Package 'cfa'

March 15, 2024

Samples CFA, hierarchical CFA, bootstrap CFA, functional CFA, Kieser-Victor CFA, and Lindner's test using a conventional and an accelerated algorithm.
Title Configural Frequency Analysis (CFA)
Version 0.10-1
Date 2024-03-14
Depends R (>= 3.0.1)
Suggests parallel
License GPL (>= 2)
NeedsCompilation yes
Author Patrick Mair [aut, cre], Stefan Funke [aut], Joachim Harloff [ctb], Alexander von Eye [ctb]
Maintainer Patrick Mair <mair@fas.harvard.edu></mair@fas.harvard.edu>
Repository CRAN
Date/Publication 2024-03-15 08:36:26 UTC
R topics documented:
bcfa
fCFA
hefa
mcfa
plot.bcfa
plot.hcfa
plot.mcfa
plot.scfa

2	bc	fa
Index	print.scfa 1 PXisM 2 PXisMclassic 2 scfa 2	20 21
bcfa	Bootstrap-CFA	

Description

The bootstrap-CFA tries to replicate the pattern of significant configurations by re-sampling.

Usage

```
bcfa(configs, cnts, runs=100, sig.item="sig.z",...)
```

Arguments

configs	Contains the configurations. This can be a dataframe or a matrix. The dataframe can contain numbers, characters, factors, or booleans. The matrix can consist of numbers, characters or booleans (factors are implicitly re-converted to numerical levels). There must be >=3 columns.
cnts	Contains the counts for the configuration. If it is set to NA, a count of one is assumed for every row. This allows untabulated data to be processed. cnts must be a vector.
runs	Number of samples to be drawn.
sig.item	Indicator of significance in the result table (sig.z,sig.chisq,sig.perli,sig.zl, sig.zl.corr). Do not forget to set the proper parameters for the CFA if sig.perli,sig.zl or sig.zl.corr are to be used!
• • •	Parameters to be to relayed to the CFA

Details

Takes 'runs' samples and does as many CFAs while counting how many times this configuration was considered to be significant.

Repeated-measures CFAs (mcfa) are not provided.

This is a heuristic method rather than a strict test of significance since there is no adjustment for multiple testing whatsoever. The advantage is a more reliable picture compared to splitting the original data, doing a CFA, and checking if the configurations re-appear in a CFA with the other half of the data.

cfa 3

Value

cnt.antitype	Number of antiypes
cnt.type	Number of types
pct.types	Number of types in percent
cnt.sig	Number of significant results
pct.cnt.sig	Number of significant results in percent

Note

bcfa() performs many CFAs which are by themselves slow, so the execution can be **very** time-consuming, especially if a sufficiently high value for runs was selected

Author(s)

Stefan Funke <s.funke@t-online.de>

References

Lautsch, E., von Weber S. (1995) Methoden und Anwendungen der Konfigurationsfrequenzanalyse Psychologie und Medizin, Beltz Psychologie Verlagsunion

See Also

```
cfa, scfa
```

Examples

cfa

Analysis of configuration frequencies

Description

This is the main function which will call scfa() und mcfa() as required to handle the simple and the multiple cfa.

Usage

```
cfa(cfg, cnts=NA, sorton="chisq", sort.descending=TRUE, format.labels=TRUE,
    casewise.delete.empty=TRUE,
    binom.test=FALSE, exact.binom.test=FALSE, exact.binom.limit=10,
    perli.correct=FALSE, lehmacher=FALSE, lehmacher.corr=TRUE,
    alpha=0.05, bonferroni=TRUE)
```

4 cfa

Arguments

cfg Contains the configurations. This can be a dataframe or a matrix. The dataframe

can contain numbers, characters, factors, or booleans. The matrix can consist of numbers, characters, or booleans (factors are implicitely re-converted to numer-

ical levels). There must be ≥ 3 columns.

cnts Contains the counts for the configuration. If it is set to NA, a count of one is

assumed for every row. This allows untabulated data to be processed. cnts can

be a vector or a matrix/dataframe with >=2 columns.

sorton Determines the sorting order of the output table. Can be set to chisq, n, or

label.

sort.descending

Sort in descending order

format.labels Format the labels of the configuration. This makes to output wider but it will

increase the readability.

casewise.delete.empty

If set to TRUE all configurations containing a NA in any column will be deleted.

