TOIREX

XC6209/XC6212 Series

ETR0306 005

High Speed LDO Regulators Low ESR Cap.Compatible, Output ON/OFFControl

GENERAL DESCRIPTION

The XC6209/XC6212 series are highly precise, low noise, positive voltage LDO regulators manufactured using CMOS processes. The series achieves high ripple rejection and low dropout and consists of a voltage reference, an error amplifier, a current limiter and a phase compensation circuit plus a driver transistor.

Output voltage is selectable in 50mV increments within a range of 0.9V ~ 6.0V.

The series is also compatible with low ESR ceramic capacitors which give added output stability. This stability can be maintained even during load fluctuations due to the excellent transient response of the series. The current limiter's foldback circuit also operates as a short protect for the output current limiter and the output pin.

The CE function enables the output to be turned off, resulting in greatly reduced power consumption.

APPLICATIONS

Mobile phones, Cordless phones
Wireless communication equipment
Portable games
Cameras, Video recorders
Portable AV equipment
Reference voltage
Battery powered equipment

FEATURES

Maximum Output Current: 150mA

(300mA=XC6209 E to H types)

Dropout Voltage : 60mV @ 30mA

: 200mV @ 100mA

Maximum Operating Voltage $: 2.0V \sim 10V$

Output Voltage Range : 0.9V ~ 6.0V(50mV Step)

Highly Accurate : $\pm 2\%$ (Vout>1.5V)

± 30mV (Vout 1.5V)

Low Power Consumption $_{\odot}$ 25 μ A (TYP.)

Standby Current : Less than 0.1 µ A (TYP.)

High Ripple Rejection : 70dB (10kHz)
Operating Temperature Range : -40 ~ +85

Low ESR Capacitor : Ceramic capacitor

Compatible

Ultra Small Packages : SOT-25

: USP-6B (XC6209) SOT-89-5 (XC6209)

TYPICAL APPLICATION CIRCUIT

TYPICAL PERFORMANCE CHARACTERISTICS

PIN CONFIGURATION

[XC6209]

*The dissipation pad for the USP-6B package should be solder-plated in recommended mount pattern and metal masking so as to enhance mounting strength and heat release. If the pad needs to be connected to other pins, it should be connected to the Vss pin.

[XC6212]

PIN ASSIGNMENT

	PIN NU	JMBER					
	XC6209		XC6209		XC6212	PIN NAME	FUNCTION
SOT-25	SOT-89-5	USP-6B	SOT-25				
1	4	1	3	VIN	Input		
2	2	5	2	Vss	Ground		
3	3	6	4	CE	ON/OFF Control		
4	1	2,4	5	NC	No Connection		
5	5	3	1	Vout	Output		

FUNCTIONS

TYPE	CE	OPERATIONAL STATE
A, B, E, F Series	Н	ON
A, B, E, F Selles	L	OFF
C, D, G, H Series	Н	OFF
	L	ON

H=High Level L=Low Level

PRODUCT CLASSIFICATION

Selection Guide

The following options for the CE pin logic and internal pull-up/down are available:

High Active + no pull-down resistor built-in (standard)

pull-down resistor built-in <between CE-Vss> (semi-custom) High Active+ 2M

Low Active + no pull-up resistor built-in (semi-custom)

pull-up resistor built-in <between VIN-CE> (semi-custom)

Note: *With the pull-up resistor or pull-down resistor built-in types, the supply current during operation will increase by VIN / 2M (TYP.).

Ordering Information

XC6209/12

DESIGNATOR	DESCRIPTION	SYMBOL	DESCRIPTION
		A/E	: High Active (pull-down resistor built-in, semi-custom)
	Type of Regulator	B/F	: High Active (no pull-down resistor built-in, standard)
(*1)	CE Pin Logic	C/G	: Low Active (pull-up resistor built-in, semi-custom)
		D/H	: Low Active (no pull-up resistor built-in, standard)
	Output Voltage	09~60	: e.g. 20:2.0V, 30:3.0V,
		2	: 100mV increments, ±2% accuracy (*2)
	Output Voltage	2	e.g. =2, =8, =2 2.80V, ±2%
		1	: 100mV increments, ± 1% accuracy (*2)
			e.g. =2, =8, =1 2.80V, ±1%
	Accuracy	А	: 50mV increments, ±2% accuracy (*2)
			e.g. =2, =8, =A 2.85V, ±2%
		В	: 50mV increments, ± 1% accuracy (*2)
			e.g. =2, =8, =B 2.85V, ±1%
		MR	: SOT-25 (SOT-23-5)
		MR-G	: SOT-25 (SOT-23-5) (Halogen & Antimony free)
56-7	Packages	PR	: SOT-89-5 (for XC6209 only)
30-0	Taping Type (*4)	PR-G	: SOT-89-5 (for XC6209 only) (Halogen & Antimony free)
		DR	: USP-6B (for XC6209 only)
		DR-G	: USP-6B (for XC6209 only) (Halogen & Antimony free)

