Pattern Hopf algebras in combinatorial presheaves Rencontre du GDR Renormalisation 2019. Calais France

Raul Penaguiao

University of Zurich

1st October, 2019

Slides can be found at

http://user.math.uzh.ch/penaguiao/

Counting occurences of a pattern

Marked permutation π^* on a set S (a pair of orders on $S \sqcup \{*\}$).

Set of columns of the square configuration of π^* - subset of S. The **restriction to** I can be defined $\pi|_I$ and is a permutation in I. We can count occurrences!

Marked permutation pattern algebra

We write

$$\mathbf{p}_{2\bar{3}1}(24\bar{3}1) = 1, \ \mathbf{p}_{\bar{1}23}(\bar{1}23456) = 20, \ \mathbf{p}_{2\bar{4}13}(762341\bar{8}95) = 0 \,.$$

Pattern function p_{π^*} are in the space of functions $\mathcal{F}(\mathcal{G}(\mathtt{MPer}), \mathbb{R})$ The linear span of all pattern functions - $\mathcal{A}(\mathtt{MPer})$ - is closed for pointwise multiplication.

Marked permutation pattern algebra

Adding another ingredient

If
$$au^* = egin{array}{|c|c|c|c|} \hline au^{lu} & & au^{ru} \\ \hline & \odot & & \\ \hline au^{ld} & & au^{rd} \\ \hline \end{array}$$
 , define

$$\tau^* \star \pi^* = \begin{bmatrix} \tau^{lu} & \tau^{ru} \\ & \pi^* \\ & \tau^{ld} & \tau^{rd} \end{bmatrix}$$

example: $13\bar{2}4 \star 1\bar{2}3 = 152\bar{3}46$.

By magic properties of dualisation, this gives a coproduct on $\mathcal{A}(\mathtt{MPer})$:

$$\Delta \mathbf{p}_{\pi^*} = \sum_{\pi^* = \tau_1^* \star \tau_2^*} \mathbf{p}_{\tau_1^*} \otimes \mathbf{p}_{\tau_2^*},$$

We have a Hopf algebra A(MPer).

Permutation pattern algebra

Proposition (Product formula)

Let $\binom{\sigma^*}{\pi^*, \tau^*}$ count the number of covers of σ^* with permutations π^* , τ^* .

$$\mathbf{p}_{\pi^*} \cdot \mathbf{p}_{\tau^*} = \sum_{|\sigma^*| \leq |\pi^*| + |\tau^*|} \begin{pmatrix} \sigma^* \\ \pi^*, \tau^* \end{pmatrix} \mathbf{p}_{\sigma^*} \,,$$

where σ^* runs over marked permutations.

Theorem (P, 2018)

The Hopf algebra $\mathcal{A}(MPer)$ is free commutative. We can explicitly describe the free generators of the algebra.

Outline of the talk

- Introduction
 - Marked permutations
 - Combinatorial presheaves
- Free pattern Hopf algebras
 - Cocommutative pattern Hopf algebras
- Non-cocommutative examples
 - Permutations
 - Marked permutations
- Conclusion

Pattern algebra

What do we need to have a pattern Hopf algebra?

1 Assignment $S \mapsto h[S] = \{\text{structures over } S\} + \text{notion of } S$ relabelling.

Introduction

- ② For any inclusion $V \hookrightarrow W$, a restriction map $h[W] \to h[V]$.
- An associative monoid operation * with unit, $*: h[I] \times h[J] \to h[I \sqcup J]$ that is compatible with restrictions.
- A unique element of size zero.

If
$$a \in h[A], b \in h[B], \mathbf{p}_a(b) := \#\{A' \subseteq A|a|_{A'} \sim b\}$$
.

- $1+2 = combinatorial presheaf \rightarrow pattern algebra.$
- 1+2+3= monoid in combinatorial presheaves.
- 1+2+4 = connected presheaf.
- 1 + 2 + 3 + 4 = Hopf algebra.

A presheaf on graphs - Gr

- For each set V we are given the set $\operatorname{Gr}[V]$ of graphs with vertex set V, and for any bijection $\phi:V\to W$ we are given a relabelling of graphs $\operatorname{Gr}[W]\to\operatorname{Gr}[V]$.
- ullet If $J\subseteq I$, induced subgraphs on I to J o restrictions ${ t Gr}[I] o { t Gr}[J].$
- The disjoint union of graphs is an associative monoid structure. It is also commutative.
- The empty graph fortunately exists and is unique in ∅!

The pattern Hopf algebra

Proposition (Linear independence)

The set $\{\mathbf{p}_G \mid G \in \uplus_{n>0} \mathtt{Gr}[n]/_{\sim}\}$ is linearly independent.

This defines a basis for the patterns algebra $\mathcal{A}(Gr)$.

Simple example - Set

The presheaf of sets.

