Homework 5

STAT 984

Emily Robinson

October 10, 2019

Exercise 2.24

Prove Slutsky's Theorem, Theorem 2.39, using the following approach:

(a) Prove the following lemma:

Lemma 2.42 Let V_n and W_n be k-dimensional random vectors on the same sample space.

If
$$V_n \stackrel{d}{\to} V$$
 and $W_n \stackrel{P}{\to} 0$, then $V_n + W_n \stackrel{d}{\to} V$.

Hint: For $\epsilon > 0$, let ϵ denote the k-dimentional vector all of whose entries are ϵ . Take $\mathbf{a} \in \mathbb{R}^k$ to be a continuity point of $\mathbf{F}_v(\mathbf{v})$. Now argue that \mathbf{a} , since it is a point of continuity, must be contained in a neighborhood consisting only of points of continuity; therefore, ϵ may be taken small enough so that $\mathbf{a} - \epsilon$ and $\mathbf{a} + \epsilon$ are also points of continuity. Prove that

$$P(\boldsymbol{V}_n \leq \boldsymbol{a} - \boldsymbol{\epsilon}) - P(||\boldsymbol{W}_n|| \geq \epsilon) \leq P(\boldsymbol{V}_n + \boldsymbol{W}_n \leq \boldsymbol{a})$$

$$\leq P(\boldsymbol{V}_n \leq \boldsymbol{a} + \boldsymbol{\epsilon}) + P(||\boldsymbol{W}_n|| \geq \epsilon).$$

Next, take \limsup_n and \liminf_n . Finally, let $\epsilon \to 0$.

Proof.

(b) Show how to prove Theorem 2.39 using Lemma 2.42.

Hint: Consider the random vectors

$$oldsymbol{V}_n = egin{pmatrix} oldsymbol{X}_n \ oldsymbol{c} \end{pmatrix} ext{ and } oldsymbol{W}_n = egin{pmatrix} oldsymbol{0} \ oldsymbol{Y}_n - oldsymbol{c} \end{pmatrix}.$$

Proof.

Exercise 3.2

The diagram at the end of this section suggests that neither $X_n \stackrel{a.s.}{\to} X$ nor $X_n \stackrel{qm}{\to} X$ implies the other. Construct two counterexamples, one to show that $X_n \stackrel{a.s.}{\to} X$ does not imply $X_n \stackrel{qm}{\to} X$ and the other to show that $X_n \stackrel{qm}{\to} X$ does not imply $X_n \stackrel{a.s.}{\to} X$.

- (1)
- (2)

Exercise 3.3

Let $B_1, B_2, ...$ denote a sequence of events. Let B_n i.o., which stands for B_n infinitely often, denote the set

 B_n i.o. $\stackrel{\text{def}}{=} \{ \omega \in \Omega : \text{ for every } n, \text{ there exists } k \geq n \text{ such that } \omega \in B_k \}.$

Prove the First Borel-Cantelli Lemma, which states that if $\sum_{n=1}^{\infty} P(B_n) < \infty$, then $P(B_n \text{ i.o.}) = 0$.

Hint: Argue that

$$B_n$$
 i.o. $= \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} B_k$,

then adapt the proof of Lemma 3.9.

Exercise 3.4

Use the steps below to prove a version of the Strong Law of Large Numbers for the special case in which the random variables $X_1, X_2, ...$ have a finite fourth moment, $\mathrm{E}[X_1^4] < \infty$.

- (a) Assume without loss of generality that $E[X_1] = 0$. Expand $E[(X_1 + ... + X_n)^4]$ and then count the nonzero terms. **Hint:** The only nonzero terms are of the form $E[X_i^4]$ or $(E[X_i^2])^2$.
- (b) Use Markov's inequality (1.35) with r = 4 to put an upper bound on

$$P(|\bar{X}_n| > \epsilon)$$

involving $E[(X_1 + ... + X_n)^4]$.

(c) Combind parts (a) and (b) with Lemma 3.9 to show that $\bar{X}_n \stackrel{a.s.}{\to} 0$. **Hint:** Use the fact that $\sum_{n=1}^{\infty} n^{-2} < \infty$.

Exercise 3.13

Prove that if there exists $\epsilon > 0$ such that $\sup_n \mathbb{E}[Y_n]^{1+\epsilon} < \infty$, then $Y_1, Y_2, ...$ is uniformly integrable sequence.

Hint: First prove that

$$|Y_n|I\{|Y_n| \ge \alpha\} \le \frac{1}{\alpha^{\epsilon}}|Y_n|^{1+\epsilon}.$$

Exercise 3.14

Prove that if there exists a random variable Z such that $E|Z| = \mu < \infty$ and $P(|Y_n| \ge t) \le P(|Z| \ge t)$ for all n and for all t > 0, then $Y_1, Y_2, ...$ is a uniformly integrable sequence. You may use the fact (without proof) that for a nonngative X,

$$E[X] = \int_0^\infty P(X \ge t) dt.$$

Hint: Consider the random variables $|Y_n|I\{|Y_n| \ge t\}$ and $|Z|I\{|Z| \ge t\}$. In addition, use the fact that

$$\mathrm{E}|Z| = \sum_{i=1}^{\infty} \mathrm{E}\left[|Z|I\{i=1 \leq |Z| < i\}\right]$$

to argue that $\mathrm{E}[|Z|I\{|Z|<\alpha\}] \to \mathrm{E}|Z|$ as $\alpha \to \infty$.