

欧氏空间之间的满射,重积分换元公式和 Brouwer 不动点定理*

刘轼波

佛罗里达理工学院 Florida Institute of Technology

> http://www.liusb.com sliu@fit.edu

目录

1 向量值函数微分学

5 余面积公式及应用

2	欧氏空间的满射和代数基本定理	7
3	重积分换元公式 3.1 曲面积分和散度定理 3.2 单一区域 3.3 一般区域	13
4	Brouwer 不动点定理	19

21

关于超链接的说明

这个幻灯片里头有一些超链接:

- * 第 9 页注 5, 蓝色的 Lagrange 乘数法;
- 第 11 页第 3 节开头处的红色星号,点击它会跳到第 32 页,延续到第 33、34 页:
- * 第 15 页第 1 行蓝色的 Cauchy-Binet 公式;
- * 第 21 页定理 10 前面那行蓝色的余面积公式。

点击上面这些超链接,会跳转到相关的页面; 阅毕点击页面底部蓝条上的 Florida Tech 字样, 会返回刚才跳出的地方以便继续阅读,

幻灯片中大部分蓝色的字也都是超链接,点击跳转后,均可以通过点击页面底部 蓝条上的 Florida Tech 返回刚才的地方.

向量值函数微分学

向量 $x \in \mathbb{R}^m$ 的欧氏模

$$|x| = \sqrt{(x^1)^2 + \dots + (x^m)^2}$$
.

设 $U \subset \mathbb{R}^m$, $f: U \to \mathbb{R}^n$, $\alpha \in U^{\circ}$. 若有 $n \times m$ 矩阵 A 使 $|h| \to 0$ 时

$$f(a+h) - f(a) - Ah = o(|h|),$$

则称 $A \in f$ 在 α 的导数, 记为 $A = f'(\alpha)$ 或 $A = Df(\alpha)$. 设 $f = (f^1, ..., f^n)$, A 的第 i 行为 A^i , 上式的第 i 分量

$$f^{i}(a+h) - f^{i}(a) - A^{i}h = o(|h|).$$

于是 f^i 在 α 可微, 且

$$A^i = \nabla f^i(\alpha) = (\partial_1 f^i, \dots, \partial_m f^i).$$

所以

$$A = \left(\begin{array}{ccc} \partial_1 f^1 & \cdots & \partial_m f^1 \\ \vdots & & \vdots \\ \partial_1 f^n & \cdots & \partial_m f^n \end{array} \right).$$

f 在 α 的 Jacobi 矩阵

当 m = n 时, A 是方阵, 其行列式记为

$$\frac{\partial(f^1,\dots,f^m)}{\partial(x^1,\dots,x^m)} = \det\begin{pmatrix} \partial_1 f^1 \cdots \partial_m f^1 \\ \vdots & \vdots \\ \partial_1 f^n \cdots \partial_m f^n \end{pmatrix}.$$
 (Jacobi 行列式)

设 $U \subset \mathbb{R}^m$, $V \subset \mathbb{R}^n$. $f: U \to \mathbb{R}^n$, $g: V \to \mathbb{R}^\ell$, $f(U) \subset V$. 则有复合 $g \circ f : U \to \mathbb{R}^{\ell}$.

定理1 (链法则). 设 f 在 $\alpha \in U$ 可微, g 在 $b = f(\alpha)$ 可微, 则 $g \circ f$ 在 α 可微且 $(g \circ f)'(a) = g'(b)f'(a).$

若 y = g(u), u = f(x) 则

$$\begin{pmatrix} \frac{\partial y^1}{\partial x^1} \cdots \frac{\partial y^1}{\partial x^m} \\ \vdots & \vdots \\ \frac{\partial y^\ell}{\partial x^1} \cdots \frac{\partial y^\ell}{\partial x^m} \end{pmatrix} = \begin{pmatrix} \frac{\partial y^1}{\partial u^1} \cdots \frac{\partial y^1}{\partial u^n} \\ \vdots & \vdots \\ \frac{\partial y^\ell}{\partial u^1} \cdots \frac{\partial y^\ell}{\partial u^n} \end{pmatrix} \begin{pmatrix} \frac{\partial u^1}{\partial x^1} \cdots \frac{\partial u^1}{\partial x^m} \\ \vdots & \vdots \\ \frac{\partial u^n}{\partial x^1} \cdots \frac{\partial u^n}{\partial x^m} \end{pmatrix}.$$

定理2 (反函数定理). 设 Ω 是 \mathbb{R}^m 的开子集, $f: \Omega \to \mathbb{R}^m$ 是 C^1 - 映射, $\alpha \in \Omega$. 若 det $f'(\alpha) \neq 0$, 则有 α 的开邻域 $U \subset \Omega$ 以及 $b = f(\alpha)$ 的开邻域 V, 使得 $f: U \to V$ 是微分同胚. (体现微分学基本思想的典范)

注1. $\det f'(\alpha) \neq 0$ 即 $f'(\alpha) : \mathbb{R}^m \to \mathbb{R}^m$ 是线性同构; 则 f 局部可逆.

