IP 주소

IP 주소란?

- IP 주소(IPv4 주소)는 32비트의 정수 수치로 표현
- TCP/IP로 통신할 경우, 해당 IP 주소를 각각의 호스트에 할당 필요
- IP 주소는 컴퓨터 내부에서 이진수로 처리
 - \rightarrow 이진수는 사람이 이해하기가 매우 어렵기 때문에 32비트의 IP 주소를 8비트씩 4그룹으로 분할
 - → 그룹 사이의 경계에 피어리어드(.)를 넣은 후 십진수로 표현하는 특수한 표기 방법을 사용

IP 주소로 표현할 수 있는 조합 가능한 수를 계산하면 다음과 같습니다.

$$2^{32} = 4,294,967,296$$

- 최대 약 43억 대의 컴퓨터를 IP 네트워크로 연결이 가능하다는 계산 확인 가능
 - → IP 주소는 '네트워크부'와 '호스트부'로 나누어지기 때문에 실제 IP 네트워크로 연결할 수 있는 컴퓨터의 수는 더 적음
- IP 주소는 실제로 호스트별이 아니라 NIC별로 할당
- 한 NIC에 여러 개의 IP 주소를 할당 가능, 한 NIC에 여러 개의 IP 주소를 할당하는 것도 가능
 - → 보통 라우터는 2개 이상의 NIC를 갖고 있기 때문에 2개 이상의 IP 주소 할당

IP 주소는 네트워크부와 호스트부로 구성

- IP 주소는 '네트워크부(네트워크 주소부)'와 '호스트부(호스트 주소부)'로 분할
 - 。 네트워크부
 - '네트워크부'의 값은 데이터 링크의 세그먼트별로 할당
 - 네트워크부는 연결되어 있는 모든 세그먼트의 주소와 중복되지 않도록 설정
 - 동일한 세그먼트로 연결되어 있는 호스트에는 모두 동일한 네트워크 주소를 설정
 - 。 호스트부
 - 동일한 세그먼트 내에서 겹치지 앟는 값을 할당
- 네트워크 주소와 호스트 주소를 설정하면 1대 밖에 없는 유니크한 IP 주소 설정 가능
- 현재는 서브넷 마스크로 네트워크부와 호스트부를 나누어 식별

IP 주소의 클래스

- 예전에는 IP 주소를 클래스 A, 클래스 B, 클래스 C, 클래스 D 4개의 클래스로 분류
 - → 4비트씩 끊은 비트열을 조합하여 네트워크부와 호스트부를 정함

클래스 A

- IP 주소의 맨 앞 1비트가 '0'으로 시작하는 경우
- IP 주소의 맨 앞 8비트까지가 네트워크부
 - → 십진수로 고치면, 0.0.0.0 ~ 127.0.0.1까지가 네트워크부
- 한 네트워크 안에서 할당할 수 있는 호스트 주소는 16,777,214개

클래스 B

- IP 주소의 맨 앞 2비트가 '10'으로 시작하는 경우
- IP 주소의 맨 앞 16비트까지가 네트워크부

- → 십진수로 고치면, 128,0.0.0 ~ 191.255.0.0까지가 네트워크부
- 한 네트워크 안에서 할당할 수 있는 호스트 주소는 65.534개

클래스 C

- IP 주소의 맨 앞 3비트가 '110'으로 시작하는 경우
- IP 주소의 맨 앞 24비트까지가 네트워크부
 - → 십진수로 고치면, 192.0.0.0 ~ 223.255.255.0까지가 네트워크부
- 한 네트워크 안에서 할당할 수 있는 호스트 주소는 254개

클래스 D

- IP 주소의 맨 앞 4비트가 '1110'으로 시작하는 경우
- IP 주소의 맨 앞 32비트까지가 네트워크부
 - → 십진수로 고치면, 224.0.0.0 ~ 239.255.255.255까지가 네트워크부
- 호스트 주소 부분이 없으며, IP 멀티캐스트 통신에 사용