 $^{^{(^{*}1)}}$ Maximum output current of XC6209 E to H series depend on the setting voltage. Within $\pm\,30\text{mV}$ (Vout $\,$ 1.5V)

^(*3) The "-G" suffix indicates that the products are Halogen and Antimony free as well as being fully RoHS compliant.

The device orientation is fixed in its embossed tape pocket. For reverse orientation, please contact your local Torex sales office or representative. (Standard orientation: ⑤R-⑦, Reverse orientation: ⑤L-⑦)

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Ta=25

PARAMET	PARAMETER		RATINGS	UNITS
Input Volta	Input Voltage		12.0	V
Output Current		lout	500	mA
Output Voltage		Vout	Vss - 0.3 ~ Vin + 0.3	V
CE Input Voltage		VCE	Vss - 0.3 ~ Vin + 0.3	V
	SOT-25		250	
Power Dissipation	Power Dissipation SOT-89-5		500	mW
USP-6			100	
Operating Temperature Range		Topr	-40 ~ +85	
Storage Tempera	ture Range	Tstg	-55 ~ +125	

^{*} Note: Within the range of I_{OUT} = Pd/(V_{IN} - V_{OUT})

ELECTRICAL CHARACTERISTICS

XC6209/6212A, B Series Ta=25

PARAMETER	SYMBOL	COI	NDITIONS	MIN.	TYP.	MAX.	UNITS	CIRCUIT
0.15.13/5/65		J 00 A	2% accuracy (*7)	× 0.98	Vout(t)	× 1.02		_
Output Voltage	Vout(E)	IOUT=30mA	1% accuracy (*8)	× 0.99	Vout(t)	× 1.01	V	1
Maximum Output Current	IOUTMAX			150	-	-	mA	1
Load Regulation	Vout	1mA <u><</u>	о∪т <u><</u> 100mA	-	15	50	mV	1
Dropout Voltage (*4)	Vdif1	lou	JT=30mA		E-1		mV	1
Dropout voltage (4)	Vdif2	lou	T=100mA		E-2		IIIV	ı
Supply Current (A series)	ldd		= VOUT(T)+1.0V V)=(VIN=VCE=2.0V)	ı	28	55	μA	2
Supply Current (B series)	טטו	(Vouт <u>≤</u> 0.95\	=Vout(t)+1.0V /)=(VIN=VCE=2.0V)		25	50	μΛ	
Standby Current	Istby	(Vou <u>т≤</u> 0.9)+1.0V, VCE =VSS 95V)=(VIN=2.0V)	-	0.01	0.10	μΑ	2
Line Regulation	Vout Vin• Vout	(Vouт <u>≤</u> 0.95\ Iou	1.0V≦VIN≦10V /)=(2.0V≦VIN≦10V) JT=30mA 5V)=(IOUT=10mA)	-	0.01	0.20	%/V	1
Input Voltage	Vin			2	-	10	V	-
Output Voltage	Vout	lou	JT=30mA		100		ppm	1
Temperature Characteristics	Topr• Vout	-40	<u>≤</u> Topr <u>≤</u> 85	ı	100	1	1	ı
Ripple Rejection Rate	PSRR	(Vout <u>≤</u> 1.5V)=	+1.0}V+1.0Vp-pAC, =(VIN=2.5V+1.0Vp-pA 50mA, f=10kHz	ı	70	ı	dB	4
Current Limiter	llim	,	r)+1.0V, VCE=VIN, =(VIN=VOUT(T)+2.0V)	ı	300	ı	mA	1
Short-circuit Current	Ishort	,	r)+1.0V, VCE=VIN, =(VIN=VOUT(T)+2.0V)	I	50	ı	mA	1
CE "High" Voltage	VCEH			1.6	-	Vin	>	1
CE "Low" Voltage	VCEL			-	-	0.25	V	2
CE "High" Current (A series)	Ісен	(Vouт <u>≤</u> 0.95\	=Vout(t)+1.0V /)=(VIN=VCE=2.0V)	0.60	-	5.0	μΑ	2
CE "High" Current (B series)	Ісен	(Vouт <u>≤</u> 0.95\	=Vout(t)+1.0V /)=(VIN=VCE=2.0V)	-0.10		0.10		
CE "Low" Current	ICEL	,	T)+1.0V, VCE=VSS (5V)=(VIN=2.0V)	-0.10	-	0.10	μΑ	2

