Enhancing Predicate Pairing with Abstraction for Relational Verification

E. De Angelis¹, F. Fioravanti¹, A. Pettorossi², and M. Proietti³

University of Chieti-Pescara `G. d'Annunzio'
 University of Rome `Tor Vergata'
 CNR - Istituto di Analisi dei Sistemi ed Informatica

Relational verification

(1)

two different program executions

Program Monotonicity

```
If P terminates on the input i₁ producing o₁ &
   P terminates on the input i₂ producing o₂ &
   i₁ is less than i₂
then
   o₁ is less than o₂
```

Relational verification

(2)

two different programs

Relational property

Program Equivalence

```
If P<sub>1</sub> terminates on the input i<sub>1</sub> producing o<sub>1</sub> &
    P<sub>2</sub> terminates on the input i<sub>2</sub> producing o<sub>2</sub> &
    i<sub>1</sub> equals to i<sub>2</sub>
then
    o<sub>1</sub> equals to o<sub>2</sub>
```

Relational verification

Constrained Horn Clauses (CHCs)

P1

```
int a, b, x, y;

while (a < b) {
    x = x+a;
    y = y+x;
    a = a+1;
}</pre>
```

P1

```
int a, b, x, y;

A1, B1, X1, and Y1

A1', B1', X1', and Y1'

while (a < b) {
    x = x+a;
    y = y+x;
    a = a+1;
}</pre>
```

input values

output values

P1

int a, b, x, y;	A1, B1, X1, and Y1	input values
	A1', B1', X1', and Y1'	output values
<pre>while (a < b) { x = x+a; y = y+x; a = a+1; }</pre>	P1whl (A1,B1,X1,Y1, A1',B1',X1',Y1')	input/output relation

P1

int a, b, x, y;	A1, B1, X1, and Y1	input values
	A1', B1', X1', and Y1'	output values
<pre>while (a < b) { x = x+a; y = y+x; a = a+1; }</pre>	P1whl(A1,B1,X1,Y1, A1',B1',X1',Y1') ← A1≤B1-1, X1"=A1+X1, Y1"=Y1+X1, A1"=A1+1, P1whl(A1",B1,X1",Y1", A1',B1',X1',Y1') P1whl(A1,B1,X1,Y1, A1,B1,X1,Y1) ← A1≥B1	input/output relation

```
P1

while (a < b) {
    x = x+a;
    y = y+x;
    a = a+1;
}

y = y+x;
    a = a+1;
}

y = y+x;
    a = a+1;
    x = x+a;
}

y = y+x;
    a = a+1;
    x = x+a;
}

y = y+x;
    a = a+1;
}</pre>
```

```
P1whl(A1,B1,X1,Y1,A1',B1',X1',Y1') ←
A1≤B1-1, X1"=A1+X1, Y1"=Y1+X1, A1"=A1+1,
P1whl(A1",B1,X1",Y1",A1',B1',X1',Y1')
P1whl(A1,B1,X1,Y1,A1,B1,X1,Y1) ← A1≥B1
```

P1 P2 if (a < b) { while (a < b) { x = x+a;x = x+a;while (a < b-1) { y = y + x; a = a+1;y = y + x; a = a+1: x = x+a: y = y + x; a = a+1; **P2ite**(A2,B2,X2,Y2,A2',B2',X2',Y2') ← A2≤B2-1, X2"=X2+A, **P2whl**(A2,B2,X2",Y2,A2',B2',X2',Y2') **P1whl**(A1,B1,X1,Y1,A1',B1',X1',Y1') ← **P2ite**(A2,B2,X2,Y2,A2,B2,X2,Y2) ← A2≥B2 A1≤B1-1, X1"=A1+X1, Y1"=Y1+X1, A1"=A1+1, **P2whl**(A2,B2,X2,Y2,A2',B2',X2',Y2') ← **P1whl**(A1",B1,X1",Y1",A1',B1',X1',Y1') A2≤B2-2, Y2"=Y2+X2, A2"=A2+1, X2"=X2+A2, **P1whl**(A1,B1,X1,Y1,A1,B1,X1,Y1) ← A1≥B1 **P2whl**(A2",B2,X2",Y2",A2',B2',X2',Y2') **P2whl**(A2,B2,X2,Y2,A2',B2,X2,Y2') ← A2≥B2-1, Y2'=Y2+X2, A2'=A2+1

Example equivalence

P1

P1whl(A1,B1,X1,Y1,A1',B1',X1',Y1') ←
A1≤B1-1, X1"=A1+X1, Y1"=Y1+X1,...,
P1whl(A1",B1,X1",Y1",A1',B1',X1',Y1')
P1whl(A1,B1,X1,Y1,A1,B1,X1,Y1) ←
A1≥B1

P2

P2ite(A2,B2,X2,Y2,A2',B2',X2',Y2') ←
A2≤B2-1, X2''=X2+A,
P2whl(A2,B2,X2'',Y2,A2',B2',X2',Y2')
P2ite(A2,B2,X2,Y2,A2,B2,X2,Y2) ←
A2≥B2
P2whl(A2,B2,X2,Y2,A2',B2',X2',Y2') ←
A2≤B2-2,Y2''=Y2+X2,A2''=A2+1,...,
P2whl(A2'',B2,X2'',Y2'',A2',B2',X2',Y2')
P2whl(A2,B2,X2,Y2,A2',B2,X2,Y2') ←
A2≥B2-1, Y2'=Y2+X2, A2'=A2+1

A1=A2, B1=B2, X1=X2, Y1=Y2,

P1whl(A1,B1,X1,Y1,A1',B1',X1',Y1'), P2ite(A2,B2,X2,Y2,A2',B2',X2',Y2') →

X1'=X2'

