Chapter 1 METRIC SPACES

References

Textbook:

H. L. Royden, P. M. Fitzpatrick, *Real Analysis*, 4th ed. Pearson Education, 2010 (**pp. 183–221**)

Definition 1.1

A **metric** (or a **distance**) d on a nonempty set X is a function $d: X \times X \to \mathbb{R}$ satisfying the three properties:

- (a) $d(x, y) \ge 0$ for all $x, y \in X$ and d(x, y) = 0 if and only if x = y;
- (b) $d(x, y) = d(y, x), x, y \in X$ (symmetry);
- (c) $d(x, z) \le d(x, y) + d(y, z)$ for all $x, y, z \in X$ (the triangle inequality).

The pair (X, d) is called a **metric space**.

When the metric is clear from context, we write simply X for (X, d).

In this context, we call the elements of X points, and refer to d(x, y) the distance between the points x and y.

Here are simple consequences of Axioms (a)–(c).

1. In a metric space (X, d) the inequality

$$|d(x,z)-d(y,z)|\leq d(x,y)$$

holds for all points $x, y, z \in X$.

2. In a metric space (X, d) the inequality

$$d(x_1,x_n) \leq d(x_1,x_2) + d(x_2,x_3) + \cdots + d(x_{n-1},x_n)$$

holds for arbitrary points x_1, \ldots, x_n in X.

Example 1.1 (The usual distance on \mathbb{R})

The set of real numbers \mathbb{R} equipped with the **usual** distance

$$d(x,y) = |x-y|$$
 for all $x, y \in \mathbb{R}$

is a metric space.

Unless otherwise stated, we consider \mathbb{R} to be a metric space with the usual distance.

Example 1.2 (The Euclidean *n*-Space \mathbb{R}^n)

The Euclidean space \mathbb{R}^n equipped with the distance

$$d(x,y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$

for $x = (x_1, ..., x_n)$ and $y = (y_1, ..., y_n)$ in \mathbb{R}^n , is a metric space.

This distance on \mathbb{R}^n is called the **Euclidean** distance.

Example 1.3 (The Discrete Metric)

Let X be a nonempty set. Then the function d defined by

$$d(x,y) = \begin{cases} 1 & \text{if} \quad x \neq y, \\ 0 & \text{if} \quad x = y \end{cases}$$

is a distance on X.

This distance is called the **discrete distance** on X, and X with this distance is called a **discrete metric space**.

Example 1.4 (Metric Subspaces)

Let (X, d) be a metric space and Y a nonempty subset of X. Then the restriction of d to $Y \times Y$,

$$d_Y(x,y) = d(x,y)$$
 for all $x, y \in Y$,

is a metric on Y, the **induced metric**, and (Y, d_Y) is a metric space, a **metric subspace** of X.

When no misunderstanding is possible, we write d instead of d_Y .

Example 1.5 (Metric Products)

For metric spaces (X_1, d_1) and (X_2, d_2) , we define the product metric d on the Cartesian product $X := X_1 \times X_2$ by setting, for $(x_1, x_2), (y_1, y_2) \in X$,

$$d((x_1,x_2),(y_1,y_2)) = \sqrt{(d_1(x_1,y_1))^2 + (d_2(x_2,y_2))^2}.$$

(X, d) is called the **(metric space) product** of the metric spaces (X_1, d_1) and (X_2, d_2) .

Definition 1.2

A real-valued function $\|\cdot\|$ defined on a vector space X is called a **norm** if it satisfies the following three properties:

- (i) $||x|| \ge 0$ for each $x \in X$, and ||x|| = 0 if and only if x = 0;
- (ii) $\|\alpha x\| = |\alpha| \cdot \|x\|$ for all $x \in X$ and $\alpha \in \mathbb{R}$;
- (iii) $||x + y|| \le ||x|| + ||y||$ for all $x, y \in X$.

Property (iii) is called the **triangle inequality** for the norm.

A vector space X equipped with a norm is called a **normed vector space**, or simply a **normed space**.

If the norm is clear from context, we write X instead of $(X, \|\cdot\|)$.

To avoid trivialities, the vector spaces will be tacitly assumed to be different from $\{0\}$.

