UNCLASSIFIED

AD NUMBER ADB000295 LIMITATION CHANGES TO: Approved for public release; distribution is unlimited. FROM: Distribution authorized to U.S. Gov't. agencies only; Test and Evaluation; SEP 1974. Other requests shall be referred to US Army Air Mobility Research and Development Lab., Fort Eustis, VA 23604. AUTHORITY USAASC ltr, 22 Oct 1990

50

A METHOD FOR PREDICTING THE AERODYNAMIC PERFORMANCE OF CENTERBODY-PLUG IR SUPPRESSORS

United Aircraft Research Laboratories
United Aircraft Corporation
East Hartford, Conn. 06108

September 1974

Final Report for Period March 1973 - June 1974

Distribution limited to U. S. Government agencies only; test and evaluation; September 1974. Other requests for this document must be referred to the Eustis Directorate, U.S. Army Air Mobility Research and Development Laboratory, Fort Eustis, Virginia 23604.

Prepared for

EUSTIS DIRECTORATE U. S. ARMY AIR MOBILITY RESEARCH AND DEVELOPMENT LABORATORY Fort Eustis, Va. 23604

EUSTIS DIRECTORATE POSITION STATEMENT

The object of this contractual effort was to develop a computerized, calculational procedure for predicting the aerodynamic static pressure distributions, local pressure recovery coefficients, and separation region locations inside center-plug infrared suppressors. The analysis is applicable to incompressible, subsonic, turbulent flow, with provisions made for both film-convection cooling and optional plume dilution. Comparisons of program predicted values and measured results reveal that additional modifications and refinements are necessary to improve prediction accuracy. Since significant differences have been found between measured and predicted results, it is recommended that computer program use be limited to cases in which extrapolations may be made from known results.

The conclusions contained in this report are concurred in by this Directorate.

The technical monitor for this contract was C. C. Gentry, Military Operations Technology Division.

DISCLAIMERS

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission, to manufacture, use, or sell any patented invention that may in any way be related thereto.

Trade names cited in this report do not constituta an official endorsement or approval of tha use of such commercial hardware or software.

DISPOSITION INSTRUCTIONS

Destroy this report when no longer needed. Do not return it to the originator.

REPORT DOCUMENTATION P	AGE	READ INSTRUCTIONS BEFORE COMPLETING FORM	
USAAMRDL-TR-74-50	GOVT ACCESSION NO.	3 RECIPIENT'S CATALOG NUMBER	
A. TITLE (and Subtitle) A METHOD FOR PREDICTING THE AERODYNAMIC PERFORMANCE OF CENTERBODY-PLUG IR SUPPRESSORS		s. type of report a period covered Final March 1973 - June 1974	
		6. PERFORMING ORG, REPORT NUMBER	
AUTHOR(s)		8 CONTRACT OR GRANT NUMBER(+)	
Olof L. Anderson		DAAJ02-73-C-0037	
9 PERFORMING ORGANIZATION NAME AND ADORESS United Aircraft Research Laboratories United Aircraft Corporation East Hartford, Conn. 06108		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS	
11. CONTROLLING OFFICE NAME AND ADDRESS Eustis Directorate, U.S. Army Air Mobility Research and Development Laboratory Fort Eustis, Va. 23604		12. REPORT OATE September 1974	
		13. NUMBER OF PAGES 159	
4. MONITORING AGENCY NAME & AOORESS(If different	from Controlling Office)	15. SECURITY CLASS. (of this raport)	
		Unclassified	
		15a. DECLASSIFICATION/OOWNGRADING	
6. DISTRIBUTION STATEMENT (of thie Report) Distribution limited to U.S. Go September 1974. Other requests Eustis Directorate, U.S. Army A Laboratory, Fort Eustis, Virgini	for this docume ir Mobility Res	nt must be referred to the	

18. SUPPLEMENTARY NOTES

Diffusers, Internal Flow, Numerical Analysis, Aerodynamic Performance, IR Suppressors

19. KEY WORDS (Continue on reverse eide if necessary and identify by block number)

20. ABSTRACT (Continue on reveree eida if necessary and identify by block number)

An important consideration in the design of military aircraft engine exhaust diffusers is the need to reduce infrared radiation emanating from the engine, coupled with the need to maximize shaft horsepower. To aid the engineer in the solution of this problem, advanced mathematical techniques developed in this report have been applied to the solution of turbulent compressible swirling flow through curved-wall annular diffusers. This analysis has

20. developed a generalized method for calculating an orthogonal coordinate system for arbitrary curved-wall annular ducts with cooling slots which is based on the Schwartz-Christoffel transformation. In addition, this analysis has developed a stable implicit numerical integration scheme for solving a nonlinear parabolic partial differential equation which does not require an iterative procedure to maintain second-order accuracy. Finally, it is noted that the procedure does not require an iterative procedure coupling the inviscid and viscous portion of the flow field but treats the entire flow field as a whole.

A computer program has been developed using this analysis and applied to sample cases to demonstrate the capability of the analysis. Cases with and without slot-cooled walls have been calculated and compared with experimental data taken from the ST9 demonstrator IR suppression diffuser operating at different slot cooling flow rates for one engine operating condition. The results are in fair agreement with the experimental data, but additional work is required in order to obtain better theoretical predictions.

TABLE OF CONTENTS

<u>Pe</u>	ge
LIST OF ILLUSTRATIONS	3
	_
LIST OF TABLES	5
INTRODUCTION	6
ANALYSIS	10
Conformal Mapping Solution	11
Schwartz-Christoffel Transformation	
Solution in z Plane	
Solution in w Plane	
Differential Equations	
Solution Near a Source	
Transformation to R,Z Plane	
Locating Poles	
Duct With Slots	24
Implicit Method of Solution	24
Mach Number Transformation	24
Basic Equations of Motion	
Boundary Conditions	
Finite Difference Approximation	
Solution of Matrix Equation	
BOTAGION OF TAIGHTS Equations 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	<i>J</i> •
DESCRIPTION OF TEST PROGRAM	41
Description of Test Facility	41
Description of Instrumentation	41
Test Results	
COMPARISON OF EXPERIMENT AND THEORY	44
Fraser Flow "A"	44
Calculation Procedure For ST9 Demonstrator	
	46
	47
ST9 Demonstrator IR Suppression Diffusers - 2.5 Percent Cooling Rate	48

	Page
ST9 Demonstrator IR Suppression With 5 Percent Cooling Rate ST9 Demonstrator IR Suppression Diffuser With 10 Percent	48
Cooling Rate	49
Discussion of Numerical Calculations	
CONCLUSIONS	53
REFERENCES	54
LIST OF SYMBOLS	151

LIST OF ILLUSTRATIONS

Figure		Page
1	Conformal Mapping of Duct	56
2	Rotating and Scaling Duct	57
3	Construction of Slot in Duct	58
4	Schematic of D-32 Stand	59
5	Swirl Generation Section	60
6	Installation of Slot Cooling System	61
7	Diffuser Test Rig	62
8	Side View of Test Rig	63
9	Aft View of Test Rig	64
10	Location of Wall Static Pressure Taps	65
11	Location of Wall Thermocouples	66
12	Inlet Plane Instrumentation	67
13	Outer Wall Average Surface Temperature for ST9 IR Suppression Diffuser	68
14	Effect of Coolant Flow on Wall Pressures for ST9 IR Suppression Diffuser	69
15	Effect of Coolant Flow on Pressure Recovery for ST9 IR Suppression Diffuser	70
16	Streamline Coordinates for Fraser Flow "A" Diffuser	71
17	Comparison of Experimental and Predicted Wall Static Pressure Distribution for Fraser Flow "A" Diffuser	72
18	Comparison of Experimental and Predicted Wall Friction Coefficient for Fraser Flow "A" Diffuser	. 73
19	Streamline Coordinates for ST9 Demonstrator IR Suppression Diffuser	. 74
20	Inlet and Exit Mach Number Distribution	. 75

Figure		Page
21	Comparison of Experimental and Predicted Wall Static Pressure Coefficients for ST9 IR Suppressor Diffuser With No Film Cooling and No Struts	76
22	Comparison of Experimental and Predicted Wall Static Pressure Distribution for ST9 IR Suppression Diffuser With 2.5% Injected Cooling Air	77
23	Comparison of Experimental and Predicted Wall Temperature Distribution for ST9 IR Suppression Diffuser With 2.5% Injected Cooling Air	78
24	Comparison of Experimental and Predicted Wall Static Pressure Distribution for ST9 IR Suppression Diffuser With 5.0% Injected Cooling Air	79
25	Comparison of Experimental and Predicted Wall Temperature Distribution for ST9 IR Suppression Diffuser With 5.0% Injected Cooling Air	80
26	Comparison of Experimental and Predicted Wall Static Pressure Distribution for ST9 IR Suppression Diffuser With 10% Injected Cooling Air	81
27	Comparison of Experimental and Predicted Wall Temperature Distribution for ST9 IR Suppression Diffuser With 10% Injected Cooling Air	82

LIST OF TABLES

Table			Page
1	Location of	Pressure and Temperature Instrumentation .	. 83
2	Test Log .		. 84
3	Test Data.		. 85

INTRODUCTION

An important consideration in the design of military aircraft is the minimization of the infrared radiation emanating from the aircraft engine. The infrared signature of the engine can be controlled through proper design of an engine diffuser; however, great care must be taken to assure that the proposed diffuser does not adversely affect engine performance. Therefore, the design engineer is faced with the complex problem of designing an engine which provides minimum turbine back pressure with an efficient exhaust diffuser in order to maximize shaft horsepower and at the same time minimize radiation through the use of curved wall diffusers and cooled walls.

The satisfaction of these sometimes conflicting requirements has proven to be extremely difficult in the past, and engineers often have been forced to rely on empirical design methods based on correlations of limited experimental data. For example, diffuser performance maps based on empirical correlations have been published by Reneau (Ref. 1) for incompressible two-dimensional flow and by Sovran (Ref. 2) for incompressible annular flow in straight-wall diffusers. Regions of stall on these performance maps have been defined by Fox (Ref. 3) for two-dimensional diffusers and by Howard (Ref. 4) for straight-wall annular diffusers. In addition, Sovran (Ref. 2) has developed empirical correlations for the effect of inlet blockage on performance, and Runstadler (Ref. 5) has developed correlations for the effect of inlet Mach number. Although these empirical design criteria provide some insight into the effect of variables such as area ratio, length, inlet blockage and Mach number on performance, these criteria are not adequate for

⁽¹⁾ Reneau, L. R., J. P. Johnson, and S. J. Kline: Performance and Design of Straight, Two-Dimensional Diffusers. Transactions of ASME, <u>Journal of Fluid Mechanics</u>, Vol. 89, March 1969, pp. 141-160.

⁽²⁾ Sovran, G., and E. D. Klomp: Optimum Geometries for Rectilinear Diffusers. Fluid Mechanics of Internal Flow, Elsevier Publishing Co., 1967.

⁽³⁾ Fox, R. W., and S. J. Kline: Flow Regime Data and Design Methods for Curved Subsonic Diffusers. <u>Journal of Basic Engineering</u>, Transactions of the ASME, Series D, Vol. 84, No. 3, September 1962, pp. 303-312.

⁽⁴⁾ Howard, J., H. Henseler, and A. Thornton-Trump: Performance and Flow Regimes for Annular Diffusers. ASME Paper 67, WA/FE-21, 1967.

⁽⁵⁾ Runstadler, P. W., and R. C. Dean: Straight Channel Diffuser Performance at High Inlet Mach Numbers. Transactions of ASME, <u>Journal of Basic Engineering</u>, Vol. 91, September 1969, pp. 397-422.

designing curved-wall IR suppressing diffusers. For curved-wall annular diffusers, only a few studies such as those by Dietz and Thompson (Ref. 6) and Thayer (Ref. 7) are available to provide design information. In particular, Thayer has developed some general design requirements for diffusers of this type through his investigation of the effects of swirl and Mach number on diffuser performance.

The development of analytical design methods has generally lagged behind empirical design methods. Conventional solutions, such as those used by Sovran (Ref. 2), divide the flow field into an irrotational free-stream flow and a boundary layer flow. These methods which divide the flow field into viscous and inviscid portions require an iteration between the potential flow pressure field and the boundary layer displacement thickness. This iteration frequently fails to converge when the boundary layers comprise a significant portion of the total flow field. In addition, these iterative methods cannot account conveniently for phenomena such as inlet swirl and inlet flow distortion. Recently Anderson (Refs. 8 and 9) introduced a new method for solving the swirling diffuser flow problem which solves a single set of equations of motion for the entire flow field in the diffuser, thereby enabling compatibility between the inviscid flow and boundary layer to be achieved without the need for matching a boundary layer solution to an inviscid flow solution through an iterative procedure. The method has shown good agreement between theory and experiment for incompressible flow (Ref. 9) and has been extended more recently by Anderson (Ref. 10) to the prediction of compressible flow. Theoretical predictions again have been in good agreement with experimental data.

⁽⁶⁾ Dietz, A. E., and J. F. Thompson: Advanced Experimental Infrared Energy Suppression System for the T-53-L-11 or T-53-L-13 Turbine Engine. Hayes Internal Report No. 1172, 1968.

⁽⁷⁾ Thayer, E. B.: Evaluation of Curved-Wall Annular Diffusers. ASME Paper 71-WA/FE-35, September 1972.

⁽⁸⁾ Anderson, O. L.: A Comparison of Theory and Experiment for Incompressible, Turbulent, Swirling Flows in Axisymmetric Ducts. AIAA Paper No. 72-42, 10th Aerospace Sciences Meeting, January 1972.

⁽⁹⁾ Anderson, O. L.: Numerical Solutions of Incompressible Turbulent Swirling Flows Through Axisymmetric Annular Ducts. United Aircraft Research Laboratories Report No. H213577-1, March 1968.

⁽¹⁰⁾ Anderson, O. L.: User's Manual for a Finite-Difference Calculation of Turbulent Swirling Compressible Flow in Axisymmetric Ducts With Struts. United Aircraft Research Laboratories Report L911211-1, Contract No. NAS3-15402, 1972.

The method derived in Ref. 10 requires construction of a generalized orthogonal coordinate system from a solution of the plane potential flow through the duct in question. This potential flow solution serves as an approximate streamline coordinate system upon which the viscous solution of the equations of motion is based. The equations of motion are written in the approximate streamline coordinate system, and boundary layer approximations may be made in this new system since the potential flow streamlines approximate the real streamlines. With the boundary layer approximations, the equations of motion reduce to a set of parabolic partial differential equations which apply to the flow field under investigation. In Ref. 10, the solution to the potential flow problem was obtained through an approximate geometric construction which yielded good results when the curvature on both walls was small and nearly the same. This geometric solution sometimes failed when the curvature varied significantly from wall to wall. Even when the solution did not fail, significant errors could arise due to the small curvature approximation inherent in the method. Thus the procedure of Ref. 10 is limited in the types of geometries to which it can apply. With this limitation in mind, a new solution procedure not limited to the small curvature approximations was developed. This new method obtains the solution to the plain potential flow problem using an exact numer less solution based on the Schwartz-Christoffel transformation (Refs. 11 and 12).

It is possible to solve the governing equations by an explicit or an implicit numerical integration. In an explicit method for solving the equations of motion, the allowable streamwise step size is related to the transverse step size through numerical stability conditions. If the solution is to be numerically stable, a finer transverse grid requires a smaller streamwise step size. This restriction is particularly troublesome in the case of slot cooled walls, where a very fine transverse grid is desired to define the coolant film accurately. Therefore, under the present effort, the explicit numerical integration technique of Ref. 10 was replaced by an implicit technique based on the method of Keller (Ref. 13). In this new method, the

⁽¹¹⁾ Kober, H.: Dictionary of Conformal Representations. Dover Publications, Inc., 1957.

⁽¹²⁾ Gaier, Dieter: Konstruktive Methoden der Konformen Abbildung, Springer Tracts in Natwal Philosophy, Vol. 8, 1963.

⁽¹³⁾ Keller, H. B., and T. Cebeci: Accurate Numerical Methods for Boundary Layer Flows-II Two-Dimensional Turbulent Flows. AIAA 9th Aerospace Sciences Meeting, New York, January 25-27, 1971, AIAA Paper No. 71-164.

equations of motion are linearized in such a way that an iteration is not required to obtain a solution. The method, however, retains important features such as second-order accuracy and from the point of view of linear stability analysis has no restrictions on step size in either the streamwise or the transverse directions (Ref. 14). However, in practice the step size is restricted by the need to minimize truncation errors arising from the finite-difference scheme. Truncation errors will cause loss of accuracy and may lead to numerical instabilities through nonlinear effects. In addition, powerful matrix inversion methods are available in the numerical solution (Refs. 15 and 16).

Under the present effort, advanced mathematical techniques have been applied to the solution of turbulent compressible swirling flow through curved-wall annular diffusers with slot-cooled walls. From this analysis, a computer program has been developed and sample cases calculated and compared with experimental test results obtained from an IR suppressing diffuser with slot-cooled walls at different simulated engine operating conditions.

⁽¹⁴⁾ Keller, H. B.: A New Difference Scheme for Parabolic Problems. Numerical Solution of Partial-Differential Equation-II SYNSPADE 1970 Ed. by Hubbard, B. Academic Press, New York.

⁽¹⁵⁾ Keller, H. B.: Accurate Difference Methods for Linear Ordinary Differential Systems Subject to Linear Constraints. SIAM J. Namer, Anal. Vol. 6, No. 1, March 1969.

⁽¹⁶⁾ Briley, W. R., and H. McDonald: An Implicit Numerical Method for the Multidimensional Compressible Navier-Stokes Equations. United Aircraft Research Laboratories Report M911363-6, November 1973.

ANALYSIS

The present analysis solves the problem of axisymmetric swirling flow through typical IR suppressing diffuser geometries in a two-step procedure. In the first step, a proper coordinate system is constructed; in the second step, a set of boundary layer type parabolic partial differential equations is solved using a forward marching implicit numerical integration procedure. For flow over a flat plate, the proper coordinate system consists of lines parallel to the plate (termed the streamwise coordinate) and a second set of lines perpendicular to the plate (termed the transverse or normal coordinate). If the equations of motion are written in this Cartesian coordinate system and the boundary layer approximations are made, a set of parabolic partial differential equations is obtained. For this simple problem, it is obvious that the boundary layer approximations (namely, that the transverse velocity is small compared to the streamwise velocity and that the streamwise derivatives are small compared to the transverse derivatives) are valid. In the case of more complicated geometries such as curved-wall diffusers, the coordinate system in which the boundary layer approximations can be made is not as simple as in the Cartesian coordinates described above. Rather, it is a coordinate system in which one coordinate approximates the streamlines and the other is normal to the streamlines. Such suitable coordinates can be obtained from the plain potential flow solution for the duct under investigation since it is apparent that in view of the constraining effect of the walls, the potential flow streamlines approximate the real streamlines provided large regions of flow separation do not occur.

This problem has been discussed in more detail by Anderson (Ref. 10), where it was shown that the solution to the plane potential flow problem through a given duct can be used to construct an orthogonal coordinate system uniquely suited to solve for the turbulent flow through the duct. Although the direct problem of determining the velocity potential s and stream function n in terms of the cartesian coordinates R and Z may be solved easily, the equations of motion for the turbulent flow require that n and s be explicitly the independent variables so that the coordinate functions R(n,s) and Z(n,s)can be obtained (Ref. 10). Although an approximate solution to this problem was presented in Ref. 10, the solution is inaccurate for ducts having large curvature. In order to alleviate this curvature limitation, an exact numerical solution has been obtained to the inverse problem using the Schwartz-Christoffel transformation (Ref. 11). In addition, the Schwartz-Christoffel transformation provides a method for obtaining an orthogonal coordinate system for a duct with slots. The method for solving for the generalized orthogonal coordinate system is derived in the next section.

The boundary layer approximations to the equations of motion for turbulent swirling flow with normal pressure gradients are derived in Ref. 10 where these equations were solved using an explicit numerical integration method. For slot-cooling problems, however, this explicit method is unsuitable because the inner layer of the turbulent boundary layers cannot be described accurately if a reasonable streamwise step is to be taken. Therefore, under the present effort, an implicit method of numerically integrating the equations of motion was developed. This method is derived in the following section entitled, "Conformal Mapping Solution". The implicit method is unconditionally stable, and the linearization technique used permits integration of the equations of motion without any iteration such as that used by Keller (Ref. 13).

Conformal Mapping Solution

Schwartz-Christoffel Transformation

If a curved-wall duct is represented by straight line segments in the w complex plane to form a many sided polygon, the Schwartz-Christoffel transformation (Ref. 11) may be used to transform this polygon in the w plane into the upper half of the z plane, as shown in Fig. 1. Under this transformation, the source flow at the duct inlet in the physical plane becomes a point source at the origin of the z plane. Source flows resulting from inlet cooling slots become point sources on the real axis of the z plane. The potential flow solution as a result of this source distribution in the z plane can be found easily by superposition of elementary source solutions leading to a definition of the streamlines n and potential lines s in the z plane. Then given n and s in the z plane, R(n,s) and Z(n,s) can be obtained by going back to the w plane and rotating and scaling as shown in Fig. 2. This procedure is explained in more detail in the following paragraphs.

The conformal mapping method has several important advantages over other methods of determining R and Z as a function of s and n. First, the inverse problem can be solved exactly in a straightforward manner as opposed to most other procedures, which lead to approximate solutions. Second, real ducts do have discontinuities along the wall boundaries for which the Schwartz-Christoffel transformation is ideally suited. Third, the technique developed in this report determines the wall slope and integrates the slope to obtain the wall contour. Thus the first derivatives and metric scale coefficients required for integration of the viscous flow equations are obtained directly rather than by numerical differentiation, leading to a more accurate solution.

Solution in z Plane

The complex potential for a source located at the origin of the z plane, which represents inflow at the duct entrance plane, is given by

$$F = |nz| = S + in \tag{1}$$

The complex potential can be solved explicitly. Thus, as shown in Fig. 1,

$$s = \ln r = \frac{1}{2} \ln (x^2 + y^2)$$
 (2)

$$n = \phi = \tan^{-1} \left(y/x \right) \tag{3}$$

Equations (2) and (3) describe the potential flow in the z plane in the absence of any slot cooling. Since the walls contain poles representing corners of the duct in the physical plane, a finite upper half plane bounded by

$$\xi \le \phi \le \pi - \xi \tag{4}$$

$$r_0 \le r \le r_L \tag{5}$$

is defined. Thus n and s are bounded by

$$\xi \le n \le \pi - \xi \tag{6}$$

$$\ln r_0 \le s \le \ln r_L$$
(7)

and the solution lies completely within a bounded domain free of singularities.

Solution in w Plane

The Schwartz-Christoffel transformation is given by

$$\frac{dw}{dz} = \frac{1}{z} \cdot \frac{N_{r+1}}{\pi} \left(z - b_{\underline{I}} \right)^{-\alpha_{\underline{I}}/\pi} \tag{8}$$

where b_I is the location of the poles on the x axis of the z plane, representing corners in the physical plane, and α_I is the corresponding corner angle (defined in Fig. 1) in the w plane. The b_I 's and α_I 's are, therefore, real constants. When the values of b_I are known, any point (n,s) in the z plane corresponds uniquely with a point in the w plane. The central problem is to find the values for the b_I 's which are unique for the duct under consideration. Let

$$\mathbf{w} = \boldsymbol{\xi} + \mathrm{i}\,\mathbf{z} \tag{9}$$

$$z = x + iy \tag{10}$$

Then, because of orthogonality,

$$\frac{dw}{dz} = \frac{\partial \xi}{\partial x} - i \frac{\partial \xi}{\partial y} = \frac{\partial \eta}{\partial y} + i \frac{\partial \eta}{\partial x}$$
 (11)

The real and imaginary parts of Eq. (8) are evaluated as follows:

$$r_{J} = \left[\left(x - b_{J} \right)^{2} + y^{2} \right]^{1/2}$$
 (12)

$$\phi_{J} = \tan^{-1} \left[y / \left(x - b_{I} \right) \right] \tag{13}$$

$$\overline{r}_{J} = r_{J}^{-\alpha_{J}/\pi} \tag{14}$$

$$\overline{\phi}_{j} = -\alpha_{j} \phi_{j} / \pi \tag{15}$$

$$\bar{x}_j = \bar{r}_j \cos \bar{\phi}_j$$
 (16)

$$\overline{y}_{j} = \overline{r}_{j} \sin \overline{\phi}_{j}$$
 (17)

Then Eq. (8) reduces to

$$\frac{dw}{dz} = \frac{Np+i}{\pi} (\overline{x}_j + iy_j) = \widetilde{x} + i\widetilde{y}$$
 (18)

which can be evaluated by repeated application of the product rule for complex numbers,

$$\widetilde{\mathbf{x}}_{\mathbf{J}+1} = \widetilde{\mathbf{x}}_{\mathbf{J}} \cdot \overline{\mathbf{x}}_{\mathbf{J}+1} - \widetilde{\mathbf{y}}_{\mathbf{J}} \cdot \overline{\mathbf{y}}_{\mathbf{J}+1} \tag{19}$$

$$\widetilde{\mathbf{y}}_{\mathbf{j}+1} = \widetilde{\mathbf{x}}_{\mathbf{j}} \cdot \overline{\mathbf{y}}_{\mathbf{j}+1} + \widetilde{\mathbf{y}}_{\mathbf{j}} \cdot \overline{\mathbf{x}}_{\mathbf{j}+1} \tag{20}$$

Finally, comparing Eq. (18) with Eq. (11) results in

$$\tilde{x} = \frac{\partial \xi}{\partial x} = \frac{\partial \eta}{\partial y}$$
 (21)

$$\widetilde{y} = -\frac{\partial \xi}{\partial y} = \frac{\partial \eta}{\partial x} \tag{22}$$

which lead to differential equations relating ξ , η , and x,y. As shown subsequently, these relations allow the construction of the required potential solution in the physical, w plane.

Differential Equations

The next step in the solution requires the derivation of the differential equations valid along an n or s coordinate. From Eqs. (2) and (3),

$$\frac{\partial \mathbf{s}}{\partial \mathbf{x}} = \frac{\partial \mathbf{n}}{\partial \mathbf{y}} = \frac{\mathbf{x}}{\mathbf{x}^2 + \mathbf{y}^2} \tag{23}$$

$$\frac{\partial s}{\partial y} = -\frac{\partial n}{\partial y} = \frac{y}{x^2 + y^2} \tag{24}$$

A determinant, D, is defined by

$$D = -\left[\left(\frac{\partial s}{\partial x} \right)^2 + \left(\frac{\partial s}{\partial y} \right)^2 \right]$$
 (25)

Then

$$dx = \frac{1}{D} \left[\frac{\partial s}{\partial y} dn - \frac{\partial s}{\partial x} ds \right] = \frac{1}{D} \left[-\frac{\partial n}{\partial x} dn - \frac{\partial n}{\partial y} ds \right]$$
 (26)

$$dy = \frac{1}{D} \left[-\frac{\partial s}{\partial x} dn - \frac{\partial s}{\partial x} ds \right] = \frac{1}{D} \left[-\frac{\partial n}{\partial y} dn + \frac{\partial n}{\partial x} ds \right]$$
 (27)

Hence along a streamline dn = 0 and

$$\frac{\partial x}{\partial s} = -\frac{1}{D} \frac{\partial s}{\partial x} \tag{28}$$

$$\frac{\partial y}{\partial s} = -\frac{1}{D} \frac{\partial s}{\partial y} \tag{29}$$

Along a potential line $\hat{a}_{\mathcal{E}} = 0$ and

$$\frac{\partial x}{\partial n} = -\frac{1}{D} \frac{\partial n}{\partial x} \tag{30}$$

$$\frac{\partial y}{\partial n} = -\frac{1}{D} \frac{\partial n}{\partial y} \tag{31}$$

Equations (29) through (31) allow construction of the solution in the z plane. Finally, using Eqs. (11), (21), and (22), an integration may be carried out along streamlines or potential lines to construct the solution in the w plane.

$$\frac{\partial \xi}{\partial s} = \frac{\partial \xi}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial \xi}{\partial y} \frac{\partial y}{\partial s} = \frac{\partial \eta}{\partial n}$$
 (32)

$$\frac{\partial \eta}{\partial s} = \frac{\partial \eta}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial \eta}{\partial y} \frac{\partial y}{\partial s} = -\frac{\partial \xi}{\partial n}$$
 (33)

Hence, integration along streamlines in the w plane is obtained through Eqs. (32) and (33) together with Eqs. (27) and (29), and integration along potential lines in the w plane through Eqs. (32) and (33) together with Eqs. (30) and (31). The metric scale coefficients are the same in both directions and are given by

$$v = \left[\left(\frac{\partial \xi}{\partial s} \right)^2 + \left(\frac{\partial \xi}{\partial n} \right)^2 \right]^{1/2} = \frac{dF}{dz} / \frac{dw}{dz}$$
 (34)

which is the same as the magnitude of the potential flow velocity obtained from the complex conjugate. It should be noted that the solution is equivalent to a solution for the wall slopes, Eqs. (32) and (33), or the metric scale coefficient. Hence the wall slopes and metric scale coefficients are solved for directly and the wall contour is obtained by integration. The determination of the $b_{\rm I}$'s which define the duct is discussed subsequently.

