REVISIÓN DE ALGUNOS INDICADORES PARA MEDIR LA DESIGUALDAD

XAVIER MANCERO CEPAL

Medidas de Desigualdad

- Para medir el grado de desigualdad en la distribución del ingreso, existe una serie de índices disponibles, con propiedades distintas entre sí.
- En principio, ninguno de ellos es mejor que el resto. La utilidad de cada uno dependerá de cómo satisface las "propiedades deseables" de los indicadores de desigualdad.

Propiedades Deseables

1) Independencia de escala

El indicador no debe variar ante transformaciones proporcionales de los ingresos (p.e. unidad de medida)

2) <u>Independencia de tamaño de la población</u>

La desigualdad debe mantenerse si se agrega un número proporcional de individuos a todos los niveles de ingreso.

3) Independencia ante cambios en posición

Si dos individuos intercambian su posición en la distribución de ingresos, la desigualdad no debe verse afectada.

4) Principio "Débil" de Transferencias

La desigualdad debe disminuir ante una transferencia de ingresos de un hogar "rico" a un hogar "pobre".

Propiedades Deseables

5) Principio "Fuerte" de Transferencias

Ante una transferencia de ingresos de un hogar "rico" a un hogar "pobre", la disminución en la desigualdad será más pronunciada a medida que aumente la distancia entre los ingresos de ambos hogares.

6) Descomposición Aditiva

La concentración de ingreso para una población debe ser igual a la suma de la desigualdad intra-grupal e inter-grupal para los subgrupos que la conforman.

7) Rango del Indice

Es deseable que el índice tome valores entre 0 y 1, donde igualdad máxima = 0 y desigualdad máxima = 1.

Tipos de Indicadores de Desigualdad

- Medidas Estadísticas
 - Rango de Variación, Desviación Media Relativa,
 Varianza, Coeficiente de Variación, Varianza de los Logaritmos.
- Curva de Lorenz y Coeficiente de Gini
- Indicadores basados en Funciones de Utilidad
- Indicadores basados en la Entropía

Medidas Estadísticas

• Campo de Variación

$$CV = \frac{y^{max} - y^{min}}{\mu}$$

- Indicador poco útil porque sólo depende de los valores extremos de la distribución.
- Desviación Media Relativa

$$DMR = \sum_{i=1}^{n} |\mu - y_i| / (n\mu)$$

 No es sensible a transferencias que ocurren entre individuos con un ingreso inferior (o superior) a la media (no cumple axioma 4).

Medidas Estadísticas

• <u>Varianza</u>

$$V = \frac{\sum_{i=1}^{n} (\mu - y_i)^2}{n}$$

- Satisface el Axioma de Transferencias
- Limitación: Depende del ingreso medio ⇒ Mientras más alto sea el ingreso, mayor será la desigualdad
- Coeficiente de Variación

$$CV = \frac{\sqrt{V}}{\mu}$$

- Corrige problema de dependencia de la media.
- Limitación: El peso de la transferencia no varía con la posición relativa en la distribución (una transferencia de \$10 tiene el mismo efecto, ya sea de \$1000 a \$900 o de \$150 a \$50).

Medidas Estadísticas

• Varianza de los Logaritmos

$$VL = \frac{\sum_{i=1}^{n} (\log \mu - \log y_i)^2}{n}$$

- Respecto a la Varianza, la utilización de logaritmos permite asignar más peso a las transferencias que se den en la parte baja de la distribución.
- El resultado no varía con el ingreso medio.

Curva de Lorenz

• Muestra el porcentaje acumulativo de ingreso que poseen los individuos u hogares, ordenados en forma ascendente de acuerdo con su nivel de ingreso.

Curva de Lorenz

• Para determinar el grado de desigualdad, se compara las Curvas de Lorenz.

A "domina" a $B \Rightarrow$ Designaldad es menor en A

A y B se cruzan \Rightarrow No es posible establecer comparaciones

Curva de Lorenz Generalizada

• En caso de que las Curvas de Lorenz se crucen, es posible utilizar la CL Generalizada, multiplicando los valores por la media de cada distribución (μ_A y μ_B).

Comparaciones de Bienestar con la Curva de Lorenz

- El "bienestar" no depende únicamente de la distribución, sino también de otros factores como el nivel de ingresos.
 - A y B son distribuciones acumuladas del ingreso.
 - Si L_A "domina" a L_B y μ_A ≥ μ_B ⇒ bienestar es mayor en A
 - − Si L_A "domina" a L_B y $\mu_B > \mu_A \Rightarrow$ se compara LG
 - Si L_{A} y L_{B} se cruzan pero LG_{A} y LG_{B} no \Longrightarrow se compara LG
 - Si LG_A y LG_B se cruzan \Rightarrow no es posible realizar comparaciones de bienestar

Coeficiente de Gini

• Indica el área comprendida entre la Curva de Lorenz y la Línea de Equidistribución, expresada como un porcentaje del área total.

$$Gini = M / (M + N)$$
$$G \in [0,1]$$

• Existen diversas fórmulas que se <u>aproximan</u> al valor del Coeficiente de Gini.

