WTMH

An CWT-CNN based Al Server for Arrhythmia Screening

of Real-Time Single-Lead ECG

Advisor

Prof. Che-Wei Lin

Team Members (Name and organization)

卓子平 朱俊憲 謝侑良

李振揚 黃伊靜 陳政瑋

Department of BioMedical Engineering (BME)

National Cheng Kung University (NCKU)

Mentors (Name and organization)

Ken Ying-Kai Liao, NVIDIA

Outline

- Introduction
- Architecture Diagram
 - Original Timely System
 - Revised Architecture
- Architecture & Result Comparison
- Issues Faced
- Energy Efficiency
- Conclusion
- Future work

Introduction

Objective:

Develop an Al server for real-time single-lead ECG (單導程心電圖) analysis for screening arrhythmia (心律不整).

- Problem trying to solve
 - When performing Continuous Wavelet Transform (CWT) in real-time and large-data detection insufficient processing speed leads to data accumulation.

Using 3 Hour ECG data to testify: 13.52 sec (segmentation) + 80.52 sec (CWT) + 8.63 sec (CNN) (10501 heart beats)

Original Timely System Architecture Diagram

Revised Architecture Diagram

Feature Generation & Classification: combined as a CNN model

Transform Pytorch deep learning model into TensorRT inference engine

Revised Architecture Diagram

Architecture Comparison Table

Result Comparison Graph

Issues Faced

- The PyTorch-Wavelet package found online do not meet our requirement
 - Selecting a frequency range from 4 to 40
 - Solution: modifying the source code to include frequency range selection
- Unable to compress PyTorch-Wavelet and CNN concatenation into TensorRT
 - Reason: because the parameter of the filter in CWT is not fixed (is constructed when the model is initialized)
 - Solution: extracting the filter parameters into the CWT+CNN model
- We are using float64 as TensorRT input, but the model is built with float32 input, so it cannot get all the input data.

Energy Efficiency

INPUTS			
# CPU Cores	8		
# GPUs (A100)	1		
Application Speedup	2.8x		
Node Replacement	1.4x		
поие керіасеттеті	1.4X		

GPU NODE POWER SACINGS				
	AMD Dual Rome 7742	8x A100 80GB SXM4	Power Saving	
Compute Power (W)	1540	6500	-4960	
Networking Power (W)	65	93	-25	
Total Power (W)	1605	6593	-4988	

0.2x

0.34

14855.85

44567.54

Node Replacement

\$/kWh

Annual Cost Savings

3-year Cost Savings

ANNUAL ENERGY SAVINGS PER GPU NODE				
	AMD Dual Rome 7742	8x A100 80GB SXM4	Power Saving	
Compute Power (W)	13490	56940	43450	
Networking Power (W)	570	814	244	
Total Power (W)	14060	57754	43694	

		814	244
		57754	43694
		Metric Tons of CO ₂	31
		Gasoline Cars Driven for 1 year	7
	Seedlings Trees grown for 10 years		512

	POWER ASSUMPTIONS					
	Node Configurations	Baseline Node AMD Dual Rome7742	Alternative 8x A100 80GB SXM4			
	CPU SKU	7742	7742			
	# CPU	2	2			
	# CPU Core	128	128			
	CPU Power (W)	450	450			
	GPU SKU	0	A100 80BG SXM4			
	# GPU	0	8			
	GPU Power (W)	0	3200			
	Network Type	IB EDR	IB EDR			
4	#Network Ports	1	2			
	Network Card Power (W)	30	60			
	RBoM Power	300	450			
]	Total Compute Node Power (W)	1100	6500			
$\frac{1}{1}$	Core Network Power / Node	46	93			
ı						

Energy Efficiency

	GPU NODE POWER SAVINGS		ANNUAL ENERGY SAVINGS PER GPU NODE			
	AMD Dual Rome 7742	8x A100 80GB SXM4	Power Saving	AMD Dual Rome 7742	8x A100 80GB SXM4	Power Saving
Compute Power (W)	1540	6500	-4960	13490	56940	43450
Networking Power (W)	65	93	-25	570	814	244
Total Power (W)	1605	6593	-4988	14060	57754	43694

Demo Video

Demo Video

Conclusion

- Conduct CWT transform in Pytorch model format
- Concat CWT and CNN Pytorch model
- Transform the concated model into tensorRT inference engine
- Inference the result through Triton server
- Speed up 40X for Large-ECG-data (3hours up) inference
- Speed up 5x for timely ECG inference

Application Background

- The use of ECG for disease detection is becoming increasingly common.
- If servers are used to provide this service, the following benefits can be realized:
 - Data storage(SQL)
 - 2. Retrain model(latest models)
 - 3. Case Reports
 - 4. Automatic annotation

Hackathon Objectives and Approach

Objectives

- Accelerate CWT
- More stable system

Approach

- Pytorch-Wavelet
- TensorRT
- Triton inference server

Technical Accomplishments and Impact

- Instant ECG analysis and database creation
- Monitor patient status remotely (Ex: home care & Ambulance ECG connects hospital)
- Patient database
- Convenient long-time ECG data (holter ECG, overnight ECG) annotation

Future Work

- Add more comprehensive CSS and JavaScript
 - Appearance and login interface, etc.
- Enhance cybersecurity-related management
- Enhance the manageability of the server
 - Automate Routine Tasks:
 - Use automation tools to handle repetitive tasks like updates, backups, and monitoring. Scripts and automation platforms can save time and reduce errors.
 - Establish Security Protocols:
 - Implement strict security measures, including firewalls, intrusion detection systems, and regular security audits.
- Extend to 12-leads ECG data