R-scape User's Guide

RNA Significant Covariation Above Phylogenetic Expectation

Version v2.0.4.b; Dec 2023

Elena Rivas
elenarivas@fas.harvard.edu
Department of Molecular and Celullar Biology
Harvard University
16 Divinity Avenue
Cambridge MA 02138 USA
http://rivaslab.org/

Contents

1	Introduction	5
	How to avoid reading this manual	5
	How do I cite R-scape?	5
2	Installation	6
	Quick installation instructions	6
	System requirements	6
	Makefile targets	7
	Why is the output of 'make' so clean?	7
	What gets installed by 'make install', and where?	7
	what gets installed by make install, and where.	,
3	Tutorial	8
	Modes of R-scape	8
	The four options to run R-scape	8
	Option –RAF(S) disallowed	9
	Files used in the tutorial	9
		10
	The –cacofold option	11
	Example of an RNA with pseudoknots	14
		17
		17
	1	
4	Inputs	19
	The Stockholm format to describe a consensus structure	19
		19
	TI-0	
5	Outputs	20
	<u> </u>	20
	1	21
	The state of the s	21
		22
	C 1	23
	Graphical outputs per alignment	24
_		
6		27
	1	27
	-E <x></x>	27
	GT,MI,MIr,MIg,CHI,OMES,RAF,RAFS,	27
	C2,C16	28
		28
	1	28
		28
		28
		28
		28
		28
	lancaster_join,wfisther_join	28
	lancaster_double,wfisther_double	28
		29
	Search options	25

cacofold	 29
naive	 29
tstart <n></n>	 29
tend <n></n>	 29
window <n></n>	 29
slide <n></n>	 29
vshuffle	 29
cshuffle	 29
givennull <f></f>	 29
Input alignment options	30
-I <x></x>	30
gapthresh <x></x>	 30
consensus	 30
submsa <n></n>	 30
treefile <f></f>	 30
ntree <n></n>	30
Options for producing a CaCoFold structure	30
cacofold	 30
cyk	 30
decoding	 31
refseq	 31
E_neg <x></x>	 31
lastfold	 31
show_hoverlap	31
covmin <n></n>	 31
allow_negatives	 31
Rfam	 31
Options for importing a structure	 32
pdb <s></s>	32
cntmaxD <x></x>	 32
cntmind <n></n>	 32
onlypdb	 33
draw_nonWC	 33
Options for type of pairs tested	 34
samplecontacts	34
samplebp	 34
samplewc	 34
Output options	 34
roc	 34
outmsa <f></f>	 34
outtree <f></f>	 35
savenull	 35
Plotting options	 35
nofigures	35
r2rall	 35
Other options	 35
seed <n></n>	 35
	_
Some other topics	36
How do I cite R-scape?	36
How do I report a bug?	 36

8 Acknowledgments 37

1 Introduction

R-scape (RNA Significant Covariation Above Phylogenetic Expectation) is a program that given a multiple sequence alignment (MSA) of RNA sequences, finds the pairs of positions that show a pattern of significant covariation. Each covariation score has an E-value associated to it. E-values are determined using a null model of covariation due to phylogeny but independent of any structural constraints.

How to avoid reading this manual

- Follow the quick installation instructions on page 6.
- Go to the tutorial section on page 8, which walks you through some examples of using R-scape on real data.

Everything else, you can read later.

How do I cite R-scape?

Rivas, E. et al., "A statistical test for conserved RNA structure shows lack of evidence for structure in lncRNAs", Nature Methods 14, 4548 (2017).

https://www.nature.com/articles/nmeth.4066

Rivas, E. and Eddy, S. E., "Response to Tavares et al., Covariation analysis with improved parameters reveals conservation in lncRNA structures", (2018).

https://doi.org/10.1101/2020.02.18.955047.

Rivas, E. et al., "Estimating the power of sequence covariation analysis for detecting conserved RNA structure", Bionformatics, 36, 30723076, (2020).

https://doi.org/10.1093/bioinformatics/btaa080

Rivas, E., "RNA structure prediction using positive and negative evolutionary information", PLOS Comput Biol, 16(10), e1008387, (2020).

https://doi.org/10.1371/journal.pcbi.1008387.

2 Installation

Quick installation instructions

Download R-scape.tar.gz from http://eddylab.org/; unpack it, configure, and make:

```
> tar xf R-scape.tar.gz
> cd R-scape
> ./configure
> make
> make install
```

The newly compiled binary (R-scape) is in the R-scape/bin directory. You can run it from there, as in this example:

> bin/R-scape tutorial/updated Arisong.sto

That's it. You can keep reading if you want to know more about customizing a R-scape installation, or you can skip ahead to the next chapter, the tutorial.

System requirements

Operating system: R-scape is designed to run on POSIX-compatible platforms, including UNIX, Linux and Mac OS/X. The POSIX standard essentially includes all operating systems except Microsoft Windows. We have tested most extensively on Linux and MacOS/X because these are the machines we develop on.

Compiler: The source code is C conforming to POSIX and ANSI C99 standards. It should compile with any ANSI C99 compliant compiler, including the GNU C compiler gcc, and the C++ compiler g++. We test the code using the gcc and g++ compilers.

The code include several Perl scripts (from the independent program R2R used here). Make sure your PATH environmental variable includes a directory with a Perl executable.

The code also uses GNUPLOT. Make sure your PATH environmental variable includes a directory with a GNU-PLOT executable.

Libraries and other installation requirements: R-scape includes three software libraries:

- the Easel library package (http://bioeasel.org/),
- the HMMER library package (http://hmmer.org/),
- the Infernal library package (http://eddylab.org/infernal/),

and three independent programs:

- FastTree (Price et al., 2010) (for building phylogenetic trees, v2.1.11),
- R2R (Weinberg and Breaker, 2011) (for drawing consensus RNA structures),
- RNAVIEW (Yang et al., 2003) (for identifying different types of basepairs in nucleic acid alignments).

All libraries and independent programs will automatically compile during R-scape's installation process. By default, R-scape does not require any additional libraries to be installed by you, other than standard ANSI C99 libraries that should already be present on a system that can compile C code.

Executables for the three independent programs will appear in the R-scape/bin directory.

Makefile targets

all Builds everything. Same as just saying make.

install Installs the binaries (R-scape, FastTree, r2r).

By default, programs are installed in R-scape_version/bin. You can customize the location of the binaries by replacing

> ./configure

with

> ./configure --prefix=/the/directory/you/want

The newly compiled binaries are now in the /the/directory/you/want/bin directory.

uninstall Reverses the steps of make install.

clean Removes all files generated by compilation (by make). Configuration (files generated by ./configure) is preserved.

distclean Removes all files generated by configuration (by ./configure) and by compilation (by make).

Why is the output of 'make' so clean?

Because we're hiding what's really going on with the compilation with a wrapper. If you want to see what the command lines really look like, pass a V=1 option (V for "verbose") to make, as in:

> make V=1

What gets installed by 'make install', and where?

The top-level configure file has a variable RSCAPE_HOME that specifies the directory where make install will install things: RSCAPE_HOME/bin.

By default RSCAPE_HOME is assigned to the current directory R-scape.

The best way to change this default is when you use ./configure, and the most important variable to consider changing is --prefix. For example, if you want to install R-scape in a directory hierarchy all of its own, you might want to do something like:

> ./configure --prefix=/usr/local/rscape

That would keep R-scape out of your system-wide directories like /usr/local/bin, which might be desirable. Of course, if you do it that way, you'd also want to add /usr/local/rscape/bin to your \$PATH.

3 Tutorial

Here's a tutorial walk-through of how to use R-scape. This should suffice to get you started.

Modes of R-scape

For an input alignment, R-scape reports all pairs that have covariation scores with E-values smaller than a target E-value.

R-scape has two different **modes** of operation which determine how it calculates E-values, for which it needs to know how many possible base pairs were tested (i.e. E-values are multiple-test-corrected). The E-values are calculated in one of two ways:

A one-set statistical test: default

E-values are calculated assuming that all pairs are possible.

This is the default behavior of R-scape.

A two-set statistical test: option -s

If the alignment has associated a *given structure*, option -s performs two independent statistical tests: one for the pairs included in the structure, a different one for all the remaining possible pairs. It also draws the given consensus structure annotated with the significantly covarying base pairs.

The four options to run R-scape

These are the four options to run R-scape.

Evaluate region for conserved structure All possible pairs are analyzed equally as a one set test. If a consensus struc-

ture is provided, that structure is ignored in the covariation test, but it is visu-

alized with the significant covarying pairs highlighted in green.

preferred use:

This option is most appropriate if you're trying to determine if a conserved

structure exists.

