DCA-0125 Sistemas de Tempo Real

Luiz Affonso Guedes www.dca.ufrn.br/~affonso affonso@dca.ufrn.br

Conceitos de Tempo

Tempo Global

Conteúdo

- Conceitos de tempo
- □ Ordenação temporal e clocks
- □ Precisão e acurácia temporal
- □ Padrões de tempo
- □ Medição de tempo
- □ Tempo denso e tempo esparso
- □ Sincronização interna e externa de clock

Objetivos do Capítulo

- Discutir conceito de tempo e ordenação temporal.
- Analisar os parâmetros que influenciam na qualidade da medição temporal.
- □ Apresentar conceito de tempo denso e tempo esparso.
- Apresentar conceito de tempo físico e tempo computacional.
- Discutir acurácia e precisão na medição temporal.
- □ Exemplo de medição de tempo

<u>Sistemas Orientados a Eventos x</u> <u>Sistemas Orientados a Tempo</u>

Ordem sequencial dos eventos

Ordem temporal dos eventos

□ Princípio de causalidade.

- Análise temporal baseada na física Newtoniana.
 - O tempo não é relativo.
 - Tempo é uma variável independente que determina a sequência dos estados de um sistema: f(t)

- Análise temporal baseada na física Newtoniana.
 - Esse conceito da física newtoniana deve nortear as aplicações cyber-physical.

Tempo Lógico Tempo Físico

Uma base de tempo global é fundamental para estabelecer uma ordem temporal consistente com relação aos rótulos (time stamps) de tempo dos eventos ocorridos nos diversos componentes do sistema.

□ Na física newtoniana o tempo é representado por uma linha contínua, que rege a causalidade do sistema.

Ordem temporal

- Ordem dos instantes numa linha do tempo contínuo.
- Modelado por um conjunto infinito de instantes {T}
 - {T} é ordenado: dois eventos p e q são simultâneos, ou p precede q ou vice-versa.
 - {T} é denso: há pelo menos um instante de tempo entre dois outros instantes.
 - Evento ocorre em um instante e não tem duração.
 - Instantes são totalmente ordenados.
 - Eventos que ocorrem no mesmo instante são simultâneos.
 - Se houver algum critério para ordenar eventos simultâneos, então todos os eventos podem ser totalmente ordenados.

Tempo Denso e Tempo Esparso

- □ Representação cíclica de tempo
 - o Tempo particionado em ciclos de igual duração.
 - Bom para representação de tarefas periódicas: loop de controle
 - · Ciclo → círculo
 - Instante dentro do ciclo → fase

- □ Ordem de entrega
 - É uma ordem temporal fraca oferecida usualmente por sistemas de comunicação distribuídos.
 - O sistema garante que todos os nós veem um determinado conjunto de dados na mesma ordem de entrega.

Diferentes Ordens

Ordem causal

- Dependência causal pode ser suficiente.
 - Ordem temporal de dois eventos é necessária mas não suficiente para determinação da ordem causal.
 - Causalidade é mais que ordem temporal e correlação
 - Se o evento e1 é a causa do evento e2, então uma pequena variação temporal em e1 deve causar uma pequena variação temporal em e2.

Diferentes Ordens

Ordem causal

 Uma base de tempo global precisa é importante para se determinar ordem temporal entre eventos.

- Análise temporal baseada na física Newtoniana.
 - Em sistemas distribuídos, há a necessidade de se ter coerência temporal entre os seus diversos componentes.

Diferentes Ordens

Clocks

- O Clock físico digital é um dispositivo de medição de tempo.
- O contador é incrementado sequencialmente via um mecanismo físico de oscilação, denominado de microtick do clock.
- Grânulo é a duração de tempo entre microticks consecutivos.
 - Granularidade é a medida do grão do clock.
 - Granularidade indica o erro de digitalização da medição do tempo contínuo.

Diferentes Ordens

Clocks

- O Clock de Referência
 - Assume-se um observador externo onisciente de todos os eventos que ocorrem no sistema.

