Mathematik in Medien und Informatik

Zahlen und Rechenbereiche (algebraische Strukturen)

2

Prof. Dr. Thomas Schneider

Stand: 05.10.2022

Inhalt

- 1 Vorbemerkungen zu Rechenbereichen
- 2 Gruppen
 - Gruppentafeln
 - Zyklische Gruppen und Erzeuger
- 3 Ringe und Körper
 - lacksquare Der Körper \mathbb{F}_2

0/28

Vorbemerkungen

Zahlenmengen und Rechenbereiche

Sie kennen die folgenden Rechenbereiche:

$$\mathbb{N} = \{0, 1, 2, 3, \dots\}$$

Menge der natürlichen Zahlen

$$\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\}$$

Menge der ganzen Zahlen

$$\mathbb{Q} = \left\{ rac{
ho}{q} \mid
ho \in \mathbb{Z},
ho \in \mathbb{Z} \setminus \{0\}
ight\}$$

Menge der rationalen Zahlen

$$\mathbb{R} = \mathbb{Q} \cup \left\{\sqrt{2}, \sqrt[3]{7}, \dots, e, \pi, \dots\right\}$$

Menge der reellen Zahlen.

Bemerkung

 \mathbb{R} enthält alle rationalen und (ungeheuer viele) irrationale Zahlen.

Vorbemerkungen

Rechenoperationen in Zahlenmengen

Erinnerung

- Welche Rechenoperationen sind in $\mathbb N$ bzw. $\mathbb Z$ bzw. $\mathbb Q$ (oder $\mathbb R$) sind möglich, ohne den jeweiligen Rechenbereich zu verlassen?
- Welche Rechengesetze gelten hierbei?

Vorbemerkungen Rechenoperationen in Zahlenmengen

Rechen- bereich	Rechen- operationen	Rechengesetze / Beobachtungen
N	+, •	2 + 0 = 2 = 0 + 2 $3 \cdot 1 = 3 = 1 \cdot 3$
\mathbb{Z}	+, ·, -	2+(-2)=0=-2+2
$\mathbb Q$	+, ·, -, -1	$\left(\frac{2}{3}\right)^{-1} = \frac{3}{2} \leftrightarrow \frac{2}{3} \cdot \frac{3}{2} = 1 = \frac{3}{2} \cdot \frac{2}{3}$
\mathbb{R}	+, ·, -, -1	$\left(\sqrt{2}\right)^{-1} = \frac{1}{\sqrt{2}}$
$\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}$		$(2+3)+5=2+(3+5) \ (3\cdot 4)\cdot 5=3\cdot (4\cdot 5)$
$\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}$		$3 \cdot (4+5) = 3 \cdot 4 + 3 \cdot 5$ $(4+5) \cdot 3 = 4 \cdot 3 + 5 \cdot 3$
$\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}$		$2+5=5+2 \\ 3\cdot 4=4\cdot 3$

Vorbemerkungen

Rechenoperationen in Zahlenmengen

Eigenschaften bekannter Rechenbereiche

Die Addition bzw. Multiplikation in \mathbb{N} (und auch in \mathbb{Z},\mathbb{Q} und \mathbb{R}) haben die folgenden Eigenschaften:

• Für jede beliebige Kombination a, b, c gilt:

$$(a + b) + c = a + (b + c)$$
 und $(a \cdot b) \cdot c = a \cdot (b \cdot c)$.

Diese Eigenschaft heißt **Assoziativität** der Addition bzw. der Multiplikation. Man sagt auch:

- Es gilt das Assoziativgesetz für die Addition bzw. für die Multiplikation.
- Die Addition ist assoziativ, die Multiplikation ist assoziativ.
- Für jede beliebige natürliche Zahl *n* gilt außerdem:

$$n + 0 = n = 0 + n$$
 sowie $n \cdot 1 = n = 1 \cdot n$.

Man sagt:

0 ist das Neutralelement bzgl. der Addition,

1 ist das Neutralelement bzgl. der Multiplikation.

Vorbemerkungen

Rechenoperationen in Zahlenmengen

Eigenschaften bekannter Rechenbereiche

• In \mathbb{Z} gibt es zu jeder Zahl z eine "Gegenzahl" -z mit

$$z + (-z) = 0 = (-z) + z$$
.

• Das hierzu Analoge gilt für die Multiplikation in \mathbb{Z} **nicht**; für die ganze Zahl 2 etwa gibt es **keine** ganze Zahl a mit $2 \cdot a = 1$.

Dagegen gibt es in Q eine solche multiplikative Inverse a von 2, nämlich

$$a=\frac{1}{2}$$
.

