Exercise 1. Calculate each of the following integrals along the inducated contours. Observe that a standard table of integrals can be used. Explain why.

Because the following functions are continuous in $\mathbb C$ have antiderivatives in $\mathbb C$, then for any contour in $\mathbb C$

$$\int_{\Gamma} f(z)dz = F(z_T) - F(z_1)$$

where z_1 is the initial point of a contour and z_T is the terminal point of a contour.

(a) $\int_{\Gamma} (3z^2 - 5z + i) dz$ along the line segment from z = i to z = 1.

$$\int_{\Gamma} (3z^2 - 5z + i) = \left[z^3 - \frac{5}{2}z^2 + iz \right]_i^1$$

$$= \left(1 - \frac{5}{2} + i \right) - \left(-i + \frac{5}{2} - 1 \right)$$

$$= -3 + 2i$$

(e) $\int_{\Gamma} \sin^2 z \cos(z) dz$ along the contour in Fig. 4.24. Let $u = \sin(z)$, then $du = \cos(z) dz$.

$$\int_{\Gamma} \sin^2(z) \cos(z) dz = \int_{\Gamma} u^2 du$$

$$= \left[\frac{u^3}{3} \right]_{\sin(\pi)}^{\sin(i)}$$

$$= \frac{\sin^3(i)}{3}$$

$$= -\frac{i}{3} \sinh^3(1)$$

Exercise 7. Show that if C is a positevely oriented circle and z_0 lies outside C, then

$$\int_C \frac{dz}{z - z_0} = 0$$

Proof. Let s be the line from z_0 passing through center of C and extending onward. Since z_0 lies outside of C, this line always exists and has a direction. Now let -s be the line from z_0 in the opposite direction of s extending forever. Then $D = \mathbb{C} - (-s)$ forms a domain in which $\frac{1}{z-z_0}$ is continuous and has an antiderivative, namely $\log(z-z_0)$ with branch cut -s. Also, clearly $C \in D$, so by Theorem 7 the integral of C.

Exercise 12. Let f be an analytic function with a continuous derivative satisfying $|f'(z)| \leq M$ for all z in the disk D: |z| < 1. Show that

$$|f(z_2) - f(z_1)| \le M|z_2 - z_1| \quad (z_1, z_2 \in D).$$

Proof. Let Γ be the sine segment from z_1 to z_2 , then

$$|f(z_2) - f(z_1)| = \left| \int_{\Gamma} f'(z) dz \right|$$

$$\leq \int_{\Gamma} |f'(z)| dz$$

$$\leq \int_{\Gamma} M dz$$

$$= M(z_2 - z_1)$$

$$\leq M|z_2 - z_1|$$