Конспект по Линейной Алгебре.

Чепелин В.А.

Содержание

1	О конспект	re:	
2	Основные Алгебраические структуры.		
2.1	Операциі	и, группа, кольцо, поле	
	2.1.1	Законы композиции	
	2.1.2	Ассоциативность, коммутативность алгебраических операций	
	2.1.3	Алгебраическая структура, группа, кольцо, поле. Свойства	
2.2	Линейное	е пространство, алгебра, свойства	
2.3	Нормиро	ванные линейные пространства и алгебры	
2.4	Отношен	ие эквивалентности, фактор-структуры	
3	Алгебра ко	омплексных чисел.	
3.1	Введение	В КОМПЛЫ	
	3.1.1	Как задаем компклексные?	
	3.1.2	Модуль комлексного	
	3.1.3	Различные формы записи	
3.2	Операции	и сложения, умножения	
3.3	- I	я сопряжения и деления. Комплексные = поле	
3.4	Свойства	экспоненты чисто мнимого числа. Формулы Эйлера, Муавра, корня	
	n – ой ст	епени	
	3.4.1	Свойства экспоненты чисто мнимого чисто мнимого числа $+$ Φ ор	
		мула Эйлера.	
	3.4.2	Формула Муавра	
	3.4.3	Корень п-ой степени	
	3.4.4	Вычисление квадратного корня в алгебраическом виде	
3.5		комплексного аргумента: $\exp z$, $\ln z$, z^w , w^z	
	3.5.1	Экспонента комплексного аргумента	

	3.5.2	Логарифм комплексного аргумента
	3.5.3	Комплексное в степени комплексного числа
4.	Линейные	пространства.
4.1		е определения.
	4.1.1	Линейная оболочка, линейная независимость векторов
	4.1.2	Теорема о линейно независимых системах векторов
	4.1.3	Теорема о прополке
4.2	Порожда	ющие системы, базис, размерность и т.п
	4.2.1	Порождающая система векторов, конечномерные пространства.
	4.2.2	Базис. Теорема об эквивалентных условиях для базиса
	4.2.3	Размерность пространства
	4.2.4	Теорема о дополнении любой независимой системы до базиса и с
		порождающей системе векторов
4.3	Координа	аты, изоморфзим и все об этом
	4.3.1	Координаты вектора и их единственность
	4.3.2	Изоморфизм линейных пространств и его свойства
	4.3.3	Координатный изоморфизм. Теорема об изоморфизме конечномер-
		ных про- странств, следствие
4.4		о лин. подпространстве, ранг, база.
	4.4.1	Теорема о лин. подпространстве
	4.4.2	База, ранг системы векторов
	4.4.3	Теорема о ранге.
4.5		ние и сумма линейных подпространств. Формула Грассмана
4.6	-	сумма линейных подпространств. Теорема об эквивалентных усло-
	-	мой суммы, следствие
4.7	_	разие и все о них
4.8	Фактор і	пространство лин. пространства
5	Алгебра ма	атриц.
5.1		е понятия
	5.1.1	Определение.
	5.1.2	Основные операции с матрицами
5.2	Операция	я транспонирования и её свойства
5.3		н матрица и её свойства
5.4		рицы
5.5		ранга. Теорема о приведении матрицы к трапецевидной
6	Системы л	инейных уравнений.
6.1		е определения и понятия, теорема Кронекера-Капелли

6.2	Структура общего решения СЛОУ и СЛНУ. ФСР. Альтернатива Фредголь-			
	Ma			
	6.2.1 Структура общего решения СЛОУ и СЛНУ			
	6.2.2 Φ CP			
6.3	Теорема о структуре общего решения системы линейных неоднородных урав-			
	нений (СЛНУ), следствия. Альтернатива Фредгольма.			
6.4	Метод Гаусса решения СЛАУ			
6.5	Нахождение обратной матрицы методом Гаусса			
6.6	Геометрическая интерпретация СЛАУ			
6.7	Матрица перехода от старого базиса к новому. Связь координат вектора в			
	разных базисах.			
7 (Эпределители.			
7.1	Полилинейные формы.			
	7.1.1 Полилинейные формы			
	7.1.2 Антисимметричные полилинейные формы			
	7.1.3 Подстановки			
	7.1.4 Определитель матрицы			
7.2	Определитель числовой матрице. Теорема об определителе транспонирован-			
	ной, формулы для вычисления определителей первого и второго порядка.			
	7.2.1 Определитель матрицы, вторая формула			
	7.2.2 Теорема об определителе транспонированной матрицы. Свойства			
	определителя			
7.3	Формула для обратной матрицы. Теорема Крамера			
7.4	Теорема Лапласа			
7.5	Второе определение ранга матрицы			
7.6	Определитель n -ого порядка			

1 О конспекте:

Данный конспект был подготовлен Чепелиным Вячеславом Алексеевичем. Надеюсь, что он хотя бы кому-то поможет :)

2 Основные Алгебраические структуры.

2.1 Операции, группа, кольцо, поле

2.1.1 Законы композиции.

 $f: A \times B \to C$ - функция отображения.

 $\forall (a,b): a \in A, b \in B: \exists ! c \in C$ — закон внешней контрапозиции.

 $f:A\times A\to A$ — закон внутренней контрапозиции или алгебраическая операция.

2.1.2 Ассоциативность, коммутативность алгебраических операций.

Возьмем операцию $*: A \times A \rightarrow A$:

a*b=b*a — коммутативность.

a * (b * c) = (a * b) * c — ассоциативность.

2.1.3 Алгебраическая структура, группа, кольцо, поле. Свойства.

Алгебраическая структура — множество с набором Ω — операция и отношений на ней, с некоторой системой аксиом. Обозначают (A,Ω)

Группа (A, $\{+\}$):

- 1. a + (b + c) = (a + b) + c ассоциативность.
- 2. $\exists 0 : \forall a : a + 0 = 0 + a = a$.
- 3. \exists обратного: $\forall a : \exists (-a) : a + (-a) = 0$.

Если группа обладает еще и коммутативностью, то такая группа называется абелевой.

Кольцо $(A, \{+, \cdot\})$:

- 1. Абелева групппа по сложению.
- 2. $a \cdot (b+c) = a \cdot b + a \cdot c$ левая дистрибутивность.
- 3. $(b+c)\cdot a = b\cdot a + c\cdot a$ правая дистрибутивность.
- 4. $a \cdot (b \cdot c) = (a \cdot b) \cdot c$ ассоциативность умножения

<u>Поле</u> (A, $\{+, \cdot\}$):

- 1. Абелева групппа по сложению.
- 2. Абелева групппа по умножению.

3. a(b+c) = ab + ac — дистрибутивность.

Свойства кольца:

- 1. $0 \cdot a = 0$
- $2. \ a + x = a + y \rightarrow x = y$
- 3. a + x = b имеет единственное решение
- 4. 0 единственнен.
- 5. 1 единственна в кольце с единицой.

2.2 Линейное пространство, алгебра, свойства.

K- поле, V - множество. $+: V \times V \to V, \cdot: K \times V \to V$. Если все, что сказано ниже выполнено $\forall \phi, \lambda \in K, a, b \in V$.

- 1. аксиомы
- 2. аббелевой
- 3. для V
- 4. по сложению.
- 5. $\phi(\lambda(a)) = \lambda(\phi(a))$.
- 6. $\lambda(a+b) = \lambda a + \lambda b$.
- 7. $a(\phi + \lambda) = a\phi + a\lambda$.
- 8. $\exists 1 : a \cdot 1 = a$.

То тогда такую систему называют линейным пространством.

Если добавить еще одну операцию $\times: V \times V \to V$.

1. $(a+b) \times c = a \times c + b \times c$

$$c \times (a+b) = c \times a + c \times b$$

2. $\lambda(a \times b) = (\lambda a) \times b = a \times (\lambda b)$

То такую штучку называют линейной алгеброй.

- 1. добавим коммутативность \times коммутативная алгебра.
- 2. добавим ассоциативность \times ассоциативная алгебра.
- 3. добавим единицу унарная алгебра.
- 4. добавим обратное алгебра с делением

2.3 Нормированные линейные пространства и алгебры.

Нормированное пространство — линейное пространство над \mathbb{R} с нормой.

Норма $||\cdot||:V\to\mathbb{R}$, удовлетворящее:

- 1. $||x|| + ||y|| \le ||x + y||$.
- 2. $||x|| \ge 0$, причем $||x|| = 0 \Leftrightarrow x = 0$.
- 3. $||\alpha x|| = |\alpha|||x||$.

Алгебра называется **нормированной**, если существует норма согласованная с умножением:

 $||ab|| \le ||a|| \cdot ||b||.$

2.4 Отношение эквивалентности, фактор-структуры.

 $\frac{\textbf{Бинарное отношение}}{\text{если оно}} \sim \text{на множестве } X \text{ является } \underline{\textbf{отношением эквивалентности}},$

- Рефлексивно: $\forall x \in X \ x \sim x$.
- Симметрично: $\forall x, y \in X \ x \sim y \leftrightarrow y \sim x$.
- Транзитивно: $\forall x, y, z \in X \ x \sim y \land y \sim z \rightarrow x \sim z$.

Если \sim — бинарное отношение на X, то множества $M_a = \{x \in X \mid x \sim a\}$ называются классами эквивалентности , а множество $X/\sim=\{M_a \mid a \in X\}$ — фактормножеством (или факторпространством) X по \sim .

Свойства классов эквивалентности.

- 1. $\forall a \in X \ M_a \neq \varnothing$.
- 2. $\forall a,b \in X$ выполнено либо $M_a = M_b$, либо $M_a \cap M_b = \varnothing$.
- $3. \bigcup_{a \in X} M_a = X.$

Если у нас есть множество X, а M — какое-то множество, состоящее из непустых взаимно непересекающихся подмножеств X, в объединении дающих X. Тогда M называется **разбиением** X.

Любое разбиение X является факторпространством X по некоторому отношению эквивалентности. Доказательство этого тривиально, если вы представите отношения как ребра в графе, а классы эквивалентности - компоненты

3 Алгебра комплексных чисел.

3.1 Введение в комплы.

3.1.1 Как задаем компклексные?

 ${\color{red} {\bf M}}$ **ножество комплексных чисел** - линейное пространство ${\mathbb R}^2$ с евклидовой нормой.

При этом x = Re z - вещественная часть числа, а y = Im z - мнимая часть.

При x = 0 число становится чисто мнимым.

При y = 0 число можно отождествлять с вещественным числом x.

Получаем первый вариант записи комплексных чисел - Декартову форму:

$$(x;y) = z \in \mathbb{C}; x, y \in \mathbb{R}$$

.

3.1.2 Модуль комлексного.

Евклидову норму $|z|=||(x;y)||_2=\sqrt{x^2+y^2}$ называют модулем комплексного числа.

3.1.3 Различные формы записи.

- 1. Декартова разбирали выше.
- 2. Алгебраическую форма записи: z = (x; y) = x + iy.
- 3. Тригонометрическая: Введем полярную систему координат с центром, совпадающим с центром д.с.к. и осью вдоль оси $Re\ z$. Тогда для каждого ненулевого комплексного числа получим r и φ . Тогда триг. запись $r(\cos\varphi + i\sin\varphi)$
- 4. Экспоненциальная: $z = r(\cos \varphi + i \sin \varphi) = re^{i\varphi}$

3.2 Операции сложения, умножения

Сложение/вычитание – аналогично сложению/вычитанию векторов

$$(x_1 + iy_1) + (x_2 + iy_2) = (x_1 + x_2) + i(y_1 + y_2)$$

$$(x_1 + iy_1) - (x_2 + iy_2) = (x_1 - x_2) + i(y_1 - y_2)$$

Умножение – $(x_1 + iy_1) * (x_2 + iy_2) = (x_1x_2 - y_1y_2) + i(x_1y_2 + x_2y_1)$ Распишем в тригонометрической форме перемножение двух комплексных чисел:

$$r_1 r_2 (\cos(\varphi_1 + \varphi_2) + i\sin(\varphi_1 + \varphi_2))$$

3.3 Операция сопряжения и деления. Комплексные = поле.

Сопряжение — для всех комплексных чисел z = x + iy существует сопряжённое ему $\overline{z} = x - iy$. Тривиальные свойства:

- $\bullet \ \overline{\overline{z}} = z$
- $z = \overline{z} \Leftrightarrow (x + iy) = (x iy) \Leftrightarrow y = 0 \Leftrightarrow z \in \mathbb{R}$
- $z\overline{z} = (x+iy)(x-iy) = (x^2+y^2) = |z|^2$
- $z + \overline{z} = (x + iy) + (x iy) = 2x = 2 \cdot Re z$
- $z \overline{z} = (x + iy) (x iy) = 2iy = 2i \cdot Im z$

$$\underline{\textbf{Обратноe}} - z^{-1} = \frac{\overline{z}}{|z|^2}$$

$$\underline{\underline{\mathbf{Д}}}$$
еление $-\frac{z_1}{z_2}=z_1\cdot z_2^{-1}.$

Ну а понять почему комплексное поле - изи.

- 3.4 Свойства экспоненты чисто мнимого числа. Формулы Эйлера, Муавра, корня n ой степени.
- 3.4.1 Свойства экспоненты чисто мнимого чисто мнимого числа + Формула Эйлера.

