Bayesian estimation of binary regression models

Applied Bayesian Statistics
Winter Term 2018

Bayesian estimation of binary regression models

Susumu Shikano

Introduction

Bayesian Regression

Conjugacy analysis

Wrap up

Susumu Shikano GSDS

- In Bayesian inference the (posterior) probability of individual models is at stake.
- You can obtain the posterior even after observing one single case.
- The posterior also depends on your prior belief.
- For a larger number of observations frequentists and Bayesian have similar results.
- Conjugacy of the beta distribution with the likelihood based on the binomial distribution.

Bayesian estimation of binary regression models

Susumu Shikano

Introduction

Bayesian Regression

Conjugacy analysis

Example

Bayesian estimation of binary regression models

Susumu Shikano

Introduction

Bayesian Regression

Conjugacy analysis

Example

Model: capacity of face-based inference of candidate ideology

Bayesian estimation of binary regression models

Susumu Shikano

Introduction

Bayesian Regression

Conjugacy analysis

Example

- Model: capacity of face-based inference of candidate ideology
- Parameter of interest: π

Bayesian estimation of binary regression models

Susumu Shikano

Introduction

Bayesian Regression

Conjugacy analysis

Example

- Model: capacity of face-based inference of candidate ideology
- Parameter of interest: π
- → Only one parameter is at stake.

Bayesian estimation of binary regression models

Susumu Shikano

Introduction

Bayesian Regression

Conjugacy analysis

Example

- Model: capacity of face-based inference of candidate ideology
- Parameter of interest: π
- ullet Only one parameter is at stake.
- In praxis there are multiple parameters.

Bayesian estimation of binary regression models

Susumu Shikano

Introduction

Bayesian Regression

Conjugacy analysis

Example

- Model: capacity of face-based inference of candidate ideology
- Parameter of interest: π
- ullet Only one parameter is at stake.
- In praxis there are multiple parameters.
- e.g. (bivariate) regression models

Bayesian estimation of binary regression models

Susumu Shikano

Introduction

Bayesian Regression

Conjugacy analysis

Linear Regression Model

Two approaches to obtain posterior

- Conjugacy analysis
 - Conjugacy: The property that the prior and posterior have the same probability form depending on the form of the distribution used to calculate the likelihood.
 - · Posterior can be obtained analytically.

Bayesian estimation of binary regression models

Susumu Shikano

Introduction

Bayesian Regression

Conjugacy analysis

Linear Regression Model

Two approaches to obtain posterior

- Conjugacy analysis
 - Conjugacy: The property that the prior and posterior have the same probability form depending on the form of the distribution used to calculate the likelihood.
 - Posterior can be obtained analytically.
- Deriving posterior per Gibbs Sampling
 - Conjugacy is not must.
 - Use of MCMC.

Bayesian estimation of binary regression models

Susumu Shikano

Introduction

Bayesian Regression

Conjugacy analysis

(Bivariate) linear regression model

$$y = \beta_0 + \beta_1 x + \epsilon$$
$$\epsilon \sim N(0, \sigma^2)$$

$$(y|\beta_0, \beta_1, \sigma^2, x) \sim N(\beta_0 + \beta_1 x, \sigma^2)$$

Bayesian estimation of binary regression models

Susumu Shikano

Introduction

Bayesian Regression

Conjugacy analysis

(Bivariate) linear regression model

$$y = \beta_0 + \beta_1 x + \epsilon$$
$$\epsilon \sim N(0, \sigma^2)$$

$$(y|\beta_0, \beta_1, \sigma^2, x) \sim N(\beta_0 + \beta_1 x, \sigma^2)$$

The unknown parameters to be estimated

Bayesian estimation of binary regression models

Susumu Shikano

Introduction

Bayesian Regression

Conjugacy analysis

(Bivariate) linear regression model

$$y = \beta_0 + \beta_1 x + \epsilon$$
$$\epsilon \sim N(0, \sigma^2)$$

$$(y|\beta_0, \beta_1, \sigma^2, x) \sim N(\beta_0 + \beta_1 x, \sigma^2)$$

The unknown parameters to be estimated

- β₀
- β₁
- σ²

Bayesian estimation of binary regression models

Susumu Shikano

Introduction

Bayesian Regression

Conjugacy analysis

How to proceed

- Likelihood?
- Prior?
- Posterior?

Bayesian estimation of binary regression models

Susumu Shikano

Introduction

Bayesian Regression

Conjugacy analysis

How to proceed

- Likelihood? → Normal distribution
- Prior?
- Posterior?

Bayesian estimation of binary regression models

Susumu Shikano

Introduction

Bayesian Regression

Conjugacy analysis

How to proceed

- Likelihood? → Normal distribution
- Prior? → Normal-Inverse-Gamma
- Posterior?