Predict new structure All possible pairs are analyzed equally. A structure is predicted and visualized

with the significant covarying pairs highlighted in green.

preferred use:

This option is most appropriate for obtaining a new consensus structure pre-

diction based on covariation analysis.

Evaluate given structure Requires that your Stockholm file has a proposed consensus structure anno-

tation. Two independent covariation tests are performed, one on the set of proposed basepairs, the other on all other possible pairs. The given structure

is visualized with significant covarying pairs highlighted in green.

preferred use:

This option is most appropriate for evaluating how well an independently

proposed consensus structure is supported by covariation analysis.

Improve given structure Requires that your Stockholm file has a proposed consensus structure an-

notation. Two independent covariation tests are performed, one on the set

of proposed basepairs, the other on all other possible pairs. A new consensus structure is predicted and visualized with the significant covarying pairs highlighted in green.

preferred use:

This option is most appropriate for using covariation analysis to improve your current consensus structure.

I'll show examples of running each mode, using examples in the tutorial/subdirectory of the distribution.

Option -RAF(S) disallowed

The options to use the covariation measures RAF, RAFa, RAFp, RAFS, RAFSp, and RAFSa has been disallowed, unless they are used in combination with option –naive which reports the list of values for all possible pairs without any statistical significance associated to them.

The following disclamer appears otherwise.

> bin/R-scape --RAF tutorial/updated_Arisong.sto

DISCLAIMER: This measure can only be used in combination with the --naive option.

The --naive option reports a ranked list of scores for all possible pairs without assigning E-values. RAF, RAFS and related measures (RAFp, RAFa, RAFSp, RAFSa) cannot be used in combination with R-scape's statistical test.

The RAF(S) statistics measure covariation and consistency. RAFS assigns relatively high scores to pairs of alignment columns that are consistent with base pairing even if there is no covariation at all. The RAFS statistic was developed for the purpose of predicting consensus RNA structures from alignments of sequences already presumed to have a structure (Hofacker et al., 2002; Lindgreen et al., 2006). For this purpose, both covariation and consistency are useful cues. Distinguishing a conserved RNA structure from a conserved primary sequence is a different problem that requires using a statistic that does not systematically detect significant signals on conserved primary sequence alone. That is R-scape's statistical test. The R-scape statistical test can only be used with measures that estimate covariation alone such as mutual information (MI) or G-test (GT).

Files used in the tutorial

The subdirectory $/ {\hbox{tutorial}}$ in the R-scape distribution contains the files used in the tutorial.

The tutorial provides several examples of RNA structural alignments, all in Stockholm format:

- **updated_Arisong.sto** Structural alignment of the ciliate Arisong RNA. This alignment is an updated version of the one published in (Jung et al., 2011).
 - ar14.sto Structural alignment of the α -proteobacteria ncRNA ar14. This alignment is an updated version of the one published in (del Val et al., 2012).
 - manA.sto Alignment of the manA RNA motif (?Weinberg et al., 2010) provided in the Zasha Weinberg database (ZWD) (Weinberg, 2018).
 - RF00005.sto Rfam v12.0 (Nawrocki et al., 2015) seed alignment of tRNA.
 - RF00001-noss.sto Rfam v12.0 seed alignment of 5S rRNA, after removing the consensus secondary structure.

Running R-scape on one alignment file

To run R-scape with default parameters on alignment file tutorial/updated_Arisong.sto use:

> bin/R-scape tutorial/updated Arisong.sto

The output is a list of the significantly covarying positions under the one-set test

```
# R-scape :: RNA Structural Covariation Above Phylogenetic Expectation
# R-scape 1.4.0 (Oct 2019)
# Copyright (C) 2016 Howard Hughes Medical Institute.
# Freely distributed under the GNU General Public License (GPLv3).
# MSA updated_Arisong_1 nseq 95 (95) alen 66 (150) avgid 65.82 (64.97) nbpairs 20 (20)
# One-set statistical test (all pairs are tested as equivalent)
# Method Target_E-val [cov_min,cov_max] [FP | TP True Found | Sen PPV F]
                   [-9.78,121.66] [0 | 2 20 2 | 10.00 100.00 18.18]
      left_pos right_pos
                                   score E-value substitutions
                                                                               power
                           106 121.65645
137 91.44593
                                                    0.00241628
             98
                                                                                      0.48
            122
                                                   0.038356
                                                                                   0.58
```

A star "*" in the first column indicates that the pair is part of the annotated structure in the updated_Arisong.sto file. A blank indicates a pair that is not compatible with the structure. A "~" indicates an interaction not in the annotated structure but compatible with it (none in this example).

The Arisong RNA in tutorial/updated_Arisong.sto has a proposed secondary structure. Instead of testing all pairs as equivalent, we may want to test the significance of the given structure as a one set of pairs, and independently that of the rest of all possible pairs. In order to do a two-set test use:

> bin/R-scape -s tutorial/updated_Arisong.sto

The output is a list of the significantly covarying positions under the two-set test.

```
# R-scape :: RNA Structural Covariation Above Phylogenetic Expectation
# R-scape 1.4.0 (Oct 2019)
# Copyright (C) 2016 Howard Hughes Medical Institute.
# Freely distributed under the GNU General Public License (GPLv3).
# MSA updated_Arisong_1 nseq 95 (95) alen 66 (150) avgid 65.82 (64.97) nbpairs 20 (20)
# Two-set statistical test (one test for annotated basepairs, another for all other pairs)
# Method Target_E-val [cov_min,cov_max] [FP | TP True Found | Sen PPV F] 
# GTp 0.05 [-9.78,121.66] [0 | 11 20 11 | 55.00 100.00 70.97]
        0.05
                                       score
                                                      E-value
                                                                     substitutions
             98 106 121.65645 2.25295e-05 45
122 137 91.44593 0.000357632 57
96 108 88.43400 0.000466924 26
120 139 74.80289 0.00162024 87
119 140 58.72158 0.00678565 90
121 138 58.34837 0.00691674 99
                                                                                             0.48
                                                                                             0.58
                                                                       57
26
87
90
99
37
20
                                                                                             0.76
                                                                                             0.78
                            138
110
134
135
                                                                                             0.82
                                                                                             0.40
                                        57.27959
                                                        0.00760538
                                      55.67692
             124
                                                       0.0086606
                                                                                          0.21
             123
                                        54.59630
                                                        0.00946822
                                                                          72
                                                                                             0.68
                            105
                                        53.44797
                                                        0.0107226
                                                                                            0.14
               97
                             107
                                        44.91842
                                                         0.0405594
                                                                                            0.59
# The given structure
 SS_cons <<<<____>>>>->>>::
```

```
# Power analysis of given structure
 covary left_pos
                    right_pos substitutions
                                                    power
                                                           0.40
                          110
         95
                          109
                                            28
                                                             0.31
         96
                          108
                                            2.6
                                                             0.28
         97
                          107
                                            58
                                                             0.59
         98
                          106
                                            45
                                                             0.48
         99
                          105
                                            1.5
                                                             0.14
         100
                                            20
                                                              0.21
                           104
                           148
                                                             0.00
         111
                                             Ω
         112
                           147
                                             18
                                                              0.18
                                                             0.00
         113
                           146
         114
                           145
                                             1.5
                                                              0.14
         115
                           144
                                             49
                                                              0.52
         116
                           143
                                             106
                                                              0.84
         119
                           140
                                             90
                                                              0.78
         120
                          139
                                             87
                                                              0.76
         121
                          138
                                             99
                                                              0.82
         122
                           137
                                             57
                                                              0.58
         123
                           135
                                             72
                                                              0.68
         124
                           134
                                             20
                                                              0.21
         125
                           133
                                             31
                                                              0.34
 BPAIRS 20
# avg substitutions per BP 43.7
 BPAIRS expected to covary 8.3
# BPAIRS observed to covary 11
```

The scores of the pairs are identical to those in the one-set test. The E-values have changed relative to those of the one-set test.

The -cacofold option

After performing one of the two statistical tests, this option implements the CaCoFold algorithm:

Builds the best consensus structure that includes the largest possible number of significantly covarying pairs, the maximum-covariation optimal consensus structure. The algorithm identifies pseudoknots and other not nested interactions by running a cascade of nested algorithms until all covarying pairs are taken into account.

Draws the *maximum-covariation optimal consensus structure* annotated with the significantly covarying base pairs.

It also returns the alignment in Stockholm format annotated with the max-cov optimal consensus structure.

