WSTĘP DO RACHUNKU PRAWDOPODOBIEŃSTWA

Wykład 1: Klasyczny model prawdopodobieństwa, prawdopodobieństwo geometryczne, NIEZALEŻNOŚĆ ZDARZEŃ

Przykład 1. Przykłady doświadczeń (eksperymentów) losowych:

- 1) rzut monetą, możliwe wyniki to O (orzeł), R (reszka);
- 2) rzut dwiema monetami: (O,O), (O,R), (R,O), (R,R);
- 3) rzut kostką: 1, 2, 3, 4, 5, 6 (oczek);
- 4) wybór pięciu kart ze standardowej talii 52 kart: $\binom{52}{5}$ pięcioelementowych podzbiorów zbioru 52 kart; 5) rzut monetą do momentu wypadnięcia orła: O, RO, RRO, RRO, ... (nieskończenie wiele możliwości).

Definicja 1. Zbiorem zdarzeń elementarnych, oznaczonym przez Ω , nazywamy zbiór wszystkich możliwych wyników doświadczenia losowego. Elementy $\omega \in \Omega$ nazywamy zdarzeniami elementarnymi, natomiast podzbiory $A \subseteq \Omega$ nazywamy **zdarzeniami**. Dla danego zdarzenia $A \subseteq \Omega$, przez $A' = \Omega \setminus A$ oznaczamy **zdarzenie** przeciwne do zdarzenia A.

Model Klasyczny

Definicja 2. Zalóżmy, że $0 < |\Omega| < \infty$. Funkcją prawdopodobieństwa nazywamy funkcję $\mathbb{P}: 2^{\Omega} \to [0,1]$, która przyporządkowuje każdemu zdarzeniu jego prawdopodobieństwo. Jeśli wszystkie wyniki doświadczenia są równoprawdopodobne, wówczas dla każdego zdarzenia elementarnego $\omega \in \Omega$ mamy

$$\mathbb{P}(\omega) := \mathbb{P}(\{\omega\}) = \frac{1}{|\Omega|}$$

i ogólniej, dla każdego zdarzenia $A \subseteq \Omega$ zachodzi

$$\mathbb{P}(A) = \frac{|A|}{|\Omega|}.$$

Taki model prawdopodobieństwa nazywamy modelem klasycznym.

Przykład 2. Oblicz prawdopodobieństwo, że w rzucie trzema kostkami na każdej z nich wypadnie taka sam liczba oczek.

Ω – zbiór wyników trzech rzutów kostką

$$\Omega = \{(1,1,1), (1,1,2), (1,2,1), \dots, (6,6,6)\}$$

$$|\Omega| = 6^3 = 216$$

Dla każdego zdarzenia elementarnego $\omega \in \Omega$ mamy $\mathbb{P}(\omega) = \frac{1}{|\Omega|}$. (model klasyczny)

A – zdarzenie polegające na tym, że na każdej kostce wypadnie taka sama liczba oczek

$$A = \{(1, 1, 1), (2, 2, 2), \dots, (6, 6, 6)\}$$

$$\mathbb{P}(A) = \frac{|A|}{|\Omega|} = \frac{6}{216} = \frac{1}{36}$$

Przykład 3. W urnie znajdują się 3 białe kule i 4 niebieskie kule. Losujemy jednocześnie dwie z nich. Z jakim prawdopodobieństwem wylosowane kule są różnego koloru?

 Ω – zbiór wyników losowania 2 kul spośród 7 kul w urnie

$$|\Omega| = \binom{7}{2} = 21$$

A – wybrano kule różnych kolorów

$$|A| = \binom{3}{1} \cdot \binom{4}{1} = 12$$

$$\mathbb{P}(A) = \frac{|A|}{|\Omega|} = \frac{12}{21} = \frac{4}{7}$$

Fakt 1. Podstawowe własności funkcji prawdopodobieństwa:

(I) $\mathbb{P}(A) = 1 - \mathbb{P}(A')$ (prawdopodobieństwo zdarzenia przeciwnego)

(II) $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B)$ (prawdopodobieństwo sumy zdarzeń)

Przykład 4. Gracz otrzymuje 5 kart z talii 24 kart. Ile wynosi prawdopodobieństwo, że otrzyma co najmniej jednego asa?

