- 1 -

Raisonnement par récurrence

Le raisonnement par récurrence sert à montrer qu'une infinité de propositions P_n sont vraies pour $n \ge n_0$ où $n_0 \in \mathbb{N}$. On s'y prend en 3 étapes :

- Initialisation: On montre qu'une proposition P_{n_0} est vraie pour $n_0 \in \mathbb{N}$.
- **Hérédité**: On montre que pour tout $n \ge n_0$, si la proposition P_n est vraie, alors la proposition P_{n+1} l'est aussi.

On dit que la propriété « P_n est vraie » est héréditaire.

• Conclusion : Puisque on a initialisé à n_0 et que notre propriété est héréditaire, alors pour tout $n \ge n_0$: P_n est vraie.

// Exemple :

On considère la suite $(u_n)_{n\geq 0}$ définie pour tout $n\geq 0$ par $u_{n+1}=3u_n+\frac{1}{2}$ et $u_0=2$. Montrer par récurrence que (u_n) est croissante.

Propriété 1 : Inégalité de Bernoulli

Pour tout réel $a \geq 0$ et tout $n \in \mathbb{N}$, on a :

$$(1+a)^n \ge 1 + na$$

Preuve. Soit $a \geq 0$, on va montrer par récurrence que l'inégalité est valable pour tout entier naturel n:

• Initialisation : Pour n = 0, on a $(1+a)^0 = 1$ et $1+0 \times a = 1$. On a donc bien que $(1+a)^0 \ge 1+0 \times a$.

Année 2024/2025 Page 1/2

• **Hérédité** : On suppose que l'inégalité est vérifiée pour un entier naturel n, montrons qu'elle l'est aussi pour n+1 :

$$(1+a)^n \ge 1 + na \iff (1+a)(1+a)^n \ge (1+a)(1+na) \quad \text{car } 1+a \ge 1$$

 $\iff (1+a)^{n+1} \ge 1 + na + a + na^2$
 $\iff (1+a)^{n+1} \ge 1 + (n+1)a + na^2$
 $\iff (1+a)^{n+1} \ge 1 + (n+1)a \quad \text{car } a \ge 0$

Notre propriété est donc héréditaire.

• Conclusion : Par principe de récurrence, pour tout entier naturel n, on a

$$(1+a)^n \ge 1 + na$$

// Exemple :

Soit q > 1, montrer que pour tout entier naturel n, on a : $q^n \ge 1 + n(q-1)$

Année 2024/2025 Page 2/2