08 Unsupervised Learning Homework

Xinci Chen 3/16/2020

10.3

(a)

```
x <- cbind(c(1, 1, 0, 5, 6, 4), c(4, 3, 4, 1, 2, 0))
plot(x[,1], x[,2])
```


(b)

```
set.seed(1)
labels <- sample(2, nrow(x), replace = T)
labels
## [1] 1 2 1 1 2 1
plot(x[, 1], x[, 2], col = (labels + 1), pch = 20, cex = 2)</pre>
```


(c)

```
centroid1 <- c(mean(x[labels == 1, 1]), mean(x[labels == 1, 2]))
centroid2 <- c(mean(x[labels == 2, 1]), mean(x[labels == 2, 2]))
plot(x[,1], x[,2], col=(labels + 1), pch = 20, cex = 2)
points(centroid1[1], centroid1[2], col = 2, pch = 4)
points(centroid2[1], centroid2[2], col = 3, pch = 4)</pre>
```


(d)

```
labels <- c(1, 1, 1, 2, 2, 2)
plot(x[, 1], x[, 2], col = (labels + 1), pch = 20, cex = 2)
points(centroid1[1], centroid1[2], col = 2, pch = 4)
points(centroid2[1], centroid2[2], col = 3, pch = 4)</pre>
```


(e)

```
centroid1 <- c(mean(x[labels == 1, 1]), mean(x[labels == 1, 2]))
centroid2 <- c(mean(x[labels == 2, 1]), mean(x[labels == 2, 2]))
plot(x[,1], x[,2], col=(labels + 1), pch = 20, cex = 2)
points(centroid1[1], centroid1[2], col = 2, pch = 4)
points(centroid2[1], centroid2[2], col = 3, pch = 4)</pre>
```


##(f)

plot(x[, 1], x[, 2], col=(labels + 1), pch = 20, cex = 2)

10.5

```
socks <- c(8, 11, 7, 6, 5, 6, 7, 8)
computers <- c(0, 0, 0, 0, 1, 1, 1, 1)
x <- cbind(socks, computers)
labels <- c(1, 1, 2, 2, 2, 2, 1, 1)</pre>
```

```
plot(x[, 1], x[, 2], col=(labels + 1), pch = 20, cex = 2, asp = 1)
      2.0
      1.5
      1.0
      0.5
      0.0
                          6
              5
                                      7
                                                  8
                                                              9
                                                                         10
                                                                                     11
                                                x[, 1]
x <- cbind(scale(socks, center = FALSE), scale(computers, center = FALSE))</pre>
sd(computers)
## [1] 0.5345225
labels <- c(1, 1, 2, 2, 2, 2, 1, 1)
plot(x[, 1], x[, 2], col=(labels + 1), pch = 20, cex = 2, asp = 1)
      1.2
      1.0
      0.8
      9.0
      0.4
      0.2
      0.0
                     0.0
                                   0.5
                                                 1.0
                                                               1.5
                                                                            2.0
                                                x[, 1]
```

10.6

(a)

90% of the variance in the data is not contained in the first principal component.

(c)

```
set.seed(1)
Control \leftarrow matrix(rnorm(50 * 1000), ncol = 50)
Treatment <- matrix(rnorm(50 * 1000), ncol = 50)</pre>
X <- cbind(Control, Treatment)</pre>
X[1, ] \leftarrow seq(-18, 18 - .36, .36) \# linear trend in one dimension
pr.out <- prcomp(scale(X))</pre>
summary(pr.out)$importance[, 1]
##
       Standard deviation Proportion of Variance Cumulative Proportion
##
                  3.148148
                                            0.099110
                                                                      0.099110
X \leftarrow rbind(X, c(rep(10, 50), rep(0, 50)))
pr.out <- prcomp(scale(X))</pre>
summary(pr.out)$importance[, 1]
##
       Standard deviation Proportion of Variance Cumulative Proportion
##
                   3.397839
                                            0.115450
                                                                      0.115450
10.8
(a)
pr.out <- prcomp(USArrests, scale = TRUE)</pre>
pr.var <- pr.out$sdev^2</pre>
pve <- pr.var / sum(pr.var)</pre>
sum(pr.var)
## [1] 4
(b)
loadings <- pr.out$rotation</pre>
USArrests2 <- scale(USArrests)</pre>
sumvar <- sum(apply(as.matrix(USArrests2)^2, 2, sum))</pre>
apply((as.matrix(USArrests2) %*% loadings)^2, 2, sum) / sumvar
           PC1
                       PC2
                                   PC3
                                               PC4
## 0.62006039 0.24744129 0.08914080 0.04335752
10.9
(a)
hc.complete <- hclust(dist(USArrests), method = "complete")</pre>
plot(hc.complete)
```

