Vijay 02-09-2023

In [729]: 1 import numpy as np 2 **import** pandas **as** pd 3 import matplotlib.pyplot as plt 4 import seaborn as sns

In [730]: 1 | from sklearn.linear_model import LogisticRegression 2 a=pd.read_csv(r"C:\USERS\user\Downloads\C2_train.gender_submission.csv")

Out[730]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Emb	
0	1	0	3	Braund, Mr. Owen Harris	ma l e	22.0	1	0	A/5 21171	7.2500	NaN		
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85		
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN		
3	4	1	1	Futrelle, Mrs. Jacques Heath	female	35.0	1	0	113803	53.1000	C123		•
												•	

In [798]: 1 a=a.head(50)
2 a

Out[798]:

Embarked	Cabin	Fare	Ticket	Parch	SibSp	Age	Sex	Name	Pclass	Survived	Passengerld	
S	NaN	7.2500	A/5 21171	0	1	22.0	ma l e	Braund, Mr. Owen Harris	3	0	1	0
С	C85	71.2833	PC 17599	0	1	38.0	female	Cumings, Mrs. John Bradley (Florence Briggs Th	1	1	2	1
S	NaN	7.9250	STON/O2. 3101282	0	0	26.0	female	Heikkinen, Miss. Laina	3	1	3	2
S	C123	53.1000	113803	0	1	35.0	female	Futrelle, Mrs. Jacques Heath (Lily May Peel)	1	1	4	
S	NaN	8.0500	373450	0	0	35.0	ma l e	Allen, Mr. William Henry	3	0	5	Ļ
Q	NaN	8.4583	330877	0	0	NaN	male	Moran, Mr. James	3	0	6	5
S	E46	51.8625	17463	0	0	54.0	ma l e	McCarthy, Mr. Timothy J	1	0	7	6
S	NaN	21.0750	349909	1	3	2.0	ma l e	Palsson, Master. Gosta Leonard	3	0	8	7
S	NaN	11.1333	347742	2	0	27.0	female	Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)	3	1	9	В
С	NaN	30.0708	237736	0	1	14.0	fema l e	Nasser, Mrs. Nicholas (Adele Achem)	2	1	10	9
•												

```
In [799]: 1 from sklearn.linear_model import LogisticRegression
In [800]: 1 a.columns
```

```
1 b=a[['PassengerId', 'Survived', 'Pclass', 'SibSp', 'Parch']]
In [801]:
            2 b
Out[801]:
              PassengerId Survived Pclass SibSp Parch
           0
                      1
                              0
                                     3
                                                 0
           1
                      2
                               1
                                     1
                                                 0
                                           1
           2
                      3
                                     3
                                           0
                                                 0
           3
                                     1
                                                 0
                      5
                                     3
                                           0
                                                 0
                      6
                              0
                                     3
                                           0
                                                 0
           6
                      7
                                           0
                                                 0
                                     1
           7
                                     3
                                                 1
                      9
                                                 2
           8
                                     3
                                           0
           9
                     10
                              1
                                     2
                                           1
                                                 n
In [802]:
            1 c=b.iloc[:,0:5]
            2 d=b.iloc[:,-1]
In [803]:
            1 c.shape
Out[803]: (10, 5)
In [804]:
            1 d.shape
Out[804]: (10,)
In [805]:
            1 | from sklearn.preprocessing import StandardScaler
            2 fs=StandardScaler().fit transform(c)
            3 fs
Out[805]: array([[-1.5666989 , -1.
                                             0.77777778, 0.33333333, -0.46852129],
                                           , -1.44444444, 0.33333333, -0.46852129],
                  [-1.21854359, 1.
                                           , 0.7777778, -0.7777778, -0.46852129],
                  [-0.87038828, 1.
                                           , -1.44444444, 0.33333333, -0.46852129],
                  [-0.52223297, 1.
                                             0.7777778, -0.7777778, -0.46852129],
                  [-0.17407766, -1.
