抽象代数 2022 期中

Zavalon from TG

2022.11.01

一. 填空题 (每格 2 分, 共 10 分)
1. 不同构的 144 阶 Abel 群共有 种.
2. 使有 n 阶非交换群的最小正整数 n 的值为
$3.$ 与群 G 的子群 H 共轭的子群个数是 $_{$
4. 设 p 为素数, 则 p 阶循环群共有 个生成元.
5. 设 $\sigma = (13524), \tau = (12)(345), 则 \sigma \tau \sigma^{-1} =(写成不相交轮换的$
乘积).
二. 判断题 (在左端括号内填,每小题 2 分,共 20 分)
1.() 设 G 为群, 对 $g \in G$ 让 $\sigma(g) = g^{-1}$, 则 σ 为 G 的自同构.
$2.($)对任意正整数 n , 群 G 的 n 阶导群 $G^{(n)}$ 在 G 中正规.
3.() 具有消去律的半群为群.
4.() 任给素数 p , 所有 p -群都可解.
5.() 无限可解群一定有合成列.(注: 原文表述如此.)
6.() 设群 G 恰有两个自同构,则 G 必为 Abel 群.
7.() 八阶群都为 Abel 群.
8.() 设 H 与 K 均为群 G 子群, 则 $H \cup K$ 为 G 子群当且仅当 $H \subseteq K$ 或
$K \subseteq H$.
9.() 设 H 与 K 都是群 G 的正规子群且 $H\subseteq K$, 则 G/H 可解时 G/K
也可解.
10.() 设 G 为有限可解群, $H < G$ 为 G 极大正规子群,则 $[G:H]$ 为素数.

(1). 写出群 $\mathbb{Z}/72\mathbb{Z}$ 的一个合成群列.

三.(每小题 5 分, 共 10 分)

(2). 设 A,B 为有限群 G 的非空子集且 |A|+|B|>|G|, 证明 $G=AB=\{ab:a\in A,b\in B\}.$

四.(10 分) 设 H 为群 G 的有穷正规子群,P 为 H 的 Sylow p-子群, 证明 $G = HN_G(P)$.(注: 考试中途追加条件 G 有限.)

五.(每小题 5 分, 共 10 分)

设 H 与 K 为有限群 G 的子群, 对 $\langle h,k \rangle \in H \times K$ 与 $x \in G$, 让 $langleh,k \rangle \circ x = hxk^{-1}$.

- (1). 证明群 $H \times K$ 按 \circ 作用在集合 G 上.
- (2). 证明 $x \in G$ 所在的轨道恰是 $[K: x^{-1}Hx \cap K]$ 个不同 H 的右陪集之并. 六.(10 分) 证明 5000 阶群必可解 (提示: 利用 Sylow 定理).

七.(10 分) 设 H 为群 G 的次正规子群, K 为群 G 正规子群, 证明 HK 在 G 中次正规 (不引用书上定理).

八.(10 分) 设 G 为有限 Abel 群, 证明 G 为循环群当且仅当对任意正整数 n 均有 $|\{x \in G : x^n = e\}| \le n$.

九.(10 分) 设 H 与 K 为有限群 G 的正规子群. 假设 $G/(H \cap K)$ 有正规的 Sylow p-子群, 其中 p 为素数, 证明 G/H 也有正规的 Sylow p-子群.