From Modal μ -Calculus to Alternating Tree Automata using Parity Games

Automata, Logics and Infinite games

M.Fareed Arif

TU Dresden

Sept. 09, 2010

Outline

- Preliminaries
- Model Checking
- μ-Calculus
- Syntax & Semantics
- ullet Kripke Model (\mathcal{K})
- Correspondance: $(L_{\mu} \equiv L_{A})$
- $\varphi \in L_{\mu} \rightsquigarrow \mathcal{A}(\varphi)$
- $L_{\mathcal{A}(\varphi)} \leadsto \mathcal{G} = (\mathcal{A}(\varphi), \mathcal{K}, s_l)$
- Completeness Proof
- Complexity Issues
- Solving Parity by reduction to SAT
- Appendix

Motivation

- Complexity Results.
- Model Checking Problem Reduction to Acceptance Problem.
- Satisfiability in μ -Calculus to Emptiness Problem.
- Easy Completeness Proof.
- The advantage of the automaton model is its ability to deal with arbitrary branching in a much simpler way as compare to the one proposed by Janin and Walukiewicz [Panagiotis 2000].

Preliminaries

A Transitionsystem (i.e., KripkeStructure) over \mathcal{P} is a tripe $\mathcal{K}=(S,R,\lambda)$ where

Kripke Structure K:

- \mathcal{P} be a set of atomic propositions (properties) and for any propositional interpretation $\mathcal{I}: \mathcal{P} \to \{\textit{true}, \textit{false}\}.$
- ullet S is a set called **states** (worlds), universe of ${\cal K}$,
- $R \subseteq S \times S$ is a transition relation and
- $\lambda: S \to 2^{\mathcal{P}}$ is a mapping (i.e., $\lambda(s_i) = p_i$ for every $p_i \in \mathcal{P}$). $\lambda(s_i) = p_i$ if p_i is true in s_i and $\neg p_i$ if p_i is false in s_i .

 $\lambda: S \to 2^{\mathcal{P}}$ regards transition systems as labeled directed graphs. For every $s \in S$, we denote

$$sR = \{s' \in S | (s, s') \in R\}, Rs = \{s' \in S | (s', s) \in R\}$$

Alternating Tree Automaton

An alternating tree automata is a device which accepts or rejects pointed transition systems by parsing the paths.

Alternating Tree Automata(A):

An alternating tree is a tuple $\mathcal{A} = \{Q, q_I, \delta, \Omega\}$ where

- ullet Q is a finite set of states of the automaton,
- $q_I \in Q$ is a state called the initial state,
- $\delta: Q \to TC^Q$ is a transition function which maps every state $q \in Q$ to a transition condition TC where all the transition conditions TC over Q are defined by:
 - 0 and 1 are transition conditions over Q.
 - ▶ $p, \neg p$ are transition conditions over Q, for every $p \in \mathcal{P}$.
 - ▶ q, $\Box q$, $\Diamond q$ are transition conditions over Q, for every $q \in Q$.
 - ▶ $q_1 \land q_2, q_1 \lor q_2$ are transition conditions over Q, for every $q_1, q_2 \in Q$.
- $\Omega: Q \to \omega$ is called priority function (coloring function) which assigns color to states of \mathcal{A} .

Alternating Tree Automata

Word Problem

The word problem is to decide whether a given alternating tree automaton $\mathcal{A} = \{Q, q_I, \delta, \Omega\}$ accepts a given finite pointed transition system (\mathcal{K}, s_I) .

Emptiness Problem

The emptiness problem is to show that an alternating tree automaton $\mathcal{A}=\{Q,q_I,\delta,\Omega\}$ accepts if \mathcal{A} accepts at least one transition system (i.e., \mathcal{K}).

A parity game is infinite two-person games on directed graphs along with winning play strategies for a certain player [Rene 2002].

Game G:

A game is composed of an arena and a winding condition. Let $\mathcal A$ be an arena then the pair $\mathcal G=(\mathcal A, \mathit{Win})$ is called a **game** where $\mathit{Win}\subseteq V^\omega$ is a winning set where ω is infinite supply of intergers.

Arena A:

An arena is a triple

$$\mathcal{A}=(V_0,V_1,E)$$

Play π :

We define a play in the arena \mathcal{A} as followed:

- a finite play $\pi = v_0 v_1 \dots v_l \in V^+$ with $v_{i+1} \in v_i E$ for all i < l and $v_l E = \emptyset$ represents a dead-end, a prefix of this finite play is $\rho(\pi) = v_0 v_1 \dots v_k$ for $k \le l$.
- an infinite play $\pi = v_0 v_1 \dots v_l \in V^{\omega}$ with $v_{i+1} \in v_i E$ for all $i \in \omega$, a prefix for this infinite play is $\rho(\pi) = v_0 v_1 \dots v_k$ for $k \ge 0$

Winning Set

To define the winning conditions for Players (Player 0, Player 1) are as followed:

Player σ is declared the winner of a play π in the game ${\cal G}$ iff

- π is a finite play $\pi = v_0 v_1 \dots v_l \in V^+$ and v_l is a $\bar{\sigma}$ -Vertex where Player $\bar{\sigma}$ can not move anymore (i.e., v_l is a dead-end, $v_l E = \emptyset$) or
- π is an infinite play and $\pi \in \mathit{Win}$.

Conversely, Player $\bar{\sigma}$ wins play π if Player σ does not win π .

Coloring Function

The coloring function $\chi:V\to C$ color vertices of arena $\mathcal A$ where C is a finite set of colors (priorities)(i.e, $C\subseteq\mathbb N$) and it extends to an infinite play $\pi=v_0v_1\ldots$ as $\chi(\pi)=\chi(v_0)\chi(v_1)\ldots$

Let Win is an acceptance condition for an automaton then $W_{\chi}(Win)$ is the winning set consisting of all infinite plays π where $\chi(\pi)$ is accepted according to Win.

- Parity conditions or Colour set C is a finite subset of integers and $Inf(\chi(\pi))$ be the set of colors that occurs infinitely often in $\chi(\pi)$ then for,
- Max-parity condition: $\pi \in W_\chi(\mathit{Win})$ iff $\mathit{max}(\mathit{Inf}(\chi(\pi)))$ is even.
- Min-parity condition: $\pi \in W_{\chi}(Win)$ iff $min(Inf(\chi(\pi)))$ is even.

