README.md 2024-10-16

Cloth Detection and Segmentation

Project Idea

The aim of this project is to develop a computer vision system capable of detecting and segmenting various types of clothing items in images. The system will focus on two main tasks:

- 1. Clothing Classification: Identifying and categorizing of clothing types (e.g., shirts, pants, dresses).
- 2. **Clothing Segmentation**: Accurately separating clothing items from the image background for enhanced detection and identification in different environments.

Technique/Method

We plan to implement a deep learning-based approach, utilizing state-of-the-art models for both the classification and segmentation tasks.

Classification

For clothing classification, we will fine-tune a pre-trained convolutional neural network (CNN) model. This will enable efficient feature extraction and recognition of clothing categories in images.

Segmentation

For clothing segmentation, we will employ advanced segmentation models like U-Net [3] or DeepLab [4].

Dataset Explanation and Link

DeepFashion Dataset [1] and ModaNet Dataset [2]

Timeline and Individual Tasks

Week	Task	Responsible Member
Week 9	Data exploration, preprocessing, and augmentation	Apollinaria Chernikova
Week 10	Fine-tuning the classification model	Apollinaria Chernikova
Week 11	Training the segmentation model	Egor Machnev
Week 12-13	Testing, debugging, and performance evaluation	All members

References

- [1] Liu et al. "DeepFashion: Powering robust clothes recognition and retrieval," 2016. Link
- [2] Zheng et al. "ModaNet: A large-scale street fashion dataset with polygon annotations," 2018. Link
- [3] Ronneberger et al. "U-Net: Convolutional Networks for Biomedical Image Segmentation," 2015. Link
- [4] Chen et al. "Rethinking Atrous Convolution for Semantic Image Segmentation," 2017. Link