

Asm1 Software Development Life Cycle Truong Ky Nguyen GCD210354

Software Development Life Cycles (Greenwich Việt Nam)

Scan to open on Studocu

ASSIGNMENT 01 FRONT SHEET

Qualification	BTEC Level 5 HND Diploma in Co	omputing	
Unit number and title	Unit 09: Software Development Life	Cycle	
Submission date		Date Received 1st submission	
Re-submission Date		Date Received 2nd submission	
Student Name	TRUONG KY NGUYEN	Student ID	GCD210354
Class	GCD1105	Assessor name	PHAN THANH TRA

Student declaration

I certify that the assignment submission is entirely my own work and I fully understand the consequences of false declaration is a form of malpractice.

			S	Student's signature			
Grading grid							
P1	P2	Р3	P4	M1	M2	D1	D2
□ Summative Fo	eedback:			Resubmission Feedba	ack:		

Grade:	Assessor Signature:	Date:
Internal Verifier's Comments:		
Signature & Date:		

Contents

ı.	Introduction	6
	Describe two iterative and two sequential software lifecycle models	
	1. Describe the following SDLC	7
	a. Waterfall model	8
	b. V-model	11
	c. Prototyping	13
	d Scrum	1⊿

e. Spiral	16
f. Model suitable for the project	17
2. Discuss the suitability of each of the SDLC models for the project	18
III. Explain how risk is managed in the Spiral lifecycle model	19
Identify some risks and discuss an approach to manage them	19
2. Risk Management process with clear illustrations and explanations	20
IV. Explain the purpose of a feasibility report	21
1. Definition of feasibility report	21
2. Discuss the purpose of conducting a feasibility study	21
3. Discuss how the three feasibility criteria	21
Technical feasibility	21
Economic feasibility	22
Organizational feasibility	23
4. Discuss whether the project is feasible or not	23
Technical feasibility	23
Economic feasibility	23
Organizational feasibility	23
V. Describe how technical solutions can be compared	24
VI. References	26

I. Introduction

Software Development Life Cycle (SDLC) is the process of determining how an information system can support business needs, designing the system, building it, and delivering it to users. It is a framework that has a set of tasks to be performed at each stage in the software development process. It is a process of giving a complete idea of the development, design and maintenance of a software project by ensuring that all functionality along with user requirements, goals and final objectives are resolved together. With SDLC, the quality of the software project and the overall software development process is enhanced. If you've taken a coding class or have programmed yourself, this might sound simple. However, in the real world, it is not so easy. So, in my assignment, I will introduce clearly about how SDLC is important.

II. Describe two iterative and two sequential software lifecycle models

1. Describe the following SDLC

SDLC or the Software Development Life Cycle is a process that produces software with the highest quality and lowest cost in the shortest time possible. SDLC provides a well-structured flow of phases that help an organization to quickly produce high-quality software which is well-tested and ready for production use.

In detail, the SDLC methodology focuses on the following six phases of software development, popular SDLC models include the waterfall model, spiral model, and Agile model (ALEXANDRA ALTVATER, 2020).

There are six phases of SLDC:

Requirement analysis

At this stage comprises receiving input from various stakeholders, including customers, salespeople, industry experts, and programmers. Determine the present system's strengths and flaws in order to improve it (Altvater, 2020).

Planning

At this stage of the SDLC, the team assesses the cost and resources required to accomplish the analyzed requirements. It also discusses the dangers and suggests sub-plans for minimizing them (Altvater, 2020).

Software design such as architectural design

The software specifications are turned into a design plan known as the Design Specification in this level of the SDLC. All stakeholders then analyze the proposal and provide feedback and ideas. It is critical that a strategy for obtaining and incorporating stakeholder feedback into this document be in place. Collapse at this stage nearly often results in expense overruns at best and project failure at worst (*Altvater, 2020*).

Software development

Actual development begins in this stage. Each developer must strictly stick to the agreed-upon strategy. Also, ensure that developers have a proper coding style and process norms in place (Altvater, 2020).

Testing

At this stage, the developers check and detect the errors that arise in the software and fix them so that the software has the best quality before it comes to customers (*Altvater*, 2020).

Deployment

The purpose of this step is to deploy the software to the production environment so that users can begin utilizing the product. Furthermore, this permits any last flaws to be identified before the product is released (Altvater, 2020).

