T. C. CUMHURİYET ÜNİVERSİTESİ

DÖRT KATLI KARKAS YAPININ BETONARME HESAP VE ANALİZİ

MÜHENDİSLİK PROJESİ

Yusuf KOÇ (2013138042)

İnşaat Mühendisliği Anabilim Dalı

Tez Danışmanı: Öğr. Gör. E. Murat TONUS

SIVAS MAYIS 2017

ÖNSÖZ

Bu çalışma Cumhuriyet Üniversitesi Mühendislik Fakültesi İnşaat Mühendsiliği Bölümü Yapı Anabilim Dalında Mühendislik Projeleri olarak hazırlanmıştır. Tüm çalışmamız boyunca yardımını esirgemeyen, bilgi ve birikimlerini cömertçe aktaran değerli hocamız Öğr. Gör. E. Murat TONUS'a teşekkürlerimizi sunmayı bir borç biliriz.

Aldığımız mühendislik eğitiminde iyi bir mühendislik vizyonuna sahip olmamız için bilgilerini esirgemeyen ders aldığımız veya almadığımız bölümümüz bünyesindeki tüm hocalara bizler için gösterdikleri çabalardan ötürü teşekkür ederiz.

Ayrıca, bugünlere ulaşmamı sağlayan, hayatım boyunca benim için maddi manevi destek ve dualarını eksik etmeyen aileme, gösterdikleri sevgi, saygı, sabır ve hoşgörü için müteşekkir olduğumu belirtmek isterim.

MAYIS 2017 YUSUF KOÇ

İÇİNDEKİLER

1.GİRİŞ	1
2.Döşeme Hesapları	5
2.1. Döşeme Tipinin Belirlenmesi	
2.2. Döşeme Kalınlığının Belirlenmesi	
2.3. Döşeme Yüklerinin Belirlenmesi	6
2.4. Döşeme Kesme Kuvveti Kontrolü	6
2.5 .Döşeme Sehim Kontrolü	
2.6. Mesnet Momenti Dengeleme	
2.7. Clepeyron Yöntemi İle Momentlerin Belirlenmesi	
2.8. Döşeme Donatısı Hesabı	10
2.8.1.Açıklık	10
2.8.2.Mesnet	12
3.Kiriş Hesapları	13
3.1. Kiriş Üzerine Gelen Yükler	13
3.2. Kiriş Hesapları	14
3.2.1. Hiperstatik Hesaplar	
3.2.2. İzostatik Bir Kirişin Hesabı	29
4.Kolon Hesapları	32
4.1.Kolon Üzerine Gelen Yük Hesabı	32
4.2.Kolon Donati Hesaplari	
5.Temel Çözümü	35
6.SONUÇ	37

1.GİRİŞ

Proje 4 katlı karkas bina olup, her katta tek daire vardır. Projede 1. ve 2. kat ortak olup, zemin ve bodrum katlarda küçük farklılıklar vardır. Statik çözümlemesi için ETABS ve SAFE programları kullanılmıştır. Yapı ETABS da modellenip, kolon, kiriş çözümlemesi yapılmıştır. Döşeme ve temel hesabı için SAFE programı kullanılmıştır. Temel tipi olarak kirişsiz radye plak döşeme kullanılmıştır.

Bu çalışma 4 katlı betonarme bir yapının düşey yüklere göre analizinin yapılması hakkındadır. Yapılan bu analizler sonucunda maksimum tesirlerin elde edilmesi ve betonarme yapı elemanlarının donatılarının belirlenmesi amaçlanmaktadır.

Taşıyıcı sistemin hesabında kullanılacak şartnameler:

- TS 500 Betonarme Yapıların Tasarım ve Yapım Kuralları (Şubat 2000)
- Derpem Bölgelerinde Yapılacak Yapılar Hakkında Yönetmelik (2007)
- TS 498 Yapı Elemanlarının Boyutlandırılmasında Alınacak Yüklerin Hesap Değerleri (Kasım 1997)

Yapının hesaplamasında düşey yükler göz önüne alınarak çerçevelerde iç kuvvetler belirlenecektir. Yapılan bu hesaplamalar sonucunda bulunan iç kuvvetler de 1.4G+1.6Q kombinasyonu yapılarak betonarme hesaba esas olan kesit tesirleri belirlenecektir. Bulunan bu iç kuvvetlere göre taşıyıcı sistemde betonarme hesap yapılarak donatılar belirlenecektir.

Bodrum Kat Kat planı

Zemin Kat Kat Planı

Malzeme	C 20	S 420	Bina Önem Katsayısı	1.00
Zemin Sınıfı	Z	2	Deprem Bölgesi	3
Zemin Emniyet G.	16.9	t/m²	Yatak katsayısı	4500.00 t/m ³
Etkin yer ivme kat.	0.	20	Deprem Davranış Kat.	4.00

Yapının ETABS Modeli

Yapı İDECAD Modeli

2.Döşeme Hesapları

Yapıdaki sabit ve hareketli yükler döşemelerin mesnetlendiği kirişlere, kirişlerden kolonlara, kolonlardan temele aktarılır. Statik çözümlemeye döşemelerden başlanır ve yükler taşıyıcı elemanlar sırasınca aktarılır. Taşıyıcı her bir eleman kendi üzerine gelen yükü güvenle taşıyıp bu taşıdığı yükü belli oranlarda mesnetlendiği elemana aktarması istenir.

Döşemeler statik çalışma bakımından iki çeşittir. Tek doğrultuda çalışan ve çift doğrultuda çalışan döşeme. Döşeme uzun kenarının kısa kenara oranının 2 'den küçük olduğu döşemeler çift, 2' den büyük olduğu döşemeler tek doğrultuda çalışan döşemedir.

2.1. Döşeme Tipinin Belirlenmesi

DB105	Luzun = Lkısa =	330.00 327.50	m105 =	1.01
DB106	Luzun = Lkısa =	505.00 320.00	m106 =	1.58
DB107	Luzun = Lkısa =	500.00 305.00	m107 =	1.64
DB108	Luzun = Lkısa =	380.00 305.00	m108 =	1.25
DB110	Luzun = Lkısa =	340.00 320.00	m110 =	1.06
DB111	Luzun = Lkısa =	590.00 340.00	m111 =	1.74

m ≤ 2 olduğundan Çift Doğrultuda çalışan döşeme

2.2. Döşeme Kalınlığının Belirlenmesi

$$h \ge \frac{Lsn}{15 + (20/m)} \times [1 - (as / 4)]$$

	m	Σ L sürekli	Σ kenarlar	as	L kısa	Lsn	Lsn 15+(20/m)	1- (as/4)	h≥	h≥	h≥
		(cm)	(cm)		(cm)	(cm)	, ,		(mm)	(mm)	(mm)
DB105	1.01	981.00	1316.20	0.745	327.50	304.4	8.73	0.814	71.07	101.47	120.00
DB106	1.58	1330.70	1651.40	0.806	320.00	296.0	10.70	0.799	85.41	98.67	120.00
DB107	1.64	1305.00	1610.00	0.811	305.00	270.0	9.93	0.797	79.15	90.00	120.00
DB108	1.25	1370.00	1370.00	1.000	305.00	280.0	9.02	0.750	67.63	93.33	120.00
DB110	1.06	660.00	1320.00	0.500	320.00	300.0	8.87	0.875	77.61	100.00	120.00
DB111	1.74	930.00	1860.00	0.500	340.00	320.0	12.06	0.875	105.56	106.67	120.00
					{ kısa	Ln	h≥Ln/10				
DB112						1.5	150.00		150.00		
DB114						2	150.00		150.00		

Döşeme kalınlığı h = 120 mm olarak seçilmiştir.

