

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE MINAS GERAIS PRÓ-REITORIA DE PESQUISA E PÓS-GRADUAÇÃO DIRETORIA DE EDUCAÇÃO CONTINUADA

PLANO DE ENSINO

DISCIPLINA: Técnicas de amostragem e Modelos de Regressão

CURSO: Ciências de dados e Big Data

PROF (A): Anaíle Mendes Rabelo

CARGA HORÁRIA TOTAL (sala de aula + trabalho orientado): 24H.A

EMENTA (conforme Projeto Pedagógico): Noções básicas de distribuição e amostragem. Tipos de amostragem. Dimensionamento da amostra. Técnicas de amostragem. Regressão linear simples e múltipla. Modelo de regressão linear múltipla. Estimação dos parâmetros do modelo. Inferências sobre a regressão linear múltipla. Estudo da adequação do modelo. Problemas da regressão linear múltipla. Variáveis Dummy. Modelos Lineares Generalizados: Família Exponencial de Distribuições. Componente sistemática. Função de ligação. Modelos Lineares Generalizados Especiais. Função desvio. Função Escore. Testes de Hipóteses. Matriz de Informação de Fisher. Análise de diagnóstico.

UNIDADES DE ENSINO (Conteúdo Programático):

Técnicas de amostragem e Dimensionamento da amostra

Noções básicas de distribuição e amostragem.

Tipos de amostragem.

Técnicas de amostragem.

Intervalos de Confiança.

Tipos de distribuição.

Dimensionamento da amostra.

Amostragem aleatória e viés de Amostra.

Estimação da variância.

Bootstrap.

Regressão linear

Regressão com Variáveis Qualitativas.

Análise de Resíduos.

Diagnóstico em Regressão.

Seleção de variáveis e construção de modelos.

Validação de Modelos.

Transformação de Variáveis.

Regressão linear simples e múltipla

Modelos Lineares Generalizados:

Família Exponencial de Distribuições.

Componente sistemática.

Função de ligação.

Modelos Lineares Generalizados Especiais.

Função desvio. Função Escore.

Testes de Hipóteses.

Matriz de Informação de Fisher. Análise de diagnóstico.

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE MINAS GERAIS PRÓ-REITORIA DE PESQUISA E PÓS-GRADUAÇÃO DIRETORIA DE EDUCAÇÃO CONTINUADA

OBJETIVOS/MÉTODOS DIDÁTICOS:

Objetivo da disciplina é apresentar os modelos estatísticos aos alunos, possibilitando que ao final do curso consigam executar esses modelos em linguagem R e Python. As aulas serão expositivas com demonstrações práticas nos ambientes R-studio e Jupyter.

DISTRIBUIÇÃO DE PONTOS/CRITÉRIOS DE AVALIAÇÃO: 100 PONTOS

Lista de exercícios 1 – 10 pontos

Lista de exercícios 2 – 15 pontos

Lista de exercícios 3 – 15 pontos

Trabalho final – 60 pontos

REFERÊNCIAS BIBLIOGRÁFICAS

Exemplo:

Estatística para ciências de dados - Andrew Bruce e Peter Bruce

Estatística Aplicada – Ron Larson e Betsy Farber

Estatística Básica - Bussab, Wilton de O./ Moretin, Pedro A.

Introdução à Estatística Básica - Mário F. Triola

Introduction to Linear Regression Analysis, 5th Edition - Douglas C. Montgomery, Elizabeth A. Peck, G. Geoffrey Vining

Applied Regression Modeling, 3rd Edition - Iain Pardoe

Regression Analysis - J. Holton Wilson, Barry P. Keating and Mary Beal

Regression Analysis by Example, 4th Edition - Samprit Chatterjee and Ali S. Hadi

Regression Analysis with Python - Luca Massaron and Alberto Boschetti

Regression Analysis with R - Giuseppe Ciaburro