Aufgabe3.1

Die Schaltung soll einen Zähler darstellen der in 3er Schritten vorwärts oder rückwärts Zählt. Das Umstellen der Zählrichtung erfolgt durch den Schalter x_0 .

$$\mathbf{A} {=} \{X, Y, Z, \delta, \mu\}$$
, mit

$$X: B \Rightarrow \{x_0\}$$

Y:
$$B^4 \Rightarrow \{y_3, y_2, y_1, y_0\}$$

Y:
$$B^4 \Rightarrow \{y_3, y_2, y_1, y_0\}$$

Z: $B^6 \Rightarrow \{Z_5, Z_4, Z_3, Z_2, Z_1, Z_0\}$, mit

$$ON(Z_0) = \{0000\}$$

$$ON(Z_1) = \{0011\}$$

$$ON(Z_2) = \{0110\}$$

$$ON(Z_3) = \{1001\}$$

$$ON(Z_1) = \{1100\}$$

$$ON(Z_5) = \{1111\}$$

$$ON(Z_4) = \{1100\}$$

$$ON(Z_5) = \{1111\}$$

$$\delta : B^3 \Rightarrow \{z_2^+, z_1^+, z_0^+\}$$

Für die Zustandsübergangsfunktion gilt

$$z_2^+ = (x_0 \wedge \neg z_2 \wedge z_1 \wedge \neg z_0) \vee (\neg x_0 \wedge z_1 \wedge z_0) \vee (x_0 \wedge z_2 \wedge 2_0)$$

$$z_1^+ = (\neg x_0 \wedge \neg z_2 \wedge \neg z_1 \wedge z_0) \vee (\neg x_0 \wedge z_1 \wedge \neg z_0) \vee (x_0 \wedge \neg z_2 \wedge \neg z_1)$$

$$z_0^+ = \neg z_0$$

$$z_0^+ = \neg z_0$$

$$\hat{\mu} : B^4 \Rightarrow \{y_3, y_2, y_1, y_0\} , \text{mit}$$

$$y_3 = z_2 \lor (z_1 \land z_0)$$

$$y_2 = z_2 \vee z_1 \wedge z_0$$

$$y_1 = \neg z_1 \wedge \neg z_0 \vee z_1 \wedge \neg z_0$$

$$y_0 = z_0$$

Dazu die Wertetabelle												
x_0	\mathbf{Z}	z_2	z_1	$ z_0 $	y_3	y_2	y_1	y_0	Z^+	z_{2}^{+}	$ z_1^+ $	z_{0}^{+}
0	Z_0	0	0	0	0	0	0	0	Z_1	0	0	1
0	Z_1	0	0	1	0	0	1	1	Z_2	0	1	0
0	Z_2	0	1	0	0	1	1	0	Z_3	0	1	1
0	Z_3	0	1	1	1	0	0	1	Z_4	1	0	0
0	Z_4	1	0	0	1	1	0	0	Z_5	1	0	1
0	Z_5	1	0	1	1	1	1	1	Z_0	0	0	0
0	_	1	1	0	*	*	*	*	_	*	*	*
0	_	1	1	1	*	*	*	*	_	*	*	*
1	Z_0	0	0	0	0	0	0	0	Z_5	1	0	1
1	Z_1	0	0	1	0	0	1	1	Z_0	0	0	0
1	Z_2	0	1	0	0	1	1	0	Z_1	0	0	1
1	Z_3	0	1	1	1	0	0	1	Z_2	0	1	0
1	Z_4	1	0	0	1	1	0	0	Z_3	0	1	1
1	Z_5	1	0	1	1	1	1	1	Z_4	1	0	0
1	_	1	1	0	*	*	*	*	_	*	*	*
1	_	1	1	1	*	*	*	*	_	*	*	*

Daraus ergeben sich folgende KV-Diagramme für z_2^+, z_1^+ und z_0^+ . z_2^+

Folglich bilden folgende KV-Diagramme die Minimierung der Ausgangsfunktion. \cdots

 y_2 z_0 z_0 z_1 z_1 z_1 z_2 z_0 z_1 z_2 z_0 z_1 z_2 z_3 z_4 z_5 z_6 z_7 z_8 z_8

Aufgabe 3.2

In dieser Aufgabe soll eine Ampel implementiert werden die Automatisch läuft. Heißt nach einer gewissen Zeit gibt es Automatisch grün die Fußgänger ohne das ein Knopf gedrückt werden muss. Es ist also ein Autonomer-Automat. Folglich beschreibt folgender Automat die Funktion der Ampel.

