Final Proposal

Fernandez, Ryan Austin Poblete, Clarisse Felicia M.

Problem Space

Problem Space

Activity Scheduling for Orgs

Inputs

Projects

- Project Name
- Project Length
- Project Date Range (what dates can it be on?)
- Project Time Range (what times can it be on?)
- Target Groups
- Venue

Inputs

- Target Groups
 - Name of Group (e.g. Freshmen, ST Students)
- Restrictions
 - Blacked out days
 - Blacked out time periods
 - Venue Availability

Data Representation & Outputs

- Data Representation
 - Each activity is simply an object in an array
 - The array with complete assigned dates and times to each activity is a schedule
 - In GA, each schedule is considered a chromosome
- Outputs
 - Each project with date and time
 - Possible visualization?

Algorithms, Data Structures, Computational Models

Simulated Annealing

- 1. Initialize temp to 100. Start with random schedule.
- 2. If temp == 0 or punishment of current == 0, return current schedule
- 3. Else
 - a. Randomly change the schedule
 - b. deltaP = punishment of old sched punishment of new sched (same as GA)
 - c. If deltaP > 0, set new sched as current sched //if new sched is better, accept
 - d. Else if $random(0,1) < e^{(deltaP/temp)}$
 - i. Set new sched as current
 - ii. Lower temperature
- 4. Repeat 2 4 until step 3 returns sched

Genetic Algorithm (Corne, et al., n.d.)

- 1. Generate k random schedules in population p
 - a. Each schedule fits in the restrictions
- 2. For each schedule s in p
 - a. Determine "punishment" of schedule <tentative heuristics>
 - i. For each date and time conflict, add 20 points
 - ii. For each conflict in similar target group, add 70 points
 - iii. For each venue conflict, add 100 points
 - iv. For each activity that takes place right after another activity for the same target group, add 30 points
 - b. Fitness is 1/(1 + punishment)

Genetic Algorithm

- c. Normalize fitness to the interval [1,10] by
 - i. newfitness = 9(currfitness-minx)/(maxx minx) + 1
- d. Assign probability to each schedule based on fitness
 - i. probx = fitnessx/total fitness of p

3. Generate new population

- c. Select 2 random members of the population based on probability in 2b.
- d. Make child by crossing over the schedules of half the activities.
- e. 1% of the time, mutate the child by shifting an activity to a random schedule within its restrictions
- f. Repeat b-d k times to generate new population p
- 4. Repeat 2 3 for population p for m iterations and choose best schedule in p (if a current sched has a fitness of 1, accept)

Scope and Architecture

Scope and Limitations

Scope

- Only evaluate performance of genetic algorithm and simulated annealing
- Based on requirements when scheduling activities of student organizations specifically

Limitations

- Only single venue, single time span and single day activities
- Blackout times are universal for all activities

Screen Flow

Activities

Target Groups

Settings

Generate Schedule

Activities

Add Activity

Delete Activities

Activity Title	Length	Venue	Target Groups
Something Seminar	1 hour 30 minutes	ISR	1st Year CS, 1st Year INSYS, 1st Year IT
Whatever Workshop	2 hours 30 minutes	G301	2nd Year CS-ST
Coding Competition	4 hours	Gokongwei Lobby	All

Activities

Target Groups

Settings

Generate Schedule

Add Activity

Project Name:	
Project Length:	0 hours 0 minutes
Possible Dates:	Any: Monday Tuesday Wednesday
	☐ Thursday ☐ Friday ☐ Saturday
	Specific Dates: July 5, 2016
Possible Times:	9:00AM ♦ to 3:00PM ♦
Target Groups:	1st Year CS ▼
Venue:	

Add Activity

Activities

Target Groups

Settings

Generate Schedule

Target Groups

Add Target Group

Delete Target Groups

Target Groups		
1st Year CS		
1st Year INSYS		
1st Year IT		
2nd Year CS-CSE		
2nd Year CS-IST		
2nd Year CS-NE		

Activities

Target Groups

Settings

Generate Schedule

Settings

Start and End Date:	July 5, 2016	to	Aug	ust 5, 2016
Restricticted Activity Da	ates:			
Any: Monday	Tuesday	Wedr	esday	Thursday
☐ Friday	Saturday	Sunda	ау	
Specific Dates: J	uly 5, 2016			

Apply Settings

Activities

Target Groups

Settings

Generate Schedule

Generated Schedule

Activity Title	Length	Venue	Target Groups	Schedule
Something Seminar	1 hour 30 minutes	ISR	1st Year CS, 1st Year INSYS, 1st Year IT	July 8, 2016 (9AM-10:30AM)
Whatever Workshop	2 hours 30 minutes	G301	2nd Year CS-ST	July 15, 2016 (1PM-3:30PM)
Coding Competition	4 hours	Gokongwei Lobby	All	July 22, 2016 (1PM-5PM)

References

- Corne, D., Fang, H., Mellish, C. (n.d.). Solving the Modular Exam Scheduling Problem with Genetic Algorithms. DAI Research Paper. Retrieved from https://www.macs.hw.ac.uk/~dwcorne/cfm.pdf
- Demuelemeester, E. & Herroelen, W. (1992). A Branch-and-Bound Procedure for the Generalized Resource-Constrained Project Scheduling Problem.
- Gaspero, L.D. (2003). Local Search Techniques for Scheduling Problems: Algorithms and Software Tools. Universita degli Studi di Udine, Retrieved from http://www.diegm.uniud.it/digaspero/papers/DiGasperoPhDThesis.pdf
- Jankovic, M. (2008). Making a Class Schedule Using a Genetic Algorithm. Retrieved July 4, 2016, from Code Project: http://www.codeproject.com/Articles/23111/Making-a-Class-Schedule-Using-a-Genetic-Algorithm
- Refanadis, I. & Yorke-Smith, N. (2009). On Scheduling Events ad Tasks by an Intelligent Calendar Assistant. University of Macedonia. Retreived from http://users.dsic.upv.es/~msalido/workshopicaps09/papers/paper6-pag43-52.pdf
- Russell, S. & Norvig, P. (2010). Artificial Intelligence: A Modern Approach, 3rd Ed. New Jersey: Prentice-Hall.
- Scheduling Algorithm. (n.d.). Retrieved July 4, 2016, from Carnegie Mellon School of Computer Science: http://www.cs.cmu.edu/~gregjor/project/docs/modules/optimizer/algorithm.html