Number Theory Part V

Integer factoring, discrete log algorithms, standard parameters

Integer Factoring

- Factoring trial-and-error method: ∀ p∈[2,.., [√N]],
 check if p divides N
- Complexity: O(√N polylog(N)), N input integer exponential-time algorithm*
- Eh...? "exponential"... how so?!
- (Slightly) better ones:
 - Pollard's (p-1) algorithm
 - Pollard's rho algorithm
 - Quadratic-sieve, General number-sieve

^{*:} i.e., exponential in the size of N. Size of input is 2^n , n = no. of bits in N, so $O(2^{n/2} \log (2^n)^k)$, for some $k \ge 1$

Integer Factoring

- Alas! "better" ones still super-polynomial :-(
- ...But some sub-exponential :-)
- Best known General number-sieve
 - For value N, complexity $O(2^{O(\log N)^{1/3}} \cdot (\log(\log N))^{2/3})^*$
 - Used to factor RSA-768 ≈ 2 days
- What about quantum algorithms (Shor's method polynomial time)?
- Err... forget quantum

^{*:} Sub-exponential in the size of N, n bits. Work it out!

Pollard's p-1 Algorithm

- Let N = pq; p, q prime (so p-1,q-1 can't be prime), assume p-1 has small factors
- Pick $B \in Z+$, s.t., $(p-1) \mid B$, and $(q-1) \mid B$, let $B=\gamma(p-1)+0$, for some γ
- Let $B = \prod_{i=1}^{k} p_i^{\lfloor n/\log p_i \rfloor}$, for some k; p_i is the ith prime, $n = \lfloor p \rfloor$ in bits.¹
- Why? Because p_i ln/log p_i is the largest power of p_i that divides p-1.

- Re-writing, let p-1 = $\prod_{i=1}^{k} p_i^{e_i}$, for some $e_i \ge 0$
- Then, p-1 | B, and q-1 | B¹
- Choosing a larger k increases B (and running-time)
- Find $x < -Z_N^*$, and compute $y = x^B 1 \mod N$
- From CRT, $1 \leftrightarrow (1,1)$ for any N > 1

• So, $y = x^B - 1 \mod N \Leftrightarrow (x_p, x_q)^B - (1, 1)$ $= (x_p^B - 1 \mod p, x_q^B - 1 \mod q)$ $= ((x_p^{p-1})^{\gamma} - 1 \mod p, x_q^B - 1 \mod q)$ $= (0, [x_q^B - 1 \mod q])$

Assume x_q^B -1 mod $q \neq 0^1$

If so, $y = 0 \mod p$, but $y \ne 0 \mod q$, i.e., $p \mid y$, but $q \nmid y$, so, gcd(y,N) = p

1: Only happens if we end up with x_q as a generator of Z_q^* — if so, go back and pick another x

Pollard's p-1 factoring algorithm:

```
p-1 Algorithm (N) —> p /* returns one factor */
 find x <— Z<sub>N</sub>*
 /* compute B as in slide 4 */
 compute y = x<sup>B</sup> -1 mod N
 let p = gcd(y,N)
 if p ∉ {1,N}, return p /* Avoid trivial factors */
```

- Works only if p-1 or q-1 have small factors
- Unlikely either have small factors in most crypto applications...
- Complexity exponential in size of N: O(B log B•(log² N))
- Better factoring algorithms available

Pollard's Rho Algorithm

- General-purpose factoring algorithm
- Idea: Given N, find distinct x, $x' \in Z_N^*$, s.t., x = x' mod p, for some p > 1
- Point is to find a "good" pair (x,x'), s.t., gcd(|x-x'|, N) = p
- Where will such a good pair come from?

- Pick $(x^{(1)}, ..., x^{(k)}) \in Z_N^*$, $k = 2^{n/2}$ (known result in AA; refer Dummit and Foote for proof)
- Applying CRT, $(x^{(1)}_p, x^{(1)}_q),... (x^{(k)}_p, x^{(k)}_q)$
- $x^{(i)}_p = [x^{(i)} \mod p]$, and $x^{(i)}_q = [x^{(i)} \mod q]$
- Each $x^{(i)}_p x^{(i)}_q$ uniformly distributed in Z_p^* , Z_q^*
- Forget q, just consider p...(why?)¹

- Detour Birthday paradox:
 - For an $N \in Z+$, given random, uniformly chosen q elements $(x_1,...x_q) \in \{1,...N\}$, probability that \exists $i, j, s.t., i \neq j, x_i = x_j$ is at most $(q^2/2N)$
 - Pr [collision between x_i, x_j] $\leq q^2/2N$
- For our purpose: ∃ distinct i, j, s.t., x⁽ⁱ⁾_p = x^(j)_p, with high probability, but x⁽ⁱ⁾ ≠ x^(j) with high probability

