

## **Front Spindle**





**CAD** model



**Printed part** 



**Machined part** 



**Station model** 



Finished part

# Advantages of WAAM over Conventional machining:

-WAAM material removal savings vs. Machining: **87%** 

-Milling time reduction: **70%** 

#### **TECHNICAL INFORMATION**

**Machine:** ABB IRB 1600 + Fronius TPS 4000 + IRBP A positioner

**Dimensions:** 

D = 120 mm H = 160 mm Wire: ER70S-6, Ø 1.2 mm Deposition Time: 5.9 h Deposited Mass: 2.5 kg

**Application:** Automotive (car)

front spindle

#### **BENEFITS OF WAAM:**

- -Cost savings
- -Material savings
- -Fast production rates
- -Capability of printing complex designs

### Alternatives to Milling process WAAM

- -High deposition rates, flexible and short lead time to produce near net-shaped complex components.
- -Repair, reverse engineering, prototype & topology optimization.
- -Reduction in chip volume and milling time

Additive Manufacturing Centennial Lab (AMCL) Dr. Hanadi Salem, Director

Website:

Email: hgsalem@aucegypt