Propagação e Radiação de Ondas Eletromagnéticas

2023/2024

Propagação e Radiação de Ondas Eletromagnéticas

1) O cabo coaxial representado na Figura 1, em corte longitudinal, tem as características descritas abaixo. Calcule os parâmetros distribuídos do cabo a 100 MHz (Nota 1''=2.54 cm). *Resp: R=0.419 Ω/m, L=253.4 nH/m, C=92.1 pF/m, G=8.68 μS/m*.

Figura 1 Geometria de um cabo coaxial

Condutores de cobre:
$$\sigma=5.8\times 10^7 Sm^{-1}$$
 $\mu=\mu_0=4\pi\times 10^{-7} Hm^{-1}$ $\varepsilon=\varepsilon_r\varepsilon_0=\varepsilon_r\frac{1}{36\pi}10^{-9}F/m$ Dielétrico de "Teflon": $\varepsilon_r=2.1$ $\tan\delta=15\times 10^{-5}$

2) Considere uma antiga linha telefónica aérea com a geometria indicada na Figura 2 e assuma a aproximação de altas frequências. O material é cobre com $\sigma = 5.8 \times 10^7$ S/m. Em condições normais de humidade e temperatura, o fator de perdas do ar é $\tan \delta = 5.10^{-5}$.

Figura 2 Geometria de uma linha bifilar

- a) Calcule os parâmetros distribuídos da linha para f=1 MHz. Nota: assuma como nula a contribuição da auto indutância dos condutores para a indutância distribuída. $Resp: R=62.9 \ m\Omega/m, L=2.18 \ \mu H/m, C=5.10 \ pF/m, G=1.60 \ nS/m$
- b) Determine a impedância característica e a constante de propagação da linha a 1 MHz. Resp: $Z_0 \approx 652.97$ - $j1.48 \Omega e \gamma \approx 0.0487 + j20.944 km^{-1}$
- c) Compare, de uma forma genérica, a ordem de grandeza da capacidade e da indutância distribuída desta linha com os mesmos parâmetros de um cabo coaxial. Comente igualmente, na mesma perspetiva, a impedância característica.

3) Considere as seguintes especificações de um cabo UTP Cat6A da Siemens. Como pode observar é um cabo de 4 linhas bifilares (4 pares) com condutor sólido $\underline{23AWG}$ (diâmetro 0.56 mm). Assuma a espessura da manga de plástico igual 0.28mm, a constante dielétrica do plástico polietileno como $\epsilon_r = 2.25$ e que esta envolve completamente o par.

Figura 3 Descrição de um cabo UTP Cat6A

- a) Estime os valores da indutância e capacidade distribuída a alta frequência. *Resp: C=47.5 pF/m; L=526.8 nH/m*
- b) Estime a impedância característica da linha nas condições acima. Resp: $Z_0=105.4\,\Omega$. Nota as especificações referem $100\,\Omega$ (+/-15%)
- c) Calcule, a 400 MHz, a constante de atenuação α devido a perdas por efeito de Joule no cobre (Nota: ignore as perdas no dielétrico). *Resp:* 24.5 *dB/100 m*.
- 4) Consider the specifications of the <u>Heliax Coaxial Cable LDF4-50A</u> and read all the specifications carefully. Solve the following questions always considering high frequency approximations.
- a) Calculate the characteristic impedance Z_0 using the distributed parameters L and C and compare with the specified value. *Resp*: 50.07Ω
- b) Calculate the velocity V_p using also using the above specified distributed parameters and using de velocity factor (88%). *Resp*: 2.635E8; 2.64E8 m/s
- c) Compute the cable relative dielectric constant ε_r from the velocity factor. Resp: ε_r =1.291
- d) Estimate the distributed resistance R at 1 MHz assuming the high frequency approximations and the tabulated attenuation at this same frequency. Assume the contribution of G to the attenuation constant at this frequency to be negligible. $Resp: R=0.0243 \ \Omega/m$
- e) Using the tabulated attenuation at 5000MHz and the results from d) estimate the distributed conductance G at this frequency and write it as a function of frequency. Resp: $G_{5000MHz}=1.43E-4$ S/m, $G=f^*2.86E-8$ S/m (with f in MHz)
- 5) Perform the analysis/synthesis of the following microstrip or coplanar transmission lines implemented in an FR4 dielectric with h=1.6 mm, $\epsilon_r=4.7$, copper thickness t=35 μ m and $tag(\delta)=0.025$. Recommendation: Use the TXLine program downloadable from the link https://www.cadence.com/ko_KR/home/tools/system-analysis/rf-microwave-design/awr-tx-line.html.
- a) Compute the characteristic impedance and effective dielectric constant at 500 MHz for the following situations. Comment about the *&ref.*
 - i. W of the strip: 0.2 mm; Resp: $\varepsilon_{ref}=3.0$; $Z_0=135 \Omega(aprox)$

