السدوال الأسيسسة سلسلة التماريسن

السنة الدراسية : 2012-2011

الثانية باك علوم رياضيـة

أثبت المتساويات التالية محددا حيز التعريف: $\ln(1+e^x) - \ln(1+e^{-x}) = x : xe^{\ln(x-1)} = (x-1)e^{\ln x}$ $\frac{e^x}{e^x - x} = \frac{1}{1 - xe^{-x}} : \left(\frac{e^{x+1}}{e^{1-x}}\right)^2 = e^{4x} = \frac{e^{(x+1)^2}}{e^{(x-1)^2}} :$ $\frac{e^{x}-1}{e^{x}+1} = \frac{1-e^{-x}}{1+e^{-x}} = 1 \xrightarrow{1+e^{x}} (1+e^{x})$ $(\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}} = \frac{1-e^{-2x}}{1+e^{-2x}} = 1 - \frac{2e^{-2x}}{1+e^{-x}}$

 $e^{2x}-5e^x+6=0$ حل في $\overline{\mathbb{R}}$ المعادلات التالية $\overline{\mathbb{R}}$ $e^{x^2-3} = e^{-2x} - e^{2x+1} - 5e^{x+2} + 4e = 0$ $e^{\frac{2}{x}} + e^{\frac{1}{x}} = 6 : e^{x} + e^{-x} = 2 : e^{4\ln x} - 5e^{2\ln x} + 6 = 0$ $x^{\sqrt{x}} = \sqrt{x}^{x} : e^{7x} - 13e^{4x} + 36e^{x} = 0$ $e^{2x}-5e^x+6\geqslant 0$ حل في $\mathbb R$ المتراجحات التالية $\mathcal Q$ $\ln(2-e^x) \geqslant 3 : e^{x^2-3} \leqslant e^{-2x} : e^{1-x} \leqslant e^{3x}$ $e^{x} - 4e^{-x} < 0 : e^{x} + \frac{1}{e^{x}} \le e + \frac{1}{e} : e^{x} + e^{-x} > 2$ $7e^x-\ln y=20 \ 3e^x + 2\ln y=7$: حل في \mathbb{R}^2 النظمات التالية $\mathbf{8}$

$\left\{egin{array}{l} e^{x+y}+2=2e^x \ 2-e^{y-x}=3e^{-x} \end{array} ight. \left\{egin{array}{l} e^x-e^{y-1}=1 \ e^{x+1}-e^y=4+e \end{array} ight.$

 $\lim_{+\infty}(x^3-2x)e^{2x}$: $\lim_{+\infty}2x-e^x$: أحسب النهاياًت التالية $\lim_{t \to \infty} 3e^{2x} - e^x - 1: \lim_{|x| \to +\infty} e^x + e^{-x}: \lim_{t \to \infty} x^2 e^x:$ $\lim_{0^+} \frac{\sqrt{1-e^{2x}}}{x} : \lim_{+\infty} x \left(e^{\frac{1}{x}}-1\right) : \lim_{+\infty} \frac{e^x}{x^2+1} : \lim_{+\infty} \frac{e^x}{x^2}$ $\lim_{x \to 2} (x-2)e^{rac{x-1}{x-2}} : \lim_{x \to 2} rac{e^x - e}{x-1} : \lim_{x \to 2} rac{(x-1)e^x + 1}{x} :$ $\lim_{0} rac{e^{x \ln x} - 1}{x} : \lim_{+\infty} rac{e^x - 2}{e^x + 1} : \lim_{+\infty} x^2 \left(e^{rac{1}{x - 2}} - e^{rac{1}{x}}
ight) :$ $\lim_{n \to \infty} \sin(x) e^x + \lim_{n \to \infty} rac{e^{\sin x} - 1}{x} + \lim_{n \to \infty} rac{e^x - e^{-x}}{x} + \dots$ $\lim_{+\infty} x - \ln(e^x + 1)$: $\lim_{+\infty} x \left(\sqrt{e^{2x} + 1} - e^x \right)$: $\lim_{+\infty} \frac{\ln x}{e^x}$ $\lim_{+\infty} x \ln \left(rac{e^x+1}{e^x-1}
ight) \quad : \quad \lim_{-\infty} (x-1) e^{rac{1}{x}} - x \quad : \quad$ $.\lim_{0}\frac{e^{\sqrt{x}}-1}{3x}:\lim_{0^{+}}\frac{1}{x}\ln\left(e^{x}-e^{\frac{1}{x}}\right)$

$oxed{1}$ تمرین $oldsymbol{4}$

في الحالات التالية حدد \mathscr{D}_f ثم أدر س قابلية اشتقاق $oldsymbol{0}$ $:\mathscr{D}_{f'}$ الدّالة f و أحسب f'(x) لكل x من $f(x) = e^{-x} \ln x \quad : \quad f(x) = e^{x \ln x}$

$$f(x) = rac{x+1}{e^x} : f(x) = x^2 e^{rac{-1}{x}} : f(x) = \sqrt{e^{2x} - e^x} : f(x) = \ln(e^{2x} - e^x + 1) : f(x) = \cos(x) e^{\sin x} : f(x) = x e^{\operatorname{Arctg} x}$$

