1 Basics of generating functions

Introduction [Wilf 1–3] –

- how to define a sequence: exact formula, recurrent relation (Fibonacci), algorithm (the sequence of primes); there are uncomputable sequences (e.g. a list of programs that stop)
- a new way: power series (members of the sequence as coefficients in the series)
- advantages: many advanced tools from analytical theory of functions
- very powerful: works on many sequences where nothing else is known to work
- allows to get asymptotic formulas and statistical properties
- powerful way to prove combinatorial identities
- "Konečne vidím, že je tá matalýza aj na niečo dobrá. Keby mi to bol niekto predtým povedal..."

First-order linear recurrences [Wilf 3–7]

U: $a_{n+1} = 2a_n + 1$ for $n \ge 0$, $a_0 = 0$

- write few members, guess $a_n = 2^n 1$, provable by induction
- multiply by x^n , sum over all n, assign gf: $\frac{A(x)}{x} = 2A(x) + \frac{1}{1-x}$
- partial fraction expansion: $A(x) = \frac{x}{(1-x)(1-2x)} = \frac{1}{1-2x} \frac{1}{1-x}$
- the method stays basically the same for harder problems

U: $a_{n+1} = 2a_n + n$ for $n \ge 0$, $a_0 = 1$

- exact formula not obvious; no unqualified variables in the recurrence
- obstacle: $\sum_{n\geq 0} nx^n = x/(1-x)^2$; solution: differentiation
- concern: is differentiation allowed? discussed later, but in principle yes: in formal power series (as an algebraic ring) or via convergence (if we care about analytical properties)

1

$$-A(x) = \frac{1 - 2x + 2x^2}{(1 - x)^2(1 - 2x)} = \frac{A}{(1 - x)^2} + \frac{B}{1 - x} + \frac{C}{1 - 2x} = \frac{-1}{(1 - x)^2} + \frac{2}{1 - 2x}$$

- $-1/(1-x)^2$ is just $x/(1-x)^2$ (see above) shifted by 1
- $a_n = 2^{n+1} n 1$

The method [Wilf 8]:

- 1. Make sure variables in the recurrence are qualified (e.g. range for n).
- 2. Name and define the gf.
- 3. Multiply by x^n , sum over all n in the range.
- 4. Express both sides in terms of the gf.
- 5. Solve the equation for the gf.
- 6. Calculate coefficients in the gf power series expansion.

Useful notation: $[x^n]f(x)$; e.g.

$$[x^n]e^x = 1/n!$$
 $[t^r]\frac{1}{1-3t} = 3^r$ $[v^m](1+v)^s = \binom{s}{m}$

U: Solve $a_n = 5a_{n-1} - 6a_{n-2}$ for $n \ge 2$, $a_0 = 0$, $a_1 = 1$. $G(x) = \frac{x}{(1-2x)(1-3x)}$; $a_n = 3^n - 2^n$

The Fibonacci sequence [Wilf 8–10] ——

- three-term recurrence: $F_{n+1} = F_n + F_{n-1}$ for $n \ge 1$, $F_0 = 0$, $F_1 = 1$.
- apply the method $(r_{\pm} = (1 \pm \sqrt{5})/2)$:

$$F(x) = \frac{x}{1 - x - x^2} = \frac{x}{(1 - xr_+)(1 - xr_-)} = \frac{1}{r_+ - r_-} \left(\frac{1}{1 - xr_+} - \frac{1}{1 - xr_-} \right)$$

- $F_n = \frac{1}{\sqrt{5}}(r_+^n r_-^n)$
- the second term is < 1 and goes to zero, so the first term $\frac{1}{\sqrt{5}}(\frac{1+\sqrt{5}}{2})^n$ gives a good approximation

Exercises -

U: Find ogf for the following sequences (always $n \ge 0$) [W1.1]:

