Санкт-Петербургский политехнический университет Петра Великого Институт компьютерных наук и технологий

Высшая школа интеллектуальных систем и суперкомпьютерных технологий

Лабораторная работа № 1

Анализ и синтез комбинационных узлов ЭВМ. Дешифратор. по дисциплине «Архитектура вычислительных систем»

Выполнила студентка гр. 33530903/00301	С.П. Крутецкий
Руководитель доцент, к.т.н.	Н. М. Вербова

«___» _____2022 г.

Часть I. Синтез дешифратора 3-х разрядного числа с переключательной функцией

Построение аналитической формы дешифратора

На основании приведенной ниже таблицы составим СДНФ для каждого управляющего сигнала.

X_2	X_1	X_0	Y_0	<i>Y</i> ₁	<i>Y</i> ₂	<i>Y</i> ₃	Y_4	<i>Y</i> ₅	<i>Y</i> ₆	<i>Y</i> ₇
0	0	0	1	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0	0	0	0
0	1	0	0	0	1	0	0	0	0	0
0	1	1	0	0	0	1	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0
1	0	1	0	0	0	0	0	1	0	0
1	1	0	0	0	0	0	0	0	1	0
1	1	1	0	0	0	0	0	0	0	1

$$Y_{0} = \overline{X_{2}} \, \overline{X_{1}} \, \overline{X_{0}}; Y_{1} = \overline{X_{2}} \, \overline{X_{1}} \, X_{0}; Y_{2} = \overline{X_{2}} \, X_{1} \, \overline{X_{0}}; Y_{3} = \overline{X_{2}} \, X_{1} X_{0}; Y_{4} = X_{2} \, \overline{X_{1}} \, \overline{X_{0}}; Y_{5} = X_{2} \, \overline{X_{1}} \, X_{0}; Y_{6} = X_{2} \, X_{1} \, \overline{X_{0}}; Y_{7} = X_{2} \, X_{1} \, X_{0}; Y_{7} = X_{2} \, X_{1} \, X_{1} \, X_{1}$$

Опираясь на имеющиеся СДНФ можно приступить к описанию схемы дешифратора.

Построение модели дешифратора в Multisim

На основание полученных СДНФ была составлена модель дешифратора (рис. 1). Модель состоит из следующих элементов:

- Земля,
- DC_POWER (источник на 5V),
- Резистор на $1k\Omega$,
- Ключ поступающего сигнала,
- 7404N (логическое отрицание поступающего сигнала),
- 7408N (логическое умножение поступающего сигнала),
- Лампа индикатор управляющего сигнала;

Рисунок 1 Модель дешифратора

Рассмотрим модель дешифратора ближе. На рисунке (рис. 2) представлена шина поступающих сигналов, каждой магистрали соответствует один поступающий сигнал $X_2, X_1, X_0, not\ X_2, not\ X_1, not\ X_0$ соответственно. Шина необходима для большей наглядности и ясности при проектировании и демонстрации модели. Включенное положение ключа обозначает наличие сигнала, отрицание сигнала реализовано через логический блок 7404N.

Рисунок 2 Шина поступающих сигналов дешифратора

Далее расположен блок формирования управляющего сигнала дешифратора, иными словами реализации описанных в первой части СДНФ. Каждый логический блок оперирует необходимым поступающим сигналам с вышеописанной шины. Результат преобразований поступающего сигнала отправляется на результирующую шину сигналов.

Рисунок 3 Блок формирования управляющего сигнала дешифратора

Заключительный этап схемы дешифратора — это индикация результирующего сигнала. Индикация основана на зеленых лампочках, наличие сигнала определяется наличием зеленого света на лампочке. Каждая лампочка подключена к соответствующему результирующему сигналу на шине. Лампочки подписаны наименованиями управляющих сигналов из аналитической таблицы.

Рисунок 4 Индикация дешифратора

Проверка работы модели дешифратора

Рассмотрим набор сигналов $X_2=1, X_1=0, X_0=1.$ При данном наборе ожидаем получить индикацию результирующего сигнала $Y_5.$

Запустив режим симуляции проверим схему дешифратора выставив ключи X2 и X0 во включенное состояние.

Рисунок 5 Проверка работы дешифратора

Наблюдаем индикацию сигнала Y_5 , результат соответствует ожиданиям. Аналогично были проверены и остальные наборы поступающих сигналов.

Часть II. Построение демонстрационной схемы с дешифратором К155ИД4. Основные принципы

Демонстрационной модели с дешифратором К155ИД4

На рисунке ниже изображена модель с дешифратором К155ИД4. Она содержит 6 поступающих сигналов и 6 результирующих сигналов на каждый выход дешифратора. Инвертированные входы и выходы дешифратора содержат в своей цепи отрицание.

Рисунок 6 Демонстрационная модель с дешифратором К155ИД4

Демонстрация работы дешифратора К155ИД4

Для работы в режиме двойного дешифратора 2 на 4 необходимо замкнуть ключи с управляющими сигналами на входы EA, EB и информационные входы DA, DB соответственно. В таком случае ожидаем, что будут подсвечены индикаторы с весом 0.

Рисунок 7 Пример работы дешифратора в режиме 2 на 4

При замыкании ключей, ведущих на адресные входы с весом 2^0 или 2^1 управляющий сигналы изменятся на советующие значение поступающего веса на адресные входы. Например, если замкнуть адресный вход с весом 2^1 ожидаем индикацию управляющего сигнала с весом 2.

Рисунок 8 Пример работы дешифратора в режиме 2 на 4

Преобразование дешифратора в режим работы 3 на 8

Для перехода режима работы в 3 на 8 необходимо объединить входы DA и DB. Пример представлен на рисунке ниже.

Рисунок 9 Модель дешифратора в режиме работы 3 на 8

Демонстрация работы дешифратора в режиме работы 3 на 8

Для включения дешифратора в режим работы 3 на 8 замкнем управляющие сигналы EA, EB. На адресный вход с весом 2^2 подадим сигнал. Ожидаем увидеть индикацию управляющего сигнала с весом 4.

Рисунок 10 Пример работы дешифратора в режиме работы 3 на 8

Вывод

В результате выполнения лабораторной работы был разобран процесс построение дешифратора 3 на 8 на основание аналитической модели и разобран принцип его работы.

Также был исследован принцип работы дешифратора К155ИД4 на примере построенной демонстрационной модели. Затем модель была преобразована для тестирования работы дешифратора в режиме 3 на 8.