Outline

- Offline Evaluation of Online Metrics
- Counterfactual Estimation
- Advanced Estimators
 - 1. Self-Normalized Estimator
 - 2. Doubly Robust Estimator
 - 3. Slates Estimator
- Case Studies & Demo
- Summary

IPS: Issues

$$\widehat{U}_{\rm ips}(\pi) = \frac{1}{n} \sum_{i} \frac{\pi(y_i|x_i)}{\pi_0(y_i|x_i)} \delta_i$$

$\widehat{E}[Constant] \neq Constant$

Two variables in IPS

$$> \pi(y|x)/\pi_0(y|x)$$

Suppose $\delta \equiv 1$

Fix: Control Variates

Use correlated quantities to control $\pi(y|x)/\pi_0(y|x)$ variability $E[s_i] = \theta$ known

<u>Multiplicative</u>

Additive

$$\frac{\theta}{E[s]} E\left[\frac{\pi(y|x)}{\pi_0(y|x)}\delta\right]$$

$$E\left[\frac{\pi(y|x)}{\pi_0(y|x)}\delta - s\right] + \theta$$

e.g. Self-Normalization

e.g. Doubly Robust Estimator

Self-Normalized Estimator

Use expected sample size as multiplicative control variate

$$\hat{s}(\pi) = \frac{1}{n} \sum_{i} \frac{\pi(y_i | x_i)}{\pi_0(y_i | x_i)}$$
 $E[\hat{s}(\pi)] = 1$

$$\widehat{U}_{\text{SNips}}(\pi) = \frac{\sum_{i} \frac{\pi(y_i|x_i)}{\pi_0(y_i|x_i)} \delta_i}{\sum_{i} \frac{\pi(y_i|x_i)}{\pi_0(y_i|x_i)}}$$

Self-Normalization: Properties

$$\widehat{E}[Constant] = Constant$$

Equivariant

Asymptotically consistent
$$\Pr\left(\lim_{n\to\infty}\widehat{U}_{\mathrm{SNips}}(\pi)=U(\pi)\right)=1$$

Small bias which decays $O(\frac{1}{n})$ while variance decays $O(\frac{1}{\sqrt{n}})$

News Recommender: Results

snIPS often achieves a better bias-variance trade-off

Doubly Robust Estimator

Reward Prediction

$$\widehat{U}_{\rm rp}(\pi) = \frac{1}{n} \sum_{i} E_{y \sim \pi \mid x_i} [\widehat{\delta}(x_i, y)]$$

Low variance, High bias

<u>IPS</u>

$$\widehat{U}_{\text{ips}}(\pi) = \frac{1}{n} \sum_{i} \frac{\pi(y_i|x_i)}{\pi_0(y_i|x_i)} \delta_i$$

High variance, No bias

$$\widehat{U}_{\mathrm{dr}}(\pi) = \frac{1}{n} \sum_{i} \frac{\pi(y_i|x_i)}{\pi_0(y_i|x_i)} \left(\delta_i - \widehat{\delta}(x_i, y_i)\right) + E_{y \sim \pi|x_i} [\widehat{\delta}(x_i, y)]$$

Doubly Robust: Properties

Useful when using estimated propensities

$$\hat{p}_i \approx \pi_0(y_i|x_i)$$

Unbiased if, either
$$\hat{\delta}(x, y) = \delta(x, y)$$

Or,

$$\hat{p}_i = \pi_0(y_i|x_i)$$

Default in Vowpal Wabbit

http://hunch.net/~vw/

News Recommender: Results

DR dominates IPS even with a noisy $\hat{\delta}(x, y)$

Evaluating rankings (slates)

i

 $\pi(x_i)$

Exact match of composite actions in logs unlikely Idea: Count per-slot matches

Slates Estimator

If π_0 samples l documents from a multinomial $\mu(d|x)$, with replacement

$$\widehat{U}_{\text{slates}}(\pi) = \frac{1}{n} \sum_{i} \left(1 - l + \sum_{j=1}^{l} \frac{\mathbb{I}\{y_i[j] = \pi(x_i)[j]\}}{\mu(y_i[j]|x_i)} \right) \delta_i$$

For general π_0 , need to record $\pi_0(y[j] = d, y[k] = d'|x)$

Slates Estimator: General π_0

Define:

$$\Gamma_{\pi_0(x)}[d,j;d',k] = \pi_0(y[j] = d,y[k] = d'|x)$$

$$\mathbb{1}_y[d,j] = \mathbb{I}\{y[j] = d\}$$

$$\widehat{U}_{\text{slates}}(\pi) = \frac{1}{n} \sum_{i} E_{y \sim \pi \mid x_i} [\mathbb{1}_y^T] \Gamma_{\pi_0(x_i)}^{\dagger} \mathbb{1}_{y_i} \delta_i$$

