(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2005年1月6日 (06.01.2005)

PCT

(10) 国際公開番号 WO 2005/001534 A1

(51) 国際特許分類7:

G02B 6/38

(21) 国際出願番号:

PCT/JP2004/009451

(22) 国際出願日:

2004年6月28日(28.06.2004)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

JP

(30) 優先権データ:

特願2003-182586 特願2003-301100 特願2003-332307 2003年6月26日 (26.06.2003) Ъ 2003年8月26日 (26.08.2003) JР 2003年9月24日(24.09.2003)

(71) 出願人 (米国を除く全ての指定国について): 京セ う株式会社 (KYOCERA CORPORATION) [JP/JP]; 〒 6128501 京都府京都市伏見区竹田鳥羽殿町 6 番地

Kyoto (JP).

(72) 発明者; および

(75) 発明者/出願人 (米国についてのみ): 伊藤 宏樹 (ITO, Hiroki) [JP/JP]; 〒1588610 東京都世田谷区玉川台2丁 目14番9号 京セラ株式会社東京用賀事業所内 Tokyo (JP). 田中 強 (TANAKA, Tsuyoshi) [JP/JP]; 〒0991587 北海道北見市豊地30番地 京セラ株式会社北海道北 見工場内 Hokkaido (JP). 松本 俊之 (MATSUMOTO, Toshiyuki) [JP/JP]; 〒0991587 北海道北見市豊地30番 地 京セラ株式会社北海道北見工場内 Hokkaido (JP).

(74) 代理人: 河宮治,外(KAWAMIYA, Osamu et al.); 〒 5400001 大阪府大阪市中央区城見1丁目3番7号 IMPビル青山特許事務所 Osaka (JP).

(81) 指定国 (表示のない限り、全ての種類の国内保護が 可能): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT,

[続葉有]

(54) Title: OPTICAL RECEPTACLE

(54) 発明の名称: 光レセプタクル

(57) Abstract: An optical receptacle where a rear end portion of a fiber stub having an optical fiber in a through-hole of a ferrule is fixed to a holder and a sleeve for holding a plug ferrule is held at the fore-end portion of the fiber stub, wherein a holder ring is provided on an outer peripheral surface where the fiber stub and the sleeve are superposed. The structure realizes an optical receptacle shorter in length, improves connection loss relative to the inclination of the plug ferrule, and provides excellent reproducibility of connection loss.

7

LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) 指定国 (表示のない限り、全ての種類の広域保護が可能): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE,

IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:

一 国際調査報告書

2文字コード及び他の略語については、 定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略語 のガイダンスノート」を参照。

明 細 書

光レセプタクル

技術分野

10

25

本発明は、光通信用モジュール等に使用される光レセプタクルに関する。 背景技術

光信号を電気信号に変換するための光モジュールは、半導体レーザーやフォトダイオード等の光素子をケース内に収納し、光ファイバを通じて光信号を導入又は導出するような構造となっている(特開平11-240741号公報、特開2001-66468号公報)。

上記光モジュールのうちコネクタを接続するようにしたレセプタクル型の光モジュールは、図14に示すような光レセプタクル70の後方に光素子20を備えるとともに、前方で光コネクタ(SCコネクタ)のプラグフェルールPFを接続するものである。

15 上記光レセプタクル70は、図14に示すようにジルコニア、アルミナ等のセラミック材料からなるフェルール82と、該フェルール82の貫通孔に石英ガラス等からなる光ファイバ83を挿入固定して得られたファイバスタブ81の後端部97をホルダ85に圧入により固定し、先端部98をスリーブ84の内孔に挿入するとともに、それらをスリーブケース86に圧入又は接着固定することによって構成されている。

近年、高密度実装の要求から光モジュールの小型化が求められており、光レセプタクルの全長も短くすることが求められている。そこで図15に示すように、フェルール82の貫通孔に光ファイバ83を挿入固定したファイバスタブ81、ファイバスタブ81の先端部98に接続されるプラグフェルールPFを保持するためのスリーブ84、スリーブ84の後端部97のL3の外周側面99に圧入されたスリーブ84の自由な変形を拘束する把持リング94からなる光レセプタクル71が考案された。上記ファイバスタブ81を保持したスリーブ84の外周側面99に把持リング94を圧入し、スリーブ84の自由な変形を拘束することによって、ファイバスタブ81がスリーブ84に保持されている長さL2を短くし

10

15

20

ても十分なファイバスタプ 81 の保持力を得ている (特開平10-332988 号公報)。

又、図16に示すように、図15の把持リング94にストッパ部94aを付ける事により、ファイバスタブ81の抜けを防止する構造のものも考案されている (特開2003-43313号公報)。

図16のように、上述の光レセプタクル72を用いて光モジュールを構成する場合は、光レセプタクル72のファイバスタブ81の後端部97側に、光素子20とレンズ21を備えたケース22を溶接により接合し、光レセプタクル72の前方よりスリーブ84内にプラグフェルールPFを挿入し、光ファイバ端面同士を当接させ、光信号のやりとりを行うことができる。

このときプラグフェルールPFの外径は、SCコネクタを接続するタイプのものが ϕ 2. 5 mm程度、LCコネクタを接続する小型タイプのものが ϕ 1. 2 5 mm程度で、外径公差は \pm 1 μ m以下で、その貫通孔に備えられた光ファイバの外径は125 μ m程度で、外径公差は \pm 1 μ m程度とJIS規格やIEC規格等で規定されているが、従来から、光ファイバの中心に形成された光信号を伝搬する直径10 μ m程度のコア(不図示)同士を損失の少ない接続とするため、それぞれの部品(スリーブ84、プラグフェルールPF等)は高精度に加工されており、スリーブ84によってファイバスタブ81及びプラグフェルールPFを安定且つ高精度に保持する構造となっている。

さらに、上記ファイバスタブ81における先端部98は、当接時の接続損失を減らすために曲率半径5~30mm程度の曲面に鏡面研磨されており、後端部97は、LD等の光素子20から出射された光が反射して光素子に戻る反射光を防止するため、光ファイバ83を挿通したフェルール82とともに4~10°程度に後端部97の端面が鏡面研磨されている。

25 しかしながら、図14に示す従来の光レセプタクル72の場合、小型化の要求に応えるため、スリープ84の長さL1を短くし、ファイバスタブ81の先端部98の寸法L2を短くする方法を適用した場合、スリープ84とファイバスタプ81の保持強度が大きく減少するために、プラグフェルールPFをファイバスタブ81に接続した後、プラグフェルールPFが傾くような荷重が掛かった場合に、

25

スリーブ84が傾き、接続損失が生じてしまうという問題があった。

さらに、SCコネクタの ϕ 2. 5mmフェルールからLCコネクタの ϕ 1. 25 mmフェルールに寸法を変更した場合、フェルールの外径が小さくなることに伴いフェルール外径面積は約1/2に減少するため、従来と同様のファイバスタブ固定方法、例えばファイバスタブがホルダに固定されている長さL3やファイバスタブ81の外径Dと、ホルダ85のファイバスタブ固定部の内径D1の関係をそのまま適用した場合、ホルダ85とファイバスタブ81の接触面積が大きく減少するために固定強度が非常に小さくなり、光コネクタ接続の際にファイバスタブ81が動いて接続損失の再現性を悪くしてしまうという問題があった。

