

GAIA WORLD LAND NFT SMART CONTRACT AUDIT

31.03.2022

Made in Germany by Chainsulting.de

Table of contents

1. Disclaimer	4
2. About the Project and Company	5
2.1 Project Overview	6
3. Vulnerability & Risk Level	7
4. Auditing Strategy and Techniques Applied	8
4.1 Methodology	8
4.2 Used Code from other Frameworks/Smart Contracts	9
4.3 Tested Contract Files	11
4.4 Metrics / CallGraph	12
4.5 Metrics / Source Lines & Risk	14
4.6 Metrics / Capabilities	15
4.7 Metrics / Source Unites in Scope	16
5. Scope of Work	17
5.1 Manual and Automated Vulnerability Test	18
MEDIUM ISSUES	18
5.1.1 Overpowered Owner rights	18
LOW ISSUES	19
5.1.2 Variable could be declared constant	19
5.1.3 Public functions should be declared as external	20
5.1.4 State visibility is not set	22
5.1.5 Redundant code	22
5.1.6 Missing zero address checks	23

	5.1.7 Missing Events	23
	5.1.8 Long number literals	25
	5.1.9 No return value checks	25
	5.1.10 Inefficient use of structs	26
	INFORMATIONAL ISSUES	26
	5.1.11 Missing natspec documentation	
	5.1.12 Floating compiler versions	
	5.1.13 Using newest compiler version	
	5.2 SWC Attacks	
	5.3. Verify Claims	33
	Executive Summary	
7.	Deployed Smart Contract	34
3.	About the Auditor	35

1. Disclaimer

The audit makes no statements or warrantees about utility of the code, safety of the code, suitability of the business model, investment advice, endorsement of the platform or its products, regulatory regime for the business model, or any other statements about fitness of the contracts to purpose, or their bug free status. The audit documentation is for discussion purposes only.

The information presented in this report is confidential and privileged. If you are reading this report, you agree to keep it confidential, not to copy, disclose or disseminate without the agreement of Omnisoft LTD (GAIA Everworld). If you are not the intended receptor of this document, remember that any disclosure, copying or dissemination of it is forbidden.

Major Versions / Date	Description
0.1 (26.01.2022)	Layout
0.2 (27.01.2022)	Test Deployment
0.5 (28.01.2022)	Automated Security Testing
	Manual Security Testing
0.6 (30.01.2022)	Testing SWC Checks
0.7 (31.01.2022)	Verify Claims
0.9 (01.02.2022)	Summary and Recommendation
1.0 (02.02.2022)	Final document
1.1 (25.03.2022)	Re-check
1.2 (31.03.2022)	Re-check
1.3 (31.03.2022)	Added deployed contract addresses

2. About the Project and Company

Omnisoft LTD OMC Chambers Wickhams Cay 1 Road Town, Tortola British Virgin Islands

Website: https://gaiaworld.com

Twitter: https://twitter.com/GaiaEverWorld

Medium: https://medium.com/@gaia-world

Telegram: https://t.me/GaiaEverworld

Discord: https://discord.gg/EGT7c4RVfs

Email: contact@gaiaworld.com

2.1 Project Overview

Gaia Everworld blends classic fantasy narratives with state of the art blockchain and NFT technology. In the multi-realm gaming environment, players will be able to use their Gaia Legionnaires to wage campaigns, defend lands, and other immersive activities. Like many other games, like Pokemon, or Clash of Clans, Gaia Everworld allows players to own their characters, and interact in a dynamic environment with other human players all over the world.

The gaming environment allows for players to choose a homeland, which will give their NFT-based Gaia special powers, as well as weaknesses. The game uses a play-to-earn model, so that players have a financial incentive to join and play.

In Gaia Everworld, they offer players the ability to exist in a multi-realm online environment and participate in both PVP Battles and Legion Mode. The game centers on Gaia — a mythical creature that can be bred and owned in the form of an NFT.

The underlying goal of the game is to have the strongest collection of Gaia. With these NFT creatures, players can battle other players in the game, and conquer the lands of Gaia Everworld.