> bin/R-scape --cacofold tutorial/updated.Arisong.sto

The output includes first the same output as default R-scape alone, followed by R-scape's proposed structure that under the heading "# The predicted CaCoFold structure" as follows,

```
The predicted CaCoFold structure
>>->>>::
# SS cons <<<<
# Power analysis of CaCoFold structure
           right_pos substitutions
covary left_pos
                           power
          109
     9.5
                                  0.31
              108
     96
                         2.6
                                  0.28
             107
106
                         58
45
     97
                                  0.59
     98
                                  0.48
              105
                         15
                                  0.14
```

```
111
                            148
                                                                0.00
         112
                            147
                                               18
                                                                 0.18
         113
                            146
                                                                0.00
                                               15
         114
                            145
                                                                0.14
         115
                            144
                                               49
                                                                 0.52
                                               90
                                                                0.78
         119
                            140
                            139
                                              87
                                                                 0.76
         120
                           138
                                              99
                                                                0.82
         121
         122
                            137
                                              57
                                                                 0.58
         123
                            135
                                               72
                                                                 0.68
         124
                            134
                                              2.0
                                                                 0.21
 BPATRS 16
 avg substitutions per BP 42.5
 BPAIRS expected to covary 6.5
# BPAIRS observed to covary 2
```

The structure predicted by R-scape includes all the basepairs reported as covarying, provided that those can be arranged into one single structure (including pseudoknots and other non Watson-Crick interactions). The R-scape folding algorithm cannot deal with residues that covary with more than one other residue, such as is the case for alternative structures or triplets. Similarly using

> bin/R-scape -s --cacofold tutorial/updated_Arisong.sto

The output includes first the same output as **option** -s of R-scape alone, followed by R-scape's proposed CaCoFild structure including all the the covarying pairs obtained under the two-set test.

```
# R-scape :: RNA Structural Covariation Above Phylogenetic Expectation
# R-scape 1.4.0 (Oct 2019)
# Copyright (C) 2016 Howard Hughes Medical Institute.
# Freely distributed under the GNU General Public License (GPLv3).
# MSA updated_Arisong_1 nseq 95 (95) alen 66 (150) avgid 65.82 (64.97) nbpairs 20 (20)
# Two-set statistical test (one test for annotated basepairs, another for all other pairs)
# Method Target_E-val [cov_min,cov_max] [FP | TP True Found | Sen PPV F]
                   [-9.78,121.66] [0 | 11 20 11 | 55.00 100.00 70.97]
       left_pos
                                                     E-value
                                                                   substitutions
                                      score
                                                                                      power
                                                 2.25295e-05

0.000357632 57

0.000466924 26

0.00162024 87

0.00678565 90

0.00691674 99
             98 106 121.65645
122 137 91.44593
96 108 88.43400
120 139 74.80289
119 140 58.72158
121 138 58.34837
94 110 57.27959
124 134 55.67692
123 135 54.59630
99 105 53.44797
97 107 44.91842
             122
                                                                                            0.58
                                                                                            0.28
             120
                                                                                           0.76
             119
                                                                                           0.78
                                                                                           0.82
             121
                                                                                           0.40
                                                     0.0086606
0.00946822
                                                                        20
                                                                                          0.21
             123
                                                                         72
                                                                                          0.68
                                                       0.0107226
                                                                        15
58
                                                                                          0.14
                                                        0.0405594
                                                                                           0.59
# The given structure
# SS_cons <<<<____>>>>->>>::
# Power analysis of given structure
 covary left_pos
                      right_pos substitutions
                                                      power
                    110
                                                            0.40
                                              28
         95
                          109
                                                               0.31
                         109
108
107
106
                                              2.6
         96
                                                               0.28
                                             58
45
        97
                                                               0.59
         9.8
                                                               0.48
         99
                          105
                                                                0.14
```

20

100

104

```
0.00
111
                   148
                                      0
                   147
                                      18
                                                        0.18
112
                                                        0.00
113
                   146
114
                   145
                                      15
                                                        0.14
                   144
115
                                      49
                                                         0.52
                   143
                                      106
                                                         0.84
116
                                      90
                                                         0.78
                   140
119
                                                         0.76
                   139
                                      87
120
                                                        0.82
                   138
                                      99
121
                                      57
122
                   137
                                                        0.68
                   135
                                      72
123
124
                   134
                                      20
125
                   133
                                      31
                                                         0.34
```

BPAIRS 20

avg substitutions per BP 43.7 # BPAIRS expected to covary 8.3
BPAIRS observed to covary 11

Method Target_E-val [cov_min,cov_max] [FP | TP True Found | Sen PPV F] # GTp 0.05 [-9.78,121.66] [0 | 11 17 11 | 64.71 100.00 78.57]

# # i	n_fold in_given	left_pos	right_pos	score	E-value subs	stitutions	power
# *	*	98	106	121.65645	2.25295e-05	5 45	0.48
*	*	122	137	91.44593	0.000357632	57	0.58
*	*	96	108	88.43400	0.000466924	26	0.28
*	*	120	139	74.80289	0.00162024	87	0.76
*	*	119	140	58.72158	0.00678565	90	0.78
*	*	121	138	58.34837	0.00691674	99	0.82
*	*	94	110	57.27959	0.00760538	37	0.40
*	*	124	134	55.67692	0.0086606	20	0.21
*	*	123	135	54.59630	0.00946822	72	0.68
*	*	99	105	53.44797	0.0107226	15	0.14
*	*	97	107	44.91842	0.0405594	58	0.59

The predicted CaCoFold structure

SS_cons <<<<____>>->>>::

Power analysis of CaCoFold structure

#				
	y left_pos	right_pos	substitutions	power
*	94	110	37	0.40
	95	109	28	0.31
*	96	108	26	0.28
*	97	107	58	0.59
*	98	106	45	0.48
*	99	105	15	0.14
	111	148	0	0.00
	112	147	18	0.18
	113	146	1	0.00
	114	145	15	0.14
	115	144	49	0.52
*	119	140	90	0.78
*	120	139	87	0.76
*	121	138	99	0.82
*	122	137	57	0.58
*	123	135	72	0.68
*	124	134	20	0.21

BPAIRS 17

avg substitutions per BP 42.2 # BPAIRS expected to covary 6.9 # BPAIRS observed to covary 11

Example of an RNA with pseudoknots

The given structure

R-scape implements the CaCoFold folding algorithm capable of predicting pseudoknots and other non nested interactions using a cascade of dynamic programming algorithms. R-scape had adapted the program R2R to automatically include in the display all covarying interactions whether they are nested or not.

Consider the manA RNA motif. Both the proposed structure for manA RNA and the predicted CaCoFold structure have 2 pseudoknots with covariation support:

