```
import pandas as pd
In [1]:
In [2]:
         import numpy as np
        import matplotlib.pyplot as plt
        import seaborn as sns
        import warnings
        warnings.filterwarnings('ignore')
        df=pd.read excel("C:/Users/david/Desktop/personal/AI/course 3 PG AIML - Machine Learning/proj/healthcare/1645792390 cep1 dataset
In [3]:
        #1. a. Perform preliminary data inspection and report the findings on the structure of the data, missing values, duplicates, etc
        df
In [5]:
             age sex cp trestbps chol fbs restecg thalach exang oldpeak slope ca thal target
Out[5]:
           0
              63
                      3
                              145
                                   233
                                                0
                                                      150
                                                              0
                                                                      2.3
                                                                             0
                                                                                0
                                                                                           1
                                                                     3.5
           1
              37
                   1 2
                              130
                                   250
                                        0
                                                1
                                                      187
                                                                             0
                                                                                0
                                                                                     2
                                                                                           1
           2
                    0 1
                                   204
                                                0
                                                      172
                                                              0
                                                                     1.4
                                                                             2
                                                                                0
                                                                                           1
                              130
              56
                              120
                                   236
                                         0
                                                1
                                                      178
                                                                      8.0
                                                                                0
                                                                                           1
                                                      163
                                                                     0.6
           4
              57
                    0 0
                              120
                                   354
                                        0
                                                1
                                                                             2
                                                                                0
                                                                                     2
                                                                                           1
                                                      123
                                                                     0.2
         298
              57
                    0
                      0
                              140
                                   241
                                         0
                                                1
                                                                                0
                                                                                     3
                                                                                            0
                                                                     1.2
              45
                   1 3
                              110
                                   264
                                        0
                                                1
                                                      132
                                                              0
                                                                             1 0
                                                                                     3
                                                                                            0
         299
         300
                    1 0
                              144
                                   193
                                                1
                                                      141
                                                                      3.4
                                                                                2
                                                                                     3
                                                                                            0
                                                                                            0
         301
              57
                    1 0
                              130
                                   131
                                        0
                                                1
                                                      115
                                                                     1.2
                                                                             1 1
                                                                     0.0
         302
              57
                   0 1
                              130
                                  236
                                        0
                                                0
                                                      174
                                                              0
                                                                             1 1
                                                                                     2
                                                                                            0
```

303 rows × 14 columns

In [6]: df.head()

```
Out[6]:
             age sex cp trestbps chol fbs restecg thalach exang oldpeak slope ca thal target
                  1
                                  233
                                                                     2.3
          0
              63
                      3
                             145
                                                0
                                                     150
                                                              0
                                                                            0
                                                                               0
                                                                                    1
                                                                                           1
              37
                  1 2
                                  250
                                        0
                                                     187
                                                              0
                                                                    3.5
                                                                            0 0
                                                                                    2
                             130
                   0
                                  204
                                        0
                                                0
                                                     172
                                                              0
                                                                                    2
          2
              41
                      1
                             130
                                                                     1.4
                                                                            2 0
                                                                                           1
                                  236
                                                              0
                                                                    0.8
                                                                            2 0
                                                                                    2
              56
                   1 1
                                        0
                                                     178
                                                                                          1
                             120
                                               1
          4
              57
                   0 0
                             120
                                  354
                                        0
                                                     163
                                                              1
                                                                    0.6
                                                                            2 0
                                                                                    2
                                                                                           1
          df.info()
 In [7]:
          <class 'pandas.core.frame.DataFrame'>
          RangeIndex: 303 entries, 0 to 302
          Data columns (total 14 columns):
                         Non-Null Count Dtype
               Column
               age
                         303 non-null
                                          int64
           1
                         303 non-null
                                          int64
               sex
                         303 non-null
                                          int64
               ср
                         303 non-null
           3
                                          int64
               trestbps
                         303 non-null
                                         int64
               chol
           5
               fbs
                         303 non-null
                                         int64
                         303 non-null
               restecg
                                          int64
                         303 non-null
           7
               thalach
                                          int64
           8
                         303 non-null
                                          int64
               exang
           9
               oldpeak
                         303 non-null
                                         float64
           10
               slope
                         303 non-null
                                         int64
           11
               ca
                         303 non-null
                                          int64
           12 thal
                         303 non-null
                                          int64
           13 target
                         303 non-null
                                          int64
          dtypes: float64(1), int64(13)
          memory usage: 33.3 KB
          df.shape
 In [8]:
          (303, 14)
 Out[8]:
          # Missing values
In [140...
```

