MATH2089 Numerical Methods Lecture 3

Nonlinear equations:
Bisection method,
Fixed point iteration,
Newton-Raphson method and
Secant method

Solving Nonlinear Equations

For a number of equations, analytical solutions may be directly obtained from functions available on calculators and computers, such as in the form $y = ax^2 + bx + c = 0$

For example, $y = x^2 - 3x + 2 = 0 \rightarrow (x - 1) (x - 2) = 0$ The roots of x are 1 and 2 respectively

In many engineering applications, many algebraic equations generally do not have analytical solutions

Examples

Geometrical concentration factor in solar-energy collection

$$C = \frac{\pi (h/\cos A)^2 F}{0.5\pi D^2 (1 + \sin A - 0.5\cos A)}$$

where A is rim angle, F is fractional coverage, D is diameter of collector and h is height of collector. If C = 0.892, F = 0.8, D = 14.0, h = 300.0, determine A? Rearranging, we need to solve for

$$f(A) = \frac{72000\pi/(\cos A)^2}{98\pi(1+\sin A - 0.5\cos A)} - 1200 = 0$$

Examples (continue)

Friction factor of suspension of fibrous particles

$$\frac{1}{\sqrt{f}} = \left(\frac{1}{k}\right) \ln\left(\operatorname{Re}\sqrt{f}\right) + \left(14 - \frac{5.6}{k}\right)$$

where Re is Reynolds number and k is a constant determined by the suspension concentration. For 0.8% concentration, k = 0.28. What is f when Re = 3500? Rearranging, we can solve for

$$g(f) = \frac{1}{\sqrt{f}} - \left(\frac{1}{0.28}\right) \ln\left(3750\sqrt{f}\right) - 7 = 0$$

Iterative Methods

- Such equations may be solved by seeking an initial approximation and improving this approximation using iterative methods
- If successive applications of the iterative method result in approximations which approach the solution, the iterative method is considered to be converged
- An appropriate error estimate is needed to detect if the method has converged sufficiently

Iterative Methods (continue)

- An iterative method may be inherently unstable or only for some initial approximations unstable
- A correct, efficient and robust algorithm requires an appropriate selection of both the approximate and iterative method

Useful Theorems

Taylor's Theorem

Assume that the function f(x) and its derivatives are all continuous on [a, b]. If both x_0 and $x_0 + h$ lie in the interval [a, b] and $h = x - x_0$ then

$$f(x_0 + h) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} h^k + O(h^{n+1})$$

is the n-th degree Taylor polynomial expansion of f(x) about x_0 . Note that this theorem is very useful in deriving numerical methods!

Useful Theorems (continue)

Mean Value Theorem

Assume that $f \in C[a,b]$ and f'(x) exists for all $x \in [a,b]$. Then there should exist a number c with $c \in [a,b]$ such that

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

Useful Theorems (continue)

Mean Value Theorem

Secometrically, the mean value theorem says that there is at least one number $c \in [a,b]$ such that the slope of the tangent line to the graph y = f(x) at a point (c, f(c)) equals the slope of secant line through the points (a, f(a)) and (b, f(b))

Initial Approximations

- Solutions are required within a given range and initial estimates can be found by
 - Random search
 - Systematic search, e.g. interval halving
 - Simplified equations
 - Graphical method
- For example, consider the following equation:

$$x^5 - x - 500 = 0$$

Initial estimate can be found by neglecting the middle term

$$x \approx 500^{1/5}$$

Initial Approximations (continue)

Graphical Method

For the equation $x^5 - x - 500 = 0$, the root occurs when the function f(x) crosses the x-axis. It has four roots. Real root of an equation may be interpreted graphically except for complex equations

Initial Approximations (continue)

Graphical Method

Split f(x) = 0 into two parts: $f(x) = f_1 - f_2 = 0 \rightarrow f_1 = f_2$ and the point of intersection of the two parts denotes the roots of the equation. The function is split into

$$f(x) = x^3 - (2x - 1) = f_1 - f_2$$

Initial Approximations (continue)

Graphical Method

Usually used to find good starting points for other more accurate and efficient methods or to obtain rough estimates of roots!

