Uniwersalny protokół Jikong BMS RS485 Modbus (V1.0)

Ogólny protokół Jikong BMS RS485 Modbus przyjmuje metodę odpowiedzi master-slave do transmisji danych. Host może zainicjować żądanie tylko poprzez unikalny adres urządzenia podrzędnego, a BMS (podrzędny) odpowiada zgodnie z żądaniem hosta, czyli komunikacją półdupleksową. Protokół ten umożliwia jedynie hostowi zainicjowanie żądania, a urządzeniu podrzędnemu bierną odpowiedź, więc urządzenie podrzędne nie będzie aktywnie zajmować linii komunikacyjnej i powodować konfliktów danych.

1. Interfejs fizyczny

Charakterystyka elektryczna fizycznego interfejsu komunikacyjnego jest

następująca: Poziom	UART
interfejsu	RS485
komunikacyjnego	115200bps 8
Standardowa	1
szybkość	
transmisji Bit danych Bit stopu Bit ko	trolny nic

2. Format umowy

Transmisja informacji jest asynchroniczna, do komunikacji używany jest format szesnastkowy: kod

adresu, kod funkcji		Kontrola CRC 1
bajt 1 bajt 1 bajt 2 b	ajty	

1) Kod adresu Kod

adresu to pierwszy bajt każdej ramki informacji komunikacyjnych i obsługuje wartości od 1 do 247. Każdy adres urządzenia podrzędnego na magistrali musi być unikalny.

Tylko urządzenie podrzędne, które odpowiada kodowi adresowemu wysłanemu przez urządzenie nadrzędne, może odpowiedzieć i zwrócić dane .

2) Kod funkcji

Kod funkcji to drugi bajt każdej ramki informacji komunikacyjnych. Host wysyła go i informuje urządzenie podrzędne za pomocą kodu funkcji, co powinno Kiedy wykonać jaką operację. Definicja kodu funkcji jest

następująca: Definicja funkcji		
03H	odczyt rejestru	Operacja odczytuje dane z jednego lub większej liczby rejestrów
10H zapis	danych rejestru zapisanych v	v jednym lub większej liczbie rejestrów

3) Obszar

danych Obszar danych różni się w zależności od kodu funkcji i kierunku danych. Dane te mogą obejmować "adres pierwszego rejestru + liczba odczytanych rejestrów", "adres rejestru + dane operacyjne", "pierwszy adres rejestru + liczba rejestrów operacji + dane. "Długość + dane" i inne różne kombinacje, obszary danych różnych kodów funkcji są szczegółowo wyjaśnione w "Analizie kodów funkcji".

3) Kontrola CRC

Kontrola CRC służy do zapewnienia poprawności i integralności transmisji danych.

3. Informacja o błędzie

Błędy sprawdzania adresu i CRC nie otrzymają informacji zwrotnej od urządzenia podrzędnego, a inne błędy spowodują zwrócenie kodów błędów do hosta.

Dodanie 0X80 do drugiego bitu ramki danych wskazuje, że w żądaniu wystąpił błąd (niedozwolony kod funkcji, niedozwolona wartość danych itp.). Ramka danych błędu wygląda następująco:

kod adresowy	kod funkcji	Kontrola CRC obszaru	kodu błędu
1-bajtowy	1 bajt	1 bajt 2 bajty	

kod błędu definiuje się w następujący sposób:

wartość	Kod	zilustrować
01H	funkcji o niedozwolonej nazwie	Ten rejestr operacji kodu funkcji nie jest obsługiwany
02H	Błąd adresu rejestru	Uzyskano dostęp do rejestru, do którego urządzenie podrzędne nie ma dostępu
03H	Dane są nielegalne	Logika danych jest nieprawidłowa lub przekracza limit
04H	Błąd kontroli CRC	Błąd kontroli CRC

4. Proces przekazywania informacji

Kiedy polecenie komunikacji jest wysylane z urządzenia nadrzędnego do urządzenia podrzędnego, urządzenie podrzędne odpowiadające kodowi adresowemu wysłanemu przez urządzenie nadrzędne otrzymuje polecenie komunikacyjne If

Jeśli kontrola CRC będzie prawidłowa, zostanie wykonana odpowiednia operacja, a następnie wynik wykonania (dane) zostanie zwrócony do hosta. zwrócone wiadomości

