Télématicien CFC

Connaissances professionnelles écrites

Pos. 5.2 Technique des systèmes électriques

Dossier des expertes et experts

Temps: 45 minutes

Auxiliaires: Recueil de formules sans exemple de calcul, calculatrice de poche (sans base de

données), règle, cercle, équerre et rapporteur.

Cotation: - Le nombre de points maximum est donné pour chaque exercice.

> - Pour obtenir le maximum de points, les formules et les calculs doivent figurer dans la solution ainsi que les résultats avec leurs unités soulignés deux fois.

- Le cheminement de la solution doit être clair et son contrôle doit être aisé.

- Pour des exercices avec des réponses à choix multiples, pour chaque réponse fausse il sera déduit le même nombre de points que pour une réponse exacte.

Si dans un exercice on demande plusieurs réponses vous êtes tenu de répondre à chacune d'elle. Les réponses sont évaluées dans l'ordre où elles sont données. Les réponses données en plus ne sont pas évaluées.

S'il manque de la place, la solution peut être écrite au dos de la feuille.

Barème: Nombre de points maximum: 38,0

36,5 - 38,0	Points = Note	6,0
32,5 - 36,0	Points = Note	5,5
28,5 - 32,0	Points = Note	5,0
25,0 - 28,0	Points = Note	4,5
21,0 - 24,5	Points = Note	4,0
17,5 - 20,5	Points = Note	3,5
13,5 - 17,0	Points = Note	3,0
9,5 - 13,0	Points = Note	2,5
6,0 - 9,0	Points = Note	2,0
2,0 - 5,5	Points = Note	1,5
0,0 - 1,5	Points = Note	1,0

Les solutions ne sont pas données pour des raisons didactiques

(Décision de la commission des tâches d'examens du 09.09.2008)

Délai d'attente: Cette épreuve d'examen ne peut pas être utilisée librement comme exercice

avant le 1er septembre 2014.

Créé par: Groupe de travail USIE examen de fin d'apprentissage

Télématicienne CFC / Télématicien CFC

Editeur: CSFO, département procédures de qualification, Berne

Exer	cices	Nombre d maximal	obtenus
	Plan de formation 6.3.3, Bloom 3	4	
1.	Soit le schéma de résistances suivant:		
	$\begin{array}{c} U_G \\ 40 V \end{array}$		
	$a = 20 \Omega$ $b = 10 \Omega$ $c = 12 \Omega$ $d = 30 \Omega$		
	 Redessinez d'abord le schéma de résistances de façon plus claire. Les éléments doivent être dessinés verticaux ou horizontaux, et leurs valeurs doivent figurer à côté. 	(2)	
	U _G d d c b		
	b) Calculez la tension aux bornes de la résistance c.	(2)	
	$R_{bc} = \frac{1}{\frac{1}{R_b} + \frac{1}{R_c}} = \frac{1}{\frac{1}{10 \Omega} + \frac{1}{12 \Omega}} = 5,\overline{45} \Omega$		
	$U_{c} = U_{G} \cdot \frac{R_{bc}}{R_{a} + R_{bc}} = 40 \text{ V} \cdot \frac{5,\overline{45} \Omega}{20 \Omega + 5,\overline{45} \Omega} = \frac{8,571 \text{ V}}{20 \Omega + 5}$		
	Indication pour l'expert: attention au report de fautes.		