Interval Halving (Bisection) Method

- Requires an initial range, $x_l < x < x_r$, with sign change so that $f(x_l) f(x_r) < 0$
- For each iteration, halve the interval, evaluate the function at the midpoint and make the new interval the half with a sign change
- Ensure the function is continuous as if the function is not continuous it may converge to a discontinuity

Interval Halving (Bisection) Method (continue)

Initial estimate of the solution is

$$x_o = (x_l + x_r)/2$$

Initial error is

$$E_i = |x_l - x_r|/2$$

and the number of iterations, N, required to reduce this error to E_r is

$$N = \log_2(\frac{E_i}{E_r})$$

Steps of Solution

Step 1: Set a value of ε and choose the interval of uncertainty $(a^{(1)},b^{(1)})$ that $f(a^{(1)})\times f(b^{(1)})<0$ (Figure 1)

- > Step 2: Compute $x_m^{(1)} = (a^{(1)} + b^{(1)})/2$
- Step 3: If $|f(x_m^{(1)})| \le \varepsilon$, halt the procedure and get the estimated root as $x_m^{(1)}$, otherwise $|f(x_m^{(1)})| > \varepsilon$, go to Step 4

Steps of Solution (continue)

Step 4a: If $f(x_m^{(1)}) \times f(b^{(1)}) < 0$, set $(a^{(2)}, b^{(2)}) = (x_m^{(1)}, b^{(1)})$ (Figure 2) and go to Step 2

- > Step 4b: If $f(x_m^{(1)}) \times f(b^{(1)}) > 0$, set $(a^{(2)}, b^{(2)}) = (a^{(1)}, x_m^{(1)})$ and go to Step 2
- > Step 2: Compute $x_m^{(2)} = (a^{(2)} + b^{(2)})/2$
- Step 3: Check if $|f(x_m^{(2)})| \le \varepsilon$, answer = $x_m^{(2)}$, or $|f(x_m^{(1)})| > \varepsilon$ go to Step 4 to find a new interval $(a^{(3)}, b^{(3)})$

Convergence

The interval (I = b - a) is halved each time $(I^{(2)} = \frac{1}{2}I^{(1)})$, the last value of x_m differs from the root by less than $\frac{1}{2}$ the last interval

$$I^{(i+1)} = b^{(i+1)} - a^{(i+1)} = \frac{I^{(i)}}{2} = \frac{I^{(i-1)}}{2^2} = \frac{(b^{(1)} - a^{(1)})}{2^i}$$

Error after *i* iterations
$$< \frac{(b^{(1)} - a^{(1)})}{2^i}$$

- If the graph f(x) of touches the x axis tangentially, f(x) does not undergo a sign change, the method cannot find the root
- ➤ The bisection method will not work if the interval (*a*, *b*) contains a double root

> The method may not be able to distinguish between a

singular point and a root

- If f(x) can be evaluated quickly, the bisection method is recommended
- The method cannot be used to find the complex roots of an equation

Example of Bisection Method

- ▶ Using the interval halving, a solution to $x^2 2 = 0$ is required between the roots 1 and 2
 - Show that the interval halving method will converge
 - Starting with this interval calculate the number of iterations required if the final error must be 0.02
 - Perform these iterations to obtain the answer to four significant figures

Fixed Point Iteration

The function f(x) = 0 can be rewritten as x = F(x) (or x = g(x)) to give an iterative procedure

$$x_{n+1} = F(x_n)$$
 $n = 1, 2, 3, ...$

This procedure may converge or diverge depending on the choice of F(x). We can define the convergence criterion as

$$\left| x_{n+1} - x_n \right| \le \varepsilon$$
 or $\left| \frac{x_{n+1} - x_n}{x_{n+1}} \right| \le \varepsilon$

Convergence

Based on $x_{n+1} = F(x_n)$, let S denote a solution and e_n the error in x_n so that $x_n = S + e_n$. Therefore,

$$S + e_{n+1} = F(S + e_n)$$

The right-hand side can be expanded in a Taylor series about *S* as

$$S + e_{n+1} = F(S) + e_n F'(S) + \frac{e_n^2}{2!} F''(S) + \dots$$

Since *S* is the solution, S = F(S). Therefore,

$$e_{n+1} = e_n F'(S) + \frac{e_n^2}{2!} F''(S) + \dots$$

▶ If e_n is sufficiently small and provided that $F'(S) \neq 0$ then

$$e_{n+1} \approx e_n F'(S)$$

For $x_{n+1} = F(x_n)$ to be convergent, it is necessary that $|e_{n+1}| < |e_n|$. It can be achieved if |F'(S)| < 1. Therefore, the iterative process is convergent if there is some range around S for which |F'(S)| < R < 1

