A Parametric Study of the SASI Comparing General Relativistic and Non-Relativistic Treatments

Samuel J. Dunham

August 30, 2023

A Parametric Study of the SASI Comparing General Relativistic and Non-Relativistic Treatments*

Samuel J. Dunham , ¹ Eirik Endeve ¹ Anthony Mezzacappa ¹ John M. Blondin ¹ Jesse Buffaloe ¹ Para ¹ John M. Blondin ¹ Jesse Buffaloe ¹ Para ¹ John M. Blondin ¹ Jesse Buffaloe ¹ Para ¹ John M. Blondin ¹ Jesse Buffaloe ¹ Para ¹ John M. Blondin ¹ Jesse Buffaloe ¹ Para ¹ John M. Blondin ¹ Para ¹ Par AND KELLY HOLLEY-BOCKELMANN 101,5

Department of Physics and Astronomy, Vanderbilt University, 6301 Stevenson Center, Nashville, TN 37235 ² Department of Physics and Astronomy, University of Tennessee, Knoxville, Nielsen Physics Building, 401, 1408 Circle Drive, Knoxville, TN 37996

³ Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 ⁴ Department of Physics, North Carolina State University, 2401 Stinson Dr., Raleigh, NC 27607

Department of Life and Physical Sciences, Fisk University, 1000 17th Ave N. Nasvhille, TN 37208

Overview

Mezzacappa A. 2005. Annu. Rev. Nucl. Part. Sci. 55:467–515

Mezzacappa A. 2005. Annu. Rev. Nucl. Part. Sci. 55:467–515

Figure: Equilibrium (white), under- (blue), and over- (red) pressure (?).

Figure: Equilibrium (white), under- (blue), and over- (red) entropy (?).

$d{+}1$ Decomposition

$$ds^2 = g_{\mu\nu}\, dx^\mu\, dx^\nu$$

$d{+}1$ Decomposition

$$ds^2 = g_{\mu\nu} \, dx^\mu \, dx^\nu$$

 $\underline{\underline{g}} \colon \operatorname{spacetime} \operatorname{metric} \operatorname{on} \mathcal{M}$

d+1 Decomposition

$$ds^2 = g_{\mu\nu} \, dx^\mu \, dx^\nu$$

 $\underline{\underline{g}}$: spacetime metric on $\mathcal M$

$$g_{\mu\nu} = \begin{pmatrix} -\alpha^2 + \beta^k \beta_k & \beta_j \\ \beta_i & \gamma_{ij} \end{pmatrix}$$

$d{+}1$ Decomposition

$$ds^2 = g_{\mu\nu} \, dx^\mu \, dx^\nu$$

 $\underline{\underline{g}}$: spacetime metric on $\mathcal M$

$$g_{\mu\nu} = \begin{pmatrix} -\alpha^2 + \beta^k \beta_k & \beta_j \\ \beta_i & \gamma_{ij} \end{pmatrix}$$

 $\underline{\underline{\gamma}} \colon$ spatial three-metric on Σ_t

d+1 Decomposition

$$ds^2 = g_{\mu\nu} \, dx^\mu \, dx^\nu$$

 $\underline{\underline{g}}$: spacetime metric on $\mathcal M$

$$g_{\mu\nu} = \begin{pmatrix} -\alpha^2 + \beta^k \beta_k & \beta_j \\ \beta_i & \gamma_{ij} \end{pmatrix}$$

 $\underline{\underline{\gamma}} :$ spatial three-metric on Σ_t

 $0 < \alpha \le 1$: Lapse Function

$d{+}1$ Decomposition

$$ds^2 = g_{\mu\nu} \, dx^\mu \, dx^\nu$$

 $\underline{\underline{g}}$: spacetime metric on $\mathcal M$

$$g_{\mu\nu} = \begin{pmatrix} -\alpha^2 + \beta^k \beta_k & \beta_j \\ \beta_i & \gamma_{ij} \end{pmatrix}$$

 $\label{eq:spatial_problem} \underline{\underline{\gamma}} \colon \text{spatial three-metric on } \Sigma_t$

 $0 < \alpha \le 1$: Lapse Function

 \overline{n} : Eulerian four-velocity

$$\left(\underline{g}\left(\overline{n},\overline{n}\right) = \overline{n} \cdot \overline{n} = -1\right)$$

d+1 Decomposition

$$ds^2 = g_{\mu\nu} \, dx^{\mu} \, dx^{\nu}$$

 $\underline{g} \colon$ spacetime metric on \mathcal{M}

$$g_{\mu\nu} = \begin{pmatrix} -\alpha^2 + \beta^k \beta_k & \beta_j \\ \beta_i & \gamma_{ij} \end{pmatrix}$$