Bayesian estimation of binary regression models

Susumu Shikano

Introduction

Bayesian Regression

Conjugacy analysis

How to proceed

- Likelihood? → Normal distribution
- Prior? → Normal-Inverse-Gamma
- Posterior? → Normal-Inverse-Gamma

Bayesian estimation of binary regression models

Susumu Shikano

Introduction

Bayesian Regression

Conjugacy analysis

How to proceed

- Likelihood? → Normal distribution
- Prior? → Normal-Inverse-Gamma
- Posterior? → Normal-Inverse-Gamma

Conjugacy!!

Bayesian estimation of binary regression models

Susumu Shikano

Introduction

Bayesian Regression

Conjugacy analysis

How to proceed

- Likelihood? → Normal distribution
- Prior? → Normal-Inverse-Gamma
- Posterior? → Normal-Inverse-Gamma

Conjugacy!!

Likelihood Function

$$f_N(\boldsymbol{y}|\boldsymbol{\beta}, \sigma^2) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{(y_i - \boldsymbol{X}\boldsymbol{\beta})'(y_i - \boldsymbol{X}\boldsymbol{\beta})}{2\sigma^2}\right\}$$

Bayesian estimation of binary regression models

Susumu Shikano

Introduction

Bayesian Regression

Conjugacy analysis

Normal-Inverse-Gamma?

It looks like...

Bayesian estimation of binary regression models

Susumu Shikano

Introduction

Bayesian Regression

Conjugacy analysis

Normal-Inverse-Gamma?

It looks like...

Bayesian estimation of binary regression models

Susumu Shikano

Introduction

Bayesian Regression

Conjugacy analysis

Inverse-Gamma IG(a, d) with a as rate and d as shape

If $X \sim G(a, d)$, then $1/X \sim IG(a, d)$:

$$f_{\Gamma}(\theta) = \frac{a^d}{\Gamma(d)} \theta^{d-1} \exp\left(-a\theta\right); \ f_{\Gamma^{-1}}(\theta) = \frac{a^d}{\Gamma(d)} \theta^{-d-1} \exp\left(-\frac{a}{\theta}\right)$$

Bayesian estimation of binary regression models

Susumu Shikano

Introduction

Bayesian Regression

Conjugacy analysis

Inverse-Gamma IG(a, d) with a as rate and d as shape

If $X \sim G(a, d)$, then $1/X \sim IG(a, d)$:

$$f_{\Gamma}(\theta) = \frac{a^d}{\Gamma(d)} \theta^{d-1} \exp\left(-a\theta\right); \ f_{\Gamma-1}(\theta) = \frac{a^d}{\Gamma(d)} \theta^{-d-1} \exp\left(-\frac{a}{\theta}\right)$$

Bayesian estimation of binary regression models

Susumu Shikano

Introduction

Bayesian Regression

Conjugacy analysis

Inverse-Gamma IG(a, d) with a as rate and d as shape

If $X \sim G(a, d)$, then $1/X \sim IG(a, d)$:

$$f_{\Gamma}(\theta) = \frac{a^d}{\Gamma(d)} \theta^{d-1} \exp\left(-a\theta\right); \ f_{\Gamma-1}(\theta) = \frac{a^d}{\Gamma(d)} \theta^{-d-1} \exp\left(-\frac{a}{\theta}\right)$$

Bayesian estimation of binary regression models

Susumu Shikano

Introduction

Bayesian Regression

Conjugacy analysis

Inverse-Gamma IG(a, d) with a as rate and d as shape

If $X \sim G(a, d)$, then $1/X \sim IG(a, d)$:

$$f_{\Gamma}(\theta) = \frac{a^d}{\Gamma(d)} \theta^{d-1} \exp\left(-a\theta\right); \ f_{\Gamma-1}(\theta) = \frac{a^d}{\Gamma(d)} \theta^{-d-1} \exp\left(-\frac{a}{\theta}\right)$$

Bayesian estimation of binary regression models

Susumu Shikano

Introduction

Bayesian Regression

Conjugacy analysis

Inverse-Gamma IG(a, d) with a as rate and d as shape

If $X \sim G(a, d)$, then $1/X \sim IG(a, d)$:

$$f_{\Gamma}(\theta) = \frac{a^d}{\Gamma(d)} \theta^{d-1} \exp\left(-a\theta\right); \ f_{\Gamma-1}(\theta) = \frac{a^d}{\Gamma(d)} \theta^{-d-1} \exp\left(-\frac{a}{\theta}\right)$$

