HI [1]**行列式**

逆序数:

- $\tau(i_1,i_2,i_3,\cdots,i_n)=i_2$ 前面比 i_2 大的数 $+i_3$ 前面比 i_3 大的数 $+\cdots+i_n$ 前面比 i_n 大的数
- $ullet au(i_1,i_2,i_3,\cdots,i_n) + au(i_n,i_(n-1),i_(n-2),\cdots,i_1) = C_n^2$
- $(a_i j)_n = \sum (-1)^{\tau} a_1 p_1 a_2 p_2 \cdots a_n p_n$, 其中 $\tau \in p_1, p_2, \cdots, p_n$ 的逆序数.
- 奇排列变成标准排列的对换次数为奇数; 偶排列变成标准排列的变换次数为偶排列
- 一个排列中的任意两个元素对换,排列将改变奇偶性

克莱姆法则:

设线性方程组

$$\left\{egin{array}{l} a_{11}x_1+a_{12}x_2+\cdots+a_{1n}x_n=b_1\ a_{21}x_1+a_{22}x_2+\cdots+a_{1n}x_n=b_2\ & \dots\ a_{n1}x_1+a_{n2}x_2+\cdots+a_{1n}x_n=b_n \end{array}
ight.$$

的系数行列式

$$D = egin{array}{ccccc} a_{11} & a_{12} & \cdots & a_{1n} \ a_{21} & a_{22} & \cdots & a_{2n} \ \cdots & & & \ddots \ a_{n1} & a_{n2} & \cdots & a_{nn} \ \end{pmatrix}
eq 0$$

则该线性方程组有且仅有唯一解: $x_i = \frac{D_i}{D}$

范德蒙行列式:

$$D_n = egin{bmatrix} 1 & 1 & \cdots & 1 \ x_1 & x_2 & \cdots & x_n \ dots & dots & dots \ x_1^{n-1} & x_2^{n-1} & \cdots & x_n^{-1} \ \end{pmatrix} = \prod_{1 \leq i < j \leq n} (x_j - x_i)$$

余子式:

在n阶行列式中,把 a_{ij} 所在的第i行和第j列划去后,留下的n-1阶行列式叫做 a_{ij} 的余子式,记作 $M_{i,j}$

代数余子式: $Ai, j = (-1)^{i+j} M_{ij}$

应用:
$$\sum_{k=1}^n a_{ki} A_{kj} = D \delta_{i,j}. = egin{cases} D & i=j \ 0 & i
eq j \end{cases}$$

H [2]矩阵及其运算

伴随矩阵:

$$A^* = egin{pmatrix} A_{11} & A_{21} & \cdots & A_{n1} \ A_{12} & A_{22} & \cdots & A_{n2} \ \cdots & \cdots & \cdots & \cdots \ A_{1n} & A2n & \cdots & A_{nn} \end{pmatrix}$$

对称矩阵: $A = A^T$

反对称矩阵: $A = -A^T$

分块矩阵的转置:

$$A = egin{pmatrix} A_{11} & \cdots & A_{1r} \ dots & \ddots & dots \ A_{s1} & \cdots & A_{sr} \end{pmatrix}$$
,则 $A^T = egin{pmatrix} A_{11}^T & \cdots & A_{s1}^T \ dots & \ddots & dots \ A_{1r}^T & \cdots & A_{sr}^T \end{pmatrix}$

分块矩阵的逆矩阵:

$$\begin{pmatrix} A_1 & & & \\ & A_2 & & & \\ & & \ddots & & \\ & & & A_n \end{pmatrix} = \begin{pmatrix} A_1^{-1} & & & \\ & A_2^{-1} & & & \\ & & \ddots & & \\ & & & A_n^{-1} \end{pmatrix}$$

$$\begin{pmatrix} & & A_1 \\ & & A_2 \\ & & & \ddots \\ & & & A_2^{-1} \\ & & & & A_2^{-1} \\ & & & & A_2^{-1} \\ & & & & A_2^{-1} \end{pmatrix}$$

$$\begin{pmatrix} A & C \\ O & B \end{pmatrix}^{-1} = \begin{pmatrix} A^{-1} & -A^{-1}CB^{-1} \\ O & B^{-1} \end{pmatrix}$$

$$\begin{pmatrix} A & O \\ C & B \end{pmatrix}^{-1} = \begin{pmatrix} A^{-1} & O \\ -B^{-1}CB^{-1} & A^{-1} \end{pmatrix}$$

分块矩阵的运算:

$$egin{array}{c|c} C_1 & A_{n imes n} \ B_{m imes m} & C_2 \end{array} = (-1)^{n imes m} |A| |B|$$

其中 C_1 和 C_2 至少有一个是零矩阵

$$\left| \begin{matrix} A & D \\ C & B \end{matrix} \right| = |A| \times |B - CA^{-1}D| = |B| \times |A - DB^{-1}C|$$

