David Zikel, Nov. 1, 2020

GitHub: https://github.com/dzikel/dzikel-714

- (Aa) Suppose that v is in the span of w_1, w_2, \dots, w_n i.e., that $v = c_1w_1 + c_2w_2 + \dots + c_nw_n$ for $c_1, c_2, \dots, c_n \in \mathbf{R}$. Then, for any $w_i, w_i \cdot v = c_1(w_i \cdot w_1) + \dots + c_i(w_i \cdot w_i) + \dots + c_n(w_i \cdot w_n) = 0 + \dots + c_i|w_i|^2 + \dots + 0 = c_i|w_i|^2$. Dividing by $|w_i|^2$ yields simply c_i , so the w_i component of v is simply $\frac{w_i \cdot v}{|w_i|^2}w_i$. Summing for $i = 1 \cdots n$ gives the formula shown for v.
- (Ab) i. If, for example, the solution lies directly on the 1st, 2nd, etc. gradient line, then the algorithm will converge early. In general, if step n^*-1 does not change the estimate, then the algorithm will converge with less than N iterations. ii. Note that, if n=1 (so j=0), $\langle p_n, p_j \rangle_A = \langle p_0, r_1 \rangle_A \frac{\langle p_0, p_0 \rangle_A}{\langle p_0, p_0 \rangle_A} \langle p_0, r_1 \rangle_A = 0$. Suppose that, for $n=1, \cdots, k$ we have that $\langle p_n, p_j \rangle_A = 0$ for j < n. Then, for j < n+1, $\langle p_{n+1}, p_j \rangle_A = \langle p_j, r_{n+1} \rangle_A 0 0 \cdots \frac{\langle p_j, p_j \rangle_A}{\langle p_j, p_j \rangle_A} \langle p_j, r_{n+1} \rangle_A \cdots 0 = 0$. As such, $\langle p_j p_n \rangle_A = 0$ for all $0 \le j < n \le n^* 1$.
- (Ac) i. We see from the proof of (Aa) that the component of v in the direction of ϕ_n is $x_n = \frac{v \cdot \phi_n}{1} \phi_n = (v \cdot \phi_n) \phi_n$, and $Ax_n \cdot w = \lambda_n (v \cdot \phi_n) (\phi_n \cdot w)$. Since both multiplication by A and the dot product are linear, we can find $Av \cdot w$ by summing $Ax_n \cdot w$ for n from 1 to N, which is the formula shown. ii. Suppose that one of the eigenvalues $\lambda_n \leq 0$. Then this eigenvalue must be associated with a nonzero eigenvector ϕ_n , such that $\langle \phi_n, \phi_n \rangle_A = \phi_n \cdot \lambda \phi_n < 0$ — but, as A is positive definite, this is a contradiction. iii. Decomposing v as $c_1\phi_1 + \cdots + c_N\phi_N$, we see that $\lambda_1|v|^2 = \lambda_1c_1^2 + \cdots + \lambda_1c_N^2$, $\lambda_N|v|^2 = \lambda_1c_1^2 + \cdots + \lambda_1c_N^2$ $\lambda_N c_1^2 + \dots + \lambda_N c_N^2$, and, by (Aci), $Av \cdot v = \lambda_1 c_1^2 + \lambda_2 c_2^2 + \dots + \lambda_N c_N^2$. Since each c_n^2 is nonnegative and the λ_n are nondecreasing, we have that $\lambda_1|v|^2$ is a lower bound and $\lambda_N |v|^2$ is an upper bound for $Av \cdot v$. iv. Since both sides are nonnegative (the right side by (Acii)), the equation remains unchanged when both sides are squared: $|Av|^2 \leq \lambda_N^2 |v|^2$. Again decomposing v as $c_1\phi_1 + \cdots + c_N\phi_N$, we see that $Av = \lambda_1c_1\phi_1 + \cdots + \lambda_Nc_N\phi_N$, so $|Av|^2 =$ $\lambda_1^2 c_1^2 + \cdots + \lambda_N^2 c_N^2$. Since the λ_n are nondecreasing, this is bounded from above by $\lambda_N^2 c_1^2 + \dots + \lambda_N^2 c_N^2 = \lambda_N^2 |v|^2$.
- (Ad) $p_{n+1} = r_{n+1} + \beta_n p_n = r_n \alpha_n w_n + \beta_n p_n = r_n \alpha_n A p_n + \beta_n p_n = p_n \beta_{n-1} p_{n-1} \alpha_n A p_n + \beta_n p_n = (1 + \beta_n) p_n \alpha_n A p_n \beta_{n-1} p_{n-1}.$
- (Ae) If A has characteristic equation $\lambda^N + c_{N-1}\lambda^{N-1} + \cdots + c_0$, then, by the Cayley-Hamilton theorem, $A^N + c_{N-1}A^{N-1} + \cdots + c_0I = 0$, so subtracting all of the left side but the A^N term from both sides shows that $A^N = -c_{N-1}A^{N-1} \cdots c_0I$, a linear combination of the desired form.