 $\underbrace{\gamma}_{=}$ spatial three-metric on Σ_t

 $0 < \alpha \le 1$: Lapse Function

 \overline{n} : Eulerian four-velocity

$$\left(\underline{g}\left(\overline{n},\overline{n}\right) = \overline{n} \cdot \overline{n} = -1\right)$$

(Also, \underline{K} : Extrinsic curvature)

Conformally-Flat Condition

??

$$\gamma_{ij} = \psi^4 \, \bar{\gamma}_{ij}$$

 $1 \le \psi < 2$: Conformal factor

$$\bar{\gamma}_{ij} = \operatorname{diag}\left(1, r^2, r^2 \sin^2 \theta\right)$$

??

$$\gamma_{ij}=\psi^4\, \bar{\gamma}_{ij}$$

$$1\leq \psi <2 \colon {\sf Conformal\ factor}$$
 $\bar{\gamma}_{ij}={\rm diag}\left(1,r^2,r^2\sin^2\theta
ight)$ (Also, $K:={\rm Tr}_{\gamma_{ij}}\left(\underline{K}
ight)=\partial_t\,K=0$)

Isotropic Coordinates (
$$c = G = 1$$
)

$$\alpha\left(r\right) = \frac{1 - r_{\mathrm{Sc}}/r}{1 + r_{\mathrm{Sc}}/r}$$

$$\alpha\left(r\right) = \frac{1 - r_{\mathrm{Sc}}/r}{1 + r_{\mathrm{Sc}}/r}$$

$$\psi\left(r\right) = 1 + \frac{r_{\rm Sc}}{r}$$

$$\alpha(r) = \frac{1 - r_{Sc}/r}{1 + r_{Sc}/r}$$

$$\psi(r) = 1 + \frac{r_{Sc}}{r}$$

$$r > r_{Sc} := M/2 \quad \left(= GM/\left(2c^2\right)\right)$$

$$\alpha(r) = \frac{1 - r_{Sc}/r}{1 + r_{Sc}/r}$$

$$\psi(r) = 1 + \frac{r_{Sc}}{r}$$

$$r > r_{Sc} := M/2 \quad (= GM/(2c^2))$$

$$(r_{Sc}^{areal} := 2 G M/c^2 = 4 r_{Sc})$$

$$\alpha(r) = \frac{1 - r_{Sc}/r}{1 + r_{Sc}/r}$$

$$\psi(r) = 1 + \frac{r_{Sc}}{r}$$

$$r > r_{Sc} := M/2 \quad (= GM/(2c^2))$$

$$(r_{Sc}^{areal} := 2 G M/c^2 = 4 r_{Sc})$$

$$\beta^i = 0$$

$$K_{ij} = 0$$

Units defined such that c = G = 1

Units defined such that c = G = 1

 $\overline{\nabla}\cdot\overline{J}=0 \hspace{0.5cm} (\overline{J}: \text{ baryon mass density current four-vector})$

Units defined such that c = G = 1

 $\overline{\nabla} \cdot \overline{J} = 0$ (\overline{J} : baryon mass density current four-vector)

 $\overline{\nabla} \cdot \overline{\overline{T}} = \overline{0} \hspace{0.5cm} (\overline{\overline{T}}: \hspace{0.1cm} \mathsf{Rank} \hspace{0.1cm} (2,0) \hspace{0.1cm} \mathsf{stress\text{-}energy} \hspace{0.1cm} \mathsf{tensor})$

Units defined such that c = G = 1

```
\overline{\nabla} \cdot \overline{J} = 0 (\overline{J}: baryon mass density current four-vector)
```

$$\overline{\overline{\nabla}} \cdot \overline{\overline{T}} = \overline{0} \hspace{0.5cm} (\overline{\overline{T}} \colon \operatorname{Rank} \ (2,0) \text{ stress-energy tensor})$$

$$\overline{J} := \rho \, \overline{u} \quad (\rho: \text{ comoving baryon mass density})$$

Units defined such that c = G = 1

$$\overline{\nabla} \cdot \overline{J} = 0$$
 (\overline{J} : baryon mass density current four-vector)

$$\overline{\nabla}\cdot\overline{\overline{T}}=\overline{0} \hspace{0.5cm} (\overline{\overline{T}}: \hspace{0.1cm} \mathsf{Rank} \hspace{0.1cm} (2,0) \hspace{0.1cm} \mathsf{stress\text{-}energy} \hspace{0.1cm} \mathsf{tensor})$$

$$\overline{J}:=
ho\,\overline{u} \quad \left(
ho: \text{ comoving baryon mass density}
ight)$$

$$\overline{\overline{T}}:=
ho\,h\,\overline{u}\otimes\overline{u}+p\,\overline{\overline{g}}$$
 (p : comoving thermal pressure,

