Drawing Math

Lev Stambler

 $\mathrm{May}\ 2,\ 2022$

1 Introduction

- Numberphile video - I was bored and this looked fun - I wasn't paying attention in one of my lectures... - This paper is purely for funs... for now

2 Background

- Digital math - Euler's formula - I payed attention in some of my lectures

3 Definitions and questions

3.1 Definitions

Say you (yes you!) had a turtle living in D dimensional Euclidean space and in discrete time. At time step i, where $i \in \mathbb{Z}$ and i > 0, the turtle has position $p_i \in \mathbb{R}^D$. Then, lets define $\Delta p_{i+1} = p_{i+1} - p_i$; in other words, Δp_{i+1} is the change in position from time i to i + 1.

Now say that the turtle's movement is determined by k seed parameters drawn from the same set. Then, for some state space \mathcal{S} , define $s_i^j \in \mathcal{S}$ to be some arbitrary state associated with timestamp i for the jth seed parameter where $j \in [k]$. Next we will define a set of functions $SU_j: \mathcal{S} \to \mathcal{S}$ (for State Updater) such that $s_{i+1}^j = SU_j(s_i^j, i)$. Note that for $j, a \in [m]$ where $j \neq a$, s_{i+1}^j is determined solely by s_i^j and i and not s_i^a .

Now that we have our machinery built up, lets define $f^k: \mathcal{S} \to \mathbb{R}$ and $Comb: \mathbb{R}^k \to \mathbb{R}^d$ such that

$$\Delta p_{i+1} = Comb\left(f^1(s^1_{i+1}), f^2(s^2_{i+1}), ..., f^k(s^k_{i+1})\right).$$

In other words, *Comb* takes in a real number determined by the state of each seed and returns an update to the position of the turtle.

3.2 Our case

We only consider the case where

$$Comb(x_1, x_2, ..., x_k) = \left(\prod_{i=1}^k x_j^{\text{incl}_1^j}, ..., \prod_{i=1}^k x_j^{\text{incl}_D^j}\right)$$

where $incl_d^j \in \{0,1\}$ for $d \in [D]$ indicates whether to include a given $x \in R$ determined by seed j for position update in the dth dimension.

4 Results

[Wat18]

- 5 Conclusion
- 6 Open Questions

Acknowledgments

References

[Wat18] John Watrous. The theory of quantum information. Cambridge university press, 2018. ${f 4}$