Сделаем заявление, в которое поверим и в дальнейшем будем активно использовать:

$$e^{i\varphi} = \cos \varphi + i \sin \varphi; \varphi \in \mathbb{R}$$

Свойства:

1.
$$e^{i*2\pi k} = 1; k \in \mathbb{Z}$$

2.
$$e^{i(\varphi+2\pi k)} = e^{i\varphi}$$
; $k \in \mathbb{Z}$

3.
$$e^{i(\varphi_1+\varphi_2)}=e^{i\varphi_1}\cdot e^{i\varphi_2}$$

4.
$$e^{-i\varphi} = \frac{1}{e^{i\varphi}} = \overline{e^{i\varphi}}$$

5.
$$|e^{i\varphi}| = 1$$

6.
$$e^{i\varphi \cdot n} = (e^{i\varphi})^n; n \in \mathbb{Z}$$

7. Формулы Эйлера:

$$\frac{e^{i\varphi} + e^{-i\varphi}}{2} = \cos\varphi, \frac{e^{i\varphi} - e^{-i\varphi}}{2i} = \sin\varphi$$

3.4.2 Формула Муавра.

 $\forall n \in \mathbb{N}(|z|(\cos\varphi + i\sin\varphi))^n = |z|^n(\cos n\varphi + i\sin n\varphi).$ Очевидно

3.4.3 Корень п-ой степени.

Корнем n-ной степени комплексного числа $re^{i\varphi}$ называются числа $\sqrt[n]{r}e^{i\frac{\varphi+2\pi k}{n}}$ для $k \in [0:n-1]$. Это очевидно выводится из $\sqrt[n]{w} = z$. $w = z^n$

3.4.4 Вычисление квадратного корня в алгебраическом виде.

$$a + bi = (u + vi)^2 \Leftrightarrow \begin{cases} a = u^2 - v^2 \\ b = 2uv \end{cases}$$

Заметим, что $a^2+b^2=(u^2+v^2)^2$, а поскольку и a^2+b^2 , и u^2+v^2 неотрицательны, это равенство значит, что $u^2+v^2=\sqrt{a^2+b^2}$. А отсюда и из $a=v^2-v^2$ получаем, что $u^2=\frac{\sqrt{a^2+b^2}+a}{2}$ и $v^2=\frac{\sqrt{a^2+b^2}-a}{2}$. Обе дроби неотрицательны, значит из них можно брать арифметические квадратные корни. Осталось лишь понять, как брать знаки при этих корнях. Да очень просто. Смотрим на b=2uv, что значит, что при положительном b мы берём оба корня с одинаковыми знаками, а при отрицательном — с разными.

3.5 Функции комплексного аргумента: $\exp z$, $\ln z$, z^w , w^z

3.5.1 Экспонента комплексного аргумента.

Комплексная экспонента – функция $\exp(x+iy)=e^x(\cos y+i\sin y)=e^x\cdot e^{iy}$. Ее обозначают e^z .

1.
$$e^{z+2\pi ki} = e^z - 2\pi i$$
 периодичность

2.
$$|e^z| = e^x = e^{Rez}$$

3.
$$e^{z_1+z_2}=e^{z_1}\cdot e^{z_2}$$

4.
$$e^{-z} = \frac{1}{e^z}$$

Аналогично формулам Эйлера введём sin и соs комплексной переменной:

$$\cos z = \frac{e^{iz} + e^{-iz}}{2}, \sin z = \frac{e^{iz} - e^{-iz}}{2i}$$

3.5.2 Логарифм комплексного аргумента.

Пусть $\ln z = w = x + iy$, тогда

$$z = |z|e^{i(\arg z + 2\pi k)} = re^{i\varphi}$$
$$z = e^w = e^x e^{iy}$$

Получим, что $|z| = e^x \in \mathbb{R}$, то есть $x = \ln |z|$. А $y = \arg z + 2\pi k$.

Видим, что в формуле присутствует $2\pi k$, что говорит нам о многозначности логарифма комплексного числа.

3.5.3 Комплексное в степени комплексного числа.

Пусть $k \in \mathbb{Z}$, $b \in \mathbb{C}$ – константа

 $w=z^b=e^{b\ln_k z}$ – обобщённая степенная функция

 $w=b^z=e^{z\ln_k b}$ – обобщённая показательная функция

Заметим, что стандартные свойства натурального логарифма **не выполняются**. Например $b^{z_1+z_2} \neq b^{z_1}b^{z_2}$.

4 Линейные пространства.

4.1 Основные определения.

В этом разделе мы будем рассматривать линейные пространства над $\mathbb C$ и иногда $\mathbb R$. Обозначать над чем мы будем K.

4.1.1 Линейная оболочка, линейная независимость векторов.

Говорят, что вектор u является <u>линейной комбинацией</u> векторов $(v_1; v_2; ...; v_n)$, если $\exists \alpha_1; \alpha_2; ...; \alpha_n \in Ku = \sum_{i=1}^n \alpha_i \cdot v_i$.

Если все $\lambda_k=0$, то линейная комбинация называется **тривиальной**

Система векторов $v_1, \dots, v_m \in V$ называется <u>линейной независимой</u>, если любая нулевая линейная комбинация тривиальна $\stackrel{def}{\Longleftrightarrow} \sum_{k=1}^m \lambda_k v_k = 0 \Leftrightarrow \forall k \in \{1, \dots, m\}$: $\lambda_k = 0$

В противном случае, система векторов называется <u>линейно зависимой</u>, т.е. \exists набор $\lambda_1,\dots,\lambda_m$ не все нули таких, что $\sum\limits_{k=1}^m \lambda_k v_k = 0.$

4.1.2 Теорема о линейно независимых системах векторов

Теорема

- 1. v_1, \ldots, v_m -линейно зависима \Leftrightarrow по крайней мере один из векторов это линейная комбинация остальных
- 2. Если некоторая подсистема системы векторов v_1, \ldots, v_m линейно зависима, то система векторов v_1, \ldots, v_m линейно зависима
- 3. v_1, \dots, v_m линейно независима v_1, \dots, v_{m+1} линейно зависима v_1, \dots, v_m

Доказательство очевидно

Следствия:

- 1. Если система линейно независима, то любая подсистема линейно независима
- 2. Если система содержит 0 вектор, либо пару пропорциональных векторов, то система линейно зависима

4.1.3 Теорема о прополке.

Любую систему векторов v_1, \ldots, v_m , в которой хотя бы один из векторов ненулевой, можно заменить на линейно независимую систему векторов v_{j_1}, \ldots, v_{j_k} с сохранением линейной оболочки. $\operatorname{span}(v_1, \ldots, v_m) = \operatorname{span}(v_{j_1}, \ldots, v_{j_k})$

Доказательство:

Пусть
$$s_0 = 0, s_1 = \text{span}(v_1), \dots, s_m = \text{span}(v_1, \dots, v_m)$$

Тогда
$$s_0 \subset s_1 \subset \ldots \subset s_m \subset V$$

Идём от
$$j=m$$
 до $j=2$

Если $s_{j-1}=s_j$, то v_j удаляем. При этом $\operatorname{span}(v_1,\ldots,v_j)=\operatorname{span}(v_1,\ldots,v_{j-1})$ сохраняется

Если $s_{j-1} \subset s_j$, то $v_j \notin s_{j-1}$, т.е. v_j — не является линейной комбинацией v_1, \ldots, v_{j-1}

Продолжая так делать, получим, что никакой вектор из полученных не является линейной комбинацией других, то есть итоговое подмножество линейно независимо

В результате получается цепочка строго вложенных подмножеств $s_0\subset s_{j_1}\subset\ldots\subset s_{j_k}\subset s_m\subset V$

$$\Rightarrow s_m = \operatorname{span}(v_{j_1}, \dots, v_{j_k})$$
 Q.E.D.

4.2 Порождающие системы, базис, размерность и т.п.

4.2.1 Порождающая система векторов, конечномерные пространства.

Система векторов $v_1, \ldots, v_m \in V$ называется порождающей (полной), если любой вектор линейного пространства V раскладывается по этим векторам, т.е. является линейной комбинацией v_1, \ldots, v_m . $V = \mathrm{span}(v_1, \ldots, v_m)$

Если число v_1, \ldots, v_m конечно, то линейное пространство называется конечномерным.

4.2.2 Базис. Теорема об эквивалентных условиях для базиса.

Теорема

Следующие утверждения равносильны:

- 1. $v_1, \ldots, v_n \in V$ линейно независимая и порождающаяся система
- 2. $v_1, \ldots, v_n \in V$ линейно независимая система и максимальная по числу элементов

3. $v_1, \ldots, v_n \in V$ — порождающая система и минимальная по числу элементов Доказательство очевидно.

Если система $v_1, \ldots, v_n \in V$ удовлетворяет условиям теоремы, то она называется <u>базисом</u> пространства V.

4.2.3 Размерность пространства.

Количество векторов $n=\dim V=$ **размерность линейного пространства** $=\max$ возможное число линейно независимых векторов $=\min$ число в порождающей системе векторов

4.2.4 Теорема о дополнении любой независимой системы до базиса и о порождающей системе векторов.

- 1. \forall линейно независимую систему векторов в V можно дополнить до базиса пространства V
- 2. из любой порождающей системы пространства V можно выделить базис пространства V

Доказательство очевидно, спасибо прополке.

4.3 Координаты, изоморфзим и все об этом.

4.3.1 Координаты вектора и их единственность.

$$\forall x \in V: x = \sum\limits_{i=1}^n x_i l_i$$
, где $l = (l_1, \dots, l_n)$ — базис в V (порождающей системы)

 $x_i \in K$ — координаты вектора x относительно базиса l

$$x \in V \longrightarrow x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in K^n$$
, где $\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$ — координатный столбец.

Утверждение

 $\forall x \in V$ координаты относительно базиса e определяется единственным образом

Доказательство очевидно от противного.

Несложно заметить, что отображение между V и K^n , которое по вектору выдаёт его координаты — биекция.

4.3.2 Изоморфизм линейных пространств и его свойства.

 V_1, V_2 — линейные пространства называются изоморфными ($V_1 \cong V_2$), если между V_1 и V_2 существует биекция и сохраняется линейность, т.е.

$$x \in V_1 \longleftrightarrow x' \in V_2$$
$$y \in V_1 \longleftrightarrow y' \in V_2$$
$$\forall \lambda \in K : x + \lambda y \in V_1 \longleftrightarrow x' + \lambda y' \in V_2$$

Свойства изоморфизма

$$1. \ 0 \in V \longrightarrow 0' \in V'$$

Доказательство

$$\forall \lambda \in K : \lambda x \longleftrightarrow \lambda x'$$

Пусть
$$\lambda = 0$$
, тогда $0 = 0 \cdot x \longleftrightarrow 0 \cdot x' = 0'$ Q.E.D.

$$2. \ \forall x \in V \longleftrightarrow x' \in V'$$

$$-x \in V$$
 — противоположный элемент к x

$$-x' \in V$$
 — противоположный элемент к x'

$$\Rightarrow -x \longleftrightarrow -x'$$

Доказательство

$$\forall \lambda \in K : \lambda x \longleftrightarrow \lambda x'$$

Пусть
$$\lambda = -1$$
, тогда $-x = -1 \cdot x \longleftrightarrow -1 \cdot x' = -x'$ Q.E.D.

3.
$$x_1, \ldots, x_m \in V; x'_1 \ldots x'_m \in V'$$

$$\forall k = 1 \dots m : x_k \longleftrightarrow x'_k$$

$$\Rightarrow \sum_{k=1}^{m} \alpha_k x_k \in V \longleftrightarrow \sum_{k=1}^{m} \alpha_k x_k' \in V'$$

Доказательство

По методу математической индукции

Q.E.D.

4.
$$x_1, \ldots, x_m \in V \longleftrightarrow x'_1, \ldots, x'_m \in V'$$
 линейно независимы

Доказательство

$$\alpha_k \in K$$

$$\sum_{k=1}^{m} \alpha_k x_k = 0 \longleftrightarrow \sum_{k=1}^{m} \alpha_k x_k' = 0'$$

т.к.
$$\sum_{k=1}^m \alpha_k x_k \longleftrightarrow \sum_{k=1}^m \alpha_k x_k'$$
 (3 свойство) и $0 \in V \longleftrightarrow 0' \in V'$ (1 свойство) $x_1, \ldots, x_m \in V \Leftrightarrow \forall k = 1 \ldots m : \alpha_k = 0 \Leftrightarrow x_1', \ldots, x_m' \in V'$ Q.E.D. линейно независимы

5.
$$x_1, \dots, x_m \in V \longleftrightarrow x'_1, \dots, x'_m \in V'$$
 порождающая система

$$x_1, \ldots, x_m \in V$$
 — порождающая система $\Leftrightarrow \forall x \in V : x = \sum_{k=1}^m \alpha_k x_k$

$$\forall x \in V : x = \sum_{k=1}^{m} \alpha_k x_k \longleftrightarrow \forall x' \in V' : x' = \sum_{k=1}^{m} \alpha_k x_k'$$

т.к.
$$\sum_{k=1}^m \alpha_k x_k \longleftrightarrow \sum_{k=1}^m \alpha_k x_k'$$
 (3 свойство) и $x \longleftrightarrow x'$

$$\forall x' \in V' : x' = \sum_{k=1}^{m} \alpha_k x_k' \Leftrightarrow x_1', \dots, x_m'$$
 — порождающая система Q.E.D.

