${ m CIS}~3223~{ m Homework}~4$

Name: Solns

Dr Anthony Hughes

Temple ID (last 4 digits:

1 (12 pts) (a) N = 289

289 is a perfect square **tru**

true false

L	U	U-L	U-L > 1	$M = \lfloor L + U)/2 \rfloor$	M^2	Action
1	289	288	True	145	21025	U = M
1	145	145	True	73	5329	U = 73
[73	72	Trox	37	1369	U = 37
1	37	36	Troe	١٩	361	0=19
1	19	18	True	10	100	L=10
10	19	9	True	14	196	L=14
14	19	5	True	16	256	L=16
16	19	3	True	17	289	

(b) N = 360

360 is a perfect square

 \mathbf{true}

false

L	U	U-L	U-L > 1	$M = \lfloor L + U)/2 \rfloor$	M^2	Action
1	360	359	True	180	32460	U = 180
Į	180	179	True	90	8166	U=90
l	90	89	True	45	2075	v = 45
(45	44	True	23	529	v = 23
l	23	22	True	12	144	L=12
12	23	1 1	True	17	289	L=17
١٦	23	6	True	70	460	0 = 20
17	20	3	Troe	18	324	L=18
18	20	2	True	19	361	0=19
18	19	1	False			

2 (12 pts) Give a big- θ bound for the solutions of the following relations (show work).

(a)
$$T(n) = 4T(n/2) + 1$$

 $a = 4$ $b = 7$ $d = 0$
 $\log_{4} a = \log_{2} 4 = 7$
 $d = 0$
 $d < \log_{6} a$ $T(n) = O(n^{\log_{6} a}) = \Theta(n^{2})$

(b)
$$T(n) = 7T(n/4) + n^{3/2}$$

$$a = 7 \quad b = 4 \quad d = 3/2$$

$$\log_b a = \log_4 7 < \log_4 8 = \frac{3}{2}$$

$$d = \frac{3}{2}$$

$$d > \log_1(a) \quad T(n) = \Theta(n^4) = \Theta(n^{3/2})$$

(c)
$$T(n) = 9T(n/3) + n^2$$

$$a = 9 \quad b = 3 \quad d = 2$$

$$\log_b a = \log_3 9 = 2$$

$$d = 2$$

$$d = \log_b a \quad T(n) = \Theta(n^d \log_n) = \Theta(n^2 \log_n)$$

The Master Theorem (subtract and conquer)

3 (6 pts) Give a big- θ bound for the solutions of the following relations (show work).

(a)
$$T(n) = 4T(n-2) + n$$
 $a = 4 \quad b = 2 \quad d = 1$
 $a > 1 \quad T(n) = O(n a^{n/b})$
 $a > 1 \quad T(n) = O(n a^{n/b})$
 $a > 0 \quad (n a^{n/b})$

(b)
$$T(n) = T(n-1)+2$$

$$\alpha = |b| = |d| = 0$$

$$T(n) = O(n^{d+1}) = C(n^{0+1}) = O(n)$$

4 (10 pts) P71 Q4 (Show work. Circle choice)

AgonHm A
$$T(n) = 5(\frac{\pi}{2}) + O(n)$$

$$a = 5 \quad b = 2 \quad d = 1$$

$$\log_{b} a = \log_{2} 5 > 2$$

$$d < \log_{b} a$$

$$d = 0 \quad (n \log_{b} a) = 0 \quad (n \log_{2} 5)$$

$$d = 0$$

Algorith in B
$$T(n) = ZT(n-i) + O(i)$$

 $a = 2$ $b = 1$ $d = O$
 $a > 1$ $T(n) = O(n^d a^{n/b}) = O(n^o 2^{n/i}) = O(2^n)$

A lyorithm
$$C$$
 $T(n) = 9 T(n/3) + O(n^2)$
 $a = 9 b = 3 d = 2$
 $\log_b a = \log_3 9 = 2$ $d = \log_b a$
 $d = 2$
 $d = 0$ $\log_b a = 0$ $\log_b a = 0$ $\log_b a = 0$

$$n^{\log_2 5}$$
, 2^n , $n^3 \log n$
 $\log_2 5 > 2^n$, $n^2 = o(n^{\log_2 5})$ $n^2 \log n = o(2^n)$
 $n^2 \log n = o(n^{\log_2 5})$ $n^2 \log n = o(2^n)$

Algori Hm C

Algorithm A: $O(n^{\log_2 6})$ Algorithm B: $O(2^n)$

Algorithm C: $O(n^2 \log n)$

5 (5 pts). Exercise 1.31 P41

(a)
$$\# bits = \prod_{0 \neq 1} \log_{2} N! - \log_{2} N!$$

 $\log_{2} N! = \log_{2} (1.2.3...N) = \sum_{i=1}^{N} \log_{i} i$
 $= O(\int_{0 \neq 1}^{N} \log_{2} x dx) = O(\log_{2} x) = O(\log_{2} x)$

(b) function y = fact(N)if N = 1 refurn 1; Z = 1 reform 1; Z = 1 reform 1; Z = 1 reform 2; Z = 1 reform 2; Z = 1 reform 3; Z = 1 reform 3;

runtime ignoring multiplications = O(N)

runtime counting multiplication = O(N = N(log N)) = O(N'(log N)))

6 (5 pts). Exercise 1.2 P38

* base-10 dupts die(N) = TlogiNT < 1+ login N * base-2 digits de(N) = Tlog2NT \$ log2N

$$\frac{d_{2}(N)}{d_{10}(N)} < \frac{1 + \log_{2}(N)}{\log_{10}(N)} = \frac{1 + \log_{2}\log_{10}(N)}{\log_{10}(N)}$$

$$= \frac{1}{\log_{10}(N)} + \log_{2}\log_{10}(N)$$

$$\leq \frac{1}{2} + \log_{2}\log_{10}(N) = 0.5 + 3.3219 < 4 (N > 100)$$