2. Une ligne de raccordement téléphonique en cuivre longue de 300 m a une résistance de boucle de 14,4 Ω . a) Calculer la section du fil de cuivre. $R = \frac{\rho \cdot l}{A} \implies A = \frac{\rho \cdot l}{R}$ $A = \frac{\rho \cdot l}{R} = \frac{0,0175 \frac{\Omega mm^2}{m} \cdot 300 \text{m} \cdot 2}{14,4 \Omega} = \frac{0,729 \text{mm}^2}{14,4 \Omega}$ Ou $A = \frac{\rho \cdot l}{R} = \frac{0,0178 \frac{\Omega mm^2}{m} \cdot 300 \text{m} \cdot 2}{14,4 \Omega} = \frac{0,742 \text{mm}^2}{14,4 \Omega}$ b) Calculez le diamètre du fil de cuivre.	mbre de points ximal obtenus
résistance de boucle de 14,4 Ω . a) Calculer la section du fil de cuivre. $R = \frac{\rho \cdot l}{A} \Rightarrow A = \frac{\rho \cdot l}{R}$ $A = \frac{\rho \cdot l}{R} = \frac{0,0175}{14,4} \frac{\Omega mm^2}{\Omega} \cdot 300 \text{m} \cdot 2 = 0,729 \text{mm}^2$ Ou $A = \frac{\rho \cdot l}{R} = \frac{0,0178}{14,4} \frac{\Omega mm^2}{\Omega} \cdot 300 \text{m} \cdot 2 = 0,742 \text{mm}^2$ b) Calculez le diamètre du fil de cuivre. $A = r^2 \cdot \pi = \left(\frac{d}{2}\right)^2 \cdot \pi = \frac{d^2}{4} \cdot \pi \Rightarrow d = \sqrt{\frac{A \cdot 4}{\pi}}$ $d = \sqrt{\frac{A \cdot 4}{\pi}} = \sqrt{\frac{0,729 \text{mm}^2 \cdot 4}{\pi}} = 0,963 \text{mm}$ Ou $d = \sqrt{\frac{A \cdot 4}{\pi}} = \sqrt{\frac{0,742 \text{mm}^2 \cdot 4}{\pi}} = 0,972 \text{mm}$	2
$R = \frac{\rho \cdot l}{A} \Rightarrow A = \frac{\rho \cdot l}{R}$ $A = \frac{\rho \cdot l}{R} = \frac{0,0175 \frac{\Omega mm^2}{m} \cdot 300 m \cdot 2}{14,4 \Omega} = \underline{0,729 mm^2}$ Ou $A = \frac{\rho \cdot l}{R} = \frac{0,0178 \frac{\Omega mm^2}{m} \cdot 300 m \cdot 2}{14,4 \Omega} = \underline{0,742 mm^2}$ b) Calculez le diamètre du fil de cuivre. $A = r^2 \cdot \pi = \left(\frac{d}{2}\right)^2 \cdot \pi = \frac{d^2}{4} \cdot \pi \Rightarrow d = \sqrt{\frac{A \cdot 4}{\pi}}$ $d = \sqrt{\frac{A \cdot 4}{\pi}} = \sqrt{\frac{0,729 mm^2 \cdot 4}{\pi}} = \underline{0,963 mm}$ Ou $d = \sqrt{\frac{A \cdot 4}{\pi}} = \sqrt{\frac{0,742 mm^2 \cdot 4}{\pi}} = \underline{0,972 mm}$	
$A = \frac{\rho \cdot I}{R} = \frac{0,0175 \frac{\Omega mm^2}{m} \cdot 300 m \cdot 2}{14,4 \Omega} = \frac{0,729 mm^2}{14,4 \Omega}$ Ou $A = \frac{\rho \cdot I}{R} = \frac{0,0178 \frac{\Omega mm^2}{m} \cdot 300 m \cdot 2}{14,4 \Omega} = \frac{0,742 mm^2}{14,4 \Omega}$ b) Calculez le diamètre du fil de cuivre. $A = r^2 \cdot \pi = \left(\frac{d}{2}\right)^2 \cdot \pi = \frac{d^2}{4} \cdot \pi \implies d = \sqrt{\frac{A \cdot 4}{\pi}}$ $d = \sqrt{\frac{A \cdot 4}{\pi}} = \sqrt{\frac{0,729 mm^2 \cdot 4}{\pi}} = \frac{0,963 mm}{0}$ Ou $d = \sqrt{\frac{A \cdot 4}{\pi}} = \sqrt{\frac{0,742 mm^2 \cdot 4}{\pi}} = \frac{0,972 mm}{0}$	(1)
