Continuations, processus mobiles, tout ça...

Julien Gabet

Mars-Juin 2018

Généralités

$$M, N ::= x; \lambda x.M; MN$$

 $(\lambda x.M)N \to_{\beta} M[N/x]$

les termes grossissent en général

Si $C[\]$ un contexte et $M \to_{\beta} N$ alors $C[M] \to_{\beta} C[N]$

$$\begin{array}{l} P,Q ::= u(xy).P; \bar{u}xy.P; P|Q; (\nu x)P|!P \\ u(xy).P|\bar{u}ab.Q \rightarrow P[a/x,b/y]|Q \end{array}$$

Si
$$P \to Q$$
 alors $C[P] \to C[Q]$
Si $P \equiv P' \to Q \equiv Q'$ alors $P \to Q$

(avec les bonnes hypothèses sur C)

Krivine Abstract Machine (KAM) $M \star \Pi \star \mathcal{E}$

$$MN \star \Pi \star \mathcal{E} \to M \star (N, \mathcal{E}).\Pi \star \mathcal{E}$$
$$\lambda x.M \star (N, \mathcal{E}).\Pi \star \mathcal{F} \to M \star \Pi \star \mathcal{F}, s \mapsto (N, \mathcal{E})$$
$$x \star \Pi \star \mathcal{E}, x \mapsto (M, \mathcal{F}) \to M \star \Pi \star \mathcal{F}$$

Pour l'exponentielle :

 $!P \simeq !P|!P$

 $(\nu u)!u(x).P \simeq 0$

idée : $!P|Q \simeq !P|!P|Q \ \forall Q$

- equiv \simeq bisimulation
- la trad. se passe bien