Algoritmo para calcular FIRST(X):

Para computar FIRST(X) para um símbolo X da gramática, aplicam-se as regras abaixo, até que não se possa adicionar mais terminais ou ε ao conjunto em questão.

- 1) Se \mathbf{a} é um terminal, então FIRST(a) = {a}.
- 2) Se X \rightarrow ϵ é uma produção, então adicione ϵ a FIRST(X).
- 3) Se $X \rightarrow Y_1Y_2...Y_k$ é uma produção e, para algum **i**, todos

 $X \to Y_1Y_2...Y_{i-1}$ derivam ε , então FIRST(Y_i) está em FIRST(X), juntamente com todos os símbolos não- ε de FIRST(Y_1), FIRST(Y_2), ..., FIRST(Y_{i-1}). O Símbolo ε será adicionado a FIRST(X) apenas se todo Y_i ($y_i = 1, 2, ..., k$) derivar ε .

<u>Algoritmo para calcular FOLLOW(X):</u>

```
1. FOLLOW(S) := {$}
```

- 2. repeat
- 3. foreach $p \in P$ do {
- 4. // varre as produções
- 5. case $p = A \rightarrow \alpha B\beta$ {
- 6. FOLLOW(B) := FOLLOW(B) \cup FIRST(β) \{ ϵ }
- 7. if $\varepsilon \in FIRST(\beta)$ then
- 8. FOLLOW(B) := FOLLOW(B) \cup FOLLOW(A)
- 9. end
- 10. }
- 11. case $p = A \rightarrow \alpha B$
- 12. $FOLLOW(B) := FOLLOW(B) \cup FOLLOW(A)$
- 13. }
- 14. until no change in any FOLLOW(V)

Algoritmo para construir uma tabela de análise preditiva:

Entrada: gramática G

Resultado: Tabela de Análise M

Método:

- 1) Para cada produção A \rightarrow α de G, execute os passos 2 e 3 (*para criar a linha* A *da tabela M*).
- 2) Para cada terminal **a** de FIRST(α), adicione a produção A $\rightarrow \alpha$ a M[A, a].
- 3) Se FIRST(α) inclui a palavra vazia, então adicione A $\rightarrow \alpha$, a M[A, b] para cada **b** em FOLLOW(A).

Exemplo. Determinação das funções FIRST

Exemplo: Considere uma gramática para expressão lógica:

 $E \rightarrow TE'$

 $E' \rightarrow vTE' \mid E$

 $T \rightarrow FT'$

 $T' \rightarrow ^{r}T' \mid \mathcal{E}$

 $F \rightarrow \neg F \mid id$

obs.: Conjuntos FIRST: Convém iniciar pelos não-terminais mais simples, isto é, aqueles que derivam apenas formas sentenciais que iniciam por terminais.

- $FIRST(F) = { \neg , id}$
- FIRST(T') = $\{^{\land}, \mathcal{E}\}$
- FIRST(E') = $\{v, E\}$
- $FIRST(T) = { \neg, id}$
- $FIRST(E) = { \neg, id }$

Conjuntos FOLLOW:

FOLLOW(E) = { \$ }

FOLLOW(E') = { \$ }

 $FOLLOW(T) = \{ v, \$ \}$

 $FOLLOW(T') = \{v, \$\}$

 $FOLLOW(F) = \{v, ^, \$\}$

Para E → T E'	tem-se FIRST(T E') = $\{\neg, id\}$	$M[E, \neg] = M[E, id] = E \rightarrow T E'$
Para E' $\rightarrow \vee$ T E'	tem-se $FIRST(\lorT E') = \{ \lor \}$	$M[E', \vee] = E \rightarrow \vee T E'$
Para E' $\rightarrow \epsilon$	tem-se $FOLLOW(E') = \{ \} $	$M[E', \$] = E' \rightarrow \varepsilon$
Para $T \rightarrow FT'$	tem-se FIRST(F T') = $\{\neg, id\}$	$M[T, \neg] = M[T, id] = T \rightarrow F T'$
Para T' $\rightarrow \land FT'$	tem-se FIRST(\wedge FT) = { \wedge }	$M[T', \wedge] = T' \rightarrow \wedge F T'$
Para T' $\rightarrow \epsilon$	tem-se FOLLOW(T') = $\{\lor, \$\}$	$M[T', \vee] = M[T', \$] = T' \rightarrow \varepsilon$
Para $F \rightarrow \neg F$	tem-se $FIRST((\neg F)) = \{ \neg \}$	$M[F, \neg] = F \rightarrow \neg F$
Para $F \rightarrow id$	tem-se $FIRST(id) = \{id\}$	$M[F, id] = F \rightarrow id$

	id	v	^	7	\$
E	E → T E'			$E \rightarrow T E'$	
E'		E' → ∨T E'			$E' \rightarrow \epsilon$
T	$T \rightarrow F T'$			$T \rightarrow F T'$	
T'		T' → ε	T' → ∧F T'		T' → ε
F	$F \rightarrow id$			$F \rightarrow \neg F$	