推论1 (局部满射定理). 设 Ω 是 \mathbb{R}^m 的开子集, $f: \Omega \to \mathbb{R}^n$ 是 C^1 - 映射, $\alpha \in \Omega$. 若 rank f'(a) = n 则 b = f(a) 是 $f(\Omega)$ 的内点.

注2. $\operatorname{rank} f'(\alpha) = n$ 即 $f'(\alpha) : \mathbb{R}^m \to \mathbb{R}^n$ 是线性满射; 则 f 局部满.

证(推论1).
$$f'(a) = \begin{pmatrix} \partial_1 f^1 \cdots \partial_m f^1 \\ \vdots & \vdots \\ \partial_1 f^n \cdots \partial_m f^n \end{pmatrix}, \det \begin{pmatrix} \partial_1 f^1 \cdots \partial_n f^1 \\ \vdots & \vdots \\ \partial_1 f^n \cdots \partial_n f^n \end{pmatrix} \neq 0.$$

作 $F: \Omega \to \mathbb{R}^m$, $F(x) = (f^1(x), \dots, f^n(x), x^{n+1}, \dots, x^m)$.则

$$F'(a) = \begin{pmatrix} \left(\frac{\partial if^{j}}{\partial i}\right)_{i,j=1,\dots,n} & \left(\frac{\partial if^{j}}{\partial i}\right)_{i>n} \\ 0 & I_{m-n} \end{pmatrix}$$

可逆. 于是可以对 F 应用反函数定理.

2. 欧氏空间的满射和代数基本定理

定理3 (代数基本定理). 设 $a_i \in \mathbb{C}$, $n \ge 1$, $p(z) = z^n + a_1 z^{n-1} + \cdots + a_n$ 是一多项式, 则 $\exists \mathcal{E} \in \mathbb{C}$ 使 $p(\mathcal{E}) = 0$.

- * Gauss 在 200 多年前就给出了证明. 但进入 21 世纪后, 还不断有新的证明发表 Sen^{00} , LL^{10} .
- * 常见证明以复分析或代数拓扑为工具, FR⁹⁷ 有详尽的介绍.I
- * 欧阳光中 OY⁰³ 运用 Green 公式证明 (用到多值函数 Arg 但可避免).
- * LL¹⁰ 使用 Fourier 逆变换公式证明 FTA.
- * Sen⁰⁰ 主要运用反函数定理. 但其证明 涉及复平面的拓扑子空间中的开集、闭集, 以及连通性 等点集拓扑概念.
- **注3**. 为使二年级本科生能理解, 我们想避免点集拓扑的知识, 给出纯数学分析的证明.

设
$$z = x + iy$$
, $p(z) = u(x, y) + iv(x, y)$. 视 p 为映射 $p : \mathbb{R}^2 \to \mathbb{R}^2$,
$$p(x, y) = (u(x, y), v(x, y))$$
.

利用 Cauchy-Riemann 方程易知

$$p'(z) = 0 \iff \det Dp(x,y) = 0, \quad (x,y) 为 p : \mathbb{R}^2 \to \mathbb{R}^2$$
 的临界点因 $p'(z)$ 是 $(n-1)$ - 次多项式 放映射 $(Q, :y)^2 \to \mathbb{R}^2$ 只有有限个临界点.. 显然 $|(x,y)| \to \infty$

这使我们回忆起经典结果 (一些数学分析书的习题, 如 Mei^{11} , P343)

命题1 (Dei⁸⁵, Page 24). 设
$$C^1$$
- 映射 $f: \mathbb{R}^n \to \mathbb{R}^n$ 满足
$$\lim_{|x| \to \infty} |f(x)| = +\infty, \tag{1}$$

并且对 $\forall x \in \mathbb{R}^n$ 有 $\det Df(x) \neq 0$, 则 $f(\mathbb{R}^n) = \mathbb{R}^n$.

- **注4**. (1) 如果能把 $\forall x \in \mathbb{R}^n$ 有 det $Df(x) \neq 0$ 减弱为 只有有限个 x 使 $\det Df(x) = 0$,则立刻可得代数基本定理.
 - (2) (1) 意味着 $f(\mathbb{R}^n)$ 是 \mathbb{R}^n 的闭子集. 这启发我们猜出 定理5.

定义1. 设 $f: \mathbb{R}^m \to \mathbb{R}^n$ 是 C^1 - 映射, $\alpha \in \mathbb{R}^m$. 若 $Df(\alpha): \mathbb{R}^m \to \mathbb{R}^n$ 不是满射, 则称 a 为 f 的临界点.

定理4 (局部满射定理). 设 $U \subset \mathbb{R}^m$, $f: U \to \mathbb{R}^n$ 是 C^1 - 映射, $\alpha \in U^\circ$. 若 $Df(\alpha): \mathbb{R}^m \to \mathbb{R}^n$ 是满射, 则 $f(\alpha)$ 是 f(U) 的内点.

注5. 马建国 Ma¹¹ 用它证明约束极值的 Lagrange 乘数法.

