Wydział	lmię i nazwisko 1.		Rok	Grupa	Zespół
	2.				
PRACOWNIA FIZYCZNA WFiIS AGH	Temat:	Nr ćwiczenia			
Data wykonania	Data oddania	Zwrot do popr.	Data oddania	Data zaliczenia	OCENA

Ćwiczenie nr 13. Współczynnik lepkości

Cel ćwiczenia

Wyznaczenie współczynnika lepkości gliceryny metodą Stokesa, zapoznanie się z własnościami cieczy lepkiej.

Pytania kontrolne	Ocena i podpis
1. Zdefiniuj współczynnik lepkości, podaj odpowiednie wzory i jednostki.	
2. Co oznaczają pojęcia "przepływ laminarny" i "przepływ turbulentny"?	
3. Co to jest liczba Reynoldsa?	
4. Opisz metodę wyznaczania współczynnika lepkości.	
5. Podaj prawo wyporu Archimedesa. Wyjaśnij, dlaczego niektóre ciała pływają, a inne toną.	
6. Jakie siły działają na kulkę podczas opadania w cieczy lepkiej? Zapisz równanie ruchu kulki.	
7. Objaśnij, jakim ruchem porusza się kulka w początkowej fazie ruchu, a jakim po upływie kilku chwil.	
8. Jak można wyznaczyć gęstość cieczy, ciała stałego lub gazu?	
9. Jak zmienia się współczynnik lepkości wraz ze zmianą temperatury?	

1. Aparatura

- 1. Przyrząd do badania spadania kulki w cieczy (rys. w1)
- 2. Zestaw kulek
- 3. Śruba mikrometryczna
- 4. Suwmiarka
- 5. Waga cyfrowa

Rys. w1. Przyrząd do pomiaru współczynnika lepkości metodą Stokesa. (Z – zacisk służący do odzysku kulek)

2. Wykonanie ćwiczenia

- 1. Wybrane do pomiaru kulki należy dokładnie wytrzeć z resztek gliceryny, a następnie rozłożyć na arkuszu bibuły, jednocześnie nadając każdej z nich numer. Po wykonaniu jakiegokolwiek pomiaru, użyta kulka powinna zawsze zostać wytarta i odłożona na miejsce.
- 2. Zmierz średnice wszystkich wybranych kulek za pomocą śruby mikrometrycznej. Wyniki zapisz w Tabeli 1.
- 3. Zważ wszystkie kulki przy użyciu dostępnej wagi. Wyniki zapisz w Tabeli 1.
- 4. Ustaw na rurze dwa znaczniki w odległości około 80 cm tak, aby górny znacznik znajdował się co najmniej 20 cm poniżej poziomu cieczy w rurze. Zanotuj odległość znaczników w Tabeli 1.
- 5. Odczytaj wartość średnicy używanego cylindra. Dane wpisz do Tabeli 1.
- 6. Każdą z kulek należy wrzucić do rury, a następnie zmierzyć za pomocą stopera czas, w którym będzie ona opadała pomiędzy znacznikami. Wynik zapisz w Tabeli 1. Zwróć uwagę aby kulki opadały środkiem cylindra, a nie blisko ścianek oraz aby nie było do nich doczepionych pęcherzyków powietrza (wyjaśnij, dlaczego). Każdy pomiar, który nie spełnia powyższych wymogów należy powtórzyć.

- 7. Wyciągnij kulkę z cylindra poprzez kran umieszczony na jego dolnym końcu. Aby nie dopuścić do wylewania się gliceryny z cylindra należy posłużyć się zaciskaczem umieszczonym na wężyku. Gliceryna powinna ściekać do podstawionego pod wężykiem naczynia. Jeśli zachodzi potrzeba uzupełnienia gliceryny w cylindrze, należy przelać ją ostrożnie z naczynia lejąc po ściankach cylindra tak, aby wytworzyć jak najmniej pęcherzyków powietrza.
- 8. Po skończonych pomiarach należy zanotować temperaturę otoczenia, w której wykonywane było doświadczenie.

3. Wyniki pomiarów

Droga spadania kulki l [mm] Średnica cylindra D [mm] Temperatura: [$^{\circ}$ C]

Tabela 1. Wyniki pomiarów i obliczonych wartości η dla kolejnych kulek

Nr pomiaru	Nr kulki	Średnica kulki d [mm]	Masa kulki m [g]	Czas spadku kulki t [s]	Wsp. lepkości η [Pa·s]

Wartość średnia wsp. lepkości $\eta = [Pa \cdot s]$ Niepewność $u(\eta) = [Pa \cdot s]$

4. Opracowanie wyników pomiarów

- 1. Na podstawie wyznaczonych wartości *l*, *t*, *m*, *d*, i *D* oblicz współczynnik lepkości gliceryny dla każdego przelotu kulki (wzór (8)). Zwróć uwagę na ujednolicenie jednostek przy podstawianiu do wzoru.
- 2. Oblicz wartość średnią współczynnika lepkości.
- 3. Oblicz niepewność standardową (odchylenie standardowe średniej) współczynnika lepkości.
- 4. Porównaj wyznaczoną wartość współczynnika lepkości z wartością tablicową i sprawdź, czy w granicach niepewności pomiarowej są one równe.
- 5. Dla jednej z kulek oblicz prędkość spadania oraz wartość liczby Reynoldsa.

5. Wnioski: