

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ :	A1	(11) International Publication Number:	WO 99/63677
H04B 1/707		(43) International Publication Date:	9 December 1999 (09.12.99)

(21) International Application Number:	PCT/EP99/03386	(81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).
(22) International Filing Date:	17 May 1999 (17.05.99)	
(30) Priority Data:		
198 24 218.2	29 May 1998 (29.05.98)	DE
(71) Applicant:	TELEFONAKTIEBOLAGET LM ERICSSON (publ) [SE/SE]; S-126 25 Stockholm (SE).	
(72) Inventors:	FRANK, Georg; Kieler Strasse 26a, D-90425 Nürnberg (DE). SCHULIST, Mathias; Täublingstrasse 33, D-91058 Erlangen (DE). GRANZOW, Wolfgang; Seelachweg 6, D-90562 Heroldsberg (DE). MAURER, Alexander; Oberer Stockweg 75, D-91186 Büchenbach (DE). POPOVIC, Branislav; Ankdammsgatan 33, S-171 67 Solna (SE).	
(74) Agents:	VON FISCHERN, Bernhard et al.; Hoffmann . Eitle, Arabellastrasse 4, D-81925 Munich (DE).	
Published		
With international search report. Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.		

(54) Title: MULTIPATH PROPAGATION DELAY DETERMINING MEANS USING PERIODICALLY INSERTED PILOT SYMBOLS

(57) Abstract

A multipath propagation delay determining means (STU) for determining a power delay spectrum (DPS) of a signal on a plurality of propagation paths within a cell of a CDMA communication system, comprising A/D conversion means for converting a CDMA multipath signal received from at least one antenna (Ant1, Ant2) into a signal (S1, S2) consisting of consecutive radio frames including consecutive time slots with complex pilot symbols and data symbols, demultiplexing means for extracting complex pilot symbols and data symbols from at least two consecutive time slots of each radio frame and for storing them consecutively in memory means; and a searching means (S1...SL) for determining a power delay profile (DPS) on the basis of said extracted and stored complex pilot symbols and said data symbols.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	ML	Mali	TR	Turkey
BG	Bulgaria	HU	Hungary	MN	Mongolia	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MR	Mauritania	UA	Ukraine
BR	Brazil	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Iceland	MX	Mexico	US	United States of America
CA	Canada	IT	Italy	NE	Niger	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NL	Netherlands	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norway	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NZ	New Zealand	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	PL	Poland		
CM	Cameroon	KR	Republic of Korea	PT	Portugal		
CN	China	KZ	Kazakhstan	RO	Romania		
CU	Cuba	LC	Saint Lucia	RU	Russian Federation		
CZ	Czech Republic	LI	Liechtenstein	SD	Sudan		
DE	Germany	LK	Sri Lanka	SE	Sweden		
DK	Denmark	LR	Liberia	SG	Singapore		
EE	Estonia						

5

**MULTIPATH PROPAGATION DELAY DETERMINING MEANS USING
PERIODICALLY INSERTED PILOT SYMBOLS**

10 Field of the Invention

The present invention relates to a multipath propagation delay determining means, in particular for a CDMA base station, in which pilot symbols contained periodically in 15 the signal radio frames are used for an efficient power delay profile calculation and an improved path selection, tracking and sector selection.

In particular, the invention relates to performing the 20 afore-mentioned functions in connection with a so-called RAKE receiver.

Background of the Invention

25 Code-division multiple access (CDMA) based on direct-sequence (DS) spread-spectrum (SS) techniques is a prospective candidate for the third generation of wideband cellular mobile telecommunication systems (e.g. in UMTS, as IMT-2000 described in reference [1]: J. E. Padgett et al:
30 "Overview of Wireless Personal Communications", IEEE Communications Magazine, January 1995, pages 28 - 41).

As shown in Figure 1 an area, where several mobile stations MS1, MS2 ... MS are served by a (fixed) base 35 station BS, can be regarded as a cell of the CDMA communication system. It has already been demonstrated that the DS-SS CDMA technique is capable of transmitting data signals of high transmission speed, for example within RACE

5 CODIT project (reference [2]: A. Baier et al: "Design Study
for the CDMA-based Third Generation Mobile Radio System",
IEEE Journal on Selected Areas and Communications Vol. 12,
May 1994, pages 733 - 743). The potential advantages of the
10 DS-SS CDMA technique have also been tested in the Ericsson
Wideband-Testbed (WBTB) project. DS-SS-CDMA has already
been used in commercial systems like systems based on IS'95
(D.P. Whipple: "The CDMA Standard", Applied Microwave &
Wireless, December 1994, pages 24 - 37). Also in Japan a
great importance has been attributed to the DS-SS-CDMA
15 system.

Whilst some basic properties of the CDMA receiver and the
CDMA telecommunication system are implicit due to the CDMA
method, special realizations of the despreaders, the
20 searchers and path selection units have not been
investigated in a great detail up to now, since a standard
for the W-CDMA has so far not been established. Therefore,
the present invention relates to special realizations of
the individual units necessary in the CDMA-receiver. Since
25 the inventive CDMA base station, the CDMA reception method
and the CDMA system are intrinsically based on the DS-SS
CDMA technique, hereinafter the basic technique of DS-SS
CDMA transmission will be considered (see also the basic
reference [4]: A.J. Viterbi: "CDMA: Principles of Spread
30 Spectrum Communication, Reading, MA: Adison-Wesley, 1995").

DE 19506117 C1 describes a method for estimating the
impulse response of a transmission channel, over which
CDMA-method-coded information is transmitted. The
35 information is spread on the transmitter side with a
spreading code and is despreaded on the receiver side with
a corresponding corelation code. The temporal changes of

5 the propagation paths are taken into account on the receiving side.

DE 19615257 A1 describes a CDMA-RAKE-receiver including a sub-chip-resolution. This receiver is adapted for use in a 10 DS-CDMA-communication system. It includes a channel estimation means which can resolve multipath-components, which are closer than a single chip-interval.

Basic CDMA-Technique

15 Basically, in the CDMA technique, an input signal I having a limited bandwidth (transmission speed) is spread with a predetermined spreading sequence (PN sequence) of a much higher bandwidth and thus an output signal O is produced 20 having a much higher bandwidth than the input signal I as is shown in Figure 2a. Since all signals considered in the CDMA technique are digital signals, the expression "bandwidth" really means the chip rate.

25 As is shown in Figure 2b, two bits of a digital signal constitute one symbol in a CDMA method using a QPSK modulation. Each bit of the symbol will be spread with a PN sequence, and the spread signal (the bottom curve in Figure 2b) consists of a plurality of "chips", whereby a chip is 30 defined as a 0→1 and 1→0 (or 1→0 and 0→1) portion of the despread signal.

As indicated in Figure 2a, a so-called spreading gain M equal to the ratio of the chip rate to the symbol rate is 35 defined. M basically describes the spreading factor, i.e. how much wider the bandwidth has become due to the spreading with the PN sequence. Of course, since all

5 signals are digital also the PN sequence is a signal which
is digital (consisting of a number of bits).

If the original signal I has to be recovered in the CDMA receiver, of course a despreading process has to be carried
10 out in a despreader DSP as shown in Figure 2a, wherein the original information is obtained by multiplying the spread signal (sequence O) with the original PN sequence that was used for the spreading process.

15 However, as shown in Figure 3, all information in the CDMA channels are transmitted clockwise, i.e. in terms of successive radio frames RF_n. This means, that the spreading and despreading must be performed also framewise. In the transmitter, each frame is spread with the spreading
20 sequence (PN sequence) starting with the beginning of the frame and of course this means that also in the receiver there must be a time synchronized (i.e. time-aligned) despreading, i.e. the despreading sequence must be aligned to the beginning of the received frame. The PN sequence is
25 of course a sequence which is known to the transmitter and receiver, but the time-alignment for the block-wise (M) integration (despreading) must be performed in the receiver.

30 A principle overview of a base station receiver is shown in Figure 4. As is seen in Figure 4, the demodulator DEMOD receives inputs from the PN generator PN-GEN (generating the PN despreading sequence) and from a timing control unit TCU. In principle, signals from various antennas Ant0, Ant1
35 from various sectors 1 ... 6 are input to an automatic gain control circuit AGC and the samples are input to a so-called searcher S (the function of which will be explained below) which calculates the (power) delay profiles. The

5 demodulator DEMOD (comprising a so-called RAKE receiver to
be explained below in more detail) outputs the demodulated
and despread bit sequence to the decoder DEC. As will be
seen below, the searcher S actually comprises a searching
and tracking unit provided for input signals from all
10 sectors (parts of a cell as shown in Fig. 1, 12). The
output from the searcher S are the delay values and the
(sector) selection information.

15 The reason why the searcher S also comprises a tracking
unit results from the problem of multipath propagation
which is an intrinsic property of any mobile communication
system. Therefore, hereinafter the multipath propagation in
connection with the tracking features of the CDMA system
are explained.

20

CDMA Multipath Propagation

As shown in Figure 5, between a mobile station MS and a base station BS there is not only the direct path P1 but
25 also indirect paths P2, P3, for example due to reflections at buildings H, cars C or mountains M. This mixture of direct and indirect paths (i.e. multipath propagation) means that the received signal energy (i.e. the power per sample of the transmitted sequence) does not have a
30 constant time delay (corresponding to the velocity of light). This means, that a sample (bit) transmitted at t_0 arrives at the base station BS at the time t_1 and another portion of the energy arrives at the base station BS at time t_2 due to a further propagation of the energy along an
35 indirect path P2 or P3. This leads to the delay profile per sample as is illustrated in Figure 5. That is, each sample is spread over the delay profile, often characterized by

5 (fading) single paths. Thus, in Fig. 5 the time differences
t₁-t₀, t₂-t₀ etc. are defined as delays d₁, d₂ etc.

In conventional DS-SS-CDMA techniques the problem of
multipath propagation is usually handled by the so-called
10 RAKE receiver as is described in the afore mentioned
references [2] and [3]. The basis of the RAKE receiver is
basically to collect the energy per symbol not only from
the direct path P₁ but also from the plurality of indirect
paths P₂, P₃. Essentially the RAKE receiver allocates a
15 "marker" (in CDMA such markers are called "fingers") to the
strongest single paths (i.e. to the maxima) in the delay
profile of the corresponding signal. Thereafter, the
collected energy or the information of each path is
individually demodulated/detected per path (i.e. per RAKE
20 finger). Thereafter the information after demodulation is
combined, e.g., with a maximum-ratio-technique.

If the mobile station MS with respect to the base station
BS was stationary, then of course the delay profile with
25 respect to also stationary reflection objects H, M could be
pre-estimated and calculated. However, one of the intrinsic
properties of a mobile radio communication network is the
"dynamic" variation of the delay profile when the mobile
station MS or one of the non-stationary objects C move.
30 Therefore, also the delay profile exhibits a dynamic
characteristic. Thus, the resource allocation and the time
synchronization of the RAKE receiver has to be performed by
continuously estimating and evaluating the delay profile.

35 In the CDMA technique a so-called searching and tracking
unit is normally used to identify the paths within a delay
profile.

5 Searching and Tracking Unit

A major task of the searching and tracking unit is to identify the paths within a delay profile and keep track of changing propagation conditions, e.g. as a consequence of 10 distance variations between the mobile station MS and the base station BS. Since in the base station receiver the despreading sequence must be fully time-aligned to the sample (energy) arriving at the base station BS along a plurality of paths, it is essential that the searching and 15 tracking unit knows the relative delays d_1, d_2, \dots, d_p of the paths within the delay profile. If so, the requested time-synchronization for each RAKE finger can be maintained. Therefore, the searching and tracking unit must on the one hand estimate the delay profile and on the other 20 hand must assign the RAKE fingers accordingly in order to time-align the PN despreading sequence to the exact arrival time of the partial sample energy arriving over each individual path.

25 Often a certain frame structure with fixed alignment of information signal (frames) and spreading sequences is applied and therefore the time-synchronization can be split up into a frame-synchronization and chip-synchronization. As a consequence of fading and changing propagation 30 conditions the estimation of the delay profile carried out by the searching unit has to be updated according to the specific needs of the mobile radio channel.