Example Game

Example:

Let (G) = (A, Win) where $A = (V_0, V_1, E)$ such that $V_0 = \{z_1, z_2, z_5, z_5\}$ (circles), $V_1 = \{z_0, z_3, z_4\}$ (squares), Coloring set $C = \{1, 2, 3, 4\}$ and $\chi(z_4) = 2$ as shows in figure; winning set of condition $Win = \{\{1, 2\}, \{1, 2, 3, 4\}\}$. In a possible infinite play in this is $\pi = z_6 z_3 z_2 z_4 z_2 z_4 z_6 z z_5 (z_2 z_4)^{\omega}$. According to Muller acceptance condition (i.e., $\pi \in W_{\gamma}(Win)$ iff $Inf(\chi(\pi)) \in \mathcal{A}$) this play π is winning for Player 0 because $\chi(\pi) = 23121224(12)^{\omega}$ where $Inf(\chi(\pi)) = \{1, 2\} \in Win$. For play $\pi' = (z_2 z_4 z_6 z_3)^{\omega}$ yields $\chi(\pi') = (1223)^{\omega}$ and $Inf(\chi(\pi')) = \{1,2,3\} \notin Win$, hence π' is winning for Player 1. Regarding parity conditions this play is a loss for player 0 because $min(Inf(\chi(\pi)) = \{1\})$ is odd., hence a win for the opponent.

The set L_{μ} is a set of inductively defined modal μ -Calculus formulas:

- \perp , $\top \in L_{\mu}$.
- For every atomic proposition $p \in \mathcal{P}$; $p, \neg p \in L_{\mu}$.
- If $\varphi, \psi \in L_{\mu}$, then $\varphi \circ \psi \in L_{\mu}$ where $\circ \in \{\lor, \land\}$.
- If $\varphi \in L_{\mu}$, then $\Box \varphi, \Diamond \varphi \in L_{\mu}$.
- If $p \in \mathcal{P}$, $\varphi \in L_{\mu}$, and p occurs only positively in φ then $\mu p \varphi, \nu p \varphi \in L_{\mu}$.

The set L_{μ} is a set of inductively defined modal μ -Calculus formulas:

- \perp , $\top \in L_{\mu}$.
- For every atomic proposition $p \in \mathcal{P}$; $p, \neg p \in L_{\mu}$.
- If $\varphi, \psi \in \mathcal{L}_{\mu}$, then $\varphi \circ \psi \in \mathcal{L}_{\mu}$ where $\circ \in \{ \vee, \wedge \}$.
- If $\varphi \in L_{\mu}$, then $\Box \varphi, \Diamond \varphi \in L_{\mu}$.
- If $p \in \mathcal{P}$, $\varphi \in L_{\mu}$, and p occurs only positively in φ then $\mu p \varphi, \nu p \varphi \in L_{\mu}$.

e.g a:-
$$(\varphi \in L_{\mu})$$

 $\varphi = \frac{\nu p_1(\mu p_2(p \vee \Diamond p_2) \wedge \Box p_1)}{(\mu p_2(p \vee \Diamond p_2) \wedge \Box p_1)}$

The set L_{μ} is a set of inductively defined modal μ -Calculus formulas:

- \perp , $\top \in L_{\mu}$.
- For every atomic proposition $p \in \mathcal{P}$; $p, \neg p \in L_{\mu}$.
- If $\varphi, \psi \in \mathcal{L}_{\mu}$, then $\varphi \circ \psi \in \mathcal{L}_{\mu}$ where $\circ \in \{ \vee, \wedge \}$.
- If $\varphi \in L_{\mu}$, then $\Box \varphi, \Diamond \varphi \in L_{\mu}$.
- If $p \in \mathcal{P}$, $\varphi \in L_{\mu}$, and p occurs only positively in φ then $\mu p \varphi, \nu p \varphi \in L_{\mu}$.

e.g a:-
$$(\varphi \in L_{\mu})$$

 $\varphi = \nu p_1(\mu p_2(p \vee \Diamond p_2) \wedge \square p_1).$
e.g b:- $(\psi, \varphi \in L_{\mu})$
 $\psi = \mu p_1((p_2 \wedge p_0) \vee p_1)$

The set L_{μ} is a set of inductively defined modal μ -Calculus formulas:

- \bullet \bot , $\top \in L_{\mu}$.
- For every atomic proposition $p \in \mathcal{P}$; $p, \neg p \in L_{\mu}$.
- If $\varphi, \psi \in L_{\mu}$, then $\varphi \circ \psi \in L_{\mu}$ where $\circ \in \{ \lor, \land \}$.
- If $\varphi \in L_{\mu}$, then $\Box \varphi, \Diamond \varphi \in L_{\mu}$.
- If $p \in \mathcal{P}$, $\varphi \in L_{\mu}$, and p occurs only positively in φ then $\mu p \varphi, \nu p \varphi \in L_{\mu}$.

e.g a:-
$$(\varphi \in L_{\mu})$$

 $\varphi = \nu p_1(\mu p_2(p \vee \Diamond p_2) \wedge \Box p_1)$. e.g b:- $(\psi, \varphi \in L_{\mu})$
 $\psi = \mu p_1((p_2 \wedge p_0) \vee p_1)$

e.g b:-
$$(\psi, \varphi \in L_{\mu})$$

 $\psi = \mu p_1((p_2 \wedge p_0) \vee p_1)$

$$\varphi = \nu p_2(\lozenge \psi)$$

Model Checking

Model checking in μ -Calculus

Given a finite rooted Kripke structure (\mathcal{K}, s_l) and an L_{μ} formula φ , determine whether $(\mathcal{K}, s_l) \models \varphi$.

Satisfiability in μ -Calculus

Given an L_{μ} formula φ , determine whether there *exists* a pointed Kripke structure (\mathcal{K}, s_l) such that $\mathcal{K} \models \varphi$.

