Satz 1. Cotangent Sequenz

Satz 2. Konormale Sequenz

Satz 3. Differenzial von Polynomalgebren 2

Satz 4. Differenzial der Lokalisierung

Satz 5. Differential von rationalen Funktionen 1

Cotangent Sequenz von Koerpern 3 [Aufgabe 16.6 b) David Eisenbud 1994] Wir nennen eine Körpererweiterung $T \supset L$ pur inseperabel, falls gilt:

$$char(L) = p > 0 \ und \ \forall t \in T \ \exists l \in L \ \exists n \in \mathbb{N} : t^{p^n} = l$$

Proposition 6. Seien $T \supset L \supset k$ endliche Körpererweiterungen. Betrachte die COTANGENT SEQUENZ (satz 1) von $k \hookrightarrow L \hookrightarrow T$:

$$T \otimes_L \Omega_{L/k} \stackrel{\varphi}{\longrightarrow} \Omega_{T/k} \longrightarrow \Omega_{T/L} \longrightarrow 0$$

Sei weiter die Körpererweiterung $T \supset L$ algebraisch und pur inseperabel und existiere ein $\alpha \in T$ mit $L(\alpha) = T$ und $Mipo(\alpha) = f(x) = x^p - a$. Dann gilt:

$$\varphi$$
 ist injektiv $\Leftrightarrow d_L(a) = 0$

Beweis. Lege zunächst T = L[x]/(f(x)) fest und betrachte den kanonischen Epimorphismus $\pi: L[x] \longrightarrow T$, sowie die dazugehörige Konormale Sequenz (satz 2). Forme diese leicht um (2), sodass wir sie mit der COTANGENT SEQUENZ von $k \hookrightarrow L \hookrightarrow T$ (3) vergleichen können:

$$(f(x))/(f(x)^2) \xrightarrow{1\otimes d_{L[x]}} T \otimes_{L[x]} \Omega_{L[x]/k} \xrightarrow{D\pi} \Omega_{T/k} \longrightarrow 0$$
 (1)

$$T\langle d_{L[x]}(f(x))\rangle \longleftrightarrow T\otimes_L \Omega_{L/k} \oplus T\langle d_{L[x]}(x)\rangle \xrightarrow{\widetilde{D\pi}} \Omega_{T/k} \longrightarrow 0$$
 (2)

$$T \otimes_L \Omega_{L/k} \xrightarrow{\varphi} \Omega_{T/k} \longrightarrow \Omega_{T/L} \longrightarrow 0$$
 (3)

Zeige, dass (2) auch wirkliche exakt ist:

$$(1 \otimes d_{L[x]})(f(x)) = T \otimes_{L[x]} L[x] \langle d_{L[x]}(f(x)) \rangle \simeq T \langle d_{L[x]}(f(x)) \rangle$$

$$\Rightarrow \text{ Ersetze } 1 \otimes d_{L[x]} : (f(x))/(f(x)^2) \longrightarrow T \otimes_{L[x]} \Omega_{L[x]/k}$$

$$\text{durch } T \langle d_{L[x]}(f(x)) \rangle \hookrightarrow T \otimes_{L[x]} \Omega_{L[x]/k}.$$

nach satz 3 gilt $\Omega_{L[x]/k} \simeq L[x] \otimes_L \Omega_{L/k} \oplus L[x] \langle d_{L[x]}(x) \rangle$ und tensorieren mit T ergibt $T \otimes_{L[x]} \Omega_{L[x]/k} \simeq T \otimes_L \Omega_{L/k} \oplus T \langle d_{L[x]}(x) \rangle$.

<u>"⇒</u> ": Wenn wir nun unsere zwei exakten Sequenzen betrachten sehen wir, dass φ eine Einschränkung von $D\pi$ auf einen kleineren Definitionsbereich ist. Zeige also, dass $D\pi$ injektiv ist:

Nach Vorraussetung gilt
$$d_L(a) = 0$$
 also auch $d_{L[x]}(a) = 0$

$$\Rightarrow d_{L[x]}(f) = d_{L[x]}(x^p) - d_{L[x]}(a) = px^{p-1}d_{L[x]}(x) - d_{L[x]}(a) = 0 - 0$$

$$\Rightarrow T\langle d_{L[x]}(f(x))\rangle = 0$$

Bezogen auf die exakte Sequenz (2) bedeutet dies, dass $D\pi$ injektiv ist.

"
 \Leftarrow ": Da φ nach Vorrausetzung injektiv ist, genügt e
s $\varphi 1 \otimes a = 0$ zu zeigen:

In
$$T$$
 gilt $[f(x)]_T = 0$

$$\Rightarrow 0 = d_T([f(x)]_T) = d_T([x^p]_T) - d_T([a]_T) = d_T([a]_T)$$

$$\Rightarrow \varphi(1 \otimes d_L(a)) = d_T([a]_T) = 0$$

Da φ nach Voraussetzung injektiv ist, gilt $1 \otimes d_{L[x]}(a) = 0$ und somit auch $d_L(a) = 0$.

Cotangent Sequenz von Koerpern 3 Beispiel [Aufgabe 16.6 b) David Eisenbud 1994]

Beispiel 7. Betrachte das in proposition 6 gegebenen Szenario und wähle:

$$k = \mathbb{F}_3, L = k[y]/(y^2 + 1), T = L(\sqrt[3]{y}) \simeq L[x]/(x^3 - y).$$

Hierbei gilt $d_L(x) \neq 0$ und somit ist $\varphi : T \otimes_L \Omega_{L/k} \longrightarrow \Omega_{L/k}$ nicht injektiv.