Introduction to Rotorcraft Control Systems

CONTROL Y PROGRAMACIÓN DE ROBOTS

Grado en Electrónica, Robótica y Mecatrónica

Outline

- 1. Introduction
- 2. Control Fundamentals applied to RPAS.
- 3. Stabilization Control.
- 4. Path Tracking Control.

Problem

Introduction

QuadRotor helicopter

- Underactuated system
 - 4 actuators
 - 6 DOF
 - rotation (ϕ, θ, ψ)
 - translation (x, y, z)
- Variable rotor speeds
- Decoupled inputs
- Control strategies
 - Cascade structure
 - Augmented state-space

Introduction

Helicpoter dynamics

- Simplified equations of motion → center of mass congruent with the center of rotation
- Separation in 2 interconected subsystems
 - Rotational subsytem

$$\mathcal{J}(oldsymbol{\eta}) \ddot{oldsymbol{\eta}} + \mathsf{C}(oldsymbol{\eta}, \dot{oldsymbol{\eta}}) \dot{oldsymbol{\eta}} = oldsymbol{ au_{oldsymbol{\eta}}}$$

Translational subsytem

$$m\ddot{\xi} + mg\mathbf{e}_3 = \mathbf{f}_{\xi}$$

AR_Drone Control

Quadrotor Control (Arducopter)

Control levels

Low level

- Speed control of motors. Speed sensor.
- Usually a PI or PID controller

Stabilization Control

- Navigation angles control. IMU sensor
- Height control of gravity center. Height sensor.

Translation in x-y plane

- Position control. GPS sensor
- Speed control of the angles. From IMU.

Path tracking control

Quadrotor Control (Arducopter)

Quadrotor Control

- Low level control
 - Speed control of motors
 - Usually a PI or PID controller

Quadrotor Control

- Stabilization control
 - Angles control (Roll, Picth, Yaw)
 - Thrust control (T)
 - Usually a PI or PID controller with cascade scheme o with realization taking into account the velocity measurement.

Quadrotor Control

- Altitude control
 - Angles control (Roll, Picth, Yaw)
 - Thrust control (T)
 - Z control

Quadrotor Control

- Path tracking control
 - Trajectory control in XYZ

Cascade Control

Cascade Control (single loop)

Traditional cascade block diagram

Conditions for Cascade Control

- There must be a clear relationship between the measured variables of the primary and secondary loops.
- 2. The secondary loop must have influence over the primary loop.
- 3. Response period of the primary loop has to be at least 4 times larger than the response period of the secondary loop.
- 4. The major disturbance to the system should act in the primary loop.
- 5. The primary loop should be able to have a large gain, Kc.

Cascade Control

CASCADE CONTROL PROS

Accounts for disturbances in the primary variable more quickly and hence control the primary variable more effectively.

Reduces the effects of dead time and phase lag time in the system

Can be combined with feed-forward control.

Integrated multiple sensor readings.

Improve dynamic performance and provide limits on the secondary variables

CASCADE CONTROL CONS

Cascade control makes the system more complex

Cascade control requires more equipment and instruments that will drive up the cost of the process

Tuning cascade controllers is more difficult as the set point change + more parameters

Control in X-Y plane

• Modelo de caja negra

Ref_Pitch
Ref_Roll
Vy
Y

Control in X-Y plane

Modelo identificado

PID controller

$$u(t) = K\left(e(t) + \frac{1}{T_i} \int_0^t e(t)dt + T_d \frac{de(t)}{dt}\right)$$

PID

• Parallel implementation

$$y(t) = Pe(t) + I \int_0^t e(t)dt + D\frac{de(t)}{dt}$$


```
evxk = RefVx - VelX;
Upvxk = Pvx*evxk;
Uivxk = Uivxk_1+Ivx*Ts*evxk_1;
Udvxk = Dvx*Nvx *(evxk- evxk_1)- Udvxk_1*(Nvx*Ts-1);
Uxk = Upvxk + Uivxk + Udvxk;
% % ANTI WIND-UP
if (Uxk>0.35)
 Uxk = 0.35;
 if (Uxk*evxk>0)
   Uivxk = Uivxk_1;
 end
if (Uxk<-0.35)
 Uxk = -0.35;
 if(Uxk*evxk>0)
   Uivxk = Uivxk_1;
 end
refPitch=Uxk;
% % ACTUALIZACIÓN DE VARIABLES
evxk 1=evxk
Uivxk_1=Uivxk;
Udvxk_1=Udvxk;
Uxk_1=Uxk
```

Matlab code for a discrete PID

$$Y = P + IT_s \frac{1}{z - 1} + D \frac{N}{1 + NT_s \frac{1}{z - 1}}$$

Tuning PIDs

- By heuristic rules. Matlab Tool.
- By location of poles and zeros. Root locus.
- Method of Chien, Hrones and Reswick
- By ITAE criterion

$$ITAE = \int_0^\infty t|e(t)|dt$$

$$K_{P} = \frac{0.965}{K} \cdot \left(\frac{\tau}{d}\right)^{0.855}, \quad T_{I} = \frac{\tau}{0.796 - 0.147 \cdot \left(\frac{d}{\tau}\right)}, \quad T_{D} = 0.308 \cdot \tau \left(\frac{d}{\tau}\right)^{0.929}$$