Zawiera kod adresowy, kod funkcji, dane po wykonaniu i kod kontrolny CRC. Jeśli adres się nie zgadza lub CRC jest prawidłowe

5. Analiza kodu funkcji

1) Kod funkcji 03H: Odczyt rejestru

Na przykład: host chce odczytać liczbę dwóch rejestrów holdingowych o adresie slave 01H i adresie rejestru początkowego 05H. Według danych host wysyła:

Host w	ysyła	Dane (szesnastkowo)		
kod a	dresu	01H		
kod fi	unkcji	03H		
Początkowy adres rejestru	wysoki bajt	00H		
	niski bajt	05H		
Liczba rojectrów	wysoki bajt	00Н		
Liczba rejestrów	niski bajt	02H		
Kontrola CRC	niski bajt	D4H		
North old CNC	wysoki bajt	0AH		

Jeśli dane w rejestrach przechowujących urządzenie podrzędne 05H i 06H to 1122H i 3344H, urządzenie podrzędne zwraca:

Dane zwró	cone z urządzenia podrzędnego (HEX)	
kod ad	resowy	01H
kod f	unkcji	03H
Liczba	bajtów	04H
Zarojestruj dano 05	Starszy	11 rano
Zarejestruj dane 05	bajt Niski	22H
Zarojestruj dano 06	bajt Wysoki	33H
Zarejestruj dane 06	bajt Niski	44H
Kontrola CRC	bajt Starszy	4BH
North old CNC	bajt 2) Kod	C6H

funkcji 10H: Zapis rejestru

Na przykład: host chce zapisać dane 0005H i 2233H pod adresem slave 01H, a adres rejestru początkowego to Wśród 2 rejestrów 0020H host wysyła:

Host wy	/syła	Dane (szesnastkowo)		
kod fi	unkcji	01H		
kodu	adresu	10H		
D	Starszy bajt	00H		
Początkowy adres rejestru	Niski bajt	20H		
lianka maia atutu.	Wysoki bajt	00H		
Liczba rejestrów	Młodszy bajt	02H		
Liczba zapi	sanych	04H		
0000H	bajtów Wysoki bajt	00H		
dolnobajtowy ma zostać zapisa	ny Rejestr	05H		
0001H	Rejestr	22H		
starszych bajtów do zapisan	_a niski bajt	33H		
CDC anyounder	niski bajt	В9Н		
CRC sprawdza wysoki bajt	kodu funkcji. Działanie	03H		

10H, urządzenie podrzędne zwraca:

Kod adresu zv	rotnego	Dane (szesnastkowo)
urządzenia	podrzędnego	01H
kod f	unkcji	10H
Początkowy adres rejestru	starszy	00H
	bajt niski	20H
Liczba rojectrów	bajt wysoki	00Н
Liczba rejestrów	bajt niski	02H
Kontrola CRC -	bajt niski	40H
	bajt wysoki bajt	02H

