<u>Remark:</u> Multiplicative inverse of an integer x modulo n is an integer b so that $b \cdot x \equiv 1 \pmod{n}$. Just like 1c) and 1d). From 1d) we have that multiplicative inverse of 137 (mod 532) is 233.

1. Computations:

(a) Find gcd(77,49).

Solution: (For some of the problems I will not write details, but only the final answers.) Answer: gcd(77, 49) = 7

(b) Express gcd(77,49) as $\alpha \cdot 77 + \beta \cdot 49 = gcd(77,49)$. <u>Solution:</u> (Some of the problems I will not write details, but only the final answers.) <u>Answer:</u> $2 \cdot 77 + (-3)49 = 7$

- (c) Find an integer b so that $b \cdot 7 \equiv 1 \pmod{10}$
- (d) Find an integer b so that $b \cdot 137 \equiv 1 \pmod{532}$ Solution: Use Euclidean algorithm to find α and β so that $\alpha \cdot 532 + \beta \cdot 137 = 1$.

532	137		
1	0	532	
0	1	137	(3)
1	-3	121	(1)
-1	4	16	(7)
8	-31	9	(1)
-9	35	7	(1)
17	-66	2	(3)
-60	233	1	

Therefore $-60 \cdot 532 + 233 \cdot 137 = 1$.

Now compute everithing modulo 532.

$$-60 \cdot 0 + 233 \cdot 137 \equiv 1 \pmod{532}$$

 $233 \cdot 137 \equiv 1 \pmod{532}$

$$\therefore b \equiv 233 \pmod{532}$$
 or $b = 233$

<u>Check:</u> $233 \cdot 137 = 31,921 = 60 \cdot 532 + 1 \equiv 1 \pmod{532}$.

- (e) Find an integer b so that $b \cdot 138 \equiv 1 \pmod{532}$ <u>Solution:</u> Since 2|138 and 2|532 we know that $gcm(138, 532) \neq 1$. Then by Proposition done in class, it follows that there is no b such that $b \cdot 138 \equiv 1 \pmod{532}$. \therefore there is no solution for b
- (f) Find d=gcd(177,48) and express d as $\alpha \cdot 177 + \beta \cdot 48 = d$.
- (g) Express $\gcd(177,49)$ as $\alpha \cdot 177 + \beta \cdot 49 = \gcd(177,49)$.

- 2. Computations ($mod\ 15$). Always express your answer in the set $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14\}$. Make sure that you show enough work.
 - (a) $5 \cdot 2 \equiv \underline{\qquad} \pmod{15}$ <u>Solution:</u> $5 \cdot 2 \equiv 10 \pmod{15}$
 - (b) $5 \cdot 6 \equiv \underline{\hspace{1cm}} \pmod{15}$ <u>Solution:</u> $5 \cdot 6 \equiv 30 \pmod{15} \equiv 2 \cdot 15 + 0 \pmod{15} \equiv 0 \pmod{15}$ $\therefore 5 \cdot 6 \equiv 0 \pmod{15}$
 - (c) $5+6 \equiv \mod{15}$ <u>Solution:</u> $5+6 \equiv 11 \pmod{15}$
 - (d) $9 \cdot 10 \equiv \underline{\hspace{1cm}} \pmod{15}$ <u>Solution:</u> $9 \cdot 10 \equiv 90 \pmod{15} \equiv 6 \cdot 15 + 0 \pmod{15} \equiv 0 \pmod{15}$ $\therefore \boxed{9 \cdot 10 \equiv 0 \pmod{15}}$
 - (e) $5^2 \equiv \underline{\qquad} \pmod{15}$ <u>Solution:</u> $5^2 \equiv 25 \pmod{15} \equiv 15 + 10 \pmod{15} \equiv 10 \pmod{15}$ $\therefore 5^2 \equiv 10 \pmod{15}$
 - (f) $5^3 \equiv \underline{\qquad} \pmod{15}$ <u>Solution:</u> $5^3 \equiv 5^2 \cdot 5 \pmod{15} \equiv 10 \cdot 5 \pmod{15} \equiv 50 \pmod{15} \equiv 3 \cdot 15 + 5 \pmod{15} \equiv 5 \pmod{15}$ $\therefore 5^3 \equiv 5 \pmod{15}$
 - (g) $5^4 \equiv \underline{\hspace{1cm}} \pmod{15}$ <u>Solution:</u> $5^4 \equiv 5^3 \cdot 5 \pmod{15} \equiv 5 \cdot 5 \pmod{15} \equiv 25 \pmod{15} \equiv 15 + 10 \pmod{15} \equiv 10 \pmod{15}$ $\therefore 5^3 \equiv 10 \pmod{15}$
 - (h) $32 \cdot 6 \equiv \underline{\hspace{1cm}} \pmod{15}$ <u>Solution:</u> First notice that $32 \equiv 2 \cdot 15 + 2 \pmod{15} \equiv 2 \pmod{15}$. Now use this: $32 \cdot 6 \equiv 2 \cdot 6 \pmod{15} \equiv 12 \pmod{15}$ $\therefore \boxed{32 \cdot 6 \equiv 12 \pmod{15}}$
 - (i) $32^3 \equiv \mod{15}$ <u>Solution:</u> First notice that $32 \equiv 2 \cdot 15 + 2 \pmod{15} \equiv 2 \pmod{15}$. Now use this: $32^3 \equiv 2^3 \pmod{15} \equiv 8 \pmod{15}$

