

Calcium Homeostasis

**Dr Doaa Abou-Bakr
Ass. Prof. of Physiology**

- **By the end of this lecture the student will be able to:**
 - Mention the normal total and ionized calcium levels.
 - List its physiological significances.
 - List the hormones involved in its regulation.
 - List the functions of calcitonin, describe its regulation.
 - Compare between the effects and mechanism of actions of each one.
 - Summarize the mechanism of calcium homeostasis.

:Calcium in the body

Approximately 1 kg (1100 gm) (1.5% total body weight):

99 % in the skeleton (bone) (Ca⁺⁺ bank)

0.9 % in the cells (soft tissue)

0.1 % in the extra cellular fluid (plasma)

Bones serve as large calcium reservoirs, releasing calcium when its ECF concentration decreases.

:Plasma Ca⁺⁺ level

**9-11
.mg/dl**

Calcium transport in the blood

- **50% as free ionized form.**

- **40%** bound to protein (mainly albumin, some globulins).
- **10%** bound to anions in soluble complexes.

Ionized fraction depends on pH:

- Ca^{++} protein binding decreases as pH decreases

Ca^{++} protein binding increases as pH increases -

:Functions of Ionic Calcium

- **Calcium is necessary for:**

- 1- Bone and teeth formation hydroxyapatite crystals.
- 2- Neuromuscular excitability Ca⁺⁺ stabilize voltage gated Na⁺ channels
- 3- Synaptic transmission caused by Ca⁺⁺ influx into presynaptic terminal.
- 4- Muscle contraction caused by Ca⁺⁺ efflux from sarcoplasmic reticulum.
- 5- Hormone secretion as in insulin, catecholamines, ADH and oxytocin release.
- 6- Secondary messenger in many hormonal actions.
- 7- Blood coagulation Ca⁺⁺ is a cofactor required at most factor activation steps.
- 8- Activation of some enzymes.
- 9- Cell proliferation, motility and ciliary action.

10- Maintain normal permeability of cell membrane and capillaries.

Calcium homeostasis = Maintenance of ++plasma free Ca

This done by action of **3 hormones** (Parathyroid H., Calcitonin and Calcitriol) on 3 target organs (Bone, Intestine and Kidney)

- **Parathyroid hormone (PTH):** Ca elevating hormone
- **Calcitriol (1,25 DHCC):** Ca elevating hormone
- **Calcitonin:** Ca lowering hormone

Calcitonin= Thyrocalcitonin

- Secreted by thyroid parafollicular cells.
- Polypeptide hormone (32 aa).
- Its action mediated by cAMP.
- Lowers Ca^{++} and PO_4^{--} levels by acting on bone and kidney.
- Antagonize PTH as regard Ca^{++} but similar to PTH as regard PO_4^{--}
- An increase in serum Ca^{++} level stimulates its secretion.
- Many GIT hormones e.g. Gastrin, Glucagon, CCK, Secretin. As well as Estrogen and Dopamine stimulate its release.

:Actions: Lowering Ca^{++} level

:On bone -1

Facilitate Ca deposition in bones (inhibits osteoclastic activity, decreasing its number & stimulates osteoblasts and increase its alkaline phosphatase activity).

:On kidney -2

inhibits α_1 hydroxylase activity, so Inhibits the activation of Vitamin D → decreased intestinal absorption Ca^{++}

stimulates urinary excretion of both Ca^{++} and PO_4^{3-}

Calcitriol = 1, 25 ($\text{OH})_2 \text{D}_3$

:Obtained from

Diet*

:Synthesized in the body*

Calcitriol is derived from a metabolite of cholesterol, 7-dehydro-cholesterol formed in the **liver**

Non-enzymatic breakage of the B-ring by ultraviolet light exposure in the **skin** form cholecalciferol (vitamin D₃) which may also be obtained in the diet, e.g., in vitamin D-fortified milk

Liver hydroxylates cholecalciferol on the side chain to form 25-hydroxycholecalciferol which is carried by the vitamin D carrier protein in serum to the kidney

In the **kidney** the molecule can be hydroxylated once or twice more to form the active hormone calcitriol or the inactive metabolites 24, 25-dihydroxycholecalciferol or 1α , 24, 25-trihydroxycholecalciferol

PTH promotes 1α hydroxylation (activation), Calcitonin *
.promotes 24 hydroxylation (inactivation)

Plasma calcium concentration inversely regulates 1, 25 *
.DHCC

On Intestine (Main action): Increase absorption of Ca^{+} -1
 PO_4^{-3} by increasing Calbindin D & Ca ATPase pump

On kidney: stimulates reabsorption of both Ca^{++} and PO_4^{-3} -2

On bone: Depends on Ca^{++} and PO_4^{-3} concentration -3

a- At high concentration: it stimulates osteoblastic activity and bone mineralization

b- At low concentration: it stimulates osteoclastic activity

:IN SUMMARY: Hormones affecting calcium homeostasis*

Parathyroid Hormone (PTH): Increases calcium ion levels by:

1. Stimulating osteoclasts.
2. Increasing intestinal absorption of calcium (indirectly).
3. Decreasing urinary calcium excretion.

Calcitonin (Thyrocalcitonin): Decreases calcium ion levels by:

1. Inhibiting osteoclasts.
2. Decreasing intestinal absorption of calcium (indirectly).
3. Increasing urinary calcium excretion.

Calcitriol (1, 25 DHCC): Increases calcium ion level by:

- 1- Increasing intestinal absorption of calcium.
- 2- Decreasing urinary calcium excretion.
- 3- On bone: according to calcium level??????

Other hormones affecting bone and Ca⁺⁺ metabolism

Estrogens: slow down bone loss (stimulate osteoblast) (\uparrow OPG= osteoprotegerin gene).

Insulin: (increases bone formation).

Growth Hormone (increases Ca^{++} absorption).

Insulin like Growth factors (IGFs): (during fetal growth) as GH (increases Ca^{++} absorption).

Glucocorticoids: decreases Ca^{++} level by inhibiting its gut absorption & increasing renal excretion - decreases bone formation & inhibit osteoblast and stimulate osteoclast. Prolonged use of glucocorticoids produces osteoporosis (bone loss).

Role of osteoblasts in governing osteoclast development and activity

:Note

Dietary sources of Calcium

- The most significant source: dairy products
- Sesame, Grape leaves, Molokhia, Green leafy vegetables such as broccoli
- Other sources of calcium are salmon ,sardines and Shellfish

Calcium absorption:

- It takes place in the duodenum
- Requires a protein carrier (Calbindin)

➤ Factors increasing calcium absorption:

- 1) Vitamin D (calcitriol): Stimulates synthesis of the carrier protein in the intestinal epithelial cells (at genetic level) →↑ absorption
- 2) Acidity: increase Ca absorption
- 3) Lactose: present in milk increase Ca absorption
- 4) Form of calcium in food: Organic calcium salts are soluble →↑ absorption

➤ Factors decreasing calcium absorption:

- 1) ↑ pH (alkalosis): antacids decrease calcium absorption

↓ calcium solubilization→ ↓ absorption

- 2) Phytic acid, phosphate & oxalate in diet
- 3) Impairment of fat absorption causes presence of large amount of free fatty acids which react with calcium → ↓ absorption
- 3) Form of calcium: inorganic calcium salts are insoluble → ↓ absorption