> bin/R-scape -s --cacofold tutorial/manA.sto

		structure		>>>:		
				:::::::::::::::::::::::::::::::::::::::		
	SS_cons_2	:::::::::::::::::::::::::::::::::::::::	: : : : : : : : : : :	:::::::::::::::::::::::::::::::::::::::	: : : : : : : : : :	: : : : : : : : : :
#						
					>>	
	SS_cons_2				: : : : : : : : : :	
#	0.0					
#	SS_cons	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		,,,,<<<>	>>, <<<<<	
		:::::::::::::::::::::::::::::::::::::::				
	SS_cons_2			:::::::::::::::::::::::::::::::::::::::	: : : : : : : : : :	
#	0.0					
	SS_cons		>>>>>	>,,,<<<<	>>>>	>,,)))))
	SS_cons_1			>;	>>>::::::	
	SS_CONS_Z					
#	00					
),,,,<<<<				>>>>
				:::::::<<<-<		
#						
				>>>>]		
	SS_CONS_Z			.>>>>:::::::::		
#						
щ	Darram anal	lunda of airron	.+			
		lysis of given s	structure			
#		eft noo nie	wh+ maa	aubatitutiana	201102	
				substitutions	bower	
#	* 1		43	61		0.61
	* 2		42	61		0.61
	* 3		41	72		0.68
	* 4		40	104		0.83
	* 5		39	106		0.84
	* 6		38	126		0.90
	4.9)	344	15		0.14
	* 50		343	16		0.16
	* 51		342	26		0.28
	* 52		341	77		0.71
	* 53		340	26		0.28
	* 57		107	38		0.41
	* 58		106	16		0.16
	* 72		101	71		0.68
	* 73	3	100	38		0.41
	* 74	1	99	60		0.60
	* 75	5	98	34		0.37
	* 76	5	97	31		0.34
	77	7	96	27		0.30
	* 11	12	241	41		0.44
	* 11	13	240	51		0.53
	* 11	15	237	61		0.61
	* 11	16	236	46		0.49
	* 11	17	235	62		0.62
	* 11	18	234	49		0.52
	* 15	50	162	52		0.54
	* 15	51	161	47		0.50
	* 15		160	36		0.39
	15	55	223	31		0.34
	* 15	56	222	30		0.33
	15	57	221	28		0.31
	15	58	220	27		0.30
	* 16	54	206	29		0.32
	* 16	55	205	54		0.56

```
202
     168
                           154
                                      0.95
                201
                           147
     169
                                      0.94
                231
                           48
                                     0.51
     210
                230
                           77
                                     0.71
     211
                229
     212
                           71
                                      0.68
     213
                228
                           59
                                     0.60
                                     0.70
                2.2.7
                           7.5
     214
                                     0.62
     246
                314
                           62
     2.47
                313
                           92
                                     0.79
     248
                312
                           141
                                      0.93
     249
                311
                           90
                                     0.78
     2.50
                310
                           99
                                     0.82
     251
                           105
                309
                                      0.84
                308
                                     0.40
     2.52
                           37
     2.65
                300
                           61
                                     0.61
     266
                299
                           44
                                     0.47
     2.67
                298
                           42
                                     0.45
     268
                297
                           36
                                     0.39
     274
                329
                           47
                                     0.50
     2.75
                328
                           36
                                     0.39
     276
                327
                           39
                                     0.42
     2.78
                326
                           42
                                     0.45
     317
                339
                           13
                                     0.12
     318
                338
                           37
                                     0.40
     319
                337
                           60
                                     0.60
     320
                336
                           18
                                     0.18
     321
                335
                           0
                                     0.00
# BPAIRS 63
# avg substitutions per BP 57.7
# BPAIRS expected to covary 33.2
# BPAIRS observed to covary 54
# The predicted CaCoFold structure
# SS_cons <<<<<___
                           _>>>>: [---[[[[[,,,<<--
 _>>>>>, (--((-(((,,,
# SS_cons
         ____>>>>>, , , <<<<---<___>>--->>>>, , ) ) ) ) --)
# SS_cons )--), <<<<<-----
# SS_cons ---->>>>,, <<<<<_
                          _>>>>]]]]]-]::::
# SS_cons_2 _
# Power analysis of CaCoFold structure
 covary left_pos right_pos substitutions
                               power
                    -----
                                    0.61
               4.3
                         61
                                    0.61
     2
               42
                         61
     3
               41
                         72
                                    0.68
     4
               40
                         104
                                    0.83
     5
               39
                         106
                                    0.84
     6
               38
                         126
                                    0.90
                         82
               346
     45
                                     0.74
     49
                344
                          15
                                    0.14
```

0.94

0.85

```
343
                                                                        0.16
          50
                                                   16
          51
                              342
                                                    26
                                                                        0.28
          52
                               341
                                                                        0.71
          53
                              340
                                                    26
                                                                        0.28
                              107
          57
                                                    38
                                                                        0.41
          58
                              106
                                                   16
                                                                        0.16
                                                                        0.68
          72
                              101
                                                    71
          73
                              100
                                                    38
                                                                       0.41
          74
                                                   60
                                                                      0.60
                              99
          75
                               98
                                                   34
                                                                      0.37
                               97
          76
                                                   31
                                                                       0.34
          77
                              96
                                                                      0.30
                               244
                                                                         0.40
          109
                                                     37
                               241
          112
                                                     41
                                                                         0.44
                               240
                                                                         0.53
          113
                                                     51
                               237
          115
                                                     61
                                                                         0.61
          116
                               236
                                                     46
                                                                         0.49
          117
                               235
                                                     62
                                                                         0.62
          118
                               2.34
                                                     49
                                                                         0.52
          150
                               162
                                                     52
                                                                         0.54
          151
                               161
                                                     47
                                                                         0.50
                               160
                                                     36
                                                                         0.39
          155
                               223
                                                     31
                                                                         0.34
          156
                               2.2.2
                                                     30
                                                                         0.33
          157
                               221
                                                     28
                                                                         0.31
          158
                               220
                                                     27
                                                                         0.30
          164
                               206
                                                     29
                                                                         0.32
          165
                               205
                                                     54
          166
                               204
                                                     148
                                                                          0.94
                               203
                                                     109
          168
                               202
                                                     154
                                                                          0.95
                               201
                                                     147
          211
                               230
                               229
                               228
                                                     59
                               227
                                                                         0.70
          246
                               314
                               312
                                                                          0.93
                                                                         0.82
                                                     37
                                                                         0.40
          265
                                                     61
                                                                         0.61
          266
                                                                         0.47
          267
                               298
                                                     42
                                                                         0.45
          268
                               297
                                                                         0.39
                                                     36
                                                                         0.50
          271
                               278
                                                     81
                                                                         0.73
                                329
                                                     47
          274
                                                                         0.50
          275
                               328
                                                     36
                                                                         0.39
                                                     39
                                                                         0.42
                                327
          278
                               326
                                                     42
                                                                         0.45
                               339
                                                                         0.12
          317
                                                     13
                               338
          318
                                                     37
                                                                         0.40
                                                     60
          319
                               337
                                                                         0.60
          320
                               336
                                                     18
                                                                         0.18
          321
                               335
                                                                        0.00
 BPATRS 68
 avg substitutions per BP 58.0
 BPAIRS expected to covary 36.2
# BPAIRS observed to covary 55
```

The "SS_cons_1" and "SS_cons_2" lines describe the interactions that are not nested relative to the main "SS_cons" structure.

R-scape uses R2R to produce figures of the consensus structures where pseudoknots are also annotated. R-scape] option -s produces the file tutorial/manA.R2R.sto.{pdf,svg} with the structure annotated in the input alignment. R-scape] option -cacofold produces the file tutorial/manA.fold.R2R.sto.{pdf,svg} with the structure produced by R-scape. See Figure 1.

Figure 1: Left: tutorial/manA.R2R.sto.{pdf,svg}, the consensus secondary structure given in the input alignment, depicted by R-scape, using the program R2R. Right: tutorial/manA.fold.R2R.sto.{pdf,svg}, The consensus structure produced by R-scape (option -cacofold). Base pairs with covariation scores equal or below the target E-value (0.05 as default) are depicted in green.

Single sequence structure prediction

If the alignment includes only one sequence, no statistical test is performed.

> bin/R-scape --cacofold tutorial/manA-oneseq.sto

reports the best structure given the sequence. No covariation support is possible for any of the basepairs reported from this analysis. Structures produced this way have to taken with great skepticism.

Default parameters

Default parameters are:

Target E-value: default is 0.05. R-scape reports pairs which covariation score has E-value smaller

or equal to the target value. The target E-value can be changed with option -E

< x>, x> = 0.

Sequence weighting: Sequences are weighted according to the Gerstein/Sonnhammer/Chothia (GSC)

algorithm (Gerstein et al., 1994). This algorithm is time consuming. For alignments with more than 1000 sequences, we use the faster position-based weighting algorithm (Henikoff and Henikoff, 1994). Both weighting algorithms are imple-

mented as part of the easel library.

Gaps in columns: Columns with more than 50% gaps are removed. The gap threshold for removing

columns can be modified using option --gapthresh <x> , 0 < x <= 1.

Covariation statistic: The default covariation statistic is the average product corrected G-Test (equiva-

lent to option **--GTp**).

Covariation Class: R-scape uses the 16 component covariation statistic (C16), unless the number of

sequences in the alignment is ≤ 8 or the length of the alignment is ≤ 50 , in which

case it uses the two-class covariation statistic (C2). A particular covariation class can be selected using either --C16 or --C2.

The threshold for the minimum number of sequences can be changed with option --nseqthresh <n>. The threshold for the minimum alignment length can be changed with option --alenthresh <n>.

Null alignments: In order to estimate E-values, R-scape produces 20 null alignments, unless the product of the number of sequences by the length of the alignment < 10,000 in which case the number of null alignments is 50; or < 1,000 in which case it is 100. The number of null alignments can be controlled with option --nshuffle <n>.

A full list of the R-scape options is found by using

> R-scape -h

4 Inputs

The Stockholm format to describe a consensus structure

The input is a multiple sequence alignment in Stockholm format

(https://en.wikipedia.org/wiki/Stockholm_format). The Stockholm format allows to provide a consensus structure for the alignment using the tag **#=GC SS_cons**. R-scape then can analyze the given consensus structure using option -s.