NOTE:

- * 1: Unless otherwise stated, $V_{IN}=V_{OUT(T)}+1.0V$. If V_{OUT} is less than 0.95V, $V_{IN}=2.0V$.
- * 2: Vout(T)=Specified output voltage
- * 3: Vout(E)=Effective output voltage

(I.e. the output voltage when "Vout(T)+1.0V" is provided at the VIN pin while maintaining a certain lout value).

- * 4: Vdif={VIN1^(*6)-VOUT1^(*5)}
- * 5: Vout1=A voltage equal to 98% of the output voltage whenever an amply stabilized Iout {Vout(t)+1.0V} is input.
- * 6: VIN1=The input voltage when Vout1 appears as Input Voltage is gradually decreased.
- * 7: If Vout(t) is less than 1.45V, Vout(t) -30mV (MIN.),

Vout(t) + 30mV (MAX.)

* 8: Only for the Vout(T) more than 3.0V products.

ELECTRICAL CHARACTERISTICS (Continued)

XC6209/6212E,F Series Ta=25

ACOZOG/OZ TZE,T OCTICS							ia=	2 3
PARAMETER	SYMBOL	CON	IDITIONS	MIN.	TYP.	MAX.	UNITS	CIRCUIT
Output Valtage	VOLT(E)	Iout=30mA	2% accuracy (*7)	× 0.98	Vout(t)	× 1.02	V	1
Output Voltage	Vout(e)	1001=30IIIA -	1% accuracy (*8)	× 0.99	Vout(t)	× 1.01	V	ı
Maximum Output Current	IOUTMAX	V	IN=E-4	E-3	-	-	mA	1
Load Regulation	Vout	1mA <u><</u> I	о∪т <u>≤</u> 100mA	-	15	50	mV	1
Load Regulation 2	Vout2	1mA <u><</u> I	о∪т <u><</u> 300mA	-	-	100	mV	1
Dropout Voltage (*4)	Vdif1	lou ⁻	T=30mA		E-1		mV	1
Diopout voitage (4)	Vdif2	lout	=100mA		E-2		IIIV	ı
Supply Current (E series)	Inn	VIN=VCE=	= Vout(t)+1.0V	-	28	55	^	2
Supply Current (F series)	IDD	VIN=VCE=	=Vout(t)+1.0V		25	50	μA	
Standby Current	Istby	VIN=VOUT(T))+1.0V, VCE =VSS	-	0.01	0.10	μΑ	2
	Vout	Vout(t)+1	1.0V <u>≤</u> VıN <u>≤</u> 10V					
Line Regulation	VIN• VOUT	lou [.]	⊤=30mA	-	0.01	0.20	%/V	1
		(Vout <u>≤</u> 1.75)	V)=(Iout=10mA)					
Input Voltage	Vin			2	-	10	V	-
Output Voltage	Vout	lou [.]	T=30mA		100		ppm	1
Temperature Characteristics	Topr∙ VouT	-40 ≦	<u>≤</u> Topr <u>≤</u> 85	_	100		1	'
)+1.0}V+1.0Vp-pAC,					
Ripple Rejection Rate	PSRR	_ ′	/IN=2.5V+1.0Vp-pAC	-	70	-	dB	4
			0mA, f=10kHz					
Current Limiter	llim	` ')+1.0V, VCE=VIN,	_	380	_	mA	1
Guirent Elimitei			=VIN=VOUT(T)+2.0V		000		1117 \	'
Short-circuit Current	Ishort	,)+1.0V, VCE=VIN,	_	50	_	mA	1
	1311011	(Vout <u>≤</u> 1.75V):	=VIN=VOUT(T)+2.0V		00			
CE "High" Voltage	VCEH			1.6	-	Vin	V	1
CE "Low" Voltage	VCEL			-	-	0.25	V	2
CE "High" Current (E series)	ICEH	VIN=VCE=	=Vout(t)+1.0V	0.60	-	5.0	μΑ	2
CE "High" Current (F series)	ICEH	VIN=VCE=	=Vout(t)+1.0V	-0.10		0.10	μΑ	2
CE "Low" Current	ICEL	VIN=VOUT(T)+1.0V, VCE=Vss	-0.10	-	0.10	μΑ	2

NOTE:

- * 1: Unless otherwise stated, VIN=Vout(T)+1.0V. If Vout is less than 0.95V, VIN= 2.0V.
- * 2: Vout(t)=Specified output voltage
- * 3: Vout(E)=Effective output voltage

(I.e. the output voltage when "Vout(T)+1.0V" is provided at the Vin pin while maintaining a certain lout value).