- (a) $a_n = n$ [introduce xD; $(xD)\frac{1}{1-x} = \frac{x}{(1-x)^2}$] (b) $a_n = \alpha n + \beta$ [$\alpha x/(1-x)^2 + \beta/(1-x)$]
- (c) $a_n = n^2$ $[(xD)^2 1/(1-x) = \frac{1+x}{(1-x)^3}]$
- (d) $a_n = n^3$ $[(xD)^3 1/(1-x)]$
- (e) $a_n = P(n)$; P is a polynomial of degree $m = [P(xD)\frac{1}{1-x}]$
- (f) $a_n = 3^n$ [1/(1-3x)]
- (g) $a_n = 5 \cdot 7^n 3 \cdot 4^n$ $\left[\frac{5}{(1-7x)} \frac{3}{1-4x} \right]$
- (h) $a_n = (-1)^n$ [1/(1+x)]

U: Find the following coefficients [W1.5]:

U: Find the sequence with gf $1/(1-x)^2$. [Differentiate 1/(1-x) and divide by x, which corresponds to an index shift by 1.]

U: Compute $\square_n = \sum_{k=1}^n k^2$.

- assign ogf to the sequence $1^2, 2^2, \dots, n^2$: $f(x) = \sum_{k=1}^n k^2 x^k$
- $(xD)^2[(x^{n+1}-1)/(x-1)] = x^{\frac{-2n^2x^{n+1}+n^2x^{n+2}+n^2x^n-2nx^{n+1}+x^{n+1}+2nx^n+x^n-x-1)}{(x-1)^3}$
- note that $\Box_n = f(1) = \lim_{x \to 1} (xD)^2 [(x^{n+1} 1)/(x 1)] = n(n+1)(2n+1)/6$

DU: Find a linear recurrence of second order (going back two sequence members) that has a solution that contains $n \cdot 3^n$ (possibly plus some linear combination of other exponential or polynomial factors).

2

DU: Find explicit formulas for the following sequences [W1.6, R2, R3, R7]:

2 Ordinary generating functions

U: From the homework: solve $a_n = 2a_{n-1} - a_{n-2} - 2$ for $n \ge 1$; $a_0 = a_{10} = 0$. Applying the standard method, while keeping a_1 as a parameter, we get

$$A(x) = \frac{a_1x - a_1x^2 - 2x^2}{(1-x)^3} = \frac{a_1x}{(1-x)^2} + \frac{x(1-x)}{(1-x)^3} - \frac{x^2 + x}{(1-x)^3}$$

(k) $a_n = -3a_{n-1} + a_{n-2} + 3a_{n-3}$ for $n \ge 3$; $a_0 = 20$, $a_1 = -36$, $a_2 = 60$ $\begin{bmatrix} 5(-3)^n + 18(-1)^n - 3 \end{bmatrix}$

so $a_n = (a_1 + 1)n - n^2$. From $a_{10} = 0$ we get $a_1 = 9$, thus $a_n = n(10 - n)$.

– Another way for boundary problems (Wilf 10–11) –

U: Find (u_n) if $au_{n+1} + bu_n + cu_{n-1} = d_n$ for $1 \le n \le N - 1$; $u_0 = u_N = 0$.

- Motivated by splines (cubic curves used e.g. to model font shapes).
- similar to Fibonacci with two given non-consecutive terms (but more general)
- define $U(x) = \sum_{j=0}^N u_j x^j$ (unknown); $D(x) = \sum_{j=1}^{N-1} d_j x^j$ (known)
- derive $a \cdot \frac{U(x) u_1 x}{x} + bU(x) + cx(U(x) u_{N-1} x^{N-1}) = D(x)$
- $(a + bx + cx^{2})U(x) = xD(x) + au_{1}x + cu_{N-1}x^{N} (*)$
- plug in suitable values of x (roots r_+ and r_- of the quadratic polynomial on the LHS)
- solve the system of two linear equations and two uknowns u_1, u_{N-1}
- if the roots are equal, differentiate (*) to obtain the second equation

- GFs of two variables

U: Find a formula for $\sum_{n>0} \binom{n}{k} x^n$.

