Machine Learning Stanford University Professor Andrew Ng

Jordan Hong

June 4, 2020

Contents

1	Inti	coduction	3
	1.1	What is Machine Learning	3
	1.2	Supervised Learning	3
	1.3	Unsupervised Learning	4
2	Line	ear Regression with One Variable	4
	2.1	Model Representation	4
		2.1.1 Notations	4
		2.1.2 Hypothesis Function	5
	2.2	Cost Function	5
	2.3	Gradient Descent	5
		2.3.1 Intuition	5
		2.3.2 Gradient Descent Algorithm	5
		2.3.3 Gradient Descent with Linear Regression	6
		O .	
3	Rev	view of Linear Algebra	6
4	Line	ear Regression with Multiple Variables	7
	4.1	Multiple features	7
		4.1.1 Notation	7
		4.1.2 Hypothesis	7
	4.2	Gradient Descent for Multiple Variables	8
		4.2.1 Algorithm	8
		4.2.2 Vectorized Implementation	9
	4.3	Gradient Descent in Practise I: Feature Scaling	9
	4.4	Gradient Descent in Practise II: Learning Rate	9
	4.5	Features and Polynomial Regression	9
	4.6	Normal Equation	10
	4.7	Normal Equation and Non-invertibility	10
5			

6	Log	gistic Regression	10
	6.1	Classification	10
	6.2	Hypothesis Representation	11
		6.2.1 Logistic function	11
		6.2.2 Interpretation of Hypothesis Output	11
	6.3	Decision Boundary	12
	6.4	Cost function	12
	6.5	Simplified Cost Function and Gradient Descent	12
	6.6	Advanced Optimization	13
		6.6.1 Taking a Step Back	13
		6.6.2 Optimization Algorithm	13
	6.7	Multiclass Classification: One-vs-All	14

1 Introduction

1.1 What is Machine Learning

- 1. Machine Learning
 - Grew out of work in Artificial Intelligence (AI)
 - New capabilities for computers
- 2. Examples:
 - database mining
 - applications can't programby hand (handwriting recognition, Natural Language Processing (NLP), Computer Vision)
 - Neuromorphic applications
- 3. Definition
 - Arthur Samuel(1959)

Machine Learning: Field of study that gives computers the ability to learn without being explicitly programmed.

• Tom Mitchell(1998)

Well-posed Learning Problem: A computer program is said to learn from experience E with respect to some task T and some performance measure P, if its performance on T, as measured by P, improves with experience E.

- 4. Machine Learning in this course:
 - (a) Suppervised Learning
 - (b) Unsupervised Learning
 - (c) Others: reinforcement learning, recommender systems
 - (d) Practical application techniques

1.2 Supervised Learning

In supervised learning, the the right answer is given. For example:

- 1. Regression: predict real-valued output.
- 2. Classification: predict discrete-valued output.

Supervised Learning

Figure 1: Supervised Learning

Unsupervised Learning

Figure 2: Unsupervised learning

1.3 Unsupervised Learning

The right answer is not given, e.g. cocktail problem (distinguishing two voices from an audio file.)

2 Linear Regression with One Variable

2.1 Model Representation

2.1.1 Notations

For a training set:

- **m** = Number of training examples.
- $\mathbf{x} =$ "input" variable / features.

- y = "output" variables / "target" variable.
- (x,y) one training example.
- (xⁱ,yⁱ) denotes the ith training example

2.1.2 Hypothesis Function

A hypothesis function (h) maps input (x) to estimated output (y). How do we represent h?

Hypothesis Function
$$h_{\theta}(x) = \theta_0 + \theta_1 x$$
 (1)

We can apply Univariate linear regression with respect to x.

2.2 Cost Function

Recall 1. The θ_i s are parameters we have to choose. The intuition is is that we want to choose θ_i s such that h_{θ} is closest to y for our training examples (x,y).

Cost Function
$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$
 (2)

Summary

- 1. Hypothesis $h_{\theta}(x) = \theta_0 + \theta_1 x$
- 2. Parameters θ_0, θ_1
- 3. Cost Function $J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) y^{(i)})^2$
- 4. Goal $\min_{\theta_0,\theta_1} J(\theta_0,\theta_1)$

2.3 Gradient Descent

2.3.1 Intuition

- 1. We have some function $J(\theta_0, \theta_1)$, we want to $\min_{\theta_0, \theta_1} J(\theta_0, \theta_1)$
- 2. Outline: start with some θ_0, θ_1 , keep changing θ_0, θ_1 to reduce $J(\theta_0, \theta_1)$ until we end up at a minimum.

