

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

MATHEMATICS 4736

Decision Mathematics 1

MARK SCHEME

Specimen Paper

© OCR 2004

MAXIMUM MARK 72

1	(i)	$E \longrightarrow B$	B1	For correct graph
		K ₅ is Eulerian since every node is even	B1 2	2 For a correct statement
	(ii)	A path is (e.g.) A–B–C	B1	For any correct path
	(iii)	A cycle is (e.g.) A–B–C–A	B1 :	For any correct cycle
			4	
2	(i)	Using Kruskal's algorithm, the arc of least weight is chosen first and so is certainly included The arc of second least weight is chosen next since just two arcs cannot form a cycle	B1 B1 B1	For identifying the first choice For identifying the second choice For correct justification
	(ii)	5 4 3	B1 M1 A1 A1	For any connected graph with 4 nodes and at least 3 arcs For including a cycle For a network having the required property For making the minimum connector clear
			7]
3	(i)	1st pass: 6 3 8 3 2 giving 3 6 8 3 2 2nd pass: 3 6 8 3 2 giving 3 6 8 3 2 3rd pass: 3 6 8 3 2 3 6 8 3 2 3 6 8 2 giving 3 3 6 8 2 4th pass: 3 3 6 8 2	B1 B1 M1	For correct result of first pass For correct result of second pass For correct shuttle process in third pass
		3 3 <u>6 2</u> 8 3 <u>3 2</u> 6 8 <u>3 2</u> 3 6 8 giving 2 3 3 6 8	M1 A1	For correct shuttle process in final pass For shuttle sort completed correctly
	(ii)	The number of operations to be carried out, and thus the time to complete the algorithm, is (approximately) proportional to the square of the number of items to be sorted	M1 A1 A1	For idea of dependency on 'size' of problem For number of operations, or time required For square of list size
			8	

4	(i)	STEP A B C 1 6 13 0 2 6 13 6 4 12 6 6 4 24 3 6 2 24 3 30 4 48 1 30 2 48 1 78 3 48 1 78 6 Output 78 0 0	B1 M1 M1 A1	For assigning value to <i>C</i> in first Step 2 For updating <i>A</i> and <i>B</i> in first Step 4 For continuing algorithm and updating <i>C</i> For correct new value 30 for <i>C</i> 5 For correct output
	(ii)	STEP A B C 1 A 8 0 4 2A 4 0 4 4A 2 0 4 8A 1 0 2 8A 1 8A 3 8A 1 8A 6 Output 8A Output steep reduct of the inputs	M1 M1 A1	For values of <i>A</i> doubling For values of <i>B</i> halving For output 8 <i>A</i> For identifying multiplication
5	(i)	A minimum connector on reduced network has arcs <i>CE</i> , <i>ED</i> , <i>BD</i> , <i>AB</i> , giving length 23 km Two shortest arcs from <i>F</i> have weights 7, 8 Hence lower bound is 23+7+8=38 km	M1 A1 M1 A1	For attempt at a relevant minimum connector For correct weight 23 For identifying the two shortest arcs at <i>F</i> For showing given answer correctly
	(ii)	The best upper bound is 47 km The best lower bound is 40 km	B1 B1	For the correct answer For the correct answer
((iii)	Other orders are CED, DCE, DEC, ECD, EDC Shortest is ABDCEFA, of length 42 km	M1 A1 A1	For calculation of at least one other length For any correct bound less than 47 km For the correct value 42
6	(i)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1 M1 A1 B1	For correct use of temporary labels For updating <i>E</i> and <i>D</i> For all permanent labels correct For correct order of assignment stated For correct value 40 For correct route
	(ii)	The Route Inspection algorithm is used A , B , C and E are odd nodes $AB = 16$ $AC = 27$ $AE = 37$ $CE = \frac{10}{26}$ $BE = \frac{21}{48}$ $BC = \frac{11}{48}$ Double up on AB and CE Sum of arcs is 172	B1 B1 M1 M1 M1	For stating or implying the correct algorithm For identifying the odd nodes For pairing odd nodes correctly For selecting appropriate pair for doubling For adding weights on all the arcs
((iii)	Hence shortest time is $172 + 26 = 198$ minutes Nearest neighbour algorithm gives $A-B-C-E-D-A$ Hence required path is $A-B-C-E-D$	M1 A1	For correct value 198 For starting the algorithm correctly, up to <i>C</i> For the correct cycle <i>A</i> – <i>B</i> – <i>C</i> – <i>E</i> – <i>D</i> – <i>A</i> For a correct path

4736 Specimen Paper [Turn over

7 (2)										
7 (i)	y									
	10		1		1	1				
	`									
	8							M1		For lines $x+4y=22$ and $x+y=10$
	6	`						M1		For line $x+4y=22$ and $x+y=10$ For $x+2y=8$
	~ \ <u></u>							A1		For correct diagram including shading
	4			7				AI		1 of correct diagram including shading
						-		B1√		For vertices $(0,0), (0,4), (10,0)$
	2							B1√		For vertex (2, 5)
						\ \ r		B1√		For vertex (6, 4)
	0	2	4	6	8	10 x				
	Hence	maxim	num P	=18, o	ccurrir	ng at (2	, 5)	B1		For the correct value 18
				,			,	B1	8	For identifying the correct vertex
								 		
(ii)	<u>P</u>	<u>x</u>	<u>y</u>	<u>s</u>	<u>t</u>	<u>u</u>		B1		For the correct pay off row
	1	1	<u>-4</u> 4	0	0	0	0			For the correct pay-off row
	0	1 -1	2	1 0	0	1	22 8	M1		For the use of three slack variables
	U	-1	2	U	U	1	o	A1		For all constraints correct
	Pivot	on 2 in	row 3					M1		For choice of pivot
	1	-1	0	0	0	2	16			1
	0	3	0	1	0	-2	6			
	0	$1\frac{1}{2}$	0	0	1	$-\frac{1}{2}$	6	M1		For pivoting correctly
	0	$-\frac{1}{2}$	1	0	0	$-\frac{1}{2}$ $\frac{1}{2}$	4	A1√		For correct tableau
	Now	pivot oi	n 3 in r	ow 1				M1		For choice of pivot
	1	0	0	$\frac{1}{3}$	0	$1\frac{1}{3}$	18			
	0	1	0	$\frac{1}{3}$	0	$-\frac{2}{3}$	2			
	0	0	0	$-\frac{1}{2}$	1	$\frac{1}{2}$	3	M1		For pivoting correctly
	0	0	1	$\frac{1}{6}$	0	$\frac{1}{6}$	5	A1		For correct tableau
	Hence $P = 18$ when $x = 2$, $y = 5$							B1√	10	For reading off correctly from final tableau
(iii)	(iii) Vertices $(0,0) \rightarrow (0,4) \rightarrow (2,5)$ indicated					ndicated	 1	M1		For indication of starting at the origin
. ,	(0, 0, 7, (0, 1) 7 (2, 0) Indicated							A1	2	For the correct correspondence indicated
									20	-