Of course, Gaia can be bred and added to a collection of other Gaia — or sold to other players. The two tokens that make the platform work are \$GAIA, which can be staked, and \$GGP, which is needed to breed Gaia.

- Holders of \$GAIA can stake coins to earn \$GAIA.
- Players to earn \$GAIA and \$GGP (Gaia Growth Potion) by playing the game and participating in events and adventures.
- Players to trade or sell their Gaia, Gaia eggs, land and resources in the Gaia Everworld marketplace.
- Players to loan their Gaia to other players in a peer to peer contract. The owner then earns a percentage of the \$GGP earned by the loanees game play.

With NFT based games, players are also the owners of the game, and can control the platform to a much higher level than ever before.

3. Vulnerability & Risk Level

Risk represents the probability that a certain source-threat will exploit vulnerability, and the impact of that event on the organization or system. Risk Level is computed based on CVSS version 3.0.

Level	Value	Vulnerability	Risk (Required Action)
Critical	9 – 10	A vulnerability that can disrupt the contract functioning in a number of scenarios, or creates a risk that the contract may be broken.	Immediate action to reduce risk level.
High	7 – 8.9	A vulnerability that affects the desired outcome when using a contract, or provides the opportunity to use a contract in an unintended way.	Implementation of corrective actions as soon as possible.
Medium	4 – 6.9	A vulnerability that could affect the desired outcome of executing the contract in a specific scenario.	
Low	2 – 3.9	_	Implementation of certain corrective actions or accepting the risk.
Informational	0 – 1.9	A vulnerability that have informational character but is not effecting any of the code.	An observation that does not determine a level of risk

4. Auditing Strategy and Techniques Applied

Throughout the review process, care was taken to evaluate the repository for security-related issues, code quality, and adherence to specification and best practices. To do so, reviewed line-by-line by our team of expert pentesters and smart contract developers, documenting any issues as there were discovered.

4.1 Methodology

The auditing process follows a routine series of steps:

- 1. Code review that includes the following:
 - i.Review of the specifications, sources, and instructions provided to Chainsulting to make sure we understand the size, scope, and functionality of the smart contract.
 - ii.Manual review of code, which is the process of reading source code line-by-line in an attempt to identify potential vulnerabilities.
- iii. Comparison to specification, which is the process of checking whether the code does what the specifications, sources, and instructions provided to Chainsulting describe.
- 2. Testing and automated analysis that includes the following:
 - i.Test coverage analysis, which is the process of determining whether the test cases are actually covering the code and how much code is exercised when we run those test cases.
 - ii. Symbolic execution, which is analysing a program to determine what inputs causes each part of a program to execute.
- 3. Best practices review, which is a review of the smart contracts to improve efficiency, effectiveness, clarify, maintainability, security, and control based on the established industry and academic practices, recommendations, and research.
- 4. Specific, itemized, actionable recommendations to help you take steps to secure your smart contracts.

4.2 Used Code from other Frameworks/Smart Contracts (direct imports)

Dependency / Import Path	Source
@openzeppelin/contracts/access/Ownable.sol	https://github.com/OpenZeppelin/openzeppelin- contracts/blob/solc-0.6/contracts/access/Ownable.sol
@/openzeppelin/contracts/token/ERC20/IERC20.sol	https://github.com/OpenZeppelin/openzeppelin- contracts/blob/solc-0.6/contracts/token/ERC20/IERC20.sol
@openzeppelin/contracts/introspection/IERC165.sol	https://github.com/OpenZeppelin/openzeppelin- contracts/blob/solc-0.6/contracts/introspection/ERC165.sol
@openzeppelin/contracts/token/ERC721/IERC721Metadata.sol	https://github.com/OpenZeppelin/openzeppelin- contracts/blob/solc- 0.6/contracts/token/ERC721/IERC721Metadata.sol
@openzeppelin/contracts/token/ERC721/IERC721Enumerable.	https://github.com/OpenZeppelin/openzeppelin- contracts/blob/solc- 0.6/contracts/token/ERC721/IERC721Enumerable.sol
@openzeppelin/contracts/token/ERC721/IERC721.sol	https://github.com/OpenZeppelin/openzeppelin- contracts/blob/solc-0.6/contracts/token/ERC721/IERC721.sol
@openzeppelin/contracts/token/ERC721/IERC721Receiver.sol	https://github.com/OpenZeppelin/openzeppelin- contracts/blob/solc- 0.6/contracts/token/ERC721/IERC721Receiver.sol
@openzeppelin/contracts/introspection/ERC165.sol	https://github.com/OpenZeppelin/openzeppelin- contracts/blob/solc-0.6/contracts/introspection/ERC165.sol
@openzeppelin/contracts/math/SafeMath.sol	https://github.com/OpenZeppelin/openzeppelin- contracts/blob/solc-0.6/contracts/math/Math.sol

