STEADY-STATE SEISMIC RESPONSE ANALYSIS OF SELF-CENTERING STRUCTURAL SYSTEMS WITH VISCOUS DAMPING

Digital Appendix

Shoma Kitayama¹ and Cancan Yang²

¹Department of Civil, Structural and Environmental Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA

²Department of Civil Engineering, McMaster University, Hamilton, Ontario, L8S 4L7, Canada

September 21, 2020

Version 1.0

In this appendix, the derivation of Eqs. (53) and (54) that was omitted in the main paper is detailed.

Derivation of Eq. (53):

We have formulated Eq. (47) based on Fig. 10 in the paper:

$$m\ddot{u} + c_{\nu}\dot{u} + F_{Bi}(u) + F_{SC}(u) = -mA_G\cos\omega t \tag{a1}$$

Note that the $F_{Bi}(u)$ is described in Eq. (31) and the $F_{SC}(u)$ is described in Eq. (8) in the paper. Substitution of Eqs. (8), (16), (18), (19) and (31) in the paper into Eq. (a1) gives:

$$-m\omega \dot{U}(t)\sin\theta - m\omega^2 U(t)\cos\theta + m\omega U(t)\dot{\varphi}(t)\cos\theta + c_v\dot{U}(t)\cos\theta - c_v U(t)\omega\sin\theta + c_v\dot{\varphi}(t)U(t)\sin\theta + k_e U(t)\cos\theta + k_{\rm Bi}f_{\rm Bi} + k_{\rm SC}f_{\rm SC} = -mA_G\cos\omega t \qquad (a2)$$

The summation of Eq. (20) times $m\omega \sin\theta$ and Eq. (a2) times $\cos\theta$ gives the following equation:

$$m\omega \dot{U}(t)\sin\theta\cos\theta + m\omega\dot{\varphi}(t)U(t)\sin^2\theta - m\omega^2U(t)\cos^2\theta + m\omega\dot{\varphi}(t)U(t)\cos^2\theta + c_V\dot{U}(t)\cos^2\theta - c_VU(t)\omega\sin\theta\cos\theta + c_V\dot{\varphi}(t)U(t)\sin\theta\cos\theta + k_eU(t)\cos^2\theta + k_{Bi}f_{Bi}\cos\theta + k_{SC}f_{SC}\cos\theta = -mA_G\cos\omega t\cos\theta$$
 (a3)

Since U(t) and $\varphi(t)$ are assumed to be slowly varying functions of time t, these are treated as constants during one cycle of $\theta(\theta)$: 0 to 2π). Thus, integrating Eq. (a3) over a cycle of θ gives (note: $\int_0^{2\pi} \varphi = \varphi$, $\int_0^{2\pi} \dot{\varphi} = \dot{\varphi}$.

$$2\omega\dot{\varphi}U(t) - \omega^2U(t) + 2\beta_v\omega_{\rm Bi}\dot{U}(t) + (\mathcal{C}_{\rm Bi} + \psi\mathcal{C}_{\rm SC})\omega_{\rm Bi}^2U(t) = -A_G\cos\varphi \tag{a4}$$

The following parameters were defined:

$$\frac{k_{\rm Bi}}{m} = \omega_{\rm Bi}^2 \tag{a5}$$

$$\frac{c_v}{m} = 2\beta_v \omega_{\text{Bi}} \tag{a6}$$

The equation describing steady state response is obtained by setting $\dot{U}(t)$ and $\dot{\varphi}(t)$ in Eq. (a4) equal to zero (i.e., slowly varying functions):

$$-\omega^2 U_0 + (C_{\text{Bi}} + \psi C_{\text{SC}}) \omega_{\text{Bi}}^2 U_0 = -A_G \cos \varphi$$
 (a7)

where the subscripts "0" to U and φ are used to denote steady state values. The Eq. (a7) corresponds to the Eq. (53) in the paper.

Derivation of Eq. (54):

Similar to the process that was conducted through Eqs. (a1) to (a7), the summation of Eq. (20) times $m\omega\cos\theta$ and Eq. (a2) times $\sin\theta$ gives the following equation:

$$m\omega \dot{U}(t)\cos^2\theta + 2m\omega \dot{\varphi}(t)U(t)\sin\theta\cos\theta - m\omega \dot{U}(t)\sin\theta\cos\theta - m\omega^2\dot{U}(t)\sin\theta\cos\theta + c_v\dot{U}(t)\sin\theta\cos\theta - c_vU(t)\omega\sin^2\theta + c_v\dot{\varphi}(t)U(t)\sin^2\theta + k_eU(t)\sin\theta\cos\theta + k_{\rm Bi}f_{\rm Bi}\cos\theta + k_{\rm SC}f_{\rm SC}\sin\theta = -mA_G\cos\omega t\cos\theta$$
 (a8)

Since U(t) and $\varphi(t)$ are assumed to be slowly varying functions of time t, these are treated as constants during one cycle of $\theta(\theta)$: 0 to 2π). Thus, integrating Eq. (a3) over a cycle of θ gives (note: $\int_0^{2\pi} \varphi = \varphi$, $\int_0^{2\pi} \dot{\varphi} = \dot{\varphi}$.

$$-2\beta_{\nu}\omega_{\mathrm{Bi}}\omega U(t) + 2\beta_{\nu}\omega_{\mathrm{Bi}}\dot{\varphi}U(t) + (S_{\mathrm{Bi}} + \psi S_{\mathrm{SC}})\omega_{\mathrm{Bi}}^{2}U(t) = A_{G}\sin\varphi \tag{a9}$$

The equation describing steady state response is obtained by setting $\dot{U}(t)$ and $\dot{\varphi}(t)$ in Eq. (a9) equal to zero (i.e., slowly varying functions):

$$-2\beta_{\nu}\omega_{\mathrm{Bi}}\omega U_{0} + (S_{\mathrm{Bi}} + \psi S_{\mathrm{SC}})\omega_{\mathrm{Bi}}^{2}U_{0} = A_{G}\sin\varphi_{0}$$

$$\tag{a10}$$

where the subscripts "0" to U and φ are used to denote steady state values. The Eq. (a10) corresponds to the Eq. (54) in the paper.