Capítulo 1

Introducao ao Openstack

1.1 O que e Openstack

Em um primeiro momento poderíamos definir vagamente OpenStack como um software de cloud computing. Sendo um pouco mais específico: um Sistema Operacional projetado para nuvem capaz de controlar uma enorme quantidade de recursos computacionais (processamento, armazenamento e rede) em um Datacenter, ou seja, OpenStack é um projeto aberto para a criação de nuvens privadas e públicas, um sistema operacional para gestão e controle nuvem. Um cenário típico de um ambiente de cloud.

O termo <u>projeto aberto</u> neste contexto merece destaque, pois implica que o projeto nasceu com o objetivo de ser transparente e independente de fabricante. O site do projeto destaca os seguintes valores: **open source**, **open design**, **open development and an open community**.

Como "plataforma base" poderíamos empregar o software OpenStack, por exemplo, para construção de uma solução de Infraestutura como Serviço (Infrastructure as a Service – IaaS).

Basicamente uma plataforma de IaaS fornece meios para criação/provisionamento de máquinas virtuais (ou nós computacionais) sob demanda. Permitindo ainda que sua infraestrutura de servidores possa expandir ou encolher de forma elástica de acordo com a necessidade da sua aplicação.

1.1.1 Arquitetura

Como uma plataforma de computação em nuvem o OpenStack foi projetado para ser extremamente <u>escalável e flexível</u>. A plataforma é composta por vários "sub projetos" que juntos formam o seu núcleo (core). Sua arquitetura é modular formada por vários componentes que juntos implementam as funcionalidades três pilares que sustentam uma infraestrutura de nuvem: Processamento (compute), Rede (networking) e Armazenamento (storing).

Estruturas de processamento		
Nome	Funcao	
nova	Gerencia o ciclo de vida das instâncias de computação em um ambiente	
	OpenStack. As responsabilidades incluem a geração, programação des-	
	mantelamento de máquinas virtuais sob demanda.	

Estruturas de networking			
Nome	Funcao		
Neutron(nova-compute)	Permite Network-Conectividade-as-a-Service para ou-		
	tros serviços OpenStack, como OpenStack Compute.		
	Fornece uma API para que os usuários definam as		
	redes e os anexos neles. Tem uma arquitetura conec-		
	tável que suporta muitos fornecedores de redes popu-		
	lares e tecnologias.		

Estruturas de storage			
Nome	Funcao		
Swift	Armazena e recupera objetos de dados não estruturados arbitrárias atra-		
	vés de um HTTP baseado API RESTful. É altamente tolerante a falhas		
	com a sua replicação de dados e arquitetura scale-out. A sua implemen-		
	tação não é como um servidor de arquivos com diretórios montáveis.		
	Neste caso, ele grava objetos e arquivos para várias unidades, garantindo		
	que os dados são replicados em um cluster de servidor		
Cinder	Fornece armazenamento em bloco persistente para instâncias em execução.		
	Sua arquitetura condutora conectável facilita a criação e gestão de disposi-		
	tivos de armazenamento de bloco.		

Além dos componentes que formam o core do OpenStack a plataforma conta com um conjunto de serviços que integra cada componente para fornecer uma plataforma de IaaS completa. Essa integração é possível porque cada componente disponibiliza um conjunto APIs que permite o acesso às suas funcionalidades. Os serviços são os seguintes:

Estruturas de processamento			
Serviço	Funcao		
Keystone	Fornece um serviço de autenticação e autorização para outros serviços		
	OpenStack. Fornece um catálogo de pontos de extremidade para todos		
	os serviços OpenStack.		
Glance	Armazena e recupera imagens de disco de máquina virtual. OpenStack		
	Compute faz uso deste durante o exemplo de provisionamento.		
Ceilometer	Monitora e faz medidas do OpenStack nuvem para o faturamento,		
	o benchmarking, escalabilidade e fins estatísticos.		
Heat	Orquestra múltiplas aplicações em nuvem compostas usando o forma-		
	to de modelo HOT nativo ou o formato de modelo AWS CloudForma-		
	tion, tanto através de uma API REST OpenStack-nativo e uma consul-		
	ta API CloudFormation-compatível.		
Trove	Fornece dados-as-a-Service funcionalidade escalável e confiável nuvem		
	para ambos os motores de banco de dados relacionais e não-relacionais.		

Figura 1.1: Arquitetura do OpenStack

1.1.2 Exemplo de Arquitetura

OpenStack é altamente configurável para atender às necessidades diferentes, com vários nós Compute, rede e opções de armazenamento. Neste tutorial será utilizado as seguintes configurações:

- O nó Controller executa o serviço de Identidade, serviço de imagem, parte do Compute gestão, e o painel de instrumentos. Ele também inclui suporte de serviços como um banco de dados SQL, fila de mensagens, e Network Time Protocol (NTP).
- O nó Compute executa parte da do Hypervisor do Compute que opera os "tenants" das máquinas virtuais, ou instancias. Por padrão, Compute usa KVM como o hypervisor. Nó Compute também dispõe "tenants" de rede fornece firewall (grupos de segurança) serviços. Pode-se executar mais de um nó. Compute

Opcionalmente, o nó Compute executa um agente de telemetria para recolher metros. Além disso, ele pode conter uma terceira interface de rede em uma rede de armazenamento separado para melhorar o desempenho dos serviços de armazenamento.

