BÀI 3. MỘT SỐ GIAO THỨC MẬT MÃ TRONG MẠNG TCP/IP

Nguyễn Đức Toàn, Viện Công nghệ thông tin và Truyền thông, Đại học Bách khoa Hà Nội

1

1

Nội dung

- Một số dạng tấn công quá trình truyền tin (nhắc lại)
- IPSec
- SSL/TLS
- SSH
- Các giao thức mật mã trong WLAN

2

1. MỘT SỐ DẠNG TẤN CÔNG

Nguyễn Đức Toàn, Viện Công nghệ thông tin và Truyền thông, Đại học Bách khoa Hà Nội

3

3

Nghe lén • Thu nhận trái phép các thông tin trong quá trình truyền → tấn công vào tính bí mật của thông tin Kênh truyền Alice M Kêt tấn công

Thay đổi nội dung thông điệp Chặn thông điệp, thay đổi nội dung và chuyển tiếp cho bên kia "Tôi là Alice. Số tài khoản của tôi là 123. Hãy chuyển tiền cho tôi!" Kênh truyền Alice Bob "Tôi là Alice. Số tài khoản của tôi là 456. Hãy chuyển tiền cho tôi!" Kẻ tấn công 6

- Bên nhận phủ nhận đã nhận được thông tin

Alice

"Tôi là Alice. Hãy chuyển tiền của tôi vào tài khoản 123!"

"Tôi là Alice.

Tại sao anh chưa chuyển tiền?"

Bob

"Không.

Tôi chưa nhận được yêu cầu của cô!"

S

2. IPSEC

Nguyễn Đức Toàn,

Viện Công nghệ thông tin và Truyền thông,

Đại học Bách khoa Hà Nội

10

Giao thức IPSec

- Bộ giao thức bảo mật mở rộng cho IPv4 và IPv6 (mô tả chi tiết trong RFC 4301 và >30 RFC khác ☺)
- · Các dich vu:
 - Bảo mật: DES, 3DES, AES
 - > Xác thực: HMAC MD-5, HMAC SHA-1
 - Chống tấn công phát lại
 - Xác thực các bên
 - Kiểm soát truy cập
- Giao thức đóng gói dữ liệu :
 - > AH : Xác thực thông điệp
 - > ESP : Bảo mật thông điệp
 - > ESP-ICV: Bảo mật và xác thực thông điệp

11

Tiến trình trao đổi dữ liệu qua IPSec VPN

- 1. Một trong 2 bên khởi tạo
- Thiết lập kết nối điều khiển: ISAKMP/IKE Phase 1:
 - Các chính sách trao đổi khóa
 - Diffie-Hellman
 - Xác thực thiết bị và xác thực người dùng
- ISAKMP/IKE Phase 2 : thỏa thuận các tham số thiết lập kết nối bảo mật để truyền dữ liệu
- 4. Trao đổi dữ liệu
- 5. Làm mới các kết nối nếu quá thời gian quy định cho 1 phiên

2. GIAO THỨC SSL/TLS

Nguyễn Đức Toàn, Viện Công nghệ thông tin và Truyền thông, Đại học Bách khoa Hà Nội

15

15

SSL/TLS là gì?

Sercure Socket Layer/Transport Layer Security

- Nằm giữa các giao thức tầng giao vận và tầng ứng dụng
- Cung cấp các cơ chế mã mật và xác thực cho dữ liệu trao đổi giữa các ứng dụng
- Các phiên bản: SSL 1.0, SSL 2.0, SSL 3.0, TLS 1.0 (phát triển từ SSL 3.0)
- Sử dụng giao thức tầng giao vận TCP
- DTLS: Phiên bản tương tự trên nền giao thức UDP

16

SSL và các giao thức tầng ứng dụng

- HTTPS = HTTP + SSL/TLS: cổng 443
- IMAP4 + SSL/TLS: Cổng 993
- POP3 + SSL/TLS: Cổng 995
- SMTP + SSLT/TLS: Cổng 465
- FTPS = FTP + SSL/TLS: Cổng 990 và 989

17

17

SSL/TLS là gì?

