IDF14

14 nm Process Technology: Opening New Horizons

Mark Bohr

Intel Senior Fellow
Logic Technology Development

SPCS010

14 nm Intel® Core™ M Processor

1.3 billion transistors

82 mm² die size

Industry's first 14 nm processor now in volume production

14 nm Tri-gate Transistor Fins

8 nm Fin Width

42 nm Fin Pitch

How Small is 14 nm?

Very small

Interconnects

22 nm Process

80 nm minimum pitch

14 nm Process

52 nm (0.65x) minimum pitch

52 nm interconnect pitch provides better than normal interconnect scaling

SRAM Memory Cells

22 nm Process

.108 um² (Used on CPU products)

14 nm Process

.0588 um² (0.54x)

14 nm design rules + 2nd generation Tri-gate provides industry-leading SRAM density

Cost per Transistor

Intel 14 nm continues to deliver lower cost per transistor