						Zarejestruj mapę Zarejestruj mapę		
Początkowe przesuni Pole adresowe	cie kodu adresu l HEX GRUDZI			ı Długość	R/W	Treść danychTreść		Notatka
1 ole dal esowe	0x0000	 	Wpisz e NT32	1	Marou	adź napiecie uśpienia VolSmartSlee p	mV	
	VolCellUV 0x0					czenie podnapieciowe ogniwa	mV	
	R 0x0008		NT32			bezpieczenia podnapięciowego ogniwa VolCellUVP	mV	
	VolCellOV 0x					a ogniwa przed przeładowaniem	mV	
	VolCellOVP R 0x					wrotne zabezpieczenia przed przeładowaniem ogniwa	mV	
	a 0x0014	20 UI				a różnica napięcia wyrównawczego VolBalanTri	mV	
	9 11.11.11	24 UI	NT32		Ρ , .	0% napięcie VolSOC100% 0x0018	mV	
	UINT32					napięcie VolSOC0% 0x001C 28	mV	
	vsPwrOff 0x0	028 ⁴ 0 UI	NT32			automatycznego wyłączania VolS	m۷	
	44 UINT32					rad ładowania CurBatCOC 0x002C	mA	
	v 0x0030	48 UI	NT32			e zabezpieczenia nadprądowego ładowania TIMBatCOCPDI		
	v 0x0034	52 UI	NT32		l'	p zabezpieczenie nadprądowe ładowania TIMBatCOCPRDI		
	0x0038	56 UI	NT32	1		rad rozładowania CurBatDcOC	mA	
	TIMBatDcOCI	 PDLv.0x0	03C 60 UINT32	4 RW	Opóźnie	nie zabezpieczenia nadprądowego rozładowania		
	y 0x0040	64 UI	NT32			zahezpieczenia nadprądowego rozładowania TIMBatDcOCPRDI		
	0x0044	68 UI	NT32		1 *	acz przeciwzwarciowy TIMBatSCPRDI y		
	0x0048	72 UI	NT32	4 RW	Maksyn	nalny prąd wyrównawczy CurBalanMax	SS	
	TMPBatCOT (x004C 7	6 INT32	4 RW	<u>Zabezpi</u>	eczenie przed przegrzaniem ładowania	mA	
	TMPBatCOTP R 0	_{k00} %0 IN	T32	4 RW O	dzyskiwan	e przy nadmiernej temperaturze ładowania	SSS	
	TMPBatDcOT 0	_{k00} 84 IN	T32	4 RW Z	abezpiec	zenie przed przegrzaniem tłoczenia	mA	
	R 0x0058	88 IN	T32	4 RW O	dzyskiwar	ie przy nadmiernej temperaturze tłoczenia TMPBatDcOTP	0,1 ℃	
	ładowania TM	PBatCUT	0x005C 92 INT	32 4 RW 2	Zabezpie	czenie przed niską temperaturą	0,1 ℃	
	R 0x0060	96 IN	T32	4 RW (odzysk w	niskiej temperaturze ładowania TMPBatCUTP	0,1 ℃	
	TPMMosOT (0x0064 ²	00 INT32	4 RW	MOS za	bezpieczenie przed przegrzaniem	0,1 ℃	
	TPMMosOTP	R 0x006	8 104 INT32	4 RW	Zabezp	eczenie przed przegrzaniem MOS, odzysk	0,1 °C	
	UINT32			4 RW	Liczba l	omórek 0x006C 108	0,1 °0	0,1 ℃ 0,1 ℃
	0x0070 112 I	JINT32		Przeła	cznik ła	dowania 4 RW BatChar geFN		1: otwarty: 0: zamknięty
	geFN 0x0074	116 UI	NT32			zładowania 4 RW BatDisChar		1: otwarty: 0: zamknięty
	BalanEN 0x0	078 120	UINT32	4 RW	Przełąc	nik równoważący		1: otwarty;
	0x007C 124	JINT32		Pojen	ność p	rojektowa baterii 4 RW CapBatCell	I	
	SCPDela y 0x	0080 12	8 UINT32	4 RW	Opóźni	enie zabezpieczenia zwarciowego	nas	