- Gồm 2 giao thức con
- Giao thức bắt tay(handshake protocol): thiết lập kết nối SSL/TLS
 - Sử dụng các phương pháp mật mã khóa công khai để các bên trao đổi khóa bí mật
- Giao thức bảo vệ dữ liệu(record protocol)
 - ➤Sử dụng khóa bí mật đã trao đổi ở giao thức bắt tay để bảo vệ dữ liệu truyền giữa các bên

Các bộ thuật toán mã hóa trên TLS 1.0

	Key		
Cipher suite	Exchange	Encryption	Hash
TLS_NULL_WITH_NULL_NULL	NULL	NULL	NULL
TLS_RSA_WITH_NULL_MD5	RSA	NULL	MD5
TLS_RSA_WITH_NULL_SHA	RSA	NULL	SHA-1
TLS_RSA_WITH_RC4_128_MD5	RSA	RC4	MD5
TLS_RSA_WITH_RC4_128_SHA	RSA	RC4	SHA-1
TLS_RSA_WITH_IDEA_CBC_SHA	RSA	IDEA	SHA-1
TLS_RSA_WITH_DES_CBC_SHA	RSA	DES	SHA-1
TLS_RSA_WITH_3DES_EDE_CBC_SHA	RSA	3DES	SHA-1
TLS_DH_anon_WITH_RC4_128_MD5	DH_anon	RC4	MD5
TLS_DH_anon_WITH_DES_CBC_SHA	DH_anon	DES	SHA-1
TLS_DH_anon_WITH_3DES_EDE_CBC_SHA	DH_anon	3DES	SHA-1
TLS_DHE_RSA_WITH_DES_CBC_SHA	DHE_RSA	DES	SHA-1
TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA	DHE_RSA	3DES	SHA-1
TLS_DHE_DSS_WITH_DES_CBC_SHA	DHE_DSS	DES	SHA-1
TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA	DHE_DSS	3DES	SHA-1
TLS_DH_RSA_WITH_DES_CBC_SHA	DH_RSA	DES	SHA-1
TLS_DH_RSA_WITH_3DES_EDE_CBC_SHA	DH_RSA	3DES	SHA-1
TLS_DH_DSS_WITH_DES_CBC_SHA	DH_DSS	DES	SHA-1
TLS_DH_DSS_WITH_3DES_EDE_CBC_SHA	DH_DSS	3DES	SHA-1

Một số cải tiến trên TLS 1.0

- Thuật toán sinh khóa an toàn hơn: sử dụng 2 hàm
 - ≻Mở rộng giá trị bí mật
 - >Hàm giả ngẫu nhiên kết hợp 2 hàm băm MD5 và SHA-1 để sinh thông tin tạo khóa
- Sử dụng các hàm HMAC thay thế cho MAC

29

29

Tấn công man-in-the-middle

- Lợi dụng lỗ hổng các bên không kiểm tra tính hợp lệ của chứng thư số
- Kich bản:

35

3. GIAO THỨC SSH

Nguyễn Đức Toàn,

Viện Công nghệ thông tin và Truyền thông,

Đại học Bách khoa Hà Nội

36

35

SSH là gì?

- Secure Shell: nằm trên tầng ứng dụng
- Phiên bản hiện tại: SSH2 (RFC4250 đến RFC 4256)
- Gồm 3 giao thức con:
 - SSH Transport Layer Protocol: cung cấp kết nối xác thực, bảo mât
 - SSH User Auth. Protocol: Xác thực phía client với server
 - SSH Connection Protocol: dồn kênh truyền dữ liệu bí mật trên kết nối SSH

SSH User
Authentication
Protocol

SSH Transport Layer Protocol

TCP

37

37

Transport Layer Protocol

- Xác thực server dựa trên chứng chỉ số
- Client duy trì bảng ánh xạ địa chỉ server và chứng chỉ số của server đó
- Trao đổi khóa: sử dụng giao thức trao đổi khóa IKE dựa trên sơ đồ Diffie-Hellman (RFC 2409)

