

UNCLASSIFIED

AD NUMBER

ADB013164

NEW LIMITATION CHANGE

TO

Approved for public release, distribution  
unlimited

FROM

Distribution authorized to U.S. Gov't.  
agencies and their contractors; Specific  
Authority; AUG 1976. Other requests shall  
be referred to Army Armament Research and  
Development Command [ARRADCOM], Attn:  
DRDAR-CLJ-R, Aberdeen Proving Ground, MD  
21010.

AUTHORITY

ECBC ltr 26 Jul 2011

THIS PAGE IS UNCLASSIFIED

UNCLASSIFIED

AD NUMBER

ADB013164

NEW LIMITATION CHANGE

TO

Distribution authorized to U.S. Gov't. agencies and their contractors; Specific Authority; AUG 1976. Other requests shall be referred to Army Armament Research and Development Command [ARRADCOM], Attn: DRDAR-CLJ-R, Aberdeen Proving Ground, MD 21010.

FROM

Distribution authorized to U.S. Gov't. agencies only; Test and Evaluation; AUG 1976. Other requests shall be referred to Army Edgewood Arsenal, Attn: SAREA-TS-R, Aberdeen Proving Ground, MD 21010.

AUTHORITY

ARRADCOM, per DTIC Form 55

THIS PAGE IS UNCLASSIFIED

AD

EDGEWOOD ARSENAL TECHNICAL REPORT

2

EC-TR-76058

8013164

THE VAPOR PRESSURE OF CHEMICAL AGENTS  
GD, VX, EA 2223, EA 3547, EA 3580, EA 5365, AND EA 5533

by

James J. Savage, Ph.D.  
Donald Fielder

Chemical Laboratory

August 1976



AD NO. 1  
CW  
DDC FILE COPY



DEPARTMENT OF THE ARMY  
Headquarters, Edgewood Arsenal  
Aberdeen Proving Ground, Maryland 21010



Distribution limited to US Government agencies only because of test and evaluation,  
August 1976. Other requests for the document must be referred to the Commander,  
Edgewood Arsenal, Attn: SAREA-TSR, Aberdeen Proving Ground, Maryland  
21010.

Disclaimer

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

Disposition

Destroy this report when no longer needed. Do not return it to the originator.

## UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

| REPORT DOCUMENTATION PAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       |                                    | READ INSTRUCTIONS BEFORE COMPLETING FORM                                              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------------------------------|---------------------------------------------------------------------------------------|
| 1. REPORT NUMBER<br>EC-TR-76058                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2. GOVT ACCESSION NO. | 3. RECIPIENT'S CATALOG NUMBER<br>9 |                                                                                       |
| 4. TITLE (and Subtitle)<br>THE VAPOR PRESSURE OF CHEMICAL AGENTS: GD, VX,<br>EA 2223, EA 3547, EA 3580, EA 5365, and EA 5533.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |                                    | 5. TYPE OF REPORT & PERIOD COVERED<br>Technical Report<br>May 1970 - February 1973    |
| 6. PERFORMING ORG. REPORT NUMBER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       |                                    |                                                                                       |
| 7. AUTHOR(s)<br>James J. Savage Ph. D.<br>Donald Fielder                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       |                                    | 8. CONTRACT OR GRANT NUMBER(s)                                                        |
| 9. PERFORMING ORGANIZATION NAME AND ADDRESS<br>Commander, Edgewood Arsenal<br>Attn: SAREA-CL-CPM<br>Aberdeen Proving Ground, Maryland 21010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       |                                    | 10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS<br>1W762718AD1002         |
| 11. CONTROLLING OFFICE NAME AND ADDRESS<br>Commander, Edgewood Arsenal<br>Attn: SAREA-TS-R<br>Aberdeen Proving Ground, Maryland 21010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |                                    | 12. REPORT DATE<br>August 1976                                                        |
| 13. NUMBER OF PAGES<br>25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       |                                    | 14. MONITORING AGENCY NAME & ADDRESS (If different from Controlling Office)<br>12 18p |
| 15. SECURITY CLASS. (of this report)<br>UNCLASSIFIED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |                                    | 15a. DECLASSIFICATION/DOWNGRADING SCHEDULE<br>NA                                      |
| 16. DISTRIBUTION STATEMENT (of this Report)<br>Distribution limited to US Government agencies only because of test and evaluation (August 1976). Other requests for this document must be referred to the Commander, Edgewood Arsenal, Attn: SAREA-TS-R, Aberdeen Proving Ground, Maryland 21010.                                                                                                                                                                                                                                                                                                                                                                                                 |                       |                                    |                                                                                       |
| 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)<br>16 DA-1-W-762718-AD-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |                                    |                                                                                       |
| 18. SUPPLEMENTARY NOTES<br>Chemical and analytical characterization of new compounds<br>17 1-W-762718-AD-1002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |                                    |                                                                                       |
| 19. KEY WORDS (Continue on reverse side if necessary and identify by block number)<br>Antoine equation EA 3580 Heat of vaporization<br>Chemical agent EA 5365 Vapor pressure<br>EA 2223 EA 5533 Volatility<br>EA 3547 GD VX                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       |                                    |                                                                                       |
| 20. ABSTRACT (Continue on reverse side if necessary and identify by block number)<br>Vapor pressure equations valid over an extended temperature and pressure range are presented in parametric, graphical, and tabular form for seven chemical agents: GD, VX, EA 2223, EA 3547, EA 3580, EA 5365, and EA 5533. The Antoine vapor pressure equation and the precision with which the experimental data fit this equation were derived by computer analysis. The calculated heats of vaporization and volatilities are listed at selected temperatures for each compound. The chemical purities and techniques used to measure the vapor pressure of each compound are also cited in this report. |                       |                                    |                                                                                       |

The work described in this report was authorized under Task 1W762718AD1002, Chemical and Analytical Characterization of New Compounds. This work was started in May 1970 and completed in February 1973. The experimental data are recorded in notebooks 8068, 8080, 8337, 8343, and 8600.

The use of trade names in this report does not constitute an official endorsement or approval of the use of such commercial hardware or software. This report may not be cited for purposes of advertisement.

