Assignment 11

AVVARU BHARAT

Download latex-tikz codes from

https://github.com/Bharat437/Matrix_Theory/tree/master/Assignment11

1 Problem

Let $\mathbf{A} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$ and let α_n and β_n denote the two eigenvalues of \mathbf{A}^n such that $|\alpha_n| \ge |\beta_n|$.

Then

- 1) $\alpha_n \to \infty$ as $n \to \infty$
- 2) $\beta_n \to 0$ as $n \to \infty$
- 3) β_n is positive if n is even.
- 4) β_n is negative if n is odd.

2 Solution

Given

$$\mathbf{A} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \tag{2.0.1}$$

Now lets find the eigenvalues of matrix **A**.

$$|\mathbf{A} - \lambda \mathbf{I}| = 0 \tag{2.0.2}$$

$$\implies \begin{vmatrix} 1 - \lambda & 1 \\ 1 & -\lambda \end{vmatrix} = 0 \tag{2.0.3}$$

$$\implies \lambda^2 - \lambda - 1 = 0 \tag{2.0.4}$$

On solving (2.0.4), we get 2 eigenvalues α_1 and β_1 such that we satisfy the given condition $|\alpha_1| \ge |\beta_1|$.

$$\implies \alpha_1 = \frac{1 + \sqrt{5}}{2} \quad \beta_1 = \frac{1 - \sqrt{5}}{2}$$
 (2.0.5)

From (2.0.5), we can say that $\alpha_1 > 1$ and $-1 < \beta_1 < 0$

We know that if eigenvalue of **A** is λ then eigenvalue of **A**ⁿ is λ ⁿ.

Therefore in this problem we can say that the eigenvalues α_n and β_n of \mathbf{A}^n are

$$\alpha_n = \alpha_1^n \tag{2.0.6}$$

$$\beta_n = \beta_1^n \tag{2.0.7}$$

Now we can conclude that

- 1) Since $\alpha_1 > 1$, from (2.0.6) we can say that $\alpha_n \to \infty$ as $n \to \infty$.
- 2) Since $|\beta_1| < 1$, from (2.0.7) we can say that $\beta_n \to 0$ as $n \to \infty$.
- 3) Since β_1 is negative because $-1 < \beta_1 < 0$, from (2.0.7) if n is even then β_n is positive. and also
- 4) If n is odd then β_n is negative.