Additional experiments for rebuttal

Figure 1. Five-fold cross-validation comparison on the CPU Activity regression dataset of the regularization paths generated by our method versus FastSparse (fs). In our approach, the regularization path is constructed by starting with an empty forest and incrementally adding 5 stumps at a time, re-optimizing the entire forest at each step using our algorithm. We present three curves corresponding to different values of the roughness penalty parameter $\lambda \in \{0, 10, 20\}$. For FastSparse, we show results for three different values of the parameter $\gamma \in \{0, 10^{-5}, 10^{-3}\}$. We set the num_lambda parameter to 100 and max_support_size to 1000, which generates a regularization path across 100 different lambda_0 values. However, the actual number of unique models produced by FastSparse is typically lower, as multiple values of lambda_0 often lead to the same model. In contrast, our method allows for more direct control over model size via the number of stumps T, effectively imposing an ℓ_0 constraint.Our regularization path consists of 100 distinct models, although only 50 are shown in the figure to avoid visual clutter. The model size here is defined as the number of thresholds times 2 (a constant piece value and a threshold) plus 1 for the bias.

Figure 2. Same setup as Fig. 1, but applied to the FICO classification dataset. For our method, we generate the regularization path by incrementally adding one stump at a time and re-optimizing the current forest using our algorithm, continuing until the forest contains 100 stumps. To reduce visual clutter, we display only 50 points from our regularization path. For FastSparse (fs), following Fig.8 from their paper, we report results for logistic loss with two different values of $\gamma \in \{10^{-5}, 10^{-3}\}$, and for exponential loss with penalty=L0. We run the regularization path with num_lambda=100, and similarly as with fig. 1, we obtain a fewer number of unique models because multiple values lambda_0 produce the same result.

Figure 3. Visualization of the resulting additive model shape functions from our optimized stump forests for the UK used car dataset. For the numerical features, the light red bars show the histogram of the training points with the frequency values given on the right y-axis.

Figure 4. As fig. 3, but for EBM shape functions.

Figure 5. As fig. 3, but PyGAM shape functions.

Table 1. Train and test RMSE, model size (number of parameters) and training time (average \pm standard deviation over 5 runs) for different GAMs. N refers to the dataset size, D is the feature dimension. Green color is the best test error, and blue is the second best. **Rebuttal update 1:** as requested by reviewer r73Z, we performed experiments with FastSparse. We use the Python package fastsparsegams. We use the method convert_continuous_df_to_binary_df to binarize the features. We perform grid-search on the following values of hyperparameters: algorithm = [CD, CDPISI], max_support_size = [10, 100, 1000, 10000], and the 100λ values in regularization path (we set num_lambda = 100, and scan through the model.lambda_0 values after training). For the penalty parameter, we use L0. Once we find the best combination of hyperparameters on a holdout set, we train the model 5 times on different training and test splits, consistent with all the performed experiments. **Rebuttal update 2:** as suggested by reviewer owkV, we change the encoding of the leaf fitting problem, and achieve substantial speedups in training time for our method as shown below of our old numbers.

be	low	ot	our	old	num	bers.

