1~3章演習問題解答例

演習 1.3 ベルヌーイ数 B_0, B_1, B_2, \ldots の最初のいくつかの項を、漸化式を使って計算 せよ.

[解答例] まず k=0 として $B_0=1$. k=1 のときは

$$B_0 + 2B_1 = 2$$

より

$$B_1 = \frac{1}{2}(2 - B_0) = \frac{1}{2}.$$

k=2 のとき、

$$B_0 + 3B_1 + 3B_2 = 3$$

より

$$B_2 = \frac{1}{3}(3 - B_0 - 3B_1) = \frac{1}{6}.$$

k=3 のとき、

$$B_0 + 4B_1 + 6B_2 + 4B_3 = 4$$

より

$$B_3 = \frac{1}{4}(4 - B_0 - 4B_1 - 6B_2) = 0.$$

k=4 のとき、

$$B_0 + 5B_1 + 10B_2 + 10B_3 + 5B_4 = 5$$

より

$$B_4 = \frac{1}{5}(5 - B_0 - 5B_1 - 10B_2 - 10B_3) = -\frac{1}{30}.$$

等々. □

演習 1.10 ベルヌーイ多項式 $B_0(x), B_1(x), B_2(x), \dots$ の最初のいくつかを具体的に計算せよ.

[解答例] まず $B_0(x) = 1$. あとは系 1.9 (1) の両辺の不定積分と定理 1.8 (1) (a) を使って求めていくのが一番やりやすいかもしれない.

$$B_1(x) = x - B_1 = x - \frac{1}{2},$$

$$B_2(x) = 2\left(\frac{x^2}{2} - \frac{x}{2}\right) + B_2 = x^2 - x + \frac{1}{6},$$

$$B_3(x) = 3\left(\frac{x^3}{3} - \frac{x^2}{2} + \frac{x}{6}\right) - B_3 = x^3 - \frac{3}{2}x^2 + \frac{1}{2}x,$$

$$B_4(x) = 4\left(\frac{x^4}{4} - \frac{1}{2}x^3 + \frac{1}{4}x^2\right) + B_4 = x^4 - 2x^3 + x^2 - \frac{1}{30}.$$

演習 1.11 ベルヌーイ多項式を使ったべき乗和の公式

$$\sum_{i=1}^{n} i^{k} = \frac{B_{k+1}(n+1) - B_{k+1}}{k+1}$$

が成立することを示せ.

[解答例] 定理 1.8 (b) の k を k+1 にした式

$$B_{k+1}(x+1) - B_{k+1}(x) = (k+1)x^k$$

で x = 1, ..., n とおいたものを全て足し合わせれば、

$$B_{k+1}(n+1) - B_{k+1}(1) = (k+1) \sum_{i=1}^{n} i^{k}$$

となる. あとは定理 1.8 (a) より $B_{k+1}(1) = B_{k+1}$ だから, 与式を得る.

演習 1.12 関数 $y = B_k(x)$ のグラフについて, 次を示せ.

- (1) k が偶数のとき, $y = B_k(x)$ のグラフは直線 $x = \frac{1}{2}$ に関して対称である.
- (2) k が奇数のとき, $y = B_k(x)$ のグラフは点 $(\frac{1}{2},0)$ に関して対称である.

[解答例] (1) 直線 $x=\frac{1}{2}$ に関して点 (a,b) と対称な点は (1-a,b) である. k が偶数のとき、系 1.9 (2) により $B_k(1-x)=B_k(x)$ だから、

$$(a,b)$$
 が $y = B_k(x)$ 上の点 $\Leftrightarrow b = B_k(a) = B_k(1-a)$ $\Leftrightarrow (1-a,b)$ が $y = B_k(x)$ 上の点.

よって $y = B_k(x)$ のグラフは直線 $x = \frac{1}{2}$ に関して対称である.

(2) 点 $(\frac{1}{2},0)$ に関して点 (a,b) と対称な点は (1-a,-b) である. k が奇数のとき, 系 1.9 (2) により $B_k(1-x)=-B_k(x)$ だから,

$$(a,b)$$
 が $y = B_k(x)$ 上の点 $\Leftrightarrow b = B_k(a) = -B_k(1-a)$ $\Leftrightarrow -b = B_k(1-a) = -B_k(a)$ $\Leftrightarrow (1-a,-b)$ が $y = B_k(x)$ 上の点.