0x0084 132 Uint32 0x0088 m۷ 4 RW **Z**równoważone napiecie początkowe VolStartBalan 136 Uint32l0x008d 140 uΩ 4 RW Rezystancja wewnetrzna linii łaczącej 0CellConWireRes0 Uint33 0x0090 144 Uint34 uΩ 4 RW Rezystancja wewnetrzna przewodu przyłączeniowego 1CellConWireRes1 0x0094 148 Uint35 0x0098 uО 4 RW Re zystancja wewnetrzna przewodu przyłaczeniowego 2CellConWireRes2 152 Uint36l0x009d 156 0 uΩ 4 RW Rezystancja wewnętrzna przewodu przyłączeniowego 3CellConWireRes3 176 UINT4**2** 0x00**B**4 180 uО 4 RW Rezystancia wewnetrzna przewodu przyłaczeniowego 4CellConWireRes4 UINT43 0x00B8 184 UINT44 uΩ 4 RW Re ewnętrzna przewodu przyłączeniowego 5CellConWireRes5 0x00BC 18**8** UINT**4**5 0x00C0 uΩ 4 RW Rezystancja wewnętrzna przewodu przyłączeniowego 6CellConWireRes6 192 UINT46 0x00d4 196 uΩ 4 RW Re zystancja wewnętrzna przewodu przyłączeniowego 7CellConWireRes7 Uint47 0x00c8 200 Uint48 uΩ 4 RW Re zystancja wewnętrzna przewodu przyłączeniowego 8CellConWireRes8 0x00cc 204 Uint49 0x00d0 uΩ 4 RW Re ewnetrzna przewodu przyłaczeniowego 9CellConWireRes9 208 Uint50 0x00d4 212 uΩ 4 RW Rezystancja wewnętrzna przewodu przyłączeniowego10CellConWireRes10 Uint51 0x00d8 216 Uint52 uΩ 4 RW Rezystancia wewnetrzna przewodu przyłaczeniowego 11CellConWireRes11 0x00dc 220 Uint53 0x00e0 uΩ 4 RW ezystandja wewnętrzna linii łączącej 12CellConWireRes12 224 Uint54|0x00e4 228 uΩ 4 RW rezystandia wewnetrzna linii łączącej 13CellConWireRes13 Uint55 0x00e8 232 Uint56 uΩ 4 RW ezystandia wewnętrzna linii łączącej 14CellConWireRes14 0x00ec F4 **1**44 UINT59 uΩ 4 RW Rezystancja wewnętrzna linii łączącej 15CellConWireRes15 0x00F8 248 UINT60 0x00FC uО ezvstandia wewnetrzna linii łaczacei 16CellConWireRes16 4 RW 252 UINT61 0x0100 256 uΩ 4 RW F Rezystan**c**ia wewnetrzna linii łaczacei 17CellConWireRes17 UINT62 0x**0**104 260 UINT63 uΩ 4 RW ezystandia wewnętrzna linii łączącej 18CellConWireRes18 0x0108 264 UINT32 0x010C uΩ 4 RW Rezystancja wewnętrzna linii łaczącej 19CellConWireRes19 268 UINT32 uΩ 4 RW rezystandia wewnętrzna linii łączącej 20CellConWireRes20 uΩ 4 RW ezystandja wewnętrzna linii łączącej 21CellConWireRes21 uΩ 4 RW ezystandja wewnętrzna linii łączącej 22CellConWireRes22 uО 4 RW rezystancja wewnętrzna linii łączącej 23CellConWireRes23 uΩ 4 RW ezystandja wewnetrzna linii łączącej 24CellConWireRes24 uΩ 4 RW F ezystancja wewnętrzna linii łączącej 25CellConWireRes25 uΩ 4 RW rezystancja wewnętrzna linii łaczącej 26CellConWireRes26 uΩ 4 RW rezystandja wewnętrzna linii łączącej 27CellConWireRes27 uΩ ezystandja wewnętrzna linii łączącej 28CellConWireRes28 4 RW uΩ 4 RW rezystandja wewnętrzna linii łączącej 29CellConWireRes29 uО 4 RW rezystancja wewnętrzna linii łączącej 30CellConWireRes30 uΩ 4 RW rezystandia wewnetrzna linii łaczącej 31CellConWireRes31 Н 4 RW adres urządzenia DevAddr S 4 RW dzas rozładowania i wstępnego ładowania TIMProdischarge

