This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problems Mailbox.

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

08-056350

(43)Date of publication of application: 27.02.1996

(51)Int.CI.

HO4N 7/16

(21)Application number: 06-190351

(71)Applicant: TOSHIBA CORP

(22)Date of filing: 12.08.1994 (72)Inventor: HIROTA ATSUSHI

SAKAMOTO NORIYA

HOSHINO KIYOSHI

(54) DEVICE AND SYSTEM FOR PROGRAM SEARCH

(57)Abstract:

PURPOSE: To search for a program according to classification items, and to improve the efficiency of the program search even when a signal format is sent in multichannel mode by constructing a search table means.

CONSTITUTION: Packets of various programs are extracted as objects to be decoded from transport streams selected by a transmission channel selector 51 through the path of demultiplexers 52, 58, and 63. A stream of one default channel is selected first from the streams of N channels and outputted to a demultiplexer 52. The packets are demultiplexed and put back into a PAT section by a depacketing unit 53, and put back into a CAT section through a depacketing unit 55, and a CAT reproducing unit 56 reproduces CAT. A program which is being broadcast is specified by a viewer and supplied to a channel search table referring unit 67, and table information from a PTA reproducing unit 54, the CAT reproducing unit 56, and a PMT reproducing unit 62 is obtained to generate a table.

LEGAL STATUS

[Date of request for examination]

03.09.1999

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2000 Japan Patent Office

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平8-56350

(43)公開日 平成8年(1996)2月27日

(51) Int.Cl.⁶

截別記号 庁内整理番号

FΙ

技術表示箇所

H04N 7/16

Z

審査請求 未請求 請求項の数11 OL (全 13 頁)

(21)出願番号	特顯平6-190351	(71)出顧人 000003078	
		株式会社東芝	
(22) 出顧日	平成6年(1994)8月12日	神奈川県川崎市幸区	届川町72番地
	·	(72)発明者 廣田 敦志	
		神奈川県横浜市磯子	区新杉田町8番地 株
	•	式会社東芝マルチメ	ディア技術研究所内
		(72)発明者 坂本 典哉	
		神奈川県横浜市磯子	区新杉田町8番地 株
		式会社東芝マルチメ	ディア技術研究所内
		(72)発明者 星野 潔	
	•	神奈川県横浜市磯子	区新杉田町8番地 株
		式会社東芝マルチメ	ディア技術研究所内
	•	(74)代理人 弁理士 鈴江 武彦	

(54) 【発明の名称】 番組探索装置および方式

(57)【要約】

応じた探索を行い番組探索のスピードアップを得る。 【構成】伝送チャンネル選択器51で選択されたトランスポートストリームの中からデマルチプレクサ52、58、63の経路で種々の番組のパケットを抽出する場合、チャンネル探索テーブル67に、番組の分類項目と、前記分類項目に該当する番組のパケット識別子を振り分け、さらに各振り分けたパケット識別子に対応するアドレスを対応させたテーブルを形成しておき、視聴者が1度指定する毎にパルスを発生する番組切り替え手段のパルスを計数してアドレスを発生し、このアドレスを前記探索テーブルのアドレスに対応させてパケット識別子を決定し、このパケット識別子に対応する番組を分離しデコード対象とする。

【目的】番組探索を行うに際して、視聴者の視聴傾向に

20

50

【特許請求の範囲】

【請求項1】複数の番組がそれぞれパケット識別子を付加されてパケット化され、また、前記番組と前記パケット識別子との対応関係を示す伝送制御データもパケット化され、これらの各パケットが多重化されて伝送されてくる多重化信号の中から各番組を探索する装置において、

番組内容の分類項目を有し、前記分類項目に該当する番組のパケット識別子を振り分け、さらに各振り分けたパケット識別子にアドレスを対応させたテーブルを形成し 10 た探索テーブル手段と、

視聴者が1度指定する毎にパルスを発生する番組切り替え手段と、

前記番組切り替え手段のパルスを計数しそれに応じた計数アドレスを発生する計数手段と、

前記計数手段で発生した計数アドレスを前記探索テーブル手段に与え、このアドレスの前記パケット識別子を決定し、このパケット識別子に対応するパケットを分離し、デコード対象とする多重分離手段とを具備することを特徴とする番組探索装置。

