

Docente: Professor Tomás Brandão

INSTITUTO UNIVERSITÁRIO DE LISBOA

Julho, 2024

Abstract

A identificação rápida de doenças pulmonares através de radiografias do tórax pode fazer a diferença no atendimento em situações de urgência, permitindo uma resposta médica mais célere e eficaz. Neste trabalho, desenvolvemos um sistema inteligente capaz de reconhecer automaticamente dez tipos diferentes de anomalias em radiografias torácicas, como sinais de pneumonia, nódulos ou alargamento do coração.

O sistema foi treinado com mais de 3 000 radiografias reais e avaliado com cerca de 500 imagens novas, utilizando uma técnica avançada de inteligência artificial conhecida como visão computacional. Este método permite que o sistema "veja" as imagens e destaque as áreas onde suspeita da presença de uma patologia.

Os resultados demonstram que o modelo é capaz de identificar corretamente uma parte significativa dos casos relevantes, com uma taxa de acerto competitiva e uma resposta extremamente rápida — analisando cada imagem em apenas menos de um segundo, o que permite a sua integração em ambientes clínicos de urgência.

O sistema foi configurado para privilegiar a identificação de casos potencialmente graves (maximizando a sensibilidade), ainda que isso possa originar alguns falsos alarmes — os quais podem ser posteriormente revistos por um especialista. Esta abordagem garante que se minimizam os casos que poderiam passar despercebidos, contribuindo para uma triagem mais segura e eficiente.

Índice

1.	Intr	odução	1
	1.1.	Motivação e Contexto	1
	1.2.	Objetivos	1
2.	Des	crição Geral do Sistema	2
	2.1.	Arquitetura e Diagramas de Blocos	2
	2.2.	Fluxo de Treino	2
	2.3.	Módulos e Tecnologias	3
	2.4.	Estratégias Testadas e Limitações	3
3.	Dat	asets	5
	3.1.	Caracterização	5
	3.2.	Análise Exploratória	5
4.	Exp	eriências e Resultados	6
	4.1.	Configurações experimentais	6
	4.2.	Configurações avaliadas	6
	4.2.1.	Análise das configurações detalhada	7
	4.3.	Estratégia de augmentations	8
	4.4.	Modelos Treinados	10
	4.5.	Visualização de Métricas por Classe — modelo y8s_finetune15	11
5.	Cor	nclusões e Trabalho Futuro	13
	5.1.	Conclusões	13
	5.2.	Limitações	13
	E 2	Trabalho Euturo	12

1. Introdução

1.1. Motivação e Contexto

As radiografias de tórax constituem o exame de imagem mais requisitado nos serviços de urgência a nível mundial, representando cerca de 30 % dos pedidos de imagiologia hospitalar [5]. Apesar da sua ubiquidade, o processo de interpretação permanece dependente da disponibilidade de radiologistas, frequentemente limitada em períodos noturnos e fins de semana. A consequente sobrecarga assistencial pode atrasar o diagnóstico de patologias potencialmente fatais, como pneumotórax ou derrame pleural.

Paralelamente, avanços recentes em visão computacional — em particular nas arquiteturas da família YOLO (*You Only Look Once*) — proporcionam deteção de objetos em tempo real. A aplicação destas técnicas ao domínio radiológico surge, portanto, como uma oportunidade para priorizar estudos anómalos, reduzir o tempo de espera por laudo definitivo e melhorar desfechos clínicos.

Neste contexto, pretende se desenvolver e implementar um sistema baseado na arquitetura YOLOv8 capaz de detetar, de forma simultânea, múltiplas patologias torácicas, recorrendo a um conjunto de dados publicamente anotado e a estratégias de *fine tuning* adequadas. O objetivo último é demonstrar que este sistema pode ser integrado no fluxo de trabalho hospitalar sem comprometer a qualidade diagnóstica.

Figura 1 - Exemplos de patologias anotadas de 10 categorias no ChestX-Det10.

1.2. Objetivos

- Desenvolver um sistema de deteção automática de múltiplas patologias torácicas em radiografias de tórax, recorrendo à arquitetura YOLOv8.
- 2. Treinar e otimizar o modelo num subconjunto devidamente anotado do ChestX-Det10, integrando técnicas de data *augmentation* e *fine-tuning*.
- 3. Avaliar o desempenho segundo métricas padronizadas e comparar com resultados.
- 4. Discutir as implicações clínicas, limitações e possíveis melhorias, destacando o potencial impacto no fluxo de trabalho radiológico.

