

Advanced Topics in Software Verification

WeChat: cstutorcs

Assistment Project Exam Help Email: tutores@163.com

Gerwin Klein, June Andronick, Miki Tanaka, Johannes Åman Pohjola
https://tutorcs.com

Last Time

程序代写代做 CS编程辅导

- → Syntax of a simple 🖳 🐼 📆 🖰 ar
- → Operational semant
- → Program proof on clinical emantics
- → Hoare logic rules
- → Soundness of Hoare logic hat: cstutorcs

Assignment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476

Content

程序代写代做 CS编程辅导

 Foundations & Principles Intro, Lambda Higher Order I Term rewriting 	[1,2] [2,3 ^a] [3,4]
 → Proof & Specification Techniques • Inductively defined sets, rule induction • Datatype induction, primitive recursion • General recursive functions, termination proofs • Proof automation, Isar (part 2) • Hoare logic, proofs about programs, invariants • C verification • Practice, questions; exam prep 	[4,5] [5,7] [7 ^b] [8] [8,9] [9,10]

^aa1 due; ^ba2 due; ^ca3 due

Automation?

程序代写代做 CS编程辅导

Last time: Hoare rule is nicer than using operational

semantics.

BUT:

→ it's still kind of tedious

→ it seems boring & mechanicat: cstutorcs

Assignment Project Exam Help Automation?

Email: tutorcs@163.com

QQ: 749389476

程序代写代做 CS编程辅导

WeChat: cstutorcs

Assignment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476

程序代写代做 CS编程辅导

Problem: While – nee to find right (invariant) *P*

WeChat: cstutorcs

Assignment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476

程序代写代做 CS编程辅导

Problem: While – nee to find right (invariant) P

Solution:

→ annotate program

T to find right (invarian

WeChat: cstutorcs

Assignment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476

程序代写代做 CS编程辅导

Problem: While – nee to find right (invariant) P

Solution:

→ annotate program v

→ then, Hoare rules can be applied automatically

WeChat: cstutorcs

Assignment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476

程序代写代做 CS编程辅导

Problem: While – nee to find right (invariant) P

Solution:

→ annotate program v

→ then, Hoare rules can be applied automatically

Example: WeChat: cstutorcs

 $\{M = 0 \land N = 0\}$ WHILE $M \neq a$ INV $\{N = M * b\}$ DO N := N + b; M := M + 1 OD

N = a * b

Email: tutorcs@163.com

QQ: 749389476

程序代写代做 CS编程辅导

pre c Q

P such that $\{P\}$ c $\{Q\}$

With annotated invariation

pre SKIP Q

- **®** coor o get:

=

WeChat: cstutorcs

Assignment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476

程序代写代做 CS编程辅导

ore c Q

P such that $\{P\}$ c $\{Q\}$

With annotated invariat

pre SKIP Qpre (x := a) Q o get:

= Q

WeChat: cstutorcs

Assignment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476

程序代写代做 CS编程辅导

pre $c \ Q$ pre $c \ Q$

With annotated invaria

pre SKIP Q

pre (x := a) Q

pre $(c_1; c_2)$ Q

🁼 💢 o get:

= Q

$$= Q$$

 $= \lambda \sigma. Q(\sigma(x := a\sigma))$

WeChat: cstutorcs

Assignment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476

程序代写代做 CS编程辅导

P **such that** {*P*} *c* {*Q*}

get:

With annotated invaria

pre SKIP Q

pre (x := a) Q

pre (IF b THEN c_1 ELSE c_2) Q

 $= \lambda \sigma. \ Q(\sigma(x := a\sigma))$

pre $(c_1; c_2)$ Q WeChat: cstutorcpre c_1 (pre c_2 Q)

Assignment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476

程序代写代做 CS编程辅导

程序代写代做 CS编程辅导

```
P such that {P} c {Q}
With annotated invaria.
                                     get:
pre SKIP Q
pre (x := a) Q
                                         = \lambda \sigma. \ Q(\sigma(x := a\sigma))
pre (c_1; c_2) Q WeChat: cstutorcpre c_1 (pre c_2 Q)
pre (IF b THEN c_1 ELSE c_2) Q = \lambda \sigma. (b \longrightarrow \text{pre } c_1 \ Q \ \sigma) \wedge
                        Assignment Project Exam Holoc<sub>2</sub> Q \sigma
pre (WHILE b INV I DO c OD) Q = I
                        Email: tutorcs@163.com
```

OO: 749389476

程序代写代做 CS编程辅导
{pre c Q} c {O} only true under certain conditions

| The conditions | The c

WeChat: cstutorcs

Assignment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476

WeChat: cstutorcs

Assignment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476

程序代写代做 CS编程辅导

{pre $c \ Q$ } $c \ \{Q\}$ only true under certain conditions

These are called verific

vc SKIP Qvc (x := a) Q **ditions** vc c Q:

= True

WeChat: cstutorcs

Assignment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476

程序代写代做 CS编程辅导

{pre $c \ Q$ } $c \ \{Q\}$ only true under certain conditions

These are called verific

vc SKIP Q

vc(x := a) Q

 $vc(c_1; c_2) Q$

ditions vc c Q: CI = True

= True

WeChat: cstittor $\forall S c_2 Q \land (vc c_1 (pre c_2 Q))$

Assignment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476

```
程序代写代做 CS编程辅导
       {pre c \ Q} c \ \{Q\} only true under certain conditions
These are called verific
                          ditions vc c Q:
vc SKIP Q
                                = True
vc(x := a) Q
           WeChat: cstutores c_2 Q \land (vc c_1 (pre c_2 Q))
vc(c_1; c_2)Q
vc (IF b THEN c_1 ELSE c_2) Q = vc c_1 Q \wedge vc c_2 Q
                   Assignment Project Exam Help
                   Email: tutorcs@163.com
                   OO: 749389476
                   https://tutorcs.com
```

```
程序代写代做 CS编程辅导
         {pre c \ Q} c \ \{Q\} only true under certain conditions
These are called verific
                                 ditions vc c Q:
vc SKIP Q
                                         = True
vc(x := a) Q
                WeChat: cstutores c_2 Q \land (vc c_1 (pre c_2 Q))
vc(c_1; c_2)Q
vc (IF b THEN c_1 ELSE c_2) Q = vc c_1 Q \wedge vc c_2 Q
vc (WHILE b INV / DQ ssQD) ment Project. Example Property pre c / \sigma) \wedge (\forall \sigma. I \sigma \wedge \neg b \sigma \longrightarrow Q \sigma) \wedge
                         Email: tutorcs@\\63.com
                         OO: 749389476
                         https://tutorcs.com
```

```
程序代写代做 CS编程辅导
          {pre c \ Q} c \ \{Q\} only true under certain conditions
                                   ditions vc c Q:
These are called verific
vc SKIP Q
                                           = True
vc(x := a) Q
                WeChat: cstiftores c_2 Q \land (vc c_1 (pre c_2 Q))
vc(c_1; c_2)Q
vc (IF b THEN c_1 ELSE c_2) Q = vc c_1 Q \wedge vc c_2 Q
vc (WHILE b INV / DQ ssQD) ment Project. Example Property pre c / \sigma) \wedge (\forall \sigma. I \sigma \wedge \neg b \sigma \longrightarrow Q \sigma) \wedge
                          Email: tutorcs@\\63.com
                 vc \ c \ Q \bigcirc (P, 749) \otimes 94700 \implies \{P\} \ c \ \{Q\}
                          https://tutorcs.com
```

程序代写代做 CS编程辅导

 $\rightarrow x := \lambda \sigma$. 1 instead of x := 1 sucks

 \Rightarrow $\{\lambda\sigma. \ \sigma \ x = n\}$ in $\{x = n\}$ sucks as well

WeChat: cstutorcs

Assignment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476

程序代写代做 CS编程辅导

 $\rightarrow x := \lambda \sigma$. 1 instead of x := 1 sucks

 \rightarrow $\{\lambda\sigma.\ \sigma\ x=n\}$ in $\{x=n\}$ sucks as well

Problem: program variations, not values

WeChat: cstutorcs

Assignment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476

程序代写代做 CS编程辅导

 $\rightarrow x := \lambda \sigma$. 1 instead of x := 1 sucks

 $ightharpoonup \{\lambda \sigma. \ \sigma \ x = n\}$ in $\{x = n\}$ sucks as well

Problem: program var unctions, not values

Solution: distinguish program variables syntactically

WeChat: cstutorcs

Assignment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476

程序代写代做 CS编程辅导

 $\rightarrow x := \lambda \sigma$. 1 instead of x := 1 sucks

 \rightarrow $\{\lambda\sigma.\ \sigma\ x=n\}$ in $\{x=n\}$ sucks as well

Problem: program var unctions, not values

Solution: distinguish program variables syntactically

Choices: WeChat: cstutorcs

→ declare program variable igwith each Phoject i Bleam Help

Email: tutorcs@163.com

QQ: 749389476

程序代写代做 CS编程辅导

- $\rightarrow x := \lambda \sigma$. 1 instead of ____ x := 1 sucks
- \rightarrow { $\lambda \sigma$. $\sigma x = n$ } x = n sucks as well

unctions, not values Problem: program varia

Solution: distinguish program variables syntactically

WeChat: cstutorcs Choices:

- → declare program variable by the the trible am Help nice, usual syntax

 - works well if you state full program and only use vcg

QQ: 749389476

程序代写代做 CS编程辅导

 $\rightarrow x := \lambda \sigma$. 1 instead of $\underline{x} := 1$ sucks

 \rightarrow { $\lambda \sigma$. $\sigma x = n$ } x = n sucks as well

unctions, not values Problem: program varia

Solution: distinguish program variables syntactically

WeChat: cstutorcs Choices:

- → declare program variable by the help nice, usual syntax

 - works well if you state full program and only use vcg
- → separate program variables from Hoare triple (use extensible records), indicate usage as function7syntagticatly

程序代写代做 CS编程辅导

 $\rightarrow x := \lambda \sigma$. 1 instead of x := 1 sucks

 \rightarrow $\{\lambda\sigma.\ \sigma\ x=n\}$ in $\{x=n\}$ sucks as well

Problem: program var unctions, not values

Solution: distinguish program variables syntactically

Choices: WeChat: cstutorcs

→ declare program variable igwith each Phoject i Bleam Help

nice, usual syntax

works well if you state full program and only use vcg

→ separate program variables from Hoare triple (use extensible records), indicate usage as function syntagetically.

more syntactic overhead

program pieces compose nicely nttps://tutorcs.com

程序代写代做 CS编程辅导

Demo

WeChat: cstutorcs

Assignment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476

Arrays

程序代写代做 CS编程辅导

Depending on language arrays as functions:

→ Array access = function

Array update = fun a[i] :== v = a :== a(i:= v)

WeChat: cstutorcs

Assignment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476

Arrays

程序代写代做 CS编程辅导

Depending on language arrays as functions:

- → Array access = function:
 - a[i] = ai🎇
- Array update = fun_{\bullet} \bullet \bullet e: a[i] :== v = a :== a(i:= v)

WeChat: cstutorcs

Use lists to express length:

- → Array access = nth: Assignment Project Exam Help a[i] = a!i
- → Array update = list Endate: tutorcs@163.com
 - $a[i]:==v \quad = \quad a:==a[i:=v]$
- → Array length = list QQth749389476

 a.length = length a https://tutorcs.com

程序代写代做 CS编程辅导

Choice 1

datatype reftypes heapdatatype val

WeChat: cstutorcs

Assignment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476

程序代写代做 CS编程辅导

Choice 1

datatype ref types heap datatype val

→ hp :: heap, p :: ref
WeChat: cstutorcs
= the_Int (hp (the_addr p))

→ Pointer update: *p Assignment projected (the apply) := v)

Email: tutorcs@163.com

QQ: 749389476

程序代写代做 CS编程辅导

Choice 1

datatype ref = Null

types heap = Solution

datatype val = Solution Struct int int bool | ...

- → hp :: heap, p :: ref WeChat: cstutorcs
 → Pointer access: *p = the_Int (hp (the_addr p))
- → Pointer update: *p Assignment Project Hanappelp) := v)
- → a bit klunky Email: tutorcs@163.com
- → gets even worse with structs
- → lots of value extraction (the hit) in 4576c and program

程序代写代做 CS编程辅导

Choice 2 (Burstall '72. Bornat '00)

Example: struct with rand element

datatype ref types next_hp = int \Rightarrow ref

types elem_hp We that intuores

Assignment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476

```
程序代写代做 CS编程辅导
Choice 2 (Burstall '72. Bornat '00)
                                   er and element
Example: struct with
 datatype
                                     Null
              ref
                          = int \Rightarrow ref
 types
          next_hp
              elem_hp We("Itat: instutorcs
 types
 → next :: next_hp, elem :: elem hp, p ref

Assignment Project Exam Help

→ Pointer access: p→next = next (the_addr p)
 → Pointer update: p—mextait tutores@1983:compext ((the_addr p) := v)
                        QQ: 749389476
                        https://tutorcs.com
```

```
程序代写代做 CS编程辅导
Choice 2 (Burstall '72. Bornat '00)
Example: struct with
                                er and element
 datatype
             ref
                                  | Null
 types
         next_hp
                       = int \Rightarrow ref
             elem_hp We(That instutores
 types
 → next :: next_hp, elem :: elem hp, p ref
Assignment Project Exam Help
 → Pointer access: p→next = next (the_addr p)
 → Pointer update: p—mextait tutores@1983:compext ((the_addr p) := v)
In general:
                      OO: 749389476
 → a separate heap for each struct field
 → buys you p→next → the slent unconsident (aliasing)
 → still assumes type safe language
```

程序代写代做 CS编程辅导

Demo

WeChat: cstutorcs

Assignment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476

We have seen today ...

程序代写代做 CS编程辅导

- → Weakest precondition
- → Verification condition
- → Example program p
- → Arrays, pointers

WeChat: cstutorcs

Assignment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476