The Stockholm format uses symbols (), <>, {}, and [] to describe a nested structure. It also allows non-nested structures such as pseudoknots using the symbols Aa or Bb, ..., Zz. See file tutorial/RF00162_SAM.pk.sto, where a pseudoknot with 4 basepairs is annotated for the SAM-I riboswitch.

A extended Stockholm format to describe consensus structures with overlapping base pairs

The #=GC SS_cons annotation does not allow to display other pairs that overlap with the rest of the structure. These overlapping pairs can be base triplets, other non Watson-Crick interactions or even alternative structures. CaCo-Fold identifies a number of these overlapping pairs with covariation support. In order to annotate these overlapping basepairs, R-scape uses additional annotations in the form #=GC SS_cons_1, #=GC SS_cons_2,... See for example file tutorial/RF00162_SAM.CaCoFold.sto, where in addition to the pseudoknot there are two other overlapping pairs annotated as part of the structure.

You should use this augmented Stockholm format to input a consensus structure with overlapping basepairs. If you run

bin/R-scape -s tutorial/RF00162_SAM.CaCoFold.sto you will see that the whole structure is taken into account in the statistical test.

5 Outputs

A Stockholm alignment file can include several different multiple sequence alignments (MSAs). For each alignment file rnafile.sto, R-scape produces the following output files, one for each individual alignment in an input Stockholm file:

rnafile_msaname.cov Tabular output with the significant pairs, with their score and E-value, estimated number of substitutions and power.

rnafile_msaname.sorted.cov Tabular output sorted from highest to lowest E-value.

rnafile_msaname.power Tabular output with the list of basepairs in the proposed RNA structure annotated their power. The file also reports the alignment power, and the expected number of basepairs to covary.

Covariation tabular output

The distribution includes in the directory tutorials/ examples of output files. If you run R-scape, the outputs will go into your current working directory (not necessarily tutorials/).

The output file tutorial/updated_Arisong_1.cov looks like this:

> more tutorial/updated_Arisong_1.cov

The output file is a tabular list of significant pairs sorted by sequence positions:

First column indicates whether the significant pair is part of the given structure (*), or not. If the pair is not in the structure, we distinguish whether the pair is compatible with the given structure (\sim) or not (blank).

In addition, if the structure is provided by a PDB file (using the option --pdb), a non Watson-Crick/Watson-Crick base pair is designated by "**". A contact that is not a basepair is designated by: " $c \sim$ " if compatible with all the basepairs, or by "c" otherwise.

Second and third columns are the two positions of the pair, $i \leq j$ respectively. Positions are relative to the input alignment.

Fourth column is the covariation score.

Fifth column is the E-value. Significant positions have E-values << 1.

Sixth column is the estimated number of total substitutions in the two columns.

Seventh column is the basepair power or probability that it should covary.

The output file also includes two comment lines per alignment in the file:

First comment line describes properties of the alignment: number of sequence (nseq), alignment length (alen), average percentage identity (avgid), and number of base pairs (nbpairs). Values in parentheses correspond to the alignment as given. Values not in parentheses correspond to the analyzed alignment after the filters (for redundant sequences and gapped columns) have been applied.

Second comment line describes properties of the R-scape search: the covariation method (GTp), the E-value threshold (0.05), the range of scores for all pairs in the alignments (from -9.7 to 89.1), the number of covarying non base pairs (0), the number of covarying base pairs (11), the number of base pairs (20), and the total number of covarying pairs (11). Lastly we provide the sensitivity (SEN=55.00=11/20), positive predictive value (PPV=100.00=11/11), and F-measure (F=70.97 = 2 * SEN * PPV / (SEN+PPV)).

Power tabular output

The output file tutorial/updated_Arisong_1.power looks like this:

> more tutorial/updated_Arisong_1.power

#	Power analysis of given structure					
#	covary	left_pos	right_pos	substitutions	power	
#	*	94	110	37	0.40	
		95	109	28	0.31	
	*	96	108	26	0.28	
	*	97	107	58	0.59	
	*	98	106	45	0.48	
	*	99	105	15	0.14	
		100	104	20	0.21	
	*	122	137	57	0.58	
	*	123	135	72	0.68	
	*	124	134	20	0.21	
		125	133	31	0.34	
#						
#	BPAIRS	20				
#	# avg substitutions per BP 43.7					
#						
#	BPAIRS	observed to co	ovary 11			

This file includes the list of all basepairs in the proposed structure given with the input alignment. Each basepair is annotated with the estimated number of substitutions and power.

Default graphical outputs

By default, the following files are also produced

rnafile_msaname.R2R.sto Stockholm file annotated by a modified version of the R2R program. This file includes the information necessary to draw the consensus structure, and to annotate the significantly covarying base pairs.

rnafile_msaname.R2R.sto.{pdf, svg} Drawing of the R-scape-annotated consensus secondary structure.

rnafile_msaname.surv A two column file with the survival functions (surv) for the covariation
scores.

rnafile_msaname.surv.ps Plot of the score's survival function P(X > score). Drawing this file requires that program gnuplot is installed somewhere in the $\{PATH\}$, or that the environmental variable GNUPLOT pointing to a gnuplot executable is defined.

rnafile.msaname.dplot.{ps, svg} Dot plot of the consensus secondary structure annotated according to covariation. Drawing of this file requires that program gnuplot is installed somewhere in the \${PATH}, or that the environmental variable GNU-PLOT pointing to a gnuplot executable is defined.

For each alignment, msaname is given by <ACC>_<ID>, the combination of the accession #=GF AC <ACC> and name #=GF ID <ID> in the Stockholm-format markups (or one of two if the other in not defined). If none of those fields are defined, msaname is a number describing the order in the file of the given alignment.

Details about graphical outputs

Two files are produced per alignment in the input file:

File tutorial/updated Arisong 1.R2R. sto is a Stockholm formatted alignment that includes the input alignment annotated with the consensus structure. This Stockholm file also includes the additional annotation required to use the drawing program R2R.

It is possible that the resulting drawing will show parts of the secondary structure occluded from each other (especially for long RNAs). Using this file, one can customize a different drawing of the structure using the R2R documentation, provided in lib/R2R/R2R-manual.pdf.

File tutorial/updated_Arisong_1.R2R.sto.pdf depicts the consensus structure with the R-scape covariation annotation using the R2R software to depict the alignment. The defaults used by R-scape to depict the alignment positions are given in this legend,

File tutorial/updated_Arisong_1.surv looks like this:

> more tutorial/updated_Arisong.surv

```
121.795428
                 0.05
95.862635
89.113004
                0.15
. . .
63.890698
                0.000485437
                 0.000970874
58.917286
47.904730
                0.00145631
. . .
81.652885
                2.40385e-06
                 4.80769e-06
77.745204
77.034717
                 7.21154e-06
. . .
256.788050
                2.64342e-17
256.432807
                 2.7899e-17
256.077563
                2.94449e-17
 &
```

The first column is a covariation score (x). The second column is the survival function P(X > x), that is the frequency of pairs having score larger than x. The file includes four survival functions separated by a "&" line. The three survival functions correspond to:

First functions: the given alignment, proposed base pairs. (This section is empty if no secondary structure is proposed.)

Second functions: the given alignment, not proposed pairs.

Third function: the aggregation of all null alignments, all possible pairs.

Fourth function: the expected null survival function according to the tail Gamma fit.

Using option -cacofold

If the option --cacofold is used, R-scape produces the following additional files describing the maximal-covariation optimal secondary structure:

These files are formatted identically to those describing the given consensus structure.

Graphical outputs per alignment

Three plots are produced per alignment in the input file:

updated_Arisong_1

Figure 2: tutorial/updated.Arisong.1.R2R.sto.{pdf, svg}: annotated consensus secondary structure. Base pairs with covariation scores equal or below the target E-value (0.05 as default) are depicted in green. By default only positions in the alignment with more than 50% occupancy are depicted (unless they form a base pair). Option --r2rall forces the depiction of all positions in the alignment.

Figure 3: tutorial/updated Arisong.1. surv. {ps, svg}: covariation scores survival function P(X > x). The survival function of scores for all pairs in the given alignment is depicted in blue. The survival function for the null alignments is depicted in black. A black line indicates to fit to a truncated Gamma distribution of the tail of the null distribution. In red, we plot the survival function of scores for the pairs in the given alignment excluding those proposed as base pairs. For a particular pair, as an example the highest scoring one from the distribution of proposed pairs (blue), we obtain its E-value by drawing a vertical (gray) line from the point to the null distribution (black). The corresponding value in the blue scale gives us the E-value for that pair (in this example, $3.7 \cdot 10^{-7}$).

