

الجمهورية الجزائرية الديمقراطية الشعبية وزارة التربية الوطنية

الديوان الوطني للامتحانات والمسابقات امتحان بكالوريا التعليم الثانوي

الشعبة: علوم تجريبية

دورة: 2022

المدة: 03 سا و30 د

اختبار في مادة: الرياضيات

على المترشح أن يختار أحد الموضوعين الآتيين:

الموضوع الأول

التمربن الأول: (04 نقاط)

الدالة العددية المعرّفة على \mathbb{R} بتمثيلها البياني (C_f) في المستوي المنسوب إلى المعلم المتعامد المتجانس (C_f) ، $(O; \vec{i}, \vec{j})$ مماس (C_f) مماس في النقطة ذات الفاصلة O كما هو مبيّن في الشكل المقابل.

- (T) بقراءة بيانية: عيّن f'(0) و f'(x) و أعط معادلة للمماس (f'(0)
- f(x) = x + m ناقش بيانيا، حسب قيم الوسيط الحقيقي m، عدد حلول المعادلة: (2
 - $f(x) = (x^2 + a)e^x + b$ بيّن أنّ a = 1 و b = -1 و a = 1
- . الدالة العددية المعرّفة على \mathbb{R} بين أنّ الدالة $g(C_g)$ و $g(x)=(x^2+1)e^{|x|}-1$ بين أنّ الدالة g (وجية ثم اشرح كيفية إنشاء g) انطلاقا من g0 انطلاقا من g1 انطلاقا من g3 المعلم السابق.

التمرين الثاني: (04 نقاط)

أجب بصحيح أو خاطئ مع التبرير في كلّ حالة من الحالات التالية:

 $f(x) = \frac{x^2 - x + \ln x}{x}$: ب $]0;+\infty[$ بالدالة العددية المعرّفة على $]0;+\infty[$

 $+\infty$ عند f عند المائل لمنحنى الدالة y=x-1

 $\ln(2x-1) + \ln(2x+1) = \ln 3$... (E) : x نعتبر المعادلة (E) ذات المجهول الحقيقي \mathbb{R} للمعادلة (E) حلان متمايزان في

 $F(x) = x + \ln(1 + e^{-2x})$ و $f(x) = \frac{1 - e^{-2x}}{1 + e^{-2x}}$ ب ب \mathbb{R} ب الدالة العدديتان المعرّفتان على \mathbb{R} ب الدالة أصلية للدالة $f(x) = x + \ln(1 + e^{-2x})$ و $f(x) = \frac{1 - e^{-2x}}{1 + e^{-2x}}$ ب دالة أصلية للدالة $f(x) = x + \ln(1 + e^{-2x})$

 $u_n=rac{n+1}{n}$ كما يلي: \mathbb{N}^* كما يلي: (u_n) (4

 $\ln 2022$ هي $\ln u_1 + \ln u_2 + \dots + \ln u_{2022}$: قيمة المجموع

التمرين الثالث: (05 نقاط)

: يلي المعتوى منسوب إلى المعلم المتعامد المتجانس $(O;\vec{i},\vec{j})$ ، $(O;\vec{i},\vec{j})$ المستقيمان المعرفان كما يلي

. (
$$\Delta$$
): $y = -\frac{1}{2}x + 1$ (D) : $y = x$

اختبار في مادة: الرياضيات. الشعبة: علوم تجريبية. بكالوريا 2022

$$u_{n+1}=-rac{1}{2}u_n+1$$
 و $u_0=-4$: المتتالية العددية (u_n) معرّفة على $u_0=-4$

- محور الشكل المقابل على ورقة الإجابة ثم مثّل على حامل محور (1 الفواصل الحدود: u_1 ، u_2 ، u_1 ، u_0 : الفواصل الحدود:
 - . أ- هل المتتالية (u_n) رتيبة (u_n) برّر إجابتك (2

$$(u_n)$$
 ضع تخمينا حول تقارب المتتالية $-$

$$v_n = \left(u_n - \frac{2}{3}\right)^2$$
: بالمتتالية العددية المعرّفة على \mathbb{N} بالمتتالية العددية المعرّفة على \mathbb{N}

$$v_0$$
 بيّن أنّ المتتالية (v_n) هندسية أساسها $\frac{1}{4}$ ثم احسب أ

$$\lim_{n \to +\infty} v_n$$
 واستنتج أنّ v_n متقاربة. وأ $\lim_{n \to +\infty} v_n$ بدلالة v_n ثم احسب

$$v_0 \times v_1 \times \dots \times v_{n-1} = \left(\frac{14}{3}\right)^{2n} \times \left(\frac{1}{2}\right)^{n^2-n}$$
 ، n عدد طبیعی (4