$$\therefore \boxed{32^3 \equiv 8 \; (mod \; 15)}$$

- (j) $151^7 \equiv \underline{\qquad} \pmod{15}$ <u>Solution:</u> $151^7 \equiv (10 \cdot 15 + 1)^7 \pmod{15} \equiv 1^7 \pmod{15} \equiv 1 \pmod{15}$ $\therefore \boxed{151^7 \equiv 1 \pmod{15}}$
- (k) $149^7 \equiv \underline{\hspace{1cm}} \pmod{15}$ <u>Solution:</u> $149^7 \equiv (10 \cdot 15 - 1)^7 \pmod{15} \equiv (-1)^7 \pmod{15} \equiv (-1) \pmod{15} \equiv (15 - 1) \pmod{15} \equiv 14 \pmod{15}$ $\therefore \boxed{149^7 \equiv 14 \pmod{15}}$
- (l) $1/7 \equiv \underline{\hspace{1cm}} \pmod{15}$ Solution: First notice that 1/7 is the number b such that $b \cdot 7 \equiv 1 \pmod{15}$. So this is the same type of problem as 1c) or 1d).

One way - guess: b = 13 and check $13 \cdot 7 \equiv 91 \pmod{15} \equiv 6 \cdot 15 + 1 \pmod{15} \equiv 1 \pmod{15}$.: $1/7 \equiv 13 \pmod{15}$

Second way - use Euclidean algorithm to find α and β so that $\alpha \cdot 15 + \beta \cdot 7 = 1$

- (m) $4/7 \equiv \underline{\hspace{1cm}} \pmod{15}$ <u>Solution:</u> First notice that $1/7 \equiv 13 \pmod{15}$ from the previous part. $4/7 = 4 \cdot (1/7) \equiv 4 \cdot 13 \pmod{15} \equiv 52 \pmod{15} \equiv 3 \cdot 15 + 7 \pmod{15} \equiv 7 \pmod{15}$. $\therefore \boxed{4/7 \equiv 7 \pmod{15}}$
- 3. Solve the following congruences:
 - (a) $5x \equiv 6 \pmod{7}$
 - (b) $5x \equiv 6 \pmod{35}$
 - (c) $5x \equiv 10 \pmod{35}$
 - (d) $15x \equiv 6 \pmod{35}$
 - (e) $15x \equiv 10 \pmod{35}$
 - (f) $153x \equiv 10 \pmod{35}$ <u>Solution:</u> Step 1: $153 = 4 \cdot 35 + 13 \equiv 13 \pmod{35}$

Step 2: Solve $13x \equiv 10 \pmod{35}$

Step 3: Find multiplicative inverse of 13 (mod 35), i.e. find b such that $b \cdot 13 \equiv 1 \pmod{35}$. Use Euclidean algorithm to find α and β so that $\alpha \cdot 35 + \beta \cdot 13 = 1$.

Therefore $3 \cdot 35 + (-8) \cdot 13 = 1$.

Now compute everithing modulo 35.

$$3 \cdot 0 + (-8) \cdot 13 \equiv 1 \pmod{35}$$

$$(-8) \cdot 13 \equiv 1 \pmod{35}$$

$$(-8) \equiv (35 - 8) \pmod{35} \equiv 27 \pmod{35}$$

$$\therefore b \equiv 27 \pmod{35} \text{ or } b = 27$$

Check: $27 \cdot 13 = 351 = 10 \cdot 35 + 1 \equiv 1 \pmod{35}$.