10 更に、図15や図16に示すような光レセプタクル71,72の場合、把持リング94がスリーブ84を同時圧入することでプラグフェルールPFをファイバスタブ81に接続した後、プラグフェルールPFが傾くような荷重が掛かった場合でもスリーブ84の傾きが発生しにくいため、接続損失が生じないと考えられる。しかし、プラグフェルールPFの脱着の繰り返しや接続時に掛かり続けるプラグフェルールPF側のバネ圧により、ファイバスタブ81に対して加重が掛かるため、把持リング94はファイバスタブ81とスリーブ84に対して十分な把持力と、ホルダ85への十分な固定が必要である。そのため、スリーブ84が変形したり、プラグフェルールPFをスリープ84に挿入、抜去した際のスリーブ84の変形が不均一となるので挿入力、抜去力が不安定となり、着脱再現性を重視する用途には不向きな構造であった。

又、スリーブ84は構造的に薄いため、強く圧入しすぎると割れや歪が発生する場合もあり、図15のように把持リング94のようにストッパーの無い構造である場合においては特に、ファイバスタプ81の抜け防止のために圧入で強固に固定する把持力を十分に管理をする必要があった。

さらに、ファイバスタブ81がスリープ84に保持されている長さL2を短くしているため、ファイバスタプ81の保持状態が不安定となり、プラグフェルールPFを当接する毎にスリープ84によるファイバスタブ81の保持状態が異なり、接続損失の再現性を悪くするという問題があった。

また近年、プラグフェルールPFに光軸と垂直方向に懸かる荷重に対する挿入

10

15

20

25

損失変動、反射減衰量変動の特性(ウイグル特性)が重要視されてきており、ファイバスタブ81がスリープ84に保持されている長さL2が短くなると、このウイグル特性が悪化する。

またさらに、保持状態が不安定であるため、相互の光ファイバ接続部にすべりが生じ、光ファイバ83の端面に傷をつけることがあり、光信号の導入導出が不能になる問題があった。

一方、図17に示すように、スリープとスリープケースを一体化した光レセプタクルも知られている(特開平8-37461号公報)。

図17に示した光レセプタクル74は、ステンレス鋼の母材を切削加工もしく は射出成形したスリーブ84のような一体成形したものを用い、筒状の内径にフェルールストッパ93を圧入して構成されている。

ここで、シングルモードの光ファイバへの高効率な光結合が要求される光レセプタクルにおいて、プラグフェルールの脱着を繰り返しても高精度な位置決めが要求されるため、上記、光レセプタクル 7 4 は、ステンレス鋼のスリーブ 8 4 でのプラグフェルール P F を挿入する内周面に、CVD法により、Ti Cからなる高硬度膜を $1\sim 10~\mu$ mの厚さに形成することで耐摩耗性を持たせている。又、高精度位置決めや耐摩耗性が必要な光レセプタクルにおいては、高精度加工が可能であり耐摩耗性に優れたセラミックのスリーブを用いることも多い

光通信用送受信器の小型化に伴い、使用される光ファイバも送信用受信用が対になった 2 芯の光コネクタを用いて勘合させる光レセプタクルタイプが一般的となり、光モジュールもより小型化が要求され、光通信用送受信器内の光モジュールの配置も送信用と受信用を 2 芯の光コネクタのピッチに合わせ、隣接させて固定することが必要となった。

これにより、図18の様に送信用の光レセプタクル74Tと受信用の光レセプタクル74Rを金属のハウジング25で同時に固定した場合、発光素子20Tを駆動する電気信号が金属製の光レセプタクル74Tを通じて、金属のハウジング25へ漏れ、受光素子20Rに対して雑音を発生させてしまうことから受信側の感度が劣化する問題が発生した。

又、送信側の光レセプタクル74Tの金属スリープがアンテナになり電磁波を

出してしまうことから、光通信用送受信器の外周は金属のシールドカバーをすることで電磁波を漏れを防ぐ必要があったり、逆に、受信側の光レセプタクル74 Rの金属スリープが外部雑音を拾ってしまい、受信側の感度が劣化する問題も発生し、雑音特性の改善が必要であった。

5

10

15

20

25

発明の開示

本発明の光レセプタクルは、フェルールの貫通孔に光ファイバを有するファイバスタブの後端部をホルダに固定し、上記ファイバスタブの先端部にプラグフェルールを保持するスリーブを配設してなる光レセプタクルにおいて、上記ファイバスタブと上記スリーブが重なる外周側面に保持リングを配設している。

本発明において、上記保持リングは、弾性体であることが好ましい。

また本発明において、上記保持リングは、上記ホルダに固定されていることが好ましい。

本発明によれば、フェルールの貫通孔に光ファイバを挿入固定したファイバスタブの後端部を寸法L3でホルダに固定し、ファイバスタブの先端部に接続されるプラグフェルールを保持するためのスリーブに、上記ファイバスタブを保持してなる光レセプタクルにおいて、スリーブの外周に寸法L4の範囲で保持リングを有することにより、ファイバスタブとスリーブの重なる寸法L2が、スリーブの長さ寸法L1に対して、1/2より短い構造になっても、スリーブが傾くことなく、プラグフェルールの傾き加重に対して強い構造とすることが出来るだけでなく、小型の光レセプタクルとすることが可能となる。

又、該保持リングは弾性体であるため、スリーブが弾性体であっても、その形状変化を大きく妨げることがなく、スリーブが変形してプラグフェルールを挿入、抜去した際に挿入力、抜去力が不安定となり、着脱性が悪くなるという問題が発生しない。

さらに、本発明の光レセプタクルは、フェルールの貫通孔に光ファイバを挿入 固定したファイバスタブの後端部をホルダに固定し、ファイバスタブの先端面に 接続されるプラグフェルールを保持するためのスリープに、上記ファイバスタブ の先端部を保持してなる光レセプタクルにおいて、上記スリーブの一端に肉厚部

10

15

20

25

を形成し、該肉厚部側に上記ファイバスタブを挿入保持している。これにより、ファイバスタブ側の単位長あたりの保持力を増加させ、かつファイバスタブ挿入による応力以外に外部からスリーブに応力がかからなくなる。

本発明において、上記スリーブにおいて外径の大きい部分の段長がファイバス タブのスリーブへの挿入長よりも短いことが好ましい。

また本発明において、上記ファイバスタブをホルダに接着または圧入と接着の 併用によって固定したことが好ましい。

また本発明において、プラグフェルール挿入側のファイバスタブC面またはRを0.1mm以下にしたことが好ましい。

本発明によれば、フェルールの貫通孔に光ファイバを挿入固定したファイバスタブの後端部をホルダに固定し、ファイバスタブの先端面に接続されるプラグフェルールを保持するためのスリーブに、上記ファイバスタブの先端部を保持してなる光レセプタクルにおいて、上記スリーブの一端に肉厚部を形成し、該肉厚部側に上記ファイバスタブを挿入保持している。これにより、ファイバスタブ側の単位長あたりの保持力を増加させ、かつプラグフェルール挿入側ファイバスタブのC面またはRを0.1mm以下に管理し、かつファイバスタブ挿入による応力以外に外部からスリーブに応力がかからなくなる。そのため、たとえファイバスタブのスリーブによる保持部が短くても、ファイバスタブを安定した保持状態とすることが出来るため、プラグフェルールを接続するたびにスリーブ4によるファイバスタブ3の保持状態が異なることなく、高い接続損失の再現性が得られ、更には、安定した保持状態であるため、相互の光ファイバ接続部にすべりが生じることなく、光ファイバの端面を痛めず、光信号の導入導出に於ける信頼性を向上させることができる。

さらに、本発明の光レセプタクルは、プラグフェルールを保持するためのセラミックス製の精密スリープを配設してなる光レセプタクルにおいて、前記精密スリーブの後端部に金属のホルダを有し、金属ホルダとは電気的に絶縁されたフランジを精密スリーブの外周に備えている。

