PCT

WELTORGANISATION FÜR GEISTIGES EIGENTUM Integnationales Büro

INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation 6:

C07D 249/12, 249/08, 401/12, 401/14, 403/12, 403/14, 405/14, 409/14, 413/14, 417/14, A61K 31/33, 31/41

 $(11) \ Internationale \ Ver\"{o} ffentlichungsnummer: \\$

(43) Internationales
Veröffentlichungsdatum:

21. Januar 1999 (21.01.99)

WO 99/02503

(21) Internationales Aktenzeichen:

PCT/EP98/04138

A1

(22) Internationales Anmeldedatum:

3. Juli 1998 (03.07.98)

(30) Prioritätsdaten:

197 28 996.7

7. Juli 1997 (07.07.97)

DE

(71) Anmelder (für alle Bestimmungsstaaten ausser US): BASF AK-TIENGESELLSCHAFT [DE/DE]; D-67056 Ludwigshafen (DE).

(72) Erfinder; und

(75) Erfinder/Anmelder (nur für US): STARCK, Dorothea [DE/DE]; Kaiser-Wilhelm-Strasse 31, D-67059 Ludwigshafen (DE). BLANK, Stefan [DE/DE]; Drachenfelsstrasse 47, D-67065 Ludwigshafen (DE). TREIBER, Hans-Jörg [DE/DE]; Sperberweg 1, D-68782 Brühl (DE). UNGER, Liliane [DE/DE]; Wollstrasse 129, D-67065 Ludwigshafen (DE). NEUMANN-SCHULTZ, Barbara [DE/DE]; Rheingaustrasse 42, D-68526 Ladenburg (DE). LE BRIS, Theophile-Marie [FR/DE]; Im Woogtal 30, D-67273 Bobenheim am Berg (DE). TESCHENDORF, Hans-Jürgen [DE/DE]; Georg-Nuss-Strasse 5, D-67373 Dudenhofen (DE). WICKE, Karsten [DE/DE]; Ziegeleistrasse 113, D-67112 Altrip (DE).

(74) Anwälte: KINZEBACH, Werner usw.; Reitstötter, Kinzebach & Partner, Sternwartstrasse 4, D-81679 München (DE).

(81) Bestimmungsstaaten: AU, BG, BR, CA, CN, CZ, HR, HU, ID, IL, JP, KR, MX, NO, NZ, PL, RO, RU, SG, SI, SK, TR, UA, US, europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Veröffentlicht

Mit internationalem Recherchenbericht.

Vor Ablauf der für Änderungen der Ansprüche zugelassenen Frist; Veröffentlichung wird wiederholt falls Änderungen eintreffen.

(54) Title: TRIAZOLE COMPOUNDS AND THE USE THEREOF AS DOPAMINE-D3-LIGANDS

(54) Bezeichnung: TRIAZOLVERBINDUNGEN UND DEREN VERWENDUNG ALS DOPAMIN-D3-LIGANDEN

$$\begin{array}{c|c}
N-N \\
N \\
\downarrow \\
R^1
\end{array}$$
(I)

(57) Abstract

The present invention relates to triazole compounds of formula (I), wherein Ar¹, A, B and Ar² have the meanings cited in the description. The inventive compounds exhibit high dopamine-D₃-receptor affinity and can thus be used in the treatment of diseases responding to dopamine-D₃-ligands.

(57) Zusammenfassung

Die vorliegende Erfindung betrifft Triazolverbindungen der Formel (I), worin Ar¹, A, B und Ar² die in der Beschreibung angegebenen Bedeutungen besitzen. Die erfindungsgemäßen Verbindungen besitzen eine hohe Affinität zum Dopamin-D₃-Rezeptor und sind daher zur Behandlung von Erkrankungen brauchbar, die auf Dopamin-D₃-Liganden ansprechen.

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AL	Albanien	ES	Spanien	LS	Lesotho	SI	Slowenien
AM	Armenien	FI	Finnland	LT	Litauen	SK	Slowakei
AT	Österreich	FR	Frankreich	LU	Luxemburg	SN	Senegal
AU	Australien	GA	Gabun	LV	Lettland	SZ	Swasiland
				-			
AZ	Aserbaidschan	GB	Vereinigtes Königreich	MC	Monaco	TD	Tschad
BA	Bosnien-Herzegowina	GE	Georgien	MD	Republik Moldau	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagaskar	TJ	Tadschikistan
BE	Belgien	GN	Guinea	MK	Die ehemalige jugoslawische	TM	Turkmenistan
BF	Burkina Faso	GR	Griechenland		Republik Mazedonien	TR	Türkei
BG	Bulgarien	HU	Ungarn	ML	Mali	TT	Trinidad und Tobago
ВЈ	Benin	IE	Irland	MN	Mongolei	UA	Ukraine
BR	Brasilien	IL	Israel	MR	Mauretanien	UG	Uganda
BY	Belarus	IS	Island	MW	Malawi	US	Vereinigte Staaten von
CA	Kanada	IT	Italien	MX	Mexiko		Amerika
CF	Zentralafrikanische Republik	JP	Japan	NE	Niger	UZ	Usbekistan
CG	Kongo	KE	Kenia	NL	Niederlande	VN	Vietnam
CH	Schweiz	KG	Kirgisistan	NO	Norwegen	YU	Jugoslawien
CI	Côte d'Ivoire	KP	Demokratische Volksrepublik	NZ	Neuseeland	ZW	Zimbabwe
СМ	Kamerun		Korea	PL	Polen		
CN	China	KR	Republik Korea	PT	Portugal		
CU	Kuba	KZ	Kasachstan	RO	Rumänien		
CZ	Tschechische Republik	LC	St. Lucia	RU	Russische Föderation		
DE	Deutschland	LI	Liechtenstein	SD	Sudan		
DK	Dänemark	LK	Sri Lanka	SE	Schweden		
EE	Estland	LR	Liberia	SG	Singapur		
1							

WO 99/02503 PCT/EP98/04138

TRIAZOLVERBINDUNGEN UND DEREN VERWENDUNG ALS DOPAMIN-D3-LIGANDEN

Beschreibung

5

C)

Die Erfindung betrifft Triazolverbindungen und die Verwendung derartiger Verbindungen. Die erwähnten Verbindungen besitzen wertvolle therapeutische Eigenschaften und sind zur Behandlung von Erkrankungen brauchbar, die auf Dopamin- D_3 -Rezeptorliganden 10 ansprechen.

Verbindungen der hier in Rede stehenden Art mit physiologischer Aktivität sind bereits bekannt. Die US-A 4,338,453; 4,408,049 und 4,577,020 beschreiben Triazolverbindungen, welche anti-allergi15 sche oder anti-psychotische Aktivität besitzen. Die DE-A 44 25 144 und die WO 97/25324 beschreiben Triazolverbindungen, die auf Dopamin-D₃-Rezeptorliganden ansprechen. Verbindungen des gleichen strukturellen Typs, jedoch mit anderen Heterocyclen anstelle des Triazolrings sind in DE-A-44 25 146, DE-A-44 25 143 und DE-A-44 25 145 beschrieben.

Neuronen erhalten ihre Informationen unter anderem über G-Protein-gekoppelte Rezeptoren. Es gibt zahlreiche Substanzen, welche ihre Wirkung über diese Rezeptoren ausüben. Eine davon ist Dopa-25 min.

Es liegen gesicherte Erkenntnisse über die Anwesenheit von Dopamin und dessen physiologische Funktion als Neurotransmitter vor. Auf Dopamin ansprechende Zellen stehen im Zusammenhang mit der 30 Etiologie von Schizophrenie und der Parkinson'schen Krankheit. Die Behandlung dieser und anderer Erkrankungen erfolgt mit Arzneimitteln, die mit den Dopaminrezeptoren in Wechselwirkung treten.

35 Bis 1990 waren zwei Subtypen von Dopaminrezeptoren pharmakologisch klar definiert, nämlich die D₁- und D₂-Rezeptoren.

In jüngerer Zeit wurde ein dritter Subtyp gefunden, nämlich der D₃-Rezeptor, der einige Effekte der Antipsychotika zu vermitteln 40 scheint. (J.C. Schwartz et al., The Dopamine D₃ Receptor as a Target for Antipsychotics, in Novel Antipsychotic Drugs, H.Y. Meltzer, Ed. Raven Press, New York 1992, Seiten 135-144)

 D_3 -Rezeptoren werden hauptsächlich im limbischen System expri-45 miert. Es wird daher angenommen, daß ein selektiver D_3 -Antagonist wohl die antipsychotischen Eigenschaften der D_2 -Antagonisten, nicht aber ihre neurologischen Nebenwirkungen haben sollte. (P. Solokoff et al., Localization and Function of the D₃ Dopamine Receptor, <u>Arzneim. Forsch./Drug Res. 42(1)</u>, 224 (1992); P. Solokoff et al. Molecular Cloning and Characterization of a Novel Dopamine Receptor (D₃) as a Target for Neuroleptics, <u>Nature</u>, <u>347</u>, 5 146 (1990)).

Überraschenderweise wurde nun gefunden, daß bestimmte Triazolverbindungen eine hohe Affinität zum Dopamin- D_3 -Rezeptor und eine geringe Affinität zum D_2 -Rezeptor aufweisen. Es handelt sich somit 10 um selektive D_3 -Liganden.

Gegenstand der vorliegenden Erfindung sind daher die Verbindungen der allgemeinen Formel I:

$$Ar^{1} \nearrow A-B-Ar^{2}$$

$$\downarrow \\ R^{1}$$
(I)

20 worin

<1

Ar¹ für Phenyl, Naphthyl oder einen 5- oder 6-gliedrigen heterocyclischen aromatischen Ring mit 1, 2, 3 oder 4 Heteroatomen, die unabhängig voneinander ausgewählt sind unter 0, S und N, steht, wobei Ar¹ gegebenenfalls 1, 2, 3 oder 4 Substituenten aufweist, die unabhängig voneinander ausgewählt sind unter C¹-C6-Alkyl, das gegebenenfalls durch OH, OC¹-C6-Alkyl, Halogen oder Phenyl substituiert ist, C¹-C6-Alkoxy, C²-C6-Alkenyl, C²-C6-Alkinyl, C³-C6-Cycloalkyl, Halogen, CN, COOR², NR²R², NO², SO²R², SO²NR²R² oder Phenyl, das gegebenenfalls durch C¹-C6-Alkyl, OC¹-C6-Alkyl, NR²R², CN, CF³, CHF², oder Halogen substituiert ist, und wobei der erwähnte heterocyclische, aromatische Ring gegebenenfalls mit einem Phenylring kondensiert sein kann;

35

A für geradkettiges oder verzweigtes C_4-C_{10} -Alkylen oder geradkettiges oder verzweigtes C_3-C_{10} -Alkylen steht, das wenigstens eine Gruppe Z umfasst, die ausgewählt ist unter O, S, NR², CONR², COO, CO, einer Doppel- oder Dreifachbindung,

40

45

B für einen Rest der Formel steht:

$$-$$
N $-$, $-$ N $-$ oder $-$ N $-$

oder wenn Ar^1 für den 5- oder 6-gliedrigen, heterocyclischen aromatischen Ring, der wie angegeben substituiert sein kann, steht, B auch für einen Rest der Formeln

$$-N$$
 $N -N$ oder

41

stehen kann,

15 Ar² für Phenyl, Pyridyl, Pyrimidinyl oder Triazinyl steht, wobei Ar² gegebenenfalls ein bis vier Substituenten aufweisen kann, die unabhängig voneinander ausgewählt sind unter OR2, C1-C6-Alkyl, $C_2-C_6-Alkenyl$, $C_2-C_6-Alkinyl$, $C_1-C_6-Alkoxy-C_1-C_6-alkyl$, Halogen-C₁-C₆-alkyl, Halogen-C₁-C₆-alkoxy, Halogen, CN, NO₂, 20 SO₂R², NR²R², SO₂NR²R², einem 5- oder 6-gliedrigen carbocyclischen, aromatischen oder nicht-aromatischen Ring und einem 5oder 6-gliedrigen, heterocyclischen aromatischen oder nichtaromatischen Ring mit 1 oder 2 Heteroatomen, die ausgewählt sind unter O, S und N, wobei der carbocyclische oder hetero-25 cyclische Ring gegebenenfalls durch C1-C6-Alkyl, Phenyl, Phenoxy, Halogen, OC1-C6-Alkyl, OH, NO2 oder CF3 substituiert und/oder mit einem Phenylring kondensiert sein kann und wobei Ar² qegebenenfalls mit einem carbocyclischen oder heterocyclischen Ring der oben definierten Art kondensiert sein kann,

30

R¹ für H, C_3 - C_6 -Cycloalkyl oder C_1 - C_6 -Alkyl, das gegebenenfalls durch OH, OC_1 - C_6 -Alkyl oder Phenyl substituiert ist, steht;

die Reste R², die gleich oder verschieden sein können, für H oder
35 C₁-C₆-Alkyl, das gegebenenfalls durch OH, OC₁-C₆-Alkyl oder
Phenyl substituiert ist, stehen;

sowie deren Salze mit physiologisch verträglichen Säuren.

40 Bei den erfindungsgemäßen Verbindungen handelt es sich um selektive Dopamin- D_3 -Rezeptor-Liganden, die regioselektiv im limbischen System angreifen und aufgrund ihrer geringen Affinität zum D_2 -Rezeptor nebenwirkungsärmer als die klassischen Neuroleptika sind, bei denen es sich um D_2 -Rezeptorantagonisten handelt. Die Verbindungen sind daher zur Behandlung von Erkrankungen brauchbar, die

auf Dopamin- D_3 -Rezeptorantagonisten bzw. -agonisten ansprechen, z.B. zur Behandlung von Erkrankungen des zentralen Nervensystems

insbesondere Schizophrenie, Depressionen, Neurosen, Psychosen, Parkinson und Angstzuständen.

Im Rahmen der vorliegenden Erfindung besitzen die nachfolgenden 5 Ausdrücke die anschließend angegebenen Bedeutungen:

Alkyl (auch in Resten wie Alkoxy, Alkylamino etc.) bedeutet eine geradkettige oder verzweigte Alkylgruppe mit 1 bis 6 Kohlenstoffatomen und insbesondere 1 bis 4 Kohlenstoffatomen. Die Alkyl-

10 gruppe kann einen oder mehrere Substituenten aufweisen, die unabhängig voneinander ausgewählt sind unter OH, $OC_1-C_6-Alkyl$, Halogen oder Phenyl.

Beispiele für eine Alkylgruppe sind Methyl, Ethyl, n-Propyl, iso-15 Propyl, n-Butyl, iso-Butyl, t-Butyl, etc.