حدد الدوال الأصلية للدالة f على ${\mathcal I}$ في الحالات التالية:

$$egin{aligned} f(x) &= \sin(x)e^{\cos(x)} \ \mathcal{I} &= [0;\pi] \end{aligned} & egin{aligned} f(x) &= e^{2x-1} \ \mathcal{I} &= [0;\pi] \end{aligned} & egin{aligned} f(x) &= e^{3x} - 1 \ \mathcal{I} &= \mathbb{R} \end{aligned} & egin{aligned} f(x) &= e^{x} \left(e^{x} - 1
ight)^{3} \ \mathcal{I} &= \mathbb{R} \end{aligned} & egin{aligned} f(x) &= 2^{x} \ \mathcal{I} &= \mathbb{R} \end{aligned} & egin{aligned} f(x) &= \sqrt{e^{3x}} \ \mathcal{I} &= \mathbb{R} \end{aligned}$$

 $f(x) = e^{3x} - 3e^x$ نعتبر الدالة f المعرفة ب

- حل فی $\mathbb R$ المعادلة f(x)=0 ثم حدد نهایات f عند $oldsymbol{0}$
 - . (\mathscr{C}_f) أدر س تغيرات الدالة f و أنشئ المنحنى $oldsymbol{\mathcal{Q}}$
- ناقش مبيانيا حسب قيم m عدد حلول المعادلة $oldsymbol{artheta}$

 $f(x) = rac{e^x+1}{e^x-1}$ نعتبر الدالة f المعرفة بما يلي:

- حدد \mathscr{D}_f ؛ ثم بين أن f دالة فردية.
- \mathscr{D}_f أحسب نهايات الدالة f عند محدات \mathscr{Q}
- . أحسب f'(x) لكل $oldsymbol{x}$ من \mathbb{R}^* ثم أعط جدو ل التغيرات.
 - . (\mathscr{C}_f) حل المعادلة $f(x) \neq 2$ ثم أنشئ المنحنى \mathfrak{G}
 - ناقش مبيانيا حسب قيم m عدد حلول المعادلة Θ $(m-1)e^x=m+1$

تمرین 7

 $f(x)=xe^{-\sqrt{x}}$ نعتبر الدالة f المعرفة ب

- أحسب $\lim\limits_{n\to\infty}f(x)$ ؛ ثم أعط التأويل الهندسي.
- أدرس قابلية اشتقاق الدالة f على يمين 0 . التأويل $oldsymbol{2}$ الهندسي
 - أحسب f'(x) لكل x من \mathbb{R}^+ ثم أعط جدول التغيرات.

ادرس تقعر $||\vec{i}||=1cm$ أدرس تقعر $||\vec{i}||=1cm$ أدرس أنشئ $|||\vec{i}||=4cm$

$$\left\{egin{array}{l} f(x)=x^{\sqrt{x}}\,;\;x>0\ f(0)=1 \end{array}
ight.$$
نعتبر الدالة f المعرفة بــ:

- $oldsymbol{0}$ أدرس اتصال و قابلية اشتقاق f على يمين f التأويل الهندسي.
- أحسب f'(x) لكل x من \mathbb{R}^*_+ ثم أعط جدول $oldsymbol{arphi}$
 - \mathfrak{C}_f أدرس الفروع اللانهائية لـ (\mathscr{C}_f) ثم أنشئ (\mathscr{C}_f) .

$$f(x) = \sqrt{1 - e^{-2x}}$$
 نعتبر الدالة f المعرفة ب $f(x)$

- أحسب $\frac{f(x)}{x}$ ؛ ثم أعط التأويل الهندسي.
- \mathscr{C}_f أدرس تغيرات الدالة f. و أنشئ المنحنى \mathscr{C}_f).
- ه بین أن f تقابل من \mathbb{R}^+ نحو مجال J يتم تحديده.
- أحسب $f^{-1}(x)$ و أنشئ في نفس المعلم المنحنى $(\mathscr{C}_{f^{-1}})$
 - بین أنه لکل x من \mathbb{R}^{+*} لدینا: $oldsymbol{\mathfrak{G}}$

$$f(x) = f'(x) \left[-1 + rac{1}{2(1+f(x))} + rac{1}{2(1-f(x))}
ight]$$

 $]0;+\infty[$ استنتج دالة أصلية للدالة f على المجال $oldsymbol{0}$

 $rac{f I0}{f I}$. $rac{f I0}{f I}$. $rac{f I0}{f I}$ نعتبر الدالتين f g و f h المعرفتين على f R بما يلي:

$$h(t)=(1-t)e^t$$
 g $(t)=1+t-e^t$

- $.ig(orall t\in\mathbb{R}ig):\ h(t)\leqslant1$ حدد إشارة g ؛ و بين أن $oldsymbol{0}$
- $(orall t\in]-\infty;1[ig):\ 1+t\leqslant e^t\leqslantrac{1}{1-t}$:بين أنig)
- $.ig(orall x\in\mathbb{R}^{-*}ig):rac{x}{x-1}\leqslant x\left(e^{rac{1}{x}}-1
 ight)\leqslant 1$ بين أن: f 3
 - دالة معرفة على $\mathbb R$ بما يلي: f (II

$$\left\{ egin{array}{l} f(x) = x e^{rac{1}{x}} \; ; \; x < 0 \ f(x) = x \ln(1+x) \; ; \; x \geqslant 0 \end{array}
ight.$$

- $oldsymbol{0}$ أدر س اتصال و قابلية اشتقاق الدالة f في 0
 - . f أدرس تغيرات الدالة $oldsymbol{ heta}$
- sh يرمز لها بالرّمز $(\mathrm{I} \mid .(orall x \in \mathbb{R}^{-*}): \ rac{1}{x-1} \leqslant xe^{rac{1}{x}} x 1 \leqslant 0:$ بين أن \mathfrak{S}

- (Δ) استنتج أن (\mathscr{C}_f) يقبل بجوار ∞ مقاربا مائلا $oldsymbol{0}$
- أدر س الوضع النسبي لـ (\mathscr{C}_f) و المستقيم (Δ) على $[-\infty;0[$
- أدرس تقاطع (\mathscr{C}_f) و المستقيم y=x أدرس أدرس أدرس الم
- بین أِن f تقابل من $\mathbb R$ نحو J یتم تحدیده. ثم أنشئ $oldsymbol{0}$

- $.ig(orall x\in\mathbb Rig):\ 1+x\leqslant e^x$ بين أن: $ig(\forall x\in]-\infty;1[ig):\ e^x\leqslantrac{1}{1-x}$ استنتج أن
- $n\in\mathbb{N}^*:\;u_n=\left(1+rac{1}{n}
 ight)^n$ نعتبر المتتالية $oldsymbol{\mathcal{Q}}$ $\left(orall n\in\mathbb{N}^*
 ight):\ \left(1+rac{1}{n}
 ight)^n\leqslant e\leqslant \left(1+rac{1}{n}
 ight)^{n+1}$ بين أن
 - $(orall n\in \mathbb{N}^*):\ 0\leqslant e-u_n\leqslant rac{3}{n}$ بين أن $oldsymbol{0}$
 - (u_n) استنتج نهاية المتتالية Φ

تمرين 12 . نعتبر الدالة f المعرفة بما يلي:

$$f(x) = -e^{-x} \left(1 + rac{x}{1!} + rac{x^2}{2!} + \dots + rac{x^n}{n!}
ight)^n$$

- $(orall x\in [0;1]):0\leqslant f'(x)\leqslant rac{1}{n!}$ المين أن: $f(1)\geqslant f(0)$ و أن
- $g(x)=f(x)-rac{x}{n!}$ نعتبر الدالة g بحيث: g ادرس تغيرات g على g ثم بين أن $f(1)\leqslant f(0)+rac{x}{n!}$
- $.ig(orall n\in\mathbb{N}^*ig):\ v_n=1+rac{1}{1!}+rac{1}{2!}+\cdots+rac{1}{n!}$ نضع $oldsymbol{arphi}$ $(orall n\in \mathbb{N}^*)$: $e\left(1-rac{1}{n!}
 ight)\leqslant v_n\leqslant e$ بين أن $\displaystyle \lim_{n o +\infty} v_n$ و أن $\displaystyle 0 \leqslant e - v_n \leqslant rac{3}{n!}$ و

الدالة $x\mapsto rac{e^x+e^{-x}}{2}$ الدالة جيب التمام الهذلولي

ch و يرمز لها بالرمز $x\mapstorac{e^x-e^{-x}}{2}$ و الدالة $x\mapstorac{e^x-e^{-x}}{2}$

: بین أن لكل x من $\mathbb R$ لدینا

$$ch'(x)=sh(x)$$
 و $sh'(x)=ch(x)$

 \mathbb{R} على sh و ch على الدالتين أعط جدول تغيرات الدالتين أعط

$$.ch^2(x)-sh^2(x)=1$$
 : $\mathbb R$ من x من $\mathfrak S$

نیکن a و b عددین حقیقیین. بین أن:

$$ch(a+b) = ch(a)ch(b) + sh(a)sh(b)$$

$$sh(a+b) = sh(a)ch(b) + ch(a)sh(b)$$

بين أن sh تقبل دالة عكسية sh^{-1} قابلة للاشتقاق على 0 $.ig(orall x\in\mathbb{R}ig):\ ig(sh^{-1}ig)'(x)=rac{1}{\sqrt{1+x^2}}$

$$sh^{-1}(x) = \lnig(x+\sqrt{1+oldsymbol{x}^2}ig)$$
: $\mathbb R$ بين أن لكل x من x ال x بين أن لكل (IV

بين أن f قصور ch على ∞ تقبل دالة عكسية f^{-1} قابلة للاشتقاق على ∞ $+\infty$.

