Algorithms in Structural Bioinformatics

I. Emiris and E. Chrysina, Assignment 1

Announced 15/03/21, Deadline: 28/03/21

Assignments must be submitted on e-class: Assignments as a single file whose name includes your last name. For each question, include a PDF with your answers; further files (e.g. code) may be included.

1. RNA folding

Find all optimal secondary structures of the RNA sequence AAUACUCCGUUGCAGCAU with the following simplified Zuker minimization algorithm. Starting from the slides' algorithm, use the following initialisation:

$$j+5>i \implies V(i,j)=W(i,j)=\infty, \quad i>j,$$

hairpin energy h(i, j) = 2(i - j + 5), and stem energy s(i, j) = -4, 0, 4, for Watson-Crick bonds, GU, and all other possible pairs respectively. Ignore multiloops and buldges to simplify V so that it only has the first two cases.

Implement your algorithm in Matlab, R, Python or other convenient system; submit your code. Print the filled-in tables W, V. Draw (by hand) an optimal fold, show its bonds, and the corresponding backtrack path.

2. c-RMSD and d-RMSD

Given are 80 conformations of a specific molecule in file "80_conformations.txt" on eclass: Documents/Assignments with n = 369 atoms on the backbone (hence in correspondence). The file starts with 2 lines containing 80 and n. The rest of the file uses tabs to define 3 columns containing n triplets x y z of each conformation hence 2 + 80n rows:

80 369 2.816 -11.005 10.087 4.43 -10.545 10.011

Implement c-RMSD and d-RMSD in Matlab, Octave, Maple or other system offering linear algebra (SVD); submit your code. If your system provides either of these functions, it is OK to just use it.

- 1. Use c-RMSD to compute the optimal translation and rotation minimizing c-RMSD between the first 2 conformations.
- 2. Compute the c-RMSD distances between all $\binom{80}{2}$ pairs of conformations. Compute the mean and median c-RMSD distance and draw a histogram of all distances in 10 classes.
- 3. Repeat (2) for d-RMSD using all $k = \binom{n}{2}$ distances within each conformation, or a random subset of k = 3n distances.