The set $free(\varphi)$ of free variables of an L_{μ} formula φ is defined inductively as follows:

Free variable set for $(\varphi \in L_{\mu})$

- $free(\bot) = free(\top) = \emptyset$,
- $free(p) = free(\neg p) = \{p\},$
- $free(\varphi \circ \psi) = free(\varphi) \cup free(\psi)$ } where $\circ \in \{\land, \lor\}$,
- $free(\Box \varphi) = free(\Diamond \varphi) = free(\varphi)$,
- $free(\mu p\varphi) = free(\nu p\varphi) = free(\varphi)/\{p\}.$

The set $free(\varphi)$ of free variables of an L_{μ} formula φ is defined inductively as follows:

Free variable set for $(\varphi \in L_{\mu})$

- $free(\bot) = free(\top) = \emptyset$,
- $free(p) = free(\neg p) = \{p\},$
- $free(\varphi \circ \psi) = free(\varphi) \cup free(\psi)$ } where $\circ \in \{\land, \lor\}$,
- $free(\Box \varphi) = free(\Diamond \varphi) = free(\varphi)$,
- $free(\mu p\varphi) = free(\nu p\varphi) = free(\varphi)/\{p\}.$

e.g a:-
$$(\varphi \in L_{\mu})$$

 $\varphi = \nu p_1(\mu p_2(p \vee \Diamond p_2) \wedge \Box p_1).$

For every formula $\varphi \in L_{\mu}$, subformula of φ defined as follows:

Subformula(s) of $(\varphi \in L_{\mu})$

- φ is subformula of $\varphi \in L_{\mu}$,
- φ, ψ is subformula of $\varphi \circ \psi \in L_{\mu}$ where $\circ \in \{\land, \lor\}$,
- φ is subformula of $\Box \varphi, \Diamond \varphi, \mu p \varphi, \nu p \varphi \in L_{\mu}$.

A Transitionsystem (i.e., KripkeStructure) over \mathcal{P} is a tripe $\mathcal{K}=(S,R,\lambda)$ where

Kripke Structure \mathcal{K} :

- \mathcal{P} be a set of atomic propositions (properties) and for any propositional interpretation $\mathcal{I}: \mathcal{P} \to \{\mathit{true}, \mathit{false}\}.$
- ullet S is a set called **states** (worlds), universe of ${\cal K}$,
- $R \subseteq S \times S$ is a transition relation and
- $\lambda: S \to 2^{\mathcal{P}}$ is a mapping (i.e., $\lambda(s_i) = p_i$ for every $p_i \in \mathcal{P}$). $\lambda(s_i) = p_i$ if p_i is true in s_i and $\neg p_i$ if p_i is false in s_i .

 $\lambda: S \to 2^{\mathcal{P}}$ regards transition systems as labeled directed graphs. For every $s \in S$, we denote

$$sR = \{s' \in S | (s, s') \in R\}, Rs = \{s' \in S | (s', s) \in R\}$$

The formulas of modal μ -Calculus are interpreted in Kripke structures $\mathcal K$ such that for every Kripke structure $\mathcal K$ and every $\varphi \in L_{\mu}$, where $\kappa: \mathcal P \to 2^{\mathcal S}$ is defined as:

Semantics of μ -Calculus L_{μ}

- $||\bot||_{\mathcal{K}} = \emptyset$, $||\top||_{\mathcal{K}} = S$,
- $||p||_{\mathcal{K}} = \kappa(p)$, $||\neg p||_{\mathcal{K}} = S/\kappa(p)$,
- $||\varphi_1 \vee \varphi_2||_{\mathcal{K}} = ||\varphi_1||_{\mathcal{K}} \cup ||\varphi_2||_{\mathcal{K}}$,
- $||\varphi_1 \wedge \varphi_2||_{\mathcal{K}} = ||\varphi_1||_{\mathcal{K}} \cap ||\varphi_2||_{\mathcal{K}}$,
- $||\Box \varphi||_{\mathcal{K}} = \{s \in S | sR \subseteq ||\varphi||_{\mathcal{K}}\},$
- $||\Diamond \varphi||_{\mathcal{K}} = \{ s \in S | sR \cap ||\varphi||_{\mathcal{K}} \neq \emptyset \}.$

Semantics of Fixed-point operators (i.e., μ, ν)

For a set of states $S' \subseteq S$ and $\mathcal{K}[p \mapsto S']$ denoted as followed:

$$\mathcal{K}[p\mapsto S']=(S,E,\kappa[p\mapsto S'])$$

where $\kappa[p \mapsto S']$ is given as followed:

$$\mathcal{K}[p \mapsto S']p' = \begin{cases} S' & \text{if } p' = p \\ \kappa(p) & \text{if } p' \neq p \end{cases}$$

The semantics of the fixed-point operators is now defined as:

Semantics of μ -Calculus L_{μ}

- $||\mu p\varphi||_{\mathcal{K}} = \bigcap \{S' \subseteq S | ||\varphi||_{\mathcal{K}[p\mapsto S']} \subseteq S'\}$
- $||\nu p\varphi||_{\mathcal{K}} = \bigcup \{S' \subseteq S | ||\varphi||_{\mathcal{K}[p\mapsto S']} \supseteq S'\}$

Pointed transition system (K, s_I)

A pointed transition system (i.e, a rooted kripke structure) is a pair (\mathcal{K}, s_l) in a transition system $\mathcal{K} = (S, R, \kappa)$ with an initial state $s_l \in S$ [Daniel 2002].

- A pointed Kripke structure (K, s_I) is a model of $\varphi \in L_\mu$, denoted by $K \models \varphi$ if $s_I \in ||\varphi||_K$.
- Aditionally, $\varphi \equiv \psi$ if for all Kripke models (\mathcal{K}, s_I) , we have $(\mathcal{K}, s_I) \models \varphi$ iff $(\mathcal{K}, s_I) \models \psi$.

Theorem:

Let φ be an arbitrary L_{μ} formula. Then φ and $\mathcal{A}(\varphi)$ are equivalent, that is:

$$||\varphi|| = ||\mathcal{A}(\varphi)||.$$

Correspondance: $(L_{\mu} \equiv L_{\mathcal{A}})$

Consider an alternating tree automaton $\mathcal{A} = (Q, q_I, \delta, \Omega)$ and a $\varphi \in L_\mu$ formula then alternating tree automaton $\mathcal{A}(\varphi)$ is defined by:

Translation $(\varphi \in L_{\mu} \rightsquigarrow \mathcal{A}(\varphi))$

- Q is the set which contains for each subformula ψ of φ (including φ itself), a state denoted by $\langle \psi \rangle$,
- the initial state is given by $q_I = \langle \varphi \rangle$.
- $\delta(\langle \bot \rangle) = 0$,
- $\delta(\langle \top \rangle) = 1$,
- $\bullet \ \delta(\langle p \rangle) = \left\{ \begin{array}{cc} p & \textit{if } p \in \textit{free}(\varphi) \\ \langle \varphi_p \rangle & \textit{if } p \not \in \textit{free}(\varphi) \end{array} \right.$
- \bullet $\delta(\langle \neg p \rangle) = \neg p$,
- $\delta(\langle \psi_1 \wedge \psi_2 \rangle) = \langle \psi_1 \rangle \wedge \langle \psi_2 \rangle$, $\delta(\langle \psi_1 \vee \langle \psi_2 \rangle) = \langle \psi_1 \rangle \vee \langle \psi_2 \rangle$,

Correspondance: $(L_{\mu} \equiv L_{\mathcal{A}})$

Translation $(\varphi \in L_{\mu} \rightsquigarrow \mathcal{A}(\varphi))$

- $\delta(\langle \Diamond \psi \rangle) = \Diamond \langle \psi \rangle$,
- $\delta(\langle \Box \psi \rangle) = \Box \langle \psi \rangle$,
- $\delta(\langle \mu p \psi \rangle) = \langle \psi \rangle$,
- $\delta(\langle \nu p \psi \rangle) = \langle \psi \rangle$.

Ω

- $\Omega=$ The smallest odd number greater or equal to $lpha(\psi)$ 1 where $\psi\in\mathcal{F}_{\mu}$,
- $\Omega=$ The smallest even number greater or equal to $\alpha(\psi)$ 1 where $\psi\in\mathcal{F}_{
 u}$,
- $\Omega = 0$ for $\psi \notin \mathcal{F}_{\nu}$.

$$L_{\mathcal{A}(\varphi)} \leadsto \mathcal{G} = (\mathcal{A}(\varphi), \mathcal{K}, s_l)$$

$$\mathcal{G} = (\mathcal{A}(\varphi), \mathcal{K}, s_l)$$

A vertex $v = (\langle \psi \rangle, s)$ belongs to Player 0 iff

- $\psi = \bot$,
- $\psi = p$, $p \in free(\varphi)$, $s \notin \kappa(p)$,
- $\psi = \neg p$, $p \in free(\varphi)$, $s \in \kappa(p)$,
- $\psi = p$, $p \notin free(\varphi)$,
- $\psi = \eta p \psi'$ where $\eta \in \{\mu, \nu\}$,
- $\psi = \psi_1 \lor \psi_2$ for some $\psi_1, \psi_2 \in L_\mu$,
- $\psi = \Diamond \psi'$.

$$L_{\mathcal{A}(\varphi)} \leadsto \mathcal{G} = (\mathcal{A}(\varphi), \mathcal{K}, s_l)$$

$$\mathcal{G} = (\mathcal{A}(\varphi), \mathcal{K}, s_l)$$

A vertex $v = (\langle \psi \rangle, s)$ belongs to Player 1 iff

- \bullet $\psi = \top$,
- $\psi = p$, $p \in free(\varphi)$, $s \in \lambda(s)$,
- $\psi = \neg p$, $p \in free(\varphi)$, $s \notin \lambda(s)$,
- $\psi = p$, $p \in free(\varphi)$,
- $\psi = \psi_1 \wedge \psi_2$ for some $\psi_1, \psi_2 \in L_\mu$,
- $\psi = \Box \psi'$.

In parity Game G, the edge relation E^{G} is defined as:

$$\mathsf{E}^{\mathcal{G}} = \left\{ \begin{array}{ll} \{(\langle \psi' \rangle, s) | \langle \psi' \rangle \in \delta(\langle \psi \rangle)\} & \text{if } \psi \neq \Diamond \psi', \square \psi' \\ \{(\langle \psi' \rangle, s') | \langle \psi' \rangle \in \delta(\langle \psi \rangle), s' \in sR\} & \text{if } \psi = \Diamond \psi', \square \psi' \end{array} \right.$$

For μ -formula the priority is odd and for a ν -formula priority is even.

26 / 39

Model Checking Problem Reduction to Acceptance Problem

The alternating tree automaton \mathcal{B} accepts (\mathcal{K}, s_I) if and only if Player 0 has a winning strategy in the parity game $\mathcal{G}(\mathcal{T}) = (\mathcal{K}, \mathcal{B}, s_I)$ (i.e., $\mathcal{T} = (V_0, V_1, q_I \times s_I, \Omega)$).

Satisfiability in μ -Calculus to Emptiness Problem

The automaton C accepts a pointed Kripke structure (K, s_I) if and only if Player 0 wins the game T.

Completeness of Translation

Completeness Theorem:

Let φ be an arbitrary L_{μ} formula. Then for every pointed transition system (\mathcal{K}, s) the following holds:

$$(\mathcal{K},s)\models arphi$$
 iff $(\mathcal{K},s)\in \mathit{L}(\mathcal{A}(arphi))$

Complexity Bounds

The Model-Checking problem for μ -Calculus, is solvable in time:

$$\mathcal{O}(\ln(\frac{2nkn}{b})^{\lfloor b/2 \rfloor})$$

where k is the number of worlds of the Kripke structure, l is the size of accessability relation, n is the number of subformulas and b is the alternation depth.

Complexity Class:

The model checking is in $UP \cap co$ -UP.

In complexity theory, UP ("Unambiguous Non-deterministic Polynomial-time") is the complexity class of decision problems solvable in polynomial time on a non-deterministic Turing machine with at most one accepting path for each input. UP contains P and is contained in NP.

Complexity Bounds

Complexity Class

The satisfiability of μ -Calculus is in **EXPTIME**.

Motivation

Solve parity games (encoding winning strategy) as a reduciton to SAT [Martin 2005].

- Comparision with other techniques for parity games like Omega, as well as model cherks for the modal μ -calculus like SMV.
- Reduction of Parity to decide fragment of SAT to check whether it can be proved in polynomial time.

THANKS

Completeness of Translation

Completeness Theorem:

Let φ be an arbitrary L_{μ} formula. Then for every pointed transition system (\mathcal{K}, s) the following holds:

$$(\mathcal{K},s)\models arphi$$
 iff $(\mathcal{K},s)\in \mathit{L}(\mathcal{A}(arphi))$

Proof:

? Case $(\varphi = \top)$:

Proof:

✓ Case $(\varphi = \top)$: Clearly, every Kripke structure (\mathcal{K}, s_I) is a model of φ . Thus every pointed transition system is accepted by $\mathcal{A}(\varphi)$. The initial state of game $\mathcal{G}(\mathcal{A}(\varphi), \mathcal{K}, s_I)$ is a *Vertex* − 1 and is dead-end. Hence, every game in this play is won by Player 0.

