Note: Please check the solution very carefully. If you will find any discrepancy, please let me know. I also request you to please cross check your answers once more using the solution. In this question paper, a list of questions have been made by myself and rest of the questions have been collected from my memory. So I forgot to mention two necessary conditions in two questions. In Q4, I forgot to mention non-trivial word and in Q5, I forgot to mention non-zero linear functionals. So everyone will get full marks in these two questions.

- 1. Let $\mathbb{M}_n(\mathbb{R})$ be the vectors space of all real matrices of size n over \mathbb{R} . Which of the following statement(s) is(are) incorrect?
 - (a) $\mathbb{W} = \{A \in \mathbb{M}_n(\mathbb{R}) : rank(A) \leq n-1\}$ is a subspace of $\mathbb{M}_n(\mathbb{R})$.
 - (b) $\mathbb{W} = \{ A \in \mathbb{M}_n(\mathbb{R}) : det(A) = 0 \}$ is a subspace of $\mathbb{M}_n(\mathbb{R})$.
 - (c) Let $B \in \mathbb{M}_n(\mathbb{R})$. Then $\mathbb{W} = \{A \in \mathbb{M}_n(\mathbb{R}) : AB = BA\}$ is a subspace of $\mathbb{M}_n(\mathbb{R})$.
 - (d) $\mathbb{W} = \{ A \in \mathbb{M}_n(\mathbb{R}) : AA^t = A^t A \}$ is a subspace of $\mathbb{M}_n(\mathbb{R})$.

Ans: (a), (b) and (d).

- 2. Which of the following statement(s) is(are) correct?
 - (a) Let $A = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} : x^2 + y^2 \le 1 \right\}$ and $B = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} : 1 \le x, y \le 2 \right\}$. There are finitely many linear transformations $T : \mathbb{R}^2 \to \mathbb{R}^2$ Such that T(A) = B.
 - (b) Let $A = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} : x^2 + y^2 \le 1 \right\}$ and $B = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} : 1 \le x, y \le 2 \right\}$. There is no linear transformation $T : \mathbb{R}^2 \to \mathbb{R}^2$ Such that T(A) = B.
 - (c) Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation and let $A = \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 0 & 2 \\ 1 & 1 \end{bmatrix}$. Then there are two bases C_1 and C_2 in \mathbb{R}^2 such that $[T]_{C_1C_1} = A$ and $[T]_{C_2C_2} = B$.
 - (d) Let $T: \mathbb{M}_n(\mathbb{R}) \to \mathbb{M}_n(\mathbb{R})$ be a linear map defined by $T(A) = A + A^t$ for all $A \in \mathbb{M}_n(\mathbb{R})$. Then $rank(T) = \frac{n(n+1)}{2}$.

Ans: (b) and (d).

3. Let $W = \{AB - BA : A, B \in \mathbb{M}_n(\mathbb{R})\}$. Which of the following statement(s) is(are) correct?

- (a) W is a subspace of $\mathbb{M}_n(\mathbb{R})$.
- (b) $dim(W) = n^2 1$
- (c) W = S, where S is the set of all matrices A in $\mathbb{M}_n(\mathbb{R})$ such that trace(A) = 0.
- (d) W is not a subspace of $\mathbb{M}_n(\mathbb{R})$.

Ans: (a), (b) and (c).

Arguments: Option (a) is trivial.

Option (b). Let AB - BA be an element in W. Since $A = \sum_{i,j} a_{ij} E_{ij}$ and $B = \sum_{i,j} b_{ij} E_{ij}$ where E_{ij} is a matrix whose ijth entry is 1 rest all are zero.

$$E_{ij}E_{kl} - E_{kl}E_{ij} = \begin{cases} 0 & \text{if } j \neq k \text{ and } i \neq l \\ E_{il} & \text{if } j = k \text{ and } i \neq l \\ -E_{kj} & \text{if } j \neq k \text{ and } i = l \\ E_{ii} - E_{jj} & \text{if } j = k \text{ and } i = l \end{cases}$$

Using this fact you can see that AB-BA is linear combination of all E_{ij} with $i \neq j$ together with $E_{ii}-E_{i+1,i+1}$ for $i=1,\ldots,n-1$. Then $\dim(W)=n^2-n+(n-1)=n^2-1$.

Option (c). It is clear that W is a subspace of S and they have same dimension. Hence W=S.

