Directive: Legibly complete these exercises; turn in problems marked "TI" for possible grading.

1. Consider the following dictionary of predicates (over the integers).

P(x): x is prime

E(x): x is even

O(x): x is odd

D(x,y): x divides y (or y is divisible by x)

(a) Translate each of the following predicates into English.

| TI | i. $\forall x [P(x) \to O(x)]$

TI

TI

TI

ii. $\exists x [P(x) \land E(x)]$

iii. $\forall x [O(x) \leftrightarrow (\neg E(x))]$

iv. $\forall x[(E(x) \to (D(x,2) \lor O(x))]$

v. $\forall x[D(1,x)]$

vi. $\forall x \exists y [x + y = 0]$

vii. $\exists x \forall y [x + y = 0]$

viii. $\forall x \forall y \forall z [(x * y = x * z) \rightarrow (y = z)]$

(b) Translate each of the following statements using the dictionary above.

TI i. Every integer is either even or odd.

 $\overline{\text{TI}}$ ii. If 3 divides integer x, then x is odd.

 $\overline{\text{TI}}$ iii. If x is prime and x is greater than two, then x is odd.

- iv. An integer is divisible by 6 if and only if it is divisible by both 2 and 3.
- v. For every integer n, if n is strictly greater than two, then for all positive integers x, y, z the equation $x^n + y^n = z^n$ does not hold.
- 2. Translate the predicate $C((a_n)_{n\in\mathbb{N}}, L)$ about sequences of real numbers into symbolic logic: "For every $\epsilon > 0$ there exists a natural number N such that for all $n \geq N$ we have $|a_n L| < \epsilon$." What does this predicate define?
- TI 3. Let $A = \{1, 3, 5\}$, $B = \{-1, 1, 2, 4\}$, and $C = \{2, 4, 6\}$. Compute each of the following.
 - (a) $A \cap B$
 - (b) $A \cup C$
 - (c) $B \setminus C$
 - (d) $B \times A$
 - (e) $\mathbb{P}(A)$