Answer for RC4

HamHam

University of Michigan-Shanghai Jiao Tong University Joint Institute

October 19, 2021

1/12

Exercise

3. Let $f: [0, +\infty) \to \mathbb{R}$ be a continuous function such that $\lim_{x \to \infty} f(x)$ exists and is finite. Show that f is uniformly continuous on $[0, +\infty)$.

3.Proof:

Fix $\varepsilon > 0$, there is some $N \in \mathbb{N}$ such that $\forall x > N$, $|f(x) - \lim_{x \to \infty} f(x)| < \varepsilon$. Furthermore, f is uniformly continuous on [0, N], i.e., there is some $\delta > 0$ such that $\forall x, y \in [0, M], |x - y| < \delta \Rightarrow |f(x) - f(y)| < \frac{1}{2}\varepsilon$. Note that this δ also works for $[N, +\infty)$ (because $\forall x > N, |f(x) - \lim_{x \to \infty} f(x)| < \varepsilon$. Therefore, f is uniformly continuous.

Exercises

4. Let $f: [a, b] \to \mathbb{R}$ be a continuous function with b > a. Given $\varepsilon > 0$, show that there is a polygonal function g such that $|f(x) - g(x)| < \varepsilon$ for all $x \in [a, b]$.

Note: A polygonal function is a function formed by a finite number of line segments. Of course, a polygonal function is continuous.

• Try to write a complete proof!

Proof: Since f's domain is a closed interval (or you can say bounded closed set), and f is continuous, f is uniformly continuous on [a, b]. Thus, given an $\varepsilon > 0$, there is a partition: $[a, a + \frac{b-a}{2}] =: I_1, [a + \frac{b-a}{2}, a + \frac{2(b-a)}{2}] =: I_2, ..., [b - \frac{b-a}{2}, b] =: I_m$ such that for any $x, y \in I_i$ where $i \in \{1, 2, ..., m\}$, $|f(x) - f(y)| < \frac{1}{2} \varepsilon$. Fix this ε . Note that our polygonal function g is a continuous function whose graph is composed by line segments that connect f(a), $f(a + \frac{b-a}{n})$, ..., $f(b - \frac{b-a}{n})$, f(b). For any $x, y \in I_i$ and any $i \in \{1, 2, ..., m\}$, $|g(x) - g(y)| \le |g(a + (i - 1)\frac{b - a}{n}) - g(a + i\frac{b - a}{n})| =$ $\left| f\left(a + (i-1)\frac{b-a}{n}\right) - f\left(a + i\frac{b-a}{n}\right) \right| < \frac{1}{2}\varepsilon$. Now, for any fixed $x \in [a,b]$, x is in some interval I_i . It follows that $|f(x) - g(x)| = |f(x) - f(a + i\frac{b-a}{a}) + f(a + i\frac{b-a}{a}) - f(a + i\frac{b-a}{a})$ $|g(x)| = |f(x) - f(a + i\frac{b-a}{a}) + g(a + i\frac{b-a}{a}) - g(x)| \le |f(x) - f(a + i\frac{b-a}{a})| + g(a + i\frac{b-a}{a})|$ $\left| g\left(a + i \frac{b-a}{\epsilon} \right) - g(x) \right| < \frac{1}{a} \varepsilon + \frac{1}{a} \varepsilon = \varepsilon.$

Exercises

5. The function f(x) is defined on interval I. Proof that f(x) is uniformly continuous if and only if: for any sequence $x_n', x_n' \subset I$, if $\lim_{n \to \infty} (x_n' - x_n'') = 0$, then $\lim_{n \to \infty} (f(x_n') - f(x_n'')) = 0$.

 (\Rightarrow) : Suppose f(x) is uniformly continuous on I, then $\forall \varepsilon > 0$, $\exists \delta(\varepsilon) > 0, \forall x', x'' \in I, |x' - x''| < \delta, |f(x') - f(x'')| < \varepsilon.$ Since $\lim_{n\to\infty} (x'_n - x''_n) = 0$, we have for the $\delta > 0$ above, $\exists N > 0, \forall n > N, |x'_n - x''_n| < \delta$, using the uniform continuty of f,

$$|f(x_n') - f(x_n')| < \varepsilon$$

SO

$$\lim_{n\to\infty} (f(x'_n) - f(x''_n)) = 0$$

(\Leftarrow): Proof by contradiction: suppose that f(x) is not uniformly continuous on I, then

$$\exists \varepsilon_0 > 0, \forall \delta > 0, \exists x', x'', |x' - x''| < \delta, |f(x') - f(x'')| \ge \varepsilon_0$$