$$(orall x \in]1;+\infty[ig)$$
 و أن $\left(f^{-1}
ight)'(x)=rac{1}{\sqrt{x^2-1}}$ و أن

$$.ig(orall x\geqslant 1ig):\,f^{-1}(x)=\lnig(x+\sqrt{x^2-1}ig):$$
 بین آن \mathscr{Q}

تمرین 14 $oxdot{g}$. $oxdot{14}$. $oxdot{I}$ نعتبر الدالتین $oxdot{f}$ و $oxdot{g}$ المعرفتین بما یلي:

$$\mathbf{g}(x) = rac{x}{x+1} - \ln(1+x)$$
 و $f(x) = e^{-x} \ln(1+e^x)$

$$.ig(orall x\in\mathbb{R}^+ig): \ \mathrm{g}(x)\leqslant 0$$
 بین آن $oldsymbol{0}$

$$(\mathscr{C}_f)$$
 أدرس تغيرات الدالة f ثم أنشئ المنحنى (\mathscr{C}_f)

. بين أن
$$f$$
 تقابل من $\mathbb R$ نحو مجال J يتم تحديده $oldsymbol{arphi}$

حدد تغيرات
$$f^{-1}$$
 و أنشئ في نفس المعلم المنحنى ($\mathscr{C}_{f^{-1}}$) .

$$.u_{n+1}=f(u_n)$$
 و $u_o=rac{1}{2}$ نعتبر المتتالية (II

$$.f\left(\left[rac{1}{2};rac{3}{5}
ight]
ight)\subset\left[rac{1}{2};rac{3}{5}
ight]$$
 بین آن $oldsymbol{0}$

$$lpha$$
 بين أن المعادلة $f(x)=x$ تقبل حلا وحيدا $rac{1}{2} أن$

$$f(x)-x$$
 أدرس إشارة $oldsymbol{\Im}$

$$w_n=u_{2n+1}$$
 و $v_n=u_{2n}$ نضع: \mathbb{N} نضع: $v_n=u_{2n}$ و v_n و v_n بين أن v_n و v_n متحاديتان و استنتج أن $v_n=u_n=u_n$ متقاربة و أن $v_n=u_n=u_n=u_n$

بین أن
$$(\mathrm{II} \mid .ig(orall x \in \mathbb{R} ig): \ f'(x) + f(x) = rac{1}{1+e^x}$$
 نعتبر المتتالية $oldsymbol{0}$

- و التي $\mathbb R$ استنتج الدالة الأصلية F للدالة و التي $oldsymbol{arphi}$ تنعدم في 0.
 - : نیکن n من \mathbb{N}^* بین أن

$$\left(\exists ! x_n \in \mathbb{R}_+^*
ight): \ f(x_n) = rac{1}{n}$$

- بين أن المتتالية $\left(x_{n}
 ight)_{n\geqslant2}$ تزايدية. $oldsymbol{\Phi}$
- $\lim_{n o +\infty} x_n$ بین أن $\left(x_n
 ight)$ غیر مکبورة و استنتج $oldsymbol{\mathfrak{G}}$

 $f(x)=2xe^x$ نعتبر الدالة f المعرفة بما يلي:

- بين أن f تقابل من [0;1] نحو مجال J يتم تحديده.
 - $lpha e^lpha = 1$ بین أن یوجد lpha و حید من 0;1] بحیث $oldsymbol{arphi}$

$$\left\{egin{array}{l} u_o=lpha \ ig(orall n\in\mathbb{N}ig); \ u_{n+1}=f^{-1}(u_n) \end{array}
ight.$$
نعتبر المتتالية $igl(au_n=f^{-1}(u_n) igr)$

$$.ig(orall x\in [0;1]ig):\ f(x)\geqslant x$$
 نين أن: $ig($

$$.ig(orall n\in\mathbb{N}ig):\;u_n\in]0;1]$$
 : بين أن

. استنتج أن (u_n) متقاربة نهايتها الصفر

$$S_n = \sum_{k=0}^n u_k$$
 نضع: n نضع: n ککل عدد صحیح طبیعي $f(x) = \frac{x}{x+1} - \ln(1+x)$ نضع: $f(x) = e^{-x} \ln(1+e^x)$

$$u_n=rac{e^{-S_n}}{2^n}$$
 بین أن لکل n من \mathbb{N} لدینا: $u_n \leqslant \left(rac{1}{2}
ight)^n$

ب) استنتج أن (S_n) متقاربة نهايتها ℓ تحقق

 $n\geqslant 1$ عدد صحیح طبیعی بحیث n>1 عدد صحیح طبیعی بحیث n یعتبر الدالة $(I_n(x)=1+x-e^{-nx})$

أدرس تغيرات
$$f_n$$
 و استنتج أن 0 هو الحل الوحيد للمعادلة $f_n(x)=0$ أدرس

$$(orall n\in \mathbb{N}^*ig)ig(\exists !x_n\in \mathbb{R}_+^*ig):\ f_n(x_n)=1$$
: بین آن