Introducing a new variable and changing the order of summation can help

$$\sum_{n\geq 0} \binom{n}{k} x^n = [y^k] \sum_{m\geq 0} \left(\sum_{n\geq 0} \binom{n}{m} x^n \right) y^m = [y^k] \sum_{n\geq 0} (1+y)^n x^n$$

$$= [y^k] \frac{1}{1-x(1+y)} = \frac{1}{1-x} [y^k] \frac{1}{1-\frac{x}{1-x}y} = \frac{x^k}{(1-x)^{k+1}}.$$
(1)

Alternatively, one can use binomial theorem (Knuth 199/5.56 and 5.57):

$$\frac{1}{(1-x)^{n+1}} = (1-x)^{-n-1} = \sum_{k \ge 0} {\binom{-n-1}{k}} (-x)^k$$
$$= \sum_{k \ge 0} \frac{(-n-1)(-n-2)\dots(-n-k)}{k!} (-x)^k = \sum_{k \ge 0} {\binom{n+k}{n}} x^k.$$

U: Given $f(x) \stackrel{\text{ogf}}{\longleftrightarrow} (a_n)_{n \ge 0}$, express ogf for the following sequences in terms of f [W1.3]:

(a)
$$(a_n + c)_{n>0}$$
 $[f(x) + c/(1-x)]$

(b)
$$(na_n)_{n\geq 0}$$
 $\left[x\mathrm{D}f(x) \right];$ napísať im $(P(n)a_n)_{n\geq 0}\longleftrightarrow P(x\mathrm{D})f(x)$

(c)
$$0, a_1, a_2, a_3, \dots$$
 $[f(x) - a_0]$

(d)
$$0, 0, 1, a_3, a_4, a_5, \dots$$
 $\left[f(x) - a_0 - a_1 x + (1 - a_2) x^2 \right]$

(e)
$$(a_{n+2} + 3a_{n+1} + a_n)_{n \ge 0}$$
 $[(f - a_0 - a_1 x)/x^2 + 3(f - a_0)/x + f]$

(f)
$$a_0, 0, a_2, 0, a_4, 0, a_6, 0 \dots$$
 [$(f(x) + f(-x))/2$]

(g)
$$a_0, 0, a_1, 0, a_2, 0, a_3, 0 \dots$$
 $[f(x^2)]$

(h)
$$a_1, a_2, a_3, a_4, \dots$$
 $[(f(x) - a_0)/x]$

(i)
$$a_0, a_2, a_4, \dots$$
 $\left[(f(\sqrt{x}) + f(-\sqrt{x}))/2 \right]$

Formal power series [Wilf chapter 2]

- a ring with addition and multiplication $\sum_n a_n x^n \sum_n b_n x^n = \sum_n \sum_k (a_k b_{n-k}) x^n$
- if $f(0) \neq 0$, then f has a unique reciprocal 1/f such that $f \cdot 1/f = 1$
- composition f(g(x)) defined iff g(0) = 0 or f is a polynomial (cf. $e^{e^x 1}$ vs. e^{e^x})
- formal derivative D: D $\sum_n a_n x^n = \sum_n n a_n x^{n-1}$; usual rules for sum, product etc.
- **U:** Find all f such that Df = f.

— Rules for manipulation [Wilf 2.1, Knuth 334]. Assume that $f \stackrel{\text{ogf}}{\longleftrightarrow} (a_n)_{n=0}^{\infty}$.

