### 실력 완성 | 고 1

#### 2-3-1.삼차방정식과 사차방정식



## 수학 계산력 강화

## (2)미정계수 또는 나머지 근 구하기, 특이한 방정식의 풀이





◇「콘텐츠산업 진흥법 시행령」제33조에 의한 표시

- 1) 제작연월일 : 2018-02-15
- 2) 제작자 : 교육지대㈜
- 3) 이 콘텐츠는 「콘텐츠산업 진흥법」에 따라 최초 제작일부터 5년간 보호됩니다.

◇「콘텐츠산업 진흥법」외에도「저작권법」에 의하여 보호 되는 콘텐츠의 경우, 그 콘텐츠의 전부 또는 일부를 무 단으로 복제하거나 전송하는 것은 콘텐츠산업 진흥법 외에도 저작권법에 의한 법적 책임을 질 수 있습니다.

#### 삼·사차방정식에서 주어진 근을 이용하여 01 미정계수 구하기

- (1) 삼차방정식  $ax^3 + bx^2 + cx + d = 0$  $(a, b, c, d \vdash \forall c, a \neq 0)$ 의 세 근 중 주어진 한 근을  $\alpha$ 라 하면  $f(\alpha) = 0$ 이 성립한다.
- (2) 사차방정식  $ax^4 + bx^3 + cx^2 + dx + e = 0$ (a, b, c, d, e는 상수,  $a \neq 0$ )의 네 근 중 주어진 두 근을  $\alpha$ ,  $\beta$ 라 하면  $f(\alpha) = 0$ ,  $f(\beta) = 0$ 이 성립한다.
- ☑ x에 대한 삼차방정식의 한 근이 < > 안의 수일 때, 상수 a의 값을 구하여라.
- 1.  $x^3 ax^2 + x + 6 = 0 < -1 >$
- 2.  $x^3 + ax^2 + x + 4 = 0 < -1 >$
- 3.  $x^3 + 6x^2 + ax - 4 = 0 < -2 >$
- 4.  $x^3 + 2x^2 + ax + 6 = 0 < -2 >$
- 5.  $x^3 - ax^2 - 3x + 10 = 0 < 1 >$
- 6.  $x^3 + ax^2 + 17x - 15 = 0 < 3 >$
- 7.  $x^3 + 2x^2 + 3x + a = 0 < -2 >$
- 8.  $x^3 2x^2 5x + a = 0 < 1 >$

**9.** 
$$x^3 - 2x^2 + ax + 12 = 0 < 1 >$$

**10.** 
$$2x^3 - 3x^2 + ax - 3 = 0 < -1 >$$

- ☑ x에 대한 삼차방정식의 두 근이 < > 안의 수일 때, 상수 a,b의 값을 구하여라.
- **11.**  $x^3 + ax^2 + 2x + b = 0 < 1, 2 >$

**12.** 
$$x^3 + ax^2 + 2x + b = 0 < 1, 2 > 0$$

**13.** 
$$x^3 + ax^2 + 2x + b = 0 < 1, 2 >$$

☑ x에 대한 사차방정식의 근이 < >안의 두 수일 때, 상수 a,b의 값을 구하여라.

**14.** 
$$x^4 - 3x^3 + ax^2 - 9x + 6 = 0 < 2 >$$

**15.** 
$$x^4 + ax^3 + ax^2 + bx - 3 = 0 < 1, -1 >$$

**16.** 
$$x^4 - 3x^3 + ax^2 + 12x + b = 0 < 1, 2 >$$

17. 
$$x^4 + ax^3 - 5x^2 + bx - 6 = 0 < 1, -3 >$$

# 주어진 근을 이용하여 미정계수 <u>또는 나머지</u> 02

방정식 f(x) = 0에서 한 근  $\alpha$ 가 주어질 때,  $f(\alpha) = 0$ , 즉 f(x)는  $x - \alpha$ 를 인수로 가지므로 조립제법을 이용하여 나머지 근을 구한다.

☑ x에 대한 삼차방정식의 한 근이 < >안의 수일 때, 나머지 두 근을 구하여라. (단, a는 상수)

**18.** 
$$x^3 + ax^2 - x - 3 = 0 < -1 >$$

**19.** 
$$x^3 - 4x^2 + ax + 6 = 0 < 2 >$$

**20.** 
$$x^3 + ax^2 - x + 5 = 0 < 1 >$$

**21.** 
$$x^3 + ax^2 - 13x - 12 = 0 < -1 >$$

☑ x에 대한 삼차방정식의 한 근이 < > 안의 수일 때, 상수 a의 값과 나머지 두 근을 구하여라.

**22.** 
$$x^3 - 2x^2 + ax + 6 = 0 < 1 >$$

**23.** 
$$x^3 + ax^2 + x + 10 = 0 < -2 >$$

**24.** 
$$x^3 - 4x^2 + x + a = 0 < -1 >$$

☑ 다음 삼차방정식의 한 근이 1일 때, 나머지 두 근을 구하여라. (단, a는 상수)

**25.** 
$$x^3 + x^2 + ax - 3 = 0$$

**26.** 
$$x^3 - 3x^2 - x + a = 0$$

☑ 다음 삼차방정식의 한 근이 -1일 때, 나머지 두 근 을 구하여라.

**27.** 
$$x^3 + ax^2 - 3x - 1 = 0$$

**28.** 
$$x^3 + (a+5)x^2 - ax - 9 + 3a = 0$$

**29.** x에 대한 사차방정식  $x^4 - x^3 - 2x^2 + 6x + a = 0$ 의 한 실근이 1이고, 두 허근을 각각  $\alpha, \beta$ 라 할 때,  $a+\alpha+\beta$ 의 값을 구하여라. (단, a는 상수)

## 03 / 공통부분이 보이는 사차방정식의 풀이

- (1) 공통부분이 보이는 경우
- ⇒ 공통부분을 한 문자로 치환하여 그 문자에 대한 방정식으로 변형한 후 인수분해한다.
- (2) 공통부분이 보이지 않는 경우
- ⇒ 공통부분이 생기도록 식을 적당히 변형한 후 공통부분을 한 문자로 치환하여 그 문자에 대한 방정식으로 변형한 후 인수분해한다.

### ☑ 다음 방정식을 풀어라.

**30.** 
$$(x^2+2x)^2-(x^2+2x)-6=0$$

**31.** 
$$(x^2-x)^2-3(x^2-x)+2=0$$

**32.** 
$$(x^2-5x+1)(x^2-5x+3)-24=0$$

**33.** 
$$(x^2-x+2)^2-3(x^2-x)-34=0$$

**34.** 
$$(x^2+x)^2-x^2-x-2=0$$

**35.** 
$$(x^2+x)^2-14(x^2+x)+24=0$$

**36.** 
$$(x^2-4x)^2-2(x^2-4x)-15=0$$

**37.** 
$$(x^2+4x)^2-2(x^2+4x+3)-2=0$$

**38.** 
$$x(x-1)(x+1)(x+2)-24=0$$

**39.** 
$$(x-1)(x-2)(x-3)(x-4)-3=0$$

**40.** 
$$(x+1)(x+3)(x+5)(x+7)+15=0$$

**41.** 
$$(x^2-3x)^2-2(x^2-3x)-8=0$$

**42.** 
$$(x+1)(x-2)(x+3)(x+6)+14=0$$

**43.** 
$$(x+1)(x+2)(x+3)(x+4) = 8$$

**44.** 
$$x(x+1)(x+2)(x+3) = 3$$

# 04 / 복이차방정식의 풀이

 $ax^4 + bx^2 + c = 0$  ( $a \neq 0$ ) 꼴은  $x^2 = t$ 로 치환한 후 좌변을 인수분해하여 푼다.

