Md Muhaiminul Islam Nafi

Q Gopibaq, Dhaka-1203 | ►+8801704953445 | ■ nafiislam964@qmail.com | □ LinkedIn | □ GitHub | ☑ Portfolio1 | ☑ Portfolio2 | ☎ Google Scholar

OBJECTIVE

I am Md. Muhaiminul Islam Nafi. I have completed my BSc. degree in Computer Science from BUET. I want to build a successful career using my technological knowledge and relevant skills. I want to contribute to the betterment of the place I am allowed to work for. I also want to hone my other skills like time management, fast adaptability, and creativity.

FDUCATION

MOTIJHEEL GOVT. BOYS' HIGH SCHOOL 2015-2017

SSC — GPA: 5.00/5.00

NOTRE DAME COLLEGE DHAKA 2017-2019

HSC - GPA: 5.00/5.00

BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY

B.Sc. in Computer Science and Engineering — CGPA: 3.97/4.00

2020-present

SKILLS

Programming Languages Python | Javascript | Typescript | C | c++ | Assembly (x86, MIPS) | Bash | Java | LaTeX

WEB DEVELOPMENT HTML | CSS | Express | React | Svelte | Django | Next.js | Figma | Docker | Spring Boot | LangChain

MACHINE LEARNING Matplotlib | NumPy | Pandas | Scikit-learn | PyTorch

TOOLS AND TECHNOLOGIES Design Patterns | Git | Microservices architecture | Swagger API | Postman | MISP | Markdown | MS Azure Cloud VM

DATABASES MySQL | PostgreSQL | Oracle | Prisma ORM

CONTENT MANAGEMENT WordPress

GAME DEVELOPMENT Pygame Unity

OTHERS Bison | Flex | Selenium | Beautiful Soup | JavaFX | ATmega32

RESEARCH EXPERIENCE

Predicting C- and S-linked Glycosylation sites from protein sequences using protein language models (Published)

In this study, we created a hybrid deep-learning architecture to predict C- and S-linked glycosylation sites from protein sequences using protein language model embeddings and contextual information. Link to article

Predicting RNA 5-Hydroxymethylcytosine Modification with Deep Learning Models Using RNA Language Model Embeddings (Under revision)

We designed a dual-branch deep learning model architecture to predict RNA 5-Hydroxymethylcytosine modifications from RNA language models and extracted biological interpretations.

DeepBCTPred: Deep Learning-Based Prediction of Bladder Cancer Tissues from Endoscopic Images (Under revision)

In this study, we designed a pipeline to generate new images and a novel genetic algorithm to select images from them effectively. Additionally, we combined handcrafted features with learned features from convolutional neural networks.

StackGlyEmbed: Prediction of N-linked Glycosylation sites using protein language models (Under revision)

We proposed a model, StackGlyEmbed, to predict N-linked glycosylation sites from protein sequences utilizing protein language models leveraging window and per-residue features. *Link to the initial version of the manuscript:* bioRxiv

Prediction of protein-carbohydrate binding sites from protein primary sequence (Under rebuttal)

In this study, we propose StackCBEmbed, an ensemble machine learning model to effectively classify protein-carbohydrate binding interactions at the residue level. StackCBEmbed combines traditional sequence-based features along with features derived from a pretrained transformer-based protein language model. *Link to the initial version of the manuscript:* bioRxiv

Predicting Protein-Carbohydrate Binding Sites: A Deep Learning Approach Integrating Protein Language Model Embeddings and Structural Features (Manuscript in preparation)

In this study, we created a novel deep-learning architecture that combines protein language model embeddings and structural features to predict protein-carbohydrate binding sites.

ResLysEmbed: A ResNet-Based Framework for Succinylated Lysine Residue Prediction Using Sequence and Language Model Embeddings (Manuscript in preparation)

In this study, we developed a hybrid deep-learning architecture incorporating protein language models to identify succinylated lysine residues.

AWARDS AND HONORS

BUET RISE GRANT (GRANT RECEIVE)
HONORABLE MENTIONS
DEAN'S LIST AND UNIVERSITY MERIT LIST

RISE Student Research Grant [No. S2024-01-004] MicroProcessor and MicroController project Recipient of both Scholarships for academic excellence.

PROJECTS

ONCAMPUS

GITHUB LINK: BACKEND FRONTEND

Frontend: Framework: Next.js, Styling: Tailwind CSS, Component Library: Material Tailwind, Text Box: jodit-react, PDF Viewer: react-pdf, 360° Virtual Tour: react-photo-sphere-viewer, Language: TypeScript.

Backend: Framework: Node.js, Express, Architecture: Microservice Architecture, ORM: Prisma ORM, Security: Helmet, JWT, Authentication: Keycloak, NextAuth.js.

Database: PostgreSQL hosted on Supabase, File Storage: Edgestore, Google Calendar Integration: Google Cloud API.

Deployment: MS Azure Virtual Machines, Supabase, Docker (for Keycloak), SSL Certificate from Namecheap, API Documentation with Postman.

MOOMARKET

GITHUB LINK: BACKEND & FRONTEND

Tech Stack: JavaScript (Node.js, Vanilla JS), Express, HTML, EJS, PostgreSQL, Git, GitHub, npm, Render.

ANIMATRIX

GITHUB LINK: BACKEND & FRONTEND

Tech Stack: JavaScript (Node.js, Vanilla JS), Express, HTML, EJS, Oracle DB, Git, GitHub, npm.

MISP AUTOMATION

GITHUB LINK: CODES, YOUTUBE LINK: VIDEO

Python (Programming Language), JavaScript, MISP

PACMAN

GITHUB LINK: GAME

C (Programming Language), C++, Object-Oriented Programming (OOP), igraphics

UNBEATABLE PROTECTION: THE 5-WAY SECURITY VAULT

GITHUB LINK: CODES, YOUTUBE LINK: VIDEO Python (Programming Language), Arduino, EEE

MOTIF SEARCH GITHUB LINK: CODES

Python (Programming Language)

CERTIFICATES _

PERFECT ATTENDANCE CERTIFICATE Issued May 2020

NOTRE DAME COLLEGE DHAKA

CERTIFICATE IN NATIONAL SKILL STANDARD BASIC COURSE EXAMINATION, 2015

Issued Sep 2015

BANGLADESH TECHNICAL EDUCATION BOARD

REFERENCES _

DR. MOHAMMAD SAIFUR RAHMAN Professor, Department of CSE

Bangladesh University of Engineering and Technology (BUET) | Email: mrahman@cse.buet.ac.bd | Phone: +8801715010010