2. Descrição Geral do Sistema

2.1. Arquitetura e Diagramas de Blocos

A Figura 2.1 apresenta o pipeline completo do sistema, desde a preparação do *dataset* até à deteção em imagens novas. Cada módulo corresponde a um Notebook distinto:

- Análise Exploratória 1_analise_dataset.ipynb
 Estatísticas de distribuição de classes e verificação de integridade.
- Conversão para YOLO 2_conversao_yolo.ipynb
 Geração dos ficheiros .txt de rótulos e do data.yaml no formato YOLO.
- Treino 3_treino. ipynb
 Fine-tuning do YOLOv8-s (AdamW, batch 32, 50 épocas) e gravação do checkpoint y8s_finetune15_best.pt.
- Avaliação 4_eval.ipynb
 Cálculo de métricas (mAP, precisão, recall) no conjunto de teste via yolo val.
- Deteção 5_detecao.ipynb
 Aplicação do checkpoint final a radiografias inéditas, produzindo caixas delimitadoras e probabilidades.

2.2. Fluxo de Treino

Figura 2 - Fluxo de Treino do Modelo

O processo de treino do modelo baseia-se num pipeline estruturado, que se inicia na preparação do *dataset* e culmina na avaliação do desempenho do modelo otimizado. As principais etapas são:

Carregamento dos Dados:

O pipeline inicia-se com o carregamento das 3 001 imagens de treino e respetivas anotações do conjunto ChestX-Det10. As imagens encontram-se em escala de cinzentos, no formato PNG.

• Análise Exploratória do *Dataset*:

Antes do pré-processamento, procede-se à análise estatística e verificação de integridade dos dados, quantificando a distribuição de classes e a existência de imagens com ou sem anotações.

• Pré-processamento e Conversão para o Formato YOLO:

As anotações são convertidas para o formato YOLO (classe, centro x/y, largura, altura normalizados). As imagens são organizadas segundo a divisão oficial (70/20/10), mantendose os ficheiros data.yaml e .txt organizados por imagem.

Configuração do Modelo YOLOv8-s:

Utiliza-se a arquitetura YOLOv8-s com pesos iniciais (pré-treinados). Esta configuração compacta foi escolhida por oferecer um bom compromisso entre desempenho e custo computacional.

• Fine-Tuning com Estratégias de Otimização:

O modelo é treinado ao longo de até 50 épocas, com batch size de 32 e otimizador AdamW (taxa de aprendizagem inicial de 1×10^{-4}). Aplica-se data augmentation com flip horizontal (p=0.5) e scale jitter ([0.5, 1.5]) para robustez espacial e de escala.

• Validação Contínua:

A cada época, o desempenho é avaliado sobre o conjunto de validação. O critério de paragem antecipada interrompe o treino se o mAP₅₀:₉₅ não melhorar durante seis épocas consecutivas, preservando o checkpoint de melhor desempenho (y8s finetune15 best.pt).

• Seleção do Modelo Final:

O modelo com melhor desempenho em validação é selecionado. A configuração final é denominada y8s_finetune15.

Avaliação no Conjunto de Teste:

O modelo final é testado em 542 imagens não vistas, sendo calculadas métricas como: mAP_{50_95} , mAP_{50} = 0,442, Sensibilidade, Precisão e etc.

2.3. Módulos e Tecnologias

Ambiente de Execução: Python 3.10, Ultralytics 8.2 (PyTorch 2.2), CUDA 11.8, Google Colab. Ferramentas e Linguagens:

- Linguagem principal: Python, notebooks Jupyter (Google Colab).
- Framework de Deep Learning: PyTorch 2.2 com Ultralytics YOLOv8.
- Bibliotecas auxiliares: NumPy, Pandas, OpenCV, Matplotlib, Seaborn.
- Análise de dados e visualização: Seaborn/Matplotlib em notebooks.

