TABLA 1 LAS CONSTANTES DE DISOCIACIÓN PARA ÁCIDO ETILENDIAMINOTETRAACÉTICO (EDTA)

Los valores de las constantes pK_a se tienen en cuenta cuando se trabaja a una fuerza iónica igual a 0,1 y a una temperatura de 20 o 25°C, a menos que se indiquen otros parámetros.

FÓRMULA	pK _{a1}	pK _{a2}	рКа₃	pK _{a4}
(HOOCCH ₂) ₄ (CH ₂ CH ₂)N ₂				
HO O OH	1,99	2,68	6,11	10,17
O O OH				

REFERENCIAS

1. Clavijo Díaz, Alfonso. 2002. Fundamentos de química analítica. Equilibrio iónico y análisis químico. Ed. Universidad Nacional de Colombia – UNIBIBLOS

TABLA 2 CONSTANTES DE ESTABILIDAD DE FORMACION DE COMPLEJOS METALICOS CON ALGUNOS IONES ORGÁNICOS

El ácido acético se utiliza frecuentemente como agente buffer o solución buffer y enmascarante. Las constantes pueden trabajarse siempre y cuando existan fuerzas iónicas entre 0,1 y 1.

		ACETATO			
		Base conjugada: CH₃CO	D [.]		
		$CH_3COO^- = L$			
Ión metálico	Complejo	Componentes	Fuerza iónica	Log K _{est}	
H+	HL	H+L	0,1	$\beta_1 = 4,65$	
Ba²⁺	BaL	Ba + L	0,2	$\beta_1 = 0.4$	
Ca²+	CaL	Ca + L	0,2	$\beta_1 = 0,5$	
	CdL	Cd + L	1	β1 = 1,0	
Cd²⁺	CdL₂	Cd + 2L	1	β₂ = 1,9	
Cu	CdL₃	Cd + 3L	1	β ₃ = 1,8	
	CdL₄	Cd + 4L	1	β ₄ = 1,3	
Ce ²⁺	CeL	Ce + L	0,1	β ₁ = 2,1	
Ce	CeL₂	Ce + 2L	0,1	$\beta_2 = 3,5$	
Co²+	CoL	Co + L	0,1	$\beta_1 = 1,1$	
CU	CoL ₂	Co + 2L	0,1	β_2 = 1,5	
	CuL	Cu + L	1	$\beta_1 = 1,7$	
Cu ²⁺	CuL₂	Cu + 2L	1	$\beta_2 = 2,7$	
Cu-	CuL₃	Cu + 3L	1	$\beta_3 = 3,1$	
	CuL ₄	Cu + 4L	1	β ₄ = 2,9	
Fe ³⁺	FeL	Fe + L	0,1	β1 = 3,4	
	FeL ₂	Fe + 2L	0,1	β ₂ = 6,1	
	FeL₃	Fe + 3L	0,1	$\beta_3 = 8,7$	
	LaL	La + L	0,1	β1 = 2,0	
La³+	LaL ₂	La + 2L	0,1	$\beta_2 = 3,3$	
	LaL₃	La + 3L	2	β ₃ = 3,0	

	LaL₄	La + 4L	2	$\beta_4 = 2,9$
Mg ²⁺	MgL	Mg + L	0,2	β1 = 0,5
Mn²+	MnL	Mn + L	0,1	β1 = 0,5
MIII	MnL ₂	Mn + 2L	0,1	β ₂ = 1,4
Ni ²⁺	NiL	Ni + L	1	β ₁ = 0,7
NI	NiL ₂	Ni + 2L	1	β ₂ = 1,25
Pb ²⁺	PbL	Pb + L	0,5	β1 = 1,9
PD	PbL₂	Pb + 2L	0,5	$\beta_2 = 3,3$
Sr ²⁺	SrL	Sr + L	0,2	β ₁ = 0,4
Tl³+	TIL ₄	TI + 4L	0,2	β1 = 15,4
Zn²+	ZnL	Zn + L	0,1	β₁ = 1,3
211-	ZnL₂	Zn + 2L	0,1	$\beta_2 = 2,1$

