and then the minimum u_{λ} of Problem (P) is given by

$$u_{\lambda} = A^{-1}(b - C^{\top}\lambda).$$

If C has rank < m, then we can find $\lambda \ge 0$ by finding a feasible solution of the linear program whose set of constraints is given by

$$-CA^{-1}C^{\top}\mu + CA^{-1}b - d = 0,$$

using the standard method of adding nonnegative slack variables ξ_1, \ldots, ξ_m and maximizing $-(\xi_1 + \cdots + \xi_m)$.

50.9 Handling Equality Constraints Explicitly

Sometimes it is desirable to handle equality constraints explicitly (for instance, this is what Boyd and Vandenberghe do, see [29]). The only difference is that the Lagrange multipliers associated with *equality constraints* are *not required* to be nonnegative, as we now show.

Consider the Optimization Problem (P')

minimize
$$J(v)$$

subject to $\varphi_i(v) \leq 0$, $i = 1, ..., m$
 $\psi_j(v) = 0$, $j = 1, ..., p$.

We treat each equality constraint $\psi_j(u) = 0$ as the conjunction of the inequalities $\psi_j(u) \leq 0$ and $-\psi_j(u) \leq 0$, and we associate Lagrange multipliers $\lambda \in \mathbb{R}_+^m$, and $\nu^+, \nu^- \in \mathbb{R}_+^p$. Assuming that the constraints are qualified, by Theorem 50.5, the KKT conditions are

$$J'_{u} + \sum_{i=1}^{m} \lambda_{i}(\varphi'_{i})_{u} + \sum_{j=1}^{p} \nu_{j}^{+}(\psi'_{j})_{u} - \sum_{j=1}^{p} \nu_{j}^{-}(\psi'_{j})_{u} = 0,$$

and

$$\sum_{i=1}^{m} \lambda_i \varphi_i(u) + \sum_{j=1}^{p} \nu_j^+ \psi_j(u) - \sum_{j=1}^{p} \nu_j^- \psi_j(u) = 0,$$

with $\lambda \geq 0, \nu^+ \geq 0, \nu^- \geq 0$. Since $\psi_j(u) = 0$ for $j = 1, \dots, p$, these equations can be rewritten as

$$J'_{u} + \sum_{i=1}^{m} \lambda_{i}(\varphi'_{i})_{u} + \sum_{j=1}^{p} (\nu_{j}^{+} - \nu_{j}^{-})(\psi'_{j})_{u} = 0,$$

and

$$\sum_{i=1}^{m} \lambda_i \varphi_i(u) = 0$$