Описание FIT readout unit

Финогеев Дмитрий, ИЯИ РАН 16 июня 2020 г.

1 FIT readout unit

FIT readout unit (FRU) является модулем программного обеспечения ПЛИС плат PM/TCM. Основные функции FRU:

- Получение и обработка данных с СТР (через CRU): Триггеры, ВС, Orbit
- Формирование пакета данных полученных с PM/TCM для каждого события (event packet, EP)
- Отбор данных по триггеру в зависимости от режима набора данных
- Формирование RDH пакета содержащего набор EP в соответствии требованиями ALICE DAQ
- Отправка RDH пакета в CRU по протоколу GBT

Функциональная схема FRU представлена на рис 1

Рис. 1: Функциональная схема FIT readout unit

FRU обменивается данными с PM/TCM с одной стороны и с CRU с другой. Данные в/из CRU передаются по оптической линии по протоколу GBT. Ширина шины составляют 80 бит и тактируются по клоку 40 МГц синхронным с CRU. Данные содержат информацию orbit и bc 32 и 12 бит соответственно и триггерную информацию - 32 бита каждый из которых отвечает за соответствующие триггера включая триггера запуска и остановки рана, триггер физического события. Данные полученные по GBT передаются в модуль 'RxDataClkSync' для синхронизацией с внутренним клоком 40МГц, фаза между клоками измеряется по клоку 320МГц. После синхронизации данные передаются в модуль 'RX Data Decoder' где принимаются команды запуска и остановки рана и данные о BC и огbit. Данные BC и Огbit корректируются в соответствии с задержкой и отправляются в программный модуль PM/TCM. Для тестов без

CRU предусмотрен модуль 'CRU/LTU emulator' в котором генерируются данные содержащие информацию orbit и bc и триггерную информацию включая триггера запуска и остановки рана, триггер физического события.

Данные из РМ/ТСМ передаются по клоку 320МГц и обрабатываются модулем 'Data Packager', для тестов на отладочной плате предусмотрен модуль 'PM/ТСМ emulator' позволяющий генерировать данные с PM/ТСМ. Модуль 'Data Packager' содержит подмодули 'Data Converter', 'Event selector' и 'CRU Packet builder'. Модуль 'Data Converter' формирует пакеты данных полученных с PM/ТСМ для каждого события (event packet, EP) и отправляет их в буфер памяти 'RAW FIFO' по клоку 320 МГц. Модуль 'Event Selector' принимает EP из памяти 'RAW FIFO' по клоку 320МГц, отбирает события в соответствии с триггером в триггерном режиме передачи и группирует данные в RDH пакеты в соответствии с требованиями ALICE DAQ. Отобранные и сгруппированные события с сопутствующей информацией необходимой для заголовка поступают в буфер памяти 'Select FIFO'. Третий модуль 'CRU Packet Builder' принимает данные из блока памяти 'Select FIFO', дополняет сформированные данные RDH заголовком и отправляет результат в модуль GBT для дальнейшей передачи в CRU. Для проверки работы GBT передатчика предусмотрен 'TX generator' передающий постоянный паттерн на вход GBT.

2 Описание алгоритма коррекции ВС и отбора событий

На рис 2 представлена схема временной коррекции и алгоритма отбора событий.

Рис. 2: Схема временной коррекции ВС и отбора событий по тригтеру

Каждое столкновение (событие, event) в ALICE@LHC пронумеровано двумя целыми числами: ВС - порядковым номером банча в орбите (кольце ускорителя) 0 - 3563 (12 бит) и Orbit - порядковым номером орбита (32 бита).

Каждому событию в эксперименте ALICE соответствует триггерное решение, которое говорит о характере данного события. Так же существуют технические триггеры. Примеры триггеров: команды запуска и остановки набора данных в непрерывном и триггерном режимах (SOC, SOT, EOC, EOT), триггер отброса данных (HBr), триггер начала орбита (Orbit) и другие. Каждому триггеру соответствует один бит в 32 битном слове, каждому событию может соответствовать несколько триггеров. Номер и триггерное решение для каждого события посылается модулем Central Trigger Processor (CTP) с частотой 40МГц. Данная информация поступает в FIT Readout unit по протоколу GBT через модуль Common readout Unit (CRU) с задержкой порядка нескольких микросекунд.

