

Kötelező házi feladat 1

Tar Dániel GUTOY7

2018. május 24.

BME Gépészmérnöki Kar	BMEGEMMAGM5	Név:	Tar Dániel
Műszaki Mechanikai Tanszék	Végeselem módszer alapjai	NEPTUN-kód:	GUTOY7
Félév: 2017/18/02	1. kötelező házi feladat	Aláírás:	

	ÁBRA	KÓD2	KÓD3	KÓD4
Feladatkód:	2	1	2	2

Az ábrákon vázolt tartókat a p_1 állandó intenzitású megoszló erőrendszer, az F_1 koncentrált erő és az M_1 koncentrált erőpár terheli. A tartók két különböző átmérőjű ($d_1=d$, illetve $d_2=2d$) kör keresztmetszetű tartókból vannak összeépítve. A tartók anyaga lineárisan rugalmas, homogén, izotrop. A d_1 átmérőjű rész rugalmassági modulusza E, míg a d_2 átmérővel rendelkező részé E/6.

- 1. Készítsen méretarányos ábrát a tartóról a terhelések feltüntetésével!
- 2. Határozza meg a tartó súlypontvonalának eltolódását leíró $v\left(x\right)$ lehajlásfüggvényt, valamint a hajlítónyomatéki igénybevételt leíró $M_h\left(x\right)$ függvényt a rugalmas szál differenciálegyenletének felhasználásával! Ábrázolja jelleghelyesen a kapott megoldásokat a jellemző értékek feltüntetésével! Számítsa ki az x=c/2 keresztmetszetben a tartó súlypontvonalának eltolódását (v_K) és a hajlító igénybevétel nagyságát (M_{hK}) !
- 3. Határozza meg a v(x) és az $M_h(x)$ függvényeket végeselemes módszerrel! 3 db síkbeli egyenes gerendaelemet használjon! Ábrázolja a kapott megoldásokat a jellemző értékek feltüntetésével! Számítsa ki az x = c/2 keresztmetszetben a v_K és M_{hK} értékeket, és határozza meg a relatív hibát a 2. feladatban kapott megoldáshoz képest!

	Feladatkód	KÓD2		KÓD3			KÓD4		
A		E	d	a	b	c	p_1	F_1	M_1
D		[GPa]	[mm]	[mm]	[mm]	[mm]	[N/m]	[kN]	[kNm]
A	1	170	23	220	540	730	2500	4	0,6
Т	2	185	27	230	460	610	-2500	-3	-0,75
О	3	200	31	430	550	890	3000	2	0,9
K	4	215	35	330	440	680	-3000	-1	-1, 1

EREDMÉNYEK							
Végeselemes módszer							
v_K [mm]	$M_{hK} \ [{ m Nm}]$	v_K relatív hibája [%]	M_{hK} relatív hibája [%]				
0,8096	652,5147	-0,54	-0,28				

Tartalomjegyzék

1.	Feladat	1
2.	Feladat - Rugalmas szál differenciálegyenlete	2
3.	Feladat - Végeselemes megoldás	2
	3.1. A reakcióerők és az elmozdulásvektor meghatározása	2
	3.2. Lehajlási és nyomatéki függvény meghatározása	3
	3.2.1. A lokális vektorból globálisba történő átalakítás	3
	3.3. Relatív hiba számítása	3

1. Feladat

A házifeladat kód alapján az adatokat átszámolva [N][mm][MPa] alapra:

1. táblázat. Adatok

E	d_1	d_2	a	b	c	p_1	F_1	M_1
[MPa]	[mm]	[mm]	[mm]	[mm]	[mm]	[N/mm]	[N]	[Nmm]
$170 \cdot 10^{3}$	23	46	230	460	610	-2.5	-3000	-0.75

Az alapadatokból származtatott adatok: a1,a2,i1,i2

A terheléseket arányosan és mindenhol a pozitív irányba vettem fel, hogy megegyezzen a feladatleírásban szereplő ábrával.

1. ábra. Méretarányos ábra és a terhelések

Rajz a rekcióerők feltüntetésével: rajz

2. Feladat - Rugalmas szál differenciálegyenlete

A rugalmas szál diffrenciálegyenletéhez a hajlítónyomatéki függvények felírása szükséges. A tartót 3 részre osztottam és mind a három tartományra felírhatam a hajlítónyomatéki függvényeket:

hajlíto nyomatéki függvények..

A rugalmas szál differenciálegyenlete a három tarományra: egyenletek...

