Cálculo Numérico

Interpolação Polinomial

Interpolação Polinomial via Forma de Newton

Alessandro Alves Santana

Universidade Federal de Uberlândia Faculdade de Matemática

Fundamentos

Obter o polinômio que interpola um conjunto de n+1 pontos distintos $a = x_0 < x_1 < x_2 < \cdots < x_n = b$ em um intervalo [a, b] via Forma de Newton é talvez o método mais prático de obtenção do referido polinômio.

Fundamentos

Obter o polinômio que interpola um conjunto de n+1 pontos distintos $a = x_0 < x_1 < x_2 < \cdots < x_n = b$ em um intervalo [a, b] via Forma de Newton é talvez o método mais prático de obtenção do referido polinômio.

Definição 1: Polinômio Interpolador via Forma de Newton

A forma de Newton para o polinômio que interpola n+1 pontos distintos x_i , com $i=0,1,2,\ldots,n$, sendo $x_i < x_{i+1}$, $i=0,1,2,\ldots,n-1$, é dado por

$$p_n(x) = f[x_0] + f[x_0, x_1](x - x_0) + f[x_0, x_1, x_2](x - x_0)(x - x_1) + f[x_0, x_1, x_2, x_3](x - x_0)(x - x_1)(x - x_2) + \dots + f[x_0, x_1, x_2, x_3](x - x_0)(x - x_1)(x - x_2) + \dots + f[x_0, x_1, x_2, \dots, x_n](x - x_0)(x - x_1)(x - x_2) + \dots + f[x_0, x_1, x_2, \dots, x_n](x - x_0)(x - x_1)(x - x_2) + \dots + f[x_0, x_1, x_2, \dots, x_n](x - x_0)(x - x_1)(x - x_2) + \dots + f[x_0, x_1, x_2, \dots, x_n](x - x_0)(x - x_1)(x - x_2) + \dots + f[x_0, x_1, x_2, \dots, x_n](x - x_0)(x - x_1)(x - x_2) + \dots + f[x_0, x_1, x_2, \dots, x_n](x - x_0)(x - x_1)(x - x_2) + \dots + f[x_0, x_1, x_2, \dots, x_n](x - x_0)(x - x_1)(x - x_2) + \dots + f[x_0, x_1, x_2, \dots, x_n](x - x_0)(x - x_1)(x - x_2) + \dots + f[x_0, x_1, x_2, \dots, x_n](x - x_0)(x - x_1)(x - x_2) + \dots + f[x_0, x_1, x_2, \dots, x_n](x - x_0)(x - x_1)(x - x_2) + \dots + f[x_0, x_1, x_2, \dots, x_n](x - x_0)(x - x_1)(x - x_2) + \dots + f[x_0, x_1, x_2, \dots, x_n](x - x_0)(x - x_1)(x - x$$

sendo $f[x_0, x_1, x_2, ..., x_k]$, a qual é definida por

$$f[x_0, x_1, x_2, \dots, x_k] = \frac{f[x_1, x_2, x_3, \dots, x_k] - f[x_0, x_1, x_2, \dots, x_{k-1}]}{x_k - x_0}$$
(2)

chamada diferença dividida de ordem k.

Fundamentos

Obter o polinômio que interpola um conjunto de n+1 pontos distintos $a = x_0 < x_1 < x_2 < \cdots < x_n = b$ em um intervalo [a, b] via Forma de Newton é talvez o método mais prático de obtenção do referido polinômio.

Definição 1: Polinômio Interpolador via Forma de Newton

A forma de Newton para o polinômio que interpola n+1 pontos distintos x_i , com $i=0,1,2,\ldots,n$, sendo $x_i < x_{i+1}$, $i=0,1,2,\ldots,n-1$, é dado por