Ou $A = \frac{\rho \cdot I}{R} = \frac{0,0178 \frac{\Omega mm^2}{m} \cdot 300 \text{ m} \cdot 2}{14,4 \Omega} = \underline{0,742 \text{ mm}^2}$ b) Calculez le diamètre du fil de cuivre. $A = r^2 \cdot \pi = \left(\frac{d}{2}\right)^2 \cdot \pi = \frac{d^2}{4} \cdot \pi \implies d = \sqrt{\frac{A \cdot 4}{\pi}}$ $d = \sqrt{\frac{A \cdot 4}{\pi}} = \sqrt{\frac{0,729 \text{ mm}^2 \cdot 4}{\pi}} = \underline{0,963 \text{ mm}}$ Ou $d = \sqrt{\frac{A \cdot 4}{\pi}} = \sqrt{\frac{0,742 \text{ mm}^2 \cdot 4}{\pi}} = \underline{0,972 \text{ mm}}$	
$A = \frac{\rho \cdot I}{R} = \frac{0,0178 \frac{\Omega mm^2}{m} \cdot 300 \text{m} \cdot 2}{14,4 \Omega} = \underline{0,742 \text{mm}^2}$ b) Calculez le diamètre du fil de cuivre. $A = r^2 \cdot \pi = \left(\frac{d}{2}\right)^2 \cdot \pi = \frac{d^2}{4} \cdot \pi \implies d = \sqrt{\frac{A \cdot 4}{\pi}}$ $d = \sqrt{\frac{A \cdot 4}{\pi}} = \sqrt{\frac{0,729 \text{mm}^2 \cdot 4}{\pi}} = \underline{0,963 \text{mm}}$ Ou $d = \sqrt{\frac{A \cdot 4}{\pi}} = \sqrt{\frac{0,742 \text{mm}^2 \cdot 4}{\pi}} = \underline{0,972 \text{mm}}$	
b) Calculez le diamètre du fil de cuivre. $A = r^2 \cdot \pi = \left(\frac{d}{2}\right)^2 \cdot \pi = \frac{d^2}{4} \cdot \pi \implies d = \sqrt{\frac{A \cdot 4}{\pi}}$ $d = \sqrt{\frac{A \cdot 4}{\pi}} = \sqrt{\frac{0,729 \text{ mm}^2 \cdot 4}{\pi}} = \underline{0,963 \text{ mm}}$ Ou $d = \sqrt{\frac{A \cdot 4}{\pi}} = \sqrt{\frac{0,742 \text{ mm}^2 \cdot 4}{\pi}} = \underline{0,972 \text{ mm}}$	
$A = r^2 \cdot \pi = \left(\frac{d}{2}\right)^2 \cdot \pi = \frac{d^2}{4} \cdot \pi \implies d = \sqrt{\frac{A \cdot 4}{\pi}}$ $d = \sqrt{\frac{A \cdot 4}{\pi}} = \sqrt{\frac{0,729 \text{ mm}^2 \cdot 4}{\pi}} = \underline{0,963 \text{ mm}}$ Ou $d = \sqrt{\frac{A \cdot 4}{\pi}} = \sqrt{\frac{0,742 \text{ mm}^2 \cdot 4}{\pi}} = \underline{0,972 \text{ mm}}$	
$d = \sqrt{\frac{A \cdot 4}{\pi}} = \sqrt{\frac{0,729 \text{ mm}^2 \cdot 4}{\pi}} = \underbrace{\frac{0,963 \text{ mm}}{\pi}}$ Ou $d = \sqrt{\frac{A \cdot 4}{\pi}} = \sqrt{\frac{0,742 \text{ mm}^2 \cdot 4}{\pi}} = \underbrace{\frac{0,972 \text{ mm}}{\pi}}$	(1)
Ou $d = \sqrt{\frac{A \cdot 4}{\pi}} = \sqrt{\frac{0,742 \text{ mm}^2 \cdot 4}{\pi}} = \underline{0,972 \text{ mm}}$	
$d = \sqrt{\frac{A \cdot 4}{\pi}} = \sqrt{\frac{0,742 \text{ mm}^2 \cdot 4}{\pi}} = \underbrace{\frac{0,972 \text{ mm}}{\pi}}_{}$	
Indication pour l'expert: attention au report de fautes.	

