5.2.15 Dobór nastaw regulatorów według metody Zieglera-Nicholsa

Regulator PID z idealnym różniczkowaniem ma trzy parametry: k_P , T_i oraz T_d , dzięki czemu, z uwagi na możliwość spełnienia wielu wymagań, jest najczęściej stosowanym regulatorem.

Wartości tych parametrów mogą być dobierane metodą prób i błędów, co stanowi w przypadku rzeczywistego procesu technologicznego kosztowne rozwiązanie, lub według ustalonych zasad, takich jak metoda Zieglera-Nicholsa, występująca w dwóch postaciach.

· Metoda oparta na odpowiedzi skokowej

Układ, dla którego należy dobrać wartości parametrów, pobudza się skokiem jednostkowym i rejestruje przebieg odpowiedzi skokowej, określając wartość czasu opóźnienia t_d oraz czasu narastania $t_{90\%}$. Aby osiągnąć współczynnik tłumienia równy $\xi=0.2$, co odpowiada przeregulowaniu $\varepsilon_{\%}=25\%$, parametry regulatorów dobiera się według wartości podanych w tabeli 5.1.

Tabela 5.1 Dobór nastaw regulatora PID na podstawie odpowiedzi skokowej

Typ regulatora	k_P	T_i	T_d
Regulator typu P	190% t _d	00	0
Regulator typu PI	$0.9 \frac{t_{90\%}}{t_d}$	t _d 0.3	0
Regulator typu PID	$1.2 \frac{t_{90\%}}{t_a}$	$2t_d$	$0.5t_d$

· Metoda oparta na wzmocnieniu granicznym

Regulator nastawia się na działanie P, następnie zwiększa się wartość jego wzmocnienia przy pracy w pętli sztywnego, ujemnego sprzężenia zwrotnego do momentu wystąpienia oscylacji o stałej amplitudzie. Wartość tego wzmocnienia nazywa się wzmocnieniem granicznym \tilde{k}_P , natomiast okres wzbudzonych oscylacji oznacza się jako \hat{T} . Po zakończeniu eksperymentu parametry regulatorów dobiera się według wartości podanych w tabeli 5.2.

Tabela 5.2 Dobór nastaw regulatora PID na podstawie cyklu granicznego

Typ regulatora	k_P	T_i	T_d
Regulator typu P	$0.5\bar{k}_P$	∞	0
Regulator typu PI	$0.45 \tilde{k}_P$	$\frac{\tilde{T}}{1.2}$	0
Regulator typu PID	$0.6 \tilde{k}_P$	$\frac{ ilde{T}}{2}$	$\frac{\tilde{T}}{8}$