Solution Near a Source

Consider the solution in the neighborhood of the inlet source as $z \Rightarrow 0$. From Eq. (8),

$$\frac{dw}{dz} = \frac{C_1}{z} \tag{35}$$

where C1 is a complex constant given by

$$C_{1} = \frac{m}{I} = 2 \left(b_{I} \right)^{-d_{I}/n} \tag{36}$$

Integration of Eq. (35) leads to the equation

$$W = C_1 \ln z + C_2 = C_1 (s + in) + C_2$$
 (37)

Thus the solution in the neighborhood of the inlet is

$$\xi - \xi_0 = C_{1R} (s - s_0) - C_{1R} (n - n_0)$$
 (38)

$$\eta - \eta_o = C_{II} \left(s - s_o \right) + C_{IR} \left(n - n_o \right) \tag{39}$$

where C_{1R} and C_{1I} are the real and imaginary parts of C_1 . Therefore, the inlet is a straight duct with an angle $(\alpha)_0$ to the axis of symmetry (see Fig. 1)

$$\alpha_0 = \tan^{-1} \left(C_{IR} / C_{IR} \right) \tag{40}$$

From Eq. (34), the metric scale coefficient is given by

$$V_0 = \left[C_{11}^2 + C_{1R}^2 \right]^{1/2} \tag{41}$$

However, at the inlet, From Eq. (2) and Eq. (3)

$$s - s_o = \ln \left(r/r_o \right) \tag{42}$$

$$n - n_0 = \phi \tag{43}$$

and from Eq. (4),

$$\Delta n = n - 2\xi \tag{44}$$

Therefore, inlet height is given by

$$h_0 = \frac{\Delta n}{v_0} \tag{45}$$

Transformation to R.Z Plane

Since the inlet of the duct starts out with an angle α_0 , as shown in Fig. 1, the transform to the (r,z) plane shown in Fig. 2 is obtained through a rotation of an angle α_0 and is given by

$$r - r_0 = \cos \alpha_0 \left(\eta - \eta_0 \right) - \sin \alpha_0 \left(\xi - \xi_0 \right)$$
 (46)

$$z - z_0 = \cos \alpha_0 \left(\xi - \xi_0 \right) + \sin \alpha_0 \left(\eta - \eta_0 \right)$$
 (47)

Finally, the transformation to the (R,Z) plane is obtained through a translation and scaling using the inlet height h_0 :

$$R = R_{HO} + \frac{R_{TO} - R_{HO}}{h_o} (r - r_o)$$
 (48)

$$z = \frac{\left(R_{TO} - R_{HO}\right)}{h_o} \left(z - z_o\right) \tag{49}$$

The streamline coordinates are scaled, noting that

$$\xi \le n \le n - \xi \tag{50}$$

$$0 \le n \le 1 \tag{51}$$

$$0 \le S \le S_{L}$$
 (52)

Thus

$$n = \frac{n - \xi}{n - 2\xi} = \frac{n - \xi}{\Delta n} \tag{53}$$

$$S = \frac{S - S_0}{n - 2E} = \frac{S - S_0}{\Delta n} \tag{54}$$

$$V = \frac{1}{R_{TO} - R_{HO}} \frac{V}{V_O}$$
 (55)

For numerical convenience

$$S_0 = -\left(\pi - 2\xi\right) S_L/2 \tag{56}$$

Then from Eq. (42)

$$r_0 = \exp S_0 \tag{57}$$

and the solution in the z plane is located.

Locating Poles

The location of the poles $b_{\rm I}$ in the z plane must be obtained by an iterative method. It is noted that the location of the corners and the corresponding angle change of the polygon representing the physical duct in the (R,Z) plane is known. Specifically, the location of these corners can be expressed in terms of the distance X(J) along the wall from the inlet to the Jth corner. Each corner represents a pole in the z plane. If a guess is made for the $b_{\rm I}$'s, then Eqs. (32) and (33) may be integrated along the wall streamlines. Since the location of each pole is known in the (R,Z) plane, the distance X(J) to the Jth pole is computed and compared to the known X(J). An iteration procedure based on Newton's method is used to obtain a new guess for the $b_{\rm I}$'s. In the iterative procedure the duct contour is defined by specifying the wall radius at JL equally spaced mesh points. Define

$$\Delta Z = Z_1 / (JL - I) \tag{58}$$

$$Z_{J} = \Delta Z (J-1)$$
 (59)

Then the hub and tip contours (outer wall and inner wall) in the physical plane are known at each of the J points.

$$R_{H}(J) = R_{H}(Z_{J}) \tag{60}$$

$$R_{T}(J) = R_{T}(Z_{J}) \tag{61}$$

$$\theta_{H}$$
 (J) = $tan^{-1} \left(\frac{dR_{H}}{dZ} \right)_{J}$ (62)

$$\theta_{T}(J) = tan^{-1} \left(\frac{dR_{T}}{dZ}\right)_{J}$$
 (63)

The α_J 's for the Schwartz-Christoffel transformation are then given by

$$\alpha_{H}(J) = \theta_{H}(J) - \theta_{H}(J-1) \tag{64}$$

$$\alpha_{\mathsf{T}}(\mathsf{J}) = \theta_{\mathsf{T}}(\mathsf{J}+\mathsf{I}) - \theta_{\mathsf{T}}(\mathsf{J}) \tag{65}$$

where they have been defined as the change in wall angle moving around the duct contour (polygon) in a counterclockwise direction. Since the polygon is composed of straight line segments, the distance along the wall from the inlet to the Jth point is given by

$$X_{H}(J) = \sum_{I=2}^{J} \left\{ \left[R_{H}(I) - R_{H}(I-I) \right]^{2} + \Delta Z^{2} \right\}^{1/2}$$
 (66)

$$X_{T}(J) = \sum_{i=2}^{J} \left\{ \left[R_{T}(i) - R_{T}(i-1) \right]^{2} + \Delta Z^{2} \right\}^{1/2}$$
 (67)

If an initial guess is used for the solution using the approximate solution described in Ref. 10, then the poles may be located using Eq. (42); Eq. (32) and Eq. (33) may be integrated along the walls (streamlines) and the distance along the wall to each corner determined from

$$x_{H}^{\nu}(J) = \int_{0}^{s_{J}} \frac{ds}{V_{H}}$$
 (68)

$$x_{\tau}^{\nu}(J) = \int_{0}^{S_{J}} \frac{ds}{v_{\tau}}$$
 (69)

These $X_H^{\nu}(J)$ and $X_T^{\nu}(J)$ in general will not agree with that calculated using Eqs. (66) and (67). However, at each pole in the (R,Z) plane we may obtain a new guess for b_T using Newton's method

$$S_{H}^{\nu+1}(J) = S_{H}^{\nu}(J) + V_{H}^{\nu}(J) \left[X_{H}^{\nu}(J) - X_{H}^{\nu}(J) \right]$$
 (70)

$$S_{T}^{\nu+1}(J) = S_{T}^{\nu}(J) + V_{T}^{\nu}(J) \left[X_{T}^{\nu}(J) - X_{T}^{\nu}(J) \right]$$
 (71)

Convergence occurs when

$$\xi_{J} = \left| x^{\nu}(J) - x(J) \right| \le \xi_{M} \tag{72}$$

for all J. Once the S(J) are known, the new location of the poles may be obtained using Eqs. (42) and (54).

Duct With Slots

Inlet slots in a duct must satisfy the Kutta condition that the streamline leaves tangent to the slot lip. Thus the Kutta condition is equivalent to stating that the static pressure on each side of the slot lip is the same. Because of the Kutta condition, the coordinates for ducts with slots may be calculated by overlaying solutions of successively larger ducts without slots. This procedure is shown schematically in Fig. 3. The coordinates are calculated for duct 1 from station (1) to station (2). Then the cordinates are calculated for duct 2 from station (2) to station (3). Thus the Kutta condition is satisfied at the slot lip by construction of the streamline (wall) for duct 1 tangent to the slot inlet. This process may be repeated for any number of slots.

Implicit Method of Solution

Mach Number Transformation

At low Mach numbers, the extremely small variation of the pressure and temperature within the diffuser leads to large numerical errors in the solution of the equations if the actual pressure and temperature are treated as dependent variables. Therefore, a Mach number transformation was devised in which the dependent variables are the difference of the local pressure and temperature from the mean inlet flow conditions. For the purpose of the transformation, $\overline{\Pi}$, $\overline{\theta}$, \overline{I} are defined as the mean inlet pressure, temperature, and entropy, respectively, and $\overline{\Pi}$, $\overline{\theta}$, \overline{I} , \overline{Q} are defined by the relations

$$\Pi = \overline{\Pi}_1 + \gamma M_r^2 \widetilde{\Pi}$$
 (73)

$$\Theta = \overline{\Theta}_{l} + (\gamma - l) M_{r}^{2} \widetilde{\Theta}$$
 (74)

$$I = \overline{I}_{l} + (\gamma - 1)M_{r}^{2}\widetilde{I}$$
 (75)

$$Q = (\gamma - 1) M_r^2 \tilde{Q}$$
 (76)

Where

$$\overline{I}_{l} = \frac{\gamma}{\gamma - l} \ln \overline{\Theta}_{l} - \ln \overline{\Pi}_{l} \tag{77}$$

The variables \widetilde{II} , $\widetilde{\theta}$, \widetilde{I} , \widetilde{Q} are the new dependent variables. It should be noted that for very small Mach numbers, Eq. (73) becomes

$$\widetilde{\Pi} = \frac{\Pi - \overline{\Pi}_{l}}{\gamma M_{r}^{2}} = O(l)$$
 (78)

When this transformation is applied to the equations of motion as given in Ref. 10, all the terms in the equations become the same order, allowing an accurate numerical solution to be obtained. In the previous formulation, some terms in the governing equations were considerably larger than others, leading to numerical errors.

Basic Equations of Motion

Under the present effort the Mach number transformation, Eqs. (73) through (77), is applied to the equations of motion derived by Anderson (Ref. 10). In addition, the equations are arranged as first-order equations to facilitate the application of an implicit numerical integration method. The governing equations are:

Continuity Equations

$$\frac{\partial \Psi}{\partial \eta} - \left[\frac{G}{XV} \right] PUs = 0 \tag{79}$$

Streamwise Stress Component

$$\left(\frac{\mu_{T}}{\mu_{r}}\right) \left\{ \frac{\partial u_{s}}{\partial \eta} + \left[\frac{1}{XV} \frac{\partial V}{\partial \eta} \right] u_{s} \right\} - \left[\frac{N_{R}}{XV} \right] \Sigma_{ns} = 0$$
(80)

Tangential Stress Component

$$\left(\frac{\mu_{T}}{\mu_{r}}\right)\left\{\frac{\partial U_{\phi}}{\partial \eta} - \left[\frac{1}{XR} \frac{\partial R}{\partial \eta}\right]U_{\phi}\right\} - \left[\frac{N_{R}}{XV}\right]\sum_{n\phi} = 0$$
(81)

Normal Momentum Equations

$$\frac{\partial \widetilde{\Pi}}{\partial \eta} + \left[\frac{1}{XV} \frac{\partial V}{\partial \eta} \right] P U_s^2 - \left[\frac{1}{XR} \frac{\partial R}{\partial \eta} \right] P U_{\phi}^2 = 0$$
 (82)

Entropy Equation

$$(\gamma - 1) M_r^2 \widetilde{\Upsilon} = \frac{\gamma}{\gamma - 1} \ln \left[(\gamma - 1) M_r^2 \widetilde{\Theta} \right] - \ln \left[\gamma M_r^2 \widetilde{\Pi} \right]$$
 (83)

Heat Flux Equation

$$\left(\frac{1}{\mathsf{PRE}} \ \frac{\mu^{\mathsf{E}}}{\mu^{\mathsf{r}}}\right) \ \frac{\partial \widetilde{\Theta}}{\partial \eta} \ + \left[\frac{\mathsf{N}_{\mathsf{R}}}{\mathsf{X}\mathsf{V}}\right] \widetilde{\mathsf{Q}} \tag{84}$$

Equation of State

$$\overline{\Pi}_{i} + \gamma M_{r}^{2} \widetilde{\Pi} = P \left[\overline{\Theta}_{i} + (\gamma - 1) M_{r}^{2} \widetilde{\Theta} \right]$$
 (85)

Streamwise Momentum Equation

$$\frac{\partial \sum_{ns}}{\partial \eta} + \left[\frac{V}{XG} \frac{\partial}{\partial n} \left(\frac{G}{V} \right) - \frac{1}{XV} \frac{\partial V}{\partial n} \right] \sum_{ns}$$

$$- \left[\frac{V}{G} \right] \frac{\partial \Psi}{\partial \eta} \frac{\partial Us}{\partial S} + \left[\frac{V}{G} \right] \frac{\partial \Psi}{\partial S} \frac{\partial Us}{\partial \eta} + \left[\frac{1}{XR} \frac{\partial R}{\partial S} \right] P U_{\phi}^{2} \qquad (86)$$

$$- \frac{1}{X} \frac{\partial \widetilde{\Pi}}{\partial S} = - \left[\frac{Hs}{XV} \right]$$

Tangential Momentum Equation

$$\frac{\partial \Sigma_{n} \phi}{\partial \eta} + \left[\frac{V}{XG} \frac{\partial}{\partial n} \left(\frac{G}{V} \right) + \frac{1}{XR} \frac{\partial R}{\partial n} \right] \Sigma_{n} \phi$$

$$- \left[\frac{V}{G} \right] \frac{\partial \Psi}{\partial \eta} \frac{\partial U \phi}{\partial S} + \left[\frac{V}{G} \right] \frac{\partial \Psi}{\partial S} \frac{\partial U \phi}{\partial \eta}$$

$$- \left[\frac{1}{XR} \frac{\partial R}{\partial S} \right] P U_{\phi} U_{S} = - \left[\frac{H \phi}{XV} \right]$$
(87)

Energy Equation

$$\frac{\partial \widetilde{Q}}{\partial \eta} + \left[\frac{V}{XG} \frac{\partial}{\partial n} \left(\frac{G}{V} \right) \right] \widetilde{Q}$$

$$+ \frac{\gamma - 1}{\gamma} \left[\frac{V}{G} \right] \Theta \left\{ \frac{\partial \Psi}{\partial \eta} \frac{\partial \widetilde{I}}{\partial S} - \frac{\partial \Psi}{\partial S} \frac{\partial \widetilde{I}}{\partial \eta} \right\}$$

$$- \frac{N_R}{XV} \left(\frac{\mu r}{\mu r} \right) \left\{ \sum_{ns}^{2} + \sum_{n\phi}^{2} \right\} = \left[\frac{\Phi B}{XV} \right]$$
(88)

It is noted upon examination of Eqs. (79) through (88) that no derivatives of density appear explicitly; therefore, a Mach number transformation was not applied to the density.

Boundary Conditions

For annular flow fields within ducts having both an inner and an outer wall, the proper set of boundary conditions is (see Ref. 10):

$$\Psi(s,o) = \Psi_{H}(s)$$

$$Us(s,o) = 0.$$

$$U_{H}(s,o) = 0.$$

$$\widetilde{Q}(s,o) = 0. \text{ adiabatic wall}$$
or $\Theta(s,o) = \Theta_{H}$

$$(89)$$

$$\Psi(s, i) = \Psi_{T}(s)$$

$$U_{s}(s, i) = 0.$$

$$U_{\phi}(s, i) = 0.$$

$$Q(s, i) = 0. \text{ adiabatic wall}$$
or
$$\Theta(s, i) = \Theta_{T}(s)$$
(90)

where S is the streamwise coordinate and n is the transverse coordinate. The transverse grid is normalized so that the walls occur at n=0 and n=1.

For axisymmetric flow, in which no inner wall is present, the equations of motion contain a removable singularity at the origin or axis of symmetry. The boundary conditions (Eq. (89)) must be replaced by boundary conditions based on a Taylor series expansion of the flow variables about the centerline. From Eq. (86) at a small distance h from the centerline, the expansion for $\Sigma_{\rm ns}$ is given by

$$\sum_{ns} = \frac{1}{2} \left[\left(v P u_s \right) \frac{\partial U_s}{\partial S} + v \frac{\partial \Pi}{\partial S} \right]_0^n + o(h^3)$$
 (91)

The remainder is neglected because it is of higher order than the order of the difference approximation. Then Eq. (80) and Eq. (91) yield

$$U_{s} = U_{so} + \frac{1}{4} \frac{N_{R}}{(\mu_{T} \mu_{r})_{o}} \left[VPU_{s} \frac{\partial V_{s}}{\partial S} + V \frac{\partial \widetilde{\Pi}}{\partial S} \right]_{o} h^{2} + o(h^{5})$$
 (92)

which serves as a boundary condition for Us.

The expansion of $\Sigma_{n\phi}$ about the centerline is obtained from Eq. (87):

$$\sum_{n\phi} = o(h^5) \tag{93}$$

Hence, from Eq. (81),

$$U_{\phi 1} = O\left(h^{6}\right) = O \tag{94}$$

since it is of higher order than the difference approximation. The heat flux equation (Eq. (84)) and the energy equation (Eq. (88)) are used to find a boundary condition for Q:

$$Q = -\frac{1}{2} \frac{\gamma - 1}{\gamma} \left[VPU_s \Theta \frac{\partial I}{\partial S} \right]_0^h + o(h^3)$$
 (95)

$$\Theta = \Theta_0 + \frac{1}{4} \frac{\gamma_{-1}}{\gamma} \frac{N_R}{XV} \left[V P U_s \Theta \frac{\partial I}{\partial S} \right]_0 h^2 + o(h^4)$$
 (96)

And, finally, a boundary condition for ψ is obtained from Eq. (79)

$$\Psi = 2 \Pi \left(P U_s \right)_0 h^2 \tag{97}$$

The boundary conditions may then be applied at a distance h from the centerline. However, a great simplification may be obtained if h is chosen such that

$$h/(V\triangle\eta) \ll I \tag{98}$$

which implies that the first point is very near the centerline. Then we have the axisymmetric boundary conditions

$$\Psi (s,0) = 0.$$

$$\sum_{ns} (s,0) = 0.$$

$$U_{\phi} (s,0) = 0.$$

$$\Im (s,0) = 0.$$
(99)

Finite Difference Approximation

These equations are reduced to finite difference equations using the second-order finite difference scheme of Keller (Refs. 14 and 15). The following notation for S and η is introduced:

$$\Delta S^{J} = S^{J} - S^{J-1}$$

$$\Delta \eta_{K} = \eta_{K} - \eta_{K-1}$$

$$S^{J-1/2} = \frac{1}{2} (S^{J} + S^{J-1})$$

$$\eta_{K-1/2} = \frac{1}{2} (\eta_{K} + \eta_{K-1})$$
(100)

and for any dependent variable g (z,s) g $^{J-\frac{1}{2}}$ and $g_{K-\frac{1}{2}}$ are defined by

$$g^{J-1/2} = \frac{1}{2} (g^{J} + g^{J-1})$$

$$g_{K-1/2} = \frac{1}{2} (g_{K} + g_{K-1})$$
(101)

The equations of motion, Eqs. (79) through (88), are linearized by performing a Taylor series expansion in the S coordinate, as suggested by Briley and McDonald (Ref. 16). Let any dependent variable g be given by

$$\mathbf{g}^{\mathsf{J}} = \mathbf{g}^{\mathsf{J}-\mathsf{I}} + \Delta \mathbf{g} \tag{102}$$

where

$$\frac{\Delta g}{|g^J|} \ll I \tag{103}$$

Then we have the following product rules (Ref. 16):

$$(fg)^{J} = f^{J}g^{J-1} + f^{J-1}g^{J} - (fg)^{J-1}$$

$$(fg)^{J-1/2} = \frac{1}{2} (f^{J}g^{J-1} + f^{J-1}g^{J})$$

$$(fgh)^{J} = (fg)^{J-1}h^{J} + (gh)^{J-1}f^{J} + (fh)^{J-1}g^{J} - 2(fgh)^{I-1}$$

$$(\frac{\partial g}{\partial s})^{J-1/2}_{K} = \frac{g^{J} - g^{J-1}_{K}}{\Delta s}$$

$$(\frac{\partial g}{\partial s}f)^{J-1/2}_{K} = \frac{g^{J} - g^{J-1}}{\Delta s} f^{J-1}_{K}$$

Substitution of Eq. (104) into the equations of motion, Eqs. (79) through (88), yields the following results.

Continuity Equation

$$\begin{split} \Psi_{K}^{J} - \Psi_{K-1}^{J} - \frac{\Delta 2}{2} \left[\frac{G}{XV} \right]_{K-1/2}^{J} \left(P_{K}^{J} + P_{K-1}^{J} \right) U_{SK-1/2}^{J-1} + P_{K-1/2}^{J-1} \left(U_{SK}^{J} + U_{SK-1}^{J} \right) \right\} & (105) \\ = - \Delta \eta \left[\frac{G}{XV} \right]_{K-1/2}^{J} \left(PU_{S} \right)_{K-1/2}^{J-1} \end{split}$$

Streamwise Stress Component

$$\left(\frac{\mu_{T}}{\mu_{r}}\right)_{K-1/2}^{J-1} \left\{ \left(U_{SK}^{J} - U_{SK-1}^{J}\right) + \frac{\Delta \eta}{2} \left[\frac{1}{XV} \frac{\partial V}{\partial \pi}\right]_{K-1/2}^{J} \left(U_{SK}^{J} + U_{SK-1}^{J}\right) \right\} - \frac{\Delta \eta}{2} \left[\frac{N_{R}}{XV}\right]_{K-1/2}^{J} \left(\sum_{nSK}^{J} + \sum_{nSK-1}^{J}\right) = 0$$
(106)

Tangential Stress

$$\left(\frac{\mu_{T}}{\mu_{\Gamma}}\right)_{K-1/2}^{J-1} \left\{ \left(U_{\phi K}^{J} - U_{\phi K-1}^{J}\right) - \frac{\Delta \eta}{2} \left[\frac{1}{XR} \frac{\partial R}{\partial n}\right]_{K-1/2}^{J} \left(U_{\phi K}^{J} + U_{\phi K-1}^{J}\right) \right\} - \frac{\Delta \eta}{2} \left[\frac{N_{R}}{XV}\right]_{K-1/2}^{J} \left(\sum_{n \phi K}^{J} + \sum_{n \phi K-1}^{J}\right) = 0$$
(107)

Normal Momentum Equation

$$\begin{split} \widetilde{\Pi}_{K}^{J} - \widetilde{\Pi}_{K}^{J-l} + & \frac{\Delta \eta}{2} \left[\frac{1}{X V} \frac{\partial V}{\partial \eta} \right]_{K-1/2}^{J} \left\{ 2 \left(P U_{S} \right)_{K-l/2}^{J-l} \left(U_{SK}^{J} + U_{SK-l}^{J} \right) + \left(U_{S}^{2} \right)_{K-l/2} \left(P_{K}^{J} + P_{K-l}^{J} \right) \right\} \\ - & \frac{\Delta \eta}{2} \left[\frac{1}{X R} \frac{\partial R}{\partial \eta} \right]_{K-1/2}^{J} \left\{ 2 \left(P U_{\phi} \right)_{K-l/2}^{J-l} \left(U_{\phi K}^{J} + U_{\phi K-l}^{J} \right) + \left(U_{\phi}^{2} \right)_{K-l/2}^{J-l} \left(P_{K}^{J} + P_{K-l}^{J} \right) \right\} \\ = & 2 \Delta \eta \left\{ \left[\frac{1}{X V} \frac{\partial V}{\partial \eta} \right]_{K-l/2}^{J} \left(P U_{S}^{2} \right)_{K-l/2}^{J-l} - \left[\frac{1}{X R} \frac{\partial R}{\partial \eta} \right]_{K-l/2}^{J-l} \left(P U_{\phi}^{2} \right)_{K-l/2}^{J-l} \right\} \end{split}$$

Entropy Equation

$$\widetilde{\mathbf{I}}_{\kappa}^{J} - \widetilde{\mathbf{I}}_{\kappa}^{J-1} = \frac{\gamma}{\gamma - 1} \left\{ \frac{\widetilde{\Theta}^{J} - \widetilde{\Theta}^{J-1}}{\widehat{\Theta}^{J-1}} - \frac{\widetilde{\Pi}^{J} - \widetilde{\Pi}^{J-1}}{\Pi^{J-1}} \right\}$$
(109)

Heat Flux Equation

$$\left(\frac{1}{P_{er}} \frac{\mu_{\xi}}{\mu_{r}}\right)_{K-1/2}^{J-1} \left(\widetilde{\Theta}_{K}^{J} - \widetilde{\Theta}_{K-1}^{J}\right) + \frac{\Delta^{\gamma_{l}}}{2} \left[\frac{N_{R}}{XV}\right]_{K-1/2}^{J} \left(\widetilde{Q}_{K}^{J} + \widetilde{Q}_{K-1}^{J}\right) = 0 \quad (110)$$

Equation of State

$$\gamma M_{r}^{2} \widetilde{\Pi}_{K}^{J} - P_{K}^{J} \overline{\Theta}_{I} - (\gamma - 1) M_{r}^{2} \left[P_{K}^{J} \widetilde{\Theta}_{K}^{J-1} + P_{K}^{J-1} \widetilde{\Theta}_{K}^{J} \right]$$

$$= - \overline{\Pi} - (\gamma - 1) M_{r}^{2} \left(P \widetilde{\Theta} \right)^{J-1}$$
(111)

Streamwise Momentum Equation

$$\begin{split} & \left(\sum_{n \leq K}^{J} - \sum_{n \leq K-1}^{J} \right) + \frac{\Delta^{\gamma}}{2} \left[\frac{V}{XG} \frac{\partial}{\partial n} \left(\frac{G}{V} \right) - \frac{1}{XV} \frac{\partial V}{\partial n} \right]_{K-1/2}^{J-1/2} \left(\sum_{n \leq K}^{J} + \sum_{n \leq K-1}^{J} \right) \\ & - \frac{1}{\Delta S} \left[\frac{V}{G} \right]_{K-1/2}^{J-1/2} \left(\Psi_{K}^{J-1} - \Psi_{K-1}^{J-1} \right) \left(U_{SK}^{J} + U_{SK-1}^{J} \right) \\ & + \frac{1}{\Delta S} \left[\frac{V}{G} \right]_{K-1/2}^{J-1/2} \left(U_{SK}^{J-1} - U_{SK-1}^{J-1} \right) \left(\Psi_{K}^{J} + \Psi_{K-1}^{J} \right) \\ & + \Delta \gamma \left[\frac{1}{XR} \frac{\partial R}{\partial S} \right]_{K-1/2}^{J-1/2} \left\{ 2 \left(P U_{\phi} \right)_{K-1/2}^{J-1} \left(U_{\phi K}^{J} + U_{\phi K-1}^{J} \right) + \left(U_{\phi}^{J} \right)_{K-1/2}^{J-1} \left(P_{K}^{J} + P_{K-1}^{J} \right) \right\} \\ & - \frac{\Delta^{\gamma}}{\Delta S} \left[\frac{1}{X} \right]_{K-1/2}^{J-1/2} \left(\widetilde{\Pi}_{K}^{J} + \widetilde{\Pi}_{K-1}^{J} \right) \\ & = - \left(\sum_{n \leq K}^{J-1} - \sum_{n \leq K-1}^{J-1} \right) - \frac{\Delta^{\gamma}}{2} \left[\frac{V}{XG} \frac{\partial}{\partial n} \left(\frac{G}{V} \right) - \frac{1}{XV} \frac{\partial V}{\partial n} \right]_{K-1/2}^{J-1/2} \left(\sum_{n \leq K}^{J-1} + \sum_{n \leq K-1}^{J-1} \right) \\ & - \frac{1}{\Delta S} \left[\frac{V}{G} \right]_{K-1/2}^{J-1/2} \left(U_{SK}^{J-1} - U_{SK-1}^{J-1} \right) \left(U_{SK}^{J-1} + \Psi_{K-1}^{J-1} \right) \\ & + \frac{1}{\Delta S} \left[\frac{V}{G} \right]_{K-1/2}^{J-1/2} \left(U_{SK}^{J-1} - U_{SK-1}^{J-1} \right) \left(\Psi_{K}^{J-1} + \Psi_{K-1}^{J-1} \right) \\ & + \Delta \gamma \left[\frac{1}{XR} \frac{\partial R}{\partial S} \right]_{K-1/2}^{J-1/2} \left(P U_{\phi}^{J} \right)_{K-1/2}^{J-1} \\ & - \frac{\Delta^{\gamma}}{\Delta S} \left[\frac{1}{X} \right]_{K-1/2}^{J-1/2} \left(\widetilde{\Pi}_{K}^{J-1} + \widetilde{\Pi}_{K-1}^{J-1} \right) - 2 \Delta \gamma \left[\frac{H_{S}}{XV} \right]_{K-1/2}^{J-1/2} \end{aligned}$$

