Selection in worst-case linear time
(OR)
Median-finding algorithm
(OR)
Median-of-Medians algorithm
The algorithm "DETERMINISTIC-SELECT" has the running time O'N
in the worst case. Like RANDOMIZED-SELECT this algorithm
The algorithm "DETERMINISTIC-SELECT" has the running time O(n in the worst case. Like RANDOMIZED-SELECT, this algorithm finds the desired element by recursively partitioning the input
W 8 800 -
Here, we guarantee a good split upon partitioning the array.
The algorithm uses the PARTITION algorithm of QUICKSORT (but modified to take the element to partition around as an
(but modified to take the element to partition around as an
input parameter).
Arren
DETERMINISTIC-SELECT (A, p, r, i)
1) Divide the n elements of the input array into [5] group of 5 elements each and at most one group made up
of 5 elements each and at most one group made up
of the semaining n mod 5 elements -
) Find the median of each of the [3] groups by first
insertion-sorting the elements of each group and then
picking the median from the sorted hist of group elements.
Apply DETERMINISTIC-SIELECT recursively to find the
median (x) of [3] medians found in step(2).

- Y) Pastition the input array around the medicin-of medicins "it" using the modified version of PARTITION. So, or is the 12th smallest element (where, k is the one more than the number of elements on the low side (left till) of the partition, and trese are (n-k) elements on the right side of the partition.
- 5) If (i==k); then seturn x. Otherwise, use DETERMENTERL

 SPELECT secursively to find the ith smallest element

 on the left side (if i< k); or find the (i-k)th

 smallest element on the sight side (if i>k).

Analysis of Running Time: -

A

(Arrows go from larger elements to smaller elements)

Determine a lower bound on the number of elements that are greater than x i'e' find atleast how many elements are greater than x.

- => Forom the bigure, we can visualize that At least half of the medians (found in Step (2)) are preates than or equal to the medians of medians "x". => Thus, at least half of the F37 groups contribute at least 3 elements that are greater than x; (except the group that has fewer than 5 elements And the

 Number of elements

 greater than xis at least $3(\sqrt{2})^2 - 2$ (Discourting incomplete group and the group that contains x)

 group that contains xSo, the number of)
 elements greater) is at least 3n-6.
- > So, in the worst-case steps) calls DETERMINISTIC-SELECT secursively on at most 7n+6 elements.

T(n)
$$<$$
 T($\lceil \frac{n}{3} \rceil$) + T($\lceil \frac{n}{4} \rceil$) + O(n)

(Step(3))

(Step(5))

(O(n) coldy of sixt on on (larb of six on (larb of

So, we can condude that worst-care running time of DETERMENTISTIC-SELECT is O(n); and the secursorce relation is if the form: $T(n) \leq \int_{0}^{\infty} O(1) \int_{0}^{\infty} n < 140$ Forming groups of 7" => Number of elements)

greater than x

is at least

([[1]]-2] 3 4n - 8 $= \frac{2n}{9} - 8.$ So, the number of elements) is at least $\frac{2n-8}{7}$ =) So, in the worst-case step(s) calls the algorithm
on at most 50+8. planents.

$$T(n) = T(\frac{n}{4}) + T(\frac{n}{4} + 8) + O(n)$$

$$\leq \frac{n}{4} + c(\frac{n}{4} + 8) + an$$

$$\leq \frac{n}{4} + c + \frac{sn}{4} + 8c + an$$

$$= \frac{cn}{4} + 9c + an$$

$$= \frac{cn}{4} + 9c + an$$

$$T(n) = \frac{n}{4} + 9c + an$$

$$Cn + (-\frac{n}{4} + 9c + an)$$
which is at most on it;
$$Cn + (-\frac{n}{4} + 9c + an) = 0.$$
On solving we get;
$$C \geq \frac{1}{4} = n$$

$$C \geq \frac{$$