Chapitre 4 Énergie transportée par la lumière

I. Modèle corpusculaire de la lumière

La lumière est à la fois \{ Une onde électromagnétique (avec une fréquence et une longueur). Un ensemble de particules les photons qui ont une énergie définie.

$$\Delta E = h.f = rac{h.c}{\lambda}$$

 ΔE : Énergie transportée par le photon (J) h : Constante de Planck $(h=6,63.10^{-34}J.s)$ f : Fréquence de l'onde (Hz) c : Célérité de la lumière $(c=3,00.10^8m.s^{-1})$ λ : Longueur d'onde (m)

Remarque 1 L'énergie ΔE du photon est souvent exprimée en eV avec 1 $eV=1,6.10^{-19}C$.

II. Conversion photothermique

(a) De l'energie rayonnante à l'énergie thermique Le panneau solaire thermique convertit l'énergie rayonnante du Soleil en énergie thermique.

La puissance rayonnante, aussi appelée puissance lumineuse, se calcule à partir de l'éclairement (ou irradience) et de la surface S des panneaux solaires :

$P_{rayonnante} = Eclairement imes Surface$

 $P_{rayonnante}$: Puissance rayonnante(W) $Eclairement: (W.m^{-2})$ Surface : Surface des panneaux (m^2)

Figure 1 - schéma panneaux

L'énergie solaire captée est transférée à un fluide colporteur qui chauffe.

$$Q=mc\Delta heta=
ho Vc\Delta heta$$

m : Masse du fluide (kg) ho : Masse volumique du fluide caloporteur $(kg.m^{-3})$ V : Volume du fluide caloporteur (m^3)

c: capacité thermique massique du fluide caloporteur $(J.kg^1.^{\circ}\mathrm{C}^{-1})$ $\Delta heta = heta_{final} - heta_{initial}$: écart de température entre l'état final et l'état initial (°C)