Hala Amahjour Diego Pérez

TEAM PROJECT

COUNTER IN GRAY CODE

GRAY CODE

- A Gray code is an encoding of numbers so that adjacent numbers have a single digit differing by 1. The term Gray code is often used to refer to a "reflected" code, or more specifically still, the binary reflected Gray code.
- Today, Gray codes are widely used to facilitate error correction in digital communications such as digital terrestrial television and some cable TV systems.

Decimal	Binary	Gray
0	0000	0000
1	0001	0001
2	0010	0011
3	0011	0010
4	0100	0110
5	0101	0111
6	0110	0101
7	0111	0100
8	1000	1100
9	1001	1101
10	1010	1111
11	1011	1110
12	1100	1010
13	1101	1011
14	1110	1001
15	1111	1000

PROJECT GOALS

- Design a counter in Gray code using VHDL in the ISE software
- Must be a N-bits counter
- Counting Up and Down
- With a Reset signal

```
-- Entity output signals
44
               : out std logic vector(16-1 downto 0)
45
46
47
    end gray cnt;
48
49
    architecture Behavioral of gray cnt is
        constant PRESC BIT : integer := 16; --Number of bits for the pr
52
        constant c NBIT : integer := 9; --Number of bits of the N-bits
53
        signal s_clk_prescaler : std_logic_vector(PRESC_BIT-1 downto 0)
54
        signal s_b_in : std_logic_vector(16-1 downto 0);
55
56
57
    begin
58
59
     BINCNTPRESC : entity work.bin cnt presc
61
        generic map (
62
            PRESC BIT => PRESC BIT
                                              -- N bit binary counter
63
        port map (
            clk i => clk i,
                                              -- 10 kHz
            rst n i => '1',
                                              -- inactive reset
            bin cnt o => s clk prescaler
                                             -- output bits
68
        );
69
70
     BINCNT2 : entity work.bin_cnt_2
71
72
        generic map (
            N BIT => c NBIT
                                               -- N bit binary counter
73
74
75
      port map (
                              -- output bits
            b_{in} => s_{b_{in}}
76
            s_up(0) \Rightarrow g_s_up(0),
77
            clk i => s clk prescaler(PRESC BIT-1), -- CAMBIAR POR PRESC B
78
            rst n i => rst n i,
79
            b out => s b in
        );
81
82
83
     BIN2GRAY: entity work.bin2gray
        generic map (
84
            N BIT => c NBIT
                                               -- N bit binary counter
85
86
        port map (
            clk i => clk i
```

HARDWARE

VHDL MODULES

- gray_cnt
 - bin_cnt_presc
 - bin_cnt_2
 - bin2gray
- disp_mux
 - bin_cnt
 - four_to_one
 - hex_to_sseg
 - one_of_four

SCHEMATIC

VIDEO DEMOSTRARON OF THE PROJECT

RESULTS

 All required project specifications have been checked so we can close the project satisfactorily.

THANK YOU FOR YOUR ATTENTION

AND PLEASE

DON'T ASK TOO MUCH