REFERENCIAS

- 1. Kortüm, G., Vogel, W., & Andrussow, K: "Dissociation Constants of Organic Acids in Aqueous Solution". J of IUPAC, 1, núms 2-3. Butterworths, Londres, 1961.
- 2. Cannan, R. K., & Kilbrick, A: J. A Chem. Soc., 60, 2314 (1938).
- 3. Szilard, I: Conferencia, E.T.H., Zürich, 1961.
- 4. Kolat, R. S., & Powell, J. E: Inorg, Chem., 1, 295 (1962).
- 5. Siddhanta, S. K., & Banerjee, S. N. J. Ind. Chem. Soc., 35, 343 (1958); C.A., 53, 2919 (1959).
- 6. Fronaeus, S.: Conferencia, Lund, 1948.
- 7. Sommer, L., & Pliska, K: Collection Czechslov. Communs., 26, 2754 (1961).
- 8. Sonesson, A: Acta Chem. Scand., 12, 165 (1958).
- 9. Siddhanta, S. K., & Banerjee, S. N. J. Ind. Chem. Soc., 35, 419 (1958); C.A., 53, 7852 (1959).
- 10. Fronaeus, S: Acta Chem. Scand., 12, 165 (1958).
- 11. Siddhanta, S. K., & Banerjee, S. N. J. Ind. Chem. Soc., 35, 323 (1958).
- 12. Spencer, J. F., & Abegg, R: Z. Anorgan. Chem., 44, 379 (1905).
- 13. Ahrland, S: Acta Chem. Scand., 5, 199 (1951).

TABLA 3 CONSTANTES DE ESTABILIDAD DE COMPLEJOS METÁLICOS CON AMONIACO

Se dan valores determinados para cada metal según su fuerza iónica. Puesto que no se produce cambio de carga en el acomplejamiento, las constantes varían solo ligeramente con la fuerza iónica.

Metal	Fuerza iónica	Log β ₁	Log β ₂	Log β ₃	Log β4	Log β ₅	Log β ₆
H ⁺	0,1	9,37					
Ag⁺	0,1	3,40	7,40	-	-	-	-
Au⁺	1	-	27	-	-	-	-
Au³+	1	-	-	-	30	-	-
Ca²+	2	-0,2	-0,8	-1,6	-2,7	-	-
Cd ²⁺	0,1	2,60	4,65	6,04	6,92	6,6	4,9
Co²+	0,1	2,05	3,62	4,61	5,31	5,43	4,75
Co³+	2	7,3	14,0	20,1	25,7	30,8	35,2
Cu⁺	2	5,90	10,80	-	-	-	-
Cu ²⁺	0,1	4,13	7,61	10,48	12,59	-	-

Fe²+	0	1,4	2,2	-	3,7	-	-
Hg²⁺	2	8,80	17,50	18,5	19,4	-	-
Mg²+	2	0,23	0,08	-0,36	-1,1	-	-
Mn²+	Varía	0,8	1,3			-	-
Ni ²⁺	0,1	2,75	4,95	6,64	7,79	8,50	8,49
TI⁺	Varía	-0,9	-	-	-	-	-
Tl ³⁺	Varía	-	-	-	17	-	-
Zn ²⁺	0,1	2,27	4,61	7,01	9,06	-	-

REFERENCIAS

- 1. Bjerrum, J: Metal Ammine Formation in Aqueous Solution, Tesis, Copenhague, 1941; reimpreso P. HAASE and Son, 1957
- 2. Bjerrum, J: Chem. Rev., 46, 381 (1950).
- 3. Bjerrum, J., Schwarzenbach, G., & Sillén, L. G: Stability Constants II, The Chemical Society, Londres, 1958.
- 4. Leussing, D. L., & Kolthoff, I. M: J. Am. Chem. Soc., 75, 2476 (1953).
- 5. Yarsimirskii, K. B., & Vasilév, V. P. Instability Constants of Complex Compounds, Pergamon Press, Oxford, 1960,

TABLA 4 CONSTANTES DE ESTABILIDAD CON ÁCIDO ETILENDIAMINOTETRAACÉTICO (EDTA)

Los valores de las constantes se tienen en cuenta cuando se trabaja a una fuerza iónica igual a 0,1 a menos que se indiquen otros parámetros. Recuerde que un metal puede formar quelatos, quelatos protonados y quelatos hidroxilados.

