Tues: Exam I

Coves all Lecture 1-011

HW 1-06

Bring: 1/2 single side letter s 1/2 letter shoet single side.

BB84 Scheme - no evesdropping

In the BB84 schone Alice + Bob choose to prepare Imeasure states in the bases:

$$X = \left\{ \begin{array}{c} \frac{10)+(1)}{\sqrt{2}}, \frac{10)-11}{\sqrt{2}} \right\}$$

$$\frac{1+}{\sqrt{2}}$$

Their schemes for translating between bit values and states/outcomes are

Alice

Basis	State
2	(0)
7	11>
×	14>
×	1-7
	2 2 ×

Bob

Measwement	outcome	bit value
~	0	0
7	1	l
×	+	0
×	-	1

Alice

Bob

Alice uses a classical procedure to generate a random stream of bits

€= 0110 1010 00000

Alice uses a classical procedure to randomly choose one basis per bit

Q~ ZXZX XZXX XXXX

(Alice records both of these.)
For each she prepares a qubit in the relevant state and transmits to Bob

> 1+) 11) 1-> 1c> -© © © © © # 4 #3 #2 #1

Bob does not know the states

At this stage he does not know her choices

Bob uses a classical procedure to randomly choose a measurement type/basis. He records this

He measures each qubit in the basis and records the result. An example is

#1 #2 #3 states unknown to Bob

 Quantum physics predicts

- i) For a qubit Alice + Bob use the some basis then their bit values will agree with certainty
- 2) For any qubit whee Alice + Bcb use different bases their bit values will not agree with certainty. On average they will agree about 1/2 the time

We will analyze these in detail in an exercise.

1 BB84 - no eavesdropping

- a) Consider a qubit for which Alice and Bob use the same basis. Show that for all possible choices of bit value and basis, Bob will obtain the same bit value as Alice.
- b) Consider a qubit for which Alice uses the Z basis and Bob uses the X basis. For each choice of bit value that Alice might use, determine the probability that Bob gets the same bit value. What is the overall probability that Alice and Bob agree on bit values for this situation?

The next stage of the BB84 protocol is:

After transmission +
measurement Alice + Bob

Communicate their choices of
basis but keep the bit values
secret.

They then reject all runs
where they disagree + keep those
whose they agree.

At this stage quantum physics predicts that for the runs which they retained their bit values will be identical with certainty. Since it is no longer possible to intercept the qubits (they could be destroyed) no more measurements can occur. They have a secret string of bits that is private to just them.

Note that the success rate per actual qubit sent is about 1/2.

BB84 - with eavesdropping

Now consider the possibility of eavesdropping. An eavesdropper could try many strategies but in each her goal is to learn the key without being detected.

We consider one relatively simple strategy

Eve does this before Bob measures and therefore before Alice + Bob have communicated their basis choice. So she has to randomly choose a basis in which to measure although it will be one of X or Z.

We could consider all possibilities of basis choices for A,B and E However, we can restrict analysis to choices where A and B use the same basis since they reject those where their bases are different.

We will analyze these possibilities. But recall that in these cases, in the absence of Eve, Alice + Bob will always agree on the bit value.

2 BB84 – with eavesdropping

- a) Suppose that Alice and Bob both choose to use the Z basis for a particular qubit. Suppose that Eve chooses the same basis. For each bit values that Alice could use determine the probabilities with which Eve will extract either 0 or 1 and the probabilities with which Bob will extract either 0 or 1. Does this ever produce a mismatch between Alice and Bob's bits? Could Bob and Alice detect the presence of Eve?
- b) Suppose that Alice and Bob both choose to use the Z basis for a particular qubit. Suppose that Eve chooses the X basis. For each bit values that Alice could use determine the probabilities with which Eve will extract either 0 or 1 and the probabilities with which Bob will extract either 0 or 1. Does this ever produce a mismatch between Alice and Bob's bits? Could Bob and Alice detect the presence of Eve?

Alice bit	Eve bit	Bob bit	Prob
0	0	0	1/4
0	0	1	1/4
0	1	0	4
0		1	1/4

Similarly if Alice uses bit I we get:

Alie	Eve	Bob	Prob
ŀ	0	C	1/4
l	0	1	1/4
l	1	0	1/4 1/4.

The table indicates that in these cases Alice + Bob's bits match with probability 1/2. They mismatch with probability half

So we see that, for the cases where A,B use some basis:

- When Eve uses some basis, she learns bit value with certainty and A,B cannot detect her presence (this scenario occurs with probability 1/2)
- 2) When Eve uses a different basis (this occurs with prob/2) she learns bit value with prob 1/2. Also with prob 1/2 there will be a mismatch between A, B's bits.

Thus for this type of attack

- i) Eve learns bit value with prob 3/4.
- 2) Alice + Bobs bits mismatch with prob 1/4.
- So quantum theory has forced Eve to reveal her presence.

The remaining step is that Alice + Bob need to check for the presence of Eve. They do this by:

After measurements A, B compare bassis choices and reject runs where they used different basis

Of the surriving runs, A,B randomly choose a subset for inspection. Alice reveals the bit values of this subset. Bob compares these "sampled bits"

Q 01103 P

If Eve has clone the previous attack about 25% of the "sampled bits" will have a mismatch.

Compare

In this way they can detect Eve

More sophisticated eavesdropping?

Eve could try more sophisticated strategies. Perhaps she could copy the state that Alice sends. This would require a copying device that needs to do:

Is such a device possible? If so one can "clone" an unknown quantum state. We will show that a general requirement of quantum physics prohibits this