Componentes fortemente conexos

Algoritmos em Grafos

Marco A L Barbosa

Conteúdo

Introdução

Procedimento strongly-connected-components

Exemplo de execução

Análise do tempo de execução do strongly-connected-components

Corretude do strongly-connected-components

Referências

O estudo utilizando apenas este material **não é suficiente** para o entendimento do conteúdo. Recomendamos a leitura das referências no final deste material e a resolução (por parte do aluno) de todos os exercícios indicados.

Introdução

▶ Um componente fortemente conexo (SCC) de um grafo orientado G = (V, E) é um conjunto máximo de vértices $C \subseteq V$, tal que, para todo par de vértice u e v

 $\vdash u \rightsquigarrow v \in v \rightsquigarrow u$

Introdução

► Um componente fortemente conexo (SCC) de um grafo orientado G = (V, E) é um conjunto máximo de vértices C ⊆ V, tal que, para todo par de vértice u e v

 $\vdash u \rightsquigarrow v \in v \rightsquigarrow u$

Grafo transposto

- ▶ O algoritmo para identificar componentes fortemente conexos utiliza o grafo transposto de G
 - $G^T = (V, E^T), E^T = \{(u, v) : (v, u) \in E\}$
 - $ightharpoonup G^T$ é G com todas as arestas invertidas
 - ▶ G^T pode ser calculado em tempo $\Theta(V + E)$ para a representação de lista de adjacências
 - $ightharpoonup G \in G^T$ tem os mesmos SCC's
 - Veja o exercício 22.1-3

- Grafo de componentes
 - $G^{SCC} = (V^{SCC}, E^{SCC})$
 - $ightharpoonup V^{\sf SCC}$ tem um vértice para cada SCC em G
 - ► E^{SCC} contém uma aresta se existe uma aresta correspondente entre os SCC's de *G*

- Grafo de componentes
 - $G^{SCC} = (V^{SCC}, E^{SCC})$
 - $ightharpoonup V^{\sf SCC}$ tem um vértice para cada SCC em G
 - ► E^{SCC} contém uma aresta se existe uma aresta correspondente entre os SCC's de *G*

- ▶ Lema 22.13
 - $ightharpoonup G^{SCC}$ é um gao
 - ▶ Sejam C e C' SCC distintos em G, seja $u, v \in C$ e seja $u', v' \in C'$. Suponha que exista um caminho $u \leadsto u'$ em G. Então, não pode existir um caminho $v' \leadsto v$ em G

- ▶ Lema 22.13
 - $ightharpoonup G^{SCC}$ é um gao
 - ▶ Sejam C e C' SCC distintos em G, seja $u, v \in C$ e seja $u', v' \in C'$. Suponha que exista um caminho $u \leadsto u'$ em G. Então, não pode existir um caminho $v' \leadsto v$ em G
 - Prova: Suponha que exista um caminho v' → v em G. Então existem caminhos u → u' → v' e v' → v → u em G. Portanto, u e v' são acessíveis um a partir do outro, e não podem estar em SCC separados

Procedimento strongly-connected-components

Procedimento strongly-connected-components

```
strongly-connected-components(G)
```

- 1 chamar dfs(G) para calcular o tempo de término u.f para cada vértice u
- 2 calcular G^T
- 3 chamar $dfs(G^T)$ mas, no laço principal de dfs, considerar os vértices em ordem decrescente de u.f
- 4 os vértices de cada árvore na floresta primeiro na profundidade formada na linha 3 formam um componente fortemente conexo

Exemplo de execução

Análise do tempo de execução do strongly-connected-components

Análise do tempo de execução do strongly-connected-components

- ▶ O tempo do dfs das linhas 1 e 3 é $\Theta(V + E)$
- Conforme os vértices são terminados na chamada do dfs da linha 1, os vértices são inseridos na frente de uma lista ligada (O(1)), como cada vértice é inserido apenas uma vez, o tempo total de operações de inserções é $\Theta(V)$
- ▶ O tempo para calcular o grafo transposto na linha 2 é $\Theta(V + E)$
- lacktriangle Portanto, o tempo de execução do algoritmo é $\Theta(V+E)$

Ideia

 Considerando os vértices no segundo dfs na ordem decrescente dos tempos de términos obtidos no primeiro dfs, estamos visitando os vértices do grafo de componentes na ordem topológica

- Vamos definir duas questões de notação
 - As referências a u.d e u.f referem-se aos valores do primeiro dfs
 - ▶ Para um conjunto $U \subseteq V$, definimos
 - ▶ $d(U) = \min_{u \in U} \{u.d\}$ (tempo de descoberta mais antigo)
 - $f(U) = \max_{u \in U} \{u.f\}$ (tempo de término mais recente)

- ▶ Lema 22.14
 - ▶ Sejam C e C' SCC distintos em G = (V, E). Suponha que exista uma aresta $(u, v) \in E$, tal que $u \in C$ e $v \in C'$. Então f(C) > f(C')

- ▶ Lema 22.14
 - ▶ Sejam C e C' SCC distintos em G = (V, E). Suponha que exista uma aresta $(u, v) \in E$, tal que $u \in C$ e $v \in C'$. Então f(C) > f(C')
- Corolário 22.15
 - ▶ Sejam C e C' SCC distintos em G = (V, E). Suponha que exista uma aresta $(u, v) \in E^T$, tal que $u \in C$ e $v \in C'$. Então f(C) < f(C')

- ► Teorema 22.16: strongly-connected-components(G) calcula corretamente os SCC's de um grafo orientado G
 - ▶ O segundo dfs começa com um SCC C tal que f(C) é máximo
 - ▶ Seja $x \in C$ o vértice inicial, o segundo dfs visita todos os vértices de C. Pelo corolário, como f(C) > f(C') para todo $C \neq C'$, não existe aresta de C para C'. Logo, o dfs visita apenas os vértices de C (descobrindo este SCC)
 - ▶ A próxima raiz escolhida no segundo dfs está em um SCC C' tal que f(C') é máximo em relação a todos os outros SCC (sem considerar C). O dfs visita todos os vértices de C', e as únicas arestas fora de C' vão para C, cujo os vértices já foram visitados
 - O processo continua até que todos os vértices sejam visitados

- ► Teorema 22.16: strongly-connected-components(G) calcula corretamente os SCC de um grafo orientado G
 - Cada vez que uma raiz é escolhida pelo segundo dfs, ele só pode alcançar
 - Os vértices no SCC dele (através de arestas da árvore)
 - Os vértices que já foram visitados no segundo dfs

Referências

► Thomas H. Cormen et al. Introduction to Algorithms. 3rd edition. Capítulo 22.5.