

भारतीय प्रौद्योगिकी संस्थान पटना

Indian Institute of Technology Patna Mid Semester Examination (Mid-Sem) (Aug-Nov-2011)

1. 2.	COURSE TITLE: Introduction to Nanomaterials Full Marks: 30 How many 10 nm nanocubes are required to produce the same surface area as a one cubic meter cube? How much volume do they occupy? [2] Calculate the ratio of surface atoms to volume atoms by a simple procedure for a $R = 10$ nm gold colloid. Assume that the surface atoms occupy a thickness of one atomic diameter ($d_{gold} = 0.288$ nm) and that the packing fraction for gold is at a volume
	diameter ($d_{gold} = 0.288$ nm) and that the packing fraction for gold is
	efficiency (V_{volume} /Total volume ($\frac{4}{3}\pi R^3$, $R = 10nm$)) of 0.740 and surface efficiency
	(=Volume available for surface gold atoms/ V_{layer}) of 0.91. [3]
	Explain the following nano-phenomena with one example from each phenomena: (i) Super hydrophobicity, (ii) Self cleaning, and (iii) Localized surface Plasmon. [3]
	Explain the working principle of AFM with ray diagram. Discuss the advantage and disadvantage of contact mode and non contact mode in a AFM technique. [3]
	Determine the angular resolution of a 200kV electron microscope with 50 semi-angle of collection of the magnifying lense (refractive index=1.5). Calculate the special resolution for a lense of focal length 10cm.
	Discuss about the advantage and disadvantage of TEM technique to characterize
7.	Calculate the crystallite size using Sherrer's formulae from the following XRD data: (i) Bragg's position (θ) = 17.4°, (ii) FWHM = 0.743° and (iii) $Cu K_{\alpha}$ radiation, λ = 1.5418Å.
8.	What do you mean by magic numbers in nanoscience? [2]
9.	A nanoparticle with mass $5x10^{-27}g$ exist in a 1-nm, one dimensional box. What is the wave length of radiation that is emitted when the nanoparticle loses energy from the n = 3 level to the n = 2 level? [2]
10.	A material (melting point = 3000° C) has been milled (ball milling) to make a 2nm size particle. Calculate the melting point of nano particle. (particle density = 11340kg/m^3 , Latent heat of fusion = $67 \times 10^3 \text{J/kg}$, Surface tension coefficient for a liquid – solid interface = 2.2 N/m).
11	. Why ferromagnetic materials exhibit superparamagnetic nature below 100nm. [2]
12.	Write short notes on LASER ablation and Electron beam lithography method to grow nanomaterials. [5]
XXXXXX	
BEST OF LUCK	