0x1000

			RW wy	ącznik ogrzewania HeatEN		1: otwarty: 0:	BIT0
			RW osło	na czujnika temperatury Wyłączenie czujnika temperatury		zamkniety 1: otwarty:	BIT1
			RW G	PS Wykrywanie pulsu GPS		0: zamkniety 1: otwarty:	BIT2
0x0114 276 UI	NT1þ	2	Funkcja _l	ortu multipleksowanego RW Przełącznik portów		1: RS485: 0: CAN 1:	BIT3
			RW Wyś	wietlacz zawsze włączony LCD Zawsze włączony		otwarty; 0: zamknięty	BIT4
			Identyf	kacja specjalnej ładowarki RW Specjalna ładowarka		1: otwarty; 0:	BIT5
			RW Si	martSleep		zamkniety 1: otwarty;	BIT6
0x0116 278	INT8	2	Tempe	atura alarmu akumulatora RWTMPBatOTA	°C		
0.0110 273	INT8	۷	RW Ten	peratura powrotu po alarmie akumulatora TMPBatOTA R	°C		
0x0118 280	UINT8	2	RW Ir	teligentny czas snu TIMSmartSleep	Н		
0x0118 280	UINT8	۷	Pole d	anych R umożliwia sterowanie 0			
0x0000	0 UINT16	2 Nar	oięcie c	gniwa R 0CellVol0	mV		
0x0002	2 UINT16	2 Na	oięcie c	gniwa R 1CellVol1	mV		
0x0004	4 UINT16	2 Na	oięcie c	gniwa R 2CellVol2	mV		
0x0006	6 UINT16	2 Nar	oiecie c	gniwa R 3CellVol3	mV		
0x0008	8 UINT16	2 Na	oięcie c	gniwa R 4CellVol4	mV		
0x000A 10 UIN	T16 0x000C	2 Na	oiecie c	gniwa R 5CellVol5	mV		
12 UINT16 px0	00E 14 UINT16	2 Nar	oiecie c	gniwa R 6CellVol6	mV		
0x0010		2 Na	oięcie c	gniwa R 7CellVol7	mV		
	16 UINT16	2 Na	oięcie c	gniwa R 8CellVol8	mV		
0x0012	18 UINT16	2 Nar	oiecie c	gniwa R 9CellVol9	mV		
0x0014 2	20 UINT16	2 Nar	oiecie c	gniwa R 10CellVol10	mV		
0x0016 2	22 UINT16	2 Na	oięcie c	gniwa R 11CellVol11	mV		
0x0018 2	24 UINT16	2 Nar	oiecie c	gniwa R 12CellVol12	mV		
0x001A 26 UIN	T16 0x001C	2 Na	oięcie c	gniwa R 13CellVol13	mV		
28 UINT16 px0	01E 30 UINT16	2 Na	oięcie c	gniwa R14CellVol14	mV		
0x0020		2 Nar	oiecie c	gniwa R15CellVol15	mV		
3	32 UINT16	2 Nar	oiecie c	gniwa R16CellVol16	mV		
0x0022	34 UINT16	2 Na	oięcie c	gniwa R17CellVol17	mV		
0x0024 3	86 UINT16	2 Na	oięcie c	gniwa R18CellVol18	mV		
0x0026	88 UINT16	2 Nar	oięcie c	gniwa R 19CellVol19	mV		
0x0028 4	10 UINT16	2 Nar	oięcie c	gniwa R 20CellVol20	mV		
0x002A 42 JIN	T16 0x002C	1		gniwa R 21CellVol21	mV		
44 UINT16 0x0	02E 46 UINT16	2 Na	oiecie c	gniwa R 22CellVol22	mV		
		2 Nar	oiecie c	gniwa R 23CellVol23	mV		

0x0030	48 UINT16	2 Na	niecie	ogniwa R24CellVol24	mV		
0x0032	50 UINT16		, ,	ogniwa R 25CellVol25	mV		
0x0034	52 UINT16		, ,	ogniwa R 26CellVol26	m۷		
0x0036	54 UINT16			ogniwa R 27CellVol27	mV		
0x0038	56 UINT16			ogniwa R 28CellVol28	m۷		
0x003A 58	UINT16 0x003C		,	ogniwa R 29CellVol29	mV		
60 UINT16	0x003E 62			ogniwa R 30CellVol30	mV		
UINT16 0x	0040		_	ogniwa R 31CellVol31	mV		
	64 UINT32		, ,	terii CellSta		BITIn] wynosi 1. wskazując, że bateria istnieje	
0x0044	68 UINT16			napięcie ogniwa CellVolAve	mV	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
0x0046	70 UINT16			na różnica napięcia CellVdifMax	mV		
0,,0040	JO UINT8	2	1	ksymalny numer ogniwa napięciowego MaxVolCellNbr			
0x0048	72 UINT8	7 2		imalny numer ogniwa napieciowego MinVolCellNbr			
0x004A 74	UINT16 0x004C	2 R Zr		ażona rezystancja linii 0CellWireRes0	mΩ		
76 UINT16	0x004 E 78			ażona rezvstancia linii 1CellWireRes1	mΩ		
UINT16 0x	0050			ażona rezystancja linii 2CellWireRes2	mΩ		
	80 UINT16			ażona rezystancja linii 3CellWireRes3	mΩ		
0x0052	82 UINT16	Rezys	tor drut	owy 2 R zbalansowany 4CellWireRes4	mΩ		
0x0054	84 UINT16			owy 2 R zbalansowany 5CellWireRes5	mΩ		
0x0056	86 UINT16	Rezys	tor drut	pwy 2 R zbalansowany 6CellWireRes6	mΩ		
0x0058	88 UINT16	Rezvs	tor drut	owy 2 R zbalansowany 7CellWireRes7	mΩ		
0x005A 90	UINT16 0x005C	Rezys	tor drut	pwy 2 R zbalansowany 8CellWireRes8	mΩ		
92 UINT16	0x005 E 94	Rezys	tor drut	pwy 2 R zbalansowany 9CellWireRes9	mΩ		
UINT16 0x	0060	Rezys	tor z dru	tem zrównoważonym 2 R10CellWireRes10	mΩ		
	96 UINT16	2 R Zı	równow	azony rezystor liniowy 11CellWireRes11	mΩ		
0x0062	98 UINT16	Rezys	tor z dru	tem zrównoważonym 2 R12CellWireRes12	mΩ		
0x0064 100	UINT 6 0x0066	Rezys	stor z syl	netrycznym drutem 2 R13CellWireRes13	mΩ		
102 UINT1	6 0x0068 104	Rezys	stor z syı	netrycznym drutem 2 R14CellWireRes14	mΩ		
UINT16 0x	006A 106 UINT16	Rezys	tor z syı	netrycznym drutem 2 R15CellWireRes15	mΩ		
0x006C 108	8 UINT 6 0x006E	Rezvs	or z syl	netrycznym drutem 2 R16CellWireRes16	mΩ		
110 UINT1	6 0x0070 112	-	1	netrycznym drutem 2 R17CellWireRes17	mΩ		
UINT16 0x	0072 114 UINT16	Rezys	or z syı	netrycznym drutem 2 R18CellWireRes18	mΩ		
0x0074 116	UINT16	Rezys	or z syı	netrycznym drutem 2 R19CellWireRes19	mΩ		
		Rezys	stor z syl	netrycznym drutem 2 R20CellWireRes20	mΩ		
		Rezys	tor drut	pwy 2 R zbalansowany 21CellWireRes21	mΩ		

