

Compiladores

Gramáticas livres de contexto

Artur Pereira <artur@ua.pt>,
Miguel Oliveira e Silva <mos@ua.pt</pre>

DETI, Universidade de Aveiro

Ano letivo de 2024-2025

ACP (DETI/UA) Comp 2024/2025 Maio de 2025 1/43

Sumário

- 1 Gramáticas livres de contexto (GLC)
- 2 Derivação e árvore de derivação
- 3 Ambiguidade
- 4 Projeto de gramáticas
- Operações sobre GLC
- 6 Limpeza de gramáticas

ACP (DETI/UA) Comp 2024/2025 Maio de 2025 2/43

Gramáticas Definição

Uma gramática é um quádruplo G = (T, N, P, S), onde

- T é um conjunto finito não vazio de símbolos terminais;
- N, com $N \cap T = \emptyset$, é um conjunto finito não vazio de símbolos **não** terminais;
- P é um conjunto de **produções** (ou regras de rescrita), cada uma da forma α → β;
- $S \in N$ é o símbolo inicial.
- α e β são designados por cabeça da produção e corpo da produção, respetivamente.
 - No caso geral:

$$\alpha \in (N \cup T)^* \times N \times (N \cup T)^*$$

$$\beta \in (N \cup T)^*$$

- Em ANTLR:
 - os terminais são representados por ids começados por letra maíscula
 - os não terminais são representados por ids começados por letra minúscula

ACP (DETI/UA) Comp 2024/2025 Maio de 2025 4/43

Gramáticas livres de contexto – GLC Definição

 ${\cal D}$ Uma gramática G=(T,N,P,S) diz-se **livre de contexto** (ou **independente do contexto**) se, para qualquer produção $(\alpha \to \beta) \in P$, as duas condições seguintes são satisfeitas

$$\alpha \in N$$
$$\beta \in (T \cup N)^*$$

- A linguagem gerada por uma gramática livre de contexto diz-se livre de contexto
- As gramáticas regulares são livres de contexto
- As gramáticas livres de contexto são fechadas sob as operações de reunião, concatenação e fecho
 - mas não o são sob as operações de intersecção e complementação.
- Note que $(T^* \cup T^*N) \subset (T \cup N)^*$
- Vimos anteriomente que as gramáticas regulares são fechadas sob as operações de intersecção e complementação

ACP (DETI/UA) Comp 2024/2025 Maio de 2025 5/43

Derivação Exemplo

Q Considere, sobre o alfabeto $T = \{a, b, c\}$, a gramática

$$S \to \varepsilon \mid \mathsf{a} \; B \mid \mathsf{b} \; A \mid \mathsf{c} \; S$$

$$A \to \mathsf{a} \; S \mid \mathsf{b} \; A \; A \mid \mathsf{c} \; A$$

$$B \to \mathsf{a} \; B \; B \mid \mathsf{b} \; S \mid \mathsf{c} \; B$$

e transforme o símbolo inicial S na palavra <code>aabcbc</code> por aplicação sucessiva de produções da gramática

 \mathcal{R}

$$S\Rightarrow {\sf a}B\Rightarrow {\sf a}{\sf a}BB\Rightarrow {\sf a}{\sf a}{\sf b}SB\Rightarrow {\sf a}{\sf a}{\sf b}{\sf c}SB\Rightarrow {\sf a}{\sf a}{\sf b}{\sf c}B\Rightarrow {\sf a}{\sf a}{\sf b}{\sf c}B\Rightarrow$$

- Acabou de se obter uma derivação à esquerda da palavra aabcbc
- Cada passo dessa derivação é uma derivação direta à esquerda
- Quando há dois ou mais símbolos não terminais, opta-se por expandir primeiro o mais à esquerda

ACP (DETI/UA) Comp 2024/2025 Maio de 2025 7/43

Derivação Definições

 ${\mathcal D}$ Dada uma palavra $\alpha\,A\,\beta$, com $A\in N$ e $\alpha,\beta\in (N\cup T)^*$, e uma produção $(A\to\gamma)\in P$, chama-se **derivação direta** à rescrita de $\alpha A\beta$ em $\alpha\gamma\beta$, denotando-se

$$\alpha A\beta \Rightarrow \alpha \gamma \beta$$

 ${\mathcal D}$ Dada uma palavra $\alpha A \beta$, com $A \in N$, $\alpha \in T^*$ e $\beta \in (N \cup T)^*$, e uma produção $(A \to \gamma) \in P$, chama-se **derivação direta à esquerda** à rescrita de $\alpha A \beta$ em $\alpha \gamma \beta$, denotando-se