よって $y = B_k(x)$ のグラフは点 $(\frac{1}{2}, 0)$ に関して対称である.

演習 2.7 f(x) がある区間で 2 階微分可能な関数ならば、その区間内で f(x) が凸であることと、常に $f''(x) \ge 0$ となることは同値であることを証明せよ.

[解答例] 考えている区間を I とおく.

 (\Rightarrow) I で f(x) が凸であるとする. すると任意の $x_1, x_2 \in I$ s.t. $x_1 < x_2$ に対し、 $x_1 < \widetilde{x}_1 < \widetilde{x}_2 < x_2$ なる $\widetilde{x}_1, \widetilde{x}_2$ をとると

$$\frac{f(\widetilde{x}_1) - f(x_1)}{\widetilde{x}_1 - x_1} \le \frac{f(\widetilde{x}_2) - f(x_1)}{\widetilde{x}_2 - x_1} = \frac{f(x_1) - f(\widetilde{x}_2)}{x_1 - \widetilde{x}_2} \le \frac{f(x_2) - f(\widetilde{x}_2)}{x_2 - \widetilde{x}_2}.$$

ここで $\widetilde{x}_1 \rightarrow x_1, \ \widetilde{x}_2 \rightarrow x_2$ とすると

$$f'(x_1) \le f'(x_2)$$

を得る. 従って,

$$\frac{f'(x_2) - f'(x_1)}{x_2 - x_1} \ge 0.$$

ここで $x_2 \to x_1$ または $x_1 \to x_2$ とすることで $f''(x_1) \ge 0$, $f''(x_2) \ge 0$ を得る. x_1, x_2 は $x_1 < x_2$ なる任意の I の元だから, 任意の $x \in I$ について $f''(x) \ge 0$ となることが言える.

(秦) 任意の $x \in I$ に対し $f''(x) \ge 0$ となるとする. このとき f'(x) は I において (広義) 単調増加である. I 内の任意の異なる 3 点 x_1, x_2, x_3 に対し, $x_1 < x_2$ ならば,

$$\frac{f(x_1) - f(x_3)}{x_1 - x_3} \le \frac{f(x_2) - f(x_3)}{x_2 - x_3}$$

となることを、3 つの場合に分けて示す.

(1) $x_1 < x_3 < x_2$ の場合. 平均値の定理により、ある $x_1 < \widetilde{x}_1 < x_3 < \widetilde{x}_2 < x_2$ が存在して、

$$\frac{f(x_1) - f(x_3)}{x_1 - x_3} = f'(\widetilde{x}_1) \le f'(\widetilde{x}_2) = \frac{f(x_2) - f(x_3)}{x_2 - x_3}.$$

(2) $x_3 < x_1 < x_2$ の場合. (1) より、

$$\frac{f(x_3) - f(x_1)}{x_3 - x_1} \le \frac{f(x_2) - f(x_1)}{x_2 - x_1}.$$

よって.

$$0 \le \frac{f(x_2) - f(x_1)}{x_2 - x_1} - \frac{f(x_1) - f(x_3)}{x_1 - x_3} = \frac{(x_3 - x_2)f(x_1) + (x_1 - x_3)f(x_2) + (x_2 - x_1)f(x_3)}{(x_2 - x_1)(x_1 - x_3)}.$$

この両辺に $(x_2-x_1)/(x_2-x_3)$ (> 0) をかければ,

$$0 \le \frac{(x_3 - x_2)f(x_1) + (x_1 - x_3)f(x_2) + (x_2 - x_1)f(x_3)}{(x_2 - x_3)(x_1 - x_3)} = \frac{f(x_2) - f(x_3)}{x_2 - x_3} - \frac{f(x_1) - f(x_3)}{x_1 - x_3}$$

を得る.

