

Métodos Numéricos em Física Médica 11^a aula

MCNPX

Introdução

MCNPX = Monte-Carlo N-Particle X

 Código que permite o transporte de qualquer tipo de partícula utilizando métodos de Monte-Carlo

Execução

Atenção: o ficheiro de input/output não pode ter mais 8 caracteres.

Geral:

Mcnpx i=<input> o=<output> [opções]

Introdução

- Unidades utilizadas no MCNPX:
 - Comprimento (cm)
 - Energia (MeV)
 - Densidade mássica (g cm⁻³)
 - Densidade atómica $(10^{-24} * cm^{-3} = \#/(cm-barn))$
 - Secções eficazes (barns)

Estrutura do ficheiro de input

88 caracteres por linha ('&' indica que continua na linha seguinte)

Title card ----- primeira linha CELL CARDS (linhas com a definição das células) geometria linha em branco> c SURFACE CARDS (linhas com a definição das superfícies) linha em branco> c DATA CARDS \$ (ex:alumínio) m... (materiais) Dados de materiais Sdef (source definition) **Fontes** Sp.. (source probability..) **Física** etc. **Tallies** f (definição de tallies — grandezas a calcular) <linha em branco>

Exemplo

```
Titulo
c celulas
11 -1 -1 imp:p=1
        1 imp:p=0
20
c superficies
1 s 0 0 0 5 $ esfera raio 5 cm
c dados
mode p
m1 1001 2 8016 1
sdef par=2 pos=0 0 0 erg=1
nps 1000
```

```
mcnpx i=<input> ip → visualização gráfica

mcnpx i=<input> o=<output> → correr simulação
```

Notas: - 80 colunas por linha

- c significa comment
- \$ significa comentário após linha
- Não utilizar TAB

Exercício 1

Copiar o código escrito na página anterior e correr o código em modo visualização e em modo de correr.

Ferramenta de visualização

- Na ferramenta de visualização pode utilizar vários comandos:
 - \checkmark px, py, pz \rightarrow visualizar nos planos definidos desta forma.
 - ✓ cursor → permite escolher uma parte do visualizador em detalhe a partir do cursor.
 - \checkmark factor \rightarrow permite fazer zoom in e out pelo factor referido.
 - ✓ scales \rightarrow 0,1,2 permite desenhar escalas no desenho.
 - ✓ label \rightarrow 0,1... permite colocar labels nas superfícies, células e nos materiais (separados por vírgulas)
 - ✓ help,?,options → lista dos comandos disponíveis.

Geometria

CELL E SURFACE CARDS

- ·Superfícies e células são numeradas de 1 a 9999
 - > sólidos geométricos simples são definidos por comandos que definem superfícies
 - –Planos (px,py, pz)
 - -Esferas (s, s0)
 - -Cilindros (cx, cy, cz)
 - -Cones (kx, ky, kx)
 - -etc.
 - > Células são definidas através de operações booleanas sobre as superfícies definidas.
 - >TODO o espaço tem de ficar definido

EXEMPLO geral de célula:

EXEMPLOS Superfícies

1 px 5 (plano perpendicular ao eixo dos x=5 cm) 2 so 10 (esfera centrada no centro (0,0,0) com r=10 cm) 3 cy 20 (cilindro ao longo do eixo dos y com 20 cm de raio)

Geometria

Mnemonic	Туре	Description	Equation	Card Entries
P	Plane	General	Ax + By + Cz - D = 0	ABCD
PX		Normal to x-axis	x - D = 0	D
PY		Normal to y-axis	y - D = 0	D
PZ		Normal to z-axis	z - D = 0	D
SO	Sphere	Centered at Origin	$x^2 + y^2 + z^2 - R^2 = 0$	R
S		General	$(x - \overline{x}) + (y - \overline{y})^2 + (z - \overline{z})^2 - R^2 = 0$	\overline{x} \overline{y} \overline{z} R
SX		Centered on x-axis	$(x - \overline{x})^2 + y^2 + z^2 - R^2 = 0$	\overline{x} R
SY		Centered on y-axis	$x^2 + (y - \overline{y})^2 + z^2 - R^2 = 0$	y R
SZ		Centered on z-axis	$x^2 + y^2 + (z - \overline{z})^2 - R^2 = 0$	₹ R
C/X	Cylinder	Parallel to x-axis	$(y-\overline{y})^2 + (z-\overline{z})^2 - R^2 = 0$	ÿ z̄ R
C/Y		Parallel to y-axis	$(x-\overline{x})^2 + (z-\overline{z})^2 - R^2 = 0$	$\overline{x} \overline{z} R$
C/Z		Parallel to z-axis	$(x-\overline{x})^2 + (y-\overline{y})^2 - R^2 = 0$	$\overline{x} \overline{y} R$
CX		On x-axis	$y^2 + z^2 - R^2 = 0$	R
CY		On y-axis	$x^2 + z^2 - R^2 = 0$	R
CZ		On z-axis	$x^2 + y^2 - R^2 = 0$	R
K/X	Cone	Parallel to x-axis	$\sqrt{(y-\overline{y})^2 + (z-\overline{z})^2} - t(x-\overline{x}) = 0$	\overline{x} \overline{y} \overline{z} $t^2 \pm 1$
K/Y		Parallel to y-axis	$\sqrt{(x-\overline{x})^2 + (z-\overline{z})^2} - t(y-\overline{y}) = 0$	\overline{x} \overline{y} \overline{z} $t^2 \pm 1$
K/Z		Parallel to z-axis	$\sqrt{(x-\overline{x})^2 + (y-\overline{y})^2} - t(z-\overline{z}) = 0$	\overline{x} \overline{y} \overline{z} $t^2 \pm 1$
KX		On x-axis	$\sqrt{y^2 + z^2} - t(x - \overline{x}) = 0$	\overline{x} $t^2 \pm 1$
KY		On y-axis	$\sqrt{x^2 + z^2} - t(y - \overline{y}) = 0$	\overline{y} $t^2 \pm 1$
KZ		On z-axis	$\sqrt{x^2 + y^2} - t(z - \overline{z}) = 0$	\overline{z} $t^2 \pm 1$
				±1 used only for 1 sheet cone

