Stock Price Performance with Market and News Analytics

Brendan McGivern November, 2018

Overview

Can we use news analytics and market data to predict stock price performance?

Let's not be naive

"It will fluctuate" ~ J. P. Morgan

Why is this important?

- Ubiquity of data today enables investors at any scale to make better investment decisions
- Distinguish signal from noise.

Kaggle: Two Sigma

Kaggle competitions

- Very challenging
- Real world problems using real world data
- Out of the box thinking

Two datasets:

- Market data (2007 to present)
- News data (2007 to present)

Kaggle: Two Sigma

Predict a signed confidence value: $\hat{y}_{ti} \in [-1, 1]$

Multiply by the market-adjusted return of a given assetCode over a ten day window

For each day in the evaluation time period, we calculate:

$$x_{t} = \sum_{i} \hat{y}_{ti} r_{ti} u_{ti}$$

$$score = \frac{\bar{x}_{t}}{\sigma(x_{t})}$$

where r_{ti} is the 10-day market-adjusted leading return for day t for instrument i, and u_{ti} is a 0/1 universe variable that controls whether a particular asset is included in scoring on a particular day.

Your submission score is then calculated as the mean divided by the standard deviation of your daily xt values

Challenges

The DataFrames were large

- Market data market_train_df shape: (4072956, 16)
- News data news_train_df shape: (9328750, 35)

These are loaded into the Kaggle environment - feather format

7GB of RAM eliminated instantly - Python doesn't release memory back to the OS

Garbage collecting only does so much

A number of features came already formatted - category, dates, etc...

Can only be loaded once per kernel instance

Domain knowledge

Stock splits, market crashes, flash crashes, etc...

The returnsOpenNextMktres10 feature represents a 10 day, market-residualized return

I don't see anything immediately useful. It fluctuates.

Notice New York Community Bancorp:

- highest / most variance in volume
- lowest / least variance in closing prices

We can see there is no correlation

Predicting Future Prices from Historical Prices - Apple

• We can look into the future

While past prices seem to be highly correlated with future prices, this is somewhat of a mirage!

• The range of future prices compared to current prices is simply too large

Percent Price Changes

• This looks a lot different than the correlation between closing price and future closing price

10d_close_pct 10d_close_future_pct

10d_close_pct 1.000000 -0.090782

10d_close_future_pct -0.090782 1.000000

10d_close_pct 10d_close_future_pct

10d_close_pct

1.000000

0.211207

10d_close_future_pct

0.211207

1.000000

Outliers

- Here we can see the 99th percentile of data
- Mean: 0.18

Outliers

- Let's see what falls outside of the 99th percentile
- Here is a company with returnsOpenNextMktres10 outside of the 99th percentile
- Mean: 2.9 (Petroleo Brasileiro SA Petrobras)

The majority of news data are classified as articles, with about 50% of that number being classified as alerts

• Type 2 - nonexistent

3	6162567
1	3166158
2	25

The plot seems to become denser in modern times

No real pattern here - I was looking for spikes in alerts around 2008

News providers - highly unbalanced

• Could this lead to a problem in the future?

Analyzing Sentiment

- Big American banks are the most negatively viewed
- Apple Top negative and top positive sentiment

```
Top mentioned companies for negative sentiment are:

Citigroup Inc 30823

JPMorgan Chase & Co 29129

Bank of America Corp 28197

Apple Inc 26702

Goldman Sachs Group Inc 25044

Name: assetName, dtype: int64
```

Top mentioned companies for neutral sentiment are:
Barclays PLC 24898
HSBC Holdings PLC 23191
Deutsche Bank AG 20702
BHP Billiton PLC 18019

16782

Name: assetName, dtype: int64

Rio Tinto PLC

Top mentioned companies for positive sentiment are:

Barclays PLC 22855
Apple Inc 22770
General Electric Co 20055
Royal Dutch Shell PLC 18206
Citigroup Inc 18025
Name: assetName, dtype: int64

Feature Preprocessing, Exploration and Engineering

Features

Market Data

Data columns (total 16 columns): 4072956 non-null datetime64[ns, UTC] time assetCode 4072956 non-null object assetName 4072956 non-null category volume 4072956 non-null float64 4072956 non-null float64 close 4072956 non-null float64 open returnsClosePrevRaw1 4072956 non-null float64 returnsOpenPrevRaw1 4072956 non-null float64 returnsClosePrevMktres1 4056976 non-null float64 returnsOpenPrevMktres1 4056968 non-null float64 returnsClosePrevRaw10 4072956 non-null float64 4072956 non-null float64 returnsOpenPrevRaw10 returnsClosePrevMktres10 3979946 non-null float64 returnsOpenPrevMktres10 3979902 non-null float64 returnsOpenNextMktres10 4072956 non-null float64 4072956 non-null float64 universe

