- 1. a) Yes it converges, this is because for $\alpha=1,2$. $f'(\alpha)=-1,1$. and also f''(x) exists. Hence this method converges. To check for the interval, we know $|\alpha-x_0|<\frac{1}{|M|}=|2|f'(\alpha)|$ Here, f'(x)=2x-3 and f''(x)=2. Therefore, for root $\alpha=0$, $\alpha=0$ to $\alpha=1$, $\alpha=1$.
- (1b) $g(x) = (x^2+2)/3$, g'(x) = 2x. Therefore, g'(x) = 2x. Therefore, does not converge.
- Ic) $g(x) = \sqrt{3}x-2$, $g'(x) = \frac{3}{2x\sqrt{3}x-2}$. At $\alpha = 1, 0$ $g'(\alpha) = \frac{3}{2}$. Hence, it will not converge for $\alpha = 1$. At $\alpha = 2$, $g'(\alpha) = \frac{3}{8}$. $|g(\alpha)| < 1$, hence it will converges. In the interval [1,3] it will.
- Id) g(x) = 3-2/x, $g'(x) = 2/2^2$, At $\alpha = 1$, $g'(\alpha) = 2$, but for $\alpha = 2$, $g'(\alpha) = 1/2$.

 Therefore, at for root $\alpha = 2$, this method will converge. In the interval [1,3]

$$|e|g(x) = (x^{2}-2)/(2x-3), g'(x) = \frac{2x}{2x-3}$$

$$-2(x^{2}-2). \text{ This will converge as } g'(x) = 0$$

$$(2x-3)^{2}$$
of $\alpha = 1, 2$. The range is $[1, 3]$

2. The rate of convergence for $e^{-\chi} - \chi = 0$ is 6 iterations for $x_0 = 0$. This will not converge for any starting point. Here f'(x)=-e-x-1 f''(x) = e-x. Therefore |M|= |2+2ex1 For it to converge we should have 12-201 <12+2exol, for high values of seo this will always be tome For regative values of x0 this will become false This is a better method than fixed point iteration and bisection method in this

3. For their dorder we have. $f(x_0) + (x_0 - x_0)^2 f''(x_0) + (x_0 - x_0)^2 f''(x_0) + (x_0 - x_0)^3 f''(x_0) + (x_0 - x_0)^3 f''(x_0) + (x_0 - x_0)^2 f'''(x_0) + (x_0 - x_0)^2 f''(x_0) + (x_0 - x_0)^2 f''(x_0) + (x_0 - x_0)^2 f''(x_0) + (x_0$

the everon term reduces by the third knower.

This is better than bisection method where

it reduces by 1/2 and rewton method where

it reduces by y and rewton method where