Prognozowanie Ruchu

Wykład 2 Potrzeba prognozowania

dr inż. Rafał Kucharski
Zakład Systemów Komunikacyjnych www.zsk.pk.edu.pl
Politechnika Krakowska
semestr letni, 2017

I Potrzeba prognozowania

Kiedy i dlaczego potrzebne są prognozy?

Przykład: JASPERS – NIEBIESKA KSIĘGA

Jaspers – Niebieska Księga

- Niebieska Księga dla projektów infrastruktury drogowej realizowanych w ramach perspektywy finansowej 2014-2020 została przygotowana przez ekspertów Inicjatywy Jaspers. Dokument jest uzupełnieniem i doprecyzowaniem wytycznych Komisji Europejskiej (Guide to cost benefit analysis of investment projects. Economic appraisal tool for Cohesion Policy 2014-2020, December 2014) oraz wytycznych krajowych w zakresie zagadnień związanych z przygotowaniem projektów inwestycyjnych w tym projektów generujących dochód i projektów hybrydowych na lata 2014-2020 w zakresie analizy kosztów i korzyści.
- Niebieska Księga jest zalecana przez Ministerstwo Infrastruktury i Rozwoju w celu ujednolicenia metodyki przeprowadzania analizy kosztów i korzyści dla projektów sektora transportu, realizowanych w ramach Programu Infrastruktura i Środowisko. Może być również stosowana przez beneficjentów realizujących projekty transportowe w ramach innych krajowych lub regionalnych programów operacyjnych.

(www.pois.gov.pl)

Jaspers – niebieska księga

Prognozy ruchu

Przygotowanie prawidłowych prognoz natężenia ruchu ma zasadnicze znaczenie dla AKK. Prognozy te muszą uwzględniać zmiany na analizowanym odcinku oraz skutki planowanej inwestycji dla sieci drogowej. Mając na uwadze wymagania analizy ekonomicznej, prognozy ruchu należy opracować w szczególności dla:

- wariantu bezinwestycyjnego W0
- każdego z wariantu/ów analizowanych w ramach AKK.

Ponieważ niniejszy podręcznik ma służyć głównie do opracowywania AKK dla tzw. "dużych projektów" drogowych, dla których zaleca się stosowanie indywidualnego podejścia przy prognozowaniu natężeń ruchu, zakłada się, że projekty takie będą miały znaczący wpływ na zmiany potoków ruchu na większym obszarze oddziaływania projektu. Podstawą do wykonywania analiz oraz prognoz ruchu dla takich projektów jest przygotowanie aktualnego modelu ruchu, który wykonuje się opisanymi poniżej metodami.

• Modelowanie

Metody uproszczone

Jaspers – niebieska księga

Zasadniczo, na potrzeby projektów drogowych należy wykonywać prognozy ruchu za pomocą modelowania. Jedynie w uzasadnionych merytoryczne przypadkach mogą być stosowane metody uproszczone (np. ograniczenia czasowe, weryfikacja wyników). Jednakże należy mieć świadomość, że otrzymane wyniki będą mniej dokładne niż w przypadku modelowania.

Jaspers - Kiedy model?

rodzaj inwestycji	obszar miejski	obszar zamiejski
Inwestycje punktowe lub liniowe zmierzające do poprawy jakości lub bezpieczeństwa bez zwiększenia przepustowości.	Nie ma wymogu modelu ruchu jeśli nie wysta	stosowania sieciowego ąpią ograniczania przepustowości
Przebudowa istniejącej drogi skutkująca większą przepustowością, np. przez poszerzenie (rozbudowa do drogi dwujezdniowej lub dodanie dodatkowych pasów ruchu).	Model obejmujący obszar w granicach miasta	Model regionalny lub krajowy z uszczegółowieniem obszaru znaczącego odziaływania planowanej inwestycji
Budowa nowej drogi o nowym przebiegu (w tym obwodnic miast).	Model obejmujący obszar w granicach aglomeracji, szczegółowy w granicach miasta.	Model regionalny lub krajowy z uszczegółowieniem obszaru znaczącego oddziaływania planowanej inwestycji.

