2.5 — OLS: Precision and Diagnostics

ECON 480 • Econometrics • Fall 2020

Ryan Safner

Assistant Professor of Economics

- safner@hood.edu
- ryansafner/metricsF20
- metricsF20.classes.ryansafner.com

The Sampling Distribution of $\hat{\beta_1}$

$$\hat{\beta}_1 \sim N(E[\hat{\beta}_1], \sigma_{\hat{\beta}_1})$$

1. Center of the distribution (last class)

$$\circ E[\hat{\beta}_1] = {\beta_1}^{\dagger}$$

The Sampling Distribution of \hat{eta}_1

$$\hat{\beta}_1 \sim N(E[\hat{\beta}_1], \sigma_{\hat{\beta}_1})$$

1. Center of the distribution (last class)

$$\circ E[\hat{\beta_1}] = {\beta_1}^{\dagger}$$

- 2. How precise is our estimate? (today)
 - \circ Variance $\sigma_{\hat{\beta}_1}^2$ or standard error $\sigma_{\hat{\beta}_1}$

[†] Under the 4 assumptions about u (particularly, cor(X,u)=0).

^{*} Standard **"error"** is the analog of standard *deviation* when talking about the *sampling distribution* of a sample statistic (such as \bar{X} or $\hat{\beta}_1$).

Variation in $\hat{\beta}_1$

What Affects Variation in \hat{eta}_1

$$var(\hat{\beta}_1) = \frac{(SER)^2}{n \times var(X)}$$

$$se(\hat{\beta}_1) = \sqrt{var(\hat{\beta}_1)} = \frac{SER}{\sqrt{n} \times sd(X)}$$

• Variation in
$$\hat{\beta}_1$$
 is affected by 3 things:

- 1. Goodness of fit of the model (SER)
 - \circ Larger $SER \rightarrow \text{larger } var(\hat{\beta}_1)$
- 2. Sample size, n
 - \circ Larger $n \to \text{smaller } var(\hat{\beta}_1)$
- 3. Variance of X
 - ∘ Larger var(X) → smaller $var(\hat{\beta}_1)$

[†] Recall from last class, the **S**tandard **E**rror of the **R**egression $\hat{\sigma_u} = \sqrt{\frac{\sum \hat{u_i}^2}{n-2}}$

Variation in $\hat{\beta}_1$: Goodness of Fit

Variation in $\hat{\beta}_1$: Sample Size

Variation in $\hat{\beta_1}$: Variation in X

Presenting Regression Results

Our Class Size Regression: Base R

 How can we present all of this information in a tidy way?

```
summary(school_reg) # get full summary
```

```
##
## Call:
## lm(formula = testscr ~ str, data = CASchool)
## Residuals:
      Min
               1Q Median
                              3Q
                                     Max
## -47.727 -14.251 0.483 12.822 48.540
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 698.9330
                          9.4675 73.825 < 2e-16 ***
## str
              -2.2798
                          0.4798 -4.751 2.78e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 18.58 on 418 degrees of freedom
## Multiple R-squared: 0.05124, Adjusted R-squared: 0.04897
## F-statistic: 22.58 on 1 and 418 DF, p-value: 2.783e-06
```

Our Class Size Regression: Broom I

 broom's tidy() function creates a tidy tibble of regression output

load broom
library(broom)

tidy regression output
tidy(school_reg)

term	estimate	std.error	statistic	p.value
<chr></chr>	< d b >	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
(Intercept)	698.932952	9.4674914	73.824514	6.569925e-242
str	-2.279808	0.4798256	-4.751327	2.783307e-06
2 rows				

Our Class Size Regression: Broom II

• broom's glance() gives us summary statistics about the regression

glance(school_reg)

r.squared	adj.r.squared	sigma	statistic	p.value	df	logLik	AIC
<dbl></dbl>	<dpl></dpl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
0.0512401	0.04897033	18.58097	22.57511	2.783307e-06	1	-1822.25	3650.499

1 row | 1-8 of 12 columns

Presenting Regressions in a Table

 Professional journals and papers often have a **regression table**, including:

		Λ		Λ
0	Estimates	of β_0	and	β_1

- \circ Standard errors of $\hat{eta_0}$ and $\hat{eta_1}$ (often below, in parentheses)
- Indications of statistical significance (often with asterisks)
- \circ Measures of regression fit: R^2 , SER, etc
- Later: multiple rows & columns for multiple variables & models

	Test Score
Intercept	698.93 ***
	(9.47)
STR	-2.28 ***
	(0.48)
N	420
R-Squared	0.05
SER	18.58
*** p < 0.001; **	r p < 0.01; * p < 0.05.