- □ Associa o tempo global de um sistema distribuído com um padrão de tempo externo.
 - Escala de tempo baseada em medida largamente aceita, ex.: segundos.
 - Escala de tempo com origem definida: época
- □ Fontes de tempo externo
 - o GPS acurácia maior que 100ns
 - Oscilador de cristal de alta precisão com compensação de temperatura (TXCO)
 - · drift de 1µs/s
 - Relógio atômico
 - · Drift de 1µs a cada 10 dias

- □ Exemplo: Sincronização de Gateway.
 - Processo de sincronização unidirecional

- □ Gateway de Tempo
 - Inicializa cluster com tempo externo corrente
 - Ajusta periodicamente taxa do tempo global
 - · De acordo com tempo externo e padrão de medida
 - Envia periodicamente valor do tempo externo
 - · Nó reintegrado pode reiniciar tempo externo

□ Formatos de Tempo

- Network Time Protocol (NTP) Internet
 - Baseado no UTC (não-cronoscópico)
 - · Contador começou em 01 de janeiro de 1900, às 00:00h

full seconds UTC, 4 bytes				binary fraction of second, 4 bytes				
7	22						2	
range u	p to the	year 2	036. i.e.	, 136 ye	ears wra	ap-arou	nd cycle	e

• IEEE 1588

- Contador começou em 01 de janeiro de 1970. às 00:00h
- · Os segundos cheios são contados de acordo com o TAI
- · A fração mínima é dada em nano-segundos

Tempo Físico e Tempo Computacional

Tempo Físico e Tempo Computacional

- □ Execute o programa: tempo
 - g++ tempo.cpp -o tempo
 - \.tempo
- Analisar resposta do programa

time() function in C

Last Updated: 28-09-2018

The time() function is defined in time.h (ctime in C++) header file. This function returns the time since 00:00:00 UTC, January 1, 1970 (Unix timestamp) in seconds. If second is not a null pointer, the returned value is also stored in the object pointed to by second.

Syntax:

```
time_t time( time_t *second )
```

Parameter: This function accepts single parameter *second*. This parameter is used to set the time_t object which store the time.

Return Value: This function returns current calender time as a object of type time_t.

- □ Execute o programa: sleep
 - og++ sleep.cpp -o sleep
 - \.sleep
- Analisar resposta do programa

Name

sleep - sleep for the specified number of seconds

Synopsis

```
#include <unistd.h>
unsigned int sleep(unsigned int seconds);
```

Description

sleep() makes the calling thread sleep until *seconds* seconds have elapsed or a signal arrives which is not ignored.

Return Value

Zero if the requested time has elapsed, or the number of seconds left to sleep, if the call was interrupted by a signal handler.

Conforming to

POSIX.1-2001.

□ Implemente um programa tempo_s.cpp, que apresente o tempo decorrido em segundos desde 01/01/1970 05 vezes em intervalos de 1, 2, 3 e 4 segundos.

- □ Execute o programa: gmtime
 - g++ gmtime.cpp -o gmtime
 - \.gmtime
- Analisar resposta do programa
- □ Investigue as funções:
 - gmtime(&tempo);
 - o localtime(&tempo)
 - o ctime(&tempo_valor)
 - o asctime(*tm_ptr)
 - o mktime(*tm_ptr)

- □ Implemente um programa tempo_3.cpp, que:
 - Imprima o valor do tempo atual.
 - Durma por X segundos (valor definido pelo usuário).
 - Imprima o valor do tempo atual.
- □ Implemente o seguinte programa:
 - O usuário fornece a data de seu aniversário.
 - O programa calcula quantos segundos o usuário tem de vida.

- □ Execute o programa: sistema
 - g++ sistema.cpp -o sistema
 - \.sistema
- Analisar resposta do programa
- □ Investigue o que faz a função system()

- □ Execute o programa: clock1
 - g++ clock1.cpp -o clock1
 - \.clock1
- Analisar resposta do programa

- □ Execute o programa: tempomicro
 - g++ tempomicro.cpp -o tempomicro
 - \.tempomicro
- Analisar resposta do programa
- □ Investigue o que faz a função gettimeofday(&tempo, NULL)

Medição de Tempo de Computação

Utilizando-se o programa ordenacao.cpp como base, investigue de forma experimental a complexidade dos algoritmos de ordenação Quick Sort e Bubble Sort.

Dica: Meça o tempo computacional dos algoritmos para ordenar vetores de dados de diversos tamanhos.