COMP20003 **Algorithms and Data Structures** Why sorting?

Nir Lipovetzky Department of Computing and Information Systems University of Melbourne Semester 2

Why is sorting useful to study?

- Sorting has many applications and is used widely
 - In the business world
 - In science
 - and many other disciplines
- Sorting is used within many other algorithms
 - very well-studied
 - · demonstrates fundamental concepts CS
- Skiena: Chapter 4

COMP20003 Algorithms and Data Structures

2-2

Why is sorting useful to study?

• Different algorithms for sorting have different properties, which affect performance

\overline{n}	$n^{2}/4$	$n \lg n$
10	25	33
100	2,500	664
1,000	250,000	9,965
10,000	25,000,000	132,877
100,000	2,500,000,000	1,660,960

Table from Skiena, The Algorithm Design Manual

• When data are big, efficiency matters, again!

Selection Sort

```
void selection(item* A, int n)
  int i,j,min;
  for( i = 0; i < n-1; i++ )
                                   /* why n-1? */
      min = i;
       for( j = i+1; j < n; j++ )
          if( cmp( A[j], A[min] ) < 0 ) min = j;</pre>
       SWAP( A[i], A[min] );
```

Selection Sort

- Worst case:
- Best case:
- Average case:
- Usefulness?

COMP 20003 Algorithms and Data Structures

Selection Sort

• Is selection sort stable?

COMP 20003 Algorithms and Data Structures

1-6

Insertion Sort: The idea

https://www.jdoodle.com/a/5uQ

```
void insertion(item* A, int n)
{
   int i,j,val;
   for( i=1; i < n; i++ )
   {
      val = A[i]; j=i;
      while( A[j-1] > val )
      {
            A[j] = A[j-1]; j--;
      }
      A[j] = val;
   }
} /* this code doesn't usually work - why not? */
```

Insertion Sort

• In order to fix it, you need to either:

COMP 20003 Algorithms and Data Structures

1-8

Insertion Sort

- Worst case:
- Average case:
- Best case:
- Stability?
- Usefulness of insertion sort:

COMP 20003 Algorithms and Data Structures

The sound of sorting

https://www.voutube.com/watch?v=t8a-iYGHpEA

COMP 20003 Algorithms and Data Structures

1-10

Divide and Conquer

- Divide-and-conquer is a common strategy in efficient algorithms
- Divide and Conquer Strategy:
 - Divide instance of problem into smaller instances
 - Solve smaller instances usually recursively
 - e.g. Binary Search

20003 Algorithms and Data Structures

Divide and Conquer

In sorting, the usual strategy is:

- Divide instance of problem into smaller instances
- Solve smaller instances usually recursively
- Combine smaller solutions

COMP 20003 Algorithms and Data Structures

1-12

Split-solve-join

1-14

• Hard split, easy join: Quicksort

• Easy split, hard join: Mergesort

COMP 20003 Algorithms and Data Structures