SSH User Authentication Protocol

- B1: Client gửi thông điệp MSG_USERAUTH_REQUEST với thông tin tài khoản và phương pháp xác thực đề nghị
- B2: Server kiểm tra tài khoản người dùng. Nếu không hợp lệ gửi thông điệp MSG_USERAUTH_FAILURE. Ngược lại chuyển sang bước 3
- B3: Server gửi MSG_USERAUTH_FAILURE nếu không hỗ trợ phương pháp xác thực mà client yêu cầu kèm theo danh sách các phương pháp mà server đề nghị
- B4: Client lựa chọn phương pháp xác thực mà server hỗ trợ và gửi lại MSG_USERAUTH_REQUEST
- B5: Nếu xác thực thành công và cần thêm các bước xác thực khác, quay lại bước 3
- B6: Server gửi thông điệp MSG_USERAUTH_SUCCESS báo xác thực thành công

An toàn bảo mật giao thức SSH

- Lỗ hổng: client không kiểm tra đầy đủ tính hợp lệ của chứng chỉ mà server cung cấp
- Nguy cơ: giả mạo sever và tấn công man-in-the-middle
 Tương tự nguy cơ trên giao thức SSL/TLS

42

3. GIAO THỨC BẢO MẬT WLAN

Nguyễn Đức Toàn, Viện Công nghệ thông tin và Truyền thông, Đại học Bách khoa Hà Nội

43

43

Hệ thống khóa trong WPA/WPA2

- PSK(Pre-shared Key): khóa được sinh từ mật khẩu chia sẻ trước
- MK(Master Key): khóa do máy chủ RADIUS, phân phối cho MS và AP
- PMK(Pairwise Master Key): khóa dùng để phân phối các khóa phiên:
 - >WPA/WPA2 Personal: PMK = PSK
 - >WPA/WPA2 Enterprise: PMK = MK
- PTK (Pairwise Transient Key): bộ khóa phiên gồm các khóa KCK, KEK, TK, TMK dùng cho truyền thông unicast
- GTK: bộ khóa phiên dùng cho truyền thông multicast

49

Hệ thống khóa trong WPA/WPA2

- KCK(Key Confirmation Key): khóa dùng để xác thực khi bắt tay 4 bước phân phối khóa PTK và GTK
- KEK(Key Confirmation Key): khóa dùng để mã hóa bảo mật khi bắt tay 4 bước phân phối khóa PTK và GTK
- TK/TEK (Temporary Key/Temporary Encryption Key): khóa dùng để mã hóa bảo mật của dữ liệu trong giao thức TKIP(WPA) và CCMP(WPA2)
 - >Trong WPA2, TEK còn được sử dụng để xác thực dữ liệu
- TMK(Temporary MIC Key): khóa dùng để xác thực dữ liệu trong TKIP

Phân phối khóa PTK và GTK

- Sử dụng các thông điệp EAPoL-Key(EAP over LAN)
- Bước 1.
 - ⊳AP khởi tạo ngẫu nhiên giá trị ANonce
 - >Gửi ANonce cho Client
- Bước 2.
 - >Client khởi tạo giá trị nhẫu nhiên SNonce
 - ≻Khởi tạo MIC và gửi cho AP.
 - ➤Sử dụng PMK, SNonce, ANonce, MAC của Client và AP để tính toán PTK.

Phân phối khóa PTK và GTK

- Bước 3.
 - Dựa vào PMK, ANonce, MAC của Client và AP, và S Nonce vừa nhận được, AP tính toán PTK.
 - >Xác thực MIC.
 - ≻Khởi tạo GMK để tính toán GTK (128 bit với CCMP).
 - ▶ Tạo MIC mới. Gửi MIC và GTK cho Client
- Bước 4.
 - >Báo cáo hoàn thành kết nối.
 - ➤Client cài đặt GTK, tính toán giá trị MIC để chắc chắn rằng AP biết PMK.
- Chú ý: Khóa GTK sẽ được làm mới bởi quá trình Group Key Handshake.

53

Làm mới khóa GTK

- · Bước 1.
 - >AP khởi tạo ngẫu nhiên Gnonce, cộng với GMK đã có, tính toán GTK mới, được mã hóa lại bằng KEK.
 - ⊳Gửi giá trị GTK, MIC tới AP.
- · Bước 2.
 - >Client giải mã GTK, xác thực MIC.
 - ⊳Gửi giá trị MIC cho AP.
 - Sau khi xác thực MIC thành công, AP cài đặt GTK mới.

55

