Introduction to Digital Systems Part II (4 lectures) 2024/2025

Combinational Logic Blocks

Lecture 7 contents

- Block oriented combinational logic design
- Arithmetic Circuits

Addition

- Addition is a very common arithmetic operation in digital systems
- Let's recall some concepts ...

Addition of Binary Numbers

- Addition and subtraction of non-decimal numbers by hand uses the same technique that you know from school for decimal numbers.
- The only catch is that the addition and subtraction tables are different.
- To add two unsigned binary numbers X and Y, we add together the least significant bits with an initial carry (c_{in}) of 0, producing carry (c_{out}) and sum (s) bits according to the table. We continue processing bits from right to left, adding the carry out of each column into the next column's sum.

Example:

	1	1	0	0	0	0	1	
	0	0	1	0	1	1	0	1
+	0	1	1	0	0	0	0	1
	1	0	0	0	1	1	1	0

Cin	Χ	У	Cout	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Subtraction of Binary Numbers

 Binary subtraction is performed similarly, using borrows (b_{in} and b_{out}) instead of carries between steps, and producing a difference bit d.

Examples:

	0	1	1	1	1	0	0	
	1	1	1	0	0	0	0	1
-	1	0	1	0	1	1	0	1
	0	0	1	1	0	1	0	0

	1	1	1	
	1	0	0	0
-	0	0	1	1
	0	1	0	1

bin	Χ	У	bout	d
0	0	0	0	0
0	0	1	1	1
0	1	0	0	1
0	1	1	0	0
1	0	0	1	1
1	0	1	1	0
1	1	0	0	0
1	1	1	1	1

Overflow

- With n bits it is possible to represent **unsigned integer numbers** ranging from 0 to 2^n -1.
- If an arithmetic operation produces a result that exceeds the range of the number system, overflow is said to occur.
- Overflows can easily be detected by analyzing a carry or borrow from the most significant bit.
 - the carry bit c_{out} or the borrow bit b_{out} out of the MSB = 1

Examples:

n=8: [0..255]

n=4:
$$[0..15]$$

 $4_{10} - 11_{10} = -7_{10}$
1 0 1 1

overflow

Representation of Negative Numbers

- There are many ways to represent negative numbers.
- In everyday business we use the **signed-magnitude system** (i.e. reserve a special symbol to indicate whether a number is negative).
- However, most computers use two's-complement representation:
 - The most significant bit (MSB) of a number in this system serves as the sign bit;
 a number is negative if and only if its MSB is 1.
 - The weight of the MSB is negative: for an n-bit number the weight is -2^{n-1} .
 - The decimal equivalent for a two's-complement binary number is computed the same way as for an unsigned number, except that the weight of the MSB is negative:
 - D= $d_{n-1}d_{n-2} \dots d_1d_0 = -2^{n-1} + \sum_{i=0}^{n-2} d_i \times 2^i$

Examples:

$$1010_{2} = ???_{10}$$

$$1010_{2} = -2^{3} + 2^{1} = -8 + 2 = -6_{10}$$

$$1111_{2} = ???_{10}$$

$$1111_{2} = -2^{3} + 2^{2} + 2^{1} + 2^{0} = -8 + 4 + 2 + 1 = -1_{10}$$

$$0111_{2} = ???_{10}$$

$$0111_{2} = 2^{2} + 2^{1} + 2^{0} = 4 + 2 + 1 = 7_{10}$$

Two's Complement Representation

- For n bits, the range of representable numbers is $[-2^{n-1}, 2^{n-1}-1]$.
- For *n*=4, the range is [-8, 7]:

0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
-8	1	0	0	0
-7	1	0	0	1
-6	1	0	1	0
-6 -5	1	0	1	1
-4	1	1	0	0
-3	1	1	0	1
-2	1	1	1	0
-1	1	1	1	1