Tangential Momentum Equation

$$\begin{split} & \left(\sum_{n \neq K}^{J} - \sum_{n \neq K-1}^{J} \right) + \frac{\Delta^{\eta}}{2} \left[\frac{V}{XG} \frac{\partial}{\partial \pi} \left(\frac{G}{V} \right) - \frac{1}{XR} \frac{\partial R}{\partial \pi} \right]_{K-1/2}^{J-1/2} \left(\sum_{n \neq K}^{J} + \sum_{n \neq K-1}^{J} \right) \\ & - \frac{1}{\Delta S} \left[\frac{V}{G} \right]_{K-1/2}^{J-1/2} \left(\Psi_{K}^{J-1} - \Psi_{K-1}^{J-1} \right) \left(U_{\varphi K}^{J} + U_{\varphi K-1}^{J} \right) + \frac{1}{\Delta S} \left[\frac{V}{G} \right]_{K-1/2}^{J-1/2} \left(U_{\varphi K}^{J-1} - U_{\varphi K-1}^{J-1} \right) \left(\Psi_{K}^{J} + \Psi_{K-1}^{J} \right) \\ & - \Delta \eta \left[\frac{1}{XR} \frac{\partial R}{\partial S} \right]_{K-1/2}^{J-1/2} \left\{ \left(PU_{\varphi} \right)_{K-1/2}^{J-1} \left(U_{SK}^{J} + U_{SK-1}^{J} \right) \\ & + \left(PU_{S} \right)_{K-1/2}^{J-1} \left(U_{\varphi K}^{J} + U_{\varphi K-1}^{J} \right) + \left(U_{S} U_{\varphi} \right)_{K-1/2}^{J-1} \left(P_{K}^{J} + P_{K-1}^{J} \right) \right\} \\ & = - \left(\sum_{n \neq K}^{J-1} - \sum_{n \neq K-1}^{J-1} \right) - \frac{\Delta^{\eta}}{2} \left[\frac{V}{XG} \frac{\partial}{\partial \pi} \left(\frac{G}{V} \right) - \frac{1}{XR} \frac{\partial R}{\partial \pi} \right]_{K-1/2}^{J-1/2} \left(\sum_{n \neq K}^{J-1} + \sum_{n \neq K-1}^{J-1} \right) \\ & - \frac{1}{\Delta S} \left[\frac{V}{G} \right]_{K-1/2}^{J-1/2} \left(\Psi_{K}^{J-1} - \Psi_{K-1}^{J-1} \right) \left(U_{\varphi K}^{J-1} - U_{\varphi K-1}^{J-1} \right) + \frac{1}{\Delta S} \left[\frac{V}{S} \right]_{K-1/2}^{J-1/2} \left(U_{\varphi K}^{J-1} + U_{\varphi K-1}^{J-1} \right) \left(\Psi_{K}^{J-1} + \Psi_{K-1}^{J-1} \right) \\ & - \Delta \eta \left[\frac{1}{XR} \frac{\partial R}{\partial S} \right]_{K-1/2}^{J-1/2} \left(PU_{S} U_{\varphi} \right)_{K-1/2}^{J-1} - 2 \Delta \eta \left[\frac{H}{XV} \right]_{K-1/2}^{J-1/2} \right] \end{aligned}$$

$$\begin{split} & \frac{\operatorname{Energy\ Equation}}{\left(\widetilde{\alpha}_{K}^{J} - \widetilde{\alpha}_{K-l}^{J}\right)} + \frac{\Delta^{\gamma}}{2} \left[\frac{V}{XG} \frac{\partial}{\partial \pi} \left(\frac{G}{V}\right)\right]_{K-l/2}^{J-l/2} \left(q_{K}^{J} + q_{K-l}^{J}\right) \\ & + \frac{\gamma-l}{\gamma} \frac{1}{\Delta S} \left[\frac{V}{G}\right]_{K-l/2}^{J-l/2} \quad \mathfrak{S}_{K-l/2}^{J-l} \left(\Psi_{K}^{J-l} - \Psi_{K-l}^{J-l}\right) \left(\widetilde{T}_{K}^{J} + \widetilde{T}_{K-l}^{J}\right) \\ & - \frac{\gamma-l}{\gamma} \frac{1}{\Delta S} \left[\frac{V}{G}\right]_{K-l/2}^{J-l/2} \quad \mathfrak{S}_{K-l/2}^{J-l} \left(\widetilde{T}_{K}^{J-l} - \widetilde{T}_{K-l}^{J-l}\right) \left(\Psi_{K}^{J} + \Psi_{K-l}^{J}\right) \\ & - \Delta \gamma \left[\frac{N_{R}}{XV}\right]_{K-l/2}^{J-l/2} \left(\frac{\mu_{r}}{\mu_{T}}\right)_{K-l/2}^{l} \left(\widetilde{T}_{K}^{J-l} - \widetilde{T}_{K-l}^{J-l}\right) \left(\Psi_{K}^{J} + \Psi_{K-l}^{J}\right) \\ & = -\left(\widetilde{\alpha}_{K} - \widetilde{\alpha}_{K-l}\right) - \frac{\Delta^{\gamma}}{2} \left[\frac{V}{XG} \frac{\partial}{\partial \pi} \left(\frac{G}{V}\right)\right]_{K-l/2}^{J-l/2} \left(q_{K}^{J-l} + q_{K-l}^{J-l}\right) \\ & + \frac{\gamma-l}{\gamma} \frac{1}{\Delta S} \left[\frac{V}{G}\right]_{K-l/2}^{J-l/2} \quad \mathfrak{S}_{K-l/2}^{J-l} \left(\Psi_{K}^{J-l} - \Psi_{K-l}^{J-l}\right) \left(\widetilde{T}_{K}^{J-l} + \widetilde{T}_{K-l}^{J-l}\right) \\ & - \frac{\gamma-l}{\gamma} \frac{1}{\Delta S} \left[\frac{V}{G}\right]_{K-l/2}^{J-l/2} \quad \mathfrak{S}_{K-l/2}^{J-l} \left(\widetilde{T}_{K}^{J-l} - \widetilde{T}_{K-l}^{J-l}\right) \left(\Psi_{K}^{J-l} - \Psi_{K-l}^{J-l}\right) + 2 \Delta \gamma \left[\frac{\Phi_{R}}{XV}\right]_{K-l/2}^{J-l} \\ & + \frac{\gamma-l}{\gamma} \frac{1}{\Delta S} \left[\frac{V}{G}\right]_{K-l/2}^{J-l/2} \quad \mathfrak{S}_{K-l/2}^{J-l} \left(\widetilde{T}_{K}^{J-l} - \widetilde{T}_{K-l}^{J-l}\right) \left(\Psi_{K}^{J-l} - \Psi_{K-l}^{J-l}\right) + 2 \Delta \gamma \left[\frac{\Phi_{R}}{XV}\right]_{K-l/2}^{J-l} \end{aligned}$$

With mass flow bleed at the wall, $\psi_{\mathrm{H}}(\mathrm{s})$ and $\psi_{\mathrm{T}}(\mathrm{s})$ are given by

$$\Psi_{H}^{J} = \Psi_{H}^{J-1} - \Delta S_{J} \left(\frac{GM}{V} \right)_{H}^{J-1/2}$$
(115)

$$\Psi_{\mathsf{T}}^{\mathsf{J}} = \Psi_{\mathsf{J}}^{\mathsf{J}-\mathsf{I}} + \Delta s_{\mathsf{J}} \left(\frac{\mathsf{GM}}{\mathsf{V}} \right)_{\mathsf{T}}^{\mathsf{J}-\mathsf{I}/2} \tag{116}$$

Solution of Matrix Equation

The solution of these equations is obtained using the method of block-tridiagonal factorization (Refs. 15 and 17). If the column matrix \bar{f}^K is defined by

$$\overline{f}^{K} = (\Psi_{K}^{J}, U_{SK}^{J}, U_{\phi K}^{T}, \widetilde{\Pi}_{K}^{J}, \widetilde{I}_{K}^{J}, \widetilde{\Theta}_{K}^{J}, P_{K}^{J}, \Sigma_{nSK}^{J}, \Sigma_{n\phi K}^{J}, \widetilde{\Delta}_{K}^{J})^{T}$$
(117)

then the difference equations, Eqs. (105) through (114), may be written as a matrix equation

$$\mathbf{\bar{R}}^{\mathbf{K}} = \mathbf{\bar{f}}^{\mathbf{K}} - \mathbf{\bar{L}}^{\mathbf{K}} = \mathbf{\bar{f}}^{\mathbf{K}}$$
 (118)

where $\overline{\mathbb{R}}^K$ and $\overline{\mathbb{L}}^K$ are the coefficients of the dependent variables and $\overline{\mathbb{T}}^K$ is the right-hand side of these equations. If η_1 = 0 is at the first mesh point and η_{KL} = 1 is at the last mesh point, equations are written at each of the η_K transverse locations where $2 \le K \le KL$ and ten boundary conditions are required. Note that Eqs. (109) and (111) involve only the K^{th} mesh point. Then we may use these two equations as boundary conditions plus the eight conditions given by Eqs. (89) and (90) or Eqs. (89) and (99).

⁽¹⁷⁾ Varah, J. M.: On the Solution of Block-Tridiagonal Systems Arising from Certain Finite-Difference Equations. Mathematics of Computation, Vol. 26, No. 1, March 1969.

A 5 X10 $\bar{\bar{M}}$ matrix for the boundary conditions may then be written for each end point such that the matrix equations become

$$\vec{\mathbf{m}} \cdot \vec{\mathbf{f}} = \vec{\mathbf{f}} \qquad (119)$$

$$\vec{\mathbf{m}} \cdot \vec{\mathbf{f}} \cdot \vec{\mathbf{k}} = \vec{\mathbf{f}} \cdot \mathbf{k} = \mathbf{k}$$

The complete set of matrix equations is written

$$\overline{A} = \overline{f} = \overline{Q}$$
 (120)

where

$$\overline{A} = \begin{cases} \overline{R}^{1} & O \\ -\overline{C}^{1} & \overline{R}^{1} \\ -\overline{C}^{1} & \overline{C}^{1} \\ -\overline{C}^{1} \\ -\overline{C}^{1} & \overline{C}^{1} \\ -\overline{C}^{1} \\ -\overline{C}^{1} & \overline{C}^{$$

$$\widetilde{Q} = \left\{ \overline{\tau}^{I}, \ \overline{\tau}^{K}, \ \overline{\tau}^{KL} \right\}^{T}$$
 (122)

The matrix $\bar{\bar{\mathsf{A}}}$ is made block tridiagonal by splitting as follows:

$$\overline{A}^{1} = \begin{cases} m_{1,J}^{1} & 1 = 1,5 \\ J = 1,10 \\ -\ell_{1,J}^{2} & 1 = 1,5 \\ J = 1,10 \end{cases}$$
 (123)

$$\frac{1}{4} = \begin{cases}
r_{i,j}^{K} & i = 6,10 \\
j = 1,10 \\
-t_{i,j}^{K+1} & i = 1,5 \\
-t_{i,j}^{K+1} & j = 1,10
\end{cases}$$
(K = 2,KL - 1)

$$\frac{1}{2} K L_{\frac{1}{2}} \begin{cases}
r K L & 1 = 6,10 \\
J = 1,10 \\
------- \\
m_{1J}^{KL} & 1 = 1,5 \\
m_{1J}^{KL} & J = 1,10
\end{cases} (125)$$

$$\overline{B}^{K} = \begin{cases} -2 & \text{K} & \text{I} = 6, 10 \\ -1 & \text{J} = 1, 5 \\ ------ & \text{O} \end{cases}$$
 (K = 2, KL) (126)

Hence we have a block tridiagonal matrix:

$$\bar{\bar{A}} =
\begin{cases}
\bar{\bar{A}} & \bar{\bar{c}} \\
\bar{\bar{B}}^2 & \bar{\bar{A}}^2 \bar{\bar{c}}^2 \\
\bar{\bar{B}}^K & \bar{\bar{A}}^K \bar{\bar{c}}^K \\
\bar{\bar{B}}^{KL-1} & \bar{\bar{A}}^{KL-1} \bar{\bar{c}}^{KL-1} \\
\bar{\bar{B}}^{KL} & \bar{\bar{A}}^{KL}
\end{cases}$$
(128)

The matrix $\bar{\bar{\mathbb{Q}}}$ splits as follows:

$$\bar{\bar{q}}' = \left\{ \bar{\bar{\tau}}', \bar{\bar{\tau}}_{\bar{I}}^{2} (I = 1,5) \right\}^{\mathsf{T}}$$
(129)

$$\bar{q}^{\mathsf{K}} = \left\{ \overline{\uparrow}_{\mathbf{I}}^{\mathsf{K}} \left(\mathbf{I} = 6, 10 \right), \, \overline{\uparrow}_{\mathbf{I}}^{\mathsf{K}} \left(\mathbf{I} = 1, 5 \right) \right\} \tag{130}$$

$$\bar{\bar{q}}^{KL} \left\{ \bar{\uparrow}_{I}^{KL} \left(I = 6, 0 \right), \bar{\uparrow}^{KL} \right\} \tag{131}$$

The matrix equations (Eq. (120)) are solved using the method of block tridiagonal factorization (Ref. 17) with the recursion formulas given by

$$\overline{\mathbf{D}}^{1} = \overline{\mathbf{A}}^{1} \tag{132}$$

$$\bar{\bar{E}}^{K} = (\bar{D}^{K})^{-1} \bar{\bar{C}}^{K} \qquad 1 \leq K \leq KL - 1$$
 (133)

$$\overline{\mathbf{D}}_{\mathbf{K}}^{\mathbf{K}} - \overline{\mathbf{B}}_{\mathbf{K}} \underline{\mathbf{E}}_{\mathbf{K}-1} \quad 2 \leq \mathbf{K} \leq \mathbf{KL}$$
 (134)

$$\overline{\overline{z}}^{1} = (\overline{\overline{D}}^{1})^{-1} \overline{\overline{Q}}^{1} \tag{135}$$

$$\overline{\overline{Z}}_{\kappa}^{K} (\overline{\overline{D}}^{K})^{-1} \left[\overline{\overline{Q}}^{K} - \overline{\overline{B}}^{K} \overline{\overline{Z}}^{K-1} \right] \qquad 2 \leq K \leq KL$$
 (136)

and the solution is obtained by backward substitution.

$$\bar{f}^{KL} = \bar{Z}^{KL}$$
 (137)

$$\overline{f} \stackrel{K}{=} \overline{z}^{K} - \overline{\overline{e}}^{K} \overline{f}^{K+1} \qquad (KL-1 > Z, \stackrel{\geq}{>} 1)$$
 (138)

DESCRIPTION OF TEST PROGRAM

The ST9 demonstrator IR suppressing exhaust diffuser was tested on the Pratt & Whitney Florida Research and Development Center (FRDC) D-32 test facility to verify the accuracy of the analysis described previously in this report. The FRDC facility can provide hot gas flow at a temperature of 1200 deg F and weight flows of 8.3 lb/sec. Adjustable swirl vanes upstream of the diffuser provide swirling flow from 0 deg up to 30 deg, thus simulating typical turbine exit flows at different engine operating conditions. In addition, the facility was modified to provide coolant flow rates up to 10 percent of diffuser airflow rates and to provide slot cooling on the diffuser walls. Complete wall static pressure and temperature instrumentation was provided to measure the effect of wall cooling rates on pressure recovery and wall temperature at different simulated engine operating conditions.

Description of Test Facility

A schematic of the FRDC D-32 test facility is shown in Fig. 4. The diffuser inlet flow simulating a typical turbine exit flow is provided by compressed air from the D-Area J57 slave engine. The compressor air flows through a stand heater burner and swirl generator with adjustable vanes shown in Fig. 5. Coolant airflow is supplied to the inner and outer walls of the exhaust diffuser from the D-Area 350-psig air system. As shown in Fig. 6, the coolant to the outer wall, inner wall, and base louvers is separately regulated. A schematic of the ST9 demonstrator IR suppressing exhaust diffuser is shown in Fig. 7. The manifold providing the coolant flow separately to the inner and outer walls and base is shown as well as the location of the louvers or slots on the diffuser wall. Throughout the test program, no coolant flow was supplied to the base in order to eliminate effects of base cooling flow on inner wall static pressure. Photographs of the test facility with the diffuser in place taken after completion of testing are shown in Figs. 8 and 9. No apparent damage or deterioration to the suppressor occurred during the test program.

Description of Instrumentation

Wall pressures were measured by thirty-one static pressure taps located on the inner and outer walls of the diffuser with the data recorded manually on manometer boards. The exact axial locations of these pressure taps, denoted FWO1 through FW31, are given on Table 1 and are shown schematically on Fig. 10. Plenum static pressures in the three manifolds are denoted PBO1,

PBO2, and PBO3 for the outer wall, inner wall, and base, respectively. Wall temperatures were measured by sixteen thermocouples located on the inner and outer walls with the data recorded manually on the thermocouple readouts. The locations of these thermocouples are given in Table 1 and are shown on Fig. 11. These thermocouples are labeled TWO1 through TW16. In addition, the bulk temperature of the coolant flow was measured by thermocouples labeled TBO1 through TBO6 as shown on Table 1 and Fig. 11.

The inlet flow distribution was measured by two total pressure rakes and two wall static pressure taps. In addition, a measurement of circumferential distortion was made through four midspan total pressure rakes located at several circumferential stations.

A midspan total temperature probe was used to measure the bulk temperature of the diffuser flow. The location of all the inlet flow instrumentation is shown on Fig. 12. Diffuser inlet and coolant flow rates were measured separately by orifices located as shown in Fig. 12.

Test Results

A summary of the results of the test program are presented in the test log, Table 2, and a complete set of test results in Table 3. Eleven tests were conducted over a period of two days at three simulated power settings and three different coolant flows per power setting. Two tests, 2.01 and 6.01, are considered to be invalid due to flow perturbations while data was being recorded. Each test was repeated to provide valid data. The main results of the test program are briefly discussed in the following paragraphs.

The effects of film cooling on pressure recovery, wall pressures, and wall temperatures were evaluated by testing coolant flows of 2.5, 5, and 10 percent of diffuser inlet flow. The largest effect of this coolant flow variation was on louver wall temperature, as shown for the outer wall in Fig. 13. Locations of the outer wall cooling louvers are shown in Fig. 7. Surface temperatures increased rapidly with reduced coolant flow and the greatest change occurred in louver 4.

The effects of coolant flow on wall pressure distributions are shown in Fig. 14 for a swirl angle of zero degrees. Changes in wall pressure with coolant flow were less significant at swirl angles of 16 and 21 deg than at zero degrees. Reducing coolant flow rate from 10 to 2.5 percent on inlet flow resulted in a general increase in wall pressures of about 0.03 psi for both inner and outer walls. Note that the increased wall pressures were not restricted to the cooled section of the suppressor but also extended upstream to the inlet static pressures. This results in a decrease in

pressure recovery (C_p) from 0.63 to 0.58 with coolant flow as shown in Fig. 15, where the pressure coefficient C_p is given by

$$C_{p} = \frac{P - P_{l}}{P_{0l} - P_{l}} \tag{139}$$

However, the influence of coolant flow on Cp is small at zero swirl and negligible at swirl angles of 16 and 21 deg. Hence, the slight ejector-effect of the film coolant at zero swirl disappears at higher swirl angles.

COMPARISON OF EXPERIMENT AND THEORY

A set of calculations were made to demonstrate the capability of the computer program and assess the code by comparing the theoretical predictions with experimental data. These calculations include a solution obtained for turbulent flow through a 6-deg conical diffuser, termed Fraser Flow "A" (Ref. 18), a baseline calculation for the ST9 demonstrator diffuser model tests with no film cooling, and a set of three cases for the flow through the ST9 demonstrator IR suppression diffuser corresponding to tests logged in Table 2. The calculations were numerically stable; however, truncation errors associated with the linearization of the differential equations were found to be sensitive to streamwise step size. The sensitivity to step size was particularly acute for the slot cooling cases. Since the slot height was only one percent of the diffuser inlet height in these cases, the streamwise step size had to be very small (of the order of the slot height) to allow adequate definition of the resultant flow field development. Since the computing time is proportional to the number of streamwise stations in the calculation field, efforts should be made to select the optimum step size in order to minimize computing time and still keep truncation errors within reasonable bounds.

Fraser Flow "A"

The solution for the turbulent flow through a 6-deg conical diffuser was obtained with the current calculation procedure and compared to the experimental data of Fraser as presented in Ref. 18. For this calculation, one hundred thirty streamlines and fifty streamwise stations were used to construct the coordinate system from the Schwartz-Christoffel transformation as shown in Fig. 16. The mesh distortion parameter placed approximately twenty mesh points between $0 \le Y^+ \le 10$. The inlet flow was constructed from Coles' velocity profile (Ref. 18) with the inlet boundary layer thickness taken to be 0.0528 in. as specified by the Fraser data in Ref. 18.

⁽¹⁸⁾ Coles, D. E., and E. A. Hirst: Proceedings Computation of Turbulent Boundary Layers - 1968 AFSOR-IFP-Stanford Conference, August 1968.

As demonstrated in Ref. 18, Coles' profile accurately represents the boundary layer mean velocity profiles over a wide range of flow conditions in terms of two parameters, a friction velocity, U^* and a wake parameter, π . Coles' profile expresses the mean velocity distribution by

$$U^{+} = \frac{1}{\kappa} \ln Y^{+} + 2 \frac{\Pi}{\kappa} \sin^{2} \left(\frac{\Pi}{2} \frac{Y}{\delta} \right) + B$$
 (140)

where U^{\dagger} and Y^{\dagger} are the velocity and transverse coordinate written in wall variables

$$U^{+} = U/U^{*} = U/\sqrt{\tau_{w}/\rho_{w}}$$
 (141)

$$Y^{+} = YU^{+}/\nu = Y\sqrt{\tau_{\mathbf{w}}/\rho_{\mathbf{w}}}/\nu$$
 (142)

 π is the wake parameter, and B is a constant. In Eq. (140) the first term expresses the "law of the wall" and the second term expresses the "law of the wake". Specification of U^* and π uniquely determines the velocity profile. At the edge of the boundary layer Y = δ and Eq. (140) becomes

$$\frac{U}{U^{*}} = \frac{1}{\kappa} \ln \left(\frac{\delta U^{*}}{\nu} \right) + \frac{2\Pi}{\kappa} + B$$
 (143)

When Eq. (140) is used to compute the boundary layer displacement thickness $\boldsymbol{\xi^*}$, the relation

$$\kappa \frac{\delta^{*} \cup_{\infty}}{\delta \cup^{*}} = I + \Pi \tag{144}$$

is obtained. Thus given δ and δ^* , the wake parameter π and friction velocity U^* can be determined from Eqs. (143) and (144) and then the velocity distribution is uniquely determined by Eq. (140).

It should be noted that Fraser Flow "A" is a particularly difficult flow to calculate with classical boundary layer theory which assumes a viscous flow development under the influence of a semi-infinite nominally inviscid outer flow field. The inability of classical boundary layer theory to predict the flow field development is shown in Ref. 18, where a variety of boundary layer theories were unable to predict this flow field accurately. This inability of standard boundary layer procedure to predict Fraser Flow "A" stems from two sources. First, the wall boundary layer reaches the diffuser centerline approximately halfway downstream from the diffuser throat, and in this region no potential core flow exits. Second, the Fraser Flow "A" diffuser is an optimum diffuser in that it is designed to keep a nearly separated boundary layer as the flow diffuses. Boundary layers which are on the verge of separation are very difficult to predict since small changes in pressure distribution can lead to large changes in boundary layer thickness. However, as discussed by Coles and Hirst (Ref. 18), the Fraser Flow "A" data are reliable and based upon careful development of a flow configuration with good axial symmetry. Thus the flow should be able to be predicted accurately by a calculation procedure which can properly account for the disappearance of the central potential core. The present analysis, which does not assume the existence of any potential core, yields predictions which are in good agreement with the data as shown in Figs. 17 and 18, where comparisons between experiment and theory for the pressure coefficient and wall friction coefficient are present.

Calculation Procedure For ST9 Demonstrator IR Suppression Diffuser Runs

The streamline coordinate system used to predict the flow in the FRDC diffuser as calculated from the Schwartz-Christoffel transformation is shown in Fig. 19. Since this diffuser configuration is complicated, it is helpful to describe it in some detail. First it is noted that a short "duct inlet section" has been added to the diffuser in order to insure that the initial inlet flow has no normal pressure gradient. The diffuser centerbody has a blunt "diffuser base" and a lip on the outerbody (OD) wall extending past the base. The exit centerbody (ID) and OD walls were, therefore, extended past the diffuser exit plane by the "extended free streamline" shown in Fig. 19. The ID and OD wall contours were specified at fifteen equally-spaced streamwise stations. The computer program then fitted smooth curves through these points and interpolated the curves to specify eighty streamwise stations. The input mesh points are indicated by a small circle and the diffuser wall by a double line. In addition, seven cooling slots are located on the wall at the stations specified. In order to clearly illustrate the location of the slots, the ID and OD walls were opened a small amount at each slot so that at the

exit plane the wall is separated from the wall streamline by a small amount. Finally, six struts are located in the duct. The plan view of one strut is indicated in Fig. 19 by the "strut centerline", "strut leading edge", and "strut trailing edge".

Eighty streamwise stations and one hundred thirty streamlines were calculated for the streamline coordinate system. The mesh distortion parameters were selected so that the first streamline from the wall was located at a distance of 0.000077 times the duct inlet height. This placed approximately five mesh points between $0 < Y^+ < 10$ at a slot exit plane and about forty mesh points within the slot height. In portions of the flow removed from the slots, approximately thirty mesh points were placed in the viscous sublayer. For all cases, the inlet flow was obtained from experimental data shown in Fig. 20. Instrumentation in the inlet plane of the diffuser was used to measure total pressure, static pressure, swirl angle, and total temperature as given in Table 3 for each test case. Twelve data points across the inlet are given. These data were then interpolated to fit the one hundred thirty mesh points used in the calculation, and the Mach number, velocity and static pressure, and temperature were then computed. This experimental data, however, is not accurate enough to construct the inlet boundary layer profiles. Therefore, these profiles were constructed from Coles' velocity profile by specifying the displacement thickness.

Baseline Case - No Film Cooling - No Struts

The first ST9 diffuser case calculated consists of the basic diffuser with no struts or slot cooling and is termed the baseline case; the baseline case has zero swirl. The predicted wall static pressure distribution is compared with the experimental data taken from earlier FRDC cold-flow model tests (Ref. 7) in Fig. 21. As shown in Fig. 21, the theoretical predictions of wall static pressure distribution without cooling and without struts is higher than the experimental data. This observation is consistent with the observation made in the Fraser Flow "A". In addition, it is noted that the analysis predicts the appearance of a separation bubble on the centerbody wall located approximately between 0.19 < Z/L < 0.26; this prediction is in agreement with FRDC model test data which also shows a separation bubble at the same approximate location.

A number of observations can be made about this test case. The predictions of the analysis are in qualitative agreement with the data for pressure coefficient along the diffuser. The overall pressure rise is in fairly good agreement with the data, and both the analysis and the data show a separation bubble in approximately the same duct location. However, the detailed variations of pressure coefficient is not in good qualitative agreement with the data and in the region of the separation bubble, the

analytical predictions and the data show significant qualitative discrepancies. However, it should be noted that it is very difficult to maintain axisymmetric flow in curved-wall annular diffusers (see Ref. 2). This problem is compounded when separation occurs because separated flow is very sensitive to small pressure fluctuations. Therefore, the size and location of the separation may be affected by asymmetry effects which in turn may lead to discrepancies between prediction and data.

ST9 Demonstrator IR Suppression Diffusers - 2.5 Percent Cooling Rate

The 2.5 percent cooling case consists of the ST9D demonstrator IR suppression diffuser run with six struts and seven cooling slots and corresponds to test case 3.01 shown on Table 2. This test case represents the diffuser operating at 60 percent military rated power and film cooling flow rate of 2.5 percent of the diffuser flow rate. The coolant plenum total pressure and static temperatures are given in Table 3. Experimental data, obtained from Table 3, was used to construct the inlet flow profiles as described for the Fraser Flow "A" case.

A comparison of the predicted flow with the corresponding experimental data is shown in Fig. 22 and Fig. 23. The predicted wall static pressure distribution, shown in Fig. 22, indicates a significant drop in pressure in the region of the strut. This effect is caused by the strut blockage which accelerates the flow through the strut passage (see Ref. 7). The presence of the strut exhibits the separated region which is present in the baseline case, and separation was neither predicted by the analysis nor measured in the experimental test. The first slot is located on the tip wall just downstream of the strut trailing edge. As shown on Fig. 23, the wall temperature drops almost by 700 deg F at this slot and increases rapidly by almost 500 deg F as rapid mixing of the film cooling flow with the hot diffuser flow is promoted. Successive slots follow the same pattern. The predicted wall static temperature distribution is in good agreement with experimental data. The wall static pressure distribution is qualitatively correct for $\mathrm{Z}/\mathrm{L}<0.6$, but shows significant quantitative discrepancies with the data. Downstream of the fourth slot, the wall static pressure decreases rapidly due to large total pressure losses, and this unrealistic solution is not plotted.

ST9 Demonstrator IR Suppression Diffuser With 5 Percent Cooling Rate

The 5 percent cooling rate case corresponds to test case 2.02 shown on Table 2. This case represents the diffuser operating at 60 percent military rated power with a film cooling flow rate of 5 percent of diffuser weight flow. A comparison of the predicted results with experimental data is shown on Figs. 24 and 25. The wall static pressure distribution shows very little

change compared to test case 3.01 with 2.5 percent cooling flow rate and is consistent with earlier observations of the data that the pressure distribution is not greatly affected by the coolant flow rate as shown in Fig. 14. The wall temperatures, however, show a significant reduction from a mean temperature of about 600 deg F for test case 3.01 down to a mean temperature of about 450 deg F for this test case. This predicted reduction in temperature with increasing coolant flow rate follows the trend in the experimental data shown in Fig. 13. Again, downstream of the fourth slot, the wall static pressure decreases rapidly due to large total pressure losses and the solution is not plotted.

ST9 Demonstrator IR Suppression Diffuser With 10 Percent Cooling Rate

The 10 percent cooling rate case corresponds to test case 1.01 as shown on Table 2 and represents the diffuser operating at 60 percent military rated power with a film cooling flow rate of 10 percent of diffuser weight flow. A comparison of the predicted results with experimental data is shown on Figs. 26 and 27. Again, the wall static pressure distribution shows very little change from the previous cases, indicating that the coolant flow rate does not greatly change the wall static pressure distribution. This observation was previously noted (see Fig. 14). The mean wall temperature shows a drop from the previous cases down to a mean temperature of about 300 deg F and demonstrates the expected behavior that increasing coolant flow rates reduce wall static temperatures as shown by the data in Fig. 13. It should be noted that part of this reduction in wall temperature comes from a reduced plenum total temperature as seen in the data of Table 3. Therefore, an accurate calculation of an IR diffuser performance must account for an overall heat balance as well as the local slot cooling effect.