2.3. Döşeme Yüklerinin Belirlenmesi

1 - Normal Döşeme

Hesap Yükü Pd = 1,40 g + 1,60 q

Pd = 1.037 t/m²

2 - Balkon Döşeme

Hesap Yükü Pd = 1,40 g + 1,60 q

Pd = 1.622 kN/m²

2.4. Döşeme Kesme Kuvveti Kontrolü

$$Vd = X_k \times Pd (0.5 I_{sn} - d)$$

	X _k	Pd(ton/m²)	I _{sn} (m)	d	Vd(ton)	f _{ctd} (N/mm ²)	bxd	Vcr(ton)	Vd<= Vcr
DB110	0.554	1.037	3.000	0.095	0.81	1	95000	6.175	٧
DB111	0.898	1.037	3.200	0.095	1.40	1	95000	6.175	٧
DB107	0.928	1.037	2.700	0.095	1.21	1	95000	6.175	٧
DB108	0.705	1.037	2.800	0.095	0.95	1	95000	6.175	٧
DB105	0.339	1.037	3.044	0.095	0.50	1	95000	6.175	٧
DB106	0.918	1.037	2.960	0.095	1.32	1	95000	6.175	٧

2.5.Döşeme Sehim Kontrolü

$$\delta_i \, = \, \delta_1 \, \frac{p \cdot l_s^4}{D} \qquad \text{,} \qquad D = \frac{E_c h_f^3}{12 \left(1 - \mu_c^2 \right)} \quad \text{,} \quad \delta \leq l_{sn} / 360 = 280 / 360 = 7.8 \text{mm}$$

 δ_1 =0.00158 ; D=420

 δ_i = 3.38 mm < 7.8 mm

- * Lx ve Ly döşemelerin aks açıklıklarıdır. * M = $0 \times Pd \times Lsn^2$

- * Tasarım yükü olan Pd= 1.037 t * Lsn, döşemenin kısa kenarının temiz açıklığıdır. 1.037 t/m²'dir.

			kısa k. d	oğrultusu	uzun k. d	loğrultusu
DÖŞ	EME	Lsn	ø	Ma	a	Ma
DB105		3.0440	0.031400	0.302	0.031	0.298
DB106		2.9600	0.051037	0.464	0.031	0.282
DB107		2.7000	0.052563	0.397	0.031	0.234
DB108		2.80	0.036000	0.293	0.025	0.203
DB110		3.00	0.040000	0.373	0.037	0.345
DB111		3.20	0.061972	0.658	0.037	0.393
DB112		1.50		1.82		
DB114		1.50		1.82		

2.6. Mesnet Momenti Dengeleme

* Mmin ≥ 0,80 ise Mmaks kullanılır.

* Mmin ≤ 0,80 ise M1 = (Mmax - ΔM) x <u>Lx2</u> Mmaks

Md = (M1;M2)maks

$$M2 = (Mmin + \Delta M) \times Lx1$$

$$Lx1 + Lx2$$

 $\Delta M = 2/3 \times (Mmaks - Mmin)$

MESNETLER	Mmin	Mmaks	Mmin/Mmaks	М
DB105/DB106	0.52	0.55	0.94	0.554
DB105/DB107	0.67	0.75	0.90	0.745
DB106/DB108	0.54	0.87	0.63	0.856
DB107/DB108	0.38	0.44	0.86	0.436
DB107/DB110	0.64	0.75	0.86	0.745
DB111/DB108	0.54	1.22	0.44	0.981
DB110/DB111	0.70	0.73	0.95	0.731
DZ10/DZ11	0.52	0.55	0.94	0,554
DZ08/DZ11	0.67	0.75	0.90	0.745
DZ11/DZ12	0.54	0.87	0.63	0.000
DZ08/DZ09	0.38	0.44	0.86	0.436
DZ03/DZ04	0.64	0.75	0.86	0.745
DZ03/DZ05	0.54	1.22	0.44	0.000
DZ04/DZ06	0.70	0.73	0.95	0.731

ki=	0.0405405
kj=	0.0428571

0.0375 0.0428571

D102	D102/D105						
ΔΜ	0.03						
M1	0.55						
M2	0.86						
Md	0.86						

D102	/D105
ΔΜ	0.68
M1	0.75
M2	0.98
Md	0.98

2.7. Clepeyron Yöntemi İle Momentlerin Belirlenmesi

R ; 9.105 9.105 , 5.26

5.26 , 0.93 0.93

(L/I)R; 45.525 45.525 , 19.988

19.988 , 1.488

1.488

Clapeyron denklemi;

$$\frac{L_{n-1}}{I_{n-1}} x_{n-1} + 2 \left(\frac{L_{n-1}}{I_{n-1}} + \frac{L_n}{I_n} \right) X_n + \frac{L_n}{I_n} x_{n+1} + \left(\frac{L_{n-1}}{I_{n-1}} R_{n-1} + \frac{L_n}{I_n} R_n \right) = 0$$

$$x_0 = 0 ; x_3 = 0$$

$$2\left(\frac{5}{I} + \frac{3,8}{I}\right)x_1 + \frac{3.8}{I}x_2 + \left(\frac{45,525 + 19.988}{I}\right) = 0$$

$$\frac{3,8}{I}x_1 + 2\left(\frac{3,8}{I} + \frac{1,6}{I}\right)x_2 + \left(\frac{19.988 + 1,488}{I}\right) = 0$$

$$\frac{17,6}{I}x_1 + \frac{3,8}{I}x_2 + \frac{65,513}{I} = 0$$

$$\frac{3,8}{I}x_1 + \frac{5,4}{I}x_2 + \frac{21,476}{I} = 0$$

$$\rightarrow x_1 = -3.377 , x_2 = -1.600$$

Xi	0	-3.377	-3.377		-1.600	-1.600		0
ΔΤ	-(0.6754		0.468			1	
T ₀	3.642	-3.642	2.768		-2.768	1.165		-1.165
ΔT+T ₀	2.9666	-4.3174	3.236		-2.3	2.165		-0.165

2.8. Döşeme Donatısı Hesabı

2.8.1.Açıklık

$$A s = \frac{M_d}{f_{cd}(d-a/2)}$$

A s=
$$\frac{M_d}{f_{cd}(d-a/2)}$$
 a = $d - \left(d^2 - \frac{2M_d}{0.85f_{cd}b}\right)^{1/2}$

