Factors influencing children's general knowledge assessment

Research Question

What are the key factors that is influencing/helpful to predict kindergarten children's general knowledge achievement?

Preview

- Introduction
- Assumption checking
- Variable selection and model building
- Dignostics and evaluation
- Remidies
- Conclusions

Sample & Data Source

- Data is from National Center for Education Statistics (NCES, publicly available)
- n = 11,912 kindergarten children from public and private schools across the United States of America with diverse background of gender, race, family social-economic and health status, etc,.

Candidate variables

Variables	Label	Туре
General Knowledge Score	T-score (Standardized, 0-100)	
Age	54 - 79 (months) 4.5 - 6.6-year old	Continuous
TV watched at weekdays	0 - 20 hours	Continuous
TV watched at weekends	0 - 44 hours	
Race	White, African American, Asian, Latino, Others	
Gender	Female, Male	Naminial
School	Public, Private	Nominial
Kindergarden Class	Morning, Afternoon, All-day	
Social Economic Status	Low to High (1-5)	Ordinal
Motor Skills	Low to High (1-17)	Ordinal

Normality of Dependent Variable

C1 REC GENERAL KNOWLEDGE T-SCORE

Boxplot of race against Y

Boxplot of gender against Y

Boxplot of kindergarten against Y

(in terms of morning, afternoon, or all day)

Boxplot of kindergartden against Y

(in terms of private or public)

Plot of child's age against Y

 Plot of child's assessment on composite motor skills against Y

 Plot of SES scale of the family against Y (categorical)

 Plot of SES scale of the family against Y (continuous)

(SES): Social Economic Status

 Plot of number of hours TV watched on the weekdays against Y

Model building and variable selection

- AIC, BIC Forward/Backward
- Interprete the Model
- Adjust Significance Level

Model building and variable selection

Our Model: (Same Result for both AIC and BIC; and for all Both Direction)

General Knowledge Score [~] Social Economic Status + Race + Motor Skill + Age + Class Type + School Type + Gender

Model building and variable selection

Residuals:

```
Min 1Q Median 3Q Max
-32.495 -5.040 0.230 5.182 28.614
```

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	3.37686	1.21518	2.779	0.00546	* *
wksesq5	2.12650	0.05762	36.902	< 2e-16	***
raceBlack	-6.52019	0.21905	-29.766	< 2e-16	***
raceHispanic	-4.69191	0.22428	-20.920	< 2e-16	***
raceAsian	-6.38158	0.36018	-17.718	< 2e-16	***
raceOther	-4.32408	0.30722	-14.075	< 2e-16	***
c1cmotor	0.77842	0.02474	31.458	< 2e-16	***
r1_kage	0.49512	0.01778	27.853	< 2e-16	***
s2kpupriPrivate	1.48817	0.17812	8.355	< 2e-16	***
f1classAfternoon	0.01544	0.21571	0.072	0.94293	
f1classAll-day	-0.98890	0.16928	-5.842	5.30e-09	* * *
genderFemale	-0.84634	0.14208	-5.957	2.65e-09	***

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1

Residual standard error: 7.65 on 11900 degrees of freedom Multiple R-squared: 0.3962, Adjusted R-squared: 0.3957 F-statistic: 709.9 on 11 and 11900 DF, p-value: < 2.2e-16

- All variables are significant at 0.001 level (after adjusting significance level for multiple testing)
- Race
- SES
 - Motor skill score and age are positively related to RGT-score
- On average, children in private schools have higher RGT-score than those in public schools
- Time of Class
- Gender
- R^2 is less than 0.4

Diagnostics

- Constant Variance
- Normality
- Independence (Assumed)

Diagnostics

- Multicollinearity Problem
- VIF

##		GVIF	Df	GVIF^(1/(2*Df))
##	wksesq5	1.230625	1	1.109335
##	race	1.172943	4	1.020140
##	c1cmotor	1.127289	1	1.061739
##	r1_kage	1.077069	1	1.037819
##	s2kpupri	1.124917	1	1.060621
##	f1class	1.077321	2	1.018794
##	gender	1.027377	1	1.013596

Diagnostic

- Outliers and Influential Points
- Find 3 Influential Points
- Model After Remove Influential Points is The Same

lm(c1rgtsco ~ wksesq5 + race + c1cmotor + r1_kage + s2kpupri + f1class + ge ...

```
lm(formula = c1rqtsco ~ wksesq5 + race + c1cmotor + r1_kage +
   s2kpupri + f1class + gender, data = ecls_remove)
Residuals:
            1Q Median
                            3Q
-32.491 -5.041
                0.238
                        5.181 28.616
Coefficients:
                Estimate Std. Error t value Pr(>|t|)
(Intercept)
                 3.38192
                            1.21401
                                      2.786 0.00535 **
wksesq5
                 2.12905
                            0.05758 36.974
raceBlack
                -6.51685
                            0.21882 -29.781 < 2e-16 ***
raceHispanic
                -4.69073
                            0.22404 -20.937
                                             < 2e-16 ***
raceAsian
                -6.47332
                            0.36053 -17.955
                                             < 2e-16 ***
raceOther
                -4.36213
                            0.30712 -14.203
                                             < 2e-16 ***
c1cmotor
                 0.77997
                            0.02473 31.544 < 2e-16 ***
r1 kage
                 0.49475
                            0.01776 27.859
                                            < 2e-16 ***
s2kpupriPrivate
                 1.48001
                            0.17795
                                      8.317 < 2e-16 ***
f1classAfternoon 0.02130
                            0.21550
                                      0.099 0.92127
f1classAll-day
                -0.98987
                            0.16912 -5.853 4.95e-09 ***
genderFemale
                -0.85901
                            0.14195 -6.051 1.48e-09 ***
Signif. codes: 0; ***; 0.001; **; 0.01; **; 0.05; *.; 0.1; *; 1
Residual standard error: 7.642 on 11897 degrees of freedom
Multiple R-squared: 0.3971, Adjusted R-squared: 0.3966
F-statistic: 712.5 on 11 and 11897 DF, p-value: < 2.2e-16
```

