Mozilla MathML Test

Render this page with

	As rendered by TeX	As rendered by your browser
1	x^2y^2	x^2y^2
2	$_2F_3$	$_2F_3$
3	$\frac{x+y^2}{k+1}$	$\frac{x+y^2}{k+1}$
4	$x + y^{\frac{2}{k+1}}$	$x+y^{\frac{2}{k+1}}$
5	$\frac{a}{b/2}$	$\frac{a}{b/2}$
6	$a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \frac{1}{a_4}}}}$	$a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \frac{1}{a_4}}}}$
7	$a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \frac{1}{a_4}}}}$	$a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \frac{1}{a_4}}}}$
8	$\binom{n}{k/2}$	$\binom{n}{k/2}$
9	$\binom{p}{2}x^2y^{p-2} - \frac{1}{1-x}\frac{1}{1-x^2}$	$\binom{p}{2}x^2y^{p-2} - \frac{1}{1-x}\frac{1}{1-x^2}$
10	$\sum_{\substack{0 \le i \le m \\ 0 < j < n}} P(i, j)$	$\sum_{\substack{0 \leq i \leq m \\ 0 < j < n}} P(i, j)$
11	x^{2y}	x^{2y}
12	$\sum_{i=1}^{p} \sum_{j=1}^{q} \sum_{k=1}^{r} a_{ij} b_{jk} c_{ki}$	$\sum_{i=1}^{p} \sum_{j=1}^{q} \sum_{k=1}^{r} a_{ij} b_{jk} c_{ki}$