Coeficiente de Gini

- Si bien el Coeficiente de Gini es el indicador de desigualdad más utilizado (por su facilidad de interpretación), presenta algunos problemas:
 - Es insensible ante cambios en la distribución el ingreso que mantengan inalterada el área bajo la línea de 45°.
 - No cumple con el axioma "fuerte" de transferencias; es decir, las transferencias no se ponderan por su posición en la escala de ingresos.
 - Su interpretación puede dar resultados ambiguos cuando las Curvas de Lorenz se cruzan.
 - No satisface la propiedad de descomposición aditiva; es decir, la desigualdad en un país no se puede obtener a partir de los coeficientes de Gini para cada región.

Indicadores basados en Funciones de Utilidad

- Todos los indicadores de bienestar tienen una función de bienestar implícita. Existen índices que plantean explícitamente la función de utilidad a utilizar.
- El primer índice de este tipo fue del Indice de Dalton:

$$D = 1 - \sum_{i=1}^{n} \frac{U(y_i)}{nU(\mu)}$$

- Este índice muestra la "pérdida" de bienestar debida a la desigualdad con respecto a una distribución igualitaria.
- Su limitación principal es que varía con las transformaciones a la función U(.), por lo que tiene poca utilidad práctica.

Indicadores basados en Funciones de Utilidad

 Un indicador que corrige este defecto es el Indice de Atkinson, basado en la noción del "ingreso igualitariamente distribuido" (y_e):

$$A = 1 - \frac{y_e}{\mu} \qquad A \in [0,1]$$

- y_e es el ingreso que, si se distribuyera equitativamente, proporcionaría el mismo nivel de utilidad que la distribución actual.
- Interpretación del Indice: Si A = 0.3 ⇒ se necesitaría el 70% del nivel de ingresos para alcanzar el mismo nivel de utilidad actual.

Indicadores basados en Funciones de Utilidad

• En la práctica, el cálculo del Indice de Atkinson requiere definir una función de Utilidad. Se suele utilizar la siguiente:

$$U(y) = \frac{y^{1-\varepsilon}}{1-\varepsilon}$$

 El parámetro ε representa la "aversión a la desigualdad" (característica práctica del índice de Atkinson):

 $\epsilon=0$ implica indiferencia ante la desigualdad; a medida que $\epsilon\to\infty$, aumenta la importancia de los más pobres.

Indicadores basados en la Entropía

- Existen indicadores que aprovechan la noción de "contenido informativo": a menor probabilidad de ocurrencia de un evento, mayor información contiene su realización.
- Aplicando este concepto a la distribución de ingresos, se obtiene un indicador que asigna mayor importancia a los ingresos más bajos.
- El indicador más conocido de este tipo es el Indice de Theil:

 $T = \frac{1}{n\mu} \sum_{i=1}^{n} Y_i \log \left(\frac{Y_i}{\mu} \right)$

Indicadores basados en la Entropía

- Las mayores ventajas del Indice de Theil son:
 - Cumple con el Axioma de Descomposición Aditiva
 - Cumple con el Axioma "Fuerte" de Transferencias
- Una posible limitación sería la arbitrariedad de aplicar una forma logarítmica, ya que la utilización de otras también es factible.

Otros Indicadores

• Indice Generalizado de Entropía:

$$I^{\beta} = \frac{1}{\beta + 1} \int \left[\left(\frac{y}{\mu} \right)^{\beta + 1} - 1 \right] dF(y)$$

• Adicionalmente, existe una vasta lista de indicadores de desigualdad.

Conclusiones

- Para medir la desigualdad, existe una vasta serie de indicadores con distintas propiedades.
- Los valores de estos indicadores no son directamente comparables entre sí, y es probable que generen ordenamientos distintos para las distribuciones de ingreso.
- Para considerar que una distribución es más desigual que otra, todos los indicadores deben coincidir, de otra forma el resultado es ambiguo.

Conclusiones

- Ningún indicador es estrictamente superior, por lo tanto, es conveniente utilizar varios indicadores a la vez, de manera complementaria.
- A pesar de ser extensamente utilizado, el Indice de Gini tiene algunas características que limitan su utilidad:
 - No satisface Axioma "Fuerte" de Transferencias
 - No satisface descomposición aditiva
 - No es claro cuando Curvas de Lorenz se cruzan
 - Peso de transferencias es mayor en torno al centro de la distribución.