Séries numériques

Nature de séries numériques

Exercice 1 [01020] [Correction]

Déterminer la nature des séries dont les termes généraux sont les suivants :

a)
$$u_n = \frac{n}{n^2 + 1}$$
 b) $u_n = \frac{\text{ch}(n)}{\text{ch}(2n)}$ c) $u_n = \frac{1}{\sqrt{n^2 - 1}} - \frac{1}{\sqrt{n^2 + 1}}$ d) $u_n = e - \left(1 + \frac{1}{n}\right)^n$

Exercice 2 [02353] [Correction]

Déterminer la nature des séries dont les termes généraux sont les suivants :

a)
$$u_n = \left(\frac{n}{n+1}\right)^{n^2}$$
 b) $u_n = \frac{1}{n\cos^2 n}$ c) $u_n = \frac{1}{(\ln n)^{\ln n}}$

Exercice 3 [03195] [Correction]

Déterminer la nature de la série de terme général

$$u_n = \left(\frac{1}{n}\right)^{1 + \frac{1}{n}}$$

Exercice 4 [01021] [Correction]

Déterminer la nature de la série de terme général

$$u_n = \begin{cases} 1/n & \text{si } n \text{ est un carr\'e} \\ 1/n^2 & \text{sinon} \end{cases}$$

Exercice 5 [02789] [Correction]

Nature de la série de terme général

$$\frac{e - \left(1 + \frac{1}{n}\right)^n}{n^{3/2} - \left\lfloor n^{3/2} \right\rfloor + n}$$

Exercice 6 [02432] [Correction]

- a) Etudier $\sum u_n$ où $u_n = \int_0^1 \frac{\mathrm{d}x}{1+x+\cdots+x^n}$. b) Etudier $\sum v_n$ où $v_n = \int_0^1 \frac{x^n \mathrm{d}x}{1+x+\cdots+x^n}$.

Exercice 7 [03881] [Correction]

Pour a > 0, étudier la convergence de

$$\sum_{n\geqslant 1} \sum_{k=1}^{n} \frac{1}{k}$$

Exercice 8 [02376] [Correction]

Soit (u_n) une suite de réels strictement positifs vérifiant

$$\frac{u_{n+1}}{u_n} = 1 - \frac{\alpha}{n} + O\left(\frac{1}{n^2}\right) \text{ avec } \alpha \in \mathbb{R}$$

- a) Pour quelles valeurs de α la série $\sum u_n$ converge? b) Pour quelles valeurs de α la série $\sum (-1)^n u_n$ converge?

Exercice 9 [01029] [Correction]

[Règle de Raabe-Duhamel]

Soient (u_n) et (v_n) deux suites de réels strictement positifs.

a) On suppose qu'à partir d'un certain rang

$$\frac{u_{n+1}}{u_n} \leqslant \frac{v_{n+1}}{v_n}$$

Montrer que $u_n = O(v_n)$.

b) On suppose que

$$\frac{u_{n+1}}{u_n} = 1 - \frac{\alpha}{n} + o\left(\frac{1}{n}\right) \text{ avec } \alpha > 1$$

Montrer, à l'aide d'une comparaison avec une série de Riemann, que la série $\sum u_n$ converge.

c) On suppose cette fois-ci que

$$\frac{u_{n+1}}{u_n} = 1 - \frac{\alpha}{n} + o\left(\frac{1}{n}\right) \text{ avec } \alpha < 1$$

Montrer que la série $\sum u_n$ diverge

Enoncés

Exercice 10 [02800] [Correction]

a) Soient $(u_n)_{n\geq 0}$ et $(v_n)_{n\geq 0}$ deux suites réelles, $\lambda\in\mathbb{R}$. On suppose :

$$\forall n \in \mathbb{N}, u_n \geqslant 0; \sum |v_n| \text{ converge } \text{ et } \frac{u_{n+1}}{u_n} = 1 - \frac{\lambda}{n} + v_n$$

Montrer que $(n^{\lambda}u_n)$ converge.

b) Nature de la série de terme général

$$\frac{n^n}{n!\mathrm{e}^n}$$
 ?

Exercice 11 [02516] [Correction]

$$u_n = \frac{1}{3^n n!} \prod_{k=1}^n (3k-2) \text{ et } v_n = \frac{1}{n^{3/4}}$$

a) Montrer que pour n assez grand,

$$\frac{u_{n+1}}{u_n} \geqslant \frac{v_{n+1}}{v_n}$$

b) En déduire que $\sum u_n$ diverge. (on pourra utiliser $\frac{u_n}{v_n}$)

Exercice 12 [01040] [Correction] Donner la nature de la série des $\frac{j^n}{\sqrt{n}}$

Nature de séries de signe non constant

Exercice 13 [01034] [Correction]

Déterminer la nature de $\sum u_n$ pour :

a)
$$u_n = \frac{(-1)^n}{n^2 + 1}$$
 b) $u_n = \frac{(-1)^n}{\sqrt{n+1}}$
c) $u_n = \ln\left(1 + \frac{(-1)^n}{n+1}\right)$ d) $u_n = \cos\left(\pi\sqrt{n^2 + n + 1}\right)$

Exercice 14 [01035] [Correction]

Déterminer la nature de

$$\sum_{n\geqslant 1} \frac{(-1)^n}{\sqrt[n]{n!}}$$

Exercice 15 [01039] [Correction]

Déterminer la nature de

$$\sum_{n\geqslant 1} \sin\left(n\pi + \frac{\pi}{n}\right)$$

Exercice 16 [03772] [Correction]

Donner la nature de la série de terme général

$$u_n = \cos\left(n^2\pi \ln(1 - 1/n)\right)$$

Exercice 17 [01045] [Correction]

Déterminer la nature de la série de terme général :

$$u_n = \frac{(-1)^n}{\sum_{k=1}^n \frac{1}{\sqrt{k}} + (-1)^{n-1}}$$

Exercice 18 [02351] [Correction]

Déterminer la nature de $\sum u_n$ pour :

a)
$$u_n = \sqrt{n + (-1)^n} - \sqrt{n}$$
 b) $u_n = \frac{(-1)^n}{\ln(n + (-1)^n)}$ c) $u_n = \frac{(-1)^n}{\ln(n) + (-1)^n}$

Exercice 19 [02793] [Correction]

Convergence de la série de terme général $u_n = \sin(\pi\sqrt{n^2 + 1})$.

Exercice 20 [02794] [Correction]

Nature de la série de terme général

$$u_n = \sin\left(\pi(2+\sqrt{3})^n\right)$$

Exercice 21 [01335] [Correction]

Etudier la série de terme général

$$u_n = (-1)^n \frac{\sin(\ln n)}{n}$$

Exercice 22 [03236] [Correction]

Montrer la divergence de la série

$$\sum \frac{\cos(\ln n)}{n}$$

Exercice 23 [01337] [Correction]

Quelle est la nature de la série de terme général

$$\frac{\mathrm{e}^{i\sqrt{n}}}{\sqrt{n}}$$
 ?

Exercice 24 [03208] [Correction]

 α désigne un réel strictement positif.

Déterminer la nature de la série de terme général

$$u_n = \int_0^{(-1)^n/n^\alpha} \frac{\sqrt{|x|}}{1+x} \,\mathrm{d}x$$

Convergence de séries à termes positifs

Exercice 25 [03355] [Correction]

Soient (u_n) une suite de réels positifs et (v_n) la suite déterminée par

$$v_n = u_{2n} + u_{2n+1}$$

Montrer

$$\sum u_n$$
 converge si, et seulement si, $\sum v_n$ converge

Exercice 26 [01022] [Correction]

Soient $\sum u_n$ et $\sum v_n$ deux séries à termes strictement positifs convergentes. Montrer que les suivantes sont aussi convergentes

$$\sum \max(u_n, v_n), \sum \sqrt{u_n v_n} \text{ et } \sum \frac{u_n v_n}{u_n + v_n}$$

Exercice 27 [01023] [Correction]

Soit $\sum u_n$ une série à termes positifs convergente.

Montrer que
$$\sum \sqrt{u_n u_{n+1}}$$
 est aussi convergente

Exercice 28 [03411] [Correction]

Soit a une suite de réels positifs. Comparer les assertions

- (i) la série de terme général a_n converge;
- (ii) la série de terme général $\sqrt{a_n a_{n+1}}$ converge.

Exercice 29 [01024] [Correction]

Soit $\sum u_n$ une série à termes positifs. On suppose que

$$\sqrt[n]{u_n} \to \ell \in \mathbb{R}^+$$

- a) Montrer que si $\ell > 1$ alors $\sum u_n$ est divergente. b) Montrer que si $\ell < 1$ alors $\sum u_n$ est convergente.
- c) Observer que, lorsque $\ell = 1$, on ne peut rien conclure.

Exercice 30 [01026] [Correction]

Soient (u_n) une suite de réels positifs et

$$v_n = \frac{u_n}{1 + u_n}$$

Montrer que les séries $\sum u_n$ et $\sum v_n$ sont de même nature.

Exercice 31 [01027] [Correction]

Soit (u_n) une suite de réels strictement positifs.

a) Pour tout $n \in \mathbb{N}$, on pose

$$v_n = \frac{u_n}{1 + u_n}$$

Montrer que $\sum u_n$ et $\sum v_n$ sont de même nature.

b) Même question avec

$$v_n = \frac{u_n}{u_1 + \dots + u_n}$$

On pourra étudier $ln(1-v_n)$ dans le cadre de la divergence.

Exercice 32 [03119] [Correction]

Soient $(u_n)_{n\geq 0}$ et $(v_n)_{n\geq 0}$ dans $(\mathbb{R}^+)^{\mathbb{N}}$ telles que

$$\forall n \in \mathbb{N}, v_n = \frac{1}{1 + n^2 u_n}$$

Montrer que si la série de terme général v_n converge alors la série de terme général u_n diverge.

Exercice 33 [03235] [Correction]

Soit $(u_n)_{n\geqslant 1}$ une suite de réels positifs. On considère la suite (v_n) définie par

$$v_n = \frac{1}{n(n+1)} \sum_{k=1}^n k u_k$$

Montrer que les séries $\sum u_n$ et $\sum v_n$ ont même nature et qu'en cas de convergence

$$\sum_{n=1}^{+\infty} u_n = \sum_{n=1}^{+\infty} v_n$$

Exercice 34 [03674] [Correction]

Soit $\sum a_n$ une série à termes strictement positifs convergente. Etablir la convergence de la série $\sum a_n^{1-1/n}$.

Exercice 35 [02447] [Correction]

Soit $\sum a_n$ une série à termes positifs convergente. Peut-on préciser la nature de la série de terme général

$$u_n = a_0 a_1 \dots a_n$$
?

Exercice 36 [03750] [Correction]

Soit (u_n) une suite réelle strictement positive et convergeant vers 0. On pose

$$v_n = \frac{u_{n+1}}{S_n} \text{ avec } S_n = \sum_{k=0}^n u_k$$

Montrer que les séries $\sum u_n$ et $\sum v_n$ ont même nature.

Exercice 37 [02956] [Correction]

Soit $(u_n)_{n\geqslant 1}$ une suite de réels strictement positifs. On pose, pour $n\in\mathbb{N}^*$,

$$v_n = u_n/S_n$$
 où $S_n = u_1 + \cdots + u_n$

Déterminer la nature de $\sum v_n$.

Exercice 38 [02958] [Correction]

Soit (u_n) une suite réelle strictement positive telle que la série de terme général u_n converge.

On note le reste d'ordre n

$$R_n = \sum_{k=n+1}^{+\infty} u_k$$

Etudier la nature des séries de termes généraux u_n/R_n et u_n/R_{n-1} .

Exercice 39 [02959] [Correction]

Soit (u_n) une suite réelle strictement positive et strictement croissante. Nature de la série de terme général

$$\frac{u_{n+1} - u_n}{u_n}$$

Exercice 40 [03716] [Correction]

Soient (a_n) une suite de réels strictement positifs et $S_n = \sum_{k=0}^n a_k$.

- a) On suppose que la série $\sum a_n$ converge, donner la nature de $\sum a_n/S_n$.
- b) On suppose que la série $\sum a_n$ diverge, montrer

$$\forall n \in \mathbb{N}^{\star}, \frac{a_n}{S_n^2} \leqslant \frac{1}{S_{n-1}} - \frac{1}{S_n}$$

En déduire la nature de $\sum a_n/S_n^2$.

c) On suppose toujours la divergence de la série $\sum a_n$. Quelle est la nature de $\sum a_n/S_n$?

Exercice 41 [03225] [Correction]

Soit $f:[1,+\infty[\to\mathbb{R}$ de classe \mathcal{C}^1 strictement positive telle que

$$\frac{xf'(x)}{f(x)} \xrightarrow[x \to +\infty]{} \ell \in \bar{\mathbb{R}}$$

a) On suppose $\ell > -1$ ou $\ell = -1^+$. Montrer la divergence de la série

$$\sum_{n\geq 1} f(n)$$

b) On suppose $\ell < -1$. Montrer la convergence de la série

$$\sum_{n\geqslant 1} f(n)$$

Critère spécial

Exercice 42 [01038] [Correction]

a) Justifier la convergence de la série numérique

$$\sum_{k\geqslant 1} \frac{(-1)^k}{k}$$

On pose

$$R_n = \sum_{k=n+1}^{+\infty} \frac{(-1)^k}{k}$$

b) Montrer que

$$R_n + R_{n+1} = \sum_{k=n+1}^{+\infty} \frac{(-1)^k}{k(k+1)}$$

- c) Déterminer un équivalent de R_n .
- d) Donner la nature de la série de terme général R_n .

Exercice 43 [01036] [Correction]

Montrer que

$$\sum_{n=0}^{+\infty} \frac{(-1)^n 8^n}{(2n)!}$$

est un réel négatif.

Exercice 44 [01037] [Correction]

On rappelle la convergence de l'intégrale de Dirichlet

$$I = \int_0^{+\infty} \frac{\sin t}{t} \, \mathrm{d}t$$

En observant

$$I = \sum_{n=0}^{+\infty} (-1)^n \int_0^{\pi} \frac{\sin t}{n\pi + t} \, dt$$

déterminer le signe de I.

Exercice 45 [04131] [Correction]

On pose

$$s_n = \sum_{k=1}^n \frac{(-1)^{k+1}}{k}$$
 et $u_n = \ln(e^{s_n} - 1)$

- a) Énoncer le théorème des séries spéciales alternées, en faire la preuve.
- b) Prouver que les suites $(s_n)_{n\geqslant 1}$ et $(u_n)_{n\geqslant 1}$ convergent.
- c) Étudier la nature de $\sum u_n$.

Etude de séries à termes positifs

Exercice 46 [01025] [Correction]

Soit (u_n) une suite décroissante réelle. On suppose que la série $\sum u_n$ converge.

- a) On pose $S_n = \sum_{k=0}^n u_k$. Déterminer la limite de $S_{2n} S_n$.
- b) En déduire $2nu_{2n} \to 0$.
- c) Conclure que $nu_n \to 0$.

Exercice 47 [03233] [Correction]

Soient (u_n) une suite décroissante de réels positifs et α un réel positif. On suppose la convergence de la série

$$\sum n^{\alpha} u_n$$

Montrer

$$n^{\alpha+1}u_n \to 0$$

Exercice 48 [02957] [Correction]

Soit (u_n) une suite réelle strictement positive, décroissante, de limite nulle. On suppose que la suite de terme général

$$\sum_{k=1}^{n} u_k - nu_n$$

est bornée.

Montrer que la série de terme général u_n converge.

Séries dont le terme général est défini par récurrence

Exercice 49 [01097] [Correction]

Soit (u_n) la suite définie par $u_0 \in [0, \pi]$ et pour tout $n \in \mathbb{N}$,

$$u_{n+1} = 1 - \cos u_n$$

Montrer que $u_n \to 0$ et déterminer la nature de la série de terme général u_n .

Exercice 50 [01098] [Correction]

Soit (u_n) la suite définie par $u_0 > 0$ et pour tout $n \in \mathbb{N}$,

$$u_{n+1} = \sqrt{1 + u_n}$$

Montrer que (u_n) converge vers un réel ℓ .

Quelle est la nature de la série de terme général $u_n - \ell$?

Exercice 51 [03371] [Correction]

a) Déterminer la limite de la suite définie par

$$u_0 \geqslant 0 \text{ et } \forall n \in \mathbb{N}, u_{n+1} = \frac{e^{-u_n}}{n+1}$$

b) Déterminer la limite de la suite définie par

$$v_n = nu_n$$

c) Donner la nature de la série $\sum u_n$ et celle de la série $\sum (-1)^n u_n$

Exercice 52 [03012] [Correction]

La suite $(a_n)_{n\geqslant 0}$ est définie par $a_0\in]0,\pi/2[$ et

$$\forall n \in \mathbb{N}, a_{n+1} = \sin(a_n)$$

Quelle est la nature de la série de terme général a_n ?

Exercice 53 [01099] [Correction]

Soient $u_0 \in [0, \pi/2[$ et $u_{n+1} = \sin u_n$ pour tout $n \in \mathbb{N}$.

- a) Montrer que $u_n \to 0^+$.
- b) Exploiter $u_{n+1} u_n$ pour montrer que $\sum_{n \geqslant 0} u_n^3$ converge.
- c) Exploiter $\ln u_{n+1} \ln u_n$ pour montrer que $\sum_{n \ge 0} u_n^2$ diverge.

Exercice 54 [02961] [Correction]

Soit (u_n) une suite réelle telle que $u_0 > 0$ et pour tout n > 0,

$$u_n = \ln(1 + u_{n-1})$$

Etudier la suite (u_n) puis la série de terme général u_n .

Exercice 55 [02440] [Correction]

Soit $(a_n)_{n\geqslant 0}$ une suite définie par $a_0\in\mathbb{R}^{+\star}$ et pour $n\in\mathbb{N}$,

$$a_{n+1} = 1 - e^{-a_n}$$

- a) Etudier la convergence de la suite (a_n) .
- b) Déterminer la nature de la série de terme général $(-1)^n a_n$.
- c) Déterminer la nature de la série de terme général a_n^2 .
- d) Déterminer la nature de la série de terme général a_n à l'aide de la série

$$\sum \ln \left(\frac{a_{n+1}}{a_n} \right)$$

Exercice 56 [01101] [Correction]

Soit (u_n) la suite définie par $u_0 \in]0,1[$ et pour tout $n \in \mathbb{N}$,

$$u_{n+1} = u_n - u_n^2$$

a) Existence et éventuellement calcul de

$$\sum_{n=0}^{+\infty} u_n^2 \text{ et } \sum_{n=0}^{+\infty} \ln(1 - u_n)$$

b) Nature de la série de terme général u_n ?

Exercice 57 [02951] [Correction]

Soit $(u_n)_{n\geqslant 0}$ la suite définie par $u_0\in [0,1]$ et

$$\forall n \in \mathbb{N}, u_{n+1} = u_n - u_n^2$$

- a) Quelle est la nature de la série de terme général u_n ?
- b) Même question lorsque u_n est définie par la récurrence $u_{n+1} = u_n u_n^{1+\alpha}$ (avec $\alpha > 0$).

Exercice 58 [01100] [Correction]

Soient (a_n) une suite positive et (u_n) la suite définie par $u_0 > 0$ et pour tout $n \in \mathbb{N}$

$$u_{n+1} = u_n + a_n/u_n$$

Montrer que la suite (u_n) est convergente si, et seulement si, la série de terme général a_n est convergente.

Exercice 59 [02960] [Correction]

Soit $u \in \mathbb{R}^{\mathbb{N}}$ telle que $u_0 \in]0,1]$ et que, pour un certain $\beta > 0$ et pour tout $n \in \mathbb{N}$,

$$u_{n+1}^{\beta} = \sin u_n^{\beta}$$

Etudier la nature de la série de terme général u_n .

Exercice 60 [02433] [Correction]

Soit $\alpha > 0$ et $(u_n)_{n \ge 1}$ la suite définie par :

$$u_1 > 0 \text{ et } \forall n \ge 1, \ u_{n+1} = u_n + \frac{1}{n^{\alpha} u_n}$$

- a) Condition nécessaire et suffisante sur α pour que (u_n) converge.
- b) Equivalent de u_n dans le cas où (u_n) diverge.
- c) Equivalent de $(u_n \ell)$ dans le cas où (u_n) converge vers ℓ .

Comparaison séries intégrales

Exercice 61 [00077] [Correction]

A l'aide d'une comparaison avec une intégrale, donner la nature de la série

$$\sum_{n\geqslant 2} \frac{1}{n\ln n}$$

Exercice 62 [01064] [Correction]

Déterminer la nature de la série de terme général

$$u_n = \frac{1}{(\ln 2)^2 + \dots + (\ln n)^2}$$

Exercice 63 [00664] [Correction]

Soit $a \in]0,1[$. Déterminer la nature de la série $\sum_{n\geqslant 0} a^{\sqrt{n}}$.

Exercice 64 [01063] [Correction]

Déterminer la nature de la série de terme général

$$u_n = \sum_{k=n+1}^{+\infty} \frac{1}{k^2}$$

Exercice 65 [01066] [Correction]

Pour $\alpha > 1$, on pose

$$S_N = \sum_{n=1}^N \frac{1}{n^\alpha} \text{ et } R_N = \sum_{n=N+1}^{+\infty} \frac{1}{n^\alpha}$$

Etudier, selon α , la nature de la série $\sum_{n\geqslant 1} \frac{R_n}{S_n}$.

Exercice 66 [01067] [Correction]

Soit $\sum_{n\geqslant 0}u_n$ une série divergente de réels strictement positifs. On note $S_n=\sum_{k=0}^nu_k$.

Montrer, à l'aide d'une comparaison intégrale que pour tout $\alpha>1,$ il y a convergence de la série

$$\sum_{n\geq 1} \frac{u_n}{S_n^{\alpha}} \text{ converge}$$

Exercice 67 [01068] [Correction]

Pour $\alpha > 1$ on pose

$$\zeta(\alpha) = \sum_{n=1}^{+\infty} \frac{1}{n^{\alpha}}$$

Déterminer la limite de $(\alpha - 1)\zeta(\alpha)$ quand α tend vers 1⁺

Exercice 68 [01061] [Correction]

En exploitant une comparaison avec des intégrales établir :

a)
$$\sum_{k=1}^{n} \sqrt{k} \sim \frac{2}{3} n \sqrt{n}$$
 b) $\ln(n!) \sim n \ln n$ c) $\sum_{k=2}^{n} \frac{1}{k \ln k} \sim \ln(\ln n)$

Exercice 69 [01069] [Correction]

En exploitant une comparaison série-intégrale, déterminer

$$\lim_{a \to +\infty} \sum_{n=1}^{+\infty} \frac{a}{n^2 + a^2}$$

Exercice 70 [02431] [Correction]

Soit a > 0, b > 0 et pour $n \in \mathbb{N}^*$,

$$A_n = \frac{1}{n} \sum_{k=1}^{n} (a+bk), B_n = \prod_{k=1}^{n} (a+bk)^{1/n}$$

Trouver $\lim_{n \to \infty} \frac{B_n}{A_n}$ en fonction de e.

Exercice 71 [02434] [Correction]

Soit, pour $x \in \mathbb{R}$,

$$f(x) = \frac{\cos\left(x^{1/3}\right)}{x^{2/3}}$$

a) Nature la série de terme général

$$u_n = \int_n^{n+1} f(x) \, \mathrm{d}x - f(n)$$

b) Nature de la série de terme général f(n).

(indice: on pourra montrer que $\sin(n^{1/3})$ n'admet pas de limite quand $n \to +\infty$

c) Nature de la série de terme général

$$\frac{\sin\left(n^{1/3}\right)}{n^{2/3}}$$

Exercice 72 [02810] [Correction]

On pose $f(x) = \frac{\sin(\ln x)}{x}$ pour tout $x \ge 1$ et $u_n = \int_{n-1}^n f(t) dt - f(n)$ pour tout entier $n \ge 2$.

8

- a) Montrer que f' est intégrable sur $[1, +\infty[$.
- b) Montrer que la série de terme général u_n est absolument convergente.
- c) Montrer que la suite $(\cos(\ln n))$ diverge.
- d) En déduire la nature de la série de terme général f(n).

Exercice 73 [03449] [Correction]

Soit $f:[1,+\infty[\to \mathbb{C}$ une fonction de classe \mathcal{C}^1 telle que f' est intégrable sur $[1,+\infty[$.

- a) Montrer que la série numérique $\sum f(n)$ converge si, et seulement si, la suite $(\int_1^n f(t) dt)$ converge.
- b) Application : Etudier la convergence de

$$\sum_{n=1}^{+\infty} \frac{\sin \sqrt{n}}{n}$$

Exercice 74 [03045] [Correction]

Pour $n \in \mathbb{N}^*$, soit

$$f_n: x \in]n, +\infty[\rightarrow \sum_{k=1}^n \frac{1}{x-k}]$$

Soit a > 0. Montrer qu'il existe un unique réel, noté x_n tel que $f_n(x_n) = a$. Déterminer un équivalent de x_n quand $n \to +\infty$.

Exercice 75 [03086] [Correction]

Etudier

$$\lim_{n \to +\infty} n \sum_{k=n}^{+\infty} \left(\frac{1}{k^2} e^{\frac{n}{k}} \right)$$

Exercice 76 [04069] [Correction]

Soit $f:[0,+\infty[\to\mathbb{R}$ continue, positive et croissante.

Etablir que les objets suivants ont même nature

$$\int_0^{+\infty} f(e^{-t}) dt, \sum f(e^{-n}) et \sum \frac{1}{n} f\left(\frac{1}{n}\right)$$

Comportement asymptotique de sommes

Exercice 77 [01032] [Correction]

Montrer la convergence de

$$\sum_{k=0}^{+\infty} \frac{1}{k!}$$

puis la majoration du reste

$$\sum_{k=n+1}^{+\infty} \frac{1}{k!} \leqslant \frac{1}{n \cdot n!}$$

Exercice 78 [01059] [Correction]

Soit $\alpha < 1$. Déterminer un équivalent de

$$\sum_{k=1}^{n} \frac{1}{k^{\alpha}}$$

Exercice 79 [01060] [Correction]

Soit $\alpha > 1$. Donner un équivalent simple à

$$R_N = \sum_{n=N+1}^{+\infty} \frac{1}{n^{\alpha}}$$

Exercice 80 [01089] [Correction]

On pose

$$S_n = \sum_{k=1}^n \frac{1}{k + \sqrt{k}}$$

Donner un équivalent simple de S_n .

Montrer que

$$S_n = \ln n + C + o(1)$$

Exercice 81 [01090] [Correction]

On pose

$$S_n = \sum_{k=1}^n \frac{1}{k^2 + \sqrt{k}}$$

Montrer que (S_n) converge vers une constante C. Etablir que

$$S_n = C - \frac{1}{n} + o(\frac{1}{n})$$

Exercice 82 [03070] [Correction]

Former un développement asymptotique à deux termes de

$$\sum_{k=n+1}^{+\infty} \frac{1}{k^2}$$

Exercice 83 [03179] [Correction]

a) Sous réserve d'existence, déterminer pour $\alpha \geqslant 1$

$$\lim_{n \to +\infty} \sum_{k=n+1}^{2n} \frac{1}{k^{\alpha}}$$

b) Sous réserve d'existence, déterminer

$$\lim_{n \to +\infty} \sum_{k=n+1}^{2n} \sin\left(\frac{1}{k}\right)$$

Exercice 84 [01091] [Correction]

On pose

$$u_n = \prod_{k=1}^n \frac{3k-1}{3k}$$

a) Montrer qu'il existe des constantes α et β telles que

$$\ln u_n = \alpha \ln n + \beta + o(1)$$

En déduire un équivalent de u_n .

b) Déterminer la nature de $\sum_{n\geqslant 1} u_n$.

Exercice 85 [03882] [Correction]

Déterminer

$$\lim_{n \to +\infty} \frac{1}{n} \prod_{k=1}^{n} (3k - 1)^{1/n}$$

Exercice 86 [01092] [Correction]

Déterminer un équivalent simple de :

a)
$$\sum_{k=1}^{+\infty} \frac{1}{k(nk+1)}$$
 b) $\sum_{k=1}^{+\infty} \frac{1}{k(n+k)}$

Exercice 87 [03226] [Correction]

Pour $n \in \mathbb{N}^*$, on pose

$$H_n = \sum_{k=1}^n \frac{1}{k}$$

Pour $p \in \mathbb{N}$, on pose

$$n_p = \min \{ n \in \mathbb{N}/H_n \geqslant p \}$$

Déterminer un équivalent de n_p quand $p \to +\infty$

Exercice 88 [01325] [Correction]

Soit $j \in \mathbb{N}$. On note Φ_j le plus petit entier $p \in \mathbb{N}^*$ vérifiant

$$\sum_{n=1}^{p} \frac{1}{n} \geqslant j$$

- a) Justifier la définition de Φ_i .
- b) Démontrer que $\Phi_j \xrightarrow[j \to +\infty]{} +\infty$.
- c) Démontrer $\xrightarrow{\Phi_{j+1}} \xrightarrow{j \to +\infty} e$.

Exercice 89 [02950] [Correction]

Soit $(u_n)_{n\geqslant 1}$ une suite d'éléments de $\mathbb{R}^{+\star}$.

On pose

$$v_n = \frac{1}{nu_n} \left(\sum_{k=1}^n u_k \right) \text{ et } w_n = \frac{1}{n^2 u_n} \left(\sum_{k=1}^n k u_k \right)$$

On suppose que (v_n) tend vers $a \in \mathbb{R}^{+*}$. Etudier la convergence de (w_n) . Exercice 90 [04062] [Correction]

On pose

$$H_n = \sum_{k=1}^n \frac{1}{k}$$

a) Montrer la convergence de la série

$$\sum \frac{1}{k} + \ln \left(1 - \frac{1}{k} \right)$$

On pose

$$\gamma = 1 + \sum_{k=2}^{+\infty} \left[\frac{1}{k} + \ln\left(1 - \frac{1}{k}\right) \right]$$

b) Etablir

$$H_n = \ln n + \gamma + \varepsilon_n$$

avec ε_n qu'on exprimera à l'aide du reste d'une série convergente.

c) En déduire

$$H_n = \ln n + \gamma + \frac{1}{2n} + o\left(\frac{1}{n}\right)$$

Nature de séries dépendant d'un paramètre

Exercice 91 [01082] [Correction]

Etudier en fonction de $\alpha \in \mathbb{R}$ la nature de

$$\sum_{n\geqslant 2} \frac{1}{n^{\alpha} \ln n}$$

Exercice 92 [01062] [Correction]

Déterminer la nature de la série de terme général

$$u_n = \frac{1}{n(\ln n)^{\alpha}}$$

Exercice 93 [01065] [Correction]

Déterminer la nature de la série de terme général

$$u_n = \frac{\sqrt{1} + \sqrt{2} + \dots + \sqrt{n}}{n^{\alpha}} \text{ (avec } \alpha \in \mathbb{R})$$

Même question avec la série de terme général $(-1)^n u_n$.

Exercice 94 [02795] [Correction]

Soit $\alpha \in \mathbb{R}^*$. On pose, pour $n \in \mathbb{N}^*$

$$u_n = \frac{1}{\sum_{k=1}^n k^{\alpha}}$$

Nature de la série de terme général u_n ?

Exercice 95 [02792] [Correction]

Nature de la série de terme général

$$\frac{n^{\alpha}}{\sum_{k=2}^{n} \ln^2 k}$$

où α est réel.

Exercice 96 [01081] [Correction]

Déterminer en fonction du paramètre $\alpha \in \mathbb{R}$ la nature des séries de termes généraux :

a)
$$u_n = e^{-n^{\alpha}}$$
 b) $u_n = \frac{\ln n}{n^{\alpha}}$ c) $u_n = \exp(-(\ln n)^{\alpha})$

Exercice 97 [01083] [Correction]

Soient $a,b \in \mathbb{R}$. Déterminer la nature de la série

$$\sum_{n\geqslant 1} \ln n + a \ln(n+1) + b \ln(n+2)$$

Calculer la somme lorsqu'il y a convergence.

Exercice 98 [01084] [Correction]

Soient $a,b \in \mathbb{R}$. Déterminer la nature de la série

$$\sum_{n \ge 1} \sqrt{n} + a\sqrt{n+1} + b\sqrt{n+2}$$

Calculer la somme lorsqu'il y a convergence.

Exercice 99 [01085] [Correction]

Déterminer une condition nécessaire et suffisante sur les réels a,b,c pour qu'il y ait convergence de la suite de terme général

$$\frac{a}{\sqrt{1}} + \frac{b}{\sqrt{2}} + \frac{c}{\sqrt{3}} + \frac{a}{\sqrt{4}} + \frac{b}{\sqrt{5}} + \frac{c}{\sqrt{6}} + \cdots$$

Exercice 100 [01086] [Correction]

Soit λ un réel. Etudier la nature des séries de terme général

$$u_n = \frac{\lambda^n}{1 + \lambda^{2n}}, v_n = \frac{\lambda^{2n}}{1 + \lambda^{2n}}, w_n = \frac{1}{1 + \lambda^{2n}}$$

Exercice 101 [01088] [Correction]

Déterminer en fonction de $\alpha \in \mathbb{R}$, la nature de

$$\sum \frac{(-1)^n}{n^\alpha + (-1)^n}$$

Exercice 102 [01087] [Correction]

Soit $\alpha > 0$. Préciser la nature de la série $\sum_{n \ge 2} u_n$ avec

$$u_n = \frac{(-1)^n}{\sqrt{n^\alpha + (-1)^n}}$$

Exercice 103 [02515] [Correction]

Etudier la nature de la série de terme général

$$u_n = \ln\left(1 + \sin\frac{(-1)^n}{n^\alpha}\right)$$

pour $\alpha > 0$.

Exercice 104 [02790] [Correction]

Nature de la série de terme général

$$u_n = \ln\left(1 + \frac{(-1)^n}{n^a}\right)$$

où a > 0.

Exercice 105 [02791] [Correction]

Nature de la série de terme général

$$u_n = \ln\left(\frac{\sqrt{n} + (-1)^n}{\sqrt{n+a}}\right)$$

où $a \in \mathbb{R}$.

Exercice 106 [02430] [Correction]

On note $u_n = \int_0^{\pi/4} (\tan t)^n dt$.

- a) Déterminer la limite de u_n .
- b) Trouver une relation de récurrence entre u_n et u_{n+2} .
- c) Donner la nature de la série de terme général $(-1)^n u_n$.
- d) Discuter suivant $\alpha \in \mathbb{R}$, la nature de la série de terme général u_n/n^{α} .

Exercice 107 [02798] [Correction]

Soient $\alpha \in \mathbb{R}$ et $f \in \mathcal{C}^0([0,1],\mathbb{R})$ telle que $f(0) \neq 0$. Etudier la convergence de la série de terme général

$$u_n = \frac{1}{n^{\alpha}} \int_0^{1/n} f(t^n) \, \mathrm{d}t$$

Exercice 108 [02799] [Correction]

Soient $\alpha > 0$ et (u_n) une suite de réels strictement positifs vérifiant

$$u_n^{1/n} = 1 - \frac{1}{n^{\alpha}} + o\left(\frac{1}{n^{\alpha}}\right)$$

La série de terme général u_n converge-t-elle?

