Lectre le : Independence Ex, Consider rolling two dice (independently) P(at least one 6) = 1-P(no 6s) A = no le an first roll $= 1 - P(A, A_2)$ $= 1 - \mathbb{P}(A_1) \mathbb{P}(A_2) \quad (indep)$ = 1 - (5/6)(5/6)= 1/36 Counting perspective. Sample twice (r=2) from \$1,..., 63 (n=6) W/ replacement Ordered! $|s| = n' = 0^2 = 36$ F = "at lowst-one (0" $= \left\{ (1/6), (2/6), (3/6), (4/6), (5/6), (4/6), (5/6), (4/6), (5/6), (6/5), (6/6), (6/5), (6/6), (6/5), (6/6), (6$

$$1EI = 11$$
So $P(E) = \frac{1}{151} = \frac{1}{36}$

$$\frac{\text{Unordered:}}{|S| = (n+r-1) = (0+2-1)} =$$

$$E = \{1 \text{ or } 2 \text{ on first}, 3,4,5 \text{ on second } \}$$

$$E = \left\{ \frac{(1,3)}{(2,3)}, \frac{(1,4)}{(2,5)}, \frac{(2,5)}{(2,5)} \right\} = \left\{ \frac{(1,3)}{(2,3)}, \frac{(2,4)}{(2,5)}, \frac{(2,5)}{(2,5)} \right\} = \left\{ \frac{(1,3)}{(2,3)}, \frac{(2,4)}{(2,5)}, \frac{(2,5)}{(2,5)} \right\}$$

Overall'. $P(E) = \frac{2 \cdot 3}{6 \cdot 6} = \left(\frac{2}{6}\right)\left(\frac{3}{6}\right)$ probot on second roll or 2 on first Theorem: Complements / Independence If ALB then pt. (1) P(ABC) = P(A) - P(AB)(I) ALB P(A) - P(A)P(B)(2) A^c L B = P(A)(1-P(B))(3) A LB = P(A) P(BC) Defr: Mutval Independence Generalize indep to multi events If (A;) ore seg of events, we say they are (mutrally) independent if for any subsequence Ai, Aiz, ..., Air $P(\bigcap_{j=1}^{k} A_{i_{2}}) = P(A_{i_{1}})P(A_{i_{2}}) - P(A_{i_{p}})$

= TR P(Aij)

Do I really need to check all subrequences? Yes Can I just check $P(\bigcap_{i=1}^{n} A_i) = P(A_i)P(A_i) - P(A_n)?$ Ex, Roll two dice A = "daubles" = {(1,1),(2,2), ---, (6,6)} /A/= 6 B = Sum is between 7 and 10

B = Sum is betwen 7 and 0 $= \{(1,6), (2,5), (3,4), (4,3), (5,2), (6,1)\}$ $= \{(2,6), (3,5), (4,4), (5,3), (6,2)\}$ $= \{(3,6), (4,5), (5,4), (6,3), (4,6), (5,5), (6,4)\}$ $= \{(1,1), (5,5), (6,4)\}$ $= \{(1,1), (5,5), (6,4)\}$ $= \{(1,1), (5,5), (6,4)\}$

Mutrally indep? ? = P(A)P(B) (P(C) P(B) P(C) 1/36 Defu: Pairwise Independence If (Ai) is a seg of events we say they one pairwise indep if P(A;A;) = P(A;)P(A;) Viti P(A) = P(AA) = P(A)P(A) = P(A)P(A) = [0, 1] Works only if P(A)

Mutral Independence + Pairwise Indep. Ex. S = {abc, acb, bac, bca, cab, cba, aaa, bbb, ccc} l'all atternes equally likely Ai = ith place in string is an a" A = {abc, acb, aaas Az= ? bac, cab, aaa? |Ail=3 A3 = 3 cba, bca, aaas Pairwise Independent? $P(A_i)P(A_i)$, it P(A,A) =Mutral Independence? $P(A_1A_2A_3) = P(A_1)P(A_3)P(A_3)$ 1/21

Ex JWST, had 400 points of failure

T1 | 12 | 13 | --- > T400

JSWT fails if any fail.

W; = ith task succeeds

W; c = ith 11 fails

Assume all tasks are independent.

and assume
$$P(w; c) = 1/1000$$
 $P(JWST works)$

= $P(M_1 w_2 w_3 - w_400)$

= $P(M_1 w_3 w_3 - w_400)$

= $P(M_1 w_3 w_3 - w_400)$

	Randon Variables		
	Tarrow Carrows		
Ex.	Flip a coin 3 times.		
	X = # heads in 3 flips		
	ses X(A)		
	HHH 3 HHT 2 a function HTH 2		
	HTH 2 min		
	HTT		
	THH 2		
	THT		
	T T H		
	TTTO		
Def	n! Rardon Variable		
- ,	+ random variable (RV) X is a		
<i>D</i>	t random variable (KV) / 15 a		
fine	nen		
	$\chi:S \to \mathbb{R}$		
	also called a random variate,		
	a real-valued RV		
	$1+\alpha \sqrt{-\alpha \alpha $		
	a univariate RV		
	Co-donain n		
	R not R		
	· · ·		

(1) toss two dice X = sun of dice) toss a coin 25 times X = length of longert run of Hs) Observe rainfall X = crop yield We'd like to say P(X = 1) nature of notation recall! P: 25 -> R X = # heads, 3 flips $P(\chi=1) = P(SHTT, THT, TTHS) = 3/8$ "X=1" >> { & e S | X(&)= | } Short-hard of \$13

Review Image of $\{f(x) | fer x \in C \}$ inverse ma aeA: f(a) E [

W,	e write	P(XEA), ACR
		P(X(A)) an event CS
		can event CS