Döşeme d' = 0.025 m

		Md	d		4.	SEÇİLEN	DONATI	ĪDE	CAD	SA	FE
DÖŞEME	Doğrultu	(KNm)	(m)	a (mm)	As (mm²)	DÜZ	PİLYE	DÜZ	PİLYE	DÜZ	PİLYE
DB105	K.K.D.	0.302	0.095	2.92	88.37	ф 8/ 36	ф 8/ 36	ф 8/ 35	ф 8/ 35	ф 8/ 35	ф 8/ 35
DB105	U.K.D.	0.298	0.095	2.88	87.23	ф 8/ 36	ф 8/ 36	ф 8/ 35	ф 8/ 35	ф 8/ 35	ф 8/ 35
DB106	K.K.D.	0.464	0.095	4.53	136.99	ф 8/ 36	ф 8/ 36	ф 8/ 35	ф 8/ 35	ф 8/ 35	ф 8/ 35
DB106	U.K.D.	0.282	0.095	2.72	82.41	ф 8/ 36	ф 8/ 36	ф 8/ 35	ф 8/ 35	ф 8/ 35	ф 8/ 35
DB107	K.K.D.	0.397	0.095	3.86	116.97	ф 8/ 36	ф 8/ 36	ф 8/ 35	ф 8/ 35	ф 8/ 35	ф 8/ 35
DB107	U.K.D.	0.234	0.095	2.26	68.40	ф 8/ 36	ф 8/ 36	ф 8/ 35	ф 8/ 35	ф 8/ 35	ф 8/ 35
DB108	K.K.D.	0.293	0.095	2.83	85.68	ф 8/ 36	ф 8/ 36	ф 8/ 35	ф 8/ 35	ф 8/ 35	ф 8/ 35
DB108	U.K.D.	0.203	0.095	1.96	59.23	ф 8/ 36	ф 8/ 36	ф 8/ 35	ф 8/ 35	ф 8/ 35	ф 8/ 35
DB110	K.K.D.	0.373	0.095	3.63	109.76	ф 8/ 36	ф 8/ 36	ф 8/ 35	ф 8/ 35	ф 8/ 35	ф 8/ 35
DB110	U.K.D.	0.345	0.095	3.35	101.37	ф 8/ 36	ф 8/ 36	ф 8/ 35	ф 8/ 35	ф 8/ 35	ф 8/ 35
DB111	K.K.D.	0.658	0.095	6.49	196.50	ф 8/ 33	ф 8/ 33	ф 8/ 35	ф 8/ 35	ф 8/ 35	ф 8/ 35
DB111	U.K.D.	0.393	0.095	3.82	115.63	ф 8/ 36	ф 8/ 36	ф 8/ 35	ф 8/ 35	ф 8/ 35	ф 8/ 35
DZ03	K.K.D.	0.103	0.095	0.99	29.86	ф 8/ 36	ф 8/ 36	ф 8/ 35	ф 8/ 35	ф 8/ 35	ф 8/ 35
DZ03	U.K.D.		0.095	0.00	5.97	ф 8/ 18	Х	ф 8/ 18	Х	ф 8/ 18	χ
						ereti ri					
DÖŞEME	Doğrultu	Md (kNm)	d (m)	a (mm)	As (mm²)	SEÇÎLEN DÛZ	DONATI PİLYE	IDE DÜZ	CAD PİLYE	SA DÜZ	FE PİLYE
DÖŞEME DZ04	Doğrultu K.K.D.			I	l						
-	_	(kNm)	(m)	(mm)	(mm²)	DÜZ	PİLYE	DÜZ	PİLYE	DÜZ	PİLYE
DZ04	K.K.D.	(kNm)	(m) 0.095	(mm) 1.08	(mm²) 32.78	DOZ ф 8/ 36	р†LYE ф 8/ 36	DOZ ф 8/ 35	р†LYE ф 8/ 35	DOZ ф 8/ 35	PfLYE ф 8/ 35
DZ04	K.K.D.	(Mim) 0.113	(m) 0.095 0.095	(mm) 1.08 0.00	(mm²) 32.78 6.56	D0z ф 8/ 36 ф 8/ 18	р†LYE ф 8/ 36 X	D0z ф 8/ 35 ф 8/ 18	рfLYE ф 8/ 35 X	DOZ ф 8/ 35 ф 8/ 18	рtLyE ф 8/ 35 X
DZ04 DZ04 DZ06	K.K.D. U.K.D. K.K.D.	0.113 0.466	(m) 0.095 0.095 0.095	(mm) 1.08 0.00 4.55	(mm²) 32.78 6.56 137.69	DOZ ф 8/ 36 ф 8/ 18 ф 8/ 36	рtlүе ф 8/ 36 х ф 8/ 36	DOZ ф 8/ 35 ф 8/ 18 ф 8/ 35	рtlyE ф 8/ 35 X ф 8/ 35	DOZ ф 8/ 35 ф 8/ 18 ф 8/ 35	рfLYE ф 8/ 35 X ф 8/ 35
DZ04 DZ04 DZ06 DZ06	K.K.D. U.K.D. K.K.D.	0.113 0.466 0.319	(m) 0.095 0.095 0.095	(mm) 1.08 0.00 4.55	(mm²) 32.78 6.56 137.69 93.52	D0Z Φ 8/ 36 Φ 8/ 18 Φ 8/ 36 Φ 8/ 36	ртцув ф 8/ 36 X ф 8/ 36 ф 8/ 36	D0Z	ртцув ф 8/ 35 X ф 8/ 35 ф 8/ 35	D0Z Φ 8/ 35 Φ 8/ 18 Φ 8/ 35 Φ 8/ 35	PILYE Φ 8/ 35 X Φ 8/ 35 Φ 8/ 35
DZ04 DZ04 DZ06 DZ06 DZ06	K.K.D. U.K.D. K.K.D. U.K.D. K.K.D.	0.113 0.466 0.319	(m) 0.095 0.095 0.095 0.095	(mm) 1.08 0.00 4.55 3.09	(mm²) 32.78 6.56 137.69 93.52 47.99	D0Z \$\phi 8 \ 36 \$\phi 8 \ 18 \$\phi 8 \ 36 \$\phi 8 \ 36 \$\phi 8 \ 36 \$\phi 8 \ 36	рть ye	D0Z Φ 8/ 35 Φ 8/ 18 Φ 8/ 35 Φ 8/ 35 Φ 8/ 35	ртцув ф 8/ 35 X ф 8/ 35 ф 8/ 35 ф 8/ 35	D0Z Φ 8/ 35 Φ 8/ 18 Φ 8/ 35 Φ 8/ 35 Φ 8/ 35	PILYE Φ 8/ 35 X Φ 8/ 35 Φ 8/ 35 Φ 8/ 35
DZ04 DZ04 DZ06 DZ06 DZ09	K.K.D. U.K.D. K.K.D. U.K.D. U.K.D. U.K.D.	0.466 0.319 0.165	(m) 0.095 0.095 0.095 0.095 0.095	(mm) 1.08 0.00 4.55 3.09 1.59	(mm²) 32.78 6.56 137.69 93.52 47.99 9.60	D02	рfi уе ф 8/ 36 X ф 8/ 36 ф 8/ 36 ф 8/ 36	D02 Ф 8/ 35 Ф 8/ 18 Ф 8/ 35 Ф 8/ 35 Ф 8/ 35 Ф 8/ 35	рfLYE ф 8/ 35 X ф 8/ 35 ф 8/ 35 ф 8/ 35 ф 8/ 35	D02 ф 8/ 35 ф 8/ 18 ф 8/ 35 ф 8/ 35 ф 8/ 35	PfLYE Φ 8/ 35 X Φ 8/ 35 Φ 8/ 35 Φ 8/ 35 Φ 8/ 35
DZ04 DZ04 DZ06 DZ06 DZ09 DZ09	K.K.D. U.K.D. U.K.D. U.K.D. U.K.D. U.K.D. K.K.D.	0.466 0.319 0.165	(m) 0.095 0.095 0.095 0.095 0.095 0.095	(mm) 1.08 0.00 4.55 3.09 1.59 0.00	(mm²) 32.78 6.56 137.69 93.52 47.99 9.60 624.37	D0z	рfi ye	DOZ	рfLYE ф 8/ 35 X ф 8/ 35 ф 8/ 35 ф 8/ 35 Д 8/ 35	D02 ф 8/ 35 ф 8/ 18 ф 8/ 35 ф 8/ 35 ф 8/ 35 ф 8/ 35	ртцуе ф 8/ 35 х ф 8/ 35 ф 8/ 35 ф 8/ 35 ф 8/ 35 х ф 8/ 35
DZ04 DZ04 DZ06 DZ06 DZ09 DZ09 DZ11 DZ11	K.K.D. U.K.D. U.K.D. U.K.D. U.K.D. U.K.D. U.K.D. U.K.D. U.K.D.	0.466 0.319 0.165	(m) 0.095 0.095 0.095 0.095 0.095 0.095	(mm) 1.08 0.00 4.55 3.09 1.59 0.00 20.62	(mm*) 32.78 6.56 137.69 93.52 47.99 9.60 624.37	DOZ ф 8/ 36 ф 8/ 36 ф 8/ 36 ф 8/ 36 ф 8/ 36 ф 8/ 36 ф 8/ 36 ф 8/ 36	рft.уе ф 8/ 36 х ф 8/ 36 ф 8/ 36 ф 8/ 36 х ф 8/ 36 х	Φ 8/ 35 Φ 8/ 18 Φ 8/ 35 Φ 8/ 35 Φ 8/ 35 Φ 8/ 35 Φ 8/ 35 Φ 8/ 35	рfLYE ф 8/ 35 х ф 8/ 35 ф 8/ 35 ф 8/ 35 х ф 8/ 35 ф 8/ 35	D02 ф 8/ 35 ф 8/ 18 ф 8/ 35 ф 8/ 35 ф 8/ 35 ф 8/ 35 ф 8/ 35	рть ye
DZ04 DZ04 DZ06 DZ06 DZ09 DZ09 DZ11 DZ11 DZ12	K.K.D. U.K.D. U.K.D. U.K.D. U.K.D. U.K.D. U.K.D. K.K.D. U.K.D.	0.466 0.319 0.165 1.930 0.600	(m) 0.095 0.095 0.095 0.095 0.095 0.095 0.095	(mm) 1.08 0.00 4.55 3.09 1.59 0.00 20.62 5.90 29.56	(mm*) 32.78 6.56 137.69 93.52 47.99 9.60 624.37 178.58	DOZ ф 8/ 36 ф 8/ 36 ф 8/ 36 ф 8/ 36 ф 8/ 36 ф 8/ 36 ф 8/ 36 ф 8/ 36 ф 8/ 36	рть уте ф 8/ 36 х ф 8/ 36 ф 8/ 36 ф 8/ 36 х ф 8/ 36 ф 8/ 36 ф 8/ 36 ф 8/ 36	DOZ	рть ут ф 8/ 35 х ф 8/ 35 ф 8/ 35 ф 8/ 35 х ф 8/ 35 ф 8/ 35 ф 8/ 35 ф 8/ 35 ф 8/ 35 ф 8/ 35 ф 8/ 35	D02 ф 8/ 35 ф 8/ 18 ф 8/ 35 ф 8/ 35 ф 8/ 35 ф 8/ 35 ф 8/ 35 ф 8/ 35	рті. ук ф 8/ 35 х ф 8/ 35 ф 8/ 35 ф 8/ 35 ф 8/ 35 ф 8/ 35
DZ04 DZ04 DZ06 DZ06 DZ09 DZ09 DZ11 DZ11 DZ12 DZ12	K.K.D. U.K.D. U.K.D. U.K.D. U.K.D. U.K.D. U.K.D. U.K.D. U.K.D. U.K.D. U.K.D.	0.466 0.319 0.165 1.930 0.600 2.620 0.000	(m) 0.095 0.095 0.095 0.095 0.095 0.095 0.095	(mm) 1.08 0.00 4.55 3.09 1.59 0.00 20.62 5.90 29.56	(mm*) 32.78 6.56 137.69 93.52 47.99 9.60 624.37 178.58 894.78	DOZ ф 8/ 36 ф 8/ 36 ф 8/ 36 ф 8/ 36 ф 8/ 36 ф 8/ 36 ф 8/ 36 ф 8/ 36 ф 8/ 36 ф 8/ 36	рть уте ф 8/ 36 х ф 8/ 36 ф 8/ 36 ф 8/ 36 х ф 8/ 36 х ф 8/ 36 х ф 8/ 36 х х	DOZ	рть уе ф 8/ 35 х ф 8/ 35 ф 8/ 35 ф 8/ 35 ф 8/ 35 х ф 8/ 35 х ф 8/ 35 х х ф 8/ 35	D02 ф 8/ 35 ф 8/ 18 ф 8/ 35 ф 8/ 35 ф 8/ 35 ф 8/ 35 ф 8/ 35 ф 8/ 35 ф 8/ 35 ф 8/ 35	ртцув ф 8/ 35 X ф 8/ 35 ф 8/ 35 ф 8/ 35 X ф 8/ 35 ф 8/ 35 X
DZ04 DZ04 DZ06 DZ06 DZ09 DZ09 DZ11 DZ11 DZ12 DZ12 DZ08	KKD. UKD. UKD. UKD. UKD. UKD. UKD. UKD.	0.466 0.319 0.165 1.930 0.600 2.620 0.000	(m) 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095	(mm) 1.08 0.00 4.55 3.09 1.59 0.00 20.62 5.90 29.56 0.00 8.32	(mm²) 32.78 6.56 137.69 93.52 47.99 9.60 624.37 178.58 894.78 178.96	DOZ	рть уте ф 8/ 36 х ф 8/ 36 ф 8/ 36 ф 8/ 36 х ф 8/ 36 х ф 8/ 36 х ф 8/ 36 ф 8/ 36	DOZ	рть уе ф 8/ 35 х ф 8/ 35 ф 8/ 35 ф 8/ 35 ф 8/ 35 х ф 8/ 35 ф 8/ 35 ф 8/ 35 ф 8/ 35	DOZ ф 8/ 35 ф 8/ 18 ф 8/ 35 ф 8/ 35 ф 8/ 35 ф 8/ 35 ф 8/ 35 ф 8/ 35 ф 8/ 35 ф 8/ 35 ф 8/ 35 ф 8/ 35	рть ye

