MATH 4931 - MSSC 5931 Homework 4

- 1. Some basic properties of eigenvalues. Show the following:
 - a) The eigenvalues of A and A^{T} are the same.
 - b) A is invertible if and only if A does not have a zero eigenvalue.
 - c) If the eigenvalues of A are $\lambda_1, \ldots, \lambda_n$ and A is invertible, then the eigenvalues of A^{-1} are $1/\lambda_1, \ldots, 1/\lambda_n$.
 - d) The eigenvalues of A and $T^{-1}AT$ are the same.

Hint: you'll need to use the facts that $\det A = \det(A^{\mathsf{T}})$, $\det(AB) = \det A \det B$, and, if A is invertible, $\det A^{-1} = 1/\det A$.

2. Detecting linear relations. Suppose we have N measurements y_1, \ldots, y_N of a vector signal $x_1, \ldots, x_N \in \mathbb{R}^n$:

$$y_i = x_i + d_i, i = 1, \dots, N.$$

Here d_i is some small measurement or sensor noise. We hypothesize that there is a linear relation among the components of the vector signal x, i.e., there is a nonzero vector q such that $q^{\mathsf{T}}x_i=0$, $i=1,\ldots,N$. The geometric interpretation is that all of the vectors x_i lie in the hyperplane $q^{\mathsf{T}}x=0$. We will assume that $\|q\|=1$, which does not affect the linear relation. Even if the x_i 's do lie in a hyperplane $q^{\mathsf{T}}x=0$, our measurements y_i will not; we will have $q^{\mathsf{T}}y_i=q^{\mathsf{T}}d_i$. These numbers are small, assuming the measurement noise is small. So the problem of determing whether or not there is a linear relation among the components of the vectors x_i comes down to finding out whether or not there is a unit-norm vector q such that $q^{\mathsf{T}}y_i$, $i=1,\ldots,N$, are all small. We can view this problem geometrically as well. Assuming that the x_i 's all lie in the hyperplane $q^{\mathsf{T}}x=0$, and the d_i 's are small, the y_i 's will all lie close to the hyperplane. Thus a scatter plot of the y_i 's will reveal a sort of flat cloud, concentrated near the hyperplane $q^{\mathsf{T}}x=0$. Indeed, for any z and $\|q\|=1$, $|q^{\mathsf{T}}z|$ is the distance from the vector z to the hyperplane $q^{\mathsf{T}}x=0$. So we seek a vector q, $\|q\|=1$, such that all the measurements y_1,\ldots,y_N lie close to the hyperplane $q^{\mathsf{T}}x=0$ (that is, $q^{\mathsf{T}}y_i$ are all small). How can we determine if there is such a vector, and what is its value? We define the following normalized measure:

$$\rho = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (q^{\mathsf{T}} y_i)^2} / \sqrt{\frac{1}{N} \sum_{i=1}^{N} ||y_i||^2}.$$

This measure is simply the ratio between the root mean square distance of the vectors to the hyperplane $q^{\mathsf{T}}x = 0$ and the root mean square length of the vectors. If ρ is small, it means that the measurements lie close to the hyperplane $q^{\mathsf{T}}x = 0$. Obviously, ρ depends on q. Here is the problem: explain how to find the minimum value of ρ over all unit-norm vectors q, and the unit-norm vector q that achieves this minimum, given the data set y_1, \ldots, y_N .

- 3. Properties of symmetric matrices. In this problem P and Q are symmetric matrices. For each statement below, either give a proof or a specific counterexample.
 - a) If $P \ge 0$ then $P + Q \ge Q$.
 - b) If $P \ge Q$ then $-P \le -Q$.
 - c) If P > 0 then $P^{-1} > 0$.
 - d) If $P \ge Q > 0$ then $P^{-1} \le Q^{-1}$.
 - e) If $P \ge Q$ then $P^2 \ge Q^2$.

Hint: you might find it useful for part (d) to prove $Z \ge I$ implies $Z^{-1} \le I$.

- 4. Real modal form. Generate a matrix A in R^{10×10} using A=rnorm(10). (The entries of A will be drawn from a unit normal distribution.) Find the eigenvalues of A. If by chance they are all real, please generate a new instance of A. Find the real modal form of A, i.e., a matrix S such that S⁻¹AS has the real modal form given in Topic 7. Your solution should include a clear explanation of how you will find S, the source code that you use to find S, and some code that checks the results (i.e., computes S⁻¹AS to verify it has the required form).
- **5. Spectral mapping theorem.** Suppose $f: \mathbb{R} \to \mathbb{R}$ is analytic, *i.e.*, given by a power series expansion

$$f(u) = a_0 + a_1 u + a_2 u^2 + \cdots$$

(where $a_i = f^{(i)}(0)/(i!)$). (You can assume that we only consider values of u for which this series converges.) For $A \in \mathbb{R}^{n \times n}$, we define f(A) as

$$f(A) = a_0 I + a_1 A + a_2 A^2 + \cdots$$

(again, we'll just assume that this converges).

Suppose that $Av = \lambda v$, where $v \neq 0$, and $\lambda \in \mathbb{C}$. Show that $f(A)v = f(\lambda)v$ (ignoring the issue of convergence of series). We conclude that if λ is an eigenvalue of A, then $f(\lambda)$ is an eigenvalue of f(A). This is called the *spectral mapping theorem*.

To illustrate this with an example, generate a random 3×3 matrix, for example using A=rnorm(3). Find the eigenvalues of $(I + A)(I - A)^{-1}$ by first computing this matrix, then finding its eigenvalues, and also by using the spectral mapping theorem. (You should get very close agreement; any difference is due to numerical round-off errors in the various computations.)

- **6. Square matrices and the SVD..** Let A be an $n \times n$ real matrix. State whether each of the following statements is true or false. Do not give any explanation or show any work.
 - a) If x is an eigenvector of A, then x is either a left or right singular vector of A
 - b) If λ is an eigenvalue of A, then $|\lambda|$ is a singular value
 - c) If A is symmetric, then every singular value of A is also an eigenvalue of A
 - d) If A is symmetric, then every singular vector of A is also an eigenvector of A
 - e) If A is symmetric with the following singular value decomposition

$$A = U\Sigma V^T$$

then U = V

f) If A is invertible, then

$$\sigma_i \neq 0$$
 for all $i = 1, \dots, n$