 O nó Block Storage opcional contém os discos que o serviço Block Storage provisões para instâncias de máquinas virtuais inquilino. Pode-se executar mais de um desses nós; $\bullet\,$ O nó $Object\ Storage$ contêm o discos que o serviço de armazenamento objeto usa para conta de armazenamento, recipiente e objeto. A arquitetura minima são dois nós.

Minimal Architecture Example - Hardware Requirements Legacy Networking (nova-network)

Figura 1.2: Arquitetura minima de hardware para suportar OpenStack

Minimal Architecture Example - Network Layout Legacy Networking (nova-network)

Figura 1.3: Arquitetura de rede para o OpenStack

Capítulo 2

Ambiente Basico

2.1 Passos iniciais de instalação

Para melhor performance, é recomendado que o ambiente seja parecido ou exceda os requisitos de hardware na figura 1.2 do capítulo anterior. No entanto, OpenStack não requer uma quantidade significativa de recursos e os seguintes requisitos mínimos devem suportar um ambiente de "proof-of-concept" com os serviços centrais e várias instâncias CirrOS

- <u>nó Controller</u>:1 processador, 2GB de memória e 10GB de armazenamento
- nó Compute: 1 processador, 2GB de memória e 20GB de armazenamento

Para poupar espaço em disco e fornecer mais recursos para OpenStack, recomendamos uma instalação mínima de sua distribuição Linux. Além disso, é altamente recomendável que você instalar uma versão de sua distribuição de 64 bits em, pelo menos, o nó *Compute*. Se você instalar uma versão de sua distribuição no nó *Compute* de 32 bits, a tentativa de iniciar uma instância usando uma imagem de 64 bits falhará. Muitos usuários construir seus ambientes de teste em máquinas virtuais (VMs). Os principais benefícios de VMs incluem o seguinte:

- Um servidor físico pode suportar vários nós, cada um com praticamente qualquer número de interfaces de rede.
- Capacidade de tomar "snap shots" periódicas durante todo o processo de instalação e "voltar" para uma configuração de trabalho, no caso de um problema.

\$ openssl rand -hex 10

Para as senhas dos serviços do OpenStack, use $SERVICE_PASS$ e para as senhas de banco de dados DB_PASS .

Nome da Senha	Descricao
ADMIN_PASS	Senha do usuario admin
CEILOMETER_DBPASS	
$CEILOMETER_PASS$	
$CINDER_DBPASS$	
$CINDER_PASS$	
$DEMO_PASS$	Senha do usuario demo
$GLANCE_DBPASS$	Senha do banco de dados para o servico de Imagem
$GLANCE_PASS$	Senha do usuario de servico de Imagem glance
KEYSTONE_DBPASS	Senha do banco de dados para o servico de autenticacao
NOVA_DBPASS	Senha do banco de dados para o servico Compute
NOVA_PASS	Senha do usuario de servico de Compute
RABBIT_PASS	Senha do usuario convidado do $RabbitMQ$

OpenStack e serviços de suporte exigem privilégios administrativos durante a instalação e operação. Em alguns casos, os serviços de realizar modificações para o host que pode interferir com ferramentas de automação de implantação, tais como Ansible, Chef e Puppet. Por exemplo, alguns serviços OpenStack adicionar um envoltório de "root" para sudo que podem interferir com as políticas de segurança.

Depois de instalar o sistema operacional em cada nó para a arquitetura que optar por utilizar, é necessário configurar as interfaces de rede.É recomendado que desativar todas as ferramentas de gerenciamento de rede automatizados e editar manualmente os arquivos de configuração apropriados para distribuição.

2.2 Distribuicao da Rede no modo Legacy (novanetwork)

O exemplo da arquitetura com a rede no modo Legacy requer um nó controlador e pelo menos um nó *Compute*. O nó controlador contém uma interface de rede na rede de gestão. O nó *Compute* contém uma interface de rede na rede de gestão e um na *rede externa*.