Let
$$\delta_1 = 1, \exists x_1', x_1'' \in \textit{I}, |x_1' - x_1''| < 1, |\textit{f}(x_1') - \textit{f}(x_1'')| \geq \varepsilon_0$$

Let
$$\delta_2 = \frac{1}{2}, \exists x_2', x_2'' \in I, |x_2' - x_2''| < \frac{1}{2}, |f(x_2') - f(x_2'')| \ge \varepsilon_0$$

Let
$$\delta_n = \frac{1}{n}, \exists x'_n, x''_n \in I, |x'_n - x''_n| < \frac{1}{n}, |f(x'_n) - f(x''_n)| \ge \varepsilon_0$$

So
$$\lim_{n\to\infty} (x'_n - x''_n) = 0$$
, but

$$\lim_{n\to\infty} (f(x'_n) - f(x''_n)) \neq 0$$

, contradiction.

Exercise

6.Let $f:(0,+\infty)\to\mathbb{R}$ be a continuous function such that $f(x^2)=f(x)$. Please show that f is a constant function on $(0,+\infty)$, i.e.,

$$\exists M \in \mathbb{R}, \forall x \in domf, f(x) = M$$

(SJTU Math textbook, P70)

Proof: Suppose $\exists x, y \in (0, +\infty)$ with $f(x) \neq f(y)$. Suppose f(x) = a, f(y) = b.

Take
$$f(x) = f\left(x^{\frac{1}{2}}\right) = f\left(x^{\frac{1}{4}}\right) = \dots = f\left(x^{\frac{1}{2^n}}\right) = \dots$$
. Since f is continuous and the

sequence
$$(x^{\frac{1}{2^n}})$$
 converges to 1, $f(1) = f(x) = a$. Similarly, $f(1) = f(y) = b$.

However, this leads to a contradiction to the definition of "function", since a function cannot take two distinct values at a same point.

Exercises

8. Let $f: \Omega \to \mathbb{R}$ be a real function that satisfies Lipschitz condition, that is, there is a constant M > 0 such that for all x and y in the domain of f, $|f(x) - f(y)| \le M|x - y|$.

- (i) Show that f is uniformly continuous
- (ii) Now Let $\Omega =: [a, +\infty)$, where a > 0. Show that f(x)/x is uniformly continuous

continuous.

Proof: i) Given an $\varepsilon > 0$, choose $\delta = \frac{\varepsilon}{M}$. Then $\forall x,y \in \Omega$ with $|x-y| < \delta$, we have: $|f(x) - f(y)| \le M \cdot |x-y| < M \cdot \frac{\varepsilon}{M} = \varepsilon$. It follows that f is uniformly

ii) Let
$$g: [a, +\infty) \to \mathbb{R}$$
, $g(x) = \frac{f(x)}{x}$. Note that $\forall y \ge a$, since $|f(y)| \le |f(a)| + M \cdot |y - a|$, $\frac{|f(y)|}{|y|} \le \frac{|f(a)|}{y} + M \cdot \frac{|y - a|}{y} \le \frac{|f(a)|}{a} + M \cdot \frac{|y - a|}{y}$. Since $\frac{|f(a)|}{a}$ is nothing but a fixed non-negative number and $\frac{|y - a|}{y} = \frac{y - a}{y} \le 1$, there is some $C \ge 1$ such that $\frac{|f(y)|}{|y|} \le CM$.

□ > 4 □ > 4

Fix arbitrary
$$\varepsilon > 0$$
. $\forall x,y \geq a$, $|g(x) - g(y)| = \left|\frac{f(x)}{x} - \frac{f(y)}{y}\right| = \frac{|yf(x) - xf(y)|}{|xy|} = \frac{|yf(x) - xf(y)|}{|xy|} = \frac{|yf(x) - yf(y) + yf(y) - xf(y)|}{|xy|} \leq \frac{|y||f(x) - f(y)|}{|xy|} + \frac{|y - x||f(y)|}{|xy|} = \frac{|f(x) - f(y)|}{|x|} + \frac{|x - y|}{|x|} \cdot \frac{|f(y)|}{|y|} \leq \left(\frac{M|x - y|}{a} + \frac{1}{a^2}|x - y|CM\right)$. It follows that $|g(x) - g(y)| \leq \left(\frac{M}{a} + \frac{CM}{a^2}\right)|x - y|$. Therefore, g satisfies Lipschitz condition. By i), g is uniformly continuous.