0x0076 118	lint16 0	v0078 120		Τ.	200 Hur. D. 22	mΩ	I	
					bwy 2 R zbalansowany 22CellWireRes22	mΩ		
Uint16 0x00			-		bwy 2 R zbalansowany 23CellWireRes23	†		1
0x007c 124 l				1	hetrycznym drutem 2 R24CellWireRes24	mΩ		1
Uint16 0x008					ażona rezystancja linii 25CellWireRes25	mΩ		
0x0082 130 l		+	-		hetrycznym drutem 2 R26CellWireRes26	mΩ		-
Uint16 0x008		+	Rezy	stor z sy	hetrycznym drutem 2 R27CellWireRes27	mΩ		
0x0088 136 l			Rezy	stor z sy	hetrycznym drutem 2 R28CellWireRes28	mΩ		
140 UINT32			Rezy	stor z sy	netrycznym drutem 2 R29CellWireRes29	mΩ		
0x0094 148 l	Jint32 0	x0098 152	Rezy	stor z sy	netrycznym drutem 2 R30CellWireRes30	mΩ		
Int32 0x009	156 Int	16 0x009e	Rezy	stor dru	bwy 2 R zbalansowany 31CellWireRes31	mΩ		
158 INT16			2 R T	emperat	ura płyty zasilającej Temp pMos	0,1 °C		
			4 R S	stan zróv	noważonej rezystancji linii CellWireResSta		BITInl wynosi 1. co oznacza, że linia równowagi jest alarmujaca	
			4 R c	akowite	apięcie akumulatora BatVol	mV		
			Мос	baterii 4	R BatWatt	m W		
			Prac	l akumu	atora 4 R BatCurrent	mama		
			2 R T	emperat	ura akumulatora TempBat 1	0,1 ℃		
				1 '	a akumulatora Temp pBat 2	0,1 ℃		
			21,1		Rezystancja linii wagi jest za duża AlarmWireRes		1: Usterka; 0: Normalna	BIT0
					Zabezpieczenie przed przegrzaniem MOS AlarmMosOTP		1: Usterka; 0: Normalna	BIT1
					Liczba ogniw i wartość ustawienia nie sa zgodne z AlarmCell Quantit v Nieprawidłowość		1: Usterka; 0: Normalna	BIT2
					czujnika pradu AlarmCurSensorErr Zabezpieczenie przed przepięciem		1: Usterka: 0: Normalna	BIT3
					ogniwa AlarmCellOVP Zabezpieczenie przed przepięciem		1: Usterka; 0: Normalna	BIT4
							1: Usterka: 0: Normalna	BIT5
					akumulatora AlarmBatOVP Zabezpieczenie nadprądowe		1: Usterka : Usterka; 0:	BIT6
					ładowania AlarmChOCP Zabezpieczenie przed			BIT7
					zwarciem ładowania AlarmChSCP Zabezpieczenie		Normalna 1: Usterka; 0:	BIT8
					przed przegrzaniem ładowania AlarmChOTP		Normalna 1: Usterka: 0:	BIT9
					Zabezpieczenie przed niską temperaturą ładowania		Normalna 1: Usterka; 0:	BIT10
0x00A0	160 U	INT32	4	R	AlarmChUTP Nieprawidłowość komunikacji wewnętrznej		Normalna 1: Usterka: 0:	
					AlarmCPUAuxCommuErr Zabezpieczenie podnapięciowe		Normalna 1: Usterka 0:	BIT11
1					oqniwa AlarmCellUVP Zabezpieczenie podnapięciowe		Normalna 1: Usterka:	BIT12
					akumulatora AlarmBatUVP Zabezpieczenie nadprądowe	-	Usterka: 0: Normalna 1:	BIT13
					rozładowania AlarmDchOCP Zabezpieczenie przed		Usterka: 0: Normalna 1:	BIT14
					zwarciem rozładowania AlarmDchSCP Zabezpieczenie		Usterka: 0: Normalna 1:	BIT15
					przed przegrzaniem rozładowania AlarmDchOTP		Usterka 0: Normalna:	BIT16
		l			Nieprawidłowość rury ładującej AlarmChar geMOS Nieprawidłowość rury wyładowczej Alar	mDischargeM	o s	BIT17

