LaPIS Diagnostic Test Workbook - Mathematics

Name : Hemnathkumar R N

Class : 7

Section : B

School : AKV Public School

Login ID : AKV139

Hemnathkumar R N's Performance Report

Score: 22/40 Percentage: 55.0%

Hemnathkumar R N's Study Planner

Date	Topics Planned	Q. Numbers	Teacher Remark	Teacher Sign	Parent Sign
		Teacher's Fe	edback to Student		
_					
	Class Teacher S	Signature	Princi	ipal Signature	

Mensuration

Topics to be Improved		
Perimeter	Perimeter of triangle	

Hi, here in this video you will learn **Perimeter**

Question: 1

Highlight the perimeter in the given image.

4						
A	n.	81	17	P	r	•

Perimeter is the _____ (outer / inner) boundary of the shape

Question: 2

Find the perimeter of the given figure.

Answer:

Sides of the given shape = _____

Perimeter of a shape is _____ (sum / difference) of _____ (all/ opposite) sides.

Perimeter of the given shape = _____

Question: 3

Find the length of the rectangular floor if its perimeter is 60 ft and breadth is 3 ft.

Answer:

Shape of the floor is _____ and its perimeter formula is _____. Given:

floor perimeter =
$$___$$
, and breadth = $___$.
Perimeter of the floor = $2(___+ ___)$.

Therefore, length of the rectangular floor is ______.

Data handling

Topics to be Improved		
Arithmetic mean, mode and median	Mean, Median and Mode	
Range	Finding the range	
Chance of probability	Basis of probability	

Hi, here in this video you will learn Mean, Median, Mode

Question: 4	
-------------	--

Find the mode of the following data: 5, 15, 23, 5, 32, 44, 72, 55, 6, 3, 5, 65, 45, 67, 24, 19 and 98.

Answer:

Mode is the number that occurs	(frequently / rarely) in a given list of observations.
Arranging the data in ascending order:	
occurs most number of times.	Γhen, mode of the given data is

Which shape contains median of the given data 3, 5, 6, 2, 7, 9, 6, 4 and 1

......

Answer:

Median is the ______(first/central/last) value of a data when the data is arranged in ascending or descending order.

Arrange the given data in ascending order: ______ and it is the ______ of a data.

Question: 6

Marks scored	100	90	80	70
Number of students	$oxed{4}$	5	2	1

 $Mean = \underline{\hspace{1cm}}$, $Median = \underline{\hspace{1cm}}$ and $Mode = \underline{\hspace{1cm}}$. Answer: of all observation Mean = number of observation Here s sum of all observation = ______, number of observation = ______ Therefore, mean = _____ Arrange the data in ascending order: ______ Here, $median = \underline{\hspace{1cm}}$, $mode = \underline{\hspace{1cm}}$. Hi, here in this video you will learn Range Question: 7 Range of the data = _______ - ______ Answer: The difference between highest value and lowest value is _____. Example: Find the range of 10, 5, 30, 23, 54, 39 and 16 $Highest value = \underline{\hspace{1cm}}$, $Lowest value = \underline{\hspace{1cm}}$. $Range = ___ - __ = ___.$ Question: 8 Circle the correct range for the following data 31, -20, 35, -38, 29, 0, 43, -25, 51, 14, 9 -20+51 $\frac{-38-51}{2}$ 51+38 $\frac{51+20}{2}$ Answer: Arranging the data in ascending order, _____ In the given data, $Highest \ value = \underline{\hspace{1cm}}$, $Lowest \ value = \underline{\hspace{1cm}}$, $Range = \underline{\hspace{1cm}} - \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$ Question: 9 Find the range of first 10 multiple of 5. Answer: First 10 multiple of 5 =Therefore, Highest value = _____, Lowest value = ____, Range = ____ - ___ = _ Hi, here in this video you will learn Basics of probability Question: 10 Identify the sure events and impossible events