Can also develop self-normalized/doubly robust variants

Slates Estimator: Properties

- Typically, exponentially better sample complexity than IPS
- Unbiased if reward decomposes per-slot

$$\exists \Phi_{\chi} \text{ s.t. } \delta(\chi, y \coloneqq | \chi | \chi) = \Phi_{\chi}(| \chi | \chi) + \Phi_{\chi}(| \chi) + \Phi_{\chi}(| \chi | \chi) + \Phi_{\chi}(| \chi | \chi) + \Phi_{\chi}(| \chi | \chi) + \Phi_{\chi}(| \chi) + \Phi_{\chi}(| \chi | \chi) + \Phi_{\chi}(| \chi | \chi) + \Phi_{\chi}(| \chi | \chi) + \Phi_{\chi}(| \chi) + \Phi_{\chi}(| \chi | \chi) + \Phi_{\chi}(| \chi | \chi) + \Phi_{\chi}(| \chi | \chi) + \Phi_{\chi}(| \chi) + \Phi_{\chi}(| \chi | \chi) + \Phi_{\chi}(| \chi | \chi) + \Phi_{\chi}(| \chi | \chi) + \Phi_{\chi}(| \chi) + \Phi_{\chi}(| \chi | \chi) + \Phi_{\chi}(| \chi | \chi) + \Phi_{\chi}(| \chi | \chi) + \Phi_{\chi}(| \chi) + \Phi_{\chi}(| \chi | \chi) + \Phi_{\chi}(| \chi | \chi) + \Phi_{\chi}(| \chi | \chi) + \Phi_{\chi}(| \chi) + \Phi_{\chi}(| \chi | \chi) + \Phi_{\chi}(| \chi | \chi) + \Phi_{\chi}(| \chi | \chi) + \Phi_{\chi}(| \chi) + \Phi_{\chi}(| \chi | \chi) + \Phi_{\chi}(| \chi | \chi) + \Phi_{\chi}(| \chi | \chi) + \Phi_{\chi}(| \chi) + \Phi_{\chi}(| \chi | \chi) + \Phi_{\chi}(| \chi | \chi) + \Phi_{\chi}(| \chi | \chi) + \Phi_{\chi}(| \chi) + \Phi_{\chi}(| \chi | \chi) + \Phi_{\chi}(| \chi | \chi) + \Phi_{\chi}(| \chi | \chi) + \Phi_{\chi}(| \chi) + \Phi_{\chi}(| \chi | \chi) + \Phi_{\chi}(| \chi | \chi) + \Phi_{\chi}(| \chi | \chi) + \Phi_{\chi}(| \chi) + \Phi_{\chi}(| \chi | \chi) + \Phi_{\chi}(| \chi | \chi) + \Phi_{\chi}(| \chi | \chi) + \Phi_{\chi}(| \chi) + \Phi_{\chi}(| \chi | \chi) + \Phi_{\chi}(| \chi | \chi) + \Phi_{\chi}(| \chi | \chi) + \Phi_{\chi}(| \chi) + \Phi_{\chi}(| \chi | \chi) + \Phi_{\chi}(| \chi | \chi) + \Phi_{\chi}(| \chi | \chi) + \Phi_{\chi}(| \chi) + \Phi_{\chi}(| \chi | \chi) + \Phi_{\chi}(| \chi | \chi) + \Phi_{\chi}(| \chi | \chi) + \Phi_{\chi}(| \chi) + \Phi_{\chi}(| \chi | \chi) + \Phi_{\chi}(| \chi | \chi) + \Phi_{\chi}(| \chi | \chi) + \Phi_{\chi}(| \chi) + \Phi_{\chi}(| \chi | \chi) + \Phi_{\chi}(| \chi | \chi) + \Phi_{\chi}(| \chi | \chi) + \Phi_{\chi}(| \chi) + \Phi_{\chi}(| \chi | \chi) + \Phi_{\chi}(| \chi | \chi) + \Phi_{\chi}(| \chi | \chi) + \Phi_{\chi}(| \chi) + \Phi_{\chi}(|$$

