COL 351: Analysis and Design of Algorithms

Lecture 5

Minimum Spanning Tree

Given: A connected weighted graph G = (V, E, wt) with n vertices.

Find: A spanning tree $T = (V, E_T \subseteq E)$ of graph G such that $\sum_{e \in E_T} wt(e)$ is minimized.

Greedy Algorithm (Incremental)

- 1. Set $H = (V, \emptyset)$.
- 2. Sort the edges in non-decreasing order of weight, so that $wt(e_1) \leq \cdots \leq wt(e_m)$.
- 3. For i = 1 to m:

If endpoints of e_i are in two different components in H, then **add** e_i to H.

How to efficiently check this?

Union-Find Data-structure

Given: A forest $H = (V, E_H)$ in which edges are added one at time.

Goal: Design a data-structure with following two functionalities:

1. Find(x): Pointer to one *representative* vertex in tree.

Helps to efficiently check if two vertices are in same tree.

*Find (x) & Find (x') 'If x, x' are in different trees

2. Union(x, y): Merge trees of nodes x and y.

we perform union (x,y) only if Find (x) + Find (y).

Greedy Approach for Union Find

Approach:

- Represent Trees as link-list.
- Each vertex x stores in Head(x): Pointer to first element of link list.
- A representative vertex y stores:

Size(y) = Size of the link-list

Last(y) = Pointer to last element of list

Greedy Approach for Union Find

Question: How to efficiently perform Union (i.e. Merge) operation?

Suppose Union
$$(x_1, x_2)$$
 is called.

1) Compute $y_1 = head(x_1)$ and $y_2 = head(x_2)$.

2) Suppose Size $(y_1) \ge Dige(y_2)$:

(i) $3 = LAST(y_1)$. Let $NEXT(3) = y_2 \leftarrow O(1)$

(ii) $Y = VELIST(y_2)$, we set $HEAD(9) = y_1 \leftarrow O(|LIST(y_2)|$

(iii) $SIZE(y_1) = SIZE(y_1) + SIZE(y_2) \leftarrow O(1)$

(iv) $LAST(y_1) = LAST(y_2) \leftarrow O(1)$

Remark

= 0 (# of changes)
in HEAD

Greedy Approach for Union Find

Question: Can we bound the number of times Head(v) changes for a vertex v?

Claim:
$$\forall v \in V(G_1)$$
, No of changes in $HEAD(v) = O(log_2 n)$

Proof: Consider a call of "Union' function in which $HEAD(v)$ changes.

Suppose in this call L_2 list is appended at end of list L_1

Then ① $v \in L_2$ and

[i) $|L_1| \ge |L_2|$.

So, if $x = size$ of older list in which v belonged, then the size of new list of v is $\ge 2x$.

Thus, whenever $HEAD(v)$ changes, size of list of v $Doubles$.

This can happen only log (n) times.

Kruskal's MST algorithm

$$\bigcap(\gamma) = 1. \text{ Set } H = (V, \emptyset).$$

Sort the edges in non-decreasing order of weight, so that $wt(e_1) \leqslant \cdots \leqslant wt(e_m)$.

$$v \in V$$
:

$$i=1$$
 to m .

- 4. For i=1 to m: $-\operatorname{Let} x_i, \ y_i \text{ be endpoints of } e_i.$ $-\operatorname{If} \operatorname{Find}(x_i) \neq \operatorname{Find}(y_i) : \operatorname{Add} e_i \text{ to } H, \text{ and perform } \operatorname{Union}(x_i, \ y_i).$ This step in total takes

 ((n logn) time.
 - 5. Return H.

Time complexity = $O(Time\ to\ Sort) + O(m+n\log n)$

This is O(m) for integer neights, and $O(m\log m)$ for general edge weights.

Correctness

Lemma: Let H be a partial solution to MST of G. Let e = (x, y) be edge of **smallest** weight in G connecting two different components in H. Then (H + e) is also partial solution.

Proof:

- Let T be any MST containing H.
- Consider the case where $e \notin T$.
- Let 'C' be unique cycle in T+(x, y).
- Let e' be any edge in $C\setminus (H+e)$. (HW: *Prove that such an edge exists.*)

Define
$$T' := (T \setminus e') + e'$$
.

Claim 1: T' is a spanning tree.

Claim 2:
$$wt(T') = wt(T)$$
. (for peop use Def of e)

The two claims together implies there is an MST containing edges in set (H + e).

Ds (H+E) is acyclic it can't contain C.

Alternate MST algorithm using Min-Priority Queues

- Initialize solution H to an arbitrary vertex, and grow H so that it is always connected.
- Use Min-Priority Queue to find next edge to be added.

Omong all edges here we choose and add that edge to H which has least weight.

Partial sol

Prim's MST algorithm

- 1. Set $H = (\{z\}, \emptyset)$.
- 2. $Q \leftarrow$ a min-priority queue of size (n-1) storing KEY $(v) = \infty$, for each $v \neq z$.
- 3. For $y \in N(z)$: Set $KEY(y) \leftarrow WEIGHT(y, z)$ and $VALUE(y) \leftarrow z$.
- 4. While Q is non-empty:
 - Let x be node with minimum KEY, and let $v_x = VALUE(x)$.
 - Add edge (x, v_x) to H.
 - For $y \in N_G(x)$ satisfying KEY(y) > WEIGHT(x, y): Set KEY(y) \leftarrow wt(x, y) and VALUE(y) \leftarrow x.
 - Remove x from Q.
- 5. Return H.

H.W. Peare that algo takes O (m log m) time.

Homework Exercises

Prove correctness of Prim's algorithm

