What interspersion was needed for our pulse experiment?
What interspersion would be needed for the direct estimate version?

		EU	Replicate
1)	Sit Stand Sit Jill X Bob X Amy X	Person	None
2)	Jill Bob Amy T1 Sit T1 Stand T1 Sit T2 Stand T2 Sit T2 Stand	Person:Trial	Person
3)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Person	None

Experimental Unit

The **smallest** unit of experimental material to which a **single treatment** (or treatment combination) is assigned by the experimenter and which is dealt with **independently** of other such systems **under that treatment** at **all stages in the experiment** at which important variation may enter.

Each experimental unit get its treatment independently

Each experimental unit is equally likely to be assigned each treatment

Experimental units shouldn't interfere with each other

Experimental units should be randomly selected from a reference population

Replicates

Units exposed to all treatment levels where we can construct a direct treatment effect estimate

		EU	Replicate
1)	Sit Stand Sit Jill X Bob X Amy X	Person	None
2)	Jill Bob Amy T1 Sit T1 Stand T1 Sit T2 Stand T2 Sit T2 Stand	Person:Trial	Person
3)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Person	None

How do we analyze each experiment?

Analytically describe the design

How are treatment effect estimates constructed?

What are the sources of confusion?

controlled and un-controlled

how does each affect the precision of the results?

Empirically analyze data collected from the design

How do we communicate the design to R?

R's calculations **do not** follow our analytical processes

How do we estimate the treatment effect?

EU Replicate Bob Amy Jill Sit Sit Stand T1 T1 T1 2) Person:Trial Person Sit Stand Stand T2 T2

Collect 40 people

Measure each person 1x in each treatment, calculate the difference

$$y_{A1}, y_{B1} \rightarrow d_1$$

Estimate the treatment effect for each person

$$\hat{\delta}_1$$

Estimate the average treatment effect

$$\hat{\delta}_{B-A} = \frac{1}{n} \sum_{i} \hat{\delta}_{j}$$

True Pulse

Direct estimate of δ

How do we estimate the treatment effect?

Sit Stand Sit

1) Jill X Bob X Amy X Person

Collect 40 people for Sitting group and 40 people for standing group. These are our EU

Measure each person 1x after applying the appropriate treatment level y_{A1}, y_{B2}, \dots

 $\hat{\delta}_{B-A} \qquad \hat{\mu}_{B}$ $\hat{\mu}_{A1} \qquad \hat{\mu}_{A}$ observed pulse

Sit Stand
A B

Estimate the average pulse of each group

$$\hat{\mu}_A = \frac{1}{n_A} \sum \hat{\mu}_{Aj} \qquad \hat{\mu}_B = \frac{1}{n_B} \sum \hat{\mu}_{Bj}$$

Estimate the average treatment effect

$$\hat{\delta}_{B-A} = \hat{\mu}_B - \hat{\mu}_A$$

Indirect estimate of δ

Through direct estimates of μ_B and μ_A

True

Pulse

Why are these both **valid** methods to estimate δ ?

		EU	Replicate
1)	Sit Stand Sit Jill X Bob X Amy X	Person	None
	Jill Bob Amy		
2)	T1 Sit T1 Stand T1 Sit	Person:Trial	Person
,	T2 Stand T2 Sit T2 Stand		. 3.33

Say this was the whole population ...

EU	Sit	Stand	$\delta_{\!j}$
p1	75	82	7
p2	63	65	2
р3	69	83	14
p4	60	72	12
μ_i	66.75	75.5	8.75

- 1) Calculate the treatment effects for each person
- 2) Calculate the mean treatment effect
- 3) Calculate the means of each treatment level
- 4) Calculate the difference between means

Why are these both **valid** methods to estimate δ ?

			EU	Replicate
1)	Sit Stand Jill X Bob X	Sit Amy X	Person	None
2)	Jill Bob T1 Sit T1 Stand T2 Stand T2 Sit	Amy T1 Sit T2 Stand	Person:Trial	Person
	Design 1 Indirect $y_{A1} \qquad y_{B2} \\ \hat{\mu}_{A} \qquad \hat{\mu}_{A}$	True Pulse δ_1		Pesign 2 Direct $\hat{\delta}_1$ $\hat{\delta}_3$ $\hat{\delta}_3$
	Sit Stand	Sit Stand		Stand
	A B	A B	Α	В

 $\hat{\mu_i}$ has sampling error due to:

missing some individuals measurement error

But each is **unbiased** for μ_i

And errors are uncorrelated

 $\hat{\delta}$ has sampling error due to:

missing some individuals measurement error

But it is **unbiased** for δ

Why are these both **valid** methods to estimate δ ?

			EU	Replicate	
	Sit	Stand Sit			
1)	Jill X	Bob X Amy X	Person	None	
	Jill	Bob Amy			
2)	T1 Sit	T1 Stand T1 Sit	Person:Trial	Person	
,	T2 Stand	T2 Sit T2 Stand	. 3.331111101	. 3.3311	

Both designs are valid because:

$$\delta = \frac{\sum \delta_j}{N}$$

$$= \frac{\sum (\mu_{Bj} - \mu_{Aj})}{N}$$

$$= \frac{\sum \mu_{Bj}}{N} - \frac{\sum \mu_{Aj}}{N}$$

$$= \mu_B - \mu_A$$

Mean difference equals the difference of the means

		EU	Replicate
1)	Sit Stand Sit Jill X Bob X Amy X	Person	None
2)	Jill Bob Amy T1 Sit T1 Stand T1 Sit T2 Stand T2 Sit T2 Stand	Person:Trial	Person
3)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Person	None

How do we analyze each experiment?

