4.6 Παράγωγος κατά κατεύθυνση και κλίση

Είδαμε ότι οι μερικές παράγωγοι $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$ εκφράζουν ρυθμό μεταβολής/κλίση εφαπτομένης στην κατεύθυνση του x ή y. Θέλουμε να γενικεύσουμε σε τυχαία κατεύθυνση.

Η κατεύθυνση στο xy-επίπεδο ορίζεται από ένα μοναδιαίο διάνυσμα $\vec{u}=u_1i+u_2j$ με αρχή το σημείο (x_0,y_0) . Η ευθεία που είναι παράλληλη στο \vec{u} και διέρχεται από το (x_0,y_0) έχει παραμετρικές εξισώσεις

$$L: x = x_0 + tu_1, \ y = y_0 + tu_2.$$

Αν περιορίσουμε την f στην ευθεία L παίρνουμε την συνάρτηση $f(x_0 + tu_1, y_0 + tu_2)$.

Ορισμός

Έστω f(x,y) συνάρτηση και $\vec{u}=u_1i+u_2j$ μοναδιαίο διάνυσμα. Η παράγωγος της f στην κατεύθυνση του \vec{u} στο (x_0,y_0) συμβολίζεται με $D_{\vec{u}}f(x_0,y_0)$ και ορίζεται ως η παρακάτω παράγωγος, αν υπάρχει:

$$D_{\vec{u}}f(x_0,y_0) = \frac{d}{dt}[f(x_0 + tu_1, y_0 + tu_2)]_{t=0}$$

Αντίστοιχος ορισμός δίνεται και για συναρτήσεις τριών μεταβλητών.

Ορισμός

Έστω f(x,y,z) συνάρτηση και $\vec{u}=u_1i+u_2j+\underline{u_3}k$ μοναδιαίο διάνσυμα. Η παράγωγος της f στην κατεύθυνση του \vec{u} στο (x_0,y_0,z_0) συμβολίζεται με $D_{\vec{u}}f(x_0,y_0,z_0)$ και ορίζεται ως η παρακάτω παράγωγος, αν υπάρχει:

$$D_{\vec{u}}f(x_0, y_0, z_0) = \underbrace{\frac{d}{dt}[f(x_0 + tu_1, y_0 + tu_2, z_0 + tu_3)]_{t=0}}$$

Χρησιμοποιώντας τον κανόνα αλυσίδας μπορούμε να βρούμε απλούστερο τρόπο υπολογισμού.

$$\frac{d}{dt}[f(x_0 + tu_1, y_0 + tu_2)]_{t=0} = \left[\frac{\partial f}{\partial x}\frac{dx}{dt} + \frac{\partial f}{\partial y}\frac{dy}{dt}\right]_{t=0}$$

$$4 - 4 + 4 = f_x(x_0, y_0)u_1 + f_y(x_0, y_0)u_2$$

Θεώρημα

• Αν z = f(x, y) παραγωγίσιμη στο (x_0, y_0) και $\vec{u} = u_1 i + u_2 j$ μοναδιαίο διάνυσμα, τότε η $D_{\vec{u}} f(x_0, y_0)$ υπάρχει και

$$D_{\vec{u}}f(x_0, y_0) = f_x(x_0, y_0)u_1 + f_y(x_0, y_0)u_2$$

• Αν w=f(x,y,z) παραγωγίσιμη στο (x_0,y_0,z_0) και $\vec{u}=u_1i+u_2j+u_3k$ μοναδιαίο διάνυσμα, τότε η $D_{\vec{u}}f(x_0,y_0,z_0)$ υπάρχει και

$$D_{\vec{u}}f(x_0, y_0, z_0) = f_x(x_0, y_0, z_0)u_1 + f_y(x_0, y_0, z_0)u_2 + f_z(x_0, y_0, z_0)u_3$$

Παράδειγμα

Να βρεθεί η παράγωγος της $f(x,y)=e^{xy}$ στο (-2,0) στην κατεύθυνση του μοναδιαίου διανύσματος που σχηματίζει γωνία $\pi/3$ με τον θετικό άξονα των x.

$$\vec{u} = (0)^{\frac{\pi}{3}} i + \sin \frac{\pi}{3})$$

$$= \frac{1}{2} i + \frac{17}{2} j$$

$$f_{\chi}(x,y) = ye^{2y}, f_{y}(x,y) = xe^{2y}$$

$$D\vec{u} f(-2,0) = f_{\chi}(-2,0) \frac{1}{2} + f_{y}(-2,0) \frac{1}{2}$$

$$= -2 \frac{17}{3} = -17$$

Παράδειγμα

Να βρεθεί η κατευθυνόμενη παράγωγος της $\underline{f(x,y,z)}=x^2y-yz^3+z$ στο (1,-2,0) στην κατεύθυνση του $\vec{a}=\underline{2i}+\underline{j}-\underline{2k}$.