df.isnull().sum()

```
age
Out[140]:
          sex
          ср
          trestbps
          chol
                      71
          fbs
                       0
          restecg
          thalach
          exang
          oldpeak
          slope
          ca
          thal
          dtype: int64
In [10]: # no missing values
          df.duplicated().sum()
In [209...
Out[209]:
In [14]:
In [13]: # 1. b.Based on these findings, remove duplicates (if any) and treat missing values using an appropriate strategy
          df2=df[df.duplicated()]
In [210...
          df2
Out[210]:
               age sex cp trestbps chol fbs restecg thalach exang oldpeak slope ca thal target
          164
               38
                    1 2
                               138 175
                                        0
                                                 1
                                                      173
                                                               0
                                                                      0.0
                                                                             2 4
                                                                                     2
                                                                                           1
          df=df.drop_duplicates()
In [211...
          df.duplicated().sum()
Out[211]:
In [12]: # removed duplicate value
```

```
In [ ]:
In [15]: # 2. Prepare a report about the data explaining the distribution of the disease and the related factors using the steps listed be
           # 2.a. Get a preliminary statistical summary of the data and explore the measures of central tendencies and spread of the data
           df.describe().T
In [17]:
Out[17]:
                     count
                                             std
                                                   min
                                                         25%
                                                               50%
                                                                     75%
                                                                            max
                                mean
                     303.0
                             54.366337
                                        9.082101
                                                   29.0
                                                         47.5
                                                               55.0
                                                                      61.0
                                                                            77.0
               age
                     303.0
                              0.683168
                                        0.466011
                                                   0.0
                                                          0.0
                                                                1.0
                                                                       1.0
                                                                             1.0
                sex
                     303.0
                              0.966997
                                        1.032052
                                                          0.0
                                                                1.0
                                                                       2.0
                                                                             3.0
                                                   0.0
                     303.0
                           131.623762 17.538143
                                                   94.0 120.0
                                                              130.0
                                                                     140.0
                                                                           200.0
               chol
                     303.0
                           246.264026 51.830751 126.0
                                                       211.0
                                                              240.0 274.5
                                                                           564.0
                fbs
                     303.0
                              0.148515
                                        0.356198
                                                   0.0
                                                          0.0
                                                                0.0
                                                                       0.0
                                                                             1.0
                     303.0
                              0.528053
                                        0.525860
                                                          0.0
                                                                       1.0
                                                                             2.0
            resteca
                                                   0.0
                                                                1.0
            thalach
                     303.0
                            149.646865 22.905161
                                                   71.0 133.5
                                                              153.0
                                                                     166.0
                                                                           202.0
                     303.0
                              0.326733
                                        0.469794
             exang
                                                   0.0
                                                          0.0
                                                                0.0
                                                                       1.0
                                                                             1.0
                     303.0
                              1.039604
                                                   0.0
                                                          0.0
                                                                       1.6
            oldpeak
                                        1.161075
                                                                8.0
                                                                             6.2
              slope
                     303.0
                              1.399340
                                        0.616226
                                                   0.0
                                                          1.0
                                                                1.0
                                                                       2.0
                                                                             2.0
                     303.0
                              0.729373
                                        1.022606
                                                   0.0
                                                          0.0
                                                                       1.0
                                                                0.0
                                                                             4.0
                 ca
                     303.0
                              2.313531
                                                          2.0
                                                                2.0
                                                                       3.0
                                                                             3.0
               thal
                                        0.612277
                                                   0.0
             target 303.0
                              0.544554
                                        0.498835
                                                   0.0
                                                          0.0
                                                                1.0
                                                                      1.0
                                                                             1.0
           #so here categorical variables are sex , cp , fbs ,restecg , exang ,slope , ca,thal ,target
In [290...
           # 2. b. Identify the data variables which are categorical and describe and explore these variables using the appropriate tools,
In [19]:
```