A arquitetura em exemplo assume o uso da seguintes redes:

- Gerenciador de rede:
- Rede externa:

2.2.1 Controller Node

Configuração da Rede

- Endereco de Ip:
- <u>Mascara de Rede</u>: 255.255.255.0 (ou /24)
- Gateway:

Reinicie o sistema para ativar as mudancas

2.2. DISTRIBUICAO DA REDE NO MODO LEGACY (NOVA-NETWORK)9

Configurar nome da Rede

- Configurar o nome do computador (hostname) do nó para Controller
- Editar o arquivo /etc/hosts com as seguintes configurações

```
\#controller

<endereço_de_ip>controller

\#compute1\#
<endereco_de_ip>compute1
```

 ${\color{red} \underline{OBS}}$: Algumas distribuições adicionam uma entrada estranha no arquivo ${\color{red} \underline{/etc/hosts}}$ que resolve o nome da máquina para outro endereço IP de autoretorno, como 127.0.1.1. Você deve comentar ou remover esta entrada para evitar problemas de resolução de nomes.

2.2.2 Nó Compute

Configuração da Rede

Configurar a primeira interface como interface de gerenciamento

- Endereco de Ip:
- <u>Mascara de rede</u>: 255.255.255.0 (ou /24)
- Gateway:

Configurar a segunda interface como externa utilizando uma configuração especial sem um endereco de Ip assinalado.

Reescreva $NOME_INTERFACE$ com o nome da interface atual. Exemplo: eth1, ens224

• Edite o arquivo /etc/network/interfaces com as seguintes configuracoes:

Reinicie o sistema para ativar as mudancas

Configurar nome da rede

- Coloque o nome do computador (hostname) do no como compute1
- Edite o arquivo /etc/hosts com as seguintes configuracoes

```
\#controller
<endereço\_de\_ip>controller
\#compute1\#
<endereco\_de\_ip>compute1
```

2.3 Pacotes OpenStack

Distribuições liberam pacotes OpenStack como parte da distribuição ou usando outros métodos devido às diferentes datas de lançamento. Realizar esses procedimentos em todos os nós

<u>OBS</u>: Desativar ou remover qualquer servico de atualizacao automatica, pois pode modificar o ambiente OpenStack

Permitir OpenStack Repositorio

• Instalar o arquivo "keyring" Ubuntu Cloud e repositorio

```
\label{eq:condition}  \#\ apt-getinstallubuntu-cloud-keyring\\ \#\ echo\ "deb\ http://ubuntu-cloud.archive.canonical.com/ubuntu"\ "trusty-updates/kilo\ main"\ >/etc/apt/sources.list.d/cloudaarchive-kilo.list
```

Finalizar Instalacao

 $\bullet~\#$ apt-get update && apt-get dist-upgrade

 $\underline{\mathbf{OBS}}$: Se a atualizacao inclui um novo kernel, reiniciar o sistema para ativar

2.4 Banco de dados SQL

A maioria dos servicos OpenStack usa um banco de dados SQL para armazenar informacao. O banco de dados tipicamente executa no nó Controller. O procedimento nesta documentação usa o MariaDB ou o MySQL dependendo da distribuicao. Os servicos do OpenStack também suporta outros bancos de dados SQL.

Instalar e configurar o banco de dados do Servidor

1. Instalar pacotes

```
# apt-get install mariadb-server python-mysqldb
```

2. Escolhe uma senha para a conta de super-usuario

3. Criar e editar o arquivo $\underline{/etc/mysql/conf\cdot d/mysqld_openstack \cdot cnf}$ com as seguintes configuracoes:

```
[mysqld]
...
bind-address = <endereço_de_ip>
default-storage-engine = innodb
innodb_file_per_table
collation-server = utf8_general_ci
init-connect = 'SET NAMES utf8'
character-set-server = utf8
```

Finalizar Instalação

1. Reiniciar o banco de dados

```
service mysql restart
```

2. Guardar o banco de dados

```
# mysql_secure_installation ...

Set root password? [Y/N] ...

Remove anonymous users? [Y/N] y
... Sucess!

...

Disallow root login remotely? [Y/N] y
... Sucess!

Remove test database and access to it? [Y/N] Y
- Dropping test database ...
... Sucess!
- Removing privileges on test database ...
... Success!
...

Reload privilege tables now? [Y/N] Y
... Sucess!
...

Thanks for using MariaDB!
```

2.5 Fila de Mensagens (Message QUEUE)

OpenStack usa o message queue para coordernar operações e status da informação através dos serviços. O servico message queue tipicamente é executado no nó Controller. OpenStack suporta vários servicos de fila de mensagem, incluindp RabbitMQ,Qpid e ZeroMQ. Contudo, a maioria das distribuições que o pacote OpenStack suporta um particular servico de fila de mensagens. Esta documentação implementa o RabbitMQ servico de message queue, pois a maioria das distribuições o suportam.

2.5.1 Instalar o pacote de fila de mensagens

• Instalar o pacote

apt-get install rabbitmq-server

2.5.2 Configurar o serviço de fila de mensagens

1. Adicionar o usuário openstack

```
# rabbitmqctl add_user openstack RABBIT_PASS Creating user "openstack" \cdots done.
```

2. Permitir configuração, escrita, e acesso a leitura for user

```
# rabbitmqctl set_permissions openstack ".* " ".* " ".*"
Setting permissions for user "openstack" vhost "/"
```