INTERPOLACIA OGÓLNIE W przedz [a;b] jest n+1 różnych pkt x0xn		
i wartości funkc f(x) w tych pkt. Znalezc F(x) która w wezlach ma te same wart co f(x) i		
przybliża f(x) w pkt pośrednich.Zaklada się		
kl.funk.interp.wielom.algebr,trygon i funk sklejane		
INTERPOLACIA WIELOMIANOWA		
Istnieje tylko jeden wiel.interp.st. co najwyżej n >= 0,który w pkt x0xn na wart. y0yn		
interpoluje funkcję Dowód[3]: $(a0 + a1x0 + a2x0^2 anx0^2 = y0$		
$\begin{cases} a0 + a1x1 + a2x1^2 \dots anx1^2 = y1 \end{cases}$		
$a0 + a1xn + a2xn^2 \dots anxn^2 = yn$		
N+1 równań i n+1 niewiadomych 1 rozwzanie		
$\begin{bmatrix} 1 & x0 & x0^2 & \cdots & x0^n \end{bmatrix}$		
D=detA=det $\begin{bmatrix} 1 & x0 & x0^2 & \cdots & x0^n \\ 1 & x1 & x1^2 & \cdots & x1^n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & xn & xn^2 & \cdots & xn^n \end{bmatrix}$ Jest to wyzn. Vandermondea =/= 0 => xi=/=xj		
L1 xn xn^2 xn^n] Jest to wyzn. Vandermondea =/= 0 => xi=/=xi		
dla i=/=j Wobc tego[2] $ai = \frac{1}{D}\sum_{j=0}^{n} y(xj)Dij$		
^Dopełnienie algebr. elem.na poz. (i,j) INTERPOLACJA LAGRANGEA		
Wstawiam [2]do[3] i grupuję względem yi.		
Dostaję [4] : $W_n(x) = y_0 \phi_0(x) + y_1 \phi_1(x) + + y_n \phi_n(x)$		
gdzie $\phi_i(x)$ -wielom.st.<=n Z war.interp: $W_n(x_i) = y_1 \leftrightarrow W_n(x_i)$		
$= y_0\phi_0(x)y_1\phi_1(x)y_l\phi_l(x)y_n\phi_n(x)$ czyli wynika stąd,że każda z fun. ϕ_j musi		
spełniać warunek $\phi_j(x_i) = \begin{cases} 0, j \neq i \\ 1, j = i \end{cases}$		
Czyli dla $x \neq x_j$, j=0,1n, $\phi_j(x) = 0$ a dla		
$x=x_j \phi_j(x)=1$		
Zakładam że $\phi_j(x) = \lambda(x - x_j)(x - x_{j-1})(x - x_{j+1})(x - x_n)$ Z warunków:		
$\phi_j(x) = \lambda(x_j - x_0)(x_j - x_1)(x_j - x_{j-1}) (x_j - x_{j+1})(x_j - x_n) = 1$		
$(x_j - x_{j+1}) \cdot (x_j - x_n) = 1$ Ruguję parametr λ i dostaję :		
$\phi_j(x) = \frac{(x-x_j).(x-x_{j-1})(x-x_{j+1}).(x-x_n)}{(x_j-x_0).(x_j-x_{j-1})(x_j-x_{j+1}).(x_j-x_n)}$		
$(x_j-x_0)(x_j-x_{j-1})(x_j-x_{j+1})(x_j-x_n)$ Takie wyrażenia wstawia się do [4] , żeby		
otrzymać wielom internolujący l Oznaczam:		
$W_{n+1}(x) = \begin{pmatrix} x & x_0 \end{pmatrix} \begin{pmatrix} x_1 & x_1 \end{pmatrix} \dots \begin{pmatrix} x_n \end{pmatrix}$		
$W_{n+1}(x) = (x - x_0)(x - x_1) \dots (x - x_n)$ $W_n(x) = \sum_{j=0}^{n} y_j \frac{W_{n+1}(x)}{(x - x_j) \left\{ \frac{W_{n+1}(x)}{(x - x_j)} x = x_j \right\}}$		
Jest to równoważne z		
$W_n(x) = \sum_{j=0}^n y_j \frac{W_{n+1}(x)}{(x - x_j) W'_{n+1}(x_j)}$		
$\sum_{j=0}^{2^{n}} (x - x_j) W'_{n+1}(x_j)$ Tudzież		
$W_n(x) = \sum_{j=0}^n \left[y_j \prod_{i=0, i \neq j}^n \frac{(x-x_j)}{(x_j-x_i)} \right]$		
Oszacowanie Błędu Interpolacyjnego		
Błąd $\varepsilon(x) = f(x) * W_n(x)$ Można go oszacować $f^{(n+1)}(x)$ w przedziale [a,b]-		
maksymalna wartość Można pokazać:		
$f(x) - W_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!}(x - x_0) \dots (x - x_n)$		
$\begin{aligned} \xi \varepsilon int(x_0, x_1, x_2,, x_n) - najmn. przedz. zawie. \\ \varepsilon &= f(x) - W_n(x) \le \frac{M_{n+1}}{(n+1)!} W_{n+1} \text{ gdzie:} \end{aligned}$		
$M_{n+1} = \sup f^{(n+1)}(x) ; x \in [a, b] M_{n+1} \text{ zależy od}$		
funkcji. Dobierając węzły interp. można minimalizować $ W_{n+1} $		
Szczególny Przypadek (równoodległe węzły)		
$x_i = x_0 + i * h, i = 0,1,,n$ $x = x_0 + th, \ t \in R(argument) \mid \text{Dostanie się:}$		
$L_n(x) = L_n(x_o + th) = \sum_{i=0}^n f(x_i) \prod_{i=0, j \neq i}^n \frac{t - j}{i - j}$		
i=0 i=0, j≠i '		