High-Performance Computing Networks at BYU

Lloyd Brown

November 1, 2012

- 1 Outline
- 2 HPC Introduction
 - What is HPC?
 - Types of HPC
- 3 Types of Communication
- 4 Infiniband
 - Physical Layer Characteristics
 - Encoding
 - Measured Performance
 - Bandwidth Comparison
 - Latency Comparison
 - Subnet Management
- 5 Topologies
 - Evaluating Topologies
- 6 Multi-path Ethernet and TCP/IP
- 7 Conclusions
- 8 Questions

What makes a supercomputer, super?

HPC or High-Performance Computing, is characterized by workloads and hardware requirements

- Significantly larger compute capability than an average system
- Used to solve problems that are too large to easily be solved on a single, traditional system
- May utilize specialty hardware and software
- No specific threshold for capacity

Types of HPC

Nature of HPC Computing

In HPC, speedup comes from one of two sources:

- Using faster resources (eg. faster clock speeds)
- Using more resources (eg. using more processors) or Parallelism

Physics generally limits us on the faster resources, so we spend more time on parallelism. Types of HPC

Parallelism and Communication Needs

- When utilizing multiple resources (eg. multiple processors), the program must:
 - Split up the workload
 - Provide necessary coordination among resources
- The algorithm and data determine the nature of communication needs
- Therefore for HPC problems, communication is key.
 - For inter-process communication
 - For communicating with data storage

What kind of communication are we talking about?

- Programs that utilize multiple processors to split up work, need to communicate between threads or processes, to coordinate efforts, report on results, etc.
- Communication between threads/processes on the same host ("Intra-node" communication) is extremely fast (usually via shared memory)
- If the processes are on different hosts, we have to go out to some communication fabric ("Inter-node" communication)
 - There's a lot of research in speeding up intra-node communication, but that's more of a Computer Science or Electrical Engineering problem. We'll sepend our time today on inter-node communication

Technologies for inter-node communication

Examples of technologies for *inter*-node communication include:

- Ethernet
- Fibre Channel
- Infiniband
- RS-232

What is Infiniband? And why do I care?

Infiniband is the most common high-performance interconnect used in HPC. It:

- is switched-fabric architecture (more like Fibre Channel than like Ethernet)
- utilizes multiple speeds, lanes, and links
- provides:
 - extremely high bandwidth
 - $lue{}$ extremely low latency (one-way < 10 μ s, compared to approx. 32 μ s for 1GbE)
- Speedup comes mostly from:
 - Short protocol stack (very little above layer 2)
 - Low-latency switching (very little decision making in the switch)
 - Remote Direct Memory Access (RDMA)

Lanes/Links/Speeds

Infiniband utilizes multiple lanes per physical link. Each link has a certain speed based on the standard:

	SDR	DDR	QDR	FDR
1x	2.5 Gb/s	5 Gb/s	10 Gb/s	14 Gb/s
4x	10 Gb/s	20 Gb/s	40 Gb/s	56 Gb/s
12x	30 Gb/s	60 Gb/s	120 Gb/s	168 Gb/s

Encoding Overhead

Infiniband uses bit-line encodings to guarantee bit transitions for clock synchronization:

- SDR, DDR, QDR 8b/10b encoding (8 data bytes encoded in 10 bytes total; 20% overhead)
- FDR and beyond 64b/66b encoding (64 data bytes encoded in 66 bytes total; 3% overhead)

	SDR	DDR	QDR	FDR
1x	2.5 Gb/s raw	5 Gb/s raw	10 Gb/s raw	14 Gb/s raw
	2 Gb/s net	4 Gb/s net	8 Gb/s net	13.6 Gb/s net
4x	10 Gb/s raw	20 Gb/s raw	40 Gb/s raw	56 Gb/s raw
	8 Gb/s net	16 Gb/s net	32 Gb/s net	54.3 Gb/s net
12x	30 Gb/s raw	60 Gb/s raw	120 Gb/s raw	168 Gb/s raw
	24 Gb/s net	48 Gb/s net	96 Gb/s net	162.9 Gb/s net

Performance at BYU's FSL

The graphs shown in the next couple of slides represent the bandwidth and latency performance of 4xDDR Infiniband vs 1Gb/s Ethernet at the Fulton Supercomputing Lab.