Dependency / Import Path	Source
@openzeppelin/contracts/utils/Address.sol	https://github.com/OpenZeppelin/openzeppelin- contracts/blob/solc-0.6/contracts/utils/Address.sol
@openzeppelin/contracts/utils/EnumerableSet.sol	https://github.com/OpenZeppelin/openzeppelin-contracts/blob/solc-0.6/contracts/utils/EnumerableSet.sol
@openzeppelin/contracts/utils/EnumerableMap.sol	https://github.com/OpenZeppelin/openzeppelin-contracts/blob/solc-0.6/contracts/utils/EnumerableMap.sol
@openzeppelin/contracts/token/ERC721/ERC721.sol	https://github.com/OpenZeppelin/openzeppelin- contracts/blob/solc-0.6/contracts/token/ERC721/ERC721.sol
@openzeppelin/contracts/utils/Context.sol	https://github.com/OpenZeppelin/openzeppelin- contracts/blob/solc-0.6/contracts/utils/Context.sol
@openzeppelin/contracts/utils/Strings.sol	https://github.com/OpenZeppelin/openzeppelin-contracts/blob/solc-0.6/contracts/utils/Strings.sol
@openzeppelin/contracts/cryptography/MerkleProof.sol	https://github.com/OpenZeppelin/openzeppelin-contracts/blob/solc-0.6/contracts/cryptography/MerkleProof.sol

4.3 Tested Contract Files

The following are the MD5 hashes of the reviewed files. A file with a different MD5 hash has been modified, intentionally or otherwise, after the security review. You are cautioned that a different MD5 hash could be (but is not necessarily) an indication of a changed condition or potential vulnerability that was not within the scope of the review

File	Fingerprint (MD5)
GAIALand.sol	2fe9985d48dcbbeca589fa668b193731
GAIALand.sol (25.03.2022)	a564a05370901a3f83c1b56b0090b883
GAIALand.sol (31.03.2022)	331d2a206c1323f75135ef5b438b0022

4.4 Metrics / CallGraph

4.5 Metrics / Source Lines & Risk

4.6 Metrics / Capabilities

Exposed Functions

This section lists functions that are explicitly declared public or payable. Please note that getter methods for public stateVars are not included.

View

61

State Variables 5 1

4.7 Metrics / Source Unites in Scope

Туре	File	Logic Contracts	Interfaces	Lines	nLines	nSLOC	Comment Lines	Complex. Score	Capabilities
≥ Q %	GAIALand.sol	10	7	2564	2041	921	1110	625	■⑤ ♣92 ☆
≥	Totals	10	7	2564	2041	921	1110	625	■§ ♣99 *

Update 31st of March

Туре	File	Logic Contracts	Interfaces	Lines	nLines	nSLOC	Comment Lines	Complex. Score	Capabilities
₽	gaia_landv3.sol	11	7	2719	2159	1019	1116	690	₽Š÷ 11
₽€Q\$	Totals	11	7	2719	2159	1019	1116	690	₽\$÷!!#

Legend: [-]

- Lines: total lines of the source unit
- nLines: normalized lines of the source unit (e.g. normalizes functions spanning multiple lines)
- nSLOC: normalized source lines of code (only source-code lines; no comments, no blank lines)
- Comment Lines: lines containing single or block comments
- Complexity Score: a custom complexity score derived from code statements that are known to introduce code complexity (branches, loops, calls, external interfaces, ...)

5. Scope of Work

The GAIA EverWorld Team provided us with the files that need to be tested. The scope of the audit is the GAIA NFT Land contract.

