Diagnosing Pediatric Pneumonia from Chest X-rays Using Convolutional Neural Networks

Caitlin Streamer

Introduction

Pneumonia is responsible for 16% of child deaths under 5 years old

Disease Profile

- Acute respiratory infection impacting the lungs
- If left untreated, it can be deadly
- Different causes require different treatments

Early detection and treatment is critical to reducing pneumonia fatalities in children

Machine learning models can help expedite the disease screening process and serve as a 2nd opinion

Clinical Decision Support System

Armed with AI systems, physicians make more accurate diagnoses

Goal to classify pediatric pneumonia from chest X-rays using machine learning

Data Gathering & Analysis

Obtained 5,000+ physician labeled pediatric chest

X-rays from a 2018 study by Kermany et al.

Image analysis revealed varying color distributions and inconsistent sizing in the X-rays

Modeling

Compared performance of newly initialized neural networks to transfer learning approach

Optimized for sensitivity to reduce number of false negatives and ensure delivery of needed treatment

False negatives

- Patient diagnosed as healthy who has pneumonia
- Disease is not treated, which can result in death
- Patient can infect others

Sensitivity

False positives

- Patient diagnosed with pneumonia who is healthy
- Treatment administered, which may have adverse health effects
- Over-prescription of antibiotics leads to rise of antibiotic resistant bacteria

Specificity

Binary classification CNN model performed best with 88% accuracy, 99% sensitivity, and 71% specificity

Multi-class VGG16 model performed best with 82% accuracy, 99% sensitivity, and 66% specificity

Conclusions

Results demonstrate feasibility of using CNNs and transfer learning to diagnose pneumonia from X-rays

Key takeaways

- Models suffered from overfitting
- Binary classification CNN performance comparable to human experts
- Viral pneumonia classification was less accurate compared to bacterial, most likely due to the smaller sample size
- Recommend VGG16 over InceptionV3 for transfer learning applications with X-rays

Models can be further improved to increase accuracy and specificity

Next steps

- Explore other transfer learning models (VGG19 and Xception)
- Replicate Kermany et al. study more closely with InceptionV3
- Binary classification between bacterial and viral pneumonia with a larger dataset

Appendix

Binary classification CNN model had a 0.96 AUC-ROC score

Binary classification CNN model is overfit due to divergence of test and train loss and accuracy scores

VGG16 multi-class classification model had an average 0.95 AUC-ROC score

VGG16 multi-class classification model is overfit due to divergence of test and train loss and accuracy scores

