Lógica de Predicados: Semántica

Interpretación I:
 Una interpretación de una fórmula F en lógica predicados es una asignación de valores {v, f} a cada símbolo de la formula.

Lógica de Predicados: Semántica

- Estructura de una interpretación
 - Un dominio de discurso D
 - Los símbolos constantes se asignan a elementos de D
 - $I(c_i) \in \Delta$ (elementos del dominio)
 - Los símbolos de función se asignan a funciones en D.
 - $I(f_i): \Delta n \rightarrow \Delta$ (función n-aria en el dominio)
 - Los símbolos de predicados se asignan a relaciones sobre
 D.
 - $I(P_i) \subseteq \Delta n$ (relación n-aria en el dominio)

Entonces

- Las afirmaciones se convertirán en elementos de D.
- Los símbolos de predicados con argumentos se volverán verdaderos o falsos
- Los cuantificadores y conectivos lógicos se tratan de la misma manera

Lógica de Predicados: Ejemplo de Interpretación

```
Symbols
                                   Constants: alice, bob, carol, robert
                                   Function: mother-of (with arity equal to 1)
                                   Predicate: friends (with arity equal to 2)
                     \Delta = \{1, 2, 3, 4, \dots\}
Domain
Interpretation \mathcal{I}(alice) = 1, \mathcal{I}(bob) = 2, \mathcal{I}(carol) = 3,
                                  \mathcal{I}(robert) = 2
                                                                             M(1) = 3
                                  \mathcal{I}(\textit{mother-of}) = M \qquad \begin{array}{l} M(2) = 1 \\ M(3) = 4 \\ M(n) = n + 1 \text{ for } n \ge 4 \end{array}
                                  \mathcal{I}(friends) = F = \left\{ \begin{array}{ll} \langle 1, 2 \rangle, & \langle 2, 1 \rangle, & \langle 3, 4 \rangle, \\ \langle 4, 3 \rangle, & \langle 4, 2 \rangle, & \langle 2, 4 \rangle, \\ \langle 4, 1 \rangle, & \langle 1, 4 \rangle, \langle 4, 4 \rangle \end{array} \right\}
```

Lógica de Predicados: Ejemplo de Interpretación

Lógica Predicados: reglas semánticas

Dada una fórmula $\mathbb F$ y una interpretación $\mathbb I$, el valor de $\mathbb F$ bajo $\mathbb I$, denotado por $\mathbb I$ ($\mathbb F$) es:

- Si F es de la forma $G \vee H$ entonces $I(F) = \frac{F \text{ si I}(G) = I(H) = F}{V \text{ en caso contrario}}$
- Si F es de la forma $G \rightarrow H$ entonces $I (F) = {\bf F} \text{ si } I(G) = V \text{ y } I(H) = F$ ${\bf V} \text{ en caso contrario}$
- Si F es de la forma G↔H
 entonces I (F) = V si I(G) = I(H)
 F en caso contrario

•

Lógica Predicados: reglas semánticas

Dada una fórmula F y una interpretación I, el valor de F bajo I, denotado por I (F) es:

• Si F es de la forma $\forall x (G(x))$ entonces I(F) =

V si I(G(d)) = V para todo $d \in D$

F en caso contrario

• Si F es de la forma $\exists x (G(x))$ entonces I(F) =

V si I(G(d)) = V para algún $d \in D$

F en caso contrario

Para todo n natural se cumple que $2 \cdot n$ es par Sea $F= \forall x(P(x))$

Dominio= N

Constantes=no existen

Funciones=no existen

Predicados= I(P)(x) = 2x es par

• x=1; I(F) = v

V si I(G(d)) = V para todo $d \in D$

• x=2; I(F) = v

F en caso contrario

es equivalente a enunciar

 $2 \cdot 1$ es par y $2 \cdot 2$ es par y $2 \cdot 3$ es par y $2 \cdot 4$ es par