In [291... cat_df=df[['sex', 'cp', 'fbs', 'restecg','exang', 'slope', 'ca', 'thal', 'target']]
 plt.figure(figsize=(12,5))

```
sns.countplot(data=cat_df)
plt.show()
```



```
In []:
In [22]: # 2. c. Study the occurrence of CVD across the Age category
In [23]: age_df=df[['age', 'target']]
    age_df.groupby(['target']).mean()
```

Out[23]: age target

0 56.601449

1 52.496970

```
In [24]: #age has more impact target 0
In [25]: # 2. d. Study the composition of all patients with respect to the Sex category
In [26]: df.groupby(['sex']).mean()
Out[26]:
                                  trestbps
                                                        fbs restecg
                                                                        thalach
                                                                                                    slope
                                                                                                                             target
                                                chol
                                                                                  exang oldpeak
                                                                                                                       thal
                   age
         sex
           0 55.677083 1.041667 133.083333 261.302083 0.12500 0.572917 151.125000 0.229167 0.876042 1.427083 0.552083 2.125000 0.750000
           1 53.758454 0.932367 130.946860 239.289855 0.15942 0.507246 148.961353 0.371981 1.115459 1.386473 0.811594 2.400966 0.449275
         #sex has more impact on target 0
In [28]: #2. e. Study if one can detect heart attacks based on anomalies in the resting blood pressure (trestbps) of a patient
         sns.boxplot(df['trestbps'])
         <Axes: >
```

Out[29]:


```
In [30]: #here occurence of outliers are at 170

In [31]: df[df['trestbps']>170]['target'].value_counts()

Out[31]: 0 6 1 3 Name: target, dtype: int64

In [32]: df[df['trestbps']>180]['target'].value_counts()

Out[32]: 0 2 Name: target, dtype: int64

In [33]: #it has high impact on target 0

In [34]: # 2. f.Describe the relationship between cholesterol levels and a target variable
```

```
plt.figure(figsize=(11,4))
In [35]:
         sns.scatterplot(data=df,x='chol',y='target',hue='target')
         plt.show()
             1.0
             0.8
             0.6
          target
             0.4
             0.2
                                                                                                                                 target
             0.0
                                       200
                                                                300
                                                                                                                  500
                                                                                         400
                                                                           chol
In [ ]:
         chol_df=df[['chol', 'target']]
In [37]:
         chol_df.groupby(['target']).mean()
Out[37]:
                     chol
         target
             0 251.086957
             1 242.230303
In [38]: #chol has more impact on target 0
```

```
In [39]: # 2. g. State what relationship exists between peak exercising and the occurrence of a heart attack
In [40]: slope_df=df[['slope', 'target']]
         slope_df.groupby(['target']).mean()
Out[40]:
                  slope
         target
             0 1.166667
             1 1.593939
         plt.figure(figsize=(11,4))
In [41]:
         sns.pairplot(data=df,x_vars='slope',y_vars='target',hue='target')
         plt.show()
         <Figure size 1100x400 with 0 Axes>
             1.0
            0.8
          9.0
4.0
            0.6
                                             target
             0.2
            0.0
                             1
                           slope
In [42]: # slope that us peak exercising has very less impact on both target 0 and 1
In [43]: # 2. h.Check if thalassemia is a major cause of CVD
         plt.figure(figsize = (22,10))
In [44]:
         sns.heatmap(df.corr(),annot=True)
```

