SEQUENZPROTOKOLL

<110> Degussa AG

5 <120> Neue für das menE-Gen kodierende Nukleotidsequenzen

<130> 000551 BT

<140>

10 <141>

<160> 4

<170> PatentIn Ver. 2.1

15 <210> 1

<211> 1570

<212> DNA

<213> Corynebacterium glutamicum

20

<220>

<221> CDS

<222> (230)..(1357)

<223> menE-Gen

25

30

<400> 1

ttcgttgcca tagacatgct cttcgcagca ctgtttgcgc acgtctcctc cggcatcttt 60

gtcaccaaca atggttggga actcaccggc gcaatcggcg ctggcgcgct gcttctcatc 120

gcagttggcg caggtgcatg gagcatcgac ggggttctgg caaaacgcaa ggcctaaatc 180

tagcgccaca actccgaatt ctgaaccatc ggcactagaa tctcggaat atg aat act 238

Met Asn Thr

1

286

35

cgc gtc ctc gaa gca cta cct gtt gat ctt gca gat ccc acc gca att Arg Val Leu Glu Ala Leu Pro Val Asp Leu Ala Asp Pro Thr Ala Ile

40

ctg gga gat ctc gag gac gca atc tct ggg aag aaa act ttc ctc ccc 334
Leu Gly Asp Leu Glu Asp Ala Ile Ser Gly Lys Lys Thr Phe Leu Pro
20 25 30 35

45 atc cct gta caa gat aaa acc cgt gca cag ttg ctg cgc gat tct caa 382 Ile Pro Val Gln Asp Lys Thr Arg Ala Gln Leu Leu Arg Asp Ser Gln 40 45 50

cga gtt ggc ctc gcc atc gat cct tcg atc gct ttg gtg atg gcc act 430 50 Arg Val Gly Leu Ala Ile Asp Pro Ser Ile Ala Leu Val Met Ala Thr 55 60 65

tct ggt tct aca ggt acc ccg aag ggc gct cag ctc act ccg ttg aat 478 Ser Gly Ser Thr Gly Thr Pro Lys Gly Ala Gln Leu Thr Pro Leu Asn

55 70 75 80

	ttg Leu	gtg Val 85	agt Ser	tcc Ser	gcc Ala	gat Asp	gct Ala 90	acg Thr	cat His	cag Gln	ttt Phe	tta Leu 95	ggt Gly	ggc Gly	gaa Glu	ggc Gly	526
5	cag Gln 100	tgg Trp	ttg Leu	ctt Leu	gcc Ala	atg Met 105	cca Pro	gca Ala	cac His	cac His	att Ile 110	gca Ala	ggc Gly	atg Met	cag Gln	gtg Val 115	574
10	ctt Leu	ctt Leu	cga Arg	agc Ser	ctc Leu 120	att Ile	gct Ala	gga Gly	gtt Val	gag Glu 125	cca Pro	cta Leu	gct Ala	att Ile	gat Asp 130	ctc Leu	622
15	agc Ser	aca Thr	ggt Gly	ttt Phe 135	cac His	att Ile	gac Asp	gct Ala	ttc Phe 140	gca Ala	ggc Gly	gcc Ala	gcg Ala	gca Ala 145	gaa Glu	ctg Leu	670
20	Lys	Asn	Thr 150	Gly	Asp	Arg	Val	Tyr 155	Thr	Ser	Leu	Thr	cca Pro 160	Met	Gln	Leu	718
	ctt Leu	aaa Lys 165	gca Ala	atg Met	gac Asp	tcc Ser	ttg Leu 170	caa Gln	ggc Gly	att Ile	gaa Glu	gcc Ala 175	ctg Leu	aaa Lys	ctt Leu	ttt Phe	766
25	gat Asp 180	gtc Val	att Ile	ctt Leu	gtt Val	ggc Gly 185	ggt Gly	gct Ala	gca Ala	ttg Leu	tct Ser 190	aag Lys	cag Gln	gcc Ala	cga Arg	att Ile 195	814
30	Ser	Ala	GLu	Gln	Leu 200	Asp	Ile	Asn	Ile	Val 205	Thr	Thr	tac Tyr	Gly	Ser 210	Ser	862
35	Glu	Thr	Ser	Gly 215	Gly	Cys	Val	Tyr	Asp 220	Gly	Lys	Pro	att Ile	Pro 225	Gly	Ala	910
40	aaa Lys	gtc Val	cgt Arg 230	att Ile	tcg Ser	gat Asp	gag Glu	cgc Arg 235	att Ile	gag Glu	ttg Leu	ggt Gly	ggc Gly 240	ccg Pro	atg Met	att Ile	958
	gcg Ala	cag Gln 245	ggc	tac Tyr	aga Arg	aat Asn	gca Ala 250	cct Pro	gaa Glu	cat His	ccg Pro	gat Asp 255	ttc Phe	gcc Ala	aac Asn	gag Glu	1006
45	ggt Gly 260	tgg Trp	ttt Phe	acc Thr	acc Thr	tct Ser 265	gat Asp	tca Ser	ggt Gly	gaa Glu	ctc Leu 270	cac His	gac Asp	ggg ggg	att Ile	ctc Leu 275	1054
50	acc Thr	gtg Val	act Thr	ggt Gly	cgc Arg 280	gtg Val	gat Asp	acc Thr	gtc Val	att Ile 285	gat Asp	tcc Ser	ggt Gly	gga Gly	ttg Leu 290	aag Lys	1102
55	ttg Leu	cac His	cca Pro	gag Glu 295	gta Val	ctg Leu	gaa Glu	cgt Arg	gcc Ala 300	atc Ile	gca Ala	gat Asp	att Ile	aaa Lys 305	ggt Gly	gtc Val	1150
	acc Thr	gcg Ala	gcg Ala 310	tgt Cys	gtt Val	gtg Val	ggt Gly	att Ile 315	ccc Pro	gat Asp	ccc Pro	cga Arg	tta Leu 320	ggc Gly	caa Gln	gca Ala	1198