 Ω – pięcioelementowe podzbiory talii 24 kart, $|\Omega| = {24 \choose 5}$

A – gracz otrzyma co najmniej jednego asa

A' – gracz nie otrzyma ani jednego asa

$$\mathbb{P}(A) = 1 - \mathbb{P}(A') = 1 - \frac{|A'|}{|\Omega|} = 1 - \frac{\binom{20}{5}}{\binom{24}{5}}$$

Przykład 5. Losujemy liczbę ze zbioru $\{1, 2, \dots, 120\}$. Ile wynosi prawdopodobieństwo, że jest ona podzielna przez 3 lub 4?

$$\Omega = \{1, 2, \dots, 120\}, |\Omega| = 120$$

A – losowo wybrana liczba jest podzielna przez 3, $|A|=\frac{120}{3}=40$ B – losowo wybrana liczba jest podzielna przez 4, $|B|=\frac{120}{4}=30$

 $A \cup B$ – losowo wybrana liczba jest podzielna przez 3 lub przez 4

 $A \cap B$ – losowo wybrana liczba jest podzielna przez 3 i przez 4 (czyli przez 12), $|A \cap B| = \frac{120}{12} = 10$

$$\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B) = \frac{40}{120} + \frac{30}{120} - \frac{10}{120} = \frac{1}{2}$$

Prawdopodobieństwo geometryczne

Rozważmy doświadczenie, w którym wybieramy losowo punkt ze zbioru $\Omega \subset \mathbb{R}^n$, który ma skończoną i dodatnią miarę (czyli np. długość, pole, objętość w zależności od wymiaru). Miarę tę będziemy oznaczać przez $\lambda(.)$ (bez podawania formalnej definicji). Prawdopodobieństwo zdarzenia $A \subseteq \Omega$ (dla którego jesteśmy w stanie określić miarę) definiujemy wzorem

$$\mathbb{P}(A) = \frac{\lambda(A)}{\lambda(\Omega)}$$

i nazywamy prawdopodobieństwem geometrycznym.

Warto podkreślić, że punkt ma miarę zero, co za tym idzie każde zdarzenie elementarne $\omega \in \Omega$ spełnia $\mathbb{P}(\{\omega\})$ 0. Podobnie miara odcinka/prostej w przestrzeni co najmniej dwuwymiarowej wynosi zero, itd.

Przykład 6. Wybieramy losowo punkt z odcinka [0,1]. Ile wynosi prawdopodobieństwo, że odległość tego punktu od środka odcinka jest mniejsza niż 1/4?

$$\Omega = [0, 1]$$

A – zbiór punktów odcinka [0,1], których odległość od środka jest mniejsza niż 1/4, A=(1/4,3/4)

$$\mathbb{P}(A) = \frac{\lambda(A)}{\lambda(\Omega)} = \frac{3/4 - 1/4}{1 - 0} = \frac{1}{2}$$

Przykład 7. Ania i Basia umówiły się w Starbucksie między 16:00 a 17:00. Każda z nich przychodzi w losowym momencie, przy czym czeka na drugą maksymalnie 20 minut i jeśli koleżanka nie przyjdzie wychodzi. Jaka jest szansa, że dojdzie do spotkania? Ile wynosi prawdopodobieństwo, że przyjdą do kawiarni w tym samvm momencie?

$$\Omega = [0, 60] \times [0, 60]$$

 $\omega = (t_1, t_2), t_1 - \text{czas przyjścia Ani (liczony w minutach po 16:00)}, t_2 - \text{czas przyjścia Basi}$

A – dojdzie do spotkania Ani i Basi

Zauważmy, że $\omega=(t_1,t_2)\in A$ wtedy i tylko wtedy, gdy $t_1-20\leqslant t_2\leqslant t_1+20$. Musimy zatem wyznaczyć obszar w Ω odpowiadający układowi nierówności

$$\begin{cases} t_2 \geqslant t_1 - 20, \\ t_2 \leqslant t_1 + 20. \end{cases}$$

$$\mathbb{P}(A) = \frac{\lambda(A)}{\lambda(\Omega)} = \frac{\lambda(\Omega) - \lambda(A')}{\lambda(\Omega)} = \frac{3600 - 1600}{3600} = \frac{5}{9}$$

B – Ania i Basia przyjdą w tym samym momencie

$$\mathbb{P}(B) = \frac{\lambda(B)}{\lambda(\Omega)} = \frac{0}{3600} = 0$$

Niezależność zdarzeń

Definicja 3. Zdarzenia A i B nazywamy niezależnymi, gdy

$$\mathbb{P}(A \cap B) = \mathbb{P}(A) \cdot \mathbb{P}(B).$$

Uwaga 1. Zdarzenia rozłączone A i B (to znaczy takie, że $A \cap B = \emptyset$) nigdy nie są niezależne, chyba że $\mathbb{P}(A) = 0$ lub $\mathbb{P}(B) = 0$.

Przykład 8. Z talii 52 kart losujemy jedną kartę. Czy zdarzenia A – wylosowaliśmy asa i K – wylosowaliśmy kiera są niezależne?