Discussion of Numerical Calculations

Since this report presents new and very advanced techniques for calculating turbulent flow in ducts, some discussion of the numerical problems which were encountered is in order. In particular, suggestions are made on means to improve the predictions of the computer code for slot and film cooled problems. The Fraser Flow "A" test case represents a good test case for the purpose of checking the accuracy and reliability of the computer program. As evaluated by Coles and Hirst in Ref. 18, Fraser Flow "A" represents reliable measurements based on careful development of a flow configuration with good axial symmetry. Pressure distributions, wall friction coefficient distributions, displacement thickness, and momentum thickness distributions are presented. In addition, accurate measurements of the boundary layer profiles are given for eleven axial stations. Finally, the

Fraser Flow "A" is a clean flow showing only the effects of boundary layer growth in an adverse pressure gradient. Of special interest in this test case is the fact that the flow is in a nearly separated condition for a good part of the diffuser length. Complications arising from struts, slots, swirl or wall curvature are not present.

Before the predictions of the Fraser Flow "A" case were compared with the experimental data, the numerical accuracy for the computer program was checked for internal consistency by several means. The most important of these checks was a comparison of the mean flow variables obtained by averaging the solution for each dependent variable over the duct height and comparing the average values with the solution for these same variables obtained by integrating the one-dimensional mass flow weighted average equations. As an example, these equations show that in the absence of wall mass flow bleed and wall heat transfer, the diffuser weight flow and mass flow weighted average total temperature are constant. An examination of the detailed computer printout for the Fraser Flow "A" case shows that these variables are indeed constant to at least five decimal places, thus indicating that the numerical procedure satisfies the integral conservation laws. In regard to the prediction of Fraser Flow "A", the agreement between theory and experiment should be regarded as excellent for the skin friction and good for the pressure coefficient, particularly in view of the fact that the flow is continuously on the verge of separation. As shown by Stratford (Ref. 19), turbulent boundary layers near separation may take on a wide variety of profile shapes. The shape depends upon the upstream history of the flow and small changes in the upstream history can lead to large changes in boundary layer development. Thus the Fraser Flow "A" case is a difficult test of the basic analytical procedure, and based on this test, it is concluded that the analysis operates well in predicting flows in the absence of such complications as struts, swirl, and wall curvature.

Some indication of local errors can be estimated by examining the total and static pressures along the centerline of the Fraser Flow "A" case, which should be nearly constant since the viscous and heat transfer losses are negligible along the centerline. This comparison indicates local accumulated errors of the order of 0.1, which is quite good. From these results, it is concluded that the basic numerical procedure is accurate and that any improvements in the predictions for this basic case must come from a closer examination of the turbulent mixing length model.

⁽¹⁹⁾ Stratford, B. S.: An Experimental Flow With Zero Skin Friction Throughout Its Pressure Rise. <u>Journal of Fluid Mechanics</u>, Vol. 5, 1972, pp. 17-35.

The turbulent mixing length model may be an important source of error, producing discrepancies between theoretical predictions and experimental data. Short of detailed turbulence measurements, the best method for assessing this effect is to compare predicted boundary layer growth with experimental data such as the Fraser Flow "A" test case. First, it should be noted that the Mach number for the Fraser Flow "A" is low, so that O.1 percent error in static pressure represents a 6.5 percent error in static pressure coefficient (i.e., the error is magnified when results are expressed in terms of a pressure coefficient). Second, it is noted that there is a very close interaction among the following parameters: mixing length, boundary layer thickness or blockage, and static pressure gradient. Thus, increasing the boundary layer thickness decreases the static pressure because of effective blockage. Increasing the pressure gradient increases the boundary layer growth because of the additional work done on the boundary layer. Therefore, a comparison of the theoretically predicted pressure distribution with the experimental data yields an indication of the boundary layer growth and, by inference, the mixing length. Since the predicted pressure coefficient is larger than the experimental data, the predicted boundary layer thickness must be smaller than the measured boundary layer thickness. Hence, it is concluded that the mixing length is too small. It should be noted, however, that the pressure coefficient prediction is very good up to a Z/L = 0.4, at which point the boundary layers merge (see Fig. 17). Furthermore, downstream of this station the boundary layer is in a nearly separated condition as shown in Fig. 18. Therefore, it is concluded that modifications of the mixing length may be required for flows with merged boundary layers or nearly separated boundary layers.

The ST9 IR suppression diffuser case with no slots or struts introduces an additional problem in making an accurate flow field prediction. This diffuser, unlike the Fraser Flow "A" diffuser, has significant wall curvature which is known to effect the mixing length (Ref. 20). Thus turbulence can be expected to increase on a concave surface and decrease on a convex surface, modifying the boundary layer growth on these walls and changing the pressure distribution accordingly. Hence it is expected that introducing a better turbulence model which accounts for wall curvature, would produce better predictions for wall static pressure distribution than that shown in Fig. 21. An additional complication which arises in the baseline calculation is the appearance of a separation bubble. Since separation is a very complex

⁽²⁰⁾ Bradshaw, P.: Effects of Streamline Curvature on Turbulent Flow. AGARDograph No. 169, 1973.

phenomenon which is very sensitive to local conditions, predictions of separated regions in turbulent flow can be a strong function of the turbulence model. The turbulence model used in the present effort is an equilibrium model based on measurements of turbulence structure in unseparated flows and, therefore, some significant error may be introduced in applying a turbulence model based upon attached turbulent flow data to separated flow. Inaccuracies of the turbulence model in separated regimes will affect the predictions downstream of flow reattachment since total pressure losses produced by the separation bubble cannot be reversed.

For slot cooled wall cases, test case 3.01, 2.02, and 1.01, the comparisons indicate that the simple mixing length model used in this report may not be adequate. The turbulence model used only accounts for an inner layer mixing length influenced by the wall and an outer layer mixing length influenced by the free stream. The mixing layer developing between the cold slot flow and the hot diffuser flow is not being properly modeled, and this may adversely affect the theoretical predictions. If the turbulence model used is not appropriate in the immediate vicinity of the slot, then any inaccuracies would be compounded for diffusers which contain a succession of cooling slots such as the ST9 IR suppression diffuser. This inadequate modeling of the turbulence structure in the slot mixing region may explain the increased discrepancy between predicted and measured pressure distribution with each slot (see Figs. 22, 24, and 26). Thus, in summary, although the turbulence model appears accurate for flows in the absence of curvature, slot cooling and separation, it may need to be refined for these effects before accurate predictions for the general diffuser flow field can be made.

The numerical method used in this report can be subject to one final important source of error. Since the linearization of the equations of motion implies a certain degree of smoothness in the solution, any local errors introduced in the initial profile may produce significant errors downstream. Usually, as in the diffuser inlet flow, this initial error is dampened and causes little difficulty because the flow variables change slowly. At the slot interface, however, there is a large temperature discontinuity, and since the flow variables (especially temperature) change very rapidly, this initial error may not be dampened. Such an initial error would cause errors in entropy which would lead to inaccurate predictions of the pressure coefficient. Indications that this may be a factor are shown by the significantly larger errors in the mass flow and mass flow weighted average total temperature which are not as well behaved downstream of a slot as they are upstream of the first slot. It is, therefore, concluded that the model used to predict the initial flow and shear for each slot be improved so as to smooth out the discontinuity in the neighborhood of the slot exit plane.

CONCLUSIONS

Based on the experimental data presented in this report, it is concluded that the wall temperatures can be significantly reduced by increasing film coolant rate. For coolant flow rates less than or equal to 10 percent of diffuser flow rates, the film cooling has little effect on pressure distributions or pressure recovery.

An examination of the Fraser Flow "A" test case demonstrates that the basic numerical methods used in this report based on the Schwartz-Christoffel transformation to calculate an orthogonal coordinate system and an implicit linearized finite-difference scheme for solving the equations of motion for turbulent flow is an accurate and reliable method for solving internal flows in axisymmetric ducts of arbitrary wall curvature. Further refinement of the turbulence model in regions of merged boundary layers and nearly separated flow is indicated by the comparisons with data.

For slot cooled walls and highly curved walls, such as the ST9 IR suppression diffuser, further refinement of the turbulence model is also indicated. Specifically, the turbulence model should include the effects of wall curvature and the effects of a mixing layer between the hot and cold flows. Finally, the initial profiles setting up the slot cooled flow need smoothing of the temperature and density discontinuity in order to minimize nonlinear errors in the calculation. It is felt that if the indicated refinements and modifications were made, the resulting computer code would have a unique capability for predicting the development of flow fields in axisymmetric diffusers, including the effects of wall curvature, struts, swirl, and film cooling.

REFERENCES

- 1. Reneau, L. R., J. P. Johnson, and S. J. Kline: Performance and Design of Straight, Two-Dimensional Diffusers. Transactions of ASME, <u>Journal</u> of Fluid Mechanics, Vol. 89, March 1969, pp. 141-160.
- 2. Sovran, G., and E. D. Klomp: Optimum Geometries for Rectilinear Diffusers. Fluid Mechanics of Internal Flow. Elsevier Publishing Co., 1967.
- 3. Fox, R. W., and S. J. Kline: Flow Regime Data and Design Methods for Curved Subsonic Diffusers. <u>Journal of Basic Engineering</u>, Transactions of the ASME, Series D, Vol. 84, No. 3, September 1962, pp. 303-312.
- 4. Howard, J., H. Henseler, and A. Thornton-Trump: Performance and Flow Regimes for Annular Diffusers. ASME Paper 67, WA/FE-21, 1967.
- 5. Runstadler, P. W., and R. C. Lean: Straight Channel Diffuser Performance at High Inlet Mach Numbers. Transactions of ASME, <u>Journal of Basic Engineering</u>, Vol. 91, September 1969, pp. 397-422.
- 6. Dietz, A. E., and J. F. Thompson: Advanced Experimental Infrared Energy Suppression System for the T-53-L-11 or T-53-L-13 Turbine Engine. Hayes International Report No. 1172, 1968.
- 7. Thayer, E. B.: Evaluation of Curved-Wall Annular Diffusers. ASME Paper 71-WA/FE-35, September 1972.
- 8. Anderson, O. L.: A Comparison of Theory and Experiment for Incompressible, Turbulent, Swirling Flows in Axisymmetric Ducts. AIAA Paper No. 72-42, 10th Aerospace Sciences Meeting, January 1972.
- 9. Anderson, O. L.: Numerical Solutions of Incompressible Turbulent Swirling Flows Through Axisymmetric Annular Ducts. United Aircraft Research Laboratories Report No. H213577-1, March 1968.
- 10. Anderson, O. L.: User's Manual for a Finite-Difference Calculation of Turbulent Swirling Compressible Flow in Axisymmetric Ducts with Struts. United Aircraft Research Laboratories Report L911211-1, Contract No. NAS3-15402, 1972.

- 11. Kober, H.: Dictionary of Conformal Representations. Dover Publications, Inc., 1957.
- 12. Gaier, Dieter: Konstruktive Methoden der Konformen Abbildung, Springer Tracts in Natwal Philosophy, Vol. 8, 1963.
- 13. Keller, H. B., and T. Cebeci: Accurate Numerical Methods for Boundary Layer Flows-II Two-Dimensional Turbulent Flows. AIAA 9th Aerospace Sciences Meeting, New York, January 25-27, 1971, AIAA Paper No. 71-164.
- 14. Keller, H. B.: A New Difference Scheme for Parabolic Problems.
 Numerical Solution of Partial Differential Equation-II SYNSPADE 1970
 Ed. by Hubbard, B. Academic Pressure, New York.
- 15. Keller, H. B.: Accurate Difference Methods for Linear Ordinary Differential Systems Subject to Linear Constraints, SIAM J. Namar, Anal. Vol. 6, No. 1, March 1969.
- 16. Briley, W. R., and H. McDonald: An Implicit Numerical Method for the Multidimensional Compressible Navier-Stokes Equations. United Aircraft Research Laboratories Report M911363-3, November 1973.
- 17. Varah, J. M.: On the Solution of Block-Tridiagonal Systems Arising from Certain Finite-Difference Equations. Mathematics of Computation, Vol. 26, No. 120, October 1972.
- 18. Coles, D. E., and E. A. Hirst: Proceedings Computation of Turbulent Boundary Layers 1968 AFSOR-IFP-Stanford Conference, August 1968.
- 19. Stratford, B. S.: An Experimental Flow With Zero Skin Friction Throughout Its Pressure Rise. <u>Journal of Fluid Mechanics</u>, Vol. 5, 1972, pp. 17-35.
- 20. Bradshaw, P.: Effects of Streamline Curvature on Turbulent Flow. AGARDograph No. 169, 1973.

FIG. 1 CONFORMAL MAPPING OF DUCT.

(a) r(n,S), z(n,s) PLANE

(b) R (N,S) , Z (N,S) PLANE

FIG. 2. ROTATING AND SCALING DUCT.

FIG. 3. CONSTRUCTION OF SLOT IN DUCT.

FIG. 4. SCHEMATIC OF D-32 STAND.

FIG. 5. SWIRL GENERATION SECTION.

FIG. 6. INSTALLATION OF SLOT COOLING SYSTEM.

FIG. 7. DIFFUSER TEST RIG.

63

FIG. 9. AFT VIEW OF TEST RIG.

FIG. 10. LOCATION OF WALL STATIC PRESSURE TAPS.

FIG. 11. LOCATION OF WALL THERMOCOUPLES.

FIG. 12. INLET PLANE INSTRUMENTATION.

INLET TOTAL TEMP. = 1140°F SWIRL ANGLE = 21 deg

FIG. 13. OUTER WALL AVERAGE SURFACE TEMPERATURE FOR ST9 IR SUPPRESION DIFFUSER.

FIG. 14. EFFECT OF COOLANT FLOW ON WALL PRESSURES FOR ST9 IR SUPPRESSION DIFFUSER.

FIG. 15. EFFECT OF COOLANT FLOW ON PRESSURE RECOVERY FOR ST9 IR SUPPRESSION DIFFUSER.

FIG. 16. STREAMLINE COORDINATES FOR FRASER FLOW "A" DIFFUSER.

FIG. 17. COMPARISON OF EXPERIMENTAL AND PREDICTED WALL STATIC PRESSURE DISTRIBUTION FOR FRASER FLOW "A" DIFFUSER.

FIG. 18. COMPARISON OF EXPERIMENTAL AND PREDICTED WALL FRICTION COEFFICIENT DISTRIBUTION FOR FRASER FLOW "A" DIFFUSER.

FIG. 19. STREAMLINE COORDINATES FOR ST9 DEMONSTRATOR IR SUPPRESSION DIFFUSER.

ST9 DEMONSTRATOR IR SUPPRESSION DIFFUSER WITH NO STRUT

DATA TEST NO. 3.01 0,60 MRP SWIRL ANGLE 0 DEG COOLANT FLOW RATE 2.5%

FIG. 20. INLET EXIT MACH NUMBER DISTRIBUTION.

FIG. 21. COMPARISON OF EXPERIMENTAL AND PREDICTED WALL STATIC PRESSURE COEFFICIENTS FOR ST9 IR SUPPRESSOR DIFFUSER WITH NO FILM COOLING AND NO STRUTS.

TEST NO. 3.01 0.60 MRP SWIRL ANGLE 0 DEG COOLANT FLOW RATE 2.5%

FIG. 22. COMPARISON OF EXPERIMENTAL AND PREDICTED WALL STATIC PRESSURE DISTRIBUTION FOR ST9 IR SUPPRESSION DIFFUSER WITH 2.5% INJECTED COOLING AIR.

ST9 DEMONSTRATOR IR SUPPRESSION DIFFUSER

TEST NO. 3.01 0.60 MRP SWIRL ANGLE 0 DEG COOLANT FLOW RATE 2.5%

FIG. 23. COMPARISON OF EXPERIMENTAL AND PREDICTED WALL TEMPERATURE DISTRIBUTION FOR ST9 IR SUPPRESSSION DIFFUSER WITH 2.5% INJECTED COOLING AIR.

TEST NO. 2.02 0.60 MRP SWIRL ANGLE 0 DEG COOLANT FLOW RATE 5,0%

FIG. 24. COMPARISON OF EXPERIMENTAL AND PREDICTED WALL STATIC PRESSURE DISTRIBUTION FOR ST9 IR SUPPRESSION DIFFUSER WITH 5.0% INJECTED COOLING AIR.

TEST NO. 2 02 0.60 MRP SWIRL ANGLE 0 DEG COOLANT FLOW RATE 5%

FIG. 25. COMPARISON OF EXPERIMENTAL AND PREDICTED WALL TEMPERATURE DISTRIBUTION FOR ST9 IR SUPPRESSION DIFFUSER WITH 5% INJECTED COOLING AIR.

ST9 DEMONSTRATOR IR SUPPRESSION DIFFUSER

TEST NO. 101 0,60 MAP CFR = 0.10 SWIRL ANGLE 0 DEG COOLANT FLOW RATE 10%

FIG. 26. COMPARISON OF EXPERIMENTAL AND PREDICTED WALL STATIC PRESSURE DISTRIBUTION IR SUPPRESSION DIFFUSER WITH 10% INJECTED COOLING AIR.

TEST NO. 1.01 0.60 MRP SWIRL ANGLE 0 DEG COOLANT FLOW RATE 10%

FIG. 27. COMPARISON OF EXPERIMENTAL AND PREDICTED WALL TEMPERATURE DISTRIBUTION FOR ST9 IR SUPPRESSION DIFFUSER WITH 10% INJECTED COOLING AIR.

TABLE 1. LOCATION OF PRESSURE AND TEMPERATURE INSTRUMENTATION

		TABLE #1	
CAL	BB	TYPE	1. INCHES
PWO	_	WALL PRESSURE	1.250
	02		2.750
_	03		4,250
_	04		5.750
_	05		7.150
_	06		8,750
_	07		10,250
	_		11,750
-	08		13,250
_	09		
	10		14,650
	11		15.900
	12		14.700
	13		19 000
_	14		1.250
	15		2.750
_	16		4.250
+	17		6.250
-+	18		8.200
			9,700
-	19		10.900
-	20		12,000
_	21		
	22		13.200
	23		14.250
	24		15,250
-	25		16.350
-	26		17.350
	27		9,500
_			12,906
	28		16,312
	29		14,740
	30		
	31		16,232
Р	B01	PLENUM PROCESS A	SSHOWN
	02		
	03		
Т	W01	WALL TEMPERATUR	E 2.852
	1 02		9,500
	03		10.548
-	04		12,120
\vdash	05		12.906
	06		14,216
-	+-	+	15,7881
-	07		16.312
-	08		17,360
	09		
	10		18.669
	11		19.475
	12		13.954
	13		14,740
	14		15 788
-	15		16,232
-	16		17,360
-			RE 7.712
-	T801		12,706
	02		
\mathbf{L}	03		16.312
			12,574
F	04		
	04 05 06		14.740 AS SHOW

TABLE 2. TEST LOG

	-	-SUPPRESSOR INCET CONDITIONS -	INCET COND	SITIONS					0.500	3	REMARKS
DATE TEST NO.	SIMULATED	SWIFL	FLOW	TOTAL	MACH NO	PERCENT OF INLET	FLOWBATE	WALL FLOWHATE LBISEC	WALL FLOWRATE LB/SEC)	
	- MRP	DEG	CBISEC	30		FLOW	and the second			1190	
ROS 73 1.01	99	0	6.367	924	0.287	9.76	0.621	0.405	9170		4
		c	9609	328	0,274	5.21	0.317	0.217	0.100	1190	NAPLE COL
6/25/73 2.02	8 8		6377	924	0.287	4.93	0.314	0.217	0.097	0.588	REPEAT OF TEST
6/25/73 3.01	8	o	6.377	910	0.285	2.64	891.0	0.100	0.069	0.580	
		9	7.887	1030	0.378	9 28	0.756	0.521	0.735	0.566	
6/25/73 4.01	2			-	30.00	5.04	0.395	0.271	0.124	0.556	
6/25/73 5.01	8	91	7.850	cros			0.363	0.121	0.132	0.563	INVALID DATA?
6/25/73 6.01	2	91	7.852	1030	0.375	373			0.067	0.559	REPEAT OF TEST
6/25/73 6.02	2	9	7.882	1035	0.378	3 62	0,206				
		F	8.470	1140	0.417	97.6	0.825	0.541	0.284	0.369	
6/26/73 7,01	8		8377	1140	0,411	4.93	0.413	0,272	0.141	0.364	
6/26/73 8.01	00 1	, F	8.379	1140	0.411	2.66	0 223	0.139	0.084	0.358	

1, INLET FLOW DECREASED DURING TEST
2, INNER WALL FLOW INCREASED DURING TEST

TABLE 3. TEST DATA

MRP = 60 SMINL ANGLE =	SMIKE		0.0 NO IR OATA	A A				
מא איטא	O	DATA PT	a. ÷	P A CO	0 4 0			
1.0000	0	0010.0	29	29.9000	14.6868			
WEIGHT FLOW RA	FLOW RATE, PRIMARY P1	ARY OEL P 4.8137	₹ 680	TEMP (K) 680.0001	FLON RATE 6.2875			
FUEL TU AIR RATIO	R RATIO	= 0.0126	u.	FUEL FLUW RATE	1610.0 = 3	LBW/SEC		
TUTAL PRIMARY FLUW RATE =	ARY FLUI		6.3672 LBV	LBM/SEC				
WEIGHT FLOW RATE, CUCLING AIR	ATE . COC	ING AIR						
OUTER WALL P1	٦ . e	DEL P 30.5000	1EV	TEMP (R)	FLOW AATE			
INNER WALL PI	ન જ	DEL P 16.5000	1E/	TEMP (R)	FLOW RATE 0.2159			
BASE P1	80	0.0000	T 4	TEMP (R)	FLOW RATE			
TOTAL TEMP. (AFT		OF BURNER CANI	1 = 1445.000	000 OEG R	INLE	INLET TOTAL TEMP.	. = 1384.000	DEG
PLENUM (VANIFOLD)	CLO3 PR	PRESSURES PSIA	¥1					
SUTER WALL	NALL 50	INNER WALL 18.4143		BASE 14.5697				
INLET PROBE	OATA	(BASED UN	(BASED UN INLET CATA)					
PTB 14.95391 1	PSI 14.16515	PSBAR 14.23713	A R	(PT1-PA)/G1 0.39775	UENSITY C	CAL FLO RATE 6.23049	uFL0 0.81875	0.7467
NATO	VEL	<u>-</u>	<i>S</i> 4	>				
	0000000	14.16515	14.16515	00906				
C.04522	0.72707	14.90004	14-16515	4.98500				
	0.906.0		14-16515	5.17599				
	0-86713	14.97953	14.16515	5.33599				
	0.86924		14.16515	5.33599				
	0.94617	15.09153	14.15515	7.50504				
0.33917	0.87125		14.16515	5.69500				
	0.88910		14.15515	5.69600				
0.54267	0.96836	15.13488	14.16515	5.86599				
	0.96082		14-16515	6.03599				
C-63877	0.90467	15.01254	14.10010					

0.80095

-	.1651	4.1651	0000000	1.000000
7	1691.	4.8422	0.80890	0.92142
6.53599	14.16515	14.97953	0.88713	0.92142
00	•1651	5.0192	0.90852	0.83663
ന ന	.1651	5.1999	1.00000	0.83663
-	.1651	5.0337	0.91618	0.74053
4	1691.	5.1204	0.96082	0.74053

					5 14.07989 10 14.10518 15 14.6884	0 14.6868	5 -0.1164	000	1669.0																			
0. 4	PSIA 14.6868				4 14.18828 9 14.19550 14 14.68687	9 14.6868	0.0174	9 0.02632 14 0.63316 19 0.63316		a	ת כ	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	5 0 2226	6 0 3475	7 0.4457	2020	0.1423	0.1790	0.2534	0.4532	0.5220	26 2.67778						
P AVB.	1%• HG 29•9000	ET DA		ES	3 14.18828 8 14.19912 13 14.68687	8 14.6868	0.0174	8 0.03078 13 0.63316 18 0.63316		IN TERMS OF	411	0.008	0.124	0.1423	0.0709	0.316	7 0.44575	0.5305	0.5835	0.00	2 0.6242	3 0.8116		S	14.65797		0.59746	* 0.75492
DATA PT	0.0100	S (BASED ON INL	SSURES	ABSCLUTE PRESSURE	2 14.19550 7 14.19912 12 14.68687	H + 0808	0.0263	2 0.63316 7 0.63316	URES	PRESSURES	ב מת	4 14.1521	5 14.3544	6 14.455	14.535	9 14 423	0 14.2	14.3193	176.53697	14.59655	14.55881	14.72300	(ES	ABSCLUTE PRESSURES	14.64713 3		0.58408 3	ETA
02 20	1.0000	PRESSURE CUEFFICIENT	INLET STATIC PRES	IN TERMS OF AE	1 14,17383 6 14,21718 11 14,68657	IN TERWS OF C	4000.0-		STATIC WALL PRESSURE	IN TERMS OF ABSOLUTE	N all	14.18105	14.27499	14.28944	14.30078	14,43035	4.53513	14.660377	0 14.63990	14.64713 2	2 14.57965 2	3 14.83139 2	STATIC BASE PRESSUR	IN TERMS OF AUS	1 14.64713 2	IN TERIS OF CH	1 0.58408 2	CP = 0.63316

A B	8 6 8	TOT FLO RATE 6.36723			2	10	580 15 0.65580 580 20 0.65580																	
a '	14.6868	TOT FL 6.3					14 0.65580 19 0.65580																	
P AMB	29.9000 RATE	FUEL AIR RATIO 0.01267	DENSITY 0.02801	S OF CP		00	13 0.65580 18 0.65580	OF CP														CP.	3 0.61883	20192
DATA PT	0.0100 WEIGHT FLOW RA	FUEL FLO RATE 0.07972	V AVG. 508-49285	RES. IN TERMS	0.02726	0.03188	0.65580	PRESSURES. IN TERMS	HUB	-0.02819	0.23061	0.36002	0.46169	0.41548	0.31842	0.14742	0 10 10 0	0.26296	0.40031	0.63269	0.70202	S IN TERMS OF	3.60496	и •
0	ASED ON W	FUEL F	OFLCW 0.78176	OEFFICIENTS STATIC PRESSURES, IN			12									20						PRESSURES	2	4
S NO	1.0000 CALCULATIONS BASED ON	AIR FLO RATE 6.28751	MACH NO. 0.28673	PRESSURE COEFFICIENTS INLET STATIC PRES	1 -0.00046		11 0.65580 15 0.65580	STATIC WALL	TIP	1 0.00878	0			5 0.16129		7 0.46169			11 0 60,06			STATIC BASE	1 0.60496	a 2

5 14.07989 10 14.10518 15 14.68687 20 14.68687 PW17 14.53513 PW22 14.37977 PW 4 14.23163 4 14.18828 9 14.19550 14 14.68687 19 14.68687 P AMB PSIA 14.6868 333 DKJ-5600 PW 3 14.28944 PW 8 14.60377 PW13 14.83139 PW16 14.45564 PW21 14.31835 PW26 14.72300 P AMB IN. HG 29.9000 14.18828 14.19912 14.68687 14.68687 ST9 FULL SCALE DIFFUSER (IR SUPPRESSING)
SAIRL ANGLE = 0.00 DEGREES 6 m 6 m PW 2 14.27499 PW 7 14.53513 PW12 14.67965 PW15 14.35448 PW20 14.28944 PW25 14.66881 INLET STATIC PRESSURES. PSIA 2 14.19550 7 14.19912 12 14.68687 17 14.68687 0.0100 STATIC WALL PRESSURES. PSIA DATA PT Pw 1 14.18105 Pw 6 14.43035 Pwll 14.64713 Pw14 14.15215 Pw19 14.42312 Pw24 14.59655 INNER WALL OUTER WALL 1 14.17383 6 14.21718 11 14.68687 16 14.68687 RUN NO 1.0000

PW 5 14.30028 PW10 14.63990

Pw18 14.49900 Pw23 14.53874

9 9 9 1 1 1 8 1 4 4 1	T 3 L
15.3950 PSIA = 120.000 F = 125.000 F = 0.0000 F = 115.000 F 271 = 114.47009 281 = 14.64713 291 = 14.62545	TW (F) 265.00006
(TB01) = 15 (TB02) = (TW02) = (TW02) = (FW27) 5s (FW27) 5s (FW29)	(IN) (IN) (B•32200
PRESSURE TEMPERAT TEMPERAT TEMPERAT TEMPERAT L STATIO	X (IN) 8.71800
INCET TOTAL INCET	(IN) 8•45200
CCCCCLANT CCCCCLANT CCCCCLANT CCCCCLANT CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	-

			2		z		•		~		3		4		3	E	74				3		3		
	(u		900000		50000		10.00006		1) 900000	0000000	1 90000 05	000000	1 20000 20	0000000	1 20000	0000000	1 20000	00000	20000	0000000	1 30000	0000000	00000		
•			000	276	200	7		1	400	757	100	α V		7 7 8		366		180		0		8 39 700	0	7	
~		2	-	7 7 8		7		101		2 7 4 9		3 537		A S A A		207.4		7.054		4		4.540		20,35900	
7	,	- 2		200	1			087		200		0	ה ס	9 6	0	0	000	130	?	0	000	707	2	19.47500	
					1	,	7	•	9	•	t		n		0)	_		r		J*		5	6 1	

OUTER WALL

INNER WALL

DKJ-5600

					PSIA	PSIA	
.4143 PSIA	00000	000	•	950.000 F	= 14,51823	= 14.61461	
PRESSURE (PB02) = 18.	TEMPERATURE (T804) =	TEMPERATURE (TB05) =	T (1	TEMPERATURE (TWUCI) =	LL STATIC PRES. (PW30)	LL STATIC PRES. (PW31)	RATE = 0.21595 LB/SEC
COOLANT INLET TOTAL	COOLANT INLET TOTAL	COOLANT INLET TOTAL	COOLANT INLET TOTAL	INNER WALL UNCOOLED	EL NO. 1 WA	INNER PANEL NO.2 WAL	TOTAL COOLANT FLOW P