For each $n \geq 0$, Set[n] has a unique element $*_n$ of size n.

$$\mathbf{p}_{*_n}(*_m) = \binom{m}{n} \qquad \binom{*_d}{*_a, *_b} = \binom{d}{a} \binom{a}{a+b-d}.$$

So

$$\mathbf{p}_{*_a}\,\mathbf{p}_{*_b}(*_c) = \sum_{d>0} \binom{d}{a} \binom{a}{a+b-d}\,\mathbf{p}_{*_d}(*_c)$$

Monoidal structure - Disjoint union: $*_n \cdot *_m = *_{n+m}$.

$$\Delta \, \mathbf{p}_{*_a} = \sum_{k=0}^a \mathbf{p}_{*_k} \otimes \mathbf{p}_{*_{a-k}}, \quad \mathcal{A}(\mathtt{Set}) = \mathbb{R} \langle \mathbf{p}_{*_1} \rangle$$

Simple example

Theorem (P - 2019)

If h is a connected commutative presheaf, then $\mathcal{A}(h)$ is free. The free generators are the indecomposable objects with respect to the commutative product.

Connected commutative combinatorial presheafs

Proof (by example):

Graphs, with a disjoint union, form a commutative presheaf. Every graph has a unique factorization into **indecomposables** \mathcal{I} .

Let $L\subseteq \mathcal{I}$ be a multiset of connected graphs. Let $G=\biguplus l$, the **unique**

factorization of G into connected graphs.

$$\begin{split} &\prod_{l \in L} \mathbf{p}_l = \mathbf{p}_G + \sum_{H \leq G} c_H \, \mathbf{p}_H \; \text{ for some total order } \leq \\ \Rightarrow & \Big\{ \prod_{l \in L} \mathbf{p}_l \, | L \subseteq \mathcal{I} \; \text{multiset } \Big\} \; \text{is lin. ind.} \\ & \Leftrightarrow \mathcal{A}(\mathtt{Gr}) \; \text{is free commutative} \end{split}$$

Unique factorization theorem on permutations

The \oplus product on permutations provides a unique factorization theorem on permutations:

• For any permutation π , there is a unique k and unique τ_1, \ldots, τ_k indecomposable permutations such that $\pi = \tau_1 \oplus \cdots \oplus \tau_k$.

Unique factorization theorem on permutations

There are more permutations than what the indecomposable ones can generate.

Enlarge the set \mathcal{I} to \mathcal{L} with the so called **Lyndon permutations**, by adding some decomposable elements.

Motivation: choose between $\pi_1 \oplus \pi_2$ and $\pi_2 \oplus \pi_1$ which one to include in the set of free generators.

Theorem (Vargas, 2014)

The Hopf algebra $\mathcal{A}(\mathtt{Per})$ is free commutative. We can explicitly describe the free generators of the algebra.

Unique factorisation theorem on marked permutations

• The factorization is **not unique**. If $\tau_1, \tau_2 \oplus$ -indecomposable.

$$(\bar{1} \oplus \tau_1) \star (\tau_2 \oplus \bar{1}) = (\tau_2 \oplus \bar{1}) \star (\bar{1} \oplus \tau_1) = \tau_2 \oplus \bar{1} \oplus \tau_1$$
.

For $\tau_1=2413$ and $\tau_2=21$ we have

The order of the factors does matter to some extent.

Unique factorization theorem on marked permutations

We can define a map from words on indecomposable marked permutations:

Monoid morphism $\star: \mathcal{W}(\mathcal{I}) \to \mathcal{A}(\mathtt{MPer})$.

$$\oplus$$
- relations : $(\bar{1} \oplus \tau_1) \star (\tau_2 \oplus \bar{1}) = (\tau_2 \oplus \bar{1}) \star (\bar{1} \oplus \tau_1)$.

Goal: describe ker ★.

Theorem (P - 2018)

The equivalence relation $\ker \star$ is spanned by relations as the one above and their \ominus equivalent.

Freeness conjecture

Further questions - Permutons and feasible regions

Permutons - Notion of patterns of a permutation π can be extended to a permuton P, that is a probability measure in $[0,1] \times [0,1]$ as follows:

 $\mathbf{p}_{\pi}(P) = \mathbb{P}[$ n indep. points with law P form pattern $\pi]$.

Conjecture

Let $\mathcal{L}_q = \{\mathbf{p}_l | l \text{ is a Lyndon permutation with size } q\}$ be the set of free generators of $\mathcal{A}(\mathtt{Per})$. The image of the map,

$$\{\textit{Permutons}\} o \mathbb{R}^{\#\mathcal{L}_q} : P \mapsto (\mathbf{p}_l(P))_{l \in \mathcal{L}_q},$$

called feasible region, contains a full dimensional ball.

Partial results for \mathcal{I} by Glebov, R., Hoppen, C. et al.

Further questions - Algebra

 Character theory of pattern Hopf algebras: simple characters can be constructed:

$$\zeta_a(\mathbf{p}_b) = \mathbf{p}_b(a)$$
,

and all its convolutions. Can we describe all characters?

 Freeness conjecture: Other examples include set compositions, polyominoes, etc. Are all pattern algebras of combinatorial presheaves free commutative?

Thank you

I am finishing my PhD studies soon...

Biblio

- Aguiar, M., & Mahajan, S. A. (2010). Monoidal functors, species and Hopf algebras (Vol. 29). Providence, RI: American Mathematical Society.
- Vargas, Y. (2014). Hopf algebra of permutation pattern functions.
 In Discrete Mathematics and Theoretical Computer Science (pp. 839-850). Discrete Mathematics and Theoretical Computer Science.
- Glebov, R., Hoppen, C., Klimosova, T., Kohayakawa, Y., & Liu, H. (2017). Densities in large permutations and parameter testing. European Journal of Combinatorics, 60, 89-99.