# Good Relations with R

# David Meyer and Kurt Hornik 2007-10-10

Given k sets of objects  $X_1, \ldots, X_k$ , a k-ary relation R on  $D(R) = (X_1, \ldots, X_k)$  is a subset G(R) of the Cartesian product  $X_1 \times \cdots \times X_k$ . I.e., D(R) is a k-tuple of sets and G(R) is a set of k-tuples. We refer to D(R) and G(R) as the *domain* and the *graph* of the relation R, respectively (alternative notions are that of *ground* and *figure*, respectively).

Relations are a very fundamental mathematical concept: well-known examples include the linear order defined on the set of integers, the equivalence relation, notions of preference relations used in economics and political sciences, etc. Package **relations** provides data structures along with common basic operations for relations and also relation ensembles (collections of relations with the same domain), as well as various algorithms for finding suitable consensus relations for given relation ensembles.

## 1 Relations and Relation Ensembles

#### 1.1 Relations

For a k-ary relation R with domain  $D(R) = (X_1, \ldots, X_k)$ , we refer to  $s = (s_1, \ldots, s_k)$ , where each  $s_i$  gives the cardinality of  $X_i$ , as the size of the relation. Note that often, relations are identified with their graph; strictly speaking, the relation is the pair (D(R), G(R)). We say that a k-tuple t is contained in the relation R iff it is an element of G(R). The incidence (array) I(R) of R is a k-dimensional 0/1 array of size s whose elements indicate whether the corresponding k-tuples are contained in R or not.

Package relations implements finite relations as an S3 class which allows for a variety of representations (even though currently, only dense array representations of the incidences are employed). Other than by the generator relation(), relations can be obtained by coercion via the generic function as.relation(), which has methods for at least logical and numeric vectors, unordered and ordered factors, arrays including matrices, and data frames. Unordered factors are coerced to equivalence relations; ordered factors and numeric vectors are coerced to order relations. Logical vectors give unary relations (predicates). A (feasible) k-dimensional array is taken as the incidence of a k-ary relation. Finally, a data frame is taken as a relation table (object by attribute representation of the relation graph). Note that missing values will be propagated in the coercion.

```
> R <- relation(graph = data.frame(A = c(1, 1:3), B = c(2:4, 4)))
> relation_domain(R)

Relation domain:
A pair (A, B) with elements:
{1, 2, 3}
{2, 3, 4}

> relation_graph(R)

Relation graph:
A set with pairs (A, B):
```

```
(1, 2)
(1, 3)
(2, 4)
(3, 4)
> as.tuple(R)
(Domain = (A = \{1, 2, 3\}, B = \{2, 3, 4\}), Graph = \{(1, 2), (1, 3), (2, 4\}\})
4), (3, 4)})
> relation_incidence(R)
Incidences:
A 234
 1 1 1 0
  2 0 0 1
  3 0 0 1
> R <- relation(graph = set(tuple(1, 2), tuple(1, 3), tuple(2,
+ 4), tuple(3, 4)))
> relation_incidence(R)
Incidences:
 2 3 4
1 1 1 0
2 0 0 1
3 0 0 1
> R <- relation(domain = set(c, "test"), graph = set(tuple(c, c),
      tuple(c, "test")))
> relation_incidence(R)
Incidences:
              X
               <<function>> test
  <<function>>
                         1
  test
                           0
                                0
> as.relation(1:3)
A binary relation of size 3 \times 3.
> relation_graph(as.relation(c(TRUE, FALSE, TRUE)))
Relation graph:
A set with singletons:
(1)
> relation_graph(as.relation(factor(c("A", "B", "A"))))
Relation graph:
A set with pairs:
(1, 1)
(3, 1)
(2, 2)
(1, 3)
(3, 3)
```