		(TW12)	(TWIB)	(TW14)	(TW15)	(TW16)	-5575
*	(F)	300000000	0.00000	0.00000	5		OK.
αx	(NI)	7.63600	7.18700	6.39000	6.01200	0	
×	(ZI)	9	15.93000		17.83000	19.33400	BASE REGION
7	(NI)	13.95400	4	15.78800	16.23200	17.36000	ш
		-	7	m	1	S	

						PSIA	
			AS	BASE 2	ASE		8
STATIC	PRESSURE	(PSIA)	14.64713 P	14.64713 P	14.65797 P	ES	
RADIUS		CIL	1 0.00000	5700	3 3.10000	LANT INLET	COOLANT FLOW

		80	80	(TWB03)	30
×	(F)	0000000		560,00012	
×	(IN)	0.21990	1.34310	2.43100	3.75300
œ	(IN)	1.20000	1.92000	2.62000	3.58000
		7	7	m	1

BASE BULK TEMP (TBB1) = 515.00012 F

MIDSPAN INLET TOTAL PRESSURES

NO. PT(PSIA)
1 15.015
2 15.040
3 15.131
4 14.957

HOT FLOW TEST WITH 0.05 COOLING FLOW RATE MAP = 60 SWIRL A "LE = 0.0 NO IR DATA PRIMARY FLOW CHANGED

a 4	6.0	47E 55	FUEL FLUW RATE = 0.0797 LBM/SEC			Li i
U Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q	14.6868	FLCW RATE	W RATE = 0.			0
9 A X B	29.9000	TEMP (R) 680.0001	FUEL FLU	LBW/SEC		0
DATA PT	0.0100	PRIMARY DEL P 4.2243	TIU = 0.0132	TOTAL PRIMARY FLOW RATE = 6.0952 LBM/SEC	COOLING AIR	
ON NOW	2.0000	WEIGHT FLOW RATE, PRIMARY P1 19.0094	FUEL TO AIR RATIU = C.0132	TOTAL PRIMARY	WEIGHT FLOW MATE COOLING AIR	OUTER WALL

			INLET TOTAL TEMP. = 1385.000
FLOW RATE 0.2169	FLOW RATE	FLOW RATE	INLET TO
TEMP (R) 545.0001	TEMP (R) 540.0001	TE. P (R)	1450.000 DEG R
UEL P	DEL P 5.0000	0.0000 0.0000	BURNER CAN) .
OUTER WALL 91.6868	INNER WALL P1 21.2868	9ASE P1 14.6868	TOTAL TEMP. (AFT OF BURNER CAN) = 1460.000 DEG R

PLENUM (MANIFOLD) PRESSURES PSIA

		JW1 0.72525																
		JFL0																
OUTER WALL BASE 14.9867 15.7625 1+.6229		DENSITY 0.00087																
ASE •6229		(PT1-PA)/G1 0.42185	>	00906.7	00986.5	00986.7	5.17599	5.17599	5.33599	5-33599	5.50599	5.50599	2.69600	5.69600	5.85599	5.86599	66560.9	6.03599
	INLET DATA)	A R 2 • 49000	50	14.19695	14.19615	14-19635	14.19695	14-19695	14.19695	14.19695	14.19695	14.19695	14.19595	14.19695	14.19595	14.19695	14-19695	14.19695
INNER WAL 15.7625	DATA (BASED ON INLET DATA) 51 PSBAR A R (PTI-PA)/G1 DENSITY CAL FLO MATE UFLO 19695 14.26757 2.49000 0.42185 0.00087 6.14322 0.79588	T d	14.19695	14.74107	14.89643	15.015.55	14.99036	15.06262	14.96507	15.08433	14.95785	15.09514	14.99036	15.17824	14.97591	15.10959	15.02288	
WALL 9867	ROBE DATA	PSI 14.19695	VEL	0000000	0.7.938	0.81621	0.88304	0.86929	0.90802	0.85533	0.91931	0.83129	r.92491	0.86929	0.95675	0.36134	0.93232	0.88693
00TE	INLET PE	PTB 14.99283	NAGS	0000000	0.04522	0.04522	0.15262	0.15262	0.24307	0.24307	0.33917	0.33917	0.44657	0.44557	0.54267	0.54267	0.63877	0.63877

0.77801

DEG R

.2159	.2159	3859	• 3859	6.53599	• 5353	573
1969	1969	1969	1969	14.19695	1969	1969
5.109	5.040	5.246	5.025	14.95062	4.878	4.196
.932	.896	0000	.888	0.84724	.805	0000
•7405	5	8366	8366	0.92142	9214	0000

THIS REPORT HAS BEEN DELIMITED

AND CLEARED FOR PUBLIC RELEASE

UNDER DOD DIRECTIVE 5200.20 AND

NO RESTRICTIONS ARE IMPOSED UPON

ITS USE AND DISCLOSURE.

DISTRIBUTION STATEMENT A

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

				5 14.11602		0		5 -0.11484		15 0.61098																						
P AMB PSIA 14.6868				4 14.21718	, 1					14 0.61098	•		e O	80 1	•	•		•	18 C-41803					_	_	_						
P AMB. IN. HG 29.9000	DATA)			14.21718	14.23163	14.68687		0.01378	0.03215	0.61098	0.61098		IN TERMS OF C	TIP	0.02756	0.14700	0.16997	0.09187	0.18375	0.35372	0.46837	0-52829	0.60179	0-60179	0.61098	0.84526			14.65797		0.57422	0.72847
	INLET D		SURES		00 0	1 6		m	60	13	18				-	N	6	4	2	91	- 0	10 0	• =	? =	12	13		PRESSURES	6		6	ETA =
0.0100	ED ON	RES	LUTE PRESSURE	14.22802	14.23163	14.68687		0.02756	0.03215	0.61098	0.61098	ES	PRESSURES	HUB	4	14.39422	14.49538	14.57848	•	14.47009	14.34364	14.37615	14.45925		14-68326	4.7266	S	ABSOLUTE PRES	14.66519		0.58341	
		PRESSURES	UF ABSCLUTE			17	OF CP	2	7	12	17	PRESSURES	ABSOLUTE P		14		16	17	18	19	20	21	27	2,0	25	56	PRESSURES	OF ABS	7	OF CP	2	0.61098
2.0000	U	INLET STATIC	IN TERMS (1 14.68687	IN TERMS				16 0.61098	STATIC WALL	TERMS OF ABS	TIP	ř			14		_						13 14.87113	ATIC BASE	IN TERMS	14.66519	IN TERMS	0.58341	0 # 2 U
	PRESSURE	=				11					1	S	- ZI												-		ST		1		1	

								20 0.67096																	ę	
4 0	14.0000	TUT FLO RATE 6-09529			0.01513		0.67096																			
P AMB.	29.9000	FUEL AIR RATIO 0.01325	DENSITY 0.02802	a)	0.01513 4		0.67096 14		a. U																0.63060	66667-0
DATA PT	0.0100 WEIGHT FLOW RATE	FUEL FLU RATE FUEI	V AVG. DI	RES. IN TERMS OF	0.03026		0.67096 13	1	PRESSURES. IN TERMS OF	HOB	-0.02017	0.26233	0.40358	0.51961	0.45908	0.36827	0.19170	0.23710	0.35314	0.54988	0.58015	0.66591	0.72645	IN TERMS OF CP	0.64069 3	# 4 1
RONNO	2.0000 CALCULATIONS BASED ON WE		NO. GFLOW 7422 0.71617	PRESSURE COEFFICIENTS INLET STATIC PRESSURES, IN TERMS	0.00000	7	12	17	STATIC WALL PRESSURE	TIP	14	15	16	17	18	19	0.51457 20	21	22	23	24	6 25	.92825 26	C BASE PRESSURES IN TERMS	0.64069 2	0.67096
	CALCULA	AIR FLO RATE	MACH NO. 0.27422	PRESSURE CINCET	-1	S	11	16	STAT		7						7			10	11	12	13	STATIC	7	

RATIO OF RAKE AVE Q TO FLOW AVE Q = 1.09817

ST9 FULL SCALE DIFFUSER (IR SUPPRESSING)
SWIRL ANGLE = 0.00 DEGREES

						5 14.35086 0 14.67965		8 14.53513 3 14.60016		
			14.11502 14.13770 14.68687 14.68687			3 3 4 5 6 9 9 9		7 7 2 8 1 0 1 0 1 0		
			5020			14.27860		14.57848		
P ANB	14.6868		14.21718 14.22802 14.68687 14.68687			3 3 3		P#17	0099	11 P P S 14 P S
0 Y	000		1046			14.34002 14.62184 14.87113		14.49538 14.37615 14.72661	DKJ-5600	9867 PSIA 155.000 F 210.000 F 0.000 F 825.000 F 14.53151 14.65713
IN AMB	29.9000		3 14.21718 8 14.23163 13 14.68687 18 14.68687			0 0 0 8 8 8 1 1 1 1 1 1 1 1 1		P P E E E E E E E E E E E E E E E E E E		944 """
DATA PT	0.0100	ES. PSIA	14.22802 14.23163 14.68687 1	S. FSIA		PW 2 14.32196 PW 7 14.57487 PW12 14.68687		PW15 14.39422 PW20 14.34364 PW25 14.68326	OUTER WALL	TINLET TOTAL PRESSURE (PBO1) = 14 INLET TOTAL TEMPERATURE (TBO1) = 14 INLET TOTAL TEMPERATURE (TBO2) = 14 INLET TOTAL TEMPERATURE (TBO2) = 14 INLET TOTAL TEMPERATURE (TWUCO) = 14 PANEL NO.1 WALL STATIC PRES. (PW27) PANEL NO.2 WALL STATIC PRES. (PW27) PANEL NO.3 WALL STATIC PRES. (PW28)
_		RESSUR	4444	RESSURE					OUTER	TACL TACL TACL TACL TEST ACL ACL ACL ACL ACL ACL ACL ACL ACC ACC
0 × 0 × 0	2.0000	INLET STATIC PRESSURES, PSIA	1 14.20634 6 14.24970 11 14.68687 16 14.68687	STATIC WALL PRESSURES. FSIA	OUTER WALL	Pw 1 14.22802 Pw 6 14.48454 Pw11 14.67965	INNER WALL	PW14 14.19189 Pw19 14.47009 Pw24 14.62184		COOLANT INLET TOTAL PRESSURE (PBO1) = 14 COOLANT INLET TOTAL TEMPERATURE (TBO1) = COOLANT INLET TOTAL TEMPERATURE (TBO2) = COOLANT INLET TOTAL TEMPERATURE (TBO3) = OUTER WALL UNCOOLED TEMPERATURE (TWUCO) = OUTER PANEL NO.1 WALL STATIC PRES. (PW27) OUTER PANEL NO.2 WALL STATIC PRES. (PW28) OUTER PANEL NO.3 WALL STATIC PRES. (PW28)

(F) 330.0006 410.00003 410.00006 425.00006 60.00006 420.00006 470.00006 470.00006

(11N)
88.32200
88.45200
9.91600
9.945400
9.945400
9.345600
9.346600

(1N) 0.00

(1N) 9.5000 10.554800 112.90600 112.90600 112.78800 113.38800 113.31200 114.51600

INNER WALL

DKJ-5600

9 0 d d d d d d d d d d d d d d d d d d
INLET TOTAL PRESSURE (PB02) = 15.7625 PSIA INLET TOTAL TEMPERATURE (TB04) = 108.000 F INLET TOTAL TEMPERATURE (TB05) = 275.000 F INLET TOTAL TEMPERATURE (TB06) = 86.000 F INLET TOTAL TEMPERATURE (TWUCI) = 970.000 F ALL UNCOOLED TEMPERATURE (TWUCI) = 970.000 F ANEL NO.1 WALL STATIC PRES. (PW31) = 14.62545 P ANEL NO.2 WALL STATIC PRES. (PW31) = 14.67965 P OCLANT FLOW RATE = 0.10046 LB/SEC
COOLANT COOLANT COOLANT COOLANT INNER P INNER P TOTAL

(IN) 7.63600 395.00006 (TW12) 7.18700 0.00000 (TW13) 6.39000 0.00000 (TW13) 6.01200 365.00006 (TW15) 5.01800 465.00006 (TW16)	(IN) (IN) (F) (F) (F) (F) (F) (F) (F) (F) (F) (F	(IN) (IN) (F) (F) (F) (F) (F) (F) (F) (F) (F) (F
w w4 0 0 0 0 0 0 3 ≥ (0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(IN) (IN) (F) (F) (F) (F) (F) (F) (F) (F) (F) (F	(IN) (IN) (F) (F) (F) (F) (F) (F) (F) (F) (F) (F
(IN) 7.63600 7.18700 6.39000 6.01200 5.01800	(IN) 15.02400 17.24800 17.83000 19.33400	(IN) (IN) (3.95400 15.02400 4.74000 15.93000 5.78800 17.24800 6.23200 17.83000 7.36000 17.83000
	- 21112	(IN) 3.95400 15 4.74000 15 5.74800 17 6.23200 17

	4 1 8 d	
	BASE 1 BASE 2 BASE 3 = 14.6229 LB/SEC	3 -
STATIC PRESSURE	000000 000000	×
RADIUS	(IN) 1 0.00000 2 1.57000 3 3.10000 COOLANT INLET TOTAL TOTAL COOLANT FLOW F	a

		COMMIT			
X L	(F)	0	1000	1000-60	0000
×	(21)	0.21990	m.	~	m
œ	(21)	- 20	•92	2.62000	.58
		-4	7	'n	4

BASE BULK TEMP (TBB1) = 690.00012 F

MIDSPAN INLET TOTAL PRESSURES

NO. PT(PSIA)
1 15.004
2 15.040
3 15.127
4 14.954

										INLET TOTAL TEMP. = 1384.000 DEG			TE UFLO GWI 0.84552 0.77103										
				LBM/SEC						TOTAL TE			CAL FLO RATE										
P A CB	PSIA 14.6868	FLOW RATE	6.2973	E = 0.0797			FLOW RATE	FLCW RATE	FLOW RATE	INLET			DENSITY CA										
P AMB.	IN. HG 29.9000	TEVP (4)	680.0001	FUEL FLOW RATE	LBM/SEC		TEVP (R)	TEMP (R)	TEMP (3)	DOO DEG R	3ASE 14.6229		(PT1-PA)/Q1 0.44808	>	00906.7	5.17599	5.17599	5.33599	5.50599	5.69600	5.69600	5-86599	00000
P AMB.	25	ŢĒ	999		6.3771 LBA		TE 54.5	7 34 34	1E.	1465.000		INLET DATA	A R 2.49000	Sa	14.18683	14.18683	14-14683	14.18683	14.18683	14.18683	14.18683	14.18683	2000
DATA PT	0.0200	ARY DEL P	4.8137	= C.0126		ING AIR	DEL P 15.0000	DEL P 5.0000	DEL P	BURNER CAN	INNER WALL	(BASED ON INLET DATA)	PSBAR 14.26133	Pd	14.18683	14.93256	15.03733	15.11321	15.13850	15.00120	15.03372	15-18547	20.00
S	2.0000	WEIGHT FLOW RATE . PRIMARY	1638	AIR RATIC	TOTAL PRIMARY FLOW RATE	WEIGHT FLOW RATE , COOLING AIR	ER WALL P1 37.6868	ER WALL P1	E P1 14.6868	TOTAL TEMP. (AFT OF BURNER CAN)	OUTER WALL	DATA	PS1 14-18683	VEL	0.72901	0.84016	0.89725	0.93641	0.94911	0.95450	0.84534	0.97225	0,000
S	2.0	EIGHT FLOW	18.7638	FUEL TO AIR	TOTAL PR	EIGHT FLOW	OUTER WALL P1 37.6868	INVER WALL PI 20-1868	BASE 14.6	TOTAL TEMP.	OUTER	INLET PR	PTB 15.03236	SPAN	0.00000	0.04522	0.15262	0.24307	0.33917	0.44657	0-44657	0.54267	107+00

1617	2159	3859	3859	5359	35	6750
8	36	36	36	36	36	14.18683
_	6	7	4	,) (14.18683
9669	0272	0000		0770	7600	0000000
0.74053	74.050	67760	69969	0000000	24176-0	1.000000

n diva	4.683				20556 5 14.10	4.21357 10 14-1232	68657 15 14.58	58587 20 14.58		5 -0-11	02285 10 -0.	.58769 15 0.58	\$5.0 0× 69785.				.0159	.2341	.3540	.4540	6415	.32-6	30356	100	4842	5100	.5833	.5963					
	-1				P**	6		6			9 0	1			OF CP	ı	1	2	٥	-	00	0	200	4 0	4 7	· ·	5	٥					
2	900	ATAI			4.2099	14.21715	4.586B	4.5868		O X K	•	.5876	5876		IN TERMS O	1	.0271	.1435	.1651	.c91e	.1780	.3419	0.44971	5076	5 E 7 E	5790	.5876	.5162			14.65435		0.54858
		INCET D		SURES	m	20	6.4			(4) 20		10 r-1				H	2	•	1	U	۵	~ a	0 0			2			URES	т		m
DATA PT	0.0200	BASED ON I	JRES	SCLUTE PRESS	4.2171	14.21718	4.6858	4.6838		.0271	20	5876	0.58769	ES	PRESSURES	r S	1810	9065	4.4917	4.5746	2453	++4564	14.33641	000	4001	4.621A	4.6832	4.5941	S	CLUTE PRESS	14.66158		0.55751
		S	PRESSURE	A B	~	7	12		3	0	7.		27	PRESSURE	SULUTE		1	15	16	17	æ0 ⊏1	61	2:	4 C	7 .	1.	1 11	57	ESSUKE	A A E S	2	OF CP	7
AUN NO	2.0000	JAL CUEFFICIENT	T STATIC	IN TERMS	14,195	14,23986	14.686	14.686	IN TERMS U		0.0012	0.5875	0.58769	PTIC WALL	RKS OF AR	d F	14.217	14.314	14,332	14.271	14.343	14.480	14	7.00 · · ·	001	14.470	14.686	14.878	ATIC HASE DE	IN TER'S C	14.66519	IN TERVS U	0.56182
		PALSSUR	4		-		7.7	15			4 4	11	16	E S	IN TE		1	, ,	-	1	•	٥	7				12		STA		-		e4

					5 -0.11857 10 -0.09088														
PSIA	14.6868	TOT FLO RATE 6-37710				0.62885													03
D AMB.	29.9000 RATE	FUEL AIR RATIO 0.01265	DENSITY 0.02805	1S OF CP		0.62885	OF CP									OF CP	3 0.58733	ETA = 0.74978	FLOW AVE Q = 1.07003
DATA PT	0.0200 WEIGHT FLOW	FUEL FLU RATE 0.07972	UFLCW V AVG.	SURE COEFFICIENTS INLET STATIC PRESSURES. IN TERMS	2 0.02906		PRESSURES. IN TERMS OF	HUB	1		17 0.48583	18 0.44450	21 0.21823		25 0.62424	PRESSURES IN TERMS	2 0.59656	0.52885 ET	RAKE AVE O TO
0 2 2 2 2	Z-0000 CALCULATIONS BASED ON	AIR FLO RATE FI	MACH NO. GFLCW 0.28589 0.783	PRESSURE CUEFFICIENTS INLET STATIC PRES	1 0.00138		STATIC WALL PR	d11	1 0.02906			5 0.19055	000000			STATIC BASE PRI	1 0.60117	0 0	RATIO OF

14.34364 14.54235 PE D PW18 14.10157 14.12324 14.68687 14.68687 14.27138 14.57487 5000 P AMB PSIA 14.6868 14.20996 14.21357 14.68687 14.68687 Pw17 40 PSIA PSIA PSIA 3 3 3 DKJ-5600 COCLANT INLET TOTAL PRESSURE (PB01) # 14.9831 PSIA COOLANT INLET TOTAL TEMPERATURE (TB01) # 165.000 F COCLANT INLET TOTAL TEMPERATURE (TB02) # 220.000 F COCLANT INLET TOTAL TEMPERATURE (TB03) # 0.000 F OUTER WALL UNCOCLED TEMPERATURE (TBUC3) # 842.000 F OUTER PANEL NG.1 WALL STATIC PRES. (PW28) # 14.88197 OUTER PANEL NO.2 WALL STATIC PRES. (PW28) # 14.73929 OUTER PANEL NO.3 WALL STATIC PRES. (PW29) # 14.73023 TOTAL COOLANT FLOW RATE # 0.21594 LB/SEC 4040 PW16 14.49177 PW21 14.36532 PW26 14.69410 14.33280 14.62906 14.87836 P AMB IN HG 29.9000 14.20996 14.21718 14.68687 14.68687 ST9 FULL SCALE DIFFUSER (IR SUPPRESSING)
SWIRL ANGLE = 0.00 DEGREES 13389 S S PW15 14.39061 PW20 14.33641 PW25 14.68326 14.31473 PRESSURES, PSIA 14.21718 14.21718 14.68687 14.68687 DATA PT 0.0200 STATIC WALL PRESSURES, PSIA SUTER WALL PW 2 PW 7 PW12 222 14.21718 14.49093 14.67965 14.18105 14.46648 14.62184 INLET STATIC OUTER WALL INNER WALL 1 14.19550 6 14.23886 11 14.68687 16 14.68687 RUN NO 2.0000 P 2 % 1 PE19 PE19

INNER WALL

9 8 8 1 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8
S
5555444

	(TW12) (TW13) (TW14) (TW15)	0KJ-64
	(F) 415.00006 0.00000 380.00006 380.00006 485.00006	-040
	R (IN) 7.63600 7.18700 6.39000 6.01200 5.01800	
1	x (IN) 15.02400 15.93000 17.24800 17.83000	BASE REGION
TOTAL COCLANI PLOW NAIL	2 (IN) 13.95400 14.74000 15.78800 15.23200 17.36000	
TOTAL	⊣ ∨≈ 7 €	

	189
	P BASE 1 P BASE 2 P BASE 3 = 14.6229
	(PSIA) 14.66519 14.66158 14.65435 PRESSURE (PB03 RATE = 0.00000
RADIUS	(IN) 1 0.00000 2 1.57000 3 3.10000 COCLANT INLET TOTAL
	J,

	(TWB01)	(TWB02)	(TWB03)	(TWB04)	
(u)	000000	650.00C12	725.00012	000000	
Χ :		0.21990	1.54910	000510	3. (2500
~	(NI)	1.20000	1.92000	2.62000	3.58000
		7	7	n	1

BASE BULK TEMP (TBB1) = 702.00012 F

WIDSPAN INLET TOTAL PRESSURES

NO. PT(PSIA)
1 14.318
2 14.274
3 14.177

8 2 4	PS1≯ 14.6868	FLOW RATE 6.2973	TE = 0.0797 LBM/SEC			FLOW RATE	FLOW RATE	FLOW RATE	INLET TOTAL TEMP. = 1370.000				1 DENSITY CAL FLO RATE UFLO UM1 0.00088 6.33597 0.83636 0.76243									
P AMB.	IN. HG 29.9000	TEMP (R)	FUEL FLOW RATE	LBM/SEC		TEMP (R)	TEMP (R)	TEMP (R)	000 DEG R		BASE 14.6442	7	(PT1-PA1/G1 0.45628	>	4.98600	4.98600	5.17599	5.33599	5.50599	5.50599	5.69600	2.60037
	2	↑ 68		6.3771 LB		7.E		1E	1 = 1450.000	¥1		INLET DATA	A R 2.49000	5 4	14.19839	14.19839	14.19839	14-19839	14-19839	14.19839	14.19839	14.19839
DATA PT	0.0100	ARY DEL P 4-8137	- 0.0126		ING AIR	DEL P 5.0000	DEL P 2.5000	DEL P	SURNER CAN	SSURES PS	INNER WALL 15.2193	(BASED ON INLET DATA)	PSBAR 14.27232	F	14.19839	14.93617	15.03733	15-11321	15.13488	14.99759	15.03011	15.22521
RCN NO	3.0000	WEIGHT FLOW RATE.PRIMARY P1 18.7638	FUEL TO AIR RATIO	TOTAL PRIMARY FLOW RATE	WEIGHT FLOW RATE. COOLING AIR	ER WALL P1 21.1868	ER WALL P1	E P1 14.6868	TOTAL TEMP. (AFT OF BURNER CAN)	PLENUM (MANIFOLD) PRESSURES PSIA	J4.7699	INLET PROBE DATA	PSI 14.19839	VEL	0.00000	0.82890	0.88390	0.92301	0.93388	0.93927	0.88009	0.97788
RUN	3.0	16HT FLOW	FUEL TO	TOTAL PR	IGHT FLON	CUTER WALL	INNER WALL PI	BASE 14.6	TAL TEMP	ENUM (MAT	OUTE 14	INLET P	PTB 15.03476	SPAN	0.00000	0.04522	0.15262	0.24307	0.33917	0.33917	0.44657	0.54267

0.61766

```
0.74053 0.94995 15.16740 14.19839 6.21599
0.74053 0.91201 15.09153 14.19839 6.21599
0.83663 1.00000 15.27218 14.19839 6.38599
0.82142 0.86271 14.99759 14.19839 6.53599
0.92142 0.81250 14.99759 14.19839 6.53599
1.00000 0.00000 14.19839 14.19839 6.57500
```

					10 14-13770				-0-1104		0.5795	0 0.5795																							
14.6868				14.22080	14.22802	14.68687	14.68687		1410	0.0000	5795	.5795			HUB	C 200 0-	0.2387	0.2567B	0.643976	0.42229	0.33058	0.17337	0.21267	0.32185	0.48779	0.50526	0.57950	0.61881							
					0		0		,	1 0	14	19		OF CP			1 4	-	1 1		19	20	21	22	23	54	52	56							
IN. HG 29.9000	DATAJ			14.22080	14.23163	14.68687	14.68687			0-01615		0.57750		IN TERMS	411		0.03362	00000	0.6970	2000	0.35242	0.44413	0.55767	0.57950	0.58824	0.57514	0.57950	0.85026			14.66158			0.54893	
	INLET D		URES			, ~	00		,	n a		9 1					-1 C	4 (n .	t d	۰ ۵	1	00	•	10	=	12	13		SURES	(e	,		m	
0.0100	BASED ON I	RES	ABSOLUTE PRESSURES	0000	14.22163	4.6868	14.68687			.0248	5795	0.57950	RES	PRESSURES	HUB		14.20373	14.40206	14.50261	077/6047	14-49009	14.35086	14.38338	14.47371	14.51100	14.62545	14.68687	•7193	S	ARSOLUTE PRESSURE	14-67242	71.001		0.56203	
	ENTS (PRESSURE		C	41		17	a O	•	~ 1	12	17	RESSU	BSOLUTE F			14	7	1.0		0 5	200	21	22	23	54	52	56	RESSURES	UF ABS	·	,	OF CP	7	
3.0000	COEFFICE	INLET STATIC	IN TERMS OF		14.20634	14.62334	14.08687	IN TERMS OF		-0.00130	0.00000	0.57950	ATIC WALL P	TERMS OF ABSO	4IP		14.	14	7.	7	٠,	1	7	14	14	14	14	14	STATIC BASE PR	IN TERMS O	47503	14.0/003	IN TERMS O	0.56640	
	PRESSURE	121		•	┩ 、	0 -	16		l	-	0 -	161	ST	IN TE			-	8	(C)	1	n 4	0 1	- 30		10	11	12	13	STA			•		7	

					10 -0.09002																					
P AMB	14.6868	TOT FLO RATE 6.37710			0.01725	0.61698																				
IN PMB	2 RATE	FUEL AIR RATIO T	DENSITY 9 0.02836	ERMS OF CP	3 0.01725 4 8 0.03125 9		0.681890	RMS OF CP														MS OF CP	3 0.58633		ETA = 0.73801) FLOW AVE Q = 1.05811
DATA PT	0.0100 WEIGHT FLOW	FUEL FLO RATE	V AVG.	SURES. IN T	2 0.02658	12 0.61898		PRESSURES. IN TERMS	HUB	14 -0.00606	15 0.25515	16 0.38109	17 0.46971	18 0.45105	8 C 4 C C C C C C C C C C C C C C C C C	21 0.22716	22 0.34377	23 0.52102	24 0.53968	25 0.61898	26 0.66096	PRESSURES IN TERMS	0.60032		868	AKE AVE O TO
0 2 20 2	3.0000 CALCULATIONS BASED ON	AIR FLO RATE FUEL 6.29737 0.	MACH NO. GFLCW 0.28510 0.77456	PRESSURE CUEFFICIENTS INLET STATIC PRESSURES. IN TERMS		0.05923		STATIC WALL PRESS	TIP	0.03591	0.16186	0.18051	0.10122	0.20384	0.37642	0.47438	0.53505	0.62630	0.61431	0.61898		STATIC BASE PRESS		1 0.60499	CP = 0.61898	RATIO OF RAKE