5	att gtg gcc gcg tac tcc gga tcg atc agt ccg tct gaa gtt att gaa 124 Ile Val Ala Ala Tyr Ser Gly Ser Ile Ser Pro Ser Glu Val Ile Glu 325 330 335	6											
	ggc ctc gac gat cta cct cgt tgg cag ctt ccc aaa cgg ctg aag cat 129 Gly Leu Asp Asp Leu Pro Arg Trp Gln Leu Pro Lys Arg Leu Lys His 340 350 355	4											
10	ctg gaa tct ttg ccc agc att ggt cct gga aaa gct gat cga cgt gct 134 Leu Glu Ser Leu Pro Ser Ile Gly Pro Gly Lys Ala Asp Arg Arg Ala 360 365 370	2											
15	atc gcg aag ctg ttt tagtcttcat tcttgctggc tgcaactagt tttgccacat 139 Ile Ala Lys Leu Phe 375	7											
	cttcatcggt gtacactttg gcgatctgct catcatttcc acccatgagg gtgttgccaa 145	7											
20	caactagtgc tcccacttgg gtggtgggca cgacagcgaa gtgtcggggc tgagcgtaga 151												
	cctggcgaat agggtgatca gagcgcagtg cgcaggcatg cagccatacg tca 157	0											
25	<210> 2 <211> 376 <212> PRT <213> Corynebacterium glutamicum												
30	<400> 2												
	Met Asn Thr Arg Val Leu Glu Ala Leu Pro Val Asp Leu Ala Asp Pro 1 5 10 15												
35	Thr Ala Ile Leu Gly Asp Leu Glu Asp Ala Ile Ser Gly Lys Lys Thr 20 25 30												
4.0	Phe Leu Pro Ile Pro Val Gln Asp Lys Thr Arg Ala Gln Leu Leu Arg 35 40 45												
40	Asp Ser Gln Arg Val Gly Leu Ala Ile Asp Pro Ser Ile Ala Leu Val 50 55 60												
45	Met Ala Thr Ser Gly Ser Thr Gly Thr Pro Lys Gly Ala Gln Leu Thr 65 70 75 80												
	Pro Leu Asn Leu Val Ser Ser Ala Asp Ala Thr His Gln Phe Leu Gly 85 90 95												
50	Gly Glu Gly Gln Trp Leu Leu Ala Met Pro Ala His His Ile Ala Gly 100 105 110												
	Met Gln Val Leu Leu Arg Ser Leu Ile Ala Gly Val Glu Pro Leu Ala 115 120 125												
55	Ile Asp Leu Ser Thr Gly Phe His Ile Asp Ala Phe Ala Gly Ala Ala 130 135 140												
	Ala Glu Leu Lys Asn Thr Gly Asp Arg Val Tyr Thr Ser Leu Thr Pro 145 150 155 160												