6.
$$e_1, \dots, e_n \longleftrightarrow e'_1, \dots, e'_n$$

Доказательство

Из свойств 4 и 5 мы знаем, что если система векторов линейно независима и порождающая, то есть это базис Q.E.D.

4.3.3 Координатный изоморфизм. Теорема об изоморфизме конечномерных про- странств, следствие.

Теорема

 V_1,V_2 — линейные пространства над полем K

$$V_1 \cong V_2 \Leftrightarrow \dim V_1 = \dim V_2$$

Доказательство:

$$x = \sum_{k=1}^{n} x_i e_i \in V_1 \longleftrightarrow x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in K^n \longleftrightarrow x' = \sum_{k=1}^{n} x_i e_i' \in V_2$$

$$x \in V_1 \xleftarrow{\text{изоморфизм}} x \in K^n \xleftarrow{\text{изоморфизм}} x' \in V_2$$

Проверим линейность $\forall \lambda \in K$

$$x + \lambda y \longleftrightarrow \sum_{k=1}^{n} x_{i}e_{i} + \lambda \sum_{k=1}^{n} y_{i}e_{i} = e_{i}(\sum_{k=1}^{n} x_{i} + \lambda \sum_{k=1}^{n} y_{i}) \longleftrightarrow \begin{pmatrix} x_{1} + \lambda y_{1} \\ \vdots \\ x_{n} + \lambda y_{n} \end{pmatrix} \longleftrightarrow$$

$$\longleftrightarrow \sum_{k=1}^{n} x_{i}e'_{i} + \lambda \sum_{k=1}^{n} y_{i}e'_{i} = e'_{i}(\sum_{k=1}^{n} x_{i} + \lambda \sum_{k=1}^{n} y_{i}) \longleftrightarrow x' + \lambda y'$$

$$x + \lambda y \longleftrightarrow x' + \lambda y'$$

Биекция сохраняет свойство линейности ⇒ изоморфизм

 \implies Если $V_1\cong V_2$, то из 6 свойства изоморфизма мы знаем, что существует биекция между базисами этих систем \Rightarrow dim $V_1=\dim V_2$

Q.E.D.

Следствие. Изоморфность разбивает множество линейных пространств на классы эквивалентности с равной размерностью.

4.4 Теорема о лин. подпространстве, ранг, база.

4.4.1 Теорема о лин. подпространстве.

Теорема (критерий линейного подпространства)

L — линейное подпространство $V \Leftrightarrow \forall x, y \in L \subset V \ \forall \lambda \in K : x + \lambda y \in L$

(L замкнуто относительно $+,\cdot)$

1. Доказательство:

 \rightarrow т.к. $L \subset V$ и выполняются 1-8 аксиомы

 \sqsubseteq т.к. $L \subset V$ выполнены все аксиомы кроме 3 и 4

Пусть $x \in L \subset V$, тогда $x + (-1) \cdot x \in L \Rightarrow o \in L \Rightarrow \exists$ нейтральный элемент в L

Пусть $x=0\in L, y\in L\Rightarrow 0+(-1)\cdot y=-y\in L\Rightarrow \exists$ противоположный элемент

 \Rightarrow для L выполнены 1-8 аксиомы линейного пространства

Q.E.D.

4.4.2 База, ранг системы векторов.

Ранг системы векторов $\stackrel{def}{\Longleftrightarrow}$ dim $(\operatorname{span}(v_1,\ldots,v_m))=r=\operatorname{rg}(v_1,\ldots,v_m)$

r — число тах линейно независимых векторов в $L = \mathrm{span}(v_1, \ldots, v_m)$

База — сделай прополку, получишь базис span.

4.4.3 Теорема о ранге.

Элементарные преобразования системы векторов:

- 1. удаление/добавление нулевого вектора
- 2. изменение порядка векторов
- 3. замена любого векторов на него де, умноженный на скаляр ($\lambda \in K, \lambda \neq 0: v_j \to \lambda v_j$)
- 4. замена любого из векторов на его сумму с любым другим вектором системы $(v_j \to v_j + v_k)$

Теорема

 $\operatorname{rg}(v_1,\ldots,v_m)$ не меняется при элементарных преобразованиях

Доказательство очев.

4.5 Пересечение и сумма линейных подпространств. Формула Грассмана.

 $L_1, L_2 \in V$ — линейные подпространства пространства V

$$L_1 + L_2 = \{x_1 + x_2 \in V : x_1 \in L_1, x_2 \in L_2\}$$

$$L_1 \cap L_2 = \{ x \in V : x \in L_1, x \in L_2 \}$$

Теорема (формула Грассмана)

 $L_1, L_2 \in V$ — линейные подпространства пространства V

$$\dim(L_1 + L_2) = \dim(L_1) + \dim(L_2) - \dim(L_1 \cap L_2)$$

Доказательство

1. $\dim(L_1 \cap L_2) \neq 0$

 $L_1 \cap L_2 \neq \{0\}$. Возьмем базис. Дополним L_1, L_2 до базиса базисом пересечения. А дальше просто блаблабла

2. $\dim(L_1 \cap L_2) = 0$

 $L_1 \cap L_2 = \{0\}$. Тривиально.

4.6 Прямая сумма линейных подпространств. Теорема об эквивалентных условиях прямой суммы, следствие.

 $L_1,\ldots,L_m\subset V$ называются дизъюнктными, если $x_1+\cdots+x_m=0$, где $x_i\in L_i, i=1\ldots m\Leftrightarrow \forall i=1\ldots m: x_i=0$

 $L_1+\cdots+L_m$ называется прямой суммой, если L_1,\ldots,L_m — дизъюнктны

 $L_1 \oplus L_2 \oplus \ldots \oplus L_m$ — прямая сумма линейного подпространства

Теорема

$$L = L_1 + \dots + L_m = \sum_{k=1}^m L_k, L_k \subset V$$

$$L = \bigoplus_{k=1}^{n} L_k \Leftrightarrow$$
 выполнению любого из 3-х утверждений

1.
$$\forall j = 1 \dots m : L_j \cap \sum_{k \neq j} L_k = \{0\}$$

- 2. базис L = объединение базисов L_k
- 3. $\forall x \in L : \exists ! x_k \in L_k : x = \sum x_k$ (единственность представления суммы)

Доказательство:

Докажем первое условие. Сначала докажем его необходимость для дизъюнктности (то есть что из неё следует условие). Мы знаем, что $v_1 + v_2 + \cdots + v_m = 0$

возможно только если каждый из векторов — 0. Рассмотрим $v \in L_i \cap \sum_{\substack{j=1 \ i \neq i}}^m L_j$.

Он, как несложно заметить, лежит в L_i , поэтому может быть записан как v_i . То есть $v \in \sum\limits_{\substack{j=1 \ j \neq i}}^m L_j$, что значит, что его можно записать как сумму $\sum\limits_{\substack{j=1 \ j \neq i}}^m v_j$. А это

значит, что $-v_i + \sum\limits_{\substack{j=1 \ j \neq i}}^m v_j = 0.$ По причине дизъюнктности, все слагаемые тут

 $j\neq i$ — 0. А значит $-v_i=0\Rightarrow v=0$. То есть любой $v\in L_i\cap\sum\limits_{\substack{j=1\j
eq i}}^m L_j$ является 0, что

и требовалось доказать.

Теперь докажем достаточность первого условия. Мы знаем, что $\forall i \in [1:m] \ L_1 \cap \sum_{\substack{j=1 \ j \neq i}}^m L_j = \{0\}$. Хочется доказать, что $v_1 + v_2 + \cdots + v_m = 0 \Leftrightarrow \forall i \in [1:m]$

$$m$$
] $v_i=0$. Заметим, что $v_1+v_2+\cdots+v_m=0\Leftrightarrow \sum\limits_{\substack{j=1\ j\neq i}}^m x_j=-x_i$. Правая часть

лежит в $\sum_{\substack{j=1\\j\neq i}}^m L_j$, а левая — в L_i . Это значит, что обе части лежат в их пересе-

чении, а там лежит только 0. Значит $v_i = 0$. То же самое можно провести для любого i, получив, что все v_i — нули. Что и требовалось доказать.

Дальше можно доказать, что первое условие равносильно второму, а второе равносильно третьему.

Следствие

$$L = L_1 \oplus \ldots \oplus L_m \Leftrightarrow \dim L = \sum_{i=1}^m \dim L_i$$

Доказательство

по Грассману и мат. индукции

Q.E.D.

$$V = \bigoplus_{i=1}^{m} L_i \Rightarrow \forall x \in V : \exists ! x_i \in L_i : x = \sum_{i=1}^{m} x_i$$

 x_i — проекция элемента x на подпространство L_i параллельно $\sum_{i \neq i} L_j$

4.7 Многообразие и все о них.

<u>Линейным</u> (аффинным) многообразием называется множество точек пространства $V: D = \{x \in V: x = x_0 + l, l \in L\}$, где $L \subset V, x_0 \in V$ (сдвинутое линейное подпространство)

Размерность линейного многообразия $\stackrel{def}{\Longleftrightarrow} \dim D = \dim L$

Теорема

 $P_1 = x_1 + L_1; P_2 = x_2 + L_2,$ где $L_1, L_2 \subset V$ — линейные подпространства, $x_1, x_2 \in V$

$$P_1 = P_2 \Leftrightarrow \begin{cases} L_1 = L_2 = L \\ x_1 - x_2 \in L \end{cases}$$

Доказательство очевидно. Справа налево тривиаьно, слева направо рассмотрите $p_1=x_1+l_1=x_2+l_2$ И посмотрите на $p_1=x_1$ или $p_2=x_2$

Следствие

$$P = X_0 + L$$

$$\forall x \in P \Rightarrow P_x = x + L = P$$

Доказательство:

- (a) L = L
- (b) $x x_0 \in L$

Q.E.D

4.8 Фактор пространство лин. пространства

Пусть у нас есть линейное подпространство L. Тогда отношение $x \sim y \Leftrightarrow x-y \in L$ является отношением эквивалентности, для любых векторов из V.

 $\overline{\Phi}$ акторпространство пространства V по модулю линейного подпространства L $\overline{V}|_L$ — это фактормножество V по отношению эквивалентности \sim из предыдущего утверждения.

Теорема $V|_L$ состоит из линейных многообразий на L.

Доказательство:

Если $x - y \in L$, то линейные многообразия x + L и y + L по одной из теорем ранее совпадают. То есть эквивалентные элементы порождают одинаковые многообразия.

Теорема

$$\dim V\big|_L = \dim V - \dim L.$$

Доказательство:

Пусть $\{e_1;e_2;\dots;e_m\}$ — базис L. Дополним его до базиса V векторами $\{f_1;f_2;\dots;f_{n-m}\}$ Хочется доказать, что $\{f_1+L;f_2+L;\dots;f_{n-m}+L\}$ — базис $V\big|_L$. Докажем, что эта система порождающая. Нужно породить v+L. v раскладывается по базису $\{e_1;e_2;\dots;e_m;f_1;f_2;\dots;f_{n-m}\}$ как $v=\sum_{i=1}^m\alpha_ie_i+\sum_{i=1}^{n-m}\beta_if_i$. Первая сумма лежит в L, то есть её можно выкинуть, многообразие останется таким же. А значит v+L можно представить как $\sum_{i=1}^{n-m}\beta_i(f_i+L)$, ведь по определению суммы многообразий это $\binom{n-m}{\sum_{i=1}^n}\beta_if_i$ + L. Теперь докажем линейную независимость. Рассмотрим нулевую линейную комбинацию $\sum_{i=1}^{n-m}\beta_i(f_i+L)$. Она, как мы уже знаем, равна $\binom{n-m}{\sum_{i=1}^n}\beta_if_i$ + L. Это должно быть равно нейтральному элементу (то есть L). Когда эти линейные многообразия равны? Когда $\sum_{i=1}^{n-m}\beta_if_i\in L$. То есть $\sum_{i=1}^{n-m}\beta_if_i-\sum_{i=1}^m\alpha_ie_i=0$. Но это же линейная комбинация векторов подсистемы $\{e_1;e_2;\dots;e_m;f_1;f_2;\dots;f_{n-m}\}$, а значит она линейно независима. А значит $\forall i\in [1:n-m]$ $\beta_i=0$, что значит, что линейная комбинация $\sum_{i=1}^{n-m}\beta_i(f_i+L)$ тривиальна.

5 Алгебра матриц.

5.1 Основные понятия

5.1.1 Определение.

