

Sklearn Pipelines & SuperLearners

- Nidhi Jyani

Today we'll learn about...

Sklearn pipelines

What are Superlearners

Implementation in Python

Sklearn: Pipeline

Benefits

- They make our workflow much easier to read and understand.
- They enforce the implementation and order of steps in our project.
- These in turn make our work much more reproducible.

sklearn.pipeline.Pipeline

class sklearn.pipeline.Pipeline(steps, *, memory=None, verbose=False)

```
>>> from sklearn.svm import SVC
>>> from sklearn.preprocessing import StandardScaler
>>> from sklearn.datasets import make_classification
>>> from sklearn.model_selection import train_test_split
>>> from sklearn.pipeline import Pipeline
>>> X, y = make_classification(random_state=0)
>>> X train, X test, y train, y test = train test split(X, y,
                                                        random state=0)
>>> pipe = Pipeline([('scaler', StandardScaler()), ('svc', SVC())])
>>> # The pipeline can be used as any other estimator
>>> # and avoids leaking the test set into the train set
>>> pipe.fit(X train, y train)
Pipeline(steps=[('scaler', StandardScaler()), ('svc', SVC())])
>>> pipe.score(X test, y test)
0.88
```

.predict

Grid Search CV and Sklearn Pipelines

sklearn.model_selection.GridSearchCV

Hyperparameter Tuning

Cross Validation

Super Learners

Why use one ML algorithm when you could use all of them!!!

It's all the same !!!!

Superlearning

 involves combining many individual statistical algorithms to create a new, single prediction algorithm that is expected to perform at least as well as any of the

individual algor

Figure: Illustration on a Stacking model.

Superlearning

The model should have (atleast) 2 layers:

• First layer - Multiple weak learners

• Second layer - A blender. A model to blend previous

results to form final prediction.

Figure: Illustration on a Stacking model.

Model setting

Figure: Training of base learners.

- Split the data into training and testing set. Further split the training set into two equal parts (T1 and T2).
- Using T1, fit different weak learners (they can be the same model with different hyperparameters)

11

Blender Train (to combine predictions) Blending training set **Predictions Predict** Subset 2

Figure: Training of blender.

Model setting

- 3. Perform prediction on these weak/base learners using T2.
- 4. Train a blender, i.e. final regressor / classifier.

Evaluate model on Test set

12

Demo Time

Results

Individual Model	Score
Support Vector Machine	94%
Logistic Regression	88%
Decision Tree	93%

Improvements

Prediction Form

Some limitations

- Little or no improvement
- Time-consuming
- Expensive to deploy and maintain
- Not useful with Small Data
- Interpretation complexity

Do you have any questions?

Thanks!

Any questions?

You can find me at:

njyani@levi.com