The characteristic function  $f_R$  (sometimes also referred to as indicator function) of a relation R is the predicate (Boolean-valued) function on the Cartesian product  $X_1 \times \cdots \times X_k$  such that  $f_R(t)$  is true iff the k-tuple t is in G(R). Characteristic functions can both be recovered from a relation via relation\_charfun(), and be used in the generator for the creation. In the following, R represents "a divides b":

```
> divides <- function(a, b) b %% a == 0
> R <- relation(domain = list(1 : 10, 1 : 10), charfun = divides)
> R
A binary relation of size 10 x 10.
> "%|%" <- relation_charfun(R)
> 2 %|% 6
[1] TRUE
> c(2, 3, 4) %|% 6
[1] TRUE TRUE FALSE
> 2 %|% c(2, 3, 6)
[1] TRUE FALSE TRUE
> "%|%"(2, 6)
[1] TRUE
```

Quite a few relation\_is\_foo() predicate functions are available. For example, relations with arity 2, 3, and 4 are typically referred to as binary, ternary, and quaternary relations, respectively—the corresponding functions in package relations are relation\_is\_binary(), relation\_is\_ternary(), etc. For binary relations R, it is customary to write xRy iff (x,y) is contained in R. For predicates available on binary relations, see Table 1. An endorelation on X (or binary relation over X) is a binary relation with domain (X,X). Endorelations may or may not have certain basic properties (such as transitivity, reflexivity, etc.) which can be tested in relations using the corresponding predicates (see Table 2 for an overview). Some combinations of these basic properties have special names because of their widespread use (such as linear order, or preference), and can again be tested using the functions provided (see Table 3).

```
> R <- as.relation(1:5)
> relation_is_binary(R)

[1] TRUE
> relation_is_transitive(R)

[1] TRUE
> relation_is_partial_order(R)
```

[1] TRUE

Relations with the same domain can naturally be ordered according to their graphs. I.e.,  $R_1 \leq R_2$  iff  $G(R_1)$  is a subset of  $G(R_2)$ , or equivalently, if every k-tuple t contained in  $R_1$  is also contained in  $R_2$ . This induces a lattice structure, with meet (greatest lower bound) and join (least upper bound) the intersection and union of the graphs, respectively, also known as the intersection and union of the relations. The least element moves metric on this lattice is the symmetric difference metric, i.e., the cardinality of the symmetric difference of the graphs (the number of tuples in exactly one of the relation graphs). This "symdiff" dissimilarity between (ensembles of) relations can be computed by relation\_dissimilarity().

| left-total  | for all $x$ there is at least one $y$ such that $xRy$ . |
|-------------|---------------------------------------------------------|
| right-total | for all $y$ there is at least one $x$ such that $xRy$ . |
| functional  | for all $x$ there is at most one $y$ such that $xRy$ .  |
| surjective  | the same as right-total.                                |
| injective   | for all $y$ there is at most one $x$ such that $xRy$ .  |
| bijective   | left-total, right-total, functional and injective.      |

Table 1: Some properties foo of binary relations—the predicates in **relations** are relation\_is\_foo() (with hyphens replaced by underscores).

| reflexive     | xRx for all $x$ .                      |
|---------------|----------------------------------------|
| irreflexive   | there is no $x$ such that $xRx$ .      |
| coreflexive   | xRy implies $x = y$ .                  |
| symmetric     | xRy implies $yRx$ .                    |
| asymmetric    | xRy implies that not $yRx$ .           |
| antisymmetric | xRy and $yRx$ imply that $x = y$ .     |
| transitive    | xRy and $yRz$ imply that $xRz$ .       |
| complete      | for all $x$ and $y$ , $xRy$ or $yRx$ . |

Table 2: Some properties bar of endorelations—the predicates in **relations** are relation\_is\_bar().

