

Glossaire

Modèle conceptuel de données (MCD)

Modèle logique de données (MLD)

table(<u>cléPrimaire</u>, champs, #cléEtrangère, #cléEtrangèrePrimaire)

Modèle physique de données (MPD)

Contraintes d'intégrité fonctionnelle (CIF) - relation 0,1 ou 1,1

MCD

Dans une maison, vivent aucune ou plusieurs personnes Un humain vit dans aucune ou une maison.

MLD

Maison (idMaison, adresseMaison, villeMaison, cpMaison)

Humain(idHumain, nomHumain, prenomHumain, #idMaison)

Relation – 0,n ou 1,n

MCD

Un humain peut détenir aucune ou plusieurs maisons.

Une maison est détenuepar aucun ou plusieurs humains.

MLD

Maison (idMaison, adresseMaison, villeMaison, cpMaison)

Humain(idHumain, nomHumain, prenomHumain)

MaisonHumain(#idMaison, #idHumain)

Association réflexive

- Avec une relation de type 1,n ou 0,n

MCD

Une norme remplace ou modifie une ou plusieurs normes.

Une norme peut être remplacée ou modifiée par une autre norme.

MLD

Norme(codeNorme, dateNorme)

RemplacerModifier(#codeNormeRemplacante, #codeNorme-Remplacee, #dateNormeRemplacante, #dateNormeRemplacee)

Association réflexive

- Avec une relation de type CIF

Une femme peut avoir aucune ou plusieurs filles.

Une femme a une et une seule mère.

MLD

Femme(idFemme, nomFemme, prenomFemme,#idMere)

Association n-aire

MCD

MLD

Classe (idClasse,nomClasse,effectif)

Matière (idMatiere, designation)

Prof (idProf,nom,prénom)

Enseigner (#idClasse,#idMatière,#idProf, nombreHeures)

<u>Héritage</u>

MCD

Un client et un fournisseur sont un tiers. Ils sont caractérisés par un numéro, une raison sociale et une adresse.

Un client possède des conditions de règlement.

Un fournisseur peut appliquer un taux de remise.

MLD

3 méthodes possibles :

• <u>L'héritage par référence</u> : Utile quand les tables enfants contiennent beaucoup d'attributs

Tiers(<u>numeroTiers</u>, raisonSociale, adresse)

Client(#numeroTiers, conditionsReglement)

Fournisseurs(#numeroTiers, tauxRemise)

• <u>L'héritage par table mère</u> : Utile quand les tables enfants ne contiennent pas beaucoup d'attributs.

Dans notre exemple, typeDeTiers sera un entier permettant d'indiquer s'il s'agit d'un fournisseur ou d'un client.

Tiers(<u>numeroTiers</u>, raisonSociale, adresse, conditionsReglement, tauxRemise, typeDeTiers)

• <u>L'héritage par table enfant</u>: Utile quand les enregistrements de la table mère ne peuvent pas exister seul sans les enfants (en objet, cas de la classe abstraite)

Client(numeroClient, raisonSociale, adresse, conditionsReglement)

Fournisseurs (<u>numero Fournisseur</u>, raison Sociale, adresse, taux Remise)

MPD

Héritage par référence

Héritage par table mère

• <u>Héritage par table enfant</u>

Client
<u>numeroTiers</u>
raisonSociale
adresse
conditionsReglement

Fournisseurs
n <u>umeroTiers</u>
raisonSociale
adresse
TauxRemise