- * 4: Vdif={VIN1^(*6)-VOUT1^(*5)}
- * 5: Vout1=A voltage equal to 98% of the output voltage whenever an amply stabilized lout {Vout(t)+1.0V} is input.
- * 6: VIN1=The input voltage when Vout1 appears as Input Voltage is gradually decreased.
- * 7: If Vout(T) is less than 1.45V, Vout(T) -30mV (MIN.),

Vout(t) + 30mV (MAX.)

* 8: Only for the Vout(T) more than 3.0V products.

ELECTRICAL CHARACTERISTICS (Continued)

Dropout Voltage

Voltage Accuracy 2% products

Ta=25°C

Voltage Accuracy 29	% products					Ta=25°C	
SYMBOL	E	-0	E	-1	E	-2	
PARAMETER	OUTPUT VOLTAGE (V)		OUTPUT VOLTAGE (V) DROPOUT VOLTAGE 1 (mV)		DROPOUT VOLTAGE 2 (mV)		
SETTING		%)	(lout=	(IOUT=30mA)		(IOUT=100mA)	
OUTPUT VOLTAGE	·	DUT	Vo		Vdif2		
Vout(t)	MIN	MAX	TYP	MAX	TYP	MAX	
0.90	0.870	0.930					
0.95	0.920	0.980	1100	1110	1150	1200	
1.00	0.970	1.030	1000	1010	1050	1100	
1.05	1.020	1.080	1000	1010	1050	1100	
1.10	1.070	1.130	900	910	950	1000	
1.15	1.120	1.180		0.0			
1.20 1.25	1.170 1.220	1.230 1.280	800	810	850	900	
1.30	1.270	1.330					
1.35	1.320	1.380	700	710	750	800	
1.40	1.370	1.430	600	610	650	700	
1.45	1.420	1.480	600	610	050	700	
1.50	1.470	1.530	500	510	550	600	
1.55	1.519	1.581		0.0	555	000	
1.60 1.65	1.568 1.617	1.632 1.683	400	410	500	550	
1.70	1.666	1.734					
1.75	1.715	1.785	300	310	400	450	
1.80	1.764	1.836	000	240	200	400	
1.85	1.813	1.887	200	210	300	400	
1.90	1.862	1.938	120	150	280	380	
1.95	1.911	1.989	120	100	200		
2.00 2.05	1.960 2.009	2.040 2.091				350	
2.10	2.058	2.142		400	240		
2.15	2.107	2.193				222	
2.20	2.156	2.244	80			330	
2.25	2.205	2.295	00	120	240		
2.30	2.254	2.346				310	
2.35	2.303	2.397					
2.40 2.45	2.352 2.401	2.448 2.499					
2.50	2.450	2.550					
2.55	2.499	2.601					
2.60	2.548	2.652				290	
2.65	2.597	2.703				290	
2.70	2.646	2.754	70	100	220		
2.75	2695	2.805	4				
2.80 2.85	2.744 2.793	2.856 2.907	4				
2.85	2.793	2.907	+				
2.95	2.891	3.009	1			270	
3.00	2.940	3.060					
3.05	2.989	3.111					
3.10	3.038	3.162	_				
3.15	3.087	3.213	4				
3.20	3.136	3.264	4				
3.25 3.30	3.185 3.234	3.315 3.366	60	90	200		
3.35	3.283	3.300	-			250	
3.40	3.332	3.468	1				
3.45	3.381	3.519	7				
3.50	3.430	3.570					
3.55	3.479	3.621					

XC6209/XC6212 Series

ELECTRICAL CHARACTERISTICS (Continued)

Dropout Voltage (Continued)

