Lab 1sim

Sim 1 a)

Figure 1 – NMOS CS Amplifier I_D vs. V_{GS} Plot and Derivative

b) When $I_D = 500$ uA, $V_{GS} = 2.674$ V. This V_{GS} value corresponds with $g_m = 753.231$ uS from the derivative plot. The following is a hand calculation of transconductance.

$$g_m = \frac{2I_D}{V_{GS}-V_t} = \frac{2(500~\mu A)}{2.674~V-1.4~V} = \textbf{784.929}~\mu \textbf{S}$$
 The hand calculated value of g_m above is reasonably close to the value found in the plot.

The value of g_m from the DC operating point simulation is **784 uS**, which is also close to the values above.

Sim 2

a)

Figure 2 - NMOS CS Amplifier I_D vs. V_{DS} Plot and Derivative, V_{GS} = 0 V For the entire range of V_{DS} (0 V \leq V_{DS} \leq 5 V), the NMOS is in cutoff region for V_{GS} = 0 V.

Figure 3 - NMOS CS Amplifier I_D vs. V_{DS} Plot and Derivative, V_{GS} = 2.5 V From V_{DS} = 0 to 1.2 V, the NMOS is in triode region. From V_{DS} = 1.2 to 5 V, the NMOS is in saturation region.

Figure 4 - NMOS CS Amplifier I_D vs. V_{DS} Plot and Derivative, V_{GS} = 5 V

From V_{DS} = 0 to 3.7 V, the NMOS is in triode region. From V_{DS} = 3.7 to 5 V, the NMOS is in saturation region.

b) For $V_{GS} = 0$ V and $V_{DS} = 3.5$ V, g_{ds} is graphically found to be **0 uS**. This g_{ds} value produces the following λ .

$$g_{ds} = \frac{1}{r_o} = \lambda I_D \to \lambda = \frac{g_{ds}}{I_D} = \frac{0 \text{ S}}{10 \text{ fA}} = 0 \text{ V}^{-1}$$

For V_{GS} = 2.5 V and V_{DS} = 3.5 V, g_{ds} is graphically found to be **1.87276 uS**. This g_{ds} value produces the following
$$\lambda$$
.
$$g_{ds} = \frac{1}{r_o} = \lambda I_D \rightarrow \lambda = \frac{g_{ds}}{I_D} = \frac{1.87276 \ \mu S}{369.466 \ \mu A} = 5.069 \ m(V^{-1})$$

For V_{GS} = 5 V and V_{DS} = 3.5 V, g_{ds} is graphically found to be **111.67 uS**. This g_{ds} value produces the following
$$\lambda$$
.
$$g_{ds} = \frac{1}{r_o} = \lambda I_D \rightarrow \lambda = \frac{g_{ds}}{I_D} = \frac{111.67 \text{ uS}}{3954.2 \text{ uA}} = 28.240 \text{ m(V}^{-1})$$

The valid λ value from the above calculations is **5**. **069** $m(V^{-1})$ because the NMOS is operating in saturation. From the DC operating point simulation, the g_{ds} values for $V_{GS} = 0 \text{ V}$, 2.5 V, and 5 V are **0 uS**, **1.88 uS**, and **81.19 uS**, respectively. These values are close to the values found graphically except for the case in which $V_{GS} = 5 \text{ V}$. This inconsistency may be because 3.5 V is very close to the edge of triode and saturation in the $V_{GS} = 5$ V case.

Sim 3

Lab 1sim

a)

Figure 5 – PMOS CS Amplifier I_D vs. V_{SG} Plot and Derivative

b) When I_D = 500 uA, V_{SG} = 2.25733 V. This V_{GS} value corresponds with g_m = **762.524 uS**. The following is a hand calculation of transconductance.

$$g_m = \frac{2I_D}{V_{SG} - |V_t|} = \frac{2(500 \,\mu A)}{2.25733 \,V - 1.0 \,V} = 795.336 \,\mu S$$

The hand calculated value of g_m above is reasonably close to the value found in the plot.

The value of g_m from the DC operating point simulation is **794.1 uS**, which is also close to the values above.

<u>Sim 4</u>

a)

Figure 6 - PMOS CS Amplifier I_D vs. V_{SD} Plot and Derivative, V_{SG} = 0 V For the entire range of V_{SD} (0 V \leq V_{SD} \leq 5 V), the PMOS is in cutoff region for V_{SG} = 0 V.

Figure 7 - PMOS CS Amplifier I_D vs. V_{SD} Plot and Derivative, V_{SG} = 2.5 V From V_{SD} = 0 to 1.6 V, the PMOS is in triode region. From V_{SD} = 1.6 to 5 V, the PMOS is in saturation region.

Figure 8 - PMOS CS Amplifier I_D vs. V_{SD} Plot and Derivative, V_{SG} = 5 V

From $V_{SD} = 0$ to 4.1 V, the PMOS is in triode region. From $V_{SD} = 4.1$ to 5 V, the PMOS is in saturation region.

b) For $V_{SG} = 0$ V and $V_{SD} = 3.5$ V, g_{sd} is graphically found to be **0 uS**. This g_{ds} value produces the following λ .

$$g_{sd} = \frac{1}{r_o} = \lambda I_D \rightarrow \lambda = \frac{g_{ds}}{I_D} = \frac{0 \ S}{10 \ fA} = 0 \ V^{-1}$$
 For V_{SG} = 2.5 V and V_{SD} = 3.5 V, g_{sd} is graphically found to be **7.241013 uS**. This g_{ds} value produces the following λ .

$$g_{sd} = \frac{1}{r_o} = \lambda I_D \rightarrow \lambda = \frac{g_{ds}}{I_D} = \frac{7.241013~\mu S}{699.4819~\mu A} = 10.352~m(V^{-1})$$
 For V_{SG} = 5 V and V_{SD} = 3.5 V, g_{sd} is graphically found to be **392.302 uS**. This g_{ds} value produces the following λ .

$$g_{sd} = \frac{1}{r_o} = \lambda I_D \rightarrow \lambda = \frac{g_{ds}}{I_D} = \frac{392.302 \text{ uS}}{4896.37 \text{ uA}} = 80.121 \text{ m(V}^{-1})$$

 $g_{sd} = \frac{1}{r_o} = \lambda I_D \rightarrow \lambda = \frac{g_{ds}}{I_D} = \frac{392.302~uS}{4896.37~uA} = 80.121~m(V^{-1})$ The valid λ value from the above calculations is ${\bf 10.352}~m(V^{-1})$ because the PMOS is operating in saturation. From the DC operating point simulation, the g_{ds} values for V_{GS} = 0 V, 2.5 V, and 5 V are **0 uS**, **7.249 uS**, and **361.6 uS**, respectively. These values are close to the values found graphically.