(i) The sun rises in the west.
(ii) Water is colourless.
(iii) Clock rotates in clock wise direction.
(iv) Ball is square in shape.
$\underline{Answer:}$
Events that always occur are called (sure/ impossible) events. Events that cannot occur are called (sure/ impossible) events. Here, The sun rises in the west is event. Water is colourless is event.
Clock rotates in clock wise direction is event. Ball is square in shape is event.
Question: 11
Probability of sure events is (greater / smaller) than probability of impossible events
Answer:
Probability of sure event = $\underline{\hspace{1cm}}$ (0/ 1/ any number). Probability of impossible event = $\underline{\hspace{1cm}}$ (0/ 1/ any number). Therefore, Probability of sure event $\underline{\hspace{1cm}}$ Probability of impossible event.
Question: 12
Raju has pencil, an eraser, a scale, sharpener, colour pencil and protractor in his box. What is the probability of getting a pen from his box.
Answer:
Things Raju have (Yes/ No). Does Raju have pen in his box, (Yes/ No). Then probability of getting pen from his box is (0/1)

Geometry

Topics to be Improved		
Transversal angle made by transversal	Basics of Transversal angle	
Sum of lengths of two sides of a triangle	Sum of two sides of a triangle	
Lines of symmetry for regular polygons	Identification of lines of symmetry	
Right angle triangle and pythagoras property	Basics of Pythagoras property	

Hi, here in this video you will learn Basics of Transversal angle

Question: 13

Answer:

A line that intersects two or more lines at distinct points is called a	(transversal)
Intersecting line).	

Angle that lies on different vertices and on the opposite sides of transversal is ______ angles.

Angle that lies on different vertices and on the same sides of transversal is _____ angles. Therefore, $\angle 1$ and $\angle 7$ are ____

Question: 14

Find the transversal, alternate angles and corresponding angles in a given diagram.

Answer:

A line that intersects two or more lines at distinct points is called a _____ (transversal/Intersecting line).

In a given diagram, _____ is a transversal line. (BF/AD/CE)

Alternate angles	Corresponding angles
$\angle a$ and $\angle g$, $\angle b$ and $\angle h$,	\angle a and \angle e, \angle b and \angle f,

Question: 15

Find $\angle e$ and $\angle g$ if $\angle a = 30^{\circ}$.

Answer:

When parallel lines cut by a transversal,

- (i) Alternate angles are _____ (equal / not equal).
- (ii) Corresponding angles are _____ (equal / not equal).

Here, alternate angle of $\angle a$ is _____ and its value is ____. Corresponding angle of $\angle a$ is _____ and its value is _____.

Hi, here in this video you will learn Sum of the length of sides of the triangle

Question: 16

Find the greatest distance to reach C from A in the given diagram.

Answer:

The sides of the given triangle are _____

The possible way to reach point C from point A are _____ and AB then to

Side AC = _____

Side AB + BC = _____ + ___ = ____

Therefore, the greatest distance to reach C from A in the given diagram is ______.

Question: 17

_____ (Sum of / Difference between) the length of any two sides of a triangle is smaller than the length of the third side.

......

Answer:

There are ______ sides in a triangle.

The sum of the two sides of a triangle is ______ than the other side of the triangle.

The difference of the two sides of a triangle is ______ than the other side of the triangle.

Example: In triangle XYZ,

Question: 18

The lengths of two sides of a triangle are 7 cm and 10 cm. Between which two numbers can length of the third side fall?

......

Answer:

1. The sum of the two sides of a triangle is Therefore, the third side should be	
Here, sum of the two sides = +	· · · ·
Therefore, the length of the third side is less than .	
2. The difference of the two sides of a triangle is triangle.	than the third side of the
Therefore, the third side should be Here, difference of the two sides =	,
Therefore, the length of the third side is greater th	
Therefore, length of the third side is greater than	but less than
Hi, here in this video you will learn Symmert	y = 1
Question: 19	
Line of symmetry is divides any shape into (one identical) halves.	/ two) (identical / non
$\underline{Answer:}$	
Lines of symmetry is a line that divides any shape into _Symmetrical image have (identical / nor Therefore, line of symmetry is dividing the shape into	n identical) parts.
Question: 20	
How many lines of symmetry does square have?	
Answer:	
Square have sides.	
All sides of square are and all angles are	
Mark the lines of symr	netry.
Therefore, square has lines of symmetry.	
Question: 21	
Classify the following based on the symmetry.	

