# Automation: Methodology and Technology Panel Discussion 3

AUGPath

CUG CS

December 1, 2022

## Contents

- 1 Background
- 2 Principles of Automation
- 3 Application

## Compute

 $\bullet$  "computer"  $\leftrightarrow$  "person who computes"



## Compute

- $\bullet$  "computer"  $\leftrightarrow$  "person who computes"
- $\bullet$  complicated  $\rightarrow$  methodology

### Contents

- Background
- 2 Principles of Automation
  - Abstraction
  - Algorithms
- 3 Application

# (Part of) Principles

- Abstraction
- Algorithms

To make problems clear

(I) To make problems clear.

To make problems clear

(I) To make problems clear.

## Example

A farmer(P) wants to cross a river and take with him a wolf(W), a goat(G), and a cabbage(C).

To make problems clear

(I) To make problems clear.

## Example

A farmer(P) wants to cross a river and take with him a wolf(W), a goat(G), and a cabbage(C).



How can the farmer bring the wolf, the goat, and the cabbage across the river?

To make problems clear

Vertex = state of original shore.

Edge = Possible transition that can be made

Farmer=P, Wolf=W, goat=G, Cabbage=C.

That is, find the shortest path of the given graph.



And it's easy to solve now!



Easy to Maintain

(II) Easy to Maintain

Black-box abstraction: What is it about.

Example

We have AND gates and NOT gates and so on...

Easy to Maintain

#### (II) Easy to Maintain

Black-box abstraction: What is it about.

## Example

We have AND gates and NOT gates and so on...

We have some wires to construct a functional logic gate.



Easy to Maintain

Black-box abstraction: More precisely...

- Basic Elements: something that are pretty basic.(like sets in Maths)
- Means of Combination: may construct something rather complicated(composition of functions, etc.)
- Means of Abstraction: investigate how can we abstract things(like fixed patterns in math problems)
- Capturing Common Patterns: find how we make the abstractions (like reflection and summarizing after solving a problems)

The black-box abstraction uses the idea of abstraction itself!



#### Friendly to represent Data

- (III) Friendly to represent Data machine to automate things  $\rightarrow$  computers
  - state of automation machine is limited
  - a "translation" from real-world problems to automation machine



## How to Abstract?

# Algorithms' Help



# Make "abstractions" dynamic

Find the page of word s in Oxford Advanced Learners' Dictionary

# Make "abstractions" dynamic

Find the page of word s in Oxford Advanced Learners' Dictionary

Example (Find the page of word s(assuming no spelling mistakes) in OALD)

### Algorithm 1.

```
for word in dictionary,
if word is equal to s,
return the page of s
```

# Make "abstractions" dynamic

Find the page of word s in Oxford Advanced Learners' Dictionary

Example (Find the page of word s(assuming no spelling mistakes) in OALD)

### Algorithm 1.

for word in dictionary,

if word is equal to s,

return the page of s

#### Algorithm 2.

find word in (start page, end page)

Open to the middle(|(startpage + endpage)/2|)

Look at page

If the word is on the page, return the page number.

If the word is earlier in the dictionary,  $find\ word\ in(start\ page,\ middle)$ 

If the word is later in the dictionary, find word in (middle+1, end page)

## That's it

But make sure that you have proved...

- your algorithm is correct
- your algorithm is (somehow) optimized

## Contents

- 1 Background
- 2 Principles of Automation
- 3 Application

# ETC System

Efforts made in the field of abstraction and algorithms

- huge database system  $\rightarrow$  Abstraction(II) (III)
  - $\blacktriangleright$  data racing, concurrency problems  $\rightarrow$  (Algorithm )
  - ightharpoonup efficiency  $\rightarrow$  (Algorithm )
- signals received by receiver  $\rightarrow$  Abstraction(I), (III)

# Automation Production in Factory

Efforts made in the field of abstraction and algorithms

- simulation process  $\rightarrow$  Abstraction(I, II)
- stabilize the body of the robots  $\rightarrow$  Algorithm



# Dish washing

Efforts made in the field of abstraction and algorithms

- the "washing process"  $\rightarrow$  Algorithm
- the construct of the machine  $\rightarrow$  Abstraction(II)

# Verify Mathematical Proofs

Efforts made in the field of abstraction and algorithms

- rules about  $logic \rightarrow Abstraction(I)$ 
  - ightharpoonup if p is a prop. ,  $\neg\neg p \leftrightarrow p$
  - $A \wedge (B \wedge C) = (A \wedge B) \wedge C$
  - **...**

Lean Theorem Prover

http://leanprover-community.github.io/lean-web-editor

# Verify Mathematical Proofs

variables A B C D : Prop

```
Example
```

```
variable h1 : A -> B -> C
variable h2 : D -> A
variable h3 : D
variable h4 : B
#check h2 h3
#check h1 (h2 h3)
#check h1 (h2 h3) h4
More stuff: https://leanprover.github.io/theorem proving in
```

lean4/title page.html

## Data Providers on Web

gets information by...

- web crawler
- government files
- official dataset

before automatically process these data.

# Summary and References

- [1] Problem Solving 2020, Nanjing University.
- [2] Minecraft Logic Gates, FandomWiki.
- [3] Structure and Interpretation of Computer Programs, 1986, MIT.
- [4] CS50x 2022, Harvard University.
- [5] Logic and Proof by Jeremy Avigad, Robert Y. Lewis, and Floris van Doorn.

# Thanks!