Metodologias aplicadas:

- Ajuste de Hiper parâmetros via experimentação manual.
- Early-Stopping com paciência de seis épocas.
- Data Augmentation (flip horizontal, scale jitter) no treino.

2.4. Estratégias Testadas e Limitações

Framework alternativo — TensorFlow/Keras: foram realizados testes iniciais com
TensorFlow 2.14 e Keras, mas surgiram problemas de compatibilidade com a GPU
(drivers/CUDA). Optou-se, por isso, por PyTorch/Ultralytics, cuja instalação é mais leve e
oferece scripts dedicados a YOLO.

- Modelos alternativos: YOLOv8-m não ofereceu ganhos (< 2 % mAP) pelo dobro do custo computacional.
- Augmentations: Mosaic 0,5 e ajuste gamma degradaram a precisão; foram excluídos da configuração final.
- Classes raras: desempenho inferior em Mass e Pneumothorax (< 200 exemplos), apontando para necessidade de balanceamento avançado.

3. Datasets

3.1. Caracterização

Classe	Nº instâncias (caixas)
Consolidation	2 091
Effusion	1 720
Nodule	789
Fibrosis	618
Fracture	546
Atelectasis	289
Calcification	280
Emphysema	232
Pneumothorax	169
Mass	129
Total	6 863

O projeto recorre ao ChestX-Det10, um conjunto público de radiografias de tórax anotadas com caixas delimitadoras para dez patologias. A versão obtida no Kaggle contém 3 543 radiografias (imagens únicas), das quais 3 001 foram usadas para treino e 542 para teste. Cada imagem pode conter múltiplas lesões, perfazendo um total de 6 863 instâncias (caixas) distribuídas pelas classes indicadas na Tabela 3.1.

Resolução e formato – As radiografias estão em escala de cinzentos, com resolução 1 024 × 1 024px, codificadas em PNG; algumas imagens apresentam ligeiras variações de tamanho, mas mantêm proporções idênticas, dispensando redimensionamento.

Anotações – cada lesão é descrita por uma caixa em formato Pascal VOC (xmin, ymin, xmax, ymax) no ficheiro Figura 3 - Distribuição de Instâncias por Classe original; estas anotações foram convertidas para o formato YOLO (classe, x_c, y_c, w, h normalizados)

Divisão treino/validação – o conjunto original encontra-se particionado em 3 001 imagens de treino e 542 de teste, correspondendo a aproximadamente 85 % e 15 % do total, respetivamente.

3.2. Análise Exploratória

A exploração preliminar, realizada no Notebook 1 analise dataset.ipynb, quantificou a presença de radiografias com anotações (caixas) e aquelas sem qualquer diagnóstico ou boxes. No conjunto de treino, composto por 3 001 imagens, foram identificadas 2 320 imagens com diagnóstico e caixas, e 681 imagens sem diagnóstico nem boxes. Já no conjunto de teste, que inclui 542 imagens, 459 apresentam diagnóstico e caixas, enquanto 83 não possuem qualquer anotação.

Com base nestes valores, observa-se que aproximadamente 77 % do conjunto de treino e 85 % do conjunto de teste contêm caixas anotadas. Importa referir que o Ultralytics YOLO ignora automaticamente imagens sem caixas, pelo que estas foram mantidas no dataset sem impacto no processo de treino.

Quanto à integridade dos dados, não foram detetadas imagens corrompidas ou ausentes, e a contagem de ficheiros coincide com a das anotações.

4. Experiências e Resultados

4.1. Configurações experimentais

O *fine-tuning* principal decorreu no Notebook **3_treino.ipynb**; salvo indicação em contrário, o modelo resultante denomina-se **y8s_finetune15**.

Nesta secção apresentam-se:

as parametrizações experimentadas,

as métricas obtidas

4.2. Configurações avaliadas

. O modelo **y8s_finetune15** partiu do checkpoint **baseline** por apresentar a melhor relação precisão-*recall* com custo reduzido.

Nota. As métricas servem apenas de referência; valores podem divergir ligeiramente devido ao seed aleatório ou a atualizações do Ultralytics.