| preorder             | reflexive and transitive.                  |
|----------------------|--------------------------------------------|
| quasiorder           | the same as preorder.                      |
| equivalence          | a symmetric preorder.                      |
| weak order           | complete and transitive.                   |
| preference           | the same as weak order.                    |
| partial order        | an antisymmetric preorder.                 |
| strict partial order | irreflexive, transitive and antisymmetric. |
| linear order         | a complete partial order.                  |
| strict linear order  | a complete strict partial order.           |
| tournament           | complete and antisymmetric.                |

Table 3: Some categories baz of endorelations—the predicates in **relations** are **relation\_is\_**baz () (with spaces replaced by underscores).

```
> x <- matrix(0, 3, 3)
> R1 \leftarrow as.relation(row(x) >= col(x))
> R2 \leftarrow as.relation(row(x) \leftarrow col(x))
> R3 <- as.relation(row(x) < col(x))
> relation_incidence(max(R1, R2))
Incidences:
  1 2 3
1 1 1 1
2 1 1 1
3 1 1 1
> relation_incidence(min(R1, R2))
Incidences:
  1 2 3
1 1 0 0
2 0 1 0
3 0 0 1
> R3 < R2
[1] TRUE
> relation_dissimilarity(min(R1, R2), max(R1, R2))
     [,1]
[1,]
```

The *complement* of a relation R is the relation with domain D(R) whose graph is the complement of G(R), i.e., which contains exactly the tuples not contained in R. For binary relations R and S with domains (X,Y) and (Y,Z), the *composition* of R and S is defined by taking xSz iff there is a y such that xRy and ySz. The dual (or converse)  $R^*$  of the relation R with domain (X,Y) is the relation with domain (Y,X) such that  $xR^*y$  iff yRx.

```
> relation_incidence(R1 * R2)
```

```
Incidences:
 1 2 3
1 1 1 1
2 1 1 1
3 1 1 1
> relation_incidence(!R1)
Incidences:
 1 2 3
1 0 1 1
2 0 0 1
3 0 0 0
> relation_incidence(t(R2))
Incidences:
 1 2 3
1 1 0 0
2 1 1 0
```

3 1 1 1

There is a plot() method for certain endorelations (currently, only complete or antisymmetric transitive relations are supported) provided that package **Rgraphviz** (Gentry and Long, 2007) is available, creating a Hasse diagram of the relation. The following code produces the Hasse diagram corresponding to the inclusion relation on the power set of  $\{1,2,3\}$  which is a partial order (see Figure 1).

```
> ps <- 2^set("a", "b", "c")
> inc <- set_outer(ps, "<=")
> plot(relation(incidence = inc))
```



Figure 1: Hasse Diagram of the inclusion relation on the power set of  $\{1, 2, 3\}$ .

#### 1.2 Relation Ensembles

"Relation ensembles" are collections of relations  $R_i = (D, G_i)$  with the same domain D and possibly different graphs  $G_i$ . Such ensembles are implemented as suitably classed lists of relation objects (of class relation\_ensemble and inheriting from tuple), making it possible to use lapply() for computations on the individual relations in the ensemble. Relation ensembles can be created via relation\_ensemble(), or by coercion via the generic function as.relation\_ensemble() which has methods for at least data frames (regarding each variable as a separate relation). Available methods for relation ensembles include those for subscripting, c(), t(), rep(), print(), and plot(). In addition, there are summary methods defined (min(), max(), and range()). Other operations work element-wise like on tuples due to the inheritance.

The Cetacea data set (Vescia, 1985) is a data frame with 15 variables relating to morphology, osteology, or behavior, with both self-explanatory names and levels, and a common zoological classification (variable CLASS) for 36 types of cetacea. We consider each variable an equivalence relation on the objects, excluding 2 variables with missing values, giving a relation ensemble of length 14 (number of complete variables in the data set).

```
> data("Cetacea")
> ind <- sapply(Cetacea, function(s) all(!is.na(s)))
> relations <- as.relation_ensemble(Cetacea[, ind])
> print(relations)
```

An ensemble of 14 relations of size 36 x 36.

