The Chase

Stéphane Bressan

Let Σ be a set of functional and multi-valued dependencies on a relation schema R. The Chase is an algorithm that solves the decision problem of whether a functional or multi-valued dependency (or join dependency) σ is satisfied by R with a set of functional and multi-valued (and join) dependencies Σ .

$$(R \text{ with } \Sigma) \models \sigma?$$

Example 1

$$\{\{A\} \xrightarrow{} \{B,C\}, \{D\} \xrightarrow{} \{C\}\} \models \{A\} \xrightarrow{} \{C\}?$$

Example 2

$$R = \{A, B, C, D\}$$

$$\{\{A\} \rightarrow\!\!\!\!\rightarrow \{B\}, \{B\} \rightarrow\!\!\!\!\rightarrow \{C\}\} \models \{A\} \rightarrow\!\!\!\!\rightarrow \{C\}?$$

Example 3

$$\{\{A\} \rightarrow \{B,C\}, \{C,D\} \rightarrow \{B\}\} \models \{A\} \rightarrow \{B\}$$
?

$$\{\{A\} \rightarrow \{B,C\}, \{D\} \rightarrow \{C\}\} \models \{A\} \rightarrow \{C\}$$
?

Create an instance r on the schema $\{A, B, C, D\}$ with two t-uples and distinct values for all attributes.

$$\begin{array}{c|cccc} A & B & C & D \\ \hline a_1 & b_1 & c_1 & d_1 \\ a_2 & b_2 & c_2 & d_2 \\ \end{array}$$

$$\{\{A\} \rightarrow\!\!\!\!\rightarrow \{B,C\}, \{D\} \rightarrow \{C\}\} \models \{A\} \rightarrow \{C\}?$$

We want to chase $\{A\} \to \{C\}$. Make the A-values the same.

$$a_1 = a_2$$

$$\{\{A\} \rightarrow \{B,C\}, \{D\} \rightarrow \{C\}\} \models \{A\} \rightarrow \{C\}?$$

Use $\{A\} \to \{B,C\}$. Create (two) new t-uples by copying the (two) t-uples that have the same A-value but swapping their B- and C-values. The multi-valued dependency generates t-uples. It is a t-uple generating dependency.

Α	В	С	D
a_1	b_1	c_1	d_1
a_1	b_2	c_2	d_2
a_1	b_2	c_2	d_1
a_1	b_1	c_1	d_2

$$\{\{A\} \rightarrow \{B,C\}, \{D\} \rightarrow \{C\}\} \models \{A\} \rightarrow \{C\}$$
?

Use $\{D\} \to \{C\}$. For each pair of t-uple with the same D-value, make their C-value the same.

$$c_1 = c_2$$

The functional dependency generates values. It is a value generating dependency.

А	В	С	D
a_1	b_1	c_1	d_1
a_1	b_2		d_2
a_1	b_2	c_1	d_1
a_1	b_1	c_1	d_2

$$\{\{A\} \rightarrow \{B,C\}, \{D\} \rightarrow \{C\}\} \models \{A\} \rightarrow \{C\}?$$

There is nothing else to do. We observe that r satisfies $\{A\} \to \{C\}$. Therefore the answer is yes

$$r \models \{A\} \to \{C\}$$

А	В	С	D
a_1	b_1	c_1	d_1
a_1	b_2	c_1	d_2
a_1	b_2	c_1	d_1
a_1	b_1	c_1	d_2

r also satisfies $\{D\} \to \{A\}$ but this is a coincidence. We can only answer the question about $\{A\} \to \{C\}.$

Another chase is needed for $\{D\} \to \{A\}$. Do it!

•0000

Example 2

$$R = \{A, B, C, D\}$$

$$\{\{A\} \rightarrow\!\!\!\!\rightarrow \{B\}, \{B\} \rightarrow\!\!\!\!\rightarrow \{C\}\} \models \{A\} \rightarrow\!\!\!\!\rightarrow \{C\}?$$

Create an instance r on the schema $\{A, B, C, D\}$ with two t-uples and distinct values for all attributes.