Figure 4: tutorial/updated_Arisong_1.dplot.{ps, svg}: dotplot. Dot size is proportional to the covariation score. In blue we depict the consensus base pairs; in green, the consensus base pairs that show significant covariation; in orange (none shown in this plot), we depict other pairs that have significant covariation, are not part of the consensus secondary structure but are compatible with it; in black we depict other significant pairs. Position are relative to the original input alignment (before any gapped column is removed).

6 Options

The whole list of options can be found using

```
> R-scape -h
```

Some important options are:

Covariation statistic options

-E <x>

Target E-value is $x \geq 0$.

We favor the G-test covariation statistic, but a total of eight covariation statistics are currently implemented in R-scape. For each covariation statistic (GT, for instance), R-scape can also calculate its average product correction (GTp) and its average sum corrections (GTa). For each option above, appending "p" or "a" chooses one of the corrections. For example, --GT does the G-test statistic, --GTp does the APC-corrected G-test statistic, --GTa does the ASC-corrected G-test statistic.

The R-scape default is --GTp.

Details of the definition and provenance of the different covariation statistics can be found in the R-scape manuscript: Rivas, E. & Eddy S. E., "A statistical test for conserved RNA structure shows lack of evidence for structure in lncR-NAs".

In a nutshell, given two alignment columns i, j,

G-test:(Woolf, 1957)
$$\text{GT}(i,j) = 2 \sum_{a,b} \text{Obs}_{ij}^{ab} \log \frac{\text{Obs}_{ij}^{ab}}{\text{Exp}_{ij}^{ab}},$$

$$\text{Pearson's chi-square:} \qquad \text{CHI}(i,j) = \sum_{a,b} \frac{\left(\text{Obs}_{ij}^{ab} - \text{Exp}_{ij}^{ab}\right)^2}{\text{Exp}_{ij}^{ab}},$$

$$\text{Mutual information:(Shannon, 1948; Gutell et al., 1994)} \qquad \text{MI}(i,j) = \sum_{a,b} P_{ij}^{ab} \log \frac{P_{ij}^{ab}}{P_{ij}^{a}},$$

$$\text{MI normalized:(Martin et al., 2005)} \qquad \text{MIr}(i,j) = \frac{\text{MI}(i,j)}{H(i,j)} = \frac{\text{MI}(i,j)}{-\sum_{a,b} P_{ij}^{ab} \log P_{ij}^{ab}},$$

$$\text{MI with gap penalty:(Lindgreen et al., 2006)} \qquad \text{MIg}(i,j) = \frac{\text{MI}(i,j)}{H(i,j)} - \frac{N_{ij}^G}{N},$$

$$\text{Obs-Minus-Exp-Squared:(Fodor and Aldrich, 2004)} \qquad \text{OMES}(i,j) = \sum_{a,b} \frac{\left(\text{Obs}_{ij}^{ab} - \text{Exp}_{ij}^{ab}\right)^2}{N_{ij}},$$

$$\text{RNAalifold (RAF):(Hofacker et al., 2002)} \qquad \text{RAF}(i,j) = B_{i,j},$$

$$\text{RNAalifold Stacking (RAFS):(Lindgreen et al., 2006)} \qquad \text{RAFS}(i,j) = \frac{1}{4} \left(\text{B}_{i-1,j+1} + 2 \text{B}_{i,j} + \text{B}_{i+1,j-1}\right).$$

where a,b are (non-gap) residues; N is the total number of aligned sequences; Obs_{ij}^{ab} is the observed count of a:b pairs in columns i,j (only counting when both a,b are residues); N_{ij} is the total number of residue pairs in columns i,j (only counting when both a,b are residues); P_{ij}^{ab} is the observed frequency of pair a:b in columns i,j ($P_{ij}^{ab} = \frac{\mathrm{Obs}_{ij}^{ab}}{N_{ij}}$); $\mathrm{Exp}_{ij}^{ab} = N_{ij}p_i^ap_j^b$ is the expected frequency of pair a:b assuming i,j are independent, where p_i^a are the marginal frequencies of a residues in column i (averaged to all other positions) ($p_i^a = \frac{1}{L-1}\sum_{j\neq i}\sum_b P_{ij}^{ab}$); $N_{ij}^G = N - N_{ij}$ is the number of pairs involving at least one gap symbol; the definition of $\mathrm{B}_{i,j}$ used in the RAF and RAFS statistics is involved, a concise definition can be found elsewhere (Lindgreen et al., 2006).

The background corrections (Dunn et al., 2007) for a given covariation statistic above COV(i, j) are,

$$\begin{array}{lll} \text{Average product correction} & \text{COVp}(i,j) & = & \text{COV}(i,j) - \frac{\text{COV}(i)\text{COV}(j)}{\text{COV}}, \\ \text{Average sum correction} & \text{COVa}(i,j) & = & \text{COV}(i,j) - (\text{COV}(i) + \text{COV}(j) - \text{COV}) \,. \end{array}$$

--C2, --C16

For all the covariation statistics (except RAF and RAFS), one can do a 16-component (C16) or a two-component (C2) calculation, depending on whether it uses the 16 possible pair combinations, or those are group in two classes depending on whether they form a Watson-Crick pair (6 cases, including U:G and G:U), or whether they do not (10 cases).

R-scape's default is the 16 component covariation statistic, unless the number of sequences in the alignment is \leq 8 or the length of the alignment is \leq 50, in which case it uses the two-class covariation statistic.

Options to calculate power

--singlesubs

Default option. The base pair substitutions are calculated as the sum of the individual substitutions observed for each of the positions in the base pair.

--joinsubs

The base pair substitutions are calculated as the sum of the individual substitution observed for each positions in the base pair, but using only sequences in which both positions are occupied, that is, cases where one of the two positions is a gap are ignored.

--doublesubs

The base pair substitutions are calculated a the subset of substations in which both residues have changed.

Covariation aggregation options

--fisher,--sidak

Two different options to produce aggregated E-values calculated for each helix in the proposed or CaCoFold structure.

--lancaster, --wfisther

Two different options to produce aggregated E-values calculated for each helix in the proposed or CaCoFold structure.

The Lancaster aggregation uses the number of substitutions per base pair. The weighted fisher (wfisher) aggregation uses the power per base pair. These two options require the use of the default option --singlesubs in order to calculate the number of substitutions and power for each base pair respectively.

--lancaster_join, --wfisther_join

These two options require the use of the option **—-joinsubs** in order to calculate the number of substitutions and power for each base pair respectively.

--lancaster_double, --wfisther_double

These two options require the use of the option **--doublesubs** in order to calculate the number of substitutions and power for each base pair respectively.

Search options

-s

The "two-set test" option. This option requires that a structure is provided with the alignment. If option -s is used, R-scape performs two independent test, one for the given structure, another for all other possible pairs. The default is a "one-set test" in which all possible pairs in the alignment are tested equivalently.

--cacofold

A CaCoFold structure is computed that includes all significant base pairs. All files related to this CaCoFold structure include the suffix .cacofold.

When option --cacofold is used, a file with the original alignment annotated with the R-scape structure in Stockholm format is produced. This alignment has the suffix .cacofold.sto.

--naive

Reports the laundry list of all covariation scores, without any statistical significance (E-value) associated to them. No null alignments are created.

--tstart <n>

Analyze starting from position n >= 1 in the alignment.

--tend <n>

Analyze ending at position $n \le L$ in the alignment.

--window <n>

R-scape can be run in a window scanning version for long alignments. The window size is n > 0.

--slide <n>

In scanning mode, this options sets the number of positions to move from window to window, n > 0.

--vshuffle

Vertical shuffle, a developers tool. Before performing any analysis, it shuffles all residues in each alignment column independently.

--cshuffle

Column shuffle, a developers tool. Before performing any analysis, it shuffles all columns in the alignment.

--givennull <f>

Use histogram provided in file $\langle f \rangle$ as null.

Input alignment options

-I <x>

Only sequences with less than $0 < x \le 1$ pairwise similarity are considered in the analysis. Pairwise % identity is defined as the ratio of identical positions divided by the minimum length of the two sequences. If this option is not used all (weighted) sequences are used in the analysis.

--gapthresh <x>

Only columns with less than $0 < x \le 1$ fraction of gaps are considered in the analysis.

--consensus

If the alignment has a GC "seq_cons" field, only consensus positions will be analyzed.

--submsa <n>

Analyzes a random subset of the input alignment.

