Orthogonal => linearly independent.

So
$$\# \{X_1 := X_r \} \subseteq \dim_{\mathbb{C}} \ell(6)$$

w

Xi irriducible, distinct characters of

S.

Vext: $X_1 := X_r$ generate $C(6)$
 $\forall O \vdash C(6) O : G \rightarrow C$
 $X_1 := X_r$ orthogonal =>

 $O = O - \sum_{i=1}^{r} \overline{O}, X_i > X_i \in C(6)$

and $O \in O : G \rightarrow C \in C(6)$

orthogonal =>

C(aim: $O = O : G \rightarrow C \in C(6)$

and $O : G \rightarrow G \in C(6)$

orthogonal =>

 $O = O : G \rightarrow C(6)$

and $O : G \rightarrow G \in C(6)$

orthogonal =>

 $O : G \rightarrow G \in C(6)$

and $O : G \rightarrow G \in C(6)$

orthogonal =>

 $O : G \rightarrow G \in C(6)$

orthogonal =>

 $O : G \rightarrow G \in C(6)$

orthogonal =>

 $O : G \rightarrow G \in C(6)$

orthogonal =>

 $O : G \rightarrow G \in C(6)$

orthogonal =>

 $O : G \rightarrow G \in C(6)$

orthogonal =>

 $O : G \rightarrow G \in C(6)$

orthogonal =>

 $O : G \rightarrow G \in C(6)$

orthogonal =>

 $O : G \rightarrow G \in C(6)$

orthogonal =>

 $O : G \rightarrow G \in C(6)$

orthogonal =>

 $O : G \rightarrow G \in C(6)$

orthogonal =>

 $O : G \rightarrow G \in C(6)$

orthogonal =>

 $O : G \rightarrow G \in C(6)$

orthogonal =>

 $O : G \rightarrow G \in C(6)$

orthogonal =>

 $O : G \rightarrow G \in C(6)$

orthogonal =>

 $O : G \rightarrow G \in C(6)$

orthogonal =>

 $O : G \rightarrow G \in C(6)$

orthogonal =>

 $O : G \rightarrow G \in C(6)$

orthogonal =>

 $O : G \rightarrow G \in C(6)$

orthogonal =>

 $O : G \rightarrow G \in C(6)$

orthogonal =>

 $O : G \rightarrow G \in C(6)$

orthogonal =>

 $O : G \rightarrow G \in C(6)$

orthogonal =>

 $O : G \rightarrow G \in C(6)$

orthogonal =>

 $O : G \rightarrow G \in C(6)$

orthogonal =>

 $O : G \rightarrow G \in C(6)$

orthogonal =>

 $O : G \rightarrow G \in C(6)$

orthogonal =>

 $O : G \rightarrow G \in C(6)$

orthogonal =>

 $O : G \rightarrow G \in C(6)$

orthogonal =>

 $O : G \rightarrow G \in C(6)$

orthogonal =>

 $O : G \rightarrow G \in C(6)$

orthogonal =>

 $O : G \rightarrow G \in C(6)$

orthogonal =>

 $O : G \rightarrow G \in C(6)$

orthogonal =>

 $O : G \rightarrow G \in C(6)$

orthogonal =>

 $O : G \rightarrow G \in C(6)$

orthogonal =>

 $O : G \rightarrow G \in C(6)$

orthogonal =>

 $O : G \rightarrow G \in C(6)$

orthogonal =>

 $O : G \rightarrow G \in C(6)$

orthogonal =>

 $O : G \rightarrow G \in C(6)$

orthogonal =>

 $O : G \rightarrow G \in C(6)$

orthogonal =>

 $O : G \rightarrow G \in C(6)$

orthogonal =>

 $O : G \rightarrow G \in C(6)$

orthogonal =>

 $O : G \rightarrow G \in C(6)$

orthogonal =>

 $O : G \rightarrow G \in C(6)$

orthogonal =>

 $O : G \rightarrow G \in C(6)$

orthogonal =>

 $O : G \rightarrow G \in C(6)$

orthogonal =>

 $O : G \rightarrow G \in C(6)$

Thin Ph (
$$f \circ p(h)$$
)

$$= \frac{1}{46} \sum_{g \circ h} f(g) p(g) p(g) \cdot p(h-1)$$

$$= \frac{1}{46} \sum_{g \circ h} f(hgh) p(hgh-1)$$

$$= f$$

$$= f$$

$$= f$$

$$= f$$

$$= f$$

$$= f + f$$

$$= f +$$

On the other hand.

$$(rg) = \frac{1}{110} \sum_{g \in G} \overline{(g)} \cdot (g \cdot e)$$

$$= \frac{1}{110} \sum_{g \in G} \overline{(g)} \cdot g = 0$$

$$= 0$$

X:(e) \$16 Vequires onors on algebraic number theory.

