Aus dem **Massenverhältnis** bei einer Reaktion kann man berechnen, wie viele Atome jeweils miteinander reagieren (**Anzahlverhältnis**) und daraus die Verhältnisformel für den entstandenen Stoff berechnen:

Beispiel: Welche Verhältnisformel hat Kupfersulfid?

Welche Verhältnisformel hat Kupfersulfid?

	Kupfer +	Schwefel ———	→ Kupfersulfid
Masse der Stoffportion:	m (Kupferportion) = 4 g	m (Schwefelportion) = 1 g	4 ° Masse
Masse eines Atoms:	m (1 Kupferatom) = 63,5 u	m (1 Schwefelatom) = 32 u 。 ○ ○	Im Periodensystem nachschauen
Anzahl der Atome in der	N(Cu-Atome) = $\frac{4 g}{63.5 u} = \frac{4 g}{\frac{63.5}{6 \cdot 10^{23}} g}$	N(S-Atome) = $\frac{1 g}{32 u} = \frac{1 g}{\frac{32}{6 \cdot 10^{23}} g}$	$\frac{N(Cu-Atome)}{N(S-Atome)} = \frac{3.8 \cdot 10^{22}}{1.8 \cdot 10^{22}} =$
Stoffportion:	= 3,8 · 10 ²² Cu-Atome	= 1,8 · 10 ²² S-Atome	Anzah

hlverhältnis

In der Verbindung Kupfersulfid müssen demnach doppelt so viele Kupfer- wie Schwefelionen enthalten sein. Das Anzahlverhältnis beträgt 2:1 und die Verhältnisformel ist Cu₂S

4 g Kupfer oder $3.8 \cdot 10^{22}$ Cu-Atome 1 g Kupfer oder $1.8 \cdot 10^{22}$ S-Atome

5g Kupfersulfid mit der Verhältnisformel Cu₂S

Merke:

Bei chemischen Reaktionen gilt das <u>Gesetz von der Erhaltung der Masse</u>. Die Ausgangsstoffe reagieren dabei in einem <u>bestimmten Massenverhältnis</u> miteinander.

Die Atome der an der Reaktion beteiligten Elemente verbinden sich in einem bestimmten Anzahlverhältnis.

Jeder Reinstoff besitzt ein ganz bestimmtes Anzahlverhältnis der beteiligten Elemente. Es wird in der Verhältnis- oder der Molekülformel ausgedrückt.

Ich möchte eine Tüte mit Pfefferkörnern und Samen im Anzahlverhältnis 2:3 befüllen. Wie viel muss ich von beiden Stoffen jeweils abwiegen?

Die Lösung:

m (1 Pfefferkorn) = 0.3 g

$$\frac{\text{m (1 Pfefferkorn)} \cdot 2}{\text{m (1 Samen)} \cdot 3} = \frac{0.3 \text{ g} \cdot 2}{0.08 \text{ g} \cdot 3} = \frac{0.6 \text{ g}}{0.24 \text{ g}} = \frac{0.25}{1} = \frac{1}{4}$$

m (1 Samen) = 0.08 g

→ Die Masse der Samen muss immer 4 mal größer sein als die Masse der Pfefferkörner z.B. 5 g Pfefferkörner und 20 g Samen

Nach diesem Prinzip: Berechnung des Massenverhältnisses aus der Verhältnisformel

<u>Beispiel</u>: Die Verhältnisformel von Silbersulfid ist Ag₂S. Wie groß ist das Massenverhältnis zwischen den Elementen Silber und Schwefel bei der Reaktion?

1. Aus der Verhältnisformel Ag₂S das Anzahlverhältnis ermitteln:

$$\frac{N(Ag-Atome)}{N(S-Atome)} = \frac{2}{1}$$

2. Aus dem Anzahlverhältnis das Atommassenverhältnis ermitteln:

$$m(Ag) = N(Ag - Atome) \cdot m(Ag - Atom)$$

= 2 \cdot 107,87 u = 215,74 u

$$m(S) = N(S - Atome) \cdot m(S - Atom)$$

= 1 · 32,1 u = 32,1 u

$$\frac{m (Ag)}{m (S)} = \frac{215,74 u}{32,1 u} = \frac{6,7}{1} \approx \frac{7}{1}$$

<u>Ergebnis</u>: Bei der Reaktion von Silber und Schwefel ist die Masse der Silberportion immer 7-mal schwerer als die Masse von Schwefel.

<u>Übung S. 101 Nr. 6</u> Die Verhältnisformel der Verbindung Calciumfluorid ist CaF₂. Ermittle das Massenverhältnis zwischen den Elementen Calicum und Fluor.

1. Aus der Verhältnisformel CaF₂ das Anzahlverhältnis ermitteln:

$$\frac{N(Ca-Atome)}{N(F-Atome)} = \frac{1}{2}$$

2. Aus dem Anzahlverhältnis das Atommassenverhältnis ermitteln:

$$m(Ca) = N(Ca - Atome) \cdot m(Ca - Atom)$$
$$= 1 \cdot 40,08 \text{ u} = 40,08 \text{ u}$$

$$m(F) = N(F - Atome) \cdot m(F - Atom)$$

= 2 \cdot 18,99 u = 37,98 u

$$\frac{m (Ca)}{m (F)} = \frac{40,08 u}{37,98 u} = \frac{1,06}{1} \approx \frac{1}{1}$$

<u>Ergebnis</u>: Bei der Reaktion von Calcium und Fluor muss die Masse der Calciumportion genauso schwer wie die Masse von Fluor sein.