【請求項2】前記探索テーブル手段は、

前記番組を構成する信号形式に基づいて前記分類項目を 形成していることを特徴とする請求項 1 記載の番組探索 装置。

【請求項3】前記探索テーブル手段は、

前記番組のスクランブル/非スクランブル方式に基づい て前記分類項目を形成していることを特徴とする請求項 1記載の番組探索装置。

【請求項4】前記探索テーブル手段は、

前記番組のジャンルに基づいて前記分類項目を形成して 30 いることを特徴とする請求項1記載の番組探索装置。

【請求項5】前記探索テーブル手段は、

過去に選択した番組の特定の有限個数の履歴に基づいて 前記分類項目を形成していることを特徴とする請求項1 記載の番組探索装置。

【請求項6】前記探索テーブル手段は、

少なくとも1つの予め登録させた番組情報に基づいて前記分類項目を形成していることを特徴とする請求項1記載の番組探索装置。

【請求項7】前記探索テーブル手段は、

伝送路が異なる伝送チャンネル毎に分類したチャンネル 分類項目と、それぞれのチャンネル分類項目の中で番組 内容毎に分類した番組内容分類項目と、番組内容分類項 目にそれぞれ振り分けられたパケット識別子と、各パケット識別子に割り当てられたアドレスとを有し、

前記番組切り替え手段は、

前記番組内容分類項目の項目指定手段と、前記チャンネル分類項目の項目指定手段をさらに有することを特徴とする請求項1記載の番組探索装置。

【請求項8】前記チャンネル分類項目の項目指定手段

は、

伝送チャンネル選択手段にも制御出力を及ぼすことを特 徴とする請求項7記載の番組探索装置。

【請求項9】前記多重化信号は、ISO/IEC 13818-1 の規定に従ってパケット多重化され伝送されてきたトランスポートストリーム(Transport Stream)であることを特徴とする請求項1記載の番組探索装置。

【請求項10】複数の番組がそれぞれパケット識別子を付加されてパケット化され、また、前記番組と前記パケット識別子との対応関係を示す伝送制御データもパケット化され、これらの各パケットが多重化されて伝送されてくる多重化信号の中から各番組を探索する方式において、

番組内容の分類項目を有し、前記分類項目に該当する番組のパケット識別子を振り分け、さらに各振り分けたパケット識別子にアドレスを対応させた探索テーブルを形成し、

視聴者が1度指定する毎にパルスを発生する番組切り替え手段のパルスを計数しそれに応じた計数アドレスを発生し、

前記計数アドレスを前記探索テーブルに与え、このアドレスの前記パケット識別子を決定し、このパケット識別子に対応するパケットを分離し、デコード対象とすることを特徴とする番組探索方式。

【請求項11】前記多重化信号は、ISO/IEC 13818-1 の 規定に従ってパケット多重化され伝送されてきたトラン スポートストリーム(Transport Stream)であることを 特徴とする請求項10記載の番組探索方式。

【発明の詳細な説明】

[0001]

【産業上の利用分野】この発明は、デジタル放送受信機 の番組探索装置および方式に関する。

[0002]

【従来の技術】信号源の高能率符号化技術、デジタル変 復調技術等を利用したデジタル放送では、映像、音声、 データといった様々なサービス形態を持つ信号を符号化 し、この符号化した信号をさらにパケット化し、パケッ トに識別子を付加して多重伝送することで多チャンネル 化を実現できるものと期待されている。

【0003】映像、音声の符号化方式およびこれらの多重化方式に関しては、ISO(国際標準化機構)/IEC(国際電気標準会議)13818-1 [ISO/IEC JTC(Joint Technical Committee)1/SC(Subcommittee)29/WG(Working Group)11]で提案されている方式は、放送、通信、蓄積メディア等の幅広い技術分野に渡る世界的な標準化に向けて検討を施しているものである。このうち、多重化方式を扱うMPEG2 SystemsではPS(Program Stream)とTS(Transport Stream)の2種類の多重信号形式が規定されているが、伝送誤りの発生しやすい環境での利用と複数番組の多重化を対象としたTS