本発明において、上記精密スリープの外周面に段部を形成し、上記フランジを この段部に当接して、前記精密スリーブに固定したことが好ましい。 また本発明において、上記フランジが電気絶縁材料であることが好ましい。

また本発明において、上記フランジが電気絶縁材料のスペーサを介して、上記 金属ホルダに固定されていることが好ましい。

また本発明において、上記精密スリーブと同材料のセラミックス製フェルール に光ファイバを挿入、保持してなるスタブを上記精密スリーブに圧入固定したこ とが好ましい。

本発明によれば、送信用と受信用の両方の光レセプタクルを金属のハウジングで同時に固定した場合、送信用光モジュールを駆動する電気信号が金属製の光レセプタクルを通じて、金属のハウジングへ漏れ、受信用光モジュールに対して雑音を発生させてしまうことや、送信側のスリーブ1がアンテナになり電磁波を出してことや、受信側のスリーブ1が外部雑音を拾ってしまい、受信側の感度が劣化する問題等の発生が無くなる。その結果、雑音特性に優れ、耐摩耗性が良く高精度位置決めが可能な横方向荷重特性の優れた小型の光レセプタクルを提供できる。

15

20

10

5

図面の簡単な説明

図1Aは、本発明の第1実施形態を示す断面図である。図1Bは、弾性変形する様にスリットの入った割スリーブの斜視図である。

図2Aは、保持リング有、無での横方向加重に対する接続損失を示すグラフである。図2Bは、横加重に対する接続損失の測定方法を示す説明図である。

図3は、本発明の第2実施形態を示す断面図である。

図4A~図4Cは、スリーブの肉厚部の各種例を示す断面図である。

図 5 は、プラグフェルール接続側に、 $0.3\sim0.4\,\mathrm{mm}$ 程度の面取りが形成された比較例を示す断面図である。

25 図6A、図6Bは、光モジュールにおける荷重と接続損失の関係を示すグラフ である。

図7は、本発明の第3実施形態を示す断面図である。

図8は、図7の精密スリーブに段加工を施した例を示す断面図である。

図9は、図7の精密スリープに電気絶縁材料からなるフランジを圧入した例を

示す断面図である。

図10は、図7の精密スリーブに電気絶縁材料からなるスペーサ8を介在させ た例を示す断面図である。

図11は、本発明の光レセプタクル7の他の構造例を示す断面図である。

図12は、具体的な実施例を示す断面図である。

図13Aは、割スリーブと精密スリーブの横方向加重に対する接続損失を示す グラフである。図13Bは、横加重に対する接続損失の測定方法を示す説明図で ある。

図14は、従来の光モジュールの一例を示す断面図である。

図15は、従来の光モジュールの他の例を示す断面図である。

図16は、従来の光モジュールのさらに他の例を示す断面図である。

図17は、スリーブとスリープケースを一体化した光レセプタクルの従来例を 示す断面図である。

図18は、2芯光コネクタ用の光レセプタクルの従来例を示す断面図である。

15

20

25

10

5

発明を実施するための最良の形態

以下、本発明の実施の形態を図面にもとづいて説明する。

(第1実施形態)

図1Aは、本発明の第1実施形態を示す断面図であり、フェルール2に光ファイバ3を挿入固定してなるファイバスタブ1と、ファイバスタブ1の後端部17を固定するホルダ5及びスリープケース6と、ファイバスタブ1の先端部18に接続されるプラグフェルールPFを保持するためのスリーブ4とからなり、該スリープ4はファイバスタブ1の先端部18に挿入保持されている。

ここで、上記スリーブ4のファイバスタブ1の相重なる外周側面19に樹脂を 充填することにより、保持リング11を形成する。これにより、上記スリープ4 が傾くことが無く、かつ、弾性体であるため、スリーブ4が変形したり、傾いた りすることを低減する効果がある。

以下、スリープ4の長さをL1、スリープ4とファイバスタプ1の重なる長さをL2、ホルダ5とファイバスタプ1の重なる長さをL3、ファイバスタプ1と

10

15

20

25

保持リング11の重なる長さをL4として説明する。

スリープ4の外周に寸法L4の範囲で保持リング11を有することにより、ファイバスタブ1とスリーブ4の重なる寸法L2は、スリーブの長さ寸法L1に対して、1/2以下になっても急激にスリーブ4が変形したり、傾いたりすることはないが、1/3以上の長さであることが好ましい。

スリーブ4の材質としては弾性体であればよく、ステンレス、銅、鉄、ニッケル、プラスチックなどの幅広い材料が用いられる。

保持リング11は樹脂を充填する代わりに樹脂や金属の割スリットの入った弾性リングをホルダ5に嵌め込み、固定することで、スリーブ4の傾きを防止することも可能である。

又、スリーブケース6のホルダ挿入側に、スリットを入れる等して保持リング 11と一体化することも可能である。

ファイバスタプ1を構成するフェルール2はステンレス、りん青銅等の金属、エポキシ、液晶ポリマー等のプラスチックス、アルミナ、ジルコニア等のセラミックスからなり、特にジルコニアセラミックで形成することが好ましい。具体的には、 ZrO_2 を主成分とし、 Y_2O_3 、CaO、MgO、 CeO_2 、 Dy_2O_3 などの少なくとも一種を安定化剤として含み、正方晶の結晶を主体とする部分安定化ジルコニアセラミックスを用いることが好ましく、このような部分安定化ジルコニアセラミックスは、優れた耐摩耗性を有するとともに、適度に弾性変形することから、圧入によって固定する際に有利である。

上記フェルール2の加工方法としては、先ず、フェルール2を例えばジルコニアセラミックスから形成する場合、予め射出成形、プレス成形、押出成形等の所定の成形法によってフェルール2となる円柱状もしくは直方体形状の成形体を得、その後、該成形体を1300~1500℃で焼成し、所定の寸法に切削加工または研磨加工を施す。なお、成形体に切削加工等によって予め所定の形状を形成しておき、その後焼成を行ってもよい。

ファイバスタブ1の先端部18の端面8は、光コネクタとの接続損失を低減させるため曲率半径5~30mm程度の曲面状に加工され、後端部17の端面9はL D等の光素子から出射された光が光ファイバ3の端面9で反射して光素子20に

10

15

20

戻る反射光を防止するため4~10°程度の傾斜面に鏡面研磨されている。

さらにスリーブ4はジルコニア、アルミナ、銅などの材料からなっている。主には耐摩耗性を考慮して、ジルコニアなどのセラミックス材料からなることが多い。その加工方法としては、たとえばジルコニアなどのセラミックス材料により、形成する場合、予め射出成形、プレス成形、押出成形等の所定の成形法によってスリーブ4となる円筒状もしくは円柱状の成形体を得、その後、該成形体を1300~1500℃で焼成し、所定の寸法に切削加工または研磨加工を施して形成する。

また、スリープ4の内径の表面荒さは挿入性を考慮して、算術平均粗さ(Ra) 0.2 μ m以下が望ましく、ファイバスタブ1の外径とスリーブ4の内径公差は低い接続損失を得るため、±1 μ m以下が望ましく、スリーブ4の内径寸法はファイバスタプ1を確実に保持するために、0.98 N以上の挿入力になるよう設計することが望ましい。

ファイバスタブ1はプラグフェルールPFの脱着の繰り返しや、接続時に掛かり続けるプラグフェルールPF側のバネ圧により加重が掛かるため、十分な固定強度が必要である。このため、ファイバスタブ1はホルダ5に十分な圧入、又は接着、又は圧入と接着を併用する固定方法にすることで、これを達成することが出来る。

さらにホルダ5は光モジュールとしてケース22 (図15参照)と溶接することが多いため、ステンレス、銅、鉄、ニッケルなどの溶接が可能な材料からなっている。主には耐腐食性と溶接性を考慮して、ステンレスが用いられる。

