Лабораторна робота № 3.

Тема: Перевірка гіпотези про рівномірний закон розподілу випадкової величини

Мета: навчитись перевіряти статичні гіпотези щодо закону рівномірного розподілу випадкової величини.

Теоретичні відомості

Статистичною гіпотезою називають певне припущення про окремі властивості генеральної сукупності, що перевіряється на основі властивостей вибірки.

У математичній статистиці виділяють два основні типи статистичних гіпотез: гіпотези про закон розподілу ймовірності випадкової величини (ознаки генеральної сукупності) — непараметричні статистичні гіпотези; гіпотези про значення параметрів розподілу випадкової величини (ознаки генеральної сукупності) — параметричні статистичні гіпотези.

Основною (нульовою) гіпотезою називають висунуту гіпотезу, яку позначають H_0 .

Альтернативною гіпотезою називають гіпотезу, яка заперечує твердження, висловлене в нульовій гіпотезі. Її позначають H_a .

Статистичним критерієм називається випадкова величина K, за допомогою якого проводиться перевірка гіпотези. Значення випадкової величини K, яке обчислене на основі певної вибірки, називають **емпіричним** (**спостережуваним**) **значенням критерію** і позначають K_{emn} .

Сукупність значень критерію K (випадкової величини K), згідно з яким нульова гіпотеза приймається, називається *областю прийняття гіпотези*, а сукупність значень критерію K, згідно з яким гіпотеза відхиляється, називається *критичною областю*.

Якщо емпіричне (спостережуване) значення критерію K_{emn} належить критичній області, то нульову гіпотезу відхиляють, якщо K_{emn} попадає в область прийняття гіпотези, то нульову гіпотезу приймають.

Критична область відмежовується від області прийняття гіпотези точкою, яка називається критичною і позначається $k_{\kappa p}$.

Перевірка статистичної гіпотези проводиться за таким планом:

- 1. Формулюють нульову гіпотезу H_0 , альтернативну гіпотезу H_1 і задають рівень значущості α для перевірки нульової гіпотези.
- 2. Визначають критерій K для перевірки гіпотези H_0 , який ϵ випадковою величиною з відомим розподілом ймовірностей.
- 3. Визначають критичні області відносно даних критерію K та рівня значущості α . Для визначення критичної області достатньо знайти критичні точки $k_{\kappa p}$.
- 4. Знаходять емпіричне (спостережуване) значення критерію K_{emn} на основі конкретної вибірки.

5. Приймають рішення: якщо емпіричне значення критерію K_{emn} потрапляє в критичну область, то нульову гіпотезу H_0 відхиляють; якщо ж значення K_{emn} потрапляє в область прийняття гіпотези, то нульову гіпотезу H_0 приймають.

Критерії, які призначені для перевірки сформульованих гіпотез, називають *критеріями узгодженості*. Критерії узгодженості дають змогу відповідати на питання про те, чи розбіжність між емпіричними і теоретичними розподілами ϵ настільки незначною, що вона може бути приписана впливу випадковості, чи ні.

Нехай дані вибірки згруповані і подані у вигляді дискретного або інтервального варіаційного ряду. Згідно з критерієм Пірсона, для перевірки гіпотези H_0 вводиться випадкова величина K:

$$K = \chi^2 = \sum_{i=1}^m \frac{(n_i - n_i')^2}{n_i'}, \qquad (3.1)$$

де: m — кількість груп у статистичному розподілі вибірки; $n_i' = n \cdot p_i$ — теоретична частота; n_i — емпірична частота; p_i — імовірність того, що значення випадкової величини X належить до i-ої групи $[z_{i-1}, z_i)$, і вона розрахована за допомогою гіпотетичної функції розподілу F(x) або густини розподілу f(x),

$$p_{i} = F(z_{i}) - F(z_{i-1}) = \int_{z_{i-1}}^{z_{i}} f(x)dx$$
 (3.2)

Для обчислення ймовірностей p_1 і p_m у формулі (3.2) записують, відповідно, $z_0 = -\infty$ і $z_m = +\infty$.

Гіпотетичні функції розподілу F(x) та f(x), як правило, характеризуються деякими чисельними параметрами, точні значення яких є невідомими. Тоді для обчислення теоретичних ймовірностей p_i ці невідомі параметри замінюються їх точковими оцінками, визначеними за допомогою даних вибірки.

Випадкова величина χ^2 характеризується **кількістю ступенів свободи**

$$k = m - s - 1, \tag{3.3}$$

де m — кількість інтервалів статистичного розподілу, s — кількість параметрів, що входять до гіпотетичного розподілу.