التمرين الرابع: (07 نقاط)

$$g(x) = \frac{2x^2 - 2x - 1}{x^2} + \ln x$$
 : ب $]0; +\infty[$ على $]0; +\infty[$ بالدّالة العددية المعرّفة على $g(x)$

$$]0;+\infty$$
بيّن أنّ الدّالة g متزايدة تماما على (1

$$1,2<\alpha<1,3$$
 حيث أنّ المعادلة $g(x)=0$ تقبل حلا وحيدا α حيث أنّ المعادلة و

$$]0;+\infty[$$
 على $g(x)$ على ا $g(x)$

$$f(x) = \left(\frac{1}{x} - 2 - \ln x\right)e^{-x}$$
: ب $[0; +\infty[$ بعتبر الدالة العددية f المعرّفة على المعرّفة (Π

$$\left(O;\overrightarrow{i},\overrightarrow{j}
ight)$$
 تمثيلها البياني في المستوى المنسوب إلى المعلم المتعامد المتجانس و $\left(C_f
ight)$

$$\lim_{x \to \infty} f(x) = \lim_{x \to +\infty} f(x) = 0$$
 ثم احسب (1) أ- بيّن أنّ (1)

ب- فسر النتيجتين السابقتين بيانيا.

$$f'(x) = \frac{g(x)}{e^x}$$
 ، امام، موجب تماما عدد حقیقی x عدد حقیقی الجل کلّ عدد رود (2

. استنتج اتجاه تغیّر الدّالة f وشکّل جدول تغیّراتها -

$$\left(f\left(lpha
ight)\simeq-0.4$$
 و $f\left(0.65
ight)\simeq0$: نأخذ $\left(C_{f}
ight)$ و $\left(C_{f}
ight)$

$$F(x) = e^{-x}(2 + \ln x)$$
 بالدّالة العددية المعرّفة على $[0; +\infty[$ بيا الدّالة العددية المعرّفة على $[0; +\infty[$

$$]0;+\infty$$
اً على المجال F دالة أصلية للدالة f على المجال الدالة F

$$0<\lambda<rac{1}{2}$$
 :عدد حقیقي یحقق λ عدد λ حیث $S(\lambda)=\int_{\lambda}^{1/2}f(x)dx$ ب

احسب $S(\lambda)$ ثم فسّر النتيجة بيانيا.

الموضوع الثاني

التمرين الأول: (04 نقاط)

الدالة العددية المعرفة على $[C_f]$ بن $[C_f]$ الدالة العددية المعرفة على $[C_f]$ الدالة العددية المعرفة على الدالة العددية العدد

كما هو مبيّن في الشكل المقابل.

$$(T)$$
 بقراءة بيانية، عيّن $f'(0)$ وأعط معادلة للمماس (1

$$a=1$$
 بيّن أنّ (2

(3) ناقش بیانیا، حسب قیم الوسیط الحقیقی
$$m$$
، عدد وإشارة خلول المعادلة: $f(x) + x - m = 0$

و (
$$C_g$$
) و $g(x)=|x+1|-1-2\ln|x+1|$ بـ: $\mathbb{R}-\{-1\}$ و $g(x)=|x+1|-1-2\ln|x+1|$ و الدالة العددية المعرفة على $g(-1)=\mathbb{R}-\{-1\}$ بين أنّه من أجل كلّ عدد حقيقي x يختلف عن $g(-2-x)=g(x)$ ثم فسّر النتيجة بيانيا.

$$g(x) = f(x)$$
 ، $]-1;+\infty[$ من أخل كلّ عدد حقيقي x من أجل كلّ عدد حقيقي

ج- أنشئ (C_g) في المعلم السابق.