 $h:=1+\left(e+p\right) /\rho$: specific enthalpy, e: comoving internal energy density)

Units defined such that c = G = 1

$$\overline{\nabla} \cdot \overline{J} = 0$$
 (\overline{J} : baryon mass density current four-vector)

$$\overline{\overline{\nabla}} \cdot \overline{\overline{T}} = \overline{0} \hspace{0.5cm} (\overline{\overline{T}} \colon \operatorname{Rank} \ (2,0) \text{ stress-energy tensor})$$

$$\overline{J} := \rho \, \overline{u} \quad (\rho: \text{ comoving baryon mass density})$$

$$\overline{\overline{T}}:=
ho\,h\,\overline{u}\otimes\overline{u}+p\,\overline{\overline{g}}$$
 (p : comoving thermal pressure,

 $h:=1+\left(e+p\right)/\rho$: specific enthalpy, e: comoving internal energy density)

Five equations with six unknowns ©

Units defined such that c = G = 1

$$\overline{\nabla} \cdot \overline{J} = 0$$
 (\overline{J} : baryon mass density current four-vector)

$$\overline{\overline{\nabla}} \cdot \overline{\overline{T}} = \overline{0} \hspace{0.5cm} (\overline{\overline{T}} \colon \operatorname{Rank} \ (2,0) \text{ stress-energy tensor})$$

$$\overline{J} := \rho \, \overline{u} \quad (\rho: \text{ comoving baryon mass density})$$

$$\overline{\overline{T}}:=
ho\,h\,\overline{u}\otimes\overline{u}+p\,\overline{\overline{g}}$$
 (p : comoving thermal pressure,

 $h:=1+\left(e+p\right)/\rho$: specific enthalpy, e : comoving internal energy density)

Five equations with six unknowns ©

Close with an equation of state: $p = p\left(e\right) := \left(\Gamma - 1\right)e$, $\Gamma = 4/3$

Extensible to higher-rank tensors!

$$E:=n_{\mu'}\,n_{\nu'}\,T^{\mu'\nu'}$$

$$E:=n_{\mu'}\,n_{\nu'}\,T^{\mu'\nu'}$$

$$S^{\mu} := - \gamma^{\mu}_{\ \mu'} \, n_{\nu'} \, T^{\mu'\nu'}$$

$$E:=n_{\mu'}\,n_{\nu'}\,T^{\mu'\nu'}$$

$$S^{\mu} := - \gamma^{\mu}_{\ \mu'} \, n_{\nu'} \, T^{\mu'\nu'}$$

$$P^{\mu\nu}:=\gamma^\mu_{\ \mu'}\,\gamma^\nu_{\ \nu'}\,T^{\mu'\nu'}$$

$$E:=n_{\mu'}\,n_{\nu'}\,T^{\mu'\nu'}$$

$$S^{\mu} := - \gamma^{\mu}_{\ \mu'} \, n_{\nu'} \, T^{\mu'\nu'}$$

$$P^{\mu\nu}:=\gamma^\mu_{\ \mu'}\,\gamma^\nu_{\ \nu'}\,T^{\mu'\nu'}$$

Math...

$$\partial_t \mathbf{U} + \frac{1}{\sqrt{\gamma}} \partial_i \left[\alpha \sqrt{\gamma} \mathbf{F}^i (\mathbf{U}) \right] = \mathbf{S} (\mathbf{U})$$

GR

$$\partial_{t} \mathbf{U} + \frac{1}{\sqrt{\gamma}} \partial_{i} \left[\alpha \sqrt{\gamma} \mathbf{F}^{i} \left(\mathbf{U} \right) \right] = \mathbf{S} \left(\mathbf{U} \right)$$

GR

$$\boldsymbol{U} := (D, S_j, \tau)^\top$$

$$\partial_{t} \mathbf{U} + \frac{1}{\sqrt{\gamma}} \partial_{i} \left[\alpha \sqrt{\gamma} \mathbf{F}^{i} \left(\mathbf{U} \right) \right] = \mathbf{S} \left(\mathbf{U} \right)$$