Therefore, the searcher has to fulfill two contradictory 35 requirements, namely, on the one hand it must minimize the time needed for updating or calculating the exact delay profile and on the other hand it must provide a sufficiently fine time resolution for time-aligning the PN

- 5 despreading sequence to the beginning of the respective frame or symbol, i.e. to minimize the self-noise of the PN sequence.

Conventional Searching and Tracking Unit

10

Prior art searcher algorithms and implementations in communication applications mainly relate to IS-95 (commercial) systems, either for the up-link (MS → BS) as described in reference [4] and reference [5]: K. Easton and
15 J. Levin: "Multipath Search Processor for a spread Spectrum Multiple Axis Communication System", WO 96/10873, April 11, 1996" or for the down-Link (BS → MS) in reference [6]: R. Blakeney et al "Demodulation Element Assignment in a System Capable of Receiving Multiple Signals, WO 95/12262, May 4,
20 1996".

As already shown in Figure 3, each superframe SRF consists of a number of radio frames RF_n which each consist of a number of time slots TS_m. Each time slot TS_m has a number
25 of pilot symbols PS₂ which allow to detect the beginning of the time slot TS_m. Therefore, the pilot symbols can be used in order to achieve the time-aligning of the PN despreading sequence to the beginning of the individual time slots.

30 In order to achieve a high system capacity, the prior art according to the IS-95 systems do not use pilot symbols in the up-link channel. If the pilot symbols are not contained, the searchers must examine all possible signal variations which random data can produce and perform the
35 delay profile calculation on the basis of such an estimation. In the down-link channel for example in the Ericsson WBTB system a continuous pilot signal is inserted.

- 5 The up-link delay estimation is based on a decision feedback.

Prior Art Searching and Tracking Unit

- 10 As described in WO 96/10873 a typical receiver uses multiple searcher elements working in parallel to provide a fast searching process. Such a searching and tracking unit comprising a plurality of searchers S is shown in Figure 6. As shown in Figure 6, a plurality of searchers S₁ ... S_L
- 15 work in parallel as a consequence of the multiple signal sources (antennas from each of the sectors 1 ... 6) which should be examined. The parallel operation is also a consequence of the "real time" requirements. Namely, if a real-time serial search is applied, for each new time
- 20 offset, (code phase increment since in the CDMA method each channel is identified by a respective time offset to a synchronization pulse) an additional correlation (dwell) time must be spent.
- 25 To avoid this "real-time slavery", WO 96/10873 suggests a new hardware architecture for the searcher. The essence of the new searcher architecture is to de-couple the operation of the correlator (based on a Fast Hadamard Transform-FHT processor) from the real time requirements by introducing a
- 30 buffer for the input signal samples and a PN sequence buffer for the despreading sequences. In this way the FHT processor can run at much higher speed evaluating quickly the large number of time offsets with respect to the reference (synchronization) signal. In WO 96/10873 an
- 35 efficient technique for supplying high speed data streams to the FHT processor is included. The hardware architecture is similar to the one implemented within CODIT and the WBTB test project of Ericsson. The WBTB

10

5 approach can further be described as a combination of coherent accumulations with non-coherent averages in order to reduce the variance of estimates.

Path Selection Unit

10 As is also shown in Figure 6 for the conventional system (see for example WO-96/10873) in addition to the parallel working searchers S₁ ... S_L there is a path selection unit PSU that selects the individual paths from the calculated
15 power delay profiles as determined by the set of searchers.
As is seen in Figure 5, the delay profile has a number of peaks and the path selection is conventionally done by scanning the calculated delay profile for a certain number
of strongest peaks, whereafter these peaks are compared to
20 a threshold, which is derived by multiplying the "noise floor" of the delay profile with a constant value.

The disadvantage with such a kind of path selection is that it is not very accurate, in particular when cells are used,
25 which are subdivided into sectors, and when multiple antennas per sector (antenna diversity) is used.

Summary of the Invention

30 As described with reference to Figure 3 above, each time slot comprises a number of pilot symbols and over the successive time slots it may be said, that the pilot symbols are periodically inserted (after each 0.625 ms). Each logical channel (information) corresponds to one voice
35 or packet data channel. In a commercially interesting system up to 300 voice channels per base station must be handled simultaneously. This means, that each voice or packet data channel has to simultaneously undergo the delay

- 5 profile estimation and the updating of the delay profile simultaneously for which the PN despreading sequence must be appropriately time-aligned to the beginning of the respective time slot.
- 10 The above described solution of estimating the absolute delays is not optimal for the CDMA systems with periodically inserting pilot symbols. On the other hand, another solution suggested in the Ericsson WTB project proposes that a long buffer is used that is able to reflect 15 all possible delay values within a cell. The hardware in such a system is extremely complex when 300 voice channels per base station need to be handled, since essentially 300 parallel working searchers must be provided.

20 Object of the Invention

Therefore, a first aim of the invention is to provide a multipath propagation delay determining means, in particular for the DS-SS-CDMA base station receiver where 25 no complex hardware is necessary for the searchers, whilst still an accurate estimation of the power delay profile for a high number of voice channels can be achieved in real time.

30 As also described above, one of the most important general problems is to select the individual paths from the delay profile, since the estimation of the delay values is necessary in order to solve the problem of the multipath propagation. In the conventional path selection unit a 35 threshold is set for the discrimination between the signal and the noise. Furthermore, reference [7]: E. S. Sousa, V. M. Jovonovich and C. Daigneault, "Delay Spread Measurements for the Digital Cellular Channel in Toronto", IEEE

- 5 Transactions on Vehicular Technology, Vol. 43,. No. 4,
pages 837 - 847, November 1994" contains a description of a
modified threshold setting method for the channel delay
profile estimation using a so-called constant false alarm
rate technique (CFAR). However, this method is extremely
10 complex and is more suitable for off-line signal processing
and does not fulfill the requirements of the real-time
implementation in a commercially interesting CDMA
telecommunication system.
- 15 Therefore, another aim of the invention is to provide a
multipath propagation delay determining means, in
particular for a DS-SS-CDMA base station receiver, in which
an accurate path selection estimation in a real-time
application can be performed.
- 20 Furthermore, as described above, in the CDMA system cells
may be subdivided into sectors and multiple antennas may be
used per sector (antenna diversity). Thus, the accuracy of
the delay profile estimation and the treatment of the
25 softer (i.e. sector-wise) handover has to be specified and
optimized with respect to the special requirements of a
hardware with as low complexity as possible.
- Therefore, a further object of the invention is to provide
30 a multipath propagation delay determining means, in
particular for a DS-SS-base station receiver, allowing an
accurate delay profile estimation and a softer handover
when cells are subdivided into sectors in which an antenna
diversity is used.
- 35 The above aims can be summarized in a single object of the
invention, i.e. to provide multipath propagation delay
determining means, in particular for a DS-SS-CDMA-base

5 station receiver, in which a great number of voice or packet data channels with periodically inserted pilots symbols can undergo in real-time simultaneously an accurate despreading, an accurate delay profile estimation as well as an accurate path selection and location determination.

10

Solution of the Object

The above object is solved by a multipath propagation delay determining means, in particular for CDMA base station
15 receiver according to claim 1, 24, 26.

Essentially, as a primary aspect of the invention an improved power delay profile is calculated according to the invention by averaging delay profiles estimated over a plurality of successive time slots and frames. Further aspects of the invention are claimed in the dependent claims.

One preferred aspect of the invention is how the delay profile is searched for local maxima corresponding to the individual paths. Here, the peaks in the profile are removed or equivalently set to 0 to obtain a noise floor. This noise floor is averaged to result into a single value. Then a threshold factor is multiplied with this noise floor level. Then the original unmodulated delay profile is compared with the multiplied value and those maxima are selected as useful paths which lie above the multiplied value threshold.

Another aspect of the invention is the usage of an antenna diversity, i.e. two antennas in each cell or sector each providing a delay profile. Here the two delay profiles from each antenna are added and only such peaks are selected in

5 this added profile which lie above the multiplied threshold value. Then the two delay profiles are compared separately with the multiplied threshold detected for the combined delay profile and only such paths are selected for a single antenna signal that also lie above the threshold within the
10 respective single delay profile. The correlated evaluation of the delay profile for the path selection based on two delay profiles simultaneously is completely different to an individual consideration of the delay profiles of each antenna.

15 According to another aspect of the invention each cell is divided into several sectors each served by two antennas using antenna diversity. Whilst in the prior art an information must be transferred to the base station as to
20 which sector contains the mobile station, an aspect of the invention uses a "dynamic searching of the sectors" combined with individual path selections and a highly accurate softer hand-over. A "location" determination of the mobile station MS can be performed based thereon.

25 Further advantageous embodiments and improvements of the invention may be taken from the dependent claims.
Hereinafter, the invention will be described with reference to its embodiments in combination with the attached
30 drawings.

Brief Description of the Drawings

In the drawings:

35 Fig. 1 shows the typical arrangement of CDMA cells and mobile stations MS and base stations BS according to the prior art;

5

Fig. 2a shows the principle idea of the DS-SS CDMA spreading and despreading using a PN sequence;

10 Fig. 2b shows the definition of symbol, bit and chip in a CDMA method using QPSK;

Fig. 3 shows channel formats with periodically inserted pilot symbols in a CDMA transmission channel;

15 Fig. 4 shows a block diagram of a conventional base station receiver;

Fig. 5 shows a delay profile DPS and the problems of multipath propagation;

20

Fig. 6 shows the block diagram of a searching and tracking unit STU used in the invention;

25
Fig. 7

shows an embodiment of the selector SEL and the searcher S1 shown as part of the searching and tracking unit STU in Fig. 6, according to the invention;

30
Fig. 8

shows an embodiment of the pilot demultiplexer PI-DEMUX shown in Fig. 7, according to the invention;

35
Fig. 9

shows an embodiment of the despreader DESP and an embodiment of the coherent accumulation/averaging means ACC-AV of the selector S1 shown in Fig. 7, according to the invention;

5 Fig. 10 shows an embodiment of the path selection unit PSU for the example of selecting the paths from two antennas in sector 1, according to the invention;

10 Fig. 11 shows the usage of pilot symbols and frames and the used time period for performing a coherent averaging in the coherent accumulation/averaging means ACC-AV shown in Figs. 7, 9, according to the invention;

15

Fig. 12 shows the subdivision of a cell into individual sectors, each serviced by two antennas Ant1, Ant2;

20 Fig. 13 shows a diagram how sectors of a cell are dynamically searched according to a search method of the invention;

25 Fig. 14 shows an embodiment of the path selection method according to the invention;

Fig. 15 shows an embodiment of the searching and tracking unit including 2 searchers S1, S2 for searching 6 sectors including an antenna diversity;

30

Fig. 16 shows non-detection and false alarm probabilities for the case of 3 sectors;

35 Fig. 17 shows non-detection and false alarm probabilities for the case of 1 sector;

Fig. 18 shows cross-over probabilities for a 2-path Rayleigh fading; and

5

Fig. 19 shows the peak-to-noise level at cross-over probabilities for M=64 and 2-path Rayleigh fading.

10 In the drawings the same or similar reference numerals denote the same or similar parts throughout. Hereinafter, embodiments of the invention will be described with reference to the attached drawings.

15 Underlying Principle of the Invention

As already explained with reference to Fig. 4, the RAKE receiver RR is used for handling the multipath propagation in DS-CDMA systems. A RAKE receiver should be able to

20 capture most of the received signal energy by allocating a number of parallel demodulators (fingers) to the selected strongest components of the multipath signal received from the antenna. The outputs of all fingers (demodulators) are combined after the corresponding delay compensation.

25

The allocation and time synchronization of the demodulators (fingers) are performed on the basis of an estimated channel response. The multipath delay search processor (hereinafter called a searcher) function is to estimate the 30 channel power delay profile, to identify the paths within the delay profile and to keep track of changing propagation conditions. Thus, the multipath delay search processor has to fulfill the two contradictory requirements of minimizing the search time and on the other hand to have sufficiently 35 fine time resolution in order to minimize the PN sequence self-noise.

