^{-2}		ML^2T^2				
	(C) $ML^{-1}T^{-2}$	(D)	$ML^{-1}T^{-3}$				
2.	Two equations are said to be fundamental dimensions have identic			. 1	1	1	3
	(A) Mass, length, time	(B)	Mass				
	(C) Time	(D)	Length				
3.	The structure of which model is prep	-		1	1	1	3
	(A) Scale ratio	` ,	Scale effect				
	(C) Prototype	(D)	Geometric similarity				
4.	In a model of scale ratio 1:25, the rand model is			1	1.	. 1	3
	(A) <u>1</u>	(B)	1				
	25	(B)	$\sqrt{25}$		Α.		
	(C) $(25)^{1.5}$	(D)	$\frac{1}{\sqrt{25}} $ (25) ^{2.5}				
_				1	1	2	3
5.	The gravity force (Fg) is the product		C1	wyfs) i	•		5
	(A) Surface tensions and mass(C) Mass and acceleration	(B) (D)	Shear stress and area of flow Intensity of pressure and area of flow				
6	Charry's farmania is sixon by			1	1	2	3
0.	Chezy's formula is given by	(P)	V - CDS	uG, l	À.		
	(A) $V = C\sqrt{RS}$	(B)	V = CRS				
	(C) $V = \sqrt{RS}$	(D)	V = CS				
7.	Depth of water is a channel, corresponding called	onding	g to the minimum specific energy	1	1	2	3
	(A) Maximum depth		Critical depth				
	(C) Virtual depth	(D)	Hydraulic mean depth				

8.		curve for kinetic energy will be a			1	1	2	3
		Hyperbola		Ellipse				
	(C)	Rectangular hyperbola	(D)	Parabola				
9.	The	hydraulic jumps occurs during w	hich	of the following type of flows?	1	1	3	3
		Critical flow		Shooting flow				
	(C)	Streaming flow	(D)	Any type of flow				
10					1	1	3	3
10.		ax refers to	(D)	Daniera :	1	1	3	3
	. ,	Increase in water level Loss of friction	. ,	Decrease in water level Decrease in width of the				
	(C)	Loss of interior	(D)	channel				
				ondimier .				
11.		otch is used to measure the	of	liquids.	1	1	3	1
	(A)	Pressure		Temperature				
	(C)	Discharge	(D)	Velocity				
10	The	aina alatti vaain ia a			. 1	1	3	3
12.		cippoletti weir is a Rectangular weir	(P)	Downward weir		•	5	3
		Ogee weir	. ,	Trapezoidal weir				
	(0)	ogee wen	(2)	Trapozordar won				
13.	A flu	amed structure used for the measure	urem	ent of quantity of water is called	1	1	4	3
	` '	Venturimeter	` '	Orifice meter				
	(C)	Venturiflume	(D)	Rota meter				
1.4	A gi	mplay way of magazing the well	oitre	of flow is by moons of	1	1	4	3
14.		mplex way of measuring the velo Rota meter	-	Floats	•	•		
	` '	Venturimeter	` '	Current meter				
	(-)		(-)					
15.		centrifugal pump the liquid enter			1	1	4	3
		At the centre		At the top				
	(C)	At the bottom	(D)	From sides				
16	Air	vessels are used in reciprocating	numr	as to	1	1	4	3
10.		Increase the flow	•	Smoothen the flow				
	(C)	Decrease the flow		Reduce acceleration head				
	` '		` /					
17.		mpulse turbine is used for			1	1	5	3
		Medium head of water	. ,	Low head of water				
	(C)	High head of water	(D)	Head of water from 0 to 25 m				
18	The	power produced by a reaction tur	rhine	is	1	1	5	3
,		Directly proportional to \sqrt{H}		Directly proportional to H				
	(C)	Inversely proportional to H		Inversely proportional to \sqrt{H}				
,	(-)	Froposition to 1	(-)	inversely proportional to VII				
19.	The	specific speed of turbine is given	by t	he relation	1	1	5	3
	(A)	NP	(B)	$N\sqrt{P}$				
		\overline{H}		$H^{5/4}$				
	(C)	$N\sqrt{P}$	(D)	NH				
		$\frac{H}{H}$		\sqrt{P}				

