Statistical Inference Chapter 3

Gallant Tsao

July 22, 2024

1. We first note that the pmf of X is

$$p_X(x) = \frac{1}{N_1 - N_0 + 1}, \ x \in \{N_0, N_0 + 1, ..., N_1\}.$$

Then we get the expectation to be

$$\mathbb{E}[X] = \sum_{x=N_0}^{N_1} x \frac{1}{N_1 - N_0 + 1}$$

$$= \frac{1}{N_1 - N_0 + 1} \cdot \frac{N_1 - N_0 + 1}{2} (2N_0 + (N_1 - N_0 + 1 - 1))$$

$$= \frac{N_1 + N_0}{2}.$$

As for the variance, we get

$$\mathbb{E}[X^2] = \sum_{x=N_0}^{N_1} x^2 \frac{1}{N_1 - N_0 + 1}$$

$$= \frac{1}{N_1 - N_0 + 1} \left(\sum_{x=1}^{N_1} x^2 - \sum_{x=1}^{N_0 - 1} x^2 \right)$$

$$= \frac{1}{N_1 - N_0 + 1} \left(\frac{N_1(N_1 + 1)(N_1 + 2) - (N_0 - 1)(N_0)(2N_0 - 1)}{6} \right)$$

So that

$$Var(X) = \mathbb{E}[X^2] - (\mathbb{E}[X])^2$$
$$= 1$$

- 2. Let X = number of defective parts in the sample. Then $X \sim$ Hypergeometric (100, n, K).
 - (a) Firstly, we need n=6 because for the same K, increasing n decreases the value of the Hypergeometric pmf (image shown at end of answer). Then with n=6,

$$P(X = 0) = \frac{\binom{6}{0}\binom{94}{K}}{\binom{100}{K}}$$
$$= \frac{(100 - k)\cdots(100 - K - 5)}{100\cdots95}.$$

After some trial and error with the calculations, we have that when K=31, P(X=0)=0.10056, but when K=32, P(X=0)=0.09182. Therefore, the sample size must be at least 32.

(b) By the same reasoning above, we need n = 6. Then with this n,

$$P(X = 0 \text{ or } 1) = \frac{\binom{6}{0}\binom{94}{K}}{\binom{100}{K}} + \frac{\binom{6}{1}\binom{94}{K-1}}{\binom{100}{K}}.$$

Again, by trial and error, when K = 50, P(X = 0 or 1) = 0.10220, but when K = 51, P(X = 0 or 1) = 0.09331 hence the sample size must be at least 51.

- 3. During the three seconds that the person is crossing, there should be no cars passing. The probability of this happening is $(1-p)^3$. The only possibility for the person to not wait exactly 4 seconds is when there is a car at the first second and no cars in the next 3 seconds. The probability of this happening is $p(1-p)^3$. Since the times are independent, the probability that the pedestrian has to wait exactly 4 seconds is $[1-p(1-p)^3](1-p)^3$.
- 4. (a) Let X be the number of trials. Then in this case $X \sim \text{Geom}(0.1)$. Therefore the mean number of trials is just $\frac{1}{0.1} = 10$.
- 5. Let X = number of effective cases. Suppose the new drug is equally effective as the old drug. Then $X \sim \text{Binomial}(100, 0.8)$ if the cases are independent from each other, which is a reasonable assumption. We have

$$P(X \ge 85) = \sum_{k=85}^{100} {100 \choose k} 0.8^k \cdot 0.2^{100-k} = 0.1285.$$

From this, the probability of getting 85 or more effective cases is not too small, hence we cannot directly make a conclusion that the new drug is superior.

6. (a) $X \sim \text{Binomial}(2000, 0.01)$.

(b)

$$\sum_{k=0}^{99} {2000 \choose k} 0.01^k \cdot 0.99^{2000-k}.$$

(c) In our problem, n=2000, p=0.01, q=0.99. Since np, nq>5, we can use normal approximation here. The normal approximation is $Y \sim N(\mu, \sigma^2)$, where

$$\mu = np = 20, \sigma^2 = npq = 19.8.$$

Then we get

$$P(X < 100) \approx P(Z < 17.979) = 1.$$

7. Let X be the number of chocolate chips in the cookie. Then $X \sim \text{Poisson}(\lambda)$. We want that

$$P(X \ge 2) = 1 - P(X \le 1) > 0.99 \implies P(X \le 1) = e^{-\lambda} + \lambda e^{-\lambda} < 0.01.$$

Solving the above numerically, we get that $\lambda = 6.6384$.

8. (a) Let X be the number of customers in the theater. Then $X \sim \text{Binomial}(1000, \frac{1}{2})$. We want

$$P(X > N) = \sum_{k=N+1}^{1000} {1000 \choose k} \left(\frac{1}{2}\right)^k \left(1 - \frac{1}{2}\right)^{1000-k} < 0.01.$$

In other words, we are solving the smallest N such that

$$\left(\frac{1}{2}\right)^{1000} \sum_{k=N+1}^{1000} \binom{1000}{k} < 0.01.$$

By looping over N, we eventually get that N = 537.

