Deep Packet Inspection as a Service

Yaron Koral†

Joint work with Anat Bremler-Barr‡, Yotam Harchol† and David Hay†

†The Hebrew University, Israel ‡IDC Herzliya, Israel

NFV and Innovation

O ADARA affirmed ARISTA AVINET®

- NFV enables virtualizing network building blocks such as: FW, NAT, IDS, Monitoring, LB, Network AV, WAN Optimizer, etc. ...
- Increases network deployment flexibility, and also product introduction times.
- Opens market for new vendors for network SPIREN functions (Middleboxes)
 - About 400 SDN-NFV listed companies

Middleboxes Policy Chains

SDN allows building policy chain via traffic steering

DPI Based Middleboxes

DPI Pattern Examples

<u>Snort (NIDS/NIPS) – Intrusion Detection</u>

Microsoft XML Core Services cross-site information disclosure attempt

<\x21DOCTYPE\s+[^>]*SYSTEM[^>]*>.*\x2EparseError

<u>ClamAV (Anti Virus) – Virus Detection</u>

Cabir.A computer worm signature

886f1f10123a001019040010e5f79547e6ad0100bd006f006400750063007 4004900440054003200200052005300330041005300789c (binary)

Bro (NIDS) - Application Classification

MS Office 2007 XML documents

DPI Engine – Complicated Challenge

Hundreds of academic papers over recent years

- Pattern set size varies between 10²-10⁵ patterns per MB
- DPI Engine is considered a <u>system bottleneck</u> in many of todays MBs (<u>30%-80%</u>)

[*Laboratory simulations over real deployments of Snort and ClamAV]

Middleboxes Policy Chains

- Each MB implements its own DPI engine (higher MB costs, reduced features)
- Each packet is scanned multiple times causing waste of computation resources

Our Solution: DPI as a Service

Contribution:

The idea of having

a centralized DPI service

instead of multiple instances of it

at each Middlebox

- Innovation Lower entry barriers
- Rich Functionality Invest once for all MB
- Reduced Costs Cheaper MB HW/SW
- Improved performance Scan each packet once

ARCHITECTURE

Architecture: Data Plane

- DPI Service Instance Scans incoming packets against an aggregated pattern set
- Each pattern has a unique ID
- Result: <Pattern ID> + <Match Offset>
- Each packet may contain several pattern matches
- All pattern-match results are attached to the packet

Passing Results

Match results header:

usually 0B; up to 200B (99%)

hello

 Using existing tag-fields (i.e. VLAN / MPLS) does not suffice

Passing Results Alternative 1

Network Service Header (NSH)

- Supports a header per network service
- Not limited in size
- Resize MTU

Passing Results Alternative 2

Separate result-packet

- Mark original packet upon match (set ECN)
- Delay packet until result-packet arrives

MiddleBox Support

MB with internal DPI engine

MB with external DPI service

QUESTION: ARE THE DPI ALGORITHMS SCALABLE?

Are DPI Algorithms Scalable?

Short Answer: YES!

What are the DPI Algorithms?

String Matching

Regex Matching

String Matching:

Aho-Corasick Algorithm

 Build a Deterministic Finite Automaton (basic full-table variant)

- Each input byte requires single lookup regardless the number of patterns!!
- \$ Cost Function:

1 Mem. access per input byte

- More patterns may results in a marginal performance reduction (cache)
- Example: {E, BE, BD, BCD, CDBCAB, BCAA}

Pattern Set Aggregation

Pattern Set 2

Regular Expressions Matching

 Repetition operators (e.g. Kleen star) may cause memory blowout

 Common approach: string matching w/global DFA >> single regex DFA

<\x21DOCTYPE\s+[^>]*SYSTEM[^>]*>.*\x2EparseError

DPI is Scalable, not Trivial...

	Current State	Symbol	Next State
1	00000	С	01001(s ₅)
2	00100	С	01000(s ₃)
3	00100	В	00000(s ₄)
4	10010	В	00100(s ₂)
5	010**	D	11010(s ₁₁)
6	000**	Α	11000(s ₉)
7	01***	F	11100(s ₁₃)
8	00***	С	01010(s ₁₀)
9	00***	В	00010(s ₈)
10	00***	Α	10100(s ₇)
11	****	E	10010(s ₁)
12	****	С	01100(s ₁₂)
13	****	В	00110(s ₆)
14	****	*	10000(s ₀)

CompactDFA, ToN 2014

Resilient
Multi-Core
DPI

ACCH, ToN 2012

DPI AS A SERVICE & DIFFERENT MIDDLEBOXES LAYOUTS

Related Network-Functions Layouts

SDN + NFV

ETSI. Network functions virtualization Gember et al., HotNets 2012 Rajagopalan et al., NSDI 2013

MB Consolidation

Comb, NSDI 2012 xOMB, ANCS 2012 Crossbeam, 2012 Kekely et al., Infocom 2014

Outsource MB (out-of-network)

Gibb et al., HotSDN 2012 Sherry et al., SIGCOMM 2012

EXPERIMENTAL RESULTS

Experimental Environment

- POX SDN Controller (OpenFlow 1.0)
- Static steering mechanism
- DPI Service and Middlebox using separate machines
- Toy middlebox applications: Snort, ClamAV
- Functionality: Tested in virtual environments
- Performance: no Mininet (overhead)

DPI

Static

Performance Results

Policy Chain with Two DPIs:

Each using separate machines

Combined DPI instances (DPI as a Service):

DPI1

IDS1 AVI

DPI2

	Patterns	Space	Throughput	Latency	Overall Throughput	Overall Latency
Snort	4356	71.18MB	807.7Mbps	9.69us/p	668.4Mbps	21.5us/p
ClamAV	31827	1.87GB	668.4Mbps	11.91us/p		
DPI1	36183	1.94GB	563.3Mbps	13.82us/p	1126Mbps	13.8 us ∤ β
DPI2	36183	1.94GB	563.3Mbps	13.82us/p		

Future Work

- Potential tasks to be "outsourced" as a service:
 - Payload Processing (Decryption/Decompression)
 - Retrieve raw data
 - Session reconstruction (Connection Tracking)
 - For session processing rather than packet processing
 - Header/protocol analysis
 - For protocol aware network functions
- Use the DPI to extend OpenFlow based switches
 - Use the tags created by the DPI service to drive policies in conventional switches.

Conclusions

- DPI is a common service used by today's MB
- Thanks to its scalability it may be easily exported as a stand-alone network service
- DPI as a Service provides:
 - Innovation (Lower entry barriers)
 - Network scalability
 - Lower costs (Cheaper MB Hardware)

Thank Youll