$$\alpha A\beta \stackrel{E}{\Rightarrow} \alpha \gamma \beta$$

 ${\mathcal D}$ Dada uma palavra $\alpha A \beta$, com $A \in N$, $\alpha \in (N \cup T)^*$ e $\beta \in T^*$, e uma produção $(A \to \gamma) \in P$, chama-se **derivação direta à direita** à rescrita de $\alpha A \beta$ em $\alpha \gamma \beta$, denotando-se

$$\alpha A\beta \stackrel{D}{\Rightarrow} \alpha \gamma \beta$$

ACP (DETI/UA) Comp 2024/2025 Maio de 2025 8/43

Derivação Definições

D Chama-se derivação a uma sucessão de zero ou mais derivações diretas, denotando-se

$$\alpha \Rightarrow^* \beta \equiv \alpha = \gamma_0 \Rightarrow \gamma_1 \Rightarrow \cdots \Rightarrow \gamma_n = \beta$$

onde n é o comprimento da derivação.

D Chama-se derivação à esquerda a uma sucessão de zero ou mais derivações diretas à esquerda, denotando-se

$$\alpha \stackrel{E}{\Rightarrow} {}^*\beta \equiv \alpha_1 \stackrel{E}{\Rightarrow} \cdots \stackrel{E}{\Rightarrow} \alpha_n = \beta$$

onde n é o comprimento da derivação.

D Chama-se derivação à direita a uma sucessão de zero ou mais derivações diretas à direita, denotando-se

$$\alpha \stackrel{D}{\Rightarrow} {}^*\beta \equiv \alpha = \gamma_0 \stackrel{D}{\Rightarrow} \gamma_1 \stackrel{D}{\Rightarrow} \cdots \stackrel{D}{\Rightarrow} \gamma_n = \beta$$

onde n é o comprimento da derivação.

• Normalmente, usar-se-á \Rightarrow em vez de $\stackrel{E}{\Rightarrow}$ ou $\stackrel{D}{\Rightarrow}$

ACP (DETI/UA) Comp 2024/2025

Derivação Exemplo

 \mathcal{Q} Considere, sobre o alfabeto $T = \{a, b, c\}$, a gramática seguinte

$$S \,\rightarrow\, \varepsilon \,\mid\, \mathbf{a}\,\, B \,\mid\, \mathbf{b}\,\, A \,\mid\, \mathbf{c}\,\, S$$

$$A\,\rightarrow\, {\rm a}\,\,S\,\mid\, {\rm b}\,\,A\,\,A\,\mid\, {\rm c}\,\,A$$

$$B \, o \,$$
a $B \, B \, |$ b $S \, |$ c B

Determine as derivações à esquerda e à direita da palavra aabcbc

 \mathcal{R}

à esquerda

$$S \Rightarrow aB \Rightarrow aaBB \Rightarrow aabcBB \Rightarrow aabcbcS \Rightarrow aabcbc$$

à direita

$$S\Rightarrow aB\Rightarrow aaBB\Rightarrow aaBbS\Rightarrow aaBbcS$$
 $\Rightarrow aaBbc\Rightarrow aabcbc\Rightarrow aabcbc\Rightarrow aabcbc$

• Note que se usou \Rightarrow em vez de $\stackrel{D}{\Rightarrow}$ e $\stackrel{E}{\Rightarrow}$

Derivação Alternativas de derivação

 O grafo seguinte capta as alternativas de derivação. Considera-se novamente a palavra aabcbc e a gramática anterior

• Identifique os caminhos que correspondem às derivações à direita e à esquerda

ACP (DETI/UA) Comp 2024/2025 Maio de 2025 11/43

Derivação Árvore de derivação

- Uma árvore de derivação (parse tree) é uma representação de uma derivação onde os nós-ramos são símbolos não terminais e os nós-folhas são símbolos terminais
- A árvore de derivação da palavra aabcbc na gramática anterior é

ACP (DETI/UA) Comp 2024/2025 Maio de 2025 12/43

Ambiguidade

Ilustração através de um exemplo

- Considere a gramática $S \to S S \mid S + S \mid$ ($S \mid$) | n e desenhe a árvore de derivação da palavra n+n-n
- \mathcal{R} Podem obter-se duas árvores de derivação diferentes

- Pode haver duas interpretações diferentes para a palavra; há ambiguidade
- Que acontece em ANTLR?