GR

$$\boldsymbol{U} := (D, S_j, \tau)^{\top}$$

$$D := \rho W$$

$$\partial_{t} \mathbf{U} + \frac{1}{\sqrt{\gamma}} \partial_{i} \left[\alpha \sqrt{\gamma} \mathbf{F}^{i} \left(\mathbf{U} \right) \right] = \mathbf{S} \left(\mathbf{U} \right)$$

$$\boldsymbol{U} := (D, S_j, \tau)^{\top}$$

$$D:=\rho\,W$$

$$S_j := \rho \, h \, W^2 \, v_j$$

$$\partial_t \mathbf{U} + \frac{1}{\sqrt{\gamma}} \partial_i \left[\alpha \sqrt{\gamma} \mathbf{F}^i(\mathbf{U}) \right] = \mathbf{S}(\mathbf{U})$$

$$\boldsymbol{U} := (D, S_j, \tau)^\top$$

$$D:=\rho\,W$$

$$S_j := \rho \, h \, W^2 \, v_j$$

$$\tau := E - D = \rho h W^2 - p - \rho W$$

$$\partial_t \mathbf{U} + \frac{1}{\sqrt{\gamma}} \partial_i \left[\alpha \sqrt{\gamma} \mathbf{F}^i(\mathbf{U}) \right] = \mathbf{S}(\mathbf{U})$$

$$U := (D, S_j, \tau)^{\top}$$

$$D := \rho W$$

$$S_j := \rho h W^2 v_j$$

$$\tau := E - D = \rho h W^2 - p - \rho W$$

$$\alpha = (1 - r_{Sc}/r) / (1 + r_{Sc}/r)$$

$$\partial_t \mathbf{U} + \frac{1}{\sqrt{\gamma}} \partial_i \left[\alpha \sqrt{\gamma} \mathbf{F}^i(\mathbf{U}) \right] = \mathbf{S}(\mathbf{U})$$

$$U := (D, S_j, \tau)^{\top}$$

$$D := \rho W$$

$$S_j := \rho h W^2 v_j$$

$$\tau := E - D = \rho h W^2 - p - \rho W$$

$$\alpha = (1 - r_{Sc}/r) / (1 + r_{Sc}/r)$$

$$\sqrt{\gamma} = \psi^6 \sqrt{\bar{\gamma}}$$

$$\partial_{t} \mathbf{U} + \frac{1}{\sqrt{\gamma}} \partial_{i} \left[\alpha \sqrt{\gamma} \mathbf{F}^{i} \left(\mathbf{U} \right) \right] = \mathbf{S} \left(\mathbf{U} \right)$$

GR NR

$$U := (D, S_j, \tau)^{\top}$$
$$D := \rho W$$

$$S_j := \rho h W^2 v_j$$

$$\tau:=E-D=\rho\,h\,W^2-p-\rho\,W$$

$$\alpha = (1 - r_{\rm Sc}/r) / (1 + r_{\rm Sc}/r)$$

$$\sqrt{\gamma} = \psi^6 \sqrt{\bar{\gamma}}$$

$$\partial_{t} \mathbf{U} + \frac{1}{\sqrt{\gamma}} \partial_{i} \left[\alpha \sqrt{\gamma} \mathbf{F}^{i} \left(\mathbf{U} \right) \right] = \mathbf{S} \left(\mathbf{U} \right)$$

$$\boldsymbol{U} := (D, S_j, \tau)^\top$$

$$D := \rho W$$

$$S_j := \rho h W^2 v_j$$

$$\tau := E - D = \rho h W^2 - p - \rho W$$

$$\alpha = (1 - r_{Sc}/r) / (1 + r_{Sc}/r)$$

$$\sqrt{\gamma} = \psi^6 \sqrt{\bar{\gamma}}$$

$$U := \left(D_{\mathrm{NR}}, S_j^{\mathrm{NR}}, \tau_{\mathrm{NR}}\right)^{\mathsf{T}}$$

$$\partial_{t} \boldsymbol{U} + \frac{1}{\sqrt{\gamma}} \partial_{i} \left[\alpha \sqrt{\gamma} \, \boldsymbol{F}^{i} \left(\boldsymbol{U} \right) \right] = \boldsymbol{S} \left(\boldsymbol{U} \right)$$

$$\begin{aligned} \boldsymbol{U} &:= (D, S_{j}, \tau)^{\top} \\ D &:= \rho W \\ S_{j} &:= \rho h W^{2} v_{j} \\ \tau &:= E - D = \rho h W^{2} - p - \rho W \\ \alpha &= (1 - r_{Sc}/r) / (1 + r_{Sc}/r) \end{aligned}$$

NR

$$U := \left(D_{NR}, S_j^{NR}, \tau_{NR}\right)^{\top}$$
$$D_{NR} := \rho$$

 $\sqrt{\gamma} = \psi^6 \sqrt{\bar{\gamma}}$

$$\partial_{t} \boldsymbol{U} + \frac{1}{\sqrt{\gamma}} \partial_{i} \left[\alpha \sqrt{\gamma} \boldsymbol{F}^{i} \left(\boldsymbol{U} \right) \right] = \boldsymbol{S} \left(\boldsymbol{U} \right)$$

