Lista 2 - Otimização Não Linear

1. Sejam $f: \mathbb{R}^n \to \mathbb{R}$ uma função diferenciável e $A \subset \mathbb{R}^n$ convexo. Prove que a função f é convexa em A se, e somente se,

$$f(y) \ge f(x) + \nabla f(x)^T (y - x)$$

para todos $x, y \in A$.

- 2. Sejam $f: \mathbb{R}^n \to \mathbb{R}$ uma função convexa, diferenciável e $A \subset \mathbb{R}^n$ convexo. Prove que se $\nabla f(x^*)^T (y x^*) \ge 0$, para todo $y \in A$, então x^* é um minimizador global de f em A.
- 3. Sejam $f:\mathbb{R}^n \to \mathbb{R}$ uma função de classe C^2 e $A\subset \mathbb{R}^n$ convexo. Mostre que:
 - i) Se $\nabla^2 f(x) \geq 0$ para todo $x \in A$, então f é convexa em A;
 - ii) Se f é convexa em A e $int(A) \neq \emptyset$, então $\nabla^2 f(x) \geq 0$, para todo $x \in A$.
- 4. Sejam $f:A\subset\mathbb{R}^n\to\mathbb{R}$ uma função convexa e $A\subset\mathbb{R}^n$ convexo. Prove que o conjunto $\Gamma\subset A$ de todos os minimizadores locais de f é convexo.
- 5. Considere $f: \mathbb{R}^n \to \mathbb{R}$ uma função convexa. Mostre que o conjunto de nível $L = \{x \in \mathbb{R}^n | f(x) \leq 0\}$ é convexo.
- 6. Seja $A \subset \mathbb{R}^n$ um conjunto convexo. Uma função $f:A \to R$ é convexa se, e somente se, o epígrafo de f dado por

$$E_f := \{(x, y) \in A \times \mathbb{R} | f(x) \le y\}$$

é um conjunto convexo em $\mathbb{R}^n \times \mathbb{R}$.

7. Seja $f: \mathbb{R}^2 \to \mathbb{R}$ dada por $f(x) = x_1^2 - x_1 x_2 + 2x_2^2 - 2x_1 + \frac{2}{3}x_2 + e^{x_1 + x_2}$. Mostre que f é convexa.