Symulacja systemów dyskretnych

Projekt: Smoke dynamics 3D

Autorzy

Michał Burda - michaburda@student.agh.edu.pl
Radosław Barszczak - rbarszczak@student.agh.edu.pl
Paweł Froń - pawelfron@student.agh.edu.pl

O Projekcie

Celem projektu jest stworzenie trójwymiarowego modelu rozprzestrzeniania się dymu w pomieszczeniu, z uwzględnieniem temperatury, kierunku ruchu powietrza i innych czynników.

Przegląd wybranych publikacji

- Jos Stam, "Stable Fluids".
- Nick Ramussen et. al. "Smoke Simulation For Large Scale Phenomena".
- Youquan Liu, Xuehui Liu. "Real-time 3D Fluid Simulation on GPU with Complex Obstacles".
- Yuechao Zhao. "A Numerical Study on the Smoke Dispersion and Temperature Distribution of a Ship Engine Room Fire Based on OpenFOAM".

Stable Fluids

W pracy Jos Stam przedstawia model symulacji płynów oparty na równaniach Naviera-Stokesa, koncentrując się na symulacji gazów. Autor zauważa, że jego metoda rozwiązania tych równań nie byłaby wystarczająca w większości zastosowań inżynieryjnych. Jednak w grafice komputerowej nie stanowi to dużego problemu, szczególnie w symulacjach interaktywnych, gdzie użytkownik może dodawać siły zewnętrzne, podtrzymując dynamikę przepływu.

• J. Stam, "Stable fluids," in Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques, ser. SIGGRAPH '99. USA: ACM Press/Addison-Wesley Publishing Co., 1999, p. 121–128.

Smoke Simulation For Large Scale Phenomena

Nick Ramussen i współautorzy przedstawiają model symulacji dymu na dużą skalę, np. wybuchu bomby jądrowej. Metoda opiera się na dwuwymiarowych symulacjach równań Eulera, które przez interpolację tworzą trójwymiarowe pole, łączone następnie z polem Kołmogorowa. Podejście to pozwala na realistyczne animacje wielkoskalowych zjawisk przy zmniejszonym zapotrzebowaniu na pamięć.

• N. Rasmussen, D. Q. Nguyen, W. Geiger, and R. Fedkiw, "Smoke simulation for large scale phenomena," in ACM SIGGRAPH 2003 Papers, ser. SIGGRAPH '03. New York, NY, USA: Association for Computing Machinery, 2003, p. 703–707.

Real-Time 3D Fluid Simulation on **GPU** with Complex **Obstacles**

Youquan Liu i Xuehui Liu badali symulację dynamiki płynów w czasie rzeczywistym z uwzględnieniem złożonych przeszkód, wykorzystując procesor graficzny (GPU). Zastosowanie równań Naviera-Stokesa oraz pół-Lagrangejskiego schematu umożliwiło realistyczne odwzorowanie przepływów gazów i cieczy w 3D. Eksperymenty wykazały, że optymalizacja warunków brzegowych oraz użycie tekstur 3D przyspieszają obliczenia, pozwalając na płynne efekty wizualne w czasie rzeczywistym.

• Y. Liu, X. Liu, and E. Wu, "Real-time 3d fluid simulation on gpu with complex obstacles," in 12th Pacific Conference on Computer Graphics and Applications, 2004. PG 2004. Proceedings., 2004, pp. 247–256.

Numerical Study on Smoke Dispersion in Ship Engine Rooms

Autorzy wykorzystali OpenFOAM do symulacji rozprzestrzeniania się dymu i rozkładu temperatury w maszynowni statku. Badali wpływ różnych scenariuszy pożarowych, w tym lokalizacji ognia i konfiguracji wentylacji, na zachowanie dymu i ciepła w zamkniętych przestrzeniach. Celem było wskazanie kluczowych czynników ryzyka dla załogi oraz opracowanie skuteczniejszych rozwiązań w projektowaniu systemów wentylacyjnych dla zwiększenia bezpieczeństwa w razie pożaru.

• Y. Zhao, H. Zhao, Z. Miao, D. Ai, and Q. Wang, "A numerical study on the smoke dispersion and temperature distribution of a ship engine room fire based on openfoam," Sustainability, vol. 15, no. 20, 2023.

Praca wykonana od ostatnich zajęć

Radosław Barszczak	Michał Burda	Paweł Froń
Wyszukanie i	Wyszukanie i	Wyszukanie i
opracowanie	opracowanie	opracowanie
artykułu (nr 4)	artykułu (nr 3)	artykułów (nr 1 i 2)
Tworzenie prezentacji i	Tworzenie prezentacji i	Tworzenie prezentacji i
dokumentu Latex	dokumentu Latex	dokumentu Latex

Koniec