10.ь Mutassa be a biztonság tervezési elveit! Határozza meg az információbiztonsági célok elérésére használható intézkedés típusokat, adjon példát ezekre intézményi környezetben!

Tervezés

- 1. A rendszerterv és a használt biztonsági protokoll legyen nyilvános.
- 2. Alapértelmezés legyen az, hogy valaki valamihez nem férhet hozzá.
- 3. A security-vel kapcsolatos kérdéseket a rendszer tervezésének korai fázisában tisztázni kell és a security csomagot a rendszer magjába intergálni kell.
- 4. Legyen a rendszer felhasználóbarát.
- 5. Ha lehet, akkor kerüljük az egész rendszer felett "teljes hatalommal bíró" (superuser, supervisor) rendszergazda koncepciót.
 - A rendszert bontsuk moduljaira, például egy-egy modul egy-egy fontosabb erőforrás kezelését végezze és az egyes moduloknak legyenek külön-külön felügyelői.

Legfontosabb nézőpontok

- Központi vírusvédelem
- Virtuális magánhálózatok (VPN) konfigurálása
- Jogosultságkezelés (hitelesítés, azonosítás)
- Tartalomszűrés (dokumentálás, logolás)
- Tűzfalak
- Behatolás detektáló rendszerek (intrusion-detection)
- Felhasználó és hozzáférés menedzsment
- Adatmentés

Hálózat védelme

- Támadó célja
 - o Információs szerzés
 - Illetéktelen hozzáférés
 - Szolgáltatások megbénítása
 - o Rendszer feltörése
 - Rosszindulatú programok bejuttatása

Aktív és passzív támadások

7 Ktiv es passziv tamadasok	
Passzív	Aktív
A lehallgatás (evesdropping, wire-tapping), az érzékeny információ megszerzésére irányul, a támadó nem módosítja az átviteli csatorna tartalmát.	A támadó maga is forgalmaz a csatornán uzenetmódosítás megszemélyesítés visszajátszás szolgáltatás megtagadás (DoS – denial of service) típusú támadások
	$\begin{array}{c c} A & X_{\bullet} & B \\ \hline C & & & \\ \hline C & & & \\ \end{array}$

Csomag szintű támadások

IP spoofing

- IP cím hamisítása
- Védekezés: A tűzfalak bizonyos forrás IP címeket csak bizonyos irányból fogadnak el.

Smurf

- DoS típusú támadás, ami a megtámadott gép nevében ICMP echo request üzenetet küld egy irányított IP broadcast címre.
- **Védekezés:** A routerek IP broadcast-ot ne engedje át, IP broadcast címre ICMP echo request-re a gépeink ne válaszoljanak.

SYN flood

- DoS támadás
- Ha a rosszindulatú C támadó az A nevében nagy mennyiségű SYN csomagot küld B-nek (C nem kapja meg a válaszokat), akkor ezzel kimeríti B erőforrásait és az nem lesz képes fogadni a valódi kéréseket.
- Védekezés:
 - Mikro blokkok használatával:
 - A szabványos adatstruktúráknál lényegesen kisebb helyet foglalunk le, és ha a kapcsolat kérés valódinak bizonyul, csak akkor foglaljuk le a szükséges erőforrásokat (10x annyi támadó csomagot bírunk el).
 - SYN cookie használatával.

Xmas, Ymas

- A TCP fejrészben az URG bittől balra levő két bitet 2003 májusában az IANA (Internet Assigned Numbers Authority) az ECN (Explicit Congestion Notification) mechanizmus céljára osztotta ki.
- A korábbi TCP implementációk azt várják el, hogy ez a 2 bit 0 értékű legyen.
- A bitek 0-tólkülönböző értékűre állításával és a TCP implementáció viselkedésének megfigyelésével a támadó információt szerezhet a TCP/IP protocol stack implementációjáról.