A norm $\|\cdot\|$ on a vector space X induces a metric ρ on X by defining

$$\rho(x,y) = ||x-y||, \quad x,y \in X.$$

We shall call this metric on X the **metric induced** by the norm. Hence,

Any normed space is also a metric space

Example 1.6 The vector space \mathbb{R}^n with the norm

$$||x|| = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}$$

for $x = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$, is a normed space.

This norm is called the **Euclidean norm**, and it gives the Euclidean metric.

Example 1.7 For $a, b \in \mathbb{R}$, a < b, consider the vector space C([a, b]) of all continuous real-valued functions on [a, b]. The **maximum norm** $\| \cdot \|$ is defined for $f \in C([a, b])$ by

$$||f|| = \max_{a \le x \le b} |f(x)|.$$

This norm is also called the **uniform norm** on C([a, b]).

Many concepts studied in Euclidean spaces can be naturally and usefully extended to general metric spaces.

In the metric space (X, d), for $a \in X$ and r > 0, the set

$$B(a, r) := \{x \in X : d(x, a) < r\}$$

is called the **open ball** with center at a and radius r, while

$$\overline{B}(a,r) := \{x \in X : d(x,a) \le r\}$$

is called the **closed ball** with center at a and radius r.

In a normed space X we refer to $B(\mathbf{0},1)$ as the open unit ball and $\overline{B}(\mathbf{0},1)$ as the closed unit ball.

Definition 2.1

A subset U of X is called **open** if for every $x \in U$, there exists some r > 0 such that $B(x, r) \subset U$.

A set is said to be **closed** if its complement is open.

$$U$$
 open \iff $(\forall x \in U)(\exists r = r(x) > 0)(B(x,r) \subset U)$

A is closed \iff A^c is open

Example 2.1

- (a) Every open ball B(x, r) in a metric space X is an open set.
- (b) For any $a \in \mathbb{R}$, the intervals $(-\infty, a)$ and (a, ∞) are open sets in \mathbb{R} . If $a, b \in \mathbb{R}$, a < b, then the interval (a, b) is an open set in \mathbb{R} . These are called **open intervals**.

Theorem 2.1

For a metric space *X* the following statements hold:

- (a) X and ∅ are open sets.
- (b) Arbitrary unions of open sets are open sets.
- (c) Finite intersections of open sets are open sets.

Theorem 2.2

For a metric space (X, d) the following statements hold:

- (a) X and Ø are closed sets.
- (b) Arbitrary intersections of closed sets are closed sets.
- (c) Finite unions of closed sets are closed sets.

Example 2.2

- (a) Every closed ball is closed.
- (b) Any one element subset of a metric space is closed.
- (c) For any $a \in \mathbb{R}$, the intervals $(-\infty, a]$ and $[a, \infty)$ are closed sets in \mathbb{R} . If $a, b \in \mathbb{R}$, a < b, then the interval [a, b] is a closed set in \mathbb{R} . These are called **closed intervals**.
- (d) (0,1] and [3,10) are neither open nor closed.

Note Infinite intersections of open sets may <u>not</u> be open sets; infinite unions of closed sets may <u>not</u> be closed sets.

Theorem 2.3

Let Y be a nonempty subset of the metric space X and A a subset of Y. Then

- (a) A is open in the subspace Y if and only if $A = Y \cap G$, where G is open in X;
- (b) A is closed in the subspace Y if and only if $A = Y \cap F$ for some closed set F in X.

Theorem 2.4 (Open sets in $\mathbb R$)

A subset of \mathbb{R} is open if and only if it is the union of a <u>countable</u> collection of <u>disjoint</u> open intervals.

$$A \subset \mathbb{R}$$
 is open $\iff \left\{ egin{array}{ll} A = \cup_n (a_n, b_n) \ (a_n, b_n) \ ext{are disjoint.} \end{array}
ight.$

Definition 2.2

A point a is called an **interior point** of a subset A if there exists an open ball B(a, r) such that $B(a, r) \subset A$. The set of all interior points of A is denoted by int A or A° and is called the **interior** of A.

a is an interior point of $A \iff \exists r > 0 : B(a, r) \subset A$ int $A = \{a \in X : a \text{ is an interior point of } A\}.$

Question: Find int \mathbb{Z} and int \mathbb{Q} .