ادرس إشارة
$$f_{n+1}(x)-f_n(x)$$
 و استنتج أن $(x_n)_{n\geqslant 1}$

بین آن:
$$\left(orall n \in \mathbb{N}^*
ight): \; x_n = e^{-nx_n}:$$
استنتج آن. $\lim x_n = 0$

$$\left\{egin{array}{l} y_1=1\ ig(orall n\in\mathbb{N}ig);\ y_{n+1}=e^{-y_n} \end{array}
ight.$$
نعتبر المتتالية (II

- بين أن x_1 هو الحل الوحيد للمعادلة $e^{-x}=x$. و $rac{1}{e}\leqslant x_1\leqslant 1$ أن
 - $(orall n \in \mathbb{N}^*): \; rac{1}{e} \leqslant y_n \leqslant 1$: بین أنQ
- $\left(orall n\in\mathbb{N}^*
 ight):|y_{n+1}-x_1|\leqslant e^{-rac{1}{e}}\left|y_n-x_1
 ight|$: بین آن
 - استنتج آن $(y_n)_{n\geqslant 1}$ متقاربة و حدد نهايتها. $oldsymbol{\Phi}$

 $n\in \mathbb{N}^*ackslash\{1\}$ $f_n(x)=rac{x}{n}-e^{-nx}$ نعتبر الدالة ($(O; \, \overrightarrow{i} \, ; \, \overrightarrow{j})$ و ليكن (\mathscr{C}_n) منحناها في م م

- $\lim_{x o -\infty} f_n(x)$ أحسب $f_n(x)$ أحسب $\mathbf{0}$
- (\mathscr{C}_n) أدرس الفرعين اللانهائيين للمنحنى \mathfrak{D}
- f_n أحسب $f_n'(x)$. ثم أعط جدول تغيرات الدالة $oldsymbol{0}$
- $lpha_n$ بين أن المعادلة $f_n(x)=0$ بين أن المعادلة $oldsymbol{\Phi}$
- $\left(orall x\in\mathbb{R}
 ight)\colon e^x\geqslant x{+}1$ و أن $f_n\left(rac{1}{n}
 ight)<0$ بين أن $oldsymbol{\mathfrak{G}}$
 - $\left(rac{1}{n} < lpha_n < 1
 ight)$ استنتج أن $f_n\left(1
 ight) > 0$ ثم بين أن $oldsymbol{\mathfrak{G}}$
 - $\left(lpha_2pprox0,6
 ight.$ أنشئ المنحنى $\left(\mathscr{C}_2
 ight)$ (نأخذ $oldsymbol{0}$
- ا) بین أنه لکل عدد صحیح طبیعی $n\geqslant 2$ لدیثار (ا $.f_{n+1}(lpha_n)=rac{ne^{-(n+1)lpha_n}}{n+1}igg(e^{lpha_n}-rac{1}{n}-1igg).$
 - $oxedsymbol{\cdot} \left(orall n \geqslant 2
 ight) : \ f_{n+1}(lpha_n) \geqslant 0$ ب $\left(orall n \geqslant 2
 ight) : f_{n+1}(lpha_n) = 0$
- ج) بین أن $(lpha_n)_{n\geqslant 2}$ تناقصیة ثم استنتج أنها متقاربة
 - ⑨ باستعمال السؤال ⑥ بين أن:
 - $\left(orall n\geqslant 2
 ight) : \;\;rac{1}{n^2} < e^{-nlpha_n} < rac{1}{n}$
- $-\left(orall n\geqslant 2
 ight):rac{\ln(n)}{n}<lpha_n<2rac{\ln(n)}{n}$ ب) استنتج أن $-\left(rac{\ln(n)}{n}
 ight)$ $\lim_{n o +\infty} lpha_n$: ثم حدد

$$\left\{ egin{aligned} f(x) &= \operatorname{Log}_2(x) - \operatorname{Log}_x(2) \; ; \; x > 0 \ f(0) &= 0 \ f(x) &= e^{rac{x^2}{2} + rac{1}{x}} \; ; \; x < 0 \end{aligned}
ight.$$

 $\lim_{x o -\infty}f(x)$ و أحسب $\lim_{x o +\infty}f(x)$ و أحسب f(x) و أحسب ثم بين أن f متصلة على يمين f

- $(orall x < 0): rac{f(x)}{x} = \left(rac{1}{x}e^{rac{1}{x}}
 ight)e^{rac{x^2}{2}}$:تحقق أن ثم أدرس قابلية ُاشتقاق f على يسار 0. أو ل هندسيا النتيجة المحصلة .
- $(orall x < 0): rac{f(x)}{x} = \left(rac{x}{2} + rac{1}{x^2}
 ight) \left(rac{e^{rac{x^2}{2} + rac{1}{x}}}{rac{x^2}{2} + rac{1}{x}}
 ight)$: بين أن استنتج $\dfrac{f(x)}{x} = \lim_{x o -\infty} \frac{f(x)}{x}$ التأويل الهندسي.

$$\left\{egin{array}{l} f'(x) = rac{1}{x} \left(rac{1}{\ln 2} + rac{\ln 2}{(\ln x)^2}
ight) \; ; \; x \in \mathbb{R}_+^*ackslash\{1\} \ f'(x) = \left(rac{x^3-1}{x^2}
ight) e^{rac{x^2}{2} + rac{1}{x}} \; ; \; x \in \mathbb{R}_-^* \end{array}
ight.$$

f أعط جدول تغيرات الدالة

حدد نقط تقاطع (\mathscr{C}_f) مع محور الأفاصيل ؛ ثم أنشئ (\mathscr{C}_f) .