التّمرين الثاني: (04 نقاط)

عين الاقتراح الصّحيح الوحيد من بين الاقتراحات الثّلاثة في كل حالة من الحالات التالية مع التّبرير:

:ديمة $I = \int_{1}^{2} (x-1)e^{x^2-2x} dx$ عيث $I = \int_{1}^{2} (x-1)e^{x^2-2x} dx$ عيث (1

$$\frac{e+1}{2e}$$
 (\Rightarrow

$$1 - \frac{1}{e}$$
 (5

$$v_n = u_n + \alpha$$
 ، $u_{n+1} = \frac{1}{3}u_n + 3$ ، $u_0 = 3$: ب \mathbb{N} على المعرفتّان العدديتان العدديتان المعرفتّان على (v_n)

حيث α عدد حقيقي. قيمة العدد الحقيقي α حتّى تكون المتتالية (v_n) هندسية هي:

$$\frac{2}{9}$$
 (÷

 (C_f)

$$\frac{9}{2}$$
 (ب

$$-\frac{9}{2}$$
 (1)

 $\ln(x+1) \le f(x) \le e^x - 1$ دالة عددية تُحقق، من أجل كلّ عدد حقيقي x موجب تماما: f(x)

$$\lim_{x \to 0} \frac{f(x)}{x}$$
 هي:

$$y'' = 2 - \frac{1}{x^2} \dots (E) : (E)$$
 نعتبر المعادلة التفاضلية (4)

$$H'(1)=2$$
 و الذي يُحقق $H(1)=4$ على $H(1)=3$ عبارة الحل $H(1)=3$ عبارة الحل المعادلة و $H(1)=3$

$$H(x) = x^2 - x + 4 - \ln x$$
 (\Rightarrow $H(x) = x^2 - x + 1 + \ln x$ (\Rightarrow $H(x) = x^2 - x + 4 + \ln x$ (\Rightarrow

اختبار في مادة: الرياضيات. الشعبة: علوم تجريبية. بكالوريا 2022

التمرين الثالث: (05 نقاط)

$$\begin{cases} u_0 \times u_2 = e^2 \\ \ln u_1 + \ln u_7 = -4 \end{cases}$$
 المتتالية الهندسيّة المعرّفة على $\mathbb N$ وحدودها موجبة تماما حيث:

 (u_n) المتتالية u_1 والأساس u_1 والأساس $u_n=e^{2-n}$ ، $u_n=e^{2-n}$ ، $u_n=e^{2-n}$ ، $u_n=e^{2-n}$ ، $u_n=e^{2-n}$ هن أجل كلّ عدد طبيعي

 $S_n = u_0 + u_1 + \dots + u_n$:حيث S_n المجموع (2

 $v_{n+1}=v_n+u_n$ ، n ومن أجل كلّ عدد طبيعي $v_0=e^3$: المعرّفة بـ: $v_0=e^3$ المعرّفة بـ: $v_0=e^3$ المعرّفة بـ: $v_n=\frac{e^{3-n}-e^4}{1-e}$ ، $v_n=\frac{e^{3-n}-e^4}{1-e}$.

 $\frac{1}{e}v_n = \frac{1}{1-e}(u_n - e^3)$ ، n عدد طبیعي ، n عدد طبیعي - (4 $S'_n = \frac{1}{e}v_0 + \frac{1}{e}v_1 + \dots + \frac{1}{e}v_n$: عبتر المجموع $S'_n = \frac{1}{1-e}[S_n - (n+1)e^3]$ ، n عدد طبیعي $S'_n = \frac{1}{1-e}[S_n - (n+1)e^3]$ ، n عدد طبیعي

التّمرين الرّابع: (07 نقاط)

الدّالة العدديّة المعرّفة على \mathbb{R} بنياني في المستوى $f(x) = \frac{1}{2}e^{-2x} - \frac{9}{2}e^{-x} - 2x + 4$ بنياني في المستوى $f(x) = \frac{1}{2}e^{-2x} - \frac{9}{2}e^{-x} - 2x + 4$ بنياني في المستوى المنسوب إلى المعلم المتعامد المتجانس $f(x) = \frac{1}{2}e^{-2x} - \frac{9}{2}e^{-x} - 2x + 4$

 $+\infty$ عند C_f عند y=-2x+4 عند Δ بالنسبة إلى Δ بالنسبة إلى عند Δ

0 أكتب معادلة لـ T مماس الفاصلة و C_f مماس (T معادلة لـ (4

 $\left(f\left(-\ln 4
ight)\simeq -3,2\ g\left(-1,9
ight)\simeq 0$ و $\left(T
ight)$ و المنحنى $\left(C_{f}
ight)$ على المجال $\left(T
ight)$ على المجال $\left(T
ight)$ على المجال $\left(T
ight)$ على المجال $\left(T
ight)$ و $\left(\Delta\right)$