· is y

<210> 4 <211> 19

	Met	Gln	Leu	Leu	Lys 165	Ala	Met	Asp	Ser	Leu 170	Gln	Gly	Ile	Glu	Ala 175	Leu
5	Lys	Leu	Phe	Asp 180	Val	Ile	Leu	Val	Gly 185	Gly	Ala	Ala	Leu	Ser 190	Lys	Gln
10	Ala	Arg	Ile 195	Ser	Ala	Glu	Gln	Leu 200	Asp	Ile	Asn	Ile	Val 205	Thr	Thr	Tyr
	Gly	Ser 210	Ser	Glu	Thr	Ser	Gly 215	Gly	Cys	Val	Tyr	Asp 220	Gly	Lys	Pro	Ile
15	Pro 225	Gly	Ala	Lys	Val	Arg 230	Ile	Ser	Asp	Glu	Arg 235	Ile	Glu	Leu	Gly	Gly 240
	Pro	Met	Ile	Ala	Gln 245	Gly	Tyr	Arg	Asn	Ala 250	Pro	Glu	His	Pro	Asp 255	Phe
20	Ala	Asn	Glu	Gly 260	Trp	Phe	Thr	Thr	Ser 265	Asp	Ser	Gly	Glu	Leu 270	His	Asp
25	Gly	Ile	Leu 275	Thr	Val	Thr	Gly	Arg 280	Val	Asp	Thr	Val	Ile 285	Asp	Ser	Gly
	Gly	Leu 290	Lys	Leu	His	Pro	Glu 295	Val	Leu	Glu	Arg	Ala 300	Ile	Ala	Asp	Ile
30	Lys 305	Gly	Val	Thr	Ala	Ala 310	Cys	Val	Val	Gly	Ile 315	Pro	Asp	Pro	Arg	Leu 320
	Gly	Gln	Ala	Ile	Val 325	Ala	Ala	Tyr	Ser	Gly 330	Ser	Ile	Ser	Pro	Ser 335	Glu
35	Val	Ile	Glu	Gly 340	Leu	Asp	Asp	Leu	Pro 345	Arg	Trp	Gln	Leu	Pro 350	Lys	Arg
40	Leu	Lys	His 355	Leu	Glu	Ser	Leu	Pro 360	Ser	Ile	Gly	Pro	Gly 365	Lys	Ala	Asp
	Arg	Arg 370	Ala	Ile	Ala	Lys	Leu 375	Phe								
45	<210)> 3														
50	<212	<211> 19 <212> DNA <213> Corynebacterium glutamicum														
	<220> <223> Primer menE-int1															
55	<400> 3 ctcactccgt tgaatttgg															

<212> DNA
<213> Corynebacterium glutamicum

<220>
5 <223> Primer menE-int2

<400> 4
 caggtgcatt tctgtagcc

. . . . 3

19

10

4 j t r

15

5

Patentansprüche

- Isoliertes Polynukleotid aus coryneformen Bakterien, enthaltend eine für das menE-Gen kodierende Polynukleotidsequenz, ausgewählt aus der Gruppe
 - a) Polynukleotid, das mindestens zu 70% identisch ist mit einem Polynukleotid, das für ein Polypeptid kodiert, das die Aminosäuresequenz von SEQ ID No. 2 enthält,
- 10 b) Polynukleotid, das für ein Polypeptid kodiert, das eine Aminosäuresequenz enthält, die zu mindestens 70% identisch ist mit der Aminosäuresequenz von SEQ ID No. 2,
 - c) Polynukleotid, das komplementär ist zu den Polynukleotiden von a) oder b), und
 - d) Polynukleotid, enthaltend mindestens 15 aufeinanderfolgende Nukleotide der Polynukleotidsequenz von a), b) oder c),
- wobei das Polypeptid bevorzugt die Aktivität der O-20 Succinylbenzoesäure-CoA-Ligase aufweist.
 - 2. Polynukleotid gemäß Anspruch 1, wobei das Polynukleotid eine in coryneformen Bakterien replizierbare, bevorzugt rekombinante DNA ist.
- 3. Polynukleotid gemäß Anspruch 1, wobei das Polynukleotid eine RNA ist.
 - 4. Polynukleotid gemäß Anspruch 2, enthaltend die Nukleinsäuresequenz wie in SEQ ID No. 1 dargestellt.
 - 5. Replizierbare DNA gemäß Anspruch 2, enthaltend
- (i) die Nukleotidsequenz, gezeigt in SEQ ID No. 1,30 oder

