

UNIVERSIDAD TECNOLÓGICA DE PANAMÁ FACULTAD DE INGENIERÍA DE SISTEMAS COMPUTACIONALES DEPARTAMENTO DE COMPUTACIÓN Y SIMULACIÓN DE SISTEMAS

ESTRUCTURAS DISCRETAS PARA LA COMPUTACIÓN PRÁCTICA 5 - PRODUCTO CARTESIANO Y PARTICIONES

Facilitador: Tomás J. Concepción Miranda

Problema 1: Encuentre el valor de x o y tal que la declaración sea correcta:

a) (3x+1,2)=(7,2)

b) (Claire, Paul) = (y, x)

c) $(x^2, 25) = (49, y)$

d) $(x, y) = (x^2, y^2)$

Problema 2: Sea $A = \{g, k\}$ y $B = \{2, 3, 4\}$. Liste los elementos en:

- a) $A \times B$
- b) $B \times A$
- c) $A \times A$
- d) $B \times B$

Problema 3: Un experimento clasifica moscas del vinagre según los siguientes dos criterios:

- $G\acute{e}nero$: macho (m), hembra (h)
- Ancho del ala: corto (c), medio (m), largo (l)
- a) ¿Cuántas categorías hay en esta clasificación?
- b) Liste todas las categorías este esquema de clasificación

Problema 4: Si $A=\{\$,\#,*\},\,B=\{r,s\},\,$ y $C=\{7,8\},\,$ liste todos los elementos de $A\times B\times C$

Problema 5: Sea $P = \{\text{Ana, Beto}\}\ y\ C = \{\text{presidente, vice presidente, secretario, tesorero}\}$. Liste los elementos en:

- a) $P \times C$
- b) $C \times P$
- c) $P \times P$

Problema 6: Sea $A = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$ y

$$A_1 = \{1, 2, 3, 4\}$$
 $A_2 = \{5, 6, 7\}$
 $A_3 = \{4, 5, 7, 9\}$ $A_4 = \{4, 8, 10\}$
 $A_5 = \{8, 9, 10\}$ $A_6 = \{1, 2, 3, 6, 8, 10\}$

¿Cuál de los siguientes conjuntos es una partición de A?

- a) $\{A_1, A_2, A_5\}$
- b) $\{A_1, A_3, A_5\}$
- c) $\{A_3, A_6\}$
- d) $\{A_2, A_3, A_4\}$

Problema 7: ¿Si A_1 es el conjunto de todos los entero positivos y A_2 es el conjunto de todos los enteros negativos, es $\{A_1, A_2\}$ una partición de \mathbb{Z} ? Explique su conclusión

Para los problemas 8 y 9, utilice $A = \{a, b, c, ..., x, y, z\}$

Problema 8: Calcule una partición \mathscr{P} de A tal que $|\mathscr{P}|=4$ y un elemento de \mathscr{P} contenga solo las letras necesarias para deletrear su nombre

Problema 9: Calcule una partición $\mathscr P$ de A tal que $|\mathscr P|=3$ y cada elemento de $\mathscr P$ contenga al menos cinco elementos

Problema 10: Liste todas las particiones de $S = \{!, @, *\}$ y $R = \{a, b, c, d\}$