5 The channel impulse response is estimated within a certain search window defined by the number of spreading code phases which should be searched to cover the maximum expected delay spread. The channel impulse response estimation is repeated within a certain interval called the
10 update time.

The update time has to be sufficiently small, such that the delay variations of the radio channel can be tracked. The position of the channel impulse response within the search
15 window is changing due to the movement of the mobile station as well as the clock frequency mismatch between the PN sequence generators in the transmitter and the receiver. Therefore, the overall position of the search window has to be adjusted to keep the channel impulse response in the
20 middle of the search window. When the multipath delay search processor (the searcher) has a fine enough resolution, the other code tracking devices, usually implemented in each of the RAKE single path demodulators, are not needed.
25

The searching and tracking unit STU (see the attached Fig. 6) of the RAKE receiver (see Fig. 4) is to maintain the chip and frame synchronization for the RAKE receiver. Therefore, the delay profile of the received signal due to
30 the multipath propagation has to be estimated. As a consequence of fading and changing propagation distances, i.e. distance variations between the mobile station MS and the base station BS, this estimation has to be updated according to the specific needs of the mobile radio
35 channel.

Hereinafter an embodiment of the invention is described, where the delay profile of the received signal is estimated

- 5 with an excellent resolution within a certain search window corresponding to the delay spread. The delay profile estimation may be repeated within a certain intervall, i.e. within the update time. The update time is choosen to be sufficiently small, such that delay variations of the radio
10 channel can be tracked. Therefore, no explicit tracking needs to be provided. Only the overall position of the search window has to be adapted (tracked) to distance variations between the mobile station MS and the base station BS. Thus, the searching and tracking unit STU can
15 be used to assist the sector selection and softer handover, since the sector-assigned delay profiles can be used to reveal where the most signal energy can be captured within the sectors.
- 20 In the following it is assumed that any initial sector selection, initial frame and initial chip synchronization has already been established (e.g. during random access signal reception). However, these constraints are no principle limitation to this method and the method
25 according to the invention can also be used for this purpose by some adaptations.

Embodiment of the Searching and Tracking Unit

- 30 The searching and tracking unit STU of the invention as shown in Fig. 6 comprises a selector SEL to which two signals S_1, S_2 received from the antennas Ant1, Ant2 of each sector 1...6 are input. The inputting of two signals S_1, S_2 to the selector SEL is made, because an antenna
35 diversity technique using two antennas Ant1, Ant2 is preferably used in each sector. However, it should be understood that the invention is not restricted to the antenna diversity in its broader sense and that it is also

5 possible to perform the input of one signal S from one antenna of each sector into the selector SEL.

Of course the signal actually received from the antennas is an analog signal. An A/D converter A/D is arranged in the 10 STU means to convert the analog CDMA signal into a digital CDMA signal. As shown in Fig. 3, 11, this digital CDMA signal comprises consecutive radio frames RF₁ ... RF_n including consecutive time slots TS₁ ... T_m into which the complex pilot symbols PS_i and the data symbols PD_i are 15 inserted. The A/D converter stands for carrying out all the usual functions like analog-digital conversion, matched filtering, etc. and can be located in the STU means, e.g. in the selector SEL, between SEL and the sector antennas or before or within the searchers S₁ ... S_L.

20

Whilst on the transmitter a digital transmission signal including a plurality of bits is first convolutionally coded per bit, e.g. with a rate $r=1/3$, then 2 of the convolutionally coded bits are combined as a QPSK symbol 25 (Q, I) and then this symbol is spread with the transmitter side PN sequence, the receiver, e.g., RAKE and the searchers must likewise despread the symbols with the corresponding despreading sequence. This is the basis of direct sequence CDMA (i.e. including a QPSK modulation). 30 It is noted that other modulation schemes can be used to obtain the symbols to be spread. Therefore the invention is not restricted to the usage of QPSK modulation.

The selector SEL functions to extract the blocks of signal 35 samples to undergo a search in the multipath delay search processors S₁ ... S_L (hereinafter called the searchers S₁ ... S_L). Essentially, the respective selector SEL extracts the pilot symbols plus some additional samples (symbols for

5 logical channels) out of the data streams received from the respective antenna. The frame format and the pilot symbols are illustrated in Fig. 3. The extraction of the pilot symbols plus the additional samples takes place preferably at a sample rate of 16.38 Mega samples per second,
10 essentially at an oversampling rate, for example 4.

The searching and tracking unit STU in Fig. 6 comprises a number of searchers S₁ ... S_L, wherein L may be the same number as the number of sectors or not.

15 Essentially, the extracted pilot symbols plus the additional samples are distributed to the set of L searchers according to a specified but flexible sector selection schedule. With the sector selection schedule the
20 number of searchers can be different or the same as the number of sectors. Preferably six searchers operate at the sample rate. On the basis of the block of signal samples the extracted pilot symbols plus the additional samples (i.e .the demultiplexed and buffered antenna signals)
25 deliver a separate delay profile DPS for each antenna signal to the path selection unit PSU according to the sector selection schedule.

According to the invention, the searchers S₁ ... S_L perform
30 a channel delay estimation (the determination of the delay profile) basically by a (pilot symbol based) combined coherent and non-coherent searching (and tracking) procedure with optional interleaving as will be further described with respect to the searcher S₁ in Fig. 7.
35 Preferably, the delay profiles DPS are updated at a minimum update time and preferably use a predetermined number of samples of the pilot symbols.

5 The path selection unit PSU receives the delay profiles DPS from the searchers S₁ ... S_L and calculates out of the estimated delay profiles DPS an interference estimate (this interference comprises multi-user interference as well as thermal noise power interference), which is used for the
10 succeeding path selection. From the delay profiles DPS essentially an interim number of N (preferably 8) paths d₁' ... d_N' (i.e. delay values) and corresponding sector selection information s₁'...s_N' is determined by the path selection unit PSU. The selection information s₁'...s_N'
15 indicates the sector number (1 ... 6) and the antenna number in the respective sector (if an antenna diversity is not used in each sector, then this number may be omitted).

Whilst the delay values d₁'...d_N' still indicate an interim
20 number of N (e.g. 8) paths, the tracking and control unit TRCU performs the final sector selection and generates a final number of (maximum) P (e.g. 8) delay path and selection information (i.e. delay values and corresponding selection information) that is transmitted eventually to
25 the RAKE receiver RR. Thus, as is seen in Fig. 6, the tracking and control unit TRCU outputs the final number of delay path

d₁ ... d_P and the final selection information s₁ ... s_P for the final number of paths that should be demodulated and
30 decoded in the RAKE receiver i.e. the paths to which the RAKE should allocate its fingers. In addition, the tracking and control unit TRCU generates the number of clock control signals for tracking the search windows and cells for maintaining frame synchronization.

35

Thus, the antenna signals are input to the selector SEL which applies the respective signals from the antennas to a number of searchers, which calculate a delay profile for

5 each of the applied input signals. Thereafter, the path selection unit selects a number of most promising paths and selection information regarding the sector and the number of the antenna. The final tracking and control unit determinates the final paths together with the appropriate
10 selection information, such that the RAKE receiver RR is supplied with selection information and delay information which it can then use for demodulation.

Hereinafter, specific embodiments according to the
15 invention for the selector SEL (Figs. 7, 8), the searcher S1 ... SL (Fig. 7), the path selection unit PSU and the tracking and control unit TRCU (Fig. 10) as well as a specific embodiment of the despreader DESP and the coherent accumulation and averaging unit ACC-AV (Fig. 9) will be
20 described for a frame format as shown in Fig. 3, Fig. 1.

Embodiment of the Selector Unit

Fig. 7 shows an embodiment of the selector SEL. The
25 selector comprises a so-called pilot demultiplexer PI-DEMUX. Fig. 7 shows the case where one antenna signal is input to the pilot demultiplexer PI-DEMUX, but it should be understood, that according to the control signals received from the control means CTRL, different antenna signals
30 from different sectors may be successively applied to the selector SEL.

The primary function of the pilot demultiplexer PI-DEMUX is to extract and buffer the periods of (consecutive) pilot symbols plus an additional number of samples out of the antenna signals which are constituted by input data streams of complex values. Considering for example in Fig. 11, that for the calculation of one delay profile DPS (calc. 1 DPS)

5 the radio frame n of the antenna signal is evaluated, then
this frame n consists of a number of consecutive time slots
k-1, k, k+1.

As already indicated in Fig. 3, at the transition from one
10 time slot to another, for example from time slot k-1 to
time slot k, there are a set of pilot symbols PSi
consisting of pilot symbols of the previous time slot k-1
and of the pilot symbols of the present time slot k. The
difference between Fig. 3 and Fig. 11 is that in Fig. 3 the
15 pilot symbols PSi are assumed to only lie at the beginning
of the time slot whilst in Fig. 11 they lie at the
beginning and the end of each time slot. Since it can
anyway not be guaranteed that the time slots are already
time-aligned to the PN sequence generated by the PN
20 generator in the despreader DESP it does not matter whether
the sampling and extraction extracts pilot symbols at the
beginning or the end only (it is a pure matter of
convention where they lie) as long as it extracts a number
25 of pilot symbols and data symbols that can be evaluated
with respect to the PN despreading sequence. In between the
sets of pilot symbols any data may be present, for example
the symbols for the logical channel etc. as indicated in
Fig. 3.

30 Now, what is meant with extracting the periods of pilot
symbols is in fact the extraction of the pilot symbols (the
shaded areas in Fig. 11). Preferably, 2 M chips (2 M x
oversampling rate samples, e.g., $2 \times 128 = 1024$ samples)
are extracted as pilot symbols. Preferably, additional 160
35 samples (the delay spread) are extracted from the antenna
signal (the complex input data streams). Thus, the DPS to
be calculated will eventually consist of 160 real power
delay spectrum sample values.

5

Therefore, for the delay profile (search window) estimation, 160 samples at a resolution of four samples per chip are used, i.e. a delay spread of 160/16.38 Mega samples per second \approx 10 μ s is evaluated. Preferably, it is 10 also assumed that the minimum update time is 10 ms (i.e. one radio frame) for recalculating the delay profiles of the currently active sectors (i.e. a pre-defined number of sectors, where currently the most signal energy is found) and an update time of 60 ms for scanning the non-active 15 (i.e. the other) sectors and for selecting the antenna signals (i.e. re-assigning active and non-active sectors).

Thus, at least in every radio frame of 10 ms (see Fig. 3) the delay profile is recalculated on the basis of the 20 number of pilot symbols (1024 samples) plus the additional 160 samples, e.g., 8 times based on 2 timeslots). The additional samples are any kind of data, i.e. control data or voice data. Depending on the starting timing of extraction, of course there are cases where first pilot 25 symbols and then data symbols, first data symbols (from the preceding time slot) then pilot symbols and then again data symbols or first only data symbols and then only pilot symbols are extracted.

30 As is seen in Fig. 7, in response to the frame clock control FCC the control means CNTRL controls the PI-DEMUX of the selector SEL such that it starts extracting the pilot symbols and the additional symbols at the correct timing within the time slots k-1, k, k+1 of the respective 35 frame n.

Fig. 8 shows an embodiment of the pilot demultiplexer PI-DEMUX. The control signal from the control means CNTRL

5 controls a sample switch SSW, which applies the data from the antenna signal either to the buffer BUF or to a sink SNK. Thus, via the frame clock control signal FCC the buffer BUF will contain successively the respective number of pilot symbols plus the additional samples. Any other
10 data is applied to the sink SNK.

Thus, the positioning of the sample switch SSW (i.e. the read pointer) and the writing pointer, i.e. the positioning of the search window within the overall delay profile and
15 equivalent to inserting or removing samples from the data streams, are controlled via the frame clock signals FCC.

As already mentioned, the control means CNTRL in combination with the tracking and control unit TRCU applies
20 control signals to the selector SEL for a sector selection of active and non-active sectors according to a specific sector selection schedule and furthermore it controls the specific assignment of searchers S1 ... SL to the demultiplexed antenna signals. Such a sector selection
25 scheduling procedure may preferably be constituted as shown in Fig. 13 (to be explained below).