News Data

Data columns (total 35	columns):	
time	9328750 non-null datetime64[ns, UTC	
sourceTimestamp	9328750 non-null datetime64[ns, UTC	
firstCreated	9328750 non-null datetime64[ns, UTC	:]
sourceId	9328750 non-null object	
headline	9328750 non-null object	
urgency	9328750 non-null int8	
takeSequence	9328750 non-null int16	
provider	9328750 non-null category	
subjects	9328750 non-null category	
audiences	9328750 non-null category	
bodySize	9328750 non-null int32	
companyCount	9328750 non-null int8	
headlineTag	9328750 non-null object	
marketCommentary	9328750 non-null bool	
sentenceCount	9328750 non-null int16	
wordCount	9328750 non-null int32	
assetCodes	9328750 non-null category	
assetName	9328750 non-null category	
firstMentionSentence	9328750 non-null int16	
relevance	9328750 non-null float32	
sentimentClass	9328750 non-null int8	
sentimentNegative	9328750 non-null float32	
sentimentNeutral	9328750 non-null float32	
sentimentPositive	9328750 non-null float32	
sentimentWordCount	9328750 non-null int32	
noveltyCount12H	9328750 non-null int16	
noveltyCount24H	9328750 non-null int16	
noveltyCount3D	9328750 non-null int16	
noveltyCount5D	9328750 non-null int16	
noveltyCount7D	9328750 non-null int16	
volumeCounts12H	9328750 non-null int16	
volumeCounts24H	9328750 non-null int16	
volumeCounts3D	9328750 non-null int16	
volumeCounts5D	9328750 non-null int16	
volumeCounts7D	9328750 non-null int16	

Features: My Process

- Chi-squared for assetCode
 - Redundant millions or rows
- Label encoding assetCode
- Date features
 - o year, quarter, month
- 4 features had null values
 - Impute using median
- Moving average and RSI (relative strength index) features
 - o 14, 30, 50, 200 day features
 - \circ RSI = 100 (100 / 1 + RS)
 - RS = avg gain over n periods / avg loss over n periods
- Volume % change 10 day
 - Volume and close were not correlated

- Normalize
- Temporal train / validation split
- Random Forest
- Examine feature importances
- Correlation matrix
- Drop correlated features
- Retrain the model
 - Accuracy did not change
 - Feature importances look better
- Create coverage feature News data
 - determine the proportion of the article discussing the asset
- Create position feature News data
 - Relative position of the first mention in the article
- TF-IDF
 - Created a tfidf_mean feature
- News groupby (aggregate mean) and merge

Features

Feature Importance

• It seems suspicious that the month feature is so important and close is near the bottom

	importance
returnsOpenPrevMktres10	0.087694
returnsOpenPrevRaw10	0.082835
month	0.065618
returnsClosePrevRaw10	0.058592
returnsClosePrevMktres10	0.056799
assetCode_cat	0.056602
volume	0.050824
close_ma200	0.048702
close_ma14	0.047997
close_ma50	0.043122
close_ma30	0.042418
rsi14	0.039586
rsi30	0.034670
returnsOpenPrevMktres1	0.033706
rsi200	0.032567
close	0.030562
rsi50	0.029960
returnsClosePrevMktres1	0.029790
open	0.028920
returnsOpenPrevRaw1	0.028608

Feature Importance

We can see a lot of correlated features

Features

Feature Importance

 After dropping features with greater than 90% correlation

	importance
returnsClosePrevRaw10	0.119597
returnsClosePrevMktres10	0.114182
close	0.076727
rsi14	0.073290
assetCode_cat	0.072896
month	0.064383
close_ma14	0.063179
close_ma200	0.061431
close_ma30	0.060869
volume	0.057028
close_ma50	0.055539
returnsClosePrevMktres1	0.047485
returnsClosePrevRaw1	0.036277
returnsOpenPrevRaw1	0.036137
vol_pct_10	0.028148
day	0.020215
quarter	0.012616

Features

Feature Importance

 After dropping features with greater than 90% correlation

Model Tuning and Selection

Modeling

A compilation of everything:

- Combined data processing into one function
- GridSearchCV
 - Not a good idea
- Random Search
- Random Forest
- XGBoost
- LightGBM
 - Much faster

Modeling

I performed a random search to find the optimal parameters

I ended up with a test accuracy of 60%

Discrepancy in validation accuracy and test score is due to the evaluation function used by Two Sigma

```
param_grid = {
    'learning_rate': [0.15, 0.1, 0.05, 0.02, 0.01],
    'num_leaves': [i for i in range(12, 90, 6)],
    'n_estimators': [50, 200, 400, 600, 800],
    'min_child_samples': [i for i in range(10, 100, 10)],
    'colsample_bytree': [0.8, 0.9, 0.95, 1],
    'subsample': [0.8, 0.9, 0.95, 1],
    'reg_alpha': [0.1, 0.2, 0.4, 0.6, 0.8],
    'reg_lambda': [0.1, 0.2, 0.4, 0.6, 0.8],
}
```

```
Best Score: 0.5382

Best Paramas: {'learning_rate': 0.01, 'num_leaves': 12, 'n_estimators': 200, 'min_child_sample s': 30, 'colsample_bytree': 1.0, 'subsample': 1.0, 'reg_alpha': 0.8, 'reg_lambda': 0.4}
```

Modeling

Feature importance

News data is hard

Next Steps

- Engineering more features for the news dataset
- Experiment with stacking models
- Experiment with a custom loss function (the function used to calculate the score on the test set)

Thank You

Brendan McGivern

in https://www.linkedin.com/in/brendanmcgivern1/

