# COE548: LARGE LANGUAGE MODELS

Topic: Sequence-to-sequence models



#### Outline

# Sequence-to-sequence models

- Encoder/Decoder Motivation
- Encoder/Decoder Blocks
- RNNs as seq2seq Models
  - LSTMs

#### Sequence-to-sequence models

■ Wikipedia definition: Sequence-to-sequence (seq2seq) models are a family of machine learning approaches used for NLP (language translation, image captioning, conversational models, text summarization, etc.). It uses sequence transformations: turns one sequence into another sequence.



#### Sequence-to-sequence models

- The seq2seq ML architecture consists of two fundamental components:
  - An encoder
    - The encoder processes the input sequence and transforms it into a fixed-size hidden representation.
  - A decoder
    - The decoder uses the hidden representation to generate output sequence.



#### Sequence-to-sequence models

- The encoder-decoder structure allows them to handle input and output sequences of different lengths, making them capable to handle sequential data.
- Seq2Seq models are trained using a dataset of input-output pairs, where the input is a sequence of tokens, and the output is also a sequence of tokens.
- The model is trained to maximize the likelihood of the correct output sequence given the input sequence.

#### Encoder Block

- The main purpose of the encoder block is to process the input sequence and capture information in a fixed-size context vector.
- Architecture:
  - The input sequence is put into the encoder.
  - The encoder processes each element of the input sequence using neural networks.
  - Throughout this process, the encoder keeps an internal state, and the ultimate hidden state functions as the context vector that encapsulates a compressed representation of the entire input sequence.
    - This context vector captures the semantic meaning and important information of the input sequence.
- The final hidden state of the encoder is then passed as the context vector to the decoder.

#### Decoder Block

■ The decoder block is similar to encoder block. The decoder processes the context vector from encoder to generate output sequence incrementally.

#### Architecture:

- In the training phase, the decoder receives both the context vector and the desired target output sequence (ground truth).
- During inference, the decoder relies on its own previously generated outputs as inputs for subsequent steps.

#### Decoder Block

- The decoder uses the context vector to comprehend the input sequence and create the corresponding output sequence.
- It engages in autoregressive generation, producing individual elements sequentially.
- At each time step, the decoder uses the current hidden state, the context vector, and the previous output token to generate a probability distribution over the possible next tokens.
- The token with the highest probability is then chosen as the output, and the process continues until the end of the output sequence is reached.

#### Seq2seq Models

- Before the arrival of Seq2Seq models, the machine translation systems relied on statistical methods and phrase-based approaches.
- That was not able to handle long-distance dependencies and capture global context.
- Seq2Seq models addressed the issues by leveraging the power of neural networks, especially recurrent neural networks (RNN).
- The concept of seq2seq model was introduced in the paper titled "Sequence to Sequence Learning with Neural Networks" by Google.
  - Sutskever, I. "Sequence to Sequence Learning with Neural Networks." arXiv preprint arXiv:1409.3215 (2014).
  - https://jeremy-su1.github.io/images/2024-07-08-Seq2Seq-Learning/1409.3215v3.pdf

## Recurrent Neural Networks (RNNs) Recap

- Recurrent neural networks are designed to handle sequential data. They are networks with loops in them, allowing information to persist.
- The RNN looks at some input  $x_t$  and outputs a value  $h_t$ . A loop allows information to be passed from one step of the network to the next.
- A recurrent neural network can be thought of as multiple copies of the same network, each passing a message to a successor.





#### Recurrent Neural Networks (RNNs) Recap

#### Mathematical breakdown of the RNN:

The hidden layer,  $h_t$ , that is outputted at each time-step, t, from the RNN, given an input  $x_t$ , is given by the following equation

$$h_t = \varphi(W[x_t, h_{t-1}] + b)$$

Or better expanded

Can be thought of as the context vector.

$$h_t = \varphi(W_{hx}x_t + W_{hh}h_{t-1} + b)$$

■ The hidden-state output can also be fed into a fully-connected NN layer to produce an output

$$y_t = \varphi\big(W_{hy}h_t + b\big)$$

## Long Short-Term Memory (LSTM) Networks Recap



#### RNN Seq2seq Models

- Recurrent Neural Networks can easily map sequences to sequences when the alignment between the inputs and the outputs are known in advance.
- Although the vanilla version of RNN is rarely used, its more advanced version i.e. LSTM or GRU is used.
  - This is because RNN suffers from the problem of vanishing gradient.
- The tokens, and their respective word embeddings, are fed as input into the LSTM sequentially.
- At every time step, or every next token in the input sentence, the cell and hidden states of the LSTM of the previous token are also fed to the LSTM.

#### RNN Seq2seq Models

■ The LSTM cells can be stacked for more complex representational capabilities. In the case of the stacked.



#### RNN Seq2seq Models: Encoder

- For stacked LSTM cells: the cell and hidden states of the LSTM in the first layer get fed as input to the LSTM in the second stacked layer.
- The last cell and hidden states of all the stacked LSTM layers are called the context vector.
  - This is the encoded representational vector of the input sequence.
- This concludes the "encoder" block of the RNN encoder-decoder seq2seq model.

#### RNN Seq2seq Models: Decoder

- The context vector from the encoder is used as the initial hidden state input in the decoder.
- Thus the decoder decodes the context vector by feeding it to a new set of LSTMs.
- The LSTMs of the encoder and decoder are different LSTMs (have their own separate weights and biases).

#### RNN Seq2seq Models: Decoder

- The first input into the decoder LSTMs also comes from an embedding layer (an embedding word vector).
- The first input should be a start-of-sentence <SOS> token (in original manuscript the actually used the <EOS> token to start the decoder).
- The output layer from the top stacked LSTM layer of the decoder model is fed to a fully connected NN layer, which helps transform them.
- The output size is the size of the vocabulary of the target sequence.

#### RNN Seq2seq Models: Decoder

- This output layer is fed through a softmax in order to select the output token.
- This selected output is what is used as input for the second sequence step in the decoder.

■ This will keep happening until an <EOS> symbol is predicted by the decoder.

#### RNN Seq2seq Models: Training Phase

- During training, the true token is fed as input to the decoder after every token prediction.
- However during inference, the predicted output is used.
- Also, during training, the sequence is stopped whenever the true prediction is <EOS>, even if the decoder predicted a regular token.

#### RNN Seq2seq Models: Disadvantages

- Unrolling the LSTMS compresses the entire input sentence into a single context vector, which doesn't work well for longer phrases (long-term dependencies) due to forgetting.
- Vanilla RNNs faced issues because they passed the short- and long-term memories through a single path.
- Even though LSTMs tried to circumvent this issue by introducing a separate path for long term memory, the issue of long-term forgetting, though kind of mitigated, is still an issue.