$(A^{\mathrm{T}})^{\mathrm{T}}=A$	$(A^{-1})^{-1} = A$	$(\mathrm{A}^*)^* = \mathrm{A} ^{\mathrm{n}-2}A$	$ \lambda { m A} = \lambda^{ m n} { m A} $
$(\lambda \mathrm{A})^{\mathrm{T}} = \lambda \mathrm{A}^{\mathrm{T}}$	$(\lambda\mathrm{A})^{-1}=\lambda^{-1}\mathrm{A}^{-1}$	$(\lambda \mathrm{A})^* = \lambda^{\mathrm{n}-1} \mathrm{A}^*$	
$(A+B)^{\mathrm{T}} = A^{\mathrm{T}} + B^{\mathrm{T}}$		$ \mathrm{A}^* = \mathrm{A} ^{\mathrm{n}-1}$	$AA^* = A E$
$(AB)^{\mathrm{T}} = B^{\mathrm{T}}A^{\mathrm{T}}$	若 \mathbf{A} , \mathbf{B} 为同阶矩阵且可逆则 $\mathbf{A}\mathbf{B}$ 也可逆,且 $(\mathbf{A}\mathbf{B})^{-1}=\mathbf{B}^{-1}\mathbf{A}^{-1}$	$(AB)^* = B^*A^*$	$ A^{-1} = \tfrac{1}{ A }$
$({ m A}^{ m T})^{-1} = ({ m A}^{-1})^{ m T}$		$(\mathrm{A}^*)^{-1} = rac{\mathrm{A}}{ \mathrm{A} }$	

克拉默法则:

若果线性方程组
$$egin{dcases} a_{11}x_1+a_{12}x_2+\cdots+a_{1n}x_n=b_1\ a_{21}x_1+a_{22}x_2+\cdots+a_{2n}x_n=b_2\ \cdots\ a_{n1}x_1+a_{n2}x_2+\cdots+a_{1n}x_n=b_n \end{cases}$$
的系数行列式不等于零,即

$$D=egin{array}{cccc} a_{11} & \cdots & a_{1n} \ dots & & dots \ a_{n1} & \cdots & a_{nn} \ \end{array}
otag
ot$$

则方程组有唯一解 $x_1=rac{D_1}{D}, x_2=rac{D_2}{D}, \cdots, x_n=rac{D_n}{D}$

其中 D_i 是把系数行列式D中第j列元素用方程组右端的常数项代替后得到的n阶行列式

$$\begin{cases} \text{ 线性方程组} \left\{ \begin{array}{ll} \text{ 有唯一解} & D \neq 0 \\ \text{ 无解或解不唯一} & D = 0 \end{array} \right. \\ \text{ 齐次线性方程组} \left\{ \begin{array}{ll} \text{ 只有零解} & D \neq 0 \\ \text{ 有非零解} & D = 0 \end{array} \right. \end{cases}$$

₩ [3]矩阵的初等变换与线性方程组

E(i,j)表示单位矩阵的i,j行互换后的矩阵, E_{ij} 表示第i行第j列为1,其余元素全为0的矩阵

行最简形矩阵:在阶梯形矩阵中,若非零行的第一个非零元素全是1,且非零行的第一个元素1所在列的 其余元素全为零

标准型矩阵: 左上角为单位矩阵 E_r , 其余子块为O的分块矩阵

H4 矩阵的秩

定义:

• $A=(a_{ij})_{m imes n}$ 的不为零子式的最大阶数称为矩阵的秩,记作rA,rankA或R(A)。

• $A=(a_{ij})_{m\times n}$ 有r阶子式不为0,任何r+1阶子式全为0,称r为矩阵A的秩。

规定:零矩阵的秩为0。 $R(A)=0 \iff A=0$

定理:初等变换不会改变矩阵的秩。 $A \sim B \Longleftrightarrow R(A) = R(B)$

求法:

• 利用初等行变换化矩阵A为阶梯型矩阵B,其非零行的行数即为矩阵的秩。

• 通过有限次初等变换可化为标准型 $\begin{pmatrix} E_r & 0 \\ 0 & 0 \end{pmatrix}$, r即为矩阵的秩。

 $\left\{ egin{array}{ll} 满秩阵(非奇异矩阵) & R(A)=n & |A|
eq 0 \$ 降秩阵(奇异矩阵) & $R(A) < n & |A| = 0 \ \end{array}
ight.$

满秩矩阵: 判断矩阵是否可逆的充分必要条件。

满秩矩阵	$R(A_{n imes n})=n$
行满秩矩阵	$R(A_{n imes m})=n$
列满秩矩阵	$R(A_{n imes m})=m$

等价矩阵: $A \sim B \iff$ 存在可逆矩阵 $P, Q, \oplus B = PAQ$

- $(A_{m \times n}) \leq min(m, n)$
- $A \sim B \Longrightarrow R(A) = R(B)$
- $R(A) = R(A^T) = R(-A)$
- $R(AB) \leq \min\{R(A), R(B)\}$. 推论: $A = \alpha \beta^T, \alpha, \beta$ 是非零n维列向量 $\Longrightarrow R(A) \leq 1$.
- $R(A) R(B) \le R(A \pm B) \le R(A) + R(B)$. 推论: $R(A + E) + R(A E) \ge n$
- $\max\{R(A), R(B)\} \le R(A, B) \le R(A) + R(B)$
- $R(A_{m \times n}) + R(B_{n \times l}) n \le R(AB)$
- $R(ABC) \geq R(AB) + R(BC) R(B)$
- G为列满秩矩阵,H为行满秩矩阵 $\Longrightarrow R(GA) = R(AH) = R(A)$

•
$$R(A^*) = \begin{cases} n & R(A) = n \\ 1 & R(A) = n - 1 \\ 0 & R(A) < n - 1 \end{cases}$$

n元线性方程组Ax=b解的判定:

解的情况	充要条件
无解	R(A) eq R(A,b)
有唯一解	R(A)=R(A,b)=n
有无穷多解	R(A) = R(A,b) < n

解法:

将(A,b)化为行最简形

$$\begin{pmatrix} 1 & 0 & \cdots & 0 & b_{11} & \cdots & b_{1,n-r} & d_1 \\ 0 & 1 & \cdots & 0 & b_{21} & \cdots & b_{2,n-r} & d_2 \\ \vdots & \vdots & & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & b_{r1} & \cdots & b_{r,n-r} & d_r \\ \vdots & \vdots & & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & 0 & \cdots & 0 & 0 \end{pmatrix}$$

令自由未知数 $x_{r+1} = c_1, \dots, x_n = c_{n-r}$,则得

$$\begin{pmatrix} x1\\\vdots\\x_r\\x_{r+1}\\\vdots\\x_n\end{pmatrix}=c_1\begin{pmatrix}-b_{11}\\\vdots\\-br1\\1\\\vdots\\0\end{pmatrix}+\cdots+c_{n-r}\begin{pmatrix}-b_{1,n-r}\\\vdots\\-b_{r,n-r}\\0\\\vdots\\1\end{pmatrix}+\begin{pmatrix} d_1\\\vdots\\d_r\\0\\\vdots\\0\end{pmatrix}$$

其中
$$egin{pmatrix} -b_{1,1} \ -b_{2,1} \ dots \ -b_{r,1} \ 1 \ dots \ 0 \end{pmatrix}, \cdots, egin{pmatrix} -b_{1,n-r} \ -b_{2,n-r} \ dots \ -b_{r,n-r} \ 0 \ dots \ 1 \end{pmatrix}$$
是 $Ax=0$ 的基础解系

矩阵方程AX=B的解的判定:

解的情况	充要条件
有解	$R(A) = R(A,B)$ $Ax_i = b_i$ 有解, b_i 是 B 的列向量
无解	R(A) < R(A,B)

[4]向量组的线性相关性

向量: 列向量用 $\alpha, \beta, \gamma, \cdots$ 表示,行向量用 $\alpha^T, \beta^T, \gamma^T, \cdots$ 表示,即

$$lpha = egin{pmatrix} a_1 \ a_2 \ dots \ a_n \end{pmatrix}, lpha^T = egin{pmatrix} a_1 & a_2 & \cdots & a_n \end{pmatrix}$$

其中 a_i 表示第i个分量.

向量组: 若干个同维数的行(列)向量所组成的集合.

名称	条件
向量 b 能由向量组 <i>A</i> 线性表示	$\Leftrightarrow R(a_1,a_2,\cdots,a_n)=R(a_1,a_2,\cdots,a_n,b)$
向量组B能由向量组A线性表示	$AX = B$ 有解 $R(B) \leq R(A) = R(A,B)$
向量组 <i>A</i> 与向量组 <i>B</i> 等价	R(A) = R(B) = R(A, B)

等价向量组:可以互相线性表示的向量组.

• 自反性: 任意向量组与其自身等价

• 对称性: 若向量组A与向量组B等价,则向量组B与向量组A等价。

• 传递性: 若向量组A与向量组B等价, 若向量组B与向量组C等价, 则向量组A与向量组C等价

线性相关: 设有向量组 $\alpha_1, \alpha_2, \dots, \alpha_m$, 如果存在一组**不全为零**的数 x_1, x_2, \dots, x_m , 使

$$x_1\alpha_1 + x_2\alpha_2 + \dots + x_m\alpha_m = 0$$

则称向量组 $\alpha_1, \alpha_2, \cdots, \alpha_m$ 线性相关.

线性表示: 设向量组 $A:\alpha_1,\alpha_2,\cdots,\alpha_m$ 和向量 β , 若存在一组数 x_1,x_2,\cdots,x_m 使得

$$eta = x_1lpha_1 + x_2lpha_2 + \dots + x_mlpha_m$$
 ,

则称向量 β 能由向量组A线性表示.

充要条件: 矩阵 $A=(a_1,a_2,\cdots,a_m)$, 向量组 $A:a_1,a_2,\cdots,a_m$

- $R(A) < m \iff \text{向量组} A$ 线性相关
- $|A| = 0 \iff \text{向量组} A$ 线性相关
- 向量组A中至少有一个向量能由其余m-1个向量线性表示 \iff 向量组A线性相关
- $n + x \uparrow n$ 维向量线性相关(x > 0)
- 含有零向量的向量组必线性相关
- 单个向量 α 线性相关 $\Longleftrightarrow \alpha = 0$
- 两个向量 α_1, α_2 线性相关 \iff 是 α_1, α_2 的分量对应成比例
- 若向量组 $\alpha_1, \alpha_2, \dots, \alpha_m$ 线性相关,则向量组 $\alpha_1, \alpha_2, \dots, \alpha_{m+1}$ 线性相关
- 若向量组 $\alpha_1, \alpha_2, \dots, \alpha_{m+1}$ 线性无关,则向量组 $\alpha_1, \alpha_2, \dots, \alpha_m$ 线性无关

极大线性无关组: 如果向量组A中有r个向量 $\alpha_1, \alpha_2, \cdots, \alpha_r$ 满足

- 1. 向量组 $A_0: \alpha_1, \alpha_2, \cdots, \alpha_r$ 线性无关,
- 2. 向量组A中任意r+1 (如果有的话) 线性相关,

则称向量组 A_0 是向量组A的一个极大无关线性组。r成为向量组A的秩,记作 R_A .