ACP (DETI/UA) Comp 2024/2025 Maio de 2025 14/43

Ambiguidade Definição

- Diz-se que uma palavra é derivada ambiguamente se possuir duas ou mais árvores de derivação distintas
- Diz-se que uma gramática é ambígua se possuir pelo menos uma palavra gerada ambiguamente
- Frequentemente é possível definir-se uma gramática não ambígua que gera a mesma linguagem que uma ambígua
- No entanto, há gramáticas inerentemente ambíguas

Por exemplo, a linguagem

$$L = \{ \mathbf{a}^i \mathbf{b}^j \mathbf{c}^k \mid i = j \lor j = k \}$$

não possui uma gramática não ambígua que a represente.

ACP (DETI/UA) Comp 2024/2025 Maio de 2025 15/43

Ambiguidade

Remoção da ambiguidade

R Considere-se novamente a gramática

$$S
ightarrow S$$
 - S | S + S | (S) | n

e obtenha-se uma gramática não ambígua equivalente

 \mathcal{R}

$$S \rightarrow K \mid S - K \mid S + K$$

$$K \rightarrow n \mid (S)$$

Q Desenhe a árvore de derivação da palavra n+n-n na nova gramática

ACP (DETI/UA) Maio de 2025

Projeto de gramáticas Exemplo #1, solução #1

 \mathcal{Q} Sobre o conjunto de terminais $T = \{a, b\}$, determine uma gramática livre de contexto que represente a linguagem

$$L_1 \,=\, \{\omega \in T^* \,:\, \#(\mathtt{a},\omega) = \#(\mathtt{b},\omega)\}$$

 \mathcal{R}_1

$$S
ightarrow arepsilon \mid$$
 a S b $S \mid$ b S a S

Q A gramática é ambígua? Analise a palavra aabbab

Projeto de gramáticas Exemplo #1, solução #2

 \mathcal{Q} Sobre o conjunto de terminais $T = \{a, b\}$, determine uma gramática livre de contexto que represente a linguagem

$$L_1 = \{ \omega \in T^* : \#(\mathbf{a}, \omega) = \#(\mathbf{b}, \omega) \}$$

 \mathcal{R}_2

$$S \to \varepsilon \mid a B \mid b A$$

 $A \to a S \mid b A A$
 $B \to a B B \mid b S$

Q A gramática é ambígua? Analise a palavra aababb.

Falta expandir alguns nós

ACP (DETI/UA)

Maio de 2025

Projeto de gramáticas

Exemplo #1, solução #3

Q Sobre o conjunto de terminais $T = \{a, b\}$, determine uma gramática livre de contexto que represente a linguagem

$$L_1 = \{ \omega \in T^* : \#(\mathbf{a}, \omega) = \#(\mathbf{b}, \omega) \}$$

 \mathcal{R}_3

$$S \, o \, arepsilon \, \, | \, \, \mathrm{a} \, \, B \, \, S \, \, | \, \, \mathrm{b} \, \, A \, \, S$$

$$A \rightarrow \mathsf{a} \mid \mathsf{b} \; A \; A$$

$$B \, o \,$$
a $B \, B \, | \,$ b

Q A gramática é ambígua? Analise a palavra aababb

Projeto de gramáticas

Exemplo #2

 $\mathcal Q$ Sobre o conjunto de terminais $T=\{\mathtt{a},\mathtt{b},\mathtt{c}\}$, determine uma gramática livre de contexto que represente a linguagem

$$L_2=\{\omega\in T^*: \#(\mathtt{a},\omega)=\#(\mathtt{b},\omega)\}$$
 \mathcal{R}
$$S o\varepsilon\mid\mathtt{a}\;B\;S\mid\mathtt{b}\;A\;S\mid\mathtt{c}\;S$$

$$A o\mathtt{a}\mid\mathtt{b}\;A\;A\mid\mathtt{c}\;A$$

$$B o\mathtt{a}\;B\;B\mid\mathtt{b}\mid\mathtt{c}\;B$$

Q A gramática é ambígua?