* \$420 için;

cin; $\min(\rho x + \rho y) = 0.0035$ $\min(As) = 0.0015 \times 1000 \times d = 142.5 \text{ mm}^2$ $10008A / r = 279.25 \text{ mm}^2$

* Maksimum donatı aralığı;

smaks ≤ 1,5 x h

s s 200 mm (kısa doğrultu)

s S 250 mm (uzun doğrultu)

2.8.2.Mesnet

MESNET	Md	d	a	As	ELLE	ÇÖZÜM	İDE	CAD	S	AFE
- Tresine I	(tm)	(mm)	(mm)	(mm²)	MEVCUT	EK DONATI	MEVCUT	EK DONATI	MEVCUT	EK DONATI
DB105-DB106	0.55	95.0	5.43	164	279.28	x	287.26	x	287.26	x
DB105-DB107	0.75	95.0	7.38	224	279.28	x	287.26	x	287.26	x
DB106-DB108	0.86	95.0	8.54	259	279.28	x	287.26	x	287.26	x
DB107-DB108	0.44	95.0	4.25	129	279.28	x	287.26	x	287.26	x
DB107-DB110	0.75	95.0	7.38	224	279.28	x	287.26	x	287.26	x
DB111-DB108	0.98	95.0	9.86	298	279.28	3ф 8/30	287.26	x	287.26	x
DB110-DB111	0.73	95.0	7.24	219	279.28	x	287.26	x	287.26	x
DB112	1.82	125.0	13.99	424	139.64	42ф 12/ 190	143.63	42ф 12/ 200	143.63	42ф 12/ 200
DB114	1.82	125.0	13.99	424	139.64	16ф 12/ 190	143.63	18ф 12/ 180	143.63	18ф 12/ 180
DB105-süreksiz	0.22	95.0	2.08	63	139.64	x	143.63	x	143.63	x
DB106-süreksiz	0.20	95.0	1.96	59	139.64	x	143.63	x	143.63	x
DB107-süreksiz	0.17	95.0	1.63	49	139.64	x	143.63	x	143.63	x

MESNET	Md	d	ā	As	ELLE	ÇÖZÜM	İDE	CAD	S	AFE
MESHET	(tm)	(mm)	(mm)	(mm²)	MEVCUT	EK DONATI	MEVCUT	EK DONATI	MEVCUT	EK DONATI
DB110-u.k.süreksiz	0.25	95.0	2.40	73	139.64	x	143.63	x	143.63	x
DB110-k.k.süreksiz	0.27	95.0	2.56	77	139.64	x	143.63	х	143.63	х
DB111-u.k.süreksiz	0.28	95.0	2.75	83	139.64	X	143.63	х	143.63	х
DB111-k.k.süreksiz	0.46	95.0	4.51	136	139.64	X	143.63	X	143.63	x
D103-D105	0.67	95.0	6.61	200	279.28	X	287.26	х	287.26	x
D104-D106	0.64	95.0	6.31	191	279.28	X	287.26	х	287.26	X
D101	2.34	125.0	18.28	553	139.64	7ф 12/ 240	143.63	9ф 12/ 180	143.63	9ф 12/ 180
D102	3.08	125.0	24.75	749	139.64	27ф 12/ 180	143.63	27ф 12/ 180	143.63	27ф 12/ 180
D108-D109	0.52	95.0	5.09	154	279.28	X	287.26	x	287.26	x
D111-D112	2.59	95.0	29.14	882	558.56	X	287.26	X	287.26	x

3.Kiriş Hesapları

3.1. Kiriş Üzerine Gelen Yükler

						Döş	eme Ağı	rlığı	
						K.K.	(t/m)	U.K.	(t/m)
				m	Isn (m)	g	q	g	q
			DB105	1.01	3.04	0.52	0.20	0.52	0.20
	g (t/m²)	q (t/m²)	DB106	1.58	2.96	0.51	0.20	0.66	0.26
Normal Kat	0.512	0.20	DB107	1.64	2.70	0.46	0.18	0.61	0.24
Konsol	0.587	0.50	DB108	1.25	2.80	0.48	0.19	0.56	0.22
			DB110	1.06	3.00	0.51	0.20	0.54	0.21
			DB111	1.74	3.20	0.55	0.21	0.73	0.28
			DZ03	2.32	1.30	-	-	0.33	0.13
			DZ04	3.61	1.30	-	-	0.33	0.13
			DZ09	2.26	1.25	-	-	0.32	0.13
			DZ12	2.13	1.25	-	-	0.32	0.13
			DZ05	1.01	2.99	0.51	0.20	0.52	0.20
			DZ06	1.58	2.91	0.50	0.19	0.65	0.25
			DZ08	1.25	2.80	0.48	0.19	0.56	0.22
			DZ11	1.74	3.15	0.54	0.21	0.72	0.28
			D105-D205	1.01	3.84	0.66	0.26	0.66	0.26
			D106-D206	1.58	2.76	0.47	0.18	0.61	0.24
			D108-D208	1.25	2.80	0.48	0.19	0.56	0.22
			D111-D211	1.74	3.15	0.54	0.21	0.72	0.28
			DZ01	-	1.50	-	-	0.88	0.75
			DZO2	-	1.57	-	-	0.92	0.78

13 cm tuğla duvar = 0.25 t/m^3 19 cm tuğla duvar = 0.32 t/m^3

	Duvar Ağ.	Kiriş Ağ.	Döşeme Ağırlıkları		Σg	Σq	ΣΡ
	(t/m)	(t/m)	g (t/m)	q (t/m)			1.4g+1.6q
KB106	0.55	0.375	1.13	0.44	2.06	0.44	3.58
KB107	0.55	0.375	1.46	0.71	2.38	0.71	4.48
KB110	0.70	0.375	1.85	0.52	2.93	0.52	4.93
KB111	0.55	0.375	1.29	0.51	2.22	0.51	3.91
KB118	0.70	0.375	0.98	0.38	2.06	0.38	3.50
KB121	0.55	0.375	1.02	0.40	1.95	0.40	3.37
KB124	0.70	0.375	0.94	0.37	2.02	0.37	3.41
KB123	0.55	0.375	1.09	0.42	2.01	0.42	3.49
KB128	0.78	0.36	0.87	0.34	2.01	0.34	3.35
KZ01	0.78	0.225	0.33	0.13	1.34	0.13	2.08
KZ02	0.78	0.225	0.33	0.13	1.34	0.13	2.08
KZ03	0.70	0.375	0.88	0.75	1.96	0.75	3.94
KZ04	0.70	0.375	0.86	0.33	1.94	0.33	3.25
KZ05	0.70	0.375	0.99	0.39	2.07	0.39	3.51

KZ14	0.70	0.375	0.51	0.20	1.59	0.20	2.55
KZ15	0.70	0.375	0.73	0.28	1.81	0.28	2.99
KZ17	0.70	0.375	0.48	0.19	1.56	0.19	2.48
KZ20	0.70	0.375	0.54	0.21	1.62	0.21	2.60
KZ26	0.70	0.375	0.92	0.78	1.99	0.78	4.04
KZ25	0.70	0.375	1.42	0.98	2.50	0.98	5.07
KZ27	0.70	0.375	0.32	0.13	1.40	0.13	2.16
KZ29	0.78	0.225	0.32	0.13	1.33	0.13	2.06
KZ30	0.78	0.225	0.32	0.13	1.33	0.13	2.06
K101	0.70	0.375	0.33	0.13	1.41	0.13	2.18
K102	0.70	0.375	0.33	0.13	1.41	0.13	2.18
K104	0.78	0.36	0.86	0.33	2.00	0.33	3.33
K105	0.78	0.36	0.99	0.39	2.13	0.39	3.60
K127	0.78	0.36	0.32	0.13	1.46	0.13	2.25
KZ28	0.70	0.375	0.87	0.34	1.95	0.34	3.26
K129	0.70	0.375	0.32	0.13	1.40	0.13	2.16
K130	0.70	0.375	0.32	0.13	1.40	0.13	2.16

3.2. Kiriş Hesapları

3.2.1. Hiperstatik Hesaplar

Bu bölümde bir adet saplama kiriş, bir adet tek açıklıklı çerçeve ve bir adet tek açıklıklı konsol kiriş olmak üzere 3 adet kirişin çözümleri yapılacaktır. Statik hesaplar yapılırken KUVVET Yöntemi kullanılacaktır.