- 任意一向量组都和它的最大无关组等价
- 同一向量组的任意两个最大无关组等价
- 向量组B能由向量组A线性表示 \iff $R_A = R_{A,B}$
- 向量组B能由向量组A线性表示 $\iff R_B \leq R_A$

基础解系:

- 定义: 齐次线性方程组的阶级的最大无关组成为该齐次线性方程组的基础解系
- 性质:设 $m \times n$ 的矩阵A的秩R(A) = r,则n元齐次线性方程组Ax = 0的解集S的秩 $R_S = n r$.n元齐次线性方程组Ax = 0的任意n r个线性无关的解都可构成它的基础解系
- 齐次线性方程组通解: 若 $\xi_1, \xi_2, \cdots, \xi_{n-r}$ 是Ax=0的基础解系,则方程组Ax=0的任一解向量都可由 $\xi_1, \xi_2, \cdots, \xi_{n-r}$ 线性表示,且方程组Ax=0的通解为 $k_1\xi_1+k_2\xi_2+\cdots+k_{n-r}\xi_{n-r}$

非齐次线性方程组通解: 若 η^* 是方程组Ax=b的特解, $\xi_1,\xi_2,\cdots,\xi_{n-r}$ 是对应齐次线性方程组Ax=0的基础解系,则方程组Ax=b的任一解均可表示为 η^* 和 $\xi_1,\xi_2,\cdots,\xi_{n-r}$ 的线性组合,且方程组Ax=b的通解为 $\eta^*+k_1\xi_1+k_2\xi_2+\cdots+k_{n-r}\xi_{n-r}$

向量空间:

向量空间	若 V 是 n 维向量的非空集合,并且 V 对于向量的加法和数乘两种运算封闭,则称 V 是向量空间	封闭: 若 $a\in V,b\in V,$ 则 $a+b\in V$ 若 $a\in V,\lambda\in R$,则 $\lambda a\in V$
解空间	齐次线性方程组的解 $S=\{x Ax=0\}$ 是一个向量空间,称为齐次线性方程组的解空间	
向量生成空间	由向量组 a_1,a_2,\cdots,a_m 生成的向量空间 $L=\{x=\lambda_1a_1+\lambda_2a_2+\cdots+\lambda_ma_m\}$	V_1 由向量组 A 生成, V_2 由向量组 B 生成 $V_1=V_2\Longleftrightarrow$ 向量组 A , B 等价
子空间	$V_1\subset V_2$	任一由 n 维向量所组成的向量空间 V 都是 R^n 的子空间
向量空间的基	若向量空间 V 的 r 个向量 a_1,a_2,\cdots,a_r 满足 $1.a_1,a_2,\cdots,a_r$ 线性无关 $2.V$ 中任意一向量都可由 a_1,a_2,\cdots,a_r 表示则称 a_1,a_2,\cdots,a_r 为向量空间 V 的一个基 r 称为向量空间 V 的维数,并称 V 是 r 维向量空间	若 V 是由向量组 a_1,a_2,\cdots,a_s 生成的向量空间, V 的维数等于向量组 a_1,a_2,\cdots,a_s 的秩
坐标	$eta a_1, a_2, \cdots, a_r$ 是 r 维向量空间 V 的一个基则 V 中任意一向量 x 可唯一的表示为 $x=\lambda_1 a_1 + \lambda_2 a_2 + \cdots + \lambda_r a_r$	

过渡矩阵:

- R^3 中的基 (a_1,a_2,a_3) 到基 (b_1,b_2,b_3) 的基变换公式为B=AP.则 $P=A^{-1}B$ 为从基A到基B的过渡矩阵
- 令 $P^{-1}=B^{-1}A$,则任一向量在A下的坐标x到其在B下的坐标y的坐标变换公式为 $y=P^{-1}x$

н [5]相似矩阵及二次型

名称	定义	性质
内积	设有 n 维向量 $m{x}=egin{pmatrix} x_1 \ x_2 \ dots \ x_n \end{pmatrix}, m{y}=egin{pmatrix} y_1 \ y_2 \ dots \ y_n \end{pmatrix},$ 令 $m{[m{x},m{y}]}=x_1y_1+x_2+y_2+\cdots+x_ny_n=m{x}^Tm{y}.$ 则 $m{[m{x},m{y}]}$ 称为向量 $m{x}$ 与 $m{y}$ 的内积	
长度	令 $\ m{x}\ =\sqrt{[m{x},m{x}]}=\sqrt{x_1^2+x_2^2+\cdots+x_n^2},$ 则 $\ m{x}\ $ 称为 $m{n}$ 维向量 $m{x}$ 的长度 $(范数)$	
正交	若 $[oldsymbol{x},oldsymbol{y}]=0$,则称向量 $oldsymbol{x}$ 与 $oldsymbol{y}$ 正交	
正交向量组	一组两两正交的非零向量	正交向量组一定线性无关
标准 正交基	设 n 维向量 $oldsymbol{e}_1,oldsymbol{e}_2,\cdots,oldsymbol{e}_r$ 是向量空间 V 的一个基,若 $oldsymbol{e}_1,oldsymbol{e}_2,\cdots,oldsymbol{e}_r$ 两两正交,且都是单位向量,则称 $oldsymbol{e}_1,oldsymbol{e}_2,\cdots,oldsymbol{e}_r$ 是 V 的一个标准正交基	V 中任一向量 $m{a}$ 可设为 $m{a}=\lambda_1m{e}_1+\lambda_2+m{e}_2+\cdots+\lambda_rm{e}_r,$ 其系数 $m{\lambda}_i=[m{e}_i,m{a}]$
正交矩阵	若 n 阶矩阵 A 满足 $A^TA=E$,则称 A 为正交矩阵	$A^{-1}=A^T$ 若 A 和 B 都是正交矩阵,则 AB 也是正交矩阵
正交 变换	若 P 为正交矩阵,则线性变换 $oldsymbol{y}=Poldsymbol{x}$ 称为正交变换	经正交变换向量长度不变

