分 数	
评卷人	

一、要基于一位全加器 FA 串联设计一个 4 位无符号补码可控加减法器,两个运算操作数分别为 $X=X_3X_2X_1X_0$, $Y=Y_3Y_2Y_1Y_0$,进位输入信号为 C_0 ,运算结果输出为 $S=S_3S_2S_1S_0$, C_4 为进位输出,运算控制信号为 Sub,试完成下列各题。(12 分)

1) 请设计一位全加器 FA 的电路,运算操作数为 X, Y, 进位信号为 C_{in}, 输出为运算结果 S, 进位输出 C_{out}, 给出所有输出信号逻辑表达式。

 $S_i = X \oplus Y \oplus C_{in} \quad (2 \%)$

 $C_{out} = XY + (X \oplus Y)C_{in}$ 或 $C_{out} = XY + (X + Y)C_{in}$ (2分)

2)以一位全加器 FA 为基础,设计一个 4 位串行无符号补码加减法器,请给出其电路图,并说明其工作原理。(5 分)

3)假设所有门电路时间延迟均为 1T,则一位全加器 FA 的时延为_____,(1 分) 该 4 位可控加减法器的关键路径延迟为_____。(13T 给 1 分,10T 给 2 分)

分 数	
评卷人	

二、某校验码编码长度 15 位,采用了海明码进行校验,编码左到右依次为 H15H14H13... H1,海明校验组采用偶校验,试完成下列各问。(14 分)

1) 根据海明校验的原理,请用打钩的方式在下表中标记出 15 位海明码中的校验位。

H ₁₅	H ₁₄	H ₁₃	H ₁₂	H ₁₁	H ₁₀	Н9	Н8	H ₇	H_6	H_5	H_4	Нз	H_2	H_1
			(2分))			>				>		>	>

2) 根据海明码定义,该编码应该分为四组,请给出每组中校验位的逻辑表达式。

	H ₁₅	H ₁₄	H ₁₃	H ₁₂	H ₁₁	H ₁₀	Н9	Н8	H ₇	Н ₆	H ₅	H ₄	Нз	H ₂	H ₁
G ₄	/	/	/	/	~	/	/	~							
G ₃	/	/	/	✓					~	~	/	/			
G ₂	•	~			~	•			~	~			•	/	
G ₁	~		>		~		>		~		~		>		~

(上表为编码设计辅助表格,可以自行使用,不做判分依据) (4分)

 $H1 = H3 \oplus H5 \oplus H7 \oplus H9 \oplus H11 \oplus H13 \oplus H15$

 $H2 = H3 \oplus H6 \oplus H7 \oplus H10 \oplus H11 \oplus H14 \oplus H15$

 $H4 = H5 \oplus H6 \oplus H7 \oplus H12 \oplus H13 \oplus H14 \oplus H15$

 $H8 = H9 \oplus H10 \oplus H11 \oplus H12 \oplus H13 \oplus H14 \oplus H15$

3) 假设指错字为 G₄G₃G₂G₁,如果校验码最多只有一位错,如何判断错误并纠正错误,如校验码为 01010110110100,请进行出错情况判断,给出计算过程。

指错字值=0 表示没有错误,否则表示出错位的位置,只需将对应为取反即可纠错(2分)

- G1 = 0+0+0+1+1+0+0+0 = 0
- G2 = 1+0+1+1+1+0+1+0=1
- G3 = 1+0+1+1+1+0+1+0 = 1
- G4 = 0+1+1+0+1+0+1+0 = 0
- G₄G₃G₂G₁=6 因此 H6 出错 (2分)
 - 4) 该编码纠错的前提是什么,假设没有三位错,如何识别一位错,两位错?

假设只有一位错才能纠错 (1分)

可以引入总校验位, (1分)

指错字=1,总检错位=1时,表示一位错,否则表示两位错。 (2分)

分 数	
评卷人	

1)若 Cache 采用 2 路组相联,请给出主存地址向 Cache 地址映射时主存地址划分图,分别给出标记字段(Tag)、索引字段(Index)和块偏移字段(Offset)的位数。(3分)

Tag (4bits)	Index (2bits)	Offset (2bits)
-------------	---------------	----------------

2) 假定 Cache 采用 LRU 替换策略,且 Cache 的初始内容为空; 画出 N=10 时,执行下列代码后 Cache 各组各行中保存的数组数据情况(按映射方法直接将 v[i] 写在 Cache 特定组的特定行, i 要用 0-9 中具体的值代替,如 v[1]等)。(注意: int 类型为 4 个字节,假定代码执行时数组 V 被加载到主存地址 0 开始的连续存储器地址中,变量 i, sum 编译时分配到寄存器中)

```
int sumv(int v[N])
{
   int i, sum=0;
   for (i=0;i<N; i ++)
      sum + = v[i];
   return sum;
}</pre>
```

}		(8分)
组号	组内行号	内容
0	0	V[8]
U	1	V[4]
1	0	V[9]
1	1	V[5]
2	0	V[2]
4	1	V[6]
3	0	V[3]
<u> </u>	1	V[7]

