第7节 RC 有源滤波器的快速设计

[学习要求] 掌握低通、高通、带通、带阻等最基本的二阶 RC 有源滤波器的快速设计方法与性能参数的测试技术。

[重点与难点]

重点: 二阶 RC 有源滤波器的快速设计方法。

难点: 二阶 RC 滤波器的传输函数。

[理论内容]

一、滤波器的传输函数与性能参数

由RC元件与运算放大器组成的滤波器称为RC有源滤波器,其功能是让一定频率范围内的信号通过,抑制或急剧衰减此频率范围以外的信号。因受运算放大器带宽限制,这类滤波器仅适用于低频范围。根据频率范围可将其分为低通、高通、带通与带阻等四种滤波器,它们的幅频特性如图所示。具有理想特性的滤波器是很难实现的,只能用实际特性去逼近理想的。常用的逼近方法是巴特沃斯(butterwoth)最大平坦响应和切比雪夫(chebyshex)等波动响应。在不允许带内有波动时,用巴特沃斯响应较好。如果给定带内所允许的纹波差,则用切比雪夫响应较好。

二、二阶 RC 滤波器的传输函数

二阶 RC 滤波器的传输函数如表 1 所示。其常用电路有电压控制电压源(VCVS)电路和无限增益多路反馈(MFB)电路。图(a)所示电路为压控电压源电路,其中运放为同相输入,输入阻抗很高,输出阻抗很低,滤波器相当于一个电压源,故称电压控制电压源电路。其优点是电路性能稳定、增益容易调节。图(b)所示电路为无限增益多路反馈电路,其中运放为反相输入,输出端通过 C1、R2 形成两条反馈支路,故称无限增益多路反馈电路。其优点是电路有倒相作用,使用元件较少,但增益调节对其性能参数会有影响,

表 1 二阶 RC 滤波器的传输函数

分析表明,图(a)所示电路的传输函数的表达式为:

$$A(s) = \frac{A_V \frac{1}{R_1 R_2 C C_1}}{s^2 + \left[\frac{1}{R_1 C} + \frac{1}{R_2 C} + (1 - A_V) \frac{1}{R_2 C_1}\right] s + \frac{1}{R_1 R_2 C C_1}}$$

与表中低通滤波器传输函数的通用表达式相比较,可得滤波器性能参数的表达式为

$$\omega_c^2 = \frac{1}{R_1 R_2 C C_1}$$

$$\frac{\omega_c}{Q} = \frac{1}{R_1 C} + \frac{1}{R_2 C} + (1 - A_V) \frac{1}{R_2 C_1}$$

$$A_V = 1 + \frac{R_4}{R_3}$$

在设计滤波器时,通常给定的性能指标有截止频率 f_c 或截止角频率 ω_c ,带内增益 A_v ,以及滤波器的品质因数 Q。对于二阶低通(或高通)滤波器,通常取 Q =O.707。在设计中,如果仅由 f_c 、 A_v 及 Q 这三个数求出电路中的所有 R、C 元件的值,是相当困难的。通常是先设定一个或几个元件的值,再由以上公式建立方程组,求其它元件值。设定的元件参数越少,方程求解越难,但电路调整较方便。现在已经用计算机完成了方程组的求解,并将具有巴特沃斯响应、切比雪夫响应的 n=2,3,…,8 阶各种类型的有源滤波器的电路及其所用的 RC 元件的值制成设计表,设计人员只需要查表就能得到滤波器的电路及 RC 元件的值,称这种查表法为有源滤波器的快速设计方法。

三、滤波器的快速设计方法

(1) 已知条件

已知滤波器的响应特性(巴特沃斯或切比雪夫)、滤波器的电路形式(VCVS 或 MFB),滤波器的类型(低通、高通、带通、带阻及阶数 n)、滤波器的性能参数 f_c 、 A_v 、 Q 或 BW 。

(2) 设计步骤

① 先选择电容 C 的标称值,电容 C 的初始值靠经验决定,通常以下面的数据作参考:

$$f_c \leqslant 100 \text{Hz}$$
 $C = (10-0.1) \, \mu\text{F}$ $f_c = (100-1000) \text{Hz}$ $C = (0.1-0.01) \, \mu\text{F}$ $C = (0.01-0.001) \, \mu\text{F}$ $C = (10-1000k) \text{Hz}$ $C = (1000-100) \text{pF}$ $C = (1000-100) \text{pF}$ $C = (1000-100) \text{pF}$