التكن ${f g}$ دالم ${f k}^{-*}$ بما يلي: ${f R}$ بما يلي:

$$g(x) = \frac{1-x}{x} - \ln(-x)$$

 ${f g}$ و ضع جدول تغیرات ${f g}$ ثم استنتج إشارة

نعتبر الدالة f المعرفة على $\mathbb R$ بما يلي:

$$\left\{ egin{array}{l} f(x) = e^{x^2 - x + \ln(x)} \; ; \; x > 0 \ f(0) = 0 \ f(x) = (-x)^{1 - x} \; ; \; x < 0 \end{array}
ight.$$

 $oldsymbol{\cdot} ig(O; ec{i}\,; ec{j}ig)$ و ليكن $ig(\mathscr{C}_f)$ منحناها في م م

- أحسب النهايتين f(x) انهايتين $\lim_{x o +\infty} f(x)$ و $\lim_{x o +\infty} f(x)$ ؛ ثم أدرس الفروع اللانهائية للمنحنى (\mathscr{C}_f) .
- $oldsymbol{Q}$ أدرس اتصال و قابلية اشتقاق f في 0. التأويل الهندسي.

$$\int_{0}^{\infty} \frac{f'(x)}{x} = \frac{2x^2-x+1}{x} f(x) \; ; \; x>0$$
 بين أن: $\int_{0}^{\infty} f'(x) = g(x) f(x) \; ; \; x<0$ ثم أعط جدو ل تغيرات الدالة $\int_{0}^{\infty} f'(x) = \int_{0}^{\infty} f'(x) dx$

- $.(orall x < 0): f(x) + x = -x \left(e^{-x \ln(-x)} 1
 ight)$ بين أن: $oldsymbol{0}$
- استنتج الوضع النسبي للمنحنى (\mathscr{C}_f) و المستقيم \mathbb{R}^{-*} على (D):y=-x
- أدرس الوضع النسبي لـ (\mathscr{C}_f) و المستقيم \mathbb{R}^{+*} على $(\Delta):y=x$

 $(O; \, \overrightarrow{i} \, ; \, \overrightarrow{j})$ أنشئ المنحنى (\mathscr{C}_f) في المعلم $m{\mathcal{O}}$ $||ec{i}||=||ec{j}||=1cm$ نأخذ

$$\begin{cases} u_o \in]0;1] \ u_{n+1} = e^{u_n^2 - u_n + \ln(u_n)} \end{cases}$$
: نعتبر المتتالية (III

- $0 < u_n \leqslant 1$ بين أن لكل n من $\mathbb N$ لدينا: $oldsymbol{0}$
- بين أن (u_n) تناقصية و استنتج أنها متقاربة. $oldsymbol{arrho}$

$$.ig(orall t\in]0;+\infty[ig):\ln(t)\leqslant t-1$$
بين أن: $oldsymbol{0}$

$$(orall x \in [1;+\infty[ig):x\ln(x) \geqslant x-1$$
 استنتج أن: $x \in [1;+\infty[ig)]$

$$.ig(orall x\in [1;+\infty[ig):x\ln(x))$$
بین آن: $(x^2-1):x$

$$\mathbb{R}^{+*}$$
بين أن $lpha_n$ بين أن $x\ln(x)=rac{1}{n}$ في $x\ln(x)$

تحقق أن
$$lpha_n < e$$
؛ ثم بين أن $oldsymbol{5}$

$$\sqrt{1+rac{2}{n}}\leqslant lpha_n\leqslant 1+rac{1}{n}$$

استنتج أن المتتالية $(lpha_n)_{n\geqslant 1}$ متقاربة محددا $\lim_{n o +\infty}(lpha_n)^n=e$ نهايتها e بين أن

ليكن n عددا صحيحا طبيعيا غير منعدما. نعتبر الدالة f_n المعرفة على $\mathbb R$ بما يلي:

$$f_n(x) = \frac{x^n e^{-x}}{n!}$$

و لیکن (\mathscr{C}_n) منحناها في م م م $|ec{i}||=|ec{j}||=3cm$

.
$$n$$
 أحسب أ $\lim_{n o +\infty} f_n(x)$ أحسب زوجية أ $\lim_{n o +\infty} f_n(x)$

$$\left|.\left(orall x\in\mathbb{R}
ight):\;f_n'(x)=rac{x^{n-1}e^{-x}}{n!}(n-x):$$
بین آن