3)结合 Cache 工作原理和存储体系构建的基本原理, 简要说明存储体系中设置 Cache 的目的是什么?分析上述代码执行过程中 Cache 作用是否得到了发挥?给出你认为能提高上述代码执行过程中 Cache 作用有效发挥的办法。

基于局部性原理,提高 CPU 在 Cache 中访问数据的命中率来缓解 CPU 与主存间的速度差异,从而提高存储系统的访问速率。 (2分)

代码在执行过程,**Cache 的作用没有发挥出来**,因为数据块大小刚好就是一个整数,所构建的存储体系没有体现局部性的思想,导致 CPU 对数据的访问没有一次能在 Cache 中命中。(1分)可行的办法**:提高数据块的大小** (2分)

分数 评卷人

四、下图为虚拟存储器的工作原理图。(14分)

1) 页式虚拟存储器工作过程中涉及到 VA(虚拟地址)、PA(物理地址)、VPN(虚拟页号)、PPN(物理页号)等概念。根据页式虚拟存储器的工作原理,给出 VA、PA、VPN、PPN 在图中的编号。(4分)

	I		
VA	1	VPN	2
PA	4	PPN	3

2) 如果不使用 TLB 会导致什么问题, 简要说明原因?

如果不使用 TLB, 会降低存储系统的访问速率(或增加存储系统的访问时间), 因为实现虚拟 地址与物理地址的转换需要增加一次访问主存/高速缓冲存储器。 (2分)

3) 假定某虚拟页式存储器页大小为 1024B, 物理空间为 64KB。结合下表求对应于十进制虚拟 地址 2050 和 3080 的主存物理地址(十进制)。(第一列为有效位,1表示有效) (4分)

000010
000110
000111
000100

万表

VA(10 进制)	PA(10 进制)
2050	7170
3080	缺页

根据虚拟页式存储器页面大小 1024B, 可知页内偏移地址为 10 位;

 $(2050)10 = (10\ 0000000010)B$, 对应的虚页号为 2,查页表得到物理页号为 000111,且有效位为 1,因此可得到物理地址为: $(000111\ 0000000010)B$ =7170

(3080)10 = (11 0000001000)B,对应的虚页号为3,查页表得该页有效位为0,因此本次访问实效,本次访问不能获得与虚拟十进制地址3080对应的物理地址,将发生缺页异常。

4)访问 TLB 不命中时一定会发生缺页异常吗?如果 TLB 命中,cache 是否一定命中?简单分析原因。

TLB 不命中,只是表示对应页表项不在 TLB 中,只有访问主存系统中的页表项提示缺页时才会发生缺页异常,TLB 命中,只能说明要访问的页在主存,页载入主存和数据块载入 cache 并不同步,所以 cache 有可能命中,也有可能缺失。 4分

五、某计算机采用 16 位定长指令字格式,其 CPU 中有一个标志寄存器,其中包含进位/借位标志 CF、零标志 ZF 和符号标志 NF。假定为该机设计了条件转移指令,其格式如下:

15 [~] 11	10	9	8	07~00
00000	С	Z	N	OFFSET

其中,00000 为操作码 0P; C、Z 和 N 分别为 CF、ZF 和 NF 的对应检测位,某检测位为 1 时表示需检测对应标志,需检测的标志位中只要有一个为 1 就转移,否则不转移,例如,若 C=1,Z=0,N=1,则需检测 CF 和 NF 的值,当 CF=1 或 NF=1 时发生转移; OFFSET 是相对偏移量,用补码表示。转移执行时, 转移目标地址为 $(PC)+2+OFFSET\times2$; 顺序执行时,下条指令地址为(PC)+2。请回答下列问题。(11 分)

1) 该计算机存储器按字节编址还是按字编址?该条件转移指令向前和向后最多可跳转多少条指令?

按字节编址(2分)

0ffset 采用 8 位补码表示,所以表示范围位-128²127,可以向前跳跃 128,向后跳跃 127 条 指令 (1分)

2) 某条件转移指令的地址为 200CH,指令内容如下图所示,若该指令执行时 CF=0, ZF=0, NF=1,则该指令执行后 PC 的值是多少?若该指令执行时 CF=1, ZF=0, NF=0,则该指令执行后 PC 的值又是多少?请给出计算过程。

15~11	10	9	8	07~00
00000	0	1	1	1 1 1 0 0 0 1 1

指令中 C=0, Z=1, N=1, 故应根据 ZF 和 NF 的值来判断是否转移。当 CF=0, ZF=0, NF=1 时,需转移。 $(1\ \mathcal{H})$

已知指令中偏移量为 1110 0011B=E3H, 符号扩展后为 FFE3 H, 左移一位(乘 2) 后为 FFC6 H, 故 PC 的值(即转移目标地址)为 200CH+2+FFC6H=1FD4H。(2 分)

当 CF = 1, ZF = 0, NF = 0 时不转移。(1 分) PC 的值为: 200CH+2=200EH。(1 分)

3) 实现"无符号数比较小于等于时转移"功能的指令中, C、Z 和 N 应各是什么?