- (1) 좌변이 인수분해가 되는 경우
- ⇨ 인수분해 공식을 이용하여 푼다.
- (2) 좌변이 인수분해가 되지 않는 경우
- $\Rightarrow$  이차항을 적당히 더하고 빼서  $A^2 B^2 = 0$  꼴로 변형하여 푼다.

### ☑ 다음 방정식을 풀어라.

**45.** 
$$x^4 - 5x^2 + 6 = 0$$

**46.** 
$$x^4 + 2x^2 + 9 = 0$$

**47.** 
$$x^4 - 2x^2 + 1 = 0$$

**48.** 
$$x^4 + 3x^2 + 4 = 0$$

**49.** 
$$x^4 - 3x^2 + 2 = 0$$

**50.** 
$$x^4 - 5x^2 + 4 = 0$$

**51.** 
$$x^4 + 2x^2 - 24 = 0$$

**52.** 
$$x^4 - x^2 - 6 = 0$$

**53.** 
$$x^4 - 2x^2 - 15 = 0$$

**54.** 
$$x^4 - 8x^2 - 9 = 0$$

**55.** 
$$x^4 + x^2 + 1 = 0$$

**56.** 
$$x^4 - 6x^2 + 1 = 0$$

**57.** 
$$x^4 - 3x^2 - 4 = 0$$

**58.** 
$$x^4 - 12x^2 + 20 = 0$$

**59.** 
$$x^4 + x^2 - 12 = 0$$

**60.** 
$$x^4 - 13x^2 + 36 = 0$$

**61.** 
$$x^4 - 8x^2 + 4 = 0$$

**62.** 
$$x^4 + 64 = 0$$

# 05 / 상반방정식의 풀이

 $ax^4 + bx^3 + cx^2 + bx + a = 0$  꼴로 계수가 대칭인 사차방정식은

- ① 양변을  $x^2$ 으로 나눈다.
- ②  $x + \frac{1}{x} = t$ 로 치환하여 t에 대한 이차방정식을 푼다.
- ③ 방정식  $x\!+\!rac{1}{x}\!\!=\!t$ 를 푼다.

### ☑ 다음 방정식을 풀어라.

**63.** 
$$x^4 - 3x^3 - 2x^2 - 3x + 1 = 0$$

**64.** 
$$x^4 + 5x^3 - 4x^2 + 5x + 1 = 0$$

**65.** 
$$x^4 - 3x^3 + 4x^2 - 3x + 1 = 0$$

**66.** 
$$x^4 + 11x^3 + 26x^2 + 11x + 1 = 0$$

**67.** 
$$x^4 - 7x^3 + 12x^2 - 7x + 1 = 0$$

**68.** 
$$2x^4 + 5x^3 + x^2 + 5x + 2 = 0$$

**69.** 
$$x^4 - x^3 - 4x^2 - x + 1 = 0$$

**70.**  $2x^4 + x^3 - 11x^2 + x + 2 = 0$ 

### (4)

### 정답 및 해설

- 1) a = 4
- $\Rightarrow$   $f(x)=x^3-ax^2+x+6$ 으로 놓으면 f(-1)=0이므로
- -1-a-1+6=0 : a=4
- 2) a = -2
- $\Rightarrow$   $x^3 + ax^2 + x + 4 = 0$  의 한 근이 -1 이므로 x = -1 을 대입하면
- -1+a-1+4=0
- $\therefore a = -2$
- 3) a = 6
- Arr 삼차방정식  $x^3 + 6x^2 + ax 4 = 0$ 의 한 근이 -2이 므로
- -8+24-2a-4=0
- $\therefore a = 6$
- 4) a = 3
- $\Rightarrow f(x) = x^3 + 2x^2 + ax + 6$ 으로 놓으면 f(-2) = 0이므 로
- -8+8-2a+6=0 : a=3
- 5) a = 8
- $\Rightarrow f(x) = x^3 ax^2 3x + 10$ 으로 놓으면 f(1) = 0이므로
- 1-a-3+10=0 : a=8
- 6) a = -7
- $\Rightarrow$  주어진 방정식의 한 근이 x=3이므로
- $3^3 + a \cdot 3^2 + 17 \cdot 3 15 = 0$  : a = -7
- 7) a = 6
- $\Rightarrow$  주어진 방정식의 한 근이 x=-2이므로 x=-2을 대입하면 -8+8-6+a=0  $\therefore a=6$
- 8) a = 6
- $\Rightarrow$  주어진 방정식의 한 근이 x=1이므로 주어진 방정  $\lambda$
- 에 이를 대입하여 계산하면 a=6이다.
- 9) a = -11
- $\Rightarrow$  주어진 방정식의 한 근이 x=1이므로 주어진 방정  $\lambda$
- 에 대입하면 a =-11
- 10) a = -8
- 다  $f(x) = 2x^3 3x^2 + ax 3$ 으로 놓으면 f(-1) = 0이 므
- 로 -2-3-a-3=0  $\therefore a=-8$
- 11) a = -3, b = 0
- $\Rightarrow f(x) = x^3 + ax^2 + 2x + b$ 로 놓으면

- f(1) = 0, f(2) = 0이므로
- 1+a+2+b=0, 8+4a+4+b=0
- 즉, a+b=-3,4a+b=-12이므로
- a = -3, b = 0
- 12) a = -3, b = 0
- - 각각 x=1, 2를 대입하면
  - 1 + a + 2 + b = 0
  - 8+4a+4+b=0
- $\Rightarrow \begin{cases} a+b=-3\\ 4a+b=-12 \end{cases}$
- 연립하여 풀면
- $\therefore a = -3 \quad , \quad b = 0$
- 13) a = -3, b = 0
- ⇒ 삼차방정식  $x^3 + ax^2 + 2x + b = 0$  의 두 근이 1,2 이므로
- 1+a+2+b=0, 8+4a+4+b=0
- $\therefore a = -3, b = 0$
- 14) a = 5
- $\Rightarrow$  주어진 방정식의 한 근이 x=2이므로 이를 대입하면
- 16-24+4a-18+6=0 : a=5
- 15) a = 2, b = -2
- $\Rightarrow f(x) = x^4 + ax^3 + ax^2 + bx 3$ 으로 놓으면
- f(1) = 0, f(-1) = 0이므로
- 1+a+a+b-3=0, 1-a+a-b-3=0
- 즉, 2a+b=2, -b=2이므로
- a = 2, b = -2
- 16) a = -2, b = -8
- $\Rightarrow f(x) = x^4 3x^3 + ax^2 + 12x + b$ 로 놓으면
- f(1) = 0, f(2) = 0이므로
- 1-3+a+12+b=0, 16-24+4a+24+b=0
- 즉, a+b=-10, 4a+b=-16이므로
- a = -2, b = -8
- 17) a = 0, b = 10
- $\Rightarrow f(x) = x^4 + ax^3 5x^2 + bx 6$ 으로 놓으면
- f(1) = 0, f(-3) = 0이므로
- 1+a-5+b-6=0, 81-27a-45-3b-6=0
- 즉, a+b=10, 9a+b=10이므로
- $a=0,\,b=10$
- 18) 1, -3
- $\Rightarrow f(x) = x^3 + ax^2 x 3$ 으로 놓으면
- f(-1)=0이므로
- -1+a+1-3=0 : a=3
- 즉,  $f(x) = x^3 + 3x^2 x 3$ 이고, f(-1) = 0이므로

$$f(x) = (x+1)(x^2+2x-3) = (x+1)(x-1)(x+3)$$

즉, 
$$(x+1)(x-1)(x+3) = 0$$
이므로

$$x = -1$$
 또는  $x = 1$  또는  $x = -3$ 

따라서 나머지 두 근은 1, -3이다.