3.0000 3.0000 1NLET STATIC PRESSURES, PSIA 1 14.20634 2 14.22802 3 14.2 6 14.25331 11 14.68687 12 14.68687 13 14.6 5 TATIC WALL PW 1 14.23525 PW 2 14.33280 PW 6 14.49900 PW 1 14.23525 PW 1 14.68326 PW 1 14.68326 PW 1 14.68326 PW 1 14.68326 PW 1 14.68387 PW 1 14.68367 PW 1 14.68367 PW 2 14.65245 COOLANT INLET TOTAL PRESSURE (TB01) = 14.6 COOLANT INLET TOTAL TEMPERATURE (TB02) = 0000000000000000000000000000000000	0.0100 2 14.22802 2 14.22802 7 14.23163 17 14.58687 17 14.58687 17 14.58687 18 14.68687 19 14.58687 19 14.58687 19 14.59686 19 14.35086 19 14.35086 19 14.35086 19 14.35086 19 14.35086 19 14.35086 19 14.35086	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 114 124725 66881 91088	14.5868 14.22080 14.22802	∢ 00		
20000 20034 20331 108687 1128687 1138687 1138687 1148687 1158687 1158687 1158887 1	688 686 766 776 776 776	6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 114 124 134725 66881 91088	14.686 14.2208 14.2280	6 0		
25331 25331 28687 28687 28687 28687 28687 223525 368326 36832 368326 368	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	######################################	4 11 19 19 19 19 19 19 19	14.2208 14.2280			
20634 25331 58687 26887 26887 268887 268887 268887 26888 268888 268326 26836 268326 26836 268326 268	002 003 003 003 003 003 003 003	4444 4444 4444 4444 4444 4444 4444 4444 4444	34725 66881 91088	14.2208			
25331 68687 11 68687 11 68687 11 68687 11 68836 4.49900 4.68326 68 WALL 4.20273 4.48093 4.62545 6.62545 10.00000000000000000000000000000000000	633 877 1A 1687 1687 16887 16887 16887 16887 16887 16887 168887	8 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	9 14 14 19 19 19 19 19	14.2280	S	14.11602	
### PRESSU ### ### ### ### ### ### ### ### ###	87 87 1 A 1 S 23280 57487 68687 68587 68587	600 900 800 800 800 800 800 800 8	34725 66881 91088	TYBY T	CT.	4.13770	
68687 17 WALL PRESS. ER WALL 4.23525 4.68326 ER WALL 4.20273 4.62545 OUT NLET TOTAL NLET TOT	1 A 1 B 4 B 7 B 8 B 7 B 8 B 7 B 8 B 8 B 8 B 7	2	34725 66881 91088	2000	15	18989	
ER WALL PRESSC 4.23525 4.68326 4.68326 ER WALL 4.20273 4.48093 4.62545 001 NLET TOTAL NLET T	PW 2 14.33280 PW 2 14.33280 PW 7 14.57487 PW 12 14.68687 PW 25 14.68687 ER WALL		4.34725 4.66881 4.91088	14.0808	07	DOBO	
ER WALL 4.23525 4.49900 4.68326 ER WALL 4.20273 4.48093 4.62545 OUT NLET TOTAL	PW 2 14.33280 PW 7 14.57487 PW 12 14.68687 PW 15 14.40506 PW 20 14.695867 PW 25 14.695867		4.91098 4.91098				
4.68326 4.68326 4.68326 ER WALL 4.20273 4.62545 0.00 NLET TOTAL NLET TOTAL NL	PW 2 14.33280 PW 2 14.53487 PW 2 14.68687 PW 2 14.68687 PW 2 14.68687 PW 2 14.68687 ER WALL		4.34725 4.66881 4.91088				
4.68326 (4.68326 (4.20273 (4.62545)	PW12 14.68687 PW20 14.59686 PW25 14.69685 FW25 14.69687		4.91088	3 ° 0 3 ° 3	14.28583	4 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	7.
4.20273 4.48093 4.62545 7.62545 001 NLET TOTAL NLET TOTAL	PW15 14.40506 PW20 14.35085 PW25 14.68687 ER WALL						•
14.62545 14.62545 14.62545 1NLET TOTAL PINLET TOTAL TINLET TOTAL TINLE	PW15 14.40506 PW20 14.35085 PW25 14.68687 ER WALL						
14.48093 14.62545 10.00	PW25 14.59587 PW25 14.59587 FER WALL		4.50261	PERM		4 0	
OUT INLET TOTAL P INLET TOTAL I INLET TOTAL I INLET TOTAL I INLET TOTAL I L UNCOCLED I	FER WALL	PW21 1	14.38338	7 G 8 3	14.413	6741	
INCET TOTAL PINCET TOTAL TINCET TINC			DKJ-5600	009			
INCET TOTAL TINCET TOTAL T	PRESSURE (PBO1) TEMPERATURE (TBO		7699 PSIA 195.000 F				
L UNCOCLED 1	TEMPERATURE (TB02)	36					
	EMPERATURE (TAU	w	325.000 F				
EL NO. 1 WALL	STATIC PRES. (PW27)	Pw27) #	14.50261	PSIA			
FEL NO.3 WALL	STATIC PRES. ((PW29) = LB/SEC	14.64352				
7	×		<u>.</u> ₹				
(NI)	_		(F)				
200		8.32200 43	435.00006	CI ML			
00000			00000				
			0.00012				
			0.00012				
			0.00012				
	16.49900 9.3		0.00012	(Tw 7)			
16.31200			5.00012	6 6 3: 3:			
				(TW10)			
0.6424.0	o ac		00000	(Tw11)			

9 8 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1	(TE12) (TE13) (TE14) (TE15) (TE16)	
2193 PSIA 135.000 F 335.000 F 90.000 F 1000.000 F 14.65797	(F) 455.00006 (TW 0.00000 (TW 425.00006 (TW 555.00012 (TW	2 PSIA
15.2193 PS 135.000 135.000 135.000 1000.000 1000.000	2 4 4 0	E 1 E 3 14.6442 SEC
-66	R 1N) 7.63600 7.18700 6.39000 6.01200 5.01800	BASE 1 BASE 2 9ASE 3 # 14.0
0000	A 1 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	444 60
RESSURE (PBI EMPERATURE EMPERATURE EMPERATURE STATIC PRE STATIC PRE STATIC PRE	X (IN) 15.02400 15.93000 17.24800 17.83000 19.33400	STATIC PRESSURE (PSIA) 14.67603 14.67242 14.66158 PRESSURE (PB03 RATE = 0.00000
INLET TOTAL INLET TOTAL INLET TOTAL INLET TOTAL ALL UNCOCLED ANEL NO.2 WA OOLANT FLOW	(IN) 13.95400 14.74000 15.74800 15.23200 17.36000	(IN) (IN) (2 1.57000 2 3.10000 CCOLANT INLET TOTAL
COOLANT COOLANT COOLANT COOLANT INNER P INNER P	H M W 4 W	1 2 3 COOLANT TOTAL CO

BASE BULK TEMP (TBB1) = 735.00012 F

(TWB01) (TWB02) (TWB03)

(F) 0.00000 690.00012 750.00012 0.00000

X (IN) 0.21990 1.34310 2.43100

R (IN) 1.20000 1.92000 2.62000 3.58000

4 m n n

MIDSPAN INLET TOTAL PRESSURES

NO. PT(PSIA)

1 15.051
2 15.091
3 15.185
4 15.001

QW1 1.32391 INLET TOTAL TEMP. - 1490.000 DEG R (PT1-PA)/Q1 DENSITY CAL FLO RATE GFLO 0.50120 0.00079 7.93781 1.61305 FUEL FLOW RATE = 0.1113 LBM/SEC FLOW RATE 0.2353 FLOW RATE FLOW RATE 0.5212 FLOW RATE TOTAL TEMP. (AFT OF BURNER CAN) = 1595.000 DEG R MOT FLOW TEST WITH 0.10 COOLING FLOW RATE MRP = 83 SWIRL ANGLE = 16 NO IR DATA P AMB. IN. HG 29.8760 TEMP (R) 675.0001 TEMP (R) 560.0001 TEMP (R) TEMP (R) 560,0001 14.5792 TOTAL PRIMARY FLOW RATE . 7.8872 LBM/SEC INLET PROBE DATA (BASED ON INLET DATA) A R 2.49000 INNER WALL PLENUM (MANIFOLD) PRESSURES PSIA DEL P DEL P 6.9259 DEL P 0.0000 PTB PSI PSBAR 15-33864 13-72559 14-01472 DATA PT 0.0100 FUEL TO AIR RATIO . 0.0143 WEIGHT FLOW RATE, COOLING AIR WEIGHT FLOW RATE . PRIMARY OUTER WALL 20.9133 INNER WALL OUTER WALL RUN NO 87.6750 14.6750 4.0000 38.6750 BASE SPAN

10.53983

4.98600

0.00000

0.00000

0.92541 0.97824 1.000304 0.988423 0.998423 0.9961488 0.996488

0.15262 0.15262 0.24307 0.33917 0.33917 0.44657 0.54657 0.54657

0.0	13.79800	3.7980	000	1.00000
7 7 5			4	7+176-0
.535	13.79604	5-0472	012	67160
. 222	13.79604	5.0869	323	0.92142
6.58577	13.79104	15.33265	0.89981	0.83663
	1040-07	000100	77	0.83663
385	12.70104	4007	1 5	10000
• 512	13.78440	5 - 4049	122	0.74053
6770	13 - /8440	2.5024	640	0.74053

					13.54060	13.72487	14.67509	14-67509		-0-17494	0 5 7 3 0	600000	A																								
					ď	10	15	20		'n																											
PSIS	14.6750				13.73932	13.94526	14.67509	14.67509		-0-04208	5468000	0.56639	0.56639			108	-0.11828	0.14142	0.29960	78067-0	0.40820	0.28780	0.08239	95960-0	0.18155	0.35390	0.47903	0.57347	0.57347								
					4	0	14	19		*	J.	7	y.		a.	I						19															
IN AMB.	29.8760	DATA			3.76461	3.90552	4.67509	14-67509		-0.02856	0.06351	0.56639	0.56639		IN TERMS OF	411	-0.01203	0-11072	0.13433	0.05404	0.14378	0.29252	0.38932	0.45778	0.48375	0.48848	0.50028	0.55694	96001.0			14-68954	17.00.11		0.47583	0010	0.67531
		INCET DA		RES			m	18			00	13	78				-	0	4 (17)	*	5	• •	1	80	σ.	0	11	12	13		URES	,	^		•	•	ETA =
DATA PT	0.0100	(BASED ON IN	ZES	LUTE PRESSURE	13.79713		, 4	14.67509		-0.00731	0.07059	0.56639	0.56639	ES	PRESSURES	HUB	13.62731	74.02474	14-26-67	14-55947	14.43301	3	13.93442	13.95610	14.08617	14.34992	14.54140	14.68592	14.68592	s	ABSCLUTE PRESSURE	14, 61366	14.01200		6263	0.52625	
			S	ABSCLUTE				17	a.	7	~	12	17	PRESSURES			14	4 -	12	2	œ	16	20	21	22	23	54	25	56	PRESSURE		r	7	9	r	v	56639
RUN NO	4.0000	RE COEFFICIENTS	T STATIC	IN TERMS OF	12.784.20	13.66332	14-67509	14.67509	IN TERMS OF	-0.01440	0.10128	0.56639	0.56639	ATIC WALL PRE	ERNS OF ABSOLUTE	414		1 .	1		1		4	14	14	7.	14	14	14.	IC BASE	IN TERMS OF		14.58476	IN TERNS OF		0.50736	CP = 0.5
		PRESSURE	NI NI		•	4 4		16		-	9	11	16	ST	INTER			4 (76	1	r u	n «	7	- 00	~	10	11	12	13	STAT			-			-	

RUN NO		DATA PT	IN AMB	P AMB		
CALCULATIONS BASED ON WEIGHT FLOW	SED ON WE		RATE 23.87.80	0000		
AIR FLO RATE 7.77587	FUEL FLO RATE 0.11138	.0 RATE	FUEL AIR RATIO	TOT FLO RATE 7.88726		
MACH NO. 0.37767	QFLOW 1.42103	V AVG. 717.26489	DENSITY 0.02559			
PRESSURE COEFFICIENTS INLET STATIC PRESSURES, IN	CIENTS C PRESSUR	ES. IN TERMS	MS OF CP			
	2	0.00788	3 -0.03076	4 =0.04856		9840
	7	0.07602				5873
11 0.60995	12	0.60995	13 0.60995	14 0.60995	15 0.60995	5660
Ā		PRESSURES. IN TERMS	OF C			
d I L		HOB				
1 -0.01296	_	-0.12737				
0		0.15229				
	16	0.32264				
	17	0.52858				
	18	0.43960				
6 0.31501	0 0	0.30993				
	2 6	0.000				
	22	0.19551				
10 0.52604	23	0.38112				
	54	0.51587				
	25	0.61757				
	92	0.61757				
STATIC BASE	PRESSURES	PRESSURES IN TERMS (OF CP			
1 0.54638	7	0.56572	3 0.62012			
a	960990	ETA	4 = 0.72724			
	3	•				
KALIO	UF KAKE A	AVE U 10 FLO	FLOW AVE G # 1.0/690			

ST9 FULL SCALE DIFFUSEK (IR SUPPRESSING) SWIRL ANGLE = 15.99 DEGREES

		PW 5 14.02836 Pwl0 14.55586	PW18 14.43301 PW23 14.34992
	5 13.54060 10 13.72487 15 14.67509 20 14.67509		D E E E
7.10		Dw 4 13.89106 Pw 9 14.54863 Pw	PW17 14.55947 PW22 14.08617 PW
P AMB PSIA 14.6750	4 13,73932 9 13,94526 14 14,67509 19 14,67509	333	PW17
മേധര		PW 3 14.01391 PW 8 14.50889 PW13 14.88103	26682 95610 68592
P AMB IN• HG 29•8760	3 13.76461 8 13.90552 13 14.67509 18 14.67509	7 2 3 3 1 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	FW16 14.26682 PW21 13.95610 PW26 14.68592
DATA PT 0.0100 ES. PSIA		PW 2 13.9778 PW 7 14.65063 PW12 14.65063	PW15 14.02474 PW20 13.93442 PW25 14.68592
DA'	2 13.79713 7 13.91636 12 14.67509 17 14.67509 17 14.67509		P 220 P 220 P 250
RUN NG DATA PT 4.0000 0.0100 INLET STATIC PRESSURES. PSIA	1 13.78629 2 13.79713 6 13.96332 7 13.91636 11 14.67509 12 14.67509 16 14.67509 17 14.67509 STATIC WALL PRESSURES. PSIA	PW 1 13.78990 PW 6 14.25598 PW11 14.57392 INNER WALL	Pw14 13.62731 Pw19 14.24875 Pw24 14.54140
INLE	STAT	P P P P P P P P P P P P P P P P P P P	P P 2 2 4 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4

OUTER WALL

COCLANT INLET TOTAL PRESSURE (PB01) = 15.9613 PSIA
COCLANT INLET TOTAL TEMPERATURE (TB01) = 140.000 F
COCLANT INLET TOTAL TEMPERATURE (TB02) = 140.000 F
COCLANT INLET TOTAL TEMPERATURE (TB03) = 0.000 F
OUTER WALL UNCOOLED TEMPERATURE (TWUCO) = 945.000 F
OUTER PANEL NO.1 WALL STATIC PRES. (PW28) = 14.33546 PSIA
OUTER PANEL NO.2 WALL STATIC PRES. (PW29) = 14.63534 PSIA
TOTAL COLLANT FLOW RATE = 0.52120 LB/SEC

	7	5	3	7	1 51	9	2	8	6	0	3
	F	3	* 1	-	T TE	T	3	3	3	(TE	(TW)
(F)	10	O	3	0.0000	0	395.00006	0.00000	360.00006	35.00000	380 • 00006	0000000
(NI)	8.32200	8.91600		9.93500	9.98500	9.82400	.9.3660D	9.18000	8 - 80300	8.39700	8.19800
210	8.71800	9.92400	11.10100	12.74900	13.53700	4	16.49900	~	18.16730	9	20.36900
(N]	8.45200	9.50000	10.54800	12,12000	12,90600	3	2	16.31200	~	18.66900	'n
	7	2	m	4	s,	9	7	æ	0	10	11

INNER WALL

DKJ-5600

PSIA PSIA COOLANT INLET TOTAL PRESSURE (PBO2) = 18.9989 PSIA COOLANT INLET TOTAL TEMPERATURE (TBO4) = 0.000 F COOLANT INLET TOTAL TEMPERATURE (TBO5) = 205.000 F COCLANT INLET TOTAL TEMPERATURE (TBO5) = 100.000 F INNER WALL UNCOULED TEMPERATURE (TWUCI) = 1135.000 F INNER PANEL NO.1 WALL STATIC PRES. (PW31) = 14.55947 INNER PANEL NO.2 WALL STATIC PRES. (PW31) = 14.77264 TOTAL COOLANT FLOW AATE = 0.23531 LB/SEC

(TE12) (TE13) (TE14) (TE16) (TE16) \$ 7.63600 7.18700 6.39000 6.01200 5.01800 a S 15.02400 15.93000 17.24800 17.83000 19.33400 (NI) 2 (IN) 13.95400 14.74000 15.78800 16.23200 STERNE

DKJ-5575 BASE REGION RADIUS

(IN) (PSIA) 14.58476 P BASE 1 2 1.57000 14.61366 P BASE 2 3 3.10000 14.68954 P BASE 3 2.10000 14.68954 P BASE 3 TOTAL PRESSURE (PB03) = 14.5792 PSIA TOTAL CUCLANT FLUW RATE = 0.000000 LB/SEC STATIC PRESSURE (PSIA) 14.58476

(TWB01) (TWB02) (TWB03) 0.00000 640.00012 740.00012 0.00000 (F) 3 0.21990 1.34310 2.43100 3.75300 (11) 1.20000 1.92000 2.62000 4 m n n

L BASE BULK TEMP (TBB1) = 690.00012 MIDSPAN INLET TOTAL PRESSURES

PT(PSIA) 15.097 15.451 15.368 15.368 0 4 4 4 4 4

COOLING FLOW RATE	
0.05 NGLE =	
TEST WITH SWIRL A	
FLO.	
A TOT	

u	13 LBM/SE
FLOW RATI	FUEL FLOW RATE = 0.1113 LBM/SEG
TEMP (R) 680-0001	FUEL FLOW
ZIMARY DEL P 6.8768	10 = 0.0143
16HT FLOW RATE . PR P1 20.9624	FUEL TO AIR RATIO = 0.0143

TUTAL PRIMARY FLOW RATE = 7.8496 LB7/SEC

WEIGHT FLOW RATE.COULING AIR

				DEG R
				1495.000
				TEMP.
	FLOW RATE	FLOW RATE	FLOM RATE	INLET TOTAL TEMP. = 1495.000 DEG R
	TEVP (R) 556.0001	TEMP (R) 556.0001	TEVP (R)	1605.000 DEG R
	DEL P 20.0000	DEL P 7.5000	DEL P	BURNER CAN .
COTER WALL	P1 46.1750	1 NER MALL P1 23.6750	HASE P1 14.6750	OTAL TEMP. (AFT OF BURNER CAN) * 1605.000 DEG R

PLENUM (MANIFOLD) PRESSURES PSIA

OUTER WALL BASE 15.1483 16.2193 14.6324

INLET PROBE DATA (BASED ON INLET DATA)

PTB 15.34888	PSI 13.74943	PSB4R 14.03609	A R 2.49000	(PT1-PA)/Q1 0.51325	DENSITY 0.00079	DENSITY CAL FLO MATE UFLO 0.00079 7.89666 1.59944	J-59944	UW1 1-31278
STAN	VEL	L a.	5 0	>				
0.000000	0.00000	13.74943	13.74943	00906.7				
0.04522	0.70799	14.69676	13.75059	4.98600				
0.04522	0.77015	14.87019	13.75059	4.98600				
0.15262	0.92367	15.36878	13.75832	5.17599				
0.15262	0.97508	15.55304	13.75832	5.17599				
0.24307	0.97381	15.55666	13.76661	5.33599				
0-24307	1.00000	15.65421	13.76661	5.33599				
0.33917	0.98993	15.62530	13.77552	5.50599				
0.33917	0.97924	15.58556	13.77552	5.50599				
0.44657	0.98644	15.62169	13.78492	5-69600				
0.44657	0.95188	15.53137	13.78492	5-69600				
0.54267	847760	15.59640	13.79285	5.86599				
0.54267	0.93852	15.45549	13.79285	5-86599				
0.63877	0.96659	15.55388	13.80029	6.03509				
0.63877	0.92614	15.41936	13.80029	66.03599				

20	3859	.3859	5359	6750	
3.8077	3.8143	3.8143	13.81927	26196	7 7 7 0 0 6
5.51691	5.40852	5.33988	15.10865	5.05806	3.84141
.95157	92090	00668	0.82648	.81011	00000
0.05	405	366	0.92142	214	000

0 •	. 0					10	15	20		2	1 10 -0.05432	15	20				2	0	•	4	m	m I		o «	• 0) «C		6							
AISO	14.6750				4 13.76461		14 14.6750	9 14-67509		ì	9 0.09101	4	6			E	4 -0-12342						20 0.06957		0.34120										
• 9	760				59					6.3	81	1 79			MS OF CP																92			62	
N AMB	29.876	DATA			_		14.67509	_		-0.03049	0	٥			IN TERMS	TIP	1	O	0		0	0	0 (0 '	000000000000000000000000000000000000000	o c	c	0			14.68592			0.56279	
	i	INLET		PRESSURES			13				60															-	1-	13		PRESSURES	6			m 	
4	0.0100	(BASED ON	RES	ABSCLUTE PRE	13.81880	13.94165	14.67509	14.67509		-0-00-0-0-	0.07195	0.55564	0.55564	ES	PRESSURES	HUB	13.64538	14.03558	14.27404	14.57031	14.44747	14.25959	13.93803	13.97416	14.08978	74.50.5T	14.62814	14.66425	S	ABSCLUTE PRE	14.64618			0.53658	
			PRESSURES	OF ABSC		7			OF CP				17	PRESSURE	ABSOLUTE +		14	15	16	17			20	21				56	PRESSURES	OF ABS	7	05 00		7	
SOS SOS	5.0000	E COEFFICIENTS	ET STATIC	IN TERMS	13,80797	13,98500	14.67509	14.67509	IN TERMS	01630	0.10055	0.55564	0.55564	STATIC WALL	9	411	13.80074	13,98500	14.02113	13.89468	14.04281	14.27043	14.40411	;		14.55670	•	14.85212	BASE	IN TERMS	14.63534	A STATE OF THE PERSON OF THE P	•	0.52943	
		PRESSURE	INLET					16 1			4 40	11	19	STAT	IN TERMS								7				1 .	13	STATIC		-				

CIENTS CIENTS CIENTS C PRESSURES. IN TERMS C D 0.07737 C D 0.07748 C D 0.07481 C D 0.059750 C D 0.059750 C D 0.058982 C D 0.58992 C D 0.58992 C D 0.557701 C D 0.57701	8 NUN NO	DATA PT 0.0100	P AMB. IN. HG 29.8760	P AMB PSIA 14.6750		
GFLOW V AVG. DENSITY 6 141011 715.16235 0.02554 CEFFICIENTS STATIC PRESSURES. IN TERMS OF CP 0.0787	F D H	FLO RATE	AIR RATI	FLO RAT		
CEFFICIENTS STATIC PRESSURES, IN TERMS OF CP STATIC PRESSURES, IN TERMS OF CP O1742 2 -0.00973 3 -0.03279 9 0.09787 10812 12 0.59750 13 0.59750 14 0.59750 15 0.59750 17 0.59750 18 0.59750 19 0.59750	• •	7	DENSITY 0.02554			
01742 2 -0.00973 3 -0.03279 4 -0.04816 5 5 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	OEFFICI STATIC	SURES. IN	OF C			
MALL PRESSURES, IN TERMS OF CP HUB 102254	01742 10812 59750 59750		പരവം വ	•	0000	0000
HUB 102254	ATIC WALL	SURES. IN TERMS	OF C			
02254 14 -0.13272 10812 15 0.14399 10374 16 0.31310 04407 17 0.52320 14912 18 0.30285 31054 20 0.07481 45526 22 0.18243 50526 23 0.36690 53601 25 0.56419 72305 26 0.58982 8ASE PRESSUKES IN TERMS OF CP	417	E C				
04407 17 0.52320 14912 18 0.43608 31054 19 0.30285 40534 20 0.07481 45402 21 0.10044 50526 22 0.18243 55054 24 0.50270 53601 25 0.56419 72305 26 0.58982 8ASE PRESSURES IN TERMS OF CP	-0.02254 0.10812 0.13374	U				
31054 19 0.30285 40534 20 0.07481 45402 21 0.10044 50526 22 0.18243 52064 23 0.36690 53601 24 0.50270 58982 25 0.56419 72305 26 0.58982 BASE PRESSURES IN TERMS OF CP	0.04407					
45402 21 0.10044 50526 22 0.18243 52064 23 0.36690 53601 24 0.50270 58982 25 0.56419 72305 26 0.58982 8ASE PRESSURES IN TERMS OF CP	0.31054					
52064 23 0.36690 53601 24 0.50270 58982 25 0.56419 72305 26 0.58982 BASE PRESSURES IN TERMS OF CP	0.45402					
.53601 24 0.504/0 .58982 25 0.56419 .72305 26 0.58982 BASE PRESSURES IN TERMS OF CP .56932 2 0.57701 3 0.6051	0.52064					
945E PRESSURES IN TERMS OF CP 56932 2 0.57701 3 0.6051	0.53601	00				
BASE PRESSURES IN TERMS OF CP •56932 2 0.57701 3 0.6051	0.72305	0				
.56932 2 0.57701 3 0.6051	TIC BASE	ES				
	.56932		0.6051			
	RATIO OF RA	RAKE AVE O TO FL	FLOW AVE G = 1.0	1.07533		

PW18 14.44747 PW23 14.34992 Pw 5 14.04281 Pw10 14.56670 13.56951 13.75016 14.67509 14.67509 PW17 14.57031 PW2Z 14.08978 PW 4 13.89468 13.76461 13.97055 14.67509 14.67509 P AYB PSIA 14.6750 PSIA PSIA PSIA 3 2 2 DKJ-5600 COOLANT INLET TOTAL PRESSURE (PBO1) = 15.1483 PSIA COOLANT INLET TOTAL TEMPERATURE (TBO1) = 16.000 F COOLANT INLET TOTAL TEMPERATURE (TBO2) = 215.000 F COOLANT INLET TOTAL TEMPERATURE (TBO3) = 0.000 F OUTER WALL UNCOUED TEMPERATURE (TWUCO) = 930.000 F OUTER PANEL NG.1 WALL STATIC PRES. (PW2A) = 14.37031 OUTER PANEL NG.2 WALL STATIC PRES. (PW2B) = 14.57031 TOTAL COOLANT FLOW RATE = 0.27084 LB/SEC 380.00006 260.00006 460.00006 560.00012 560.00012 630.00012 630.00012 630.00006 565.00006 PW16 14-27404 Pw21 13-97416 Pw26 14-66425 4076 14.02113 14.47276 14.85212 3 (L) 13.78629 13.93081 14.67509 14.67509 P AMB IN HG 29.8760 8.32200 9.45400 9.45400 9.93500 9.98500 9.82400 9.18000 8.39700 ST9 FULL SCALE DIFFUSER (IR SUPPRESSING)
SWIRL ANGLE = 15.99 DEGREES a į PW15 14.03558 PW20 13.93803 PW25 14.62812 13.98500 14.40411 14.66425 PRESSURES. PSIA 2 13.81880 7 13.94165 12 14.67509 17 14.67509 X 6 (1N) 9 - 1800 9 - 92400 11 - 10100 12 - 74900 13 - 53700 14 - 86000 16 - 49900 17 - 05400 18 - 16700 20 - 36900 STATIC WALL PRESSURES. PSIA 0.0100 DATA PT OUTER WALL 2 (IN) (9.500 (9 Pw 1 13.80074 Pw 6 14.27043 Pw11 14.58837 PW14 13-64538 PW19 14-25959 PW24 14-54140 INNER WALL CUTER WALL INLET STATIC 1 13.80797 6 13.98500 11 14.67509 16 14.67509 RUN NO 2.0000 TC G G J G G T G W L

INNER WALL

DKJ-5600

(TW12) (TW13) (TW14) (TW15)	-5575
(F) 510.00006 0.00000 440.00006 585.00012	האם
(IN) 7.63600 7.18700 6.39000 6.01200 5.01800	
(IN) 15.02400 15.93000 17.24800 17.83000	BASE REGION
2 (IN) 13.95400 14.74000 15.78800 16.23200	

	A I S
	BASE 1 BASE 2 BASE 3 = 14.6324 LB/SEC
STATIC	(PSIA) 14.63534 P 14.64618 P 14.68592 P PRESSURE (PBO3) ATE = 0.00000
RADIUS	(IN) 0.00000 1.57000 3.10000 INLET TOTAL
	1 2 3 COOLANT TOTAL C

		(TWBC1)	WB.	00%	CI.	2
×	(F)	0000000	v	860.00012		
*	(NI)	0.21990	1-34310	00167-6	0000	3.75300
2	(NI)	1.2000		00026.1	2.62000	3.58000
		•	4 (7	m	1

BASE BULK TEMP (TSB1) = 815.00012 F

MIDSPAN INLET TOTAL PRESSURES
NO. PT(PSIA)
15-115

NC. PT(PSIA)
1 15.115
2 15.462
3 15.383
4 15.376

									0 14	9				1.26800	
										000-0641 =				1.56937	
ED				BW/SEC						INLET TOTAL TEMP. = 1490-000				CAL FLO RATE 7.83468 1	
LL FLOW CHANG	P A S B	14.6750	FLON 4ATE 7.7424	= 0.1091 LBM/SEC			FLON RATE	FLOW RATE	FLOW RATE	INLET				DENSITY CAL	
COOLING FLOW RATE 15 NO IR DATA INNER WALL FLOW CHANGED	P AMB.	29.8760	TEYP (R) F	FUEL FLOW RATE	LBV/SEC		TEMP (R) 556.0001	TEMP (R) 556.0001	TEMP (R)	1585.000 DEG R		BASE 14.6537		(PT1-PA)/01 0.50594	> -
	DATA PT	0.0100 29	DEL P TE:	0.0140	7.8515	AIK	DEL P TE	DEL P TE 6.2000 55	DEL P TE		ES PSIA	INNER WALL 16.5175	INLET PROBE DATA (BASED ON INLET DATA)	PSBAR A R 14.03874 2.49300	29
TEST AITH 0.033			AATE . PRIMARY DE	FUEL TO AIR RATIO = 0.	TOTAL PRIMARY FLOW RATE =	WEIGHT FLOW RATE, COULING AIR				TOTAL TEMP. (AFT OF BURNER CAN) .	PLENUM (MANIFOLD) PRESSURES PSIA		BE DATA (BASE	PSI PSI 13-75738 14-0	Td.
TOT FIGURE	RUN NO	00000-9	MEIGHT FLOW HATE PRIMARY P1 20.9624	FUEL TO A	TOTAL PRI	WEIGHT FLOW	CUTER WALL P1 23.8750	INNER WALL	BASE P1 14.6750	TOTAL TEVP.	PLENUM (MANI	OUTER WALL	INLET PRO	PTB 15.32675	2 4 0 0

