MPC for Robot Manipulators With Integral Sliding Modes Generation

Swapneel Bhatt & Onur Calisir Team 1

Problem Statement

- MPC struggles with robot systems due to:
 - Nonlinear MIMO dynamics
 - Modelling uncertainties
 - High computational cost
- Proposed Solution:
 - Hierarchical control: Inverse Dynamics + ISM + MPC
 - ISM handles uncertainties first
 - Leads to a simplified MPC optimization
- Key Novelty:
 - ISM enforces sliding modes from initial time, creating uncertainty-free dynamics
 - Multi-rate control (fast ISM, slower MPC)
 - Significantly reduced computational complexity

Controller Overview

Three Layer Control Architecture

- 1) Inner Loop: Inverse Dynamics Controller
 - a) Linearizes nonlinear MIMO system
 - b) Transforms to n decoupled double integrators
- 2) Middle Loop: Integral Sliding Mode (ISM)
 - a) Rejects matched uncertainties
 - b) Fast sampling rate (high frequency)
- 3) Outer Loop: MPC
 - a) Optimal trajectory tracking
 - b) Handles constraints
- 4) Combine Control Law:
 - a) $v = u_MPC + u_ISM$

The full coupled robot model:

$$\underbrace{M(q)}_{ ext{inertia matrix}} \ddot{q} + \underbrace{n(q,\dot{q})}_{ ext{Coriolis/centripetal gravity + friction}} = au$$