4 , t t

10

25

- (ii) mindestens eine Sequenz, die der Sequenz (i) innerhalb des Bereichs der Degeneration des genetischen Kodes entspricht, oder
- (iii) mindestens eine Sequenz, die mit der zur Sequenz

 (i) oder (ii) komplementären Sequenz
 hybridisiert, und gegebenenfalls
 - (iv) funktionsneutrale Sinnmutationen in (i).
 - 6. Replizierbare DNA gemäß Anspruch 5, d a d u r c h g e k e n n z e i c h n e t, daß die Hybridisierung unter einer Stringenz entsprechend höchstens 2x SSC durchgeführt wird.
 - 7. Polynukleotidsequenz gemäß Anspruch 1, die für ein Polypeptid kodiert, das die in SEQ ID No. 2 dargestellte Aminosäuresequenz enthält.
- 15 8. Coryneforme Bakterien, in denen das menE-Gen abgeschwächt, insbesondere ausgeschaltet wird.
 - 9. Integrationsvektor pCR2.1menEint, der
 - 9.1. ein 520 bp großes internes Fragment des menE-Gens trägt,
- 9.2. dessen Restriktionskarte in Figur 1 wiedergegeben wird, und
 - 9.3. der in dem E. coli-Stamm Top10/pCR2.1menEint unter der Nr. DSM 14080 bei der Deutschen Sammlung für Mikroorganismen und Zellenkulturen hinterlegt ist.
 - 10. Verfahren zur fermentativen Herstellung von LAminosäuren, insbesondere L-Lysin, d a d u r c h
 g e k e n n z e i c h n e t, daß man folgende Schritte
 durchführt:

() 1 r

5

- a) Fermentation der die gewünschte L-Aminosäure produzierenden coryneformen Bakterien, in denen man zumindest das menE-Gen oder dafür kodierende Nukleotidsequenzen abschwächt, insbesondere ausschaltet;
- Anreicherung der L-Aminosäure im Medium oder in den Zellen der Bakterien, und
- c) Isolieren der L-Aminosäure.
- 11. Verfahren gemäß Anspruch 10, d a d u r c h
 g e k e n n z e i c h n e t, daß man Bakterien
 einsetzt, in denen man zusätzlich weitere Gene des
 Biosyntheseweges der gewünschten L-Aminosäure
 verstärkt.
- 12. Verfahren gemäß Anspruch 10, d a d u r c h
 g e k e n n z e i c h n e t, daß man Bakterien
 einsetzt, in denen die Stoffwechselwege zumindest
 teilweise ausgeschaltet sind, die die Bildung der
 gewünschten L-Aminosäure verringern.
- 13. Verfahren gemäß Anspruch 10, d a d u r c h
 g e k e n n z e i c h n e t, daß man die Expression des
 (der) Polynukleotides (e), das (die) für das menE-Gen
 kodiert (kodieren) abschwächt, insbesondere
 ausschaltet.
- 14. Verfahren gemäß Anspruch 10, d a d u r c h
 g e k e n n z e i c h n e t, daß man die katalytischen
 Eigenschaften des Polypetids (Enzymprotein) verringert,
 für das das Polynukleotid menE kodiert.
- 15. Verfahren gemäß Anspruch 10, d a d u r c h
 g e k e n n z e i c h n e t, daß man zur Herstellung
 von L-Aminosäuren coryneforme Mikroorganismen
 fermentiert, in denen man gleichzeitig eines oder
 mehrere der Gene, ausgewählt aus der Gruppe

