مراجعة الوحدة 01 و 02

التمرين 1:

نمزج في اللحظة C_1 حجما $V_1 = 100ml$ من المحلول (S_1) لحمض الأوكساليك (S_1) تركيزه المولي $V_1 = 100ml$ مع حجما (S_1) من المحلول (S_2) لثنائي كرومات البوتاسيوم (S_1) من المحلول (S_2) تركيزه المولى (S_2) من المحلول (S_2)

. 2 للبيان عند t=0 عند المعلم ين بيانيا في نفس المعلم يا $\left[Cr_2O_7^{-2}\right]=g(t)$ و $\left[H_2C_2O_4\right]=f(t)$. عند المعلم يا بيانيا في نفس المعلم يا المعلم ي

. $\left(Cr_2O_{7_{(aq)}}^{2-}/Cr_{(aq)}^{3+}\right)$ و $\left(CO_{2_{(v)}}/H_2C_2O_{4_{(aq)}}\right)$: الثنائيتان المتفاعلتان

- 1- اكتب معادلة التفاعل الحاصل.
- . أ- هل المزيج ستوكيوميتري ؟ علل . C_1 و V_2 . C_1
 - 3- انشىء جدول تقدم التفاعل,
- x_{max} عين المتفاعل المحدثم استنتج التقدم الأعظمي -4
- و البيان الذي الذي الذي الذي الذي الذي الذي $\left[H_2C_2O_4\right]=f(t)$ حدد البيان الذي
 - . يمثل $\left[Cr_2O_7^{-2}\right] = g(t)$ مع التعليل
 - 6- عرف زمن نصف التفاعل ثم اوجد قيمته من البيان 1,

مبينا الطريقة المتبعة.

7- عرف السرعة الحجمية للتفاعل ثم احسب قيمتها

t=0 من البيان 2 عند اللحظة

التمرين <u>2:</u>

: يُنمذج بالمعادلة الكيميائية الكسوجيني هو تفاعل بطيء ، يُنمذج بالمعادلة الكيميائية I^-

(1)
$$H_2O_2 + 2H_3O^+ + 2I^- = 4H_2O + I_2$$

من أجل متابعة تطوّر هذا التحوّل الكيميائي نعـاير ثنائي اليود الناتج بواسطة محلول مائي لثيوكبريتات البوتاسيوم $\left(2K^+,S_2O_3^{2-}
ight)$. I_2 بوجود صمغ النشـاء الذي يكشـف وجود ثنائي اليود في المزيج المتفاعل ، حيث أنه يتلوّن بالأزرق الدّاكن بوجود عنائي اليود في المزيج المتفاعل ، حيث أنه يتلوّن بالأزرق الدّاكن بوجود ثنائي اليود في المزيج المتفاعل ، حيث أنه يتلوّن بالأزرق الدّاكن بوجود عنائي اليود في المزيج المتفاعل ، حيث أنه يتلوّن بالأزرق الدّاكن بوجود ثنائي اليود في المزيج المتفاعل ، حيث أنه يتلوّن بالأزرق الدّاكن بوجود ثنائي اليود في المزيج المتفاعل ، حيث أنه يتلوّن بالأزرق الدّاكن بوجود ثنائي اليود في المزيج المتفاعل ، حيث أنه يتلوّن بالأزرق الدّاكن بوجود ثنائي اليود في المزيج المتفاعل ، حيث أنه يتلوّن بالأزرق الدّاكن بوجود ثنائي اليود في المزيج المتفاعل ، حيث أنه يتلوّن بالأزرق الدّاكن بوجود ثنائي اليود في المزيج المتفاعل ، حيث أنه يتلوّن بالأزرق الدّاكن بوجود ثنائي اليود في المزيج المتفاعل ، حيث أنه يتلوّن بالأزرق الدّاكن بوجود ثنائي اليود في المزيج المتفاعل ، حيث أنه يتلوّن بالأزرق الدّاكن بوجود ثنائي اليود في المزيج المتفاعل ، حيث أنه يتلوّن بالأزرق الدّاكن بوجود ثنائي اليود في المزيج المتفاعل ، حيث أنه يتلوّن بالأزرق الدّاكن بوجود ثنائي اليود في المزيج المتفاعل ، حيث أنه يتلوّن بالأزرق الدّاكن بوجود ثنائي اليود في المزيج المتفاعل ، حيث أنه يتلوّن بالأزرق الدّاكن بوجود ثنائي اليود في المزيج المتفاعل ، حيث أنه بالمرتوب المتفاعل الم