(To a so that possible)
$$\vec{u} = \frac{\vec{a}}{\|\vec{a}\|} = \frac{2i+j-2k}{\sqrt{4+1+4}} = \frac{2}{3}i+\frac{1}{3}j-\frac{2}{3}k$$

$$f_{2k} = 2xy, \quad f_{2k} = x^{2}-2^{3}, \quad f_{2k} = -3yz^{2}+1$$

$$D_{ij} f(1,-2,0) = f_{2k}(1,-2,0)\frac{2}{3}+f_{2k}(1,-1,0)\frac{1}{3}+f_{2k}(1,-1,0)\frac{1}{3}$$

$$D_{\vec{u}}f(x_0, y_0) = f_x(x_0, y_0)u_1 + f_y(x_0, y_0)u_2 \leftarrow \underbrace{(f_x(x_0, y_0), f_y(x_0, y_0))}_{\mathbf{I}} \cdot \underbrace{(u_1, u_2)}_{\mathbf{I}}$$

Ορισμός

• Αν f(x,y) συνάρτηση, η **κλίση** της f συμβολίζεται με ∇f ή grad f ορίζεται ως

$$\nabla f = f_{x}(x, y)i + f_{y}(x, y)j$$

• Αν f(x,y,z) συνάρτηση, η **κλίση** της f συμβολίζεται με ∇f ή grad f ορίζεται ως

$$\nabla f = f_x(x, y, z)i + f_y(x, y, z)j + f_z(x, y, z)k$$

Ιδιότητες της κλίσης - Ι

Θεώρημα

Στο σημείο (x_0,y_0) , εάν $\nabla f(x_0,y_0) \neq \vec{0}$ η z=f(x,y) έχει

- μέγιστη κλίση εφαπτομένης/ρυθμό μεταβολής στην κατεύθυνση $\nabla f(x_0, y_0)$ η οποία είναι ίση με $||\nabla f(x_0, y_0)||$ και
- ελάχιστη κλίση εφαπτομένης/ρυθμό μεταβολής στην κατεύθυνση $-\nabla f(x_0,y_0) \ \eta \ \text{οποία είναι ίση με} -||\nabla f(x_0,y_0)||.$

(Το ίδιο και για τρεις μεταβλητές)

θέλαμε μέριση κι ελάχιση τιμή τη $\int_{U}^{2} f(x_{0}, y_{0}) = \nabla f(x_{0}, y_{0}) \cdot \vec{u} =$ = $\|\nabla f(x_{0}, y_{0})\| \|u\| \|\cos \theta \|$ Μεριομο τιμή διαν $\cos \theta = -1 = 0$ Ελ τιμή διαν $\cos \theta = -1 = 0$

Daf (20,4).

Παράδειγμα

Έστω $f(x,y)=x^2e^y$. Να βρεθεί η μέγιστη τιμή της κατευθυνόμενης παραγώγου στο (-2,0) και το μοναδιαίο διάνυσμα που δείχνει αυτήν την κατεύθυνση.

Monaficio Siàrrea!
$$\frac{\nabla f(-2,0)}{|\nabla f(-2,0)|} = -\frac{4}{17}i + \frac{4}{132}i$$

Mérian ryin! $|\nabla f(-2,0)| = 152$
 $\nabla f = 2x e^{y} i + x^{2}e^{y} i = 172$
 $|\nabla f(-2,0)| = -4i + 4i$
 $|\nabla f(-2,0)| = \sqrt{16+16} = 132$

Ιδιότητες της κλίσης - ΙΙ

Θεώρημα

Έστω f(x,y) με συνεχείς μερικές παραγώγους σε ανοικτό δίσκο με κέντρο (x_0,y_0) και $\nabla f(x_0,y_0)\neq 0$. Τότε το διάνυσμα $\nabla f(x_0,y_0)$ είναι κάθετο στην καμπύλη στάθμης της f που διέρχεται από το (x_0,y_0) .

(To íδιο και για τρεις μεταβλητές)

Απόδειξη: # cam wh had you in # have # cam wh had you in # have # cam wh had you # # # (# #) # # # # (#) # # # (#) # # (#) # # (#) # (#