Aşağıda KZ24 saplama kirişinin statik hesabı yer almaktadır. Bu kiriş SZ07 kolonuna ve KZ07 kirişine mesnetlenmiştir.

İzostatik esas sistem;

Buradaki SZ07 kolonu 25/60 boyutlarındadır. Statik hesabı yapılan kiriş ise 25 cm genişliğinde, 60 cm yüksekliğinde olup T kesitlidir.

KZ24 kirişi tek açıklıklı olduğu için

$$I_p = 1.0 I$$
 'dir

Tabla genişliği ise;

$$b = b_w + 0.2l_p$$
 'dir.

Kiriş boyu 2.75 m olduğuna göre tabla genişliği;

 $I_p=275$ cm

b = 25+0.2*275=80 cm olur.

Hiperstatiklik derecesi (Hd) = MTS – 3KGS – MS- DDS

MTS : Mesnet tepkisi sayısıKGS : Kapalı göz sayısıMS : Mafsal sayısı

DDS : Denge denklemi sayısı

O halde Hd = 4-0-0-3=1. Dereceden hiperstatik sistem

Ay+By= (3.41*2.75)=9.3775 ton

 ΣM_A =0; 3.41*2.75*(2.75/2) – (2.75*By)=0 By=4.68875 ton ve Ay= 4.68875 ton bulunur.

<-- bw-->

X₁=1 birim yüklemesi;

Ax=0

Ay+By=0

 $\Sigma M_B=0$; 1+2.75*Ay=0

Ay=-1/2.75 ve By=1/2.75 bulunur.

 $\delta_{11}x_1 + \delta_{10} = 0$

$$\delta_{11} = M_1 * M_1 = [1] * 2.8 * 1 * 1 + [1] * 2.75 * 1 * 1 = 5.55$$

$$\delta_{10} = M_1 * M_0 = [1] * 1/3 * 2.75 * 1 * 3.2235 = 2.955$$

$$5.55x_1 + 2.955 = 0$$
 ; $x_1 = -0.53$

$$M = M_0 + M_1 x_1 + M_2 x_2 + ...$$

$$M_1 = 0 + 1*(-0.53) = -0.53$$

$$M_2 = 0 + 1*(-0.53) = -0.53$$

$$M_3 = 0 + 1*(-0.53) = -0.53$$

$$M_4 = 3.2235 + 0.5*(-0.53) = 2.96$$

$$M_5 = 0 + 0 = 0$$

 $M_r^*=0.85^*f_{cd}^*b^*h_f^*(d-h_f/2)=0.85^*13^*800^*120^*(550-120/2)=519792000\ Nmm\cong 52\ tm$ $M_d=2.96\ tm < M_r^*$ (basınç bloğu dikdörtgen)

$$\frac{1}{\rho} = 0.85 \frac{f_{cd}}{f_{yd}} \left[1 - \sqrt{1 - \frac{\frac{2M_d}{bd^2}}{0.85f_{cd}}} \right] = 0.00034$$

 $A_s = 0.00034*800*550 = 148.3 \text{ mm}^2$

 $\rho = 148.3/(250*550)=0.0011$

 $\rho_{min} = 0.8*1/365=0.0022$ olduğu için $\rho = \rho_{min} = 0.0022$ alınır.

 $A_s = 0.0022*250*550 = 302.5 \text{ mm}^2 \text{ bulunur.}$

 $A_s/\Phi 12 \cong 3$ adet donati (2 pilye, 1 düz)

	E	Elle çözüm	Ì		İDECAD			ETABS	
	sağ	açıklık	sol	sağ	açıklık	sol	sağ	açıklık	sol
üst	Х		Χ	3Ф14		1Ф12	х		х
alt	Х	3Ф12	Х	1Ф12	3Ф12	х	1Ф12	5Ф12	х

Aşağıda KZ05 kirişinin statik hesabı yer almaktadır. Bu kiriş SZ03 kolonuna ve SZ04 kolonuna mesnetlenmiştir.

Buradaki SZ03 ve SZ04 kolonu 25/60 boyutlarındadır. Statik hesabı yapılan kiriş ise 25 cm genişliğinde, 60 cm yüksekliğinde olup T kesitlidir.

KZ05 kirişi sürekli kiriş kenar açıklığı olduğu için

 $I_p = 0.8 I 'dir$

Tabla genişliği ise;

 $b = b_w + 0.2l_p$ 'dir.

Kiriş boyu 5.05 m olduğuna göre tabla genişliği;

 $I_p=404$ cm

b = 25+0.2*404=105.8 cm olur.

Hiperstatiklik derecesi (Hd) = MTS - 3KGS - MS- DDS

MTS : Mesnet tepkisi sayısı KGS : Kapalı göz sayısı

MS : Mafsal sayısı

DDS : Denge denklemi sayısı

O halde Hd = 6-0-0-3=3. Dereceden hiperstatik sistem

Ax=0

Ay+By= (3.51*5.05)=17.7255 ton

 $\Sigma M_A = 0$; By=8.86275 ton ve Ay= 8.86275 ton bulunur.

X₁=1 birim yüklemesi;

 $\Sigma M_B=0$; By=1/5.05 ve Ay=-1/5.05 bulunur.

X₂=1 birim yüklemesi;

 ΣM_A =0; By=-1/5.05 ve Ay=1/5.05 bulunur.

X₃=1 birim yüklemesi;


```
\delta_{11}x_1 + \delta_{12}x_2 + \delta_{13}x_3 + \delta_{10} = 0
```

$$\delta_{21}x_1 + \delta_{22}x_2 + \delta_{23}x_3 + \delta_{20} = 0$$

$$\delta_{31}x_1 + \delta_{32}x_2 + \delta_{33}x_3 + \delta_{30} = 0$$

$$\delta_{11} = M_1 * M_1 = [1] * 2.8 * 1 * 1 + [1] * 1/3 * 5.05 * 1 * 1 = 4.483$$

$$\delta_{12} = [1]*1/3*5.05*1*(-1) = -1.683$$

$$\delta_{13} = [1]*1/2*2.80*(-2.80)*1 + [1]*1/2*5.05*(-2.80)*1 = -10.99$$

$$\delta_{22} = [1]*1/3*5.05*1*1 + [1]*2.8*(-1)*(-1) = 4.483$$

$$\delta_{23} = [1]*1/2*5.05*(-1)*(-2.80) + [1]*1/2*2.80*(-1)*(-2.80) = 10.99$$

$$\delta_{33} = [1]*1/3*2.80*(-2.80)*(-2.80) + [1]*1/3*2.80*(-2.80)*(-2.80) + [1]*5.05*(-2.80)*$$

$$(-2.80)=54.27$$

$$\delta_{10} = [1]*1/3*5.05*1*11.19 = 18.84$$

$$\delta_{20}$$
 = -18.84

$$\delta_{30}$$
 = [1] * 2/3 * 5.05 * (-2.80) * 11.19 = -105.48

$$4.483x_1 - 1.683x_2 - 10.99x_3 + 18.84 = 0$$

$$-1.683x_1 + 4.483x_2 + 10.99x_3 - 18.84 = 0$$

$$-10.99x_1 + 10.99x_2 + 54.27x_3 - 105.48 = 0$$
; $x_1 = 1.47$, $x_2 = -1.47$, $x_3 = 2.54$,

$$M = M_0 + M_1x_1 + M_2x_2 + ...$$

$$M_1 = 1.47$$

$$M_2 = -5.642$$

$$M_3 = -5.642$$

$$M_4 = 5.548$$

$$M_5 = -5.642$$

$$M_6 = -5.642$$

$$M_7 = 1.47$$

 $M_r*=0.85*f_{cd}*b*h_f*(d-h_f/2) = 45.4 \text{ tm}$ $M_d = 5.548 \text{ tm} < M_r*$ (basınç bloğu dikdörtgen)

$$\overline{\rho} = 0.85 \frac{f_{cd}}{f_{yd}} \left[1 - \sqrt{1 - \frac{\frac{2M_d}{bd^2}}{0.85f_{cd}}} \right] = 0.00085$$

 $A_s = 0.00085*1058*550 = 494.62 \text{ mm}^2$

 $\rho = 492.62/(250*550)=0.0036$

 $\rho_{min} = 0.8*1/365=0.0022$

 $\rho_{\text{mak1}} = 0.02$

 $\rho_{\text{mak2}} = 0.85 \ \rho_{\text{b}} = 0.014 \ \text{ise};$

 $A_s = 494.62 \text{ mm}^2 \text{ bulunur}.$

 $A_s/\Phi 12 \cong 5$ adet donati (2 pilye, 3 düz)

		Elle çözüm		İDECAD			ETABS			
	sağ	açıklık	sol	sağ	açıklık	sol	sağ	açıklık	sol	
üst	1Ф12		1Ф12	1Ф12		1Ф12	1Ф12		1Ф12	
alt	Х	5Ф12	Χ	Х	3Ф12	1Ф12	Χ	5Ф12	X	

Aşağıda KZ21 kirişinin statik hesabı yer almaktadır. Bu kiriş SZ03 kolonuna ve SZ05 kolonuna mesnetlenmiştir. SZ05 kolonunun diğer ucunda ise konsol KZ22 kirişi bulunmaktadır.