--treefile <f>

A phylogenetic tree in Newick format can be given (by default a tree is created from the alignment using the program FastTree (v2.1.11) (Price et al., 2010)). R-scape checks that the number of taxa and the names of the taxa matches for all alignments analyzed.

--ntree <n>

Number of different FastTree trees to use when generating the null alignments. Default is one tree, the one resulting from feeding the input alignment to FastTree. if --ntree > 1, the rest of the trees are generated after randomly rearranging the sequences in the alignment.

Because FastTree is not deterministic, altering the order of the sequences in the alignment can result in slightly different trees, and in some rare occasions that can results in different distribution of null covariation scores. In those cases, it is recommended to generate null alignments from different trees obtained from randomly rearrange the sequences in the alignment.

Option --ntree <n> is incompatible with option --treefile <f> which inputs a particular tree.

Options for producing a CaCoFold structure

--cacofold

When using the option <code>--cacofold</code>, R-scape engages the CaCoFold algorithm to produce a predicted structure. The CaCoFold algorithm incorporates all positive (significantly covarying) base pairs, and prevents any negative pair (pairs that have power of covariation but not covariation) from happening. The CaCoFold algorithm uses a recursive cascade of constrained foldings. The first fold uses the RBG probabilistic grammar, the rest use the G6X probabilistic grammar. Regarding the predicted structure, CaCoFold can use one two algorithms:

--cyk

Default option. Each folding reports the structure with the best probability using the CYK algorithm.

--decoding

This options returns the structure obtained by posterior decoding.

Posterior decoding usually performs better than CYK. Both algorithm has the same algorithmic complexity. CYK is faster.

Several additional options can be used in combination with --cacofold,

--refseq

By default the CaCoFold algorithm folds a profile sequence built from the alignment. Using this option, the sequence to fold is a consensus reference sequence.

--E_neg <x>

Pairs with E-value larger than the E-value cutoff but smaller than ¡x¿ will not be called negatives regardless of their covariation power. Default for E_neg is 1.0.

--lastfold

This option forces one last alternative fold (using grammar G6X) after all covarying base pairs have already been integrated into the structure. By default this last fold is not performed. In the absence of any covarying base pair, one fold is performed using grammar RBG.

--show_hoverlap

This option leaves the alternative helices unmodified. By default, alternative structures are trimmed down to show no overlap with helices from the previous layers.

--covmin <n>

Minimum distance between position to report significant covariation. Default is 1, which means that significant covariation between contiguous positions are reported.

--allow_negatives

This option (just for developers) allows all base pairs to form regardless of their power.

--Rfam

This option is meant to be used by the Rfam curators when using CaCoFold to propose improved consensus structures for an Rfam family. It removes covariation that cannot be taking into account by the Rfam models. Thus, maybe missing important covariation information that is not compatible with RNA secondary structure.

Using options --cacofold --Rfam, the CaCoFold structure is trimmed such that:

- Base pairs have to have at least 3 nucleotides of separation (covarying pairs removed if they don't).
- Overlaps between helices are trimmed down if possible without removing any covarying pair.
- Pseudoknots (pk) are kept, but alternative motifs identified as: triplets (tr), cross (xcov), or side (scov) covariations are removed.
- Base pairs which appear to be non WC (defined by the observed frequency in the alignment of the pair being A:U, U:A, C:G, G:C, G:U or U:G being less than 0.3) are removed, even if they covary.

Options for importing a structure

R-scape does not require to input a structure (either a RNA structure or a protein contact map). By default R-scape analyzes all possible pairs in the alignment.

There are two ways to provide a contact map (or structure):

- By providing the alignment in Stockholm format with a "ss_cons" field including the consensus structure for the alignment. (For RNA alignments only.)
- By analyzing a 3D structure provided in a PDB file. (For either RNA or peptide alignments.)

These two methods can be combined together. For a nucleotide alignment, if both a consensus structure is present in the alignment, and a PDB file is provided (using option --pdb), the consensus structure will be extended by the information provided by the pdbfile. To ignore the consensus structure use option --onlypdb.

From the PDB file we obtain three types of structural pairs:

- Contacts: defined as those two residues at a close spatial distance (specified by the user with option --cntmaxD).
- Basepair: RNA base pairs.

RNA Basepair are calculated using the program rnaview (Yang et al., 2003).

These RNA base pairs can be further classified in two types:

- Watson-Crick base pairs: the canonical RNA base pairs. mostly A:U, G:C, or G:U pairs. (H-bond interactions between two W-C faces in cis).
- Other base pairs: the non-canonical RNA base pairs (all other types of H-bond interactions, 12 different types).

Contacts and RNA base pairs are extracted as follows:

- The spatial distance between any two residues is calculated as the minimal Euclidean distance between any two atoms (excluding H atoms). Any two pairs at a distance not larger than a maximum value (contmaxD) are called a "contact".
- RNA base pairs are obtained using the program rnaview (Yang et al., 2003) (http://ndbserver.rutgers.edu/ndbmodule/services/download/rnaview.html). The RNA base pair annotation takes precedent over the annotation as "contact".

The options that control the input of a structure or contact map are:

--pdb <s>

Reads a pdbfile associated to the alignment, and extracts the contacts from it.

A ".cmap" file is produced reporting the structure obtained from the PDB file.

Option --pdb is incompatible with --cacofold.

--cntmaxD <x>

Maximum distance (in Angstroms) allowed between two residues to define a "contact" is $\langle x \rangle$.

--cntmind <n>

Minimum distance (in residue positions) in the backbone between two residues required to define a "contact" is $\langle n \rangle$.

--onlypdb

Reads the structure from the pdbfile and ignores the alignment consensus structure (if provided).

--draw_nonWC

Adds the non-canonical base pairs into the structure graphical output. For clarity, the default is to draw only the Watson-Crick base pairs. This option affects only the drawing of the structure. All base pairs (canonical or not) are used as part of the structure to perform the two-set statistical test.

Example of reading a structure from a PDB file for the FMN riboswitch:

172

169

```
> bin/R-scape --cntmaxD 4 --cntmind 3 --pdb tutorial/3f2q.pdb -s --onlypdb tutorial/RF00050.stc
```

This command line extracts contacts from the pdb file that are at a Euclidean distance $\leq 4\mathring{A}$ in the PDB structure, and such that they are at least 3 residues apart in the backbone. The output is

```
# R-scape :: RNA Structural Covariation Above Phylogenetic Expectation
# R-scape 0.8.1 (Jul 2018)
# Copyright (C) 2016 Howard Hughes Medical Institute.
# Freely distributed under the GNU General Public License (GPLv3).
# Two-set statistical test (one test for annotated base pairs, another for all other pairs)
# Structure obtained from the pdbfile
# ij in alignment | ij in pdbsequence | basepair type
# 3 218 | 1 112 | WWc
# 4 216 | 2 110 | CONTACT
# 4 217 | 2 111 | WWc
# 4 218 | 2 112 | CONTACT
# 5 216 | 3 110 |
                  WWc
# 5 217 | 3 111 |
                  CONTACT
# 6 215 | 4 109 | WWc
# 6 216 | 4 110 | CONTACT
# 192 202 | 87 96 | WWc
# 192 203 | 87 97 | CONTACT
# 193 198 | 88 92 | CONTACT
# 193 201 | 88 95 | WWc
# 193 202 | 88 96 | CONTACT
# 195 197 | 89 91 | CONTACT
# 195 198 | 89 92 | WHt
# 198 200 | 92 94 | CONTACT
# 198 201 | 92 95 | CONTACT
# 205 207 | 99 101 | CONTACT
# PDB:
           versions/rscape/rscape_v0.8/tutorial/3f2q.pdb
# contacts 169 (49 bpairs 35 wc bpairs)
          4.00
# maxD
# mind
# distance MIN
           139
# L
# alen
           221
# pdblen
           112
                                                                                    _>>>,,,<<<<<____>>>>aa))AAAA----))a
 ::[[[[[[[[,,,,,,<<<____>>>,((((<<<<__
                                                        ____AA>>>>, , <<<----
# MSA RF00050_FMN.3f2q nseq 144 (144) alen 139 (221) avgid 69.18 (68.15) nbpairs 49 (0)
# Method Target_E-val [cov_min,conv_max] [FP | TP True Found | Sen PPV F] # GTp 0.05 [-9.78,216.11] [1 | 14 49 15 | 28.57 93.33 43.75]
       left pos
                      right pos
                                        score
                                                        E-value
             171 183 216.11095 1.6421e-10
                            184
                                         211.69081
                                                          2.76699e-10
              170
                                                          4.95548e-08
                                        168.72417
             192
                            213
182
185
                                       149.71776
138.66664
               8
                                                          4.89982e-07
```

1.84675e-06 2.21548e-06

137.23189

**	16	30	133.44999	3.53772e-06
*	5	216	131.02575	4.70876e-06
*	84	186	125.60806	9.0169e-06
*	17	29	112.04610	4.62895e-05
*	7	214	111.12654	5.13519e-05
*	6	215	96.43781	0.00029929
*	36	87	96.32752	0.00029929
*	94	163	78.81578	0.0024303
	7	213	107.68588	0.0147937

All coordinates are relative to the input alignment. The annotation of all types of RNA base pairs (WWc, WWt, WHc,...) is produced by the program rnaview (Yang et al., 2003).

