

MID TERM EXAMINATIONS - July 2024

Programme	:	B.Tech.	Semester	:	Fall Semester 2024-2025
Course Title		Database Management Systems	Course Code	:	CSE3001
Date/Session		19 July 2024/ Session I	Slot	:	A14+B14+C14+E14+F14
Time	1	1 ½ hours	Max. Marks		50

	Answer all the Questions	
Q.No.	Sub. Sec. Question Description	Marks
1.	Define and explain following terms with the help of an ER diagram example: (i) Weak entity type (ii) Participation constraint (iii) Cardinality ratio (iv) Recursive relationship (v) Specialization (vi) Generalization	10
2.	With a neat and clean block diagram explain the architecture of a typical DBMS.	10
3.	EMPLOYEE (FName, LName, SSN, Salary, SuperSSN, Gender, DNo) DEPARTMENT (DNo, DName, SuperSSN) DEPT_LOCATION (DNo, DLocation) DEPENDENT (ESSN, Dependent Name, Dependent Sex) WORKS_ON (ESSN, PNo, Hours) PROJECT (PName, PNo, PLocation, DNo) Where, SSN = Social Security Number	10
	SuperSSN = Manager's SSN MgrSSN = Manager's SSN DNo = Department Number DLocation = Department Location	

Write relational algebraic expression to determine first name, last name, and i. address of the employees who are working in research department.

ESSN = Employee SSN PLocation = Project Locations

Write relational algebraic expression to determine first name, last name of the employees who are working on all the projects.

OR

- b. i. Write the step-by-step process to determine minimum number of tables required in the database for the given ER diagram.
 - ii. With suitable example formally define Primary Key, Referential Integrity, Super Key, Candidate Key, Foreign Key.

- 4. Consider the universal relation $R = \{A, B, C, D, E, F, G, H, I, J\}$ and the set of functional dependencies $FD = \{\{A, B\} \rightarrow \{C\}, \{A\} \rightarrow \{D, E\}, \{B\} \rightarrow \{F\}, \{F\} \rightarrow \{G, H\}, \{D\} \rightarrow \{I, J\}\}\}$. Step-by-step determine all possible candidate keys of R?
- 5. Consider following relational database schema set:

 Departments (<u>Department ID</u>, Department_Name)

 Teachers (<u>Teacher ID</u>, Teacher_Name, Department_ID, Salary)

 Student (<u>Student ID</u>, Student_Name, Course_ID)

 Course (<u>Course ID</u>, Course Name, Department_ID)

Write and explain SQL query to:

- a. List the teachers name and along with their department names.
- b. List names of the department along with their expenditure in the salary of teachers.

 $\Leftrightarrow \Leftrightarrow \Leftrightarrow$