23BS1101

9. Evaluate the triple integral $\iiint xyz \, dx \, dy \, dz$ over the positive octant of the sphere $x^2 + y^2 + z^2 = a^2$. (CO4 K3) 8M

b. Evaluate the following integral by changing into polar coordinates

$$\int\limits_{0}^{\infty}\int\limits_{0}^{\infty}e^{-(x^2+y^2)}dx\,dy$$

(CO4 K3) 7M

* * *

VR23

		 	 	-	 	-
Reg. No:						

VELAGAPUDI RAMAKRISHNA

SIDDHARTHA ENGINEERING COLLEGE

(AUTONOMOUS)

IV B. Tech. DEGREE EXAMINATION, FEBRUARY - 2024

First Semester

23BS1101 LINEAR ALGEBRA AND CALCULUS (All Branches)

Time: 3 hours

Max. Marks: 70

Part-A is compulsory

Answer One Question from each Unit of Part - B

Answer to any single question or its part shall be written at one place only

PART-A

 $5 \times 2 = 10M$

- 1. a. Find the rank of the matrix $A = \begin{bmatrix} 1 & 2 & 1 \\ -1 & 0 & 2 \\ 2 & 1 & -3 \end{bmatrix}$. (CO1 K2)
 - b. If $A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6 \end{bmatrix}$ then write the eigenvalues of adj (A) and A⁻¹.

(CO2 K2)

c. if
$$x = \frac{u^2}{v}$$
, $y = \frac{v^2}{u}$ find $\frac{\partial(u, v)}{\partial(x, y)}$ (CO3 K2)

- d. State Lagranges mean value theorem. (CO3 K1)
- e. Evaluate $\int_{0}^{2} \int_{0}^{x} y dy dx$. (CO4 K2)

23BS1101

PART-B

 $4 \times 15 = 60M$

UNIT-I

2. a. Apply Gauss-Jordan method to find the inverse of the matrix

$$A = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1 \end{bmatrix} .$$

(CO1 K3) 7M

b. Reduce the matrix $A = \begin{bmatrix} 1 & 3 & -1 & 2 \\ 0 & 11 & -5 & 3 \\ 2 & -5 & 3 & 1 \\ 4 & 1 & 1 & 5 \end{bmatrix}$ into Normal form and

hence find its rank.

(CO1 K3) 8M

(or)

3. Solve, by Gauss-Seidal iteration method, the equations 20x + y - 2z = 17, 3x + 20y - z = -18, 2x - 3y + 20z = 25(CO1 K3) 15M

UNIT-II

- 4. a. Verify Cayley-Hamilton theorem for the matrix $A = \begin{bmatrix} 3 & 1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 3 \end{bmatrix}$ hence find A-1 and A4. (CO2 K3) 8M
 - b. Find the Eigenvalues and corresponding Eigenvectors of

$$A = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{bmatrix}$$

(CO₂ K₃) 7M

VR23

23BS1101

5. Reduce the quadratic form $3x^2 + 2y^2 + 3z^2 - 2xy - 2yz$ into canonical form by an Orthogonal transformation and hence find rank, index and signature of the quadratic form. (CO2 K3) 15M

UNIT-III

6. a. If $f(x)=\log(1+x)$, x > 0, using Maclaurin's theorem, prove that

$$\log(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3(1+\theta x)^3}$$
 for $0 < \theta < 1$ (CO3 K3) 8M

- b. Verify Rolle's theorem for $f(x)=(x+2)^3(x-3)^4$ in (-2,3) (CO3 K2) 7M (or)
- 7. a. Find the dimensions of the rectangular box open at the top of maximum capacity whose surface area is 108 sq.inches. (CO3 K3) 8M
 - b. Expand $e^x \cos y$ in terms of x and y.

(CO3 K2) 7M

UNIT-IV

8. a. Change the order of integration and evaluate $\int_{0}^{4a} \int_{x^2/4a}^{2\sqrt{ax}} dy dx$

(CO4 K3) 8M

b. Evaluate $\int_{0}^{a} \int_{0}^{x} \int_{0}^{x+y} e^{x+y+z} dx dy dz$.

(CO4 K3) 7M

(or)