SDLC is important because it provides an effective framework and method to develop software applications. It helps in effectively planning before starting the actual development. SDLC allows developers to analyze the requirements. It helps in reducing unnecessary costs during development.

a. Waterfall model

Waterfall Model is a sequential model that divides software development into pre-defined phases. Each phase must be completed before the next phase can begin with no overlap between the phases. Each phase is designed for performing specific activity during the SDLC phase. It was introduced in 1970 by Winston Royce (*Matthew Martin, 2022*).

Waterfall Model

Different Phases of Waterfall Model in Software Engineering

Different phases	Activities performed in each stage
Requirement Gathering stage	During this phase, detailed requirements of the software system to be developed are gathered from client
Design Stage	 Plan the programming language, for Example Java, PHP, .net or database like Oracle, MySQL, etc. Or other high-level technical details of the project
Built Stage	After design stage, it is built stage, that is nothing but coding the software
Test Stage	In this phase, you test the software to verify that it is built as per the specifications given by the client

Deployment stage	Deploy the application in the respective environment
Maintenance stage	Once your system is ready to use, you may later require change the code as per customer request

Advantages and Disadvantages of Waterfall Model

Advantages	Disadvantages
Before the next phase of development, each phase must be completed	Error can be fixed only during the phase
Suited for smaller projects where requirements are well defined	It is not desirable for complex project where requirement changes frequently
They should perform quality assurance test (Verification and Validation) before completing each stage	Testing period comes quite late in the developmental process
Elaborate documentation is done at every phase of the software's development cycle	Documentation occupies a lot of time of developers and testers
Project is completely dependent on project team with minimum client intervention	Clients valuable feedback cannot be included with ongoing development phase
Any changes in software is made during the process of the development	Small changes or errors that arise in the completed software may cause a lot of problems

b. V-model

V Model is a highly disciplined SDLC model in which there is a testing phase parallel to each development phase. The V model is an extension of the waterfall model in which testing is done on each stage parallel with development in a sequential way. It is known as the Validation or Verification Model (*Thomas Hamilton*, 2022).

Different phases of the Software Development Cycle

Different phases	Activities performed in each stage
Requirement Gathering	Gather as much information as possible about the details & specifications of the desired software from
stage	the client. This is nothing but the Requirements gathering stage.

Design Stage	Plan the programming language like Java, PHP, .net; database like Oracle, MySQL, etc. Which would be suited for the project, also some high-level functions & architecture.
Build Stage	After the design stage, it is build stage, that is nothing but actually code the software
Test Stage	Next, you test the software to verify that it is built as per the specifications are given by the client.
Deployment stage	Deploy the application in the respective environment
Maintenance stage	Once your system is ready to use, you may require to change the code later on as per customer request

Advantages and Disadvantages of V-Model

Advantages	Disadvantages
Simple and easy to use	Very inflexible, like the waterfall model.
Each phase has specific deliverables.	Adjusting scope is difficult and expensive.
Higher chance of success over the waterfall model due to the development of test plans early on during the life cycle.	The software is developed during the implementation phase, so no early prototypes of the software are produced.
Works well for where requirements are easily understood.	The model doesn't provide a clear path for problems found during testing phases
V-Model Improves the quality and reliability of the software.	Moreover, it is costly and required more time, in addition to a detailed plan
It reduces the amount of re-work because of the early detection of defects and issues	

It provides better management for project risks.
Verification and validation of the product in the early stages of product development ensure better quality.
The V-Model concept can be combined with other models, for example, the iterative and agile models

c. Prototyping

The prototyping model is a systems development method in which a prototype is built, tested, and then reworked as necessary until an acceptable outcome is achieved from which the complete system or product can be developed. This model works best in scenarios where not all of the project requirements are known in detail ahead of time. It is an iterative, trial-and-error process that takes place between the developers and the users (Sarah Lewis, 2019).

Scrum is a framework for projects. It follows the agile methodology and defines roles, procedures, tools, processes to make sure to deliver an efficient and effective project well on time through iterative development cycles. This methodology is basically followed where there is the demand of high development process, high involvement of stakeholders. Scrum methodology repeatedly monitors software development while the project is being developed (*StarAgile*, 2020).