(Af) i. If $u_n = u + e_n$, then $u_{n+1} = u_n + \alpha(f - Au_n) = u + e_n + \alpha(f - Au - Ae_n) = u + (I - \alpha A)e_n$. ii. Note that the eigenvalues of $I - \alpha A$) are $1 - \lambda_1, \dots, 1 - \lambda_N$. By a proof similar to that for (Aciv), but using the magnitudes of the new eigenvalues as they are no longer guaranteed to be positive, we see that $|e_{n+1}| \leq |1 - \alpha \lambda_j| |e_n|$ for j making these bounds least strict. iii. The smallest ρ is found when $1 - \alpha \lambda_1 = -1 + \alpha \lambda_N$ — for α higher, $|1 - \alpha \lambda_N|$ will be larger, and for α lower $|1 - \alpha \lambda_1|$ will be larger. As such, we set $2 - \alpha(\lambda_1 + \lambda_N) = 0$, so $\alpha = \frac{2}{\lambda_1 + \lambda_N}$, and $\rho = \frac{\lambda_N - \lambda_1}{\lambda_N + \lambda_1} < 1$. iv. Since c and c bound the c is less than or equal to c is less than or equal to c is less than or equal to c is holds for all c is it must hold for the value of c maximizing the bounds.

(Ag) i. $r_1=r_0-\alpha_0w_0$, w_0 is defined as Ap_0 , and $r_0=p_0$, so $r_1=r_0-\alpha_0Ar_0$. ii. $r_{n+1}=r_n-\alpha_nw_n=r_n-\alpha_nAp_n=r_n-\alpha_nA(r_n+\beta_{n-1}p_{n-1})=r_n-\alpha_nAr_n+\alpha_n\beta_{n-1}(-w_{n-1})=r_n-\alpha_nAr_n+\frac{\alpha_n\beta_{n-1}}{\alpha_{n-1}}(r_n-r_{n-1})$. iii. $q_1=\frac{r_1}{|r_1|}=\frac{r_1/|r_0|}{|r_1|/|r_0|}=\frac{r_1/|r_0|}{\sqrt{\beta_0}}$, so $Aq_0=\frac{Ar_0}{|r_0|}=\frac{r_0-r_1}{\alpha_0|r_0|}=\gamma_0q_0-\delta_0q_1$. For $n\geq 1$, $q_{n+1}=\frac{r_{n+1}/|r_n|}{\sqrt{\beta_n}}$ and $q_{n-1}=\sqrt{\beta_{n-1}}r_{n-1}/|r_n|$, so $Aq_n=\frac{Ar_n}{|r_n|}=\frac{1}{\alpha_n|r_n|}(r_n-r_{n-1})=\frac{1}{\alpha_n|r_n|}((1+\frac{\alpha_n\beta_{n-1}}{\alpha_{n-1}})r_n-r_{n+1}-\frac{\alpha_n\beta_{n-1}}{\alpha_{n-1}}r_{n-1})=\gamma_nq_n-\delta_nq_{n+1}-\delta_{n-1}q_{n-1}$. iv. Converting the equations from (Agiii) into matrix form (provided the matrix will be on the right) yields the coefficients of T_n , with the notable exception of the $-\delta_{n-1}q_n$ term from the equation for Aq_{n-1} . Manually subtracting this term yields the formula $AQ_n=Q_nT_n-\delta_{n-1}q_ne_n^T$, as printed. v. $Q_n^TAQ_n=Q_n^TQ_nT_n-Q_n^t\delta_{n-1}q_ne_n^T$, which, as the q_j are orthonormal, is $T_n-0\delta_{n-1}e_n^T=T_n$.