Cycloalkyl steht insbesondere für C_3 - C_6 -Cycloalkyl, wie Cyclopropyl, Cyclobutyl, Cyclopentyl und Cyclohexyl.

- 20 Alkylen steht für geradkettige oder verzweigte Reste. Wenn A keine Gruppe Z aufweist, umfasst A 4 bis 10 Kohlenstoffatome, bevorzugt 4 bis 8 Kohlenstoffatome. Die Kette zwischen Triazolkern und Gruppe B weist dann mindestens vier Kohlenstoffatome auf. Wenn A wenigstens eine der genannten Gruppen Z aufweist, umfasst
- 25 A 3 bis 10 Kohlenstoffatome, vorzugsweise 3 bis 8 Kohlenstoffatome.

Wenn die Alkylengruppen wenigstens eine der Gruppen Z umfassen, können diese in der Alkylenkette an beliebiger Stelle oder in Po-

- 30 sition 1 oder 2 der Gruppe A (vom Rest Ar¹ her gesehen) angeordnet sein. Die Reste CONR² und COO sind vorzugsweise so angeordnet, dass jeweils die Carbonylgruppe dem Triazolring zugewandt ist. Besonders bevorzugt sind Verbindungen der Formel I, worin A für -Z-C₃-C₆-Alkylen, insbesondere -Z-CH₂CH₂CH₂-, -Z-CH₂CH₂CH₂CH₂-,
- 35 -Z-CH₂CH=CHCH₂-, -Z-CH₂C(CH₃)=CHCH₂-, -Z-CH₂C(=CH₂)CH₂-, -Z-CH₂CH(CH₃)CH₂- oder für einen linearen -Z-C₇-C₁₀-Alkylenrest steht, wobei Z an den Triazolring gebunden ist. Z steht vorzugsweise für CH₂, O und insbesondere S. Weiterhin bevorzugt steht A für -(CH₂)₄-, -(CH₂)₅-, -CH₂CH₂CH=CHCH₂-, -CH₂CH₂C(CH₃)=CHCH₂-,
- 40 -CH₂C(=CH₂)CH₂- oder -CH₂CH₂CH(CH₃)CH₂-.

Halogen bedeutet F, Cl, Br oder I.

(1

Halogenalkyl kann ein oder mehrere, insbesondere 1, 2, 3 oder 4 Halogenatome umfassen, die sich an einem oder mehreren C-Atomen befinden können, vorzugsweise in $\alpha-$ oder $\omega-$ Position. Besonders bevorzugt sind CF₃, CHF₂, CF₂Cl oder CH₂F.

5

4

Acyl steht vorzugsweise für HCO oder $C_1-C_6-Alkyl-CO$, insbesondere Acetyl.

Wenn Ar^1 substituiert ist, kann sich der Substituent auch an dem Stickstoffheteroatom befinden.

10

Vorzugsweise steht Arl für

35 worin

 ${\bf R}^3$ bis ${\bf R}^6$ für H oder die oben genannten Substituenten des Restes ${\bf Ar}^1$ stehen,

R7 für H, C1-C6-Alkyl oder Phenyl steht und

X für N oder CH steht. Wenn der Phenylrest substituiert ist, ste-40 hen die Substituenten vorzugsweise in m- oder p-Stellung.

Besonders bevorzugt steht Ar1 für

worin R³, R⁴ und R⁷ die oben angegebenen Bedeutungen besitzen. Die angegebenen Phenyl-, Pyrazinyl- und Pyrrolreste sind insbesondere 15 bevorzugt.

Die Reste R³ bis R⁶ stehen vorzugsweise für H, C₁-C₆-Alkyl, OR², CN, Phenyl, das gegebenenfalls durch C₁-C₆-Alkyl, C₁-C₆-Alkoxy oder Halogen substituiert ist, CF₃ und Halogen und insbesondere 20 für H, C₁-C₆-Alkyl, OR² und Halogen. R² besitzt dabei die oben angegebenen Bedeutungen.

Der Rest B steht vorzugsweise für

30 und insbesondere für
$$-N$$
 N —

Der Rest Ar² kann einen, zwei, drei oder vier Substituenten, vor35 zugsweise einen oder zwei Substituenten, die sich insbesondere in
m-Stellung und/oder p-Stellung befinden, aufweisen. Vorzugsweise
sind sie unabhängig voneinander ausgewählt unter C₁-C₆-Alkyl, Halogenalkyl, NO₂, Halogen, insbesondere Chlor, Phenyl, Pyrrolyl,
Imidazolyl, Pyrazolyl, Thienyl, Cyclopentyl und Cyclohexyl. Wenn
40 einer der Substituenten für C₁-C₆-Alkyl steht, ist eine verzweigte
Gruppe und insbesondere Isopropyl oder t-Butyl bevorzugt.

Vorzugsweise steht Ar^2 für gegebenenfalls substituiertes Phenyl, 2-, 3- oder 4-Pyridinyl oder 2-, 4(6)- oder 5- Pyrimidinyl.

Wenn einer der Substituenten des Restes Ar² für einen 5- oder 6-gliedrigen heterocyclischen Ring steht, so handelt es sich beispielsweise um einen Pyrrolidin-, Piperidin-, Morpholin-, Pyridin-, Pyrimidin-, Triazin-, Pyrrol-, Thiophen- oder Pyrazolrest, 5 wobei ein Pyrrol-, Pyrrolidin-, Pyrazol- oder Thienylrest bevorzugt ist.

Wenn einer der Substituenten des Restes Ar² für einen carbocyclischen Rest steht, handelt es sich insbesondere um einen Phenyl-, 10 Cyclopentyl- oder Cyclohexylrest.

Wenn ${\rm Ar}^2$ mit einem carbocyclischen Rest kondensiert ist, handelt es sich insbesondere um einen Naphthalin-, Di- oder Tetrahydronaphthalinrest.

15

. 0

Gemäß einer Ausführungsform betrifft die Erfindung Verbindungen der Formel I, worin ${\rm Ar}^1$ einen wie oben definierten heterocyclischen aromatischen Ring bedeutet, B für

steht und A und Ar2 die oben angegebenen Bedeutungen besitzen.

- 30 Die Erfindung umfaßt auch die Säureadditionssalze der Verbindungen der Formel I, mit physiologisch verträglichen Säuren. Als physiologisch verträgliche organische und anorganische Säuren kommen beispielsweise Salzsäure, Bromwasserstoffsäure, Phosphorsäure, Schwefelsäure, Oxalsäure, Maleinsäure, Fumarsäure, Milchsäure, Weinsäure, Adipinsäure oder Benzoesäure in Betracht. Weitere brauchbare Säuren sind in Fortschritte der Arzneimittelforschung, Band 10, Seiten 224 ff., Birkhäuser Verlag, Basel und Stuttgart, 1966, beschrieben.
- 40 Die Verbindungen der Formel I können ein oder mehrere Asymmetriezentren aufweisen. Zur Erfindung zählen daher nicht nur die Racemate, sondern auch die betreffenden Enantiomere und Diastereomere. Auch die jeweiligen tautomeren Formen zählen zur Erfindung.
- 45 Das Verfahren zur Herstellung der Verbindungen (I) besteht darin, daß man

a) eine Verbindung der allgemeinen Formel (II)

$$Ar^{1} \nearrow N \qquad \qquad (II)$$

$$\downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \\ R^{1}$$

worin Y¹ für eine übliche Abgangsgruppe wie beispielsweise Hal, Alkansulfonyloxy, Arylsulfonyloxy etc. steht, mit einer Verbindung der allgemeinen Formel (III)

umsetzt; oder

15

25

30

5

b) eine Verbindung der allgemeinen Formel (IV)

worin Z^1 für O, NR^2 , oder S und A^1 für C_1 - C_{10} -Alkylen oder eine Bindung steht, mit einer Verbindung der allgemeinen Formel (V)

$$Y^1 - A^2 - B - Ar^2$$
 (V)

wobei Y^1 die oben angegebene Bedeutung besitzt und A^2 für C_2 - C_{10} -Alkylen steht, wobei A^1 und A^2 zusammen 3 bis 10 C-Atome aufweisen und A^1 und/oder A^2 gegebenenfalls wenigstens eine Gruppe Z umfassen, umsetzt; oder

c) eine Verbindung der allgemeinen Formel (VI)

worin Y^1 und A^1 die oben angegebenen Bedeutungen besitzen, mit einer Verbindung der allgemeinen Formel (VII)

$$H - Z^1 - A - B - Ar^2 \qquad (VII)$$

worin \mathbb{Z}^1 die oben angegebenen Bedeutungen besitzt, umsetzt; oder

10

15

40

41

d) eine Verbindung der allgemeinen Formel (VIII)

$$Ar^{1} \nearrow N \longrightarrow CHO \qquad (VIII)$$

$$\downarrow \\ R^{1}$$

mit literaturbekannten Reagenzien, wie z. B. 1,3-Propandithiol, KCN/Wasser, TMSCN oder KCN/Morpholin, wie z. B. beschrieben in

Albright Tetrahedron, 1983, 39, 3207 oder
D. Seebach Synthesis 1969, 17 und 1979, 19 oder
H. Stetter Angew. Chem. Int. Ed. 1976, 15, 639 oder
van Niel et al. Tetrahedron 1989, 45, 7643
Martin et al. Synthesis 1979, 633,

zu den Produkten (VIIIa) (exemplarisch mit 1,3-Propandithiol)

$$Ar^{1} \xrightarrow{N-N}_{R^{1}}^{H} S$$
(VIIIa)

umpolt und anschließend mit Verbindungen der allgemeinen Formel (IX)

$$Y^1 - A^3 - B - Ar^2 \qquad (IX)$$

30 wobei Y^1 die oben angegebene Bedeutung besitzt und A^3 für C_3-C_9 -Alkylen steht, das eine Gruppe Z enthalten kann, kettenverlängert, wobei man nach Entschützen oder Reduktion

Verbindungen der Formel (Ia)

$$Ar^{1} \xrightarrow{N-N} Z^{2} \xrightarrow{A^{2}} Ar^{1} \qquad (Ia)$$

worin Z^2 für CO oder eine Methylengruppe steht und Z^2 und A^2 zusammen 4 bis 10 C-Atome aufweisen, erhält, oder

e) eine Verbindung der allgemeinen Formel (VIII) mit einer Ver bindung der allgemeinen Formel X

$$Y^2 - A - B - Ar^2$$
 (X)

worin Y² für ein Phosphoran oder einen Phosphonsäureester steht, analog nach üblichen Methoden, wie zum Beispiel beschrieben in Houben Weyl "Handbuch der Organischen Chemie" 4. Auflage, Thieme Verlag Stuttgart, Band V/1b S.383 ff oder Bd V/1c S.575 ff, umsetzt.

Das Verfahren zur Herstellung einer Verbindung der Formel I, wo10 rin A die Gruppe COO oder CONR² umfasst, besteht darin, daß man
eine Verbindung der allgemeinen Formel (XI)

$$Ar^{1} \nearrow N-N$$

$$\downarrow N$$

$$\downarrow$$

worin Y³ für OH, OC₁-C₄, Cl oder zusammen mit CO für eine akti-20 vierte Carboxylgruppe, und A⁴ für C₀-C₉-Alkylen steht, mit einer Verbindung der Formel (XII)

$$Z^{3}-A-B-Ar^{2} \qquad (XII)$$

25 worin Z³ für OH und NHR² steht, umsetzt.

Die Verbindungen der Formel (III) sind Ausgangsverbindungen zur Herstellung von Verbindungen der Formeln (V), (VII) und (XII) und werden hergestellt durch Standardmethoden, wie z. B. beschrieben 30 in J.A. Kiristy et al., J. Med. Chem. 1978, 21, 1303 oder C.B. Pollard, J. Am. Chem. Soc. 1934, 56, 2199, oder indem man

a) eine Verbindung der allgemeinen Formel (XIII)

worin Q für H oder eine übliche Aminoschutzgruppe steht, mit 40 einer Verbindung der allgemeinen Formel (XIV)

$$Y^4 - Ar^2 \qquad (XIV)$$

4

worin Y⁴ für B(OH)₂, -SnR₃ (R₃ = Butyl oder Phenyl), Trifluor-methansulfonyloxy steht oder die für Y¹ angegebenen Bedeutungen besitzt und R für C_1 - C_4 -Alkyl steht, in bekannter Weise umsetzt; oder

5

el.

b) eine Verbindung der allgemeinen Formel (XV)

$$Q - B^1 \tag{XV}$$

worin B¹ für

$$-N$$
 Y^4 N oder N Y^4

15

steht, Q für H oder eine übliche Aminoschutzgruppe, z. B. Butyloxycarbonyl, Benzyl oder Methyl, steht und Y^4 für eine Abgangsgruppe, z. B. OTf, $SnBu_3$, $B(OH)_2$ oder Halogen, steht, mit einer Verbindung der allgemeinen Formel (XIVa)

20

$$Y^5 - Ar^2$$
 (XIVa)

worin Y⁵ für Borderivate, wie z. B. B(OH)₂ oder eine metallhaltige Abgangsgruppe, z. B. SnR₃ (R₃ = Butyl oder Phenyl)

oder Zinkhalogenid steht, wenn Y⁴ für Halogen oder Trifluormethylsulfonyloxy steht oder Y⁵ für Halogen oder Trifluormethylsulfonyloxy steht, wenn Y⁴ für Borderivate, wie z. B.
B(OH)₂ oder eine metallhaltige Abgangsgruppe, z. B. SnR₃ oder
Zinkhalogenide, steht, nach bekannten Verfahren umgesetzt,
wie beschrieben in

S. Buchwald et al. Angew. Chem. 1995, 107, 1456 oder J.F. Hartwig et al. J. Am. Chem. Soc. 1996, 118, 7217 oder S. Buchwald J. Org. Chem. 1997, 62, 1264 oder F. Kerrigan et al., Tetrah. Lett. 1998, 39, 2219 und dort zitierte Literatur oder

J.K. Stille, Angew. Chem. 1986, 98, 504 oder
J.K. Stille et al., J. Org. Chem. 1990, 55, 3014.
M. Pereyre et al. "Tin in Organic Synthesis", Butterworth
1987; oder

c) eine Verbindung der allgemeinen Formel (XVI)

40

$$Q-N$$
 oder $Q-N$ (XVI)

worin Q die oben angegebene Bedeutung besitzt, mit einer Verbindung M-Ar 2 , worin M für ein Metall wie z. B. Li, MgY 6 , und Y 6 für Br, Cl, I steht, umsetzt. M-Ar 2 kann nach literaturbekannten Methoden aus Verbindungen der Formel (XIV) erhalten werden, oder

d) eine Verbindung der allgemeinen Formel (XVII)

$$Q-B^2-Ar^2 \qquad (XVII)$$

15

10

worin B2 für

steht und Q die oben angegebene Bedeutung besitzt, durch Reduktion, z.B. Hydrierung, von Verbindungen der allgemeinen Formel Q-B³-Ar² (IIIa), worin B³ für einen der oben genannten ungesättigten Reste B steht, in literaturbekannter Weise herstellt.

