General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some
 of the material. However, it is the best reproduction available from the original
 submission.

Produced by the NASA Center for Aerospace Information (CASI)

SSS-SR-04-01 NAS8-35042

(NASA-CR-170786) DEFINITION OF TECHNOLOGY DEVELOPMENT MISSIONS FOR EARLY SPACE STATION SATELLITE SELVICING, VOLUME 1 Final Report (Martin Marietta Aerospace) 77 p

HC AUS/MF AU1

CSJL 22A G3/12 03899

Vc me I

Executive Summary

May 1983

N83-26850

Unclas

ORIGINAL PAGE IS OF POOR QUALITY

SSS-SR-04-01 NAS8-35042

Volume I

Final Report

May 1983

DEFINITION OF TECHNOLOGY DEVELOPMENT MISSIONS FOR EARLY SPACE STATION SATELLITE SERVICING

Approved by:

Sherman Schrock,

Michial.

Program Manager

MARTIN MARIETTA AEROSPACE **DENVER AEROSPACE**

P.O. Box 179

Denver, Colorado 80201

May 1983

-10 May 1

DEFINITION OF TECHNOLOGY DEVELOPMENT MISSIONS FOR EARLY SPACE STATION

SATELLITE SERVICING

EXECUTIVE SUMMARY FINAL REPORT

ORIGINAL PAGE IS OF POOR QUALITY

Prepared For:

National Aeronautics and Space Administration George C. Marshall Space Flight Center Marshall Space Flight Center, AL 35812

Prepared By:

Martin Marietta Aerospace Denver Aerospace Space and Electronics Systems Division P.O. Box 179 Denver, CO 80201

Program Manager: Sherman R. Schrock

This document is submitted in accordance with the requirements of Contract NAS8-35042, Schedule Article XV, DR-4, and Contractor Task 6.0 of Exhibit A Statement of Work. This document is the Executive Summary for the Final Report.

Executive Summary

Final Report

Definition Of Technology Development Mission For Early Space Station Satellite Servicing

May,1983

VOLUME I, EXECUTIVE SUMMARY, SUMMARIZES THE RESULTS AND ACTIVITIES OF THE STUDY. DETAILED STUDY RESULTS ARE PRESENTED IN VOLUME II, TECHNICAL VOLUME, FINAL REPORT.

Satellite Servicing Study Objectives

- DEFINE THE TESTBED ROLE OF AN EARLY (1990) MANNED SPACE STATION IN THE CONTEXT OF A SATELLITE SERVICING EVOLUTIONARY DEVELOPMENT AND FLIGHT DEMONSTRATION TECHNOLOGY PLAN WHICH RESULTS IN A SATELLITE SERVICING OPERATIONAL CAPABILITY BY THE LATE 1990s.
- CONCEPTUALLY DEFINE A SATELLITE SERVICING TECHNOLOGY
 DEVELOPMENT MISSION (A SET OF MISSIONS) TO BE PERFORMED ON
 AN EARLY MANNED SPACE STATION.

Satellite Servicing Study Flow

A structured approach was used to ensure all study elements defined.

- Satellite Servicing Mission Model Developed
- Task Assessment Identified All Servicing Tasks/Locations
- Mission Objectives, Scenarios, and Requirements Defined
- Technology Development Plan Established
- TDMs Identified, Developed, and Validated for All Servicing Tasks
- TDM Accommodation Needs and Interfaces Defined
- TDM Costs and Schedules Developed

Satellite Servicing Study Flow

Servicing Tasks, Objectives And Requirements

Servicing Mission Model and Task Development

Mission model assessment determined that servicing opportunities are abundant.

- Space Station Mission Model Totals 185 Missions in 1990s
- Each Mission Analyzed for Servicing Tasks
- Seventy Percent of Missions Surveyed Required Servicing
- Three Hundred and Eighty-Seven Servicing Opportunities Were Identified

Servicing Mission Model & Task Development

SERVICE INTERVALS	
CRYOGENICS	6 Mo
STORABLE FLUIDS	30 Mo
INSTRUMENT UPGRADE	36 Mo
MATERIALS RESUPPLY	1-6 Mo
COMPONENT FAILURE	21 Mo

SERVICING TASK RO	QMTS
TASK	No.
ASSEMBLY	26
ORBIT TRANSFER	126
RESUPPLY	139
MAINTENANCE	96
Total Service Tasks	387

Satellite Servicing Tasks

Survey and analysis defined 387 servicing tasks.