Proof:

 \checkmark Case $(\varphi = \top)$: : Clearly, every Kripke structure (\mathcal{K}, s_I) is a model of φ . Thus every pointed transition system is accepted by $\mathcal{A}(\varphi)$. The initial state of game $\mathcal{G}(\mathcal{A}(\varphi), \mathcal{K}, s_I)$ is a Vertex - 1 and is dead-end. Hence, every game in this play is won by Player 0.

? Case $(\varphi = \bot)$:

- ✓ Case (φ = ⊤): : Clearly, every Kripke structure (K, s_I) is a model of φ. Thus every pointed transition system is accepted by A(φ). The initial state of game $\mathcal{G}(A(φ), K, s_I)$ is a Vertex 1 and is dead-end. Hence, every game in this play is won by Player 0.
- \checkmark Case $(\varphi = \bot)$: Then for the complement case $(\mathcal{K}, s) \not\models \bot$ and from proposition 1 it follows that automata \mathcal{A} does not contain any succeeding run for $\varphi = \bot$ (i.e., $(\mathcal{K}, s) \not\in L(\mathcal{A}(\varphi))$.

- \checkmark Case $(\varphi = \top)$: Clearly, every Kripke structure (\mathcal{K}, s_I) is a model of φ . Thus every pointed transition system is accepted by $\mathcal{A}(\varphi)$. The initial state of game $\mathcal{G}(\mathcal{A}(\varphi), \mathcal{K}, s_I)$ is a Vertex 1 and is dead-end. Hence, every game in this play is won by Player 0.
- ✓ Case $(\varphi = \bot)$: Then for the complement case $(\mathcal{K}, s) \not\models \bot$ and from proposition 1 it follows that automata \mathcal{A} does not contain any succeeding run for $\varphi = \bot$ (i.e., $(\mathcal{K}, s) \not\in L(\mathcal{A}(\varphi))$.
- \checkmark Case $(\varphi = p)$:

- \checkmark Case $(\varphi = \top)$: Clearly, every Kripke structure (\mathcal{K}, s_I) is a model of φ . Thus every pointed transition system is accepted by $\mathcal{A}(\varphi)$. The initial state of game $\mathcal{G}(\mathcal{A}(\varphi), \mathcal{K}, s_I)$ is a Vertex 1 and is dead-end. Hence, every game in this play is won by Player 0.
- ✓ Case $(\varphi = \bot)$: Then for the complement case $(\mathcal{K}, s) \not\models \bot$ and from proposition 1 it follows that automata \mathcal{A} does not contain any succeeding run for $\varphi = \bot$ (i.e., $(\mathcal{K}, s) \not\in L(\mathcal{A}(\varphi))$.
- ✓ Case $(\varphi = p)$: Let $(\mathcal{K}, s_I) \models \varphi$ if $s_I \in \kappa(p)$. Thus in $\mathcal{G}(\mathcal{A}(\varphi), \mathcal{K}, s_I)$ is vertex 1 and a deadend as well, therefore $(\mathcal{K}, s_I) \in L(\mathcal{A}(\varphi))$. Similarly, if $(\mathcal{K}, s_I) \not\models \varphi$ if $\kappa(p) \in s_I$ then we have $s_I \not\in \kappa(p)$, thus $\mathcal{G}(\mathcal{A}(\varphi), \mathcal{K}, s_I)$ is vertex 0 and a dead-end. Therefore, $(\mathcal{K}, s_I) \not\in L(\mathcal{A}(\varphi))$.

- \checkmark Case $(\varphi = \top)$: : Clearly, every Kripke structure (\mathcal{K}, s_I) is a model of φ . Thus every pointed transition system is accepted by $\mathcal{A}(\varphi)$. The initial state of game $\mathcal{G}(\mathcal{A}(\varphi), \mathcal{K}, s_I)$ is a Vertex 1 and is dead-end. Hence, every game in this play is won by Player 0.
- ✓ Case $(\varphi = \bot)$: Then for the complement case $(\mathcal{K}, s) \not\models \bot$ and from proposition 1 it follows that automata \mathcal{A} does not contain any succeeding run for $\varphi = \bot$ (i.e., $(\mathcal{K}, s) \not\in L(\mathcal{A}(\varphi))$.
- ✓ Case $(\varphi = p)$: : Let $(\mathcal{K}, s_I) \models \varphi$ if $s_I \in \kappa(p)$. Thus in $\mathcal{G}(\mathcal{A}(\varphi), \mathcal{K}, s_I)$ is vertex 1 and a deadend as well, therefore $(\mathcal{K}, s_I) \in L(\mathcal{A}(\varphi))$. Similarly, if $(\mathcal{K}, s_I) \not\models \varphi$ if $\kappa(p) \in s_I$ then we have $s_I \not\in \kappa(p)$, thus $\mathcal{G}(\mathcal{A}(\varphi), \mathcal{K}, s_I)$ is vertex 0 and a dead-end. Therefore, $(\mathcal{K}, s_I) \not\in L(\mathcal{A}(\varphi))$.
- \checkmark Case $(\varphi = \neg p)$:

- \checkmark Case $(\varphi = \top)$: Clearly, every Kripke structure (\mathcal{K}, s_I) is a model of φ . Thus every pointed transition system is accepted by $\mathcal{A}(\varphi)$. The initial state of game $\mathcal{G}(\mathcal{A}(\varphi), \mathcal{K}, s_I)$ is a Vertex 1 and is dead-end. Hence, every game in this play is won by Player 0.
- ✓ Case $(\varphi = \bot)$: Then for the complement case $(\mathcal{K}, s) \not\models \bot$ and from proposition 1 it follows that automata \mathcal{A} does not contain any succeeding run for $\varphi = \bot$ (i.e., $(\mathcal{K}, s) \not\in L(\mathcal{A}(\varphi))$.
- ✓ Case $(\varphi = p)$: : Let $(\mathcal{K}, s_I) \models \varphi$ if $s_I \in \kappa(p)$. Thus in $\mathcal{G}(\mathcal{A}(\varphi), \mathcal{K}, s_I)$ is vertex 1 and a deadend as well, therefore $(\mathcal{K}, s_I) \in L(\mathcal{A}(\varphi))$. Similarly, if $(\mathcal{K}, s_I) \not\models \varphi$ if $\kappa(p) \in s_I$ then we have $s_I \not\in \kappa(p)$, thus $\mathcal{G}(\mathcal{A}(\varphi), \mathcal{K}, s_I)$ is vertex 0 and a dead-end. Therefore, $(\mathcal{K}, s_I) \not\in L(\mathcal{A}(\varphi))$.
- ✓ Case $(\varphi = \neg p)$: Similar to the previous case.