Verbindungen des Typs B sind entweder bekannt oder sie können 30 analog zu bekannten Verfahren hergestellt werden, wie z. B. 1,4-Diazacycloalkane: L. Borjeson et al., Acta Chem. Scand. 1991, 45, 621; Majahrzahl et al Acta Pol. Pharm., 1975, 32, 145, 1-Azacycloheptanone: A. Yokoo et al., Bull Chem. Soc. Jpn. 1956, 29, 631 und WO 97/25324.

35

25

In obigen Formeln besitzen Ar^1 , R^1 , A, B, Z und Ar^2 die oben angegebenen Bedeutungen.

Verbindungen des Typs Ar¹-Triazol, Ar², Ar¹ sind entweder bekannt 40 oder können nach bekannten Verfahren hergestellt werden wie z.B. beschrieben in S. Kubota et al. Chem. Pharm. Bull 1975, 23, 955 oder A.R. Katritzky, C.W. Rees(ed.) "Comprehensive Heterocyclic Chemistry", Pergamon Press, oder "The Chemistry of Heterocyclic Compounds"' J. Wiley & Sons Inc. NY und der dort zitierten Lite-45 ratur.

Die Verbindungen der Formel VIII sind neu und ebenfalls Gegenstand der vorliegenden Erfindung.

Verbindungen des Typs (VIII) und (XI), wobei A für C₀-Alkylen 5 steht, können durch Metallierung der 3-Aryl-5-H-1,2,4(4H)-Triazole

10

<}

und analog den bei T. Kauffman et al. Angew. Chem. Int. Ed. Engl. 1972, 11, 846 oder von A.R. Katritzky, C.W. Rees(ed.) "Compre15 hensive Heterocyclic Chemistry", Pergamon Press Vol 5, p 753 beschriebenen Methoden hergestellt werden.

Die Herstellung der erfindungsgemäßen Verbindungen und der Ausgangsmaterialien und der Zwischenprodukte kann auch analog zu den 20 in den eingangs genannten Patentpublikationen beschriebenen Methoden erfolgen.

Die oben beschriebenen Umsetzungen erfolgen im allgemeinen in einem Lösungsmittel bei Temperaturen zwischen Raumtemperatur und 25 der Siedetemperatur des verwendeten Lösungsmittels. Brauchbare Lösungsmittel sind beispielsweise Ester, wie Ethylacetat, Ether, wie Diethylether oder Tetrahydrofuran, Dimethylformamid, Dimethylsulfoxid, Dimethoxyethan, Toluol, Xylol, Ketone, wie Aceton oder Methylethylketon, oder Alkohole, wie Ethanol oder Butanol.

Gewünschtenfalls arbeitet man in Gegenwart eines säurebindenden Mittels. Geeignete säurebindende Mittel sind anorganische Basen, wie Natrium- oder Kaliumcarbonat, Natrium- oder Kaliumhydrogen35 carbonat, Natriumethylat, Natriumhydrid oder metallorganische Verbindungen, wie Butyllithium- oder Alkylmagnesium-Verbindungen, oder organische Basen, wie Triethylamin oder Pyridin. Letztere können gleichzeitig als Lösungsmittel dienen.

40 Die Umsetzungen erfolgen gegebenenfalls unter Verwendung eines Katalysators, wie z.B. Übergangsmetalle und deren Komplexe, z.B. Pd(PPh₃)₄, Pd(OAc)₂ oder Pd(P(oTol)₃)₄, oder eines Phasen-Transfer-Katalysators, z.B. Tetrabutylammoniumchlorid oder Tetrapropylammoniumbromid.

Die Isolierung des Rohprodukts erfolgt in üblicher Weise, beispielsweise durch Filtration, Abdestillieren des Lösungsmittels
oder Extraktion aus dem Reaktionsgemisch etc. Die Reinigung der
erhaltenen Verbindungen kann in üblicher Weise erfolgen, bei5 spielsweise durch Umkristallisieren aus einem Lösungsmittel,
Chromatographie oder Überführen in eine Säureadditionsverbindung.

Die Säureadditionssalze werden in üblicher Weise durch Mischen der freien Base mit der entsprechenden Säure, gegebenenfalls in 10 Lösung in einem organischen Lösungsmittel, beispielsweise einem niedrigen Alkohol, wie Methanol, Ethanol oder Propanol, einem Ether, wie Methyl-t-butylether, einem Keton, wie Aceton oder Methylethylketon oder einem Ester, wie Essigsäureethylester, hergestellt.

15

Zur Behandlung der oben erwähnten Erkrankungen werden die erfindungsgemäßen Verbindungen in üblicher Weise oral oder parenteral (subkutan, intravenös, intramuskulär, intraperitoneal) verabreicht. Die Applikation kann auch mit Dämpfen oder Sprays durch den Nasen-Rachen-Raum erfolgen.

Die Dosierung hängt vom Alter, Zustand und Gewicht des Patienten sowie von der Applikationsart ab. In der Regel beträgt die tägliche Wirkstoffdosis etwa 10 bis 1000 mg pro Patient und Tag bei 25 oraler Gabe und etwa 1 bis 500 mg pro Patient und Tag bei parenteraler Gabe.

Die Erfindung betrifft auch pharmazeutische Mittel, die die erfindungsgemäßen Verbindungen enthalten. Diese Mittel liegen in

30 den üblichen galenischen Applikationsformen in fester oder flüssiger Form vor, beispielsweise als Tabletten, Filmtabletten, Kapseln, Pulver, Granulate, Dragees, Suppositorien, Lösungen oder Sprays. Die Wirkstoffe können dabei mit den üblichen galenischen Hilfsmitteln, wie Tablettenbindemitteln, Füllstoffen, Konservie
35 rungsmitteln, Tablettensprengmitteln, Fließregulierungsmitteln, Weichmachern, Netzmitteln, Dispergiermitteln, Emulgatoren, Lösungsmitteln, Retardierungsmitteln, Antioxidantien und/oder Treibgasen verarbeitet werden (vgl. H. Sucker et al., Pharmazeutische Technologie, Thieme-Verlag, Stuttgart, 1978). Die so erhaltenen Applikationsformen enthalten den Wirkstoff normalerweise in einer Menge von 1 bis 99 Gew.-%.

Die nachfolgenden Beispiele dienen zur Erläuterung der Erfindung ohne sie zu begrenzen.

3-{3-[4-(2-t-Butyl-6-trifluormethyl-pyrimidin-4-yl-)-pipera-zin-1-yl]-propylmercapto}-4-methyl-5-phenyl-1,2,4-(4H)-triazol

A. Herstellung der Ausgangsverbindungen:

5

10

25

40

A.1 2-t-Butyl-4-[4-(3-chlorpropyl)-piperazin-1-yl]-6-trifluormethylpyrimidin und 2,2-Dimethylpropanimidamid wurden in bekannter Weise mit Trifluoressigsäureethylester zu 2-(2,2-Dimethylethyl)-4-hydroxy-6-trifluormethylpyrimidin umgesetzt. Heterocyclic Compounds (John Wiley & Sons, 1994, Vol. 52, D.J. Brown (Hrsg.).

C₉H₁₁F₃N₂O Fp. 187-188° C.

A.2 Nach Chlorierung mit Thionylchlorid wurde das Rohprodukt mit einem Überschuß an wasserfreiem Piperazin behandelt, wobei 2-t-Butyl-4-piperazin-1-yl-6-trifluormethylpyrimidin erhalten wurde.

 $C_{13}H_{19}F_{3}N_{4}$ Fp. $78-80^{\circ}$ C.

A.3 Nach Alkylierung der erhaltenen Verbindung in Tetrahydrofuran mit 1-Brom-3-chlorpropan wurde 2-t-Bu-tyl-4-[4-(2-chlorpropyl)-piperazin-1-yl]-6-trifluormethyl-pyrimidin erhalten.

 $C_{16}H_{24}ClF_3N_4$ Fp. 83-84° C.

Die eingesetzten Triazole wurden, soweit nicht anders angege30 ben, nach der Methode von S. Kubota et al, Chem Pharm Bull.
1975,23,955 durch Umsetzung der entsprechenden Carbonsäurechloride mit Alkylthiosemicarbaziden in Pyridin und anschließender Zyklisierung in wäßriger Natriumhydrogencarbonat-Lösung bzw. Addition der entsprechenden Carbonsäurehydrazide
mit Alkyisothiocyanaten in einem geeigneten Lösungsmittel,
hergestellt.

- A.4 4-Methyl-3-mercapto-5-(thiophen-3-yl)-1,2,4-(4H)-triazol Es wurde das Natriumsalz isoliert. 1H-NMR (DMSO-d₆): 3.7 (3H); 7.5 (m, 2H); 7.8 (m,1H). Smp: 146°C C₇H₆N₃S₂Na (219)
- A.5 $\frac{4-\text{Methyl}-3-\text{mercapto}-5-(2,5-\text{dimethyl}-\text{furan}-3-\text{yl})-1,2,4-}{(4H)-\text{triazol}}$ 1H-NMR (DMSO-d₆): δ = 2.3 (s, 3H); 2.5 (s,3H); 3.7 (s,3H); 6.1 (s, 1H).

28710/30

	A.6 4	4-Methyl-3-mercapto-5-(2,6-dichlor-phenyl)-1,2,4-(4H)-
	<u>t</u>	<u>criazol</u>
5		Es wurde das Natriumsalz isoliert.
		1H-NMR (DMSO-d ₆): $\delta = 3.7$ (s, 3H); 7.4 (dd, 1H); 7.6 (d,
		1H); 8.2 (d, 1H).
		Smp: 220-225°C
10	A 7 4	4-Methyl-3-mercapto-5-(4-methylsulfony-phenyl)-1,2,4-
		(4H)-triazol
	-	1H-NMR (DMSO-d ₆): $\delta = 3.7$ (s, 3H); 7.4 (dd,1H); 7.6 (d,
		1H); 8.2 (d, 1H).
		Smp: 238-239°C
15		
	A.8	4-Methyl-3-mercapto-5-(3-brom-pyridyl-5)-1,2,4-(4H)-
		<u>triazol</u>
		Es wurde das Natriumsalz isoliert.
20		1H-NMR (DMSO-d ₆): $\delta = 3.7$ (s, 3H); 8.2(m,1H); 8.9 (m,2H)
20	7 O	4-Methyl-3-mercapto-5-(pyrrol-2-yl)-1,2,4-(4H)-triazol
	А.Э	1H-NMR (DMSO-d ₆): $\delta = 3.7$ (s, 3H); 6.2 (m, 1H); 6.8 (1, 2H)
		7.0 (m,1H); 11.8 (s,1H); 14.0 (s,1H).
		Smp: 200-201°C
25		
	A.10	4-Methyl-3-mercapto-5-(3-benzthienyl) 1,2,4-(4H)-triazol
		Es wurde das Natriumsalz isoliert.
		1H-NMR (DMSO- d_6): 3.8 (s, 3H); 7.5(m,2H); 8.0 (m,3H).
30	A.11	4-Methyl-3-mercapto-5-(4-methyl-thiazol-5-yl)-1,2,4-
		(4H)-triazol 1H-NMR (DMSO-d ₆): 2.4 (s,3H); 3.4 (s, 3H),9.2 (s,1H);
		14.1 (s, 1H).
		24.2 (5) 20).
35	A.12	4-Methyl-3-mercapto-5-(6-chlor-biphenyl-2)-1,2,4-
		(4H)-triazol
		1H-NMR (DMSO-d ₆): 3.8 (s, 3H), 7.6 (m, 1H), 7.9
		(m,1H);8.1 (m,3H); 8.4 (s,1H).
40	A.13	4-Methyl-3-mercapto-5-(2,4-dinitrophenyl-)-1,2,4-(4H)-
		triazol
		Smp: $250-251^{\circ}C$ MS: $m/z = 281[M+]$
		M2: M/2- 201[M]

45 A.14 4-Methyl-3-mercapto-5-(4-CF₃-phenyl)-1,2,4-(4H)-triazol MS: m/z= 259[M+]

30

35

A.15 4-Propyl-3-mercapto-5-(2-methyloxazol-4-yl)-1,2,4-(4H)-triazol

Es wurde das Kaliumsalz isoliert.

- Eine Lösung von 4,9 g (22,5 mmol) 2-Methyloxazol-4-carbonsäurehydrazid-bishydrochlorid (hergestellt durch Hydrazinolyse des entsprechenden Methylesters in methanolischer Lösung) in 60 ml Ethanol wurde nacheinander mit 6,22 g (95 mmol) Kaliumcarbonat und 2,4 ml (23 mmol) Propylisothiocyanat versetzt und 4 h zum Sieden erhitzt.
 - Die entstandene Suspension wurde filtriert, eingeengt und der Rückstand (6.5 g) säulenchromatographisch gereinigt. (Kieselgel, Methylenchlorid-Methanol 96:4)

15 Ausbeute: 2,3 g (39 % d. Th.)

1H-NMR (CDCl₃): δ = 1.0 (t, 3H): 1.7 (m,2H); 2.6 (s,3H); 4.2 (sm,2H); 8.1 (s,1H); 12.6 (s,1H).

- A.16 4-Propyl-3-mercapto-5-(2-amino-thiazol-4-yl)-1,2,4(4H)-triazol

 Es wurde das Kaliumsalz isoliert.

