Санкт-Петербургский политехнический университет имени Петра Великого

Институт прикладной математики и механики Высшая школа прикладной математики и физики

Интервальный анализ Отчёт по лабораторной работе №2

Выполнил:

Студент: Воротников А.А. Группа: 5030102/90201

Принял:

к. ф.-м. н., доцент Баженов А.Н.

Содержание

1	1100	становка задачи	2
2	Teo 2.1 2.2 2.3 2.4	рия Распознающий функционал	2 2 3 3
3	Pea	лизация	3
4	Pe3 4.1 4.2 4.3 4.4 4.5	ультаты ИСЛАУ Достижение разрешимости ИСЛАУ Корректировка правой части Корректировка левой части Управление положением максимума распознающего функционала	4 4 4 5 6
5	Обо	суждение	8
6	При 6.1 6.2	иложения Код программы	9 9
C	пис	сок иллюстраций	
	1 2 3 4 5 6 7 8	График mid системы	4 4 5 6 6 7 7 8 8

1 Постановка задачи

Дана ИСЛАУ

$$\begin{cases}
[0.5, 1.5] \cdot x_1 + [0.5, 2.5] \cdot x_2 = [3, 7] \\
x_1 + [-3, -1] \cdot x_2 = [-0.5, 0.5] \\
[0.9, 1.1] \cdot x_1 = [2.95, 3.45] \\
[0.9, 1.1] \cdot x_2 = [1.55, 2.05]
\end{cases} \tag{1}$$

Для нее необходимо провести вычисления и привести иллюстрации:

- Максимума распознающего функционала
- Достижения разрешимости ИСЛАУ за счет коррекции правой части
- Достижения разрешимости ИСЛАУ за счет коррекции матрицы
- Оценок вариабельности решения
- Управления положением максимума распознающего функционала за счет коррекции матрицы ИСЛАУ в целом
- Управления положением максимума распознающего функционала за счет коррекции матрицы ИСЛАУ построчно

2 Теория

2.1 Распознающий функционал

Распознающим называется функционал

$$\operatorname{Tol}(x) = \operatorname{Tol}(x, A, b) = \min_{1 \le i \le m} \left\{ b_i - \left| b_i - \sum_{j=1}^n a_{ij} x_j \right| \right\}$$
$$x \in \Xi_{\text{tol}} \Leftrightarrow \operatorname{Tol}(x) \ge 0$$

 $\mathrm{Tol}(x)$ - ограничен, вогнут. Он всегда достигает конечного максимума на R^n . Таким образом, найдя максимум данного функционала, можно судить о пустоте допускового множества решений ИСЛАУ. Если $\max_{x \in R^n} \mathrm{Tol}(x) \geq 0$, то допусковое множество не пусто. В противном случае $\Xi_{\mathrm{tol}} = .$ Обратные утверждения также верны.

2.2 Достижение разрешимости ИСЛАУ за счет коррекции правой части

Общая схема метода заключается в добавлении к каждой компоненте правой части ИСЛАУ величины $K \cdot \nu_i \cdot [-1,\ 1]$, где i - номер компоненты, ν_i - вес, задающий относительное расширение i-й компоненты, K - общий коэффициент расширения вектора b. В данной работе используются значение $\nu_i=1$ $\forall i=\overline{1,3}$. Подобрав K таким образом, чтобы выполнялось $K+\max_{x\in R^n}\mathrm{Tol}(x)\geq 0$, получим разрешимую систему с непустым допусковым множеством.

2.3 Достижение разрешимости ИСЛАУ за счет коррекции матрицы

Общая схема метода заключается в модификации исходной матрицы ИСЛАУ. Производим замену A на $A \ominus K \cdot N \cdot E$ где $N = \{\nu_i\}$ - матрица весов, K - общий коэффициент сужения A, E состоит из $[-e_{ij}, e_{ij}]$. При выполнении процедуры необходимо следить за тем, чтобы мы оставались в рамках IR.

При выполнении задания достижения разрешимости рекомендуется выполнять корректировку пропорционально координатам точки, в которой достигается максимум распознающего функционала.

При выполнении задания управления положением максимума распознающего функционала в случае коррекции матрицы в целом N - единичная матрица, в случае построчной - $N=\mathrm{diag}\{\nu_i\}$.

2.4 Оценки вариабельности решения

Для оценки вариабельности решений предлагается использовать абсолютную и относительную оценки:

$$ive(A, b) = \min_{A \in A} \operatorname{cond} A \cdot ||\operatorname{argmax} \operatorname{Tol}(x)|| \frac{\max_{x \in R^n} \operatorname{Tol}(x)}{||b||}$$
$$\operatorname{rve}(A, b) = \min_{A \in A} \operatorname{cond} A \cdot \max_{x \in R^n} \operatorname{Tol}(x)$$

3 Реализация

Лабораторная работа выполнена с помощью языка Python (версия 3.10.7) в среде Visual Studio Code.

Используются бибилотеки:

- 1. Математическая библиотека numpy (версия 1.23.3)
- 2. Библиотека интервальной арифметики intvalpy (версия 1.5.8)
- 3. Библиотека построения графиков matplotlib (версия 3.6.0)

Исходный код лабораторной работы приведён в приложении в виде ссылки на репозиторий GitHub.