                                          , 0.77777778, -0.77777778, -0.46852129],
                  [ 0.17407766, -1.
                                           , -1.44444444, -0.7777778, -0.46852129],
                  [ 0.52223297, -1.
                                           , 0.77777778, 2.55555556, 1.09321633],
                  [ 0.87038828, -1.
                  [ 1.21854359, 1.
                                           , 0.7777778, -0.7777778, 2.65495395],
                                           , -0.33333333, 0.33333333, -0.46852129]])
                  [ 1.5666989 , 1.
In [806]:
            1 logr=LogisticRegression()
            2 logr.fit(fs,d)
Out[806]: LogisticRegression()
In [807]:
            1 e=[[77,9,55,5,76]]
In [808]:
               prediction=logr.predict(e)
            2 prediction
Out[808]: array([2], dtype=int64)
```

```
In [809]:
            1 logr.classes_
Out[809]: array([0, 1, 2], dtype=int64)
In [810]:
            1 logr.predict_proba(e)[0][0]
Out[810]: 1.3533762495429735e-71
In [811]:
            1 import re
            2 from sklearn.datasets import load_digits
            3 import numpy as np
            4 import pandas as pd
            5 import matplotlib.pyplot as plt
            6 import seaborn as sns
In [812]:
            1 from sklearn.linear_model import LogisticRegression
               from sklearn.model_selection import train_test_split
In [813]:
            1 digits=load_digits()
            2 digits
             'pixel_1_4',
             'pixel 1 5',
             'pixel_1_6',
             'pixel_1_7',
             'pixel_2_0',
             'pixel 2 1',
             'pixel_2_2',
             'pixel_2_3',
             'pixel_2_4',
             'pixel_2_5',
             'pixel 2 6',
             'pixel_2_7',
             'pixel_3_0',
             'pixel_3_1',
             'pixel_3_2',
             'pixel_3_3',
             'pixel_3_4',
             'pixel_3_5',
             'pixel_3_6',
In [814]:
            1 plt.figure(figsize=(50,25))
               for index,(image,label) in enumerate(zip(digits.data[0:8],digits.target[0:5])):
            3
                   plt.subplot(1,8,index+1)
            4
                   plt.imshow(np.reshape(image,(8,8)),cmap=plt.cm.gray)
            5
                   plt.title('Number:%i\n'%label,fontsize=15)
                                                                          Number:3
                                                                                             Number:4
```

```
In [817]:
            1 x_train,x_test,y_train,y_test=train_test_split(digits.data,digits.target,test_size=0.
In [818]:
            1 print(x train.shape)
            2 print(x test.shape)
            3 print(y_train.shape)
            4 print(y test.shape)
           (1347, 64)
           (450, 64)
           (1347,)
           (450,)
In [819]:
            1 logre=LogisticRegression(max_iter=10000)
             2 logre.fit(x_train,y_train)
             3
Out[819]: LogisticRegression(max iter=10000)
In [820]:
            1 print(logre.predict(x test))
           [8 9 1 5 7 5 1 3 2 7 4 0 1 3 4 1 9 9 5 6 8 4 0 8 7 8 2 6 9 6 0 1 8 2 8 5 6
            9 4 7 3 7 4 9 2 2 0 9 4 1 9 1 3 2 5 3 0 5 8 8 6 8 3 1 4 5 1 4 7 4 5 6 5 5
            9 0 9 3 5 0 4 4 2 6 1 0 7 4 0 9 0 0 1 2 7 9 4 3 1 6 3 7 3 3 0 8 9 0 3 3 9
            2 8 6 7 8 2 4 1 7 8 1 6 3 6 4 6 1 0 7 8 1 7 6 9 8 6 6 5 5 3 1 4 7 2 3 7 6
            9 7 6 9 2 3 8 6 6 4 1 0 6 4 0 1 1 4 8 2 6 1 2 3 5 2 1 6 1 0 2 7 9 4 0 1 1
            3 4 4 8 9 5 9 4 8 5 0 6 8 9 8 9 8 3 1 6 3 4 7 9 1 2 2 8 4 4 2 9 2 0 1 7 2
            8 5 7 3 2 9 2 4 6 1 8 4 8 6 7 0 1 9 8 7 8 5 3 3 2 8 5 9 6 8 4 3 6 6 7 9 1
            4 4 4 5 6 4 5 9 3 1 9 6 5 2 6 2 2 6 2 6 5 1 3 4 1 4 1 2 0 5 5 3 9 7 6 0 6
            6\; 3\; 4\; 5\; 2\; 1\; 2\; 6\; 8\; 7\; 4\; 5\; 7\; 2\; 9\; 3\; 1\; 3\; 4\; 0\; 1\; 2\; 4\; 4\; 4\; 1\; 1\; 1\; 4\; 6\; 7\; 6\; 9\; 3\; 2\; 8\; 0
            3 6 4 5 9 7 3 6 4 3 2 6 2 6 6 0 9 1 5 9 1 8 1 5 2 9 4 3 6 0 2 2 4 4 8 5 7
            2 0 3 3 1 2 8 7 0 3 2 5 4 7 1 0 6 8 0 9 3 9 8 1 5 9 2 7 7 0 0 9 7 6 9 6 0
            4 7 3 2 9 7 0 4 3 1 6 2 6 4 3 0 4 3 6 3 6 1 7 9 8 5 8 8 4 8 5 1 3 4 3 9 2
            2 3 9 4 3 4]
In [753]:
            1 import numpy as np
            2 import pandas as pd
            3 import matplotlib.pyplot as plt
            4 import seaborn as sns
```