(b) $n=1000, p=q=\frac{1}{2}$. Therefore the parameters for the normal approximation are $\mu=np=500, \sigma^2=npq=250$. Then we are solving for

$$P(X > N) \approx P(Z > \frac{N - 500}{\sqrt{250}}) < 0.01.$$

Using R, we get that

$$\frac{N - 500}{\sqrt{250}} = 2.326 \implies N \approx 537,$$

which is the same as our answer in part (a).

9. (a) Let $X \sim \text{Binomial}$ as depicted in the question.

$$P(X \ge 5) = 1 - P(X \le 4)$$

$$= 1 - \sum_{k=0}^{4} {60 \choose k} \left(\frac{1}{90}\right)^k \left(1 - \frac{1}{90}\right)^{60-k}$$

$$\approx 0.0006,$$

which I think is rare enough to be on the news.

(b) Let X be the number of schools in New York state with 5 or more sets of twins. Then $X \sim \text{Binomial}(360, 0.0006)$. We have that

$$P(X > 1) = 1 - P(X = 0) \approx 0.1698$$

(c) Let X be the number of states in the past 10 years having 5 or more sets of twins. Then $X \sim \text{Binomial}(500, 0.1698)$. We have that

$$P(X \ge 1) = 1 - P(X = 0) = 1.$$

Therefore this event becomes almost certain as we broaden the time scope.

10. (a) Let X be the number of packets of cocaine from the first draw, and let Y be the number of noncocaine packets from the second draw. Then we have that $X \sim \operatorname{Hypergeometric}(N+M,N,4)$ and $Y \sim \operatorname{Hypergeometric}(N+M-4,M,2)$. Then the probability that the defendant is innocent is

$$P(X=4)P(Y=2) = \frac{\binom{N}{4}\binom{M}{0}}{\binom{N+M}{4}} \frac{\binom{M}{2}\binom{N-4}{0}}{\binom{N+M-4}{2}} = \frac{\binom{N}{4}\binom{M}{2}}{\binom{N+M-4}{2}}.$$

- (b) Since the denominator from part (a) is a constant, we just have to find the maximizer of the numerator, which is just $\binom{N}{4}\binom{496-N}{2}$. After some calculus, the local maximizer is about 330.834, hence the maximum is attained at N=331, M=165, with value about 0.022.
- 11. (a)
- 12. Consider a sequence of independent Bernoulli(p) random variables. We define X = Number of successes in n trials, and Y = Number of failures until the rth success. Then X, Y have the specified distributions in the questions. Then

$$F_X(r-1) = P(X \le r-1)$$

$$= P(r\text{th success on } (n+1)\text{th or later trial})$$

$$= P(\text{At least } (n+1-r) \text{ failures before the } r \text{ th success})$$

$$= P(Y \ge n-r+1)$$

$$= 1 - P(Y \le n-r)$$

$$= 1 - F_Y(n-r).$$

13. Firstly, note that we can find the expectation and variance of the truncated distribution for a general discrete random variable ranging from 0, then we can plug in the values:

$$\mathbb{E}[X_T] = \sum_{k=1}^{\infty} kP(X_T = k)$$

$$= \sum_{k=1}^{\infty} k \frac{P(X = k)}{P(X > 0)}$$

$$= \frac{1}{P(X > 0)} \sum_{k=1}^{\infty} kP(X = k)$$

$$= \frac{\mathbb{E}[X]}{P(X > 0)}.$$

From the same way we get that

$$\mathbb{E}[X_T^2] = \frac{\mathbb{E}[X^2]}{P(X>0)}.$$

Therefore,

$$\operatorname{Var} X_T = \frac{\mathbb{E}[X^2]}{P(X > 0)} - \left(\frac{\mathbb{E}[X]}{P(X > 0)}\right)^2.$$

(a) For Poisson(λ), $P(X > 0) = 1 - e^{-\lambda}$.

$$P(X_T = k) = \frac{\lambda^k e^{-\lambda}}{k!(1 - e^{-\lambda})}, \ k = 1, 2, \dots$$

and therefore

$$\mathbb{E}[X_T] = \frac{\lambda}{1 - e^{-\lambda}}, \operatorname{Var} X_T = \frac{\lambda^2 + \lambda}{1 - e^{-\lambda}} - \left(\frac{\lambda}{1 - e^{-\lambda}}\right)^2.$$

(b) For NB(r, p), $P(X > 0) = 1 - {r-1 \choose 0} (1-p)^k p^r = 1 - p^r$.

$$P(X_T = k) = \frac{\binom{k+r-1}{k}(1-p)^k p^r}{1-p^r}, \ k = 1, 2, \dots$$

and therefore

$$\mathbb{E}[X_T] = \frac{r(1-p)}{p(1-p^r)}, \text{Var } X_T = \frac{r(1-p) + r^2(1-p)^2}{p^2(1-p^r)} - \left(\frac{r(1-p)}{p(1-p^r)}\right)^2.$$

14. (a)

$$\sum_{x=1}^{\infty} \frac{-(1-p)^x}{x \log p} = \frac{1}{\log p} \sum_{x=1}^{\infty} \frac{-(1-p)^x}{x}$$
$$= \frac{1}{\log p} \cdot \log p$$
$$= 1$$

as the latter term is the Taylor series for $\log p$.

