

Vývoj systému pro měření pohybových schopností malých živočichů

Bakalářská práce

Autor práce: MICHAELA RYŠAVÁ

Vedoucí práce: doc. Ing. TOMÁŠ FRÝZA, Ph.D.

Oponent: doc. Mgr. KŘESTNÍ PŘÍJMENÍ, Ph.D.

Brno, 14.6.2022

Cíle práce

- Téma
 - sestavit zařízení pro měření pohybu ještěrek na testovacích drahách
- Cíle semestrální práce
 - prozkoumat komerčně dostupné systémy
 - navrhnout vhodné metody měření a vyhodnocování dat
 - provést testování spolehlivosti navržených metod

Specifikace projektu

Cílem je změřit čas a rychlost na dráze s následujícími parametry:

- rozměry:
 - šířka: 8 cm
 - délka: 1 m
- varianty dráhy:
 - rovná dráha
 - zvlněná dráha
 - dráha ve tvaru U
- další parametry:
 - povrch dráhy: smirkový papír hrubosti 2000
 - materiál: plexisklo, dřevo
 - požadavek na odstranitelný horní kryt

Metody měření

Vzhledem ke specifikaci je vhodné měřit parciální úseky jako průchod bránou. Pro otestování vhodné měřící metody byly použity následující součástky:

- ultrazvukový senzor (HC-SR04)
- kapacitní senzor (TTP223)
- infračervený senzor (HW201)

Výsledky testování metod měření

	Ultrazvukový senzor	Kapacitní senzor	Infračervený senzor	Optická brána
Schopnost	Jenzoi	Není	Ano,	brana
detekce	Ano	možné	na malé	Ano
ještěrky		určit	vzdálenosti	
Spolehlivost				
detekce	Ano	Ano	Ne	Ano
v prostoru 8cm				
Diskrétnost				
řešení	Ano	Ano	Ne	Ano
v rámci dráhy				
Snadnost	Obtížné	Obtížné		
implementace	z hlediska	z hlediska	Snadné	Snadné
na dráhu	výroby dráhy	těsnění		
Nutnost				
přesné	Není potřeba	Je potřeba	Je potřeba	Není potřeba
kalibrace				
Citlivost				
na změny	Zanedbatelné	VIhkost	Světlo	Světlo
okolí				

Návrh optické brány

Návrh optické brány vyšel z testované součástky HW201, jejíž obvod byl optimalizován z hlediska vhodnějšího využití komparátoru LM393

Deska plošných spojů

Rozvržení elektroniky bylo vzhledem k praktickým problémům při konstrukci dráhy soustředěno na jednu desku a podél samotné brány vedou pouze vodiče s optickými prvky.

Použité součástky:

- rezistor 10 k, SMD 0805
- rezistor 50, SMD 0805
- kondenzátor 100 n, SMD 0603
- komparátor LM393D, S08
- infračervená LED, 5 mm, THT
- fototranzistor, 5 mm, THT
- svorkovnice 5 pól, rozteč 3,5 mm
- dutinková lišta

Celkové zapojení

Měřící systém je sestaven z částí:

- optické prvky podél dráhy
- deska plošných spojů s komparátory
- řídící jednotka Arduino Nano s firmwarem
- PC se softwarem

Programová část

Měření je ovládáno ze softwaru na počítači.

Uživatel má možnost:

- nastavit základní parametry měření
- spustit a zastavit měření příslušnými tlačítky
- sledovat změřená data v číselné i grafické podobě
- kontrolovat správný průběh měření pomocí systémových zpráv

Výsledky realizace systému

Konstrukce rovné dráhy

- materiál: dřevotříska
- váha: 3 kg
- odolnost při manipulaci: dostatečná

Elektronika

- možnost zapojit až 12 optických bran
- pinout pro zasazení Arduino Nano
- dlouhodobý provoz: otestovány 4 hodiny

Programová část

- Firmware
 - aktivní běh pouze při samotném měření
 - automatická kontrola nefunkčních optických bran
 - možnost začít měření z libovolného místa dráhy
- Software
 - implementování GUI
 - průběžné zobrazování naměřených hodnot
 - vykreslení orientačního grafu rychlosti
 - automatický export do souboru (třízení dat podle data a času měření)

Děkuji za pozornost!

Otázky

Jaké další vhodné koncepce by se daly použít z pohledu systémové architektury? Tedy místo PC->USB->ARDUINO

Lze například zcela vynechat PC a data ukládat přímo na USB flash disk

- koncepce Mikrokontroler->USB
- koncpce Mikrokontroler->Raspberry Pi->USB

Nebo místo počítače využít chytrý telefon či tablet a spojení provést beztrátově

koncepce Mikrokontroler->Wifi->Android

Otázky

Je možné realizovat komunikaci mezi PC a Arduinem jiným způsobem než přes USB? Jaké existují moduly případně moduly?

Komunikaci lze realizovat také bezdrátově

- wifi
- bluetooth

