ACS and MMAS for the Permutation Flow Shop Problem with Weighted Tardiness Swarm Intelligence project

June 17, 2019

Hakim BOULAHYA

Département d'Informatique Université Libre de Bruxelles

Contents

Project: ACO Algorithms for PFSP-WT

- 1. Algorithms and implementation
- 2. Adding local search routine
- 3. Results and comparisons
- 4. Conclusion

Implementation

- ightharpoonup Schedule construction by exploiting with probability q_0 :
 - ▶ Exploit. best schedule: $\operatorname{argmax}_{\textit{unscheduled}}(\tau_{ij})^{\alpha}(\eta_{ij})^{\beta}$
 - ▶ Biased exploration: $p_{ij} = \frac{(\tau_{ij})^{\alpha}(\eta_{ij})^{\beta}}{\sum_{unscheduled} (\tau_{ij})^{\alpha}(\eta_{ij})^{\beta}}$
- ► Earliest Due Dates (EDD) heursitic for initialization: Sort due dates and $\eta_{ii} = 1/d_i$
- Global pheromone update applied only by best-iteration ant (using ρ)

ACS

- Include local pheromone update during ant's solution build (using ξ)
- ightharpoonup au_0 based on EDD solution

MMAS

- $ightharpoonup q_0 = 0$: only explore
- Pheromone interval: $\tau_{min} \leq \tau_{ii} \leq \tau_{max}$
- Interval updated at each iteration based on current best solution

Local search

Local search performed using exhaustive insertion-moves:

- ► That is for all permutation (*i*, *j*), remove job from position *i* and insert it in position *j*
- ▶ Performs in $O(n^2)$ for a schedule

Two mechanisms implemented:

- ▶ best-ant: Only best-iteration ant can perform local search: $O(n^2)$ per iteration
- ► all-ant: All ant can perform local search = $O(mn^2)$ per iteration

Results Setup

- Because local search routine appears to have a big impact on solution quality, we compare the results of the following 6 algorithms:
 - ACS
 - ► MMAS
 - ► ACS-LS-BEST (ALB)
 - ► ACS-LS-ALL (ALA)
 - ► MMAS-LS-BEST (MLB)
 - ► MMAS-LS-ALL (MLA)
- Execution of each algorithm on each instance 10 times
- One execution = 30 seconds time budget

Best configurations parameters returned by irace for each algorithm

	ACS	MMAS	ALB	ALA	MLB	MLA
ants	41	28	5	93	34	87
α	2.56	3.88	2.83	3.69	4.41	0.34
β	7.78	6.69	3.28	5.08	9.48	6.76
ρ	0.32	0.53	0.61	0.05	0.41	0.7
ξ	0.46	-	0.38	0.77	-	-
q_0	0.07	-	0.04	0.24	-	-

Observations:

- ▶ When all-ant is used, irace returns nearly max. of ants
- $ightharpoonup q_0$ mostly very low, exploration seems to perform better
- ► Heuristic desirability has bigger impact than pheromone trails

Instance with 50 jobs

Instance with 100 jobs

Instance with 50 jobs

Instance with 100 jobs

Results Best total weighted tardiness

- Best results provided by the algorithms for all 20 instances
 - ► ACS: 0%
 ► MMAS: 0%
 - ► ACS-LS-BEST: 40%
 - ► ACS-LS-BES1: 40%
 ► ACS-LS-ALL: 0%
 - ACS-LS-ALL: 0%
 - ► MMAS-LS-BEST: 35%
 - ► MMAS-LS-ALL: 25%

Conclusion

- Intuitive observations
 - best-ant local search seems to always performs better
 - MMAS-LS-BEST seems better for instances with fewer jobs and ACS-LS-BEST for instances with more jobs
- Improvements
 - No parameters analysis...
 - No analysis of MMAS stagnation and parameters reinitialization