 1H-NMR (DMSO-d₆): 0.8 (t,3H); 1.6 (m,2H); 3.4 (s, 2H);
 4.3 (m,2H); 7.4 (s,1H); 13.8.
 - A.17 4-Methyl-3-mercapto-5-(5-methylimidazol-4-yl)-1,2,4(4H)-triazol
 Es wurde das Kaliumsalz isoliert.
 1H-NMR (DMSO-d₆): 2.3 (s,3H); 3.4 (s,3H); 7.5 (s,1H).
 - A.18 <u>4-Methyl-3-mercapto-5-(carboxamido)-1,2,4-(4H)-triazol</u> 1H-NMR (DMSO- d_6): 3.7 (s,3H); 7.95 (s,1H); 8.25 (s,1H); 14.2 (s,1H). MS: m/z=158[M+]
 - A.19 4-Methyl-3-mercapto-5-(N-methylpyrrol-2-yl)-1,2,4-(4H)-triazol
- 10,2 g (45,1 mmol) 2-Trichloracetoxy-N-methylpyrrol (dargestellt nach Rappoport et al., J. Org. Chem. 1972, 37, 3618)
 in DMF wurden mit 10,6 g (101,1 mmol) 4-Methyl-3-thiosemicarbazid und katalytischen Mengen Dimethylaminopyridin versetzt
 und 18 h bei 90 °C erhitzt. Bei Raumtemperatur gab man 77 ml
 Wasser zu, säuerte mit 10%iger HCl an, rührte 1 h bei 0 °C,
 filtrierte vom Ungelösten ab und extrahierte die Mutterlauge
 mit Essigester. Die organischen Phasen wurden getrocknet,
 evaporiert und das erhaltene Rohprodukt mit 427 ml 1M Natri-

umhydrogencarbonat-Lösung zum Sieden erhitzt. Nach beendeter Reaktion filtrierte man vom Ungelösten ab, säuerte die Mutterlauge unter Kühlung mit konz. HCl an und isolierte den ausgefallenen Feststoff.

5 Ausbeute: 2,3 g (27% d.Th) MS: m/z=194 [M+] 1H-NMR (DMSO-d₆): $\delta=3.6$ (s,3H); 3.9 (s,3H); 6.2 (m,1H); 6.6 (m,1H); 7.1 (m,1H); 14.0 (1H).

10 B. Herstellung des Endproduktes:

576 mg (3 mmol) 4-Mercapto-3-methyl-5-phenyl-1,2,4-(4H)-triazol (hergestellt nach der Methode von S. Kubota u. M. Uda, Chem. Pharm. Bull. (1975), 23, 955-966 durch Umsetzung von 15 Benzoylchlorid mit N-Methylthiosemicarbazid und nachfolgender Cyclisierung) und 1,1 g (3 mmol) der vorstehend unter A.3 beschriebenen Chlorpropylverbindung wurden in 10 ml trockenem DMF zusammen mit 7,2 mg (3 mmol) Lithiumhydroxid 6 h unter Rühren auf 100°C erwärmt. Nach dem Abkühlen wurde mit 50 ml 20 Wasser versetzt und 3mal mit t-Butylmethylether extrahiert. Die organische Phase wurde mit Natriumsulfat getrocknet und eingedampft, der Rückstand säulenchromatographisch (Kieselgel) gereinigt. Die erhaltene reine Substanz (920 mg = 59 %) wurde anschließend mit etherischer Salzsäure in ihr Hydroch-25 lorid umgewandelt.

 $C_{25}H_{33}ClF_3N_7S$ (556) Fp. 191-193°C.

In analoger Weise wurden die folgenden in tabellarischer Form 30 aufgeführten Substanzen der allgemeinen Formel (I) erhalten.

35

Analytik	Hydrochlorid Fp:191–193°C	Hydrochlorid Fp: 154–157°C	Fp: 91-93°C; 1H-NMR (DMSO-d ₆ ; ppm), 1.9 (q, 2H); 2.45 (m, 6H); 3.25 (t,2H); 3.6 (s,3H); 3.75 (m,4H); 7.25 (s, 1H); 7.5 (m, 3H); 7.8 (m, 2H); 8.6 (s, 1H).	Hydrochlorid Fp:82°C
Ar^2	Z Z Z Z	z z z	L	N N N N N N N N N N N N N N N N N N N
В	Piperazinyl	Piperazinyl	Piperazinyl	Piperazinyl
A	-S(CH ₂) ₃ -	-S(CH ₂) ₃ -	-S(CH ₂) ₃ -	-S(CH ₂) ₃ -
\mathbb{R}^1	Me	Me	Me	Me
Ar1	Phenyl	2,4-Dime- thoxyphenyl-	Phenyl	4-CN-Phenyl
Bsp	1	2	ю	4

Tabelle 1

1H-NMR (CDCl ₃ ; ppm): 2.55 (t, 4H); 3.18 (s, 2H); 3.2 (t, 4H); 4.0 (s, 2H); 5.1 (s, 1H); 5.2 (s, 1H); 5.85 (t, 1H); 6.7 (m, 2H); 6.8 (d, 1H); 7.2 (d, 1H); 7.5 (m, 3H); 7.7 (m, 2H);	1H–NMR (CDCl ₃ ; ppm) 2.1 (m, 2H); 2.5 (m, 6H); 3.3 (t, 2H); 3.8 (m, 7H); 4.5 (d, 2H); 5.0 (t, 1H); 5.2 (s, 1H); 6.2 (m,2H); 7.3–7.4 (m, 5H); 7.5 (m, 3H); 7.6–7.7 (m, 4H).	1H-NMR (CDCl ₃ ; ppm) 2.1 (m, 2H); 2.5 (m, 6H); 3.4 (t, 2H); 3.6 (s,3H); 3.7 (m, 4H); 4.1 (s, 3H); 5.7 (s,1H); 6.6 (d, 1H); 7.3 (m, 2H); 7.5 (m, 3H); 7.7 (m, 3H); 8.2 (d, 1H); 8.7 (d, 1H).	1H-NMR (CDCl ₃ ; ppm) 1.3 (s, 9H); 2.6 (m, 4H); 3.1 (s, 2H); 3,3 (s, 3H); 3.7 (m, 6H); 4.9 (s, 1H); 5.1 (s, 1H); 6.6 (s, 1H); 7.2 (t, 1H); 7.4 (m, 1H); 7.6 (t, 1H); 8.0 (d, 1H).
OCF ₂ CHF ₂	Z Z Z Z	Z-_Z-_Z-_	N N N N N N N N N N N N N N N N N N N
Piperazinyl	Piperazinyl	Piperazinyl	Piperazinyl
-S-CH ₂ -C(=CH ₂)-CH ₂ - Piperazinyl	-S(CH ₂) ₃ -	-S(CH ₂) ₃ -	-S-CH ₂ -C(=CH ₂)-CH ₂ -
Me	Me	Ме	Me
Phenyl	Phenyl	Phenyl	2-Iodphenyl
5	9	٢	∞

1H-NMR (CDCl ₃ ; ppm) 1.3 (s, 9H); 2.0 (q, 2H); 2.5 (m, 6H); 3.3 (t, 2H); 3.6 (s, 3H); 3.7 (m, 4H); 6.6 (s, 1H); 7.3 (d, 2H); 7.6 (d, 2H);	1H-NMR (CDCl ₃ ; ppm) 1.3 (s, 9H); 2.0 (q, 2H); 2.4 (s, 3H); 2.6 (m, 6H); 3.4 (t, 2H); 3.6 (s, 3H); 3.8 (m, 4H); 6.6 (s, 1H); 7.2 (t, 1H); 7.6 (d, 1H); 7.85 (d, 1H); 8.0ss, 1H);	Fumarat Fp: 77–80°C	Fumarat Fp: 87–90°C	1H-NMR (CDCl ₃ ; ppm) 1.4 (s, 9H); 2.1 (m, 2H); 2.6)mbr, 6H); 3.4 (t, 2H); 3.6 (s, 3H); 3.7 (mbr, 4H); 6.7 (s, 1H); 7.1 (d, 2H); 7.5 (m, 3H); 7.6 (m,2H); 8.0 (m, 2H);
Z do	z do		z do	L Z Z
Piperazinyl	Piperazinyl	Piperazinyl	Piperazinyl	Piperazinyl
-S(CH ₂) ₃ -	-S(CH ₂) ₃ -	-S(CH ₂) ₃ -	-S(CH ₂) ₃ -	-S(CH ₂) ₃ -
Me	Me	Me	Me	Me
4-Me-Phenyl	3-I-Phenyl	2-Methoxy- phenyl	2-Methoxy- phenyl	Phenyl
6	10	11	12	13

Hydrochlorid Fp.:102°C	Hydrochlorid Fp: 155°C	1H-NMR (CDCl ₃ ; ppm) 1,3 (s,9H); 1.4 (s,9H); 2.1 (q, 2H); 2.6 (m, 6H); 3.4 (m, 5H); 3.7 (m, 4H); 6.3 (s, 1H); 7.2 (t, 1H); 7.4 (d, 1H); 7.5 (t, 1H); 7.9 (d, 1H).	Hydrochlorid Fp: 156–160°C	Fp:164-165°C
z z ö	Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	2	Z Z Z	Z
Piperazinyl	Piperazinyl	Piperazinyl	Piperazinyl	Piperazinyl
-S(CH ₂) ₃ -	-S(CH ₂) ₃ -	-S(CH ₂) ₃ -	-S(CH ₂) ₃ -	-S(CH ₂) ₃ -
3-Me- thoxy- prop-1 -y-l	Me	Me	Me	Me
4-tertButyl- phenyl	4-tertButyl- phenyl	2-I-Phenyl	4-Methylphe- nyl	4-Biphenyl
14	15	16	17	18

Hydrochlorid Fp:164–167°C	1H-NMR (CDCl ₃ ; ppm) 1.3 (s, 9H); 2.1 (m, 2H); 2.6-2.8 (m, 6H); 3.5 (s, 3H); 3.8 (mbr, 4H); 4.6 (t, 2H); 6.5 (s, 1H); 7.6 (m, 3H); 7.8 (m, 2H);	Fp. 156–161°C 1H-NMR (CDCl ₃ ; ppm) 1.3 (s, 9H); 1.4 (s, 9H); 2.6 (m, 8H); 3.7 (m, 7H); 6.2 (s, 1H); 6.4 (d, 1H); 7.0 (td, 1H); 7.5 (m,3H); 7.7 (m, 2H).	Fp.:144–145°C
\	Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	Z Z	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
Piperazinyl	Piperazinyl	Piperazinyl	Piperazinyl
-S(CH ₂) ₃ -	-0-(CH ₂) ₃ -	-CH=CH-CH ₂ -CH ₂ -	- (CH ₂)4-
Me	Me	Me	Me
3-I-Phenyl	Phenyl	Phenyl	Phenyl
119	50	21	22

1H-NMR (CDCl ₃ ; ppm) 1.3 (s, 9H); 1.7 (m, 2H); 1.9 (q, 2H); 2.4 (t, 2H); 2.5 (t, 4H); 2.8 (t, 2H); 3.6 (s, 3H); 3.75 (m, 4H); 6.6 (s, 1H); 7.4 (m, 3H); 7.6 (m, 2H);	Hydrochlorid Fp.:190–192°C	Hydrochlorid FP.: 164°C	1H-NMR (CDCl ₃ ; ppm) 1.5 (d, 3H); 2.0(m, 2H); 2.4-2.6 (m, 6H); 3.3 (t, 2H); 3.6 (m, 7H); 5.0-5.2 (m, 2H); 5.8 (s,1H); 6.3 (m, 2H); 7.2-7.4 (m, 8H); 7.5 (m, 3H); 7.6 (m, 2H);
z do	z do	z do	I Z Z
Piperazinyl	Piperazinyl	Piperazinyl	Piperazinyl
-(CH ₂),-	-S(CH ₂) ₃ -	-S(CH ₂)3-	-S(CH2)3-
Me	Me	Me	Me
Phenyl	H ₃ C CH ₃	Pyrazinylphe- nyl	Phenyl
23	24	25	26

1H-NMR (CDCl ₃) 1.3 (s, 9H); 2.1 (m, 2H); 2.5 (m,6H); 3.4 (t,2H); 3.6 (s,3H). 3.9 (t,4H); 6.3 (m,2H); 6.5 (s,1H); 7.5(m,5H); 7.6(m,2H).	1H-NMR (CDCl ₃ ; ppm) 1.3 (s, 9H); 2.0(q, 2H); 2.5 (m,6H); 3,3 (t, 2H); 3.7 (s, 3H); 3.75 (m, 4H); 6.5 (s, 1H); 7.5 (m, 2H); 7.8 (m, 1H);	1H-NMR (CDCl ₃ ; ppm) 1.3 (s, 9H);1.4 (s, 9H); 2.6 (m, 4H); 3.1 (s, 2H); 3,3 (s, 3H); 3.7 (m, 6H); 4.9 (s, 1H); 5.1 (s, 1H); 6.3 (s, 1H); 7.5 (m, 2H); 7.75 (m, 1H);	1H-NMR (CDCl ₃) 1.2 (s, 6H);2.2 (s, 3H); 2.4 (s, 3H); 2.6 (m,4H);2.9 (m, 1H); 3.2 (m, 2H); 3.5 (br, 5H); 3.7 (m, 4H); 3.9 (s, 3H); 5.0 (s,1H); 5.15 (s, 1H); 6.0 (s,1H); 6.5(s,1H).
	N N N N N N N N N N N N N N N N N N N	_z_\z	Z do
Piperazinyl	Piperazinyl	Piperazinyl	Piperazinyl
-S(CH ₂) ₃ -	-S(CH ₂) ₃ -	-S-CH ₂ -C(=CH ₂)-CH ₂ - Piperazinyl	-S-CH ₂ -C(=CH ₂)-CH ₂ - Piperazinyl
Me	Me	Me	Me
Phenyl	3-Thienyl	3-Thienyl	H ₃ C CH ₃
27	28	29	30

Fumarat Fp.: 146°C	CF ₃ 1H-NMR (CDCl ₃):1.0 (m, 4H); 2.0 (q, 2H); 2.4 (s, 3H); 2,5 (m, 6H); 2.8 (m,1H); 3.7 (mbr, 6H); 6.6 (s, 1H); 6.7 (s, 1H) 7.3 (d, 2H); 7.6 (d, 2H).	CH ₃ (m, 2H); 2.3 (s, 3H); 2.7 (m, 4H); 2.8 (m, 2H); 3.2 (t, 2H); 3.6 (s, 3H);3,7 (m, 4H); 6.6 (s, 1H); 6.7 (m, 1H); 7.15 (d, 1H); 7.5 (m, 3H); 7.7 (m, 2H); 7.9 (m, 1H).	(s, 2H); 3.3 (m, 4H); 3.7 (s, 2H); 5.1 (s, 1H); 5.2 (s, 1H); 6.3 (m, 2H); 6.7-6.9 (m, 3H); 7.1 (m, 2H); 7.4-7.7 (m, 6H).	CF ₃ 1H-NMR (DMSO-d ₆) 1.5-2.0 (m, 13H); 2.5 (m, 4H), 2.7 (m, 2H); 3.4 (m, 2H); 3.9 (m, 1H); 7.5-7.7 (m, 9H.
Piperazinyl	Piperazinyl	Piperazinyl	Piperazinyl	
-S(CH ₂) ₃ -	-S(CH ₂) ₃ -	-S(CH ₂) ₃ -	-S-CH ₂ -C(=CH ₂)-CH ₂ -	-S(CH ₂) ₃ -
Me	cProp	Me	Me	iProp
Phenyl	4-Methylphe- nyl	Phenyl	Phenyl	Phenyl
31	34	32	33	35

