Geometria e Algebra - MIS-Z

Sesto appello - Febbraio

07/02/2023

Nome e Cognome:		
Corso di laurea:		
Matricola:		

Informazioni

Questo appello contiene 5 esercizi per un totale di 34 punti. Il punteggio ottenuto x sarà convertito in 30esimi nella maniera seguente:

- se $x \leq 30$, allora x sarà il voto in 30esimi;
- se $30 < x \le 34$, allora il voto sarà 30 e Lode.

Le risposte devono essere opportunamente giustificate per ottenere il punteggio massimo. Le risposte indecifrabili non verranno valutate.

Il tempo a disposizione è di 3 ore. È vietato l'utilizzo di ogni tipo di calcolatrice.

Esercizio	Punteggio
1	
2	
3	
4	
5	

TOTALE

ESERCIZIO 1 [6 punti]. Vero o Falso?

Per ciascun asserto si stabilisca se è vero o falso, motivando in modo conciso ed esauriente la risposta.

(a) La funzione

$$f: \quad \mathbb{R}^3 \quad \to \quad \mathbb{R}^3$$
$$(x, y, z) \quad \to \quad (x + 1, y, z - 2)$$

è un'applicazione lineare.

- \square VERO
- \Box FALSO

- (b) Il vettore $(1,0,0) \in \mathbb{R}^3$ appartiene a $Span\{(1,2,-1),(3,-1,-1)\}.$
 - \square VERO
 - \Box FALSO

(c) Nel piano euclideo \mathbb{E}^2 le rette

$$r: 3X + Y - 2 = 0$$
 e $s: X - 3Y = 0$

sono ortogonali.

- \square VERO
- \square FALSO

- (d) Sia $f:\mathbb{R}^n\to\mathbb{R}^m$ un'applicazione lineare. Se f è suriettiva, allora $m\leq n.$
 - \square VERO
 - \square FALSO

ESERCIZIO 2 [6 punti]. Sistema con parametro.

Al variare di $k \in \mathbb{R}$ si discuta la compatibilità del sistema

$$\begin{cases} X_2 + kX_4 = 0 \\ -X_1 + kX_3 = -1 \\ X_2 - X_4 = 4 \\ -X_1 + 2X_2 + kX_3 = 3 \end{cases}$$

e, quando il sistema è compatibile, se ne determinino il "numero" delle soluzioni e l'insieme delle soluzioni. Si riassuma quanto trovato nella tabella seguente:

k	Compatibile?	Numero di soluzioni	Insieme delle soluzioni

ESERCIZIO 3 [8 punti]. Un endomorfismo di \mathbb{R}^3 .

(a) Si enunci il teorema spettrale.

(b) Al variare di $k \in \mathbb{R}$ si consideri l'endomorfismo

$$f_k: \mathbb{R}^3 \to \mathbb{R}^3$$

 $(x, y, z) \mapsto (2x - y + kz, -kx + y, x + kz).$

(b1) Si determinino i valori di k per cui $\mathrm{Im}(f_k)=\mathbb{R}^3.$

(b2) Per k=1 si spieghi perché l'operatore f_1 è diagonalizzabile e si determini una base diagonalizzante per f_1 e ortornomale rispetto al prodotto scalare standard di \mathbb{R}_3 .

(b3) Sia A_1 la matrice associata a f_1 rispetto alla base canonica di \mathbb{R}^3 . Si determini una matrice $P\in\mathcal{M}_3(\mathbb{R})$ tale che

$$^{T}PA_{1}P = D$$

dove $D \in \mathcal{M}_3(\mathbb{R})$ è una matrice diagonale, e si verifichi la risposta calcolando il prodotto di matrici.

ESERCIZIO 4 [8 punti]. Geometria nello spazio.

Si consideri lo spazio \mathbb{E}^3 con il riferimento cartesiano standard.

(a) Si mostri che i punti A(1,3,-1), B(-1,1,-3) e C(0,2,-2) di \mathbb{E}^3 sono allineati e si determini la retta r che li contiene.

(b) Al variare di h in $\mathbb R$ si consideri la retta s_h descritta dalle equazioni cartesiane

$$s_h: \left\{ \begin{array}{l} Y+Z=-h \\ -X+hY=3 \end{array} \right.$$

e si determini la posizione reciproca di r e s_h . Inoltre, quando r e s_h sono incidenti, se ne determini il punto di intersezione.

(c) Per uno dei valori di h per cui r e s_h sono complanari, si determini il piano π che le contiene entrambe.

ESERCIZIO 5 [6 punti]. Matrici e sottospazi vett	toriali.
--	----------

(a) Enunciare il teorema di Binet.

(b) Utilizzando il fatto che una matrice $A \in \mathcal{M}_n(\mathbb{R})$ è invertibile se e solo se $\det(A) \neq 0$, dimostrare l'asserto seguente:

Siano $A, B \in \mathcal{M}_n(\mathbb{R})$. Allora A e B sono invertibili se e solo se AB è invertibile.

(c) Si determini se l'insieme delle matrici <u>invertibili</u> di taglia 2×2 è un sottospazio vettoriale di $\mathcal{M}_2(\mathbb{R})$.

(d) Si richiama che la traccia di una matrice quadrata è la somma degli elementi sulla diagonale principale. In altre parole per $A=(a_{ij})_{1\leq i,j\leq n}$ la traccia di A è data da

$$\operatorname{tr}(A) = \sum_{i=1}^{n} a_{ii}.$$

Si mostri che l'insieme delle matrici 2×2 di traccia nulla è un sottospazio vettoriale di $\mathcal{M}_2(\mathbb{R})$. Se ne determini una base e la dimensione.