

SGM321/SGM358/SGM324 1MHz, 60µA, Rail-to-Rail I/O CMOS Operational Amplifiers

PRODUCT DESCRIPTION

The SGM321(single), SGM358(dual) and SGM324(quad) are rail-to-rail input and output voltage feedback amplifiers offering low cost. They have a wide input common-mode voltage range and output voltage swing, and take the minimum operating supply voltage down to 2.1V and the maximum recommended supply voltage is 5.5V. All are specified over the extended –40°C to +85°C temperature range.

The SGM321/358/324 provide 1MHz bandwidth at a low current consumption of $60\mu A$ per amplifier. Very low input bias currents of 10pA enable SGM321/358/324 to be used for integrators, photodiode amplifiers, and piezoelectric sensors. Rail-to-rail inputs and outputs are useful to designers buffering ASIC in single-supply systems.

Applications for the series amplifiers include safety monitoring, portable equipment, battery and power supply control, and signal conditioning and interfacing for transducers in very low power systems.

The SGM321 is available in SOT23-5 and SC70-5 packages. The SGM358 comes in SO-8, MSOP-8 and DIP-8 packages. The SGM324 is offered in SO-14 and TSSOP-14 packages.

APPLICATIONS

ASIC Input or Output Amplifier

Sensor Interface

Piezo Electric Transducer Amplifier

Medical Instrumentation

Mobile Communication

Audio Output

Portable Systems

Smoke Detectors

Notebook PC

PCMCIA Cards

Battery -Powered Equipment

DSP Interface

FEATURES

- Low Cost
- Rail-to-Rail Input and Output 0.8mV Typical Vos
- Unity Gain Stable
- Gain Bandwidth Product: 1MHz
- Very Low Input Bias Currents: 10pA
- Operates on 2.1V to 5.5V Supplies
- Input Voltage Range:
 - -0.1V to +5.6V with $V_s = 5.5V$
- Low Supply Current: 60µA/Amplifier
- Small Packaging

SGM321 Available in SOT23-5 and SC70-5 SGM358 Available in SO-8, MSOP-8 and DIP-8 SGM324 Available in SO-14 and TSSOP-14

PIN CONFIGURATIONS (Top View)

PACKAGE/ORDERING INFORMATION

MODEL	ORDER NUMBER	PACKAGE DESCRIPTION	PACKAGE OPTION	MARKING INFORMATION
SGM321	SGM321YC5/TR	SC70-5	Tape and Reel, 3000	321
	SGM321YN5/TR	SOT23-5	Tape and Reel, 3000	321
SGM358	SGM358YS/TR	SO-8	Tape and Reel, 2500	SGM358YS
	SGM358YMS/TR	MSOP-8	Tape and Reel, 3000	SGM358YMS
	SGM358YP	DIP-8	Tube, 50	SGM358YP
SGM324	SGM324YS14/TR	SO-14	Tape and Reel, 2500	SGM324YS14
	SGM324YTS14/TR	TSSOP-14	Tape and Reel, 3000	SGM324YTS14

Note: SC70-5 package is same as SOT-353 package.

ABSOLUTE MAXIMUM RATINGS

Supply Voltage, V+ to V	SOT23-5, θ_{JA}
-------------------------	------------------------

NOTE:

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

CAUTION

This integrated circuit can be damaged by ESD if you don't pay attention to ESD protection. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

ELECTRICAL CHARACTERISTICS: $V_S = +5V$ (At R_L = 100K Ω connected to Vs/2, and V_{OUT} = Vs/2, unless otherwise noted.)