Letter S, scalene triangle, Letter K, Rhombus, Number 8, and circle .

4				
4	ns	เวเา	er	•

	/ 1 / 1 1
Lines of symmetry is a line that divides the shape into The letter S is (symmetrical / asymmetrical) and h	
symmetry.	
Scalene triangle is(symmetrical / asymmetrical) and	d havelines of
symmetry.	
The letter K is (symmetrical / asymmetrical) and h	nave lines of
symmetry.	
Rhombus is(symmetrical / asymmetrical) and have	lines of
symmetry.	
Cat is (symmetrical / asymmetrical) and have	lines of symmetry.
Stars is (symmetrical / asymmetrical) and have	lines of symmetry.
Question: 22 In a right angled triangle, square of thelegs.	
Answer:	
Pythagoras theorem is only applicable for triangle. Longest side of the triangle is (hypotenuse/ legs) ar (hypotenuse/ legs).	nd other two sides are called
Pythagoras theorem states that	
Question: 23	
Find the hypotenuse of the triangle ABC if base is 12 m and altitude	de is 5 m.

 $\underline{Answer:}$

Pythagoras theorem states that square	e of the = sum of the squares of its
$\overline{Given: Base} = \underline{\qquad}$, Altitude = $\underline{\qquad}$	
Base and altitude are	(hypotenuse/ legs) of the triangle.

By Pythagoras theorem,
$$(____)^2 = (___)^2 + (___)^2$$

 $= __ + ___$

Therefore, hypotenuse of the triangle is _____.

Question: 24

Find the length of the rectangle, if breadth is 3 cm and diagonal is 5 cm.

Answer:

Pythagoras theorem states that square on the $\underline{\hspace{1cm}}$ = sum of the squares on

Is Pythagoras theorem applicable in rectangle? ____ (yes/ no).

Given: breadth = _____, length of diagonal = _____

By Pythagoras theorem, $(____)^2 = (___)^2 + (___)^2$ $= __ + ___$

Therefore, diagonal of the rectangle is _____

Number system

Topics to be Improved						
Positive and negative rational numbers	Identification of positive rational numbers					
Fractions	Division of fraction					
Exponents	Solving exponents					
Operations on rational numbers	Subtraction of rational numbers					

Hi, here in this video you will learn **Positive and Negative rational numbers**

Question: 25

Segregate positive and negative rational number.

......

Answer:

- If either the numerator and the denominator of a rational number are negative, then it is ______ (positive/negative) rational number.

In the given circle, positive rational numbers are _____ and negative rational numbers are

Question: 26

 $\frac{-3}{-4}$ is a _____ (positive /negative / neither positive nor negative) rational number.

Answer:

-3 is a _____ number, -4 is a ____ number.

Division of $\frac{-3}{-4} = \square$ and this _____ rational number.

(Positive / Negative / Neither positive nor negative rational number)

Question: 27

The product of a positive rational number and a negative rational number is ______ rational number. (Positive/ Negative/ neither positive nor negative)

Answer:

Examples for positive rational numbers: _____

Examples for negative rational numbers:

Positive rational number \times Negative rational number = ____ \times ___ = ___ and this is ____ rational number

Hi, here in this video you will learn **Division on fractions**

Question: 28

Find the shape which contains the improper fraction of $5\frac{2}{7}$.

......

......

Answer:

 $5\frac{2}{7}$ is a _____ (proper/mixed) fraction.

Here, 5 is ______, 2 is _____ and 7 is _____.

To convert mixed fraction into improper fraction, $\frac{\text{(Whole} \times \underline{\hspace{1cm}}) + \text{Numerator}}{\text{Denominator}}$

$$5\frac{2}{7} = \frac{(--- \times ---) + ---- }{7} = \frac{\square}{\square}$$

......

