H4: nonlinear equations	
	4.1 introduction
nonlinear phenomena	= effects that aren't directly proportional to their causes
	> nonlinear equations can be represented by: $f(x) = y$. > subtract y to find: $f(x) = 0$. > root finding problem
	4.2 number of solutions
solutions of a nonlinear problem	= correspond to the points where a curved hyperplane f(x) intersect > no general statements about number of solutions
multiple roots	a smooth function f has multiple roots if: $f(x^*)=f'(x^*)=f''(x^*)=\cdots=f^{(m-1)}(x^*)=0$
	then x* is a root of multiplicity m
	4.3 sensitivity
sensitivity of a root	= if x* is a root, how much does x* for small changes to the parameters of f
condition number	= parameter for sensitivity in one dimension = $\frac{1}{\ f'(x^*)\ }$
	> if f'(x) is small near x*, the error of the root is big
	At a multiple root x*, f'(x*) = 0 > condition number is infinite
condition number in multiple dim.	In multiple dim. this is the Jacobian J
	$\mathbf{J}_{f}^{-1}(x)$.
	4.4 convergence rates and stopping criteria
convergence rate	= the effectiveness with which a certain algorithm reaches its solution
	def: Let $\mathbf{e}_k = \mathbf{x}_k - x^*$ be the error at iteration k , where \mathbf{x}_k is the approximate solution at iteration k and x^* the (usually unknown) true solution.
	An iterative method is said to converge with rate $oldsymbol{r}$ if
	$\lim_{k o\infty}rac{\ \mathbf{e}_{k+1}\ }{\ \mathbf{e}_{k}\ ^r}=C$
	for some finite constant $C>0.$
cost of solving a system	= depends on number of iterations + amount of iterations needed
types of convergence	$ egin{array}{ll} \bullet & r=1 \text{ and } C<1 \text{: linear convergence} \\ \bullet & r>1 \text{ : superlinear convergence} \\ \bullet & r=2 \text{ : quadratic convergence} \\ \bullet & r=3 \text{ : cubic convergence} \\ \hline \end{array} $
stopping criterion	look at the relative change in the solutions: $\ \mathbf{x}_{k+1} - \mathbf{x}_k\ /\ \mathbf{x}_k\ < \varepsilon,$
	with ε the <i>error tolerance</i>
	I

4.5 solving nonlinear equations in one dimension