- \checkmark Case $(\varphi = \top)$: Clearly, every Kripke structure (\mathcal{K}, s_I) is a model of φ . Thus every pointed transition system is accepted by $\mathcal{A}(\varphi)$. The initial state of game $\mathcal{G}(\mathcal{A}(\varphi), \mathcal{K}, s_I)$ is a Vertex 1 and is dead-end. Hence, every game in this play is won by Player 0.
- ✓ Case $(\varphi = \bot)$: Then for the complement case $(\mathcal{K}, s) \not\models \bot$ and from proposition 1 it follows that automata \mathcal{A} does not contain any succeeding run for $\varphi = \bot$ (i.e., $(\mathcal{K}, s) \not\in L(\mathcal{A}(\varphi))$.
- ✓ Case $(\varphi = p)$: : Let $(\mathcal{K}, s_I) \models \varphi$ if $s_I \in \kappa(p)$. Thus in $\mathcal{G}(\mathcal{A}(\varphi), \mathcal{K}, s_I)$ is vertex 1 and a deadend as well, therefore $(\mathcal{K}, s_I) \in L(\mathcal{A}(\varphi))$. Similarly, if $(\mathcal{K}, s_I) \not\models \varphi$ if $\kappa(p) \in s_I$ then we have $s_I \not\in \kappa(p)$, thus $\mathcal{G}(\mathcal{A}(\varphi), \mathcal{K}, s_I)$ is vertex 0 and a dead-end. Therefore, $(\mathcal{K}, s_I) \not\in L(\mathcal{A}(\varphi))$.
- ✓ Case $(\varphi = \neg p)$: Similar to the previous case.

Proof:

? Case $(\varphi = \psi_1 \wedge \psi_2)$:

Proof:

• Case $(\varphi = \psi_1 \wedge \psi_2)$: :

$$(\mathcal{K}, s_I) \models \psi_1 \wedge \psi_2 = (\mathcal{K}, s_I) \models \psi_1 \wedge \psi_2 \tag{1}$$

$$= s_I \in ||\psi_1||_{\mathcal{K}} \cap s_I \in ||\psi_2||_{\mathcal{K}} \tag{2}$$

$$=(\mathcal{K},s_I)\models\psi_1 \text{ and } (\mathcal{K},s_I)\models\psi_2$$
 (3)

$$= (\mathcal{K}, s_I) \in L(\mathcal{A}(\psi_1)) \cap L(\mathcal{A}(\psi_2)) \tag{4}$$

$$= (\mathcal{K}, s_I) \in L(\mathcal{A}(\psi_1 \wedge \psi_2)) \tag{5}$$

Proof:

• Case $(\varphi = \psi_1 \wedge \psi_2)$: :

$$(\mathcal{K}, s_I) \models \psi_1 \wedge \psi_2 = (\mathcal{K}, s_I) \models \psi_1 \wedge \psi_2 \tag{1}$$

$$= s_I \in ||\psi_1||_{\mathcal{K}} \cap s_I \in ||\psi_2||_{\mathcal{K}} \tag{2}$$

$$=(\mathcal{K},s_I)\models\psi_1 \text{ and } (\mathcal{K},s_I)\models\psi_2$$
 (3)

$$= (\mathcal{K}, s_I) \in L(\mathcal{A}(\psi_1)) \cap L(\mathcal{A}(\psi_2)) \tag{4}$$

$$= (\mathcal{K}, s_I) \in L(\mathcal{A}(\psi_1 \wedge \psi_2)) \tag{5}$$

? Case $\varphi = \psi_1 \vee \psi_2$:

Proof:

 \checkmark Case $(\varphi = \psi_1 \wedge \psi_2)$: :

$$(\mathcal{K}, s_I) \models \psi_1 \wedge \psi_2 = (\mathcal{K}, s_I) \models \psi_1 \wedge \psi_2 \tag{1}$$

$$= s_I \in ||\psi_1||_{\mathcal{K}} \cap s_I \in ||\psi_2||_{\mathcal{K}} \tag{2}$$

$$=(\mathcal{K},s_I)\models\psi_1 \text{ and } (\mathcal{K},s_I)\models\psi_2$$
 (3)

$$= (\mathcal{K}, s_I) \in L(\mathcal{A}(\psi_1)) \cap L(\mathcal{A}(\psi_2)) \tag{4}$$

$$= (\mathcal{K}, s_I) \in L(\mathcal{A}(\psi_1 \wedge \psi_2)) \tag{5}$$

✓ Case $\varphi = \psi_1 \lor \psi_2$: Similar to the previous case, *lema*.4 [Julia 2002] is used instead.

Proof:

 \checkmark Case $(\varphi = \psi_1 \wedge \psi_2)$: :

$$(\mathcal{K}, s_I) \models \psi_1 \wedge \psi_2 = (\mathcal{K}, s_I) \models \psi_1 \wedge \psi_2 \tag{1}$$

$$= s_I \in ||\psi_1||_{\mathcal{K}} \cap s_I \in ||\psi_2||_{\mathcal{K}} \tag{2}$$

$$=(\mathcal{K},s_I)\models\psi_1 \text{ and } (\mathcal{K},s_I)\models\psi_2$$
 (3)

$$= (\mathcal{K}, s_I) \in L(\mathcal{A}(\psi_1)) \cap L(\mathcal{A}(\psi_2)) \tag{4}$$

$$= (\mathcal{K}, s_I) \in L(\mathcal{A}(\psi_1 \wedge \psi_2)) \tag{5}$$

✓ Case $\varphi = \psi_1 \lor \psi_2$: Similar to the previous case, *lema*.4 [Julia 2002] is used instead.

