Zastosowanie metod MCMC do modeli wyceny

Grzegorz Mika

Wydział Matematyki Stosowanej AGH

23 kwietnia 2017 VI Krakowska Konferencja Matematyki Finansowej

Pewien model

$$\begin{cases} dS_t = S_t(r_t + \mu_t)dt + S_t\sqrt{V_t}dW_t^s + d\left(\sum_{j=1}^{N_t} Z_j\right) \\ dV_t = k_v(\theta_v - V_t)dt + \sigma_v\sqrt{V_t}dW_t^v \end{cases}$$

Cena opcji call

$$C_t = C(S_t, V_t, \Theta) = \mathbb{E}_Q \left[\exp\left(-\int_t^T r_s ds\right) (S_T - K)_+ |V_t, S_t, \Theta
ight]$$

Cena opcji call

$$C_t = C(S_t, V_t, \Theta) = \mathbb{E}_Q\left[\exp\left(-\int_t^T r_s ds\right)(S_T - K)_+ | V_t, S_t, \Theta\right]$$

Co umiemy powiedzieć obserwując ceny?

Cena opcji call

$$C_t = C(S_t, V_t, \Theta) = \mathbb{E}_Q\left[\exp\left(-\int_t^T r_s ds\right)(S_T - K)_+ | V_t, S_t, \Theta\right]$$

Co umiemy powiedzieć obserwując ceny?

 $p(\Theta|Y)$ – niepewność estymacji parametrów p(X|Y)– wydzielenie wpływu poszczególnych czynników ($X=(V_t,N_t,Z_j)$ -"zmienne ukryte")

```
p(\Theta|Y)– niepewność estymacji parametrów p(X|Y)– wydzielenie wpływu poszczególnych czynników \blacksquare
```

Znamy: $Y|X, \Theta$ Szukamy: $X, \Theta|Y$

Czym jest MCMC?

Czym jest MCMC?

МСМС

MCMC = Markov Chains Monte Carlo

Czym jest MCMC?

MCMC

MCMC = Markov Chains Monte Carlo

Dwa etapy

- generowanie próbki z pewnego ciągu rozkładów (Markov Chain)
- obliczanie parametrów (Monte Carlo)

Łańcuch Markowa

Proces stochastyczny $(X_n)_{n\in\mathbb{N}}$ nazywamy łańcuchem Markowa z rozkładem początkowym λ i macierzą przejścia $P=(p_{ij}\colon i,j\in I)$, jeżeli:

- X_0 ma rozkład λ ,
- dla $n \ge 0$, warunkowo przy $X_n = i$, X_{n+1} ma rozkład $(p_{ij} : j \in I)$ i niezależy od X_0, \ldots, X_{n-1} .

Ergodyczny łańcuch Markowa

Jednorodny łańcuch Markowa $(X_n)_{n\in\mathbb{N}}$ nazywamy ergodycznym, jeżeli dla dowolnego $j\in I$ istnieją i niezależą od i następujące granice

$$q_j = \lim_{n \to \infty} p_{ij}^{(n)} > 0$$

oraz $\sum_{j \in I} q_j = 1$.

Metody Monte Carlo

- Zadanie: obliczyć całkę $I_d(f) = \int_{[0,1]^d} f({m x}) d{m x}$
- Rozwiązanie: korzystając z Centralnego Twierdzenia Granicznego losujemy punkty $(t_1, t_2, ..., t_n)$ z $[0, 1]^d$ i przybliżamy $I_d(f)$ przy pomocy $I_d^n(f) = \frac{1}{n} \sum_{i=1}^n f(t_i)$
- Wynik: $I_d^n(f) \to I_d(f)$, gdy $n \to \infty$

MCMC

MCMC = Markov Chains Monte Carlo

Dwa etapy

- ullet generowanie próbki z pewnego ciągu rozkładów $\pi_n o p(X,\Theta|Y)$
- obliczanie parametrów

Nowy problem

Losowanie z $p(X, \Theta|Y)$ jest trudne.