Calculate the character task for
$$G$$

$$G = Cn = \frac{2}{nZ}.$$
Then $X_l: G \to C^X$,
$$\overline{h} \to e^{\frac{2\pi i G}{n}} \cdot \text{Al} \qquad e^{\frac{2\pi i G}{n}} = f_n$$

$$X_0, x_1 - \dots - x_{n-1}$$

[ist all the elements

l,
$$\alpha$$
, $-$ - α^{n-1}
 χ_0 1. 1 . - - ,

 χ_1 1 , χ_1 χ_2 1 . χ_1 χ_1 χ_2 1 . χ_1 χ_2 1 . χ_1 χ_2 1 . χ_1 χ_1 χ_2 1 . χ_1 χ_1 χ_2 1 . χ_1 χ_1 χ_2 χ_1 χ_1 χ_2 χ_1 χ_1 χ_1 χ_2 χ_1 χ_1 χ_2 χ_1 χ_1 χ_1 χ_2 χ_1 χ_1 χ_1 χ_2 χ_1 χ_1 χ_2 χ_1 χ_1 χ_1 χ_2 χ_1 χ_1 χ_1 χ_1 χ_1 χ_1 χ_1 χ_2 χ_1 χ_1

 $\begin{array}{lll} \chi(x) = & 2 & n) & \frac{2\pi}{n} \cdot c2 \\ \chi(y) = & 0 & \text{inreducise} \\ (\chi(x) = & 0) & \text{inreducise} \end{array}$ $(\chi(x) = & 0) & \frac{2\pi}{n} \cdot c2 \\ \chi(y) = & 0 & \text{inreducise} \end{array}$ $(\chi(x) = & 0 & \text{inreducise} \\ \chi(x) = & 0 & \text{inreducise} \end{array}$ $(\chi(x) = & 0 & \text{inreducise} \\ \chi(x) = & 0 & \text{inreducise} \end{array}$

$$|^{2} + |^{2} + 3^{2} + 3^{2} + 3^{2} + \pi / (e)^{2} = \pi / (e) = 2x$$

$$= 7 \quad \pi / (e) = 2.$$

$$x_{j-}, x_{2} = x_{j-} = 0$$
 $x_{j}(2) = 0$. $x_{j}(2) = 0$

$$(x_{y}, x_{y}) = \frac{1}{2k} \cdot (6 - 3a) = 0$$

$$= 0 = 2$$

$$(x_{x}, x) = 0 = 0 = \frac{1}{2k} (8 + 86) = 0$$

$$= 0 = 0 = 0$$

$$= 0 = 0$$

$$= 0 = 0$$

$$\chi_{
u}$$

$$\frac{\chi_{i}(\zeta_{j})}{4\zeta_{j}} = a_{ij}$$

$$\frac{1}{4\zeta_{j}} A \cdot \int_{-4\zeta_{j}}^{4\zeta_{j}} A^{T} = 2$$

$$= \frac{1}{46} A^{T} \overline{A} \cdot \left[\overline{AC_{i}} \right] = \frac{1}{2}$$

$$= \frac{1}{2} \times \chi_{h}(C_{i}) \cdot \overline{\chi_{h}(C_{j})} \cdot \overline{AC_{j}} = \frac{1}{46} \sigma_{ij}$$

$$= \frac{1}{2} \times \chi_{h}(C_{i}) \cdot \overline{\chi_{h}(C_{j})} \cdot \overline{AC_{j}} = \frac{1}{46} \sigma_{ij}$$

$$= \frac{1}{2} \times \chi_{h}(C_{i}) \cdot \overline{\chi_{h}(C_{j})} = \frac{1}{46} \sigma_{ij}$$

$$= \frac{1}{2} \times \chi_{h}(C_{i}) \cdot \overline{\chi_{h}(C_{j})} = \frac{1}{46} \sigma_{ij}$$

$$= \frac{1}{2} \times \chi_{h}(C_{i}) \cdot \overline{\chi_{h}(C_{j})} = \frac{1}{46} \sigma_{ij}$$

$$= \frac{1}{2} \times \chi_{h}(C_{i}) \cdot \overline{\chi_{h}(C_{j})} = \frac{1}{46} \sigma_{ij}$$

$$= \frac{1}{2} \times \chi_{h}(C_{i}) \cdot \overline{\chi_{h}(C_{j})} = \frac{1}{46} \sigma_{ij}$$

$$= \frac{1}{2} \times \chi_{h}(C_{i}) \cdot \overline{\chi_{h}(C_{j})} = \frac{1}{46} \sigma_{ij}$$

$$= \frac{1}{2} \times \chi_{h}(C_{i}) \cdot \overline{\chi_{h}(C_{j})} = \frac{1}{46} \sigma_{ij}$$

