Deep Dynamical Modeling and Control of Unsteady Fluid Flows

Jeremy Morton 1 Freddie D. Witherden 1 Antony Jameson 2 Mykel J. Kochenderfer 1

¹Department of Aeronautics and Astronautics, Stanford University

²Department of Aerospace Engineering, Texas A&M University

Problem Overview

- Many control techniques prove ineffective when applied to fluid flows due to the nonlinear nature of the Navier-Stokes equations.
- Recent advances in computational fluid dynamics (CFD) have enabled the simulation of complex fluid flows with high accuracy, opening the possibility of using learning-based approaches to facilitate controller design.

In this work, we consider data from 2-dimensional simulations of airflow over a cylinder with vortex shedding at a Reynolds number of 50.

Goal: Learn a data-driven model for the forced dynamics, then use the model to design a controller for suppressing vortex shedding.

Modeling Dynamical Systems

- Our goal is to construct models for discrete-time dynamical systems, which have the general form $x_{t+1} = F(x_t)$.
- If we assume a system is linear, then the dynamics are governed by $x_{t+1} = Ax_t$.

Question: How can we find the value of A if we only have access to time snapshots of a given system?

 \odot Build matrices X and Y:

$$X = \begin{bmatrix} | & & | \\ x_1 & \dots & x_{T-1} \end{bmatrix}, \quad Y = \begin{bmatrix} | & & | \\ x_2 & \dots & x_T \end{bmatrix}.$$

- 3 Perform least-squares to find matrix A such that $Y \approx AX$.
- If the true system dynamics are nonlinear, then linear models may not be a good fit.
- However, **Koopman theory** suggests there may exist a state mapping $g(x_t)$ under which the dynamics are approximately linear $g(x_{t+1}) = Ag(x_t)$.
- Unfortunately, for most systems it is not obvious what this state mapping should be.

Approach: Use deep neural networks to automatically find appropriate state mappings $g(x_t)$.

Training Procedure

We extract data from a 128×256 grid near the cylinder to construct image-like inputs, where different input channels correspond to different physical quantities.

Energy

The **Deep Koopman model** is a neural network autoencoder trained to generate mappings $g(x_t)$ that can be propagated forward in a linear manner.

Figure: Modified form of algorithm presented in Learning Koopman Invariant Subspaces for Dynamic Mode Decomposition by N. Takeishi et al. (NIPS 2017).

Evaluation

- Deep Koopman modeling of unforced dynamics is benchmarked against the model proposed by Takeishi et al. and the Variational Bayes Filter (VBF).
- Deep Koopman model produces more stable predictions, with mean prediction errors below 0.2% over a prediction horizon of 128 time steps.

Forced Dynamics

We now allow the cylinder to rotate and aim to learn a model for the forced dynamics of the system.

We now find the A-matrix through: $A=(ilde{Y}-B\Gamma) ilde{X}^{\dagger}$ where $\Gamma = [u_1, \dots, u_T]$ and B-matrix is learned.

Model Predictive Control

- We select control inputs at each time step by solving a quadratic program.
- We set x_{goal} to be a snapshot of steady flow at a Reynolds number of 45.

minimize
$$\sum_{t=1}^{T} (c_t - g(x_{\text{goal}}))^{\mathsf{T}} Q(c_t - g(x_{\text{goal}})) + \sum_{t=1}^{T-1} u_t^{\mathsf{T}} R u_t$$
subject to $c_1 = g(x_1), \ c_{t+1} = Ac_t + Bu_t, \ u_{\text{min}} \leq u_t \leq u_{\text{max}}$

MPC actions prove to be similar to actions from a **proportional control** law based on downstream y-velocity measurements.

Proportional Control

Proportional controller based on measurements at identified location suppresses vortex shedding; other measurement locations are ineffective.

Conclusions

- We presented a method for data-driven modeling and control of airflow over a cylinder for suppressing vortex shedding.
- Flow controllers may be hard to design, but could be easy to implement. Data-driven modeling may facilitate the discovery of effective control laws.

Acknowledgments: This material is based upon work supported by the National Science Foundation Graduate Research Fellowship Program under Grant No. DGE- 114747. The authors would like to thank the Air Force Office of Scientific Research for their support via grant FA9550-14-1-0186.

Contact: {jmorton2, fdw, mykel}@stanford.edu, antony.jameson@tamu.edu