$$e = q_{\rm ref} - q$$

$\begin{split} I_2 &= I_{222} + m_2 * (r_{12}^2 + r_{22}^2) + (m_3 + m_4 + m_5 + m_6) * \sigma_2^2 \; ; \\ I_3 &= -I_{2x2} + I_{2y2} + (m_3 + m_4 + m_5 + m_6) * \sigma_2^2 \end{split}$	Table A4. The expressions giving the elements of the kinetic energy matrix. (The Abbreviated Expressions have units of kg-m ² .)	$+I_{16} * \{C223 * C5 - S223 * C4 * S5\} + I_{21} * SC23 * CC4$ $+I_{20} * \{(1 + CC4) * SC23 * SS5 - (1 - 2 * SS23) * C4 * SC5\}$ $+I_{29} * \{(1 - 2 * SS23) * C5 - 2 * SC23 * C4 * S5\}\}$	$\begin{array}{l} b_{224} = 2 * \{ -I_{16} * C3 * S4 * S5 + I_{20} * SC4 * SS5 \\ +I_{21} * SC4 - I_{22} * S4 * S5 \} ; \end{array}$	$b_{634} = b_{624}$. $b_{635} = b_{625}$. $b_{434} = 0$. $b_{645} = b_{436}$. $b_{646} = 0$.
$m_2 * r_{x2}^2 - m_2 * r_{y2}^2 $; $I_4 = m_2 * r_{x2} * (d_2 + r_{x2}) + m_3 * a_2 * r_{x3}$	$a_{11} = I_{m1} + I_1 + I_5 * CC2 + I_7 * SS23 + I_{10} * SC23 + I_{11} * SC2$	$+I_{10} * (1 - 2 * SS23) + I_{31} * (1 - 2 * SS2);$ $\approx -2.76 * SC2 + 7.44 \times 10^{-1} * C223 + 0.60 * SC23$	$\approx -2.48 \times 10^{-5} \cdot C3 \cdot S4 \cdot S5$. $b_{125} = 2 \cdot \{-I_{15} \cdot S5 + I_{16} \cdot (C3 \cdot C4 \cdot C5 - S3 \cdot S5)$	
$+(m_3 + m_4 + m_5 + m_6) * a_2 * (d_2 + d_3);$	$+I_{20} * (SS5 * (SS23 * (1 + CC4) - 1) - 2 * SC23 * C4 * SC5)$ $+I_{21} * SS23 * CC4 + 2 * (I_5 * C2 * S23 + I_{12} * C2 * C23)$	$-2.13\times10^{-2}*(1-2*SS23).$	+I20 * SS4 * SC5 + I22 * C4 * C5);	Table A6. The expressions for the terms of the centrifugal matrix, (The Abbreviated Expressions have units of kg-m ² .)
$I_5 = -m_5 * a_2 * r_{y3} + (m_4 + m_5 + m_6) * a_2 * d_4 + m_4 * a_2 * r_{e4};$ $I_6 = I_{225} + m_5 * r_{y3}^2 + m_6 * a_5^2 + m_4 * (d_4 + r_{e4})^2 + I_{yy4}$	$+I_{15} * (SS23 * C5 + SC23 * C4 * S5)$	$b_{115} = 2 * \{I_5 * C2 * C23 + I_7 * SC23 - I_{12} * C2 * S23 + I_{15} * \{2 * SC23 * C5 + \{1 - 2 * SS23\} * C4 * S5\}$	$\approx -2.50 \times 10^{-5} * S5 + 2.48 \times 10^{-3} * (C3 * C4 * C5 - S3 * S5)$.	$c_{11} = 0$.
$I_6 = I_{225} + m_5 * r_{55}^2 + m_4 * a_5^2 + m_6 * (a_4 + r_{c4})^2 + I_{574} + m_5 * a_3^2 + m_5 * d_4^2 + I_{725} + m_6 * a_5^2 + m_6 * d_4^2$	$+I_{16} * C2 * (S23 * C5 + C23 * C4 * S5)$ $+I_{18} * S4 * S5 + I_{22} * (SC23 * C5 + CC23 * C4 * S5));$	$+I_{16} * C2 * (C23 * C5 - S23 * C4 * S5) + I_{21} * SC23 * CC4$	$b_{224} = 0 , b_{234} = b_{224} .$	$c_{12} = +I4 \cdot C2 - I8 \cdot S23 - I9 \cdot S2 + I13 \cdot C23$
$+m_6 * r_{x6}^2 + I_{xx6} $	$\approx 2.57 + 1.38 \cdot CC2 + 0.30 \cdot SS23 + 7.44 \times 10^{-1} \cdot C2 \cdot S23$.	$+I_{20} * ((1 + CC4) * SC23 * SS5 - (1 - 2 * SS23) * C4 * SC5)$ $+I_{22} * ((1 - 2 * SS23) * C5 - 2 * SC23 * C4 * S5))$	$b_{235} = b_{225}$, $b_{256} = 0$,	+I15 * S23 * S4 * S5 + I16 * C2 * S4 * S5
$I_7 = m_5 * r_{y,2}^2 + I_{xx5} - I_{yy3} + m_4 * r_{z4}^2 + 2 * m_4 * d_4 * r_{z4}$ $+ (m_4 + m_5 + m_4) * (d_4^2 - a_3^2) + I_{yy4} - I_{xx4} + I_{xx5}$ $-I_{xy5} + m_6 * r_{x2}^2 - I_{xx6} + I_{xx5} +$	$a_{12} = I_4 * S2 + I_5 * C23 + I_0 * C2 + I_{15} * S23 - I_{15} * C23 * S4 * S5 + I_{16} * S2 * S4 * S5 + I_{18} * (S23 * C4 * S5 - C23 * C5)$	$+I_{10} * (1 - 2 * SS23);$ $\approx 7.44 \times 10^{-1} * C2 * C23 + 0.60 * SC23$	$b_{2+5} = 2 * \{-I_{15} * S4 * C5 - I_{14} * S3 * S4 * C5\} \\ -I_{17} * S4 + I_{20} * S4 * (1 - 2 * SS5) 1 \approx 0.$	$+I_{15} * (C23 * C4 * S5 + S23 * C5) + I_{19} * C23 * SC4$ $+I_{20} * S4 * (C23 * C4 * CC5 - S23 * SC5)$ $+I_{22} * C23 * S4 * S5 ;$
$I_5 = -m_4 * (d_2 + d_3) * (d_4 + r_{c4}) - (m_5 + m_6) * (d_2 + d_3) * d_4$	$+I_{10} * S23 * SC4 + I_{20} * S4 * (S23 * C4 * CC5 + C23 * SC5)$ $+I_{20} * S23 * S4 * S5$;	$+2.20\times10^{-2} \cdot C2 \cdot S23 - 2.13\times10^{-2} \cdot (1-2 \cdot SS23)$.	$b_{246} = I_{23} * C4 * S5 ; \approx 0 .$	$\approx 6.90 \times 10^{-1} \cdot C2 + 1.34 \times 10^{-1} \cdot S23 - 2.38 \times 10^{-2} \cdot S2$.
