Università degli Studi Roma Tre Corso di Laurea in Matematica, a.a. 2010/2011 AL210 - Algebra 2 Esercitazione 4 (17 Novembre 2010)

Esercizio 1. Verificare che l'anello $2\mathbb{Z}_{12}$ non è unitario, ma il suo sottoanello $4\mathbb{Z}_{12}$ lo è.

Soluzione: $2\mathbb{Z}_{12} = \{\overline{0}, \overline{2}, \overline{4}, \overline{6}, \overline{8}, \overline{10}\}$. Verifichiamo che nessuno degli elementi di $2\mathbb{Z}_{12}$ è un'unità. Chiaramente $\overline{0} \cdot \overline{x} = \overline{0}$ per ogni $\overline{x} \in 2\mathbb{Z}_{12}$; per gli altri elementi si ha:

 $\overline{2} \cdot \overline{4} = \overline{8} \Rightarrow \overline{2}, \overline{4} \text{ non sono unità;}$

 $\overline{6} \cdot \overline{8} = \overline{0} \Rightarrow \overline{6}, \overline{8} \text{ non sono unità;}$

 $\overline{10}\cdot\overline{2}=\overline{8}\Rightarrow\overline{10}$ non è unità.

Sia ora $4\mathbb{Z}_{12} = \{\overline{0}, \overline{4}, \overline{8}\}$. Verifichiamo che $\overline{4}$ è l'unità di $4\mathbb{Z}_{12}$:

 $\overline{4} \cdot \overline{4} = \overline{4}$;

 $\overline{4} \cdot \overline{8} = \overline{8};$

 $\overline{4} \cdot \overline{0} = \overline{0}.$

Dunque $4\mathbb{Z}_{12}$ è unitario e la sua unità è $\overline{4}$.

Esercizio 2. Sia $d \in \mathbb{Z}$. Mostrare che l'insieme:

$$\mathbb{Z}[\sqrt{d}] := \left\{ a + b\sqrt{d} \, | \, a, b \in \mathbb{Z} \, \right\}$$

è un sottoanello di \mathbb{C} .

Determinare poi il gruppo degli elementi invertibili di $\mathbb{Z}[i]$ e di $\mathbb{Z}[i\sqrt{3}]$.

Soluzione: Dobbiamo verificare che $\mathbb{Z}[\sqrt{d}]$ è un sottogruppo (abeliano) di \mathbb{C} , chiuso rispetto al prodotto e con unità.

Siano $x := a + \sqrt{db}$ e $y := a' + \sqrt{db'}$ due elementi di $\mathbb{Z}[\sqrt{d}]$. Risulta:

$$x - y = (a + \sqrt{d}b) - (a' + \sqrt{d}b') = (a - a') + \sqrt{d}(b - b') \in \mathbb{Z}[\sqrt{d}]$$
$$x \cdot y = (a + \sqrt{d}b) \cdot (a' + \sqrt{d}b') = (aa' - dbb') + \sqrt{d}(ab' + a'b) \in \mathbb{Z}[\sqrt{d}].$$

Inoltre $1 = 1 + 0 \cdot \sqrt{d} \in \mathbb{Z}[\sqrt{d}]$ e $\mathbb{Z}[\sqrt{d}]$ è un sottoanello di \mathbb{C} .

Per quanto appena dimostrato sappiamo che $\mathbb{Z}[\sqrt{d}]$ è un sottoanello del campo \mathbb{C} , quindi ogni elemento di $\mathbb{Z}[\sqrt{d}]$ ha un inverso in \mathbb{C} . Gli elementi invertibili di $\mathbb{Z}[\sqrt{d}]$ saranno tutti e soli gli $x = a + \sqrt{d}b \in \mathbb{Z}[\sqrt{d}]$ tali che $x^{-1} \in \mathbb{Z}[\sqrt{d}]$ (dove $x^{-1} \in \mathbb{C}$).

Denotiamo con \overline{x} il coniugato di x. Allora:

$$x^{-1} = \frac{\overline{x}}{a^2 - db^2}.$$

Sia d=-1, si verifica facilmente che $\frac{a}{a^2+b^2}$ e $\frac{b}{a^2+b^2}$ sono interi se e soltanto se $a=\pm 1$ e b=0 oppure a=0 e $b=\pm 1$. Gli elementi invertibili di $\mathbb{Z}[i]$ sono quindi 4:

$$1, -1, i, -i$$

Allo stesso modo si verifica che $\frac{a}{a^2+3b^2}$ e $\frac{b}{a^2+3b^2}$ sono entrambi interi se e solo se $a=\pm 1$ e b=0. Quindi gli elementi invertibili di $\mathbb{Z}[i\sqrt{3}]$ sono 1 e -1.

Esercizio 3. Sia S un insieme e $\mathcal{P}(S)$ il suo insieme delle parti. Si assuma noto che $(\mathcal{P}(S), \Delta, \cap)$ è un anello commutativo e con unità S.

Sia $X \subseteq S$. Verificare che $\mathcal{P}(X) = X\mathcal{P}(S)$ è un ideale di $\mathcal{P}(S)$.

