수학 및 연습 2 기말고사

(2008년 12월 6일 오후 1:00-3:00)

학번: 이름:

모든 문제의 답에 풀이과정을 명시하시오. (총점 200점)

문제 1 (20점). 다음 적분값을 구하라.

$$\int_{0}^{3} \int_{x^{2}}^{9} x^{3} e^{y^{3}} dy dx$$

문제 2 (20점). 구면좌표계에서 $\rho=1-\cos\varphi$ 로 주어진 곡면으로 둘러싸인 영역의 부피와 중심 $(\overline{x},\,\overline{y},\,\overline{z})$ 을 구하라.

문제 3 (20점). 곡선 C_1 과 C_2 가 다음과 같이 주어져 있다.

 C_1 : $(-\sqrt{3},-1), (\sqrt{3},-1), (0,2)$ 를 꼭지점으로 하는 정삼각형,

 C_2 : $x^2 + y^2 = 1$.

곡선 C_1 , C_2 의 향이 모두 반시계 방향으로 주어져 있을 때, 벡터장

$$\mathbf{F}(x,y) = (xe^{x^2+y^2} + x - 2y, ye^{x^2+y^2} + 2x + y)$$

에 대하여 $\int_{C_1} \mathbf{F} \cdot d\mathbf{s} + \int_{C_2} \mathbf{F} \cdot d\mathbf{s}$ 를 구하라.

문제 4 (20점). 중심이 원점이고 반지름이 3 인 구를 원점으로부터 거리가 2 인 평면으로 자를 때, 넓이가 작은 부분의 원점에 대한 입체각을 구하라.

문제 5 (30점). 방정식 $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1 \quad (x \geq 0, \ y \geq 0, \ z \geq 0)$ 으로 주어진 곡면 S 에 대하여 입체각 벡터장 $\mathbf{A}(X) = \frac{X}{|X|^3}$ 가 S 를 빠져나가는 양이 $\frac{\pi}{2}$ 임을 보이라. (단, 향을 정하는 단위법벡터장 \mathbf{n} 은 $\mathbf{n} \cdot \mathbf{k} \geq 0$ 가 되도록 주어지고, 상수 a,b,c 는 a>0,b>0,c>0 이다.)

문제 $\mathbf{6}$ (20점). 모서리의 길이가 a 이고 중심이 원점인 정육면체의 경계와 중심이 원점이고 반지름이 1 인 구면을 경계로 가지는 영역을 R 이라고 하자. 벡터장 $\mathbf{F}(x,y,z)=(x,y,z)$ 가 영역 R 을 빠져나가는 양이 20π 일 때, a 의 값을 구하라. (단, a>2 이다.)

문제 7 (20점). 좌표공간의 벡터장 ${\bf C}$ 는 상수벡터장, 벡터장 ${\bf r}$ 은 위치벡터장이다. 곡면 S 에 대하여 다음을 보이라.

$$\oint_{\partial S} (\mathbf{C} \times \mathbf{r}) \cdot d\mathbf{s} = 2 \iint_{S} \mathbf{C} \cdot d\mathbf{S}$$

문제 8 (30점). 곡면 S 는 $x^2+y^2 \le 1$ 과 x+y+z=1 의 공통부분이고, 향은 $\mathbf{n} \cdot \mathbf{k} \ge 0$ 가되도록 주어졌다고 하자. 벡터장

$$\mathbf{F}_n(x, y, z) = (-y^{2n-1}, x^{2n-1}, z), \quad n = 1, 2, 3, \cdots$$

에 대하여 $I_n = \int_{\partial S} \mathbf{F}_n \cdot d\mathbf{s}$ 라 할 때, 다음 물음에 답하라.

- (a) [10점] ∂S 를 직접 매개화하여 I_n 을 삼각함수의 적분으로 나타내라.
- (b) [15점] 스토크스 정리를 이용하여 I_n 과 I_{n-1} 이 만족하는 점화식을 구하라.
- (c) [5점] I_4 를 구하라.

문제 9 (20점). 다음 물음에 답하라.

- (a) 삼차원 공간의 이급벡터장 **F**에 대하여 div (curl **F**) = 0 임을 보이라.
- (b) 입체각 벡터장 \mathbf{A} 에 대하여 $\operatorname{curl} \mathbf{F} = \mathbf{A}$ 를 만족하는 벡터장 \mathbf{F} 는 존재하지 않음을 보이라.