Large-scale optimal transport map estimation using projection pursuit

Cheng Meng, Yuan Ke, Jingyi Zhang, Mengrui Zhang, Wenxuan Zhong, Ping Ma (NeurIPS 2019)

Presenter: Yue Xiang

12.16

- ► Introduction
- ► Background
- ► Projection Pursuit Monge Map Method
- ► Theoretical Results
- Experiments and Experiments and Summary
- ► Extensions and Summary

Introduction

▶ Optimal transport plays essential roles in various machine learning applications, *e.g.*, generative model, color transfer and transfer learning.

Introduction

- ▶ Optimal transport plays essential roles in various machine learning applications, *e.g.*, generative model, color transfer and transfer learning.
- ► The computation of **o**ptimal **t**ransport **m**ap (OTM) is challenging for a large-scale sample with massive sample size and/or high dimension.

Introduction

- ▶ Optimal transport plays essential roles in various machine learning applications, *e.g.*, generative model, color transfer and transfer learning.
- ► The computation of **o**ptimal **t**ransport **m**ap (OTM) is challenging for a large-scale sample with massive sample size and/or high dimension.
 - Estimating the OTM between $\{x_i\}_{i=1}^n \in \mathbb{R}^d$ and $\{y_i\}_{i=1}^n \in \mathbb{R}^d$ requires $\mathcal{O}\left(n^3\log(n)\right)$.

Projection-based method: Random projection method/ sliced method/...

Projection-based method: Random projection method/ sliced method/... Breaking the *d*-dimensional OTM estimation into a series of 1-d subproblems:

▶ Denote \mathbb{S}^{d-1} as the *d*-dimensional unit sphere.

Projection-based method: Random projection method/ sliced method/... Breaking the *d*-dimensional OTM estimation into a series of 1-d subproblems:

- ▶ Denote \mathbb{S}^{d-1} as the *d*-dimensional unit sphere.
- ▶ In each iteration, pick a random direction $\theta \in \mathbb{S}^{d-1}$, and calculate the 1-d OTM between the projected samples $\{\boldsymbol{x}_i^{\mathsf{T}}\boldsymbol{\theta}\}_{i=1}^n$ and $\{\boldsymbol{y}_i^{\mathsf{T}}\boldsymbol{\theta}\}_{i=1}^n$ by sorting.

Projection-based method: Random projection method/ sliced method/... Breaking the *d*-dimensional OTM estimation into a series of 1-d subproblems:

- ▶ Denote \mathbb{S}^{d-1} as the *d*-dimensional unit sphere.
- ▶ In each iteration, pick a random direction $\theta \in \mathbb{S}^{d-1}$, and calculate the 1-d OTM between the projected samples $\{\boldsymbol{x}_i^{\top}\boldsymbol{\theta}\}_{i=1}^n$ and $\{\boldsymbol{y}_i^{\top}\boldsymbol{\theta}\}_{i=1}^n$ by sorting.
- ▶ The "mean map" of the 1-d OTMs serves as the final estimate of target OTM.

Projection-based method: Random projection method/ sliced method/... Breaking the *d*-dimensional OTM estimation into a series of 1-d subproblems:

- ▶ Denote \mathbb{S}^{d-1} as the *d*-dimensional unit sphere.
- ▶ In each iteration, pick a random direction $\theta \in \mathbb{S}^{d-1}$, and calculate the 1-d OTM between the projected samples $\{\boldsymbol{x}_i^{\top}\boldsymbol{\theta}\}_{i=1}^n$ and $\{\boldsymbol{y}_i^{\top}\boldsymbol{\theta}\}_{i=1}^n$ by sorting.
- ▶ The "mean map" of the 1-d OTMs serves as the final estimate of target OTM.

Computational complexity: $\mathcal{O}(Kn\log(n))$ (*K* is the number of iterations).

Limitations of Projection-based Methods

► Empirically, the existing projection-based approaches usually require a large number of iterations to convergence/ fail to converge.

Limitations of Projection-based Methods

- ► Empirically, the existing projection-based approaches usually require a large number of iterations to convergence/ fail to converge.
- ► We speculate that the slow convergence is because a randomly selected projection direction may not be "informative" enough.

Figure 1: Illustration for the "informative" projection direction

Contributions

- ► A novel projection-based approach to estimate large-scale OTMs: projection pursuit Monge map (PPMM).
- ► Use a sufficient dimension reduction technique to estimate the most "informative" projection direction in each iteration.
- ▶ Show the convergence of algorithms.

