General Approach for a bijection:

- 1. Setup functions $f: X \to Y$ and $g: Y \to X$.
- 2. Show that f is well defined (Properly maps to Y).
- 3. Show that g is well defined (Properly maps to X).
- 4. Show that $\forall x \in X, g(f(x)) = x$.
- 5. Show that $\forall y \in Y$, f(g(y)) = y.
- 6. Clarify that steps 4,5 imply that the pair of functions f, g are mutually inverse bijections and hence X and Y are in bijection.

(A-1-1, MATH 239 Winter 2021)

- 1. Let $k \ge 1$ be an integer. Let T denote the set of multisets of size n with t types such that for all $i \in \{1, ..., t\}$, the number of elements of the i-th type is a multiple of k. What is |T|? (Assume $k \mid n$)
- 2. Let $k \geq 0$ be an integer. Let U denote the set of multisets of size n with t types such that for each $i \in \{1, \ldots, t\}$, the number of elements of the i-th type is at least k. What is |U|? (Assume $n \geq kt$)

Solution:

1. Let H be the set of all multisets of size n/k and t types. We claim a bijection between T and H. Note that each element $(a_1, \ldots, a_t) \in T$ may be written as (kc_1, \ldots, kc_t) , where each $c_i \in \mathbb{Z}^+$. Let $f \colon T \to H$ be defined by mapping each $\alpha = (kc_1, \ldots, kc_t) \in T$ to $f(\alpha) = (c_1, \ldots, c_t)$. By construction of T, each element c_i is in \mathbb{Z}^+ and $kc_1 + \cdots + kc_n = n$ which implies that $c_1 + \cdots + c_n = n/k$ hence $f(\alpha)$ is a multieset of size n/k and t types, hence $f(\alpha) \in H$ (Recall we assume that $k \mid n$ and hence n/k is nonnegative integer). We define the inverse function $g \colon H \to T$ by simply assigning each $\gamma = (c_1, \cdots, c_t)$, to $g(\alpha) = (kc_1, \ldots, kc_t)$, which simply multiplies each element of the multiset by k. Clearly (kc_1, \ldots, kc_t) is a mutiset of size n and t types, hence $g(\gamma) \in T$. Clearly by inspection, the constructions $T \mapsto H$ and $H \mapsto T$ are mutually inverse bijections and hence,

$$|T| = |H| = \binom{n/k + t - 1}{t - 1}$$

2. Let X be the set of all multisets of size n - kt at t types. We claim a bijecton between X and U. Note that each element $(m_1, \ldots, m_t) \in U$ may be written as $(c_1 + k, \ldots, c_t + k)$, where each $c_i \in \mathbb{Z}^+$. Let $f: U \to X$ be defined by mapping each $\alpha = (c_1 + k, \ldots, c_t + k) \in T$ to $f(\alpha) = (c_1, \ldots, c_t)$. By construction of U, each element c_i is in \mathbb{Z}^+ and $(c_1+k)+\cdots+(c_t+k)=n$ which implies that $c_1 + \cdots + c_t = n - kt$, hence $f(\alpha)$ is a multiset of size n - kt and t types hence $f(\alpha) \in X$. (Recall we assume that $n \geq kt$). We define $g: X \to U$ by assigning each