(2)
$$2S_2O_3^{2-} + I_2 = S_4O_6^{2-} + 2I^{-}$$

نضع في بيشر :

- . 0.1mol/L من محلول يود البوتاسيوم $\left(K^+,I^ight)$ تركيزه المولي $V_1=50mL$ -
 - . $C_3 = 0.1 mol/L$ من حمض الكبريت تركيزه المولي $V_3 = 150 mL$ -
 - كمية قليلة من صمغ النشاء .
- . $C=0,2\,mol\,/\,L$ من المحلول S) لثيوكبريتات البوتاسيوم .تركيزه المولي V=1mL -

. $C_2 = 1 mol/L$ في اللحظة t=0 نضيف $V_2 = 2.5 \, mL$ في اللحظة وعند المولي أنصيف الماء الأكسوجيني تركيزه المولي

في اللحظة z=20 نلاحظ أن المحلول يتلوّن للمرّة الأولى باملزرق الداكن . نضيف عندها للمزيج 1mL من المحلول (S) فيختفي اللون الأزرق الداكن آنيا . فكلّما ظهر اللون الأزرق الداكن نضيف 1mL من المحلول (S) حتى ينتهي المتفاعل المحدّ .

. ميث x هو تقدم التفاعل . x=f(t) لرسم البيان t=0 استعملنا النتائج المتحصّل عليها في المدة x = t استعملنا النتائج المتحصّل عليها في المدة x = t المسم المدة x = t

- 1 احسب كميّة المادة الابتدائية للمتفاعلين .
- أ) بدون وجود ثيوكبريتات البوتاسيوم في المزيج أنشئ جدول التقدم.
- ب) احسب كمية مادة ثنائي اليود الممكن الحصول
 عليها في (1) .
 - 3 أ) احسب كمية مادة شوارد الثيوكبريتات عند كل إضافة للمحلول (S) .
 - ب) استنتج كميّة مادة ثنـائي اليود المتشـكل في التفاعل (1) عند كل ظهور للون الأزرق الداكن .
- t(s). t = 20s عند اللحظة 4
- . بيّن أن تطوّر الجملة يتباطأ بمرور الوقت . t=42s عند اللحظة عند اللحظة عند اللحظة يتباطأ بمرور الوقت .
 - 6 ما هو عدد المرات التي يظهر فيها اللون الأزرق الداكن خلال مدّة التجربة ؟
 - 7 عرّف زمن نصف التفاعل وأوجد قيمته من البيان .

التمرين 3:

- i. نقذف جسم صلب (S) كتلته m=100 بسرعة ابتدائية $v_0=5m/s$ من النقطة f على خط الميل الأعظم لمستوى مائل يصنع زاوية $\alpha=30^0$ مع الأفق بحيث يخضع الجسم إلى قوة احتكاك f ثابتة ومعاكسة لجهة الحركة قيمتها f=0.1N .
 - 1) مثل كل القوى المطبقة على الجسم.
 - 2) بتطبيق القانون الثاني لنيوتن:
 - . $m \cdot f \cdot g$ و α بدلالة α و التسارع
 - حدد طبيعة حركة الجسم.
- $R=mg\sqrt{\cos^2 lpha+\left(rac{a}{g}+\sin lpha
 ight)^2}$: بين أن شدة القوة $R=mg\sqrt{\cos^2 lpha+\left(rac{a}{g}+\sin lpha
 ight)^2}$: بين أن شدة القوة

100

- ii. يغادر الجسم المستوى المائل AB عند النقطة B ليسقط عند النقطة C من منحدر ثاني يصنع مع المستوى الأفقى الزاوية $\theta=30^0$.
 - أحسب سرعة الجسم عند النقطة B
- أكتب معادلة مسار الجسم بعد مغادرته النقطة B
 - أحسب المسافة BC.
 - 4) حدد خصائص شعاع السرعة عند النقطة 4
 - AB = 2 m $g = 10 m/s^2$