

# Module 3: Representing Amounts of Substances The Mole and Molar Mass

Fundamentals of Chemistry Open Course

## Learning Objectives | Module 3



- 1. Explain the significance of Avogadro's number and why the value  $6.022 \times 10^{23}$  mol<sup>-1</sup> is a convenient definition of the mole.
- 2. Use average atomic masses to calculate the molar mass of a substance with given chemical formula.
- 3. Apply molar mass to determine amount of substance from mass and *vice versa*.
- 4. Define mass density and molar volume; apply them in calculations.
- 5. Visualize liquid solutions at the submicroscopic level; identify the components of a solution.
- 6. Define concentration and recognize common units of concentration.
- 7. Define molarity and apply it to calculate amount of solute from volume of a solution and *vice versa*.
- 8. Recognize quantities in the ideal gas law and their associated units.
- 9. Apply the ideal gas law to calculate the amount of a gas from pressure, volume, and temperature.

## How Much Does a Molecule Weigh?



- The **atomic mass unit (u, amu)** is defined as one twelfth the mass of a carbon-12 atom.
  - One carbon-12 atom weighs 12.00 u; other isotopic masses are measured with respect to this standard.
  - One atomic mass unit is equivalent to  $1.661 \times 10^{-24}$  g.
- Average atomic masses on the periodic table are averages of all known isotopes of an element, weighted by their relative abundance.
- Macroscopic samples of chemical substances, which contain a very large number of atoms, always reflect average atomic masses.
- The **formula mass** of a substance is the sum of the average atomic masses of all atoms in the chemical formula.



### Using Mass to Count Molecules



• If we know the mass of a compound and the mass of one of the particles in the sample, we can use proportional reasoning to determine the *number* of particles in the sample.

**Example.** How many molecules are in a sample of benzoic acid weighing 5.00 grams?

benzoic acid  $C_7H_6O_2$ , 110.112 u

Macroscopic samples of compounds contain huge numbers of molecules.
 We need a very large counting unit for molecules.

## The Mole and Avogadro's Number



- The **mole (mol)** is the number of particles in a substance with a mass in grams equal numerically to the mass of a single particle in atomic mass units. This is a highly convenient definition!
- For example, 1 mole of benzoic acid has a mass of 110.112 grams.



- The mole is just a counting unit—a representation of a count of atoms, molecules, ions, photons, reactions, etc. Number of particles in a substance (measured in moles) is referred to formally as **amount of substance**.
- Using the mole, we can easily keep track of numbers of particles using macroscopic masses in grams.

## The Mole and Avogadro's Number



- One mole corresponds to a fixed number of particles: **Avogadro's number**  $N_A$ .
- The number of particles in 1 mole is equal to the mass of 1 mole of a substance in grams divided by the formula mass *in grams*. For example, using benzoic acid,



• Thanks to the definition of the mole, Avogadro's number is the same for all substances.

# The Mole and Avogadro's Number



• Avogadro's number has units of "[anything] per mole," often represented as mol<sup>-1</sup> or /mol.

$$N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$$

 The objects to which a count refers are typically clear from the context: molecules for a molecular compound, formula units for an ionic compound, reaction occurrences for thermodynamic quantities, etc.

• However, when working with mole units, including a chemical formula after "mol" is strongly advised. This formula answers the vital question: "moles of what?"

Avogadro's number is used to "convert" from an absolute count to units of moles and vice versa.

## Using Moles to Count Particles



 The mole is significantly more convenient than an absolute count when working with macroscopic substances or reactions.

**Example.** We previously calculated the absolute count of molecules in a 5.00-gram sample of benzoic acid. What is this count in units of moles?

**Example.** What is the absolute count of formula units in 2.50 mol CaCO<sub>3</sub>?

## Molar Mass: How Much Does a Mole Weigh?



- From the definition of the mole, it follows that the **molar mass** of any substance in grams (for 1 mole) is numerically equal to the formula mass of the substance in atomic mass units (for 1 particle).
- Thus, we can apply our known method for calculating formula mass to determine molar mass as well.
  - Average atomic masses on the periodic table are also molar masses (just a change of units).
  - The molar mass of a substance is the sum of the molar masses of all atoms in its chemical formula.
- Molar mass has units of grams per mole (g/mol or g mol<sup>-1</sup>).

**Example.** What is the molar mass of morphine, which has the molecular formula  $C_{17}H_{19}NO_3$ ?

## **Lingering Questions**



• Can the mole and Avogadro's number be defined with respect to a mass unit other than the gram?

What about substances dissolved in solutions and other substances that we can't weigh?
 How do we count particles of these substances?

• How are moles used in planning and carrying out chemical reactions?