19) 
$$-1,3$$

$$\Rightarrow f(x) = x^3 - 4x^2 + ax + 6$$
으로 놓으면  $f(2) = 0$ 이므로  $8 - 16 + 2a + 6 = 0$   $\therefore a = 1$ 

즉, 
$$f(x) = x^3 - 4x^2 + x + 6$$
이고,  $f(2) = 0$ 이므로

$$f(x) = (x-2)(x^2-2x-3)$$
  
=  $(x-2)(x+1)(x-3)$ 

즉, 
$$(x-2)(x+1)(x-3) = 0$$
이므로

$$x=2$$
  $\Xi \stackrel{\rightharpoonup}{\smile}$   $x=-1$   $\Xi \stackrel{\rightharpoonup}{\smile}$   $x=3$ 

따라서 나머지 두 근은 -1,3이다.

### 20) -1,5

즉, 
$$f(x) = x^3 - 5x^2 - x + 5$$
이고,  $f(1) = 0$ 이므로

$$f(x) = (x-1)(x^2-4x-5)$$
  
=  $(x-1)(x+1)(x-5)$ 

즉, 
$$(x-1)(x+1)(x-5) = 0$$
이므로

$$x = 1$$
 또는  $x = -1$  또는  $x = 5$ 

따라서 나머지 두 근은 -1,5이다.

#### 21) -3,4

$$\Rightarrow f(x) = x^3 + ax^2 - 13x - 12$$
로 놓으면

$$f(-1) = 0$$
이므로

$$-1+a+13-12=0$$
 :  $a=0$ 

즉, 
$$f(x) = x^3 - 13x - 12$$
이고,

f(-1) = 0이므로

$$f(x) = (x+1)(x^2 - x - 12) = (x+1)(x-4)(x+3)$$

즉, 
$$(x+1)(x-4)(x+3) = 0$$
이므로

$$x = -1 + \frac{1}{2} + x = 4 + \frac{1}{2} + x = -3$$

따라서 나머지 두 근은 4, -3이다.

22) 
$$a = -5$$
, 나머지 두 근은  $-2,3$ 

$$\Rightarrow f(x) = x^3 - 2x^2 + ax + 6$$
으로 놓으면

$$1-2+a+6=0$$
 :  $a=-5$ 

즉, 
$$f(x) = x^3 - 2x^2 - 5x + 6$$
이고,  $f(1) = 0$ 이므로

$$f(x) = (x-1)(x^2-x-6)$$
  
=  $(x-1)(x+2)(x-3)$ 

즉, 
$$(x-1)(x+2)(x-3) = 0$$
이므로

$$x=1$$
 또는  $x=-2$  또는  $x=3$ 

따라서 나머지 두 근은 -2,3이다.

### 23) a = 0, 나머지 두 그은 $1 \pm 2i$

즉, 
$$f(x) = x^3 + x + 10$$
이고,  $f(-2) = 0$ 이므로

$$f(x) = (x+2)(x^2-2x+5)$$

즉, 
$$(x+2)(x^2-2x+5)=0$$
이므로

$$x = -2 \quad \text{£} = 1 \pm 2i$$

따라서 나머지 두 근은  $1\pm 2i$ 이다.

#### 24) a=6, 나머지 두 근은 2,3

즉, 
$$f(x) = x^3 - 4x^2 + x + 6$$
이고,  $f(-1) = 0$ 이므로

$$f(x) = (x+1)(x^2-5x+6)$$
  
= (x+1)(x-2)(x-3)

즉, 
$$(x+1)(x-2)(x-3) = 0$$
이므로

$$x = -1 + x = 2 + x = 3$$

따라서 나머지 두 근은 2,3이다.

### 25) $-1 \pm \sqrt{2}i$

$$\Rightarrow x^3 + x^2 + ax - 3 = 0$$
의 한 근이 1이므로

$$1+1+a-3=0$$
 :  $a=1$ 

 $x^3 + x^2 + x - 3 = 0$ 에서 좌변을 조립제법을 이용하여 인수분해하면

$$(x-1)(x^2+2x+3) = 0$$

$$\therefore x = 1 \quad \text{£} \quad x = -1 \pm \sqrt{2}i$$

따라서 나머지 두 근은  $x=-1\pm\sqrt{2}i$ 이다.

#### 26) 3, -1

$$\Rightarrow x^3 - 3x^2 - x + a = 0$$
의 한 근이 1이므로

$$1-3-1+a=0$$
 :  $a=3$ 

 $x^3 - 3x^2 - x + 3 = 0$ 에서 좌변을 조립제법을 이용하여 인수분해하면

$$(x-1)(x^2-2x-3)=0$$
,  $(x-1)(x-3)(x+1)=0$   
  $\therefore x=1$  또는  $x=3$  또는  $x=-1$   
따라서 나머지 두 근은  $3,-1$ 이다.

27) 
$$1 \pm \sqrt{2}$$

$$\Rightarrow x^3 + ax^2 - 3x - 1 = 0$$
의 한 근이  $-1$ 이므로  $-1 + a + 3 - 1 = 0$   $\therefore a = -1$ 

 $x^3 - x^2 - 3x - 1 = 0$ 에서 좌변을 조립제법을 이용하여 인수분해하면

$$(x+1)(x^2-2x-1)=0$$

$$\therefore x = -1$$
  $\stackrel{}{\underline{}}$   $= 1 \pm \sqrt{2}$ 

따라서 나머지 두 근은  $1\pm\sqrt{2}$ 이다.

#### 28) -6.1

$$\Rightarrow$$
  $x^3 + (a+5)x^2 - ax - 9 + 3a = 0$ 의 한 근이  $-1$ 이므 로

$$-1+a+5+a-9+3a=0$$
,  $5a=5$  :  $a=1$ 

 $x^3 + 6x^2 - x - 6 = 0$ 에서 좌변을 조립제법을 이용하여 인수분해하면

$$(x+1)(x^2+5x-6)=0$$
,  $(x+1)(x+6)(x-1)=0$   
 $\therefore x=-1$  또는  $x=-6$  또는  $x=1$   
따라서 나머지 두 구은  $-6,1$ 이다.