さらにまた、スリープケース6は耐摩耗性、溶接性を配慮する必要がないため、 ステンレス、銅、鉄、ニッケル、プラスチック、ジルコニア、アルミナなどの幅 広い材料が用いられる。

25 本発明の光レセプタクル7では、スリーブ4を弾性体にて保持するため、極端な応力がかからず、傾くことが無いため、プラグフェルールPFをスリーブ4に挿入、抜去において、良好な着脱性を得ることが出来る。また短尺化のためにファイバスタブ1のスリーブ4への挿入長を短くすることも可能であり、ファイバスタブ1を直接ホルダ5に圧入や接着でしっかり固定することが出来るため、プ

10

15

20

25

ラグフェルールPF脱着時などの押し込み荷重でファイバスタブ1がずれることが無い。

次に、本実施形態の実施例について説明する。

先ず、実施例として、図1Aに示す光レセプタクル7を作製した。なお光レセプタクル7に接続される光コネクタはLCコネクタとした。

ファイバスタブ1に用いたフェルール2は、ジルコニアセラミックスからなり、押し出し成形によって円筒状のセラミックス成形体を得て焼成工程で焼き固め、切削加工を行って図1Aに示す形状のフェルール2を得た。

こうして得られたそれぞれのフェルール2の貫通孔に光ファイバ3を挿入固定し、先端部18を曲率半径20mm程度の曲面に鏡面研磨し、反対側の後端部17は、LD等の光素子20から出射された光が、光ファイバ3の先端部18で反射して光素子20に戻る反射光を防止するため、8°の傾斜面に鏡面研磨を行い、ファイバスタブ1とした。

ファイバスタブ1の後端部17はホルダ5へ圧入には圧力センサ付きハンドプレスにて、十分な加重を確認しつつ圧入した。このとき、このサンプルの固定位置付近での圧入強度は150N程度あった。従って、それ以下の荷重であればファイバスタブ1が動くことが無いため、プラグフェルールPFのバネによる押し圧や、着脱時の衝撃に対して十分な強度があることが明白である。

その後、ジルコニアセラミックスからなる、フェルール2の外形に対して、1 μ m大きい精度を持つように内径を研磨した精密なスリーブ4を、ホルダ5に圧入固定されたファイバスタブ1へ挿入し、ホルダ5迄当て付けた。

この時、ファイバスタブ1の先端部18とスリーブ4の相重なる寸法L2は、レセプタクルの短尺化のため、精密なスリーブ4の長さ寸法L1に対して1/3の位置になるように設計されている。そして、精密なスリープ4とファイバスタブ1の相重なる位置の寸法L4の間で、樹脂を充填し、オーブンにて加熱硬化し、保持リング11を形成した。最後にスリーブケース6をホルダ5に圧入することによって図1Aに示す様な光レセプタクル7を作製した。

次に比較例として、上記の様に作製した光レセプタクル7と上記の作製手順の内、樹脂の充填をせずに保持リング11を形成せず、そのままスリープケース6

10

20

25

を圧入した図14に示す様な光レセプタクル70を作製した。

ここで、図2Bの様に、この2つのレセプタクルに発光素子をつけてモジュール化した後、電源を駆動させ発光させる。そして、レセプタクルに対して、プラグフェルールPFを接続して光を導出した後、光出力測定器にて光出力を測定する。その後、プラグフェルールPFに横荷重Ftを加えて、傾きが発生したときの接続損失を光出力測定器により計測して算出し、測定比較した。

図2Aに横加重対損失の比較グラフを示す。この結果より、保持リング11によって傾きが制限されることにより、横荷重Ftに対して損失が抑えられることが明確となった。又、図1Bのスリーブ4が弾性変形する様にスリット24の入った割スリーブ23においても、保持リング11をスリット24の入った割スリープ23の弾性変形を大きく妨げることの無い弾性体にすることで、スリーブ23に対して、大きな応力をかけたり、変形させることなく、プラグフェルールPFの斜めの傾きに対して効果を持たせることが可能となる。

(第2実施形態)

15 図3は、本発明の第2実施形態を示す断面図であり、フェルール2に光ファイバ3を挿入固定してなるファイバスタブ1と、ファイバスタブ1の後端部を固定するホルダ5及びスリーブケース6と、ファイバスタブの先端面に接続されるプラグフェルールPFを保持するためのスリーブ4とからなり、該スリーブ4にファイバスタブ1の先端部を挿入保持してある。

この際使用されるスリーブ4は図3のように、ファイバスタブ1を挿入保持する側の端部の外径を段形状に加工して、その肉厚がプラグフェルールPFを保持する部分の肉厚より大きくなるような肉厚部4aを形成してある。これによって、肉厚部4aの保持力を高めることができる。

また肉厚部4aの厚みはその他の部分と比較して1.5倍~2.5倍の厚みとすることが好ましい。これは、肉厚部4aがこれよりも薄くなると十分なファイバスタプ保持ができなくなり、またこれよりも厚くなるとスリーブ4~の応力の増加による破壊や、プラグフェルールPFの挿入力が挿入が困難になる恐れが生じるためである。

また肉厚部4aの長さL5はファイバスタブ1の挿入長さL2の4/5~1/

10

15

20

25

5の範囲とすることが好ましい。これは、長さL5が上記範囲よりも長い場合は、 プラグフェルールPFの挿入が困難になり、またそれより短いとファイバスタブ の保持力が十分でなくなるためである。

肉厚部4 a を上記の範囲とすることにより、ファイバスタブ1の保持部が短くても十分な保持力が得られ、またプラグフェルールPF側の挿入力を適当なレベルに管理することができる。

この肉厚部4aの形成については、上記以外に図4Aのようなテーパ状あるいは、図4Bのような曲面状、または図4Cのように一体ではなく別部材をかぶせることにより形成しても良い。

ファイバスタブ1を構成するフェルール2はステンレス、りん青銅等の金属、エポキシ、液晶ポリマー等のプラスチックス、アルミナ、ジルコニア等のセラミックスからなり、特にジルコニアセラミックで形成することが好ましい。具体的には、ZrO₂を主成分とし、Y₂O₃、CaO、MgO、CeO₂、Dy₂O₃などの少なくとも一種を安定化剤として含み、正方晶の結晶を主体とする部分安定化ジルコニアセラミックスを用いることが好ましく、このような部分安定化ジルコニアセラミックスは、優れた耐摩耗性を有するとともに、適度に弾性変形することから、圧入によって固定する際に有利である。

上記フェルール2の加工方法としては、先ず、フェルール2を例えばジルコニアセラミックスから形成する場合、予め射出成形、プレス成形、押出成形等の所定の成形法によってフェルール2となる円柱状もしくは直方体形状の成形体を得、その後、該成形体を $1300\sim1500$ ℃で焼成し、所定の寸法に切削加工または研磨加工を施す。なお、成形体に切削加工等によって予め所定の形状を形成しておき、その後焼成を行ってもよい。

ファイバスタブ 1 の先端部の端面 8 は、光コネクタとの接続損失を低減させるため曲率半径 $5\sim30$ mm程度の曲面状に加工され、端面 9 は L D 等の光素子から出射された光が光ファイバ 3 の端面で反射して光素子に戻る反射光を防止するため $4\sim10^\circ$ 程度の傾斜面に鏡面研磨されている。またプラグフェルール側C面またはRについては 0.1 mm以下に加工されているか、あるいはこの面取りはなくても良い。

