МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им. Н.Э. Баумана

Кафедра «Систем обработки информации и управления»

ОТЧЕТ

Лабораторная работа №5 по курсу «Методы машинного обучения»

Тема: «Линейные модели, SVM и деревья решений»

ИСПОЛНИТЕЛЬ:	Чертилин А.А. _{ФИО}
группа ИУ5-22М	подпись
	""2019 г.
ПРЕПОДАВАТЕЛЬ:	Гапанюк Ю.Е. _{Фио}
	подпись
	""2019 г.

Москва - 2018

Цель лабораторной работы

Цель лабораторной работы: изучение различных методов визуализация данных.

Задание

Выбрать набор данных (датасет). Вы можете найти список свободно распространяемых датасетов на Kaggle.com. Для лабораторных работ не рекомендуется выбирать датасеты большого размера.

Создать ноутбук, который содержит следующие разделы:

- 1. Текстовое описание выбранного Вами набора данных.
- 2. Основные характеристики датасета.
- 3. Визуальное исследование датасета.
- 4. Информация о корреляции признаков. Сформировать отчет и разместить его в своем репозитории на github.

Описание датасета

Датасет HeHeart Disease UCI (болезни сердца)

Информация об атрибутах:

- 1. Возраст
- 2. Пол
- 3. Тип боли в груди (4 значения)
- 4. Кровяное давление в покое
- 5. Сыворотка холесторальная в мг / дл
- 6. Уровень сахара в крови натощак> 120 мг / дл
- 7. Результаты электрокардиографии в покое (значения 0,1,2)
- 8. Достигнута максимальная частота сердечных сокращений
- 9. Осуществление индуцированной стенокардии
- 10. Oldpeak = депрессия ST, вызванная физическими упражнениями относительно отдыха
- 11. Наклон пика упражнений сегмента ST
- 12. количество крупных сосудов (0-3), окрашенных по цвету

13. тал: 3 = нормально; 6 = исправленный дефект; 7 = обратимый дефект

Имена и номера социального страхования пациентов были недавно удалены из базы данных, заменены фиктивными значениями. Один файл был "обработан", тот, который содержит базу данных Кливленда. Все четыре необработанных файла также существуют в этом каталоге.

Результат выполнения

Линейные модели, SVM и деревья решений.

Цель лабораторной работы: изучение линейных моделей, SVM и деревьев решений. Задание:

- 1. Выберите набор данных (датасет) для решения задачи классификации или регресии.
- 2. В случае необходимости проведите удаление или заполнение пропусков и кодирование категориальных признаков.
- 3. С использованием метода train_test_split разделите выборку на обучающую и тестовую.
- 4. Обучите одну из линейных моделей, SVM и 3 дерево решений. Оцените качество моделей с помощью трех подходящих для задачи метрик. Сравните качество полученных моделей.
- 5. Произведите для каждой модели подбор одного гиперпараметра с использованием GridSearchCV и кросс-валидации.
- 6. Повторите пункт 4 для найденных оптимальных значений гиперпараметров. Сравните качество полученных моделей с качеством моделей, полученных в пункте 4.

```
In [1]: import numpy as np
   import pandas as pd
   import seaborn as sns
   import matplotlib.pyplot as plt
   %matplotlib inline
   sns.set(style="ticks")
   data = pd.read_csv('Data/lab_5/winequalityN.csv',sep=",")
   data.head(5)
```

Out[1]:

	type	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulpha
0	white	7.0	0.27	0.36	20.7	0.045	45.0	170.0	1.0010	3.00	О
1	white	6.3	0.30	0.34	1.6	0.049	14.0	132.0	0.9940	3.30	О
2	white	8.1	0.28	0.40	6.9	0.050	30.0	97.0	0.9951	3.26	О
3	white	7.2	0.23	0.32	8.5	0.058	47.0	186.0	0.9956	3.19	О
4	white	7.2	0.23	0.32	8.5	0.058	47.0	186.0	0.9956	3.19	О

```
In [2]: data.shape
```

Out[2]: (6497, 13)

```
In [3]: # Кодирование категориального признака(тип вина: красное или белое)

в столбец wine_type_le

from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
le.fit(data.type)
data['wine_type_le'] = le.transform(data.type)
data.head(2)
```

Out[3]:

	type	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides		total sulfur dioxide	density	рН	sulphate
0	white	7.0	0.27	0.36	20.7	0.045	45.0	170.0	1.001	3.0	0.4
1	white	6.3	0.30	0.34	1.6	0.049	14.0	132.0	0.994	3.3	0.4

```
In [4]: del data['type']
```

