\square Inégalité d'Hoeffding – Soit $Z_1,...,Z_m$ m variables iid tirées d'une distribution de Bernoulli de paramètre ϕ . Soit $\widehat{\phi}$ leur moyenne empirique et $\gamma > 0$ fixé. On a :

$$P(|\phi - \widehat{\phi}| > \gamma) \le 2 \exp(-2\gamma^2 m)$$

Remarque : cette inégalité est aussi connue sous le nom de borne de Chernoff.

 \square Erreur de training – Pour un classifieur donné h, on définit l'erreur d'entrainement $\widehat{\epsilon}(h)$, aussi connu sous le nom de risque empirique ou d'erreur empirique, par :

$$\widehat{\epsilon}(h) = \frac{1}{m} \sum_{i=1}^{m} 1_{\{h(x^{(i)}) \neq y^{(i)}\}}$$

- □ Probablement Approximativement Correct (PAC) PAC est un cadre dans lequel de nombreux résultats d'apprentissages ont été prouvés, et contient l'ensemble d'hypothèses suivant:
 - les jeux d'entrainement et de test suivent la même distribution
 - les exemples du jeu d'entrainement sont tirés indépendamment
- \square Éclatement Étant donné un ensemble $S = \{x^{(1)},...,x^{(d)}\}$, et un ensemble de classifieurs \mathcal{H} , on dit que \mathcal{H} brise S si pour tout ensemble de labels $\{y^{(1)},...,y^{(d)}\}$, on a:

$$\exists h \in \mathcal{H}, \quad \forall i \in [1,d], \quad h(x^{(i)}) = y^{(i)}$$

 \square Théorème de la borne supérieure – Soit $\mathcal H$ une hypothèse finie de classe telle que $|\mathcal H|=k$, soit δ , et soit m la taille fixée d'un échantillon. Alors, avec une probabilité d'au moins $1-\delta$, on

$$\widehat{\epsilon(h)} \leqslant \left(\min_{h \in \mathcal{H}} \epsilon(h)\right) + 2\sqrt{\frac{1}{2m} \log\left(\frac{2k}{\delta}\right)}$$

 \square Dimension VC – La dimension de Vapnik-Chervonenkis (VC) d'une classe d'hypothèses de classes infinies donnée \mathcal{H} , que l'on note $VC(\mathcal{H})$, est la taille de l'ensemble le plus grand qui est brisé par \mathcal{H} .

Remarque: la dimension VC de $\mathcal{H} = \{set \ of \ linear \ classifiers \ in \ 2 \ dimensions \}$ est égale à

Théorème (Vapnik) – Soit \mathcal{H} donné, avec $VC(\mathcal{H}) = d$ avec m le nombre d'exemples d'entrainement. Avec une probabilité d'au moins $1 - \delta$, on a :

$$\widehat{\epsilon(h)} \leqslant \left(\min_{h \in \mathcal{H}} \widehat{\epsilon(h)}\right) + O\left(\sqrt{\frac{d}{m}\log\left(\frac{m}{d}\right) + \frac{1}{m}\log\left(\frac{1}{\delta}\right)}\right)$$