# **Logistic Regression**

#### **Quick Overview**

Logistic Regression is a popular classification algorithm and is used to predict binary outcomes.

In contrast to Linear Regression, where it predicts continuous values, Logistic Regression predicts binary values (0's or 1's).



# Why Logistic Regression?

Understanding this algorithm is **important** because it's used everywhere and:

- It's fast
- Easy to interpret
- And allows you to predict probability outcomes!

# Simple Example

Logistic Regression allows you to make:

- Soft Predictions (% Probability)
- Hard Predictions (0's, 1's)

#### **Predicting Credit Default:**

| Name   | Predicted Default Probability |                 |
|--------|-------------------------------|-----------------|
| Bob    | 0.85                          |                 |
| Henry  | 0.76                          |                 |
| Mary   | 0.53                          |                 |
| Paul   | 0.32                          | Threshold: 0.15 |
| Maria  | 0.14                          |                 |
| Sonny  | 0.12                          |                 |
| Ryan   | 0.07                          |                 |
| Howard | 0.04                          |                 |

\*Custom Threshold\*

# **Pre-Requisites**

Before we dive in deep to understand how Logistic Regression works, here are some important concepts you should be familiar with:

- 1. Probability
- 2. Odds
- 3. Logit
- 4. Log Odds
- 5. Log Loss
- 6. Maximum Likelihood Estimation (MLE)

### Linear Regression V.S. Logistic Regression

- Uses Logit Transformation on DV to fit a regression model
- DV has two (binary) outcomes

$$Ln\left(\frac{P}{1-P}\right) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + ... + \beta_k X_k$$





$$y = c + x_1^* w_1 + x_2^* w_2 + x_3^* w_3 + \dots + x_n^* w_n$$



y = logistic (c + 
$$x_1^*w_1 + x_2^*w_2 + x_3^*w_3 + \dots + x_n^*w_n$$
)  
y = 1 / 1 + e [- (c +  $x_1^*w_1 + x_2^*w_2 + x_3^*w_3 + \dots + x_n^*w_n$ )]

### **Understanding the Algorithm**

- Models the **PROBABILITY** of an event (rather than a measure)
- Probabilities range from (0's to 1's)
- Requires a **LOGIT** transformation on DV (hence the name Logistic Regression)
- Still considered a Linear Model because of Input Parameters



## Log Odds

$$Ln\left(\frac{P}{1-P}\right) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + ... + \beta_k X_k$$

Logistic Regression models the **Log Odds** of an event

Odds: p / 1-p, where p is the probability of positive class

#### **Logit Regression Equation:**

- Log(Odds) = B0 + B1X1 + B2X2 + ... + BkXk
- Similar to Linear Regression

Why Not: P = B0 + B1X1 + B2X2 + ... + BkXk?

P ranges from 0 to 1, and Log Odds ranges from -inf to inf

$$\ln\left(\frac{P}{1-P}\right) = a + bX$$

$$\frac{P}{1-P} = e^{a+bX}$$

$$P = \frac{e^{a+bX}}{1-P}$$

$$P = \frac{e^{a+bX}}{1 + e^{a+bX}}$$

### **Log Loss Function**

$$J(\theta) = -\frac{1}{m} \left[ \sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log (1 - h_{\theta}(x^{(i)})) \right]$$

**Objective**: Minimize the Log Loss Error

Logistic Regression uses the Log Loss Function (as opposed to OLS) to find optimal parameters

- y(i): the DV (0 or 1)
- h0(xi): predicted probability

When y=0 and probability is **LOW**  $\rightarrow$  then low error

When y=1 and probability is  $HIGH \rightarrow then low error$ 

### **Strengths and Limitations**



- Highly interpretable
- Fast training & predictions
- No model tuning required (except for regularization)
- No need to scale features
- Outputs probability scores
- Good baseline model



#### **Limitations:**

- Assumes a linear relationship
- Performance is not as great compared to other models
- Sensitive to outliers
- Can't automatically learn feature interactions like tree-based methods

#### **Common Use Case**







#### **Practical Considerations**

- Definitely use Logistic Regression as your first baseline model for model comparison
- Make sure the assumptions are met when trying to interpret the coefficients

\_