(3) $x_1 < x_2 < x_3$ の場合. (1) より、

$$\frac{f(x_1) - f(x_2)}{x_1 - x_2} \le \frac{f(x_3) - f(x_2)}{x_3 - x_2}.$$

よって,

$$0 \le \frac{f(x_3) - f(x_2)}{x_3 - x_2} - \frac{f(x_2) - f(x_1)}{x_2 - x_1} = \frac{(x_3 - x_2)f(x_1) + (x_1 - x_3)f(x_2) + (x_2 - x_1)f(x_3)}{(x_3 - x_2)(x_2 - x_1)}.$$

この両辺に $(x_2-x_1)/(x_3-x_1)$ (> 0) をかければ,

$$0 \le \frac{(x_3 - x_2)f(x_1) + (x_1 - x_3)f(x_2) + (x_2 - x_1)f(x_3)}{(x_3 - x_2)(x_3 - x_1)} = \frac{f(x_3) - f(x_2)}{x_3 - x_2} - \frac{f(x_3) - f(x_1)}{x_3 - x_1}$$

演習 2.11 定義 2.3 の広義積分 (第二種オイラー積分) において, 変数を変換することにより, $\Gamma(x)$ の別の積分表示が得られる.

(1) $\tau = e^{-t}$ とおくことにより、

$$\Gamma(x) = \int_0^1 \left(\log \frac{1}{\tau}\right)^{x-1} d\tau \quad (x > 0)$$

となることを確かめよ.

(2) $\tau = t^x$ とおくことにより、

$$\Gamma(x) = \frac{1}{x} \int_0^\infty e^{-\tau^{\frac{1}{x}}} d\tau \quad (x > 0)$$

となることを確かめよ.

[解答例] (1) $\tau=e^{-t}$ のとき, $t=-\log \tau=\log \frac{1}{\tau}$ で, $dt=-\frac{1}{\tau}d\tau$. また, t が 0 から ∞ までわたるとき, τ は 1 から 0 までわたるので, x>0 において

$$\Gamma(x) = \int_0^\infty e^{-t} t^{x-1} dt = \int_1^0 \tau \left(\log \frac{1}{\tau}\right)^{x-1} \left(-\frac{1}{\tau}\right) d\tau$$
$$= \int_0^1 \left(\log \frac{1}{\tau}\right)^{x-1} d\tau.$$

(2) x>0 のとき, $\tau=t^x$ とすると $t=\tau^{\frac{1}{x}}$ で, $dt=\frac{1}{x}\tau^{\frac{1}{x}-1}d\tau$. また, t が 0 から ∞ までわたるとき, τ も 0 から ∞ までわたるので,

$$\Gamma(x) = \int_0^\infty e^{-t} t^{x-1} dt = \int_0^\infty e^{-\tau^{\frac{1}{x}}} \tau^{\frac{x-1}{x}} \left(\frac{1}{x} \tau^{\frac{1}{x}-1}\right) d\tau$$
$$= \frac{1}{x} \int_0^\infty e^{-\tau^{\frac{1}{x}}} d\tau.$$

演習 2.19 m, n を自然数とするとき、次の式を示せ、

$$\int_0^1 \frac{t^{m-1}}{\sqrt{1-t^n}} dt = \frac{\sqrt{\pi} \Gamma\left(\frac{m}{n}\right)}{n\Gamma\left(\frac{m}{n} + \frac{1}{2}\right)}.$$

[解答例] $\tau = t^n$ とすると, $d\tau = nt^{n-1}dt$ で, τ が 0 から 1 までわたるとき, t も 0 から 1 までわたるので, x > 0, y > 0 のとき,

$$B(x,y) = \int_0^1 \tau^{x-1} (1-\tau)^{y-1} d\tau = \int_0^1 t^{nx-n} (1-t^n)^{y-1} (nt^{n-1}) dt$$
$$= n \int_0^1 t^{nx-1} (1-t^n)^{y-1} dt.$$

そこで、 $x=\frac{m}{n}$, $y=\frac{1}{2}$ を代入すると

$$B\left(\frac{m}{n}, \frac{1}{2}\right) = n \int_0^1 \frac{t^{m-1}}{\sqrt{1 - t^n}} dt.$$

よって,

$$\int_0^1 \frac{t^{m-1}}{\sqrt{1-t^n}} dt = \frac{1}{n} B\left(\frac{m}{n}, \frac{1}{2}\right) = \frac{\Gamma\left(\frac{m}{n}\right) \Gamma\left(\frac{1}{2}\right)}{n\Gamma\left(\frac{m}{n} + \frac{1}{2}\right)} = \frac{\sqrt{\pi} \Gamma\left(\frac{m}{n}\right)}{n\Gamma\left(\frac{m}{n} + \frac{1}{2}\right)}.$$