- Rule 1: for a positive integer h, $(a_{n+h}) \stackrel{\text{ogf}}{\longleftrightarrow} (f a_0 \ldots a_{h-1}x^{h-1})/x^h$
- Rule 2: if P is a polynomial, then $P(xD)f \stackrel{\text{ogf}}{\longleftrightarrow} (P(n)a_n)_{n\geq 0}$
 - example: $(n+1)a_{n+1} = 3a_n + 1$ for $n \ge 0$, $a_0 = 1$; thus f' = 3f + 1/(1-x)
 - example: $\sum_{n\geq 0} \frac{n^2+4n+5}{n!}$; thus $f=\sum_{n\geq 0} (n^2+4n+5)\frac{x^n}{n!}=((x\mathbf{D})^2+4x\mathbf{D}+5)e^x=(x^2+5x+5)e^x$ we need f(1)=11e; works because the resulting f is analytic in a disk containing 1 in the complex plane (that is, it converges to its Taylor series)
- Rule 3: if $g \stackrel{\text{ogf}}{\longleftrightarrow} (b_n)$, then $fg \stackrel{\text{ogf}}{\longleftrightarrow} (\sum_{k=0}^n a_k b_{n-k})_{n>0}$

$$\sum_{k=0}^{n} (-1)^{k} k = (-1)^{n} \sum_{k=0}^{n} k \cdot (-1)^{n-k} = (-1)^{n} [x^{n}] \frac{x}{(1-x)^{2}} \cdot \frac{1}{1+x} = \frac{(-1)^{n}}{4} (2n+1-(-1)^{n})$$

- Rule 4: for a positive integer k, we have $f^k \stackrel{\text{ogf}}{\longleftrightarrow} \left(\sum_{n_1+n_2+\cdots+n_k=n} a_{n_1}a_{n_2}\dots a_{n_k} \right)_{n>0}$
 - example: let p(n, k) be the number of ways n can be written as an ordered sum of k nonnegative integers
 - according to R4, $(p(n,k))_{n\geq 0} \stackrel{\text{ogf}}{\longleftrightarrow} 1/(1-x)^k$, so $p(n,k) = \binom{n+k-1}{n}$ thanks to (1)

• Rule 5:
$$\frac{f}{(1-x)} \stackrel{\text{ogf}}{\longleftrightarrow} \left(\sum_{k=0}^{n} a_k\right)_{n\geq 0}$$

$$- \text{ example: } (\square_n)_{n\geq 0} \stackrel{\text{ogf}}{\longleftrightarrow} \frac{1}{1-x} \cdot (xD)^2 \frac{1}{1-x} = \frac{x(1+x)}{(1-x)^4}, \text{ so by } (1), \square_n = \binom{n+2}{3} + \binom{n+1}{3}$$

- Exercises

- 1. Using Rule 5, prove that $F_0 + F_1 + \cdots + F_n = F_{n+2} 1$ for $n \ge 0$ [Wilf 38, example 6]. [Compare gfs of both sides, left is f/(1-x), where $f = x/(1-x-x^2)$, i.e. Fibonacci.]
- 2. Solve $g_n = g_{n-1} + g_{n-2}$ for $n \ge 2$, $g_0 = 0$, $g_{10} = 10$. [$g_n = \frac{g_{10}}{F_{10}} F_n$, try the "boundary method" described above, computer necessary]
- 3. Solve $a_n = \sum_{k=0}^{n-1} a_k$ for n > 0; $a_0 = 1$. [R16] $a_n = 2^{n-1}$ for $n \ge 1$
- 4. Solve $f_n = 2f_{n-1} + f_{n-2} + f_{n-3} + \dots + f_1 + 1$ for $n \ge 1$, $f_0 = 0$ [Knuth 349/(7.41)] [$F(x) = x/(1-3x+x^2)$; $f_n = F_{2n}$]
- 5. Solve $g_n = g_{n-1} + 2g_{n-2} + \dots + ng_0$ for n > 0, $g_0 = 1$. [K7.7] $\left[G(x) = 1 + x/(1 3x + x^2); g_n = F_{2n} + [n = 0] \right]$
- 6. Solve $g_n = \sum_{k=1}^{n-1} \frac{g_k + g_{n-k} + k}{2}$ for $n \ge 2, g_1 = 1$.
- 7. Solve $g_n = g_{n-1} + 2g_{n-2} + (-1)^n$ for $n \ge 2$, $g_0 = g_1 = 1$. [Knuth 341, example 2] $\left[G(x) = \frac{1+x+x^2}{(1-2x)(1+x)^2}; g_n = \frac{7}{9}2^n + \frac{1}{9}(3n+2)(-1)^n \right]$
- 8. Solve $a_{n+2} = 3a_{n+1} 2a_n + n + 1$ for $n \ge 0$; $a_0 = a_1 = 1$. [R24] $\left[A(z) = \frac{2}{1-2z} \frac{1}{(1-z)^3}; \ a_n = 2^{n+1} \binom{n+2}{2} \right]$
- 9. Prove that $\ln \frac{1}{1-x} = \sum_{n>1} \frac{1}{n} x^n$. [consider $\int \frac{1}{1-x}$]