- ► Introduction
- ► Background
- ► Projection Pursuit Monge Map Method
- ► Theoretical Results
- **▶** Experiments
- ► Extensions and Summary

First let's go through 3 concepts and try to find their relations...

- ▶ Optimal transport
- ► Projection pursuit
- ► Sufficient dimension reduction

Optimal Transport Map

- ▶ Given 2 continuous random variables $X \in \mathbb{R}^d$, $Y \in \mathbb{R}^d$ with probability distribution p_X and p_Y , respectively.
- ▶ OT problem : to find a transport map $\phi : \mathbb{R}^d \to \mathbb{R}^d$ such that $\phi(X)$ and Y have the same distribution.

Optimal Transport Map

- ▶ Given 2 continuous random variables $X \in \mathbb{R}^d$, $Y \in \mathbb{R}^d$ with probability distribution p_X and p_Y , respectively.
- ▶ OT problem : to find a transport map $\phi : \mathbb{R}^d \to \mathbb{R}^d$ such that $\phi(X)$ and Y have the same distribution.
- ▶ Monge formulation : to find the OTM ϕ^* that realizes the infimum

$$\inf_{\phi \in \Phi} \int_{\mathbb{R}^d} \|X - \phi(X)\|^p dp_X.$$

where Φ is the set of all transport maps.

Wasserstein Distance

▶ *p*-order Wasserstein distance:

$$W_p\left(p_X,p_Y
ight) = \left(\int_{\mathbb{R}^d} \|X-\phi^*(X)\|^p \, \mathrm{d}p_X
ight)^{1/p}$$
 (1)

▶ Estimate $W_p(p_X, p_Y)$:

$$\mathbf{X} = (\mathbf{x}_1, \dots, \mathbf{x}_n)^{\top} \in \mathbb{R}^{n \times d} \sim p_X, \mathbf{Y} = (\mathbf{y}_1, \dots, \mathbf{y}_n)^{\top} \in \mathbb{R}^{n \times d} \sim p_Y.$$

$$\widehat{W}_{p}(\mathbf{X}, \mathbf{Y}) = \left(\frac{1}{n} \sum_{i=1}^{n} \left\| \mathbf{x}_{i} - \widehat{\phi}\left(\mathbf{x}_{i}\right) \right\|^{p}\right)^{1/p}$$
(2)

Wasserstein Distance

▶ *p*-order Wasserstein distance:

$$W_p\left(p_X,p_Y
ight) = \left(\int_{\mathbb{R}^d} \|X-\phi^*(X)\|^p \; \mathrm{d}p_X
ight)^{1/p}$$
 (1)

► Estimate $W_p(p_X, p_Y)$:

$$\mathbf{X} = (\boldsymbol{x}_1, \dots, \boldsymbol{x}_n)^{\top} \in \mathbb{R}^{n \times d} \sim p_X, \mathbf{Y} = (\boldsymbol{y}_1, \dots, \boldsymbol{y}_n)^{\top} \in \mathbb{R}^{n \times d} \sim p_Y.$$

$$\widehat{W}_{p}(\mathbf{X}, \mathbf{Y}) = \left(\frac{1}{n} \sum_{i=1}^{n} \left\| \mathbf{x}_{i} - \widehat{\phi}\left(\mathbf{x}_{i}\right) \right\|^{p}\right)^{1/p}$$
(2)

Wasserstein distance between 2 Gaussians have a closed-form solution.

Projection Pursuit

Projection pursuit regression is widely-used for high-dimensional nonparametric regression models:

$$z_i = \sum_{j=1}^{s} f_j \left(\boldsymbol{\beta}_j^{\top} \boldsymbol{x}_i \right) + \epsilon_i, \quad i = 1, \dots, n$$
 (3)

- \triangleright s: hyper-parameter,
- ▶ $\{z_i\}_{i=1}^n \in \mathbb{R}$: univariate response,
- $\blacktriangleright \{x_i\}_{i=1}^n \in \mathbb{R}^d$: covariates,
- \blacktriangleright $\{\epsilon_i\}_{i=1}^n$: i.i.d. normal errors.

Projection Pursuit

- ▶ Given response $\{z_i\}$ and covariates $\{x_i\}$.
- lacksquare Aim: to estimate $\{f_j\}_{j=1}^s:\mathbb{R} o \mathbb{R}$ and $\{eta_j\}_{j=1}^s\in\mathbb{R}^d$.