. n أعط جدول تغيرات الدالة f_n حسب زوجية

$$-ig(orall n\in\mathbb{N}^*ig)ig(orall x\in\mathbb{R}ig):e^nf_n(x)\leqslantrac{n^n}{n!}$$
استنتج آن: $oldsymbol{\Phi}$

$$.ig(orall n\in\mathbb{N}^*ig):\ e^{n-1}\leqslant n^n$$
 استنتج أن $f 6$

 (\mathscr{C}_n) أدرس الفروع اللانهائية للمنحنى $oldsymbol{\mathfrak{G}}$

 $oldsymbol{\mathscr{C}}$ أدر س الوضع النسبي للمنحنيين (\mathscr{C}_1) و

$$(\mathscr{C}_2)$$
 و (\mathscr{C}_1) و أنشئ في نفس المعلم المنحنيين $rac{2}{e^2}\simeq 0,27$ و أنشئ في نفس المعلم المعلم المعلم المعلم $rac{1}{e}\simeq 0,37$

$$.ig(orall n\in \mathbb{N}^*ig):\ u_n=\sum\limits_{k=0}^nrac{1}{k!}$$
 : نعتبر المتتالية 0 نعتبر الدالة الأصلية للدالة f_n على \mathbb{R} الدالة الأصلية الدالة الم

$$0$$
 و لتكن F_n الدالة الأصلية للدالة أمي على التي تنعدم في و

$$.ig(orall x\in\mathbb{R}ig):\; F_1(x)=1-(x+1)e^{-x}$$
 :بین آن

$$(orall n\geqslant 2)(orall x\in \mathbb{R}):F_n(x)-F_{n-1}(x)=-rac{x^n}{n!}e^{-x}$$

❸ استنتج أن:

$$(orall n\geqslant 1)(orall x\in \mathbb{R}):F_n(x)=1-\left(\sum\limits_{k=0}^nrac{x^k}{k!}
ight)e^{-x}$$

$$\left| \left(orall x \in [0;1]
ight) \colon \left| F_n'(x)
ight| \leqslant rac{1}{n!}$$
 بين أن: $lacktriangle$

باستعمال مبرهنة التزايدات المنتهية بين أن:
$$\left|e^x-\sum_{k=0}^n rac{x^k}{k!}
ight|\,\leqslant\,rac{1}{n!}\,|xe^x|$$
 . $\lim_{n o +\infty}u_n$

$$W_n = \ln \left(rac{V_{n+1}}{V_n}
ight)$$
 ککل $V_n = e^n f_n(n)$ نضع $n \geqslant 1$ ککل (III)

$$.ig(orall n\in\mathbb{N}^*ig):\;V_{n+1}=V_n\left(1+rac{1}{n}
ight)^n$$
بين ان: $oldsymbol{0}$

$$.ig(orall x\in\mathbb{R}^+ig):\ 0\leqslant x-\ln(1+x)\leqslantrac{x^2}{2}$$
ين ان: 2

$$(orall n\in \mathbb{N}^*):0\leqslant 1\!+\!\ln\left(rac{V_n}{V_{n+1}}
ight)\leqslant rac{1}{2n}$$
: استنتج

$$(w_n)_{n\geqslant 1}$$
 استنتج نهایة المتتالیة ${f 0}$

$$.ig(orall n\in \mathbb{N}^*ig): \ ig(1+rac{1}{n}ig)^n\geqslant 2$$
 بين أن: $oldsymbol{\mathfrak{G}}$

$$\lim V_n$$
 عدد . $\left(orall n\geqslant 6
ight)$.خدد $\left(orall n\geqslant 2^n
ight)$.حدد $oldsymbol{6}$

تمرین $rac{22}{1}$. \mathbb{R}^{+*} بما یلي: \mathbb{R}^{+} بما یلي: \mathbb{R}^{+}

$$g(x) = rac{1}{x} - \ln(x)$$

 $oldsymbol{0}$ أدرس تغيرات الدالة $oldsymbol{0}$

استنتج أن المعادلة
$$g(x)=0$$
. تقبل حلا وحيدا $lpha$ بحيث $lpha. ثم أدرس إشارة $g(x)$ على $lpha$. $lpha^{+*}$$

نعتبر الدالة f المعرفة على \mathbb{R}^{+*} بما يلي:

$$f(x) = e^{-x} \ln(x)$$

$$f(lpha)=rac{e^{-lpha}}{lpha}$$
 تحقق أن $rac{1}{2e^2}< f(lpha)<rac{2}{3e^{rac{3}{2}}}$ و استنتج أن

- $\displaystyle \lim_{x o +\infty} f(x)$ أحسب النهايتين $\displaystyle \int_{x o 0^+} f(x)$ و
- $.ig(orall x\in\mathbb{R}^{+*}ig):\ f'(x)=e^{-x}g(x)$ بين أن: $oldsymbol{3}$
 - ه أدرس تغيرات f ثم أعط جدول تغيراتها.
 - $(O; \overrightarrow{i}; \overrightarrow{j})$ أنشئ المنحنى (\mathscr{E}_{f}) في م م م $(G; \overrightarrow{i}; \overrightarrow{j})$.

