Vector spaces

ROB 501 Necmiye Ozay

- Vector space over a field
 - More examples of vector spaces
 - Subspaces
 - Linear independence
 - Basis (if time)

Course announcements

- Next lecture is also over Zoom (we will be inperson next week)
- Recitation sessions are in-person

Vector spaces

A linear (vector) space over a field (\mathcal{F}) denoted by $(\mathcal{X}, \mathcal{F})$ consists of a set (\mathcal{X}) of vectors, a field \mathcal{F} , and two operations vector addition and scalar multiplication X, X2 EX X, +X2 QEF, XEX such that

- (R,C) is not QX a vector space, fails Axiam &

- 3. Vector addition is associative

 4. \mathcal{X} contains a zero vector $\mathbf{0}$ (origin of the vector space) with $\mathbf{0} + x$
 - with 0 + x = x for all $\mathbf{x} \in \mathcal{X}$ $\$ 5. Each element of \mathcal{X} has an additive inverse
 - 6. \mathcal{X} closed under scalar multiplication for any $\alpha \in \mathcal{F} \propto \mathcal{F} \times \mathcal{F}$
 - 7. Scalar multiplication is associative
 - 8. Scalar multiplication is distributive over vector addition
 - 9. Scalar multiplication is distributive over scalar addition 10. For any $\mathbf{x} \in \mathcal{X}$, $1\mathbf{x} = \mathbf{x}$ where 1 is the multiplicative identity in \mathcal{F}

Question from last time

Some questions: (you can prove)

- For fields, the element 0%]
 are unique
- 2 For vector spaces, the origin (0) is unique.

Proof of 2. (Proof by contradiction)

Let 0,02EX be origins ("zero vectors")

of the vector space X and 0, #02.

If O, is a zero vector, by Axiom U, we $\mathbf{O}_1 + \mathbf{X} = \mathbf{X}$ $\forall \mathbf{X} \in \mathbf{X}$. In particular, $\mathbf{O}_2 \in \mathbf{X}$, vove: therefore $O_1 + O_2 = O_2$, (1) If O2 is a zero vector, by Axiom U, we O2+x=x +x EX. In particular, 0, EX vove: therefore $O_2 + O_1 = O_1 \cdot (2)$ by commutativity $0, +0_2 = [0, +0_2]$ of vector addition from (1) and (3), $O_1 = O_2$ (because left hand sides are equal).

 \Rightarrow contradiction. $0 = 0, = 0_2$ unique vector.

Examples

Pick $\underline{\mathcal{X}} \doteq \mathcal{F}$, $\mathcal{F} \doteq \mathcal{F}$. $(\mathcal{F}, \mathcal{F})$ is a vector space. That is, every field forms a vector space over itself. Eg. (\mathbb{R}, \mathbb{R}) , (\mathbb{C}, \mathbb{C}) , $(\mathbb{R}(s), \mathbb{R}(s))$

Pick $\mathcal{X} \doteq \mathbb{C}$, $\mathcal{F} \doteq \mathbb{R}$. (\mathbb{C}, \mathbb{R}) is a vector space. That is, the set of complex numbers forms a vector space over reals.

The set of real numbers is **not** a vector space over complex numbers. (R,C) is not a vector space!

Pick $\mathcal{X} \doteq \{f : [a,b] \to \mathbb{R}\}$, $\mathcal{F} \doteq \mathbb{R}$. $(\mathcal{X}, \mathbb{R})$ is a vector space. That is, the set of functions with domain [a,b] and that take values in reals (range is a subset of reals) forms a vector space over reals.

With the usual definition of addition and scalar multiplication.