② 所选择的电容 C 的实际值,再按照下式计算电阻换标系数 K

$$k = \frac{100}{f_c C}$$

其中 f_c 的单位为 Hz; С 的单位为 μ F。

[注意]K 值不能太大,否则会使电阻的取值较大,从而使引入的误差增加,通常取 I \leq K \leq 10。

③ 从设计表中 $1\sim4$ 查出与 Av 对应的电容值及 K=1 时的电阻值。再将这些电阻值乘以参数 K,得电阻的设计值和 C1 的设计值。

表 1 二阶低通滤波器(巴特沃斯响应)设计表

(3) 注意事项

① 电阻的标称值尽可能接近设计值,可适当选用几个电阻串、并联;尽可能采用金属

膜电阻及容差小于 10%的电容,影响滤波器性能的主要因素是 $\triangle R/R$ 、 $\triangle C/C$ 及运放的性能。实验前应测量电阻、电容的准确值。

- ② 在测试过程中,若某项指标偏差较大,则应根据设计表调整修改相应元件的值。
- ③ 滤波器电路形式的选择,可参考设计表中的应用说明。

四、设计任务

设计课题:语音滤波器设计

性能指标: 截止频率f_H=30000Hz, f_L=300Hz, A_v=10, 阻带衰减速率为-40dB/10 倍频程。

(提示:一级二阶低通与一级二阶高通级联)

表 2 二阶高通滤波器 (巴特沃斯响应)设计表

	压控电压源(VCVS)电路	无限增益多路反馈(MFB)电路					
电	C C	c,					
路	+ - - - - - - - - - -						
形	\dot{V} , R_2 \dot{V} , $A\sqrt{J2}$	-40dB/10 倍频 ·					
式		ω, . ω –					
性	$\omega_c^2 = \frac{1}{R_1 R_2 C^2}$	$\omega_c^2 = \frac{1}{R_1 R_2 C^2}$					
能	Q≈0.707	Q≈0.707					
参 数	$A_{\rm V} = 1 + \frac{R_4}{R_3} (A_{\rm V} \le 2)$	$A_{V} = -\frac{C}{C_{1}}$					
	电路元件值"	电路元件值"					
设	A _V 1 2 4 6 8 10	A _v -1 2 5 10					
	R ₁ 1.125 1.821 2.592 3.141 3.593 3.985	R ₁ 0.750 0.900 1.023 1.072					
it	R ₂ 2.251 1.391 0.977 0.806 0.705 0.636	R ₂ 3.376 5.627 12.379 23.634					
	R ₃ 开路 2.782 1.303 0.968 0.806 0.706	C ₁ C 0.5C 0.2C 0.1C					
表	R ₄ 0 2.782 3.910 4.838 5.640 6.356						
	• 电阻为参数 K=1 时的值、单位为 kΩ、	* 电阻为参数 K=1 时的值、单位为 kΩ.					
说明	要求运放 R_i 大于 $10R_2$, R_3 、 R_4 的选取要考虑对失调的影响, $\alpha_{\rm co}$ 处,运放的开环增益 $A_{\rm vo}$ 至少是滤波器增益的 50 倍.	同相端接等于 R ₂ 的电阻可减小失调,微调 C 或 C, 对 A _v 实现调整。					

表 3 二阶带通滤波器 (巴特沃斯响应)设计表

	电路元件值 (Q=8)								电路	元件值	•(<i>Q</i> =8)		
A_{V}	1	2	4	6	8	10	$A_{\rm V}$	1	2	4	6	8	10
R_1	25.465	12.732	6.366	4.244	3.183	2.546	R_1	12.732	6.336	3.183	2.122	1.592	1.273
R_2	2.251	2.352	2.569	2.802	3.052	3.318	R_2	0.100	0.101	0.103	0.104	0.106	0.108
R_3	1.177	1.176	1.167	1.148	1.123	1.090	R_3	25.465	25.465	25.465	25.465	25.465	25.46
R_4, R_5	4.502	4.704	5.138	5.604	6.104	6.636							

表 4 二阶带阻滤波器(巴特沃斯响应)设计表

