Mem. Решаем задачу о перпендикуляре, ищем f_0 - наименьшую из проекций и минимально отстоящую от f

Координаты f_0 в выбранном ортонормированном базисе L' равны соответствующим координатам f в этом базисе

$$f_0 = f_1 e_1 + f_2 e_2 + \dots + f_k e_k = (f, e_1) e_1 + (f, e_2) e_2 + \dots + (f, e_k) e_k$$

$$(f, e_1) = \int_a^b f(x) e_1(x) dx$$

Nota. Итак, $\exists L \in C_{[-\pi,\pi]}, L' = l_{\{1,\sin x,\cos x,\sin 2x,\cos 2x,\dots\}}$ Тогда можно искать многочлен $P_n(x) = \frac{a_0}{2} + a_1\cos x + b_1\sin x + \dots + a_n\cos nx + b_n\sin x$, который наилучшим образом приближает f(x)

Если нормировать систему $\{\sin nx, \cos nx\}$, то коэффициентами многочлена $P_n(x)$ будут скалярные произведения f(x) на функция ортонормированной системы.

Получим
$$\left\{ \frac{1}{2\pi}, \frac{\sin x}{\pi}, \frac{\cos x}{\pi}, \dots, \frac{\sin nx}{\pi}, \frac{\cos nx}{\pi} \right\}$$
Тогда, $\left[\frac{a_0}{2} = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) dx \right]$
 $a_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin kx dx$ - коэффициенты Фурье

Nota. Если увеличивать степень n, то получим ряд Фурье. Запишем формально:

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$$
 - сходится ли этот ряд и сходится ли к $f(x)$?

Ответ дает теорема (доказательство будет приведено позже)

Th. f(x) - 2π -периодична, на $[-\pi,\pi]$ f(x) - кусочно монотонна и ограничена (то есть имеет конечное число конечных разрывов). Тогда в точках непрерывности f(x) представляется рядом Фурье:

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx) = S(x)$$

а в точках разрыва $S(x_0) = \frac{1}{2}(f(x_0+0) + f(x_0-0))$

Сейчас только тригонометрический ряд Фурье, хотя подобное разложение возможно по различным ортогональным системам функций

Nota. В концах отрезках $[-\pi, \pi] f(x)$ может быть не определена, но в любом случае ограничена $S(\pi) = S(-\pi) = \frac{1}{2}(f(-\pi+0) + f(\pi-0))$

Разложение периодичных функций (на $[-\pi,\pi]$)

$$\frac{1^{\circ}: f(x) = x \text{ Ha } [-\pi, \pi], f(x+2\pi) = f(x)}{\frac{a_0}{2} = \frac{1}{2\pi} \int_{-\pi}^{\pi} x dx = 0} \\
a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} x \cos nx dx = 0$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} x \sin nx dx = \frac{-2}{\pi n} \int_{0}^{\pi} x d \cos nx = -\frac{2}{\pi n} \left(x \cos nx \Big|_{0}^{\pi} - \int_{0}^{\pi} \cos nx dx \right)^{0} = -\frac{2}{\pi n} x \cos nx \Big|_{0}^{\pi} = \frac{2}{n} \cos \pi n = \begin{bmatrix} \frac{-2}{n}, & n = 2m \\ \frac{2}{n}, & n = 2m + 1 \end{bmatrix} = \frac{2}{n} (-1)^{n+1}$$

$$\text{Итак } f(x) = \sum_{n=0}^{\infty} \frac{(-1)^{n+1} \cdot 2}{n} \sin nx$$

$$2^{\circ} : f(x) = \begin{cases} 1 & \text{Ha } [0, \pi] \\ -1 & \text{Ha } [-\pi, 0) \end{cases} \text{ Ha } [-\pi, \pi]$$

$$\frac{a_0}{2} = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) dx = 0$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx = 0$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx = \frac{1}{\pi} \left(-\int_{-\pi}^{0} \sin nx dx + \int_{0}^{\pi} \sin nx dx \right) = \frac{1}{2n} \left(\int_{-\pi}^{0} d \cos nx - \int_{0}^{\pi} d \cos nx \right) = \frac{1}{\pi n} \left(\cos nx \Big|_{-\pi}^{0} - \cos nx \Big|_{0}^{\pi} \right) = \frac{1}{\pi n} (1 - \cos \pi n - \cos \pi n + 1) = \frac{2}{\pi n} (1 - \cos \pi n) = \frac{4}{\pi (2m - 1)}$$

$$f(x) = \sum_{m=1}^{\infty} \frac{4}{\pi (2m - 1)} \sin(2m - 1)x$$

Nota. Заметим, что если f(x) - четная, то $b_n = 0$, а если нечетная, то $a_n = 0$. Иногда в задаче требуется разложить f(x), заданную только на отрезке $[0,\pi]$. Такую функцию можно продолжить четным или нечетным образом на $[-\pi,\pi]$. Говорят о разложении в ряд по косинусам и синусам соответственно

$$3^{\circ}$$
: $f(x) = \pi - x$, $x \in [0, \pi]$

Дополним f(x) двумя способами

В ряд Фурье раскладывются периодические функции \hat{f}, \tilde{f}

$$\underline{\text{Lab. }}\hat{f}(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx \qquad \qquad \tilde{f}(x) = \sum_{n=1}^{\infty} b_n \sin nx$$

Заметим, что \tilde{f} на $[0,2\pi]$ имеет одно аналитическое задание (удобно интегрировать). Изменится ли ряд Фурье, если сдвинуть отрезок?

Th. Сдвиг промежутка длиной 2π не меняет ряда Фурье

Th. Для $f:[a,b] \to \mathbb{R}$ растяжение промежутка приводит к разложению:

$$b-a=2l=T$$
 - период $a_0=rac{1}{l}\int_{-l}^l f(x)dx$ $a_n=rac{1}{l}\int_{-l}^l f(x)\cosrac{\pi n}{l}xdx$ $b_n=rac{1}{l}\int_{-l}^l f(x)\sinrac{\pi n}{l}xdx$

$$a_n = \frac{1}{l} \int_{-l}^{l} f(x) \cos \frac{\pi n}{l} x dx$$

$$b_n = \frac{1}{l} \int_{-l}^{l} f(x) \sin \frac{\pi n}{l} x dx$$