定理5 (LL¹⁸). 设 C^1 - 映射 $f: \mathbb{R}^m \to \mathbb{R}^n$ 只有有限个临界点, $n \geq 2$, 并且 $f(\mathbb{R}^m)$ 是 \mathbb{R}^n 的闭子集, 则 $f(\mathbb{R}^m) = \mathbb{R}^n$. (值域闭是必要条件)

证. 记 K 为 f 的临界点集, 它有限, 从而 f(K) 也有限.

* $\mathbb{R}^m \setminus K$ 是 \mathbb{R}^m 的开子集. $\forall x \in \mathbb{R}^m \setminus K$, $Df(x) : \mathbb{R}^m \to \mathbb{R}^n$ 满.

由 定理 4, f(x) 是 $A = f(\mathbb{R}^m \setminus K)$ 的内点. 故 $A \in \mathbb{R}^n$ 的 开子集.

* 但依假设,

$$A \cup f(K) = f(\mathbb{R}^m \setminus K) \cup f(K) = f(\mathbb{R}^m)$$

是闭集.

刘轼波

* 注意 $f(\mathbb{R}^m) = \overline{f(\mathbb{R}^m)} \supset \overline{A}$, 问题归结为直观上很显然的结果: 若开集 A 添有 限个点后闭,则 $\overline{A} = \mathbb{R}^n$.

引理1. 设 $n \ge 2$, $A \in \mathbb{R}^n$ 中的非空开子集. 若有 p_1, \ldots, p_k 使 $A \cup \{p_i\}_{i=1}^k$ 为 闭集,则 $\overline{A} = \mathbb{R}^n$.

证. 因 A 开. $A \cap \partial A = \emptyset$.

$$A \cup \{p_i\} = \overline{A \cup \{p_i\}}$$

= $A \cup \partial A \cup \{p_i\}$
 $\Longrightarrow \partial A \subset \{p_i\}$,
即 ∂A 为有限集.

推论2. 设 $M \in \mathbb{R}^n$ 维无边光滑流形, C^1 - 映射 $f: M \to \mathbb{R}^n$ 只有有限个临界点,

推论3. 设 $n \ge 2$, $M \in \mathbb{R}^n$ 维无边光滑紧流形, $f: M \to \mathbb{R}^n$ 是 C^1 - 映射, 则 f有无穷多个临界点.

 $n \ge 2$. 若 f(M) 是 \mathbb{R}^n 的闭子集, 则 $f(M) = \mathbb{R}^n$.

3. 重积分换元公式

3.1. 曲面积分和散度定理

- * 设 U 为 \mathbb{R}^{m-1} 中 Jordan 可测闭区域, C^1 映射 $x:U\to\mathbb{R}^m$ 在 U° 为单射 且满足 $\operatorname{rank}\left(\partial x^i/\partial u^i\right)=m-1$, 则称 x 为 C^1 参数曲面.
- * 称 $x = \tilde{x} : \tilde{U} \to \mathbb{R}^m$ 等价, 若有微分同胚 $\phi : \tilde{U} \to U$ 使 $\tilde{x} = x \circ \phi$. 此时 $\tilde{x}(\tilde{U}) = x(U)$, 因此可把 x 的等价类 [x] 与 x(U) 等同, 称为光滑曲面, 记为 S = x(U), 或 $S = [x : U \to \mathbb{R}^m]$.

熟知 $S = [x : U \to \mathbb{R}^m]$ 在点 x(u) 处的法矢为 (Cramer 法则)

$$N(u) = \left(\frac{\partial(x^2, \dots, x^m)}{\partial(u^1, \dots, u^{m-1})}, \dots, (-1)^{m+1} \frac{\partial(x^1, \dots, x^{m-1})}{\partial(u^1, \dots, u^{m-1})}\right).$$

设 $f: S \to \mathbb{R}$ 连续, 定义 f 在 S 上的曲面积分为

$$\int_{S} f(x) d\sigma = \int_{U} f(x(u)) |N(u)| du.$$
 (2)

由 (m-1)- 重积分换元公式易证 右端与 S 的参数表示的选择无关.★ 对分片光滑曲面 $\Sigma = \bigcup_{i=1}^{\ell} S_i$, 其中 $S_i = x_i(U_i)$ 互不内交, 定义

$$\int_{\Sigma} f d\sigma = \sum_{i=1}^{\ell} \int_{S_i} f d\sigma. \qquad x_i(U_i^{\circ}) \cap x_j(U_j^{\circ}) = \emptyset.$$

定理6 (散度定理). 设 $D \subset \mathbb{R}^m$ 为有界闭区域, ∂D 分片光滑可定向, $F \in$ $C^1(D,\mathbb{R}^m)$, $n \in \partial D$ 的幺外法矢场, 则

$$\int_{D} \operatorname{div} F \, \mathrm{d}x = \int_{\partial D} F \cdot n \, \mathrm{d}\sigma.$$

3.2. 单一区域

设 Ω 为有界开区域, 且有 (m-1)- 维 C^1 - 参数曲面 $x:U\to \mathbb{R}^m$ 使 $\partial\Omega=x(U)$, 则称 Ω 为单一区域(注意 U 闭, x 只需在 U° 单).

