Assignment Two (Due 14/03/2024)

1. Show that if an AR(2) process is stationary, then

$$\rho_1^2 < (\rho_2 + 1)/2.$$

- **2**. Find the ACF and PACF for k=0,1,2,3 and 4 for each of the following models:
- (a) $Z_t = (1 0.8B)a_t$,
- (b) $Z_t = (1 1.2B + 0.5B^2)a_t$,
- **3**. Simulate a series of 1000 observations from each of the model with $\sigma_a = 1$ in **Q.2**. For each case, plot the simulated series, and calculate and study its sample $\hat{\rho}_k$ and PACF $\hat{\phi}_{kk}$ for $k = 01, 1, \dots, 20$.
- **4**. Verify whether or not each of the following models is stationary and /or invertible:
 - (a) $(1-B)Z_t = (1-1.5B)a_t$,
 - (b) $(1 0.8B)Z_t = (1 0.5B)a_t$,
 - (c) $(1 1.1B + 0.8B^2)Z_t = (1 1.7B + 0.72B^2)a_t$,
 - (d) $(1 0.6B)Z_t = (1 1.2B + 0.2B^2)a_t$.