が放送には適している。

【0004】ここでは以下、TV学会技術報告Vol.18,No.28,pp7-12,BCS'94-14(May,1994)に記載された"木村他:MPEG2 SystemsのISDBへの適用の検討"を基に従来のデジタル放送受信機の番組探索装置を説明する。

【0005】図8は、ISDB(Integrated Services Digital Broadcasting)伝送の基本構成図である。送信側ではまず符号化器10において、1つの番組(番組A)を構成する映像、音声、データ等の各信号をそれぞ 10 れ高能率符号化して符号化ストリームとして出力する。MPEG2ではこれらのストリームをES(Elementary Stream)と呼んでいる。この符号化ストリームはデータグループ化器11において、符号化側から見て伝送に適した単位(たとえば、映像信号ではフレーム単位)の可変長データ長に区切り、これにヘッダを付加してデータグループを構成し出力する。このデータグループは、MPEG2ではPES(Packetized Elementary Stream)に対応しており、ヘッダには復号タイミング情報(PTS)を含んでい 20

(DTS) や表示タイミング情報 (PTS) を含んでい 20 る (図9参照)。そして、パケット化器 1 2 においては データグループ信号を伝送路から見て伝送に適した単位 の固定長データ長に区切り、ヘッダを付加してパケット を構成してパケット多重器 1 6 へ出力する。

【0006】MPEG2では、パケット長は基本的にデータを挿入するペイロード部…184バイト、ヘッダ部…4バイトの計188バイトで構成されている。なお、このヘッダ部には1つの番組を構成する各信号ごとに異なる13ビットのパケット識別子(PID)を持たせ、他の番組のパケットと区別できるようになっている(図 3010参照)。番組Bについても、同様に符号化器13、データグループ化器14、パケット化器15を通じて番組構成信号ごとに符号化、パケット化される。

【0007】そして、パケット多重器 16ではパケット 化された 1つの番組の構成信号ばかりでなく他の番組の構成信号も共に時分割多重する。なおこの多重信号には、伝送制御器 17(後述)よりパケット化された伝送制御データも多重し、パケットストリームを構成する。なお、MPEG 2ではこのストリームをTS(Transport Stream)に対応する。このストリームは、フレーム構成器 18においてパケットごとに誤り訂正処理、インターリーブ処理、フレーム同期符号・制御符号の付加を行い、さらに必要に応じて伝送スクランブルを施して、伝送のための周期的な同期構造を持つビットストリームに再構成する。このフレーム構成されたビットストリームは変調器 19でデジタル変調されて送信される。

【0008】ここで、伝送制御器17について説明する。伝送制御器17では、多重化された信号が受信機側で分離できるようにパケット識別子と番組との対応関係を示す伝送制御データをパケットとして出力するもの

で、パケット多重器 1 6 で番組のパケット化された信号とともに多重される。なお、MPEG 2 ではこの伝送制御データは、PSI(Program Specific Information)に相当する。PSIには、番組を構成する各信号とそのPIDとの対応関係を示すPMT(Program Map Table)、1つの番組を他の番組と区別するために割り当てられる番組番号とPMTのPIDとの対応関係を示すPAT(Program Association Table)、チャンネル周波数やトランスポンダー数等の伝送チャンネルの物理情報を伝送するNIT(Network Information Table)、スクランブル番組のような限定受信番組とPIDとの対応関係を示すCAT(Conditional Access Table)の4種類がある。

【0009】PSIはパケット伝送するために、セクションと呼ばれる単位に分割されパケットのペイロード部に載せられる。これらの信号形式を図11(a)、

(b)、図12に示す。PATセクションに関しては図11(a)に示すように16ビットの番組番号(編成チャンネル)識別子とそのPMTのPIDとの組み合わせが番組(編成チャンネル)の数だけ記述されている。PMTセクションに関しては1つの番組(編成チャンネル)に1つのPMTセクションが対応する。図11

(b) に示すように16ビットの番組(編成チャンネル) 識別子を持ち、その番組に対する各構成信号(ストリーム)の映像、音声、データ等の種別やその信号を伝送するPID、その他の詳細情報(符号化形式など)をセットにして記述されている。また、NITに関しては図12に示すように拡張・追加定義を利用して伝送チャンネルの物理情報等を記載する。