Buradaki SZ03 ve SZ05 kolonu 25/60 boyutlarındadır. Statik hesabı yapılan kiriş ise 25 cm genişliğinde, 60 cm yüksekliğinde olup T kesitlidir.

KZ21 kirişi tek açıklıklı olduğu için

 $I_p = 1.0 I 'dir$

Tabla genişliği ise;

 $b = b_w + 0.2I_p$ 'dir.

Kiriş boyu 3.21 m olduğuna göre tabla genişliği;

 $I_p = 321 \text{ cm}$

b = 25+0.2*321=892 cm olur.

KZ22 kirişi konsol kiriş olduğu için

 $I_p = 1.5 I 'dir$

Tabla genişliği ise;

 $b = b_w + 0.2I_p$ 'dir.

Kiriş boyu 1.70 m olduğuna göre tabla genişliği;

 $I_p=255$ cm

b = 25+0.2*255=760 cm olur.

KZ21 kirişi için

Hiperstatiklik derecesi (Hd) = MTS - 3KGS - MS- DDS

MTS : Mesnet tepkisi sayısı KGS : Kapalı göz sayısı

MS : Mafsal sayısı

DDS : Denge denklemi sayısı

O halde Hd = 6-0-0-3=3. Dereceden hiperstatik sistem

Ax=0

Ay+By= 21.07 ton

 ΣM_A =0; By=20.73 ton ve Ay= 0.34 ton bulunur.

X₁=1 birim yüklemesi;

 $\Sigma M_B{=}0\;;\;By{=}1/3.21$ ve Ay=-1/3.21 bulunur.

X₂=1 birim yüklemesi;

 ΣM_A =0; By= -1/3.21 ve Ay= 1/3.21 bulunur.

X₃=1 birim yüklemesi;

 $\delta_{11}x_1 + \delta_{12}x_2 + \delta_{13}x_3 + \delta_{10} = 0$

 $\delta_{21}x_1 + \delta_{22}x_2 + \delta_{23}x_3 + \delta_{20} = 0$

 $\delta_{31}x_1 + \delta_{32}x_2 + \delta_{33}x_3 + \delta_{30} = 0$

 $\delta_{11} = M_1 * M_1 = [1] * 2.8 * 1 * 1 + [1] * 1/3 * 3.21 * 1 * 1 = 3.87$

 $\delta_{12} = [1]*1/3*3.21*1*(-1) = -1.07$

 $\delta_{13} = [1]*1/2*2.80*(-2.80)*1 + [1]*1/2*3.21*(-2.80)*1 = -8.414$

 $\delta_{22} = [1]*1/3*3.21*1*1 + [1]*2.8*(-1)*(-1) = 3.87$

 $\delta_{23} = [1]*1/2*3.21*(-1)*(-2.80) + [1]*1/2*2.80*(-1)*(-2.80) = 8.414$

 $\delta_{33} = [1] * 1/3 * 2.80 * (-2.80) * (-2.80) + [1] * 1/3 * 2.80 * (-2.80) * (-2.80) + [1] * 3.21 * (-2.80) *$

(-2.80) = 39.80

 $\delta_{10} = [1]*1/3*3.21*1*4.34 = 4.64$

 $\delta_{20} = -4.64$

 $\delta_{30} = [1] * 2/3 * 3.21 * (-2.80) * 4.34 = -26.01$

 $3.87x_1 - 1.07x_2 - 8.414x_3 + 4.64 = 0$

 $-1.07x_1 + 3.87x_2 + 8.414x_3 - 4.64 = 0$

 $-8.414x_1 + 8.414x_2 + 39.80x_3 - 26.01 = 0$; $x_1 = 0.621$, $x_2 = -0.621$, $x_3 = 0.916$,

 $\mathsf{M} = \mathsf{M}_0 + \mathsf{M}_1 \mathsf{x}_1 + \mathsf{M}_2 \mathsf{x}_2 + \dots$

 $M_1 = 1*0.621=0.621$

 $M_2 = 0.621-2.8*0.916=-1.944$

 $M_3 = 0.621 - 2.8 * 0.916 = -1.944$

 $M_4 = 4.34 + 0.5 * 0.621 + (-0.5) * (-0.621) + (-2.80) * 0.916 = 2.4$

 $M_5 = 0.621 - 2.8 * 0.916 = -1.944$

 $M_6 = 0.621 - 2.8 * 0.916 = -1.944$

 $M_7 = 0.621$

 $M_8 = 16.26$

 $M_9 = 0$

 M_r *=0.85* f_{cd} *b* h_f * $(d-h_f/2)$ = 57.96 tm

 $M_d = 2.4 \text{ tm} < M_r^*$ (basınç bloğu dikdörtgen)

$$\overline{\rho} = 0.85 \frac{f_{cd}}{f_{yd}} \left[1 - \sqrt{1 - \frac{\frac{2M_d}{bd^2}}{0.85f_{cd}}} \right] = 0.00025$$

 $A_s = 0.00025*892*550 = 120.04 \text{ mm}^2$

 $\rho = 245.3/(250*550)=0.00087$

 $\rho_{min} = 0.8*1/365=0.0022$ olduğu için $\rho = \rho_{min} = 0.0022$ alınır.

 $A_s = 302.5 \text{ mm}^2 \text{ bulunur.}$

 $A_s/\Phi 12 \cong 3$ adet donati (2 pilye, 1 düz)

KZ22 Kirişi;

 $A_{\text{sgerekli}} = 837.7 \text{ mm}^2$

 $A_{smevcut} = 2*113.1=226.2 \text{ mm}^2$

İse; gerekli donatı 4Φ14

			Elle çözür	n	İDECAD			ETABS			
		sağ	açıklık	konsol	sağ	açıklık	konsol	sağ	açıklık	konsol	
Ī	üst	1Ф12		4Ф14	2Ф14		4Ф14	3Ф12		5Ф14	
	alt	Х	3Ф12	Х	1Ф14	7Ф12	1Ф12	3Ф12	3Ф12	3Ф12	

3.2.2. İzostatik Bir Kirişin Hesabı

Aşağıda KZ30 kirişine ait statik hesaplar yapılmıştır. KZ30 kirişi 25/60 kesitinde ve KZ12 ve KZ16 kirişlerine mesnetlenmiştir.

KZ30 kirişi sürekli kiriş kenar açıklık olduğu için

 $I_p = 0.8 \, I \, 'dir$

Tabla genişliği ise;

 $b = b_w + 0.1 I_p$ 'dir.

Kiriş boyu 3.65 m olduğuna göre tabla genişliği;

 $I_p=292$ cm

b = 25+0.1*292=542 cm olur.

 $A_x=B_x=0$

Ay+By= 7.519 ton

 $\Sigma M_A=0$; By=3.7595 ton ve Ay= 3.7595 ton bulunur.