Proof:

? Case $\varphi = \Box \psi$:

Proof:

• Case $\varphi = \Box \psi$::

$$(\mathcal{K}, s_I) \models \Box \varphi = s_I \in ||\Box \psi||_{\mathcal{K}}$$

$$= sR \in ||\psi||_{\mathcal{K}}$$
(6)

$$-\forall s' \in sP(K, s') \vdash sh \tag{8}$$

$$= \forall s' \in sR.(\mathcal{K}, s') \models \psi. \tag{8}$$

$$= \forall s' \in sR.(\mathcal{K}, s') \in L(\mathcal{A}$$
 (9)

$$= (\mathcal{K}, s') \in L(\mathcal{A}(\square \psi)). \tag{10}$$

Proof:

• Case $\varphi = \Box \psi$: :

$$(\mathcal{K}, s_I) \models \Box \varphi = s_I \in ||\Box \psi||_{\mathcal{K}}$$
 (6)

$$= sR \in ||\psi||_{\mathcal{K}} \tag{7}$$

$$= \forall s' \in sR.(\mathcal{K}, s') \models \psi. \tag{8}$$

$$= \forall s' \in sR.(\mathcal{K}, s') \in L(\mathcal{A}$$
 (9)

$$= (\mathcal{K}, s') \in L(\mathcal{A}(\Box \psi)). \tag{10}$$

? Case
$$\varphi = \mu p \psi$$
:

Proof:

$$\checkmark$$
 Case $\varphi = \Box \psi$::

$$(\mathcal{K}, s_l) \models \Box \varphi = s_l \in ||\Box \psi||_{\mathcal{K}}$$
 (6)

$$= sR \in ||\psi||_{\mathcal{K}} \tag{7}$$

$$= \forall s' \in sR.(\mathcal{K}, s') \models \psi. \tag{8}$$

$$= \forall s' \in sR.(\mathcal{K}, s') \in L(\mathcal{A}$$
 (9)

$$-(\mathcal{K} s') \in I(A(\square y_1)) \tag{10}$$

$$= (\mathcal{K}, s') \in L(\mathcal{A}(\Box \psi)). \tag{10}$$

 \checkmark Case $\varphi = \mu p \psi$: :

$$(\mathcal{K},s)\in L(\mathcal{A}(\mu p\psi))$$
 iff Player 0 wins the game $\mathcal{G}=(\mathcal{A}(\mu p\psi),\mathcal{K})$

Proof:

$$\checkmark$$
 Case $\varphi = \Box \psi$::

$$(\mathcal{K}, s_l) \models \Box \varphi = s_l \in ||\Box \psi||_{\mathcal{K}}$$
 (6)

$$= sR \in ||\psi||_{\mathcal{K}} \tag{7}$$

$$= \forall s' \in sR.(\mathcal{K}, s') \models \psi. \tag{8}$$

$$= \forall s' \in sR.(\mathcal{K}, s') \in L(\mathcal{A}$$
 (9)

$$-(\mathcal{K} s') \in I(A(\square y_1)) \tag{10}$$

$$= (\mathcal{K}, s') \in L(\mathcal{A}(\Box \psi)). \tag{10}$$

 \checkmark Case $\varphi = \mu p \psi$: :

$$(\mathcal{K},s)\in L(\mathcal{A}(\mu p\psi))$$
 iff Player 0 wins the game $\mathcal{G}=(\mathcal{A}(\mu p\psi),\mathcal{K})$

For Further Reading

Martin Lange. 2005
Solving Parity Games by reduction to SAT.

Julia Zappe. 2002

Automata, Logics, and Infinite Games: Lecture Notes in Computer Science, "Modal μ -Calculus and Alternating Tree Automata"

Julia Zappe. 2002

Automata, Logics, and Infinite Games: Lecture Notes in Computer Science, "Modal μ -Calculus and Alternating Tree Automata"

Rene Mazala. 2002

Automata, Logics, and Infinite Games: Lecture Notes in Computer Science, "Infinite Games"

Daniel Kirsten. 2002

Automata, Logics, and Infinite Games: Lecture Notes in Computer Science, "Alternating Tree Automata and Parity Games"

Thomas Wilke. 2002

For an arbitrary formula $\varphi \in L_{\mu}$, its alternation depth $\alpha(\varphi) : L_{\mu} \to \mathbb{N}$ is function defined inductively:

- $\alpha(\bot) = \alpha(\top) = \alpha(p) = \alpha(\neg p) = 0$,
- $\alpha(\varphi \circ \psi) = \max\{\alpha(\varphi), \alpha(\psi)\}\$ where $\circ \in \{\land, \lor\}$,
- $\alpha(\Box\varphi) = \alpha(\Diamond\varphi) = \alpha(\varphi)$,
- $\bullet \ \alpha(\mu p\varphi) = \max\{1,\alpha(\psi)\} \cup \{\alpha(\nu p'\psi') + 1 | \nu p'\psi' \leq \psi, p \in \mathit{free}(\nu p'\psi')\},$

For an arbitrary formula $\varphi \in L_{\mu}$, its alternation depth $\alpha(\varphi) : L_{\mu} \to \mathbb{N}$ is function defined inductively:

- $\alpha(\bot) = \alpha(\top) = \alpha(p) = \alpha(\neg p) = 0$,
- $\alpha(\varphi \circ \psi) = \max\{\alpha(\varphi), \alpha(\psi)\}\$ where $\circ \in \{\land, \lor\}$,
- $\alpha(\Box\varphi) = \alpha(\Diamond\varphi) = \alpha(\varphi)$,
- $\bullet \ \alpha(\mu p\varphi) = \max\{1,\alpha(\psi)\} \cup \{\alpha(\nu p'\psi') + 1 | \nu p'\psi' \leq \psi, p \in \mathit{free}(\nu p'\psi')\},$

e.g a:-
$$(\varphi \in L_{\mu})$$

 $\varphi = \nu p_1(\mu p_2(p \vee \Diamond p_2) \wedge \Box p_1).$

For an arbitrary formula $\varphi \in L_{\mu}$, its alternation depth $\alpha(\varphi) : L_{\mu} \to \mathbb{N}$ is function defined inductively:

- $\alpha(\bot) = \alpha(\top) = \alpha(p) = \alpha(\neg p) = 0$,
- $\alpha(\varphi \circ \psi) = \max\{\alpha(\varphi), \alpha(\psi)\}\$ where $\circ \in \{\land, \lor\}$,
- $\alpha(\Box\varphi) = \alpha(\Diamond\varphi) = \alpha(\varphi)$,
- $\bullet \ \alpha(\mu p\varphi) = \max\{1,\alpha(\psi)\} \cup \{\alpha(\nu p'\psi') + 1 | \nu p'\psi' \leq \psi, p \in \mathit{free}(\nu p'\psi')\},$

e.g a:-
$$(\varphi \in L_{\mu})$$
 $\varphi = \nu p_1 (\mu p_2 (p \lor \Diamond p_2) \land \Box p_1).$ $\alpha(\varphi) = 1.$

For an arbitrary formula $\varphi \in L_{\mu}$, its alternation depth $\alpha(\varphi) : L_{\mu} \to \mathbb{N}$ is function defined inductively:

Fixed point Alternation(Syntactic alternation depth)

- $\alpha(\bot) = \alpha(\top) = \alpha(p) = \alpha(\neg p) = 0$.
- $\alpha(\varphi \circ \psi) = \max\{\alpha(\varphi), \alpha(\psi)\}\$ where $\circ \in \{\land, \lor\}$,
- $\alpha(\Box\varphi) = \alpha(\Diamond\varphi) = \alpha(\varphi)$.
- $\alpha(\mu p\varphi) = \max\{1, \alpha(\psi)\} \cup \{\alpha(\nu p'\psi') + 1 | \nu p'\psi' \le \psi, p \in free(\nu p'\psi')\},$
- $\alpha(\nu p\varphi) = \max\{1, \alpha(\psi)\} \cup \{\alpha(\mu p'\psi') + 1 | \mu p'\psi' \le \psi, p \in free(\mu p'\psi')\}.$

e.g a:-
$$(\varphi \in L_{\mu})$$

 $\varphi = \nu p_1(\mu p_2(p \vee \Diamond p_2) \wedge \Box p_1).$ e.g b:- $(\psi, \varphi \in L_{\mu})$
 $\psi = \mu p_1(p_2 \wedge p_0) \vee p_1)$

 $\alpha(\varphi)=1.$

e.g b:-
$$(\psi, \varphi \in L_{\mu})$$

 $\psi = \mu p_1(p_2 \wedge p_0) \vee p_1)$

For an arbitrary formula $\varphi \in L_{\mu}$, its alternation depth $\alpha(\varphi) : L_{\mu} \to \mathbb{N}$ is function defined inductively:

- $\alpha(\bot) = \alpha(\top) = \alpha(p) = \alpha(\neg p) = 0$,
- $\alpha(\varphi \circ \psi) = \max\{\alpha(\varphi), \alpha(\psi)\}\$ where $\circ \in \{\land, \lor\}$,
- $\alpha(\Box\varphi) = \alpha(\Diamond\varphi) = \alpha(\varphi)$.
- $\alpha(\mu p\varphi) = \max\{1, \alpha(\psi)\} \cup \{\alpha(\nu p'\psi') + 1 | \nu p'\psi' \le \psi, p \in free(\nu p'\psi')\},$
- $\alpha(\nu p\varphi) = \max\{1, \alpha(\psi)\} \cup \{\alpha(\mu p'\psi') + 1 | \mu p'\psi' \le \psi, p \in free(\mu p'\psi')\}.$

e.g a:-
$$(\varphi \in L_{\mu})$$

 $\varphi = \nu p_1 (\mu p_2 (p \vee \Diamond p_2) \wedge \Box p_1).$ e.g b:- $(\psi, \varphi \in L_{\mu})$
 $\psi = \mu p_1 (p_2 \wedge p_0) \vee p_1)$
 $\alpha(\varphi) = 1.$ $\alpha(\psi) = 1.$

e.g b:-
$$(\psi, \varphi \in L_{\mu})$$
 $\psi = \mu p_1 (p_2 \wedge p_0) \vee p_1)$
 $\alpha(\psi) = 1.$

For an arbitrary formula $\varphi \in L_{\mu}$, its alternation depth $\alpha(\varphi) : L_{\mu} \to \mathbb{N}$ is function defined inductively:

Fixed point Alternation(Syntactic alternation depth)

- $\alpha(\bot) = \alpha(\top) = \alpha(p) = \alpha(\neg p) = 0$,
- $\alpha(\varphi \circ \psi) = \max\{\alpha(\varphi), \alpha(\psi)\}\$ where $\circ \in \{\land, \lor\}$,
- $\alpha(\Box\varphi) = \alpha(\Diamond\varphi) = \alpha(\varphi)$.
- $\alpha(\mu p\varphi) = \max\{1, \alpha(\psi)\} \cup \{\alpha(\nu p'\psi') + 1 | \nu p'\psi' \le \psi, p \in free(\nu p'\psi')\},$
- $\alpha(\nu p\varphi) = \max\{1, \alpha(\psi)\} \cup \{\alpha(\mu p'\psi') + 1 | \mu p'\psi' \le \psi, p \in free(\mu p'\psi')\}.$

e.g a:-
$$(\varphi \in L_{\mu})$$

 $\varphi = \nu p_1(\mu p_2(p \vee \Diamond p_2) \wedge \Box p_1).$
e.g b:- $(\psi, \varphi \in L_{\mu})$
 $\psi = \mu p_1(p_2 \wedge p_0) \vee p_1)$

 $\alpha(\varphi)=1.$

e.g b:-
$$(\psi, \varphi \in L_{\mu})$$

 $\psi = \mu p_1(p_2 \wedge p_0) \vee p_1$

$$\alpha(\psi)=1.$$

$$\varphi = \nu p_2(\lozenge \psi)$$

$$\alpha(\varphi)=2.$$

Tarski-Knaster Fix-point Theorem

Let $f: L \to L$ be a monotonic function on a complete lattice $(L, \leq, \sqcup, \sqcap)$ then for $A = \{y | f(y) \leq y\}$, $x = \sqcap A$ is the *least fixed point* of f.

Example

Given a set S, the power set of S, (i.e., $\mathcal{P}(S)$) is $(\mathcal{P}(S), \subseteq)$ is a lattice. For a given set $A \subseteq \mathcal{P}(S)$ of subsets such that maximal set $\Box A = \bigcup_{S' \in A} S'$ and minimal set $\Box A = \bigcap_{S' \in A} S'$:

$$\sqcup A = \{ \bigcup_{S' \in A} S' | A \supseteq \mathcal{P}(S') \}$$

$$\sqcap A = \{\bigcap_{S' \in A} S' | A \subseteq \mathcal{P}(S')\}$$