【0010】ここで、編成チャンネルについて説明する。ISDBでは1つの伝送チャンネルに複数の番組を同時に時分割放送して多チャンネル化実現が可能である。このため、現行の放送チャンネルに相当した、個々の番組の時間軸上の連続した流れを編成チャンネルと呼んで、伝送チャンネルと区別している。そしてISDBではMPEG2の番組番号を編成チャンネルと読み換えることでいわゆる"ながら受信"(チャンネルを一度指定すると番組を連続して視聴)を可能としている。

【0011】以上がISDB伝送の概要である。そして 受信側では、伝送されてきた伝送制御データを基にして 指定された番組のパケットを多重分離し、デパケットし て元の符号化ストリーム (ES) に戻し、高能率符号復 号化装置で復号化して番組を再生する。

【0012】図13には、まず、上記した伝送制御データによって特定の番組の多重分離の間接指定を行う受信機の原理を示している。受信機ではまずPATを伝送するパケットを分離してPATを再生し、すべての番組(編成チャンネル)番号とそれらの番組構成を記述するPMTのPIDとの対応を示す番組連関テーブルを得る。ただし、PATを伝送するパケット識別子には、P

ID=0が予め固定で割り当てられ、この情報のパケッ ト分離の便宜が図られている。次に、視聴者が指定した 番組(編成チャンネル)番号に対するPMTのPIDを PATを参照して分離・再生し、その番組を構成する各 信号のPIDを得る。この例では番組AIのPMTがP ID=a、番組XIのPMTがPID=xにそれぞれ送 信側で割り当てられている。そしてこれらのPMTを再 生すると、番組A1に関しては映像(PID=b)、音 声 (PID=c)、データ (PID=d) の3つの信号 から構成されており、番組X1に関しては映像(PID 10 =u)、音声(PID=v)、有料関連情報(PID= w) の3つの信号から構成されていることがわかる。な お、伝送チャンネルに関する情報を記載するNITもP ATにそのPIDが記述されており、この例ではPID =nに送信側で割り当てられ、参照される。また、スク · ランブル放送等のCATはこの図には記載されていない が、PID=1が予め固定で割り当てられており、必要 に応じて参照される。

【0013】以上が伝送制御データ(PSI)による多・重分離の原理である。次に、図14に上記の多重分離の 20 原理を利用した、受信機での番組(編成チャンネル)探索の基本構成を示す。

【0014】伝送チャンネル選択器21では、一般にN 個の伝送チャンネルのストリームの中から最初はデフォ ルトの1つの伝送チャンネルのストリームが選択されて デマルチプレクサ22に出力される。デマルチプレクサ 22では、13ビットのパケット識別子 (PID) が0 ('0000 0000 0000 0') のパケットを多重分離し、デパ ケット化器23においてPATセクションに戻し、PA T再生器24においてPATを再生する。また、CAT 30 については、PIDが1 ('0000 0000 0000 1') のパケ ットを同様に多重分離してデパケット化器25を経てC ATセクションを抽出し、CAT再生器26においてC ATを再生する。一方、番組(編成チャンネル)番号指 定は、視聴者が番組(編成チャンネル)選択アップ/ダ ウンスイッチによりスイッチを押すたびに発生するパル スをアップ/ダウンカウンタ27でカウントして、カウ ント数をPAT再生器24とPMT再生器32に出力す る。

【 0 0 1 5】 P A T 再生器 2 4 ではこの出力を番組番号 40 としてこれに対応する P M T の P I D (この例では P I D = a) および N I T の P I D (この例では P I D = n) を照合し、デマルチプレクサ 2 8 の制御信号とする。

【0016】この結果、デマルチプレクサ28ではそれらのPIDのパケットを多重分離して、デパケット化器29、31でそれぞれNITセクション、PMTセクションを抽出し、NIT再生器30でNIT、PMT再生器32でPMTを再生する。PMT再生器32では先のアップ/ダウンカウンタ27の出力を基に、その指定さ50