Bayesian estimation of binary regression models

Susumu Shikano

Introduction

Bayesian Regression

Conjugacy analysis

Inverse-Gamma IG(a, d) with a as rate and d as shape

If $X \sim G(a, d)$, then $1/X \sim IG(a, d)$:

$$f_{\Gamma}(\theta) = \frac{a^d}{\Gamma(d)} \theta^{d-1} \exp\left(-a\theta\right); \ f_{\Gamma-1}(\theta) = \frac{a^d}{\Gamma(d)} \theta^{-d-1} \exp\left(-\frac{a}{\theta}\right)$$

Bayesian estimation of binary regression models

Susumu Shikano

Introduction

Bayesian Regression

Conjugacy analysis

Prior: Normal-Inverse-Gamma

$$\begin{split} f_{N-\Gamma-1}(\beta,\sigma^2|\mu,\lambda,a,d) &=& f_N(\beta|\mu,\sigma^2/\lambda)f_{\Gamma-1}(\sigma^2|a,d) \\ &=& \frac{\sqrt{\lambda}}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{\lambda(\beta-\mu)^2}{2\sigma^2}\right\}\underbrace{\frac{a^d}{\Gamma(d)}\sigma^{2(-d-1)}\exp\left(-\frac{a}{\sigma^2}\right)}_{\text{Inverse-Gamma-Dist.}} \end{split}$$

 $= \quad \frac{\sqrt{\lambda}}{\sqrt{2\pi\sigma^2}} \frac{a^d}{\Gamma(d)} \left(\frac{1}{\sigma^2}\right)^{d+1} \exp\left\{-\frac{\lambda(\beta-\mu)^2+2a}{2\sigma^2}\right\}$

Bayesian estimation of binary regression models

Susumu Shikano

Introduction

Bayesian Regression

Conjugacy

Prior: Normal-Inverse-Gamma

 $f_{N-r-1}(\beta, \sigma^2 | \mu, \lambda, a, d) = f_N(\beta | \mu, \sigma^2 / \lambda) f_{r-1}(\sigma^2 | a, d)$

$$= \frac{\sqrt{\lambda}}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{\lambda(\beta-\mu)^2}{2\sigma^2}\right\} \underbrace{\frac{a^d}{\Gamma(d)}\sigma^{2(-d-1)} \exp\left(-\frac{a}{\sigma^2}\right)}_{\text{Inverse-Gamma-Dist.}}$$

$$= \frac{\sqrt{\lambda}}{\sqrt{2\sigma^2}} \underbrace{\frac{a^d}{\Gamma(d)} \left(\frac{1}{\sigma^2}\right)^{d+1} \exp\left\{-\frac{\lambda(\beta-\mu)^2 + 2a}{2\sigma^2}\right\}}_{2\sigma^2}$$

The prior is more precisely a multivariate normal-inverse gamma distribution:

$$\begin{split} f_{N-\Gamma-1}(\beta,\sigma^2|\mu,\Sigma,a,d) &= f_N(\beta|\mu,\sigma^2\cdot\Sigma)f_{\Gamma-1}(\sigma^2|a,d) \\ &= \frac{1}{\sqrt{2\pi\sigma^k|\Sigma|}}\frac{a^d}{\Gamma(d)}\left(\frac{1}{\sigma^2}\right)^{d+1} \\ &\times \exp\left\{-\frac{(\beta-\mu)'\Sigma^{-1}(\beta-\mu)+2a}{2\sigma^2}\right\} \end{split}$$

Bayesian estimation of binary regression models

Susumu Shikano

Introduction

Bayesian Regression

Conjugacy analysis

Deriving posterior

$$= \frac{1}{\sqrt{2\pi\sigma^k|\boldsymbol{\Sigma_0}|}} \frac{a_0^{d_0}}{\Gamma(d_0)} \left(\frac{1}{\sigma_0^2}\right)^{d_0+1}$$

$$\times \exp\left\{-\frac{(\beta_0-\mu_0)'\boldsymbol{\Sigma_0}^{-1}(\beta_0-\mu_0)+2a_0}{2\sigma^2}\right\}$$
Likelihood $f(\boldsymbol{y}|\boldsymbol{\beta},\sigma^2) = \prod_i^n \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{(y_i-\boldsymbol{X}\boldsymbol{\beta})'(y_i-\boldsymbol{X}\boldsymbol{\beta})}{2\sigma^2}\right\}$
Posterior $f(\boldsymbol{\beta},\sigma^2|\boldsymbol{y}) = \frac{f(\boldsymbol{y}|\boldsymbol{\beta},\sigma^2)f(\boldsymbol{\beta},\sigma^2)}{f(\boldsymbol{y})}$

$$f(\boldsymbol{\beta},\sigma^2|\boldsymbol{y}) = f_{N-\Gamma^{-1}}(\boldsymbol{\mu}^*,\boldsymbol{\Sigma}^*,a^*,b^*)$$