10

15

20

25

さらにスリーブ4はジルコニア、アルミナ、銅などの材料からなっている。主には耐摩耗性を考慮して、ジルコニアなどのセラミックス材料からなることが多い。その加工方法としては、たとえばジルコニアなどのセラミックス材料により、形成する場合、予め射出成形、プレス成形、押出成形等の所定の成形法によってスリーブ4となる円筒状もしくは円柱状の成形体を得、その後、該成形体を1300~1500℃で焼成し、所定の寸法に切削加工または研磨加工を施して肉厚部4aを形成する。なお、成形体に切削加工等によって予め所定の形状を形成しておき、その後焼成を行ってもよい。

また、スリーブ4の内径の表面荒さは挿入性を考慮して、算術平均粗さ(Ra) 0.2 μ m以下が望ましく、ファイバスタブ1の外径とスリーブ4の内径公差は低い接続損失を得るため、±1 μ m以下が望ましく、スリーブ4の内径寸法はファイバスタブ1を確実に保持するために、0.98N以上の挿入力になるよう設計することが望ましい。

ファイバスタブ1はホルダ5に圧入または接着または圧入と接着を併用することによって固定されている。

さらにホルダ5は光モジュールとしてケース22 (図15参照)と溶接することが多いため、ステンレス、銅、鉄、ニッケルなどの溶接が可能な材料からなっている。主には耐腐食性と溶接性を考慮して、ステンレスが用いられる。

さらにまた、スリーブケース6は耐摩耗性、溶接性を配慮する必要がないため、ステンレス、銅、鉄、ニッケル、プラスチック、ジルコニア、アルミナなどの幅 広い材料が用いられる。主にはホルダ5と熱膨張係数を合わせ、信頼性を高める ため、ホルダ5と同様、ステンレスが用いられることが多い。

本発明の光レセプタクル7では、スリーブ4の自由な変形を拘束する把持リングが無いため、プラグフェルールPFをスリーブ4に挿入、抜去した際に、スリーブ4が自由に変形することが可能であり、挿入力、抜去力を安定させ、良好な着脱性を得ることが出来る。また短尺化のためにファイバスタブのスリーブへの挿入長を短くできる。すなわちファイバスタブ側のスリーブの肉厚を大きくしているため、ファイバスタブのスリープへの挿入長が短くても、十分なファイバスタブ側のスリープの保持力が得られる。

15

25

またさらにプラグフェルールへの光軸と垂直方向の荷重に対する接続損失、反射減衰量変動をおさえるため、ファイバスタブについてプラグフェルール側のC面またはRはO. 1mm以下に管理されており、ウイグル特性についての安定性を向上させている。

さらには、安定した保持状態であるため、相互の光ファイバ接続部にすべりが 生じることなく、光ファイバ3の端面を痛めず、光信号の導入導出に於ける信頼 性を向上させることができる。

本実施形態の実施例について説明する。

(実験1)

10 先ず、実施例として図3に示す光レセプタクルと、比較例として図15に示す 光レセプタクルを作製した。なお光レセプタクルに接続される光コネクタはLC コネクタとした。

図3の光レセプタクル用のスリーブについては、肉厚部4aの厚みが他の部分に比べて2倍となるようにし、また肉厚部4aの長さL5が、ファイバスタブのスリーブへの挿入長L2の1/3となるように作製した。

各ファイバスタブに用いたフェルールは、ジルコニアセラミックスからなり、押し出し成形によって円筒状のセラミックス成形体を得て焼成工程で焼き固め、切削加工を行って図3に示す形状のフェルール試料と図3に示す形状のフェルール試料を得た。

20 こうして得られたそれぞれのフェルールの貫通孔に光ファイバを挿入固定し、 先端面を曲率半径20mm程度の曲面に鏡面研磨し、反対側の後端部は、LD等 の光素子から出射された光が光ファイバの先端部で反射して光素子に戻る反射光 を防止するため、8°の傾斜面に鏡面研磨を行い、ファイバスタブとした。

ついで得られたファイバスタブの先端側をスリーブへ挿入したものを金具へ挿入し、図3の本発明試料の場合はファイバスタブの後端側をホルダへ圧入、比較例の試料はスリープへファイバスタブを挿入した後、スリープ外側に把持リングを圧入し、最後にファイバスタブ、スリープ、把持リングの組立体をスリープケースへ圧入することによって光レセプタクルを作製した。

そして、各光レセプタクル試料の先端側から光コネクタのプラグフェルールを

繰り返し挿抜して、プッシュプルゲージにて挿入、抜去力の測定と、パワーメータにて接続損失の測定を行った。

表1.

	* XX 0日) () . L - プ b	b v	T 200	
	本発明光レセプタクル		従来光レセプタクル	
	挿入・抜去力(N)	接続損失(dB)	挿入・抜去力(N)	接続損失(dB)
1	1.88	0.03	2.76	0.31
2	1.90	0.05	1.95	0.15
3	1.95	0.07	2.34	0.20
4	1.94	0.08	0.84	0.57
5	2.00	0.04	1.65	0.04
6	2.03	0.02	3.89	0.45
7	2.10	0.07	1.33	0.02
8	2.00	0.11	4.15	0.67
9	1.95	0.10	2.98	0.42
10	1.97	0.09	3.31	0.57
11	2.05	0.12	1.87	0.09
1 2	1.99	0.05	0.91	0.09
1 3	2.07	0.02	2.97	0.29
1 4	2.06	0.06	3.25	0.44
15	2.01	0.04	3.70	0.59
16	2.00	0.07	2.31	
17	1.97	0.02	1.48	0.20
18	1.98	0.05	1.12	
19	1.78	0.10	2.46	0.28
20	1.88	0.09	3.78	0.33
平均值	1.98	0.06	2.45	0.43
MAX.	2.10	0.12	4.15	0.34
MIN.	1.78	0.02		0.67
	1.10	0.02	0.84	0.02

5 表 1 よ り 明 ら か な よ う に 、 本 発 明 の 光 レ セ ブ タ ク ル の 挿 入 、 抜 去 力 は 1 . 7 8 ~ 2 . 1 0 N の 範 囲 で 安定 し て お り 、 ま た 接 続 損 失 も 0 . 0 2 ~ 0 . 1 2 d B の 範 囲 で 安定 し て い る 。 こ れ に 対 し 従来 の 光 レ セ ブ タ ク ル の 挿 入 、 抜 去 力 は 0 . 8 4 ~ 4 . 1 5 N の 範 囲 で バ ラ ツ キ が 大 き く 、 接 続 損 失 も 0 . 0 2 ~ 0 . 6 7 d B の 範 囲 で 再 現 性 が 悪 い こ と が わ か る 。

10 (実験2)

次にスリーブ、ファイバスタブ長以外は同構造の図14の光レセプタクルとの 抜去力、挿入損失、横方向荷重による挿入損失変動についての比較を行った。

表2.

