IPSec 传输模式下 ESP 报文的装包与拆包过程

- 米家龙
- 计算机学院
- 18342075

IPSec 传输模式下 ESP 报文的装包与拆包过程

什么是 IPsec

加密方式

什么是 SA(Security Associations) 安全关联

完整流程

装包过程

- 1. 在原 IP 报文末尾添加 ESP trailer (尾部/挂载) 信息。
- 2. 加密封装。
- 3. 为第2步得到的加密数据添加 ESP header。
- 4. 附加完整性度量结果 (ICV, Integrity check value)。
- 5. 加上新的 IP header 构成 IPsec 报文。

拆包流程

什么是 IPsec

IPsec 在**网络层**将每个 IP 分组的内容先加密再传输,即使中途被截获,攻击者由于缺乏解密数据包所必要的密钥而无法获取其中内容。

加密方式

目前存在两种加密方式:

加密方式	特点	区别
传输模式	只对 IP 协议报文的 有效数据载荷部分 (payload)进行加密,因此需要对原始 IP 报 文进行拆装。	原始 IP 报文被拆解,在其有效载荷前面 加上新的 ESP 或 AH 协议头 ,再装回原来的 IP 地址,形成新的 IPsec 报文。
隧道模式	整个 IP 协议报文进行加密,相当于把原始 IP 报文封装在一个 安全的隧道 进行传输, 保持了原始 IP 报文的 完整性 。	原始 IP 报文作为数据内容,在这段"数据"前面 加上 ESP 或 AH 协议头 ,再加上 新的 IP 头,形成 IPsec 报文进行传输。

什么是 SA(Security Associations) 安全关联

- SA可以理解为被 IPsec 保护的某个连接的唯一标示。SA 是单向的,即在一次安全的通信中,通信的两个方向 (发送和接收) 各需要创建一个 SA。
- 一个 SA 所包含的内容是维护一次安全通信所需要的数据参数。通常,一个 SA 可以由目的地址、IPsec 所采用的协议 (AH 或 ESP) 和 SPI 来唯一确定。

完整流程

装包过程

完整过程如下:

Original IPv4 Datagram Format

IPv4 ESP Datagram Format - IPSec Tunnel Mode

IPSec in ESP Tunnel Mode

1. 在原 IP 报文末尾添加 ESP trailer (尾部/挂载) 信息。

ESP trailer 包含三部分。由于所选加密算法可能是块加密,当最后一块长度不足时就需要填充 (padding),附上填充长度 (Padlength) 方便解包时顺利找出用来填充的那一段数据。Nextheader 用来标明 被封装的原报文的协议类型。如下图:

2. 加密封装。

将原 IP 报文以及第1步得到的 ESP trailer 作为一个整体进行加密封装。具体的加密算法与密钥由 SA 给出。

3. 为第2步得到的加密数据添加 ESP header。

ESP header由 SPI 和 Seq# 两部分组成。加密数据与 ESP header 合称为 "Enchilada",构成认证部分。注意到被封装的原报文的协议类型受到保护,由加密的 ESP trailer 的 Next header 声明,而不出现在未加密的 ESP header 中。

4. 附加完整性度量结果 (ICV, Integrity check value)。

对第3步得到的 "enchilada" 部分做认证,得到一个32位整数倍的完整性度量值 (消息认证码 MAC),并附在 ESP 报文的尾部。完整性度量算法包括需要的认证密钥由 SA 给出。

5. 加上新的 IP header 构成 IPsec 报文。

新构造的 New IP header 附在 ESP 报文的前面组成一个新的 IP 报文。注意 New IP header 的 IP 地址由路由器和安全网关解释,可以和原报文 (由主机创建的 IP 地址) 不同。协议类型为50,说明它封装的是一个ESP 报文。

拆包流程

- 1. 接收方收到 IP 报文后,发现协议类型是50,表明这是一个 ESP 包。首先查看 ESP header,通过 SPI 检索数据报文所对应的 SA,读取对应的模式 (tunnel/transport mode) 以及安全规范。
- 2. 计算 "enchilada" 部分的摘要,与附在末尾的 ICV 做对比,验证数据完整性。
- 3. 检查 Seq#里的顺序号,保证数据是"新鲜"的。
- 4. 根据 SA 所提供的加密算法和密钥,解密被加密过的数据,得到原 IP 报文与 ESP trailer。
- 5. 根据 ESP trailer 的填充长度信息,找出填充字段的长度,删去后得到原来的 IP 报文。
- 6. 最后根据得到的原 IP 报文的目的地址进行转发。

具体如下图:

IPv4 ESP Datagram Format - IPSec Transport Mode

IPSec in ESP Transport Mode

