Q1.

TABLES:

TREATMENT (disease, medication)

PERSON (SSN, firstName, lastName, phone, email, address, city, province)

PATIENT (patientID, SSN)

DOCTOR (doctorID, SSN, dos)

TREATED (doctorID, patientID, date, procedure, diagnostic)

RELATIONS:

PATIENT can suffer from many **DISEASES**

DISEASES can have many **MEDICATIONS**

DISEASE and **DISEASE_OF_SPECIALIZATION** have the same domain

PROCEDURE can be (consultation, intervention, surgery, etc)

DIAGNOSTIC can be the **DISEASE** or intervention type.

SOLUTIONS (RELATIONAL ALGEBRA):

a) **DOCTOR** who do not suffer from any **DISEASE**

b) PATIENTS with more than one DISEASE

$$\begin{split} \textit{PERSON} & \bowtie (\pi_{\textit{SSN}}(\sigma_{\textit{PATIENT.patientID}} = \textit{A.patientID}(\\ \textit{PATIENT} & \times \rho_{\textit{A}}(\pi_{\textit{patientID}}(\\ \sigma_{\textit{T1.patientID}} = \textit{T2.patientID} \; \textit{AND} \; \textit{T1.diagnostic} \neq \textit{T2.diagnostic}(\\ \rho_{\textit{T1}}(\textit{TREATED}) \times \rho_{\textit{T2}}(\textit{TREATED})))))))) \end{split}$$

c) **DOCTORS** suffering from a **DISEASE** in their specialization

d) **DISEASES** with only one medication

 $\pi_{disease}(TREATMENT - \pi_{disease}(\sigma_{T1.disease=T2.disease~AND~T1.medication \neq T2.medication}(\rho_{T1}(TREAMENT) \times \rho_{T2}(TREATMENT))))$

e) PATIENTS with certain DISEASES

 $PERSON
ightharpoonup \pi_{SSN}(\sigma_{PATIENT.patientID} = A.patientID)$ $PATIENT imes \rho_A(\pi_{patientID})$

 $\sigma_{diagnosis = \text{'HIV' OR diagnosis} = \text{'Heart Disease' OR diagnosis} = \text{'Diabetic' OR diagnosis} = \text{'Blood Pressure'}(TREATMENT))))))}$

TABLES:

FLIGHTS (flightNumber, from, to, distance, departs, arrives, price)

AIRCRAFT (aID, aName, cruisingRange)

CERTIFIED (eID, aID, date)

EMPLOYEES (eID, SSN, firstName, lastName, salary, phone, address, city, province)

PILOTS (eID, startDate, endDate)

FLIGHT_ATTENDANTS (eID, startDate, endDate)

RELATIONS:

EMPLOYEES describes all employee types

Every **PILOT** is **CERTIFIED** for some **AIRCRAFT** and only **PILOTS** are **CERTIFIED** endDate is set to null if the **EMPLOYEE** is still working.

SOLUTIONS (RELATIONAL ALGEBRA):

a) AIRCRAFT that PILOTS that are CERTIFIED earn more than 95,000\$

$$\pi_{aName,crusingRange}(\sigma_{AIRCRAFT.aID=C.aID} \left(AIRCRAFT \times \right)$$

$$\rho_{C} \left(\pi_{aID} \left(\sigma_{CERTIFIED.eID=B.eID} \left(CERTIFIED \times \rho_{B} \left(\pi_{eID} \left(\sigma_{PILOTS.eID=A.eID} \left(PILOTS \times \rho_{A} \left(\pi_{eID} \left(\sigma_{Salary>95000} \left(EMPLOYEES\right)\right)\right)\right)\right)\right)\right)\right)\right)$$

b) PILOTS who are CERTIFIED for Boeing 747 and Airbus 360 AIRCRAFT

$$EMPLOYEE
ightharpoonup (\pi_{eID}(\sigma_{CERTIFIED.aID=A.aID}(CERTIFIED imes \rho_A(\pi_{aID}(\sigma_{AIRCRAFT.aName='Boeing 747'OR AIRCRAFT.aName='Airbus360'}(AIRCRAFT)))))$$

c) PILOTS currently not working CERTIFIED for Boeing 747 and Airbus 360 AIRCRAFT

d) AIRCRAFT that can be used on routes Montreal-Vancouver and Calgary-Saskatchewan

```
\pi_{AIRCRAFT.aNAme}(\sigma_{AIRCRAFT.aID=A.flightNumber}(AIRCRAFT \times \rho_{A}(\pi_{flightNumber}(\sigma_{from='Montreal'AND\ from='Calgary'AND\ to='Vancouver'AND\ to='Saskatchewan'}(FLIGHTS)))))
```

e) EMPLOYEES who are PILOTS and FLIGHT ATTENDANTS

```
EMPLOYEES 
ightharpoonup \pi_{eID}(\sigma_{E1.eID=E2.eID}(\rho_{E1}(PILOTS) \times \rho_{E2}(FLIGHTATTENDANTS)))
```