<u>def:</u> Матрица — множество некоторых объектов (элементов), записанных в виде таблицы (не обязательно числа).

$$A = (a_{ij})_{m \times n} = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix}$$

m — число строк n — число столбцов "Матрица размерности m на n"

Матрица, где $\forall i, j \ a_{ij} \in \mathbb{R}(\mathbb{C})$ — числовая (вещественная/комплексная).

$$A=\begin{pmatrix} A_1&\dots&A_m\end{pmatrix}$$
 — столбцовый вид записи. A_j — столбец матрицы. $A_j=\begin{pmatrix} a_{1j}\\ \vdots\\ a_{mj}\end{pmatrix}\in\mathbb{R}^m(\mathbb{C}^m)$

$$A=egin{pmatrix} S_1 \ dots \ S_m \end{pmatrix}$$
 — строчный вид записи. S_i — строка матрицы. $S_i=ig(a_{i1} \ \dots \ a_{in}ig)\in \mathbb{R}_n(\mathbb{C}_n)$

 $span(A_1,\ldots,A_n)\subset \mathbb{R}^m(\mathbb{C}^m)$ — пространство столбцов матрицы

$$A = \begin{pmatrix} a_{11} & * & * \\ * & \ddots & * \\ * & * & a_{mn} \end{pmatrix}$$
 — главная диагональ.

$$A = \begin{pmatrix} * & * & a_{1n} \\ * & \dots & * \\ a_{m1} & * & * \end{pmatrix}$$
 — побочная диагональ.

$$orall i
eq j \quad a_{ij} = 0 \, egin{pmatrix} a_{11} & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & a_{mn} \end{pmatrix} = egin{pmatrix} \alpha_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \alpha_n \end{pmatrix} = diag(lpha_1, \dots lpha_n) -$$
 диагональная матрина.

 $E = diag(\alpha_1, \dots \alpha_n), \forall i \ \alpha_i = 1$ — единичная матрица.

$$egin{pmatrix} a_{11} & * & * \\ 0 & \ddots & * \\ 0 & 0 & a_{nn} \end{pmatrix}$$
 — верхнетреугольная матрица.

$$\begin{pmatrix} a_{11} & 0 & 0 \\ * & \ddots & 0 \\ * & * & a_{nn} \end{pmatrix}$$
 — нижнетреугольная матрица.

5.1.2 Основные операции с матрицами

 $a_{ij} \in \mathbb{K}$

 $A_{m \times n}, B_{m \times n}$

$$\underline{\mathbf{def:}}\ C = A + B = (c_{ij}) \quad \forall i, j\ c_{ij} = a_{ij} + b_{ij}$$

'+' — сложение матриц (одной размерности)

0 — нейтральный элемент относительно сложения

 $\lambda \in \mathbb{K}$

$$C = \lambda A = (\lambda a_{ij})$$

 $\lambda \times$ — умножение на скаляр.

-1A — противоположная A матрица (не путать c обратной)

Свойства:

1.
$$A + B = B + A$$

2.
$$(A+B) + C = A + (B+C)$$

- $3. \exists 0$
- $4. \exists -A$
- 5. $\alpha(A+B) = \alpha A + \alpha B$
- 6. $(\alpha + \beta)A = \alpha A + \beta A$
- 7. $(\alpha \beta)A = \alpha(\beta A) = \beta(\alpha A)$
- 8. 1A = A
- => Линейное пространство (8 аксиом выполнены) $M_{m \times n}$

$$E_{ij}=egin{pmatrix} 0&0&0&0&0\0&\ddots&\vdots&\dots&0\0&\dots&a_{ij}==1&\dots&0\0&\dots&\vdots&\ddots&0\0&0&0&0&0 \end{pmatrix}$$
 — канонический базис пространства $M_{m imes n}$ $A=$

$$\sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij} E_{ij} = (\alpha_{ij})_{m \times n} = 0_{m \times n} \Leftrightarrow a_{ij} = 0 \ \forall i, j$$

$$A = \begin{pmatrix} a_{11} \\ \vdots \\ a_{1n} \\ a_{21} \\ \vdots \\ a_{2n} \\ a_{m1} \\ \vdots \\ a_{mn} \end{pmatrix} \leftrightarrow \mathbb{R}(\mathbb{C})^{mn} \quad \Rightarrow \quad A \cong \mathbb{K}^{mn} \quad \Rightarrow \quad dim(M_{m \times n}) = mn$$

<u>def:</u> Матрицы A и B согласованы, если число столбцов A совпадает с числом столбцов B.

Если A и B согласованы, то $A_{m \times k}, B_{k \times n}$

$$C = A \times B = AB = (C_{ij})_{m \times n}$$
 $C_{ij} = \sum_{r=1}^{k} a_{ir} b_{rj}$ — умножение

<u>**def:**</u> Матрицы A и B перестановочны, если AB = BA (очевидно, должны быть квадратными)

A, B, C — квадратные матрицы $n \times n$ $\forall \lambda \in \mathbb{K}$

9.
$$A(B+C) = AB + AC$$

 $(A+B)C = AC + BC$

=> кольцо

10.
$$\lambda(AB) = (\lambda A)B = A(\lambda B)$$

=> алгебра $(M_{n\times n})$

11.
$$A(BC) = (AB)C$$

=> ассоциативная алгебра

13.
$$\exists E \quad EA = AE = A$$

=> унитальная алгебра

(Обратный элемент может не существовать, так что без 12)

Доказательства: упражнение на дом :) Но вообще там несложно, просто глина.

5.2 Операция транспонирования и её свойства.

Операция транспонирования заменяет матрицу $A_{m \times n}$ на $A_{n \times m}^T$, где строки новой матрицы - столбцы исходной (проще говоря, отражение относительно главной диагонали)

$$B = A^T = (b_{ij}) = (a_{ji})$$

Свойства:

- 1. $(A^T)^T = A$
- $2. (A + \lambda B)^T = A^T + \lambda B^T$
- 3. А и В согласованы $(AB)^T = B^T A^T$ (!!! не путать, я так вторую попытку кр по матрицам слил)

 $\underline{\mathbf{def:}}\ A_{m \times n}$ называется симметрической, если $A = A^T$

 $\underline{\operatorname{def:}}\ A_{m \times n}$ называется кососимметрической, если $A = -A^T$

5.3 Обратная матрица и её свойства.

 $A_{n \times n}$ Матрица A^{-1} называется **обратной** к A, а A называется обратимой, если $A^{-1}A = AA^{-1} = E$

Пока мы не знаем условий существования (в лекциях позже)

Свойства:

- 1. A^{-1} единственная (док-во очевидное через ассоциативность)
- 2. $(A^{-1})^{-1} = A$ (из определения)
- 3. $\forall \lambda, \lambda \in \mathbb{K} \quad (\lambda A)^{-1} = \frac{1}{\lambda} A^{-1}$
- 4. $E^{-1} = E$
- 5. $(A^T)^{-1} = (A^{-1})^T$
- 6. $\exists B^{-1} \Rightarrow \exists (AB)^{-1} = B^{-1}A^{-1}$

5.4 Ранг матрицы.

<u>def:</u> $rg_{line}(A) = rg(S_1, \dots S_n)$ — строчный ранг матрицы A (берем строки как вектора, находим ранг системы векторов) $1 \le rg_{line}(A) \le n \ (A \ne 0)$

<u>def:</u> $rg_{col}(A) = rg(A_1, \dots A_m)$ — столбцовый ранг матрицы A (берем строки как вектора, находим ранг системы векторов) $1 \le rg_{col}(A) \le m \ (A \ne 0)$

$$A_j$$
 $1 \leq i_1 < \ldots < i_k \leq m$ $\widetilde{A}_j = egin{pmatrix} a_{i_1j} \\ a_{i_2j} \\ \vdots \\ a_{i_kj} \end{pmatrix}$ — отрезок длины k столбца A_j

$$S_i$$
 $1 \leq j_1 < \ldots < j_k \leq n$ $\widetilde{S}_i = \begin{pmatrix} a_{ij_1} & a_{ij_2} & \ldots & a_{ij_k} \end{pmatrix}$ — отрезок длины k строки S_i

 ${\bf Утверждение\ 1:}\ A_1,A_2,\ldots A_n$ линейно зависимы => любые отрезки длины к $\widetilde{A}_1\ldots\widetilde{A}_n$ линейно зависимы.

Доказательство от противного: предполагаем, что независимы, но у нас уже есть нетривиальная линейная комбинация столбцов $A_1, A_2, \ldots A_n$, равная нулю, и если мы удалим часть строк, линейная комбинация всё так же будет давать 0.

<u>Следствие:</u> Отрезки длины к $\widetilde{A}_1 \dots \widetilde{A}_n$ линейно независимы $=>A_1,A_2,\dots A_n$ линейно независимы.

Утверждение 2: $rg_{line}(A) = k$ $S_{i_1} \dots S_{i_k}$ — база строк. Тогда, если $\widetilde{A}_1 \dots \widetilde{A}_n$ отрезки, отвечающие $S_{i_1} \dots S_{i_k}$, линейно зависимы, то и $A_1, A_2, \dots A_n$ линейно зависимы.

Доказательство:

 \overline{h} .у.о. $i_1, \ldots, i_k = 1, 2, \ldots, k$. Значит все оставшиеся - линейно комбинация. Значит я любую строчку могу записать, как линейную комбинацию наших строк:

$$s_{k+l} = \sum_{r=1}^{k} \alpha_{rl} s_r$$
. $a_{k+l_j} = \sum_{r=1}^{k} \alpha_{rl} a_{r_j}$:

 $\widetilde{A}_1 \dots \widetilde{A}_n$ отрезки, отвечающие $S_{i_1} \dots S_{i_k}$, линейно зависимы $\Leftrightarrow \exists \beta_j \in K$ не все нули.

$$\sum\limits_{j=1}^n b_j \widetilde{A}_j = 0$$
. Докажем, что с этими же eta

 $\sum\limits_{j=1}^{n}b_{j}A_{j}=0.$ Первые k - нули. Докажем, что и оставшиеся нули.

Посмотим на
$$k+1$$
 координату:
$$\sum_{j=1}^n \beta_j a_{k+1_j} = \sum_{j=1}^n \beta_j \sum_{r=1}^k \alpha_{r1} a_{r_j} = \sum_{r=1}^k \alpha_{r_1} \sum_{j=1}^n \beta_j a_{r_j} = 0$$

Далее аналогично

Теорема (о ранге матрицы)

$$rg_{line}(A) = rg_{col}(A) = rg(A)$$

Доказательство:

$$\overline{\operatorname{rg} A = k : 1 \le k} \le n, m$$

н.у.о. Пускай первые к строк линейно независимы.

Рассмотрим отрезки столбиков, соответсвующие этим элементам

 $r = \operatorname{rg}(\widetilde{A}_1 \dots \widetilde{A}_n) \leq k$. Тогда докажем, что ранг исходных столбиков не превосходит k. Пускай ранг r, тогда есть база, тогда исходные столбики тоже лин. независимы. Любой вектор не входящий в него - линейно зависимый по утверждению 2. Тогда база столбиков соответствует базе подотрезков. Откуда rg столбиков меньше либо равен рангу строк. Аналогично в обратную сторону, выиграли.

5.5 Свойства ранга. Теорема о приведении матрицы к трапецевидной

Свойства ранга:

- 1. $rg(A^T) = rg(A)$
- 2. $rg(\lambda A) = rg(A)$
- 3. rq(A + B) < rq(A) + rq(B) (дайт версия т. Грассмана)
- 4. А и В согласованы, $rg(AB) \leq \min(rg(A), rg(B))$

Матрица трапециевидной формы (н.у.о. n <= m:)

$$\begin{pmatrix} a_{11} & * & * & * & * \\ 0 & \ddots & * & * & * \\ 0 & 0 & a_{nn} & * & * \end{pmatrix}$$
 Очевидно любую матрицу млжно привести к трапецевидной.

6 Системы линейных уравнений.

6.1 Основные определения и понятия, теорема Кронекера-Капелли.

Обычно система записывается так: $\begin{cases} a_{11}x_1+a_{12}+\cdots+a_{1n}x_n=b_1\\ a_{21}x_1+a_{22}+\cdots+a_{2n}x_n=b_2\\ \vdots\\ a_{m1}x_1+a_{m2}+\cdots+a_{mn}x_n=b_m \end{cases}$

Матричная форма записи — Ax = b, где

$$A = (a_{ij})_{m \times n} = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix}, x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}, b = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix}$$

Ax = b, где $A = (A_1, \dots, A_n)$ - столбики — матричная запись.

Ax = b — система однородных линейных уравнений (СЛОУ) (однородная система), если b = 0.

Ax = b — система неоднородных линейных уравнений (СЛНУ) (неоднородная система), если $b \neq 0$.

Система Ax = b — **совместная** (разрешенная), если $\exists x$, то есть существует решение.

Система Ax = b — **несовместная (неразрешенная)**, если $\not\exists x$, то есть решения не существует.

Замечание: СЛОУ всегда совместна, т.к. x = 0 всегда является решением.

Система Ax = b — **определенная**, если есть единственное решение.

Система Ax = b — **неопределенная**, если есть более одного решения.

Система Ax = 0 — **тривиальная**, если она определённая, то есть единственное решение x = 0.

Общее решение системы $Ax = b - \{ \forall x | Ax = b \},$ то есть множество всех его решений.

Частное решением системы Ax = b — какое-то конкретное решение x, рассматриваемое в данном контексте.

Расширенная матрица системы —
$$(A|b)=\begin{pmatrix}a_{11}&\dots&a_{1n}&b_1\\ \vdots&\ddots&\vdots&\vdots\\ a_{m1}&\dots&a_{mn}&b_m\end{pmatrix}$$

Теорема Кронекера-Капелли: Ax = b совместна $\Leftrightarrow \operatorname{rg}(A) = \operatorname{rg}(A|b)$

$$Ax=b\Leftrightarrow \sum\limits_{i=1}^n x_iA_i=b$$
 — линейная комбинация столбцов $\Leftrightarrow b\in \mathrm{span}(A_1,\ldots,A_n)$ \Leftrightarrow

$$\mathrm{span}(A_1,\ldots,A_n)=\mathrm{span}(A_1,\ldots A_n,b)$$

$$\operatorname{rg}(A) = \dim(\operatorname{span}(A_1, \dots, A_n)) = \dim(\operatorname{span}(A_1, \dots, A_n, b)) = \operatorname{rg}(A|b) Q.E.D.$$

Следствие. любая СЛОУ имеет решение.

