WINTER-2018

UNIT 1

Q.1 a) Without constructing Truth table, show that

$$(\neg P \land (\neg Q \land R)) \lor (Q \land R) \lor (P \land R) \Leftrightarrow R$$
 (7)

b) Obtain principal conjunctive normal form of

$$(\neg P \to R) \land (Q \leftrightarrow P) \tag{7}$$

- **Q.2 a)** For the formula $(P \land Q) \lor (\neg R \land \neg P)$ draw circuit diagram using AND, OR and NOT gates only. **(7)**
- **b)** Obtain the principle conjunctive normal form of $P \rightarrow (P \land P)$ $(Q \rightarrow P)$). (7)

UNIT 2

Q.3 a) Show that

 $(\exists x)M(x)$ follows logically from the premises:

$$(x)(H(x) \rightarrow M(x))$$
 and $(\exists x)H(x)$ (7)

- **b)** Symbolize the following statement:
- i. Rover is a dog, ii. All dogs are animal,
- iii. Some dogs are black. (6)
- Q.4 a) Show without constructing truth tables that the following statements cannot be true simultaneously.

$$R \vee M, R \vee S, \sim M, \sim S.$$
 (7)

b) Show that $R \vee S$ follows logically from the premises

$$(C \lor D, C \lor D) \rightarrow \gamma H, \gamma H \rightarrow (A \land \gamma B)$$

and
$$(A \land \sim B) \rightarrow (R \lor S)$$
 UNIT 3

UNIT 3

- **Q.5 a)** Let $X = \{1, 2, ..., 7\}$ and $R = \{(x, y) | x y \text{ is divisible } \}$ by 3) show that R is an equivalence relation. Draw the graph of R. (6)
- **b)** Given the relation matrices M_R and M_S find M_R , M_S , M_{RoS} and Show that $M_{\overline{RoS}} = M_{\overline{SoR}}$. (7)

$$\mathbf{M}_{\mathrm{R}} = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \quad \mathbf{M}_{\mathrm{S}} = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 \end{bmatrix}$$

Q.6 a) Show that $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ using Venn diagram and formal proof. (7)

b) Explain the following operations on set (6)

i) Union, ii. Intersection,

iii. Relative Complement, iv. Absolute Complement.

UNIT 4

Q.7 a) Write down the composition table for $(Z_7, +7)$ and $(Z_7, *7)$.

b) What is coset? Find the left coset of $\{[0], [4]\}$ in group $\langle Z_7, +7 \rangle$.

Q.8 a) Let $Q_P = \langle \{E, T, F\}, \{a, +, *, (,), E, \phi \rangle$ where ϕ is the set of production as $E \to E + T$, $E \to T$, $T \to T * F$, $T \to F$, $F \to (E)$, $F \to a$. Generate derivation for a * a + a. (7)

b) Show that $\langle Z_7, +7, *7 \rangle$ is a commutative ring with identity. (7)

UNIT 5

Q.9 a) Draw the diagram of the lattices $\langle S_n, D \rangle$ for n = 4, 6, 8, 12, 15, 45, 60, 75 and 210. **(6)**

b) For the following function (7)

a. f = x + y + z, **b.** f = xyz + xyz + xyz.

Given

- i. Circuit diagram representation.
- **ii.** Truth table representation.
- iii. k-map representation.

Q.10 a) Obtain sum of product and product of sum canonical form of the following expression.

i.
$$x_1 x_2 + x_3$$
, **ii.** $[(x_1 + x_2) (x_3x_4)]$. (6)

b) In any Boolean algebra show

i.
$$a = 0 \Leftrightarrow ab' + a'b = b$$
, **ii.** $a = b \Leftrightarrow ab' + a'b = 0$. (7)

Q.11 a) Explain with example.

(6)

i. Graph,

ii. Indegree,

iii. Outdegree,

iv. Tree,

v.Path,

vi. Cycle,

vii. Complete binary tree.

b) Obtain adjacency matrix A of the digraph shown below. Find the elementary paths of length 1 and 2 from V_1 to V_4 . Show that there is also a simple path of length 4 from V_1 to V_4 .

(7)

Q.12 a) Give the directed tree representation of the formula

$$(P \vee (\neg P \wedge Q)) \wedge ((\neg P \wedge Q) \wedge \neg R)$$
 (6)

b) Explain with example

MMM St

i. Adjacency matrix, ii. Path matrix.

(7)