- 4. Which of the following statement(s) is(are) correct?
 - (a) If the vector space \mathbb{V} over \mathbb{R} is isomorphic to the vector space \mathbb{W} over \mathbb{R} , then the vector space \mathbb{V} over \mathbb{Q} is isomorphic to the vector space \mathbb{W} over \mathbb{Q} .
 - (b) If the vector space \mathbb{V} is finite dimensional over \mathbb{R} , then the vector space \mathbb{V} over \mathbb{Q} is finite dimensional.
 - (c) The (non-trivial) vector space \mathbb{V} over \mathbb{Q} is always infinite dimensional no matter whether \mathbb{V} over \mathbb{R} is finite dimensional or infinite dimensional.
 - (d) There is a (non-trivial) \mathbb{V} such that \mathbb{V} over \mathbb{Q} and \mathbb{V} over \mathbb{R} both are finite dimensional vector spaces.

Answer: If I do not use the word **non-trivial**. Then (a) and (d) are correct options.

Argument: (a). Since $\mathbb{V}(\mathbb{R})$ is isomorphic to $\mathbb{W}(\mathbb{R})$, we have an isomorphism T from \mathbb{V} to \mathbb{W} . Since $\mathbb{Q} \subseteq \mathbb{R}$, then T is an isomorphism from $\mathbb{V}(\mathbb{Q})$ to $\mathbb{W}(\mathbb{Q})$.

(d) $\{0\}$ over \mathbb{Q} and $\{0\}$ over \mathbb{R} are both finite dimensional.

If I use the the word **non-trivial**. Then (a) and (c) are correct options.

Argument: (a) same as above.

- (b) There are two cases \mathbb{V} over \mathbb{R} is finite dimensional or infinite dimensional. $\mathbb{V}(\mathbb{R})$ is finite dimensional and dimension is n. Then $\mathbb{V}(\mathbb{R})$ is isomorphic to $\mathbb{R}^n(\mathbb{R})$. Using option (a), we have \mathbb{V} over \mathbb{Q} is isomorphic to $\mathbb{R}^n(\mathbb{Q})$, we know that $\mathbb{R}^n(\mathbb{Q})$ is infinite dimensional. Hence $\mathbb{V}(\mathbb{Q})$ is infinite dimensional.
- $\mathbb{V}(\mathbb{R})$ is infinite dimensional. Suppose that $\mathbb{V}(\mathbb{Q})$ is finite dimensional, then you can easily conclude that $\mathbb{V}(\mathbb{R})$ is also finite dimensional. A contradiction. Hence $\mathbb{V}(\mathbb{Q})$ is infinite dimensional.

Note: Everyone will get 2 marks for this question.

- 5. Let \mathbb{V} be a finite dimensional vector space over the field \mathbb{R} . Let $f, g \in \mathbb{V}^*$ such that whenever $f(x) \geq 0$, we also have that $g(x) \geq 0$. Which of the following statement(s) is(are) correct?
 - (a) $Ker(f) \subseteq Ker(g)$.
 - (b) Ker(f) = Ker(g).
 - (c) $f = \alpha g$ for some $\alpha > 0$
 - (d) The linear map $T: \mathbb{V} : \to \mathbb{R}^2$ defined by T(x) = (f(x), g(x)) for all $x \in \mathbb{V}$, is onto.

Ans: (b) and (c).

Arguments: Since f and g both are non-zero, we have rank(f) = rank(g) = 1. Then nullity(f) = nullity(g) = n - 1 where $\dim(\mathbb{V}) = n$. Let $\{u_1, \ldots, u_{n-1}\}$ be a basis of Ker(f). We now show that $g(u_i) = 0$ for $i = 1, \ldots, n-1$. As $f(u_i) = 0$, we have $g(u_i) \geq 0$. Suppose $g(u_i) > 0$, then $g(-u_i) < 0$ (as g linear). It is clear that $f(-u_i) = 0$, then $g(-u_i) > 0$ a contradiction. Hence $g(u_i) = 0$ for $i = 1, \ldots, n-1$. This says that $\{u_1, \ldots, u_{n-1}\}$ is a basis of Ker(g). Hence Ker(f) = Ker(g). This says that option (b) is correct.

I have discussed in the tutorial problem that if Ker(f) = Ker(g), then $f = \alpha g$ here $\alpha > 0$ as $f(x) \ge 0$ implies $g(x) \ge 0$, they are linearly dependent. So option (c) is correct.

Since option (b) is correct, so option (a) is not correct.

You can argue that Ker(T) = Ker(f) = Ker(g). If T is onto, then using rank-nullity theorem we have $\dim(\mathbb{V}) = nullity(T) + rank(T) = nullity(f) + 2$. This a contradiction. Hence T is not onto. So option (d) is not correct.

