Fiche élève — Généralités sur les suites (Rappels de Première) Suites — EDS Terminale

Auteur : Alaeddine Ben Rhouma — Lycée Pierre Mendès France, Tunis • © Propriété intellectuelle

Sommaire (impression)

- 1. 1. Définir une suite
- 2. 2. Monotonie d'une suite
- 3. 3. Suites arithmétiques et géométriques

1. Définir une suite

Définition. Une suite (u_n) est une application $u:\mathbb{N}\to\mathbb{R}$, $n\mapsto u_n$. L'indice de départ est précisé (souvent n=0 ou n=1).

Deux modes de définition. Explicite : $u_n = f(n)$. Récurrente : u_0 (ou u_1) donné et relation $u_{n+1} = g(u_n)$.

Suite arithmétique. $u_{n+1}=u_n+r$ (raison r). Alors $u_n=u_0+nr$. Somme :

$$\sum_{k=0}^n u_k = rac{n+1}{2}(u_0+u_n)$$
. Variations : $r>0$ croissante, $r<0$ décroissante, $r=0$ constante.

Suite géométrique. $u_{n+1}=q\,u_n$ (raison q). Alors $u_n=u_0\,q^n$. Somme : si q
eq 1, $\sum_{k=0}^n u_k=u_0\,rac{1-q^{n+1}}{1-q}$; sinon $(n+1)u_0$.

Limites usuelles : $|q|<1\Rightarrow q^n\to 0$; q=1 constante; q=-1 non convergente; |q|>1 divergence en module (alternance si q<0). Une arithmétique u_0+nr diverge si $r\neq 0$.

1

Explicite : $u_n = (-1)^n$ (on peut calculer u_9 immédiatement).

- Récurrente : $w_{n+1} = 5w_n + 3$ (il faut connaître un terme initial).
- On peut souvent passer d'une définition à l'autre selon la question étudiée.
- La suite peut être notée u; u_n désigne le n-ième terme de la suite u.

2. Monotonie d'une suite

Tout ouvrir

Croiss. partir du rang p si $\forall n \geq p$,

croissante à $u_{n+1} > u_n$. Strictement décroissante si \$u_{n+1}

Strictement

Croissante si Large $u_{n+1} \geq u_n$; décroissante si $u_{n+1} \leq u_n$. Stationnaire/constante à partir d'un rang si $u_{n+1} = u_n$ pour tout

n assez grand.

(1) Si $u_n = f(n)$ (définition explicite), les variations de (u_n) suivent celles de f.

(2) Si $u_{n+1} = f(u_n)$ (définition récurrente), les variations $de(u_n)$ ne suivent pas forcément celles de f.

Utilité Décider si
$$(u_n)$$
 est croissante/décroissante via $\Delta_n = u_{n+1} - u_n$.

Énoncé
$$\forall n$$
, $\Delta_n \geq 0 \Rightarrow (u_n)$ croissante; $\Delta_n \leq 0 \Rightarrow$ décroissante.

Idée Si
$$u_{n+1}-u_n\geq 0$$
 alors $u_{n+1}\geq u_n.$ En enchaînant, on obtient $u_{n+k}\geq u_n.$

$$egin{aligned} extstyle egin{aligned} ext$$

Idée Comparer u_{n+1}/u_n est utile pour les suites de type exponentiel.

3. Suites arithmétiques et géométriques

Tout ouvrir

Formule
$$u_{n+1}=u_n+r\iff u_n=u_0+nr.$$

Somme
$$\sum_{k=0}^n u_k = rac{n+1}{2}(u_0+u_n)$$
.

Généralisation Pour tous entiers
$$n,p$$
, $u_n=u_p+(n-p)r$.

Variations r>0 croissante; r<0 décroissante.

Ex
$$u_0=2, \ r=3 \Rightarrow u_n=2+3n;$$
 $\sum_{k=0}^4 u_k = \frac{5}{2}(u_0+u_4) = \frac{5}{2}(2+14) = 40.$

Formule
$$u_{n+1} = q \, u_n \iff u_n = u_0 \, q^n$$
.