6.2 Структура общего решения СЛОУ и СЛНУ. ФСР. Альтернатива Фредгольма.

6.2.1 Структура общего решения СЛОУ и СЛНУ.

Теорема: $Ax = 0, u, v \in K^n$ — решения СЛОУ $\Rightarrow \forall \lambda \in K : \lambda u + v$ — тоже решение СЛОУ.

$$u, v$$
 — решения $\Rightarrow Au = 0, Av = 0$

$$A(\lambda u + v) = \lambda Au + Av = \lambda 0 + 0 = 0 \Rightarrow \lambda u + v$$
 — тоже решение СЛОУ $Q.E.D.$

Следствие: общее решение СЛОУ — линейное подпространство $L \subseteq K^n$

Смотри критерии линейного подпространства.

Теорема (размерность общего решения СЛОУ): Ax = 0, rg(A) = k, L -общее решение СЛОУ $\Rightarrow \dim(L) = n - k = n - rg(A)$, где n -число неизвестных.

• k = 0:

$$A = 0 \ \forall x \in K^n : Ax = 0 \Rightarrow \dim(L) = \dim(K^n) = n - 0 = n - k$$

• $1 \le k < n$:

Тогда $\operatorname{rg}(A) = k = \operatorname{rg}_{col}(A) = \operatorname{rg}(A_1, \ldots, A_n)$ — база столбцов из k элементов. Не умаляя общности переставим столбцы чтобы базисом были столбцы A_1, \ldots, A_k , а все остальные столбцы будут их линейными комбинациями.

 $A_{k+j} = \sum_{i=1}^k \alpha_i^j A_j$, где $\alpha_i^j \in K$. (j-тоже индекс, просто для удобства записанный сверху)

$$\sum_{i=1}^{k} \alpha_{i}^{j} A_{i} - A_{k+j} = 0 \Leftrightarrow u_{1} = \begin{pmatrix} \alpha_{1}^{1} \\ \alpha_{2}^{1} \\ \vdots \\ \alpha_{k}^{1} \\ -1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, u_{2} = \begin{pmatrix} \alpha_{1}^{2} \\ \alpha_{2}^{2} \\ \vdots \\ \alpha_{k}^{2} \\ 0 \\ -1 \\ \vdots \\ 0 \end{pmatrix}, \dots, u_{n-k} = \begin{pmatrix} \alpha_{1}^{n-k} \\ \alpha_{2}^{n-k} \\ \vdots \\ \alpha_{k}^{n-k} \\ 0 \\ 0 \\ \vdots \\ -1 \end{pmatrix}$$

 u_1, \ldots, u_{n-k} — решения Ax = 0, причём линейно независимые из-за нулевых координат в нижней части векторов.

Покажем, что u_1, \ldots, u_{n-k} — порождающая система. Пусть u — решение Ax=0.

$$u = \begin{pmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_k \\ \beta_{k+1} \\ \vdots \\ \beta_n \end{pmatrix} \Rightarrow v = u + \sum_{i=1}^{n-k} \beta_{k+j} u_j =$$

$$= \begin{pmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_k \\ \beta_{k+1} \\ \beta_{k+2} \\ \vdots \\ \beta_n \end{pmatrix} + \begin{pmatrix} \beta_{k+1}\alpha_1^1 \\ \beta_{k+1}\alpha_2^1 \\ \vdots \\ \beta_{k+1}\alpha_k^1 \\ -\beta_{k+1} \\ 0 \\ \vdots \\ 0 \end{pmatrix} + \begin{pmatrix} \beta_{k+2}\alpha_1^2 \\ \beta_{k+2}\alpha_2^2 \\ \vdots \\ \beta_{k+2}\alpha_k^2 \\ 0 \\ -\beta_{k+2} \\ \vdots \\ 0 \end{pmatrix} + \dots + \begin{pmatrix} \beta_n\alpha_1^{n-k} \\ \beta_n\alpha_2^{n-k} \\ \vdots \\ \beta_n\alpha_k^{n-k} \\ 0 \\ 0 \\ \vdots \\ -\beta_n \end{pmatrix} = \begin{pmatrix} \gamma_1 \\ \gamma_2 \\ \vdots \\ \gamma_k \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

v — тоже решение Ax=0, так как является суммой других решений Ax=0, домноженных на некоторые коэффициенты.

 $Av=\gamma_1A_1+\cdots+\gamma_kA_k=0$ — нулевая линейная комбинация линейно независимых векторов $\Rightarrow \forall \gamma_j=0 \Rightarrow u+\sum\limits_{i=1}^{n-k}\beta_{k+j}u_j=0 \Rightarrow u=\sum\limits_{i=1}^{n-k}(-\beta_{k+j})u_j \Rightarrow$

$$\Rightarrow u_1, \dots, u_{n-k}$$
 — порождающая система $\Rightarrow u_1, \dots, u_{n-k}$ — базис $L \Rightarrow \dim L = n-k$

 \bullet k=n:

 A_1, \ldots, A_n — линейно независимы

$$Ax=0\Leftrightarrow \sum\limits_{i=1}^n x_iA_i=0\Leftrightarrow \forall i=1,\ldots,n: x_i=0\Leftrightarrow x=0$$
— единственное решение $\Leftrightarrow \dim L=0$

Следствие: Ax = 0, n — число переменных.

- $0 \le \operatorname{rg}(A) < n \Rightarrow$ система неопределенная, имеет бесконечно много решений, образующие линейное подпространство.
- \bullet rg(A) = $n \Rightarrow$ система определенная, имеет единственный корень равный нулю, то есть система тривиальная.

6.2.2 Φ CP.

Фундаментальная система решения — базис линейного подпространства решений СЛОУ.

6.3 Теорема о структуре общего решения системы линейных неоднородных уравнений (СЛНУ), следствия. Альтернатива Фредгольма.

Теорема (о структуре решения СЛНУ): Пусть Ax = b совместна, x_0 — частное решение СЛНУ: x — решение СЛНУ $\Leftrightarrow x = x_0 + u$, где u — некоторое решение Ax = 0

⇒:

$$Ax = b, Ax_0 = b \Rightarrow A(x - x_0) = 0 \Rightarrow u = x - x_0$$
 — решение $Ax = 0$

• =:

$$x = x_0 + u$$
, $Au = 0$, $Ax_0 = b \Rightarrow Ax = A(x_0 + u) = b + 0 = b \Rightarrow x$ — решение $Ax = b$

Следствия:

1. Общее решение Ax = b — линейное многообразие $P = L + x_0$, где x_0 — частное решение СЛНУ, $L = \mathrm{span}(u_1, \ldots, u_{n-k})$ — общее решение Ax = 0

 $\dim(P) = \dim(L)$ — размерность общего решения СЛНУ.

- 2. $0 \leq \operatorname{rg}(A) < n \Rightarrow Ax = b$ имеет бесконечно много решений, $\dim(P) = n \operatorname{rg}(A)$
 - $rg(A) = n \Rightarrow Ax = b$ имеет единственное решение, dim(P) = 0

Теорема (Альтернатива Фредгольма): Пусть $A_{m \times n} \neq 0, x \in K^n, y \in K^m$: Либо $\forall b \in K^m : Ax = b$ имеет решение, либо $A^Ty = 0$ нетривиальна.

То есть, $\forall b \in K^m$, существует решение $Ax = b \Leftrightarrow A^Ty = 0$ тривиальна.

 $\bullet \Rightarrow$

$$\forall b \in K^m A x = b$$
 совместно $\Leftrightarrow b = \sum_{i=1}^n x_i A_i \Rightarrow b \in span(A_1, \dots, A_n)$

Пусть
$$b=E_j=egin{pmatrix} 0\\ \vdots\\ a_j\\ \vdots\\ 0 \end{pmatrix}$$
, где $a_j=1$ - элемент j-ой строки

$$E_j \in \operatorname{span}(A_1, \dots, A_n)$$

Заметим, что $K^m \subset span(A_1, \dots A_m) \subset K^m$, потому что любой базисный вектор содержится в нашей оболочке. Откуда:

 $span(A_1, ... A_n) = K^m \Rightarrow rgA = m = rgA^T \Rightarrow A^Ty = 0$ будем иметь одно решение, по ранее сказанной теореме.

• \Leftarrow : Заметим, что все переходы сверху работают в обе стороны.

6.4 Метод Гаусса решения СЛАУ

Ax = b.

Элементарным преобразованием системы будем называть:

- 1. добавление / удаление уравнения с нулевыми коэффициентами и нулевым свободным членом.
- 2. изменение нумераций уравнений.
- 3. умножение \forall уравнения на $\forall \lambda \in K, \lambda \neq 0$.
- 4. замена ∀ уравнения на его сумму с другим уравнением.
- 5. изменение нумерации переменных.

Замечание:

- 1. все элементарные преобразования приводят к эквивалентной системе.
- 2. все элементарные преобразования эквиваленты элементарным преобразованиям A|b и перестановкой в ней столбцов (пункт 5).

Теорема (прямой ход метода Гаусса)

$$\forall Ax = b$$

Элементарными преобразованиями системы исходная система может быть замена на эквивалентную систему, матрица которой будет иметь трапециевидную форму.

- Находим в необработанной части матрицы самую левую верхнюю ненулевую ячейку. Переставляем её в самый левый верхний угол необработанной части матрицы.
- Отнимаем от всех строчек, ниже первой необработанной, первую необработанную, домноженную на нужный коэффициент, чтобы первый столбец необработанной части оказался заполненным нулями, кроме первой ячейки.
- Отмечаем верхнюю необработанную строчку и левый необработанный столбец, как обработанные.

Метод Гаусса решения СЛАУ:

1. Прямой ход

См. теорему о приведении матрицы к трапециевидной форме. Проводить её мы будем с расширенной матрицей системы. Один лишь нюанс в том, что переставлять столбец B ни с чем нельзя, то есть на нём мы заканчиваем алгоритм.

- 2. Обратный ход
 - (а) Вид матрицы треугольный

Обнулим последний столбец при помощи последней строки:

$$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} & b_1 \\ 0 & a_{22} & \cdots & a_{2n} & b_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & a_{nn} & b_n \end{pmatrix} \sim \begin{pmatrix} a_{11} & a_{12} & \cdots & 0 & b_1 - b_n \frac{a_{2n}}{a_{nn}} \\ 0 & a_{22} & \cdots & 0 & b_2 - b_n \frac{a_{2n}}{a_{nn}} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & a_{nn} & b_n \end{pmatrix}$$

Повторим для предпоследней строки и столбца и так далее. В конце концов придём к виду:

$$\begin{pmatrix} 1 & 0 & \cdots & 0 & b'_1 \\ 0 & 1 & \cdots & 0 & b'_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & b'_n \end{pmatrix}$$

Значит
$$\begin{pmatrix} b_1' \\ b_2' \\ \vdots \\ b_n' \end{pmatrix}$$
 — решение СЛАУ.

(b) Вид матрицы не треугольный

Возьму из матрицы треугольник, а остальные переменные временно занулим. Так найдем одно решение.

6.5 Нахождение обратной матрицы методом Гаусса.

 $|A_{n \times n}|$. Найти $A_{n \times n}^{-1}$, такую, что $A \times A^{-1} = E$

$$A^{-1}$$
 - n неизвестных столбцов. $A^{-1} = (X_1, \dots, X_n) = X$

$$\begin{pmatrix} x_{11} & x_{12} & \cdots & x_{1n} \\ x_{21} & x_{22} & \cdots & x_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n1} & x_{n2} & \cdots & x_{nn} \end{pmatrix}$$

Заметим, что
$$A^{-1}$$
 - решение уравнения $AX = E \Leftrightarrow \begin{cases} AX_1 = E_1 \\ AX_2 = E_2 \end{cases}$:
$$AX_n = E_n$$

В процессе нахождения неизвестных столбцов мы делаем с левой частью матрицы одни и те же преобразования. Давайте решать n систем одновременно:

$$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} & 1 & 0 & \cdots & 0 \\ a_{21} & a_{22} & \cdots & a_{2n} & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} & 0 & 0 & \cdots & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & \cdots & 0 & x_{11} & x_{12} & \cdots & x_{1n} \\ 0 & 1 & \cdots & 0 & x_{21} & x_{22} & \cdots & x_{2n} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 & x_{n1} & x_{n2} & \cdots & x_{nn} \end{pmatrix}$$

Теорема. (о существовании обратной матрицы)

Дано: матрица $A_{n \times n}$

$$\exists A^{-1} \ (A \ \text{обратима}) \Leftrightarrow rgA = n$$

Причем A^{-1} может быть найден методом Гаусса.

Доказательство:

Такая A^{-1} если есть решения $AX_i = E_i$, это значит, что $\operatorname{rg}(A|E_i) = \operatorname{rg}A$, откуда каждый E_i в спаме. Откуда, rgA = n.