Otherwise NA is handled as the string "NA" and will appear as a valid configu-

ration.

binom. test Use z approximation for binomial test.

exact.binom.test

Do an exact binomial test.

exact.binom.limit

Maximum n for which an exact binomial test is performed (n > 10 causes p to

become inexact).

perli.correct Use Perli's correction for multiple test.

lehmacher Use Lehmacher's correction for multiple test.

lehmacher.corr Use a continuity correction for Lehmacher's correction.

alpha Alpha level

bonferroni Do Bonferroni adjustment for multiple test (irrelevant for Perli's and Lehmacher's

test).

Details

The cfa is used to sift large tables of nominal data. Usually it is used for dichotomous variables but can be extended to three or more possible values. There should be at least three configuration variables in cfg - otherwise a simple contigency table would do. All tests of significance are two-sided: They test for both types or antitypes, i.e. if n is significantly larger or smaller than the expected value. The usual caveats for testing contigency tables apply. If a configuration has a n <5 an exact test should be used. As an alternative the least interesting configuration variable can be left out (if it is not essential) which will automatically increase the n for the remaining configurations.

Value

Some of these elements will only be returned when the corresponding argument in the function call has been set. The relation is obvious due to corresponding names.

cfa 5

```
The cfa output table
table
table["label"] Label for the given configuration
table["n"]
                  Observed n for this configuration
table["expected"]
                  Expected n for this configuration
table["Q"]
                  Coefficient of pronouncedness (varies between 0 and 1)
table["chisq"] Chi squared for the given configuration
table["p.chisq"]
                  p for the chi squared test
table["sig.chisq"]
                  Is it significant (will Bonferroni-adjust if argument bonferroni is set)
table["z"]
                  z-approximation for chi squared
table["p.z"]
                  p of z-test
table["sig.z"] Is it significant (will Bonferroni-adjust if argument bonferroni is set)?
table["x.perli"]
                  Statistic for Perli's test
table["sig.perli"]
                  Is it significant (this is designed as a multiple test)?
table["zl"]
                  z for Lehmacher's test
table["sig.zl"]
                  Is it significant (this is designed as a multiple test)?
table["zl.corr"]
                  z for Lehmacher's test (with continuity correction)
table["sig.zl.corr"]
                  Is it significant (this is designed as a multiple test)?
table["p.exact.bin"]
                  p for exact binomial test
summary.stats Summary stats for entire table
summary.stats["totalchisq"]
                  Total chi squared
summary.stats["df"]
                  Degrees of freedom
summary.stats["p"]
                  p for the chi squared test
summary.stats["sum of counts"]
                  Sum of all counts
levels
                  Levels for each configuration. Should all be 2 for the bivariate case
```

WARNING

Note than spurious "significant" configurations are likely to appear in very large tables. The results should therefore be replicated before they are accepted as real. boot.cfa can be helpful to check the results.

6 fCFA

Note

There are no hard-coded limits in the program so even large tables can be processed. The output table can be very wide if the levels of factors variables are long strings so 'options(width=..)' may need to be adjusted.

The object returned has the class scfa if a one-sample CFA was performed or the class mcfa if a repeated-measures CFA was performed. cfa() decides which one is appropriate by looking at cnts: If it is a vector, it will do a simple CFA. If it is a dataframe or matrix with 2 or more columns, a repeated-measures CFA ist done.

Author(s)

Stefan Funke <s.funke@t-online.de>

References

Krauth J., Lienert G. A. (1973, Reprint 1995) Die Konfigurationsfrequenzanalyse (KFA) und ihre Anwendung in Psychologie und Medizin. Beltz Psychologie Verlagsunion

Lautsch, E., von Weber S. (1995) Methoden und Anwendungen der Konfigurationsfrequenzanalyse in Psychologie und Medizin. Beltz Psychologie Verlagsunion

Eye, A. von (1990) Introduction to configural frequency analysis. The search for types and antitypes in cross-classification. Cambride 1990

See Also

```
scfa, mcfa
```

Examples

fCFA

Stepwise CFA approaches

Description

These CFA methods detect and eliminate stepwise types/antitypes cells by specifying an appropriate contrast in the design matrix. The procedures stop when model fit is achieved. Functional CFA (fCFA) uses a residual criterion, Kieser-Victor CFA (kvCFA) a LR-criterion.