4.990600 4.9906000 5.9117999 5.9117999 5.917999 5.90999 5.90999 6.00999 6.00999

13.75738 14.69315 15.365144 15.365146 15.658601 15.658601 15.60363 15.60363 15.60363 15.60363 15.64043 15.44943

0.00000 0.70986 0.92851 0.95852 0.97834 1.099070 0.99726 0.96834 0.97916 0.96834 0.97916

0.00000 0.04522 0.05252 0.15262 0.15262 0.15262 0.15262 0.24307 0.33917 0.54267 0.54267 0.54267 0.54267

•215	.215	.385	385	.535	6.53599	7.5
3.8147	3.8147	3.8211	3.8211	3.8259	13.82598	3.8279
5.5024	5.3687	5.4157	5.2748	5.0978	15.01109	3.8279
9539	0163	0000		8280	7993	000
7405	1100	2041	9969	4660	9214	1.00000

		5 13.58035 10 13.75016 15 14.67509 20 14.67509	5 -0.17160 10 -0.05768 15 0.56281 20 0.56281			
P AMB PSIA 14.6750		4 13.76822 9 13.96694 14 14.67509 19 14.67509	4 -0.04556 9 0.04574 14 0.56281 19 0.56281	CP HUB	14 -0.14252 15 0.12410 16 0.28649 17 0.49010 18 0.40769 19 0.28407 20 0.07077 21 0.07015 22 0.17015 24 0.47071 25 0.553130	
P AMB. IN. HG 29.8760	RES	3 13.79713 8 13.92719 13 14.67509 18 14.67509	3 -0.02617 8 0.06108 13 0.56281 18 0.56281	IN TERMS OF O	1 -0.02617 2 0.095617 4 0.095617 5 0.139864 6 0.29619 7 0.39664 8 0.44404 9 0.44404 10 0.59584 11 0.55584 12 0.55584	JA.69315 3 0.57493 ETA = 0.67104
DATA PT 0.0100 TS (BASED ON INLE)	PRESSURES F ABSOLUTE PRESSURE	2 13.82603 7 13.94165 12 14.67509 17 14.67509 CP	2 -C.00678 7 0.007077 12 0.56281 17 0.56281	TE PRESSURES HUB	14 13.62370 15 14.02113 16 14.02113 17 14.026320 18 14.026870 20 13.997165 22 14.08978 23 14.08978 24 14.62812 26 14.62812	ES OLUTE PRESS 14.64618 0.54342
RUN NO 6.0000 PRESSURE COEFFICIENTS	INLET STATIC PRE	1 13.81519 6 13.88862 11 14.67509 16 14.67509 IN TERMS OF	.01405 .10228 .56281 .56281	IN TERMS OF ABSOLUTE	0.000000000000000000000000000000000000	STATIC BASE PRESSUR IN TERMS OF ABS I 14.63895 2 IN TERMS OF CP I 0.53857 2 CP = 0.56281

				5 -0.18196	15 0.59679 20 0.59679																
P A B B B A B B A B A B A B A B A B A B	TOT FLO RATE 7.85157			4 -0.04831																	
P AMB. IN. HG 29.8760	FUEL AIR RATIO	DENSITY 0.02563	4S OF CP	3 -0.02775		S OF CP													OF CP	3 0.60964	A = 0.71155
DATA PT 0.0100 WEIGHT FLOW A	FUEL FLO RATE 0.10916	V AVG. 712.77502	URES. IN TERN	-0.00719		PRESSURES. IN TERMS	HUB	-0.15112			0.43230		0.09560			0.49912		0.58650	PRESSURES IN TERMS C	0.57622	ETA
RUN NO 6.0000 CALCULATIONS BASED ON V	AIR FLO RATE FUEL F 7.74240 0.1	MACH NO. OFLOW 0.37518 1.40574	PRESSURE COEFFICIENTS INLET STATIC PRESSURES, IN TERMS	1 -0.01490 2	0.59679 1	STATIC WALL PRESSUR	TIP	-0.02775	3 0.12902 16	0.04163	0.14701	0.31407	0.47085	0.51197	0.52225		0.58908	0.74072	STATIC BASE PRESSURE	0.57108 2	CP = 0.59679

RATIO OF RAKE AVE G TO FLOW AVE W = 1.06036

14.44385 14.04281 P 1 2 3 P. 5 13.58035 13.75016 14.67509 14.67509 13.89468 14.56670 P AVB PSIA 14.6750 13.76822 13.96694 14.67509 14.67509 Pw17 12 PSIA PSIA PSIA 3 3 6 DKJ-5600 COCLANT INLET TUTAL PRESSURE (PBO1) = 14.7726 PSIA
COCLANT INLET TUTAL TEMPERATURE (TBO1) = 210.000 F
COCLANT INLET TUTAL TEMPERATURE (TBO2) = 375.000 F
COCLANT INLET TUTAL TEMPERATURE (TBO3) = 0.000 F
OUTEX WALL UNCOCLED TEMPERATURE (TMUCO) = 965.000 F
OUTEX PANEL NO.1 WALL STATIC PRES. (PW27) = 14.39688
OUTER PANEL NO.2 WALL STATIC PRES. (PW29) = 14.55224
OUTER PANEL NO.3 WALL STATIC PRES. (PW29) = 14.57147 490.00006 502.00006 502.00002 705.000012 705.00012 705.00012 705.00012 705.00012 705.00012 PW16 14.26320 PW21 13.97055 PW26 14.66063 14.01752 14.49805 14.87741 4046 ¥ (L 13.79713 13.92719 14.67509 14.67509 P AMB IN. HG 29.8760 ST9 FULL SCALE DIFFUSER (IR SUPPRESSING)
SWIRL ANGLE # 15.99 DEGREES w & w & w PWIS 14.02113 PWZ0 13.94165 PWZ5 14.62812 PW 2 13-97778 PW 7 14-39327 PW12 14-66425 PRESSURES. PSIA 13.82603 13.94165 14.67509 14.67509 PRESSURES, PSIA DATA PT 0.0100 (IX) 8.119 9.97180 11.10100 11.10100 12.74900 14.86000 14.86000 14.96400 15.96400 19.96400 OUTER WALL (1N) 9.5000 10.548200 10.54800 112.905600 114.21600 115.31200 116.31200 116.31200 116.45000 Pw 1 13.79713 Pw 6 14.27766 Pw11 14.59560 13.62370 14.25959 14.53779 INNER WALL UUTER WALL INLET STATIC 1 13.81519 6 13.98862 11 14.67509 16 14.67509 STATIC WALL RUN NO PA14 PA19 PA24 100001001

DKJ-5600 INNER WALL COCLANT INLET TOTAL PRESSURE (PB02) = 16.5175 PSIA COCLANT INLET TOTAL TEMPERATURE (TB04) = 125.000 F COCLANT INLET TOTAL TEMPERATURE (TB05) = 315.000 F COCLANT INLET TOTAL TEMPERATURE (TB06) = 100.000 F INNER WALL UNCOCLED TEMPERATURE (TWUCI) = 1150.000 F INNER PANEL NO.1 WALL STATIC PRES. (PW30) = 14.54863 INNER PANEL NO.2 WALL STATIC PRES. (PW31) = 14.68592 TOTAL COOLANT FLOW RATE = 0.13172 LB/SEC

		15)	(3)	(4)	(2)	W16)	2
		X L	(TWI3)	7	3	3	DKJ-557
3	(F)	900000019	0000000	0000000	465,00006	615.00012	סצים
¥	(NI)	7.63600	7.18700	6.39000	6.01200	5.01800	
×	(21)	15.02400	15.93000	17.24800	17.83000	19.33400	BASE REGION
7	(21)	13.95400	14.74000	15.78800	16.23200	17.36000	
		-	2	· (C)	4	2	

| RADIUS | STATIC | PRESSURE | (IN) | (PSIA) | (

		₩B0	× BO	(TWB03)	VB0
3 -	(F)	000000	3	865.00012	
×	(11)	0.21990	1.34310	2.43100	3.75300
ox.	(NI)	2000	1.92000	2.62000	3.58000
		-	2	m	4

BASE BULK TEMP (TBB1) = 830.00012

MIDSPAN INLET TOTAL PRESSURES

PT(PSIA) 15.444 15.105 S-1004

MEIGHT FLOW RATE, PRIMARY P 1 20.9624 FUEL TO AIR RATIO = 0.014 TOTAL PRIMARY FLOW RATE =	0.0200	IN HG	PSIA 14.6750		
RATIO = 0.		000	FLOW RATE		
RATIO = 0.	1	685.0001	7.7706		
ARY FLOW RATE	0.0143	FUEL FLOW RATE	E = 0.1113	LBM/SEC	
	- 7.8820	LBM/SEC			
WEIGHT FLOW MATE. COULING AIR	21				
OUTER WALL DEL	UEL P TE	TEMP (R) 552.0001	FLOW RATE		
124E WALL DEI	DEL P TE	TEMP (3)	FLOW RATE		
E P1 DE1	DEL P TE	TEMP (R)	FLOW RATE		
TOTAL TEMP. (AFT OF BURNER CAN)	CAN) = 1595.000	.000 DEG R	INCET	INLET TOTAL TEMP. = 1495.000	OE
PLENUM (MANIFOLD) PRESSURES PSIA	S PSIA				
OUTER WALL INNE	INNER WALL 15-3673	9ASE 14.6857			
INLET PROBE DATA (BASED	(BASED ON INLET DATA)	2			
PSI PSBAN 13.74293 14.03088	A R 088 2.49000	(PT1-PA)/01 0.50956	DENSITY CAL	CAL FLO RATE GFLO 7-89718 1-60147	1.31
VEL PT	Sd	>			
		4.98600			
W					
1.00000 15.64337	337 13-75968	5.33599			
0.99183 15.62					
	337 13.77822 195 13.77822	5.69600			
		5.86599			
		6.03599			
0.93303 15.43381		6.03599			

•91320 15.37239 13.80151 6.2159	6. 385999 6. 385999 6. 5385999 6. 5385999	13.80810 13.80810 13.81295 13.81295	15.24233 15.24233 15.12310 14.98941 13.81484	0.93517 0.83398 0.79028 0.00000
	2159 3859 3859	3.8015	5.4554	935

## CONTROLLE CONTROLL CONTROLL CONTRO							0	15 14-67509	0		-0-1760	0 -0-0594	15 0.55918	0 0.5591																							
RUN NO DATA PT 1 P AMB. 6.0000 29.6760 COEFFICIENTS (BASED ON INLET DATA) T STATIC PRESSURES 3.80797 2 13.93803 8 13.92719 4.67509 17 14.67509 18 14.67509 10.01189 7 0.07376 8 0.059918 11.0.55918 12 0.55918 18 0.55918 12.0.55918 12 0.55918 18 0.55918 13.78629 17 14.67509 18 14.67509 14.00189 7 0.07376 8 0.059918 15.0F ABSOLUTE PRESSURES 16.05918 17 0.55918 18 0.55918 17.0 HUB 17.0 HUB 18.06603 1 14.25959 0.003331 14.038504 0.03331 14.55095 1 14.55031 0.059918 14.55095 1 14.55031 0.059918 14.55095 1 14.55031 0.059918 14.55095 22 14.59921 12 0.55918 14.55095 23 14.59921 12 0.55918 16.5293 22 14.59921 12 0.55918 17.0 HUB 18.0660 2 14.66063 3 14.70038 10.55986 2 14.66063 3 14.70038 10.55986 3 0.57584 10.55986 3 0.57584	AN	4.675					• '				0		0.00	0.55			E C B	4 -0-1380	7461	0.285	7 0.4901	8 0.4045	9 0.2784	0 0.0594	0.0856	2 0 1689	100000 E	0.000	0.5425								
RUN NO DATA PT 6-0000 COEFFICIENTS (BASED ON INLET DA T STATIC PRESSURES N TERYS OF ABSOLUTE PRESSURES 3-80797 3-98862 3-80797 7 13-93803 4-67509 12 14-67509 13 14-67509 14 13-93803 18 14-67509 17 14-67509 18 14-67509 19 14-67509 10 15-87509 10 14-67509 11 14-67509 12 14-67509 13 14-67509 14 13-81619 15 14-01391 2 14-01391 3 10 2 14-01391 3 10 3 10 3 10 4 40 4 40 5 14-64 5 14-64 5 14-66 5 14-66 6 0-55406 7 14-66	7 A & B . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 .	29.8760	TAI			1000	002770	4-67509	4.67509			0.03093	55018	55918		TERMS OF		1 2112	17070	00000	03331	13563	29030 1	.36892 2	40689 2	.40162 2	48780 2	VOTTO-	50012	71066			14.70038		.5758		•
RUN NO DATA 6.0000 0.0.0 COEFFICIENTS (BASED T STATIC PRESSURES 3.80797 2 13.81 3.98862 12 14.67 4.67509 17 14.67 4.67509 17 14.67 4.67509 17 14.67 4.67509 17 14.67 4.67509 17 14.67 4.67509 17 14.67 4.67509 17 14.67 4.67509 17 14.67 4.67509 17 14.67 4.67509 17 14.67 4.67509 17 14.67 4.67509 17 14.67 4.67509 17 14.67 4.67509 17 14.67 4.67509 18 14.28 4.67509 18 14.28 4.67509 18 14.28 4.67509 18 14.28 4.67509 18 14.28 4.67509 18 14.28 4.67509 18 14.28 4.67509 18 14.28 4.67509 18 14.28 4.67509 18 14.28 4.67509 18 14.28 4.67509 18 14.28 4.67509 18 14.28 4.67509 18 14.28 4.67509 18 14.28 4.67509 18 14.28 4.67509 18 14.28 4.67509 18 14.28 4.67509 18 18 14.28 4.67509 18 18 14.28 4.67509 18 18 14.28 4.67509 18 18 14.28 4.67509 18 18 14.28 4.67509 18 18 14.28 4.67509 18 18 18.88 4.67509 18 18 18.88 4.67509 18 18 18.88 4.67509 18 18 18.88 4.67509 18 18 18.88 4.67509 18 18 18.88 4.67509 18 18 18.88 4.67509 18 18 18.88 4.67509 18 18 18.88 4.67509 18 18 18.88 4.67509 18 18 18.88 4.67509 18 18 18.88 4.67509 18 18 18.88 4.67509 18 18 18.88 4.67509 18 18 18.88 4.67509 18 18 18.88 4.67509 18 18 18.88 4.67509 18 18 18.88 4.67509 18 18 18.88 4.67509 18 18 18 18 18 18 18 18 18 18 18 18 18			INCET D			•	n o	יי מ	9		(- n		1 -1			-										4 :	-4 ,	-4 -	•		SSURES	6				
COEFFICIENTS COEFFICIENTS T STATIC PRESS T STATIC PRESS T STATIC PRESS 3.80797 3.98862 4.67509 17.00 0.001189 0.001189 0.001189 17.00 18.00688 18.006888 18.006888		0.0200		JAES	LL.		9	3.0	4 .			ĭ	() ;	<i>.</i>			an 0.7		-4	7	-	4 -	-		p-4	-	-	-4	Ä,	4	E S		14.66063		0.54966		
F S WW44 S 0000 H N	o	0			OF.			•	44	0				4 -4		21					.	4 r		7 ·	. 2	2	2	2	2	2	9. 3.	€ A	n	S OF C			
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	NO NO	6.000	PRESSURE COEFF	NLET STAT	7.		13.80	13.98	14.67	Z TER		-0-01	0.10	0.0	ATIC #	ANS OF	9		13.7862	13,9669	14.0066	13.8/66	14.0319	14.3860	14.4438	14.5269	14.5667	14.6029	14.5578	14.7220	20	2	14.6506		0.5496)	

					5 -0.18800					
O A M B A A B A B A B A B A B A B A B A B	14.6750	TUT FLO RATE 7.88200			•	14 0.59704 19 0.59704			7.40	
A A A B B B B B B B B B B B B B B B B B	29.8760 RATE	FUEL AIR RATIO	DENSITY 0.02554	S OF CP	3 -0.03302	13 0.59704 18 0.59704	OF CP			
DATA PT	WEIGHT FLOW	FLC RATE	V AVG. 19 718-28015	SSURES. IN TERMS	2 -0.00762		RES!	n O	0.58688	RAKE AVE O TO FL
0 2 20 4	6.0000 CALCULATIONS BASED ON	AIR FLO RATE FUEL 7.77061 0	MACH NO. GFLUW 0.37757 1.42209	PRESSURE COEFFICIENTS INLET STATIC PRESSURES.	1 -0.01270	0.11432	ATIC WALL	411	g o	RATIO OF RA

ST9 FULL SCALE DIFFUSER (IM SUPPRESSING) SWIRL ANGLE = 15.99 DEGREES

								14.03197	Pw10 14.56670			Pn18 14.44024	14.33185	
			3.55867	10 13.73571	4.67509	4.67509						P a 18	P.+23	
								13.87661	P. 9 14.52695			14.57031	PW22 14.08255	
P A WB	PSIA 14.6750		13.75377	9 13.95610	14.67509	14.67509		Q & 4	0 & d	≰		Pw17	Pw22	M d
m	ão							4.00658	4.44385	PW13 14.72205		4.25959	3.95610	Pw26 14.64979
ď	IN. HG 29.8760		3 13.7790	8 13.92719	3 14.6750	8 14.6750		P.W 3	9 Hd	PW13 1		P.416 1	Px21 1	Pw26 1
DATA PT	0.0200	PSIA					PSIA	13.95694	14.38604	PW12 14.66786		14.01391	PW20 13.91636	PW25 14.59921
DA	0	RESSURES	2 13.	7 13.93803	12 14.	17 14.	ESSURES.	P. ×. 2	x x x	PW12		PW15	PW20	PW25
RUN NO	00000.9	INCET STATIC PRESSURES. PSIA	3.80797	6 13.98862	67509	16 14.67509	STATIC WALL PRESSURES, PSIA	13,78629	P# 6 14.26682	Pw11 14.60282	INNER WALL	PW14 13.51648	P.19 14.24875	Ph24 14.53418
		INLE	1 13	6 1	11 17	16 14	STATI	4	9 % 0	Dw 11	S II	PW14	Pr. 19	F#24

COCLANT INLET TOTAL PRESSURE (PB01) = 14.8051 PSIA
COCLANT INLET TOTAL TEMPERATURE (TB01) = 240.000 F
CUCLANT INLET TOTAL TEMPERATURE (TB02) = 390.000 F
COCLANT INLET TOTAL TEMPERATURE (TB02) = 965.000 F
CUTER WALL UNCOULED TEMPERATURE (TWUCO) = 965.000 F
CUTER PANEL NO.1 WALL STATIC PRES. (PW29) = 14.640411 PSIA
CUTER PANEL NO.2 WALL STATIC PRES. (PW29) = 14.55947 PSIA
CUTER PANEL NO.3 WALL STATIC PRES. (PW29) = 14.65509 PSIA
TOTAL CUOLANT FLOW RATE = 0.12435 L6/SEC

DKJ-5600

OUTER WALL

	TK 1)	Tx 2)	(Tw 3)	1 M A	Ty 5)	'w 6)	Tw 7)	Tw 8)	(6 ×1	Tw10)	Tw111
	5.00006	900000	595.00012 (0.00012	0.00012	0.00012	5.00012	0.00012	5.00012	5.00012	00000
(NI)	200	200	9.45400 5	200	200	005	200	000	300	2007	600
(NI)	8.71800	00776-6	11.10100	12.74900	13.53700	14.86000	15.49900	17.05400	18.16700	19.54000	20.36900
(21)	8.45200	9.50000	10.54800	12.12000	12.90600	14.21500	15.78800	16.31200	17.36000	18.66900	19-47500
	1	2	(9	4	5	9	7	.1)	5	0	-

ب	
KALL	
3	
œ	
ш	
5	

DKJ-5600

					PSIA	PSIA	
15.3673 PSIA	100,000 F	00	95.000 F	1145.000 F	= 14.56670	= 14.64257	
	8041 =	8051 =	8061 =	WUCI) =	(PK30)	(Py31)	LB/SEC
(PB02)	-	T) H	_ H	-	. PRES.	PRES	0.08212
PRESSURE (PB02) =	TEMPERATURE	TEMPERATUR	ENPERATUR	ENPERAT	WALL STATIC PRES.	STATIC	18
TOTAL F	TOTAL	TOTAL	JATC	5	O.1 WALL		COOLANT FLOW RATE
COCLANT INLET TOTAL	I INLET	I INLET	I INLET T	WALL UN	PANEL 14	PANEL NO	COOLANT
COOLAN	COOLANT	CCOLANT	COOLANT	I WALL	INVEX	INNER	TOTAL (

14.74000	15.93000	7.18700	000000	(TW13)	
16.23200	17.83000	6.01200	515.00012 690.00012	(TW15)	
	DACE DECTOR		2	7745-1	

						PSIA	
					W	14.6857	SEC
			BA	BAS	BA		LB/
STATIC	PRESSURE	(PSIA)	14.66063 P	14.66063 P	14.70038 P	PRESSUR	RATE = 0.00000
RADIUS		(NI)	1 0.00000	.57		COCLANT INLET TOTAL	TOTAL COCLANT FLOW

		301	: TWB02)	303	304
3	(F)	0000		.0001	000000
×		.2199	1.34310	.4310	.7530
œ		1.20000			
		-	7	m	J

845E BULK TEMP (TBB) 885.00012 F

MIDSPAN INLET TOTAL PRESSURES

NO. PT(PSIA) 1 15-130 2 15-469 3 15-390 4 15-397

HOT FLOW TEST WITH 0.10 COOLING FLOW RATE MRP = 100 SWIRL ANGLE = 16 NO IR DATA	9
	0
ITH 0.10	DATA DI
Sw1R	
FLC. 100	ON NO
KRP H	d

			LBM/SEC
90 × 40	4.6706	FLOW RATE 8-3415	0.1283
	-	Œ.	RATE .
P AVB.	29.8670	TEYP (R)	FUEL FLOW RATE = 0.1283 LBW/SEC
DATA PT	0.0100	ARY DEL P 7.8100	FUEL TO AIR KATIO = 0.0153 FUEL TOTAL PRIMARY FLOW RATE = 8.4698 LBV/SEC
RUN NO	7.0000	WEIGHT FLOW RATE PRIMARY P1 22.4316	FUEL TO AIR NATIO = 0.0153
		WE16HT	FUE TOT

WEIGHT FLOW RATE, COULING AIR

								INLET TOTAL TEMP. = 1600.000	
4000	0.5407		FLOW RATE	0.2843		FLOW RATE	0.0000	INLET TO	
07.44	550.0001		TEMP (R)	547.0001		TEMP (R)	460.0000	1605.000 DEG R	
Q Q	41.6200		DEL P	23.3000		DEL P	000000	OF BURNER CAN) =	PRESSURES FSIA
CUTER WALL	89.6706	INNER AALL	I d	45.6736	BASE	14	14.6706	TOTAL TEMP. (AFT OF BURNER CAN) = 1605.000 DEG	PLEMUN (MANIFOLO) PRESSURES FSIA

OUTER WALL INNER WALL BASE 16.7589 20.0063 14.5641

INLET PROBE DATA (BASED ON INLET DATA)

	2.09535																
	QW1 1.70312																
	UFL0 2.23668																
	CAL FLO RATE 8-75336																
	DENSITY 0.00075																
	(PT1-PA)/G1 0.77402	>	00906.7	4.98600	4.98600	5.17599	5.17599	5.33599	5.33599	5.50599	5.50599	5.69600	5.69600	5.86599	5.86599	6.03599	6.03599
INCE PROOF DAIR IBASED ON INCE DAIR	0.00000	P.S	13.75224	13.75564	13.75564	13,77393	13.77393	13.79136	13.79136	13,81015	13.81015	13.83043	13.83043	13.84864	13.84864	13.86615	13.86615
DASED ON	PSBAR 14.28580	F d	13.75224	15.40410	15.34991	16.00025	15.86657	16.15922	16.03638	16.23148	16.03277	16.26761	16.18612	15.31097	16.15922	16.33264	16.19896
מבאט אפט	PS1 2 13.75224	VEL	0.000000	0.81693	0.80339	966560	0.92043	60626-0	0.95336	80066.0	0.94859	0.99332	0.97699	0.99843	0.96718	2.99927	0.97182
INC.	PTE 15.98892	SPAN	0000000	0.04522	0.04522	0 5262	0.15262	0.24307	0.24307	0.33917	0.33917	0.44657	0.44657	0.54267	0.54267	0.63877	0.63877

6.21599	•215	• 385	• 385	S	• 535	•675
3.6842	3.8842	3.9006	3.9006	13.91278	3.9127	3.9178
6.354	6.191	6.310	6.061	15.82682	5.758	3.917
0	55	78	33	0.88028	n	00
0.74053	0.74053	0.83663	0.83663	0.92142	0.92142	1.00000

					C	0	20 14-67064	•		1	Ĭ		20 0.36892																										
P AMB PSIA 14.6706							990/0047 4						9 0.36892				HUB									21 -0.00985													
P AMB. IN. HG 29.8670	DATA			1000	20000	7.0/0.5	4.67066	4.67066			5272	18181	0.36892	-		IN TERMS OF CP	dI		52819	02819	00812	• 06693	*00294	.06165	.14753	0.21845 2	.29455		•32395	.36373				14.65260			0.36027		000000-0-
	INLET		PRESSURES	,	n (30	13	18					-1 -	•							m	4	S			30							PRESSURES	6			3		ETA
0.0100	(BASED ON	URES	ABSCLUTE PRE					14.67066			•		0.36892		RES	PRESSURES	HUB		~	13,919	_	_	_	_	_			_	_		14.6706	ZES	ASSCLUTE PRE	14.64537			0.3558		2
0 0	COEFFICIENTS	IC PRESSURES	5				6 12	1	IS OF CP				12	4	L PRESSUR	ABSOLUTE										33 21						E PRESSUR	9	2		ME OF CP	2 47		0.36892
7.0000	SSURE CCEFF	INLET STATIC	IN TERMS					99019.41 9	IN TERMS		•		1 0.35892		STATIC WALL	ERMS OF	4	4	- 7												13 14.63325	ATIC BASE	IN TERMS	14.42349	7000	IN TERMS	7 37.67.6		a
	PRESSU	I				7	7	16					11	1	S	Z												1	-		-	57.		-	•		•	•	

				1 1	15 0.41789														
14.6706	TOT FLO RATE 8-46988			1	14 0.41789														
IN HG 29.8670	FUEL AIR RATIO	DENSITY 0.02411	MS OF CP	3 -0.04839	0.41789	6041100	IS OF CP												OF CP
0000	FLO RATE	V AVG.	SSURES. IN TER	2 -0.03663		68/1400 /1	PRESSURES, IN TERMS	нов	ı	15 0.01038					22 0.01116		25 0.41789	26 0.41789	URES IN TERMS
30k NG	AIR FLO RATE FUEL 8.34155 0.	MACH NO. QFLCW 0.41655 1.84412	PRESSURE COEFFICIENTS INLET STATIC PRESSURES, IN TERMS	1 -0.03271	0.41789	16 0.41789 1	STATIC WALL PRESS	TIP	0.03193		-0.07582	-0.00333	0.06916	0.16712	0.24744	0.35128	0.41202	90905.0	STATIC BASE PRESSURES IN TERMS

RATIO OF RAKE AVE Q TO FLOW AVE Q = 1.13274

ETA = -0.00000

CP = 0.41789

PW 5 13.89387 PW10 14.54782 PW18 14.49001 PW23 14.36356 13.50366 13.85774 14.670£6 14.67066 PW 4 13.76019 PW 9 14.51531 PW PW17 14.63815 PW22 14.14317 PW 13.77464 14.08536 14.67066 14.67066 PS1A 14.6706 PSIA PSIA PSIA 1064691 DKJ-5600 COCLANT INLET TOTAL PRESSURE (PB01) = 16.7589 PSIA COCLANT INLET TOTAL TEMPERATURE (TB01) = 135.000 F COCLANT INLET TOTAL TEMPERATURE (TB02) = 145.000 F COCLANT INLET TOTAL TEMPERATURE (TB02) = 0.000 F OUTER WALL UNCOLED TEMPERATURE (TWUCO) = 990.000 F OUTER PANEL NO.1 WALL STATIC PRES. (PW27) = 14.4666 OUTER PANEL NO.2 WALL STATIC PRES. (PW28) = 14.4666 OUTER PANEL NO.3 WALL STATIC PRES. (PW28) = 14.66344 TOTAL COOLANT FLOW RATE = 0.54077 LB/SEC 4046 PW16 14.14678 PW21 13.87942 PW26 14.67066 255.00006 455.00006 450.00006 475.00006 475.00006 415.00006 425.00006 425.00006 PW 3 13.88303 PW 8 14.35633 PW13 14.83325 3 E P AMB IN. HG 29.8670 13.81077 14.07091 14.67066 14.67066 19 FULL SCALE DIFFUSER (IR SUPPRESSING) SWIRL ANGLE # 21.00 DEGREES 11300 S S PW 2 13.95890 PW 7 14.20820 PW12 14.65983 PW15 13.91916 PW20 13.77464 PW25 14.67066 PRESSURES. PSIA 2 13.83245 7 14.07091 12 14.67066 17 14.67066 0.010.0 STATIC WALL PRESSURES. PSIA DATA PT (17) (17) (17) (18) (19) OUTER WALL PW 1 13.95890 PW 6 14.02755 PW11 14.57673 Pw14 13.60844 Pw19 14.13955 Pw24 14.49724 8.4520 9.5000 10.54800 112.92600 114.21600 114.31800 116.31200 116.31200 116.41200 116.41200 116.41200 116.41200 OUTER WALL INNER WALL INLET STATIC 1 13.83967 6 14.15400 11 14.67066 16 14.67066 RUN NO (1N) 7.0000 819 ているおとらられをごて

