Outline

Metal Cutting

- Chip Formation Processes
 - Conditions
 - Back rake angle
 - Shear angle
- Chip Formation
 - Continuous formation
 - Built up edge formation
 - Discontinuous formation
- Effects
 - Chip formation
 - Shear angle

Chip Formation Processes

- Shaping
- Turning
- Milling
- Drilling
- Sawing
- Broaching
- Grinding

Machining Operations

Basic Cutting - Face Cutting

Basic Cutting – Turning Diameters

Basic Cutting - Thread Cutting

Chip Formation Processes

Control

- Feed
- Speed
- Depth of Cut

Conditions

- Machining Process
- Machine Limitations
- Material
- Tool Type
- Tool material
- Surface Finish
- Tolerances

Chip Formation Processes

- Back rake angle, α
 - The angle that the tool makes with respect to a vertical from the work piece
- The chip is formed by shearing along the shear plane
 - The shear plane or shear angle Φ is measured with respect to the horizontal
 - Flank of the tool is the bottom of the tool not in contact with the material

Cutting Definitions

Chip Formation

Continuous Chip Formation

Built Up Edge (BUE) Formation

Discontinuous Chip Formation

Chip Formation

Three Characteristic types of chips

- 1. Discontinuous
- 2. Continuous
- 3. Continuous with built-up edge

Three Types of Chips

FIGURE 21-15 Three characteristic types of chips. (Left to right) discontinuous, continuous, and continuous with built-up edge. Chip samples produced by quick-stop techniques. (Courtesy of Cincinnati Milacron, Inc.)

Continuous Chip formation

In *continuous chip formation* the chip slides off along the rake face at a constant speed in a stationary flow. Continuous chip formation is promoted by a uniform, fine-grained structure and high ductility of the workpiece material, by high cutting speeds and low friction on the rake face, by positive rake angles and a low undeformed chip thickness

continuous chip formation

Discontinuous Chip formation

Discontinuous chip formation occurs if the plastic ductility of the workpiece material is very low or if predefined slide paths are formed due to high inhomogeneities (e. g. if cast iron with lamellar graphite is machined). Parts of the workpiece material are ripped out of the compound material without significant deformation.

discontinuous chip formation

Segmented with built up edge

With continuous chip formation, built-up edges can occur

They are

formed by particles of the workpiece material, which adhere to the rake face and to the cutting edge. These particles have been subject to high deformation and have been strain-hardened. They are much harder than the base workpiece material.

Formation of built up edge

Built-up edges only occur if

- · the workpiece material promotes strain-hardening,
- · the chip formation is stable and largely stationary,
- · there is a stagnant zone in the material flow in front of the cutting edge,
- the temperatures in the chip formation zone are sufficiently low and do not allow for recrystallization.

Deformation zone

1 : primary shear zone

2 : secondary shear zone at the rake face

3 : secondary shear zone at the stagnation zone/seperativ zone

4 : secondary shear zone at the flank face

γ : rake angle

 α : clearance angle

φ : shear angle

t, : deformation depth

Resulting Finishes of Chip Formation

Effect of Shear Angle

FIGURE 23.11 Effect of shear plane angle ϕ : (a) higher ϕ with a resulting lower shear plane area; (b) smaller ϕ with a corresponding larger shear plane area. Note that the rake angle is larger in (a), which tends to increase shear angle according to the Merchant equation.

Summary

Chip formation processes are designed to shear off layers of metal

Control and conditions determine the type of chip formation

The type of formation affects the resulting finish of the workpiece

Thank You