Cinética Química

Guía de problemas G8

Problema N°12

Para la reacción: $2NO(g) + O_2(g) \rightarrow 2NO_2(g)$ cuando se duplica la concentración de NO, la velocidad de la reacción aumenta por un factor de 4. Cuando el O_2 y el NO duplican las concentraciones, la velocidad aumenta por un factor de 8. ¿Cuáles son:

- a) Los órdenes de los reactivos.
- **b)** El orden global de la reacción.
- c) Las unidades de k, si la velocidad se expresa en moles.L⁻¹·s⁻¹

Los pasos para resolver este problema son:

1. Hacer una tabla representativa con las velocidades y las concentraciones de los reactivos. Teniendo en cuanta una situación inicial (Experimento 0)

$$2NOg+O_2(g)\rightarrow 2NO_2(g)$$

El experimento 1, considera lo que dice el problema: "cuando se duplica la concentración de NO, la velocidad de la reacción aumenta por un factor de 4":

Esto quiere decir que si en el experimento 0 [NO]=1, en el experimento 1, se duplica el valor y por lo tanto [NO]=2. Como no dice nada de la concentración de O2, se asume que su valor se mantiene constante en el primer experimento, respecto del Exp#0. Luego el valor de v aumenta en un factor 4 cuando cambio [NO]

El experimento 2, considera lo que dice el problema: "Cuando el O₂ y el NO duplican las concentraciones, la velocidad aumenta por un factor de 8":

Esto quiere decir que si en el experimento 0 [NO]=1, en el experimento 2, se duplica el valor y por lo tanto [NO]=2. Luego también se duplica el valor de $[O_2]$ y queda $[O_2]$ =2. Luego el valor de v aumenta en un factor 8 cuando cambio [NO] y $[O_2]$

Experimento #	[NO] (M)	[O ₂] (M)	V (M/s) (M)
0	1	1	1
1	2	1	4
2	2	2	8

2. Plantear todas ecuaciones de las velocidades de reacción cuando cambian las concentraciones.

Consideración importante: Tener en cuenta que la temperatura no cambia y tampoco cambia la Energía de activación, por lo tanto el valor de la constante de velocidad k se mantiene constante en todas las experiencias.

Del Experimento 0 (base)

$$v_0 = k[N0]_0^a \cdot [O_2]_0^\beta$$

Del Experimento 1

$$v_1 = k[N0]_1^a \cdot [O_2]_1^\beta$$

Del Experimento 2

$$v_2 = k[N0]_2^a \cdot [O_2]_2^\beta$$

3. Según la tabla ver que ecuaciones de velocidades conviene Relacionar (dividir) para obtener los valores de α y β .

Entonces por los valores de las concentraciones de la tabla es conveniente dividir

 v_1/v_0 , porque simplifico la concentración de O_2 y podré conocer α

$$\frac{v_1}{v_0} = \frac{k[NO]_1^a}{k[NO]_0^a} \frac{[O_2]_1^\beta}{[O_2]_0^\beta} = \left(\frac{[NO]_1}{[NO]_0}\right)^\alpha$$

Según los valores de la tabla $v_1/v_0=4$, $[NO]_1/[NO]_0=2$

$$4 = 2^{\alpha} : \alpha = 2$$

Experimento #	[NO] (M)	[O ₂] (M)	V (M/s) (M)
0	1	1	1
1	2	1	4
2	2	2	8

Para conocer el valor de β , es necesario relacionar ecuaciones de velocidad que permitan simplificar la concentración de [NO], entonces por los valores de las concentraciones de la tabla es conveniente dividir v₂/v₁:

$$\frac{v_2}{v_1} = \frac{k[NO]_2^a}{k[NO]_1^a} \frac{[O_2]_2^\beta}{[O_2]_1^\beta} = \left(\frac{[O_2]_2}{[O_2]_1}\right)^\beta$$

Según los valores de la tabla $v_2/v_1 = 8/4 = 2$, $[O_2]_2/[O_2]_1 = 2$ $2 = 2^{\beta}$: $\beta = 1$

$$2 = 2^{\beta}$$
 : $\beta = 1$

Respondiendo a:

a) Los órdenes de los reactivos.

El orden de reacción respecto al reactivo NO es α = 2

El orden de reacción respecto al reactivo O_2 es β = 1

b) El orden global de la reacción.