The team put forward the following assumptions regarding the security, usage of the contracts:

- The GAIA NFT Land is correctly implemented with the ERC721 Standard
- Owner cannot mint new land after minting was done
- Owner cannot burn land
- Owner is not able to pause the contract
- Minting of Land is random and can't be front run
- Mathematical calculations inside the contract are correctly performed
- The smart contract is coded according to the newest standards and in a secure way

The main goal of this audit was to verify these claims. The auditors can provide additional feedback on the code upon the client's request.

5.1 Manual and Automated Vulnerability Test

CRITICAL ISSUES

During the audit, Chainsulting's experts found **no Critical issues** in the code of the smart contract.

HIGH ISSUES

During the audit, Chainsulting's experts found no High issues in the code of the smart contract.

MEDIUM ISSUES

5.1.1 Overpowered Owner rights

Severity: MEDIUM Status: FIXED

Code: NA

Attack / Description	Code Snippet	Result/Recommendation
Owners can perform privileged	function setMaxGaiaLands(uint256	It is recommended to use multisig wallet for owner
activities like withdraw funds	newMaxGaiaLands) public onlyOwner {	privileges.
from contract, reserve	<pre>MAX_GAIALANDS = newMaxGaiaLands;</pre>	
GAIALANDS to any	}	Owner is able to pause contract via ability to call
address(can effectively burn by		flipSaleState() function to make isActive(true or
sending to zero address),	function reserveGaiaLands(address to, uint256	false) at any time without restriction
pause contracts by making	_reserveAmount)	
sale inactive, set the price, set	public	
maximum reserve and set	onlyOwner	
maximum GAIALANDS	•	
(effectively being able to mint).		
The auditor has not	<pre>uint256 supply = totalSupply();</pre>	
recognized any multi sig	require(
structure.	_reserveAmount > 0 && _reserveAmount <=	


```
gaiaLandReserve,
    'Not enough reserve left for team'
);
for (uint256 i = 0; i < _reserveAmount; i++)
{
    _safeMint(_to, supply + i);
}
gaiaLandReserve =
gaiaLandReserve.sub(_reserveAmount);
}</pre>
```

LOW ISSUES

5.1.2 Variable could be declared constant

Severity: LOW Status: FIXED Code: NA

Attack / Description	Code Snippet	Result/Recommendation
It is recommendations to define MAX_GAIALANDS as constant variable.	_	It is recommended to define constant variables properly with the constant keyword to improve code readability.

5.1.3 Public functions should be declared as external

Severity: LOW Status: FIXED Code: NA

Attack / Description	Code Snippet	Result/Recommendation
In the current implementation	function reserveGaiaLands(address _to, uint256	We recommend declaring functions as external if
several functions are declared	_reserveAmount)	they are not used internally. This leads to lower gas
as public where they could be	public	consumption and better code readability.
external. For public functions	onlyOwner	
Solidity immediately copies		
array arguments to memory, while external functions can	function tokenLicense(uint256 _id) public view	
read directly from calldata.	returns (string memory)	
Because memory allocation is		
expensive, the gas	function setGoodPrice(uint256 newPrice) public	
consumption of public	onlyOwner	
functions is higher.		
	<pre>function setRegularPrice(uint256 newPrice)</pre>	
	public onlyOwner	
	function setMaxGaiaLands(uint256	
	newMaxGaiaLands) public onlyOwner	
	function setGaiaLandReserve(uint256	
	newGaiaLandReserve) public onlyOwner	
	function mintGaiaLand(
	uint256 numberOfTokens,	


```
uint256 numberOfGoodLands,
    uint256 numberOfRegularLands
  ) public payable
 function mintGaiaLandToken(
    uint256 numberOfTokens,
    uint256 numberOfGoodLands,
    uint256 numberOfRegularLands,
    uint256 numberOfRate
  ) public
 function openTrade(
   uint256 _id,
   uint256 price,
   uint256 duration,
    string memory unit,
    uint256 mintId
  ) public
function closeTrade(uint256 _id) public
```


5.1.4 State visibility is not set

Severity: LOW Status: FIXED Code: NA

File(s) affected: GAIALand.sol

Attack / Description	Code Snippet	Result/Recommendation
State variables without visibility set.		State variable must be declared internal, private or public.
	address ownerAddress;	

