

Model Optimization and Tuning Phase Report

Date	15 July 2024
Team ID	740116
Project Title	Sepsis Survival Minimal Clinical Records
Maximum Marks	10 Marks

Model Optimization and Tuning Phase

The Model Optimization and Tuning Phase involves refining machine learning models for peak performance. It includes optimized model code, fine-tuning hyperparameters, comparing performance metrics, and justifying the final model selection for enhanced predictive accuracy and efficiency.

Hyperparameter Tuning Documentation (6 Marks):

Model	Tuned Hyperparameters	Optimal Values		
Decision Tree	<pre># Define the Decision Tree classifier dt_classifier = DecisionTreeClassifier() # Define the hyperparameters and their possible values for tuning param_grid = { 'criterion': ['gini', 'entropy'], 'splitter': ['best', 'random'], 'max_depth': ['boset', 'random'], 'min_samples_split': [2, 5, 10], 'min_samples_leaf': [1, 2, 4] }</pre>	dt train accuracy: 0.9266028881802391 dt test accuracy: 0.9261085233803158 dt train precision: 0.8585929123839606 dt test precision: 0.8576769970776689 dt train recall: 0.9266028881802391 dt test recall: 0.9261085233803158 dt train f1score: 0.8913024242322601 dt test f1score: 0.8905801377924935		

Performance Metrics Comparison Report (2 Marks):

Model	Optimized Metric							
Decision Tree	print(classifi 0 1 accuracy macro avg weighted avg print(confusio [[0 2408] [0 29085]	0.00 0.92 0.46 0.85	0.00 1.00 0.50 0.92	f1-score 0.00 0.96 0.92 0.48 0.89		etric		

	print(classi	fication_repo	ort(y_test	,y_test_pre	ed))		
		precision	recall	f1-score	support		
Random Forest	9 1	0.00 0.92	0.00 1.00	0.00 0.96	2408 29085		
	accuracy macro avg weighted avg		0.50 0.92	0.92 0.48 0.89	31493 31493 31493		
	<pre>print(confusion_matrix(y_test, y_test_pred))</pre>						
	[[0 2408 [0 29085						
	<pre>print(classi</pre>	fication_rep	ort(y_tes	t,y_test_p	red))		
		precision	recall	f1-score	support		
IZNINI	0 1	0.12 0.96	0.72 0.54				
KNN	accuracy macro avg weighted avg	0.54	0.63 0.56		31493		
	print(confus	ion_matrix(y	_test, y_	test_pred))		
	[[1724 684 [13243 15842						
	<pre>print(classif</pre>	ication_repo	rt(y_test,	y_pred1))			
		precision	recall f	1-score	support		
	0 1	0.11 0.96	0.73 0.53	0.20 0.69	2408 29085		
SMOTE	accuracy macro avg weighted avg	0.54 0.89	0.63 0.55	0.55 0.44 0.65	31493 31493 31493		
	print(confusi [[1748 660 [13534 15551]	test, y_te	st_pred))			

Final Model Selection Justification (2 Marks):

Final Model	Reasoning					
	The decision to select the Random Forest model after applying SMOTE was driven by the need to address class imbalance, leverage					
Random Forest	the robustness and performance of an ensemble method, gain insights into feature importance, and ensure reliable and correct predictions. This combination aims to enhance the overall predictive capability of the sepsis survival prediction system, contributing to better clinical outcomes.					