As described above with reference to Figs. 7, 8, the primary function of the selector SEL is to respectively
30 extract a number of pilot symbols plus a number of additional samples within each radio frame RF_n and to successively apply these extracted data values to the subsequent searcher for the calculation of the delay profile (wherein a sector selection and antenna selection
35 control for providing antenna signals successively from several antennas in several sectors to individual searchers by the demultiplexer PI-DEMUX is performed). Thus, the succeeding delay profile calculation in the set of

5 searchers is based on the extracted pilot symbols and the
extracted additional symbols.

Preferably, the number of the pilot demultiplexers is the
same as the possible number of applied antenna signals,
10 e.g. for the example in Fig. 6 there may be 12 pilot
demultiplexers PI-DEMUX. However, the number can also be
reduced, for example to the pre-defined number of active
sectors according to the sector selection control, if time-
sharing with a corresponding intelligent control is used.
15 Essentially at least one pilot demultiplexer would suffice.

Embodiment of the Multipath Delay Search Processor
(Searcher)

20 As explained above, the output data from the selector (i.e.
the output of the buffer BUF in Fig. 8) are the consecutive
complex pilot symbols plus the additional samples (for
example 2×128 chips = 1024 samples plus 160 samples) from
one particular antenna signal as designated by the control
25 means CNTRL. Hereinafter, the data output by the pilot
demultiplexer PI-DEMUX (i.e. the complex pilot symbols plus
the additional samples) will be referred to as
"demultiplexer output data". As is seen in Fig. 9, of
course the individual demultiplexer output data values
30 comprise a real and an imaginary part Rx_Re and Rx_Im.

As already indicated in the embodiment for the searcher S1
in Fig. 7, the searcher comprises a PN-code generator PN-
GEN generating the despreading sequence to be used in the
35 despreader DESP for despreading the respective demodulator
output data. The code generator PN-GEN and the despreader
DESP as well as the multiplexer PI-DEMUX are controlled in
response to the frame clock control signal FCC processed by

5 the control means CNTRL. Through this control it is ensured
that the PN generator despreading sequence is time-aligned
and - for the calculation of the delay profile DPS -
shifted to the respective extracted demodulator output
data. As explained above, the time-alignment is necessary
10 since otherwise there would be a wrong despreading, since
not only the correct despreading sequence (generated by
the code generator PN-GEN), but also the correct timing is
necessary such that the demodulator output data can be
correctly despread.

15 As is shown in Fig. 7, the output data from the despreaders
DESP is input to a coherent accumulation/averaging means
ACC-AV which calculates the delay profile DPS controlled by
the control means CNTRL. The delay profile is essentially
20 generated on the basis of the demodulator output data (the
extracted pilot symbols plus the additional samples) in
response to the frame clock control signal FCC. An
embodiment of the despreaders DESP and the coherent
accumulation/averaging means ACC-AV according to the
25 invention is shown in Fig. 9.

The despreaders DESP comprises a correlation means CM formed
by a multiplication means MM and an integration means IM.
Since the demodulator output data comprise real and
30 imaginary parts and the despreading sequence generated by
the coded generator PN-GEN must also comprise real and
imaginary parts, the correlator CM is a complex correlator
and the multiplication means MM performs a complex
multiplication. The starting point of the PN-sequence is
35 controlled by the phase control means PH-CNTRL.

5 The multiplication means MM comprises multiplexers M1, M2,
M3, M4 and adders ADD1, ADD2. The integration means IM
comprises summation units SUM1, SUM2.

The multiplier M1 multiplies the real part Rx_Re of the
10 demultiplexer output data with the real part PN_Re of the
spreading sequence and applies the multiplied data value to
the adder ADD1. The multiplier M2 multiplies the imaginary
part Rx_IM of the demultiplexer output data with the real
part PN_Re of the PN sequence. The multiplied signal from
15 the multiplier M2 is input to the adder ADD2. The
multiplier M3 multiplies the imaginary part Rx_Im of the
demultiplexer output data with the imaginary part PN_Im of
the PN sequence and applies the multiplied data to the
adder ADD1. The multiplier M4 multiplies the real part Rx
20 Re of the demultiplexer output data with the imaginary part
PN_Im of the PN-sequence and applies the output signal to
the adder ADD2. The adder ADD1 adds the output signal from
the multiplier M1 and the output signal from the adder M3
and applies an added signal to the summation unit SUM1 of
25 the integration means IM. The adder ADD2 adds the output
signal from the multiplier M2 and an inverted output signal
from the multiplier M4 and supplies the added signal to the
summation unit SUM2 of the integration means IM.

30 The multiplication means MM outputs results from the adders
ADD1, ADD2 for each pilot chip and the summation units
SUM1, SUM2 perform an addition of the output signals from
the adders ADD1, ADD2 for N_pilot_chips (e.g. 2 x 128
times). Since the completed data is a digital signal, the
35 summation performed in the summation units SUM1, SUM2
correspond to an integration of the output signals from the
multiplication means MM.

- 5 As one preferred embodiment the PN-generator PN-GEN generates the complex quadrature short Walsh Hadamard and the real long Gold (Walsh Hadamard) as the despreading codes with which the demodulator output data is multiplied.
- 10 If the complex correlator means CM is driven at an oversampling rate OS, only every OS-th complex multiplication delivers a non-zero result. Care has to be taken if an OQPSK-modulation scheme is applied. Preferably, in this case, the complex multiplication performed in the
- 15 multiplication means MM can be split into two real multiplications at a distance of OS/2. The overall code phase is adjusted in increments of 1/OS of a chip period. A serial search through the time uncertainty region (delay spread) with constant dwell time of one pilot symbol period
- 20 (here: 31.25 μ s) at each code phase position (1/OS of a chip period) can preferably be applied. Thus, a certain number of code phases can be evaluated per slot and searcher. Since these operations are done off-line, processing at a higher speed can be applied.
- 25 The number of evaluable code phases equals the ratio of the total number of chips per slot and the numbers of chips per pilot symbols times this overprocessing factor OP (here: $OP \cdot 2560 / 256 = OP \cdot 10$). One example is a hardware
- 30 implementation of eight searchers at an overprocessing factor $OP = 4$. Another example is two searchers at $OP = 16$.
- In the coherent accumulation/averaging means ACC-AV a coherent summation unit SUM3 performs a coherent
- 35 accumulation on the despread values of two consecutive periods of pilot symbols (i.e. four pilot symbols in total corresponding to two slots). In total, 160 samples of a delay profile can be calculated per searcher during $2/OP$

5 frames (= 2*16/OP slots), i.e. within the repetition time
of 20/OP ms. This applies to a searcher with one correlator
and one despread. By grouping a number of correlators and
despreaders within the set of searchers (Fig. 6) a parallel
searcher architecture can be defined. However, this does
10 not present a limitation of this general description of the
invention.

The complex output of the coherent accumulation/averaging
means ACC-AV, i.e. the real part Re_Imp [Phase] and Im_Imp
15 [Phase] are then input to the squaring unit SQ. In the unit
SQ the real part and the imaginary part of SUM3 is
respectively squared and added ($|a+jb|^2=a^2+b^2$). The output
of the unit SQ, namely the partial real delay profile value
DPS_i is input to the summation unit SUM4 which performs a
20 non-coherent accumulation of the samples. The output from
the summation unit SUM4 is the actual real delay profile
DPS. Thus, the summation unit SUM4 essentially averages two
delay profiles DPS_i from two or more succeeding slots.
Thus, the underlying principle of the delay profile
25 determination is to perform a complex valued channel
estimation in each time slot, then to non-coherently add
the complex channel estimates (complex samples) of at least
2 time slots and to finally non-coherently add delay
profiles (real values) of (added) channel estimates from
30 respectively 2 time slots.

Therefore, the primary function of the despread DESP can
be described as multiplying a time-aligned PN-sequence with
the demodulator output data, whilst the coherent/non-
35 coherent accumulation/averaging means ACC-AV performs an
averaging over two or more successive slots. The output is
an averaged delay profile DPS which is based on the

5 demodulator output data, namely the pilot symbols (+ added samples) over one used period for the coherent averaging (Fig. 11). Thus, the calculated delay profile DPS is much more accurate, since it uses pilot symbols from succeeding slots (or frames).

10

The following example illustrates the functioning of the despreaders DESP and the coherent accumulation/averaging means ACC-AV. Assuming an antenna diversity in each sector, three (active) sectors within a cell with correspondingly 15 six antenna signals can be processed by using 6 searchers during two frames for OP = 1. If, as another example, just one sector is selected (active), 3 out of the 6 searchers can be assigned to each antenna signal. Correspondingly, the number of correlations per sample of the delay profile 20 can be increased by a factor of 3. Thus, during 2 frames (see Fig. 11) 3 consecutive delay profiles can be computed for OP = 1 from which an estimate with reduced peak and interference variances can be obtained by averaging. This leads to an improved delay profile DPS.

25

With OP = 16 and 2 searchers, it is possible to calculate 2*8 (consecutive) delay spectra within the frame period of 10 ms and 16 time slots. The sector control mechanism (the sector scheduling is explained below) can distribute, i.e. 30 allocate this number to active and non-active sectors. For example, for two active sectors (two antenna signals each) three consecutive delay profiles and for two non-active sectors (two antenna signals each) one delay profile can be calculated (see Fig. 13). Thus, non-coherent averaging for 35 the active sectors can be applied during each frame. Within 60 ms, three delay spectra also for the non-active sectors can be calculated, thus allowing non-coherent averaging also for the non-active sectors.

5

In order to increase the number of non-coherent accumulations (averaging) in the coherent accumulation/averaging means by a factor of 2 without increasing the update time, an "interleaved" averaging scheme according to the invention (see Fig. 11) for an update time of 10 ms may be employed. Here the last two consecutive (perhaps already non-coherently averaged) delay profiles, the currently calculated profile and the profile of the update time before, are (further) averaged in order to calculate improved delay profiles at an unchanged update rate of 10 ms. One preferred interleaving scheme for calculating the delay profiles DPS is for example as follows. In frame n-1 a delay profile DPS_{n-1} is calculated. Then in the present frame n a further delay profile DPS_n is calculated. In frame n the two delay profiles are accumulated (added) non-coherently and the added delay profile is used as the delay profile DPS_n for frame n, i.e. $DPS_n' = DPS_{n-1} + DPS_n$. The actually calculated delay profile DPS_n in frame n is stored to be used for a further accumulation in the next frame n+1. It is also possible to apply a weighting factor to the previously calculated delay profile DPS_{n-1} . Instead of just accumulating (non-coherent adding) of two delay profiles DPS_{n-1} , DPS_n , it is also possible to store a plurality of preceding delay profiles DPS and then to non-coherently add a plurality of frames to result in the delay profile DPS for the frame n. The plurality of delay profiles can also be weighted before the accumulation. Thus, also different embodiments are possible that take into account a kind of FIR or IIR filtering (or weighting) of the respective delay profiles DPS.

According to another embodiment of the coherent accumulation/averaging means, the delay profiles of two

5 corresponding sector antennas can be added (within the path selection unit PSU) (see Fig. 6 and Fig. 10) exploiting the antenna diversity. In this case, the coherent accumulation/averaging means ACC-AV can preferably add two delay profiles from the two different antennas.

10

On the basis of the final delay profiles DPS output by the summation unit SUM4, interference (noise) estimates are calculated in the path selection unit PSU. The despreaders DESP and the coherent accumulation/averaging means ACC-AV 15 are controlled by digital signal processors DSPs, which steer the correlation as well as the coherent and non-coherent accumulation processes.

In any case, it is seen that the despreaders DSP performs 20 the despreading on the basis of the pilot symbols and the coherent accumulation/averaging means ACC-AV performs an averaging of delay profiles calculated on the basis of the pilot symbols within each frame. The calculation of partial delay profiles DPS_i on the basis of pilot symbols is 25 superior to the usage of random data to determine the delay profiles. The other aspect of the invention is that consecutive delay profiles, at least over two consecutive frames, are averaged, thus leading to a more accurate delay profile DPS.