Parâmetro	Valor final	Faixa testada	Impacto / justificação		
Épocas	50 30–150		Early stopping interrompeu na época		
			~44. Acima de 50 não houve ganho >		
			0,1 pp mAP		
Batch size	32	16, 32, 64*	64 exigiu gradient accumulation (2×		
			passes/I-O); 16 produziu gradientes		
			ruidosos, piorando <i>val. loss</i> em		
			+0,04.		
Otimizador	AdamW	SGD, AdamW	AdamW convergiu 1,7 × mais rápido;		
			SGD terminou –0,015 mAP.		
LR inicial (<i>Ir0</i>)	1 × 10 ⁻⁴	5 × 10 ⁻⁵ –	> 3 × 10 ⁻⁴ causou oscilações;		
		5×10^{-4}	$< 7 \times 10^{-5}$ atrasou o <i>plateau</i> em 8		
			épocas.		
Scheduler	cosine	cosine, step	Cosine manteve melhor		
			generalização (+0,5 pp) após a		
			época 35.		
Warm-up	1	0 – 3	0 causou picos de gradiente; >1		
			apenas alongou o arranque.		
Early stopping	6	4, 6, 8	6 reduziu ~20 % do tempo médio		
(patience)			sem perda métrica; 4 parava		
			prematuramente.		

Augmentations		Flip 0.5 + Scale [0.5–	idem + Mosaic /	Mosaic/Copy-Paste ger	geraram	
		1.5]	Copy-Paste	artefactos \rightarrow desativados.		
AMP		On	On / Off	-35 % VRAM, +11 % it/s,	sem	
				degradação numérica.		
Tamanho	de	640 × 640 px	512, 640, 768	768 px = +30 % VRAM	para	
entrada				+0,9 pp mAP (não compensou).		

Figura 4 - Parâmetros

4.2.1. Análise das configurações detalhada

Figura 5 - Evolução do mAP_{50 - 95}

Épocas e *early stopping*. A mostra que o mAP_{50 – 95} cresce rapidamente até à época 40; depois disso, os ganhos tornam-se marginais (< 0,05 pp), justificando a paragem automática.

Otimizador. Foi utilizado o **AdamW**, uma versão melhorada do optimizador Adam, por apresentar um desempenho mais consistente e rápido na tarefa. A sua vantagem resulta de três fatores:

- Adaptação automática à aprendizagem Em vez de usar a mesma taxa de aprendizagem para todos os parâmetros, o AdamW ajusta-a automaticamente conforme o comportamento de cada parte da rede. Isto permite que o modelo aprenda mais rapidamente onde é preciso e com mais cuidado onde é sensível.
- 2. **Memória dos erros anteriores** O algoritmo mantém um histórico dos gradientes (os "erros") anteriores, o que ajuda a escolher direções de correção mais inteligentes, evitando oscilações.
- 3. **Regularização separada (**weight decay**)** O AdamW aplica a penalização aos pesos de forma mais eficiente, o que ajuda a evitar que o modelo se torne demasiado dependente do conjunto de treino (overfitting).

4.3. Estratégia de augmentations

Mosaic (mosaic)

Figura 6 - Efeito da técnica Mosaic

- **Propósito**: Junta 4 imagens, útil para objetos pequenos e variados.
- Valores usados: 0.8, 0.5, 0.0
- Impacto observado: +13 % false positives, artefactos visuais → desativado.

HSV Jitter (hsv_v)

Figura 7 - Efeito da técnica HSV Jitter

- **Propósito**: Varia brilho da imagem; irrelevante em tons de cinzento.
- Valores usados: 0.4, 0.3, 0.2, 0.0
- Impacto observado: Nenhum efeito relevante → desativado ou muito reduzido.

Copy-Paste (copy_paste)

Figura 8 - Efeito da técnica Copy-Paste

- **Propósito**: Cola objetos de uma imagem noutra; aumenta diversidade.
- Valores usados: 0.2, 0.0
- Impacto observado: Contornos fantasma; ganho +0,1 pp mAP → desativado.

Flip Horizontal (flip_lr)

Figura 9 - Efeito do Flip Horizontal

- **Propósito**: Espelha horizontalmente para robustez espacial.
- Valores usados: 0.5 (default)
- Impacto observado: +0,4 pp mAP → mantido.