Available methods for relation ensembles allow to determine duplicated (relation) entries, to replicate and combine, and extract unique elements:

- > any(duplicated(relations))
- [1] FALSE
- > thrice <- c(rep(relations, 2), relations)
- > all.equal(unique(thrice), relations)
- [1] "names for current but not for target"

Note that unique() does not preserve attributes, and hence names. In case one wants otherwise, one can subscript by a logical vector indicating the non-duplicated entries:

- > all.equal(thrice[!duplicated(thrice)], relations)
- [1] TRUE

Relation (cross-)dissimilarities can be computed for relations and ensembles thereof:

> relation\_dissimilarity(relations[1:2], relations["CLASS"])

CLASS NECK 584 330 FORM\_OF\_THE\_HEAD

To determine which single variable is "closest" to the zoological classification:

- > d <- relation\_dissimilarity(relations)</pre> > sort(as.matrix(d)[, "CLASS"])[-1]
  - BLOW\_HOLE DORSAL\_FIN 190 SET\_OF\_TEETH **FLIPPERS**

298 FORM\_OF\_THE\_HEAD **FEEDING** 330 382

HABITAT **BEAK** 398

COLOR LONGITUDINAL\_FURROWS\_ON\_THE\_THROAT

240

CERVICAL\_VERTEBRAE SIZE\_OF\_THE\_HEAD

508 542

NECK 584

There is also an Ops group method for relation ensembles which works elementwise (in essence, as for tuples):

- > complement <- !relations
- > complement

An ensemble of 14 relations of size 36 x 36.

## 2 Relational Algebra

Name

Helena 54 54

Age Weight

In addition to the basic operations defined on relations, the package provides functionality similar to the corresponding operations defined in relational algebra theory as introduced by Codd (1970). Note, however, that domains in database relations, unlike the concept of relations we use here, are unordered. In fact, a database relation ("table") is defined as a set of elements called "tuples", where the "tuple" components are named, but unordered. Thus, a "tuple" in this Codd sense is a set of mappings from the attribute names into the union of the attribute domains. The functions defined in **relations**, however, preserve and respect the column ordering.

The *projection* of a relation on a specified margin (i.e., a vector of domain names or indices) is the relation obtained when all tuples are restricted to this margin. As a consequence, duplicate tuples are removed. The corresponding function in package **relations** is **relation\_projection()**.

```
> Person <- data.frame(Name = c("Harry", "Sally", "George", "Helena",
      "Peter"), Age = c(34, 28, 29, 54, 34), Weight = c(80, 64, 34)
      70, 54, 80), stringsAsFactors = FALSE)
> Person <- as.relation(Person)
> relation_table(Person)
Name
        Age Weight
Harry
        34
            80
Peter
        34
            80
Sally 28
            64
 George 29
            70
Helena 54
> relation_table(relation_projection(Person, c("Age", "Weight")))
 Age Weight
 34 80
 28
    64
 29
     70
 54
    54
(Note that Harry and Peter have the same age and weight.)
   The selection of a relation is the relation obtained by taking a subset of the rela-
tion graph, defined by some logical expression. The corresponding function in relations is
relation_selection().
> relation_table(R1 <- relation_selection(Person, Age < 29))</pre>
Name Age Weight
Sally 28 64
> relation_table(R2 <- relation_selection(Person, Age >= 34))
Name
        Age Weight
Harry
            80
        34
Peter
        34
            80
Helena 54
            54
> relation_table(R3 <- relation_selection(Person, Age == Weight))</pre>
```

The union of two relations simply combines the graph elements of both relations; the complement of two relations X and Y removes the tuples of Y from X. One can use – as a shortcut for relation\_complement(), and %U% or | for relation\_union(). The difference between %U% and | is that the latter only works for identical domains.

```
> relation_table(R1 %U% R2)
Name
        Age Weight
Harry
       34
           80
            80
Peter
        34
 Sally
       28
            64
Helena 54
           54
> relation_table(R2 | R3)
        Age Weight
Harry 34
           80
Peter 34
            80
Helena 54 54
> relation_table(Person - R2)
Name
        Age Weight
Sally 28
           64
George 29
```