ACP (DETI/UA) Comp 2024/2025 Maio de 2025 21/43

Projeto de gramáticas

Exemplo #3, solução #1

 \mathcal{R}_1

 $\mathcal Q$ Sobre o conjunto de terminais $T=\{\mathtt a,\mathtt b,\mathtt c\}$, determine uma gramática livre de contexto que represente a linguagem

Q A gramática é ambígua? Analise a palavra aababb

- O número de ocorrências das letras a e b é igual, mas em qualquer prefixo das palavras da linguagem não pode haver mais bs que as, ou seja o a aparece antes
- Solução inspirada na do exemplo 1.1, removendo a produção $S \to b \ S \ a \ S$

ACP (DETI/UA) Comp 2024/2025 Maio de 2025 22 / 4

Projeto de gramáticas

Exemplo #3: solução #2

 $\mathcal Q$ Sobre o conjunto de terminais $T=\{\mathtt{a},\mathtt{b},\mathtt{c}\}$, determine uma gramática livre de contexto que represente a linguagem

$$L_3 = \{\omega \in T^* : \#(\mathtt{a}, \omega) = \#(\mathtt{b}, \omega) \land \\ \forall_{i \leq |\omega|} \ \#(\mathtt{a}, \mathsf{prefix}(i, \omega)) \geq \#(\mathtt{b}, \mathsf{prefix}(i, \omega)) \}$$

$$\mathcal{R}_2$$

$$S \to \varepsilon \mid \mathtt{a} \ B \mid \mathtt{c} \ S$$

$$B \to \mathtt{a} \ B \ B \mid \mathtt{b} \ S \mid \mathtt{c} \ B$$

Q A gramática é ambígua? Analise a palavra aababb

• Solução inspirada na do exemplo 1.2, removendo a produção $S \to \flat \ A$ e todas as começadas por A

ACP (DETI/UA) Comp 2024/2025 Maio de 2025 23/43

Projeto de gramáticas

Exemplo #3: solução #3

 \mathcal{R}_3

 $\mathcal Q$ Sobre o conjunto de terminais $T=\{\mathtt a,\mathtt b,\mathtt c\}$, determine uma gramática livre de contexto que represente a linguagem

Q A gramática é ambígua? Analise a palavra aababb

• Solução inspirada na do exemplo 1.3, removendo a produção $S \to b \ A \ S$ e todas as começadas por A

ACP (DETI/UA) Comp 2024/2025 Maio de 2025 24/43

Projeto de gramáticas

Exercício

 $\mathcal Q$ Sobre o conjunto de terminais $T=\{\mathtt{a},\mathtt{b},\mathtt{c},\ (,),+,\star\}$, determine uma gramática independente do contexto que represente a linguagem

$$L = \{ \, \omega \in T^* \, : \\ \omega \text{ representa uma expressão regular sobre o alfabeto } \{ \mathtt{a}, \mathtt{b}, \mathtt{c} \} \}$$

 \mathcal{R} Em ANTLR, poder-se-ia fazer

mas em geral não, porque, em geral, as alternativas estão todas ao mesmo nível

- Como escrever a gramática de modo à precedência ser imposta por construção?
- Está a usar-se o operador + em vez do |

ACP (DETI/UA)

Comp 2024/2025

Maio de 2025

25/43

Projeto de gramáticas

Exercício (cont.)

 \mathcal{R} Uma solução adequada

$$S \to E \\ E \to E '+' T \\ | T \\ T \to T F \\ | F \\ F \to F '*' \\ | O \\ O \to ' (' E ')' \\ | 'a' | 'b' | 'c'$$

- Uma expressão é vista como uma 'soma' de termos, em que a recursividade à esquerda impõe associatividade à esquerda
- Um termo é visto como um 'produto' (concatenação) de fatores
- Um fator é visto como um 'fecho' de operandos
- Um operando ou é um elemento base ou uma expressão entre parêntesis
- Está a usar-se o operador + em vez do |

ACP (DETI/UA) Comp 2024/2025 Maio de 2025 26/43

Reunião de GLC Exemplo

 $\mathcal Q$ Sobre o conjunto de terminais $T=\{\mathtt a,\mathtt b,\mathtt c\}$, determine uma gramática livre de contexto que represente a linguagem

$$L = \{ \omega \in T^* : \#(\mathbf{a}, \omega) = \#(\mathbf{b}, \omega) \lor \#(\mathbf{a}, \omega) = \#(\mathbf{c}, \omega) \}$$