- Four Task Categories Encompass 10 Mission Areas
- Twelve Space Station Assembly and 14 Spacecraft Assembly Missions Identified
- Spacecraft Delivery and Retrieval Missions Are Extensive
- Resupply Provides Satellite Life Extension and Enables Continuous Materials Processing Activities
- -- Decentamination, and Planned (Module Replacement) and Unplanned Repair Encompass Maintenance Tasks

Satellite Servicing Tasks

Servicing Task Assessment—Locations

Assessment of task matrix identified full spectrum of servicing tasks and locations.

- All Servicing Tasks and Locations Considered
- Ten Major Tasks Required at Five Locations
- Servicing Required at Space Stat.on and Remote Locations
- Most Tasks Required at All Locations

Servicing Task Assessment-Locations

SERVICING	Servicing	SERVICING LOCATIONS				
Tasks	SUB-TASKS	SPACE STATION	S/C Berthed At S/S	S/C In S/S Plat	LEO User S/C	S/C In GEO
A _{SSEMBL}	S/S SYSTEM ASSEMBLY/MODIFICATION	/		√		
	Large S/C Assembly	✓	✓		,	
$0_{R_{R}}T_{R_{A_{N}}}$	DELIVERY		✓	✓	✓	/
O _{RBITRANSFER}	RETRIEVAL		✓	✓	1	1
R _{ESUPPLY}	FLUIDS -EARTH STORABLE - MONO, BI-PROP	/	✓	✓	1	1
P _P L _Y	FLUIDS - CRYOGEN	✓	✓	✓	✓	/
	MTRLS - LOGISTICS - RAW MATERIALS	✓	✓	✓	1	/
MA	Module Replacement	√	✓	✓	✓	1
MAINTENANCE	REFURBISHMENT	✓	✓	/	√	/
N _C E	DECONTAMINATION	✓	✓	✓	✓	1

ORIGINAL PAGE IS OF POOR QUALITY

Satellite Servicing Objectives

Mission, system, and detailed objectives defined.

- Resulting in:
 - 4 Mission Level Objectives
 - 21 System Level Objectives
 - 230 Detail Level Objectives

Satellite Servicing Objectives

Servicing Objectives—Orbit Transfer (Example)

Orbit transfer objectives cover delivery and retrieval tasks.

- Results
 - 5 System Level Objectives Defined
 - 48 Detail Level Objectives Identified

Servicing Objective - Orbit Transfer (Example)

-						
	MISSION OBJECTIVE	DEMONSTRATE CAPABILITY LEO AND GEO ORBITS AND	TO DELIVER/RETRIEVE SPA TO AND FROM THE MANNED	ACECRAFT TO AND FE SPACE STATION	OM OPERAT	
The second second second second	System Level Objective	DEMONSTRATE CAPABILITY TO STACK TRANSFER VEHICLES/SPACECRAFT	DEMONSTRATE CAPABILITY TO LOAD STACK WITH PROPELLANTS	DEMONSTRATE DE- PLOYMENT OF STACK TO REMOTE REBOOST POSITION	DEMONSTR TO DELIV TO OPERA	
	DETAILED CBJECTIVES	VALIDATE MOVEMENT OF TRANSFER VEHICLES (TMS/OTV) TO MATING POSITION ON SPACE STATION USING SPACE STATION RMS VALIDATE MATE OF TRANSFER VEHICLE(S)/ SPACECRAFT USING SPACE STATION RMS, EVA, MMU/SPACE CRANE, CONTROL CONSOLES	VALIDATE CAPABILITY OF SPACE STATION RMS TO TRANSFER STACK TO PROPELLANT STORAGE AREA VALIDATE PROPELLANT LOADING: - POWER STACK DOWN - CONNECT FLUID, ELECTRICAL UMBILICALS - LOAD VEHICLES - VALIDATE LOAD ACCURACY - MONITOR RESIDUALS - DISCONNECT UMBILICALS VALIDATE CHECKOUT OF ORBIT TRANSFER STACK - POWER STACK UP - CONDUCT COMPLETE CHECKOUT OF STACK	STACK TO DEPLOY- MENT SITE VALIDATE SPACE STATION RMS DE- PLOYMENT OF STACK FROM SPACE STATION VALIDATE TMS TRANSFER OF STACK TO ORBITAL BOOST POSITION VALIDATE SPACE		ORIGINAL PAGE IS OF POOR QUALITY
	\sim					

Mission Scenarios

Total set of mission scenarios derived from task assessment and TDM objectives.