На схеме рис 2 эти данные обозначены оранжевой стрелочкой от модуля CRU, для примера, на схеме текущий поступивший в FRU номер обозначен 80 и триггерное решение TRG для данного события. На схеме, для примера, происходит событие под номером 100. Регистрация и оцифровки события детектором происходит с задержкой, для примера на схеме задержка равна 2. Как задержка регистрации сигнала, так и задержка триггерного сигнала постоянны и известны. Задержка регистрации сигнала меньше чем задержка триггерного сигнала и для определения номера

регистрируемого события, к номеру полученному от СТР прибавляется разница между задержками регистрации сигнала и распространение триггерного сигнала. На схеме эта разница равна 18 и прибавив 18 к полученному номеру от СТР 80 получаем номер регистрируемого события 98. Данная операция выполняется в модуле 'RxDataDecoder', задержка определяется регистром 'BCID delay'.

Триггерная информация, поступившая от СТР относится к поступившем вместе с ней номером события (на схеме 80-TRG). Она необходима для отбора и сортировки событий по триггеру и сохраняется в буфер памяти 'trg fifo'. Поскольку задержка регистрации событий меньше, чем задержка триггерного сигнала данные о событиях сохраняются в буфер памяти 'raw fifo' для дальнейшей сортировки. Сортировка на схеме обозначена блоком 'Event selection' и на входе принимает данные о текущем принятом номере события от СТР, и данные из буферов памяти 'raw fifo' и 'trg fifo' для сравнения.

Модуль 'Event Selection' выполняет сравнение номеров события для триггерного сообщения и данных детектора из 'raw data fifo' и 'trg fifo'.

- Если номер для триггерного сообщения меньше (соответствует более раннему событию) или данные в 'raw fifo' отсутствуют то это означает что данные для этого триггерного сообщения отсутствуют. В этом случае триггерное сообщение вычитывается из 'raw fifo' и при необходимости формируется RDH пакет (на пример при получении 'HB trigger').
- Если номер события в данных меньше чем номер в триггерном сообщении то это означает что для данных отсутствует триггерное решение. В случае непрерывной передачи 'continuous readout' данные вычитываются из 'raw fifo' и передаются в 'select fifo' для формирования RDH. В случае триггерной передачи 'triggered readout' данные вычитываются из 'raw fifo' и отбрасываются в соответствии с алгоритмом отбора по триггеру.
- Если номер события в данных равен номеру в триггерном сообщении то это означает что триггерное сообщение соответствует данным детектора. В случае непрерывной передачи 'continuous readout' данные вычитываются из 'raw fifo' и передаются в 'select fifo' для формирования RDH. В случае триггерной передачи 'triggered readout' данные вычитываются из 'raw fifo' и передаются в 'select fifo' для формирования RDH только при наличии необходимого триггера для отбора событий. Маска для отбора триггеров содержится в регистре 'Data select trigger mask'. Триггерное сообщение так же вычитывается из 'trg fifo'.
- Если присутствуют данные детектора и отсутствует триггерное сообщение то это означает что триггерное сообщение может прийти позже. В этом случае выполняется сравнение номера события данных и текущего принятого номера события из СТР. Если разница между этими событиями больше фиксированной величины, то это означает что триггерное сообщение отсутствует для данных, данные вычитываются из буфера 'raw fifo' и отбираются в соответствии с режимом вычитывания данных. Если разница меньше или равна фиксированной величине, то данные сохраняются в 'raw fifo'. Величина для сравнения задается регистром 'Trigger compare delay'.

Для формирования RDH пакета данные отобранные из 'raw fifo' помещаются в 'selected fifo'. Для отправления RDH пакета при накоплении максимального объема данных или при иной необходимости (на данный момент согласно требованиям DAQ ALICE необходимо отправлять пакет при получении 'HB trigger' и для отправки 'HB stop frame') формируется управляющее слово. Управляющее слово содержит количество слов в RDH пакете и сопутствующую информацию для RDH заголовка в том числе номер орбита, триггерное решение (актуально для RDH v4). Модуль 'CRU Packet builder' принимает управляющее слово, вычитывает соответствующее количество слов из 'Selected fifo', формирует RDH пакет включая данные из регистров 'FEE ID', 'PAR', 'Detector field' (актуально для RDH v4) и отправляет его в модуль GBT.

3 Описание функциональных модулей

3.1 модуль Event Selector

Назначение модуля описано в разделе "Описание алгоритма коррекции ВС и отбора событий". Модуль 'Event selector' принимает данные и триггерные сообщения для сравнения и отбора событий. Отобранные события помещаются в 'selected fifo' и сопровождаются командными словами для формирования RDH пакетов.