$$\begin{array}{|c|c|c|}\hline R \\ \hline L_1 = \{\,\omega \in T^* \,:\, \#(\mathtt{a},\omega) = \#(\mathtt{b},\omega)\,\} & S_1 \to \varepsilon \mid \mathtt{a} \, S_1 \, \mathtt{b} \, S_1 \\ & \mid \mathtt{b} \, S_1 \, \mathtt{a} \, S_1 \mid \mathtt{c} \, S_1 \\ \hline L_2 = \{\,\omega \in T^* \,:\, \#(\mathtt{a},\omega) = \#(\mathtt{c},\omega)\,\} & S_2 \to \varepsilon \mid \mathtt{a} \, S_2 \, \mathtt{c} \, S_2 \\ & \mid \mathtt{b} \, S_2 \mid \mathtt{c} \, S_2 \, \mathtt{a} \, S_2 \\ \hline \\ L = L_1 \, \cup \, L_2 & S_1 \to \varepsilon \mid \mathtt{a} \, S_1 \, \mathtt{b} \, S_1 \\ & \mid \mathtt{b} \, S_1 \, \mathtt{a} \, S_1 \mid \mathtt{c} \, S_1 \\ & \mid \mathtt{b} \, S_1 \, \mathtt{a} \, S_1 \mid \mathtt{c} \, S_1 \\ & \mid \mathtt{b} \, S_2 \mid \mathtt{c} \, S_2 \, \mathtt{a} \, S_2 \\ & \mid \mathtt{b} \, S_2 \mid \mathtt{c} \, S_2 \, \mathtt{a} \, S_2 \\ \hline \end{array}$$

• Para esta linguagem, mesmo que as gramáticas de L_1 e L_2 não sejam ambíguas, a de L será ambígua. Porquê?

ACP (DETI/UA) Comp 2024/2025 Maio de 2025 28/43

Operações sobre GLCs Reunião

 \mathcal{D} Sejam $G_1=(T_1,N_1,P_1,S_1)$ e $G_2=(T_2,N_2,P_2,S_2)$ duas gramáticas livres de contexto quaisquer, com $N_1\cap N_2=\emptyset$.

A gramática G = (T, N, P, S) onde

$$\begin{array}{lll} T = T_1 \ \cup \ T_2 \\ N = N_1 \ \cup \ N_2 \ \cup \ \{S\} & \text{com} & S \not\in (N_1 \cup N_2) \\ P = \{S \to S_1, S \to S_2\} \ \cup \ P_1 \ \cup \ P_2 \end{array}$$

é livre de contexto e gera a linguagem $L = L(G_1) \cup L(G_2)$

- As novas produções $S \to S_i$, com i = 1, 2, permitem que G gere a linguagem $L(G_i)$
- Esta definição é idêntica à que foi dada para a operação de reunião nas gramáticas regulares

ACP (DETI/UA) Comp 2024/2025 Maio de 2025 29 / 4

Concatenação de GLC Exemplo

 $\mathcal Q$ Sobre o conjunto de terminais $T=\{\mathtt{a},\mathtt{b},\mathtt{c}\}$, determine uma gramática livre de contexto que represente a linguagem

$$L = \{ \omega_1 \omega_2 : \omega_1, \omega_2 \in T^* \\ \wedge \#(a, \omega_1) = \#(b, \omega_1) \wedge \#(a, \omega_2) = \#(c, \omega_2) \}$$

$$\begin{array}{c|c}
\mathcal{R} \\
\hline
L_1 = \left\{ \omega \in T^* \, : \, \#(\mathtt{a}, \omega) = \#(\mathtt{b}, \omega) \right\} & S_1 \to \varepsilon \mid \mathtt{a} \ S_1 \mid \mathtt{b} \ S_1 \\
\mid \ \mathtt{b} \ S_1 \mid \mathtt{a} \ S_1 \mid \mathtt{c} \ S_1
\end{array}$$

$$\begin{array}{c|c}
L_2 = \left\{ \omega \in T^* \, : \, \#(\mathtt{a}, \omega) = \#(\mathtt{c}, \omega) \right\} & S_2 \to \varepsilon \mid \mathtt{a} \ S_2 \mid \mathtt{c} \ S_2 \mid \mathtt{a} \ S_2 \mid \mathtt{c} \ S_2 \mid \mathtt{a} \ S_2
\end{array}$$

$$\begin{array}{c|c}
L = L_1 \cdot L_2 & S_1 \mid \mathtt{b} \ S_1 \mid \mathtt{c} \ S_1
\end{array}$$

$$\begin{array}{c|c}
S_1 \to \varepsilon \mid \mathtt{a} \ S_1 \mid \mathtt{b} \ S_2 \mid \mathtt{c} \ \mathtt{c} \ \mathtt{c} \mid \mathtt{c} \mid \mathtt{c} \ \mathtt{c} \mid \mathtt{c} \mid \mathtt{c} \ \mathtt{c} \mid \mathtt{c}$$

ACP (DETI/UA) Comp 2024/2025 Maio de 2025 30 / 4

Operações sobre gramáticas:

Concatenação

 \mathcal{D} Sejam $G_1=(T_1,N_1,P_1,S_1)$ e $G_2=(T_2,N_2,P_2,S_2)$ duas gramáticas livres de contexto quaisquer, com $N_1\cap N_2=\emptyset$.

