SEAN CONNUR 30 July 2018

Compiler Optimize Exercise - Summer 2018

Given this code fragment in an Intermediate file of a Compiler:

```
(1)
     :=
           #1
                      Indx
(2)
           Indx #25
     BGT
                      (20)
(3)
           Indx #1
                      i1
(4)
           i1
                      i2
                 #10
(5)
           #3
                ABC
                      i3
(6)
           i3
                      i4
                 #1
(7)
          i4
                 #1
                      i5
(8) +
           i2
                i5
                      i6
(9) *
           i6
                 #4
                      i7
(10) -
           Indx #1
                      i8
(11) *
           i8
                 #10
                      i 9
(12) *
           #3
                ABC
                      i10
(13) -
           i10
                 #1
                      i11
(14) +
          i9
                i11
                      i12
(15) *
           i12
                #4
                      i13
(16) :=
          Y[i13]
                      X[i7]
(17) +
           #1
                Indx i14
(18) :=
           i14
                      Indx
(19) JMP
                      (2)
(20)
```

Optimize the code.

Indicate, by line number, which quadruples need to be moved, modified, or deleted.

[50 points]

Some of the possible optimization techniques:

- 1. Move loop invariant calculations outside the loop
- 2. Remove duplicate common sub-expressions
- 3. Reduction in Strength
- 4. Loop unrolling

Not all of the above possible methods are needed.

ORI	GINA	L				
No.	Op	Source 1	Source 2	Destination	Description	Action
1)	:=	#1		Indx	Indx = 1	
2)	BGT	Indx	#25	(20)	If Indx > 25 \rightarrow (20)	
(3)	-	Indx	#1	i1	i1 = Indx - 1	
(4)	*	i1	#10	i2	i2 = Indx * 10	
(5)	*	#3	ABC	i3	i3 = 3 * ABC	
(6)	-	i3	#1	i4	i4 = i3 - 1	0
(7)	-	i4	#1	i5	i5 = i4 – 1	Combine to become: - i3 #2 i5
(8)	+	i2	i5	i6	i6 = i2 + i5	
(9)	*	i6	#4	i7	i7 = i6 * 4	
(10)	-	Indx	#1	i8	i8 = Indx - 1	Delete because duplicate of (3)
(11)	*	i8	#10	i9	i9 = i8 * 10	Change to: * i1 #10 i9 because (10) removed
(12)	*	#3	ABC	i10	i10 = 3 * ABC	Delete because duplicate of (5)
(13)	-	i10	#1	i11	i11 = i10 - 1	Change to: + i5 #1 i11
(14)	+	i9	i11	i12	i12 = i9 + i11	
(15)	*	i12	#4	i13	i13 = i12 * 4	
(16)	:=	Y[i13]		X[i7]	X[i7] = Y[i13]	
(17)	+	#1	Indx	i14	i14 = 1 + Indx	
(18)	:=	i14		Indx	Indx = i14	
(19)	JMP	7 9		(2)	Jump → (2)	
(20)					/	
OPT	IMIZI	ED				
No.	Op	Source 1	Source 2	Destination	Description	
(1)	:=	#1		Indx	Indx = 1	
(2)	BGT	Indx	#25	(20)	If Indx $> 25 \rightarrow (20)$	
(3)	-	Indx	#1	i1	i1 = Indx - 1	
(4)	*	i1	#10	i2	i2 = Indx * 10	
(5)	*	#3	ABC	i3	i3 = 3 * ABC	
(6)	-	i3	#2	i5	i5 = i3 – 2	
(7)	+	i2	i5	i6	i6 = i2 + i5	
(8)	*	i6	#4	i7	i7 = i6 * 4	
(9)	*	i1	#10	i9	i9 = i1 * 10	
(10)	+	i5	#1	i11	i11 = i5 + 1	
(11)	+	i9	i11	i12	i12 = i9 + i11	
(12)	*	i12	#4	i13	i13 = i12 * 4	
(13)	:=	Y[i13]		X[i7]	X[i7] = Y[i13]	
(14)	+	#1	Indx	i14	i14 = 1 + Indx	
(15)	:=	i14		Indx	Indx = i14	
(16)	JMP			(2)	$Jump \rightarrow (2)$	
	1500000000	-		\ -/	(-)	

SI

Quadruples

A quadruples example: sum := sum + value

Operation Operand Operand Result
+ sum value i1
:= i1 sum

Array Element Address Calculations

Array address calculation method for row-major order:

Row 0 Row 1

Row 2

Row 3

Row 4

Given the Array declaration: ARRAY [lower1 .. upper1, lower2 .. upper2] INTEGER

The address of Array element ARRAY [s1, s2] is calculated:

where W is INTEGER Word size in bytes, (MIPS = 4).

Given the array address calculation method above, and this Array declaration:

Generate the quadruples for this program code fragment:

Note: K is a declared integer variable

FOR N := 1 TO 25 DO

$$X[N,2*K+1] := Y[N, 2*K]$$

Note: The quadruples (about 20) are created as the code fragment is parsed, and the addressing expression is expanded.

[50 points]

Fo	2	-	00	P
AND DESCRIPTION OF THE PROPERTY OF	NAME OF TAXABLE PARTY.	STEEDER'S SELECTION	un eller gartelie	ngnes

Address Calc

$$X[N, 2K+1] := Y[N, 2K]$$

Next >

$$4 * (N-1) * (15-1+1) + (i2-1)$$
 $i6 ' i5 ' i10$
 $i7 '$
 $i11$

NEXT >

Final Q) vadruples
---------	-------------

1	9 —	# 1		N	
2	JAT	T	#100	(18)	
3	*	#2	K	12	,
4	+	; 2	#1	13	
5	gardinin.	#15	#1	14	
6	+	14	#1	15	
7	pulletina	N	#1	16	
8	*	16	i 5	17	
9	+	17	i 2	18	
10	*	#4	18	19	
11	Gardella.	i 2	#1	110	
12	+	17	110	111	
13	#	#4	i 11	i12	
14	b contract	Y [112]		X[i9]	
15	+	# \	N	î l	
16	: =	il		N	
17	JMP			(2)	
18					