$$h(x)=e^{rac{1}{x}}$$
:نعتبر h المعرفة على \mathbb{R}^{+*} بما يلي (III

$$.ig(orall x\in\mathbb{R}_+^*ig):\ g(x)=0 \Longleftrightarrow h(x)=x$$
بین آن: $oldsymbol{0}$

@ تحقق أن:

$$\left(orall x \in \left[rac{3}{2};2
ight]
ight) \cdot -rac{4}{9}e^{rac{2}{3}} \leqslant h'(x) \leqslant -rac{1}{4}e^{rac{1}{2}}$$

❸ استنتج أن :

انتج ان :
$$\left(\exists k\in]0;1[
ight)\left(orall x\in\left[rac{3}{2};2
ight]
ight):\;|h'(x)|\leqslant k$$

$$\int\limits_{0}^{\infty} u_{o} = 2 \ u_{n+1} = h(u_{n})$$
 : نعتبر المتتالية (IV

$$.ig(orall n\in\mathbb{N}ig): \ rac{3}{2}\leqslant u_n\leqslant 2$$
 : بين أن $oldsymbol{0}$

- $.ig(orall n\in\mathbb{N}ig):\;|u_{n+1}-lpha|\leqslant k\,|u_n-lpha|$: بین آن
- استنتج أن المتتالية (u_n) متقاربة و حدد نهايتها.
- $w_n=u_{2n+1}$ و $v_n=u_{2n}$ نضع \mathbb{N} نضع $v_n=u_{2n}$ و أن: () بين أن: $w_o<lpha$

$$ig(orall n \in \mathbb{N} ig) : w_n < lpha < v_n$$

بین أن: (v_n) تناقصیهٔ و أن (w_n) تزایدیهٔ . ج) بین أن :

$$ig(orall n \in \mathbb{N} ig): \; |w_{n+1} - v_{n+1}| \leqslant k^2 \, |w_n - v_n|$$

د) استنتج أن :

$$\left(orall n \in \mathbb{N}
ight) : \left| w_n - v_n
ight| \leqslant k^{2n} (2 - \sqrt{e})$$

ه) بين أن (v_n) و (w_n) متقاربتان لهما نفس النهاية. (u_n) استنتج أن (u_n) متقاربة و أن (u_n)

تمرین 23

 \mathbb{R}^*_+ عنبر الدالة f_m المعرفة بما يلي:

$$\left\{egin{array}{l} f_m(x) = e^{mx}igl(1-mx\ln|x|igr) \ f_m(0) = 1 \end{array}
ight.$$

- \mathscr{D}_{f_m} عند محدات ؛ ثم أحسب النهايات عند محدات \mathscr{D}_{f_m}
 - 0 أدرس اتصال و قابلية اشتقاق f_m في θ
- . f_1 أحسب $f_m'(x)$ ؛ ثم ضع جدول تغيرات الدالة $oldsymbol{\mathfrak{G}}$
- f_1 حدد الفروع اللانهائية لـ (\mathscr{C}_1) منحنى الدالة $oldsymbol{\Phi}$
- $f_1(lpha)=0$ بين أنه يوجد lpha وحيد من [1;2[بحيث $oldsymbol{\Theta}$
- حدد معادلات المماسات للمنحنى (\mathscr{C}_1) عند النقط التى أفاصيلها 1 و 1.
- $||\overrightarrow{i}||=||\overrightarrow{j}||=2cm$ أنشئ المنحنى $lpha\simeq 1,7$ و $lpha\simeq 1,7$
- باستعمال المنحنى (\mathscr{C}_1) ، ناقش حسب قيم البار امتر الحقيقي k عدد حلول المعادلة

$$x\in\mathbb{R};\;|x|=e^{rac{1-ke^{-x}}{x}}$$

تمرین 24

نعتبر الله الله f المعرفة على $[0;+\infty[$ بما يلي:

$$\begin{cases} f(x) = e^{\frac{1}{\ln(x)}} \; ; \; x \neq 0 \; ; \; x \neq 1 \\ f(0) = 1 \; ; \; f(1) = 0 \end{cases}$$

 $(O; ec{i}; ec{j})$ و ليكن (\mathscr{C}_f) منحناها في م م

- $oldsymbol{0}$ أدرس اتصال و قابلية اشتقاق الدالة f على يمين f
- .1 ملى يسار f أدرس اتصال و قابلية اشتقاق الدالة f على يسار g
 - $oldsymbol{1}$ هل الدالة f متصلة في $oldsymbol{3}$
- حدد الفرع اللانهائي للكنكنى (\mathscr{G}_f) ثم أدرس تغيرات الدالة f.
- (D): y = x بين أن (\mathscr{C}_f) يقبل المستقيم \mathfrak{S}
- (D) حدد نقط تقاطع المنحنى (\mathscr{C}_f) و المستقيم (\mathscr{C}_f) .