Каждое событие (40 МГц) модуль РМ может сформировать до 6 слов плюс одно слово заголовки события, модуль ТСМ формирует одно слово плюс слово заголовка (в отладочном режиме 9+1 слов, допускается пропуск событий). Пакеты модуля передаются по клоку 320 МГц и максимальная длинна пакета для одного события (40 МГц) составляет 8 слов. Модуль 'Event selector' также читает и обрабатывает данные по клоку 320 МГц. 'selected fifo' читается модулем 'CRU packet builder' по клоку 40 МГц, GBT модуль так же передает данные по клоку 40 МГц. В связи с тем что 'selected fifo' читается по клоку 320 МГц а записывается по клоку 40 МГц, возможно его переполнение. В случае когда в 'selected fifo' не остается места для данных, данные отбрасываются. В этом случае запоминаются первый и последний номер орбита и количество пропущенных событий, эта информация доступна в регистрах 'first hit dropped orbit', 'last hit dropped orbit', 'selector hits dropped'. В регистре 'readout rate' отображается количество слов данных

(80бит 40М Γ π) за последний орбит. В регистре 'selector fifo count' доступна занятость 'selector fifo'. Регистр 'reset drop counter' (при записи в него значения 0х1) позволяет сбросить счетчик пропущенных событий.

Peructp 'is HB response' (при значении 0x1) позволяет отключить отправку RDH пакета по получению триггера HB для снижения потока данных при использовании FTM. Peructp 'Max RDH payload' задает максимальное количество слов в RDH пакете. Peructp 'CRU trigger delay' определяет как долго данные модуля 'ожидают' триггерное сообщение (см. раздел "Описание алгоритма коррекции BC и отбора событий"). Peructp 'data select trigger mask' определяет маску (набор) триггеров для отбора в режиме триггерного вычитывания ('triggered mode'). При значении регистра 'readout mode' равном 'idle' модуль 'event selector' прекращает работу.

3.2 модуль RX Data Decoder

Модуль предназначен для обработки данных полученных от CRU (CTP) по GBT. Как описано в разделе "Описание алгоритма коррекции BC и отбора событий"каждому событию соответствует номер и триггерное решение. Допускается что триггерное сообщение, содержащее текущий номер события может приходить не каждый клок 40 МГц, в случае если триггер отсутствует сообщение может быть пропущено (относится к первым требованиям ALICE DAQ). В связи с чем модуль 'RX data decoder' содержит внутренний счетчик событий который может находится в трех состояниях 'Start', 'Sync', 'Lost', состояние счетчика доступно в регистре 'BCID sync mode'. При включении или по команде 'reset orbit sync' счетчик переходит в состояние 'start' до получения первого триггера. После получения триггера счетчик переходит в состояние 'sync' и начинает отчет событий с полученного номера от СТР. Для определения номера события используется текущее значение счетчика в связи с чем получение каждого номера события от СТР не обязательно. Текущее значение номера события доступно из регистров 'CRU orbit', 'CRU bc'. При получении триггерного сообщения номер события полученный от СТР сравнивается со значением счетчика. Если эти значения не равны то это означает рассинхронизацию внутреннего счетчика с нумерацией СТР, счетчик переходит в состояние 'lost' до момента получения сигнала 'reset orbit sync'.

Как было описано в разделе "Описание алгоритма коррекции ВС и отбора событий"номер полученный от СТР, (фактически - номер внутреннего счетчика синхронизированный с СТР) корректируется на величину разности задержек в распространении триггерного сообщения и обработки сигнала детектором. Величина корректировки задается регистром 'bcid delay'.

Модуль 'RX data decoder' обрабатывает триггера запуска и остановки вычитывания (SOT - start of trigger, EOT - end of trigger, SOC - start of continuous, EOC - end of continuous) управляя текущем режимом вычитывания. Состояние режима может принимать значения 'idle', 'continuous', triggered', значение доступно по регистру статуса 'readout mode'. Выставив в регистре управления 'readout mode' бит 'force readout idle mode' возможно принудительно перевести режим вычитывания в 'idle' что необходимо при включении или возникновении ошибки. При значении регистра 'readout mode' равном 'idle' модуль 'event selector' прекращает работу.