例1. \mathbb{R}^m 中的球 B 是单一区域. 例如 m = 3 的情形, 可取

 $x: [0, \pi] \times [0, 2\pi] \to \mathbb{R}^3, \quad (\varphi, \theta) \mapsto (\sin \varphi \cos \theta, \sin \varphi \sin \theta, \cos \varphi).$

定理7 (LZ¹⁷). 设 D 和 Ω 是 \mathbb{R}^m 中有 C^1 - 边界的有界开区域, Ω 单一, C^2 - 映射 φ : $\bar{\Omega} \to \bar{D}$ 将 $\partial \Omega$ 微分同胚地映成 ∂D , $f \in C(\bar{D})$, 则

$$\int_D f(y) dy = \pm \int_{\Omega} f(\varphi(x)) J_{\varphi}(x) dx, \quad \text{where } J_{\varphi}(x) = \det \varphi'(x).$$

- $\mathbf{\dot{L}6}$. (1) 用磨光技巧Cui¹³, 可设 f 是 \mathbb{R}^m 上光滑函数在 \bar{D} 上的限制.
- (2) φ 只须在边界上好,于是能得到 Brouwer 不动点定理 (定理9).
- (3) P. Lax 等曾撰文讨论换元公式, 见 Lax⁹⁹, Lax⁰¹, Tay⁰², Iva⁰⁵.I

其结果:
$$f \in C_0(\mathbb{R}^m)$$
 φ 在一大球外为恒等

$$\int_{\mathbb{R}^m} f(y) \mathrm{d}y = \int_{\mathbb{R}^m} f(\varphi(x)) \det\left(\frac{\partial y}{\partial x}\right) \mathrm{d}x.$$

证. 设 $\varphi: y^i = y^i(x^1, \dots, x^m)$. 取 P 使 $\partial P/\partial y^1 = f$, 记 $\tilde{P} = P \circ \varphi$.

设 $x: U \to \mathbb{R}^m$ 是 $\partial \Omega$ 的参数化, 则 $y = \varphi \circ x$ ∂D 的参数化,

$$N = \left(\frac{\partial(y^2, \dots, y^m)}{\partial(u^1, \dots, u^{m-1})}, \dots, (-1)^{m+1} \frac{\partial(y^1, \dots, y^{m-1})}{\partial(u^1, \dots, u^{m-1})}\right)$$

是 ∂D 上的法矢, $n = \pm N/|N| = (n^1, \ldots, n^m)$ 是幺外法矢.

令
$$A = (A_1, \ldots, A_m)$$
, $\tilde{N} = (\tilde{N}^1, \ldots, \tilde{N}^m)$, 其中

$$A_{i} = (-1)^{i+1} \frac{\partial(y^{2}, \dots, y^{m})}{\partial(x^{1}, \dots, \hat{x}^{i}, \dots, x^{m})}, \tilde{N}^{i} = (-1)^{i+1} \frac{\partial(x^{1}, \dots, \hat{x}^{i}, \dots, x^{m})}{\partial(u^{1}, \dots, u^{m-1})}.$$

则 $\tilde{n} = \pm \tilde{N}/|\tilde{N}|$ 是 $\partial\Omega$ 上的幺外法矢.

由 Cauchy-Binet 公式,

$$\pm n^{1}|N| = \frac{\partial(y^{2}, \dots, y^{m})}{\partial(u^{1}, \dots, u^{m-1})}|$$

$$= \sum_{i=1}^{m} \frac{\partial(y^{2}, \dots, y^{m})}{\partial(x^{1}, \dots, \hat{x}^{i}, \dots, x^{m})} \frac{\partial(x^{1}, \dots, \hat{x}^{i}, \dots, x^{m})}{\partial(u^{1}, \dots, u^{m-1})} = A \cdot \tilde{N},$$

由散度定理,

现计算 $\operatorname{div}(\tilde{P}A)$. 记 $y_i^k = \partial y^k / \partial x^i$, 则 A_i 是

$$\frac{\partial(y^1,\ldots,y^m)}{\partial(x^1,\ldots,x^m)} = \det \begin{pmatrix} y_1^1 & y_2^1 & \cdots & y_i^1 & \cdots & y_m^1 \\ y_1^2 & y_2^2 & \cdots & y_i^2 & \cdots & y_m^2 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ y_1^m & y_2^m & \cdots & y_i^m & \cdots & y_m^m \end{pmatrix}$$

中 y_i^1 的代数余子式 (于是由 Hadamard 恒等式有 div A = 0), 于是

$$\sum_{i=1}^{m} y_i^j A_i = \delta_1^j \frac{\partial (y^1, \dots, y^m)}{\partial (x^1, \dots, x^m)} = \delta_1^j J_{\varphi}(x), \qquad \tilde{P}(x) = P(\varphi(x))$$

