Assignment #06	125-0326
0	·
- QNO 1	
$C1 \rightarrow (1,4)$	
- ^ - ^	
)
C3 -> (3,8) C3 -> (7,2)	
M. 6	
	- 11-21+14-101
	2 1-11 + 1-61
	7
C9-M	= 13-21+18-101
	z + - 2
	2
	z
C2 M	z 3-2 + 18-10
<u>G-11</u>	z 5 + -8
	<u>z 13</u>
Mas	·
· · · · · · · · · · · · · · · · · · ·	
CIM= 11-21+14-51 ; CAM	$4 = \frac{13 - 2 +18 - 5 }{3 - 2 +18 - 5 }$; $\frac{17 - 2 +12 - 5 }{3 - 2 +12 - 5 }$
$C_1 = 2$ C_2	= 4 C3 z 5

_Ms: ; C+1 = 3-81+18-41 CM= 11-8+14-41 : Cn= 17-8 + 12-4 · Co = 9 My: em- 11-51+14-81; CN= (3-5)+18-81; CN= 17-5 (+12-8) j G = 2 Ms: CM=11-71+14-51; Cm=13-71+18-51; Cn=17-71+12-51 ; C2 z 7 Ms: CM-11-61+14-41 ; CM 13-61+18-41 ; CM 7-61+12-41 j G = 7 M7: CM= 11-1 1+14-2 | ; CM= 3-1 | + 18-2 | ; CM= 17-1 1+12-2 1 C1 2 2 ; C3 = 6 Me: CN=11-4 1+14-91; CN-13-4]+18-91; CN-17-41+12-91

COMPLET		
C, 2 S Mp, M7 3		
Co = \$ M., Mu, Me	3	
C3 = \(\frac{2}{5} M_3, M_5, M_6	<u> </u>	
centrical calculations		
C1 = 121+111	, 15/+18	
G = (1.5 , B	.5)	
	6-4-1-1-1	
Ca = (121 + 151 + 14	<u>, 1101+181-1</u>	(9)
	1)	
G = (3.66)	1)	
C3 ~ (81 + 171 + 1	51, 14/+15	1+141
3	3	
Cg z (7, 4	.33)	
		·
Textional? CI-M	Cg - M	C3 - M
M. ; 7	2-86	10.67
Mø ; 8	5.66	5.67
M ₃ : 7	9.34	1.33
M4 : 8	<i>8</i> -39	5.67
Ms: 7.0	7. 34	0-66
M6: 5.0	7.34	1.33
1M7 = 2	9.66	8.33
M&: 8.0	0.33	7.67

clustering:
C, z {Mo, Mz }
Co = 3 M1, M1, M2 8
G = { M2, M5, M6 }
Central consculations
$C_{1} = (1.5, 3.5)$
Cg z (3.66, 9)
Cz z (7 38)
as centrood values remains some so
we found our K-means elusters.
•

K-mean:	K-medoid:
Remoon is a classical Postition of technique of clustering that clusters the data set of n object into K-clusters with K Known a Prior.	K-mean where K-mean minimize the total squared exxox while k-medaids minimize the sum of dissimilar botween points labeled to be in a cluster; K-medoids charges datapoints as centers.
Time complexities:	Time complexities:
K-mean O(n+k)d)	O(K(n-k) ²³)
advantages : o simple to implement o scales to large detaset o Guar antees configure o Generalize to clusters	Advantages: o Eegy to under stond one constite o Quick and convergent get o Allow using general dissimilarity o Normally less delicate to
	outlies than k-means

Disadvantages;	Disadventages:
o choose Kmanually	odifferent initial sets of
eselver minitial realization	medoids can lead to
· clustering data of	different Simul chatering
· Clustering data of volutions size and densities scaling with number of dimaria	0.040
Scaling with number Adimaria	o Resulting works depends
<u> </u>	o Resulting unit of measurement.
·	U U
-	
•	
·	
	<u> </u>