Options for type of pairs tested

When performing the two-class statistical test (option -s) using a pdbfile to read the structure, there are different options as to which types of base pairs are used to define the sample size for the base pairs test.

The options are:

--samplecontacts

The basepair statistical test includes all the contacts identified in a PDB or/and as a RNA secondary structure included with a input alignment in Stockholm format. This is the default option for amino acid alignments if a PDB file is provided.

--samplebp

For RNA alignments with only. The basepair statistical test includes base pairs of all 12 possible types. This is the default option for RNA/DNA alignments if a PDB file is provided.

--samplewc

For RNA alignments only. The basepair statistical test includes only the canonical (Watson-Crick/Watson-Crick type) base pairs (A:U, G:C, G:U). This is the default option for RNA/DNA alignments if a consensus secondary structure is provided.

Output options

--roc

Produces a tabular output that provides statistics for each score value.

File tutorial/updated Arisong.roc looks like:

> more tutorial/updated Arisong.roc

```
# MSA nseq 95 alen 65 avgid 66.352419 nbpairs 20 (20)
# Method: GTp
#cov_score FP TP Found True Negatives Sen
                                                PPV
                                                                 E-value
121.79543 0 2 2
121.44018 0 2 2
121.08494 0 2 2
                          20
                                           10.00 100.00 18.18
                                2060
                                                                4.07104e-05
                          20
                                2060
                                           10.00 100.00 18.18
                                                                4.29443e-05
                                                                 4.53006e-05
                          2.0
                                2060
                                           10.00 100.00 18.18
120.72970 0 2 2
                                2060
                                           10.00 100.00 18.18
```

This file produces a tabular output for each alignment as a function of the covariation score, for plotting ROC curves. The values in the file are described by the comment line. Notice that the number of Trues (column 5) and Negatives (column 6) are fixed for a given secondary structure and do not change.

--outmsa <f>

The actual alignment analyzed can be saved in Stockholm format to file <f>.

--outtree <f>

The phylogenetic tree (created using the program FastTree) can be saved in Newick format to file <f>.

--savenull

Saves a histogram with the null distribution to file rnafile msaname.null.

Plotting options

--nofigures

None of the graphical outputs are produced using this option.

--r2rall

Forces R2R to draw all positions in the alignment. By default only those that are more than 50% occupied or are base paired are depicted.

Other options

--seed <n>

Sets the seed of the random number generator to $\langle n \rangle$. Use n = 0 for a random seed.

7 Some other topics

How do I cite R-scape?

Rivas, E. et al., "A statistical test for conserved RNA structure shows lack of evidence for structure in lncRNAs", Nature Methods 14, 4548 (2017).

Rivas, E. et al., "Estimating the power of sequence covariation for detecting conserved RNA structure", Bioinformatics **36**: 3072-3076 (2020).

Rivas, E., "RNA structure prediction using positive and negative evolutionary information", PLOS Computational Biology. 16(10): e1008387, (2020).

You should also cite what version of the software you used. We archive all old versions, so anyone should be able to obtain the version you used, when exact reproducibility of an analysis is an issue.

The version number is in the header of most output files. To see it quickly, do something like R-scape -h to get a help page, and the header will say:

```
# R-scape :: RNA Structural Covariation Above Phylogenetic Expectation
# R-scape 0.8.1 (July 2018)
# Copyright (C) 2016 Howard Hughes Medical Institute.
# Freely distributed under the GNU General Public License (GPLv3).
```

So (from the second line there) this is from R-scape v0.8.1.

How do I report a bug?

Email us, at elenarivas@fas.harvard.edu.

Before we can see what needs fixing, we almost always need to reproduce a bug on one of our machines. This means we want to have a small, reproducible test case that shows us the failure you're seeing. So if you're reporting a bug, please send us:

- A brief description of what went wrong.
- The command line(s) that reproduce the problem.
- Copies of any files we need to run those command lines.
- Information about what kind of hardware you're on, what operating system, and what compiler and version you used, with what configuration arguments.

8 Acknowledgments

We thank S.E. Roian Egnor for suggesting the name R-scape, and the Centro de Ciencias de Benasque Pedro Pascual in Spain, for their hospitality, over numerous and wonderful summers.

References

- del Val, C., Romero-Zaliz, R., Torres-Quesada, O., Peregrina, A., Toro, N., and Jiménez-Zurdo, J. I. (2012). A survey of sRNA families in α-proteobacteria. *RNA Biol*, 9:119–129.
- Dunn, S. D., Wahl, L. M., and Gloor, G. B. (2007). Mutual information without the influence of phylogeny or entropy dramatically improves residue contact predictions. *Bioinformatics*, 24:333–340.
- Fodor, A. A. and Aldrich, R. W. (2004). Influence of conservation on calculations of amino acid covariance in multiple sequence alignments. *Proteins: Structure, Function, and Bioinformatics*, 56(2):211–221.
- Gerstein, M., Sonnhammer, E. L. L., and Chothia, C. (1994). Volume changes in protein evolution. *J. Mol. Biol.*, 235:1067–1078.
- Gutell, R. R., Larsen, N., and Woese, C. R. (1994). Lessons from an evolving rRNA: 16S and 23S rRNA structures from a comparative perspective. *Microbiol. Rev.*, 58:10–26.
- Henikoff, S. and Henikoff, J. G. (1994). Position-based sequence weights. J. Mol. Biol., 243:574–578.
- Hofacker, I. L., Fekete, M., and Stadler, P. F. (2002). Secondary structure prediction for aligned RNA sequences. *J. Mol. Biol.*, 319:1059–1066.
- Jung, S., Swart, E. C., Minx, P. J., Magrini, V., Mardis, E. R., Landweber, L. F., and Eddy, S. R. (2011). Exploiting *Oxytricha trifallax* nanochromosomes to screen for noncoding RNA genes. *Nucl. Acids Res.*, 39:7529–7547.
- Lindgreen, S., Gardner, P. P., and Krogh, A. (2006). Measuring covariation in RNA alignments: physical realism improves information measures. *Bioinformatics*, 22:2988–2995.
- Martin, L., Gloor, G., Dunn, S., and Wahl, L. (2005). Using information theory to search for co-evolving residues in proteins. *Bioinformatics*, 21:4116–4124.
- Nawrocki, E. P., Burge, S. W., Bateman, A., Daub, J., Eberhardt, R. Y., Eddy, S. R., Floden, E. W., Gardner, P. P., Jones, T. A., Tate, J., and Finn, R. D. (2015). Rfam 12.0: updates to the RNA families database. *Nucl. Acids Res.*, 43:D130–D137.
- Price, M. N., Dehal, P. S., and Arkin, A. P. (2010). FastTree 2 approximately maximum-likelihood trees for large alignments. *PLOS ONE*, 5:e9490.
- Shannon, C. E. (1948). A note on the concept of entropy. Bell System Tech. J, 27:379–423.
- Weinberg, Z. (2018). The Zasha Weinberg Database (ZWD). Available: https://bitbucket.org/zashaw/zashaweinbergdata/. Accessed 11 February 2019.
- Weinberg, Z. and Breaker, R. R. (2011). R2R software to speed the depiction of aesthetic consensus RNA secondary structures. *BMC Bioinformatics*, 12:3.
- Weinberg, Z., Wang, J. X., Bogue, J., Yang, J., Corbino, K., Moy, R. H., and Breaker, R. R. (2010). Comparative genomics reveals 104 candidate structured RNAs from bacteria, archaea, and their metagenomes. *Genome Biol.*, 11(3):R31.
- Woolf, B. (1957). The log likelihood ratio test (the G-test). Annals of Human Genetics, 21:397–409.
- Yang, H., Jossinet, F., Leontis, N., Chen, L., Westbrook, J., Berman, H. M., and Westhof, E. (2003). Tools for the automatic identification and classification of RNA base pairs. *Nucl. Acids Res.*, 31.13:3450–3460.