

Concurso Nacional de Astronomía 2020

Segunda Etapa

Formulario

Constantes

 $G=6.67x10^{-11}Nm^2/kg^2$

Constante de Planck (h)= $6.626x10^{-34}J \cdot s$

Constante de Stefan Boltzmann (σ)= 5.67x10⁻⁸ $W/m^2 \cdot K^4$

Temperatura del Sol= 5778 K

Tercera Ley de Kepler

$$T^2 = a^3$$

Magnitud Absoluta

$$m - M = 5\log\left(\frac{r}{10 \ pc}\right)$$

Ley de Desplazamiento de Wien

$$\lambda_{ ext{max}} = rac{0.0028976 \; [ext{m} \cdot ext{K}]}{T}$$

Doppler

$$\lambda = \lambda_{\circ} (1 + \frac{v}{c})$$

Magnitud aparente de dos estrellas

$$m - m_{sol} = -\frac{5}{2}\log\left(\frac{F}{F_{sol}}\right)$$

Relatividad

$$u' = \frac{u - v}{1 - \frac{uv}{c^2}}$$

$$u = \frac{u' + v}{1 + \frac{u'v}{c^2}}$$

Fuerza Gravitacional

$$F = \frac{GM1M2}{r^2}$$

Tercera Ley de Kepler

$$\frac{T^2}{a^3} = \frac{4\pi^2}{GM}$$

Relación Planck-Einstein

$$E = h \cdot f$$

Luminosidad

$$L = 4\pi r^2 \sigma T^4$$

Contracción de Longitud

$$L' = L\sqrt{1 - \frac{v^2}{c^2}}$$

Densidad de Flujo

$$F = \sigma T^4$$

Dilatación Tiempo

$$T' = T\sqrt{1 - \frac{v^2}{c^2}}$$

TABLA DE CONVERSIONES		
1 Watt (W)	=	1 Joule (J)/segundo(s)
1 Watt (W)	=	10 ⁷ ergios(erg)/segundo(s)
1 Newton (N)	=	1x10 ⁵ dynas(dyn)
1 Newton (N)	=	101.9716 Pascales (Pa)
1 eV	=	$1.602176462 \times 10^{-19}$ J
1 Joule(J)	=	1N·m
1 Joule(J)	=	1W·s
1 Joule(J)	=	$6.2415 \times 10^{18} \text{eV}$
1 Ångström(A)	=	$10^{-10} metros (m)$
1 Grado (°)	=	4 minutos
(Debido al movimiento de rotación de la Tierra)		(Tiempo)
1 Hora (h)	=	15 grados(°)
(Tiempo)		(Debido al movimiento de rotación de la Tierra)
1 Grado(°)		
(Sobre la superficie de la Tierra)	=	111.3 Kilómetros (km)

NOMBRE	VALOR
Radio polar de la Tierra	$R_{\oplus} = 6357 \ km$
Radio ecuatorial de la Tierra	$R_{\oplus} = 6378 km$
Radio medio de la Luna	$R_L = 1738 km$
Distancia media entre la Luna y la Tierra	$D_{media} = 384401km$
Masa de la Tierra	$M_{\oplus} = 5,976 \times 10^{24} kg$
Radio del Sol	$R_{\odot} = 6,9599 \times 10^{10} \ cm$
Masa del Sol	$M_{\odot} = 1,989 \times 10^{33} g$
Luminosidad del Sol	$L_{\odot} = 3,826 \times 10^{33} erg/s$
Unidad Astronómica	$1 U.A. = 1.5 \times 10^8 \ km$
Parsec	$pc = 3.085678 \times 10^{18} cm$
Año Luz	$1 \text{Año Luz} = 9,46053 \times 10^{17} \text{cm}$
Constante de Gravitación Universal	$G = 6.67 \times 10^{-11} Nm^2 / kg^2$
Velocidad de la Luz	c = 300,000 km/s
Velocidad del sonido	$344\frac{m}{s}$ aire a 20°C