2.3.2 Gradient Descent Algorithm

Algorithm

repeat until convergence

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)$$
 (for j=0 and j=1).

}

Notes

- 1. the := denotes non-blocking assignment, i.e. simultaneously updates θ_0 and θ_1
- 2. We use the derivative to find a local minimum.
- 3. α denotes the learning rate. Gradient descent can converge to a local minimum even when the learning rate α is fixed. As we approach a local minimum, gradient descent will automatically take smaller steps. Therefore it is not needed to decrease α over time.

2.3.3 Gradient Descent with Linear Regression

Recall, we have:

1. Gradient Descent Algorithm:

repeat until convergence{

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) \quad \text{ (for j=0 and j=1)}.$$

}

2. Linear Regression Model:

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$
$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

We can substitute the above equations, which gives us:

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) \cdot x^{(i)}$$

3 Review of Linear Algebra

This is section is a basic review of linear algebra. I have skipped this section for now and will come back to it if time permits.

4 Linear Regression with Multiple Variables

4.1 Multiple features

Recall in the single variable case, we have a single input (x), two parameters (θ_0, θ_1) . The hypothesis can be expressed as:

$$h_{\theta}(x) = \theta_0 + \theta_1 x.$$

Now, consider a generalized case where there are multiple features: $X_1,\,X_2,\,X_3$. The information can be organized in a table with example numerical values:

Sample Number (i)	X_1	X_2	У
1	6	87837	787
2	7	78	5415
3	545	778	7507
4	545	18744	7560
5	88	788	6344

Table 1: Sample Table

From Table 1, one can see that each row is a sample a feature on each column.

4.1.1 Notation

- 1. **n**: number of features.
- 2. $\mathbf{x^{(i)}}$: (row vector) input features of the ith training example. i= 1, 2,..., m.
- 3. $\mathbf{x^{(i)}}_{j}$: value of feature j in the ith training example. j= 1, 2, ..., n.

4.1.2 Hypothesis

Previously,

$$h_{\theta}(x) = \theta_0 + \theta_1 \cdot x$$

Now, we can extend the hypothesis to:

$$h_{\theta}(x) = \theta_0 \cdot 1 + \theta_1 \cdot x_1 + \theta_2 \cdot x_2$$

For convenience of notation, let's define $x_0=1$, i.e. $x_0^i=1 \ \forall i$.

Therefore, we have:
$$\mathbf{x} = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$
 and $\theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \\ \vdots \\ \theta_n \end{bmatrix}$. Then, the hypothesis

function can be written as:

$$h_{\theta}(x) = \begin{bmatrix} \theta_0 & \theta_1 & \theta_2 & \dots & \theta_n \end{bmatrix} \cdot \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

$$= \theta^T \cdot \mathbf{x}$$
(3)

This is Multivariate linear regression.

4.2 Gradient Descent for Multiple Variables

4.2.1 Algorithm

Summary for Multivariables

- 1. Hypothesis $h_{\theta}(x) = \theta^T \cdot \mathbf{x}$
- 2. Parameters θ
- 3. Cost Function $J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) y^{(i)})^2$
- 4. Goal $\min_{\theta} J(\theta)$

}

Gradient Descent for Multiple Variables repeat until convergence{

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$
 (for j=0, 1,... n)

 $\theta_j := \theta_j - \alpha \frac{1}{m} \sum_{i=1}^m (h_{\theta}(\mathbf{x^{(i)}}) - y^{(i)}) \cdot x_j^{(i)}$

Note: $x_0^{(i)} = 1$, by definition.

4.2.2 Vectorized Implementation

One can work out the linear algebra and arrive at the following simplification using vectorized operations. The cost function J can be expressed as:

$$J(\theta) = \frac{1}{2m} (\mathbf{X}\theta - \mathbf{y})^T (\mathbf{X}\theta - \mathbf{y})$$
(4)

The MATLAB implementation is as follows:

```
m = length(y); % calculate how many samples
J = 1/(2*m)*((X*theta—y).')*(X*theta—y);
```

Gradient descent can be vectorized in the form:

$$\theta = \theta - \frac{\alpha}{m} \cdot \mathbf{X}^T \cdot (\mathbf{X}\theta - \mathbf{y}) \tag{5}$$

The MATLAB implementation is as follows:

```
m = length(y); % number of training examples
for iter = 1:num_iters
    theta = theta - alpha/m* X.'*(X*theta -y);
```

4.3 Gradient Descent in Practise I: Feature Scaling

- Idea: ensure each featurre are on a similar scale
- Get every feature into approx. $-1 \le x_i \le 1$ (\sim order)
- Mean Normalization: Replace x_i with $\frac{x_i \mu_i}{s_i}$, where μ_i and s_i are the sample mean and standard deviation, respectively.