#### 29) -2

$$\Rightarrow f(x) = x^4 - x^3 - 2x^2 + 6x + a$$
로 놓으면  $f(1) = 0$ 이 므로

$$1-1-2+6+a=0$$
 :  $a=-4$ 

$$rac{1}{2}$$
,  $f(x) = x^4 - x^3 - 2x^2 + 6x - 4$ 

$$f(1) = 0, f(-2) = 0$$
이므로

$$f(x) = (x-1)(x+2)(x^2-2x+2)$$

즉. 
$$(x-1)(x+2)(x^2-2x+2)=0$$
이므로

$$x=1$$
 또는  $x=-2$  또는  $x=1\pm i$ 

따라서 
$$\alpha = 1 + i, \beta = 1 - i$$
 또는  $\alpha = 1 - i, \beta = 1 + i$ 이

$$a + \alpha + \beta = (-4) + 2 = -2$$

30) 
$$x = -3$$
  $\pm \frac{1}{2}$   $x = 1$   $\pm \frac{1}{2}$   $x = -1 \pm i$ 

$$\Rightarrow x^2 + 2x = X$$
로 놓으면 주어진 방정식은

$$X^2-X-6=0$$
,  $(X+2)(X-3)=0$ 

$$\therefore X = -2 \stackrel{\bot}{=} X = 3$$

(i) 
$$X=-2$$
일 때,  $x^2+2x+2=0$ 에서

$$x = -1 \pm$$

(ii) 
$$X=3$$
일 때,  $x^2+2x-3=0$ 에서

$$(x+3)(x-1)=0$$
  $\therefore x=-3$   $\Xi = x=1$ 

( i ), ( ii )에서 
$$x=-3$$
 또는  $x=1$  또는  $x=-1\pm i$ 

31) 
$$x = -1$$
 또는  $x = 2$  또는  $x = \frac{1 \pm \sqrt{5}}{2}$ 

$$\Rightarrow x^2 - x = X$$
로 놓으면 주어진 방정식은

$$X^2-3X+2=0$$
,  $(X-1)(X-2)=0$ 

$$\therefore X=1 \stackrel{}{\to} X=2$$

(i) 
$$X=1$$
일 때,  $x^2-x-1=0$ 에서

$$x = \frac{1 \pm \sqrt{5}}{2}$$

(ii) 
$$X=2$$
일 때,  $x^2-x-2=0$ 에서

$$(x+1)(x-2) = 0$$
  $\therefore x = -1$   $\Xi = x = 2$ 

( i ), ( ii )에서 
$$x = -1$$
 또는  $x = 2$  또는  $x = \frac{1 \pm \sqrt{5}}{2}$ 

32) 
$$x = \frac{5 \pm \sqrt{3}i}{2}$$
  $\pm \frac{1}{2}$   $x = \frac{5 \pm \sqrt{37}}{2}$ 

$$\Rightarrow x^2 - 5x = A$$
로 놓으면

$$(A+1)(A+3)-24=0$$

$$A^2+4A-21=0$$
,  $(A+7)(A-3)=0$ 

이므로 
$$(x^2-5x+7)(x^2-5x-3)=0$$

$$x^2 - 5x + 7 = 0$$
  $\pm \frac{1}{2}$   $x^2 - 5x - 3 = 0$ 

따라서 
$$x = \frac{5 \pm \sqrt{3}i}{2}$$
 또는  $x = \frac{5 \pm \sqrt{37}}{2}$ 

33) 
$$x = \frac{1 \pm \sqrt{23}i}{2}$$
  $\pm \frac{1}{2}$   $x = \frac{1 \pm \sqrt{21}}{2}$ 

$$\Rightarrow x^2 - x = A$$
로 놓으면

$$(A+2)^2 - 3A - 34 = 0$$

$$A^2+A-30=0$$
,  $(A+6)(A-5)=0$ 

이므로 
$$(x^2-x+6)(x^2-x-5)=0$$

$$x^2-x+6=0$$
  $\pm \frac{1}{2}$   $x^2-x-5=0$ 

따라서 
$$x = \frac{1 \pm \sqrt{23}i}{2}$$
 또는  $x = \frac{1 \pm \sqrt{21}}{2}$ 

34) 
$$x = \frac{-1 \pm \sqrt{3}i}{2}$$
 또는  $x = -2$  또는  $x = 1$ 

$$\Rightarrow (x^2+x)^2-(x^2+x)-2=0$$
 에서

$$x^2 + x = t$$
로 놓으면  $t^2 - t - 2 = 0$ 

$$(t+1)(t-2) = 0$$
  $\therefore t = -1$   $\Xi = t = 2$ 

(i) 
$$t=-1$$
. 즉  $x^2+x=-1$ 일 때

$$x^2 + x + 1 = 0$$
 :  $x = \frac{-1 \pm \sqrt{3}i}{2}$ 

(ii) 
$$t=2$$
, 즉  $x^2+x=2$ 일 때

$$x^2 + x - 2 = 0$$
,  $(x + 2)(x - 1) = 0$ 

$$\therefore x = -2 \quad \exists \exists x = 1$$

따라서 방정식의 근은

$$x = \frac{-1 \pm \sqrt{3}i}{2}$$
 또는  $x = -2$  또는  $x = 1$ 

35) 
$$x = -2$$
 또는  $x = 1$  또는  $x = -4$  또는  $x = 3$ 

$$\Rightarrow (x^2 + x)^2 - 14(x^2 + x) + 24 = 0 \text{ on } \forall x \in \mathbb{R}$$

$$x^2 + x = t$$
로 놓으면  $t^2 - 14t + 24 = 0$ 

$$(t-2)(t-12) = 0 \ \ \therefore t = 2 \ \ \underline{\div} \ \ t = 12$$

(i) 
$$t=2$$
, 즉  $x^2+x=2$ 일 때

$$x^2+x-2=0$$
,  $(x+2)(x-1)=0$ 

$$\therefore x = -2 \quad \text{£} = 1$$

(ii) 
$$t = 12$$
, 즉  $x^2 + x = 12$ 일 때

$$x^2+x-12=0, (x+4)(x-3)=0$$

$$\therefore x = -4 + \pm = 3$$

$$x=-2$$
 또는  $x=1$  또는  $x=-4$  또는  $x=3$ 

36) 
$$x = \pm 1$$
 또는  $x = 3$  또는  $x = 5$ 

$$\Rightarrow$$
  $x^2-4x=t$ 로 놓으면 주어진 방정식은  $t^2-2t-15=0$ 

$$t-2t-15=0$$
  
 $(t+3)(t-5)=0$   $\therefore t=-3 \pm t=5$ 

$$(i+3)(i-3)=0$$
 ... $i=3$  보는  $i=1$ 

(ii) 
$$t=5$$
. 즉  $x^2-4x=5$ 일 때

$$x^2 - 4x - 5 = 0$$
  $\therefore x = -1$   $\Xi = x = 5$ 

따라서 방정식의 근은

$$x = \pm 1$$
  $\Xi = x = 3$   $\Xi = x = 5$ 

37) 
$$x = -2 + \sqrt{2}$$
  $x = -2 + 2\sqrt{2}$ 

$$\implies (x^2 + 4x)^2 - 2(x^2 + 4x + 3) - 2 = 0 \text{ odd}$$

$$x^2+4x=t$$
로 놓으면

$$t^2-2(t+3)-2=0, t^2-2t-8=0$$

$$(t+2)(t-4) = 0$$
 :  $t=-2$   $\pm \frac{1}{2}$   $t=4$ 

(i) 
$$t=-2$$
, 즉  $x^2+4x=-2$ 일 때

$$x^2 + 4x + 2 = 0$$
 :  $x = -2 \pm \sqrt{2}$ 

(ii) 
$$t=4$$
, 즉  $x^2+4x=4$ 일 때

$$x^2 + 4x - 4 = 0$$
  $\therefore x = -2 + 2\sqrt{2}$ 

따라서 방정식의 근은

$$x = -2 \pm \sqrt{2}$$
  $\pm \frac{1}{2}$   $x = -2 \pm 2\sqrt{2}$ 

38) 
$$x = \frac{-1 \pm \sqrt{15}i}{2}$$
  $\Xi \subseteq x = 2$   $\Xi \subseteq x = -3$ 

