※特別な許可がない限り、パソコン・携帯電話・電子辞書の使用はできません。これらを使用した場合は不正行為とみなします。

		•											 				CD				,
持込の指示	(作許可)	全て許可	特定の物の 内容:	のみ許す	ग	ć			学籍番号					·		-		捋	<u>京</u>	欄_	-
	い場合は不許す	 可とします。_		<u> </u>					氏	名			•					<u></u>			
秋学期	2 0 1	6 年度	政	治	経	済	学	部	試	験	問	題	1	月	31	日	(火)	3 豗	1
科目	経	済 数	学 入	門			クラス	(06		担任		瀧	澤	ł j	式	信				

問 1. 曲面 $z=f(x,y)=ye^{3x-y^2+1}$ 上の点 (0,1,f(0,1)) における接平面の方程式を z=ax+by+c の形で書き表すとき,定数 a,b,c の値をそれぞれ求めよ.

問2. 極値を求めよ、十分条件も吟味せよ、 $z = f(x,y) = x^3 - x^2y - 3x + y^2 + y + 1$

※特別な許可がない限り、パソコン・携帯電話・電子辞書の使用はできません。これらを使用した場合は不正行為とみなします。

)								
持込の指示	(許可	全て許	- 1	特定の物のみ許可内容:						学籍	番号							-		扫		欄	_	
指定のない	・場合は不許	 可とします								氏	名				 		-							
秋学期	2 0 1	6 年度		政	治	経	済	学	部	試	験	問]	題	 1	月	31	Ħ	(火)	3 [限	⅔
科目	経	済 数	学	: 入	門			クラス	i	06		担 任			 瀧	温	是 ;	武	信					

CD

問3. 資本と労働を投入して単一財を生産する競争的企業を考える。資本投入量を K,労働投入量を L,資本のレンタル価格 r=3,賃金率 w=4,生産物価格 p=16 とする。

また、生産量yに対して、生産関数は以下のように与えられる.

$$y = f(K, L) = K^{3/8}L^{1/4}$$

このとき,以下の問いに答えよ.

- (1) 利潤 Π を資本投入量 K と労働投入量 L の関数として表せ.
- (2) 利潤最大化の1階の条件を示せ.
- (3) 1階の条件を満たすK, Lの値を求めよ.
- (4) 利潤 Π の最大値を求めよ. 利潤が最大になる根拠も示すこと.

問4. 財X の消費量x と財Y の消費量y に対して、効用関数u = g(x,y) は以下のように与えられる.

$$u = g(x, y) = x^{\frac{1}{2}}y$$

ただし,x>0,y>0 であるとする. また, 財 X の価格が $P_x=3$, 財 Y の価格が $P_y=2$ であり, 所得は I=90 とする. 個人は予算制約の下で効用を極大にするように財 X と財 Y の消費量を決定する. このとき, 以下の問いに答えよ.

- (1) 予算制約式を求めよ.
- (2) 効用極大化のためのラグランジュ関数 L を作れ.
- (3) (2) の結果を用いて,効用極大化の1階の条件を示せ.
- (4) (3) の結果を用いて、1 階の条件を満たす (x,y) とラグランジュ乗数の値を求めよ.

(5) (4) で求めた解が効用極大化の2階の条件を満たしていることを示せ.

※特別な許可がない限り、パソコン・携帯電話・電子辞書の使用はできません。これらを使用した場合は不正行為とみなします。

																		CD				_	
持込の指示	不許可	全て許可	特定の物(内容:	のみ許す	<u> </u>				学籍	番号							-		採	点	欄	_	
	い場合は不許		-						氏	名				 							····		
秋学期	2 0 1	6 年度	政	治	経	済	学	部	試	験	問]	題	1	月	31	日	(火)	3	3/3	3
科目	経	済数	学入	門			クラス		06		担任			瀧	泻	景 克	式	信					

問 5. 関数の極限を求めよ. $\lim_{x\to 1} \frac{6\log x - 2x^3 + 9x^2 - 18x + 11}{x^4 - 4x^3 + 6x^2 - 4x + 1}$

問 6. マクローリン展開: $f(x)=e^{\sqrt{1-x}}=a_0+a_1x+a_2x^2+\cdots$ とするとき、2次の項までの係数 a_0,a_1,a_2 を求めよ.