MATH 2135 Linear Algebra

Proofs

Alyssa Motas

April 12, 2021

Contents

1	What is a proof?	3
2	Proof rules	4
3	Proof rules for using an assumption	5
4	Examples	5

1 What is a proof?

A proof is *evidence* for the validity of a theorem. This evidence is subject to very *strict* rules. Your first task is to learn threse rules, then you should be able to tell the difference between a proof and a non-proof. Your next task is to get good at proving things.

1. The goal of a proof is to show that a given *conclusion* follows from given *assumptions*.

Example: "Every spanning list in a vector space can be reduced to a basis of the vector space." This statement is an English description of the following more precise statements:

Assumptions/"Hypotheses:"

- Let F be a field.
- Let V be a vector space over F.
- Let v_1, \ldots, v_n be a list of elements of V.

Conclusion:

• If v_1, \ldots, v_n is spanning, then v_1, \ldots, v_n can be reduced to a basis of V.

Our goal is to show that the conclusion follows from the assumptions.

- 2. In the course of proving things, the assumptions and conclusion can change. We will see examples of this.
- 3. To do any proof, we first need to understand what kind of statement the conclusion is. There are several different kinds of statements:
 - "and statement" or "conjunction:" "n is an odd prime" \Leftrightarrow "n is odd and n is prime."
 - "or statement" or "disjunction:" "n is even or odd" \Leftrightarrow "n is even or n is odd."
 - "if-then statement" or "implication:" "if v_1, \ldots, v_n is spanning, then v_1, \ldots, v_n can be reduced to a basis of V."
 - "not statements" or "negation:" "n is not prime."

- "for all statement" or "universally quantified statement:" "Every basis is linearly independent" \Leftrightarrow "For all lists v_1, \ldots, v_n of vectors, (if v_1, \ldots, v_n is a basis, then v_1, \ldots, v_n is linearly independent)."
- "exists statement" or "existentially quantified statement:" "There is an odd prime."

Note: The reason "if and only if" is not in the above list of statement types is that it is actually an "and statement." We treat " $A \Leftrightarrow B$ " as an abbreviation of " $A \Rightarrow B$ and $B \Rightarrow A$."

2 Proof rules

Type of conclusion:	To prove:	You should do the following:	
Conjunction	A and B	First we prove A . [Prove A]	
		Next, we prove B . [Prove B]	
		So we proved A and B , as required.	
Implication	A implies B	Assume A . [Prove B] Since we	
		assumed A , this proves that A implies B .	
For all-statement	$\forall x \in A, P(x)$	Take an arbitrary $x \in A$. [Prove $P(x)$]	
		Since x was arbitrary, this proves $\forall x \in A, P(x)$.	
Not-statement	not A	Assume A. [Prove a contradiction]	
Or-statement	A or B	Method 1: [Prove A]. Since we proved A ,	
		we have A or B .	
		Method 2: [Prove B]. Since we proved B ,	
		we have A or B .	
		Method 3: Assume that both A and B are false.	
		[Prove a contradiction]	
Exists-statement	$\exists x \in A, P(x)$	[Describe a specific element $a \in A$]	
		[Prove $P(a)$]	

3 Proof rules for using an assumption

Type of assumption:	If you already know:	You may use it as follows:
And-statement	A and B	You may conclude A .
		You may conclude B .
Or-statement	A or B	[Can proceed by case distinction]
		Case 1: A is true. [Prove the conclusion]
		Case 2: B is true. [Prove the conclusion]
Implication	$A \Rightarrow B$	Method 1: [If you also know A , you may
		conclude B]
		Method 2: [If you also know not B , then
		you may conclude not A]
Not-statement	not A	[If you also know A , you may derive
		a contradiction]
For all-statement	$\forall x \in A, P(x)$	Given any element $a \in A$, you may
		conclude $P(a)$]
Exists-statement	$\exists x \in A, P(x)$	[You may give a new name to an
		unknown element $b \in A$. You may
		assume $P(b)$ holds]

4 Examples

1. Prove: For all sets A, B, C, we have

$$(A \cup B) \cap C = (A \cap C) \cup (B \cap C).$$

Proof. Let A, B, C be arbitrary sets. We msut show $(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$. By definition of equality of sets, we must show

$$(A \cup B) \cap C \subseteq (A \cap C) \cup (B \cap C)$$

and

$$(A \cap C) \cup (B \cap C) \subseteq (A \cup B) \cap C.$$

We first prove $(A \cup B) \cap C \subseteq (A \cap C) \cup (B \cap C)$. We have to show $\forall x \ in(A \cup B) \cap C, x \in (A \cap C) \cup (B \cap C)$. Take an arbitrary $x \in (A \cup B) \cap C$ and we want to show $x \in (A \cap C) \cup (B \cap C)$. Equivalently, by definition of union, we must show $x \in A \cap C$ or $x \in B \cap C$.

Assumption 2 says: $x \in (A \cup B) \cap C$. By definition of intersection, we have $x \in A \cup B$ and $x \in C$. We conclude $x \in A \cup B$. We conclude $x \in C$.

The other inclusion is the same. Hence, we proved the statement provided. $\hfill\Box$