Theorem 2.5

int A is the largest open subset of X included in A,

int
$$A = \bigcup \{ U \subset X : U \subset A \text{ and } U \text{ is open} \}.$$

Definition 2.2

For a point $a \in X$, an open set that contains a is called a **neighborhood** of a.

U is a neighborhood of $a \Longleftrightarrow U$ is open and $U \ni a$

Definition 2.3

A point x in a metric space X is called a **closure point** (or **point of closure**) of a subset A of X if every open ball centered at x contains (at least) one element of A; that is, $B(x, r) \cap A \neq \emptyset$ for all r > 0.

The set of all closure points of A is denoted by \overline{A} , and is called the **closure** of A.

$$x \in \overline{A} \iff (\forall r > 0)(B(x,r) \cap A \neq \emptyset)$$

Clearly,

$$A \subset \overline{A}$$
.

Theorem 2.6

For every subset A of a metric space, \overline{A} is closed. Moreover, \overline{A} is the smallest closed set that includes A,

$$\overline{A} = \bigcap \{B : B \text{ is closed and } B \supset A\}.$$

In particular, a set A is closed if and only if $A = \overline{A}$.

Thus,

A is closed
$$\iff [(\{x_n\} \subset A) \land (x_n \to x) \Longrightarrow x \in A].$$

Definition 2.4

A point $x \in X$ is called a **boundary point** of a set A if every open ball of x contains points from A and $A^c = X \setminus A$, that is, if $B(x, r) \cap A \neq \emptyset$ and $B(x, r) \cap A^c \neq \emptyset$ for all r > 0. The set of all boundary points of a set A is denoted by $\operatorname{\mathbf{bd}} A$ or ∂A and is called the **boundary** of A.

By the symmetry of the definition,

$$\operatorname{bd} A = \overline{A} \cap \overline{A^c} = \operatorname{bd} A^c.$$

$$\wedge$$
 Let $\{a_n\} \subset \mathbb{R}$.

$$a = \lim_{n \to \infty} a_n \iff ?$$

Definition 3.1

A sequence $\{x_n\}$ of points in a metric space (X, d) is said to **converge** to the point $x \in X$ if

$$\lim_{n\to\infty}d(x_n,x)=0,$$

that is, for each $\epsilon > 0$, there is an index N such that for every n > N, $d(x_n, x) < \epsilon$. The point x is called the **limit** of the sequence $\{x_n\}$ and we write $\lim x_n = x$, or $x_n \to x$.

$$x_n \to x \iff d(x_n, x) \to 0$$

 $\iff (\forall \epsilon > 0)(\exists N)(\forall n > N)(d(x_n, x) < \epsilon).$

Example 3.1 In \mathbb{R} (with the usual distance) a sequence of real numbers $\{x_n\}$ converges to a (real) limit x if, given any $\epsilon > 0$, there exists an integer N > 0 such that $|x_n - x| < \epsilon$ for all n > N.

Theorem 3.1

- (a) If a sequence is convergent, then the limit is unique
- (b) If $\{x_n\}$ is a convergent sequence with limit x, then each subsequence of $\{x_n\}$ is also convergent with limit x.
- (c) If $\lim x_n = x$ and $\lim y_n = y$, then $\lim d(x_n, y_n) = d(x, y).$

Theorem 3.2 (Convergence in \mathbb{R}^n)

In the Euclidean space \mathbb{R}^n , a sequence $\{x_k = (x_{k,1}, \dots, x_{k,n})\}$ converges to a point $x = (x_1, \dots, x_n)$ if and only if

$$\lim_{k\to\infty}x_{k,1}=x_1,\ldots,\lim_{k\to\infty}x_{k,n}=x_n,$$

i.e., if and only if each component of $\{x_k\}$ converges to the corresponding component of x.

$$(x_{k,1}, x_{k,2}, \ldots, x_{k,n}) \to (x_1, x_2, \ldots, x_n)$$

$$x_{k,1} \to x_1, x_{k,2} \to x_2, \dots, x_{k,n} \to x_n$$

Theorem 3.3

For a subset A of a metric space X, a point $x \in X$ is a closure point of A if and only if x is the limit of a sequence in A. Therefore, A is closed if and only if it contains the limits of all convergent sequences in A.