Question: 29

Solve: $\frac{1}{3} \div \frac{14}{3}$

Answer:

To divide a fraction by another fraction, multiply the dividend by $___$ (same / reciprocal) of the divisor. Here, dividend = $___$ and divisor = $___$.

1	_	14	=	1	×		=	
3	•	3		3	^	\Box		

Question:	30	
a account.	00	

Find the half of the fraction $\frac{12}{40}$.

Answer:

To find half of a number, divide the number by _____

$$\frac{12}{40} \div \underline{\hspace{1cm}} = \frac{12}{40} \times \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$$

Then the answer is _____

Hi, here in this video you will learn Exponents and power

Question: 31

Find the exponential form of 1000.

Answer:

_____ (Exponents/Base) tells us how many times a number should be multiplied by itself to get the desired result.

Exponents is also called as _____ (Base / Power).

.....

.....

1000 can be written as = $10 \times$ ____ \times ____ 10 is raised to the power of ____ = (10)

Question: 32

Find the value of $(-2)^3$.

Answer:

_____ (Exponents/Base) tells us how many times a number should be multiplied by itself to get the desired result.

In this exponential form
$$(-2)^3$$
, base = ____, power = ____.
 $(-2)^3$ = ____ × ___ = ___.

Question: 33

- (i) Tenth power of 100 is $((10)^{100})$ or $(100)^{10}$).
- (ii) k is raised to the power of 5 is $((k)^5)$ or $(5)^k$.

Answer:

Exponential form = (Base)—

- (i) Tenth power of 100: Base = ____, Power/Exponents = ____, exponential form = ____.
- (ii) k is raised to the power of 5: Base = ____, Power/Exponent = ____, exponential form = ____.

Hi, here in this video you will learn **Operation on rational num**bers

Question: 34

Solve: $\frac{-3}{3} + \frac{1}{3}$

Answer:

Fractions with same denominators are called _____ (like/unlike) fractions. Fraction can be added only if they are _____(like/unlike) fractions.

$$\frac{-3}{3} + \frac{1}{3} = \frac{-3}{3} = \frac{-3}{3}$$

......

Question: 35

Find the addition of shaded part of box A and shaded part of box B.

.....

Answer:

Total number of square in box $A = \underline{\hspace{1cm}}$.

Number of shaded square in box $A = \underline{\hspace{1cm}}$

Shaded part of box A in fraction = _____

Total number of square in box $B = \underline{\hspace{1cm}}$.

Number of shaded square in box $B = \underline{\hspace{1cm}}$

Shaded part of box B in fraction = _____.

Shaded part of box A + Shaded part of box B = $___$ + $___$ = $___$

Question: 36

Find the missing values in the given figure.

$$= \begin{array}{c} \\ \\ \\ \\ \\ \end{array}$$

Answer:

One litre =
$$\underline{\hspace{1cm}}$$
 ml $\frac{7}{10}$ of one liter = $\frac{7}{10}$ x $\underline{\hspace{1cm}}$ ml = $\underline{\hspace{1cm}}$ ml

Given:
$$1 = \frac{7}{10} +$$

Transposing $\frac{7}{10}$ to other sides, 1 ____ $\frac{7}{10} =$ ____
Therefore, result is _____.

Comparing Quantities

Topics to be Improved				
Percentage	Basic of percentage			
Equivalent ratios	Basic of proportion			

Hi,	here in	this	video	you	will	learn	Basics	\mathbf{of}	percentage
-----	---------	------	-------	-----	------	------------------------	--------	---------------	------------

Question: 37

2% can be written as

Answer:

Percentages are numerators of fractions with denominator_____

$$2\% = \frac{\square}{\square}$$

.....

 $Question:\ 38$

Arun attended the LaPIS test for 100 marks and got 75% marks. What is the mark scored by Arun?

Answer:

Arun attended LaPIS test for _____ marks. He got ____ marks.

75 % can be written in fraction form

Then the mark scored by Arun = Total mark \times 75% = ____ \times ___ = ____

Question: 39

There are 25 apples in a basket in which 10 of them are rotten. Find the percentage of rotten apples.