The intersection (symmetric difference) of two relations is the relation with all tuples they have (do not have) in common. One can use & instead of relation\_intersection() in case of identical domains.

```
> relation_table(relation_intersection(R2, R3))
Name   Age Weight
Helena 54 54
> relation_table(R2 & R3)
Name   Age Weight
Helena 54 54
> relation_table(relation_symdiff(R2, R3))
Name   Age Weight
Harry 34 80
Peter 34 80
```

The Cartesian product of two relations is obtained by basically building the Cartesian product of all graph elements, but combining the resulting pairs into single tuples. A shortcut for relation\_cartesian() is %><%.

```
> Employee <- data.frame(Name = c("Harry", "Sally", "George", "Harriet", + "John"), EmpId = c(3415, 2241, 3401, 2202, 3999), DeptName = c("Finance", "Sales", "Finance", "Sales", "N.N."), stringsAsFactors = FALSE) > Employee <- as.relation(Employee) > relation_table(Employee)
```

```
Name
         EmpId DeptName
Harry
         3415
              Finance
         3401
               Finance
 George
Sally
         2241
               Sales
Harriet 2202
               Sales
 John
         3999
               N.N.
> Dept <- data.frame(DeptName = c("Finance", "Sales", "Production"),
      Manager = c("George", "Harriet", "Charles"), stringsAsFactors = FALSE)
> Dept <- as.relation(Dept)</pre>
> relation_table(Dept)
 DeptName
            Manager
 Finance
            George
Sales
            Harriet
Production Charles
> relation_table(Employee %><% Dept)
 Name
         EmpId DeptName DeptName
                                    Manager
Harry
         3415 Finance
                         Finance
                                    George
 George
         3401
               Finance
                         Finance
                                    George
         2241
               Sales
                         Finance
 Sally
                                    George
 Harriet 2202
               Sales
                         Finance
                                    George
 John
         3999
               N.N.
                         Finance
                                    George
Harry
         3415
               Finance
                         Sales
                                    Harriet
 George
         3401
               Finance
                         Sales
                                    Harriet
 Sally
         2241
               Sales
                         Sales
                                    Harriet
Harriet 2202
               Sales
                         Sales
                                    Harriet
 John
         3999
               N.N.
                         Sales
                                    Harriet
Harry
         3415
              Finance Production Charles
         3401
               Finance
                        Production Charles
 George
Sally
         2241
               Sales
                         Production Charles
Harriet 2202
               Sales
                         Production Charles
 John
         3999
              N.N.
                         Production Charles
```

The division of relation X by relation Y is the reversed Cartesian product. The result is a relation with the domain unique to X and containing the maximum number of tuples which, multiplied by Y, are contained in X. The remainder of this operation is the complement of X and the division of X by Y. Note that for both operations, the domain of Y must be contained in the domain of X. The shortcuts for relation\_division() and relation\_remainder() are %/% and %%, respectively.

```
> Completed <- data.frame(Student = c("Fred", "Fred", "Fred", "Eugene",
      "Eugene", "Sara", "Sara"), Task = c("Database1", "Database2",
+
      "Compiler1", "Database1", "Compiler1", "Database1", "Database2"),
      stringsAsFactors = FALSE)
> Completed <- as.relation(Completed)</pre>
> relation_table(Completed)
 Student Task
Fred
         Database1
         Database1
 Eugene
 Sara
         Database1
 Fred
         Database2
```

```
Sara
         Database2
         Compiler1
Fred
Eugene
         Compiler1
> DBProject <- data.frame(Task = c("Database1", "Database2"), stringsAsFactors = FALSE)
> DBProject <- as.relation(DBProject)</pre>
> relation_table(DBProject)
Task
Database1
Database2
> relation_table(Completed%/%DBProject)
Student
Fred
Sara
> relation_table(Completed%%DBProject)
Student Task
Eugene Database1
```