$$\Rightarrow x(x-1)(x+1)(x+2)-24=0$$
 에서

$${x(x+1)}{(x-1)(x+2)}-24=0$$

$$(x^2+x)(x^2+x-2)-24=0 \cdots \bigcirc$$

$$x^2 + x = t$$
로 놓으면  $\bigcirc$ 은

$$t(t-2)-24=0$$
,  $t^2-2t-24=0$ 

$$(t+4)(t-6) = 0$$
  $\therefore t = -4$   $\Xi = 6$ 

(i) 
$$t=-4$$
, 즉  $x^2+x=-4$ 일 때

$$x^2 + x + 4 = 0$$
  $\therefore x = \frac{-1 \pm \sqrt{15}i}{2}$ 

(ii) 
$$t=6$$
, 즉  $x^2+x=6$ 일 때

$$x^2 + x - 6 = 0$$
  $\therefore x = 2$   $= -3$ 

따라서 방정식의 근은

39) 
$$x = \frac{5 \pm \sqrt{13}}{2}$$
  $\pm \frac{1}{2}$   $x = \frac{5 \pm \sqrt{3}i}{2}$ 

$$\Rightarrow (x-1)(x-2)(x-3)(x-4)-3=0$$
 에서

$$\{(x-1)(x-4)\}\{(x-2)(x-3)\}-3=0$$

$$(x^2-5x+4)(x^2-5x+6)-3=0 \cdots \bigcirc$$

$$x^2 - 5x = t$$
로 놓으면 ⑦은

$$(t+4)(t+6)-3=0, t^2+10t+21=0$$

$$(t+3)(t+7) = 0$$
  $\therefore t = -3$   $\stackrel{\smile}{=}$   $t = -7$ 

(i) 
$$t=-3$$
, 즉  $x^2-5x=-3$ 일 때

$$x^2 - 5x + 3 = 0$$
  $\therefore x = \frac{5 \pm \sqrt{13}}{2}$ 

(ii) 
$$t = -7$$
, 즉  $x^2 - 5x = -7$ 일 때

$$x^2 - 5x + 7 = 0$$
  $\therefore x = \frac{5 \pm \sqrt{3}i}{2}$ 

따라서 방정식의 근은

$$x = \frac{5 \pm \sqrt{13}}{2} \quad \underline{+} \quad \underline{-} \quad x = \frac{5 \pm \sqrt{3} i}{2}$$

40) 
$$x = -4 \pm \sqrt{6}$$
  $\Xi = x = -6$   $\Xi = x = -2$ 

$$\Rightarrow (x+1)(x+3)(x+5)(x+7)+15=0$$
 에서

$$\{(x+1)(x+7)\}\{(x+3)(x+5)\}+15=0$$

$$(x^2+8x+7)(x^2+8x+15)+15=0 \cdots \bigcirc$$

$$x^2+8x=t$$
로 놓으면  $\bigcirc$ 은

$$(t+7)(t+15)+15=0$$
,  $t^2+22t+120=0$ 

$$(t+10)(t+12) = 0$$
  $\therefore t = -10$   $\Xi = t = -12$ 

(i) 
$$t = -10$$
, 즉  $x^2 + 8x = -10$ 일 때

$$x^2 + 8x + 10 = 0$$
 :  $x = -4 \pm \sqrt{6}$ 

(ii) 
$$t = -12$$
, 즉  $x^2 + 8x = -12$ 일 때

$$x^2 + 8x + 12 = 0$$
  $\therefore x = -6$   $\text{ } \pm \text{ } = -2$ 

따라서 방정식의 근은

$$x = -4 \pm \sqrt{6} \quad \text{£} \pm x = -6 \quad \text{£} \pm x = -2$$

### 41) $x = \pm 1$ 또는 x = 2 또는 x = 4

$$\Rightarrow (x^2-3x)^2-2(x^2-3x)-8=0$$
에서  $x^2-3x=t$ 로 놓으면

$$t^2-2t-8=0$$
,  $(t+2)(t-4)=0$ 

(i) 
$$t=-2$$
, 즉  $x^2-3x=-2$ 일 때

$$x^2-3x+2=0, (x-1)(x-2)=0$$

$$\therefore x = 1 + x = 2$$

(ii) 
$$t=4$$
, 즉  $x^2-3x=4$ 일 때 
$$x^2-3x-4=0, (x+1)(x-4)=0$$
  $\therefore x=-1$  또는  $x=4$  따라서 방정식의 근은  $x=\pm 1$  또는  $x=2$  또는  $x=4$ 

42) 
$$x = -2 \pm \sqrt{2}$$
 또는  $x = -2 \pm \sqrt{15}$   $\Rightarrow (x+1)(x-2)(x+3)(x+6) + 14 = 0$ 에서  $\{(x+1)(x+3)\}\{(x-2)(x+6)\} + 14 = 0$   $(x^2+4x+3)(x^2+4x-12) + 14 = 0$   $\cdots$   $\Rightarrow x^2+4x=t$ 로 놓으면  $\Rightarrow x^2+4x=t$ 로 놓으면  $\Rightarrow x^2+4x=t$  = 11  $\Rightarrow x^2+4x=t$   $\Rightarrow x^2+4$ 

(ii) t = -2, 즉  $x^2 + 5x = -2$ 일 때

 $x^2 + 5x + 2 = 0$ 이므로  $x = \frac{-5 \pm \sqrt{17}}{2}$ 

(ii) t=-3, 즉  $x^2+3x=-3$ 일 때

 $x^2 + 3x + 3 = 0$   $\therefore x = \frac{-3 \pm \sqrt{3}i}{2}$ 

45) 
$$x = \pm \sqrt{2}$$
 또는  $x = \pm \sqrt{3}$ 
 $\Rightarrow x^2 = t$ 로 놓으면

 $t^2 - 5t + 6 = 0$ ,  $(t - 2)(t - 3) = 0$ 

∴  $t = 2$  또는  $t = 3$ 

(i)  $t = 2$ 일 때,  $x^2 = 2$ 에서  $x = \pm \sqrt{2}$ 

(ii)  $t = 3$ 일 때,  $x^2 = 3$ 에서  $x = \pm \sqrt{3}$ 

따라서 구하는 해는  $x = \pm \sqrt{2}$  또는  $x = \pm \sqrt{3}$ 

46) 
$$x = -1 \pm \sqrt{2}i$$
  $\Xi = 1 \pm \sqrt{2}i$   
 $\Rightarrow x^4 + 2x^2 + 9 = 0$  o  $A$   $\Rightarrow x^4 + 6x^2 + 9 - 4x^2 = 0, (x^2 + 3)^2 - (2x)^2 = 0$   
 $(x^2 + 2x + 3)(x^2 - 2x + 3) = 0$   
 $A$   $\Rightarrow x^2 + 2x + 3 = 0$   $\Rightarrow x^2 - 2x + 3 = 0$   $\Rightarrow x = -1 \pm \sqrt{2}i$   $\Rightarrow x = 1 \pm \sqrt{2}i$ 