$$x \in \overline{A} \iff (\exists \{x_k\} \subset A, \ x_k \to x).$$

 $A \text{ is closed} \iff [(\{x_k\} \subset A \text{ and } x_k \to x) \Longrightarrow (x \in A)].$

1.3 CONVERGENCE

Example 3.2 Let A be a nonempty subset of \mathbb{R} . Then

$$\alpha = \inf A \iff (\alpha \le a \ \forall a \in A) \text{ and}$$

 $(\exists \{a_n\} \subset A : a_n \to \alpha);$

$$\beta = \sup A \iff (a \le \beta \ \forall a \in A) \text{ and}$$

$$(\exists \{a_n\} \subset A : a_n \to \beta).$$

$$f:(a,b) o \mathbb{R}$$
 is continuous at $x_0 \in (a,b) \stackrel{????}{\Longleftrightarrow}$.

Definition 4.1

A mapping f from a metric space (X, d) to a metric space (Y, ρ) is said to be **continuous at a point** $a \in X$ if for every $\epsilon > 0$ there exists $\delta > 0$ (depending on a and ϵ) such that

$$\rho\left(f(x),f(a)\right)<\epsilon$$
 whenever $d(x,a)<\delta$.

The mapping f is said to be **continuous on** X (or simply **continuous**) if f is continuous at every point of X.

If f is not continuous at $a \in X$, we say that f has a **discontinuity** at a, or that f is **discontinuous** at a.

Example 4.1 Let (X, d) and (Y, ρ) be metric spaces.

- (a) Any constant mapping $\varphi: X \to Y$, $\varphi(x) = y_0$, is continuous.
- (b) The **identity mapping** id : $X \rightarrow X$, id(x) = x, is continuous.

Example 4.2 If $A \subset X$ and $f: X \to Y$ is continuous at $a \in A$, then $f_{|A}: A \to Y$ is continuous at a. Thus if f is continuous on X, then $f_{|A}$ is continuous on A. Here A has the metric induced from X.

f is continuous $\Longrightarrow f_{|A}$ is continuous

Example 4.3 The **Dirichlet function**

 $f: \mathbb{R} \to \mathbb{R}$ defined by

$$f(x) = \begin{cases} 1, & x \in \mathbb{Q}, \\ 0, & x \notin \mathbb{Q}, \end{cases}$$

is nowhere continuous, that is, it is discontinuous at every $x_0 \in \mathbb{R}$.

• Note that $f_{|\mathbb{Q}}$ is continuous.

Uniform Continuity

Definition 4.2

A mapping f from a metric space (X, d) to a metric space (Y, ρ) is said to be **uniformly continuous** if for every $\epsilon > 0$, there exists some $\delta > 0$ (depending only on ϵ) such that for $x, x' \in X$,

if
$$d(x, x') < \delta$$
 then $\rho(f(x), f(x')) < \epsilon$.

Note that

A uniformly continuous mapping is continuous.

Example 4.4 Let (X, d) and (Y, ρ) be metric spaces. A mapping $f: X \to Y$ is **Lipschitz** with **Lipschitz constant** K > 0 if

$$\rho(f(x), f(x')) \le Kd(x, x')$$
 for all $x, x' \in X$.

Every Lipschitz mapping is uniformly continuous.

Example 4.5 Let $(X, \| \cdot \|)$ be a normed space. The norm $\| \cdot \| : X \to \mathbb{R}$ is Lipschitz continuous with Lipschitz constant 1 because

$$|||x|| - ||y||| \le ||x - y|| = d(x, y) \quad \forall x, y \in X.$$

More general, if $x_0 \in X$ is fixed, then the function $f(x) = ||x - x_0||$ is Lipschitz continuous with Lipschitz constant 1.

Example 4.6 (Projections)

For each k = 1, ..., n, the **k**-th projection

$$\pi_k: \mathbb{R}^n \to \mathbb{R}$$

defined by

$$\pi_k(x_1,\ldots,x_n)=x_k$$

is Lipschitz continuous with Lipschitz constant 1.

Thus,

Every projection is continuous.