演習 $2.25 \ 0 < x < 1$ において、次の式が成り立つことを示せ、

$$(1) \int_0^1 t^{x-1} (1-t)^{-x} dt = \frac{\pi}{\sin \pi x},$$

$$(2) \int_0^\infty \frac{\tau^{x-1}}{1+\tau} d\tau = \frac{\pi}{\sin \pi x},$$

(3)
$$2\int_0^{\frac{\pi}{2}} (\tan \theta)^{2x-1} d\theta = \frac{\pi}{\sin \pi x}$$
.

[解答例] (1)

$$\int_0^1 t^{x-1} (1-t)^{-x} dt = B(x, 1-x) = \frac{\Gamma(x)\Gamma(1-x)}{\Gamma(x+(1-x))} = \Gamma(x)\Gamma(1-x) = \frac{\pi}{\sin \pi x}.$$

(2) $\tau=\frac{t}{1-t}$ とおくと, $t=\frac{\tau}{1+\tau}$ で, $dt=\frac{1}{(1+\tau)^2}d\tau$. また, t が 0 から 1 までわたるとき, τ は 0 から ∞ までわたるので,

$$\frac{\pi}{\sin \pi x} = \int_0^1 t^{x-1} (1-t)^{-x} dt = \int_0^\infty \left(\frac{\tau}{1+\tau}\right)^{x-1} \left(\frac{1}{1+\tau}\right)^{-x} \frac{1}{(1+\tau)^2} d\tau$$
$$= \int_0^\infty \frac{\tau^{x-1}}{1+\tau} d\tau.$$

(3) 2.4 節で得られたベータ関数の公式

$$B(x,y) = 2 \int_0^{\frac{\pi}{2}} \cos^{2x-1} \theta \sin^{2y-1} \theta \, d\theta$$

により,

$$\frac{\pi}{\sin \pi x} = B(x, 1 - x) = B(1 - x, x) = 2 \int_0^{\frac{\pi}{2}} \cos^{1 - 2x} \theta \sin^{2x - 1} \theta \, d\theta = 2 \int_0^{\frac{\pi}{2}} (\tan \theta)^{2x - 1} d\theta.$$

演習 $3.1 \bar{z} = x - \sqrt{-1} y$ を z の共役複素数という. 次を示せ.

(1)
$$z\bar{z} = |z|^2 = |\bar{z}|^2$$
,

(2) Re
$$z = \frac{1}{2}(z + \bar{z})$$
, Im $z = \frac{1}{2\sqrt{-1}}(z - \bar{z})$.

[解答例]
$$(1)$$
 $z\bar{z} = (x + \sqrt{-1}y)(x - \sqrt{-1}y) = x^2 + y^2 = |z|^2 = |\bar{z}|^2$.
 (2) $z + \bar{z} = 2x = 2 \operatorname{Re} z, \ z - \bar{z} = 2\sqrt{-1} \ y = 2\sqrt{-1} \operatorname{Im} z$ による.

演習 3.2 2 つの複素数 z_1, z_2 に対し、次を示せ.

- $(1) |z_1 z_2| = |z_1||z_2|,$
- (2) 2π の整数倍の差を除き $\arg(z_1z_2) = \arg z_1 + \arg z_2$,

(3)
$$z_2 \neq 0$$
 のとき, $\left| \frac{z_1}{z_2} \right| = \frac{|z_1|}{|z_2|}$,

$$(4)$$
 $z_2 \neq 0$ のとき, 2π の整数倍の差を除き $\arg\left(\frac{z_1}{z_2}\right) = \arg z_1 - \arg z_2$.