- All tests were performed host-to-host with one intervening switch (eg. host-switch-host)
- All tests utilize increasing message sizes, to demonstrate where one effect ends and the other starts
- Tests were performed using the "osu_bw" and "osu_latency" binaries from the OSU Micro-Benchmarks for MPI (a.k.a. "OMB")¹

¹http://mvapich.cse.ohio-state.edu/benchmarks/

Infiniband

Measured Performance

__Infiniband

Measured Performance

How Infiniband is Managed

Infiniband is designed as a trusted network. The network is managed by a *subnet manager* which does the following:

- Periodically sweep the network, looking for topology changes, checking for errors, etc.
- Build a cohesive model of the network topology
- Load the switch forwarding tables with the LID/Port mapping

Infiniband Topologies

Infinband puts very little restriction on the physical topology of the network.

- The Subnet Manager loads all the forwarding tables into the switches
 - as long as you can build an appropriate graph parsing algorithm, and implement it in a subnet manager, you can use a topology
 - allows some much more interesting topologies than those commonly Ethernet and TCP/IP networks usually use.²

 $^{^2}$ Technically you can use any topology with Ethernet as well. It just takes a huge amount of very-messy work, for very little benefit. I don't recommend trying it.

Possible Topologies

- Tree/Fat-Tree
- Fully-connected Mesh
- Rectangular Mesh
- Torus
- Hypercube
- Folded-Clos Network

Fat Tree Example

A Fat Tree is basically a tree with increased bandwidth (faster links or more links) between upper tiers relative to lower tiers; Ethernet has no problems with this one, so it's not terribly exciting

Fully-connected Mesh Example

- Pro: Shortest hop-count (1 hop) from any point to any other point
- Con: takes a huge amount of cables, and the cable count increases very, very quickly.

Rectangular Mesh / Torus Example

- Pro: Excellent for large topologies (no spine switches to buy)
- Con: Higher hop count than other options, depending on size and shape

Hypercube³ example (4-dimensional)

- Pro: for d dimensions, no more than d hops from any other point in the topology
- Con: cables/ports at each endpoint increase linearly with the dimension

³Note that this is really just a special case of a Torus.

Folded Clos Network Example

- Pros:
 - Most common approach for small or medium-scale Infiniband fabrics
 - Well understood (how larger IB switches are designed internally)
 - Redundant; 1 link from each leaf to each spine
 - Easy to expand (up to the port count of the switches)
- Con: Scalability limited by the port count of spine & leaf switches

BYU Supercomputing's Clos Network

LEvaluating Topologies

What are some important characteristics for evaluating topologies?

- Latency/hop-count
- Total host bandwidth
- Ease of expansion
- Cost
- Minimum Bisection Bandwidth
- MBB to Client BW Ratio

What's "Minimum Bisection Bandwidth"?

- If you were to draw a line across a topology, such that half the clients/switches/whatever are on each side of the line, the total bandwidth of all the links "cut" by that line is the bisection bandwidth
- Of all the possible bisection bandwidth lines, the one with the minimum bandwidth is called the minimum bisection bandwidth

L Topologies

Evaluating Topologies

MBB Example - Torus

Which bisection line represents the minimum bandwidth bisection (assume all links are the same speed)?

■ Green line cuts 8 links; red line cuts 12 links; Green is the minimum

MBB vs Client BW - Torus

- Frequently we compare MBB to total Client Bandwidth on one side of the MBB line
- Generally the smaller the ratio of MBB:half-client-bandwidth, the better
- For example, using the diagram on the previous slide:
 - Assuming each node is a switch, with 16 hosts hanging off it, what is the MBB:ClientBW ratio for the Green (MBB) line?
 - assume host-switch and switch-switch links are the same BW
 - Each half has 12 switches, or 12*16=192 hosts, and the green line bisects 8 links, for a ratio of 24:1

MBB vs Client BW - Clos

Anyone want to try this one?

- Assume that 16 hosts are attached to each of the 24 switches at the bottom, and none to the 4 on the top
- 4 links coming out of each of the 24 switches on the bottom (1 to each of 4 core sw)

MBB vs Client BW - Clos

- Bisection line cuts 2 of 4 links per leaf switch (48 total links cut)
- 12 switches per half * 16 clients = 192 clients
- 192:48 => 4:1

- Current efforts are underway to create multi-path options for more-common Ethernet and TCP/IP networks
- Some approaches:
 - ECMP Equal Cost Multi-Path Routing (layer 3)
 - TRILL Transparent Interconnection of Lots of Links -Multi-path Ethernet⁴

⁴The best reference I'm aware of is *Introduction to Trill* by Radia Perlman and Donald Eastlake, available at http://www.ipjforum.org/?p=582

What do I need to learn from this?

- Not everything is Ethernet and TCP/IP
- A Tree-like topology may not be the best arrangement for a specific application, especially in data centers
- What you're used to doing now, may change in the future (eg. TRILL)

Questions?

Any questions?