ii. W of the strip: 0.96 mm; Resp: ε_{ref} =3.26; Z_0 =85 Ω (aprox) iii. W of the strip: 10.0 mm; Resp: ε_{ref} =3.93; Z_0 =21 Ω (aprox)

b) Calculate the microstrip line width W for the following characteristic impedances at 500 MHz and comment about the attenuation constant.

i. $Z_0=50 \Omega$ Resp: W=2.874 mm

ii. Z_0 =100 Ω . Resp: W=0.611 mm

- c) Calculate a combination of the gap distance G and the width W of a coplanar line with GND (CPW Ground) at 500 MHz for a Z_0 =50 Ω characteristic impedance. Assume that a gap less than 0.20 mm is difficult to manufacture.
- 6) Consider a uniform transmission line along which a voltage wave is defined by:

$$v(x,t) = 10e^{-0.02x}\cos(2000t - 0.2x) \text{ V}$$

- a) Write the voltage equation in phasor format.
- b) Identify the numerical values of the expression and indicate the respective units. *Resp:* V_1 =10 V, β =0.2 rad/m, λ = 10 π m, ω =2000 rad/s
- c) Draw the polar diagram of the line voltage to $t = 157 \,\mu s$ in a distance between x = 0 and $x = \lambda$. Resp: espiral com raio entre 10 e fase 18^{ϱ} e 5.34 com fase 18^{ϱ} descrita CW (no sentido dos ponteiros do relógio).
- d) Determine the locus of the voltage phasor affixes at a point 10 meters away from the start of the line. Resp: Circunferência de raio V(x=10)=8.2 V.
- e) Calculate the distance from the start of the line where the wave amplitude reduces to 8 V. *Resp:* 11.16 *m*.
- 7) Consider the following equation (function of x that is the distance to the generator plane) for the voltage in a lossless 50 Ω characteristic impedance transmission line used at 300 MHz with dielectric air, l = 10.5 m long and with $V_1 = 4$ V and $V_2 = (\sqrt{3} + 1j)$ V.

$$V(x) = V_1 e^{-\gamma x} + V_2 e^{+\gamma x}$$

- a) Calculate γ and write the full phasor equation for the voltage in the transmission line. *Resp:* γ =j 2 π rad/m
- b) Write the phasor equation for the current I(x).
- c) Write both equations in the time domain as a function of x.
- d) Calculate the voltage phasor and current phasor at the generator plane V(x = 0) and I(x = 0). Resp: V(x=0)=5.73+1j V; I(x=0)=0.0454-0.02j A
- e) Calculate the voltage phasor, current phasor at the load impedance plane V(x = 10.5) and I(x = 10.5) and the load impedance Z_L . Resp: V(x=10.5)=-5.73-1j V; I(x=10.5)=-0.0454+0.02i A; $Z_L=97.7+65j$ Ω .
- f) Calculate the load reflection coefficient. Resp: $\rho = 0.433 + 0.25$
- g) Calculate the reflection coefficient ρ observed at the generator plane. Resp: $\rho(x=0)=0.433+0.25i$
- h) Calculate the transmission coefficient at the load plane. Resp: ρ₁₁=1.433+0.25j

