MATH 1552 QUIZ 1, FALL 2015, GRODZINSKY

Print Your Name: Key-)

T.A.: (circle one) Miheer

Brandon

Stephen

Kabir

- 1. A small town has a population that is changing at a rate of $f(t) = 11t 3t^2$ citizens, where t is time in years.
- (a) (6 points) Set up an integral to find the population of the town after two years.

(b) (20 points) Using a general Riemann Sum, evaluate your integral in part (a). You may choose x_i^* to be the right-hand endpoint of each subinterval. ANY OTHER METHOD WILL RECEIVE NO CREDIT!

$$\Delta x = \frac{2-0}{N} = \frac{2}{N}, \quad So \quad X_i^* = a + i \Delta x$$

$$\Rightarrow \quad x_i^* = \frac{2}{N}$$

Then
$$f(x_i^*) = 11(2x_i) - 3(2x_i)^2$$

= $22i - 12i^2$

2. (12 points) The velocity of a model train is measured in inches over a four second interval, and results in the following table:

Time (sec)	Velocity (in/sec)
0	0
1	5
2	7
3	4
4	0

Estimate the distance traveled by the train by using an **upper** sum with time intervals of 1 second. You may assume the velocity is strictly increasing or strictly decreasing along each subinterval.

$$U_{f} = \Delta x \left[f(1) + f(2) + f(3) + f(3) \right]$$

$$= 1 \cdot \left[5 + 7 + 7 + 4 \right] = 23 \text{ inches}$$

3. (12 points) Given that:

$$\int_{1}^{5} f(x)dx = 10, \quad \int_{1}^{2} f(x)dx = -4,$$

find the **total** area bounded by the curve y = f(x), x = 1, x = 5, and the x-axis.

Note
$$\int_{2}^{5} f(x) dx = \int_{2}^{5} f(x) dx - \int_{2}^{3} f(x) dx$$

$$= 10 - (-4) = 14$$
Total area = $\left| \int_{2}^{3} f(x) dx \right| + \left| \int_{2}^{5} f(x) dx \right|$

$$= 4 + 14 = 18 \text{ units}$$

MATH 1552 QUIZ 1, FALL 2015, GRODZINSKY

Print Your Name: Key-2

T.A.: (circle one) Miheer

Brandon

Stephen

Kabir

1. (12 points) Given that:

$$\int_{2}^{7} f(x)dx = 8, \quad \int_{5}^{7} f(x)dx = -3,$$

find the **total** area bounded by the curve y = f(x), x = 2, x = 7, and the x-axis.

Note
$$\int_{2}^{5} f(x) dx = \int_{2}^{6} f(x) dx - \int_{5}^{6} f(x) dx$$

= $8 - (-3) = 11$
Total area = $15 f(x) dx | + 15 f(x) dx |$
= $11 + 1 - 31 = 14$ uents²

2. (12 points) The velocity of a model train is measured in inches over a four second interval, and results in the following table:

Time (sec)	Velocity (in/sec)
0	0
1	10
2	8
3	5
4	0

Estimate the distance traveled by the train by using an **upper** sum with time intervals of 1 second. You may assume the velocity is strictly increasing or strictly decreasing along each subinterval.

$$Uf = \Delta x \left[f(i) + f(i) + f(2) + f(3) \right]$$

$$= 1 - \left[10 + 10 + 8 + 5 \right]$$

$$= (33) \text{ modes}$$

- 3. A small town has a population that is changing at a rate of $f(t) = 10t 3t^2$ citizens, where t is time in years.
- (a) (6 points) Set up an integral to find the population of the town after two years.

(b) (20 points) Using a general Riemann Sum, evaluate your integral in part (a). You may choose x_i^* to be the right-hand endpoint of each subinterval. ANY OTHER METHOD WILL RECEIVE NO CREDIT!

$$\Delta x = \frac{20}{10} = \frac{2}{10}, \quad x_{i}^{*} = a + i \Delta x = \frac{2}{10}$$

$$= \frac{20i}{10} - \frac{12i^{2}}{10^{2}}$$

$$= \frac{20i}{10} - \frac{12i^{2}}{10^{2}}$$

$$= \lim_{n \to \infty} \Delta x = \lim_{n \to \infty}$$