Out[44]: <Axes: >

- 1.0

- 0.8

- 0.6

0.4

- 0.2

0.0

- -0.2

- -0.4

In [45]: sns.heatmap(df.corr()[['target']], annot = True)

Out[45]: <Axes: >


```
In [46]: # 'thal' has less impact , thalassemia is not a major cause of CVD
In [47]: # 2. i. List how the other factors determine the occurrence of CVD
In [48]: sns.heatmap(df.corr()[['target']], annot = True)
Out[48]: <Axes: >
```


In [49]: # features cp and thalach as major impact on target 1 and features exang and oldpeak have major impact on target 0 df.groupby(['target']).mean()

Out[49]:		age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca	thal
	target													
	0	56.601449	0.826087	0.478261	134.398551	251.086957	0.159420	0.449275	139.101449	0.550725	1.585507	1.166667	1.166667	2.543478
	1	52.496970	0.563636	1.375758	129.303030	242.230303	0.139394	0.593939	158.466667	0.139394	0.583030	1.593939	0.363636	2.121212

In [50]: # 2.j.Use a pair plot to understand the relationship between all the given variables

```
In [51]: plt.figure(figsize=(11,4))
sns.pairplot(data=df,hue='target')
```

plt.show()

<Figure size 1100x400 with 0 Axes>

70 - 60 - ³⁰ 50 - 40 - 30 -										- GOODS C	
1.0 - 0.8 - 0.6 - 3 0.4 - 0.2 - 0.0 -	GEOGRAPIA CONTRACTOR GEOGRAPHICA CONTRACTOR			00:20000000000000 0 0 0 0 0 0 0 0 0 0 0	010000.001000 (0000000000000000000000000			• • • • • • • • • • • • • • • • • • •	ONCOMPRENENDO •		
3.0 - 2.5 - 2.0 - 9 1.5 - 1.0 - 0.5 -	**************************************			0 00 0100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00 (00 (00) 00) 0 (00 (00) 00) 0 (00 (0			• • • • • • • • • • • • • • • • • • •	0.000.000 00 0.000.000 0.000.000		
200 - 180 - 8 160 - 9 140 - 120 - 100 -	A Comment		***************************************				-	on of the second		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	• • • • • • • • • • • • • • • • • • • •
500 - 400 - 9 300 - 200 -	•	• • • • • • • • • • • • • • • • • • • •	0 00 00 00 00 00 00 00 00 00 00 00 00 0		-	• • • • • • • • • • • • • • • • • • • •	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				
0.8 - 0.6 - 2 0.4 - 0.2 - 0.0 - 2.0 -	• (\$000000000000000000000000000000000000				0161338000000 CO 0			0 40 MINISTREEMED 300	0100101001000 0 0		
1.5 - 55 1.0 - 0.5 - 0.0 -	© COLUMNICATION			•••••••••••				0 0000000000000000000000000000000000000	(CONTINUE CO CO CO		
180 - 160 - 140 - 120 - 100 - 80 -	•							400000000000000000000000000000000000000	асания	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
0.8 - 50 0.6 - 80 0.4 - 0.2 - 0.0 -	• (\$1000)(\$1000) • (\$1000)							• • ••••••••••••••••••••••••••••••••••	- 010001002000 00 0		
5 -		***************************************	• • • • • • • • • • • • • • • • • • • •	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			• • • • • • • • • • • • • • • • • • • •		0300000 0 0	• • • • • • • • • • • • • • • • • • •	
1.5 -	A STATE OF THE STA			Androse masson, statem	***************************************				ana disabbidan da badana		


```
Out[289]:
```

