IOT WORKSHOP

Ву:

Mahdi Bahreiny

روند پیشرفت کارگاه

جلسه 3

اتصال ESP به اینترنت و کنترل آن به صورت بی سیم و از راه دور

• جلسه 4

راه اندازی پنل کاربری برای کنترل ESP از طریق اینترنت

جلسه 2

اتصال ESP به شبکه و کنترل آن به صورت بی سیم و لوکال

جلسه 1

راه اندازی ESP و کنترل آن باسیم

جلسه سوم:

اتصال ESP32 به اینترنت و پروتکل MQTT

پروتکل MQTT

یک پروتکل پرکاربرد پیام رسانی در اینترنت اشیاء

سبک و کار آمد مناسب برای یهنای باند کم

بریایه انتشار/اشتراک (Publish/Subscribe)

با ثبات در ارسال پیام

مناسب برای شبکه های یرنوسان

امنیت بالا با استفاده از TLS

معماری MQTT

Broker •

مسئول مدیریت شبکه clientها است که ترکیبی از Publisher و Subscriber است.

Publisher

دستگاهی است که پیام ها را به سرور ارسال می کند (منتشر می کند). این بیام ها با یک نام "topic" مشخص می شوند.

Subscriber

دستگاهی است که در یک "topic" مشترک می شود و پیام های آن را دریافت می کند.

TOPICها و Message

TOPIC

- موضوعی است که فرستنده تحت آن عنوان پیام را ارسال میکند.

گیرنده میتواند با گوش دادن بر روی آن تاپیک پیام را دریافت کند.

- با رشته هایی که با یک اسلش(/) جدا شده اند نشان داده می شوند. هر اسلش رو به جلو سطح موضوع را نشان می دهد.

Message

اطلاعاتی که بین دستگاه مبادله می شود. برای مثال فرمان یا دادههایی مانند قرائت سنسور

یک سناریو استفاده از MQTT

دستگاه ESP32

این دستگاه در تاپیک home/office/lamp مشترک است

دستگاه موبایل

پیام "on" و یا "off" را با تاپیک home/office/lamp ارسال میکند

نتيجه

هنگامی که یک پیام جدید در مورد آن موضوع منتشر می شود، on" و یا "off" را دریافت می کند و لامپ را روشن یا خاموش می کند

مفهوم کیفیت خدمات (QoS)

توافق بین کلاینت ها در مورد سطح خدمات

MQTT Broker

Free Public MQTT **Broker**

Built with a global multi-region geo-distributed EMQX Cluster

Try MQTT Cloud \rightarrow

MQTT Broker Info

Broker Status:

Broker: broker.emqx.io

TCP Port: 1883

WebSocket Port: 8083

SSL/TLS Port: 8883

WebSocket Secure Port: 8084

QUIC Port: 14567

Certificate Authority: broker.emqx.io-ca.crt

Mosquitto

Mosca

emqttd

سهولت استفاده **EMQX** •

یشتیبانی از ورژن ها به روز MQTT

Emitter

MQTT Client

MQTTX •

نرم افزار جامع با امكانات مناسب

Paho-MQTT •

امکان تلفیق با سایر برنامه های پایتون مانند جنگو

سهولت استفاده

ESP32 •

ماژول وایفای با قیمت مناسب

عمکلرد خوب در کاربردهای IoT

```
"DocumentType": 1,
"No.": "S-ORD101001",
"SellToCustNo": "10000",
"PostingDate": "2023-04-02",
"Lines": [
    "LineNo": 10000.
   "Type": 2,
    "No": "1996-S",
    "Quantity": 12,
    "UnitPrice": 1397.3
  },
    "LineNo": 20000,
    "Type": 2,
    "No": "1900-S",
    "Quantity": 4,
    "UnitPrice": 192.8
```

قالب پيام JSON

فرمتی برای بهاشتراکگذاشتن دادهها

دادهها در جفتهایی بهشکل نام/مقدار Key/Value قرار گرفته و با علامت کاما از یکدیگر جدا میشوند

علامتهای { } نگهدارنده آبجکتها و [] نگهدارنده آرایهها هستند

جفتهای Key-Value یک دو نقطه (:) میان خود دارند

```
{
  "first_name" : "Sammy",
  "last_name" : "Shark",
  "location" : "Ocean",
  "online" : true,
  "followers" : 987
}
```

