

Flervariabelanalys för civilingenjörer MA505G-0100

2018-10-31, kl. 08:15-13:15

Hjälpmedel: Endast skrivmateriel. Formelblad delas ut tillsammans med skrivningen.

Betygskriterier: Skrivningens maxpoäng är 60. Samtliga uppgifter bedöms utifrån kriterier för problemlösning och redovisning. För betyg 3/4/5 räcker det med 6 poäng inom vart och ett av huvudområdena differentialkalkyl, integralkalkyl och vektoranalys samt 30/40/50 poäng totalt. Detaljerna framgår av separat dokument publicerat på Blackboard.

Anvisningar: Motivera väl, redovisa alla väsentliga beräkningssteg, rita tydliga figurer och svara exakt. Redovisa inte mer än en uppgift per blad. Lämna in bladen i uppgiftsordning.

Skrivningsresultat: Meddelas inom 15 arbetsdagar.

Examinator: Andreas Bergwall.

Lycka till!

- 1. Studera ytorna ovan. x-axeln pekar åt höger, y-axeln in i pappret och z-axeln uppåt. Vilken/vilka ekvationer nedan kan användas för att beskriva respektive yta? Komplettera med definitionsmängder eller andra lämpliga restriktioner!
 - (a) $z = \sin x + \cos y$
 - (b) $x^2 + y^2 + z^2 = 1$
 - (c) $x \cos(z) = 0$
 - (d) $(x, y, z) = (\cos(s), \sin(t), s)$
 - (e) $(x, y, z) = (\cos(s), \sin(s), t)$
 - (f) $(x, y, z) = (\sin s \cos t, \sin s \sin t, \cos t)$

[8p]

- 2. Antag att grad $f(x,y) = (6x^2y 12xy, 2x^3 6x^2 8y)$ och att f(1,-3) = -5. [8p]
 - (a) Bestäm tangentplanet till z = f(x, y) i den punkt där (x, y) = (1, -3).
 - (b) Visa att (2,-1) är en lokal maxpunkt till f(x,y).
- 3. Vilken punkt i planet x 2y + 2z = 3 ligger närmast punkten (1,0,0)? [8p] Ledning: Bestäm först en funktion som beskriver avståndet från en godtycklig punkt (x, y, z) till punkten (1,0,0)?

Anmärkning: Uppgiften ska lösas med optimeringsmetoder från den här kursen och inte med ortogonal projektion eller andra metoder från linjär algebra.

Obs! I uppgifterna 4–7 nedan ska integrationsområden och orienteringar (där sådana är relevanta) illustreras med tydliga figurer.

4. Vilken dubbelintegral kan skrivas som nedanstående upprepade enkelintegral? [8p

$$\int_0^1 \left(\int_{e^x}^e \frac{x}{\ln y} \, \mathrm{d}y \right) \, \mathrm{d}x$$

Beräkna den dubbelintegralen!

5. Kroppen $K = \{(x, y, z) : x^2 + y^2 + z^2 \le 1, z \ge 0\}$ har densiteten $\rho(x, y, z) = z$. [10p] Då gäller att K:s tröghetsmoment med avseende på z-axeln ges av

$$J = \iiint_{\mathcal{K}} (x^2 + y^2) z \, \mathrm{d}x \mathrm{d}y \mathrm{d}z.$$

Beräkna denna trippelintegral på två olika sätt!

6. Låt γ vara halvcirkelbågen i övre halvplanet från punkten $(-\pi,0)$ till punkten [8p] $(\pi,0)$. Beräkna

$$\int_{\gamma} (y\sin(x) + e^y) dx + (xe^y - \cos(x)) dy.$$

7. Beräkna $\int_{\gamma} xyz \, \mathrm{d}x - z \, \mathrm{d}y + y \, \mathrm{d}z$ där γ är skärningen mellan ytorna $y^2 + z^2 = 1$ [10p] och x + z = 1. Kurvan γ ska genomlöpas moturs sett från origo.

Kommentarer till Flervariabelanalys för civilingenjörer 20181031

- 1. (a) Ytan i bild A är "undre halvan" av enhetssfären, d.v.s. ges av (b) med tillägget att z < 0. Med sfäriska koordinater (s,t) kan den parametriseras som $(x,y,z) = (\sin s \cos t, \sin s \sin t, \cos s)$ med definitionsmängd $\pi/2 < s < \pi, \ 0 < t < 2\pi$, vilket är snarlikt, men inte identiskt med, uttrycket i (f). Ytan i (f) är faktiskt inte alls sfärisk. Prova gärna att plotta den med Matlab! Om man projicerar den på koorinatplanen så får man för fixt s en cirkel i xy-planet, en ellips i yz-planet och en rät linje i xz-planet.
 - (b) Ytan i bild B skär plan som är parallella med xz-planet längs med kurvan $x = \cos(z), \ 0 < z < \pi \ (\text{om } y \ \text{är en konstant mellan } -1 \ \text{och } 1).$ Ytan ges alltså av (c) med definitionsmängd $-1 < y < 1, \ 0 < z < \pi$. Den kan parametriseras som i (d) med $0 < s < \pi, -\pi/2 < t < \pi/2$. (En mer naturlig parametrisering hade dock varit $(x, y, z) = (\cos(s), t, s), \ 0 < s < \pi, -1 < t < 1$.)
- 2. (a) $(f'_x(1,-3), f'_y(1,-3)) = \operatorname{grad} f(1,-3) = (18,20)$ så tangentplanets ekvation är z = -5 + 18(x-1) + 20(y+3).
 - (b) Eftersom grad f(2,-1)=(0,0) så är (2,-1) är en stationär punkt, vilket är ett nödvändigt villkor för att det ska kunna vara en lokal extrempunkt (eftersom f är partiellt deriverbar överallt). Vidare är $A=f_{xx}''(2,-1)=-12, B=f_{xy}''(2,-1)=0$ och $C=f_{yy}''(2,-1)=-8$ vilket ger att $AC-B^2>0$. Tillsammans med att A<0 så innebär detta att den kvadratiska formen $Ah^2+2Bhk+Ck^2$ (d.v.s. 2:agradstermerna i f:s taylorutveckling kring (2,-1)) är negativt definit. Då följer att (2,-1) är en lokal maxpunkt.
- 3. Avståndet till (1,0,0) ges av $\sqrt{(x-1)^2+y^2+z^2}$. Vi kan lika gärna minimera kvadraten på avståndet, d.v.s. $f(x,y,z)=(x-1)^2+y^2+z^2$. Detta ska göras under bivillkoret g(x,y,z)=x-2y+2z=3. Optimum finns (hur kan man veta det?) i en punkt där $\nabla f=\lambda \nabla g$. Detta system har lösningarna $\lambda=z=-y=2(x-1)$ vilket insatt i bivillkoret ger (x,y,z)=(11/9,-4/9,4/9).

