Examen¹ la algebră, an I, sem. I, informatică 31.01.2020

Problema 1. Fie $\sigma = (1 \ 3 \ 2 \ 4) \in S_4$.

(1) Determinați soluțiile ecuației
$$x^2 = \sigma, x \in S_4$$
. (5 pct.)

(2) Determinați soluțiile ecuației
$$x^3 = \sigma, x \in S_4$$
. (5 **pct.**)

(3) Aflați numărul de elemente din
$$H = \langle \sigma \rangle$$
 (subgrupul generat de σ în S_4). (5 pct.)

(4) Aflați indicele lui
$$H$$
 în S_4 . (5 pct.)

(5) Arătați că
$$H$$
 nu este subgrup normal în S_4 . (5 pct.)

(6) Determinați cel mai mic subgrup normal al lui
$$S_4$$
 care-l conține pe H . (5 pct.)

Problema 2. Fie I submulţimea lui $\mathbb{Z}[X]$ formată din toate polinoamele care au termenul liber divizibil cu 6.

(1) Demonstrați că
$$I$$
 este un ideal al lui $\mathbb{Z}[X]$. (5 pct.)

(3) Arătați că
$$I = (6, X)$$
. Este I ideal principal? Justificați. (10 pct.)

(4) Determinați toți divizorii lui zero din inelul factor
$$\mathbb{Z}[X]/I$$
. (5 pct.)

(5) Arătați că
$$\mathbb{Z}[X]/I$$
 este un inel finit și găsiți-i numărul de elemente. (5 pct.)

(6) Are loc izomorfismul de inele unitare
$$\mathbb{Z}[X]/I \simeq \mathbb{Z}_2 \times \mathbb{Z}_3$$
? Justificați. (5 pct.)

Problema 3.

(1) Fie $x, y, z \in \mathbb{C}$ astfel încât

$$\begin{cases} x+y+z=3\\ x^2+y^2+z^2=5\\ x^3+y^3+z^3=6 \end{cases}$$

Calculați
$$x^5 + y^5 + z^5$$
. (10 pct.)

(2) Aflați polinomul monic
$$P \in \mathbb{Z}[T]$$
 care are ca rădăcini pe x, y, z . (5 pct.)

(3) Studiați ireductibilitatea lui
$$P$$
 peste \mathbb{Q} , \mathbb{Z}_2 și \mathbb{Z}_5 . (15 pct.)

¹Toate subiectele sunt obligatorii. Se acordă 5 puncte din oficiu. Timp de lucru 3 ore. Succes!