Usage

```
fCFA(m.i, X, tabdim, alpha = 0.05)
kvCFA(m.i, X, tabdim, alpha = 0.05)
```

fCFA 7

Arguments

m. i Vector of observed frequencies.X Design Matrix of the base model.

tabdim Vector of table dimensions.

alpha Significance level.

Value

restable Fit results for each step design.mat Final design matrix

struc.mat Structural part of the design matrix for each step

typevec Type or antitype for each step

resstep Design matrix, expected frequency vector, and fit results for each step

Author(s)

Patrick Mair, Alexander von Eye

References

von Eye, A., and Mair, P. (2008). A functional approach to configural frequency analysis. Austrian Journal of Statistics, 37, 161-173.

Kieser, M., and Victor, N. (1999). Configural frequency analysis (CFA) revisited: A new look at an old approach. Biometrical Journal, 41, 967-983.

Examples

```
#Functional CFA for a internet terminal usage data set by Wurzer
#(An application of configural frequency analysis: Evaluation of the
#usage of internet terminals, 2005, p.82)
dd \leftarrow data.frame(a1=gl(3,4),b1=gl(2,2,12),c1=gl(2,1,12))
X <- model.matrix(~a1+b1+c1,dd,contrasts=list(a1="contr.sum",b1="contr.sum",</pre>
    c1="contr.sum"))
ofreq <- c(121,13,44,37,158,69,100,79,24,0,26,3)
tabdim <- c(3,2,2)
res1 <- fCFA(ofreq, X, tabdim=tabdim)</pre>
res1
summary(res1)
# Kieser-Vector CFA for Children's temperament data from
# von Eye (Configural Frequency Analysis, 2002, p. 192)
dd \leftarrow data.frame(a1=gl(3,9),b1=gl(3,3,27),c1=gl(3,1,27))
X <- model.matrix(~a1+b1+c1,dd,contrasts=list(a1="contr.sum",</pre>
    b1="contr.sum",c1="contr.sum"))
ofreq <- c(3,2,4,23,23,6,39,33,9,11,29,13,19,36,19,21,26,18,13,30,
```

8 hcfa

```
41,12,14,23,8,6,7)
tabdim <- c(3,3,3)

res2 <- kvCFA(ofreq, X, tabdim=tabdim)
res2
summary(res2)
```

hcfa

Hierachical analysis of configuration frequencies

Description

Recursively eliminates one variable in the configuration to generate all possible sub-tables and performs a global chi-squared-test on them

Usage

```
hcfa(configs, cnts)
```

Arguments

configs Contains the configurations. This can be a dataframe or a matrix. The dataframe

can contain numbers, characters, factors or booleans. The matrix can consist of numbers, characters or booleans (factors are implicitely re-converted to numer-

ical levels). There must be ≥ 3 columns.

cnts Contains the counts for the configuration. If it is set to NA, a count of one is

assumed for every row. This allows untabulated data to be processed. cnts can

be a vector or a matrix/dataframe with >=2 columns.

Details

The hierarchical CFA assists in the selection of configuration variables by showing which variables contribute the most to the variability. If eliminating a variable does not markedly decrease the global chi squared the variable is likely to be redundant, provided there are no extraneous reasons for retaining it.

The output is in decreasing order of chi squared so the most useful combinations of variables come first.

Value

chisq Global chi squared

df Degrees of freedom for this subtable

order Order (number of configuration variables)

Note

The p for the test of significance ist provided by the print method

mcfa 9

Author(s)

Stefan Funke <s.funke@t-online.de>

References

Lautsch, E., von Weber S. (1995) Methoden und Anwendungen der Konfigurationsfrequenzanalyse in Psychologie und Medizin, Beltz Psychologie Verlagsunion

See Also

```
cfa, scfa, mcfa
```

Examples

```
# library(cfa) if not yet loaded
# Some random configurations:
configs<-cbind(c("A","B")[rbinom(250,1,0.3)+1],
c("C","D")[rbinom(250,1,0.1)+1],
c("E","F")[rbinom(250,1,0.3)+1],c("G","H")[rbinom(250,1,0.1)+1])
counts<-trunc(runif(250)*10)
hcfa(configs,counts)</pre>
```

mcfa

Two or more-sample CFA

Description

Performs an analysis of configuration frequencies for two or more sets of counts. *This function is not designed to be called directly by the user but will only be used internally by* cfa(). Both the simple an the multiple cfa are handled by cfa()