Projection Pursuit

- ▶ Given response $\{z_i\}$ and covariates $\{x_i\}$.
- $lackbox{ Aim: to estimate } \{f_j\}_{j=1}^s:\mathbb{R}\to\mathbb{R} \text{ and } \{eta_j\}_{j=1}^s\in\mathbb{R}^d.$
- Solution: In the k th iteration (k = 2, ..., s), we find f_k by fitting a 1-d regression model with the current residuals:
 - $lacksquare R_i^{[k]} = z_i \sum_{j=1}^{k-1} \widehat{f}_j\left(\widehat{eta}_i^ op m{x}_i
 ight), i=1,\ldots,n.$
 - $ightharpoonup (f_k, \beta_k)$ can be estimated by solving the least squares problem

$$\min_{f_k,oldsymbol{eta}_k} \sum_{i=1}^n \left[oldsymbol{R}_i^{[k]} - f_k \left(oldsymbol{eta}_k^ op oldsymbol{x}_i
ight)
ight]^2.$$

Projection Pursuit for OT

In the *k* th iteration:

- ► Seek a new projection direction for the 1-d OTM in the subspace spanned by the residuals of the previously k− 1 directions.
- ► A direction in the span of used ones can lead to an inefficient 1-d OTM.

Projection Pursuit for OT

In the *k* th iteration:

- ► Seek a new projection direction for the 1-d OTM in the subspace spanned by the residuals of the previously k− 1 directions.
- ► A direction in the span of used ones can lead to an inefficient 1-d OTM.
- ► Choose the direction that explains the highest proportion of variations in the subspace.
- ▶ (Similar to forward variable selection in step-wise regression).

Projection Pursuit for OT

In the *k* th iteration:

- ► Seek a new projection direction for the 1-d OTM in the subspace spanned by the residuals of the previously k− 1 directions.
- ► A direction in the span of used ones can lead to an inefficient 1-d OTM.
- ► Choose the direction that explains the highest proportion of variations in the subspace.
- ▶ (Similar to forward variable selection in step-wise regression).

We estimate this most "informative" direction with sufficient dimension reduction techniques.

Sufficient Dimension Reduction for Regression

- \triangleright Z: univariate response.
- ► *X*: *d*-dimensional predictor.
- ► Goal: to reduce the dimension of *X* while preserving its regression relation with *Z*

Sufficient Dimension Reduction for Regression

- ► Z: univariate response.
- ► *X*: *d*-dimensional predictor.
- ► Goal: to reduce the dimension of X while preserving its regression relation with Z \Leftrightarrow to seek $\mathbf{B} \in \mathbb{R}^{d \times q}$ $(q \leq d)$ s.t. $Z \perp \!\!\! \perp X \mid \mathbf{B}^{\top} X$. $(Z \text{ depends on } X \text{ only through } \mathbf{B}^T X.)$

Sufficient Dimension Reduction for Regression

- ► Z: univariate response.
- ► *X*: *d*-dimensional predictor.
- ► Goal: to reduce the dimension of X while preserving its regression relation with Z \Leftrightarrow to seek $\boldsymbol{B} \in \mathbb{R}^{d \times q}$ ($q \leq d$) s.t. $Z \perp \!\!\! \perp X \mid \boldsymbol{B}^{\top} X$. (Z depends on X only through $\boldsymbol{B}^T X$.)
- ▶ sliced inverse regression (SIR), sliced average variance estimator (SAVE), directional regression (DR), etc.

- ► Introduction
- ► Background
- ► Projection Pursuit Monge Map Method
- ► Theoretical Results
- **▶** Experiments
- ► Extensions and Summary

Estimate the most "Informative" Projection Direction

▶ The direction ξ is most "informative" when the projected samples $X\xi$ and $Y\xi$ have the largest "discrepancy."

Estimate the most "Informative" Projection Direction

- ▶ The direction ξ is most "informative" when the projected samples $X\xi$ and $Y\xi$ have the largest "discrepancy."
- ► The metric of the "discrepancy" depends on the choice of the sufficient dimension reduction technique.
 - ▶ When using SAVE (sliced average variance estimator) for calculating B, the "discrepancy" metric is the difference between $Var(X\xi)$ and $Var(Y\xi)$.

