F70TS2: Time Series

Exercise Sheet 5

1. We consider three time series. In each case we assume that the unknown model is an AR(1) with unknown mean. We obtain the following statistics:

(i)
$$\sum_{t=1}^{n} (x_t - \bar{x})^2 = 1224.79$$
 and $\sum_{t=1}^{n-1} (x_t - \bar{x})(x_{t+1} - \bar{x}) = 995.11$,

(ii)
$$\sum_{t=1}^{n} (x_t - \bar{x})^2 = 703.52$$
 and $\sum_{t=1}^{n-1} (x_t - \bar{x})(x_{t+1} - \bar{x}) = 459.05$,

(iii)
$$\sum_{t=1}^{n} (x_t - \bar{x})^2 = 662.33$$
 and $\sum_{t=1}^{n-1} (x_t - \bar{x})(x_{t+1} - \bar{x}) = -446.17$.

In each case n = 400. Carry out the following:

(a) Estimate the unknown ϕ in each case and write down your estimated AR(1) model (by means of a symbol μ for the unknown mean).

Assume now that $\bar{x} = 10.25$.

- (b) Estinaes 81,211 an the Piro is cot Caramhe melipi).
- (c) Estimate $\gamma(0)$, σ_{ϵ}^2 , $Var(\bar{x})$ and the approximate 95%-CI of μ for the model in (iii).

(b)
$$\sum_{t=1}^{n} y_t = 20050.48, \sum_{t=1}^{n} (y_t - \bar{y})^2 = 8515.04,$$
$$\sum_{t=1}^{n-1} (y_t - \bar{y})(y_{t+1} - \bar{y}) = 5591.87 \text{ and } \sum_{t=1}^{n-2} (y_t - \bar{y})(y_{t+2} - \bar{y}) = 2211.04.$$

Assume that the unknown models are AR(2) with unknown means. For both time series, estimate and write down the models. Then estimate σ_{ϵ}^2 , $Var(\bar{x})$, $Var(\bar{y})$ and calculate the approximate 95%-CI of μ_X and μ_Y .

3. Suppose we are given time series data x_1, \ldots, x_{100} which satisfies

$$\sum_{t=1}^{100} (x_t - \bar{x})^2 = 247.8 \,,$$

$$\sum_{t=1}^{99} (x_t - \bar{x})(x_{t+1} - \bar{x}) = -189.1,$$

where \bar{x} is the mean of x_1, \ldots, x_{100} . The last eight values of this time series data are shown in the table below.

t	t	93	94	95	96	97	98	99	100
(x_t	1.993	-2.750	3.458	-2.850	3.743	-3.910	2.118	-1.844

- a) Calculate the value of the fitted parameters $\widehat{\phi}$ and $\widehat{\sigma}^2_{\epsilon}$ when an AR(1) model is fitted to the data $x_1, ..., x_{100}$.
- b) Using this fitted model, calculate 95% forecasting intervals for X_{101} and X_{102} , assuming that the white-noise terms ϵ_t have Normal distribution. C) Estimate the limit of the width of the 95% forecasting interval for X_{100+k} at $k \to \infty$.

5. Let the ARCH(1) processed by the best powcoder

$$X_t = \epsilon_t \sqrt{\alpha_0 + \alpha_1 X_{t-1}^2} \,,$$

where $\alpha_0 > 0$, $0 < \alpha_1 < 1$, and (ϵ_t) is a white noise process with variance $\sigma_{\epsilon}^2 = 1$.

Let $\rho(k)$ be the autocorrelation at lag k of the process (X_t) .

Throughout this question you may assume that the process (X_t) is weakly stationary and that $E(X_t^4) < \infty$.

2

- a) Calculate $Var(X_t)$.
- b) Find $\rho(k)$ for all k.
- c) Show that $\operatorname{Cov}(X_{t-1}^2, X_t^2) = \alpha_1 \operatorname{Var}(X_{t-1}^2)$.