15 $2^{2^{2^{x}}}$ 16 $\int_{1}^{x} \frac{dt}{t}$ 17 $\int\int_{D} dx dy$ 18 $f(x) = \begin{cases} 1/3 & \text{if } 0 \leq x \leq 1; \\ 2/3 & \text{if } 3 \leq x \leq 4; \\ 0 & \text{elsewhere.} \end{cases}$ $f(x) = \begin{cases} 1/3 & \text{if } 0 \leq x \leq 1; \\ 2/3 & \text{if } 3 \leq x \leq 4; \\ 0 & \text{elsewhere.} \end{cases}$ $f(x) = \begin{cases} 1/3 & \text{if } 0 \leq x \leq 1; \\ 2/3 & \text{if } 3 \leq x \leq 4; \\ 0 & \text{elsewhere.} \end{cases}$ $2 \times \frac{k \text{ times}}{x + \dots + x}$ $2 \times \frac{k \text{ times}}{x + \dots + x}$ $2 \times \frac{k \text{ times}}{x + \dots + x}$ $2 \times \frac{k \text{ times}}{x + \dots + x}$ $2 \times \frac{k \text{ dis}}{x + \dots + x}$ $3 \times \frac{k \text{ dis}}{x + \dots + x}$ $4 \times \frac{k \text{ dis}}{x + \dots + x}$ $4 \times \frac{k \text{ dis}}{x + \dots + x}$ $4 \times \frac{k \text{ dis}}{x + \dots + x}$ $4 \times \frac{k \text{ dis}}{x + \dots + x}$ $4 \times \frac{k \text{ dis}}{x + \dots + x}$ $4 \times \frac{k \text{ dis}}{x + \dots + x}$ $4 \times \frac{k \text{ dis}}{x + \dots + x}$ $4 \times \frac{k \text{ dis}}{x + \dots + x}$ $4 \times \frac{k \text{ dis}}{x + \dots + x}$ $4 \times \frac{k \text{ dis}}{x + \dots + x}$ $4 \times \frac{k \text{ dis}}{x + \dots + x}$ $4 \times \frac{k \text{ dis}}{x + \dots + x}$ $4 \times k \text{ $	
14 $ \left(\frac{\partial^{2}}{\partial x^{2}} + \frac{\partial^{2}}{\partial y^{2}}\right) \varphi(x + iy) ^{2} = 0 $ $ \left(\frac{\partial^{2}}{\partial x^{2}} + \frac{\partial^{2}}{\partial y^{2}}\right)$ 15 $ 2^{2^{2^{x}}} $ 16 $ \int_{1}^{x} \frac{dt}{t} $ 17 $ \int_{D} dx dy $ 18 $ f(x) = \begin{cases} 1/3 & \text{if } 0 \leq x \leq 1; \\ 2/3 & \text{if } 3 \leq x \leq 4; \\ 0 & \text{elsewhere.} \end{cases} $ 19 $ \frac{k \text{ times}}{x + \dots + x} $ 20 $ yx^{2} $ 21 $ \sum_{p \text{ prime}} f(p) = \int_{t>1} f(t) d\pi(t) $ $ \sum_{p \text{ prime}} f(p) = \int_{t>1} f(t) d\pi(t) $ 22 $ \frac{k a's}{k+t \text{elements}} \frac{t b's}{k+t \text{elements}} $ $ \begin{cases} a, \dots, a, b, \dots, b \end{cases} $ $ k + t \text{elements} $	$+\sqrt{1+\sqrt{1+\sqrt{1+x}}}$
15 $22^{2^{x}}$ 16 $\int_{1}^{x} \frac{dt}{t}$ 17 $\int\int_{D} dx dy$ 18 $f(x) = \begin{cases} 1/3 & \text{if } 0 \le x \le 1; \\ 2/3 & \text{if } 3 \le x \le 4; \\ 0 & \text{elsewhere.} \end{cases}$ $f(x) = \begin{cases} 1/3 & \text{if } 0 \le x \le 1; \\ 2/3 & \text{if } 3 \le x \le 4; \\ 0 & \text{elsewhere.} \end{cases}$ 19 $\frac{k \text{ times}}{x + \dots + x}$ 20 $y_{x^{2}}$ 21 $\sum_{p \text{ prime}} f(p) = \int_{t>1} f(t) d\pi(t)$ $\sum_{p \text{ prime}} f(p) = \int_{t>1} f(t) d\pi(t)$ 22 $\frac{k \text{ a's}}{k + t \text{ elements}}$ $\{a, \dots, a_{k+1}, a_{k$	
16 $\int_{1}^{x} \frac{dt}{t}$ 17 $\int_{D} dx dy$ 18 $f(x) = \begin{cases} 1/3 & \text{if } 0 \le x \le 1; \\ 2/3 & \text{if } 3 \le x \le 4; \\ 0 & \text{elsewhere.} \end{cases}$ 19 $\underbrace{x + \dots + x}_{k \text{ times}}$ 20 $\underbrace{x + \dots + x}_{p \text{ prime}}$ 21 $\underbrace{\sum_{p \text{ prime}} f(p) = \int_{t > 1} f(t) d\pi(t)}_{k + t \text{ elements}}$ 22 $\underbrace{\begin{cases} a, \dots, a, b, \dots, b \\ k + t \text{ elements} \end{cases}}_{k + t \text{ elements}}$	$\left \varphi(x+\mathrm{i}y)\right ^2=0$