Somme Si
$$q
eq 1$$
, $\sum_{k=0}^n u_k = u_0 \, rac{1-q^{n+1}}{1-q}$; sinon $(n+1)u_0$.

Généralisation Pour tous entiers n, p, $u_n = u_p \, q^{n-p}$.

Limites
$$|q| < 1 \Rightarrow u_n o 0; q > 1 \Rightarrow |u_n| o +\infty$$
 (si $u_0
eq 0$).

$$u_0 = 8, \ q = \frac{1}{2} \Rightarrow u_n = 8\left(\frac{1}{2}\right)^n; \sum_{k=0}^3 u_k = 8 \frac{1 - (1/2)^4}{1 - 1/2} = 15.$$

Règle
$$|q|<1\Rightarrow q^n o 0$$
; arithmétique u_0+nr diverge si $r
eq 0$; $(-1)^n$ n'a pas de limite.

Ex
$$u_n=5\cdot (0.8)^n o 0; v_n=3-2n o -\infty.$$

Arith.
$$u_{n+1}=u_n+r\Rightarrow u_n=u_0+nr.$$

Géo.
$$u_{n+1}=q\,u_n\Rightarrow u_n=u_0\,q^n.$$

Attention Vérifier l'indice de départ (0 ou 1) avant d'appliquer les formules de somme.

Confondre $\sum_{k=0}^{n}$ et $\sum_{k=1}^{n}$ change les résultats.

Méthodologie par type d'exercice

Tout ouvrir

- Identifier le type : arithmétique ($u_{n+1}-u_n$ constant), géométrique (u_{n+1}/u_n constant pour $u_n \neq 0$), autre.
- Relever l'indice de départ (u_0 ou u_1) et la ou les constantes (raison r ou q).
 - Ex $u_0=2,\;u_{n+1}=u_n+5$ \Rightarrow arithmétique (r=5). $v_1=3,\;v_{n+1}=2v_n$ \Rightarrow géométrique (q=2) à partir de n=1.
- Arithmétique : $u_n = u_0 + nr$.
- Géométrique : $u_n = u_0 q^n$.

Ex
$$w_0=7,\ w_{n+1}=w_n-2$$
 \Rightarrow $w_n=7-2n.\ x_0=5,\ x_{n+1}=rac{3}{4}x_n$ \Rightarrow $x_n=5\,(rac{3}{4})^n.$

- $oxed{1}$ Calculer $u_{n+1}-u_n$ (ou u_{n+1}/u_n si $u_n>0$) et conclure.
- Pour une géométrique $u_0>0$: q>1 \Rightarrow croissante; \$0

Ex
$$u_n=2+3n$$
 1; $v_n=8\cdot 0,5^n$ \downarrow vers 0.

- $oxed{1}$ Arithmétique : $S_n = \sum_{k=0}^n u_k = rac{n+1}{2}(u_0+u_n).$
- Géométrique (q
 eq 1) : $S_n = \sum_{k=0}^n u_k = u_0 \, rac{1 q^{n+1}}{1 q}$.
 - Si $u_k=3+2k$ (arith.), alors $\sum_{k=0}^{10}u_k=rac{11}{2}(u_0+u_{10})=rac{11}{2}(3+23)=143.$
- $|q| < 1 \Rightarrow q^n o 0; \, q = 1 \Rightarrow$ constante; $|q| > 1 \Rightarrow$ divergence en module.
- 2 Arithmétique u_0+nr : si r>0, $o +\infty$; si r<0, $o -\infty$.

Ex
$$x_n=5\cdot (0,\!8)^n o 0$$
, $y_n=1-0,\!2n o -\infty$.