Losowe pole Markowa

Niech G będzie grafem reprezentującym pewien łańcuch Markowa $(X_n)_{n\in\mathbb{N}}$. Wtedy G nazywamy losowym polem Markowa, jeżeli dla dowolnego wierzchołka X_i zachodzi

$$P(X_i|X_{G\setminus i})=P(X_i|X_{N_i}),$$

gdzie $X_{G\setminus i}$ oznacza wszystkie wierzchołki oprócz X_i , a X_{N_i} sąsiedztwo wierzchołka X_i .

Rozkład Gibbsa

Rozkład prawdopodobieństwa P(X) na grafie G nazywamy rozkładem Gibbsa, jeżeli może zostać sfaktoryzowany na iloczyn dodatnich funkcji zdefiniowanych na klikach pokrywających wszytkie wierzchołki i krawądzie grafu G, tj.

$$P(X) = \frac{1}{Z} \prod_{c \in C_G} \phi_c(X_c),$$

gdzie C_G jest zbiorem klik grafu G, a $Z = \sum_x \prod_{c \in C_G} \phi_c(X_c)$ jest stałą normalizującą.

Twierdzenie Clifforda- Hammerslay'a

Graf G reprezentujący proces $(X_n)_{n\in\mathbb{N}}$ jest losowym polem Markowa wtedy i tylko wtedy, gdy istnieje dla niego rozkład Gibbsa.

Twierdzenie Clifforda- Hammerslay'a

Graf G reprezentujący proces $(X_n)_{n\in\mathbb{N}}$ jest losowym polem Markowa wtedy i tylko wtedy, gdy istnieje dla niego rozkład Gibbsa.

Wniosek

Rozkład $p(X,\Theta|Y)$ jest jednoznacznie definiowany przez iloczyn rozkładów $p(X|\Theta,Y)$ oraz $p(\Theta|X,Y)$.

Sukces

Gibbs sampling

- ustalmy (X_0, Θ_0) ,
- wylosujmy

$$\Theta_n \sim p(\Theta|X_{n-1}, Y)$$

 $X_n \sim p(X|\Theta_n, Y)$

Otrzymujemy łańcuch Markowa $(K_n)_{n=1}^N$, gdzie $K_n = (\Theta_n, X_n)$.

Sukces

Gibbs sampling

- ustalmy (X_0, Θ_0) ,
- wylosujmy

$$\Theta_n \sim p(\Theta|X_{n-1}, Y)$$

 $X_n \sim p(X|\Theta_n, Y)$

Otrzymujemy łańcuch Markowa $(K_n)_{n=1}^N$, gdzie $K_n = (\Theta_n, X_n)$.

Zbieżność MCMC

Łańcuch $(K_n)_{n=1}^{\infty}$ jest ergodyczny z rozkładem stacjonarnym $p(\Theta, X|Y)$.

Ostatnia prosta

Niech $(K_n)_{n\in\mathbb{N}}$ będzie ergodycznym łańcuchem Markowa z rozkładem stacjonarnym π oraz $f\in\mathcal{L}(\mathbb{R})$. Wtedy

Ergodyczne uśrednianie

Przy dowolnym warunku początkowym K_0

$$\lim_{n\to\infty}\frac{1}{n}\sum_{k=1}^n f(K_k)=\int f(K)d\pi,\ \pi-pw$$

Centralne twierdzenie graniczne

$$\exists_{\sigma(f)} \sqrt{n} \left(\frac{1}{n} \sum_{k=1}^{n} f(K_k) - \int f(K) d\pi \right) \stackrel{d}{\to} Z \sim \mathcal{N}(0, \sigma)$$

Bibliografia

- Norris J.R., *Markov Chain*, Cambridge University Press, 1997
- Iwanik A., Misiewicz J.K., Wykłady z procesów stochastycznych z zadaniami. Cześć pierwsza: łańcuchy Markowa, Oficyna Wydawnicza Uniwersytetu Zielonogórskiego, 2009
- Johannes M., Polson N., MCMC Methods for Continuous— Time Financial Econometrics
- Cheung S., Proof of Hammerslay- Clifford Theorem