Reproduction of this document in whole or in part is prohibited except with permission of the Commander, Edgewood Arsenal, Attn: SAREA-TS-R, Aberdeen Proving Ground, Maryland 21010; however, DDC is authorized to reproduce the document for United States Government purposes.

The information in this document has not been cleared for release to the general public.

#### Acknowledgements

The authors wish to acknowledge the technical assistance of the personnel of the Analytical Chemistry Branch, Chemical Research Division, who performed the analyses. It is also acknowledged that Ms Ann Carlton, Management Information Systems Directorate, helped modify the Antoine equation program for the UNIVAC 1108 computer and advised on its use.



CONTENTS

|                               | <u>Page</u> |
|-------------------------------|-------------|
| I. INTRODUCTION . . . . .     | 7           |
| II. EXPERIMENTATION . . . . . | 7           |
| III. RESULTS . . . . .        | 9           |
| IV. DISCUSSION . . . . .      | 15          |
| V. CONCLUSIONS . . . . .      | 18          |
| LITERATURE CITED . . . . .    | 21          |
| DISTRIBUTION LIST . . . . .   | 23          |

THE VAPOR PRESSURE OF CHEMICAL AGENTS  
GD, VX, EA 2223, EA 3547, EA 3580, EA 5365, and EA 5533

I. INTRODUCTION.

Vapor pressure data on chemical agents are usually reported over different temperature and pressure ranges by different techniques and workers. Extrapolation of available data from different sources sometimes yields different values at a specified temperature and pressure. An attempt to choose the "best" value is sometimes difficult since sample purity and accuracy of technique are often not stated.

The purpose of this research was to measure the vapor pressure of standard and candidate chemical agents between 1 micron ( $10^{-3}$  torr) and approximately 1 torr and combine these data with other data obtained at higher temperatures and pressures. In addition, the vapor pressure of GD was also measured between 1 torr and 25 torr with an isoteniscope.<sup>1</sup> The new work being reported herein comprised vapor pressure measurements obtained at temperatures below 100°C by a static method using an isoteniscope<sup>1</sup> and the Knudsen effusion method.<sup>2</sup> These data were then consolidated with data previously obtained at higher temperatures, as previously reported,<sup>3-5</sup> and a best fit predictive Antoine equation for the combined data was obtained for each compound. The chemical purity of each compound studied was obtained and recorded together with the method of analysis.

II. EXPERIMENTATION.

An isoteniscope<sup>1</sup> was used in the static method of measuring vapor pressure. It consisted of a Pyrex glass reservoir sealed to a glass U-tube which was immersed in a constant temperature bath and connected to a manometer and adjustable vacuum system. The sample was loaded into the reservoir, degassed, and a portion of the sample was allowed to enter the U-tube by tilting the isoteniscope. The pressure on the vacuum side of the U-tube was adjusted to equalize the height of the sample levels in each arm of the U-tube. A cathetometer was used to determine when the liquid levels were the same. Thus, the pressure on the reservoir side of the U-tube due to the vapor pressure of the sample at the bath temperature was equal to the pressure on the vacuum side. This pressure was then read directly from a calibrated Wallace and Tiernan model FA187 manometer. Calibration was performed by measuring the vapor pressure of ACS reagent-grade n-decane from 30° to 90°C. The results obtained agreed with literature data<sup>6</sup> to within  $\pm 3\%$ . This method was used to measure vapor pressures above 1 torr.

In the Knudsen effusion method,<sup>2</sup> a Cahn model RG electrobalance was used to record weight loss versus time. The sample was suspended from one arm of the balance in a gold-lined magnesium cup. The cover of the cup was made of tantalum foil having a small orifice ( $\sim 10^{-4}$  cm<sup>2</sup>). The vapor pressure of the sample was determined by recording weight loss from the cup versus time at a controlled temperature under reduced pressure ( $10^{-7}$  torr). The apparatus was calibrated by photometrically measuring the actual orifice area. This orifice area was then used to determine the vapor pressure of a National Bureau of Standards sample of naphthalene over a pressure range of 0.1 to 1 torr.

The experimental vapor pressure of naphthalene thus obtained agreed with results reported in the literature<sup>7</sup> to within  $\pm 2\%$ . The vapor pressure was calculated from the following equation:

$$P = \frac{17,134.5 \times \Delta W}{A \times t} \left( \frac{T}{MW} \right)^{\frac{1}{2}} \quad (1)$$

where

P = the vapor pressure in torr

$\Delta W$  = the weight loss in grams

t = the time for the recorded weight loss in seconds

A = the orifice area in  $\text{cm}^2$

T = the absolute temperature in degrees Kelvin

MW = the molecular weight of a sample in grams/g mole

This method was used to measure vapor pressure in the range from  $10^{-3}$  to 1 torr.

A DuPont differential thermal analyzer (DTA) model 900 was used previously to measure the upper vapor pressure range by the modified DTA method.<sup>3,8</sup> The accuracy reported for this method was  $\pm 5\%$ .

The experimental vapor pressure data for each compound measured in this study were combined with vapor pressure data obtained by Belkin and Brown,<sup>3-5</sup> and these data were then subjected to a computer analysis to derive an Antoine vapor pressure equation of the form:

$$\log P = A - B/(C+t) \quad (2)$$

where

P = vapor pressure in torr

t = temperature in degrees centigrade

A, B, C = constants

The standard deviation, SD, was calculated for each Antoine equation using the following equation:

$$SD = \left( \frac{S}{n-1} \right)^{\frac{1}{2}} \quad (3)$$

where

$$S = \sum (\log P_{\text{calc}} - \log P_{\text{exp}})^2$$

The logarithmic values were used since it has been reported<sup>9</sup> that this procedure prevents excess weighting of the higher vapor pressure data.

The constants derived for the Antoine equation were used to calculate the heat of vaporization in kcal/mole and the volatility in g/m<sup>3</sup> at any temperature from the following respective equations:

$$\Delta H_{\text{vaporization}} = 2.303 RB \left( \frac{T}{C+t} \right)^2 \quad (4)$$

$$\text{Volatility} = \frac{PM}{760 R'T} \quad (5)$$

where

B and C = antoine equation constants

t = temperature in degrees centigrade

T = temperature in degrees kelvin

P = vapor pressure in torr

M = molecular weight in g/g mole

R = gas constant =  $1.987 \times 10^{-3}$  kcal/g mole °K

$R' = \text{gas constant} = 82.05 \times 10^{-6} \frac{\text{atm-m}^3}{\text{g mole } ^\circ\text{K}}$

### III. RESULTS.

The chemical purities and methods of analyses for the compounds studied in this work as well as that reported by Belkin and Brown<sup>3,5</sup> are listed in table 1 together with the experimental methods used to measure the vapor pressure of each compound and the experimental temperatures covered.