15.1 das für die Dihydrodipicolinat-Synthase kodierende Gen dapA, 15.2 das für die Glyceraldehyd-3-Phosphat-Dehydrogenase kodierende Gen gap, 5 15.3 das für die Triosephosphat-Isomerase kodierende Gen tpi, 15.4 das für die 3-Phosphoglycerat-Kinase kodierende Gen pgk, 15.5 das für die Glucose-6-Phosphat-Dehydrogenase 10 kodierende Gen zwf, 15.6 das für die Pyruvat-Carboxylase kodierende Gen pyc, 15.7 das für die Malat-Chinon-Oxidoreduktase kodierende Gen mgo, 15 15.8 das für eine feed-back resistente Aspartatkinase kodierende Gen lysC, 15.9 das für den Lysin-Export kodierende Gen lysE, 15.10 das für die Homoserin-Dehydrogenase kodierende Gen hom, 20 das für die Threonin-Dehydratase kodierende Gen 15.11 ilvA oder das für eine feed back resistente Threonin-Dehydratase kodierende Allel ilvA(Fbr), 15.12 das für die Acetohydroxysäure-Synthase 25 kodierende Gen ilvBN, 15.13 das für die Dihydroxysäuredehydratase kodierende Gen ilvD, und 15.14 das für das Zwal-Protein kodierende Gen zwal

5

10

verstärkt bzw. überexprimiert.

- 16. Verfahren gemäß Anspruch 10, d a d u r c h g e k e n n z e i c h n e t, daß man zur Herstellung von L-Aminosäuren coryneforme Mikroorganismen fermentiert, in denen man gleichzeitig eines oder mehrere der Gene, ausgewählt aus der Gruppe
 - 16.1 das für die Phosphoenolpyruvat-Carboxykinase kodierende Gen pck,
 - 16.2 das für die Glucose-6-Phosphat-Isomerase kodierende Gen pgi,
 - 16.3 das für die Pyruvat-Oxidase kodierende Gen poxB, und
 - 16.4 das für das Zwa2-Protein kodierende Gen zwa2 abschwächt.
- 15 17. Coryneforme Bakterien, die einen Vektor enthalten, der Teile des Polynukleotids gemäß Anspruch 1, mindestens aber 15 aufeinanderfolgende Nukleotide der beanspruchten Sequenz, trägt.
- 18. Verfahren gemäß einem oder mehreren der vorhergehenden
 20 Ansprüche, dad urch gekennzeichnet,
 daß man Mikroorganismen der Art Corynebacterium
 glutamicum einsetzt.
- 19. Verfahren zum Auffinden von RNA, cDNA und DNA, um Nukleinsäuren, beziehungsweise Polynukleotide oder Gene zu isolieren, die für die O-Succinylbenzoesäure-CoA-Ligase kodieren oder eine hohe Ähnlichkeit mit der Sequenz des menE-Gens aufweisen, d a d u r c h g e k e n n z e i c h n e t, daß man das Polynukleotid, enthaltend die Polynukleotidsequenzen gemäß den Ansprüchen 1, 2, 3 oder 4, als Hybridisierungssonden einsetzt.

Zusammenfassung

Die Erfindung betrifft ein isoliertes Polynukleotid enthaltend eine Polynukleotidsequenz, ausgewählt aus der Gruppe

- 5 a) Polynukleotid, das mindestens zu 70% identisch ist mit einem Polynukleotid, das für ein Polypeptid kodiert, das die Aminosäuresequenz von SEQ ID No. 2 enthält,
- b) Polynukleotid, das für ein Polypeptid kodiert, das eine Aminosäuresequenz enthält, die zu mindestens 70% identisch ist mit der Aminosäuresequenz von SEQ ID No. 2,
 - c) Polynukleotid, das komplementär ist zu den Polynukleotiden von a) oder b), und
- d) Polynukleotid, enthaltend mindestens 15
 aufeinanderfolgende Nukleotide der
 Polynukleotidsequenz von
 a), b) oder c),
- und ein Verfahren zur fermentativen Herstellung von L20 Aminosäuren unter Verwendung von coryneformen Bakterien, in
 denen zumindest das menE-Gen abgeschwächt vorliegt, und die
 Verwendung von Polynukleotiden, die die erfindungsgemäßen
 Sequenzen enthalten, als Hybridisierungssonden.