Optique

Nathan Maillet

1 Ondes lumineuses

Intensité avec le modèle scalaire

Le vecteur de Poynting donne, avec le modèle scalaire :

$$I=\mathcal{E}\propto \langle s^2\rangle \propto \alpha^2$$

Théorème de Mallus -

Le théorème de Mallus est utile pour trouver la différence de marche. Il stipule que les surfaces d'onde sont orthogonales aux rayons lumineux.

2 Interférences

Formule de Fresnel -

En écrivant que pour deux ondes s_1 et s_2 , $I = \langle (s_1 + s_2)^2 \rangle$, on trouve :

$$I(M) = I_1 + I_2 + 2\sqrt{I_1I_2}\cos\left(\phi(S_1) - \phi(S_2) + \frac{2\pi\delta}{\lambda_0}\right)$$

Dans le cas où $\mathcal{E}_1=\mathcal{E}_2=\mathcal{E}_0$ et $\phi(S_1)=\phi(S_2)$ on a donc :

$$\mathcal{E}(M) = 2\mathcal{E}_0\left(1 + \cos\left(\frac{2\pi\delta}{\lambda_0}\right)\right)$$

Contraste ou visibilité —

On définit le contraste (ou visibilité) par :

$$C = V = \frac{\mathcal{E}_{\max} - \mathcal{E}_{\min}}{\mathcal{E}_{\max} + \mathcal{E}_{\min}}$$

Fentes d'Young

Dans le cas des fentes d'Young on a $\delta = \frac{\alpha x}{D}$ avec a l'écartement entre les fentes, D la distance entre les fentes et l'écran et x la position du point sur

l'écran

Dans ce cas, on a : $\mathfrak{i} = \frac{\lambda_0 D}{\mathfrak{a}}$. Si l'on ajoute une lentille avec des franges d'Young à l'infini, on a : $\delta = \frac{\mathfrak{a}x}{\mathfrak{f}}$ et $\mathfrak{i} = \frac{\lambda_0 f}{\mathfrak{a}}$.

Degré de cohérence temporelle

Dans le cas d'une onde polychromatique, on a : $I \propto 1 + \gamma_t \cos(2\pi\delta\sigma_0)$, avec γ_t le degré de cohérence temporelle.

Le degré de cohérence temporelle donne l'enveloppe de la courbe $I(\delta)$.

Brouillage

Le contraste est maximal lorsque la différence des ordres p_1-p_2 est entier. Quand le contraste est nul, il y a anti-coïncidence et les brouillages sont données par $p_1-p_2=q+\frac{1}{2}$ avec $q\in\mathbb{Z}$ Le premier brouillage est alors donné pour $p_1-p_2=\delta\Delta\sigma=\frac{1}{2}$

Finesse

On définit la finesse par : $\mathcal{F}=\frac{v_0}{\Delta v}=\frac{\omega_0}{\Delta \omega}=\frac{\sigma_0}{\Delta \sigma}$

Observation des interférences

Pour observer des interférences δ doit vérifier : $|\delta| < c\tau_c = l_c$. l_c est alors la longueur de cohérence de la source lumineuse.

 $\tau_c, \Delta \nu$ et l_c vérifient :

$$\tau_c\Delta\nu\sim 1~{\rm et}~\it l_c\Delta\nu\sim c$$

3 Interféromètre de Michelson

Différence de marche

 $\delta=2ne\cos(i)$ avec i l'angle incident que fait le rayon en passant par l'image de (M_1) par la séparatrice.

Quand l'on place un verre d'indice $\mathfrak n$ entre la séparatrice et un des miroirs et en notant δ' la nouvelle différence de marche, on a $|\delta - \delta'| = 2(\mathfrak n - 1)\mathfrak e$ car l'onde passe deux fois par le verre.

4 Diffraction

Ordres de grandeurs

La lumière diffractée est concentrée dans des directions limités par rapport à la direction de l'onde incidente par le demi-angle $\theta \sim \frac{\lambda}{a}$.

Le rayon de la tache d'Airy est donné par : $\sin(\theta) = \frac{0.61\lambda}{P}$

Critère de Rayleigh

Deux taches de diffraction sont séparées si le maximum central de l'une est au-delà du premier minimum de l'autre.

5 Réseaux de diffraction

Soit N le nombre de motifs, h le pas et L=Nh la largeur du réseau.

Maxima principaux -

Les maxima principaux sont atteints pour un déphasage entre deux motifs successifs $\varphi = 0[2\pi]$ ou encore $\delta = p\lambda, p \in \mathbb{Z}$. Sur la courbe $I(\varphi)$, les maxima principaux sont étroits avec :

- -- N-1 annulations de l'Intensité
- N-2 maxima secondaires (jamais observés en pratique quand N est grand)

Relation des réseaux

Relation des réseaux en prenant les angles dans le sens trigonométrique. i est l'angle de déviation.

Pour un réseau par transmission, on a :

$$h(\sin(\theta) - \sin(i)) = p\lambda = \delta, p \in \mathbb{Z}$$

Pour un réseau par réflexion, on a :

$$h(\sin(\theta)+\sin(\mathfrak{i}))=p\lambda=\delta, p\in\mathbb{Z}$$

Avec d'autres conventions d'orientations pour les angles, les signes « + » et « - » sont inversés.

Pouvoir de résolution

Le pouvoir de résolution du réseau est défini par $\mathcal{R} = \frac{\lambda}{\Delta \lambda_{\min}}$ On peut donc écrire :

$$\mathcal{R} = \frac{\lambda}{\Delta \lambda_{\min}} = |\mathfrak{p}| \cdot N$$

En écrivant la limite du critère de Rayleigh pour p > 0, on a :

$$\delta = \left(p + \frac{1}{N}\right)\lambda = p\left(\lambda + \Delta\lambda_{\min}\right)$$

ce qui donne l'écriture finale du pouvoir de résolution.

Vocabulaire relatif au Michelson

a:	
Séparatrice	Lame semi-
	réfléchissante
Division d'amplitude	Conséquence de la sé-
	paratrice
Compensatrice	Assure l'indépendance
	entre δ et λ
Lame d'air	Espace entre (M'_1) et
	(M_2)
Non localisé	Observables dans tout
	l'espace
Contact optique	Lame d'air d'épais-
	seur nulle
Éclairement uniforme	$\delta(M) = 0$
Franges d'égale incli-	i = cste
naison	
Franges d'égale épais-	Lame d'air constante
seur	
	•