- Task, Locations, and TDM Objectives Primary Inputs
- Servicing Techniques Derived—Automation, EVA, and IVA
- Result—112 Servicing Scenarios Were Developed for Functional Analysis

ORIGINAL PAGE IS OF POOR QUALITY

Mission Scenarios

OTHER VARIABLES
- AUTOMATED - EVA - IVA

SERVICING SERVICING			SERVICING LOCATIONS			
TASKS	Sun-Tasks	SPACE STATION	S/C BESTHED	S/C IN	USER S/C	S/C IN
ASSEMBL.	S/S SYS AM ASSEMBLY/MODIFICATION	,				
	LARGE S/C ASSEMBLY	1	-			
O, TA	DELIVERY	1	1	,	,	1
1, 3, 5, E	DELIVERY RETRIEVAL	1 '		1	/ .	1
PESUPPLY	FLUIDS EARTH STORABLE			,	,	1
"uppli	FLUIDS - CAYOCEN			,	,	1
	ATRLS - LOGISTICS - Raw MATERIALS	1		,	,	1
F.	MODULE REPLACEMENT	1	/	,	/	1
TA I BY EN AN	REFURBISHMENT	1	1	1		1
	DECONTAMINATION	1	1	1	1	1

IVA SERVICING FOR SS, PREVENT. MAINT.

EVA SERVICING, REFURBISHMENT, FREE FLYER

ORBIT TRANSFER, PAYLOAD DELIV. FREE FLYER

REMOTE SVCING FOR SS, DECONTAMINATION

REMOTE SVCING, FREE FLYER, CRYOGEN RESUPPLY

112 SERVICING SCENARIOS

TIME-PHASED SEQUENCE OF SERVICING EVENTS

Scenario Commonality and Combination Analysis

Functional analysis completed for 18 unique scenarios.

- One-Hundred and Twelve Scenarios Examined for Commonality and Combinations
- Result—Eighteen Functional Analyses Capture All Servicing Events

Scenario Commonality/Combination Analysis

1. AUTOMATED SERVICING, ATTACHED
2. AUTOMATED SERVICING, UNATTACHED
3. AUTOMATED SERVICING FOR SS
4. AUTOMATED SERVICING, PLATFORM
5. EVA SERVICING FOR FREE FLYER
7. EVA SERVICING, PLATFORM
8. EVA SERVICING, ATTACHED
9. IVA SERVICING, ATTACHED
11. ORBIT TRANSFER PAYLOAD DELIVERY
12. ORBIT TRANSFER PAYLOAD RETRIEVAL
13. PAYLOAD ASSEMBLY AT SS
14. PAYLOAD MATING AT SS
15. PAYLOAD CONSTRUCTION
16. SS ASSEMBLY, EVOLUTION
16. SS ASSEMBLY, EVOLUTION
18. SS ASSEMBLY, CONSTRUCTION

Functional Analysis Example—Orbit Transfer, Payload Delivery

Detailed functional and operational analysis conducted for all 18 scenarios.

- TDM Requirements Include Universal Docking System, Berthing System, Transfer Mechanism
- New Technology Capabilities Required—Reusable TMS, OTV, Operational Techniques

Key Technology Issues Identified

Seven key technology development areas identified.

- Fluid Transfer Issues Include Transfer, and Measurement of Storables and Cryogens
- Space-Based, Reuseable TMS Required for Servicing at Space Station
- Near-Term Technology Development for Space-Based OTV with Aerobrake Required
- Servicers for Remote Operations Identified
- Space Automation Technology Development Required for All Servicing Aspects
- Onorbit Maintenance Requires Substantial Technology Development
- Operations and Control Complicated by Complex Tasks and Minimum Crew

Key Technology Issues Identified

Evolutionary Technology Plan (ETP)—Fluid Transfer

Evolutionary technology plan was developed and provides technology development roadmap.

- Technology Status and TDM Requirements Compared for All Issues
- Fluid Transfer Example Shows Ongoing and Planned Technology for Each Storable and Cryogen
- NASA Preparing Ground and Shuttle Experiments Using Water/Hydrazine
- NASA Planning Cryogenic Fluid Management Facility (CFMF) for Cryogenic Transfer on Ground and Shuttle
- Additional Fluid Transfer Tests Recommended—MMS/Mark I and TMS/Mark II
- "Battleship Tank" Precursor Tests Required on Shuttle for TMS and OTV Before Space Station Tests
- Recommended Development of Automated Equipment and Procedures at Space Station—Ground, Shuttle, Space Station Tests
- Propellant Resupply—Related Issue—Studies Underway
- Earth Storable and Cryogen Tests Required at Space Station