The information given in table 2 provides a comparison between the experimental vapor pressure data (reported herein) with the vapor pressure calculated for the same temperature using the respective Antoine equations given in table 3. The Antoine equations used (table 3) represent those obtained from a consolidation of data provided in this report and also those data generated by Belkin and Brown.<sup>3-5</sup> These comparative results are also shown graphically in the figure where our experimental data and the overall Antoine equation curves are shown. It is apparent that the calculated values provide a reasonably good fit to the experimental data. There exists some discrepancy in that data provided for EA 2223. This discrepancy results from the large number of experimental values generated by other investigators<sup>3</sup> in their measurements over the temperature range from 60° to 225°C which influence the slope of the line.

Table 1. Chemical Purity and Method of Analysis of Chemical Agents Used

| Compound | Vapor pressure method          | Experimental range                  | Chemical purity                   | Method of analysis* |
|----------|--------------------------------|-------------------------------------|-----------------------------------|---------------------|
| GD       | Knudsen<br>Isoteniscope<br>DTA | -23 to 30<br>40 to 95<br>68 to 190  | 94 wt %<br>98.9 area %            | WM<br>GC            |
|          |                                |                                     | 94 wt %<br>92.4 wt %<br>97 mole % | WM<br>WM<br>NMR     |
|          |                                |                                     | 91.9 wt %<br>89 wt %<br>91.7 wt % | WM<br>WM<br>WM      |
| VX       | Knudsen<br>Knudsen<br>DTA      | 30 to 40<br>52 to 100<br>110 to 231 | 94.0 wt %<br>99.6 area %          | WM                  |
|          |                                |                                     | 94.0 wt %<br>87.6 wt %            | WM<br>WM            |
|          |                                |                                     | 95 area %<br>95 area %            | GC<br>GC            |
| EA 2223  | Knudsen<br>DTA<br>DTA          | -1 to 50<br>60 to 221<br>60 to 221  | 99.4 wt %<br>99.7 wt %            | WM                  |
|          |                                |                                     | 94.0 wt %<br>87.6 wt %            | WM<br>WM            |
|          |                                |                                     | 95 area %<br>95 area %            | GC<br>GC            |
| EA 3547  | Knudsen<br>DTA                 | 75 to 92<br>182 to 335              | 99.4 wt %<br>99.7 wt %            | WM                  |
|          |                                |                                     | 99.4 wt %<br>99.7 wt %            | WM                  |
| EA 3580  | Knudsen<br>DTA                 | 58 to 90<br>208 to 286              | 93 wt %<br>98 wt %<br>88 wt %     | WM                  |
|          |                                |                                     | 93 wt %<br>98 wt %<br>88 wt %     | AH<br>BH            |
| EA 5365  | Knudsen<br>DTA                 | 30 to 47<br>60 to 146               | 97.9 area %<br>97.9 area %        | GC                  |
|          |                                |                                     | 97.9 area %<br>97.9 area %        | GC                  |
| EA 5533  | Knudsen<br>DTA                 | 18 to 44<br>77 to 167               | 97.9 area %<br>97.9 area %        | GC                  |
|          |                                |                                     | 97.9 area %<br>97.9 area %        | GC                  |

\* WM = wet method

GC = gas chromatography

NMR = nuclear magnetic resonance spectroscopy

AH = acid hydrolysis

BH = base hydrolysis

Table 2. Experimental Versus Calculated Vapor Pressures of Chemical Agents

| Temperature<br>°C | Pressure (torr)  |            | Percent<br>difference<br>$\frac{(calc-exp)}{exp} \times 100$ |
|-------------------|------------------|------------|--------------------------------------------------------------|
|                   | Experimental     | Calculated |                                                              |
|                   | (rounded values) |            |                                                              |
| -23.4             | 0.0053           | 0.0043     | -18.1                                                        |
| -21.1             | 0.0053           | 0.0056     | 5.3                                                          |
| -20.0             | 0.0061           | 0.0064     | 4.6                                                          |
| -19.4             | 0.0072           | 0.0068     | -4.6                                                         |
| -18.8             | 0.0068           | 0.0073     | 6.9                                                          |
| -16.6             | 0.0084           | 0.0093     | 10.7                                                         |
| -16.4             | 0.0095           | 0.0095     | -0.4                                                         |
| -14.7             | 0.0113           | 0.0114     | 1.1                                                          |
| -13.6             | 0.0132           | 0.0128     | -3.0                                                         |
| -12.8             | 0.0162           | 0.0140     | -13.6                                                        |
| -11.1             | 0.0142           | 0.0167     | 17.5                                                         |
| -10.2             | 0.0178           | 0.0183     | 3.0                                                          |
| -9.8              | 0.0182           | 0.0191     | 4.8                                                          |
| -8.1              | 0.0213           | 0.0227     | 6.2                                                          |
| -1.7              | 0.0423           | 0.0423     | -0.1                                                         |
| 10.2              | 0.1344           | 0.1230     | -8.5                                                         |
| 17.0              | 0.2336           | 0.2156     | -7.7                                                         |
| 20.4              | 0.3255           | 0.2820     | -13.4                                                        |
| 25.0              | 0.4000           | 0.4006     | 0.2                                                          |
| 30.0              | 0.6608           | 0.5782     | -12.5                                                        |
| 35.0              | 0.7000           | 0.8224     | 17.5                                                         |
| 39.9              | 1.00             | 1.15       | 14.6                                                         |
| 40.0              | 1.00             | 1.15       | 15.3                                                         |
| 45.0              | 1.40             | 1.60       | 14.2                                                         |
| 50.0              | 2.10             | 2.19       | 4.1                                                          |
| 60.0              | 4.20             | 4.00       | -5.8                                                         |
| 64.8              | 5.20             | 5.18       | -0.4                                                         |
| 65.1              | 4.90             | 5.27       | 7.5                                                          |
| 67.2              | 5.20             | 5.91       | 13.6                                                         |
| 69.1              | 5.70             | 6.55       | 14.8                                                         |
| 70.0              | 7.10             | 6.87       | -3.2                                                         |
| 71.2              | 6.90             | 7.32       | 6.1                                                          |
| 73.9              | 7.60             | 8.43       | 10.9                                                         |
| 74.0              | 8.40             | 8.47       | 0.9                                                          |
| 76.7              | 9.80             | 9.73       | -0.7                                                         |
| 77.8              | 10.60            | 10.29      | -2.9                                                         |
| 80.1              | 12.00            | 11.55      | -3.8                                                         |
| 82.9              | 13.80            | 13.25      | -3.9                                                         |
| 85.2              | 15.60            | 14.81      | -5.0                                                         |
| 85.3              | 15.80            | 14.89      | -5.8                                                         |
| 85.6              | 16.00            | 15.10      | -5.6                                                         |