0x1200

					GPS Disconnect GPSDisconnete d Proszę		1: Błąd; 0: Normalny 1:	BIT18
					odpowiednio wcześnie zmienić hasło autoryzacyjne.		Błąd; 0: Normalny 1:	BIT19
					Zmienić PWD na czas. Rozładowanie w		Błąd; 0: Normalny 1:	BIT20
					przypadku awarii. Alarm przekroczenia temperatury akumulato	ora	Błąd 0: Normalny;	BIT21
0x00A4 164 1	NT16		2 R Pr	ąd rów	noważący BalanCurrent	mama		
0x00A6	I 166 I	UINT8	2	R sta	n równowagi BalanSta		2: Rozładowanie; 1: Ładowanie; 0: Wył	382
		UINT8	_	R po	została moc SOCStateOfchar ge	%		
0x00A8 168 1			4 R pc	została	pojemność SOCCa pRemai n	mAH		
172 UINT32	0x00B0	176 UINT32	Rzecz	wista p	pjemność akumulatora 4 R SOCFullChar geCap	mAH		
0x00B4 180	JINT32		4 R Li	czba cyl	li SOCC ycleCount			
			Całko	wita po	emność cyklu 4 R SOCC ycleCap	mAh%		
0x00B8	184	UINT8	2	R SO	H Wycena SOCSOH			
		UINT8		R stan v	stępnego ładowania Wstępne ładowanie		1: otwarty; 0: zamknięty	
0x00BA 186	JINT16	0x00BC	2 R Al	arm po	iomu użytkownika UserAlarm			
88 UINT32			4 R Rı	ınTimel	runTime	S		
)x00C0	192	UINT8 2 UINT8	2	R sta	n ładowaniaŁadowanie		1: otwarty; 0: zamknięty	
00000			2	R sta	rozładowania Rozładowanie		1: otwarty; 0: zamknięty	
x00C2 194 l	JINT16	0x00C4 196	2 R Al	arm po	iomu użytkownika 2UserAlarm2			
JINT16 0x00	C6 198	JINT16	2 R Cza	s zadziała	nia zabezpieczenia nadprądowego rozładowania TimeDcOCP R	S		
0x00C8 200 l	JINT16	0x00CA	2 R Cza	s zadziała	nia zabezpieczenia przed zwarciem rozładowania TimeDcSCP R	S		
202 UINT16	0x00CC	204 UINT16	2 R Cza	s zadział	nia zabezpieczenia nadprądowego ładowania TimeCOCP R	S		
0x00CE 206 (JINT16		2 R Cza	s zadziała	nia zabezpieczenia przed zwarciem ładowania TimeCSCP R	S		
			2 R Czas	zadziałania	zabezpieczenia podnapięciowego pojedynczego urządzenia TimeUVP R	S		
			2 R Czas	zadziałania	zabezpieczenia przepięciowego pojedynczego urządzenia TimeOVP R	S		
0x00D0	208	UINT8			Czujnik temperatury MOS MOS Tem pSensorAbsent Czujnik			BIT0
					temperatury akumulatora 1 BATTem pSensor1Absent Czujnik		1: normalny; 0: brak 1:	BIT1
			2	R	temperatury akumulatora 2 BATTem pSensor2Absent Czujnik		normalny; 0: brak 1:	BIT2
					temperatury akumulatora 4 BATTem pSensor4Absent Czujnik		normalny; 0: brak 1:	BIT4
					temperatury akumulatora 5 BATTem pSensor5Nieobecny		normalny; 0: brak 1:	BIT5
		UINT8		R sta	n ogrzewaniaOgrzewanie		włączony;	
x00D2 210	JINT16	0x00D4	2R Za	rezerwo	wane			
212 UINT16	0x00D6	214 UINT16	2 R C	as prze	ączania awaryjnego TimeEmer genc y	S		
0x00D8 216	JINT16	0x00DA			nik korekcji prądu akumulatora BatCurCorrect			
218 UINT16			2 R N	apięcie	zujnika prądu ładowania VolChar gCur	mV		
					zujnika prądu rozładowania VolDischar gCur	mV		1

