Modul 3

Deployment and Feedback

Data Science Program

Outline

Introduction to Deployment
Training and Saving Model
Model Monitoring and Maintenance
Plan

Introduction to Deployment

What is Deployment?

Put your machine learning model into use.

Deployment Process

Model Development

- Approach (regression, classification, unsupervised learning etc)
- Data Preprocessing
- Model Training
- Model Evaluation

Deployment Environment

	Pattern 1 (REST API)	Pattern 2 (Shared DB)	Pattern 3 (Streaming)	Pattern 4 (Mobile App)
Training	Batch	Batch	Streaming	Streaming
Prediction	On the fly	Batch	Streaming	On the fly
Prediction result delivery	Via REST API	Through the shared DB	Streaming via Message Queue	Via in-process API on mobile
Latency for prediction	So so	High	Very Low	Low
System Management Difficulty	So so	Easy	Very Hard	So so

Source: https://www.udemy.com/course/deployment-of-machine-learning-models/

Things to Consider in Deployment

- Modularity
- Reproducibility
- Scalability
- Extensibility
- Testing
- Automation

Deployment Example: Web App

Training and Saving Model

Training and Saving Model - Pickle

- Trained model can be saved to be used in the future
- Pickle library in python can save any model
- Model is saved with .sav extension

Training and Saving Model

- Training Script
- Prediction Script

Training Script Structure

Library

Load Data

Preprocessing

Data Splitting

Model Selection / Hyperparameter Tuning

Pickle (Model Saving)

Evaluation

Library

```
# Basic Operations
import pandas as pd
import numpy as np
# ML Models
from sklearn.ensemble import RandomForestClassifier
                                                                                                                  Library
from sklearn.pipeline import Pipeline
from sklearn.impute import SimpleImputer
from sklearn.preprocessing import OneHotEncoder
from sklearn.compose import ColumnTransformer
import category encoders as ce
# Evaluation
from sklearn.model selection import GridSearchCV
from sklearn.model selection import cross val score, StratifiedKFold
from sklearn.model selection import train test split
from sklearn.metrics import f1 score
# Model
import pickle
import warnings
warnings.filterwarnings('ignore')
```


Data, Preprocessing

Evaluation, Pickle

Prediction Script

Prediction Script Structure

Model Monitoring and Maintenance Plan

Model Monitoring and Maintenance Plan

Deployment is an iterative process

We should monitor machine learning model after we deploy it

- Data Versioning
- Dictionary Versioning
- Feature Versioning
- Algorithm Versioning
- Transfer Learning (deep learning only)
- Interpretation Versioning

Data Versioning

Column and row can be growing

Cust ID	Age	 Edu	Balance	 Income	 	Default
C1						BAD
C2						BAD
C3						GOOD
C4						BAD
C2000						GOOD

Cust ID	:	Default
C1		BAD
C2		BAD
СЗ		GOOD
C4		BAD
C2000		GOOD
c2300		BAD

Dictionary Versioning

Data dictionary can be expanding and changing

Feature	Details
Education	SD, SMP, SMA, S1, S2, S3
Occupation	Data Scientist, Data Engineer Data Analyst

Feature	Details
Education	SD, SMP, SMA, S1, S2, S3, Post-Doctoral
Occupation	Data Scientist, Data Engineer Data Analyst, Business Intelligence

Feature Versioning

New feature also mean new possible feature engineering Irrelevant feature can occur

Cust ID	 Balance	 Default		Cust ID		Balance	 Income	Default
C1		BAD		C1				BAD
C2		BAD		C2				BAD
C3		GOOD	V	C3	_			GOOD
C4		BAD		C4				BAD
				./				
C2000		GOOD		C2000				GOOD

Balance to income = Balance / Income

Algorithm Versioning

Model winner can change

Model	Score
Logistic Regression	0.89
Random Forest	0.91
Gradient Boosting	0.87
Decision Tree	0.85

Model	Score
Logistic Regression	0.88
Random Forest	0.90
Gradient Boosting	0.92
Decision Tree	0.86

Transfer Learning

Continue training process from the current model (deep learning only)

Training time:

12 hours

Training time:

3 hours

Interpretation Versioning

Model insight can change overtime

Accuracy:

80%

Accuracy:

85%

References

https://towardsdatascience.com/deployment-of-machine-learning-model-demystified-part-1-1181d91815d2

https://www.udemy.com/course/deployment-of-machine-learning-models/