Det går att krångla sig ur helt utan deriveringar om man t.ex. löser ut z ur planets ekvation, sätter in i uttrycket för f(x, y, z) och sedan kvadratkompletterar. Prova gärna!

Anm: Planet g(x,y,z)=3 är inte en kompakt mängd. Om vi däremot tänker oss att vi bara söker bland punkter i detta plan som ligger högst 10 längdenheter från punkten (1,0,0) så söker vi i en kompakt mängd och då finns garanterat både punkter som minimerar och som maximerar avståndet till (1,0,0). Dessa punkter är antingen punkter där ∇f och ∇g är parallella eller punkter på "randen". Nu fanns det bara en punkt där ∇f och ∇g är parallella, nämligen (11/9, -4/9, 4/9), och där är f(11/9, -4/9, 4/9)=36/81. På "randen" är f=100. Här är det alltså klart att (11/9, -4/9, 4/9) verkligen är

minpunkten. Och punkter längre bort än 10 längdenheter är naturligtvis ointressanta eftersom f:s värde i dessa är minst 100.

4. Den sökta dubbelintegralen är över $D = \{(x,y) : e^x \le y \le e, 0 \le x \le 1\}$. Denna mängd kan också beskrivas som $D = \{(x,y) : 0 \le x \le \ln y, 1 \le y \le 1\}$. Byte av integrationsordning ger

$$\int_{D} \frac{x}{\ln y} dx dy = \int_{1}^{e} \left(\int_{0}^{\ln y} \frac{x}{\ln y} dx \right) dy = \dots = \frac{1}{2}.$$

- 5. Tröghetsmomentet är $\pi/12$. Tre olika sätt att börja:
 - Inre dubbelintegral över skivan D_z : $x^2 + y^2 \le 1 z^2$ i xy-planet följt av interering över [0,1] i z-led:

$$J = \int_0^1 \left(\iint_{D_z} (x^2 + y^2) z \, \mathrm{d}x \, \mathrm{d}y \right) \, \mathrm{d}z = \dots$$

Det är lämpligt med övergång till planpolära koordinater i dubbelintegralen.

• Yttre dubbelintegral över enhetscirkelskivan i xy-planet och inre enkelintegral i z-led mellan ytorna z=0 och $z=\sqrt{1-x^2-y^2}$:

$$J = \iint_{x^2 + y^2 \le 1} \left(\int_0^{\sqrt{1 - x^2 - y^2}} (x^2 + y^2) z \, dz \right) \, dx dy = \dots$$

Det är lämpligt med övergång till planpolära koordinater i dubbelintegralen.

• Byt direkt till rymdpolära koordinater:

$$J = \iiint_{[0,1]\times[0,\pi/2]\times[0,2\pi]} r^2 \sin^2\theta \cdot r \cos\theta \cdot r^2 \sin\theta \, dr d\theta d\varphi = \dots$$

- 6. Fältet är ett potentialfält i \mathbb{R}^2 (kontrollera att $Q_x' = P_y'$) så integralen är oberoende av vägen. Byt till linjestycket från $(-\pi,0)$ till $(\pi,0)$. Längs det är $y = \mathrm{d}y = 0$ så integralen blir bara $\int_{-\pi}^{\pi} \mathrm{d}x = 2\pi$.
- 7. γ är positivt orienterad rand till ytan $x=1-z,\ y^2+z^2\leq 1$, med orienterat ytelement $\mathbf{n}\,\mathrm{d}S=(-1,x_y',x_z')\,\mathrm{d}y\,\mathrm{d}z=(-1,0,-1)\,\mathrm{d}y\,\mathrm{d}z$. Vektorfältets rotation är (2,xy,-xz) vilket på denna yta är (2,(1-z)y,-(1-z)z). Stokes sats leder till att kurvintegralen blir

$$\dots = \iint_{y^2 + z^2 \le 1} (-2 + z - z^2) \, \mathrm{d}y \, \mathrm{d}z = \dots = \frac{9\pi}{4}.$$

Man kan också se γ som postivit orienterad rand till ytan z = 1 - x, $(1 - x)^2 + y^2 \le 1$, $\mathbf{n} \, \mathrm{d}S = (z_x', z_y', 1) \, \mathrm{d}x \mathrm{d}y$, om man hellre vill det.