Chasing MVDs

Example 2 (Cont.)

$$R = \{A, B, C, D\}$$

$$\{\{A\} \rightarrow\!\!\!\!\rightarrow \{B\}, \{B\} \rightarrow\!\!\!\!\rightarrow \{C\}\} \models \{A\} \rightarrow\!\!\!\!\rightarrow \{C\}?$$

We want to chase $\{A\} \rightarrow \{C\}$. Make the A-values the same.

$$a_1 = a_2$$

$$R = \{A, B, C, D\}$$

$$\{\{A\} \rightarrow\!\!\!\!\rightarrow \{B\}, \{B\} \rightarrow\!\!\!\!\rightarrow \{C\}\} \models \{A\} \rightarrow\!\!\!\!\rightarrow \{C\}?$$

Use $\{A\} \rightarrow \{B\}$.

Α	В	С	D
a_1	b_1	c_1	d_1
a_1	b_2	c_2	d_2
a_1	b_2	c_1	d_1
a_1		c_2	d_2

$$\{\{A\} \longrightarrow \{B\}, \{B\} \longrightarrow \{C\}\} \models \{A\} \longrightarrow \{C\}$$
?

Use $\{B\} \longrightarrow \{C\}$ (twice, for b_1 and for b_2).

А	В	С	D
a_1	b_1	c_1	d_1
a_1	b_2	c_2	d_2
a_1	b_2	c_1	d_1
a_1	b_1	c_2	d_2
a_1	b_1	c_2	d_1
a_1	b_1		d_2
a_1	b_2	c_1	d_2
a_1	b_2		d_1

There is nothing else to do. We observe that r satisfies $\{A\} \longrightarrow \{C\}$. Therefore the answer is yes

$$r \models \{A\} \longrightarrow \{C\}$$

А	В	С	D
a_1	b_1	c_1	d_1
a_1	b_2	c_2	d_2
a_1	b_2	c_1	d_1
a_1	b_1	c_2	d_2
a_1	b_1	c_2	d_1
a_1	b_1	c_1	d_2
a_1	b_2	c_1	d_2
a_1	b_2	c_2	d_1

Example 3

$$\{\{A\} \rightarrow \{B,C\}, \{C,D\} \rightarrow \{B\}\} \models \{A\} \rightarrow \{B\}$$
?

$$\begin{array}{|c|c|c|c|c|c|} \hline A & B & C & D \\ \hline a_1 & b_1 & c_1 & d_1 \\ \hline a_2 & b_2 & c_2 & d_2 \\ \hline \end{array}$$

Example 3 (cont.)

$$\{\{A\} \xrightarrow{} \{B,C\}, \{C,D\} \xrightarrow{} \{B\}\} \models \{A\} \xrightarrow{} \{B\}?$$

Use $\{A\} \rightarrow \{B,C\}$.

А	В	С	D
a_1	b_1	c_1	d_1
a_1	b_2	c_2	d_2
a_1	b_2	c_2	d_1
a_1	b_1	c_1	d_2

There is nothing else to do.

$$r \not\models \{A\} \to \{B\}$$

Therefore the answer is No.

А	В	С	D
a_1	b_1	c_1	d_1
a_1	b_2	c_2	d_2
a_1	b_2	c_2	d_1
a_1	b_1	c_1	d_2

We have built a counter-example.

The Power of The Chase

What is surprising and powerful is that The Chase is complete: it can prove or disprove that a functional or multi-valued dependency is satisfied!

Theorem

The Chase always builds a counter example if it exists and does not if it does not exists.

Setting The Chase

Let Σ be a set of functional and multi-valued dependencies on a relation schema R. Let σ be a be a functional and multi-valued dependency.

$$\sigma = X \to Y \text{ or } \sigma = X \twoheadrightarrow Y$$

- 1. Create a table r with schema R with two tuples with all different values.
- 2. For each $A \in X$, make the A-values the same.