施密特正交化:

步骤	具体内容
原始基	$oldsymbol{a}_1,oldsymbol{a}_2,\cdots,oldsymbol{a}_n$ 是 V 中一组基
正交化	$egin{aligned} b_1 &= a_1 \ b_2 &= a_2 - rac{[b_1,a_2]}{[b_1,b_1]} b_1 \ & \cdots \ b_n &= a_n - rac{[b_1,a_n]}{b_1,b_1} b_1 - rac{[b_2,a_n]}{[b_2,b_2]} b_2 - \cdots - rac{[b_{n-1},a_{n-1}]}{[b_{n-1},b_{n-1}]} b_{n-1} \end{aligned}$
单位化	$oldsymbol{e}_i = rac{oldsymbol{b}_i}{\ b_i\ }$
标准 正交基	$oldsymbol{e}_1,oldsymbol{e}_2,\cdots,oldsymbol{e}_n$ 即为 V 的一个标准正交基
验证正 交矩阵	$AA^T=E$

特征值与特征向量:

名称	定义	备注
特征值	设 A 为 n 阶矩阵, λ 是一个数,若存在一个 n 维非零列向量 $oldsymbol{x}$,使 $Aoldsymbol{x}=\lambdaoldsymbol{x}$ 成立,则称 λ 是 A 的一个特征值	λ 是特征方程 $ \lambda E-A =0$ 的一个特征值
特征	相应的非零列向量 $oldsymbol{z}$ 称为 $oldsymbol{A}$ 属于 $oldsymbol{\lambda}$ 的特征向量	$oldsymbol{x}$ 是方程组 $(\lambda E-A)x=0$ 的非零解
特征 方程	$ \lambda E - A = 0$	
特征 多项式	$f(\lambda) = \lambda E - A $	A在复数范围内有n个解

名称	性质
矩阵的迹	n 阶矩阵 A 的迹 $tr(A) = \sum_{i=1}^n a_{ii}$,即主对角线上元素之和
特征值	设 A 的 n 个特征值为 $\lambda_1,\lambda_2,\cdots,\lambda_n,$ 则 $(1)\lambda_1+\lambda_2+\cdots+\lambda_n=a_{11}+a_{22}+\cdots+a_{nn}=tr(A)$ $(2)\lambda_1\lambda_2\cdots\lambda_n= A $
运算结论	$(1)kA$ 的特征值为 $k\lambda$ $(2)A^m$ 的特征值为 λ^m $(3)f(A) = \sum_{i=0}^m a_i A^i = \sum_{i=0}^m a_i \lambda^i$. $(4)A^{-1}$ 的特征值为 $\frac{1}{\lambda}$, A^* 的特征值为 $\frac{ A }{\lambda}$ $(5)A$ 与 A^T , AB 与 BA 有相同的特征值 $(7) A = 0 \Leftrightarrow 0$ 是 A 的特征值 (8) 零矩阵有 n 重特征值 0 ,单位矩阵有 n 重特征值 1 (9) 幂等矩阵 $(A^2 = A)$ 的特征值为 1 或 0 (10) 对合矩阵 $(A^2 = E)$ 的特征值只可能是 1 或 -1
特征向量	(1) 设 x_1 和 x_2 是 A 的分别属于 λ_1,λ_2 的特征向量,且 $\lambda_1 \neq \lambda_2$,则 x_1+x_2 不是 A 的特征向量((2) 者 x_1,x_2,\cdots,x_m 都是 A 的属于同一特征值 λ_0 的特征向量,则 $k_1x_1+k_2x_2+\cdots+k_mx_m$ 也是 A 属于 λ_0 的特征向量((3) 者 $\lambda_1,\lambda_2,\cdots,\lambda_m$ 是 A 的 m 个不等的特征值, x_1,x_2,\cdots,x_m 依次是与之对应的特征向量,则 x_1,x_2,\cdots,x_m 线性无关

• 一个秩为1的3阶方阵A,其特征值 $\lambda_1=\mathbf{tr}(A), \lambda_2=\lambda_3=0.$

相似矩阵:

相似的定义	设 A,B 是 n 阶矩阵,若存在可逆矩阵 P 使 $P^{-1}AP=B$,则称 B 是 A 的相似矩阵,或称 A 与 B 相似记作 $A\sim B$
相似的性质	$(1)A^T \sim B^T, A^{-1} \sim B^{-1}, A = B $ $(2)f(A) \sim f(B), R(A) = R(B)$ $(3)A = B$ 有相同的特征多项式和特征值 $(4) = a_2$ \vdots a_n $(5)tr(A) = tr(B)$ (6) 零矩阵,单位矩阵,数量矩阵只与自己相似

相似对角化:

定义	对 n 阶矩阵 A ,若存在可逆矩阵 P 使 $P^{-1}AP=\Lambda$ 为对角阵,则称方阵 A 可对角化	
说明	对角阵 $\Lambda=diag(\lambda_1,\lambda_2,\cdots,\lambda_n),\lambda_i$ 是 A 的特征值, P 的列向量 P_i 是 A 的对应于 λ_i 的特征向量,即 $AP_i=\lambda_i P_i$	
可对角化	充分必要条件: $(1)A$ 有 n 个线性无关的特征向量. (2) 若 λ 是 A 的 γ 重特征值,则 $R(A-\lambda E)=n-\gamma$ 充分条件: A 的 n 个特征值互不相等	
作用	$arphi(A) = P arphi(\Lambda) P^{-1}$	
步骤	(1) 解特征方程 $ \lambda E-A =0$,并求出所有特征值 (2) 对于不同的特征值 λ_i ,解方程组 $(\lambda_i E-A)x=0$,求出所有基础解系. 若每一个 λ_i 的重数等于基础解系中向量的个数,则 A 可以对角化 (3) 设所有的特征值为 ξ_1,ξ_2,\cdots,ξ_n ,则 $P=(\xi_1,\xi_2,\cdots,\xi_n)$, $\Lambda=\begin{pmatrix} \lambda_1 & \lambda_2 & \lambda_2 & \lambda_n \end{pmatrix}$	

