

# Universidad Tecnológica Nacional Facultad Regional Córdoba

## Trabajo Práctico 2

Electrónica Aplicada 1 3R2

Cabaleiro Martin 404821 Cortesini Luciano 402719 Ernst Pedro 400624

Fecha de entrega: 21 / 5 / 2025

# Índice

| 1 | Introducción                                            | 2 |  |  |
|---|---------------------------------------------------------|---|--|--|
| 2 | Planteamiento e introducción teórica  2.1 Transformador | 3 |  |  |
| 3 | B Ensayos y mediciones                                  |   |  |  |
| 4 | Conclusiones                                            | 8 |  |  |

## Introducción

En este trabajo práctico de laboratorio se llevara a cabo el análisis y construcción de una fuente de alimentación de tensión variable. Luego se realizaran todos los ensayos pertinentes pare verificar que la fuente cumple con las especificaciones de diseño y asegurar un correcto funcionamiento.

La fuente contará con las siguientes especificaciones:

- Salida regulada de 0 a 30 V.
- Corriente máxima de 1.5 A.

### Planteamiento e introducción teórica

El siguiente diagrame en bloques sintetiza las distintas etapas de la fuente, Desde la entrada de 220V en CA hasta llegar a la tension en CC a la salida.



Figura 2.1: Diagrama en bloques

A contunuación, se explica detaladamente cada uno de estos bloques.

#### Transformador

El transformador tiene dos funciones:

- Aislar galvánicamente el circuito de la red electrica.
- Reducir la tension de entrada al valor necesario para la fuente.



#### Rectificador

#### **Filtro**

### Regulador de circuito integrado

## Ensayos y mediciones

a. Medición de ripple.

Para poder realizar las siguiente mediciones en este primer ensayo, previamente se realizo en la placa la soldadura del puente diodo y el filtro.

i. En el filtro capacitivo y determinación de parámetros.

Se tomaran medidas de la tension tanto desde el punto bajo (desde 0 hasta 10 V) como desde el punto alto (desde 15 hasta 30 V) variando la corriente desde el vacio (0 A) hasta llegar a plena carga (1,5 A). Con las mediciones vamos a poder calcular los siguientes tres factores: Regulacion de voltaje, resistencia variable y factor de ripple.

| Ρ | 'iinto | bajo: |
|---|--------|-------|
| _ | ulluo  | Day.  |
|   |        |       |

| $V_{vacio}$      | 17,71 V |
|------------------|---------|
| $V_{0,5A}$       | 15,80 V |
| $V_{0,75A}$      | 15,27 V |
| $V_{1A}$         | 14,63 V |
| $V_{1,25A}$      | 14,10 V |
| $V_{PlenaCarga}$ | 13,69 V |

Grafico Vout vs Iout punto bajo



Punto alto:

| $V_{vacio}$      | 36,86 V |
|------------------|---------|
| $V_{0,5A}$       | 31,89 V |
| $V_{0,75A}$      | 31,05 V |
| $V_{1A}$         | 29,83 V |
| $V_{1,25A}$      | 28,55 V |
| $V_{PlenaCarga}$ | 27,47 V |

Grafico Vout vs Iout punto alto



ii. Determinación de resistencia interna del transformador más la de los diodos.

Punto bajo:

• Para calcular la regulacion de voltaje se utiliza la siguiente formula:

$$RV = \frac{V_{vacio} - V_{PlenaCarga}}{V_{PlenaCarga}} 100 \%$$

$$RV = \frac{17,71 - 13,69}{13,69} 100 \% = 29,36 \%$$

• La resistencia interna esta dada por:

$$R_{i}nt = \frac{V_{PlenaCarga} - V_{vacio}}{-I_{carga}}$$

$$R_{i}nt = \frac{13,69 - 17,71}{-1,5} = 2,68\Omega$$

• Ahora mediremos el voltaje del ripple tanto con multimetro true RMS, como en el osciloscopio:

$$V_{Ripple Multimetro} = 908 mV$$
  
 $V_{Ripple Osciloscopio} = 972 mV$   
 $V_{Picoa Pico} = 2,75 V$ 

• Factor de ripple:

$$F_{R} = \frac{V_{eficaz}}{V_{PlenaCarga}} 100 \%$$
 
$$F_{R} = \frac{908mV}{13,69V} 100 \%$$
 
$$F_{R} = 6,6325 \%$$

Para el punto alto repetiremos las formulas del punto bajo cambiando por los valores correspondientes:

• Regulacion de voltaje:

$$RV = \frac{36,68 - 27,43}{27,43} 100\% = 33,72\%$$

• Resistencia interna:

$$R_i nt = \frac{27,43 - 36,68}{-1.5} = 6,16\Omega$$

• Ripple:

$$V_{RippleMultimetro} = 0,83V$$
  
 $V_{RippleOsciloscopio} = 0,88V$   
 $V_{PicoaPico} = 2,5V$ 

• Factor de ripple:

$$F_R = \frac{0,83V}{27,43V} 100 \%$$

$$F_R = 3,0258$$

- b. Mediciones finales
- i. Regulación de voltaje
- ii. Factor de ripple
- iii. Cálculo de temperatura de juntura

# Conclusiones