1H-NMR (CDCl ₃) 2.0 (q, 2H); 2.5-2.7 (m, 6H); 3.2 (m, 2H); 3.5 (t, 25H); 6-1 (m, 1H); 7.3 (m, 3H); 7.4-7.7 (m, 6H).	1H-NMR (CDCl ₃) 1.0 (t, 3H); 1.3 (s, 9H); 1.4 (s, 9H); 1.6-1.8 (m, 6H); 2.6 (m, 2H); 2.7 (m, 6H); 3.6 (t, 2H); 3.8 (m, 4H); 6.3 (s, 1H); 7.5 (m, 3H); 7.7 (m, 2H).	1H-NMR (CDCl ₃) 2.05 (q, 2H); 2.6 (t, 2H); 2,7 (m, 4H); 3.2 (m, 4H); 3.4 (t, 2H); 3.6 (s, 3H); 7.4–7.7 (m,7H); 7.9 (d, 1H); 8.1 (d, 1H); 8.2 8s, 1H); 9.0 (s, 1H).	1H-NMR (DMSO-D ₆) 1.8-2.0 (m,5H); 2.4 (s,3H); 2.5-2.7 (m,6H); 3.3 (m,2H); 3.7-3.8 (m,7H); 4,0 (m,2H); 6.2 (s,1H); 6.4 (m,1H); 6.6 (m,3H); 6.9 (m,2H); 7.2 (s,1H); 7.9 (s,1H);	MS: m/z=473[M ⁺]
OF.	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		For Z	OF ₃
	Piperazinyl	Piperazinyl	Piperazinyl	
-S(CH ₂) ₃ -	-CONH-(CH ₂)4-	-S(CH ₂) ₃ -	-S(CH ₂) ₃ -	-S(CH ₂) ₃ -
Me	пРгор	Me	펍	Me
Phenyl	Phenyl	Phenyl	N-methyl-2- pyrrolyl	3,4-Dichlor- phenyl-
36	37	38	39	40

Fp. 154°C	1H-NMR (CDCl ₃) 0.9 (t,3H); 1.3 (s,9H); 1.7 (m,2H);1.9 (m,2H); 2.3 (s,3H); 2.5 (m,6H); 3.3 (m,2H); 3.7 (m,1H); 3.8 (m,4H); 4.3 (t,2H); 6.7 (s,1H); 7.6 (s,1H).	Hydrochlorid Fp. 146°C	Hydrochlorid Fp. 253°C	1H-NMR (CDCl ₃) 1.3 (s,9H; 2.1 (m,2H); 2.6 (m,6H); 3.3 (m,3H); 3.7 (s,1H); 3.8 (m,4H); 6.6 (s,1H); 8.2 (s,1H); 8.9 (m,2H).
z z ö	z bo	OHE	CHF ₂	Z do
Piperazinyl	Piperazi- nyl–	Piperazi- nyl–	Piperazi- nyl-	Piperazinyl
-S(CH ₂) ₃ -	-S(CH ₂) ₃ -	-S(CH ₂) ₈ -	-S(CH ₂) ₆ -	-S(CH ₂) ₃ -
Me	Propyl	Me	Me	Me
H, O,	H O OH	Phenyl	Phenyl	3-Brompyri- din-5-yl
41	42	43	44	45

1H-NMR (CDCl ₃) 1.0 (t,3H); 1.3 (s,9H); 1.7 (m,2H), 1.9 (m,2H); 2.6 (m,8H); 3.4 (t,2H); 3.7 (m,7H); 6.2 (s,1H); 7.5 (m,2H); 7.7 (s,1H).	1H-NMR (CDCl ₃) 1.4 (2s,18H); 1.9 (s,3H); 2.5 (t,4H); 3.0 (d,2H); 3.7 (m,7H); 3.9 (s,2H); 5.5 (t,1H); 6.5 (s,1H); 7.5 (d,2H); 7.6 (d,2H):	1H-NMR (CDCl ₃) 1.3 (s,9H); 1.4 (s,9H); 2.0 (m,2H); 2.6 (m,6H); 3.3 (t,3H); 3.6 (m,7H); 6.4 (s,1H); 6.7 (s,1H); 7.4 (m,3H); 7.7 (m,2H);	1H-NMR (CDCl ₃) 0.9 (t,3H); 1.3 (s,9H); 1.7 (m,2H); 2.0 (q,2H); 2.5 (m,6H); 3.3 (t,3H); 3.7 (mbr,2H); 4.3 (t,2H); 6.2 (s,1H); 8.9 (s,1H);
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Z LLO		N N N N N N N N N N N N N N N N N N N
Piperazinyl	Piperazinyl	Piperazinyl	Piperazinyl
-S(CH ₂) ₃ -	-S-CH ₂ -C(CH ₃₎ =CH ₂ -	-S(CH ₂) ₃ -	-S(CH ₂) ₃ -
Me	Me	Propyl	Propyl
3-Thienyl	4-tertButyl- Phenyl	Phenyl	H ₂ N _S H
46	47	48	49

Fp. 143°C	1H-NMR (CDCl ₃) 1.2 (d,6H); 1.4 (s,9H); 2.5 (m,7H); 2.9-3.0 (m,3H); 3.5 (s,3H); 3.8 (s,2H); 5.0 (s,1H); 5.2 (s,1H); 6.2 (s,1H); 8.9 (s,1H).	Fp. 150°C	Bishydrochlorid 1H-NMR (DMSO-d ₆) 1.0 (t,3H); 1.5 (s,9H); 1.7 (m,2H), 2.2 (m,2H); 3.0 (t,2H); 3.3 (m,4H); 3.4 (m,2H); 3.7 (m,3H); 3.9 (m,4H); 4.5 (m,1H); 5.0 (m,1H); 7.2 (s,1H); 7.6 (m,3H); 7.8 (m,2H).
z v o	Z	N N OG.	\
Piperazinyl	Piperazinyl	Piperazinyl	Piperazinyl
-S(CH ₂) ₃ -	-S-CH ₂ -C(=CH ₂)-CH ₂ -	-S-CH ₂ -C(=CH ₂)-CH ₂ -	-CO-(CH ₂) ₃ -
Me	Me	Me	n-Pro- pyl
2-Benzthienyl Me	HO S	ZZZ	Phenyl
50	51	52	53

Hydrochlorid FP. 150°C MS: m/z=641 [M+]	1H-NMR (CDCl ₃) 0.9 (t,3H); 1.3 (s,9H); 1.7 (m,3H); 1.9 (q,2H); 2.6 (m,9H); 3.3 (t,2H); 3.7 (m,4H); 4.3 (t,2H); 6.6 (s,1H); 8.2 (s,1H).	1H-NMR (CDCl ₃): 1.0 (t, 3H); 1.3 (s, 9H); 1.7 (m,2H); 2.0 (m,3H); 2.5 (m,8H); 3.3 (t, 2H); 3.6 (t,4H); 3.8 (s,3H); 6.2 (s,1H); 6.3 (m,1H); 6.6 (m,1H); 7.1 (m,1H).	Hydrochlorid Fp. 116°C	Hydrochlorid Fp. 76°C (Zers.) MS: m/z=525[M+]
z z ő	Z do		z do	z do
Piperazinyl	Piperazinyl	Piperazinyl		
-S(CH ₂) ₃ -	-S(CH ₂) ₃ -	-S(CH ₂) ₃ -	-S-CH ₂ -C(=CH ₂)-CH ₂ -	-S-CH ₂ -C(=CH ₂)-CH ₂ -
Me	Propyl	Me	Me	Propyl
5	Z O S I	2-Рупоlyl	H ₃ C CH ₃	H O O O O O O O O O O O O O O O O O O O
54	55	95	57	58

MS: m/z=532 [M+]	1H-NMR (CDCl ₃): 1.7-1.9 (m,4H); 2.5-2.7 (m,6H); 2.9 (t,2H); 3.2 (m,2H); 3.7 (s,3H); 7.3-7.5 (m, 6H); 7.8 (m,1H). MS: m/z= 395 [M•]	1H-NMR (CDCl ₃): 1.7-2.0 (m,8H); 2.5 (m,2H); 2.9 (t,2H); 3.1-3.3 (m,4H); 3.7 (s,3H); 7.5 (m,2H); 7.8 (m,1H). MS: m/z= 393 [M+]	1H-NMR (CDCl ₃): 1.3 (s,9H); 1.4 (s,9H); 1,7 (m,2H); 1.9 (m,2H); 2.5 (m,6H); 2.9 (t,2H); 3.6-3.8 (m,7H); 6.2 (s,1H); 7.4 (dd 1H); 7.6 (d,1H); 8.2 (d,1H).
Z Z	P	QP.	z z
Piperazinyl		L.	Piperazinyl
-S(CH2)3-	-(CH ₂) ₄ -	-(CH ₂) ₄ -	-(CH ₂) ₄ -
Me	Me	Me	Me
4-Ethinylphe- nyl	3-Thienyl	3-Thienyl	3,4-Dichlor- phenyl
29	09	61	62

1H-NMR (CDCl ₃): 1.3 (s,9H); 1.7-2.0 (m,6H); 2.5 (m,6H); 2.9 (t,2H); 3.7-4.1 (9H); 6.2 (s,1H); 6.4 (m,1H); 6.6 (s,1H); 6.8 (m,1H).	1H-NMR (CDCl ₃) 1.0 (m,4H); 1.3 (s,9H; 2.1 (m,2H); 2.8 (m,1H); 3.6 (m,6H); 3.3 (m,3H); 3.8 (m,4H); 6.6 (s,1H); 8.2 (s,1H); 8.9 (m,2H).	Fp. 133°C	MS: m/z= 576 [M+]	Hydrochlorid Fp. 131°C MS: m/z= 524 [M+]
z to	z do	Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	Z	Z
Piperazinyl	Piperazinyl	Piperazinyl	Piperazinyl	Z /
-(CH ₂)4-	-S(CH ₂) ₃ -	-S(CH ₂) ₃ -	-S(CH ₂) ₃ -	-S(CH ₂) ₃ -
赶	cProp	Me	Me	Me
N-Methyl-2- pyrrolyl	3-Brompyri- din-5-yl	Zzz	4-CF ₃ -Phenyl	Pyrazinyl
63	49	59	99	67

1H-NMR (CDCl ₃) 1.3 (s,9H); 1.4 (s,9H); ; 2.0 (m,2H); 2.6 (m,6H); 3.3 (t,3H); 3.8 (mbr,7H); 6.2 (s,1H);7.8 (d1H); 8.6 (dd,1H); 9.1 (d,1H).	1H-NMR (CDCl ₃) 1.3 (s,9H); 1.9 (m,4H); 2.3 (s, 3H); 2.6 (m,4H); 2.8 (m,2H); 3.3 (t,2H); 3.5 (mbr,2H); 3.8 (s,3H); 3.9-4.1 (m,2H); 6.6 (s,1H); 7.6(s,1H); 12.8 (br,1H).	1H-NMR (CDCl ₃) 1.3 (s,9H); 2.0 (m,4H); 2.3 (s, 3H); 2.6 (m,4H); 2.8 (m,2H); 3.3 (t,2H); 3.6 (m,2H); 3.7 (s,3H); 4.1 (m,2H); 6.6 (s,1H); 8.2 (m, 1H); 8.8 (m,2H).	1H-NMR (CDCl ₃) 1.3 (s,9H); 1.8-2.1 (m, 4H), 2.6-2.9 (m,6H); 3.1 (m,2H); 3.6 (mbr,2H); 3.8-4.1 (m,5H); 6.6 (s, 1H).
Z Z	N OF S	* HO	N N N N N N N N N N N N N N N N N N N
Piperazinyl			
-S(CH ₂) ₃ -	-S(CH ₂)3-	-S(CH ₂) ₃ -	-S(CH ₂) ₃₋
Me	Me	Me	Me
2,4-Dinitro- phenyl	HO H	Z m	ZIZ
89	69	70	71

c = cyclo, z. B. cProp = Cyclopropyl

Die Verbindungen der Beispiele 20 - 25 und 65 wurden dabei in folgender Weise erhalten.

5 BEISPIEL 20

```
3-{3-[4-(2-t-Butyl-6-trifluormethylpyrimidin-4-yl)-pipera-zin-1-yl]propoxy}-4-methyl-5-phenyl-1,2,4-(4H)-triazol
```

- 10 855 mg (3mmol) 3-Iod-4-methyl-5-phenyl-1,2,4-(4H)-triazol (hergestellt durch Iodierung von 4-Methyl-5-phenyl-1,2,4-(4H)-triazol analog Izv. Akad. Nauk SSSR, Ser. Khim (1975), 616-619, wurden mit 1,04 g (3 mmol) 2-t-Butyl-4-[4-(3-hydroxypropyl)-piperazin-1-yl]-6-trifluormethylpyrimidin (hergestellt analog Beispiel
- 15 1, A.3 durch Umsetzung des nach Beispiel 1, A.2 erhaltenen Produkts mit 3-Chlorpropanol) und Natriumhydrid in DMF 6 h bei 60°C gerührt. Zur Aufarbeitung wurde mit Eiswasser versetzt und mehrfach mit Methyl-t-butylether extrahiert. Der nach Trocknung mit Natriumsulfat und Entfernen des Lösungsmittels erhaltene Rück-
- 20 stand wurde säulenchromatographisch gereinigt (Kieselgel, Methylenchlorid/Methanol). Ausbeute 140 mg (9 % d. Th.) Öl $C_{25}H_{32}F_3N_7O$ (503)

1H-NMR (CDCl₃):

```
25 1.3 (s,9H); 2.1 (m,2H); 2.6-2.8 (m,6H); 3.5 (s,3H); 3.8 (mbr,4H); 4.6 (t,2H); 6.5 (s,1H); 7.6 (m,3H); 7.8 (m,2H);
```

BEISPIEL 21

- 30 3-{4-[4-(2,6-Di-t-butylpyrimidin-4-yl)-pipera-zin-1-yl]-but-1-enyl}-4-methyl-5-phenyl-1,2,4-(4H)-triazol
 - a. 3-Formyl-4-methyl-5-phenyl-1, 2, 4-(4H)-triazol
- 18,5 g (116 mmol) 4-Methyl-5-phenyl-1,2,4-(4H)-triazol wurden in 235 ml absolutem THF gelöst, auf -70 °C abgekühlt und 85 ml (139 mmol) einer 15%-igen Butyllithiumlösung in Hexan wurden im Verlauf von 15 min bei dieser Temperatur zugetropft. Nach 45 min gab man innerhalb 5 min 72 ml (1,16 mmol)
- Ameisensäuremethylester zu, wobei die Temperatur auf -50 °C anstieg. Anschließend wurde noch 2 h bei -50 bis -70°C und 30 min bei -25 °C gerührt, sodann mit festem Ammoniumchlorid versetzt, dann Eiswasser zugefügt und 3mal mit Methylenchlorid extrahiert. Nach dem Trocknen und Verdampfen des Lösungs-
- mittels hinterblieben 22,8 g Rückstand, der mittels Flashchromatographie gereinigt wurde (Kieselgel, Essigsäureethylester/Methanol). Ausbeute: 10,9 g (46 % d. Th.)