对称矩阵的对角化:

名称	内容
对称矩阵	设 A 为 n 阶对称矩阵,则 $A=A^T$
性质	(1) 特征值为实数,可对角化 (2) 对应于不同特征值的特征向量是正交的 (3) A 必有 n 个线性无关的特征向量 (4) 存在正交阵 P ,使 $P^{-1}AP = P^TAP = \Lambda = diag(\lambda_1, \lambda_2, \cdots, \lambda_n)$ (5) $若\lambda$ 是 A 的 γ 重特征值,则 $R(A - \lambda E) = n - \gamma$. 因此 A 对应特征值 λ 的线性无关的特征向量刚好有 γ 个
规范型	若标准型的系数 k_1,k_2,\cdots,k_n 只在 $0,1,-1$ 三个数中取值,原二次型化为 $f=y_1^2+\cdots+y_p^2-y_{p+1}^2-\cdots-y_r^2$ 则称上式为二次型的规范型

二次型及其标准型:

含有
$$n$$
个变量 x_1,x_2,\cdots,x_n 的二次齐次函数
$$f(x_1,x_2,\cdots,x_n)=a_{11}x_1^2+a_{22}x2^2+\cdots+a_{nn}x_n^2+2a_{12}x_1x_2+2a_{13}x_1x_3+\cdots+2a_{n-1,n}x_{n-1}x_n$$
 称为二次型,记为 $f(x_1,x_2,\cdots,x_n)=\sum_{i,j=1}^n a_{ij}x_ix_j$

矩阵合同:

主轴定理:

任给一个n元实二次型 $f = x^T A x$,总存在正交变换x = P y,将f化为标准型

$$f=\lambda_1 y_1^2 + \lambda_2 y_2^2 + \cdots + \lambda_n y_n^2$$

其中 $\lambda_1, \lambda_2, \dots, \lambda_n$ 是矩阵A的特征值,

P的n个列向量 p_1, p_2, \cdots, p_n 是A依次对应于各特征值的两两正交的单位特征向量

正交变换二次型为标准型:

- 1. 求二次型的对称阵的特征值 λ_i
- **2.** 对每一个 λ_i , 求出相应的特征向量 ξ_i 并将其标准正交化得 η_i
- 3. 作正交矩阵 $P=(\eta_1,\eta_2,\cdots,\eta_n)$,做正交变换x=Py带入原二次型

配方法化为二次型为标准型:

- 1. 对二次型中含 x_i 的平方项先集中,然后配方,在对剩下的变量进行类似处理,直到都配成平方项为止
- 2. 对二次型中不含 x_i 的平方项做可逆变换

$$\left\{egin{aligned} x_i &= y_i + y_j \ x_j &= y_i - y_j \ x_k &= y_k \end{aligned}
ight., (k
eq i, j)$$

再对平方项进行配方

化标准型为规范型:

对
$$f=d_1x_1^2+d_2x_2^2+\cdots+d_sx_s^2-d_{s+1}x_{s+1}^2-\cdots-d_tx_t^2$$
, 其中 $d_i>0$,作线性变换
$$\begin{cases} x_i=\frac{1}{\sqrt{d_i}}y_i & i=1,2,\cdots,t\\ x_j=y_j & j=t+1,t+2,\cdots,n \end{cases}$$

正定二次型:

惯性定理	设二次型 $f=x^TAx$,其秩为 r ,且有两个可逆变换 $x=Cy$ 及 $x=Pz$,使 $f=k_1y_1^2+k_2y_2^2+\cdots+k_ry_r^2 (k_i\neq 0)$ $f=\lambda_1z_1^2+\lambda_2z_2^2+\cdots+\lambda_rz_r^2 (\lambda_i\neq 0)$ k_1,k_2,\cdots,k_r 中正数的个数与 $\lambda_1,\lambda_2,\cdots,\lambda_r$ 中正数的个数相等	正(负)系数的个数称为正(负) 惯性指数
正定性	设有二次型 $f(x)=x^TAx$,若对任意 $x\neq 0$,都有 $f(x)>0$,则称 f 为正定二次型,并称对称阵 A 是正定的	半正定性: $f(x) \geq 0$
负定性	设有二次型 $f(x)=x^TAx$,若对任意 $x\neq 0$,都有 $f(x)<0$,则称 f 为负定二次型,并称对称阵 A 是负定的	半负定性: $f(x) \leq 0$

正定性、负定性的判定:

正定性等价条件	$(1)A$ 的热惯性指数 $p=n$ $(2)A$ 的各阶主子式均大于 0 $(3)A \simeq E$ $(4)A$ 的特征值全大于 0 $(5)存在可逆矩阵C使A=C^TC$
负定性等价条件	(1) 负惯性指数为 n (2) 奇数阶主子式全小于 0 ,偶数阶主子式全大于 0 $(3)A \simeq -E$ $(4)A$ 的特征值全小于 0

\frac1{\sqrt{2}}

\left(\begin{matrix}\end{matrix}\right)

