Ciencia Actual vs. Expansión TCDS de Frecuencias Características y Dinámica de Giro Paquete autocontenido con figuras, KPIs y preregistro

Genaro Carrasco Ozuna Motor de Formalización: GPT-5 Thinking

26 de octubre de 2025

Índice

1.	Resumen	2	
2.	Ciencia estándar: escalas de frecuencia	2	
3.	Puente TCDS 3.1. Torque coherencial	2	
4.	Predicciones falsables 4.1. FET: lenguas de Arnold y limpieza de fase	2 2 2 3 3	
5.	KPIs y regla de decisión		
6.	Unificación H–Fe–U		
7.	Plantilla de preregistro		
8.	. Autocrítica		

1. Resumen

Este documento compara la lectura estándar de las frecuencias características por régimen de interacción con la expansión causal de la TCDS. Se incluyen: (i) derivaciones mínimas, (ii) predicciones falsables, (iii) KPIs (LI, R, RMSE_{SL})y(iv)plantilladepreregistro.

2. Ciencia estándar: escalas de frecuencia

La frecuencia característica obedece a la energía del proceso (E=hf) y no al número atómico. Tres bandas:

- **A. Hiperfino** (acoplo espín–espín): $E \sim \mu \text{eV} \Rightarrow f \sim 1 \times 10^9 \,\text{Hz}$ (ej., H: 1420 MHz).
- **B. Electrónico** (transiciones atómicas): $E \sim 1 \, \text{eV} \implies f \sim 10^{14} 10^{15} \, \text{Hz}.$
- C. Nuclear (desexcitaciones γ): $E \sim 10 \text{ keV} 1 \text{ MeV} \Rightarrow f \sim 10^{18} 10^{21} \text{ Hz}.$

No existe una "frecuencia de ruptura" monótona con Z; cada isótopo posee un espectro propio.

3. Puente TCDS

TCDS introduce los campos Σ (coherencia) y χ (sustrato), el empuje Q y la fricción ϕ . El corredor mínimo:

$$\mathcal{L} = \frac{1}{2}(\partial \Sigma)^2 + \frac{1}{2}(\partial \chi)^2 - \left[-\frac{1}{2}\mu^2 \Sigma^2 + \frac{\lambda}{4} \Sigma^4 + \frac{1}{2}m_{\chi}^2 \chi^2 + \frac{g}{2} \Sigma^2 \chi^2 \right],\tag{1}$$

$$\Box \Sigma - \mu^2 \Sigma + \lambda \Sigma^3 + g \Sigma \chi^2 = 0. \tag{2}$$

Geometría efectiva: $R \propto \nabla^2 \Sigma$; índice óptico conforme $n(\Sigma) = e^{\kappa_{\Sigma} \Sigma}$.

3.1. Torque coherencial

Un gradiente de coherencia produce fuerza efectiva $\mathbf{f}_{\Sigma} \propto \nabla \Sigma$ y, sobre distribuciones de masa, torque $\boldsymbol{\tau}_{\Sigma} = \int \mathbf{r} \times \mathbf{f}_{\Sigma} \, dV$, sesgando vorticidad en colapsos, discos de acreción y jets.

4. Predicciones falsables

4.1. FET: lenguas de Arnold y limpieza de fase

Con señal de control $A_{\rm c}>0$ a $f_{\rm c}$, aparece región de locking centrada en $f_{\rm c}$ y $\Delta f\propto A_{\rm c}$. KPIs: LI $\geq 0.90,~{\rm R}>0.95,~{\rm RMSE_{SL}}<0.10.$

4.2. Óptica de precisión

Deflexión angular por $\nabla \Sigma$: $\Delta \theta \approx K \partial_i \ln n(\Sigma)$ con $n = e^{\kappa_{\Sigma} \Sigma}$. Meta: $\Delta \theta_{\min} = 1 \times 10^{-8} \text{ rad a } 100 \text{ s.}$

Figura 1: Lengua de Arnold 1:1 sintética con $\Delta f \propto A_{\rm c}$.

4.3. Relojes

PSD con línea estrecha a $f^* \approx 2.3(2)\,\mathrm{kHz};$ estabilidad fraccional $\sigma_y(f^*) < 3 \times 10^{-16}$ a $10^4\,\mathrm{s}.$

Figura 2: PSD sintético con línea coherencial a 2.3 kHz.

4.4. Fuerzas de corto alcance

Potencial Yukawa: $V(r) = -\frac{Gm_1m_2}{r} \left[1 + \alpha_{\Sigma}e^{-r/\lambda_{\Sigma}}\right]$. Meta: acotar $(\alpha_{\Sigma}, \lambda_{\Sigma})$ sin violar PPN/WEP.

5. KPIs y regla de decisión

Regla -Score:

$$S = 0.4 \Theta(\Delta \text{LI} - 0.40) + 0.2 \Theta(R - 0.95) + 0.2 \Theta(\rho - 0.40) + 0.2 \Theta(\sigma_y^{\text{lim}} - \sigma_y(f^*)).$$
 (3)

Cuadro 1: Capa de métricas MP

Indicador	Definición	Umbral
LI	Índice de locking	≥ 0.90
R	Correlación señal–referencia	> 0.95
$\mathrm{RMSE}_{\mathrm{SL}}$	Error medio en modelo SL	< 0.10
Replicabilidad	Éxitos/Total	≥ 95

Validación si $S \ge 0.8$ en dos laboratorios; refutación si $S \le 0.2$ tras tres réplicas ciegas.

6. Unificación H-Fe-U

Mapeo por régimen: hiperfino \to GHz (H), electrónico \to visible/UV, nuclear \to EHz (Fe, U). La TCDS lo reinterpreta como graduación del locking Σ - χ ; Fe marca máximo de energía de enlace y plateau de coherencia.

7. Plantilla de preregistro

Resumen

Objetivo, hipótesis nula y alternativa; equipo y ubicación.

Diseño

Bancos: FET, óptica, relojes, sub-mm. Factores: A_c , f_c , ventana p:q, temperatura, blindajes EM.

Resultados primarios

 $\Delta f \propto A_{\rm c}$, LI, R, RMSE_{SL}, $\sigma_y(f^*)$, cotas $(\alpha_{\Sigma}, \lambda_{\Sigma})$.

Plan estadístico

Pruebas t/U, ANOVA, contraste Bayes, AIC/BIC frente a modelo nulo; tamaño muestral por potencia 0.8.

Criterios de exclusión

Deriva térmica $> 0.2 \,\mathrm{K}, \,\mathrm{EMI} > 1 \,\mu\mathrm{T}, \,\mathrm{vibraci\'{o}n} > 10 \,\mathrm{nm}$ RMS.

Datos y código

Repositorio, DOIs, versiones de firmware, semillas RNG.

8. Autocrítica

Este paquete es mínimo autosuficiente. Las figuras son sintéticas y solo ilustrativas. Las ecuaciones (2) fijan la fenomenología cualitativa, no los parámetros numéricos. La validación real exige: (i) calibración cruzada de ruido, (ii) controles nulos, (iii) co-tensión multi-canal. Cierro la consistencia dimensional y la trazabilidad de KPIs, pero dejo explícito que κ_{Σ} , μ , g deben fijarse por experimento.

Licencia y metadatos

Licencias sugeridas: Apache-2.0 para código; CC BY 4.0 para texto; TCDS Commercial 1.0 para artefactos FET.

ORCID: 0009-0005-6358-9910. Repositorio semilla: TCDS-FARO.