Wunschzettel 25 zur Homologischen Algebra II

Wunsch 1. Čech-Methoden zur Berechnung von Garbenkohomologie

Für eine Prägarbe \mathcal{F} abelscher Gruppen auf einem topologischen Raum ist die Gruppe der n-Čech-Koketten bezüglich einer Überdeckung $\mathcal{U} = (U_i)_i$ von X definiert als $\check{C}^n(\mathcal{U}, \mathcal{F}) := \prod_{i_0, \dots, i_n \in I} \mathcal{F}(U_{i_0 \cdots i_n})$, wobei $U_{i_0 \cdots i_n} := U_{i_0} \cap \cdots \cap U_{i_n}$. Die Kohomologie des entstehenden Komplexes wird mit $\check{H}^{\bullet}(\mathcal{U}, \mathcal{F})$ bezeichnet. Sei \mathcal{F} im Folgenden sogar eine Garbe abelscher Gruppen.

- a) Sei $\iota: \mathrm{AbSh}(X) \to \mathrm{AbPSh}(X)$ der Vergissfunktor. Sei $U \subseteq X$ eine offene Menge. Zeige: $(R^n \iota \mathcal{F})(U) \cong H^n(U, \mathcal{F})$.
 - Tipp: Verwende die Grothendieck-Spektralsequenz für $\Gamma_U \circ \iota : AbSh(X) \to Ab$, wobei $\Gamma_U : AbPSh(X) \to Ab$ die Gruppe der U-Schnitte bestimmt. Benutze Aufgabe 3 von Blatt 21, um dazu eine technische Voraussetzung nachzuweisen.
- b) Zeige: Die Garbifizierung der Prägarben $R^n \iota \mathcal{F}$ ist für $n \geq 1$ Null.

 Tipp: Verwende die Grothendieck-Spektralsequenz für $\mathrm{Id}_{\mathrm{AbSh}(X)} \cong s \circ \iota$, wobei s der Garbifizierungsfunktor ist.
- c) Konstruiere zwei Spektralsequenzen mit

$$\check{H}^p(\mathcal{U}, R^q \iota \mathcal{F}) \Longrightarrow H^{p+q}(X, \mathcal{F}) \quad \text{und} \quad \check{H}^p(U, R^q \iota \mathcal{F}) \Longrightarrow H^{p+q}(X, \mathcal{F}).$$

Hinweis: Es ist $\check{H}^p(U,\mathcal{E}) := \operatorname{colim}_{\mathcal{U}} \check{H}^p(U,\mathcal{E})$, wobei \mathcal{U} über alle offenen Überdeckungen von U läuft. Man kann zeigen, dass für verschiedene Verfeinerungen $\mathcal{U} \to \mathcal{V}$ die induzierten Morphismen $\check{H}^p(\mathcal{U},\mathcal{E}) \to \check{H}^p(\mathcal{V},\mathcal{E})$ übereinstimmen.

- d) Gelte $H^q(U_{i_0\cdots i_r},\mathcal{F})=0$ für alle q>0 und $r\geq 0$. Zeige: $\check{H}^p(\mathcal{U},\mathcal{F})\cong H^p(X,\mathcal{F})$.
- e) Zeige: Die Abbildung $\check{H}^n(X,\mathcal{F}) \to H^n(X,\mathcal{F})$ ist für n=0 und n=1 ein Isomorphismus und für n=2 ein Monomorphismus. Tipp: Verwende Aufgabe 2.
- f) Zeige: Ist X parakompakt, ist die Abbildung sogar für alle $n \geq 0$ ein Isomorphismus. Tipp: Verwende folgendes Lemma: Ist $\check{H}^n(X,\mathcal{E}) = 0$ für alle $n \geq 0$ und alle Prägarben \mathcal{E} mit $s\mathcal{E} = 0$, so ist für alle Prägarben \mathcal{E} die kanonische Abbildung $\check{H}^n(X,\mathcal{E}) \to H^n(X,s\mathcal{E})$ in allen Graden $n \geq 0$ ein Isomorphismus.

Wunsch 2. Die exakte Sequenz in niedrigen Graden zu einer Spektralsequenz

Sei $E_2^{pq} \Rightarrow E_\infty^n$ eine im ersten Quadranten konzentrierte Spektralsequenz. Konstruiere daraus eine exakte Sequenz der Form

$$0 \longrightarrow E_2^{1,0} \longrightarrow E_\infty^1 \longrightarrow E_2^{0,1} \longrightarrow E_2^{2,0} \longrightarrow E_\infty^2.$$

Wunsch 3. Die Serre-Hochschild-Spektralsequenz

Sei G eine Gruppe. Ein G-Modul M ist eine abelsche Gruppe M zusammen mit einer linearen Operation von G.

- a) Zeige: Der Funktor $(_)^G$: $\operatorname{Mod}(G) \to \operatorname{Ab}, M \mapsto M^G = \{x \in M \mid gx = x \text{ für alle } g \in G\}$ ist linksexakt.
- b) Zeige: Die Kategorie der G-Moduln ist äquivalent zur Kategorie der Moduln über dem Ring $\mathbb{Z}[G]$, und unter dieser Korrespondenz entspricht der Invariantenfunktor aus a) dem Funktor $\operatorname{Hom}_{\mathbb{Z}[G]}(\mathbb{Z},\underline{\ })$.
- c) Sei $H \subseteq G$ ein Normalteiler. Überlege, wie G auf $H^n(H,A) := R^n(_)^H(A)$ wirkt und schreibe die Wirkung im Kontext der Definitionen aus der Homologischen Algebra I explizit hin.
- d) Konstruiere eine Spektralsequenz $H^p(G/H, H^q(H, A)) \Rightarrow H^n(G, A)$. Tipp: $A^G = (A^H)^{G/H}$.