Towards implementation

- The immediate approach
 - Digit-wise addition and carry propagation
 - Iterative hardware
 - Building blocks
 - Half-Adder
 - Full-Adder

The Half-Adder (HA)

- Inputs: 2 single bit operands (a, b)
- Outputs
 - A 2 bit result:
 - The Half-Sum (hs)
 - The Carry-out (Cout)
 - Note that: $0 \le (Cout, hs)_{10} \le 2$

a	b	Cout	hs
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

$$c_{out} = a \cdot b$$

$$hs = a \oplus b$$

The Full-Adder (FA)

- Inputs: 2 single bit operands (a, b) and a
 - Carry-in bit (C_{in})
- Outputs
 - A 2 bit result:
 - The Sum (S)
 - The Carry-out (C_{out})
 - Note that: $0 \le (C_{out}, S)_{10} \le 3$

$$c_{out} = a \cdot b + a \cdot c_{in} + b \cdot c_{in}$$

$$s = a \oplus b \oplus c_{in}$$

C _{in}	а	b	C _{out}	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Exercise

Show that the following circuit is Full-Adder

Ripple Adders

- The bit-wise addition and carry-propagation is implemented by a cascade of Full-Adders
- An iterative circuit paradigm

- + Easy to build
- Slow performance

Full Subtractor

- Inputs: 2 single bit operands (a, b) and a
 - Borrow-in bit (b_{in})
- Outputs
 - A 2 bit result:
 - The difference (d)
 - The Borrow-out (b_{out})

b _{in}	а	b	b _{out}	d
0	0	0	0	0
0	0	1	1	1
0	1	0	0	1
0	1	1	0	0
1	0	0	1	1
1	0	1	1	0
1	1	0	0	0
1	1	1	1	1

$$b_{out} = \overline{a} \cdot b + \overline{a} \cdot b_{in} + b \cdot b_{in}$$

 $d = a \oplus b \oplus b_{in}$

Exercise

Write the output equations and show that the Full-Adder with modified inputs is a subtractor

Ripple Adder/Subtractor

- Using 2's complement representation means the same hardware for addition and subtraction
 - "Muxed" b and b' inputs.
 - Initial carry = 1 if subtraction

Exercise

 Verify that the following implementation is equivalent to the adder/subtractor circuit of the previous slide

Exercise

Carry-Lookahead Adders (CLA)

- The idea: Compute the *ith* carry noniteratively
- The starting points:
 - The usual equations

$$s_i = a_i \oplus b_i \oplus c_i$$

$$c_{i+1} = a_i \cdot b_i + a_i \cdot c_i + b_i \cdot c_i$$

- Carry Generation
- Carry Propagation $g_i = a_i \cdot b_i$

$$p_i = a_i + b_i$$

Remarks about the Carry

- At any stage, we necessarily have a carry generation C_{i+1} = 1 whenever a_i = b_i = 1.
 So g_i = a_i.b_i
- If a_i ≠ b_i but a_i+b_i = 1 the carry propagates
 since C_{i+1} = C_i so p_i = a_i + b_i
- Finally the Carry equation becomes

$$c_{i+1} = g_i + p_i \cdot c_i$$

The 4 bit CLA

Carry equations

$$c_{1} = g_{0} + p_{0} \cdot c_{0}$$

$$c_{2} = g_{1} + p_{1} \cdot c_{1} = g_{1} + p_{1} \cdot (g_{0} + p_{0} \cdot c_{0}) = g_{1} + p_{1} \cdot g_{0} + p_{1} \cdot p_{0} \cdot c_{0}$$

$$c_{3} = g_{2} + p_{2} \cdot c_{2} = g_{2} + p_{2} \cdot (g_{1} + p_{1} \cdot g_{0} + p_{1} \cdot p_{0} \cdot c_{0}) =$$

$$= g_{2} + p_{2} \cdot g_{1} + p_{2} \cdot p_{1} \cdot g_{0} + p_{2} \cdot p_{1} \cdot p_{0} \cdot c_{0}$$