Step 4: Multiply congruence $13x \equiv 10 \pmod{35}$ by 27.

$$27 \cdot 13x \equiv 27 \cdot 10 \pmod{35}$$

Use the fact that $27 \cdot 13 \equiv 1 \pmod{35}$ and get

$$x \equiv 27 \cdot 10 \ (mod\ 35) \equiv 270 \ (mod\ 35) \equiv 7 \cdot 35 + 25 \ (mod\ 35) \equiv 25 \ (mod\ 35)$$

$$\therefore \boxed{x \equiv 25 \pmod{35}} \text{ or } \boxed{x = 25}$$

Check: $153 \cdot 25 = 3825 = 109 \cdot 35 + 10 \equiv 10 \pmod{35}$.

- 4. Find the greatest common divisors qcd and least common multiples lcm for the following pairs of numbers:
 - (a) $gcd(5,7) = \underline{\qquad} lcm(5,7) = \underline{\qquad}$
 - (b) $gcd(1,27) = \underline{\qquad} lcm(1,27) = \underline{\qquad}$

 - (e) $gcd(p^5, p^7) = \underline{\hspace{1cm}} lcm(p^5, p^7) = \underline{\hspace{1cm}}$ (here p is a prime).
 - (f) $gcd(10^5, 10^7) = \underline{\qquad} lcm(10^5, 10^7) = \underline{\qquad}$
 - (g) $gcd(56,77) = \underline{\hspace{1cm}}, lcm(56,77) = \underline{\hspace{1cm}}$

- 5. Find all the divisors of 15.
- 6. Find all the divisors of 27.
- 7. Find the prime factorization of 15.
- 8. Find the prime factorization of 27.
- 9. Find the prime factorization of 360.
- 10. True -False Sometimes
 - T F S 5 has multiplicative inverse (mod 11)
 - T F S 6 has multiplicative inverse (mod 11)
 - T F S Let $a \in \mathbb{Z}_{>0}$. Then a has multiplicative inverse $(mod\ 11)$
 - T F S 5 has multiplicative inverse (mod 10)
 - T F S 6 has multiplicative inverse (mod 10)
 - T F S 7 has multiplicative inverse ($mod\ 10$)
 - T F S Let $a \in \mathbb{Z}_{>0}$. Then a has multiplicative inverse $(mod\ 10)$
 - T F S Let $10x \equiv 23 \pmod{41}$. There is a unique solution $mod\ 41$ for x.
 - T |F| S Let $10x \equiv 20 \pmod{40}$. There is a unique solution $mod\ 40$ for x.
 - T F S Let $10x \equiv 20 \pmod{40}$. There are 10 distinct solutions $mod\ 40$ for x.
 - T F S Let $10x \equiv c \pmod{41}$. There is a unique solution $mod\ 41$ for x.
 - T F S Let $10x \equiv c \pmod{40}$. There is a unique solution $mod\ 40$ for x.
 - T F S Let $10x \equiv c \pmod{40}$. There are 10 distinct solutions $mod\ 40$ for x.
 - T F S Let $10x \equiv c \pmod{40}$. There are no solutions $mod\ 40$ for x.

11. Make the table for the addition of equivalence classes (mod 8) which are given as

$$\mathbb{Z}_8 = \{[0]_8, [1]_8, [2]_8, [3]_8, [4]_8, [5]_8, [6]_8, [7]_8\}.$$

12. Make the table for the multiplication of equivalence classes (mod 8) which are given as

$$\mathbb{Z}_8 = \{[0]_8, [1]_8, [2]_8, [3]_8, [4]_8, [5]_8, [6]_8, [7]_8\}.$$

- 13. Make the table for the addition of equivalence classes (mod 3)
- 14. Make the table for the multiplication of equivalence classes (mod 3)
- 15. Examples You should justify your answers.
 - (a) Give an example of a prime number.
 - (b) Give an example of a number which is not prime number.
 - (c) Give an example of two integers which are relatively prime.
 - (d) Give an example of two integers which are not relatively prime.
 - (e) Give an example of two integers a, b such that gcd(a, b) = 12.
 - (f) Give an example of two integers a, b such that lcm(a, b) = 12.
 - (g) Give an example of two integers a, b such that lcm(a, b) = 12.
 - (h) Give an example of two integers a, b such that lcm(a, b) = 5.
 - (i) Give an example of two integers a, b such that gcd(a,b) = 5.
 - (j) Give an example of two integers a, b such that gcd(a,b) = lcm(a,b).
 - (k) Give an example of two integers a, b such that $[a]_7 + [b]_7 = [0]_7$.
 - (1) Give an example of two integers $a, b \neq 0$ such that $[a]_6[b]_6 = [0]_6$.

HAVE FUN!