Evolutionary Technology Plan-Fluid Transfer

TECHNOLOGY	GROUND	STS	SPACE STATION
ORBITAL FLUID TRANSFER	MMC IRED - ORBITER SUPPLY SYSTEM DESIGN (O)	MMC - IRED STORABLE FLUID MGMT DEMO (P)	TMS/LOGISTICS MODULE FLUID TRANSFER DEMO (R)
	MMC IRED - PROFELLANT TRANSFER (0)	NASA - HYDRAZINE TRANSFER	LOGISTICS MODULE/SS FLUID TRANSFER DEMO (R)
(EARTH STORABLE)	PROPELLANT XFER PROCEDURE DEVELOPMENT (R)	MULTI-MISSIGN MODULAR SPACECRAFT GMS) - MARK I FM TRANSFER (R) THS/MARI II (R)	TRANSFER CONTROL SYSTEM TEST & DEMO (R)
		TMS "BATTLESHIP TANK" FLUID XFER TESTS (R)	
		FLUID TRANSFER CONTROL ALGORITHM DEVELOPMENT (R)	
	HHC IRED - CRYOGEN TRANSFER & FILL (0)	CFMF FLIGHTS (P)	SS CRYOGEN STORAGE TANK FILL DEMO (R)
(CRYOGEN)	LeRC/MMC - DESIGN OF CRYOGENIC FLUID MGMT FACILITY (CFMF) (D)	OTY "BATTLESHIP TAMK" FLUID XFER TESTS (R)	OTV/CRYOGEN STORAGE TANK TRANSFER DEMU (R)
	JSC/MSFC - PROPELLANT DELIVERY TO ORBIT (P) - ET SCAVENGING		CRYOGEN TRANSFER CONTROL SYSTEM TEST AND DEMO (R)
	- AFT CARGO CARRIER - OMS RECOVERY/CAPTURE		

C - COMPLETE O - ONGOING P - PLANNED R - RECOMMENDED

Technology Development Missions Operations Analysis

Technology Development Mission (TDM)

Mission-level TDMs demonstrate satellite servicing capabilities.

- Mission-Level TDMs Define:
 - System/Subsystem Validation Requirements (Precursor TDMs)
 - Space Station Facility Requirements
 - Servicing Equipment
 - Operational Requirements
- Operational Satellites and Missions Chosen for TDMs

Technology Development Mission (TDM)

PURPOSE: DEMONSTRATE THE SATELLITE SERVICING OPERATIONAL CAPABILITY ON THE EARLY SPACE STATION

PRECURSOR TDM's

SYSTEM/SUBSYSTEM VALIDATION REQUIRED TO SATISFY A MISSION LEVEL OBJECTIVE

MISSION LEVEL TDM

DEMONSTRATES A SPECIFIC SATELLITE SERVICING CAPABILITY OR SET OF CAPABILITIES. CONDUCTED EITHER AT OR REMOTE FROM THE SPACE STATION.

Satellite Servicing TDMs

Eight TDMs encompass all satellite servicing tasks.

Objectives Defined for Eight TDMs

Satellite Servicing TDMs

TDM	OD IECTIVE	TDM	OD IECTIVE
<u>TDM</u>	<u>OBJECTIVE</u>	TDM	<u>OBJECTIVE</u>
1	SPACE STATION ASSEMBLY, MODIFICATION, RESUPPLY	5	RESUPPLY (CRYOGENS)
	AND MAINTENANCE	6	MAINTENANCE/DECONTAMINA- TION (EVA) 유용
2	LEO TRANSFER RESUPPLY AND RETRIEVAL	_	TION (EVA)
	(SOLID OBJECTS)	7	MAINTENANCE/MODULE(S) REPLACEMENT AND FLUID RESUPPLY (GENERAL PURPO
3	ORBIT TRANSFER (GEO DELIVERY)		ROBOTIC SERVICER)
4	LARGE SPACECRAFT ASSEMBLY	8	RESUPPLY (FLUIDS AT GEO)

TDM Operation Validation Analysis

TDM selections validated.

- Task/Location Matrix Analysis Verifies Servicing Requirements Satisfied
- Each TDM Demonstrates a Servicing Capability
- Multiple Tasks Conducted on 50% of TDMs (1, 2, 6, 7)

TDM Operation Validation Analysis

			LOCATION			
Task		SPACE	REMOTE FROM SPACE STATE			
		STATION	LEC	HEC		
ARGE STRUCTURE	SPACE STATION ASSEMBLY/MAINT	TDM 1	NA	NA		
Assembly/ Modification	SPACECRAFT ASSEMBLY	TDM 4	NA TOM O I	NA TDM 3		
Orbit	DELIVERY	NA	TDM 2 4,5,6,7	8		
TRANSFER	RETRIEVAL	NA	TDM 2 6,7	NA		
	FLUIDS EARTH STORABLE	TDM 1 2,3,4,5,6,7,8	TDM 8	. · · · ·		
RESUPPLY	FLUIDS CRYOGEN	TDM 1 3,4,5,7,8	TDM 5	-		
	MATERIALS, LARGE MODULES	TDM 1	TDM 2			
	MODULE REPLACEMENT	TDM 6.7	IDM 2			
MAINTENANCE	GENERAL MAINTENANCE	TDM 6.7		NA		
	DECONTAM- INATION	TDM 6		NA		

ORIGINAL PAGE IS OF POOR QUALITY

Low Energy Change High Energy Change

Satellite Servicing—TDM 1 (Example)

TDM 1 demonstrates Space Station assembly and modifications.