$m_5 * r_{y3} * r_{c5} + m_5 * (d_2 + d_5) * r_{y5};$	$\approx 6.90 \times 10^{-1} \cdot S2 - 1.34 \times 10^{-1} \cdot C23 + 2.38 \times 10^{-2} \cdot C2$.	$b_{114} = 2 * \{-I_{15} * SC23 * S4 * S5 - I_{16} * C2 * C23 * S4 * S5 + I_{16} * C4 * S5 - I_{26} * (SS23 * SS5 * SC4 - SC23 * S4 * SC5)\}$	$b_{234} = I_{25} * S4 * C5 ; \approx 0 .$	$c_{13} = 0.5 * b_{123}$.
$I_9 = m_2 * r_{y2} * (d_2 + r_{z2});$	$a_{13} = I_6 * C23 + I_{13} * S23 - I_{15} * C23 * S4 * S5 + I_{19} * S23 * SC4$	$-I_{22} * CC23 * S4 * S5 - I_{21} * SS23 * SC4$;	$b_{312} = 0$, $b_{315} = 0$.	$c_{14} = -I_{15} \cdot S23 \cdot S4 \cdot S5 - I_{16} \cdot C2 \cdot S4 \cdot S5$
$I_{10} = 2 * m_4 * a_2 * r_{24} + 2 * (m_4 + m_5 + m_6) * a_3 * d_4;$	$+I_{16} * (S23 * C4 * S5 - C23 * C5) + I_{12} * S23 * S4 * S5$ $+I_{20} * S4 * (S23 * C4 * CC5 + C23 * SC5);$	$\approx -2.50 \times 10^{-5} * SC23 * S4 * S5 + 8.60 \times 10^{-4} * C4 * S5$ $= 2.48 \times 10^{-5} * C2 * C23 * S4 * S5 .$	$b_{314} = 2 * \{-I_{35} * C23 * C4 * S5 + I_{22} * S23 * C4 * S5 + I_{20} * [S23 * (CC5 * CC4 - 0.5) + C23 * C4 * SC5)\}$	$+I_{16} \cdot C23 \cdot C4 \cdot S5 + I_{20} \cdot S23 \cdot S4 \cdot SC5$ $-I_{22} \cdot C23 \cdot S4 \cdot S5$; ≈ 0 .
$I_{11} = -2 * m_2 * r_{x2} * r_{y2};$	$\approx -1.34 \times 10^{-1} * C23 + -3.97 \times 10^{-3} * S23$.		+I14 * S23 + I15 * S23 * (1 - (2 * SS4));	
$I_{12} = (m_4 + m_5 + m_6) * a_2 * a_3 ;$ $I_{15} = (m_4 + m_5 + m_6) * a_5 * (d_2 + d_5) ;$	$a_{14} = I_{14} * C23 + I_{15} * S23 * C4 * S5 + I_{16} * C2 * C4 * S5$	$b_{115} = 2 * (I_{20} * (SC5 * (CC4 * (1 - CC23) - CC23) - CC23) - SC23 * C4 * (1 - 2 * SS5)) - I_{15} * (SS23 * S5 - SC23 * C4 * C5)$	$\approx -2.50 \times 10^{-5} * C23 * C4 * S5 + 1.64 \times 10^{-5} * S23$	$c_{15} = -I_{15} * S23 * S4 * S5 - I_{14} * C2 * S4 * S5 ;$ $+I_{16} * (S23 * C5 + C23 * C4 * S5) - I_{22} * C23 * S4 * S5$
$I_{15} = \{m_4 + m_5 + m_6\} \cdot \sigma_5 \cdot \{\sigma_2 + \sigma_5\} \cdot \{I_{14} = I_{224} + I_{395} + I_{226} \}$	$+I_{18} \cdot C23 \cdot S4 \cdot S5 - I_{20} \cdot (S23 \cdot C4 \cdot SC5 + C23 \cdot SS5)$	$-I_{16} * C2 * (S23 * S5 - C23 * C4 * C5) + I_{18} * S4 * C5$	+ 0.30×10 ⁻³ • S23 • (1 - 2 • SS4) .	≈ 0.
$I_{15} = m_6 \cdot d_4 \cdot r_{16} \cdot 1$	+I ₂₂ • C23 • C4 • S5; ≈ 0.	$+I_{22} * \{CC23 * C4 * C5 - SC23 * S5\}\};$ $\approx -2.50 \times 10^{-5} * \{SS23 * S5 - SC23 * C4 * C5\}$	$b_{515} = 2 \cdot (-I_{15} \cdot C23 \cdot S4 \cdot C5 + I_{22} \cdot S23 \cdot S4 \cdot C5)$ $-I_{17} \cdot C23 \cdot S4$	$c_{26} = 0$, $c_{21} = -0.5 \cdot b_{112}$,
$I_{16} = m_6 * a_2 * r_{r6} *$	$a_{15} = I_{15} * S23 * S4 * C5 + I_{16} * C2 * S4 * C5 + I_{17} * S23 * S4$ + $I_{18} * (S23 * S5 - C23 * C4 * C5) + I_{22} * C23 * S4 * C5;$	$-2.48 \times 10^{-3} \cdot C2 \cdot (S23 \cdot S5 - C23 \cdot C4 \cdot C5)$	$+I_{20} * S4 * (C23 * (1 - 2 * SS5) - 2 * S23 * C4 * SC5);$	$c_{22} = 0$. $c_{25} = 0.5 * b_{225}$.
$I_{17} = I_{ee5} + I_{s=6} + m_6 * r_{s=6}^2$;	# O .	$+8.60\times10^{-4} * S4 * C5.$	$\approx -2.50 \times 10^{-5} * C23 * S4 * C5 - 6.42 \times 10^{-4} * C23 * S4$.	$c_{24} = -I_{15} \cdot C4 \cdot S5 - I_{16} \cdot S3 \cdot C4 \cdot S5 + I_{20} \cdot C4 \cdot SC5$;
$I_{16} = m_6 * (d_2 + d_3) * r_{i6} ;$	$a_{16} = I_{23} * (C23 * C5 - S23 * C4 * S5); \approx 0.$	$b_{116} = 0$.	$b_{316} = -b_{136}$, $b_{323} = 0$.	≈ 0.
$I_{19} = I_{xy4} - I_{zz4} + I_{cc5} - I_{yy5} + m_6 * r_{z6}^2 + I_{zz6} - I_{cc6};$	$a_{22} = I_{m2} + I_2 + I_6 + I_{20} \cdot SS4 \cdot SS5 + I_{21} \cdot SS4$	$b_{125} = 2 \cdot \{-I_8 \cdot S23 + I_{15} \cdot C23 + I_{15} \cdot S23 \cdot S4 \cdot S5$	$b_{824} = 2 * \{I_{20} * SC4 * SS5 + I_{21} * SC4 - I_{22} * S4 * S5\};$	$c_{25} = -I_{15} * C4 * S5 + I_{16} * \{C3 * C5 - S3 * C4 * S5\}$
$I_{23} = I_{y_25} - I_{zz5} - m_6 * r_{z6} + I_{zz6} - I_{zz6} ;$	$+2 * \{I_5 * S3 + I_{12} * C3 + I_{15} * C5\}$	$+I_{18} * (C23 * C4 * S5 + S23 * C5) + I_{19} * C23 * SC4$ $+I_{29} * S4 * (C23 * C4 * CC5 - S23 * SC5)$	≈ 0 .	$+I_{22} \cdot C5$; ≈ 0 .
