

Face recognition

What is face recognition?

Face recognition

A Video Here

[Courtesy of Baidu] Andrew Ng

Face verification vs. face recognition

- >> Verification
 - Input image, name/ID
 - Output whether the input image is that of the claimed person
- -> Recognition
 - Has a database of K persons
 - Get an input image
 - Output ID if the image is any of the K persons (or "not recognized")

Face recognition

One-shot learning

One-shot learning

Learning from one example to recognize the person again

Learning a "similarity" function

→ d(img1,img2) = degree of difference between images

If
$$d(img1,img2) \le \tau$$
 "Some $> \tau$ "O.S.

Face recognition

Siamese network

Siamese network

Goal of learning

Parameters of NN define an encoding $f(x^{(i)})$

Learn parameters so that:

If
$$x^{(i)}$$
, $x^{(j)}$ are the same person, $\|f(x^{(i)}) - f(x^{(j)})\|^2$ is small.
If $x^{(i)}$, $x^{(j)}$ are different persons, $\|f(x^{(i)}) - f(x^{(j)})\|^2$ is large.

Face recognition

Triplet loss

Learning Objective

[Schroff et al.,2015, FaceNet: A unified embedding for face recognition and clustering]

Andrew Ng

Loss function $\mathcal{L}(A,P,N) = \max([||f(A)-f(P)||^2 - ||f(A)-f(N)||^2 + d), 0)$ $= \sum_{i=1}^{m} \mathcal{L}(A^{(i)}, P^{(i)}, N^{(i)})$

Training set: 10k pictures of 1k persons

Choosing the triplets A,P,N

During training, if A,P,N are chosen randomly, $d(A,P) + \alpha \le d(A,N)$ is easily satisfied. $\|f(A) - f(P)\|^2 + \alpha \le \|f(A) - f(N)\|^2$

Choose triplets that're "hard" to train on.

$$A(A,P)$$
 +2 $A(A,N)$
 $A(A,P)$ $A(A,N)$
 $A(A,N)$

Training set using triplet loss

Face recognition

Face verification and binary classification

Learning the similarity function

[Taigman et. al., 2014. DeepFace closing the gap to human level performance]

Face verification supervised learning

[Taigman et. al., 2014. DeepFace closing the gap to human level performance]

Neural Style Transfer

What is neural style transfer?

Neural style transfer

Andrew Ng

Neural Style Transfer

What are deep ConvNets learning?

Visualizing what a deep network is learning

Pick a unit in layer 1. Find the nine image patches that maximize the unit's activation.

Repeat for other units.

Visualizing deep layers

Layer 2

Layer 3

Layer 4

Layer 5

Layer 2

Layer 3

Layer 4

Layer 5

Layer 2

Layer 3

Layer 4

Layer 5

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

Layer 1

Layer 5

Layer 4

Layer 5

Layer 5

Neural Style Transfer

Cost function

Neural style transfer cost function

$$J(G) = \lambda J_{\text{content}}(C, G)$$

$$+ \beta J_{\text{Style}}(S, G)$$

[Gatys et al., 2015. A neural algorithm of artistic style. Images on slide generated by Justin Johnson]

Find the generated image G

1. Initiate G randomly

$$\underline{G}$$
: $\underline{100} \times \underline{100} \times \underline{3}$

2. Use gradient descent to minimize J(G)

$$G:=G-\frac{d}{2G}J(G)$$

Neural Style Transfer

Content cost function

Content cost function

$$\underline{J(G)} = \alpha \underline{J_{content}(C,G)} + \beta J_{style}(S,G)$$

- Say you use hidden layer *l* to compute content cost.
- Use pre-trained ConvNet. (E.g., VGG network)
- Let $\underline{a^{[l](C)}}$ and $\underline{a^{[l](G)}}$ be the activation of layer l on the images

Andrew Ng

Neural Style Transfer

Style cost function

Meaning of the "style" of an image

Say you are using layer *l*'s activation to measure "style." Define style as correlation between activations across channels.

How correlated are the activations across different channels?

Intuition about style of an image

[Gatys et al., 2015. A neural algorithm of artistic style]

Style matrix

Let $a_{i,j,k}^{[l]} = \text{activation at } (i,j,k)$. $\underline{G}^{[l]} \text{ is } \underline{n}_{c}^{[l]} \times \underline{n}_{c}^{[l]}$

style of Style Image

$$(i,j,k)$$
 (i,j,k)
 (i,j,k)

$$\int_{S+y|e}^{(2)} (S, G) = \frac{1}{(i-i)} || C_{i}^{(2)}(S) - C_{i}^{(2)}(G) ||_{F}^{2}$$

$$= \frac{1}{(2n_{i}^{2}n_{i}^$$

[Gatys et al., 2015. A neural algorithm of artistic style]

Style cost function

$$\int_{style}^{[l]}(S,G) = \frac{1}{\left(2n_H^{[l]}n_W^{[l]}n_C^{[l]}\right)^2} \sum_k \sum_{k'} (G_{kk'}^{[l](S)} - G_{kk'}^{[l](G)})^2$$

Convolutional Networks in 1D or 3D

1D and 3D generalizations of models

Convolutions in 2D and 1D

10

14	× \	*	5 × 1
• 1			ے ، <u> </u>

3D convolution