- Great! Now we've found a "good pair": $x^{(i)}_p = x^{(j)}_p$, or $x^{(i)}$ mod $p = x^{(j)}$ mod p
- Recollect, we wanted a "good" pair: (x,x'), s.t., gcd(|x-x'|, N) = p¹
- Just find gcd(|x⁽ⁱ⁾-x^(j)|,N) -> p
- Once p found, trivial to find q

Pollard's rho factoring algorithm:

```
rho Algorithm (N) —> p /* returns one factor */ find x^{(0)} < -Z_N^* for i=1 to 2^{n/2} do x^{(i)} = F(x^{(i-1)}) p = gcd (|x^{(i-1)}-x^{(i)}|, N) if p \not\in \{1,N\}, return p /* Avoid trivial factors */
```

What is "F"?

- F: $Z_N^* \rightarrow Z_N^*$ needs to have property:
 - If x mod p = x' mod p, then F(x) mod p = F(x') mod p
- Standard choice: F(x) = (x²+ 1) mod N; any polynomial has this property
- Complexity: O(N^{1/4} polylog(N))... still exponential in size of N

Quadratic Sieve

- Based on quadratic residues mod N
- $z \in Z_N^*$ is a *quadratic residue* mod N if there is an $x \in Z_N^*$, s.t., x^2 mod N = z mod N
- x is a square root of z mod N
- Known result: if N = pq; p, q primes > 2, p ≠ q, every quadratic residue mod N has exactly 4 square roots

Quadratic Sieve

- Given x, y, x^2 mod N = y^2 mod N, and x \neq ±y mod N, gcd(x-y, N) = p, p \notin {1,N} is a factor of N
- Idea: Find a x, y, s.t., x² mod N = y² mod N, and x
 ≠ ±y mod N
- Naive method¹:
 - Generate an $x \in Z_N^*$,
 - Find $q = x^2 \mod N$
 - Check if $q = y^2$ for some $y \in Z+$

Quadratic Sieve

- Too slow (usually don't end up with a q=y²)
- Better method idea: generate sequence of q's: $q_1=x_1^2$ mod N, ..., $q_l=x_l^2$ mod N
- Identify a subset of q_i's whose *product* is y² (better chances than naive method): "smooth" integers¹
- Quadratic sieve best known until early 1990s (still used for n < 300 bits ≈ 100 decimal digits)
- Second-best method

General Number Field Sieve (GNFS)

- State-of-the-art for integer factoring
- Quadratic sieve best known until early 1990s (still used for n < 300 bits, N = 2ⁿ)
- Idea: main bottleneck is finding smooth q_i 's $-2^{n/2}$, n = |N|
- Speed-up time for finding smooth integers actually achieves in sub-exp. time

Computing Discrete Log

- General case: Z_q* for any q > 1
 - Pohlig-Hellman algorithm (composite N)
 - Baby-step giant-step algorithm
 - Pollard's rho algorithm
- Special case: Z_q*, q prime
 - Index calculus algorithm
 - Number field sieve
- None in polynomial-time, but best is sub-exponential

Computing Discrete Log

- Pohlig-Hellman:
 - Works over all-order groups; best performance for composite-order
 - Complexity dominated by size of largest subgroup of prime order, p
 - O(sup {√p} polylog q)
 - Worst case (when q is prime): O(√q polylog q)
 - In terms of sizes: O(sup $\{2^{p'/2}\}$ (log $2^{q'})^k$), $k \ge 1$, p' = |p|, q' = |q|

Computing Discrete Log

- BSGS:
 - Works for all-order groups
 - Basic idea: say, $G = \{g^0, g^1, g^2, ..., g^{q-1}\}$
 - Given $v = g^h \mod q$, we're trying to find $h \in \{1...q-1\}$
 - Divide G into intervals ("giant" step), I, |I|=t
 - Compute g¹...g^t for each I ("baby" step), efficiency gains by sorting...
 - Complexity: $O(\sqrt{q} \text{ polylog } q)$, |G| = q

Other methods

- Index Calculus
 - Works for Z_q*, q is prime
 - Sub-exponential in |q|: $2^{O(\lceil \log q \cdot \log(\log q))}$
- GNFS for DL:
 - Best known for Z_q*, q is prime
 - Sub-exponential in |q|: $2^{O((log q)^{1/3} \cdot log(log q)^{2/3})}$

Recommended Lengths

Modulus (N) Length (bits)	Symmetric Key Equivalent (bits)	Discrete Log (bits): (p-1) = IZ _p *I, Order-q subgroup of Z _p *
2048	112	p = 2048, q = 224
3072	128	p = 3072, q = 256
7680	192	p = 7680, q = 384
15360	256	p = 15360, q = 512