Since $e_{n+1} < O(e_n)$, the fixed point iteration is a <u>first order</u> <u>method</u>, i.e. a fixed number of decimal places improvement in accuracy occurs at each iteration

Convergence criterion |F'(S)| < R < 1 possesses a simple geometric interpretation

Convergence criterion |F'(S)| < R < 1 possesses a simple geometric interpretation

What if F'(S) = 1? Based on $e_{n+1} \approx e_n F'(S)$, the error will remain constant

Error Estimate

- ▶ Based on $e_{n+1} \approx e_n F'(S)$, $x_{n+1} S \approx (x_n S)F'(S)$
- It can be shown that $x_{n+1} \approx (x_n S)\{F'(S) 1\} + x_n$
- Finally, $x_n S = e_n \approx \frac{x_{n+1} x_n}{F'(x_n) 1}$
- > Note that F'(S) can not be evaluated until solution is known. But it can be approximated by $F'(x_{n+1})$
- ▶ Iterations are performed when $\left| \frac{x_{n+1} x_n}{F'(x_n) 1} \right| < \varepsilon |x_{n+1}|$

$$\left|\frac{x_{n+1}-x_n}{F'(x_{n+1})-1}\right| < \varepsilon \left|x_{n+1}\right|$$

Some Features

- The method is very simple; however, it may not always converge with an arbitrarily chosen form of the function F(x)
- The condition to be satisfied for convergence to the correct root is given by |F'(S)| < 1
- The convergence of the process is oscillatory if -1 < F'(x) < 0, and asymptotic if 0 < F'(x) < 1. The divergent of the process can occur if |F'(S)| > 1

Example of Fixed Point Iteration Method

The function $f(x) = e^x - 3x^2 = 0$ has 3 roots near 0, 1 and 4. Use the fixed point iteration method to find the 3 roots to 5 significant figures.

Solution:

$$x = \sqrt{\frac{e^x}{3}}$$

g(x)=sqrt(exp(x)/3)		
i	х	
1	1.000000	
2	0.9518897	
3	0.9292650	
4	0.9188121	
5	0.9140225	
6	0.9118362	
7	0.9108400	
8	0.9103864	
9	0.9101800	
10	0.9100860	
11	0.9100433	
12	0.9100238	
13	0.9100150	
14	0.9100109	

$$x = -\sqrt{\frac{e^x}{3}}$$

g(x) = -sqrt(exp(x)/3)			
х			
0.000000			
-0.5773503			
-0.4325829			
-0.4650559			
-0.4575660			
-0.4592828			
-0.4588887			
-0.4589791			
-0.4589584			
-0.4589632			
-0.4589621			

Example of Fixed Point Iteration Method (continue)

Solution: Function $f(x) = e^x - 3x^2 = 0$

$$x = \frac{e^x}{3x}$$

g(x)=exp(x)/(3*x)			
i	х		
1	4.0000000		
2	4.5498458		
3	6.9319433		
4	49.263865		
5	1.68025E+19		
6	diverge!		

$$x = \ln(3x^2)$$

g(x)=In(3*x^2)		
i	х	
1	4.0000000	
2	3.8712010	
3	3.8057419	
4	3.7716342	
5	3.7536290	
6	3.7440585	
7	3.7389527	
8	3.7362234	
9	3.7347629	
10	3.7339810	
11	3.7335622	
12	3.7333379	
13	3.7332177	
14	3.7331533	
15	3.7331188	

Newton-Rhapson Method

- A well known and powerful method
- ▶ Derived by considering first-order Taylor's series expansion of f(x) about an arbitrary point x_1

$$f(x) \approx f(x_1) + (x - x_1)f'(x_1) = 0$$

Since the higher order derivative terms were neglected in the approximation of f(x), the solution yields the next approximation to the root as

$$x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}$$

From above, x_2 is an improved approximation to the root

Newton-Rhapson Method (continue)

