Mestrado Integrado em Engenharia Informática

A Equação de Rendering

Visualização e Iluminação 2

Luís Paulo Peixoto dos Santos

Equação de rendering

Radiância diferencial reflectida no ponto p ao longo de uma direcção ω_r devida à radiância incidente ao longo de uma única direcção ω_i.

$$dL_r(p \to \omega_r) = f_r(p, \omega_r \leftrightarrow \omega_i) \ L_i(p \leftarrow \omega_i) \cos \theta_i$$

O que pretendemos calcular é L_r(p→ω_r).
 Quais as direcções de incidência a incluir neste cálculo?
 Claramente devem ser consideradas TODAS as direcções de incidência!

Equação de rendering

- LINEARIDADE DA BRDF
 O valor da BRDF para uma direcção de incidência ω_i é independente da presença ou não de radiância ao longo de outras direcções.
- As contribuições individuais das diferentes direcções de incidência na semiesfera Ω podem ser somadas (ou integradas no caso contínuo).

$$dL_r(p \to \omega_r) = f_r(p, \Psi \leftrightarrow \omega_r) L(p \leftarrow \omega_i) \cos(N_p, \omega_i) d\omega_i$$

$$L_r(p \to \omega_r) = \int_{\Omega_s} f_r(p, \Psi \leftrightarrow \omega_r) L(p \leftarrow \omega_i) \cos(N_p, \omega_i) d\omega_i$$

Enga Informática

Equação de rendering

$$L_r(p \to \omega_r) = \int_{\Omega_s} f_r(p, \omega_i \leftrightarrow \omega_r) L(p \leftarrow \omega_i) \cos(N_p, \omega_i) d\omega_i$$

Equação de rendering

- A radiância total emitida por um ponto p de uma superfície numa direcção ω_r é a soma:
 - da radiância autoemitida naquele ponto e naquela direcção: $L_e(p \rightarrow \omega_r)$
 - com a radiância reflectida naquele ponto e naquela direcção: $L_r(p \rightarrow \omega_r)$

$$L(p \to \omega_r) = L_e(p \to \omega_r) + L_r(p \to \omega_r)$$

logo

$$L(p \to \omega_r) = L_e(p \to \omega_r) + \int_{\Omega_s} f_r(p, \omega_i \leftrightarrow \omega_r) L(p \leftarrow \omega_i) \cos(N_p, \omega_i) d\omega_i$$

[Kajiya, ACM SIGGRAPH, 1986]

Enga Informática

Equação de rendering

$$L(p \to \omega_r) = L_e(p \to \omega_r) + \int_{\Omega_s} f_r(p, \omega_i \leftrightarrow \omega_r) L(p \leftarrow \omega_i) \cos(N_p, \omega_i) d\omega_i$$

- A radiância autoemitida aplica-se apenas às fontes de luz;
 serve de inicialização para o cálculo do equilíbrio
- A radiância reflectida é o integral (somatório contínuo) das contribuições das radiâncias incidentes em p para todas as direcções ω_i ao longo da semisfera Ω_s , centrada em p
- Descreve a distribuição da radiância no estado de equilíbrio, através de um meio não-participativo num ambiente (3D)
- Integral recursivo designado por equação de Fredholm de 2ª ordem, pois a quantidade desconhecida aparece em ambos os lados da equação
- Não tem solução analítica. Calcular soluções aproximadas para esta equação é o objectivo dos algoritmos de iluminação global

Equação de rendering: recursividade

Enga Informática

Integração Numérica

- O integral $I = \int_D f(x) dx$ é aproximado numericamente, recolhendo N amostras $x_i \in D, i = 0 \cdots N 1$ e combinando linearmente o valor $f(x_i)$ dessas amostras:
 - 1. Seleccionar o número de amostras N
 - 2. Seleccionar as amostras $x_i \in D$, $i = 0 \cdots N 1$
 - 3. Calcular o valor da função para essas amostras, $f(x_i)$
 - 4. Calcular o peso a atribuir a cada amostra w_i
 - 5. Aproximar o valor do integral: $I = \int_D f(x) dx \approx \sum_{i=0}^{N-1} w_i f(x_i)$

Enga Informática

Integração Numérica

- 1. Seleccionar o número de amostras N
- 2. Selectionar as amostras $\omega_i \in \Omega$, $i = 0 \cdots N 1$
- 3. Calcular o valor da função: $f_r(p, \omega_r \leftrightarrow \omega_i) L(p \leftarrow \omega_i) \cos(\vec{N}_p, \omega_i)$
- 4. Calcular o peso a atribuir a cada amostra w_i
- 5. Aproximação : $L(p \to \omega_r) \approx \sum_{i=0}^{N-1} w_i f_r(p, \omega_r \leftrightarrow \omega_i) L(p \leftarrow \omega_i) \cos(\vec{N}_p, \omega_i)$

Ex. *N=2*