4.4 Gradient Descent in Practise II: Learning Rate

- Ensure gradient descent is working: plot J_{θ} over each number of iteration (not over θ !)
- Example automatic convergence test: for sufficiently small α J_{θ} should decrease by less than 10^{-3} i one iteration.
- If α is too small, gradient descent can be slow to converge.
- If α is too large, gradient descent may not converge.
- To choose α , try 0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1... (by 3x)

4.5 Features and Polynomial Regression

We can fit into different polynomials by choice, using multivariate regression. Recall

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3$$

Let x_1 be x^1 , x_2 be x^2 , x_3 be x^3 . Note we should still apply feature scaling to x_1 , x_2 , and x_3 individually!

4.6 Normal Equation

The normal equation provides a method to solve for θ analytically. For our data with m samples, n features, recall each sample can be written as:

$$\mathbf{x^{(i)}} = \begin{bmatrix} x_0^{(i)} \\ x_1^{(i)} \\ x_2^{(i)} \\ \vdots \\ x_j^{(i)} \\ \vdots \\ x_n^{(i)} \end{bmatrix}$$

We can construct a design matrix:

$$\mathbf{X} = \begin{bmatrix} - & (x^{(1)})^T & - \\ - & (x^{(2)})^T & - \\ - & (x^{(3)})^T & - \\ \vdots & \vdots & \vdots \\ - & (x_m^T & - \end{bmatrix}$$
(6)

Then θ can be found by the normal equation:

$$\theta = (\mathbf{X}^{\mathbf{T}}\mathbf{X})^{-1}\mathbf{T}\mathbf{y} \tag{7}$$

Normal equation is useful as no α is required to and we do not need to iterate. However, we do have to compute $(X^TX)^{-1}$, which can be computationally expensive when n is large. The complexity is $O(n^3)$ for inverse operations. Gradient Descent is useful when n is large (many features).

4.7 Normal Equation and Non-invertibility

What if $(X^TX)^{-1}$ is non-invertible?

- Redundant features (linearly dependent), i.e. having same information in two different units.
- Too many features (i.e. $m \le n$). Delete some features or use regularization

5 Octave/MATLAB Tutorial

6 Logistic Regression

6.1 Classification

• Binary Classification: $y \in \{0,1\}$, where 0 denotes the negative class; 1 denotes the positive class.

• Multi-class Classification: $y \in \{0, 1, \dots, n\}$

We will be using binary classification:

- Linear regression is not suitable for classification: since $h_{\theta}(x)$ can output out of range, i.e. < 0 or > 1.
- We will use **logistic regression**, which ensures that the output $h_{\theta}(x)$ is between 0 and 1.

6.2 Hypothesis Representation

6.2.1 Logistic function

The idea is to have $0 \le h_{\theta}(x) \le 1$. Instead of the linear regression hypothesis: $h_{\theta}(x) = \theta^T x$, we will instead let:

$$h_{\theta}(x) = g(\theta^t x),$$

where

$$g(z) = \frac{1}{1 + e^{-z}}$$

g(z) is known as the **logistic function**, also known as the Sigmoind function. Figure 3 shows a plot of the logistic function, which ranges from 0 to 1. which yields

$$h_{\theta}(x) = \frac{1}{1 + e^{-z}}$$
 (8)

Figure 3: Sigmoid Function

6.2.2 Interpretation of Hypothesis Output

 $h_{\theta}(x) = \text{estimated probability that y} = 1 \text{ on input x. For example, } h_{\theta}(x) = 0.7$ gives us a probability of 70% that are output is 1. From a probability theory point of view, one can express $h_{\theta}(x)$ as $P(y = 1 \mid x; \theta)$.

Note that since this is a probability and the total probability sums up to 1, and the real y can only be either 0 or 1:

$$P(y = 0 \mid x; \theta) + P(y = 1 \mid x; \theta) = 1$$

6.3 Decision Boundary

Recall so far we have $h_{\theta}(x) = g(\theta^T x)$ and $g(z) = \frac{1}{1 + exp(-z)}$. Suppose we set $h_{\theta}(x) = 0.5$ to be our determining factor for whether y = 0 or y = 1. Note that from 3, one can observe that $h_{\theta}(x) = 0.5$ corresponds to $\theta^T x = 0$, which is the **decision boundary**. The decision boundary is the equation which separates the different classes on a plot. There are linear and non-linear decision boundaries.