Graphically,

Newton-Rhapson Method (continue)

Iterative process can be generalized as

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}, \quad i = 1, 2, 3, \dots$$

until the approximation x_{i+1} satisfies the **convergence criterion** ε ,

$$|f(x_{i+1})| \leq \varepsilon$$

Steps of Solution

- Step 1: Set a value of ε and choose a starting point x_1 and compute $f(x_1)$ and $f'(x_1)$
- > Step 2: Calculate $x_2 = x_1 \frac{f(x_1)}{f'(x_1)}$
- Step 3: If $|f(x_2)| \le \varepsilon$, x_2 satisfies the convergence criterion and is the answer. If $|f(x_2)| > \varepsilon$, go to Step 1 with x_2 as the starting value
- Repeat Steps 1-3 for $x_{i+1} = x_i \frac{f(x_i)}{f'(x_i)}$, i = 3,4,5,... until the procedure satisfies the convergence criterion $|f(x_{i+1})| \le \varepsilon$

Some Features

- The Newton's method requires the continuous function f(x) and continuous derivatives f'(x)
- The Newton's method is most powerful if f'(x) can be evaluated
- The Newton's method can also be used for finding complex roots, using complex number as the initial guess for the root

Some Features (continue)

- Newton's method converges very fast in most cases. However it may not converge, if
 - □ initial guess x_i is very far from the exact root (a)
 - f'(x) is close to zero (b)
 - f'(x) varies substantially near the root (c)

(c) Derivative (slope) varies rapidly resulting in oscillation between x₁ and x₂.

Some Features (continue)

- Newton's method converges very fast in most cases. However it may not converge, if
 - □ initial guess x_i is very far from the exact root (a)
 - f'(x) is close to zero (b)
 - f'(x) varies substantially near the root (c)

(c) Derivative (slope) varies rapidly resulting in oscillation between x₁ and x₂.

Example of Newton-Rhapson Method

Use the Newton-Rhapson method to solve $f(x) = 3x + \sin x - e^x$ with a convergence criterion $\varepsilon = 0.001$

Solution:

$$f'(x) = 3 + \cos x - e^x$$

			7 157
i	Х	f(x)	f(x)
1	0	-1.0000	3.0000
2	0.33333	-0.068426	2.5494
3	0.36017	-6.2977E-04	

i	х	f(x)	f'(x)
1	2	-0.47976	-4.8052
2	1.9002	-0.040396	-4.0107
3	1.8901	-2.7642E-04	-3.9339

		<u> </u>	
i	Х	f(x)	f(x)
1	1	1.1232	0.82202
2	-0.36639	-2.1506	3.2404
3	0.29729	-0.16141	2.6099
4	0.35914	-3.2080E-03	2.5041
5	0.36042	-4.2605E-06	2.5018

i	х	f(x)	f'(x)
1	1.5	1.0158	-1.4110
2	2.2199	-1.7501	-6.8109
3	1.9629	-0.30414	-4.5021
4	1.8953	-2.0835E-02	-3.9734
5	1.8901	-2.7642E-04	-3.9339

Secant Method

- Suppose f(x) is assumed to be linear in the vicinity of the exact root. x_1 and x_2 are assumed to be close to the root. A straight line is drawn through the two points $(f(x_1))$ and $f(x_2)$ and intersect the x-axis at x_3 . The line through two points on the curve is called the secant line
- ▶ If f(x) is truly linear, x_3 would be the root. However, for non-linear function, x_3 should be close to the root

Secant Method (continue)

Referring to the figure, based on similar two triangles

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} = \frac{0 - f(x_2)}{x_3 - x_2}$$

 \triangleright Rewriting in the form to solve x_3

Steps of Solution

- Step 1: Start with two initial approximations x_1 and x_2 and a small value of ε . Calculate $f(x_1)$ and $f(x_2)$
- > Step 2: Find the new approximation, x_{n+1} as

$$x_{i+1} = x_i - \frac{f(x_i)(x_i - x_{i-1})}{f(x_i) - f(x_{i-1})}$$
 $i = 2, 3, 4, ...$

Verify the convergence. If $|f(x_{i+1})| \le \varepsilon$, halt the process by taking x_{i+1} as a root. Otherwise, update the iteration number as i = i + 1 and go to Step 2