Logit Regression Results

ut[289]:								
	Dep. \	Variable:		targe	et No.	Observa	tions:	202
		Model:		Log	jit	Df Resi	duals:	195
	ı	Method:		ML	.E	Df N	/lodel:	6
		Date:	Mon, 12	2 Jun 202	23 F	Pseudo R	R-sau.:	0.5288
		Time:		21:11:0		og-Likeli	-	-65.806
						_		
		nverged:		Tru			Null:	-139.66
(Covarian	ce Type:	1	nonrobu	st	LLR p-	value:	2.363e-29
		coef	std err	7	P> z	[0.025	0.9751	
	601	-1.3318		-2.592		-2.339		
	ср	0.8178	0.229	3.566	0.000	0.368	1.267	
1	thalach	0.0200	0.006	3.161	0.002	0.008	0.032	
	exang	-1.2170	0.482	-2.525	0.012	-2.162	-0.272	
	slope	1.2692	0.380	3.340	0.001	0.524	2.014	
	ca	-1.5515	0.329	-4.716	0.000	-2.196	-0.907	
	thal	-1.4290	0.365	-3.919	0.000	-2.144	-0.714	
270 i	#select	ing fea	tures w	vith p	value	<0.05		
,	x=['sex	','cp',	'thalac	h' 'ex	ang''	slone'	'ca' '	'thal'1
	X_train	=X_trai	n[x]	۸۱۱ , ۵۸	ang ,	stope	, ca ,	chai j
2	X_test=	X_test[x]					
271 i	# modeL	buildi	ng					
			9					
[272	<pre>from sklearn.linear_model import LogisticRegression</pre>						ession	
	_							
273	<pre>logreg=LogisticRegression()</pre>							

```
logreg.fit(X_train,y_train)
In [274...
Out[274]:
          ▼ LogisticRegression
          LogisticRegression()
          pred=logreg.predict(X test)
In [275...
          logreg.score(X train,y train)
In [276...
          0.8613861386138614
Out[276]:
In [277...
          logreg.score(X_test,y_test)
          0.82
Out[277]:
In [278...
           #testing
          from sklearn.metrics import confusion_matrix, classification_report
          confusion_matrix(y_test, pred)
          array([[35, 8],
Out[278]:
                  [10, 47]], dtype=int64)
          print(classification_report(y_test, pred))
In [197...
          print(classification_report())
                         precision
                                      recall f1-score
                                                          support
                      0
                              0.77
                                        0.79
                                                   0.78
                                                               42
                              0.84
                                        0.83
                                                   0.83
                                                               58
                      1
                                                   0.81
                                                              100
               accuracy
                              0.80
              macro avg
                                        0.81
                                                   0.81
                                                              100
          weighted avg
                              0.81
                                        0.81
                                                   0.81
                                                              100
          #random forest model
In [260...
          from sklearn.ensemble import RandomForestClassifier
In [296...
```

```
clf_rf = RandomForestClassifier()
In [297...
          clf_rf.fit(X_train, y_train)
In [298...
Out[298]:
          ▼ RandomForestClassifier
          RandomForestClassifier()
          clf rf.score(X test, y test)
In [299...
          0.81
Out[299]:
In [295...
          clf rf.score(X train, y train)
          0.9900990099009901
Out[295]:
          from sklearn.metrics import confusion matrix, classification report
In [284...
          predictions = clf rf.predict(X test)
In [206...
          confusion matrix(y test, predictions)
In [207...
          array([[32, 10],
Out[207]:
                  [10, 48]], dtype=int64)
          print(classification_report(y_test, predictions))
In [228...
                         precision
                                      recall f1-score
                                                         support
                              0.76
                                        0.76
                                                   0.76
                                                               42
                                        0.83
                                                  0.83
                                                               58
                      1
                              0.83
                                                  0.80
                                                              100
               accuracy
                                                   0.79
              macro avg
                              0.79
                                        0.79
                                                              100
          weighted avg
                              0.80
                                        0.80
                                                   0.80
                                                              100
 In [ ]:
```

In []: