### Коллоквиум по алгебре ФКН ПИ 1 курс

### Арунова Анастасия

### Содержание

| 1- | -й модуль   |                                                                              |    |
|----|-------------|------------------------------------------------------------------------------|----|
| 1  | Определения |                                                                              |    |
|    | 1.1         | Дать определение умножения матриц. Коммутативна ли эта операция?             | 11 |
|    | 1.2         | Дать определения ступенчатого вида матрицы и канонического (улучшенного сту- |    |
|    |             | пенчатого) вида матрицы.                                                     | 11 |
|    | 1.3         | Перечислить элементарные преобразования строк матрицы                        | 11 |
|    | 1.4         | Сформулировать теорему о методе Гаусса                                       | 12 |
|    | 1.5         | Дать определения перестановки и подстановки                                  | 12 |
|    | 1.6         | Выписать общую формулу для вычисления определителя произвольного порядка     | 12 |
|    | 1.7         | Выписать формулы для разложения определителя по строке и по столбцу          | 12 |
|    | 1.8         | Выписать формулы Крамера для квадратной матрицы произвольного порядка. Ко-   |    |
|    |             | гда с их помощью можно найти решение СЛАУ?                                   | 13 |
|    | 1.9         | Дать определение обратной матрицы. Сформулировать критерий её существования. | 13 |
|    | 1.10        | Выписать формулу для нахождения обратной матрицы                             | 13 |
|    | 1.11        | Выписать формулу для матрицы обратной к произведению двух матриц             | 13 |
|    | 1.12        | Дать определение минора.                                                     | 13 |
|    | 1.13        | Дать определение базисного минора. Какие строки называются базисными?        | 13 |
|    | 1.14        | Дать определение ранга матрицы                                               | 14 |
|    | 1.15        | Дать определение линейной комбинации строк. Что такое нетривиальная линейная |    |
|    |             | комбинация?                                                                  | 14 |
|    | 1.16        | Дать определение линейной зависимости строк матрицы                          | 14 |
|    | 1.17        | Дать определение линейно независимых столбцов матрицы                        | 14 |

|    | 1.18 | Сформулировать критерий линейной зависимости                                    | 14         |
|----|------|---------------------------------------------------------------------------------|------------|
|    | 1.19 | Сформулировать теорему о базисном миноре                                        | 14         |
|    | 1.20 | Сформулировать теорему о ранге матрицы.                                         | 15         |
|    | 1.21 | Сформулировать критерий невырожденности квадратной матрицы                      | 15         |
|    | 1.22 | Сформулировать теорему Кронекера-Капелли                                        | 15         |
| 2  | Док  | сазательства                                                                    | 16         |
|    | 2.1  | Что происходит с произведением матриц при транспонировании?                     | 16         |
|    | 2.2  | Сформулировать и доказать утверждение о том, что кососимметричность для ли-     |            |
|    |      | нейной функции эквивалентна обнулению на паре совпадающих элементов             | 16         |
|    | 2.3  | Какие три условия достаточно наложить на функцию от столбцов матрицы, чтобы     |            |
|    |      | она обязательно была детерминантом?                                             | 16         |
|    | 2.4  | Чему равен определитель произведения двух квадратных матриц?                    | 17         |
|    | 2.5  | Выписать формулы Крамера для квадратной матрицы произвольного порядка и до-     |            |
|    |      | казать их                                                                       | 18         |
|    | 2.6  | Сформулировать и доказать критерий существования обратной матрицы               | 18         |
|    | 2.7  | Сформулировать и доказать критерий линейной зависимости                         | 19         |
|    | 2.8  | Как связан ранг транспонированной матрицы с рангом исходной матрицы?            | 19         |
|    | 2.9  | Сформулировать и доказать следствие теоремы о базисном миноре для квадратных    |            |
|    |      | матриц (критерий невырожденности).                                              | 20         |
|    | 2.10 | Сформулируйте и докажите теорему о базисном миноре.                             | 20         |
|    | 2.11 | Сформулируйте и докажите теорему о ранге матрицы                                | 21         |
|    | 2.12 | Сформулируйте теорему Кронекера-Капелли и докажите её                           | 22         |
| 2- | й мо | одуль                                                                           | 24         |
| 1  | Опр  | ределения                                                                       | <b>2</b> 4 |
|    | 1.1  | Дать определение фундаментальной системы решений (ФСР) однородной СЛАУ          | 24         |
|    | 1.2  | Сформулируйте теорему о структуре общего решения однородной СЛАУ                | 24         |
|    | 1.3  | Сформулируйте теорему о структуре общего решения неоднородной системы линей-    |            |
|    |      | ных алгебраических уравнений                                                    | 24         |
|    | 1.4  | Дайте определения модуля и аргумента комплексного числа. Что такое главное зна- |            |
|    |      | чение аргумента комплексного числа?                                             | 24         |
|    | 1.5  | Что происходит с аргументами и модулями комплексных чисел при умножении и       |            |
|    |      | при делении?                                                                    | 25         |
|    | 1.6  | Вышищите формулу Муавра                                                         | 25         |

|   | 1.7  | Как найти комплексные корни $n$ -ой степени из комплексного числа? Сделайте эскиз, |    |
|---|------|------------------------------------------------------------------------------------|----|
|   |      | на котором отметьте исходное число и все корни из него                             | 25 |
|   | 1.8  | Сформулируйте основную теорему алгебры. Сформулируйте теорему Безу                 | 26 |
|   | 1.9  | Какие многочлены называются неприводимыми?                                         | 26 |
|   | 1.10 | Сформулируйте утверждение о разложении многочленов на неприводимые множи-          |    |
|   |      | тели над полем комплексных чисел                                                   | 26 |
|   | 1.11 | Сформулируйте утверждение о разложении многочленов на неприводимые множи-          |    |
|   |      | тели над действительными числами                                                   | 27 |
|   | 1.12 | Дайте определение векторного произведения векторов в трёхмерном пространстве .     | 27 |
|   | 1.13 | Выпишите формулу для вычисления векторного произведения в координатах, задан-      |    |
|   |      | ных в ортонормированном базисе                                                     | 27 |
|   | 1.14 | Что такое уравнение поверхности и его геометрический образ?                        | 27 |
|   | 1.15 | Сформулируйте теорему о том, что задает любое линейное уравнение на координаты     |    |
|   |      | точки в трехмерном пространстве.                                                   | 27 |
|   | 1.16 | Что такое нормаль плоскости?                                                       |    |
| 2 | Док  | сазательства                                                                       | 29 |
|   | 2.1  | Сформулируйте теорему о структуре общего решения неоднородной системы линей-       |    |
|   |      | ных алгебраических уравнений и докажите её.                                        | 29 |
|   | 2.2  | Выпишите формулу Муавра и докажите её                                              | 29 |
|   | 2.3  | Докажите, что если у многочлена с вещественными коэффициентами есть корень с       |    |
|   |      | ненулевой мнимой частью, то число, комплексно сопряжённое к этому корню, также     |    |
|   |      | будет корнем этого многочлена                                                      | 30 |
|   | 2.4  | Выпишите формулу для вычисления векторного произведения в правом ортонорми-        |    |
|   |      | рованном базисе трехмерного пространства и приведите её вывод                      | 30 |
|   | 2.5  | Докажите теорему о том, что любое линейное уравнение на координаты точки в         |    |
|   |      | трехмерном пространстве задает плоскость и что любая плоскость определяется ли-    |    |
|   |      | нейным уравнением                                                                  | 31 |
|   | 2.6  | Дайте определение фундаментальной системы решений (ФСР) однородной системы         |    |
|   |      | линейных уравнений. Докажите теорему о существовании ФСР                           | 31 |
|   | 2.7  | Сформулируйте критерий существования ненулевого решения однородной системы         |    |
|   |      | линейных уравнений с квадратной матрицей и докажите его                            | 34 |
|   | 2.8  | Докажите теорему о структуре общего решения однородной системы линейных ал-        |    |
|   |      | гебраических уравнений.                                                            | 34 |

| 3- | 3-й модуль |                                                                               |    |
|----|------------|-------------------------------------------------------------------------------|----|
| 1  | Опр        | ределения                                                                     | 37 |
|    | 1.1        | Какие бинарные операции называются ассоциативными, а какие коммутативными? .  | 37 |
|    | 1.2        | Дайте определения полугруппы и моноида. Приведите примеры                     | 37 |
|    | 1.3        | Сформулируйте определение группы. Приведите пример                            | 37 |
|    | 1.4        | Что такое симметрическая группа? Укажите число элементов в ней                | 37 |
|    | 1.5        | Что такое общая линейная и специальная линейная группы?                       | 38 |
|    | 1.6        | Сформулируйте определение абелевой группы. Приведите пример                   | 38 |
|    | 1.7        | Дайте определение подгруппы. Приведите пример группы и её подгруппы           | 38 |
|    | 1.8        | Дайте определение гомоморфизма групп. Приведите пример                        | 38 |
|    | 1.9        | Дайте определение изоморфизма групп. Приведите пример                         | 38 |
|    | 1.10       | Дайте определение порядка элемента                                            | 39 |
|    | 1.11       | Сформулируйте определение циклической группы. Приведите пример                | 39 |
|    | 1.12       | Сколько существует, с точностью до изоморфизма, циклических групп данного по- |    |
|    |            | рядка?                                                                        | 39 |
|    | 1.13       | Что такое ядро гомоморфизма групп? Приведите пример                           | 39 |
|    | 1.14       | Сформулируйте утверждение о том, какими могут быть подгруппы группы целых     |    |
|    |            | чисел по сложению.                                                            | 39 |
|    | 1.15       | Дайте определение левого смежного класса по некоторой подгруппе               | 40 |
|    | 1.16       | Дайте определение нормальной подгруппы                                        | 40 |
|    | 1.17       | Что такое индекс подгруппы?                                                   | 40 |
|    | 1.18       | Сформулируйте теорему Лагранжа                                                | 40 |
|    | 1.19       | Сформулируйте три следствия из теоремы Лагранжа                               | 40 |
|    | 1.20       | Сформулируйте критерий нормальности подгруппы, использующий сопряжение        | 40 |
|    | 1.21       | Сформулируйте определение простой группы                                      | 41 |
|    | 1.22       | Дайте определение факторгруппы                                                | 41 |
|    | 1.23       | Что такое естественный гомоморфизм?                                           | 41 |
|    | 1.24       | Сформулируйте критерий нормальности подгруппы, использующий понятие ядра      |    |
|    |            | гомоморфизма                                                                  | 41 |
|    | 1.25       | Сформулируйте теорему о гомоморфизме групп. Приведите пример                  | 41 |
|    | 1.26       | Что такое прямое произведение групп?                                          | 41 |
|    | 1.27       | Сформулируйте определение автоморфизма и внутреннего автоморфизма             | 42 |
|    | 1.28       | Что такое центр группы? Приведите пример                                      | 42 |
|    | 1.29       | Что можно сказать про факторгруппу группы по её центру?                       | 42 |
|    | 1.30       | Сформулируйте теорему Кэли                                                    | 42 |

| 1.31 | Дайте определение кольца                                                        | 42 |
|------|---------------------------------------------------------------------------------|----|
| 1.32 | Что такое коммутативное кольцо? Приведите примеры коммутативного и некомму-     |    |
|      | тативного колец                                                                 | 42 |
| 1.33 | Дайте определение делителей нуля                                                | 43 |
| 1.34 | Какие элементы кольца называются обратимыми?                                    | 43 |
| 1.35 | Дайте определение поля. Приведите три примера.                                  | 43 |
| 1.36 | Дайте определение подполя. Привести пример пары: поле и его подполе             | 43 |
| 1.37 | Дайте определение характеристики поля. Привести примеры: поля конечной поло-    |    |
|      | жительной характеристики и поля нулевой характеристики                          | 43 |
| 1.38 | Сформулируйте утверждение о том, каким будет простое подполе в зависимости от   |    |
|      | характеристики.                                                                 | 44 |
| 1.39 | Дайте определение идеала. Что такое главный идеал?                              | 44 |
| 1.40 | Сформулируйте определение гомоморфизма колец                                    | 44 |
| 1.41 | Сформулируйте теорему о гомоморфизме колец. Приведите пример                    | 44 |
| 1.42 | Сформулируйте критерий того, что кольцо вычетов по модулю $n$ является полем    | 44 |
| 1.43 | Сформулируйте теорему о том, когда факторкольцо кольца многочленов над полем    |    |
|      | само является полем                                                             | 45 |
| 1.44 | Дайте определение алгебраического элемента над полем                            | 45 |
| 1.45 | Сформулируйте утверждение о том, что любое конечное поле может быть реализо-    |    |
|      | вано как факторкольцо кольца многочленов по некоторому идеалу                   | 45 |
| 1.46 | Дайте определение линейного (векторного) пространства                           | 45 |
| 1.47 | Дайте определение базиса линейного (векторного) пространства                    | 46 |
| 1.48 | Что такое размерность пространства?                                             | 46 |
| 1.49 | Дайте определение матрицы перехода от старого базиса линейного пространства к   |    |
|      | новому.                                                                         | 46 |
| 1.50 | Выпишите формулу для описания изменения координат вектора при изменении базиса. | 46 |
| 1.51 | Дайте определение подпространства в линейном пространстве                       | 46 |
| 1.52 | Дайте определения линейной оболочки конечного набора векторов и ранга системы   |    |
|      | векторов.                                                                       | 47 |
| 1.53 | Дайте определения суммы и прямой суммы подпространств                           | 47 |
| 1.54 | Сформулируйте утверждение о связи размерности суммы и пересечения подпро-       |    |
|      | странств.                                                                       | 47 |
| 1.55 | Дайте определение билинейной формы                                              | 47 |
| 1.56 | Как меняется матрица билинейной формы при замене базиса? Как меняется матрица   |    |
|      | квадратичной формы при замене базиса?                                           | 47 |

| 2 | Док  | азательства                                                                    | 48 |
|---|------|--------------------------------------------------------------------------------|----|
|   | 2.1  | Сформулируйте и докажите утверждение о связи порядка элемента, порождающего    |    |
|   |      | циклическую группу, с порядком группы.                                         | 48 |
|   | 2.2  | Сформулируйте и докажите утверждение о том, какими могут быть подгруппы груп-  |    |
|   |      | пы целых чисел по сложению                                                     | 48 |
|   | 2.3  | Сформулируйте и докажите теорему Лагранжа (включая две леммы)                  | 48 |
|   | 2.4  | Докажите, что гомоморфизм инъективен тогда и только тогда, когда его ядро три- |    |
|   |      | виально                                                                        | 49 |
|   | 2.5  | Сформулируйте и докажите критерий нормальности подгруппы, использующий со-     |    |
|   |      | пряжение                                                                       | 50 |
|   | 2.6  | Сформулируйте и докажите критерий нормальности подгруппы, использующий по-     |    |
|   |      | нятие ядра гомоморфизма                                                        | 50 |
|   | 2.7  | Сформулируйте и докажите теорему о гомоморфизме групп                          | 51 |
|   | 2.8  | Докажите, что центр группы является её нормальной подгруппой                   | 51 |
|   | 2.9  | Сформулируйте и докажите утверждение о том, чему изоморфна факторгруппа        |    |
|   |      | группы по её центру.                                                           | 52 |
|   | 2.10 | Сформулируйте и докажите теорему Кэли                                          | 52 |
|   | 2.11 | Докажите, что характеристика поля может быть либо простым числом, либо нулем.  | 52 |
|   | 2.12 | Сформулируйте и докажите утверждение о том, каким будет простое подполе в за-  |    |
|   |      | висимости от характеристики                                                    | 53 |
|   | 2.13 | Сформулируйте и докажите критерий того, что кольцо вычетов по модулю п явля-   |    |
|   |      | ется полем.                                                                    | 53 |
|   | 2.14 | Докажите, что ядро гомоморфизма колец является идеалом                         | 54 |
|   | 2.15 | Сформулируйте и докажите утверждение о том, когда факторкольцо кольца много-   |    |
|   |      | членов над полем само является полем                                           | 54 |
|   | 2.16 | Выпишите и докажите формулу для описания изменения координат вектора при       |    |
|   |      | изменении базиса                                                               | 54 |
|   | 2.17 | Выпишите формулу для преобразования матрицы билинейной формы при замене        |    |
|   |      | базиса и докажите её                                                           | 55 |
|   | 2.18 | Сформулируйте и докажите теорему о гомоморфизме колец                          | 55 |
|   | 2.19 | Что такое сумма и прямая сумма подпространств? Сформулируйте и докажите кри-   |    |
|   |      | терий того, что сумма подпространств является прямой                           | 56 |
|   | 2.20 | Сформулируйте и докажите утверждение о связи размерности суммы и пересечения   |    |
|   |      | подпространств.                                                                | 56 |

| 1- | и мо | одуль                                                                           | 58        |
|----|------|---------------------------------------------------------------------------------|-----------|
| L  | Опр  | ределения                                                                       | <b>58</b> |
|    | 1.1  | Дайте определение квадратичной формы.                                           | 58        |
|    | 1.2  | Дайте определения положительной и отрицательной определенности квадратичной     |           |
|    |      | формы.                                                                          | 58        |
|    | 1.3  | Дайте определения канонического и нормального вида квадратичной формы           | 58        |
|    | 1.4  | Сформулируйте критерий Сильвестра и его следствие                               | 58        |
|    | 1.5  | Сформулируйте закон инерции квадратичных форм. Что такое индексы инерции? .     | 59        |
|    | 1.6  | Дайте определение линейного отображения. Приведите пример                       | 59        |
|    | 1.7  | Дайте определение матрицы линейного отображения                                 | 59        |
|    | 1.8  | Выпишите формулу для преобразования матрицы линейного отображения при за-       |           |
|    |      | мене базисов. Как выглядит формула в случае линейного оператора?                | 60        |
|    | 1.9  | Сформулируйте утверждение о связи размерностей ядра и образа линейного отоб-    |           |
|    |      | ражения                                                                         | 60        |
|    | 1.10 | Дайте определения собственного вектора и собственного значения линейного опера- |           |
|    |      | тора                                                                            | 60        |
|    | 1.11 | Дайте определения характеристического уравнения и характеристического много-    |           |
|    |      | члена квадратной матрицы.                                                       | 61        |
|    | 1.12 | Сформулируйте утверждение о связи характеристического уравнения и спектра ли-   |           |
|    |      | нейного оператора                                                               | 61        |
|    | 1.13 | Дайте определение собственного подпространства                                  | 61        |
|    | 1.14 | Дайте определения алгебраической и геометрической кратности собственного значе- |           |
|    |      | ния. Какое неравенство их связывает?                                            | 61        |
|    | 1.15 | Каким свойством обладают собственные векторы линейного оператора, отвечающие    |           |
|    |      | различным собственным значениям?                                                | 61        |
|    | 1.16 | Сформулируйте критерий диагональности матрицы оператора                         | 62        |
|    | 1.17 | Сформулируйте критерий диагонализируемости матрицы оператора с использова-      |           |
|    |      | нием понятия геометрической кратности                                           | 62        |
|    | 1.18 | Дайте определение евклидова пространства                                        | 62        |
|    |      | Выпишите неравенства Коши-Буняковского и треугольника                           | 62        |
|    | 1.20 | Дайте определения ортогонального и ортонормированного базисов                   | 62        |
|    | 1.21 | Дайте определение матрицы Грама                                                 | 62        |
|    | 1.22 | Выпишите формулу для вычисления скалярного произведения векторов, заданных      |           |
|    |      | своими координатами в произвольном базисе трехмерного пространства              | 63        |
|    | 1.23 | Выпишите формулу для преобразования матрицы Грама при переходе к новому базису. | 63        |

| <b>2</b> | Док  | азательства                                                                     | 69 |
|----------|------|---------------------------------------------------------------------------------|----|
|          | 1.48 | Что можно сказать про ортогональное дополнение к образу сопряженного оператора? | 68 |
|          |      | Дайте определение биортогонального базиса                                       | 68 |
|          |      | Дайте определение взаимных базисов                                              | 68 |
|          |      | гому базису                                                                     | 68 |
|          | 1.45 | Выпишите формулу для преобразования координат ковектора при переходе к дру-     |    |
|          | 1.44 | Дайте определение сопряжённого пространства                                     | 68 |
|          | 1.43 | Сформулируйте утверждение о полярном разложении                                 | 67 |
|          | 1.42 | Сформулируйте теорему о сингулярном разложении                                  | 67 |
|          | 1.41 | Сформулируйте утверждение о QR-разложении                                       | 67 |
|          |      | при помощи ортогональной замены координат.                                      | 67 |
|          | 1.40 | Сформулируйте теорему о приведении квадратичной формы к диагональному виду      |    |
|          |      | из собственных векторов                                                         | 67 |
|          | 1.39 | Сформулируйте теорему о существовании для самосопряженного оператора базиса     |    |
|          | 1.38 | Каков канонический вид ортогонального оператора? Сформулируйте теорему Эйлера.  | 66 |
|          | 1.37 | Сформулируйте критерий ортогональности оператора, использующий его матрицу      | 66 |
|          | 1.36 | Сформулируйте определение ортогонального оператора                              | 66 |
|          | 1.35 | Сформулируйте определение ортогональной матрицы                                 | 65 |
|          |      | ющие разным собственным значениям?                                              | 65 |
|          | 1.34 | Что можно сказать про собственные векторы самосопряженного оператора, отвеча-   |    |
|          | 1.33 | Каким свойством обладают собственные значения самосопряженного оператора?       | 65 |
|          | 1.32 | Как найти матрицу сопряженного оператора в произвольном базисе?                 | 65 |
|          | 1.31 | Дайте определение самосопряженного (симметрического) оператора                  | 65 |
|          | 1.30 | Дайте определение сопряженного оператора в евклидовом пространстве              | 65 |
|          |      | Грама                                                                           | 64 |
|          | 1.29 | Выпишите формулу для вычисления расстояния с помощью определителей матриц       |    |
|          |      | данное как линейная оболочка данного линейно независимого набора векторов       | 64 |
|          | 1.28 | Выпишите формулу для ортогональной проекции вектора на подпространство, за-     |    |
|          |      | нальной составляющей                                                            | 64 |
|          |      | Дайте определения ортогональной проекции вектора на подпространство и ортого-   |    |
|          | 1.26 | Дайте определение ортогонального дополнения                                     | 64 |
|          | 1.25 | Сформулируйте критерий линейной зависимости с помощью матрицы Грама             | 63 |
|          |      | ортогонализации Грама-Шмидта?                                                   | 63 |
|          | 1.24 | Как меняется определитель матрицы Грама (грамиан) при применении процесса       |    |

| 2.1  | Сформулируйте и докажите (включая лемму) теорему об инвариантности ранга мат-     |    |
|------|-----------------------------------------------------------------------------------|----|
|      | рицы квадратичной формы                                                           | 69 |
| 2.2  | Сформулируйте и докажите утверждение о связи размерностей ядра и образа ли-       |    |
|      | нейного отображения                                                               | 69 |
| 2.3  | Сформулируйте и докажите утверждение о связи характеристического уравнения и      |    |
|      | спектра линейного оператора.                                                      | 70 |
| 2.4  | Сформулируйте и докажите утверждение о том, каким свойством обладают соб-         |    |
|      | ственные векторы линейного оператора, отвечающие различным собственным зна-       |    |
|      | чениям                                                                            | 70 |
| 2.5  | Сформулируйте и докажите критерий диагональности матрицы оператора                | 71 |
| 2.6  | Каким свойством обладает оператор в $n$ -мерном вещественном пространстве, у ха-  |    |
|      | рактеристического многочлена которого есть $n$ различных действительных корней? . | 72 |
| 2.7  | Выпишите и докажите неравенство Коши–Буняковского. Выпишите и докажите нера-      |    |
|      | венство треугольника                                                              | 72 |
| 2.8  | Докажите теорему о том, что евклидово пространство можно представить в виде       |    |
|      | прямой суммы подпространства и его ортогонального дополнения                      | 73 |
| 2.9  | Выпишите формулу для преобразования матрицы Грама при переходе к новому бази-     |    |
|      | су и докажите её. Что происходит с определителем матрицы Грама при применении     |    |
|      | процесса ортогонализации Грама-Шмидта? Что можно сказать про знак определи-       |    |
|      | теля матрицы Грама? Ответы обоснуйте                                              | 74 |
| 2.10 | Сформулируйте и докажите критерий линейной зависимости набора векторов с по-      |    |
|      | мощью матрицы Грама                                                               | 75 |
| 2.11 | Выпишите формулу ортогональной проекции вектора на её подпространство, задан-     |    |
|      | ное как линейная оболочка данного линейного независимого набора векторов, и до-   |    |
|      | кажите её                                                                         | 75 |
| 2.12 | Докажите, что для любого оператора в конечномерном евклидовом пространстве        |    |
|      | существует единственный сопряженный оператор.                                     | 76 |
| 2.13 | Сформулируйте и докажите свойство собственных векторов самосопряженного опе-      |    |
|      | ратора, отвечающих разным собственным значениям                                   | 76 |
| 2.14 | Каким свойством обладают собственные значения самосопряженного оператора?         | 77 |
| 2.15 | Сформулируйте теорему о существовании для самосопряженного оператора базиса       |    |
|      | из собственных векторов. Приведите доказательство в случае различных веществен-   |    |
|      | ных собственных значений                                                          | 78 |
| 2.16 | Сформулируйте и докажите теорему о том, что ортогональный оператор переводит      |    |
|      | ортонормированный базис в ортонормированный. Верно ли обратно?                    | 78 |

| 2.  | 7 Сформулируйте и докажите критерий ортогональности оператора, использующий      |       |  |
|-----|----------------------------------------------------------------------------------|-------|--|
|     | его матрицу.                                                                     | . 79  |  |
| 2.  | 8 Сформулируйте и докажите утверждение о QR-разложении                           | . 80  |  |
| 2.  | 9 Сформулируйте и докажите теорему о сингулярном разложении                      | . 80  |  |
| 2.5 | О Сформулируйте и докажите теорему о полярном разложении                         | . 81  |  |
| 2.5 | 1 Выпишите и докажите формулу для преобразования координат ковектора при пере-   |       |  |
|     | ходе к другому базису.                                                           | . 82  |  |
| 2.5 | 2 Сформулируйте и докажите теорему о приведении квадратичных форм к диагональ-   |       |  |
|     | ному виду при помощи ортогональной замены координат                              | . 82  |  |
| 2.5 | З Что можно сказать про ортогональное дополнение к образу сопряженного оператора | a? 83 |  |
|     |                                                                                  |       |  |
| Лар | Тарсик 84                                                                        |       |  |
| -   |                                                                                  |       |  |

### 1-й модуль

#### 1 Определения

### 1.1 Дать определение умножения матриц. Коммутативна ли эта операция?

**Определение.** Рассмотрим A типа  $n \times p$  и B типа  $p \times k$ . Привидением матриц A и B называют матрицу C типа  $n \times k$  с элементами  $c_{ij} = \sum_{l=1}^p a_{il} \cdot b_{lj}, \, \forall i = \overline{1,n}, j = \overline{1,k}$ 

Замечание. Операция умножения матриц не является коммутативной.

Пример. 
$$A = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, \ B = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}$$
 
$$A \cdot B = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} = A$$
 
$$B \cdot A = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix} = B$$
 
$$A \cdot B \neq B \cdot A$$

## 1.2 Дать определения ступенчатого вида матрицы и канонического (улучшенного ступенчатого) вида матрицы.

**Определение.** Матрица M имеет ступенчатый вид, если номера столбцов первых ненулевых элементов всех строк (такие элементы будем называть ведущими) возрастают, а нулевые строки расположены в нижней части матрицы.

**Определение.** Матрица M имеет улучшенный ступенчатый (канонический) вид, если:

- 1) она имеет ступенчатый вид
- 2) все ведущие элементы равны 1
- 3) в столбце с ведущим элементом все остальные элементы равны 0

#### 1.3 Перечислить элементарные преобразования строк матрицы.

Определение. Элементарными преобразованиями строк матрицы называют:

1) умножение i-ой строки матрицы на  $\alpha \neq 0$ :

$$\alpha \cdot (i) \to (i)$$

2) перестановка двух строк в матрице:

$$(i) \leftrightarrow (k)$$

3) добавление к i-ой строке k-ой строки с коэффициентом  $\alpha$ :

$$(i) + \alpha \cdot (k) \rightarrow (i)$$

#### 1.4 Сформулировать теорему о методе Гаусса.

**Теорема.** Любую конечную матрицу можно элементарными преобразованиями привести к ступенчатому (каноническому) виду.

#### 1.5 Дать определения перестановки и подстановки.

**Определение.** Всякое расположение чисел  $1, \ldots, n$  в определённом порядке называют перестановкой  $\alpha = (\alpha_1, \ldots, \alpha_2)$ .

**Определение.** Подстановкой называется взаимно-однозначное отображение  $1, \ldots, n$  в себя:

$$\sigma = \begin{pmatrix} 1 & \dots & n \\ \sigma(1) & \dots & \sigma(n) \end{pmatrix}$$

Здесь  $(\sigma(1), \ldots, \sigma(n))$  – перестановка.

### 1.6 Выписать общую формулу для вычисления определителя произвольного порядка.

**Определение.** Определителем (детерминантом) порядка n, соответствующим квадратной матрице A называется число, являющееся суммой n! слагаемых:

$$\det A = \sum_{\sigma \in S_n} \operatorname{sgn} \sigma \cdot a_{1\sigma(1)} \cdot a_{2\sigma(2)} \cdot \ldots \cdot a_{n\sigma(n)}$$

### 1.7 Выписать формулы для разложения определителя по строке и по столбцу.

Разложение по строке (столбцу):

Для любого фиксированного j справедливо:  $\det A = \sum_{i=1}^n a_{ij} A_{ij}$  – разложение по столбцу.

Для любого фиксированного i справедливо:  $\det A = \sum_{j=1}^n a_{ij} A_{ij}$  – разложение по строке.

## 1.8 Выписать формулы Крамера для квадратной матрицы произвольного порядка. Когда с их помощью можно найти решение СЛАУ?

**Теорема.** Пусть Ax = b совместная СЛАУ, тогда:

$$x_i \cdot \det A = \Delta_i$$

$$\Delta_i = \det(A_1, ..., A_{i-1}, b, A_{i+1}, ..., A_n)$$

Если 
$$\det A \neq 0$$
, то  $x_i = \frac{\Delta_i}{\det A}$ ,  $i = \overline{1, n}$ .

## 1.9 Дать определение обратной матрицы. Сформулировать критерий её существования.

**Определение.** Обратной к квадратной матрице  $A \in M_n(\mathbb{R})$  называется матрица

$$A^{-1}: A \cdot A^{-1} = E = A^{-1} \cdot A$$

**Теорема.**  $\exists A^{-1} \Leftrightarrow \det A \neq 0$ .

#### 1.10 Выписать формулу для нахождения обратной матрицы.

Формула: 
$$A^{-1} = \frac{1}{\det A} \cdot \widetilde{A}$$
.

## 1.11 Выписать формулу для матрицы обратной к произведению двух матриц.

Формула: 
$$(A \cdot B)^{-1} = B^{-1} \cdot A^{-1}$$
.

#### 1.12 Дать определение минора.

**Определение.** Минором k-го порядка матрицы A называют определитель матрицы, составленной из элементов, стоящих на пересечении произвольных k строк и k столбцов из матрицы A.

### 1.13 Дать определение базисного минора. Какие строки называются базисными?

Определение. Любой отличный от нуля минор, порядок которого равен рангу, называется базисным минором матрицы. Строки, которые попали в базисный минор, называются базисными.

#### 1.14 Дать определение ранга матрицы.

Определение. Рангом матрицы называют наивысший порядок отличного от 0 минора.

Определение означает, что:

- 1)  $\exists M^{j1\ldots jr}_{i1\ldots ir} \neq 0$  (минор r-го порядка  $r = \operatorname{Rg} A)$
- 2) все миноры порядков  $r+1, r+2, \ldots$  равны 0 (или не существуют).

### 1.15 Дать определение линейной комбинации строк. Что такое нетривиальная линейная комбинация?

**Определение.** Линейной комбинацией строк (или столбцов)  $a_1, \ldots, a_s$  одинаковой длины называют выражение вида:

$$lpha_1a_1+lpha_2a_2+\ldots+lpha_sa_s=\sum_{k=1}^slpha_ka_k$$
, где  $lpha_1,\ldots,lpha_s$  – некоторые числа

**Определение.** Линейная комбинация  $\alpha_1 a_1 + \alpha_2 a_2 + \ldots + \alpha_s a_s$  называется нетривиальной, если  $\alpha_1, \ldots, \alpha_s$  не все равны 0.

#### 1.16 Дать определение линейной зависимости строк матрицы.

**Определение.** Строки  $a_1, \ldots, a_s$  называют линейно зависимыми, если существуют числа  $\alpha_1, \ldots, \alpha_s$  не все равные 0, такие что  $\alpha_1 a_1 + \alpha_2 a_2 + \ldots + \alpha_s a_s = 0$ 

#### 1.17 Дать определение линейно независимых столбцов матрицы.

**Определение.** Если равенство  $\alpha_1 a_1 + \alpha_2 a_2 + \ldots + \alpha_s a_s = 0$  возможно только в случае, когда  $\alpha_1 = \ldots = \alpha_s = 0$ , то столбцы матрицы  $a_1, \ldots, a_s$  называют линейно независимыми.

#### 1.18 Сформулировать критерий линейной зависимости.

**Утверждение.**  $a_1, \ldots, a_s$  – линейно зависимы  $\Leftrightarrow$  хотя бы один из  $a_1, \ldots, a_s$  линейно выражается через другие.

#### 1.19 Сформулировать теорему о базисном миноре.

Теорема (о базисном миноре).

- 1) Базисные строки (столбцы), соответствующие любому базисному минору M матрицы A л.н.з.
- 2) Строки (столбцы) матрицы A, не входящие в M являются линейной комбинацией базисных строк.

#### 1.20 Сформулировать теорему о ранге матрицы.

Следствие (теорема о ранге матрицы). Ранг матрицы равен максимальному числу её линейно независимых строк и равен максимальному числу линейно независимых столбцов.

### 1.21 Сформулировать критерий невырожденности квадратной матрицы.

**Следствие.** Рассмотрим квадратную матрицу  $A \in M_n(\mathbb{R})$ . Следующие три условия эквивалентны:

- (1)  $\det A \neq 0$
- (2)  $\operatorname{Rg} A = n$
- (3) все строки A линейно независимы

#### 1.22 Сформулировать теорему Кронекера-Капелли.

**Теорема.** СЛАУ Ax = b совместна  $\Leftrightarrow \operatorname{Rg} A = \operatorname{Rg} (A \mid b)$ .

#### 2 Доказательства

#### 2.1 Что происходит с произведением матриц при транспонировании?

Утверждение.  $(A \cdot B)^T = B^T \cdot A^T$ .

Доказательство. A – матрица типа  $m \times n$ , B – матрица типа  $n \times k$ 

$$[(A \cdot B)^T]_{ij} = [A \cdot B]_{ji} = \sum_{r=1}^n [A]_{jr} \cdot [B]_{ri} = \sum_{r=1}^n [A^T]_{rj} \cdot [B^T]_{ir} = [B^T \cdot A^T]_{ij}, \quad \forall i = \overline{1, m}, \quad \forall j = \overline{1, k}$$

# 2.2 Сформулировать и доказать утверждение о том, что кососимметричность для линейной функции эквивалентна обнулению на паре совпадающих элементов.

**Утверждение.** Для любой линейной функции кососимметричность (1) эквивалентна обнулению на паре совпадающих элементов (2).

 $1) (2) \Rightarrow (1)$ 

Дано: f(u,u)=0 – обнуление на паре совпадающих элементов

Доказать: f(u,v) = -f(v,u) – кососимметричность

$$\underbrace{f(u+v,u+v)}_{=0} \stackrel{\text{\tiny пинейность}}{=} \underbrace{f(u,u)}_{=0} + f(u,v) + f(v,u) + \underbrace{f(v,v)}_{=0} \Rightarrow f(u,v) = -f(v,u)$$

 $2) (1) \Rightarrow (2)$ 

Дано: f(u,v) = -f(v,u) – кососимметричность

Доказать: f(u,u) = 0 — обнуление на паре совпадающих элементов

$$f(u,v) = -f(v,u)$$
 по (1)

$$f(a,a) = -f(a,a) \Rightarrow f(a,a) = 0$$

2.3 Какие три условия достаточно наложить на функцию от столбцов матрицы, чтобы она обязательно была детерминантом?

**Утверждение.** На функцию от столбцов матрицы достаточно наложить следующие три условия, чтобы она обязательно была детерминантом:

16

- 1) Функция должна быть полилинейна (линейна по столбцам)
- 2) Кососимметрична ( $\det A = -\det A$ , т.е. равна 0, если есть 2 одинаковых столбца)
- 3) Равна 1 на  $E_n$

Доказательство. Докажем при n=2. Разложим столбцы:

$$\begin{pmatrix} a_{11} \\ a_{21} \end{pmatrix} = a_{11} \begin{pmatrix} 1 \\ 0 \end{pmatrix} + a_{21} \begin{pmatrix} 0 \\ 1 \end{pmatrix}; \quad \begin{pmatrix} a_{12} \\ a_{22} \end{pmatrix} = a_{12} \begin{pmatrix} 1 \\ 0 \end{pmatrix} + a_{22} \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

Определим, чему равна функция от матрицы:

$$f\left(\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}\right) \stackrel{\text{линейность}}{=} a_{11} f\left(\begin{pmatrix} 1 & a_{12} \\ 0 & a_{22} \end{pmatrix}\right) + a_{21} f\left(\begin{pmatrix} 0 & a_{12} \\ 1 & a_{22} \end{pmatrix}\right) =$$

$$= a_{11} a_{22} f\left(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\right) + a_{21} a_{12} f\left(\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}\right) + a_{11} a_{12} f\left(\begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}\right) + a_{21} a_{22} f\left(\begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}\right) =$$

$$= (a_{11} a_{22} - a_{12} a_{21}) \cdot f\left(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\right) = a_{11} a_{22} - a_{12} a_{21} = \det A$$

#### 2.4 Чему равен определитель произведения двух квадратных матриц?

**Утверждение.**  $\forall A, B \in M_n(\mathbb{R}) \det(A \cdot B) = \det A \cdot \det B.$ 

Доказательство. Рассмотрим функцию  $f(B) = \det(A \cdot B)$ . Докажем  $f(B) = \det B \cdot f(E_n)$ 

- 1) Кососимметричность выполнена, т.к. при совпадении двух столбцов матрицы B столбцы матрицы  $A \cdot B$  тоже будут совпадать.
- 2) Если столбец матрицы B имеет вид  $\lambda a + \mu b$ , то в матрице  $A \cdot B$  этот столбец имеет вид  $\lambda Aa + \mu Ab$ , и определитель тоже линеен  $\Rightarrow f(B)$  линейна.
- 3) Выполнены кососимметричность и линейность, следовательно:

$$f(B) = \det B \cdot f(E_n)$$
, Ho  $f(E_n) = \det(A \cdot E_n) = \det A \Rightarrow \det(A \cdot B) = f(B) = \det B \cdot \det A$ 

### 2.5 Выписать формулы Крамера для квадратной матрицы произвольного порядка и доказать их.

**Теорема.** Пусть Ax = b совместная СЛАУ, тогда:

$$x_i \cdot \det A = \Delta_i$$

$$\Delta_i = \det(A_1, ..., A_{i-1}, b, A_{i+1}, ..., A_n)$$

Если 
$$\det A \neq 0$$
, то  $x_i = \frac{\Delta_i}{\det A}$ ,  $i = \overline{1, n}$ 

$$x_1A_1 + x_2A_2 + \dots + x_nA_n = b \Leftrightarrow Ax = b$$

$$\Delta_i = \det(A_1,...,A_{i-1},b,A_{i+1},...,A_n) = \det(A_1,...,A_{i-1},x_1A_1 + ... + x_nA_n,A_{i+1},...,A_n) = \det(A_1,...,A_{i-1},\sum_{j=1}^n x_jA_j,A_{i+1},...,A_n) \stackrel{\text{линейность}}{=} \sum_{j=1}^n x_j\det(A_1,...,A_{i-1},A_j,A_{i+1},...,A_n)$$

При 
$$j \neq i$$
 слагаемые  $x_j \cdot \underbrace{\det(A_1,...,A_{i-1},A_j,A_{i+1},...,A_n)}_{=0,\ \text{два одинаковых столбца}} = 0$ 

$$\Delta_i = \sum_{j=1}^n x_j \det(A_1, ..., A_{i-1}, A_j, A_{i+1}, ..., A_n) = x_i \det(A_1, ..., A_{i-1}, A_i, A_{i+1}, ..., A_n)$$

## 2.6 Сформулировать и доказать критерий существования обратной матрицы.

**Теорема.**  $\exists A^{-1} \Leftrightarrow \det A \neq 0$ .

Доказательство.

Heoбxoдимость. Дано:  $\exists A^{-1}$ 

Доказать:  $\det A \neq 0$ 

По определению обратной матрицы:  $A\cdot A^{-1}=E\Rightarrow \det(A\cdot A^{-1})=\det E=1\Rightarrow \det A\neq 0$ 

Достаточность. Дано:  $\det A \neq 0$ 

Доказать:  $\exists A^{-1}$ 

Предъявим матрицу 
$$B=\frac{1}{\det A}\cdot \widetilde{A}$$
, где  $\widetilde{A}=\begin{pmatrix} A_{11}&\dots&A_{1n}\\ \vdots&&&\vdots\\ A_{n1}&\dots&A_{nn} \end{pmatrix}^T$  — союзная матрица.

Докажем, что B является обратной, т.е.  $A \cdot B = E$ .

$$\begin{split} [A \cdot B]_{ij} &= \sum_{r=1}^n [A]_{ir} \cdot [B]_{rj} = \frac{1}{\det A} \cdot \sum_{r=1}^n a_{ir} \cdot [\widetilde{A}]_{rj} = \frac{1}{\det A} \cdot \sum_{r=1}^n a_{ir} \cdot A_{jr} = \\ &= \begin{cases} \frac{1}{\det A} \cdot \det A, \ i = j \text{ (разложение по i-й строке)} \\ 0, \ i \neq j \text{ (фальшивое разложение)} \end{cases} = \begin{cases} 1, \ i = j \\ 0, \ i \neq j \end{cases} = [E]_{ij} \end{split}$$

Аналогично проверяется  $B \cdot A = E \Rightarrow$  по определению B – обратная.

#### 2.7 Сформулировать и доказать критерий линейной зависимости.

**Утверждение.**  $a_1, \ldots, a_s$  – линейно зависимы  $\Leftrightarrow$  хотя бы один из  $a_1, \ldots, a_s$  линейно выражается через другие.

Доказательство.

*Необходимость*. Дано:  $a_1, ..., a_s$  – л.з.

Доказать: найдутся выражаемые через другие.

По определению:

$$\exists \alpha_1, \ldots, \alpha_s \text{ (He BCe 0): } \alpha_1 a_1 + \ldots + \alpha_s a_s = 0$$

Пусть  $\alpha_1 \neq 0$ . Тогда:

$$a_1 = -\frac{\alpha_2}{\alpha_1}a_2 + \ldots + \left(-\frac{\alpha_s}{\alpha_1}\right)a_s$$

Достаточность. Дано: один линейно выражается через другие.

Доказать: они линейно зависимы.

Пусть 
$$a_1=\beta_2a_2+\ldots+\beta_sa_s$$
. Тогда  $\underbrace{1\cdot a_1-\beta_2a_2-\ldots-\beta_sa_s}_{\text{нетривиальная лин.комб.}}=0\Rightarrow$  по определению они л.з.  $\square$ 

### 2.8 Как связан ранг транспонированной матрицы с рангом исходной матрицы?

**Утверждение.**  $\operatorname{Rg} A^T = \operatorname{Rg} A$ .

Доказательство. Покажем, что  $\operatorname{Rg} A^T \geq \operatorname{Rg} A$ . Пусть  $\operatorname{Rg} A = r \stackrel{\operatorname{onp}}{\Rightarrow} \exists$  минор  $M^{j1\ldots jr}_{i1\ldots ir} \neq 0$ . В матрице A есть минор  $N^{i1\ldots ir}_{i1\ldots jr} \neq 0$ , получается из M операцией транспонирования.

Минор  $N \neq 0$  по свойствам определителя ( $\det N = \det M^T = \det M \neq 0$ ). Тогда по определению  $\operatorname{Rg} A^T > r = \operatorname{Rg} A$ .

Таким образом:

$$\operatorname{Rg} A < \operatorname{Rg} A^T < \operatorname{Rg} (A^T)^T = \operatorname{Rg} A \Rightarrow \operatorname{Rg} A^T = \operatorname{Rg} A$$

### 2.9 Сформулировать и доказать следствие теоремы о базисном миноре для квадратных матриц (критерий невырожденности).

**Следствие.** Рассмотрим квадратную матрицу  $A \in M_n(\mathbb{R})$ . Следующие три условия эквивалентны:

- (1)  $\det A \neq 0$
- (2)  $\operatorname{Rg} A = n$
- (3) все строки A линейно независимы

Доказательство.

 $1) (1) \Rightarrow (2)$ 

Пусть  $\det A \neq 0 \Rightarrow$  в A есть минор порядка n, он  $\neq 0 \Rightarrow$  по определению  $\operatorname{Rg} A = n$ .

 $2) (2) \Rightarrow (3)$ 

Пусть  $\operatorname{Rg} A = n \Rightarrow$  все строки базисные  $\Rightarrow$  по первому пункту теоремы о базисном миноре (строки базисного минора л.н.з) они все л.н.з.

 $3) (3) \Rightarrow (1)$ 

Пусть строки A л.н.з. Предположим противное:  $\det A = 0 \Rightarrow \operatorname{Rg} A < n \Rightarrow$  по второму пункту теоремы о базисном миноре (строки, не входящие в базисный минор являются лин. комб. базисных) по крайней мере одна из строк является линейной комбинацией остальных  $\Rightarrow$  по критерию л.з все строки л.з –  $\bot$ .

#### 2.10 Сформулируйте и докажите теорему о базисном миноре.

Теорема.

- 1) Базисные строки (столбцы), соответствующие любому базисному минору M матрицы A л.н.з.
- 2) Строки (столбцы) матрицы A, не входящие в M являются линейной комбинацией базисных строк.

Доказательство.

- 1) Предположим, что они л.з. Тогда по критерию линейной зависимости одна из них является линейной комбинацией остальных  $\Rightarrow M = 0 \bot$  с определением базисного минора.
- 2) Без ограничения общности, будем считать, что базисный минор M матрицы A расположен в левом верхнем углу. Пусть  $\operatorname{Rg} A = r$ .

Возьмём строку  $a_k, k > r$  и покажем, что  $\exists \lambda_1, \dots, \lambda_r : a_k = a_1 \lambda_1 + \dots + a_r \lambda_r$ 

Составим определитель 
$$\Delta = \begin{vmatrix} a_{11} & \dots & a_{1r} & a_{1j} \\ \vdots & \dots & \vdots & \vdots \\ a_{r1} & \dots & a_{rr} & a_{rj} \\ a_{k1} & \dots & a_{kr} & a_{kj} \end{vmatrix}$$
 и покажем, что  $\Delta = 0 \ \forall j = \overline{1,n}$ 

Если  $j \leq r$ , то в  $\Delta$  есть 2 одинаковых столбца и  $\Delta = 0$ .

Если j>r, то  $\Delta$  является минором исходной матрицы A. Тогда  $\Delta=0$ , т.к. является минором порядка r+1 в матрице ранга r.

Разложим  $\Delta$  по последнему столбцу:

$$a_{1j}A_1 + \ldots + a_{rj}A_j + a_{kj}A_k = \underbrace{0}_{\Delta=0}$$

где  $A_1,\ldots,A_k$  – алгебраические дополнения в  $\Delta$   $(A_k$  – базисный минор  $\Rightarrow$   $A_k \neq 0).$ 

$$a_{kj} = -\frac{A_1}{A_k}a_{1j} - \dots - \frac{A_r}{A_k}a_{rj}, \ j = \overline{1, n}, \ k > r$$

Отсюда следует, что справедлива формула для строк  $(a_j$  – это j-я строка):

$$(a_{k1},\ldots,a_{kn})=\lambda_1(a_{11},\ldots,a_{1n})+\ldots+\lambda_r(a_{r1},\ldots,a_{rn})\Leftrightarrow a_k=\lambda_1a_1+\ldots+\lambda_ra_r$$

#### 2.11 Сформулируйте и докажите теорему о ранге матрицы.

Следствие (теорема о ранге матрицы). Ранг матрицы равен максимальному числу её линейно независимых строк и равен максимальному числу линейно независимых столбцов.

Доказательство. Пусть  $\operatorname{Rg} A = r$ , а максимальное количество л.н.з. строк k. Покажем, что r = k.

- 1) Т.к. в A есть r л.н.з. строк (т.к.  $\operatorname{Rg} A = r$ , то это базисные строки по первому пункту теоремы о базисном миноре)  $\Rightarrow k \geq r$  (по определению k).
- 2) Вычеркнем из A все сроки, кроме k л.н.з. Получим матрицу  $A_1$ , в которой k строк. При этом  $\operatorname{Rg} A_1 = k$  (т.к. если бы  $\operatorname{Rg} A_1 < k$ , то по второму пункту теоремы о базисном миноре одна из строк будет являться линейной комбинацией остальных  $\Rightarrow$  по критерию линейной зависимости они будут л.з.  $\bot$ ).

Базисный минор в  $A_1$  имеет порядок k и является не равным нулю минором порядка k в исходной матрице  $\Rightarrow k \leq r = \operatorname{Rg} A \Rightarrow k = r.$ 

#### 2.12 Сформулируйте теорему Кронекера-Капелли и докажите её.

**Теорема** (Кронекера-Капелли). СЛАУ Ax = b совместна  $\Leftrightarrow \operatorname{Rg} A = \operatorname{Rg} \left( A \mid b \right)$ .

Доказательство.

Необходимость. Дано: СЛАУ совместна.

Доказать: 
$$\operatorname{Rg} A = \operatorname{Rg} \left( A \mid b \right)$$

По определению СЛАУ совместна 
$$\Leftrightarrow \exists$$
 столбец  $x^0 = \begin{pmatrix} x_1^0 \\ \vdots \\ x_n^0 \end{pmatrix} : Ax^0 = b.$ 

И выполнено  $Ax^0=b \Leftrightarrow x_1^0a_1+\ldots+x_n^0a_n=b,$  где  $a_j$  – j-й столбец матрицы A.

Предположим, что базисный минор матрицы A расположен в левом верхнем углу матрицы  $\Rightarrow$  столбцы  $a_1, \ldots, a_r$  являются базисными, а столбцы  $a_{r+1}, \ldots, a_n$  являются их линейными комбинациями (по второму пункту теоремы о базисном миноре).

$$\begin{cases} a_{r+1} = \lambda_{1\,r+1}a_1 + \ldots + \lambda_{r\,r+1}a_r \\ \vdots \\ a_n = \lambda_{1n}a_1 + \ldots + \lambda_{rn}a_r \end{cases}$$

Отсюда:

$$b = x_1^0 a_1 + \dots + x_r^0 a_r + x_{r+1}^0 (\lambda_{1\,r+1} a_1 + \dots + \lambda_{rn} a_r) + \dots + x_n^0 (\lambda_{1n} a_1 + \dots + \lambda_{rn} a_r) =$$

$$= (x_1^0 + x_{r+1}^0 \lambda_{1\,r+1} + \dots + x_n^0 \lambda_{1n}) a_1 + \dots + (x_r^0 + x_{r+1}^0 \lambda_{1\,r+1} + \dots + x_n^0 \lambda_{1n}) a_r$$

Т.е. столбец b является линейной комбинацией базисных столбцов матрицы A. Тогда  $a_1, \ldots, a_r$  – базисные  $\Rightarrow M$  – базисный минор и для  $\left(A \mid b\right)$ . Он  $\neq 0$ , и все окаймляющие миноры равны 0, т.к. у них один из столбцов – линейная комбинация столбцов  $a_1, \ldots, a_r$  (столбцы  $a_{r+1}, \ldots, a_n$  – линейная комбинация по определению базисного минора в матрице A, b – по доказанному). Значит, выполняется:

$$\operatorname{Rg}\left(A\mid b\right) = r = \operatorname{Rg}A$$

Достаточность. Дано:  $\operatorname{Rg} A = \operatorname{Rg} \left( A \mid b \right)$ 

Доказать: СЛАУ совместна.

Пусть  $\operatorname{Rg} A = r$ . Пусть M – базисный минор A. Предположим, что он расположен в левом верхнем углу матрицы A. Очевидно, что M - является базисным минором и для  $\left(A \mid b\right) \Rightarrow$  по теореме о базисном миноре столбец b – линейная комбинация столбцов  $a_1, \ldots, a_r$ :

$$b=\lambda_1a_1+\ldots+\lambda_ra_r\Rightarrow x=egin{pmatrix}\lambda_1\ dots\ \lambda_r\ 0\ dots\ \end{pmatrix}$$
 — решение СЛАУ  $Ax=b$ 

$$\lambda_1 a_1 + \ldots + \lambda_r a_r + 0 \cdot a_{r+1} + \ldots + 0 \cdot a_n = b$$

### 2-й модуль

#### 1 Определения

## 1.1 Дать определение фундаментальной системы решений ( $\Phi$ CP) однородной СЛАУ

Рассмотрим СЛАУ Ax = 0,  $A \in M_{mn}(\mathbb{R})$ .

**Определение.** Любые n-r линейно независимых столбцов, являющиеся решениями однородной СЛАУ Ax=0, где n – число неизвестных,  $r=\operatorname{Rg} A$ , называют фундаментальной системой решений (ФСР).

1.2 Сформулируйте теорему о структуре общего решения однородной СЛАУ.

**Теорема.** Пусть  $\Phi_1, \dots, \Phi_k$  –  $\Phi$ CP однородной СЛАУ Ax=0. Тогда любое решение этой СЛАУ можно представить в виде:  $x=c_1\Phi_1+\dots+c_k\Phi_k$ , где  $c_1,\dots,c_k$  – некоторые постоянные.

1.3 Сформулируйте теорему о структуре общего решения неоднородной системы линейных алгебраических уравнений.

**Теорема.** Пусть известно частное решение  $\widetilde{x}$  СЛАУ Ax=b. Тогда любое решение этой СЛАУ может быть представлено в виде:  $x=\widetilde{x}+c_1\Phi_1+\ldots+c_k\Phi_k$ , где  $c_1,\ldots,c_k$  –некоторые постоянные, а  $\Phi_1,\ldots,\Phi_k$  – ФСР соответствующей однородной системы Ax=0.

1.4 Дайте определения модуля и аргумента комплексного числа. Что такое главное значение аргумента комплексного числа?

Пусть z — комплексное число. Его запись в алгебраической и тригонометрической формах соответственно:

$$z = x + iy = r(\cos \varphi + i \sin \varphi)$$

 $x = r\cos\varphi, \ y = r\sin\varphi$ 

 $r=\sqrt{x^2+y^2}=|z|$  – модуль комплексного числа.

 $\varphi = \operatorname{Arg} z = \{ \arg z + 2\pi k | k \in \mathbb{Z} \}$  – аргумент комплексного числа (угол между r и положительным направлением  $\operatorname{Re}$ ).

Главное значение аргумента комплексного числа:  $\arg z$ ,  $\arg z \in [0; 2\pi)$  или  $\arg z \in (-\pi; \pi]$ .

### 1.5 Что происходит с аргументами и модулями комплексных чисел при умножении и при делении?

Пусть  $z_1, z_2$  – комплексные числа.

При умножении комплексных чисел их модули умножаются, аргументы складываются:

$$z = z_1 \cdot z_2 = r_1 r_2 (\cos(\varphi_1 + \varphi_2) + i \sin(\varphi_1 + \varphi_2))$$

При делении комплексных чисел их модули делятся, аргументы вычитаются:

$$z = \frac{z_1}{z_2} = \frac{r_1}{r_2} (\cos(\varphi_1 - \varphi_2) + i\sin(\varphi_1 - \varphi_2))$$

#### 1.6 Выпишите формулу Муавра.

**Утверждение.** Формула Муавра:  $z^n = r^n(\cos n\varphi + i\sin n\varphi), n \in \mathbb{N}$ 

## 1.7 Как найти комплексные корни n-ой степени из комплексного числа? Сделайте эскиз, на котором отметьте исходное число и все корни из него.

#### Извлечение комплексных корней

Пусть дано комплексное число  $w = \rho(\cos \psi + i \sin \psi)$  и число  $n \in \mathbb{N}$ . Нужно найти  $\sqrt[n]{w}$ . По формуле Муавра:  $z^n = r^n(\cos n\varphi + i \sin n\varphi) = \rho(\cos \psi + \sin \psi)$ 

$$\begin{cases} \rho = r^n \\ \psi + 2\pi k = n\varphi, \ k \in \mathbb{Z} \end{cases} \Rightarrow \begin{cases} r = \sqrt[n]{\rho} \leftarrow \text{ арифметический корень из } \rho > 0 \\ \varphi = \frac{\psi + 2\pi k}{n}, \ k \in \mathbb{Z} \end{cases}$$

Достаточно рассмотреть только  $k=0,1,2,\ldots,n-1$ . Их ровно n штук. Тогда:

$$\sqrt[n]{w} = \left\{ \sqrt[n]{\rho} \cdot \left( \cos \left( \frac{\psi + 2\pi k}{n} \right) + i \sin \left( \frac{\psi + 2\pi k}{n} \right) \right) \mid k = \overline{0, n - 1} \right\}$$

Корни  $\sqrt[n]{w}$  лежат в вершинах правильного n-угольника, вписанного в окружность радиуса  $\sqrt[n]{\rho}$ .



## 1.8 Сформулируйте основную теорему алгебры. Сформулируйте теорему Безу.

**Теорема.** Для любого многочлена  $a_n z^n + a_{n-1} z^{n-1} + \ldots + a_1 z + a_0$ , где  $a_i \in \mathbb{C}$ ,  $a_n \neq 0$ , существует корень  $z_0 \in \mathbb{C}$ , т.е. решение уравнения  $a_n z^n + a_{n-1} z^{n-1} + \ldots + a_1 z + a_0 = 0$ 

**Теорема** (Безу). Остаток от деления многочлена f(x) на x-c равен f(c).

#### 1.9 Какие многочлены называются неприводимыми?

**Определение.** Многочлен называется приводимым, если существует его нетривиальное разложение  $f = g \cdot h$  и неприводимым в противном случае.

## 1.10 Сформулируйте утверждение о разложении многочленов на неприводимые множители над полем комплексных чисел.

Для любого непостоянного многочлена из  $\mathbb{C}[x]$  существует разложение на неприводимые множители первой степени.

Неприводимым над  $\mathbb{C}$  являются только многочлены 1-ой степени:  $z-z_1$ .

Любой многочлен степени n>0 разлагается в произведение неприводимых многочленов. Комплексный многочлен степени n разлагается в произведение:

$$P_n(z) = a_n \cdot (z - z_1)^{\alpha_1} \cdot \ldots \cdot (z - z_k)^{\alpha_k}, \quad n = \alpha_1 + \ldots + \alpha_k$$

### 1.11 Сформулируйте утверждение о разложении многочленов на неприводимые множители над действительными числами.

**Утверждение.** Все многочлены 1-ой и все многочлены 2-ой степени с D < 0 являются неприводимыми над  $\mathbb{R}$ , а все остальные приводимы.

### 1.12 Дайте определение векторного произведения векторов в трёхмерном пространстве

**Определение.** Вектор  $\vec{c}$  называют векторным произведением векторов  $\vec{a}$  и  $\vec{b}$ , если:

- 1)  $|\vec{c}| = |\vec{a}| \cdot |\vec{b}| \cdot \sin \varphi$ , где  $\varphi$  угол между  $\vec{a}$  и  $\vec{b}$
- 2)  $\vec{c} \perp \vec{a}, \vec{c} \perp \vec{b}$
- 3) тройка  $\vec{a},\,\vec{b},\,\vec{c}$  правая

Обозначение.  $\vec{c} = \vec{a} imes \vec{b}$  или  $\vec{c} = [\vec{a}, \vec{b}]$ 

## 1.13 Выпишите формулу для вычисления векторного произведения в координатах, заданных в ортонормированном базисе.

**Утверждение.** Пусть  $\vec{i},\,\vec{j},\,\vec{k}$  – правый ОНБ,  $\vec{a}=a_x\vec{i}+a_y\vec{j}+a_z\vec{k},\,\vec{b}=b_x\vec{i}+b_y\vec{j}+b_z\vec{k}.$  Тогда:

$$[\vec{a}, \vec{b}] = \begin{vmatrix} i & j & k \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix} = \vec{i}(a_y b_z - a_z b_y) + \vec{j}(a_z b_x - a_x b_z) + \vec{k}(a_x b_y - a_y b_x)$$

#### 1.14 Что такое уравнение поверхности и его геометрический образ?

**Определение.** Рассмотрим ПДСК  $O_{xyz}$  и некоторую поверхность S. Уравнение F(x,y,z)=0 называют уравнением поверхности S, если этому уравнению удовлетворяют координаты любой точки, лежащей на поверхности, и не удовлетворяют координаты ни одной точки, не лежащей на поверхности. При этом поверхность S называют геометрическим образом уравнения F(x,y,z)=0.

## 1.15 Сформулируйте теорему о том, что задает любое линейное уравнение на координаты точки в трехмерном пространстве.

#### Теорема.

1) Любая плоскость в пространстве определяется уравнением Ax + By + Cz + D = 0, в котором A, B, C, D — некоторые числа.

2) Любое уравнение Ax + By + Cz + D = 0, где  $A^2 + B^2 + C^2 > 0$ , определяет в пространстве плоскость.

#### 1.16 Что такое нормаль плоскости?

**Определение.** Вектор  $\vec{n}=(A,B,C)$  перпендикулярен плоскости Ax+By+Cz+D=0 и называется ее нормальным вектором.

#### 2 Доказательства

### 2.1 Сформулируйте теорему о структуре общего решения неоднородной системы линейных алгебраических уравнений и докажите её.

**Теорема.** Пусть известно частное решение  $\tilde{x}$  СЛАУ Ax=b. Тогда любое решение этой СЛАУ может быть представлено в виде:

$$x = \widetilde{x} + c_1 \Phi_1 + \ldots + c_k \Phi_k$$

где  $c_1, \ldots, c_k$  –некоторые постоянные, а  $\Phi_1, \ldots, \Phi_k$  –  $\Phi$ CP соответствующей однородной системы Ax=0.

Доказательство.

$$X_{\text{общ.неодн.}} = X_{\text{част.неодн.}} + X_{\text{общ.однород.}}$$

Пусть  $x^0$  – произвольное решение СЛАУ  $Ax = b \Rightarrow x^0 - \widetilde{x}$  – решение СЛАУ Ax = 0 (по свойствам решений СЛАУ).

 $K x^0 - \widetilde{x}$  применим теорему о структуре общего решения ОСЛАУ:

$$x^0 - \widetilde{x} = c_1 \Phi_1 + \ldots + c_k \Phi_k \Rightarrow x^0 = \widetilde{x} + c_1 \Phi_1 + \ldots + c_k \Phi_k$$

#### 2.2 Выпишите формулу Муавра и докажите её.

**Утверждение.** Формула Муавра:  $z^n = r^n(\cos n\phi + i\sin n\phi), n \in \mathbb{N}$ 

Доказательство. Применим принцип математической индукции.

1) n = 2:

$$z^{2} = z \cdot z = r \cdot r \cdot (\cos(\varphi + \varphi) + i\sin(\varphi + \varphi)) = r^{2}(\cos 2\varphi + i\sin 2\varphi)$$

2) Предположим, что формула верна для всех  $n \leq k$ . Покажем, что из этого следует, что оно верно для всех n = k + 1:

$$z^{k+1} = z^k \cdot z = r^k (\cos k\varphi + i\sin k\varphi) \cdot r(\cos \varphi + i\sin \varphi) = r^{k+1} (\cos(k\varphi + \varphi) + i\sin(k\varphi + \varphi)) = r^{k+1} (\cos((k+1)\varphi) + i\sin((k+1)\varphi))$$

Таким образом, формула верна  $\forall n \in \mathbb{N}$ .

# 2.3 Докажите, что если у многочлена с вещественными коэффициентами есть корень с ненулевой мнимой частью, то число, комплексно сопряжённое к этому корню, также будет корнем этого многочлена

**Утверждение.** Если  $c \in \mathbb{C}$  – корень кратности k многочлена  $P_n(x)$  с действительными коэффициентами, то  $\bar{c}$  тоже является корнем  $P_n(x)$  кратности k.

Доказательство. Пусть  $P_n(c) = a_n \cdot c^n + \ldots + a_1 \cdot c + a_0 = 0$ . Сопряжём обе части:

$$\bar{0} = \bar{a_n} \cdot \bar{c^n} + \ldots + \bar{a_1} \cdot \bar{c} + \bar{a_0}$$

Откуда  $\bar{c}$  – тоже будет корнем:

$$0 = a_n \cdot \bar{c}^n + \ldots + a_1 \cdot \bar{c} + a_0 = a_n \cdot c^n + \ldots + a_1 \cdot c + a_0$$

Если c – корень кратности 1, то всё доказано. Если кратность > 1, то делим на x –  $\bar{c}$ , по теореме Безу остаток будет нулевым и к многочлену применяем ту же процедуру.

# 2.4 Выпишите формулу для вычисления векторного произведения в правом ортонормированном базисе трехмерного пространства и приведите её вывод.

**Утверждение.** Пусть  $\vec{i}$ ,  $\vec{j}$ ,  $\vec{k}$  – правый ОНБ,  $\vec{a} = a_x \vec{i} + a_y \vec{j} + a_z \vec{k}$ ,  $\vec{b} = b_x \vec{i} + b_y \vec{j} + b_z \vec{k}$ . Тогда:

$$[\vec{a}, \vec{b}] = \begin{vmatrix} i & j & k \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix} = \vec{i}(a_y b_z - a_z b_y) + \vec{j}(a_z b_x - a_x b_z) + \vec{k}(a_x b_y - a_y b_x)$$

Доказательство. Т.к.  $\vec{i},\,\vec{j},\,\vec{k}$  – ОНБ, то

$$\vec{i} \times \vec{i} = \vec{j} \times \vec{j} = \vec{k} \times \vec{k} = \vec{0}, \vec{i} \times \vec{j} = \vec{k}, \vec{j} \times \vec{i} = -\vec{k}, \vec{i} \times \vec{k} = -\vec{j}, \vec{k} \times \vec{i} = \vec{j}, \vec{j} \times \vec{k} = \vec{i}, \vec{k} \times \vec{j} = -\vec{i}$$

$$\vec{a} \times \vec{b} = (a_x \vec{i} + a_y \vec{j} + a_z \vec{k}) \times (b_x \vec{i} + b_y \vec{j} + b_z \vec{k}) =$$

$$= a_x b_y \vec{i} \times \vec{j} + a_x b_z \vec{i} \times \vec{k} + a_y b_x \vec{j} \times \vec{i} + a_y b_z \vec{j} \times \vec{k} + a_z b_x \vec{k} \times \vec{i} + a_z b_y \vec{k} \times \vec{j} =$$

$$= \vec{i} (a_y b_z - b_y a_z) + \vec{j} (a_z b_x - a_x b_z) + \vec{k} (a_x b_y - a_y b_x) = \begin{vmatrix} i & j & k \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix}$$

# 2.5 Докажите теорему о том, что любое линейное уравнение на координаты точки в трехмерном пространстве задает плоскость и что любая плоскость определяется линейным уравнением.

#### Теорема.

- 1) Любая плоскость в пространстве определяется уравнением Ax + By + Cz + D = 0, в котором A, B, C, D некоторые числа.
- 2) Любое уравнение Ax + By + Cz + D = 0, где  $A^2 + B^2 + C^2 > 0$ , определяет в пространстве плоскость.

#### Доказательство.

1) Рассмотрим плоскость  $\pi$ . Пусть точка  $M_0(x_0,y_0,z_0)$  ей принадлежит. Рассмотрим  $\vec{n}\perp\pi$ . Пусть  $\vec{n}=(A,B,C)$ .

$$M(x, y, z) \in \pi \Leftrightarrow (\vec{n}, \overrightarrow{M_0 M}) = 0 \Leftrightarrow A(x_0 - x) + B(y_0 - y) + C(z_0 - z) = 0$$

Т.е. Ax + By + Cz + D = 0, где  $D = -Ax_0 - By_0 - Cz_0$ . Таким образом, координаты точки M удовлетворяют уравнению Ax + By + Cz + D = 0.

2) Рассмотрим уравнение Ax + By + Cz + D = 0, где  $A^2 + B^2 + C^2 > 0$ . Оно имеет хотя бы одно решение (например, если  $A \neq 0$ , то  $x_0 = -\frac{D}{A}, y_0 = z_0 = 0$ ). Обозначим за  $M_0$  точку  $(x_0, y_0, z_0)$ . Пусть точка M(x, y, z) удовлетворяет уравнению Ax + By + Cz + D = 0. Вычтем из него равенство  $Ax_0 + By_0 + Cz_0 + D = 0$ :

$$A(x_0-x)+B(y_0-y)+C(z_0-z)=0\Leftrightarrow (\vec{n},\overrightarrow{M_0M})=0$$
, где  $\vec{n}=(A,B,C)$ 

 $(\vec{n}, \overrightarrow{M_0M}) = 0 \Leftrightarrow \vec{n} \perp \overrightarrow{M_0M} \Leftrightarrow$  точка M лежит в плоскости, проходящей через  $M_0$  и перпендикулярной вектору  $\vec{n} \Rightarrow$  уравнение Ax + By + Cz + D = 0 определяет плоскость.

## 2.6 Дайте определение фундаментальной системы решений (ФСР) однородной системы линейных уравнений. Докажите теорему о существовании ФСР.

**Определение.** Любые n-r линейно независимых столбцов, являющиеся решениями однородной СЛАУ Ax=0, где n – число неизвестных,  $r=\operatorname{Rg} A$ , называют фундаментальной системой решений (ФСР).

**Теорема** (о существовании ФСР). Рассмотрим однородную СЛАУ Ax = 0. У неё существует k = n - r линейно независимых решений, где n – число неизвестных, а  $r = \operatorname{Rg} A$ .

Доказательство. Будем предполагать, что базисный минор расположен в левом верхнем углу:

Тогда строки  $a_1, \ldots, a_r$  являются базисными. А строки  $a_{r+1}, \ldots, a_m$  являются линейными комбинациями:

$$\begin{cases} a_{r+1} = \lambda_1 a_1 + \ldots + \lambda_r a_r \\ \vdots \\ a_m = \mu_1 a_1 + \ldots + \mu_r a_r \end{cases}$$

Сделаем элементарные преобразования:

Заметим, что элементарные преобразования соответствуют эквивалентным преобразованиям исходной СЛАУ  $\Rightarrow$  СЛАУ Ax=0 эквивалентна:

$$\begin{cases}
 a_{11}x_1 + \ldots + a_{1r}x_r = -a_{1\,r+1}x_{r+1} - \ldots - a_{1n}x_n \\
 \vdots \\
 a_{r1}x_1 + \ldots + a_{rr}x_r = -a_{r\,r+1}x_{r+1} - \ldots - a_{rn}x_n
\end{cases}$$

Мы называем переменные  $(x_1, \ldots, x_r)$ , отвечающие базисным столбцам, базисными (главными), а остальные переменные – свободными  $(x_{r+1}, \ldots, x_n)$ 

В (\*) слева – базисные, а справа – свободные.

Придадим свободным переменным следующий набор значений:

Для каждого набора свободных переменных решим СЛАУ относительно  $x_1, \ldots, x_r$ . Эта СЛАУ всегда имеет единственное решение, т.к. её определитель  $(r \times r)$  – это базисный минор M и он не равен 0 (например, есть решение по формуле Крамера).

Получаем следующее решение:

Для 1-го набора: Для 2-го набора: . . . Для (n-r)-го набора:

$$\begin{pmatrix} x_1 \\ \vdots \\ x_r \end{pmatrix} = \begin{pmatrix} \phi_{11} \\ \vdots \\ \phi_{1r} \end{pmatrix} \qquad \begin{pmatrix} x_1 \\ \vdots \\ x_r \end{pmatrix} = \begin{pmatrix} \phi_{21} \\ \vdots \\ \phi_{2r} \end{pmatrix} \qquad \dots \qquad \begin{pmatrix} x_1 \\ \vdots \\ x_r \end{pmatrix} = \begin{pmatrix} \phi_{k1} \\ \vdots \\ \phi_{kr} \end{pmatrix}$$

Столбцы: 
$$\Phi_1=\begin{pmatrix}\phi_{11}\\\vdots\\\phi_{1r}\\1\\\vdots\\0\end{pmatrix},\ldots,\Phi_k=\begin{pmatrix}\phi_{k1}\\\vdots\\\phi_{kr}\\0\\\vdots\\1\end{pmatrix}$$
 — решения СЛАУ  $(*)\Rightarrow$  решения исходной СЛАУ.

Покажем, что они л.н.з. Рассмотрим равенство из определения  $\alpha_1 \Phi_1 + \ldots + \alpha_k \Phi_k = 0$ 

$$\alpha_{1} \begin{pmatrix} \phi_{11} \\ \vdots \\ \phi_{1r} \\ 1 \\ \vdots \\ 0 \end{pmatrix} + \dots + \alpha_{k} \begin{pmatrix} \phi_{k1} \\ \vdots \\ \phi_{kr} \\ 0 \\ \vdots \\ 1 \end{pmatrix} = \begin{pmatrix} * \\ \vdots \\ * \\ \alpha_{1} \\ \vdots \\ \alpha_{k} \end{pmatrix} \begin{cases} r \\ = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

Это может быть выполнено только при  $\alpha_1=\alpha_2=\ldots=\alpha_k=0\stackrel{\text{onp.}}{\Rightarrow}\Phi_1,\ldots,\Phi_k$  являются л.н.з. Значит,  $\Phi_1,\ldots,\Phi_k$  – л.н.з., их n-r и они являются решениями  $\Rightarrow$  это  $\Phi$ CP.

# 2.7 Сформулируйте критерий существования ненулевого решения однородной системы линейных уравнений с квадратной матрицей и докажите его.

**Следствие.** Однородная СЛАУ Ax = 0 имеет ненулевые решения  $\Leftrightarrow \det A = 0$ , т.е. A – вырожденная матрица.

Доказательство.

Heoбxoдимость. Дано: Ax = 0 имеет решение  $x \neq 0$ 

Доказать:  $\det A = 0$ 

Предположим, что  $\det A \neq 0 \Rightarrow$  СЛАУ имеет единственное решение (по правилу Крамера) и это решение  $x=0-\bot \Rightarrow \det A=0$ 

Доказать:  $\exists x \neq 0 : Ax = 0$ 

Определитель  $\det A = 0 \Rightarrow \operatorname{Rg} A < n$ . Пусть  $\operatorname{Rg} A = r$ . По теореме о существовании ФСР, существуют n-r > 0 л.н.з. (ненулевых) решений СЛАУ Ax = 0. Это и есть ненулевые решения.  $\square$ 

### 2.8 Докажите теорему о структуре общего решения однородной системы линейных алгебраических уравнений.

**Теорема** (о структуре общего решения однородной СЛАУ). Пусть  $\Phi_1, \ldots, \Phi_k$  –  $\Phi$ CP однородной СЛАУ Ax=0. Тогда любое решение этой СЛАУ можно представить в виде:  $x=c_1\Phi_1+\ldots+c_k\Phi_k$ , где  $c_1,\ldots,c_k$  – некоторые постоянные.

Доказательство.

Пусть 
$$x^0 = \begin{pmatrix} x_1^0 \\ \vdots \\ x_n^0 \end{pmatrix}$$
 — произвольное решение однородной СЛАУ  $Ax = 0$ .

Будем предполагать, что базисный минор расположен в левом верхнем углу:

$$A = \left\{ \begin{array}{c|cccc} & & & & & \\ & M & & \vdots & \dots & \vdots \\ & & \vdots & \dots & \vdots \\ & & a_{r+1} & \dots & a_{rn} \\ & \vdots & \dots & \dots & a_{r+1} \\ \vdots & \dots & \dots & \vdots \\ & a_{m1} & \dots & \dots & \dots & a_{mn} \end{array} \right\}$$

Тогда строки  $a_1, \ldots, a_r$  являются базисными. А строки  $a_{r+1}, \ldots, a_m$  являются линейными комбинациями:

$$\begin{cases} a_{r+1} = \lambda_1 a_1 + \dots + \lambda_r a_r \\ \vdots \\ a_m = \mu_1 a_1 + \dots + \mu_r a_r \end{cases}$$

Сделаем элементарные преобразования:

Заметим, что элементарные преобразования соответствуют эквивалентным преобразованиям исходной СЛАУ  $\Rightarrow$  СЛАУ Ax=0 эквивалентна:

$$(1) \begin{cases} a_{11}x_1 + \ldots + a_{1r}x_r = -a_{1\,r+1}x_{r+1} - \ldots - a_{1n}x_n \\ \vdots \\ a_{r1}x_1 + \ldots + a_{rr}x_r = -a_{r\,r+1}x_{r+1} - \ldots - a_{rn}x_n \end{cases}$$

Решим СЛАУ (1) относительно неизвестных  $x_1, \dots, x_r$  (выразим главные через свободные):

$$(2) \begin{cases} x_1 = \alpha_{1\,r+1} x_{r+1} + \ldots + \alpha_{1n} x_n \\ \vdots & \text{где } \alpha_{ij} - \text{числа} \\ x_r = \alpha_{r\,r+1} x_{r+1} + \ldots + \alpha_{rn} x_n \end{cases}$$

Составим новую матрицу D ( $\phi_{ij}$  – координаты столбцов, образующих  $\Phi$ CP):

$$D = \begin{pmatrix} x_1^0 & \phi_{11} & \dots & \phi_{k1} \\ \vdots & \vdots & \dots & \vdots \\ x_r^0 & \phi_{1r} & \dots & \phi_{kr} \\ x_{r+1}^0 & \phi_{1r+1} & \dots & \phi_{kr+1} \\ \vdots & \vdots & \dots & \vdots \\ x_n^0 & \phi_{1n} & \dots & \phi_{kn} \end{pmatrix}$$

$$x^0 \quad \underbrace{\begin{array}{c} x_1^0 & \phi_{1r} & \dots & \phi_{kr} \\ x_1^0 & \phi_{1n} & \dots & \phi_{kn} \\ \end{array}}_{\Phi_k}$$

Покажем, что  $\operatorname{Rg} D = k$ :

- 1)  $\operatorname{Rg} D \geq k$ , т.к.  $\Phi_1, \ldots, \Phi_k$  л.н.з. (по определению  $\Phi$ CP), а по теореме о ранге матрицы  $\operatorname{Rg} D$  равен максимальному числу л.н.з. столбцов.
- 2) Покажем, что Rg  $D \leq k$ . Столбцы  $x^0, \Phi_1, \dots, \Phi_k$  решения СЛАУ Ax = 0. Тогда для них верна система (2). На место x в системе (2) последовательно подставим столбцы  $x^0, \Phi_1, \dots, \Phi_k$ . Тогда  $x_i$  переменная  $(i = \overline{1,r})$  из системы (2) после подстановки в неё столбцов  $x^0, \Phi_1, \dots, \Phi_k$  будет выглядеть:

$$\begin{cases} x_i^0 = \alpha_{i\,r+1} x_{r+1}^0 + \dots + \alpha_{in} x_n^0 \\ \phi_{1i} = \alpha_{i\,r+1} \phi_{1\,r+1} + \dots + \alpha_{ir} \phi_{1n} \\ \vdots \\ \phi_{ki} = \alpha_{i\,r+1} \phi_{k\,r+1} + \dots + \alpha_{in} \phi_{kn} \end{cases}$$

Таким образом, первая строка  $d_i$  матрицы является линейной комбинацией строк  $d_{r+1},\ldots,d_n$ .

$$\begin{cases} d_1 = \alpha_{1\,r+1}d_{r+1} + \dots + \alpha_{1n}d_n \\ \vdots \\ d_r = \alpha_{r\,r+1}d_{r+1} + \dots + \alpha_{rn}d_n \end{cases}$$

Сделаем элементарные преобразования:

$$\begin{cases} d_1 - \alpha_{1\,r+1} d_{r+1} - \dots - \alpha_{1n} d_n \to d_1 \\ \vdots \\ d_r - \alpha_{r\,r+1} d_{r+1} - \dots - \alpha_{rn} d_n \to d_r \end{cases}$$

Получаем матрицу  $D_1$ , у которой первые r строк нулевые:

$$D \sim D_{1} = \begin{pmatrix} 0 & \dots & \dots & 0 \\ \vdots & \dots & \dots & \vdots \\ 0 & \dots & \dots & 0 \\ x_{r+1}^{0} & \phi_{1\,r+1} & \dots & \phi_{k\,r+1} \\ \vdots & \vdots & \dots & \vdots \\ x_{n}^{0} & \phi_{1n} & \dots & \phi_{kn} \end{pmatrix} r$$

 $\operatorname{Rg} D_1 \leq n - r = k$ . При элементарных преобразованиях ранг не меняется  $\Rightarrow \operatorname{Rg} D \leq k$ .

Таким образом,  $\operatorname{Rg} D = k$  (т.к.  $\operatorname{Rg} D \ge k$  и  $\operatorname{Rg} D \le k$ ).

Заметим, что  $\Phi_1, \ldots, \Phi_k$  являются базисными (они л.н.з. и их  $k = \operatorname{Rg} D$ )  $\Rightarrow$  по теореме о базисном миноре столбец  $x^0$  – их линейная комбинация, т.е.  $\exists c_1, \ldots, c_k : x^0 = c_1 \Phi_1 + \ldots + c_k \Phi_k$ .

### 3-й модуль

### 1 Определения

### 1.1 Какие бинарные операции называются ассоциативными, а какие коммутативными?

**Определение.** Пусть X – множество с заданной на нём бинарной операцией \*. \* – ассоциативна, если:  $\forall a,b,c \in X \ a*(b*c) = (a*b)*c$ .

Бинарная операция \* – коммутативна, если:  $\forall a, b \in X \ a*b = b*a$ 

#### 1.2 Дайте определения полугруппы и моноида. Приведите примеры.

**Определение.** Множество X с заданной на нём бинарной ассоциативной операцией называется полугруппой.

Определение. Полугруппа, в которой есть нейтральный элемент – моноид.

*Пример полугруппы.* ( $\mathbb{N} \setminus \{1\}, \cdot$ ),  $\cdot$  – умножение натуральных чисел. *Пример моноида.* ( $\mathbb{N}, \cdot$ )

### 1.3 Сформулируйте определение группы. Приведите пример.

**Определение** (эквивалентное). Множество G с корректно определённой на нём бинарной операцией \* называется группой, если:

- 1) операция ассоциативна:  $\forall x,y,z\in G\ x*(y*z)=(x*y)*z$
- $2) \ \exists e \in G \ \forall x \in G : x*e = e*x = x$
- 3)  $\forall x \in G \exists x^{-1} \in G : x * x^{-1} = x^{-1} * x = e$

Пример.  $(\mathbb{Z},+)$ 

### 1.4 Что такое симметрическая группа? Укажите число элементов в ней.

**Определение.** Симметрическая группа  $S_n$  – множество всех подстановок длинны n:  $\sigma = \begin{pmatrix} 1 & \dots & n \\ i_1 & \dots & i_n \end{pmatrix}$  с операцией композиции. Число элементов в  $S_n$  равно числу перестановок: n!

#### 1.5 Что такое общая линейная и специальная линейная группы?

**Определение.** Общая линейная группа — множество всех невырожденных матриц A с операцией матричного умножения:  $GL_n(\mathbb{R})$  (n — размер матрицы).

**Определение.** Специальная линейная группа –  $SL_n(\mathbb{R}) = \{A \in GL_n(\mathbb{R}) \mid \det A = 1\}$ ,  $SL_n(\mathbb{R}) \subset GL_n(\mathbb{R})$ . Это множество замкнуто относительно умножения и взятия обратного.

#### 1.6 Сформулируйте определение абелевой группы. Приведите пример.

Определение. Группа с коммутативной операцией называется абелевой.

 $\Pi puмep. (\mathbb{Z}, +)$ 

# 1.7 Дайте определение подгруппы. Приведите пример группы и её подгруппы.

**Определение.** Подмножество  $H \subseteq G$  называется подгруппой в G, если:

- 1)  $e \in H$
- 2) Если  $h_1, h_2 \in H \Rightarrow h_1 \cdot h_2 \in H$ , т.е. множество H замкнуто относительно умножения.
- 3) Если  $h \in H \Rightarrow h^{-1} \in H$ , т.е. H замкнуто относительно взятия обратного.

Пример. Специальная линейная группа:  $SL_n(\mathbb{R}) = \{A \in GL_n(\mathbb{R}) \mid \det A = 1\}, SL_n(\mathbb{R}) \subset GL_n(\mathbb{R}).$  Это множество замкнуто относительно умножения и взятия обратного.

### 1.8 Дайте определение гомоморфизма групп. Приведите пример.

**Определение.** Пусть даны две группы:  $(G_1, *)$  и  $(G_2, \circ)$ . Тогда отображение  $f: G_1 \to G_2$  называется гомоморфизмом, если выполняется следующее условие:  $\forall a, b \in G_1 \ f(a * b) = f(a) \circ f(b)$ .

 $\Pi puмер. G_1 = (\mathbb{R}_+, \cdot), G_2 = (\mathbb{R}, +)$  и гомоморфизмом  $f = \ln x$ . Является гомоморфизмом по определению  $\forall a, b \in G_1 \ln(a \cdot b) = \ln a + \ln b$ .

### 1.9 Дайте определение изоморфизма групп. Приведите пример.

Определение. Биективный гомоморфизм называется изоморфизмом.

Пример.  $(\mathbb{R},+)\cong (\mathbb{R}^+,\cdot)$  и изоморфизмом  $f=e^x$ .

#### 1.10 Дайте определение порядка элемента.

**Определение.** Пусть q – наименьшее натуральное ( $\neq 0$ ) число, для которого  $a^q = e$ , где  $a \in G$ , оно называется порядком элемента. Если такого числа не существует, то говорят об элементе бесконечного порядка.

### 1.11 Сформулируйте определение циклической группы. Приведите пример.

**Определение.** Пусть g – элемент G. Если любой элемент  $g \in G$  имеет вид  $g = a^n$ , где  $a \in G$ , то G называют циклической группой.

### 1.12 Сколько существует, с точностью до изоморфизма, циклических групп данного порядка?

Утверждение. Все циклические группы одного порядка изоморфны.

**Утверждение.** Для каждого числа существует единственная (с точностью до изоморфизма) циклическая группа такого порядка. Также существует ровно одна бесконечная циклическая группа.

#### 1.13 Что такое ядро гомоморфизма групп? Приведите пример.

**Определение.** Ядром гомоморфизма  $f: G \to F$  называется множество элементов группы G, которые переходят в  $e_F$  (нейтральный элемент во второй группе).

$$\operatorname{Ker} f = \{ q \in G \mid f(q) = e_F \}$$

Пример.  $\varphi: \mathbb{Z} \to \mathbb{Z}/3\mathbb{Z}, \ \varphi(x) = x \mod 3, \ \operatorname{Ker} \varphi = \{x \in \mathbb{Z} \mid x \ \vdots \ 3\}$ 

Пример. det :  $GL_n(\mathbb{R}) \to \mathbb{R}^* = {\mathbb{R} \setminus {0}, \cdot}$ , Ker det  $= SL_n(\mathbb{R}) = {A \mid \det A = 1}$ 

### 1.14 Сформулируйте утверждение о том, какими могут быть подгруппы группы целых чисел по сложению.

**Утверждение.** Любая подгруппа в  $(\mathbb{Z},+)$  имеет вид  $k\mathbb{Z}$  (числа, кратные k) для  $k\in\mathbb{N}\cup\{0\}$ .

### 1.15 Дайте определение левого смежного класса по некоторой подгруппе.

**Определение.** Пусть G – группа и H – её подгруппа. Пусть фиксирован  $g \in G$ . Левым смежным классом элемента g по подгруппе H называется множество  $gH = \{g \cdot h | h \in H\}$  (а правым смежным класс:  $Hg = \{h \cdot g \mid h \in H\}$ ).

#### 1.16 Дайте определение нормальной подгруппы.

**Определение.** Подгруппа H группы G называется нормальной, если  $gH=Hg,\,\forall g\in G.$ 

#### 1.17 Что такое индекс подгруппы?

**Определение.** Индексом подгруппы H в группе G называется количество левых смежных классов G по H.

#### 1.18 Сформулируйте теорему Лагранжа.

**Теорема** (Лагранжа). Пусть G – конечная группа и  $H \subseteq G$  – её подгруппа. Тогда

$$|G| = |H| \cdot [G:H]$$

### 1.19 Сформулируйте три следствия из теоремы Лагранжа.

**Следствие.** Пусть G – конечная группа и  $g \in G$ . Тогда ord g делит |G|.

**Следствие.** Пусть G – конечная группа и  $g \in G$ . Тогда

$$g^{|G|} = e$$

**Следствие** (Малая теорема Ферма). Пусть  $\bar{a}$  – ненулевой вычет по простому модулю p. Тогда

$$\bar{a}^{p-1} = \bar{1}$$
 (или  $\bar{a}^p = \bar{a}$ )

# 1.20 Сформулируйте критерий нормальности подгруппы, использующий сопряжение.

**Утверждение.** Пусть  $H \subseteq G$ . Тогда три условия эквивалентны:

- (1) Н нормальная
- (2)  $gHg^{-1} \subseteq H, \forall g \in G$
- $(3) \ \forall g \in G \ gHg^{-1} = H$

#### 1.21 Сформулируйте определение простой группы.

Определение. Группа называется простой, если она не имеет собственных (т.е. отличных от единичной и самой группы) нормальных групп.

#### 1.22 Дайте определение факторгруппы.

**Определение.** Пусть H – нормальная подгруппа в G. G/H – множество левых смежных классов по H с операцией умножения  $(g_1H)(g_2H) = g_1g_2H$  называется факторгруппой.

#### 1.23 Что такое естественный гомоморфизм?

**Определение.** Отображение  $\varepsilon:G\to G/H$  называется естественным гомоморфизмом.  $\varepsilon:a\longmapsto aH$ , где  $a\in G,\,aH$  – смежный класс, содержащий a

### 1.24 Сформулируйте критерий нормальности подгруппы, использующий понятие ядра гомоморфизма.

**Утверждение.** H – нормальная подгруппа в  $G \Leftrightarrow H = \operatorname{Ker} f, f$  – гомоморфизм.

### 1.25 Сформулируйте теорему о гомоморфизме групп. Приведите пример.

**Теорема** (о гомоморфизме). Пусть  $f: G \to F$  — гомоморфизм групп. Тогда  $\operatorname{Im} f$  изоморфен факторгруппе  $G/\operatorname{Ker} f$ , т.е.  $G/\operatorname{Ker} f \cong \operatorname{Im} f$ , где  $\operatorname{Im} f = \{a \in F \mid \exists g \in G : f(g) = a\}$  — образ f.

 $\Pi$ ример:

$$f: GL_n(\mathbb{R}) \xrightarrow{\det A} \mathbb{R}^* = \{\mathbb{R} \setminus \{0\}, \cdot\}$$

$$\text{Ker det} = SL_n(\mathbb{R}) = \{A \mid \det A = 1\} \Rightarrow GL_n(\mathbb{R})/SL_n(\mathbb{R}) \cong \underbrace{\mathbb{R}^*}_{\text{Im det}}$$

### 1.26 Что такое прямое произведение групп?

**Определение.** Прямым произведением двух групп  $G_1$  и  $G_2$  называется их прямое (декартовое) произведение как множеств с покомпонентным умножением:

$$(x_1, y_1) \circ (x_2, y_2) = (x_1 * x_2, y_1 \star y_2)$$

\* – произведение в  $G_1$ ,  $\star$  – произведение в  $G_2$ 

### 1.27 Сформулируйте определение автоморфизма и внутреннего автоморфизма.

**Определение.** Автоморфизм – это изоморфизм из G в G.

**Определение.** Внутренним автоморфизмом называют отображение  $I_n: g \mapsto aga^{-1}$ 

#### 1.28 Что такое центр группы? Приведите пример.

**Определение.** Центр группы G – это множество  $Z(G) = \{a \in G \mid ab = ba \ \forall b \in G\}$ , т.е. множество элементов, которые коммутируют со всеми.

Пример. Центр группы кватернионов  $Q_8 = \{1, -1, i, -i, j, -j, k, -k\}$  равен  $\{1, -1\}$ .

### 1.29 Что можно сказать про факторгруппу группы по её центру?

 $G/Z(G) \cong I_{nn}(G)$ ,  $I_{nn}(G)$  – внутренние автоморфизмы.

#### 1.30 Сформулируйте теорему Кэли.

**Теорема** (Кэли). Любая конечная группа порядка n изоморфна некоторой подгруппе группы  $S_n$ .

#### 1.31 Дайте определение кольца.

**Определение.** Пусть  $K \neq \emptyset$  – множество на котором заданы две бинарные операции: + и ·, что:

- 1) (K, +) абелева группа.
- 2)  $(K,\cdot)$  полугруппа.
- 3) Умножение дистрибутивно по сложению:  $\forall a,b,c$

$$(a+b)c = ac + bc$$

$$c(a+b) = ca + cb$$

### 1.32 Что такое коммутативное кольцо? Приведите примеры коммутативного и некоммутативного колец.

**Определение.** Если  $\forall x,y \in K \ xy = yx$  (т.е. умножение коммутативно), то кольцо  $(K,+,\cdot)$  называется коммутативным.

 $\Pi$ ример.  $(\mathbb{Z},+,\cdot)$  – коммутативное кольцо.

 $\Pi pumep. \ (M_n(\mathbb{R}),+,\cdot)$  – некоммутативное кольцо.

#### 1.33 Дайте определение делителей нуля.

**Определение.** Если ab=0 при  $a\neq 0$  и  $b\neq 0$  в кольце K, то a называется левым, b – правым делителем нуля.

#### 1.34 Какие элементы кольца называются обратимыми?

**Определение.** Элемент коммутативного кольца с "1" называется обратимым (по умножению), если существует  $a^{-1}: aa^{-1} = a^{-1}a = 1$ .

#### 1.35 Дайте определение поля. Приведите три примера.

**Определение.** Поле P – это коммутативное кольцо с единицей  $(1 \neq 0)$ , в котором каждый элемент  $a \neq 0$  обратим.

Пример.  $\mathbb{Q}, \mathbb{R}, \mathbb{C}$ 

### 1.36 Дайте определение подполя. Привести пример пары: поле и его подполе.

**Определение.** Подполе – подмножество поля, которое само является полем относительно тех же операций.

Пример.  $\mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}$ 

Пример.  $\mathbb{Z}_p$ , где p – простое, тоже является полем.

# 1.37 Дайте определение характеристики поля. Привести примеры: поля конечной положительной характеристики и поля нулевой характеристики.

**Определение.** Пусть P – поле. Характеристикой поля называется такое наименьшее  $q \in \mathbb{N}$ , что  $\underbrace{1+1+\ldots+1}_q=0$ . Если такого q нет, то характеристика равна 0.

 $\Pi$ ример.  $char \mathbb{R} = char \mathbb{C} = char \mathbb{Q} = 0$ 

 $\Pi p u Me p$ . char  $\mathbb{Z}_p = p$ 

### 1.38 Сформулируйте утверждение о том, каким будет простое подполе в зависимости от характеристики.

**Утверждение.** Пусть P – поле, а  $P_0$  – его простое подполе. Тогда:

- 1) Если характеристика поля  $\operatorname{char} P = p > 0$ , то  $P_0 \cong \mathbb{Z}_p$
- 2) Если char P = 0, то  $P_0 \cong \mathbb{Q}$ .

#### 1.39 Дайте определение идеала. Что такое главный идеал?

**Определение.** Подмножество I кольца K называется (двусторонним) идеалом, если оно:

- 1) является подгруппой (K, +) по сложению
- 2)  $\forall a \in I \ \forall r \in K \ ra \in I \ и \ ar \in I$

**Определение.** Идеал I называется главным, если  $\exists a \in K : I = \{ra \mid r \in K\}$ . Говорят, что идеал I порождён a.

#### 1.40 Сформулируйте определение гомоморфизма колец.

**Определение.**  $\varphi: K_1 \to K_2$  – гомоморфизм колец, если  $\forall a,b \in K_1$ :

- 1)  $\varphi(a+b) = \varphi(a) \oplus \varphi(b)$
- 2)  $\varphi(a \cdot b) = \varphi(a) * \varphi(b)$

# 1.41 Сформулируйте теорему о гомоморфизме колец. Приведите пример.

**Теорема** (о гомоморфизме колец). Пусть  $K_1,\,K_2$  – два кольца,  $\varphi:K_1\to K_2$  – гомомрфизм. Тогда

$$\underbrace{K_1/\operatorname{Ker}\varphi}_{\operatorname{факторкольцо}}\cong \underbrace{\operatorname{Im}\varphi}_{\text{кольцо}}$$

 $\Pi$ ример.  $\mathbb{Z}/n\mathbb{Z}\cong\mathbb{Z}_n\ \varphi:\mathbb{Z}\to\mathbb{Z}_n$ , любому целому числу сопоставляем его остаток от деления на число  $n,\ \mathrm{Ker}\ \varphi=n\mathbb{Z}.$ 

### 1.42 Сформулируйте критерий того, что кольцо вычетов по модулю n является полем.

**Утверждение.**  $\mathbb{Z}_p$  является полем  $\Leftrightarrow p$  –простое.

### 1.43 Сформулируйте теорему о том, когда факторкольцо кольца многочленов над полем само является полем.

**Теорема.** Пусть P — поле, а  $f(x) \in P[x]$ . Тогда факторкольцо  $P[x]/\langle f(x) \rangle$  является полем  $\Leftrightarrow$  многочлен f(x) — неприводим над P.

#### 1.44 Дайте определение алгебраического элемента над полем.

**Определение.** Элемент  $\alpha \in P$  называется алгебраическим элементом над полем  $F \subset P$ , если существует  $f(x) \neq 0$  (многочлен, т.е.  $f(x) \in F[x]$ ) :  $f(\alpha) = 0$ . Если это не так, то  $\alpha$  – трансцендентный элемент над F.

Пример. Пусть  $F=\mathbb{Q}$ . И  $\sqrt{2}\in\mathbb{R}$  – алгебраическое число:  $f(x)=x^2-2\in\mathbb{Q}[x]$ . Элемент  $\pi\in\mathbb{R}$  – трансцендентный.

# 1.45 Сформулируйте утверждение о том, что любое конечное поле может быть реализовано как факторкольцо кольца многочленов по некоторому идеалу.

**Теорема.** Любое конечное поле  $F_q$ , где  $q = p^n$ , а p – простое можно, реализовать в виде  $\mathbb{Z}_p[x]/\langle h(x)\rangle$ , где h(x) – неприводимый многочлен степени n над  $\mathbb{Z}_p$ .

### 1.46 Дайте определение линейного (векторного) пространства.

Пусть F – поле, пусть V – произвольное множество, на котором задано 2 операции: сложение и умножение на число (т.е. элемент из F). Это означает, что  $\forall x,y \in V$  существует элемент  $x+y \in V$  и  $\forall \lambda \in F \,\exists \lambda \cdot x \in V$ . Множество V называется линейным пространством, если выполнены следующие 8 свойств:

 $\forall x, y, z \in V$  и  $\forall \lambda, \mu \in F$ :

- 1) (x + y) + z = x + (y + z) ассоциативность сложения.
- 2) Найдется нейтральный элемент по сложению:  $\exists 0 \in V : \forall x \in V : x+0 = 0+x = x$
- 3) Существует противоположный элемент по сложению:  $\forall x \in V \; \exists (-x) \in V : x + (-x) = 0$
- 4) x + y = y + x коммутативность сложения
- 5)  $\forall x \in V: 1 \cdot x = x$ , нейтральный  $1 \in F_1$
- 6) Ассоциативность умножения на число:  $\mu(\lambda x) = (\mu \lambda)x$
- 7) Дистрибутивность относительно сложения чисел:  $(\lambda + \mu)x = \lambda x + \mu x$
- 8) Дистрибутивность относительно сложения векторов:  $\lambda(x+y) = \lambda x + \lambda y$

#### 1.47 Дайте определение базиса линейного (векторного) пространства.

**Определение.** Базисом линейного пространства V называется упорядоченный набор векторов  $b_1, \dots, b_n$  такой, что:

- 1)  $b_1, \ldots, b_n$  л.н.з.
- 2) Любой вектор из V представляется линейной комбинацией векторов  $b_1, \ldots, b_n$ , то есть  $\forall x \in V$   $x = x_1b_1 + \ldots x_nb_n$ . При этом  $x_1, \ldots, x_n$  называется координатами вектора в базисе  $b_1, \ldots, b_n$ .

#### 1.48 Что такое размерность пространства?

**Определение.** Максимальное количество л.н.з. векторов в данном линейном пространстве V называется размерностью этого линейного пространства.

### 1.49 Дайте определение матрицы перехода от старого базиса линейного пространства к новому.

**Определение.** Матрицей перехода от базиса  ${\cal A}$  к базису  ${\cal B}$  называется матрица:

$$T_{\mathcal{A}\to\mathcal{B}} = \begin{pmatrix} t_{11} & \cdots & t_{1n} \\ \vdots & & \vdots \\ t_{n1} & \cdots & t_{nn} \end{pmatrix}$$

$$(b_1,\ldots,b_n)_{1\times n}=(a_1,\ldots,a_n)\cdot T_{\mathcal{A}\to\mathcal{B}}$$

 $b=a\cdot T_{\mathcal{A}\to\mathcal{B}}$  — матричная форма записи определения матрицы перехода, где  $b=(b_1,\ldots,b_n),$   $a=(a_1,\ldots,a_n)$ 

# 1.50 Выпишите формулу для описания изменения координат вектора при изменении базиса.

**Утверждение.** Пусть  $x \in L$ ,  $\mathcal{A}$  и  $\mathcal{B}$  – базисы в L.

 $x^a = (x_1^a, \dots, x_n^a)^T$  – столбец координат вектора x в базисе  $\mathcal{A}$ .

 $x^b = (x_1^b, \dots, x_n^b)^T$  — столбец координат вектора x в базисе  $\mathcal{B}.$ 

Тогда  $x^b = T_{\mathcal{A} \to \mathcal{B}}^{-1} \; x^a \Leftrightarrow X' = T^{-1}X,$  где X' – координаты в новом базисе.

### 1.51 Дайте определение подпространства в линейном пространстве.

**Определение.** Подмножество W векторного пространства V называется подпространством, если оно само является пространством относительно операций в V.

### 1.52 Дайте определения линейной оболочки конечного набора векторов и ранга системы векторов.

**Определение.** Множество  $L(a_1,\ldots,a_k)=\{\lambda_1a_1+\ldots\lambda_ka_k\mid \lambda_i\in F\}$  – множество всех линейных комбинаций векторов  $a_1,\ldots,a_k$  называется линейной оболочкой набора  $a_1,\ldots,a_k$ .

**Определение.** Рангом системы векторов  $a_1, \ldots, a_k$  в линейном пространстве называется размерность их линейной оболочки.

$$Rg(a_1,\ldots,a_k)=\dim(L(a_1,\ldots,a_k))$$

#### 1.53 Дайте определения суммы и прямой суммы подпространств.

**Определение.** Множество  $H_1 + H_2 = \{x_1 + x_2 \mid x_1 \in H_1, x_2 \in H_2\}$  называется суммой подпространств  $H_1$  и  $H_2$ .

**Определение.** Сумма подпространств  $H_1 + H_2$  называется прямой и обозначается  $H_1 \oplus H_2$ , где  $H_1 \cap H_2 = \{0\}$ , т.е. тривиально.

# 1.54 Сформулируйте утверждение о связи размерности суммы и пересечения подпространств.

**Утверждение.** Пусть  $H_1$  и  $H_2$  – подпространства в L. Тогда:

$$\dim(H_1 + H_2) = \dim(H_1) + \dim(H_2) - \dim(H_1 \cap H_2)$$

#### 1.55 Дайте определение билинейной формы.

Пусть V – линейное пространство над  $\mathbb{R}$ .

**Определение.** Функцию  $b: V \times V \to \mathbb{R}$  называют билинейной формой, если  $\forall \alpha, \beta \in \mathbb{R}$ :

- 1)  $b(\alpha x + \beta y, z) = \alpha b(x, z) + \beta b(y, z)$
- 2)  $b(x, \alpha y + \beta z) = \alpha b(x, y) + \beta b(x, z)$

### 1.56 Как меняется матрица билинейной формы при замене базиса? Как меняется матрица квадратичной формы при замене базиса?

**Утверждение.** Пусть U — матрица перехода от базиса e к базису f. Пусть  $B_e$  — матрица билинейной формы в базисе e. Тогда:

$$B_f = U^T B_e U$$

### 2 Доказательства

### 2.1 Сформулируйте и докажите утверждение о связи порядка элемента, порождающего циклическую группу, с порядком группы.

**Утверждение.** Пусть G – группа и  $g \in G$ . Тогда  $|\langle g \rangle| = \operatorname{ord}(g)$ 

Доказательство. Заметим, что если  $\forall k, s \in \mathbb{N}$   $g^k = g^s \Rightarrow g^{k-s} = e$  (т.к.  $\exists g^{-1}$ ), то ord  $g \leq k-s \Rightarrow$  если g имеет бесконечный порядок, то все элементы  $g^n$ ,  $n \in \mathbb{Z}$  различны  $\Rightarrow \langle g \rangle$  содержит бесконечного много элементов  $\Rightarrow$  в бесконечном случае доказано.

Если же  $\operatorname{ord}(g)=m$ , то из минимальности  $m\in N\Rightarrow e=g^0,\,g=g^n,\ldots,g^{m-1}$  попарно различны. Покажем, что  $\langle g\rangle=\{e,g,g^2,\ldots,g^{m-1}\}$ . Т.к.  $\forall n\in\mathbb{Z}$  представимо в виде n=qm+r, где  $0\leq r< m$ ,  $g^n=g^{qm+r}=(g^m)^q\cdot g^r=e^q\cdot g^r=g^r\Rightarrow \langle g\rangle=\{e,g,\ldots,g^{m-1}\}$  и  $|\langle g\rangle|=m=\operatorname{ord}(g)$ .

# 2.2 Сформулируйте и докажите утверждение о том, какими могут быть подгруппы группы целых чисел по сложению.

**Утверждение.** Любая подгруппа в  $(\mathbb{Z}, +)$  имеет вид  $k\mathbb{Z}$  (числа, кратные k) для  $k \in \mathbb{N} \cup \{0\}$ .

Доказательство.  $k\mathbb{Z}$  является подгруппой. Докажем, что других нет.

Если  $H=\{0\}$  (H- подгруппа, 0- нейтральный элемент), то положим, что k=0. Иначе  $k=\min(H\cap\mathbb{N})\ (\neq\varnothing,$  т.к.  $H\neq\{0\})$ . Тогда  $k\mathbb{Z}\subseteq H$ .

Рассмотрим  $a\in H$  и  $a=qk+r,\ 0\leq r< k.$  Тогда  $r=\underbrace{a}_{\in H}-\underbrace{qk}_{\in H}\in H\Rightarrow r=0$  (так как  $r< k=\min(H\cap\mathbb{N})$ ). Получаем, что  $a=qk\Rightarrow H\subseteq k\mathbb{Z}.$ 

Доказана принадлежность в обе стороны:  $k\mathbb{Z} \subseteq H$  и  $H \subseteq k\mathbb{Z}$ . Значит,  $k\mathbb{Z} = H$ .

### 2.3 Сформулируйте и докажите теорему Лагранжа (включая две леммы).

**Лемма.** Левые смежные классы G по подгруппе H либо не пересекаются, либо совпадают:

$$\forall g_1,g_2\in G$$
 либо  $g_1H=g_2H,$  либо  $g_1H\cap g_2H=arnothing$ 

Доказательство. Докажем, что если классы пересекаются, то они совпадают. Если  $g_1H\cap g_2H\neq\varnothing$ , то  $\exists h_1,h_2\in H:g_1\cdot h_1=g_2\cdot h_2\Rightarrow g_1=g_2\cdot\underbrace{h_2\cdot h_1^{-1}}_{\in H}\Rightarrow g_1H=g_2\underbrace{h_2h_1^{-1}H}_{\text{лежит в }H}\in g_2H\Rightarrow g_1H\subseteq g_2H.$  Аналогично есть обратное включение  $\Rightarrow g_1H=g_2H$ .

**Лемма.**  $|gH| = |H|, \forall g \in G$  (и любой конечной подгруппы H).

Доказательство. Пусть  $H = \{h_1, \dots, h_n\}, H$  – конечная подгруппа. Тогда смежный класс

$$gH = \{g \cdot h \mid h \in H\} = \{gh_1, \dots, gh_n\}$$

Тогда  $|gH| \leq |H|$  (т.к. некоторые из  $gh_1, \ldots, gh_n$  могут совпасть).

Предположим, что |gH|<|H|. Т.е. найдутся такие элементы  $h_1,h_2\in H$ , что  $h_1\neq h_2$  и выполнено  $gh_1=gh_2$ . Но тогда

$$gh_1 = gh_2 \Rightarrow g^{-1}gh_1 = g^{-1}gh_2 \Rightarrow h_1 = h_2$$

Получили противоречие. Следовательно, |gH| = |H|.

**Теорема** (Лагранжа). Пусть G – конечная группа и  $H \subseteq G$  – её подгруппа. Тогда

$$|G| = |H| \cdot [G:H]$$

Доказательство. Любой элемент группы G лежит в некотором левом смежном классе по H (gH). Т.к. левые смежные классы не пересекаются и любой из них содержит по |H| элементов, группа G распределяется на непересекающиеся левые смежные классы порядка  $|H| \Rightarrow |G| = |H| \cdot [G:H]$ .  $\square$ 

### 2.4 Докажите, что гомоморфизм инъективен тогда и только тогда, когда его ядро тривиально.

**Утверждение.** Пусть  $f: G \to F$  – гомоморфизм. Тогда f – инъективно (является мономорфизмом)  $\Leftrightarrow \operatorname{Ker} f = e_G$ .

Доказательство.

*Необходимость*. Дано: f – инъективно

Доказать: Ker  $f = e_G$ 

$$\forall x_1 \neq x_2: f(x_1) \neq f(x_2) \Rightarrow f(e_G) = e_F$$
 (и для  $x \in G$  и  $x \neq e_G$   $f(x) \neq f(e_G) = e_F$ )

Достаточность. Дано: Ker  $f = e_G$ 

Доказать: f – инъективно

Предположим, что  $\exists x_1 \neq x_2 : f(x_1) = f(x_2)$ . Тогда

$$f(x_1x_2^{-1}) = e_F = f(x_1) \cdot f(x_2^{-1}) = f(x_1) \cdot f(x_2)^{-1} \Rightarrow x_1 \cdot x_2^{-1} = e_G \Leftrightarrow x_1 = x_2$$

Противоречие с предположением  $\Rightarrow f$  – мономорфизм (инъективно).

#### 2.5Сформулируйте и докажите критерий нормальности подгруппы, использующий сопряжение.

**Утверждение.** Пусть  $H \subseteq G$ . Тогда три условия эквивалентны:

- (1) H нормальная
- (2)  $qHq^{-1} \subseteq H, \forall q \in G$
- (3)  $\forall g \in G \ qHq^{-1} = H$

Доказательство.

1)  $(1) \Rightarrow (2)$ 

T.K. 
$$gH=Hg$$
, to  $\forall h\in H$   $gh=hg\Rightarrow ghg^{-1}=h\in H\Rightarrow gHg^{-1}\subseteq H$ 

 $(2) (2) \Rightarrow (3)$ 

Для 
$$\forall h \in H \ h = gg^{-1}hgg^{-1} = g(g^{-1}hg)g^{-1} = g\underbrace{((g^{-1})h(g^{-1})^{-1})}_{\in H}g^{-1}$$
. Тогда  $H \subseteq gHg^{-1}$ , и, т.к.  $gHg^{-1} \subseteq H$ ,  $H = gHg^{-1}$ 

Тогда 
$$H\subseteq gHg^{-1}$$
, и, т.к.  $gHg^{-1}\subseteq H,\, H=gHg^{-1}$ 

 $(3) (3) \Rightarrow (1)$ 

$$gHg^{-1}=H\Leftrightarrow gHg^{-1}g=Hg\Leftrightarrow gH=Hg$$
 – условие нормальности.

#### 2.6 Сформулируйте и докажите критерий нормальности подгруппы, использующий понятие ядра гомоморфизма.

**Утверждение.** H – нормальная подгруппа в  $G \Leftrightarrow H = \operatorname{Ker} f$ , f – гомоморфизм.

Доказательство.

Heoбxoдимость. Дано: H – нормальная подгруппа в G

Доказать: существует гомоморфизм f такой, что  $H = \operatorname{Ker} f$ 

В роли гомоморфизма f может выступать естественный гомоморфизм  $\varepsilon: G \to G/H$ . Он существует, т.к. H – нормальная подгруппа и G/H корректно определена. Кег f – это множество всех элементов, которые перешли в eH = H – исходная нормальная подгруппа.

Достаточность. Дано: H – нормальная подгруппа в  $GH = \operatorname{Ker} f$ 

Доказать: H – нормальная подгруппа в G

Пусть  $f: G \to F$  – гомоморфизм. Покажем, что  $\forall q \in G$  и  $\forall z \in \text{Ker } f$  выполняется  $q^{-1}zq \in \text{Ker } f$  $f(g^{-1}zg) = f(g^{-1})f(z)f(g) \overset{\text{\tiny CB-BO\ romonopd.}}{=} f(g)^{-1}\underbrace{f(z)}f(g) = (f(g))^{-1}f(g) = e_F \overset{\text{\tiny onp.}}{\Rightarrow} g^{-1}zg \in \operatorname{Ker} f.$ 

Так как  $g^{-1} \operatorname{Ker} fg \subseteq \operatorname{Ker} f$ ,  $\operatorname{Ker} f$  – нормальная группа.

#### 2.7 Сформулируйте и докажите теорему о гомоморфизме групп.

**Теорема** (о гомоморфизме). Пусть  $f: G \to F$  — гомоморфизм групп. Тогда  $\operatorname{Im} f$  изоморфен факторгруппе  $G/\operatorname{Ker} f$ , т.е.  $G/\operatorname{Ker} f \cong \operatorname{Im} f$ , где  $\operatorname{Im} f = \{a \in F \mid \exists g \in G : f(g) = a\}$  — образ f.

Доказательство. Рассмотрим отображение  $\tau:G/\operatorname{Ker} f\to F,$  заданное формулой

$$\tau(g\operatorname{Ker} f) = f(g) \in \operatorname{Im} f$$

где  $g \operatorname{Ker} f$  – смежный класс  $H = \operatorname{Ker} f$ .

Докажем, что  $\tau$  и есть исходный изоморфизм. Проверим корректность (т.е. покажем, что  $\tau$  не зависит от выбора представителя смежного класса):

$$\forall h_1, h_2 \in \text{Ker } f \ f(gh_1) = f(g)f(h_1) = f(g) \cdot e_F = f(g) = f(g) \cdot \underbrace{f(h_2)}_{g} = f(gh_2)$$

Значит,  $\tau$  – определён корректно.

Отображение  $\tau$  сюръективно  $(\tau: G/\operatorname{Ker} f \to \operatorname{Im} f)$  и покажем, что оно инъективно.

По утверждению  $f(g) = e_F \Leftrightarrow g \in \operatorname{Ker} f = H$ , т.е. ядро гомоморфизма состоит только из нейтрального элемента в факторгруппе. Воспользуемся критерием инъективности:  $\tau$  – инъективно тогда и только тогда, когда  $\operatorname{Ker} \tau$  тривиально (состоит из  $e \cdot \operatorname{Ker} f$ )  $\Rightarrow \tau$  – биективно.

Остаётся проверить, что  $\tau$  – гомоморфизм:

Таким образом,  $\tau$  – биективный гомоморфизм, т.е. изоморфизм.

### 2.8 Докажите, что центр группы является её нормальной подгруппой.

**Утверждение.** Z(G) всегда является нормальной подгруппой в G.

Доказательство. Покажем, что Z(G) является подгруппой. Для того, чтобы H было подгруппой нужно, чтобы  $\forall a,b \in H \ ab^{-1} \in H.$  Для того, чтобы проверить:

- ullet что  $e \in H$ , берём  $b = a \Rightarrow aa^{-1} = e \in H$
- что  $ab \in H$ , берём  $b = b^{-1} \Rightarrow ab \in H$
- что  $a^{-1} \in H$ , берём  $a = e, b = a \Rightarrow a \in H$
- 1) Проверим, что  $\forall a,b \in Z(G)$  выполнено  $ab^{-1} \in Z(G)$ .

$$ab^{-1}g = ab^{-1}(g^{-1})^{-1} = a(g^{-1}b)^{-1} \overset{b \in Z(G)}{=} a(bg^{-1})^{-1} = a(g^{-1})^{-1}b^{-1} = agb^{-1} \overset{a \in Z(G)}{=} gab^{-1} \overset{a \in Z(G)}{=} ab^{-1} \overset{a \in Z(G)}{=} ab^{$$

2) Это нормальная подгруппа, т.к. элементы коммутируют с любыми из G и gZ(G)=Z(G)g.

# 2.9 Сформулируйте и докажите утверждение о том, чему изоморфна факторгруппа группы по её центру.

Утверждение.  $G/Z(G) \cong I_{nn}(G)$ 

Доказательство. Факторгруппа G/Z(G) является нормальной подгруппой. Рассмотрим отображение  $f: G \to \operatorname{Aut}(G)$ , заданнюе формулой  $f: g \mapsto \varphi_q(h) = ghg^{-1}$ .

Тогда  $\operatorname{Im} f = I_{nn}(G)$  по определению и  $\operatorname{Ker} f = Z(G)$ , т.к.  $ghg^{-1} = h \Leftrightarrow gh = hg \ (\varphi_g(h) = id(h)$  – нейтральный элемент во второй группе).

Тогда gh = hg верно для тех элементов, которые коммутируют с любым, т.е. элементов центра. Применим теорему о гомоморфизме групп:

$$G/\operatorname{Ker} f \cong \operatorname{Im} f \Leftrightarrow G/Z(G) \cong I_{nn}(G)$$

#### 2.10 Сформулируйте и докажите теорему Кэли.

**Теорема** (Кэли). Любая конечная группа порядка n изоморфна некоторой подгруппе группы  $S_n$ .

Доказательство. Пусть |G| = n, и  $\forall a \in G$  рассмотрим отображение  $L_a : G \to G$ , определённое формулой  $L_a(g) = a \cdot g$  (умножение слева на a). Покажем, что  $L_a$  – это биекция.

Пусть  $e, g_1, g_2, \ldots, g_{n-1}$  элементы группы тогда  $a \cdot e, a \cdot g, \ldots, a \cdot g_{n-1}$  – те же самые элементы, но в другом порядке (  $ag_i = ag_j \Leftrightarrow a^{-1}ag_i = a^{-1}ag_j \Leftrightarrow g_i = g_j$ )  $\Rightarrow L_a$  – перестановка элементов группы.

Существует нейтральный элемент:  $id = L_e$ .

По ассоциативности в G:  $L_{ab}(g) = (ab)g = a(bg) \Leftrightarrow L_{ab} = L_a \circ L_b$ .

При этом относительно операции композиции отображений:  $\forall L_a \; \exists (L_a)^{-1} = L_{a^{-1}}$ 

Таким образом, множество  $L_e, L_{g_1}, L_{g_2}, \ldots, L_{g_{n-1}}$  образуют группу H в группе S(G) всех биективных отображений G на себя, т.е. в  $S_n$ .

Искомый изоморфизм: 
$$\underbrace{a}_{\in G} \mapsto \underbrace{L_a}_{\in H \subseteq S_n}$$

### 2.11 Докажите, что характеристика поля может быть либо простым числом, либо нулем.

**Утверждение.** char 
$$P = \begin{cases} 0 \\ p, \ p$$
 – простое

Доказательство. Пусть  $p \neq 0 \Rightarrow p \geq 2 \ (p \neq 1,$  т.к.  $1 \neq 0)$ 

Если p=mk, где 1< m, k< p, то  $0=\overbrace{1+\ldots+1}^{mk}=\overbrace{(1+\ldots+1)(1+\ldots+1)}^{k}$ . Обе скобки  $\neq 0$ , так как p по определению минимальное натуральное число при котором  $1+\ldots+1=0$ , а m, k< p  $\Rightarrow m$  и k делители нуля, а их нет в поле по определению.

### 2.12 Сформулируйте и докажите утверждение о том, каким будет простое подполе в зависимости от характеристики.

**Утверждение.** Пусть P – поле, а  $P_0$  – его простое подполе. Тогда:

- 1) Если характеристика поля char P=p>0, то  $P_0\cong \mathbb{Z}_p$
- 2) Если char P = 0, то  $P_0 \cong \mathbb{Q}$ .

Доказательство. Рассмотрим  $1 \in P$  (нейтральный элемент по умножению)  $\Rightarrow \langle 1 \rangle \subseteq (P, +), \langle 1 \rangle$  – циклическая группа по сложению, порождённая 1.

Кольцо  $\langle 1 \rangle$  является подкольцом в P.

Т.к. любое подполе поля P содержит 1, то оно содержит и  $\langle 1 \rangle$ , т.е.  $\langle 1 \rangle \subseteq P_0$ .

- 1) Если char P=p>0, то  $\langle 1\rangle\cong\mathbb{Z}_p$  поле  $\Rightarrow P_0=\langle 1\rangle\cong\mathbb{Z}_p$  Пример.  $\underbrace{\mathbb{Z}_p}_{P_0}\subset\underbrace{\mathbb{Z}_p(x)}_{P_0}$
- 2) Если char P=0, то  $\langle 1 \rangle \cong \mathbb{Z}$  (это не поле), значит, в  $P_0$  должны быть все дроби  $\frac{a}{b}$ , где  $a,b\in \langle 1 \rangle, b\neq 0$ . Они все образуют подполе изоморфное  $\mathbb{Q}$ .

### 2.13 Сформулируйте и докажите критерий того, что кольцо вычетов по модулю n является полем.

**Утверждение.**  $\mathbb{Z}_p$  является полем  $\Leftrightarrow p$  –простое.

Доказательство. Для любого n  $\mathbb{Z}_n$  является кольцом с 1. Если n является составным, то n=mk,  $1 \leq m, k \leq n$ , и, следовательно,  $\overline{m}\overline{k} = \overline{n} = \overline{0} \Rightarrow$  в кольце есть делители нуля  $\Rightarrow$  это не поле.

Если p – простое, рассмотрим  $\overline{1}, \overline{2}, \ldots, \overline{p-1}$  – все классы вычетов, кроме  $\overline{0}$ . Возьмём произвольный элемент  $\overline{s}$  и докажем, что  $\exists \overline{s}^{-1} : \overline{s} \cdot \overline{s}^{-1} = \overline{1}$ . Рассмотрим множество  $A = \{\overline{s} \cdot \overline{1}, \overline{s} \cdot \overline{2}, \ldots, \overline{s} \cdot \overline{p-1}\}$  в A нет  $\overline{0}$  (т.к. p – простое, а среди чисел нет 0 или кратных 0). Заметим, что в A стоят те же элементы, но в другом порядке (если  $\overline{k_1} \cdot \overline{s} = \overline{k_2} \cdot \overline{s} \Leftrightarrow (\overline{k_1} - \overline{k_2})\overline{s} = \overline{0}$ , а это возможно только при  $\overline{k_1} = \overline{k_2}$ )  $\Rightarrow$  в наборе  $\overline{s}, \overline{s} \cdot \overline{2}, \ldots, \overline{s} \cdot \overline{p-1}$  найдётся  $1 \Rightarrow$  существует элемент  $\overline{s}^{-1} : \overline{s} \cdot \overline{s}^{-1} = \overline{1} \Rightarrow \overline{s}$  (он произвольный) обратим.

#### 2.14 Докажите, что ядро гомоморфизма колец является идеалом.

**Лемма.** Кег  $\varphi$ , где  $\varphi$  – гомоморфизм колец, всегда является идеалом в кольце  $K_1$  ( $\varphi: K_1 \to K_2$ )

Доказательство.

Идеал:

- 1) Подгруппа в  $(K_1, +)$
- 2)  $\forall a \in \operatorname{Ker} \varphi \ \forall r \in K_1 \ ar \in \operatorname{Ker} \varphi \ \text{u} \ ra \in \operatorname{Ker} \varphi$

Любой гомоморфизм колец является гомоморфизмом их аддитивных групп  $(K_1, +)$  и  $(K_2, +) \Rightarrow$  Кег  $\varphi$  является нормальной подгруппой в  $(K_1, +)$   $((K_1, +)$  коммутативна). Пусть  $a \in \text{Ker } \varphi$ , т.е.  $\varphi(a) = 0$ . Возьмём ar и рассмотрим выражение  $\varphi(ar) = \varphi(a) \cdot \varphi(r) = 0 \cdot \varphi(r) = 0$ . И аналогично  $\varphi(ra) = \varphi(r) \cdot 0 = 0$ .

### 2.15 Сформулируйте и докажите утверждение о том, когда факторкольцо кольца многочленов над полем само является полем.

**Теорема.** Пусть P — поле, а  $f(x) \in P[x]$ . Тогда факторкольцо  $P[x]/\langle f(x) \rangle$  является полем  $\Leftrightarrow$  многочлен f(x) — неприводим над P.

Доказательство. Если  $f(x) = f_1(x) \cdot f_2(x)$  (т.е. не является неприводимым), где  $0 < \deg f_i < \deg f$ ,  $\overline{f}_1, \overline{f}_2 \in P[x]/\langle f(x) \rangle$ , отличаются от нуля, но  $\overline{f_1(x)} \cdot \overline{f_2(x)} = \overline{f(x)} = \overline{0} \Rightarrow$  в  $P[x]/\langle f(x) \rangle$  есть делители нуля и это не поле.

Покажем, что если f(x) неприводим, то любой класс вычетов  $\overline{a(x)} \neq \overline{0}$  обратим. Представитель  $\overline{a(x)}$  это некоторый многочлен a(x) с  $\deg a(x) < \deg f(x)$ . Т.к. f(x) неприводим, он взаимно прост с  $a(x) \Rightarrow \exists b(x), c(x) : a \cdot b + c \cdot f = 1 \text{ (HOД)}, \text{ т.e. } \overline{a}\overline{b} + \overline{c}\overline{f} = \overline{1}, \text{ т.e. } \overline{a} \cdot \overline{b} = \overline{1} \text{ mod } \langle f(x) \rangle, \text{ т.e. } \overline{b}$  – обратный элемент к  $\overline{a}$  в  $P[x]/\langle f(x) \rangle$ .

### 2.16 Выпишите и докажите формулу для описания изменения координат вектора при изменении базиса.

**Утверждение.** Пусть  $x \in L$ ,  $\mathcal{A}$  и  $\mathcal{B}$  – базисы в L.

 $x^a = (x_1^a, \dots, x_n^a)^T$  – столбец координат вектора x в базисе  $\mathcal{A}$ .

 $x^b = (x_1^b, \dots, x_n^b)^T$  – столбец координат вектора x в базисе  $\mathcal{B}$ .

Тогда  $x^b = T_{\mathcal{A} \to \mathcal{B}}^{-1} \; x^a \Leftrightarrow X' = T^{-1} X,$  где X' – координаты в новом базисе.

Доказательство. Докажем, что  $x^b = T_{\mathcal{A} \to \mathcal{B}}^{-1} \, x^a$  (из невырожденности матрицы перехода будет следовать нужная формула).

$$x = a \cdot x^{a} = (a_{1}, \dots, a_{n}) \begin{pmatrix} x_{1}^{a} \\ \vdots \\ x_{n}^{a} \end{pmatrix} = x_{1}^{a} a_{1} + \dots + x_{n}^{a} a_{n} = b x^{b}$$

$$b = a \cdot T_{\mathcal{A} \to \mathcal{B}} \Rightarrow a \cdot x^{a} = b \cdot x^{b}, a x^{a} = a \cdot T_{\mathcal{A} \to \mathcal{B}} \cdot x^{b}$$

$$x^{a} = T_{\mathcal{A} \to \mathcal{B}} \cdot x^{b} \Rightarrow x^{b} = T_{\mathcal{A} \to \mathcal{B}}^{-1} \cdot x^{a}$$

### 2.17 Выпишите формулу для преобразования матрицы билинейной формы при замене базиса и докажите её.

**Утверждение.** Пусть U — матрица перехода от базиса e к базису f. Пусть  $B_e$  — матрица билинейной формы в базисе e. Тогда:

$$B_f = U^T B_e U$$

Доказательство.  $b(x,y) = (x^e)^T \cdot B_e \cdot y^e$ , где  $x^e$  – столбец координат в базисе e  $x^e = Ux^f (x^e$  – старые координаты, а  $x^f$  – новые)  $y^e = Uy^f (y^e$  – старые координаты, а  $y^f$  – новые)

$$(Ux^f)^T \cdot B_e \cdot (U \cdot y^f) = (x^f)^T \cdot \underbrace{U^T \cdot B_e \cdot U}_{B_f} \cdot y^f = (x^f)^T B_f y^f \Rightarrow B_f = U^T B_e U$$

### 2.18 Сформулируйте и докажите теорему о гомоморфизме колец.

**Теорема** (о гомоморфизме колец). Пусть  $K_1, K_2$  – два кольца,  $\varphi: K_1 \to K_2$  – гомомрфизм. Тогда

$$K_1/\operatorname{Ker}\varphi\cong \operatorname{Im}\varphi$$
 факторкольцо

Доказательство. Ядро  $\ker \varphi$  является идеалом (по лемме\*)  $\Rightarrow K_1/\ker \varphi$  корректно определён. Рассмотрим отображение  $\tau: k_1/\ker \varphi \to \operatorname{Im} \varphi$ . Выполняется  $\tau(a+I) = \varphi(a)$  из доказательства теоремы о гомоморфизме групп  $\Rightarrow \tau$  – корректно определено и является гомоморфизмом групп по сложению. Остаётся проверить, что  $\tau$  сохраняет умножение:

$$\tau((a+I)(b+I)) = \tau(ab+I) = \varphi(ab) = \varphi(a) \cdot \varphi(b) = \tau(a+I) * \tau(b+I)$$

Значит,  $\tau$  – гомоморфизм колец. И, т.к.  $\tau$  является биекцией (из теоремы о гомомрфизме групп), то это изоморфизм (между  $K_1/\operatorname{Ker}\varphi$  и  $\operatorname{Im}\varphi$ ).

**Лемма.** \* Ядро  ${\rm Ker}\, \varphi$ , где  $\varphi$  – гомоморфизм колец, всегда является идеалом в кольце  $K_1$  ( $\varphi: K_1 \to K_2$ )

2.19 Что такое сумма и прямая сумма подпространств? Сформулируйте и докажите критерий того, что сумма подпространств является прямой.

**Определение.** Множество  $H_1 + H_2 = \{x_1 + x_2 \mid x_1 \in H_1, x_2 \in H_2\}$  называется суммой подпространств  $H_1$  и  $H_2$ .

**Определение.** Сумма подпространств  $H_1 + H_2$  называется прямой и обозначается  $H_1 \oplus H_2$ , где  $H_1 \cap H_2 = \{0\}$ , т.е. тривиально.

**Утверждение.**  $H_1 + H_2$  является прямой суммой  $\Leftrightarrow \forall x \in H_1 + H_2$  единственным образом представляется  $x_1 \in H_1$  и  $x_2 \in H_2$  в виде  $x = x_1 + x_2$ .

Доказательство.

*Необходимость*. Дано: сумма прямая, т.е.  $H_1 \cap H_2 = \{0\}$ 

Доказать:  $x = x_1 + x_2$  представляется единственным образом

Предположим, что есть 2 разложения:  $x = x_1 + x_2$  и  $x = y_1 + y_2$ ,  $x_1, y_1 \in H_1$ ,  $x_2, y_2 \in H_2$ . Вычтем их друг из друга:

$$x_1 - y_1 = y_2 - x_2 = 0 \Rightarrow \begin{cases} x_1 = y_1 \\ x_2 = y_2 \end{cases}$$

Достаточность. Дано:  $x = x_1 + x_2$  представляется единственным образом

Доказать: сумма прямая

Если мы предположим, что  $\exists x \neq 0 : x \in H_1 \cap H_2$ , то  $\forall \alpha \in F : \alpha x \in H_1$  и  $\alpha x \in H_2$ . Тогда  $\forall \beta \in F : x = x - \beta x + \beta x = \underbrace{(1-\beta)x}_{\in H_1} + \underbrace{\beta x}_{\in H_2} \Rightarrow$  представление не единственно.

### 2.20 Сформулируйте и докажите утверждение о связи размерности суммы и пересечения подпространств.

**Утверждение.** Пусть  $H_1$  и  $H_2$  – подпространства в L. Тогда:

$$\dim(H_1 + H_2) = \dim(H_1) + \dim(H_2) - \dim(H_1 \cap H_2)$$

Доказательство. Рассмотрим базис  $H_1 \cap H_2$ . Дополним его до базиса в  $H_1$  и до базиса в  $H_2$ . Пусть  $\dim H_1 = n, \dim H_2 = m, \dim(H_1 \cap H_2) = r$ .

Обозначим базисные векторы следующим образом:

$$\underbrace{e_1,\dots,e_r}_{$$
базис в  $H_1\cap H_2$  дополнение до  $H_1$   $\underbrace{w_1,\dots,w_{m-r}}_{}$  дополнение до  $H_2$ 

Это базис в  $H_1+H_2$ , т.к. любой вектор из  $H_1+H_2$  может быть выражен через них, и они л.н.з. Таким образом, можем найти размерность  $H_1+H_2$ :

$$\dim(H_1 + H_2) = r + (n - r) + (m - r) = n + m - r = \dim H_1 + \dim H_2 - \dim(H_1 \cap H_2)$$

### 4-й модуль

### 1 Определения

#### 1.1 Дайте определение квадратичной формы.

**Определение.** Однородный многочлен от n переменных, то есть:

$$Q(x) = \sum_{i=1}^{n} a_{ii} x_i^2 + 2 \sum_{1 \le i \le j \le n} a_{ij} x_i x_j, \ a_{ij} \in \mathbb{R}$$

называют квадратичной формой.

### 1.2 Дайте определения положительной и отрицательной определенности квадратичной формы.

**Определение.** Квадратичную форму Q(x) будем называть:

- Положительно определенной, если  $\forall x \neq 0 \ \ Q(x) > 0$
- Отрицательно определенной, если  $\forall x \neq 0 \ \ Q(x) < 0$

### 1.3 Дайте определения канонического и нормального вида квадратичной формы.

**Определение.** Квадратичную форму  $Q(x) = \alpha_1 x_1^2 + \dots + \alpha_n x_n^2, \alpha_i \in \mathbb{R}, i = \overline{1,n}$  (т.е. не имеющую попарных произвольных элементов) называют квадратичной формой канонического вида. Если  $\alpha_i \in \{0,1,-1\}$  то канонический вид называют нормальным.

### 1.4 Сформулируйте критерий Сильвестра и его следствие.

**Теорема** (критерий Сильвестра). Квадратичная форма Q(x) от n переменных  $x=(x_1,\ldots,x_n)$  положительно определена  $\Leftrightarrow \Delta_1>0,\ldots,\Delta_n>0$ 

$$\Delta_1 = a_{11}, \Delta_2 = \begin{vmatrix} a_{11} & a_{12} \\ a_{12} & a_{22} \end{vmatrix}, \dots, \Delta_n = \det A$$
 – последовательность главных угловых миноров.

**Следствие.** Q(x) отрицательно определена  $\Rightarrow \Delta_1 < 0, \Delta_2 > 0, \Delta_3 < 0, \dots, (-1)^n \Delta_n > 0$ , т.е. знаки главных угловых миноров чередуются, начиная с минуса.

### 1.5 Сформулируйте закон инерции квадратичных форм. Что такое индексы инерции?

Теорема (Закон инерции квадратичных форм). Для любых двух канонических видов:

$$Q_1(y_1, \dots, y_n) = \lambda_1 y_1^2 + \dots + \lambda_m y_m^2, \ \lambda_i \neq 0, \ i = \overline{1, m}$$
$$Q_2(z_1, \dots, z_n) = \mu_1 z_1^2 + \dots + \mu_k z_k^2, \ \mu_i \neq 0, \ j = \overline{1, k}$$

одной и той же квадратичной формы выполнено:

- 1) m = k = рангу квадратичной формы
- 2) количество положительных  $\lambda_i =$  количеству положительных  $\mu_j = i_+$
- 3) количество отрицательных  $\lambda_i =$  количеству отрицательных  $\mu_i = i_-$

Числа  $i_+$  и  $i_-$  называют положительными и отрицательными индексами инерции (они являются инвариантами квадратичной формы).

#### 1.6 Дайте определение линейного отображения. Приведите пример.

Пусть  $V_1$  и  $V_2$  два линейных (конечномерных) пространства.

**Определение.** Отображение  $\varphi: V_1 \to V_2$  называется линейным, если  $\forall \alpha, \beta \in \mathbb{R}$ :

- 1)  $\forall x, y \in V_1 \ \varphi(x+y) = \varphi(x) + \varphi(y)$
- 2)  $\forall x \in V_1, \forall \alpha \in F \ \varphi(\alpha x) = \alpha \varphi(x)$

 $\Pi$ ример.  $D: g \to g'$  в  $\mathbb{R}[x]$  (дифференцирование)

$$\dim \mathbb{R}_n[x]=n+1$$
 
$$\operatorname{Im} D=\mathbb{R}_{n-1}[x]\Rightarrow \dim \operatorname{Im} D=n$$
 
$$\operatorname{Ker} D=L(1)-\operatorname{константы}$$
 
$$\dim \operatorname{Ker} D=1 \ (\text{и} \ \dim \operatorname{Im} D+\dim \operatorname{Ker} D=n+1)$$

Ho Ker  $D \cap \operatorname{Im} D \neq \{0\}$  и Ker  $D + \operatorname{Im} D = \mathbb{R}_{n-1}[x] \neq \mathbb{R}_n[x]$ .

#### 1.7 Дайте определение матрицы линейного отображения.

Пусть  $e_1, \ldots, e_n$  — базис в  $V_1$ ,  $\dim V_1 = n, f_1, \ldots, f_m$  — базис в  $V_2$  ( $\dim V_2 = m$ ). Рассмотрим образы  $\varphi(e_1), \ldots, \varphi(e_n) \in V_2$  и разложим их по базису  $f_1, \ldots, f_m$  в  $V_2$ .

$$\begin{cases} \varphi(e_1) = a_{11}f_1 + a_{21}f_2 + \dots + a_{m1}f_m \\ \vdots \\ \varphi(e_n) = a_{1n}f_1 + a_{2n}f_2 + \dots + a_{mn}f_m \end{cases}$$

Определение. Матрица линейного отображения – это матрица:

$$A_{ef} = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ a_{12} & \dots & a_{2n} \\ \vdots & & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix}$$

По столбцам матрицы стоят координаты образов векторов базиса  $V_1$  в базисе  $V_2$ .

1.8 Выпишите формулу для преобразования матрицы линейного отображения при замене базисов. Как выглядит формула в случае линейного оператора?

**Утверждение.** Пусть  $\varphi$  – линейное отображение из линейного пространства  $V_1$  в  $V_2$ . Пусть матрица  $A_{\varepsilon_1\varepsilon_2}$  – матрица линейного отображения в паре базисов:  $\varepsilon_1$  – базис в  $V_1$ ,  $\varepsilon_2$  – в  $V_2$ . И пусть даны две матрицы перехода:  $T_1$  – матрица перехода от  $\varepsilon_1$  к  $\varepsilon_1'$  в  $V_1$ ,  $V_2$  – матрица перехода от  $v_2$  к  $v_2'$  в  $v_2$ . Тогда

$$A_{\varepsilon_1'\varepsilon_2'} = T_2^{-1} \cdot A_{\varepsilon_1\varepsilon_2} \cdot T_1$$

Для линейного оператора:

$$A' = T^{-1} \cdot A \cdot T$$

1.9 Сформулируйте утверждение о связи размерностей ядра и образа линейного отображения.

**Утверждение.** Пусть  $\varphi:V_1\to V_2$  — линейное отображение. Тогда  $\dim \operatorname{Ker} \varphi+\dim \operatorname{Im} \varphi=\dim V_1.$ 

1.10 Дайте определения собственного вектора и собственного значения линейного оператора.

**Определение.** Число  $\lambda$  называется собственным числом (значением, с.з.) линейного оператора  $\varphi: V \to V$ , если существует вектор  $x \in V$ ,  $x \neq 0$  такой, что  $\varphi x = \lambda x$ . При этом вектор x называется собственным вектором (с.в.), отвечающим с.з.  $\lambda$ .

### 1.11 Дайте определения характеристического уравнения и характеристического многочлена квадратной матрицы.

**Определение.** Для произвольной квадратной матрицы A определитель  $\chi_A(\lambda) = \det(A - \lambda E)$  называют характеристическим многочленом матрицы A.

**Определение.** Характеристическое уравнение –  $\chi_A(\lambda) = \det(A - \lambda E) = 0$ .

## 1.12 Сформулируйте утверждение о связи характеристического уравнения и спектра линейного оператора.

**Теорема.**  $\lambda$  – с.з. линейного оператора  $A \Leftrightarrow \lambda$  – корень характеристического многочлена (над алгебраически замкнутым полем или, если корень принадлежит рассматриваемую полю F).

#### 1.13 Дайте определение собственного подпространства.

**Утверждение.** Пусть  $A: V \to V$  – л.о. и  $\lambda$  – его с.з. Тогда множество  $V_{\lambda} = \{x \in V \mid Ax = \lambda x\}$  – подпространство в V (называется собственным подпространством, отвечающим  $\lambda$ ).

### 1.14 Дайте определения алгебраической и геометрической кратности собственного значения. Какое неравенство их связывает?

**Определение.** Алгебраической кратностью называется кратность  $\lambda$  как корня характеристического уравнения.

**Определение.** Размерность подпространства  $V_{\lambda}$  называется геометрической кратностью с.з.  $\lambda$ . Геометрическая кратность равна  $\dim V_{\lambda} = \dim \operatorname{Ker}(A - \lambda I)$ 

Утверждение. Геометрическая кратность с.з. не превышает его алгебраической кратности.

# 1.15 Каким свойством обладают собственные векторы линейного оператора, отвечающие различным собственным значениям?

**Утверждение.** Пусть  $\lambda_1, \ldots, \lambda_k$  – с.з. линейного оператора  $A, \lambda_i \neq \lambda_j, i \neq j$  (они различны), а  $v_1, \ldots, v_k$  – соответствующие с.в. Тогда  $v_1, \ldots, v_k$  – линейно независимые. Т.е. с.в., отвечающие различным с.з. линейно независимы.

#### 1.16 Сформулируйте критерий диагональности матрицы оператора.

**Утверждение.** Матрица л.о. является диагональной в данном базисе ⇔ все векторы этого базиса являются собственными векторами для данного л.о.

### 1.17 Сформулируйте критерий диагонализируемости матрицы оператора с использованием понятия геометрической кратности.

**Теорема.** Л.о. диагонализируем  $\Leftrightarrow$  для любого его с.з.  $\lambda_j$   $a_{\lambda_j} = g_{\lambda_j}$  (алгебраическая кратность  $\lambda_j$  равна геометрической).

#### 1.18 Дайте определение евклидова пространства.

**Определение.** Евклидово пространство – это пара, состоящая из пространства V над  $\mathbb R$  и функции  $g(x,y):V\times V\to \mathbb R$  (скалярное произведение).

- 1)  $\forall x, y \in V \ g(x, y) = g(y, x)$  симметричность.
- 2) Линейность по каждому из аргументов: g(x + y, z) = g(x, z) + g(y, z).
- 3)  $\forall \alpha \in \mathbb{R} \ g(\alpha x, y) = \alpha g(x, y).$
- 4) Положительная определённость:  $\forall x \in V, \ x \neq 0 \ g(x,x) > 0$   $g(x,x) = 0 \Leftrightarrow x = 0$  (невырожденность).

### 1.19 Выпишите неравенства Коши-Буняковского и треугольника.

**Теорема.**  $\forall x, y \in E$  справедливо неравенство:  $|g(x, y)| \le ||x|| ||y||$ .

**Следствие** (неравенство треугольника).  $\forall x,y \in E \ \|x+y\| \le \|x\| + \|y\|$ 

### 1.20 Дайте определения ортогонального и ортонормированного базисов.

**Определение.** Если  $k=\dim V$ , то система ненулевых векторов  $v_1,\ldots,v_k$  будет базисом

- 1) ортогональным, если  $(v_i, v_j) = 0, \, \forall i, j = \overline{1, k}, \, i \neq j$  (все векторы попарно ортогональны).
- 2) ортонормированным, если он ортогональный и  $(v_i, v_i) = 1, i = \overline{1, k}$  (все векторы нормированы).

#### 1.21 Дайте определение матрицы Грама.

Пусть  $a_1, \ldots, a_n$  — базис в евклидовом пространстве E. Тогда скалярное произведение в координатах записывается следующим образом:

$$g(x,y) = X^T \Gamma Y$$

где X,Y — столбцы координат векторов x и y в базисе  $a_1,\ldots,a_n,$  а  $\Gamma$  — это матрица скалярного произведения как билинейной формы.

$$\Gamma = \begin{pmatrix} g(a_1, a_1) & \dots & g(a_1, a_n) \\ \vdots & & \vdots \\ g(a_1, a_n) & \dots & g(a_n, a_n) \end{pmatrix}$$

1.22 Выпишите формулу для вычисления скалярного произведения векторов, заданных своими координатами в произвольном базисе трехмерного пространства.

**Теорема.** Пусть  $\vec{a} = a_1 \vec{e_1} + \ldots + a_n \vec{e_n}, \ \vec{b} = b_1 \vec{e_1} + \ldots + b_n \vec{e_n}$  – разложение векторов  $\vec{a}$  и  $\vec{b}$  по базису. Тогда их скалярное произведение может быть вычислено по формуле:

$$(\vec{a}, \vec{b}) = \begin{pmatrix} a_1 & \dots & a_b \end{pmatrix} \cdot \begin{pmatrix} (\vec{e_1}, \vec{e_1}) & \dots & (\vec{e_1}, \vec{e_n}) \\ \vdots & \ddots & \vdots \\ (\vec{e_n}, \vec{e_1}) & \dots & (\vec{e_n}, \vec{e_n}) \end{pmatrix} \cdot \begin{pmatrix} b_1 \\ \vdots \\ b_3 \end{pmatrix} = a^T \Gamma b$$

1.23 Выпишите формулу для преобразования матрицы Грама при переходе к новому базису.

Матрицы Грама двух базисов e и e' связаны между собой так:

$$\Gamma' = U^T \Gamma U$$

где U – матрица перехода от e к e'.

1.24 Как меняется определитель матрицы Грама (грамиан) при применении процесса ортогонализации Грама-Шмидта?

**Утверждение.** Определитель матрицы Грама (грамиан) не изменяется при применении процесса ортогонализации Грама-Шмидта.

1.25 Сформулируйте критерий линейной зависимости с помощью матрицы Грама.

**Утверждение.** Векторы  $a_1,\ldots,a_k\in E$  – л.н.з.  $\Leftrightarrow \operatorname{Gr}(a_1,\ldots,a_k)\neq 0.$ 

#### 1.26 Дайте определение ортогонального дополнения.

**Определение.** Пусть  $H \subseteq V$  – подпространство в линейном пространстве V. Тогда множество

$$H^{\perp} = \{ x \in V \mid (x, y) = 0 \, \forall y \in H \}$$

называется ортогональным дополнением.

### 1.27 Дайте определения ортогональной проекции вектора на подпространство и ортогональной составляющей.

Определение.  $\forall x \in V$  доказано, что  $\exists y \in H, z \in H^{\perp} : x = y + z$ .

Тогда y называется ортогональной проекцией x на H, а z называется ортогональной составляющей x относительно H.

Оба вектора y и z определены однозначно (для данного x).

### 1.28 Выпишите формулу для ортогональной проекции вектора на подпространство, заданное как линейная оболочка данного линейно независимого набора векторов.

**Утверждение.** Пусть  $H = L(a_1, \ldots, a_k)$  и  $a_1, \ldots, a_k$  – л.н.з. Тогда

$$y = \pi p_H x = A(A^T A)^{-1} A^T x$$

где A составлена из столбцов координат векторов  $a_1, \ldots, a_k$  в ОНБ.

### 1.29 Выпишите формулу для вычисления расстояния с помощью определителей матриц Грама.

**Утверждение.** Расстояние  $\rho(P,M)$  между линейным многообразием P и точкой M (с радиусвектором x), где  $P=x_0+L(\underbrace{a_1,\ldots,a_k}_{\text{л.н.з.}})$   $(a_1,\ldots,a_k-\Phi\text{CP OCЛAY})$  может быть найден по формуле:

$$\rho(P, M) = \sqrt{\frac{\operatorname{Gr}(a_1, \dots, a_k, x - x_0)}{\operatorname{Gr}(a_1, \dots, a_k)}}$$

### 1.30 Дайте определение сопряженного оператора в евклидовом пространстве.

**Определение.** Линейный оператор  $A^*: E \to E$  называется сопряжённым к л.о.  $A: E \to E$ , если:

$$\forall x, y \in E : (\mathcal{A}x, y) = (x, \mathcal{A}^*y)$$

# 1.31 Дайте определение самосопряженного (симметрического) оператора.

**Определение.** Л.о. A называется самосопряжённым (симметрическим), если:

$$\forall x, y \in E : (\mathcal{A}x, y) = (x, \mathcal{A}y)$$

### 1.32 Как найти матрицу сопряженного оператора в произвольном базисе?

**Теорема.** Для любого линейного оператора в евклидовом пространстве существует единственный сопряжённый оператор  $A^*: E \to E$ , причём его матрицей в базисе b будет матрица  $A_b^* = \Gamma^{-1} A_b^T \Gamma$ , где  $\Gamma$  – матрица  $\Gamma$ рама базиса b.

# 1.33 Каким свойством обладают собственные значения самосопряженного оператора?

**Теорема.** Все корни характеристического уравнения самосопряжённого линейного оператора являются действительными числами.

# 1.34 Что можно сказать про собственные векторы самосопряженного оператора, отвечающие разным собственным значениям?

Утверждение. С.в. самосопряжённого л.о., отвечающее различным с.з., ортогональны.

### 1.35 Сформулируйте определение ортогональной матрицы.

**Определение.** Квадратную матрицу O называют ортогональной, если  $O^TO = E$ .

### 1.36 Сформулируйте определение ортогонального оператора.

**Определение.** Линейный оператор  $A: E \to E$  называется ортогональным, если:

$$\forall x, y \in E (Ax, Ay) = (x, y)$$

Т.е. А сохраняет скалярное произведение.

### 1.37 Сформулируйте критерий ортогональности оператора, использующий его матрицу.

**Теорема.** Матрица л.о. A в ОНБ ортогональна  $\Leftrightarrow A$  – ортогональный л.о.

# 1.38 Каков канонический вид ортогонального оператора? Сформулируйте теорему Эйлера.

**Теорема** (о каноническом виде ортогонального оператора). Для любого ортогонального линейного оператора существует ОНБ, в котором его матрица имеет следующий блочно-диагональный вид:

**Следствие** (теорема Эйлера). Любой ортогональный оператор в  $\mathbb{R}^3$  может быть приведён к следующему каноническому виду:

$$A' = \begin{pmatrix} \cos \varphi & -\sin \varphi & 0\\ \sin \varphi & \cos \varphi & 0\\ 0 & 0 & \pm 1 \end{pmatrix}$$

Т.е. любой ортогональный оператор является либо поворотом на некоторый угол вокруг некоторой оси, либо композицией поворота и отражения.

### 1.39 Сформулируйте теорему о существовании для самосопряженного оператора базиса из собственных векторов.

**Теорема.** Для любого самосопряжённого л.о. *А* существует ОНБ, состоящий из его с.в. В этом базисе матрица л.о. диагональна, а на диагонали стоят собственные значения, повторяющиеся столько, какова их алгебраическая кратность.

### 1.40 Сформулируйте теорему о приведении квадратичной формы к диагональному виду при помощи ортогональной замены координат.

**Теорема.** Любую квадратичную форму можно ортогональным преобразованием привести к каноническому виду.

#### 1.41 Сформулируйте утверждение о QR-разложении.

**Утверждение** (о QR-разложении). Пусть  $A \in M_m(\mathbb{R})$ , и столбцы  $A_1, \ldots, A_m$  – л.н.з. Тогда существуют матрицы Q и R, такие что A = QR, где Q – ортогональные матрицы, R – верхнетреугольные.

#### 1.42 Сформулируйте теорему о сингулярном разложении.

**Теорема** (о сингулярном разложении). Для любой прямоугольной матрицы  $A \in M_{mn}(\mathbb{R})$  имеет место следующее разложение:

$$A = V \Sigma U^T$$

Оно называется сингулярным (SVD). Здесь  $U \in O_n(\mathbb{R})$ ,  $V \in O_m(\mathbb{R})$  – ортогональные матрицы,  $\Sigma \in M_{mn}(\mathbb{R})$  – диагональная матрица с  $\sigma_i \geq 0$  на диагонали. Причём, что  $\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_r > 0$ ,  $r = \operatorname{Rg} A$ . Числа  $\sigma_i$  называются сингулярными.

### 1.43 Сформулируйте утверждение о полярном разложении.

**Утверждение** (полярное разложение). Любой линейный оператор в евклидовом пространстве представляется в виде композиции симметрического и ортогонального  $A = S \cdot U$ , S – симметрический л.о., U – ортогональный л.о.

#### 1.44 Дайте определение сопряжённого пространства

**Определение.** Пространством, сопряженным (двойственным) к линейному пространству L называется множество всех линейных функционалов на L с операциями сложения и умножения на число  $\forall x \in V, \lambda \in F$ :

$$(f_1 + f_2)(x) = f_1(x) + f_2(x)$$
$$(\lambda f)(x) = \lambda f(x)$$

**Обозначение.**  $L^*$  – сопряжённое к линейному пространство.

# 1.45 Выпишите формулу для преобразования координат ковектора при переходе к другому базису.

**Утверждение.** Пусть e и g – два базиса в V. Тогда

$$[f]_q = [f]_e \cdot T_{e \to q}$$

#### 1.46 Дайте определение взаимных базисов

**Определение.** Базис  $e=(e_1,\ldots,e_n)$  в линейном пространстве L и базис  $f=(f^1,\ldots,f^n)$  в  $L^*$  называются взаимными, если

$$f^{i}(e_{j}) = \delta^{i}_{j} = \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases}$$

#### 1.47 Дайте определение биортогонального базиса

**Определение.** Если отождествить E и  $E^*$ , то базис взаимный к данному, называется биортогональным.

# 1.48 Что можно сказать про ортогональное дополнение к образу сопряженного оператора?

**Утверждение.**  $(\operatorname{Im} A^*)^{\perp} = \operatorname{Ker} A$ 

### 2 Доказательства

### 2.1 Сформулируйте и докажите (включая лемму) теорему об инвариантности ранга матрицы квадратичной формы.

**Лемма.** Пусть  $A, S \in M_n(\mathbb{R})$ ,  $\det S \neq 0$ . Тогда  $\operatorname{Rg}(A \cdot S) = \operatorname{Rg} A = \operatorname{Rg}(S \cdot A)$ , т.е. умножение на невырожденную матрицу S не меняет ранг матрицы A

Доказательство.  $\operatorname{Rg}(A \cdot S) \leq \operatorname{Rg} A$ , т.к. столбцы матрицы  $A \cdot S$  – это линейные комбинации столбцов матрицы A, а ранг равен максимальному количеству л.н.з. столбцов (теорема о ранге матрицы)  $\Rightarrow$  число л.н.з. столбцов не может вырасти и  $\operatorname{Rg}(A \cdot S) \leq \operatorname{Rg} A$ .

$$\operatorname{Rg} A = \operatorname{Rg}(A \cdot \underbrace{S \cdot S^{-1}}_{E}) \le \operatorname{Rg}(A \cdot S) \Rightarrow \operatorname{Rg} A = \operatorname{Rg}(A \cdot S)$$

**Утверждение** (об инвариантности ранга). Пусть Q – квадратичная форма на линейном пространстве V,  $a = \{a_1, \ldots, a_n\}$ ,  $b = \{b_1, \ldots, b_n\}$  – базисы в V.

Пусть A — матрица Q(x) в базисе a, B — матрица Q(x) в базисе b. Тогда  $\operatorname{Rg} A = \operatorname{Rg} B$  (ранги матриц квадратичных форм).

*Доказательство.* Мы знаем, что  $B = S^T \cdot A \cdot S$ , где  $S = T_{a \to b}$  – матрица перехода, и она всегда невырождена. По лемме при умножении A на невырожденные матрицы S и  $S^T$  её ранг не изменится, значит,  $\operatorname{Rg} B = \operatorname{Rg} A$ .

### 2.2 Сформулируйте и докажите утверждение о связи размерностей ядра и образа линейного отображения.

**Утверждение.** Пусть  $\varphi:V_1\to V_2$  – линейное отображение. Тогда

$$\dim \operatorname{Ker} \varphi + \dim \operatorname{Im} \varphi = m = \dim V_1$$

Доказательство. Выберем базис в  $V_1: e = \{e_1, \dots, e_m\}$ . Тогда  $\forall x \in V_1$  можно представить в виде:  $x = x_1e_1 + \dots + x_me_m$ . Следовательно,  $\varphi(x) = x_1\varphi(e_1) + \dots + x_m\varphi(e_m)$ , где  $\varphi(e_1), \dots, \varphi(e_m)$  – столбцы матрицы линейного отображения  $\varphi$ .

Т.е.  $\operatorname{Im} \varphi = L(\varphi(e_1), \dots, \varphi(e_m)) \Rightarrow \dim \operatorname{Im} \varphi = \operatorname{Rg} A$  – ранг матрицы линейного отображения. Ядро отображения записывается однородной системой (СЛАУ):  $Ax = 0 \Rightarrow \dim \operatorname{Ker} \varphi$  – это число элементов ФСР Ax = 0. Но число элементов в ФСР:

$$m - \operatorname{Rg} A = \dim \operatorname{Ker} \varphi \Rightarrow \dim \operatorname{Ker} \varphi + \dim \operatorname{Im} \varphi = m$$

### 2.3 Сформулируйте и докажите утверждение о связи характеристического уравнения и спектра линейного оператора.

**Теорема.**  $\lambda$  – с.з. линейного оператора  $A \Leftrightarrow \lambda$  – корень характеристического многочлена (над алгебраически замкнутым полем или, если корень принадлежит рассматриваемую полю F).

Доказательство.

Heoбxoдимость. Дано:  $\lambda$  – с.з.

Доказать:  $\lambda$  – корень характеристического многочлена

По определению  $\exists x \neq 0 : Ax = \lambda x$ , т.е.  $Ax = \lambda \cdot I \cdot x \Leftrightarrow (A - \lambda I)x = 0$ , где I – тождественный оператор.

Запишем равенство  $(A - \lambda I)x = 0$  в некотором базисе e:

$$(A_e - \lambda E)x^e = 0$$

Это однородная СЛАУ, и она имеет ненулевое решение  $\Rightarrow \det(A_e - \lambda E) = 0$ , т.е.  $\lambda$  – корень характеристического уравнения.

Доказать:  $\lambda$  – с.з.

Если  $\lambda$  – корень, то в заданном базисе выполняется равенство:  $\det(A_e - \lambda E) = 0 \Rightarrow$  соответствующая СЛАУ с матрицей  $(A_e - \lambda E)$  имеет ненулевое решение (используется критерий существования решения однородной СЛАУ с квадратной матрицей).

Это решение можно интерпретировать как набор координат некоторого вектора, для которого выполняется  $(A - \lambda I)x = 0$ ,  $x \neq 0$ . Это по определению означает, что x – с.в., а  $\lambda$  – с.з.

# 2.4 Сформулируйте и докажите утверждение о том, каким свойством обладают собственные векторы линейного оператора, отвечающие различным собственным значениям.

**Утверждение.** Пусть  $\lambda_1, \ldots, \lambda_k$  – с.з. линейного оператора  $A, \lambda_i \neq \lambda_j, i \neq j$  (они различны), а  $v_1, \ldots, v_k$  – соответствующие с.в. Тогда  $v_1, \ldots, v_k$  – линейно независимые. Т.е. с.в., отвечающие различным с.з. линейно независимы.

Доказательство. Применим принцип математической индукции. При k=1 верно, т.к. с.в. по определению не 0 и, соответственно, л.н.з.

Пусть уравнение верно для k=m. Добавим ещё один с.в.  $v_{m+1}$ . Докажем, что система из векторов  $v_1,\ldots,v_m,v_{m+1}$  осталась л.н.з. Рассмотрим равенство

$$(1): \alpha_1 v_1 + \alpha_2 v_2 + \ldots + \alpha_m v_m + \alpha_{m+1} v_{m+1} = 0$$

Применим к (1) линейный оператор A:

$$\alpha_1 A v_1 + \ldots + \alpha_m A v_m + \alpha_{m+1} A v_{m+1} = 0 \Rightarrow (2) : \alpha_1 \lambda_1 v_1 + \ldots + \alpha_m \lambda_m v_m + \alpha_{m+1} \lambda_{m+1} v_{m+1} = 0$$

Умножим (1) на  $\lambda_{m+1}$  и вычтем его из (2):

$$\alpha_1(\lambda_1 - \lambda_{m+1})v_1 + \ldots + \alpha_m(\lambda_m - \lambda_{m+1})v_m = 0$$

Т.к. все  $\lambda_i$  различны, а  $v_1, \ldots, v_m$  – л.н.з., то:

$$\begin{cases} \alpha_1(\lambda_1 - \lambda_{m+1}) = 0 \\ \dots \\ \alpha_m(\lambda_m - \lambda_{m+1}) = 0 \end{cases} \Rightarrow \begin{cases} \alpha_1 = 0 \\ \dots \\ \alpha_m = 0 \end{cases}$$
  $\Rightarrow (1)$  можно записать в виде  $\alpha_{m+1}v_{m+1} = 0$ 

Т.к.  $v_{m+1}$  – с.в., то  $v_{m+1} \neq 0 \Rightarrow \alpha_{m+1} = 0$ .

По определению (л.н.з. векторов)  $v_1, \ldots, v_{m+1}$  – л.н.з. Индукционный переход выполнен, значит утверждение верно всегда.

### 2.5 Сформулируйте и докажите критерий диагональности матрицы оператора.

**Утверждение.** Матрица л.о. является диагональной в данном базисе ⇔ все векторы этого базиса являются собственными векторами для данного л.о.

Доказательство.

Heoбxoдимость. Дано:  $A_e$  – диагональна.

Доказать: базис e состоит из собственных векторов.

По определению матрицы линейного оператора в j-ом столбце стоят координаты вектора  $A(e_j)$  в базисе e. Если матрица диагональна, то j-й столбец имеет вид:

$$\begin{pmatrix} 0 \\ \vdots \\ 0 \\ \lambda_j \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$
,  $\lambda_j$  стоит на  $j$ -ом месте.

Т.е.  $A(e_j) = 0 \cdot e_1 + \ldots + 0 \cdot e_{j-1} + \lambda_j e_j + 0 \cdot e_{j+1} + \ldots \Rightarrow Ae_j = \lambda_j e_j$ , т.е. по определению собственного вектора  $e_j$  – с.в. с с.з.  $\lambda_j$ . Он не равен 0, т.к. это элемент базиса.

Т.к. это верно для  $\forall j = \overline{1,n}$ , то все базиснве векторы – собственные, а на диагонали стоят с.з.

Достаточность. Дано:  $(e_1, \ldots, e_n)$  – базис, и он состоит из с.в.

Доказать:  $A_e$  – диагональная.

 $Ae_j = \lambda_j e_j$  (по определению с.в.)  $\Rightarrow$  если записать по определению матрицу л.о., то все элементы, кроме диагональных, будут нулевыми, а на диагонали стоит число  $\lambda_j$ .

# 2.6 Каким свойством обладает оператор в n-мерном вещественном пространстве, у характеристического многочлена которого есть n различных действительных корней?

**Теорема** (достаточное условие диагонализируемости). Если характеристическое уравнение л.о., действующего в V, где  $\dim V = n$ , имеет n попарно различных корней, то л.о. диагонализируем (корни лежат в том же поле, над которым рассматривается V).

Доказательство. Если  $\lambda_i \in F$  – корень характеристического уравнения, то ему можно сопоставить хотя бы 1 собственный вектор. Но система векторов  $v_1, \ldots, v_n$  (отвечающая различным с.з.) будет л.н.з., и их число равно  $\dim V \Rightarrow$  они образуют базис, и этот базис состоит из с.в.  $\Rightarrow$  в нём есть матрица л.о. диагональная.

### 2.7 Выпишите и докажите неравенство Коши–Буняковского. Выпишите и докажите неравенство треугольника.

**Теорема.**  $\forall x, y \in E$  справедливо неравенство:  $|g(x, y)| \le ||x|| ||y||$ .

Доказательство.  $\forall \alpha \in \mathbb{R} \ g(\alpha x - y, \alpha x - y) \geq 0$  (положительная определённость).

$$g(\alpha x - y, \alpha x - y) = \alpha g(x, \alpha x - y) - g(y, \alpha x - y) = \alpha^2 g(x, x) - \alpha g(x, y) - \alpha g(x, y) + g(y, y) =$$

$$= \alpha^2 g(x, x) - 2\alpha g(x, y) + g(y, y) = \alpha ||x||^2 - 2\alpha g(x, y) + ||y||^2 \ge 0, \ \forall \alpha \in \mathbb{R}$$

Дискриминант данного уравнения  $D \leq 0$  (неравенство на  $\alpha$ ). Тогда:

$$D = 4g(x,y)^{2} - 4||x||^{2}||y||^{2} \le 0 \Rightarrow ||g(x,y)|| \le ||x|| ||y||$$

**Следствие** (неравенство треугольника).  $\forall x, y \in E \ \|x + y\| \le \|x\| + \|y\|$ 

Доказательство.

$$||x+y||^2 = g(x+y,x+y) = g(x,x) + 2g(x,y) + g(y,y) \le ||x||^2 + 2||x|| ||y|| + ||y||^2 = (||x|| + ||y||)^2$$

Обе части неотрицательные, следовательно, выполнено неравенство треугольника.

## 2.8 Докажите теорему о том, что евклидово пространство можно представить в виде прямой суммы подпространства и его ортогонального дополнения.

**Теорема.** Ортогональное дополнение  $H^{\perp}$  является линейным подпространством в V и  $V = H \oplus H^{\perp}$  (dim  $V = \dim H + \dim H^{\perp}$ ).

Доказательство.  $H^{\perp}$  является подпространством, т.к. замкнуто относительно операции сложения и умножения на число:  $\forall h \in H, \, \forall x,y \in H^{\perp}, \, \alpha \in \mathbb{R}$ 

$$(x+y,h) = (x,h) + (y,h) = 0 + 0 = 0 \Rightarrow x+y \in H^{\perp}$$
$$(\alpha x, h) = \alpha(x,h) = \alpha \cdot 0 = 0 \Rightarrow \alpha x \in H^{\perp}$$

Т.к.  $H^{\perp}$  является подпространством, то можно рассматривать  $H+H^{\perp}$ . Осталось показать, что сумма прямая и что  $V=H+H^{\perp}$ .

Если  $x\in H\cap H^\perp$ , то  $(x,x)=0\Leftrightarrow x=0$ , т.е.  $H\cap H^\perp=\{0\}\Rightarrow$  сумма прямая.

Пусть  $f_1, \ldots, f_m$  – ОНБ в H (он всегда существует). Дополним его до базиса в V векторами  $f_{m+1}, \ldots, f_n$ . Применим принцип ортогонализации Грама-Шмидта:

 $f_1,\ldots,f_m,\underbrace{e_{m+1},\ldots,e_n}_{\text{новые}}\Rightarrow e_{m+1},\ldots,e_n$  — ортогональны  $f_1,\ldots,f_m$  (базис в H)  $\Rightarrow$  они ортогональны всему H.

И  $\forall x \in V$  можно представить в виде:

$$x = \underbrace{x_1 f_1 + \dots x_m f_m}_{y \in H} + \underbrace{x_{m+1} e_{m+1} + \dots + x_n e_n}_{z \in H^{\perp}}$$

Т.е.  $\forall x \in V \ x = y + z, \ y \in H, \ z \in H^{\perp}$ , но это и означает, что всё пространство V равно  $H \oplus H^{\perp}$ .

- 2.9 Выпишите формулу для преобразования матрицы Грама при переходе к новому базису и докажите её. Что происходит с определителем матрицы Грама при применении процесса ортогонализации Грама-Шмидта? Что можно сказать про знак определителя матрицы Грама? Ответы обоснуйте.
  - 1) Матрицы Грама двух базисов e и e' связаны между собой так:

$$\Gamma' = U^T \Gamma U$$

где U – матрица перехода от e к e'.

Это формула верна, т.к.  $\Gamma$  – матрица билинейной формы g(x,y).

2)  $\det \Gamma > 0$ 

 $\mathcal{A}$ оказательство. Рассмотрим det  $\Gamma'$ :

$$\det \Gamma' = \det(U^T \Gamma U) = \underbrace{\det U^T}_U \cdot \det \Gamma \cdot \det U = \underbrace{(\det U)^2}_{>0} \cdot \det \Gamma$$

Перейдём к ОНБ (это всегда можно сделать в конечномерном пространстве). В нём  $\Gamma' = E \Rightarrow \det \Gamma' = 1$ .

$$1 = \underbrace{(\det U)^2}_{>0} \cdot \det \Gamma \Rightarrow \det \Gamma > 0$$

3) Определитель матрицы Грама (грамиан) не изменяется при применении процесса ортогонализации Грама-Шмидта.

Доказательство.  $Gr(a_1,\ldots,a_n)=\det\Gamma(a_1,\ldots,a_n).$ 

Матрица перехода от базиса  $a_1, \ldots, a_n$  к базису  $b_1, \ldots, b_n$  (ортогональный не нормированный) имеет следующий вид:

$$U_{a \to b} = \begin{pmatrix} 1 & & * \\ & 1 & \\ & & \ddots & \\ 0 & & 1 \end{pmatrix} \Rightarrow \det U_{a \to b} = 1$$

$$\det \Gamma_b' = \det(U^T \Gamma_a U) = (\det U)^2 \cdot \det \Gamma_a = 1 \cdot \det \Gamma_a = \det \Gamma_a$$

### 2.10 Сформулируйте и докажите критерий линейной зависимости набора векторов с помощью матрицы Грама.

**Утверждение.** Векторы  $a_1, \ldots, a_k \in E$  – л.н.з.  $\Leftrightarrow \operatorname{Gr}(a_1, \ldots, a_k) \neq 0$ .

Доказательство. Рассмотрим линейную комбинацию векторов  $a_1, \ldots, a_k$ .

$$(1): \alpha_1 a_1 + \ldots + \alpha_k a_k = 0$$

Умножим (1) скалярно на векторы  $(a_1, \ldots, a_k)$ :

$$\begin{cases} \alpha_1(a_1, a_1) + \alpha_2(a_1, a_2) + \ldots + \alpha_k(a_1, a_k) = 0 \\ \vdots \\ \alpha_1(a_k, a_1) + \alpha_2(a_k, a_2) + \ldots + \alpha_k(a_k, a_k) = 0 \end{cases}$$

Это однородная СЛАУ на коэффициенты  $\alpha_1,\dots,\alpha_k$ , т.е. СЛАУ вида  $\Gamma_{k\times k}(a_1,\dots,a_k)\cdot\alpha=0.$ 

У неё существует нетривиальное решение (векторы л.з.)  $\Leftrightarrow \det \Gamma_{k \times k} = 0$ .

$$M$$
, соответственно,  $a_1, \ldots, a_k$  – л.н.з  $\Leftrightarrow \det \Gamma_{k \times k} \neq 0$ .

#### 2.11 Выпишите формулу ортогональной проекции вектора на её подпространство, заданное как линейная оболочка данного линейного независимого набора векторов, и докажите её

**Утверждение.** Пусть  $H = L(a_1, \dots, a_k)$  и  $a_1, \dots, a_k$  – л.н.з. Тогда

$$y = \pi p_H x = A(A^T A)^{-1} A^T x$$

где A составлена из столбцов координат векторов  $a_1,\dots,a_k$  в ОНБ.

Доказательство. Пусть  $y = \text{пр}_H x = \alpha_1 a_1 + \ldots + \alpha_k a_k \in H$  (т.е.  $x = \underbrace{\alpha_1 a_1 + \ldots + \alpha_k a_k}_{\in H} + \underbrace{h^{\perp}}_{\in H^{\perp}}$ ).

Теперь последовательно умножим x на  $a_1, \ldots, a_k$ :

$$\begin{cases} \alpha_1(a_1, a_1) + \alpha_2(a_1, a_2) + \ldots + \alpha_k(a_1, a_k) = (a_1, x) \\ \vdots \\ \alpha_1(a_k, a_1) + \alpha_2(a_k, a_2) + \ldots + \alpha_k(a_k, a_k) = (a_k, x) \end{cases}$$

В матричной форме с матрицей  $A = [a_1, \dots, a_k]$ :

$$\Gamma_{k \times k}(a_1, \dots, a_k) \cdot \alpha = A^T x \Leftrightarrow \underbrace{A^T A}_{\Gamma_{k \times k}} \cdot \alpha = A^T x$$

Т.к.  $a_1,\ldots,a_k$  – л.н.з.  $\Rightarrow \Gamma(a_1,\ldots,a_k)$  невырождена  $\Rightarrow$  к ней существует обратная. Тогда

$$\Gamma \cdot \alpha = A^T x \Rightarrow \alpha = \Gamma^{-1} \cdot A^T \cdot x = (A^T \cdot A)^{-1} \cdot A^T \cdot x$$
$$y = A\alpha = A(A^T A)^{-1} A^T x$$

## 2.12 Докажите, что для любого оператора в конечномерном евклидовом пространстве существует единственный сопряженный оператор.

**Теорема.** Для любого линейного оператора в евклидовом пространстве существует единственный сопряжённый оператор  $A^*: E \to E$ , причём его матрицей в базисе b будет матрица  $A_b^* = \Gamma^{-1} A_b^T \Gamma$ , где  $\Gamma$  – матрица  $\Gamma$ рама базиса b.

$$\forall x, y \in E (Ax, y) = (x, By)$$

Пусть  $x^b, y^b$  — столбцы координат векторов в базисе b. Тогда  $(Ax)^b = A_b x^b$  и  $(x, y) = x^T \Gamma y$  — матричная запись скалярного произведения. Тогда:

$$\underbrace{((Ax)^b)^T\Gamma y^b}_{(x^b)^T\cdot A_h^T\cdot \Gamma \cdot y^b}=(x^b)^T\Gamma (By)^b$$
 – скалярное произведение в матричной форме

$$(x^b)^T \cdot A_b^T \cdot \Gamma \cdot y^b = (x^b)^T \Gamma(By)^b \overset{\text{лемма}}{\Rightarrow} \Gamma B_b = A_b^T \Gamma \Rightarrow B_b = \Gamma^{-1} A_b^T \Gamma \left( \exists \Gamma^{-1}, \text{ t.k. } \det \Gamma > 0 \right)$$

#### 2.13 Сформулируйте и докажите свойство собственных векторов самосопряженного оператора, отвечающих разным собственным значениям.

Утверждение. С.в. самосопряжённого л.о., отвечающее различным с.з., ортогональны.

Доказательство. Пусть  $Ax_1 = \lambda_1 x_1, \ x_1 \neq 0, \ Ax_2 = \lambda_2 x_2, \ x_2 \neq 0, \ \lambda_1 \neq \lambda_2$  (т.е.  $x_1, x_2$  – с.в., соответствующие с.з.  $\lambda_1, \lambda_2$ ).

$$\begin{cases} (Ax_1, x_2) = (\lambda_1 x_1, x_2) = \lambda_1(x_1, x_2) \\ (x_1, Ax_2) = (x_1, \lambda_2 x_2) = \lambda_2(x_1, x_2) \end{cases} \Rightarrow \underbrace{(\lambda_1 - \lambda_2)}_{\neq 0} (x_1, x_2) = 0 \Rightarrow x_1, x_2 \text{ ортогональны}$$

## 2.14 Каким свойством обладают собственные значения самосопряженного оператора?

**Теорема.** Все корни характеристического уравнения самосопряжённого линейного оператора являются действительными числами.

Доказательство. Пусть  $\widetilde{\lambda}\in\mathbb{C}$  – корень характеристического уравнения  $\chi_a(\lambda)=0$ , то есть выполнено  $\det(A-\widetilde{\lambda}E)=0$ .

Тогда СЛАУ  $(A-\widetilde{\lambda}E)x=0$  имеет ненулевое решение, состоящее из  $x_k\in\mathbb{C},\ k=\overline{1,n}$ :

$$x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

Рассмотрим столбец сопряжённых (комплексно) элементов:

$$\overline{x} = \begin{pmatrix} \overline{x_1} \\ \vdots \\ \overline{x_n} \end{pmatrix}$$

Умножим СЛАУ на  $\overline{x}^T$  (=  $x^*$  обозначение) слева:

$$\overline{x}^T (A - \widetilde{\lambda}E)x = 0 \Leftrightarrow \overline{x}^T A x - \widetilde{\lambda}\overline{x}^T x = 0$$

$$\bar{x}^T x = \overline{x}_1 x_1 + \ldots + \overline{x}_n x_n = \underbrace{|x_1|^2 + \ldots + |x_n|^2}_{\in \mathbb{R}} > 0$$
, т.к. решение ненулевое (с.в.)

Тогда:

$$\widetilde{\lambda} = rac{\overline{x}^T A x}{\overline{x}^T x}$$
 – отношение Релея

Если докажем, что  $z=\overline{x}^TAx$  является вещественным числом, то  $\widetilde{\lambda}$  тоже будет вещественным:

$$z = \overline{x}^T A x = z^T = (\overline{x}^T A x)^T = x^T A^T (\overline{x}^T)^T = x^T A^T \overline{x} \stackrel{A = A^T}{=} x^T A \overline{x}$$

Т.к. матрица вещественная:

$$\overline{z} = \overline{\overline{x}^T A x} = \overline{\overline{x}}^T \cdot \overline{A} \cdot \overline{x} = x^T A \overline{x} \Rightarrow z = \overline{z} \Rightarrow z \in \mathbb{R} \Rightarrow \widetilde{\lambda} = \frac{z}{\overline{x}^T x} \in \mathbb{R}$$

## 2.15 Сформулируйте теорему о существовании для самосопряженного оператора базиса из собственных векторов. Приведите доказательство в случае различных вещественных собственных значений.

**Теорема.** Если с.з.  $\lambda_1, \ldots, \lambda_n$  самосопряжённого л.о.  $A: E \to E$ , dim E=n, попарно различны, то в E существует ОНБ, в котором матрица оператора A имеет диагональный вид.

Доказательство. Т.к.  $\lambda_1, \ldots, \lambda_n$  — попарно различны, то, выбрав для каждого с.з. соответствующий ему с.в., получим систему ненулевых векторов. По утверждению об ортогональности с.в., отвечающих различным с.з., это будет ортогональная система. Она л.н.з. и содержит n векторов. Значит, она является базисом в E (т.к.  $\dim E = n$ ). Это ортогональный базис. Чтобы получить ОНБ нужно разделить каждый вектор на его норму. Векторы не перестают быть собственными, значит, это исходный базис.

## 2.16 Сформулируйте и докажите теорему о том, что ортогональный оператор переводит ортонормированный базис в ортонормированный. Верно ли обратно?

**Теорема.** Пусть л.о.  $A: E \to E$ . Тогда A – ортогональный л.о.  $\Leftrightarrow$  ОНБ  $e_1, \ldots, e_n$  переходит в ОНБ  $Ae_1, \ldots, Ae_n$ .

Доказательство.

Heoбxoдимость. Дано: A – ортогональный л.о. и  $e_1, \ldots, e_n$  – ОНБ.

Доказать:  $Ae_1, \ldots, Ae_n$  – ОНБ.

$$(Ae_i, Ae_j) = (e_i, e_j) = \delta_j^i = \begin{cases} 1, i = j \\ 0, i \neq j \end{cases}$$

$$e_1, \dots, e_n - \text{OHB}$$

Т.е. система векторов  $\{Ae_j\}_{j=1}^n$  состоит из ненулевых векторов и попарно ортогональна – это ОНБ из n векторов  $\Rightarrow$  базис в E.

 $\mathcal{A}$ остаточность. Дано:  $Ae_1,\ldots,Ae_n$  – ОНБ и  $e_1,\ldots,e_n$  – ОНБ.

Доказать: A – ортогональный л.о.

Рассмотрим соответствие  $x \mapsto (x_1, x_2, \dots, x_n)^T$  в базисе  $e_1, \dots, e_n$ .

Заметим, что  $Ax \mapsto (x_1, x_2, \dots, x_n)^T$  в базисе  $Ae_1, \dots, Ae_n$ , т.к. для линейного оператора выполняется:  $Ax = A(x_1e_1 + \dots + x_ne_n) = x_1Ae_1 + \dots + x_nAe_n$ .

Найдём скалярное произведение в ОНБ  $e_1, \ldots, e_n$  и  $Ae_1, \ldots, Ae_n$  соответственно:

$$(x,y) = x_1y_1 + \ldots + x_ny_n \text{ B OHE } e_1, \ldots, e_n$$

$$(Ax, Ay) = x_1y_1 + \ldots + x_ny_n$$
 B OHE  $Ae_1, \ldots, Ae_n$ 

 $\forall x,y \in E(Ax,Ay) = (x,y) \Rightarrow$  оператор по определению ортогональный

### 2.17 Сформулируйте и докажите критерий ортогональности оператора, использующий его матрицу.

**Теорема.** Матрица л.о. A в ОНБ ортогональна  $\Leftrightarrow A$  – ортогональный л.о.

Доказательство.

Heoбxoдимость. Дано: Матрица л.о. A ортогональна в ОНБ e.

Доказать: A – ортогональный линейный оператор.

Так как  $A_e^T \cdot A_e = E \Rightarrow \forall x,y \in E$ , для их координат в базисе e

$$x \mapsto \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}, y \mapsto \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$$

выполнено:

$$(Ax, Ay) = \begin{pmatrix} A_e \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \end{pmatrix}^T A_e \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} x_1 & \dots & x_n \end{pmatrix} (A_e^T \cdot A_e) \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} x_1 & \dots & x_n \end{pmatrix} E \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = (x, y)$$

Т.е.  $\forall x,y \in E \ (Ax,Ay) = (x,y) \Rightarrow A$  – ортогональный линейный оператор по определению.

Доказать: Матрица л.о. А ортогональна в ОНБ е.

По определению:  $\forall x, y \in E \ (Ax, Ay) = (x, y)$ .

В любом ОНБ в координатах это можно записать так:

$$(A_e x^e)^T \cdot E \cdot (A_e y^e) = (x^e)^T \cdot y^e \Rightarrow (x^e)^T \cdot A_e^T \cdot A_e \cdot y^e = (x^e)^T \cdot E \cdot y^e$$

По лемме:  $A_e^T \cdot A_e = E$ .

#### 2.18 Сформулируйте и докажите утверждение о QR-разложении.

**Утверждение** (о QR-разложении). Пусть  $A \in M_m(\mathbb{R})$ , и столбцы  $A_1, \ldots, A_m$  – л.н.з. Тогда существуют матрицы Q и R, такие что A = QR, где Q – ортогональные матрицы, R – верхнетреугольные.

Доказательство. Применим к столбцам  $A_1, \ldots, A_m$  процесс ортогонализации Грама-Шмидта. Получим столбцы  $Q_1, \ldots, Q_m$  – ОНБ в Im A. Заметим, что  $A_k \in L(Q_1, \ldots, Q_m)$ ,  $k = \overline{1, m}$  (по формулам Грама-Шмидта мы используем только столбцы с меньшими или равными номерами). Тогда

$$A_k = \sum_{i=1}^k r_{ik} Q_i, \ k = \overline{1, m}$$

В матричной форме:

$$A = QR$$
, где  $Q = (Q_1 | \dots | Q_m)$ ,  $R = \begin{pmatrix} r_{11} & \dots & r_{1m} \\ & \ddots & \vdots \\ 0 & & r_{mm} \end{pmatrix}$ 

Матрица Q является ортогональной, так как  $Q_1, \ldots, Q_m$  образуют ОНБ.

#### 2.19 Сформулируйте и докажите теорему о сингулярном разложении.

**Теорема** (о сингулярном разложении). Для любой прямоугольной матрицы  $A \in M_{mn}(\mathbb{R})$  имеет место следующее разложение:

$$A = V \Sigma U^T$$

Оно называется сингулярным (SVD). Здесь  $U \in O_n(\mathbb{R})$ ,  $V \in O_m(\mathbb{R})$  – ортогональные матрицы,  $\Sigma \in M_{mn}(\mathbb{R})$  – диагональная матрица с  $\sigma_i \geq 0$  на диагонали. Причём, что  $\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_r > 0$ ,  $r = \operatorname{Rg} A$ . Числа  $\sigma_i$  называются сингулярными.

Доказательство. Рассмотрим  $A^TA$  (матрица Грама). Она является симметрической и соответствующая квадратичная форма неотрицательна определена, т.е.  $x^TA^TAx = (Ax, Ax) = ||Ax||^2 > 0$ ,  $\forall x \in \mathbb{R}^n$ .

Тогда существуют (т.е. принадлежат  $\mathbb{R}$ ) с.з. для самосопряжённого оператора  $A^TA$ , и они все  $\geq 0$ , так как

$$\lambda = \frac{x^T A^T A x}{x^T x} = \frac{\|Ax\|^2}{\|x\|^2} > 0$$
, где  $\lambda$  – с.з.,  $x$  – с.в. (используется отношение Релея)

Запишем эти с.з. в виде  $\sigma_i^2$  (это можно сделать для любого неотрицательного числа). Пронумеруем их так, чтобы:  $\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_r > \sigma_{r+1} = \ldots = \sigma_n = 0$ . Так как  $A^TA$  самосопряжён,

существует ОНБ из с.в. –  $u_1, \ldots, u_n$ .

$$A^{T}Au_{i} = \begin{cases} \sigma_{i}^{2}u_{i}, \ 1 \leq i \leq r \\ 0, \ r+1 \leq 0 \leq n \end{cases}$$

Положим

$$v_i = \frac{Au_i}{\sigma_i}, \ 1 \le i \le r$$

Тогда

$$(v_i, v_j) = \begin{cases} \left(\frac{Au_i}{\sigma_i}, \frac{Au_j}{\sigma_j}\right) = 1, \ i = j \\ 0, \ i \neq j \end{cases}$$

Получаем векторы  $v_1, \ldots, v_r$  – образуют ортонормированную систему. Дополним её векторами  $v_{r+1}, \ldots, v_m$  до ОНБ в  $\mathbb{R}^m$ . Тогда  $v_1, \ldots, v_m$  и  $u_1, \ldots, u_n$  – ОНБ. В итоге:

$$A\underbrace{[u_1,\ldots,u_n]}_{U} = \underbrace{[v_1,\ldots,v_m]}_{V} \begin{pmatrix} \sigma_1 & & & & \\ & \ddots & & & \\ & & \sigma_r & & \\ & & & 0 & \\ & & & \ddots & \\ & & & & 0 \end{pmatrix}$$

$$v_i = \frac{Au_i}{\sigma_i} \Leftrightarrow Au_i = v_i \cdot \sigma_i$$

Матрицы U и V являются ортонормированными.

#### 2.20 Сформулируйте и докажите теорему о полярном разложении.

**Утверждение** (полярное разложение). Любой линейный оператор в евклидовом пространстве представляется в виде композиции симметрического и ортогонального  $A = S \cdot U$ , S – симметрический л.о., U – ортогональный л.о.

Доказательство. Возьмём сингулрное разложение  $A = Q\Sigma P^T$ , где Q, P – ортогональные. Пусть  $S = Q\Sigma Q^T$ , а  $U = QP^T$ . Тогда выполнено:

$$A = SU = Q\Sigma Q^T \cdot QP^T = Q\Sigma \cdot E \cdot P^T = Q\Sigma P^T$$
 – верно

Проверим, является ли S симметрической:

$$S^T = (Q\Sigma Q^T)^T = (Q^T)^T \Sigma^T Q^T = Q\Sigma Q^T = S$$

Матрица U является ортогональной, так как она является произведением двух ортогональных матриц.  $\Box$ 

## 2.21 Выпишите и докажите формулу для преобразования координат ковектора при переходе к другому базису.

**Утверждение.** Пусть e и g – два базиса в V. Тогда

$$[f]_g = [f]_e \cdot T_{e \to g}$$

 $\ensuremath{\mathcal{A}}$ оказательство. Результат действия f не зависит от базиса:

$$[f]_g \cdot x_g = [f]_e \cdot x_e$$

$$x_g = T_{e \to g}^{-1} \cdot x_e \Leftrightarrow x_e = T_{e \to g} \cdot x_g$$

Разложение по базису единственно:

$$[f]_g = [f]_e \cdot T_{e \to g}$$

# 2.22 Сформулируйте и докажите теорему о приведении квадратичных форм к диагональному виду при помощи ортогональной замены координат.

**Теорема.** Любую квадратичную форму можно ортогональным преобразованием привести к каноническому виду.

Доказательство. Матрица квадратичной формы является симметрической (матрица  $n \times n$ ). Рассмотрим n-мерное евклидово пространство E и некоторый ОНБ в нём. Тогда матрица квадратичной формы B является матрицей некоторого самосопряжённого линейного оператора, так как  $B=B^T$ .

Пусть матрица л.о. A совпадает с B. Так как по теореме для самосопряжённого л.о. существует ОНБ из с.в., для л.о. с матрицей A существует новый ОНБ, в котором его матрица диагональна. Пусть U – матрица перехода к этому базису. Она ортогональна.

Тогда в новом базисе матрица л.о. будет иметь вид:

$$A' = U^{-1}AU$$

А матрица квадратичной формы – B в новом базисе имеет вид:

$$B' = U^T B U$$

Но  $U^T = U^{-1}$ , т.к. U – ортогональная матрица. Значит, если A = B, то:

$$A' = U^{-1}AU = U^TAU = U^TBU = B'$$

Т.е. матрица квадратичной формы тоже будет диагональной. Это означает, что в этом базисе матрица квадратичной формы B' приведена к каноническому виду.

### 2.23 Что можно сказать про ортогональное дополнение к образу сопряженного оператора?

Утверждение.  $(\operatorname{Im} A^*)^{\perp} = \operatorname{Ker} A$ 

Доказательство. Докажем, что  $\operatorname{Ker} A = (\operatorname{Im} A^*)^{\perp}$ . Если  $x \in \operatorname{Ker} A$ , то Ax = 0. Рассмотрим в V ОНБ. В нём  $A^* = E^{-1}A^TE$  Тогда

$$\forall y \in V \ (y, Ax) = y^T E A x = y^T A E x = (A^T y)^T E x = (A^T y, x) = (A^* y, x)$$

Так как (y,Ax)=(y,0)=0,  $(A^*y,x)=(y,Ax)=0.$  Значит,  $x\perp\operatorname{Im} A^*\Rightarrow\operatorname{Ker} A\subseteq (\operatorname{Im} A^*)^\perp.$  Пусть  $x\in (\operatorname{Im} A^*)^\perp.$  Тогда

$$\forall y \in V \ 0 = (x, A^*y) = (Ax, y)$$

Рассмотрим  $y = Ax, y \in V$ . По доказанному:

$$0 = (Ax, y) = (Ax, Ax) = ||Ax||^2 = 0 \Rightarrow Ax = 0 \Rightarrow x \in \operatorname{Ker} A$$

Отсюда  $(\operatorname{Im} A^*)^{\perp} \subseteq \operatorname{Ker} A$ .

Таким образом,  $(\operatorname{Im} A^*)^{\perp} \subseteq \operatorname{Ker} A$  и  $\operatorname{Ker} A \subseteq (\operatorname{Im} A^*)^{\perp} \Rightarrow \operatorname{Ker} A = (\operatorname{Im} A^*)^{\perp}$ .

#### Удачи на коллоквиуме!

Автору на ИУП: 2200 2407 6615 8246

Большое спасибо тем, кто задонатил! Вы лучшие, мне очень приятно!

