ALGEBRA 1, Lista 12

Konwersatorium 8.01.2020 i Ćwiczenia 14.01.2020. Na Kolokwium 3 (21.01.2020) obowiazuje materiał z List 1 - 12.

- 0S. Materiał teoretyczny: Pierścień Gaussa i pierścień wielomianów nad ciałem jako pierścienie euklidesowe. Podzielność i elementy stowarzyszone w pierścieniu R. Największy wspólny dzielnik i najmniejsza wspólna wielokrotność w pierścieniu R. Istnienie najwiekszego wspólnego dzielnika w pierścieniu euklidesowym. Algorytm Euklidesa w Z oraz w dowolnym pierścieniu euklidesowym R. Twierdzenie Bézout(a). Podstawowe twierdzenie arytmetyki. Element nierozkładalny w pierścieniu. Twierdzenie o jednoznacznym rozkładzie w pierścieniu euklidesowym.
- 1S. Wykonać dzielenie z resztą w następujących pierścieniach euklidesowych. Podzielić:
 - (a) $X^2 + 3X + 8$ przez X + 1 w $\mathbb{R}[X]$;
 - (b) $X^2 + 3X + 3$ przez X + 1 w $\mathbb{Z}_5[X]$;
 - (c) $3i \text{ przez } 1 + i \text{ w } \mathbb{Z}[i].$
- 2S. W podanym pierścieniu euklidesowym R, dla elementów $a,b \in R$, znaleźć elementy r,s,ttakie, że rjest największym wspólnym dzielnikiem a i boraz r=as+bt.
 - (a) a = 33, b = 42, $R = \mathbb{Z}$.
 - (b) $a = 2X^3 4X^2 8X + 1$, $b = 2X^3 5X^2 5X + 2$, $R = \mathbb{Q}[X]$. (c) $a = X^4 + 2$, $b = X^3 + 3$, $R = \mathbb{Z}_5[X]$.
- 3S. Czy w podanym pierścieniu R dane elementy $a,b\in R$ są stowarzyszone?
 - (a) $a = 5, b = -5, R = \mathbb{Z}$.
 - (b) $a = 2, b = 4, R = \mathbb{Z}$.
 - (c) a = X + 1, b = 5X + 5, $R = \mathbb{Q}[X]$.
 - (d) a = X + 1, b = 5X + 6, $R = \mathbb{Q}[X]$.
 - (e) a = X + 1, b = 5X + 5, $R = \mathbb{Z}[X]$.
 - (f) a = 1 + i, b = 1 i, $R = \mathbb{Z}[i]$.
 - (g) $a = 1 + i, b = 2 + i, R = \mathbb{Z}[i].$
- 4K. Rozstrzygnąć, czy dany element jest odwracalny w danym pierścieniu. Jeśli tak, to znaleźć element odwrotny.
 - (a) $105 \text{ w } \mathbb{Z}_{351}$.
 - (b) 11 w \mathbb{Z}_{2020} .

(b) If w
$$\mathbb{Z}_{2020}$$
.
(c) $\begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$ w $M_2(\mathbb{Z}_3)$.
(d) $\begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$ w $M_2(\mathbb{Z}_4)$.
(e) $\begin{bmatrix} 3 & 5 \\ 1 & 2 \end{bmatrix}$ w $M_2(\mathbb{Z})$.
(f) $\begin{bmatrix} 1 & 2 \\ 3 & 3 \end{bmatrix}$ w $M_2(\mathbb{Z})$.
(g) $\begin{bmatrix} 1 & 2 \\ 3 & 3 \end{bmatrix}$ w $M_2(\mathbb{Q})$.

(d)
$$\begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$$
 w $M_2(\mathbb{Z}_4)$.

(e)
$$\begin{bmatrix} 3 & 5 \\ 1 & 2 \end{bmatrix}$$
 w $M_2(\mathbb{Z})$

(f)
$$\begin{bmatrix} 1 & 2 \\ 3 & 3 \end{bmatrix}$$
 w $M_2(\mathbb{Z})$.

- 5K. Które z liczb 1, 2, 3, 4, 5, 1+i, 2+i, 3+i, 4+i, 5+i są nierozkładalne w pierścieniu $\mathbb{Z}[i]$?
- 6. W podanym pierścieniu euklidesowym R, dla elementów $a,b \in R$, znaleźć elementy r, s, t takie, że r jest największym wspólnym dzielnikiem a i b oraz r = as + bt.
 - (a) a = 2891, b = 1589, $R = \mathbb{Z}$.
 - (b) $a = X^4 + X + 1$, $b = X^3 + X^2 + X$, $R = \mathbb{Z}_3[X]$.
 - (c) a = 4 i, b = 1 + i, $R = \mathbb{Z}[i]$.

- 7. Wskazać nierozkładalny wielomian:
 - (a) stopnia 2 należący do $\mathbb{Z}_5[X]$;
 - (b) stopnia 3 należący do $\mathbb{Z}_7[X]$;
 - (c) stopnia 4 należący do $\mathbb{Z}_2[X]$.
- 8. Załóżmy, że R jest dziedziną, $n \in \mathbb{N}$ i $W \in R[X]$ jest wielomianem stopnia n. Udowodnić, że W ma nie więcej niż n pierwiastków w R (wskazówka: rozważyć ciało ułamków pierścienia R).
- 9. Ile pierwiastków ma wielomian $X^3 + 5X \in \mathbb{Z}_6[X]$ w pierścieniu \mathbb{Z}_6 ? Porównać wynik z poprzednim zadaniem.
- 10. Załóżmy, że R jest dziedziną, element $p \in R$ jest nierozkładalny oraz $u \in R^*$. Udowodnić, że element q = up też jest nierozkładalny.
- 11. Załóżmy, że p jest liczba pierwszą.
 - (a) Udowodnić, że $(X-a)|(X^{p-1}-1) \le \mathbb{Z}_p[X]$ dla każdego $a \in \mathbb{Z}_p \setminus \{0\}$. (b) Obliczyć iloraz $(X^{p-1}-1)/(X-a) \le \mathbb{Z}_p[X]$, gdzie p=5 i a=2.

 - (c) Udowodnić, że w pierścieniu $\mathbb{Z}_p[X]$ zachodzi:

$$X^{p-1} - 1 = (X - 1) \cdot (X - 2) \cdot \dots \cdot (X - p + 1).$$