$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

ω (1650) MASS

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT		
1670± 30 OUR ESTIMATE							
• • • We do not ι	ise the fol	lowing data for aver	ages,	fits, limi	ts, etc. • • •		
1660 ± 10	898	¹ ACHASOV	16 B	SND			
$1680\pm~10$	13.1k	² AULCHENKO	15A	SND	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
$1667 \pm \ 13 \pm \ 6$		AUBERT	07 AU	BABR	$10.6 e^{+} e^{-} \rightarrow \omega \pi^{+} \pi^{-} \gamma$		
1645 ± 8	13	AUBERT			10.6 $e^+e^- \rightarrow \omega \eta \gamma$		
$1660 \pm ~10 \pm ~2$		AUBERT,B			10.6 $e^+e^- \to \pi^+\pi^-\pi^0\gamma$		
$1770 \pm 50 \pm 60$	1.2M	³ ACHASOV	03 D	RVUE	$0.44-2.00 e^{+}e^{-} \rightarrow \pi^{+}\pi^{-}\pi^{0}$		
1619 ± 5		⁴ HENNER	02	RVUE	$1.2-2.0 e^{+}e^{-} \rightarrow \rho\pi$		
1700± 20		EUGENIO	01	SPEC	$ \begin{array}{ccc} \omega \pi \pi \\ 18 \pi^{-} p \rightarrow \omega \eta n \end{array} $		
$1705\pm\ 26$	612	⁵ AKHMETSHIN	00 D	CMD2	$e^+e^- \rightarrow \omega \pi^+\pi^-$		
$1820 {}^{\displaystyle + 190}_{\displaystyle - 150}$		⁶ ACHASOV	98н	RVUE	$e^+e^- \rightarrow \pi^+\pi^-\pi^0$		
$1840 + 100 \\ -70$		⁷ ACHASOV	98н	RVUE	$e^+e^- \rightarrow \omega \pi^+\pi^-$		
$1780 + 170 \\ -300$		⁸ ACHASOV	98н	RVUE	$e^+e^- ightarrow K^+K^-$		
~ 2100		⁹ ACHASOV	98н	RVUE	$e^+e^- \rightarrow K_S^0 K^{\pm} \pi^{\mp}$		
1606 ± 9		¹⁰ CLEGG	94	RVUE	3		
1662 ± 13	750	11 ANTONELLI	92	DM2	1.34–2.4 $e^+e^- ightarrow~ ho\pi$,		
$1670\pm~20$		ATKINSON	83 B	OMEG	0.000 0.00 0.00 0.00 0.00 0.00 0.00		
1657 ± 13		CORDIER	81	DM1	$e^+e^- ightarrow~\omega2\pi$		
1679 ± 34	21	ESPOSITO	80	FRAM	$e^+e^- o 3\pi$		
1652 ± 17		COSME	79	OSPK	$e^+e^- o 3\pi$		
1							

¹ From a fit with contributions from $\omega(1420)$, $\omega(1650)$, and $\phi(1680)$.

Created: 5/30/2017 17:21

² From a fit with contributions from $\omega(782)$, $\phi(1020)$, $\omega(1420)$, and $\omega(1650)$.

 $^{^3}$ From the combined fit of ANTONELLI 92, ACHASOV 01E, ACHASOV 02E, and ACHASOV 03D data on the $\pi^+\pi^-\pi^0$ and ANTONELLI 92 on the $\omega\pi^+\pi^-$ final states. Supersedes ACHASOV 99E and ACHASOV 02E.

 $^{^4}$ Using results of CORDIER 81 and preliminary data of DOLINSKY 91 and AN-TONELLI 92.

 $^{^{5}}$ Using the data of AKHMETSHIN 00D and ANTONELLI 92. The $ho\pi$ dominance for the energy dependence of the $\omega(1420)$ and $\omega(1650)$ width assumed.

⁶ Using data from BARKOV 87, DOLINSKY 91, and ANTONELLI 92.

⁷ Using the data from ANTONELLI 92.

⁸ Using the data from IVANOV 81 and BISELLO 88B.
⁹ Using the data from BISELLO 91C.

 $^{^{10}\,\}mathrm{From}$ a fit to two Breit-Wigner functions and using the data of DOLINSKY 91 and ANTONELLI 92.

¹¹ From the combined fit of the $\rho\pi$ and $\omega\pi\pi$ final states.