Voltage Accuracy 2% products

Ta=25°C

0) (1 4 1 2 0 1	_	•		1	_	1a-25 C	
SYMBOL		-0	E-		E		
PARAMETER	OUTPUT VOLTAGE (V)			LTAGE 1 (mV)	DROPOUT VOLTAGE 2 (mV)		
SETTING	(2%)		(Iout=	(IOUT=30mA)		(IOUT=100mA)	
OUTPUT VOLTAGE	Vo		Vd	lif1	Vd	lif2	
Vout(t)	MIN	MAX	TYP	MAX	TYP	MAX	
3.60	3.528	3.672		1717 0 1		IVII UX	
3.65	3.577	3.723	-				
3.70	3.626	3.774	-				
3.75	3.675	3.825					
3.80	3.724	3.876		90	200	250	
3.85	3.773	3.927	1				
3.90	3.822	3.978	1				
3.95	3.871	4.029	1				
4.00	3.920	4.080	1				
4.05	3.969	4.131					
4.10	4.018	4.182					
4.15	4.067	4.233					
4.20	4.116	4.284					
4.25	4.165	4.335					
4.30	4.214	4.386	- 60				
4.35	4.263	4.437					
4.40	4.312	4.488					
4.45	4.361	4.539		00	400	000	
4.50	4.410	4.590		80	180	230	
4.55	4.459	4.641					
4.60	4.508	4.692					
4.65	4.557	4.743	1				
4.70	4.606	4.794					
4.75	4.655	4.845					
4.80	4.704	4.896					
4.85	4.753	4.947					
4.90	4.802	4.998					
4.95	4.851	5.049					
5.00	4.900	5.100					
5.05	4.949	5.151					
5.10	4.998	5.202					
5.15	5.047	5.253					
5.20	5.096	5.304					
5.25	5.145	5.355					
5.30	5.194	5.406					
5.35	5.243	5.457					
5.40	5.292	5.508					
5.45	5.341	5.559					
5.50	5.390	5.610	50	70	160	210	
5.55	5.439	5.661]				
5.60	5.488	5.712]				
5.65	5.537	5.763]				
5.70	5.586	5.814]				
5.75	5.635	5.865]				
5.80	5.684	5.916	1				
5.85	5.733	5.967	_				
5.90	5.782	6.018	1				
5.95	5.831	6.069	_				
6.00	5.880	6.120					

^{*}The input voltage 2.0V (MIN.) is needed to operate the series. When the output voltage is less than 2.0V, 2.0V-VouT(T) of dropout voltage is needed at minimum.

ELECTRICAL CHARACTERISTICS (Continued)

Output Voltage

Voltage Accuracy 1% products

*Common values for A to H series, but available only for $V_{OUT} \ge 2.9V$ products

SYMBOL E-0					
PARAMETER	OUTPUT VOLTAGE (V)				
SETTING	(1%)				
OUTPUT VOLTAGE		DUT			
Vout(t)	MIN	MAX			
3.00	2.970	3.030			
3.05	3.020	3.081			
3.10	3.069	3.131			
3.15	3.119	3.182			
3.20	3.168	3.232			
3.25	3.218	3.283			
3.30	3.267	3.333			
3.35	3.317	3.384			
3.40	3.366	3.434			
3.45	3.416	3.485			
3.50	3.465	3.535			
3.55	3.515	3.586			
3.60	3.564	3.636			
3.65	3.614	3.687			
3.70	3.663	3.737			
3.75	3.713	3.788			
3.80	3.762	3.838			
3.85	3.812	3.889			
3.90	3.861	3.939			
3.95	3.911	3.990			
4.00	3.960	4.040			
4.05	4.010	4.091			
4.10	4.059	4.141			
4.15	4.109	4.192			
4.20	4.158	4.242			
4.25	4.208	4.293			
4.30	4.257	4.343			
4.35	4.307	4.394			
4.40	4.356	4.444			
4.45	4.405	4.494			
4.50	4.455	4.545			

roducts.					
SYMBOL	E-0				
PARAMETER	OUTPUT VO	OLTAGE (V)			
SETTING	(1%)				
OUTPUT VOLTAGE	Vout				
Vout(t)	MIN	MAX			
4.55	4.505	4.596			
4.60	4.554	4.646			
4.65	4.604	4.697			
4.70	4.653	4.747			
4.75	4.703	4.798			
4.80	4.752	4.848			
4.85	4.802	4.899			
4.90	4.851	4.949			
4.95	4.901	5.000			
5.00	4.950	5.050			
5.05	4.000	5.101			
5.10	4.049	5.151			
5.15	4.099	5.202			
5.20	4.148	5.252			
5.25	5.198	5.303			
5.30	5.247	5.353			
5.35	5.297	5.404			
5.40	5.346	5.454			
5.45	5.396	5.505			
5.50	5.445	5.555			
5.55	5.495	5.606			
5.60	5.544	5.656			
5.65	5.594	5.707			
5.70	5.643	5.757			
5.75	5.963	5.808			
5.80	5.742	5.858			
5.85	5.792	5.909			
5.90	5.841	5.959			
5.95	5.891	6.010			
6.00	5.940	6.060			