	Constantes	logarítmicas			
lán	EDTA				
lón	K _{MHY}	K _{MY}	K _{MOHY}		
Ag⁺	6,0	7,3	-		
Al³+	2,5	16,1	8,1		
Ba ²⁺	4,6	7,8	-		
Bi³+	-	22,8	-		
Be ²⁺	-	9,3	-		
Ca²⁺	3,1	10,7	-		
Ce³+	-	16,0	-		
Cd ²⁺	3,0	16,5	-		
Co²+	3,1	16,3	-		
Co³+	1,3	36	-		
Cr³+	2,3	23	6,6		
Cu²+	3,0	18,8	2,5		
Fe²+	2,8	14,3	-		
Fe³+	1,4	25,1	6,5		
Ga³÷	1,7	20,3	-		
Hg²+	3,1	21,8	4,9		
In³+	-	25,0	-		
La³÷	-	15,4	-		

Li⁺	-	2,8	-
Mg²+	3,9	8,7	-
Mn²+	3,1	14,0	-
Na⁺	-	1,7	-
Ni ²⁺	3,2	18,6	-
Pb ²⁺	2,8	18,0	-
Ra²+	-	7,4	-
Sc³+	-	23,1	3,5
Sn²⁺	-	22,1	-
Sr ²⁺	3,9	8,6	-
Th ⁴⁺	-	23,2	7,0
Ti³+	-	21,3	-
V ²⁺	-	12,7	-
V 3+	-	25,9	-
Zn ²⁺	3,0	16,5	-

REFERENCIAS

- 1. Dyke, R., & Higginson, W. C. E: J. Chem. Soc., 1960, 1998. (Co[□])
- 2. Furlani, C., Morpurgo, G., & Sartori, G: Z. Anorg. Chem., 303, 1 (1969). (Cr)
- 3. Kolat, R. S., & Powell, J. E: Inorg. Chem, 1, 485 (1962). (Tierras raras)
- 4. Kotrly, S., & Vrestel, J. Collection Czechslov. Chem. Comm., 25, 1148 (1960). (Bi)
- 5. Nelson, F., Day, R. A., & Kraus, K. A. J. Inorg. Nucl. Chem. 15, 140 (1960). (Ra)
- 6. Pecsok, R. L., & Maverick, E. F. J. Am. Chem. Soc., 76, 358 (1954). (Ti)
- 7. Ringbom, A., & Linko, E: Anal. Chem. Acta 9, 80 (1953). (Ag)
- 8. Ringbom, A., Siitonen, S., & Skrifvars, B: Acta Chem. Scand., 11, 551 (1957). (V^v)
- 9. Saito, K., & Terrey, H. J. Chem. Soc. 1956, 4701. (Ga)
- 10. Schwarzenbach, G., & Ackermann, H. Helv. Chim. Acta 30, 1798 (1947). (Na)
- 11. Schwarzenbach, G., & Ackermann, H: Helv. Chim. Acta 31, 1029 (1948). (Ba, Ca, Mg, Sr)
- 12. Schwarzenbach, G., & Heller, J. Helv. Chim. Acta 34, 576 (1951). (Fe^{III})
- 13. Schwarzenbach, G., & Sandera, J. Helv. Chim. Acta 36, 1089 (1953). (Cr)
- 14. Schwarzenbach, G., Gut, R., & Anderegg, G: Helv. Chim. Acta 37, 937 (1954). (Al, Ce, Cd, Co", Cu, Fe", Ga, Hg, La, Mn, Ni, Pb, Sc, V", V", V, Zn)
- 15. Urech, P.: Conferencia, Zúrich, 1962. (Th)

PUNTOS DE TRANSICIÓN DE INDICADORES METALOCRÓMICOS

Los indicadores pueden reaccionar con iones metálicos en distintas proporciones. Cabe resaltar que los indicadores permiten conocer el punto final de una valoración, por eso es importante reconocer sus transiciones en sus diferentes valores de pH.

Tabla 5 Negro de Eriocromo T

Elaboración propia.

Tabla 6 Negro de Eriocromo A

Tabla 7 Negro – azul de Eriocromo R (Calcón)

Elaboración propia.

Tabla 8 Negro – azul de Eriocromo B

Tabla 9 Calmagita

Elaboración propia.

Tabla 10 Violeta de Solocromo R

Tabla 11 1-(2-piridilazol)-2-noftol (PAN)

Elaboración propia.

Tabla 12 Murexida

Tabla 13 Violeta de pirocatecol

Elaboración propia.

Tabla 14 Naranja de Xilenol