Kesme Dayanımı

 $V_r \geq V_d$

 $V_r = V_c + V_w$

 $V_c = 0.8V_{cr}$

 $V_{cr} = 0.65 * f_{ctd} * b_w * d = 8.9375 ton$

 $V_c = 7.15 \text{ ton}$

 $V_w = \frac{A_{sw}}{s} f_{ywd} d$

$$\frac{A_{sw}}{s} \ge 0.3(f_{ctd}/f_{ywd})b_w = 0.2055$$

 $V_w = 4.125 \text{ ton}$

 $V_r = 7.15 + 4.125 = 11.275 \text{ ton} > V_d = 2.6265 \text{ ton}$

 $V_d = 2.6265 \le 0.22 f_{cd} b_w d = 39.325 ton$

Bu durumda, kesme donatısı hesabına gerek yoktur, minimum etriye kullanılmalıdır. Sarılma Bölgesi Orta Bölge

$$Sk \le \begin{cases} \frac{h}{3} = \frac{600}{3} = 200 \text{mm} \\ 10x12 = 120 \text{ mm} \\ 150 \text{mm} \end{cases}$$

So
$$\leq \{d/2 \quad Vd \leq 3Vcr$$

minimum seçilir, Ø8 / 12

$$\frac{55}{2}$$
 = 27.5 mm Ø 8 / 27

Donatı hesabı;

$$M_r^*=0.85*f_{cd}*b*h_f*(d-h_f/2) = 35.22 \text{ tm}$$

 $M_d = 3.43 \text{ tm} < M_r^*$ (basınç bloğu dikdörtgen)

$$\overline{\rho} = 0.85 \frac{f_{cd}}{f_{yd}} \left[1 - \sqrt{1 - \frac{\frac{2M_d}{bd^2}}{0.85 f_{cd}}} \right] = 0.00058$$

 $A_s = 0.00058*542*550 = 172.50 \text{ mm}^2$

 $\rho = 172.50/(250*550)=0.00125$

 ρ_{min} = 0.8*1/365=0.0022 olduğu için ρ = ρ_{min} =0.0022 alınır.

 $A_s = 302.5 \text{ mm}^2 \text{ bulunur.}$

 $A_s/\Phi 12 \cong 3$ adet donati (2 pilye, 1 düz)

		Elle çözür	n		İDECAD		ETABS			
	sağ	açıklık	sol	sağ	açıklık	sol	sağ	açıklık	sol	
üst	Χ		Х	Х		Х	Χ		Х	
alt	Χ	3Ф12	Х	Х	3Ф12	Х	Χ	3Ф12	Х	

c) ETABS KZ30 Kirişi Donatı Alanları(mm²)

DS	Poz	Kat	В	Н	Sol üst	Sol alt	Montaj	Pilye	Düz	Sağ üst	Sağ alt	Enine	Gövde
	K01	ZEMÍN KAT	25	36			2 ø 12	1 ø 12	2 ø 12			Ø8/18	
	K02	ZEMÍN KAT	25	36	1 ø 12		2ø12	1 ø 12	2 ø 12			Ø8/18	
	K03	ZEMÍN KAT	25	60	2 ø 12		2 ø 12		3 ø 12	1 ø 12		Ø8/10	
	K04	ZEMÍN KAT	25	60	1 ø 12		2 ø 12		3 ø 12	2 ø 12		Ø8/20/10	
	K05	ZEMÍN KAT	25	60	1 ø 12		2 ø 12	1 ø 12	2 ø 12	1 ø 12	1 ø 12	Ø8/20/10	
	K06 ->	ZEMÍN KAT	25	60			2 ø 12	1 ø 12	2 ø 12		1 ø 12	Ø8/20/10	
	-> K07 ->	ZEMÍN KAT	25	60		1 ø 12	2 ø 14	1 ø 12	2 ø 12	5 ø 14	2 ø 14	Ø8/20/10	
	-> K08	ZEMÍN KAT	25	60	5ø14	2 ø 14	Sağ ko.	Sağ ko.	Sağ ko.			Ø8/10	
	K09	ZEMÍN KAT	25	60	1 ø 12	2 ø 12	2 ø 12		3 ø 12	4 ø 14		Ø8/10	
	K10->	ZEMÍN KAT	25	60	2 ø 14		2 ø 12	1 ø 14	2 ø 12			Ø8/20/10	
	-> K11 ->	ZEMÍN KAT	25	60			2 ø 14		3 ø 12	5 ø 14	2 ø 12	Ø8/20/10	
	-> K12	ZEMÍN KAT	25	60	5ø14	2 ø 12	Sağ ko.	Sağ ko.	Sağ ko.			Ø8/10	
	K13	ZEMÍN KAT	25	60	2 ø 14	1 ø 12	2 ø 12		3 ø 12	3 ø 14	2 ø 12	Ø8/10	
	K14 ->	ZEMÍN KAT	25	60	4 ø 14	3 ø 14	2 ø 12		3 ø 12	1 ø 12	2 ø 12	Ø8/10	
	-> K15 ->	ZEMÍN KAT	25	60	1 ø 12	2 ø 12	2 ø 14	1 ø 12	2 ø 12	4 ø 14	2 ø 12	Ø8/20/10	
	-> K16	ZEMÍN KAT	25	60	4 ø 14	2 ø 12	Sağ ko.	Sağ ko.	Sağ ko.			Ø8/10	
	K17	ZEMÍN KAT	25	60	1 ø 14		2 ø 12	1 ø 12	2 ø 12		1 ø 12	Ø8/20/10	
	K18->	ZEMÍN KAT	25	60	4 ø 14	1 ø 12	2 ø 14	1 ø 12	2 ø 12		1 ø 12	Ø8/20/10	
	-> K19	ZEMÍN KAT	25	60		1 ø 12	Sağ ko.	Sağ ko.	Sağ ko.	1 ø 12		Ø8/10	
	K20	ZEMÍN KAT	25	60	1 ø 12		2 ø 12		3 ø 12	1 ø 12		Ø8/10	
	K21 ->	ZEMÍN KAT	25	60	2 ø 14	1 ø 14	2 ø 12		2 ø 12	4 ø 14	1 ø 12	Ø8/10	2*2 ø 12
	-> K22	ZEMÍN KAT	25	60	4 ø 14	1 ø 12	Sağ ko.	Sağ ko.	Sağ ko.			Ø8/10	2*1 ø 12
	K23	ZEMÍN KAT	25	60			2 ø 12	1 ø 12	2 ø 12			Ø8/20/10	
	K24	ZEMÍN KAT	25	60	3 ø 14	1 ø 12	2 ø 12		3 ø 12	1 ø 12		Ø8/10	
	K25 ->	ZEMÍN KAT	25	60	1 ø 12	1 ø 12	3 ø 14		2 ø 12	6 ø 14	4 ø 14	Ø8/10	
	-> K26	ZEMÍN KAT	25	60	6ø14	4 ø 14	Sağ ko.	Sağ ko.	Sağ ko.			Ø8/10	
	K27	ZEMÍN KAT	25	60	1 ø 12		2 ø 12		3 ø 12	1 ø 12		Ø8/20/10	
	K28	ZEMÍN KAT	25	60	1 ø 14	1 ø 12	2 ø 12		3 ø 12	4 ø 14		Ø8/20/10	
	K29	ZEMÍN KAT	25	36			2 ø 12	1 ø 12	2 ø 12			Ø8/18	
	K30	ZEMÍN KAT	25	36			2 ø 12	1 ø 12	2 ø 12			Ø8/18	

d) İDECAD Zemin kat kiriş donatıları

e) ETABS Zemin kat donatı alanları(cm²)

4.Kolon Hesapları

4.1.Kolon Üzerine Gelen Yük Hesabı

Kolonlara etkiyecek maksimum yükler zemin katta etki edeceği için zemin katın kolonlarının statik hesabı yapılmıştır. Hesaplanan donatı alanları maksimum yük etkiyen zemin kat için minimum koşul uygulandığı için üst katlarda hesap yapmaya gereksinim bulunmamıştır.

	Kiriş (G.Y.	Kolon Ağ.	Σg	Σq	ΣΡ
	g (t)	q (t)	(t/m)			1.4g+1.6q
SZ02	8.56	1.30	0.38	8.93	1.30	14.59
SZ03	12.27	1.68	0.38	12.64	1.68	20.38
SZ04	8.61	1.70	0.38	8.98	1.70	15.30
SZ05	7.78	1.81	0.38	8.15	1.81	14.31
SZ06	10.26	2.27	0.44	10.70	2.27	18.61
SZ07	9.00	1.78	0.38	9.37	1.78	15.96
SZ08	10.64	1.40	0.50	11.14	1.40	17.84
SZ09	1.62	0.21	0.38	1.99	0.21	3.13
SZ10	3.21	0.41	0.38	3.59	0.41	5.68
SZ11	5.41	0.91	0.38	5.79	0.91	9.55
SZ12	6.80	0.86	0.38	7.18	0.86	11.43

4.2.Kolon Donatı Hesapları

SZ03

Üst katlardan gelen yükler hesaba katıldığında;

$$N_{dm} = 20.38*3=61.14 \text{ ton}$$
, Mxd= 10.70 tm , Myd=4.38 tm

$$N_{dm} \le 0.5 A_c f_{ck} = 0.5*250*600*20 = 150*10^4 N = 150 \text{ ton}$$
 (DY Koşulu)

 $N_d \le 0.6A_c f_{ck} = 180 \text{ ton } (TS500 \text{ Koşulu})$

$$n = \frac{N_d}{bhf_{cd}} = 0.8 \quad , \quad m_x = \frac{Mxd}{b \; x \; h^2 x \; fcd} \; = 0.092 \quad , \qquad m_y = \frac{Myd}{b^2 \; x \; h \; xfcd} \; = 0.090$$

n, m_x , m_y değerlerinin sonuçlarından, abaklardan (ω) okunur.