Table 2. (contd)

| Temperature<br>°C | Pressure (torr)  |            | Percent<br>difference<br>( <u>calc-exp</u> )(100)<br>exp |
|-------------------|------------------|------------|----------------------------------------------------------|
|                   | Experimental     | Calculated |                                                          |
|                   | (rounded values) |            |                                                          |
| 86.5              | 16.10            | 15.76      | -2.1                                                     |
| 88.1              | 17.90            | 17.00      | -5.0                                                     |
| 90.0              | 18.80            | 18.59      | -1.1                                                     |
| 91.4              | 20.00            | 19.83      | -0.8                                                     |
| 92.1              | 21.60            | 20.48      | -5.2                                                     |
| 92.2              | 20.80            | 20.58      | -1.1                                                     |
| 93.9              | 23.50            | 22.24      | -5.4                                                     |
| 94.3              | 23.80            | 22.64      | -4.9                                                     |
| 95.1              | 22.50            | 23.47      | 4.3                                                      |
| Compound VX       |                  |            |                                                          |
| 30.0              | 0.0013           | 0.0011     | -11.9                                                    |
| 35.0              | 0.0019           | 0.0020     | 2.8                                                      |
| 40.0              | 0.0033           | 0.0034     | 3.7                                                      |
| 52.0              | 0.0118           | 0.0113     | -4.0                                                     |
| 56.0              | 0.0172           | 0.0164     | -4.7                                                     |
| 57.3              | 0.0180           | 0.0184     | 2.3                                                      |
| 59.6              | 0.0234           | 0.0226     | -3.3                                                     |
| 62.4              | 0.0276           | 0.0288     | 4.3                                                      |
| 70.2              | 0.0505           | 0.0555     | 9.9                                                      |
| 74.5              | 0.0659           | 0.0782     | 18.5                                                     |
| 80.0              | 0.0995           | 0.1190     | 19.7                                                     |
| 85.7              | 0.1937           | 0.1806     | -6.7                                                     |
| 88.5              | 0.2042           | 0.2202     | 7.8                                                      |
| 90.5              | 0.2606           | 0.2531     | -2.9                                                     |
| 100.2             | 0.4684           | 0.4824     | 3.0                                                      |
| Compound EA 2223  |                  |            |                                                          |
| -0.7              | 0.0126           | 0.0112     | -11.1                                                    |
| 9.3               | 0.0304           | 0.0295     | -2.8                                                     |
| 19.6              | 0.0715           | 0.0738     | 3.2                                                      |
| 30.2              | 0.1550           | 0.1746     | 12.6                                                     |
| 40.0              | 0.3120           | 0.3624     | 16.2                                                     |
| 50.0              | 0.6160           | 0.7215     | 17.1                                                     |
| Compound EA 3547  |                  |            |                                                          |
| 74.9              | 0.0277           | 0.0268     | -3.1                                                     |
| 79.5              | 0.0377           | 0.0378     | 0.3                                                      |
| 85.0              | 0.0559           | 0.0562     | 0.6                                                      |
| 92.5              | 0.0911           | 0.0945     | 3.7                                                      |

Table 2. (contd)

| Temperature<br>°C | Pressure (torr)  |            | Percent<br>difference<br>$\frac{(\text{calc-exp})}{\text{exp}} \times 100$ |
|-------------------|------------------|------------|----------------------------------------------------------------------------|
|                   | Experimental     | Calculated |                                                                            |
|                   | (rounded values) |            |                                                                            |
| Compound EA 3580  |                  |            |                                                                            |
| 57.5              | 0.0004           | 0.0004     | -7.0                                                                       |
| 68.0              | 0.0011           | 0.0011     | -2.9                                                                       |
| 73.0              | 0.0017           | 0.0018     | 4.8                                                                        |
| 78.2              | 0.0028           | 0.0029     | 2.3                                                                        |
| 83.0              | 0.0042           | 0.0044     | 5.0                                                                        |
| 89.7              | 0.0077           | 0.0079     | 3.3                                                                        |
| Compound EA 5365  |                  |            |                                                                            |
| 29.9              | 0.0772           | 0.0734     | -4.9                                                                       |
| 38.9              | 0.1465           | 0.1474     | 0.6                                                                        |
| 42.5              | 0.1874           | 0.1924     | 2.7                                                                        |
| 46.6              | 0.2478           | 0.2588     | 4.4                                                                        |
| Compound FA 5533  |                  |            |                                                                            |
| 18.0              | 0.0720           | 0.0729     | 1.3                                                                        |
| 20.0              | 0.0880           | 0.0856     | -2.7                                                                       |
| 22.6              | 0.1020           | 0.1050     | 2.9                                                                        |
| 24.7              | 0.1240           | 0.1235     | -0.4                                                                       |
| 27.0              | 0.1500           | 0.1471     | -1.9                                                                       |
| 28.7              | 0.1660           | 0.1670     | 0.6                                                                        |
| 32.8              | 0.2250           | 0.2256     | 0.3                                                                        |
| 43.8              | 0.4900           | 0.4841     | -1.2                                                                       |

