

DẠNG 1: BÀI TOÁN ĐIỆN TÍCH ĐIỂM

Bài 1.5:

Khi đặt trong không khí, theo định luật 3

Newton:

$$\vec{P} + \vec{F} + \vec{T} = \vec{0} \ \rightarrow \vec{T} = \vec{P} + \vec{F}$$

$$\rightarrow tg\alpha = \frac{F}{P} = \frac{q^2}{4\pi\varepsilon_0 r^2 mg} \quad \ (1)$$

Khi đặt trong dầu, theo định luật 3 Newton:

$$\vec{P} + \overrightarrow{F_{\rm A}} + \overrightarrow{F'} + \overrightarrow{T'} = \vec{0} \rightarrow \overrightarrow{T'} = \overrightarrow{P_{\rm hd}} + \vec{F}' \text{ trong } \vec{\text{do}} \overrightarrow{P_{\rm hd}} = \vec{P} + \overrightarrow{F_{\rm A}}$$

$$\rightarrow tg\alpha = \frac{F'}{P_{\rm hd}} = \frac{q^2}{4\pi\varepsilon_0\varepsilon r^2(mg - dV)} \tag{2}$$

Từ (1) và (2), trong đó thay: $m = \rho V$; $d = \rho_1 g$ ta có:

$$\rho = \frac{\varepsilon \rho_1}{\varepsilon - 1}$$

Bài 1.26: Một điện tích điểm $q = \frac{2}{3}10^{-9}C$ nằm cách một sợi dây dài tích điện đều một khoảng $r_1 = 4$ cm. Dưới tác dụng của điện trường do sợi dây gây ra, một điện tích dịch chuyển theo hướng đường sức điện trường khoảng $r_2 = 2$ cm. Khi đó lực điện trường thực hiện một công $A = 50.10^{-7}$ J. Tính mật độ dài của dây.

$$\lambda \leftarrow E = \frac{\lambda}{2\pi\varepsilon\varepsilon_0 r} \leftarrow A = qU_{12} = q\left(\int_{r_1}^{r_2} \vec{E}.\overrightarrow{dr}\right)$$

$$A = qU_{12} = \int_{r_1}^{r_2} \vec{E}.\overrightarrow{dr} = \int_{r_1}^{r_2} -\frac{\lambda}{2\pi\varepsilon\varepsilon_0 r} dr = \frac{\lambda q}{2\pi\varepsilon\varepsilon_0} \ln\frac{r_1}{r_2} \rightarrow \lambda \approx 6.10^{-7} C/m$$

Bài 1.9: (Dạng 1: Bài toán về lực tĩnh điện tác dụng lên 1 điện tích điểm) Xác định lực tác dụng lên một điện tích điểm $q = 5/3.10^9 C$ đặt ở tâm nửa vòng xuyến bán kính $r_0 = 5$ cm tích điện đều với điện tích $Q = 3.10^{-7} C$ (đặt trong chân không). **Hướng dẫn giải**

 $\vec{F_d} = q\vec{E} \leftarrow \vec{E}$ của nửa vòng xuyến \leftarrow bài toán xđ \vec{E} của vật dẫn tích điện đều

- Chia vật dẫn thành các phần tử rất nhỏ với điện tích dQ và chiều dài dl
- Xác định $dQ = \lambda dl = \frac{Q}{\pi r_0} dl$

- Xác định
$$dF=rac{qdQ}{4\piarepsilon_0r_0^2}=rac{qQ}{4\pi^2arepsilon_0r_0^3}dl$$
 hoặc $dE=rac{dQ}{4\piarepsilon_0r_0^2}=rac{Q}{4\pi^2arepsilon_0r_0^3}dl$

Chú ý: dF và dE là đại lượng vectơ

- Phân tích
$$\overrightarrow{dE} = \overrightarrow{dE_x} + \overrightarrow{dE_y} \rightarrow \int_{\text{dây}} \overrightarrow{dE} = \int_{\text{dây}} \overrightarrow{dE_x} + \int_{\text{dây}} \overrightarrow{dE_y}$$

trong đó $\int_{ ext{d}\hat{a}y}\overrightarrow{dE_y}=0$ do tính đối xứng của dây

Câu hỏi mở rộng: Xác định điện thế tại tâm vòng xuyến????

$$V = \int \frac{dQ}{4\pi\varepsilon\varepsilon_0 r_0} = \frac{Q}{4\pi\varepsilon\varepsilon_0 r_0}$$

