Séance 2 — Analyse numérique de l'équation ADRS

Anis Djelil

Master 2 Mathématiques et Applications Université de Montpellier

Module: Estimation a posteriori

Septembre 2025

1 Introduction

Cette séance est consacrée à l'étude numérique de l'équation ADRS (Advection-Diffusion-Réaction avec Source) en une dimension. Deux approches sont explorées :

- Une résolution sur maillage fixe avec une solution exacte imposée.
- Une étude de la précision et de l'ordre de convergence en espace par raffinement progressif.

2 Partie 1 — Résolution avec solution exacte imposée

2.1 Modèle mathématique

On considère l'équation :

$$\frac{\partial u}{\partial t} + V \frac{\partial u}{\partial x} - K \frac{\partial^2 u}{\partial x^2} + \lambda u = f(x)$$

avec $V=1,\,K=0.1,\,\lambda=1,\,{\rm et}\,\,L=1.$ La solution exacte est définie par :

$$u_{\rm ex}(x) = \exp(-20(x - 0.5)^2)$$

La fonction source f(x) est construite pour que cette solution soit exacte.

2.2 Méthode numérique

La discrétisation est réalisée par différences finies centrées. Le pas de temps est choisi selon une condition CFL :

$$dt = \frac{dx^2}{Vdx + 4K + dx^2}$$

La solution est calculée jusqu'à convergence stationnaire, avec un critère sur le résidu relatif.

2.3 Évaluation des erreurs

Les erreurs sont calculées pour différents maillages :

• Erreur $L^2 : ||u_h - u_{\text{ex}}||_{L^2}$

 \bullet Erreur H^1 : différence des dérivées premières

 \bullet Semi-norme H^2 : norme de la dérivée seconde de $u_{\rm ex}$

 \bullet Erreurs d'interpolation P1 : comparaison entre u_{ex} et son interpolation linéaire

2.4 Régression et ordre de convergence

Une régression log-log permet d'identifier les paramètres C et k tels que :

$$||u - u_h||_{L^2} \approx Ch^k$$

2.5 Figure — Erreurs en fonction du pas de maillage

Figure 1: Évolution des erreurs numériques et d'interpolation en fonction du pas de maillage h.

2.6 Analyse

Les courbes montrent une décroissance régulière des erreurs lorsque $h \to 0$, confirmant la convergence du schéma. L'erreur d'interpolation suit le théorème 18.1.3 :

$$||u - I_h u||_{L^2} \le Ch^2 ||u''||_{L^2}$$

Le schéma numérique est plus précis que l'interpolation linéaire, notamment en norme H^1 .

3 Partie 2 — Étude de la précision et de l'ordre en espace

3.1 Objectif

On cherche à identifier les paramètres C et k dans l'inégalité :

$$||u - u_h||_{L^2} \le Ch^k ||u||_{H^2}$$

3.2 Méthodologie

Pour chaque raffinement de maillage:

- Calcul des erreurs L^2 , H^1 , et semi-norme H^2
- ullet Régression linéaire en log-log pour estimer C et k
- Superposition des courbes Ch^k , Ch^{k+1} , et erreur relative

3.3 Figure — Convergence en espace

Figure 2: Erreur relative $||u - u_h||_{L^2}/||u||_{H^2}$ en fonction de h, avec les courbes Ch^k et Ch^{k+1} .

3.4 Analyse

La régression donne un ordre de convergence $k \approx 1.02$, ce qui est cohérent avec les méthodes à base de différences finies centrées. La courbe $Ch^{2.02}$ est plus pentue, confirmant que le schéma est d'ordre 1 en espace.

4 Conclusion

Les deux approches confirment la cohérence du schéma numérique avec les attentes théoriques :

- Convergence vers la solution stationnaire
- Ordre de convergence identifiable
- Erreurs maîtrisées et bien interprétées

Ce travail valide la précision du schéma et son adéquation avec les résultats théoriques du cours.