Якщо маємо повне узгодження теоретичного і статистичного розподілів, то K=0, у протилежному випадку K>0, тобто маємо правобічну критичну область. За формулою (3.1) обчислюємо $K_{exm}=\chi^2_{exm}$ і

визначаємо за рівнем значущості α та кількістю ступенів свободи з таблиці критичних точок розподілу χ^2 критичне значення $\chi^2_{_{\it xp}}=k_{_{\it xp}}$. Якщо $K_{_{\it esm}}>k_{_{\it xp}}$, то нульову гіпотезу відхиляємо, інакше нульову гіпотезу приймаємо.

Застосування критерію χ^2 вимагає дотримання таких вимог:

- 1) експериментальні дані мають бути незалежними, тобто вибірка повинна бути випадковою;
- 2) обсяг вибірки має бути великим (практично не меншим 50 одиниць), а частота кожної групи не менша 5. Якщо остання умова не виконується, проводять об'єднання нечисленних груп.

Завдання: Для 15 мобільних додатків при опитуванні користувачів (90 осіб) були визначенні значення характеристик якості програмного забезпечення (ПЗ): І — функціональність; ІІ — відповідність стандартам; ІІІ — захищеність; ІV — надійність; V — зрілість; VІ — завершеність; VІІ — стійкість до відмов; VІІІ — здатність до відновлення; ІХ — зручність використання; Х — зрозумілість; ХІ — зручність роботи; ХІІ — привабливість; ХІІІ — продуктивність; ХІV — часова ефективність; ХV — зручність супроводу. Результати впорядкування наведено в такій таблиці:

	I	II	III	IV	V	VI	VII	VIII	IX	X	XI	XII	XIII	XIV	XV
1	18	12	6	0	1	6	2	24	2	3	5	3	0	4	5
2	12	8	9	5	3	7	4	16	7	2	4	3	2	4	4
3	11	6	6	4	5	8	4	7	6	8	5	5	5	7	3
4	10	10	3	2	11	9	2	4	2	6	8	6	6	4	6
5	3	9	6	5	8	11	2	8	5	4	7	11	1	4	5
6	11	8	9	2	10	7	1	3	4	14	4	6	3	7	1
7	6	4	6	5	10	5	5	4	9	7	13	5	3	4	3
8	5	8	10	5	3	6	6	4	1	6	7	6	7	6	10
9	5	5	6	8	7	7	6	3	4	8	6	12	4	7	2
10	2	5	2	9	2	6	11	6	10	6	4	9	7	6	7
11	1	3	8	6	5	2	7	0	11	5	7	5	8	11	12
12	2	3	7	5	9	3	14	3	4	4	10	7	5	6	9
13	2	4	5	6	4	2	12	3	5	6	4	5	7	7	14
14	2	1	2	12	6	10	3	1	13	7	3	4	10	9	6
15	0	4	5	16	6	1	11	4	7	4	3	3	22	4	3

Чи можна стверджувати, що мобільний додаток не достатньо має функціональності? Чи можна те ж саме стверджувати про захищеність? Перевірити твердження для кожної з характеристик якості ПЗ мобільного додатоку.

Хід роботи

- 1. Відкриваємо робочий лист Excel і називаємо його «Якість ПЗ».
- 2. Вводимо дані таблиці в комірки **A2:O16**. У комірки **A1:O1** вводимо назви характеристик якості ПЗ.
- 3. Відкриваємо новий робочий лист і називаємо його «Результати».
- Формуємо таблицю для проведення обчислень. Об'єднуємо комірки C1:D1. E1:F1. AC1:AD1 i вводимо «Функціональність», «Відповідність стандартам», «Захищеність», ..., «Зручність супроводу». У комірках A2, C2, E2, ..., AC2 вводимо назву «бали», а у комірках В2, D2, F2,..., AD2 назву «частоти». Комірки AE1:AF1 теж об'єднуємо і вводимо назву «Теоретичні частоти». У відповідні комірки вносимо числові дані задачі. Зауваження: якщо припущення задачі правильне, то вибір ознаки мав би рівномірно розподілитися між 15 місцями, тобто на кожне місце припало б по шість виборів (90:15=6, де 90 – обсяг вибірки, 15кількість характеристик якості ПЗ). Якщо рейтинг певної характеристики розподілений за рівномірним законом, то це означає, що користувачі не надають переваги цієї характеристики якості ПЗ, якщо ж розподіл відмінний від рівномірного, то відповідній характеристиці якості ПЗ віддається перевага. Сформулюємо дві гіпотези:
 - Н₀: користувачі не надали переваги функціональності (розподіл ознаки «функціональність» є рівномірним);
 - Н₁: користувачі акцентують свою увагу на характеристиці якості ПЗ «функціональність» (розподіл ознаки «функціональність» є нерівномірним).
- 5. Вводимо в стовпець **AE3:AE17** число 6, що відповідає теоретичній частоті рівномірного розподілу для даної задачі 90:15=6.
- 6. Вводимо у комірку **F3** формулу = (**E3 AE3**)²/**AE3** і поширюємо її вміст за допомогою маркера на весь стовпець **F3:F17**.
- 7. Вводимо у комірку **P3** формулу = (**O3 AE3**)^2/**AE3** і поширюємо її вміст за допомогою маркера на весь стовпець **P3:P17**.
- 8. Об'єднуємо комірки **A21:B21**, **A22:B22**, ..., **A35:B35** і вводимо назви «Функціональність», «Відповідність стандартам», «Захищеність», ..., «Зручність супроводу».
- 9. Об'єднуємо комірки **C20:D20** і вводимо назву **«хі-квадрат»**. Об'єднуємо комірки стовпця **«хі-квадрат»**.
- 10. Об'єднуємо комірки **E20:F20** і вводимо назву **«Розподіл для 0,05»**. Об'єднуємо комірки стовпця **«Розподіл для 0,05»**. Об'єднуємо комірки **I20:J20** і вводимо назву **«Розподіл для 0,01»**. Об'єднуємо комірки стовпця **«Розподіл для 0,01»**.

