

ESS302 Applied Geophysics II

Gravity, Magnetic, Electrical, Electromagnetic and Well Logging

Electrical 1: Theory

Instructor: Dikun Yang Feb – May, 2019

Charge, Force, Field, Potential

- Only positive charge (mass)
- Measure field to infer charge distribution
- External excitation: None (passive)

- Positive and negative charge but they have to be bounded as dipole (no monopole)
- Measure field to infer dipole distribution or susceptibility that gives rise to dipole distribution
- External excitation: geomagnetic field (passive)

- Positive and negative charge that can be arbitrarily located
- Measure field/potential to infer dipole distribution or resistivity that gives rise to charge distribution
- External excitation: artificially injected electrical injection (active)

Electrical Potential

- Current flows radially outwards
- A positive charge at injection point
- Electrical potential decays as 1/r

$$V(r) = \frac{I}{2\pi\sigma r} = \frac{I\rho}{2\pi r}$$

Electrical Resistivity or Conductivity

Resistivity (in Ω m) $\rho = R \frac{A}{\ell}$,

or conductivity (in S/m)
$$\sigma = \frac{1}{\rho}$$

- Electrons
- lons

Earth's Resistivity

Measurement of Resistance or Resistivity

Electrical Circuit

Ohm's Law

$$\Delta V = IR$$

Earth Circuit

For the Earth:

$$\Delta V = I \rho G$$

Depends on:

- 1) Earth's resistivity (ρ)
- 2) Geometry of electrodes (G)

Measuring Earth's Materials

Resistivity measurement in the lab

Resistivity survey in the field

Four-electrode Array

$$\rho = \frac{\Delta V}{IG}$$

Calculated earth's resistivity

Four-electrode Array

$$\Delta V = \mathbf{I} \rho_{\mathbf{G}} = \frac{\mathbf{I} \rho}{2\pi} \left\{ \frac{1}{r_{\text{AM}}} - \frac{1}{r_{\text{BM}}} - \frac{1}{r_{\text{AN}}} + \frac{1}{r_{\text{BN}}} \right\}$$

$$\rho = \frac{\Delta V}{IG}$$

Calculated earth's resistivity

Inhomogeneous Earth

Uniform sample

Homogenous earth

Non-uniform sample

Resistive sphere

How would V_{MN} change if a resistor exists?

Finding a Sphere

In Terms of Charges

Charges build-up on boundaries
From resistor into conductor → negative charges build-up
From conductor into a resistor → positive charges build-up

Finding a Sphere

Physical Properties

Rock type	Ohm-m
Overburden	12
Host rock	200
Gossan	420
Mineralization (pyritic)	0.6
Mineralization (pyrrhotite)	0.6

- Is anomalous potential +ve or –ve at location N?
- Is $\Delta V = V_N V_M$ +ve or –ve?

Electrode Arrays: A Circuit Perspective

How to gain:

- Lateral resolution Profiling
- Depth (vertical) resolution Sounding

Apparent Resistivity on Pseudo-section

$$\Delta V = I \rho_G = \frac{I \rho}{2\pi} \left\{ \frac{1}{r_{\text{AM}}} - \frac{1}{r_{\text{BM}}} - \frac{1}{r_{\text{AN}}} + \frac{1}{r_{\text{BN}}} \right\}$$

$$\rho = \frac{\Delta V}{IG}$$

True resistivity or apparent resistivity

Useful in revealing lateral and vertical variation in resistivity Transform of data – Unit in Ωm but still data!

Trusted

Python 3 O

- ρ₁: Resistivity of the halfspace
- ρ₂: Resistivity of the cylinder
- . xc: x location of cylinder center
- . zc: z location of cylinder center
- · r: radius of cylinder
- · surveyType: Type of survey
- · Run Interact: Use this button to update your plot

Note: The numerical results shown in this plot are generated from a 2d code such that the source is a line of current. This greatly speeds up the computation. Accurate potentials obtained from point current sources require the 2.5D code.

Summary

- Electrical: Charge, field, force, potential
- Electrical resistivity/conductivity
- Ohm's law applied to the Earth: Four-electrode array (ABMN)
- Understanding DC resistivity data
 - Charges build-up
 - Circuit
- Electrode arrays and sensitivity
- Apparent resistivity