Prova scritta di Analisi Matematica 2

Prof. Simonetta Abenda - C.d.S. Fisica

XXX - T26785

Cognome: Nome:

1	2	3	4

Per gli esercizi 1-4 segnare la lettera della risposta scelta nella corrispondente casella numerata. Per l'esercizio 5: scrivere le formule utilizzate, i passaggi principali - compreso l'eventuale cambiamento di variabile utilizzato nel calcolo dell'integrale - e il risultato.

ESERCIZIO 1 Il volume del compatto $A = \{(x, y, z) \in \mathbb{R}^3 : 4 \le z \le 2x + 2y, x \ge 0, x \ge 0, x \le 0, x \le 1\}$ $0 < y < 4 - x^2$, $y < 4 - x^2$,

A)
$$\frac{17}{10}$$
. B) $\frac{32}{5}$.* C) $\frac{81}{10}$. D) $\frac{128}{5}$. E) $\frac{35}{2}$. F) $\frac{64}{3}$. G) $\frac{337}{10}$. H) $\frac{397}{30}$. I) altro.

ESERCIZIO 2 Per la funzione f(x, y, z) = 9xyz, ristretta all'insieme $A = \{(x, y, z) \in \mathbb{R}^3 : x \in \mathbb{R}$ $18x^2 + 2y^2 + 9z^2 = 36$ } si ha

A) non ha massimo nè minimo. B)
$$\min_{A} f = -6\sqrt{2}$$
. C) $\max_{A} f = 0$.

A) non ha massimo nè minimo. B)
$$\min_A f = -6\sqrt{2}$$
. C) $\max_A f = 0$. D) altro. E) $\min_A f = -12\sqrt{3}$.* F) $\min_A f = 0$. G) $\max_A f = 12\sqrt{6}$.

ESERCIZIO 3 La funzione $f(x, y, z) = 3xyz^2 + 6x^2y - 2y^2z$

- A) possiede esclusivamente punti critici di tipo sella.
- B) possiede almeno un punto critico di minimo locale, ma non punti critici di massimo locale.
- C) possiede almeno un punto critico di massimo locale, ma non punti critici di minimo locale.
- D) possiede almeno un punto critico di massimo locale e un punto critico di minimo locale.
- E) soddisfa ad altro.

ESERCIZIO 4 La derivata direzionale $\frac{\partial f}{\partial \hat{\nu}}(P)$, con $f(x,y,z)=2x^y-z^3$, P=(1,-1,2) e $\hat{\nu}$ il versore normale in P a $\Gamma=\{(x,y,z)\in\mathbf{R}^3: 4x^3y+xz^2=0\}$, tale che $\prec \hat{\nu},\hat{\imath}\succ>0$, vale

A) 8. B)
$$(-2, 0, -12)$$
. C) $-\frac{4\sqrt{6}}{3}$. D) $\frac{4\sqrt{6}}{3}$.* E) $(-2, 1, 1)$). F) -8 .

G)
$$4\sqrt{6}$$
. H) altro. I) $(2,0,12)$. L) $-4\sqrt{6}$. M) $(2,-1,-1)$.

ESERCIZIO 5 Siano $\vec{f}(x,y,z) = 2xz^2\hat{\mathbf{i}} + (x^3+3y)\hat{\mathbf{j}} + (z^2-3yz)\hat{\kappa}, \quad A = \{(x,y,z) \in \mathbf{R}^3: 3x^2+2z^2 \leq 6y^2+12, \ 0 \leq y \leq 2\}$ e $(\partial A,\hat{\nu})$ la frontiera di A orientata con la normale esterna $\hat{\nu}$.

A)
$$(0.5 \text{ pt}) \text{ div } \vec{f} =$$

B) (3 pt)
$$\iiint_A \operatorname{div} \vec{f} dx dy dz =$$

Cambiamento di variabile e/o parametrizzazione:

C) (1 pt)
$$\partial A =$$

D) (1.5 pt) Determinare $\hat{\nu}(\sqrt{2}, 1, -\sqrt{6})$ e disegnare la frontiera con la normale esterna.