17 $\iint_{D} dx dy$ $\int \int_{D} dx dy$ $\int \int \int dx dy$ 18 $f(x) = \begin{cases} 1/3 & \text{if } 0 \le x \le 1; \\ 2/3 & \text{if } 3 \le x \le 4; \\ 0 & \text{elsewhere.} \end{cases}$ $f(x) = \begin{cases} 1/3 & \text{if } 0 \le x \le 1; \\ 2/3 & \text{if } 3 \le x \le 4; \\ 0 & \text{elsewhere.} \end{cases}$ $19 \qquad \underbrace{x + \dots + x}_{x + \dots + x}$ $20 \qquad y_{x^{2}}$ $21 \qquad \sum_{p \text{ prime}} f(p) = \int_{t>1} f(t) d\pi(t)$ $\sum_{p \text{ prime}} f(p) = \int_{t>1} f(t) d\pi(t)$ $22 \qquad \underbrace{x + x + y + y}_{x + y + y + z}$ $\underbrace{x + y + y}_{x + z}$ $\underbrace{x + y + z}_{x + z}$ $\underbrace{x + z + z}_{x + z}$ $\underbrace{x + z}_{$	$2^{2^{2^x}}$
18 $f(x) = \begin{cases} 1/3 & \text{if } 0 \le x \le 1; \\ 2/3 & \text{if } 3 \le x \le 4; \\ 0 & \text{elsewhere.} \end{cases}$ $f(x) = \begin{cases} 1/3 & \text{if } 0 \le x \le 1; \\ 2/3 & \text{if } 0 \le x \le 4; \\ 0 & \text{elsewhere.} \end{cases}$ y_{x^2} $21 \qquad \sum_{p \text{ prime}} f(p) = \int_{t>1} f(t) d\pi(t) \qquad \sum_{p \text{ prime}} f(t) d\pi(t) \qquad \sum_{p \text{ prime}} f(t) = \int_{t>1} f(t) d\pi(t) dt \qquad \sum_{p \text{ prime}} f(t) d\pi(t) \qquad \sum_{p \text{ prime}} f(t) d\pi(t)$	$\frac{dt}{dt}$
19 $ \underbrace{x + \cdots + x}_{x + \cdots + x} \qquad x + \cdots $ 20 $ \underbrace{y_{x^2}}_{p \text{ prime}} f(p) = \int_{t>1} f(t) d\pi(t) \qquad \sum_{p \text{ prime}} f(p) = \cdots $ 21 $ \underbrace{\{a, \dots, a, b, \dots, b\}}_{k+l \text{ elements}} \qquad \{a, \dots, a, b, \dots, b\}_{k+l \text{ elements}} \qquad \{a, \dots, a, b, \dots, b, \dots, b\}_{k+l \text{ elements}} \qquad \{a, \dots, a, b, \dots, b, \dots, b\}_{k+l \text{ elements}} \qquad \{a, \dots, a, b, \dots, b, \dots, b\}_{k+l \text{ elements}} \qquad \{a, \dots, a, b, \dots, b, \dots, b\}_{k+l \text{ elements}} \qquad \{a, \dots, a, b, \dots, b, \dots, b, \dots, b\}_{k+l \text{ elements}} \qquad \{a, \dots, a, b, \dots, b, \dots, b, \dots, b, \dots, b\}_{k+l \text{ elements}} \qquad \{a, \dots, a, b, \dots, b, \dots, b, \dots, b, \dots, b, \dots, b, \dots, b\}_{k+l \text{ elements}} \qquad \{a, \dots, a, b, \dots, $	dxdy
19 $ x + \cdots + x $ 20 $ y_{x^2} $ 21 $ \sum_{p \text{ prime}} f(p) = \int_{t>1} f(t) d\pi(t) $ $ \sum_{p \text{ prime}} f(p) = \sum_{k \text{ a's}} f(p) = \sum_{k $	if $0 \le x \le 1$; if $3 \le x \le 4$; elsewhere.
21 $\sum_{p \text{ prime}} f(p) = \int_{t>1} f(t) d\pi(t)$ $\sum_{p \text{ prime}} f(p) = \int_{t>1} f(t) d\pi(t)$ $\{\underbrace{a, \dots, a, b, \dots, b}_{k+l \text{ elements}}\}$ $\{\underbrace{a, \dots, a, b, \dots, b}_{k+l \text{ elements}}\}$	times+ x
22 $ \underbrace{\left\{ \underbrace{a, \dots, a, b, \dots, b}_{k+l \text{ elements}} \right\}}_{k+l \text{ elements}} $ $ \underbrace{\left\{ \underbrace{a, \dots, a, b, \dots, b}_{k+l \text{ elements}} \right\}}_{k+l \text{ elements}} $	y_{χ^2}
k+l elements	$= \int_{t>1} f(t) d\pi(t)$
$ \begin{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} & \begin{pmatrix} e & f \\ g & h \end{pmatrix} \\ 0 & \begin{pmatrix} i & j \\ k & l \end{pmatrix} \end{pmatrix} $	a, b,, b elements
· · · · · · · · · · · · · · · · · · ·	$ \begin{pmatrix} e & f \\ g & h \end{pmatrix} $ $ \begin{pmatrix} i & j \\ k & l \end{pmatrix} $
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{vmatrix} c_2 & \dots & c_n \\ c_3 & \dots & c_{n+1} \\ c_4 & \dots & c_{n+2} \\ \vdots & & \vdots \\ c_{n+2} & \dots & c_{2n} \end{vmatrix} > 0$
y_{x_2}	y_{x_2}
$x_{92}^{31415} + \pi x_{92}^{314}$	$^{115} + \pi$

27	$x_{y_b^a}^{z_c^d}$	$x_{y_h^a}^{z_c^d}$
28	y_3'''	<i>y</i> ₃
29	$\lim_{n \to +\infty} \frac{\sqrt{2\pi n}}{n!} \left(\frac{n}{e}\right)^n = 1$	$\lim_{n \to +\infty} \frac{\sqrt{2\pi n}}{n!} \left(\frac{n}{e}\right)^n = 1$
30	$\det(A) = \sum_{\sigma \in S_n} \epsilon(\sigma) \prod_{i=1}^n a_{i,\sigma_i}$	$\det(A) = \sum_{\sigma \in S_n} e(\sigma) \prod_{i=1}^n a_{i,\sigma_i}$

This test is based on the original version from MDN.