1 | a=pd.read_csv(r"C:\USERS\user\Downloads\C2_train.gender_submission.csv")

In [754]:

In [821]: 1 a=a.head(50) a

Out[821]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	ma l e	22.0	1	0	A/5 21171	7.2500	NaN	S
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
4	5	0	3	Allen, Mr. William Henry	ma l e	35.0	0	0	373450	8.0500	NaN	S
5	6	0	3	Moran, Mr. James	male	NaN	0	0	330877	8.4583	NaN	Q
6	7	0	1	McCarthy, Mr. Timothy J	ma l e	54.0	0	0	17463	51.8625	E46	S
7	8	0	3	Palsson, Master. Gosta Leonard	ma l e	2.0	3	1	349909	21.0750	NaN	S
8	9	1	3	Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)	female	27.0	0	2	347742	11.1333	NaN	S
9	10	1	2	Nasser, Mrs. Nicholas (Adele Achem)	fema l e	14.0	1	0	237736	30.0708	NaN	С
4												+

```
In [822]: 1 b=a[['PassengerId', 'Survived', 'Pclass', 'SibSp','Parch']]
    b
```

Out[822]:

	PassengerId	Survived	Pclass	SibSp	Parch
0	1	0	3	1	0
1	2	1	1	1	0
2	3	1	3	0	0
3	4	1	1	1	0
4	5	0	3	0	0
5	6	0	3	0	0
6	7	0	1	0	0
7	8	0	3	3	1
8	9	1	3	0	2
9	10	1	2	1	0

```
In [823]: 1 b['Pclass'].value_counts()
```

Out[823]: 3 6 1 3 2 1

Name: Pclass, dtype: int64

```
In [824]: 1 x=b[['PassengerId', 'Survived', 'SibSp']]
y=b['Pclass']
print(b)
```