A gramática G = (T, N, P, S) onde

$$T = T_1 \cup T_2$$

$$N = N_1 \cup N_2 \cup \{S\} \text{ com } S \notin (N_1 \cup N_2)$$

$$P = \{S \to S_1 S_2\} \cup P_1 \cup P_2$$

é livre de contexto e gera a linguagem $L = L(G_1) \cdot L(G_2)$

- A nova produção $S \to S_1S_2$ justapõe palavras de $L(G_2)$ às de $L(G_1)$
- Esta definição é diferente da que foi dada para a operação de concatenação nas gramáticas regulares

ACP (DETI/UA) Comp 2024/2025 Maio de 2025 31/43

Fecho de Kleene de GLC Exemplo

 \mathcal{Q} Sobre o conjunto de terminais $T = \{a, b, c\}$, determine uma gramática livre de contexto que represente a linguagem

$$L = \{ \omega \in T^* : \#(\mathbf{a}, \omega) \ge \#(\mathbf{b}, \omega) \}$$

 \mathcal{R}

$X = \{ \omega \in T^* : \#(\mathbf{a}, \omega) = \#(\mathbf{b}, \omega) \}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$A = \{ \omega \in T^* : \#(\mathbf{a}, \omega) = \#(\mathbf{b}, \omega) + 1 \}$	Basta usar o A anterior como símbolo inicial
$L = X \cup A^*$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

• O fecho de A inclui a palavra vazia mas não as outras palavras com $\#_a = \#_b$

ACP (DETI/UA)

Comp 2024/2025

Maio de 2025

Operações sobre gramáticas Fecho de Kleene

Seja $G_1 = (T_1, N_1, P_1, S_1)$ uma gramática livre de contexto qualquer. A gramática G = (T, N, P, S) onde

$$\begin{array}{l} T = T_1 \\ N = N_1 \, \cup \, \{S\} \quad \mathsf{com} \quad S \not \in N_1 \\ P = \{S \rightarrow \varepsilon, S \rightarrow S_1 S\} \, \cup \, P_1 \end{array}$$

é livre de contexto e gera a linguagem $L = (L(G_1))^*$

- A produção $S \to \varepsilon$, per si, garante que $L^0(G_1) \subseteq L(G)$
- As produções $S \to S_1 S$ e $S \to \varepsilon$ garantem que $L^i(G_1) \subseteq L(G)$, para qualquer i > 0
- Esta definição é diferente da que foi dada para a operação de fecho nas gramáticas regulares

ACP (DETI/UA) Maio de 2025

Símbolos produtivos e improdutivos

Exemplo de ilustração

 $\mathcal Q$ Sobre o conjunto de terminais $T=\{\mathtt{a},\mathtt{b},\mathtt{c},\mathtt{d}\}$, considere a gramática

$$\begin{array}{c} S \to \mathbf{a} \ A \ \mathbf{b} \ | \ \mathbf{b} \ B \\ A \to \mathbf{c} \ C \ | \ \mathbf{b} \ B \ | \ \mathbf{d} \\ B \to \mathbf{d} \ D \ | \ \mathbf{b} \\ C \to A \ C \ | \ B \ D \ | \ S \ D \\ D \to A \ D \ | \ B \ C \ | \ C \ S \\ E \to \mathbf{a} \ A \ | \ \mathbf{b} \ B \ | \ \varepsilon \end{array}$$

- Tente expandir (através de uma derivação) o símbolo não terminal A para uma sequência apenas com símbolos terminais $(S \Rightarrow^* u, \text{ com } u \in T^*)$
 - $A \Rightarrow d$
- Faça o mesmo com o símbolo C
 - Não consegue
- A é um símbolo produtivo; C é um símbolo improdutivo