ω (1650) WIDTH

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT	
315± 35 OUR ESTIMATE						
 • • We do not use the following data for averages, fits, limits, etc. 						
$110\pm~20$	898				1.34–2.00 $e^+e^- \rightarrow \omega \eta$	
$310\pm~30$	13.1k	² AULCHENKO	15A	SND	$1.05 - 1.80 e^{+}_{\pi} e^{-}_{\pi} \rightarrow$	
222± 25± 20		AUBERT	07 AU	BABR	$10.6 e^{+}e^{-} \rightarrow \omega \pi^{+}\pi^{-}\gamma$	
$114\pm~14$	13	AUBERT	06 D	BABR	10.6 $e^+e^- \rightarrow \omega \eta \gamma$	
$230 \pm 30 \pm 20$		AUBERT,B	04N	BABR	10.6 $e^+e^- \rightarrow \pi^+\pi^-\pi^0\gamma$	
$490^{+200}_{-150}{\pm}130$	1.2M	³ ACHASOV	03 D	RVUE	$0.44-2.00 e^{+}_{\pi^{+}\pi^{-}\pi^{0}} e^{-} \rightarrow$	
$250\pm~14$		⁴ HENNER			1.2–2.0 $e^+e^- \rightarrow \rho\pi, \omega\pi\pi$	
$250\pm~50$		EUGENIO	01		$18 \pi^- p \rightarrow \omega \eta n$	
$370\pm\ 25$	612		100 D	CMD2	$e^+e^- ightarrow \omega \pi^+\pi^-$	
$113\pm~20$		⁶ CLEGG	94	RVUE		
$280\pm\ 24$	750	⁷ ANTONELLI	92	DM2	1.34–2.4 $e^+e^- ightarrow~ ho\pi$, $\omega\pi\pi$	
$160\pm~20$		ATKINSON	83 B	OMEG	20–70 $\gamma p \rightarrow 3\pi X$	
$136\pm~46$		CORDIER	81	DM1	$e^+e^- ightarrow~\omega 2\pi$	
$99\pm~49$	21	ESPOSITO	80	FRAM	$e^+e^- ightarrow 3\pi$	
42 ± 17		COSME	79	OSPK	$e^+e^- o 3\pi$	

¹ From a fit with contributions from $\omega(1420)$, $\omega(1650)$, and $\phi(1680)$.

ω (1650) DECAY MODES

		Mode	Fraction (Γ_i/Γ)
Γ	1	$ ho\pi$	seen
Γ	2	$\omega\pi\pi$	seen
Γ	3	$\omega \eta$	seen
Г	4	e^+e^-	seen

Created: 5/30/2017 17:21

² From a fit with contributions from $\omega(782)$, $\phi(1020)$, $\omega(1420)$, and $\omega(1650)$.

 $^{^3}$ From the combined fit of ANTONELLI 92, ACHASOV 01E, ACHASOV 02E, and ACHASOV 03D data on the $\pi^+\pi^-\pi^0$ and ANTONELLI 92 on the $\omega\pi^+\pi^-$ final states. Supersedes ACHASOV 99E and ACHASOV 02E.

⁴Using results of CORDIER 81 and preliminary data of DOLINSKY 91 and AN-TONFLLL 92

 $^{^5}$ Using the data of AKHMETSHIN 00D and ANTONELLI 92. The $\rho\pi$ dominance for the energy dependence of the $\omega(1420)$ and $\omega(1650)$ width assumed.

⁶ From a fit to two Breit-Wigner functions and using the data of DOLINSKY 91 and ANTONELLI 92.

⁷ From the combined fit of the $\rho\pi$ and $\omega\pi\pi$ final states.

$\omega(1650) \Gamma(i)\Gamma(e^+e^-)/\Gamma^2(total)$

$\Gamma(\rho\pi)/\Gamma_{\text{total}} \times \Gamma(e^+e^-)/\Gamma_{\text{total}}$

 $\Gamma_1/\Gamma \times \Gamma_4/\Gamma$

VALUE (units 10^{-6}) EVTSDOCUMENT ID TECN COMMENT • • • We do not use the following data for averages, fits, limits, etc. • • • $\begin{array}{c} 1.05 - 1.80 \ e^{+} \ e^{-} \rightarrow \\ \pi^{+} \pi^{-} \pi^{0} \\ 10.6 \ e^{+} \ e^{-} \rightarrow \pi^{+} \pi^{-} \pi^{0} \gamma \end{array}$ ¹ AULCHENKO 15A 1.56 ± 0.23 13.1k SND AUBERT,B $1.3 \pm 0.1 \pm 0.1$ 04N BABR 0.44-2.00 e⁺ e $^{+0.4}_{-0.1}$ ^{2,3} ACHASOV ± 0.8 1.2M 03D RVUE 4,5 CLEGG **RVUE** 0.921 ± 0.230 6,7 ANTONELLI $1.34-2.4e^+e^- \to \rho\pi$. 0.479 ± 0.050 750 92 DM2