	本発明光レセプタクル				
	挿入・抜去力(N)	接続損失(dB)	横方向荷重(500gf)時の変動 (dB)		
1	1.88	0.03	0.44		
2	1.90	0.05	0.72		
3	1.95	0.07	0.54		
4	1.94	0.08	0.99		
5	2.00	0.04	1.08		

	図2構造の従来光レセプタクル			
	挿入・抜去力(N)	接続損失(dB)	横方向荷重(500gf)時の変動 (dB)	
1	1.75	0.05	1.41	
2	2.10	0.04	0.83	
3	2.02	0.09	0.97	
4	1.55	0.07	1.46	
5	1.75	0.03	0.99	

*スリープ形状はストレートでかつファイバスタブ長は本発明の光レセプタクル 用のものより、23%長いものを使用。

5

10

15

表2から、今回実験にて作成した図3の光レセプタクルにおいてファイバスタブ長を図14のものより、23%削減したものにおいても、通常品と同様の特性が得られた。この際、ホルダへのファイバスタブの圧入代は同等とした。

なお図3のような段付スリーブを使用せず、図14の構造にてファイバスタブ 長を23%削減したものでの挿入損失、横方向荷重時の挿入損失変動のデータをと ろうとしたが、測定値の変動が非常におおきく安定した測定ができなかった。こ れはすなわち図14の構造での短尺化の限界を表している。

(実験3)

次に図5のように、ファイバスタブのプラグフェルール接続側にC面2 a を通常のフェルールのように加工したもの (LCコネクタの場合 ファイバスタブ長手方向C面長が0.3~0.4m程度) と図3のようにそのC面長が0.1mm以下のもので横方向荷重時の挿入損失、反射減衰量の変動について比較を行った。

結果を図6Aと図6Bに示す。図6A、図6Bともに横軸には光軸と垂直方向

10

15

20

25

にかけた荷重、すなわち横方向荷重値をあらわし、縦軸には、初期値(荷重無しの場合)を"0"とした場合の損失変動をあわらしている。

図6A、図6Bから、C面を通常のコネクタ用フェルールと同じくした場合に 比較してC面を0.1mm以下に管理したものについて横方向荷重時の特性が大幅に改 善している。とくに反射減衰量の点でC面を0.1mm以下にしたものは600gfの 荷重までファイバ間で良好なPC接続を保持している。

(第3実施形態)

図7は、本発明の第3実施形態を示す断面図である。ジルコニア、アルミナ等のセラミック材料からなる精密スリープ4はSUS304等の溶接性に優れたステンレス材のホルダ5に圧入により固定されている。又、金属製のフランジ12をホルダ5に接触しないように圧入若しくは接着固定されている。更にスリーブ4の内径には金属製のフェルールストッパ13が圧入固定されている。

この様に、フランジ12とホルダ5が電気的に絶縁されていることにより、光送受信器で使用される光モジュールの送信用と受信用の両方の光レセプタクル7として使用した場合、金属のハウジングで同時に固定しても、送信用光モジュールを駆動する電気信号が金属製の光レセプタクルを通じて、金属のハウジングへ漏れ、受信用光モジュールに対して雑音を発生させてしまうことや、送信側のスリーブ4がアンテナになり電磁波を出すことや、受信側のスリーブ4が外部雑音を拾ってしまい、受信側の感度が劣化する問題等の発生が無く、雑音特性に優れている。

上記セラミックからなる精密スリーブ4は、着脱の応力緩和や圧入固定への適正から、弾性の高いジルコニアが望ましい。その加工方法としては、予め射出成形、プレス成形、押出成形等の所定の成形法によってスリープ1となる円筒状もしくは円柱状の成形体を得、その後、該成形体を1300~1500℃で焼成し、所定の寸法に切削加工または研磨加工を施して形成される。精密スリーブ4の内径の表面荒さは挿入性を考慮して、算術平均粗さ(Ra)0.2μm以下が望ましく、プラグフェルールPFの外径と精密スリーブ1の内径公差は低い接続損失を得るため、±1μm以下が望ましい。

上記、フェルールストッパ13はプラグフェルールPFの脱着の繰り返しや、

10

15

20

25

接続時に掛かり続けるプラグフェルールPF側のバネ圧により加重が掛かるため、十分な固定強度が必要である。このため、フェルールストッパ13は精密スリープ1に十分な圧入、又は接着、又は圧入と接着を併用する固定方法にすることでこれを達成することが出来る。

上記、ホルダ 5 は光モジュールとしてケース 2 2 (図 1 2 参照) と溶接することが多いため、ステンレス、銅、鉄、ニッケルなどの溶接が可能な材料からなっている。主には耐腐食性と溶接性を考慮して、ステンレスが用いられる。金属製のフランジ 3 も耐腐食性の観点から表面にNi等のメッキを施したものや、ステンレスのものが望ましい。

上記、フランジ12は金属の筐体に挟み込むように固定されたり、又は、フランジ12が筐体の鍔部を挟み込むような構造をとることで、筐体に対して固定され、プラグフェルールPFの繰り返しの着脱の際にかかる負荷に耐えうるような強度が必要である。フランジ12の厚みtは金属であれば、0.2mm以上あれば十分固定強度を確保可能であり、小型化や取り付けの安定性を考えれば、フランジ12の厚みtは0.5mm~2mmの範囲が好ましく、またフランジ12の径方向の長さdは0.5mm~3mmの範囲であることが望ましい。又、フランジ12の固定位置はプラグフェルールPFの先端を挿入したときに、突き当てられる位置付近に付けられることが望ましい。

又、図7の場合、プラグフェルールPFの先端はフェルールストッパ13に突き当てられ、この位置に荷重がかかるため、出来るだけこの突き当て部に近い位置にフランジ12で固定することで、光レセプタクルを安定して固定することが可能となる。

又、プラグフェルール側にフランジ12を付けるとプラグフェルールのハウジングの形状に自由度を持たせることが出来なくなるため、出来るだけホルダ5側にフランジ12があることが好ましい。

上記のような精密スリーブ4にホルダを圧入し、そのホルダに光素子を固定する構造の光レセプタクル7を使用した光モジュールは、接続されるプラグフェルールPFに対して、横方向に荷重がかかった場合でも、精密スリーブ4の内径のクリアランスの範囲でしかプラグフェルールがずれることはなく、大きな光接続

10

15

20

25

損失が発生しない利点があるだけでなく、上記の構造は精密スリーブの外形その ものが光レセプタクル7の外形となる為、最も小型で、最も短尺化が可能な構造 である。

図8は、図7の精密スリーブ4が段部4cの様に段加工され、金属製のフランジ12はこの段4cまで圧入若しくは接着固定されていることにより、位置決めが容易な構造となっている。又、万が一、フランジ12と精密スリーブ4が外れてしまう様なこととなって、フランジが動いてしまっても、ホルダ5に接触し、雑音特性の劣化が発生することがない。

図9は、図7の精密スリーブ4に対して、セラミックや樹脂のような電気絶縁 材料からなるフランジ12を圧入し、ホルダ5に当て付け、場合によっては着補 強されている構造となっている。この場合も、万が一、フランジ12と精密スリ ープ4が外れてしまう様なこととなって、フランジが動いてしまっても、雑音特 性の劣化が発生することがない。

又、金属のフランジ12の場合、あまり強く圧入固定してしまうと、低温になった際に、熱膨張係数が大きいためより収縮が進み、締め付けによる割れの発生が懸念される。

したがって、セラミックの精密スリーブ4と熱膨張係数の近いセラミックのフランジ12であれば、温度変化による割れが発生することがなく、又、樹脂のフランジ12の場合は割れが発生する把持力にはならないため、安全性が高い。

図10は、図7のフランジ12とホルダ5の間に、セラミックや樹脂のような電気絶縁材料からなるスペーサ14を嵌め込み、ホルダ5に当て付けて圧入又は接着固定し、そのスペーサ14に当て付けてフランジ12を圧入若しくは接着固定する際に、位置決めが容易な構造となっている。又、万が一、フランジ12と精密スリーブ4が外れてしまう様なこととなって、フランジが動いてしまっても、ホルダ5に接触し、雑音特性の劣化が発生することがない。

図11は、本発明の光レセプタクル7の他の構造例を示す断面図である。

ジルコニア、アルミナ等のセラミック材料からなる円筒状の貫通孔に石英ガラス等からなる光ファイバ3を挿入固定して得られたファイバスタブ1は同じセラミック材料で出来た精密スリーブ4に圧入固定されている。