TDM Time Phased for Space Station Evolution and Maintenance Requirement

Satellite Servicing-TDM 1 (Example)

TDM	<u>OBJECTIVE</u>	DESCRIPTION	DATE
1	SPACE STATION ASSEMBLY, MODIFICATION, RESUPPLY, & MAINTENANCE.	ASSEMBLE DEPLOYED ENERGY SECTION AND INITIAL CREW HABITA- BILITY MODULE. INCREMENTAL SS MODI- FICATIONS, RESUPPLY & MAINTENANCE.	1990- 1992
		LOCATION:	
		SPACE STATION	

DATE PRECURSORS

1990- TMS VALIDATION 1992 FROM STS.

TDM 1: Space Station Assembly and Modification—Operations Analysis (Example)

TDM 1 demonstrates Space Station assembly service support.

- Operations Analysis Highlights Delivery, Assembly, and Checkout
- Top-Level TDM Requirements Are Displayed

TDM 1: Space Station Assembly and Modification-Operations Analysis (Example)

OPERATIONAL REQUIREMENTS

- STS TMS
- EMIJ/MMU
- GROUND/CREW COMMUNICATIONS AND CONTROL
- ASSEMBLY TOOLS, CCTV, LIGHTING
- ALIGNMENT EQUIPMENT
- SS RMS
- BERTHING SYSTEM
- ENVIRONMENTAL CONTROL (MAN, MATERIALS)
- CHECKOUT EQUIPMENT

Satellite Servicing—TDM 4 (Example)

TDM 4 demonstrates onorbit assembly and delivery of large spacecraft.

- TDM 4 Time Phased for Use with Operational Satellite
- Multitasks Demonstrated in TDM—Assembly, and Delivery
- OTV Operations Validation Identified as Required Precursor

Satellite Servicing-TDM 4 (Example)

OBJECTIVE TDM 4 LARGE SPACECRAFT **ASSEMBLY**

DESCRIPTION

ASSEMBLE ORBITING VERY LONG BASELINE INTER-FEROMETER (OVLBI) AT SPACE STATION AND DELIVER TO LEO

LOCATION:

ASSEMBLE & C/O AT SS. DELIVERY - LEO 45°.

DATE **PRECURSORS**

1993

OTV OPERATIONS VALI-DATION, TEMPORARY SPACECRAFT ELEMENT STORAGE

ORIGINAL PAGE IS

TDM4: Large Spacecraft Assembly—Operations Analysis (Example)

TDM4 demonstrates onorbit assembly and delivery of large spacecraft.

- TDM Conducted with Operational Satellite
- Multitask Mission Demonstrates Assembly and Delivery
- OTV Operations Validation Is Required Precursor

ORIGINAL PAGE IS

TDM 4: Large Spacecraft Assembly-Operations Analysis (Example)

TITLE:

ORBITING VERY LONG BASELINE

INTERFEROMETER

(OVLBI)

INCLINATION:

45°

ALTITUDE:

800 KM/432 NM

S/C MISSION:

MAPS COMPACT CELESTIAL RADIO

Sources

Satellite Servicing—TDM 7 (Example)

TDM 7 demonstrates module replacement, general repair, and fluid resupply capability.

- TDM 7 Time Phased to Correspond with Needs of Operational Satellite
- Retrieval and Servicing at Space Station Demonstrated
- Planned and Unplanned Maintenance Conducted
- General-Purpose Servicer Validated

Satellite Servicing-TDM 7 (Example)

TDM	<u>OBJECTIVE</u>	DESCRIPTION	DATE	<u>PRECURSORS</u>
7	MAINTENANCE/ MODULE(S) REPLACE- MENT AND FLUID RESUPPLY (GENERAL PURPOSE ROBOTIC SERVICER)	REPLACE DEFECTIVE/ OBSOLETE MODULE(S) AND RESUPPLY FLUID FOR ADVANCED X-RAY ASTROPHYSICS FACILITY (AXAF) AFTER RETRIEVAL FROM LEO FOR SERVICING AT SPACE STATION HANGAR USING GENERAL PURPOSE SERVICER. LOCATION: RETRIEVE LEO 28.5°.	1995	TMS OPERATIONAL VALIDATION, GENERAL PURPOSE SERVICER VALIDATION OF POOR QUALITY

SERVICE AT SPACE

STATION.

