Propiedades de Cerradura de los Lenguajes Regulares

Alan Reyes-Figueroa Teoría de la Computación

(Aula 09) 14.agosto.2023

Unión, Intersectión, Diferencia, Concatenación, Cerradura de, Lenguaje Reverso, Homomorfismo y Homomorfismo Inverso

Propiedades de Cerradura

- Recordemos que una propiedad de cierre es un enunciado sobre cierta operación de lenguajes, que cuando se aplica a una clase de lenguajes L (por ejemplo, los lenguajes regulares), produce un resultado que también está en esa clase L.
- Para lenguajes regulares, unamos cualquiera de sus representaciones para mostrar una propiedade decerradura.

Cerradura bajo la unión

- ◆Si L y M son lenguajes regulares, también lo es L ∪ M.
- Prueba: Sean L y M lenguajes representados por la expresiones regulares R y S, respectivamente.
- ◆Entonces, R+S es una expresión regular cuyo lenguaje es L ∪ M.

Cerradura de la Concatenación y de Kleene

Prueba: La misma idea:

- RS es una expresión regular cuyo lenguaje es LM.
- R* es una expresión regular cuyo lenguaje es L*.

Cerradura de la Intersección

- ◆Si L y M son lenguajes regulares, entonces también lo es L ∩ M.
- Prueba: Sean A y B dos autómatas AFD cuyos lenguajes son L y M, resp.
- ◆Construímos C = A × B, el autómata producto de A y B.
- Hacemos los estados finales de C, aquellos pares [q, r], donde q es estado final de A, y r es estado final de B.

Ejemplo: DFA para intersección

Cerradura bajo la Diferencia

- ◆Si L y M son lenguajes regulares, entonces también lo es ∠ − M.

 (las cadenas en L, pero no en M).
- Prueba: Sean A y B autómatas AFD cuyos lenguajes son L y M, resp.
- ◆Construímos C=A×B, el autómata producto.
- ◆Hacemos los estados finales de C, aquellos pares [q, r], donde q es estado final de A, pero r no es estado final de B.

Ejemplo: DFA para diferencia

Nota: observe en este ejemplo que la diff. es el lenguaje vacío.

Cerradura bajo Complemento

- ♦ El *complemento* de un lenguaje L (con respecto al alfabeto Σ, con Σ^* conteniendo L) es Σ^* L.
- Como Σ* es ciertamente un lenguaje regular, el complemento de un lenguaje regular L es también un lenguaje regular.

Cerradura bajo Reversa

- Dado un lenguaje L, L^R es el conjunto de todas las cadenas cuya cadena reversa está en L.
- ightharpoonup Ejemplo: L = {0, 01, 100}; L^R = {0, 10, 001}.
- Sea E una expresión regular para L.
- Mostraremos cómo revertir E, y producir una espresión regular E^R para L^R.

Reversa de una Regexp

- ◆Base: Si E es un símbolo a, ϵ , ó \emptyset , entonces $E^R = E$.
- ◆Inducción: Si E es
 - ightharpoonup F + G, entonces $E^R = F^R + G^R$.
 - FG, entonces $E^R = G^R F^R$
 - F*, entonces $E^R = (F^R)^*$.

Ejemplo: Reversa de regexp

- Sea E = 01* + 10*.
- \bullet ER = (01* + 10*)R = (01*)R + (10*)R
- $\bullet = (\mathbf{1}^*)^{\mathsf{R}}\mathbf{0}^{\mathsf{R}} + (\mathbf{0}^*)^{\mathsf{R}}\mathbf{1}^{\mathsf{R}}$
- \bullet = $(1^{R})*0 + (0^{R})*1$
- \bullet = 1*0 + 0*1.

Homomorfismos

Un homomorfismo sobre un alfabeto Σ es una función que asigna una cadena a cada símbolo del alfabeto.

h:
$$\Sigma \rightarrow \Sigma^*$$

- ightharpoonup Ejemplo: h(0) = ab; h(1) = t.
- Extendemos h a cadenas mediante $h(a_1...a_n) = h(a_1)...h(a_n)$.
- \bullet Ejemplo: h(01010) = abtabtab.

Cerradura bajo homomorfismos

- Si L es un lenguaje regular, y h es un homomorfismo sobre su alfabeto Σ , entonces $h(L) = \{h(w): w \in L\}$ es también un lenguaje regular.
- Prueba: Sea E una expresión regular de L.
- Aplicar h a cada símbolo en E.
- El lenguaje de la regexp resultante es h(L).

Ejemplo: Homomorfismos

- Considere h(0) = ab; $h(1) = \epsilon$.
- Sea L es el lenguaje generado por la expresión regular 01* + 10*.
- ♦ Entonces h(L) es el lenguaje generado por la expresión $\mathbf{ab} \in * + \epsilon(\mathbf{ab}) *$.

Note: usamos paréntesis para clarificar el agrupamiento.

Ejemplo: Homomorfismos

- ♦ $ab \in * + \epsilon(ab)*$ puede simplificarse.
- $\bullet \epsilon^* = \epsilon$, así que $ab\epsilon^* = ab\epsilon$.
- ◆ e es la identidad bajo la concatenación.
 - Esto es, $\epsilon E = E\epsilon = E$.
- Luego, $ab \in * + \epsilon(ab)* = ab \in + \epsilon(ab)*$ = ab + (ab)*.
- ◆Finalmente, L(ab) está contenido en L((ab)*), y la regex de h(L) es (ab)*.

Homomorfismo inverso

- Sea h un homomorfismo y L un lenguaje cuyo alfabeto Σ es el lenguaje output obtenido de aplicar h.
- ◆ Definimos el homomorfismo inverso por $h^{-1}(L) = \{w: h(w) \in L\}.$

Ejemplo: Homomorfismo inverso

- ◆Tome h(0) = ab; $h(1) = \epsilon$.
- ◆Consideremos L = {abab, baba}.
- ♦ h⁻¹(L) = el lenguaje con dos 0's y cualquier cantidad de 1's

$$= L(1*01*01*).$$

Nota: ninguna cadena se mapea en baba; cualquier cadena con dos 0's va a abab.

Closure Proof for Inverse Homomorphism

- Start with a DFA A for L.
- ◆Construct a DFA B for h⁻¹(L) with:
 - The same set of states.
 - The same start state.
 - The same final states.
 - Input alphabet = the symbols to which homomorphism h applies.

Proof - (2)

- ◆The transitions for B are computed by applying h to an input symbol a and seeing where A would go on sequence of input symbols h(a).
- Formally, $\delta_B(q, a) = \delta_A(q, h(a))$.

Example: Inverse Homomorphism Construction

Proof - (3)

- •Induction on |w| shows that $\delta_B(q_0, w) = \delta_A(q_0, h(w))$.
- \bullet Basis: $W = \epsilon$.
- $\bullet \delta_{B}(q_{0}, \epsilon) = q_{0}$, and $\delta_{A}(q_{0}, h(\epsilon)) = \delta_{A}(q_{0}, \epsilon) = q_{0}$.

Proof - (4)

- ◆Induction: Let w = xa; assume IH for x.
- $\bullet \delta_{B}(q_{0}, w) = \delta_{B}(\delta_{B}(q_{0}, x), a).$
- $\bullet = \delta_B(\delta_A(q_0, h(x)), a)$ by the IH.
- \bullet = δ_A (δ_A (q_0 , h(x)), h(a)) by definition of the DFA B.
- \bullet = $\delta_A(q_0, h(x)h(a))$ by definition of the extended delta.
- \bullet = $\delta_A(q_0, h(w))$ by def. of homomorphism.