3 Skipping sequence elements, Catalan numbers

- Every third binomial coefficient [Wilf 51, example 4]

- Why $\frac{1}{2}(A(x) + A(-x)) \stackrel{\text{ogf}}{\longleftrightarrow} a_0, 0, a_2, 0, a_4, \dots$ works: $\frac{1}{2}(1^n + (-1)^n) = [2 \mid n]$.
- We know that if $(a_n) \stackrel{\text{ogf}}{\longleftrightarrow} A(x)$, then $(a_{2n})_{i=0}^{\infty} \stackrel{\text{ogf}}{\longleftrightarrow} (A(\sqrt{x}) + A(-\sqrt{x}))/2$.
- Let's generalize: $(a_{rk})_{k=0}^{\infty} \stackrel{\text{ogf}}{\longleftrightarrow} A_r(x) = \frac{1}{r} \sum_{j=0}^{r-1} A\left(\omega^j \sqrt[r]{x}\right)$ where ω is the primitive r-th root of unity.
- Key step in the proof: $\frac{1}{r}\sum_{j=0}^{r-1}(\omega^j)^n = \frac{1}{r}\sum_{j=0}^{r-1}e^{2\pi ijn/r} = [r\mid n]$ just a geometric progression, or a consequence of $t^r 1 = (t-1)(t^{r-1} + \dots + t + 1)$;

$$A_{r}(x) = \frac{1}{r} \sum_{j=0}^{r-1} A\left(\omega^{j} \sqrt[r]{x}\right) = \frac{1}{r} \sum_{j=0}^{r-1} \sum_{n=0}^{\infty} a_{n} \left(\omega^{j} \sqrt[r]{x}\right)^{n}$$

$$= \frac{1}{r} \sum_{n=0}^{\infty} a_{n} x^{n/r} \sum_{j=0}^{r-1} \omega^{jn}$$

$$= \sum_{n=0}^{\infty} a_{n} x^{n/r} [r \mid n] = \sum_{k=0}^{\infty} a_{rk} x^{k}$$

- problem: find $S_n = \sum_k (-1)^k \binom{n}{3k}$
- if we knew $f(x) = \sum_{k} \binom{n}{3k} x^{3k}$, we would have $S_n = f(-1)$
- for $A(x) = (1+x)^n$, we have $f(x) = \frac{1}{3}(A(x) + A(x\omega^1) + A(x\omega^2))$ for $\omega = e^{2\pi i/3}$
- and so $S_n = f(-1) = \frac{1}{3}[(1-\omega)^n + (1-\omega^2)^n)] =$

$$=\frac{1}{3}\left[\left(\frac{3-\sqrt{3}i}{2}\right)^n+\left(\frac{3+\sqrt{3}i}{2}\right)^n\right]=2\cdot 3^{\frac{n}{2}-1}\cos\left(\frac{\pi n}{6}\right)$$

Mutually recursive sequences [Knuth 343, Example 3]

