# Mess-, Steuerungs- und Regelungstechnik - Teil 2 ${\bf Probeklausur}$ ${\bf 2023}$

Für diesen Teil gibt es 50 Punkte. Er wird zusammen mit Teil 1 bewertet. Jedes Blatt ist mit Namen und Matrikelnummer zu versehen.

#### Erlaubte Hilfsmittel:

• Nordakademie Taschenrechner

| Name: Mat. Nr.: |
|-----------------|
|-----------------|

| Aufgabe     | 1  | 2  | 3  | 4  | Summe | Note |
|-------------|----|----|----|----|-------|------|
| max. Punkte | 10 | 12 | 13 | 15 | 50    |      |
| Ihre Punkte |    |    |    |    |       |      |

### Aufgabe 1:

Die Sprungantwort eines technischen Systems wurde messtechnisch mit Hilfe eines Oszilloskops ermittelt und wird durch folgende Gleichung beschrieben:

$$h(t) = t + t e^{-3t}$$
 für  $t > 0$ .

- a) Berechnen Sie die Sprungantwort  $H_{\rm S}(s)$  der Strecke. Nutzen Sie dazu die Korrespondenztabelle am Ende der Klausur.
- b) Ist die zugehörige Übertragungsfunktion G(s) stabil? Begründen Sie Ihre Antwort!

### Aufgabe 2:

Gegeben ist der folgende Regelkreis:



Die Übertragungsfunktion der Regelstrecke lautet

$$G(s) = \frac{s+3}{s^4 + 7s^3 + 14s^2 + 8s} .$$

a) Geben Sie die Übertragungsfunktion des abgebildeten geschlossenen Kreises in Abhängigkeit von  $K_{\rm P}$  an.

b) Untersuchen Sie die Stabilität des geschlossenen Kreises in Abhängigkeit von  $K_P$  mit Hilfe des Hurwitz-Kriteriums. Folgende Determinante ist bei der Berechnung hilfreich:

$$\underline{H} = \left| \begin{array}{cccc} a_3 & a_1 & 0 & 0 \\ a_4 & a_2 & a_0 & 0 \\ 0 & a_3 & a_1 & 0 \\ 0 & a_4 & a_2 & a_0 \end{array} \right| .$$

### Aufgabe 3:

Ein lineares zeitinvariantes Systems wird durch folgendes Zustandsraummodell beschrieben:

$$\underline{\dot{x}}(t) = \begin{bmatrix} -1 & 0 \\ 1 & -3 \end{bmatrix} \underline{x}(t) + \begin{bmatrix} 1 \\ 1 \end{bmatrix} u(t)$$

$$y(t) = \begin{bmatrix} 0 & 1 \end{bmatrix} \underline{x}(t) .$$

a) Geben Sie die Eigenwerte des Systems an.

b) Berechnen Sie die Übertragungsfunktion  $G_{\rm S}(s)$  des Systems. Nutzen Sie dazu die Gleichung

$$G(s) = \underline{c}^{\mathrm{T}}(s\underline{I} - \underline{A})^{-1}\underline{b} + d .$$

c) Zeichnen Sie das zugehörige Blockschaltbild.

## Aufgabe 4:

Ein technisches System wurde auf einem Versuchsstand in Schwingung versetzt. Die im folgenden dargestellte Dauerschwingung ergab sich für  $K_{\rm R,krit}=5$ .



a) Bestimmen Sie die Frequenz der Dauerschwingung.

b) Parametrisieren Sie einen PD-Regler nach dem Verfahren von Ziegler und Nichols. Nutzen Sie dazu die Tabelle am Ende der Klausur.
c) Zeichnen Sie das zugehörige Blockschaltbild.

 $\underline{\text{Table 1:}}$ Korrespondenzen der Laplace-Transformation

| f(t)                          | F(s)                            |
|-------------------------------|---------------------------------|
| $\delta(t)$ Impulsfunktion    | 1                               |
| $\sigma(t)$ Sprungfunktion    | $\frac{1}{s}$                   |
| t                             | $\frac{1}{s^2}$                 |
| $\frac{t^n}{n!}$              | $\frac{1}{s^{n+1}}$             |
| $e^{\alpha t}$                | $\frac{1}{s-\alpha}$            |
| $t e^{\alpha t}$              | $\frac{1}{(s-\alpha)^2}$        |
| $\frac{t^n}{n!} e^{\alpha t}$ | $\frac{1}{(s-\alpha)^{n+1}}$    |
| $\sin \omega t$               | $\frac{\omega}{s^2 + \omega^2}$ |
| $\cos \omega t$               | $\frac{s}{s^2 + \omega^2}$      |

 $\underline{\text{Table 2:}}$ Einstellregeln nach Ziegler-Nichols

| Reglertyp  | $K_P$              | $T_N$          | $T_V$           |
|------------|--------------------|----------------|-----------------|
| P-Regler   | $0.5K_{P_{krit}}$  | _              | _               |
| PI-Regler  | $0.45K_{P_{krit}}$ | $0.85T_{krit}$ | _               |
| PD-Regler  | $0.55K_{P_{krit}}$ | _              | $0.15T_{krit}$  |
| PID-Regler | $0.6K_{P_{krit}}$  | $0.5T_{krit}$  | $0,125T_{krit}$ |