Can capture higher-order interactions with suitable $\Gamma_{\pi_0(x)}$

News Recommender: Results

(sn)Slates better than IPS but can have asymptotic bias

Outline

- Offline Evaluation of Online Metrics
- Counterfactual Estimation
- Advanced Estimators
- Case Studies & Demo
 - 1. Yahoo Front Page
 - 2. Bing Speller
 - 3. Search Ranking
- Summary

[Li,Chu,Langford,Wang; 2011]

[Li,Chen,Kleban,Gupta; 2014]

[Swaminathan et al; 2016]

Yahoo Front Page

 $y \sim \pi(x)$ Pick STORY $\in \{F1, ... F20\}$ to highlight for different users

Metric δ : CTR

Logging π_0 : Uniform random

Setup: Deploy policies, check online ↔ IPS correlation

Yahoo Front Page: Case Study

IPS is quite accurate for several (spatio-temporal) policies

Yahoo Front Page: Case Study

IPS indeed gives unbiased CTR estimates for different articles

Bing Speller

Pick (possibly many) reformulation candidates

Logging π_0 : Independent Bernoulli per rank

$$\Pr(\operatorname{Pick} d_j) = 1/(1 + \alpha \exp[\beta\{\operatorname{score}(d_j) - \operatorname{score}(d_1)\}])$$

Setup: Deploy policies, check online ↔ IPS correlation

Bing Speller: Case Study

IPS reliably estimates CTR, etc. despite non-uniform logging

Search Ranking

Re-rank 5 out of 8 candidates

Time-to-success Metric δ :

Utility rate

Bootstrap from Logging π_0 :

Uniform/Plackett-Luce

contextual bandit Web **Images** Videos Maps News Explore 38,200 RESULTS Any time ▼ Contextual Dueling Bandits - Microsoft Research www.microsoft.com/.../research/publication/contextual-dueling-bandits > We consider the problem of learning to choose actions using **contextual** information when provided with limited feedback in the form of relative pairwise comparisons. **Contextual Bandits** « Machine Learning (Theory) hunch.net/?p=298 ▼ With rich **contextual** information my first instinct is to restructure the presentation strategy to get back into a supervised learning framework.

Report RMSE vs. bootstrap sample size Setup:

Plackett-Luce for Slates

SoftMax/Multinomial without replacement

cont	
contextual bandit	
COTTONIET COOP	0.40
contrave	0.20
continental sirlings	0.20
	0.20
cont inuous delivery	0.06
continental tires	0.06
	0.06
coment management system	0.00
container homes	0.02

cont
contextual bandit
continental airlines
container store
content management system
continuous delivery
continental tires

(renormalize probabilities after each draw)

Search Ranking: Case Study

Slates estimator dominates IPS

Outline

- Offline Evaluation of Online Metrics
- Counterfactual Estimation
- Advanced Estimators
- Case Studies & Demo
- Summary

Evaluation: Key Questions

How can we estimate $U(\pi)$ using logged data from π_0 ?

What system π_0 to deploy?

To enable reliable counterfactual estimation

If possible,

stochastic with logged randomization

If not,

log enough to estimate propensities \hat{p}_i

How to explore?

Uniform?

typically, bad

"Around current system"?

"less risk" & "better targeted"

What should we record?

Log EVERYTHING!

$$\langle x_i, y_i, \delta_i, \mathbf{p_i} \rangle$$

To reliably "replay" π on logged data,

Candidate set of actions

 $\{Y_i\}$

Features for each candidate

 $\{f(x_i,y)\}$

Action at the point of randomization

 y_i

How can we evaluate $U(\pi)$?

- Offline Evaluation of Online Metrics
 - Related:

Test collections for offline metrics

[Carterette et al, 2010] [Aslam et al, 2009] [Schnabel et al, 2016b]...

- "Model the world"
 - Related:

Reward Prediction

Click models; Collaborative filtering

[Chuklin et al, 2015] [Schnabel et al, 2016a]

- "Model the bias in data"
 - Randomization is essential

Off-policy estimator

Summary: Off-policy Estimators

IPS Estimator

Simple, effective fix for non-uniform (biased) data

Self-Normalized Estimator

- Doubly Robust Estimator
- Slates Estimator

Demo: Code Samples

Visit http://www.cs.cornell.edu/~adith/CfactSIGIR2016/

Download Code_Data.zip

(Recommend) Install Anaconda-Python3; joblib

Run experiment:

python EvalExperiment.py

Plot results:
 python plot_sigir.py --mode [estimate/error] --path ../../Logs/ssynth...

QUESTIONS?