ACP (DETI/UA) Maio de 2025 35/43

Símbolos produtivos e improdutivos

Definição de símbolo produtivo

- Seja G = (T, N, P, S) uma gramática qualquer
- Um símbolo não terminal A diz-se **produtivo** se for possível expandi-lo para uma expressão contendo apenas símbolos terminais
- Ou seja, A é produtivo se

$$A \Rightarrow^+ u \quad \land \quad u \in T^*$$

- Caso contrário, diz-se que A é improdutivo
- Uma gramática é improdutiva se o seu símbolo inicial for improdutivo
- Na gramática

$$S
ightarrow$$
 a b $|$ a S b $|$ X $X
ightarrow$ c X

- $S \not\in \mathsf{produtivo}$, porque $S \Rightarrow \mathsf{ab} \land \mathsf{ab} \in T^*$

ACP (DETI/UA)

Símbolos produtivos

Algoritmo de cálculo

• O conjunto dos símbolos produtivos, N_p , pode ser obtido por aplicação sucessiva das seguintes regras construtivas

```
\begin{array}{ll} \textbf{if} \ (A \to \alpha) \in P \ \ \textbf{and} \ \alpha \in T^* \ \ \textbf{then} \ A \in N_p \\ \textbf{if} \ (A \to \alpha) \in P \ \ \textbf{and} \ \alpha \in (T \cup N_p)^* \ \ \textbf{then} \ A \in N_P \end{array}
```

Algoritmo de cálculo:

```
\begin{array}{lll} \textbf{let } N_p \leftarrow \emptyset, & P_p \leftarrow P & \# & N_p - \textit{símbolos produtivos} \\ \textbf{repeat} & & & & & & \\ \textbf{nothingAdded} \leftarrow & \texttt{true} & & & & \\ \textbf{foreach} & (A \rightarrow \alpha) \in P_p & \textbf{do} & & & & \\ \textbf{if } \alpha \in (T \cup N_p)^* & \textbf{then} & & \# \textit{se todos são terminais ou produtivos, } A \textit{\'e produtivos} \\ \textbf{if } A \not \in N_p & \textbf{then} & \# \textit{se ainda não pertence aos produtivos} \\ N_p \leftarrow N_p \cup \{A\} & \# \textit{\'e lá colocado} \\ \textbf{nothingAdded} \leftarrow & \texttt{false} & \# \textit{\'e \'e preciso repetir o processo} \\ P_p \leftarrow P_p - \{A \rightarrow \alpha\} & \# \textit{a produção já não precisa de ser processada mais} \\ \textbf{until nothingAdded} & \textbf{or } N_p = N \end{array}
```

ACP (DETI/UA) Comp 2024/2025 Maio de 2025 37/4

Símbolos acessíveis e inacessíveis

Exemplo de ilustração

 ${\mathcal Q}$ Sobre o conjunto de terminais $T=\{{\tt a},{\tt b},{\tt c},{\tt d}\}$, considere a gramática

$$\begin{array}{c} S \to \mathbf{a} \ A \ \mathbf{b} \ | \ \mathbf{b} \ B \\ A \to \mathbf{c} \ C \ | \ \mathbf{b} \ B \ | \ \mathbf{d} \\ B \to \mathbf{d} \ D \ | \ \mathbf{b} \\ C \to A \ C \ | \ B \ D \ | \ S \ D \\ D \to A \ D \ | \ B \ C \ | \ C \ S \\ E \to \mathbf{a} \ A \ | \ \mathbf{b} \ B \ | \ \varepsilon \end{array}$$

- Tente alcançar (através de uma derivação) o símbolo não terminal C a partir do símbolo inicial (S) $(S \Rightarrow^* \alpha C \beta, \text{ com } \alpha, \beta \in (T \cup N)^*)$
 - $S \Rightarrow b B \Rightarrow b d D \Rightarrow b d B C$
- Faça o mesmo com o símbolo E
 - Não consegue
- C é um símbolo acessível; E é um símbolo inacessível

ACP (DETI/UA) Comp 2024/2025 Maio de 2025 38/43

Símbolos acessíveis e inacessíveis

Definição de símbolo acessível

- Seja G = (T, N, P, S) uma gramática qualquer
- Um símbolo terminal ou não terminal x diz-se **acessível** se for possível expandir S (o símbolo inicial) para uma expressão que contenha x
- Ou seja, x é acessível se

$$S \Rightarrow^* \alpha x \beta$$

- Caso contrário, diz-se que x é inacessível
- Na gramática

$$S \to \varepsilon$$
 | a S b | c C c
$$C \to \mathsf{c} \ S \ \mathsf{c}$$

$$D \to \mathsf{d} \ X \ \mathsf{d}$$

$$X \to C \ C$$

- D, d, e X são inacessíveis
- Os restantes são acessíveis

ACP (DETI/UA) Comp 2024/2025 Maio de 2025 39 / 43

Símbolos acessíveis

Algoritmo de cálculo

• O conjunto dos seus símbolos acessíveis, V_A , pode ser obtido por aplicação das seguintes regras construtivas