Usage

```
mcfa(cfg, cnts, sorton="chisq", sort.descending=TRUE, format.labels=TRUE)
```

Arguments

cfg	Contains the configurations. This can be a dataframe or a matrix. The dataframe can contain numbers, characters, factors or booleans. The matrix can consist of numbers, characters or booleans (factors are implicitly re-converted to numerical levels). There must be >=3 columns.
cnts	Contains the counts for the configuration. cnts is a matrix or dataframe with 2 or more columns.
sorton	Determines the sorting order of the output. Can be set to chisq, n, or label.
sort.descending	
	Sort in descending order
format.labels	Format the labels of the configuration. This makes to output wider but it will increase the readability.

10 mcfa

Details

This function is the "engine" cfa() will use. It does the aggregation, summing up, and will calculate chi squared. All tests of significance are left to cfa()

Value

The function returns the following list:

labels Configuration label

sums Sums for each configuration and each variable in the configuration

counts Matrix of observed n of the given configuration expected Matrix of expected n for the given configuration

chi squared for each configuration

Note

There are no hard-coded limits in the program so even large tables can be processed.

Author(s)

Stefan Funke <s.funke@t-online.de>

References

Krauth J., Lienert G. A. (1973, Reprint 1995) Die Konfigurationsfrequenzanalyse (KFA) und ihre Anwendung in Psychologie und Medizin, Beltz Psychologie Verlagsunion

Lautsch, E., von Weber S. (1995) Methoden und Anwendungen der Konfigurationsfrequenzanalyse in Psychologie und Medizin, Beltz Psychologie Verlagsunion

Eye, A. von (1990) Introduction to configural frequency analysis. The search for types and antitypes in cross-classification. Cambride 1990

See Also

```
cfa, scfa
```

Examples

plot.bcfa 11

plot.bcfa

Plotting method for a bcfa object

Description

Plots an object of the class bcfa

Usage

```
## S3 method for class 'bcfa' plot(x,...)
```

Arguments

x An object of the class bcfa which is returned by the function boot.cfa()

... Any arguments to be given to plot

Details

Plots the number of cases considered significant vs. the number of cases considered to be a type (n > expected).

This is in some way like other plots of quality versus quantity.

Configurations can be identified by left-clicking on them until the right mouse button is pressed. The labels of the configurations selected will be displayed in the text window.

Value

Returns a vector of the configurations selected with their name set to the labels

Note

This function is usually invoked plotting an object returned by bcfa

Author(s)

Stefan Funke <s.funke@t-online.de>

References

None - plots have been rarely used with the CFA

See Also

bcfa

12 plot.hcfa

Examples

plot.hcfa

Plotting method for a hcfa object

Description

Plots an object of the class hcfa

Usage

```
## S3 method for class 'hcfa' plot(x,...)
```

Arguments

x An object of the class hcfa

... Any arguments to be used by plot

Details

A dotchart is generated which plots chi squared vs. the order of the configuration (i.e. the number of configuration variables it contains).

Value

Returns NULL.

Note

This function is usually invoked plotting an object returned by hcfa

Author(s)

Stefan Funke <s.funke@t-online.de>

References

None - plots have been rarely used with the CFA

See Also

```
cfa, hcfa
```

plot.mcfa 13

Examples

```
#configs<-cbind(c("A","B")[rbinom(250,1,0.3)+1],c("C","D")[rbinom(250,1,0.1)+1],
# c("E","F")[rbinom(250,1,0.3)+1],c("G","H")[rbinom(250,1,0.1)+1])
#counts<-trunc(runif(250)*10)
#plot(hcfa(configs,counts))</pre>
```

plot.mcfa

Plotting method for a mcfa object

Description

Plots an object of the class mcfa

Usage

```
## S3 method for class 'mcfa' plot(x,...)
```

Arguments

X

An object of the class mcfa which is returned by the function cfa() (rather than mcfa()) which performs a repeated measures CFA (two or more columns of counts)

... Any arguments to be used by plot

Details

Plots chi squared vs. the sum of all counts for this configuration which indicates pronouncedness of the configuration vs. practical importance. Configurations can be identified by left-clicking on them until the right mouse button is pressed. The labels of the configurations selected will be displayed in the text window.

Value

Returns a list of the labels of the configurations selected.