.....

Answer:

There are _____ apples in a basket.

Number of rotten apples are _____.

Fraction form of rotten apples in a basket						
Convert it into a percent= x	% = _					
Hi, here in this video you will learn	1 Basics	of prop	ortio	n		
Question: 40						
If a:b and c:d are equivalent ratio, then it of	ean be expr	ressed as _				
Answer:						
A (proportion / ratio) is used to extended form to express proportion is	-	(one/	two) e	quival	ent rati	los.
Question: 41						
Find the ratio of shaded part to unshaded	part of A a	and B. Are	the tw	o ratio	os equiv	valent?
A						
11			В			
Answer:						
Answer: Shaded part of $A = \underline{\hspace{1cm}}$, Unshaded part	$rt of A = _{-}$					
Ratio of shaded to unshaded parts of A is .	Fr	ractional for	orm =		 •	
Shaded part of $B = \underline{\hspace{1cm}}$, Unshaded part of $B = \underline{\hspace{1cm}}$.						
Ratio of shaded to unshaded parts of B is .	·					
Fractional form =	1)	C	. C D			
Fraction form of A (equal/ not eq	uai) to Fra	ction form	OI B.			
Question: 42						
If a: b:: c: d is proportion, shade the cor	rect expres	ssion				
	7					
$\begin{vmatrix} a = \frac{bc}{d} \end{vmatrix} \begin{vmatrix} c = \frac{ad}{b} \end{vmatrix} $ ad=cd						

$\underline{Answer:}$

Two equivalent ratio which are proportion, it can be written as a : b :: c : d or ____ = ___ (in fraction) . First and fourth term are called ____ and second and third term are called ____. In proportion, product of extreme terms is ____ (equal to/ not equal to) product of middle terms. Therefore, a \times d = ____, then a = ___ and c = ____,

Algebra

Topics to be Improved					
Addition and subtraction of algebraic expressions	Like terms and Unlike terms				
subtraction of algebraic expressions	subtraction of algebraic expressions				
Monomials, binomials, trinomials and polynomials	Types of algebraic expression				
Basics of simple equation	Solving of simple equation				

Hi, here in this video you will learn Addition on expression

Question: 43

Shade the like terms.

Answer:

Given terms are ______

Two or more term have _____ (same/ different) variables is called like terms.

Here, like terms are _____

Question: 44

Complete the expression $7r^2 + r \Box - 2 \Box = \underline{} r^2$

Answer:

_____ (Like / Unlike) terms can be added or subtracted.

$$_{7r^2+ r} \square_{-2} \square = (_{7} + \underline{ } - 2)_{r^2} = \underline{ }$$

Question: 45

Sam have 3a chocolates and 9y icecream. Ram have 7a chocolates and 5y icecream.

(i) Total chocolates Ram and Sam have:	(i	(i)	Total	chocolates	Ram	and	Sam	have	:	
--	----	---	----	-------	------------	-----	-----	-----	------	---	--

(ii) How	many	icecreams	Sam	have	more	than	Ram	:		
-----	-------	------	-----------	-----	------	------	------	-----	---	--	--

Answer:

	Chocolates	Icecream
Sam		
Ram		

......

(i)	Total chocolates Ram and Sam have:	
	$Ram's chocolate + Sam's chocolates = \underline{\hspace{1cm}} + \underline{\hspace{1cm}}$	_ =

	_ 001 10 0_	 ~ 1	10 01	 		
\				_		

(ii)	How many	icecreams Sam	have more	than Ram:		
		icecrea	am	$_{\rm icecream} = 1$	 	=

Hi, here in this video you will learn Subtraction on expression

Question:	46
a account	40

Find the sum of two expressions a + b + c and b + c + d

Answer:

The given	two expressions are	and
-----------	---------------------	-----

The sum of two expressions
$$=$$
 $\underline{\hspace{1cm}}$ $+$ $\underline{\hspace{1cm}}$.