$I_{21} = I_{xx4} - I_{yx4} + I_{xx5} - I_{xx5}$	$+I_{16} * (S3 * C5 + C3 * C4 * S5) + I_{22} * C4 * S5)$;	+ f - + C23 + SA - SE)	$b_{32*} = 2 * I - I_{15} * S5 + I_{20} * SS4 * SC5 + I_{22} * C4 * C5);$	$c_{26} = 0$. $c_{31} \approx -0.5 * b_{113}$.
$I_{22} = m_6 * a_5 * r_{16}$;	ible Lagrandian	expansion for a 4	L'DOF srobot arm	$c_{52} = -c_{23}$, $c_{53} = 0$.
I23 = I246; Part II. Gravitional Constants	ple-1/2 agrangian + 1/2 * 554 + 575 + 574 * 524 + 21 (1, * 674 1, * 644 * 55); * 353 + 3.72 × 10 * 1.10 × 10 * 2 * 2 * 3.	$b_{124} = -\frac{1}{4.8} * 2 * S23 * S4 * S5 + I_{19} * S23 * (1 - (2 * \overline{S}S4)) + I_{20} * S23 * (1 - 2 * SS4 * CC5) - I_{14} * S23 ; \approx 0$.	$b_{326} = 0$. $b_{334} = b_{324}$. $b_{345} = b_{326} \approx 0$.	$c_{54} = -I_{15} * C4 * S5 + I_{20} * C4 * SC5 ;$ $\approx -1.25 \times 10^{-5} * C4 * S5 .$
$g_1 = -g * ((m_3 + m_4 + m_5 + m_6) * a_2 + m_2 * r_{x2});$	$a_{24} = -I_{15} * S4 * S5 - I_{16} * S3 * S4 * S5 + I_{20} * S4 * SC5$;	$b_{125} = I_{17} * C23 * S4 + I_{18} * 2 * (S23 * C4 * C5 + C23 * S5)$	$b_{345} = -I_{15} * 2 * S4 * C5 - I_{17} * S4 + I_{20} * S4 * (1 - 2 * SS5);$	$c_{55} = -I_{15} * C4 * S5 + I_{22} * C5$; $\approx c_{54}$.
$g_2 = g * (m_5 * r_{25} - (m_4 + m_5 + m_6) * d_4 - m_4 * r_{24});$	≈ 0 .	$+I_{2i} * S4 * (C23 * (1 - 2 * S55) - S23 * C4 * 2 * SC5);$ ≈ 0 .	$\approx -2.50 \times 10^{-5} * S4 * C5$.	$c_{56} = 0$, $c_{41} = -0.5 * b_{114}$, $c_{42} = -0.5 * b_{224}$
$g_5 = g * m_2 * r_{y2};$	$a_{25} = I_{15} * C4 * C5 + I_{16} * (C3 * S5 + S3 * C4 * C5)$	$b_{126} = -I_{23} * (S23 * C5 + C23 * C4 * S5); \approx 0.$	$b_{346} = b_{246}$. $b_{256} = b_{254}$. $b_{412} = -b_{214}$.	$c_{45} = 0.5 * b_{425}$. $c_{44} = 0$. $c_{45} = 0$.
$g_4 = -g * (m_4 + m_5 + m_6) * a_5 ;$	$+I_{17} * C4 + I_{22} * S5$; ≈ 0 .	$b_{124} = b_{124}$, $b_{135} = b_{125}$, $b_{136} = b_{126}$.	$b_{415} = -b_{514}$, $b_{414} = 0$.	$c_{46} = 0$. $c_{51} = -0.5 * b_{115}$. $c_{52} = -0.5 * b_{225}$
$g_3 = -g \cdot m_6 \cdot r_{s6};$	$a_{26} = I_{25} * S4 * S5 $ ≈ 0 .	$b_{145} = b_{124} \cdot b_{135} = b_{125} \cdot b_{136} = b_{126} \cdot b_{145} = 2 * \{I_{15} * S23 * C4 * C5 + I_{16} * C2 * C4 * C5\}$	$b_{415} = -I_{20} * (S23 * C4 * (1 - 2 * SS5) + 2 * C23 * SC5)$ $-I_{17} * S23 * C4 ;$	$c_{53} = 0.5 * b_{523}$, $c_{54} = -0.5 * b_{445}$, $c_{35} = 0$.
	$a_{55} = I_{m3} + I_6 + I_{20} \cdot SS4 \cdot SS5 + I_{21} \cdot SS4$	+I ₁₈ + C23 + S4 + C5 + I ₂₂ + C23 + C4 + C5} + I ₁₇ + S23 + C4	≈ -6.42×10 ⁻⁴ • 523 • C4 •	$c_{54} = 0$, $c_{64} = 0$, $c_{69} = 0$.
Table A3. Computed Values for the Constants Appearing in the Equations of Forces of Motion.	$+2 * \{I_{15} * C5 + I_{23} * C4 * S5\}; \approx 1.16.$	$-I_{20} * (S23 * C4 * (1 - 2 * SS5) + 2 * C23 * SC5) $	$b_{436} = -b_{146}$, $b_{423} = -b_{324}$. $b_{434} = 0$.	
(Inertial constants have units of kilogram meters-squared)	$a_{34} = -I_{15} * S4 * S5 + I_{19} * S4 * SC5;$ $\approx -1.25 \times 10^{-5} * S4 * S5.$	≈ 0 .	$b_{425} = I_{17} * S4 + I_{20} * S4 * (1 - 2 * SS5);$	$c_{65} = 0$. $c_{64} = 0$. $c_{65} = 0$.
$I_1 = 1.43 \pm 0.05$ $I_2 = 1.75 \pm 0.07$	$a_{35} = I_{15} * C4 * C5 + I_{17} * C4 + I_{22} * S5$;	$b_{146} = I_{23} * S23 * S4 * S5 $; ≈ 0 .	≈ 6.42×10 ⁻⁴ • 54 .	c ₆₄ = 0.
$I_2 = 1.38 \pm 0.05$ $I_4 = 6.90 \times 10^{-1} \pm 0.20 \times 10^{-1}$	≈ 1.25×10 ⁻³ • C4 • C5 .	$b_{136} = -I_{23} \cdot (C23 \cdot S5 + S23 \cdot C4 \cdot C5); \approx 0.$	$b_{426} = -b_{246}$. $b_{424} = 0$.	Table A7. Gravity Terms.
$I_5 = 3.72 \times 10^{-1} \pm 0.31 \times 10^{-1}$ $I_4 = 3.33 \times 10^{-1} \pm 0.16 \times 10^{-1}$ $I_7 = 2.98 \times 10^{-1} \pm 0.29 \times 10^{-1}$ $I_8 = -1.34 \times 10^{-1} \pm 0.14 \times 10^{-1}$	$a_{56} = I_{22} * S4 * S5; \approx 0.$	$b_{212} = 0$, $b_{215} = 0$,	$b_{435} = b_{425}$. $b_{456} = -b_{346}$.	(The Abbreviated Expressions have units of newton-meters.)