$\Gamma(\omega\pi\pi)/\Gamma_{\text{total}} \times \Gamma(e^+e^-)/\Gamma_{\text{total}}$

 $\Gamma_2/\Gamma \times \Gamma_4/\Gamma$

VALUE (units 10^{-7}) EVTS DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, fits, limits, etc. • • •

7.0
$$\pm 0.5$$
 AUBERT 07AU BABR 10.6 $e^{+}e^{-} \rightarrow \omega \pi^{+}\pi^{-}\gamma$ 4.1 $\pm 0.9 \pm 1.3$ 1.2M 2,3 ACHASOV 03D RVUE 0.44–2.00 $e^{+}e^{-} \rightarrow \pi^{+}\pi^{-}\pi^{0}$ 5.40 ± 0.95 8 AKHMETSHIN 00D CMD2 1.2–1.38 $e^{+}e^{-} \rightarrow \omega \pi^{+}\pi^{-}$ 3.18 ± 0.80 4,5 CLEGG 94 RVUE 6.07 ± 0.61 750 6,7 ANTONELLI 92 DM2 1.34–2.4 $e^{+}e^{-} \rightarrow \rho\pi, \omega\pi\pi$

$\Gamma(\omega\eta)/\Gamma_{\text{total}} \times \Gamma(e^+e^-)/\Gamma_{\text{total}}$

 $\Gamma_3/\Gamma \times \Gamma_4/\Gamma$

Created: 5/30/2017 17:21

<u>VALUE (units 10^{-6})</u> <u>CL%</u> <u>EVTS</u> <u>DOCUMENT ID</u> <u>TECN</u> <u>COMMENT</u>
• • • We do not use the following data for averages, fits, limits, etc. • •

0.44 \pm 0.05 898 9 ACHASOV 16B SND 1.34–2.00 $e^+e^- \rightarrow \omega \eta$ 0.57 \pm 0.06 13 AUBERT 06D BABR 10.6 $e^+e^- \rightarrow \omega \eta \gamma$ <6 90 10 AKHMETSHIN 03B CMD2 $e^+e^- \rightarrow \eta \pi^0 \gamma$

¹ From a fit with contributions from $\omega(782)$, $\phi(1020)$, $\omega(1420)$, and $\omega(1650)$.

²Calculated by us from the cross section at the peak.

 $^{^3}$ From the combined fit of ANTONELLI 92, ACHASOV 01E, ACHASOV 02E, and ACHASOV 03D data on the $\pi^+\pi^-\pi^0$ and ANTONELLI 92 on the $\omega\pi^+\pi^-$ final states. Supersedes ACHASOV 99E and ACHASOV 02E.

⁴ From a fit to two Breit-Wigner functions and using the data of DOLINSKY 91 and _ANTONELLI 92.

⁵ From the partial and leptonic width given by the authors.

⁶ From the combined fit of the $\rho\pi$ and $\omega\pi\pi$ final states.

⁷ From the product of the leptonic width and partial branching ratio given by the authors.

⁸ Using the data of AKHMETSHIN 00D and ANTONELLI 92. The $\rho\pi$ dominance for the energy dependence of the $\omega(1420)$ and $\omega(1650)$ width assumed.

⁹ From a fit with contributions from $\omega(1420)$, $\omega(1650)$, and $\phi(1680)$.

 $^{^{10}\}omega(1650)$ mass and width fixed at 1700 MeV and 250 MeV, respectively.