Exer	cices	Nombre d	e points obtenus
	Plan de formation 6.3.5, Bloom 1	3	
3.	Soit le signal suivant présenté sur l'écran de l'oscilloscope:		
	5 μs/div 20 mV /div		
	a) Déterminez la valeur û.	(1)	
	$\hat{\mathbf{u}} = 4 \cdot 20 \mathbf{mV} = 80 \mathbf{mV}$		
	b) Déterminez la valeur efficace U.	(1)	
	$U = \frac{1}{\sqrt{2}} \cdot \hat{\mathbf{u}} = \frac{1}{\sqrt{2}} \cdot 80 \text{mV} = \underbrace{\frac{56,569 \text{mV}}{100000000000000000000000000000000000$		
		(1)	
	c) Déterminez la fréquence.		
	$f = \frac{1}{T} = \frac{1}{4 \cdot 5 \mu s} = 50000 Hz = \frac{50 kHz}{======}$		

Exercic	es	Nombre o	e points obtenus
Pla	an de formation 6.3.1, Bloom 3	4	
4. a)	Dessinez le schéma équivalent d'un filtre passe-bas avec les composants R et C. Les composants ne doivent être utilisés qu'une seule fois. Dénommez l'entrée du filtre avec U _e , et la sortie avec U _s .	(2)	
b)	Dessinez le graphique représentant la tension de sortie U _s en fonction de la fréquence et marquez l'emplacement de la fréquence de coupure.	(2)	

Exer	cices	Nombre o	e points obtenus
	Plan de formation 6.3.2, Bloom 2	4	
5.	a) Entourez le diagramme représentant la variation de la puissance P en fonction du courant I dans une résistance purement ohmique.	(2)	
	Pen W 1 en A Pen W Pen W 65 Pen W 60 1 en A		
	b) Calculez pour le diagramme entouré la valeur de la résistance R. $P = I^2 \cdot R \implies R = \frac{P}{I^2}$ $R = \frac{P}{I^2} = \frac{25 \text{ W}}{(2 \text{ A})^2} = \frac{6.25 \Omega}{1000}$	(2)	
	Indication pour l'expert: attention au report de fautes.		

Exer	cices	3				Nombre d maximal	e points obtenus
	Plan	de formation	6.4.3, Bl	oom 1		4	
6.	a)	Additionnez	les deux	nomb	res binaires suivants:	(2)	
		$X_1 = 101001$ $X_2 = 111001$	1				
		Le raisonne	ment doi	t être d	émontré à l'aide d'une addition binaire.		
		+ 1	1 0				
		1 0	0 1	1	1 0 0		
	b)				aire X ₂ en un nombre décimal correspondan	t. (2)	
		Le raisonner	nent doit	être d	émontré.		
		$X_2 = 111001$	1				
		2 ⁰ x 2 ¹ x 2 ² x 2 ³ x 2 ⁴ x 2 ⁵ x 2 ⁶ x	1 1 0 0 1	= = = =	1 2 0 0 16 32 64		
		2° x	1	=	115		

Exe	rcices	Nombre o	
	Plan de formation 6.3.2, Bloom 2	5	
8.	Soit le circuit RLC suivant:		
	$R_{i} = 68 \Omega$ $U = 20 \text{ V}$ $R = 333 \Omega$ $Calculez la fréquence de résonance.$ $f_{c} = \frac{1}{2\pi\sqrt{L \cdot C}} = \frac{1}{2\pi\sqrt{0.8 \text{ H} \cdot 10 \text{ nF}}} = \frac{1779,406 \text{ Hz}}{1779,406 \text{ Hz}}$	(2)	
	b) Déterminez si le circuit sera capacitif ou inductif pour une fréquence de 1kHz. Prouvez votre réponse par un calcul. $\omega_L = \omega \cdot L = 2\pi f \cdot L = 2\pi \cdot 1 \text{kHz} \cdot 0.8 \text{ H} = 5026,548 \Omega$ $\omega_C = \frac{1}{\omega \cdot C} = \frac{1}{2\pi f \cdot C} = \frac{1}{2\pi \cdot 1 \text{kHz} \cdot 10 \text{nF}} = 15915,494 \Omega$ A 1 kHz, le circuit est <u>capacitif</u> .	(1) (1) (1)	

