

汇编语言程序设计

主讲:东北大学计算机学院 刘松冉

第九章 条件汇编与宏指令

- 一. 条件汇编伪操作
- 二. 宏伪操作

条件汇编伪操作和宏伪操作命令也是伪指令的一部分,具有条件汇编宏伪操作功能的汇编程序称为宏汇编程序。 Microsoft的MASM就是宏 (MACRO)汇编程序,它提供了丰富的条件汇编伪操作和宏伪操作命令。

一. 条件汇编伪操作 —

条件汇编伪操作允许用户在编制汇编语言程序时规定某种条件,汇编程序在 汇编过程中测试条件是否成立,当条件成立时,则将某段汇编语言源程序汇 编为目标程序,否则,不进行汇编。

Microsft宏汇编程序提供了十种条件汇编伪操作命令,IF、IF1、IF2、IFE、IFDEF、IFNDEF、IFB、IFNB、IFIDN、IFDIF。

格式:IFx [cont]

: 若干语句(称为条件块)

[ELSE] (可选的)

: 〖JB)}〗若干语句(称为条件块)

ENDIF

一. 条件汇编伪操作

- |▶ 1) IF CONT 当条件表达式CONT值不是零时,条件为真。
 - 2) IFE CONT 当条件表达式CONT值为零时,条件为真。
 - 3) IF1 如果是第一遍扫描,条件为真。
 - 4) IF2 如果是第二遍扫描,条件为真。
 - 5) IFDEF CONT 此操作中的条件CONT是一个符号,如果这个符号已经定义,或者已用EXTRN伪指令说明,则条件为真。
 - 6) IFNDEF CONT 该伪操作中的条件CONT是一个符号,如果此符号未定义或未经EXTRN伪指令说明,则条件为真。
 - 7) IFB <CONT> 如果尖括号中为空,则条件为真。
 - 8) IFNB <CONT> 如果尖括号中不为空,则条件为真。
 - 9) IFIDN <CHR1>,<CHR2> CHR1和CHR2为字符串,如果两个字符串相同,则条件为真。
 - 10) IFDIF <CHR1>,<CHR2> CHR1和CHR2为字符串,如果两个字符串不相同,则条件为真。

一. 条件汇编伪操作


```
ARG1 EQU 35H
```

ARG2 = NOTARG1

IF (ARG1 OR ARG2) EQ 0FFFFH

MOV AX, ARG1

MOV BX, ARG2

ADD AX, BX

IF (ARG1 AND ARG2) EQ 0FFFFH

SUB AX, CX

IFE ARG1

ADD AX, DX

ENDIF

MOV [SI], AX

ENDIF

MOV [DI], AX

ENDIF

第九章 条件汇编与宏指令

一. 条件汇编伪操作

二. 宏伪操作

- 1) 宏定义与宏结束伪操作命令
- 2) 参数的使用
- 3) 宏中的标号处理
- 4) 宏嵌套
- 5) 宏与子程序的区别

宏伪操作命令可以把多次使用的功能程序定义 为一个名字,汇编程序(汇编器)在对源程序 进行汇编时,就将它所代表的的源程序的机器 代码写在宏名字出现处。

也就是说已经定义的宏名字可以作为指令一样使用,为与机器指令相区别,称之为宏指令。

1). 宏定义的一般格式:

MNAME MACRO [DUMPAR1],[DUMPAR2].....

•

: 宏体

•

ENDM

说明:

- 1) MNAME:宏名字
- 2) MACRO:宏定义伪指令;
- 3) ENDM:宏结束伪指令;
- 4) DUMPAR1..:形式参数,也称为 哑参数,可选项。形式参数在宏 扩展时被实际的参数替代。

2	BLM0V	MACR0	SRC, DST, CNT	;宏定义
3		LEA	SI, SRC	
4		LEA	DI, DST	
5		MOV	CX, CNT	
6		CLD		
7		REP	MOVSB	
8		ENDM		;宏结束

- · 用参数代表自定义符号(地址)和数值(例,BLMOV ADR1, ADR2, CNT1)
- 用参数代表指令
- 用参数代替寄存器名字
- 用参数代表任何一字符串或子字符串

2	BLM0V	MACR0	SRC, DST, CNT	;宏定义
3		LEA	SI, SRC	
4		LEA	DI, DST	
5		MOV	CX, CNT	
6		CLD		
7		REP	MOVSB	
8		ENDM		;宏结束

- 用参数代表自定义符号(地址)和数值
- 用参数代表指令 (例, CLEAR CLD, ADR1, 80)
- 用参数代替寄存器名字
- 用参数代表任何一字符串或子字符串

10	CLEAR	MACR0	DIR, DST, CNT
11		DIR	
12		LEA	DI, DST
13		MOV	CX, CNT
14		XOR	AL, AL
15		REP	ST0SB
16		ENDM	

- 用参数代表自定义符号(地址)和数值
- 用参数代表指令
- 用参数代替寄存器名字 (例, RLS R, AX, 5 或 RLS L, CH, 2)
- 用参数代表任何一字符串或子字符串

18	RLS	MACR0	DIR, REG, CNT
19		MOV	CL, CNT
20		RO&DIR	REG, CL
21		ENDM	

- 用参数代表自定义符号(地址)和数值
- 用参数代表指令
- 用参数代替寄存器名字
- 用参数代表任何一字符串或子字符串
 (例, MADD1 LOOP1, ADR3, ADR1, 8, ADR2)