If R is not given, then use the attributes in Σ and σ .

Chasing The Chase

Repeat the following until you reach a fixed point (nothing changes):

- 1. For each functional dependency $Z \to V \in \Sigma$.
 - 1.1 If there are tuples in the table with same Z-value, then set their V-values to be the same.
- 2. For each multi-valued dependency $Z \rightarrow V \in \Sigma$.
 - 2.1 If there are two tuples in the table with same Z-value, then add two new tuples with all the same values and except for their V-values that are swapped.

Exit with:

$$r \models \sigma$$
 is equivalent to $\Sigma \models \sigma$

This means that you only need to check whether or not r satisfies the functional or multi-valued depedency σ that you were chasing.

Theorem

The Chase is sound and complete for σ .

$$r \models \sigma$$
 is equivalent to $\Sigma \models \sigma$

Theorem

The Chase always terminates.

How to use to check to check that a decompostion is lossless?

Testing if a Decomposition is Lossless

Recall that on a relation schema $R=X\cup Y\cup Z$ with X, Y, Z disjoint, a multi-valued dependency $X \to\!\!\!\!\to Y$ holds in r iff:

$$\pi_{X \cup Y}(r) \bowtie \pi_{X \cup Z}(r) = r$$

This means multi-valued dependencies can be used to test if a relation schema $R = X \cup Y \cup Z$ (satisfying a set of dependencies Σ) can be decomposed into two relations $R_1 = X \cup Y$ and $R_2 = X \cup Z$ in a lossless manner:

Use the chase to decide whether $\Sigma \models X \rightarrow\!\!\!\!\rightarrow Y$ (or, equivalently, $\Sigma \models X \rightarrow\!\!\!\!\rightarrow Z$)

Setting and Chasing The Chase with Distinguished Variables

Let Σ be a set of functional and multi-valued dependencies on a relation schema R.

- 1. Create a table r with schema R with two tuples with all different values.
- 2. Mark some values as "distinguished" (e.g. use a different letter) depending on the task at hand:
 - 2.1 Distinguish the variables in the left-hand-side for chasing a functional dependency (as seen above). Check the existence of a column of distinguished variables.
 - 2.2 Distinguish the two fragments for chasing a multi-valued dependency (as seen above). Check the existence of a row of distinguished variables.
 - 2.3 Distinguish the multiple fragments to test a lossless decomposition (generalisation of what is discussed above to more than two fragments). Check the existence of a row of distinguished variables.
 - 2.4 Distinguish X to chase all Y such that $X \to Y$. Check the existence of distinguished variables (not discussed in the lecture).

Example 1 (Recall)

$$\{\{A\} \rightarrow \{B,C\}, \{D\} \rightarrow \{C\}\} \models \{A\} \rightarrow \{C\}.$$

А	В	С	D
a_1	b_1	c_1	d_1
	b_2		d_2
a_1	b_2	c_1	d_1
a_1	b_1		d_2

Starting from a row of distinguished variables, we get a column of distinguished variables.

Example 2 (Recall)

$$\{\{A\} \rightarrow \{B\}, \{B\} \rightarrow \{C\}\} \models \{A\} \rightarrow \{C\}$$

А	В	С	D
a_1	b_1	c_1	d_1
a_1	b_2		d_2
			d_1

Starting from two rows of distinguished variables (chasing the join dependency $R=\{A,B,D\}\bowtie\{A,C\}$), we get a row of distinguished variables.

Example 2 (Recall)

For $R = \{A, B, C, D\}$ with Σ is $\{\{A, B\}, \{B, C\}, \{A, D\}\}$ a lossless decomposition.

Α	В	С	D
a_1	b_1	c_1	d_1
a_2			d_2
a_1	b_3	c_3	d_3

Chase a row of distinguished variables $((a_1, b_1, c_2, d_3))$ from the above table.