A differenciálegyenletek megoldásához illesztési feltételeket, kényszerfelételeket, illetve statikai egyensúlyt leíró egyenleteket is fel kell írni.

Illesztési feltételek: Kényszerek: Egyensúlyi egyenletek:

A rugalmas szál differenciálegyenleteiből a lehajlásfüggvényeket kétszeres integrálással kaphatjuk meg. Az integrálások miatt 6[db] ismeretlen értékű integrálási konstans jelenik meg. Ezen hat ismeretlenen kívül, ismeretlenek még a reakcióerők $(F_{By}, F_{Dx}, F_{Dy}, M_D)$.

Így egy tíz ismeretlenes egyenletrendszer áll elő, amelyekhez 10 peremfeltételt határoztunk meg. Ennek megfelelően az egyenletrendszerből az összes ismeretlen meghatározható.

Számolt értékek: c-k, reakcioerok

Ezek alapján az érékeket visszahelyettesítve a lehajlásfüggvényekbe: lehajlásfüggvények a szakaszokon

plotok : szogelfordulás hajlítonyomateki

3. Feladat - Végeselemes megoldás

3.1. A reakcióerők és az elmozdulásvektor meghatározása

A feladat szövege alapján a végeselemes modell: vegeselemes modell (ábra) - 3elem - 4csomopont

Elemi merevségi mátrix

A 3[db] egyenes gerendaelem elemi merevségi mátrixait elhelyezzük a globális merevségi mátrixban a hozzájuk tarozó szabadsági fok összerendelések alapján.

ábra - glob merev mátrix

Ahol az általános elmozdulás és tehervektor: vektorok...

A tehervektor a koncentrált erők és megoszló terhelések összegeként írható fel. A megoszló erőt a két rúdra külön felírva: koncentrált, megoszlo2, megoszlo3

Az elmozdulásvektor megkötött paraméterei alapján kondenzáljuk a globális merevségi mátrixot úgy, hogy a merevségi mátrix oszlopait és sorait töröljük ott ahol az elmozdulásvektor nulla.

A kondenzált merevségi mátrix: vektor...

A kondenzált elmozdulásvektor: vektor...

Az így alkotott $\mathbf{K}_{kond}\cdot\mathbf{U}_{kond}=\mathbf{F}_{kond}$ egyenletrendszer megoldásával az elmozdulásvektor: elmozdulásvektor...

A tehervektort pedig az elmozdulásvektor visszahelyettesítésével: tehervektor..

A tehervektor komponenseiből kiolvashatóak a reakcióerők: rekcióerok...

A végeselemes megoldás útján kapott eredmények szinte teljesen megegyeznek a rugalmas szál differenciál egyenletével számolt eredményekkel.

3.2. Lehajlási és nyomatéki függvény meghatározása

Harmadfokú polinommal történik az elmozdulásmező interpolációja. polinom...

 $\label{lem:mediation} A mely egyenletben a konstansok meghatározásához peremfeltételeket írhatunk fel: peremfeltételek...$

A lokális mátrixot felírva az egyenletrendszer paramétereit behelyettesítve megkaphatjuk az alábbi vektort: vektor...

3.2.1. A lokális vektorból globálisba történő átalakítás

A végeselemes módszernél a gerendaelemek lehajlását az alábbbi egyenlettel határozhatjuk meg: egyenlet... ahol i = 1,2,3.

A kszi lokális koordinátából az x globális koordinátába való átállás: keplet...

Ez alapján már meghatározhatók a lehajlásfüggvények az egyes gerendaelemekre a globális koordinátarendszerben. Ha ezeket a függvényeket 2x deriváljuk x szerint, akkor keresztmetszet nyomatékfüggvényeit kapjuk: függvények...

A rugalmas szál differenciálegyenletével és a VEM-es módszerrel kapott lehajlásfüggvények közel megegyeznek, annak ellenére hogy a hajlító nyomatéki függvény csak lináris részelemeket tartalmaz.

Lehajlás- és nyomatéki függvény: lehajlási, nyomatéki + ábra

3.3. Relatív hiba számítása

A vk és Mhk értékek az x=c/2 helyen:

• Rugalmas szál differenciálegyenletével kapott értékek

$$salala = asla$$
 (1)

• VEM-es módszerrel kapott értékek

$$salala = asla$$
 (2)

A rugalmas szál diff. egyenletére vonatkoztatott relatív hiba: képletek... Konklúzió melyik minel nagyobb hány százalékkal..