LINMA2471: Optimization models and methods: course 4

Adissa Laurent, Laura Motte and Caroline Sautelet

October 12, 2015

1 Properties of convex functions

1.1 Linear transformation on the variables

Proposition 1. Given a convex and affine transformation $x \mapsto Ax + b$, the composition $x \mapsto f(Ax + b)$ is also convex.

Example 1.1. e^{2x-y+z} is convex because the exponential is convex and 2x - y + z is a linear transformation of x, y and z.

Example 1.2 (Convex functions). Any norm $x \mapsto ||x||$ is convex, thus the distance ||x - y|| between two points x and y is convex because x - y is a linear transformation.

The maximum distance between a set S and a point x is a convex function. Indeed, taking the maximum between a point and a set requires to take the maximum of all the distances between the point and any point in the set (distance between two points is a convex function): $f_{S,max} = \max_{s \in S} \{||x - s||\}$

1.2 Partial minimization

Proposition 2. (Partial minimization) If the function $f:(x,y) \mapsto f(x,y)$ is convex, then $f_x(y) = \inf_x f(x,y)$ is convex.

Example 1.3. If a set S is convex, then the minimum distance function between a point x and the set S is convex. Indeed, one can write the function as follows:

$$f(x,s) = ||x - s||$$

Since this is a norm, f is convex. Since the restriction of a convex function stays convex as long as the feasible region stays convex and S is a convex set, property?? gives that:

$$f_S(x) = \inf_S f(x, s)$$

is a convex function.

Remark 1. Property ?? is a one side property. A counter-example for the reverse side is given by :

$$f_x(y) + \sqrt{||x||}$$

1.3 Extended real valued functions

Most of theorems to prove the convexity of a function require the convexity of the domain. However, it is possible to extend a function to tackle this problem.

Example 1.4. Let's take the function $f : \mathbb{R}_+ \to \mathbb{R} : x \mapsto \frac{1}{x}$ and extend it such that its domain becomes the whole real line. One consider:

$$f_e: \mathbb{R} \mapsto \mathbb{R} \cup \{+\infty\}: x \mapsto \begin{cases} \frac{1}{x} & \text{if } x > 0\\ +\infty & \text{elsewhere} \end{cases}$$

One can see that the extended function is convex over the whole real line. The epigraph definition still holds since there isn't any point above $+\infty$.

1.4 Composition and product

Proposition 3. If g is a convex function and f is a convex, increasing and one-dimensional function then the composition function $h \circ g : x \mapsto h(g(x))$ is also convex.

Proof. Let's prove this proposition for a simple case. We assume that f and g are both one-dimensional functions and that $f, g \in C^2$. The general case requires a more difficult proof. Since f and g are 2 times differentiable, one has:

$$\left[h(g(x))\right]'' = \left[h'(g(x))g'(x)\right]' = \underbrace{h''(x)(g'(x))^2}_{\text{A}} + \underbrace{h'(g(x))g''(x)}_{\text{B}}$$

Since h is convex, its second derivative is positive and given that a square is positive, one has that A is positive. Furthermore, since g is also convex and h is increasing, one also has that B is positive. One conclude that the second derivative of $h \circ g$ is positive and thus, the function $h \circ g$ is convex.

Remark 2. Sometimes we need to square a value but also to keep convexity (for example, we don't care about negative deviations on a budget). However the traditional square function is not convex on the real line. Let's introduce a restricted square function as follows:

$$f: x \mapsto (x_+)^2 = (\frac{x+|x|}{2})^2$$

We easily see (figure ??) that this restricted square function is convex.

Figure 1: Restricted square function

Example 1.5. The function $[\log(x+y)_+]^2$ is convex. Indeed, the restricted square and $-\log$ are convex functions. Therefore, their composition is convex. Since x+y is a linear transformation, it preserves convexity and the whole function is convex.

Proposition 4. If f and g are both convex, positive and increasing then their product is convex.

Proof. Again, one proves it in the simple differentiable, one-dimensional case. One has:

$$(fg)'' = [f'g + fg']' = f''g + 2f'g' + fg''$$

The result follows immediately since by assumptions one has $f, g, f', g', f'', g'' \ge 0$.

Remark 3. The previous proof tends to indicate variants of proposition ??. One can see that if f and g are both concave, decreasing and negative then the proposition still holds.

1.5 Advantage of convex problems

Properties 1. Let's recall that $\min_{x \in X} f(x)$ is convex if f is convex, X is convex and we are looking for a minima. We study the properties of a convex problem:

MODEL	METHODS
- Local minima are also global	- Methods which only work on convex problems : first order, second order
- The set of optimal solutions is convex	
- Using duality we can get guarantees	

1.6 Variants of convex functions

It's a difficult thing to know if a problem have a unique solution. There is one class of problems with only one solution: minimization of strictly convex functions.

Definition 1. Strict convexity: f is strictly convex if and only if

- the domain is convex
- $f(\lambda x + (1 \lambda)y) < \lambda f(x) + (1 \lambda)f(y) \ \forall x, y \in dom \ , \ \forall \lambda \in]0,1[$

Example 1.6. On the following graph, we can observe that the function is strictly convex.

Example 1.7. The absolute function is not strictly convex, in fact, when we have a flat part in the graph, it can not be strictly convex.

Example 1.8. The function $x \mapsto ||x||_2 = \sqrt{\sum_i x_i^2}$ is convex but not strictly convex.

Proposition 5. If we have $\min f(x)_{x \in X}$ with f strictly convex and X a convex set then the problem admit at most one solution.

Proposition 6. If $f \in C^2$ and $\nabla^2 f(x) > 0$ then f is strictly convex. $(\lambda_i > 0 \ \forall i)$

Proposition 7. If f is convex, then $f + ||x||_2^2$ is strictly convex.

Proof. Assume $f \in C_2$ then

$$\nabla^2 (f + ||x||^2) = \nabla^2 f + \nabla^2 ||x||_2^2 = \nabla^2 f + 2I$$

where $||x||_2^2 = \sum_i = x_i^2$ and $\lambda_i \ge 0$.

Proposition 8.

(1)
$$\lambda$$
 is an eigenvalue of M

 \Leftrightarrow

(2)
$$\lambda + \Delta$$
 is an eigenvalue of $M + \Delta I$

for any $\Delta \in \mathbb{R}$ and $M \in \mathbb{R}^{n \times n}$ symmetric.

Proof.

$$(1) \exists v : Mv = \lambda v$$

(2)
$$\exists v : (M + \Delta I)v = (\lambda + \Delta)v$$

Remark 4. We can have the same propositions and the same proof while adding $\mu > 0$ anywhere $: f + \mu ||x||^2$. It is a regularization to make it strictly convex.

Remark 5. There are functions that have no derivative and are strictly convex.