 $\operatorname{div}(\tilde{P}A) = \nabla \tilde{P} \cdot A + \tilde{P} \operatorname{div} A = \nabla \tilde{P} \cdot A \models f(\varphi(x))J_{\varphi}(x).$

$$= \sum_{i=1}^{m} \left(\sum_{j=1}^{m} \frac{\partial P}{\partial y^{j}} \frac{\partial y^{j}}{\partial x^{i}} \right) A_{i} = \sum_{j=1}^{m} \frac{\partial P}{\partial y^{j}} \left(\sum_{i=1}^{m} y_{i}^{j} A_{i} \right) = (\partial_{y^{1}} P) J_{\varphi}(x)$$

由(3) 得
$$\int_D f(y) dy = \pm \int_{\Omega} f(\varphi(x)) J_{\varphi}(x) dx.$$

推论4. 在 定理7 的条件下, 若 J_{φ} 在 Ω 上不变号, 则

$$\int_{D} f(y) dy = \int_{\Omega} f(\varphi(x)) |J_{\varphi}(x)| dx.$$

3.3. 一般区域

定理8. 设 D 和 Ω 是 \mathbb{R}^m 中 Jordan 可测的有界开区域, $f \in C(\bar{D})$, $\varphi \in$ $C^1(\bar{\Omega},\mathbb{R}^m), \varphi:\Omega\to D$ 是微分同胚,则

$$\int_{D} f(y) dy = \int_{\Omega} f(\varphi(x)) |J_{\varphi}(x)| dx. \qquad f_{\pm} = \frac{1}{2} (|f| \pm f)$$

证. $f = f_+ - f_-, f_\pm \in C(\bar{D}), \ \text{可设 } f \ge 0.1 \ \text{记} \ \tilde{f}(x) = f(\varphi(x)) |J_\varphi(x)|.$

- (1) $\forall \epsilon > 0$, 取不交球 $B_i \subset \Omega$ 使 (Mei¹¹, 引理13.4.2, (覆盖引理)) $\int_{\Omega} \tilde{f}(x) dx - \varepsilon \le \sum_{i} \int_{B_{i}} \tilde{f}(x) dx = \sum_{i} \int_{\varphi(B_{i})} f(y) dy \le \int_{D} f(y) dy.$
- (2) 令 $\varepsilon \to 0$ 得 $\int_0^\infty \tilde{f}(x) dx \le \int_0^\infty f(y) dy$.
- (3) 同理可证 $\int_{\Omega} f(y) dy \leq \int_{\Omega} \tilde{f}(x) dx$.

4. Brouwer 不动点定理

定理9 (Brouwer). 设 $B \in \mathbb{R}^m$ 中的单位闭球, $g : B \to B$ 是连续映射. 则 g 有不动点.

众所周知, 为证 定理9 只需证明

命题2. 不存在 $\varphi \in C^2(B, \mathbb{R}^m)$ 使 $\varphi(B) \subset \partial B$ 且 $\varphi|_{\partial B} = 1_{\partial B}$.

证(思想来自 BD⁹³). 取

$$f(y) = \begin{cases} \sqrt{1 - 4|y|^2}, & |y| \le \frac{1}{2}, \\ 0, & \frac{1}{2} < |y| \le 1. \end{cases}$$

则 $x \in B$ 时 $f(\varphi(x)) = 0$.

视 $φ: x \mapsto y$ 为换元映射, 由 定理7

$$0 < \int_{B} f(y) dy$$

$$= + \int_{B} f(x(y)) dx \left(\frac{\partial y}{\partial y}\right) dy$$

$$=\pm\int_{B} f(\varphi(x)) \det\left(\frac{\partial y}{\partial x}\right) dx = 0$$
, 矛盾.

- 注7. * 很多人是在学习代数拓扑的同调群时, 首次看到 Brouwer 不动点定 理的证明.
 - * 很多微分流形的书中,都作为流形上的Stokes 公式的应用给出过Brouwer 不动点定理的证明。
 - * Mil⁷⁸, Kan⁸¹ 给出过 Brouwer 不动点定理的初等证明.

注8. 对于重积分换元公式, 我们的证明的优越性如下:

- (1) 完全是巧妙的计算 (Cauchy-Binet), 更易于理解, 便于课堂讲授.
- (2) 证明过程中同时也建立了 曲面积分 的理论 (包括散度定理).
- (3) 由我们的证明立得 Brouwer 不动点定理.

例2 (Brouwer 不动点定理的应用). 设 A 可逆, $f: \mathbb{R}^n \to \mathbb{R}^n$ 满足

$$\lim_{|\mathbf{x}|\to\infty}\frac{|f(\mathbf{x})|}{|\mathbf{x}|}=0, \qquad \qquad \sum_{k=1}^n A_k u = \lambda u + f(u), \quad \mathbf{x}^n \lim_{|t|\to\infty} \frac{f(t)}{t}=0.$$

则非线性代数方程组 Ax = f(x) 有解 (Ax = b), Cramer 法则的推广).

5. 余面积公式及应用

受 Mei¹¹ 影响, 我近年教学中介绍了 余面积公式.

定理10. 设 $G \subset \mathbb{R}^m$ 为有界开集, $f \in C^2(G)$, $\forall x \in G$ 有 $\nabla f(x) \neq 0$. $\Omega = f^{-1}[a, b] \subset G$.