[解答例] $z_1 = x_1 + \sqrt{-1}y_1$, $z_2 = x_2 + \sqrt{-1}y_2$, $\arg z_1 = \theta_1$, $\arg z_2 = \theta_2$ とおく.

$$(1)$$
 $z_1z_2=(x_1+\sqrt{-1}y_1)(x_2+\sqrt{-1}y_2)=x_1x_2-y_1y_2+\sqrt{-1}(x_1y_2+y_1x_2)$ だから、

$$|z_1 z_2| = \sqrt{(x_1 x_2 - y_1 y_2)^2 + (x_1 y_2 + y_1 x_2)^2} = \sqrt{x_1^2 x_2^2 + y_1^2 y_2^2 + x_1^2 y_2^2 + y_1^2 x_2^2}.$$

一方,

$$|z_1||z_2| = \sqrt{x_1^2 + y_1^2} \sqrt{x_2^2 + y_2^2} = \sqrt{x_1^2 x_2^2 + y_1^2 y_2^2 + x_1^2 y_2^2 + y_1^2 x_2^2}.$$

よって $|z_1z_2| = |z_1||z_2|$.

$$(2)$$
 $z_1 = |z_1|(\cos\theta_1 + \sqrt{-1}\sin\theta_1), z_2 = |z_2|(\cos\theta_2 + \sqrt{-1}\sin\theta_2)$ と (1) より,

$$z_1 z_2 = |z_1||z_2|(\cos \theta_1 + \sqrt{-1}\sin \theta_1)(\cos \theta_2 + \sqrt{-1}\sin \theta_2)$$

= $|z_1 z_2|(\cos \theta_1 \cos \theta_2 - \sin \theta_1 \sin \theta_2 + \sqrt{-1}(\sin \theta_1 \cos \theta_2 + \cos \theta_1 \sin \theta_2))$
= $|z_1 z_2|(\cos(\theta_1 + \theta_2) + \sqrt{-1}\sin(\theta_1 + \theta_2)).$

これは z_1z_2 の偏角が 2π の整数倍の差を除き $\theta_1+\theta_2$ と一致することを意味している.

(3) (1) より、

$$|z_2| \left| \frac{z_1}{z_2} \right| = \left| z_2 \cdot \frac{z_1}{z_2} \right| = |z_1|.$$

よって,

$$\left|\frac{z_1}{z_2}\right| = \frac{|z_1|}{|z_2|}.$$

(4)

$$\frac{1}{z_2} = \frac{1}{|z_2|(\cos\theta_2 + \sqrt{-1}\sin\theta_2)} = \frac{\cos\theta_2 - \sqrt{-1}\sin\theta_2}{|z_2|(\cos\theta_2 + \sqrt{-1}\sin\theta_2)(\cos\theta_2 - \sqrt{-1}\sin\theta_2)} \\
= \frac{1}{|z_2|} \frac{\cos(-\theta_2) + \sqrt{-1}\sin(-\theta_2)}{\cos^2\theta_2 + \sin^2\theta_2} = \left|\frac{1}{z_2}\right| (\cos(-\theta_2) + \sqrt{-1}\sin(-\theta_2)).$$

これは, $1/z_2$ の偏角が 2π の整数倍の差を除き $-\theta_2$ と一致することを意味している. あとは (2) による.

演習 3.13 次のべき級数の収束半径を求めよ.

(1)
$$\sum_{n=1}^{\infty} \frac{z^n}{n^2}$$
 (2) $\sum_{n=0}^{\infty} n! z^n$ (3) $\sum_{n=1}^{\infty} \frac{n!}{n^n} z^n$ (4) $\sum_{n=1}^{\infty} \left(\sin^n \frac{n\pi}{3} \right) z^n$

[解答例] (1)

$$\lim_{n \to \infty} \frac{\frac{1}{(n+1)^2}}{\frac{1}{n^2}} = \lim_{n \to \infty} \left(\frac{n}{n+1}\right)^2 = \lim_{n \to \infty} \left(\frac{1}{1+\frac{1}{n}}\right)^2 = 1.$$

よって、ダランベールの公式により、収束半径は1である。

(2)

$$\lim_{n \to \infty} \frac{(n+1)!}{n!} = \lim_{n \to \infty} (n+1) = \infty.$$

よって、ダランベールの公式により、収束半径は0である。

(3)

$$\lim_{n \to \infty} \frac{\frac{(n+1)!}{(n+1)^{n+1}}}{\frac{n!}{n^n}} = \lim_{n \to \infty} \frac{(n+1)n^n}{(n+1)^{n+1}} = \lim_{n \to \infty} \left(\frac{n}{n+1}\right)^n = \lim_{n \to \infty} \frac{1}{\left(1 + \frac{1}{n}\right)^n} = \frac{1}{e}.$$

よって、ダランベールの定理により、収束半径はeである.

