CS/ECE 5381/7381 Computer Architecture Spring 2023

Dr. Manikas

Computer Science

Lecture 1: Jan. 17, 2023

Instructor Information

Instructor: Dr. Theodore Manikas

E-mail: manikas@smu.edu

• Office: Caruth Hall 477

Office Hours: Tu, Th 9:30 – 10:30 am, or by appointment

 The best way to contact me is by e-mail - please include "CS/ECE 5381" or "CS/ECE 7381" in the Subject Line of your e-mail for prompt response.

Prerequisites

 C- or better in CS 4381/ECE 3382 or equivalent: machine organization, instruction set architecture design, memory design, control design, algorithms for computer arithmetic, microprocessors and pipelining.

Textbook

Text: J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantitative Approach,
 6th Edition, 2017.
 ISBN13: 978-0128119051

Material Covered

- Ch. 1 Fundamentals of Quantitative Design and Analysis
- App. A Instruction Set Principles
- App. C Pipelining
- Ch. 3 Instruction-Level Parallelism and Its Exploitation
- App. B Review of Memory Hierarchy
- Ch. 2 Memory Hierarchy Design
- Ch. 4 Data-Level Parallelism
- Ch. 5 Thread-Level Parallelism
- Ch. 6 Warehouse-Scale Computers
- Ch. 7 Domain-Specific Architectures

Grading

Quizzes	15%
Exams	75%
Projects	10%

Quizzes

- Will be assigned weekly
- Open book, open notes
- Lowest quiz score will be dropped

Exams

- 3 exams
- Open book, open notes
- Will require Lockdown Browser

Projects

- Programming projects
- Will be assigned as we cover key concepts in course
- There will be extra projects for CS/ECE 7381 students (graduate sections)

Course Syllabus

- The course syllabus is on Canvas
- Contains more details on course schedule, grading, policies, etc.
- Students should become familiar with all course and university policies as they will be followed during the semester
- Contact Dr. Manikas for questions

QUESTIONS?

 Any questions on general course schedule and assignments?

Fundamentals of Quantitative Design and Analysis

(Chapter 1, Hennessy and Patterson)

Note: some course slides adopted from publisher-provided material

Outline

- <u>1.1 Introduction</u>
- 1.2 Classes of Computers
- 1.3 Defining Computer Architecture
- 1.4 Trends in Technology
- 1.5 Trends in Power and Energy in Integrated Circuits
- 1.6 Trends in Cost
- 1.7 Dependability
- 1.8 Measuring, Reporting, and Summarizing Performance
- 1.9 Quantitative Principles of Computer Design

Introduction

- Original purpose arithmetic operations
 - "Computer" to compute numbers
- Digital computer 1940's

ENIAC - 1940's

- University of Pennsylvania
- WWII computing ballistic tables
- Hardware
 - 18,000 vacuum tubes
 - 1,500 electromagnetic relays
- Programming
 - hardwired no software!

Replacing a bad tube meant checking among ENIAC's 19,000 possibilities.

IBM System/360 - 1964

- Business use
- Hardware
 - transistors on PCB's

- Programming
 - FORTRAN

Intel 4004 – 1971

- First commercial microprocessor
 - "computer on a chip"

晶体管

- 2300 transistors
- 4 bits

IBM PC - 1981

- First "commercial" personal computer
- Hardware
 - 4.77 MHz Intel 8088
 - 16 KB RAM
 - 160 KB floppy drive
- Operating system
 - MS-DOS

Apple Macintosh - 1984

- Jan. 1984 Apple
 Macintosh released
 - List price: \$2495

- Processor: Motorola 68000 (8 MHz)
- 3.5" floppy drive (400 KB)
- 128 KB RAM
- Black and white 9" CRT screen
- First PC with GUI and mouse (early "Windows")

Dell Laptop - 2013

- Hardware
 - 2.7 GHz Intel Core i5
 - 6 GB RAM
 - 500 GB hard drive
- Operating system
 - Microsoft Windows 8

HP Pavilion Laptop 15 - 2022

- Hardware
 - 4.7 GHz Intel Core i7
 - 16 GB RAM
 - 512 GB flash storage
- Operating system
 - Windows 11

Computer Technology

- Performance improvements:
 - Improvements in semiconductor technology
 - Feature size, clock speed
 - Improvements in computer architectures
 - Enabled by HLL compilers, UNIX
 - Lead to RISC architectures
 - Together have enabled:
 - Lightweight computers
 - Productivity-based managed/interpreted programming languages

Current Trends in Architecture

- Cannot continue to leverage Instruction-Level parallelism (ILP)
 - Single processor performance improvement ended in 2003
- New models for performance:
 - Data-level parallelism (DLP)
 - Thread-level parallelism (TLP)
 - Request-level parallelism (RLP)
- These require explicit restructuring of the application

Outline

- 1.1 Introduction
- 1.2 Classes of Computers
- 1.3 Defining Computer Architecture
- 1.4 Trends in Technology
- 1.5 Trends in Power and Energy in Integrated Circuits
- 1.6 Trends in Cost
- 1.7 Dependability
- 1.8 Measuring, Reporting, and Summarizing Performance
- 1.9 Quantitative Principles of Computer Design