 $C_{10}H_9N_3O$ (187)

```
1H-NMR (CDCl<sub>3</sub>):
3.9 (s,3H); 7.6 (m,3H); 7.7 (m,2H); 10.2 (s,1H).
```

5

- b. 3-[4-(2,6-Di-t-butyl-pyrimidin-4-yl)-piperazin-1-yl]-propyl-triphenylphosphoniumchlorid
- 3,52 g (10 mmol) 1-Chlor-3-[4-(2,6-di-t-butylpyrimi-din-4-yl)-piperazin-1-yl]-propan hergestellt analog Beispiel 1, A.3 wurden mit 1,8 g Natriumiodid (12 mmol) und 3,41 g (13 mmol) Triphenylphosphin in 75 ml Aceton gelöst und 24 h zum Sieden unter Rückfluß erhitzt.
- Nach dem Abkühlen wurde der Niederschlag abgesaugt, das Filtrat im Vakuum eingedampft und der Rückstand säulenchromatographisch (Kieselgel, Methylenchlorid mit 3,5 % Methanol) gereinigt. Ausbeute: 6,25 g (88 % d. Th.)

 C37H48IN4P (706).

- 1H-NMR (CDCl₃): 1.3 (s,9H); 1.4 (s,9H); 1.9 (m,2H); 2.4 (m,4H); 2.7 (m,2H); 3.6 (m,4H); 3.9 (mbr, 2H); 6.3 (s,1H); 7.6-7.9 (m,15H).
- 25 c. 5,88 g (8,3 mmol) des vorstehend unter b. hergestellten Phosphoniumsalzes wurden in 15 ml Ethylenglykoldimethylether gelöst, auf 0 °C abgekühlt, und es wurden 280 mg (9,2 mmol) Natriumhydrid zugesetzt und nach 15 min Rühren bei Raumtemperatur, 1,56 g des vorstehend unter a. beschriebenen Aldehyds, gelöst in 10 ml Ethylenglykoldimethylether, bei 0 °C zugetropft.
- Nach 1,5 h Rühren bei Raumtemperatur und weiteren 2 h bei 40 °C wurde mit Toluol und Wasser aufgearbeitet. Vom unlöslichen wurde abfiltriert. Aus der Toluolphase wurden nach Trocknen und Eindampfen 2,6 g Öl erhalten. Ausbeute: roh 65 % d. Th.
- Zur Reinigung wurde das Produkt chromatographiert (Kieselgel, 40 Methylenchlorid/Methanol).

 C29H41N7 (487).

```
1H-NMR (CDCl<sub>3</sub>):

1.3 (s,9H); 1.4 (s,9H); 2.6 (m,8H); 3.7 (m,7H); 6.2 (s,1H);

6.4 (d,1H); 7.0 (td,1H); 7.5 (m,3H); 7.7 (m,2H).
```

BEISPIEL 22

5

```
 3-\{4-[4-(2,6-\text{Di-t-butylpyrimidin-4-yl})-\text{piperazin-1-yl}\}-\text{bu-tyl}\}-4-\text{methyl-5-phenyl-1,2,4-(4H)-triazol}
```

a. 2-[4-Methyl-5-phenyl-1,2,4-(4H)-triazol-3-yl]-1,3-dithian

6,12 g (32,6 mmol) des nach Beispiel 21 a. hergestellten Aldehyds wurden in 16 ml Chloroform gelöst, sodann wurden bei 0°C 16 ml Essigsäure, 3,28 ml (32,6 mmol) 1,3-Dimercaptopropan und 160 µl Bortrifluorid-Etherat zugegeben. Nach 2,5 h Erhitzen unter Rückfluß wurden nach und nach weitere 2,4 ml Dimercaptopropan und Bortrifluorid-Etherat zugesetzt und weitere 6 h erhitzt, bis vollständiger Umsatz des Aldehyds erreicht war.

Nach dem Abkühlen auf 0 °C wurde mit 10%-iger Natronlauge auf pH 9-10 eingestellt, 1 h bei 0 °C gerührt, sodann wurde 3mal mit Methylenchlorid extrahiert. Aus der getrockneten und eingedampften Lösungsmittelphase wurden 13,2 g eines gelben Öls erhalten, die säulenchromatographisch gereinigt wurden (Kieselgel, Essigsäureethylester). Ausbeute: 4,3 g (48 % d. Th.), farbloser Feststoff. $C_{13}H_{15}N_{3}S_{2}$ (277).

25

20

```
1H-NMR (CDCl<sub>3</sub>):
2.1 (m,2H); 2.9 (m,2H); 3.3 (m,2H); 3.7 (s,3H); 5.3 (s,1H);
7.5 (m,3H); 7.7 (m,2H).
```

30 b. 831 mg (3 mmol) des vorstehend beschriebenen Dithians wurden in 7,5 ml trockenem THF gelöst und bei -70 OC mit 2,2 ml (3,6 mmol) einer 15%-igen Lösung von Butyllithium in n-Hexan behandelt. Nach 60 min Rühren bei -70 °C bis -50 °C wurden 1,06 g (3 mmol) 1-Chlor-3-[4-(2,6-di-t-butylpyrimidin-4-35 yl)-piperazin-1-yl]-propan - hergestellt analog Beispiel 1, A.3 - gelöst in 5 ml THF zugetropft. Man erwärmte nun langsam auf Raumtemperatur und erwärmte noch 60 min auf 30 bis 50 °C, um vollständigen Umsatz zu erzielen. Zur Aufarbeitung wurde dem erkalteten Ansatz festes Ammoniumchlorid zugefügt. Der Ansatz wurde sodann auf Eis/Wasser gegeben und mehrfach mit 40 Methylenchlorid und Methyl-t-butylether extrahiert. Nach Trocknen und Einengen hinterblieben 1,74 g (98 % d. Th.) des substituierten Dithians, das anschließend mit Raney-Nickel und Wasserstoff bei 40 oc im Verlauf von 12 h in Tetrahydro-45 furan hydriert wurde. Nach dem Abtrennen des Katalysators

wurde der Rückstand chromatographisch gereinigt (Kieselgel, Methylenchlorid/Methanol). Ausbeute: 700 mg (49 % d. Th.).

Farblose Festsubstanz, Fp. 144-145 OC. $C_{29}H_{43}N_7$ (489).

BEISPIEL 23

5

- 3-{4-[4-(2-t-Butyl-6-trifluormethylpyrimidin-4-yl)-pipera-zin-1-yl]-butyl}-4-methyl-5-phenyl-1,2,4-(4H)-triazol-Hydrochlo-rid
- 10 Die Verbindung wurde analog Beispiel 22 unter Verwendung der Chlorverbindung aus Beispiel 1, A.3 dargestellt. $C_{29}H_{34}F_{3}N_{7}$ (502)

1H-NMR (CDCl₃):

15 1.3 (s,9H); 1.7 (m,2H); 1.9 (q,2H); 2.4 (t,2H); 2.5 (t,4H); 2.8 (t,2H); 3.6 (s,3H); 3.75 (m,4H); 6.6 (s,1H); 7.4 (m,3H); 7.6 (m,2H).

BEISPIEL 24

20

- 3-{3-[4-(2-t-Butyl-6-trifluormethylpyrimidin-4-yl)-pipera-zin-1-yl]-propylmercapto}-5-(2,5-dimethylfuran-3-yl)-4-methyl-triazol-Hydrochlorid
- 25 Durch Umsetzung von 2,5-Dimethylfuran-3-carbonsäurechlorid mit N-Methylthiosemicarbazid und anschließender Cyclisierung nach der Methode von Kubota und Uda, Chem. Pharm. Bull. (1975), 23, 955-966, wurde 2,5-Dimethylfuran-3-yl-3-mercapto-4-methyl-1,2,4-(4H)-triazol erhalten.
- 30 $C_9H_{11}N_3OS$ (209).

```
1H-NMR (CDCl<sub>3</sub>):
2.2 (s,3H); 2.3 (s,3H); 3.5 (s,3H); 6.5 (1H).
```

35 Durch Umsetzung analog Beispiel 1B wurde die oben genannte Verbindung erhalten. Fp. 190-192 OC C₂₅H₃₄F₃N₇OS HCl (574)

BEISPIEL 25

40

3-{3-[4-2-t-Butyl-6-trifluormethylpyrimidin-4-yl)-pipera-zin-1-yl]-propylmercapto}-5-(pyrazin-2-yl)-4-methyltriazol-Hydrochlorid

Durch Umsetzung von Pyrazin-2-carbonsäurechlorid analog der Methode von Kubota und Uda in Beispiel 24 wurde 3-Mercapto-4-methyl-5-pyrazin-2-yl-1,2,4-(4H)-triazol erhalten.

5 Die oben genannte Verbindung wurde ebenfalls analog Beispiel 1B hergestellt. Fp. 164-169 \circ C. $C_{23}H_{31}F_{3}N_{9}$ (522).

BEISPIEL 65

10

3-(3-(4-(2-t-Butyl-6-trifluormethylpyrimidin-4-yl)piperazin-1-yl)propylmercapto-4-methyl-5-(1H)-tetrazolyl-5)-1,2,4(4H)-triazol.

- 15 a) 3-(3-(4-(2-t-Butyl-6-trifluormethylpyrimidin-4-yl)pipera-zin-1-yl)propylmercapto-4-methyl-1,2,4(4H)-triazol-5-carbon-säureamid
- 950 mg (6,0 mmol) 5-Mercapto-4-methyl-1,2,4(4H)-triazol-3carbonsäureamid wurden mit 2,2 g (6,0 mmol) der nach Beispiel
 1.A3 hergestellten Chlorbase und 144 mg Lithiumhydroxid
 (6,0 mmol) in 17 ml DMF 3 h unter Rühren auf 100 °C erwärmt.
 Nach dem Abkühlen wurde mit 100 ml Wasser versetzt und mit
 Methyl-t-butylether extrahiert, die Lösungsmittelphase getrocknet und eingedampft. Der Rückstand wurde chromatographisch gereinigt (Kieselgel, Methylenchlorid-Methanol 95:5).

Ausbeute: 1,65 g (57 % d.Th.) FP 141-143 °C

- 30 $C_{20}H_{29}F_3N_8OS$ (MG 486)
 - b) 3-(3-(4-(2-t-Butyl-6-trifluormethyl-pyrrimidin-4-yl)pipera-zin-1-yl)propylmercapto-5-cyano-4-methyl-1,2,4(4H)-triazol.
- 1,15 g (24,0 mmol) der vorstehend beschriebenen Verbindung wurden in 20 ml Methylenchlorid und 2 ml (12,0 mmol) Dipropylethylamin gelöst, auf 0 °C abgekühlt und langsam mit 0,5 ml Trifluoracetanhydrid versetzt. Nach 3 h Rühren bei Raumtemperatur wurde zweimal mit Wasser, dann mit 20-prozentiger NaHSO₄-Lösung, gesättigter NaHCO₃-Lösung und Kochsalz-
- tiger NaHSO4-Lösung, gesättigter NaHCO3-Lösung und Kochsalz-Lösung gewaschen, die organische Phase getrocknet und eingedampft. Es hinterblieben 0,9 g Öl (81 % d.Th.). Eine Probe wurde mit etherischer Salzsäure in das Hydrochlorid überführt.

45

Fp 220 - 222 °C C₂₀H₂₇F₃N₈S (MG 468) $C_{20}H_{28}ClF_3N_8S$ (MG 503,5)

c) 5-(3-(4-(2-t-Butyl-6-trifluormethyl-pyrimidin-4-yl)piperazin-1-yl)propylmercapto-4-methyl-3-((1H)-tetrazolyl-5)-5 1,2,4(4H)-triazol.

Man löste 0,8 g (1,7 mmol) der vorstehend beschriebenen Substanz in 1 ml DMF, gab 122 mg (1,9 mmol) Natriumazid und 100 mg (1,9 mmol) Ammoniumchlorid zu und erwärmte 2 h unter Rühren auf 85 °C. Zur Aufarbeitung wurde mit wenig Wasser versetzt, die Lösung mit NaOH auf pH 7 eingestellt und mit Methylenchlorid extrahiert. Nach Trocknen und Einengen wurde ca. 1 g Rückstand erhalten, der säulenchromatographisch gereinigt wurde. (Kieselgel, Methylenchlorid-Methanol 8:2).