6.4 Cost function

Previously, we had $J(\theta) = \frac{1}{m} \sum_{i=1}^{m} Cost(h_{\theta}(x^{(i)}), y^{(i)})$, where $Cost(h_{\theta}(x), y) = \frac{1}{2}(h_{\theta}(x) - y)^2$. Now, the definition of the hypothesis h_{θ} has changed to $\frac{1}{1 + exp(-\theta^T x)}$, as a result the cost function is now non-convex.

Logistic Regression Cost Function

Therefore, a new cost function definition is needed. We propose:

$$Cost(h_{\theta}(x), y) = \begin{cases} -log(h_{\theta}(x)) & \text{if } y = 1\\ -log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

Note that Cost=0, if y=1, $h_{\theta}(x) = 1$; but as $h_{\theta}(x) \to 0$, then $Cost \to \infty$. This proposition captures the intuition that if $h_{\theta}(x) = 0$, predict $P(y = 1 \mid x; \theta)$, but y ends up being 1, we will penalize the learning algorithm by very large cost.

6.5 Simplified Cost Function and Gradient Descent

Since y can only be either 0 or 1, we can simplify the cost function.

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} Cost(h_{\theta}(x^{(i)}), y^{(i)})$$

$$= \frac{-1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log (1 - h_{\theta}(x^{(i)})) \right]$$
(9)

Equation 9 is based on Maximum Likelihood Estimation.

A vectorized implementation is, for a design matrix X:

$$h = g(\mathbf{X}\theta) \tag{10}$$

$$J(\theta) = \frac{1}{m} (-y^T \log(h) - (1 - y)^T \log(1 - h))$$
(11)

For gradient descent, we would want to $\min_{\theta} J(\theta)$: Repeat {

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$

}

We can compute the partial derivative of $J(\theta)$, which is identical to that of linear regression:

$$\frac{\partial}{\partial \theta_j} J(\theta) = \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) \cdot x^{(i)}$$

However, in this case the hypothesis function $h_{\theta}(x) = \frac{1}{1 + exp(-\theta^T x)}$ has changed! A vectorized implementation for this is:

$$\theta := \theta - \frac{\alpha}{m} \mathbf{X}^{T} (g(\mathbf{X}\theta) - \mathbf{y}))$$
(12)

6.6 Advanced Optimization

6.6.1 Taking a Step Back

If we take a step back, and consider essentially what tasks we are performing. We need to compute two things:

- 1. $J(\theta)$
- 2. $\frac{\partial}{\partial \theta_i} J(\theta)$

6.6.2 Optimization Algorithm

There exists other more sophisticated and faster ways to optimize θ instead of gradient descent; they often do not involve selecting learning rate α and are more efficient. However, these algorithms are harder to code by hand. It is suggested that we use libraries for such algorithms.

We can write a single function that returns both $J(\theta)$ (jVal) and $\frac{\partial}{\partial \theta_j} J(\theta)$ (gradient):

```
function [jVal, gradient] = costFunction(theta)
    jVal = [...code to compute J(theta)...];
    gradient = [...code to compute derivative of J(theta)...];
end
```

Then we can use octave's "fminunc()" optimization algorithm along with the "optimset()" function that creates an object containing the options we want to send to "fminunc()".

```
options = optimset('GradObj', 'on', 'MaxIter', 100);
initialTheta = zeros(2,1);
[optTheta, functionVal, exitFlag] = fminunc(@costFunction,
    initialTheta, options);
```

We then give to the function "fminunc()" our cost function, our initial vector of theta values, and the "options" object that we created beforehand.

6.7 Multiclass Classification: One-vs-All

Now, let's extend the binary classification of data to multi-classes, i.e expanding our definition of y s.t. $y=\{0, 1, ..., n\}$. We will divide out problem into n+1 (0...n) binary classification problems. In each problem, we predict the probability that y is a memember of one of our class. We train a logistic regression classifier $h_{\theta}^{(i)}(x) \forall i$ to predict y=i:

$$h_{\theta}^{(i)}(x) = P(y = i \mid x; \theta) \tag{13}$$

Figure 4 shows an example of the procedure of classifying three classes. We choose one class and then lump all the others into a single second class (hence the name One-vs-All). We apply the binary logisic regression repeatedly and use the hypothesis that returns the highest value.

$$prediction = \max_{i} (h_{\theta}^{(i)}(x))$$
 (14)

Figure 4: Example of Multiclass Logistic Regression