

ROBOTIC ARM

Simulation

C

2 LINK ARM

Different Configurations, but?

>> mdl_planar2
>> p2.teach
>> p2.plot([0 pi/2])
>> p2.plot([pi/2 -pi/2])
>> Robotics - Umarah Qaseem

TO

FORWARD KINEMATICS - MET File Edit View Insert Tools Desktop 🖺 🗃 📓 🦫 🕟 🔍 🤏 衡 🗑 🐙 🛭 dh = [2.000 X: 0201.57 0.000 y: 2.000 Z: 0020 R: -0.0 0.0 90.0 r = SerialLink(dh, 'name','My_Robot' r.plot([0.2,0.3]) r.teach r.fkine([0.2, 0.3]) -2

TASKS

ALREADY COMPLETED!

- 1-Simulate 1, 2 and 3 joint planar arm
- 2- Simulate 4 joint 3D robotic Arm
- 3- Create a 2 link serial manipulator using denavit hartenberg Notation and apply forward kinematics on it.

30

30

TASK 1

Do it now

Create a 6-link manipulator with all revolute joints

TASK 3

Do it now

Simulate SCARA robot!

2 revolute and 1

prismatic

Joint i	θ _i (deg)	α _i (deg)	r _i (cm)	d _i (cm)
1	$\theta_{\scriptscriptstyle 1}$	0	a_2	a ₁
2	θ_2	180	$a_{\scriptscriptstyle{4}}$	a ₃
3	0	0	0	a ₅ + d ₃

34

34

HOME TASK

Complete Task 1, 2 and 3. Submit a hard copy of code (either hand-written or printed) before next class, i.e on Monday 30th September 2024 at 2:30 PM

ASSIGNMENT - MORE DISCUSSION

Schematics

DH Table

Forward Kinematics

Plot workspace

Inverse Kinematics

Robotics - Umarah Qaseem

36

ASSIGNMENT 1 – MORE DISCUSSION

- Goal: Design a robotic manipulator.
- Work-space: Half doughnut
- It is not hollow.
- Robot should not have redundant joints
- Deliverables: Code file, Report (which should also contain detailed output plots)
- Code should be well commented, modular (use functions), generic (do not hard code everything). More details in the assignment document.
- Deadline: 7th October, Monday