CSE 392/CS 395T/M 397C:Matrix and Tensor Algorithms for Data

Instructor: Shashanka Ubaru

University of Texas, Austin Spring 2025 Lecture 16: Canonical Polyadic (CP) decomposition

Outline

Introduction to CP

2 Khatri Rao Product (KRP)

③ CP-ALS

Books in preparation/recently published by Dr. Tamara Kolda

Tensor Decomposition

- Datasets (tensors) can be typically large in size.
- Tensor Decomposition:
 - ▶ Compression and storage.
 - ▶ Denoising.
 - ▶ *Hidden* multi-dimensional correlations and patterns.
- Different types of tensor decompositions.
 - Pros and cons.
 - ► Application dependent.

Tensor Factorization

Matrix Factorization

Examples include singular value decomposition, nonnegative matrix factorization, etc.

Step Back to the Matrix SVD

Traditional workhorse, dim reduction/feature extraction: matrix SVD

- PCA directions of most variability; projections in 'dominant' directions allows for dim reduction/relative comparison
- Compression (reduce near redundancies) via truncated SVD expansion is optimal (Eckart-Young Theorem)

$$\mathbf{A} = \mathbf{U}\mathbf{S}\mathbf{V}^{\top} = \sum_{i=1}^{r} \sigma_i(\mathbf{u}_i \circ \mathbf{v}_i), \ \sigma_1 \geq \sigma_2 \geq \cdots \geq 0$$

$$\mathbf{B} = \sum_{i=1}^{k} \sigma_i(\mathbf{u}_i \circ \mathbf{v}_i) \qquad \text{solves}$$

 $\min \|\mathbf{A} - \mathbf{B}\|_F$ s.t. **B** has rank $k \le r$

Step Back to the Matrix SVD

Traditional workhorse, dim reduction/feature extraction: matrix SVD

- PCA directions of most variability; projections in 'dominant' directions allows for dim reduction/relative comparison
- Compression (reduce near redundancies) via truncated SVD expansion is optimal (Eckart-Young Theorem)

$$\mathbf{A} = \mathbf{U}\mathbf{S}\mathbf{V}^{\top} = \sum_{i=1}^{r} \sigma_i(\mathbf{u}_i \circ \mathbf{v}_i), \ \sigma_1 \ge \sigma_2 \ge \cdots \ge 0$$

$$\mathbf{B} = \sum_{i=1}^{k} \sigma_i(\mathbf{u}_i \circ \mathbf{v}_i) \qquad \text{solves}$$

$$\min \|\mathbf{A} - \mathbf{B}\|_F$$
 s.t. **B** has rank $k \le r$

Implicit storage: for an $m \times n$, k(n+m) numbers stored, vs mn.

Step Back to the Matrix SVD

Traditional workhorse, dim reduction/feature extraction: matrix SVD

- PCA directions of most variability; projections in 'dominant' directions allows for dim reduction/relative comparison
- Compression (reduce near redundancies) via truncated SVD expansion is optimal (Eckart-Young Theorem)

$$\mathbf{A} = \mathbf{U}\mathbf{S}\mathbf{V}^{\top} = \sum_{i=1}^{r} \sigma_i(\mathbf{u}_i \circ \mathbf{v}_i), \, \sigma_1 \geq \sigma_2 \geq \cdots \geq 0$$

$$\mathbf{B} = \sum_{i=1}^{k} \sigma_i(\mathbf{u}_i \circ \mathbf{v}_i) \qquad \text{solves}$$

 $\min \|\mathbf{A} - \mathbf{B}\|_F$ s.t. **B** has rank $k \le r$

Question: What's the right high-dimensional analogue? (history, see Kolda & Bader)

Rank-1 Tensor

Idea 1 (Hitchcock, 1927): Like SVD, try to decompose as a sum of rank-1 tensors.

$$\mathcal{X} = \mathbf{a} \circ \mathbf{b} \circ \mathbf{c} \Rightarrow \mathcal{X}_{i,j,k} = a_i b_j c_k$$

Note that $\text{vec}(\mathcal{X}) = \mathbf{c} \otimes \mathbf{b} \otimes \mathbf{a}$.

Thus, some papers use Kronecker in place of outer-product notation.

Canonical Polyadic (CP) Tensor Decomposition

CP Tensor Decomposition (d way)

Tensor image source: DeepAl txt2img

 $\ell=1$ k=1

Kruskal Notation

 $\overline{\ell = 1}$

Kruskal notation: $[\![\mathbf{A}, \mathbf{B}, \mathbf{C}]\!]$ or, if unit-normalized $[\![\lambda; \mathbf{A}, \mathbf{B}, \mathbf{C}]\!]$.