Exercice 109 [02802] [Correction]

Soient $(a, \alpha) \in \mathbb{R}^+ \times \mathbb{R}$ et, pour $n \in \mathbb{N}^*$:

$$u_n = \sum_{k=1}^n 1/k^\alpha$$

a) Pour quels couples (a, α) la suite (u_n) est-elle convergente? Dans la suite, on suppose que tel est le cas, on note $\ell = \lim u_n$ et on pose, si $n \in \mathbb{N}^*$,

$$v_n = u_n - \ell$$

b) Nature des séries de termes généraux v_n et $(-1)^n v_n$.

Exercice 110 [03429] [Correction]

Soient $p \in \mathbb{N}$ et $\alpha > 0$. Déterminer la nature des séries de termes généraux

$$v_n = {n+p \choose p}^{-\alpha}$$
 et $w_n = (-1)^n {n+p \choose p}^{-\alpha}$

Exercice 111 [03704] [Correction]

a) En posant $x = \tan t$, montrer

$$\int_0^{\pi/2} \frac{\mathrm{d}t}{1 + a\sin^2(t)} = \frac{\pi}{2\sqrt{1+a}}$$

b) Donner en fonction de $\alpha > 0$ la nature de la série

$$\sum \int_0^{\pi} \frac{\mathrm{d}t}{1 + (n\pi)^{\alpha} \sin^2(t)}$$

c) Même question pour

$$\sum \int_{n\pi}^{(n+1)\pi} \frac{\mathrm{d}t}{1 + t^{\alpha} \sin^2(t)}$$

d) Donner la nature de l'intégrale

$$\int_0^{+\infty} \frac{\mathrm{d}t}{1 + t^\alpha \sin^2(t)}$$

Exercice 112 [02423] [Correction]

On pose

$$u_n = \sum_{n=n}^{+\infty} \frac{1}{(p+1)^{\alpha}} \text{ et } v_n = \sum_{n=n}^{+\infty} \frac{(-1)^p}{(p+1)^{\alpha}}$$

- a) Déterminer la nature de la série de terme général u_n selon α .
- b) Déterminer la nature de la série de terme général v_n selon α .

Exercice 113 [03104] [Correction]

On note a_n le nombre de chiffres dans l'écriture décimale de l'entier $n \ge 1$. Pour quelles valeurs de $x \in \mathbb{R}$ y a-t-il convergence de la série

$$\sum \frac{x^{a_n}}{n^3}?$$

Calcul de somme

Exercice 114 [01049] [Correction]

Après en avoir justifiée l'existence, calculer

$$\sum_{n=0}^{+\infty} \frac{1}{(2n+1)^2} \text{ sachant } \sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$$

Exercice 115 [01048] [Correction]

Nature puis somme de

$$\sum_{n\geqslant 1} \frac{1}{n(n+1)(n+2)}$$

Exercice 116 [01047] [Correction]

On donne $\sum_{k=1}^{+\infty} \frac{1}{k^2} = \frac{\pi^2}{6}$. Calculer

$$\sum_{k=1}^{+\infty} \frac{1}{k^2(k+1)^2}$$

après en avoir justifié l'existence.

Exercice 117 [03895] [Correction]

Existence et valeur de

$$\sum_{n=2}^{+\infty} \ln\left(1 + \frac{(-1)^n}{n}\right)$$

Exercice 118 [03633] [Correction]

Existence et calcul de

$$\sum_{n=2}^{+\infty} \ln\left(1 - \frac{1}{n^2}\right)$$

Exercice 119 [01058] [Correction]

En utilisant la formule de Stirling, calculer

$$\sum_{n=1}^{+\infty} (-1)^n \ln \left(1 + \frac{1}{n} \right)$$

Exercice 120 [01050] [Correction]

Sachant $\sum_{n=0}^{+\infty} \frac{1}{n!} = e$, calculer

$$\sum_{n=0}^{+\infty} \frac{n+1}{n!} \text{ et } \sum_{n=0}^{+\infty} \frac{n^2 - 2}{n!}$$

Exercice 121 [02806] [Correction]

Nature et calcul de la somme de la série de terme général

$$\sum_{k=n}^{+\infty} \frac{(-1)^k}{k^2}$$

Exercice 122 [02426] [Correction]

Calculer pour $x \in]-1,1[$

$$\sum_{n=1}^{+\infty} \frac{x^n}{(1-x^n)(1-x^{n+1})}$$

Exercice 123 [03448] [Correction]

Existence et valeur pour $m \ge 1$ de

$$S_m = \sum_{n=1}^{+\infty} \frac{1}{n(n+1)\dots(n+m)}$$

Exercice 124 [03622] [Correction]

Calculer la somme de la série de terme général

$$u_n = \arctan \frac{1}{n^2 + 3n + 3}$$

Exercice 125 [01057] [Correction]

Pour $p \in \mathbb{N}$, on pose

$$a_p = \sum_{n=0}^{+\infty} \frac{n^p}{2^n}$$

- a) Montrer que a_p existe puis exprimer a_p en fonction de a_0, \ldots, a_{p-1} .
- b) En déduire que $a_p \in \mathbb{N}$.

Exercice 126 [02801] [Correction]

Soient α dans \mathbb{R}^* , a et b dans $\mathbb{R} \setminus \mathbb{N}$. On pose

$$u_0 = \alpha \text{ et } \forall n \in \mathbb{N}, u_{n+1} = \frac{n-a}{n-b}u_n$$

Etudier la nature de la série de terme général u_n et calculer éventuellement sa somme.

Exercice 127 [01053] [Correction]

On pose

$$u_n = \int_0^1 x^n \sin(\pi x) \, \mathrm{d}x$$

Montrer que la série $\sum u_n$ converge et que sa somme vaut

$$\int_0^\pi \frac{\sin t}{t} \, \mathrm{d}t$$

Exercice 128 [03796] [Correction]

Convergence et somme de la série $\sum_{k\geqslant 2} \frac{1}{k^2-1}$.

Convergence et somme de

$$\sum_{k\geqslant 2}\frac{\left\lfloor\sqrt{k+1}\right\rfloor-\left\lfloor\sqrt{k}\right\rfloor}{k}$$

Exercice 129 [02803] [Correction]

Etudier

$$\lim_{n \to \infty} \lim_{m \to \infty} \sum_{i=0}^{n} \sum_{j=0}^{m} (-1)^{i+j} t^{i+j+1}$$

Calcul de somme par la constante d'Euler

Exercice 130 [01055] [Correction]

Justifier et calculer

$$\sum_{n=1}^{+\infty} \frac{1}{n(2n-1)}$$

Exercice 131 [02354] [Correction]

Existence et calcul de

$$\sum_{n=1}^{+\infty} \frac{5n+6}{n(n+1)(n+2)}$$

Exercice 132 [01046] [Correction]

Existence et calcul de

$$\sum_{n=1}^{+\infty} \frac{1}{n(n+1)(2n+1)}$$

Exercice 133 [01054] [Correction]

On rappelle l'existence d'une constante γ telle qu'on ait

$$\sum_{k=1}^{n} \frac{1}{k} = \ln n + \gamma + o(1)$$

- a) Calculer la somme de la série de terme général $u_n = (-1)^{n-1}/n$.
- b) Même question avec $u_n = 1/n$ si $n \neq 0$ [3] et $u_n = -2/n$ sinon.

Exercice 134 [02804] [Correction]

Convergence puis calcul de

$$\sum_{n=1}^{+\infty} \frac{1}{1^2 + 2^2 + \dots + n^2}$$

Exercice 135 [02964] [Correction]

Calculer

$$\sum_{n=0}^{\infty} \left(\frac{1}{4n+1} - \frac{3}{4n+2} + \frac{1}{4n+3} + \frac{1}{4n+4} \right)$$

Exercice 136 [01056] [Correction]

a) Donner un développement asymptotique à deux termes de

$$u_n = \sum_{p=2}^n \frac{\ln p}{p}$$

On pourra introduire la fonction $f: t \mapsto (\ln t)/t$.

b) A l'aide de la constante d'Euler, calculer

$$\sum_{n=1}^{+\infty} (-1)^n \frac{\ln n}{n}$$

Exercice 137 [02428] [Correction]

On pose

$$f(x) = \frac{\ln x}{x}$$

- a) Nature des séries de termes généraux f(n) puis $(-1)^n f(n)$.
- b) Montrer la convergence de la série de terme général

$$f(n) - \int_{n-1}^{n} f(t) \, \mathrm{d}t$$

c) Calculer

$$\sum_{n=1}^{+\infty} (-1)^n f(n)$$

Indice: On pourra s'intéresser à la quantité

$$2\sum_{k=1}^{n} f(2k) - \sum_{k=1}^{2n} f(k)$$

Calcul de somme par dérivation ou intégration

Exercice 138 [01052] [Correction]

Soit $\alpha > 0$. Montrer

$$\sum_{k=0}^{+\infty} \frac{(-1)^k}{k+\alpha} = \int_0^1 \frac{x^{\alpha-1}}{1+x} \, \mathrm{d}x$$

Exercice 139 [01051] [Correction]

Soit $x \in]-1,1[$. Calculer

$$\sum_{k=0}^{+\infty} kx^k$$

Exercice 140 [02805] [Correction]

Calculer

$$\sum_{n=0}^{+\infty} \frac{(-1)^n}{4n+1}$$

Exercice 141 [01338] [Correction]

Calculer

$$\sum_{n=0}^{+\infty} \frac{1}{(4n+1)(4n+3)}$$

Application à l'étude de suites

Exercice 142 [01070] [Correction]

Calculer la limite de

$$u_n = 1 + \frac{1}{2} + \dots + \frac{1}{n} - \left(\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{n^2}\right)$$

Exercice 143 [02809] [Correction]

On pose

$$a_n = \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{3n}$$

- a) Montrer que la suite (a_n) converge et trouver sa limite λ .
- b) Trouver un équivalent simple de $a_n \lambda$.

Exercice 144 [01072] [Correction]

Pour tout $n \in \mathbb{N}$, soit

$$u_n = \frac{(2n)!}{(2^n n!)^2}$$

a) Déterminer un équivalent de

$$\ln u_{n+1} - \ln u_n$$

En déduire que $u_n \to 0$.

b) En s'inspirant de ce qui précède, établir que $\sqrt{n}u_n \to C > 0$ (on ne cherchera pas expliciter la valeur de C).

Exercice 145 [01073] [Correction]

Pour tout $n \in \mathbb{N}$, on pose

$$u_n = \frac{(2n)!}{(2^n n!)^2}$$

- a) Déterminer un équivalent de $\ln u_{n+1} \ln u_n$. En déduire que $u_n \to 0$.
- b) Montrer que $nu_n \to +\infty$. En déduire la nature de la série $\sum u_n$.
- c) On pose $v_n = \frac{u_n}{n+1}$. En observant et en sommant les égalités

 $(2k+4)v_{k+1}=(2k+1)v_k$ calculer $T_n=\sum_{k=0}^n v_k$ en fonction de n et v_{n+1} . En déduire la valeur de

$$\sum_{n=0}^{+\infty} \frac{u_n}{n+1}$$

Exercice 146 [01078] [Correction]

Soient 0 < a < b et (u_n) une suite strictement positive telle que pour tout $n \in \mathbb{N}$,

$$\frac{u_{n+1}}{u_n} = \frac{n+a}{n+b}$$

- a) Montrer que $u_n \to 0$. On pourra considérer $\ln u_n$.
- b) Soient $\alpha \in \mathbb{R}$ et $v_n = n^{\alpha}u_n$. En étudiant (v_n) , montrer qu'il existe A > 0 tel que

$$u_n \sim \frac{A}{n^{b-a}}$$

c) On suppose b-a>1. En écrivant

$$(n+1)u_{n+1} - nu_n = au_n + (1-b)u_{n+1}$$

calculer

$$\sum_{n=0}^{+\infty} u_n$$

Exercice 147 [01080] [Correction]

Soit (u_n) une suite de réels strictement positifs telle que

$$\frac{u_{n+1}}{u_n} = 1 + \frac{\alpha}{n} + O\left(\frac{1}{n^2}\right), \text{ avec } \alpha \in \mathbb{R}$$

a) Pour quel(s) $\beta \in \mathbb{R}$ y a-t-il convergence de la série de terme général

$$v_n = \ln \frac{(n+1)^\beta u_{n+1}}{n^\beta u_n} ?$$

b) En déduire qu'il existe $A \in \mathbb{R}^{+\star}$ pour lequel

$$u_n \sim A n^{\alpha}$$

Exercice 148 [01079] [Correction]

Pour $\alpha \in \mathbb{R} \backslash \mathbb{Z}^{-\star}$, on considère $(u_n)_{n \geqslant 1}$ définie par

$$u_1 = 1$$
 et $u_{n+1} = (1 + \alpha/n) u_n$

a) Pour quel(s) $\beta \in \mathbb{R}$ y a-t-il convergence de la série de terme général

$$v_n = \ln\left(\frac{(n+1)^{\beta} u_{n+1}}{n^{\beta} u_n}\right)?$$

b) En déduire qu'il existe $A \in \mathbb{R}^{+\star}$ pour lequel $u_n \sim An^{\alpha}$.

Exercice 149 [01074] [Correction]

Montrer que

$$u_n = \frac{n! e^n}{n^{n+1/2}}$$

a une limite non nulle.

Exercice 150 [01077] [Correction]

Etudier la limite de

$$u_n = \int_0^1 \frac{(1-u)^n - 1}{u} du + \ln n$$

Exercice 151 [01075] [Correction]

Soit

$$P_n = \prod_{k=2}^n \left(1 + \frac{(-1)^k}{\sqrt{k}} \right)$$

Montrer qu'il existe $\lambda \in \mathbb{R}$ tel que

$$P_n \sim \frac{\mathrm{e}^{\lambda}}{\sqrt{n}}$$

Exercice 152 [01071] [Correction]

Soit a > 0.

a) Déterminer la limite de la suite de terme général

$$u_n = \frac{a(a+1)\dots(a+n-1)}{n!}$$

b) Quelle est la nature de la série de terme général u_n ?

Exercice 153 [02429] [Correction]

On fixe $x \in \mathbb{R}^{+\star}$. Pour $n \in \mathbb{N}^{\star}$, on pose

$$u_n = \frac{n!}{x^n} \prod_{k=1}^n \ln\left(1 + \frac{x}{k}\right)$$

a) Etudier la suite de terme général $\ln(u_{n+1}) - \ln(u_n)$.

En déduire que la suite $(u_n)_{n\geqslant 1}$ converge et préciser sa limite.

b) Etablir l'existence de $\alpha \in \mathbb{R}$ tel que la série de terme général :

$$\ln(u_{n+1}) - \ln(u_n) - \alpha \ln\left(1 + \frac{1}{n}\right)$$

converge.

- c) Etablir l'existence de $A \in \mathbb{R}^*$ tel que $u_n \sim An^{\alpha}$.
- d) Etudier la convergence de la série de terme général u_n .

Exercice 154 [02784] [Correction]

Soit $u_0 \in]0, 2\pi[$ puis

$$\forall n \in \mathbb{N}, u_{n+1} = \sin\left(u_n/2\right)$$

- a) Montrer que (u_n) tend vers 0.
- b) Montrer que $\lim_{n \to \infty} (2^n u_n) = A$ pour un certain A > 0.
- c) Trouver un équivalent simple de $(u_n A2^{-n})$.

Exercice 155 [03047] [Correction]

Soit (u_n) une suite complexe telle que pour tout $p \in \mathbb{N}^*$, $u_{pn} - u_n \to 0$. Peut-on affirmer que la suite (u_n) converge?

Exercice 156 [02418] [Correction]

Former un développement asymptotique à trois termes de la suite (u_n) définie par

$$u_1 = 1 \text{ et } \forall n \in \mathbb{N}^*, u_{n+1} = (n + u_n^{n-1})^{1/n}$$

Exercice 157 [02949] [Correction]

Etudier la limite quand $n \to +\infty$ de

$$\sum_{k=1}^{n} \left(\frac{k}{n}\right)^n$$

Exercice 158 [03057] [Correction]

On note $(z_n)_{n\geqslant 1}$ la suite de terme général

$$z_n = 2n \exp\left(\frac{it}{\sqrt{n}}\right)$$

Etudier

$$\lim_{n \to +\infty} \left| \frac{2n-1}{z_n - 1} \frac{2n-2}{z_n - 2} \cdots \frac{2n-n}{z_n - n} \right| = \lim_{n \to +\infty} \left| \prod_{k=1}^n \frac{2n-k}{z_n - k} \right|$$

Etude théorique

Exercice 159 [01033] [Correction]

Montrer que la somme d'une série semi-convergente et d'une série absolument convergente n'est que semi-convergente.

Exercice 160 [02962] [Correction]

Donner un exemple de série divergente dont le terme général tend vers 0 et dont les sommes partielles sont bornées.

Exercice 161 [03097] [Correction]

On dit que la série de terme général u_n enveloppe le réel A si, pour tout entier naturel n, on a :

$$u_n \neq 0 \text{ et } |A - (u_0 + u_1 + \dots + u_n)| \leq |u_{n+1}|$$

On dit qu'elle enveloppe strictement le réel A s'il existe une suite $(\theta_n)_{n\geqslant 1}$ d'éléments de]0,1[telle que pour tout entier naturel n:

$$A - (u_0 + u_1 + \dots + u_n) = \theta_{n+1} u_{n+1}$$

a) Donner un exemple de série divergente qui enveloppe A > 0.

Donner un exemple de série convergente qui enveloppe un réel.

Donner un exemple de série convergente qui n'enveloppe aucun réel.

b) Démontrer que, si la série de terme général u_n enveloppe strictement A, alors elle est alternée.

Démontrer que A est alors compris entre deux sommes partielles consécutives.

c) Démontrer que, si la série de terme général u_n est alternée et que, pour tout entier $n \in \mathbb{N}^*$

 $A - (u_0 + u_1 + \cdots + u_n)$ est du signe de u_{n+1} , alors, elle enveloppe strictement A.

d) Démontrer que, si la série de terme général u_n enveloppe A et si la suite de terme général $|u_n|$ est strictement décroissante, alors, la série est alternée et encadre strictement A.

Exercice 162 [03207] [Correction]

Soit E l'ensemble des suites réelles $(u_n)_{n\geq 0}$ telles que

$$u_{n+2} = (n+1)u_{n+1} + u_n$$

- a) Montrer que E est un espace vectoriel de dimension 2.
- b) Soient a et b deux éléments de E déterminés par

$$\begin{cases} a_0 = 1 \\ a_1 = 0 \end{cases}$$
 et
$$\begin{cases} b_0 = 0 \\ b_1 = 1 \end{cases}$$

Montrer que les deux suites (a_n) et (b_n) divergent vers $+\infty$.

c) Calculer

$$w_n = a_{n+1}b_n - a_n b_{n+1}$$

d) On pose $c_n = a_n/b_n$ lorsque l'entier n est supérieur ou égal à 1. Démontrer l'existence de

$$\ell = \lim_{n \to +\infty} c_n$$

e) Démontrer l'existence d'un unique réel r tel que

$$\lim_{n \to +\infty} \left(a_n + rb_n \right) = 0$$

Exercice 163 [02538] [Correction]

Soit f de classe C^2 sur $[0, +\infty[$ telle que f'' est intégrable sur $[0, +\infty[$ et telle que l'intégrale $\int_0^{+\infty} f(t) dt$ soit convergente.

a) Montrer que

$$\lim_{x \to +\infty} f'(x) = 0 \text{ et } \lim_{x \to +\infty} f(x) = 0$$

18

b) Etudier les séries

$$\sum f(n)$$
 et $\sum f'(n)$

Exercice 164 [03917] [Correction]

Soit $e=(e_n)_{n\in\mathbb{N}}$ une suite décroissante à termes strictement positifs telle que la série $\sum e_n$ converge.

On pose

$$s = \sum_{n=0}^{+\infty} e_n$$
 et $r_n = \sum_{k=n+1}^{+\infty} e_k$ pour $n \in \mathbb{N}$

On introduit

$$G = \left\{ \sum_{n=0}^{+\infty} d_n e_n / (d_n) \in \{-1, 1\}^{\mathbb{N}} \right\}$$

On dit que la suite e est une base discrète lorsque G est un intervalle.

- a) Montrer que G est bien défini. Déterminer son maximum et son minimum.
- b) On suppose dans cette question que (e_n) est une base discrète. Montrer que $e_n \leq r_n$ pour tout $n \in \mathbb{N}$.
- c) On suppose que $e_n \leqslant r_n$ pour tout $n \in \mathbb{N}$. Soit $t \in [-s,s]$. On définit la suite (t_n) par

$$t_0 = 0$$
 et $t_{n+1} = \begin{cases} t_n + e_n & \text{si } t_n \leqslant t \\ t_n - e_n & \text{sinon} \end{cases}$

Montrer que

$$|t - t_n| \leqslant e_n + r_n$$

et conclure.

d) Dans cette question, on suppose $e_n = 1/2^n$ pour tout $n \in \mathbb{N}$.

Déterminer G. Quelles suites (d_n) permettent d'obtenir respectivement 0, 1, 1/2, 2 et 1/3?

Pour $x \in G$, y a-t-il une unique suite $(d_n) \in \{-1,1\}^{\mathbb{N}}$ telle que

$$x = \sum_{n=0}^{+\infty} d_n e_n ?$$

Transformation d'Abel

Exercice 165 [01043] [Correction]

Pour $n \in \mathbb{N}^*$, on pose

$$\Sigma_n = \sum_{k=1}^n \sin k \text{ et } S_n = \sum_{k=1}^n \frac{\sin k}{k}$$

- a) Montrer que $(\Sigma_n)_{n\geqslant 1}$ est bornée.
- b) En déduire que $(S_n)_{n\geq 1}$ converge.

Exercice 166 [02352] [Correction]

Soit $\theta \in \mathbb{R}$ non multiple de 2π . On pose

$$S_n = \sum_{k=0}^n \cos(k\theta)$$
 et $u_n = \frac{\cos(n\theta)}{n}$

- a) Montrer que la suite (S_n) est bornée.
- b) En observant que $\cos(n\theta) = S_n S_{n-1}$, établir que la série de terme général u_n converge.
- c) En exploitant l'inégalité $|\cos x| \ge \cos^2 x$, établir que la série de terme général $|u_n|$ diverge.

Exercice 167 [01041] [Correction]

Soient (a_n) une suite positive décroissante de limite nulle et (S_n) une suite bornée.

- a) Montrer que la série $\sum (a_n a_{n+1})S_n$ est convergente.
- b) En déduire que la série $\sum a_n(S_n S_{n-1})$ est convergente.
- c) Etablir que pour tout $x \in \mathbb{R} \setminus 2\pi\mathbb{Z}$, la série $\sum_{n=0}^{\infty} \frac{\cos(nx)}{n}$ est convergente.

Exercice 168 [02582] [Correction]

a) Montrer l'existence, pour $\theta \in]0,\pi[$, d'un majorant M_{θ} de la valeur absolue de

$$S_n = \sum_{k=1}^n \cos(k\theta)$$

- b) Montrer que $x\mapsto \frac{\sqrt{x}}{x-1}$ est décroissante sur $[2,+\infty[$. c) En remarquant de $\cos(n\theta)=S_n-S_{n-1}$, étudier la convergence de la série de terme général

$$u_n = \frac{\sqrt{n}}{n-1}\cos(n\theta)$$

d) En utilisant $|\cos(k\theta)| \ge \cos^2(k\theta)$, étudier la convergence de $\sum |u_n|$.

Exercice 169 [01042] [Correction]

Soit z_n le terme général d'une série complexe convergente. Etablir la convergence de la série

$$\sum_{n\geqslant 1} \frac{z_n}{n}$$

Exercice 170 [03684] [Correction]

Soit z_n le terme général d'une série complexe convergente. Etablir

$$\sum_{k=n}^{+\infty} \frac{z_k}{k} = o\left(\frac{1}{n}\right)$$

Exercice 171 [03685] [Correction]

Soit (a_n) une suite complexe. On suppose que la série $\sum \frac{a_n}{n}$ diverge. Etablir que pour tout $\alpha \in]-\infty,1]$, la série $\sum \frac{a_n}{n^{\alpha}}$ diverge aussi.

Exercice 172 [01028] [Correction]

Soit $(u_n)_{n\geqslant 1}$ une suite décroissante de réels strictement positifs.

a) On suppose que $\sum u_n$ converge. Montrer que la série de terme général $v_n = n(u_n - u_{n+1})$ converge et

$$\sum_{n=1}^{+\infty} v_n = \sum_{n=1}^{+\infty} u_n$$

- b) Réciproquement, on suppose que la série de terme général $n(u_n u_{n+1})$ converge. Montrer que la série de terme général u_n converge si, et seulement si, la suite (u_n) converge vers 0.
- c) Donner un exemple de suite (u_n) qui ne converge pas vers 0, alors que la série de terme général $n(u_n - u_{n+1})$ converge.

Exercice 173 [03673] [Correction]

Soit $(u_n)_{n\geq 1}$ une suite décroissante de réels de limite nulle.

Montrer que les séries $\sum u_n$ et $\sum n(u_n - u_{n+1})$ ont même nature et que leurs sommes sont égales en cas de convergence.

Exercice 174 [03879] [Correction]

On donne une suite réelle (a_n) .

On suppose que les séries $\sum a_n$ et $\sum |a_{n+1}-a_n|$ convergent. Montrer que la série $\sum a_n^2$ converge.

Théorème de Cesaro

Exercice 175 [00307] [Correction]

Soit $(u_n)_{n\geqslant 1}$ une suite réelle convergeant vers $\ell\in\mathbb{R}$. On désire établir que la suite $(v_n)_{n\geqslant 1}$ de terme général

$$v_n = \frac{u_1 + u_2 + \dots + u_n}{n}$$

converge aussi vers ℓ . Soit $\varepsilon > 0$.

a) Justifier qu'il existe $n_0 \in \mathbb{N}$ tel que pour tout $n \in \mathbb{N}, n > n_0$ entraı̂ne

$$|u_n - \ell| \leqslant \varepsilon/2$$

b) Etablir que pour tout entier $n > n_0$ on a :

$$|v_n - \ell| \leqslant \frac{|u_1 - \ell| + \dots + |u_{n_0} - \ell|}{n} + \frac{n - n_0}{n} \frac{\varepsilon}{2}$$

c) En déduire qu'il existe $n_1 \in \mathbb{N}$ tel que pour tout $n \in \mathbb{N}$, $n > n_1$ entraı̂ne

$$|v_n - \ell| \leqslant \varepsilon$$

d) Application : Soit (u_n) une suite réelle telle que $u_{n+1} - u_n \to \alpha \neq 0$. Donner un équivalent simple de u_n .

Exercice 176 [00308] [Correction]

Soit (u_n) une suite réelle.

a) On suppose que (u_n) converge vers ℓ et on considère

$$v_n = \frac{u_1 + 2u_2 + \dots + nu_n}{n^2}$$

Déterminer $\lim_{n\to+\infty} v_n$.

b) On suppose

$$\frac{u_n - u_{n-1}}{n} \to \ell$$

Déterminer

$$\lim_{n\to\infty}\frac{u_n}{n^2}$$

Exercice 177 [00309] [Correction]

Soit (u_n) une suite de réels strictement positifs.

On suppose

$$\frac{u_{n+1}}{u_n} \to \ell \in \left]0, +\infty\right[$$

Montrer

$$\sqrt[n]{u_n} \to \ell$$

Exercice 178 [03219] [Correction]

La suite $(u_n)_{n\geqslant 0}$ est définie par $u_0>0$ et

$$\forall n \in \mathbb{N}, u_{n+1} = \ln(1 + u_n)$$

- a) Déterminer la limite de la suite (u_n)
- b) Déterminer la limite de

$$\frac{1}{u_{n+1}} - \frac{1}{u_n}$$

c) En déduire un équivalent de (u_n)

Exercice 179 [03220] [Correction]

La suite $(u_n)_{n\geqslant 0}$ est définie par $u_0\in]0,\pi/2[$ et

$$\forall n \in \mathbb{N}, u_{n+1} = \sin(u_n)$$

- a) Déterminer la limite de la suite (u_n)
- b) Déterminer la limite de

$$\frac{1}{u_{n+1}^2} - \frac{1}{u_n^2}$$

c) En déduire un équivalent de (u_n)

Exercice 180 [03850] [Correction]

Soit $\sum u_n$ une série à termes positifs convergente. On note

$$R_n = \sum_{k=n+1}^{+\infty} u_k$$

et on suppose

$$u_n \sim R_n^2$$

Déterminer un équivalent de u_n .

Condensation

Exercice 181 [02796] [Correction]

Soit (u_n) une suite réelle décroissante et positive. On pose

$$v_n = 2^n u_{2^n}$$

Déterminer la nature de $\sum v_n$ en fonction de celle de $\sum u_n$.

Exercice 182 [03676] [Correction]

[Critère de condensation de Cauchy]

a) Soient $(u_n)_{n\in\mathbb{N}}$ une suite réelle décroissante, positive et $p\in\mathbb{N}$ tel que $p\geqslant 2$. On pose

$$v_n = p^n u_{p^n}$$

Montrer que

 $\sum u_n$ converge si, et seulement si, $\sum v_n$ converge

b) Application : Etudier la convergence des séries

$$\sum \frac{1}{n \ln n}$$
 et $\sum \frac{1}{n \ln n \ln(\ln n)}$

Exercice 183 [03677] [Correction]

Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle décroissante et positive. On pose

$$v_n = nu_{n^2}$$

Montrer que

$$\sum u_n$$
 converge si, et seulement si, $\sum v_n$ converge

Exercice 184 [02797] [Correction]

Soit (u_n) une suite décroissante d'éléments de \mathbb{R}^+ , de limite 0. Pour $n \ge 1$, on pose

$$v_n = n^2 u_{n^2}$$

Y a-t-il un lien entre la convergence des séries de termes généraux u_n et v_n ?

Corrections

Exercice 1 : [énoncé]

- a) $u_n \sim \frac{1}{n}$ donc par comparaison de séries à termes positifs, la série est divergente.
- b) $u_n \sim \frac{e^n}{e^{2n}} \sim e^{-n}$ donc par comparaison de séries à termes positifs, la série est convergente.
- c) $u_n = O\left(\frac{1}{n^3}\right)$ donc la série est absolument convergente.
- d) $u_n \sim \frac{e}{2n}$ donc par comparaison de séries à termes positifs, la série est divergente.

Exercice 2 : [énoncé]

- a) $u_n = \exp(-n^2 \ln(1+1/n)) = \exp(-n + o(n)) \operatorname{donc} n^2 u_n \to 0$ et la série est absolument convergente.
- b) $u_n \ge 1/n$ donc par comparaison de séries à termes positifs, la série est divergente.
- c) $n^2 u_n = \frac{n^2}{(\ln n)^{\ln n}} = e^{2 \ln n \ln n \ln \ln n} \to 0$ donc la série est absolument convergente

Exercice 3: [énoncé]

On a

$$nu_n = \left(\frac{1}{n}\right)^{1/n} = \exp\left[-\frac{1}{n}\ln n\right] \to 1$$

donc pour n assez grand

$$u_n \geqslant \frac{1}{2n}$$

et par comparaison de série à termes positifs on peut affirmer que $\sum u_n$ diverge.

Exercice 4: [énoncé]

C'est une série à termes positifs aux sommes partielles majorées car

$$\sum_{k=1}^{n} u_k \leqslant 2\sum_{k=1}^{n} \frac{1}{k^2} < +\infty$$

donc la série converge.

Exercice 5: [énoncé]

On a

$$e - \left(1 + \frac{1}{n}\right)^n = O\left(\frac{1}{n}\right)$$

et

$$n^{3/2} - \left| n^{3/2} \right| + n = n + O(1) \sim n$$

donc

$$\frac{\mathrm{e} - \left(1 + \frac{1}{n}\right)^n}{n^{3/2} - \left\lfloor n^{3/2} \right\rfloor + n} = O\left(\frac{1}{n^2}\right)$$

ce qui permet de conclure à une absolue convergence.

Exercice 6: [énoncé]

a) L'intégrale définissant u_n est bien définie car elle porte sur une fonction sur le segment [0,1]. On peut aussi la comprendre comme une intégrale impropre convergente sur [0,1[

$$u_n = \int_0^1 \frac{\mathrm{d}x}{1 + x + \dots + x^n} = \int_{[0,1[} \frac{\mathrm{d}x}{1 + x + \dots + x^n}$$

et par sommation géométrique

$$\int_{[0,1[} \frac{\mathrm{d}x}{1+x+\dots+x^n} = \int_{[0,1[} \frac{1-x}{1-x^{n+1}} \,\mathrm{d}x$$

Posons

$$f_n(x) = \frac{1 - x}{1 - x^{n+1}}$$

Sur [0,1[, la suite de fonctions (f_n) converge simplement vers la fonction $f:x\mapsto 1-x$.

Les fonctions f_n et f sont continues par morceaux et

$$\left| \frac{1-x}{1-x^{n+1}} \right| \leqslant \frac{1-x}{1-x} = 1 = \varphi(x)$$

avec φ intégrable. Par convergence dominée

$$u_n \to \int_0^1 (1-x) dx = \frac{1}{2}$$

et donc la série $\sum u_n$ diverge grossièrement.

b) On amorce les calculs comme au dessus pour écrire

$$v_n = \int_0^1 \frac{x^n dx}{1 + x + \dots + x^n} = \int_0^1 \frac{x^n}{1 - x^{n+1}} (1 - x) dx$$

Par intégration par parties impropre justifiée par deux convergences

$$\int_0^1 \frac{x^n}{1 - x^{n+1}} (1 - x) dx = \left[-\frac{1}{n+1} \ln(1 - x^{n+1}) (1 - x) \right]_0^1 - \frac{1}{n+1} \int_0^1 \ln(1 - x^{n+1}) dx$$

Le terme entre crochet est nul (il suffit d'écrire x = 1 - h avec $h \to 0$, pour étudier la limite en 1)

Il reste

$$v_n = -\frac{1}{n+1} \int_0^1 \ln(1-x^{n+1}) dx$$

Par développement en série entière de la fonction $u \mapsto -\ln(1-u)$

$$v_n = \int_0^1 \sum_{k=1}^{+\infty} \frac{1}{k} x^{(n+1)k} dx$$

Posons

$$g_k(x) = \frac{1}{k} x^{(n+1)k}$$

La série de fonctions $\sum g_k$ converge simplement sur [0,1[en vertu de la décomposition en série entière précédente.

Les fonctions g_k et la fonction somme $\sum_{k=0}^{+\infty} g_k : x \mapsto -\ln(1-x^{n+1})$ sont continues par morceaux.