15

10

Ausbeute: 0,38 g (43% d. Th) Fp. 133° (Zersetzung) $C_{20}H_{28}F_3N_{11}S$ (MG 511)

20

25

30

35

In analoger Weise wurden die folgenden in den Tabellen 2 bis 9 aufgeführten Verbindungen erhalten:

Tabelle 2:

O-(CH ₂) ₃ -	S -(CH ₂) ₃ -	-(CH ₂) ₄ -	CONH-(CH ₂) ₄ -	S -(CH ₂) ₇ -	CO-(CH ₂) ₃ -	$CH_2-CH_2-C(CH_3)=CH-CH_2-$	NH-(CH ₂) ₃ -	S -(CH ₂)8-	CH2-CH2-C(=CH2)-CH2-	S-CH ₂ -C(=CH ₂)-CH ₂ -	S-CH ₂ -CH=CH-CH ₂ -	CH ₂ -CH ₂ -CH(CH ₃)-CH ₂	CH ₂ -CH ₂ -CH(CH ₃)-CH ₂	-(CH ₂) ₄ -	-(CH ₂) ₄ -	NH-(CH ₂)4-	-(CH ₂) ₄ -	$CH_2-CH_2-C(CH_3)=CH-CH_2-$	CH ₂ -CH ₂ -CH(CH ₃)-CH ₂ -	O -(CH ₂) ₃ -	$CH_2-CH_2-C(CH_3)=CH-CH_2-$	S -(CH ₂) ₃ -	CH ₂ -CH ₂ -CH(CH ₃)-CH ₂ -	$S-CH_2-C(CH_3)=CH-CH_2-$	NH-(CH ₂) ₃ -	S-(CH ₂) ₃	CO-(CH ₂) ₇ -	CONH-(CH ₂) ₄ -	CH ₂ -CH ₂ -C(CH ₃)=CH-CH ₂ -
CH=C	CH ₂ -N	CH ₂ -N	CH ₂ -N	CH ₂ -N	CH ₂ -N	CH=C	CH=C	CH=C	CH ₂ -N	CH ₂ -N	CH ₂ -N	CH=C	CH-C	CH ₂ -N	CH ₂ -N	CH=C	CH ₂ -N	OH=C	CH2-N	CH ₂ -N	CH ₂ -N	CH2-CH	CH=C	CH ₂ -N	CH ₂ -CH	OH=C	CH2-N	CH ₂ -N	CH ₂ -N
OMe	OMe	е Н	OMe	Me	I	I	I	Me	Me	I	I	Buty	Butyl	I	Ŧ	I	I	I	I	I	I	I	I	Se	I	ᆼ	I	공	I
c _H 3	iProp	I	tBut	We	돈	Pyrrolyl	tBut	Me	Me	Pyrrolyl	Me	Me	Me	I	I	Me	Pyrrolyl	Pyrrolyl	H H	ō	iProp	tBut	tBut	I	Me	공	tBut	당	Furanyl
z	z	z	z	z	z	동	z	z	z	z	당	동	z	z	공	돤	z	z	z	ᆼ	ᆼ	z	공	공	z	ᆼ	z	ರ	ᆼ
I	I	tBut	tBut	4-OMePh	tBut	Me	nPropyl	4-OMePh	4-OMePh	tBut	tBut	GF ₃	GF ₃	CF ₃	CHF2	Pyrrolyl	Me	Me	tBut	2,4 OMe-Ph	ō	tBut	Me	tBut	iProp	CF ₃	iProp	돠	iProp
Z	z	Z	ᆼ	Z	Z	z	z	z	ۍ	z	z	z	z	Z	Z	Z	Z	Z	Z	Z	z	당	z	z	공	z	당	Z	z
cProp	Me	햅	Me	Me	iProp	Prop	cProp	Me	Me	т	cProp	Me	cProp	Me	cBut	Me	Prop	Prop	iProp	Me	Prop	iProp	Prop	iProp	Me	cProp	Me	ш	Me
2-Methyl-pyridin-3-yl	N-Ethyl-indol-3-yl	Tetrazolyl-	6-Chlor-biphenyl-2	4-Methylthiazol	Tetrazonyl-	N-Me-2-Pyrrolyl	4-Imidazolyl	2-Pyrrolyl	3-Thienyl	2-Me-4-Oxazolyi	2-Me-4-Oxazolyl	N-Propyl-tetrazolyl	3-Thienyl	N-Propyl-tetrazolyl	3-Thienyl	2,5-Dimethyl-furanyl-3-	Oxadiazol-2-yl	N-Propyl-2-pyrrolyl	3-Benzthienyl	5-Methyl imidazol-4-yl	2-Aminothiazol-4yl	N-Me-2-Pyrrolyl	N-Propyl-2-pyrrolyl	3-Benzthienyl	2-Pyrrolyl	2-Phenyl-furan-3yl	3-Br-Pyrimidin-5-yl	2-Aminothiazol-4yl	6 Me-Benzoindol-3-yl

NH-(CH ₂) ₄ -	CO-(CH ₂) ₈ -	-(CH ₂) ₈ -	S -(CH ₂) ₄ -	S -(CH ₂) ₇ -	$CH_{2}-N$ S- $CH_{2}-C(CH_{3})=CH-CH_{2}-$
CH=C	CH ₂ -N	CH ₂ -N	CH=C	CH ₂ -N	CH ₂ -N
I	ರ	I	I	I	I
Me	I	I	cHex	iProp	nHex
z	당	z	z	z	z
Pyrrolyl	tBut	tBut	Pyrrolyl	iProp	tBut
ᆼ	z	당	IJ	z	딩
cBut	iProp	$(CH_2)_4$ -OMe	.	Me	ŭ
2,5-Dimethyl-furanyl-3-	Tetrazolyl-	4-Imidazolyl	Pyrimidin-3-yl	4-Imidazolyl	N-Propyl-tetrazolyl

F, Z = 100 H	
X X	
Z=_Z-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	₩
>= <	, C

44	!									,		1/1	,1)	0,0
А	S -(CH ₂) ₃ -	S-(CH ₂) ₇ -	O -(CH ₂) ₃ -	CONH-(CH ₂) ₄ -	NH-(CH ₂) ₃ -	S –(CH ₂) ₈ –	S -(CH ₂) ₇ -	-(CH ₂)4-	CO-(CH ₂) ₈ -	S-CH ₂ -C(=CH ₂)-CH ₂ -	COO-(CH ₂) ₄ -	-(CH ₂) ₈ -	S-CH ₂ -C(=CH ₂)-CH ₂ -	O −(CH ₂)₄−
≻- ×	CH ₂ -CH	CH ₂ -N	CH ₂ -N	CH ₂ -N	CH=C	CH=C	CH ₂ -N	CH ₂ -N	CH ₂ -N	CH ₂ -N	CH ₂ -N	CH ₂ -N	CH ₂ -N	CH=C
R10	I	I	I	I	I		Me		I	I	I	I	I	I
R9	tBut	iProp		tBut	tBut	Me	Me	Pyrrolyl	Me	Pyrrolyl	2-Napht	1-Pyrroly	Pyrrolyl	cHex
7	z	z	z	z	z	z	z	z	z	z	z	z	z	z
H7	tBut	iProp	I	tBut	nPropyl	4-OMePh	4-OMePh	Me	Pyrrolyl	tBut	tBut	tBut	Me	Prop
-	z	z	z	동	z	z	당	z	z	Ŗ	z	z	당	z
R 5	NO	I	I	I	I	I	Me	I	I	മ്	I	I	I	MeSO ₂
42	Ŧ	OMe	MeSO ₂	S	S	tBut	I	I	I	മ്	4-MePh	ਠ	ത്	Ψe
R 3	S	ェ	I	Me	Me	I	iProp	I	I	I	I	ರ	I	MeSO ₂
R 2	Ŧ	OMe	I	I	ェ	OMe	I	I	r	Me	I	I	Me	I
	l											Φ		ŭ

															4	:5									
S-CH ₂ -C(CH ₃)=CH-CH ₂ -	S-CH ₂ -CH=CH-CH ₂ -	S-(CH ₂)4-	S -(CH ₂) ₇ -	O-(CH ₂) ₃₋	S -(CH ₂) ₇ -	CH ₂ -CH ₂ -C(=CH ₂)-CH ₂ -	S-CH ₂ -CH(CH ₃)-CH ₂ -	S-CH ₂ -C(=CH ₂)-CH ₂ -	CH ₂ -CH ₂ -C(CH ₃)=CH-CH ₂ -	S -(CH ₂) ₃ -	-(CH ₂) ₄ -	CONH-(CH ₂) ₄	S -(CH ₂) ₇ -	CH ₂ -CH ₂ -C(CH ₃)=CH-CH ₂ -	CH ₂ -CH ₂ -C(=CH ₂)-CH ₂ -	$CH_2-CH_2-C(CH_3)=CH-CH_2-$	CH2-CH2-CH(CH3)-CH2-	S-CH ₂ -C(=CH ₂)-CH ₂ -	CH ₂ -CH ₂ -CH(CH ₃)-CH ₂ -	CH ₂ -CH ₂ -C(CH ₃)=CH-CH ₂ -	-(CH ₂)4-	-(CH ₂) ₈ -	-(CH ₂) ₄ -	CO-(CH ₂) ₃ -	CH ₂ -CH ₂ -C(=CH ₂)-CH ₂ -
CH ₂ -N	CH ₂ -N	CH ₂ -N	CH=C	CH=C	CH ₂ -N	CH ₂ -N	CH=C	CH ₂ -N	CH ₂ -N	CH ₂ -CH	CH ₂ -N	CH ₂ -N	CH ₂ -N	CH=C	CH ₂ -N	CH=C	CH ₂ -N	CH ₂ -N	CH ₂ -N	CH=C	CH ₂ -N	CH=C	CH ₂ -N	CH ₂ -N	CH ₂ -CH
I	OMe	OMe	Me	OMe	Me	Me	Me	I	I	I	I	I	r	I	Me	I	I	I	ਸੂ ਮ	I	I	But	I	I	Me
nHex	I	I	tBut	cH ₃	Me	Me	I	Pyrrolyl	Furanyl	tBut	iProp	CF ₃	Me	Pyrrolyl	Me	Pyrrolyl	吊	tBut	I	Pyrrolyl	4-OMePh	I	Pyrrolyl	유	Ме
z	z	z	돠	z	z	z	딩	z	z	공	팡	C-Me	공	摄	공	z	z	동	z	z	z	z	z	z	z
tBut	tBut	iProp	nPropyl	r	4-OMePh	4-OMePh	tBut	tBut	iProp	tBut	iProp	I	Me	4-OMePh	4-OMePh	Me	tBut	ច	tBut	Me	tBut	Me	Me	tBut	4-OMePh
Z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	z	Z	Ŗ	F	공	z	z	z	당
I	OMe	I	I	I	I	I	I	I	Prop	I	I	I	I	I	I	I	I	NH2	I	I	I	I	Me	₩	I
ă	I	I	S	ட	I	tBut	S	മ്	I	I	OMe	MeSO ₂	I	SO ₂ Me	tBut	SO ₂ Me	I	I	I	SO ₂ Me	I	I	I	I	tBut
I	OMe	OMe	Me	ェ	iProp	I	S	I	OMe	S	I	I	iProp	I	I	I	띺	ă	C≡CH	I	띺	I	I	iProp	I
Me	I		I	ш.	I	OMe	I	Me	I	ェ	OMe	I	I	SO ₂ Me	OMe	SO ₂ Me	OMe	I	I	SO ₂ Me	OMe	I	NO ₂	I	OMe
ŭ	But	CH ₂ Ph	cProp	cProp	Me	Me	iProp	Ш	Me	Me	Me	Me	Me	Prop	Ме	Prop	iProp	I	Prop	cProp	iProp	Me	Prop	iProp	Me

چ/	, R	
ř.		
ű.	\rightarrow	
	Z_X	
	z=\ z-	- <u>c</u>
	ż=	
	2 = ==================================	\ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	E.	т 5

Tabelle 4:

46														
А	S-CH ₂ -C(=CH ₂)-CH ₂ -	O -(CH ₂) ₄ -	S-CH ₂ -C(CH ₃)=CH-CH ₂ -	S-CH ₂ -CH=CH-CH ₂ -	S-(CH ₂) ₄ -	S-CH ₂ -CH(CH ₃)-CH ₂	O-(CH ₂) ₃ -	S-(CH ₂) ₇ -	CH2-CH2-C(=CH2)-CH2-	S-(CH ₂) ₇ -	S-CH ₂ -C(=CH ₂)-CH ₂ -	$CH_2-CH_2-C(CH_3)=CH-CH_2-$	S -(CH ₂) ₃ -	-(CH ₂) ₄ -
≻- ×	CH ₂ -N								CH=C		CH ₂ -N	CH ₂ -N	CH=C	CH ₂ -CH
B10	I	I	I	I	I	I	I	I	Me	OMe	I	I	I	I
8	tBut	ፈ	1-Pyrrolyl	tBut	tBut	iProp	p-OMe-Ph	CF ₃	Me	LL.				I
R8	I	ட	I	I	I	I	I	S	I	I	I	CCC	I	I
R7	tBut	tBut	tBut	nPropyl	E.	Me	iProp	tBut	iProp	iProp	CHF2	栕	CHF2	FO
98 8	F	I	I	I	I	Me	I	OMe	I	I	I	I	I	I
RS	Ξ	I	I	I	I	I	ਠ	I	ធ្	I	I	I	I	I
R 4	tBut	MeSO ₂	·	SO ₂ Me	S	tBut	ច	N O	മ്	4-MePh	ច	SO ₂ Me	I	ш.
8	I	I	iProp	I	Me	I	I	Me	I	I	ರ	I	문	I
22	OMe	I	I	SO ₂ Me	Í	OMe	I	I	Me	I	I	SO ₂ Me	OMe	LL.
	1										Φ			cProp

я. Б.	Ar ₁ A A A Bio

Ar1	F 3	R6	R7	88 8	R9	R10	X-≺	А
4-Imidazolyl-	Me	F	tBut	Ŧ	tBut	I	CH ₂ -N	S-CH ₂ -C(=CH ₂)-CH ₂ -
2-Pvrazinvl-	cProp	I	tBut	ц.	Æ	I	CH ₂ -N	O -(CH ₂) ₄ -
2-Me-4-Oxazolvi-	Me	I	tBut	I	1-Pyrrolyl	I	CH ₂ -N	S-CH ₂ -C(CH ₃)=CH-CH ₂ -
2-Pyrrolyl	Prop	I	nPropyl	I	tBut .	I	CH=C	S-CH ₂ -CH=CH-CH ₂ -
3-Br-Pvrimidin-5-vl-	Me	I	S.F.	I	t But	I	CH ₂ -N	S-(CH ₂)4-
Pvrimidin-3-vl-	Me	Me	Me	エ	iProp	I	CH ₂ -N	S-CH ₂ -CH(CH ₃)-CH ₂
6-Chlor-biphenyl-2-	Me	I	iProp	I	p-OMe-Ph	I	CH ₂ -N	O-(CH ₂) ₃₋
2.5-Di-methyl-furanyl-3-	cProp	OMe	#But	S	CF ₃	I	CH=C	S -(CH ₂) ₇ -
N-Propvi-tetrazolyl-	ដែ	I	iProp	I	Me	Me	CH=C	CH ₂ -CH ₂ -C(=CH ₂)-CH ₂ -
N-Methvi-2-Pyrrolyl-	ជ័រ	I	iProp	I	ட	OMe	CH ₂ -N	S -(CH ₂) ₇ -
3-Thienvl	-(CH ₂) ₄ -OMe	I	CHE,	I	But	I	CH ₂ -N	S-CH ₂ -C(=CH ₂)-CH ₂ -
3-Benzthienyl-	Prop	I	몬	CECH	tBut	I	CH ₂ -N	$CH_2-CH_2-C(CH_3)=CH-CH_2-$
2-Me-4-Oxazolvl-	iProp	I	CHF,	I	I	I	CH=C	S -(CH ₂) ₃ -
4-Methylthiazol-		I	CHF	I	But	I	CH ₂ -N	$CH_2-CH_2-C(CH_3)=CH-CH_2-$
3-Benzthienyl-	iProp	I	iProp	r	p-OMe-Ph	I	CH ₂ -N	NH-(CH ₂) ₄ -
5-Methyl imidazol-4-yl-	Me	But	Me		I	I	CH ₂ -N	O-(CH ₂) ₃₋
2-Aminothiazol-4vf-	Prop	I	エ	C=CH	But	I	CH ₂ -N	-(CH ₂) ₄ -