	PassengerId	Survived	Pclass	SibSp	Parch
0	1	0	3	1	0
1	2	1	1	1	0
2	3	1	3	0	0
3	4	1	1	1	0
4	5	0	3	0	0
5	6	0	3	0	0
6	7	0	1	0	0
7	8	0	3	3	1
8	9	1	3	0	2
9	10	1	2	1	0

```
1 |g1={"Pclass":{'g1':1}}
In [825]:
            2 a=a.replace(g1)
            3 print(a)
             PassengerId Survived
                                     Pclass \
           0
                                  0
                                           3
                        1
          1
                        2
                                  1
                                           1
           2
                        3
                                           3
                                  1
           3
                        4
                                  1
                                           1
           4
                        5
                                  0
                                           3
           5
                        6
                                  0
                                           3
           6
                        7
                                  0
                                           1
                                  0
          7
                        8
                                           3
                        9
           8
                                  1
                                           3
           9
                       10
                                  1
                                           2
                                                            Name
                                                                     Sex
                                                                            Age SibSp
          0
                                        Braund, Mr. Owen Harris
                                                                    male 22.0
                                                                                     1
          1
             Cumings, Mrs. John Bradley (Florence Briggs Th...
                                                                  female
                                                                          38.0
                                                                                     1
          2
                                         Heikkinen, Miss. Laina
                                                                  female
                                                                          26.0
                                                                                     0
                   Futrelle, Mrs. Jacques Heath (Lily May Peel)
           3
                                                                  female
                                                                           35.0
                                                                                     1
                                       Allen, Mr. William Henry
           4
                                                                    male 35.0
                                                                                     0
           5
                                                Moran, Mr. James
                                                                    male
                                                                                     0
                                                                           NaN
           6
                                        McCarthy, Mr. Timothy J
                                                                    male 54.0
           7
                                 Palsson, Master. Gosta Leonard
                                                                    male
                                                                            2.0
                                                                                     3
             Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)
          8
                                                                  female
                                                                          27.0
                                                                                     0
          9
                            Nasser, Mrs. Nicholas (Adele Achem)
                                                                  female 14.0
                                                                                     1
              Parch
                               Ticket
                                           Fare Cabin Embarked
          0
                            A/5 21171
                                        7.2500
                                                  NaN
                                                             S
                  0
                                                             C
          1
                  0
                             PC 17599 71.2833
                                                  C85
           2
                  0
                    STON/02. 3101282
                                        7.9250
                                                 NaN
                                                             S
                                                             S
           3
                               113803 53.1000 C123
                  0
          4
                                                             S
                  0
                               373450
                                        8.0500
                                                  NaN
           5
                                                             Q
                  0
                               330877
                                        8.4583
                                                  NaN
           6
                  0
                                17463 51.8625
                                                  E46
                                                             S
          7
                  1
                               349909 21.0750
                                                  NaN
                                                             S
           8
                  2
                               347742 11.1333
                                                  NaN
                                                             S
          9
                  0
                               237736 30.0708
                                                  NaN
                                                             C
In [826]:
            1 from sklearn.model selection import train test split
            2 x_train,x_test,y_train,y_test=train_test_split(x,y,train_size=0.70)
            1 | from sklearn.ensemble import RandomForestClassifier
In [827]:
In [828]:
            1 rfc=RandomForestClassifier()
              rfc.fit(x_train,y_train)
Out[828]: RandomForestClassifier()
In [829]:
            1
               parameters={'max_depth':[1,2,3,4,5],
            2
                           'min_samples_leaf':[5,10,15,20,25],
            3
                           'n_estimators':[10,20,30,40,50]}
In [830]:
              from sklearn.model selection import GridSearchCV
```

```
1 | grid_search=GridSearchCV(estimator=rfc,param_grid=parameters,cv=2,scoring="accuracy")
In [831]:
            2 grid_search.fit(x_train,y_train)
Out[831]: GridSearchCV(cv=2, estimator=RandomForestClassifier(),
                        param_grid={'max_depth': [1, 2, 3, 4, 5],
                                    'min_samples_leaf': [5, 10, 15, 20, 25],
                                    'n_estimators': [10, 20, 30, 40, 50]},
                        scoring='accuracy')
In [832]:
            1 grid_search.best_score_
Out[832]: 0.7083333333333333
In [833]:
            1 rfc_best=grid_search.best_estimator_
In [834]:
            1 | from sklearn.tree import plot_tree
In [835]:
               plt.figure(figsize=(20,10))
              plot_tree(rfc_best.estimators_[5],feature_names=x.columns,class_names=['Yes','No'],fi
            3
Out[835]: [Text(558.0, 271.8, 'gini = 0.0\nsamples = 4\nvalue = [0, 7]\nclass = No')]
```

gini = 0.0 samples = 4 value = [0, 7] class = No

```
In [ ]: 1
```