1 Basic Definitions and Galois Connection

Definition. Filter.

Let X be a set and $F \subseteq 2^X$. Then F is a filter on X when

- 1. $X \in F$.
- 2. For all $U \in F$ and $V \subseteq X$, $U \subseteq V \Rightarrow V \in F$.
- 3. For all $U, V \in F$, $U \cap V \in F$.

Let Fil(X) denote the set of all filters on X.

F is called *proper* when $F \neq 2^X$, the largest filter in Fil(X).

Definition. Image Filter, Preimage Filter.

Let $f: X \to Y$ be a map of sets, $F \in Fil(X)$, $G \in Fil(Y)$.

Then

$$\begin{split} fF &:= \{V \subseteq Y \,|\, \exists\, U \in F, fU \subseteq V\} \\ f^{-1}G &:= \{f^{-1}U \subseteq X \,|\, U \in G\} \end{split}$$

Theorem. Galois Connection of Filters.

Let $f: X \to Y$ be a map of sets. Then

- 1. For all $F_1, F_2 \in Fil(X), F_1 \subseteq F_2 \Rightarrow fF_1 \subseteq fF_2$.
- 2. For all $G_1, G_2 \in Fil(Y), G_1 \subseteq G_2 \Rightarrow f^{-1}G_1 \subseteq f^{-1}G_2$.
- 3. For $F \in Fil(X)$ and $G \in Fil(Y)$, $f^{-1}G \subseteq F \Leftrightarrow G \subseteq fF$.

Proof. (3)(\Rightarrow) Let $f^{-1}G \subseteq F$. Let $U \in G$. Then $ff^{-1}U \subseteq U$, where $f^{-1}U \in f^{-1}G \subseteq F$.

(3)(\Leftarrow) Let $G \subseteq fF$. Let $U \in G$. Then there exists $V \in F$, $fV \subseteq U$. So $V \subseteq f^{-1}fV \subseteq f^{-1}U$ implies $f^{-1}U \in F$.