- 8) Using the same data as in question 7), answer the following questions.
- a) Write the voltage equation as a function of d (note that x + d = l).
- b) Write the current equation as a function of d.
- 9) A coaxial transmission line has a velocity factor of 81%, attenuation constant α =8.9 dB/100 m at 600 MHz and is terminated by an unknown load. Furthermore, somewhere at $x = x_1$ from the generator, a reflection coefficient of $\rho(x_1) = 0.2 + j0.5$ was measured.
- a) Calculate the propagation constant γ . Resp: γ =0.0102+j15.514 m⁻¹
- b) Calculate the reflection coefficient at 10 m from the reference point and closer to the load. *Resp:* $\rho = -0.5942 j0.2895$
- c) Calculate the reflection coefficient at 10 m from the reference point and closer to the generator. Resp: ρ =0.1531 j0.4112
- d) What is the distance d_c to the closest point where a real only (positive or negative) reflection coefficient can be observed? *Resp:* d_c =0.0384 m (towards the generator).
- e) At what distance from the reference point does the reflected voltage have 1 Neper "amplification"? *Resp:* 98.04 *m* (towards the load)
- f) At what distance from the reference point does the incident voltage have 1 Neper attenuation? *Resp:* 98.04 *m* (towards the load).
- 10) Calcule e represente no plano complexo o coeficiente de reflexão ρ , a uma frequência f=100 MHz (quando necessário), das seguintes cargas que terminam uma linha de impedância característica Z_0 =50 Ω :
- a) R=10 Ω e R=250 Ω (comente). Resp: ρ_L =-0.67; ρ_L =+0.67
- b) R=0 Ω e R= ∞ Ω (comente). Resp: ρ_L =-1; ρ_L =+1
- c) C=50 pF; L=200 nH. Resp: ρ_L = -0.42 j0.91; ρ_L =0.73+j0.69
- d) R=10 Ω em série com 50 pF e R=250 Ω em paralelo com 50 pF. Resp: ρ_L =-0.30-j0.69; ρ_L =-0.39-j0.80
- e) R=10 Ω em série com 50 nH e R=250 Ω em paralelo com 50 nH. Resp: ρ_L =-0.31+j0.68; ρ_L =-0.40 + j0.80
- 11) Uma linha de transmissão com impedância característica Z_0 =50 Ω é utilizada à frequência de 15 MHz. A carga é constituída por uma resistência de 80 Ω em paralelo com um condensador de 450 pF. A linha é atacada por um gerador com impedância $Z_g = Z_0$ e tensão interna eficaz $V_g = 2$ V.
- a) Determine e coeficiente de reflexão de tensão na carga. Resp: ρ_L =-0.545 j0.594
- b) Calcule a menor distância à carga, d_{max} , a que ocorre um máximo de tensão e calcule a respetiva amplitude bem como a correspondente amplitude da corrente. Resp: $d_{max}=0.316\lambda$; $V_{max}=1.81~V$; $I_{min}=3.88~mA$
- c) Calcule a menor distância à carga, d_{min} , a que ocorre um mínimo de tensão e calcule a respetiva amplitude bem como a correspondente amplitude da corrente. Resp: $d_{min} = 0.066\lambda$; $V_{min} = 0.194 \ V$; $I_{max} = 36.12 \ mA$
- d) Determine o coeficiente de reflexão para DC e para uma frequência infinita. Resp: ρ_L =0.231; ρ_L =-1
- 12) Assume a lossless transmission line with Z_0 =50 Ω and an air dielectric operating at 150 MHz and terminated in a load impedance $Z_L = 20 + j50 \Omega$.
- a) What is the value of the line input impedance at 3 m from the load? (no calculation is allowed).

