Pagnoux Guillaume Note: 5/20 (score total : 5/20)

+125/1/26+

QCM THLR 4

	Nom et prénom, lisibles : Identifiant (de haut en bas) :		
	PAGNOUX 00 01 10 02 03 04 05 06 07 08 09		
	Guillaume		
2/2	Q.1 Ne rien écrire sur les bords de la feuille, ni dans les éventuels cadres grisés « ». Noircir les cases plutôt que cocher. Renseigner les champs d'identité. Les questions marquées par « » peuvent avoir plusieurs réponses justes. Toutes les autres n'en ont qu'une; si plusieurs réponses sont valides, sélectionner la plus restrictive (par exemple s'il est demandé si 0 est nul, non nul, positif, ou négatif, cocher nul). Il n'est pas possible de corriger une erreur, mais vous pouvez utiliser un crayon. Les réponses justes créditent; les incorrectes pénalisent; les blanches et réponses multiples valent 0. 2/2		
	Q.2 Le langage $\{ \heartsuit^n \mid \forall n \in \mathbb{N} \}$ est		
2/2	☐ vide ☐ fini 🧱 rationnel (!) ☐ non reconnaissable par automate fini		
	Q.3 Le langage $\{ \overset{n}{\underline{w}}^n \overset{n}{\underline{w}}^n \forall n \text{ premier, codable en binaire sur 64 bits} \}$ est		
-1/2	☐ vide ● non reconnaissable par automate ☐ rationnel ☑ fini		
-1/2	 Q.4 Un langage quelconque ☑ est toujours inclus (⊆) dans un langage rationnel ☐ n'est pas nécessairement dénombrable ☐ peut avoir une intersection non vide avec son complémentaire ☐ peut n'être inclus dans aucun langage dénoté par une expression rationnelle Q.5 Un automate fini qui a des transitions spontanées 		
2/2	\square est déterministe \square n'accepte pas ε \square n'est pas déterministe \square accepte ε		
	Q.6 Combien d'états au moins a un automate déterministe émondé qui accepte les mots sur $\Sigma = \{a, b\}$ dont la n -ième lettre avant la fin est un a (i.e., $(a+b)^*a(a+b)^{n-1}$):		
-1/2	$\frac{n(n+1)}{2}$ Il n'existe pas. $n+1$ \times 2^n		
	Q.7 Si un automate de n états accepte a^n , alors il accepte		
-1/2			
	Q.8 Combien d'états au moins a un automate déterministe émondé qui accepte les mots sur $\Sigma = \{a, b, c, d\}$ dont la n -ième lettre avant la fin est un a (i.e., $(a+b+c+d)^*a(a+b+c+d)^{n-1}$):		
-1/2	\boxtimes 2 ⁿ \square $\frac{n(n+1)(n+2)(n+3)}{4}$ \square Il n'existe pas. \square 4 ⁿ		
	Q.9 Déterminiser cet automate : $\xrightarrow{a,b} \xrightarrow{a,b} \xrightarrow{a,b} \xrightarrow{a,b}$		

2/2

 $\Box \bigoplus_{a,b} a,b$ $\downarrow a \bigoplus_{a,b} a,b$ $\downarrow a \bigoplus_{a,b} a,b$

 $\textbf{Q.10} \quad \text{Comment marche la minimisation de Brzozowski d'un automate } \mathscr{A} \,?$

2/2

\Box $T(Det(T(Det$	$(T(\mathcal{A}))))$
----------------------	----------------------

 \triangle $Det(T(Det(T(\mathcal{A}))))$

43

Fin de l'épreuve.

74