Mathematical Methods for Computer Science I

Fall 2017

Series 9 – Hand in before Monday, 27.11.2017 - 12.00

We are using a proof system with the set of axioms given at the bottom of this page and modus ponens as the only inference rule.

- 1. a) Show that $A \to B, B \to C, A \vdash C$ by explicitly writing a deduction of the conclusion from the premises. Explain every step. Which axioms did you use?
 - b) With the help of the deduction lemma show that the formula

$$(A \to B) \to ((B \to C) \to (A \to C))$$

is provable.

- 2. Show that if $\Gamma_1 \vdash A$ and $\Gamma_2, A \vdash B$, then $\Gamma_1 \cup \Gamma_2 \vdash B$. (This is called the *cut rule*.)
- 3. With the help of the deduction lemma show that the formulas

a)
$$((A \land B) \to C) \to (A \to (B \to C));$$
 b) $(A \land B) \to (B \land A)$

are provable in our proof system.

4. With the help of the deduction lemma and the case distinction lemma show that the formula

$$((A \land C) \lor (B \land C)) \to ((A \lor B) \land C)$$

is provable in our proof system.

5. Change the axiom set by replacing the axiom (9) with $\neg \neg A \rightarrow A$. Show that this does not change the set of provable formulas.

(1)
$$A \rightarrow (B \rightarrow A)$$
;

(2)
$$(A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C));$$

(3) a)
$$(A \wedge B) \rightarrow A$$
; b) $(A \wedge B) \rightarrow B$;

b)
$$(A \wedge B) \rightarrow B$$
:

(4)
$$A \rightarrow (B \rightarrow (A \land B));$$

(5) a)
$$A \to (A \vee B)$$
; b) $B \to (A \vee B)$;

b)
$$B \to (A \vee B)$$
:

(6)
$$(A \rightarrow C) \rightarrow ((B \rightarrow C) \rightarrow (A \lor B \rightarrow C));$$

(7)
$$\neg A \rightarrow (A \rightarrow B)$$
;

(8)
$$(A \to B) \to ((A \to \neg B) \to \neg A)$$
;

(9)
$$A \vee \neg A$$
.