Soluzione: $\mathcal{P}(X) = \{A \mid A \subseteq X\} = \{B \cap X \mid B \subseteq S\} = X\mathcal{P}(S)$. Il fatto che $(\mathcal{P}(X), \Delta)$ sia un sottogruppo abeliano di $(\mathcal{P}(S), \Delta)$ segue facilmente dalla definizione di Δ e si ha:

- Elemento neutro $\emptyset \in \mathcal{P}(X)$: $A\Delta\emptyset = (A \cup \emptyset) \setminus (A \cap \emptyset) = A$ per ogni $A \in \mathcal{P}(X)$;
- Opposto di $A \in \mathcal{P}(X)$ è A stesso: $A\Delta A = (A \cup A) \setminus (A \cap A) = \emptyset$.

Dobbiamo far vedere che per ogni $B \in \mathcal{P}(S)$ si ha $B\mathcal{P}(X) \subseteq \mathcal{P}(X)$. $B\mathcal{P}(X) = \{B \cap A; \forall A \in \mathcal{P}(X)\}$; ed essendo $B \cap A \subseteq X$ per ogni $A \in \mathcal{P}(X)$ si ha che $B\mathcal{P}(X) \subseteq \mathcal{P}(X)$.

Esercizio 4. Provare che un anello A è privo di divisori destri dello zero se, e solo se, è privo di divisori sinistri dello zero.

Soluzione: Supponiamo A privo di divisori sinistri dello zero. Sia $a \in A$ non nullo, allora se $\exists b \in A$ tale che ba = 0 si deve avere b = 0, altrimenti b sarebbe un divisore sinistro dello zero. Perciò A è privo di divisori destri dello zero. Il viceversa è analogo.

Esercizio 5. Siano I_1 , I_2 due ideali sinistri (risp. destri) di un anello A. Provare che $I_1 + I_2 := \{i_1 + i_2 \mid i_1 \in I_1, i_2 \in I_2\}$ è un ideale sinistro (risp. destro) di A.

Soluzione: Prima di tutto verifichiamo che $I_1 + I_2$ è un sottogruppo di (A, +): siccome I_1 e I_2 sono non vuoti anche $I_1 + I_2$ è non vuoto; siano poi $i_1 + i_2, j_1 + j_2 \in I_1 + I_2$, allora $i_1 + i_2 - j_1 - j_2 = i_1 - j_1 + i_2 - j_2$, con $i_1 - j_1 \in I_1$ e $i_2 - j_2 \in I_2$ (dato che I_1 e I_2 , per def. di ideale , sono sottogruppi di (A, +)), quindi $i_1 + i_2 - j_1 - j_2 \in I_1 + I_2$.

Verifichiamo poi che $\forall a \in A, \forall i_1 + i_2 \in I_1 + I_2$ si ha $a(i_1 + i_2) \in I_1 + I_2$ (risp. $(i_1 + i_2)a \in I_1 + I_2$). Infatti $a(i_1 + i_2) = ai_1 + ai_2 \in I_1 + I_2$ perché I_1 e I_2 sono ideali sinistri (risp. $(i_1 + i_2)a = i_1a + i_2b \in I_1 + I_2$ perché I_1 e I_2 sono due ideali destri)

Esercizio 6. Siano I un ideale bilatero e B un sottoanello di un anello A. Provare che $I+B:=\{x+b:x\in I,b\in B\}$ è un sottoanello di A.

Soluzione: Per dimostrare che I+B è un sottogruppo di (A,+) si procede come nell'esercizio precedente.

Facciamo vedere che I + B è stabile per prodotto. Siano $(x + b), (x_1 + b_1) \in I + B$, si ha $(x + b)(x_1 + b_1) = xx_1 + xb_1 + x_1b + bb_1 = (xx_1 + xb_1 + x_1b) + bb_1$,

dove $(xx_1 + xb_1 + x_1b) \in I$, essendo I un ideale bilatero e $bb_1 \in B$. Dunque $(x+b)(x_1+b_1) \in I+B$.

Se A è un anello con unità 1, è immediato osservare che $1 = 0 + 1 \in I + B$.

Esercizio 7. Siano $S \neq \emptyset$ un insieme ed $(A,+,\cdot)$ un anello. Si definiscano sull'insieme:

$$A^S := \{ f : S \longrightarrow A : f \text{ applicazione} \}$$

le operazioni di somma e prodotto puntuali:

$$(f+g)(x) := f(x) + g(x), (fg)(x) := f(x)g(x), f, g \in A^{S}.$$

Si dimostri che:

- (a) A^S con le operazioni sopra definite è un anello.
- (b) Se A è unitario allora A^S è unitario.
- (c) Se A è commutativo allora A^S è commutativo.

Fornire un esempio in cui A è un dominio d'integrità, ma A^S non è integro.

Soluzione: La verifiche per i punti (a), (b) e (c) sono semplici e vengono lasciate per esercizio.

Innanzitutto osserviamo che $f \in A^S$, f diversa dall'applicazione nulla, è un divisore dello zero in A^S se esiste un'applicazione $g \in A^S$, diversa dall'applicazione nulla, tale che, per ogni $x \in S$ (fg)(x) = f(x)g(x) = 0.

Sia $A := \mathbb{Z}$, $S := \{0, 1\}$, allora f tale che f(1) = 0 e f(2) = 557 è un divisore dello zero, infatti scegliendo ad esempio $g \in A^S$ con g(1) = 1 e g(2) = 0, si ha $(fg)(1) = 0 \cdot 1 = 0$ e $(fg)(2) = 557 \cdot 0 = 0$.