れた番組(編成チャンネル)番号を構成する各ストリームのPIDが得られる。これを制御信号にしてデマルチプレクサ33ではこの例ではPID=bのパケットを多重分離し、デパケット化器34を経て映像符号化PESを得、後段の映像復号器へ出力される。この後の過程でPESから復号や表示に必要なタイミング情報等を抜き出して元の符号化ストリーム(ES)を出力、映像高能率符号復号器で復号および表示する。PID=cを持つ音声、PID=dを持つデータについても同様に多重分離、デパケットを経て復号表示される。

【0017】なお、ISDBでは、視聴者がデフォルトの伝送チャンネル内の番組(編成チャンネル)を指定した場合にはPAT再生器24およびNIT再生器30においてPAT、NITをセルフ参照(PAT、NITの1ビットのセルフ/クロス指示フラグがいずれも1のもの)する(図11(a)、図12参照)。そして、他の伝送チャンネルに属する番組(編成チャンネル)を指定した場合には、PATおよびNITをクロス参照(セルフ/クロス指示フラグが0)し、伝送チャンネル選択器21を該当する伝送チャンネルに切り替える制御信号を発生する。このクロスマップ機能を特別に定義することで編成チャンネルの指定のみで伝送チャンネルの切り替えを可能にしている。

【0018】以上が受信機での番組探索の基本構成である。ところが、この番組探索方式では視聴者がアップ/ダウンの切り替え指定するたびに単純にすべての編成チャンネルを空きチャンネルも含めて順番に表示させることになる。このため、通常の番組だけでなく音声のみやデータのみの放送も含めたさまざまなサービス形態が統合して多チャンネル化されると推測されるデジタル放送では番組の探索効率が著しく悪化する。

[0019] '

【発明が解決しようとする課題】パケット多重伝送されてきた多チャンネル放送の番組を受信・探索する装置において、単純にすべての放送中の番組を順に表示していくと番組(編成チャンネル)の探索効率が悪くなってしまうという問題が存在する。

【0020】そこでこの発明は、番組探索を行うに際して、視聴者の視聴傾向に応じた探索を行い番組探索のスピードアップを得るデジタル放送受信機の番組探索装置および方式を提供することを目的とする。

[0021]

【課題を解決するための手段】この発明は、複数の番組がそれぞれパケット識別子を付加されてパケット化され、また、前記番組と前記パケット識別子との対応関係を示す伝送制御データもパケット化され、これらの各パケットが多重化されて伝送されてくる多重化信号の中から各番組を探索する装置において、番組内容の分類項目を有し、復号した前記伝送制御データから受信可能な番組を判断して、前記分類項目に該当する番組のパケット

7

識別子を振り分け、さらに各振り分けたパケット識別子に対応するアドレスを対応させたテーブルを形成する探索テーブル手段と、視聴者が1度指定する毎にパルスを発生する番組切り替え手段と、前記番組切り替え手段のパルスを計数しそれに応じた前記計数アドレスを発生する計数手段と、前記計数手段で発生した計数アドレスを前記探索テーブル手段のアドレスに対応させて、このアドレスの前記パケット識別子を決定し、このパケット識別子に対応するパケットを分離し、デコード対象とする多重分離手段とを備える。

[0022]

【作用】上記の手段によると、探索テーブル手段を構築しておくことにより、分類項目に従って番組を選択することができるので、様々な放送形態、放送方式、信号形式を多チャンネル化して伝送してきた場合においても番組探索の効率を向上させることができる。

[0023]

【実施例】以下、この発明の実施例を図面を参照して説明する。図1には、まず、受信機での番組(編成チャンネル)探索の基本構成を示している。伝送チャンネル選 20 択器51で選択されたトランスポートストリームの中からデマルチプレクサ52、58、63の経路で種々の番組のパケットを抽出し、デコード対象とする。

【0025】一方、現在放送中の番組の所望の抽出・分類法(後述)が、視聴者によって指定され、チャンネル探索テーブル参照器67に与えらえる。チャンネル探索テーブル部67では、PAT再生器54、CAT再生器56、NIT再生器60、PMT再生器62から各テー 40ブル情報を得て、指定された番組内容の抽出・分類法に従って並べ替えた番組(編成チャンネル)番号とアップ/ダウンカウンタ57の出力値との対応テーブルをまず作成する。