Cluster Dendrogram

dist(USArrests) hclust (*, "complete")

(b)

cutree(hc.complete, 3)							
##	Alabama	Alaska	Arizona	Arkansas	California		
	ATADAMA	Alabka	AI IZOIIA		Calliolnia		
##	1	1	1	2	1		
##	Colorado	Connecticut	Delaware	Florida	Georgia		
##	2	3	1	1	2		
##	Hawaii	Idaho	Illinois	Indiana	Iowa		
##	3	3	1	3	3		
##	Kansas	Kentucky	Louisiana	Maine	Maryland		
##	3	3	1	3	1		
##	Massachusetts	Michigan	Minnesota	Mississippi	Missouri		
##	2	1	3	1	2		
##	Montana	Nebraska	Nevada	New Hampshire	New Jersey		
##	3	3	1	3	2		
##	New Mexico	New York	North Carolina	North Dakota	Ohio		
##	1	1	1	3	3		
##	Oklahoma	Oregon	Pennsylvania	Rhode Island	South Carolina		
##	2	2	3	2	1		
##	South Dakota	Tennessee	Texas	Utah	Vermont		
##	3	2	2	3	3		
##	Virginia	Washington	West Virginia	Wisconsin	Wyoming		
##	2	2	3	3	2		

(c)

```
sd.data <- scale(USArrests)
hc.complete.sd <- hclust(dist(sd.data), method = "complete")
plot(hc.complete.sd)</pre>
```

Cluster Dendrogram

dist(sd.data) hclust (*, "complete")

(d)

cutree(hc.complete.sd, 3) ## Alabama Alaska Arizona Arkansas California

California	Arkansas	Arizona	Alaska	Alabama	##
2	3	2	1	1	##
Georgia	Florida	Delaware	Connecticut	Colorado	##
1	2	3	3	2	##
Iowa	Indiana	Illinois	Idaho	Hawaii	##
3	3	2	3	3	##
Maryland	Maine	Louisiana	Kentucky	Kansas	##
2	3	1	3	3	##
Missouri	Mississippi	Minnesota	Michigan	Massachusetts	##
3	1	3	2	3	##
New Jersey	New Hampshire	Nevada	Nebraska	Montana	##
3	3	2	3	3	##
Ohio	North Dakota	North Carolina	New York	New Mexico	##
3	3	1	2	2	##
South Carolina	Rhode Island	Pennsylvania	Oregon	Oklahoma	##
1	3	3	3	3	##
Vermont	Utah	Texas	Tennessee	South Dakota	##
3	3	2	1	3	##

```
##
          Virginia
                        Washington West Virginia
                                                          Wisconsin
                                                                             Wyoming
##
table(cutree(hc.complete, 3), cutree(hc.complete.sd, 3))
##
##
         1
            2 3
##
     1
        6
           9 1
        2 2 10
##
     2
     3 0 0 20
##
10.10
(a)
set.seed(2)
x \leftarrow matrix(rnorm(20 * 3 * 50, mean = 0, sd = 0.001), ncol = 50)
x[1:20, 2] \leftarrow 1
x[21:40, 1] \leftarrow 2
x[21:40, 2] \leftarrow 2
x[41:60, 1] <- 1
true.labels <- c(rep(1, 20), rep(2, 20), rep(3, 20))
(b)
pr.out <- prcomp(x)</pre>
plot(pr.out$x[, 1:2], col = 1:3, xlab = "Z1", ylab = "Z2", pch = 19)
      9.0
22
      -0.2
      9.0-
                   -0.5
                                     0.0
                                                       0.5
                                                                        1.0
                                                  Z1
(c)
km.out \leftarrow kmeans(x, 3, nstart = 20)
table(true.labels, km.out$cluster)
```

```
##
## true.labels 1 2 3
        1 0 0 20
##
##
           2 20 0 0
           3 0 20 0
##
(d)
km.out \leftarrow kmeans(x, 2, nstart = 20)
table(true.labels, km.out$cluster)
## true.labels 1 2
           1 20 0
           2 0 20
##
           3 20 0
(e)
km.out \leftarrow kmeans(x, 4, nstart = 20)
table(true.labels, km.out$cluster)
##
## true.labels 1 2 3 4
        1 11 9 0 0
           2 0 0 20 0
##
##
           3 0 0 0 20
(f)
km.out <- kmeans(pr.out$x[, 1:2], 3, nstart = 20)</pre>
table(true.labels, km.out$cluster)
##
## true.labels 1 2 3
##
            1 0 0 20
##
            2 0 20 0
           3 20 0 0
(g)
km.out <- kmeans(scale(x), 3, nstart = 20)</pre>
table(true.labels, km.out$cluster)
##
## true.labels 1 2 3
##
            1 9 2 9
           2 2 18 0
##
           3 7 1 12
##
```