Note

This function is usually invoked plotting an object returned by cfa

Author(s)

Stefan Funke <s.funke@t-online.de>

References

None - plots have been rarely used with the CFA

14 plot.scfa

See Also

```
cfa, mcfa
```

Examples

plot.scfa

Plotting method for a scfa object

Description

Plots an object of the class scfa

Usage

```
## S3 method for class 'scfa' plot(x,...)
```

Arguments

An object of the class scfa which is returned by the function cfa() (rather than scfa()) which performs a simple CFA (one column of counts)

. . . Any arguments to be used by plot

Details

Plots chi squared vs. n which indicates pronouncedness of the configuration vs. practical importance. Configurations can be identified by left-clicking on them until the right mouse button is pressed. The labels of the configurations selected will be displayed in the text window.

Value

Returns a list of the labels of the configurations selected.

Note

This function is usually invoked plotting an object returned by cfa

Author(s)

Stefan Funke <s.funke@t-online.de>

print.bcfa 15

References

None - plots have been rarely used with the CFA

See Also

```
cfa, scfa
```

Examples

print.bcfa

Print an object of the class hcfa

Description

Printing method for an object returned by boot.cfa()

Usage

```
## S3 method for class 'bcfa'
print(x,...)
```

Arguments

x An object of the class bcfa

... Additional arguments given to print

Details

This function is usually called implicitely.

Value

Returns NULL

Author(s)

Stefan Funke <s.funke@t-online.de>

16 print.hcfa

References

Krauth J., Lienert G. A. (1973, Reprint 1995) Die Konfigurationsfrequenzanalyse (KFA) und ihre Anwendung in Psychologie und Medizin, Beltz Psychologie Verlagsunion

Lautsch, E., von Weber S. (1995) Methoden und Anwendungen der Konfigurationsfrequenzanalyse in Psychologie und Medizin, Beltz Psychologie Verlagsunion

Eye, A. von (1990) Introduction to configural frequency analysis. The search for types and antitypes in cross-classification. Cambride 1990

See Also

bcfa

Examples

print.hcfa

Print an object of the class hcfa

Description

Printing method for an object returned by hier.cfa()

Usage

```
## S3 method for class 'hcfa'
print(x,...)
```

Arguments

x An object of the class hcfa

.. Additional arguments given to print

Details

This function is usually called implicitely.

Value

Returns NULL.

print.mcfa 17

Author(s)

Stefan Funke <s.funke@t-online.de>

References

Krauth J., Lienert G. A. (1973, Reprint 1995) Die Konfigurationsfrequenzanalyse (KFA) und ihre Anwendung in Psychologie und Medizin, Beltz Psychologie Verlagsunion

Lautsch, E., von Weber S. (1995) Methoden und Anwendungen der Konfigurationsfrequenzanalyse in Psychologie und Medizin, Beltz Psychologie Verlagsunion

Eye, A. von (1990) Introduction to configural frequency analysis. The search for types and antitypes in cross-classification. Cambride 1990

See Also

hcfa

Examples

print.mcfa

Print an object of the class mcfa

Description

Printing method for one of two possible objects returned by cfa()

Usage

```
## S3 method for class 'mcfa'
print(x,...)
```

Arguments

x An object of the class mcfa

... Additional arguments given to print

Details

This function is usually called implicitely.

Value

Returns NULL

18 print.scfa

Note

Note that cfa() will return an object with the class scfa if there is only one row of counts. If there are two or more of them, an object with the class mcfa is returned. In contrast scfa() and mcfa() return a list which has no class of it's own.

Author(s)

Stefan Funke <s.funke@t-online.de>

References

Krauth J., Lienert G. A. (1973, Reprint 1995) Die Konfigurationsfrequenzanalyse (KFA) und ihre Anwendung in Psychologie und Medizin, Beltz Psychologie Verlagsunion

Lautsch, E., von Weber S. (1995) Methoden und Anwendungen der Konfigurationsfrequenzanalyse in Psychologie und Medizin, Beltz Psychologie Verlagsunion

Eye, A. von (1990) Introduction to configural frequency analysis. The search for types and antitypes in cross-classification. Cambride 1990

See Also

```
cfa, mcfa
```

Examples

print.scfa

Print an object of the class scfa

Description

Printing method for one of two possible objects returned by cfa()

Usage

```
## S3 method for class 'scfa'
print(x,...)
```

print.scfa 19

Arguments

x An object of the class scfa

... Additional arguments given to print

Details

This function is usually called implicitely.