Conditions

SYMBOL	E-4	E-3
CONDITIONS, SPEC-	INPUT VOLTAGE (V)	MAXIMUM OUTPUT CURRENT (mA)
SETTING OUTPUT VOLTAGE (V)	Vin	MIN
0.90 ~ 0.95	2.5	260
1.00 ~ 1.05	2.5	260
1.10 ~ 1.15	2.6	270
1.20 ~ 1.25	2.7	290
1.30 ~ 1.35	2.8	
1.40 ~ 1.45	2.9	300
1.50 ~ 1.95	3.0	300
2.00 ~ 6.00	Vout(t) + 1.0	

^{*} Vout(t): Setting output voltage value

OPERATIONAL EXPLANATION

Output voltage control with the XC6209/6212 series:

The voltage divided by resistors R1 & R2 is compared with the internal reference voltage by the error amplifier.

The P-channel MOSFET, which is connected to the Vout pin, is then driven by the subsequent output signal. The output voltage at the Vout pin is controlled & stabilized by a system of negative feedback.

The current limit circuit and short protect circuit operate in relation to the level of output current. Further, the IC's internal circuitry can be shutdown via the CE pin's signal.

<Low ESR Capacitors>

With the XC6209/6212 series, a stable output voltage is achievable even if used with low ESR capacitors as a phase compensation circuit is built-in. In order to ensure the effectiveness of the phase compensation, we suggest that an output capacitor (CL) is connected as close as possible to the output pin (Vout) and the Vss pin. Please use an output capacitor with a capacitance value of at least $1 \mu F$. Also, please connect an input capacitor (CIN) of $0.1 \mu F$ between the VIN pin and the Vss pin in order to ensure a stable power input.

Stable phase compensation may not be ensured if the capacitor runs out capacitance when depending on bias and temperature. In case the capacitor depends on the bias and temperature, please make sure the capacitor can ensure the actual capacitance.

<Current Limiter, Short-Circuit Protection>

The XC6209/6212 series includes a combination of a fixed current limiter circuit & a foldback circuit, which aid the operations of the current limiter and circuit protection. When the load current reaches the current limit level, the fixed current limiter circuit operates and output voltage drops. As a result of this drop in output voltage, the foldback circuit operates, output voltage drops further and output current decreases. When the output pin is shorted, a current of about 50mA flows.

<CE Pin>

The IC's internal circuitry can be shutdown via the signal from the CE pin with the XC6209/6212 series. In shutdown mode, output at the VouT pin will be pulled down to the Vss level via R1 & R2. The operational logic of the IC's CE pin is selectable (please refer to the selection guide). Note that as the standard XC6209/6212B type is 'High Active/No Pull Down', operations will become unstable with the CE pin open. Although the CE pin is equal to an inverter input with CMOS hysteresis, with either the pull-up or pull-down options, the CE pin input current will increase when the IC's in operation.

We suggest that you use this IC with either a VIN voltage or a VSS voltage input at the CE pin. If this IC is used with the correct specifications for the CE pin, the IC will operate normally. However, supply current may increase as a result of through current in the IC's internal circuitry

NOTES ON USE

- Please use this IC within the stated absolute maximum ratings. The IC is liable to malfunction should the ratings be exceeded.
- 2 Where wiring impedance is high, operations may become unstable due to noise and/or phase lag depending on output current. Please strengthen VIN and Vss wiring in particular.
- 3 Please wire the input capacitor (CIN) and the output capacitor (CL) as close to the IC as possible.

TEST CIRCUITS

Circuit

Circuit

Circuit

Circuit

TYPICAL PERFORMANCE CHARACTERISTICS

(1) Output Voltage vs. Output Current

(1) Output Voltage vs. Output Current (Continued)

(3) Dropout Voltage vs. Output Current

(4) Supply Current vs. Input Voltage

(5) Output Voltage vs. Ambient Temperature

MN=2.5V, CIN=1uF (ceramic), CL=1uF (ceramic) 1.30 IOUT=0mA =1mA Onthat Voltage VOUT (V) 1.25 =30mA =100mA 1.10 -40 -20 0 20 40 60 80 100 Ambient Temperature Topr ()

XC6209/12 B/F122

(6) Supply Current vs. Ambient Temperature

(7) P-ch Driver Transistor Characteristics

(8) Input Transient Response

(9) Load Transient Response

(9) Load Transient Response (Continued)

(10) Ripple Rejection Rate

XC6209/XC6212 Series

PACKAGING INFORMATION

SOT-25

SOT-89-5

USP-6B

0.7±0.03 0.7±0.03 4 1.0±0.1 0.25±0.1 Note: F

A-A' cross section

Note: Pin 1 is larger than the other pins.