Dataset		ORSF	GB	EBM	Splines	NAM	FLAM	FastSparse
Cpuact N=8.2k D=21	train test size time (s)	2.12±0.01 2.37±0.03 642±0 184±25 9.4±0.3	2.20±0.04 2.43±0.06 3.4k±133 46±17	$\begin{array}{c} \textbf{2.19} {\pm} 0.02 \\ \textbf{2.50} {\pm} 0.05 \\ \textbf{16.6k} {\pm} \textbf{36} \\ \textbf{39} {\pm} 2 \end{array}$	$\begin{array}{c} 2.53 {\pm} 0.02 \\ 2.69 {\pm} 0.06 \\ 271 {\pm} 3 \\ 37 {\pm} 0.03 \end{array}$	$\begin{array}{c} 3.38 \!\pm\! 0.26 \\ 3.41 \!\pm\! 0.28 \\ 134 k \!\pm\! 0 \\ 99 \!\pm\! 1 \end{array}$	2.88±0.01 2.99±0.05 77.9k±123 85±2	$\begin{array}{c} 2.76 \pm 0.03 \\ 2.91 \pm 0.17 \\ 119 \pm 4 \\ 3.8 \pm 0.5 \end{array}$
Wine N=6.5k D=11	$\begin{array}{c} \text{train} \times 10^{-2} \\ \text{test} \times 10^{-2} \\ \text{size} \\ \text{time (s)} \end{array}$	65.70±0.15 70.02±0.66 724±12 64±3 6.0±0.3	$\begin{array}{c} 68.13 \pm 0.27 \\ 70.92 \pm 0.51 \\ 770 \pm 32 \\ 2.87 \pm 0.58 \end{array}$	66.73±0.27 70.12±0.39 3.9k±11 4.44±1.33	67.99±0.29 71.79±1.40 197±7 56±16	74.40±0.16 76.07±2.11 70.1k±0 64±0	67.39±0.21 70.19±0.84 5041±11 53±3	68.01±0.25 71.77±0.63 182±4 0.57±0.07
$\begin{array}{c} \textbf{Housing} \\ N{=}21k \\ D{=}8 \end{array}$	$\begin{array}{c} \text{train} \times 10^{-2} \\ \text{test} \times 10^{-2} \\ \text{size} \\ \text{time (s)} \end{array}$	51.84±0.16 54.80±0.65 1.4k±20 600±140 13.6±0.4	54.24±0.27 56.15±0.58 2.4k±31 42±8	52.70±0.04 55.23±0.68 7.2k±8 36±2	53.37±0.21 55.49±0.61 528±2 37±2	71.56±0.30 72.23±0.88 51.0k±0 175±2	55.08±0.20 56.24±0.74 118k±101 73±2	54.62±0.20 56.29±0.65 579±9 3.94±0.73
Diamond N=54k D=26	$\begin{array}{l} \text{train} \times 10^2 \\ \text{test} \times 10^2 \\ \text{size} \\ \text{time (s)} \end{array}$	9.95±0.02 10.15±0.08 934±16 648±20 25.1±0.9	$\begin{array}{c} 10.07{\pm}0.05 \\ 10.19{\pm}0.08 \\ 1182{\pm}81 \\ 140{\pm}58 \end{array}$	10.11±0.03 10.23±0.06 3.4k±7 20±2	$\begin{array}{c} 10.02{\pm}0.02\\ 10.96{\pm}1.45\\ 273{\pm}24\\ 42{\pm}0.4 \end{array}$	13.53±0.22 13.59±0.25 86k±0 708±2	11.75±0.03 11.70±0.12 4139±12 805±11	10.01±0.02 10.17±0.09 516±11 45±10
Year N=423k D=90	train test size time (s)	9.12±0.03 9.30±0.01 1379±0.8 9681±205 1402±43	9.30±0.03 9.35±0.00 1490±25 4368±256	$\begin{array}{c} 7.53{\pm}0.02\\ 9.82{\pm}0.02\\ 368k{\pm}0\\ 4262{\pm}437 \end{array}$	$\begin{array}{c} 9.14{\pm}0.03 \\ 9.38{\pm}0.03 \\ 2158{\pm}55 \\ 3618{\pm}45 \end{array}$	10.22±0.05 10.22±0.08 573k±0 8858±88	out of time > 2 days	9.14±0.03 9.29±0.01 2601±63 973±65
FPS N=401k D=100	train test size time (s)	55.40±0.09 55.41±0.34 983±37 6010±314 798±21	55.48±0.09 55.45±0.34 824±57 1803±466	55.42±0.09 55.42±0.34 2372±12 655±84	55.41±0.09 55.42±0.34 411±1 2043±2	56.23±0.10 55.62±0.24 288k±0 4397±10	out of time > 2 days	55.41±0.09 55.42±0.34 1250±17 625±10

Table 2. As in Table 1 but for classification datasets. The error is a 0/1 misclassification (%). Similar updates during rebuttal as in Table 1. For FastSparse, we use Logistic as the loss, and perform hyperparameter search using the same grid search as in Table 1.