The (natural) join of two relations is their Cartesian product, restricted to the subset where the elements of the common attributes do match. The left/right/full outer join of two relations X and Y is the union of X/Y/(X and Y), and the inner join of X and Y. The implementation of relation\_join() uses merge(), and so the left/right/full outer joins are obtained by setting all.x/all.y/all to TRUE in relation\_join(). The domains to be matched are specified using by. Alternatively, one can use the operators |X| < |X|, |X| > < |X|, and |X| > < |X| for the natural join, left join, right join, and full outer join, respectively.

#### > relation\_table(Employee %/></% Dept)

```
EmpId DeptName Manager
Name
             Finance
Harry
        3415
                       George
George
        3401
             Finance
                       George
Sally
        2241
              Sales
                       Harriet
Harriet 2202 Sales
                       Harriet
```

#### > relation\_table(Employee %=><% Dept)</pre>

```
Name
        EmpId DeptName Manager
Harry
        3415 Finance
                       George
George
        3401 Finance
                       George
John
        3999
            N.N.
                       NA
Sally
        2241
             Sales
                       Harriet
Harriet 2202
             Sales
                       Harriet
```

#### > relation\_table(Employee %><=% Dept)</pre>

| Name    | EmpId | DeptName           | Manager         |
|---------|-------|--------------------|-----------------|
| Harry   | 3415  | Finance            | George          |
| George  | 3401  | Finance            | George          |
| NA      | NA    | ${\tt Production}$ | ${\tt Charles}$ |
| Sally   | 2241  | Sales              | ${\tt Harriet}$ |
| Harriet | 2202  | Sales              | Harriet         |

#### > relation\_table(Employee %=><=% Dept)</pre>

```
Name
        EmpId DeptName
                          Manager
              Finance
Harry
        3415
                          George
George
        3401
              Finance
                          George
              N.N.
John
        3999
                          NA
NA
          NA
              Production Charles
Sally
        2241
              Sales
                          Harriet
Harriet 2202
              Sales
                          Harriet
```

The left (right) semijoin of two relations X and Y is the join of these, projected to the attributes of X (Y). Thus, it yields all tuples of X (Y) participating in the join of X and Y. Shortcuts for relation\_semijoin() are %/><% and %/>(% for left and right semijoin, respectively.

> relation\_table(Employee %/><% Dept)

```
Name EmpId DeptName
Harry 3415 Finance
George 3401 Finance
Sally 2241 Sales
Harriet 2202 Sales
```

> relation\_table(Employee %><\% Dept)</pre>

```
DeptName Manager
Finance George
Sales Harriet
```

The left (right) antijoin of two relations X and Y is the complement of X (Y) and the join of both, projected to the attributes of X (Y). Thus, it yields all tuples of X (Y) not participating in the join of X and Y. Shortcuts for relation\_antijoin() are |X| > 0 and |X| < 0 for left and right antijoin, respectively.

```
> relation_table(Employee %|>% Dept)
```

```
[1] Name EmpId DeptName <0 rows> (or 0-length row.names)
```

> relation\_table(Employee %<\% Dept)</pre>

```
[1] DeptName Manager
<0 rows> (or 0-length row.names)
```

#### 3 Consensus Relations

Consensus relations "synthesize" the information in the elements of a relation ensemble into a single relation, often by minimizing a criterion function measuring how dissimilar consensus candidates are from the (elements of) the ensemble (the so-called "optimization approach"), typically of the form  $L(R) = \sum w_b d(R_b, R)$ , where d is a suitable dissimilarity measure and  $w_b$  is the case weight given to element  $R_b$  of the ensemble (such consensus relations are called "central relations" in Régnier, 1965).