- (B) Dividing [0, 1] into N subintervals i.e., taking N+1 samples and performing brute-force calculations on a very fine grid (1000000 times finer than the value of N tested) shows that the uniform error appears to shrink to less than 0.01 at N=1716.
- (Ca) Estimating the function's second derivatives using the standard 3-and 5-point stencils and treating its value as 0 outside of the boundaries, in addition to initializing the function to 0 at time 0 and to $f(x)f(y)\Delta t$ after the first step, results in a solver found on GitHub (Python 3). Unfortunately, due to the large quantity of variables considered, I ran out of memory before being able to compute many high-quality numerical solutions. A log-log plot is found in the GitHub repository, with the admittedly low Δt of 0.05, showing a slope of roughly 4 quadratic in the total number of grid points, and even more efficient in terms of the grid spacing.

- (Cb) We see that $\frac{1}{\Delta t^2}(y_{i+1}-2y_i+y_{i-1})=\lambda y_i$, so $y_{i+1}=(2+\lambda\Delta t^2)y_i-y_{i-1}$. Setting $z=\lambda\Delta t^2$, we see that the two generating solutions to this equation are consecutive powers of $\frac{1}{2}(2+z+\sqrt{4z+z^2})$ and its reciprocal. The system is stable, then, when the absolute value of this root is 1 that is, when $z \in (-4,0)$. A graph of this (simple) region is in the GitHub.
- (Cc) The one-dimensional Laplacian with grid spacing Δx has eigenvalues ranging from 0 to $\frac{-4}{\Delta x^2}$ and the two-dimensional case has double this range (by HW1's (Cd)), so our criterion for stability is $\frac{-8\Delta t^2}{\Delta x^2} \in (0,4)$ (i.e. $\frac{\Delta t^2}{\Delta x^2} \in (0,0.5)$).
- (Cd) Performing the discrete Laplacian on a plane wave $e^{i\Delta x(xj+yk)}$ for j,k wave parameters results in $\nabla^2 y = \frac{2}{\Delta x^2}(\cos j\Delta x + \cos k\Delta x 2)y$, which lies between 0 and $\frac{-8y}{\Delta x^2}$. The resulting quadratic equation for the scaling factor in time is $g^2 (2 \frac{8\Delta t^2}{\Delta x^2})g + 1 = 0$, which results in the same range $\frac{\Delta t^2}{\Delta x^2} \in (0, 0.5)$ found in (Cc).
- (Ce) A simple analysis of the component second-derivative formulas for this method yields the modified equation $v_{xx} + v_{yy} + \frac{\Delta x^2}{12}(v_{xxxx} + v_{yyyy}) = v_{tt} + \frac{\Delta t^2}{12}v_{tttt}$. For comparison, the normal heat equation implies the PDE $v_{xx} + v_{yy} + \frac{\Delta t^2}{12}(v_{xxxx} + v_{yyyy} + 2v_{xxyy}) = v_{tt} + \frac{\Delta t^2}{12}v_{tttt}$, so we see that if $\Delta x = \Delta t$ then v only solves the heat equation when $v_{xxyy} = 0$. Looking at the behavior of plane waves $v(x, y, t) = e^{i(a_x x + a_y y + a_t t)}$ gives us the criterion that $\frac{\Delta x^2}{12}(a_x^4 + a_y^4) a_x^2 a_y^2 = \frac{\Delta t^2}{12}a_t^4 a_t^2$, resulting in different solution waves from the normal heat equation $(a_x^2 + a_y^2 = a_t^2)$. The extra terms are fourth-order and therefore dissipative.
- (D) I have not completed this problem, but I would imagine an approach could be taken which considers roots of polynomials akin to the roots required to be ≤ 1 for the stability of second-order equations. This notion of stability likely applies to second-order equations much like Lax-Richtmyer stability does for first-order ones, similarly to how eigenvalues for new equations created by the method of lines can be checked for in preexisting stability regions.