- consider the number u_n of tilings of $3 \times n$ board with 2×1 dominoes
- define v_n as the number of tilings of $3 \times n$ board without a corner
- $u_n = 2v_{n-1} + u_{n-2}; \quad u_0 = 1; u_1 = 0$
- $v_n = v_{n-2} + u_{n-1}$; $v_0 = 0$; $v_1 = 1$
- derive

$$U(x) = \frac{1 - x^2}{1 - 4x^2 + x^4}, \qquad V(x) = \frac{x}{1 - 4x^2 + x^4}$$

- consider $W(z) = 1/(1-4z+z^2)$; $U(x) = (1-x^2)W(x^2)$, so $u_{2n} = w_n w_{n-1}$
- hence $u_{2n} = \frac{(2+\sqrt{3})^n}{3-\sqrt{3}} + \frac{(2-\sqrt{3})^n}{3+\sqrt{3}} = \left\lceil \frac{(2+\sqrt{3})^n}{3-\sqrt{3}} \right\rceil$ (derivation as a homework)

— Discovering combinatorial identities via gfs [Knuth 198, Vandermonde and 5.55]

- $(1+x)^r = \sum_{k>0} {r \choose k} x^k$; consider $(1+x)^r (1+x)^s = (1+x)^{r+s}$
- comparison of coefficients yields $\sum_{k\geq 0}^n \binom{r}{k}\binom{s}{n-k} = \binom{r+s}{n}$ Vandermonde
- by considering $(1-x)^r(1+x)^r = (1-x^2)^r$, we obtain

$$\sum_{k=0}^{n} {r \choose k} {r \choose n-k} (-1)^k = (-1)^{n/2} {r \choose n/2} [2 \mid n]$$

- Catalan numbers [Knuth 357, example 4] -

- consider the number of possibilities c_n of how to specify the multiplication order of $A_0A_1...A_n$ by parentheses; let $C(x) = \sum_{n>0} c_n x^n$
- divide possibilities by the place of last multiplication; $c_n = \sum_{k=0}^{n-1} c_k c_{n-1-k}$ for n > 0; $c_0 = 1$
- many ways to deal with the recurrence:
 - (1) shift the recurrence to $c_{n+1} = \sum_{k=0}^{n} c_k c_{n-k}$ and use Rules 1 and 3; $\frac{C(x)-1}{x} = C(x)^2$
 - (2) RHS as a convolution of c_n with c_{n-1} , i.e. $C(x) \cdot xC(x)$
 - (3) RHS as a convolution of c_n with c_n shifted by Rule 1, i.e. $x \cdot C(x)^2$
 - (4) rewriting through sums and changing the order of summation:

$$\sum_{n\geq 1} x^n \sum_{k=0}^{n-1} c_k c_{n-1-k} = \sum_{k=0}^{\infty} x^k c_k \sum_{n\geq k+1} c_{n-1-k} x^{n-k} = \sum_{k=0}^{\infty} x^k c_k x C(x) = x C(x) \cdot C(x)$$

6

• consequently, $C(x) - 1 = xC(x)^2$ and thus $C(x) = \frac{1 \pm \sqrt{1-4x}}{2x} = \frac{1}{2x} \left(1 - \sqrt{1-4x}\right)$

- we want C continuous and C(0) = 1, so we choose the minus sign (note that the resulting function below is analytical since $\binom{2n}{n}/(n+1) < 2^{2n}$; it would be analytical also if we chose the plus sign)
- binomial theorem yields

$$\sqrt{1-4x} = (1-4x)^{1/2} = \sum_{k\geq 0} {1/2 \choose k} (-4x)^k = 1 + \sum_{k\geq 1} \frac{1}{2k \cdot (-4)^{k-1}} {2k-2 \choose k-1} (-4)^k x^k$$
$$= 1 - \sum_{k\geq 1} \frac{2}{k} {2k-2 \choose k-1} x^k$$