Scrum Model

Advantages and disadvantages of Scrum Model

Advantages	Disadvantages
Transparent system pushes developers to comply with their assignments and deliver it on time	Difficult to plan, structure and organize a project with no clear mission and vision
Defined deadline at every step keep developers motivated and empowered at every step	Frequent changes in the project lead to a delay in the delivery time of the project
Feedback at every level of the project ensures that quality project is delivered in the end	Utilizes more resources and stakeholder's involvement in every small detail change and discussion

e. Spiral

Spiral Model is a risk-driven software development process model. It is a combination of the waterfall model and the iterative model. Spiral Model helps to adopt software development elements of multiple process models for the software project based on unique risk patterns ensuring an efficient development process (Matthew Martin, 2022).

Spiral Model Spiral

Model Phases

Spiral Model Phases	Activities performed during phase
---------------------	-----------------------------------

Planning	It includes estimating the cost, schedule and resources for the iteration. It also involves understanding the system
	requirements for continuous communication between the system analyst and the customer
Risk Analysis	Identification of potential risk is done while risk mitigation strategy is planned and finalized
Engineering	It includes testing, coding and deploying software at the customer site
Evaluation	Evaluation of software by the customer. Also, includes identifying and monitoring risks such as schedule slippage and cost overrun

f. Model suitable for the project

According to the information given, the project of Tune Source company has an initial investment capital and an estimated annual income of about 2 million USD, so this is a large-scale project, serving crowded customers. So, the company must careful organization and development to avoid mistakes.

Water fall model is an old model and is used a lot in a small project, but the percent of failure in the project is very high if it used for complex and object-oriented projects. Furthermore, the cost of correcting those flaws is too high because we must update everything from the documentation to the reasoning. Another way, if the software development documentation is not correctly completed, the project will most likely go astray when developing this product.

V-model also contains some weakness that is not suitable for this project. All requirements are known up-front so this model cannot readily manage dynamic changes in requirements. But, V-model does not contain risk analysis activities, it is hard to manage risk and it has high percent of projects failure.

So, after all reason I prepared, Spiral model is the best because:

- ♣ Environment is balance
- ☆ The technology used is dynamic or stable.
- ♣ There are resources and training available.
- ↑ The requirements do not change on a regular basis ☐ The project is short.

2. Discuss the suitability of each of the SDLC models for the project

Factors	Unclear User Requirement		Complex System	Reliable system	Short Time Schedule	Strong Project Management	Cost limitation	Visibility of Stakeholders	Skills limitation	Documentation	Component reusability
Waterfall	Poor	Poor	Good	Good	Poor	Excellent	Poor	Good	Good	Excellent	Excellent
Prototypi ng	Good	Excellent	Excellent	Poor	Good	Excellent	Poor	Excellent	Poor	Good	Poor
Spiral	Excellent	Excellent	Excellent	Excellent	Poor	Excellent	Poor	Excellent	Poor	Good	Poor
Iterative and Incremen tal	Good	Good	Good	Good	Excellent	Excellent	Excellent	Good	Good	Excellent	Excellent

|--|

Discuss the suitability of the model

III. Explain how risk is managed in the Spiral lifecycle model

1. Identify some risks and discuss an approach to manage them

No	Risk	Possible	Cause	Consequence	Solution
1	Outdated technology	40%	Employees are not trained or lazy to learn new technologies	Cannot create convenient features to attract users and compete with other brands	Always update the newest and latest technology
2	Lack of personal	10%	Employees are resigned or fired	Project completed over time	Prepare more staff and manage staff to do task together
3	Lack of budget	15%	Covid-19 affect to source of income	Lack of funds to develop	Take advantage of old but highly effective technologies to reduce costs

4	Slow progress	20%	Unequal	Loss of company	bind tasks for easy
			distribution of	reputation	management as
			work		well as unified
					opinions

2. Risk Management process with clear illustrations and explanations

☐ Risk Management process

A process of risk management in projects is a rational chain of practices taken by decision agents in order to keep the implementation of the project under certain conditions. The decision-agents need to identify, analyze and evaluate the risks in all project life cycle and use their organizational structure and administrative practices in order to act on the risks in favor of the project. Project complexity and the maturity of the organizations are viewed as important factors that can affect the success of a project (Luiz Henrique Rodrigues-da-Silva and José António Crispim, 2014).

