Lista 1 - Exercícios de Números Complexos

Exercício 1

Reduzir à forma a+ib cada uma das expressões abaixo:

(a)
$$(3+5i)+(-2+7i)$$

(b)
$$(\sqrt{3} - 2i) - i[2 - i(\sqrt{3} + 4)]$$

(c)
$$(3-5i)(-2-4i)$$

(d)
$$(2+3i)^2$$

(e)
$$i^{733}$$

(f)
$$i^4$$

(g)
$$i^{5}$$

Exercício 2

Para o número complexo $z=x+iy=re^{i\theta},$ expressar:

- (a) $r \in \theta$ em função de $x \in y$
- (b) x e y em função de r e θ

Exercício 3

Empregar a fórmula de Euler para demonstrar as seguintes relações:

- (a) $\cos \theta = \frac{1}{2} (e^{i\theta} + e^{-i\theta})$
- (b) $\theta = \frac{1}{2i} (e^{i\theta} e^{-i\theta})$
- (c) $\cos^2 \theta = \frac{1}{2} (1 + \cos 2\theta)$

Exercício 4

Considerar z como um número complexo nas coordenadas polares (r_0, θ_0) e nas coordenadas cartesianas (x_0, y_0) . Determinar as coordenadas cartesianas dos seguintes números complexos e representar z_0, z_1, z_2, z_3 no plano complexo quando $r_0 = 2$ e $\theta_0 = \pi$.

- (a) $z_1 = r_0 e^{i\theta_0}$
- (b) $z_2 = r_0$
- (c) $z_3 = r_0 e^{i(\theta_0 + \pi/2)}$

Exercício 5

Calcular o valor de:

- (a) i^{729}
- (b) i^{402}
- (c) i^{90}
- (d) i^{217}
- (e) $(1+i)^4$
- (f) $(1-i)^{20}$
- (g) $1 + i^2 + i^4 + \dots + i^{20}$

Exercício 6

Para o número complexo $z=x+iy=re^{i\theta}$ definir o número complexo conjugado, representado por \overline{z} , como $\overline{z}=x-iy=re^{-i\theta}$. Demonstrar que as seguintes relações são válidas:

- (a) $z\overline{z} = r^2$
- (b) $\frac{z}{\overline{z}} = e^{i2\theta}$
- (c) $z + \overline{z} = 2\Re(z)$
- (d) $z \overline{z} = 2i\Im(z)$

Exercício 7

Expressar cada um dos seguintes números complexos em coordenadas retangulares e polares, e representar no plano complexo:

- (a) z = 1 + i
- (b) z = -1 + i
- (c) z = -1 i
- (d) z = 1 i