Table 3. Combined Vapor Pressure Data

| Agent   | Antoine constants |        |        | Experimental range | Boiling point* | Standard deviation<br>$\times 10^{-2}$ |
|---------|-------------------|--------|--------|--------------------|----------------|----------------------------------------|
|         | A                 | B      | C      |                    |                |                                        |
| GD      | 7.4706            | 1903.1 | 216.87 | 0°C<br>-23 to 190  | 198            | 3.4                                    |
| VX      | 7.2810            | 2072.1 | 172.54 | 30 to 231          | 298            | 3.4                                    |
| EA 2223 | 7.3092            | 1931.0 | 209.17 | -1 to 221          | 227            | 3.0                                    |
| EA 3547 | 7.6663            | 2579.7 | 204.32 | 75 to 335          | 335            | 0.9                                    |
| EA 3580 | 7.5356            | 2523.2 | 172.14 | 58 to 286          | 370            | 1.8                                    |
| EA 5365 | 8.6872            | 2778.9 | 253.04 | 30 to 146          | 226            | 1.6                                    |
| EA 5533 | 8.0055            | 2387.6 | 243.16 | 18 to 167          | 223            | 1.2                                    |

\*The temperature calculated from the Antoine equation at  $P = 760$  torr.



Figure. Experimental Vapor Pressure Points Versus Antoine Equation Lines for Compounds Given in Table 2

Table 3 provides the calculated Antoine vapor pressure equation constants and the experimental temperature range over which the combined experimental data for each compound were obtained. The normal boiling point, which was calculated from the Antoine vapor pressure equation assuming a vapor pressure of 760 torr, as well as the standard deviation of the experimental data calculated using equation 3, are given in table 3.

Table 4 provides ready access to calculated values of vapor pressure, volatility, and heat of vaporization at selected temperatures using the Antoine equations in table 3 for the chemical agents studied.

#### IV. DISCUSSION.

As a result of this work, vapor pressure data in the range 0.001 to 1 torr are available for samples of candidate chemical agents EA 2223, EA 3547, EA 5365, and EA 5533 of known purity. In addition, an extensive vapor pressure study is also reported for chemical agents GD and VX. As can be seen in the figure, this range covers vapor pressures which would occur at environmental temperatures for most of these chemical agents.

The vapor pressure data for GD reported here is the most extensive study reported to date and incorporates two different experimental measurement methods. All of the available literature references found have been limited to either one experimental method<sup>5,10,11</sup> or to measurements over small temperature ranges. Our results agree to within  $\pm 3.7\%$  of the data obtained by DTA<sup>5</sup> and reported between 2 torr and 30 torr. The vapor pressure of GD at 25°C measured in this work was found to be 0.40 torr, compared to previously reported values of 0.31 torr<sup>10</sup> and 0.51 torr<sup>11</sup> at this temperature. The discrepancy in these results could be due to differences in the purity of the GD samples used; unfortunately, neither literature reference<sup>10,11</sup> reported the purity of the GD used. Zeffert and Coulter<sup>10</sup> indicated that decomposition of the sample occurred during their measurements, and this could explain their lower value at 25°C when compared with our results. The agent used in the current work was redistilled from a Teflon spinning-band annular still at reduced pressure and was analyzed before use.

The vapor pressure of chemical agent VX measured at 30°C was found to be  $1.3 \times 10^{-3}$  torr, which is in good agreement with the previously reported<sup>13</sup> value of  $1.5 \times 10^{-3}$  torr at this temperature.

The only literature references to the vapor pressure of candidate chemical agents EA 2223, EA 3547, EA 5365, and EA 5533 were those published by Belkin and Brown<sup>3,4</sup> using the DTA method. They report the vapor pressure of these compounds at higher temperatures than are reported herein. A 10°C extrapolation of the DTA vapor pressure data provides estimated vapor pressure values at 50°C for EA 2223 and EA 5365 of 0.96 and 0.35 torr, respectively, versus our respective experimental values at this temperature of 0.72 and 0.33 torr. The agreement between the two methods is good for EA 5365 at this temperature, whereas the poorer agreement for the vapor pressure of EA 2223 may be due to the lower purity of a sample used in the DTA work or to the fact that the accuracy of the DTA method is reported to be poor at pressures of approximately 1 torr. The DTA method has been shown<sup>3</sup> to be less accurate at 1 torr since the ability to control and measure pressure in this region was limited.

Table 4. Properties of Chemical Agents at Selected Temperatures

| Compound | Temperature<br>°C | Pressure<br>torr | Volatility<br>gm/cu m | Heat of vaporization<br>kcal/mole |
|----------|-------------------|------------------|-----------------------|-----------------------------------|
| GD       | -25*              | 0.0036           | 0.042                 | 14.57                             |
|          | 0                 | 0.0496           | 0.531                 | 13.82                             |
|          | 25                | 0.401            | 3.93                  | 13.23                             |
|          | 50                | 2.19             | 19.8                  | 12.77                             |
|          | 100               | 29.17            | 228.4                 | 12.08                             |
|          | 150               | 192.0            | 1325.9                | 11.59                             |
| VX       | 25*               | 0.0006           | 0.009                 | 21.60                             |
|          | 50                | 0.0093           | 0.123                 | 20.00                             |
|          | 100               | 0.477            | 5.48                  | 17.78                             |
|          | 150               | 7.19             | 72.9                  | 16.32                             |
|          | 200               | 52.35            | 474.4                 | 15.30                             |
|          | 250*              | 238.3            | 1953.0                | 14.54                             |
| EA 2223  | 0                 | 0.0120           | 0.138                 | 15.07                             |
|          | 25                | 0.116            | 1.22                  | 14.33                             |
|          | 50                | 0.722            | 7.03                  | 13.74                             |
|          | 100               | 11.57            | 97.6                  | 12.87                             |
|          | 150               | 85.69            | 637.1                 | 12.27                             |
|          | 200               | 389.0            | 2586.0                | 11.82                             |
| EA 3547  | 75                | 0.0270           | 0.243                 | 18.34                             |
|          | 100               | 0.155            | 1.30                  | 17.75                             |
|          | 150               | 2.43             | 18.0                  | 16.84                             |
|          | 200               | 19.32            | 127.8                 | 16.17                             |
|          | 250               | 97.32            | 582.3                 | 15.65                             |
|          | 300               | 355.7            | 1943.0                | 15.25                             |
| EA 3580  | 75                | 0.0021           | 0.029                 | 22.92                             |
|          | 100               | 0.018            | 0.235                 | 21.71                             |
|          | 150               | 0.51             | 5.81                  | 19.92                             |
|          | 200               | 5.70             | 58.6                  | 18.67                             |
|          | 250               | 36.2             | 337.0                 | 17.73                             |
|          | 300*              | 155.5            | 1320.0                | 17.02                             |
|          | 350*              | 505.1            | 3943.0                | 16.45                             |
| EA 5365  | 25*               | 0.049            | 0.53                  | 14.62                             |
|          | 50                | 0.33             | 3.23                  | 14.46                             |
|          | 100               | 6.54             | 55.7                  | 14.21                             |
|          | 150*              | 62.0             | 466.0                 | 14.02                             |
|          | 200*              | 357.5            | 2401.0                | 13.87                             |
| EA 5533  | 25                | 0.0571           | 0.535                 | 13.61                             |
|          | 50                | 0.7261           | 6.060                 | 13.28                             |
|          | 100               | 11.16            | 80.7                  | 12.92                             |
|          | 150               | 85.62            | 545.7                 | 12.66                             |
|          | 200*              | 414.7            | 2364.1                | 12.46                             |