Следствие. Дано $A_{n\times n}, Ax = b$. A обратимо \Leftrightarrow существует единственное решение СЛНУ. Причем, $x = A^{-1}b$

A обратима $\Leftrightarrow rgA = n \Leftrightarrow$ существует единственное решение СЛНУ $\Leftrightarrow A^{-1}$.

$$Ax = b \Leftrightarrow A(A^{-1}b) = b \Leftrightarrow b = b \text{ Q.E.D}$$

Теорема (о ранге произведения матрицы и обратимой матрицы)

$$A_{n\times n},$$
 A - обратима, $B_{m\times n}\Rightarrow \left\{ egin{array}{l} \operatorname{rg}(AB)=\operatorname{rg}B \\ \operatorname{rg}(BA)=\operatorname{rg}B \end{array}
ight.$

Доказательство:

$$\overline{\operatorname{rg}(AB) \le (\operatorname{rg}A, \operatorname{rg}B)} \le \operatorname{rg}B.$$

$$rgB = rgEB = rg(A^{-1}AB) \le rg(AB) \le rgB$$

6.6 Геометрическая интерпретация СЛАУ

TODO

6.7 Матрица перехода от старого базиса к новому. Связь координат вектора в разных базисах.

 V, e_1, e_2, \dots, e_n - старый базис - E.

 $e_1', e_2', \dots e_n'$ - новый базис - E'.

$$x \in V \leftrightarrow x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \in K^n$$
 - координаты в базисе E .

$$x \in V \leftrightarrow x = \begin{pmatrix} x_1' \\ x_2' \\ \vdots \\ x_n' \end{pmatrix} \in K^n$$
 - координаты в базисе E' .

$$x = \sum_{i=1}^{n} x_i e_i = \sum_{i=1}^{n} x'_i e'_i.$$

Давайте представим e_j' через старый базис: $T_j = \begin{pmatrix} t_{1j} \\ \vdots \\ t_{nj} \end{pmatrix}$ - координаты в базисе e.

$$T = T_{e \to e'} = (T_1, T_2, \dots, T_n)$$

 $(e'_1, \dots, e'_n) = (e_1, \dots, e_n) T_{e \to e'}$

Свойства Т:

- 1. rgT = n (Т обратима)
- $2. \ T^{-1}$ матрица перехода из e_1' в e_1 .

Пусть В - матрица перехода от е' к е.

$$(e_1,\ldots,e_n)=(e'_1,\ldots,e'_n)B=((e_1,\ldots,e_n)T)B=(e_1,\ldots,e_n)(BT),$$
 откуда $BT=1,$ откуда $B=T^{-1}$

3. связь координат вектора в разных базисах:

 $x \leftrightarrow X$ в старом базисе

 $x \leftrightarrow X'$ в новом базисе

$$x = \sum_{i=1}^{n} x_i e_i = \sum_{j=1}^{n} x'_j e'_j = \sum_{j=1}^{n} x'_j \sum_{i=1}^{n} t_{ij} e_j = \sum_{i=1}^{n} (\sum_{j=1}^{n} t_{ij} e_i)$$

т.е координаты определяются единственный образом

$$\forall i = 1 \dots n : x_i = \sum_{j=1}^n t_{ij} x'_j = (TX')_i$$

$$X' = T^{-1}X$$

7 Определители.

7.1 Полилинейные формы.

7.1.1 Полилинейные формы.

 $\dim V = n$ - лин. пространство над полем К

 $f: V \times V \times \ldots \times V \to K$ (р штук) - называется **полилинейной** формой (функцией), если она линейна по каждой своей координате

$$f(\xi_1,\ldots,\xi_p)=$$
 число в K.

$$\forall \lambda \in K, \forall \psi, \mu \in V : f(\dots, \psi + \lambda \mu, \dots) = f(\dots, \psi, \dots) + \lambda f(\dots, \mu, \dots)$$

Правило/Соглашение Эйнштейна: $x^i e_i = \sum_{i=1}^n x e_i$ - меняем обозначение $\xi_1, \dots, \xi_p \in V$.

$$\xi_j = \xi_j^i e_i \leftrightarrow \begin{pmatrix} \xi_j^1 \\ \vdots \\ \xi_j^n \end{pmatrix} \in K^n$$

$$f(\xi_1, \dots, \xi_p) = f(\xi_1^{i_1} e_{i_1}, \xi_2^{i_2} e_{i_2}, \dots, \xi_{p_p} e_{i_p}) = \xi_1^{i_1} \xi_2^{i_2} \dots \xi_p^{i_p} f(e_{i_1}, \dots, e_{i_p})$$

Чтобы задать полилинейную форму надо задать значение в базисе и все.

7.1.2 Антисимметричные полилинейные формы.

Полилинейная форма называется **антисимметричной**, если при подстановке в неё двух одинаковых аргументов, результат будет равен нулю.

Утв. f антисимметрична $\Leftrightarrow \forall (i,j): f(\ldots,\xi_i,\ldots,\xi_j,\ldots) = -f(\ldots,\xi_i,\ldots,\xi_i,\ldots).$

Доказательство:

$$\overline{f(\ldots,\xi_i+\xi_j,\ldots},\xi_i+\xi_j,\ldots)=0$$

Разложим через линейность:

$$f(\ldots,\xi_i,\ldots,\xi_j,\ldots)+f(\ldots,\xi_i,\ldots,\xi_j,\ldots)=0$$
. Откуда уже следует искомое.

В обратную сторону $f(\ldots,\xi,\ldots,\xi_i,\ldots) = -f(\ldots,\xi,\ldots,\xi_i,\ldots)$, откуда уже следует искомое. Q.E.D

7.1.3 Подстановки

 $\varphi:(1,\ldots,n)\to(1,\ldots,n)$ подстановка. Удобнее всего показывать стрелочками. Перестановка - образ.

 φ,ψ - 2 подстановки. Произведением перестановок назовем образ композиции отображений.

Произведение ассоциативно, но не коммутативно.

Если φ - подстановка, то φ^{-1} - взаимно однозначная и взаимообратная.

Транспозиция элементов перестановки σ называется подстановка меняющая местами 2 эл-та перестановки: $(i_1, \ldots, i_a, \ldots, i_b, \ldots, i_n)$ перейдет в $(i_1, \ldots, i_b, \ldots, i_a, \ldots, i_n)$

Возьму перестановку. Можно привести к тривиальной. Алгоритм: Найдем 1, вставим в начало, найдем 2, вставим на второе место и так далее.

Назову перестановку **четной** или **нечетной**, если я привожу к тривиальной за четное или соответственно нечетное количество транспозиций.

$$\varepsilon(\sigma) = \begin{cases} 0, \sigma - \text{четная} \\ 1, \sigma - \text{нечетная} \end{cases}$$

 $(-1)^{\varepsilon(\sigma)}$ - знак перестановки

$$f(\xi_1, \dots, \xi_n) = \sum_{\sigma \in S_n} \xi_1^{i_1} \dots \xi_n^{i_n} \alpha_{i_1 \dots i_n} = a \sum_{\sigma \in S_n} \xi_1^{i_1} \dots \xi_n^{i_n} (-1)^{\varepsilon(\sigma)}.$$

где
$$const = a = f(e_1, \ldots, e_n)$$
.

n - форму, у которой значение на упорядоченном наборе базиса векторов e_1, \ldots, e_n . равно 1 назовем D.

D - n форма, т.к
$$D(e_1,\ldots,e_n)=1: \forall \xi_1\ldots\xi_n: D(\xi_1,\ldots,\xi_n)=\sum_{\sigma\in S_n}\xi_1^{i_1}\ldots\xi_n^{i_n}(-1)^{\varepsilon(\sigma)}=\det(\xi_1,\ldots,\xi_n)$$
 - определитель системы векторов.

Замечания:

- 1. D, $\forall f$ n-форма $f = \alpha D$, где $\alpha = f(e_1, \ldots, e_n)$.
- 2. форма D существует единственная.
- 3. Определение D-формы зависит от базиса, т.кю чтобы её определить должен быть зафиксирован базис.

7.1.4 Определитель матрицы

D - n - форма
$$D(E_1, ..., E_n) = 1$$

$$\forall A_1, \dots A_n \in K^n$$

$$D(A_1, \dots, A_n) = \sum_{\sigma \in S_n} (-1)^{\varepsilon(\sigma)} a_{i_1 1} \dots a_{i_n n} = \det A$$

7.2 Определитель числовой матрице. Теорема об определителе транспонированной, формулы для вычисления определителей первого и второго порядка.

7.2.1 Определитель матрицы, вторая формула.

 $inv(\sigma) =$ число инверсий в перестановке

Теорема:

- 1. $\varepsilon(\sigma) = \varepsilon(\sigma^{-1})$
- 2. Любая транспозиция элементов может быть получена за нечётное число транспозиций соседних элементов
- 3. транспозиция любых двух соседних элементов меняет число инверсий на 1
- 4. $(-1)^{\varepsilon(\sigma)} = (-1)^{inv(\sigma)}$

Доказательство:

- 1. Получим σ из тривиальной перестановки транспозициями. Применим эти транспозиции в другую сторону. Получим обратную перестановку. Их одно и тоже число.
- 2. Хотим поменять местами i_{α} и i_{β} . приблизим i_{β} к i_{α} k транспозициями соседних элементов. Поменяем i_{α} и i_{β} местами. Отодвинем i_{α} от i_{β} k транспозициями. Всего 2k+1 транспозиций.
- 3. Пусть перестановка имеет вид $A, i_{\alpha}, i_{\beta}, B,$ где A и B части перестановки. i_{α} образует m инверсий с A, i_{β} образует k инверсий с B. Транспозиция i_{α} и i_{β} или создаст или уничтожит их инверсию и не изменит m или k.
- 4. Пусть σ четная = нечетное число соседних транспозиций = четное число соседних транспозиций приводя к тривиал., т.е число инверсий изменилось на четное число. число инверсий в конце 0, а значит изначально 0, а значит $inv\sigma$ = четное число. Пусть σ нечетная = нечетное число соседних транспозиций = нечетное число транспозиций приводит к тривиальной перстановке. Т.е число транспозиций уменьшилось на неч. число единиц, откуда и следует искомое.

Вторая формула для $\det A$: $\det A = \sum_{\sigma \in S_n} (-1)^{inv(\sigma)} a_{i_1 1}, \dots, a_{i_n n}$, где $\sigma = (i_1, \dots, i_n)$.

7.2.2 Теорема об определителе транспонированной матрицы. Свойства определителя

1.
$$\det A^T = \det A$$

$$A^{T} = \begin{pmatrix} A_{1}^{T} \\ \vdots \\ A_{n}^{T} \end{pmatrix}$$

$$\det A^{T} = \sum_{\sigma \in S_{n}} (-1)^{\varepsilon(\sigma)} a_{1i_{1}}, \dots, a_{n,i_{n}}, \sigma = (i_{1}, \dots, i_{n}) = (\varphi(1), \dots, \varphi(n)) = \varphi(1, \dots, n) \Leftrightarrow$$

$$(\det A^{T} = \sum_{\sigma \in S_{n}} (-1)^{\varepsilon(\sigma)} a_{j+1}$$

Следствие:
$$det A = \sum_{\sigma \in S_n} (-1)^{inv(\sigma)a_{1i_1}...a_{ni_n}}$$
, для $\sigma = (i_1 ... i_n)$

Замечание: все свойства, сформулированные для столбцов, верны и для строк.

2.
$$\det(\dots, \lambda A_i, \dots) = \lambda \det(\dots, A_i, \dots), \ \lambda \in K$$
 $\det(\dots, A_i + A_j, \dots, A_k, \dots) = \det(\dots, A_i, \dots, A_k, \dots) + \det(\dots, A_j, \dots, A_k, \dots)$ Доказательство:

 $\det A = D(A_1,\ldots,A_n)$ - полилинейная n - форма, откуда все и следует

- $3. \det(\dots 0 \dots) = 0$ частный случай $\lambda = 0$.
- 4. $\det(\ldots, A_i, \ldots, A_j, \ldots) = -\det(\ldots, A_j, \ldots, A_i, \ldots)$ $\det(\ldots, A_i, \ldots, A_i, \ldots) = 0$

Доказательство: det — антисимметричная

5. $\det(\ldots A_i \ldots A_j \ldots) = \det(\ldots A_i + \lambda A_j \ldots A_j \ldots)$

Доказательство:

$$\det(\ldots A_i + \lambda A_j \ldots A_j \ldots) = \det(\ldots A_i + \ldots A_j \ldots) + \det(\ldots \lambda A_j \ldots A_j \ldots) = \det(\ldots A_i + \ldots A_j \ldots) + \lambda \cdot 0 \text{ Q.E.D}$$

6. Определитель ступенчатой (блочно-диагональной) матрицы:

$$\det \begin{pmatrix} A^1 & 0 & \dots & 0 \\ * & A^2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ * & * & \dots & A^m \end{pmatrix} = \prod_{k=1}^m \det A^k$$

$$A^k = (a_{i_j}^k)$$

Доказательство:

• База m = 2: $det \begin{pmatrix} A_1 & 0 \\ * & A_2 \end{pmatrix}$

Решим простой случай $A_1 = 1, A_2 = 1$:

$$\det\begin{pmatrix} E_1 & 0 \\ * & E_2 \end{pmatrix} = \det\begin{pmatrix} E_1 & 0 \\ 0 & E_2 \end{pmatrix} = \det E = 1$$