$I_9 = 2.38 \times 10^{-2} \pm 1.20 \times 10^{-2}$ $I_{10} = -2.13 \times 10^{-2} \pm 0.22 \times 10^{-2}$	$a_{44} = I_{m4} + I_{14} - I_{20} * SS5$; ≈ 0.20 .	$b_{214} = I_{14} * S23 + I_{10} * S23 * (1 - (2 * SS4))$	$b_{445} = -I_{20} * 2 * SC5 ; \approx 0 .$	$\mathbf{g}_1 = 0$.
$I_{11} = -1.42 \times 10^{-2} \pm 0.70 \times 10^{-2}$ $I_{12} = -1.10 \times 10^{-2} \pm 0.11 \times 10^{-2}$ $I_{13} = -3.79 \times 10^{-3} \pm 0.90 \times 10^{-3}$ $I_{14} = 1.64 \times 10^{-3} \pm 0.07 \times 10^{-3}$	$a_{45} = 0$.	$+2 \cdot \{-I_{15} \cdot C23 \cdot C4 \cdot S5 + I_{16} \cdot S2 \cdot C4 \cdot S5 + I_{20} \cdot \{S23 \cdot (CC5 \cdot CC4 - 0.5) + C23 \cdot C4 \cdot SC5\}$	bass = 0;	$\mathbf{g}_2 = g1 \cdot C2 + g2 \cdot S23 + g3 \cdot S2 + g4 \cdot C23 ;$ $+g5 \cdot (S23 \cdot C5 + C23 \cdot C4 \cdot S5)$
$I_{15} = 1.25 \times 10^{-5} \pm 0.30 \times 10^{-5}$ $I_{16} = 1.24 \times 10^{-5} \pm 0.30 \times 10^{-5}$	$a_{46} = I_{23} \cdot C5$; ≈ 0 .	+I22 * S23 * C4 * S5);	$b_{454} = -I_{23} * S51 \approx 0.$	≈ -37.2 • C2 - 8.4 • S23 + 1.02 • S2 .
$I_{17} = 6.42 \times 10^{-4} \pm 3.00 \times 10^{-4}$ $I_{18} = 4.31 \times 10^{-4} \pm 1.30 \times 10^{-4}$	$a_{55} = I_{m5} + I_{17} \downarrow \approx 0.18$.	$\approx 1.64 \times 10^{-3} \cdot S23 - 2.50 \times 10^{-3} \cdot C23 \cdot C4 \cdot S5 + 2.48 \times 10^{-3} \cdot S2 \cdot C4 \cdot S5 + 0.30 \times 10^{-3} \cdot S23 \cdot (1 - (2 \cdot SS4))$.		$g_3 = g2 \cdot S23 + g4 \cdot C23 + g5 \cdot (S23 \cdot C5 + C23 \cdot C4 \cdot S5);$
$I_{19} = 3.00 \times 10^{-4} \pm 14.0 \times 10^{-4}$ $I_{29} = -2.02 \times 10^{-4} \pm 8.00 \times 10^{-4}$ $I_{21} = -1.00 \times 10^{-4} \pm 6.00 \times 10^{-4}$ $I_{22} = -5.80 \times 10^{-5} \pm 1.50 \times 10^{-5}$	$a_{54} = 0.$	$b_{215} = 2 \cdot \{-I_{15} \cdot C23 \cdot S4 \cdot C5 + I_{22} \cdot S23 \cdot S4 \cdot C5\}$		≈ -8.4 • S23 + 0.25 • C23 .
$I_{25} = 4.00 \times 10^{-5} \pm 2.00 \times 10^{-5}$	$a_{54} = 0$. $a_{64} = I_{m4} + I_{25}; \approx 0.19$.	$+I_{16} * 52 * 54 * C5$ } $-I_{17} * C23 * 54$	-,,,	$\mathbf{g}_{\bullet} = -g5 \cdot S23 \cdot S4 \cdot S5;$
$I_{m1} = 1.14 \pm 0.27$ $I_{m2} = 4.71 \pm 0.54$	\$100 Ltd 17 10 1 T 1	$+I_{20} * (C23 * S4 * (1 - 2 * SS5) - 2 * S23 * SC4 * SC5);$ $\approx -2.50 \times 10^{-5} * C23 * S4 * C5 + 2.48 \times 10^{-5} * S2 * S4 * C5$	$b_{524} = -b_{425}$. $b_{525} = 0$. $b_{526} = -b_{256}$.	≈ 2.5×10 ⁻² • S23 • S4 • S5 .
$I_{m5} = 8.27 \times 10^{-1} \pm 0.93 \times 10^{-1}$ $I_{m4} = 2.00 \times 10^{-1} \pm 0.16 \times 10^{-1}$ $I_{m5} = 1.79 \times 10^{-1} \pm 0.14 \times 10^{-1}$ $I_{m6} = 1.93 \times 10^{-1} \pm 0.16 \times 10^{-1}$	Table A5. The expressions giving the elements of the Coriolis matrix. (The Abbreviated Expressions have units of kg-m ² .)	≈ -2.50×10 ⁻⁴ • C23 • S4 • C5 + 2.48×10 ⁻⁴ • S2 • S4 • C5 - 6.42×10 ⁻⁴ • C23 • S4 .	$b_{354} = b_{524}$. $b_{535} = 0$. $b_{336} = -b_{356}$.	$g_5 = g5 * (C23 * S5 + S23 * C4 * C5);$
(Gravitational constants have units of newton meters)	many myleconoms mave units of gg-m*.)	$b_{215} = -b_{126}$,	$b_{545} = 0$, $b_{546} = -b_{456}$, $b_{556} = 0$,	$\approx -2.8 \times 10^{-2} * (C23 * S5 + S23 * C4 * C5)$.
$g_1 = -37.2 \pm 00.5$ $g_2 = -8.44 \pm 0.20$	$b_{112} = 2 * \{-I_3 * SC2 + I_5 * C223 + I_7 * SC23 - I_{12} * S223 \}$	$b_{325} = 2 * \{-I_{12} * S3 + I_5 * C3 + I_{16} * \{C3 * C5 - S3 * C4 * S5\}\}$;	$b_{612} = b_{126}$, $b_{613} = b_{136}$. $b_{614} = b_{146}$.	g ₀ = 0.
$g_3 = 1.02 \pm 0.50$ $g_4 = 2.49 \times 10^{-1} \pm 0.25 \times 10^{-1}$	$+I_{15} * (2 * SC23 * C5 + (1 - 2 * SS23) * C4 * S5)$	≈ 2.20×10 ⁻² • S3 + 7.44×10 ⁻¹ • C3 .	$b_{615} = b_{156}$. $b_{625} = 0$. $b_{623} = 0$.	[3]
$g_3 = -2.82 \times 10^{-2} \pm 0.56 \times 10^{-2}$			$b_{624} = b_{246} , \qquad \qquad b_{625} = b_{256} . \qquad \qquad b_{626} = 0 .$	[-]