TDM 7: Maintenance and Module Replacement—Operations Analysis (Example)

AXAF repair, replace, and resupply mission demonstrates credible servicing capability at Space Station.

- AXAF Retrieval and Delivery by TMS Demonstrated
- Robotic General-Purpose Servicer Validated
- Repair, Replacement, and Resupply of Operational Spacecraft Demonstrated

TDM 7: Maintenance and Module Replacement-Operations Analysis (Example)

OPERATIONAL REQUIREMENTS:

- STS
- SPACE CRANE/RMS
- CRANE/RMS CONTROL CONSOLE
- EMU/MMU
- P/L BERTHING STATION (HANGAR), TOOLS, LOGISTICS
- GROUND/SS CREW COMM & CONTROL

- ROBOTIC GENERAL PURPOSE SERVICER
- AXAF CHECKOUT INSTRUMENTATION
- FLUIDS SERVICING
- EQUIPMENT
- TMS CONSOLE
 OTV
 SERVICER (SINGLE/
- *GROUND CONTROL

TITLE:

ADVANCED X-RAY

ASTROPHYSICS FACILITY (AXAF)

INCLINATION: 28.5°

ALTITUDE: 400 KM/216 NM

S/C MISSION: ASTROPHYSICS

FACILITY FOR DETERMINING X-RAY SOURCES & PHYSICAL

PROPERTIES

Accommodation Needs

PRECEDING PAGE BLANK NOT BLANGER

TDM 7: Servicing Requirements

The AXAF spacecraft is an excellent servicing TDM candidate.

- AXAF Design Supports Onorbit Servicing
- Complex Servicing Requirements Identified
- Standard and Nonstandard Interfaces Exist
- Access Provided to Several Spacecraft Locations

TDM 7: Servicing Requirements

TDM 7: Interface Definition

Accommodation needs identified by interface analysis.

- Analyzed 16 Activities in Servicing Scenarios
- Identified More than 20 System and Subsystem Functional Interfaces
- Interfaces Included Physical, Operational, Crew, and rf
- Many Interfaces Capable of Standardization

ORIGINAL PAGE IS

TDM 7: Interface Definition

The state of the s				_				_								
	Sei	RVI	CINS	s Ac	CTIV	VIT	۲ S	TEPS	S							
Interfaces	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
STRUCTURAL/MECHANICAL RESTRAINT/STOWAGE HANDLE/TRANSFER REMOVE/REPLACE MISCELLANEOUS	X X X	X		X	X		X	X X X	X X	X X X	X	X X	X	X		X
ELECTRICAL SUPPLY POWER/GROUNDING COVERS/PROTECTION	X					X			χ	х	X	х				X
PROPELLANTS/PRESSURANT STORAGE RESUPPLY/REPLENISH	X								X	X						
THERMAL CONTROL CONTROL/MONITOR AUX TCS	Х					X		х		х	х					
DATA MANAGEMENT STO. AGE PROCESSING/CONTROL VIDEO	х	X		X	X	X X X	X	XXX	X X X	X X X	XXX		X	X		x

Servicing Activities Evaluation

Servicing scenario analysis provided TDM support equipment definition.

- Multiposition Translation Carriage Improves EVA Efficiency
- -- First Use of General-Purpose Manipulator Servicer
- Multiposition Crade/Carriage Reproduces Cargo Bay
- Cradle Carriage and Carousel Mechanism Adaptable to Multiple Payloads

Servicing Activities Evaluation

Servicing Activities Evaluation

Support Equipment

Accommodation needs identified for TDM 7 include unique and multipayload equipment.

- Major, Complex Accommodation Needs Are Part of Early Space Station Capability
- More than 50% of Support Equipment Is Not Unique to TDM 7
- Most Support Equipment Technology Is Adequate

OF POOR QUALITY

Support Equipment

	DEVELO	PMENT S	TATUS	
SUPPORT EQUIPMENT	A	В	C	
STRUCTURAL/MECHANICAL:	•			
STORAGE FOR TMS, ORU, TOOLS, EMU	Х			
Space Crane/RMS		Х		
Payload Cradle/Carriage	X			
CAROUSEL/SERVICING MECHANISM	X			
MULTIPLE POSITION TRANSLATION CARRIAGE	Х			
EVA Translation Aids	Х			
EVA PORTABLE FOOT RESTRAINT	Х			
SERVICING TOOLS		Х		
TETHERS, LANYARDS, ETC	X			
Module Service Tools (MMS)	Х			
GENERAL PURPOSE ROBOTICS SERVICER		Х		
ELECTRICAL:				
Power Supply and Control	Х			
UMBILICAL CONNECTION		X		
PROTECTIVE COVERS	Х			
				4

- A CURRENT TECHNOLOGY
- B EXTENSION OF CURRENT STATE-OF-THE-ART (SOA)
- C New Technology Development

Support Equipment (Cont.)