3.3 модуль CTP emulator

Для работы без CTP/LTU предусмотрен модуль 'CTP emulator' который производит все необходимые данные для отладки работы 'FIT readout unit'. Включение модуля (отключение приема сигналов CTP) происходит переключением регистра 'Trigger generator' в состояние 'Continuous generator'. Регистрами 'continuous pattern', 'continuous trigger value', 'trigger bunch frequency', 'trigger frequency offset' задается последовательность, значение, частота, отступ относительно орбита непрерывной генерации триггера. При переводе регистра 'readout command' из состояния 'OFF' в состоянии команды 'SOC', 'SOT', 'EOT', 'EOC' отправляется соответствующий триггер управления режимом вычитывания. Для отправки единичного триггера необходимо в регистр 'trigger single value' записать ноль, а потом значение триггера которое необходимо отправить. Регистр 'reset buch offset' перезапускает генерацию данных в модулях 'PM/TCM emulator' и 'CTP emulator' для их синхронизации.

3.4 модуль Data converter

Модуль 'data converter' принимает данные от PM/TCM по клоку 320 $M\Gamma$ ц и дополняет их заголовком 'event header'. Данные, дополненные заголовком оправляются в 'raw fifo' по клоку 320 $M\Gamma$ ц. Для контроля занятости 'raw fifo' по регистру 'raw fifo count' доступно количество слов данных в fifo.

3.5 модуль TX data gen

Для отладки GBT передачи возможно подать фиксированный пакет данных в передачи GBT переключив регистр 'Data generator' в режим 'TX generator'. Так же возможно выключить всю логику 'FIT readout unit' выставив в регистре 'Readout mode' бит 'is readout bypass mode'. В этом случае данные, полученные с модуля PM/TCM будут записываться во внутренне fifo по клоку 320 МГц и сразу же, без обработки, передаваться в GBT модуль по клоку 40 МГц.

3.6 модуль GBT

Описание работы модуля GBT выходит за рамки данного документа. Статус модуля доступен в регистре 'gbt status'. При возникновении ошибки 'GBT RX error detected' регистр 'GBT RX error latch' принимает состояние 0x1 до подачи сигнала 'reset GBT errors'. Перезагрузка GBT модуля выполняется командой 'GBT reset'.

3.7 модуль RX data clock sync

На схеме 3 представлена схема регистров (логических защелок) для перехода между асинхронными клоками: внутренним клоком 'Data clk' 40 МГц и клоком от CRU 'RX frame clk' 40 МГц полученным через модуль GBT. Фаза между этими клоками измеряется по клоку 'system clk' 320 МГц и может принимать значения от 0 до 7. При нормальном режиме работы фаза должна быть постоянной, при ее изменении значение 'RX phase error' регистра 'GBT status' принимает значение 0х1 до сброса командой 'reset RX phase error' регистра 'Reset control'

Puc. 3: Cxema перехода между асинхронными клоками от RXframeClk 40 Mrц от CRU и внутренним клоком Data clk 40 Mrц

3.8 модуль CRU packet builder

Mодуль 'CRU packet builder' принимает данные, сформированные модулем 'event selector' (см разделы "Описание алгоритма коррекции ВС и отбора событий"и "модуль Event Selector") и формирует RDH пакет используя регистры 'FEE ID', 'PAR', 'DET field'.

3.9 модуль PM/TCM emulator

Данный модуль предназначен для отладки 'FIT readout unit' и генерирует данные от модуля PM/TCM, где в качестве значения данных, используется непрерывный счетчик. Для включения модуля в регистр 'Data generator' следует записать значение 'main generator'. Регистрами 'Data bunch pattern', 'data bunch frequency', 'data frequency offset' можно задавать последовательность, частоту, и смещение относительно орбита. Регистр 'trigger response mask' позволяет определить набор триггеров, при получении которых будет вырабатываться данные генератора. Регистр 'reset buch offset' перезапускает генерацию данных в модулях 'PM/TCM emulator' и 'CTP emulator' для их синхронизации. reset bunch offset response mask

4 Список ошибок и процедура их обработки

не готово

5 Описание клоков

FIT readout unit использует две асинхронных группы клоков: группа платы содержит два синхронных клока 'Data clk' 40 МГц и 'system clk' 320МГц, эти клоки формируются на плате PM/TCM. Клок 40 МГц используется для работы с данными GBT, клок 320 МГц используется для обработки данных. Так же модуль GBT использует клок 'MGTREFCLK' 200 МГц синхронный с группой модуля, этот клок подается напрямую на GBT и больше нигде не используется.