Mnemonic	Туре	Description	Equation	Card Entries
SQ	Ellipsoid Hyperboloid Paraboloid	Axis not parallel to x-, y-, or z-axis	$A(x-\overline{x})^{2} + B(y-\overline{y})^{2} + C(z-\overline{z})^{2}$ $+ 2D(x-\overline{x}) + 2E(y-\overline{y}) + 2F(z-\overline{z})$ $+ G = 0$	ABCDE FGxyz
GŎ	Cylinder Cone Ellipsoid Hyperboloid Paraboloid	Axes not parallel to x-, y-, or z-axis	$Ax^{2} + By^{2} + Cz^{2} + Dxy + Eyz + Fzx$ $+ Gx + Hy + Jz + K = 0$	A B C D E F G H J K
TX			$(x-\bar{x})^2/B^2 + (\sqrt{(y-\bar{y})^2 + (z-\bar{z})^2} - A^2)/C^2 - 1 = 0$	$\overline{x} \overline{y} \overline{z} A B C$
TY	Elliptical or Circular Torus.	Axis is parallel to x-,y-, or z- axis	$(y-\bar{y})^2/B^2 + (\sqrt{(x-\bar{x})^2 + (z-\bar{z})^2} - A^2)/C^2 - 1 = 0$	$\overline{x} \ \overline{y} \ \overline{z} \ A \ B \ C$
TZ			$(z-\overline{z})^2/B^2 + (\sqrt{(x-\overline{x})^2 + (y-\overline{y})^2} - A^2)/C^2 - 1 = 0$	$\overline{x} \overline{y} \overline{z} A B C$
	SQ GQ TX TY	SQ Ellipsoid Hyperboloid Paraboloid Cylinder Cone Ellipsoid Hyperboloid Paraboloid TX Elliptical or Circular Torus.	Ellipsoid Hyperboloid Paraboloid Cylinder Cone Ellipsoid Hyperboloid Paraboloid TX Elliptical or Circular Torus. Axis not parallel to x-, y-, or z-axis Axes not parallel to x-, y-, or z-axis	Ellipsoid Hyperboloid Paraboloid EXAMPLE 1. SQ Ellipsoid Hyperboloid Paraboloid EXAMPLE 2. SQ EXAMPLE 2. SQ Axis not parallel to x-, y-, or z-axis $A(x-\overline{x})^2 + B(y-\overline{y})^2 + C(z-\overline{z})^2 + 2D(x-\overline{x}) + 2E(y-\overline{y}) + 2F(z-\overline{z}) + G = 0$ Example 2. Cylinder Cone Ellipsoid Hyperboloid Hyperboloid Paraboloid Example 3. Example 3. Square 1.

Desenhar uma esfera no vácuo no ponto (0,26,0) com r=3 cm e visualizar a estrutura.

Geometria

SINAIS

Explicação dos sinais – e + na definição das células

OPERAÇÕES BOOLEANAS

- o Intersecção (e) -> é um espaço " "
- o Reunião (ou) -> é o sinal dois pontos ":"
- o Complementar (negação) -> é o sinal "#"

Exercício 2

Desenhar uma esfera no vácuo no ponto (0,26,0) com r=3 cm e visualizar a estrutura.

Materiais

• O commando é: Mm ZAID₁ fraction₁ ZAID₂ fraction₂ ...

m = corresponde ao número do material no ficheiro

> ZAIDi = identificador do nuclídeo no formato:

ZZZAAA.<u>nn</u>X

ZZZ é o número atómico, **AAA** é a massa atómica *nn* identifica a biblioteca, e X a classe de dados

Os dois últimos não são obrigatórios, sendo usados por defeito.

fraction; = fracção atómica (ou fracção ponderada se com sinal menos) constituinte / no material

Exemplo: Água: m1 1001 2 8016 1 Exemplo 2 (por alto):Ar: m2 8016 -0.23 7014 -0.70 6012 -0.02 1001 -0.01 titulo: exercicio 2

C cell cards

10 -1 imp:p=1

2 0 1 imp:p=0

C surface cards

1 s 0 26 0 3

(1 sy 26 3)

C data cards mode p

Exercício 3

Acrescentar uma segunda esfera centrada em 0,13,10 de raio 3 cm e fazer as duas esferas de água e visualizar.

NOTA:

Para inserir o material e densidade na célula usar o formato visto nos slides anteriores.

titulo: exercicio 3

C cell cards

11 -1.0 -1 imp:p=1

2 1 -1.0 -2 imp:p=1

3 0 1 2 imp:p=0

C surface cards

1 s 0 26 0 3

2 s 0 13 10 3

C data cards

mode p

m1 1001 2 8016 1