Mediation Considerations

BHET Meeting

Sam Harper McGill University

2023-12-21

HEI study objectives

Aim 1.

Estimate the total effect of the intervention.

Aim 2.

Estimate the contribution of changes in the chemical composition of $PM_{2.5}$ to the overall effect on health outcomes.

Aim 3. *>

Examine alternative pathways and mechanisms that may contribute to the intervention's impact.

Basic idea for mediation study

To understand the pathways, mechanisms, and intermediates through which a treatment affects an outcome.

How much of the policy effect is through:

- ullet Reduced exposure to $PM_{2.5}$
- Other pathways (behavioral changes?)
- Also consider multiple mediators

First part of mediation: total effect

Step 1: Estimate the total effect of T.

Second part of mediation: decomposition

Basic idea: understand pathways of effects

Step 2: Estimate how much of the total effect is due to $PM_{2.5}$ vs. other pathways?

Basic DAG for Mediation

X = pre-treatment covariates

T = exposure

M = mediator

W = confounders

Y = outcome

Basic DAG for Mediation

X = pre-treatment covariates

T = exposure

M = mediator

W = confounders

Y = outcome

Quantities of interest

Total effect:

$$E[Y|T,X] = eta_0 + eta_1 T + eta_2 X$$

This equation estimates the total effect of the ban:

$$TE=eta_1(T^*-T)$$

where T^st is exposure to ban and T is no exposure.

Mediation model

Estimate two regressions:¹

$$E[M|T,X] = eta_0 + eta_1 T + eta_2 X$$

$$E[Y|T,X,M] = \theta_0 + \theta_1T + \theta_2M + \theta_3TM + \theta_4X + \theta_5W$$

Second equation estimates the "Controlled Direct Effect":

$$CDE = \theta_1 + \theta_3 TM$$

Key assumptions

Assumptions for valid CDE:

- No confounding of the total effect.
- No confounding of the mediator-outcome effect.

Valid NDE and NIE also require:

- No confounding of the exposure-mediator effect.
- No mediator-outcome confounder affected by treatment.

What the hell is the CDE?

Interpretation

This effect is the contrast between the counterfactual outcome if the individual were exposed at T=t and the counterfactual outcome if the same individual were exposed at T=t*, with the mediator set to a fixed level M=m.

English:

"By how much would blood pressure change if the policy were implemented and we held $PM_{2.5}$ fixed at m?"

Ex: Respiratory symptoms, Sleep

X = cohort, time FEs

T = policy

M = hours of sleep

 $W = \{ \mathsf{empty} \}$ $Y = \mathsf{Poor} \ \mathsf{respiratory} \ \mathsf{symptoms}$ 'Poor respiratory symptoms' = 1 if frequency of any coughing,

wheezing, etc. were "most" or "several" days a week.

12

Data

• 3 waves, complete data on outcome and mediator

	Unique (#)	Missing (%)	Mean	SD	Min	Median	Max	
v_id	50	0	25.3	14.2	1.0	25.0	50.0	
year	3	0	2019.4	1.2	2018.0	2019.0	2021.0	11 1
cohort_year	4	0	2018.6	0.9	2018.0	2018.0	2021.0	1
treat	2	0	0.2	0.4	0.0	0.0	1.0	1 .
resp	2	0	0.5	0.5	0.0	1.0	1.0	
hsleep	30	0	7.7	2.0	1.0	8.0	20.0	

Total Effect

$$logit(Y_{it}) = lpha_{v[i]}^{village} + \sum_{r=q}^{T} eta_r d_r + \sum_{s=r}^{T} \gamma_s f s_t + \sum_{r=q}^{T} \sum_{s=r}^{T} au_{rt} (d_r imes f s_t)$$

- $\alpha_{v[i]}^{village}$ = village-level random intercept
- d_r = treatment cohort fixed effects
- fs_t = time fixed effects
- τ_{rt} = cohort-time $ATTs^1$

Marginal effects

Posterior distributions of marginal predictions: poor respiratory symptoms

Cohort-specific ATTs

	Simple Average					
	Est.	(S.E.)	2.5 %	97.5 %		
Avg ATT	-0.106	(0.051)	-0.203	-0.003		
	Cohort Averages					
	Est.	(S.E.)	2.5 %	97.5 %		
ATT(g2019)	-0.158	(0.067)	-0.284	-0.023		
ATT(g2020)	0.013	(0.075)	-0.137	0.158		
ATT(g2021)	-0.017	(0.111)	-0.241	0.194		

Mediation model

$$egin{aligned} logit(Y_{it}) &= lpha_{v[i]}^{village} + \sum_{r=q}^{T} eta_r d_r + \sum_{s=r}^{T} \gamma_s f s_t + \sum_{r=q}^{T} \sum_{s=r}^{T} au_{rt} (d_r imes f s_t) \ &+ \delta M_{it} + \sum_{r=q}^{T} \sum_{s=r}^{T} \eta_{rt} (d_r imes f s_t imes M_{it}) \end{aligned}$$

where now we have added:

- δ = conditional effect of mediator
- η_{rt} = treatment-mediator product terms

Estimates

	Total Effect			CDE		
	Est.	2.5 %	97.5 %	Est.	2.5 %	97.5 %
Untreated	0.606	0.514	0.690	0.599	0.505	0.688
Treated	0.498	0.444	0.553	0.500	0.447	0.554
Difference	-0.106	-0.203	-0.003	-0.098	-0.202	0.008

- Minimal evidence of mediation.
- ullet Proportion explained: $PE=rac{TE-CDE}{TE}=0.08$

Extensions to multiple mediators

- More complicated
- Sequential mediators?
- Interactions between mediators?

Summary

- Mediation analysis aims are part of HEI project.
- Likely to focus mostly on CDEs.
- Tutorials, packages and macros in R, SAS, Stata available.1
- Recent R package regmedint from Yoshida and Li (2022)
- Implementation with staggered DiD more likely to require manual implementation rather than 'default' R packages.

References

- Arel-Bundock V. Marginaleffects: Predictions, comparisons, slopes, marginal means, and hypothesis tests [Internet]. 2023. Available from: https://marginaleffects.com/
- Bürkner PC. Brms: An R package for bayesian multilevel models using Stan. Journal of statistical software. 2017;80:1-28.
- VanderWeele T. Explanation in causal inference: Methods for mediation and interaction. Oxford University Press; 2015.
- Yoshida K, Li Y. Regmedint: Regression-based causal mediation analysis with interaction and effect modification terms [Internet]. 2022. Available from: https://kaz-yos.github.io/regmedint/