 $\texttt{\ \ } \mathsf{\ } \mathsf{\ \ } \mathsf{\ } \mathsf{\ \ }$

····\reflectbox

 $x_1,x_2,\cdot dots,x_n$

\left(\begin{matrix}\end{matrix}\right)

 $\label{left} $$\left(\frac{11}&c(12)&\cdot c(21)&c(22)&\cdot c(22)&\cdot c(2n)\cdot c(2n)\\ c(2n)&\cdot c(2n)\cdot c(2n)&\cdot c(2n)\cdot c(2n)\\ c(2n)&\cdot c(2n)\cdot c(2n)\cdot c(2n)\\ c(2n)&\cdot c(2n)\cdot c(2n$

Ctrl+Shift+Q

~jhvdnsr

双方都

\varphi φ

字母 (大写)	markdown语法 (输入在两个\$\$之间)	字母 (小写)	markdown语法
A	Α	α	\alpha
В	В	β	\beta
Γ	\Gamma	γ	\gamma
Δ	\Delta	δ	\delta
E	E	ϵ	\epsilon
Z	Z	ζ	\zeta
H	Н	7	\eta
Θ	\Theta	θ	\theta
I	I	Ł	\iota
K	К	К	\kappa
Λ	\Lambda	λ	\lambda
M	M	μ	\mu
N	N	ν	\nu
Ξ	١Xi	ξ	\xi
0	0	0	\omicron
П	\Pi	π	\pi
P	P	ρ	\rho
Σ	\Sigma	σ	\sigma
T	Т	τ	\tau
Υ	\Upsilon	υ	\upsilon
Φ	\Phi	ϕ	\phi
X	Х	Χ	\chi
Ψ	\Psi	ψ	\psi
Ω	\Omega	ω	\omega

\Lambda\exist\vee\forall\implies\impliedby\gets\to

 $\Lambda \exists \vee \forall \implies \Longleftarrow \longleftarrow \rightarrow$

	markdown语法 (输入在两个\$\$之间)	显示
属于	\in	$x \in y$
不属于	\notin	$x\notiny$
子集	$x \setminus subset y \setminus x \setminus supset y$	$x\subset y,\ x\supset y$
真子集	\subseteq \ \supseteq	$x\subseteq y$, $x\supseteq y$
并集	\cup	$x \cup y$
交集	\cap	$x\cap y$
差集	\setminus	$x \setminus y$
同或	\bigodot	$x \odot y$
同与	\bigotimes	$x \bigotimes y$
异或	\bigoplus	$a \bigoplus b$
实数集合	\mathbb{R}	\mathbb{R}
自然数集合	\mathbb{Z}	\mathbb{Z}

$$A^{T} = \left\{ \begin{array}{cccc} \cdots & b & c & d & e \\ f & g & h & v dots & j \\ \vdots & \vdots & l & m & n & o \\ p & q & r & s & t \end{array} \right\}$$
 (1)

$$\begin{pmatrix}
1 & 2 \\
2 & 0
\end{pmatrix}_{2 \cdot 2} \tag{1}$$

	X = 2 = 3 =	0	V 1
α	\alpha	β	\beta
γ	\gamma	δ	\delta
ϵ	\epsilon	ε	\varepsilon
ζ	\zeta	η	\ eta
θ	\theta	θ	\vartheta
l	\iota	K	\ kappa
λ	\ lambda	μ	\ mu
ν	\ nu	ξ	\ xi
Ø	\ ∘	π	\ pi
ϖ	\ varpi	ρ	\ rho
ρ	\ varrho	σ	\ sigma
ς	\ varsigma	au	\ tau
υ	\upsilon	ϕ	\ phi
φ	\ varphi	X	\ chi
ψ	\ psi	ω	\ omega
Γ	\ Gamma	Δ	\ Delta
0	\ Theta	A	\ Lambda
Ξ	\ Xi	Π	\ Pi
$\mathbf{\Sigma}$	\ Sigma	Υ	\ Upsilon
Φ	\ Phi	Ψ	\ Psi
Ω	\ Omega	\leq	\ leq
\geq	\ geq	≡	\ equiv
≥⊢ ≻ ⊣	\models	\prec	\ prec
≻	\succ	\sim	\sim
\perp	\perp	≾	\ preceq
≽	\succeq		\ simeq
	\mid	«	\ 11
≫	\ gg	\asymp	\ asymp
	\parallel	\subset	\subset
\supset	\supset	\approx	\approx
M	\bowtie		
\supseteq	\supseteq	\cong	\subseteq \cong
	\sqsubset		\sqsupset
≠	\neq		\smile
Ĺ	\sqsubseteq		\ sqsupseteq
÷	\doteq		\frown
\in	\bowtie \supseteq \sqsubset \neq \sqsubseteq \doteq \in		\ ni
∞	\propto		\ vdash
	\dashv		\leftarrow
	\longleftarrow	†	\uparrow
	\Leftarrow	-	\Longleftarrow
	\Uparrow		\rightarrow
	\longrightarrow		\downarrow
	\Rightarrow		Longrightarrow
	\Downarrow		\leftrightarrow
	\langleftrightarrow	‡	\updownarrow
	\Leftrightarrow		\Longleftrightarrow
	\ Updownarrow		\mapsto
	\ longmapsto	ブ	\nearrow