5.1.5 Redundant code

Severity: LOW Status: FIXED Code: NA

		Result/Recommendation
The current implementation has	<pre>listedMap[_id] = false; in functions</pre>	It is highly recommended to remove listedMap[_id] =
a redundant code in function	function buy(uint256 _id, uint256 _price)	false; the redundant assignments for mappings as it
buy() and buyToken()	external payable	unnecessarily increases code weight. Mappings
	ITHINCTION DHVTOKEN HINT/Sh IQ. HINT/Sh Dricel	have default values when looking up non-existing keys. For example mapping(address => bool) x a lookup of x[address] will return false if address does not exist.

5.1.6 Missing zero address checks

Severity: LOW Status: FIXED Code: NA

File(s) affected: GAIALand.sol

Attack / Description	Code Snippet	Result/Recommendation
In the current implementation	function reserveGaiaLands(address _to, uint256	It is highly recommended to check address e.g
several functions are not	_reserveAmount)	require(_address!= address(0))
checking for zero addresses.	public	
Setting an address to the zero	onlyOwner	
address can result in loosing		
funds by sending it to the zero	<pre>function transferLand(uint256 id, address to)</pre>	
address.	external	

5.1.7 Missing Events

Severity: LOW Status: FIXED Code: NA

Attack / Description	Code Snippet	Result/Recommendation	
Several functions will benefit	function setProvenanceHash(string memory	It is recommended to emit events for these critical	
from having events, which are	provenanceHash) public onlyOwner {	functions to allow tracking, monitoring, logging and	
allowing a proper tracking,	<pre>GAIALANDS_PROVENANCE = provenanceHash;</pre>	alerting.	
logging in some cases.	}		
	function setGoodPrice(uint256 newPrice) public		
	onlyOwner {		
	<pre>gaiaGoodLandPrice = newPrice;</pre>		


```
function setRegularPrice(uint256 newPrice)
public onlyOwner {
  gaiaRegularLandPrice = newPrice;
function setGaiaLandReserve(uint256
newGaiaLandReserve) public onlyOwner {
  gaiaLandReserve = newGaiaLandReserve;
function setMaxGaiaLands(uint256
MAX GAIALANDS = newMaxGaiaLands;
function withdraw() external onlyOwner {
  uint256 balance = address(this).balance;
  payable(ownerAddress).transfer(balance);
```


5.1.8 Long number literals

Severity: LOW Status: FIXED Code: NA

File(s) affected: GAIALand.sol

		Result/Recommendation
Long number literals hardcoded	<pre>uint256 public gaiaGoodLandPrice =</pre>	It is highly recommended long number literals should
in the contracts are prone to	75000000000000;	be checked and written in scientific notation
errors.		e.g 1e18 vs 1000000000000000000
	uint256 public gaiaRegularLandPrice =	
	250000000000000;	

5.1.9 No return value checks

Severity: LOW Status: FIXED Code: NA

Attack / Description	Code Snippet	Result/Recommendation
Contract may fail or work	function transferMATICOrWMATIC(address payable	It is highly recommended to check return values,
unexpectedly if return values	to, uint256 value) private {	especially low level calls or functions that return
are not checked.		something. IWMATIC(WMATICAddress).transfer()
	<pre>IWMATIC(WMATICAddress).deposit(value:</pre>	function returns a bool that must be checked and
	value}();	can wrap in a require.
	<pre>IWMATIC(WMATICAddress).transfer(to, value);</pre>	require(IWMATIC(WMATICAddress).transfer(to, value));
	}	
	}	