$$c_{4} = g_{3} + p_{3} \cdot c_{3} = g_{3} + p_{3} \cdot (g_{2} + p_{2} \cdot g_{1} + p_{2} \cdot p_{1} \cdot g_{0} + p_{2} \cdot p_{1} \cdot p_{0} \cdot c_{0}) =$$

$$= g_{3} + p_{3} \cdot g_{2} + p_{3} \cdot p_{2} \cdot g_{1} + p_{3} \cdot p_{2} \cdot p_{1} \cdot g_{0} + p_{3} \cdot p_{2} \cdot p_{1} \cdot p_{0} \cdot c_{0}$$

Notice that any Carry is determined after 3 delay levels

Ripple Adder versus CLA

4 bit ripple adder

Final result always after 2x4 = 8 delays

4 bit CLA

Final result always after 4 delays

The 74283 model

CLA logic

Exercise

• In a 2's complement representation, what's the decimal value of the result S with $N = 6_{10}$

BCD Addition

Possible results for 2 digit BCD addition with

carry

soma	biná	írio	ВС	D
	carry out	soma	carry out	soma
0	0	0000	0	0000
1	0	0001	0	0001
2	0	0010	0	0010
3	0	0011	0	0011
4	0	0100	0	0100
5	0	0101	0	0101
6	0	0110	0	0110
7	0	0111	0	0111
8	0	1000	0	1000
9	0	1001	0	1001
10	0	1010	1	0000
11	0	1011	1	0001
12	0	1100	1	0010
13	0	1101	1	0011
14	0	1110	1	0100
15	0	1111	1	0101
16	1	0000	1	0110
17	1	0001	1	0111
18	1	0010	1	1000
19	1	0011	1	1001

Offset correction required: add 6 to the binary result

BCD addition algorithm

Possible implementation

ALU

- An arithmetic logic unit is a combinational block that executes any logical or arithmetic operation over a pair of b bits operands.
- There is a mode input that chooses between the logical or arithmetic behavior
- There is a op-code set of inputs that choose a particular operation from a limited "operation" set.

The 74181 ALU

S3	S2	S1	S0	M=0 (op. aritm.)	M=1 (op. lógica)
0	0	0	0	F = A – 1 + CIN	F = Ā
0	0	0	1	F = A <i>AND</i> B – 1 + CIN	$F = \bar{A} OR \bar{B}$
0	0	1	0	F = A <i>AND</i> B – 1 + CIN	$F = \bar{A} OR B$
0	0	1	1	F = 1111 + CIN	F = 1111
0	1	0	0	$F = A + (A OR \overline{B}) + CIN$	$F = \bar{A} AND \bar{B}$
0	1	0	1	$F = A AND B + (A OR \overline{B}) + CIN$	F = B
0	1	1	0	F = A – B – 1 + CIN	F = A XOR B
0	1	1	1	F = A OR B + CIN	F = A OR B
1	0	0	0	F = A + (A <i>OR</i> B) + CIN	$F = \overline{A} AND B$
1	0	0	1	F = A + B + CIN	F = A XOR B
1	0	1	0	$F = A AND \overline{B} + (A OR B) + CIN$	F = B
1	0	1	1	F = A OR B + CIN	F = A OR B
1	1	0	0	F = A + A + CIN	F = 0000
1	1	0	1	F = A <i>AND</i> B + A + CIN	$F = A AND \bar{B}$
1	1	1	0	F = A AND B + A + CIN	F = A <i>AND</i> B
1	1	1	1	F = A + CIN	F = A

Unsigned Multiplication

We follow the same rules of the decimal system

$$12 \times 13 = 156$$

Combinational Multipliers

Final Remarks

- Always recall
 - The block symbol
 - The types of inputs (operands) and outputs
 - Distinguish between iterative and non-iterative solutions
- Design with encapsulated logic requires mastering all the functional details of each block