Select the most "Informative" Projection Direction with SAVE

Algorithm 1 Select the most "informative" projection direction using SAVE

Input: two standardized matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ and $\mathbf{Y} \in \mathbb{R}^{n \times d}$

Step 1: calculate $\widehat{\Sigma} \in \mathbb{R}^{d \times d}$, i.e., the sample variance-covariance matrix of $\begin{pmatrix} \mathbf{X} \\ \mathbf{Y} \end{pmatrix}$

Step 2: calculate the sample variance-covariance matrices of $\mathbf{X}\widehat{\boldsymbol{\Sigma}}^{-1/2}$ and $\mathbf{Y}\widehat{\boldsymbol{\Sigma}}^{-1/2}$, denoted as $\widehat{\boldsymbol{\Sigma}}_1 \in \mathbb{R}^{d \times d}$ and $\widehat{\boldsymbol{\Sigma}}_2 \in \mathbb{R}^{d \times d}$, respectively

Step 3: calculate the eigenvector $\boldsymbol{\xi} \in \mathbb{R}^d$, which corresponding to the largest eigenvalue of the matrix $((\widehat{\Sigma}_1 - I_d)^2 + (\widehat{\Sigma}_2 - I_d)^2)/4$

Output: the final result is given by $\widehat{\Sigma}^{-1/2}\xi/||\widehat{\Sigma}^{-1/2}\xi||$, where $||\cdot||$ denotes the Euclidean norm

Theory of SAVE shows that Algorithm 1 can consistently estimate the most "informative" projection direction.

Projection Pursuit Monge Map Algorithm

Algorithm 2 Projection pursuit Monge map (PPMM)

Input: two matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ and $\mathbf{Y} \in \mathbb{R}^{n \times d}$ $k \leftarrow 0, \mathbf{X}^{[0]} \leftarrow \mathbf{X}$

repeat

- (a) calculate the projection direction $\xi_k \in \mathbb{R}^d$ between $\mathbf{X}^{[k]}$ and \mathbf{Y} (using Algorithm 1)
- (b) find the one-dimensional OTM $\phi^{(k)}$ that matches $\mathbf{X}^{[k]}\boldsymbol{\xi}_k$ to $\mathbf{Y}\boldsymbol{\xi}_k$ (using look-up table)
- (c) $\mathbf{X}^{[k+1]} \leftarrow \mathbf{X}^{[k]} + (\phi^{(k)}(\mathbf{X}^{[k]}\boldsymbol{\xi}_k) \mathbf{X}^{[k]}\boldsymbol{\xi}_k)\boldsymbol{\xi}_k^\mathsf{T}$ and $k \leftarrow k+1$ until converge

The final estimator is given by $\widehat{\phi}: \mathbf{X} \to \mathbf{X}^{[k]}$

Projection Pursuit Monge Map Algorithm

Algorithm 2 Projection pursuit Monge map (PPMM)

```
Input: two matrix \mathbf{X} \in \mathbb{R}^{n \times d} and \mathbf{Y} \in \mathbb{R}^{n \times d} k \leftarrow 0, \mathbf{X}^{[0]} \leftarrow \mathbf{X} repeat

(a) calculate the projection direction \boldsymbol{\xi}_k \in \mathbb{R}^d between \mathbf{X}^{[k]} and \mathbf{Y} (using Algorithm 1)

(b) find the one-dimensional OTM \phi^{(k)} that matches \mathbf{X}^{[k]}\boldsymbol{\xi}_k to \mathbf{Y}\boldsymbol{\xi}_k (using look-up table)

(c) \mathbf{X}^{[k+1]} \leftarrow \mathbf{X}^{[k]} + (\phi^{(k)}(\mathbf{X}^{[k]}\boldsymbol{\xi}_k) - \mathbf{X}^{[k]}\boldsymbol{\xi}_k)\boldsymbol{\xi}_k^\mathsf{T} and k \leftarrow k+1

until converge

The final estimator is given by \hat{\phi}: \mathbf{X} \rightarrow \mathbf{X}^{[k]}
```

Assume Alg 2 converges in *K* iterations:

Memory cost: $\mathcal{O}(Knd^2)$.

Computational cost:

- ▶ Step (a): $\mathcal{O}(nd^2)$ (Alg 1); step (b): $\mathcal{O}(n\log(n))$ (sorting).
- ▶ Overall: $\mathcal{O}(Knd^2 + Knlog(n))$.

- ► Introduction
- ► Background
- ► Projection Pursuit Monge Map Method
- ► Theoretical Results
- Experiments
- Extensions and Summary

Weak Convergence of PPMM Algorithm

Denote ϕ^* as the *d*-dimensional optimal transport map from p_X to p_Y and $\phi^{(K)}$ as the PPMM estimator after *K* iterations, i.e. $\phi^{(K)}(\mathbf{X}) = \mathbf{X}^{[K]}$.