• Für jede Zahl $x \in \mathbb{Q}$, außer der Null, gibt es einen sogenannten **Kehrbruch** x' mit

$$x \cdot x' = 1 = x' \cdot x$$
.

Wir schreiben anstelle von x' meistens $\frac{1}{x}$ oder x^{-1} .

Typen von Rechenbereichen

Gruppen

Wir nehmen die voranstehenden Beobachtungen zum Anlass für die nachstehenden Definitionen:

Definition:

Auf einer Menge G sei eine (binäre) Verknüpfung * erklärt. Die Struktur (G, *) heißt **Gruppe**, wenn Folgendes gilt:

- (a*b)*c = a*(b*c) für alle $a,b,c \in G$ (Assoziativität).
- **2** Es gibt ein **Neutralelement** $e \in G$ mit

$$a*e = a = e*a$$
 für alle $a \in G$.

3 Zu jedem Element $a \in G$ existiert ein inverses Element a^{-1} mit

$$a * a^{-1} = e = a^{-1} * a$$
.

Bemerkung:

Zur Bezeichnung einer Gruppe mit Verknüpfung * und Neutralelement e sind die Bezeichnungen G oder (G, *) oder (G, *) möglich.

Typen von Rechenbereichen / algebraischen Strukturen Gruppen

Beispiele:

Ist $(\mathbb{N}, +)$ eine Gruppe? Nein, denn (3) ist

nicht erfüllt.

Ist $(\mathbb{Z}, +)$ eine Gruppe? Ja, denn (1) - (3)

sind erfüllt.

Ist (\mathbb{Z}, \cdot) eine Gruppe? Nein, denn (3) ist

nicht erfüllt.

Ist (\mathbb{Q}, \cdot) eine Gruppe? Nein, denn 0 hat

kein inverses Ele-

ment.

Ist $(\mathbb{Q} \setminus \{0\}, \cdot)$ eine Gruppe? Ja, denn (1) - (3)

sind erfüllt.

Typen von Rechenbereichen / algebraischen Strukturen

Noch mehr Definitionen ©

Definition:

(G, *) heißt **Halbgruppe**, wenn die Bedingung (1) aus Def. 6 (Assoziativität) erfüllt ist.

(G, *) heißt **Monoid**, wenn die Bedingung (1) und (2) aus Def. 6 erfüllt ist (Assoziativität und Neutralelement).

Eine Gruppe (G, *) heißt **kommutative Gruppe** (kGp), wenn a * b = b * a für alle $a, b \in G$ gilt (Kommutativität).

Beispiele:

- $(\mathbb{N}, +, 0)$ ist ein Monoid.
- $(\mathbb{Z}, +, 0)$ ist eine kommutative Gruppe.

Bauweise

Ein Werkzeug um Gruppen darzustellen sind Verknüpfungstafeln (bzw. Gruppentafeln). Die Bauweise einer Gruppentafel wird anhand einer Gruppe mit den Elementen *e*, *a*, *b*, *c* und Verknüpfung * anhand des folgenden Schemas illustriert:

*	е	а	b	С
e				
а				a * c
b				
С		<i>c</i> * <i>a</i>		

Bauweise

Die Verknüpfungstafeln von Gruppen sind nicht beliebig, sondern gehorchen dem (von uns so genannten)

Sudoku-Prinzip

In jeder Zeile und in jeder Spalte der Verknüpfungstafel einer Gruppe *G* steht jedes Element von *G* genau einmal.

Begründung: Im Folgenden wird diese Aussage in vier Teilaussagen zerlegt, die wir separat begründen.

"Sudoku-Prinzip"

Teil 1: In jeder Zeile einer Gruppentafel steht jedes Element höchstens einmal.

Begründung:

*	 а	b	
X	x * a	x * b	

Würde in einer Zeile *x* in zwei voneinander verschiedenen Spalten *a* und *b* das gleiche Element stehen, so ergäbe sich daraus:

$$x*a = x*b$$
 $\downarrow x^{-1}*$
 $x^{-1}*(x*a) = x^{-1}*(x*b)$ \downarrow Assoziativgesetz
 $(x^{-1}*x)*a = (x^{-1}*x)*b$ $\downarrow x^{-1}*x = e$
 $e*a = e*b$
 $\Rightarrow a = b$,

im Widerspruch zur Annahme, dass a und b voneinander verschieden sind.

"Sudoku-Prinzip"

Teil 2: In jeder Zeile einer Gruppentafel steht jedes Element mindestens einmal.

Es sei g ein beliebiges Gruppenelement

*	 а	
X	<i>x</i> * <i>a</i>	

Zu zeigen ist: Es gibt eine Spalte *a*, in der das beliebige Gruppenelement *g* steht. Wir lösen die Gleichung

$$x*a = g$$
 $\downarrow x^{-1}*$
 $x^{-1}*(x*a) = x^{-1}*g$ $\downarrow x^{-1}*$
 $a = x^{-1}*g$ \checkmark Es gibt eine Lösung!