Regression Output with huxtable I

 You will need to first install.packages("huxtable")

• Load with library(huxtable)

• Command: huxreg()

- Main argument is the name of your 1m object
- Default output is fine, but often we want to customize a bit

```
# install.packages("huxtable")
library(huxtable)
huxreg(school_reg)
```

	(1)
(Intercept)	698.933 ***
	(9.467)
str	-2.280 ***
	(0.480)
N	420
R2	0.051
logLik	-1822.250
AIC	3650.499
***	0.04 + 0.05

^{***} p < 0.001; ** p < 0.01; * p < 0.05.

Regression Output with huxtable II

• Can give title to each column

```
"Test Score" = school_reg
```

Can change name of coefficients from default

• Decide what statistics to include, and rename them

Choose how many decimal places to round to

Regression Output with huxtable III

	Test Score
Intercept	698.93 ***
	(9.47)
STR	-2.28 ***
	(0.48)
N	420
R-Squared	0.05
SER	18.58
*** p < 0.001; **	p < 0.01; * p < 0.05.

Regression Outputs

- huxtable is one package you can use
 - See <u>here for more options</u>
- I used to only use stargazer, but as it was originally meant for STATA, it has limits and problems
 - A great <u>cheetsheat</u> by my friend Jake Russ

Diagnostics about Regression

Diagnostics: Residuals I

- We often look at the residuals of a regression to get more insight about its goodness of fit and its bias
- Recall broom's augment creates some useful new variables
 - \circ .fitted are fitted (predicted) values from model, i.e. \hat{Y}_i
 - \circ .resid are residuals (errors) from model, i.e. \hat{u}_i

Diagnostics: Residuals II

• Often a good idea to store in a new object (so we can make some plots)

```
aug_reg<-augment(school_reg)
aug_reg %>% head()
```

testscr	str	.fitted	.resid	.std.resid	.hat	.sigma	.cooksd
691	17.9	658	32.7	1.76	0.00442	18.5	0.00689
661	21.5	650	11.3	0.612	0.00475	18.6	0.000893
644	18.7	656	-12.7	-0.685	0.00297	18.6	0.0007
648	17.4	659	-11.7	-0.629	0.00586	18.6	0.00117
641	18.7	656	-15.5	-0.836	0.00301	18.6	0.00105
606	21.4	650	-44.6	-2.4	0.00446	18.5	0.013

Recap: Assumptions about Errors

- We make 4 critical assumptions about *u*:
- 1. The expected value of the residuals is 0

$$E[u] = 0$$

2. The variance of the residuals over X is constant:

$$var(u|X) = \sigma_u^2$$

3. Errors are not correlated across observations:

$$cor(u_i, u_i) = 0 \quad \forall i \neq j$$

4. There is no correlation between X and the error term:

$$cor(X, u) = 0$$
 or $E[u|X] = 0$

Assumptions 1 and 2: Errors are i.i.d.

• Assumptions 1 and 2 assume that errors are coming from the same (*normal*) distribution

$$u \sim N(0, \sigma_u)$$

- Assumption 1: E[u] = 0
- Assumption 2: $sd(u|X) = \sigma_u$
 - virtually always unknown...
- We often can visually check by plotting a **histogram** of u

Plotting Residuals

Plotting Residuals

• Just to check:

Residual Plot

- We often plot a residual plot to see any odd patterns about residuals
 - x-axis are X values (str)
 - y-axis are u values (.resid)

```
ggplot(data = aug_reg)+
   aes(x = str,
        y = .resid)+
   geom_point(color="blue")+
   geom_hline(aes(yintercept = 0), color="red")+
   labs(x = "Student to Teacher Ratio",
        y = expression(paste("Residual, ", hat(u))))
   theme_pander(base_family = "Fira Sans Condensed",
        base_size=20)
```


Problem: Heteroskedasticity

Homoskedasticity

• "Homoskedasticity:" variance of the residuals over *X* is constant, written:

$$var(u|X) = \sigma_u^2$$

 Knowing the value of X does not affect the variance (spread) of the errors

Heteroskedasticity I

• "Heteroskedasticity:" variance of the residuals over *X* is *NOT* constant:

$$var(u|X) \neq \sigma_u^2$$

- This does not cause $\hat{\beta_1}$ to be biased, but it does cause the standard error of $\hat{\beta_1}$ to be incorrect
- This **does** cause a problem for **inference**!

Heteroskedasticity II

• Recall the formula for the standard error of $\hat{\beta}_1$:

$$se(\hat{\beta}_1) = \sqrt{var(\hat{\beta}_1)} = \frac{SER}{\sqrt{n} \times sd(X)}$$

• This actually assumes homoskedasticity

Heteroskedasticity III

• Under heteroskedasticity, the standard error of $\hat{\beta}_1$ mutates to:

$$se(\hat{\beta}_1) = \frac{\sum_{i=1}^{n} (X_i - \bar{X})^2 \hat{u}^2}{\left[\sum_{i=1}^{n} (X_i - \bar{X})^2\right]^2}$$

- This is a **heteroskedasticity-robust** (or just "robust") method of calculating $se(\hat{\beta}_1)$
- Don't learn formula, do learn what heteroskedasticity is and how it affects our model!