Enfin, les fonctions g_k sont intégrables sur [0,1] et

$$\sum_{k=1}^{+\infty} \int_0^1 \left| \frac{1}{k} x^{(n+1)k} \right| dx = \sum_{k=1}^{+\infty} \frac{1}{k((n+1)k+1)} < +\infty$$

On peut donc intégrer terme à terme pour écrire donc

$$v_n = \frac{1}{n+1} \sum_{k=1}^{+\infty} \frac{1}{k} \int_0^1 x^{(n+1)k} dx = \frac{1}{n+1} \sum_{k=1}^{+\infty} \frac{1}{k((n+1)k+1)}$$

Or

$$\sum_{k=1}^{+\infty} \frac{1}{k((n+1)k+1)} \le \frac{1}{(n+1)} \sum_{k=1}^{+\infty} \frac{1}{k^2}$$

puis finalement

$$v_n \leqslant \frac{C}{(n+1)^2}$$

La série à termes positifs $\sum v_n$ est donc convergente.

Exercice 7: [énoncé]

$$\sum_{k=1}^{n} \frac{1}{k} = \ln n + \gamma + o(1)$$

et donc

$$a^{\sum_{k=1}^{n} \frac{1}{k}} = e^{\ln a \ln n + \gamma \ln a + o(1)} \sim \frac{e^{\gamma \ln a}}{n^{-\ln a}}$$

Par équivalence de séries à termes positifs

$$\sum_{n \ge 1} \sum_{k=1}^{n} \frac{1}{k} \text{ converge } \Leftrightarrow -\ln a > 1$$

ce qui fournit la condition $a < e^{-1}$.

Exercice 8: [énoncé]

a) Posons $v_n = n^{\alpha} u_n$.

 $\ln v_{n+1} - \ln v_n = \alpha \ln \left(1 + \frac{1}{n}\right) - \ln \left(1 - \frac{\alpha}{n} + O\left(\frac{1}{n^2}\right)\right) = O\left(\frac{1}{n^2}\right).$ La série $\sum \left(\ln v_{n+1} - \ln v_n\right)$ est donc absolument convergente et par conséquent la suite $(\ln(v_n))$ converge.

Ainsi $v_n \to e^{\ell} > 0$ avec $\ell = \lim_{n \to +\infty} \ln v_n$ puis $u_n \sim \frac{e^{\ell}}{n^{\alpha}}$.

Par équivalence de séries à termes positifs, $\sum u_n$ converge si, et seulement si, $\alpha > 1$.

b) On reprend ce qui précède en l'approfondissant.

Puisque le reste d'une série dont le terme général est en $O(1/n^2)$ est en O(1/n),

on a $\ln v_n = \ell + O\left(\frac{1}{n}\right)$ puis $u_n = \frac{e^{\ell}}{n^{\alpha}} + O\left(\frac{1}{n^{\alpha+1}}\right)$.

Pour que $\sum (-1)^n u_n$ converge, il est nécessaire que $u_n \to 0$ et donc $\alpha > 0$.

Inversement, si $\alpha > 0$ alors $\sum (-1)^n \frac{e^{\ell}}{n^{\alpha}}$ converge par le critère spécial et $\sum O\left(\frac{1}{n^{\alpha+1}}\right)$ est absolument convergente. Finalement $\sum (-1)^n u_n$ converge.

Exercice 9: [énoncé]

a) Via télescopage, on obtient pour tout $n \ge N$

$$0 < u_n \leqslant \frac{u_N}{v_N} v_n$$

donc $u_n = O(v_n)$.

b) Soit $1 < \beta < \alpha$ et $v_n = \frac{1}{n^{\beta}}$.

$$\frac{v_{n+1}}{v_n} = \frac{1}{\left(1 + \frac{1}{n}\right)^{\beta}} = 1 - \frac{\beta}{n} + o\left(\frac{1}{n}\right)$$

A partir d'un certain rang

$$\frac{u_{n+1}}{u_n} \leqslant \frac{v_{n+1}}{v_n}$$

donc $u_n = O(v_n)$ or $\sum v_n$ converge absolument donc $\sum u_n$ aussi.

c) Pour n assez grand

$$\frac{u_{n+1}}{u_n} \geqslant 1 - \frac{1}{n+1} = \frac{1/(n+1)}{1/n}$$

donc

$$\frac{1}{n} = O\left(u_n\right)$$

Puisque la série $\sum 1/n$ est divergente, un argument de comparaison de séries à termes positifs permet de conclure que $\sum u_n$ est aussi divergente.

Exercice 10: [énoncé]

a) Le rapport $\frac{u_{n+1}}{u_n}$ tend vers 1 donc la suite (u_n) est de signe constant à partir d'un certain rang; quitte à passer à l'opposé on peut supposer $u_n > 0$ pour n assez grand.

Posons

$$w_n = \ln((n+1)^{\lambda} u_{n+1}) - \ln(n^{\lambda} u_n)$$

On a

$$w_n = \lambda \ln \left(1 + \frac{1}{n} \right) + \ln \left(1 - \frac{\lambda}{n} + v_n \right)$$

est le terme général d'une série absolument convergente. Par conséquent la suite $(\ln(n^{\lambda}u_n))$ converge et donc $(n^{\lambda}u_n)$ aussi.

b) Posons $u_n = \frac{n^n}{n!e^n}$. On a

$$\frac{u_{n+1}}{u_n} = 1 - \frac{1}{2n} + O\left(\frac{1}{n^2}\right)$$

En reprenant l'étude qui précède on peut affirmer que $n^{1/2}u_n \to \ell > 0$ donc $\sum u_n$ diverge.

Ce résultat peut être confirmé par la formule de Stirling.

Exercice 11 : [énoncé]

a)

$$\frac{u_{n+1}}{u_n} = \frac{3n+1}{3(n+1)} = 1 - \frac{2}{3} \frac{1}{n+1} = 1 - \frac{2}{3n} + o\left(\frac{1}{n}\right)$$

 $_{
m et}$

$$\frac{v_{n+1}}{v_n} = \frac{1}{(1+1/n)^{3/4}} = 1 - \frac{3}{4n} + o\left(\frac{1}{n}\right)$$

donc pour n assez grand,

$$\frac{u_{n+1}}{u_n} \geqslant \frac{v_{n+1}}{v_n}$$

b) La suite de terme général $\frac{u_n}{v_n}$ est positive et croissante à partir d'un certain rang donc il existe $\alpha>0$ et $N\in\mathbb{N}$ tel que pour tout $n\geqslant N,$ $u_n\geqslant \alpha v_n$. Or $\sum v_n$ diverge donc $\sum u_n$ aussi.

Exercice 12: [énoncé]

On peut écrire

$$\frac{j^{3n}}{\sqrt{3n}} + \frac{j^{3n+1}}{\sqrt{3n+1}} + \frac{j^{3n+2}}{\sqrt{3n+2}} = \frac{j^{3n}(1+j+j^2)}{\sqrt{3n}} + O\left(\frac{1}{n^{3/2}}\right) = O\left(\frac{1}{n^{3/2}}\right)$$

donc la série des termes

$$\frac{j^{3n}}{\sqrt{3n}} + \frac{j^{3n+1}}{\sqrt{3n+1}} + \frac{j^{3n+2}}{\sqrt{3n+2}}$$

est absolument convergente et puisque les termes

$$\frac{j^{3n+1}}{\sqrt{3n+1}}, \frac{j^{3n+2}}{\sqrt{3n+2}}$$

sont de limite nulle, la série des $\frac{j^n}{\sqrt{n}}$ est convergente.

Exercice 13: [énoncé]

a) $|u_n| \sim 1/n^2$ donc la série $\sum u_n$ est absolument convergente donc convergente.

b) On applique le critère spécial et on conclut que $\sum u_n$ converge.

c) $u_n = \frac{(-1)^n}{n+1} + O\left(\frac{1}{n^2}\right)$ et on peut conclure que $\sum u_n$ converge.

 \mathbf{d}

$$u_n = \cos\left(n\pi + \frac{\pi}{2} + \frac{3\pi}{8n} + O\left(\frac{1}{n^2}\right)\right) = \frac{(-1)^{n+1} \cdot 3\pi}{8n} + O\left(\frac{1}{n^2}\right)$$

donc $\sum u_n$ converge.

Exercice 14: [énoncé]

Il s'agit d'une série alternée.

$$\ln \sqrt[n]{n!} = \frac{1}{n} \sum_{k=1}^{n} \ln k$$

et ainsi $\ln \sqrt[n]{n!}$ est la moyenne arithmétique de $\ln 1, \ln 2, \dots, \ln n$ et donc

$$\ln \sqrt[n]{n!} \leqslant \ln \sqrt[n+1]{(n+1)!}$$

puis

$$\frac{1}{\sqrt[n]{n}} \geqslant \frac{1}{\sqrt[n+1]{(n+1)!}}$$

De plus par la croissance de la fonction $x \mapsto \ln x$,

$$\frac{1}{n} \sum_{k=1}^{n} \ln k \geqslant \frac{1}{n} \int_{1}^{n} \ln x dx = \ln n - 1 \to +\infty$$

et donc

$$\frac{1}{\sqrt[n]{n!}} \to 0$$

Finalement on peut appliquer le critère spécial des séries alternées et conclure.

Exercice 15: [énoncé]

On a

$$\sin\left(n\pi + \frac{\pi}{n}\right) = (-1)^n \sin\frac{\pi}{n} = \frac{(-1)^n \pi}{n} + O\left(\frac{1}{n^3}\right)$$

donc la série est semi-convergente.

Exercice 16 : [énoncé]

On a

$$\ln(1 - \frac{1}{n}) = -\frac{1}{n} - \frac{1}{2n^2} - \frac{1}{3n^3} + O\left(\frac{1}{n^4}\right)$$

donc

$$u_n = \cos\left(n\pi + \frac{\pi}{2} + \frac{\pi}{3n} + O\left(\frac{1}{n^2}\right)\right)$$

puis

$$u_n = (-1)^{n+1} \sin\left(\frac{\pi}{3n} + O\left(\frac{1}{n^2}\right)\right) = \frac{(-1)^{n+1}\pi}{3n} + O\left(\frac{1}{n^2}\right)$$

Le terme général u_n est somme d'un terme définissant une série convergente par le critère spécial et d'un terme définissant une série convergeant absolument.

Exercice 17: [énoncé]

Par comparaison avec une intégrale :

$$\sum_{k=1}^{n} \frac{1}{\sqrt{k}} \sim 2\sqrt{n}$$

On a alors

$$u_n = \frac{(-1)^n}{\sum_{k=1}^n \frac{1}{\sqrt{k}}} \frac{1}{1 + \frac{(-1)^{n-1}}{\sum_{k=1}^n \frac{1}{\sqrt{k}}}} = \frac{(-1)^n}{\sum_{k=1}^n \frac{1}{\sqrt{k}}} + \frac{1}{\left(\sum_{k=1}^n \frac{1}{\sqrt{k}}\right)^2} + o\left(\frac{1}{\left(\sum_{k=1}^n \frac{1}{\sqrt{k}}\right)^2}\right)$$

La série de terme général

$$\frac{(-1)^n}{\sum_{k=1}^n \frac{1}{\sqrt{k}}}$$

converge en vertu du critère spécial.

On a

$$\frac{1}{\left(\sum\limits_{k=1}^{n}\frac{1}{\sqrt{k}}\right)^{2}}+o\left(\frac{1}{\left(\sum\limits_{k=1}^{n}\frac{1}{\sqrt{k}}\right)^{2}}\right)\sim\frac{1}{4n}$$

donc par comparaison de série à termes positifs il y a divergence de la série de terme général

$$\frac{1}{\left(\sum_{k=1}^{n} \frac{1}{\sqrt{k}}\right)^2} + o\left(\frac{1}{\left(\sum_{k=1}^{n} \frac{1}{\sqrt{k}}\right)^2}\right)$$

Par sommation d'une série convergente et d'une série divergente la série de terme général diverge.

Exercice 18 : [énoncé]

a) On a

$$u_n = \frac{(-1)^n}{2\sqrt{n}} + O\left(\frac{1}{n^{3/2}}\right)$$

donc $\sum u_n$ converge.

b) On a

$$u_n = \frac{(-1)^n}{\ln n + \frac{(-1)^n}{n} + o\left(\frac{1}{n}\right)} = \frac{(-1)^n}{\ln n} - \frac{1}{n\ln^2 n} + o\left(\frac{1}{n\ln^2 n}\right)$$

Or la série de la série de terme général $\frac{1}{n \ln^2 n}$ est absolument convergente (utiliser une comparaison avec une intégrale) donc $\sum u_n$ est convergente.

c) On a

$$u_n = \frac{(-1)^n}{\ln n} + \frac{1}{(\ln n)^2} + o\left(\frac{1}{(\ln n)^2}\right)$$

La série de terme général $\frac{(-1)^n}{\ln n}$ est convergente alors que la série de terme général $\frac{1}{(\ln n)^2} + o\left(\frac{1}{(\ln n)^2}\right)$ est divergente par équivalence de séries à termes positifs. On conclut que $\sum u_n$ est divergente.

Exercice 19: [énoncé]

 $\sqrt{n^2+1}=n+\frac{1}{2n}+O\left(\frac{1}{n^2}\right)$ donc $u_n=\frac{(-1)^n\pi}{2n}+O\left(\frac{1}{n^2}\right)$ est terme général d'une série convergente.

Exercice 20 : [énoncé]

En développant par la formule du binôme de Newton

$$(2+\sqrt{3})^n = \sum_{k=0}^n \binom{n}{k} 2^{n-k} \sqrt{3}^k$$

puis en simplifiant les termes d'indices impairs

$$(2+\sqrt{3})^n + (2-\sqrt{3})^n = 2\sum_{p=0}^{\lfloor n/2\rfloor} \binom{n}{2p} 2^{n-2p} 3^p \in 2\mathbb{Z}$$

On en déduit

$$u_n = -\sin\left((2-\sqrt{3})^n\pi\right)$$

Puisque $|2 - \sqrt{3}| < 1$,

$$u_n \sim -(2-\sqrt{3})^n \pi$$

est terme général d'une série absolument convergente.

Exercice 21: [énoncé]

Puisque $u_n \to 0$, il revient au même d'étudier la nature de la série de terme général

$$v_n = u_{2n} + u_{2n+1}$$

Or

$$v_n = \frac{\sin(\ln 2n)}{2n(2n+1)} + \frac{\sin(\ln(2n+1)) - \sin(\ln 2n)}{2n+1}$$

D'une part

$$\frac{\sin(\ln 2n)}{2n(2n+1)} = O\left(\frac{1}{n^2}\right)$$

et d'autre part en vertu du théorème des accroissements finis, il existe c compris entre $\ln 2n$ et $\ln (2n+1)$ tel que

$$\frac{\sin(\ln(2n+1)) - \sin(\ln 2n)}{2n+1} = \frac{\cos(c)(\ln(2n+1) - \ln 2n)}{2n+1} = O\left(\frac{1}{n^2}\right)$$

On en déduit que $v_n = O(1/n^2)$ et donc la série de terme général v_n est absolument convergente donc convergente.

Exercice 22 : [énoncé]

Posons

$$S_n = \sum_{k=1}^n \frac{\cos(\ln k)}{k}$$

Pour les entiers k appartenant à l'intervalle

$$e^{-\pi/4+2n\pi}, e^{\pi/4+2n\pi}$$

on a

$$\frac{\cos(\ln k)}{k} \geqslant \frac{1}{\sqrt{2}} \frac{1}{e^{\pi/4 + 2n\pi}}$$

Posons

$$a_n = E\left(e^{-\pi/4 + 2n\pi}\right) \text{ et } b_n = E\left(e^{\pi/4 + 2n\pi}\right)$$

On a

$$S_{a_n} - S_{b_n} = \sum_{k=a_n+1}^{b_n} \frac{\cos(\ln k)}{k} \geqslant \frac{b_n - a_n}{\sqrt{2}} \frac{1}{e^{\pi/4 + 2n\pi}}$$

Or, par encadrement,

$$\frac{b_n - a_n}{e^{\pi/4 + 2n\pi}} \to (1 - e^{-\pi/2})$$

donc $(S_{a_n}-S_{b_n})$ ne tend pas vers 0. Or $a_n,b_n\to +\infty$ donc la série étudiée ne peut converger.

Exercice 23: [énoncé]

Montrons que la série étudiée est divergente. Notons S_n la somme partielle de rang n de cette série. Nous allons construire deux suites (a_n) et (b_n) de limite $+\infty$ telles que $S_{b_n} - S_{a_n}$ ne tend pas zéros ce qui assure la divergence de la série étudiée. Soit $n \ge 1$ fixé. Les indices k vérifiant

$$2n\pi - \frac{\pi}{4} \leqslant \sqrt{k} \leqslant 2n\pi + \frac{\pi}{4}$$

sont tels que

$$\operatorname{Re}(e^{i\sqrt{k}}) \geqslant \frac{1}{\sqrt{2}}$$

Posons alors

$$a_n = E((2n\pi - \pi/4)^2)$$
 et $b_n = E((2n\pi + \pi/4)^2)$

On a

$$S_{b_n} - S_{a_n} = \sum_{k=a_n+1}^{b_n} \frac{e^{i\sqrt{k}}}{\sqrt{k}}$$

et donc par construction

$$\operatorname{Re}(S_{b_n} - S_{a_n}) \geqslant \frac{1}{\sqrt{2}} \sum_{k=a_{n+1}}^{b_n} \frac{1}{\sqrt{k}}$$

Puisque la fonction $t\mapsto 1/\sqrt{t}$ est décroissante, on a la comparaison intégrale

$$\operatorname{Re}(S_{b_n} - S_{a_n}) \geqslant \frac{1}{\sqrt{2}} \sum_{k=a_n+1}^{b_n} \int_k^{k+1} \frac{\mathrm{d}t}{\sqrt{t}} = \sqrt{2} \left(\sqrt{b_n + 1} - \sqrt{a_n + 1} \right)$$

Or

$$\sqrt{b_n + 1} - \sqrt{a_n + 1} = \frac{b_n - a_n}{\sqrt{b_n + 1} + \sqrt{a_n + 1}} \sim \frac{2n\pi^2}{4n\pi} \to \frac{\pi}{2}$$

donc $S_{b_n} - S_{a_n}$ ne tend par 0 et l'on peut conclure que la série étudiée diverge.

Exercice 24: [énoncé]

Quand $x \to 0$, on a

$$\frac{\sqrt{|x|}}{1+x} = \sqrt{|x|} - x\sqrt{|x|} + o\left(x^{3/2}\right)$$

On en déduit

$$u_n = \int_0^{(-1)^n/n^{\alpha}} \sqrt{|x|} \, dx - \int_0^{(-1)^n/n^{\alpha}} x \sqrt{|x|} \, dx + o\left(\frac{1}{n^{5\alpha/2}}\right)$$

Par parité

$$u_n = \frac{(-1)^n 2}{3n^{3\alpha/2}} - \frac{2}{5n^{5\alpha/2}} + o\left(\frac{1}{n^{5\alpha/2}}\right)$$

Par le critère spécial des séries alternées, la série de terme général $(-1)^n/n^{3\alpha/2}$ converge et par équivalence de séries à termes de signe constant, la série de terme général

$$-\frac{2}{5n^{5\alpha/2}} + o\left(\frac{1}{n^{5\alpha/2}}\right) \sim -\frac{2}{5n^{5\alpha/2}}$$

converge si, et seulement si, $5\alpha/2 > 1$.

On en déduit que la série de terme général u_n converge si, et seulement si, $\alpha > 2/5$.

Exercice 25 : [énoncé]

Supposons la convergence de la série $\sum u_n$.

Pour tout $n \in \mathbb{N}$

$$\sum_{k=0}^{n} v_k = \sum_{k=0}^{n} (u_{2k} + u_{2k+1}) = \sum_{k=0}^{2n+1} u_k \leqslant \sum_{k=0}^{+\infty} u_k$$

Puisque $\sum v_n$ est une série à termes positifs dont les sommes partielles sont majorées, celle-ci converge.

Supposons la convergence de la série $\sum v_n$. Pour tout $n \in \mathbb{N}$

$$\sum_{k=0}^{n} u_k \leqslant \sum_{k=0}^{\lfloor n/2 \rfloor} v_k \leqslant \sum_{k=0}^{+\infty} v_k$$

Puisque $\sum u_n$ est une série à termes positifs dont les sommes partielles sont majorées, celle-ci converge. En substance, on observe aussi

$$\sum_{n=0}^{+\infty} u_n = \sum_{n=0}^{+\infty} v_n$$

Exercice 26: [énoncé]

On exploite les comparaisons

$$\max(u_n, v_n) \leqslant u_n + v_n, \sqrt{u_n v_n} \leqslant \frac{1}{2}(u_n + v_n)$$

(obtenue par $2ab \leqslant (a^2 + b^2)$)

 et

$$\frac{u_n v_n}{u_n + v_n} = \frac{u_n}{u_n + v_n} v_n \leqslant v_n$$

Par comparaison de série à termes positifs on peut alors conclure.

Exercice 27 : [énoncé]

Puisque $2ab \leqslant a^2 + b^2$ on a

$$\sqrt{u_n u_{n+1}} \leqslant \frac{1}{2} (u_n + u_{n+1})$$

or $\sum u_n$ et $\sum u_{n+1}$ convergent donc, par comparaison de séries à termes positifs, $\sum \sqrt{u_n u_{n+1}}$ converge.

Exercice 28: [énoncé]

On a immédiatement (i) \Rightarrow (ii) par comparaison de série à termes positifs sachant

$$\sqrt{a_n a_{n+1}} \leqslant \frac{1}{2} \left(a_n + a_{n+1} \right)$$

La réciproque est fausse, il suffit pour l'observe de considérer la suite a donnée par

$$a_{2p} = 1$$
 et $a_{2p+1} = \frac{1}{p^4}$

Exercice 29: [énoncé]

- a) Si $\ell > 1$ alors à partir d'un certain rang $\sqrt[n]{u_n} \ge 1$ et donc $u_n \ge 1$. Il y a divergence grossière.
- b) Si $\ell < 1$ alors, en posant $\alpha = (1+\ell)/2$, on a $\ell < \alpha < 1$ et à partir d'un certain rang

$$\sqrt[n]{u_n} < \alpha$$

donc

$$u_n \leqslant \alpha^n$$

Or la série de terme général α^n est convergente car $\alpha \in [0,1[$ et donc $\sum u_n$ est absolument convergente.

c) Pour $u_n = 1/n$, $\sqrt[n]{u_n} = n^{-1/n} \to 1$ et pour $u_n = 1/n^2$, $\sqrt[n]{u_n} = n^{-2/n} \to 1$ alors que dans un cas la série diverge et dans l'autre la série converge.

Exercice 30 : [énoncé]

Puisque

$$v_n = \frac{u_n}{1 + u_n} \in [0, 1[\text{ et } u_n = \frac{v_n}{1 - v_n}]$$

on a $u_n \to 0$ si, et seulement si, $v_n \to 0$.

Si $u_n \not\to 0$ alors $v_n \not\to 0$ et les deux séries divergent.

Si $u_n \to 0$ alors $v_n \sim u_n$ et donc les deux séries sont de même nature.

Dans les deux cas, les séries sont de même nature.

Exercice 31 : [énoncé]

- a) Si $\sum u_n$ converge alors $u_n \to 0$ et $v_n \sim u_n$ donc $\sum v_n$ converge par équivalence de série à termes positifs. Si $\sum v_n$ converge alors $v_n \to 0$ et aisément $u_n \to 0$ donc $v_n \sim u_n$ et on conclut comme ci-dessus.
- b) Si $\sum u_n$ converge et est de somme S alors $v_n \sim u_n/S$ et on peut conclure.
- Si $\sum u_n$ diverge alors

$$\sum_{n=2}^{N} \ln(1 - v_n) = \ln \frac{u_1}{u_1 + \dots + u_n} \to -\infty$$

Si $v_n \to 0$, $\ln(1-v_n) \sim -v_n$ donc $\sum v_n$ diverge car les séries sont de signe constant.

Si $v_n \not\to 0$, $\sum v_n$ diverge grossièrement.

Exercice 32 : [énoncé]

Supposons la série $\sum v_n$ convergente. On a $v_n \to 0^+$ donc $1+n^2u_n \to +\infty$ et on en déduit

$$v_n \sim \frac{1}{n^2 u_n}$$

puis

$$\sqrt{u_n v_n} \sim \frac{1}{n}$$

Par comparaison de séries à termes positifs, il y a divergence de la série $\sum \sqrt{u_n v_n}$. Or, par l'inégalité de Cauchy-Schwarz

$$\left(\sum_{k=0}^{n} \sqrt{u_k v_k}\right)^2 \leqslant \sum_{k=0}^{n} u_n \sum_{k=0}^{n} v_k \leqslant \sum_{k=0}^{n} u_n \sum_{k=0}^{+\infty} v_k$$

On en déduit la divergence de la série $\sum u_n$.

Exercice 33: [énoncé]

Par permutation de sommes

$$\sum_{n=1}^{N} v_n = \sum_{k=1}^{N} \sum_{n=k}^{N} \frac{ku_k}{n(n+1)}$$

donc

$$\sum_{n=1}^{N} v_n = \sum_{k=1}^{N} k u_k \sum_{n=k}^{N} \left(\frac{1}{n} - \frac{1}{n+1} \right) = \sum_{k=1}^{N} \frac{N+1-k}{N+1} u_k$$

et donc

$$\sum_{n=1}^{N} v_n = \sum_{k=1}^{N} u_k - Nv_N$$

Supposons que la série $\sum u_n$ converge

Puisque $\sum v_n$ est une série à termes positifs et que ses sommes partielles sont majorée car

$$\sum_{n=1}^{N} v_n \leqslant \sum_{k=1}^{N} u_k \leqslant \sum_{k=1}^{+\infty} u_k$$

la série $\sum v_n$ converge.

Supposons que la série $\sum v_n$ converge.

On a

$$nv_n = \sum_{k=1}^n u_k - \sum_{k=1}^n v_k$$

donc par croissance des sommes partielles d'une série à termes positifs, la suite (nv_n) admet une limite $\ell \in \mathbb{R} \cup \{+\infty\}$.

Si cette limite est non nulle, la série $\sum v_n$ diverge ce qui est contraire à l'hypothèse initiale. On en déduit

$$nv_n \to 0$$

donc

$$\sum_{k=1}^{N} u_k = \sum_{n=1}^{N} v_n + Nu_n \to \sum_{n=1}^{+\infty} v_n$$

Ainsi $\sum u_n$ converge et

$$\sum_{n=1}^{+\infty} u_n = \sum_{n=1}^{+\infty} v_n$$

Exercice 34 : [énoncé]

Pour $n \ge 2$, on observe

$$a_n^{1-1/n} \leqslant 2a_n \Leftrightarrow a_n \geqslant \frac{1}{2^n}$$

et donc

$$a_n^{1-1/n} \leqslant \max(2a_n, \frac{1}{(2^n)^{1-1/n}}) \leqslant 2\left(a_n + \frac{1}{2^n}\right)$$

Par comparaison de séries à termes positifs, on peut conclure à la convergence de $\sum a_n^{1-1/n}$.

Exercice 35 : [énoncé]

La série de terme général u_n est convergente.

En effet, puisque $\sum a_n$ converge, $a_n \to 0$ et donc il existe un rang $N \in \mathbb{N}$ tel que

$$\forall n \geqslant N, a_n \leqslant 1$$

En posant $M = a_0 a_1 \dots a_{N-1}$, on peut écrire pour tout $n \ge N$

$$0 \leqslant u_n \leqslant Ma_N \dots a_{n-1} a_n \leqslant Ma_n$$

Par comparaison de série à termes positifs, on obtient la convergence voulue.

Exercice 36: [énoncé]

Puisque la suite (S_n) est croissante

$$0 \leqslant v_n \leqslant \frac{u_{n+1}}{S_0} \to 0$$

et donc $v_n \to 0$. On en tire

$$v_n \sim \ln(1 + v_n) = \ln \frac{S_{n+1}}{S_n} = \ln(S_{n+1}) - \ln(S_n)$$

La série $\sum u_n$ converge si, et seulement si, la suite $\ln(S_n)$ converge et donc si, et seulement si, la série télescopique $\sum (\ln S_{n+1} - \ln S_n)$ converge. Par équivalence de série à termes positifs, cela équivaut à affirmer la convergence de la série $\sum v_n$.

Exercice 37: [énoncé]

Si $\sum u_n$ converge alors en notant S sa somme (strictement positive), $v_n \sim u_n/S$ et donc $\sum v_n$ converge.

Supposons désormais que $\sum u_n$ diverge et montrons qu'il en est de même de $\sum v_n$. Par la décroissante de $t \mapsto 1/t$, on a

$$\int_{S_{n-1}}^{S_n} \frac{\mathrm{d}t}{t} \leqslant \frac{S_n - S_{n-1}}{S_{n-1}} = \frac{u_n}{S_{n-1}}$$

En sommant ces inégalités

$$\int_{S_1}^{S_n} \frac{\mathrm{d}t}{t} \leqslant \sum_{k=2}^n \frac{u_k}{S_{k-1}}$$

Or

$$\int_{S_1}^{S_n} \frac{\mathrm{d}t}{t} = \ln S_n - \ln S_1 \to +\infty$$

car $S_n \to +\infty$ donc par comparaison $\sum \frac{u_n}{S_{n-1}}$ diverge. Puisque

$$\frac{u_n}{S_{n-1}} = \frac{u_n}{S_n - u_n} = v_n \frac{1}{1 - v_n}$$

Si $v_n \not\to 0$ alors $\sum v_n$ diverge.

Si $v_n \to 0$ alors $\overline{v_n} \sim \frac{u_n}{S_{n-1}}$ et à nouveau $\sum v_n$ diverge.

Finalement $\sum u_n$ et $\sum v_n$ ont la même nature.

Exercice 38 : [énoncé]

 $u_n = R_{n-1} - R_n$ et la décroissance de $t \to 1/t$,

$$\int_{R_n}^{R_{n-1}} \frac{\mathrm{d}t}{t} \leqslant \frac{R_{n-1} - R_n}{R_n} = \frac{u_n}{R_n}$$

On a

$$\int_{R_n}^{R_{n-1}} \frac{\mathrm{d}t}{t} = \ln R_{n-1} - \ln R_n$$

donc la série à termes positifs $\sum \int_{R_n}^{R_{n-1}} \frac{dt}{t}$ diverge car $\ln R_n \to -\infty$ puisque $R_n \to 0$.

Par comparaison de séries à termes positifs, $\sum u_n/R_n$ diverge.

$$\frac{u_n}{R_n} = \frac{u_n}{R_{n-1} - u_n} = \frac{u_n}{R_{n-1}} \frac{1}{1 - u_n / R_{n-1}}$$

Si $u_n/R_{n-1} \not\to 0$ alors $\sum u_n/R_{n-1}$ diverge.

Si $u_n/R_{n-1} \to 0$ alors $\frac{\overline{u_n}}{R_{n-1}} \sim \frac{u_n}{R_n}$ et donc $\sum u_n/R_{n-1}$ diverge encore.

Dans tous les cas, $\sum u_n/R_{n-1}$ diverge.

Exercice 39 : [énoncé]

Posons

$$v_n = \frac{u_{n+1} - u_n}{u_n}$$

Si (u_n) converge alors, en posant ℓ sa limite,

$$v_n \sim \frac{1}{\ell} \left(u_{n+1} - u_n \right)$$

et puisque la série à termes positifs $\sum (u_{n+1} - u_n)$ converge, il en est de même de $\sum v_n$.

Si (u_n) diverge alors $u_n \to +\infty$.

Par la décroissance de $t \to 1/t$,

$$\frac{u_{n+1} - u_n}{u_n} \geqslant \int_{u_n}^{u_{n+1}} \frac{\mathrm{d}t}{t} = \ln(u_{n+1}) - \ln(u_n)$$

Puisque $\ln(u_n) \to +\infty$, la série à terme positif $\sum (\ln(u_{n+1}) - \ln(u_n))$ diverge et donc $\sum v_n$ aussi.

Finalement, la nature de la série $\sum v_n$ est celle de la suite (u_n) .

Exercice 40: [énoncé]

a) Puisque la série $\sum a_n$ converge, on peut introduire sa somme

$$\ell = \sum_{n=0}^{+\infty} a_n$$

Les termes sommés étant strictement positifs, on a $\ell > 0$ et $S_n \to \ell$ donne alors $S_n \sim \ell$.

On en déduit

$$\frac{a_n}{S_n} \sim \frac{a_n}{\ell}$$

La série $\sum a_n$ converge, donc $\sum a_n/\ell$ converge aussi et par équivalence de séries à termes positifs, on peut conclure à la convergence de la série $\sum a_n/S_n$.

b) Comme les termes sont positifs, on a $S_n \ge S_{n-1}$ et donc

$$\frac{a_n}{S_n^2} \leqslant \frac{S_n - S_{n-1}}{S_n S_{n-1}} = \frac{1}{S_{n-1}} - \frac{1}{S_n}$$

La série à termes positifs $\sum a_n$ étant supposée divergente, la suite (S_n) tend vers $+\infty$ et donc $1/S_n \to 0$.

La nature de la série $\sum u_n - u_{n-1}$ étant celle de la suite (u_n) , on peut affirmer la convergence de la série

$$\sum \frac{1}{S_{n-1}} - \frac{1}{S_n}$$

puis celle de $\sum a_n/S_n^2$ par comparaison de séries à termes positifs.

c) On peut écrire

$$\frac{a_n}{S_n} = \frac{S_n - S_{n-1}}{S_n} = 1 - \frac{S_{n-1}}{S_n}$$

Si (S_{n-1}/S_n) ne tend pas vers 1, la série étudiée diverge grossièrement. Si (S_{n-1}/S_n) tend vers 1 alors

$$\ln \frac{S_{n-1}}{S_n} \sim \frac{S_{n-1}}{S_n} - 1$$

et donc

$$\frac{a_n}{S_n} \sim \ln S_n - \ln S_{n-1}$$

La suite $(\ln S_n)$ diverge, donc la série $\sum \ln S_n - \ln S_{n-1}$ diverge aussi et, enfin, $\sum a_n/S_n$ diverge par argument de comparaison de séries à termes positifs.

Exercice 41 : [énoncé]

a) Pour x assez grand, on a

$$\frac{xf'(x)}{f(x)} \geqslant -1$$

donc

$$\frac{f'(x)}{f(x)} \geqslant -\frac{1}{x}$$

En intégrant, il existe une constante β tel que

$$\ln f(x) \geqslant -\ln x + \beta$$

et alors

$$f(x) \geqslant \frac{C}{x}$$
 avec $C = e^{\beta} > 0$

Par comparaison de séries à termes positifs, on peut affirmer la divergence de $\sum\limits_{n\geq 1}f(n)$

b) Soit un réel $\alpha > 1$ tel que $\ell < -\alpha$. Pour x assez grand, on a

$$\frac{xf'(x)}{f(x)} \leqslant -\alpha$$

et donc

$$\frac{f'(x)}{f(x)} \leqslant -\frac{\alpha}{x}$$

En intégrant, il existe une constante β tel que

$$\ln f(x) \le -\alpha \ln x + \beta$$

et alors

$$f(x) \leqslant \frac{C}{r^{\alpha}}$$
 avec $C = e^{\beta} > 0$

Par comparaison de séries à termes positifs, on peut affirmer la convergence de $\sum\limits_{n\geqslant 1}f(n)$

Exercice 42: [énoncé]

- a) On applique le critère spécial.
- b) Par décalage d'indice sur la deuxième somme

$$R_n + R_{n+1} = \sum_{k=n+1}^{+\infty} \frac{(-1)^k}{k} + \sum_{k=n+1}^{+\infty} \frac{(-1)^{k+1}}{k+1} = \sum_{k=n+1}^{+\infty} \frac{(-1)^k}{k(k+1)}$$

c) Puisque

$$R_n - R_{n+1} = \frac{(-1)^{n+1}}{n+1}$$

on a

$$2R_n = \frac{(-1)^{n+1}}{n+1} + \sum_{k=n+1}^{+\infty} \frac{(-1)^k}{k(k+1)}$$

Or par le critère spécial

$$\sum_{k=n+1}^{+\infty}\frac{(-1)^k}{k(k+1)}=O\left(\frac{1}{n^2}\right)$$

donc

$$R_n \sim \frac{(-1)^{n+1}}{2n}$$

d) Comme

$$R_n = \frac{(-1)^{n+1}}{2n} + O\left(\frac{1}{n^2}\right)$$

la série $\sum R_n$ est convergente.

