Plan

- Hvad er Regularitet og Automater
- Praktiske oplysninger om kurset
- Regulære udtryk
- Induktionsbevis
- Frokost
- Endelige automater
- Skelnelighed, Produktkonstruktion
- Præsentation af Java projekt

Alfabeter, strenge og sprog

- Et *alfabet* Σ er en endelig mængde (af tegn/symboler)
 - eks.: $\Sigma = \{a,b,c\}$
- En streng x er en endelig sekvens af tegn fra alfabetet
 - eks.: *x*=*abba*
 - Λ repræsenterer *den tomme streng* (strengen af længde 0), $\Lambda \notin \Sigma$
- Et sprog L er en (vilkårlig) mængde af strenge
 - eks.: L={Λ,cab,abba}
- Σ^* er *mængden af alle strenge over* Σ
 - dvs. $L\subseteq \Sigma^*$ hvis L er et sprog over Σ
 - eks.: hvis $\Sigma = \{a,b,c\}$ så er $\Sigma^* = \{\Lambda,a,b,c,aa,ab,ac,aaa,aab,...\}$

Konkatenering af strenge

- Hvis $x,y \in \Sigma^*$, så er $x \cdot y$ (konkateneringen af x og y) den streng, der fremkommer ved at sætte tegnene i x før tegnene i y
- Eks.: hvis x=abb og y=a, så er
 - x⁻y=abba
 - y-x=aabb
- Bemærk: $x \cdot \Lambda = \Lambda \cdot x = x$ for alle x
- x-y skrives ofte xy (uden "-")

Konkatenering af sprog

• Hvis $L_1, L_2 \subseteq \Sigma^*$, så er $L_1 \cdot L_2$ (konkateneringen af L_1 og L_2) defineret ved

$$L_1 \cdot L_2 = \{x \cdot y \mid x \in L_1 \land y \in L_2\}$$

- Eks.: Hvis $\Sigma = \{0, 1, 2, a, b, c\}$ og
 - $L_1 = \{\Lambda, 10, 212\}$
 - *L*₂={*cab*, *abba*}

så er $L_1 \cdot L_2 = \{cab, 10cab, 212cab, abba, 10abba, 212abba\}$

- Bemærk:
 - $L \cdot \{\Lambda\} = \{\Lambda\} \cdot L = L$ for alle L
 - $L \cdot \emptyset = \emptyset \cdot L = \emptyset$ for alle L
- $L_1 \cdot L_2$ skrives ofte $L_1 L_2$ (uden "•")

Kleene stjerne

$$L^k = LL \cdots L$$

konkatenering af *k* forekomster af *L*

$$^{\bullet} L^0 = \{\Lambda\}$$

•
$$L^* = \bigcup_{i=0,...\infty} L^i$$
 (Kleene stjerne af L)

•
$$L^+ = L^*L$$

Rekursive definitioner

 En definition er rekursiv, hvis den refererer til sig selv

■ Eks.: Fibonacci f:
$$\mathbb{N} \to \mathbb{N}$$

$$f(n) = \begin{cases} 1 & \text{hvis } n=0 \text{ eller } n=1 \\ f(n-1)+f(n-2) & \text{ellers} \end{cases}$$

Enhver selv-reference skal referere til noget "mindre" og føre til endeligt mange selvreferencer

En rekursiv definition af strenge

- x er en **streng** over alfabetet Σ , dvs. $x \in \Sigma^*$, hvis
 - $x = \Lambda$, eller
 - $x = y \cdot a \text{ hvor } y \in \Sigma^* \text{ og } a \in \Sigma$

(underforstået: Σ^* er den *mindste* mængde, der opfylder dette)

• Eksempel: $abc = (((\Lambda \cdot a) \cdot b) \cdot c) \in \Sigma^*$ (hvor $\Sigma = \{a, b, c, d\}$)

Syntaks af regulære udtryk

Mængden R af **regulære udtryk** over Σ er den mindste mængde, der indeholder følgende:

- ·Ø
- · \(\Lambda\)
- **a** for hver $a \in \Sigma$
- (r_1+r_2) hvor $r_1, r_2 \in R$
- (r_1r_2) hvor $r_1, r_2 \in R$
- (*r**) hvor *r*∈ *R*

Semantik af regulære udtryk

Sproget *L*(*r*) af et regulært udtryk *r* defineres i strukturen af *r*:

- $L(\emptyset) = \emptyset$
- $L(\Lambda) = \{\Lambda\}$
- $L(a) = \{a\}$
- $L((r_1+r_2)) = L(r_1) \cup L(r_2)$
- $L((r_1r_2)) = L(r_1)L(r_2)$
- $L((r^*)) = (L(r))^*$

Regulære sprog

Definition:

Et sprog S er **regulært** hvis og kun hvis der eksisterer et regulært udtryk r hvor L(r)=S

Parenteser i regulære udtryk

- Forening og konkatenering er associative, så vi vælger at tillade f.eks.
 - at (a+(b+c)) kan skrives a+b+c
 - at (a(bc)) kan skrives abc
- Vi definerer præcedens for operatorerne:
 - * binder stærkest
 - konkatenering binder middel
 - + binder svagest
 - eks.: (a+((b*)c)) kan skrives a+b*c

Eksempel

Betragt følgende regulære udtryk r over alfabetet {0,1}:

$$r = (1 + \Lambda)001$$

 På grund af parentesreglerne er dette det samme som

$$r = ((((1+\Lambda)0)0)1)$$

Så sproget for r er

$$L(r) = (((\{1\} \cup \{\Lambda\})\{0\})\{0\})\{1\})$$
$$= \{1001,001\}$$

Quiz!

1. Hvad betyder {a,bc}*?

3. Hvad er betingelsen for at et sprog *S* er *regulært*?

Øvelser

• [Martin] Opg. 3.2

[Martin] Opg. 3.9 (a-e)

[Martin] Opg. 3.10 (a-b)