C=Z=1, N=0 (3 分)

分数 评卷人

六、某计算机字长 32 位,支持下表中的五条 MIPS32 指令,CPU 内部采用单总线结构,具体数据通路如图所示。除多路选择器选择控制信号外,图中所有控制信号为 1 时表示有效、为 0 时表示无效。例如,控制信号 PCin为 1表示允许数据从内总线输入 PC,PCout为 1 时表示允许数据从 PC 寄存

器输出到内总线。假设 Z 寄存器的输入一直处于使能状态。(16 分)

#	MIPS 指令	RTL 功能描述		
1	lw rt,imm(rs)	$R[rt] \leftarrow M[R[rs] + SignExt(imm)]$		
2	sw rt,imm(rs)	$M[R[rs] + SignExt(imm)] \leftarrow R[rt]$		
3	beq rs,rt,imm	$if(R[rs]==R[rt]) PC \leftarrow PC+4+SignExt(imm) << 2$		
4	addi rt,rs,imm	$R[rt] \leftarrow R[rs] + SignExt(imm)$		
5	add rd,rs,rt	$R[rd] \leftarrow R[rs] + R[rt]$		

1) 根据主机数据通路图的信息请给出 *beq* 指令在取指令阶段和执行指令阶段的数据通路和控制信号(仅给出为1的信号)。

1	取指令	彸~	·段	(5.4)	<i>(4</i> ;

时钟	数据通路	控制信号
T1	PC→AR, PC→X	PC _{out} , AR _{in} , X _{in}
T2	X+4→Z	+4
Т3	Z→PC, M[AR]→DR	Z _{out} , PC _{in} , DRE _{in} , Read
Т4	DR→IR	DR _{out} , IR _{in}

2) 执行指令阶段(5分)

时钟	数据通路	控制信号	
T1 R[rs]→X		R _{out'} X _{in}	
Т2	X−R[rt]→PSW	R _{out} , Rs/Rt, SUB, PSW _{in}	
Т3	PC→ X	PC _{out} , X _{in}	
T4	IR(A)+X→Z	IR(A) _{out} , ADD	
	If (PSW.equal)	Z _{out} , PC _{in} =PSW.equal	
T5	Z→PC	out, 1 cin 1 3 W. equal	

2) 常见 MIPS 指令实现中是没有程序状态寄存器 PSW 的,为什么在本题中的 CPU 架构中需要设计程序状态字 PSW?

超 beq 指令需要分别计算比较结果和分支地址,本题的主机架构中只有一个运算器,所以需要 过 两次使用运算器,因此必须暂存比较结果于 PSW 中。 (3分)

3) 在定长指令周期三级时序单总线 CPU 实验中,测试程序预期功能是在 0x80 的内存数据单元进行排序,请问这个排序是降序还是升序,是有符号比较还是无符号比较? 为什么实际 Educoder 平台上通关的结果是在 0x00 处进行内存单元数据排序的,而且代码区部分代码会被覆盖?

降序排序,有符号比较(2分)

Z 寄存器没有锁存控制,才用定长周期时,刚刚计算完地址应该直接送 AR,但由于计算周期和执行周期之间插入了空周期,所以导致送入 AR 中的地址错误。 (1分)

分 数	
评卷人	

七、对于上题中的 CPU 数据通路,如果采用现代时序方式,其指令执行状态图如下所示,如果采用微程序方式实现控制器,尝试回答如下问题。(17分)

1) 如果采用下址字段法,直接表示的水平微指令,则微指令操作控制字段长度为<u>21/22</u>位, 判别测试位至少<u>3</u>位,下址字段至少为<u>5</u>位,实现上题中五条机器指令共需要 多少条<u>25</u>微指令。如果改用计数器法,则判别测试位至少<u>3</u>位。如果采用对微 指令字中的操作控制字段采用编码方式缩短字长,则该字段最短为<u>18</u>位。

(最后一空2分,其他各1分,共7分)

2) 如果要为该 CPU 增加单级中断处理机制,需要增加哪些硬件单元,简要叙述增加的硬件单元的功能。

EPC 保存断点

中断使能寄存器 IE 开关中断

中断识别控制逻辑 中断识别 (6分)

3) 如果要为该 CPU 增加单级中断处理机制,在软件以及软硬协同方面需要进行哪些修改,请给 出修改后的指令执行状态图。

中断返回 eret 指令支持

(2分)

编写中断服务程序

保护现场、中断服务、 恢复现场、 中断返回

微指令控制字段增加与中断相关的控制信号,判别测试字段增加 Pend 位,表示当前微指令为微程序的最后一条微指令,需要根据中断请求信号 Intr 的值进行中断判别

在原有状态机中增加中断响应周期路径和 eret 指令路径 (2分)