ω (1650) BRANCHING RATIOS

$\Gamma(\omega\pi\pi)/\Gamma_{ m total}$					Γ_2/Γ	
* *	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT	
ullet $ullet$ We do not use the following data for averages, fits, limits, etc. $ullet$ $ullet$						
~ 0.35	1.2M	¹ ACHASOV	03 D	RVUE	$0.44-2.00 e^{+}e^{-} \rightarrow \pi^{+}\pi^{-}\pi^{0}$ $1.2-2.0 e^{+}e^{-} \rightarrow \rho\pi, \omega\pi\pi$	
0.620 ± 0.014		² HENNER	02	RVUE	1.2–2.0 $e^+e^- \rightarrow \rho\pi$, $\omega\pi\pi$	
$\Gamma(ho\pi)/\Gamma_{total}$					Γ ₁ /Γ	
VALUE	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT	
ullet $ullet$ We do not	use the f	following data for av	erages	s, fits, lir	mits, etc. • • •	
~ 0.65	1.2M	¹ ACHASOV	03 D	RVUE	$0.44-2.00 e^{+}_{\pi^{+}\pi^{-}\pi^{0}} e^{-} \rightarrow$	
0.380 ± 0.014		² HENNER	02	RVUE	1.2–2.0 $e^+e^- \rightarrow \rho\pi$, $\omega\pi\pi$	
$\Gamma(e^+e^-)/\Gamma_{\text{total}}$ Γ_4/Γ						
$VALUE$ (units 10^{-7})	EVTS	DOCUMENT ID		TECN	COMMENT	
• • • We do not use the following data for averages, fits, limits, etc. • •						
~ 18	1.2M	^{2,3} ACHASOV	03 D	RVUE	$0.44-2.00 \ e^{+}_{\pi^{+}\pi^{-}\pi^{0}} e^{-} \rightarrow$	
32 ± 1		² HENNER	02	RVUE	1.2–2.0 $e^+e^- \rightarrow \rho\pi, \omega\pi\pi$	
¹ From the combined fit of ANTONELLI 92, ACHASOV 01E, ACHASOV 02E, and ACHASOV 03D data on the $\pi^+\pi^-\pi^0$ and ANTONELLI 92 on the $\omega\pi^+\pi^-$ final states. Supersedes ACHASOV 99E and ACHASOV 02E. ² Assuming that the $\omega(1650)$ decays into $\rho\pi$ and $\omega\pi\pi$ only.						

³ Calculated by us from the cross section at the peak.

ω (1650) REFERENCES

ACHASOV	16B	PR D94 092002	M.N. Achasov et al.	(SND	Collab.)
AULCHENKO	15A	JETP 121 27	V.M. Aulchenko et al.	(SND	Collab.)
		Translated from ZETF 14		. ,	
AUBERT	07AU	PR D76 092005	B. Aubert <i>et al.</i>	(BABAR	
AUBERT	06D	PR D73 052003	B. Aubert <i>et al.</i>	(BABAR	,
AUBERT,B	04N	PR D70 072004	B. Aubert <i>et al.</i>	(BABAR	
ACHASOV	03D	PR D68 052006	M.N. Achasov et al.	(Novosibirsk SND	
AKHMETSHIN	03B	PL B562 173	R.R. Akhmetshin et al.	(Novosibirsk CMD-2	Collab.)
ACHASOV	02E	PR D66 032001	M.N. Achasov et al.	(Novosibirsk SND	Collab.)
HENNER	02	EPJ C26 3	V.K. Henner et al.		
ACHASOV	01E	PR D63 072002	M.N. Achasov et al.	(Novosibirsk SND	Collab.)
EUGENIO	01	PL B497 190	P. Eugenio <i>et al.</i>		
AKHMETSHIN	00D	PL B489 125	R.R. Akhmetshin et al.	(Novosibirsk CMD-2	Collab.)
ACHASOV	99E	PL B462 365	M.N. Achasov et al.	(Novosibirsk SND	Collab.)
ACHASOV	98H	PR D57 4334	N.N. Achasov, A.A. Kozhev	nikov	,
CLEGG	94	ZPHY C62 455	A.B. Clegg, A. Donnachie	(LANC,	MCHS)
ANTONELLI	92	ZPHY C56 15	A. Antonelli et al.	`(DM2	Collab.)
BISELLO	91C	ZPHY C52 227	D. Bisello et al.	(DM2	Collab.)
DOLINSKY	91	PRPL 202 99	S.I. Dolinsky et al.	`	(NOVO)
BISELLO	88B	ZPHY C39 13	D. Bisello et al.	(PADO, CLER,	ÈRAS+)
BARKOV	87	JETPL 46 164	L.M. Barkov et al.	`	(NOVO)
		Translated from ZETFP 4	46 132.		,
ATKINSON	83B	PL 127B 132	M. Atkinson et al.	(BONN, CERN,	GLAS+)
CORDIER	81	PL 106B 155	A. Cordier et al.	(ORSAY)
IVANOV	81	PL 107B 297	P.M. Ivanov et al.		(NOVO)
ESPOSITO	80	LNC 28 195	B. Esposito et al.	(FRAS, NAPL, F	PADO+)
COSME	79	NP B152 215	G. Cosme et al.		(IPN)
					, ,

Created: 5/30/2017 17:21