

Privacy-Preserving Remote Diagnostics

Philip Schmieg and Manjiri Birajdar TU Darmstadt

Agenda

- **□** Introduction
- ☐ Remote Diagnostics
- ☐ Basic knowledge and terminologies
 - Branching Program (BP)
 - Oblivious Transfer (OT)
 - Garbled Circuits (GC)
 - Homomorphic Encryption (HE)

Agenda

- ☐ Protocol Digest
 - Secure branching program protocol
 - A protocol for secure evaluation of private LBPs -SecureEvalPrivateLBP
- ☐ Performance Comparison

Introduction

Remote diagnostics - risk for both the parties

Server

client

Remote diagnostics

□ Applications:

- Healthcare (medical treatment sector)
- Remote software fault analysis (fault diagnostics)
- ElectroCardioGram signals

Example: In medical applications:

- Patient wants his personal data to be protected from medical applications while receiving an analysis
- The **service provider** wants his algorithms to be protected as it is an intellectual property

Branching Programs (BP)

- ☐ Set of decision and classification nodes
- ☐ Decision nodes are inner nodes on which the program branches until a classification node is reached
- ☐ Can represent boolean functions which are compatible with Garbled Circuits

Branching Programs (BP)

Linear Branching Programs

- ☐ Linear Branching Programs are a generalization BPs
- □ While BP use only one attribute for comparison in decision nodes, LBP use a linear combination of the users attribute vector

Oblivious Transfer

- Method for information transfer between a sender and receiver
- □ The sender does not know which information was requested
- ☐ While the receiver only learns one of the two inputs
- □ Used by Bob to learn his input values for the GC from Alice

Oblivious Transfer

Oblivious Transfer

- ☐ The receiver chooses a bit $b = \{0,1\}$ which correlates to the input he wants to select
- ☐ The Sender inputs two values between the receiver will chose
- ☐ The receiver receives the chosen value while not learning anything about the other value

Garbled Circuit

- ☐ Encrypted circuit with a pair of wire keys for every input wire.
- ☐ The wire keys enable the computation of the output based on the encrypted input
- Nothing is learned from the gate computation

а	b	x				
a_1	b_1	$Enc_{a_1 \parallel b_1}(x_1)$				
a_1	b_0	$Enc_{a_1 \parallel b_0}(x_0)$				
a_0	b_1	$Enc_{a_0 \parallel b_1}(x_0)$				
a_0	b_0	$Enc_{a_0 \parallel b_0}(x_0)$				

Garbled Circuits (GC) - Yao's garbled circuits protocol

Yao's garbled circuits protocol

- ☐ Protocol for secure two-party computation
 - Constant number of rounds
 - Secure against semi honest adversary
- Can compute any function based on a boolean circuit securely
- Builds on garbled circuits and oblivious transfer

Yao's Protocol Steps

- □ Step 1: Alice generates the garbled circuit C and two encrypted labels for each input wire
- □ Step 2: Alice sends her encrypted input (wire labels) to Bob
- □ Step 3: Bob receives his wire labels from Alice using 1-out-of-2 oblivious transfer without revealing his inputs to Alice
- □ Step 4: Bob uses Alice's wire labels and his own wire labels to compute the output and send it back to Alice

Homomorphic Encryption

- Manipulation of plaintext without knowing the corresponding ciphertext
- \square Additiv homomorphic encryption is : $\operatorname{Enc}_k(x_1+x_2)=Enc_k(x_1)+Enc_k(x_2)$
- ☐ Addition can be done on ciphertext and decrypted plaintext result is correct

Protocol Digest

- ☐ Secure branching program protocol
 - used for secure evaluation of binary branching programs.

- □ A protocol for secure evaluation of private LBPs SecureEvalPrivateLBP
 - secure evaluation of private linear branching programs.

Secure branching program protocol

The main goal of the protocol is to securely analyze the T on V

Secure branching program protocol

Phase I (Offline): Creation of the secure branching program

- Transforms the nodes in branching program T into secure nodes in branching program T'
- Classification node is replaced by encryption of its classification label.
- Decision node is replaced with a small garbled circuit performing offset integer comparison
- User can figure out one of the decryption keys
- the revealed key can help to decrypt the next node on the evaluation path

Secure branching program protocol

Phase II: Oblivious attribute selection

Phase III: Evaluation of the secure branching program

- ☐ Secure evaluation of private linear branching programs
- □ Linear Branching Programs (LBP) generalize binary classification or decision trees and Ordered Binary Decision Diagrams (OBDDs)
- ☐ The protocol **SecureEvalPrivateLBP** is divided into **three phases**:
 - Phase I: CreateGarbledLBP
 - Phase II: ObliviousLinearSelect
 - Phase III: EvalGarbledLBP

C: attribute vector x^l

S: server

L: linear branching program

- Phase I: CreateGarbledLBP
 - the server S generates the garbled version of the LBP \mathscr{L}
 - randomize LBP permutation

- Phase II: ObliviousLinearSelect
 - S blinds the encrypted value in order to hide the encrypted plaintext from C

 protocol makes sure that S and C should not learn anything about the plaintexts.

- Phase III: EvalGarbledLBP
 - This stage takes the garbled values as input and produces the classification label as output

Performance

- □ Performance is a critical criteria for privacy preserving protocols
- ☐ Efficiency depends on the offline and online computations
- ☐ The garbled circuits can be pre computed on the server
- ☐ The exchange of garbled values happens in an online phase which uses oblivious transfer
- ☐ The evaluation of the Garbled Circuit happens on the client

Performance Improvements of Barni et al.

- □ Point and permute
 - Circuit evaluator only needs to decrypt a single ciphertext per garbled gate
- ☐ Incorporate classification nodes into decision nodes
 - Reduces size of LBP and number of Oblivious
 Transfers by the number of classification nodes
- Packing
 - Packing multiple ciphertexts into one and thus reducing number of decryptions and communication complexity

Performance Improvements of Barni et al.

- **□**TinyLBPs
 - Constructing the LBP as single Yao gate with d inputs
 - only feasible for small d because the size of the LBP grow exponentially in d
- ☐ Key-offsets

Performance Comparison

- ☐ The improved hybrid version of Barni et al. reduces the number of Garbled Circuit and Oblivious Transfer and Homomorphic Encryption computations
- ☐ The reduction results are shown in the following table:

Oblivious Selection Protocol	Private Function	Moves	Asymptotic GC	Commun OT	ication Complexity HE
[BPSW07]	BP	OT+2	$12zl(t+\kappa)$	OT_t^{zl}	(n+z)2T
[BFK ⁺ 09] Hybrid	LBP	OT+2	12 <i>dl't</i>	$OT_t^{dl'}$	$(n + \frac{l'}{T - \kappa}d)2T$

Acknowledgments

We thank

Engineering Cryptographic Protocols Group (ENCRYPTO),

Dr. Thomas Schneider and Agnes Kiss for their help and support.

References

- □[BFK+09] Mauro Barni, Pierluigi Failla, Vladimir Kolesnikov, Riccardo Lazzeretti, Ahmad-Reza Sadeghi, and Thomas Schneider. Secure evaluation of private linear branching programs with medical applications.
- □ [BPSW07] Justin Brickell, Donald E. Porter, Vitaly Shmatikov, and Emmett Witchel. Privacypreserving remote diagnostics.
- □[GQ17] D. Giry and J.-J. Quisquater. Cryptographic key length recommendation. Website, 2017. Online https://www.keylength.com
- □ [Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets.

Any Questions?