Predicting At-Risk Customers with Data Science

James Richards

General Assembly sfdat26 James.richards@trinet.com

About TriNet

- Founded in 1980s as an HR services firm
 - Outsourced HR: payroll, benefits, workers comp, and more
- ~13,500 clients w/ ~325,000 employees
 - \$600MM in net revenue/year
 - \$31BN in payroll and \$3BN in health insurance premiums
 - "Most average" client: 20-person tech startup in the Bay Area or New York.
 - Diverse client base: retail, hotels, restaurants, hedge funds, etc...

Problem: We start every year ~\$100MM in the hole

~15% "voluntary" churn every year

- Controlling for clients going out of business, getting acquired, etc.
- Costs us over \$100MM per year
- We have no idea why.

Digging out of the hole sucks

- Wall Street expects 20% growth
- Target: \$600MM * 1.20 = \$720MM
- Start: \$600MM 15% = \$510MM

Need to add \$210MM in new revenue just to meet expectations!

Honestly, we don't know why clients leave

- We classify clients manually and reactively
 - 1 Account Manager: 50-100 clients
 - 1 Director: 6-8 Account Managers
 - Every 2 weeks, Directors classify clients into Green, Yellow, or Red based on subjective impressions of Account Managers
- No playbook to actively intervene and prevent churn
 - Only response with Red accounts is to lower price
 - Often, many clients go from Green to Red because they've told us they have already decided to leave

We paid BCG a lot of money to figure it out...

According to BCG, churn is correlated with:

- Payroll accuracy % of inaccurate payrolls we run for a client
- Client growth % growth in headcount a client experiences in a year

Recommendation:

- Fix payroll accuracy
- Focus Account Manager time on clients who are growing quickly

...but does the BCG "model" make sense?

- BCG recommendation is essentially a high-bias, low variance model:
 - Risk of churn increases linearly with growth in headcount and payroll errors
- Intuitively, is that the best model?
 - Hedge funds rarely experience any growth in headcount but still churn
 - Highly variant population and variant reasons for churn
 - · Often a combination of features (based on exit interviews
- Is it useful in real life?
 - Can't fix payroll errors after the fact
 - Can't ungrow a client

Can we use data science to classify clients as "at risk" before it's too late?

Our data set: 9 months of client data

Data set: 9 months of customer data

Out[2]:

	Unnamed: 0	Company	Company.Name	City	State	Related.Company	Company.Live.Date	NAICS.2	NAICS.3	NAICS.4	 Total.Voluntary
0	1	4AW	HRchitect Canada	Frisco	TX	NaN	1/12/2004	NaN	NaN	NaN	 NaN
1	2	4B9	RouteOne - Canada	Farmington Hills	МІ	NaN	2/16/2004	NaN	NaN	NaN	 NaN
2	3	4BJ	Ekaria LLP - Canada	Redmond	WA	495	1/1/2004	NaN	NaN	NaN	 NaN
3	4	4BY	MicroVention, Inc Canada	Aliso Viejo	CA	NaN	2/1/2004	NaN	NaN	NaN	 NaN
4	5	51Z	Signature Control Systems CAN	Sheridan	СО	NaN	8/1/2006	NaN	NaN	NaN	 NaN

5 rows x 119 columns

Initial observations/EDA

- Dropped features with null values, added payroll accuracy (1 (payrolls with error / payrolls))
- No obviously good features
- Low sample size on Industry and State
- Payroll accuracy doesn't at first appear to be the right


```
In [53]: clients.Industry.value counts()
Out[53]: Technology
                                            2518
         Financial
                                            1097
         Professional Services
                                            1066
         Advertising
                                             892
         Services
                                             572
         Consulting
                                              548
         Non Profit and Other
                                             423
         Life Sciences
                                              408
         Wholesale and Retail
                                              325
         Construction
                                             145
         Manufacturing
                                             139
         Automobile and Transportation
                                              84
         Utilities
                                              10
         Agriculture
```

First cut: Correlation matrix

- Still no standout feature(s)
- Strongest features appear to be:
 - Price Change Amount
 - Involuntary and Voluntary Terminations
 - # of employees
 - # of payrolls (correlated w/ employees)
 - Interactions, esp Benefits and Tax
 - Things to do w/ Payroll have weak correlation (except accuracy, which is negatively correlated w/ termination?)

	ID	Termed
ID	1.000000	-0.008917
Termed	-0.008917	1.000000
Employees	0.012272	-0.029586
Expense	-0.022639	0.003438
Hire	0.010906	-0.004647
Perform	0.013375	-0.000076
Price_Change	-0.004628	-0.012578
Price_Change_Amount	-0.015709	0.016474
Cases	-0.000799	-0.020782
Benefits_Interactions	-0.003811	-0.025912
Cust_Service_Interactions	-0.000827	-0.005492
Global_Services_Interactions	0.012367	-0.011895
Passport_Interactions	0.023389	0.006831
HR_Interactions	0.027235	-0.021010
T_Enhancement_Interactions	-0.001550	-0.015972
T_Maintenance_Interactions	0.003233	-0.012364
T_Problem_Interactions	0.003578	-0.021864
Standard_IT_Interactions	-0.006914	-0.000060
.OA_Interactions	0.043486	-0.021172
Legal_Interactions	0.015489	-0.006249
Payroll_Interactions	0.006014	-0.013408
Product_Interactions	0.021623	-0.006197
Risk_Interactions	-0.018837	-0.002473
Underwriting_Interactions	-0.005785	-0.010521
Strategic_Service_Interactions	-0.000541	-0.018742
Tax_Interactions	0.012212	-0.019914
Unemployment_Claim_Interactions	-0.003365	-0.001088
WC_Interactions	0.024391	-0.002935
Payrolls	-0.063796	-0.024160
Payrolls_With_Error	0.007935	-0.004213
Voluntary_Terminations	0.020890	0.000463
Involuntary_Terminations	0.008109	0.011889
Total_Terminations	0.016564	0.006370
Payroll_Accuracy	-0.003134	-0.002023

First model: Decision tree

• 3 layers deep

Terminal nodes not all that pure...

Second model: KNN

- Fed features into KNN, ran train/test split and cross-val to find optimal K value
- Got to almost 92% accuracy with 7 neighbors

```
In {228}: knn = KNeighborsClassifier(n_neighbors=7)
   knn.fit(features_train, response_train)
   knn.score(features_test, response_test)
Out[228]: 0.91836734693877553
```

```
In [189]: feature_cols = ['Employees', 'Price_Change_Amount', 'Involuntary_Terminations', 'Price_Change', X = clients[feature_cols] y = clients.Termed | y =
```


Summary & next steps

- It is possible to predict accounts who may churn
- Figuring out why clients churn is really hard
- Long, complex relationships over several years
- Payroll accuracy has limited predictive power

Next steps:

- · Go deeper into pricing and change in employees over time
- Look at correlations between manual classification of risk factors and term
- Interview Account Managers to see what factors they think are important
- Try to get more granular feature data (e.g., good interactions vs bad interactions)