IP 호스트 주소를 할당할 때에 주의할 점

- 호스트부를 비트로 나타낼 때에 모든 비트를 0으로 하거나 모든 비트를 1로 할 수 없다는 점 에 주의
- 호스트부의 모든 비트가 0인 주소 → 네트워크 주소를 나타내는 경우, IP 주소를 모르는 경우에 사용
- 호스트부의 모든 비트가 1인 주소 → 브로드캐스트 주소로 사용
- 클래스 C의 경우 2^8 2 = 254개

브로드캐스트 주소

- 동일한 링크에 연결된 모든 호스트에게 패킷을 송신할 때 사용
- 예시 → 127.20.0.0/16

10101100.00010100.000000000.00000000 (이진수)

위 주소의 호스트부 비트를 모두 1로 한 것이 브로드캐스트 주소

10101100.00010100.11111111.11111111 (이진수)

두 종류의 브로드캐스트

- 로컬 브로드캐스트와 다이렉트 브로드캐스트로 분류
- 자신이 속해 있는 링크 안의 브로드캐스트 → '로컬 브로드캐스트'
 - 。 예시
 - 192.168.0.0/24인 경우, 브로드캐스트 주소는 192.168.0.255
 - 192.168.0.0/24 외의 다른 링크에는 전달 안됨
- 다른 IP 네트워크에 대한 브로드캐스트에는 다이렉트 브로드캐스트 주소를 설정해야 함
 - 。 예시
 - 192.168.0.0/24 안에 있는 호스트가 수신처 IP 주소를 192.168.1.255로 하여 IP 패킷을 송신
 - \rightarrow 이 패킷을 수신한 라우터는 패킷을 목적으로 하는 네트워크 192.168.1.0/24로 전송
 - → 192.168.1.1 ~ 192.168.1.254까지의 모든 호스트들에게 패킷 전송

IP 멀티캐스트

동시 송신으로 효율 향상

- 멀티캐스트는 패킷을 특정 그룹에 소속된 모든 호스트에게 보낼 때 사용
- IP를 그대로 이용하기 때문에 신뢰성 보장 X
- 멀티캐스트 기능을 사용하기 전 브로드캐스트로 데이터 전송
 - → 전체 단말에 패킷을 송신하고 수신한 호스트에서 자신에게 필요한 데이터인지 판단
 - → 필요 시 수취, 불필요 시 파기
 - → 네트워크나 호스트에게까지 영향을 미쳐 네트워크 전체의 트래픽을 증가하는 문제 발생
 - \rightarrow 라우터를 넘어갈 수 없기 때문에, 다른 세그먼트에도 동일한 패킷을 보내고 싶은 경우, 별도의 장치 사용
- 라우터도 넘어갈 수 있고, 필요로 하는 그룹에게만 패킷을 송신하는 멀티캐스트 기능을 사용하게 됨

IP 멀티캐스트와 주소

- IP 멀티캐스트에서는 클래스 D의 IP 주소를 사용
 - → 맨 앞의 4비트가 '1110'이면 멀티캐스트 주소로 식별

- 멀티캐스트 주소 중에는 용도가 정해져 있는 것도 존재
- IP 멀티캐스트를 사용하여 실용적인 통신을 하기 위해서는 IGMP와 같은 장치가 필요

▼ ICMP란?

