Holistic Numerical Methods Institute

committed to bringing numerical methods to undergraduates

Multiple-Choice Test Gauss-Seidel Method of Solving Simultaneous Linear Equations

1. A square matrix $[A]_{nxn}$ is diagonally dominant if

(A)
$$|a_{ii}| \ge \sum_{\substack{j=1\\i\neq j}}^{n} |a_{ij}|, i = 1, 2, ..., n$$

(B)
$$|a_{ii}| \ge \sum_{\substack{j=1\\i\neq j}}^{n} |a_{ij}|, i = 1, 2, ..., n \text{ and } |a_{ii}| > \sum_{\substack{j=1\\i\neq j}}^{n} |a_{ij}|, \text{ for any } i = 1, 2, ..., n$$

(C)
$$|a_{ii}| \ge \sum_{j=1}^{n} |a_{ij}|$$
, $i = 1, 2, ..., n$ and $|a_{ii}| > \sum_{j=1}^{n} |a_{ij}|$, for any $i = 1, 2, ..., n$

(D)
$$|a_{ii}| \ge \sum_{i=1}^{n} |a_{ij}|, i = 1, 2, ..., n$$

2. Using $[x_1 \ x_2 \ x_3] = [1 \ 3 \ 5]$ as the initial guess, the value of $[x_1 \ x_2 \ x_3]$ after three iterations in Gauss-Seidel method for

$$\begin{bmatrix} 12 & 7 & 3 \\ 1 & 5 & 1 \\ 2 & 7 & -11 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2 \\ -5 \\ 6 \end{bmatrix}$$

is

- (A) [-2.8333 -1.4333 -1.9727]
- (B) [1.4959 -0.90464 -0.84914]
- (C) [0.90666 -1.0115 -1.0242]
- (D) [1.2148 -0.72060 -0.82451]

3. To ensure that the following system of equations,

$$2x_1 + 7x_2 - 11x_3 = 6$$

$$x_1 + 2x_2 + x_3 = -5$$

$$7x_1 + 5x_2 + 2x_3 = 17$$

converges using Gauss-Seidel Method, one can rewrite the above equations as follows:

(A)
$$\begin{bmatrix} 2 & 7 & -11 \\ 1 & 2 & 1 \\ 7 & 5 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 6 \\ -5 \\ 17 \end{bmatrix}$$

(B)
$$\begin{bmatrix} 7 & 5 & 2 \\ 1 & 2 & 1 \\ 2 & 7 & -11 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 17 \\ -5 \\ 6 \end{bmatrix}$$

(C)
$$\begin{bmatrix} 7 & 5 & 2 \\ 1 & 2 & 1 \\ 2 & 7 & -11 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 6 \\ -5 \\ 17 \end{bmatrix}$$

(D) The equations cannot be rewritten in a form to ensure convergence.

4. For
$$\begin{bmatrix} 12 & 7 & 3 \\ 1 & 5 & 1 \\ 2 & 7 & -11 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 22 \\ 7 \\ -2 \end{bmatrix}$$
 and using $\begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 1 \end{bmatrix}$ as the initial

guess, the values of $\begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix}$ are found at the end of each iteration as

Iteration #	x_1	x_2	x_3
1	0.41666	1.1166	0.96818
2	0.93989	1.0183	1.0007
3	0.98908	1.0020	0.99930
4	0.99898	1.0003	1.0000

At what first iteration number would you trust at least 1 significant digit in your solution?

- (A) 1
- (B) 2
- (C)3
- (D)4

5. The algorithm for the Gauss-Seidel Method to solve [A][X] = [C] is given as follows for using nmax iterations. The initial value of [X] is stored in [X].

```
(A) Sub Seidel(n, a, x, rhs, nmax)

For k = 1 To nmax

For i = 1 To n

For j = 1 To n

If (i \Leftrightarrow j) Then

Sum = Sum + a(i, j) * x(j)

endif

Next j

x(i) = (rhs(i) - Sum) / a(i, i)

Next i

Next k

End Sub
```

(B) Sub Seidel(n, a, x, rhs, nmax)

For k = 1 To nmax

For i = 1 To n

Sum = 0

For j = 1 To n

If $(i \Leftrightarrow j)$ Then

Sum = Sum + a(i, j) * x(j)endif

Next j x(i) = (rhs(i) - Sum) / a(i, i)Next i

Next k End Sub

End Sub

(C) Sub Seidel(n, a, x, rhs, nmax)

For k = 1 To nmax

For i = 1 To n

Sum = 0

For j = 1 To n

Sum = Sum + a(i, j) * x(j)

Next j

x(i) = (rhs(i) - Sum) / a(i, i)

Next i

Next k

(D) Sub Seidel(n, a, x, rhs, nmax)

For
$$k = 1$$
 To nmax

For $i = 1$ To n

Sum = 0

For $j = 1$ To n

If $(i \Leftrightarrow j)$ Then

Sum = Sum + $a(i, j) * x(j)$

endif

Next j
 $x(i) = rhs(i) / a(i, i)$

Next i

Next k

End Sub

6. Thermistors measure temperature, have a nonlinear output and are valued for a limited range. So when a thermistor is manufactured, the manufacturer supplies a resistance vs. temperature curve. An accurate representation of the curve is generally given by

$$\frac{1}{T} = a_0 + a_1 \ln(R) + a_2 \{\ln(R)\}^2 + a_3 \{\ln(R)\}^3$$

where T is temperature in Kelvin, R is resistance in ohms, and a_0, a_1, a_2, a_3 are constants of the calibration curve.

Given the following for a thermistor

R	T	
ohm	$^{\circ}C$	
1101.0	25.113	
911.3	30.131	
636.0	40.120	
451.1	50.128	

the value of temperature in °C for a measured resistance of 900 ohms most nearly is

- (A) 30.002
- (B) 30.472
- (C) 31.272
- (D) 31.445