Dataset		ORSF	GB	EBM	Splines	NAM	FLAM	FastSparse
Letter <i>N</i> =20 <i>k D</i> =16	train test size time (s)	15.94±0.14 16.40±0.52 403±13 150±9 14.9±0.2	$\begin{array}{c} 16.38 {\pm} 0.17 \\ 16.88 {\pm} 0.41 \\ 420 {\pm} 15 \\ 32 {\pm} 3 \end{array}$	$\begin{array}{c} 16.12 {\pm} 0.20 \\ 16.63 {\pm} 0.42 \\ 502 {\pm} 2 \\ 31 {\pm} 1 \end{array}$	$15.87 \pm 0.14 16.55 \pm 0.70 224 \pm 1 58 \pm 2$	$\begin{array}{c} 21.54 {\pm} 1.1 \\ 22.53 {\pm} 1.88 \\ 68 k {\pm} 0 \\ 153 {\pm} 0 \end{array}$	17.94±0.18 17.95±0.51 510±2 71±1	15.88±0.14 16.57±0.67 399±5 18±2
Churn N=7.0k D=45	train test size time (s)	18.88±0.19 19.28±0.29 129±5 36±8 6.8±0.4	19.00±0.23 19.32±0.37 644±48 3±1	18.84±0.08 19.47±0.51 7292±11 15±1	18.78±0.15 19.32±0.48 40±0.04 0.5±0.03	$\begin{array}{c} 22.59 {\pm} 2.13 \\ 21.69 {\pm} 2.02 \\ 120 {k} {\pm} 0 \\ 120 {\pm} 2 \end{array}$	19.85±0.18 20.30±0.88 13.7k±15 113±2	18.88±0.11 19.87±0.36 105±8 0.59±0.07
FICO N=10k D=23	train test size time (s)	24.86±0.13 27.33±0.04 550±28 231±18 7.8±0.1	$\begin{array}{c} 26.54 {\pm} 0.15 \\ 27.62 {\pm} 0.30 \\ 1002 {\pm} 66 \\ 1.6 {\pm} 0.6 \end{array}$	26.37±0.10 27.43±0.31 3680±9 7±0.2	$\begin{array}{c} \textbf{26.79} {\pm} 0.15 \\ \textbf{27.35} {\pm} 0.17 \\ \textbf{83} {\pm} 1 \\ \textbf{1.96} {\pm} 0.10 \end{array}$	$\begin{array}{c} 28.23 {\pm} 0.41 \\ 28.08 {\pm} 0.61 \\ 130 {k} {\pm} 0 \\ 180 {\pm} 1 \end{array}$	27.15±0.21 27.64±0.52 3791±11 61±1	25.87±0.16 27.80±0.33 196±10 1.74±0.12
IJCNN N=50k D=22	train test size time (s)	4.42±0.05 4.95±0.14 414±23 1090±200 46±1	$\begin{array}{c} \textbf{4.56} {\pm} 0.07 \\ \textbf{5.10} {\pm} 0.15 \\ \textbf{918} {\pm} 21 \\ \textbf{148} {\pm} 24 \end{array}$	$\begin{array}{c} 4.51 {\pm} 0.03 \\ 5.00 {\pm} 0.14 \\ 12.3 {k} {\pm} 0 \\ 19 {\pm} 0 \end{array}$	$\begin{array}{c} 4.44{\pm}0.04 \\ 4.92{\pm}0.20 \\ 266{\pm}0.5 \\ 153{\pm}40 \end{array}$	$\begin{array}{c} 7.51 {\pm} 0.44 \\ 7.48 {\pm} 0.55 \\ 101 {k} {\pm} 0 \\ 501 {\pm} 1 \end{array}$	6.86±0.08 7.14±0.15 828k±242 249±6	4.84±0.16 5.52±0.21 883±18 47±1
Covtype $N=581k$ $D=54$		22.50±0.03 22.71±0.11 504±4 4354±32 1091±16	$\begin{array}{c} 22.56 {\pm} 0.02 \\ 22.77 {\pm} 0.10 \\ 1090 {\pm} 32 \\ 1202 {\pm} 49 \end{array}$	22.46±0.02 22.68±0.12 6402±4 325±5	$\begin{array}{c} 22.48 {\pm} 0.02 \\ 22.72 {\pm} 0.10 \\ 403 {\pm} 1 \\ 15624 {\pm} 84 \end{array}$	26.16±0.50 26.08±0.54 170k±0 5373±16	out of time > 2 days	22.49±0.02 22.68±0.10 841±15 2763±177
Bank N=41k D=62	train test size time (s)	9.81±0.04 9.83±0.17 231±4 153±11 47±2	10.00±0.03 9.99±0.13 530±15 34±7	9.75±0.05 9.91±0.17 1103±7 40±3	9.79 ± 0.04 9.88 ± 0.12 95 ± 2 22 ± 2	$\begin{array}{c} 10.09 {\pm} 0.08 \\ 9.87 {\pm} 0.26 \\ 174 {k} {\pm} 0 \\ 662 {\pm} 10 \end{array}$	11.27±0.04 11.23±0.15 1182±1 916±3	9.79±0.04 9.86±0.14 64±4 19.6±3.3

