Home work 4

Part -1

- 1. Scipy.cluster.vq.kmeans for creating clusters, and vq.vq to create the code book for vector quantization
- 2. Used sklearn.cluster.kmeans for finding kmeans
- 3. Scipy.cluster.hierarchy.dendograms to create the dendograms

Results Kmeans error plot

From above error plot we see that after K=3 is where the elbow starts and seems like a good value for K. From this point onwards the shift in error with increasing K reduces and eventually it tapers to constant value

All graphs below are against class clusters Single linkage

Average linkage

Complete linkage

Part -2

Software used

- 4. Scipy.cluster.vq.kmeans for creating clusters, and vq.vq to create the code book for vector quantization
- 5. sklearn.ensemble.RandomForestClassifier for classification
- 6. Numpy and pandas for data manipulation
- 7. For each file I created histograms, then split it into training and test data
- 8. Using Random Forest to run the classification and finally get results
- 9. I ran several versions of runs with different splits and K's for kmeans. For all of them my accuracy was between 70-75%.
- 10. Here is a run down of the results

Assumption :- The figure belows list class labels as int. They represnts actual class labels as follows

- 0-Liedown_bed
- 1-Walk
- 2 -Eat_soup
- 3-Getup_bed
- 4-Descend_stairs
- 5-UseTephone
- 6-Standup_cahair
- 7-Brush_teeth
- 8-Climb_stairs
- 9-Sitdown chair
- 10-Eat_meat
- 11-Comb_hair

- 12-Drink_glass
- 13-Pour_water

Results:-

- 1. K=480 Split 32
 - a. Accuracy 74%
 - b. Confusion matrix

	0	1	2	3	4	5	6	7	8	9	10	11	12
0	0	0	0	2	0	0	0	0	3	0	0	0	0
1	0	11	0	1	0	0	0	7	1	0	0	0	0
2	0	0	0	0	0	0	0	0	0	0	0	0	1
_	_		_		_		_		0	_		1	3
4	0	0	0	0	5	1	0	2	0	0	0	0	0
5	0	0	0	1	0	12	0	0	1	0	0	0	0
6	0	0	0	0	0	0	3	0	0	0	0	0	0
7	0	1	0	0	0	0	0	18	0	0	0	0	0
8	0	0	0	1	0	4	0	0	14	0	0	0	1
9	0	0	0	0	0	0	0	0	0	0	0	1	2
10	0	0	0	0	0	0	0	0	0	0	5	0	0
11	0	0	0	0	0	1	0	0	0	0	0	18	0
12	0	0	0	0	0	0	0	0	3	0	0	0	21

- 2. K=500 Split 32
 - a. Accuracy 70%
 - b. Confusion matrix

		0	1	2	3	4	5	6	7	8	9	10	11	12
	0	0	O	0	3	0	1	0	O	1	0	O	O	O
	1	o	14	0	O	o	0	o	4	2	o	O	O	O
	2	o	O	0	O	o	O	0	O	O	o	O	O	1
	3	o	O	0	13	o	10	o	O	2	O	O	O	2
	4	o	O	0	O	6	O	o	2	O	0	O	O	O
	5	o	O	0	2	o	7	0	O	4	o	O	O	1
	6	o	O	0	1	o	O	2	O	O	0	O	O	O
	7	o	O	0	O	2	1	0	16	O	0	O	O	O
	8	o	O	0	O	o	3	0	O	15	o	O	1	1
	9	o	O	0	O	o	O	0	O	O	o	O	O	3
]	10	O	O	0	O	O	0	0	0	0	O	5	O	O
]	11	o	O	0	O	o	O	0	O	0	o	O	19	O
]	12	o	O	0	0	o	O	o	O	2	O	O	O	22

3. K=480 Split 25

- a. Accuracy 76%
- b. Confusion matrix

	0	1	2	3	4	5	6	7	8	9	10	11	12
0	0	0	0	1	0	2	0	0	2	0	0	0	0
1	0	14	0	0	0	2	0	4	0	0	0	0	0
2	0	0	0	0	0	0	0	0	0	0	0	0	1
3	0	0	0	12	0	8	0	1	2	0	0	1	3
4	0	0	0	0	5	0	0	2	1	0	0	0	0
5	0	0	0	0	0	14	0	0	0	0	0	0	0
6	0	0	0	0	0	0	3	0	0	0	0	0	0
7	0	0	0	0	0	0	0	19	0	0	0	0	0
8	0	0	0	0	0	3	0	0	17	0	0	0	0
9	0	0	0	0	0	0	0	0	0	0	0	0	3
10	0	0	0	0	0	0	0	0	0	0	5	0	0
11	0	0	0	0	0	1	0	0	0	0	0	18	0
12	0	0	0	0	0	2	0	0	0	0	0	0	22

- 4. K=300 Split 20
 - a. Accuracy 72%
 - b. Confusion matrix

	0	1	2	3	4	5	6	7	8	9	10	11	12
0	0	0	0	3	0	0	0	0	2	0	0	0	0
1	0	14	0	1	0	0	0	4	1	0	0	0	0
2	0	0	0	0	0	0	0	0	0	0	0	0	1
3	0	0	0	16	0	8	0	0	2	0	0	0	1
4	0	0	0	0	6	1	0	1	0	0	0	0	0
5	0	0	0	2	0	8	0	0	3	0	0	1	0
6	0	0	0	0	0	0	3	0	0	0	0	0	0
7	0	1	0	0	0	0	0	18	0	0	0	0	0
8	0	0	0	2	0	6	0	0	11	0	0	0	1
9	0	0	0	0	0	0	0	0	0	0	0	0	3
10	0	0	0	0	0	0	0	0	0	0	5	0	0
11	0	0	0	0	0	0	0	0	1	0	0	18	0
12	0	0	0	0	0	1	0	0	1	0	0	0	22

We see that results dont change much with changing splits and K's and accuracy remains about the same.