若
$$g \in C(\Omega)$$
, 则 $\int_{\Omega} g = \int_{a}^{b} dt \int_{f^{-1}(t)} \frac{g}{|\nabla f|} d\sigma$.

证(想法源自 WSY⁸⁹, §11). 对 $p \in f^{-1}(a)$, 设 $x(\cdot, p)$ 是初值问题

$$x' = \frac{\nabla f(x)}{|\nabla f(x)|^2}, \quad x(a) = p \tag{4}$$

设 $f^{-1}(\alpha)$ 的参数化 $\varphi: U \to \mathbb{R}^m$,则在内部 $T: U \times$

$$[a,b] \to \mathbb{R}^m$$

$$T(u,t) = x(t-\alpha,\varphi(u))$$

是 C^1 - 单射, $T(\cdot,t): U \to \mathbb{R}^m$ 是 $f^{-1}(t)$ 的参数表示, 法矢为 N_t(u).

展开 det T'(u,t), 运用 (4), 得

$$\left|\det T'(u,t)\right| = \frac{|N_t(u)|}{|\nabla f(T(u,t))|} \neq 0.$$

故 T 在 $U^{\circ} \times (a, b)$ 是微分同胚. 由积分 换元和 Fubini

$$= \int_{T(U \times (a,b))} g(X) dX$$

$$= \int_{U \times (a,b)} g(T(u,t)) |\det T'(u,t)| dudt$$

$$\int_{0}^{b} \int_{U} \int_{0}^{\infty} g(T(u,t)) dudt$$

 $= \int_{a}^{b} dt \int_{\mathcal{U}} \frac{g(T(u,t))}{|\nabla f(T(u,t))|} |N_{t}(u)| du$

x = T(u, t)

$$= \int_a^b dt \int_{f^{-1}(t)} \frac{g}{|\nabla f|} d\sigma.$$

例3 $(m = 2 见 LF^{89})$. 设 $B 是 \mathbb{R}^m$ 中单位球, $f \in C^1(B)$, $f|_{\partial B} = 0$. 求

$$I = \lim_{\varepsilon \to 0^+} \int_{B \setminus B_{\varepsilon}} \frac{x \cdot \nabla f(x)}{|x|^m} dx, \quad \text{where } B_{\varepsilon} : |x| \le \varepsilon.$$

解. 由曲面积分的定义 (2), $\int_{|x|=t} g(x) d\sigma = t^{m-1} \int_{|y|=1} g(ty) d\sigma$.

$$\int_{B \setminus B_{\varepsilon}} \frac{x \cdot \nabla f(x)}{|x|^{m}} dx = \int_{\varepsilon}^{1} dt \int_{|x|=t} \frac{x \cdot \nabla f(x)}{|x|^{m}} d\sigma$$

$$= \int_{\varepsilon}^{1} \left(t^{m-1} \int_{|y|=1} \frac{(ty) \cdot \nabla f(ty)}{|ty|^{m}} d\sigma \right) dt$$

$$= \int_{\varepsilon}^{1} dt \int_{|y|=1} \nabla f(ty) \cdot y d\sigma = \int_{|y|=1} d\sigma \int_{\varepsilon}^{1} \frac{d}{dt} f(ty) dt$$

$$= \int_{|y|=1} \left[-f(\varepsilon y) \right] d\sigma \to -f(0)\omega_m.$$

参考文献

 BD^{93} L. Báez-Duarte, II, J. Math. Anal. Appl., 177(1993) 412-414. dC^{76} M. P. do Carmo, Differential geometry of curves and surfaces, Prentice-Hall Inc., Englewood Cliffs, N.I., 1976.

Dei⁸⁵ K. Deimling, Nonlinear functional analysis, Springer-Verlag, Berlin. 1985.

FR⁹⁷ B. Fine, G. Rosenberger, The fundamental theorem of algebra. Undergraduate Texts in Mathematics, Springer-Verlag, New York, 1997.

N. V. Ivanov, II, Amer. Math. Monthly, 112(2005) 799–806.

Y. Kannai, II., Amer. Math. Monthly, 88(1981) 264–268. P. D. Lax, ↓, Amer. Math. Monthly, 106(1999) 497–501.

P. D. Lax, II, Amer. Math. Monthly, 108(2001) 115–119. 欧氏空间的满射和重积分换元公式

25/34

Iva⁰⁵

Kan⁸¹

 Iax^{99}

LL ¹⁰	A. C. Lazer, M. Leckband, ↓ Amer. Math. Monthly, 117(2010) 455–457.
LL^{18}	P. Liu, S. Liu, Џ, Amer. Math. Monthly, 125 (2018) 941–943.
LZ ¹⁷	S. Liu, Y. Zhang, Џ, J. Math. Study, 50(2017) 268–276.
Mil ⁷⁸	J. Milnor, Џ, Amer. Math. Monthly, 85(1978) 521–524.
Sen ⁰⁰	A. Sen, [↓] , Amer. Math. Monthly, 107(2000) 842–843.
Tay ⁰²	M. Taylor, Џ, J. Math. Anal. Appl., 268(2002) 378–383.
Tho ⁹⁴	J. A. Thorpe, Elementary topics in differential geometry, Springer-Verlag, New York, 1994.
Cui ¹³	崔尚斌, 数学分析 (下册), 高等教育出版社, 2013.
HLW ⁰⁹	郇中丹, 刘永平, 王昆扬, 简明数学分析, 高等教育出版社, 2009.
LF ⁸⁹	林源渠, 方企勤, 数学分析习题集, 高等教育出版社, 1986.
26/34	欧氏空间的满射和重积分换元公式 ☆ Florida Tech (佛罗里达理工学院) 刘轼波