Analytically describe the design

How are treatment effect estimates constructed?

What are the sources of confusion?

controlled and un-controlled

how does each affect the precision of the results?

Empirically analyze data collected from the design

How do we communicate the design to R?

R's calculations **do not** follow our analytical processes

		EU	Replicate
1)	Sit Stand Sit Jill X Bob X Amy X	Person	None
2)	Jill Bob Amy T1 Sit T1 Stand T1 Sit T2 Stand T2 Sit T2 Stand	Person:Trial	Person
3)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Person	None

Design Table

Structure	Variable	Type	#levels	Replicate	EU
Treatment					
Design					
Response					

Describe how our Experimental Design relates to our Data Translate the table into R code

Experiment 1: 1 measurement per person

					# people	# measures	#EU
	Sit	Stand		Sit			
1)	Jill X	Bob X	Amy	X	80	80	80

Person	Posture	Pulse
Jill	Sit	60
Bob	Stand	72
Amy	Sit	106
• •		

Structure	Variable	Type	#levels	Replicate	EU
Treatment	Posture	Cat	2	None	Person
Design	Person	Cat	80		
Response	Pulse	Num	80		

Each column of your table = Variable

Type = Categorical or Numeric

#levels = number of unique values in the column of the data

Only Treatment variables get Replicates and EU

Experiment 2: each person measured in each treatment

		Jill		Bob		Amy	# people	# measures	#EU
2)	T1	Sit	T1	Stand	T1	Sit	40	80	80
,	T2	Stand	T2	Sit	T2	Stand	10		

Person	Posture	Pulse	Trial	Person:Trial
Jill	Sit	60	T1	Jill:T1
Jill	Stand	74	T2	Jill:T2
Bob	Stand	72	T1	Bob:T1
Bob	Sit	78	T2	Bob:T2
Amy	Sit	106	T1	Amy:T1
Amy	Stand	109	T2	Amy:T2
• •				

Structure	Variable	Туре	#levels	Replicate	EU
Treatment	Posture	Cat	2	Person	Person:Trial
Design	Person	Cat	40		
	Trial	Cat	2		
	Person:Trial	Cat	80		
Response	Pulse	Num	80		

"Person:Trial" is a Combination Variable

We don't have to create it in our data table (but we can)

Experiment 3: each person measured 2x in one treatment

	Sit	Stand	Sit	# people	# measures	#EU
3)	$ \begin{array}{c c} X & T1 \\ \hline X & T2 \end{array} $	Bob $\begin{bmatrix} X \\ X \end{bmatrix}$ T1 Amy T2	X T1 X T2	40	80	40

Person	Posture	Pulse	Trial	Person:Trial
Jill	Sit	60	T1	Jill:T1
Jill	Sit	64	T2	Jill:T2
Bob	Stand	72	T1	Bob:T1
Bob	Stand	68	T2	Bob:T2
Amy	Sit	106	T1	Amy:T1
Amy	Sit	112	T2	Amy:T2
•				

Structure	Variable	Туре	#levels	Replicate	EU
Treatment	Posture	Cat	2	None	Person
Design	Person	Cat	40		
	Trial	Cat	2		
	Person:Trial	Cat	80		
Response	Pulse	Num	80		

The first 4 columns are the same!

Fitting models in R

- 1) Write the model
- 2) Pass it to the function to fit the model: Im() or Imer()
- 3) Pass the result to a function to get estimates, SE, CI, etc

```
emmeans(), contrasts(), etc
```

Writing the model

1) Response ~ model

```
model: every variable in Treatment + Design with # levels < # responses combined with "+"
```

2) Any variable that is a Replicate or EU gets declared with (1IX)

```
+ Variable => + (1|Variable)
```

call these "random"

Replicates are declared as + (1|Replicate:Treatment)

3) If any random variable is included, use Imer(). Otherwise use Im()

1) Response ~ model

model: every variable in Treatment + Design, combined with "+" with # levels < # responses

2) Any variable that is a **Replicate** or **EU** gets declared with (1IX)

+ Variable => + (1|Variable)

call these "random"

Replicates are declared as + (1|Replicate:Treatment)

3) If any random variable is included, use Imer(). Otherwise use Im()

Structure	Variable	Type	#levels	Replicate	EU
Treatment	Posture	Cat	2	None	Person
Design	Person	Cat	80		
Response	Pulse	Num	80		

Im(Pulse ~ Posture)

Structure	Variable	Type	#levels	Replicate	EU
Treatment	Posture	Cat	2	Person	Person:Trial
Design	Person	Cat	40		
	Trial	Cat	2		
	Person:Trial	Cat	80		
Response	Pulse	Num	80		

Im(Pulse ~ Posture + Person + Trial)

For Tuesday:

Sit Stand Sit # people # measures #EU 3) Jill
$$\begin{bmatrix} X \\ X \end{bmatrix}$$
 T1 Bob $\begin{bmatrix} X \\ X \end{bmatrix}$ T2 Amy $\begin{bmatrix} X \\ X \end{bmatrix}$ T2 40 80 80

Structure	Variable	Type	#levels	Replicate	EU
Treatment	Posture	Cat	2	None	Person
Design	Person	Cat	40		
	Trial	Cat	2		
	Person:Trial	Cat	80		
Response	Pulse	Num	80		

Write the model for Design 3

Read the remainder of Hurlbert 1984

What type of **pseudoreplication** are we committing if we don't declare Person as Random in this experiment?