23	;定义两个	个多精度数	据求和的宏指令
24	MADD1	MACR0	LAB, SRC, DST, LEN, SUN
25		LEA	SI, SRC
26		LEA	DI, DST
27		MOV	DX, LEN
28		LEA	BX, SUN
29		CLC	
30	LAB:	MOV	AL, [SI]
31		ADC	AL, [DI]
32		MOV	[BX], AL
33		INC	SI
34		INC	DI
35		INC	BX
36		L00P	LAB
37		ENDM	

3). 宏中的标号处理

编写汇编语言程序时的一个规则是标号必须是唯一的,即同一个标号不允许在一个程序的标号域中出现两次以上,否侧为重复定义,汇编器会在汇编过程中打印错误信息。解决这个问题的方法有以下两种:

- 把标号定义为参数形式
- 在宏定义中声明标号为局部标号

23	;定义两个	多精度数技	居求和的宏指令
24	MADD1	MACR0	LAB, SRC, DST, LEN, SUN
25		LEA	SI, SRC
26		LEA	DI, DST
27		MOV	DX, LEN
28		LEA	BX, SUN
29		CLC	
30	LAB:	MOV	AL, [SI]
31		ADC	AL, [DI]
32		MOV	[BX], AL
33		INC	SI
34		INC	DI
35		INC	BX
36		L00P	LAB
37		ENDM	

3). 宏中的标号处理

编写汇编语言程序时的一个规则是标号必须是唯一的,即同一个标号不允许在一个程序的标号域中出现两次以上,否侧为重复定义,汇编器会在汇编过程中打印错误信息。解决这个问题的方法有以下两种:

- 把标号定义为参数形式
- 在宏定义中声明标号为局部标号

39	;定义求三	三个寄存器	中最小数的宏指令
40	FMIN	MACR0	REG1, REG2, REG3
41		LOCAL	NEXT1, NEXT2
42		CMP	REG1, REG2
43		JNA	NEXT1
44		MOV	REG1, REG2
45	NEXT1:	CMP	REG1, REG3
46		JNA	NEXT2
47		MOV	REG1, REG3
48	NEXT2:	NOP	
49		ENDM	

4). 宏嵌套

宏嵌套有两种形式:宏定义中嵌套宏定义和宏定义中嵌套宏调用,两种宏嵌套的深度不限:

• 宏定义中嵌套宏定义

当宏定义中嵌套宏定义时,必须首先调 用最外层宏定义,然后才能调用内层宏 定义。下面是一个宏嵌套的例子。

4). 宏嵌套 - 宏定义中嵌套宏定义

BHTOA1	MACRO	
	MOV	AH , AL
AHHN	MACRO	
	LOACAL	AHHN1
	MOV	CL , 4
	SHR	AH, CL
	CMP	AH , 10
	JC	AHHN1
	ADD	AH , 7
AHHN1:	ADD	AH, 30H
	ENDM	
ALLN	MACRO	
	LOCAL	ALLN1
	AND	AL, OFH
	CMP	AL, 10
	JC	ALLN1
	ADD	AL, 7
ALLN1:	ADD	AL, 30H
	ENDM	
	ENDM	

则宏扩	展后得到如下程序段	
	RHTOA1	

	DHIUAI		
1		MOV	AH,AL
	AHHN		
1		MOV	CL,4
1		SHR	AH,CL
1		CMP	AH,10
1		JC	??0000
1		ADD	AH,7
1	??0000:	ADD	AH,30H
	ALLN		
1		AND	AL,0FH
1		CMP	AL,10
1		JC	??0001
1		ADD	AL,7
1	??0001:	ADD	AL,30H

当宏定义中嵌套宏定义时,必须 首先调用最外层宏定义,然后才 能调用内层宏定义。下面是一个 宏嵌套的例子。有如下宏调用:

- BHTOA1
- AHHN
- ALLN

4). 宏嵌套

宏嵌套有两种形式:宏定义中嵌套宏定义和宏定义中嵌套宏调用,两种宏嵌套的深度不限:

• 宏定义中嵌套宏调用

MACA MACRO

. . .

MACB

. . .

ENDM

MACB MACRO

. . .

ENDM

各宏定义可单独调用。

51	BHT0A2:	MACR0	
52		PUSH	CX
53		MOV	CH, AL
54		MOV	CL, 04
55		SHR	AL, CL
56		HT0A	; 宏调用
57		MOV	AH, AL
58		MOV	AL, CH
59		AND	AL, 0FH
60		HT0A	;宏调用
61		P0P	CX
62		ENDM	
63	HT0A	MACR0	
64		LOCAL	HT0A1
65		AND	AL, 0FH
66		CMP	AL, 10
67		JC	HT0A1
68		ADD	AL, 07
69	HTOA1:	ADD	AL, 20H
70		ENDM	

72	;宏调用			
73				
74		MOV	AL,	05
75		HT0A		
76				
77		MOV	AL,	47H
78		BHT0A2		
79				

二. 宏伪操作 ——

5). 宏与子程序的区别

	宏	子程序
处理者	宏汇编程序	中央处理器
处理时间	在汇编过程中	程序执行时
处理方法	用宏体替换宏指令	用CALL指令调用
占用内存	占用内存空间多	占用内存空间少
运行速度	运行速度较高	运行速度较低
灵活性	十分灵活	不够灵活