Hálózati szintű támadások

Switchek elleni támadás

- **Switch normál működése**: Keretek továbbítása csak arra a portra, ahol a címzett található.

- Portokhoz MAC címek beállítása:

- Statikusan, munkaigényes konfiguráció változásánál át kell vezetni (hálókártya csere)
- o Öntanuló módban, megjegyzi, hogy az egyes MAC címekkel forráscímként melyik portján találkozott.
- Ha a támadó sok különböző MAC címmel való forgalmazással, megtelíti a switch táblázatát, akkor a működés fenntartása érdekében minden keretet minden portjára kiküld (fail open). Ezzel a forgalom lehallgathatóvá válik.

ARP poisoning

- A támadó kéretlen és hamis ARP válaszokat küld, amiben a kérdéses IP címhez a saját MAC címét tünteti fel.
- **ARP** (**Address Resolution Protocol**): Címlekérdező protokoll. Üzenetszórásos hálózatokon broadcast (minden gépnek szóló) üzenettel megszerzi az információt (IP cím fizikai cím összerendelés) és elraktározza (cache).

ICMP redirect

- Az ICMP redirect üzenettel egy router egy számítógép számára egy jobb útvonalat tud megadni. A támadó ezzel maga felé tudja irányítani a megtámadott gép forgalmát.
- Használhatja pl:
 - Lehallgatásra: A csomagokat tovább küldi a címzettnek, hogy a támadás észrevétlen maradjon.
 - o IP spoofing támogatásra: A redirecttel elérte, hogy az **A** válaszai őhozzá érkezzenek, a TCP kapcsolat ténylegesen felépül.
- Védekezés: accept_redirects kikapcsolása.

RIP (Routing Information Protocol) távolságvektor hamisítása

- RIP: Distance-vector protokoll, ami egy célponthoz (hálózatok, subnetek, állomások vagy a default router) táblázatában tárolja:
- A célpont IP címét.
- Az odavezető út költségét (egy csomagnak az adott linken való átküldésének költsége alapján).
- Az odavezető út első routerét.
- Időzítőket
- Mivel a RIP nem használ autentikációt, a támadó számítógépe hamis távolságvektorral becsaphatja a routereket azt állítva, hogy rajta keresztül rövidebb út vezet a cél felé.

Source route IP opció

- A forrás megadhatja, hogy adott IP című állomás felé mely routereken keresztül haladjon a csomag.
- Támadó: privát IP című hálózatok elérésére.
- A C támadó az R1 routernek megmondja, hogy R2-n keresztül kell a csomagot küldenie. R2 privát IP címmel rendelkező hálózat gateway-e, a datagrammot már a cél IP cím alapján küldi a címzettnek.
- A visszaút: A támadó publikus IP címmel rendelkezik.
- Védekezés: accept_source_router kikapcsolása.

DNS (cache) ellen való támadás

- Kihasználja, hogy lejár az ns.myisp.com által tárol <u>www.mybank.com</u> TTL (Time To Live) ideje.

Felhasználók védelme

- Legnagyobb probléma a jelszavak.
- Erős jelszó megkötése:
 - Több karakter
 - o Kis-nagybetű
 - Számok
 - Speciális karakterek
- Kerberos, LDAP, NIS
- Jelszavakat védett fájlban tároljuk
- Jelszavak titkos kezelése, például nem írjuk fel publikus cetlire.

Szerverek védelme

- Folyamatos vizsgálat
 - o Rajta futó programok
 - Hozzáférések naplózása
- Tűzfalak használata
 - o Alapértelmezetten portok tiltása
- Naplózás
 - Külön partícióra
- Fájlrendszer megfelelő kialakítása
 - o Jogosultságok kezelése
 - o Írás jogokat nem adunk mindenkinek
- Külön szerverek a szolgáltatásoknak
 - o FTP, DNS, WEB
- Virtualizáció
- Biztonsági frissítések és adatmentések