# NUNU

Advisory Professor : 금동석 교수님

Team Members: 김기정, 김병학, 김종원, 부준요, 정인철, 조민재, 한솔

















#### SPEC

Hardware

380 x 480 x 240 [mm]

8 [kg]

4:1 Gear Ratio

Suspension

Depth Camera

O Štep Pick-up

are lanning Ball Detection Perfect Align

### SolidWorks

Body / Actuation / Pick Up & Drop Off / Heat Management

#### Small Size Body unnecessary avoidance \$\diamsilon \rangle red ball collision \$\diamsilon\$





### Actuation Module 4 point ground contact during whole drive / shock absorption



[ Gear Box exploded view ]



# Pick Up Module continuous picking up motion



# Drop Off Module stable release motion by pushing up pick up & drop off module



Previous Drop off module (bumper motion)





Present
Drop off module
(pushing up the module)

# Motor Control

Over all circuit / movement / control with Xbox

#### Motor Control completeness





make whole directional motion

to find best motion(vector) for each situation

using the relationship between motor rotation and whole system vector

$$R\begin{bmatrix} \omega_{1} \\ \omega_{2} \\ \omega_{3} \\ \omega_{4} \end{bmatrix} \begin{bmatrix} 1 & 1 & -(l+L) \\ 1 & -1 & (l+L) \\ 1 & -1 & -(l+L) \\ 1 & 1 & (l+L) \end{bmatrix} \begin{bmatrix} V_{x} \\ V_{z} \\ \omega_{0} \end{bmatrix}$$

## Motor Control motion for avoiding red ball

For better red ball avoidance,

Choose the velocity ratio of  $V_{\!\scriptscriptstyle \mathcal{X}}$  ,  $V_{\!\scriptscriptstyle \mathcal{Y}}$  depending on the distance range







## Motor Control motion for aligning the destination

for exact aligning, although latency between cam, ROS, labview, motor >> high speed not good general rotation vel \* 1/6 – perpendicular to wall general aside moving vel \* 1/10 – to the center of green balls





# S Open CV

Camera / Ball Detecting / Sorting

#### Real Sense Camera stabl

Real sense Camera for wide view

Logitech Webcam

Real sense RGBD cam

# Image Procession for Ball Detecting



# Sorting Method erase fake ball for clear movement



(Depth based distance  $\neq$  HSV based distance)  $\rightarrow$  fake



# Sorting Method handle overlapped ball for path planning



Different color



Same color

# ROS

Path Planning / Pick Up / Drop Off

#### Path Planning

Why?: Path planning can reduce time for searching balls. Also can have different stratagem based on weight value

Ball Coordinate

Raw data from ball\_detect\_node

blue\_ball\_num red\_ball\_num

b\_ball\_X(n)
b\_ball\_Y(n)

r\_ball\_X[n] r\_ball\_Y[n] Pre-processing

Filter & average few frames for accuracy

b\_ball\_x(3) b\_ball\_y(3)

r\_ball\_x(3) r\_ball\_y(3) Path Planning

Based on the ball\_coor and weight value Calculate best order

Ex) b1 = 1; b2 = 0; b3 = 2; Rough Angle

Based on the collecting order, calculate rough angel rotation for fast detection and collection

Ex) Angle1 = 11; Angle2 = 65; ...

### Path Planning stabl





- Pick smallest T for the final path

Conversion1 D

<sup>-</sup> T(2,3,1) = A+B+C+D+...

<sup>-</sup> Compare T(1,2,3)-T(3,2,1)

## Path Planning result





# 12 Pick Up Blue Balls



# 13 Pick Up Blue Balls



#### 3 Different videos of Pick Up Motion







< 0.6 m

0.6m~1.5m

>1.5m



- Rootsate fantilatelle. Loas dyens is predicted the clienter to the wall
- Redeverset the tibels ket asket is in the center
- Move forward until the distance is 0.6m





#### 3 Different videos of Drop Off Motion









#### Thank You for your attention