. الدالة المعرّفة على \mathbb{R} بـ: 2x-2 بـ المعرّفة على (C_h) ، $h(x) = -\frac{1}{2}e^{-2x} + \frac{9}{2}e^{-x} + 2x - 2$ بالدالة المعرّفة على (C_h) بالدالة الدالة المعرّفة على (C_h) بالدالة الدالة المعرّفة على (C_h) بالدالة الدالة الدالة الدالة المعرّفة على (C_h) بالدالة الدالة الدالة

h(x) = a f(x) + b ، x عين العددين الحقيقيين a و d حيث، من أجل كلّ عدد حقيقي a و d حيث d و d عين العددين العددين الحقيقيين a و d عين العددين الحقيقيين a و d عين العددين الحقيقيين d و d عين العددين العددين الحقيقيين d و d عين العددين العد

انتهى الموضوع الثاني

العلامة		عناصر الإجابة (الموضوع الأول)				
مجموع	مجزأة					
	التمرين الأول: (04 نقاط)					
	0.25	f'(0) = 1				
01	0.25	$\lim_{x \to -\infty} f(x) = -1$	(1			
01	0.5	(T): y = x				
0.75	0.25×3	المعادلة لا تقبل حلا $m < 0$ المعادلة تقبل حلين متمايزين $m > 0$ المعادلة تقبل حلا معدوما $m = 0$				
		a=1 $b=-1$ تبیان أنّ				
01	0.5+0.5	$f'(x) = (x^{2} + 2x + a)e^{x}$ $\begin{cases} a = 1 \\ b = -1 \end{cases} \begin{cases} f'(0) = 1 \\ \lim_{x \to -\infty} f(x) = b \end{cases}$	(3			
	0.50	الدالة g زوجية				
	0.25	$g(x)=f(x)$ $x\in [0;+\infty[$ $g(x)=f(x)$ $x\in [0;+\infty[$ ينطبق على (C_f) في المجال $g(x)=f(x)$ محور الفواصل (C_g)				
1.25	0.5	-2 -1 0 1 2	(4			
		التمرين الثاني: (04 نقاط)				
01	0.50 0.50	$\lim_{x \to +\infty} (f(x) - (x-1)) = 0$ صحيحة لأن: 0	(1			
01	0.50 0.50	x=1خاطئة لأن (E) : معناه $x=1$ أي $x>1/2$	(2			
01	0.50 0.50	$F'(x)=f(x):\mathbb{R}$ صحیحة لأن : من أجل كل x من	(3			
01	0.50 0.50	خاطئة لأن $\ln u_1 + \ln u_2 + \dots + \ln u_{2022} = \ln \frac{2 \times 3 \times \dots \times 2023}{1 \times 2 \times \dots \times 2022} = \ln 2023$	(4			

		الإجابة النمودجية. مادة: الرياضيات. الشعبة: علوم جريبية. بكالور		
التمرين الثالث: (05 نقاط)				
01	0.25×4	נה בעני: עני של מו איני של מו או איני של מו או איני של מו איני של מו או איני של מו או או איני של מו או איני של מו או או איני של מו או איני של מו או איני	(1	
	0.25	أ – الست رتيبة (u_n)	(2	
01	0.50	$u_1>u_2$ و $u_0< u_1$ التبرير		
	0.25	ب- التخمين $(u_n):$ متقاربة		
	01	$v_{n+1} = \frac{1}{4}v_n \qquad -\mathfrak{f}$ 196	(3	
	0.50	$v_0 = \frac{196}{9}$		
2.75	0.50	$v_n = \frac{196}{9} \left(\frac{1}{4}\right)^n \qquad -4$		
	0.50	$\lim_{n \to +\infty} v_n = 0$		
	0.25	$\lim_{n \to +\infty} u_n = \frac{2}{3}$		
	0.25	تبيان أنّ: $v_0 \times v_1 \times \dots \times v_{n-1} = \left(\frac{196}{9}\right)^n \left(\frac{1}{4}\right)^{0+1+2+\dots+n-1} = \left(\frac{14}{3}\right)^{2n} \left(\frac{1}{2}\right)^{n^2-n}$ تمنح العلامة 0.25 لكل محاولة	(4	
0.25				