Example equivalence

```
A1=A2, B1=B2, X1=X2, Y1=Y2,
P1whl(A1,B1,X1,Y1, A1',B1',X1',Y1'), P2ite(A2,B2,X2,Y2, A2',B2',X2',Y2') →
 X1'=X2'
false ← A1=A2, B1=B2, X1=X2, Y1=Y2, X1' ≠ X2',
 P1whl(A1,B1,X1,Y1, A1',B1',X1',Y1'), P2ite(A2,B2,X2,Y2, A2',B2',X2',Y2')
```

Satisfiability of CHCs

State-of-the-art solvers for CHCs with Linear Integer Arithmetic (LIA) look for models of single atoms:

to prove that **P1whl** and **P2ite** are equivalent solvers should discover **quadratic relations**.

$$X_1' = X_1 + \frac{(B_1 - A_1) \cdot (B_1 + A_1 - 1)}{2}$$

Satisfiability of CHCs

State-of-the-art solvers for CHCs with Linear Integer Arithmetic (LIA) look for models of single atoms:

to prove that **P1whl** and **P2ite** are equivalent solvers should discover **quadratic relations**.

"solution"

buy a smarter solver, that is, a solver for non-linear integer arithmetic drawback:

satisfiability of constraints is **undecidable** (decide satisfiability of Diophantine equations)

Our contribution

... if we apply some transformations to CHCs

satisfiability of CHCs.

Rule-based transformation of CHCs

S is satisfiable if & only if **T** is satisfiable

Transformation strategy (1)

```
unfold the atoms P1whl(...) and P2ite(...), that is, replace P1whl(...) and P2ite(...) with their bodies
```


Transformation strategy (2)

Given a clause obtained by unfolding

equivalent to the conjunction P1whl(...), P2whl(...)

Transformation strategy (3)

fold, that is, replace the atoms **P1whl**(...) and **P2ite**(...) with the new predicate **P1whlPwhl**(...)

Solvers will look for models of the conjunction.

Transformation strategy

Assembling new definitions

The transformation strategy is parametric with respect to a **partition operator** that selects the atoms to create new predicate definitions:

one atom → **Specialization**

two atoms → **Predicate Pairing (PP)**

Definitions with three or more atoms can be obtained by **iterating** PP.

Enhancing predicate pairing

Abstraction-based Predicate Pairing (APP)

$$P1whlP2whl(...) \leftarrow a, P1whl(...), P2whl(...)$$

the definition is augmented with a constraint a representing some relations among the arguments of P1whl and P2whl.

The new constraint a is an abstraction of the constraint c, d, e

$$(c, d, e) \rightarrow a$$

occurring in the clause obtained by unfolding:

false
$$\leftarrow$$
 c, d, **P1whl**(...), e, **P2whl**(...)

Enhancing predicate pairing

abstract domains

The **transformation strategy** is parametric with respect to the abstract constraint domain for representing the **relations** among the atoms of the new predicate definitions

Example

APP with Convex Polyhedra

New predicate definitions:

```
P1whlP2ite(A,B,X,Y,A1',B1',X1',Y<sub>1</sub>',A,B,X,Y,A2',B2',X2',Y2') ← X1'≤X2'-1, P1whl(A,B,X,Y,A1',B1',X1',Y1'), P2ite(A,B,X,Y,A2',B2',X2',Y2') 
P1whlP2whl(A,B,X,Y,A1',B1',X1',Y1',A,B,X,Y,A2',B2',X2',Y2') ← X1'≤X2'-1, A≤B-1, X2=X1+A, P1whl(A,B,X1,Y,A1',B1',X1',Y1'), P2whl(A,B,X2,Y,A2',B2',X2',Y2')
```

Final set of CHCs:

```
false ← A1=A2, B1=B2, X1=X2, Y1=Y2, X1'+1<=X2',
    P1whlP2ite(A1,B1,X1,Y1,A1',B1',X1',Y1',A2,B2,X2,Y2,A2',B2',X2',Y2')

P1whlP2ite(A,B,C,D,E,F,G,H,A,B,C,D,I,J,K,L) ←
    G≤K-1, A≤B-1, M=A+C,
    P1whlP2ite(A,B,C,D,E,F,G,H,A,B,M,D,I,J,K,L)

P1whlP2whl(A,B,C,D,E,F,G,H,A,B,K,D,M,N,O,P) ←
    G≤O-1, A≤B-2, K=A+C, R=A+1, T=A+C, S=D+T, X=A+1, W=K+X, Y=D+K,
    P1whlP2whl(R,B,T,S,E,F,G,H,X,B,W,Y,M,N,O,P)</pre>
```

Implementation

Benchmark suite

136	Verification problems
1655	CHCs

Relational properties

Equivalence	$p1(X,X'), p2(Y,Y'), X = Y \rightarrow X' = Y'$
Monotonicity	$p(X,X'), p(Y,Y'), X \leq Y \rightarrow X' \leq Y'$
Injectivity	$p(X,X'), p(Y,Y'), X'=Y' \rightarrow X = Y$
Functionality	$p(X,f(X),X'), p(Y,f(Y),Y'), X = Y \rightarrow X' = Y'$

Results

BDS is the best, followed by OS

expressive enough for proving equivalence, monotonicity, injectivity and functionality.

Specialization does not increase the number of problems solved and does not scale (polyvariant specialization causes a blow-up of the number of clauses)

Conclusions

A method for **combining**

- transformation
- abstraction

techniques, for proving relational properties

Improves **effectiveness** of state-of-the art **CHC solvers**

TODO: a finer control of the definition introduction to keep the size of transformed programs smaller