- b) Calculate the load reflection coefficient ρ_L and the VSWR. Resp: ρ_L =0.054 + 0.676j; VSWR=5.2.
- c) Compute the impedance at voltage standing wave minimum and maximum. Resp: Z_{max} =260.4 and Z_{min} =9.6 Ω .
- d) Calculate the input impedance at 0.5 m from the load. Note: The general formula of a lossless transmission line can be used or the $\lambda/4$ transformer formula. *Resp:* $Z(d = 0.5)=17.24-j40 \ \Omega$.
- 13) Using the same data as in question 12), answer the following questions.
- a) Compute the capacitance C_1 of a capacitor that, in series with Z_L , achieves a serial resonance. *Resp:* C_1 =21.2 pF.
- b) Calculate the characteristic impedance Z_{01} of a $\lambda/4$ transformer that matches the impedance of a) to the transmission line Z_0 =50 Ω . Sketch a schematic of this matching circuit showing all components and lengths assuming the dielectric is air. *Resp: l=0.5 m, Z*₀₁=31.6 Ω
- c) Calculate the load admittance YL. Resp: YL=6.9-17.2j mS.
- d) Compute the capacitance C_2 that, in parallel with Z_L , achieves a parallel resonant circuit. *Resp:* $C_2=18.3 \ pF$
- e) Calculate the characteristic impedance Z_{01} of a $\lambda/4$ transformer that matches the impedance of a) to the transmission line Z_0 =50 Ω . Sketch a schematic of this matching circuit showing all components and lengths assuming the dielectric is air. *Resp: l=0.5 m, Z*₀₂=85.1 Ω .
- f) What is the VSWR in the $\lambda/4$ transformer lines? *Resp: VSWR*₁=1.58; *VSWR*₂=1.70
- 14) Uma linha de transmissão "sem perdas" com 1.25λ de comprimento e impedância característica Z_0 =50 Ω é terminada por outra linha de transmissão "sem perdas" com o mesmo comprimento e impedância característica Z'_0 =75 Ω . Esta última linha é terminada por uma resistência de $100~\Omega$.
- a) Determine a impedância de entrada da 1ª linha de transmissão. Resp: Z_{in} =44.4 Ω
- b) Diga qual é a impedância a DC. Resp: Z_{in} =100 Ω
- 15) Mostre, usando a expressão geral da impedância de entrada de uma linha de transmissão, que para uma linha sem perdas de impedância característica Z₀:
- a) A impedância de entrada da linha quando terminada na sua impedância característica ($Z_0 = Z_L = Z_0$) é igual à própria impedância característica.
- b) A impedância de entrada de uma linha terminada em CC (curto-circuito) ou CA (circuito aberto) e de comprimento $d = \lambda/8$ (ou $d = (4n + 1) = \lambda/8$), é uma reactância indutiva ou capacitiva (respetivamente) de módulo igual à impedância característica da linha.
- c) A impedância de entrada de uma linha a uma distância Δd =+/-n λ /2 (n inteiro) de um ponto a uma distância d da carga é exatamente igual à impedância neste ponto (ou seja $Z(d + \Delta d) = Z(d)$). Sugestão: tenha atenção à periodicidade da função tag com π .
- d) Mostre que a impedância de entrada normalizada (Z_{in}/Z_0) a uma distância $\Delta d = +/-(2n+1)\lambda/4$ de um ponto d é tal que $Z(d+\Delta d)/Z_0 = Z_0/Z(d)$
- 16) Uma linha de transmissão de impedância característica Z_{01} , cujo comprimento l da linha tal que $l/\lambda << 1$, é intercalada entre uma linha de impedância característica Z_0 e uma carga $R_L=Z_0$. Mostre que:
- a) Caso Z01<RL (linha "mais capacitiva" que Z0) a impedância que se apresenta à entrada do troço Z01