Cross Validation

- Double CV
- PRESS
- K-fold

Cross Validation - Double Cross Validation

- MSPR value for two sample are very close (58.01853 and 59.49036)
- Coefficient Comparison: (Also Fairly Close)

raceHispanic	raceBlack	wksesq5	(Intercept)	##
-4.9444902	-6.7010613	2.1039531	3.3208981	##
r1_kage	c1cmotor	raceOther	raceAsian	##
0.5017568	0.7566604	-3.5000491	-5.7981526	##
genderFemale	f1classAll-day	f1classAfternoon	s2kpupriPrivate	##
-0.9629805	-0.8344401	-0.2053650	1.6174989	##
raceHispanic	raceBlack	wksesq5	(Intercept)	##
-4.4309923	-6.3508542	2.1480141	3.3569837	##
r1_kage	c1cmotor	raceOther	raceAsian	##
0.4894687	0.7995976	-5.1542971	-6.9306936	##
genderFemale	f1classAll-day	f1classAfternoon	s2kpupriPrivate	##
-0.7249437	-1.1195988	0.2585024	1.3617100	##

Cross Validation - PRESS

- PRESS = 697814.1
- SSE = 696355
- PRESS is Only Slightly Larger Than SSE

Cross Validation - 10-fold

- MSE = 58.51721
- Average MSPR = 58.59942
- They are Fairly Close

Conclusion From CV:

- Our Model Has Good Predictability
- Above Statements are Subjective Comment

Remedial Actions

Try Other Variables: Continuous SES

Continuous SES

- Compare Coefficients
- Except Terms About SES, Others are Very Similar

raceBlack

raceOther

-6.49254724

-4.38385987 s2kpupriPrivate

1.37718008

genderFemale

-0.83282702

Continuous SES:

(Intercept) pmax(0, wksesl + 2)-2.45370571 6.18413366 raceHispanic raceAsian -4.66717207 -6.67986640 c1cmotor rl kage 0.49396337 0.78082930 f1classAfternoon f1classAll-day ## 0.04790034 -1.00263315 ## ## wksesl -2.12989829

Categorical SES:

raceHispanic	raceBlack	wksesq5	(Intercept)	##
-4.69190595	-6.52018727	2.12650062	3.37686013	##
r1_kage	c1cmotor	raceOther	raceAsian	##
0.49512308	0.77841650	-4.32407607	-6.38157747	##
genderFemale	f1classAll-day	f1classAfternoon	s2kpupriPrivate	##
-0.84633863	-0.98890338	0.01544303	1.48817296	##

Continuous SES

- VIF and Summary
- Should We Make SFS Piecewise?

Multiple R-squared: 0.4018, Adjusted R-squared: 0.4012

F-statistic: 665.9 on 12 and 11899 DF, p-value: < 2.2e-16

```
## Coefficients:
##
                      Estimate Std. Error t value Pr(>|t|)
                                                                    ##
                                                                                                    GVIF Df GVIF^(1/(2*Df))
## (Intercept)
                      -2.45371
                                  1.80344 -1.361 0.17367
                                                                    ## pmax(0, wksesl + 2)
                                                                                              51.205573
## pmax(0, wksesl + 2) 6.18413
                                  0.67245
                                            9.196 < 2e-16 ***
                                                                                               1.174085
                                                                    ## race
## raceBlack
                      -6.49255
                                  0.21792 - 29.793 < 2e-16 ***
                                                                    ## c1cmotor
                                                                                               1.124266
## raceHispanic
                      -4.66717
                                  0.22310 -20.920 < 2e-16 ***
## raceAsian
                      -6.67987
                                  0.35888 -18.613 < 2e-16 ***
                                                                    ## r1 kage
                                                                                               1.076780
## raceOther
                      -4.38386
                                  0.30573 -14.339 < 2e-16 ***
                                                                    ## s2kpupri
                                                                                               1.128701
## c1cmotor
                       0.78083
                                  0.02460 31.743 < 2e-16 ***
                                                                    ## f1class
                                                                                               1.076501
## r1 kage
                       0.49396
                                  0.01769 27.919 < 2e-16 ***
                                                                    ## gender
                                                                                               1.027672
## s2kpupriPrivate
                       1.37718
                                  0.17760
                                            7.754 9.61e-15 ***
                                                                    ## wksesl
                                                                                              50.939101
## f1classAfternoon
                                            0.223 0.82349
                       0.04790
                                  0.21474
## f1classAll-day
                      -1.00263
                                  0.16845 -5.952 2.72e-09 ***
## genderFemale
                                  0.14146 -5.888 4.03e-09 ***
                      -0.83283
  wksesl
                                           -3.285
                                                   0.00102 **
                      -2.12990
                                  0.64838
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 7.615 on 11899 degrees of freedom
```

7.155807

1.020264

1.060314

1.037680

1.062403

1.018600

1.013742

7.137163

Conclusion

- Important Findings
- ➤ Race, Gender, SES, Time of Class, Age, School, Motor Skill are Important Factors Influencing Test Score
- ➤ The Data Set May Should Include More Factor/Factors
- SES May Deserve Some Further Study
- Future Research
- More Factor/Factors' Data Should be Collected
- > The Unevenly Distributed Data Points of Variables Could Cause Problems
- Interaction Term Investigation
- More Different and Advanced Analysis