Prior $f(\beta, \sigma^2) = f_{N-\Gamma^{-1}}(\mu_0, \Sigma_0, a_0, d_0)$

Bayesian estimation of binary regression models

Susumu Shikano

Introduction

Bayesian Regression

Conjugacy analysis

Posterior

Posterior
$$f(\beta, \sigma^2 | \mathbf{y}) = \frac{f(\mathbf{y} | \beta, \sigma^2) f(\beta, \sigma^2)}{f(\mathbf{y})}$$

 $= f_{N-\Gamma^{-1}}(\mu^*, \Sigma^*, a^*, d^*)$
with
 $\mu^* = (\Sigma_0^{-1} + \mathbf{X}'\mathbf{X})^{-1}(\Sigma_0^{-1}\mu_0 + \mathbf{X}'\mathbf{y})$
 $\Sigma^* = (\Sigma_0^{-1} + \mathbf{X}'\mathbf{X})^{-1}$
 $a^* = a_0 + \frac{1}{2}(\mu_0'\Sigma_0^{-1}\mu_0 + \mathbf{y}'\mathbf{y} - \mu^{*'}\Sigma^{*-1}\mu^*)$
 $d^* = d_0 + \frac{n}{2}$

Bayesian estimation of binary regression models

Susumu Shikano

Introduction

Bayesian Regression

Conjugacy analysis

Posterior

Posterior
$$f(\beta, \sigma^2 | \mathbf{y}) = \frac{f(\mathbf{y} | \beta, \sigma^2) f(\beta, \sigma^2)}{f(\mathbf{y})}$$

 $= f_{N-\Gamma^{-1}}(\mu^*, \Sigma^*, a^*, d^*)$
with
 $\mu^* = (\Sigma_0^{-1} + \mathbf{X}'\mathbf{X})^{-1}(\Sigma_0^{-1}\mu_0 + \mathbf{X}'\mathbf{y})$
 $\Sigma^* = (\Sigma_0^{-1} + \mathbf{X}'\mathbf{X})^{-1}$
 $a^* = a_0 + \frac{1}{2}(\mu_0' \Sigma_0^{-1} \mu_0 + \mathbf{y}'\mathbf{y} - \mu^{*'} \Sigma^{*-1} \mu^*)$
 $d^* = d_0 + \frac{n}{2}$

estimation of binary regression models

Bayesian

Susumu Shikano

Introduction

Bayesian Regression

Conjugacy analysis

Wrap up

Relationship to ML/OLS

If n and/or Σ_0 approach to infinity:

Posterior

Posterior
$$f(\beta, \sigma^2 | \mathbf{y}) = \frac{f(\mathbf{y} | \beta, \sigma^2) f(\beta, \sigma^2)}{f(\mathbf{y})}$$

 $= f_{N-\Gamma^{-1}}(\mu^*, \Sigma^*, a^*, d^*)$
with
 $\mu^* = (\Sigma_0^{-1} + \mathbf{X}'\mathbf{X})^{-1}(\Sigma_0^{-1}\mu_0 + \mathbf{X}'\mathbf{y})$
 $\Sigma^* = (\Sigma_0^{-1} + \mathbf{X}'\mathbf{X})^{-1}$
 $a^* = a_0 + \frac{1}{2}(\mu_0'\Sigma_0^{-1}\mu_0 + \mathbf{y}'\mathbf{y} - \mu^{*'}\Sigma^{*-1}\mu^*)$
 $d^* = d_0 + \frac{n}{2}$

Wrap up

Relationship to ML/OLS

If n and/or Σ_0 approach to infinity:

$$\lim_{n\to\infty}\boldsymbol{\mu}^*=(\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'\boldsymbol{y}$$

estimation of binary regression models

Bayesian

Susumu Shikano

Introduction

Bayesian Regression

Conjugacy analysis

Posterior is not posterior...

- Joint posterior
- Conditional posterior
- Marginal posterior

Bayesian estimation of binary regression models

Susumu Shikano

Introduction

Bayesian Regression

Conjugacy analysis

Posterior is not posterior...

- Joint posterior
- Conditional posterior
- Marginal posterior

Marginal posterior of β

By integrating out σ^2 , we can obtain a multivariate student t-distribution with a degree of freedom of $\nu = n - k$:

$$f(\beta|\mathbf{y}) = \int_0^\infty f(\beta, \sigma^2|\mathbf{y}) d\sigma^2$$
$$= f_t(\nu, \mu^*, \Sigma^*)$$

Bayesian estimation of binary regression models

Susumu Shikano

Introduction

Bayesian Regression

Conjugacy analysis

Wrap up

Bayesian regression models

- In conjugacy analysis posterior can be derived analytically.
- The larger n/the smaller the dispersion of prior, the more similar results with the maximum likelihood.

Bayesian estimation of binary regression models

Susumu Shikano

Introduction

Bayesian Regression

Conjugacy analysis