Exercice 43: [énoncé]

A partir du rang n=2, on peut applique le critère spécial des séries alternées. Le reste étant majorée par la valeur absolue du premier terme

$$x = \sum_{n=0}^{+\infty} \frac{(-1)^n 8^n}{(2n)!} = 1 - 4 + r$$

avec $|r| \leqslant \frac{64}{24}$ donc x < 0.

Exercice 44: [énoncé]

Par découpage

$$I = \sum_{n=0}^{+\infty} \int_{n\pi}^{(n+1)\pi} \frac{\sin t}{t} \, \mathrm{d}t$$

donc par translations

$$I = \sum_{n=0}^{+\infty} \int_0^{\pi} \frac{\sin(n\pi + t)}{n\pi + t} dt$$

puis la relation proposée.

I se perçoit alors comme somme d'une série vérifiant le critère spécial des séries alternées, sa somme est donc du signe de son premier terme à savoir positif.

Exercice 45: [énoncé]

a) Si (v_n) est une suite alternée dont la valeur absolue décroît vers 0 alors la série $\sum v_n$ converge.

Ce résultat s'obtient en constatant l'adjacence des suites extraites de rangs pairs et impairs de la suite des sommes partielles.

- b) La suite $(s_n)_{n\geqslant 1}$ converge en vertu du critère spécial énoncé ci-dessus. En fait, il est « connu » que $(s_n)_{n\geqslant 1}$ tend vers ln 2 et donc $(u_n)_{n\geqslant 1}$ tend vers 0.
- c) On peut écrire

$$s_n = \ln 2 - r_n$$

avec

$$r_n = \sum_{k=n+1}^{+\infty} \frac{(-1)^{k+1}}{k}$$

On a

$$r_n - r_{n+1} = \frac{(-1)^n}{n+1}$$
 et $r_n + r_{n+1} = \sum_{k=n+1}^{+\infty} \frac{(-1)^{k+1}}{k(k+1)} = O\left(\frac{1}{n^2}\right)$

car par, application du critère spécial à la série $\sum \frac{(-1)^{k+1}}{k(k+1)}$, on peut majorer le reste par la valeur absolue du premier terme qui l'exprime. On en déduit

$$r_n = \frac{(-1)^n}{2n} + O\left(\frac{1}{n^2}\right)$$

On sait

$$\ln(x) = x - 1 + O((x - 1)^2)$$

et donc

$$u_n = e^{s_n} - 2 + O\left((e^{s_n} - 2)^2\right)$$

avec

$$e^{s_n} - 2 = 2(e^{-r_n} - 1) = -2r_n + O(r_n^2) = \frac{(-1)^{n+1}}{n} + O(\frac{1}{n^2})$$

Ainsi,

$$u_n = \frac{(-1)^{n+1}}{n} + O\left(\frac{1}{n^2}\right)$$

La série $\sum u_n$ converge car c'est la somme d'une série vérifiant le critère spécial et d'une autre absolument convergente.

Exercice 46: [énoncé]

- a) En notant S la somme de la série, $S_{2n} S_n \to S S = 0$.
- b) On a

$$S_{2n} - S_n = \sum_{k=n+1}^{2n} u_k \geqslant nu_{2n}$$

De plus $nu_{2n} \ge 0$ car la suite (u_n) décroît et tend vers 0 (car la série converge). Par encadrement $nu_{2n} \to 0$ puis $2nu_{2n} \to 0$

c) De plus

$$0 \leqslant (2n+1)u_{2n+1} \leqslant 2nu_{2n} + u_{2n} \to 0$$

donc on a aussi $(2n+1)u_{2n+1} \to 0$ et finalement $nu_n \to 0$.

Exercice 47: [énoncé]

Posons

$$S_n = \sum_{k=1}^n k^{\alpha} u_k$$

Par la décroissance de la suite (u_n) , on a

$$S_{2n} - S_n = \sum_{k=n+1}^{2n} k^{\alpha} u_k \geqslant \sum_{k=n+1}^{2n} n^{\alpha} u_{2n} = n^{\alpha+1} u_{2n} \geqslant 0$$

Puisque la suite (S_n) converge, $S_{2n} - S_n \to 0$ et on en déduit $(2n)^{\alpha+1}u_{2n} \to 0$. Puisque

$$0 \leqslant (2n+1)^{\alpha+1} u_{2n+1} \leqslant \frac{(2n+1)^{\alpha+1}}{(2n)^{\alpha+1}} (2n)^{\alpha+1} u_{2n}$$

on a aussi $(2n+1)^{\alpha+1}u_{2n+1}\to 0$ et on peut donc conclure $n^{\alpha+1}u_n\to 0$.

Exercice 48 : [énoncé]

Posons
$$v_n = \sum_{k=1}^n u_k - nu_n$$
. On a

$$v_{n+1} - v_n = n(u_n - u_{n+1}) \geqslant 0$$

La suite (v_n) est croissante et majorée donc convergente. Posons ℓ sa limite. On a

$$u_n - u_{n+1} = \frac{1}{n} (v_{n+1} - v_n)$$

donc

$$\sum_{k=n}^{+\infty} (u_k - u_{k+1}) = \sum_{k=n}^{+\infty} \frac{1}{k} (v_{k+1} - v_k) \leqslant \frac{1}{n} \sum_{k=n}^{+\infty} (v_{k+1} - v_k)$$

ce qui donne

$$u_n \leqslant \frac{1}{n}(\ell - v_n)$$

On en déduit $0 \le nu_n \le \ell - v_n$ et donc $nu_n \to 0$ puis $\sum_{k=1}^n u_k \to \ell$.

Finalement $\sum u_n$ converge.

Exercice 49 : [énoncé]

La fonction $x \mapsto 1 - \cos x - x$ est négative sur $[0, +\infty[$ et ne s'annule qu'en 0. Par conséquent, la suite (u_n) est décroissante, or elle est clairement minorée par 0 donc elle converge. Sa limite annulant la précédente fonction ne peut être qu'être 0. Puisque

$$u_{n+1} = 2\sin^2\frac{u_n}{2}$$

on a

$$u_{n+1} \leqslant \frac{1}{2}u_n^2$$

Par suite $u_n = O(1/2^n)$ et donc la série $\sum u_n$ converge.

Exercice 50 : [énoncé]

Par étude de point fixe de la relation de récurrence, la valeur

$$\ell = \left(1 + \sqrt{5}\right)/2$$

est la seule limite possible de la suite (u_n) qui est clairement à termes positifs.

$$|u_{n+1} - \ell| = \frac{|u_n - \ell|}{\sqrt{1 + u_n} + \sqrt{1 + \ell}} \le \frac{1}{2} |u_n - \ell|$$

donc $u_n = O(1/2^n)$ et ainsi la série converge.

Exercice 51 : [énoncé]

a) La suite étudiée est bien définie et à termes tous positifs. On en déduit

$$0 \leqslant u_{n+1} = \frac{e^{-u_n}}{n+1} \leqslant \frac{1}{n+1}$$

et donc par encadrement $u_n \to 0$.

- b) Pour $n \ge 1$, on peut écrire $v_n = e^{-u_{n-1}}$ et alors $v_n \to 1$ par composition de limites.
- c) On en déduit

$$u_n \sim 1/n$$

La série $\sum u_n$ est alors divergente par équivalence de séries à termes positifs. On a aussi

$$u_n = \frac{e^{-u_{n-1}}}{n} = \frac{1 - u_{n-1} + o(u_{n-1})}{n} = \frac{1}{n} - \frac{1}{n^2} + o\left(\frac{1}{n^2}\right)$$

donc

$$(-1)^n u_n = \frac{(-1)^n}{n} + O\left(\frac{1}{n^2}\right)$$

La série $\sum (-1)^n/n$ converge en vertu du critère spéciale et $\sum O(1/n^2)$ est absolument convergente par argument de comparaison. Par opération sur les séries convergentes, la série $\sum (-1)^n u_n$ converge.

Exercice 52 : [énoncé]

La suite (a_n) est décroissante et minorée par 0 donc convergente. En passant la relation de récurrence à la limite, on obtient que (a_n) tend vers 0. Puisque

$$\frac{1}{a_{n+1}^2} - \frac{1}{a_n^2} = \frac{a_n^2 - a_{n+1}^2}{a_n^2 a_{n+1}^2} \sim \frac{1}{3}$$

on obtient par le théorème de Césaro

$$\frac{1}{n} \sum_{k=0}^{n-1} \left(\frac{1}{a_{k+1}^2} - \frac{1}{a_k^2} \right) \to \frac{1}{3}$$

puis

$$\frac{1}{n}\frac{1}{a_n^2} \to \frac{1}{3}$$

Finalement $a_n \sim \frac{\sqrt{3}}{\sqrt{n}}$ et la série étudiée est divergente.

Exercice 53: [énoncé]

a) Aisément la suite est strictement positive, décroissante et de limite $\ell \in [0, \pi/2]$ vérifiant $\sin \ell = \ell$.

b) $u_{n+1}-u_n$ est le terme général d'une série télescopique convergente. Or $u_{n+1}-u_n\sim -\frac{1}{6}u_n^3$ donc par équivalence de suite de signe constant, on conclut. c) $\ln u_{n+1}-\ln u_n$ est le terme général d'une série télescopique divergente. Or $\ln u_{n+1}-\ln u_n\sim \ln\left(1-\frac{1}{6}u_n^2\right)\sim -\frac{1}{6}u_n^2$ donc par équivalence de suite de signe constant, on conclut.

Exercice 54: [énoncé]

La suite (u_n) est à terme strictement positifs car $u_0 > 0$ et la fonction $x \mapsto \ln(1+x)$ laisse stable l'intervalle $]0, +\infty[$.

Puisque pour tout $x \ge 0$, $\ln(1+x) \le x$, la suite (u_n) est décroissante. Puisque décroissante et minorée, la suite (u_n) converge et sa limite ℓ vérifie $\ln(1+\ell) = \ell$ ce qui donne $\ell = 0$.

$$\frac{1}{u_{n+1}} - \frac{1}{u_n} = \frac{u_n - u_{n+1}}{u_n u_{n+1}} \sim \frac{\frac{1}{2} u_n^2}{u_n^2} \to \frac{1}{2}$$

Par le théorème de Cesaro,

$$\frac{1}{n} \sum_{k=0}^{n-1} \left(\frac{1}{u_{k+1}} - \frac{1}{u_k} \right) \to \frac{1}{2}$$

et donc

$$\frac{1}{nu_n} o \frac{1}{2}$$

On en déduit $u_n \sim \frac{2}{n}$ et donc la série de terme général u_n diverge.

Exercice 55: [énoncé]

a) La suite (a_n) est bien définie et à termes positifs puisque pour tout $x \ge 0$, $1 - e^{-x} \ge 0$.

Puisque pour tout $x \in \mathbb{R}$, $e^x \le 1 + x$, on a $a_{n+1} \le a_n$ et la suite (a_n) est donc décroissante.

Puisque décroissante et minorée, (a_n) converge et sa limite ℓ vérifie $\ell = 1 - e^{-\ell}$. On en déduit $\ell = 0$.

Finalement (a_n) décroît vers 0.

- b) Par le critère spécial des séries alternées, $\sum (-1)^n a_n$ converge.
- c) Puisque $a_n \to 0$, on peut écrire $a_{n+1} = 1 e^{-a_n} = a_n \frac{1}{2}a_n^2 + o(a_n^2)$. Par suite $a_n^2 \sim -2(a_{n+1} a_n)$.

Par équivalence de séries à termes positifs, la nature de la série de terme général a_n^2 est celle de la série de terme général $a_{n+1} - a_n$ qui est celle de la suite de terme général a_n . Finalement $\sum a_n^2$ converge.

d) La nature de la série de terme général $\ln(a_{n+1}/a_n)$ est celle de la suite de terme général $\ln(a_n)$. C'est donc une série divergente. Or

$$\ln\left(\frac{a_{n+1}}{a_n}\right) = \ln\left(1 - \frac{1}{2}a_n + o(a_n)\right) \sim -\frac{1}{2}a_n$$

Par équivalence de série de terme de signe constant, on peut affirmer $\sum a_n$ diverge.

Exercice 56: [énoncé]

a) $u_{n+1} - u_n \leq 0$ et $u_n \in]0,1[$ pour tout $n \in \mathbb{N}$ donc (u_n) converge et la seule limite possible est 0.

$$\sum_{n=0}^{N} u_n^2 = \sum_{n=0}^{N} u_n - u_{n+1} = u_0 - u_{N+1} \to u_0$$

donc $\sum u_n^2$ converge et

$$\sum_{n=0}^{+\infty} u_n^2 = u_0$$

On a

$$\sum_{n=0}^{N} \ln(1 - u_n) = \ln\left(\prod_{n=0}^{N} \frac{u_{n+1}}{u_n}\right) = \ln\frac{u_{N+1}}{u_0} \to -\infty$$

donc la série numérique $\sum \ln(1-u_n)$ diverge.

b) Puisque

$$\ln(1-u_n) \sim -u_n$$

Par équivalence de séries à termes de signe constant, $\sum u_n$ diverge.

Exercice 57 : [énoncé]

Dans le cas où $u_0 = 0$, la suite est nulle.

Dans le cas où $u_0=1$, la suite est nulle à partir du rang 1

On suppose désormais ces cas exclus.

a) La suite (u_n) est à termes dans]0,1[car l'application $x\mapsto x-x^2$ laisse stable cet intervalle.

La suite (u_n) est décroissante et minorée donc convergente. Sa limite ℓ vérifie $\ell = \ell - \ell^2$ et donc $\ell = 0$.

Finalement (u_n) décroît vers 0 par valeurs strictement supérieures.

$$\frac{1}{u_{n+1}} - \frac{1}{u_n} = \frac{u_n - u_{n+1}}{u_n u_{n+1}} = \frac{u_n^2}{u_n^2 - u_n^3} \to 1$$

Par le théorème de Cesaro,

$$\frac{1}{n} \sum_{k=0}^{n-1} \left(\frac{1}{u_{k+1}} - \frac{1}{u_k} \right) \to 1$$

et donc $\frac{1}{nu_n} \to 1$.

On en déduit que $u_n \sim \frac{1}{n}$ et donc $\sum u_n$ diverge.

b) Comme ci-dessus, on obtient que (u_n) décroît vers 0 par valeurs strictement supérieures.

$$\frac{1}{u_{n+1}^{\alpha}} - \frac{1}{u_n^{\alpha}} = \frac{u_n^{\alpha} - u_{n+1}^{\alpha}}{(u_n u_{n+1})^{\alpha}} \sim \frac{\alpha u_n^{\alpha}}{u_{n+1}^{\alpha}} \to \alpha$$

Par le théorème de Cesaro, $\frac{1}{nu_n^{\alpha}} \to \alpha$ et donc

$$u_n \sim \frac{\lambda}{n^{1/\alpha}}$$

avec $\lambda > 0$.

Si $\alpha \in]0,1[, \sum u_n \text{ converge et si } \alpha \geqslant 1, \sum u_n \text{ diverge.}$

Exercice 58 : [énoncé]

La suite (u_n) est croissante.

Si (u_n) converge alors sa limite ℓ est strictement positive et

$$a_n \sim \ell(u_{n+1} - u_n)$$

est le terme général d'une série convergente par équivalence des termes généraux de signe constant.

Si $\sum a_n$ converge alors

$$0 \leqslant u_{n+1} - u_n \leqslant a_n/u_0$$

donc par comparaison la série de terme général $u_{n+1} - u_n$ converge et donc (u_n) converge.

Exercice 59 : [énoncé]

Posons $v_n = u_n^{\beta}$. La suite (v_n) vérifie $v_n \in]0,1]$ et $v_{n+1} = \sin(v_n)$ pour tout $n \in \mathbb{N}$. Puisque la fonction sinus laisse stable l'intervalle]0,1], on peut affirmer que pour tout $n \in \mathbb{N}$, $v_n \in]0,1]$.

De plus, pour $x \ge 0$, $\sin x \le x$ donc la suite (v_n) est décroissante.

Puisque décroissante et minorée, (v_n) converge et sa limite ℓ vérifie $\sin \ell = \ell$ ce qui donne $\ell = 0$.

Corrections

36

Finalement (v_n) décroît vers 0 par valeurs strictement supérieures. On a

$$\frac{1}{v_{n+1}^2} - \frac{1}{v_n^2} = \frac{(v_n - v_{n+1})(v_{n+1} + v_n)}{v_n^2 v_{n+1}^2} \sim \frac{\frac{1}{6}v_n^3 \times 2v_n}{v_n^4} \to \frac{1}{3}$$

Par le théorème de Cesaro,

$$\frac{1}{n} \sum_{k=0}^{n-1} \left(\frac{1}{v_{k+1}^2} - \frac{1}{v_k^2} \right) \to \frac{1}{3}$$

et donc $\frac{1}{nv_n^2} \to \frac{1}{3}$. On en déduit $v_n \sim \frac{\sqrt{3}}{n^{1/2}}$ puis

$$u_n \sim \frac{\lambda}{n^{1/(2\beta)}}$$

avec $\lambda > 0$.

Pour $\beta \in]0, 1/2[, \sum v_n \text{ converge et pour } \beta \geqslant 1/2, \sum v_n \text{ diverge.}$

Exercice 60: [énoncé]

a) Notons la suite (u_n) est bien définie, strictement positive et croissante. Si $\alpha > 1$, on a

$$u_{n+1} \leqslant u_n + \frac{1}{n^{\alpha} u_1}$$

puis par récurrence

$$u_n \leqslant \sum_{n=1}^{n} \frac{1}{k^{\alpha} u_1}$$

Ainsi (u_n) converge.

Si (u_n) converge. Posons $\ell = \lim u_n$, on observe $\ell > 0$. On a

$$u_{n+1} - u_n = \frac{1}{n^{\alpha} u_n} \sim \frac{1}{n^{\alpha} \ell}$$

or la série de terme général $u_{n+1} - u_n$ est convergente donc $\alpha > 1$.

b) On suppose $\alpha \leq 1$. On a

$$u_{n+1}^2 - u_n^2 = \frac{2}{n^\alpha} + \frac{1}{n^{2\alpha}u_n^2} \sim \frac{2}{n^\alpha}$$

donc par sommation de relation de comparaison de séries à termes positifs divergentes

$$u_n^2 \sim 2\sum_{k=1}^n \frac{1}{k^\alpha}$$

or par comparaison série-intégrale,

$$\sum_{k=1}^{n} \frac{1}{k^{\alpha}} \sim \frac{n^{1-\alpha}}{1-\alpha} \text{ quand } \alpha < 1$$

 $_{
m et}$

$$\sum_{k=1}^{n} \frac{1}{k} \sim \ln n \text{ quand } \alpha = 1$$

On conclut alors

$$u_n \sim \sqrt{\frac{2n^{1-\alpha}}{1-\alpha}}$$
 si $\alpha < 1$ et $u_n \sim \sqrt{2 \ln n}$ si $\alpha = 1$

c) On suppose $\alpha > 1$. Posons $v_n = u_n - \ell$. On a

$$v_{n+1} - v_n = \frac{1}{n^{\alpha} u_n} \sim \frac{1}{n^{\alpha} \ell}$$

donc par sommation de relation de comparaison de séries à termes positifs convergentes

$$\sum_{k=n}^{+\infty} v_{k+1} - v_k = -v_n \sim \sum_{k=n}^{+\infty} \frac{1}{\ell n^{\alpha}} \sim \frac{1}{\alpha - 1} \frac{1}{\ell n^{\alpha - 1}}$$

puis

$$v_n = \frac{1}{1 - \alpha} \frac{1}{\ell n^{\alpha - 1}}$$

Exercice 61 : [énoncé]

On a

$$\left(\frac{1}{x\ln x}\right)' = -\frac{\ln x + 1}{(x\ln x)^2}$$

La fonction $x \mapsto 1/x \ln x$ est décroissante sur]1, $+\infty$ [On en déduit

$$\sum_{n=2}^{N} \frac{1}{n \ln n} \geqslant \int_{2}^{N+1} \frac{\mathrm{d}t}{t \ln t} = \ln \ln(N+1) - \ln \ln 2 \to +\infty$$

Exercice 62 : [énoncé]

Par comparaison avec une intégrale

$$\int_{1}^{n} (\ln t)^{2} dt \leqslant \sum_{k=1}^{n} (\ln k)^{2}$$

Or par une intégration par parties on obtient

$$\int_{1}^{n} (\ln t)^{2} dt \sim n(\ln n)^{2}$$

donc $0 \leqslant u_n \leqslant v_n$ avec

$$v_n \sim \frac{1}{n(\ln n)^2}$$

On peut alors conclure que la série des u_n converge absolument par comparaison avec une série de Bertrand.

Exercice 63: [énoncé]

Notons que les termes sommés sont positifs. La fonction $x \mapsto a^{\sqrt{x}}$ est décroissante donc

$$a^{\sqrt{n}} \leqslant \int_{n-1}^{n} a^{\sqrt{x}} \mathrm{d}x$$

puis

$$\sum_{k=0}^{n} a^{\sqrt{k}} \leqslant 1 + \int_{0}^{n} a^{\sqrt{x}} dx = 1 + 2 \int_{0}^{\sqrt{n}} u a^{u} du$$

or $\int_0^{+\infty} ua^u du$ est définie donc

$$\sum_{n\geqslant 0} a^{\sqrt{n}} < +\infty$$

Exercice 64: [énoncé]

Puisque $x \mapsto \frac{1}{x^2}$ est décroissante

$$\int_{k}^{k+1} \frac{\mathrm{d}x}{x^2} \leqslant \frac{1}{k^2} \leqslant \int_{k-1}^{k} \frac{\mathrm{d}x}{x^2}$$

donc

$$\int_{n+1}^{+\infty} \frac{\mathrm{d}x}{x^2} \leqslant \sum_{k=n+1}^{+\infty} \frac{1}{k^2} \leqslant \int_{n}^{+\infty} \frac{\mathrm{d}x}{x^2}$$

d'où l'on obtient : $u_n \sim 1/n$.

Il y a donc divergence de la série de terme général u_n .

Exercice 65 : [énoncé]

Puisque $x \mapsto \frac{1}{x^{\alpha}}$ est décroissante

$$\int_{n}^{n+1} \frac{\mathrm{d}x}{x^{\alpha}} \leqslant \frac{1}{n^{\alpha}} \leqslant \int_{n-1}^{n} \frac{\mathrm{d}x}{x^{\alpha}}$$

donc

$$\int_{N+1}^{+\infty} \frac{\mathrm{d}x}{x^{\alpha}} \leqslant R_N \leqslant \int_{N}^{+\infty} \frac{\mathrm{d}x}{x^{\alpha}}$$

d'où l'on obtient :

$$R_n \sim \frac{1}{(\alpha - 1)n^{\alpha - 1}}$$

puis

$$\frac{R_n}{S_n} \sim \frac{1}{(\alpha - 1)S_{\infty}n^{\alpha - 1}}$$

La série $\sum_{n\geqslant 1} \frac{R_n}{S_n}$ converge si, et seulement si, $\alpha>2$.

Exercice 66: [énoncé]

On a

$$\frac{u_n}{S_n^{\alpha}} \leqslant \int_{S_{n-1}}^{S_n} \frac{\mathrm{d}t}{t^{\alpha}}$$

donc

$$\sum_{n=1}^{p} \frac{u_n}{S_n^{\alpha}} \leqslant \int_{S_0}^{S_p} \frac{\mathrm{d}t}{t^{\alpha}} = \frac{1}{\alpha - 1} \left[\frac{1}{t^{\alpha - 1}} \right]_{S_0}^{S_p} \leqslant \frac{1}{\alpha - 1} < +\infty$$

La série à termes positifs est convergente car ses sommes partielles sont majorées.

Exercice 67 : [énoncé]

Puisque $x \mapsto \frac{1}{x^{\alpha}}$ est décroissante

$$\int_{1}^{+\infty} \frac{\mathrm{d}x}{x^{\alpha}} \le \sum_{k=1}^{+\infty} \frac{1}{k^{\alpha}} \le 1 + \int_{1}^{+\infty} \frac{\mathrm{d}x}{x^{\alpha}}$$

donc

$$\frac{1}{\alpha - 1} \leqslant \zeta(\alpha) \leqslant 1 + \frac{1}{\alpha - 1}$$

Par suite $(\alpha - 1)\zeta(\alpha) \xrightarrow{\alpha \to 1+} 1$.

Exercice 68: [énoncé]

a) Par croissance de la fonction $\sqrt{.}$

$$\int_{k-1}^{k} \sqrt{t} \, \mathrm{d}t \leqslant \sqrt{k} \leqslant \int_{k}^{k+1} \sqrt{t} \, \mathrm{d}t$$

donc

$$\int_0^n \sqrt{t} \, \mathrm{d}t \leqslant \sum_{k=1}^n \sqrt{k} \leqslant \int_1^{n+1} \sqrt{t} \, \mathrm{d}t$$

et on conclut aisément.

b) On a

$$\ln n! = \sum_{k=1}^{n} \ln k$$

et, par croissance de la fonction ln,

$$\int_{k-1}^{k} \ln t \, \mathrm{d}t \leqslant \ln k \leqslant \int_{k}^{k+1} \ln t \, \mathrm{d}t$$

donc

$$\int_{1}^{n} \ln t \, \mathrm{d}t \leqslant \ln n! \leqslant \int_{1}^{n+1} \ln t \, \mathrm{d}t$$

puis on peut conclure.

c) Par décroissance de la fonction $x \mapsto 1/x \ln x$ sur $[1/e, +\infty[$,

$$\int_{k}^{k+1} \frac{\mathrm{d}t}{t \ln t} \leqslant \frac{1}{k \ln k} \leqslant \int_{k-1}^{k} \frac{\mathrm{d}t}{t \ln t}$$

donc

$$\int_{2}^{n+1} \frac{\mathrm{d}t}{t \ln t} \leqslant \sum_{k=2}^{n} \frac{1}{k \ln k} \leqslant \int_{1}^{n} \frac{\mathrm{d}t}{t \ln t}$$

puis on conclut via

$$\int \frac{\mathrm{d}t}{t \ln t} = \ln(\ln t) + C^{te} \to +\infty$$

Exercice 69 : [énoncé]

Notons que $\frac{a}{n^2+a^2} \sim \frac{a}{n^2}$ donc $\sum_{n=1}^{+\infty} \frac{a}{n^2+a^2}$ existe.

La fonction $x\mapsto \frac{a}{x^2+a^2}$ est décroissante sur $[0,+\infty[$ donc par comparaison série-intégrale

$$\int_{1}^{N+1} \frac{a}{x^2 + a^2} \, \mathrm{d}x \leqslant \sum_{n=1}^{N} \frac{a}{n^2 + a^2} \leqslant \int_{0}^{N} \frac{a}{x^2 + a^2} \, \mathrm{d}x$$

puis sachant

$$\int \frac{a}{x^2 + a^2} = \arctan \frac{x}{a} + C^{te}$$

on obtient

$$\arctan \frac{N+1}{a} - \arctan \frac{1}{a} \leqslant \sum_{n=1}^{N} \frac{a}{n^2 + a^2} \leqslant \arctan \frac{N}{a}$$

Quand $N \to +\infty$,

$$\frac{\pi}{2} - \arctan \frac{1}{a} \leqslant \sum_{n=1}^{+\infty} \frac{a}{n^2 + a^2} \leqslant \frac{\pi}{2}$$

Par le théorème des gendarmes,

$$\lim_{a \to +\infty} \sum_{n=1}^{+\infty} \frac{a}{n^2 + a^2} = \frac{\pi}{2}$$

Exercice 70: [énoncé]

On a

$$A_n = a + \frac{b(n+1)}{2}, \ln B_n = \frac{1}{n} \sum_{k=1}^{n} \ln(a+bk)$$

Posons $f(t) = \ln(a + bt)$ function croissante.

A l'aide d'une comparaison série-intégrale

$$\sum_{k=1}^{n} f(k) = n \ln(a + bn) - n + o(n)$$

donc

$$\ln \frac{B_n}{A_n} = \ln B_n - \ln A_n = \ln \left(\frac{a + bn}{a + bn/2} \right) - 1 + o(1) \to \ln 2 - 1$$

puis

$$\frac{B_n}{A_n} \to \frac{2}{\mathrm{e}}$$

Exercice 71 : [énoncé]

a) a) Une comparaison série intégrale est inadaptée, f n'est pas monotone comme en témoigne ses changements de signe. En revanche :

$$u_n = \int_n^{n+1} f(x) - f(n) \, \mathrm{d}x$$

Or par le théorème des accroissements fini,

$$f(x) - f(n) = f'(c_x)(x - n)$$

avec $c_x \in]n, x[.$

Après calcul de f'(x), on en déduit

$$|f(x) - f(n)| \le \frac{1}{3n^{4/3}} + \frac{2}{3n^{5/3}}$$

puis $u_n = O\left(\frac{1}{n^{4/3}}\right)$.

- b) La série de terme général $\int_n^{n+1} f(t) dt$ diverge car $\int_0^n f(t) dt = 3 \sin \left(n^{1/3}\right)$ diverge. En effet si $\sin \left(n^{1/3}\right)$ convergeait vers ℓ alors par extraction $\sin(n)$ aussi et il est classique d'établir la divergence de $(\sin(n))$. On en déduit que $\sum \frac{\cos(n^{1/3})}{n^{2/3}}$ diverge.
- c) Il suffit de reprendre la même étude pour parvenir à la même $u_n = \int_n^{n+1} f(x) dx f(n)$ conclusion.

Exercice 72 : [énoncé]

a) La fonction f' est bien définie et continue par morceaux sur $[1, +\infty[$. On a

$$f'(x) = \frac{\cos(\ln x) - \sin(\ln x)}{x^2}$$

et donc

$$|f'(x)| \leqslant \frac{2}{x^2}$$

La fonction $x\mapsto 1/x^2$ étant intégrable sur $[1,+\infty[$, il en est de même de f' par domination.

b) Par intégration par parties

$$\int_{n-1}^{n} f(t) dt = \left[(t - (n-1)f(t)) \right]_{n-1}^{n} - \int_{n-1}^{n} (t - (n-1))f'(t) dt$$

donc

$$|u_n| \le \int_{n-1}^n (t - (n-1)) |f'(t)| dt \le \int_{n-1}^n |f'(t)| dt$$

L'intégrabilité de f' permet d'introduire $\int_1^{+\infty} |f'(t)| dt$ et d'affirmer que les sommes partielles de la série $\sum |u_n|$ sont majorées via

$$\sum_{n=1}^{N} |u_n| \le |u_1| + \int_{1}^{N} |f'(t)| \, dt \le |u_1| + \int_{1}^{+\infty} |f'(t)| \, dt$$

La série $\sum u_n$ est alors absolument convergente.

c) Par l'absurde, supposons que la suite $(\cos(\ln n))$ converge. La suite extraite $(\cos(\ln 2^n)) = (\cos(n \ln 2))$ aussi. Notons ℓ sa limite. Puisque

$$\cos((n+1)\ln 2) + \cos((n-1)\ln 2) = 2\cos(n\ln 2)\cos(\ln 2)$$

on obtient à la limite $2\ell = 2\ell \cos(\ln 2)$ et donc $\ell = 0$. Puisque

$$\cos(2n \ln 2) = 2\cos^2(n \ln 2) - 1$$

on obtient aussi à la limite $\ell = 2\ell^2 - 1$ ce qui est incompatible avec $\ell = 0$.

d) Puisque

$$\int_{n-1}^{n} f(t) dt = -\cos(\ln n) + \cos(\ln(n-1))$$

La divergence de la suite $(\cos(\ln n))$ entraı̂ne la divergence de la série $\sum \int_{n-1}^n f(t) dt$.

Enfin, puisque la série $\sum u_n$ converge, on peut alors affirmer que la série $\sum f(n)$ diverge.

Exercice 73 : [énoncé]

a) Posons

$$u_n = \int_n^{n+1} f(t) \, \mathrm{d}t - f(n)$$

On a

$$|u_n| \leqslant \int_n^{n+1} |f(t) - f(n)| \, \mathrm{d}t$$

Or pour tout $t \in [n, n+1]$

$$|f(t) - f(n)| = \left| \int_n^t f'(u) \, du \right| \le \int_n^t |f'(u)| \, du \le \int_n^{n+1} |f'(u)| \, du$$

et donc

$$|u_n| \leqslant \int_{n}^{n+1} |f'(u)| \, \mathrm{d}u$$

Sachant que la suite $\left(\int_{1}^{n} |f'(u)| du\right)$ converge, la série $\sum \int_{n}^{n+1} |f'(u)| du$ converge et, par comparaison de séries à termes positifs, on peut affirmer que la série $\sum u_n$ est absolument convergente.

Puisque

$$\sum_{k=1}^{n} f(k) = \sum_{k=1}^{n} \int_{k}^{k+1} f(t) dt - u_{k} = \int_{1}^{n+1} f(t) dt - \sum_{k=1}^{n} u_{k}$$

la convergence de la série $\sum f(n)$ équivaut à celle de la suite $(\int_1^n f(t) dt)$.

b) Introduisons

$$f: t \mapsto \frac{\sin\sqrt{t}}{t}$$

La fonction f est de classe C^1 sur $[1, +\infty]$ et

$$f'(t) = \frac{\frac{1}{2\sqrt{t}}\cos(\sqrt{t}) - \sin(\sqrt{t})}{t^2} \underset{t \to +\infty}{=} O\left(\frac{1}{t^2}\right)$$

est intégrable sur $[1, +\infty[$.

La convergence de la série étudiée équivaut alors à la convergence quand $n \to +\infty$ de

$$\int_{1}^{n} \frac{\sin \sqrt{t}}{t} \, \mathrm{d}t$$

En posant $u = \sqrt{t}$

$$\int_{1}^{n} \frac{\sin \sqrt{t}}{t} \, \mathrm{d}t = \int_{1}^{\sqrt{n}} 2 \frac{\sin u}{u} \, \mathrm{d}u$$

dont la convergence quand $n \to +\infty$ est bien connue (cf. intégrale de Dirichlet).