- we used $\binom{1/2}{k} = \frac{1/2}{k} \binom{-1/2}{k-1} = \frac{1}{2k(-4)^{k-1}} \binom{2k-2}{k-1}$ because $\binom{-1/2}{m} = \frac{1}{(-4)^m} \binom{2m}{m}$
- therefore,

$$C(x) = \frac{1}{2x} \sum_{k \ge 1} \frac{2}{k} {2k-2 \choose k-1} x^k = \sum_{n \ge 0} \frac{1}{n+1} {2n \choose n} x^n$$

Exercises

- 1. Assume that $A(x) \stackrel{\text{ogf}}{\longleftrightarrow} (a_n)$. Express the generating function for $\sum_{n\geq 0} a_{3n}x^n$ in terms of A(x). $\left[\begin{array}{c} \frac{1}{3}(A(x^{1/3})+A(\omega x^{1/3}))+A(\omega^2 x^{1/3}), \text{ where } \omega=e^{2\pi i/3} \end{array}\right]$
- 2. Compute $S_n = \sum_{n\geq 0} F_{3n} \cdot 10^{-n}$ (by plugging a suitable value into the generating function for F_{3n}). [The gf is $\frac{2x}{1-4x-x^2}$ and $S_n = 20/59$.]
- 3. Compute $\sum_{k} \binom{n}{4k}$. $\left[2^{\frac{n}{2}-2} \left(2^{\frac{n}{2}} + \cos\left(\frac{1}{4}n\pi\right) + (-1)^n \cos\left(\frac{3}{4}n\pi\right) \right) \right]$
- 4. Compute $\sum_{k} {6m \choose 3k+1}$. [Compute it for general n and then plug in n = 6m; $(2^{6m} 1)/3$]
- 5. Evaluate $S_n = \sum_{k=0}^n (-1)^k k^2$. $\left[f(x) = \frac{-x}{(1+x)^3}; S_n = \frac{1}{2} (-1)^n n(n+1) \right]$
- 6. Find ogf for $H_n = 1 + 1/2 + 1/3 + \dots$ $\left[-\ln(1-x)/(1-x) \right]$
- 7. Find the number of ways of cutting a convex n-gon with labelled vertices into triangles. [C_{n-2} (shifted Catalan numbers)]

4 Snake Oil

The Snake Oil method [Wilf 118, chapter 4.3] – external method vs. internal manipulations within a sum.

- 1. identify the free variable and give the name to the sum, e.g. s_n
- 2. let $S(x) = \sum s_n x^n$
- 3. interchange the order of summation; solve the inner sum in closed form
- 4. find coefficients of S(x)

U: Evaluate $s_n = \sum_k \binom{n}{k}$.

After Step 2, $S(x) = \sum_{n>0} x^n \sum_k \binom{n}{k}$.

$$S(x) = \sum_{k} \sum_{n} \binom{n}{k} x^{n} = \sum_{k>0} \frac{x^{k}}{(1-x)^{k+1}} = \frac{1}{1-x} \cdot \frac{1}{1-\frac{x}{1-x}} = \frac{1}{1-2x}$$

7

U: Evaluate $s_n = \sum_{k \geq 0} {k \choose n-k}$ [Wilf 121].

After Step 2, $S(x) = \sum_{n} x^{n} \sum_{k>0} {k \choose n-k}$

$$S(x) = \sum_{k \ge 0} \sum_{n} \binom{k}{n-k} x^n = \sum_{k \ge 0} x^k \sum_{n} \binom{k}{n-k} x^{n-k} = \sum_{k \ge 0} x^k (1+x)^k = \frac{1}{1-x-x^2}$$

thus $s_n = F_{n+1}$.