$$\omega = 0.2 \, \mathrm{dir}.$$

$$\omega = \rho_t x \frac{fyd}{fcd} \qquad \qquad \rho_t = 0.0071$$

$$\rho_t \ \geq \rho_{tmin} \ \begin{cases} 0.01 \\ 0.005 \end{cases} \qquad hayır.$$

$$\rho_t = \rho_{tmin}$$
 alınır.

$$Ast = \rho_t \ x \ b \ x \ h$$

$$Ast = 0.01 \times 250 \times 600$$

$$Ast = 1500 \text{ mm}^2$$

$$n = \frac{1500}{153.94} = 9.74 \cong 10 \text{ adet alinir}.$$
 10 Φ 14

SZ06

Üst katlardan gelen yükler hesaba katıldığında;

$$N_{dm} = 18.61*3=55.83 \text{ ton}$$
, Mxd= 15.07 tm , Myd=3.84 tm

$$N_{dm} \le 0.5 A_c f_{ck} = 0.5*250*700*20 = 175*10^4 N = 175 ton$$
 (DY Koşulu)

 $N_d \le 0.6A_c f_{ck} = 210 \text{ ton}$ (TS500 Koşulu)

$$n = \frac{N_d}{bhf_{cd}} = 0.25$$
 , $m_x = \frac{Mxd}{b x h^2 x f c d} = 0.095$, $m_y = \frac{Myd}{b^2 x h x f c d} = 0.068$

n, m_x , m_y değerlerinin sonuçlarından, abaklardan (ω) okunur.

$$\omega = 0.2 \, \mathrm{dir}$$
.

$$\omega = \rho_t x \frac{fyd}{fcd} \qquad \qquad \rho_t = 0.0071$$

$$\rho_t \, \geq \rho_{tmin} \, \, \begin{cases} 0.01 \\ 0.005 \end{cases} \qquad evet. \label{eq:rhot_total}$$

$$\rho_t = \rho_{tmin}$$
 alınır.

$$Ast = \rho_t \times b \times h$$

$$Ast = 0.01 \times 250 \times 700$$

$$Ast = 1750 \text{ mm}^2$$

$$n = \frac{1750}{153.94} = 11.37 \cong 12 \text{ adet alinir}.$$
 12 Φ 14

SZ08

Üst katlardan gelen yükler hesaba katıldığında;

$$N_{dm} = 17.84*3=53.52 \text{ ton}$$
, Mxd= 17.86 tm , Myd=4.52 tm

$$N_{dm} \leq 0.5 A_c f_{ck} = 0.5*250*800*20 = 200*10^4 \, N = 200 \ ton \quad (DY \ Koşulu)$$

$$N_d \le 0.6A_c f_{ck} = 240 \text{ ton}$$
 (TS500 Koşulu)

$$n = \frac{N_d}{bhf_{cd}} = 0.20$$
 , $m_x = \frac{Mxd}{b x h^2 x f c d} = 0.086$, $m_y = \frac{Myd}{b^2 x h x f c d} = 0.07$

n, m_x , m_y değerlerinin sonuçlarından, abaklardan (ω) okunur.

$$\omega = 0.1 \, \mathrm{dir}.$$

$$\omega = \rho_t x \frac{fyd}{fcd} \qquad \qquad \rho_t = 0.0036$$

$$\rho_t \ \geq \rho_{tmin} \ \begin{cases} 0.01 \\ 0.005 \end{cases} \qquad evet.$$

$$\rho_t = \rho_{tmin}$$
 alınır.

$$Ast = \rho_t \times b \times h$$

$$Ast = 0.01 \times 250 \times 800$$

$$Ast = 2000 \text{ mm}^2$$

$$n = \frac{2000}{153.94} = 12.99 \cong 13 \text{ adet alimir}.$$
 13 Φ 14

SZ12

Üst katlardan gelen yükler hesaba katıldığında;

$$N_{dm} = 11.43*3 = 34.29 \ ton \quad , \quad Mxd = 13.48 \ tm \quad \quad , \quad Myd = 1.10 \ tm$$

$$N_{dm} \leq 0.5 A_c f_{ck} = 0.5*250*600*20 = 150*10^4 \, N = 150 \ ton \quad (DY \ Koşulu)$$

 $N_d \le 0.6 A_c f_{ck} = 180 \text{ ton } (TS500 \text{ Koşulu})$

$$n = \frac{N_d}{bhf_{cd}} = 0.18$$
 , $m_x = \frac{Mxd}{b x h^2 x f c d} = 0.12$, $m_y = \frac{Myd}{b^2 x h x f c d} = 0.023$

n, m_x , m_y değerlerinin sonuçlarından, abaklardan (ω) okunur.

$$\omega = 0.1 \text{ dir.}$$

$$\omega = \rho_t \ x \frac{fyd}{fcd} \qquad \qquad \rho_t = 0.0036$$

$$\rho_t \ge \rho_{tmin} \ \begin{cases} 0.01 \\ 0.005 \end{cases} \quad \text{evet.}$$

$$\rho_t = \rho_{tmin} \quad \text{alınır.}$$

$$Ast = \rho_t \ x \ b \ x \ h$$

$$Ast = 0.01 \ x \ 250 \ x \ 600$$

$$Ast = 1500 \ mm^2$$

$$n = \frac{1500}{153 \ 94} = 9.74 \cong 10 \ \text{adet} \quad \text{alınır.}$$

$$10 \ \Phi \ 14$$

	Elle Çözüm	İDECAD	ETABS
SZ03	10Ф14	10Ф14	10Ф14
SZ06	12Ф14	12Ф14	12Ф14
SZ08	13Ф14	14Ф14	14Ф14
SZ12	10Ф14	10Ф14	10Ф14

5. Temel Çözümü

Projemin temel tipi olan radye plak temelin çözümünü ETABS da modellediğim yapının temel üzerine gelen yüklerini SAFE programına aktardım ve SAFE programında yapının temel modelini oluşturdum ve analizini yaptım.

Radyenin elle hesabını yapacak olsaydık radyeyi şeritlere bölerek ayrı ayrı diyagram çizip, buradaki maksimum moment alınıp donatı yerleştirilecekti.

a) SAFE Temel X doğrultusu donatı alanları (mm^2/m)

b) SAFE Temel Y doğrultusu donatı alanları (cm²/m)

6.SONUÇ

Bu proje kapsamında, İDECAD ile statik hesabı yapılmış bir projenin hem manuel hem de ETABS ve SAFE programları ile statik hesapları yapılmış ve sonuçlar kıyaslanmıştır.

Döşemelerimizin açıklık donatılarındaki farklılıkların en temel nedeni çözüm yapılan statik programdan izin verilebilen donatı aralığının seçilebilmesidir. Benim elle çözümleme yaptığım döşememdeki donatı aralığı 36 cm olup analizde gördüğümüz üzere bu değer 35 cm alınmıştır.

Kirişlerde çıkan farklılıkların nedenlerini inceleyecek olursak öncelikle kiriş momentlerinin hesabındaki farklılıklar donatıya da yansıyacaktır. Elle yaptığım hesaplamalarda deprem , rüzgar yükü gibi parametreleri ihmal ettim. Yük parametresinin en genel ifadesi olan Pd= 1.4G+1.6Q formülünü işlemlerimde baz alarak moment - donatı hesabına geçtim. Hesapta kullandığım açıklık akstan aksa olan mesafedir.Fakat İDECAD ve ETABS programlarında hesaplarda alınan açıklık kolon yüzlerinden itibaren olan net açıklıktır. Bu farklılık nedeniyle kiriş momentlerimde farklılıklar oluşmuştur.

Kirişlerde İDECAD ve ETABS arasındaki farkın nedeni ise; her iki programda da kirişler tablalı olarak modellenmiştir. DBHBHY2007'ye göre kirişlerde tabla genişlikleri kirişin sürekli iç veya kenar açıklık, konsol ve tek açıklık olmasına göre değişir. İDECAD DBYBHY2007'ye göre tabla genişliklerini hesaplamaktadır. Ancak ETABS programında kiriş kesitleri manuel olarak girildiği için tabla genişliklerinde yaklaşık bir kabul yapılmıştır. Bu kabuller; tam tablalı kirişlerde 6hf+bw, yarım tablalı kirişlerde 2.25hf+bw'dir. Ayrıca kiriş tabla ve döşeme kesişiminden dolayı ETABS programında manuel olarak kiriş ağırlıkları belirli oranda küçültülmüştür. Bu işler tamamen kullanıcı inisiyatifinden kaynaklı olduğu için ETABS programında yapı ağırlığı İDECAD'e göre daha ağır çıkmıştır. Yapının ağırlığının artmasından dolayı yapı doğal titreşim periyodu artmış ve yapıya etki eden deprem yükü miktarı da bu sebepten artmıştır.

Kolonlarda sonuçlara baktığımızda manuel çözüm, ETABS ve İDECAD arasında hiçbir fark bulunmamıştır. Bunun nedeni her çözümde kolonlara gelen yüklere rağmen kolonlarda minimum donatı kullanılmasındandır.