Value

Returns NULL

Note

Note that cfa() will return an object with the class scfa if there is only one row of counts. If there are two or more of them, an object with the class mcfa is returned. In contrast scfa() and mcfa() return a list which has no class of it's own.

Author(s)

Stefan Funke <s.funke@t-online.de>

References

Krauth J., Lienert G. A. (1973, Reprint 1995) Die Konfigurationsfrequenzanalyse (KFA) und ihre Anwendung in in Psychologie und Medizin, Beltz Psychologie Verlagsunion

Lautsch, E., von Weber S. (1995) Methoden und Anwendungen der Konfigurationsfrequenzanalyse in Psychologie und Medizin, Beltz Psychologie Verlagsunion

Eye, A. von (1990) Introduction to configural frequency analysis. The search for types and antitypes in cross-classification. Cambride 1990

See Also

```
cfa, scfa
```

Examples

20 PXisM

PXisM	Test according to Lindner	
	O	

Description

Performs a test of significance according to Lindner

Usage

```
PXisM(m,n,Nt,k)
```

Arguments

m	Observed frequency of the observation tested
n	Marginal sums of the parameters realized in the configuration to be tested (vector)
Nt	Sample size of configurations
k	Number of parameters

Value

returns p for the test according to Linder

Note

The test according to Lindner requires the packages parallel. All other parts of cfa do not.

Author(s)

J. Harloff <oachimharloff@joachimharloff.de>

References

Lindner, K.: Eine exakte Auswertungsmethode zur Konfigurationsfrequenzanalyse [An exact procedure for the configural frequency analysis]. Psycholog Beitraege 26, 393?415 (1984)

Harloff, Joachim, An efficient algorithm for Lindners test (configural frequency analysis), Qual Quant DOI 10.1007/s11135-011-9499-9

See Also

cfa

PXisMclassic 21

Examples

```
# Does not work with windows since there is no parallel for it
if (require(parallel)) {
1k<-4 # number of parameters
ln<-c(59,57,59,58) # marginal sums of the parameters realized in the configuration to be tested
lNt<-116 # sample size of configurations</pre>
lm0<-16 # observed frequency of the configuration tested
# New algorithm
starttime=proc.time()
pHXsmallerequalM0<-sum(unlist(mclapply(0:lm0,PXisM,ln,lNt,lk)))
pHXequalM0<-PXisM(lm0,ln,lNt,lk)
pHlargerequalM0<-sum(unlist(mclapply(lm0: min(ln),PXisM,ln,lNt,lk)))</pre>
stoptime<-proc.time()</pre>
list(pHXsmallerequalM0=pHXsmallerequalM0,pHXequalM0=pHXequalM0,pHlargerequalM0=pHlargerequalM0,
timed.required=stoptime-starttime)
# End of the new algorithm
}
```

PXisMclassic

Test according to Lindner

Description

Performs a test of significance according to Lindner - old algorithm

Usage

```
PXisMclassic(m,n,Nt,k)
```

Arguments

m	Observed frequency of the observation tested
n	Marginal sums of the parameters realized in the configuration to be tested (vector)
Nt	Sample size of configurations
k	Number of parameters

Value

returns p for the test according to Linder

Note

The test according to Lindner requires the packages parallel. All other parts of cfa do not.

22 scfa

Author(s)

J. Harloff <oachimharloff@joachimharloff.de>

References

Lindner, K.: Eine exakte Auswertungsmethode zur Konfigurationsfrequenzanalyse [An exact procedure for the configural frequency analysis]. Psycholog Beitraege 26, 393?415 (1984)

Harloff, Joachim, An efficient algorithm for Lindners test (configural frequency analysis), Qual Quant DOI 10.1007/s11135-011-9499-9