PACKAGING INFORMATION (Continued)

USP-6B Recommended Pattern Layout

USP-6B Recommended Metal Mask Design

MARKING RULE

[XC6209]

SOT-25 & SOT-89-5

Represents product series

MARK	PRODUCT SERIES	
9	XC6209xxxxxx	

Represents type of regulator

	MARK								
Vout 100mV I	NCREMENTS	Vout 50mV II	NCREMENTS	PRODUCT SERIES					
VOLTAGE= 0.1 ~ 3.0V	VOLTAGE= 3.1 ~ 6.0V	VOLTAGE= 0.15 ~ 3.05V	VOLTAGE= 3.15 ~ 6.05V						
V	Α	E	L	XC6209Axxxxx					
X	В	F	M	XC6209Bxxxxx					
Υ	С	Н	N	XC6209Cxxxxx					
Z	D	K	Р	XC6209Dxxxxx					
<u>V</u>	<u>A</u>	<u>E</u>	<u>L</u>	XC6209Exxxxx					
<u>X</u>	<u>B</u>	<u>E</u>	<u>M</u>	XC6209Fxxxxx					
<u>Y</u>	<u>C</u>	<u>H</u>	<u>N</u>	XC6209Gxxxxx					
<u>Z</u>	<u>D</u>	<u>K</u>	<u>P</u>	XC6209Hxxxxx					

Represents integer of the output voltage

MARK	OUTPUT VOLTAGE (V) MARK OUTPUT VOLTAGE (V)								
IVIARN	001	FUI V	JLIAGE	= (v)	IVIARN	001	FUI V	JLIAGE	= (v)
0	-	3.1	-	3.15	F	1.6	4.6	1.65	4.65
1	-	3.2	-	3.25	Н	1.7	4.7	1.75	4.75
2	-	3.3	-	3.35	K	1.8	4.8	1.85	4.85
3	-	3.4	-	3.45	L	1.9	4.9	1.95	4.95
4	-	3.5	-	3.55	M	2.0	5.0	2.05	5.05
5	-	3.6	-	3.65	N	2.1	5.1	2.15	5.15
6	-	3.7	-	.3.75	Р	2.2	5.2	2.25	5.25
7	-	3.8	-	3.85	R	2.3	5.3	2.35	5.35
8	0.9	3.9	0.95	3.95	S	2.4	5.4	2.45	5.45
9	1.0	4.0	1.05	4.05	T	2.5	5.5	2.55	5.55
Α	1.1	4.1	1.15	4.15	U	2.6	5.6	2.65	5.65
В	1.2	4.2	1.25	4.25	V	2.7	5.7	2.75	5.75
С	1.3	4.3	1.35	4.35	X	2.8	5.8	2.85	5.85
D	1.4	4.4	1.45	4.45	Y	2.9	5.9	2.95	5.95
E	1.5	4.5	1.55	4.55	Z	3.0	6.0	3.05	-

Represents production lot number

0 to 9, A to Z reversed character of 0 to 9 and A to Z repeated (G, I, J, O, Q, W excepted)

MARKING RULE (Continued)

USP-6B

, Represents product series

6	MARK		PRODUCT SERIES
5			PRODUCT SERIES
4	0	9	XC6209AxxxDx

USP-6B (TOP VIEW)

Represents type of regulator

	_	
MARK	TYPE	PRODUCT SERIES
А	CE pin, High Active pull-down resistor built in	XC6209AxxxDx
В	CE pin, High Active no pull-down resistor built in	XC6209BxxxDx
С	CE pin, Low Active pull-up resistor built in	XC6209CxxxDx
D	CE pin, Low Active no pull-up resistor built in	XC6209DxxxDx