Why is Risk assessment important?

Risk assessments are important because they form an integral part of an occupational health and safety management plan. They

Risk assessments are important because they form an integral part of an occupational health and safety management plan. They have to:

- Create awareness of hazards and risk.
- Identify who may be at risk (e.g., employees, cleaners, visitors, contractors, the public, etc.).
- Determine whether a control program is required for a particular hazard.
- Determine if existing control measures are adequate or if more should be done.
- Prevent injuries or illnesses, especially when done at the design or planning stage.
- Prioritize hazards and control measures.
- Meet legal requirements where applicable

(Government of Canada, 2021)

☐ What is the goal of risk assessment?

The aim of the risk assessment process is to evaluate hazards, then remove that hazard or minimize the level of its risk by adding control measures, as necessary. By doing so, you have created a safer and healthier workplace(Government of Canada, 2021).

Steps of the Risk Management Process

IV. Explain the purpose of a feasibility report

1. Definition of feasibility report

A feasibility report is a report that evaluates a set of proposed project paths or solutions to determine if they are viable. The person who prepares a feasibility report evaluates the feasibility of different solutions and then chooses their recommendation for the best solution. They then present the feasibility report to their company and make their recommendation (*Indeed Editorial Team, 2021*).

2. Discuss the purpose of conducting a feasibility study

The purpose of the feasibility report is to present the project parameters and define the potential solutions to the defined problem, need, or opportunity. Having brainstormed a variety of potential solutions, the project team expands on each of these potential solutions, providing sufficient detail, including very high-level costing information, to permit the project leader to recommend to the approving authority all of the viable potential solutions that should be further analyzed in the next phase (Business Case). Project constraints and limitations of expenditure are among the various factors that will determine viability (Government of Canada, 2011).

3. Discuss how the three feasibility criteria

Technical feasibility

The engineering feasibility of the project is viewed in the technical feasibility. Certain important engineering aspects are covered which are necessary for the designing of the project like civil, structural, and other relevant aspects. The technical capability of the projected technologies and the capabilities of the personnel to be employed in the project is considered (Umar Farooq, 2020). In certain examples especially when projects are in third world countries, technology transfer between cultures and geographical

areas should be analyzed. By doing so productivity gain (or loss) and other implications are understood due to the differences in fuel availability, geography, topography, infrastructure support, and other problems (Umar Faroog, 2020).

Economic feasibility

In the Economic Feasibility study cost and benefit of the project are analyzed. This means under this feasibility study a detailed analysis is carried out of what will be the cost of the project for development which includes all required costs for final development like hardware and software resources required, design and development cost and operational cost, and so on. After that, it is analyzed whether the project will be beneficial in terms of finance for the organization or not (GeekforGeek, 2020).

- ROI in economic feasibility: As the name reflects, the feasibility study use return on investment analysis tool to measure the profitability of investing money and resources into a business idea. So, ROI calculates the profitability of the investment in terms of return or gains from an investment. Moreover, the gain of investment over full investment to calculate the ROI of a business or project plan. Therefore, it's an important factor of consideration for investors to do investment in a business or project plan. The one with higher ROI will provide more profit as compared to others having less ROI (Jawad Ahmad, 2019).
- **NPV:** stand for Net Present Value, is the difference between the present value of cash inflows and the present value of cash outflows over a period. NPV is used in capital budgeting and investment planning to analyze the profitability of a projected investment or project. NPV is the result of calculations used to find today's value of a future stream of payments (JASON FERNANDO, 2021).
- **Cash flow:** Cash flow refers to the net balance of cash moving into and out of a business at a specific point in time. Cash flow can be positive or negative. Positive cash flow indicates that a company has more money moving into it than out of it. Negative cash flow indicates that a company has more money moving out of it than into it.
- Break-Even Point: The break-even point (BEP) is the point at which cost or expenses and revenue are equal: there is no net loss or gain. Point in time (or in several units sold) when estimated income exactly equals the assessed

aggregate expenses; where loss ends, and profit begins to accumulate. This is the time when a business, loss ends and profit begins to accumulate, or a venture turns out to be financially viable (*Pooja Mathur University of Rajasthan*)

· Organizational feasibility

Organizational feasibility aims to assess the prowess of management and sufficiency of resources to bring a product or idea to market. The company should evaluate the ability of its management team on areas of interest and execution. Typical measures of management prowess include assessing the founders' passion for the business idea along with industry expertise, educational background, and professional experience. Founders should be honest in their self-assessment of ranking these areas.