Recall: Matrix Kronecker Product

$$(oldsymbol{B}\otimes oldsymbol{A})_{i+(m-1)j,k+(p-1)\ell}=b_{j\ell}a_{ik}$$

Key properties

- $\bullet \ (\boldsymbol{C} \otimes \boldsymbol{B}) \otimes \boldsymbol{A} = \boldsymbol{C} \otimes (\boldsymbol{B} \otimes \boldsymbol{A})$
- $\bullet \ (\boldsymbol{B} \otimes \boldsymbol{A})^\top = \boldsymbol{B}^\top \otimes \boldsymbol{A}^\top$
- $\bullet \ (\boldsymbol{B} \otimes \boldsymbol{A})(\boldsymbol{D} \otimes \boldsymbol{C}) = (\boldsymbol{B}\boldsymbol{D}) \otimes (\boldsymbol{A}\boldsymbol{C})$
- $\bullet \ \operatorname{vec}(\boldsymbol{A}\boldsymbol{X}\boldsymbol{B}^\top) = (\boldsymbol{B} \otimes \boldsymbol{A}) \operatorname{vec}(\boldsymbol{X})$
- $(B \otimes A)^{-1} = B^{-1} \otimes A^{-1}$

Vector Outer & Kronecker Products

A vector outer product for vectors $\mathbf{a} \in \mathbb{R}^m$, $\mathbf{b} \in \mathbb{R}^n$, $\mathbf{c} \in \mathbb{R}^p$ is denoted $\mathbf{a} \odot \mathbf{b} \odot \mathbf{c}$ produces an $m \times n \times p$ tensor such that element (i, j, k) equals $a_i b_j c_k$, i.e.,

A vector Kronecker product for vectors $\mathbf{a} \in \mathbb{R}^m$, $\mathbf{b} \in \mathbb{R}^n$, $\mathbf{c} \in \mathbb{R}^p$ is denoted $\mathbf{c} \otimes \mathbf{b} \otimes \mathbf{a}$ produces a vector or length mnp such that element $\ell = \mathbb{L}(i,j,k)$ equals $a_ib_jc_k$, i.e.,

Matrix KhatriRao Product (KRP)

KRP = columnwise Kronecker product

$$(\boldsymbol{B}\odot \boldsymbol{A})_{*j}=\boldsymbol{B}_{*j}\otimes \boldsymbol{A}_{*j}$$

Key properties

$$\bullet \ \ \boldsymbol{C} \odot (\boldsymbol{B} \odot \boldsymbol{A}) = (\boldsymbol{C} \odot \boldsymbol{B}) \odot \boldsymbol{A}$$

$$\bullet \ (\boldsymbol{B} \odot \boldsymbol{A})^\top (\boldsymbol{B} \odot \boldsymbol{A}) = \boldsymbol{B}^\top \boldsymbol{B} * \boldsymbol{A}^\top \boldsymbol{A}$$

$$\bullet \ (\boldsymbol{B} \otimes \boldsymbol{A})(\boldsymbol{D} \odot \boldsymbol{C}) = (\boldsymbol{B}\boldsymbol{D}) \odot (\boldsymbol{A}\boldsymbol{C})$$

Kruskal Tensor

$$\mathcal{X} pprox \mathcal{M} = \llbracket \mathbf{A}, \mathbf{B}, \mathbf{C}
rbracket = \sum_{\ell=1}^r \mathbf{a}_\ell \circ \mathbf{b}_\ell \circ \mathbf{c}_\ell$$

Sum of r Outer Product Tensors.

$$egin{aligned} m{M}_{(1)} &= \sum_{\ell=1}^r m{a}_\ell (m{c}_\ell \otimes m{b}_\ell)^ op \ &= [m{a}_1, \dots, m{a}_r] [m{c}_1 \otimes m{b}_1, \dots, m{c}_r \otimes m{b}_r]^ op \ &= m{A} (m{C} \odot m{B})^ op \end{aligned}$$

Matricized Tensor Times KRP (MTTKRP)

Three way tensor:

$$\mathcal{X} \in \mathbb{R}^{m \times n \times p}, \boldsymbol{A} \in \mathbb{R}^{m \times r}, \boldsymbol{B} \in \mathbb{R}^{n \times r}, \boldsymbol{C} \in \mathbb{R}^{p \times r}$$

