Introduction to Autoencoders

What are autoencoders?

- Autoencoding is a data compression algorithm where the compression and decompression functions are
 - 1) data-specific
 - 2) lossy, and
 - 3) learned automatically from examples rather than engineered by a human
 - functions are implemented with neural networks.

- Autoencoders are data-specific, which means that they will only be able to compress data similar to what they have been trained on (unlike MP3)
- Autoencoders are lossy, which means that the decompressed outputs will be degraded compared to the original inputs
- Autoencoders are learned automatically from data examples, which is a useful property
- To build an autoencoder, you need three things: an encoding function, a
 decoding function, and a distance function between the amount of
 information loss between the compressed representation of your data and
 the decompressed representation

Are they good at data compression?

- Usually, not really. In picture compression for instance, it is pretty difficult to train an autoencoder that does a better job than a basic algorithm like JPEG,
- and typically the only way it can be achieved is by restricting yourself to a very specific type of picture (e.g. one for which JPEG does not do a good job).

What are autoencoders good for?

- In 2012 they briefly found an application in greedy layer-wise pretraining for deep convolutional neural networks
- but this quickly fell out of fashion as we started realizing that better random weight initialization schemes were sufficient for training deep networks from scratch
- In 2014, batch normalization started allowing for even deeper networks,
- from late 2015 we could train arbitrarily deep networks from scratch using residual learning

What are autoencoders good for?

 Today two interesting practical applications of autoencoders are data denoising and dimensionality reduction for data visualization

- encoding dim = 32
- input_img = Input(shape=(784,))
- encoded = Dense(encoding_dim, activation='relu')(input_img)
- decoded = Dense(784, activation='sigmoid')(encoded)
- autoencoder = Model(input_img, decoded)

Deep autoencoder

 We do not have to limit ourselves to a single layer as encoder or decoder, we could instead use a stack of layers, such as:

```
encoded = Dense(128, activation='relu')(input_img)
encoded = Dense(64, activation='relu')(encoded)
encoded = Dense(32, activation='relu')(encoded)

decoded = Dense(64, activation='relu')(encoded)
decoded = Dense(128, activation='relu')(decoded)
decoded = Dense(784, activation='sigmoid')(decoded)
```

input img = Input(shape=(784,))

Convolutional autoencoder

- If convolutional neural networks (convnets) as encoders and decoders
- Then those autoencoders are called conv AE
- Used for images

Convolutional autoencoder

```
input img = Input(shape=(28, 28, 1))
x = Conv2D(16, (3, 3), activation='relu', padding='same')(input img)
x = MaxPooling2D((2, 2), padding='same')(x)
x = Conv2D(8, (3, 3), activation='relu', padding='same')(x)
x = MaxPooling2D((2, 2), padding='same')(x)
x = Conv2D(8, (3, 3), activation='relu', padding='same')(x)
encoded = MaxPooling2D((2, 2), padding='same')(x)
```

Convolutional autoencoder

```
x = Conv2D(8, (3, 3), activation='relu', padding='same')(encoded)
x = UpSampling2D((2, 2))(x)
x = Conv2D(8, (3, 3), activation='relu', padding='same')(x)
x = UpSampling2D((2, 2))(x)
x = Conv2D(16, (3, 3), activation='relu')(x)
x = UpSampling2D((2, 2))(x)
decoded = Conv2D(1, (3, 3), activation='sigmoid', padding='same')(x)
```


(c) Deep undercomplete

(d) Deep overcomplete

Sparse Autoencoder

```
inputs = Input(shape=(784,))
h = Dense(64, activation='sigmoid',
activity_regularizer=activity_l1(1e-5))(inputs)
outputs = Dense(784)(h)
```

- Notice in our hidden layer, we added an £1 penalty.
- As a result, the representation is now sparser compared to the standard Autoencoder

Variational Autoencoders

used in creating your own generative text, art, images and even music

- When using generative models, you could simply want to generate a random, new output, that looks similar to the training data
- you can certainly do that too with VAEs. But more often, you'd like to alter, or explore variations on data you already have, and not just in a random way either, but in a desired, specific direction.
- This is where VAEs work better than any other method currently available.

- The entire network is usually trained as a whole.
- The loss function is usually either the mean-squared error or cross-entropy between the output and the input
- known as the reconstruction loss,
- which penalizes the network for creating outputs different from the input.

- The encoder learns to preserve as much of the relevant information as possible in the limited encoding
- Intelligently discard irrelevant parts.
- The decoder learns to take the encoding and properly reconstruct it into a full image.
- Together, they form an autoencoder

- Standard autoencoders learn to generate compact representations and reconstruct their inputs well
- Used in few applications like denoising autoencoders
- they are fairly limited
- The fundamental problem with autoencoders, for generation, is that the latent space they convert their inputs to and where their encoded vectors lie, may not be continuous

- But when you're building a generative model,
- you don't want to prepare to replicate the same image you put in.
- You want to randomly sample from the latent space, or generate variations on an input image, from a continuous latent space.

- Variational Autoencoders (VAEs) have one fundamentally unique property that separates them from vanilla autoencoders
- this property that makes them so useful for generative modeling: their latent spaces are, by design, continuous, allowing easy random sampling and interpolation.

- encoder not output an encoding vector of size n, rather, outputting two vectors of size n:
- a vector of means, µ
- another vector of standard deviations, σ.