30

Embodiment of the Path Selection Unit

As explained before, the individual searchers S1 ... SL 35 each output a delay profile DPS which is calculated on the basis of the periodic pilot symbols and which is preferably an averaged delay profile calculated from two succeeding frames.

5 Now it will be described how the path selection unit PSU selects the predominant paths contained in the delay profile DPS. An embodiment of the path selection unit PSU is shown in Fig. 10. The function of the PSU will be described for the inputting of two delay profiles DPS from
10 two antennas Ant1, Ant2 belonging to the same sector (in Fig. 10 it is the sector 1). It should, however, be understood that each of the searchers 1 ... L separately comprise the equivalent means to respectively output the most dominant (strongest) paths in the respective sector.
15 For illustration purposes of the invention it is at this point assumed that an antenna diversity is used within each sector. However, the invention is not restricted to the antenna diversity. Fig. 14 shows the processing of the delay profiles in the path selection unit PSU.

20 The path selection unit PSU comprises an adder ADD, a peak detection and removal means PD-RV, a path estimation means PEST, a noise estimation means NEST, path verification means PVER1, PVER2 and a maximum detection means MAX and a
25 threshold setting means THRS-SET. The noise estimation means NEST receives a threshold factor or threshold value THRS from the threshold setting means THRS-SET. The primary function of this path selection unit PSU, as already explained with reference to Fig. 6, is to extract the N-strongest paths $d_1' \dots d_N'$ (i.e. delay values) out of the respective delay profiles DPS1, DPS2 by taking interference (noise) estimates into account. In addition, a selection information $s_1' \dots s_N'$ is generated, indicating the (active) sector (and antenna signals) that have been
30 selected. The delay and selection information which has been calculated on the basis of the input delay profiles, is passed to the tracking and control means TRCU that performs the final selection as indicated in Fig. 6.

5

The path selection unit PSU outputs new strongest paths and new selection information $s_1' \dots s_N'$ at the update time (e.g. 10 ms), i.e. at the minimum every frame period.

- 10 Hereinafter, the function of the individual means of the path selection unit PSU is described with reference to Fig. 10 and Fig. 14.

If default two antenna signals per sector (antenna diversity) or their respective delay profiles DPS1, DPS2 are to be processed, the respective delay profiles DPS1, DPS2 are first added in the adder ADD. It should be noted, that the procedure described hereinafter also applies to the case where the antenna diversity is not used. In this 20 case the adder ADD is omitted and the calculated delay profile DPS from one antenna per sector is input directly to the path detection and removal means PD-RV and the path estimation means PEST. Therefore, the antenna diversity with two antennas is only a preferred embodiment of the 25 invention.

From the added delay profile DPS' (see step ST1 in Fig. 14) the overall maximum MAX1 is searched (step ST2). The maximum MAX1 and a certain number of samples (preferably 30 three depending on pulse spread) on each side of the maximum (pulse spread) are removed or respectively set to zero in the peak detection and removal means PD-RV. As explained before, in total there are a number of 160 samples for each delay profile DPS, such that only the 35 removal of the maximum MAX and three samples to the left and right does not destroy the complete characteristic of the delay profile, i.e. essentially the maximum MAX1 should be removed. The maximum MAX1 and the corresponding delay

5 value d_{MAX1} are stored in the peak detection and removal
means PD-RV.

The procedure of maximum removal from the DPS' is repeated
N-times (step ST4), thus giving a set of N-candidate delay
10 values $d_{max1}, d_{max2} \dots d_{maxn}$ and corresponding peak values
MAX1, MAX2 ... MAXN. The remaining averaged delay profile
 DPS^* is considered as interference (noise) from which the
mean value DPS is calculated in the noise estimation means
NEST (step ST4). That is, since the relevant maxima have
15 been removed from the added delay profile DPS*, the rest of
the delay profile DPS* can be considered as but
interference or noise. Preferably the number of maxima
should smaller than the number RAKE fingers.

20 Then the stored candidate peak values MAX1, MAX2 ... MAXN
are compared to the effective noise level DPS^* multiplied
by a certain adaptable but constant threshold factor THRS.
THRS is gained from an optimization procedure and might
reflect the number of scanned sectors, the signal-to-
25 interference ratio and the number of non-coherent
accumulations. Thus, the path estimation means PEST only
considers those values above the effective noise floor as
real delay values which correspond to respective
independent direct and indirect propagation paths not
30 necessarily the direct one.

If no antenna diversity is used i.e. if only the profile
DPS of one antenna (and not the added profile) is evaluated
then the path estimation comes to an end, i.e. the selected
35 maxima that lie above the multiplied threshold are input
(for each sector) to the maximum detection means MAX, which

5 outputs the delays and the selection information for the N highest maxima of all sectors.

Preferably, if antenna diversity is used, the original calculated delay profiles DPS1, DPS2 undergo a further
10 processing in the respective path verification means PVER1, PVER2. As seen in step ST5 in PVER1, PVER2 the two delay profiles DPS1, DPS2 are independently from each other (again) checked against the threshold, i.e. $\overline{DPS^*} \times \text{THRS}$. Only those maxima in each DPS are kept for each antenna as
15 prospective peaks that still exceed the threshold (of course the threshold has to be adapted by a division of 2 if DPS1 + DPS2 was not normalized by $\frac{1}{2}$). Thus, now the final selected paths - per antenna and sector indicated by the selection information - are determined.

20

At this point, the output of the maximum detection means MAX is - by having evaluated all sectors (for example six sectors) with respect to their input N maxima - a measure of the most relevant delays d_1, \dots, d_N , as well as the
25 selection information from which sector these strongest maxima and their delays originated. Thus, the output of the maximum detection means MAX, i.e. in fact the output of the path selection unit PSU, is a measure of the propagation paths that carry the most energy (i.e. the most important
30 delays plus an indication where (i.e. in which sector) these path delays have occurred. The maximum detection means orders the maxima in a descending order from the highest to the lowest maxima (with a corresponding adaptation of the selection informations).

35

By adapting the sector selection method (the sector selection scheduling) and by adjusting the correlation process as will be described below, a trade-off between the

5 number of active and non-active sectors, the update time
and accuracy of the calculated delay profiles can be made.
That is, by performing an appropriate search through the
individual sectors (see Fig. 12) and by distinguishing
between active and non-active sectors, an even more
10 accurate delay profile and a determination of the movement
of the mobile station between sectors can be calculated.
Apart from the calculation of an improved delay profile,
the sector selection procedure can also be used for a
softer hand-over, i.e. generally for a more accurate
15 determination of where the mobile is located and/or whether
the mobile is located on the boarder line between two
sectors.

20 Hereinafter, the function of the tracking and control unit
TRCU shown in Fig. 6, which receives the above described
output from the path selection unit PSU, will be described.

Embodiment of the Tracking and Control Unit

25 As is seen in Fig. 6, the tracking and control unit TRCU
receives the output from the path selection unit PSU (see
Fig. 10), i.e. the delay times d_1' ... d_N' of the most
relevant maximum values obtained from all path verification
means PVER1, PVER2 of all sectors as well as the specific
30 selection information s_1' ... s_N' indicating to which
sector and which antenna the respective delay time belongs.
The unit TRCU now selects the P strongest maxima from the
output of the unit PSU (P = number of RAKE fingers), i.e.
the delay values d_1 ... d_p and the respective selection
35 information S_1 ... S_p .

However, of course the values output by the path selection
unit PSU as such are only valid as long as a fixed position

5 (and distance) between the mobile station MS and the base station BS is maintained. If the position is varied, which is the normal case, then of course the power delay spectrum DPS, i.e. the delay times, might change. Now, of course each search means S1 ... SL may use a predetermined window
10 for determining the power delay spectrum. That is, the phase of the code generator PN-GEN (with its oversampled despreading sequence) or the signal sequence itself by inverting or removing samples by the pilot demultiplier is shifted a predetermined number of spreading symbols and
15 this shifting corresponds to evaluating a predetermined delay time. Of course, during a first transmission set up between the mobile station MS and the base station BS, a predetermined average delay time will apply even to the direct path P1. During this time a predetermined window of
20 shift distances (delay spread) can be determined. However, the center value of the delay spread window must be shifted corresponding to a distance change between the mobile station MS and the base station BS if the mobile station MS moves around. Different strategies are thinkable.

25

Therefore, the first function of the tracking and control unit TRCU is to adapt (track) the (delay spread) search windows to distance variations between MS and BS. It will not do so continuously, but preferably a minimum update
30 time of 10 ms (length of a radio frame) will be sufficient (OP = 16, 2 searchers, 2 active sectors, 3 non-coherent averagings without interleaving). The buffers included in the pilot demultiplexers of the selector SEL are controlled by insertion or removal of samples (of the pilot symbols
35 and data symbols) by adjusting the read and write pointers within the pilot demultiplexer. By shifting the read and write pointers in the demultiplexer, different start and end timings of the extraction of the pilot symbols plus the

- 5 additional samples are achieved which corresponds to a shifting of the values resulting effectively in a change of the search window. Another possibility is to shift the PN-generator phase as explained above.
- 10 During a sector (softer) hand-over a common search window off-set is applied to both adjacent sectors in order to maintain synchronization. This common search window off-set is therefore also usable for (adjacent) non-active sectors (where no substantial power delay spectrum, i.e. no
- 15 detectable paths, can be calculated/expected). Algorithms for adapting the search window to mobile movements or distance variations (resulting in varying delays) can easily be devised by those skilled in the art, by considering for example the movement (delay) of the highest
- 20 maximum MAX1 over time.

Apart from the shifting of the search window employed in the searcher, the tracking and control unit TRCU has another function, to also update the already calculated

25 delay path $d_1' \dots d_N'$ according to the adjustments of the search window and to select a certain number of final delay values $d_1 \dots d_p$ and corresponding antenna/sector information $d_1 \dots d_p$.

(P = number of the RAKE fingers).

30 Thus, each PVERn unit is delivering a set of "candidate" peaks. All peaks are arranged in a descending order by the maximum detection unit MAX and only the P largest are maintained (irrespective what sector they are from) by the

35 unit TRCU.

This procedure is carried out for all antennas of all active sectors and out of all "survivors" amongst all.

5 investigated antenna signals of all active sectors a sequence of pre-defined maximum length (i.e. adapted to the number of RAKE fingers, e.g. $p = 8$) in descending order with respect to the power of the maximum values is arranged. This sequence now reflects the strongest paths
10 found within all currently investigated antenna signals (this will normally reflect the active sectors but might also include - currently still-non-active sectors). Simultaneously with the selection of the new delay values $d_1 \dots d_p$ according to the new descending order, of course
15 the selection information will also be updated to indicate the location of the respective delay times, i.e. to indicate the respective sectors belonging to the respective delay times. This selection information will tell the RAKE receiver connected to the output of the searching and
20 tracking unit STU which signals have to be demodulated. If less than this maximum number of path are identified, the RAKE receiver gets information that some RAKE fingers have to be switched off (e.g. by setting the respective selection information s to a negative value).

25

It is to be noted that the above-described updating of the delay times and the selection information output by the path selection unit PSU is not restricted to the case of antenna diversity. If only a single antenna per sector is
30 used then only one delay profile need to be examined.

As was already explained above, the number of sectors and the number of searchers are not necessarily the same. Preferably, the set of searchers consists of six searchers
35 in total. However, the number of sectors may be larger or smaller or equal to the number of searchers. Therefore, the control means CNTRL in Fig. 6 controls the selector SEL such that the individual antenna signals (one or two per

5 sector) are applied to the respective searchers in a time-shared manner.

Sector Selection Scheduling

10 As was also explained above, in the present invention the searcher preferably calculates a delay profile on the basis of pilot symbols extracted from at least two consecutive time slots within each frame. As indicated in Fig. 11, each frame, however, consists of 16 time slots. Assuming a case
15 where the (single) antenna signal is applied by the selector SEL to one individual searcher over the complete frame period of 10 ms, then obviously the searcher could not only perform a calculation of the final delay profile by only once evaluating two consecutive time slots, but in
20 fact the searcher could - for this antenna signal - carry out the calculation in total eight times for this antenna signal (16 time slots). However, the control means CNTRL can switch at two other time slots to another antenna signal after having performed the time slot computation for
25 the present antenna signal (since in fact after the first computation using two time slots there is time amounting to 14 other time slots). Hereinafter, it is explained how the sector scheduling, i.e. the application of antenna signals to a set of searchers each performing the computation of
30 data in two consecutive time slots - can preferably be performed. It is however noted that the unit TRCU can also use a (non-optimal) sector scanning rule which is preset for a predetermined number of sectors for each cell.