Wir stellen fest, dass das Element g in der Zeile x und der Spalte a steht, wobei $a = x^{-1} * g$ zu wählen ist.

"Sudoku-Prinzip"

Teil 3: In jeder Spalte einer Gruppentafel steht jedes Element höchstens einmal.

Teil 4: In jeder Spalte einer Gruppentafel steht jedes Element mindestens einmal.

Begründung entsprechend der vorherigen Begründungen für Zeilen, durch Vertauschung von Zeilen und Spaltenbezeichnungen.

→ Wir haben gezeigt, dass jedes Gruppeneelement mindestens einmal, aber auch höchstens einmal in jeder Zeile und jeder Spalte der Gruppentafel vorkommt. Daraus folgt, dass jedes Gruppenelement wie beim Sudoku-Spiel genau einmal darin vorkommt.

der kleinsten Gruppen

Wir untersuchen nun, wie die Verknüpfungstafeln für (einige kleine) endliche Gruppen aussehen (können). Im Folgenden bezeichnet *n* die sogenannte *Gruppenordnung*, d.h. die Anzahl der Elemente der Gruppe.

n=1

*	e
e	е

n=2

*	e	Z
e		
Z		

 \sim

*	e	Z
e	e	Z
Z	Z	

*	e	Z
е	e	Z
Ζ	Z	е

der kleinsten Gruppen

Beispiel einer Interpretation

Man kann sich die Gruppe mit zwei Elementen realisiert denken, indem man e mit der Menge der geraden Zahlen (g) und z mit der Menge der ungeraden Zahlen (*u*) identifiziert.

$$egin{array}{c} e
ightarrow g \
ightarrow
ightarrow
ightarrow u \ *
ightarrow + \end{array}$$

$$egin{array}{cccccc} e
ightarrow g & + & g & u \ z
ightarrow u & g & g & u \ *
ightarrow + & u & u & g \end{array}$$

der Gruppen mit drei bzw. vier Elementen

Füllen Sie die Gruppentafel für n = 3 sowie n = 4 selbst aus.

n=3

*	е	X	У
e			
X			
У			

n=4

*	e	а	b	С
e				
а				
b				
С				

der Gruppen mit drei Elementen

Im Falle n=3 gibt es nach Festlegung der Reihenfolge e,x,y nur eine einzige Verknüpfungstafel:

n=3

e	X	У
e	X	y
X	У	e
У	е	X
	е	e x x y

der Gruppen mit vier Elementen

Im Falle n = 4 gibt es vier unterschiedliche Gruppentafeln.

1

*	е	а	b	С
е	е	а	b	С
а	а	b	С	е
b	b	С	е	а
С	С	е	а	b

 $\mathbf{2}$

*	e	а	b	C
e	e	а	b	С
а	а	С	е	b
b	b	e	С	а
C	С	b	а	е

n=4

3

*	е	а	b	С
е	е	а	b	С
а	а	е	С	b
b	b	С	а	е
С	С	b	e	а

4

*	е	а	b	С
е	е	а	b	С
а	а	е	С	b
b	b	С	е	а
С	С	b	а	е

der Gruppen mit vier Elementen

Wir werden im Folgenden sehen, dass die ersten drei Gruppentafeln im Grunde gleich sind, während die vierte Tafel andere Eigenschaften hat.

Zum Beispiel: 2

)					
	*	e	a	b	С
	e	е	a	b	C
	а	а	C	е	b
	b	b	е	С	а
	С	С	b	а	е

Jedem Element ist ein Winkel zugewiesen. Durch Addition der Winkel zweier Elemente erhält man das Ergebnis derer Verknüpfung.

z. B.:
$$e = 0^{\circ}, a = 90^{\circ}, e * a \rightarrow 0^{\circ} + 90^{\circ} = 90^{\circ} = a \rightarrow a * e = a$$

oder:
$$c = 180^\circ$$
, $c * c \rightarrow 180^\circ + 180^\circ = 360^\circ = 0^\circ = e \rightarrow c * c = e$

der Gruppen mit vier Elementen

Eine solche Abbildung auf den Kreis ist für die ersten drei Gruppentafeln von n = 4 möglich.