Etapy prognozowania ruchu

Tabela 7. Etapy prognozowania ruchu

ETAP	ZAKRES		
ETAP i Definiowanie modelu	 Zasięg obszarowy Szczegóły sieci Rejony komunikacyjne Kategorie pojazdów Wielogałęziowość Kategorie użytkowników Przedziały czasowe Horyzont prognozy. Rok bazowy Inne parametry modelu (np. opłaty) 		
ETAP II Model dla roku bazowego	 Przygotowanie danych wejściowych Aktualizacja i uszczegółowienie sieci Uwzględnienie transportu publicznego (w miastach) Aktualizacja i uszczegółowienie rejonów komunikacyjnych Opracowanie/ uszczegółowienie macierzy podróży Aktualizacja zmiennych funkcji popytu 		
ETAP III Kalibracja i walidacja modelu	 Kalibracja modelu Kalibracja macierzy podróży Kalibracja zmiennych funkcji popytu 		
ETAP IV Prognozowanie ruchu -założenia	 Analiza rozwoju sieci Opracowanie wskaźników wzrostu Wpływ wskaźników wzrostu na popyt Wpływ oddziaływań zewnętrznych 		
ETAP V Oszacowanie prognozy ruchu Raporty wynikowe	 Oszacowanie potoków ruchu Analiza wyników Przygotowanie raportów wynikowych. 		

Wyniki modelu ruchu

Co otrzymamy z modelu ruchu i jak to wykorzystać do prognozy?

Wyniki modelu ruchu

Główne założenia modelu oraz wyniki prognozowania ruchu powinny być przedstawione w ramach AKK (lub dołączone jako osobny dokument), w tym jako minimum:

- prognozowane natężenia ruchu na poszczególnych odcinkach, w relacjach źródło-cel, w ŚDR (poj/dobę),
- średnie odległości podróży,
- ruch źródło-cel dla poszczególnych odcinków sieci,
- czas podróży na określonych odcinkach lub kategoriach odcinków o określonej długości,
- prędkości podróży na poszczególnych odcinkach

Wyniki modelu ruchu (cd.)

Główne założenia modelu oraz wyniki prognozowania ruchu powinny być przedstawione w ramach AKK (lub dołączone jako osobny dokument), w tym jako minimum:

- liczba podróży,
- praca przewozowa na określonej sieci w poj-km i poj-godz w podziale na kategorie dróg/przedziały prędkości,
- prognozę warunków ruchu w analizowanym okresie (poziom swobody ruchu) pokazującą wyliczone potoki ruchu w odniesieniu przepustowości w okresie referencyjnym. do

Przyszła liczba pasażerów i towarów na linii kolejowej, której można się spodziewać w wyniku zmian społecznych, ekonomicznych i przestrzennych a także środków podjętych w celu realizacji polityki transportowej.

Ta prognoza ma kluczowe znaczenie dla oceny zaproponowanych rozwiązań, wyboru najbardziej korzystnego rozwiązania i przygotowania wdrożenia dla tego wariantu.

W celu oszacowania prognozowanej wielkości popytu na usługi transportu kolejowego, należy wziąć pod uwagę następujące czynniki:

- zmiany demograficzne,
- zmiany społeczno-ekonomiczne,
- zmiany przestrzenne,
- zmiany w podziale zadań transportowych,

należy wziąć pod uwagę następujące czynniki:

- zmiany demograficzne, w tym:
 - liczbę ludności,
 - strukturę wieku z uwzględnieniem udziału studentów i uczniów,
 - poziom wykształcenia oraz
 - ilość osób w wieku produkcyjnym i nieprodukcyjnym,

należy wziąć pod uwagę następujące czynniki:

- zmiany społeczno-ekonomiczne, w tym:
 - poziom produktu krajowego brutto na analizowanym obszarze,
 - · dochody ludności,
 - liczba posiadanych samochodów prywatnych,
 - poziom bezrobocia,
 - struktura gospodarcza regionów obsługiwanych przez infrastrukturę kolejową,

należy wziąć pod uwagę następujące czynniki:

• zmiany przestrzenne prowadzące do zmian w lokalizacji potencjałów ruchu (istotne inwestycje zmieniające popyt na transport pasażerski i towarowy),

należy wziąć pod uwagę następujące czynniki:

• zmiany w podziale zadań transportowych, będące w pewnym stopniu wynikiem zmian społeczno-ekonomicznych, lecz również oferty transportowej (w tym oddziaływania projektu) oraz polityki zarządzania ruchem na danym obszarze (obecność lub brak ograniczeń dotyczących użytkowania samochodów, miejsc parkingowych itp.).

Wyniki modelu ruchu - kolej

1. Kategorie ruchu:

- międzyaglomeracyjny i międzynarodowy, międzyregionalny, regionalny, aglomeracyjny
- towarowy z podziałem na rodzaje pociągów.

2. Motywacje podróży:

- Służbowe,
- Dojazdowe (do i z pracy, szkoły, itp. podróże regularne),
- Pozostałe (inne niż służbowe i dojazdowe).