35 Firstly, the tracking and control unit TRCU determines which of the sectors are active sectors and which of the sectors are non-active sectors. The selection information $s_1 \dots s_p$ in connection with the delay times $d_1 \dots d_p$

5 indicate which of the presently available sectors are active or non-active. That is, sectors, which are active, are indicated in the selection information.

Secondly, the tracking and control unit TRCU (or the
10 control means CNTRL, respectively) decides how many coherent accumulations can be performed in one frame. As explained above, if the complete frame for example contains 16 time slots, this will indicate that in total 8 independent coherent accumulations can be performed in a
15 frame (based on 2-slot coherent channel estimations. That is, the number of coherent accumulations which can in principle be carried out in one frame is the number of time slots divided by 2.

20 Next, the tracking and control unit TRCU determines the number of non-coherent accumulations, that is, the number of separate DPS_i calculations (respectively done by considering two consecutive time slots) which are then added up non-coherently (i.e. their absolute values are
25 added).

Next the tracking and control unit TRCU determines the update time for the power delay spectrum updating (i.e. the window shifting). The updating time essentially means the
30 period after which the same two time slots in the same sector for calculating the same DPS profile need to be looked at. The update time for active sectors need not necessarily be the same as in non-active sectors. That is, since the major changes (distance changes) will occur in
35 the active sectors, the non-active sectors need not be looked at so often, i.e. their update time may be larger. However, to have the same accuracy for the delay profile calculation, preferably the number of non-coherent

5 accumulations should be the same in the active sectors and
the non-active sectors.

Finally, the tracking and control unit TRCU and the control
means CNTRL - in order to determine the scheduling - must
10 know how many searchers S1 ... SL are available. That is,
if there are more searchers that work parallelly, of course
more sectors can be scanned within each frame.

Thus, the tracking and control unit TRCU determines at
15 anyone time the scanning scheduling of the sectors on the basis of the number of active and non-active sectors (as indicated by the selection information), the number of time slots per frame (determining the number of possible coherent accumulations), the number of non-coherent
20 accumulations desired for the active sectors and the non-active sectors, the desired up-date times for the active and non-active sectors as well as on the basis of the number of sectors (fixed) and the number of searchers (also fixed).

25 Of course, once the scanning schedule has been determined the scanning of sectors using this particular scanning schedule only makes sense as long as the sector status (indicated by the selection information) stays the same.
30 That is, if one non-active sector suddenly becomes an active-sector (due to a movement of the mobile station) then a different scanning schedule is set by the tracking and control unit. With such a scheduling scheme, of course the movement of the mobile station from one sector to
35 another sector across a sector boundary can be decided in a "soft" manner. That is, if the mobile station moves from one active sector in a direction towards a non-active sector then at some stage the receiving antenna in the non-

5 active sector will start to receive a signal and if the mobile station is close to the boundary the previously non-active sector will exhibit a delay profile including maxima which will indicate that the sector becomes active.
However, the decision process is not a hard decision
10 process, since essentially with the sector scanning a continuous movement of the mobile station can be monitored.

It is also possible that two sectors are declared as active ones, the other 4 as non-active. The assignment of the
15 sectors as active or non-active may change, but the number of active-non-active (similar: 3 active - 3 non-active etc.).

The following Table 1 in connection with Fig. 13, Fig. 15
20 shows an example of such a sector scheduling. In this example it has been assumed that the entire frame is 10 ms long and contains 16 time slots resulting in the potential possibility of handling 8 coherent accumulations.

25 For the case of 1 active/5 non-active sectors, update times for the non-active sectors were allowed to be 50 ms, 10 ms, 20 ms, 30 ms, respectively. For the active sectors an update time of 10 ms, i.e. every frame, is required.

30 In the case of 2 active/4 non-active sectors, the non-active sectors are allowed to have an update time of 10 ms, 20 ms, 60 ms, respectively.

35 In the case of 3 active sectors 3 non-active sectors an update time of 30 ms is requested for the non-active sectors. The number before the update times in brackets indicate the possible number of coherent accumulations.

5 In fact, in Table 1 it has been prespecified that two
 10 searchers with an oversampling rate of OP = 16 and a
 requested update time of 10 ms for each active sector are
 used. Also, a minimum number of two non-coherent
 accumulations is requested. The circuit configuration for
 15 this is shown in Fig. 15. A control signal CNTRL will
 indicate to the selector the timing when the respective
 first and second antenna of each sector is applied to the
 first and second searcher S1, S2. In Fig. 15 it is assumed
 that the first antenna is always handled by the first
 20 searcher S1 and the second antenna is always handled by the
 second searcher S2.

In Table 1 the cases where the number of non-coherent
 20 accumulations is the same and their respective update times
 25 are indicated in a bold-face frame. For example, for the
 case of 2 active sectors/4 non active-sectors the non-
 active sectors only need to be updated after 6 frames (60
 ms), wherein the active sectors are updated after every
 frame (10 ms). However, the same number of non-coherent
 30 accumulations (3) are employed. Obviously putting different
 constraints on the update times, for example increasing the
 update times for the non-active sectors will allow more
 non-coherent accumulations.

30

Table 1

35

1 active	5 non-act.	2 active	4 non-act.	3 act.	3 non-act.
7 (10 ms)	1 (50 ms)	2 (10 ms)	1 (10 ms)	2 (10 ms)	2 (30 ms)
6 (10 ms)	2 (50 ms)	2 (10 ms)	2 (20 ms)		
5 (10 ms)	3 (50 ms)	3 (10 ms)	1 (20 ms)		
4 (10 ms)	4 (50 ms)	3 (10 ms)	2 (40 ms)		
3 (10 ms)	1 (10 ms)	3 (10 ms)	3 (60 ms)		
3 (10 ms)	2 (20 ms)				
3 (10 ms)	3 (30 ms)				

- 5 The aforementioned example of 2 active sectors/4 non-active sectors with update times of 10 ms, 60 ms and three non-coherent accumulations (using an antenna diversity in each sector and 2 searchers) give the most relevant information as to how the sectors must be scanned. Whilst the update
10 times determine how often a sector must be looked at, it, however, does not exactly specify the sequence of scannings. Fig. 13a), b) show two different scanning sequences. In Fig. 13 "A" denotes an active sector, the number following "A" denotes the first, second and third
15 active sector and the subscript following this number denotes the number of the DPS calculation (i.e. the coherent accumulation performed over 2 time slots). "N" denotes a non-active sector.
- 20 In Fig. 13a) the three coherent accumulations 1, 2, 3 for the active sector 1, A₁₁, A₁₂, A₁₃ and the three DPS calculations for the second active sector, A₂₁, A₂₂, A₂₃, are successively performed. There are four time slots left in frame 1 which are respectively used for performing the
25 first DPS-calculation in the non-active sectors N₁₁, N₂₁. The update time of 10 ms for the active sectors can be seen in frame 2, since after every 10 ms the same sequence of DPS calculations is used for the active sectors. However, the remaining four time slots can respectively be used for
30 a scanning of the non-active sectors N₁, N₂ for their respective second DPS calculation, N₁₂, N₂₂. The scanning of the active sectors is maintained in every frame wherein in every frame the last four time slots are used for the scanning of the non-active sectors. Since the update
35 period for the non-active sectors has been selected to 60 ms, the sequence of scannings in frame 1 regarding the non-active sectors is only repeated in the 7th frame (not shown) which is in fact the same as frame 1.

5

Fig. 13b) shows another realization of the scheduling as prescribed by the parameters in Table 1. Here, the sequence of scannings of active-sectors and non-active sectors has been changed, whilst still the constraints as given in 10 Table 1 are fulfilled. Therefore, there is some freedom in still arranging the scannings within each sector.

Depending on how the scanning of the non-active sectors with respect to their first, second and third coherent DPS 15 calculation is performed, after every third DPS calculation a non-coherent accumulation can take place and the delay profiles can respectively be evaluated for changes. When the mobile station moves around, the delay profiles will change their shape (due to different multipath 20 propagation), however, overall the path selection unit will still indicate that the sector is active, even though the delay profile has changed. Evaluating the delay profile in one active sector with respect to the delay profile in one or more adjacent active sectors can give an estimation as 25 to the direction in which the mobile station moves. Even if the delay profile in the non-active sectors, as long as they stay non-active, do not contain any maxima (paths) that would exceed the defined threshold level, the delay profiles of the non-active sectors can nonetheless be 30 evaluated together with the active-sectors, since even the delay profile in a non-active sector will change if the mobile station moves from a non-active sector in the direction of an active-sector.

35 Thus, by evaluating the delay profiles as soon as all non-coherent accumulations have been performed in all sectors (in the example in Fig. 13 after 60 ms) all delay profiles can be evaluated together which gives an estimate of the

- 5 location of the mobile station within the cell and of the
moving direction of the mobile station.

Performance of the Inventive CDMA Base Station

- 10 Hereinafter, a CDMA base station including 6 searchers with
OP=1 is investigated.

The performance of the searching and tracking algorithm is characterised by the detectability of channel paths from
15 the delay profile. Channel paths become visible in the estimated delay profile as autocorrelation peaks. The estimation algorithm must be capable to reveal these autocorrelation peaks at a reasonable signal-to-interference ratio above interference level. The path
20 detectability depends on the signal-to-interference ratio in the RF band and the despreading gain of the searching algorithm as well as the peak and noise variances. The despreading gain of the searching algorithm is defined by the despreading gain per pilot symbol and the number of
25 coherent accumulations of despread pilot symbols.

For the proposed algorithm this despreading gain equals, e.g., $10 \log 128 * 4 = 27$ dB. The signal-to-interference ratio E_{ch}/l_0 seen by the channel estimation (i.e. the
30 distance between autocorrelation peak and noise floor in the estimated delay profile) is by, e.g., $10 \log 512/M$ (in dB) higher than the E_{s10} per modulation symbol, where $M \in \{16, 32, 64, 128\}$ is the modulation symbol spreading factor. Since a rate 1/3 convolutional code and a quaternary
35 modulation scheme is applied, the E_{ch}/l_0 is by $10 \log 2 * 512/3M$ (in dB) larger than the corresponding E_b/l_0 . The peak and noise variances decrease with an increasing number

5 of non-coherent averagings, i.e. the detection probability
increases and the false alarm probability of detecting a
non-existing peak decreases.

Figure 16, 17 show examples of the probabilities of non-
10 detecting an existing peak and, in contrary, of detecting a
non-existing peak ("false alarm") for a 2-path, equal
strength, independently Rayleigh fading channel, $v=50$ km/h,
 $M = 64$ and $E_b/I_0 = 5$ dB. The underlying update time was 20
ms (6 searchers, $OP=1$). Antenna diversity and the
15 interleaved averaging scheme was applied. The curves are
plotted versus the peak-to-interference threshold, i.e. the
(normalised) ratio of peak and corresponding noise values.
Different curves for the non-detection probability are
shown: Detection ranges (DR) of 0, 1 and 2 samples were
20 investigated. This means that all peaks are counted as
correctly detected if they exceed the peak-to-noise level
and if their corresponding delay value lies within the
interval

[correct_delay-DR correct_delay+DR]. 'any peaks' means that
25 all peaks above peak-to-noise level without checking their
actual delays were counted. As can be seen the strict
evaluation with DR=0 leads to some performance loss.
However, for DR=1 and, especially, DR=2 no significant loss
with respect to the non-detection probability can be
30 identified.

Figure 18 shows the performance of the algorithm over
 E_b/I_0 . The probability values at the intercept points as
depicted in figure 17 were taken. For practical purposes
35 the threshold factor should be slightly increased to
provide more security against false alarms introducing a
slight performance degradation.