Exercice 74: [énoncé]

La fonction f_n est continue, strictement décroissante et de limites $+\infty$ et 0 en n et $+\infty$. On en déduit que f_n réalise une bijection de $]n, +\infty[$ vers $]0, +\infty[$. Ainsi, pour tout a > 0, il existe un unique $x_n > n$ vérifiant $f_n(x_n) = a$. On a

$$f_n(n+1+y) = \sum_{k=1}^n \frac{1}{n+1+y-k} = \sum_{k=1}^n \frac{1}{k+y} \leqslant \sum_{k=1}^n \int_{k-1}^k \frac{\mathrm{d}t}{t+y} = \int_0^n \frac{\mathrm{d}t}{t+y} = \ln\left(1 + \frac{n}{y}\right)_1^{+\infty} \frac{1}{t^2} \mathrm{e}^{\frac{1}{t}} \, \mathrm{d}t = \left[-\mathrm{e}^{1/t}\right]_1^{+\infty} = \mathrm{e} - 1 \text{ et } \int_{(n-1)/n}^{+\infty} \frac{1}{t^2} \mathrm{e}^{\frac{1}{t}} \, \mathrm{d}t = \left[-\mathrm{e}^{1/t}\right]_{(n-1)/n}^{+\infty} \to \mathrm{e} - 1 \mathrm{et } \int_{(n-1)/n}^{+\infty} \frac{1}{t^2} \mathrm{e}^{\frac{1}{t}} \, \mathrm{d}t = \left[-\mathrm{e}^{1/t}\right]_{(n-1)/n}^{+\infty} \to \mathrm{e} - 1 \mathrm{et } \int_{(n-1)/n}^{+\infty} \frac{1}{t^2} \mathrm{e}^{\frac{1}{t}} \, \mathrm{d}t = \left[-\mathrm{e}^{1/t}\right]_{(n-1)/n}^{+\infty} \to \mathrm{e} - 1 \mathrm{et } \int_{(n-1)/n}^{+\infty} \frac{1}{t^2} \mathrm{e}^{\frac{1}{t}} \, \mathrm{d}t = \left[-\mathrm{e}^{1/t}\right]_{(n-1)/n}^{+\infty} \to \mathrm{e} - 1 \mathrm{et } \int_{(n-1)/n}^{+\infty} \frac{1}{t^2} \mathrm{e}^{\frac{1}{t}} \, \mathrm{d}t = \left[-\mathrm{e}^{1/t}\right]_{(n-1)/n}^{+\infty} \to \mathrm{e} - 1 \mathrm{et } \int_{(n-1)/n}^{+\infty} \frac{1}{t^2} \mathrm{e}^{\frac{1}{t}} \, \mathrm{d}t = \left[-\mathrm{e}^{1/t}\right]_{(n-1)/n}^{+\infty} \to \mathrm{e} - 1 \mathrm{et } \int_{(n-1)/n}^{+\infty} \frac{1}{t^2} \mathrm{e}^{\frac{1}{t}} \, \mathrm{d}t = \left[-\mathrm{e}^{1/t}\right]_{(n-1)/n}^{+\infty} \to \mathrm{e} - 1 \mathrm{et } \int_{(n-1)/n}^{+\infty} \frac{1}{t^2} \mathrm{e}^{\frac{1}{t}} \, \mathrm{$$

Pour $y = \frac{n}{e^a - 1}$,

$$f(n+1+y) \le \ln(1+(e^a-1)) = a$$

et par suite

$$x_n \leqslant n + 1 + \frac{n}{e^a - 1}$$

Aussi

$$f(n+y) = \sum_{k=0}^{n-1} \frac{1}{y+k} \ge \int_0^n \frac{dt}{t+y} = \ln\left(1 + \frac{n}{y}\right)$$

Pour $y = \frac{n}{e^a - 1}$, $f(n + y) \ge a$ et par suite

$$x_n \geqslant n + \frac{n}{e^a - 1}$$

On en déduit

$$x_n \sim n + \frac{n}{e^a - 1} = \frac{e^a n}{e^a - 1}$$

Exercice 75: [énoncé]

On remarque

$$n\sum_{k=n}^{+\infty} \left(\frac{1}{k^2} e^{\frac{n}{k}}\right) = \frac{1}{n} \sum_{k=n}^{+\infty} \varphi\left(\frac{k}{n}\right)$$

avec $\varphi: x \mapsto \frac{1}{x^2} e^{1/x}$.

La fonction φ est décroissante en tant que produit de deux fonctions décroissantes positives. Par suite

$$\int_{k/n}^{(k+1)/n} \varphi(t) \, \mathrm{d}t \leqslant \frac{1}{n} \varphi\left(\frac{k}{n}\right) \leqslant \int_{(k-1)/n}^{k/n} \varphi(t) \, \mathrm{d}t$$

En sommant et en exploitant l'intégrabilité de φ au voisinage de $+\infty$

$$\int_{1}^{+\infty} \frac{1}{t^2} e^{1/t} dt \le \sum_{k=n}^{+\infty} \frac{1}{n} \varphi\left(\frac{k}{n}\right) \le \int_{(n-1)/n}^{+\infty} \frac{1}{t^2} e^{1/t} dt$$

Or

$$1 + \frac{n}{u} \int_{1}^{+\infty} \frac{1}{t^2} e^{\frac{1}{t}} dt = \left[-e^{1/t} \right]_{1}^{+\infty} = e - 1 \text{ et } \int_{(n-1)/n}^{+\infty} \frac{1}{t^2} e^{\frac{1}{t}} dt = \left[-e^{1/t} \right]_{(n-1)/n}^{+\infty} \to e - 1$$

Par encadrement

$$\lim_{n \to +\infty} n \sum_{k=n}^{+\infty} \left(\frac{1}{k^2} e^{\frac{n}{k}} \right) = e - 1$$

Exercice 76: [énoncé]

La fonction $t \mapsto f(e^{-t})$ est décroissante et positive donc, par théorème de comparaison série intégrale, l'intégrale $\int_0^{+\infty} f(e^{-t}) dt$ et la série $\sum f(e^{-n})$ ont même nature.

Par le changement de variable C^1 bijectif $u = e^t$, l'intégrale $\int_0^{+\infty} f(e^{-t}) dt$ à même nature que $\int_1^{+\infty} \frac{1}{u} f(\frac{1}{u}) du$.

La fonction $u \mapsto \frac{1}{u} \hat{f}\left(\frac{1}{u}\right)$ est décroissante et positive donc, par théorème de comparaison série intégrale, l'intégrale $\int_{1}^{+\infty} \frac{1}{u} f\left(\frac{1}{u}\right) du$ et la série $\sum \frac{1}{n} f\left(\frac{1}{n}\right)$ ont même nature.

Exercice 77: [énoncé]

La convergence de $\sum_{k=0}^{+\infty} \frac{1}{k!}$ s'obtient entre autre par le critère d'Alembert puisque

$$\left| \frac{1/(k+1)!}{1/k!} \right| = \frac{1}{k+1} \xrightarrow[k \to +\infty]{} 0 < 1$$

On peut alors majorer le reste de la série en prenant appui sur une somme géométrique

$$\sum_{k=n+1}^{+\infty} \frac{1}{k!} \le \frac{1}{n!} \left(\frac{1}{n+1} + \frac{1}{(n+1)^2} + \cdots \right) = \frac{1}{n!} \frac{1}{n+1} \frac{1}{1 - 1/n + 1} = \frac{1}{n \cdot n!}$$

Notons que raisonner par récurrence ne marche pas.

Exercice 78 : [énoncé]

Selon que $\alpha<0$ ou $\alpha\geqslant 0,$ on encadre $1/k^{\alpha}$ en exploitant la monotonie de $x\mapsto 1/x^{\alpha}.$

Sachant que

$$\int \frac{\mathrm{d}t}{t^{\alpha}} = \frac{1}{1-\alpha} t^{1-\alpha} + C^{te} \xrightarrow[t \to +\infty]{} + \infty$$

on obtient

$$\sum_{k=1}^{n} \frac{1}{k^{\alpha}} \sim \frac{n^{1-\alpha}}{1-\alpha}$$

Exercice 79 : [énoncé]

Puisque la fonction $x \mapsto \frac{1}{x^{\alpha}}$ est décroissante

$$\int_{n}^{n+1} \frac{\mathrm{d}x}{x^{\alpha}} \le \frac{1}{n^{\alpha}} \le \int_{n-1}^{n} \frac{\mathrm{d}x}{x^{\alpha}}$$

donc

$$\int_{N+1}^{+\infty} \frac{\mathrm{d}x}{x^{\alpha}} \leqslant R_N \leqslant \int_{N}^{+\infty} \frac{\mathrm{d}x}{x^{\alpha}}$$

d'où l'on obtient

$$R_n \sim \frac{1}{(\alpha - 1)n^{\alpha - 1}}$$

Exercice 80 : [énoncé]

 $\frac{1}{k+\sqrt{k}} \sim \frac{1}{k}$ et $\sum_{k\geqslant 1} \frac{1}{k}$ est une série à terme positif divergente donc $S_n \sim \sum_{k=1}^n \frac{1}{k} \sim \ln n$.

Pour être plus précis,

$$S_n - \sum_{k=1}^n \frac{1}{k} = \sum_{k=1}^n \left(\frac{1}{k + \sqrt{k}} - \frac{1}{k} \right) = \sum_{k=1}^n \frac{\sqrt{k}}{k^2 + k\sqrt{k}}$$

or

$$\frac{\sqrt{k}}{k^2 + k\sqrt{k}} \sim \frac{1}{k^{3/2}}$$

et est donc le terme général d'une série convergente.

Ainsi
$$S_n - \sum_{k=1}^n \frac{1}{k} \to C'$$
 d'où

$$S_n = \ln n + (\gamma + C') + o(1) = \ln n + C + o(1)$$

Exercice 81 : [énoncé]

 $\frac{1}{k^2+\sqrt{k}}\sim \frac{1}{k^2}$ donc la série de terme général $\frac{1}{k^2+\sqrt{k}}$ est absolument convergente. Par suite (S_n) converge

$$C - S_n = \sum_{k=n+1}^{+\infty} \frac{1}{k^2 + \sqrt{k}} \sim \sum_{k=n+1}^{+\infty} \frac{1}{k^2}$$

car $\sum_{k\geqslant 1}\frac{1}{k^2}$ est une série à termes positifs convergente.

Par comparaison série intégrale $\sum_{k=n+1}^{+\infty} \frac{1}{k^2} \sim \frac{1}{n}$ et on peut conclure comme annoncée.

Exercice 82 : [énoncé]

Par une comparaison avec une intégrale, on sait déjà

$$\sum_{k=n+1}^{+\infty} \frac{1}{k^2} \sim \frac{1}{n}$$

Il reste à déterminer un équivalent simple de la différence

$$d_n = \sum_{k=n+1}^{+\infty} \frac{1}{k^2} - \frac{1}{n}$$

Sachant que $\frac{1}{n}$ est le reste de rang n de la série convergente $\sum \left(\frac{1}{k-1} - \frac{1}{k}\right) = \sum \frac{1}{k(k-1)}$

$$d_n = \sum_{k=n+1}^{+\infty} \frac{-1}{k^2(k-1)}$$

Par équivalence de reste de séries à termes positifs convergentes

$$d_n \sim -\sum_{k=n+1}^{+\infty} \frac{1}{k^3}$$

Par comparaison avec une intégrale

$$d_n \sim -\frac{1}{2n^2}$$

Finalement

$$\sum_{k=n+1}^{+\infty} \frac{1}{k^2} = \frac{1}{n} - \frac{1}{2n^2} + o\left(\frac{1}{n^2}\right)$$

Exercice 83: [énoncé]

a) Pour $\alpha > 1$, la série de terme général $1/n^{\alpha}$ converge et si l'on pose

$$S_n = \sum_{k=1}^n \frac{1}{k^\alpha}$$

on observe

$$\sum_{k=n+1}^{2n} \frac{1}{k^{\alpha}} = S_{2n} - S_n \to \sum_{k=1}^{+\infty} \frac{1}{k^{\alpha}} - \sum_{k=1}^{+\infty} \frac{1}{k^{\alpha}} = 0$$

Pour $\alpha = 1$, on introduit les sommes partielles harmoniques

$$H_n = \sum_{k=1}^n \frac{1}{k}$$

En notant γ la constante d'Euler, on peut écrire

$$H_n = \ln n + \gamma + o(1)$$

et alors

$$\sum_{k=n+1}^{2n} \frac{1}{k} = H_{2n} - H_n = \ln 2 + o(1) \to \ln 2$$

b) Par l'égalité de Taylor avec reste intégral, on peut écrire

$$\sin x = x + \int_0^x \frac{(x-t)^2}{2!} \sin^{(3)}(t) dt$$

Puisque

$$\forall t \in \mathbb{R}, \sin^{(3)}(t) = -\cos(t) \in [-1, 1]$$

on a

$$\forall x \ge 0, \sin x \ge x - \int_0^x \frac{(x-t)^2}{2!} dt = x - \frac{1}{6}x^3$$

D'autre part, il est bien connu que

$$\forall x \geqslant 0, \sin(x) \leqslant x$$

On en déduit

$$\sum_{k=n+1}^{2n} \frac{1}{k} - \frac{1}{6} \sum_{k=n+1}^{2n} \frac{1}{k^3} \leqslant \sum_{k=n+1}^{2n} \sin\left(\frac{1}{k}\right) \leqslant \sum_{k=n+1}^{2n} \frac{1}{k}$$

En vertu de ce qui précède, on obtient

$$\lim_{n \to +\infty} \sum_{k=n+1}^{2n} \sin\left(\frac{1}{k}\right) = \ln 2$$

Exercice 84 : [énoncé]

a) On a

$$\ln u_n = \sum_{k=1}^n \ln \left(1 - \frac{1}{3k} \right)$$

Or

$$\ln\left(1 - \frac{1}{3k}\right) = -\frac{1}{3k} + O\left(\frac{1}{k^2}\right)$$

donc

$$\ln u_n = -\frac{1}{3} \sum_{k=1}^n \frac{1}{k} + \sum_{k=1}^n O\left(\frac{1}{k^2}\right) = -\frac{1}{3} \ln n + C + o(1)$$

car $\sum_{k=1}^{n} \frac{1}{k} = \ln n + \gamma + o(1)$ et $\sum_{n \geqslant 1} O\left(\frac{1}{n^2}\right)$ est une série convergente.

b) Puisque

$$\ln(n^{1/3}u_n) \to \beta$$

on a

$$u_n \sim \frac{\mathrm{e}^{\beta}}{n^{1/3}}$$

et donc la série de terme général u_n diverge.

Exercice 85 : [énoncé]

Posons

$$P_n = \frac{1}{n} \prod_{k=1}^{n} (3k - 1)^{1/n} > 0$$

On a

$$\ln(P_n) = \frac{1}{n} \sum_{k=1}^{n} \ln(3k - 1) - \ln n$$

Par comparaison série-intégrale

$$\ln 2 + \int_{1}^{n} \ln(3t - 1) \, dt \le \sum_{k=1}^{n} \ln(3k - 1) \le \int_{1}^{n+1} \ln(3t - 1) \, dt$$

Or

$$\int_{1}^{n} \ln(3t-1) dt = \frac{3n-1}{3} \ln(3n-1) - n + C = n \ln n + (\ln 3 - 1)n + O(\ln n)$$

et donc

$$\sum_{k=1}^{n} \ln(3k-1) = n \ln n + (\ln 3 - 1)n + O(\ln n)$$

On en déduit

$$\ln P_n \xrightarrow[n \to +\infty]{} \ln 3 - 1$$

puis

$$P_n o rac{3}{\mathrm{e}}$$

Exercice 86 : [énoncé]

a) Avec convergence des sommes engagées

$$\sum_{k=1}^{+\infty} \frac{1}{k(nk+1)} = \frac{1}{n} \sum_{k=1}^{+\infty} \frac{1}{k^2} + \sum_{k=1}^{+\infty} \left(\frac{1}{k(nk+1)} - \frac{1}{nk^2} \right) = \frac{\pi^2}{6n} - \sum_{k=1}^{+\infty} \frac{1}{nk^2(nk+1)}$$

et

$$0 \leqslant \sum_{k=1}^{+\infty} \frac{1}{nk^2(nk+1)} \leqslant \frac{1}{n^2} \sum_{k=1}^{+\infty} \frac{1}{k^3}$$

donc

$$\sum_{k=1}^{+\infty} \frac{1}{k(nk+1)} \sim \frac{\pi^2}{6n}$$

b) Par décomposition en éléments simples et télescopage

$$\sum_{k=1}^{+\infty} \frac{1}{k(n+k)} = \frac{1}{n} \sum_{k=1}^{+\infty} \left(\frac{1}{k} - \frac{1}{n+k} \right) = \frac{1}{n} \sum_{k=1}^{n} \frac{1}{k} \sim \frac{\ln n}{n}$$

Exercice 87: [énoncé]

 n_p est bien défini car $H_n \to +\infty$.

La suite (n_p) est croissante et évidemment non majorée donc

$$n_p \to +\infty$$

Par définition de n_p , on a

$$H_{n_p} \geqslant p \geqslant H_{n_p-1}$$

Or

$$H_n = \ln n + \gamma + o(1)$$

donc

$$\ln n_p + \gamma + o(1) \geqslant p \geqslant \ln(n_p - 1) + \gamma + o(1)$$

Puisque

$$\ln(n_n - 1) = \ln n_n + o(1)$$

on obtient

$$p = \ln n_p + \gamma + o(1)$$

puis

$$n_p = e^{n-\gamma+o(1)} \sim e^{n-\gamma}$$

Exercice 88 : [énoncé]

a) Puisque

$$\sum_{n=1}^{p} \frac{1}{n} \xrightarrow[p \to +\infty]{} +\infty$$

on peut affirmer que l'ensemble

$$\left\{p\in\mathbb{N},\sum_{n=1}^p\frac{1}{n}\geqslant j\right\}$$

est une partie non vide de $\mathbb{N}.$ Celle admet donc un plus petit élément, noté $\Phi_j.$

b) Par définition de Φ_i , on a

$$j \leqslant \sum_{n=1}^{\Phi_j} \frac{1}{n}$$

Or, par comparaison avec une intégrale

$$\sum_{n=1}^{\Phi_j} \frac{1}{n} \leqslant 1 + \int_1^{\Phi_j} \frac{\mathrm{d}t}{t} = 1 + \ln \Phi_j$$

On en déduit $\Phi_j \geqslant e^{j-1}$ puis $\Phi_j \xrightarrow[j \to +\infty]{} +\infty$.

c) Par définition de Φ_i , on a

$$\sum_{n=1}^{\Phi_j-1} \frac{1}{n} \leqslant j \leqslant \sum_{n=1}^{\Phi_j} \frac{1}{n}$$

Or, sachant que $\Phi_j \to +\infty$, on a

$$\sum_{n=1}^{\Phi_j} \frac{1}{n} = \ln \Phi_j + \gamma + o(1) \text{ et } \sum_{n=1}^{\Phi_j - 1} \frac{1}{n} = \ln(\Phi_j - 1) + \gamma + o(1)$$

Par suite

$$\ln(\Phi_j - 1) + \gamma + o(1) \leqslant j \leqslant \ln \Phi_j + \gamma + o(1)$$

Or

$$\ln(\Phi_j - 1) = \ln \Phi_j + o(1)$$

donc

$$j = \ln \Phi_i + \gamma + o(1)$$

puis

$$\Phi_i = e^{j - \gamma + o(1)}$$

On en déduit

$$\frac{\Phi_{j+1}}{\Phi_j} = \frac{e^{j+1-\gamma+o(1)}}{e^{j-\gamma+o(1)}} = e^{1+o(1)} \to e$$

Exercice 89 : [énoncé]

Posons $S_n = \sum_{k=1}^n u_k$. On observe que

$$\sum_{k=1}^{n} k u_n = (n+1)S_n - \sum_{k=1}^{n} S_k$$

Par suite

$$w_n = \frac{n+1}{n}v_n - \frac{1}{n^2u_n} \sum_{k=1}^n S_k \quad (\star)$$

Puisque $\frac{S_n}{nu_n} \to a$, on a $S_n \sim anu_n$.

La série de terme général S_n est une série à termes positifs divergente donc

$$\sum_{k=1}^{n} S_k \sim a \sum_{k=1}^{n} k u_k$$

Par suite

$$\frac{1}{n^2 u_n} \sum_{k=1}^n S_k \sim a w_n$$

La relation (\star) dévient alors

$$w_n = \frac{n+1}{n}v_n - aw_n + o(w_n)$$

et en on en déduit que

$$w_n \sim \frac{1}{a+1}v_n \to \frac{a}{a+1}$$

Exercice 90: [énoncé]

a) On a

$$\frac{1}{k} + \ln\left(1 - \frac{1}{k}\right) \underset{k \to +\infty}{\sim} -\frac{1}{2k^2}$$

Il y a donc convergence absolue de la série $\sum \frac{1}{k} + \ln \left(1 - \frac{1}{k}\right)$.

b) On a

$$1 + \sum_{k=2}^{n} \left[\frac{1}{k} + \ln\left(1 - \frac{1}{k}\right) \right] = H_n + \sum_{k=2}^{n} \left(\ln(k-1) - \ln(k)\right) = H_n - \ln n$$

donc

$$H_n = \ln n + \gamma - \sum_{k=n+1}^{+\infty} \left[\frac{1}{k} + \ln \left(1 - \frac{1}{k} \right) \right]$$

ce qui détermine

$$\varepsilon_n = -\sum_{k=n+1}^{+\infty} \left[\frac{1}{k} + \ln\left(1 - \frac{1}{k}\right) \right]$$

c) $\sum 1/k^2$ est une série à termes positifs convergente. Par sommation de relation de comparaison

$$\sum_{k=n+1}^{+\infty} - \left[\frac{1}{k} + \ln\left(1 - \frac{1}{k}\right)\right] \underset{n \to +\infty}{\sim} \sum_{k=n+1}^{+\infty} \frac{1}{2k^2}$$

Enfin, à l'aide d'une comparaison avec une intégrale

$$\varepsilon_n \sim \frac{1}{2n}$$

Exercice 91 : [énoncé] Si $\alpha < 1$ alors $n \frac{1}{n^{\alpha} \ln n} \to +\infty$ donc pour n assez grand $\frac{1}{n^{\alpha} \ln n} \geqslant \frac{1}{n}$. Par comparaison de séries à termes positifs, la série diverge

Si $\alpha > 1$ alors considérons $\beta \in]1, \alpha[$. On a $n^{\beta} \frac{1}{n^{\alpha} \ln n} \to 0$ donc la série est absolument convergente.

Si $\alpha = 1$ alors exploitons la décroissance de la fonction $x \mapsto \frac{1}{x \ln x}$ sur $]1, +\infty[$. Pour $k \geqslant 2$,

$$\frac{1}{k \ln k} \geqslant \int_{k}^{k+1} \frac{\mathrm{d}t}{t \ln t}$$

donc

$$\sum_{k=2}^{n} \frac{1}{k \ln k} \geqslant \int_{2}^{n+1} \frac{\mathrm{d}t}{t \ln t} = \left[\ln(\ln t)\right]_{2}^{n+1} \xrightarrow[n \to +\infty]{} + \infty$$

Par suite, la série étudiée diverge.

Exercice 92 : [énoncé]

Si $\alpha \leq 0$ alors à partir d'un certain rang $u_n \geq 1/n$ et la série diverge. Si $\alpha > 0$ alors la fonction $x \mapsto 1/x(\ln x)^{\alpha}$ est décroissante sur $]1, +\infty[$.

$$\int_{n}^{n+1} \frac{\mathrm{d}t}{t(\ln t)^{\alpha}} \le u_n \le \int_{n-1}^{n} \frac{\mathrm{d}t}{t(\ln t)^{\alpha}}$$

donc

$$\int_{3}^{N+1} \frac{\mathrm{d}t}{t(\ln t)^{\alpha}} \leqslant \sum_{n=3}^{N} u_n \leqslant \int_{2}^{N} \frac{\mathrm{d}t}{t(\ln t)^{\alpha}}$$

puis

$$\int_{\ln 3}^{\ln N+1} \frac{\mathrm{d}u}{u^{\alpha}} \leqslant \sum_{n=3}^{N} u_n \leqslant \int_{\ln 2}^{\ln N} \frac{\mathrm{d}u}{u^{\alpha}}$$

et on peut conclure qu'il y a convergence si, et seulement si, $\alpha > 1$.

Exercice 93 : [énoncé]

La fonction $x \mapsto \sqrt{x}$ étant croissante.

$$\int_0^n \sqrt{x} dx \le \sum_{k=1}^n \sqrt{k} \le \int_1^{n+1} \sqrt{x} dx$$

et donc

$$\sum_{k=1}^{n} \sqrt{k} \sim \frac{2}{3} n^{3/2}$$

Il y a donc convergence de la série de terme général u_n si, et seulement si, $\alpha > 5/2$. Par l'encadrement qui précède :

$$0 \leqslant \sum_{k=1}^{n} \sqrt{k} - \int_{0}^{n} \sqrt{x} dx \leqslant \int_{n}^{n+1} \sqrt{x} dx \leqslant \sqrt{n+1}$$

donc

$$\sum_{k=1}^{n} \sqrt{k} = \frac{2}{3} n^{3/2} + O(\sqrt{n})$$

puis

$$(-1)^n u_n = \frac{(-1)^n 2}{3n^{\alpha - 3/2}} + O\left(\frac{1}{n^{\alpha - 1/2}}\right)$$

Pour $\alpha > 5/2$: il y a absolue convergence comme ci-dessus.

Pour $3/2 < \alpha \le 5/2$: il y a convergence par somme d'une série convergente et d'une série absolument convergente.

Pour $\alpha \leq 3/2$: il y a divergence grossière

Exercice 94: [énoncé]

Par comparaison série intégrale :

Si $\alpha > 0$, $u_n \sim \frac{\alpha+1}{n^{\alpha+1}}$ est terme général d'une série absolument convergente. Si $-1 < \alpha < 0$, $u_n \sim \frac{\alpha+1}{n^{\alpha+1}}$ n'est pas le terme général d'une série convergente. Si $\alpha = -1$, $u_n \sim \frac{1}{\ln n}$ n'est pas le terme général d'une série convergente. Si $\alpha < -1$, $u_n \not \to 0$ et donc $\sum u_n$ est grossièrement divergente.

Exercice 95: [énoncé]

Par comparaison série intégral,

 $\sum_{k=2}^{n} \ln^2 k \sim n(\ln n)^2$

donc

$$u_n = \frac{n^{\alpha}}{\sum_{k=2}^{n} \ln^2 k} \sim \frac{1}{n^{1-\alpha} (\ln n)^2}$$

Par référence aux séries de Bertrand, $\sum u_n$ converge si, et seulement si, $\alpha \leq 0$.

Exercice 96: [énoncé]

- a) Si $\alpha \leq 0$, il y a divergence grossière. Si $\alpha > 0$ alors $n^2 u_n \to 0$ et la série est absolument convergente.
- b) Si $\alpha \leq 1$ alors $u_n \geq 1/n$ pour n assez grand et il y a divergence par comparaison de séries à termes positifs.

Si $\alpha > 1$ alors pour $\gamma \in]1, \alpha[$ on a $n^{\gamma}u_n \to 0$ et il y a absolue convergence.

- c) Si $\alpha \leq 1$ alors $u_n \geq 1$ et la série est grossièrement divergente.
- Si $\alpha > 1$ alors $n^2 u_n = \exp(2 \ln n (\ln n)^{\alpha}) \to 0$ donc la série est absolument convergente.

Exercice 97 : [énoncé]

On a

$$\ln n + a \ln(n+1) + b \ln(n+2) = (1+a+b) \ln n + \frac{a+2b}{n} + O\left(\frac{1}{n^2}\right)$$

Il y a convergence si, et seulement si, 1+a+b=0 et a+2b=0 ce qui correspond à a=-2 et b=1.

Dans ce cas:

$$\sum_{n=1}^{N} \ln n + a \ln(n+1) + b \ln(n+2) = \sum_{n=1}^{N} \ln n - 2 \sum_{n=2}^{N+1} \ln n + \sum_{n=3}^{N+2} \ln n$$

puis

$$\sum_{n=1}^{N} \ln n + a \ln(n+1) + b \ln(n+2) = \ln 1 + \ln 2 - 2 \ln 2 - 2 \ln(N+1) + \ln(N+1) + \ln(N+2) \rightarrow -2 \ln 2 - 2 \ln(N+1) + \ln(N+1) + \ln(N+2) = -2 \ln 2 - 2 \ln(N+1) + \ln(N+1) + \ln(N+2) = -2 \ln 2 - 2 \ln(N+1) + \ln(N+2) = -2 \ln 2 - 2 \ln(N+1) + \ln(N+2) = -2 \ln 2 - 2 \ln(N+1) + \ln(N+2) = -2 \ln 2 - 2 \ln(N+1) + \ln(N+2) = -2 \ln 2 - 2 \ln(N+1) + \ln(N+2) = -2 \ln 2 - 2 \ln(N+1) + \ln(N+2) = -2 \ln(N+2) + \ln(N+2) + \ln(N+2) = -2 \ln(N+2) + \ln(N+2) + \ln(N+2) = -2 \ln(N+2) + \ln(N+2) + \ln(N+2) + \ln(N+2) + \ln(N+2) = -2 \ln(N+2) + \ln(N+$$

Exercice 98: [énoncé]

On a

$$\sqrt{n} + a\sqrt{n+1} + b\sqrt{n+2} = (1+a+b)\sqrt{n} + \frac{a+2b}{2\sqrt{n}} + O\left(\frac{1}{n^{3/2}}\right)$$

Il y a convergence si, et seulement si, 1+a+b=0 et a+2b=0 ce qui correspond à a=-2 et b=1.

Dans ce cas:

$$\sum_{n=1}^{N} \sqrt{n} + a\sqrt{n+1} + b\sqrt{n+2} = \sum_{n=1}^{N} \sqrt{n} - 2\sum_{n=2}^{N+1} \sqrt{n} + \sum_{n=3}^{N+2} \sqrt{n}$$

$$\sum_{n=1}^{N} \sqrt{n} + a\sqrt{n+1} + b\sqrt{n+2} = \sqrt{1} + \sqrt{2} - 2\sqrt{2} - 2\sqrt{N+1} + \sqrt{N+1} + \sqrt{N+2}$$

et enfin

$$\sum_{n=1}^{N} \sqrt{n} + a\sqrt{n+1} + b\sqrt{n+2} \to 1 - \sqrt{2}$$

Exercice 99: [énoncé]

Posons u_n le terme général de la suite étudiée.

$$u_{3n+3} = \sum_{k=1}^{n} \frac{a}{\sqrt{3k+1}} + \frac{b}{\sqrt{3k+2}} + \frac{c}{\sqrt{3k+3}}$$

Or

$$\frac{a}{\sqrt{3k+1}} + \frac{b}{\sqrt{3k+2}} + \frac{c}{\sqrt{3k+3}} = \frac{a+b+c}{\sqrt{3k}} + o\left(\frac{1}{\sqrt{k}}\right)$$

donc a + b + c = 0 est une condition nécessaire pour la convergence de (u_{3n+3}) et donc a fortiori pour la convergence de (u_n) . Inversement si cette condition est satisfaite alors

$$\frac{a}{\sqrt{3k+1}} + \frac{b}{\sqrt{3k+2}} + \frac{c}{\sqrt{3k+3}} = O\left(\frac{1}{k\sqrt{k}}\right)$$

et donc (u_{3n+3}) converge.

De plus $u_{3n+1} = u_{3n+3} + o(1)$ et $u_{3n+2} = u_{3n+3} + o(1)$ donc les trois suites (u_{3n+1}) , (u_{3n+2}) et (u_{3n+3}) convergent vers une même limite, on peut donc conclure que (u_n) converge.

Exercice 100: [énoncé]

Si $|\lambda| = 1$ il y a divergence grossière dans les trois cas.

Si $|\lambda| > 1$ alors $u_n \sim \frac{1}{\lambda^n}$, $v_n \sim 1$ et $w_n \sim \frac{1}{\lambda^{2n}}$. Les séries $\sum u_n$ et $\sum w_n$ convergent et $\sum v_n$ diverge.

Si $|\lambda| < 1$ alors $u_n \sim \lambda^n$, $v_n \sim \lambda^{2n}$ et $w_n \sim 1$. Les séries $\sum u_n$ et $\sum v_n$ convergent tandis que $\sum w_n$ diverge.

Exercice 101: [énoncé]

La condition $\alpha>0$ est nécessaire pour qu'il n'y ait pas divergence grossière. Pour $\alpha>0$,

$$\frac{(-1)^n}{n^{\alpha} + (-1)^n} = \frac{(-1)^n}{n^{\alpha}} + \frac{1}{n^{2\alpha}} + o\left(\frac{1}{n^{2\alpha}}\right)$$

La série de terme général $\frac{(-1)^n}{n^\alpha}$ est convergente et la série de terme général

$$\frac{1}{n^{2\alpha}} + o\left(\frac{1}{n^{2\alpha}}\right) \sim \frac{1}{n^{2\alpha}}$$

est convergente si, et seulement si, $\alpha > 1/2$.

Finalement la série initiale converge si, et seulement si, $\alpha > 1/2$.

Exercice 102 : [énoncé]

On a

$$u_n = \frac{(-1)^n}{n^{\alpha/2}} \left(1 - \frac{(-1)^n}{2n^{\alpha}} + O\left(\frac{1}{n^{2\alpha}}\right) \right) = \frac{(-1)^n}{n^{\alpha/2}} - \frac{1}{2n^{3\alpha/2}} + O\left(\frac{1}{n^{5\alpha/2}}\right)$$

Si $\alpha \leqslant 0$ alors $u_n \not\to 0$ donc $\sum_{n\geqslant 2} u_n$ diverge. Si $\alpha>0$ alors $\sum_{n\geqslant 2} \frac{(-1)^n}{n^{\alpha}}$ converge.

Si $\frac{3\alpha}{2} > 1$ alors

$$-\frac{1}{2n^{3\alpha/2}} + O\left(\frac{1}{n^{5\alpha/2}}\right)$$

est le terme général d'une série absolument convergente et donc $\sum\limits_{n\geqslant 2}u_n$ converge.

Si $\frac{3\alpha}{2} \leqslant 1$ alors

$$-\frac{1}{2n^{3\alpha/2}} + O\left(\frac{1}{n^{5\alpha/2}}\right) \sim \frac{-1}{2n^{3\alpha/2}}$$

(de signe constant) est le terme général d'une série divergente donc $\sum_{n\geq 2} u_n$.

Exercice 103: [énoncé]

Par développement

$$u_n = \frac{(-1)^n}{n^{\alpha}} - \frac{1}{2n^{2\alpha}} + o\left(\frac{1}{n^{2\alpha}}\right) = v_n + w_n$$

avec

$$v_n = \frac{(-1)^n}{n^{\alpha}}$$
 et $w_n = -\frac{1}{2n^{2\alpha}} + o\left(\frac{1}{n^{2\alpha}}\right)$

 $\sum v_n$ converge en vertu du critère spécial des séries alternées et $\sum w_n$ converge si, et seulement si, $2\alpha > 1$ par équivalence de termes généraux de séries de signe constant. Au final, $\sum u_n$ converge si, et seulement si, $\alpha > 1/2$.