Then, we can define

$$oldsymbol{X}_{(1)}(oldsymbol{C}\odot oldsymbol{B}), \quad oldsymbol{X}_{(2)}(oldsymbol{C}\odot oldsymbol{A}), \quad oldsymbol{X}_{(3)}(oldsymbol{B}\odot oldsymbol{A})$$

Matricized Tensor Times KRP (MTTKRP)

Three way tensor:

$$\mathcal{X} \in \mathbb{R}^{m \times n \times p}, \boldsymbol{A} \in \mathbb{R}^{m \times r}, \boldsymbol{B} \in \mathbb{R}^{n \times r}, \boldsymbol{C} \in \mathbb{R}^{p \times r}$$

Then, we can define

$$oldsymbol{X}_{(1)}(oldsymbol{C}\odotoldsymbol{B}),\quad oldsymbol{X}_{(2)}(oldsymbol{C}\odotoldsymbol{A}),\quad oldsymbol{X}_{(3)}(oldsymbol{B}\odotoldsymbol{A})$$

For general d-way tensor, say $\mathcal{X} \in \mathbb{R}^{n_1 \times n_2 \times \cdots \times n_d}$ and $\mathbf{A}_k \in \mathbb{R}^{n_k \times r}$ for all $k \in [d]$, the mode-k matricized tensor times KRP (MTTKRP) is

$$V = X_{(k)}(A_d \odot \cdots \odot A_{k+1} \odot A_{k-1} \odot \cdots \odot A_1) \in \mathbb{R}^{n_k \times r}$$

CP Tensor Decomposition

$$\mathcal{X} pprox \mathcal{M} = \llbracket \mathbf{A}, \mathbf{B}, \mathbf{C}
rbracket = \sum_{\ell=1}^r \mathbf{a}_\ell \circ \mathbf{b}_\ell \circ \mathbf{c}_\ell$$

• Find the best **tensor** rank-r fit:

$$\min_{\mathbf{a}_{\ell}, \mathbf{b}_{\ell}, \mathbf{c}_{\ell}} \| \mathcal{X} - \sum_{\ell=1}^{r} \sigma_{\ell} \cdot \mathbf{a}_{\ell} \circ \mathbf{b}_{\ell} \circ \mathbf{c}_{\ell} \|_{F}$$

CP Properties

- If equality & r minimal, then r is called the rank of the tensor
- Not generally orthogonal
- Not based on a 'product based factorization'
- Finding the rank is NP hard!
- \bullet No perfect procedure for fitting CP model to k terms

CP - Uniqueness

• $\mathcal{M} = [\![\mathbf{A}, \mathbf{B}, \mathbf{C}]\!]$ is essentially unique if

$$rank_k(\mathbf{A}) + rank_k(\mathbf{B}) + rank_k(\mathbf{C}) \ge 2r + 2$$

- $\operatorname{rank}_k(\mathbf{A}) = \operatorname{maximum}$ value of k such that any k columns of \mathbf{A} are linearly independent.
- Matrix factorization does not share this property! Usually need orthogonality constraint.

Alternating Least Squares (CP-ALS)

$$\min_{\mathbf{A},\mathbf{B},\mathbf{C}} \|\mathcal{X} - [\![\mathbf{A},\mathbf{B},\mathbf{C}]\!]\|_F$$

General Idea: solve for ONE matrix, holding the others fixed.

- **CP-ALS:** Repeat until converged...
 - ▶ Solve for \boldsymbol{A} (with \boldsymbol{B} and \boldsymbol{C} fixed)
 - ▶ Solve for B (with A and C fixed)
 - ▶ Solve for C (with A and B fixed)

$$\min_{\boldsymbol{A}} \|\boldsymbol{X}_{(1)} - \boldsymbol{A}(\boldsymbol{C} \odot \boldsymbol{B})^\top\|_F^2$$

$$\min_{\boldsymbol{A}} \|\boldsymbol{X}_{(1)} - \boldsymbol{A}(\boldsymbol{C} \odot \boldsymbol{B})^\top\|_F^2$$

$$\min_{\boldsymbol{A}} \|(\boldsymbol{C} \odot \boldsymbol{B}) \boldsymbol{A}^\top - \boldsymbol{X}_{(1)}^\top\|_F^2$$

$$\min_{oldsymbol{A}} \|oldsymbol{X}_{(1)} - oldsymbol{A} (oldsymbol{C} \odot oldsymbol{B})^ op \|_F^2$$

$$\min_{oldsymbol{A}} \|(oldsymbol{C}\odotoldsymbol{B})oldsymbol{A}^ op - oldsymbol{X}_{(1)}^ op\|_F^2$$