Examples

Pick $\mathcal{X} \doteq \mathcal{F}^n$, $\mathcal{F} \doteq \mathcal{F}$. $(\mathcal{F}^n, \mathcal{F})$ is a vector space. That is, the set of n-tuples of elements in \mathcal{F} , written as columns, forms a vector space over \mathcal{F} .

$$\mathcal{F}^{n} = \left\{ \begin{bmatrix} \alpha_{1} \\ \vdots \\ \alpha_{n} \end{bmatrix} \middle| \alpha_{i} \in \mathcal{F}, i = 1, \dots, n \right\} \qquad \begin{array}{c} \left(\mathcal{F}^{\wedge}, \mathcal{F} \right) \\ \vdots \\ space \end{array}$$

Define vector addition by:
$$\begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{bmatrix} + \begin{bmatrix} \beta_1 \\ \vdots \\ \beta_n \end{bmatrix} = \begin{bmatrix} \alpha_1 + \beta_1 \\ \vdots \\ \alpha_n + \beta_n \end{bmatrix}$$
 and scalar times vector multiplication by:
$$\alpha \begin{bmatrix} \beta_1 \\ \vdots \\ \beta_n \end{bmatrix} = \begin{bmatrix} \alpha\beta_1 \\ \vdots \\ \alpha\beta_n \end{bmatrix}$$

$$(R^n, R)$$
 (C^n, C) , etc.

—

Subspace Remark on notation: For sets A and B (A is a subset A C B means YaEA, a E B of B) A = B means A CB and B CA. In ROB 501 we have no nation like)

A C B A F B Defn. Let (X, F) be vector space and y CX. Y is subspace of X (or of (X, F)) if (4,7) is a vector space when using the vector addition and scalar multiplication

aperations from (X,7). Renark: In principle, most check y satisfies all 10 axiams to verify it is a subspace. Questions to think about: · Is (X, F) a subspace of (X, F)? Yes. XCX and (X,T) is vector space. · Let 0 be the zero vector of (X, F), $y = \{0\}$. Is (y, f) a subspace and consider of (X, T)? y c x is (y, F) a vector space Yes (Y, F) is a vector space

and a subspace of (X,T).

Let $\mathcal{Y} \subset X$ and let $\mathbf{0} \notin \mathcal{Y}$. Can

Y be subspace of (X,T)? No, because

Y cannot be a vector space without an additive inverse $(\exists w \mid aut \text{ an arigin})$.

· Ex of subspaces of (R², R)

Ya line passing through
the origin?

(Y,R) is a subspace

Proposition: The following are equivalent (TFAE) for a vector space (X, F) and year.

a) y is a subspace of X by 10 axlorus.
b) $\forall v', v^2 \in \mathcal{Y}$, $v' + v^2 \in \mathcal{Y}$ and $\forall \alpha \in \mathcal{F}, \forall v \in \mathcal{Y} \text{ av} \in \mathcal{Y} \Rightarrow \text{closed scaler}$ $\forall \alpha \in \mathcal{F}, \forall v \in \mathcal{Y} \text{ av} \in \mathcal{Y} \Rightarrow \text{closed scaler}$ multiplicationc) $\forall \alpha \in \mathcal{F} \text{ and } \forall v', v^2 \in \mathcal{Y}, \alpha v' + v^2 \in \mathcal{Y}$

=> d) \tangles of subspaces:

1)
$$(X, \mathcal{F}) = (\mathbb{R}^2, \mathbb{R})$$

 $y = \frac{2}{2\beta} \left[\frac{\beta}{2\beta} \right] \left[$

: By b) y is a vector space.

2)
$$f = R$$
, $X = \{f: R \rightarrow R\}$ We showed
 $f = R$, $f = \{f: R \rightarrow R\}$ We showed
 $f = \{f: R \rightarrow R\}$ We showed

y:= P(t):= { polynomials in t with real coefficients}

if
$$p \in P(t)$$
, $p(t) = \alpha_0 + \alpha_1 t + ... + \alpha_n t^k$
 $\alpha_i \in \mathbb{R}$ $k \in \mathbb{N}$

y is a subspace because $4p_{1,1}p_{2} \in \mathbb{P}(4)$ $p_{1}+p_{2} \in \mathbb{P}(4)$ The perfect of the performance o

 $\overline{y} \subset X$ $\overline{y} := \{f: R \rightarrow R \mid f \text{ is differentiable}\}$ and $\frac{df}{dt} \equiv 0\}$ Granstant zero function.

j is subspace.

Non-example: $(x, \tau) = (R^2, R)$ $y = \frac{2}{2} \begin{bmatrix} \beta \\ 2\beta \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} \beta \in R \\ 0 \end{bmatrix}$ Subspace

Subspace

[0]

Linear combinations and linear independence. Let (X, F) be a vector space.