			SGM321/358/324				
PARAMETER	CONDITIONS	TYP	MIN/MAX OVER TEMPERATURE				
FARAMETER	CONDITIONS	+25℃	+25℃	-40℃ to 85℃	UNITS	MIN/MAX	
INPUT CHARACTERISTICS							
Input Offset Voltage (Vos)		±0.8	±5	±5.6	mV	MAX	
Input Bias Current (I _B)		10			pA	TYP	
Input Offset Current (Ios)		10			pA	TYP	
Common-Mode Voltage Range (V _{CM})	V _S = 5.5V	-0.1 to +5.6			V	TYP	
Common-Mode Rejection Ratio (CMRR)	$V_S = 5.5V$, $V_{CM} = -0.1V$ to 4V	70	62	62	dB	MIN	
	$V_S = 5.5V$, $V_{CM} = -0.1V$ to 5.6V	68	56	55	dB	MIN	
Open-Loop Voltage Gain (A _{OL})	$R_L = 5K\Omega$, $Vo = 0.1V$ to 4.9V	80	70	70	dB	MIN	
	$R_L = 100K\Omega$, $Vo = 0.035V$ to 4.965V	84	80	80	dB	MIN	
Input Offset Voltage Drift ($\Delta V_{OS}/\Delta_T$)		2.7			μV/°C	TYP	
OUTPUT CHARACTERISTICS							
Output Voltage Swing from Rail	$R_L = 100 K\Omega$	0.008			V	TYP	
	$R_L = 10K\Omega$	0.08			V	TYP	
Output Current (I _{OUT})		23	20	18.8	mA	MIN	
POWER SUPPLY							
Operating Voltage Range			2.1	2.5	V	MIN	
			5.5	5.5	V	MAX	
Power Supply Rejection Ratio (PSRR)	$V_s = +2.5V \text{ to } + 5.5V$						
	$V_{CM} = (-V_S) + 0.5V$	82	60	58	dB	MIN	
Quiescent Current / Amplifier (I_Q)	I _{OUT} = 0	60	80	86	μA	MAX	
DYNAMIC PERFORMANCE	C _L = 100pF						
Gain-Bandwidth Product (GBP)		1			MHz	TYP	
Slew Rate (SR)	G = +1, 2V Output Step	0.52			V/µs	TYP	
Settling Time to 0.1% (t _s)	G = +1, 2V Output Step	5.3			μs	TYP	
Overload Recovery Time	V _{IN} ·Gain = V _S	2.6			μs	TYP	
NOISE PERFORMANCE							
Voltage Noise Density (en)	f = 1kHz	27			nV/ √Hz	TYP	
	f = 10kHz	20			nV/ √Hz	TYP	

Specifications subject to changes without notice.

TYPICAL PERFORMANCE CHARACTERISTICS

At T_A = +25°C, V_S = +5V, and R_L = 100K Ω connected to Vs/2, unless otherwise noted.

TYPICAL PERFORMANCE CHARACTERISTICS

At T_A = +25°C, V_S = +5V, and R_L = 100K Ω connected to Vs/2, unless otherwise noted.

TYPICAL PERFORMANCE CHARACTERISTICS

At T_A = +25°C, V_S = +5V, and R_L = 100K Ω connected to Vs/2, unless otherwise noted.

APPLICATION NOTES

Driving Capacitive Loads

The SGM3XX can directly drive 250pF in unity-gain without oscillation. The unity-gain follower (buffer) is the most sensitive configuration to capacitive loading. Direct capacitive loading reduces the phase margin of amplifiers and this results in ringing or even oscillation. Applications that require greater capacitive drive capability should use an isolation resistor between the output and the capacitive load like the circuit in Figure 1. The isolation resistor $R_{\rm ISO}$ and the load capacitor $C_{\rm L}$ form a zero to increase stability. The bigger the $R_{\rm ISO}$ resistor value, the more stable $V_{\rm OUT}$ will be. Note that this method results in a loss of gain accuracy because $R_{\rm ISO}$ forms a voltage divider with the $R_{\rm LOAD}$.