Exercice 104: [énoncé]

On a

$$\ln\left(1 + \frac{(-1)^n}{n^a}\right) = \frac{(-1)^n}{n^a} - \frac{1}{2}\frac{1}{n^{2a}} + o\left(\frac{1}{n^{2a}}\right)$$

Par le critère spécial, $\frac{(-1)^n}{n^a}$ est terme général d'une série convergente. Par comparaison de séries à termes positifs

$$-\frac{1}{2}\frac{1}{n^{2a}} + o\left(\frac{1}{n^{2a}}\right) \sim -\frac{1}{2}\frac{1}{n^{2a}}$$

est terme général d'une série convergente si, et seulement si, a>1/2. Finalement, la série étudiée converge si, et seulement si, a>1/2.

Exercice 105 : [énoncé]

On a

$$u_n = \ln\left(1 + \frac{(-1)^n}{\sqrt{n}}\right) - \frac{1}{2}\ln\left(1 + \frac{a}{n}\right) = \frac{(-1)^n}{\sqrt{n}} - \frac{(a+1)}{2n} + O\left(\frac{1}{n^{3/2}}\right)$$

Par suite, la série $\sum u_n$ converge si, et seulement si, a = -1.

Exercice 106: [énoncé]

a) Par convergence dominée par la fonction $\varphi:t\mapsto 1,$ on obtient $u_n\to 0.$

b)

$$u_n + u_{n+2} = \int_0^{\pi/4} (\tan t)' (\tan t)^n dt = \frac{1}{n+1}$$

c) On vérifie aisément $u_n \to 0^+$ et $u_{n+1} \leq u_n$. Par application du critère spécial des séries alternées, $\sum (-1)^n u_n$ converge.

d) Par monotonie

$$u_n + u_{n+2} \leqslant 2u_n \leqslant u_n + u_{n-2}$$

On en déduit $u_n \sim \frac{1}{2n}$ puis par comparaison de séries à termes positifs, $\sum \frac{u_n}{n^{\alpha}}$ converge si, et seulement si, $\alpha > 0$.

Exercice 107: [énoncé]

Pour $t \in [0, 1/n]$, on peut affirmer $t^n \in [0, 1/n]$ donc

$$\left| \int_0^{1/n} f(t^n) \, \mathrm{d}t - \frac{1}{n} f(0) \right| \le \frac{1}{n} \sup_{t \in [0, 1/n]} |f(t) - f(0)|$$

Par continuité de f en 0, on peut affirmer,

$$\sup_{t \in [0,1/n]} |f(t) - f(0)| \to 0$$

et donc

$$\int_0^{1/n} f(t^n) \, \mathrm{d}t \sim \frac{1}{n} f(0)$$

Ainsi

$$u_n \sim \frac{f(0)}{n^{\alpha+1}}$$

et $\sum u_n$ converge si, et seulement si, $\alpha > 0$.

Exercice 108: [énoncé]

On a

$$u_n = \left(1 - \frac{1}{n^{\alpha}} + o\left(\frac{1}{n^{\alpha}}\right)\right)^n = \exp\left(-\frac{1}{n^{\alpha - 1}} + o\left(\frac{1}{n^{\alpha - 1}}\right)\right)$$

Si $\alpha \ge 1$ alors (u_n) ne tend pas vers zéro et $\sum u_n$ est grossièrement divergente. Si $\alpha \in]0,1[$ alors $n^2u_n \to 0$ et $\sum u_n$ est convergente.

Exercice 109: [énoncé]

a) Si $\alpha \leq 1$ alors

$$\sum_{k=1}^{n} \frac{1}{k^{\alpha}} \xrightarrow[n \to \infty]{} + \infty$$

et donc $u_n \to 0$ si $a \in [0, 1[, u_n \to 1 \text{ si } a = 1 \text{ et } (u_n) \text{ diverge si } a > 1.$

Si $\alpha > 1$ alors $\left(\sum_{k=1}^{n} \frac{1}{k^{\alpha}}\right)$ converge et donc (u_n) aussi.

b) Cas $\alpha \leq 1$ et a = 1: $u_n = 1$, $v_n = 0$ et on peut conclure.

Cas $\alpha < 1$ et $a \in [0, 1[: \ell = 0, v_n = u_n, n^2 v_n = e^{2 \ln n + \sum_{k=1}^n \frac{1}{k^{\alpha}} \ln a} \to 0$ car

$$\sum_{k=1}^{n} \frac{1}{k^{\alpha}} \sim \frac{1}{\alpha - 1} \frac{1}{n^{\alpha - 1}}$$

Cas $\alpha = 1$ et $a \in [0, 1[: \ell = 0, v_n = u_n = e^{(\ln n + \gamma + o(1)) \ln a} \sim \lambda n^{\ln a}$ donc $\sum v_n$ converge si, et seulement si, $\ln a < -1$ i.e. a < -1/e.

 $\operatorname{Cas} \alpha > 1 : \ell = a^{\sum_{k=1}^{+\infty} \frac{1}{k^{\alpha}}},$

$$v_n = \ell(e^{-\sum_{k=n+1}^{+\infty} \frac{1}{k^{\alpha}}} - 1) \sim -\ell \sum_{k=n+1}^{+\infty} \frac{1}{k^{\alpha}} = -\frac{\ell}{(\alpha - 1)n^{\alpha - 1}}$$

Ainsi $\sum v_n$ converge si, et seulement si, $\alpha > 2$.

Dans chacun des cas précédents, on peut appliquer le critère spécial aux séries alternées et affirmer que $\sum (-1)^n v_n$ converge.

Exercice 110 : [énoncé]

On a

$$\binom{n+p}{p} = \frac{(n+p)(n+p-1)\dots(n+1)}{p!} \sim \frac{1}{p!}n^p$$

donc

$$v_n \sim \frac{(p!)^{\alpha}}{n^{p\alpha}}$$

Par équivalence de séries à termes positifs, la série numérique $\sum v_n$ converge si, et seulement si, $\alpha > 1/p$.

On a

$$\binom{n+p+1}{p+1} = \binom{n+p}{p+1} + \binom{n+p}{p} \geqslant \binom{n+p}{p}$$

donc la suite $(|w_n|)$ est décroissante. De plus elle de limite nulle, le critère spécial des séries alternées assure alors la convergence de $\sum w_n$ pour tout $\alpha > 0$.

Exercice 111: [énoncé]

a) L'intégrale étudiée est bien définie pour a>-1. Par le changement de variable proposé

$$\int_0^{\pi/2} \frac{\mathrm{d}t}{1 + a\sin^2(t)} = \int_0^{+\infty} \frac{\mathrm{d}x}{1 + (1+a)x^2}$$

puis en posant $u = x\sqrt{1+a}$

$$\int_0^{\pi/2} \frac{\mathrm{d}t}{1 + a\sin^2(t)} = \frac{\pi}{2\sqrt{1+a}}$$

b) Par symétrie

$$\int_0^{\pi} \frac{\mathrm{d}t}{1 + (n\pi)^{\alpha} \sin^2(t)} = 2 \int_0^{\pi/2} \frac{\mathrm{d}t}{1 + (n\pi)^{\alpha} \sin^2(t)}$$

et par le calcul qui précède

$$\int_0^{\pi} \frac{dt}{1 + (n\pi)^{\alpha} \sin^2(t)} = \frac{\pi}{\sqrt{1 + (n\pi)^{\alpha}}} \sim \frac{\pi^{1 - \alpha/2}}{n^{\alpha/2}}$$

Par équivalence de séries à termes positifs, la série étudiée converge si, et seulement si, $\alpha > 2$.

c) Par monotonie, on a l'encadrement

$$\int_{n\pi}^{(n+1)\pi} \frac{\mathrm{d}t}{1 + ((n+1)\pi)^{\alpha} \sin^2(t)} \leqslant \int_{n\pi}^{(n+1)\pi} \frac{\mathrm{d}t}{1 + t^{\alpha} \sin^2(t)} \leqslant \int_{n\pi}^{(n+1)\pi} \frac{\mathrm{d}t}{1 + (n\pi)^{\alpha} \sin^2(t)}$$

Par comparaison de séries à termes positifs, la convergence de la série actuellement étudiée entraı̂ne la convergence de la précédente et inversement. La condition attendue est donc encore $\alpha>2$.

d) Les sommes partielles de la série étudiée ci-dessus correspondent aux intégrales suivantes

$$\int_0^n \frac{\mathrm{d}t}{1 + t^\alpha \sin^2(t)}$$

La fonction intégrée étant positive, la convergence de l'intégrale entraı̂ne la convergence de la série et inversement. On conclut que l'intégrale étudiée converge si, et seulement si, $\alpha>2$.

Exercice 112 : [énoncé]

a) Pour définir u_n , il est nécessaire de supposer $\alpha > 1$. Par comparaison avec une intégrale, on montre

$$u_n \sim \frac{1}{\alpha - 1} \frac{1}{n^{\alpha - 1}}$$

Par comparaison de séries à termes positifs, $\sum u_n$ converge si, et seulement si, $\alpha > 2$.

b) Pour définir u_n , il est nécessaire de supposer $\alpha > 0$.

Par application du critère spécial des séries alternées, v_n étant le reste de la série $\sum \frac{(-1)^p}{(p+1)^{\alpha}}$ est du signe de $(-1)^n$ et $|v_n| \leqslant \frac{1}{(n+1)^{\alpha}} \to 0$. De plus

$$|v_n| - |v_{n+1}| = \sum_{p=0}^{+\infty} \frac{(-1)^p}{(p+n+1)^{\alpha}} - \sum_{p=0}^{+\infty} \frac{(-1)^p}{(p+n+2)^{\alpha}}$$

donc

$$|v_n| - |v_{n+1}| = \sum_{p=0}^{+\infty} (-1)^p \left(\frac{1}{(p+n+1)^{\alpha}} - \frac{1}{(p+n+2)^{\alpha}} \right)$$

Par le théorème des accroissements finis

$$\frac{1}{(p+n+2)^{\alpha}} - \frac{1}{(p+n+1)^{\alpha}} = -\frac{\alpha}{(c_n)^{\alpha+1}}$$

avec $c_n \in]p + n + 1, p + n + 2[.$

La suite (c_n) est croissante donc on peut appliquer le critère spécial des séries alternées à

$$\sum (-1)^p \left(\frac{1}{(p+n+1)^{\alpha}} - \frac{1}{(p+n+2)^{\alpha}} \right)$$

et conclure que sa somme est du signe de son premier terme. Au final, $(|v_n|)$ est décroissant et en appliquant une dernière fois le critère spécial des séries alternées, on conclut que $\sum v_n$ converge.

Exercice 113 : [énoncé]

Introduisons la somme partielle

$$S_N = \sum_{n=1}^N \frac{x^{a_n}}{n^3}$$

On remarque que pour $n \in \{10^{p-1}, \dots, 10^p - 1\}$ on a $a_n = p$

En regroupant pertinemment les termes sommés

$$S_{10^q - 1} = \sum_{p=1}^q \sum_{n=10^{p-1}}^{10^p - 1} \frac{x^{a_n}}{n^3} = \sum_{p=1}^q \sum_{n=10^{p-1}}^{10^p - 1} \frac{x^p}{n^3} = \sum_{p=1}^q u_p x^p$$

Puisque la fonction $t \mapsto 1/t^3$ est décroissante, on a la comparaison

$$\int_{10^{p-1}}^{10^p} \frac{\mathrm{d}t}{t^2} \leqslant u_p = \sum_{n=10^{p-1}}^{10^p - 1} \frac{1}{n^3} \leqslant \int_{10^{p-1} - 1}^{10^p - 1} \frac{\mathrm{d}t}{t^2}$$

Après calculs, on obtient

$$u_p \sim \frac{99}{2} \frac{1}{100^p}$$

Cas $x \ge 0$

La série $\sum u_p x^p$ converge si, et seulement si, x < 100.

Puisque la série $\sum x^{a_n}/n^3$ est à termes positifs, sa convergence équivaut à la convergence d'une suite extraite de sommes partielles et donc $\sum x^{a_n}/n^3$ converge si, et seulement si, x < 100.

 $\operatorname{Cas} x < 0.$

Pour $x \in]-100,0[$, il y a absolue convergence de la série en vertu de l'étude qui précède.

Pour $x \leq -100$, on peut écrire x = -y avec $y \geq 100$, on a alors

$$S_{10^q - 1} = \sum_{p=1}^{q} (-1)^q u_q y^q$$

avec $(u_q y^q)$ qui ne tend pas vers zéro.

Il y a alors divergence d'une suite extraite de sommes partielles et donc divergence de la série $\sum x^{a_n}/n^3$.

Exercice 114: [énoncé]

Avec convergences, on peut écrire

$$\sum_{n=1}^{+\infty} \frac{1}{n^2} = \sum_{n=0}^{+\infty} \frac{1}{(2n+1)^2} + \sum_{n=1}^{+\infty} \frac{1}{(2n)^2}$$

donc

$$\sum_{n=0}^{+\infty} \frac{1}{(2n+1)^2} = \frac{3}{4} \sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{8}$$

Exercice 115: [énoncé]

$$\frac{1}{n(n+1)(n+2)} \sim \frac{1}{n^3}$$

donc la série converge

Par décomposition en éléments simples

$$\frac{1}{n(n+1)(n+2)} = \frac{1/2}{n} - \frac{1}{n+1} + \frac{1/2}{n+2}$$

puis après télescopage

$$\sum_{n=1}^{+\infty} \frac{1}{n(n+1)(n+2)} = \frac{1}{4}$$

Exercice 116: [énoncé]

On a

$$\frac{1}{k^2(k+1)^2} \sim \frac{1}{k^4}$$

donc la série converge.

Par décomposition en éléments simples

$$\frac{1}{k^2(k+1)^2} = \frac{1}{k^2} + \frac{1}{(k+1)^2} + \frac{2}{k+1} - \frac{2}{k}$$

donc

$$\sum_{k=1}^{N} \frac{1}{k^2(k+1)^2} = \sum_{k=1}^{N} \frac{1}{k^2} + \sum_{k=1}^{N+1} \frac{1}{k^2} - 1 + 2\sum_{k=2}^{N+1} \frac{1}{k} - 2\sum_{k=1}^{N} \frac{1}{k} \xrightarrow[N \to +\infty]{} \frac{\pi^2}{3} - 3$$

Exercice 117 : [énoncé]

On a

$$\sum_{n=2}^{2N+1} \ln\left(1 + \frac{(-1)^n}{n}\right) = \sum_{k=1}^{N} \ln(2k+1) - \ln(2k+1) = 0$$

 $_{
m et}$

$$\sum_{n=2}^{2N} \ln\left(1 + \frac{(-1)^n}{n}\right) = \sum_{n=2}^{2N+1} \ln\left(1 + \frac{(-1)^n}{n}\right) + o(1) \to 0$$

donc

$$\sum_{n=0}^{+\infty} \ln\left(1 + \frac{(-1)^n}{n}\right) = 0$$

Exercice 118 : [énoncé]

On a

$$\sum_{n=2}^{N} \ln \left(1 - \frac{1}{n^2} \right) = \sum_{n=2}^{N} \left(\ln(n-1) + \ln(n+1) - 2\ln n \right)$$

donc

$$\sum_{n=2}^{N} \ln \left(1 - \frac{1}{n^2} \right) = \sum_{n=2}^{N} \left(\ln(n-1) - \ln n \right) + \sum_{n=2}^{N} \left(\ln(n+1) - \ln n \right)$$

Après télescopage

$$\sum_{n=2}^{N} \ln \left(1 - \frac{1}{n^2} \right) = \ln \frac{N+1}{N} - \ln 2 \to -\ln 2$$

On en déduit que la série converge et

$$\sum_{n=2}^{+\infty} \ln\left(1 - \frac{1}{n^2}\right) = -\ln 2$$

Exercice 119 : [énoncé]

La somme existe en vertu du critère de Leibniz.

Pour la calculer, il suffit de déterminer la limite des sommes partielles de rangs pairs.

$$\sum_{n=1}^{2N} (-1)^n \ln(1+1/n) = \sum_{n=1}^{N} \ln(2n+1) - \ln(2n) + \sum_{n=0}^{N-1} \ln(2n+1) - \ln(2n+2)$$

puis

$$\sum_{n=1}^{2N} (-1)^n \ln(1+1/n) = 2\sum_{n=1}^{N} \ln \frac{2n+1}{2n} - \ln(2N+1)$$

et donc

$$\sum_{n=1}^{2N} (-1)^n \ln(1+1/n) = \ln\left(\frac{(2N)!(2N+1)!}{2^{4N}(N!)^4}\right)$$

Or $n! \sim \sqrt{2\pi n} n^n e^{-n}$ donc

$$\sum_{n=1}^{2N} (-1)^n \ln(1+1/n) \to \ln(2/\pi)$$

puis

$$\sum_{n=1}^{+\infty} (-1)^n \ln(1+1/n) = \ln(2/\pi)$$

Exercice 120 : [énoncé]

D'une part

$$\sum_{n=0}^{+\infty} \frac{n+1}{n!} = \sum_{n=1}^{+\infty} \frac{1}{(n-1)!} + \sum_{n=0}^{+\infty} \frac{1}{n!} = 2e$$

D'autre part

$$\sum_{n=0}^{+\infty} \frac{n^2 - 2}{n!} = \sum_{n=0}^{+\infty} \frac{n(n-1) + n - 2}{n!} = \sum_{n=2}^{+\infty} \frac{1}{(n-2)!} + \sum_{n=1}^{+\infty} \frac{1}{(n-1)!} - 2\sum_{n=0}^{+\infty} \frac{1}{n!} = 0$$

Exercice 121 : [énoncé]

Le terme

$$u_n = \sum_{k=n}^{+\infty} \frac{(-1)^k}{k^2}$$

est bien défini en tant que reste d'une série alternée satisfaisant au critère spécial. Pour $N \leqslant K$ entiers,

$$\sum_{n=1}^{N} \sum_{k=n}^{K} \frac{(-1)^k}{k^2} = \sum_{k=1}^{N} \sum_{n=1}^{k} \frac{(-1)^k}{k^2} + \sum_{k=N+1}^{K} \sum_{n=1}^{N} \frac{(-1)^k}{k^2}$$

D'une part

$$\sum_{k=1}^{N} \sum_{n=1}^{k} \frac{(-1)^k}{k^2} = \sum_{k=1}^{N} \frac{(-1)^k}{k}$$

D'autre part

$$\sum_{k=N+1}^{K} \sum_{n=1}^{N} \frac{(-1)^k}{k^2} = N \sum_{k=N+1}^{K} \frac{(-1)^k}{k^2}$$

En passant à la limite quand $K\to +\infty$

$$\sum_{n=1}^{N} u_n = \sum_{k=1}^{N} \frac{(-1)^k}{k} + N \sum_{k=N+1}^{+\infty} \frac{(-1)^k}{k^2}$$

Or

$$\sum_{k=N+1}^{+\infty} \frac{(-1)^k}{k^2} = O\left(\frac{1}{N^2}\right)$$

donc quand $N \to +\infty$,

$$\sum_{n=1}^{N} u_n \to \sum_{k=1}^{+\infty} \frac{(-1)^k}{k}$$

Ainsi $\sum u_n$ est convergente et

$$\sum_{n=1}^{+\infty} u_n = -\ln 2$$

Exercice 122: [énoncé]

La convergence de la série est assurée par le critère de d'Alembert. On a

$$(1-x)\sum_{n=1}^{+\infty} \frac{x^n}{(1-x^n)(1-x^{n+1})} = \sum_{n=1}^{+\infty} \frac{x^n-x^{n+1}}{(1-x^n)(1-x^{n+1})} = \sum_{n=1}^{+\infty} \left(\frac{1}{(1-x^n)} - \frac{1}{(1-x^{n+1})}\right)$$

$$a_p = \sum_{n=0}^{+\infty} \frac{(n+1)^p}{2^{n+1}} = \frac{1}{2} \left(a_p + \binom{p}{1}a_{p-1} + \dots + \binom{p}{p}a_0\right)$$

Après télescopage on obtient

$$\sum_{n=1}^{+\infty} \frac{x^n}{(1-x^n)(1-x^{n+1})} = \frac{1}{(1-x)^2}$$

Exercice 123 : [énoncé]

On a

$$m \times \frac{1}{n(n+1)\dots(n+m)} = \frac{1}{n(n+1)\dots(n+m-1)} - \frac{1}{(n+1)\dots(n+m)}$$

Après télescopage

$$m\sum_{n=1}^{N} \frac{1}{n(n+1)\dots(n+m)} = \frac{1}{m!} - \frac{1}{(N+1)\dots(N+m)}$$

donc, sachant $m \geqslant 1$,

$$m\sum_{n=1}^{N} \frac{1}{n(n+1)\dots(n+m)} \xrightarrow[N \to +\infty]{} \frac{1}{m \cdot m!} = S_m$$

Exercice 124 : [énoncé]

Considérons

$$v_n = \arctan \frac{1}{n+1} - \arctan \frac{1}{n+2} \in]0, \pi/2[$$

On constate

$$\tan v_n = \frac{1}{n^2 + 3n + 3}$$

et donc $u_n = v_n$.

En tant que somme télescopique associée à une suite convergente, la série $\sum u_n$ converge et

$$\sum_{n=0}^{+\infty} u_n = \arctan 1 = \frac{\pi}{4}$$

Exercice 125 : [énoncé]

a) a_p existe en vertu de la règle de d'Alembert.

$$a_p = \sum_{n=0}^{+\infty} \frac{(n+1)^p}{2^{n+1}} = \frac{1}{2} \left(a_p + \binom{p}{1} a_{p-1} + \dots + \binom{p}{p} a_0 \right)$$

donc

$$a_p = \binom{p}{1} a_{p-1} + \dots + \binom{p}{p} a_0$$

b) Par un récurrence aisée $a_p \in \mathbb{N}$ pour tout $p \in \mathbb{N}$.

Exercice 126 : [énoncé]

On peut supposer $\alpha > 0$ quitte à passer la suite à l'opposé.

$$\frac{u_{n+1}}{u_n} = 1 + \frac{b-a}{n-b}$$

Posons $v_n = n^{a-b}u_n$. $\ln v_{n+1} - \ln v_n = O\left(1/n^2\right)$ donc $(\ln v_n)$ converge puis

$$u_n \sim \frac{A}{n^{a-b}}$$
 avec $A > 0$

Par conséquent $\sum u_n$ converge si, et seulement si, a-b>1. $(n-b)u_{n+1} = (n-a)u_n$ donc

$$(n+1)u_{n+1} - nu_n = (b+1)u_{n+1} - au_n$$

En sommant et en notant $S = \sum_{n=0}^{+\infty} u_n$, on obtient $(b+1)(S-\alpha) - aS = 0$ donc

$$S = \frac{(b+1)\alpha}{b+1-a}$$

Exercice 127: [énoncé]

Par sommation géométrique

$$\sum_{k=0}^{n} u_k = \int_0^1 \frac{1 - x^{n+1}}{1 - x} \sin(\pi x) \, \mathrm{d}x$$

Posons

$$I = \int_0^1 \frac{\sin(\pi x)}{1 - x} \mathrm{d}x$$

Cette intégrale est bien définie car la fonction intégrée se prolonge par continuité en 1.

$$\left| \sum_{k=0}^{n} u_k - I \right| \leqslant \int_0^1 \frac{\sin(\pi x)}{1 - x} x^{n+1} \, \mathrm{d}x \leqslant \frac{M}{n+1}$$

avec

$$M = \sup_{[0,1]} \frac{\sin(\pi x)}{1 - x}$$

On conclut que $\sum_{k=0}^{n} u_k \to I$ puis par changement de variable

$$\sum_{k=0}^{n} u_k \to \int_0^{\pi} \frac{\sin t}{t} \, \mathrm{d}t$$

Exercice 128 : [énoncé]

La convergence s'obtient par équivalence de séries à termes positifs, la somme via une décomposition en éléments simples permettant de calculer les sommes partielles. On obtient

$$\sum_{k=2}^{+\infty} \frac{1}{k^2 - 1} = \frac{3}{4}$$

Si k+1 n'est pas le carré d'un entier

$$\frac{\left\lfloor \sqrt{k+1} \right\rfloor - \left\lfloor \sqrt{k} \right\rfloor}{k} = 0$$

Si k+1 est le carré d'un entier n,

$$\frac{\left\lfloor \sqrt{k+1} \right\rfloor - \left\lfloor \sqrt{k} \right\rfloor}{k} = \frac{1}{n^2 - 1}$$

Cela permet de calculer les sommes partielles et de conclure en faisant le lien avec la série précédente.

Exercice 129 : [énoncé]

Pour t = -1,

$$\sum_{i=0}^{n} \sum_{j=0}^{m} (-1)^{i+j} t^{i+j+1} = -(m+1)(n+1)$$

ce qui permet de conclure.

Pour $t \neq -1$,

$$\sum_{i=0}^{n} \sum_{j=0}^{m} (-1)^{i+j} t^{i+j+1} = \sum_{i=0}^{n} (-1)^{i} t^{i+1} \frac{1 - (-t)^{m+1}}{1+t}$$

Quand $m \to +\infty$,

$$\sum_{i=0}^{n} \sum_{j=0}^{m} (-1)^{i+j} t^{i+j+1} \to \sum_{i=0}^{n} (-1)^{i} \frac{t^{i+1}}{1+t}$$

si |t| < 1 et diverge sinon.

$$\sum_{i=0}^{n} (-1)^{i} \frac{t^{i+1}}{1+t} = t \frac{1 - (-t)^{n+1}}{(1+t)^{2}}$$

Quand $n \to +\infty$,

$$\lim_{m \to \infty} \sum_{i=0}^{n} \sum_{j=0}^{m} (-1)^{i+j} t^{i+j+1} \to \frac{t}{(1+t)^2}$$

Exercice 130: [énoncé]

Par décomposition en éléments simples

$$\sum_{n=1}^{N} \frac{1}{n(2n-1)} = \sum_{n=1}^{N} \frac{2}{(2n-1)} - \sum_{n=1}^{N} \frac{1}{n} = \sum_{n=1}^{2N} \frac{2}{n} - 2\sum_{n=1}^{N} \frac{1}{n} = 2\sum_{n=N+1}^{2N} \frac{1}{n}$$

Or

$$\sum_{n=N+1}^{2N} \frac{1}{n} = \sum_{n=1}^{2N} \frac{1}{n} - \sum_{n=1}^{N} \frac{1}{n} = \ln(2N) + \gamma + o(1) - \ln N - \gamma = \ln 2 + o(1)$$

puis

$$\sum_{n=1}^{+\infty} \frac{1}{n(2n-1)} = 2\ln 2$$

Exercice 131 : [énoncé]

On a

$$\frac{5n+6}{n(n+1)(n+2)} = O\left(\frac{1}{n^2}\right)$$

donc la somme $\sum_{n=1}^{+\infty} \frac{5n+6}{n(n+1)(n+2)}$ existe.

Par décomposition en éléments simples

$$\frac{5n+6}{n(n+1)(n+2)} = \frac{3}{n} - \frac{1}{n+1} - \frac{2}{n+2}$$

donc en exploitant

$$\sum_{n=1}^{N} \frac{1}{n} = \ln N + \gamma + o(1)$$

on obtient

$$\sum_{k=1}^{n} \frac{5k+6}{k(k+1)(k+2)} = 3\ln\frac{n^3}{(n+1)(n+2)^2} + 4 + o(1) \to 4$$

Exercice 132 : [énoncé]

Par décomposition en éléments simples

$$\frac{1}{n(n+1)(2n+1)} = \frac{1}{n} + \frac{1}{n+1} - \frac{4}{2n+1}$$

Sachant

$$\sum_{n=1}^{N} \frac{1}{2n+1} = \sum_{n=2}^{2N+1} \frac{1}{n} - \sum_{n=1}^{N} \frac{1}{2n}$$

on obtient

$$\sum_{n=1}^{N} \frac{1}{n(n+1)(2n+1)} = \sum_{n=1}^{N} \frac{3}{n} + \sum_{n=1}^{N} \frac{1}{n+1} - 4 \sum_{n=2}^{2N+1} \frac{1}{n}$$

Or on sait que

$$\sum_{n=1}^{N} \frac{1}{n} = \ln N + \gamma + o(1)$$

donc on conclut que la série converge et

$$\sum_{n=1}^{+\infty} \frac{1}{n(n+1)(2n+1)} = 3 - 4\ln 2$$

Exercice 133: [énoncé]

a) On a

$$\sum_{k=1}^{2n} \frac{(-1)^{k-1}}{k} = \sum_{k=1}^{2n} \frac{1}{k} - 2\sum_{k=1}^{n} \frac{1}{2k} = \ln 2n + \gamma + o(1) - \ln n - \gamma = \ln 2 + o(1)$$

et

$$\sum_{k=1}^{2n+1} \frac{(-1)^{k-1}}{k} = \sum_{k=1}^{2n} \frac{(-1)^{k-1}}{k} + o(1)$$

donc la série converge et est de somme égale à ln 2.

b) On a

$$\sum_{k=1}^{3n} u_n = \sum_{k=1}^{3n} \frac{1}{k} - 3\sum_{k=1}^{n} \frac{1}{3k} = \ln 3n + \gamma + o(1) - \ln n - \gamma = \ln 3 + o(1)$$

 $_{
m et}$

$$\sum_{k=1}^{3n+1} u_n = \sum_{k=1}^{3n} u_n + o(1) \to \ln 3 \text{ et } \sum_{k=1}^{3n+2} u_n = \sum_{k=1}^{3n} u_n + o(1) \to \ln 3$$

donc la série converge et est de somme égale à ln 3.

Exercice 134: [énoncé]

On a

$$1^{2} + 2^{2} + \dots + n^{2} = \sum_{k=1}^{n} k^{2} = \frac{n(n+1)(2n+1)}{6}$$

et donc

$$\frac{1}{1^2 + 2^2 + \dots + n^2} \sim \frac{3}{n^3}$$

Par comparaison de séries à termes positifs, la série numérique $\sum \frac{1}{1^2+2^2+\cdots+n^2}$ converge

Par décomposition en éléments simples

$$\frac{6}{n(n+1)(2n+1)} = \frac{6}{n} + \frac{6}{n+1} - \frac{24}{2n+1}$$

En introduisant la constante d'Euler γ , on sait

$$\sum_{n=1}^{N} \frac{1}{n} = \ln N + \gamma + o(1)$$

Par décalage d'indice

$$\sum_{n=1}^{N} \frac{1}{n+1} = \sum_{n=2}^{N+1} \frac{1}{n} = \ln(N+1) + \gamma - 1 + o(1)$$

et en introduisant dans la somme les inverses des nombres pairs absents, on obtient

$$\sum_{n=1}^{N} \frac{1}{2n+1} = \sum_{n=2}^{2N+1} \frac{1}{n} - \sum_{n=1}^{N} \frac{1}{2n} = \ln(2N+1) - \frac{1}{2} \ln N + \frac{1}{2} \gamma - 1 + o(1)$$

On en déduit

$$\sum_{n=1}^{N} \frac{1}{1^2 + 2^2 + \dots + n^2} = \ln \frac{N^{18}(N+1)^6}{(2N+1)^{24}} + 18 + o(1)$$

puis à la limite

$$\sum_{n=1}^{+\infty} \frac{1}{1^2 + 2^2 + \dots + n^2} = 18 - 24 \ln 2$$

Exercice 135 : [énoncé]

$$\frac{1}{4n+1} - \frac{3}{4n+2} + \frac{1}{4n+3} + \frac{1}{4n+4} = \frac{1}{4n} - \frac{3}{4n} + \frac{1}{4n} + \frac{1}{4n} + O\left(\frac{1}{n^2}\right) = O\left(\frac{1}{n^2}\right)$$

donc la série étudiée est absolument convergente.

On a

$$\sum_{n=0}^{N} \left(\frac{1}{4n+1} - \frac{3}{4n+2} + \frac{1}{4n+3} + \frac{1}{4n+4} \right) = \sum_{k=1}^{4N+4} \frac{1}{k} - 4 \sum_{n=0}^{N} \frac{1}{4n+2}$$

Or

$$4\sum_{n=0}^{N} \frac{1}{4n+2} = 2\sum_{n=0}^{N} \frac{1}{2n+1} = 2\sum_{k=1}^{2N+1} \frac{1}{k} - 2\sum_{k=1}^{N} \frac{1}{2k}$$

Par le développement

$$\sum_{k=1}^{n} \frac{1}{k} = \ln n + \gamma + o(1)$$

on parvient à

$$\sum_{n=0}^{N} \left(\frac{1}{4n+1} - \frac{3}{4n+2} + \frac{1}{4n+3} + \frac{1}{4n+4} \right) = \ln(4N+4) + \gamma - 2\ln(2N+1) - 2\gamma + \ln N + \gamma + o(2N+1) - 2\gamma + \ln N + \gamma + o(2N+1) - 2\gamma + \ln N + \gamma + o(2N+1) - 2\gamma + \ln N + \gamma + o(2N+1) - 2\gamma + \ln N + \gamma + o(2N+1) - 2\gamma + \ln N + \gamma + o(2N+1) - 2\gamma + \ln N + \gamma + o(2N+1) - 2\gamma + \ln N + \gamma + o(2N+1) - 2\gamma + \ln N + \gamma + o(2N+1) - 2\gamma + \ln N + \gamma + o(2N+1) - 2\gamma + \ln N + \gamma + o(2N+1) - 2\gamma + \ln N + o(2N+1) - 2\gamma + \ln N + \gamma + o(2N+1) - 2\gamma + \ln N + \gamma + o(2N+1) - 2\gamma + \ln N + \gamma + o(2N+1) - 2\gamma + \ln N + \gamma + o(2N+1) - 2\gamma + \ln N + \gamma + o(2N+1) - 2\gamma + \ln N + \gamma + o(2N+1) - 2\gamma + \ln N + \gamma + o(2N+1) - 2\gamma + \ln N + \gamma + o(2N+1) - 2\gamma + \ln N + \gamma + o(2N+1) - 2\gamma + \ln N + \gamma + o(2N+1) - 2\gamma + \ln N + \gamma + o(2N+1) - 2\gamma + \ln N + \gamma + o(2N+1) - 2\gamma + \ln N + \gamma + o(2N+1) - 2\gamma + \ln N + \gamma + o(2N+1) - 2\gamma + \ln N + \gamma + o(2N+1) - 2\gamma + \ln N + \gamma + o(2N+1) - 2\gamma + \ln N + \gamma + o(2N+1) - 2\gamma + \ln N + \gamma + o(2N+1) - 2\gamma + \ln N + \gamma + o(2N+1) - 2\gamma + \ln N + o(2N+1) - 2\gamma + o(2N+1) - o($$

Ainsi

$$\sum_{n=0}^{\infty} \left(\frac{1}{4n+1} - \frac{3}{4n+2} + \frac{1}{4n+3} + \frac{1}{4n+4} \right) = 0$$

(ce qui change du ln 2 traditionnel...;-)

Exercice 136 : [énoncé]

a) f est décroissante sur $[e, +\infty[$. Pour $p \ge 4$,

$$\int_{p}^{p+1} \frac{\ln t}{t} dt \leqslant \frac{\ln p}{p} \leqslant \int_{p-1}^{p} \frac{\ln t}{t} dt$$

donc $u_n = \frac{\ln 2}{2} + \frac{\ln 3}{3} + v_n$ avec

$$\int_{A}^{n+1} \frac{\ln t}{t} dt \leqslant v_n \leqslant \int_{3}^{n} \frac{\ln t}{t} dt$$

donc $v_n \sim \frac{1}{2}(\ln n)^2$.

