Fényhullámhossz és dizperzió mérése

Klasszikus fizika laboratórium, Csütörtöki csoport

Márton Tamás Október 19

Bevezetés

Egy optikai rácsnak segítségével felbontjuk egy spektrállámpa fényét. A spektrumvonalak hullámhosszát különböző színű fények elhajlási szögeinek vizsgálatával határozzuk meg. A prizma törésmutatójának hullámhosszfüggését a különböző spektrumvonalak minimális eltérítési szögeinek segítségével határozhatjuk meg.

I. Mérőeszközök

- goniométer
- spektrállámpa
- $\bullet\,$ optikai rács (8000 $\frac{vonal}{inch})$
- 3-as számú prizmának 2-es számú éle

II. Mérésleírás

II.1. Hullámhossz mérése optikai ráccsal

II.1.1. Elméleti háttér

Az optikai rács egy olyan speciális lemez, melyen párhuzamos karcolások vannak egymáshoz közel. Ezek a karcolások átlátszatlanok. A méréshez használt rács jellemezhető egy rácsállandóval, amely egy sötét és egy világos sáv együttes távolságát jelenti. Ha a rácsra merőlegesen fénysugarat bocsátunk, akkor a rács mögé helyezett ernyőn Fraunhofer-féle elhajlási kép keletkezik. Ekkor az alábbi összefüggés érvényes:

$$k \cdot \lambda = d \cdot \sin \alpha$$
.

ahonnan:

$$\lambda = \frac{d}{k}sin\alpha,\tag{1}$$

ahol k pozitív egész szám, λ a hullámhossz, d a rácsállandó és α pedig az elhajlási szög.

II.1.2. Mérés menete

A mérés kezdetén a tárgyasztalt vízszintesre állítjuk, ha ezt sikerült elérni,akkor felhelyezzük az optikai rácsot. A különböző színű vonalak minimális szögeltéréseinek segítségével a rácsot merőlegesen állítjuk be a kollimátorra, ezután mérjük az egyes spektrumvonalak elhelyezkedését. A mérés során a tengelytől való távolság számít, ezért a jobb oldalon vizsgált eltérés szögét ki kell vonni 360°-ból.

II.2. Prizma törésmutatójának mérése

II.2.1. Elméleti háttér

Ha a prizmára beeső fénysugár beesési szögét úgy választjuk meg, hogy az eltérülési szög minimális legyen, akkor a a következő összefüggés érvényes a prizma törésmutatója és az eltérítési szög között:

$$n = \frac{\sin\frac{\phi + \epsilon_{min}}{2}}{\sin\frac{\phi}{2}},\tag{2}$$

ahol ϕ a prizma törőszöge, ϵ_{min} pedig a minimális eltérülési szög.

A törőszög és a minimális eltérítési szög mérésével kifejezhetjük a prizma törésmutatóját. A prizma diszperziójának meghatározásához ki kell használnunk, hogy a minimális eltérítési szög hullámhosszfüggő.

II.2.2. Mérés menete

A prizmát úgy állítjuk be, hogy a távcsőben figyelt fénysugár eltérülése minimális legyen. Ha ezt sikerült elérni, minden színképvonalhoz tartozó szöget lejegyzetelünk (ϵ_{min}) .

A prizma törőszögének meghatározásához a prizma élét a sugárral szembe állítjuk és megmérjük a jobb- és baloldalra visszavert sugarak szögét. A törőszög a két szög számtani közepe lesz.