10

15

20

25

このとき、ファイバスタブ1の外径はその圧入される精密スリープ4の内径に対して、 $1\sim7\mu$ m大きい構造となっている。ここで、精密スリーブ4とファイバスタブ1を同じ材料で形成することにより、周囲温度が変化しても、熱膨張係数が変わらないため、精密スリーブ1がファイバスタブ1を固定する把持力が大きく変動せず、把持力が低下してファイバスタブ1がプラグフェルールPFの着脱によって動き、光接続損失が大きくなったり、把持力が上がりすぎて、精密スリーブ4の変形やクラック等の発生は起こらず、ファイバスタブ1の保持力を安定させることができる。

そしてこの精密スリーブ4のファイバスタブ1の挿入された位置において、SUS304等の溶接性に優れたステンレス材のホルダ5に圧入により固定されており、これによりスタブの保持強度は更に増す。この精密スリーブ4、ファイバスタブ1、ホルダ5の固定構造は、図7~図11で示したフランジ固定方法にそれぞれにおいて同様に可能である。ファイバスタブ1となる円筒状のセラミックはアルミナ、ジルコニア等からなり、特にジルコニアセラミックで形成することが好ましい。

具体的には、 ZrO_2 を主成分とし、 Y_2O_3 、CaO、MgO、 CeO_2 、 Dy_2O_3 などの少なくとも一種を安定化剤として含み、正方晶の結晶を主体とする部分安定化ジルコニアセラミックスを用いることが好ましく、このような部分安定化ジルコニアセラミックスは、優れた耐摩耗性を有するとともに、適度に弾性変形することから、圧入によって固定する際に有利である。

セラミックの加工方法としては、先ず、例えばジルコニアセラミックスから形成する場合、予め射出成形、プレス成形、押出成形等の所定の成形法によって円柱状もしくは直方体形状の成形体を得、その後、該成形体を1300~1500℃で焼成し、所定の寸法に切削加工または研磨加工を施す。なお、成形体に切削加工等によって予め所定の形状を形成しておき、その後焼成を行ってもよい。ファイバスタブ4のプラグフェルール側端面は、光コネクタとの接続損失を低減させるため曲率半径5~30mm程度の曲面状に加工されている。又、光素子側の端面は出射された光が光ファイバの端面で反射して光素子に戻る反射光を防止するため4~10°程度の傾斜面に鏡面研磨されている。

10

15

20

25

このファイバスタブ1を用いた構造では、前記の様に、反射防止のための斜め 研磨をすることが出来るため、特に反射に弱い光素子を使用する場合に有効であり、こういった反射対策をした光レセプタクルの構造としては、精密スリーブ4 の中にファイバスタブ1が圧入される為、光レセプタクルは極限まで短尺化が可能である。

この様に、本実施形態の光レセプタクル7では、プラグフェルールPFを光レセプタクルに接続した後、プラグフェルールPFに対して横方向に大きな荷重がかかっても、精密スリーブのクリアランスの範囲でしか、プラグフェルールPFが傾くことが無く、結果として大きな接続損失とならないだけでなく、精密スリープの外形そのものが光レセプタクルの大きさとなる。光レセプタクルは極限まで短尺化が可能であり、かつ、金属のハウジングで固定される送信用の光レセプタクルや受信用の光レセプタクルとして使用しても、雑音特性が改善される。

先ず、実施例として図12に示す光レセプタクル7を作製した。なお光レセプタクル7に接続される光コネクタはLCコネクタとした。ファイバスタブ1となる円筒状のセラミックはジルコニアからなり、押し出し成形によって円筒状のセラミックス成形体を得て焼成工程で焼き固め、切削加工を行った。

次に、具体的な実施例について説明する。

こうして得られた円筒状のセラミックの貫通孔に光ファイバ3を挿入接着固定し、先端部を曲率半径20mm程度の曲面に鏡面研磨し、反対側をLD等の光素子20から出射された光が、光ファイバ3の先端部で反射して光素子20に戻る反射光を防止するため、8°の傾斜面に鏡面研磨を行い、ファイバスタブ1とした。

ジルコニアセラミックスからなる精密なスリープ4はそのファイバスタブ1の 挿入口からファイバスタブ1より短い範囲において、ファイバスタブ1の外形に 対して、 $1\sim7~\mu$ m程度小さく内径を研磨されており、それ以外の部分はファイバスタブ1の外形に対して $1~\mu$ m以下のクリアランスがある。

又、圧入のし易さとプラグフェルール挿入時のエア抜きの為、精密スリープ4 はプラグフェルール挿入方向に対して、溝加工されたものを用いた。この精密ス リープ4へのファイバスタブ1の圧入には圧力センサ付きハンドプレスにて、十

10

15

20

25

分な荷重を確認しつつ圧入した。このとき、このサンプルの固定位置付近での圧 入強度は120N程度あった。

従って、それ以下の荷重であればファイバスタブ1が動くことが無いため、プラグフェールPFのバネによる押し圧や、着脱時の衝撃に対して十分な強度があることが明白である。

その後、精密スリーブ4のファイバスタブ1の圧入した側を溶接性に優れたSUS304のホルダ5にて圧入固定した。これも圧力センサ付きハンドプレスにて、十分な荷重を確認しつつ圧入した。このサンプルの固定位置付近での圧入強度は130N程度あった。次に樹脂製のフランジ3を圧入し接着補強して光レセプタクル7を作成した。

これにより、精密スリーブ4の長さ寸法6.35mmの短尺の絶縁構造の光レセプタクルとすることが出来た。このとき、光レセプタクル7の先端からプラグフェルールPFが位置決めされるファイバスタブ1の先端までの距離を4.05mmと規定したため、ファイバスタブ1は2.3mmとなった。この6.35mmを尺化を従来の絶縁構造で設計してみると、上記と同様の設計条件として光レセプタクル7の先端からプラグフェルールPFが位置決めされるファイバスタブ1の先端までの距離を4.05mmと規定した場合、ファイバスタブ1は上記と同様で2.3mmとなる。

ここで、ファイバスタブ1のホルダ5に対する圧入長さは0.3mmでは短すぎてファイバスタブ1の固定強度が不十分だが、仮に横方向荷重特性を重視して、ファイバスタブ1の圧入長さは0.3mmとし、割スリーブ4に挿入する長さを2mmと出来る限り長く取ってみた場合の横方向荷重特性の結果を図13Aに示し、本発明の横方向荷重特性の結果と比較して見た。

横方向荷重の測定は図13Bに示すように、光レセプタクルにLD素子を溶接 固定したモジュール化したものとし、電源にて一定の光を出力し、プラグフェル ールを差し込みコネクタ接続した後、その光出力を光出力測定器にて測定する。 そして、横荷重Ftの加える前の光出力を基準に、横荷重Ftに対する光出力を 測定するという方法で実施した。

この実験結果を図13Aに示す。これより明らかに横方向荷重特性は本発明が

優れており、小型化に対して優位性があることが確認出来た。 産業上の利用の可能性

本発明は、光通信用モジュール等に使用されるだけでなく、センサ用途の光モジュールにおいても適用可能である。

10

20

請求の範囲

1. フェルールの貫通孔に光ファイバを有するファイバスタブの後端部をホルダに固定し、上記ファイバスタブの先端部にプラグフェルールを保持するスリーブを配設してなる光レセプタクルにおいて、