\*Extrapolated point

The vapor pressure of the candidate chemical agent EA 3547 measured at 90°C in this study agreed within 7.6% with the DTA results extrapolated to this temperature. For candidate chemical agent EA 5533, the vapor pressure measured at 50°C was 0.73 torr, and the value obtained by extrapolation of the DTA data was also 0.73 torr.

Two sets of vapor pressure data have been reported for candidate chemical agents EA 3580.<sup>5,12</sup> A vapor pressure of  $8.1 \times 10^{-3}$  torr was measured at 90°C in this study, compared to an extrapolated value from DTA data of  $7.9 \times 10^{-3}$  torr,<sup>5</sup> and an experimental value of  $11.7 \times 10^{-3}$  torr reported by Benning<sup>12</sup> using the Knudsen method.

Most of the new data reported herein were obtained by the Knudsen effusion technique, which is limited to a pressure range from  $10^{-3}$  torr to approximately 1 torr. The previously reported data,<sup>3-5</sup> obtained by DTA, were limited to pressures above 1 torr and to temperatures above 35°C. Consequently, extrapolation of DTA data or of Knudsen effusion data alone to obtain the vapor pressure of chemical agents outside of the measured range can be quite inaccurate when a long extrapolation is required. The extrapolated vapor pressure of VX at 30°C from DTA data<sup>3</sup> measured from 110° to 231°C is  $5.5 \times 10^{-3}$  torr, whereas the experimentally measured value reported herein is  $1.3 \times 10^{-3}$  torr. Similar errors would occur if the Knudsen data were extrapolated into the upper pressure range of the DTA results. However, when the Knudsen vapor pressure data for VX and the previously reported DTA data were combined, the calculated vapor pressure (using the equation in table 3) was  $1.1 \times 10^{-3}$  torr. This estimate agrees well with the actual experimental value given above.

The validity of combining Knudsen, isoteniscope, and DTA vapor pressure results is demonstrated in the figure. The experimental data obtained in our study by the Knudsen and isoteniscope methods, which are represented as points in the figure, fit the combined-data Antoine equation curves very well except for EA 2223. The poor fit of the Knudsen vapor pressure values to the combined-data Antoine curve for EA 2223 may be due to the difference in the purity of the two samples used by the DTA and Knudsen methods or to the difference in the number of experimental points measured by each method. The number of experimental vapor pressure points reported for EA 2223 by the DTA method<sup>3</sup> was far greater than the number of points measured by the Knudsen method provided in this report, and several of the DTA points were in a pressure region where the DTA method is known to be less accurate. Consequently, since the Antoine curve generated from the combined data emphasizes the DTA results, the inclusion of DTA data in the region of 1 torr may account for the discrepancy in the EA 2223 results shown in the figure.

## V. CONCLUSIONS.

1. Data are reported for vapor pressures between  $10^{-3}$  torr and 1 torr for candidate chemical agents EA 2223, EA 3547, EA 5365, and EA 5533 as measured by the Knudsen technique. Vapor pressure measurements are also reported for the candidate chemical agent EA 3580 and for chemical agents GD and VX.

2. Vapor pressure data for chemical agents obtained by the Knudsen effusion technique and the isoteniscope method were consolidated with data obtained at higher temperatures by the modified differential thermal analysis (DTA) method, and Antoine vapor pressure equations were derived for predictive use. Predictions of vapor pressures made from these Antoine equations appear to be superior to estimates made by extrapolation of data over a narrower data range.

LITERATURE CITED

1. Smith, A., and Menzies, A.W.C. Studies in Vapor Pressure: III. A Static Method of Determining the Vapor Pressures of Solids and Liquids. *J. Am. Chem. Soc.* 32, 1412 (1910).
2. Thomson, G.W. Physical Methods of Organic Chemistry, Part I. A. Weissberger, ed p. 193. Interscience Publishers. New York, NY. 1949.
3. Belkin, F., and Brown, H.A. EATR 4710. Vapor Pressure Measurements of Some Chemical Agents Using Differential Thermal Analysis, Part I (U). March 1973. CONFIDENTIAL Report.
4. Belkin, F., and Brown, H.A. EATR 4753. Vapor Pressure Measurements of Some Chemical Agents Using Differential Thermal Analysis, Part II (U). May 1973. CONFIDENTIAL Report.
5. Belkin, F., and Brown, H.A. EC-TR-75032. Vapor Pressure Measurements of Some Chemical Agents Using Differential Thermal Analysis, Part III. June 1975. UNCLASSIFIED Report.
6. Jordan, E.T. Vapor Pressure of Organic Compounds. p 22. Interscience Publishers, Inc. New York, NY. 1954.
7. Fowler, L., Trump, W.N., and Vogler, C.E. *J. of Chem & Engr Data* 13, 209 (1968).
8. Kemme, H.R., and Kreps, S.T. Vapor Pressure Determination by Differential Thermal Analysis. *Anal Chem.* 41, 1869 (1969).
9. Penski, E.C., and Latour, L.I. EATR 4491. Conversational Computation Method for Fitting the Antoine Equation to Vapor Pressure-Temperature Data. February 1971. UNCLASSIFIED Report.
10. Zeffert, B.M., and Coulter, P.B. TDMR 1292. Physical Constants of G-Series Compounds-Compounds EA 1210, EA 1211, EA 1212, EA 1213, and EA 1214. July 1947. UNCLASSIFIED Report.
11. Neale, E. P.T.P. 341. The Vapor Pressure of Some Organic Phosphorus Compounds. April 1953. UNCLASSIFIED Report.
12. Benning, R.C., et.al. Monsanto Research Corporation Final Report. Contract DA18-035-AMC-136(A). Properties of EA 3580 (U). December 1967. CONFIDENTIAL Report.
13. Kalvinskas, J.J., Bremer, H.J., and Offner, H.G. AUTONETICS, Division of North American Rockwell Corporation Final Report Volume II. Contract DAAA15-70-C-0065. An Evaluation Study of Chemical Laboratory Equipment and Procedures for Field Use (U). September 1970. UNCLASSIFIED Report.