Example 4.7 (Distance from a set) Let A be a nonempty subset of X. For each $x \in X$, the number

$$d(x,A) := \inf_{a \in A} d(x,a)$$

is called the **distance from** *x* **to** *A*. The **distance function**

$$d(\cdot, A): X \to \mathbb{R}, \quad x \mapsto d(x, A)$$

is Lipschitz continuous with Lipschitz constant 1. Thus $d(\cdot, A)$ is continuous.

(Note that the value of the function $d(\cdot, A)$ at x is the number d(x, A).)

Remarks

Let $f:(X,d)\to (Y,\rho)$ be a mapping. The following are equivalent conditions.

- (a) f is continuous at a.
- (b) For each $\epsilon > 0$, there is $\delta > 0$ for which $f(B(a,\delta)) \subset B(f(a),\epsilon)$.
- (c) For every neighborhood V of the point f(a) in Y, there exists a neighborhood U of the point a in X such that $f(U) \subset V$.

Theorem 4.1 (Sequential Criterion for Continuity)

A mapping $f:(X,d) \to (Y,\rho)$ is continuous at the point $a \in X$ if and only if for every sequence $\{x_k\}$ in X such that $\lim x_k = a$, we have $\lim f(x_k) = f(a)$.

f is continuous at $a \iff [x_k \to a \text{ implies } f(x_k) \to f(a)]$

Example 4.8 Suppose f and g are real-valued functions on X that are continuous at a.

(a) The functions

$$f+g$$
, $f-g$, fg , and $|f|$

are all continuous at a.

- (b) If $g(x) \neq 0$ for all x near a, then f/g is also continuous at a.
- (c) If c is a constant, then cf is continuous at a.

Example 4.9 Consider the continuity of the following functions:

(a) $f,g:[0,1] \to \mathbb{R}$ defined by

$$f(x) = \begin{cases} a & \text{if } x = 0\\ \frac{1}{x} & \text{if } 0 < x \le 1, \end{cases}$$
$$g(x) = \begin{cases} 0 & \text{if } x = 0\\ \sin\frac{\pi}{x} & \text{if } 0 < x \le 1. \end{cases}$$

(b) $h(x) = \chi_A(x)$, where A is a subset of a metric space (X, d).

Theorem 4.2

Let $f: X \to Y$ be a mapping between metric spaces X and Y. Then the following are equivalent:

- (a) f is continuous.
- (b) The inverse image $f^{-1}(U)$ of each open set U in Y is open in X.
- (c) The inverse image $f^{-1}(F)$ of each closed set F in Y is closed in X.

Example 4.10

- (a) Let X and Y be metric spaces, and $f: X \to Y$ continuous. Then, for each $y \in Y$, the solution set $f^{-1}(y)$ of the equation f(x) = y is closed.
- (b) Let $f: X \to \mathbb{R}$ be continuous and $\alpha \in \mathbb{R}$. Then

$$\{x \in X : f(x) \le \alpha\}, \quad \{x \in X : f(x) \ge \alpha\}$$

are closed and

$$\{x \in X : f(x) < \alpha\}, \quad \{x \in X : f(x) > \alpha\}$$
 are open in X .

(c) In a normed space $(X, \|\cdot\|)$, every sphere

$$S = \{x \in X : ||x - x_0|| = r\}$$
 is closed.

Theorem 4.3 (Continuity of Compositions)

Let X, Y and Z be metric spaces. Suppose that $f: X \to Y$ is continuous at $x \in X$, and $g: Y \to Z$ is continuous at $f(x) \in Y$. Then the composition $g \circ f: X \to Z$ is continuous at x. Thus the composition of continuous mappings, when defined, is continuous.

Composition of continuous mappings is continuous

Complete Spaces and Examples

ullet Convergence Tests of Sequences in ${\mathbb R}$

Definition 5.1

A sequence $\{x_n\}$ in a metric space (X, d) is said to be a **Cauchy sequence** if, for each $\epsilon > 0$, there is an index N such that $d(x_m, x_n) < \epsilon$ for all m, n > N.

Remarks

- 1. Every convergent sequence is a Cauchy sequence.
- 2. If a Cauchy sequence $\{x_n\}$ has a subsequence $\{x_{n_k}\}_k$ that converges to x, then $\{x_n\}$ converges to x.