4 Результаты

4.1 ИСЛАУ

Рис. 1: График mid системы

4.2 Достижение разрешимости ИСЛАУ

Исходная рассматриваемая ИСЛАУ имеет пустое допусковое множество: $\max \text{Tol} = -0.90$, $\arg \max \text{Tol} = (2.80, 1.40)$

Рис. 2: График Tol(x, A, b)

4.3 Корректировка правой части

Корректировака правой части, с помощью описанного выше способа помогла добиться непустого множества решений интервальной системы.

 $\max \text{Tol} = 0.45, \arg \max \text{Tol} = (2.80, 1.40)$

Скорректированная правая часть: b = ([1.65, 8.35], [-1.85, 1.85], [1.6, 4.8], [0.2, 3.4])

Рис. 3: График $\mathrm{Tol}(x,A,\hat{b})$ для ИСЛАУ с корректировкой в правой части

Допусковое множество решений стало непустым. ive(A,b')=0.25, rve(A,b')=0.49

На графике изображены квадратные брусы с центром в точке максимума Tol и радиусом ive и rve.

4.4 Корректировка левой части

Использованы следующие радиусы для E: $\begin{pmatrix} 0.3 & 0.6 \\ 0 & 0.6 \\ 0.06 & 0 \\ 0 & 0.06 \end{pmatrix}$

Тогда получается непустое множество решений. $\max \text{Tol} = 0.10$, $\arg \max \text{Tol} = (3.29, 1.68)$

$$A' = \begin{pmatrix} [0.905, 1.095] & [1.31, 1.69] \\ 1 & [-2.19, -1.81] \\ [0.981, 1.019] & 0 \\ 0 & [0.981, 1.019] \end{pmatrix}$$
 (2)

Рис. 4: График Ξ_{Tol} для ИСЛАУ с корректировкой в левой части

Допусковое множество решений стало непустым. ive(A,b')=0.09, rve(A,b')=0.15.

На графике изображены квадратные брусы с центром в точке максимума Tol и радиусом ive и rve.

4.5 Управление положением максимума распознающего функционала

Объединим графики для управляющего функционала и уравнений, которые образуют средние значения интервалов в системе:

Рис. 5: График Tol(x, A, b) с корректировкой правой части и mid системы

Результат корректировки первой строки:

$$A = \begin{pmatrix} 1 & 1.5 \\ 1 & [-3, -1] \\ [0.9, 1.1] & 0 \\ 0 & [0.9, 1.1] \end{pmatrix}$$
 (3)

 $\max \text{Tol} = -0.73, \arg \max \text{Tol} = (2.46, 1.23)$

Рис. 6: График Tol(x, A, b) с корректировкой первой строки матрицы

Результат корректировки второй строки:

$$A = \begin{pmatrix} [0.5, 1.5] & [0.5, 2.5] \\ 1 & -2 \\ [0.9, 1.1] & 0 \\ 0 & [0.9, 1.1] \end{pmatrix}$$

$$\tag{4}$$

 $\max \text{Tol} = -0.77, \arg \max \text{Tol} = (3.40, 1.07)$

Рис. 7: График Tol(x, A, b) с корректировкой второй строки матрицы

Результат корректировки третьей строки:

$$A = \begin{pmatrix} [0.5, 1.5] & [0.5, 2.5] \\ 1 & [-3, -1] \\ 1 & 0 \\ 0 & [0.9, 1.1] \end{pmatrix}$$
 (5)

 $\max \text{Tol} = -0.73, \arg \max \text{Tol} = (2.80, 1.40)$

Рис. 8: График Tol(x, A, b) с корректировкой третьей строки матрицы

Результат корректировки четвертой строки:

$$A = \begin{pmatrix} [0.5, 1.5] & [0.5, 2.5] \\ 1 & [-3, -1] \\ [0.9, 1.1] & 0 \\ 0 & 1 \end{pmatrix}$$
 (6)

 $\max \mathrm{Tol} = -0.90, \arg \max \mathrm{Tol} = (2.80, 1.40)$

Рис. 9: График Tol(x,A,b) с корректировкой четвертой строки матрицы

5 Обсуждение

• Оценки вариабльности меньше при коррекции матрицы, при этом брусы, соответствующие оценкам вариабельности, хорошо оценили допусковое множество

итоговой ИСЛАУ

- Коррекция правой части влечет увеличение значений максимума распознающего функционала
- Коррекция матрицы ИСЛАУ меняет форму распознающего функционала во всех рассмотренных преобразованиях
- При корриктировке первой и второй строк матрицы максимум распознающего функционала располагается на прямых, соответствующих медианам второй и первой строк соответственно
- При корриктировке третьей и четвёртой строк матрицы максимум распознающего функционала совпал

6 Приложения

6.1 Код программы

Код программы на GitHub, URL: https://github.com/aVorotnikov/interval_analysis.

6.2 Используемые библиотеки

- 1. Matplotlib, URL: https://matplotlib.org/
- 2. NumPy, URL: https://numpy.org/
- 3. intvalpy, URL: https://github.com/AndrosovAS/intvalpy