III. Mérési adatok és kiértékelés

III.1. Optikai rács

A méréshez használt rács rácsállandója: 3175 nm

A hibaszámítást a következő képlettel végezzük:

$$\Delta \lambda = \Delta \alpha \frac{d}{k} \cdot \cos \alpha \tag{3}$$

 $\Delta \alpha$ megadására a leolvasási hibát vesszük alapul: $\Delta \alpha = 20''$

III.2. Prizma

A mérést a 3-as prizmán a 2-es élen végeztem.

$$\Phi = \frac{(360^{\circ} - \Phi_{jobb}) + \Phi_{bal}}{2} = (60, 0012 \pm 0, 006)^{\circ}$$

A törésmutató hibájának becslését az alábbi módon végezzük:

	Elsőrend					
szín	ϕ_{jobb}			ϕ_{bal}		
	[°]	[']	["]	[°]	[']	["]
lila	352	6	41	7	54	56
sötétkék	351	31	48	8	30	16
világoskék	351	18	30	8	43	32
sötétzöld	350	47	35	9	15	2
világoszöld	350	6	36	9	56	40
sárga	349	30	6	10	31	2
vörös	348	18	40	12	45	6

1. táblázat. Elhajlások adatai

szín	$\phi_{jobb}[^{\circ}]$	$\phi_{bal}[^{\circ}]$	$\alpha[^{\circ}]$	$\alpha[rad]$	$sin \alpha$	$\lambda[nm]$
lila	7.359	7.5456	7.4518	0,130	0,129	409 ± 17.5
sötétkék	8.6852	8.3016	8.934	0,148	0,148	460.0 ± 17.4
világoskék	8.817	8.4332	8.6251	0,150	0,150	476.0 ± 17.4
sötétzöld	9.5265	9.152	9.3393	0,163	0,162	514.4 ± 17.4
világoszöld	9.364	9.5640	9.464	0,165	0,164	$520,7 \pm 17.3$
sárga	10.694	10.312	10.503	0,183	0,182	$577,9 \pm 17.3$
vörös	11.814	12.456	12.136	0.212	0,210	666.8 ± 17.3

2. táblázat. Elsőrendű elhajlás számolásai $\left(k=1\right)$

	Φ		
	[°]	[']	["]
Φ_{jobb}	298	51	56
Φ_{bal}	58	51	8

3. táblázat. Prizma törőszöge

$$a = \frac{\Phi + \epsilon_{min}}{b}$$

$$b = \frac{\Phi}{2}$$

$$\Delta a = \frac{1}{2}(\Delta \Phi + \Delta \epsilon_{min})$$

$$\Delta b = \frac{1}{2}\Delta \Phi$$

$$\Delta n = n(\Delta a \cdot ctga + \Delta b \cdot ctgb)$$

szín	ϵ_{min}					
SZIII	[°]	[']	["]	n	$\lambda[nm]$	
lila	39	92	68	$1,5290 \pm 0,0003$	409,0	
sötétkék	39	73	52	$1,5268 \pm 0,0003$	460,0	
világoskék	39	58	49	$1,5252 \pm 0,0003$	476,0	
sötétzöld	39	53	49	$1,5248 \pm 0,0003$	514,4	
világoszöld	39	42	40	$1,5234 \pm 0,0003$	520,7	
sárga	38	15	8	$1,5090 \pm 0,0003$	577,9	
vörös	38	83	42	$1,5166 \pm 0,0003$	666,8	

4. táblázat. Minimális eltérülési szögek, törésmutató és hullámhossz

IV. Diszkusszió

Az alábbi képlet az elméleti résznél szerepelt:

$$\lambda = \frac{d}{k}sin\alpha,\tag{4}$$

amit ha átalakítunk a következő összefüggést adja:

$$-1 \le \frac{\lambda k}{d} \le 1 \tag{5}$$

 k_{max} értéke ebből kifejezhető:

$$k_{max} = \frac{d}{\lambda} \tag{6}$$

szín	$\lambda[nm]$	k_{max}
lila	409,0	7
sötétkék	460,0	6
világoskék	476,3	6
sötétzöld	514,4	6
világoszöld	520,7	6
sárga	577,9	4
vörös	666,8	5

5. táblázat. Maximális eltérülési rendek

A prizma diszperziójára adódott eredményeket összehasonlítva a leírásban szereplő táblázat értékeivel megállapíthatjuk, hogy a koronaüveg (BK1) diszperziójával közel azonos értékeket kaptunk, tehát a prizma koronaüvegből készült. A mérés sikeresnek tekinthető, hiszen sikerült meghatározni a hullámhosszakat és a törésmutatókat is.