(4)

$$\limsup_{n \to \infty} \sqrt[n]{\left|\sin^n \frac{n\pi}{3}\right|} = \limsup_{n \to \infty} \left|\sin \frac{n\pi}{3}\right| = \frac{\sqrt{3}}{2}.$$

よって、コーシー・アダマールの公式により、収束半径は $2/\sqrt{3}$ である.

演習 3.14 べき級数が収束円の周上のある 1 点で絶対収束するならば、周上の他のどの点でも絶対収束する.このことを証明せよ.

[解答例] べき級数 $\sum_{n=0}^{\infty}c_n(z-a)^n$ の収束半径を r とし、このべき級数が収束円の周上のある点 z_0 で絶対収束するとする.このとき $|z_0-a|=r$ に注意して、

$$S = \sum_{n=0}^{\infty} |c_n(z_0 - a)^n| = \sum_{n=0}^{\infty} |c_n||z_0 - a|^n = \sum_{n=0}^{\infty} |c_n|r^n$$

とおく. z を収束円の周上の任意の点とすると, |z-a|=r だから,

$$\sum_{n=0}^{\infty} |c_n(z-a)^n| = \sum_{n=0}^{\infty} |c_n| r^n = S$$

となり、z においても絶対収束することがいえる.

演習 3.17(1) 双曲線関数の加法定理

$$\cosh(z_1 + z_2) = \cosh z_1 \cosh z_2 + \sinh z_1 \sinh z_2$$

$$\sinh(z_1 + z_2) = \sinh z_1 \cosh z_2 + \cosh z_1 \sinh z_2$$

を示せ.

- $(2) \cosh^2 z \sinh^2 z = 1$ を示せ.
- (3) 導関数 $\frac{d}{dz}\cosh z$, $\frac{d}{dz}\sinh z$ を求めよ.

[解答例] (1)

$$\cosh z_1 \cosh z_2 + \sinh z_1 \sinh z_2
= \frac{e^{z_1} + e^{-z_1}}{2} \cdot \frac{e^{z_2} + e^{-z_2}}{2} + \frac{e^{z_1} - e^{-z_1}}{2} \cdot \frac{e^{z_2} - e^{-z_2}}{2}
= \frac{e^{z_1+z_2} + e^{-(z_1+z_2)} + e^{z_1-z_2} + e^{-z_1+z_2} + e^{z_1+z_2} + e^{-(z_1+z_2)} - e^{z_1-z_2} - e^{-z_1+z_2}}{4}
= \frac{e^{z_1+z_2} + e^{-(z_1+z_2)}}{2} = \cosh(z_1 + z_2).$$

(2)

$$\cosh^{2} z - \sinh^{2} z = \frac{(e^{z} + e^{-z})^{2}}{4} - \frac{(e^{z} - e^{-z})^{2}}{4} \\
= \frac{e^{2z} + e^{-2z} + 2 - (e^{2z} + e^{-2z} - 2)}{4} = 1.$$

(3) ここではべき級数展開を項別微分して求めることにする.

$$\frac{d}{dz}\cosh z = \sum_{m=1}^{\infty} \frac{z^{2m-1}}{(2m-1)!} = \sum_{m=0}^{\infty} \frac{z^{2m+1}}{(2m+1)!} = \sinh z,$$

$$\frac{d}{dz}\sinh z = \sum_{m=0}^{\infty} \frac{z^{2m}}{(2m)!} = \cosh z.$$

別のやり方としては、定義式の $(e^z + e^{-z})/2$ などの導関数を直接求めてもよい (そのほうが簡単かもしれない).

演習 $3.18 \ e^z$, $\cos z$, $\sin z$, $\cosh z$, $\sinh z$ をそれぞれ定理 3.6 の形で表し, さらにコーシー・リーマンの微分方程式 (3.1) を満たしていることを示せ.

[解答例] x = Re z, y = Im z とする $(z = x + \sqrt{-1}y)$.

 e^z を実部と虚部に分解すると、

$$e^z = e^x e^{\sqrt{-1}y} = e^x (\cos y + \sqrt{-1}\sin y) = e^x \cos y + \sqrt{-1}e^x \sin y$$

となるので, $u(x,y)=e^x\cos y,\,v(x,y)=e^x\sin y$ である. コーシー・リーマンの微分方程式は,

$$\frac{\partial u}{\partial x} = e^x \cos y = \frac{\partial v}{\partial y}, \qquad \frac{\partial u}{\partial y} = -e^x \sin y = -\frac{\partial v}{\partial x}$$

だから、確かに満たしている.

