25. Реальные газы. Уравнение Ван-дер-Ваальса. Рассмотрим понятие **реальных газов** и **уравнение Ван-дер-Ваальса**, которое описывает их поведение.

1. Реальные газы

Реальные газы отличаются от идеальных газов тем, что:

- 1. Молекулы имеют конечный объём.
- 2. Между молекулами действуют силы притяжения и отталкивания.

Эти факторы становятся значимыми при высоких давлениях и низких температурах, когда молекулы находятся близко друг к другу.

2. Уравнение Ван-дер-Ваальса

Уравнение Ван-дер-Ваальса — это модификация уравнения состояния идеального газа, учитывающая конечный объём молекул и силы взаимодействия между ними.

Формула:

$$\left(P + \frac{a}{V_m^2}\right) \left(V_m - b\right) = RT,$$

где:

- *P* давление газа,
- V_m молярный объём газа ($V_m = \frac{V}{V}$),
- T абсолютная температура,
- R универсальная газовая постоянная ($R \approx 8,31 \, \text{Дж/(моль \cdotp K)}$),
- a и b постоянные Ван-дер-Ваальса, зависящие от природы газа.

Постоянные Ван-дер-Ваальса:

- 1. a учитывает силы притяжения между молекулами.
- 2. b учитывает конечный объём молекул.

3. Физический смысл уравнения

- 1. Поправка на давление ($\frac{a}{V_m^2}$):
 - о Учитывает силы притяжения между молекулами, которые уменьшают давление газа.
 - о Чем больше a, тем сильнее притяжение между молекулами.
- 2. Поправка на объём (V_m b):
 - о Учитывает конечный объём молекул, который уменьшает доступный для движения объём.
 - о Чем больше b, тем больше объём, занимаемый молекулами.

4. Пример

Пример 1: Расчёт параметров реального газа

Для углекислого газа (CO_2) постоянные Ван-дер-Ваальса:

- $a = 0,364 \, \Pia \, \text{\cdotp M}^6 / \text{моль}^2$,
- $b=4,28\cdot10^{-5} \text{ m}^3/\text{моль}$.

Найдём давление P при $V_m = 0.1 \,\mathrm{m}^3/\mathrm{моль}$ и $T = 300 \,\mathrm{K}$:

1. Подставляем значения в уравнение Ван-дер-Ваальса:

$$\left(P + \frac{0,364}{0,1^2}\right) \left(0,1-4,28\cdot 10^{-5}\right) = 8,31\cdot 300.$$

2. Упрощаем:

$$(P+36,4)(0,0999572)=2493.$$

3. Решаем относительно P:

$$P+36,4=\frac{2493}{0,0999572}$$
≈24940 Πa.
 P ≈24940 − 36,4≈24903,6 Πa.

5. Итог

- **Реальные газы** отличаются от идеальных из-за конечного объёма молекул и сил взаимодействия между ними.
- Уравнение Ван-дер-Ваальса:

$$\left(P+\frac{a}{V_m^2}\right)\left(V_m-b\right)=RT.$$

• Постоянные Ван-дер-Ваальса:

- о а учитывает силы притяжения,
- о b учитывает конечный объём молекул.

Уравнение Ван-дер-Ваальса широко используется для описания поведения реальных газов, особенно при высоких давлениях и низких температурах.