Note: I forgot to give the condition non-zero. Everyone will get 2 marks for this question.

- 6. Let \mathbb{V} be a finite dimensional vector space over the field \mathbb{R} . Let $T: \mathbb{V} \to \mathbb{V}$ be a linear transformation such that $T^2 = T$. Assume that T is not the zero transformation and not the identity transformation. Which of the following statement(s) is(are) correct?
 - (a) $Ker(T) \neq \{0\}$
 - (b) $\mathbb{V} = Ker(T) \oplus R(T)$
 - (c) The transformation I + T is invertible, where I is the identity transformation.

Ans: (a), (b) and (c).

Arguments: (a) Suppose $Ker(T) = \{0\}$. Then T is invertible. Therefore $T^{-1}(T^2) = T^{-1}T$ implies T = I which is not possible. Hence $Ker(T) \neq 0$.

- (b) Let $x \in Ker(T) \cap R(T)$. Then T(x) = 0 and T(y) = x. $x = T(y) = T^2(y) = T(T(y)) = T(x) = 0$. Hence $Ker(T) \cap R(T) = \{0\}$. Using rank nullity theorem and previous argument we have $\mathbb{V} = Ker(T) \oplus R(T)$.
- (c) Let $x \in Ker(T+I)$. Then T(x) = -x this implies $T(x) = T^2(x) = T(T(x)) = T(-x) = -T(x)$. This implies T(x) = 0. We know T(x) = -x implies x = 0. Hence I + T is one-one and \mathbb{V} is finite dimensional and I + T is a linear operator. Then i + T is bijective. Hnece option (c) is correct.

7. Let $T: \mathbb{P}_2(x,\mathbb{R}) \to \mathbb{P}_3(x,\mathbb{R})$ be a linear transformation defined by

$$T(P(x)) = \int_{0}^{x} P(t)dt + P'(x) + p(2)$$

. Which of the following statement(s) is(are) correct?

- (a) $A = \begin{bmatrix} 1 & 3 & 4 \\ 1 & 0 & 2 \\ 0 & \frac{1}{2} & 0 \\ 0 & 0 & \frac{1}{3} \end{bmatrix}$ is the matrix representation of T with respect to bases $\{1, x, x^2\}$ of $\mathbb{P}_2(x, \mathbb{R})$ and $\{1, x, x^2, x^3\}$ of $\mathbb{P}_3(x, \mathbb{R})$.
- (b) $A = \begin{bmatrix} 1 & 3 & 4 \\ 1 & 0 & 2 \\ 0 & 0 & \frac{1}{3} \\ 0 & \frac{1}{2} & 0 \end{bmatrix}$ is the matrix representation of T with respect to bases $\{1, x, x^2\}$ of $\mathbb{P}_2(x, \mathbb{R})$ and $\{1, x, x^2, x^3\}$ of $\mathbb{P}_3(x, \mathbb{R})$.
- (c) Nullity(T) = 1
- (d) Nullity(T) = 0

Answer: (a) and (d).

- 8. Let \mathbb{V} be a finite dimensional vector space and let $T \in \mathbb{L}(\mathbb{V}, \mathbb{V})$ such that $rank(T) \leq rank(T^3)$. Which of the following statement(s) is(are) correct?
 - (a) Ker(T) = R(T).
 - (b) $Ker(T) \cap R(T) = \{0\}.$
 - (c) There exists a nonzero subspace \mathbb{S} subspace of \mathbb{V} such that $Ker(T) \cap R(T) = \mathbb{S}$.
 - (d) $Ker(T) \subseteq R(T)$

Answer: Using the condition $rank(T) \leq rank(T^3)$, we have $R(T) = R(T^3)$ and $Ker(T) = Ker(T^3)$. Let $x \in Ker(T) \cap R(T)$. Then T(x) = 0 and T(y) = x. This implies $T^3(y) = T^2T(y) = T^2(x) = T(T(x)) = T(0) = 0$. This says that $y \in Ker(T^3) = Ker(T)$. Then T(y) = 0. This implies x = T(y) = 0. So option (b) is correct.

Since option (b) is correct, then option (a), (c) and (d) are not correct.

- 9. Let \mathbb{W} be a finite dimensional vector space over the field \mathbb{R} . Let \mathbb{S} be a subspace of \mathbb{W} . Then $\mathbb{S} \cap T(\mathbb{S}) \neq \{0\}$ for every isomorphism $T : \mathbb{W} \to \mathbb{W}$ if and only if
 - (a) $\mathbb{S} = \mathbb{W}$
 - (b) $\dim(\mathbb{S}) < \frac{\dim(\mathbb{W})}{2}$.
 - (c) $\dim(\mathbb{S}) = \frac{\dim(\mathbb{W})}{2}$.
 - (d) $\dim(\mathbb{S}) > \frac{\dim(\mathbb{W})}{2}$.