- Ma¹¹ 马建国, 数学分析 (下册), 科学出版社, 2011.
- Mei^{11} 梅加强, 数学分析 (第 2 版), 高等教育出版社, 2020.
- OY⁰³ 欧阳光中, 姚允龙, 周渊, 数学分析 (下册), 复旦大学出版社, 2003.
- WSY⁸⁹ 伍洪熙, 沈纯理, 虞言林, 黎曼几何初步, 北京大学出版社, 1989.

附录

L- 乘数法的证明, $F(x) = (f(x), g^1(x), ..., g^n(x))$. 由 定理 4 有 $\begin{aligned} \min & \{ f : \mathbb{R}^m \to \mathbb{R} \} | & F : U \to \mathbb{R}^{n+1} | \\ g^1(x) &= 0 \\ &\vdots & \text{rank } F'(x_0) = \text{rank} \end{aligned} \quad \begin{vmatrix} \nabla f(x_0) \\ \nabla g^1(x_0) \\ \vdots \\ \nabla g^n(x_0) \end{vmatrix} = n,$ 于是 $\nabla f(x_0) \in \operatorname{span} \{ \nabla g^1(x_0), \dots, \nabla g^n(x_0) \}$.

* 余面积公式的"微元法"

设
$$G \subset \mathbb{R}^m$$
, $f : G \to \mathbb{R}$.
 $\Omega = f^{-1}[a, b], g : \Omega \to \mathbb{R}$.

在
$$x \in f^{-1}(t)$$
 取面元 d σ .

过x作法线交 $f^{-1}(t+dt)$ 于y.

$$dt = f(y) - f(x)$$

$$\approx \nabla f(x) \cdot (y - x)$$

$$|y - x| = \frac{\mathrm{d}t}{|\nabla f(x)|}.$$

底 d σ , 高 |y-x| 的柱体的体积

$$dV = \frac{dtd\sigma}{|\nabla f(x)|}, \quad dm = \frac{g(x)}{|\nabla f(x)|}dtd\sigma. \quad \int_{f=t}^{f} dm = f \int_{f=t}^{f} \frac{dt}{|f|} dt$$

因此 Ω 的总质量为

$$\int_{\Omega} g(x) dx = \int_{a}^{b} dt \int_{f=t} \frac{g(x)}{|\nabla f(x)|} d\sigma.$$

* 链法则与 Cauchy-Binet 的应用

$$\begin{pmatrix} \frac{\partial y^2}{\partial u^1} & \cdots & \frac{\partial y^2}{\partial u^{m-1}} \\ \vdots & & \vdots \\ \frac{\partial y^m}{\partial u^1} & \cdots & \frac{\partial y^m}{\partial u^{m-1}} \end{pmatrix} = \begin{pmatrix} \frac{\partial y^2}{\partial x^1} & \cdots & \frac{\partial y^2}{\partial x^i} & \cdots & \frac{\partial y^2}{\partial x^m} \\ \vdots & & \vdots & & \vdots \\ \frac{\partial y^m}{\partial x^1} & \cdots & \frac{\partial y^m}{\partial x^i} & \cdots & \frac{\partial y^m}{\partial x^m} \end{pmatrix} \begin{pmatrix} \frac{\partial x^1}{\partial u^1} & \cdots & \frac{\partial x^1}{\partial u^{m-1}} \\ \vdots & & \vdots & & \vdots \\ \frac{\partial x^i}{\partial u^1} & \cdots & \frac{\partial x^i}{\partial u^{m-1}} \\ \vdots & & \vdots & & \vdots \\ \frac{\partial x^m}{\partial u^1} & \cdots & \frac{\partial x^m}{\partial u^{m-1}} \end{pmatrix}$$

$$(m-1)\times(m-1)$$
 $(m-1)\times m$ $m\times(m-1)$

由 Cauchy-Binet 即得

$$\frac{\partial(y^2,\ldots,y^m)}{\partial(u^1,\ldots,u^{m-1})} = \sum_{i=1}^m \frac{\partial(y^2,\ldots,y^m)}{\partial(x^1,\ldots,\hat{x}^i,\ldots x^m)} \frac{\partial(x^1,\ldots,\hat{x}^i,\ldots x^m)}{\partial(u^1,\ldots,u^{m-1})}$$

重积分换元公式的常见证明

※ 有些教材以不太严谨的方式 (随意略去高阶无穷小) 得到

$$\operatorname{Area}(T(\sigma)) \approx \left| \frac{\partial(x,y)}{\partial(u,v)} \right| \operatorname{Area}(\sigma), \quad \operatorname{diam}(\sigma) \to 0.$$

并由此分析 Riemann 和做出证明.

