Chapitre 2 : Généralités sur les suites

Cours 3 : Notion de limite d'une suite

R. KHODJAOUI

Lycée J.J. HENNER - Première

Samedi 28 septembre 2019

Sommaire

1 Définition 1

Définition 2

Soit (u_n) une suite numérique

On dit qu'une suite numérique (u_n) admet une limite l lorsque ses termes se rapprochent de plus en plus de l lorsque n devient de plus en plus grand. On dit alors que la suite (u_n) converge vers l.

On note alors $\lim_{n\to+\infty} u_n = l$.

Soit (u_n) une suite numérique

On dit qu'une suite numérique (u_n) admet une limite l lorsque ses termes se rapprochent de plus en plus de l lorsque n devient de plus en plus grand. On dit alors que la suite (u_n) converge vers l.

On note alors $\lim_{n\to+\infty} u_n = l$.

Exemple 1

Un groupe de n personnes se partagent un tarte en parts égales. On note u_n la masse d'une part lorsque la tarte est coupée en n parts. Alors $\lim_{n\to +\infty}u_n=0$, puisque plus le nombre de personnes augmente plus les parts deviennent petites.

Soit (u_n) une suite numérique

On dit qu'une suite numérique (u_n) admet une limite l lorsque ses termes se rapprochent de plus en plus de l lorsque n devient de plus en plus grand. On dit alors que la suite (u_n) converge vers l.

On note alors $\lim_{n\to+\infty} u_n = l$.

Exemple 2

Si on considère la suite u définie pour tout entier naturel non nul par $u_n = \frac{2}{n}$ La suite (u_n) semble converger vers 0, on peut donc supposer que $\lim_{n \to +\infty} u_n = 0$

Soit (u_n) une suite numérique

On dit qu'une suite numérique (u_n) admet une limite l lorsque ses termes se rapprochent de plus en plus de l lorsque n devient de plus en plus grand.

On dit alors que la suite (u_n) converge vers l.

On note alors $\lim_{n\to+\infty} u_n = l$.

Exercice

On considère la suite v définie sur \mathbb{N} par $v_n = \frac{-3n^2}{n^2 + 10}$. Conjecturer la limite de la suite v.

Soit (u_n) une suite numérique

On dit qu'une suite numérique (u_n) est divergente lors que n'est pas convergente.

Soit (u_n) une suite numérique

On dit qu'une suite numérique (u_n) est divergente lorsque n'est pas convergente.

Exemple 1

Une mise en culture de bactéries voit leur nombre tripler toutes les heures. On note u_n le nombre de bactéries au bout de n heures.

Ainsi plus n devient grand et plus u_n devient grand.

Donc $\lim_{n\to +\infty} u_n = +\infty$, ainsi (u_n) est une suite divergente.

Soit (u_n) une suite numérique

On dit qu'une suite numérique (u_n) est divergente lorsque n'est pas convergente.

Exemple 2

Si on considère la suite u définie pour tout entier naturel non nul par $u_n = (-1,1)^n$. La suite (u_n) ne semble pas possèder de limite car on observe une alternance de signes des termes, on peut donc supposer que (u_n) est divergente.

Soit (u_n) une suite numérique

On dit qu'une suite numérique (u_n) est divergente lorsque n'est pas convergente.

Exercice

On considère la suite w définie sur \mathbb{N} par $w_n = 1 - 5n^2$.

Conjecturer la limite de la suite w.

FIN

Revenir au début