Definition 5.2

We say that a subset E of a metric space (X, d) is **bounded** if it is contained in some ball. The **diameter** of E is given by

$$\operatorname{diam} E := \sup \left\{ d(x, y) : x, y \in E \right\}.$$

$$E$$
 bounded $\stackrel{def}{\iff} (\exists B(x_0, r))(E \subset B(x_0, r))$

Remarks

- (i) E is bounded if and only if diam $E < \infty$.
- (ii) A set E in a normed space $(X, \| \cdot \|)$ is bounded if and only if there is a constant K > 0 such that $\|x\| \le K$ for all $x \in E$.
- (iii) A set E in \mathbb{R}^n is bounded if and only if there is a constant K > 0 such that $|x_i| \leq K$ for all $x = (x_1, x_2, \dots, x_n) \in E$ and $i = 1, 2, \dots, n$.
- (iv) Any Cauchy sequence is bounded.

Hence

A convergent sequence is bounded.

Definition 5.3

A metric space X is called **complete** if every Cauchy sequence in X converges to a point in X.

Example 5.1

- (a) The real line \mathbb{R} with its usual metric is complete.
- (b) The Euclidean space \mathbb{R}^n is complete.
- (c) C([a, b]) with the uniform metric is complete.
- (d) [0,1) and \mathbb{Q} with induced metrics are not complete.

Theorem 5.1

- (a) A complete subspace of a metric space is closed.
- (b) A closed subspace of a complete metric space is complete.

Dense Sets and Separable Spaces

Definition 5.4

A subset A of a metric space X is called **dense** in X if $\overline{A} = X$. A metric space is called **separable** if it contains a countable dense subset.

Example 5.2 \mathbb{R} and \mathbb{R}^n are separable.

Remarks The following are equivalent:

- (a) A is dense in X.
- (b) For each $x \in X$, there is a sequence $\{x_n\}$ of points in A such that $x_n \to x$.
- (c) The complement of A has empty interior, that is, $int(A^c) = \emptyset$.

Remark

Every subspace of a separable metric space is separable.

The Baire Category Theorem

Definition 5.5

A subset A of X is said to be **nowhere dense** if its closure \overline{A} has no interior point. A subset Y of a metric space is said to be of **first category** if there exists a sequence $\{A_n\}$ of nowhere dense subsets such that $Y = \bigcup_{i=1}^{\infty} A_n$. All subsets of X that are not of first category in X are said to be of **second category** in X.

Example 5.3 Any countable set in \mathbb{R} is of first category. In particular, \mathbb{Q} is of first category.

Theorem 5.2 (The Baire Category Theorem)

Let X be a complete metric space.

- (a) Let $\{G_n\}_{n=1}^{\infty}$ be a countable collection of open dense subsets of X. Then the intersection $\bigcap_{n=1}^{\infty} G_n$ also is dense.
- (b) Let $\{F_n\}_{n=1}^{\infty}$ be a countable collection of closed nowhere dense subsets of X. Then the union $\bigcup_{n=1}^{\infty} F_n$ has empty interior.

Corollary 5.3

Let X be a complete metric space and $\{F_n\}_{n=1}^{\infty}$ a countable collection of closed subsets of X.

- (a) If $\bigcup_{n=1}^{\infty} F_n$ has nonempty interior, then at least one of the F_n 's has nonempty interior.
- (a) If $X = \bigcup_{n=1}^{\infty} F_n$, then at least one of the F_n 's has nonempty interior.

The Baire Category Theorem may also be rephrased as follows:

A nonempty open subset of a complete metric space is of the second category. In particular, a complete metric space is of the second category.

Definition 5.6

Let (X, d) be a metric space. A mapping $f: X \to X$ is called a **contraction mapping** if there is some $\alpha \in (0, 1)$ such that

$$d(f(x), f(x')) \le \alpha d(x, x'), \quad x, x' \in X.$$

The number α is called a **contraction constant** for f. A point $x \in X$ for which f(x) = x is called a **fixed point** for f.

The following Banach Contraction Principle provides an algorithm for approximating the fixed point of a contraction mapping in a complete space.

