Chapter 6 & 7 - Linear Regression, Hypothesis Test and Confidence Interval in Multiple Regression

Ercio Munoz

September 19, 2018

Linear Regression with Multiple Regressors

The syntaxis for linear regression with more than one regressor is very similar, we just need to list the regressors separated by a plus sign "+". For example, we can estimate the model $testscr_i = \beta_0 + \beta_1 str_i + \beta_2 el_pct_i + \epsilon_i$:

```
library(sandwich)
library(lmtest)
## Loading required package: zoo
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
##
      as.Date, as.Date.numeric
library(foreign)
"http://fmwww.bc.edu/ec-p/data/stockwatson/caschool.dta"
data_set = read.dta(a)
regression = lm(testscr~str+el_pct,data=data_set)
summary(regression)
##
## lm(formula = testscr ~ str + el_pct, data = data_set)
## Residuals:
               1Q Median
                               3Q
                                      Max
## -48.845 -10.240 -0.308 9.815 43.461
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 686.03225 7.41131 92.566 < 2e-16 ***
               -1.10130
                           0.38028 -2.896 0.00398 **
## el_pct
               -0.64978
                           0.03934 -16.516 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 14.46 on 417 degrees of freedom
## Multiple R-squared: 0.4264, Adjusted R-squared: 0.4237
## F-statistic:
                 155 on 2 and 417 DF, p-value: < 2.2e-16
# With robust standard errors
coeftest(regression, vcov = vcovHC(regression, "HC1"))
```

Hypothesis Tests and Confidence Intervals in Multiple Regression (Ch7)

```
Now adding a third regressor to the previous model testscr_i = \beta_0 + \beta_1 str_i + \beta_2 expn stu_i + \beta_3 el pct_i + \epsilon_i:
library(sandwich)
library(lmtest)
library(foreign)
"http://fmwww.bc.edu/ec-p/data/stockwatson/caschool.dta"
data_set = read.dta(a)
regression = lm(testscr~str+expn_stu+el_pct,data=data_set)
coeftest(regression, vcov = vcovHC(regression, "HC1"))
##
## t test of coefficients:
##
                  Estimate Std. Error t value Pr(>|t|)
## (Intercept) 649.5779473 15.4583434 42.0212 < 2e-16 ***
## str
                ## expn_stu
                0.0038679
                             0.0015807
                                         2.4469 0.01482 *
## el_pct
                -0.6560227
                             0.0317844 -20.6397 < 2e-16 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
We can test the null hypothesis H_0: \beta_1 = \beta_2 = 0 using a F test:
library(car)
# F test with robust variance
myH0 <- c("str", "expn_stu")</pre>
linearHypothesis(regression, myHO, vcov = vcovHC(regression, "HC1"))
## Linear hypothesis test
##
## Hypothesis:
## str = 0
## expn_stu = 0
## Model 1: restricted model
## Model 2: testscr ~ str + expn_stu + el_pct
## Note: Coefficient covariance matrix supplied.
##
##
    Res.Df Df
                        Pr(>F)
## 1
        418
        416 2 5.4337 0.004682 **
## ---
```

```
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
We can report multiple regressions in a table using the command "stargazer":
# Estimate four different models
model1 = lm(testscr~str,data=data set)
model2 = lm(testscr~str+el_pct,data=data_set)
model3 = lm(testscr~str+el_pct+meal_pct,data=data_set)
model4 = lm(testscr~str+el_pct+meal_pct+calw_pct,data=data_set)
# Load package and display table of results
library(stargazer)
##
## Please cite as:
   Hlavac, Marek (2018). stargazer: Well-Formatted Regression and Summary Statistics Tables.
   R package version 5.2.1. https://CRAN.R-project.org/package=stargazer
stargazer(list(model1,model2,model3,model4),type="text",keep.stat=c("rsq","n"))
##
##
##
                           Dependent variable:
##
##
                                 testscr
                                       (3)
##
                             (2)
                                                  (4)
                  (1)
##
  _____
## str
               -2.280*** -1.101*** -0.998*** -1.014***
                (0.480)
                          (0.380)
                                      (0.239)
##
                                                (0.240)
##
                          -0.650*** -0.122*** -0.130***
## el_pct
                           (0.039)
                                      (0.032)
                                                (0.034)
##
##
## meal_pct
                                     -0.547***
                                              -0.529***
                                      (0.022)
                                                 (0.032)
##
##
## calw_pct
                                                 -0.048
##
                                                 (0.061)
##
               698.933*** 686.032*** 700.150*** 700.392***
## Constant
##
                (9.467)
                          (7.411)
                                     (4.686)
##
## Observations
                 420
                            420
                                       420
                                                  420
                 0.051
                            0.426
                                      0.775
                                                 0.775
## -----
## Note:
                               *p<0.1; **p<0.05; ***p<0.01
The previous table reported homoskedasticity-only standard errors. In the following table we use the command
"vcovHC" to compute standard errors, save them and then use them in the table:
library(sandwich)
library(lmtest)
rse_1 = sqrt(diag(vcovHC(model1, type = "HC1")))
rse_2 = sqrt(diag(vcovHC(model2, type = "HC1")))
rse_3 = sqrt(diag(vcovHC(model3, type = "HC1")))
```

```
rse_4 = sqrt(diag(vcovHC(model4, type = "HC1")))
library(stargazer)
stargazer(list(model1, model2, model3, model4),
        type="text",keep.stat=c("rsq","n"),
        se=list(rse_1,rse_2,rse_3,rse_4) )
##
##
                     Dependent variable:
            _____
##
##
                           testscr
##
              (1) (2) (3)
## -----
## str
           -2.280*** -1.101** -0.998*** -1.014***
            (0.519) (0.433)
                              (0.270)
##
                                       (0.269)
##
## el_pct
                     -0.650*** -0.122*** -0.130***
##
                      (0.031)
                               (0.033)
                                       (0.036)
##
                              -0.547*** -0.529***
## meal_pct
##
                                (0.024)
                                        (0.038)
##
## calw_pct
                                         -0.048
                                        (0.059)
##
           698.933*** 686.032*** 700.150*** 700.392***
## Constant
             (10.364) (8.728)
                              (5.568)
                       420
## Observations 420
                                420
                                         420
      0.051
                      0.426
                               0.775
                                        0.775
## Note:
                          *p<0.1; **p<0.05; ***p<0.01
# Check the first equation:
coeftest(model1, vcov = vcovHC(model1, "HC1"))
## t test of coefficients:
##
##
            Estimate Std. Error t value Pr(>|t|)
## (Intercept) 698.93295 10.36436 67.4362 < 2.2e-16 ***
## str
            -2.27981 0.51949 -4.3886 1.447e-05 ***
## ---
```

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1