Wyniki modelu ruchu - kolej

Źródło ruchu:

• ruch kolejowy dotychczasowy, na wielkość którego nie ma wpływu realizacja inwestycji,

• ruch przejęty (pasażerowie kolei przejęci z innego środka transportu lub masa ładunkowa przejęta z transportu drogowego na rzecz transportu kolejowego),

• ruch wzbudzony (tzn. nowi użytkownicy kolei którzy zaczęli podróżować w wyniku poprawy jakości usług).

Wykorzystanie prognoz w innych obszarach

Tabela 23. Wzory do obliczania kosztów hałasu

$$K_H = 365 \cdot L \cdot \sum_{j=1}^2 k_{h,j}(Z) \cdot SDR_j$$
 lub
$$K_H = 365 \cdot \sum_{j=1}^2 k_{h,j}(Z) \cdot W_j^{km}$$
 gdzie:
$$K_H \qquad - \text{roczne koszty hałasu emitowanego przez pojazdy samochodowe, wPLN,}$$
 j
$$- \text{liczba kategorii pojazdów,}$$

$$K_{h,j}(Z) \qquad - \text{jednostkowe koszty hałasu wg. kategorii pojazdów samochodowych "j", w obszarze Z, (miejski/ zamiejski), w PLN/poj-km,} SDR_j \qquad - \text{średnioroczne dobowe natężenie ruchu dla kategorii pojazdów "j", w pojazdach/dobę,}$$
 L
$$- \text{długość odcinka drogi, w km,}$$

$$- \text{praca przewozowa dla pojazdów kategorii "j" w zależności od długości odcinka drogi, w pojazdokilometrach/dobę.}$$

Założenia w prognozowaniu

erowców (PLN/h)

Podróży

pozostałych 26.69

27.23

27.75

3. Koszty czasu użytkowników infrastruktury drogowej

Jednostkowe koszty czasu (PLN/h), ceny 2014

	Stawka godzinowa dla pasażerów oraz ki			
Rok	Podróży służbowych	Dojazdów do/z pracy		
2014	64.57	31.81		
2015	65.87	32.45		
2016	67.14	33.07		
2017	68.46	33.73		
2018	69.78	34.38		
2019	71.02	34.99		
2020	72.25	35.59		
2021	73.48	36.20		
2022	74.70	36.80		

Wzrost PKB per capita do wykorzystania przy indeksacji kosztów jednostkowych, przedstawiono poniżej.

Stawka godzinowa przewozów towarowych

(PLN/h)

64.57

65.87

67.14

Lata	2015	2016	2017	2018	2019	2020	2021
PKB per capita	4.02%	3.85%	3.95%	3.85%	3.55%	3.45%	3.41%
Lata	2022	2023	2024	2025	2026	2027	2028
PKB per capita	3.31%	3.21%	3.11%	3.01%	3.10%	3.10%	3.00%
Lata	2029	2030	2031	2032	2033	2034	2035
PKB per capita	3.00%	3.00%	2.99%	2.99%	2.99%	2.89%	2.89%
Lata	2036	2037	2038	2039	2040	2041	2042
PKB per capita	2.86%	2.86%	2.76%	2.66%	2.55%	1.48%	1.48%

Żródło (1) Prognozy wskaźnika wzrostu PKB na okres 2008-2040, GDDKiA, http://www.gddkia.gov.pl/pl/992/zalozenia-do-prognoz-ruchu

Założenia w prognozowaniu

- liczba ludności i jej rozmieszczenie
- zamożność, koszty (bilety, paliwo, podatki, parkowanie)
- wzrost PKB
- liczba miejsc pracy i ich rozmieszczenie
- ruchliwość (liczba podróży w dobie/mieszkańca)
- rozkład podróży w dobie (godziny szczytu)
- zachowania komunikacyjne (moda na rower, strach przed smogiem)
- jakość komunikacji zbiorowej
- pozostałe zmiany w sieci (prognozuję ruch na linii tramwajowej, a wzdłuż planują nową arterię)

Podsumowanie

Do oceny inwestycji trzeba rzetelnej prognozy.

Do wyboru wariantu trzeba rzetelnej prognozy.

Do zrobienia rzetelnej prognozy trzeba dużej wiedzy o funkcjonowaniu systemu.

Do zrobienia prognozy trzeba przyjęcia szeregu założeń – opartych o wyniki pomiarów

Zeby przekonać decydentów do wariantu potrzebna jest trzeba rzetelnej prognozy – wtedy ciężko dyskutować (vide: krakowskie metro).

Do zobaczenia za tydzień

Wykład 3:

Pomiary i obserwacje systemu transportowego.

dr inż. Rafał Kucharski

rkucharski@pk.edu.pl