Represents integer of output voltage

MARK	VOLTAGE (V)	PRODUCT SERIES
3	3.X	XC6209x3xxDx
5	5.X	XC6209x5xxDx

Represents decimal number of output voltage

MARK	VOLTAGE (V)	PRODUCT SERIES	MARK	VOLTAGE (V)	PRODUCT SERIES
0	X.0	XC6209xx0xDx	Α	X.05	XC6209xx0ADx
1	X.1	XC6209xx1xDx	В	X.15	XC6209xx1ADx
2	X.2	XC6209xx2xDx	С	X.25	XC6209xx2ADx
3	X.3	XC6209xx3xDx	D	X.35	XC6209xx3ADx
4	X.4	XC6209xx4xDx	Е	X.45	XC6209xx4ADx
5	X.5	XC6209xx5xDx	F	X.55	XC6209xx5ADx
6	X.6	XC6209xx6xDx	Н	X.65	XC6209xx6ADx
7	X.7	XC6209xx7xDx	K	X.75	XC6209xx7ADx
8	X.8	XC6209xx8xDx	Ĺ	X.85	XC6209xx8ADx
9	X.9	XC6209xx9xDx	М	X.95	XC6209xx9ADx

Represents production lot number

0 to 9, A to Z repeated (G, I, J, O, Q, W excepted)

Note: No character inversion used.

MARKING RULE (Continued)

[XC6212]

SOT-25 (SOT-23-5)

SOT-25 (SOT-23-5) (TOP VIEW)

Represents product series

MARK	PRODUCT SERIES		
9	XC6212xxxMx		

Represents type of regulator

VOUT 100mV	INCREMENTS	VOUT 50mV I	PRODUCT SERIES	
Vout=0.1~3.0V	Vout=3.1~6.0V	Vout=0.15~3.05V	Vout=3.15~6.05V	
V	Α	E	L	XC6209AxxxMx
Х	В	F	М	XC6209BxxxMx
Υ	С	Н	N	XC6209CxxxMx
Z	D	K	Р	XC6209DxxxMx

Represents output voltage

MARK	OUTPUT VOLTAGE (V)			MARK	OUTPUT VOLTAGE (V)			(V)	
0	-	3.10	-	3.15	F	1.60	4.60	1.65	4.65
1	-	3.20	-	3.25	Н	1.70	4.70	1.75	4.75
2	-	3.30	-	3.35	K	1.80	4.80	1.85	4.85
3	-	3.40	-	3.45	L	1.90	4.90	1.95	4.95
4	-	3.50	-	3.55	M	2.00	5.00	2.05	5.05
5	-	3.60	-	3.65	N	2.10	5.10	2.15	5.15
6	-	3.70	-	.3.75	Р	2.20	5.20	2.25	5.25
7	-	3.80	-	3.85	R	2.30	5.30	2.35	5.35
8	0.90	3.90	0.95	3.95	S	2.40	5.40	2.45	5.45
9	1.00	4.00	1.05	4.05	Т	2.50	5.50	2.55	5.55
Α	1.10	4.10	1.15	4.15	U	2.60	5.60	2.65	5.65
В	1.20	4.20	1.25	4.25	V	2.70	5.70	2.75	5.75
С	1.30	4.30	1.35	4.35	Х	2.80	5.80	2.85	5.85
D	1.40	4.40	1.45	4.45	Y	2.90	5.90	2.95	5.95
E	1.50	4.50	1.55	4.55	Z	3.00	6.00	3.05	-

Represents production lot number

0 to 9, A to Z, reversed character of 0 to 9 and A to Z repeated (G, I, J, O, Q, W excepted)

- 1. The products and product specifications contained herein are subject to change without notice to improve performance characteristics. Consult us, or our representatives before use, to confirm that the information in this datasheet is up to date.
- 2. We assume no responsibility for any infringement of patents, patent rights, or other rights arising from the use of any information and circuitry in this datasheet.
- 3. Please ensure suitable shipping controls (including fail-safe designs and aging protection) are in force for equipment employing products listed in this datasheet.
- 4. The products in this datasheet are not developed, designed, or approved for use with such equipment whose failure of malfunction can be reasonably expected to directly endanger the life of, or cause significant injury to, the user.
 - (e.g. Atomic energy; aerospace; transport; combustion and associated safety equipment thereof.)
- Please use the products listed in this datasheet within the specified ranges.
 Should you wish to use the products under conditions exceeding the specifications, please consult us or our representatives.
- 6. We assume no responsibility for damage or loss due to abnormal use.
- 7. All rights reserved. No part of this datasheet may be copied or reproduced without the prior permission of TOREX SEMICONDUCTOR LTD.

TOREX SEMICONDUCTOR LTD.