$$p_n(x) = f[x_0] + f[x_0, x_1](x - x_0) + f[x_0, x_1, x_2](x - x_0)(x - x_1) + f[x_0, x_1, x_2, x_3](x - x_0)(x - x_1)(x - x_2) + \dots + f[x_0, x_1, x_2, x_3](x - x_0)(x - x_1)(x - x_2) + \dots + f[x_0, x_1, x_2, \dots, x_n](x - x_0)(x - x_1)(x - x_2) + \dots + f[x_0, x_1, x_2, \dots, x_n](x - x_0)(x - x_1)(x - x_2) + \dots + f[x_0, x_1, x_2, \dots, x_n](x - x_0)(x - x_1)(x - x_2) + \dots + f[x_0, x_1, x_2, \dots, x_n](x - x_0)(x - x_1)(x - x_2) + \dots + f[x_0, x_1, x_2, \dots, x_n](x - x_0)(x - x_1)(x - x_2) + \dots + f[x_0, x_1, x_2, \dots, x_n](x - x_0)(x - x_1)(x - x_2) + \dots + f[x_0, x_1, x_2, \dots, x_n](x - x_0)(x - x_1)(x - x_2) + \dots + f[x_0, x_1, x_2, \dots, x_n](x - x_0)(x - x_1)(x - x_2) + \dots + f[x_0, x_1, x_2, \dots, x_n](x - x_0)(x - x_1)(x - x_2) + \dots + f[x_0, x_1, x_2, \dots, x_n](x - x_0)(x - x_1)(x - x_2) + \dots + f[x_0, x_1, x_2, \dots, x_n](x - x_0)(x - x_1)(x - x_2) + \dots + f[x_0, x_1, x_2, \dots, x_n](x - x_0)(x - x_1)(x - x_2) + \dots + f[x_0, x_1, x_2, \dots, x_n](x - x_0)(x - x_1)(x - x_2) + \dots + f[x_0, x_1, x_2, \dots, x_n](x - x_0)(x - x_1)(x - x_2) + \dots + f[x_0, x_1, x_2, \dots, x_n](x - x_0)(x - x_1)(x - x_2) + \dots + f[x_0, x_1, x_2, \dots, x_n](x - x_0)(x - x_1)(x - x_2) + \dots + f[x_0, x_1, x_2, \dots, x_n](x - x_0)(x - x_1)(x -$$

sendo $f[x_0, x_1, x_2, ..., x_k]$, a qual é definida por

$$f[x_0, x_1, x_2, \dots, x_k] = \frac{f[x_1, x_2, x_3, \dots, x_k] - f[x_0, x_1, x_2, \dots, x_{k-1}]}{x_k - x_0}$$
(2)

chamada **diferença dividida de ordem** *k*.

As **Diferenças Divididas (DD)** podem ser calculadas de modo bem prático por meio da chamada **Tabela de Diferenças Divididas (TDD)**. A exemplificação dessa tabela é feita na página seguinte, para o caso de uma tabela de 4 pontos associada a uma função f(x)

X	x_0	x_1	<i>X</i> ₂	<i>X</i> ₃
f(x)	$f(x_0)$	$f(x_1)$	$f(x_2)$	$f(x_3)$

e que permitirá obter um polinômio, de grau no máximo 3, que interpola essa função nesses pontos.

Tabela de Diferenças Divididas (TDD)

X	ORDEM C	ORDEM 1	ORDEM 2	ORDEM 3
x_0	$f[x_0]$	$f[x_0, x_1] = \frac{f[x_1] - f[x_0]}{x_1 - x_0}$	$f[x_0, x_1, x_2] = \frac{f[x_1, x_2] - f[x_0, x_1]}{x_2 - x_0}$	$f[x_0, x_1, x_2, x_3] = \frac{f[x_1, x_2, x_3] - f[x_0, x_1, x_2]}{x_3 - x_0}$
<i>x</i> ₁	f[x ₁]	$f[x_1, x_2] = \frac{f[x_2] - f[x_1]}{x_2 - x_1}$	$f[x_1, x_2, x_3] = \frac{f[x_2, x_3] - f[x_1, x_2]}{x_3 - x_1}$	
<i>X</i> ₂	f[x ₂]	$f[x_2, x_3] = \frac{f[x_3] - f[x_2]}{x_3 - x_2}$		
<i>X</i> ₃	$f[x_3]$			

Tabela 1: Tabela de Diferenças Divididas.