Вторая группа клоков содержит клок 'RxFrameClk' 40МГц полученный из модуля GBT, синхронный CRU и используемый для передачи данных принятых данных с CRU. Данные принятые из CRU по клоку 'RxFrameClk' синхронизируются с группой клоков платы в модуле 'RxData ClkSync', в последующем клок 'RxFrameClk' не используется. Физически клоки обеих асинхронных групп имеют один источник что обеспечивает одинаковую частоту.

6 Регистры управления и статуса

Таблица регистров управления.

20001111	ovinita per nerpos y inpussionina.							
addr	31 28	27 24	23 20	19 16	15 12	11 8	7 4	30
D8			Readout mode	Readout command	Reset o	ontrol	Trigger generator	Data generator
D9	Trigger respond mask							
DA	Data bunch pattern							
DB	Trigger single value							
DC	Trigger continuous pattern 63 to 32							
DD	Trigger continuous pattern 31 to 0							
DE	Trigger continuous value							
DF	Trigger bunch frequency Data bunch frequency							
E0	Trigger bunch offset Data bunch offset				fset			
E1	FEE ID (RDH) PAR (RDH)							
E2	Max RDH payload Detector field (RDH)							
E3	Trigger compare delay BCID delay							
E4	Data select trigger mask							

Reset control.

3.7	1	
No	bit	значение
0	8	Orbit sync
1	9	Drop hit counter
2	10	Generator bunch offset
3	11	GBT errors
4	12	Reset GBT
5	13	RX phase error

Data generator

Значение регистра	режим работы
0	No generator
1	Main generator
2	TX generator

Trigger generator

Значение регистра	режим работы
0	No generator
1	Continuous generator

Readout command

Значение регистра	режим работы
0	None
1	SOC
2	SOT
3	EOC
4	EOT

Readout mode

No	bit	значение
0	20	Is HB response
1	21	Is readout bypass mode
2	22	Force readout idle mode

Таблица регистров статуса.

addr	31 28	27 24	23 20	19 16	15 12	11 8 7 4 3 0
E8		RX phase BCID sync mode Readout mode		GBT status		
E9	CRU Orbit					
EA	CRU			CRU BC		
EB	Selector FIFO count Raw FIFO count					
EC	Selector first hit dropped orbit					
ED	Selector last hit dropped orbit					
EE	Selector total hits dropped					
EF	Readout rate					

GBT status bit

Бит	значение
0	Phase aligner CPLL lock
1	RX word clock ready
2	RX frame clock ready
3	MGT link ready
4	TX reset done
5	TX FSM reset done
6	GBT RX ready
7	GBT RX error detected
8	GBT RX error latch
9	RX phase error

Readout mode

Значение регистра	режим работы
0	Idle
1	Continuous
2	Triggered

BCID sync mode

Значение регистра	режим работы
0	Start
1	Sync
2	Lost

Список управляющих регистров

Название регисра	используется в модуле	является побитовым		
Readout mode	Event selector, TX generator, RX data decoder	да		
Readout command	CTP/LTU emulator	нет		
Reset control	GBT, RX data decoder, Event selector, RX data clock sync	да		
Trigger generator	CTP/LTU emulator	нет		
Data generator	PM/TCM emulator	нет		
Trigger response mask	CTP/LTU emulator	нет		
Data bunch pattern	PM/TCM emulator	нет		
Trigger single value	CTP/LTU emulator	нет		
Trigger continuous pattern	CTP/LTU emulator	нет		
Trigger continuous value	CTP/LTU emulator	нет		
Trigger bunch frequency	CTP/LTU emulator	нет		
Data bunch frequency	PM/TCM emulator	нет		
Trigger bunch offset	CTP/LTU emulator	нет		
Data bunch offset	PM/TCM emulator	нет		
FEE ID	CRU packet builder	нет		
PAR	CRU packet builder	нет		
Max RDH payload	Event selector	нет		
Detector field	CRU packet builder	нет		
Trigger compare delay	Event selector	нет		
BCID delay	RX data decoder	нет		
Data select trigger mask	Event selector	нет		
Chiecov popuempop emanyea				

Список регистров статуса

Название регисра	используется в модуле	является побитовым
RX phase	RX data clock sync	нет
BCID sync mode	RX data decoder	нет
Readout mode	RX data decoder	нет
GBT status	GBT, RX data clock sync	да
CRU orbit	RX data decoder	нет
CRU bc	RX data decoder	нет
Selector FIFO count	Event selector	нет
Raw FIFO count	Data converter	нет
Selector first hit dropped orbit	Event selector	нет
Selector last hit dropped orbit	Event selector	нет
Selector total hits dropped	Event selector	нет
Readout rate	Event selector	нет