Algebre Lineaire 1 2017-10-06

Algebre Lineaire

• Numero: 1

• Prof: Regragui Mohamed

• Date: 6 Octobre 2017

Programme

- Algebre Lineaire
 - Reduction des matrices carrees
 - * Rappels des notations
 - * Trigonalisation
 - * Normes matricielles
 - * Diagonalisation
 - Resolution numerique des systemes lineaire (Ax=b)
 - * Methodes directes
 - · Algo de Gauss
 - · Algo de Cholesky
 - * Methodes iteratives (A=M-N, Pour des systemes tres grand)
 - · Algo de Jocohi
 - · Algo de Gauss Seidel
 - · Algo de relaxation successive

Application (Systemes differentiels)

$$\frac{dX}{dt} = AX$$

Besoin de diagonaliser A.

Reduction des matrices carrees

Rappels des notations

Soit $M_{m,n}(\mathbb{K})$ l'espace des matrices a m lignes et n colonnes a coefficients dans $\mathbb{K} \equiv \mathbb{R}$ ou \mathbb{C} .

Si m=n, on note $M_n(\mathbb{K})$ l'espace des matrices carrees.

Soit
$$A \in M_{m,n}(\mathbb{K})$$

$$A=(a_{ij}) \text{ avec } 1 \leq i \leq m \text{ et } 1 \leq j \leq n$$

Amsallem Florian 1

Algebre Lineaire 1 2017-10-06

La **transposee** de A: $A=\left(a_{ii}\right)$ (On inverse les coordonnees).

La matrice **adjointe** de A: $A^* = {}^t \bar{A}$

C'est la matrice transposee de la matrice conjuguee de M. M qui est a coefficients complexes.

On note donc $(a_{ij}^*) = \bar{a}_{ji}$

Produit scalaire dans \mathbb{R}^n .

C'est une forme bilineaire symetrique definie positive ($(X,Y) \ge 0$).

$$X=(x_1,\ldots,x_n), Y=(y_1,\ldots,y_n),$$
 le **produit scalaire** Formule:

$$(X,Y) = \sum_{i=1}^n y_i \times x_i$$

Produit scalaire dans \mathbb{C}^n .

$$X=(x_1,\ldots,x_n)$$
, $Y=(y_1,\ldots,y_n)$, le produit scalaire

Formule:
$$(X,Y) = \sum_{i=1}^n y_i^* \times x_i$$

(Rappel y_i^* est l'adjoint)

C'est une forme sesquilineaire.

$$(x, y + z) = (x, y) + (x, z)$$

 $(x + y, z) = (x, z) + (y, z)$

$$(ax,y)=a(x,z)$$

$$\operatorname{Si} a \in \mathbb{C}: (x,ay) = (au)^*.x = \sum_{i=1}^n a^* \times y_i^* \times x_i = \dots$$

Formule: $(A.B)^T = B^T.A^T$ Formule: $(A.B)^* = B^*.A^*$

Definitions

Soit $Q \in M_n(\mathbb{R})$ Matrice orthogonale ssi:

 $Q^T.Q=I, {\it I}$ est la matrice **identite**.

• Rq: Une matrice orthogonale conserve la norme: Si on prend un vecteur de Q alors

$$||Qx|| = ||x||$$

$$\implies ||x|| = \sqrt{(x,x)}$$

Amsallem Florian 2

Algebre Lineaire 1 2017-10-06

Soit $A\in M_n(\mathbb{C})$ hermitienne ssi A*=A dans les Reel cela signifie symetrique

• Exemple: Soit $u \in \mathbb{C}^n$ (non nul et unitaire), $unitaire \iff ||u|| = 1$ et on pose $H = I_n - 2uu*$ H est une matrice **hermitienne** et unitaire (matrice d'Hauseholder)

Theoreme (Schur)

$$\forall A \in M_n(\mathbb{C}), \exists u \text{ unitaire tq} \\ u*Au = T \text{ (matrice triangulaire superieur)}$$

Les elements diagonaux de \top sont les **valeurs propres** de la matrice (λ_i) . Chaque **valeur propre** a un **vecteur propre** associe.

$$A.v_i = \lambda_i.v_i$$

L'ensemble des valeurs propre de A est le **spectre** de A.

• Def: le **rayon spectral** de A est le max de (λ_i) .

Ex1:

Soit $A \in M_n(\mathbb{Q})$

Montrer que A est **hermitienne** $\iff \exists u$ unitaire tq u * Au = D =

$$\begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix}$$

Supposons A hermitienne $A^* = A$

$$A \in M_n(\mathbb{C}), \exists u \in M_n(\mathbb{C})$$
 (unitaire)

u * Au = T (T triangulaire superieur)

 $t_i i = \lambda_i (lambda_i \text{ appartien au spectre de A})$

$$T^* = (u * Au) * = u * A * (u*) * = u * Au = TT^* = T$$
 (T^* est triangulaire inferieur)

Donc T est **diagonale**. Et les valeurs propres sont reel. On peut demontrer la reciproque.

Amsallem Florian 3