Classes of Computers

- Personal Mobile Device (PMD)
 - e.g. start phones, tablet computers
 - Emphasis on energy efficiency and real-time
- Desktop Computing
 - Emphasis on price-performance
- Servers
 - Emphasis on availability, scalability, throughput

n. 可扩展性;可伸缩性;可量测性

Classes of Computers

- Clusters / Warehouse Scale Computers
 - Used for "Software as a Service (SaaS)"
 - (cloud computing)
 - Emphasis on availability and price-performance
 - Sub-class: Supercomputers, emphasis: floatingpoint performance and fast internal networks
- Embedded Computers
 - Emphasis: price

Comparison of Classes

-			
Feature	Desktop/Laptop	Server	Embedded
Price range	\$300 - \$3K	\$5K - \$10M	\$10 - \$100K
Price/MPU	\$50 - \$500	\$200 - \$2K	\$0.01 - \$100
Critical System Design Issues	Price/performanc e, power consumption (laptop)	Throughput, availability, scalability, energy	Price, power consumption, application-specific performance
			periorinance

Parallelism

- Classes of parallelism in applications:
 - Data-Level Parallelism (DLP)
 - Task-Level Parallelism (TLP)
- Classes of architectural parallelism:
 - Instruction-Level Parallelism (ILP)
 - Vector architectures/Graphic Processor Units (GPUs)
 - Thread-Level Parallelism
 - Request-Level Parallelism

Flynn's Taxonomy

/tækˈsɑːnəmi/分类学

- Single instruction stream, single data stream (SISD)
 - Use ILP for parallel processing (Ch. 3)
- Single instruction stream, multiple data streams (SIMD) (Ch. 4)
 - Vector architectures
 - Multimedia extensions
 - Graphics processor units

Flynn's Taxonomy

- Multiple instruction streams, multiple data streams (MIMD)
 - Tightly-coupled MIMD
 - Uses Thread-Level Parallelism (Ch. 5)
 - Loosely-coupled MIMD
 - Uses Request-Level Parallelism (Ch. 6)

Outline

- 1.1 Introduction
- 1.2 Classes of Computers
- 1.3 Defining Computer Architecture
- 1.4 Trends in Technology
- 1.5 Trends in Power and Energy in Integrated Circuits
- 1.6 Trends in Cost
- 1.7 Dependability
- 1.8 Measuring, Reporting, and Summarizing Performance
- 1.9 Quantitative Principles of Computer Design

WHAT IS COMPUTER ARCHITECTURE?

- OLD DEFINITION: INSTRUCTION SET ARCHITECTURE (ISA)
 - Instruction set set of all possible operations in a machine's language
 - Machine's memory
 - Programmer accessible registers
 - Boundary between software and hardware
- TODAY'S DEFINITION IS MUCH BROADER: HARDWARE ORGANIZATION OF COMPUTERS (HOW TO BUILD COMPUTER)--INCLUDES ISA

Typical Modern ISA's

- General-purpose register architecture
 - Operands are either
 - Registers, or
 - Memory locations
- Load-store classification
 - Can only access memory with *load* or *store* instructions
- Byte addressing often used to access memory operands

Instruction Classes

- Data movement move data between memory and/or registers, peripherals
- Arithmetic/logic
 - Arithmetic add, multiply
 - Logic and, or, not
- Control flow branching

```
分支
for (i=0; i < N; i++){
}
```

Computer Architecture

- Components
 - ISA
 - Organization
 - Hardware
- Computer Architect Concerns
 - Design and performance of entire computer system
 - Optimize with respect to cost, size, time to market

Modern Computer Architecture

- Specific requirements of the target machine
- Design to maximize performance within constraints: cost, power, and availability
- Includes ISA, microarchitecture, hardware

Outline

- 1.1 Introduction
- 1.2 Classes of Computers
- 1.3 Defining Computer Architecture
- 1.4 Trends in Technology
- 1.5 Trends in Power and Energy in Integrated Circuits
- 1.6 Trends in Cost
- 1.7 Dependability
- 1.8 Measuring, Reporting, and Summarizing Performance
- 1.9 Quantitative Principles of Computer Design

Trends in Technology

- Integrated circuit technology (chip)
 - Transistor density: 35%/year
 - Die size: 10-20%/year
 - Integration overall: 40-55%/year
- DRAM capacity: 25-40%/year (slowing)
 - This is the RAM in your computer
 - 8 GB (2014), 16 GB (2019)

Trends in Technology

- Flash capacity: 50-60%/year
 - 8-10X cheaper/bit than DRAM
- Magnetic disk capacity: recently slowed to 5%/year
 - 8-10X cheaper/bit than Flash
 - Eventually to be replaced by Flash (SSD) as Flash costs decrease
 - 200-300X cheaper/bit than DRAM

Bandwidth and Latency

- Bandwidth or throughput
 - Total work done in a given time
 - 32,000-40,000X improvement for processors
 - 300-1200X improvement for memory and disks
- Latency or response time
 - Time between start and completion of an event
 - 50-90X improvement for processors
 - 6-8X improvement for memory and disks

Transistors and Wires

- Feature size
 - Minimum size of transistor or wire in x or y dimension
 - 10 microns in 1971 to .011 microns in 2017
 - 1 micron = 1 micrometer = 10⁻⁶ meters
 - Transistor performance scales linearly
 - Wire delay does not improve with feature size!
 - Integration density scales quadratically

Outline

- 1.1 Introduction
- 1.2 Classes of Computers
- 1.3 Defining Computer Architecture
- 1.4 Trends in Technology
- 1.5 Trends in Power and Energy in Integrated Circuits
- 1.6 Trends in Cost
- 1.7 Dependability
- 1.8 Measuring, Reporting, and Summarizing Performance
- 1.9 Quantitative Principles of Computer Design