## DISTRIBUTION LIST NO. 3

| Names                                 | Copies | Names                                                   | Copies |
|---------------------------------------|--------|---------------------------------------------------------|--------|
| EDGWOOD ARSENAL                       |        | Director                                                |        |
| TECHNICAL DIRECTOR                    |        | Defense Civil Preparedness Agency                       |        |
| Attn: SAREA-TD-E                      | 1      | Attn: RE(DEP)                                           | 1      |
| FOREIGN INTELLIGENCE OFFICER          | 1      | Attn: PO(DC)                                            | 1      |
| CHIEF, LEGAL OFFICE                   | 1      | Washington, DC 20301                                    |        |
| CHIEF, SAFETY OFFICE                  | 1      | Commander-In-Chief                                      |        |
| CDR, US ARMY TECHNICAL ESCORT CENTER  | 1      | US Army Europe & 7A                                     |        |
| PUBLIC HEALTH SERVICE LO              | 2      | Attn: AEAGC-CNS                                         |        |
| AUTHOR'S COPY, Chemical Laboratory    | 2      | APO New York 09403                                      | 1      |
| DIRECTOR OF BIOMEDICAL LABORATORY     | 1      | Chief, Office of Research,<br>Development & Acquisition |        |
| Attn: SAREA-BL-M                      | 7      | Attn: DAMA-CSM-CM                                       | 1      |
| Attn: SAREA-BL-H                      | 1      | Attn: DAMA-ARZ-D                                        | 1      |
| Attn: SAREA-BL-O                      | 1      | Washington, DC 20310                                    |        |
| Attn: SAREA-BL-R                      | 1      | US Army Research and Standardization<br>Group (Europe)  |        |
| Attn: SAREA-BL-RM                     | 1      | Box 65, FPO New York 09510                              | 1      |
| DIRECTOR OF CHEMICAL LABORATORY       | 1      | OFFICE OF THE SURGEON GENERAL                           |        |
| Attn: SAREA-CL-BS                     | 1      | HQDA (SGRD-EDE)                                         |        |
| Attn: SAREA-CL-C                      | 1      | Attn: LTC Charles Dettor                                |        |
| Attn: SAREA-CL-P                      | 1      | WASH DC 20314                                           | 1      |
| Attn: SAREA-CL-T                      | 1      | Commander                                               |        |
| Attn: SAREA-CL-T-E                    | 1      | US Army Research Institute of<br>Environmental Medicine |        |
| DIRECTOR OF DEVELOPMENT & ENGINEERING |        | Attn: SGRD-UE-CA                                        | 1      |
| Attn: SAREA-DE-S                      | 4      | Natick, MA 01760                                        |        |
| DIRECTOR OF MANUFACTURING TECHNOLOGY  |        | US ARMY HEALTH SERVICE COMMAND                          |        |
| Attn: SAREA-MT-CT                     | 1      | Commander                                               |        |
| DIRECTOR OF PRODUCT ASSURANCE         |        | US Army Environmental Hygiene Agency                    |        |
| Attn: SAREA-PA-P                      | 1      | Attn: USAEHA-AL, Librarian, Bldg 2100                   |        |
| Attn: SAREA-PA-Q                      | 1      | APG-Edgewood Area                                       | 1      |
| DIRECTOR OF TECHNICAL SUPPORT         |        | Commander                                               |        |
| Attn: SAREA-TS-R                      | 2      | US Army Institute of Surgical Research                  |        |
| Attn: SAREA-TS-L                      | 3      | Brooke Army Medical Center                              |        |
| DEPARTMENT OF DEFENSE                 |        | Fort Sam Houston, TX 78234                              |        |
| Administrator                         |        | Superintendent                                          |        |
| Defense Documentation Center          |        | Academy of Health Sciences                              |        |
| Attn: Accessions Division             | 2      | US Army                                                 |        |
| Cameron Station                       |        | Attn: HSA-CDC                                           | 1      |
| Alexandria, VA 22314                  |        | Attn: HSA-RHE                                           | 1      |
| Director                              |        | Fort Sam Houston, TX 78234                              |        |
| Defense Intelligence Agency           |        | US ARMY MATERIEL DEVELOPMENT<br>AND READINESS COMMAND   |        |
| Attn: DIR-4G1                         | 1      | Commander                                               |        |
| Washington, DC 20301                  |        | US Army Materiel Development and                        |        |
| DEPARTMENT OF THE ARMY                |        | Readiness Command                                       |        |
| HQDA (DAMO-ODC)                       | 1      | Attn: DRCSF-C                                           | 1      |
| WASH DC 20310                         |        | Attn: DRCDE-WB                                          | 1      |
| 5001 Eisenhower Ave                   |        | Alexandria, VA 22333                                    |        |