\leftarrow	\hookleftarrow	<u> </u>		\hookrightarrow
	\searrow			\leftharpoonup
	\rightharpoonup	4		\swarrow
—	\leftharpoondown	<u>ч</u>		\rightharpoondown
Ŕ	\nwarrow	Σ.		\sum
	\prod	ĬĬ	•	\coprod
11	\int	<u> </u>		\oint
ń	\bigcap	Ű		\bigcup
		V		\bigvee
	\bigwedge	, v	١	
$\begin{array}{c} \square \\ \otimes \\ \end{array}$	\bigotimes		4	\bigodot \bigoplus
	\bigotimes	1	'	\unarrou
O A		-		\uparrow \downarrow
Î	\Uparrow	+		\downarrow
↓	\Downarrow	+		\updownarrow
\$	\Updownarrow	Ļ		\lfloor
]] }	\rfloor	ļ		\lceil
Ţ	\rceil	(\langle
	\rangle	7		\backslash
-	\boxdot	\blacksquare		\boxplus
\boxtimes	\boxtimes			\square
-	\blacksquare	:		\centerdot
\Diamond	\ lozenge	•		\ blacklozenge
Ŏ	ackslashcirclearrowright	Q	ı	\circlearrowleft
=	ackslashleftrightharpoons			\ boxminus
IH	\ Vdash	III		\ Vvdash
F	\ vDash	→	+	ackslashtwoheadrightarrow
₩-	ackslashtwoheadleftarrow	=		ackslashleftleftarrows
\Rightarrow	ackslashrightarrows	11		\ upuparrows
\coprod		1		\ upharpoonright
ļ	\ downharpoonright	1		\ upharpoonleft
ĺ	\ downharpoonleft	→	}	
\leftarrow		<u>t-</u> ,	·	\leftrightarrows
ightleftarrows		٩		\ Lsh
Ļ	\Rsh	~~	,	
	\leftrightsquigarrow	({	,	
		<u></u>		
>	\succsim	>		\gtrsim
2	\gtrapprox	~		\multimap
≈.	\therefore	-,-		\because
 <u>≐</u>	\doteqdot	<u>.</u>		\triangleq
$\stackrel{\cdot}{\prec}$	\precsim	<		\laggerim
نح	\lessapprox	رَمُ	i	\lesssim \eqslantless
%//	\eqslantgtr	$\stackrel{>}{ imes}$		\curlyeqprec
≶	\curlyeqsucc			\preccurlyeq
	\leqq	2		\leqslant
\leq	\lessgtr	1		\backprime
≥.	\risingdotseq			\fallingdotseq
\$ 7578.:.₩\R\&\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\succcurlyeq	<u>;</u> =; ≧		_
6	*	É		\geqq

- \geq \geqs1ant \vartriangleright \trianglerighteq ★ \bigstar \blacktriangledown ◀ \blacktriangleleft \blacktriangle • ****eqcirc \gtreqless \gtreqqless \Lleftarrow ****barwedge ****measuredangle ∝ \varpropto \smallfrown ⇒ \Supset ⋒ ****Cap \curlyvee \rightthreetimes ****supseteqq ****Bumpeq ≫ \ggg ♠ \pitchfork √ backsim \complement \circledcirc \circleddash \gvertneqq ****ngeq \ngtr ****nsucc ****gneqq ****ngeqslant ∖gneq ****nsucceq \succnsim \gnsim ****ngeqq \succneqq \succnapprox $\gray \gray \gra$ \ncong ****diagdown \varsupsetneq ****nsupseteqq ****supsetneqq \varsupsetneqq ****supsetneq
- ****gtrless ****vartriangleleft ****trianglelefteq ****between ****blacktriangleright Þ \vartriangle Δ □ VI/WIIA ⇒ > III ****triangledown ****lesseqgtr ****lesseqqgtr \Rrightarrow \veebar ****doublebarwedge \sphericalangle ব \smallsmile \Subset ⋐ W ****Cup 人 \curlywedge \leftthreetimes \subseteqq ****bumpeq < ****111 \odot \circledS \dotplus ****backsimeq \sim \intercal T \circledast \#\!\!\!\! ****lvertneqq ****nleq ****nless ****nprec ****lneqq ****nleqslant ****lneq ****npreceq \precnsim ****lnsim ****nleqq ****precneqq \precnapprox ****lnapprox \nsim ****diagup \varsubsetneq ****nsubseteqq ****subsetneqq ****varsubsetneqq ****subsetneq ****nsubseteq

Ź	\nsupseteq	H	\nparallel
⊉ ∤	\nmid	4	\nshortmid
H	\ nshortparallel	¥	\ nvdash
\mathbb{F}	\ nVdash	⊭	\ nvDash
¥	\ nVDash	⋭	\ntrianglerighteq
∄	\ntrianglelefteq	, A	\ntriangleleft
βÞ	\ntriangleright	+ /-	\nleftarrow
-/+	\nrightarrow	#	\ nLeftarrow
#	\nRightarrow	⇔	\nLeftrightarrow
\leftrightarrow	\nleftrightarrow	*	\divideontimes
Ø	\varnothing	∄	\ nexists
Ь	\ Finv	Ð	\ Game
ි]	\ eth		\ eqsim
コ	\ beth	נ	\ gimel
٦	\ daleth	<	\ lessdot
⋗	\ gtrdot	\bowtie	\ ltimes
×	\rtimes	1	\shortmid
II	\ shortparallel	_	\ smallsetminus
~	\ thicksim	≈	\ thickapprox
\approx	\ approxeq	××	\ succapprox
2 Y2 €	\ precapprox	Ý.	\curvearrowleft
$\overline{\wedge}$	\curvearrowright	F	\ digamma
×	\ varkappa	lkr	\ Bbbk
ř	\ hslash	9	acksquarebackepsilon