MQTTX

مناسب برای تست سریع سامانه های مبتنی بر MQTT

دارای امکانات کامل جهت مشترک شدن در یک تاپیک

و پابلیش کردن پیام

یشتیبانی از قالب هایی مانند json

Paho-MQTT

```
def on message(client, userdata, msg):
         try:
             data = json.loads(msg.payload)
             result = str(data)
             result = str(msg.payload)
         print("\n\nNew Message!\n_
         print("topic:: " + msg.topic)
         print("message::\n" + result)
     mgttClient = mgtt.Client(mgtt.CallbackAPIVersion.VERSION2)
     mgttClient.on connect = on connect
     mqttClient.on_message = on_message
     # mqttClient.username pw set("username", "password")
     mqttClient.connect("broker.emqx.io", 1883, 60)
     mqttClient.loop start()
     try:
         while True:
             topic = input("enter topic: ")
             message = input("enter message: ")
             mqttClient.publish(topic, message)
29
             print("\n\n")
     except:
         print("exiting")
         mgttClient.disconnect()
         mqttClient.loop stop()
```

نوشتن یک برنامه برای ارسال پیام در یک تاپیک دلخواه از طریق کنسول

نمایش همزمان پیام دریافت شده در تاپیک های عضو شده در کنسول

main. Py

Topic: wss/iot/data QoS: 0 Paha, ESP "temperature": 26.70000076, "humidity": 21.60000038, wssligt data "light": 3990, "relay": false, wss/ wt/ data "wifi": "galax" pub Sub Braker pub Sub wss/ Lot/ command wss/iot/command Topic: wss/iot/command QoS: 0 "relay": false

طراحی رابط کاربری با tkinter

```
Btn
```

grid system

```
root =Tk()
p=Label(root, text="WSS ESP32 Through MOTT", font=("Arial", 15))
p.grid(row=0,column=0)
tmpLabel=Label(root, text="Temperature", fg="white", bg="red", height=4, font=("Arial", 15), width=20)
tmpVal=Label(root, text="0°C", fg="white", bg="red", height=4, font=("Arial", 15), width=20)
tmpLabel.grid(row=1,column=0)
tmpVal.grid(row=1,column=1)
humLabel=Label(root, text="Humidity", fg="white", bg="blue", height=4, font=("Arial", 15), width=20)
humVal=Label(root, text="0%", fg="white", bg="blue", height=4, font=("Arial", 15), width=20)
humLabel.grid(row=2,column=0)
humVal.grid(row=2.column=1)
lightLabel=Label(root, text="Light", fg="white", bg="orange", height=4, font=("Arial", 15), width=20)
lightVal=Label(root, text="0", fg="white", bg="orange", height=4, font=("Arial", 15), width=20)
lightLabel.grid(row=3,column=0)
lightVal.grid(row=3,column=1)
wifiLabel=Label(root, text="WiFi Network", fg="white", bg="green", height=4, font=("Arial", 15), width=20)
wifiVal=Label(root, text="Name", fg="white", bg="green", height=4, font=("Arial", 15), width=20)
wifiLabel.grid(row=4.column=0)
wifiVal.grid(row=4,column=1)
relayLabel=Label(root, text="Relay", fg="white", bg="magenta", height=4, font=("Arial", 15), width=20)
relayVal=Label(root, text="n/a", fg="white", bg="magenta", height=4, font=("Arial", 15), width=20)
relayLabel.grid(row=5,column=0)
relayVal.grid(row=5,column=1)
relayOn=Button(root, text="Turn On", relief=RAISED, height=4, font=("Arial", 15), width=20, command=turnOnRelay)
relayOff=Button(root, text="Turn Off",relief=RAISED, height=4, font=("Arial", 15), width=20, command=turnOffRelay
relayOn.grid(row=6,column=0)
relayOff.grid(row=6,column=1)
t=Label(root, text="Last updated time: null", font=("Arial", 15))
t.grid(row=7,column=0,columnspan=2)
root.mainloop()
```

t=Label(root, text="Last updated time: null", f t.grid(row=7,column=0,columnspan=2) root.mainloop()

