and n Herms	Fmv	, Fmv E and	
n Herms	•	E and	
	² of		B:
		- 2E	+ 282
2(32-	E_5) =	2F. F°i	+ Fix Fix
4 - & B.E			<u> </u>
AND C			
3, B5	F	= 0	-Ex-Ex-Ex
- ex 5 - E ,		1	0 B3 -BA
*()		F.	- B O B × /
 			1 157 15 0 7
-			

Transformation of Fields FMV(x) = LM LV Fap For a boost in the x-direction Lm = (8-8B) · Then first look in parallel x direction - E, = Ex = Fo1 = 10 x L' & Fob = L°, L', F° + L°, L', F'° = (82 - 7B2) For · Similarly in 1 direction E, = E' = F°2 = L° L2 F°B = L0 L2 F02 + L0 L2 F12

 $E^2 = \gamma E^2 + \gamma \beta B^3$

- 1) looks like coordinate transforms, but it is the transverse pieces which get boosted.
- 2) The transformation of \vec{B} is the dual of \vec{E} $\vec{E} \rightarrow \vec{B} \qquad \vec{B} \rightarrow -\vec{E}$
- (3) Very often one has an electrostatic field $(\vec{E} = \vec{F}^{(0)})$ $\vec{P} = 0$) and we want to know \vec{B} in the new frame:

$$\frac{B}{B} = -\hat{B} \times \hat{\beta} = \hat{\beta}$$

$$= -\hat{\beta} \times \hat{\Xi} + \hat{\beta}$$

$$= -\hat{\beta} \times \hat{\Xi} + \hat{\beta}$$
So we can drop
$$\pm \text{ symbol}$$

Fields of A moving Particle · Particle at Rest : Fmv = coulomb field · Person sees a particle approach: · The boost to the person frame velocity of particle as seen by person

Now

$$E_{,(x)} = q \quad x = E_{,(x)} \Rightarrow \vec{E}_{,=q} \vec{z}$$
 $4\pi(x; x^{i})^{3/2}$
 $4\pi r^{3}$

$$E_{2}(x) = \frac{q}{4\pi(x_{1}^{2}x_{1}^{2})^{3/2}} \times = (E_{1}) \Rightarrow E_{1} = \frac{q}{4\pi} \frac{1}{6}$$

So under boost:

$$\frac{x^{n} = L^{n} \times v}{\left(L^{-1}\right)^{n} \times x^{n} = x^{n}} \begin{pmatrix} x^{0} \\ x^{1} \\ x^{2} \end{pmatrix} = \begin{pmatrix} x - x \beta \\ -x \beta \\ x^{1} \end{pmatrix} \begin{pmatrix} ct \\ x^{1} \\ \frac{x}{b} \end{pmatrix}$$

$$x_3 = \frac{x_3}{x}$$

$$x_1 = \frac{y}{x}(x_1 - \sqrt{t})$$

So Using our rules:

$$E_{/\!/}(x) = E_{/\!/}(x)$$

$$E(x) = \chi E(x) = \frac{9 \chi \rho /41}{(\chi - \Lambda F)^2 + \rho^2}$$

" The fact that B is perpendicular to E
could have been anticipated
FMFMV = -4EB
is Lorentz invariant. In the frame of the
particle B is zero so in the particle frame:
F. F. T = 0 =
So in any other frame we must have $\vec{E} \cdot \vec{B} = 0$
·

So then	
T = +1 1	
. Tem = torque per length	
(22	
$= \left(\frac{B_0^2 \alpha^{\gamma} \sigma \omega}{\sqrt{\zeta^2}} \cdot \pi\right) \left(-\frac{2}{\zeta}\right)$	
4 62	
Units:	
B2 = N/m2	
So	
$\alpha^4 = m^4$	
	I = NV
$ \overline{Lem} = N m^{\alpha} $ $ \overline{LL} m^{2} S^{2}$	N3 - 1
S ²	25
$C^2 = m^2$	
52	