- é semelhante ao paralelo de RL com um condensador.
- b) Caso Z₀₁>R_L (linha "mais indutiva" que Z₀) a impedância que se apresenta à entrada do troço Z₀₁ é semelhante um circuito série de R_L com uma indutância.
 - Nota: este comportamento é usado para implementar filtros passa-baixo do tipo "stepped-impedance" a abordar na UC de EMOA.
- 17) A impedância de entrada duma linha de transmissão terminada em CC é \mathbf{Z}_{in} =33.5-j34 Ω . A linha tem uma atenuação total de 3.75 dB e o seu comprimento é 15.38 λ . Determine a impedância característica da linha. *Resp:* Z_0 =50 Ω .
- 18) Escreva as expressões da admitância de entrada normalizada de linhas de transmissão sem perdas terminadas em circuito aberto e em curto-circuito, designando por ℓ o seu comprimento e por β a constante de fase à frequência de serviço. Mostre que a impedância de entrada normalizada de qualquer linha de transmissão terminada em circuito aberto é igual à admitância de entrada normalizada da mesma linha terminada em curto-circuito.
- 19) Num circuito utilizado à frequência de 300 MHz pretende-se realizar uma capacidade de 20 pF à custa duma secção de linha de transmissão sem perdas com Z_0 =50 Ω terminada em curto-circuito. Determine o comprimento da linha necessário para esse efeito. *Resp:* l=0.4224 λ .
- 20) Considere uma linha de transmissão com atenuação desprezável terminada em circuito aberto.
- a) Mostre que, se o comprimento da linha for inferior a 1% do comprimento de onda, a sua impedância de entrada será igual à reactância correspondente a um condensador de capacidade $C\ell$ (F), sendo C a capacidade distribuída (F/m) da linha.
- b) Determine o comprimento elétrico da linha necessário para que a sua impedância de entrada seja a reactância correspondente a uma capacidade tripla de $C\ell$. Resp: $l=0.19 \lambda$.
- c) Repita a alínea a) agora para uma linha terminada em CC para mostrar que a impedância de entrada será igual à reactância correspondente a uma indutância de valor $L\ell$ (H), sendo L a indutância distribuída (H/m) da linha.
- 21) Considere o sistema radiante representado na figura, constituído por duas antenas com impedâncias de entrada $Z_1=300~\Omega$ e $Z_2=75~\Omega$ alimentadas por uma linha $Z_0=300~\Omega$.
- a) Sugira um conjunto de valores Z_{01} , Z_{02} , d_1 e d_2 que torne o sistema "adaptado" (sem reflexões) e que garanta uma repartição equitativa da potência pelas duas antenas, que deverão ser alimentadas em oposição de fase. Resp: $Z_{01} = 424.27 \Omega$, $Z_{02} = 212.13 \Omega$, $d_1 = 0.25 \lambda$, $d_2 = 0.75 \lambda$.
- b) Qual será a impedância de entrada do sistema ao dobro da frequência de projeto?

- 22) Pretende-se ligar um gerador com impedância interna Z_g =600 Ω a uma carga \mathbf{Z}_L =75+j75 Ω usando uma linha de transmissão com Z_o =600 Ω .
- a) Para adaptar a carga à linha pode ser utilizado o sistema representado na Figura 5, constituído por um transformador de $\lambda/4$ e por uma secção de linha de transmissão terminada em curto-circuito e ligada em paralelo com a carga. Determine Z'_0 e \underline{s} necessários para produzir a adaptação. *Resp:* $Z'_0=300 \ \Omega$, $s=0.461\lambda$
- b) Será possível conseguir adaptação com o simples transformador de linha de transmissão representado na Figura 6? Em caso afirmativo determine a impedância característica Z_1 e o comprimento l que esse transformador deverá ter. $Resp: Z_1=196.4 \ \Omega, \ \ell=0.1845 \lambda$.