Theorem

Let $K \ge Cd$ *for some large enough positive constant C, one has*

$$\widehat{W}_p\left(\phi^{(K)}(\mathbf{X}),\mathbf{X}
ight) o W_p\left(\phi^*(X),X
ight), \quad ext{ and } \quad \phi^{(K)}(\mathbf{X}) o \phi^*(X) \quad ext{ as } \quad n o \infty.$$

- ► Introduction
- ► Background
- ► Projection Pursuit Monge Map Method
- ► Theoretical Results
- Experiments
- Extensions and Summary

Estimation of OTM: \hat{W}

- $\mathbf{X} = (\mathbf{x}_1, \dots, \mathbf{x}_n)^{\top} \stackrel{\text{i.i.d}}{\sim} p_X = \mathcal{N}_d(-\mathbf{2}, \mathbf{\Sigma}_X), \text{ where } \mathbf{\Sigma}_X = 0.8^{|i-j|} \ (i, j = 1, \dots, d).$
- $ightharpoonup \mathbf{Y} = (\boldsymbol{y}_1, \dots, \boldsymbol{y}_n)^{\top} \overset{\text{i.i.d}}{\sim} p_Y = \mathcal{N}_d(\mathbf{2}, \boldsymbol{\Sigma}_Y), \text{ where } \boldsymbol{\Sigma}_Y = 0.5^{|i-j|} \ (i, j = 1, \dots, d).$

We apply PPMM to estimate the OTM between p_X and p_Y from $\{x_i\}_{i=1}^n$ and $\{y_i\}_{i=1}^n$:

Estimation of OTM: Time

CPU Time Per Iteration:

	PPMM	RANDOM	SLICED(10)	SLICED(20)	SLICED(50)
d = 10	0.019 (0.008)	0.011 (0.008)	0.111 (0.019)	0.213 (0.024)	0.529 (0.031)
d = 20	0.027(0.011)	0.014 (0.008)	0.125 (0.027)	0.247 (0.033)	0.605 (0.058)
d = 50	0.059 (0.036)	0.015 (0.008)	0.171 (0.037)	0.338 (0.049)	0.863 (0.117)

Convergence Time:

	PPMM	RANDOM	SLICED(10)	AUCTIONBF	REVSIM	SHORTSIM
d = 10	0.6 (0.1)	4.8 (1.7)	23.0 (2.6)	99.7 (10.4)	40.2 (4.0)	42.5 (3.2)
d = 20	2.1 (0.3)	24.4 (3.2)	230.2 (28.4)	109.4 (12.5)	42.6 (5.3)	50.2 (6.6)
d = 50	5.5 (0.4)	-	-	125.5 (13.3)	46.5 (5.6)	56.5 (7.1)

Application to generative models

1. Manifold learning: map the training data from the original space $\mathcal{Z} \subset \mathbb{R}^d$ to a latent space $\mathcal{Z} \subset \mathbb{R}^{d^*}$ with $d^* \ll d$.

Application to generative models

1. Manifold learning: map the training data from the original space $\mathcal{X} \subset \mathbb{R}^d$ to a latent space $\mathcal{Z} \subset \mathbb{R}^{d^*}$ with $d^* \ll d$.

The probability distribution of the transformed data in \mathcal{Z} may not be convex, leading to the problem of mode collapse.

Application to generative models

- 1. Manifold learning: map the training data from the original space $\mathcal{X} \subset \mathbb{R}^d$ to a latent space $\mathcal{Z} \subset \mathbb{R}^{d^*}$ with $d^* \ll d$.

 The probability distribution of the transformed data in \mathcal{Z} may not be convex, leading to the problem of mode collapse.
- 2. Probability transformation: transporting the distribution in \mathcal{Z} to the uniform distribution $U([0,1]^{d^*})$.

Results of Application to Generative Model

We use the "Frechet Inception Distance" (FID) to quantify the similarity between the generated fake sample and the training sample.

- ► MINST
- ► Google doodle dataset

	PPMM	RANDOM	SLICED(10)	SLICED(20)	SLICED(50)
MNIST	0.17 (0.01)	4.62 (0.02)	2.98 (0.01)	3.04 (0.01)	3.12 (0.01)
Doodle (face)	0.59 (0.09)	8.78 (0.04)	5.69 (0.01)	6.01 (0.01)	5.52 (0.01)
Doodle (cat)	0.24 (0.03)	8.93 (0.03)	5.99 (0.01)	5.26 (0.01)	5.33 (0.01)
Doodle (bird)	0.36 (0.03)	7.81 (0.03)	5.44 (0.01)	5.50 (0.01)	4.98 (0.01)

- ► Introduction
- ► Background
- ► Projection Pursuit Monge Map Method
- ► Theoretical Results
- **▶** Experiments
- ► Extensions and Summary

Extensions and Summary

Extensions:

- ▶ Points in source and target samples have non-equal weights.
- ► Source sample and target sample have different sizes.

Summary...