Introduction to Algorithms 6.046J/18.401J/SMA5503

Lecture 7

Based on slides by Prof. Erik Demaine

Balanced search trees

Balanced search tree: A search-tree data structure for which a height of $O(\lg n)$ is guaranteed when implementing a dynamic set of n items.

- AVL trees
- 2-3 trees
- 2-3-4 trees
- B-trees
- Red-black trees

Red-black trees

This data structure requires an extra onebit color field in each node.

Red-black properties:

- 1. Every node is either red or black.
- 2. The root and leaves (NIL's) are black.
- 3. If a node is red, then its parent is black.
- 4. All simple paths from any node *x* to a descendant leaf have the same number of black nodes = black-height(*x*).

1. Every node is either red or black.

2. The root and leaves (NIL's) are black.

3. If a node is red, then its parent is black.

4. All simple paths from any node x to a descendant leaf have the same number of black nodes = black-height(x).

Theorem. A red-black tree with n keys has height $h \le 2 \lg(n+1)$.

Proof. (The book uses induction. Read carefully.)

Intuition:

Theorem. A red-black tree with n keys has height $h \le 2 \lg(n+1)$.

Proof. (The book uses induction. Read carefully.)

Intuition:

Theorem. A red-black tree with n keys has height $h \le 2 \lg(n+1)$.

Proof. (The book uses induction. Read carefully.)

Intuition:

Theorem. A red-black tree with n keys has height $h \le 2 \lg(n+1)$.

Proof. (The book uses induction. Read carefully.)

Intuition:

Theorem. A red-black tree with n keys has height $h \le 2 \lg(n+1)$.

Proof. (The book uses induction. Read carefully.)

Intuition:

Theorem. A red-black tree with n keys has height $h \le 2 \lg(n+1)$.

Proof. (The book uses induction. Read carefully.)

Intuition:

- This process produces a tree in which each node has 2, 3, or 4 children.
- The 2-3-4 tree has uniform depth h' of leaves.

Proof (continued)

- We have $h' \ge h/2$, since at most half the leaves on any path are red.
- The number of leaves in each tree is n + 1

$$\Rightarrow n+1 \geq 2^{h'}$$

$$\Rightarrow \lg(n+1) \ge h' \ge h/2$$

$$\Rightarrow h \leq 2 \lg(n+1)$$
.

Query operations

Corollary. The queries SEARCH, MIN, MAX, SUCCESSOR, and PREDECESSOR all run in $O(\lg n)$ time on a red-black tree with n nodes.

Modifying operations

The operations Insert and Delete cause modifications to the red-black tree:

- the operation itself,
- color changes,
- restructuring the links of the tree via "rotations".

Rotations

Rotations maintain the inorder ordering of keys:

•
$$a \in \alpha, b \in \beta, c \in \gamma \implies a \le A \le b \le B \le c$$
.

A rotation can be performed in O(1) time.

IDEA: Insert *x* in tree. Color *x* red. Only redblack property 3 might be violated. Move the violation up the tree by recoloring until it can be fixed with rotations and recoloring.

IDEA: Insert *x* in tree. Color *x* red. Only redblack property 3 might be violated. Move the violation up the tree by recoloring until it can be fixed with rotations and recoloring.

- Insert x = 15.
- Recolor, moving the violation up the tree.

IDEA: Insert *x* in tree. Color *x* red. Only redblack property 3 might be violated. Move the violation up the tree by recoloring until it can be fixed with rotations and recoloring.

- Insert x = 15.
- Recolor, moving the violation up the tree.
- RIGHT-ROTATE(18).

IDEA: Insert *x* in tree. Color *x* red. Only redblack property 3 might be violated. Move the violation up the tree by recoloring until it can be fixed with rotations and recoloring.

- Insert x = 15.
- Recolor, moving the violation up the tree.
- RIGHT-ROTATE(18).
- Left-Rotate(7) and recolor.

IDEA: Insert *x* in tree. Color *x* red. Only redblack property 3 might be violated. Move the violation up the tree by recoloring until it can be fixed with rotations and recoloring.

- Insert x = 15.
- Recolor, moving the violation up the tree.
- RIGHT-ROTATE(18).
- Left-Rotate(7) and recolor.

Pseudocode

```
RB-INSERT(T, x)
    TREE-INSERT(T, x)
    color[x] \leftarrow RED > only RB property 3 can be violated
    while x \neq root[T] and color[p[x]] = RED
        do if p[x] = left[p[p[x]]
            then y \leftarrow right[p[p[x]]] \triangleright y = \text{aunt/uncle of } x
                  if color[y] = RED
                   then (Case 1)
                   else if x = right[p[x]]
                          then ⟨Case 2⟩ > Case 2 falls into Case 3
                     (Case 3)
            else ("then" clause with "left" and "right" swapped)
    color[root[T]] \leftarrow BLACK
```


Graphical notation

Let denote a subtree with a black root.

All \(\rightarrow\)'s have the same black-height.

Case 1

(Or, children of *A* are swapped.)

Push C's black onto A and D, and recurse, since C's parent may be red.

Case 2

Transform to Case 3.

Case 3

Done! No more violations of RB property 3 are possible.

Analysis

- Go up the tree performing Case 1, which only recolors nodes.
- If Case 2 or Case 3 occurs, perform 1 or 2 rotations, and terminate.

Running time: $O(\lg n)$ with O(1) rotations.