Etudions $w_n = u_n - \frac{1}{2}(\ln n)^2$, $w_n - w_{n-1} = \frac{\ln n}{n} - \int_{n-1}^n \frac{\ln t}{t} dt \leq 0$ donc (w_n) est décroissante.

D'autre part les calculs précédents donnent (w_n) minorée et donc on peut conclure que w_n converge. Ainsi

$$u_n = \frac{1}{2} (\ln n)^2 + C + o(1)$$

$$\sum_{n=1}^{2N} (-1)^n \frac{\ln n}{n} = \sum_{n=1}^{N} \frac{\ln(2n)}{2n} - \sum_{n=1}^{N} \frac{\ln(2n-1)}{2n-1}$$

donc

$$\sum_{n=1}^{2N} (-1)^n \frac{\ln n}{n} = \sum_{n=1}^{N} \frac{\ln(2n)}{n} - \sum_{n=1}^{2N} \frac{\ln(n)}{n} = \ln 2 \sum_{n=1}^{N} \frac{1}{n} + u_N - u_{2N}$$

Par le développement asymptotique précédent, on obtient :

$$\sum_{n=1}^{2N} (-1)^n \frac{\ln n}{n} = \ln 2 \cdot \ln n + \ln(2)\gamma + \frac{1}{2} (\ln n)^2 + C - \frac{1}{2} (\ln 2n)^2 - C + o(1)$$

et après simplification

$$\sum_{n=1}^{2N} (-1)^n \frac{\ln n}{n} \to \frac{1}{2} \ln(2)(2\gamma - \ln 2)$$

De plus

$$\sum_{n=1}^{2N+1} (-1)^n \frac{\ln n}{n} = \sum_{n=1}^{2N} (-1)^n \frac{\ln n}{n} + o(1) \to \frac{1}{2} \ln(2)(2\gamma - \ln 2)$$

donc

$$\sum_{n=1}^{+\infty} (-1)^n \frac{\ln n}{n} = \frac{1}{2} \ln(2)(2\gamma - \ln 2)$$

N'est-ce pas magnifique?

- Exercice 137 : [énoncé] a) $\sum_{n\geqslant 1} f(n)$ diverge et $\sum_{n\geqslant 1} (-1)^n f(n)$ converge en application du critère spécial.
- b) Pour $n \ge 4$,

$$f(n) \leqslant \int_{n-1}^{n} f(t) dt \leqslant f(n-1)$$

donc

$$0 \leqslant \int_{n-1}^{n} f(t) dt - f(n) \leqslant f(n-1) - f(n)$$

avec

$$\sum_{n=4}^{+\infty} f(n-1) - f(n) = f(3)$$

donc la série de terme général $\int_{n-1}^{n} f(t)dt - f(n)$ converge et il en est de même de la série de terme général $f(n) - \int_{n-1}^{n} f(t) dt$.

c) On a

$$\sum_{n=1}^{+\infty} (-1)^n f(n) = \lim_{n \to +\infty} \sum_{k=1}^{2n} (-1)^k f(k)$$

avec

$$\sum_{k=1}^{2n} (-1)^k f(k) = 2 \sum_{k=1}^{n} f(2k) - \sum_{k=1}^{2n} f(k)$$

Or

$$\sum_{k=1}^{n} f(k) = f(1) + \sum_{k=2}^{n} f(k) - \int_{k-1}^{k} f(t) dt + \int_{1}^{n} f(t) dt = \frac{1}{2} (\ln n)^{2} + C$$

et en exploitant ln(2k) = ln 2 + ln k

$$2\sum_{k=1}^{n} f(2k) = \ln 2\sum_{k=1}^{n} \frac{1}{k} + \sum_{k=1}^{n} \frac{\ln k}{k} = \ln 2\ln n + \ln(2)\gamma + o(1) + \frac{1}{2}(\ln n)^{2} + C$$

On en déduit

$$2\sum_{k=1}^{n} f(2k) - \sum_{k=1}^{2n} f(k) = \ln(2)\gamma - \frac{1}{2}(\ln 2)^2 + o(1)$$

Au final

$$\sum_{n=1}^{+\infty} (-1)^n \frac{\ln n}{n} = \frac{1}{2} \ln(2)(2\gamma - \ln 2)$$

Exercice 138: [énoncé]

Par sommation géométrique

$$\frac{x^{\alpha-1}}{1+x} = \sum_{k=0}^{n} (-1)^k x^{k+\alpha-1} + (-1)^{n+1} \frac{x^{n+\alpha}}{1+x}$$

donc

$$\int_0^1 \frac{x^{\alpha - 1}}{1 + x} dx = \sum_{k = 0}^n \int_0^1 (-1)^k x^{k + \alpha - 1} dx + (-1)^{n + 1} \int_0^1 \frac{x^{n + \alpha}}{1 + x} dx = \sum_{k = 0}^n \frac{(-1)^k}{k + \alpha} + \varepsilon_n$$

avec

$$|\varepsilon_n| \leqslant \int_0^1 x^{n+\alpha} dx = \frac{1}{n+\alpha-1} \to 0$$

d'où la conclusion.

Exercice 139 : [énoncé]

Tout d'abord la série converge en vertu de la règle de d'Alembert (en traitant x=0 séparément)

Puisque

$$\sum_{k=0}^{n} kx^{k} = x \frac{\mathrm{d}}{\mathrm{d}x} \left(\sum_{k=0}^{n} x^{k} \right) = x \left(\frac{1 - x^{n+1}}{1 - x} \right)' \to \frac{x}{(1 - x)^{2}}$$

on obtient

$$\sum_{k=0}^{+\infty} kx^k = \frac{x}{(1-x)^2}$$

Exercice 140: [énoncé]

Par sommation géométrique

$$\sum_{n=0}^{N} \frac{(-1)^n}{4n+1} = \sum_{n=0}^{N} \int_0^1 (-t^4)^n \, dt = \int_0^1 \frac{1 - (-t^4)^{N+1}}{1 + t^4} \, dt$$

Or

$$\left| \int_0^1 \frac{(-t^4)^{N+1}}{1+t^4} \, \mathrm{d}t \right| \leqslant \int_0^1 t^{4N+4} \, \mathrm{d}t = \frac{1}{4N+5} \to 0$$

donc $\sum \frac{(-1)^n}{4n+1}$ converge et

$$\sum_{n=0}^{+\infty} \frac{(-1)^n}{4n+1} = \int_0^1 \frac{\mathrm{d}t}{1+t^4}$$

Enfin

$$\int_0^1 \frac{\mathrm{d}t}{1+t^4} = \frac{1}{4\sqrt{2}} \left(\ln \frac{2+\sqrt{2}}{2-\sqrt{2}} + \pi \right)$$

Exercice 141: [énoncé]

Introduisons la série entière de somme

$$S(x) = \sum_{n=0}^{+\infty} \frac{x^{4n+3}}{(4n+1)(4n+3)}$$

On vérifie aisément que son rayon de convergence est égale à 1 et que sa somme est définie et continue sur [-1,1] par convergence normale.

Sur
$$]-1,1[$$

$$S'(x) = \sum_{n=0}^{+\infty} \frac{x^{4n+2}}{4n+1}$$

Pour $x \neq 0$

$$\left[\frac{1}{x}S'(x)\right]' = \sum_{n=0}^{+\infty} x^{4n} = \frac{1}{1 - x^4}$$

On en déduit que sur]-1,1[

$$S'(x) = x \int_0^x \frac{\mathrm{d}t}{1 - t^4}$$

puis

$$S(x) = \int_0^x t \int_0^t \frac{\mathrm{d}u}{1 - u^4}$$

Par intégration par parties

$$S(x) = \left[\frac{1}{2}(t^2 - 1)\int_0^t \frac{\mathrm{d}u}{1 - u^4}\right]_0^x + \frac{1}{2}\int_0^x \frac{1 - t^2}{1 - t^4} \,\mathrm{d}t$$

et ainsi

$$S(x) = \frac{1}{2}(x^2 - 1) \int_0^x \frac{\mathrm{d}t}{1 - t^4} + \frac{1}{2} \int_0^x \frac{\mathrm{d}t}{1 + t^2}$$

Quand $x \to 1^-$

$$\int_0^x \frac{\mathrm{d}t}{1 - t^4} = O\left(\ln(1 - x)\right) = o\left(\frac{1}{x - 1}\right)$$

donc

$$S(x) \to \frac{1}{2} \int_0^1 \frac{\mathrm{d}t}{1+t^2} = \frac{\pi}{8}$$

On en déduit

$$\sum_{n=0}^{+\infty} \frac{1}{(4n+1)(4n+3)} = S(1) = \frac{\pi}{8}$$

Exercice 142 : [énoncé]

Posons

$$H_n = 1 + \frac{1}{2} + \dots + \frac{1}{n} = \ln n + \gamma + o(1)$$

On observe

$$u_n = 2H_n - H_{n^2} = 2(\ln n + \gamma + o(1)) - \ln(n^2) - \gamma + o(1) \rightarrow \gamma$$

Exercice 143 : [énoncé]

a) On sait

$$H_n = \sum_{k=1}^{n} \frac{1}{k} = \ln(n) + \gamma + o(1)$$

donc

$$a_n = H_{3n} - H_n \to \ln(3) = \lambda$$

b) Si on sait

$$H_n = \ln(n) + \gamma + \frac{1}{2n} + o\left(\frac{1}{n}\right)$$

les choses vont assez vites...mais sans doute l'examinateur souhaitera la démonstration de ce résultat.

$$a_n = \sum_{k=1}^{3n} \frac{1}{k} + \ln\left(1 - \frac{1}{k}\right) - \sum_{k=1}^{n} \frac{1}{k} + \ln\left(1 - \frac{1}{k}\right) + \sum_{k=n+1}^{3n} \ln\left(\frac{k-1}{k}\right)$$

avec

$$\sum_{k=n+1}^{3n} \ln\left(\frac{k-1}{k}\right) = \ln 3$$

donc

$$a_n - \lambda = \sum_{k=1}^{3n} \frac{1}{k} + \ln\left(1 - \frac{1}{k}\right) - \sum_{k=1}^{n} \frac{1}{k} + \ln\left(1 - \frac{1}{k}\right)$$

Or $\sum \frac{1}{k} + \ln \left(1 - \frac{1}{k}\right)$ est absolument convergente car

$$\frac{1}{k} + \ln\left(1 - \frac{1}{k}\right) \sim -\frac{1}{2k^2}$$

donc $a_n - \lambda = R_n - R_{3n}$ avec

$$R_n = \sum_{k=n+1}^{+\infty} \frac{1}{k} + \ln\left(1 - \frac{1}{k}\right)$$

Or par sommation d'équivalent sur des restes de séries convergentes à termes de signe constant,

$$R_n \sim \sum_{k=n+1}^{+\infty} -\frac{1}{2k^2} \sim -\frac{1}{2n}$$

(le dernier équivalent s'obtenant, soit par comparaison série intégrale, soit par $\frac{1}{k^2}\sim\frac{1}{k(k-1)}$ et sommation télescopique). Au final

$$a_n - \lambda = -\frac{1}{2n} + \frac{1}{6n} + o\left(\frac{1}{n}\right) \sim -\frac{1}{3n}$$

Exercice 144: [énoncé]

a) On a

$$\ln u_{n+1} - \ln u_n = \ln \frac{u_{n+1}}{u_n} = \ln \frac{2n+1}{2n+2} = \ln \left(1 - \frac{1}{2n+2}\right) \sim -\frac{1}{2n}$$

La série $\sum \ln u_{n+1} - \ln u_n$ tend vers $-\infty$ donc $\ln u_n \to -\infty$ puis $u_n \to 0$. b) Posons $v_n = \sqrt{n}u_n$.

$$\ln v_{n+1} - \ln v_n = \frac{1}{2} \ln \left(1 + \frac{1}{n} \right) + \ln u_{n+1} - \ln u_n = O\left(\frac{1}{n^2}\right)$$

La série $\sum \ln v_{n+1} - \ln v_n$ converge et donc la suite $\ln v_n$ aussi. En posant ℓ sa limite, on obtient $\sqrt{n}u_n \to C$ avec $C = e^{\ell} > 0$. Notons qu'évidemment, on aurait aussi pu résoudre cet exercice à l'aide de la formule de Stirling.

Exercice 145 : [énoncé]

a) $\ln u_{n+1} - \ln u_n = \ln \frac{u_{n+1}}{u_n} = \ln \frac{2n+1}{2n+2} = \ln \left(1 - \frac{1}{2n+2}\right) \sim -\frac{1}{2n}$. La série

 $\sum_{n=1}^{\infty} \ln u_{n+1} - \ln u_n \text{ tend vers } -\infty \text{ donc } \ln u_n \to -\infty \text{ puis } u_n \to 0.$

 $\overline{\text{b)}} \ln(n+1)u_{n+1} - \ln nu_n = \ln\left(\frac{2n+1}{2n}\right) \sim \frac{1}{2n}$. La série $\sum \ln(n+1)u_{n+1} - \ln nu_n$ tend vers $+\infty$ donc $\ln nu_n \to +\infty$ puis $nu_n \to +\infty$. A partir d'un certain rang $nu_n \geqslant 1$ donc $\sum u_n$ diverge.

c) $(2k+4)v_{k+1} = 2u_{k+1} = \frac{2k+1}{k+1}u_k = (2k+1)v_k$ en sommant pour $k \in \{0,\ldots,n\}$ et en simplifiant, on obtient : $T_n = 2 - (2n+6)v_{n+1}$ donc $T_n \to 2$.

Exercice 146 : [énoncé]

a)

$$\ln u_{n+1} - \ln u_n = \ln \left(1 + \frac{a-b}{n} \right) \sim \frac{a-b}{n}$$

est le terme général d'une série divergeant vers $-\infty$. Par suite $\ln u_n \to -\infty$ et donc $u_n \to 0$.

b)

$$\ln v_{n+1} - \ln v_n = \alpha \ln \left(1 + \frac{1}{n} \right) + \ln \left(1 + \frac{a-b}{n} \right) = \frac{\alpha + a - b}{n} + O\left(\frac{1}{n^2} \right)$$

donc pour $\alpha = b - a$, la série des $\ln v_{n+1} - \ln v_n$ converge. Par suite v_n converge vers un réel A > 0 et alors

$$u_n \sim \frac{A}{n^{b-a}}$$

c) On a

$$(b-a-1)u_n = (1-b)(u_{n+1}-u_n) - ((n+1)u_{n+1}-nu_n)$$

donc par télescopage

$$\sum_{n=0}^{+\infty} u_n = \frac{b-1}{b-a-1} u_0$$

Exercice 147: [énoncé]

a)

$$\frac{(n+1)^{\beta} u_{n+1}}{n^{\beta} u_n} = 1 + \frac{\alpha + \beta}{n} + O\left(\frac{1}{n^2}\right)$$

donc

$$v_n = \frac{\alpha + \beta}{n} + O\left(\frac{1}{n^2}\right)$$

 $\sum v_n$ converge si, et seulement si, $\beta = -\alpha$.

$$\sum_{k=0}^{n-1} v_k = \ln(n^{-\alpha} u_n) \to \ell = \sum_{k=0}^{+\infty} v_k \in \mathbb{R}$$

donc $n^{-\alpha}u_n \to e^{\ell}$ puis $u_n \sim An^{\alpha}$ avec $A = e^{\ell} > 0$.

Exercice 148: [énoncé]

Notons que les termes de la suite (u_n) sont tous non nuls car $-\alpha \notin \mathbb{N}^*$.

- a) $\frac{(n+1)^{\beta}u_{n+1}}{n^{\beta}u_n} = 1 + \frac{\alpha+\beta}{n} + O\left(\frac{1}{n^2}\right)$ donc $v_n = \frac{\alpha+\beta}{n} + O\left(\frac{1}{n^2}\right)$. $\sum v_n$ converge si, et seulement si, $\beta = -\alpha$.
- b) $\sum_{k=0}^{n-1} v_k = \ln(n^{-\alpha}u_n) \to \ell = \sum_{k=0}^{+\infty} v_k \in \mathbb{R} \text{ donc } n^{-\alpha}u_n \to e^{\ell} \text{ puis } u_n \sim An^{\alpha} \text{ avec } A = e^{\ell} > 0.$

Exercice 149 : [énoncé]

Après calculs

$$\ln u_{n+1} - \ln u_n = O(1/n^2)$$

donc la suite $(\ln u_n)$ converge et on peut conclure.

On peut aussi faire le lien avec la formule de Stirling...

Exercice 150: [énoncé]

$$\int_0^1 \frac{(1-u)^n - 1}{u} du = -\int_0^1 \frac{v^n - 1}{v - 1} = -\int_0^1 \sum_{k=0}^{n-1} v^k dv$$

puis

$$\int_0^1 \frac{(1-u)^n - 1}{u} du = -\sum_{k=1}^n \frac{1}{k} = -\ln n - \gamma + o(1)$$

donc $u_n \to -\gamma$

Exercice 151: [énoncé]

$$\ln(P_n) = \sum_{k=2}^n \ln\left(1 + \frac{(-1)^k}{\sqrt{k}}\right) \text{ avec}$$

$$\ln\left(1 + \frac{(-1)^k}{\sqrt{k}}\right) = \frac{(-1)^k}{\sqrt{k}} - \frac{1}{2k} + O\left(\frac{1}{k\sqrt{k}}\right)$$

donc $\ln P_n = -\frac{1}{2} \ln n + \lambda + o(1)$ puis $P_n \sim \frac{e^{\lambda}}{\sqrt{n}}$

Exercice 152: [énoncé]

a) $u_n > 0$ et

$$\ln u_n = \sum_{k=1}^n \ln \left(1 + \frac{a-1}{k} \right)$$

Si a = 1 alors $u_n = 1 \to 1$,.

Si a > 1 alors

$$\ln\left(1 + \frac{a-1}{k}\right) \sim \frac{a-1}{k}$$

donc $\ln u_n \to +\infty$ puis $u_n \to +\infty$.

Si a < 1 alors $\ln u_n \to -\infty$ et donc $u_n \to 0$.

b) Si $a \ge 1$ il y a divergence grossière de la série.

Si $a \in [0, 1]$ alors

$$\ln u_n \sim \sum_{k=1}^n \frac{a-1}{k} = (a-1) \ln n$$

et donc

$$\ln(ku_n) = \ln k + (a-1)\ln k + o(\ln k) \sim a\ln k \to +\infty$$

Ainsi $ku_n \to +\infty$ et à partir d'un certain rang $u_n \ge 1/k$. La série de terme général u_n s'avère divergente

Exercice 153 : [énoncé]

a)

$$\ln u_{n+1} - \ln u_n \sim -\frac{1}{2} \frac{x}{n}$$

avec x > 0 donc

$$\sum_{k=1}^{n} \ln u_{k+1} - \ln u_k \to -\infty$$

puis $u_n \to 0$.

b) Pour $\alpha = -x/2$,

$$\ln(u_{n+1}) - \ln(u_n) - \alpha \ln\left(1 + \frac{1}{n}\right) = O\left(\frac{1}{n^2}\right)$$

donc il y a convergence de

$$\sum \ln(u_{n+1}) - \ln(u_n) - \alpha \ln\left(1 + \frac{1}{n}\right)$$

c) Puisque

$$\ln(u_{n+1}) - \ln(u_n) - \alpha \ln\left(1 + \frac{1}{n}\right) = \ln\frac{u_{n+1}}{(n+1)^{\alpha}} - \ln\frac{u_n}{n^{\alpha}}$$

la suite de terme général $\ln \frac{u_n}{n^{\alpha}}$ converge puis $\frac{u_n}{n^{\alpha}} \to A$ avec A > 0. d) Par comparaison de séries à termes positifs, $\sum u_n$ converge si, et seulement si, $\alpha < -1$ i.e. x > 2.

Exercice 154 : [énoncé]

- a) Par récurrence $0 \le u_n \le u_0/2^n$.
- b)

$$\ln(2^{n+1}u_{n+1}) - \ln(2^n u_n) = \ln\left(\frac{\sin(u_n/2)}{u_n/2}\right) \sim -\frac{1}{6}\left(\frac{u_n}{2}\right)^2$$

est terme général d'une série convergente donc la suite $(\ln(2^n u_n))$ converge et finalement $(2^n u_n)$ converge vers un réel A strictement positif. c)

$$u_n - A2^{-n} = 2^{-n} \sum_{k=n}^{+\infty} (2^k u_k - 2^{k+1} u_{k+1})$$

Or

$$2^k u_k - 2^{k+1} u_{k+1} \sim \frac{2^{k+1}}{6} \left(\frac{u_k}{2}\right)^3 \sim \frac{A^3}{24 \cdot 2^{2k}}$$

Par comparaison de restes de séries convergentes à termes positifs,

$$u_n - A2^{-n} \sim 2^{-n} \frac{A^3}{24} \sum_{k=n}^{+\infty} \frac{1}{2^{2k}} = \frac{A^3}{18.2^{-3n}}$$

Exercice 155: [énoncé]

Non, en effet considérons

$$u_n = \sum_{k=2}^n \frac{1}{k \ln k}$$

Pour tout $p \in \mathbb{N}^*$, on a $u_{np} - u_n = \sum_{k=n+1}^{np} \frac{1}{k \ln k}$

On en déduit

$$0 \le u_{np} - u_n \le \frac{np - (n+1) + 1}{n \ln n} = \frac{p-1}{\ln n} \to 0$$

alors que

$$u_n \geqslant \sum_{k=2}^n \int_k^{k+1} \frac{\mathrm{d}t}{t \ln t} = \int_2^{n+1} \frac{\mathrm{d}t}{t \ln t} = [\ln(\ln t)]_2^{n+1} \to +\infty$$

Exercice 156: [énoncé]

On observe que $u_{n+1}^n - u_n^{n-1} = n$.

Puisque $\sum n$ une série à termes positifs divergente on peut, par sommation de relation de comparaison, affirmer

$$u_{n+1}^n \sim \sum_{k=1}^n k \sim \frac{1}{2}n^2$$

En composant avec le logarithme népérien cet équivalent de limite infini, on obtient

$$n \ln u_{n+1} \sim 2 \ln n$$

puis

$$\ln u_{n+1} \sim 2 \frac{\ln n}{n}$$

Par suite $u_{n+1} \to 1$ puis

$$u_{n+1} = 1 + 2\frac{\ln n}{n} + o\left(\frac{\ln n}{n}\right)$$

Posons

$$v_n = u_{n+1} - 1 - 2\frac{\ln n}{n}$$

L'égalité

$$u_{n+1}^n = \exp\left(n\ln\left(1 + 2\frac{\ln n}{n} + v_n\right)\right)$$

donne

$$u_{n+1}^n = \exp(2\ln n + nv_n + O((\ln n)^2/n))$$

Or $\frac{2u_{n+1}^n}{n^2} \to 1$ donc

$$\exp\left(\ln(2) + nv_n + O\left((\ln n)^2/n\right)\right) \to 1$$

puis $nv_n \to -\ln(2)$. Ainsi

$$u_{n+1} = 1 + 2\frac{\ln n}{n} - \frac{\ln 2}{n} + o\left(\frac{1}{n}\right)$$

Exercice 157: [énoncé]

On peut écrire

$$\sum_{k=1}^{n} \left(\frac{k}{n}\right)^n = \sum_{k=0}^{n-1} \left(1 - \frac{k}{n}\right)^n = \sum_{k=0}^{n} u_k(n)$$

avec $u_k(n) \xrightarrow[n \to +\infty]{} e^{-k}$.

On peut alors présumer

$$\sum_{k=1}^{n} \left(\frac{k}{n}\right)^n \xrightarrow[n \to +\infty]{} \sum_{k=0}^{+\infty} e^{-k} = \frac{1}{1 - 1/e} = \frac{e}{e - 1}$$

Il ne reste plus qu'à l'établir...

Puisque $ln(1+x) \leq x$ pour tout x > -1, on a

$$\left(1 - \frac{k}{n}\right)^n = \exp\left(n\ln(1 - k/n)\right) \leqslant e^{-k}$$

et donc on a déjà

$$\sum_{k=1}^{n} \left(\frac{k}{n}\right)^n \leqslant \frac{1}{1 - 1/e}$$

De plus, pour $N \in \mathbb{N}$, on a pour tout $n \geq N$

$$\sum_{k=1}^{n} \left(\frac{k}{n}\right)^n \geqslant \sum_{k=0}^{N-1} \left(1 - \frac{k}{n}\right)^n \xrightarrow[n \to +\infty]{} \sum_{k=0}^{N-1} e^{-k}$$

Pour $\varepsilon > 0$, il existe $N \in \mathbb{N}$ tel que

$$\sum_{k=0}^{N-1} e^{-k} \geqslant \frac{e}{e-1} - \varepsilon$$

et pour ce N fixé, il existe $N' \in \mathbb{N}$ tel que pour $n \ge N'$,

$$\sum_{k=1}^{n} \left(\frac{k}{n}\right)^n \geqslant \sum_{n=0}^{N-1} \left(1 - \frac{k}{n}\right)^n \geqslant \sum_{k=0}^{N-1} e^{-k} - \varepsilon$$

On a alors pour tout $n \ge N'$

$$\sum_{k=1}^{n} \left(\frac{k}{n}\right)^n \geqslant \frac{\mathrm{e}}{\mathrm{e} - 1} - 2\varepsilon$$

On peut donc conclure

$$\sum_{k=1}^{n} \left(\frac{k}{n}\right)^n \to \frac{e}{e-1}$$

Exercice 158: [énoncé]

Posons

$$P_n = \prod_{k=1}^n \left| \frac{2n-k}{z_n - k} \right|$$

On a

$$\ln P_n = -\frac{1}{2} \sum_{k=1}^n \ln \frac{|z_n - k|^2}{|2n - k|^2}$$

Puisque

$$|z_n - k|^2 = (2n)^2 - 4nk\cos\left(\frac{t}{\sqrt{n}}\right) + k^2 = (2n - k)^2 + 8nk\sin^2\left(\frac{t}{2\sqrt{n}}\right)$$

on obtient

$$\ln P_n = -\frac{1}{2} \sum_{k=1}^n \ln \left(1 + \frac{8nk}{(2n-k)^2} \sin^2 \left(\frac{t}{2\sqrt{n}} \right) \right)$$

Sachant $\sin^2 u = u^2 + O(u^4)$, on peut écrire

$$\sin^2\left(\frac{t}{2\sqrt{n}}\right) = \frac{t^2}{4n} + O\left(\frac{1}{n^2}\right)$$

Ainsi

$$\ln P_n = -\frac{1}{2} \sum_{k=1}^n \ln \left(1 + \frac{2kt^2}{(2n-k)^2} + \frac{k}{(2n-k)^2} O\left(\frac{1}{n}\right) \right)$$

Sachant $\ln(1+x) \leqslant x$, on a

$$-2\ln(P_n) \leqslant \sum_{k=1}^{n} \left[\frac{2kt^2}{(2n-k)^2} + \frac{k}{(2n-k)^2} O\left(\frac{1}{n}\right) \right]$$

Posons S_n le second membre de cette comparaison. D'une part

$$\left| \sum_{k=1}^{n} \frac{k}{(2n-k)^2} O\left(\frac{1}{n}\right) \right| \leqslant \sum_{k=1}^{n} \frac{n}{n^2} O\left(\frac{1}{n}\right) = O\left(\frac{1}{n}\right) \to 0$$

D'autre part

$$\sum_{k=1}^{n} \frac{2k}{(2n-k)^2} = \sum_{\ell=n}^{2n-1} \frac{2(2n-\ell)}{\ell^2} = 4n \sum_{\ell=n}^{2n-1} \frac{1}{\ell^2} - 2 \sum_{\ell=n}^{2n-1} \frac{1}{\ell}$$

avec

$$\sum_{\ell=n}^{+\infty} \frac{1}{\ell^2} \sim \frac{1}{n} \text{ et } \sum_{\ell=1}^{n} \frac{1}{\ell} = \ln n + \gamma + o(1)$$

Après calculs asymptotiques, on obtient

$$S_n \rightarrow (2-2\ln 2)t^2$$

Sachant $\ln(1+x) \ge x - \frac{1}{2}x^2$, on a

$$-2\ln P_n \geqslant S_n - \frac{1}{2} \sum_{k=1}^n \left[\frac{2kt^2}{(2n-k)^2} + \frac{k}{(2n-k)^2} O\left(\frac{1}{n}\right) \right]^2$$

Puisque $0 \leqslant \frac{k}{(2n-k)^2} \leqslant \frac{1}{n}$,

$$\sum_{k=1}^{n} \left[\frac{2kt^2}{(2n-k)^2} + \frac{k}{(2n-k)^2} O\left(\frac{1}{n}\right) \right]^2 = \sum_{k=1}^{n} O\left(\frac{1}{n^2}\right) = O\left(\frac{1}{n}\right) \to 0$$

Finalement $-2 \ln P_n$ est encadré par deux quantités de limite $(2-2 \ln 2)t^2$. On en déduit

$$P_n \to \exp\left((\ln 2 - 1)t^2\right)$$

Exercice 159: [énoncé]

Soient $\sum u_n$ une série semi-convergente et $\sum v_n$ une série absolument convergente. La série $\sum u_n + v_n$ est convergente et si celle-ci était absolument convergente alors $\sum u_n$ le serait aussi car $|u_n| \leq |u_n + v_n| + |v_n|$. La série $\sum u_n + v_n$ n'est donc que semi-convergente.

Exercice 160 : [énoncé]

Pour

$$\frac{k(k-1)}{2} < n \leqslant \frac{k(k+1)}{2}$$

on pose

$$u_n = \frac{(-1)^{k-1}}{k}$$

Ceci définit la suite $(u_n)_{n\geqslant 1}$ de sorte que ses premiers termes sont :

$$1, -\frac{1}{2}, -\frac{1}{2}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}, -\frac{1}{4}, -\frac{1}{4}, -\frac{1}{4}, -\frac{1}{4}, \dots$$

Les termes sommées tendent vers 0 et les sommes partielles oscillent entre 0 et 1.

Exercice 161: [énoncé]

a) Pour $u_n=(-1)^n$, la série de terme général u_n est divergente et puisque ces sommes partielles valent 0 ou 1, elle enveloppe tout réel de l'intervalle [0,1]. Pour $u_n=(-1)^n/(n+1)$, la série de terme général u_n satisfait le critère spécial des séries alternées et donc elle converge et la valeur absolue de son reste est inférieure à son premier terme. Cette série enveloppe donc sa somme, à savoir $\ln 2$. Pour $u_n=1/2^n$, la série de terme général u_n converge. Puisque $u_n\to 0$, le seul réel qu'elle peut envelopper est sa somme, or

$$\sum_{k=0}^{+\infty} \frac{1}{2^k} - \sum_{k=0}^{n} \frac{1}{2^k} = \sum_{k=n+1}^{+\infty} \frac{1}{2^k} = \frac{1}{2^n}$$

n'est pas inférieur à u_{n+1} . Cette série convergente n'enveloppe aucun réel.

b) Posons pour la suite de notre étude

$$S_n = \sum_{k=0}^n u_k$$

On a

$$\theta_{n+2}u_{n+2} = A - S_{n+1} = A - S_n - u_{n+1} = (\theta_{n+1} - 1)u_{n+1}$$

Puisque $\theta_{n+2} > 0$ et $\theta_{n+1} - 1 < 0$, on peut affirmer que u_{n+2} et u_{n+1} sont de signes opposés.

Puisque $A - S_n = \theta_{n+1}u_{n+1}$ est du signe de u_{n+1} , les réels $A - S_n$ et $A - S_{n+1}$ sont de signes opposés et donc A est encadré par S_n et S_{n+1} .

c) Puisque $A-S_n$ est du signe de u_{n+1} , on peut écrire $A-S_n=\theta_{n+1}u_{n+1}$ avec $\theta_{n+1}\in\mathbb{R}^+$.

Puisque $A - S_{n+1} = (\theta_{n+1} - 1)u_{n+1}$ est du signe de u_{n+2} et puisque u_{n+1} et u_{n+2} sont de signes opposés, on a $\theta_{n+1} - 1 \leq 0$ et donc $\theta_{n+1} \in [0,1]$.

On ne peut rien dire de plus, sauf à savoir que $A - S_n$ est non nul pour tout $n \in \mathbb{N}$. En effet pour $u_n = (-1)^n$ et A = 1, la série de terme général u_n est alternée et pour n pair : $A - S_n = 1 - 1 = 0$ est du signe de u_{n+1} .

pour *n* impair : $A - S_n = 1 - 0 = 1$ est du signe de u_{n+1} .

Si en revanche, on suppose $A - S_n \neq 0$ pour tout $n \in \mathbb{N}$, obtenir $\theta_{n+1} \in]0,1[$ est désormais immédiat.

d) Par l'absurde, supposons $u_{n+1}, u_{n+2} > 0$.

On a $A - S_n \le u_{n+1}$ donc $A - S_{n+1} \le 0$ puis $A - S_{n+2} \le -u_{n+2}$ et donc $|A - S_{n+2}| \ge |u_{n+2}|$. Or $|A - S_{n+2}| \le |u_{n+3}|$ et $|u_{n+3}| < |u_{n+2}|$, c'est absurde et donc u_{n+1} et u_{n+2} ne sont pas tous deux strictement positifs. Un raisonnement symétrique établit qu'ils ne sont pas non plus tous deux strictement négatifs et donc la série de terme général u_n est alternée à partir du rang 1 (on ne peut rien affirmer pour le rang 0).

Puisque $A - S_{n+1} = A - S_n - u_{n+1}$, on a

$$-|u_{n+1}| - u_{n+1} \le A - S_{n+1} \le |u_{n+1}| - u_{n+1}.$$

Si $u_{n+1} > 0$ alors $A - S_{n+1} \leq 0$ et donc du signe de u_{n+2} .

Si $u_{n+1} < 0$ alors $A - S_{n+1} \ge 0$ et donc à nouveau du signe de u_{n+2} .

Enfin $A - S_{n+1}$ n'est pas nul, car sinon

 $A - S_{n+3} = A - S_{n+1} - (u_{n+2} + u_{n+3}) = -(u_{n+2} + u_{n+3})$ est de signe strict opposé à u_{n+2} et n'est donc pas du signe de u_{n+4} .

On peut alors exploiter le résultat du c) et affirmer que la série de terme général u_n encadre strictement A.