	DEVELO	PMENT S	TATUS	
Support Equipment	Α	В	C	
Data Management:				
DATA PROCESSING AND CONTROL	Х	,,		
Storage	v	Х		
SOFTWARE	X			
Displays/Keyboard	X			
Communications:				
RF SETS (TMS AND EVA)	Х			l
Rendezvous Radar (TMS)		Х		l
Rendezvous Radar (SS)			Х	l
SERV ANTENNA HAT/UMBILICAL	Х			l
Propellant Rdsupply:				ı
Storage for Gases and Fluids		Χ		ı
Pressurant Transfer		Х		ı
FLUID TRANSFER			X	ı
VENT/CONTAINMENT HARDWARE		Χ		ı
				ı

ORIGINAL PAGE IS OF POOR QUALITY

Support Equipment Commonality

Evaluation of TDMs reveals a tendency toward commonality of support equipment needs.

- Functional Interface Needs Are Similar
- Interface Adapters Can Be Used Effectively
- Structural and Electrical Commonality Is More Apparent than Fluid Resupply

Support Equipment Commonality

TDM 7	TDM 1	TDM 2	TDM 3	TDM 4	TDM 5 Resupply	TDM 6	TDM 8 RESUPPLY GEO	
SUPPORT EQUIPMENT	SS Assy	RESUPPLY	GEO AFER	LSS Assy	CRYO	REFURB	GEO	
• STORAGE PROVISIONS		Χ	Χ	Х	Χ	Χ	X	
• SS RMS		χ	χ	Χ	Х	Х	X	
 Payload Cradle 		Χ	χ*	Χ		Χ	1	
 CAROUSEL MECHANISM 						χ*		
• ROBOTICS SERVICER		X*REMOTE			X*REMOTE		X*REMOTE	
• Universal Service						Х		
Tool								
• SS Tool KIT	Χ			X		Х		9 0
 EVA TRANSLATION 	Х	X		X		X*		ORIGINAL OF POOR
 EVA RESTRAINT 	Χ	X		X*		Х		ON A
 Tethers/Landyards 	Χ	X		X		Х	l	
• Power Supply/								PAGE IS QUALITY
Controls			Χ*	Χ*		Χ*		5 7
 Umbilical Connection 			X*	X*		X*		≺ ऽ
 PROTECTIVE COVERS ELECT/OTHER 						Х*		
• RF SETS		X	X	Х	Х	X	X	
• Radar		X	Х	X	X	X	X	

Support Equipment Commonality (Cont.)

TDM 7 SUPPORT EQUIPMENT	TDM 1 SS Assy	TDM 2 Resupply	TDM 3 Geo Xfer	TDM 4 LSS Assy	TDM 5 Resupply Cryo	TDM 6 Refurb	TDM 8 RESUPPLY GEO	,
 ANT/CABLE COUPLER DATA DISPLAY DATA STORAGE DATA PROC/CONTROL VIDEO SOFTWARE CONTAM MONITOR LIGHTING SAFETY EQ/PROC GAS STORAGE FLUID STORAGE PRESSURANT XFER FLUID TRANSFER VENT EQUIPMENT EMU RESUPPLIES SERVICE PROCEDURES 		X X X X	X X X X	X* X X X* X* X*	X X X X* X* X* X*	X* X X X* X* X*	X X X X X* X* X* X*	ORIGINAL PAGE IS OF POOR QUALITY

^{*}POTENTIAL UNIQUE EQUIPMENT/SOFTWARE REQUIRED OR ADAPTERS NEEDED

Programmatic Analyses

Marginal Cost and Economic Benefits by Capability Increment

Servicing tasks with the largest economic payoff were used to establish the priority for each TDM.

- Economic Benefits Compare Servicing Based at Space Station versus Shuttle
- Marginal Cost Is the Additional Cost of Providing That Capability
- Economic Benefits Are Primarily Transportation Cost Avoidance

ORIGINAL PAGE IS OF POOR QUALITY

Marginal Costs and Economic Benefits by Capability Increment

Time Phased Servicing Tasks

Mission model analysis revealed early and increasing opportunities to perform cost-effective servicing.