U: Evaluate $s_n = \sum_k \binom{n+k}{m+2k} \binom{2k}{k} \frac{(-1)^k}{k+1}$, where $m, n \in \mathbb{Z}_0^+$ [Wilf 122].

$$S(x) = \sum_{n\geq 0} x^n \sum_k \binom{n+k}{m+2k} \binom{2k}{k} \frac{(-1)^k}{k+1}$$

$$= \sum_k \binom{2k}{k} \frac{(-1)^k}{k+1} x^{-k} \sum_{n\geq 0} \binom{n+k}{m+2k} x^{n+k}$$

$$= \sum_k \binom{2k}{k} \frac{(-1)^k}{k+1} x^{-k} \frac{x^{m+2k}}{(1-x)^{m+2k+1}}$$

$$= \frac{x^m}{(1-x)^{m+1}} \sum_k \binom{2k}{k} \frac{1}{k+1} \left(\frac{-x}{(1-x)^2}\right)^k$$

$$= \frac{-x^{m-1}}{2(1-x)^{m-1}} \left(1 - \sqrt{1 + \frac{4x}{(1-x)^2}}\right) = \frac{x^m}{(1-x)^m}$$

thus $s_n = \binom{n-1}{m-1}$.

U: Prove that $\sum_{k} {m \choose k} {n+k \choose m} = \sum_{k} {m \choose k} {n \choose k} 2^k$, where $m, n \in \mathbb{Z}_0^+$. [Wilf 127] The ogf of the left-hand side is

$$L(x) = \sum_k \binom{m}{k} x^{-k} \sum_{n \geq 0} \binom{n+k}{m} x^{n+k} = \frac{(1+x)^m}{(1-x)^{m+1}}$$

We get the same for the right-hand side

Exercises

- 1. Prove that $\sum_{k} k \binom{n}{k} = n2^{n-1}$ via the snake oil method. $[L(x) = P(x) = \frac{x}{(1-2x)^2}]$
- 2. Evaluate $f(n) = \sum_{k} k^2 \binom{n}{k} 3^k$.

$$\left[F(x) = \frac{3x(1+2x)}{(1-4x)^3} = \frac{3/8}{1-4x} - \frac{3/2}{(1-4x)^2} + \frac{9/8}{(1-4x)^3}; f(n) = 3 \cdot 4^{n-2} \cdot n(1+3n) \right]$$

3. Find a closed form for $\sum_{k\geq 0} {k \choose n-k} t^k$. [W4.11(a)]

$$[F(x) = 1/(1 - tx - tx^2)]$$

4. Evaluate $f(n) = \sum_{k} {n+k \choose 2k} 2^{n-k}$, $n \ge 0$. [Wilf 125, Example 4]

$$\left[F(x) = \frac{1-2x}{(1-x)(1-4x)} = \frac{2}{3(1-4x)} + \frac{1}{3(1-x)}; f(n) = (2^{2n+1}+1)/3 \right]$$

5. Evaluate $f(n) = \sum_{k \le n/2} (-1)^k \binom{n-k}{k} y^{n-2k}$. [Wilf 122, Example 3]

$$F(x) = 1/(1 - xy + x^2)$$

6. Evaluate
$$f(n) = \sum_{k} {2n+1 \choose 2p+2k+1} {p+k \choose k}$$
. [W4.11(c)]

[replace 2n+1 by m and solve for $f(m)=\binom{m-p-1}{p}2^{m-2p-1}; \ f(2n+1)=\binom{2n-p}{p}4^{n-p};$

$$F(x) = \frac{x}{(1-x)^2} \sum_{k>0} \binom{p+k}{p} \left(\frac{x}{1-x}\right)^{2(p+k)} = \frac{x^{p+1}}{2^p} \cdot \frac{(2x)^p}{(1-2x)^{p+1}}$$

7. Try to prove that $\sum_{k} \binom{n}{k} \binom{2n}{n+k} = \binom{3n}{n}$ via the snake oil method in three different ways: consider the sum

$$\sum_{k} \binom{n}{k} \binom{m}{r-k}$$

and the free variable being one of n, m, r.