計量経済 II: 宿題 6

村澤 康友

提出期限: 2022年11月8日

注意:すべての質問に解答しなければ提出とは認めない。授業の HP の解答例を正確に再現すること(乱数は除く)。グループで取り組んでよいが,個別に提出すること。解答例をコピペしたり,他人の名前で提出した場合は,提出点を 0 点とし,再提出も認めない。すべての結果をワードに貼り付けて印刷し(A4 縦・両面印刷可・手書き不可),2 枚以上になる場合は必ず左上隅をホッチキスで留めること。

- 1. gretl のサンプル・データ sw-ch14 は,アメリカの失業率と消費者物価指数の 1959 年第 1 四半期~1999 年第 4 四半期の季節調整済みデータである.失業率について以下の分析を行いなさい.
 - (a) AR(4) モデルを厳密な ML 法で推定しなさい.
 - (b) AR モデルの推定結果の画面のメニューから「分析」 \rightarrow 「予測」で各変数の予測値を計算できる. 2000 年第 1 四半期 \sim 2002 年第 4 四半期(計 12 四半期)の予測値を時系列グラフで示しなさい.
- 2. 消費者物価上昇率(対数階差)について、前問と同じ分析を行いなさい.

解答例

1. (a) 失業率の AR(4) モデルの推定結果

モデル 1: ARMA, 観測: 1959:1–1999:4 (T=164)

従属変数: LHUR

標準誤差はヘッシアン(Hessian)に基づく

標準誤差はヘッシアン(Hessian)に基づく							
	係数	係数		呉差	z	p 値	1
con	st 5.949	5.94998		180	12.60	0.000	00
ϕ_1	1.619	1.61957		9068	20.27	0.000	00
ϕ_2	-0.746	302	0.1527	702	-4.887	0.000	00
ϕ_3	0.126	847	0.1525	557	0.8315	0.408	57
ϕ_4	-0.041	4136	0.0800	0748	-0.5172	0.60	50
Mean dependent var		5.995122 S.D		S.D. o	. dependent var		1.480716
Mean of innovations		-0.001398		S.D. of innovati		ons	0.261333
\mathbb{R}^2		0.968666 Adj		Adjus	usted R^2		0.968079
Log-likeliho	-14.60759 A		Akaike criterion		L	41.21519	
Schwarz criterion		59.8	59.81439 Ha		Iannan–Quinn		48.76576
		Real	Imag	inary	Modulus	;	頻度
AR							

			Real	Imaginary	Modulus	頻度
AR						
	Root	1	1.1794	0.0000	1.1794	0.0000
	Root	2	1.3572	0.0000	1.3572	0.0000
	Root	3	0.2632	-3.8750	3.8839	-0.2392
	Root	4	0.2632	3.8750	3.8839	0.2392

(b) 失業率の予測値

2. (a) 消費者物価上昇率(対数階差)の AR(4) モデルの推定結果

モデル 1: ARMA, 観測: 1959:2–1999:4 (T=163)

従属変数: ld_PUNEW

標準誤差はヘッシアン (Hessian) に基づく

	係数		標準誤差		z	p 値
const	0.0102147		0.00264360		3.864	0.0001
ϕ_1	0.7	703369	0.076	64006	9.206	0.0000
ϕ_2	-0.0	0483671	0.087	6425	-0.5519	0.5810
ϕ_3	0.4	147462	0.087	1638	5.134	0.0000
ϕ_4	-0.2	205926	0.076	55749	-2.689	0.0072
Mean depende	nt vai	r 0.010	798	S.D. de	ependent v	ar 0.007751
Mean of innov	ations	0.000	0084	S.D. of	innovation	ns 0.003699
R^2	R^2 0.77		1009 Adjust		$ed R^2$	0.766688
Log-likelihood		680.5	680.5597		criterion	-1349.119
Schwarz criterion		-1330	-1330.557 Han		n–Quinn	-1341.583
		Real	Im	aginary	Modulus	s 頻度
AR						
Roo	t 1	1.0918		0.0000	1.0918	0.0000
Roo	t 2	-0.6181	-	-1.2399	1.3854	-0.3236
Roo	t 3	-0.6181		1.2399	1.3854	0.3236
Roo	t 4	2.3174		0.0000	2.3174	0.0000

(b) 消費者物価上昇率(対数階差)の予測値