次に, $\cos z$ を実部と虚部に分解すると.

$$\cos z = \frac{1}{2} (e^{\sqrt{-1}z} + e^{-\sqrt{-1}z}) = \frac{1}{2} (e^{-y+\sqrt{-1}x} + e^{y-\sqrt{-1}x})$$

$$= \frac{1}{2} (e^{-y}\cos x + \sqrt{-1}e^{-y}\sin x + e^{y}\cos(-x) + \sqrt{-1}e^{y}\sin(-x))$$

$$= \frac{e^{y} + e^{-y}}{2}\cos x - \sqrt{-1}\frac{e^{y} - e^{-y}}{2}\sin x$$

$$= \cosh y \cos x - \sqrt{-1}\sinh y \sin x$$

となるので, $u(x,y) = \cosh y \cos x$, $v(x,y) = -\sinh y \sin x$ である. コーシー・リーマンの微分方程式は、

$$\frac{\partial u}{\partial x} = -\cosh y \sin x = \frac{\partial v}{\partial y}, \qquad \frac{\partial u}{\partial y} = \sinh y \cos x = -\frac{\partial v}{\partial x}$$

だから、確かに満たしている.

次に、 $\sin z$ を実部と虚部に分解すると、

$$\sin z = \frac{1}{2\sqrt{-1}} (e^{\sqrt{-1}z} - e^{-\sqrt{-1}z}) = \frac{1}{2\sqrt{-1}} (e^{-y+\sqrt{-1}x} - e^{y-\sqrt{-1}x})$$

$$= \frac{1}{2\sqrt{-1}} (e^{-y}\cos x + \sqrt{-1}e^{-y}\sin x - e^{y}\cos(-x) - \sqrt{-1}e^{y}\sin(-x))$$

$$= -\frac{e^{y} - e^{-y}}{2\sqrt{-1}}\cos x + \frac{e^{y} + e^{-y}}{2}\sin x$$

$$= \cosh y \sin x + \sqrt{-1}\sinh y \cos x$$

となるので, $u(x,y)=\cosh y\sin x,\ v(x,y)=\sinh y\cos x$ である. コーシー・リーマンの微分方程式は,

$$\frac{\partial u}{\partial x} = \cosh y \cos x = \frac{\partial v}{\partial y}, \qquad \frac{\partial u}{\partial y} = \sinh y \sin x = -\frac{\partial v}{\partial x}$$

だから、確かに満たしている.

次に $, \cosh z$ を実部と虚部に分解すると, 演習 3.17 (1) より,

$$\cosh z = \cosh(x + \sqrt{-1}y) = \cosh x \cosh \sqrt{-1} y + \sinh x \sinh \sqrt{-1} y$$
$$= \cosh x \cos y + \sqrt{-1} \sinh x \sin y$$

となるので, $u(x,y) = \cosh x \cos y$, $v(x,y) = \sinh x \sin y$ である. コーシー・リーマンの微分方程式は,

$$\frac{\partial u}{\partial x} = \sinh x \cos y = \frac{\partial v}{\partial y}, \qquad \frac{\partial u}{\partial y} = -\cosh x \sin y = -\frac{\partial v}{\partial x}$$

だから、確かに満たしている.

最後に、sinh z を実部と虚部に分解すると、演習 3.17 (1) より、

$$\sinh z = \sinh(x + \sqrt{-1}y) = \sinh x \cosh \sqrt{-1} y + \cosh x \sinh \sqrt{-1} y$$
$$= \sinh x \cos y + \sqrt{-1} \cosh x \sin y$$

となるので, $u(x,y) = \sinh x \cos y$, $v(x,y) = \cosh x \sin y$ である. コーシー・リーマンの微分方程式は,

$$\frac{\partial u}{\partial x} = \cosh x \cos y = \frac{\partial v}{\partial y}, \qquad \frac{\partial u}{\partial y} = -\sinh x \sin y = -\frac{\partial v}{\partial x}$$

だから、確かに満たしている.