Checklist avant de rendre

- J'ai indiqué le type de la suite (arithmétique, géométrique, autre) et l'indice de départ.
- J'ai écrit la **formule** (explicite/récurrente) et les paramètres (u_0 , r ou q).
- Variations justifiées (signe de $u_{n+1}-u_n$ ou du quotient).
- Pour une somme, j'ai vérifié les **bornes d'indice** et le cas q = 1.
- Limites : j'ai appliqué les règles usuelles correctement.

Rappels rapides (formules utiles)

- Arith. $u_{n+1}=u_n+r\iff u_n=u_0+nr$; somme $\sum_{k=0}^n u_k=rac{n+1}{2}(u_0+u_n)$.
- ullet Géo. $u_{n+1}=q\,u_n\iff u_n=u_0\,q^n$; somme si q
 eq 1, $\sum_{k=0}^nu_k=u_0\,rac{1-q^{n+1}}{1-q}$.
- Limites : $|q| < 1 \Rightarrow q^n \to 0$; q=1 constante; |q| > 1 divergence; $(-1)^n$ non convergente.
- Monotonie : $u_{n+1}-u_n\geq 0$ \Rightarrow croissante; si $u_n>0$, $\dfrac{u_{n+1}}{u_n}\geq 1$ \Rightarrow croissante.

Mini-entraînements éclair

Tout ouvrir

1 Reconnaître le type : $u_0=4,\;u_{n+1}=u_n-3.$

Suite arithmétique de raison

$$egin{aligned} r &= -3 \ u_n &= 4 - 3n \ . \end{aligned}$$

2 Somme géométrique : $u_n = 5 \cdot (0.8)^n$. Calculer $\sum_{k=0}^3 u_k$.

$$5\frac{1-0.8^4}{1-0.8} = 5\frac{1-0.4096}{0.2} = 5 \cdot 2.952 = 14.76$$

- 3 Limite : pour $q=rac{1}{2}$, compléter : « $q^n \ ?$ » Vérifier
- 4 Variations : $v_n = 9 \cdot 1, 2^n$ ($v_n > 0$).

$$rac{v_{n+1}}{v_n}=1,\!2>1$$
 \Rightarrow (v_n) croissante et $o +\infty$.

 $oldsymbol{5}$ Étudier le sens de variation de $u_n=2n^2+n+5$.

$$u_{n+1}-u_n=2((n+1)^2-n^2)+1=2(2n+1)+1=4n+3>0$$
 $orall n\in \mathbb{N}$ \Rightarrow (u_n) strictement croissante.

 $oldsymbol{6}$ Étudier le sens de variation de $v_{n+1}=v_n-2$, $v_0=-1$.

$$v_{n+1}-v_n=-2<0$$

$$(v_n)$$
 strictement décroissante; de plus $v_n=-1-2n$.

- 7 Soit $u_0=0$ et $u_{n+1}=-rac{1}{2}u_n+1$; poser $v_n=u_n-rac{2}{3}$.
 - (i) u n'est ni arithmétique ($u_{n+1}-u_n=-rac{3}{2}u_n+1$ dépend de n) ni géométrique ($rac{u_{n+1}}{u_n}=-rac{1}{2}+rac{1}{u_n}$ non constant).
 - (ii) $v_{n+1}=u_{n+1}-\frac23=-\frac12u_n+1-\frac23=-\frac12(u_n-\frac23)=-\frac12v_n.$ Donc (v_n) est géométrique de raison $q=-\frac12$ et $v_0=u_0-\frac23=-\frac23.$

Erreurs fréquentes à éviter

- Oublier de préciser **l'indice de départ** et/ou le **type** de la suite.
- Confondre r et u_0 en arithmétique; oublier le cas q=1 en géométrique.
- Appliquer une formule de **somme** avec de **mauvaises bornes** ou le mauvais type.
- Conclure une limite sans vérifier les **conditions** (|q| < 1, signe de r, etc.).

© 2025 — Fiche mémo & méthodologie conçue par **Alaeddine Ben Rhouma** (Maths expertes). Tous droits réservés.