Consensus relations can be computed by relation\_consensus(), which has the following built-in methods. Apart from Condorcet's, these are applicable to ensembles of endorelations only.

- "Borda" the consensus method proposed by Borda (1781). For each relation  $R_b$  and object x, one determines the Borda/Kendall scores, i.e., the number of objects y such that  $yR_bx$  ("wins" in case of orderings). These are then aggregated across relations by weighted averaging. Finally, objects are ordered according to their aggregated scores.
- "Copeland" the consensus method proposed by Copeland (1951) is similar to the Borda method, except that the Copeland scores are the number of objects y such that  $yR_bx$ , minus the number of objects y such that  $xR_by$  ("defeats" in case of orderings).
- "Condorcet" the consensus method proposed by Condorcet (1785), in fact minimizing the criterion function L with d as symmetric difference distance over all possible relations. In the case of endorelations, consensus is obtained by weighting voting, such that xRy if the weighted number of times that  $xR_by$  is no less than the weighted number of times that this is not the case. Even when aggregating linear orders, this can lead to intransitive consensus solutions ("effet Condorcet").
- "SD/F" an exact solver for determining the consensus relation by minimizing the criterion function L with d as symmetric difference distance ("SD") over a suitable class ("("Family)) of endorelations as indicated by F, with values:
  - E equivalence relations: reflexive, symmetric, and transitive.
  - L linear orders: complete (hence reflexive), antisymmetric, and transitive.
  - O partial orders: reflexive, antisymmetric and transitive.
  - P complete preorders (preference relations, "orderings"): complete (hence reflexive) and transitive.
  - T tournaments: complete (hence reflexive) and antisymmetric.
  - C complete relations.
  - A antisymmetric relations.
  - S symmetric relations.

> data("Felines")

These consensus relations are determined by reformulating the consensus problem as an integer program (for the relation incidences), which is solved via package **lpSolve**. See Hornik and Meyer (2007) for details.

In the following, we first show an example of computing a consensus equivalence (i.e., a consensus partition) of 30 felines repeating the classical analysis of Marcotorchino and Michaud (1982). The data comprises 10 morphological and 4 behavioral variables, taken here as different classifications of the same 30 animals:

```
> relations <- as.relation_ensemble(Felines)
Now fit an equivalence relation to this, and look at the classes:
> E <- relation_consensus(relations, "SD/E")
> ids <- relation_class_ids(E)
> split(rownames(Felines), ids)

$`1`
[1] "LION" "TIGRE"

$`2`
[1] "JAGUAR" "LEOPARD" "ONCE" "PUMA" "NEBUL" "LYNX"
$`3`
```

```
[1] "GUEPARD"
$`4`
 [1] "SERVAL"
                             "CARACAL"
                                         "VIVERRIN" "YAGUARUN" "CHAUS"
                 "OCELOT"
 [7] "DORE"
                 "MERGUAY"
                             "MARGERIT" "CAFER"
                                                     "CHINE"
                                                                 "BENGALE"
[13] "ROUILLEU" "MALAIS"
                             "BORNEO"
                                         "NIGRIPES" "MANUL"
                                                                 "MARBRE"
[19] "TIGRIN"
                 "TEMMINCK" "ANDES"
Next, we demonstrate the computation of consensus preferences, using an example from Cook and
Kress (1992, pp. 48ff). The input data is a "preference" matrix of paired comparisons, which we
first transform into a tournament.
> pm <- matrix(c(0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0,
      0, 1, 0, 0, 0, 0, 1, 1, 0), nr = 5, byrow = TRUE, dimnames = list(letters[1:5],
      letters[1:5]))
> R <- as.relation(1 - pm)
> relation_incidence(R)
Incidences:
  a b c d e
a 1 0 1 0 0
b 1 1 1 0 0
c 0 0 1 1 1
d 1 1 0 1 1
e 1 1 0 0 1
> relation_is_tournament(R)
[1] FALSE
Next, we seek a linear consensus order:
> L <- relation_consensus(R, "SD/L")
> relation_incidence(L)
Incidences:
  abcde
a 1 0 1 0 0
b 1 1 1 0 0
c 0 0 1 0 0
d 1 1 1 1 1
e 1 1 1 0 1
or perhaps more conveniently, the class ids sorted according to increasing preference:
> relation_class_ids(L)
abcde
2 3 1 5 4
Note, however, that this linear order is not unique; we can compute all consensus linear orders,
and also produce a comparing plot (see Figure 2):
> L <- relation_consensus(R, "SD/L", control = list(all = TRUE))
> print(L)
```