47) 
$$x=1(중근)$$
 또는  $x=-1(중근)$ 
 $\Rightarrow x^2=X$ 로 놓으면 주어진 방정식은  $X^2-2X+1=0, (X-1)^2=0 \therefore X=1(중근)$  따라서  $x^2=1$ 이므로  $x=1(중근)$  또는  $x=-1(중근)$ 

48) 
$$x = \frac{-1 \pm \sqrt{7}i}{2}$$
  $\Xi \subset x = \frac{1 \pm \sqrt{7}i}{2}$ 

$$\Rightarrow x^4 + 3x^2 + 4 = 0 \text{ odd } (x^4 + 4x^2 + 4) - x^2 = 0$$

$$(x^2 + 2)^2 - x^2 = 0, (x^2 + x + 2)(x^2 - x + 2) = 0$$

$$\therefore x^2 + x + 2 = 0 \quad \Xi \subset x^2 - x + 2 = 0$$

$$\therefore x = \frac{-1 \pm \sqrt{7}i}{2} \quad \Xi \subset x = \frac{1 \pm \sqrt{7}i}{2}$$

49) 
$$x=\pm 1$$
 또는  $x=\pm \sqrt{2}$   $\Rightarrow x^2=t$ 로 놓으면  $x^4=(x^2)^2=t^2$ 이므로 주어진 방정식은  $t^2-3t+2=0,\;(t-1)(t-2)=0$   $\therefore t=1$  또는  $t=2$  (i)  $t=1$ 일 때,  $t=1$ 0의 때,  $t=1$ 1에서  $t=1$ 1에 대,  $t=1$ 2에 대,  $t=1$ 1에 대,  $t=1$ 2에 대,  $t=1$ 2에 대,  $t=1$ 3에 대,  $t=1$ 4에 대,  $t=1$ 5에 대,  $t=1$ 5에 대,  $t=1$ 5에 대,  $t=1$ 5에 대,  $t=1$ 7에 대,  $t=$ 

50) 
$$x=\pm 1$$
 또는  $x=\pm 2$ 
 $\Rightarrow x^2=t$ 로 놓으면 주어진 방정식은  $t^2-5t+4=0, \ (t-1)(t-4)=0$   $\therefore t=1$  또는  $t=4$  즉,  $x^2=1$  또는  $x^2=4$ 이므로  $x=\pm 1$  또는  $x=\pm 2$ 

51) 
$$x = \pm 2$$
 또는  $x = \pm \sqrt{6}i$   
 $\Rightarrow x^4 + 2x^2 - 24 = 0$ 에서  $x^2 = t$ 로 놓으면  
 $t^2 + 2t - 24 = 0$ ,  $(t - 4)(t + 6) = 0$   $\therefore t = 4$  또는  $t = -6$   
즉,  $x^2 = 4$  또는  $x^2 = -6$ 이므로  
 $x = \pm 2$  또는  $x = \pm \sqrt{6}i$ 

52) 
$$x=\pm \sqrt{2}i$$
 또는  $x=\pm \sqrt{3}$    
  $\Rightarrow x^4-x^2-6=0$ 에서  $x^2=t$ 로 놓으면

$$t^2 - t - 6 = 0, (t+2)(t-3) = 0$$
  $\therefore t = -2$  또는  $t = 3$  즉,  $x^2 = -2$  또는  $x^2 = 3$ 이므로  $x = \pm \sqrt{2}i$  또는  $x = \pm \sqrt{3}$ 

53) 
$$x=\pm\sqrt{3}i$$
 또는  $x=\pm\sqrt{5}$   $\Rightarrow x^4-2x^2-15=0$ 에서  $x^2=t$ 로 놓으면  $t^2-2t-15=0, (t+3)(t-5)=0$   $\therefore t=-3$  또는  $t=5$  즉,  $x^2=-3$  또는  $x^2=5$ 이므로  $x=\pm\sqrt{3}i$  또는  $x=\pm\sqrt{5}$ 

54) 
$$x = \pm i$$
 또는  $x = \pm 3$ 
 $\Rightarrow x^4 - 8x^2 - 9 = 0$ 에서  $x^2 = t$ 로 놓으면  $t^2 - 8t - 9 = 0$ ,  $(t+1)(t-9) = 0$   $\therefore t = -1$  또는  $t = 9$  즉,  $x^2 = -1$  또는  $x^2 = 9$ 이므로  $x = \pm i$  또는  $x = \pm 3$ 

55) 
$$x = \frac{-1 \pm \sqrt{3}i}{2}$$
 또는  $x = \frac{1 \pm \sqrt{3}i}{2}$    
  $\Rightarrow x^4 + x^2 + 1 = 0$ 에서  $(x^4 + 2x^2 + 1) - x^2 = 0, (x^2 + 1)^2 - x^2 = 0$   $(x^2 + x + 1)(x^2 - x + 1) = 0$    
 즉,  $x^2 + x + 1 = 0$  또는  $x^2 - x + 1 = 0$ 이므로  $x = \frac{-1 \pm \sqrt{3}i}{2}$  또는  $x = \frac{1 \pm \sqrt{3}i}{2}$ 

56) 
$$x = -1 \pm \sqrt{2}$$
 또는  $x = 1 \pm \sqrt{2}$   
 $\Rightarrow x^4 - 6x^2 + 1 = 0$  에서  
 $(x^4 - 2x^2 + 1) - 4x^2 = 0, (x^2 - 1)^2 - (2x)^2 = 0$   
 $(x^2 + 2x - 1)(x^2 - 2x - 1) = 0$   
 $\Rightarrow, x^2 + 2x - 1 = 0$  또는  $x^2 - 2x - 1 = 0$ 이므로  
 $x = -1 \pm \sqrt{2}$  또는  $x = 1 \pm \sqrt{2}$ 

57) 
$$x = \pm i$$
 또는  $x = \pm 2$ 

$$\Rightarrow x^4 - 3x^2 - 4 = 0$$
에서  $x^2 = t$ 로 놓으면  $t^2 - 3t - 4 = 0$ ,  $(t+1)(t-4) = 0$ 

$$\therefore t = -1$$
 또는  $t = 4$ 
즉,  $x^2 = -1$  또는  $x^2 = 4$ 이므로  $x = \pm i$  또는  $x = \pm 2$ 

