CHƯƠNG 9: KHUẾCH ĐẠI THUẬT TOÁN

Contents

- □ Symbol
- Example
- Characteristics
- Structure
- Operation
- Applications
- μp 741

Symbol

Example

Characteristics

- Characters of circuits depend on outside circuit structure,
 not the opamp itself
- □ Gain A_V: very high, ideally ∞
- □ Zin: very large, ideally ∞
- Zout: very small, ideally 0
- Current entering the amp at either terminal: extremely small, ideally 0
- Voltage out (when voltages into each other are equal):
 small, ideally 0
- Bandwidth: broad, ideally infinite

Characteristics

- Input: 2 inputs (positive and negative)
 - Single-ended input: 1 input to signal source, 1 input to ground
 - Double-ended input: 2 different signal sources or 1 signal source apply between 2 inputs
- Output: 1 or 2 outputs, typically 1 output
- Mode gain:
 - Differential-mode gain A_{dm} large
 - Common-mode gain A_{cm} small
 - □ Common-mode rejection ratio CMRR= $G=A_{dm}/A_{cm}$, usually about 10^3-10^5

Structure

- □ Requirement:
 - □ Gain: large
 - □ Offset: small
 - Currents: small
 - Input impedance: large
 - Output impedance: small
 - Input: symmetric

Structure

- □ Input stage
- Intermediate stage
- Level shifting stage
- Output stage
- □ Example: 741 at the end of chapter

Applications

- Basic and advance applications
- Basic applications:
 - Inverting, non-inverting amplifier
 - Uni-gain circuit
 - Addition and subtraction circuits
 - Integration and differential circuits
 - Multi-stages circuit

Applications

- Advance applications
 - Current-controlled voltage source
 - Voltage-controlled current source
 - DC voltmeter
 - AC voltmeter
 - Driver circuit
 - Active filters
 - NIC
 - □ .etc.

Non-inverting fixed-gain amplifier

Prove:

$$\Box$$
 V- = V+ = V₁

$$| - | + | = 0$$

$$=>I_{R1}=I_{rf}=V_1/R_1$$

$$=>A = 1 + R_f/R_1$$

Non-inverting fixed-gain amplifier

$$A = 1 + R_f / R_1 = 101$$

 $V_o = 101 V_i$

Inverting fixed-gain amplifier

Prove:

$$\nabla - \nabla = \nabla + = 0$$

$$\Box$$
 $| - = | + = 0$

$$=>I_{R1}=I_{rf}=V_1/R_1$$

$$V_o => A = -R_f/R_1$$

Voltage addition

$$\begin{aligned} & V_{o} = -V_{1}R_{f}/R_{1}-V_{2}R_{f}/R_{2} & - \\ & V_{3}R_{f}/R_{3} \\ & \text{If } V_{1} = V_{2} = V_{3} \text{ then:} \\ & A = -R_{f}/R_{1}-R_{f}/R_{2}-R_{f}/R_{3} \end{aligned}$$

Voltage subtraction

$$\begin{aligned} V_{\text{out}} &= -R_{\text{f}}/R_{1}V_{1} \\ V_{\text{out}} &= -R_{\text{f}}/R_{2}V_{2} - R_{\text{f}}/R_{2}V_{\text{out}1} = -R_{\text{f}}/R_{2}V_{2} + R_{\text{f}}/R_{2}V_{1} \\ &= -R_{\text{f}}/R_{2}(V_{1} - V_{2}) \end{aligned}$$

Voltage subtraction with 1 amp

Prove:

Uni-gain (buffer) amplifier

- Provide required input and output resistant stage
- Provide multiple identical output signals