 $\Omega - zbiór$ 52 kart talii

$$|A| = 4$$
, $|K| = 13$, $|A \cap K| = 1$

$$\mathbb{P}(A) \cdot \mathbb{P}(K) = \frac{4}{52} \cdot \frac{13}{52} = \frac{1}{52} = \mathbb{P}(A \cap K)$$

Zatem zdarzenia A i K są niezależne.

Definicja 4. Mówimy, że rodzina zdarzeń $\{A_i: i\in I\}$ jest niezależna jeśli dla każdego (skończonego) podzbioru indeksów $J\subseteq I$ zachodzi

$$\mathbb{P}\left(\bigcap_{j\in J} A_j\right) = \prod_{j\in J} \mathbb{P}(A_j).$$

Przykład 9. Rozważmy dwukrotny rzut kostką. Niech A będzie zdarzeniem polegającym na tym, że w pierwszym rzucie wypadła parzysta liczba oczek, B – w drugim rzucie wypadła parzysta liczba oczek, C – suma oczek w obu rzutach jest parzysta. Czy zdarzenia A, B i C są niezależne?

 Ω – możliwe wyniki dwukrotnego rzutu kostką, $|\Omega|=36$

$$|A| = |B| = 3 \cdot 6 = 18, |A \cap B| = 3 \cdot 3 = 9$$

$$\mathbb{P}(A) \cdot \mathbb{P}(B) = \frac{18}{36} \cdot \frac{18}{36} = \frac{1}{4} = \mathbb{P}(A \cap B)$$

Zatem zdarzenia A i B sa niezależne.

$$|C| = |C'| = 18, |A \cap C| = |B \cap C| = 3 \cdot 3 = 9$$

$$\mathbb{P}(A) \cdot \mathbb{P}(C) = \mathbb{P}(B) \cdot \mathbb{P}(C) = \frac{18}{36} \cdot \frac{18}{36} = \frac{1}{4} = \mathbb{P}(A \cap C) = \mathbb{P}(B \cap C)$$

Zatem zdarzenia Ai ${\cal C}$ są niezależne oraz zdarzenia ${\cal B}$ i ${\cal C}$ są niezależne.

$$|A \cap B \cap C| = 3 \cdot 3 = 9$$

$$\mathbb{P}(A \cap B \cap C) = \frac{9}{36} = \frac{1}{4} \neq \frac{1}{8} = \mathbb{P}(A) \cdot \mathbb{P}(B) \cdot \mathbb{P}(C)$$

Zatem zdarzenia A, B i C nie są niezależne, ale są parami niezależne.

Przykład 10. Losujemy dwie liczby z przedziału [0,1]. Niech A będzie zdarzeniem, gdzie pierwsza z tych liczb jest nie większa niż 1/2, B zdarzeniem, że druga z tych liczb jest nie większa niż 1/2, natomiast C zdarzeniem, że albo obie wylosowane liczby są nie większe niż 1/2, albo obie są większe od 1/2. Czy zdarzenia A, B i C są niezależne?

 $x, y \in [0, 1]$ – wylosowane liczby

$$\mathbb{P}(A) = \mathbb{P}(B) = \mathbb{P}(C) = 1/2$$

$$\mathbb{P}(A \cap B) = 1/4 = \mathbb{P}(A) \cdot \mathbb{P}(B) \Rightarrow A \text{ i } B \text{ są niezależne}$$

$$\mathbb{P}(A \cap C) = 1/4 = \mathbb{P}(A) \cdot \mathbb{P}(C) \Rightarrow A \text{ i } C \text{ sa niezależne}$$

$$\mathbb{P}(B \cap C) = 1/4 = \mathbb{P}(B) \cdot \mathbb{P}(C) \implies B \text{ i } C \text{ sa niezależne}$$

$$\mathbb{P}(A\cap B\cap C)=1/4\neq \mathbb{P}(A)\cdot \mathbb{P}(B)\cdot \mathbb{P}(C) \Rightarrow A, B \text{ i } C \text{ nie są niezależne}$$

Twierdzenie 2 (Własności zdarzeń niezależnych).

- (1) Jeśli A i B są zdarzeniami niezależnymi, to A i B' są niezależne, A' i B są niezależne oraz A' i B' są niezależne.
- (2) Jeśli A_1, A_2, \ldots, A_n są niezależne oraz przyjmiemy konwencję, że $A^0 = A$, $A^1 = A'$ dla dowolnego zdarzenia A, wówczas dla każdego ciągu $\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_n$, gdzie $\varepsilon_i \in \{0,1\}$ dla $i = 1, 2, \ldots, n$, zdarzenia $A_1^{\varepsilon_1}, A_2^{\varepsilon_2}, \ldots, A_n^{\varepsilon_n}$ są niezależne.