

Cuál es mejor entre las 3 rectas para clasificar estos datos?

Mágunas de soporte vedorial paralelas! Cuál es mejor entre las 3 rectas para clasificar estos datos? Margen Distancia al punto más currono A reces se considera sólo la mital

(vall es mejor Segun un clasificador de soporte vectorial?

Se prioriza la marger máxima

Maternáticamente hablando, cómo se determina a maximizar = -> WT x+6 = 1 $W^{\tilde{I}}X + b = 0$ $\longrightarrow W_X + P = -T$

Matemáticamente hablando, cómo se determina la recta?

a maximizar < SI restamos las dos -> h1 x +6 = 1 e cualiones que satisfacen XI y X2: $W^{T}X_{\perp} + b = 1$ $W^{\tilde{I}}X + b = 0$ $W^{T}\chi_{2}+b=-L$ $\longrightarrow W_{X+Y} = -T$ $w^T(x_2-x_1)=2$ dividimos entre 11 w/1

$$\frac{\omega^T \left(X_2 - X_1 \right)}{\|\omega\|} = \frac{2}{\|\omega\|}$$

Maternáticamente habiando, cómo se determina SI restamos las dos e cualiones que satisfacen XI y X2: $W^TX_L + b = L$ $W^T X_2 + b = -L$ $W_{X} + Y = -T$ $w^{T}(x_{z}-x_{1})=2$ Proy W = T.W W dividimos entre ojo! Wes perpendicular a la rectu/plano/hiperplano proyection de X2-XI Sobre W. Luego esta es la medida a maximizar, la cual es igual a "IWII

la recta? Matemáticamente hablando, cómo se determina Magnitud a maximizar SI restamos las dos 1 x +6 = 1 e cualiones que satisfacen XI y X2: $W^{\mathsf{T}}X_{\mathsf{L}} + b = \mathsf{L}$ $W^{\overline{1}}X + b = 0$ $W^{T}\chi_{2}+b=-1$ \rightarrow WX+b=-L $w^T(x_2-x_1)=2$ ojo! Wes perpendicular prog \vec{v} = \vec{v.w}{w} w dividimos entre al (hiper)plano/recta (X2-X₁) -> proyección de X2-X1 Sobre W. Luego esta es la medida

MAXIM 1200

Maximitar 2/11WII , equivalente a minimitar 11WII (*) Obs Ala Vez que maximizamos el margen, quisiríamos que los puntos queden bien clasificados d'ave quive decir bien clasificados (por el modelo lineal)! Aquí usamos las etiquetas {-1, 1} en lugar

de (0,1)

Casos en que el punto está bien clasificado

Finalmente, para orienteur los parametros de la mejor recta/plano/hiperplano, se minimiza la siguiente expresión

MIN
$$C \|W\|^2 + \left[\frac{1}{n} \sum_{i=1}^{n} \max_{i=1}^{n} \{0, 1 - y_i(w^T x_i - b)\} \right]$$

(*)

Finalmente, para encontrar los parametros de la mejor recta/ plano/ hiperplano, se minimiza la siguiente expresión

 $Min = C ||W||^2 + \left[\frac{1}{n} \sum_{i=1}^{n} \max_{i=1}^{n} \{0, 1 - y_i(w^T x_i - b)\}\right]$ maximizando la cantidad de puntos blen clasificados hi perpara metro establece equilibrio entre mayor morger y

puntos bin clasificados

Datos no separables linealmente

Datos no separables linealmente

podemos agregar una dimensión/atributo (X_1, X_2, X_3) $X_3 = X_1^2 + X_2^2$ $Z = X^2 + Y^2$

Ahora se preder separar por un plano

 (x_1, x_2, x_3) (x_1, x_2, x_3) (x_1, x_2, x_3) (x_2, x_3) $(x_3 = x_2^2 + x_2^2)$ $(x_4 = x_2^2 + x_2^2)$ Datos no separables linealmente podemos agregar una dimension/atributo × × × × 7?
× × 0 0 0 × Ahora se preder separar por un plano SVM

Kernels

Los Kernel nos dan diferentes formas de involucrar un armento en la dimensionalidad de los datos en el problema de optimización

X, y X1, X2, X3, X4, X5

no separable separable

Queríamos optimizar el problema siguiente

Minimizer
$$C ||W||^2 + \left[\frac{1}{n} \sum_{i=1}^{n} \max_{i=1}^{n} \{0, 1 - y_i(w^T x_i - b)\}\right]$$

Este problema equivale al signerte (programación) entre pares de vectore)

Nuevo vector de parámetros

Maximizer $W(x) = \sum_{i=1}^{n} X_i - \frac{1}{2} \sum_{i \neq i} X_i X_j$
 $fg. X_i \ge 0 \quad \sum_{i \neq j} X_i y_i$

Este problema equivale al signerte (vadrática)

Maximizer $W(x) = \sum_{i=1}^{n} X_i - \frac{1}{2} \sum_{i \neq j} X_i X_j$
 $fg. X_i \ge 0 \quad \sum_{i \neq j} X_i y_i$

Este con level de signered de signere

Esta similaridad o relación entre vectores se puede expresor de diferentes formas

Algunos tipos de Kernel

Polinomial: $(\overline{X}y + r)^d$ si r = 0, d = 1, corresponde al Kernel lineal Radial: $e^{-\frac{1}{2}|x-y|^2}$ RBF (Radial basis Function)

Tang. hiperbólica: tanh (x x Ty + 0)

Algunos tipos de Kernel

a beir

Ejemplo con el polinomial: (a.b+r)d

Ejumpho
$$V = \frac{1}{2}$$
 $d = 2$

0000 X X XX 000

forma similar a KNN (weighted)

El kernel radial permite un incremento hacia una dimensionalidad infinita, por medio de la expresión en

serie de taylor de la función ex

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + \dots$$
 (Statquest)

En dimensiones finitas, el Kernel radial tiene en cuerta la distancia entre vectores; $= 8 ||\vec{x} - \vec{y}||^2$ por lo que puede clasificar de

para detalles recomicado el "Support Vector machines

Part 3: The radial (RBF) Kernel 1)

Algunos parametros de SVM en sklearn radial Kernel; Linear, rbf, etc

> C: para metro en la ecuación: $C \| w \|^2 + \left[\frac{1}{n} \sum_{i=1}^{n} \max_{i=1}^{n} \{0, 1 - y_i(w^T x_i - b)\} \right]$ establece un equilibrio entre maximizar el margen y clasificar bin los puntos

8: Determina que ton lejana es la influencia de un punto de entronamiento mediante peso que se le da a las distancias

valores bajos - alconce lejano valores altos - alconce cercano