Controller Formulation - ISM

Three Layer Control Architecture

1) Inner Loop: Inverse Dynamics Controller

$$\ddot{m{q}} = m{v} - m{\eta}(m{q}, \dot{m{q}}) \qquad \qquad m{\eta}(m{q}, \dot{m{q}}) = -m{M}^{-1}(m{q})(m{\hat{n}}(m{q}, \dot{m{q}}) - m{n}(m{q}, \dot{m{q}})) \; .$$

N-decoupled
$$\begin{cases} \dot{x}_{1_i}(t) = x_{2_i}(t) \\ \dot{x}_{2_i}(t) = v_i(t) - \eta_i(t) \end{cases}$$

Judie Integrators (21()

2) Middle Loop: Integral Sliding Mode (ISM)

$$\tilde{u}_{i_{\text{ISM eq}}}(t) = \frac{1}{\mu_{i}} \int_{t_{0}}^{t} e^{-\frac{1}{\mu_{i}}(t-\zeta)} u_{i_{\text{ISM}}}(\zeta) d\zeta$$

$$\begin{cases} \dot{x}_{1_{i}}(t) = x_{2_{i}}(t) \\ \dot{x}_{2_{i}}(t) = u_{i}(t) \end{cases}$$

$$egin{aligned} \sigma_i(oldsymbol{x}_i(t)) &= \ & oldsymbol{S}_i\left(oldsymbol{x}_i(t) - oldsymbol{x}_i(t_0) - \int_{t_0}^t [x_{2_i}(\zeta),\,v_i(\zeta) - u_{i_{ ext{ISM}}}(\zeta)]^T d\zeta
ight) & \dot{oldsymbol{x}}_i(t) &= oldsymbol{A}_ioldsymbol{x}_i(t) + oldsymbol{B}_iu_i(t) \end{aligned}$$