Tabela de Diferenças Divididas (TDD)

X	ORDEM 0	ORDEM 1	ORDEM 2	ORDEM 3
x_0	f[x ₀]	$f[x_0, x_1] = \frac{f[x_1] - f[x_0]}{x_1 - x_0}$	$f[x_0, x_1, x_2] = \frac{f[x_1, x_2] - f[x_0, x_1]}{x_2 - x_0}$	$f[x_0, x_1, x_2, x_3] = \frac{f[x_1, x_2, x_3] - f[x_0, x_1, x_2]}{x_3 - x_0}$
x_1	f[x ₁]	$f[x_1, x_2] = \frac{f[x_2] - f[x_1]}{x_2 - x_1}$	$f[x_1, x_2, x_3] = \frac{f[x_2, x_3] - f[x_1, x_2]}{x_3 - x_1}$	
<i>X</i> ₂	f[x ₂]	$f[x_2, x_3] = \frac{f[x_3] - f[x_2]}{x_3 - x_2}$		
<i>X</i> ₃	f[x ₃]			

Tabela 1: Tabela de Diferenças Divididas.

Uma observação importante é que a coluna com título ORDEM 0, onde tem-se $f[x_i]$, i = 0, ..., 3, nada mais é do que os valores da função na tabela da página anterior, isto é, $f[x_i] = f(x_i)$, i = 0, ..., 3. E para obter polinômios interpoladores de uma função usando mais pontos, basta acrescentá-los e seguir o mesmo procedimento apresentado na TDD.

Tabela de Diferenças Divididas (TDD)

X	ORDEM 0	ORDEM 1	ORDEM 2	ORDEM 3
<i>x</i> ₀	$f[x_0]$	$f[x_0, x_1] = \frac{f[x_1] - f[x_0]}{x_1 - x_0}$	$f[x_0, x_1, x_2] = \frac{f[x_1, x_2] - f[x_0, x_1]}{x_2 - x_0}$	$f[x_0, x_1, x_2, x_3] = \frac{f[x_1, x_2, x_3] - f[x_0, x_1, x_2]}{x_3 - x_0}$
<i>x</i> ₁	f[x ₁]	$f[x_1, x_2] = \frac{f[x_2] - f[x_1]}{x_2 - x_1}$	$f[x_1, x_2, x_3] = \frac{f[x_2, x_3] - f[x_1, x_2]}{x_3 - x_1}$	
<i>X</i> ₂	f[x ₂]	$f[x_2, x_3] = \frac{f[x_3] - f[x_2]}{x_3 - x_2}$		
<i>X</i> ₃	$f[x_3]$			

Tabela 1: Tabela de Diferenças Divididas.

Uma observação importante é que a coluna com título ORDEM 0, onde tem-se $f[x_i]$, i = 0, ..., 3, nada mais é do que os valores da função na tabela da página anterior, isto é, $f[x_i] = f(x_i)$, i = 0, ..., 3. E para obter polinômios interpoladores de uma função usando mais pontos, basta acrescentá-los e seguir o mesmo procedimento apresentado na TDD.

Teorema 1

Se $f \in C^n[a, b]$ e x_0, x_1, \dots, x_n são n + 1 números distintos em [a, b], então existe $\xi \in (a, b)$ tal que

$$f[x_0, x_1, x_2, \dots, x_n] = \frac{f^{(n)}(\xi)}{n!}.$$

Esse teorema estabelece a relação que existe entre as DD de ordem n e a derivada dessa mesma ordem no intervalo [a, b].

Obtenha uma aproximação para f(2.9) utilizando um polinômio de grau 3. Obtenha o polinômio interpolador via Forma de Newton e trabalhe com 5 casas decimais em todo o processo.

X	1.49	1.9	2.4	2.69	2.84	2.88	3.43	3.46	3.59	3.76
f(x)	0.15256	-0.15374	0.98091	0.18329	-0.20218	-0.25018	0.22096	0.17412	-0.17267	-0.74170

Obtenha uma aproximação para f(2.9) utilizando um polinômio de grau 3. Obtenha o polinômio interpolador via Forma de Newton e trabalhe com 5 casas decimais em todo o processo.

X	1.49	1.9	2.4	2.69	2.84	2.88	3.43	3.46	3.59	3.76
f(x)	0.15256	-0.15374	0.98091	0.18329	-0.20218	-0.25018	0.22096	0.17412	-0.17267	-0.74170

Resolução: Para obter um polinômio de grau 3 temos que considerar 4 pontos da tabela mas de tal forma que x = 2.9 esteja entre os mesmos. Temos 3 intervalos a considerar: [2.69, 3, 43], [2.84, 3.46] e [2.88, 3.59]. Para minimizar o erro, desses três intervalos temos que pegar aquele com menor comprimento, que no caso é o intervalo [2.84, 3.46]. Vamos extrair da tabela maior uma subtabela com os dados necessários.

