or in combination with drift, sliding, unbalanced, or partial loads.

## 7.4 SLOPED ROOF SNOW LOADS, $p_s$

Snow loads acting on a sloping surface shall be assumed to act on the horizontal projection of that surface. The sloped roof (balanced) snow load,  $p_s$ , shall be obtained by multiplying the flat roof snow load,  $p_f$ , by the roof slope factor,  $C_s$ :

$$p_s = C_s p_f \tag{7.4-1}$$

Values of  $C_s$  for warm roofs, cold roofs, curved roofs, and multiple roofs are determined from Sections 7.4.1 through 7.4.4. The thermal factor,  $C_t$ , from Table 7-3 determines if a roof is "cold" or "warm." "Slippery surface" values shall be used only where the roof's surface is unobstructed and sufficient space is available below the eaves to accept all the sliding snow. A roof shall be considered unobstructed if no objects exist on it that prevent snow on it from sliding. Slippery surfaces shall include metal, slate, glass, and bituminous, rubber, and plastic membranes with a smooth surface. Membranes with an imbedded aggregate or mineral granule surface shall not be considered smooth. Asphalt shingles, wood shingles, and shakes shall not be considered slippery.

## 7.4.1 Warm Roof Slope Factor, $C_s$

For warm roofs ( $C_t \le 1.0$  as determined from Table 7-3) with an unobstructed slippery surface that will allow snow to slide off the eaves, the roof slope factor  $C_s$  shall be determined using the dashed line in Fig. 7-2a, provided that for nonventilated warm roofs, their thermal resistance (R-value) equals or exceeds 30 ft² hr °F/Btu (5.3 °C m²/W) and for warm ventilated roofs, their R-value equals or exceeds 20 ft² hr °F/Btu (3.5 °C m²/W). Exterior air shall be able to circulate freely under a ventilated roof from its eaves to its ridge. For warm roofs that do not meet the aforementioned conditions, the solid line in Fig. 7-2a shall be used to determine the roof slope factor  $C_s$ .

#### 7.4.2 Cold Roof Slope Factor, $C_s$

Cold roofs are those with a  $C_t > 1.0$  as determined from Table 7-3. For cold roofs with  $C_t = 1.1$  and an unobstructed slippery surface that will allow snow to slide off the eaves, the roof slope factor  $C_s$  shall be determined using the dashed line in Fig. 7-2b. For all other cold roofs with  $C_t = 1.1$ , the solid line in Fig. 7-2b shall be used to determine the roof slope factor  $C_s$ . For cold roofs with  $C_t = 1.2$  and an unobstructed slippery surface that will allow snow to

slide off the eaves, the roof slope factor  $C_s$  shall be determined using the dashed line on Fig. 7-2c. For all other cold roofs with  $C_t = 1.2$ , the solid line in Fig. 7-2c shall be used to determine the roof slope factor  $C_s$ .

### 7.4.3 Roof Slope Factor for Curved Roofs

Portions of curved roofs having a slope exceeding 70° shall be considered free of snow load (i.e.,  $C_s = 0$ ). Balanced loads shall be determined from the balanced load diagrams in Fig. 7-3 with  $C_s$  determined from the appropriate curve in Fig. 7-2.

# 7.4.4 Roof Slope Factor for Multiple Folded Plate, Sawtooth, and Barrel Vault Roofs

Multiple folded plate, sawtooth, or barrel vault roofs shall have a  $C_s = 1.0$ , with no reduction in snow load because of slope (i.e.,  $p_s = p_f$ ).

### 7.4.5 Ice Dams and Icicles Along Eaves

Two types of warm roofs that drain water over their eaves shall be capable of sustaining a uniformly distributed load of  $2p_f$  on all overhanging portions: those that are unventilated and have an R-value less than 30 ft<sup>2</sup> hr °F/Btu (5.3 °C m<sup>2</sup>/W) and those that are ventilated and have an R-value less than 20 ft<sup>2</sup> hr °F/Btu (3.5 °C m<sup>2</sup>/W). The load on the overhang shall be based upon the flat roof snow load for the heated portion of the roof up-slope of the exterior wall. No other loads except dead loads shall be present on the roof when this uniformly distributed load is applied.

### 7.5 PARTIAL LOADING

The effect of having selected spans loaded with the balanced snow load and remaining spans loaded with half the balanced snow load shall be investigated as follows:

# 7.5.1 Continuous Beam Systems

Continuous beam systems shall be investigated for the effects of the three loadings shown in Fig. 7-4:

Case 1: Full balanced snow load on either exterior span and half the balanced snow load on all other spans.

Case 2: Half the balanced snow load on either exterior span and full balanced snow load on all other spans.

Case 3: All possible combinations of full balanced snow load on any two adjacent spans and half the balanced snow load on all other spans. For this case there will be (n-1) possible combinations where n equals the number of spans in the continuous beam system.