GR

$$\begin{aligned} \boldsymbol{U} &:= (D, S_j, \tau)^\top \\ D &:= \rho W \\ S_j &:= \rho h W^2 v_j \\ \tau &:= E - D = \rho h W^2 - p - \rho W \\ \alpha &= (1 - r_{\text{Sc}}/r) / (1 + r_{\text{Sc}}/r) \end{aligned}$$

NR
$$\begin{aligned} \boldsymbol{U} &:= \left(D_{\mathrm{NR}}, S_{j}^{\mathrm{NR}}, \tau_{\mathrm{NR}}\right)^{\top} \\ D_{\mathrm{NR}} &:= \rho \\ S_{j}^{\mathrm{NR}} &:= \rho \, v_{j} \end{aligned}$$

 $\sqrt{\gamma} = \psi^6 \sqrt{\bar{\gamma}}$

$$\partial_{t} \mathbf{U} + \frac{1}{\sqrt{\gamma}} \partial_{i} \left[\alpha \sqrt{\gamma} \mathbf{F}^{i} \left(\mathbf{U} \right) \right] = \mathbf{S} \left(\mathbf{U} \right)$$

GR

$$U := (D, S_j, \tau)^{\top}$$

$$D := \rho W$$

$$S_j := \rho h W^2 v_j$$

$$\tau := E - D = \rho h W^2 - p - \rho W$$

$$\alpha = (1 - r_{Sc}/r) / (1 + r_{Sc}/r)$$

$$\sqrt{\gamma} = \psi^6 \sqrt{\bar{\gamma}}$$

$$\begin{split} & \text{NR} \\ & \boldsymbol{U} := \left(D_{\text{NR}}, S_j^{\text{NR}}, \tau_{\text{NR}}\right)^\top \\ & D_{\text{NR}} := \rho \\ & S_j^{\text{NR}} := \rho \, v_j \\ & \tau_{\text{NR}} = e + \frac{1}{2} \, \rho \, v^i \, v_i \end{split}$$

$$\partial_{t} \mathbf{U} + \frac{1}{\sqrt{\gamma}} \partial_{i} \left[\alpha \sqrt{\gamma} \mathbf{F}^{i} \left(\mathbf{U} \right) \right] = \mathbf{S} \left(\mathbf{U} \right)$$

GR
$$\begin{aligned} & \boldsymbol{U} := (D, S_j, \tau)^\top \\ & \boldsymbol{D} := \rho \, W \\ & S_j := \rho \, h \, W^2 \, v_j \\ & \tau := E - D = \rho \, h \, W^2 - p - \rho \, W \\ & \alpha = \left(1 - r_{\mathrm{Sc}}/r\right) / \left(1 + r_{\mathrm{Sc}}/r\right) \\ & \sqrt{\gamma} = \psi^6 \, \sqrt{\bar{\gamma}} \end{aligned}$$

$$\begin{split} & \text{NR} \\ & \boldsymbol{U} := \left(D_{\text{NR}}, S_j^{\text{NR}}, \tau_{\text{NR}}\right)^\top \\ & D_{\text{NR}} := \rho \\ & S_j^{\text{NR}} := \rho \, v_j \\ & \tau_{\text{NR}} = e + \frac{1}{2} \, \rho \, v^i \, v_i \\ & \alpha_{\text{NR}} = 1 \end{split}$$

$$\partial_{t} \mathbf{U} + \frac{1}{\sqrt{\gamma}} \partial_{i} \left[\alpha \sqrt{\gamma} \mathbf{F}^{i} \left(\mathbf{U} \right) \right] = \mathbf{S} \left(\mathbf{U} \right)$$

GR
$$\begin{aligned} \mathbf{U} &:= (D, S_j, \tau)^\top \\ D &:= \rho W \\ S_j &:= \rho h W^2 v_j \\ \tau &:= E - D = \rho h W^2 - p - \rho W \\ \alpha &= \left(1 - r_{\mathrm{Sc}}/r\right) / \left(1 + r_{\mathrm{Sc}}/r\right) \\ \sqrt{\gamma} &= \psi^6 \sqrt{\bar{\gamma}} \end{aligned}$$

$$\begin{split} & \text{NR} \\ & \boldsymbol{U} := \left(D_{\text{NR}}, S_j^{\text{NR}}, \tau_{\text{NR}}\right)^\top \\ & D_{\text{NR}} := \rho \\ & S_j^{\text{NR}} := \rho \, v_j \\ & \tau_{\text{NR}} = e + \frac{1}{2} \, \rho \, v^i \, v_i \\ & \alpha_{\text{NR}} = 1 \\ & \sqrt{\gamma_{\text{NR}}} = \sqrt{\bar{\gamma}} \end{split}$$

$$\partial_{t} \mathbf{U} + \frac{1}{\sqrt{\gamma}} \partial_{i} \left[\alpha \sqrt{\gamma} \mathbf{F}^{i} \left(\mathbf{U} \right) \right] = \mathbf{S} \left(\mathbf{U} \right)$$