$$= \frac{1}{2} \times \chi_{h}(C_{i}) \cdot \overline{\chi_{h}(C_{j})} = \frac{1}{46} \sigma_{ij}$$

$$= \frac{1}{2} \times \chi_{h}(C_{i}) \cdot \overline{\chi_{h}(C_{j})} = \frac{1}{46} \sigma_{ij}$$

$$= \frac{1}{2} \times \chi_{h}(C_{i}) \cdot \overline{\chi_{h}(C_{j})} = \frac{1}{46} \sigma_{ij}$$

$$= \frac{1}{2} \times \chi_{h}(C_{i}) \cdot \overline{\chi_{h}(C_{j})} = \frac{1}{46} \sigma_{ij}$$

$$= \frac{1}{2} \times \chi_{h}(C_{i}) \cdot \overline{\chi_{h}(C_{j})} = \frac{1}{46} \sigma_{ij}$$

$$= \frac{1}{2} \times \chi_{h}(C_{i}) \cdot \overline{\chi_{h}(C_{j})} = \frac{1}{46} \sigma_{ij}$$

$$= \frac{1}{2} \times \chi_{h}(C_{i}) \cdot \overline{\chi_{h}(C_{j})} = \frac{1}{46} \sigma_{ij}$$

$$= \frac{1}{2} \times \chi_{h}(C_{i}) \cdot \overline{\chi_{h}(C_{j})} = \frac{1}{46} \sigma_{ij}$$

$$= \frac{1}{2} \times \chi_{h}(C_{i}) \cdot \overline{\chi_{h}(C_{j})} = \frac{1}{46} \sigma_{ij}$$

$$= \frac{1}{2} \times \chi_{h}(C_{i}) \cdot \overline{\chi_{h}(C_{j})} = \frac{1}{46} \sigma_{ij}$$

$$= \frac{1}{2} \times \chi_{h}(C_{i}) \cdot \overline{\chi_{h}(C_{j})} = \frac{1}{46} \sigma_{ij}$$

$$= \frac{1}{2} \times \chi_{h}(C_{i}) \cdot \overline{\chi_{h}(C_{j})} = \frac{1}{46} \sigma_{ij}$$

$$= \frac{1}{2} \times \chi_{h}(C_{i}) \cdot \overline{\chi_{h}(C_{j})} = \frac{1}{2} \times \chi_{h}(C_{i})$$

$$= \frac{1}{2} \times \chi_{h}(C_{i}) \cdot \overline{\chi_{h}(C_{i})} = \frac{1}{2} \times \chi_{h}(C_{i})$$

$$= \frac{1}{2} \times \chi_{h}(C_{i}) \cdot \overline{\chi_{h}(C_{i})} = \frac{1}{2} \times \chi_{h}(C_{i})$$

$$= \frac{1}{2} \times \chi_{h}(C_{i}) \cdot \overline{\chi_{h}(C_{i})} = \frac{1}{2} \times \chi_{h}(C_{i})$$

$$= \frac{1}{2} \times \chi_{h}(C_{i}) \cdot \overline{\chi_{h}(C_{i})} = \frac{1}{2} \times \chi_{h}(C_{i})$$

$$= \frac{1}{2} \times \chi_{h}(C_{i}) \cdot \overline{\chi_{h}(C_{i})} = \frac{1}{2} \times \chi_{h}(C_{i})$$

$$= \frac{1}{2} \times \chi_{h}(C_{i}) \cdot \overline{\chi_{h}(C_{i})} = \frac{1}{2} \times \chi_{h}(C_{i})$$

$$= \frac{1}{2} \times \chi_{h}(C_{i}) \cdot \overline{\chi_{h}(C_{i})} = \frac{1}{2} \times \chi_{h}(C_{i})$$

$$= \frac{1}{2} \times \chi_{h}(C_{i}) \cdot \overline{\chi_{h}(C_{i})} = \frac{1}{2} \times \chi_{h}(C_{i})$$

$$= \frac{1}{2} \times \chi_{$$

Alterhaping upin. Symmetric reprin and VQVD Sz 52(V) = Span (VOW + WOV) 121V) --)pan (vow-wov) Vi · - - Vn. basis of V. 5²(V) has basis viego + Violi = Viv. 15 (5)5n. 1 (1) 1-5 1-5 1 = V.1V. GPV =1 () PVQV. and Commyk with 5) 50 5 x /2 rep'n V&Visa

arl invariant under G 121 SZV $\chi_{S^2(V)}(g) = \frac{1}{2} \left(\chi(g)^2 + \chi(g^2) \right)$ $\chi_{n^{2}(u)}(9) = -(\chi_{19})^{2} - \chi_{19}$ 49. 3 hasis V. - Vy 1.7. 9 Vi= 11: Vi 9/v:@y)=]i); (v:@y) Apply to Sk or