Potesmination of Naco and NaOH in a mixture b	
00 000	
Determination of Man and I a	
titeration a mature b	y
Sulon.	06
M9 MA	
70 100 0	
To determine the amount of Na2003 and NaOH mixture using Hil acid.	1 10 00
Painciple	98
· · · · · · · · · · · · · · · · · · ·	
when a known value of the mixture of and NaOH is treated with Hel using phenology	Na co.
and NaOH is treated with the using should	offee de sile.
indicator, at the end point all the hydroxide	b (04-)
and only least of the southern of a control	A A
and only half of the consonate cons (cas2) a	The Heades
with the acid.	+
# . AD 0 1 0 0 0 0 0 0 0	
A = all hydroxide ions + half of casbono B = half the casbonode ions after p thalin end point.	te ions
B = half the carbonaile ions after p	henolph-
thalin end point.	
&B = all corbonate for	
A-B = all hydronide ions	
U	
Proceduse	
The Laure	Or .
Jitsation I : Standardization of HCl.	
7	
Po at a A co of of oil No Co only Assess	0.4
Pipette out 20 ml of 0.1 N Nas Cos solution	· · ·
a clear contral flack and add 2-3 drops	9
methyl orange indicator to the solution. Then	-
titorite the solution against hick and tal	cen in
the buscutte Record end point (busutte e	reading)
the businette Record end point (burette e when colone changes from yellone to ore	unge.
U	V

Repeat the titeation till the concordant (2 consecutive bure the exactly same) value is obtained. Jitzation II: Estimation Na, co, and NaoH in a given mintre. Pilute the given unknown ashtion to 100 ml in using distilled water- Pipotte out 20 ml of this made up solution 2-3 drops of phenolphthalein flask. Add A' ml. To the same solution the titration methyl orange and continue to orange, and note from yellow buritle reading methyl orange it to les B' ml. Repeat the the conductor value for A and B is obtained. Result Na Co, present in the given solution 0.30899 NAOH present in the given solution = 0.0776g

JITRATION I: - Standardization of HCl.

81	۷٥٠	Volume of Na ₂ co ₃ solution (ml)	Burette Res Initial	rding Final	Conwident	Indica- tor
= =	1 2	20 20	0	19·5 19·5	19·5 19·5	Methyl orange.

Calculation

Volume of HCl = 19.5 V, ml (end point) Normality of HCl = 0.0512 N,

Volume of $Na_2 O_3 (V_1) = 20 \text{ mL}$ Normality of $Na_2 O_3 (N_2) = 0.05$

Normality of $HU(N_1) = N_2V_2 = 20 \times 0.05$ $V_1 = 19.5$

= 04052 0.0512 N

01	TRATION I - Cs.		of Na ₂ W ₃ and mintuse.	d NaOH in a	Œ
El No.	Volume of 2 (ml)	(ml)			
		Initial	Burette Reading Volume consumed for phenolphtha- tein end point (A)	Volume commed	Q
1	20	0	19	30.4	
2	20	0	19	30 · 4	
CON	LCORDANT VALUE	į į	(A) 19	(B) 11·4	02
Now Vol Nor	me of tice (Vi nality of HU (N une of minture mality of Naco;	V_1 = V_2 = V_2 = V_3 V_4 = V_4	$V_1 = 0.0512$ $= 20 \text{ ml}$ $V_1 N_1 = 28 \times N_1 / V_2$	V2 = 22.8×0.06	0.052
Amt	of Na2loz press	Na×53	whole of giver = 0.3089 g	solution = 0.30	89 g
	fination of ano	t of Nac			
Volum	e of HCl (Vi) =	= (A-B)	ml = 7.6 ml		S
	0° P at 1200 1 NI	=	512 N		
Volun	ality of HILLEN Le of ninture (Mach Ma	$(N_2) = 20$ $(N_2) = V_1$	ml. ×N1/20 = (7.6×0.	0512)/20 = 0.01	9 4 N
Normo	ulty of mountaine	()		in ushale	1.3
	Date 1 1	given	solution =	$N_a \times 40 = 0.077$	69