Skriftlig eksamen i Matematik B. Vinteren 2014 - 2015

Torsdag den 8. januar 2015

Dette sæt omfatter 3 sider med 4 opgaver ud over denne forside

Alle sædvanlige hjælpemidler må medbringes og anvendes, dog ikke lommeregnere eller andre elektroniske hjælpemidler

Københavns Universitet. Økonomisk Institut

1. årsprøve 2015 V-1B ex

Skriftlig eksamen i Matematik B

Torsdag den 8. januar 2015

3 sider med 4 opgaver.

Løsningstid: 3 timer.

Alle sædvanlige hjælpemidler må benyttes, dog ikke lommeregnere eller casværktøjer.

Opgave 1. For ethvert tal $\alpha \in \mathbf{R}$ betragter vi 3×3 matricen

$$A(\alpha) = \begin{pmatrix} \alpha & 1 & 1 \\ 0 & 2\alpha & 1 \\ 0 & 0 & \alpha \end{pmatrix}.$$

- (1) Udregn determinanten for matricen $A(\alpha)$, og bestem de $\alpha \in \mathbf{R}$, for hvilke $A(\alpha)$ er regulær.
- (2) Bestem for ethvert $\alpha \in \mathbf{R}$ de karakteristiske rødder for matricen $A(\alpha)$, og angiv de tilhørende rodmultipliciteter.
- (3) Bestem for ethvert $\alpha \in \mathbf{R}$ egenværdierne og egenrummene for matricen $A(\alpha)$. Angiv desuden de tilhørende egenværdimultipliciteter.

Opgave 2. Vi betragter den funktion $f: \mathbb{R}^2 \to \mathbb{R}$, som er givet ved forskriften

$$\forall (x,y) \in \mathbf{R}^2 : f(x,y) = -2x^2 + x - 2y - y^2.$$

(1) Bestem de partielle afledede

$$\frac{\partial f}{\partial x}(x,y)$$
 og $\frac{\partial f}{\partial y}(x,y)$

af første orden for funktionen f i et vilkårligt punkt $(x, y) \in \mathbf{R}^2$.

(2) Bestem eventuelle stationære punkter for funktionen f.

(3) Bestem Hessematricen f''(x,y) for funktionen f i et vilkårligt punkt $(x,y) \in \mathbf{R}^2$.

Vis dernæst, at f er strengt konkav overalt på definitionsmængden \mathbb{R}^2 .

- (4) Bestem værdimængden for funktionen f.
- (5) Vis, at funktionen $\psi: \mathbf{R}^2 \to \mathbf{R}$, som er defineret ved forskriften

$$\forall (x,y) \in \mathbf{R}^2 : \psi(x,y) = \exp(-f(x,y)),$$

er kvasikonveks.

For ethvert v > 0 betragter vi herefter den kompakte mængde

$$K(v) = \{(x, y) \in \mathbf{R}^2 \mid 0 \le x \le v \land 0 \le y \le 1\}.$$

(6) Bestem integralet

$$I(v) = \int_{K(v)} f(x, y) d(x, y)$$

for et vilkårligt v > 0.

(7) Bestem grænseværdien

$$\lim_{v \to 0+} \left(\frac{I(v)}{\tan(2v)} \right).$$

Opgave 3. Vi betragter differentialligningen

$$(*) \qquad \frac{dx}{dt} + \left(\frac{t}{\sqrt{1+t^2}}\right)x = \left(\cos t\right)e^{\sin t - \sqrt{1+t^2}}.$$

- (1) Bestem den fuldstændige løsning til differentialligningen (*).
- (2) Godtgør, at det for enhver maksimal løsning x = x(t) til (*) gælder, at $x(t) \to 0$ for $t \to \pm \infty$.
- (3) Bestem differentialkvotienten

$$\frac{dx}{dt}(0)$$

for en enhver maksimal løsning til differentialligningen (*).

Opgave 4. Vi betragter den funktion $f:]-1, \infty[\to \mathbb{R}$, som er givet ved forskriften

$$\forall x > -1 : f(x) = \ln(x+1) + x^2 e^{2x}.$$

- (1) Bestem de afledede f' og f'' af første og anden orden for funktionen f.
- (2) Bestem Taylorpolynomiet P_2 af anden orden for funktionen f ud fra punktet $x_0 = 0$.
- (3) Udregn det ubestemte integral

$$\int f(x) \, dx,$$

idet x > -1.