		التمرين الرابع: (07 نقاط)			
			(I		
1.25	0.50	$g'(x) = \frac{x^2 + 2x + 2}{x^3}$			
	0.50	g'(x) > 0			
	0.25	$[0;+\infty]$ ومنه g متزایدة تماما علی			
	0.75	$lpha$ أحسب مبرهنة القيم المتوسطة $g\left(x ight)$ تقبل حلا وحيدا أ	(2		
		$1,2 < \alpha < 1,3$ حيث			
1.25	0.50	$:g\left(x ight)$ ب $-$ اشارة			
		$\begin{array}{c ccc} x & 0 & a & +\infty \\ \hline g(x) & - & 0 & + \end{array}$			
			(Π		
	0.25	$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left[\frac{1}{xe^x} - \frac{2}{e^x} - \frac{\ln x}{x} \times \frac{x}{e^x} \right] = 0$ أ- تبيان أن أ	(1		
	0.25				
01		$\lim_{x \to 0} f(x) = +\infty$			
		ب-التفسير البياني			
	0.25×2	(C_f) معادلتي المستقيمين المقاربين للمنحني $x=0\;;\;y=0$			
	0.75	$f'(x) = \frac{g(x)}{e^x} - \mathfrak{f}$	(2		
	0.25×2	f الدّالة f			
1.55	0.20 2	$]0;lpha$ متزایدة تماما علی $[lpha;+\infty[$ ومتناقصة تماما علی f			
1.75		جدول تغيّراتها.			
		$x \mid 0 \alpha +\infty$			
	0.5	f'(x) $ 0$ $+$ 0			
		$f(x)$ $f(\alpha)$			
		$\left(C_f ight)$ إنشاء المنحنى	(3		
	0.5	(C_f)			
0.50		1.			
		1 0 1 2 3 4			
1.25	0.5	$F'(x) = f(x)$ ، $x \in]0;+\infty[$ أُ-التحقق :من أجل كل	(4		
		() () () () () () () () () ()			

الإجابة النموذجية. مادة: الرياضيات. الشعبة: علوم تجريبية. بكالوريا 2022			
	0.5	$S(\lambda) = \left[F(x)\right]_{\lambda}^{0.5} = \frac{2 - \ln 2}{\sqrt{e}} - \frac{2 + \ln \lambda}{e^{\lambda}} .$	
	0.25	$\left(C_f ight)$ التفسير: $S(\lambda)$ مساحة الحيز من المستوي المحدد ب $x=rac{1}{2}$ ، $x=\lambda$ وحامل محور الفواصل والمستقيين ذي المعادلتين	
		عناصر الإجابة (الموضوع الثاني)	
		التمرين الأول: (04 نقاط)	
01.25	0.50 0.75	f'(0) = -1 $(T): y = -x$	(1
0.50	0.50	$a=1$ و منه $\begin{cases} f'(x)=a-rac{2}{x+1}:a=1\\ f'(0)=-1 \end{cases}$	(2
0.75	0.25×3	المناقشة البيانية: $m < 0$ المعادلة لا تقبل حلا $m < 0$ للمعادلة حلا معدوما $m = 0$ للمعادلة حلين مختلفين في الإشارة $m > 0$	(3
1.50	0.50 0.25 0.25	اً- تبيان أنّ: $g(-2-x)=g(x) (-2-x)\in D_g x\in D_g \Delta \in D_g$ من أجل كل $x=-1$ التفسيّر البياني: $x=-1$ معادلة محور تناظر لا $x=-1$ النان أنّ: $y(x)=f(x)$ على $y(x)=f(x)$	
	0.50	(C_g) simil	(4
التّمرين الثاني: (04 نقاط)			
01	0.50 0.50	$I = \int_{1}^{2} (x-1)e^{x^{2}-2x} dx = \left[\frac{1}{2}e^{x^{2}-2x}\right]_{1}^{2}$ لأن إلى المصحيح هو ب	(1
01	0.50 0.50	$v_{n+1} = u_{n+1} + \alpha = \frac{1}{3}v_n + \frac{2}{3}\alpha + 3$ الاقتراح الصحيح هو أ) لأن:	(2