In [5]: data.head(2)

Out[5]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides		total sulfur dioxide	density	рН	sulphates	alc
0	7.0	0.27	0.36	20.7	0.045	45.0	170.0	1.001	3.0	0.45	
1	6.3	0.30	0.34	1.6	0.049	14.0	132.0	0.994	3.3	0.49	

In [6]: # Проверка на пустые значения data.isnull().sum()

```
Out[6]: fixed acidity
                                 10
        volatile acidity
                                 8
        citric acid
                                  3
        residual sugar
                                 2
        chlorides
                                  2
        free sulfur dioxide
                                 0
        total sulfur dioxide
                                  0
                                  0
        density
                                  9
        рН
        sulphates
                                  4
        alcohol
        quality
                                  0
        wine_type_le
        dtype: int64
```

```
In [7]: import pandas as pd
         # function to clean the dataset of nan, Inf, and missing cells (for
         skewed datasets)
         def clean dataset(df):
              assert isinstance(df, pd.DataFrame), "df needs to be a pd.DataF
         rame"
              df.dropna(inplace=True)
              indices to keep = ~df.isin([np.nan, np.inf, -np.inf]).any(1)
              return df[indices_to_keep].astype(np.float64)
 In [8]: clean dataset(data)[:1]
Out[8]:
                                               free
                                                      total
             fixed volatile citric residual
                                     chlorides
                                              sulfur
                                                     sulfur density pH sulphates alc
            acidity
                   acidity
                         acid
                                sugar
                                             dioxide dioxide
               7.0
                     0.27
                          0.36
                                 20.7
                                        0.045
                                                     170.0
                                                                        0.45
          0
                                               45.0
                                                            1.001 3.0
 In [9]: # Пустых значений нет
         # Перейдем к разделению выборки на обучающую и тестовую.
         X = data.drop('wine_type_le',axis = 1).values
         y = data['wine type le'].values
In [10]: from sklearn.model_selection import train_test_split
         # Функция train test split разделила исходную выборку таким образом
         #чтобы в обучающей и тестовой частях сохранились пропорции классов.
         X_train, X_test, y_train, y_test = train_test_split(
              X, y, test_size=0.30, random_state=1)
In [11]: # Размер обучающей выборки (70%)
         print('X_train: {} y_train: {}'.format(X_train.shape, y_train.shap
         e))
         X_train: (4524, 12) y_train: (4524,)
In [12]: # Размер тестовой выборки (30%)
         print('X test: {} '.format(X test.shape, y test.shape))
         X_test: (1939, 12) y_test: (1939,)
In [13]: # Функция train test split разделила исходную выборку таким образом
         #чтобы в обучающей и тестовой частях сохранились пропорции классов.
         np.unique(y_train)
Out[13]: array([0, 1])
```

```
In [14]: np.unique(y_test)
Out[14]: array([0, 1])
In [15]: from sklearn.linear_model import SGDClassifier
    from sklearn.svm import LinearSVC
    from sklearn.tree import DecisionTreeClassifier
    from sklearn.model_selection import GridSearchCV

from sklearn.metrics import accuracy_score
    from sklearn.metrics import balanced_accuracy_score
    from sklearn.metrics import precision_score, recall_score, f1_score
```

Сравнение качества трех линейных моделей

SGDClassifier (градиентный метод)

```
In [16]: import warnings
    warnings.filterwarnings('ignore')
    sgd = SGDClassifier().fit(X_train, y_train)
    predicted_sgd = sgd.predict(X_test)

In [17]: accuracy_score(y_test, predicted_sgd)

Out[17]: 0.7741103661681279

In [18]: balanced_accuracy_score(y_test, predicted_sgd)

Out[18]: 0.8412864309603441

In [19]: (precision_score(y_test, predicted_sgd, average='weighted'),
    recall_score(y_test, predicted_sgd, average='weighted'))

Out[19]: (0.8730518980385593, 0.7741103661681279)

In [20]: f1_score(y_test, predicted_sgd, average='weighted')

Out[20]: 0.7892751746523573
```

LinearSVC (линейный)

