State Space Models with Unobservable States

Peter Tino

School of Computer Science University of Birmingham UK

A simple example

Hidden Markov Model

Stationary emissions conditional on hidden (unobservable) states.

Hidden states represent basic operating "regimes" of the process.

Temporal structure - Hidden Markov Model

We have M bags of balls of different colors (Red - R, Green - G).

We are standing behind a curtain and at each point in time we select a bag j, draw (with replacement) a ball from it and show the ball to an observer. Color of the ball shown at time t is $C_t \in \{R, G\}$. We do this for T time steps.

The observer can only see the balls, it has no access to the information about how we select the bags.

Nature

Assume: we select bag at time t based only on our selection at the previous time step t-1 (1st-order Markov assumption).

If only we knew ...

If we knew which bags were used at which time steps, things would be very easy! ... just counting

Hidden variables z_t^j : **Z** is representing Hidden $z_t^j = 1$, iff bag j was used at time t; $z_t^j = 0$, otherwise.

$$P(bag_j \rightarrow bag_k) = \frac{\sum_{t=1}^{T-1} z_t^j \cdot z_{t+1}^k}{\sum_{q=1}^{M} \sum_{t=1}^{T-1} z_t^j \cdot z_{t+1}^q}$$
 [state transitions]

$$P(color = c \mid bag_j) = \frac{\sum_{t=1}^{T} z_t^j \cdot \delta(c = C_t)}{\sum_{g \in \{R, G\}} \sum_{t=1}^{T} z_t^j \cdot \delta(g = C_t)}$$
 [emissions]

But we don't ...

We need to estimate probabilities for hidden events such as:

- $\mathbf{z}_t^j \cdot \mathbf{z}_{t+1}^k = 1$ at time t - bag j, at the next time step - bag k
- $z_t^j \cdot \delta(c = C_t) = 1$ at time t - bag j, ball of color c

The probability estimates need to be based on observed data \mathcal{D} and our current model of state transition and emission probabilities.

Estimating values of the hidden variables

$$P(z_t^j \cdot z_{t+1}^k = 1 \mid \mathcal{D}, \text{ current model}) = R_t^{j \to k} \text{ state transition}$$
 $P(z_t^j \cdot \delta(c = C_t) = 1 \mid \mathcal{D}, \text{ current model}) = R_t^{j,c}$

I will not deal with the crucial question of how to compute those posteriors over hidden variables, given the observed data and current model parameters.

This can be done efficiently - Forward-Backward algorithm.

Re-estimate the model

$$P(bag_{j} \rightarrow bag_{k}) = \frac{\sum_{t=1}^{T-1} z_{t}^{j} \cdot z_{t+1}^{k}}{\sum_{q=1}^{M} \sum_{t=1}^{T-1} z_{t}^{j} \cdot z_{t+1}^{q}} \rightarrow P(bag_{j} \rightarrow bag_{k}) = \frac{\sum_{t=1}^{T-1} R_{t}^{j \rightarrow k}}{\sum_{q=1}^{M} \sum_{t=1}^{T-1} R_{t}^{j \rightarrow q}} \quad \text{[state transitions]}$$

$$P(color = c \mid bag_{j}) = \frac{\sum_{t=1}^{T} z_{t}^{j} \cdot \delta(c = C(t))}{\sum_{g \in \{R,G\}} \sum_{t=1}^{T} z_{t}^{j} \cdot \delta(g = C(t))} \rightarrow P(color = c \mid bag_{j}) = \frac{\sum_{t=1}^{T} R_{t}^{j,c}}{\sum_{g \in \{R,G\}} \sum_{t=1}^{T} R_{t}^{j,g}} \quad \text{[emissions]}$$

Let's be more rigorous...

$$K$$
 states, $\mathbf{x}(t) \in \mathcal{X} = \{1, 2, ..., K\}$

Observations $\mathbf{y}(t) \in \mathcal{Y}$

HMM is a parameterised probabilistic model with parameters w:

- initial state probabilities $p(\mathbf{x}(1))$
- transition probabilities $p(\mathbf{x}(t)|\mathbf{x}(t-1))$
- lacktriangle emission probabilities (discrete observations) $p(\mathbf{y}(t)|\mathbf{x}(t))$

HMM as a probabilistic model

Probability assigned to a time series $\mathbf{y}(1..T) = \mathbf{y}(1), \mathbf{y}(2), ..., \mathbf{y}(T)$

$$p(\mathbf{y}(1..T)|\mathbf{w}) = \sum_{\mathbf{x}(1..T) \in \mathcal{X}^T} p(\mathbf{x}(1)) \prod_{t=2}^T p(\mathbf{x}(t)|\mathbf{x}(t-1)) \prod_{t=1}^T p(\mathbf{y}(t)|\mathbf{x}(t))$$

NOTE: $\mathbf{x}(1..T) \in \mathcal{X}^T$ is hidden (latent) - cannot be directly observed!

Learning models with latent variables

Observed data: \mathcal{D}

Log-likelihood of \mathbf{w} : $\log p(\mathcal{D}|\mathbf{w})$

Current Model - being trained/learned

Train via Maximum Likelihood:

$$\mathbf{w}_{ML} = \underset{\mathbf{w}}{\operatorname{argmax}} \log p(\mathcal{D}|\mathbf{w}).$$

Complete data

Observed data: \mathcal{D}

Unobserved data: \mathcal{Z} (unobserved state sequences)

Complete data: $(\mathcal{D}, \mathcal{Z})$

By marginalization ("integrate out the uncertainty in Z"):

$$p(\mathcal{D}|\mathbf{w}) = \sum_{\mathbf{Z}} p(\mathcal{D}, \mathbf{Z} = \mathbf{Z}|\mathbf{w})$$

E-M Algorithm Expectation Maximisation

Given the current parameter setting \mathbf{w}^{old} do:

- E-step:
 - Estimate $P(Z|\mathcal{D}, \mathbf{w}^{old})$, the posterior distribution over all possible state paths \mathcal{Z} , given the observed data \mathcal{D} and current parameter settings \mathbf{w}^{old} .
- M-step:
 Obtain new parameter values w^{new} by maximizing

$$\mathbb{E}_{P(Z|\mathcal{D},\mathbf{W}^{old})}[\log p(\mathcal{D},Z|\mathbf{w})].$$

■ Set $\mathbf{w}^{old} := \mathbf{w}^{new}$ and go to E-step.

Why hidden states?

Model non-stationarity in the data. The states and be thought of as "stationary regimes", e.g.

- switching models in finance.

Model known expected temporal structures in the data when it is not clear when exactly which structure begins/ends, e.g.

- gene finders operating on DNA sequences
- spoken word recognition from a sequence of sounds
- natural language transcription

Can be extended to hierarchical models to account for e.g. a hierarchy of time scales in the signal (short, medium, long time scale structures)