4. Discuss whether the project is feasible or not

· Technical feasibility

Currently, technology for website development is very developed with many modern technologies such as C#, Java, PHP, JavaScript... Developing a website with useful functions to meet the needs of Tune Source company is made easy and made possible by the above technologies. Therefore, the technological factors are completely feasible.

Economic feasibility

Annual sales last year were \$40 million with annual growth of about 3%–5% per year. Therefore, this is a company with a very stable and growing customer. The economic feasibility of this project is completely feasible

Organizational feasibility

With the selection of jobs and assigning to each department a commander with the necessary functions, duties, powers, and responsibilities to accomplish the outlined goals of the organization. This feasibility is feasible.

V. Describe how technical solutions can be compared

Evaluation Criteria Technical Issues:	Relative Importance	Alternative 1: using C#	Score (1- 5) *	Weigh ted Score	Alternative 2: using JavaScript	Score (1- 5) *	Weigh ted Score	Alternative 2: using PHP	Score (1- 5) *	Weighted Score
Front-end and backend support	10	Only backend	5	50	Both frontend and 7 70 Only backend 5 50 back - end.	7	70	Only backend	5	50
Capable of running on Windows Server	10	Current system uses Window 60server	5	50	Current system fully supports	5	50	Current system fully supports J s	5	50
Multimedia libraries	10	Microsoft support	6	60	Easy to find	5	50	Easy to find open-	6	60
					source code in library			source library		

Economic Issues:										
The license is less than \$5 2000	10	Visual studio + .NET Framework cost \$4500	4	40	Free for commercial use	5	50	Free for commercia I use	50	50
A server costs less than S1 1,000 per year.	10	Reuse current server	5	50	Reuse server	3	30	Reuse server	5	50
Organizational Issues										
Capable of hiring a senior developer	10	Very high salary	3	30	Not easy to find	5	150	Easy to find	5	50
Capable of hiring testers for less than \$1 1,000 per month	40	Easy to find	5	150	Easy to find			Easy to find	5	150
Total	100			430			450			460

Score: 1-poor fit; 5-perfect fit.

VI. References

- 1. Altvater, Alexandra. "What Is SDLC? Understand the Software Development Life Cycle." Stackify, 8 Apr. 2020, stackify.com/what-issdlc/.
- 2. Guru99. "What Is Spiral Model? When to Use? Advantages & Disadvantages." Guru99.com, 17 May 2019, www.guru99.com/what-isspiral-model-when-to-use-advantages-disadvantages.html.
- 3. https://www.finoit.com. "Finoit Technologies." Finoit Technologies, 8 July 2019, www.finoit.com/blog/sdlc-models-methodologies/.
- 4. Indeed Editorial Team. "What Is a Feasibility Report? (Definition and Template)." Indeed Career Guide, 2021, www.indeed.com/career-advice/career-development/feasibility-report.
- 5. Jawad Ahmad. "Feasibility Study Analysis the Professional's Guide." Templates Free Download, 6 Apr. 2020, templatesfreedownload.com/business-feasibility-study-analysis/. Accessed 5 Apr. 2022.
- 6. Lewis, Sarah. "What Is the Prototyping Model?" SearchCIO, 2019, www.techtarget.com/searchcio/definition/PrototypingModel#:~:text=The%20prototyping%20model%20is%20a.
- 7. Martin, Matthew. "What Is Waterfall Model in SDLC? Advantages & Disadvantages." Guru99.com, 4 Apr. 2019, www.guru99.com/what-is-sdlc-or-waterfall-model.html.
- 8. "Types of Feasibility Study in Software Project Development." GeeksforGeeks, 26 June 2020, www.geeksforgeeks.org/types-offeasibility-study-in-software-project-development/#:~:text=Economic%20Feasibility%20%E2%80%93&text=Means%20under%20this%20feasibility%20study. Accessed 5 Apr. 2022.