main UI. Py

```
def on message(client, userdata, msg):
    try:
        data = json.loads(msg.payload)
        tmpVal['text'] = str(round(data['temperature'],2)) + "oC"
        humVal['text'] = str(round(data['humidity'],2)) + "%"
        lightVal['text'] = str(data['light']) + " out of 4095"
        relayVal['text'] = "on" if data['relay'] else "off"
        wifiVal['text'] = data['wifi']
        named_tuple = time.localtime() # get struct_time
        time string = time.strftime("%m/%d/%Y, %H:%M:%S", named tuple)
        t['text'] = "Last updated time: " + time string
        result = str(data)
    except:
        result = str(msg.payload)
    print("\n\nNew Message!\n_
    print("topic:: " + msg.topic)
    print("message::\n" + result)
```

```
def turnOnRelay():
    x = {"relay": True}
    y = json.dumps(x)
    mqttClient.publish("wss/iot/command", y)

def turnOffRelay():
    x = {"relay": False}
    y = json.dumps(x)
    mqttClient.publish("wss/iot/command", y)
```

ترکیب Paho با tkinter

خواندن پیام در قالب json، استخراج پارامترهای آن و به روزرسانی رابط کاربری

ارسال پیام در قالب json برای بروکر در صورت زدن کلید در رابط کاربری

mainUI.py

HQTT با سريال در MQTT

```
Serial.println(topic);
```

برنامه برای دریافت دستور در سریال جهت مشترک شدن در یک تاییک یا ارسال بیام در یک تاییک

استفاده از کتابخانه PubSubClient

نمایش پیام های دریافتی در سریال

```
void processCommand(String command) {
       String params[4][2];
       uint8 t i = 0:
       int eqIdx, andIdx;
       do {
         eqIdx = command.indexOf("=");
         andIdx = command.indexOf("&");
         String key = command.substring(0, eqIdx);
         String value = command.substring(eqIdx + 1, andIdx);
         params[i][0] = key;
         params[i][1] = value;
         command = command.substring(andIdx + 1);
       } while (andIdx != -1);
       //subscribing for a topic using this command in serial:
       if (params[0][1] == "sub") {
         String topic = params[1][1];
         Serial.println("Subsrcibing in topic:" + topic);
         mgttClient.subscribe(topic.c str());
       //Sending a message in a topic using this command in serial:
       else if (params[0][1] == "pub") {
78
         String topic = params[1][1];
         String message = params[2][1];
         Serial.println("Publishing message in topic:" + topic + "
         with payload: " + message);
         mqttClient.publish(topic.c str(), message.c str());
```

Serial MQ77 Lythis on True command= sub & topic= topic Name Lit, sply Ulw, 1 command=pub& topic = topicName &
message = text

```
whenever new event occurs on device to sync data with
void publishDataToBroker() {
 if(!mattClient.connected())
   mgttClientSetup();
 JsonDocument doc;
 String isonMessage;
 temperature = dht22.getTemperature();
 humidity = dht22.getHumidity();
 light = analogRead(LDR PIN);
 doc["temperature"] = temperature;
 doc["humidity"] = humidity;
 doc["light"] = light;
 doc["relay"] = relay;
 doc["wifi"] = ssid;
 //ison format is used for data
  serializeJson(doc, jsonMessage);
 mqttClient.publish(PUBLISH TOPIC, jsonMessage.c str
 lastTimeDataSent = millis();
```

برنامه نهایی ESP32

- کلید فشاری برای کنترل رله به صورت سخت افزاری
- وب سرور برای کنترل لوکال از طریق پروتکل HTTP
- کلاینت MQTT برای ارسال داده ها و کنترل از طریق اینترنت

(در بازه زمانی 10 ثانیه ای یا درصورت رخداد تغییر در سیستم)

• استفاده از فرمت JSON برای ارسال و دریافت اطلاعات

وب سرور لوکال نهایی

 داده های نشان داده شده توسط ESP32 در مرورگر به صورت لوکال و پروتکل HTTP

مدار نهایی

- کلید فشاری
- سنسور دما رطوبت
- سنسور شدت نور
 - رله

ممنون از توجه شما