Data Mining, Spring 2018

Problem Set #1: Supervised Learning – Regression and SVM

1. 线性回归

某班主任为了了解本班同学的数学和其他科目考试成绩间关系,在某次阶段性测试中,他在全班学生中随机抽取 1 个容量为 5 的样本进行分析。该样本中 5 位同学的数学和其他科目成绩对应如下表:

学生编号	1	2	3	4	5
数学分数 m	89	91	93	95	97
物理分数 p	87	89	89	92	93
语文分数 c	72	76	74	71	76
英语分数 e	83	88	82	91	89
化学分数 ch	90	93	91	89	94

利用以上数据,建立 m 与其他变量的多元线性回归方程,并回答下列问题:

- (1) 在线性回归中,利用梯度下降法,令参数向量 θ^0 初始值全为0,学习率 α 为 1,算出经过第一次迭代后的参数向量 θ^1 :
- (2) 讨论(1) 中所算出的 θ^1 是否可以使线性回归中的代价函数 $I(\theta)$ 下降,即 $I(\theta^1) < I(\theta^0)$;
- (3) 讨论是否可以选取更佳的学习率 α ,经过第一次迭代后,使代价函数 $I(\theta)$ 下降得更快;
- (4) 利用标准方程求出最优的多元线性回归方程(系数精确到 0.01),并预测该班物理分数 88、语文分数 73、 英语分数 87、化学分数 92 同学的数学分数。
- (5) 在 L2 正则化线性回归中,令正则化平衡系数λ为 1,利用标准方程求出最优的 L2 正则化多元线性回归方程(系数精确到 0.01),并比较其与(4)中得出的多元线性回归方程对数学分数的预测,哪个更好。

2. 逻辑回归

研究人员对使用雌激素与子宫内膜癌发病间的关系进行了1:1 配对的病例对照研究。病例与对照按年龄相近、婚姻状况相同、生活的社区相同进行了配对。收集了年龄、雌激素药使用、胆囊病史、高血压和非雌激素药使用的数据。变量定义及具体数据如下:

match: 配比组

case: case=1 病例; case=0 对照(未发病) est: est=1 使用过雌激素; est=0 未使用雌激素; gall: gall=1 有胆囊病史; gall=0 无胆囊病史; hyper: hyper=1 有高血压; hyper=0 无高血压;

nonest: nonest=1 使用过非雌激素: nonest=0 未使用过非雌激素:

Match	Case	Est	Gall	Hyper	Nonest
1	1	1	1	0	1
1	0	0	1	0	0
2	1	1	0	1	1
2	0	0	0	0	1
3	1	1	1	0	1
3	0	1	0	1	1
4	1	1	0	0	0
4	0	1	0	1	1
5	1	1	0	1	1
5	0	0	0	0	0
6	1	1	1	0	1
6	0	0	0	0	0

Problem Set #1

FIUDIEIII SEL#I					
7	1	1	0	0	1
7	0	0	0	0	0
8	1	1	1	1	1
8	0	0	0	1	1
9	1	1	0	0	1
9	0	1	0	0	1
10	1	0	0	0	1
10	0	0	0	0	1
11	1	1	0	1	1
11	0	1	0	1	1
12	1	0	0	0	1
12	0	0	0	1	1
13	1	1	0	1	1
13	0	0	0	0	0
14	1	1	0	0	1
14	0	0	0	0	0
15	1	1	0	1	1
15	0	1	0	0	1
16	1	1	0	0	1
16	0	1	0	1	1
17	1	1	0	0	1
17	0	0	0	0	0
18	1	0	1	0	1
18	0	0	0	1	0
19	1	1	1	0	1
19	0	1	1	0	0
20	1	1	0	0	0
20	0	1	0	1	1

- (1)调用逻辑回归函数或实现求解 L2 逻辑回归分析的梯度下降算法,求出最优的逻辑回归模型;
- (2) 尝试找出对影响子宫内膜癌发病的最直接的因素;
- (3)编程实现求解 L2 正则化逻辑回归分析的梯度下降算法,并求出最优的正则化逻辑回归模型(加分题)。

3. 支持向量机

考虑以下的两类训练样本集

特征 1	特征 2	类标
1	1	+
2	2	+
2	0	+
0	0	=
1	0	_
0	1	-

- (1) 在图中画出这6个训练样本点和支持向量机对应的最优超平面(决策边界),并写出对应的超平面方程;
- (2) 假设增加一些训练样本点,这些点能被正确分类且远离最优超平面(决策边界),说明最优超平面(决策边界)不受新增训练样本点影响,而线性回归会受影响的原因;
- (3) 指出哪些是支持向量,并求出两个异类支持向量到最优超平面(决策边界)的距离之和;
- (4) 通过寻找拉格朗日待定乘数α_i来构造对偶空间的解,并将其与(1)中结果作比较。