1

*	е	а	b	С
е	е	а	b	С
а	а	b	С	е
b	b	С	е	а
С	С	е	а	b

2)

*	е	а	b	С
е	е	а	b	С
а	а	С	е	b
b	b	е	С	а
С	С	b	а	е

3

*	e	а	b	С
e	e	а	b	С
а	а	е	С	b
b	b	С	а	е
С	С	b	е	а

Zyklische Gruppen und Erzeuger

Um das bisher Gesagte präzise zu machen, benötigen wir die folgende Definition:

Definition:

1 Es sei G eine Gruppe, $g \in G$. Die Menge

$$\langle g \rangle := \{ e, g, g * g, g * g * g, \ldots \} \cup \{ g^{-1}, g^{-1} * g^{-1}, \ldots \}$$

heißt (Gruppen-)Erzeugnis von g.

- 2 Falls das Erzeugnis eines Elementes g gleich der ganzen Gruppe G ist (falls also $\langle g \rangle = G$ gilt), so heißt g Erzeuger von G.
- 3 Falls G mindestens einen Erzeuger besitzt, so heißt G zyklische Gruppe.

Beispiel:

 $(\mathbb{Z}, +)$ ist eine zyklische Gruppe mit Erzeugern 1 und -1.

Zyklische Gruppen und Erzeuger

Satz:

Falls eine Gruppe G endlich viele Elemente hat, so gilt für das Erzeugnis eines jeden Elements $g \in G$:

$$\langle g \rangle = \{ e, g, g * g, g * g * g, \ldots \}$$

Beispiel:

Jede der auf Folie 20 angegebenen Gruppen der Ordnung n=4 ist zyklisch. So hat z.B. die unter ① gegebene Gruppe den Erzeuger a. Dagegen ist die auf Folie 18 zuletzt angegebene Gruppe der Ordnung n=4 nicht zyklisch, denn:

$$\langle e \rangle = \{e\}, \ \langle a \rangle = \{e, a\}, \ \langle b \rangle = \{e, b\}, \ \langle c \rangle = \{e, c\}$$

Weitere algebraische Strukturen

Ringe

Definition:

Auf einer Menge R seien zwei Verknüpfungen + und \cdot erklärt, und es sei $0 \in R$, $1 \in R$, $0 \ne 1$.

Es gelte:

- \bullet (R, +, 0) ist eine kommutative Gruppe.
- $(R, \cdot, 1)$ ist ein Monoid.
- 3 Für alle $a, b, c \in R$ gilt:

$$(a+b)\cdot c = a\cdot c + b\cdot c$$

$$a \cdot (b + c) = a \cdot b + a \cdot c$$

Dann heißt $(R, +, 0, \cdot, 1)$ ein **Ring** (mit 1).

Weitere algebraische Strukturen

Ringe

Bemerkungen:

- 1 In Punkt (3) der vorstehenden Definition wird die sogenannte Distributivität gefordert.
- 2 Da wir nicht (generell) davon ausgehen können, dass die Multiplikation in einem gegebenen Ring kommutativ ist, benötigen wir tatsächlich beide Distributivgesetze.

Beispiele für Ringe:

- Die Menge der ganzen Zahlen $(\mathbb{Z}, +, 0, \cdot, 1)$.
- Die Menge der Restklassen modulo n (vgl. die Übungen).
- Die Menge der $n \times n$ -Matrizen (siehe Kapitel 6).

Weitere algebraische Strukturen

Körper

Definition:

- 1 Ein Ring $(R, +, 0, \cdot, 1)$ heißt **Körper** (engl. *field*), wenn $(R \setminus \{0\}, \cdot, 1)$ eine Gruppe ist.
- 2 Ein Körper heißt **kommutativer** Körper, wenn die multiplikative Struktur (Gruppe) *kommutativ* ist.

Beispiel:

 \mathbb{Q} und \mathbb{R} sind kommutative Körper

Bemerkungen:

- Alle endlichen K\u00f6rper sind kommutativ.

Der Körper \mathbb{F}_2

Additive Struktur

Der Körper \mathbb{F}_2 enthält die Elemente 0 und 1. Seine additive Struktur ist eine Gruppe mit 2 Elementen (vgl. Folie 15):

$$e \rightarrow 0$$
 $z \rightarrow 1$
 $z \rightarrow +$

Der Körper F₂

Additive Struktur von \mathbb{F}_2 :

Die multiplikative Struktur ist wie folgt:

$$\mathbb{F}_2 = \{\{0,1\},+,0,\cdot,1\}$$

Der Körper F₂

Bemerkungen:

- Addition und Multiplikation in \mathbb{F}_2 verhalten sich wie die entsprechenden Operationen auf den Klassen der geraden bzw. ungeraden ganzen Zahlen.
- Die Multiplikationstafel
 0
 0
 0
 0
 0
 0
 1
 0
 1
- Für **jeden** Körper K bildet **nicht** (K, \cdot) , sondern

$$K^* := (K \setminus \{0\}, \, \cdot)$$

eine Gruppe.

