4. This is a closed book exam. Give or take no assistance from other students. Recall the Georgia Tech Honor Code.

"I pledge my honor that I have not violated the Honor Code during this examination."

C: 1	
Signea	
~~~~~ <u>~~</u>	

#### PART A – Scantron Scored

(44 points, 4 points each) Bubble-in the correct answer on the Scantron card. There is only one correct answer. Also circle your answer below for later review with the answer key.

- 1. Which of the following is **not** true about the first tetrahedral intermediate that is formed in the acid-catalyzed hydrolysis of acetamide (CH₃CONH₂)?
  - A) It contains one amino group.
  - B) It contains one OH group.
  - C) It contains one protonated amino group.
  - D) It contains one protonated OH group.
  - E) It contains one methyl group.
- 2. A carboxylic acid derivative will undergo a nucleophilic acyl substitution reaction provided that
  - A) the substituent attached to the acyl group in the reactant is a very strong base.
  - B) the incoming nucleophile and the substituent attached to the acyl group in the reactant have similar basicities.
  - C) the incoming nucleophile is not a much weaker base than the substituent attached to the acyl group in the reactant.
  - D) the incoming nucleophile is not a much larger base than the substituent attached to the acyl group in the reactant.
  - E) the incoming nucleophile is not a much stronger base than the substituent attached to the acyl group in the reactant.
- 3. In an acid-catalyzed reaction all organic reactants, intermediates, and products are
  - A) positively charged
  - B) neutral
  - C) negatively charged
  - D) A and B
  - E) A, B, and C
- 4. What is the leaving group in the acid-catalyzed hydrolysis of acetamide?
  - A) H₃O⁺ (hydronium ion)
  - B) ⁺NH₄ (ammonium ion)
  - C) NH₂ (amide ion)
  - D) NH₃ (ammonia)
  - E) H₂O (water)

- 5. An excess of which of the following compounds will optimize the yield of n-propyl acetate (CH₃CO₂CH₂CH₂CH₃) in an equilibrium mixture of methyl acetate, propyl alcohol, propyl acetate, and methyl alcohol?
  - A) propionic acid
  - B) propyl alcohol
  - C) methyl alcohol
  - D) acetic acid
  - E) water
- 6. Which of the following reactions would <u>not</u> give the indicated product? (acetyl =  $CH_3CO$ ; acetate =  $CH_3CO_2$ ; benzoate =  $PhCO_2$ ; benzamide =  $PhCONH_2$ )
  - A) acetic anhydride + methanol to give methyl acetate + acetic acid
  - B) acetyl chloride + hydroxide to give acetic acid + chloride
  - C) propanamide + methanol to give methyl propanoate + ammonia
  - D) methylbenzoate + ammonia to give benzamide + methanol
  - E) phenyl acetate + methanol to give methyl acetate + phenol
- 7. Which of the following reactions results in the formation of a carboxylic acid?
  - A) acyl halide  $+ H_2O$
  - B)  $nitrile + H_2O$  (need heat)
  - C) ester  $+ H_2O + H^+$
  - D) All of the above
  - E) A and C
- 8. Which of the following is required to convert propionic anhydride into *N*-methylpropionamide?
  - A) two equivalents of methanol
  - B) one equivalent of methanol
  - C) one-half an equivalent of methylamine
  - D) two equivalents of methylamine
  - E) two equivalents of ammonia
- 9. Which of the following is the best leaving group?
  - A) CH₃COO (acetate ion)
  - B) NH₂ (amide ion)
  - C) HO (hydroxide ion)
  - D) H₂O (water)
  - E) NH₃ (ammonia)

- 10. Which of the following will result in the formation of a carboxylic acid?
  - A) acid-catalyzed hydrolysis of an amide with heat
  - B) hydrolysis of an acyl halide
  - C) hydroxide ion-promoted hydrolysis of a nitrile with heat
  - D) hydrolysis of an acid anhydride
  - E) All of the above
- 11. Indicate the correct relative acidities (most > least)
  - A) a carboxylic acid > protonated water > ammonia > water
  - B) protonated water > a carboxylic acid > ammonia > water
  - C) protonated water > a carboxylic acid > water > ammonia
  - D) ammonia > a carboxylic acid > protonated water > water
  - E) protonated water > ammonia > a carboxylic acid > water

## END of PART A – Scantron scored

## BEGIN PART B – free response

12. (40 points, 4 points each) Provide the structure of the major organic reagent (s) or products(s).







Would you expect o-cyanoaniline to be a stronger or weaker base than aniline? Explain briefly with a drawing or phrase.



# END PART B BEGIN PART C

_____/ 08

3. (20 points) Ester hydrolysis is the reaction of an ester with water, which results in the formation of a carboxylic acid. Provide a step-by-step mechanism for the acid catalyzed hydrolysis of methyl propanoate with water to form propionic acid. Water is also the solvent.



_____/ 20



Answer Key – Red are the nominal correct answer expected – Blue are further explanation

## **END OF PART C**

Write your roll number in the box on the next page

_____/ 20

Acid	Approximate pK _a	Conjugate Base
HSbF ₆	< -12	SbF ₆ ⁻
HI	-10	[-
H ₂ SO ₄	-9	HSO ₄ -
HBr	-9	Br ⁻
HCI	<b>-7</b>	CI-
C ₆ H ₅ SQ ₃ H	-6.5	C ₆ H ₅ SO ₃ ⁻
$(CH_3)_2OH$	-3.8	(CH ₃ ) ₂ O
$(CH_3)_2C = OH$	-2.9	$(CH_3)_2C=O$
$CH_3 \overset{+}{O}H_2$	-2.5	CH₃OH
H ₃ O ⁺	-1.74	H ₂ O
HNO ₃	-1.4	NO ₃ -
CF ₃ CO ₂ H	0.18	CF ₃ CO ₂ -
HF	3.2	F-
CH ₃ CO ₂ H	4.75	CH ₃ CO ₂ ⁻
H ₂ CO ₃	6.35	HCO ₃ ⁻
CH ₃ COCH ₂ COCH ₃	9.0	CH₃COCHCOCH₃
$NH_4^+$	9.2	$NH_3$
C ₆ H ₅ OH	9.9	$C_6H_5O-$
HCO ₃ ⁻	10.2	CO ₃ ²⁻
CH ₃ NH ₃ ⁺	10.6	CH ₃ NH ₂
H ₂ O	15.7	OH-
CH ₃ CH ₂ OH	16	CH ₃ CH ₂ O ⁻
(CH ₃ ) ₃ COH	18	(CH ₃ ) ₃ CO ⁻
CH₃COCH₃	19.2	CH₂COCH₃
HC≡CH	25	HC≡C⁻
$H_2$	35	H ⁻
NH ₃	38	NH ₂ ⁻
$CH_2 = CH_2$	44	CH ₂ =CH ⁻
CH ₃ CH ₃	50	CH ₃ CH ₂ ⁻

- ✓ Write your class roll number on
  - (a) the top of the first page and
  - (b) in the box to the right.
- ✓ Verify that you have bubbled in the following on your Scantron card
  - (a) Bubbled-In GTID number
  - (b) **Bubbled-In TEST FORM**

top of the first page and (2) below.
Class Roll number
Part A Scantron scored (44 points)
Page 4 (12) Page 5 (20) Page 6 (08) Page 7 (20)
Total (Part B&C only) (60)