【0026】図2にその対応テーブルの1例を示す。分類項目(A,B,C)ごとに放送中の番組が分類され、カウンタ値に対応して番組(編成チャンネル)番号が割り当てられる。そして、アップ/ダウンカウンタ57からの入力に対応した番組(編成チャンネル)番号を、PAT再生器54およびPMT再生器62に出力する。な 50

お、アップ/ダウンカウンタ57では、視聴者が番組 (編成チャンネル)選択アップ/ダウンスイッチにより スイッチを押して番組(編成チャンネル)番号を指定す

るたびに発生するパルスをカウントして、カウント数をチャンネル探索テーブル参照器67にアドレスとして出力するものとする。そして、番組内容指定、すなわち、分類項目を切り替えるごとにカウンタ57はリセットされるものとする。

【0027】PAT再生器54では、テーブル部67からの出力を番組番号としてこれに対応するPMTのPID(この例ではPID=a)およびNITのPID(この例ではPID=n)を照合し、デマルチプレクサ58の制御信号とする。この結果、デマルチプレクサ58ではそれらのPIDのパケットを多重分離して、デパケット化器49、51ではそれぞれNITセクション、PMTセクションを抽出し、NIT再生器60でNIT、PMT再生器62でPMTを再生する。

【0028】PMT再生器62では先のアップ/ダウン カウンタ57の出力を基に、その指定された番組(編成 チャンネル) 番号を構成する各ストリームのPIDが得 られる。これを制御信号にしてデマルチプレクサ63で は、この例ではPID=bのパケットが多重分離され る。この分離されたパケットは、デパケット化器64を 経て映像符号化PESとなり、映像復号器71へ出力さ れる。映像復号器71では、PESから復号や表示に必 要なタイミング情報等を抜き出して元の符号化ストリー ム(ES)を映像高能率符号復号し、選択器69へ出力 する。PID=cを持つ音声、PID=dを持つデータ についても同様に多重分離され、デパケット化器65、 66を経てそれぞれ音声復号器72、データ復号器73 で復号され、選択器69へ出力される。選択器69で は、予めメモリ等に記憶させてある後述の抽出・分類メ ニューメモリ68の出力と上記の復号された各番組信号 とを選択し、映像表示器、音声出力器、データ表示器へ それぞれ出力する。

【0029】なお、この選択は表示制御器70によって 決定される。表示制御器70では視聴者がメニュー表示 指定を行った場合にはメニュー表示を選択し、そのメニ ューの中から視聴者が後述する抽出・分類項目を指定 (番組内容指定)した場合には復号された番組を選択す るよう制御される。また、この図ではメニューは画面表 示のみで音声、データは出力されないものとしたが、音

声等を伴っていてもよい。

【0030】なお、ISDBでは、視聴者がデフォルトの伝送チャンネル内の番組(編成チャンネル)を指定した場合にはPAT再生器54およびNIT再生器60においてPAT、NITをセルフ参照(PAT、NITの1ビットのセルフ/クロス指示フラグがいずれも1のもの)する(図11(a)、図12参照)。そして、他の伝送チャンネルに属する番組(編成チャンネル)を指定

した場合には P A Tおよび N I Tをクロス参照(セルフ / クロス指示フラグが 0)し、伝送チャンネル選択器 5 1 を該当する伝送チャンネルに切り替える制御信号を発生する。このクロスマップ機能を特別に定義することで 編成チャンネルの指定のみで伝送チャンネルの切り替えを可能にしている。

【0031】以上が受信機での番組探索の基本構成である。ここで、チャンネル探索テーブル部67に、構築する分類項目について説明する。

【0032】まず、図3(A)に番組の信号形式に基づ 10 く分類項目の例を実施例1として示す。この例ではSDTV放送、HDTV放送、音声放送、データ放送に現在放送中の番組を分類する。番組の信号形式はたとえば、PMTセクションの番組やESの記述子から判定して分類する(図11(b)参照)。