$$S \in V_A$$
 if $A o lpha B eta \in P$ and $A \in V_A$ then $B \in V_A$

Algoritmo de cálculo:

```
V_A \leftarrow \{S\}
                                          # no fim, ficará com todos os símbolos acessíveis
                    # conjunto de símbolos não terminais acessíveis a processar
N_A \leftarrow \{S\}
repeat
    X \leftarrow \text{elementOf}(N_A)
                                                        \# retira um elemento qualquer de N_A
     foreach (X \to \alpha) \in P do
          \texttt{foreach}\,x\,\,\texttt{in}\,\alpha\,\,\texttt{do}
                                          # se ainda não está marcado como acessível
               if x \notin V_A then
                    V_A \leftarrow V_A \cup \{x\}
                                                                                # passa a estar
                    if x \in N then
                                                            # se adicinalmente é não terminal
                        N_A \leftarrow N_A \cup \{x\}
                                                                     # terá de ser processado
until N_A = \emptyset
```

Gramáticas limpas

Algoritmo de limpeza

- Numa gramática, os símbolos inacessíveis e os símbolos improdutivos são símbolos inúteis
- Se tais símbolos forem removidos obtém-se uma gramática equivalente
- Diz-se que uma gramática é limpa se não possuir símbolos inúteis
- Para limpar uma gramática deve-se:
 - começar por a expurgar dos símbolos improdutivos
 - só depois remover os inacessíveis

ACP (DETI/UA) Comp 2024/2025 Maio de 2025 41/43

Gramáticas limpas Exemplo #1

 $\mathcal Q$ Sobre o conjunto de terminais $T=\{\mathtt a,\mathtt b,\mathtt c,\mathtt d\}$, determine uma gramática limpa equivalente à gramática seguinte

$$S
ightarrow$$
 a A b $|$ b B $A
ightarrow$ c C $|$ b B $|$ d $B
ightarrow$ d D $|$ b $C
ightarrow$ A C $|$ B D $|$ S D $D
ightarrow$ A D $|$ B C $|$ C S $E
ightarrow$ a A $|$ b B $|$ $arepsilon$

- Cálculo dos símbolos produtivos
 - 1 Inicialmente $N_p \leftarrow \emptyset$
 - $2 A \rightarrow d \land d \in T^* \implies N_p \leftarrow N_p \cup \{A\}$
 - $\mathbf{3}\ B \to \mathbf{b}\ \land\ \mathbf{b} \in T^* \quad \Longrightarrow \quad N_p \leftarrow N_p \cup \{B\}$
 - $4 \ E \to \varepsilon \ \land \ \varepsilon \in T^* \quad \Longrightarrow \quad N_p \leftarrow N_p \cup \{E\}$
 - $\mathsf{5} \ S \to \mathsf{a} \, A \, \mathsf{b} \ \land \ \mathsf{a}, A, \mathsf{b} \in (T \cup N_p)^* \quad \Longrightarrow \quad N_p \leftarrow N_p \cup \{S\}$
 - 6 Nada mais se consegue acrescentar a $N_p \implies C$ e D são improdutivos

ACP (DETI/UA) Comp 2024/2025 Maio de 2025 42/43

Gramáticas limpas Exemplo #1, cont.

Gramática após a remoção dos símbolos improdutivos

$$S
ightarrow$$
 a A b $|$ b B $A
ightarrow$ b B $|$ d $B
ightarrow$ b $E
ightarrow$ a A $|$ b B $|$ $arepsilon$

- Cálculo dos símbolos não terminais acessíveis sobre a nova gramática
 - 1 S é acessível, porque é o inicial
 - 2 sendo S acessível, de $S \to \mathsf{a} \ A$ b, tem-se que A é acessível
 - 3 sendo S acessível, de $S \to b$ B, tem-se que B é acessível
 - 4 de A só se chega a B, que já foi marcado como acessível
 - 5 de B não se chega a nenhum não terminal
 - 6 Logo E não é acessível, pelo que a gramática limpa é

$$S
ightarrow$$
 a A b $|$ b B $A
ightarrow$ b B $|$ d $B
ightarrow$ b

ACP (DETI/UA) Comp 2024/2025 Maio de 2025 43/43