EXAMENUL DE BACALAUREAT - 2009 Proba scrisă la Fizică

Proba E: Specializarea: matematică-informatică, ştiințe ale naturii Proba F: Filiera tehnologică - toate profilele, filiera vocațională - toate profilele şi specializările, mai puțin specializarea matematică-informatică

- Sunt obligatorii toate subiectele din două arii tematice dintre cele patru prevăzute de programă, adică: A. MECANICĂ,
 B. ELEMENTE DE TERMODINAMICĂ, C. PRODUCEREA ŞI UTILIZAREA CURENTULUI CONTINUU, D. OPTICĂ
- Se acordă 10 puncte din oficiu. • Timpul efectiv de lucru este de 3 ore.

A. MECANICA

Se consideră accelerația gravitațională $g = 10 \text{m/s}^2$.

SUBIECTUL I (15 puncte) Pentru itemii 1-5 scrieți pe foaia de răspuns litera corespunzătoare răspunsului considerat corect.

1. Simbolurile mărimilor fizice fiind cele utilizate în manuale, unitatea de măsură $\frac{kg \cdot m}{s}$ corespunde mărimii

fizice definite prin expresia:

a.
$$\frac{mv^2}{2}$$

b. $F \cdot \Delta t$

c. m · a

 $\mathbf{d} \cdot \vec{F} \cdot \vec{d}$

(2p)

2. Un corp cu masa m se deplasează pe o suprafată orizontală sub actiunea unei forte F orientată sub unghiul α fată de directia deplasării, ca în figura alăturată. Între suprafata orizontală și corp există frecare, coeficientul de frecare fiind μ . Forța de frecare ce se exercită asupra corpului are expresia:

a. μmg

b. μ mg cos α

c. $\mu(mg - F \sin \alpha)$

d. $\mu F \sin \alpha$

(3p)

3. Un corp lansat cu viteza v_0 pe o suprafață orizontală rugoasă de coeficient de frecare μ , se oprește după parcurgerea distantei d, dată de relatia:

c. $\frac{2\mu g}{v_0^2}$

(2p)

4. Un corp de mici dimensiuni se mişcă pe o suprafață orizontală, fără frecare, cu viteza v. La un moment dat asupra corpului începe să acționeze o forță constantă \vec{F} , ca în figura alăturată. După parcurgerea distanței d din momentul începerii acțiunii forței:

a. viteza are aceeași valoare

b. energia cinetică a corpului este $E_c = \frac{mv^2}{2}$

c. viteza va avea valoare mai mare decât v

d. accelerația și viteza vor avea sensuri opuse.

5. Figurile alăturate ilustrează patru corpuri cilindrice, confecționate din același material elastic. Știind că ℓ_0 reprezintă lungimea, iar S_0 aria secțiunii transversale a corpului din figura 1, corpul cu cea mai mică valoare a constantei elastice este ilustrat în figura:

a. 1

b. 2

c. 3

d. 4

(5p)