

GDM Workshop

Day 1 Day 4 VII. Perl **DNA** sequencing Planning your project VIII. Phylogeny 11. Hardware requirements III. IV. A primer on Linux Day 2 Day 5 VIII. Phylogeny Genome assembly V.

Day 3

VI. Genome annotation

WIFI Network code

SquawkinGood

V. Genomic/EST assembly

Garbage in? Garbage out...

Got contaminants?

Know which one(s)? > Map & Filter

Don't know? > Assemble

> BLAST

> Map & Filter

> Reassemble

QVs

Sanger Q score $(Q = -10 \log_{10} P)$

Illumina FASTQ != Sanger FASTQ

Trimming the ends?

Filtering paired-ends/mate-pairs?

454 uses flowgrams

Do you need an assembly?

Resequencing

Detect SNPs

^ Reads mapping

de novo or guided assemblies?

By definition, guided assemblies are biased...

... but can be very useful

Mapping software

MAQ http://maq.sourceforge.net/

SOAP/SOAP2 http://soap.genomics.org.cn/

Bowtie & Crossbow http://bowtie-bio.sourceforge.net/crossbow/

BWA http://bio-bwa.sourceforge.net/

Commercial assembly software

Geneious http://www.geneious.com/

Sequencher http://www.genecodes.com/

SeqMan NGen DNAStar http://www.dnastar.com/

CLC Assembly Cell http://www.clcbio.com/

Open source/free assembly software

Velvet/Oases http://www.ebi.ac.uk/~zerbino/velvet/

Ray http://denovoassembler.SourceForge.net/

Newbler (GS De Novo Assembler)

Roche; private requests

ABySS/Trans-ABySS http://www.bcgsc.ca/platform/bioinfo/software/abyss

Consed www.phrap.org/consed/consed.html

Algorithms

Greedy

Speedy

Memory-optimized

Hash-based algorithms

Reads or genome can be hashed

Tolerate high polymorphism

Mapping algorithms

Burrow-Wheelers transform methods

Faster

Require less RAM

Struggle with high polymorphism

Mapping algorithms

^TAGTCGAGGCTTTA\$
TAGTCGAGGCTTTA\$^
AGTCGAGGCTTTA\$^TA
GTCGAGGCTTTA\$^TA
TCGAGGCTTTA\$^TAGT
CGAGGCTTTA\$^TAGTC
AGGCTTTA\$^TAGTC
AGGCTTTA\$^TAGTCG
GGCTTTA\$^TAGTCGAG
GCTTTA\$^TAGTCGAG
CTTTA\$^TAGTCGAG
CTTTA\$^TAGTCGAGG
TTTA\$^TAGTCGAGGCTTA\$^TAGTCGAGGCTTA\$^TAGTCGAGGCTTA\$^TAGTCGAGGCTTA\$^TAGTCGAGGCTTA\$^TAGTCGAGGCTTA\$^TAGTCGAGGCTTA\$^TAGTCGAGGCTTA\$^TAGTCGAGGCTT

A\$^TAGTCGAGGCTTT

\$^TAGTCGAGGCTTTA

1. All possible rotations

^TAGTCGAGGCTTTA\$

AGGCTTTA\$^TAGTCG
AGTCGAGGCTTTA\$^T
A\$^TAGTCGAGGCTTT
CGAGGCTTTA\$^TAGT
CTTTA\$^TAGTCGAGG
GAGGCTTTA\$^TAGTC
GCTTTA\$^TAGTCGAG
GGCTTTA\$^TAGTCGAG
GTCGAGGCTTTA\$^TA
TAGTCGAGGCTTTA\$^T
TCGAGGCTTTA\$^T

\$^TAGTCGAGGCTTTA

2. Sort

GTTTGCGAA^TGTC\$A

3. Select final

column

The Shortest Common Superstring (SCS)

Greedy

All-against-all

Pairwise alignment scores

Used in old Sanger assemblies

What is a K-mer?

A subset of a sequence

Think of sliding windows

TATTTGTAGCTGACGCTAGCTAGCTGTACGTG

TATTTGTAGCTGACGCTAG ATTTGTAGCTGACGCTAGC TTTGTAGCTGACGCTAGCT TTGTAGCTGACGCTAGCTA TGTAGCTGACGCTAGCTAG GTAGCTGACGCTAGCTAGC TAGCTGACGCTAGCT AGCTGACGCTAGCTG GCTGACGCTAGCTAGCTGT CTGACGCTAGCTAGCTGTA TGACGCTAGCTAGCTGTAC GACGCTAGCTAGCTGTACG ACGCTAGCTAGCTGTACGT CGCTAGCTAGCTGTACGTG

Overlap-Layout-Consensus (OLC)

Implicitly use K-mers as heuristic

But rely on overlap graphs

Progressive pair-wise alignments

Unitigs & Contigs

de Bruijn graphs (DBG)

Explicitely rely on K-mer graphs

Memory intensive

All reads must be the same length

Do not use QVs

Repeated elements break algorithms

Dispersed vs. local

Inverted repeats

Tandem repeats

Palindromes (trick: use odd k-mers)

Now imagine telomeres...

"If there is one message to remember [...], it is to not fully trust any assembly."

Verify your assemblies

Try different methods

Map reads on your assemblies

Got repeats?

Watch out for chimeras

Look for scaffolding errors

About library insert sizes...

An 80 bases insert

25 bases 30 bases 25 bases

25 bases 20 bases 25 bases

25 bases 40 bases 25 bases

Standard Deviation

The usual scaffolding errors

Perfect

AGCTGTCTGTTTTCTGTAGCTCGTATTACATATCGATGGA

AGCTGTCTGTTTTCTGTAGCTCGTA
AGCTGTCTGTTTTCTGTAGCTCG

TGTAGCTCGTATTACATATCGATGGA
AGCTCGTATTACATATCGATGGA

Overestimation

AGCTGTCTGTTTTCTGTAGCNNNNNNNTCGTATTACATATCGATGGA

AGCTGTCTGTTTTCTGTAGCTCGTA
AGCTGTCTGTTTTCTGTAGCTCG

TGTAGCTCGTATTACATATCGATGGA AGCTCGTATTACATATCGATGGA

Underestimation

AGCTGTCTGTTTTCTGTTATTACATATCGATGGA

AGCTGTCTGTTTTCTGTAGCTCGTA
AGCTGTCTGTTTTCTGTAGCTCG

TGTAGCTCGTATTACATATCGATGGA
AGCTCGTATTACATATCGATGGA

An iterative process

N50s

The higher the N50 the better

Joining the contigs

Chromosome walking

Look for singled paired-ends/mate-pairs

Ye good olde PCR!

EST assemblies differ from genomic ones

Coverage is not uniformly distributed

Poly(A) mRNA tails

mRNAs can be short

The software is not yet ready

Getting help!

SEQanswers

http://seqanswers.com/

How to use SSH in MS Windows?

Look inside GDMW_Using_X_from_Windows.pdf

Download and install the software

Follow the steps

MacOSX? You'll only need an SFTP program

How to connect to our server?

Look inside *GDMW_Server.pdf*

Form 8 teams

Get a unique username for your team

Connect via SSH

Server name: bigdaddy.zoology.ubc.ca Port: 22