GR
$$F^{i}(U) = \begin{pmatrix} \rho W v^{i} \\ \rho h W^{2} v^{i} v_{j} + p \delta^{i}_{j} \\ (\rho h W^{2} - \rho W) v^{i} \end{pmatrix}$$

NR
$$\mathbf{F}^{i}(\mathbf{U}) = \begin{pmatrix} \rho v^{i} \\ \rho v^{i} v_{j} + p \delta^{i}_{j} \\ (\rho h_{NR} + \frac{1}{2} v^{j} v_{j}) v^{i} \end{pmatrix}$$

$$\partial_t \mathbf{U} + \frac{1}{\sqrt{\gamma}} \partial_i \left[\alpha \sqrt{\gamma} \mathbf{F}^i \left(\mathbf{U} \right) \right] = \mathbf{S} \left(\mathbf{U} \right)$$

GR

$$S(U) = \begin{pmatrix} 0 \\ \frac{1}{2} \alpha P^{ik} \partial_j \gamma_{ik} - E \partial_j \alpha \\ -S^j \partial_j \alpha \end{pmatrix}$$

$$S\left(U\right) = \begin{pmatrix} 0 \\ \frac{1}{2} P^{ik} \partial_{j} \bar{\gamma}_{ik} - \rho \partial_{j} \Phi \\ -S^{j} \partial_{j} \Phi \end{pmatrix}$$

$$\Phi\left(r\right) := -M/r$$

$$\partial_{t} \mathbf{U} + \frac{1}{\sqrt{\gamma}} \partial_{r} \left[\alpha \sqrt{\gamma} \mathbf{F}^{r} \left(\mathbf{U} \right) \right] = \mathbf{S} \left(\mathbf{U} \right)$$

$$\partial_{t} \mathbf{U} + \frac{1}{\sqrt{\gamma}} \partial_{r} \left[\alpha \sqrt{\gamma} \mathbf{F}^{r} \left(\mathbf{U} \right) \right] = \mathbf{S} \left(\mathbf{U} \right)$$

$$\alpha\,\psi^6\,W\times 4\pi\,r^2\,\rho\,v=-\dot{M}$$

$$\partial_{t} \mathbf{U} + \frac{1}{\sqrt{\gamma}} \partial_{r} \left[\alpha \sqrt{\gamma} \mathbf{F}^{r} \left(\mathbf{U} \right) \right] = \mathbf{S} \left(\mathbf{U} \right)$$

$$\alpha \, \psi^6 \, W \times 4\pi \, r^2 \, \rho \, v = -\dot{M}$$
$$\alpha \, h \, W = \mathcal{B}$$

$$\partial_{t} \mathbf{U} + \frac{1}{\sqrt{\gamma}} \partial_{r} \left[\alpha \sqrt{\gamma} \mathbf{F}^{r} \left(\mathbf{U} \right) \right] = \mathbf{S} \left(\mathbf{U} \right)$$

$$\alpha \psi^6 W \times 4\pi r^2 \rho v = -\dot{M}$$

$$\alpha h W = \mathcal{B}$$

$$p = K_1 \rho^{\Gamma}$$

$$\partial_{t} \boldsymbol{\mathcal{U}} + \frac{1}{\sqrt{\gamma}} \partial_{r} \left[\alpha \sqrt{\gamma} \, \boldsymbol{F}^{r} \left(\boldsymbol{U} \right) \right] = \boldsymbol{S} \left(\boldsymbol{U} \right)$$

GR

$$\alpha \psi^6 W \times 4\pi r^2 \rho v = -\dot{M}$$

$$\alpha h W = \mathcal{B}$$

$$p = K_1 \rho^{\Gamma}$$

$$\partial_{t} \boldsymbol{\mathcal{U}} + \frac{1}{\sqrt{\gamma}} \partial_{r} \left[\alpha \sqrt{\gamma} \, \boldsymbol{F}^{r} \left(\boldsymbol{U} \right) \right] = \boldsymbol{S} \left(\boldsymbol{U} \right)$$