DecisionTreeClassifier (дерево решений)

```
In [26]: dtc = DecisionTreeClassifier(random_state=1).fit(X_train, y_train)
    predicted_dtc = dtc.predict(X_test)

In [27]: accuracy_score(y_test, predicted_dtc)

Out[27]: 0.9896854048478597

In [28]: balanced_accuracy_score(y_test, predicted_dtc)

Out[28]: 0.9882893374741202

In [29]: (precision_score(y_test, predicted_dtc, average='weighted'),
    recall_score(y_test, predicted_dtc, average='weighted'))

Out[29]: (0.9897527301109915, 0.9896854048478597)

In [30]: f1_score(y_test, predicted_dtc, average='weighted')

Out[30]: 0.9897065917780767
```

Подбор одного гиперпараметра с использованием GridSearchCV и кросс-валидации

```
In [32]: import warnings
         warnings.filterwarnings('ignore')
         clf gs sgd = GridSearchCV(SGDClassifier(), tuned parameters, cv=5,
                               scoring='accuracy')
         clf gs sgd.fit(X train, y train)
Out[32]: GridSearchCV(cv=5, error score='raise-deprecating',
                estimator=SGDClassifier(alpha=0.0001, average=False, class_
         weight=None,
                early stopping=False, epsilon=0.1, eta0=0.0, fit intercept=
         True,
                11_ratio=0.15, learning_rate='optimal', loss='hinge', max_i
         ter=None,
                n_iter=None, n_iter_no_change=5, n_jobs=None, penalty='12',
                power t=0.5, random state=None, shuffle=True, tol=None,
                validation fraction=0.1, verbose=0, warm start=False),
                fit params=None, iid='warn', n jobs=None,
                param_grid=[{'l1_ratio': array([0. , 0.05, 0.1 , 0.15, 0.2
         , 0.25, 0.3 , 0.35, 0.4 , 0.45, 0.5 ,
                0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95])
                pre_dispatch='2*n_jobs', refit=True, return_train_score='wa
         rn',
                scoring='accuracy', verbose=0)
In [33]: clf gs sgd.best params
Out[33]: {'ll ratio': 0.5}
In [34]: import matplotlib.pyplot as plt
         plt.style.use('ggplot')
```



```
Out[37]: GridSearchCV(cv=3, error_score='raise-deprecating',
                estimator=LinearSVC(C=1.0, class_weight=None, dual=True, fi
         t intercept=True,
              intercept_scaling=1, loss='squared_hinge', max_iter=1000,
              multi class='ovr', penalty='12', random state=None, tol=0.000
         1,
              verbose=0),
                fit params=None, iid='warn', n jobs=None,
                param_grid=[{'C': array([ 1,  2,  3,  4,  5,  6,
                                                                  7,
                                                                       8, 9
         , 10, 11, 12, 13, 14, 15, 16, 17,
                18, 19])}],
                pre_dispatch='2*n_jobs', refit=True, return_train_score='wa
         rn',
                scoring='accuracy', verbose=0)
```

```
In [38]: clf gs svm.best params
Out[38]: {'C': 19}
In [39]: | plt.title('LinearSVC')
          plt.plot(n range, clf gs svm.cv results ['mean test score'],label='
          mean test score')
          plt.legend()
          plt.show()
                                LinearSVC
           0.95
           0.90 -
           0.85 -
           0.80 -
           0.75 -
                    mean_test_score
                        5.0
                              7.5
                                   10.0
                                        12.5
                                              15.0
                                                   17.5
                   2.5
In [40]: n_{range} = np.array(range(1,7,1))
          tuned_parameters = [{'max_depth': n_range}]
          tuned parameters
Out[40]: [{'max_depth': array([1, 2, 3, 4, 5, 6])}]
In [41]: clf qs dt = GridSearchCV(DecisionTreeClassifier(random state=1), tu
          ned parameters,
                                      cv=5, scoring='accuracy')
          clf_gs_dt.fit(X_train, y_train)
```

```
In [42]: clf_gs_dt.best_params_
Out[42]: {'max_depth': 6}
In [43]: plt.title('DecisionTree')
    plt.plot(n_range, clf_gs_dt.cv_results_['mean_test_score'],label='m
    ean_test_score')
    plt.legend()
    plt.show()
```


Сравнение качества полученных моделей с качеством моделей, полученных ранее

SGD

```
In [48]: f1_score(y_test, predicted_sgd_opt, average='weighted')
Out[48]: 0.9399744973367767
```

LinearSVC

DecisionTree

```
In [58]: f1_score(y_test, predicted_dt_opt, average='weighted')
Out[58]: 0.9896710352653659
```

Вывод наибольшая точность у дерева решений, затем идет линейный метод, а потом SGD (стохастический градиентный метод)