

Algorithms: Design and Analysis, Part II

Approximation Algorithms for NP-Complete Problems

A Greedy Knapsack Heuristic

Strategies for NP-Complete Problems

(1) Identify computationally tractable special cases.

Example: Knapsack instances with small capacity [i.e., knapsack capacity W = polynomial in number of items n

- (2) Heuristics \rightarrow today

 - Pretty good greedy heuristic Excellent dynamic programming heuristic \rightarrow For Knapsack
- (3) Exponential time but better than brute-force search Example: O(nW)-time dynamic programming vs. $O(2^n)$ brute-force search.

Ideally: Should provide a performance guarantee (i.e., "almost correct") for all (or at least many) instances.

Knapsack Revisited

Input: n items. Each has a positive value v_i and a size w_i . Also, knapsack capacity is W.

Output: A subset $S \subseteq \{1, 2, ..., n\}$ that

$$\begin{array}{ll} \text{Maximizes} & \sum_{i \in S} v_i \\ \text{Subject to} & \sum_{i \in S} w_i \leq W \end{array}$$

A Greedy Heuristic

Motivation: Ideal items have big value, small size.

Step 1: Sort and reindex item so that

$$\frac{v_1}{w_1} \ge \frac{v_2}{w_2} \ge \ldots \ge \frac{v_n}{w_n}$$
 [i.e., nondecreasing "bang-per-buck"]

Step 2: Pack items in this order until one doesn't fit, then halt.

Example:

$$\begin{array}{cccc} & v_1=2 & w_1=1\\ \text{W=5} & v_2=4 & w_2=3 & \Rightarrow \text{Greedy gives } \{1,2\} \text{ [also optimal]}\\ & v_3=3 & w_3=3 \end{array}$$

Quiz

Consider a Knapsack instance with W=1000 and

$$v_1 = 2$$
 $w_1 = 1$
 $v_2 = 1000$ $w_2 = 1000$

Question: What is the value of the greedy solution and the optimal solution, respectively?

- A) 2 and 1000 C) 1000 and 1002
- B) 2 and 1002 D) 1002 and 1002

A Refined Greedy Heuristic

Upshot: Greedy solution can be arbitrarily bad relative to an optimal solution.

Fix: Add:

Step 3: Return either the Step 2 solution, or the maximum valuable item, whichever is better.

Theorem: Value of the 3-step greedy solution is always $\geq 50\%$ value of an optimal solution. [Also, runs in $O(n \log n)$ time] [i.e., a " $\frac{1}{2}$ -approximation algorithm"]