Escala Aleatória (scale)

Figura 10 - Efeito da Escala Aleatória

- **Propósito**: Redimensiona mantendo proporções; simula diferentes tamanhos.
- Valores usados: 0.5 1.5 (default)
- Impacto observado: +0,3 pp mAP → mantido.

Resumo

- Técnicas mantidas: Flip horizontal e Escala aleatória simples e estáveis.
- Técnicas excluídas: Mosaic e Copy Paste efeitos negativos.
- HSV jitter considerado irrelevante para o domínio das radiografias.

4.4. Modelos Treinados

Modelo	LR	Augmentations	mAP50-95	mAP50	Precisão	Recall	Notas
yolov8s_base	5 × 10 ⁻⁴	Flip + Scale	0.231	0.458	0.637	0.408	Ponto de partida
							(yolov8s.pt)
y8s_finetune15	1 × 10 ⁻⁴	Nenhum extra	0.224	0.442	0.562	0.446	Refinamento final
		(Flip + Scale)					
yolov8m_base	5 × 10 ⁻⁴	Flip + Scale	0.216	0.419	0.561	0.407	Custo
							computacional ≈
							2×
y8s_lr5e-4_bs64	5 × 10 ⁻⁴	Flip + Scale	0.216	0.409	0.523	0.398	Treino curto, LR
							padrão
y8s_mosaic05_	3 × 10 ⁻⁴	Mosaic 0.5	0.209	0.406	0.559	0.389	Mosaic moderado
bs32							+ batch estável
y8s_lr2e-4_bs64	2 × 10 ⁻⁴	Flip + Scale	0.205	0.405	0.480	0.408	LR reduzido
y8s_aug_mosaic	5 × 10 ⁻⁴	Mosaic 0.8, CP	0.068	0.148	0.366	0.152	Aumentações
08_cp02		0.2					agressivas

Figura 12 - Modelos Treinados

Figura 11 - Comparação de Desempenho entre Configurações YOLOv8

O y8s_finetune15 foi selecionado por maximizar a sensibilidade, requisito crítico em contexto clínico, onde falsos negativos são custosos. Apesar do mAP superior do *baseline*, o **ganho em recall** justificou o *fine-tuning*. Experimentos com modelos maiores, ajustes de LR ou *batch size* não trouxeram benefícios claros; *augmentations* agressivas degradaram todas as métricas.

Limitações:

- Desempenho modesto em classes raras (Mass, Pneumothorax)
- Dependência do tamanho do dataset

4.5. Visualização de Métricas por Classe — modelo y8s_finetune15

As figuras seguintes referem-se exclusivamente ao modelo escolhido (y8s_finetune15).

Figura 13 - Curva Precision-Recall por Classe

A área sob a curva (AP) é
mais elevada em *Emphysema*(0,716) e *Consolidation*(0,602), sugerindo que estas
patologias têm padrões
radiológicos bem captados
pelo modelo. Em contraste, *Pneumothorax* (0,251) e *Nodule* (0,304) apresentam
AP substancialmente inferior,
reflectindo a escassez de
exemplos e a maior
variabilidade morfológica.

A curva Recall–Confiança. Observa-se que, para a maioria das classes, um limiar de confiança < 0,2 permite recall superior a 0,5, mas à custa de maior ruído. O declive acentuado em *Pneumothorax* indica que esta classe perde rapidamente sensibilidade à medida que o limiar aumenta, reforçando a decisão de adoptar um threshold mais baixo (0,25).

Figura 14 - Curva Recall-Confiança por Classe

Precision–Confiança; constata-se que a precisão global ultrapassa 0,8 apenas para valores de confiança > 0,6. Entre 0,25 e 0,4 a precisão estabiliza em ≈ 0,6, oferecendo um equilíbrio razoável com recall. Classes como *Emphysema* e *Calcification* mantêm precisão ≥ 0,8 em larguíssima gama de limiares, sinal de bom poder discriminativo.

Figura 15 - Curva Precision-Confiança

Curva F1–Confiança e indica um ponto de máximo F1 \approx 0,49 para confiança \approx 0,17. Este valor confirma empiricamente a escolha de threshold (0,25) ligeiramente acima do ponto ótimo de F1, favorecendo ligeiramente a precisão em detrimento de algum recall.

Figura 17 - Matriz de Confusão

Finalmente, as Figuras 4.7 e 4.8 apresentam a matriz de confusão absoluta e normalizada. Nota-se forte confusão entre *Consolidation* e *Effusion* (25 casos), patologias cujas opacidades podem ser adjacentes. O modelo classifica corretamente 45 % dos casos de *Atelectasis* mas confunde-os com *Consolidation* em 2 % das vezes. A linha 'background' revela ainda alguns falsos positivos residuais em áreas sem lesão (coluna <10 % em média). Estes padrões indicam onde um balanceamento por classe ou um limiar específico poderiam mitigar erros.

5. Conclusões e Trabalho Futuro

5.1. Conclusões

Este estudo demonstrou que é tecnicamente viável aplicar a arquitetura YOLOv8-s à deteção simultânea de dez patologias torácicas em radiografias de tórax. O modelo final, y8s_finetune15, treinado em 3 001 imagens e refinado a partir de pesos COCO, alcançou no conjunto de teste (542 imagens): mAP₅₀₋₉₅ = 0,224, mAP₅₀ = 0,442, Sensibilidade = 0,446, Precisão = 0,562.

Em termos operacionais, o modelo ocupa ≈ 25 MB e processa uma radiografia em ≈ 38 ms, permitindo triagem quase em tempo-real. Este desempenho satisfaz o requisito motivado no *abstract*: acelerar a estratificação de doentes na urgência sem depender de hardware de topo. O modelo pode correr em workstations clínicas comuns ou ser integrado em servidores de PACS para pré-leitura.

A opção por maximizar o *recall* (sensibilidade) — mesmo à custa de alguma precisão — alinha-se com a prioridade clínica de reduzir falsos negativos. Mantendo o número de falsos positivos num nível que se mostrou gerível na prática ($\approx 0,44$), viabilizando a revisão dos achados pelo radiologista.

Experiências com modelos maiores (YOLOv8-m) ou *augmentations* agressivas não resultaram em ganhos substanciais, evidenciando que, para o tamanho atual do *dataset*, arquiteturas compactas e ajustes de hiper-parâmetros cuidadosos são mais eficazes.

5.2. Limitações

- 1. **Desbalanceamento de classes raras** patologias como *Mass* e *Pneumothorax* (< 200 instâncias) continuam com desempenho insatisfatório.
- 2. **Tamanho do dataset** 3 001 imagens de treino limitam o potencial de arquiteturas maiores e de *data augmentation* pesada.
- 3. **Avaliação centrada em caixas** não foram analisadas métricas por paciente nem impacto clínico directo.

5.3. Trabalho Futuro

- **Balanceamento avançado** testar *Focal Loss* ou *Class-Balanced Loss* e *oversampling* das classes minoritárias.
- Aprendizagem semissupervisionada explorar pseudo-labeling em radiografias não anotadas para ampliar o corpus efectivo.
- Modelos explicáveis integrar técnicas Grad-CAM ou SHAP para evidenciar regiões de decisão, aumentando a confiança do utilizador.

Referências Bibliográficas

- [1] Ultralytics, "Issue #9029: [suporte/enhancement] sobre YOLO Data Augmentation," *GitHub Issues*, 2024. [Online]. Available: https://github.com/ultralytics/ultralytics/issues/9029
- [2] Ultralytics, "YOLO Data Augmentation," *Ultralytics Documentation*, 2024. [Online]. Available: https://docs.ultralytics.com/guides/yolo-data-augmentation
- [3] Ultralytics, "Adam Optimizer," *Ultralytics Glossary*, 2024. [Online]. Available: https://www.ultralytics.com/glossary/adam-optimizer
- [4] Mathurinache, "ChestXDet Dataset," *Kaggle*, 2023. [Online]. Available: https://www.kaggle.com/datasets/mathurinache/chestxdetdataset
- [5] GE HealthCare, "Helping ease a health system under stress with X-ray AI," *GE HealthCare Insights*, 2023. [Online]. Available: https://www.gehealthcare.co.uk/insights/article/helping-ease-a-health-system-under-stress-with-xray-ai
- [6] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, "YOLOv4: Optimal Speed and Accuracy of Object Detection," arXiv preprint arXiv:2006.10550, 2020. [Online]. Available: https://arxiv.org/abs/2006.10550