Defn: A linear combination is any finite sum of the form: $x_1v_1 + x_2v_2 + \dots + x_nv_n$ where n > 1 (and finite), $x_i \in \mathcal{F}$, $v_i \in \mathcal{X}$, $1 \leq i \leq n$.

Note: $\underset{i=1}{\overset{\circ}{\boxtimes}} x_i v^i$ is not a linear combination.

**lim $\underset{n \to \infty}{\overset{\circ}{\boxtimes}} x_i v^i$ (and to define limits, we need more structure than the lo axioms of vector space. We need real analysis (later in the semester!).

Mind set: Consider (\mathbb{R}^n , \mathbb{R}). Let

A be an nxm real metrix and x $\in \mathbb{R}^m$.

Then $A \times is$ a linear combination

of column's of A: $A = [A_1 | A_2 | ... | A_m] \times [X_m]$ $A = [A_1 | A_2 | ... | A_m] \times [X_m]$ $A \times [X_m] \times [X_m]$ Scalars

Linear independence

Def: A finite set of vectors &v',...,v=3 CX is linearly dependent if $\exists x_1, ..., x_k \in \mathcal{F}$ not Otherwise, 2v1,..., v2 is linearly independent. (=) only sol'n of (*) is the trivial one $\alpha_1 = \alpha_2 = \dots = \alpha_k = 0.$

Ex:
$$(X,Y) = (R^2, R)$$

 $V' = \begin{bmatrix} 1 \end{bmatrix}$ $V^2 = \begin{bmatrix} 4 \\ 9 \end{bmatrix}$ linearly independent?
Let α , $\begin{bmatrix} 1 \\ 1 \end{bmatrix} + \alpha_2 \begin{bmatrix} 4 \\ 9 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ (*)
 $\alpha_1 = 0 = \alpha_2$ is
$$\alpha_1 + 4\alpha_2 = 0$$

$$\alpha_1 = 0 = \alpha_2$$
 is
$$\alpha_1 = 0$$
the only solin
to (*).

=) V' and V^2 are
linearly independent.

Exercise:
$$Ex = (1 + 1 + 1) = (1 + 1) = (1 + 1)$$

$$A_1 = \begin{bmatrix} 1 & 0 & 4 \\ 3 & -1 & 2 \end{bmatrix}$$

$$A_2 = \begin{bmatrix} 4 & 1 & 0 \\ 6 & 0 & 6 \end{bmatrix}$$

linearly independent?

OFFICE HOURS $X = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \in \mathbb{R}^n$ equation (*)

in terms of $X \neq M \neq N$ $X \neq M$ $X \neq M$ X

<u>Proof:</u> Correct Proof by Induction: Let $k \geq 0$, and define the property $\mathcal{P}(k)$ by

 $\mathcal{P}(k)$: The set $\{1, t, \dots, t^k\}$ is linearly independent

Base Case: $\mathcal{P}(0)$ is true; that is, the set $\{1\}$ is linearly independent. (You can work this out at home).

Induction Step: For $k \geq 0$, we assume that $\mathcal{P}(k)$ is true and we must show that $\mathcal{P}(k+1)$ is true, that is,

$$\{1, t, \dots, t^{k+1}\}$$
 is linearly independent

Assume $p_{k+1}(t) := \alpha_0 + \alpha_1 t + \cdots + \alpha_{k+1} t^{k+1} = 0$, the zero polynomial, and hence, is zero for all t. Then,

$$0 = \frac{d^{k+1}p_{k+1}}{dt^{k+1}}|_{t=0} = (k+1)! \ a_{k+1}$$

and hence $a_{k+1} = 0$. It follows that

and hence
$$a_{k+1}=0$$
. It follows that
$$p_{k+1}(t):=\alpha_0+\alpha_1t+\cdots+\alpha_kt^k=0.$$
 By the induction step, this implies that
$$a_0=0, a_1=0,\ldots,a_k=0,$$
 If follows that
$$a_0=0, a_1=0,\ldots,a_k=0,$$

$$a_0 = 0, a_1 = 0, \dots, a_k = 0,$$

and thus we are done.