Exercice 162: [énoncé]

- a) Il est immédiat de vérifier que E est un sous-espace vectoriel de l'espace $\mathbb{R}^{\mathbb{N}}$ des suites réelles. L'application
- $\varphi: E \to \mathbb{R}^2$ définie par $\varphi(u) = (u_0, u_1)$ étant un isomorphisme (car un élément de E est déterminé de façon unique par la donnée de ses deux premiers termes), on peut affirmer que l'espace E est de dimension 2.
- b) Il est immédiat de vérifier que les suites (a_n) et (b_n) sont formés d'entiers naturels, qu'elles sont croissantes à partir du rang 1 et qu'elles sont à termes strictement positifs à partir du rang 2.

Ainsi

$$\forall n \geqslant 2, a_n, b_n \geqslant 1$$

et donc

$$a_{n+2} \ge n+1 \text{ et } b_{n+2} \ge n+1$$

Ainsi les deux suites (a_n) et (b_n) tendent vers $+\infty$ en croissant (seulement à partir du rang 1 pour la première)

c) On a

$$w_{n+1} = ((n+1)a_{n+1} + a_n) b_{n+1} - a_{n+1} ((n+1)b_{n+1} + b_n)$$

Après simplification, on obtient

$$w_{n+1} = -w_n$$

et donc

$$w_n = (-1)^n w_0 = (-1)^{n+1}$$

d) On a

$$c_{n+1} - c_n = \frac{w_n}{b_n b_{n+1}} = \frac{(-1)^{n+1}}{b_n b_{n+1}}$$

Puisque la suite de terme général $b_n b_{n+1}$ croît vers $+\infty$, on peut appliquer le critère spécial des séries alternées et affirmer que la série numérique $\sum (c_{n+1} - c_n)$ converge. Par conséquent la suite (c_n) converge.

e) On a

$$\ell - c_n = \sum_{k=n}^{+\infty} \left(c_{k+1} - c_k \right)$$

Par le critère spécial des séries alternées, on peut borner ce reste par la valeur absolue de son premier terme

$$|\ell - c_n| \leqslant \frac{1}{b_n b_{n+1}}$$

On peut ainsi écrire

$$c_n = \ell + O\left(\frac{1}{b_n b_{n+1}}\right)$$

On a alors

$$a_n + rb_n = b_n (c_n + r) = b_n (\ell + r) + O\left(\frac{1}{b_{n+1}}\right)$$

Sachant $b_n \to +\infty$, on peut affirmer

$$a_n + rb_n \to 0 \Leftrightarrow r = -\ell$$

Exercice 163: [énoncé]

a) Puisque f est de classe C^2 , on peut écrire

$$f'(x) = f'(0) + \int_0^x f''(t) dt$$

Par intégrabilité de f'', la fonction f' admet une limite finie ℓ quand $x \to +\infty$. Si $\ell > 0$ alors, pour x assez grand $f'(x) \ge \ell/2$. Notons $A \ge 0$ tel que ce qui précède soit vrai pour $x \ge A$. On a alors

$$f(x) = f(0) + \int_0^x f'(t) dt \ge f(0) + \int_0^A f'(t) dt + \int_A^x \frac{\ell}{2} dt$$

et donc $f(x) \ge \ell x/2 + C^{te}$ ce qui empêche la convergence de $\int_0^{+\infty} f(t) dt$. Si $\ell < 0$ on obtient aussi une absurdité. Il reste donc $\ell = 0$. Posons

$$F(x) = \int_0^x f(t) \, \mathrm{d}t$$

Par l'égalité de Taylor avec reste intégrale

$$F(x+1) = F(x) + f(x) + \int_{x}^{x+1} (x+1-t)f'(t) dt$$

Quand $x \to +\infty$,

$$F(x), F(x+1) \to \int_0^{+\infty} f(t) dt$$

Aussi $f'(x) \to 0$ et

$$\left| \int_{x}^{x+1} (x+1-t)f'(t) \, \mathrm{d}t \right| \le \max_{t \in [x,x+1]} |f'(t)| \to 0$$

donc par opération $f(x) \to 0$.

b) Par l'égalité de Taylor avec reste intégrale

$$f(n+1) = f(n) + f'(n) + \int_{n}^{n+1} ((n+1) - t)f''(t) dt$$

donc

$$f'(n) = f(n+1) - f(n) + \int_{n}^{n+1} (n+1-t)f''(t) dt$$

La série de terme général f(n+1)-f(n) est convergente car de même nature que la suite (f(n)) qui converge en $+\infty$. La série de terme général $\int_{n}^{n+1} (n+1-t)f''(t) dt$ est absolument convergente car

$$\left| \int_{n}^{n+1} (n+1-t)f''(t) \, \mathrm{d}t \right| \leqslant \int_{n}^{n+1} |f''(t)| \, \mathrm{d}t$$

et le terme majorant est sommable par intégrabilité de f''. Par conséquent, la série $\sum f'(n)$ est convergente.

Aussi

$$F(n+1) = F(n) + f(n) + \frac{1}{2}f'(n) + \int_{n}^{n+1} \frac{(n+1-t)^2}{2}f''(t) dt$$

On peut alors mener le même raisonnement et conclure que $\sum f(n)$ converge.

Exercice 164: [énoncé]

a) Puisque $|d_n e_n| \leq e_n$ avec convergence de $\sum e_n$, on peut affirmer que les éléments de G sont des sommes de séries absolument convergentes. Les éléments de G sont donc bien définis et puisque

$$\left| \sum_{n=0}^{+\infty} d_n e_n \right| \leqslant \sum_{n=0}^{+\infty} e_n = s$$

on a $G \subset [-s, s]$. Enfin $s \in G$ avec $(d_n)_{n \in \mathbb{N}} = (1)_{n \in \mathbb{N}}$ et $-s \in G$ avec $(d_n)_{n \in \mathbb{N}} = (-1)_{n \in \mathbb{N}}$.

b) Si e est une base discrète alors G = [-s, s].

Par l'absurde, supposons qu'il existe $N \in \mathbb{N}$ tel que $e_N > r_N$. Introduisons

$$x = \sum_{k=0}^{N-1} e_k \in [-s, s]$$

(comprendre x = 0 si N = 0).

Soit

$$y = \sum_{n=0}^{+\infty} d_n e_n \text{ avec } d_n \in \{-1, 1\}$$

S'il existe $k \leq N$ tel que $d_k = -1$ alors

$$y \leqslant \sum_{n=0}^{+\infty} d_n e_n - 2e_k = s - 2e_k$$

Or

$$e_k \geqslant e_N$$

donc

$$y < s - 2e_N = x + r_N - e_N < x$$

Si $d_k = 1$ pour tout $k \leq N$ alors

$$y = \sum_{n=0}^{N} e_k + \sum_{n=N+1}^{+\infty} d_k e_k \geqslant x + e_N - r_N > x$$

Dans tous les cas, $y \neq x$ et donc $x \notin G$. C'est absurde.

c) Raisonnons par récurrence sur $n \in \mathbb{N}$.

Cas n = 0: on a bien

$$|t - t_0| = |t| \le s = e_0 + r_0$$

Supposons la propriété vérifiée au rang $n\geqslant 0.$

Si $t_n \leq t$ alors

$$t - t_{n+1} = t - t_n - e_n \leqslant r_n$$

et

$$t - t_{n+1} \geqslant -e_n \geqslant -r_n$$

Ainsi

$$|t - t_{n+1}| \leqslant r_n = e_{n+1} + r_{n+1}$$

Si $t_n > t$ alors

$$t_{n+1} - t = t_n - t - e_n$$

et l'étude est analogue.

Récurrence établie.

On en déduit que $t_n \to t$ puis que $t \in G$.

En conclusion

e est une base discrète si, et seulement si, $\forall n \in \mathbb{N}, e_n \leqslant r_n$

d) La condition précédente est vérifiée et, puisque s=2, on obtient G=[-2,2]. On peut écrire

$$0 = 1 + \sum_{n=1}^{+\infty} (-1) \frac{1}{2^n}, \ 1 = 1 + \frac{1}{2} + \sum_{n=2}^{+\infty} (-1) \frac{1}{2^n}, \ \frac{1}{2} = 1 - \frac{1}{2} - \frac{1}{4} + \sum_{n=3}^{+\infty} \frac{1}{2^n}$$

 $_{
m et}$

$$2 = \sum_{n=0}^{+\infty} \frac{1}{2^n}$$

En remarquant

$$\sum_{n=0}^{+\infty} \frac{(-1)^n}{2^n} = \frac{2}{3}$$

on peut proposer

$$\frac{1}{3} = 1 - \frac{1}{2} + \sum_{n=2}^{+\infty} \frac{(-1)^{n-1}}{2^n}$$

Il peut y avoir unicité de la suite (d_n) (c'est le cas pour x = s) ou non (c'est le cas pour x = 0 où lorsque (d_n) convient, $(-d_n)$ convient aussi).

Exercice 165: [énoncé]

a) On a

$$\Sigma_n = \operatorname{Im}\left(\sum_{k=1}^n e^{ik}\right) = \operatorname{Im}\left(e^i \frac{1 - e^{in}}{1 - e^i}\right)$$

donc

$$|\Sigma_n| \leqslant \left| e^i \frac{1 - e^{in}}{1 - e^i} \right| \leqslant \frac{2}{|1 - e^i|}$$

et la suite $(\Sigma_n)_{n\geq 1}$ est effectivement bornée.

b) On a

$$S_n = \sum_{k=1}^n \frac{\Sigma_k - \Sigma_{k-1}}{k} = \sum_{k=1}^n \frac{\Sigma_k}{k} - \sum_{k=0}^{n-1} \frac{\Sigma_k}{k+1}$$

donc

$$S_n = \sum_{k=1}^n \frac{\Sigma_k}{k(k+1)} + \frac{\Sigma_n}{n+1}$$

Or $\frac{\Sigma_n}{n+1} \to 0$ car (Σ_n) est bornée et $\frac{\Sigma_k}{k(k+1)} = O\left(\frac{1}{k^2}\right)$ est le terme général d'une série absolument convergente. On peut donc conclure que (S_n) converge.

Exercice 166: [énoncé]

a) Par sommation géométrique

$$S_n = \operatorname{Re}\left(\sum_{k=0}^n e^{ik\theta}\right) = \operatorname{Re}\left(\frac{e^{i(n+1)\theta} - 1}{e^{i\theta} - 1}\right)$$

donc

$$|S_n| \leqslant \left| \frac{e^{i(n+1)\theta} - 1}{e^{i\theta} - 1} \right| \leqslant \frac{2}{|e^{i\theta} - 1|}$$

b) On a

$$\sum_{n=1}^{N} u_n = \sum_{n=1}^{N} \frac{S_n}{n} - \sum_{n=0}^{N-1} \frac{S_n}{n+1} = \sum_{n=1}^{N} \frac{S_n}{n(n+1)} - S_0 + \frac{S_N}{N+1}$$

Or

$$\frac{S_N}{N+1} \to 0$$
 et

 $\frac{S_n}{n(n+1)}=O\left(\frac{1}{n^2}\right)$ donc la suite des sommes partielles de la série de terme général u_n converge.

c) On a

$$\left|\cos x\right| \geqslant \cos^2 x = \frac{\cos 2x + 1}{2}$$

donc

$$|u_n| \geqslant \frac{\cos(2n\theta)}{2n} + \frac{1}{2n}$$

Si $\theta = 0$ $[\pi]$ alors $|u_n| \geqslant \frac{1}{n}$ et donc $\sum |u_n|$ diverge.

Si $\theta \neq 0$ [π] alors par ce qui précède la série $\sum \frac{\cos(2n\theta)}{n}$ converge et puisque la série de terme général $\frac{1}{n}$ diverge, par opérations, la série de terme général $|u_n|$ diverge.

Exercice 167: [énoncé]

- a) $(a_n a_{n+1})S_n = O(a_n a_{n+1})$ et la série à termes positifs $\sum a_n a_{n+1}$ est convergente.
- b) En séparant la somme en deux et en décalant les indices

$$\sum_{k=0}^{n} (a_k - a_{k+1}) S_k = \sum_{k=0}^{n} a_k S_k - \sum_{k=1}^{n+1} a_k S_{k-1}$$

puis en regroupant

$$\sum_{k=0}^{n} (a_k - a_{k+1}) S_k = a_0 S_0 + \sum_{k=1}^{n} a_k (S_k - S_{k-1}) - a_{n+1} S_n$$

avec $a_{n+1}S_n \to 0$.

Par suite $\sum a_n(S_n - S_{n-1})$ est convergente.

c) On applique le résultat précédent à $a_n = 1/n$ et $S_n = \sum_{k=0}^n \cos(kx)$. (S_n) est bien bornée car

$$S_n = \operatorname{Re}\left(\sum_{k=0}^n e^{ikx}\right) = \cos(nx) \frac{\sin((n+1)x/2)}{\sin(x/2)}$$

Exercice 168 : [énoncé]

On a

$$S_n = \operatorname{Re}\left(\sum_{k=1}^n e^{ik\theta}\right) = \operatorname{Re}\left(e^{i\theta} \frac{e^{in\theta} - 1}{e^{i\theta} - 1}\right)$$

donc

$$|S_n| \leqslant \frac{2}{|e^{i\theta} - 1|} = M_\theta$$

Posons $f(x) = \frac{\sqrt{x}}{x-1}$.

$$f'(x) = \frac{\frac{1}{2}(x-1) - x}{\sqrt{x}(x-1)^2} = -\frac{1}{2}\frac{(x+1)}{\sqrt{x}(x-1)^2} \le 0$$

donc f est décroissante sur $[2, +\infty[$. $u_n = f(n)\cos(n\theta) = f(n)(S_n - S_{n-1})$ donc

$$\sum_{n=2}^{N} u_n = \sum_{n=2}^{N} f(n)S_n - \sum_{n=1}^{N-1} f(n+1)S_n = \sum_{n=2}^{N} (f(n) - f(n+1))S_n + f(N+1)S_N - f(2)S_1$$

Or $f(N+1)S_N \xrightarrow[N\to+\infty]{} 0$ car $S_N = O(1)$ et $f \xrightarrow[+\infty]{} 0$.

De plus

$$|(f(n) - f(n+1)) S_n| \leqslant M_\theta \left(f(n) - f(n+1) \right)$$

avec $\sum f(n) - f(n+1)$ série convergente (car f converge en $+\infty$) donc par comparaison $\sum (f(n) - f(n+1)) S_n$ est absolument convergente.

Ainsi par opérations, $\left(\sum_{n=2}^{N} u_n\right)_{N>2}$ converge et donc $\sum u_n$ converge.

On a

$$|u_n| = \frac{\sqrt{n}}{n-1} |\cos(n\theta)| \geqslant \frac{\sqrt{n}}{n-1} \cos^2(n\theta)$$

Or $\cos 2a = 2\cos^2 a - 1$ donc $\cos^2 a \geqslant \frac{1}{2}\cos 2a + 1$ puis

$$|u_n| \geqslant \frac{1}{2} \frac{\sqrt{n}}{n-1} \cos(2n\theta) + \frac{1}{2} \frac{\sqrt{n}}{n-1}$$

En reprenant l'étude qui précède avec 2θ au lieu de θ , on peut affirmer que

$$\sum \frac{1}{2} \frac{\sqrt{n}}{n-1} \cos(2n\theta)$$

converge tandis que $\sum \frac{\sqrt{n}}{2(n-1)}$ diverge puisque $\frac{1}{2}\frac{\sqrt{n}}{n-1} \sim \frac{1}{2\sqrt{n}}$. Par comparaison, on peut affirmer que $\sum |u_n|$ diverge.

Exercice 169: [énoncé]

Posons

$$S_n = \sum_{k=1}^n z_k$$

On a

$$\sum_{n=1}^{N} \frac{z_n}{n} = \sum_{n=1}^{N} \frac{S_n - S_{n-1}}{n} = \sum_{n=1}^{N} \frac{S_n}{n} - \sum_{n=0}^{N-1} \frac{S_n}{n+1}$$

donc

$$\sum_{n=1}^{N} \frac{z_n}{n} = \sum_{n=1}^{N} \frac{S_n}{n(n+1)} + \frac{S_N}{N+1}$$

Or $\frac{S_N}{N+1} \to 0$ car (S_N) converge et $\frac{S_n}{n(n+1)} = O\left(\frac{1}{n^2}\right)$ est le terme général d'une série absolument convergente. On peut conclure que la série $\sum\limits_{n\geqslant 1}\frac{z_n}{n}$ converge.

Exercice 170: [énoncé]

Posons

$$R_n = \sum_{k=n}^{+\infty} z_k$$

On a $z_n = R_n - R_{n+1}$ et donc

$$\sum_{k=n}^{N} \frac{z_k}{k} = \sum_{k=n}^{N} \frac{R_k - R_{k+1}}{k} = \sum_{k=n}^{N} \frac{R_k}{k} - \sum_{k=n+1}^{N+1} \frac{R_k}{k-1}$$

puis

$$\sum_{k=n}^{N} \frac{z_k}{k} = \frac{R_n}{n} - \sum_{k=n+1}^{N} \frac{R_k}{k(k-1)} - \frac{R_{N+1}}{N}$$

La suite (R_n) converge vers 0, elle est donc bornée par un certain M ce qui assure l'absolue convergence de la série $\sum \frac{R_k}{k(k-1)}$ et l'on peut donc introduire

$$\sum_{k=n+1}^{+\infty} \frac{z_k}{k} = \frac{R_n}{n} - \sum_{k=n+1}^{+\infty} \frac{R_k}{k(k-1)}$$

Soit $\varepsilon > 0$. Il existe un rang $N \in \mathbb{N}$ tel que

$$\forall n \geqslant N, |R_n| \leqslant \varepsilon$$

et alors pour tout $n \ge N$

$$\left|\sum_{k=n+1}^{+\infty} \frac{\varepsilon}{k(k-1)}\right| \leqslant \sum_{k=n+1}^{+\infty} \frac{M}{k(k-1)} = \sum_{k=n+1}^{+\infty} \varepsilon \left(\frac{1}{k-1} - \frac{1}{k}\right) = \frac{\varepsilon}{n}$$

puis

$$\left| \sum_{k=n}^{+\infty} \frac{z_k}{k} \right| \leqslant \frac{2\varepsilon}{n}$$

Exercice 171 : [énoncé]

Le cas $\alpha = 1$ est entendu. Etudions $\alpha \in]-\infty, 1[$. Par l'absurde, supposons la convergence de $\sum \frac{a_n}{n^{\alpha}}$ et introduisons

$$S_n = \sum_{k=1}^n \frac{a_k}{k^\alpha}$$

de sorte que $S_n - S_{n-1} = a_n/n^{\alpha}$. On peut écrire

$$\sum_{k=1}^{n} \frac{a_k}{k} = \sum_{k=1}^{n} \frac{S_k - S_{k-1}}{k^{1-\alpha}} = \sum_{k=1}^{n} \frac{S_k}{k^{1-\alpha}} - \sum_{k=0}^{n-1} \frac{S_k}{(k+1)^{\alpha}}$$

puis

$$\sum_{k=1}^{n} \frac{a_k}{k} = \sum_{k=1}^{n} S_k \left(\frac{1}{k^{1-\alpha}} - \frac{1}{(k+1)^{1-\alpha}} \right) + \frac{S_n}{(n+1)^{1-\alpha}}$$

La suite (S_n) est bornée car convergente et

$$\sum_{k=1}^{n} \left(\frac{1}{k^{1-\alpha}} - \frac{1}{(k+1)^{1-\alpha}} \right) = 1 - \frac{1}{(n+1)^{1-\alpha}} \to 1$$

il y a donc absolue convergence de la série

$$\sum S_n \left(\frac{1}{n^{1-\alpha}} - \frac{1}{(n+1)^{1-\alpha}} \right)$$

et l'on en déduit la convergence de $\sum \frac{a_n}{n}$. C'est absurde.

Exercice 172: [énoncé]

a) On peut écrire

$$\sum_{k=1}^{n} v_k = \sum_{k=1}^{n} k u_k - \sum_{k=2}^{n+1} (k-1)u_k = \sum_{k=1}^{n} u_k - n u_{n+1}(*)$$

Montrons que la convergence de $\sum u_n$ entraı̂ne que $nu_n \to 0$.

Posons S_n les sommes partielles de $\sum u_n$.

Par la décroissance de u_n , on a $0 \leqslant \overline{nu_{2n}} \leqslant S_{2n} - S_n$.

Par suite $nu_{2n} \to 0$ et aussi $2nu_{2n} \to 0$.

De façon semblable, on obtient $nu_{2n+1} \to 0$ puis $(2n+1)u_{2n+1} \to 0$. Ainsi $nu_n \to 0$ et donc

$$\sum_{k=1}^{n} v_k \xrightarrow[n \to +\infty]{} \sum_{k=1}^{+\infty} u_k$$

b) Supposons que la série de terme général v_n converge. Si la série de terme général u_n converge alors $u_n \to 0$. Inversement, supposons que $u_n \to 0$. On peut écrire

$$u_n = \sum_{k=n}^{+\infty} (u_k - u_{k+1}) \leqslant \sum_{k=n}^{+\infty} \frac{v_k}{k}$$

On a alors

$$0 \leqslant nu_n \leqslant \sum_{k=n}^{+\infty} \frac{n}{k} v_k \leqslant \sum_{k=n}^{+\infty} v_k$$

Puisque la série des v_n converge,

$$\sum_{k=n}^{+\infty} v_k \to 0 \text{ puis } nu_n \to 0$$

La relation (*) entraı̂ne alors la convergence de $\sum u_n$.

c) $u_n = 1$ convient, où si l'on veut une suite non constante, $u_n = 1 + \frac{1}{n^2}$

Exercice 173 : [énoncé]

Posons $v_n = n(u_n - u_{n+1})$. On peut écrire

$$\sum_{k=1}^{n} v_k = \sum_{k=1}^{n} k u_k - \sum_{k=2}^{n+1} (k-1)u_k = \sum_{k=1}^{n} u_k - n u_{n+1}$$

Si la série $\sum u_n$ converge alors puisque

$$\sum_{k=1}^{n} v_k \leqslant \sum_{k=1}^{n} u_k \leqslant \sum_{n=1}^{+\infty} u_n$$

la série $\sum v_n$ converge car à termes positifs et aux sommes partielles majorées. Inversement, supposons la convergence de $\sum v_n$.

Puisque la suite (u_n) est de limite nulle, on peut écrire

$$0 \leqslant u_{n+1} = \sum_{k=n+1}^{+\infty} (u_k - u_{k+1}) = \sum_{k=n+1}^{+\infty} \frac{v_k}{k} \leqslant \frac{1}{n+1} \sum_{k=n+1}^{+\infty} v_k$$

et donc $(n+1)u_{n+1} \to 0$. La relation

$$\sum_{k=1}^{n} u_k = \sum_{k=1}^{n} v_k + (n+1)u_{n+1} - u_{n+1}$$

donne alors la convergence de $\sum u_n$ ainsi que l'égalité des sommes des séries.

Exercice 174: [énoncé]

Posons

$$S_n = \sum_{k=1}^n a_k$$

On peut écrire

$$\sum_{k=1}^{n} a_k^2 = \sum_{k=1}^{n} a_k (S_k - S_{k-1})$$

En séparant la somme en deux et en reprenant l'indexation de la deuxième somme

$$\sum_{k=1}^{n} a_k^2 = \sum_{k=1}^{n} a_k S_k - \sum_{k=0}^{n-1} a_{k+1} S_k$$

ce qui donne (sachant $S_0 = 0$)

$$\sum_{k=1}^{n} a_k^2 = \sum_{k=1}^{n} (a_k - a_{k+1}) S_k + a_{n+1} S_n$$

La suite (S_n) converge, elle est donc bornée par un certain réel M.

D'une part $a_n \to 0$ et donc $a_{n+1}S_n \to 0$.

D'autre part $|(a_k - a_{k+1})S_k| \leq M |a_k - a_{k+1}|$ et donc la série $\sum (a_n - a_{n+1})S_n$ converge absolument.

Par addition de convergence, on peut conclure que la série $\sum a_n^2$ converge.

Exercice 175: [énoncé]

- a) C'est la convergence de u_n vers ℓ .
- b) On a

$$|v_n - \ell| = \frac{1}{n} |(u_1 - \ell) + \dots + (u_n - \ell)|$$

et par l'inégalité triangulaire

$$|v_n - \ell| \le \frac{|u_1 - \ell| + \dots + |u_{n_0} - \ell|}{n} + \frac{|u_{n_0+1} - \ell| + \dots + |u_n - \ell|}{n}$$

On conclut en exploitant $|u_k - \ell| \leq \frac{\varepsilon}{2}$ pour $k > n_0$.

c) Quand $n \to +\infty$,

$$\frac{|u_1 - \ell| + \dots + |u_{n_0} - \ell|}{n} = \frac{C^{te}}{n} \to 0$$

donc pour n assez grand

$$\frac{|u_1 - \ell| + \dots + |u_{n_0} - \ell|}{n} \leqslant \frac{\varepsilon}{2}$$

Ainsi il existe un rang n_1 au-delà duquel

$$|v_n - \ell| \leqslant \frac{\varepsilon}{2} + \frac{n - n_0}{n} \frac{\varepsilon}{2} \leqslant \varepsilon$$

d) On applique le résultat précédent à la suite de terme général $u_{n+1}-u_n$ et on peut affirmer

$$\frac{1}{n} \sum_{k=0}^{n-1} u_{k+1} - u_k \to \alpha$$

Après télescopage

$$\frac{1}{n}\left(u_n - u_0\right) \to \alpha$$

puis

$$\frac{1}{n}u_n \to \alpha$$

et enfin

$$u_n \sim \alpha n$$

Exercice 176: [énoncé]

a) Supposons $\ell = 0$.

Soit $\varepsilon > 0$, il existe $n_0 \in \mathbb{N}$ tel que

$$\forall n > n_0, |u_n| \leqslant \varepsilon/2$$

On a alors

$$|v_n| \leqslant \left| \frac{u_1 + \dots + n_0 u_{n_0}}{n^2} \right| + \left| \frac{(n_0 + 1)u_{n_0 + 1} + \dots + n u_n}{n^2} \right| \leqslant \frac{C^{te}}{n^2} + \frac{\varepsilon}{2} \leqslant \varepsilon$$

pour n assez grand.

Ainsi $v_n \to 0$.

Cas général : $u_n = \ell + w_n$ avec $\omega_n \to 0$:

$$v_n = \frac{n(n+1)}{2n^2}\ell + \frac{w_1 + \dots + nw_n}{n^2} \to \frac{\ell}{2}$$

b) On peut écrire

$$\frac{u_n}{n^2} = \frac{(u_n - u_{n-1}) + \dots + (u_1 - u_0)}{n^2} + \frac{u_0}{n^2}$$

donc

$$\frac{u_n}{n^2} = \frac{n^{\frac{(u_n - u_{n-1})}{n}} + \dots + \frac{(u_1 - u_0)}{1}}{n^2} + \frac{u_0}{n^2} \to \frac{\ell}{2}$$

Exercice 177: [énoncé]

On a $\ln u_{n+1} - \ln u_n \to \ln \ell$ donc par Césaro

$$\frac{1}{n} \sum_{k=1}^{n} \ln u_k - \ln u_{k-1} \to \ln \ell$$

d'où

$$\frac{1}{n}\ln u_n \to \ln \ell$$

puis

$$\sqrt[n]{u_n} \to \ell$$

Exercice 178 : [énoncé]

a) La suite (u_n) est bien définie et à valeur dans $\mathbb{R}^{+\star}$ car

$$\forall x > 0, \ln(1+x) > 0$$

La suite (u_n) est décroissante car

$$\forall x \geqslant 0, \ln(1+x) \leqslant x$$

La suite (u_n) est aussi minorée par 0 donc convergente.

En passant la relation de récurrence à la limite, on obtient que (u_n) tend vers 0. b)

$$\frac{1}{u_{n+1}} - \frac{1}{u_n} = \frac{u_n - \ln(1 + u_n)}{u_n u_{n+1}} \sim \frac{1}{2}$$

car $u_{n+1} \sim u_n$.

c) Par le théorème de Césaro

$$\frac{1}{n} \sum_{k=0}^{n-1} \left(\frac{1}{u_{k+1}} - \frac{1}{u_k} \right) \to \frac{1}{2}$$

puis

$$\frac{1}{n}\frac{1}{u_n} \to \frac{1}{2}$$

Finalement

$$u_n \sim \frac{2}{n}$$

Exercice 179: [énoncé]

a) La suite (u_n) est décroissante car

$$\forall x \in [0, \pi/2], \sin x \leqslant x$$

La suite (u_n) est aussi minorée par 0 donc convergente.

En passant la relation de récurrence à la limite, on obtient que (u_n) tend vers 0. b)

$$\frac{1}{u_{n+1}^2} - \frac{1}{u_n^2} = \frac{u_n^2 - \sin(u_n)^2}{u_n^2 u_{n+1}^2} \sim \frac{1}{3}$$

 $car u_{n+1} \sim u_n.$

c) Par le théorème de Césaro

$$\frac{1}{n} \sum_{k=0}^{n-1} \left(\frac{1}{u_{k+1}^2} - \frac{1}{u_k^2} \right) \to \frac{1}{3}$$

puis

$$\frac{1}{n}\frac{1}{u_n^2} \to \frac{1}{3}$$

Finalement

$$u_n \sim \frac{\sqrt{3}}{\sqrt{n}}$$

Exercice 180 : [énoncé]

On sait $R_n \to 0$ donc

$$R_{n-1} = R_n + u_n = R_n + R_n^2 + o(R_n^2) = R_n + o(R_n) \sim R_n$$

et par conséquent

$$\frac{1}{R_n} - \frac{1}{R_{n-1}} = \frac{u_n}{R_n R_{n-1}} \sim \frac{R_n^2}{R_n^2} \to 1$$

Par le théorème de Césaro

$$\frac{1}{n} \sum_{k=1}^{n} \left(\frac{1}{R_k} - \frac{1}{R_{k-1}} \right) \to 1$$

et donc

$$\frac{1}{n} \left(\frac{1}{R_n} - \frac{1}{R_0} \right) \to 1$$

Enfin, sachant $R_n \to 0$ et R_0 constant

$$R_n \sim \frac{1}{n}$$
 puis $u_n \sim \frac{1}{n^2}$

Exercice 181: [énoncé]

On remarque

$$v_n \geqslant u_{2^n} + u_{2^n+1} + \dots + u_{2^{n+1}-1}$$

de sorte que

$$\sum_{k=0}^{n} v_k \geqslant \sum_{k=1}^{2^{n+1}-1} u_k$$

Ainsi, si $\sum u_n$ diverge alors $\sum v_n$ aussi par comparaison de séries à termes positifs. Aussi

$$u_{2^n} + \dots + u_{2^{n+1}-1} \geqslant \frac{1}{2}v_{n+1}$$

donc

$$\sum_{k=1}^{2^{n}-1} u_{k} \geqslant \frac{1}{2} \sum_{k=1}^{n} v_{k}$$

Ainsi, si $\sum u_n$ converge alors $\sum v_n$ aussi par comparaison de séries à termes positifs.

Exercice 182 : [énoncé]

a) On remarque

$$p^{n}(p-1)u_{p^{n+1}} \leqslant \sum_{k=p^{n}}^{p^{n+1}-1} u_{k} \leqslant p^{n}(p-1)u_{p^{n}}$$

et donc

$$\frac{p-1}{p} \sum_{\ell=1}^{n+1} v_{\ell} \leqslant \sum_{k=1}^{p^{n+1}-1} u_k \leqslant (p-1) \sum_{\ell=0}^{n} v_{\ell}$$

Si $\sum u_n$ converge alors la première inégalité donne

$$\sum_{\ell=1}^{n+1} v_{\ell} \leqslant \frac{p}{p-1} \sum_{k=1}^{+\infty} u_k$$

ce qui assure la convergence de la série $\sum v_n$ car c'est une série à termes positifs aux sommes partielles majorées.

Si $\sum v_n$ converge alors la deuxième inégalité de l'encadrement précédent donne

$$\sum_{k=1}^{p^{n+1}-1} u_k \leqslant (p-1) \sum_{\ell=0}^{+\infty} v_{\ell}$$

et puisque les sommes partielles de la série $\sum u_n$ sont croissantes et que ce qui précède permet de les majorer, on peut conclure à la convergence de la série $\sum u_n$. b) Prenons p=2 et

$$u_n = \frac{1}{n \ln n}$$

La suite (u_n) est décroissante positive et

$$v_n = 2^n u_{2^n} = \frac{1}{n \ln 2}$$

Puisque $\sum v_n$ diverge, $\sum u_n$ diverge aussi. Prenons toujours p=2 et cette fois-ci

$$u_n = \frac{1}{n \ln n \ln(\ln n)}$$

La suite (u_n) est décroissante positive et

$$v_n = 2^n u_{2^n} = \frac{1}{n \ln 2 \ln(n \ln 2)} \sim \frac{1}{\ln 2} \frac{1}{n \ln n}$$

et à nouveau nous pouvons conclure à la divergence de $\sum u_n$.

Exercice 183: [énoncé]

On remarque

$$(2n+1)u_{(n+1)^2} \leqslant \sum_{k=n^2}^{(n+1)^2-1} u_k \leqslant (2n+1)u_{n^2}$$

et donc

$$\sum_{\ell=1}^{n+1} (2\ell-1)u_{\ell^2} \leqslant \sum_{k=1}^{(n+1)^2-1} u_k \leqslant \sum_{\ell=0}^{n} (2\ell+1)u_{\ell^2}$$

Si $\sum u_n$ converge alors la première inégalité donne

$$\sum_{\ell=1}^{n+1} v_{\ell} = \sum_{\ell=1}^{n+1} \ell u_{\ell^2} \leqslant \sum_{\ell=1}^{n+1} (2\ell - 1) u_{\ell^2} \leqslant \sum_{k=1}^{+\infty} u_k$$

ce qui assure la convergence de la série $\sum v_n$ car c'est une série à termes positifs aux sommes partielles majorées.

Si $\sum v_n$ converge alors la série $\sum u_{n^2}$ converge aussi car

$$0 \leqslant u_{n^2} \leqslant nu_{n^2} = v_n$$

On en déduit la convergence de $\sum (2n+1)u_{n^2}$ et la deuxième inégalité de l'encadrement précédent donne

$$\sum_{k=1}^{p^{n+1}-1} u_k \leqslant \sum_{\ell=0}^{+\infty} (2\ell+1) u_{\ell^2}$$

Puisque les sommes partielles de la série $\sum u_n$ sont croissantes et que ce qui précède permet de les majorer, on peut conclure la convergence de la série $\sum u_n$.

Exercice 184: [énoncé]

Supposons que $\sum v_n$ converge. Pour $n^2 \leqslant k < (n+1)^2$,

$$0 \leqslant u_k \leqslant u_{n^2} \leqslant \frac{v_n}{n^2}$$

donc

$$0 \leqslant \sum_{k=n^2}^{(n+1)^2 - 1} u_k \leqslant v_n \frac{(n+1)^2 - n^2}{n^2}$$

ce qui permet d'affirmer que les sommes partielles de la série à termes positifs $\sum u_n$ sont majorées et donc $\sum u_n$ converge.

Inversement, pour $u_n = \frac{1}{n^{3/2}}$ on a $v_n = \frac{1}{n}$ de sorte que $\sum u_n$ converge et $\sum v_n$ diverge.