El orden de la reacción global es α + β = 3

La ley de velocidad

$$v = k[NO]^2[O_2]$$

Para responder el inciso

c) Las unidades de k, si la velocidad se expresa en moles.L⁻¹·s⁻¹

Debemos hacer una análisis de las unidades

❖ la velocidad se expresa en moles.L⁻¹·s⁻¹

V= M/s (unidad de concentración en MOLAR/unidad de tiempo)

[Reactivo] =
$$M$$
 (MOLAR) = M moles. L^{-1}

Según la ley de velocidad

$$v = k[NO]^2[O_2]$$

Análisis de unidades según la Ley de velocidad

$$M.s^{-1} = \underline{\hspace{1cm}} M^2.M$$
; donde $\underline{\hspace{1cm}}$ representa la unidad de k

$$M.s^{-1} =$$
_____ M^3

... unidad de k debe ser tal que al multiplicar por M3 de como resultado M.s⁻¹

La unidad de k debe ser 1. M⁻².s⁻¹

Cinética Química

Guía de Problemas G8

Problema 14

Escriba la ecuación cinética para el consumo de los iones persulfato respecto a cada uno de los reactivos en la siguiente reacción:

$$S_2O_8^{2-}(ac) + 3I^-(ac) \rightarrow 2SO_4^{2-}(ac) + I_3^{-}(ac)$$

Determine el valor de k, dados los siguientes datos:

Experimento	Concentración inicial mol/L		Velocidad inicial
	S ₂ O ₈ ²⁻	l -	mol S ₂ O ₈ ²⁻ L ⁻¹ s ⁻¹
1	0,15	0,21	1,14
2	0,22	0,21	1,7
3	0,22	0,12	0,98

2. Plantear todas ecuaciones de las velocidades de reacción cuando cambian las concentraciones.

Consideración importante: Tener en cuenta que si la temperatura y Energía de activación no cambian, el valor de la constante de velocidad k se mantiene constante en todas las experiencias.

Del Experimento 1

$$v_1 = k[S_2O_8^{2-}]_1^a \cdot [I -]_1^{\beta}$$

Del Experimento 2

$$v_2 = k[S_2O_8^{2-}]_2^a \cdot [I -]_2^\beta$$

Del Experimento 3

$$v_3 = k[S_2O_8^{2-}]_3^a \cdot [I -]_3^\beta$$

3. Según la tabla ver que ecuaciones de velocidades conviene Relacionar (dividir).

Entonces por los valores de las concentraciones de la tabla es conveniente dividir v_2/v_1 , porque simplifico la concentración de I y podré conocer α

$$\frac{v_2}{v_1} = \frac{k[S_2O_8^{2-}]_2^a}{k[S_2O_8^{2-}]_1^a} \frac{[I - J_2^{\beta}]}{[I - J_1^{\beta}]} = \left(\frac{[S_2O_8^{2-}]_2}{[S_2O_8^{2-}]_1}\right)^{\alpha}$$

$$\frac{v_2}{v_1} = \left(\frac{[S_2O_8^{2-}]_2}{[S_2O_8^{2-}]_1}\right)^{\alpha}$$

Según los valores de la tabla

$$V_2/V_1 = 1,7/1,14 = 1,49$$
; $[S_2O_8^{2-}]_2/[S_2O_8^{2-}]_1 = 1,46$

1,49 = 1,46
$$^{\alpha}$$
; Aplicando Ln: ln (1,49) = α ln (1,46)

$$\therefore \alpha = 1,04 \cong 1$$

Para conocer el valor de β , es necesario relacionar ecuaciones de velocidad que permitan simplificar la concentración de $[S_2O_8^{2-}]$, entonces por los valores de las concentraciones de la tabla es conveniente dividir v_2/v_3 :

$$\frac{v_2}{v_3} = \frac{k[S_2O_8^{2-}]_2^a}{k[S_2O_8^{2-}]_3^a} \frac{[I^-]_2^\beta}{[I^-]_3^\beta} = \left(\frac{[I^-]_2}{[I^-]_3}\right)^\beta$$

$$\frac{v_2}{v_3} = \left(\frac{\left[1^{-}\right]_2}{\left[1^{-}\right]_3}\right)^{\beta}$$

Según los valores de la tabla

$$v_2/v_3 = 1,7/0,98=1,73$$
, $[I^-]_2/[I^-]_3=0,21/0,12=1,75$

1,73 = 1,75
$$\beta$$
 Aplicando Ln: ln (1,73) = β ln (1,75)

$$\beta$$
=0,98 \cong 1

El orden de la reacción global es α + β = 2

La ley de velocidad

$$v = k[S_2O_8^{2-}][I^-]$$

Podemos elegir cualquier experimento para conocer el valor de k, ej experimento 1

$$v_1 = k[S_2O_8^{2-}]_1^1 \cdot [I^-]_1^1$$

1,14 M.s⁻¹= $k \times 0$,15 M × 0,21 M
 $k = 36$,19 1.M⁻¹.s⁻¹

Observación:

Notar que la diferencia entre el orden de la reacción de los reactivos y los coeficientes estequimiométricos no siempre son coicidentes.

$$S_2O_8^{2-}(ac) + 3I^{-}(ac) \rightarrow 2SO_4^{2-}(ac) + I_3^{-}(ac)$$