- ※ 另一些教材先对简单的变换进行证明,再逐步过渡到一般情形.证明虽然严 谨, 却过于繁复!
- * 又有教材把曲面 S = r(D) ($r: D \to \mathbb{R}^3$) 的面积定义为

$$\mathscr{A}(S) = \iint_D |\boldsymbol{r}_u \times \boldsymbol{r}_v| \, \mathrm{d}u \, \mathrm{d}v.$$

作为特例, D 在变换 $T:(u,v)\mapsto (x(u,v),y(u,v))$ 下的象的面积

$$\mathscr{A}(T(D)) = \iint_{D} \left| \frac{\partial(x, y)}{\partial(u, v)} \right| du dv.$$
 (5)

由此不难通过分析 Riemann 和证得换元公式... 循环论证的错误!

* 还有些教材运用 Green 公式来证明 (5), 再研究 Riemann 和.

定理**11** (换元公式). 设 C^2 - 变换 $T: D \to \Omega$,

$$(u,v)\mapsto (x(u,v),y(u,v))$$

把 uv- 平面闭区域 D 的边界 ∂D 微分同胚地映成 xy- 平面闭区域 Ω 的边界 $\partial \Omega$, $f \in C(\Omega)$, 则

$$\iint_{\Omega} f(x, y) dx dy = \pm \iiint_{D} f(x(u, v), y(u, v)) \frac{\partial(x, y)}{\partial(u, v)} du dv.$$
 (6)

证(dC⁷⁶). 取
$$Q \in C^1(\Omega)$$
 使 $Q_X = f$. 再设 ∂D 及 $\partial \Omega$ 的参方为 $(u, v) = (u(t), v(t))$, $(x, y) = (x(u(t), v(t)), y(u(t), v(t)))$,

$$t \in [a, b]$$
 . 记 $\tilde{Q} = Q \circ T$,则
 $(\tilde{Q}y_{V})_{u} - (\tilde{Q}y_{u})_{v} = \tilde{Q}_{u}y_{v} - \tilde{Q}_{v}y_{u}$
 $= (Q_{x}x_{u} + Q_{y}y_{u})y_{v} - (Q_{x}x_{v} + Q_{y}y_{v})y_{u}$
 $= Q_{x}(x_{u}y_{v} - x_{v}y_{u}) = (f \circ T)\frac{\partial(x, y)}{\partial(u, v)}$.

由 Green 公式,

$$\iint_{\Omega} f(x, y) dx dy$$

$$= \iint_{\Omega} Q_{x} dx dy = \oint_{\partial \Omega} Q dy$$

$$= \pm \int_a^b \tilde{Q}(u(t), v(t))(y_u \dot{u} + y_v \dot{v}) dt$$

$$=\pm\oint_{\partial D}\left(\tilde{Q}y_{u}\right)\mathrm{d}u+\left(\tilde{Q}y_{v}\right)\mathrm{d}v\\ =\pm\iint_{D}\!\left(\left(\tilde{Q}y_{v}\right)_{u}-\left(\tilde{Q}y_{u}\right)_{v}\right)\mathrm{d}u\mathrm{d}v\\ =+\int_{\partial D}\!\left(\left(\tilde{Q}y_{v}\right)_{u}-\left(\tilde{Q}y_{u}\right)_{v}\right)\mathrm{d}u\mathrm{d}v\\ =+\int_{\partial D}\!\left(\left(\tilde{Q}y_{v}\right)_{u}-\left(\tilde{Q}y_{u}\right)_{v}\right)\mathrm{d}u\mathrm{d}v$$

$$= \pm \iint_D f(x(u, v), y(u, v)) \frac{\partial(x, y)}{\partial(u, v)} du dv.$$

注9. 用这种方法处理重积分换元公式,必须先讲曲线积分、Green 公式.

附录

* 受 HLW^{09} 启发, 在课程中我们讲授 \mathbb{R}^m 中 k- 维曲面上的曲面积分. 简要讨论 \mathbb{R}^m 中的平行 2k- 面体的体积之后, 设 \mathbb{R}^m 中 k- 维曲面 S 的参数表示为 $x:U \to \mathbb{R}^m$, 其中

- * $U \in \mathbb{R}^k$ 中 Jordan 可测的有界闭区域,
- * $x 在 U^{\circ}$ 单, rank x'(u) = k, 这里

$$x'(u) = \left(\frac{\partial x^i}{\partial u^j}\right)_{m \times k}.$$

设 $f: S \to \mathbb{R}$ 连续, 我们定义

$$\int_{S} f d\sigma = \int_{U} f(x(u)) \sqrt{\det \left[(x'(u))^{\mathsf{T}} x'(u) \right]} du.$$

由 k- 重积分换元公式易证右端的 k- 重积分与 S 的参数表示无关.

Thank you!

http://www.liusb.com