Some Features

- The Secant method is preferred over the Newton-Raphson method, when the evaluation of f'(x) is difficult
- Since $f'(x_i) \approx \left[\frac{f(x_i) f(x_{i-1})}{x_i x_{i-1}}\right]$, the process may not

converge if $f(x_1) \approx f(x_2)$ in which the next approximation (x_3) will be near infinity (see Figure below)

Some Features (continue)

▶ If the function is far from linear near the root, the successive iterates can fly off to points far from the root, as seen in Figure below

Example of Secant Method

Use the Secant method to solve $x^3 + x^2 - 3x = 3$ with $(x_1, x_2) = (1,2)$ and a convergence criterion $\varepsilon = 10^{-5}$

> Solution:

JII.	f($f(x_1)$ $f(x_2)$	x_2)
i	х	f(x)	f(x) < e ?
1	1	-4/	no
2	2	3	no
3	1.571429	-1.364428	no
4	1.705411	-0.2477435	no
5	1.735136	2.929758E-02	no
6	1.731993	-5.470760E-04	no
7	1.732051	1.821188E-06	yes

Systems of Nonlinear Equations

- The problem of finding the solution of a set of nonlinear equations can be solved using Newton-Rhapson Method
- Take for example,

$$f_1(x,y) = 0$$

$$f_2(x,y) = 0$$

Applying Taylor series expansions about point (x_i, y_i) for point (x_{i+1}, y_{i+1})

$$f_1(x_{i+1}, y_{i+1}) = f_1(x_i, y_i) + (x_{i+1} - x_i) \frac{\partial f_1(x_i, y_i)}{\partial x} + (y_{i+1} - y_i) \frac{\partial f_1(x_i, y_i)}{\partial y} = 0$$

$$f_2(x_{i+1}, y_{i+1}) = f_2(x_i, y_i) + (x_{i+1} - x_i) \frac{\partial f_2(x_i, y_i)}{\partial x} + (y_{i+1} - y_i) \frac{\partial f_2(x_i, y_i)}{\partial y} = 0$$

Systems of Nonlinear Equations (continue)

Truncating the series gives

$$\begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{cases} f_1(x_i, y_i) \\ f_2(x_i, y_i) \end{cases} + \begin{bmatrix} \frac{\partial f_1(x_i, y_i)}{\partial x} & \frac{\partial f_1(x_i, y_i)}{\partial y} \\ \frac{\partial f_2(x_i, y_i)}{\partial x} & \frac{\partial f_2(x_i, y_i)}{\partial y} \end{bmatrix} \begin{cases} x_{i+1} - x_i \\ y_{i+1} - y_i \end{cases}$$

Rewrite this to solve as the system of equations

$$\begin{bmatrix} \frac{\partial f_1(x_i, y_i)}{\partial x} & \frac{\partial f_1(x_i, y_i)}{\partial y} \\ \frac{\partial f_2(x_i, y_i)}{\partial x} & \frac{\partial f_2(x_i, y_i)}{\partial y} \end{bmatrix} \begin{cases} \Delta x_i \\ \Delta y_i \end{cases} = \begin{cases} -f_1(x_i, y_i) \\ -f_2(x_i, y_i) \end{cases} \text{ where } \begin{cases} \Delta x_i \\ \Delta y_i \end{cases} = \begin{cases} x_{i+1} - x_i \\ y_{i+1} - y_i \end{cases}$$

Systems of Nonlinear Equations (continue)

- > Solve for $\left\{ egin{array}{l} \Delta x_i \\ \Delta y_i \end{array} \right\}$ by Gaussian elimination and then
 - improve the an estimate of the root $\begin{cases} x_{i+1} \\ y_{i+1} \end{cases}$ as $\begin{cases} x_{i+1} = x_i + \Delta x_i \\ y_{i+1} = y_i + \Delta y_i \end{cases}$
- Repeat this process with i replaced by i + 1 until $f_1(x, y)$ and $f_2(x, y)$ are close to 0
- It is interesting to observe that Newton's method, as applied to a set of nonlinear equations, reduces the problem to solving a set of linear equations in order to determine the values that improve the accuracy of the estimates