Figura 5 Sistema de adaptação com transformador $de \, \frac{\lambda}{4}$

Figura 6 Sistema adaptação com troço de linha

- 23) Deduza as distintas expressões que conseguir para a potência entregue a uma carga por uma linha sem perdas e impedância característica real calculando-a nos pontos de máximo e mínimo de tensão. Os resultados devem envolver uma ou mais das grandezas seguintes: amplitude da tensão e corrente nestes pontos (V_{Max}, V_{Min}, I_{Max}, I_{Min}) e VSWR.
- 24) Uma linha de transmissão com perdas desprezáveis possui Z_0 =50 Ω e termina numa carga Z_L =51.5+j45 Ω . Se a potência disponível do gerador for de 150 mW, qual será a corrente na carga? *Resp: 50 mA*
- 25) Considere uma linha de 10 m de comprimento, constante de atenuação $\alpha = 0.02 \ Np/m$ e impedância característica Z_0 =50 Ω . O gerador tem impedância interna de R_g =50 Ω e tensão V_g =20 V (rms). Sabendo que a impedância de carga é Z_L = 50 + j50 Ω calcule:
- a) A potência disponível do gerador. Resp: 2W
- b) A potência incidente na carga. Resp: 1.34W
- c) A potência entregue à carga. Resp: 1.07W
- d) A potência incidente dissipada na linha. Resp:0.66W
- e) A potência entregue pelo gerador à linha. Resp: 1.82W
- f) A potência total dissipada na linha. Resp: 0.75W
- 26) Considere as potências da primeira e última alínea do problema 25).
- a) Converta as potências para dBm e para dBW. Resp: 3 dBW ou 33 dBm; -1.25 dBW ou 28.75 dBm.
- b) Calcule o valor quadrático médio das tensões correspondentes a estas potências num sistema com Z₀=75 Ω. *Resp:* V=12.25 e 7.5 V

- c) Calcule o valor quadrático médio das tensões, mas agora num sistema Z₀=50 Ω. Resp: V=10 e 6.12 V
- 27) O Wilkinson power divider (WPD) é um dispositivo com três portas (P1, P2 e P3) que é usado frequentemente em engenharia de micro-ondas: circuitos de RF no geral e de alimentação de antenas. A arquitetura do dispositivo apresenta-se Figura 7 para uma implementação em linhas microstrip. A frequência ótima de operação, ou frequência de projeto f_p , corresponde àquela para a qual os dois ramos, de impedância característica $Z_{01}=\sqrt{2}Z_0$, possuem um comprimento de $\lambda/4$. As portas do dispositivo devem estar sempre adaptadas, ou seja, terminadas numa resistência de valor Z_0 (vamos assumir $Z_0=50\Omega$). Entre as portas 2 e 3 existe uma resistência $R_t=2Z_0$.

Figura 7 WPD à frequência de projeto (esquema) e uma implementação em linhas microstrip com conectores SMA

- a) Mostre que a impedância de entrada (porta 1) à frequência de projeto é 50Ω e calcule a potência entregue na porta 1 e na porta 2 supondo a tensão incidente de $\sqrt{50}$ V (valor eficaz). Resp: $P_{p2}=P_{p3}=0.5$ W
- b) Calcule a impedância de entrada (porta1) a f=0 e $f=2f_p$ e a potência entregue na porta 2 e na porta 3 a estas frequências. $Resp: Z_{p1}=25\Omega; \ P_{p2}=P_{p3}=\frac{4}{9}W$
- c) Suponha que é colocado um CC na porta 2. Calcule para a frequência f_p a impedância de entrada, a potência entregue à carga na porta 3 e a potência dissipada em R_t . $Resp: Z_{p1} = 150\Omega; \ P_{p3} = 0.5W; P_{Rt} = 0.25 \ W$
- d) Suponha que a porta 2 é deixada em aberto. Calcule a impedância de entrada a DC e a $2f_p$. Resp: $Z_{p1}=50\Omega$
- e) Suponha que a porta 2 é deixada em CC. Calcule a impedância de entrada a DC e a $2f_p$. $Resp: Z_{p1} = 0\Omega$.

Constantes:

 $\sigma = 5.8 * 10^{-7} \, S/m$ Condutividade do cobre $\mu_0 = 4\pi \, 10^{-7} \, H/m$ Permeabilidade do vazio $\epsilon_0 = \frac{1}{36\pi} 10^{-9} \, F/m$ Permitividade do vazio