Existen algunos números que son mayores que uno Sea $F=\exists x(P(x))$

Dominio= N

Constantes=no existen

Funciones=no existen

Predicados= I(P)(x) = x es un número mayor que 1

•
$$x=1; I(F) = f$$

V si
$$I(G(d)) = V$$
 para algún $d \in D$

•
$$x=2; I(F) = v$$

es equivalente a enunciar 1 es mayor que 1 o 2 es mayor que 1 o 3 es mayor que 1 o 4 es mayor que 1 o . . .

```
Sea F=\forall x(P(x))
    Dominio= Z
    Predicados= I(P)(x) = x > 0
Sea F=\forall x(P(x))
    Dominio= Z<sup>+</sup>
    Predicados= I(P)(x) = x > 0
Sea F=\exists x(P(x))
    Dominio= Z
    Predicados= I(P)(x) = x = x + 1
Sea F=\exists x(P(x))
    Dominio= Z
    Predicados= I(P)(x) = x = x * 2
```

FALSO

VERDADERO

FALSO

VERDADERO

```
Sea F=\forall x\forall y (P(x,y))
    Dominio= R
    Predicados= I(P)(x) = x / y = 1
Sea F=\forall x\exists y (P(x,y))
    Dominio= R
    Predicados= I(P)(x) = x / y = 1
Sea F = \exists x \forall y (P(x,y))
    Dominio= R
    Predicados= I(P)(x) = x / y = 1
Sea F = \exists x \exists y (P(x,y))
    Dominio= R
    Predicados= I(P)(x) = x / y = 1
```

Falso Verdadero Falso Verdadero

```
Sea F = \forall x \exists y (P(x,y))
     Dominio= Z
     Predicados= I(P)^2(x,y): x + y = 0
Sea F = \forall x \exists y (P(x,y))
     Dominio= N
     Predicados= I(P)^{2}(x,y): x + y = 0
Sea F = \exists x \forall y (P(x,y))
     Dominio= Z
     Predicados= I(P)^{2}(x,y): xy = x(y + 1)
Sea F = \exists x \forall y (P(x,y))
     Dominio= Z<sup>+</sup>
     Predicados= I(P)^{2}(x,y): xy = x(y + 1)
```

V

F

V

F

Sea
$$F=\forall x\exists yP(x, f(y)) \land Q(a)$$

Dominio: D={1,2,3}

Constantes: I(a)=3

Funciones:

х	I (f) (x)
1	2
2	3
3	1

Predicados:
$$I(P)=\{(1,3),(2,3)\}, I(Q)=\{2,3\}$$

x=1, y=2
 $\forall x \exists y P(x, f(y)) \land Q(a)$

$$P(1,3) \wedge Q(3)$$

$$V \wedge V \therefore V$$

Sea
$$F=\forall x\exists yP(x, f(y)) \land Q(a)$$

Dominio: D={1,2,3}

Constantes: I(a)=3

Funciones:

х	I(f) (x)
1	2
2	3
3	1

Predicados:
$$I(P)=\{(1,3),(2,3)\}, I(Q)=\{2,3\}$$

$$x=2, y=2$$

$$\forall x \exists y P(x, f(y)) \land Q(a)$$

$$P(2,3) \wedge Q(3)$$

$$V \wedge V \therefore V$$

Sea
$$F=\forall x\exists yP(x, f(y)) \land Q(a)$$

Dominio: D={1,2,3}

Constantes: a¹=3

Funciones:

Х	I(f) (x)
1	2
2	3
3	1

Predicados:
$$I(P)=\{(1,3),(2,3)\}, I(Q)=\{2,3\}$$

x=3, y=?

$$\forall x \exists y P(x, f(y)) \land Q(a)$$

 $P(3,?) \land Q(3)$
 $f \land v \therefore f$

$$\therefore I(F) = \forall x \exists y P(x, f(y)) \land Q(a) = F$$

Lógica Predicados: modelo

Una interpretación I es un **modelo** para una fórmula F si I(F) = V

Una formula $\mathbb F$ es **valida** si y solo toda interpretación $\mathbb I$ es un modelo de $\mathbb F$

Lógica Predicados: satisfacibilidad

- Satisfacible: Una formula $\mathbb F$ es satisfacible si existe alguna interpretación $\mathbb I$ que sea modelo de $\mathbb F$
- Insatisfacible: Una formula F es insatisfacible si no existe ninguna interpretación I que sea modelo de F

Práctica 3