Усложним. Пусть у нас теперь только одна из двух матриц единичная (E_{k_2} - единичная матрица размера $k \times k$):

$$\det\begin{pmatrix} B & 0 \\ * & E_{k_2} \end{pmatrix} = \det\begin{pmatrix} B & 0 \\ 0 & E_{k_2} \end{pmatrix} = f(B_1, \dots, B_{k_1}) = f(E_1, \dots, E_{k_1}) \det B = \det B$$

 $f - k_1$ -форма, значит полилинейная и антисимметричная. (f - функция, которая для заданной B находит определитель матрицы)

$$f = \alpha D, \ \alpha = f(e_1, \dots, e_{k_1})$$

$$f(E_1, \dots, E_{k_1}) = \det \begin{pmatrix} E_{k_1} & 0 \\ * & E_{k_2} \end{pmatrix} = 1$$

Усложним ещё раз:

$$\det \begin{pmatrix} B & 0 \\ * & C \end{pmatrix} = g(C_1, \dots, C_{k_2}) = g(E_1, \dots, E_{k_2}) \cdot \det C = \det B \det C$$
, что следует из того, что g - полилинейная форма и из прошлого

• Индукционный переход Пусть верно для m-1, тогда докажем, что верно для m:

$$\det \begin{pmatrix} A^1 & 0 & \dots & 0 \\ * & A^2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ * & * & \dots & A^m \end{pmatrix} = \begin{pmatrix} A & 0 \\ * & A^m \end{pmatrix} = \det A^m \cdot \det A = \prod_{k=1}^m \det A^k,$$

где
$$A = \begin{pmatrix} A^1 & 0 & \dots & 0 \\ * & A^2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ * & * & \dots & A^{m-1} \end{pmatrix}$$

Следствия:

(a)
$$\det \begin{pmatrix} a_{11} & 0 \\ * & a_{nn} \end{pmatrix} = a_{11} \cdot \ldots \cdot a_{nn}$$

(b)
$$rgA = n \Rightarrow \det A \neq 0$$

Просто преобразуем A методом Гаусса и получим трапециевидную. $rgA = n \Rightarrow$ после преобразований она будет треугольной, значит на диагонали нет нулей, значит их произведение не 0.

Замечание: в силу свойства 1, всё сказанное верно и для верхнетреугольных матриц.

7.
$$\det A = \sum_{i=1}^{n} a_{ij} A_{ij} =$$
, для какого-то столбца j.

$$A_{ij} = (-1)^{i+j} \cdot M_{ij}$$
, где M_{ij} - минор.

$$A = \begin{pmatrix} I \dots & a_{1j} & II \\ a_{1n} \dots & a_{ij} & \dots a_{in} \\ III & a_{mj} & IV \end{pmatrix}$$
, тогда $M_{ij} = \det \begin{pmatrix} I & II \\ III & IV \end{pmatrix}$

Докажем сначала для 1 столбца:

$$\det A = \sum_{i=1}^{n} (-1)^{i+1} A_{i1}$$

$$\det A = \begin{vmatrix} a_{11} & * & \dots & * \\ a_{12} & * & \dots & * \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & * & \dots & * \end{vmatrix} = \begin{vmatrix} a_{11} & * & \dots & * \\ 0 & * & \dots & * \\ \vdots & \vdots & \ddots & \vdots \\ 0 & * & \dots & * \end{vmatrix} + \begin{vmatrix} 0 & * & \dots & * \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & * & \dots & * \end{vmatrix} + \dots + \begin{vmatrix} 0 & * & \dots & * \\ 0 & * & \dots & * \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix} =$$

$$a_{11}M_{11} - a_{21}M_{21} + a_{31}M_{31} - \ldots + (-1)^{n-1}a_{n1}M_{n1} = \sum_{i=1}^{n} (-1)^{i+1}M_{i1}a_{i1}$$

Докажем для произвольного ј-ого столбца

$$\det A = \det(\dots A_j \dots) = (-1)^{j-1} \det(A_j A_1 \dots A_n) = \sum_{i=1}^n (-1)^{j-1} (-1)^{i+1} a_{ij} M_{ij}$$

8. $\sum_{i=1}^{n} a_{ij} A_{ik}$ (j — фиксированный номер столбца, k — фиксированный номер другого столбца.) = $0 = \sum_{j=1}^{n} a_{ij} A_{kj}$ (i — фиксированный номер строки, k — фиксированный номер другой строки)

Доказательство:

$$\sum_{i=1}^{n} a_{ij} A_{ik} = \det(A_1 \dots A_i \dots A_j \dots A_n)$$

$$\det A = \sum_{i=1}^{n} a_{ik} A_{ik} = \det(A_1 \dots A_k \dots A_j \dots A_n)$$

9.
$$\det(A \cdot B) = \det A \cdot \det B$$

$$AB = (AB_1, \dots, AB_n), B = (B_1, \dots, B_n)$$

$$\det(A \cdot B) = f(B_1, \dots, B_n)$$
 (полилинейная, антисимметричная n - форма, $f = \alpha D$) = $f(E_1, \dots, E_n) \cdot \det B = \det(A \cdot E) \cdot \det B = \det a \cdot \det B$

7.3 Формула для обратной матрицы. Теорема Крамера.

Матрица $A_{n\times n}$ — **невырожденная**, если $\det A \neq 0$

Теорема: (об обратной матрице)

Дано $A_{n\times n}$. А обратима \Leftrightarrow А невырождена.

Причем,
$$A^{-1} = \frac{1}{\det A} \begin{pmatrix} A_{11} & \dots & A_{1n} \\ \vdots & \ddots & \vdots \\ A_{n1} & \dots & A_{nn} \end{pmatrix}^T$$
, A_{ij} — алгебраическое дополнение элемента a_{ij}

Матрица в формуле называется союзной, взаимной, или присоединяемой.

Доказательство:

 $\bullet \Rightarrow$

A обратима
$$\Rightarrow \exists A^{-1}.\ A\cdot A^{-1}=A^{-1}\cdot A=E$$
 $\Rightarrow \det(A^{-1}A)=\det E=\det A^{-1}\cdot \det A$ m откуда уже следует искомое.

• =

A - невырожденная. $\det A \neq 0$. Покажем, что матрица $B = \frac{1}{\det A} (A_{ij})^T$

$$A \cdot B = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ a_{21} & \dots & a_{2n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} \end{pmatrix} \cdot \frac{1}{\det A} \cdot \begin{pmatrix} A_{11} & \dots & A_{n1} \\ A_{12} & \dots & A_{n2} \\ \vdots & \ddots & \vdots \\ A_{1n} & \dots & A_{nn} \end{pmatrix} =$$

$$= \frac{1}{\det A} \cdot \begin{pmatrix} \sum_{j=1}^{n} a_{1j} A_{1j} & \dots & \sum_{j=1}^{n} a_{1j} A_{nj} \\ \sum_{j=1}^{n} a_{2j} A_{1j} & \dots & \sum_{j=1}^{n} a_{2j} A_{nj} \\ \vdots & \ddots & \vdots \\ \sum_{j=1}^{n} a_{nj} A_{nj} & \dots & \sum_{j=1}^{n} a_{nj} A_{nj} \end{pmatrix} =$$

(Все не диагональные ячейки по 8 свойству — нули, а все диагональные по 7 свойству — $\det A$) = $E \Rightarrow B = A^{-1}$

Следствия:

1. A обратима $\Leftrightarrow \operatorname{rg} A = n \Leftrightarrow \det A \neq 0$

$$2. \ det A^{-1} = \frac{1}{\det A}$$

3. Теорема Краммера

$$Ax = b$$
. СЛНУ, $A_{n \times n}$

 $\exists!$ решение $\Leftrightarrow A$ невырожденная.

Причём, $x_i=\frac{\Delta_i}{\Delta}$, где $\Delta=\det A,~\Delta_i=\det(A_1,\ldots,b,\ldots,A_n)$ (b занимает i-й столбец)

Доказательство:

 $\exists !$ решение $\Leftrightarrow \operatorname{rg} A = n \Leftrightarrow \det A \neq 0$, то есть A - невырожденная

$$x = \frac{1}{\det A} \begin{pmatrix} A_{11} & \dots & A_{n1} \\ A_{12} & \dots & A_{n2} \\ \vdots & \ddots & \vdots \\ A_{1n} & \dots & A_{nn} \end{pmatrix} \cdot \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix} = \frac{1}{\det A} \begin{pmatrix} \sum_{i=1}^n A_{i1} b_1 \\ \sum_{i=1}^n A_{i2} b_2 \\ \vdots \\ \sum_{i=1}^n A_{i1} b_n \end{pmatrix} = \frac{1}{\det A} \begin{pmatrix} \det(b, A_2 \dots A_n) \\ \det(A_1, b \dots A_n) \\ \vdots \\ \det(A_1, A_2 \dots b) \end{pmatrix} = \frac{1}{\det A} \begin{pmatrix} \det(b, A_2 \dots A_n) \\ \det(A_1, b \dots A_n) \\ \vdots \\ \det(A_1, A_2 \dots b) \end{pmatrix}$$

$$\begin{pmatrix} \frac{\Delta_1}{\Delta} \\ \frac{\Delta_2}{\Delta} \\ \vdots \\ \frac{\Delta_n}{\Delta} \end{pmatrix} = x$$

7.4 Теорема Лапласа

$$A = (a_{ij})_{n \times n}$$

$$1 \le k \le n$$
: $i_1 < i_2 < \ldots < i_k, j_1 < j_2 < \ldots < j_k$

$$i_s \in (1, \dots, n), j_t \in (1, \dots, n)$$

Составим из элементов матрицы А новую матрицу, состоящую из элементов, находящихся на пересечении k выбранных строк и k выбранных столбцов

Минор
$$k$$
-того порядка $M^{j_1,\dots,j_k}_{i_1,\dots,i_k} = \begin{vmatrix} a_{i_1j_1} & \dots & a_{i_nj_1} \\ \vdots & \ddots & \vdots \\ a_{i_1j_n} & \dots & a_{i_nj_n} \end{vmatrix}$

$$\overline{M}_{i_1,...,i_k}^{j_1,...,j_k} = M_{s_1,...,s_m}^{t_1,...,t_m}$$

Теорема Лапласа.

 $A_{n\times n}$, k - фиксированное от 1 до n.

$$\det A = \sum_{j_1 < \dots < j_k} \overline{M}_{j_1 \dots j_k}^{i_1 \dots i_k} A_{j_1 \dots j_k}^{i_1 \dots i_k}$$

Доказательство:

Пускай k выбрано от 1 до n и фиксирован набор строк. Тогда:

$$\sum_{j_1 < \dots < j_k} (-1)^{i_1 + i_2 + \dots + i_k + j_1 + j_2 + \dots j_k} \overline{M}_{j_1 \dots j_k}^{i_1 \dots i_k} M_{j_1 \dots j_k}^{i_1 \dots i_k} = \det A$$

• База индукции

Свойство 7:
$$\sum_{j} (-1)^{i+j} \overline{M}_{j}^{i} M_{j}^{i} = \det A$$

• Индукционное предположение

Пусть формула верна для k-1:

Фиксированные
$$i_1, \dots, i_{k-1}$$
: $\det A = \sum_{j_1 < j_2 < \dots < j_{k-1}} (-1)^{i_1 + \dots + i_{k-1} + j_1 + \dots + j_{k-1}} \overline{M}_{j_1, \dots, j_{k-1}}^{i_1, \dots, i_{k-1}} M_{j_1, \dots, j_k}^{i_1, \dots, i_k}$

• Индукционный переход:

Докажем для k.

Пусть фиксированы $i_1 < i_2 < \ldots < i_{k-1} < i_k$. Всё кроме i_k верно по инд. предположению.

$$\overline{M}_{j_1,\dots,j_{k-1}}^{i_1,\dots,i_{k-1}} = M_{\dots}^{\dots,i_k,\dots} = \sum_{j \in (1,\dots,n) \setminus (j_1,\dots,j_{k-1})} a_{i_k j} (-1)^{\#i_k + \#i_j} \overline{M}_{j_1,\dots,j_{k-1}}^{i_1,\dots,i_{k-1},i_k}$$

$$\#i_k = i_k - (k-1)$$

 $\det A =$

$$= \sum_{j_1 < \dots < j_k} (-1)^{i_1 + \dots + i_k - 1 + j_1 + \dots + j_k - 1} \sum_{j \in (1, \dots, n) \setminus (j_1, \dots, j_k m)} (-1)^{i_k - (k-1) + \# j} a_{i_k j} \overline{M}_{j_1, j_2, \dots, j_{k-1}}^{i_1 + \dots i_k} M_{j_1, \dots, j_{k-1}}^{i_1, \dots i_{k-1}}$$

$$=\sum_{\tilde{j}_1<\ldots<\tilde{j}_k}(-1)^{i_1+\ldots+i_k-(k-1)}\sum_{s=1}^ka_{i_k\tilde{j}_s}\overline{M}_{\tilde{j}_1,\ldots,\tilde{j}_s,\ldots,\tilde{j}_k}^{i_1\ldots i_{k-1},i_k}M_{\tilde{j}_1,\ldots,\tilde{j}_k}^{i_1\ldots i_{k-1}}(-1)^{\tilde{j}_s-(s-1)}=$$

$$= \sum_{\tilde{j}_1 < \dots < \tilde{j}_k} (-1)^{i_1 + \dots + i_k + \tilde{j}_1 + \dots + \tilde{j}_k} \overline{M}_{\tilde{j}_1, \dots, \tilde{j}_k}^{i_1, \dots, i_k} \sum_{s=1}^k (-1)^{-(k-1) - (s-1)} a_{i_k \tilde{j}_s} M_{\tilde{j}_1, \dots, \tilde{j}_k}^{i_1, \dots, i_{k-1}} =$$

$$=\sum_{ ilde{j}_1<\ldots< ilde{j}_k}(-1)^{i_1+\ldots+i_k+ ilde{j}_1+\ldots+ ilde{j}_k}\overline{M}^{i_1,\ldots,i_k}_{ ilde{j}_1,\ldots, ilde{j}_k}M^{i_1,\ldots,i_k}_{ ilde{j}_1,\ldots, ilde{j}_k}=\det A$$
— верно и для k

Замечание.

$$\det \left(\frac{A_1 \mid 0}{* \mid A_2} \right) = \det A_1 \det A_2 = M_{j_1, \dots, j_k}^{i_1, \dots, i_k} \overline{M}_{j_1, \dots, j_k}^{i_1, \dots, i_k}$$

7.5 Второе определение ранга матрицы.

