EE 5351 : CONTROL SYSTEMS DESIGN

LABORATORY 03

NAME : BALASOORIYA JM

REG No : EG/2021/4424

GROUP No : CE 07

DATE : 04/03/2025

Table 1: Summative Laboratory Form

Semester	05
Module Code	EE 5351
Module Name	Control System Design
Lab Number	03
Lab Name	Laboratory Session-3
Lab Conduction date	05/11/2024
Report Submission date	14/02/2025

List of Figures

Figure 1: QUBEServo3 DC motor and load	6
Figure 2: Simulink Q1(III)	8
Figure 3: Simulink Q1(V)	8
Figure 4: Output of Scope (Q1-V)	9
Figure 5: Root Locus of DC Motor	10
Figure 6: Root Locus after compensation	12
Figure 7: Step Response before and after the compensator	12
Figure 8 : Simulink for compensator	13
Figure 9: Time Response	13

List of Tables

Table 1: Summative Laboratory Form	2
Table 2 : QUBEServo3 parameter	ϵ

CONTENT

01.	Observation	6
02.	Calculation	7
03.	References	14

01.Observation

Figure 1: QUBEServo3 DC motor and load

Table 2 : QUBEServo3 parameter

Terminal Resistance (R _m)	8.4Ω
Rotor inductance(L _m)	1.16 mH
Equivalent rotor inertia(J _{eq})	$2.09 \times 10^{-5} \text{ kgm}^2$
Torque constant(k _t)	0.042Nm/A
Voltage constant (k _m)	0.042 Nm/A

02. Calculation

Q1)

i) Dynamic Equation for DC motor and load

$$V_m$$
 = $i_m R_m + L_m \frac{dim}{dt} + e_b$
 e_b = $k_m \omega_m$
 T_m = $J_{eq} \frac{d\omega m}{dt}$
 T_m = $k_t i_m$

ii) Transfer function

$$Vm(t) = R_m i_m(t) + L_m \frac{\mathrm{d}i_m(t)}{dt} + k_m \omega_m$$

transform to laplace domain

$$Vm(s) = R_m i_m(s) + SL_m i_m(s) + k_m \omega_m$$

$$i_m(t) = \frac{J_{eq}}{k_t} \frac{\mathrm{d}\omega_m}{dt}$$

transform to laplace domain

$$i_m(s) = \frac{SJ_{eq}}{k_t} \frac{d\omega_m(s)}{dt}$$

 $\frac{\omega_m(s)}{Vm(s)} = \frac{kt}{(SJ_{eq} + km)[Rm + LmS] + kmkt}$

$$\omega_m(t) = \frac{\mathrm{d}\theta_m(t)}{dt}$$

transform to laplace domain

$$\omega_m(s) = S\theta_m(s)$$

$$\frac{\Theta m(s)}{Vm(s)} = \frac{kt}{S\{JeqS[Rm + LmS] + kmkt\}}$$

According to the given data rotor inductance is negligible.

Thus

$$\frac{\Theta m(s)}{Vm(s)} = \frac{kt}{S\{JeqRmS + kmkt\}}$$

$$\frac{\Theta m(s)}{Vm(s)} = \frac{0.042}{1.76 \times 10^{-4}S^2 + 1.764 \times 10^{-3}S}$$

iii) Simulink

Figure 2: Simulink Q1(III)

iv) Closed loop transfer function

$$G(s) = \frac{\Theta m(s)}{Vm(s)} = \frac{0.042}{1.7556 \times 10^{-4} S^2 + 1.764 \times 10^{-3} S}$$

For closed loop

$$\frac{\theta_m(s)}{\theta_{ref}(s)} = \frac{K_P G(s)}{1 + K_P G(s)}$$

$$\frac{\theta_m(s)}{\theta_{ref}(s)} = \frac{0.042}{1.7556 \times 10^{-4} S^2 + 1.764 \times 10^{-3} S + 0.042}$$

v) Simulink

Figure 3: Simulink Q1(V)

Figure 4: Output of Scope (Q1-V)

i) Plot root locus

Matlab code

```
% Given parameters
Rm = 8.4;
                % Terminal resistance (Ohm)
Lm = 1.16e-3;
                % Rotor inductance (H)
Jeq = 2.09e-5; % Equivalent rotor inertia (kg.m^2)
kt = 0.042;
                % Torque constant (Nm/A)
km = 0.042;
                % Voltage constant (V/rad/s)
% Transfer function G(s) = kt / (Jeq * Rm * s^2 + (kt * km) * s)
s = tf('s');
G = kt / (Jeq * Rm * s^2 + (kt * km) * s);
% Closed-loop transfer function with unity feedback
T = feedback(G, 1);
% Plot root locus of the closed-loop system
figure;
rlocus(T);
grid on;
title('Root Locus of the Closed-Loop System');
xlabel('Real Axis');
ylabel('Imaginary Axis');
```


Figure 5: Root Locus of DC Motor

ii) Calculate ω

```
When \zeta = 0.5;

Then Sin \theta = 0.5'

S^{2} + 2\zeta\omega_{n}S + \omega_{n}^{2} = 0
2\zeta\omega_{n} = \frac{k_{t}k_{m}}{j_{eq}R_{m}}
2 \times 0.5 \times \omega_{n} = \frac{0.042 \times 0.042}{(2.09 \times 10^{-5})(8.4)}
\omega_{n} = 10.048 \, rad/s
```

iii) Design compensator

Matlab code

% Given motor parameters

```
% Terminal resistance (Ohm)
Rm = 8.4;
Lm = 1.16e-3; % Rotor inductance (H)
Jeq = 2.09e-5; % Equivalent rotor inertia (kg.m^2)
% Define s as a Laplace variable
s = tf('s');
% Open-loop transfer function G(s)
G = kt / (Jeq * Rm * s^2 + (kt * km) * s);
% Desired increase in omega_n by 10%
omega_n_old = sqrt(kt / (Jeq * Rm)); % Original natural frequency
omega n new = 1.1 * omega n old;
                                   % 10% increase
% Lead compensator design
z = 8; % Zero of the compensator
p = 40; % Pole of the compensator
Kc = 1; % Compensator gain
% Lead compensator transfer function
Gc = Kc * (s + z) / (s + p);
% Compensated open-loop transfer function
G_{comp} = Gc * G;
% Plot root locus for the compensated system
figure;
rlocus(G comp);
grid on;
title('Root Locus with Lead Compensator');
xlabel('Real Axis');
ylabel('Imaginary Axis');
```


Figure 6: Root Locus after compensation

iv) Plot time domain response

Figure 7 : Step Response before and after the compensator

i) Design compensator

Figure 8 : Simulink for compensator

ii) Plot time response

Figure 9: Time Response

References

- [1] "Mathworks," [Online]. Available: https://www.mathworks.com/help/control/index.html.
- [2] "Tutorialspoint," [Online]. Available: https://www.tutorialspoint.com/control_systems/index.htm.
- [3] "Control Tutorial," [Online]. Available: https://ctms.engin.umich.edu/CTMS/index.php?aux=Home.