Sliding Mode Control

$$\sigma_i = S_i igg[x_i(t) - x_i(t_0) - \int_{t_0}^t igg[egin{matrix} x_{2i}(\zeta) \ u_i(\zeta) \end{bmatrix} d\zeta igg] \,, \qquad S_i = [c_i \;\; 1]$$

$$u_i^{ ext{ISM}} = -U_i^{ ext{max}} \; ext{sgn}(\sigma_i)$$

Controller Formulation - MPC

Outer Loop: MPC

Recap:
$$\ddot{m{q}} = m{v} + m{M}^{-1}(m{q})(\hat{m{n}}(m{q},\dot{m{q}}) - m{n}(m{q},\dot{m{q}})) = m{v} - m{\eta}(m{q},\dot{m{q}}))$$

$$v_i(t) = u_i(t) + \tilde{u}_{i_{\rm ISM\,eq}}(t)$$

$$x_{k+1} = ilde{A}\,x_k + ilde{B}\,u_k, \qquad ilde{A} = egin{bmatrix} 1 & T \ 0 & 1 \end{bmatrix}, \; ilde{B} = egin{bmatrix} rac{T^2}{2} \ T \end{bmatrix}$$

$$J(e_i(t_k), \mathbf{u}_{i_{[t_k, t_{k+N-1}|t_k]}}, N) =$$

$$\sum_{i=0}^{N-1} \|\boldsymbol{e}_i(t_{k+j})\|_{\boldsymbol{Q}_i}^2 + \|u_i(t_{k+j})\|_{R_i}^2 + \|\boldsymbol{e}_i(t_{k+N})\|_{\boldsymbol{\Pi}_i}^2$$

$$oldsymbol{x}_i(t_{k+j}) \in \mathcal{X}$$
 Subject to:

$$\boldsymbol{x}_i(t_{k+N}) \in \mathcal{X}_{\mathrm{f}}$$

$$\|u_i(t_{k+j})\| \le v_{i_{\max}} - U_{i_{\max}}$$

 $\boldsymbol{e}_i(t_k) = \boldsymbol{x}_i(t_k) - \bar{\boldsymbol{x}}_{i_{ref}}(t_k)$

$$\mathcal{X}_{\mathrm{f}} := \{ oldsymbol{x}_i \, | \, \|oldsymbol{x} - ar{oldsymbol{x}}_{i_{ref}}\|_{oldsymbol{\Pi}}^2 \leq
ho \}, \quad \mathcal{X}_{\mathrm{f}} \subseteq \mathcal{X}$$

q(t)

ISM control $\mathbf{u}(t)$

 K_{LQ} is the control gain of an infinite horizon Linear Quadratic (LQ) controller with the same cost function

$$\kappa_{i_{\mathrm{f}}}(oldsymbol{e}_{i}(t_{k})) = oldsymbol{K}_{\mathrm{LQ}}oldsymbol{e}_{i}(t_{k})$$

$$\boldsymbol{x}_i(t_k) \in \mathcal{X}_{\mathrm{f}}$$

$$\|\kappa_{i_{\mathrm{f}}}(\boldsymbol{e}_{i}(t_{k}))\| \leq v_{i_{\mathrm{max}}} - U_{i_{\mathrm{max}}}$$

Solution to the Riccati Equation

$$(\widetilde{\boldsymbol{A}}_i - \widetilde{\boldsymbol{B}}_i \boldsymbol{K}_{LQ})^T \boldsymbol{\Pi}_i (\widetilde{\boldsymbol{A}}_i - \widetilde{\boldsymbol{B}}_i \boldsymbol{K}_{LQ}) - \boldsymbol{\Pi}_i = -\boldsymbol{Q}_i - \boldsymbol{K}_{LQ}^T R_i \boldsymbol{K}_{LQ}$$

Paper Results

TABLE I STATE AND INPUT CONSTRAINTS FOR EACH JOINT

Joint i	$q_{i_{\max}}(\mathrm{rad})$	$\dot{q}_{i_{\mathrm{m}\mathrm{a}\mathrm{x}}}(\mathrm{rad}\;\mathrm{s}^{-1})$	$v_{i_{\max}}$ (rad/s ²)
1	1.83	2	145
2	2.71	3.5	250
3	3.49	6.3	350

: (s)

- Realistic uncertainty injection (identified from real robot data)
- Constraints: See Table I (position, velocity, acceleration limits)
- Target position: $q_ref = [\pi/4, \pi/3, 2\pi/4]^T$, from $q_0 = [0, 0, 0]$
- Controller parameters:
 - Ci = [10, 10, 10]
 - ISM gains: [20, 35, 85]
 - MPC: Q = diag(100,100), R = 0.1,
 - Terminal Weight
 - $\mathbf{\Pi}_i = \begin{bmatrix} 5213.4 & 165.8 \\ 165.8 & 221.3 \end{bmatrix}$ Horizon N=10
 - Sampling: MPC = 201115, 151VI 11115