5.1.10 Inefficient use of structs

Severity: LOW Status: FIXED Code: NA

File(s) affected: GAIALand.sol

Attack / Description	Code Snippet	Result/Recommendation
Structs not properly used in	struct Auction {	It is recommended to take advantage of storage
terms of variable sizes, and	<pre>uint256 price;</pre>	packing where values smaller than 256 bits are
ordering may result in higher	string unit;	stored in the same storage slot.
gas costs.	uint256 duration;	. 1050 1 11 1 1 1 100
	<pre>uint256 startTime;</pre>	uint256 duration can be made uint32 uint256 startTime can be made uint32
	uint256 endTime;	uint256 start filme can be made uint32 uint256 endTime can be made uint32
	bool status;	uint256 id can be made uint32
	uint256 id;	uint mintld can be made uint32
	uint256 mintId;	
	address creator;	The above variables can all be packed in one
	address payable newOwner;	storage slot leading to gas savings.
	address payable preOwner;	
	}	

INFORMATIONAL ISSUES

5.1.11 Missing natspec documentation

Severity: INFORMATIONAL Status: ACKNOWLEDGED

Code: NA

Attack / Description	Code Snippet	Result/Recommendation
Solidity contracts can use a	//	It is recommended to include natspec documentation
special form of comments to		and follow the doxygen style including @author,
provide rich documentation for		@title, @notice, @dev, @param, @return and make
function, return variables, and		it easier to review and understand your smart
more. This special form is		contract.
named Ethereum Natural		
Language Specification		
Format(NatSpec).		

5.1.12 Floating compiler versions

Severity: INFORMATIONAL

Status: FIXED Code: SWC-103

Attack / Description	Code Snippet	Result/Recommendation
The current pragma solidity	pragma solidity ^0.7.0;	It is recommended to follow the latter example, as
directive is floating. It is		future compiler versions may handle certain
recommended to specify a fixed		language constructions in a way the developer did
compiler version to ensure that		not foresee. i.e. Pragma solidity 0.7.0
the bytecode produced does		
not vary between builds. This is		See SWC-103:
especially important if you rely		https://swcregistry.io/docs/SWC-103
on bytecode-level verification of		
the code.		

5.1.13 Using newest compiler version

Severity: INFORMATIONAL Status: FIXED

Status: FIXE Code: NA

Attack / Description	Code Snippet	Result/Recommendation
A higher compiler version has in		It is recommended to use the stable version 0.8.4
most cases new features		where abicoderv2 added and overflow underflow
implemented or bugs fixed.		checked automatically

5.2 SWC Attacks

ID	Title	Relationships	Test Result
SWC-131	Presence of unused variables	CWE-1164: Irrelevant Code	X
<u>SWC-130</u>	Right-To-Left-Override control character (U+202E)	CWE-451: User Interface (UI) Misrepresentation of Critical Information	~
<u>SWC-129</u>	Typographical Error	CWE-480: Use of Incorrect Operator	~
<u>SWC-128</u>	DoS With Block Gas Limit	CWE-400: Uncontrolled Resource Consumption	▼
SWC-127	Arbitrary Jump with Function Type Variable	CWE-695: Use of Low-Level Functionality	▼
<u>SWC-125</u>	Incorrect Inheritance Order	CWE-696: Incorrect Behavior Order	▼
SWC-124	Write to Arbitrary Storage Location	CWE-123: Write-what-where Condition	▼
SWC-123	Requirement Violation	CWE-573: Improper Following of Specification by Caller	▼

ID	Title	Relationships	Test Result
<u>SWC-122</u>	Lack of Proper Signature Verification	CWE-345: Insufficient Verification of Data Authenticity	▽
SWC-121	Missing Protection against Signature Replay Attacks	CWE-347: Improper Verification of Cryptographic Signature	V
<u>SWC-120</u>	Weak Sources of Randomness from Chain Attributes	CWE-330: Use of Insufficiently Random Values	▽
SWC-119	Shadowing State Variables	CWE-710: Improper Adherence to Coding Standards	V
SWC-118	Incorrect Constructor Name	CWE-665: Improper Initialization	V
SWC-117	Signature Malleability	CWE-347: Improper Verification of Cryptographic Signature	~
SWC-116	Timestamp Dependence	CWE-829: Inclusion of Functionality from Untrusted Control Sphere	▼
SWC-115	Authorization through tx.origin	CWE-477: Use of Obsolete Function	V
<u>SWC-114</u>	Transaction Order Dependence	CWE-362: Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition')	▼