 $A_{m \times n}$

$$M^{i_1\dots i_k}_{j_1\dots j_k},$$

rgA называется наибольший порядок минора отличного от нуля, то есть rgA=k, если существует минор не равный нулю, а любой минор большего порядка равен 0. Такой минор является **базисным**, а строки и столбцы, входящие в этот минор — **базисными**.

Базисный минор не определён единственным образом.

Замечание. Если все миноры k+1 порядка 0, то все его миноры порядка больше k+1 тоже 0.(очевидно из разложения по строчке или столбцу)

Теорема (об эквивалентности двух определений ранга)

Хотим доказать, что наши определения равносильны:

$$rgA_{def 1} = rgA_{def 2}$$

$$\operatorname{rg} A_{\operatorname{def} 1} = k, \ 1 \le k \le \min(m, n)$$

k линейно нез., k линейно нез.

Добавляя любые другие столбики к ним мы будем получать линейно зависимые комбинации.

Если отрезки зависимы и исходные стобцы зависимы.

Поэтому минор $M^{i_1\dots i_k}_{j_1\dots j_k}=\det B$ - получается $\operatorname{rg} B=k,$ откуда получаем что определитель не 0.

Составим любой минор порядка k+s.

$$M_{\tilde{j}_1,\ldots,\tilde{j}_{k+s}}^{\tilde{i}_1,\ldots,\tilde{i}_{k+s}}=\det(\tilde{A}_{\tilde{j}_1}\ldots \tilde{A}_{\tilde{j}_{k+s}})$$
 — отрезки столбцов A .

$$\operatorname{rg} A = k \Rightarrow \tilde{A}_{\tilde{j}_1} \dots \tilde{A}_{\tilde{j}_{k+s}}$$
 — линейно зависимы \Rightarrow

$$\Rightarrow \det(\tilde{A}_{\tilde{j}_1} \dots \tilde{A}_{\tilde{j}_{k+s}}) = M_{\tilde{j}_1, \dots, \tilde{j}_{k+s}}^{\tilde{i}_1, \dots, \tilde{i}_{k+s}} = 0 \Rightarrow \operatorname{rg} A_{\operatorname{def} 2} = k$$

Метод окаймляющих миноров.

$$A \neq \nvdash$$

Алгоритм:

Берем смотрим на минор k-ого порядка:

- 1. Если все его (окаймляющие прошлого этапа) миноры 0, то $\operatorname{rg} A = k$.
- 2. Если существует минор не равный 0, тогда k++ и повторить алгоритм

Окаймляющие миноры - миноры, в разложениях по строкам и столбцов которых присутствует данный минор

Пусть $M^{i_1,\dots,i_k}_{j_1,\dots,j_k} \neq 0$, а все его окаймляющие его равны $0 \operatorname{rg} A = k$

$$\forall i \forall j \notin (j_1, \dots, j_k) : \begin{vmatrix} a_{i_1 j_1} & \dots & a_{i_1 j_k} & a_{i_1 j} \\ a_{i_2 j_1} & \dots & a_{i_2 j_k} & a_{i_2 j} \\ \vdots & \ddots & \vdots & \vdots \\ a_{i_k j_1} & \dots & a_{i_k j_k} & a_{i_k j} \\ a_{i j_1} & \dots & a_{i j_k} & a_{i j} \end{vmatrix} = 0$$

Если i совпадает с каким-либо индексом из i_1, \ldots, i_k , то это определитель с равными строками, значит нулевой. Если i не совпадает ни с одним индексом из i_1, \ldots, i_k , то тогда это окаймляющий минор (k+1)-го порядка, который нулевой по условию.

Распишем определитель по последней строке.

$$0 = \sum_{s=1}^{k} a_{ij_s} A_{ij_s} + a_{ij} (-1)^{k+1+k+1} M_{j_1 \dots j_k}^{i_1 \dots i_k}$$

$$\forall i: a_{ij} = 0 \sum_{s=1}^{k} a_{ij_s} A_{i,j_s} = \sum_{s=1}^{k} a_{ij_s} \lambda_s \Leftrightarrow A_j = \sum_{s=1}^{k} A_{j_s} \lambda_s$$

мы показали, что для $\forall j \in \{j_1, \dots, j_k\}$ — линейная комбинация соответствующих столбцов.

7.6 Определитель n-ого порядка.

Приведение к треугольному виду.

$$\Delta_n \begin{pmatrix} a_1 & x & x & \dots & x \\ x & a_2 & x & \dots & x \\ x & x & a_3 & \dots & x \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ x & x & x & \dots & a_n \end{pmatrix} = \begin{pmatrix} a_1 & x & x & \dots & x \\ x - a_1 & a_2 - x & 0 & \dots & 0 \\ x - a_1 & 0 & a_3 - x & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ x - a_1 & 0 & 0 & \dots & a_n - x \end{pmatrix} =$$

$$= \prod_{k=1}^{n} (a_k - x) \begin{vmatrix} \frac{a_1}{a_1 - x} & \frac{x}{a_2 - x} & \frac{x}{a_3 - x} & \dots & \frac{x}{a_n - x} \\ -1 & 1 & 0 & \dots & 0 \\ -1 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ -1 & 0 & 0 & \dots & 1 \end{vmatrix} =$$

$$=\prod_{k=1}^n(a_k-x)\begin{vmatrix} \sum & \frac{x}{a_2-x} & \frac{x}{a_3-x} & \dots & \frac{x}{a_n-x} \\ 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1 \end{vmatrix}$$
 Откуда уже можно легко посчитать

определитель'.

Метод выделения линейных множителей

$$\Delta_n = \begin{vmatrix} 1 & x_1 & x_1^2 & \dots & x_1^n \\ 1 & x_2 & x_2^2 & \dots & x_2^n \\ 1 & x_3 & x_3^2 & \dots & x_3^n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & x_n^2 & \dots & x_n^n \end{vmatrix} = p(x_i)$$
 Заметим, что когда $x_i = x_j$ определитель равен

0. Тогда получаем, что определитель должен делиться на каждый из корней (раскладывается в произведение корней)

$$\Delta_{n} = \begin{vmatrix} 1 & x_{1} & x_{1}^{2} & \dots & x_{1}^{n} \\ 1 & x_{2} & x_{2}^{2} & \dots & x_{2}^{n} \\ 1 & x_{3} & x_{3}^{2} & \dots & x_{3}^{n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n} & x_{n}^{2} & \dots & x_{n}^{n} \\ \dots & (x_{n-1} - x_{n})C \end{vmatrix} = p(x_{i}) = (x_{1} - x_{2}) \cdot (x_{1} - x_{3}) \cdot \dots \cdot (x_{1} - x_{n}) \cdot (x_{2} - x_{3}) \cdot \dots \cdot (x_{n-1} - x_{n})C$$

$$\Delta_{n} = (x_{n} - x_{1})(x_{n} - x_{2}) \cdot \dots \cdot (x_{n} - x_{n-1})c' = \Delta_{n-1}x_{n}^{n-1} + \dots$$

$$c' = \Delta_{n-1}$$

 $\Delta_n = (x_n - x_1)(x_n - x_2) \dots (x_n - x_{n-1})(x_{n-1} - x_n) \dots (x_{n-1} - x_{n-2}) \Delta_{n-2} =$

$$= \prod_{i>j} (x_i - x_j)$$

Метод реккурентных соотношений

Возвратная последовательность. Пример. $x_2=2, x_1=4$. Реккурентная послеждовательность задается выражением $x_n=x_{n-1}+2x_{n-2}$. И ее решая можно получить корень

Пример решения.
$$x_1 = 3, x_2 = 9, x_n = 3x_{n-1} - \frac{9}{4}x_{n-2}, n > 2.$$

Подставим вместо $x_n = \lambda^n$ (не спрашивайте почему, там огромный кусок теорий и объяснений)

$$\lambda^n = 3\lambda^{n-1} + \frac{9}{4}\lambda^{n-2}$$
. Переведем в квадратное, решим, найдем корни. Получим $\lambda_{1,2} = \frac{3}{2}$

Тк лямбды совпали, то второй корень умножаем на n:

$$x_n = c_1 \left(\frac{3}{2}\right)^n + c_2 n \left(\frac{3}{2}\right)^n$$

$$x_1 = c_1 \left(\frac{3}{2}\right) + c_2 \frac{3}{2}; \ x_2 = c_1 \left(\frac{3}{2}\right)^2 + c_2 2 \left(\frac{3}{2}\right)^2$$

Находим c_1, c_2 и получаем общую реккуренту и побеждаем.

$$\Delta_{n} = \begin{vmatrix} 5 & 3 & 0 & \dots & 0 \\ 2 & 5 & 3 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & 2 & 5 & 3 \\ 0 & \dots & 0 & 2 & 5 \end{vmatrix} = 2(-1)^{n+(n-1)} \begin{vmatrix} 5 & 3 & 0 & \dots & 0 \\ 2 & 5 & 3 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & 2 & 5 & 0 \\ 0 & \dots & 0 & 2 & 3 \end{vmatrix} + 5(-1)^{n+n} \Delta n - 1 = -6\Delta_{n-2} + 5\Delta_{n-2} + 3\Delta_{n-2} + 3\Delta_{n-2$$

$$\lambda^n + 6\lambda^{n-2} - 5\lambda^{n-1} = 0$$

$$\lambda^2 - 5\lambda + 6 = 0$$

$$\lambda_1 = 2, \, \lambda_2 = 3$$

$$\Delta_n = 2^n c_1 + 3^n c_2$$

$$\begin{cases} \Delta_1 = 5 = 2c_1 + 3c_2 \\ \Delta_2 = \begin{vmatrix} 5 & 3 \\ 2 & 5 \end{vmatrix} = 19 = 4c_1 + 9c_{@} \end{cases}$$

Откуда $\Delta_n = -2^{n+1} + 3^{n+1}$.

Метод представления в виде суммы

$$\Delta_n = \begin{vmatrix} a_1 + b_1 & a_1 + b_2 & \dots & a_1 + b_n \\ a_2 + b_1 & a_2 + b_2 & \dots & a_2 + b_n \\ \vdots & \vdots & \ddots & \vdots \\ a_n + b_1 & a_n + b_2 & \dots & a_n + b_n \end{vmatrix}$$
 Разложим определитель, как сумму опреде-

лителей.

$$\begin{vmatrix} a_1 + b_1 & a_1 + b_2 & \dots & a_1 + b_n \\ a_2 + b_1 & a_2 + b_2 & \dots & a_2 + b_n \\ \vdots & \vdots & \ddots & \vdots \\ a_n + b_1 & a_n + b_2 & \dots & a_n + b_n \end{vmatrix} = \begin{vmatrix} a_1 & a_1 & \dots & a_1 \\ a_2 + b_1 & a_2 + b_2 & \dots & a_2 + b_n \\ \vdots & \vdots & \ddots & \vdots \\ a_n + b_1 & a_n + b_2 & \dots & a_n + b_n \end{vmatrix} + \begin{vmatrix} b_1 & b_2 & \dots & b_n \\ a_2 + b_1 & a_2 + b_2 & \dots & a_2 + b_n \\ \vdots & \vdots & \ddots & \vdots \\ a_n + b_1 & a_n + b_2 & \dots & a_n + b_n \end{vmatrix} + \begin{vmatrix} b_1 & b_2 & \dots & b_n \\ a_2 + b_1 & a_2 + b_2 & \dots & a_2 + b_n \\ \vdots & \vdots & \ddots & \vdots \\ a_n + b_1 & a_n + b_2 & \dots & a_n + b_n \end{vmatrix}$$

Повторяя так большее количество так и зануляя определители победим.

Метод изменения элементов det

$$\Delta = \begin{vmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} \end{vmatrix}$$

$$\Delta' = egin{array}{ccccc} a_{11} + x & \dots & a_{1n} + x \\ a_{21} + x & \dots & a_{2n} + x \\ \vdots & \ddots & \vdots \\ a_{n1} + x & \dots & a_{nn} + x \\ \end{bmatrix}$$
 Начну раскладывать, как в прошлом пункте и получу,

$$\Delta' = \Delta + x \sum_{j,j=1}^{n} A_{ij}$$