- 11. Об'єднуємо комірки **M20:N20, O20:P20, Q20:R20**, і вводимо назви «Рівні значущості», «Ступені свободи», «Критичні точки». Об'єднуємо комірки стовпців «Рівні значущості», «Ступені свободи», «Критичні точки», врахувавши, що кожен з них складається тільки з двох комірок.
- 12. У стовпець «Рівні значущості» вводимо числа 0,05 та 0,01. У стовпець «Ступені свободи» вводимо числа 14 та 14.
- 13. У комірку **Q21** вводимо статистичну функцію = **ХИ2ОБР** і заповнюємо її діалогове вікно (рис. 3.1).

Рис. 3.1. Меню статистичної функції ХИ2ОБР

- 14. У комірці **R21** здійснюємо аналогічну операцію, але вже для рівня значущості 0,01.
- 15. У комірку **C23** вводимо формулу = **CУММ**, заповнюємо її діалогове вікно (рис. 3.2.). У рядок **Число 1** вводимо адреси комірок **F3:F17**, які відповідають частотам риси характеру «**Функціональність**».

Рис. 3.2. Обчислення емпіричного значення критерію хі-квадрат

16. Вводимо у комірку **E23** формулу = **ECЛИ** (**C23<Q21**; "рівномірний розподіл"; "нерівномірний розподіл"). Щоб ввести цю формулу, необхідно зайти в меню **Вставка** → **Функция** → **Логические** і заповнити діалогове вікно цієї функції (рис. 3.3).

Рис. 3.3 Діалогове вікно логічної функції ЕСЛИ

- 17. У комірці **123** повторюємо дії пункту 16, але вже для критичної точки при рівні значущості 0,01.
- 18. Виконуємо обчислення для всіх характеристик якості ПЗ. Побудуємо гістограми для деяких характеристик якості ПЗ, наприклад, для функціональності та захищеності.
- 19. Виділяємо стовпець **ЕЗ:Е17**. Заходимо в меню **Вставка** → Диаграмма... → Стандартные і вибираємо з меню Гистограмма (рис. 3.4).

Рис. 3.4. Вибір виду гістограми

20. Натискаємо **Далее** > (крок 2 з 4), внаслідок чого з'явиться діалогове вікно (крок 3 з 4), в якому заповнюємо назву осі X – функціональність (рис. 3.5).

Рис. 3.5. Введення назв осей гістограми

21. Натискаємо Далее >. В діалоговому вікні ставимо позначку, яка вкаже куди помістити діаграму (рис. 3.6.), і натискаємо Готово.

Рис. 3.6. Вибір місця розміщення діаграми

- 22. Переміщуємо діаграму під таблицю результатів обчислень, попередньо відредагувавши її.
- 23. Аналогічно будуємо решту діаграм.

Індивідуальне завдання № 3

Випадково не означає довільно: випадковість підпорядковується своїм суворим законам. Послідовність випадкових цифр має задовольнити ряд вимог випадковості. Зокрема, від такої послідовності природно вимагати, щоб поява всіх цифр була рівно ймовірною. Заповнюємо таблицю №1 своїми випадковими (на ваш погляд) числами в діапазоні (1-25)*N, де N порядковий номер за списком студентів в тіа і перевірте за допомогою критерію χ^2 , чи справді запропонована вами послідовність цифр є випадковою (чи розподіл цифр, виписаних вами є рівномірним). Виконайте послідовність дій з 1п. до 23 п. Якщо послідовність не є випадковою, то якій цифрі ви надаєте перевагу?

Примітка. Виписуючи послідовність, не передивляйтесь і не використовуйте в який-небудь інший спосіб уже виписану частину послідовності: кожну наступну цифру виписуйте так, ніби ви пишете її вперше (ніби до цього нічого не записувалося).

Рекомендації щодо оформлення звіту

Звіт повинен містити:

- титульний аркуш;
- найменування і мету роботи;
- відомості щодо виконання завдання;
- висновки по роботі.