**DISTRIBUTION LIST NO. 3 (Contd)**

| Names                                                                                                                           | Copies | Names                                                                                                     | Copies |
|---------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------------------------------------------------------------------------------------|--------|
| Commander<br>US Army Foreign Science & Technology Center<br>Attn: DRXST-IS1<br>220 Seventh St., NE<br>Charlottesville, VA 22901 | 2      | Commandant<br>US Army Ordnance Center & School<br>Attn: ATSL-CTD-MS-C<br>APG-Aberdeen Area                | 1      |
| Project Manager for Chemical Demilitarization and Installation Restoration<br>Attn: DRCPM-DR<br>APG-Edgewood Area               | 1      | <b>US ARMY TEST &amp; EVALUATION COMMAND</b>                                                              |        |
| US ARMY ARMAMENT COMMAND                                                                                                        |        | Record Copy<br>CDR, APG<br>Attn: STEAP-AD-R/RHA<br>APG-Edgewood Area, Bldg ES179                          | 1      |
| Commander<br>US Army Armament Command<br>Attn: DRSAR-ASH<br>Attn: DRSAR-PPI<br>Attn: DRSAR-RDT<br>Rock Island, IL 61201         | 1      | CDR, APG<br>Attn: STEAP-TL<br>APG-Aberdeen Area                                                           | 1      |
| Commander<br>Rocky Mountain Arsenal<br>Attn: SARRM-EA<br>Attn: SARRM-MD<br>Denver, CO 80240                                     | 1      | Commander<br>US Army Test & Evaluation Command<br>Attn: AMSTE-NB<br>APG-Aberdeen Area                     | 1      |
| Commander<br>Pine Bluff Arsenal<br>Attn: SARPB-ETA<br>Pine Bluff, AR 71611                                                      | 1      | Commander<br>US Army Tropic Test Center<br>Attn: STETC-MO-A (Tech Library)<br>APO New York 09827          | 1      |
| US ARMY TRAINING & DOCTRINE COMMAND                                                                                             |        | Commander<br>Dugway Proving Ground<br>Attn: STEDP-PC<br>Dugway, UT 84022                                  | 1      |
| Commandant<br>US Army Infantry School<br>Combat Support & Maintenance Dept.<br>Attn: NBC Division<br>Fort Benning, GA 31905     | 1      | <b>DEPARTMENT OF THE NAVY</b>                                                                             |        |
| Commandant<br>US Army Missile & Munitions Center & School<br>Attn: ATSK-TEB-E<br>Redstone Arsenal, AL 35809                     | 1      | Commander<br>Naval Intelligence Support Center<br>4301 Suitland Road<br>Washington, DC 20390              | 1      |
| Commander<br>US Army Armor School<br>Attn: ATSB-CD-MS<br>Fort Knox, KY 40121                                                    | 1      | Commander<br>Naval Ordnance Systems Command<br>Attn: ORD-03D<br>Washington, DC 20360                      | 1      |
| Commander<br>US Army Infantry School<br>Attn: ATSH-CD-MS-C<br>Fort Benning, GA 31905                                            | 1      | Commander<br>Naval Surface Weapons Center<br>Dahlgren Laboratory<br>Attn: GFC<br>Dahlgren, VA 22448       | 1      |
|                                                                                                                                 |        | Chief, Bureau of Medicine & Surgery<br>Department of the Navy<br>Attn: CODE 553-1<br>Washington, DC 20372 | 1      |

DISTRIBUTION LIST NO. 3 (Contd)

| Names                                                                                                 | Copies | Names                                                                                                    | Copies |
|-------------------------------------------------------------------------------------------------------|--------|----------------------------------------------------------------------------------------------------------|--------|
| <b>DEPARTMENT OF THE AIR FORCE</b>                                                                    |        |                                                                                                          |        |
| HQ Foreign Technology Division (AFSC)<br>Attn: PDTR-3<br>Wright-Patterson AFB, OH 45433               | 1      | OUTS'DE AGENCIES                                                                                         |        |
| Commander<br>Aeronautical Systems Division<br>Attn: ASD/AEID<br>Wright-Patterson AFB, OH 45433        | 1      | Director of Toxicology<br>National Research Council<br>2101 Constitution Ave, NW<br>Washington, DC 20418 | 1      |
| HQ, USAF/SGPR<br>Forrestal Bldg<br>WASH DC 20314                                                      | 1      | Director<br>Central Intelligence Agency<br>Attn: ORD/DD/S&T<br>Washington, DC 20505                      | 1      |
| Director<br>Air Force Inspection and<br>Safety Center<br>Attn: IGD(AFISC/SEV)<br>Norton AFB, CA 92409 | 1      |                                                                                                          |        |



DEPARTMENT OF THE ARMY  
US ARMY RESEARCH, DEVELOPMENT AND ENGINEERING COMMAND  
EDGEWOOD CHEMICAL BIOLOGICAL CENTER  
5183 BLACKHAWK ROAD  
ABERDEEN PROVING GROUND, MD 21010-5424

RDCB-DPC-RS

MEMORANDUM FOR Defense Technical Information Center (DTIC), 8725 John J. Kingman Road, Fort Belvoir, VA 22060-6218.

SUBJECT: Change in Limitation (Public Release of Information)

1. The purpose of this memorandum is to recommend the Release of Information to the General Public regarding Edgewood Arsenal Technical Memorandum (EATM 134-2), Viscosity of VX in the Temperature Range -4 degrees - -40 degrees F, dated May 1969; and Edgewood Arsenal Technical Report (EC-TR-76058), The Vapor Pressure of Chemical Agents GD, VX, EA 2223, EA 3547, EA 3580, EA 5365 and EA 5593, dated August 1976. The first memorandum was Confidential and was previously downgraded to Unclassified on 20 Mar 1978. The DTIC Number is AD-501931. The second report is Unclassified and the DTIC Number is ADB-013164.
2. This document has been reviewed by Subject Matter Experts from the Edgewood Chemical Biological Center (ECBC) on Aberdeen Proving Ground, Maryland and deemed releasable to the General Public. Request that this document be properly identified and appropriately marked.
3. As the Security Manager for the documents in question, I concur with the recommendations made by the ECBC Review Team.
4. Point of contact for this action is the Information Security Officer, Ronald Stafford at 410-436-6810 or the undersigned at 410-436-7232.

Encl

*June K. Sellers*  
JUNE K. SELLERS  
ECBC Security and Surety Manager