GR
$$\alpha\,\psi^6\,W\times 4\pi\,r^2\,\rho\,v = -\dot{M}$$

$$4\pi r^2 \rho v = -\dot{M}$$

$$\alpha \, h \, W = \mathcal{B}$$

$$p = K_1 \rho^{\Gamma}$$

$$4\pi \, r^2 \, \rho \, v = -\dot{M}$$

$$\partial_{t} \boldsymbol{\mathcal{U}} + \frac{1}{\sqrt{\gamma}} \partial_{r} \left[\alpha \sqrt{\gamma} \, \boldsymbol{F}^{r} \left(\boldsymbol{U} \right) \right] = \boldsymbol{S} \left(\boldsymbol{U} \right)$$

$$\alpha \psi^{6} W \times 4\pi r^{2} \rho v = -\dot{M}$$

$$\alpha h W = \mathcal{B}$$

$$p = K_{1} \rho^{\Gamma}$$

$$4\pi r^2 \rho v = -\dot{M}$$

$$\frac{1}{2}v^2 + h_{NR} + \Phi = \mathcal{B}_{NR}$$

$$\partial_{t} \boldsymbol{U} + \frac{1}{\sqrt{\gamma}} \partial_{r} \left[\alpha \sqrt{\gamma} \, \boldsymbol{F}^{r} \left(\boldsymbol{U} \right) \right] = \boldsymbol{S} \left(\boldsymbol{U} \right)$$

$$\alpha \psi^6 W \times 4\pi r^2 \rho v = -\dot{M}$$

$$\alpha h W = \mathcal{B}$$

$$p = K_1 \rho^{\Gamma}$$

$$4\pi r^2 \rho v = -\dot{M}$$

$$\frac{1}{2}v^2 + h_{\rm NR} + \Phi = \mathcal{B}_{\rm NR}$$

$$p = K_1 \rho^{\Gamma}$$

$$U_1 \neq U_2$$

$$egin{aligned} oldsymbol{U}_1
eq oldsymbol{U}_2 \\ oldsymbol{F}^r\left(oldsymbol{U}_1
ight) &= oldsymbol{F}^r\left(oldsymbol{U}_2
ight) \end{aligned}$$

$$egin{aligned} oldsymbol{U}_1
eq oldsymbol{U}_2 \ oldsymbol{F}^r\left(oldsymbol{U}_1
ight) = oldsymbol{F}^r\left(oldsymbol{U}_2
ight) \ ext{Yields:} \end{aligned}$$

$$egin{aligned} oldsymbol{U}_1
eq oldsymbol{U}_2 \ oldsymbol{F}^r\left(oldsymbol{U}_1
ight) = oldsymbol{F}^r\left(oldsymbol{U}_2
ight) \ ext{Yields:} \
ho_2 >
ho_1 \end{aligned}$$

$$egin{aligned} oldsymbol{U}_1
eq oldsymbol{U}_2 \ oldsymbol{F}^r\left(oldsymbol{U}_1
ight) = oldsymbol{F}^r\left(oldsymbol{U}_2
ight) \ ext{Yields:} \
ho_2 >
ho_1 \end{aligned}$$

 $e_2(p_2) > e_1(p_1)$

$$egin{aligned} oldsymbol{U}_1
eq oldsymbol{U}_2 \ oldsymbol{F}^r\left(oldsymbol{U}_1
ight) = oldsymbol{F}^r\left(oldsymbol{U}_2
ight) \ egin{aligned} \operatorname{Yields} : \ & \rho_2 > \rho_1 \ & e_2\left(p_2\right) > e_1\left(p_1\right) \end{aligned}$$

 $K_2 > K_1$

$$egin{aligned} m{U}_1 &
eq m{U}_2 \\ m{F}^r \left(m{U}_1
ight) &
eq m{F}^r \left(m{U}_2
ight) \\ ext{Yields:} \\ \rho_2 & > \rho_1 \\ e_2 \left(p_2
ight) & > e_1 \left(p_1
ight) \\ ext{} K_2 & > K_1 \\ |v_2^r| & < |v_1^r| \end{aligned}$$

$$\partial_{t} \boldsymbol{U} + \frac{1}{\sqrt{\gamma}} \partial_{r} \left[\alpha \sqrt{\gamma} \, \boldsymbol{F}^{r} \left(\boldsymbol{U} \right) \right] = \boldsymbol{S} \left(\boldsymbol{U} \right)$$

$$\alpha \psi^{6} W \times 4\pi r^{2} \rho v = -\dot{M}$$

$$\alpha h W = \mathcal{B}$$

$$p = K_{2} \rho^{\Gamma}$$

$$4\pi r^2 \rho v = -\dot{M}$$

$$\frac{1}{2}v^2 + h_{NR} + \Phi = \mathcal{B}_{NR}$$

$$p = K_2 \rho^{\Gamma}$$

$$\eta\left(r
ight):=rac{r-R_{\mathrm{PNS}}}{R_{\mathrm{Sh}}-R_{\mathrm{PNS}}}$$

$$\eta(r) := \frac{r - R_{\text{PNS}}}{R_{\text{Sh}} - R_{\text{PNS}}}$$

$$\frac{\delta p(\eta, \theta)}{p(\eta_c)} = 10^{-6} \times \exp\left[\frac{-(\eta - \eta_c)^2}{2\sigma^2}\right] \cos \theta$$

$$\eta_c = 0.75$$

$$\sigma = 0.05$$

Parameter Space

Model parameters:

$$M_{\mathrm{PNS}}$$
, R_{PNS} , R_{Sh} $(t=0)$, \dot{M} , K_{1} , $\mathcal{B}_{\mathrm{(NR)}}$, Γ