	ريا 2022	الإجابة النموذجية. مادة: الرياضيات. الشعبة: علوم تجريبية. بكالور	
01	0.50 0.50	$\lim_{x \to 0} \frac{\ln(x+1)}{x} = \lim_{x \to 0} \frac{(e^x - 1)}{x} = 1$ الاقتراح الصحيح هو أ) لأن: $H'(x) = 2x + \frac{1}{x} + c$ و	(3
01	0.50 0.50	$H'(x) = 2x + \frac{1}{x} + c$ و الاقتراح الصحيح هو أ $H(x) = x^2 + \ln x + cx + d$ الاقتراح الصحيح هو أ $H(x) = x^2 + \ln x + cx + d$ ومنه $H(x) = x^2 - x + 4 + \ln x$ ومنه $H(x) = 4$	(4
		التمرين الثالث: (05 نقاط)	
01.50	0.50 0.50	$u_1 = e$ _\int $q = \frac{1}{e}$	(1
	0.50	$u_n=e^{2-n}$ ، n عدد طبیعي عدد التحقّق أنّه من أجل كلّ عدد طبیعي	
01	0.50	$S_n = u_0 \frac{q^{n+1} - 1}{q - 1}$	(2
	0.50	$S_n = \frac{e^3}{e - 1} \left(1 - \frac{1}{e^{n+1}} \right)$	
1.50	0.75+0.25	$v_n = rac{e^{3-n}-e^4}{1-e}$: أ- البرهان بالتّراجع $\lim_{x o +\infty} rac{e^{3-n}-e^4}{1-e} = rac{e^4}{-1+e}$ ب-	(3
	0.50	$\lim_{x \to +\infty} \frac{e^{3-n} - e^4}{1 - e} = \frac{e^4}{-1 + e} - \Box$	
01	0.50	$\frac{1}{e}v_n = \frac{1}{1-e}(u_n - e^3)$ ا- تبیان أن	(4
	0.50	$S_n' = \frac{1}{1-e} \left[S_n - (n+1)e^3 \right]$ ب- التحقق أن	
		التّمرين الرّابع: (07 نقاط)	
	0.25	$\lim_{x \to +\infty} f(x) = -\infty$	(1
0.75	0.50	$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{1}{2} e^{-2x} (1 - 9e^x - 4xe^{2x} + 8e^{2x}) = +\infty$	
	0.75	$f'(x) = -\frac{1}{2}e^{-2x}(e^x - 2)(4e^x - 1)$: أ- إثبات أن	(2
1 75	0.50	ب-اتجاه التغییر	
1.75	0.50	جدول التغیرات	

الصفحة 5 من 6

بكالوريا 2022	الشعبة: علوم تجريبية.	مادة: الرياضيات.	الإجابة النموذجية.
---------------	-----------------------	------------------	--------------------

	2022 9	ام جابه الممودجية. الماداد الرياطيات. السعبة. حكوم جريبية. المحكو	
	0.25	$f(x) - (-2x + 4) = \frac{1}{2}e^{-2x} - \frac{9}{2}e^{-x} - 5$	(3
	0.50	$\lim_{x \to +\infty} (f(x) - (-2x + 4)) = 0$	
		(Δ) بالنسبة إلى المراسة وضعية بالنسبة المراسة وضعية بالنسبة المراسة وضعية المراس	
1.50	0.25	$f(x) - (-2x + 4) = \frac{1}{2}e^{-x}(e^{-x} - 9)$	
		$]-\ln 9;+\infty[$ المجال على المجال المجال $\left(C_f ight)$	
		$]{-}\infty;-\ln 9[$ اسفل $\Delta)$ على المجال C_f	
	0.50	$(C_f) \cap (\Delta) = \left\{ A(-\ln 9; 4 + 2\ln 9) \right\}$	
0.75	0.75	$(T): y = \frac{3}{2}x$	(4
		$[-1,9;+\inftyigl[$ على المجال (C_f) والمنحنى (T) والمنحنى	(5
1.50	0.50	$\begin{pmatrix} 2 \\ 1 \\ (C_f) \end{pmatrix}^{-1} \begin{pmatrix} 1 \\ 2 \\ -1 \\ -2 \end{pmatrix}$	
	0.50	a = 1	16
	0.25	a = -1 -1	(6
	0.25	b = 2	
0.75	0.25	$h(x) = -f(x) + 2 \qquad \neg \varphi$	
		ننشئ (C_{-f}) صورة (C_{f}) بالتناظر بالنسبة لحامل محور الفواصل ثم	
		$2ec{j}$ صورة $(C_{_{-f}})$ بالانسحاب ذو الشعاع $\left(C_{_{h}} ight)$	