By normal equations:

$$(oldsymbol{C}\odot oldsymbol{B})^{ op}(oldsymbol{C}\odot oldsymbol{B})oldsymbol{A}^{ op}=(oldsymbol{C}\odot oldsymbol{B})^{ op}oldsymbol{X}_{(1)}^{ op}$$
 $(oldsymbol{C}^{ op}oldsymbol{C}*oldsymbol{B}^{ op}oldsymbol{B})oldsymbol{A}^{ op}=(oldsymbol{C}\odot oldsymbol{B})^{ op}oldsymbol{X}_{(1)}^{ op}$

$$\min_{oldsymbol{A}} \|oldsymbol{X}_{(1)} - oldsymbol{A} (oldsymbol{C} \odot oldsymbol{B})^{ op}\|_F^2$$

$$\min_{oldsymbol{A}} \|(oldsymbol{C}\odotoldsymbol{B})oldsymbol{A}^ op - oldsymbol{X}_{(1)}^ op\|_F^2$$

By normal equations:

$$(\boldsymbol{C} \odot \boldsymbol{B})^{\top} (\boldsymbol{C} \odot \boldsymbol{B}) \boldsymbol{A}^{\top} = (\boldsymbol{C} \odot \boldsymbol{B})^{\top} \boldsymbol{X}_{(1)}^{\top}$$
 $(\boldsymbol{C}^{\top} \boldsymbol{C} * \boldsymbol{B}^{\top} \boldsymbol{B}) \boldsymbol{A}^{\top} = (\boldsymbol{C} \odot \boldsymbol{B})^{\top} \boldsymbol{X}_{(1)}^{\top}$
 $\boldsymbol{A}^{\top} = (\boldsymbol{C}^{\top} \boldsymbol{C} * \boldsymbol{B}^{\top} \boldsymbol{B})^{-1} (\boldsymbol{C} \odot \boldsymbol{B})^{\top} \boldsymbol{X}_{(1)}^{\top}$

 $A = X_{(1)}(C \odot B)(C^{\top}C * B^{\top}B)^{-1}$

$$egin{aligned} \min_{oldsymbol{A}_k} \|oldsymbol{X}_{(k)} - oldsymbol{A}_k & (oldsymbol{A}_d \odot \cdots \odot oldsymbol{A}_{k+1} \odot oldsymbol{A}_{k-1} \odot \cdots \odot oldsymbol{A}_1)^ op \|_F^2 \ \min_{oldsymbol{A}_k} \|oldsymbol{Z}_k oldsymbol{A}_k^ op - oldsymbol{X}_{(k)}^ op \|oldsymbol{Z}_k oldsymbol{A}_k^ op - oldsymbol{Z}_k^ op oldsymbol{X}_{(k)}^ op \|oldsymbol{A}_k^ op - oldsymbol{X}_{(k)}^ op oldsymbol{A}_k = oldsymbol{Z}_k oldsymbol{Z}_k oldsymbol{V}_k^ op \\ oldsymbol{A}_k = oldsymbol{X}_{(k)} oldsymbol{Z}_k oldsymbol{V}_k^{-1} \end{aligned}$$

CP-ALS Full Algorithm

Inputs: Tensor $\mathcal{X} \in \mathbb{R}^{n_1 \times n_2 \times \cdots \times n_d}$, desired rank $r \in \mathbb{N}$.

- **1** Initialize $\mathbf{A}_k \in \mathbb{R}^{n_k \times r}$ for all $k \in [d]$
- 2 repeat
- **6 for** k = 1, ..., d **do**
- $\mathbf{Z}_k \leftarrow \mathbf{A}_d \odot \cdots \odot \mathbf{A}_{k+1} \odot \mathbf{A}_{k-1} \odot \cdots \odot \mathbf{A}_1$
- $\mathbf{A}_k \leftarrow \arg\min_{\mathbf{B}} \|\mathbf{Z}_k \mathbf{B}^\top \mathbf{X}_{(k)}^\top\|_F^2$
- $\mathbf{0}$ end
- **o** until $\|\mathcal{X} [\![\mathbf{A}_1, \mathbf{A}_2, \dots, \mathbf{A}_d]\!]\|_F^2$ ceases to decrease

Matlab Demo