Key Results:

- MPC/ISM reduces RMS error dramatically:
 - Joint 1: 0.2105 \rightarrow 0.0070 rad (30× decrease)
 - Joint 3: $1.0458 \rightarrow 0.0152 \text{ rad } (69 \times \text{decrease})$
- Similar control effort but better performance
- Computational efficiency:
 - MPC: 18ms average execution time
 - ISM: only 29µs average execution time
 - Suitable for real-time implementation
- MPC alone violates constraints.
- MPC/ISM ensures constraint satisfaction

time (s)

(rad)

TABLE II PERFORMANCE INDEXES FOR EACH JOINT

Strategy	Joint i	$e_{\mathrm{RMS}_{i}}(\mathrm{rad})$	E_{c_i} (rad/s ²)
MPC	1	0.2105	8.0303
	2	0.3749	13.4839
	3	1.0458	41.2172
MPC/ISM	1	0.0070	8.0600
	2	0.0102	13.4217
	3	0.0152	34.8530

TIME CONSUMPTION OF THE PROPOSED CONTROL STRATEGY IN SECONDS

Algo.	Mean	Min.	Max.	Std. dev.
MPC	0.018	0.017	0.71	0.011
ISM	2.9×10^{-5}	2.7×10^{-5}	0.0086	1.4×10^{-4}

Implementation on Matlab

- 1) Robot Joint Angle target: pi/2, pi/3, pi/4
- Joint trajectory from MPC and MPC-ISM controllers compared to reference cubic polynomial trajectory
- 3) Sinusoidal noise injected to see the benefits of the MI ISM Combined Controller Algorithm

Uncertainty Formulation and Injection

1. Uncertainty formulation:

```
% Deterministic component based on position
pos_comp = 0.5 * max_eta * sin(q(i));

% Deterministic component based on velocity
vel_comp = 0.2 * max_eta * sign(q_dot(i)) * min(abs(q_dot(i)), 1);

% Random component (bounded)
rand_comp = 0.3 * max_eta * (2*rand() - 1);

% Combined uncertainty
eta(i) = pos_comp + vel_comp + rand_comp;
```

2. Uncertainty injection:

Where M is the inertial matrix, n contains the nonlinear terms (friction, coriolis effect), and η is the uncertainty

3. This is done for all 3 joints.

$$\ddot{q} = M^{-1}(u - n + \eta)$$

```
% Compute acceleration: q_ddot = M^{-1}(\tau - n + \eta)| q_ddot = M \ (u - n + eta);
```

Results

- The results were not what was expected based on the paper.
- MPC Controller was very well tuned to account for the noise and gave highly accurate results.
- 3) MPC-ISM performed slightly worse than MPC.
- 4) However, the difference seems negligible both controllers have an error within hundredths of a radian.

```
Controller: MPC
RMS Tracking Error (rad):
   Joint 1: 0.0156
   Joint 2: 0.0207
   Joint 3: 0.0311
Control Effort (rad/s^2):
   Joint 1: 0.0259
   Joint 2: 0.0345
   Joint 3: 0.0518
Steady-state Error (rad):
   Joint 1: 0.005942
   Joint 2: 0.007923
   Joint 3: 0.011884
```

```
Controller: MPC-ISM
RMS Tracking Error (rad):
Joint 1: 0.0434
Joint 2: 0.0571
Joint 3: 0.0748
Control Effort (rad/s^2):
Joint 1: 8.4462
Joint 2: 13.5679
Joint 3: 57.2287
Steady-state Error (rad):
Joint 1: 0.026736
Joint 2: 0.034350
Joint 3: 0.050732
```

Results

 We can see however, that the ISM Controller adjusts the control input for the joints to account for the uncertainty

Results

 As the uncertainty goes higher in magnitude, the ISM controllers counter action increases as well

Possible considerations

- 1) Uncertainty modeling The simulated uncertainty might have not been aggressive enough to impact MPC performance as the uncertainty injected by the authors
- 2) Hardware Differences: The COMAU Smart3-S2 robot in the paper may have different characteristics than our simulated model
 - a) The paper notes that their model of the COMAU Smart3-S2 on Matlab Simulink was based on data from real experiments.
 - b) However, we are simulating a perfect model on which the MPC acts upon. Due to this, the performance of MPC itself is highly accurate.
 - c) The performance difference between MPC and ISM is marginally different, and seems to be negligible due to this .

References

- [1] Incremona, Gian Paolo, et al. "MPC for robot manipulators with integral sliding modes generation." IEEE/ASME Transactions on Mechatronics, vol. 22, no. 3, June 2017, pp. 1299–1307, https://doi.org/10.1109/tmech.2017.2674701.
- [2] Adaptive chaos control of a humanoid robot arm: a fault-tolerant scheme Scientific Figure on ResearchGate. Available from: https://www.researchgate.net/figure/Sliding-surface-and-sliding-variable-fig1-370320084
- [3] <u>ECE 5463</u> taught at Ohio State University by Prof. Wei Zhang <u>https://storage1.ucsd.ed</u> <u>u/slides/CSE291Robo/L9_lagrangian.html#/title</u>