2	0.	The efficiency of conical draft tubes is as large as	, in	1	,	
		(A) 75% (B) 80%				
		(C) 90% (D) 60%				
		PART - B (5 × 4 = 20 Marks) Answer ANY FIVE Questions	Marks	BL	со	PO
2	21.	Differentiate clearly between undistorted and distorted model.	4	1	1	3
2	22.	Write short notes on types of channels.	4	1	2	3
2	23.	What are the advantages of a triangular notch over a rectangular notch?	4	1	3	3
2	24.	Define 'Velocity of approach' and 'End contraction'.	4	1	3	3
2	25.	Draw a neat sketch of a centrifugal pump and mention the components on it.	4	1	4	3
2	26.	What is an air vessel? Why is it necessary?	4	1	4	3
2	27.	How turbine are classified?	4	1	5	3
		PART – C ($5 \times 12 = 60$ Marks) Answer ALL Questions	Marks	BL	со	PO
28	. a.	The resisting force (F) of a supersonic plane during flight can be considered as dependent upon the length of the air craft (l), velocity (v), air viscosity (μ), air density (ρ) and bulk modulus of air (k). Express the functional relationship between these variables and the resisting force. Use Buckingham's π -theorem.	12	2	l'	3
	b.i.	(OR) A model of an open channel is made in a laboratory. If the actual discharge of the prototype is 102.4 m³/s and corresponding discharge over the model is 100 lps, find the scale of the model.	6	2	1	3
	ii.	Explain the use of model in the design of hydraulic structures.	6	1	1	3
29.	a.i.	Compare pipe flow and channel flow.	6	1	2	3
	ii.	A rectangular channel has a cross-section of 8 m^2 . Find its size and discharge through the most economical section, if the bed slope is 1 in 1000. Take $C = 55$.	6	2	2	3
	b	(OR) Design a most economical earthen channel with velocity of flow as 1 m/s, and to discharge 3 m ³ /s having side slope 1 in 2. Take C = 55.	12	2	2	3

30. 4.1	carried in a rectangular channel 4 m wide with a specific energy equal to 2.5 m.	0	2	3	3
ii.	. How are Weirs classified?	6	1	3	3
b.i.	(OR) During an experiment 50 lps of water flowers a 90° V-notch was collected in measuring tank in one second. Calculate the coefficient of discharge for the notch if the head of water is 200 mm.	6	2	3	3
ii.	Water flows over a rectangular weir 1.2 m wide at a depth of 0.15 m and afterwards passes through a 90° triangular weir. The values of C_d for rectangular and triangular weir are 0.62 and 0.59 respectively. What is the head on the triangular weir?	6	2	3	3
31. a.	The diameter and width of a centrifugal pump impeller are 400 mm and 80 mm respectively. The pump is delivering 0.175 m ³ /s with a manometric efficiency 80%. The effective outlet vane angle is 45°. If the speed of rotation is 950 rpm. Calculate specific speed of the pump.	12	2	4	3
	(OR)				
b.	A single acting reciprocating pump runs at 60 rpm delivers 54 m³ of water per minute. The diameter of the piston is 200 mm and the stroke length is 300 mm. the suction and delivery heads are 4 m and 12 m respectively. Determine (i) Theoretical discharge (ii) C _d (iii) Percentage of slip (iv) Power required to rate the pump	12	2	4	2
32. a.	Design a pelton wheel to develop 750 kW working under a head of 250 m running at 800 rpm. The speed is 800 rpm with an overall efficiency of 85%. Take speed ratio as 0.45 and $C_V = 0.98$. The ratio of jet diameter to wheel diameter is $1/10$. Find (i) Wheel diameter (ii) Jet diameter (iii) Number of jets	12	2	5	3
	(OR)				
	A Kaplan trahing days 1 - 0000 1 My	12	2	5	3
	* * * *				

Page 4 of 4