ID	Title	Relationships	Test Result
SWC-113	DoS with Failed Call	CWE-703: Improper Check or Handling of Exceptional Conditions	V
SWC-112	Delegatecall to Untrusted Callee	CWE-829: Inclusion of Functionality from Untrusted Control Sphere	V
<u>SWC-111</u>	Use of Deprecated Solidity Functions	CWE-477: Use of Obsolete Function	~
SWC-110	Assert Violation	CWE-670: Always-Incorrect Control Flow Implementation	▼
SWC-109	Uninitialized Storage Pointer	CWE-824: Access of Uninitialized Pointer	✓
<u>SWC-108</u>	State Variable Default Visibility	CWE-710: Improper Adherence to Coding Standards	▽
SWC-107	Reentrancy	CWE-841: Improper Enforcement of Behavioral Workflow	~
<u>SWC-106</u>	Unprotected SELFDESTRUCT Instruction	CWE-284: Improper Access Control	~
<u>SWC-105</u>	Unprotected Ether Withdrawal	CWE-284: Improper Access Control	~
<u>SWC-104</u>	Unchecked Call Return Value	CWE-252: Unchecked Return Value	▽

ID	Title	Relationships	Test Result
SWC-103	Floating Pragma	CWE-664: Improper Control of a Resource Through its Lifetime	X
SWC-102	Outdated Compiler Version	CWE-937: Using Components with Known Vulnerabilities	~
SWC-101	Integer Overflow and Underflow	CWE-682: Incorrect Calculation	~
SWC-100	Function Default Visibility	CWE-710: Improper Adherence to Coding Standards	✓

5.3. Verify Claims

5.3.1 The GAIA NFT Land is correctly implemented with the ERC721 Standard

Status: tested and verified ✓

5.3.2 Owner cannot mint new land after minting was done

Status: tested and verified

5.3.3 Owner cannot burn land **Status:** tested and verified **✓**

5.3.4 Owner is not able to pause the contract

Status: Owner is able to pause contract via ability to call flipSaleState() function to make isActive(true or false) at any time without restriction.

5.3.5 Minting of Land is random and can't be front run

Status: tested and verified ✓

5.3.6 Mathematical calculations inside the contract are correctly performed

Status: tested and verified ✓

5.3.7 The smart contract is coded according to the newest standards and in a secure way

Status: tested and verified ✓

6. Executive Summary

Two (2) independent Chainsulting experts performed an unbiased and isolated audit of the smart contract codebase. The final debriefs took place on the January 28, 2022.

Main goal of the audit was to verify the claims regarding the security of the smart contract. During the audit, 1 Medium, 9 Low and 3 Informational issues were found, after the manual and automated security testing and not all claims have been successfully verified. Please check all issues and get back to your auditor when issues have been fixed.

Update: https://polygonscan.com/address/0xF6e3c3184c9e58D2d3d520B7D7D79feE1B5E8732#code Re-check has been done at the 25th of March 2022.

Update: https://polygonscan.com/address/0xa09795ec053826ecea14ca48346327bb33e90a78#code Re-check has been done at the 31st of March 2022. Merkle tree has been added for whitelisting's

7. Deployed Smart Contract

VERIFIED

https://polygonscan.com/address/0x1cc11c94ea60a01a5aa3c67815dc63581afb0802#code

8. About the Auditor

Chainsulting is a professional software development firm based in Germany that provides comprehensive distributed ledger technology (DLT) solutions. Some of their services include blockchain development, smart contract audits and consulting.

Chainsulting conducts code audits on market-leading blockchains such as Hyperledger, Tezos, Ethereum, Binance Smart Chain, and Solana to mitigate risk and instil trust and transparency into the vibrant crypto community. They have also reviewed and secure the smart contracts of 1Inch, POA Network, Unicrypt, Amun, Furucombo among numerous other top DeFi projects.

Chainsulting currently secures \$100 billion in user funds locked in multiple DeFi protocols. The team behind the leading audit firm relies on their robust technical know-how in the blockchain sector to deliver top-notch smart contract audit solutions tailored to the clients' evolving business needs.

The blockchain security provider brings the highest security standards to crypto and blockchain platforms, helping to foster growth and transparency within the fast-growing ecosystem.

Check our website for further information: https://chainsulting.de