Voltage-controlled voltage source

•
$$V_0 = (1 + R_f/R_1)V_1$$

•
$$V_o = (-R_f/R_1)V_1$$

Voltage-controlled current source

$$\Box I_o = V_1/R_1$$

Current-controlled voltage source

$$\Box V_o = -I_1 R_L$$

Current-controlled current source

$$\Box I_o = I_1(R_2 + R_1)/R_2$$

Integration circuit

Differential circuit

$$\Box$$
 $V_o = -RC dV_i/dt$

Filter

- Low pass filter
- □ High pass filter
- Band pass filter

fol

fон

1st order low pass filter

- □ Cutoff frequency: $f_{OH} = 1/(2\pi R_1 C_1)$
- □ Voltage gain below cutoff freq: $A_v = 1 + R_f/R_G$

2nd order low pass filter

- □ Cutoff frequency: $f_{OH} = 1/(2\pi R_1 C_1)$
- □ Voltage gain below cutoff freq: $A_v = 1 + R_f/R_G$

1st and 2nd order high pass filter

- □ Cutoff frequency: $f_{OL}=1/(2\pi R_1 C_1)$
- □ Voltage gain above cutoff freq: $A_v = 1 + R_f / R_G$

Band pass filter

Multi-stages gain

$$A = A_1 * A_2 * A_3$$

741 application-Light activated alerter

12V battery monitor

12V Battery Monitor

Homework

- □ Chapter 14: 1, 4, 9, 10, 12, 15, 17, 18
- □ Chapter 15: 1, 6, 8, 11, 14, 16, 17

OpAmp 741

- Maximum ratings
- □ Inside structure

Maximum ratings

Max Ratings	Fig. 2
Supply voltage	± 18Volts
Internal Power Dissipation	500mW
Differential Input Voltage	± 30Volt
Input voltage	± 15Volt
Voltage Offset Null/V-	± 0.5Volt
Operating Temperature Range	0° to +70°C
Storage Temperature Range	-65° to +150°C
Lead Temperature, Solder, 60sec.	300°C
Output Short Circuit	Indefinite

OpAmp 741 inside structure

- Biasing Currents
- □ Input Stage
- Second Stage
- Output Stage
- Short Circuit Protection

Inside structure: Schematic

Biasing Current Sources

- Generates reference bias current through R₅
- The opAmp reference current is:

$$I_{ref} = [V_{CC} - V_{EB12} - V_{BE11} - (-V_{EE})]/R_5$$

□ For $V_{CC}=V_{EE}=15V$ and $V_{BE11}=V_{BE12}=0.7V$, we have $I_{RFF}=0.73\text{mA}$

Input Stage

- The differential pair,Q1 and Q2 providethe main input
- Transistors Q5-Q7provide an active loadfor the input

Input Stage:

DC Analysis - 1

Assuming that Q10 and Q11 are matched, we can write the equation from the Widlar current source:

• Using trial and error, we can solve for I_{C10} , and we get: I_{C10} =19 μ A

Input Stage: DC Analysis -2

- □ From symmetry we see that $I_{C1} = I_{C2} = I$, and if the *npn* β is large, then $I_{E3} = I_{E4} = I$
- □ Analysis continues:

Input Stage: DC Analysis -3

Analysis of the active load:

Second (Intermediate) Stage

Second Stage:

DC Analysis

- Neglecting the base current of Q23, I_{C17} is equal to the current supplied by Q13b
- \square $I_{C13b}=0.75I_{REF}$ where $\beta_P >> 1$
- □ Thus: $I_{C13b} = 550 \text{uA} = I_{C17}$
- □ Then we can also write:

Output Stage

- Provides the opAmp with a low output
- Class AB output stage provides fairly high capabilities without hindering power dissipation in the IC

Output Stage:

DC Analysis

- □ Q13a delivers a current of $0.25I_{REF}$, so we can say: $I_{C23} = I_{E23} = 0.25I_{REF} = 180\mu A$
- □ Assuming $V_{BE18} = 0.6V$, then $I_{R10} = 15\mu A$, $I_{E18} = 180 15 = 165\mu A$ and $I_{C18} = I_{E18} = 165\mu A$
- $\square I_{C19} = I_{E19} = I_{B18} + I_{R10} = 15.8 \mu A$

Short Circuit Protection

- These transistors are normally off
- They only conduct in the event that a large current is drawn from the output terminal (i.e. a short circuit)