Ans: Only options (d) is correct.

Arguments: (a) If $\mathbb{W} = \mathbb{S}$, then $\mathbb{S} \cap T(\mathbb{S}) \neq \{0\}$ for every isomorphism T (this is always true). But the converse is not true. That is, $\mathbb{S} \cap T(\mathbb{S}) \neq \{0\}$ for every isomorphism T does not imply $\mathbb{S} = \mathbb{W}$.

Example: Let $\mathbb{W} = \mathbb{R}^3$ and $\mathbb{S} = Ls(\{(1,0,0),(0,1,0)\})$. Let T be an isomorphism on \mathbb{R}^3 . Then $T(\mathbb{S}) = Ls(\{T(1,0,0),T(0,1,0)\})$. It is clear that $T(\mathbb{S})$ and $T(\mathbb{S})$ both the are subspaces of dimension 2. Then $\mathbb{S} + T(\mathbb{S})$ is also a subspace of \mathbb{V} .

If $\mathbb{S} \cap T(\mathbb{S}) = \{0\}$, then the dimension of $\mathbb{S} + T(\mathbb{S})$ is 4 which is not possible. Hence $\mathbb{S} \cap T(\mathbb{S}) \neq \{0\}$ for every isomorphism T but $\mathbb{S} \neq \mathbb{W} = \mathbb{R}^3$.

We assume that $\mathbb{S} \cap T(\mathbb{S}) \neq \{0\}$. To prove that option (d) is correct.

Since $\dim(\mathbb{S})$ and $\dim(\mathbb{S})$ are two real numbers, either $\dim(\mathbb{S}) \leq \frac{\dim(\mathbb{W})}{2}$ or $\dim(\mathbb{S}) > \frac{\dim(\mathbb{W})}{2}$.

We assume that $\dim(\mathbb{S}) \leq \frac{\dim(\mathbb{W})}{2}$. Let $\dim(\mathbb{S}) = k$ and let $\{u_1, \dots, u_k\}$ be a basis of \mathbb{S} . Using extension theorem, we extend $\{u_1, \dots, u_k\}$ to a basis of \mathbb{W} which is $\{u_1, \dots, u_k, u_{k+1}, \dots, u_n\}$.

Let T be a linear operator such that $T(u_i) = u_{k+i}$, $T(u_{k+i}) = u_i$ for i = 1, ..., k and $T(u_i) = u_i$ for i = 2k + 1, ..., n. You can check that T is an isomorphism. Then $\{T(u_1), ..., T(u_k)\}$ is a basis of $T(\mathbb{S})$.

Let $x \in \mathbb{S} \cap T(\mathbb{S})$. Then $x = c_1u_1 + \cdots + c_ku_k$ and $x = b_1T(u_1) + \cdots + b_k(T(u_k)) = b_1u_{k+1} + \cdots + b_ku_{2k}$. Then $c_1u_1 + \cdots + c_ku_k - b_1u_{k+1} - \cdots - b_ku_{2k} = 0$. This implies $c_1 = c_2 = \cdots = c_k = 0$. Hence x = 0. Therefore $\mathbb{S} \cap T(\mathbb{S}) = \{0\}$. So option (b) and (c) are not correct. Therefore $\dim(\mathbb{S}) > \frac{\dim(\mathbb{W})}{2}$. Hence option (d) is correct.

Converse. Given $\dim(\mathbb{S}) > \frac{\dim(\mathbb{W})}{2}$. To prove that $\mathbb{S} \cap T(\mathbb{S}) \neq \{0\}$ for every isomorphism T.

Suppose that there exists an isomorphism T such that $\mathbb{S} \cap T(\mathbb{S}) = \{0\}$. We know that \mathbb{S} and $T(\mathbb{S})$ are subspaces of \mathbb{W} . Then $\mathbb{S} + T(\mathbb{S})$ is also a subspace of \mathbb{W} . Then $\dim(\mathbb{S} + T(\mathbb{S})) = 2k$ where k is the dimension of \mathbb{S} . Therefore $2k \leq n$ where n is the dimension of \mathbb{W} . Hence $k \leq n/2$ a contradiction. Hence $\mathbb{S} \cap T(\mathbb{S}) \neq \{0\}$ for every isomorphism.