Parameter Space

Model parameters:

$$M_{\rm PNS}$$
, $R_{\rm PNS}$, $R_{\rm Sh}$ $(t=0)$, \dot{M} , $K_{\rm 1}$, $\mathcal{B}_{\rm (NR)}$, Γ

Parameters we varied:

$$\xi = (M_{\rm PNS}/M_{\odot}) / (R_{\rm PNS}/20 \, {\rm km})$$
 (?), $R_{\rm Sh} \, (t=0)$

Parameter Space

Model parameters:

$$M_{\mathrm{PNS}}$$
, R_{PNS} , R_{Sh} $(t=0)$, \dot{M} , K_{1} , $\mathcal{B}_{\mathrm{(NR)}}$, Γ

Parameters we varied:

$$\xi = (M_{\rm PNS}/M_{\odot}) / (R_{\rm PNS}/20 \, {\rm km})$$
(?), $R_{\rm Sh} (t=0)$

Table 1. Model Parameters

Model	$M_{ ext{PNS}}\left[M_{\odot} ight]$	$R_{ ext{PNS}}\left[ext{km} ight]$	$R_{ m sh}[{ m km}]$	ξ
M1.4_Rpns040_Rsh1.20e2	1.4	40	120	0.7
M1.4_Rpns040_Rsh1.50e2	1.4	40	150	0.7
M1.4_Rpns040_Rsh1.75e2	1.4	40	175	0.7
M2.8_Rpns020_Rsh6.00e1	2.8	20	60	2.8
M2.8_Rpns020_Rsh7.00e1	2.8	20	70	2.8

NOTE—Model parameters chosen for the 5 models. All models were run with both GR and NR. The first three rows correspond to the low-compactness models and the last two rows correspond to the high-compactness models.

$$A := \frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(v^{\theta} \sin \theta \right)$$
 (?)

$$A := \frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(v^{\theta} \sin \theta \right)$$
 (?)

$$A(r, \theta, t) = \sum_{\ell'=0}^{\infty} G_{\ell'}(r, t) P_{\ell'}(\cos \theta)$$

$$A := \frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(v^{\theta} \sin \theta \right)$$
 (?)

$$A(r, \theta, t) = \sum_{\ell'=0}^{\infty} G_{\ell'}(r, t) P_{\ell'}(\cos \theta)$$

$$\implies G_{\ell}(r,t) := \frac{1}{N_{\ell}} \int_{0}^{\pi} A(r,\theta,t) P_{\ell}(\cos\theta) \sin\theta d\theta$$

$$A := \frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(v^{\theta} \sin \theta \right)$$
 (?)

$$A(r, \theta, t) = \sum_{\ell'=0}^{\infty} G_{\ell'}(r, t) P_{\ell'}(\cos \theta)$$

$$\implies G_{\ell}(r,t) := \frac{1}{N_{\ell}} \int_{0}^{\pi} A(r,\theta,t) P_{\ell}(\cos\theta) \sin\theta d\theta$$

$$H_{\ell}\left(t
ight):=4\pi\int\limits_{r_{a}}^{r_{b}}\left[G_{\ell}\left(r,t
ight)\right]^{2}\left[\psi\left(r
ight)\right]^{6}r^{2}\,dr$$

$$F(t) = F(0) e^{2\omega t} \sin^2 \left(\frac{2\pi t}{T} + \delta\right)$$

(?)

$$F_{\theta}^{r} := \alpha \, \psi^{6} \, h \, W^{2} \times \sqrt{\bar{\gamma}} \, \rho \, v^{r} \, v_{\theta}$$

$$\widetilde{F}_{\theta}^{r} = \text{FFT}\left\{F_{\theta}^{r}\right\}$$

T defined as the unique \widetilde{T} such that $\widetilde{F}_{\theta}^{r}\left(\widetilde{T}\right)=1$

Bibliography

Summary

- Extended study of ? to include GR
- Showed that GR leads to longer SASI oscillation period than NR
- Showed that GR leads to smaller SASI growth rate than NR
- ullet Found that growth rate is such that $\omega\,T$ is roughly constant for some parameter sets: implications for growth rate mechanism
- Future Work
 - Extend study to 3D
 - Include GR monopole (?)