The answer is _____

Question: 47

	School A	School B
Number of boys	100b	250b
Number of girls	150g	200g
Number of teachers	25t	45t

(i)	Total	number	of	boys	in	school	Α	and	В	is	
(-)									_		

(iii)	How many	more teache	s are there in	school B tha	an school A? _	
-------	----------	-------------	----------------	--------------	----------------	--

Answer:

(i) Number of boys in school $A = \underline{\hspace{1cm}}$,

Number of boys in school $B = \underline{\hspace{1cm}}$

Total number of boys in school A and school B is _____ + ___ = ____.

(ii) Number of boys in school $B = \underline{\hspace{1cm}}$,

Number of girls in school $B = \underline{\hspace{1cm}}$.

Total number of students in school B is $___$ + $___$ = $__$.

(iii) Number of teachers more in school B than school A = Teachers in school B - Teachers in school A = $___$.

Question: 48

Solve the following:

Answer:

The two terms will get added only if they are _____ (like/unlike) terms.

$$\begin{array}{c|c}
13x + \underline{\hspace{1cm}} \\
(+) & 12x + 10y \\
\underline{\hspace{1cm}} + 25y
\end{array}$$

$$\begin{array}{r}
 3a - 5b \\
 \hline
 (-) \quad 5a - 7b \\
 \hline
 -2a - \underline{\hspace{1cm}}
 \end{array}$$

.....

 Hi , here in this video you will learn $\operatorname{\mathbf{Types}}$ of $\operatorname{\mathbf{expression}}$

Question: 49

There are _____ terms in the expression 7x + 3y + m + 5.

Answer:

In algebraic expression, _____ (variables/ terms) are connected together with operations of addition.

The terms in the expression are ______, _____, and ______.

Therefore, there are ______ terms in the expression.

Question: 50

Classify the following expression into monomial, binomial and polynomial.

1.
$$7m + n + 2$$

2.
$$8x^2 + 0$$

3. 7xy + 4m

Answer:

1. The terms in expression $8x^2 + 0$ are _____. Here, expression has _____ term and it is a _____.

2. The terms in expression 7xy + 4m are _____. Here, expression has _____ term and it is a _____.

3. The terms in expression 7m + n + 2 are _____. Here, expression has ____ term and it is a _____.

Question: 51

 $5m^2 + m + 0$ is a ______ expression. (Monomial/ Binomial/ Trinomial)

Answer:

The terms in expression $5m^2 + m + 0$ are _____.

Here, the expression has ______ terms and it is called a _____ expression.

.....

Hi, here in this video you will learn Solving an equation

Question: 52

If ©=5, then 5 © +5 =

Answer:

The value of the given smiley © is _____.

Substituting the value in the expression $= 5(\underline{\hspace{1cm}}) + 5 = \underline{\hspace{1cm}} + \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$.

Question: 53

Which of the following number can be placed in the box to make the equation correct (-2, -1, 0, 1, 2)

.....

.....

7 + 3 = -4

Answer:

The given equation is $7 \pm 3 = -4$ Substitute the values (-2, -1, 0, 1, 2) in the circle,

$$7 \times \underline{\hspace{1cm}} + 3 = \underline{\hspace{1cm}}$$

Therefore, _____ is the number that can be placed in a box to make the equation correct.

 $\underline{Question: 54}$

Arrange the terms in the descending order when the value of x is 2. 2x $5x \times 1$ x + 3 2x - 4 $\frac{1}{2}x$

Answer:

The given expression are _____.

The value of x is _____.

substituting value of x

$$2x = 2 \times \underline{\hspace{1cm}} = \underline{\hspace{1cm}} 2x - 4 = 2 \times \underline{\hspace{1cm}} - 4 = \underline{\hspace{1cm}}$$
 $x + 3 = \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$
 $5x \times 1 = 5 \times \underline{\hspace{1cm}} \times 1 = \underline{\hspace{1cm}}$

Arranging in descending order: ____, ____, ____, ____, ____.
Their respective algebraic terms are ____, ____, ____, ____, ____.