See Also

cfa

Examples

```
# Does not work with windows since there is no parallel for it
if (require (parallel)) {

lk<-4 # number of parameters
ln<-c(59,57,59,58) # marginal sums of the parameters realized in the configuration to be tested
lNt<-116 # sample size of configurations
lm0<-16 # observed frequency of the configuration tested

# Old algorithm
starttime=proc.time()
pHXsmallerequalM0<-sum(unlist(mclapply(0:lm0,PXisMclassic,ln,lNt,lk)))
pHXequalM0<-PXisMclassic(lm0,ln,lNt,lk)
pHlargerequalM0<-sum(unlist(mclapply(lm0: min(ln),PXisMclassic,ln,lNt,lk)))
stoptime<-proc.time()
list(pHXsmallerequalM0=pHXsmallerequalM0,pHXequalM0=pHXequalM0,pHlargerequalM0=pHlargerequalM0,
timed.required=stoptime-starttime)
# End of the old algorithm
}</pre>
```

scfa

One sample CFA

Description

Performs a configuration frequency analysis if only one set of counts exists. *This function is not designed to be called directly by the user but will only be used internally by by* cfa(). Both the simple an the multiple cfa are handled by cfa()

Usage

```
scfa(cfg, cnt=NA, sorton="chisq", sort.descending=TRUE, format.labels=TRUE)
```

scfa 23

Arguments

cfg Contains the configurations. This can be a dataframe or a matrix. The dataframe

can contain numbers, characters, factors or booleans. The matrix can consist of numbers, characters or booleans (factors are implicitely re-converted to numer-

ical levels). There must be >=3 columns.

cnt Contains the counts for the configuration. If it is set to NA, a count of one is

assumed for every row. This allows untabulated data to be processed. cnts is a

vector.

sorton Determines the sorting order of the output. Can be set to chisq, n, or label.

sort.descending

Sort in descending order

format.labels Format the labels of the configuration. This makes to output wider but it will

increase the readability.

Details

This function is the "engine" cfa() will use. It does the aggregation, summing up, and will calculate chi squared. All tests of significance are left to cfa()

Value

The function returns the following list:

labels Configuration label

n.levels Number of levels for each configuration

sums Sums for each configuration and each variable in the configuration

counts Observed n of the given configuration expected Expected n for the given configuration chisq Chi squared for each configuration

Note

There are no hard-coded limits in the program so even large tables can be processed.

Author(s)

Stefan Funke <s.funke@t-online.de>

References

Krauth J., Lienert G. A. (1973, Reprint 1995) Die Konfigurationsfrequenzanalyse (KFA) und ihre Anwendung in Psychologie und Medizin, Beltz Psychologie Verlagsunion

Lautsch, E., von Weber S. (1995) Methoden und Anwendungen der Konfigurationsfrequenzanalyse Psychologie und Medizin, Beltz Psychologie Verlagsunion

Eye, A. von (1990) Introduction to configural frequency analysis. The search for types and antitypes in cross-classification. Cambride 1990 24 scfa

See Also

cfa, mcfa

Examples

Index

```
* htest
                                                   hcfa, 8, 12, 17
    bcfa, 2
                                                   kvCFA (fCFA), 6
    cfa, 3
    hcfa, 8
                                                   mcfa, 6, 9, 9, 14, 18, 24
    mcfa, 9
    plot.bcfa, 11
                                                   plot.bcfa, 11
    plot.hcfa, 12
                                                   plot.hcfa, 12
    plot.mcfa, 13
                                                   plot.mcfa, 13
    plot.scfa, 14
                                                   plot.scfa, 14
    print.bcfa, 15
                                                   print.bcfa, 15
    print.hcfa, 16
                                                   print.fCFA (fCFA), 6
    print.mcfa, 17
                                                   print.hcfa, 16
    print.scfa, 18
                                                   print.kvCFA (fCFA), 6
    PXisM, 20
                                                   print.mcfa, 17
    PXisMclassic, 21
                                                   print.scfa, 18
    scfa, 22
                                                   PXisM, 20
* models
                                                   PXisMclassic, 21
    fCFA, 6
*\ multivariate
                                                   scfa, 3, 6, 9, 10, 15, 19, 22
    bcfa, 2
                                                    summary.fCFA (fCFA), 6
    cfa, 3
                                                   summary.kvCFA (fCFA), 6
    hcfa, 8
    mcfa, 9
    plot.bcfa, 11
    plot.hcfa, 12
    plot.mcfa, 13
    plot.scfa, 14
    print.bcfa, 15
    print.hcfa, 16
    print.mcfa, 17
    print.scfa, 18
    PXisM, 20
    PXisMclassic, 21
    scfa, 22
bcfa, 2, 11, 16
cfa, 3, 3, 9, 10, 12, 14, 15, 18-20, 22, 24
fCFA, 6
```