Taller sobre Memoria Caché (Intro.) Organización del Computador I

Paula Verghelet

Departamento de Computación Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires

26.06.2018

Jerarquía de Memoria

¿Cómo funciona la Memoria Cache?

Eventos tras un acceso:

- Hit: El dato solicitado se encuentra en caché
- Miss: En caso contrario

Métricas:

- Hit Rate = $\frac{\#hits}{\#pedidos}$
- Miss Rate = $\frac{\#miss}{\#pedidos}$

Localidad Espacial y Localidad Temporal

Localidad Espacial:

Si se pide un dato en memoria, es altamente probable que a continuación se pida también otro dato que sea próximo en memoria al primero. ej: ejecución secuencial, recorrido de arrays, etc.

Localidad Temporal:

Si se pide un dato de memoria, es altamente probable que éste vuelva a ser reutilizado en un futuro inmediato. ej: variables, ciclos, etc.

Durante un *miss*, la memoria caché solicita a la memoria principal el dato buscado junto con los datos vecinos, de esta forma anticipa los futuros pedidos.

Tipos de Cache

Función de correspondencia entre Memoria Principal y Caché.

Totalmente Asociativa:

Cada bloque en caché puede contener cualquier dato de la memoria principal

Correspondencia Directa:

Los bloques de caché almacenan direcciones específicas de memoria principal

Asociativa por Conjuntos:

Los bloques de caché se dividen en conjuntos y cada uno puede almacenar un conjunto de direcciones específicas de memoria principal

Política de reemplazo

- First In First Out (FIFO):
 El primer dato en entrar es el primero en descartado
- Least Recently Used (LRU):
 Se descarta el dato menos recientemente usado
- Least Frequently Used (LFU): Se descarta el bloque menos frecuentemente usado

Estructura de una Caché

- Línea: Mínima unidad de almacenamiento de la memoria caché
- Índice: Indica la posición del dato dentro de una línea
- Tag: Identificador del dato en memoria principal

Ejemplos de memorias caché

- Considerar una memoria de 64 unidades direccionables
- y una memoria caché de 16 unidades direccionables
- con las siguientes características:
 - Totalmente Asociativa: 4 líneas, 4 unidades por línea
 - Correspondencia Directa: 4 líneas, 4 unidades por línea
 - Asociativa por Conjuntos: 2 conjuntos o vías, 2 líneas por conjunto, 4 unidades por línea

Totalmente Asociativa

Memoria Principal

Tag	Indice	
4	2	6 bits

Totalmente Asociativa

Memoria Principal

	00	01	10	11
0000	62	83	33	85
0001	51	64	45	75
0010	42	88	42	65
0011	82	81	33	52
0100	21	43	44	62
0101	60	52	70	39
0110	59	11	21	42
0111	32	81	54	55
1000	45	57	53	69
1001	63	13	43	34
1010	98	29	84	16
1011	64	77	55	44
1100	72	62	37	43
1101	84	41	68	41
1110	77	86	77	34
1111	49	99	51	33

Tag	00	01	10	11
0100	21	43	44	62
0110	59	11	21	42
0101	60	52	70	39
0001	51	64	45	75

Tag	Indice	
4	2	6 bits

Correspondencia Directa

Memoria Principal

Tag	Línea	Indice	
2	2	2	6 bits

Correspondencia Directa

Memoria Principal

	00	UΙ	10	1.1
00 <mark>00</mark>	62	83	33	85
00 <mark>01</mark>	51	64	45	75
00 <mark>10</mark>	42	88	42	65
0011	82	81	33	52
01 <mark>00</mark>	21	43	44	62
01 <mark>01</mark>	60	52	70	39
01 <mark>10</mark>	59	11	21	42
0111	32	81	54	55
10 <mark>00</mark>	45	57	53	69
10 <mark>01</mark>	63	13	43	34
10 <mark>10</mark>	98	29	84	16
10 <mark>11</mark>	64	77	55	44
11 <mark>00</mark>	72	62	37	43
11 <mark>01</mark>	84	41	68	41
11 <mark>10</mark>	77	86	77	34
11 <mark>11</mark>	49	99	51	33

Tag	Línea	Indice	
2	2	2	6 bits

Asociativa por Conjuntos

Memoria Principal

Tag	Línea	Indice	
3	1	2	6 bits

Asociativa por Conjuntos

Memoria Principal

	00	01	10	11
0000	62	83	33	85
0001	51	64	45	75
0010	42	88	42	65
0011	82	81	33	52
0100	21	43	44	62
0101	60	52	70	39
0110	59	11	21	42
0111	32	81	54	55
100 <mark>0</mark>	45	57	53	69
100 <mark>1</mark>	63	13	43	34
101 <mark>0</mark>	98	29	84	16
1011	64	77	55	44
110 <mark>0</mark>	72	62	37	43
110 <mark>1</mark>	84	41	68	41
111 <mark>0</mark>	77	86	77	34
111 <mark>1</mark>	49	99	51	33

					Tag				
101	98	29	84	16	000	62	83	33	85
011	32	81	54	55	001	82	81	33	52

ıag	Linea	Indice	
3	1	2	6 bits