Obtenha uma aproximação para f(2.9) utilizando um polinômio de grau 3. Obtenha o polinômio interpolador via Forma de Newton e trabalhe com 5 casas decimais em todo o processo.

X	1.49	1.9	2.4	2.69	2.84	2.88	3.43	3.46	3.59	3.76
f(x)	0.15256	-0.15374	0.98091	0.18329	-0.20218	-0.25018	0.22096	0.17412	-0.17267	-0.74170

Resolução: Para obter um polinômio de grau 3 temos que considerar 4 pontos da tabela mas de tal forma que x = 2.9 esteja entre os mesmos. Temos 3 intervalos a considerar: [2.69, 3, 43], [2.84, 3.46] e [2.88, 3.59]. Para minimizar o erro, desses três intervalos temos que pegar aquele com menor comprimento, que no caso é o intervalo [2.84, 3.46]. Vamos extrair da tabela maior uma subtabela com os dados necessários.

X	2.84	2.88	3.43	3.46
f(x)	-0.20218	-0.25018	0.22096	0.17412

Obtenha uma aproximação para f(2.9) utilizando um polinômio de grau 3. Obtenha o polinômio interpolador via Forma de Newton e trabalhe com 5 casas decimais em todo o processo.

X	1.49	1.9	2.4	2.69	2.84	2.88	3.43	3.46	3.59	3.76
f(x)	0.15256	-0.15374	0.98091	0.18329	-0.20218	-0.25018	0.22096	0.17412	-0.17267	-0.74170

Resolução: Para obter um polinômio de grau 3 temos que considerar 4 pontos da tabela mas de tal forma que x = 2.9 esteja entre os mesmos. Temos 3 intervalos a considerar: [2.69, 3, 43], [2.84, 3.46] e [2.88, 3.59]. Para minimizar o erro, desses três intervalos temos que pegar aquele com menor comprimento, que no caso é o intervalo [2.84, 3.46]. Vamos extrair da tabela maior uma subtabela com os dados necessários.

X	2.84	2.88	3.43	3.46		
f(x)	-0.20218	-0.25018	0.22096	0.17412		

Montando agora a TDD,

X	ORDEM 0	ORDEM 1	ORDEM 2	ORDEM 3
2.84	-0.20218	-1.20000	3.48580	-12.34626
2.88	-0.25018	0.85662	-4.16888	
3.43	0.22096	-1.56133		
3.46	0.17412			

Obtenha uma aproximação para f(2.9) utilizando um polinômio de grau 3. Obtenha o polinômio interpolador via Forma de Newton e trabalhe com 5 casas decimais em todo o processo.

X	1.49	1.9	2.4	2.69	2.84	2.88	3.43	3.46	3.59	3.76
f(x)	0.15256	-0.15374	0.98091	0.18329	-0.20218	-0.25018	0.22096	0.17412	-0.17267	-0.74170

Resolução: Para obter um polinômio de grau 3 temos que considerar 4 pontos da tabela mas de tal forma que x = 2.9 esteja entre os mesmos. Temos 3 intervalos a considerar: [2.69, 3, 43], [2.84, 3.46] e [2.88, 3.59]. Para minimizar o erro, desses três intervalos temos que pegar aquele com menor comprimento, que no caso é o intervalo [2.84, 3.46]. Vamos extrair da tabela maior uma subtabela com os dados necessários.

X	2.84	2.88	3.43	3.46
f(x)	-0.20218	-0.25018	0.22096	0.17412

Montando agora a TDD,

X	ORDEM 0	ORDEM 1	ORDEM 2	ORDEM 3
2.84	-0.20218	-1.20000	3.48580	-12.34626
2.88	-0.25018	0.85662	-4.16888	
3.43	0.22096	-1.56133		
3.46	0.17412			

Portanto,

$$p_3(x) = -0.20218 - 1.2(x - 2.84) + 3.48580(x - 2.84)(x - 2.88) - 12.34626(x - 2.84)(x - 2.88)(x - 3.43)$$

 $p_3(2.9) = -0.20218 - 1.2(2.9 - 2.84) + 3.48580(2.9 - 2.84)(2.9 - 2.88) - 12.34626(2.9 - 2.84)(2.9 - 2.88)(2.9 - 3.43)$
 $p_3(2.9) = -0.26214$.

Logo, $f(2.9) \approx -0.26214$.