RB-Delete — same asymptotic running time and number of rotations as RB-Insert (see textbook).

Augmenting BST's

Adding more functionality to a BST by adding a bit more information

- Dynamic order statistics
- Interval trees

Dynamic order statistics

OS-SELECT(i, S): returns the ith smallest element in the dynamic set S.

OS-RANK(x, S): returns the rank of $x \in S$ in the sorted order of S's elements.

IDEA: Use a red-black tree for the set *S*, but keep subtree sizes in the nodes.

Notation for nodes:

Example of an OS-tree

$$size[x] = size[left[x]] + size[right[x]] + 1$$

Selection

Implementation trick: Use a *sentinel* (dummy record) for NIL such that size[NIL] = 0.

OS-SELECT(x, i) > ith smallest element in the subtree rooted at x

```
k \leftarrow size[left[x]] + 1 \rightarrow k = rank(x)
if i = k then return x
if i < k
```

then return OS-SELECT(left[x], i) else return OS-SELECT(right[x], i-k)

(OS-RANK is in the textbook.)

Example

OS-SELECT(*root*, 5)

Running time = $O(h) = O(\lg n)$ for red-black trees.

Data structure maintenance

- **Q.** Why not keep the ranks themselves in the nodes instead of subtree sizes?
- A. They are hard to maintain when the red-black tree is modified.

Modifying operations: Insert and Delete.

Strategy: Update subtree sizes when inserting or deleting.

Example of insertion

Handling rebalancing

Don't forget that RB-INSERT and RB-DELETE may also need to modify the red-black tree in order to maintain balance.

- *Recolorings*: no effect on subtree sizes.
- *Rotations*: fix up subtree sizes in O(1) time.

∴ RB-INSERT and RB-DELETE still run in $O(\lg n)$ time.

Data-structure augmentation

Methodology: (e.g., order-statistics trees)

- 1. Choose an underlying data structure (*red-black trees*).
- 2. Determine additional information to be stored in the data structure (*subtree sizes*).
- 3. Verify that this information can be maintained for modifying operations (*RB-INSERT*, *RB-DELETE don't forget rotations*).
- 4. Develop new dynamic-set operations that use the information (*OS-SELECT and OS-RANK*).

These steps are guidelines, not rigid rules.

Interval trees

Goal: To maintain a dynamic set of intervals, such as time intervals.

Query: For a given query interval i, find an interval in the set that overlaps i.

Following the methodology

- 1. Choose an underlying data structure.
 - Red-black tree keyed on low (left)
- 2. Determine additional information to be stored in the data structure.
 - Store in each node x the largest value m[x] in the subtree rooted at x, as well as the interval int[x] corresponding to the key.

Example interval tree

Modifying operations

- 3. Verify that this information can be maintained for modifying operations.
 - Insert: Fix *m*'s on the way down.
 - Rotations Fixup = O(1) time per rotation:

Total Insert time = $O(\lg n)$; Delete similar.

New operations

4. Develop new dynamic-set operations that use the information.

```
INTERVAL-SEARCH(i)
    x \leftarrow root
    while x \neq \text{NIL} and (low[i] > high[int[x]])
                             or low[int[x]] > high[i])
        do \triangleright i and int[x] don't overlap
            if left[x] \neq NIL and low[i] \leq m[left[x]]
                then x \leftarrow left[x]
                else x \leftarrow right[x]
    return x
```


[12,14] and [15,18] don't overlap

 $12 > 10 \Rightarrow x \leftarrow right[x]$

Analysis

Time = $O(h) = O(\lg n)$, since Interval-Search does constant work at each level as it follows a simple path down the tree.

List *all* overlapping intervals:

- Search, list, delete, repeat.
- Insert them all again at the end.

Time = $O(k \lg n)$, where k is the total number of overlapping intervals.

This is an output-sensitive bound.

Best algorithm to date: $O(k + \lg n)$.

Correctness

Theorem. Let L be the set of intervals in the left subtree of node x, and let R be the set of intervals in x's right subtree.

• If the search goes right, then

$$\{i' \in L : i' \text{ overlaps } i\} = \emptyset.$$

• If the search goes left, then

$$\{i' \in L : i' \text{ overlaps } i\} = \emptyset$$

 $\Rightarrow \{i' \in R : i' \text{ overlaps } i\} = \emptyset.$

In other words, it's always safe to take only 1 of the 2 children: we'll either find something, or nothing was to be found.

Correctness proof

Proof. Suppose first that the search goes right.

- If left[x] = NIL, then we're done, since $L = \emptyset$.
- Otherwise, the code dictates that we must have low[i] > m[left[x]]. The value m[left[x]] corresponds to the right endpoint of some interval $j \in L$, and no other interval in L can have a larger right endpoint than high(j).

$$high(j) = m[left[x]]$$

$$low(i)$$

• Therefore, $\{i' \in L : i' \text{ overlaps } i\} = \emptyset$.

Proof (continued)

Suppose that the search goes left, and assume that $\{i' \in L : i' \text{ overlaps } i\} = \emptyset$.

- Then, the code dictates that $low[i] \le m[left[x]] = high[j]$ for some $j \in L$.
- Since $j \in L$, it does not overlap i, and hence high[i] < low[j].
- But, the binary-search-tree property implies that for all $i' \in R$, we have $low[j] \le low[i']$.
- But then $\{i' \in R : i' \text{ overlaps } i\} = \emptyset$.