Theorem 5.4 (The Banach Contraction Principle)

Let X be a complete metric space and let $f: X \to X$ be a contraction mapping with contraction constant α . Then f has a unique fixed point x_* . Moreover, given any $x_0 \in X$, the sequence $\{x_n\}$ defined recursively $x_{n+1} = f(x_n)$ converges to the fixed-point, and the following estimates hold

$$d(x_{n+1}, x_*) \leq \alpha d(x_n, x_*)$$

$$d(x_n, x_*) \leq \frac{\alpha^n}{1 - \alpha} d(x_1, x_0)$$

$$d(x_{n+1}, x_*) \leq \frac{\alpha}{1 - \alpha} d(x_{n+1}, x_n).$$

240

Compact Sets and Characterizations

Definition 6.1

A collection of sets $\{A_i\}_{i\in I}$ is said to be a **cover** of a set A provided $A \subset \bigcup_{i\in I} A_i$. If a subfamily of $\{A_i\}_{i\in I}$ also covers A, then it is called a **subcover**. If $\{A_i\}_{i\in I}$ is finite, we call it a **finite cover** of A. If A is a subset of a metric space X, by an **open cover** of A we mean a cover of A consisting of open subsets of X.

Definition 6.2

Let X be a metric space. A subset A of X is said to be **compact** if every open cover of A has a finite subcover. If X is itself a compact set, we call X a **compact space**.

Example 6.1

- (a) Any finite subset of a metric space X is compact.
- (b) The sets \mathbb{R} and S = (0,1] are not compact.

Properties of Compact sets

Theorem 6.1

Every compact set is closed and bounded.

 $compactness \implies closedness + boundedness$

Theorem 6.2

A nonempty compact subset of a metric space is a complete and separable subspace.

Characterizations of Compact sets

Theorem 6.3

For a subset A of a metric space (X, d) the following statements are equivalent:

- (a) A is a compact set.
- (b) Every sequence in A has a subsequence which converges to a point of A.

Definition 6.3

A collection \mathcal{F} of sets in X is said to have the **finite** intersection property provided any finite subcollection of \mathcal{F} has a nonempty intersection.

Theorem 6.4

A metric space X is compact if and only if every collection \mathcal{F} of closed subsets of X with the finite intersection property has nonempty intersection.

Theorem 6.5 (The Heine-Borel Theorem)

A subset of a Euclidean space \mathbb{R}^n is compact if and only if it is closed and bounded.

compactness $\stackrel{\mathbb{R}^n}{=}$ closedness + boundedness

Corollary 6.6 (The Bolzano-Weierstrass Theorem)

Every bounded sequence of points in \mathbb{R}^n has a convergent subsequence in \mathbb{R}^n .

Continuous Mappings on Compact Spaces

Theorem 6.7

If $f: K \to Y$ is continuous and K is a compact subset of a metric space X, then f(K) is a compact subset of Y.

For short,

The continuous image of a compact set is compact.

Theorem 6.8

Let K be a nonempty compact subset of a metric space X and let $f: X \to \mathbb{R}$ be continuous. Then f attains a maximum and a minimum on K, that is, there are $x_0, x_1 \in K$ such that

$$f(x_0) = \min_{x \in K} f(x)$$
 and $f(x_1) = \max_{x \in K} f(x)$.

Example 6.2 Given a nonempty compact subset K of a metric space (X, d) and a point $x_0 \in X$, there exists a point $x_* \in K$ such that

$$d(x_0,x_*)=\min_{x\in K}d(x_0,x).$$

The point x_* is called a **best approximation** in K of the point x_0 in X.

 $K \subset X$ is compact and $f: X \to \mathbb{R}$ is continuous

$$\exists x_0 \in K : f(x_0) = \min_{x \in K} f(x)$$
 and

$$\exists x_1 \in K : f(x_1) = \max_{x \in K} f(x)$$

Uniform Continuity

Recall that

A mapping from a metric space (X, d) to a metric space (Y, ρ) is said to be **uniformly continuous** if for every $\epsilon > 0$, there exists some $\delta > 0$ (depending only on ϵ) such that for $x, x' \in X$,

if
$$d(x, x') < \delta$$
 then $\rho(f(x), f(x')) < \epsilon$.

Theorem 6.9

If X is compact, then every continuous mapping $f: X \to Y$ is uniformly continuous.

That is,

Continuous mappings on compact sets are uniformly continuous.