	0x00DC 220	FLOAT	0x00E0	4 R W	półczyn	nik korekcji napięcia akumulatora BatVolCorrect			
	224 UINT16	0x00E2	226	2 R W	artość P	WM ładowania zbalansowanegoChar gePWMDut y C yle	%		
	UINT16 0x00	E4 228	UINT16	2 R W	artość P	WM rozładowania zrównoważonego Dishar gePWMDut yle	%		
	0x00E6 230	JINT16		2 R N	apięcie	akumulatora BatVol	0,01		
				2 R p	ąd grz	aniaHeatCurrent	VmA		
	0x00EE 238		UINT8	2	R za	chowaj RVD			
			UINT8		R St	ın ładowarkiŁadowarkaPodłączona		1: wstawiony; 0: nie wstawiony	
	0x00F0 240			Syste	m 4 R p	okonujeS ysRunTicks	0,1 S		
	244 UINT32			4 R Zı	acznik	czasu wyzwalania PVD PVDTri gZnacznik czasu ps	0,1 S		
	0x00FA 250 I	INT16 0	x00FC	2 R Te	mperat	ura akumulatora TempBat 3	0,1 ℃		
	252 INT16 0			2 R Te	mperat	ura akumulatora TempBat 4	0,1 °C		
	UINT32 0x0	08 264	UINT32			ura akumulatora TempBat 5	0,1 ℃		v v v
						C RTCTicks		Czas zaczyna się od 2020-1-1	
				4 R W	rowadź	czas uśpienia TimeEnterSlee p Stan modułu	S		
	0x010C268		UINT8	2 R		ograniczającego prąd równoległy PCLModuleSta		1: otwarty; 0: zamknięty	
	0X0100200		UINT8			Reserved RVD			
	0x0000	0 AS		16 R I	lodel p	roducentaProducentDeviceID			
	0x0010	16 zn		8 R N	umer v	ersji sprzętuHardwareVersion			
0x1400	ASCII 0x0018	24 AS		8 R n	ımer we	rsji oprogramowania SoftwareVersion			
	0x0020		NT32	4 R S	kumulo	wany czas pracy ODDRunTime	S		
	0x0024		NT32	4 R C	zasy wł	czenia PWRONTimes			
	0x0000		NT16	Kalib	acja na	pięcia 4 W Kalibracja napięcia	razy m\		
	0x0004		NT16	Wyłącz	enie kart	v zabezpieczającej 2 W. Wyłączenie			
	0x0006		NT16	Kalib	acja pr	ądu 4 W	mama		
	0x000A 10 U			2 W Trz	yelement	wy LI-ION jednym kliknięciem			
0x1600	UINT16 0x00	00E 14 l	JINT16	2 W Je	Inoprzyc	skowy litowo-żelazny LIFEPO4			
				Tytania	litu LTO d	mocy 2 W z jednym wiązaniem			
	0x0010		INT16			awaryjny Awaryjność			
	0x0012	18 U	INT32	Kalib	acja cz	asu 4 W			