【0033】このように分類しておき、番組内容指定として#1~#4のいずれかを指定すると、上述したようにまずアップ/ダウンカウンタ57がリセットされ、テーブル化しておいた最初の番組番号の番組が選択される。ここで番組番号指定のためにアップ/ダウンカウン 20 タ57への入力パルスを増加、または減少させれば番組を次々と変えていくことができる。

【0034】次に、実施例2としてスクランブル放送/ 非スクランブル放送の区別による分類項目の例を図3 (B)に示す。この例ではPMTセクションまたはCA

Tセクションの記述子からスクランブル放送番組のPI Dを抜き出し、分類することができる。

【0035】さらに、図4(A)には、実施例3として番組ジャンルによる分類項目の例を示す。ここでいう番組のジャンルとはニュースやスポーツ、映画等番組内容 30に沿った区分を指す。この区分の記述は定義されていないが、例えば送信側がユーザー定義を利用して番組の記述子を作成し記述する等の方法で良い。ISDBでは番組記述子を設け、32ビットの番組識別子を持たせているため、たとえばこの上位3ビットを番組ジャンル識別に割り当てるといった運用も可能である。これらを抜き出し、読み取ることでこの分類指定も可能になる。

【0036】また、図4(B)に示すように、実施例4として過去のある一定時間以上連続して視聴した番組 (編成チャンネル)選択の履歴を記憶しておき、それを 40 新しいものから順に有限個数提示させ指定選択させる方法の例を示す。この例では過去8番組(編成チャンネル)の履歴が提示されており、この中から直接指定するようになっている。

【0037】図5には、実施例5として視聴者がよく見る番組(編成チャンネル)を予め登録記憶させておいてその中から指定選択する方法の例を示している。アップ/ダウン番組切り替え指定を行うと登録した順に番組(編成チャンネル)を探索表示していくものである。

【0038】これまでは、ISDBのクロスマップ機能 50

を用いて編成チャンネルのみの切り替え指定で異なる伝 送チャンネルの編成チャンネルも含めて探索を効率的に 行う説明を行ってきた。

10

【0039】図6では、番組切り替え手段が編成チャン ネルばかりでなく伝送チャンネルでも指定できる場合を 実施例6として示している。構成は図1の場合とほとん ど変わらない。図1の構成と同じ部分には同一符号を付 している。図1の構成と異なる点はまず第1に、番組切 り替え指定手段として伝送チャンネルアップ/ダウンカ ウンタ138が追加されており、編成チャンネルアップ /ダウンカウンタ127が伝送チャンネルアップ/ダウ ンカウンタ138のカウンタパルスと番組内容指定出力 の切り替えパルスとの論理和を取るオア回路139の出 力でリセットされる点である。これは番組内容指定を切 り替えた場合だけでなく、伝送チャンネルを切り替えた 場合にも編成チャンネルのカウント値をリセットするた めである。また、第2には伝送チャンネルのカウント出 力がチャンネル探索テーブル部137に入力し、これに 応じて、図7に示すように、番組(編成チャンネル)の カウンタ値と番組番号との対応テーブル内容が変わる点 である。このテーブルは番組の抽出・分類の範囲が1つ の伝送チャンネル内に限定され、伝送チャンネルごとに 番組(編成チャンネル)を抽出分類する。このため、全 伝送チャンネルにわたる番組(編成チャンネル)の抽出 分類を行う第1の方式と比較すると、探索効率が落ち る。しかし、この方式は、送信側でクロスマップ機能を 設定していない場合や設定していても受信側で伝送誤り 等のために利用できない場合にも有効である。

【0040】上記のいずれかの番組探索方式を用いて視聴者がアップ/ダウンの切り替え指定するたびに希望する番組(編成チャンネル)を指定した中からのみ探索表示させることで、さまざまなサービス形態が統合して多チャンネル化されると推測されるデジタル放送においても番組の探索効率が改善を図ることができる。

[0041]

【発明の効果】以上説明したようにこの発明によれば、 伝送制御データを基にして視聴者が指定した番組内容に 従って番組を分類して作成したテーブルを参照すること で、視聴者が必要とする番組のみを探索表示させ、様々 な放送形態、放送方式、信号形式を多チャンネル化して 伝送してきた場合においても番組探索の効率を向上させ ることができる。

