Las Proposiciones

Matemáticas Grado 6 2018

Para pensar 1

 Es posible conseguir medir 4 litros exactos con estos recipientes?

Para pensar 2 ...

Son "lógicas" estas operaciones?

$$3+1 = 24$$
 $5+2 = 37$
 $7+2 = 59$
 $8+1 = 79$
 $7+5 = 212$
 $15+3 = 1218$

Periodo 1: Proposiciones

Propósitos

- Conocer las características y propiedades de la lógica proposicional.
- Expresar matemáticamente las operaciones entre enunciados haciendo uso de la lógica de proposiciones.

<u>Desempeños</u>

Clasificaras enunciados en proposiciones simples y compuestas, determinando el valor de verdad.

Determinaras enunciados lógicos y utilizaras sus propiedades para resolver situaciones problema del entorno.

Proposiciones

- Qué es una proposición?
- Es un enunciado que puede ser evaluado de forma lógica.
- Clases
- Simples: un enunciado.
- Compuestas: más de un enunciado con conectores lógicos.

- Valor de las proposiciones
- Sólo puede ser verdadero (V) o falso (F).

- <u>Lenguaje</u>
- Palabras clave: todos, algunos, ningún.

Notación de las proposiciones

Se denotan con letras minusculas

Proposiciones compuestas

Es la unión de dos o más proposiciones simples. Las palabras que permiten unirlas se llaman conectores lógicos:

"y" "o" "si, entonces" "si y solo si"

Valor de proposiciones compuestas

El valor depende de cada proposición simple y del conector usado. El manejo de posibilidades se hace en una *tabla de verdad*.

p	q	Valor conector
V	V	
V	F	
F	V	
F	F	

La conjunción: "y"

La proposición compuesta es verdadera solo si cada proposición simple es verdadera; en cualquier otro caso es falsa.

p	q	$p \wedge q$
V	V	V
V	F	F
F	V	F
F	F	F

La disyunción: "o"

La proposición compuesta formada por la disyunción siempre es verdadera, excepto cuando todas las proposiciones simples son falsas.

p	q	$p \bigvee q$
V	V	V
V	F	V
F	V	V
F	F	F

La condicional: "si, entonces"

El valor de la proposición compuesta por el condicional depende del valor que tenga la condición; sólo es falsa si el antecedente es verdadero y el consecuente falso.

p	q	$p \Rightarrow q$
V	V	V
V	F	F
F	V	V
F	F	V

p: antecedente, q: consecuente

Ejemplos - condicional

- Si 1+1 = 2, entonces el sol sale por el oriente.
- Si llueve, entonces llevo un paraguas.
- Si la luna es hecha de queso verde, entonces soy el Profesor de recreo.
- Si mi abuela tuviera ruedas, entonces ella sería un autobús.

La bicondicional: "si y sólo si"

El valor de la proposición compuesta con bicondicional sólo depende del valor de las proposiciones simples.

p	\overline{q}	$p \Leftrightarrow q$
V	V	V
V	F	F
F	V	F
F	F	V

Ejemplos - bicondicional

 Enseño matemáticas si y solo si me pagan una suma de dinero.

El Sol es una estrella si y sólo si 1+2=4.

La Tierra es cúbica si y sólo si 2+2=4.

1+1=3 si y solo si Marte es una estrella.

- Es la representación de Ejemplo. Resolver valores de OS proposiciones compuestas con uno más conectores.
- La elaboración se inicia desde los conectores fundamentales hasta los complejos.

$$\sim (p \land q)$$

- Es la representación de Ejemplo. Resolver valores de OS proposiciones compuestas con uno más conectores.
- La elaboración se inicia desde los conectores fundamentales hasta los complejos.

 Ejemplo. Resolver y analizar el resultado. En electrónica F->0, V->1.

• Ejemplo de aplicación. En circuitos electrónicos las proposiciones se denominan compuertas lógicas.

A	В	Х=А∧В
1	1	1
1	0	1
0	1	1
0	0	0

Actividad

1) Resolver $(p \land \sim q) \land q$ y analizar su resultado.

p	q	$\sim q$	$p \wedge \sim q$	$(p \land \sim q) \land q$
1	1			
1	0			
0	1			
0	0			

2) Dada los valores de cada letra hallar el valor en cada proposción

p	V
q	F
r	F
s	V

$$\bullet (p \land q) \Rightarrow (s \lor r)$$

$$(p \Leftrightarrow s) \lor (r \land q)$$

$$\qquad (r \vee s) \Leftrightarrow (p \Rightarrow q)$$

$$(s \Rightarrow r) \Rightarrow q$$

