Machine Learning

Machine learning

• See also Machine Learning on Coursera

build with

pandoc -V geometry:margin=2.5cm -V title:"Machine Learning Notes" doc.md -o doc.pdf

Inputs and outputs

Example data House Prices

#	Size (sq. feet)	Num Bedrooms	Num. Floors	Age	Price
	x_1	x_2	x_3	x_4	y_1
1	2104	5	1	45	460
2	1416	3	2	40	232
3	1534	3	2	30	315
4	852	2	1	36	178
:	:	:	:	:	:
47	1321	1	2	10	300

Notation

- n: number of features, i.e. dimension of $x^{(i)}$
 - $-\,$ also denoted as D

- $x^{(i)}$: input (features) of i^{th} training example $x_j^{(i)}$: value of feature j in i^{th} training example see also https://nthu-datalab.github.io/ml/slides/Notation.pdf
 - -K is dimension of a label y^i
 - \mathbb{X} is set of training examples
 - -N: size of X
 - $-\mathbb{F}$: hypothesis space of functions to be learnt, i.e. a model
 - Cost[f]: a cost functional $f \in \mathbb{F}$
 - -(x',y'): a testing pair
 - $-\hat{y}$: predicated label by a function f

Applied to Example

- n = D = 4
- K = 1
- m = 47

•
$$x^{(2)} = \begin{bmatrix} 1416 \\ 3 \\ 2 \\ 40 \end{bmatrix}$$

• $x_3^{(2)} = 2$

Linear Regression with Multiple Variables

Hypothesis h

• $h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \ldots + \theta_n x_n$ - Reads: Hypothesis parameterized by θ - For convenience: $x_0^{(i)} = 0$

- Reads. Hypothesis parameterize

- For convenience:
$$x_0^{(i)} = 0$$

• $x = \begin{bmatrix} x_0 \\ x_1 \\ \vdots \\ x_n \end{bmatrix} \in \mathbb{R}^{n+1}, \ \theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \vdots \\ \theta_n \end{bmatrix} \in \mathbb{R}^{n+1}$

• Vectorized Hypothesis: $h_{\theta}(x) = \theta^T x$

Cost function J

- A.k.a. **loss** or **objective** function
- Idea choose $\theta_0, \theta_1, \dots, \theta_n$ so, that $h_{\theta}(x)$ is close to y for training examples (x, y)
- Cost function

$$J(\theta_0, \theta_1, \dots, \theta_n) = J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

- a.k.a squared error function J
- Goal: Minimize $J(\theta)$
- Gradient descent update step (iteration)

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$

- **Important**: Simultaneously update for every $j = 0, \ldots, n$
- Learning rate α
- Gradient Descent can converge to a local minimum, even with a the learning rate α fixed
 - As we approach a local minimum, gradient descent will automatically take smaller steps, i.e. gradient $\frac{d}{d\theta_i}J(\theta_j)$ is smaller (becomes 0 when minimum is reached)
- "Batch" Gradient Decent: Each step of gradient decent uses all the training examples, i.e. $\sum_{i=1}^{m} ((h_{\theta}(x^{(i)}) y^{(i)}))$ operates on all samples
- Make sure gradient decent is working: plot number of iterations (x-axis) against $J(\theta)$ (y-axis), and $J(\theta)$ should decrease after every iteration
 - Convergence test: declare convergence, if $J(\theta)$ decreases by less than 10^{-3} in one iteration
 - For sufficiently small α , $J(\theta)$ should decrease on every iteration
- Choosing learning rate α
 - if α to too small: small convergence
 - is α is too large: $J(\theta)$ may not decrease on every iteration, and thus may not converge
 - To choose α , try ..., 0.001, 0.003, 0.01, 0.03, 0.1, ...

Logistic Regression: Binary Classification

- Binary classification: $y \in \{0, 1\}$
 - 0 usually negative class, i.e. bening tumor (gutartig)
 - 1 usually positive class, i.e. malignant tumor (bösartig)

Hypothesis

- Want $0 \le h_{\theta}(x) \le 1$
- So

$$h_{\theta}(x) = q(\theta^T x)$$

- with

$$g(z) = \frac{1}{1 + e^- z}$$

- -g(z) is **logistic/sigmoid** function
- Interpretation of hypothesis output
 - $h_{\theta}(x)$ is estimated probability that y = 1 on input x
 - Example: if $x = \begin{bmatrix} x_0 \\ x_1 \end{bmatrix} = \begin{bmatrix} 1 \\ \text{tumorSize} \end{bmatrix}$ and $h_{\theta}(x) = 0.7 \rightarrow y = 1$, tell patient, that 70% chance of tumor being malignant
 - $-h_{\theta}(x) = P(y=1|x;\theta)$, "probability that y=1, given x, parameterized by θ "

Cost function

• How to choose parameters θ ?

- Training set

$$\{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(m)}, y^{(m)})\}$$

-m examples:

$$x = \begin{bmatrix} x_0 \\ \vdots \\ x_n \end{bmatrix}, x_0 = 1, y \in \{0, 1\}$$

- Hypothesis

$$h_{\theta} = \frac{1}{1 + e^{-\theta^T x}}$$

• Recap Linear regression:

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \frac{1}{2} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$
$$= \frac{1}{m} \sum_{i=1}^{m} Cost(h_{\theta}(x^{(i)}), y^{(i)})$$

- with

$$Cost(h_{\theta}(x^{(i)}), y^{(i)}) = \frac{1}{2}(h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

- Cost function $J(\theta)$ is a sum over the training set of the **cost term**
- Simplified notation

$$Cost(h_{\theta}(x,y) = \frac{1}{2}(h_{\theta}(x) - y)^2$$

• Logistic regression cost function

$$Cost(h_{\theta}(x), y) = \begin{cases} -\log(h_{\theta}(x)), & \text{if } y = 1\\ -\log(1 - h_{\theta}(x)), & \text{if } y = 0 \end{cases}$$

3

- Note y = 0 or y = 1 always (by definition)
- Simplified

$$Cost(h_{\theta}(x), y) = -y \log(h_{\theta}(x)) - (1 - y) \log(1 - h_{\theta}(x))$$

• To fit parameters θ :

$$\min_{\theta} J(\theta)$$

- To make a prediction given new x:
 - Output

$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$$

- reads $P(y=1|x;\theta)$

Solving the problem of Overfitting (Regularization)

- If there are too many features (resulting in high polynomial of h_{θ}), the learned hypothesis may fit the training set very well, but fail to generalize new examples
- Options
 - 1. Reduce number of features
 - Manually select features to keep
 - Model selection
 - 2. Regularization
 - Keep all features, but reduce magnitude/values of parameters θ_i
 - Works well when we have a lot of features, each of which contributes a bit to predicting y
- Regularization: small values for parameters $\theta_0, \theta_1, \dots, \theta_n$
 - Simpler hypothesis
 - Less prone to overfitting
- In regularized linear regression, we choose θ to minimize

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2} + \lambda \sum_{i=1}^{n} \theta_{j}^{2} \right]$$

- $-\lambda$ is regularization parameter
- λ penalizes θ_j values, i.e. forces them to stay small
- If λ is too high, e.g. $\lambda = 10^10$, then $h_{\theta}(x) = \theta_0$ and thus **underfits**