PSIA PSIA
20.0063 PSIA = 113.000 F = 200.000 F = 185.000 F :) = 1135.000 F :30) = 14.54421 (30) = 14.54421 3/SEC
TEMPERATURE (TBO TEMPERATURE (TBO TEMPERATURE (TBO TEMPERATURE (TWO TEMPERATURE (TWO L STATIC PRES» (L STATIC PRES» (L STATIC PRES» (
COCLANT INLET TOTAL COCLANT INLET TOTAL COOLANT INLET TOTAL COCLANT INLET TOTAL INNER WALL UNCOOLED INNER PANEL NO.2 WALL INNER PANEL NO.2 WALL INNER PANEL NO.2 WALL INTER PANEL NO.2 WALL TOTAL COOLANT FLOW R

•	(TW13)	55	_	DKJ-5575
(F)		350.00006	455.00006	Q
(NI)	7.63600	6.39000	5.01800	
(NI)	15.02400	17.24800	19.33400	BASE REGION
(12)	13.95400	15.78800	17.36000	u.
	~ (N 'N	4 w	

	9 s i s	
	BASE 1 BASE 2 BASE 3 * 14.5641 LB/SEC	3
TAT ESS	(PSIA) 14.62369 P 14.64537 P 14.65260 P PRESSURE (PB03) ATE = 0.00000	×
RADIUS	(IN) 0.00000 1.57000 3.10000 INLET TOTAL	
	1 2 3 COOLANT 10TAL CO	

(TWB01) (TWB02) (TWB03) (TWB04)
(F) 0.00000 0.65000 755.00012
(IN) 0.21990 1.34310 2.43100 3.75300
(IN) 1.2000 1.92000 2.62000 3.58000
- N M 4

BASE BULK TEMP (TBB1) # 715.00012 F

MIDSPAN INLET TOTAL PRESSURES

NO. PT(PSIA)
1 15.581
2 16.079
3 16.473

									000 0EG R				0.00												
				LBM/SEC						INLET TOTAL TEMP. = 1000000				CAL FLU KAIE 2.18196 8.65054 2.18196											
	0 4 9	14.6706	HO.	. 0.1261			FLOW RATE	FLOW RATE	FLOW RATE	INL				0.00015											
	IN AMB.	29.8670	TEMP (R)	FUEL FLOW RATE	LBM/SEC		TENP (R) 550.0001	TEMP (R)	TEYP (R)	1610.000 DEG R		BASE 14.6706	TA)	(PT1-PA)/G1 0 0.78307	> -	00906.7 5		5.17599					73 5.86599		83 6.03599
			1.		8.3768 L		⊢ w	F 4,			4		NET DA	A R 2.49000	5 0	13.78476	13.78812	13.80596	13.82293	13.82293	13.84123	13.86097	13.86097	13.87873	13.89583
	DATA PT	0.0100	RY DEL P 7.7118	0.0152	н	ING AIR	DEL P 20.0000	9.0000	DEL P	URNER CAN	SSURES PSI	INNER WALL	(BASED ON INLET DATA)	PSBAR 14.30528	L d	13.78476	15.33907	15.98218	15.84489	16.01470	16-19535	10.23509	16.16283	16.27843	16.30374
	00	000	RATE . PRIMA	AIR RATIO =	TOTAL PRIMARY FLOW RATE	RATE . COOL	ALL 1 706	WALL P1 6706	P.1 6706	LAFT OF B	(IFCLO) PRE	OUTER WALL	PRUBE DATA (PSI 13.78476	VEL	0.00000	0.82219	0.94988	0.91943	0.95327	0.98794	0.99213		74766-0	
DOT H LYE	NON NO	8.0000	WEIGHT FLOW RATE, PRIMARY PI	FUEL TO AIR	TOTAL PRI	WEIGHT FLOW RATE, COOLING AIR	OUTER WALL 91	INNER WALL P1 25.6706	BASE P1 14.6706	TOTAL TEMP. (AFT OF BURNER CAN)	PLENUM (MANIFOLO) PRESSURES PSIA	00TEF	INLET PE	PTB 15.96672	SPAN	0.00000	0.04522	0.15262	0.15262	0.24307	0.33917	0.33917	0.44657	0.54267	7074600

707	129	3859	859	359	6.53599	5750	
3.9135	3.9135	3.9294	3.9294	3.9413	13.94137	3.9462	
3254	1628	2892	1620	3232	15.73650	52	
0000	9657	9891	9330	P 8 3 3	2527	00000	
7405	7 4 0 5	1000	0000	7500		1.00000	

00 00 00 00 00 00 00 00 00 00 00 00 00	a	-				4 13.80716	3 14-10704 10	19 14.67066 20		-0.05937 5	9 0.08773 10	0.36421 14 0.36421 15 0.36421	19 0-36421 20		TERMS OF CP	801	4 14 -0		16	17	00443 18 0.28800	20	21	22		25	56			9769		
0.	Z	29.6	INCET DATA!		PRESSURES		00 (18 14.67066		•		13 0.36			IN	411	0	o	0	0	20.00								PRESSURES	3 14.66344		
TG ATAG		0.0100	(BASED ON	PRESSURES	ABSCLUTE PRES			17 14.67066	a D	2 -0.03101		2		PRESSURES	TE PRESSURES	HUB	14 13,63735	15 13,95168			18 14.51531							SURES	ABSOLUTE PRES	2 14.67066		1
2		8.0000	PRESSURE COEFFICIENTS	INLET STATIC PRE	IN TERMS OF A		5 14-17568	15 14.67066	IN TERMS OF	1 -0.02924	6 0.12140	0	6 0.36421	STATIC WALL PRES	TERMS OF ABSOLUTE	416	1 13,86858	13	13	7	5 13.91916	-	1,7	7	7	1 14.59840	13 14,86938	STATIC BASE PRESSURES	IN TERMS OF	14.67066	L	IN TERMS OF

				5 -0.21559															
P AMB PSIA 14.6706	TOT FLO RATE 8.37684			4 -0.06718 9 0.09927															159
P AMB. IN. HG 29.8673 RATE	FUEL AIR RATIO 0.01528	DENSITY 0.02414	MS OF CP	m 00 1	13 0.41214	IS OF CP										OF CP	3 0.40813	ETA = 0.49140	FLOW AVE Q = 1.13159
DATA PT 0.0100 WEIGHT FLOW	FUEL FLO RATE 0.12611	V AVG. 831.49365	JRES. IN TERMS	-0.03509	0.41214	PRESSURES. IN TERMS	HUB	-0.16144				-0.00 / IS		0.33192		ES IN TERMS	0.41214	ш	AVE Q TO
RUN NO 8.0000 CALCULATIONS BASED ON W	ATE FUEL F 73 0-1	0. OFLCW 33 1.80147	COEFFICIENTS I STATIC PRESSURES.		0.41214 12 0.41214 17	STATIC WALL PRESSUR	411	60880	0.03309 15			70			0.52245 26	BASE PRESSURES	0.41214 2	CP = 0.41214	RATIO OF RAKE
CALCULATIO	AIR FLO RATE 8.25073	MACH NO. 0.41133	PRESSURE CINCET		11 0 0 16 0 0	STATI					•				13	STATIC	1 0		

	13.91916 14.5695U	14.37801
5 13.53980 10 13.88303 15 14.67066 20 14.67066	13.79270 PW.5 14.51892 PW.0	14.17568 PW23
P AMB PSIA 14.6706 13.80716 14.67066	9 0 0 3 3 3 4 0	PW 22 PW 22 PW 22 PW 22 TW 23
4040	3 13.91193 8 14.34911 3 14.86938	#16 14-17207 #21 13-92639 #26 14-66705 DKJ-5600 190-000 F 20-000 F 0-000 F 100-000 F 100-00
0 2 0 0 0 0	333	2787
IFFUSER (IR SUPPRESSING) 21.00 DEGREES DATA PT 0.0100 2 13.86496 3 13.7 14.09258 12 14.67066 13 14.67066 13 14.67066 13 14.67066 13 14.67066 18 14.67066 18 14.67066 18 14.67066 18 14.67066 18 14.67066 18 14.67066 18 14.67066 18 14.67066 18 14.67066 18 14.67066 18 14.67066 18 14.67066 18 14.67066 18 14.67066 18 14.67066	PW 2 13.98781 PW 7 14.20459 PW12 14.66344	INNER WALL
	13.86858 14.59840	INNER WALL
SWIRL SCALE SWIRL ANGLE RUN N 8.000 INLET STAT 1 13.8685 6 14.1756 11 14.6706 16 14.6706	S S S S S S S S S S S S S S S S S S S	TOUTER PEANT 15 19 19 19 19 19 19 19 19 19 19 19 19 19

INNER WALL

DKJ-5600

	1 PSIA	S	
16.4918 PSIA = 110.000 F = 310.000 F = 1140.000 F	= 14.5153	= 14.6959	U
COCLANT I'LET TOTAL PRESSURE (PBO2) = 16. COCLANT INLET TOTAL TEMPERATURE (TBO4) = COCLANT INLET TOTAL TEMPERATURE (TBO5) = TOOLANT INLET TOTAL TEMPERATURE (TBO5) = TANNER MAIL INCOMED TEMPERATURE (TBO6) =	L STATIC PRES. (PW30	L STATIC PRES.	COOLANT FLOW RATE = 0.14055 LB/SE

		(TW12)	(TW13)	(TENT)	(TW15)	(TW16)	-5575	
3	(F)	590,00012	0000000	0000000	460.00006	1000	האם	
œ	2	7.63600	7.18700	6.39000	6.01200	5.01800		
×	(IV)	15.02400		17.24800	17.83000	19.33400	BASE REGION	
7	CNI	13,95400	1	15.78800		17,36000		
			• ^	1 ~	1 3	• 40		

						PSIA	
			BASE 1	AS	SE	= 14.6706	LB/SEC
STATIC	PRESSURE	(PSIA)	14.57066 P	14.67066 P	14.66344 P	SUR	RATE # 0.00000
RADIUS		(Z)	00	.5700	100	MET	STAL COOLANT FLOW

		(TWB01)	(TWB02)	(TH803)	(TMB04)
TW	(F)	00000	0.00012	70.00012	0.0000
×	(NI)	.219	1.34310	2.43100	3.75300
¥	(NI)	.2000	.9200	2.62000	.5800
		-	2	m	1

BASE BULK TEMP (TBB1) = 845.00012 F

WIDSPAN INLET TOTAL PRESSURES

NO. PT(PSIA)
1 15-573
2 16-090
3 16-473

P AMB. IN. 46 29.8670 29.8670 TEMP (R) 710.0001 FUEL FLOW RATE 5 LBN/SEC 5 LBN/SEC 5 LBN/SEC 6 LBN/SEC 6 LBN/SEC 6 LBN/SEC 6 LBN/SEC 6 LBN/SEC 7 EWP (R)	245 5-55-577 345 5-50599 345 5-69600 334 5-69600
10.3785 10.17 10.65 10	16.03999 13.82497 16.21703 13.84345 16.21831 13.86345 16.25677 13.86334 16.19174 13.86334

2.06746

6.21599 6.21599 6.38599 6.38599 6.53599 6.53599
13.91645 13.91645 13.93261 13.93261 13.94465 13.94465
16.36155 16.18812 16.32542 15.05444 15.85573 15.75818
1.000000 0.96388 0.98924 0.93155 0.86122 0.00000
0.74053 0.74053 0.83663 0.92142 0.92142

ON NO		DATA PT		N A M B .		P AMB		
0000.6		0.0100		29.8670		20		
RESSURE COEFFICIENTS		(BASED ON I	INLET	DATAI				
INLET STATIC F	PRESSURES	RES						
IN TERMS OF	F ABSOLUTE	LUTE PRESSURE	URES					
	٢		(*	13-84329	7	13.8107		13.5
٦,	11	14.09981	n oc	14.10342	٠.	9 14.11787	10	13.8902
1 14-6706	12	4.6	13	14.67066	7,	14.6706	- 0	14.0
9	17	14.67066	18	14.67066	1	14.6706	7	5
IN TERMS OF	<u>ئ</u>							
	•	1	"	EE 70	,	-0.0590		-0.18
-0.0310	7	7760	n oc	0.0829		6680.0	1	-0.02
0.3591	12	0.35817	13	0.35817	7	4 0.35817	15	0.358
16 0.35817	17	.3581	18	.3581	Ä	0.3581	7	0 0 0
STATIC WALL PI	PRESSURES	ES						
IN TERMS OF ABSOLUT	144	PRESSURES		IN TERMS OF	O D			
411		n O I		411		100		
		;	-	C	-			
13	7 .	3.64	٦ ،	9 0	4			
13	5 .	3.85	7 6	2	• ~			
5 .	1 -	7	1 1	0	-	7	_	
9 5	- a	1.52	S	0	~	90		
1 4	3	4.18	9	0	~	0		
1.4	20	3.82	7	0	2	0 -		
1.4	21	3.95	0 0	o	7	- :	• •	
14	22	4.19	5	0	7 (v 1	. "	
0 14	23	56.7	0 :	o o	u :	n .		
1 14.	54	4.52		o (A C	3 4		
12 14-67066	25	14.65983	12	0.45817	2 7	6 0.35291		
STATIC BASE PR	RESSURE	n						
IN TERMS	OF ABS	SOLUTE PRES	SURES					
1 14,58973	2	14,68873	6	14.68150				
IN TERMS	OF CF							
1 0.35694	7	0.36594	m	0.36343				
				•				
0 H d.	.35817		ETA :	= 0.42705				

MB. O PABB	14	AIR RATIO TOT FLO RATE 01531 8.37853			4 -0.06758	14 0.40970 15	19 0.40970 20
P AMB	7	FUEL AIR R 0.01531	DENSITY 0.02415	MS OF CP	1		18 0.40970
DATA PT	0.0100 WEIGHT FLOW RATE	FUEL FLO RATE 0.12638	V AVG. 831.39392	OEFFICIENTS STATIC PRESSURES, IN TERMS	-0.03750	0.09285	0.40970
		FUEL FI	OFLOW 1.80162	ENTS	~	~	12
RUN NO	9.0000 CALCULATIONS BASED ON	AIR FLO RATE 8-25214	MACH NO. QF 0.41124 1.	PRESSURE COEFFICIENTS INLET STATIC PRES	1 -0.03549		11 0.40970

									13.93361				3 14.52614 3 14.39969																	
			13.54341	14.67066	14.67066				3 9				PW18																	
			o 01	15	20				13.80354	01676147			14.67066																	
P AMB			13.81077	14-67066	14-67066				4 0	•	•		PW17	3	009			PSIA .					1 × 1				(TW 6)	C 0 3 H	3 3	
8 9 9	0		40	7.	1 0				13.91555	14.38162	14.89828		14.17568	14.65983	DKJ-5600	260.000 F		2	14.48640		¥	(F)	540.00012	45000000	830,00012	730,00012	840.00012	850.00012	745.00012	71000000
P A M	29.8670		3 13.84329		13 14.0/100				0	3 6	E [M.]		Pw16	P. 26		ž.,		(PW27) =	(PW28) =	U		-	8.32200	00916-8	0046400	9.98500	9.82400	9.36600	9.18000	8.80300
T d	00	VS1A	96				SIA		3.99142	14.20459	14.67066		3.88664	13.82522	بد	TOT L PRESSURE (PB01) = TOTAL TEMPERATURE (TB01)	TURE (TB	TURE (TW	C PRES.	0.13896	œ	CIN								
۵	0.0100	PRESSURES. PSIA	2 13.86496		12 14.67066	17 14.67066	SURES. P.			PW 7 1	PW12 1		PW15 1	PW20 1	OUTER WALL	PRESSUR	TEMPERA	TEMPERA	LL STATI	FLOW RATE =	×	CZI	8.71800	9.92400	11-10100	13.53700	14.86000	16.49900	17.05400	18.16700
RUN NO	00000-6	INLET STATIC PRES	13.86858				STATIC WALL PRESSURES, PSIA	OUTER WALL	13.87942	14.07452	14.61647	INNER WALL	13.64818	14.18652		COOLANT INLET TOT L	COOLANT INLET TOTAL TEMPERATURE (1803)	WALL UNCOOLED TEMPERATURE (TWUCO) =	PANEL NO.2 WALL STATIC PRES-	PANEL NO.3 WA	2	ž	8.45200	00005-6	10.54800	12-12000	14.21600	15.78800	16.31200	00036.71
RUN NO		INLET	1 13		11 14		STATI	20	3	3.0	=	2 1	P#14	P. 19		COOLANT INLET	COOLANT INLET	OUTER W		OUTER PA			-	7	6	4	٠ م	10	- 40	, (

INNER WALL

DKJ-5600

COOLANT INLET TUTAL PRESSURE (PBO2) = 15.3629 PSIA
COOLANT INLET TOTAL TEMPERATURE (TBO4) = 118.000 F
COOLANT INLET TOTAL TEMPERATURE (TBO5) = 400.000 F
COOLANT INLET TOTAL TEMPERATURE (TBO6) = 90.000 F
INNER WALL UNCOOLED TEMPERATURE (TWUCI) = 1150.000 F
INNER WALL UNCOOLED TEMPERATURE (PW30) = 14.52614 PSIA
INNER PANEL NO.1 WALL STATIC PRES. (PW31) = 14.65983 PSIA
INNER PANEL NO.2 WALL STATIC PRES. (PW31) = 14.65983

RADIUS STATIC
PRESSURE
(IN) (PSIA)
1 0.00000 14.68873 P BASE 2
2 1.57000 14.68150 P BASE 2
3 3.10000 14.68150 P BASE 3
COOLANT INLET TOTAL PRESSURE (PB03) = 14.6706 PSIA
TOTAL COOLANT FLOW RATE = 0.00000 LB/SEC

(TWB01) (TWB02) (TWB03) (TWB04)

BASE BULK TEMP (TBB1) = 925.00012 F

MIDSPAN INLET TOTAL PRESSURES

NO. PT(PSIA)
1 15.588
2 16.123
3 16.509
4 14.663

LIST OF SYMBOLS

```
Area (ft2)
a
            Area, a/r_r^2 (dimensionless)
A
            Van Driest constant (26.0)
A+
             Critical area ratio (dimensionless)
A*
             Block tridiagonal matrix (dimensionless)
Ā
             Diagonal block matrix (dimensionless)
Āk
             Chord (ft)
b
             Chord, b/rr (dimensionless)
 В
             Location of pole in z plane (dimensionless)
 b_{\mathrm{I}}
              Left diagonal block matrix (dimensionless)
 \bar{\bar{B}}^{k}
              Speed of sound (ft/sec)
 С
              Drag coefficient, 2D/(\rho_2U_2^2b) (dimensionless)
 C_{\mathrm{D}}
              Friction coefficient, T_{w}/(P_{Ol} - P_{l}) (dimensionless)
 ^{\mathrm{C}}\mathbf{f}
               Lift coefficient, 2L/(\rho_2U_2^2b) (dimensionless)
  C<sub>T.</sub>
               Specific heat pressure ft^2/(sec^2 deg R)
  C_{\mathbf{p}}
               Pressure coefficient, (P - P_1)/(P_{01} - P_1) (dimensionless)
               Specific heat volume ft^2/(sec^2 deg R)
  C_{\mathbf{V}}
               Right diagonal block matrix (dimensionless)
  \bar{\bar{\mathbf{c}}}^{\mathbf{k}}
               Drag/span (lb/ft)
  D
               Elock operator matrix (dimensionless)
   \mathbb{D}^{\mathbf{k}}
               Streamwise strain (1/sec)
   ens
                Tangential strain (1/sec)
   enø
               Block operator matrix (dimensionless)
   \bar{\bar{E}}^{\mathbf{k}}
```

151

```
Ēk
            Solution matrix (dimensionless)
             Force/area (lb/ft2)
f
             Force/span (lb/ft)
f
             Complex variable source solution (dimensionless)
F
             Gap between walls (ft)
g
             Gap between chord lines (ft)
 g_{B}
             Gap between walls, \mathrm{g/r_r} (dimensionless)
 G
             Gap between chord lines (dimensionless)
 GB
             Enthalpy (ft^2/sec^2)
 h+
             Height of inlet duct (dimensionless)
 h
             Universal stagnation enthalpy, (h_{QW}-h_{Q})\rho_{W}U^{*}/q_{W} (dimensionless)
 H^+
              Universal adiabatic stagnation enthalpy, (h_{OAW}-h_{OA})/(U^*)^2 (dimensionless)
 H_A^*
              Entropy ft<sup>2</sup>/(sec<sup>2</sup> deg R)
 I
              Element of Ek matrix
 1_{IJ}^{k}
              Lift/span (lb/ft)
 L
              Matrix for k+l point (dimensionless)
 \bar{\bar{\mathbf{L}}}^{\mathbf{k}}
              Mass flow (slugs/sec)
  m
              Mass flow, m/(N_B r_r^2 \rho_r U_r) (dimensionless)
  M
              Mass flow/area slugs/(ft sec)
              Universal mass flow parameter, \mathring{m}_{W}/(\rho_{W}U^{*}) (dimensionless)
  m<sup>+</sup>
               Mass flow/area, m/(\rho_r U_r) slugs/(ft<sup>2</sup> sec)
  Ň
               Mach number, U/C (dimensionless)
  M
```

```
Streamwise Mach number (dimensionless)
M_{S}
m_{\mathrm{IK}}^{\mathbf{k}}
             Element of M matrix
              Boundary condition matrix (dimensionless)
\bar{\bar{M}}
              Normal coordinate (dimensionless)
n
              Normal coordinate, n/(rrvr) (dimensionless)
n
              Number of struts (dimensionless)
N_B
              Reynolds number, r_r \rho_r U_r / \mu_r (dimensionless)
N_R
              Pressure (lb/ft<sup>2</sup>)
 p
              Universal pressure gradient parameter, \frac{\mu_{W}}{\rho_{W}U^{+}} \frac{1}{\rho_{W}U^{+}2} \frac{dp}{dx} (dimensionless)
p<sup>+</sup>
              Prandtl number, \left(\frac{\mu c_p}{\lambda}\right) (dimensionless)
 P_R
              Prandtl number turbulent, \left(\frac{\mu c_p}{\lambda}\right)_T (dimensionless)
 PRT
              Heat flux, -\lambda \frac{\partial T}{\partial Y} lb/(ft sec)
 q
              Average inlet dynamic pressure (lb/ft2)
 \bar{q}_1
              Heat flux, q/(\rho_r U_r C_p T_r) (dimensionless)
 Q
              Universal heat flux, q/qw (dimensionless)
 Q+
              Universal heat flux (adiabatic), q/(\rho_W U^{*3}) (dimensionless)
 Q_A^+
               Column matrix (dimensionless)
               Split column matrix (dimensionless)
               Radius (ft)
 r
               Recovery factor, Eq. (3.2.35) (dimensionless)
 RC
               Radius, r/rr (dimensionless)
 R
```

Gas constant $ft^2/(sec^2 deg R)$

R

```
Radius in z plane Eq. (3.7.2) (dimensionless)
\mathbf{r}_{\mathbf{J}}
            Radial coordinate (\bar{r},\bar{z}) plane (dimensionless)
\bar{\mathbf{r}}
            Element of Rk matrix
\mathbf{r}_{\mathrm{IJ}}^{\mathrm{k}}
            Matrix for kth point (dimensionless)
\bar{\bar{R}}^k
            Streamwise coordinate (dimensionless)
S
            Streamwise coordinate, s/(r_r V_r) (dimensionless)
S
             Stanton number (dimensionless)
S_t
             Blade thickness (ft)
t
             Temperature (deg R)
T
             Universal temperature, CpT/U*2 (dimensionless)
 T^{+}
             Column matrix for k point (dimensionless)
 \bar{T}^{k}
             Streamwise velocity (ft/sec)
 u_{s}
             Normal velocity (ft/sec)
 un
             Tangential velocity (ft/sec)
 uø
             Magnitude of velocity (ft/sec)
 u
             Blade velocity (ft/sec)
 u_B
              Friction velocity, \sqrt{\tau_{\rm W}/\rho_{\rm W}} (ft/sec)
 u*
              Streamwise velocity, Ug/Ur (dimensionless)
 US
              Normal velocity, U_n/U_r (dimensionless)
 U_n
              Tangential velocity, U_{\phi}/U_{r} (dimensionless)
  Uφ
              Magnitude of velocity, U/Ur (dimensionless)
  U
              Blade velocity, U_{\rm B}/U_{\rm r} (dimensionless)
  U_{\mathbf{B}}
```

```
Universal velocity, U/U* (dimensionless)
U+
           Friction velocity, U^*/U_r (dimensionless)
U*
           Metric scale coefficient (dimensionless)
V.
           Metric scale coefficient, v/v_r (dimensionless)
V
           Volume (ft<sup>3</sup>)
4
            Complex variable w plane (dimensionless)
            Stream function inner layer (dimensionless)
W+
            Distance along streamline (ft)
 х
            Distance along streamline, x/r_r (dimensionless)
 X
            Real part of Z (dimensionless
 X
            Imaginary part of z (dimensionless)
 У
             Distance normal to wall (ft)
 У
             Distance normal to wall, y/r_r (dimensionless)
 Y
             Real part of dw/dz (dimensionless)
 \widetilde{\mathbf{x}}
             Imaginary part of dw/dz (dimensionless)
  \widetilde{\mathtt{Y}}
             Universal distance from wall, Y \rho_w U^* / \mu_w (dimensionless)
  Y+
             Complex variable - z plane (dimensionless)
  Z
             Axial distance (ft)
             Axial distance, z/r_r (dimensionless)
  Z
              Loss coefficient (dimensionless)
  Z_{B}
              Axial coordinate (\bar{r},\bar{z}) plane (dimensionless)
   \bar{z}
              Column operator matrix (dimensionless)
   Ēκ
```

```
Swirl angle to axis (deg)
\alpha
           Chord angle to axis (deg)
\alpha_{s}
           Angle Schwartz-Christoffel transformation (dimensionless)
\alpha_{\mathsf{T}}
           Ratio of specific heats, C_{\rm p}/C_{\rm v} (dimensionless)
Y
            Boundary layer thickness (ft)
δ
            Displacement thickness (ft)
8*
            Boundary layer thickness, \delta/r_r (dimensionless)
 \Delta
            Displacement thickness, \delta^*/r_r (dimensionless)
 Streamwise strain, r_r e_{ns}/U_r (dimensionless)
Ens
             Tangential strain, r_r e_{n\phi}/U_r (dimensionless)
E_{n\phi}
             Small angle in z plane
 €
             Transformed normal coordinate (dimensionless)
 η
             Imaginary part of w (dimensionless)
 η
             Blade/force area, r_r f/(\rho_r u_r^2) (dimensionless)
 H
             Angle of streamline to axis (deg)
  θ
             Momentum thickness (ft)
  \theta_{3t}
              Temperature ratio, T/Tr (dimensionless)
  θ
              Momentum thickness, \theta^*/T_r (dimensionless)
  Oit
              \sqrt{-1}
  i
              Entropy, (I-I<sub>r</sub>)/R (dimensionless)
  I
              Von Karman constant (0.41)
   K
               Thermal conductivity 1b/(sec deg R)
   λ
```

```
Viscosity slugs/(ft sec)
μ
             Plade force/span, f/(r_r \rho_r U_r^2) (dimensionless)
Ξ
             Real part of w (dimensionless)
ξ
             3.14159
             Pressure ratio, p/pr (dimensionless)
II
             Density (slugs/ft<sup>3</sup>)
             Radius of curvature (ft)
\rho_s, \rho_n
             Density ratio, \rho/\rho_r (dimensionless)
P
P_s, P_n
             Radius of curvature (dimensionless)
             Solidity, b/gB (dimensionless)
σ
             Streamwise stress, \tau_{\text{ns}}/(\rho_{\text{r}}U_{\text{r}}^2) (dimensionless)
\Sigma_{na}
             Tangential stress, \tau_{n\phi}/(\rho_r U_r^2) (dimensionless)
\Sigma_{n\phi}
             Streamwise stress (lb/ft<sup>2</sup>)
Tns
             Tangential stress (1b/ft<sup>2</sup>)
Tnø
T<sup>+</sup>
             Stress, T/Tw (dimensionless)
₹k
             Column matrix for boundary conditions (dimensionless)
             Tangential coordinate (radians)
Ø
             Chamber angle (deg)
\phi_{\mathbf{c}}
             Angle in z plane Eq. (3.7.3) (dimensionless)
\phi_{\mathbf{J}}
             Blade dissipation function lb/(sec ft<sup>2</sup>)
\phi_{\mathbf{B}}
             Blade dissipation function (dimensionless)
\Phi_{B}
```

- X Clauser constant (0.016) (dimensionless)
- Normal coordinate transform, dη/dn (dimensionless)
- ψ Stream function (slugs/ft)
- Y Stream function (dimensionless)

Matrix Operators

- T Transpose
- -1 Inverse

Superscripts

- V Iteration number
- _ Mean or average quantity
- Variables for blade force calculation
- , Deviation from mean quantity

Subscripts

- O Stagnation conditions
- 1 Inlet conditions
- 2 Upstream of strut
- 3 Downstream of strut
- A Adiabatic
- E Effective turbulent
- H Hub conditions
- I Incompressible conditions
- M Midspan conditions

r Reference conditions*

T Tip conditions

W Wall conditions

∞ Free stream or edge of boundary layer

^{*}Reference conditions are based on standard sea level atmosphere conditions for all thermodynamic quantities. The reference radius, r_r , is the inlet outer radius, and the velocity is the mean inlet velocity.