An ensemble of 2 relations of size 5 x 5.

```
> if (require("Rgraphviz")) plot(L)
```

Finally, we compute the closest preference relation with at most 3 indifference classes:

```
> P3 <- relation_consensus(R, "SD/P", control = list(k = 3))
> relation_incidence(P3)
```

#### Incidences:

> relation\_class\_ids(P3)

a b c d e 1 2 3 3 2

(Note again that this preference is not unique; there are 6 consensus preferences with k=3 classes, which can be computed as above by adding all = TRUE to the control list.)



Figure 2: Hasse Diagram of all consensus relations (linear orders) for an example provided by Cook and Kress.

### References

- J. C. Borda. Mémoire sur les élections au scrutin. Histoire de l'Académie Royale des Sciences, 1781.
- E. F. Codd. A relational model of data for large shared data banks. Communications of the ACM, 13(6): 377–387, 1970.
- M. J. A. Condorcet. Essai sur l'application de l'analyse à la probabilité des décisions rendues à la pluralité des voix, 1785. Paris.

- W. D. Cook and M. Kress. Ordinal information and preference structures: decision models and applications. Prentice-Hall, New York, 1992.
- A. Copeland. A reasonable social welfare function. mimeo, 1951. University of Michigan.
- J. Gentry and L. Long. Rgraphviz: Plotting Capabilities for R Graph Objects, 2007. R package version 1.13.25.
- K. Hornik and D. Meyer. Deriving consensus rankings from benchmarking experiments. In R. Decker and H.-J. Lenz, editors, Advances in Data Analysis (Proceedings of the 30th Annual Conference of the Gesellschaft für Klassifikation e.V., Freie Universität Berlin, March 8–10, 2006, Studies in Classification, Data Analysis, and Knowledge Organization, pages 163–170. Springer-Verlag, 2007.
- F. Marcotorchino and P. Michaud. Agregation de similarites en classification automatique. Revue de Statistique Appliquée, 30(2):21-44, 1982. URL http://www.numdam.org/item?id=RSA\_1982\_\_30\_2\_21\_0.
- S. Régnier. Sur quelques aspects mathématiques des problèmes de classification automatique. ICC Bulletin, 4:175–191, 1965.
- G. Vescia. Descriptive classification of cetacea: Whales, porpoises, and dolphins. In J. F. Marcotorchino, J. M. Proth, and J. Janssen, editors, *Data analysis in real life environment: ins and outs of solving problems*. Elsevier Science Publishers B.V., 1985.

## Index

```
-, 9
%/%, 10
%=><=%, 11
%=><%, 11
%><=%, 11
%><%, 9
%U%, 9
%%, 10
&, <mark>9</mark>
as.relation_ensemble, 6
as.relation, 1
relation_antijoin, 12
{\tt relation\_cartesian},\, 9
relation_charfun, 3
{\tt relation\_complement},\, 9
relation_consensus, 12
relation_dissimilarity, 3
relation_division, 10
relation_ensemble, 6
relation\_intersection, 9
relation_is_binary, 3
relation_is_ternary, 3
relation_join, 11
{\tt relation\_projection},\, 8
relation\_remainder, 10
{\tt relation\_selection},\, 8
relation_semijoin, 12
{\tt relation\_union},\, 9
relation, 1
```