58) 
$$x = \pm \sqrt{2}$$
 또는  $x = \pm \sqrt{10}$ 

⇒  $x^2 = t$ 로 놓으면

 $t^2 - 12t + 20 = 0$ ,  $(t - 2)(t - 10) = 0$ 

∴  $t = 2$  또는  $t = 10$ 

(i)  $t = 2$ 일 때,  $x^2 = 2$ 에서  $x = \pm \sqrt{2}$ 

(ii)  $t = 10$ 일 때,  $x^2 = 10$ 에서  $x = \pm \sqrt{10}$ 

따라서 구하는 해는  $x = \pm \sqrt{2}$  또는  $x = \pm \sqrt{10}$ 

59) 
$$x = \pm 2i$$
 또는  $x = \pm \sqrt{3}$   
 $\Rightarrow x^2 = t$ 로 놓으면  
 $t^2 + t - 12 = 0$ ,  $(t+4)(t-3) = 0$   
 $\therefore t = -4$  또는  $t = 3$ 

(i) 
$$t=-4$$
일 때,  $x^2=-4$ 에서  $x=\pm 2i$ 

(ii) 
$$t=3$$
일 때,  $x^2=3$ 에서  $x=\pm\sqrt{3}$  따라서 구하는 해는  $x=\pm2i$  또는  $x=\pm\sqrt{3}$ 

60) 
$$x = \pm 2$$
 또는  $x = \pm 3$ 

⇒  $x^2 = t$ 로 놓으면

 $t^2 - 13t + 36 = 0$ ,  $(t - 4)(t - 9) = 0$ 

∴  $t = 4$  또는  $t = 9$ 

(i) 
$$t=4$$
일 때,  $x^2=4$ 에서  $x=\pm 2$ 

(ii) 
$$t=9$$
일 때,  $x^2=9$ 에서  $x=\pm 3$  따라서 구하는 해는  $x=\pm 2$  또는  $x=\pm 3$ 

61) 
$$x = -1 \pm \sqrt{3}$$
 또는  $x = 1 \pm \sqrt{3}$   $\Rightarrow x^4 - 8x^2 + 4 = 0$ 에서  $(x^4 - 4x^2 + 4) - 4x^2 = 0$ ,  $(x^2 - 2)^2 - (2x)^2 = 0$   $(x^2 + 2x - 2)(x^2 - 2x - 2) = 0$   $\Rightarrow x^2 + 2x - 2 = 0$  또는  $x^2 - 2x - 2 = 0$ 이므로  $x = -1 \pm \sqrt{3}$  또는  $x = 1 \pm \sqrt{3}$ 

62) 
$$x = -2 \pm 2i$$
 또는  $x = 2 \pm 2i$   $\Rightarrow x^4 + 64 = 0$ 에서  $(x^4 + 16x^2 + 64) - 16x^2 = 0, (x^2 + 8)^2 - (4x)^2 = 0$   $(x^2 + 4x + 8)(x^2 - 4x + 8) = 0$   $\Rightarrow x^2 + 4x + 8 = 0$  또는  $x^2 - 4x + 8 = 0$ 이므로  $x = -2 \pm 2i$  또는  $x = 2 \pm 2i$ 

63) 
$$2 \pm \sqrt{3}$$
 또는  $x = \frac{-1 \pm \sqrt{3}i}{2}$ 

$$\Rightarrow x^4 - 3x^3 - 2x^2 - 3x + 1 = 0$$
의 양변을  $x^2 - 3x - 2 - \frac{3}{x} + \frac{1}{x^2} = 0$ 

$$x^2 + \frac{1}{x^2} - 3\left(x + \frac{1}{x}\right) - 2 = 0$$

$$\left(x+\frac{1}{x}\right)^2 - 3\left(x-\frac{1}{x}\right) - 4 = 0$$
  
이때,  $x+\frac{1}{x} = t$ 로 놓으면

$$t^2 - 3t - 4 = 0$$
,  $(t - 4)(t + 1) = 0$   
∴  $t = 4$   $\stackrel{\leftarrow}{}$   $\stackrel{\leftarrow}{}$   $t = -1$ 

(i) 
$$t=4$$
일 때,  $x+\frac{1}{x}=4$ 에서  
 $x^2-4x+1=0$   $\therefore x=2\pm\sqrt{3}$ 

(ii) 
$$t = -1$$
일 때,  $x + \frac{1}{x} = -1$ 에서

$$x^2 + x + 1 = 0$$
,  $\therefore x = \frac{-1 \pm \sqrt{3}i}{2}$ 

따라서 주어진 사차방정식의 해는 
$$2\pm\sqrt{3}$$
 또는 
$$x = \frac{-1\pm\sqrt{3}\,i}{2}$$

64) 
$$x = \frac{1 \pm \sqrt{3}i}{2}$$
  $\pm \frac{1}{2}$   $x = -3 \pm 2\sqrt{2}$ 

 $\Rightarrow x \neq 0$ 이므로 주어진 방정식의 양변을  $x^2$ 으로 나누

$$x^2 + 5x - 4 + \frac{5}{x} + \frac{1}{x^2} = 0$$

$$\left(x^2 + \frac{1}{x^2}\right) + 5\left(x + \frac{1}{x}\right) - 4 = 0$$

$$\left(x + \frac{1}{x}\right)^2 + 5\left(x + \frac{1}{x}\right) - 6 = 0$$

이때, 
$$x + \frac{1}{x} = t$$
로 놓으면

$$t^2 + 5t - 6 = 0$$
,  $(t-1)(t+6) = 0$ 

(i) 
$$t=1$$
일 때,  $x+\frac{1}{x}=1$ 에서

$$x^2 - x + 1 = 0 \qquad \therefore x = \frac{1 \pm \sqrt{3}i}{2}$$

(ii) 
$$t = -6$$
일 때,  $x + \frac{1}{x} = -6$ 에서

$$x^2 + 6x + 1 = 0$$
  $\therefore x = -3 \pm 2\sqrt{2}$ 

$$x = \frac{1 \pm \sqrt{3}i}{2}$$
 또는  $x = -3 \pm 2\sqrt{2}$ 이다.

 $x^2 - 3x + 4 - \frac{3}{x} + \frac{1}{x^2} = 0$ 

$$x x^2$$

$$\left(x^2 + \frac{1}{x^2}\right) - 3\left(x + \frac{1}{x}\right) + 4 = 0$$

$$\left(x + \frac{1}{x}\right)^2 - 3\left(x + \frac{1}{x}\right) + 2 = 0$$

이때, 
$$x + \frac{1}{x} = t$$
로 놓으면

$$t^2 - 3t + 2 = 0$$
,  $(t-1)(t-2) = 0$ 

$$\therefore t=1$$
 또는  $t=2$ 

(i) 
$$t=1$$
일 때,  $x+\frac{1}{x}=1$ 에서

$$x^2 - x + 1 = 0$$
  $\therefore x = \frac{1 \pm \sqrt{3}i}{2}$ 

(ii) 
$$t=2$$
일 때,  $x+\frac{1}{x}=2$ 에서

$$x^2 - 2x + 1 = 0$$
,  $(x - 1)^2 = 0$   $\therefore x = 1(\frac{5}{6})$ 

따라서 주어진 사차방정식의 해는  $x = \frac{1 \pm \sqrt{3}i}{2}$  또는 x = 1(중구)