上記ファイバスタプと上記スリーブが重なる外周側面に保持リングを配設した 光レセプタクル。

- 2. 上記保持リングは、弾性体である請求項1記載の光レセプタクル。
- 3. 上記保持リングは、上記ホルダに固定されている請求項1記載の光レセプタクル。
- 4. フェルールの貫通孔に光ファイバを挿入固定したファイバスタブの後端部をホルダに固定し、ファイバスタブの先端面に接続されるプラグフェルールを保持するためのスリーブに、上記ファイバスタブの先端部を保持してなる光レセプタクルにおいて、
- 15 上記スリーブの一端に肉厚部を形成し、該肉厚部側に上記ファイバスタブを挿 入保持した光レセプタクル。
 - 5. 上記スリーブの肉厚部の長さが、ファイバスタブの挿入長さよりも短い請求項4記載の光レセプタクル。
 - 6. 上記肉厚部の厚みは、他の部分の厚みに比べて1.5~2.5倍である請求項4記載の光レセプタクル。
 - 7. 上記肉厚部は、内径が他の部分と等しく、外径が他の部分よりも大きい請求項6記載の光レセプタクル。
 - 8. 上記ファイバスタブの先端部周囲の面取りが、0.1mm以下である請求項4記載の光レセプタクル。
- 25 9. プラグフェルールを保持するためのセラミックス製の精密スリープを配設 してなる光レセプタクルにおいて、

前記精密スリーブの後端部に金属のホルダを有し、金属ホルダとは電気的に絶縁されたフランジを精密スリーブの外周に備えた光レセプタクル。

10. 上記精密スリープの外周面に段部を形成し、上記フランジをこの段部に

当接して、前記精密スリーブに固定した請求項9記載の光レセプタクル。

- 11. 上記フランジが、電気絶縁材料であることを特徴とする請求項9記載の光レセプタクル。
- 12. 上記フランジが、電気絶縁材料のスペーサを介して、上記金属ホルダに 固定されている請求項9記載の光レセプタクル。
 - 13. 上記精密スリーブと同材料のセラミックス製フェルールに光ファイバを 挿入、保持してなるスタブを上記精密スリーブに圧入固定した請求項9記載の光レセプタクル。

2/19 Fig.2A 3 2.5 2 保持リング有 1.5 保持リング無 1 0.5 0 2 3 0 1 4 5 横荷重(N)

3/19

WO 2005/001534 PCT/JP2004/009451

Fig.6A

反射発生

Fig.6B

WO 2005/001534 PCT/JP2004/009451

Fig. 10

Fig. 11

Fig. 12

Fig. 13A

Fig. 14 PRIOR ART

INTERNATIONAL SEARCH REPORT

International application No.

		PCT/J	TP2004/009451		
A. CLASSIFIC	CATION OF SUBJECT MATTER 7 G02B6/38				
According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED					
Minimum documentation searched (classification system followed by classification symbols)					
Int.Cl	G02B6/38	lassification symbols)			
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Jitsuyo Shinan Koho 1922–1996 Toroku Jitsuyo Shinan Koho 1994–2004 Kokai Jitsuyo Shinan Koho 1971–2004 Jitsuyo Shinan Toroku Koho 1996–2004					
Electronic data b			= :		
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)					
C. DOCUMENTS CONSIDERED TO BE RELEVANT					
Category*	Citation of document, with indication, where a	ppropriate, of the relevant passages	Relevant to claim No.		
Х	JP 10-332988 A (Toto Ltd.),		1-13		
	18 December, 1998 (18.12.98) Par. Nos. [0008] to [0014], Figs. 1, 2 (Family: none)	, [0015];			
A	JP 7-23305 U (Advantest Corp 25 April, 1995 (25.04.95), Figs. 1, 2 (Family: none)).),	1-13		
A	JP 5-88047 A (Shimadzu Corp. 09 April, 1993 (09.04.93), Par. No. [0011]; Fig. 3 (Family: none)),	1-13		
Further doc	cuments are listed in the continuation of Box C.	See patent family annex.			
"A" document de	ories of cited documents: fining the general state of the art which is not considered cular relevance	"T" later document published after the date and not in conflict with the app	dication but cited to understand		
	ation or patent but published on or after the international	the principle or theory underlying the "X" document of particular relevance; the	re claimed invention connot be		
"L" document will cited to estal	which may throw doubts on priority claim(s) or which is tablish the publication data of a second second considered to involve a step when the document is taken alone		nsidered to involve an inventive		
	ason (as specified) considered to involve an inventive step when the do		ve step when the document ic		
"P" document published prior to the international filing date but later than the priority date claimed		combined with one or more other such documents, such combination being obvious to a person skilled in the art "&" document member of the same patent family			
Date of the actual completion of the international search 22 September, 2004 (22.09.04)		Date of mailing of the international search report 12 October, 2004 (12.10.04)			
Name and mailing address of the ISA/ Japanese Patent Office		Authorized officer			
Facsimile No.		Telephone No.			
	(second sheet) (January 2004)	, Asseptione IVO.			

A. 発明の	 風する分野の分類(国際特許分類 (IPC))				
	,				
Int. C	C1' G02B6/38				
R 調本な	∠ → Λ πτο				
B. 調査を行った。	们った分野 最小限資料(国際特許分類(IPC))				
1	C1' G02B6/38				
1					
最小限資料以外	ーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーー				
日本国実	『用新客公報 ・ 1022-100cm				
日本国際	M				
日本国実	其用新案登録公報 1996-2004年 1996-2004年				
国際調査で使用した電子データベース (データベースの名称、調査に使用した用語)					
		、例点で次月した用的			
			•		
C. 関連する	ると認められる文献	·			
引用文献の			関連する		
カテゴリー*	100 日の一日の一日の一日の一日の一日の一日の一日の一日の一日の一日の一日の一日の一日	ときは、その関連する箇所の表示	請求の範囲の番号		
X	JP 10-332988 A (東陶)	機器株式会社) 1998.1	1-13		
	2. 18, 【0008】—【001 図 (ファミリーなし)	4】、【0015】、第1、2.			
A	JP 7-23305 U (株式会社)	アドバンテスト) 1995	1-13		
	04.25,第1、2図 (ファミリ	ーなし)	1 10		
A	IP 5-88017 A (株式会社	the Market Market 1 0 0 0 0			
	JP 5−88047 A (株式会社, 4.09, 【0011】、第3図()	局津製作所) 1993.0 ファミリーカリ	1 - 13		
	, and an				
────────────────────────────────────	6)rd +±b32711116-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1		_ •		
	さにも文献が列挙されている。	□ パテントファミリーに関する別	紙を参照。		
* 引用文献の「A」特に関連		の日の後に公表された文献			
もの	基のある文献ではなく、一般的技術水準を示す	「丁」国際出願日又は優先日後に公表されている。	れた文献であって		
「E」国際出廊	百日前の出願または特許であるが、国際出願日 と表されたよの。	出願と矛盾するものではなく、発 の理解のために引用するもの	•		
りをに立 「L」優先権主	会表されたもの E張に疑義を提起する文献又は他の文献の発行	「X」特に関連のある文献であって、当	i 該文献のみで発明		
日右しく	は他の特別な理由を確立するために引用する	の新規性又は進歩性がないと考え 「Y」特に関連のある文献であって、当	.られるもの stot か レ 44 の 1 以		
人 飲(埋	胆由を付す) こる開示、使用、展示等に言及する文献	上の又献との、当業者にとって自	明である組合せに		
「P」国際出願日前で、かつ優先権の主張の基礎となる出願 「&」同一パテントファミリー文献					
国際調査を完了					
-	22.09.04	国際調査報告の発送日 12.10.2(10 4		
国際調査機関の	名称及びあて先				
日本国]特許庁(ISA/JP)	特許庁審査官(権限のある職員) 金高 敏康	2K 9712		
理 路京東	『便番号100-8915 『千代田区霞が関三丁目4番3号				
У10711 ДР		電話番号 03-3581-1101	内線 3253		