Exe	cices	Nombre maximal	de points obtenus
	Plan de formation 6.4.2, Bloom 3	3	
9.	Soit le schéma logique suivant:		
	X1 X2 X3 ≥1 ≥1 ≥1		
	a) Complétez le diagramme temporel pour la sortie Z en établissant u table de verité.	une (2)	
	X2		
	Х3		
	Z ti	in s	
	 b) Indiquez après combien de secondes la sortie Z sera vraie pour la première fois. Après 2 secondes, la sortie Z sera vraie pour la première fois. Indication pour l'expert: attention au report de fautes! Attention: X1 représente le bit de poids faible, X3 le bit de poids 	(1)	

Nombre de points maximal obtenus **Exercices** Plan de formation 6.3.6, Bloom 1/2 2 10. 2 antennes directionnelles se font face comme sur le plan ci-dessous. 20 km ((((((((Air NVP = 0.97Cu NVP = 0.7Calculez le temps de retard du même signal transmis à travers une liaison sousterraine en cuivre par rapport à la liaison hertzienne. Vitesse de la lumière : 300'000km/s = 300'000'000m/s $t_{\text{Luft}} = \frac{I}{\text{NVP}_{\text{Air}} \cdot c} = \frac{20 \, \text{km}}{0.97 \cdot 300000 \frac{\text{km}}{\text{s}}} = \frac{68,729 \, \mu \text{s}}{}$ $t_{\text{Cu}} = \frac{I}{\text{NVP}_{\text{Cu}} \cdot \text{c}} = \frac{20 \text{ km}}{0.7 \cdot 300000 \frac{\text{km}}{\text{s}}} = \frac{95,238 \, \mu \text{s}}{}$ Retard : $t_{\text{Cu}} - t_{\text{Air}} = 95,238 \, \mu s - 68,729 \, \mu s = 26,509 \, \mu s$

Exer	cices	Nombre d maximal	e points obtenus
	Plan de formation 6.4.1, Bloom 3	2	
11.	Dans les circuits ci-dessous, les entrées U ₁₁ et U ₁₂ peuvent être raccordées soit:		
	 à la masse (0 V), correspond à 0 logique à +5 V, correspond à 1 logique 		
	On admet que :		
	 U₂ ≥ 4 V correspond à 1 logique 		
	 U₂ ≤ 1 V correspond à 0 logique 		
	Cocher la case en regard du circuit pour lequel la sortie U ₂ représente une combinaison logique ET.		
	+12 V O		
	U_{11} U_{12} U_{12}		
	-12 V O		
	Aucun des circuits n'est correct		

Exer	cices	S	Nombre c	e points Obtenus
	Plan	de formation 6.3.1, Bloom 3	3	
12.	Un I	ecteur CD avec une impédance de sortie de 6 Ω doit être utilisé comme ique en attente sur un PBX.		
	a)	Entourez le type de port PBX qui doit être utilisé pour connecter la source de musique.	(1)	
		□ ISDN		
		☑ Analogique		
		□ SIP-VoIP		
			(2)	
	b)	En admettant une impédance du port PBX de 600 Ω , complétez le schéma d'interconnexion avec les résistances nécessaires.		
		Seules des résistances de 560 Ω et/ou 68 Ω peuvent être employées.		
		Le raisonnement doit être démontré.		
		560 68		
		600 Ω Ω 6 Ω		
		La résistance additionnelle devra avoir une valeur totale 600 Ω – 6 Ω = 594 $\Omega.$		
		$R_{\text{additionne I}} = 560 \Omega + \frac{1}{\frac{1}{68 \Omega}} = \frac{594 \Omega}{\frac{1}{68 \Omega}}$		
		Total	38	