114 學年度學科能力測驗數學 A 考科 非選擇題滿分參考答案與評分原則

數學 A 考科的非選擇題主要評量考生是否能夠清楚表達推理論證過程, 答題時應清楚表達如何依據題設進行推論,並詳細說明解題過程,且得到正確 答案,方可得到滿分。若能清楚表達如何依據正確題設進行推論,並詳細說明 解題過程,但最後未求出正確答案,會依據解題概念的完整性,酌給部分分數。 若未能依據正確題設進行推論,或未能詳細說明解題過程,則不予給分。例如 沒有解題過程;或利用錯誤推論;或使用不符合題設的數據作答,均不給分。

數學科非選擇題的解法通常不只一種,在此提供多數考生可能採用的解法以供各界參考,詳細評分原則說明與常見錯誤概念,請參閱本中心將於4月15日出刊的第347期《選才電子報》。114學年度學科能力測驗數學A考科非選擇題各題的參考答案說明如下:

第 19 題

一、滿分參考答案:

依題意 $A^2 = B^3 = \begin{bmatrix} \cos 90^\circ & -\sin 90^\circ \\ \sin 90^\circ & \cos 90^\circ \end{bmatrix}$,所以依據題意 A 為旋轉 45°的旋轉矩陣,

$$\exists \exists A = \begin{bmatrix} \cos 45^{\circ} & -\sin 45^{\circ} \\ \sin 45^{\circ} & \cos 45^{\circ} \end{bmatrix} = \begin{bmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{bmatrix} ;$$

而
$$B$$
 為旋轉 30°的旋轉矩陣,即 $B = \begin{bmatrix} \cos 30^{\circ} & -\sin 30^{\circ} \\ \sin 30^{\circ} & \cos 30^{\circ} \end{bmatrix} = \begin{bmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix}$ 。

故
$$P$$
 經 $A^3 = \begin{bmatrix} -\frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \end{bmatrix}$ 變換,可利用矩陣乘法 $\begin{bmatrix} -\frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} -\sqrt{2} \\ 0 \end{bmatrix}$,得 Q 點 坐

標為 (√2,0)。

或依題意 A^3 為旋轉 135° 矩陣,而 \overrightarrow{OP} 長度為 $\sqrt{2}$ 且與 (1,0) 夾角為 45° ,故 \overrightarrow{OQ} 長度 為 $\sqrt{2}$ 且與 (1,0) 夾角為 $45^\circ+135^\circ=180^\circ$,因此得 Q點坐標為 $(-\sqrt{2},0)$ 。

故
$$Q$$
經 $B^4 = \begin{bmatrix} \frac{-1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{-1}{2} \end{bmatrix}$ 變換,可利用矩陣乘法 $\begin{bmatrix} \frac{-1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{-1}{2} \end{bmatrix} \begin{bmatrix} -\sqrt{2} \\ 0 \end{bmatrix} = \begin{bmatrix} \frac{\sqrt{2}}{2} \\ -\frac{\sqrt{6}}{2} \end{bmatrix}$,得 R 點坐

標為
$$(\frac{\sqrt{2}}{2}, -\frac{\sqrt{6}}{2})$$
 。

設 \overrightarrow{OR} 與 (1,0)的夾角為 θ ,利用內積 \overrightarrow{OR} ·(1,0)=($\frac{\sqrt{2}}{2}$, $-\frac{\sqrt{6}}{2}$)·(1,0)= $\frac{\sqrt{2}}{2}$ 以及 \overrightarrow{OR} 的長度 為 $\sqrt{2}$,推得 θ 為 60° 。 也可由 B^{4} 為 旋轉 120° 矩 陣 ,故 \overrightarrow{OR} 的方向角為 $45^{\circ}+135^{\circ}+120^{\circ}=300^{\circ}$,因此 \overrightarrow{OR} 與 (1,0)的夾角為 60° 。

二、評分原則:

满分:以下雨項均須正確

- 1.根據題意所給條件,得出Q點坐標為 $(-\sqrt{2},0)$,且過程正確。
- 2.根據題意所給條件,得出 \overrightarrow{OR} 與(1,0)的夾角為 60° 。且過程正確。

部分給分

以上兩個的解題過程部分正確。

零分

未作答或未符合部份給分原則。

第 20 題

一、滿分參考答案:

因 R 點坐標為 $(\frac{\sqrt{2}}{2}, -\frac{\sqrt{6}}{2})$,推得直線 OR 方程式為 $y=-\sqrt{3}x$ 。又 L 為過 (1,1) 的水平線 , 故 L 方程式為 y=1 , 可 得 S 點 坐 標 為 $(-\frac{\sqrt{3}}{3},1)$, 再 由 內 積 $\overrightarrow{SO}\cdot(1,0)=(\frac{\sqrt{3}}{3},-1)\cdot(1,0)=\frac{\sqrt{3}}{3}$ 以及 \overrightarrow{SO} 的長度為 $\frac{2\sqrt{3}}{3}$,推得 $\angle OSP=60^\circ$ 。

也可設點 D(1,0),由第 19 題知 $\angle ROD = 60^{\circ}$ 。因直線 L與直線 OQ(即直線 OD)平行,可由同位角得出 $\angle OSP = 60^{\circ}$ 。

二、評分原則:

滿分:以下兩項均須正確

- 1.根據題意所給條件,得出∠OSP=60°,且過程正確。
- 2.根據題意所給條件,得出s點坐標為 $(-\frac{\sqrt{3}}{3},1)$,且過程正確。

部分給分

以上兩個的解題過程部分正確。

零分

未作答或未符合部份給分原則。