Visualizing Heteroskedasticity I

Our original scatterplot with regression line

Visualizing Heteroskedasticity I

- Our original scatterplot with regression line
- Does the spread of the errors change over different values of str?

• No: homoskedastic

Yes: heteroskedastic

Visualizing Heteroskedasticity I

- Our original scatterplot with regression line
- Does the spread of the errors change over different values of str?

• No: homoskedastic

Yes: heteroskedastic

More Obvious Heteroskedasticity

- Visual cue: data is "fan-shaped"
 - Data points are closer to line in some areas
 - Data points are more spread from line in other areas

More Obvious Heteroskedasticity

- Visual cue: data is "fan-shaped"
 - Data points are closer to line in some areas
 - Data points are more spread from line in other areas

What Might Cause Heteroskedastic Errors?

$$\widehat{wage_i} = \hat{\beta_0} + \hat{\beta_1} educ_i$$

	Wage
Intercept	-0.90
	(0.68)
Years of Schooling	0.54 ***
	(0.05)
N	526
R-Squared	0.16

What Might Cause Heteroskedastic Errors?

$$\widehat{wage_i} = \hat{\beta_0} + \hat{\beta_1}educ_i$$

	Wage
Intercept	-0.90
	(0.68)
Years of Schooling	0.54 ***
	(0.05)
N	526
R-Squared	0.16
SER	3.38

Detecting Heteroskedasticity I

- Several tests to check if data is heteroskedastic
- One common test is **Breusch-Pagan test**
- Can use bptest() with lmtest package in R
 - \circ H_0 : homoskedastic
 - \circ If p-value < 0.05, reject $H_0 \implies$ heteroskedastic

```
# install.packages("lmtest")
library("lmtest")
bptest(school_reg)
```

```
##
## studentized Breusch-Pagan test
##
## data: school_reg
## BP = 5.7936, df = 1, p-value = 0.01608
```

Detecting Heteroskedasticity II

• How about our wage regression?

```
# install.packages("lmtest")
library("lmtest")
bptest(wage_reg)
```

```
##
## studentized Breusch-Pagan test
##
## data: wage_reg
## BP = 15.306, df = 1, p-value = 9.144e-05
```

Fixing Heteroskedasticity I

- Heteroskedasticity is easy to fix with software that can calculate **robust** standard errors (using the more complicated formula above)
- Easiest method is to use estimatr package
 - lm_robust() command (instead of lm) to run regression
 - set se_type="stata" to calculate robust SEs using the formula above

Fixing Heteroskedasticity II

	Normal	Robust	
Intercept	698.93 ***	698.93 ***	
	(9.47)	(10.36)	
STR	-2.28 ***	-2.28 ***	
	(0.48)	(0.52)	
N	420	420	
R-Squared	0.05	0.05	
SER	18.58		
*** p < 0.001; ** p < 0.01; * p < 0.05.			

Assumption 3: No Serial Correlation

• Errors are not correlated across observations:

$$cor(u_i, u_j) = 0 \quad \forall i \neq j$$

- For simple cross-sectional data, this is rarely an issue
- Time-series & panel data nearly always contain serial correlation or autocorrelation between errors
- Errors may be clustered
 - by group: e.g. all observations from Maryland, all observations from Virginia, etc.
 - by time: GDP in 2006 around the world, GDP in 2008 around the world, etc.

Outliers

Outliers Can Bias OLS! I

- Outliers can affect the slope (and intercept) of the line and add bias
 - May be result of human error (measurement, transcribing, etc)
 - May be meaningful and accurate
- In any case, compare how including/dropping outliers affects regression and always discuss outliers!

Outliers Can Bias OLS! II

	No Outliers	Outliers
Intercept	698.93 ***	641.40 ***
	(9.47)	(11.21)
STR	-2.28 ***	0.71
	(0.48)	(0.57)

Detecting Outliers

CA.outlier %>%

slice(c(422,423,421))

• The car package has an outlierTest command to run on the regression

```
library("car")
# Use Bonferonni test
outlierTest(school_outlier_reg) # will point out which obs #s seem outliers

## rstudent unadjusted p-value Bonferroni p
## 422 8.822768 3.0261e-17 1.2800e-14
## 423 7.233470 2.2493e-12 9.5147e-10
## 421 6.232045 1.1209e-09 4.7414e-07
# find these observations
```

observat	district	testscr	str
422	Crazy School 2	850	28
423	Crazy School 3	820	29
421	Crazy School 1	800	30