Internet Group Management Protocol의 약자

호스트 컴퓨터와 인접 라우터가 멀티캐스트 그룹 멤버십을 구성하는데 사용하는 통신 프로토콜

주소	내용
224.0.0.0	(예약)
224.0.0.1	서브넷 안의 모든 시스템
224.0.0.2	서브넷 안의 모든 라우터
224.0.0.5	OSPF 라우터
224.0.0.6	OSPF 지명 라우터
224.0.0.9	RIR2 라우터
224.0.0.10	IGRP 라우터
224.0.0.11	Mobile-Agents
224.0.0.12	DHCP 서버/릴레이 에이전트
224.0.0.14	RSVP-ENCAPSULATION
224.0.1.1	NTP Network Time Protocol
224.0.1.8	SUN NIS+ Information Service
224.0.1.22	Service Location(SVRLOC)
224.0.1.33	RSVP-encap-1
224.0.1.34	RSVP-encap-2
224.0.1.35	Directory Agent Discovery(SVRLOC-DA)
224,0,2,2	SUN RPC PMAPPROC CALLIT

서브넷 마스크

서브 네트워크와 서브넷 마스크

클래스 별 네트워크 주소부의 범위

Aa 클래스	를 네트워크 주소부 범위
<u>클래스 A</u>	11111111. 00000000. 00000000. 00000000
<u>클래스 B</u>	11111111. 11111111. 00000000. 00000000
<u>클래스 C</u>	11111111. 11111111. 11111111. 00000000
<u>클래스 D</u>	11111111. 11111111. 11111111. 11111111

- 아이피의 낭비를 줄이기 위해 서브넷 마스크 등장
- 서브넷 마스크라는 식별자를 도입하여 클래스 A, 클래스 B, 클래스 C의 네트워크를 작게 구분하는 서브 네트워크 주소를 사용
 - → 서브 네트워크 주소부로 사용함으로써 여러 개의 물리 네트워크로 분할 가능
- 서브 네트워크의 도입으로 IP 주소는 2개의 식별자로 표현 가능
 - → IP 주소와 서브넷 마스크
 - → 서브넷 마스크는 이진수
 - → IP 주소의 네트워크부를 나타내는 비트에 대응하는 부분의 비트는 1
 - → 호스트부를 나타내는 비트에 대응하는 부분의 비트는 0
 - → 서브넷 마스크는 IP 주소의 상위 비트부터 연속적이어야 함

서브넷 표기법 1

Аа	
<u>IP 주소</u>	172. 20. 100. 52
<u>서브넷 마스크</u>	255. 255. 255. 192
<u>네트워크 주소</u>	172. 20. 100. 0
<u>서브넷 마스크</u>	255. 255. 255. 192
<u>브로드캐스트 주소</u>	172. 20. 100. 63
<u>서브넷 마스크</u>	255. 255. 255. 192

서브넷 표기법 2

Aa	
<u>IP 주소</u>	172. 20. 100. 52 /26
<u>네트워크 주소</u>	172. 20. 100. 0 /26
<u>브로드캐스트 주소</u>	172. 20. 100. 63

글로벌 주소와 프라이빗 주소

- 고유한 IP 주소를 할당하면 IP 빠른 시일 안에 IP 주소를 모두 사용해버릴 위험성 부각
- 이러한 문제를 해결하기 위해 프라이빗 주소(로컬 IP, 가상 IP)를 사용

프라이빗 IP 주소의 범위

Аа	≡ .
10. 0. 0. 0 ~ 10. 255. 255. 255	클래스 A
<u>172. 16. 0. 0 ~ 172. 31. 255. 255</u>	클래스 B
<u>192. 168. 0. 0 ~ 192. 168. 255. 255</u>	클래스 C

- 프라이빗 주소
 - → 범위 안에 포함되는 IP 주소
 - → 일반 가정이나 회사 내 등에 할당된 네트워크의 IP 주소
- 글로벌 IP 주소
 - → 범위 밖의 IP 주소
- NAT 기술의 탄생
 - → 프라이빗 주소를 할당한 네트워크 상의 호스트에서 글로벌 주소를 할당한 인터넷 상의 호스트와 통신 가능

▼ NAT란?

Network Address Translation의 약자

IP 패킷의 TCP/UDP 포트 숫자와 소스 및 목적지의 IP 주소 등을 재기록하면서 라우터를 통해 네트워크 트래픽을 주고 받는 기술