Figure 1. Indirectly Driving Heavy Capacitive Load

An improvement circuit is shown in Figure 2, It provides DC accuracy as well as AC stability. R_{F} provides the DC accuracy by connecting the inverting signal with the output, C_{F} and R_{Iso} serve to counteract the loss of phase margin by feeding the high frequency component of the output signal back to the amplifier's inverting input, thereby preserving phase margin in the overall feedback loop.

Figure 2. Indirectly Driving Heavy Capacitive Load with DC Accuracy

For no-buffer configuration, there are two others ways to increase the phase margin: (a) by increasing the amplifier's gain or (b) by placing a capacitor in parallel with the feedback resistor to counteract the parasitic capacitance associated with inverting node.

Power-Supply Bypassing and Layout

The SGM3XX family operates from either a single +2.5V to +5.5V supply or dual $\pm 1.25V$ to $\pm 2.75V$ supplies. For single-supply operation, bypass the power supply V_{DD} with a $0.1\mu F$ ceramic capacitor which should be placed close to the V_{DD} pin. For dual-supply operation, both the V_{DD} and the V_{SS} supplies should be bypassed to ground with separate $0.1\mu F$ ceramic capacitors. $2.2\mu F$ tantalum capacitor can be added for better performance.

Figure 3. Amplifier with Bypass Capacitors

TYPICAL APPLICATION CIRCUITS

Differential Amplifier

The circuit shown in Figure 4 performs the difference function. If the resistors ratios are equal (R₄ / R₃ = R₂ / R₁), then V_{OUT} = (Vp – Vn) × R₂ / R₁ + V_{REF} .

Figure 4. Differential Amplifier

Instrumentation Amplifier

The circuit in Figure 5 performs the same function as that in Figure 4 but with the high input impedance.

Figure 5. Instrumentation Amplifier

Low Pass Active Filter

The low pass filter shown in Figure 6 has a DC gain of $(-R_2/R_1)$ and the -3dB corner frequency is $1/2\pi R_2 C$. Make sure the filter is within the bandwidth of the amplifier. The Large values of feedback resistors can couple with parasitic capacitance and cause undesired effects such as ringing or oscillation in high-speed amplifiers. Keep resistors value as low as possible and consistent with output loading consideration.

Figure 6. Low Pass Active Filter

SC70-5/SOT-353

SOT23-5

Symbol	Dimensions In Millimeters		Dimensions In Inches		
	Min	Max	Min	Max	
Α	1.050	1.250	0.041	0.049	
A1	0.000	0.100	0.000	0.004	
A2	1.050	1.150	0.041	0.045	
b	0.300	0.400	0.012	0.016	
С	0.100	0.200	0.004	0.008	
D	2.820	3.020	0.111	0.119	
Е	1.500	1.700	0.059	0.067	
E1	2.650	2.950	0.104	0.116	
е	0.950TYP		0.037TYP		
e1	1.800	2.000	0.071	0.079	
L	0.700REF		0.028REF		
L1	0.300	0.600	0.012	0.024	
θ	0°	8°	0°	8°	

SO-8

Symbol	Dimensions In Millimeters		Dimensions In Inches		
	Min	Max	Min	Max	
Α	1.350	1.750	0.053	0.069	
A1	0.100	0.250	0.004	0.010	
A2	1.350	1.550	0.053	0.061	
В	0.330	0.510	0.013	0.020	
С	0.190	0.250	0.007	0.010	
D	4.780	5.000	0.188	0.197	
Е	3.800	4.000	0.150	0.157	
E1	5.800	6.300	0.228	0.248	
е	1.270TYP		0.050TYP		
L	0.400	1.270	0.016	0.050	
θ	0°	8°	0°	8°	

MSOP-8

DIP-8

SO-14

TSSOP-14

03/2009 REV. D. 2

SGMICRO is dedicated to provide high quality and high performance analog IC products to customers. All SGMICRO products meet the highest industry standards with strict and comprehensive test and quality control systems to achieve world-class consistency and reliability.

For information regarding SGMICRO Corporation and its products, see www.sq-micro.com

