空間ベクトルの基礎

ベクトルの最大の強みは「次元に依らない表現ができる」という点です。空間ベクトルの重要な6つのテーマについて、その一番基本となる形の問題を並べました。 大橋

1 直線に下ろした垂線の長さ

空間内の 3 点 A(1, 1, 1), B(0, 1, 2), C(3, 3, 0) について, 点 C から直線 AB に下ろした垂線の長さ CH を求めよ.

2 点の一致

4点 $A(\vec{a})$, $B(\vec{b})$, $C(\vec{c})$, $D(\vec{d})$ を頂点とする四面体において、 $\triangle BCD$ の重心を $G_1(\vec{g}_1)$ とし、線分 AG_1 を 3:1 に内分する点を $G(\vec{g})$ とする.

- (1) G の位置ベクトル \vec{q} を \vec{a} , \vec{b} , \vec{c} , \vec{d} で表せ.
- (2) 4つの頂点と対面の重心を結んだ線分は1点で交わることを示せ.

3 等式を満たす点の位置

四面体 ABCD の内部にある点 P が

$$\overrightarrow{2AP} + \overrightarrow{3BP} + \overrightarrow{4CP} + \overrightarrow{5DP} = \overrightarrow{0}$$

を満たすとき、四面体 BCDP、ACDP、ABDP、ABCP の体積比を求めよ.

4 直線と平面の垂直条件

1 辺の長さが a の正四面体 ABCD について、次の命題をそれぞれ示せ、

- (1) 対辺 AB と CD は垂直である.
- (2) 底面 $\triangle BCD$ の重心を G とすると、直線 AG は底面に垂直である.

| 5 | 平面上と直線の交点

平行六面体 OADB-CEGF において、辺 GD の中点を H とし、 $\overrightarrow{OA} = \overrightarrow{a}$ 、 $\overrightarrow{OB} = \overrightarrow{b}$ 、 $\overrightarrow{OC} = \overrightarrow{c}$ とおく.

- (1) 直線 OH と平面 ABC の交点を L とするとき、 \overrightarrow{OL} を \overrightarrow{a} 、 \overrightarrow{b} 、 \overrightarrow{c} で表せ.
- (2) 直線 OH と平面 AFC の交点を M とするとき、 \overrightarrow{OM} を \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} で表せ.

6 四面体の体積

空間内の $4 \le A(1, 1, 1)$, B(0, 1, 2), C(3, 3, 0), D(2, 3, 4) について, 次の各問いに答えよ.

- (1) △ABC の面積を求めよ.
- (2) 四面体 ABCD の体積を求めよ.

空間内の直線、平面、球面の扱い

空間内の直線、平面、球面の典型的なテーマを6つ挙げ、その基本となる問題を並べました.

大橋

1 共通垂線

座標空間で点(3, 4, 0) を通りベクトル $\overrightarrow{a} = (1, 1, 1)$ に平行な直線をl,点(2, -1, 0) を通りベクトル $\overrightarrow{b} = (1, -2, 0)$ に平行な 直線をmとする. 点Pは直線l上を,点Qは直線m上をそれぞれ勝手に動くとき、線分PQの長さの最小値を求めよ.

(2007 京大・文系)

2 直線,平面のなす角

- (1) 平面 α :x-2y-z=0 と平面 β :x+y+2z=1 のなす鋭角を求めよ. (2) 直線 l: $\frac{1-x}{5}=\frac{y-1}{3}=\frac{z+1}{4}$ と平面 α :5x+4y-3z=12 のなす鋭角を求めよ.

3 点と平面の距離公式

(1) 点 $A(x_1, y_1)$ と直線 l: ax + by + c = 0 の距離 d は

$$d = \frac{|ax_1 + by_1 + c|}{\sqrt{a^2 + b^2}}$$

で与えられることを示せ.

(2013 阪大・文系)

(2) 点 $A(x_1, y_1, z_1)$ と平面 $\alpha : ax + by + cz + d = 0$ の距離 h は

$$h = \frac{|ax_1 + by_1 + cz_1 + d|}{\sqrt{a^2 + b^2 + c^2}}$$

で与えられることを示せ.

平行六面体の体積

空間内にの 4 点 A(1, 1, 1), B(2, 2, 0), C(2, -4, 2), D(0, 3, 4) に対して、AB, AC, AD を隣り合う 3 辺とする平行六面体 Tがある.

- (1) 平面 ABC の方程式を求めよ.
- (2) 平行六面体 T の体積 V を求めよ.

2つの球の外接

球面 S_1 : $(x-3)^2+(y-3)^2+(z-3)^2=9$ に $x>0,\ y>0,\ z>0$ の領域で外接し、3 つの座標平面に接する球面の中心と半径を 求めよ.

6 球面と平面の交円

- (1) 中心が点 (a, 2, 1), 半径が 5 の球面が, yz 平面と交わってできる円の半径が 3 であるという. a の値を求めよ.
- (2) 球面 $T: x^2 + y^2 + z^2 10x 10z + 25 = 0$ と平面 $\alpha: 2x 2y + z 6 = 0$ が交わってできる円の中心 H の座標と半径 r を 求めよ.