考虑系统

$$\dot{x}(t) = \sum_{i=1}^{n} A_i x(t - \tau_i)$$

Table 1: panding.m

rable 1. panaris.m	
函数原型	[W,pzend]=panding(Ai,taui,n)
功能	判断以 A_i 为系数, $ au_i$ 为延时量的系统是否稳定
输入项	Ai 元胞数组形式 $ au_i$ 数组形式
输出项	W 不稳定根个数, pzend 为 $P(z)$ 的轨迹
算法	通过离散半圆,计算 $P(z)$. 用 matlab 的 angle 函数计算幅角.
	并将幅角的变化量连续化.

注:

• 此程序最为需要注意的是,在 P(z) 比较接近 0 时,幅角的变化快,从而导致结果不准确. 这涉及参考文章中提到的 tolerance

参考文章 <DELAY-DEPENDENT STABILITY OF RUNGE-KUTTA METHODS FOR LINEAR NEUTRAL SYSTEMS WITH MULTIPLE DELAYS>