- Orbit Transfer Is a Major Early Servicing Opportunity
- Demand for Resupply and Maintenance Grows in Mid-1990s

Critical Items

Analysis of critical service elements identified risk and high payoff areas.

- All Result in High Economic Payoff
- Most Have Critical Technical or Schedule Risks

Critical Items

					V
CRITICAL ITEMS	High Payoff	Technical Risk	Development Span	CRITICAL PATH	_
OTV - Space Based, Aerobraked	Χ	Χ	X	X	
Rendezvous and Docking Sysiem	X	X	X		
TMS - Space Based	X	Χ			유유
SPACECRAFT STANDARDIZATION	X		χ		ORIGINAL OF POOR
ORBITAL FLUID TRANSFER	Χ	Х			PAGE IS

Critical Precursor Technology Schedules

Critical technology development issues are time-phased.

- Technologies Require Precursor Ground and Shuttle Development Efforts
- Development of Space-Based TMS and OTV Vehicles Critical to Early Servicing from Space Station

Critical Precursor Technology Schedules

ORIGINAL PAGE IS OF POOR QUALITY

Technology Development Missions Schedule

TDMs with largest economic payoff are scheduled early.

- TDMs 1 and 2 Are a Set of Missions Accomplished over Span Shown
- GEO Orbit Transfer TDM Schedule Is Constrained by OTV Development Timeline

Technology Development Missions Schedule

MUT	YEAR	1990	1991	1.992	1993	1994	1995	1996	1997
1	SPACE STATION ASSEMBLY								
2	LEO TRANSFER, RESUPPLY & RETRIEVAL								
3	ORBIT TRANSFER (GEO)								
4	LARGE S/C ASSEMBLY								
5	RESUPPLY (CRYOGEN)								
6	Maintenance/Module Replacement (EVA)					"			
7	MAINT./MODULE REPLACE (GEN. PURPOSE ROBOTICS SES.)								
8	RESUPPLY FLUIDS AT GEO								6

OF POOR QUALITY

TDM 7: Associated Costs

Selecting existing and planned missions produces cost-effective TDMs.

Sharing Costs with the User and Space Station Lowers TDM-Unique Costs

TDM 7: Associated Costs

AXAF Mission
Unique Costs
\$22M

- OPS PLANNING & SUPPORT
- AXAF CRADLE
- REPLACEMENT MODULE STORAGE
- CHECKOUT SUPPORT EQUIPMENT
- UMBILICALS

SPACE STATION COMMON COSTS \$38M

TDM Costs

- GENERAL PURPOSE ROBOTIC SERVICER
- PAYLOAD CARRIAGE
- CAROUSEL MECHANISM
- Module Service Tool

TDM 7 Unique Costs \$7.4M

- RESEARCH & TECHNOLOGY
- OPERATIONS PLANNING & SUPPORT
- EXPERIMENT HARDWARE
- SUPPORT EQUIPMENT

ORIGINAL PAGE IS OF POOR QUALITY

Conclusions

- SATELLITE SERVICING TASKS/LOCATIONS/SCENARIOS ARE SATISFIED WITH EIGHT TDMS.
- THE SPACE STATION MISSION MODEL PROVIDES MANY OPPORTUNITIES TO CARRY OUT THE TDMS AND DEMONSTRATE SATELLITE SERVICING OPERATIONAL CAPABILITY BY THE LATE 1990s.
- MANY TDM SUPPORT ACCOMMODATIONS ARE SATISFIED BY REQUIRED SPACE STATION ARCHITECTURAL ATTRIBUTES.
- NEW SUPPORT EQUIPMENT COMMONALITY EXISTS ACROSS OUR RECOMMENDED TDMS (MINOR MODIFICATIONS/ADAPTERS LIKELY).
- STANDARD PAYLOAD INTERFACES ARE REQUIRED TO PERFORM AUTOMATED SERVICING OF PAYLOADS/SATELLITES.
- MAINTAINABILITY MUST BE DESIGNED INTO FUTURE HARDWARE THAT REQUIRES HANDS-ON OR EVA SERVICING.

Conclusions (Cont)

- IDENTIFIED SERVICING ISSUES SHOULD BE RESOLVED TO PROVIDE STUDY DIRECTION AND TO SUPPORT SATELLITE SERVICING PLANNING ACTIVITIES.
- Using real missions to demonstrate Satellite Servicing operational capability reduces unique cost of TDMs.
- EARLY SPACE STATION PROVIDES FLEXIBLE "TEST BED" FOR SERVICING PROCEDURES BEFORE IN SITU OPERATIONS.