66) 
$$x = \frac{-3 \pm \sqrt{5}}{2}$$
  $\Xi \succeq x = -4 \pm \sqrt{15}$ 

$$\Rightarrow x^4 + 11x^3 + 26x^2 + 11x + 1 = 0$$
의 양변을  $x^2$ 으로 나누면

$$x^{2} + 11x + 26 + \frac{11}{x} + \frac{1}{x^{2}} = 0$$

$$\left(x^2 + \frac{1}{x^2}\right) + 11\left(x + \frac{1}{x}\right) + 26 = 0$$

$$\left(x + \frac{1}{x}\right)^2 + 11\left(x + \frac{1}{x}\right) + 24 = 0$$

이때, 
$$x + \frac{1}{x} = t$$
로 놓으면

$$t^2 + 11t + 24 = 0$$
,  $(t+3)(t+8) = 0$ 

$$\therefore t = -3 \quad \text{£} \stackrel{\vdash}{=} \quad t = -8$$

(i) 
$$t = -3$$
일 때,  $x + \frac{1}{x} = -3$ 에서

$$x^2 + 3x + 1 = 0$$
  $\therefore x = \frac{-3 \pm \sqrt{5}}{2}$ 

(ii) 
$$t = -8$$
일 때,  $x + \frac{1}{x} = -8$ 에서

$$x^2 + 8x + 1 = 0$$
,  $\therefore x = -4 \pm \sqrt{15}$ 

따라서 주어진 사차방정식의 해는  $x = \frac{-3 \pm \sqrt{5}}{2}$  또  $\Rightarrow x = -4 \pm \sqrt{15}$ 

67) 
$$x = 1$$
(중군) 또는  $x = \frac{5 \pm \sqrt{21}}{2}$ 

 $\Rightarrow$  방정식  $x^4 - 7x^3 + 12x^2 - 7x + 1 = 0$ 의 양변을  $x^2 - 9$ 

$$x^2 - 7x + 12 - \frac{7}{x} + \frac{1}{x^2} = 0$$

$$x^{2} + \frac{1}{x^{2}} - 7\left(x + \frac{1}{x}\right) + 12 = 0$$

$$\left(x + \frac{1}{x}\right)^2 - 7\left(x + \frac{1}{x}\right) + 10 = 0$$

이때 
$$x + \frac{1}{x} = X$$
로 놓으면

$$X^2\!-\!7X\!+\!10\!=\!0,\ (X\!-\!2)(X\!-\!5)\!=\!0$$

$$\therefore X=2 \ \text{£} = X=5$$

(i) 
$$X=2$$
일 때,  $x+\frac{1}{x}=2$ 에서

$$x^2-2x+1=0$$
,  $(x-1)^2=0$   $\therefore x=1({\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center{3}}{\center$ 

(ii) 
$$X=5$$
일 때,  $x+\frac{1}{x}=5$ 에서

$$x^2 - 5x + 1 = 0$$
  $\therefore x = \frac{5 \pm \sqrt{21}}{2}$ 

( i ), ( ii )에서 
$$x = 1$$
(중근) 또는  $x = \frac{5 \pm \sqrt{21}}{2}$ 

68) 
$$x = \frac{1 \pm \sqrt{15}i}{4}$$
  $\underline{\underline{}}$   $\underline{\underline{}}$   $\underline{\underline{}}$   $\underline{\underline{}}$   $\underline{\underline{}}$   $x = \frac{-3 \pm \sqrt{5}}{2}$ 

 $\Rightarrow 2x^4 + 5x^3 + x^2 + 5x + 2 = 0$ 의 양변을  $x^2$ 으로 나누면

$$2x^2 + 5x + 1 + \frac{5}{x} + \frac{2}{x^2} = 0$$

$$2\left(x^2 + \frac{1}{x^2}\right) + 5\left(x + \frac{1}{x}\right) + 1 = 0$$

$$2\left(x+\frac{1}{x}\right)^2+5\left(x+\frac{1}{x}\right)-3=0$$

이때, 
$$t=x+\frac{1}{x}$$
로 놓으면 
$$2t^2+5t-3=0, \ (t+3)(2t-1)=0$$
  $\therefore t=-3$  또는  $t=\frac{1}{2}$ 

(i) 
$$t = \frac{1}{2}$$
일 때,  $x + \frac{1}{x} = \frac{1}{2}$ 에서

$$2x^2 - x + 2 = 0$$
  $\therefore x = \frac{1 \pm \sqrt{15}i}{4}$ 

(ii) 
$$t=-3$$
일 때,  $x+\frac{1}{x}=-3$ 에서

$$x^2 + 3x + 1 = 0$$
,  $\therefore x = \frac{-3 \pm \sqrt{5}}{2}$ 

따라서 주어진 사차방정식의 해는 
$$x=\frac{1\pm\sqrt{15}\,i}{4}$$
 또는  $x=\frac{-3\pm\sqrt{5}}{2}$ 

69) 
$$x = \frac{3 \pm \sqrt{5}}{2}$$
 또는  $x = -1$ (중간)

$$\Rightarrow x^4 - x^3 - 4x^2 - x + 1 = 0$$
 양변을  $x^2$  으로 나누면  $x^2 - x - 4 - \frac{1}{x} + \frac{1}{x^2} = 0$ 

$$\left(x^2 + \frac{1}{x^2}\right) - \left(x + \frac{1}{x}\right) - 4 = 0$$

$$\left(x + \frac{1}{x}\right)^2 - 2 - \left(x + \frac{1}{x}\right) - 4 = 0$$

$$\left(x + \frac{1}{x}\right)^2 - \left(x + \frac{1}{x}\right) - 6 = 0$$

$$\left(x + \frac{1}{x} - 3\right)\left(x + \frac{1}{x} + 2\right) = 0$$

$$x + \frac{1}{x} = 3$$
  $\pm \frac{1}{x} = -2$ 

따라서 
$$x = \frac{3 \pm \sqrt{5}}{2}$$
 또는  $x = -1$ (중근)

70) 
$$x = \frac{1}{2}$$
 또는  $x = 2$  또는  $x = \frac{-3 \pm \sqrt{5}}{2}$ 

$$\Rightarrow 2x^4 + x^3 - 11x^2 + x + 2 = 0$$

$$x^{2}\left(2x^{2}+x-11+\frac{1}{x}+\frac{2}{x^{2}}\right)=0$$

$$x^{2}\left\{2\left(x^{2}+\frac{1}{x^{2}}\right)+\left(x+\frac{1}{x}\right)-11\right\}=0$$

$$x^{2}\left\{2\left(x+\frac{1}{x}\right)^{2}-4+\left(x+\frac{1}{x}\right)-11\right\}=0$$

$$x^{2}\left\{2\left(x+\frac{1}{x}\right)^{2}+\left(x+\frac{1}{x}\right)-15\right\}=0$$

$$x^{2}\left\{2\left(x+\frac{1}{x}\right)-5\right\}\left\{\left(x+\frac{1}{x}\right)+3\right\}=0$$

$$(2x^2-5x+2)(x^2+3x+1)=0$$

$$2x^2-5x+2=0$$
  $\pm \frac{1}{2}$   $x^2+3x+1=0$ 

(i) 
$$2x^2 - 5x + 2 = 0$$
  
 $(2x-1)(x-2) = 0$ 

$$\therefore x = \frac{1}{2}$$
 또는  $x = 2$ 

(ii) 
$$x^2 + 3x + 1 = 0$$

$$\therefore x = \frac{-3 \pm \sqrt{5}}{2}$$