0.1 Rotation av vektorfält (16.5)

Definition 1 (Rotation (curl) av vektorfält). *Rotationen* av ett vektorfält $\vec{F} = \langle P, Q, R \rangle$ i \mathbb{R}^3 är

$$\operatorname{rot} \vec{F} = \boldsymbol{\nabla} \times \vec{F} = \left\langle \frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z}, \frac{\partial P}{\partial z} - \frac{\partial R}{\partial x}, \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right\rangle$$

Formeln är kryssprodukten mellan ∇ och \vec{F} .

Rotation används bland annat för att formulera två av Maxwells lagar i elektromagnetism.

Sats 1 (Rotation av gradient). Om f är en funktion med kontinuerliga partiella andraderivator blir $\nabla \times (\nabla f) = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ \frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} & \frac{\partial f}{\partial z} \end{vmatrix} = \left\langle \frac{\partial^2 f}{\partial y \partial z} - \frac{\partial^2 f}{\partial z \partial y}, \frac{\partial^2 f}{\partial x \partial z} - \frac{\partial^2 f}{\partial z \partial x}, \frac{\partial^2 f}{\partial x \partial y} - \frac{\partial^2 f}{\partial y \partial x} \right\rangle = \langle 0, 0, 0 \rangle$ enligt Clairauts sats.

Sats 2. Om \vec{F} är ett vektorfält på \mathbb{R}^3 vars komponenter har kontinuerliga partiella derivator och $\nabla \times \vec{F} = \langle 0, 0, 0 \rangle$ så är \vec{F} konservativt, d.v.s. $\vec{F} = \nabla f$ för någon funktion f.

Detta gäller mer allmänt på områden i \mathbb{R}^3 som är enkelt sammanhängande, d.v.s. "utan hål". Det är mer invecklat att definiera i tre dimensioner än två, och vi gör det inte här.

Vi kan använda en liknande metod som i \mathbb{R}^2 för att hitta en potential.

Exempel 1. Låt $\overline{F} = \langle z, 2y, x + 2z \rangle$ vara ett konservativt vektorfält. Bestäm en potential till \overrightarrow{F} .

Vi vill alltså lösa
$$\begin{cases} f_x = z & \text{(i)} \\ f_y = 2y & \text{(ii)} \\ f_z = x + 2z & \text{(iii)} \end{cases}$$

En lösning till (i) är $f_0=xz$ och utifrån det är den allmänna lösningen f=xz+g(y,z) (*). Vi sätter in den i (ii) och får $2y=f_y=\{\text{enligt }(*)\}=\frac{\partial}{\partial y}(xz+g(y,z))=g_y(y,z).$ En lösning för g_0 är $g_0=y^z$ och därmed är den allmänna lösningen $g(y,z)=y^2+h(z).$ Om vi stoppar in den i (*) fås $f(x,y,z)=xz+g(y,z)=xz+y^2+h(z)$ (**). Om vi sätter in det i (iii) får vi $x+2z=f_z=\frac{\partial}{\partial z}(xz+y^2+h(z))$ och därmed $x+2z=x+h'(z)\Longrightarrow h'(z)=2z\Longrightarrow h(z)=z^2+C.$ Då får vi genom att gå tillbaka till (**) att $f(x,y,z)=xz+g(yz)=xz+y^2+h(z)=xz+y^2+z^2+C$ vilket är en potential till \vec{F} , vilket man vanligtvis bör kontrollera.

0.2 Stokes sats

Definition 2 (Positivt orienterad rand till en yta i \mathbb{R}^3). Låt S vara en yta i \mathbb{R}^3 som parametriseras av $\vec{r}(u,v)$ där $(u,v) \in D$. Randen ∂S till ytan S är bilden av randen ∂D till D.

En orientering \vec{n} av S ger en orientering av ∂S genom att man går moturs längs ∂S runt \vec{n} . Om ∂S har den orienteringen så säger man att den är positivt orienterad.

Sats 3 (Stokes sats). Låt S vara en orienterad yta i \mathbb{R}^3 och anta att dess rand $C=\partial S$ är en enkel, sluten och positivt orienterad kurva. Låt också \vec{F} vara ett vektorfält med kontinuerliga partiella derivator.

Då gäller att

$$\int_{C} \vec{F} \cdot d\vec{r} = \iint_{S} (\nabla \times F) \cdot d\vec{S}.$$

Om ett område $D \subseteq \mathbb{R}^2$ kan det också ses som en yta $S = \{(x,y,0) \mid (x,y) \in D\}$ i \mathbb{R}^3 . I detta fallet är Greens formel för D samma som Stokes sats för S. Mer om det i anteckningarna på kurshemsidan.

Anmärkning 1. Man ser på liknande sätt som att $\nabla \times (\nabla \vec{F}) = 0$ också att $\nabla \cdot (\nabla \times \vec{F}) =$, d.v.s. att $\vec{G} = \nabla \times \vec{F}$ är källfritt.

Omvänt gäller på \mathbb{R}^3 eller andra "lämpliga områden" $E \subseteq \mathbb{R}^3$ att om \vec{G} är källfritt, d.v.s. om $\nabla \cdot \vec{G} = 0$ så är $\vec{G} = \nabla \times \vec{F}$ för något vektorfält \vec{F} .

Inom framför allt fysik är det ett vanligt krav/antagande att vektorfält är källfria, vilket ger relevanta exempel när Stokes sats är tillämpbar och användbar.

Anmärkning 2. Stokes sats kan också användas för att visa satsen om att vektorfält på \mathbb{R}^3 är konservativa precis när dess rotation är 0. Beviset finns i avsnitt 16.8 i boken.