(b)

$$\mathbb{E}[X] = \sum_{x=1}^{\infty} x \cdot \frac{-(1-p)^x}{x \log p}$$
$$= -\frac{1}{\log p} \sum_{x=1}^{\infty} (1-p)^x$$
$$= -\frac{1-p}{p \log p}.$$

Also,

$$\mathbb{E}[X^2] = -\frac{1}{\log p} \sum_{x=1}^{\infty} x (1-p)^x$$

$$= \frac{1-p}{\log p} \sum_{x=1}^{\infty} \frac{d}{dp} (1-p)^x$$

$$= \frac{1-p}{\log p} \frac{d}{dp} \sum_{x=1}^{\infty} (1-p)^x$$

$$= \frac{1-p}{\log p} \frac{d}{dp} \left(\frac{1-p}{p}\right)$$

$$= \frac{-(1-p)}{p^2 \log p}.$$

Therefore

$$\operatorname{Var} X = \mathbb{E}[X^2] - (\mathbb{E}[X])^2 = \frac{-(1-p)}{n^2 \log n} \left[1 + \frac{1-p}{\log n} \right].$$

15. The moment generating function for NB(r, p) is (after some algebraic manipulations)

$$M(t) = \left(\frac{p}{1 - (1 - p)e^t}\right)^r, \ t < -\log(1 - p)$$
$$= \left(\frac{1 - (1 - p)e^t}{1 - (1 - p)e^t} + \frac{(1 - p)(e^t - 1)}{1 - (1 - p)e^t}\right)^r$$
$$= \left(1 + \frac{1}{r} \frac{r(1 - p)(e^t - 1)}{1 - (1 - p)e^t}\right)^r.$$

From above,

$$\frac{r(1-p)(e^t-1)}{1-(1-p)e^t} \to \frac{\lambda(e^t-1)}{1} = \lambda(e^t-1) \text{ as } r \to \infty, \ p \to 1, \text{ and } r(1-p) \to \lambda.$$

Therefore, taking the limit,

$$M(t) \to \lim_{r \to \infty} \left(1 + \frac{\lambda(e^t - 1)}{r}\right)^r = e^{\lambda(e^t - 1)},$$

which is exactly the moment generating function of the Poisson random variable.

16. (a)

$$\begin{split} \Gamma(\alpha+1) &= \int_0^\infty t^\alpha e^{-t} \ dt \\ &= [-t^\alpha e^{-t}]_0^\infty + \alpha \int_0^\infty t^{\alpha-1} e^{-t} \ dt \\ &= \alpha \Gamma(\alpha). \end{split}$$

(b)

$$\Gamma(\frac{1}{2}) = \int_0^\infty t^{-\frac{1}{2}} e^{-t} dt$$
$$= \int_0^\infty 2e^{-u^2} du$$
$$= 2 \cdot \frac{\sqrt{\pi}}{2}$$
$$= \sqrt{\pi}.$$

17.

$$\begin{split} \mathbb{E}[X^{\nu}] &= \int_{0}^{\infty} x^{\nu} \cdot \frac{1}{\beta^{\alpha} \Gamma(\alpha)} x^{\alpha - 1} e^{-x/\beta} \ dx \\ &= \frac{1}{\beta^{\alpha} \Gamma(\alpha)} \int_{0}^{\infty} x^{\nu + \alpha - 1} e^{-x/\beta} \ dx \\ &= \frac{\beta^{\nu + \alpha} \Gamma(\nu + \alpha)}{\beta^{\alpha} \Gamma(\alpha)} \\ &= \frac{\beta^{\nu} \Gamma(\nu + \alpha)}{\Gamma(\alpha)}. \end{split}$$

18. The moment generating function of a NB(r, p) random variable is

$$M_Y(t) = \left(\frac{p}{1 - (1 - p)e^t}\right)^r, \ t < -\log(1 - p).$$

Then from Theorem 2.3.15,

$$M_{pY}(t) = M_Y(pt) = \left(\frac{p}{1 - (1 - p)e^{pt}}\right)^r.$$

Taking $p \to 0$, the above is of the form $\frac{0}{0}$. Then by L'Hopital's Rule,

$$\lim_{p\to 0}\frac{p}{1-(1-p)e^{pt}}=\lim_{p\to 0}\frac{1}{(p-1)te^{pt}+e^{pt}}=\frac{1}{1-t}.$$

Therefore,

$$\lim_{p \to 0} M_{pY}(t) = \left(\frac{1}{1-t}\right)^r = (1-t)^{-r},$$

which is exactly the moment generating function of a Gamma(r, 1) random variable.