Table 3. The results of Optimal Sparse Regression Trees (OSRT), as requested by reviewer r73Z. The algorithm did not finish within 2 hours for our smallest regression dataset, Wine. Therefore, we run experiments on 1000 sub-sampled training points for all datasets. Most features are continuous, and the algorithm by default seems to binarize using all possible thresholds, resulting in a very large number of features, and thus even slower training. Because of the short time period during this rebuttal, we naively binarize each continuous feature using median threshold. λ is the regularization hyperparameter. The time limit is set for 1 hour.

Dataset	λ	Train RMSE	Test RMSE	Leaves	Depth	Time (s)
diamond*	0.001	2604.93	2862.93	32	12	3600
diamond*	0.005	2589.88	2780.15	8	7	3600
diamond	0.01	2615.15	2741.46	5	5	273.13
diamond	0.05	2806.17	2857.79	2	2	0.70
housing	0.001	0.83	0.96	42	9	0.62
housing	0.005	0.91	0.93	8	5	0.28
housing	0.01	0.90	0.95	5	4	0.20
housing	0.05	0.96	0.99	2	2	0.12
wine	0.001	0.60	0.89	120	11	29.20
wine	0.005	0.72	0.83	26	10	7.87
wine	0.01	0.80	0.80	5	4	2.68
wine	0.05	0.79	0.82	2	2	0.17
cpuact*	0.001	10.74	19.17	55	10	3600
cpuact*	0.005	11.13	17.53	25	8	3600
cpuact	0.01	8.58	19.50	24	11	1658.88
cpuact	0.05	12.39	16.19	8	7	11.03

Table 4. The results of Generalized and Scalable Optimal Sparse Decision Trees (GOSDT), as requested by reviewer r73Z. The algorithm did not finish within 2 hours for our smallest classification dataset, Churn. Similar to OSRT above, we run experiments on 1000 subsampled training points and naively binarize each continuous feature using median threshold for all datasets. λ is the regularization hyperparameter. The time limit is set for 1 hour.

e limit is set for 1 hour.									
Dataset	λ	Train Error	Test Error	Leaves	Depth	Time (s)			
bank	0.001	out-of-time							
bank	0.005	out-of-time							
bank	0.01	out-of-time							
bank	0.05	12.50	11.16	1	1	0.07			
fico	0.001		out-of-time						
fico	0.005		out-of-time						
fico	0.01	30.40	30.35	2	2	363.54			
fico	0.05	30.40	30.74	2	2	0.65			
ijenn	0.001	6.70	10.27	27	9	18.01			
ijenn	0.005	10.90	9.84	1	1	1.61			
ijenn	0.01	9.40	9.84	1	1	0.12			
ijenn	0.05	9.10	9.84	1	1	0.05			
letter	0.001	10.30	23.72	88	12	1272.58			
letter	0.005	22.40	25.85	10	6	166.80			
letter	0.01	29.70	33.85	4	4	41.59			
letter	0.05	33.20	34.08	2	2	0.19			
telco	0.001	out-of-time							
telco	0.005	out-of-time							
telco	0.01	out-of-time							
telco	0.05	29.40	26.23	1	1	0.53			