HEAP SORT

• A heap is a complete binary tree

- node > 1Child && node > rChild ⇔ max heap
- node < 1Child && node < rChild ⇔ min heap
- An array is a heap

9	8	6	4	7	2	1	3	0	5
0	1	2	3	4	5	6	7	8	9

- parent = (node 1) / 2
- 1Child = node * 2 + 1
- rChild = node * 2 + 2
- node != 0 && node % 2 == 1: (may) has a next sibling
- node != 0 && node % 2 == 0: has a previous sibling

- Heap sort (ascending):
 - Step 1 build up the heap (max heap)
 - Append an element as the last leaf
 - If leaf > parent, then swap it up as new parent. Keep swapping up until root.
 - Step 2 swap root with the last leaf
 - Step 3 heapify the rest
 - If the new root is smaller than any of its two child, swap it with the larger child. Keep swapping down until leaf.
 - Step 4 iterate step 2, 3 until the heap is empty

"Heapsort-example" by Swfung8 - Own work. Licensed under CC BY-SA 3.0 via Commons - https://commons.wikimedia.org/wiki/File:Heapsort-example.gif#/media/File:Heapsort-example.gif