5 Figure 19 gives an impression how an optimal threshold factor is dependent on the signal-to-noise ratio, the number of (scanned) sectors and (inherently) the number of non-coherent accumulations.

10 Industrial Applicability

The proposed invention can be used in any (periodically) pilot symbol based transmission scheme for delay profile estimation and path detection. It is a very prospective
15 candidate with respect to constraints on hardware expenditure, flexibility and accuracy of the profile and noise estimations. That is by adapting the number of searchers in combination with the proposed scheme of coherent and non-coherent accumulations (OP interleaved
20 averaging scheme) nearly any trade-off between accuracy and hardware expenditure can be achieved. Non-coherent averaging is applied in order to reduce peak and noise variances. A wide variety of sector selection schemes (scheduling) can be applied.

25

This description, the preferred embodiments and examples of the invention as presently perceived as the best mode of the invention have been described. However, it is obvious that various modifications and variations of the invention
30 are possible for a skilled person in view of the above technical teachings. Therefore, the invention should not be seen as being restricted to the above-described embodiments and examples and the scope of the invention is defined by the attached claims. In the claims, reference numerals only
35 serve clarification purposes and do not limit the scope of these claims.

Claims

1. A multipath propagation delay determining means (STU,
10 Fig. 6, 7) for determining a power delay spectrum
(DPS) of a CDMA signal transmission between a CDMA
base station (BS) and a CDMA mobile station (MS) on a
plurality of propagation paths (P₁, P₂) within a cell
(CL) of a CDMA communication system, comprising:

15

a) an A/D conversion means (A/D) for converting an
analog CDMA multipath signal (S₁, S₂) received
from at least one antenna (Ant1, Ant2) within
said cell (CL) into a digital CDMA multipath
signal (S₁, S₂) consisting of consecutive radio
frames (RF₁...RF_n) including consecutive time
slots (TS₁...TS_m) with complex pilot symbols
(PS_i) and data symbols (PD_i);

25

b) a demultiplexing means (PI-DEMUX) for extracting
complex pilot symbols (PS_i) and data symbols
(PD_i) from at least two consecutive time slots
(TS_{k-1}, TS_k, TS_{k+1}) of each radio frame (RF_n) and
for storing them consecutively in a memory means
(BUF) thereof; and

30

c) a searching means (S₁...S_L) for determining a
power delay profile (DPS, DPS₁, DPS₂, Fig. 14) of
said each antenna (Ant.1, Ant.2) on the basis of
said extracted and stored complex pilot symbols
and said data symbols (PS_i, PD_i).

5 2. A means (STU, Fig. 6, 7) according to claim 1,
characterized by

10 c1) a despreading sequence generator (PN-GEN) for
generating a predetermined despreading sequence
(DESP-SQ);

15 c2) a despreading means (DESP, CM, MM, IM) for
despreading each of said complex pilot symbols
(PSi; Rx_Re, Rx_Im) with said despreading
sequence (DESP-SQ; PN_Re, PN_Im) to output
complex despread pilot values (PSi', Rx_Re',
Rx_Im') for each time slot (TSk-1, TSk, TSk+1);

20 c3) an averaging means (ACC-AV) for averaging said
despread complex pilot values (PSi', Rx_Re',
Rx_Im'), comprising:

25 c31) a coherent accumulation means (SUM3) for
coherently adding the real and imaginary
parts (PSi, Rx_Re', Rx_Im') of corresponding
despread complex pilot symbols (PSi) of at
least two consecutive time slots (TSk-1,
TSk, TSk+1) into one complex power delay
spectrum sample value (\overline{DPSi} , Re_Imp(Phase),
30 Im_Imp(Phase));

35 c32) an absolute value determining means (ABS)
for outputting one real power delay spectrum
sample value (DPSi) by determining the
absolute value of said one complex power
delay spectrum sample value (\overline{DPSi} ,
Re_Imp(Phase), Im_Imp(Phase)); and

5

10 c33) a control means (PN-CNTRL) for successively shifting the phase between said despreading sequence generated by said despreading generator (PN-GEN) and said extracted and stored pilot symbols (PSi) and said data symbols (PDi) a predetermined number of times , wherein said absolute value determining means (SQ) outputs as a real power delay spectrum (DPS) a predetermined number of real power delay spectrum sample values (DPSi) dependent on the phase shift.

15 3. A means (STU; Fig. 7, 9) according to claim 1,
characterized in that

20 it is incorporated in a CDMA base station (BS; Fig. 7, 9) or in a CDMA mobile station.

25 4. A means (STU; Fig. 7, 9) according to claim 2,
characterized in that

30 said despreading means (DESP, CM, MM, IM), said coherent accumulation means (SUM3) and said absolute value determining means (ABS) determine at each phase shift a plurality of real power delay spectrum sample values (DPSi) each value being based on the coherent addition of corresponding despread complex pilot symbols in at least two respective consecutive time slots, wherein the at least two consecutive time slots used for one value are different to those used for another value;

35

a non-coherent accumulation means (SUM4) is provided for non-coherently adding the corresponding real power

5 delay spectrum sample values to output one real power
delay spectrum sample value (DPS).

5. A means (STU; Fig. 5, 6) according to claim 1,
characterized by

10 a path selection unit (PSU) for determining from said
real power delay spectrum (DPS) the delay times
($d_1 \dots d_N$) of a predetermined number of propagation
paths (P1, P2) of said multipath transmission.

15 6. A means (STU; Fig. 6) according to claim 3 and 5,
characterized by

20 a tracking and control unit (TRCU) for adapting a
search window used in the at least searching unit
(S1...SL) and for updating the power delay spectrum
(DPS) and the delay times ($d_1 \dots d_N$) according to
position and/or distance variations between said
mobile station (MS) and said base station (BS).

25 7. A means (STU; Fig. 1, 6, 12) according to claim 3,
characterized in that

30 said CDMA cell (CL) served by said CDMA base station
(BS) is subdivided into a predetermined number of
sectors (SECT1...SECT6) each comprising at least one
antenna (Ant1, Ant2) and said A/D conversion means
(A/D) converts all of said antenna signals into a
corresponding digital CDMA multipath signal (S₁, S₂);

35 a predetermined number of searching units (S1...SL) is
provided; and

35 a selection means (SEL) is provided for applying said
digital CDMA multipath signals (S₁, S₂) to said

5 individual searching units (S₁, SL) in response to an application control sequence output by a control means (CNTRL).

8. A means (STU; Fig. 6) according to claim 7,
10 **characterized in that**
each sector (SECT1...SECT6) contains two antennas (Ant1, Ant2) and said selection means (SEL) applies the converted digital CDMA multipath signals (S₁...S₂) from each sector (SECT1...SECT6) respectively to one
15 searching unit (S₁...SL).

9. A means (STU; Fig. 6, 12) according to claim 7 or 8,
20 **characterized in that**
the number of sectors (SECT1...SECT6) equals the number of searching units (S₁...SL).

10. A means (STU; Fig. 6, 12) according to claim 7 or 8,
25 **characterized in that**
the number of sectors (SECT1...SECT6) is smaller or larger than the number of searching units (S₁...SL).

11. A means (STU; Fig. 8) according to claim 1,
30 **characterized in that**
said demultiplexing means (PI-DEMUX) comprises a switching means (SSW), said memory means (BUF) and a sink means (SNK), wherein a control means (CNTRL) controls said switching means (SSW) in response to a frame clock control signal (FFC) to consecutively transfer said extracted complex pilot symbols and data symbols into said memory means (BUF) and transfers other data symbols of said time slots into said sink means (SNK).

5

12. A means (STU; Fig. 9) according to claim 2,
characterized in that
said despreading means (DESP) comprising a complex
correlator (CM) consisting of a multiplication means
10 (MM) and an integration means (IM).

13. A means (STU; Fig. 9) according to claim 12,
characterized in that
said multiplication means (MM) comprises a first,
15 second, third and fourth multiplier (M1, M2, M3, M4)
and a first and second adder (ADD1, ADD2), wherein the
first multiplier (M1) multiplies the real part (Rx_Re)
of each pilot symbol with the real part (PN_Re) of a
symbol of said despreading sequence, said second
20 multiplier (M2) multiplies the imaginary part (Rx_Im)
of said pilot symbol with the real part (PN_Re) of a
symbol from said despreading sequence, said third
multiplier (M3) multiplies the imaginary part (Rx_Im)
of each pilot symbol with the imaginary part (PN_Im)
25 of said symbol of said despreading sequence, said
fourth multiplier (M4) multiplies the real part
(Rx_Re) of each pilot symbol with the imaginary part
(PN_Im) of said symbol of said despreading sequence,
said first adder (ADD1) adds the outputs from the
30 first and third multiplier (M1, M3) and said second
adder (ADD2) adds the outputs of said second and said
fourth multipliers (M2, M4), wherein said integration
means (IM) comprises a first and second summation unit
(SUM1, SUM2) which respectively add the values output
35 from said first and second adder (ADD1, ADD2) over a
predetermined number of pilot chips (N_pilot_chips),
wherein said first and second summation unit (SUM1,
SUM2) respectively output the real and the imaginary

5 part of said complex despread pilot values (PSi', Rx_Re', Rx_Im').

14. A means (STU; Fig. 10, Fig. 14) according to claim 5,
characterized in that said path selection unit (PSU)
10 comprises:

15 a peak detection/removal means (PD-RV) for detecting a predetermined number of peaks (MAX1, MAX2, MAXn) in said power delay spectrum (DPS) and for setting zero or removing at least those samples of said real power delay spectrum (DPS) corresponding to the detected peaks and a predetermined number of additional samples left and right to said maximum;

20 a noise estimation means (NEST) for averaging the real power delay spectrum (DPS) having the peak samples and said additional samples set to zero or removed to determine an effective noise value; and

25 a path estimation means (PEST) for selecting delay times ($d_1' \dots d_N'$; $d_{max1}, d_{max2}, d_{maxN}$) of the determined peaks which exceed a threshold ($\overline{DPS}^* \times THRS$) formed by multiplying the effective noise value with a threshold factor (THRS).

30 15. A means (STU; Fig. 10, 14) according to claim 8,
characterized in that said path selection unit (PSU)
further comprises:

35 an adder (ADD) to sum up a first and second real power delay spectrum (DPS1, DPS2) of the two antennas (Ant1, Ant2) per sector, wherein the peak detection and

5 removal means (PD-RV) detects and zeros peaks in said added real power delay spectrum (DPS');

a first and second path verification means (PVER1,
10 PVER2) for comparing the multiplied threshold ($\overline{DPS^*} \times$ THRS) determined by said path estimation means (PEST)
respectively with said first and second real power
delay spectrum (DPS1, DPS2) of each antenna at the
determined delay values ($d_{max1}, d_{max2}, d_{maxN}$) wherein
only such peaks in the first and second power delay
15 spectrum are detected which are equal or above the
multiplied threshold.