【図面の簡単な説明】

【図1】この発明の一実施例における受信機を示す図。

【図2】この発明における番組抽出・分類を行うテーブルの基本的な例を示す図。

【図3】同じく番組抽出・分類を行うテーブルの具体的な例を示す図。

【図4】同じく番組抽出・分類を行うテーブルの具体的な他の例を示す図。

【図5】同じく番組抽出・分類を行うテーブルの具体的 な他の例を示す図。

【図6】この発明の他の実施例における受信機を示す 図。

【図7】図6の受信機が番組抽出・分類を行うために使 用するテーブルの例を示す図。

【図8】 ISDB伝送の基本構成を示す図。

【図9】MPEG2を適用したISDB信号形式のPE S型データグループ構を示す図。

【図10】同じく信号形式でありパケット構成を示す 図。.

【図11】同じく信号形式であり PATセクションと P MTセクション構成を示す図。

【図12】同じく信号形式でありNITセクション構成.

を示す図。

【図13】 伝送制御データによる多重分離の原理説明

12

【図14】受信機での番組探索の基本構成の例を示す 図。

【符号の説明】

51…伝送チャンネル選択器、52、58、63…デマ ルチプレクサ、53、55、59、61、64~66… デパケット化器、54…PAT再生器、56…CAT再 生器、57…アップダウンカウンタ、60…NIT再生 器、62…PMT再生器、67…チャンネル探索テーブ ル部、68…メニューメモリ、69…選択器、70…表 示制御器、71…映像復号器、72…音声復号器、73 …データ復号器。

【図3】 【図2】

分類項目	カウンタ値	香粗香号
	0	# 2
	1	# 5
A	2	# 6
^	3	#8
	4	#11
	5	#12
	0	#1
	1	. #3
В	2	#9
	3	#15
_	0	# 4
С	1	#7

選択メニュー

- 1, SDTV放送
- 2. HDTV放送
- 3. 音声放送 4. データ放送
- 1~4のうちから1つ選択

(A) -

選択メニュー・

- 1. 非スクランプル放送
- 2. スクランブル放送

1又は2のうちから1つ選択

(B)

【図5】

- 番組登録メニュー 1. Aチャンポル第1
- 2. Cチャンネル第3
- 3. Cチャンネル第1
- 4. Dチャンネル第4
- 5. Bチャンネル第1
- 8. Dチャンネル第1
- 7. Eチャンネル第2
- 8. Aチャンネル第2

番組登録による指定 (実施例5)

【図7】

[図4]

選択メニュー・

- 1. ニュース・ドキュメンタリー
- 2. スポーツ
- 3. 映画
- 4. ドラマ
- 5. パラエティー
- 8. 芸術·教養
- 7. 生活
- 8. 天気予報
 - しから&のうちから1つ選択

替組設択履歴メニュー

- 1. Aチャンネル第1
- 2、Cチャンネル第8
- 3. Dチャンネル第1
- 4. Aチャンネル第2
- 5. 日チャンネル第2
- 8、Bチャンネル館1 7. Cチャンネル第1
- 8. Dチャンネル第1
- 客相選択理歴による指定

伝送ch	分類項目	観成 c h カウンタ値	香粗番号
		0	# 2
	Α.	1	# 5
0	В	0	#1
		0	# 3
	С	1	# 4
	A	0	# 6
		0	#7
1		1	#8
	В	2	#9
		3	#10

第2のチャンネル探索参照テーブルの1例

看祖ジャンルによる分類指定 (実施例3)

(実施列4)

【図8】

ISDB伝送の基本構成

. T

[図13] ... P.I.D 有料処理情報データ * P I D | 香戸データ =-V アーロ 残骸ゲータ まち データ循号 音声ゲータ 番組要素 △ - ° **a.** # Ω -- β α. # 番組=A1:零像PID=b : 商苗PID=c データPID=d ... 伝送制御データによる多重分離の原理 瓜粉糖 整备=×1 σ# — α Ο O×= 0 - u ₽₩ P!D 編成チャンネル=A:P! #0 (面配) = 0:P! PAT

【図14】