16. A means (STU; Fig. 10) according to claim 15,
characterized by

20 a maximum detection means (MAX) for receiving the candidate peaks from the respective path verification means (PVER1, PVER2) from a plurality of search means (S1...SL) each serving one or more sectors (SECT1...SECT6) and for ordering a predetermined number (N) of highest peaks as well as their delay times ($d_1' \dots d_N'$) output by the path verification means (PVER1, PVER2) of the respective search means (S1...SL) in a descending order and for determining a selection information ($s_1' \dots s_N'$) for each delay time (25 $d_1' \dots d_N'$) indicating to which sector (SECT1...SECT6) the respective delay times ($d_1' \dots d_N'$) belong.
25
30

- 5 17. A means (STU; Fig. 3, 11) according to claim 2,
characterized in that
said radio frames (RFn) each comprise sixteen time
slots, wherein a plurality of real power delay spectra
(DPS) are calculated non-coherently.
- 10 18. A means (STU; Fig. 6, 13, 15) according to claim 6 and
16, *characterized in that*
said tracking and control unit (TRCU) receives said
selection information values ($s_1' \dots s_N'$) and said
delay times ($d_1' \dots d_N'$) and selects a predetermined
15 number (P) of delay times ($d_1 \dots d_P$) and corresponding
selection informations ($s_1 \dots s_P$).
- 20 19. A means (STU; Fig. 6, 13, 15) according to claim 18,
characterized in that
said tracking and control unit (TRCU) uses a
predetermined sector scanning rule for the currently
active and non-active sectors as indicated by said
selection information ($s_1' \dots s_N'$, $s_1 \dots s_P$) for
25 instructing said selection means (SEL) to apply the
respective antenna signals (Ant1, Ant2) from the
respective sectors (SECT1...SECT6) to said number of
search units (S1...SL) according to said predetermined
sector scanning rule.
- 30 20. A means (STU; Fig. 6, 13, 15) according to claim 19,
characterized in that
said tracking and control unit (TRCU) determines, on
the basis of the number of time slots (TSi) in each
35 radio frame (RFn), the number of total sectors
(SECT1...SECT6), the number of search means (S1...SL),
a predetermined update period (10ms) for active

5 sectors and the number of currently active and non-
active sectors as indicated by said selection
information ($s_1' \dots s_N'$, $s_1 \dots s_p$), a predetermined
number of coherent and non-coherent calculations of
the real power delay spectrum (DPS) and the update
10 period for non-active sectors (SECT1...SECT6), said
sector scanning rule (Fig. 13a, 13b) indicating which
sector is to be scanned at each respective time slot
(Tsi) of each radio frame (RFn).

- 15 21. A means (STU; Fig. 6, 13, 15) according to claim 19 or
20, **characterized in that**
said tracking and control unit (TRCU) evaluates
changes in the respective real power delay spectra
(DPS) over time in each active and non-active sector
20 with respect to each other in order to determine the
moving direction and the sector of the cell (CL) in
which said mobile station (MS) moves.
- 25 22. A means (STU; Fig. 6, 13, 15) according to claim 19 or
20, **characterized in that**
said tracking and control unit (TRCU) selects a new
sector scanning rule whenever a status of a scanned
sector changes from active to non-active or vice versa.
- 30 23. A means (STU; Fig. 6) according to claim 3,
characterized in that
said multipath propagation delay determining means
(STU) is connected to a RAKE receiver (RR) of said
CDMA base station (BS) or said mobile station (MS).
35
24. A multipath propagation delay determining means (STU,
Fig. 6, 10) for determining real power delay spectra

5 (DSP1, DSP2) of a CDMA signal transmission between a
CDMA base station (BS) and a CDMA mobile station (MS)
on a plurality of propagation paths (P1, P2) within a
CDMA cell (CL) subdivided into a predetermined number
of sectors (SECT1...SECT6) respectively with two
10 diversity reception antennas (Ant1, Ant2), including:

15 a path selection unit (PSU) for determining from said
real power delay spectra (DPS1, DPS2) the delay times
(d₁'...d_N') of a predetermined number of propagation
paths (P1, P2) of said multipath transmission, said
path selection unit (PSU) including:

20 a peak detection/removal means (PD-RV) for detecting a
predetermined number of peaks (MAX1, MAX2, MAXn) in
said power delay spectrum (DPS) and for removing or
setting to zero at least those samples of said real
power delay spectrum (DPS) corresponding to the
detected peaks;

25 a noise estimation means (NEST) for averaging the real
power delay spectrum (DPS) having the peak samples
removed or set to zero to determine an effective noise
value;

30 a path estimation means (PEST) for selecting delay
times (d₁'...d_N'; d_{max1}...d_{MaxN}) of the determined
peaks which exceed a threshold ($\overline{DPS^*} \times THRS$) formed
by multiplying the effective noise value with a
threshold factor (THRS);

35 an adder (ADD) to sum up a first and second real power
delay spectrum (DPS1, DPS2) of the two antennas (Ant1,
Ant2) per sector, wherein the peak detection and

5 removal means (PD-RV) detects and zeros or removes peaks in said added real power delay spectrum (DPS'); and

10 a first and second path verification means (PVER1, PVER2) for comparing the multiplied threshold ($DPS^* \times THRS$) determined by said path estimation means (PEST) respectively with said first and second real power delay spectrum (DPS1, DPS2) of each antenna at the determined delay values ($d_{max1}, d_{max2}, d_{maxN}$) wherein
15 only such peaks in the first and second power delay spectrum are detected which are equal or above the multiplied threshold.

25. A means (STU; Fig. 10) according to claim 24,
20 characterized in that said path selection means (PSU) further comprises:
a maximum detection means (MAX) for receiving the candidate peaks from the respective path verification means (PVER1, PVER2) from a plurality of search means (S1...SL) each serving one or more sectors
25 (SECT1...SECT6) and for ordering a predetermined number (N) of highest peaks as well as their delay times ($d_1' \dots d_N'$) output by the path verification means (PVER1, PVER2) of the respective search means (S1...SL) in a descending order and for determining a selection information ($s_1' \dots s_N'$) for each delay time ($d_1' \dots d_N'$) indicating to which sector (SECT1...SECT6) the respective delay times ($d_1' \dots d_N'$) belong.
30
35 26. A multipath propagation delay determining means (STU) determining real power delay spectra (DSP1, DSP2) of a CDMA signal transmission between a CDMA base station

5 (BS) and a CDMA mobile station (MS) on a plurality of propagation paths (P1, P2) within a CDMA cell (CL) subdivided into a predetermined number of sectors (SECT1...SECT6) respectively with two reception antennas (Ant1, Ant2) including:

10 a plurality of search means (S1...SL) for determining said real power delay spectra (DPS1, DPS2) of the multipath transmission in each sector;

15 a path selection unit (PSU) for determining from said real power delay spectra (DPS1, DPS2) the delay times ($d_1' \dots d_N'$) of a predetermined number of strongest propagation paths (P1, P2) of said multipath transmission and respective selection information
20 ($s_1' \dots s_N'$) indicating the active sectors (SECT1...SECT6) to which said delay times ($d_1' \dots d_N'$) belong;

25 a tracking and control means (TRCU) for determining on the basis of said delay times and said selection information ($s_1' \dots s_N'$) the active and non-active sectors, a sector scanning rule (Fig. 13) to instruct the selection means (SEL) to apply particular antenna signals to said search means (S1...SL) at particular timings in the respective time slots (TSi) of the radio frames (RFn) and for evaluating the real power delay spectra (DPS) respectively obtained when applying the particular antenna signals to the search means (S1...SL) to determine the location and/or the moving direction of the mobile station (MS) within the CDMA cell (CL).

- 5 27. A means (STU; Fig. 6, 13, 15) according to claim 26,
characterized in that

10 said tracking and control unit (TRCU) receives said
selection information values ($s_1 \dots s_N$) and said
delay times ($d_1 \dots d_N$) and selects a predetermined
number (P) of delay times ($d_1 \dots d_P$) and corresponding
selection informations ($s_1 \dots s_P$).

28. A means (STU; Fig. 6, 13, 15) according to claim 26 or
27, *characterized in that*

15 said tracking and control unit (TRCU) determines, on
the basis of the number of time slots (TSi) in each
radio frame (RFn), the number of total sectors
(SECT1...SECT6), the number of search means (S1...SL),
a predetermined update period (10ms) for active
20 sectors and the number of currently active and non-
active sectors as indicated by said selection
information ($s_1 \dots s_N$, $s_1 \dots s_P$), a predetermined
number of coherent and non-coherent calculations of
the real power delay spectrum (DPS) and the update
25 period for non-active sectors (SECT1...SECT6), said
sector scanning rule (Fig. 13a, 13b) indicating which
sector is to be scanned at each respective time slot
(Tsi) of each radio frame (RFn).

- 30 29. A means (STU, Fig. 6, 13, 15) according to one of the
claims 26 to 28, *characterized in that*
said tracking and control unit (TRCU) selects a new
sector scanning rule whenever a status of a scanned
sector changes from active to non-active or vice versa.

1/13

FIG.1**FIG.2a****FIG.3**

2/13

FIG.2b**SUBSTITUTE SHEET (RULE 26)**

3/13

FIG.4**FIG.5****SUBSTITUTE SHEET (RULE 26)**

4/13

FIG.6**FIG.7**

5/13

FIG.8**FIG.9**

6/13

FIG.10

FIG.11

7/13

FIG.12

FIG.13

A11: ACTIVE SECTOR 1, 1st DPS CALCULATION (2 SLOTS)

N1: NON-ACTIVE SECTOR 1, 1st DPS CALCULATION (2 SLOTS)

8/13

FIG.14**SUBSTITUTE SHEET (RULE 26)**

9/13

FIG.15**SUBSTITUTE SHEET (RULE 26)**

10/13

FIG.16

NON-DETECTION AND FALSE ALARM PROBABILITIES (DET. RANGE=2)

SUBSTITUTE SHEET (RULE 26)

11/13

FIG. 17

NON-DETECTION AND FALSE ALARM PROBABILITIES (DET. RANGE=2)

SUBSTITUTE SHEET (RULE 26)

12/13

FIG. 18

CROSS-OVER PROBABILITIES: NON-DETECTION AND FALSE ALARM, M=64

SUBSTITUTE SHEET (RULE 26)

13/13

FIG. 19**SUBSTITUTE SHEET (RULE 26)**

INTERNATIONAL SEARCH REPORT

International Application No

PCT/EP 99/03386

A. CLASSIFICATION OF SUBJECT MATTER

IPC 6 H04B1/707

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 6 H04B

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	WO 96 10873 A (QUALCOMM INC) 11 April 1996 (1996-04-11) abstract page 13, line 30 -page 14, line 35 page 16, line 1 - line 6 page 18, line 21 - line 36 page 29, line 4 - line 31 page 30, line 33 -page 31, line 2 page 33, line 18 -page 34, line 35 ---	1,3,5
A	-/-	2,4,6-8, 11-13, 15,16, 18-29

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"8" document member of the same patent family

Date of the actual completion of the international search

22 September 1999

Date of mailing of the international search report

29/09/1999

Name and mailing address of the ISA

European Patent Office, P B. 5618 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Lustrini, D

INTERNATIONAL SEARCH REPORT

International Application No
Fr./EP 99/03386

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	EP 0 776 105 A (NIPPON TELEGRAPH & TELEPHONE) 28 May 1997 (1997-05-28)	1,3,5
A	abstract column 6, line 1 -column 8, line 16 column 9, line 1 -column 10, line 59 column 12, line 1 - line 28 column 15, line 31 -column 16, line 46 column 20, line 52 -column 21, line 56 figures 11,12 ---	2,4,6,7, 11-13, 16-18, 23,24,26
A	EP 0 738 049 A (EUROP AGENCE SPATIALE) 16 October 1996 (1996-10-16) abstract column 2, line 30 -column 3, line 57 column 5, line 9 -column 6, line 25 column 8, line 33 -column 9, line 44 ---	1-6, 11-16, 23,24,26
A	GB 2 311 445 A (MOTOROLA INC) 24 September 1997 (1997-09-24) abstract page 9, line 15 - line 35 page 11, line 14 - line 35 -----	1-3,5,6

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/EP 99/03386

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
WO 9610873	A 11-04-1996	AU 688625 B AU 3945195 A AU 707834 B AU 6997798 A BR 9506390 A CA 2174243 A CN 1135815 A EP 0732013 A FI 962258 A JP 9506234 T US 5710768 A US 5867527 A ZA 9507858 A		12-03-1998 26-04-1996 22-07-1999 30-07-1998 16-09-1997 11-04-1996 13-11-1996 18-09-1996 22-07-1996 17-06-1997 20-01-1998 02-02-1999 22-04-1996
EP 0776105	A 28-05-1997	CA 2197342 A CN 1158193 A WO 9642146 A JP 2855173 B		27-12-1996 27-08-1997 27-12-1996 10-02-1999
EP 0738049	A 16-10-1996	FR 2733113 A CA 2173779 A JP 8340278 A US 5818868 A		18-10-1996 15-10-1996 24-12-1996 06-10-1998
GB 2311445	A 24-09-1997	US 5812542 A CN 1166727 A FR 2746233 A JP 9261203 A		22-09-1998 03-12-1997 19-09-1997 03-10-1997