Tabelle 5:

H CH		H CH ₂ -N	H CH=C	Me CH ₂ -CH-	H CH=C-	Me CH ₂ -N	H CH ₂ -N	H CH=C	H CH2-CH-	H CH2-CH-	H CH2-CH-	
tBut	栕	I	I	2,4-OMe-Ph	2,4-OMe-Ph	ដា	But	ᆼ	I	tBut	iProp	
I	u.	S	I	I	I	I	C=CH	S	I	I	I	
ည္ရ	tBut	I	CHF2	iProp	iProp	Me	I	ជ័រ	CHF2	SF.	Ŗ,	1
I	I	Me	I	I	I	I	Prop	I	I	I	I	:
Me	iProp	Me	-(CH ₂) ₄ -OMe	iProp	Me	Me	cProp	But	Me	Me	cProp	
N-Me-2-Pyrrolyl	2-Me-4-Oxazolyl	2,5-Dimethyl-furanyl-	N-Ethyl-indol-3-yl	y -3-		3-Br-Pyrimidin-5-yl-	5-Ethyl imidazol-4-yl-	n-Butyl-tetrazolyl-	3-Benzthienyl-	N-Me-2-Pyrrolyl	Tetrazolyl-	

				æ/	Z/ gr/=	m	
			z= 	X		Д3	
		Ar ₁	=< =< =<	Z	- g		
Ar1	Æ	R6	R8	R9	R10	≻- ×	⋖
N-Me-2-Pyrrolyl	Prop	4-MeOPh	I	tBut	エ	CH ₂ -N	-S -(CH ₂) ₇ -
2-Me-4-Oxazolyl	Me	I	I	iProp	Me	CH ₂ -N	S-CH ₂ -CH=CH-CH ₂ -
4-Imidazolyl	Me	iProp	Me	But	I	CH ₂ -N	COO-(CH ₂) ₄
2,5-Di-methyl-furanyl-	But	Me	္ပ	Me	I	CH=C	(CH ₂) ₄
3-Thienyl-	Me	I	I	Pyrrolyl	ರ	CH ₂ -CN	$S-CH_2-C(CH_3)=CH-CH_2-$
2-Pyrazinyl-	cProp	I	S	iProp	OMe	CH ₂ -N	-(CH ₂) ₄ -
3-Br-Pyrimidin-5-yl	Hex	I	I	iProp	OMe	CH ₂ -N	O-(CH ₂) ₃ -
Pyrimidin-3-yl	ដា	cHex	I	Prop	I	CH=C	NH-(CH ₂) ₄
2-Pyrazinyl-	ŭĬ	I	I	Pent	ដែ	CH ₂ -N	-(CH ₂) ₄ -
2-Methyl-pyridin-3-yl	Me	I	ਠ	Me	I	CH ₂ -N	CONH-(CH ₂) ₄ -
2,5-Di-methyl-furanyl-3-	cProp	cH ₃	ı	I	OMe	CH=C	~ (CH ₂) ₄ ~
N~Ethyl-indol-3-yl-	cProp	c _H 3	Me	I	OMe	CH=C	S-CH ₂ -C(=CH ₂)CH ₂
Tetrazolyl-	ជ័រ	cHex	I	Prop	I	CH=C	S-(CH ₂) ₃ -
3-Benzthienyl-	iProp	I	I	cProp	But	CH ₂ -N	S-(CH ₂) ₈
N-Propyi-tetrazolyl	CH ₂ Ph	I	I	iProp	OMe	CH ₂ -N	S-(CH ₂) ₄ -
2-Aminothiazol-4yl-	Me	I	S	CHF2	Ŧ	CH ₂ -N	-(CH ₂) ₄ -

Tabelle 6:

			50													
·			A	COO-(CH ₂) ₄ -	S-CH ₂ -CH=CH-CH ₂ -	-(CH ₂) ₄ -	CONH-(CH ₂) ₄	-(CH ₂) ₄ -	S-CH ₂ -C(=CH ₂)CH ₂ -	O-(CH ₂) ₃₋	S-(CH ₂) ₃ -	$S-CH_2-C(CH_3)=CH-CH_2-$	S-CH ₂ -CH=CH-CH ₂ -	-CO-(CH ₂) ₃₋	S-(CH ₂) ₃ -	S-(CH ₂) ₄ -
			≻- ×	CH ₂ -N	CH ₂ -N	CH ₂ -N	CH=C	CH ₂ -N	CH ₂ -N	CH=C	CH=C	CH ₂ -N	CH ₂ -CH	CH ₂ -N	CH=C	CH ₂ -N
شر <u>/</u>	ER PB		B10	I	I	I	I	ರ	OMe	OMe	I	I	I	I	I	OMe
gr.	X S		R9	tBut	tBut	tBut	Pyrrolyl-	Me	iProp	I	Prop	tBut	40Me-Ph	CHF ₂	iProp	iProp
	Z=\ Z=\ Z=\	-Æ	82	I	I	Me	CECH	I	I	Me	I	S	႘	I	I	I
			R6	ш	I	iProp	Me	I	I	OH3	сНех	nHex	I	I	I	I
	<u></u>	ж =<	R5	MeSO ₂	I	OMe	I	I	I	Me	I	S	Me	H ₂ NSO ₂	I	ェ
			4	Me	മ്	I	OMe	S	u_	I	tBut	I	I	I	I	NO ₂
			R3	MeSO ₂	I	ОМе	I	Me	I	iProp	I	I	OF ₃	Ξ	I	I
			R 2	Ŧ	Me	I	OMe	ェ	ц.	I	OMe	I	I	I	ェ	NO ₂
																CH_2Ph

Tabelle 7:

F	, ot o
×	N N N
Z=- 	Ar. R-N R1

			5	1										P	CT	/E	P98	3/04:
A	COO-(CH ₂) ₄ -	S-CH ₂ -CH=CH-CH ₂ -	-(CH ₂) ₄ -	CO-(CH ₂) ₃ -	CH ₂ -CH ₂ -C(CH ₃)=CH-CH ₂ -	NH-(CH ₂)4-	S -(CH ₂) ₈ -	S(CH ₂) ₃	S -(CH ₂) ₃ -	CONH-(CH ₂) ₄ -	O-(CH ₂) ₃ -	-(CH ₂) ₄ -	-(CH ₂) ₈ -	O -(CH ₂) ₄ -	S-CH ₂ -C(CH ₃)=CH-CH ₂ -	S-(CH ₂) ₄ -	O-(CH ₂) ₃ -	S -(CH ₂) ₇ -
W~Y~X	CH ₂ -N-CH ₂	CH=C-CH ₂	CH2-CH-CH2	CH2-CH-CH2	CH=C-CH ₂	CH ₂ -C=CH	CH ₂ -N-CH ₂	CH ₂ -C=CH	CH ₂ -N-CH ₂	CH ₂ -C=CH	CH ₂ -C=CH	CH ₂ -N-CH ₂	CH2-N-CH2	CH=C-CH ₂	CH ₂ -C=CH	CH ₂ -N-CH ₂	CH2-N-CH2	CH ₂ -N-CH ₂
R10	F	OMe	I	I	I	I	Me	I	I	I	ェ	OMe	OMe	I	I	OMe	OMe	I
B3	4-MeOPh			몺	Pyrrolyl	tBut	Me	tBut	tBut	ច	1-Pyrrolyl	I	CH3	cHex	nHex	エ	cH ₃	iProp
Z	z	z	z	z	동	z	z	동	z		z		z		z			
R7	tBut	tBut	Me	tBut	Me	nPropyl	4-OMePh	iProp	tBut	2,4 OMe-Ph	tBut	iProp	I	Prop	tBut	iProp	I	tBut
H	z	z	z	z	z	z	z	z	z	z	z		ᆼ		z	z	z	z
F1	ū	But	Prop	iProp	Prop	cProp	Me	But	Me	Me	(CH ₂) ₄ -OMe	CH ₂ Ph	cProp	ťű	ŭ	CH ₂ Ph	cProp	Me
Ar1	N-Me-2-Pvrrolyl-	2-Me-4-Oxazolyl-	Oxadiazol-2-yl-	Tetrazolv!-	N-Me-2-Pyrrolyl	4-ImidazolvI-	2-Pyrrolyl	N-Me-2-Pyrroly!	N-Me-2-Pyrrolyl	2-Pvrrolyl	2-Pyrazinyl-	2-Methyl-pyridin-3-yl-	2-Pyrazinyl-	3-Br-Pvrimidin-5-yl	Pvrimidin-3-yl-	N-Propyl-tetrazolyl-	2-Methyl-pyridin-3-yl-	4-Imidazolyl

Tabelle 8:

2.5—D-methyl-furanyl-3- Gbut N Pyrrobyl N M H GP2-N-CH2 NIH-(CH3)4 N=Embory-1-bit and Coll-3-y-1- and the colladion-3-y-1- and the colladion-3-
CBut N Pyrolyl N Me H Me N H N IProp OMe Et N H N IProp OMe Me CH H H CH3 Me N CHF2 CH H H CBut N CHF2 CH H H CH3 Me N CHF2 CH H
CBUT N Pytrolyl N Me Me N H N IProp Et N 4-OMePh N IProp Me CH 18ut N H Me N 4-OMePh N Me CBut N CHF2 CH H Me N CHF2 CH H Me N CHF2 CH H Me N CHS3 CH Me CProp N CF3 N Me Me N CF3 N H Prop N CF3 CH CH Prop N But CH CH Prop N CH CH CH Prop N But CH CH Me CH CH CH CH Me CH CH CH CH </td
CBUT N Pyrrolyl N Me N H N Me N H N Me CH HBut N CBut N CHF2 CH Me N CHF2 CH Me N CHF2 CH Me CH CH CH Me CH CH CH CProp N CF3 N CProp N CF3 N Me N CF3 N Prop N CF3 N Prop N CF3 CH Prop N CF3 CH Me CH IProp CH CProp N CF3 CH Me CH IProp CH Me CH IProp CH CH2J4-OMe CH IProp CH Me
CBut N Pyrrolyl Me N H Et N H Me CH 18ut Me N CHF2 Me N CHS CProp N CF3 Me N CF3 Me N CF3 Me CH IBut Prop N CF3 Me CH IBut Prop N CH IProp CH IProp CP3 Me CH Me CH IProp CBut N CH Me CH Pyrrolyl IProp CH Pyrrolyl IProp CH Pyrrolyl
cBut N Me Me Me Me CBut Me CProp Me Prop Prop Prop Prop Prop Prop Prop Me CProp N M M M M M M M M M M M M M M M M M M
cBut Me Et Me Me CBut Me CProp Me Prop IProp Prop IProp Me CProp Me
2,5-Di-methyl-furanyl-3-N-Ethyl-indol-3-yl-Tetrazolyl-6-Chlor-biphenyl-24-Methylthiazol-3-Thienyl-25-Di-methyl-furanyl-3-3-Thienyl-2-Me-4-Oxazolyl-2-Me-4-Oxazolyl-N-Propyl-tetrazolyl-3-Thienyl-2-Pyrrolyl-3-Benzthienyl-2-Methyl imidazol-4-yl-2-Aminothiazol-4-yl-2-Pyrrolyl-3-Benzthienyl-2-Pyrrolyl-3-Benzthienyl-2-Pyrrol

;	Ŗ		<u>د</u> ا	B.
Å.		; }		₽ ₽ - -
(×->	- M		
;	z=(z=(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Z	
	·	\ \ \		

		_															
A	S-CH ₂ -CH=CH-CH ₂ -	S -(CH ₂) ₃ -	-COO-(CH ₂) ₄ -	S-CH ₂ -CH(CH ₃)-CH ₂	S-(CH ₂) ₄ -	O-(CH ₂) ₃ -	CH ₂ -CH ₂ -C(=CH ₂)-CH ₂ -	S -(CH ₂) ₇ -	S-CH ₂ -C(=CH ₂)-CH ₂ -	CO-(CH ₂) ₃ -	-S-CH ₂ -CH=CH-CH ₂ -	$CH_2 - CH_2 - C(CH_3) = CH - CH_2 -$	$CH_2-CH_2-C(CH_3)=CH-CH_2-$	-CONH-(CH ₂) ₄	O-(CH ₂) ₃₋	-(CH ₂)₄-	S -(CH ₂) ₃ -
W-Y-X	CH2-CH-CH2	CH2-C=CH	CH=C-CH ₂	CH ₂ -C=CH	CH=C-CH2	CH ₂ -N-CH ₂	CH ₂ -N-CH ₂	CH ₂ -C=CH	CH ₂ C=CH	CH2-C=CH	CH=C-CH2	CH ₂ -N-CH ₂	CH=C-CH ₂	CH ₂ -C=CH	CH2-N-CH2	CH2-N-CH2	CH2-N-CH2
B10	I	I	Me	I	I	I	Me	OMe	I	I	I	I	I	I	I	I	I
R9	tBut	I	2,4-OMe-Ph	iProp	tBut	p-OMe-Ph	Me	ட	But	CF ₃	2,4-OMe-Ph	tBut	But	p-OMe-Ph	I	But	I
88	I	I	I	I	I	x	I	I	r	S	I	CECH	I	I	I	C=CH	I
R7	nPropyl	CHF2	iProp	Me	SF ₂	iProp	iProp	iProp	CHF2	tBut	iProp	െ	CHF2	iProp	Me	I	CHF ₂
R6	I	I	I	Me	I	I	I	I	I	OMe	I	I	I	I	Brt	I	I
.	Prop	-(CH ₂) ₄ -OMe	iProp	Me	Hexyl	Me	ťū	Ť	-(CH ₂) ₄ -OMe	cProp	Me	Pentyl	, Tü	iProp	Me	Prop	iProp
Ar1	2-Pyrrolyl	N-Ethyl-indol-3-yl	2,5-Di-methyl-furanyl-3- iProp	3-Br-Pyrimidin-5-yl-	Pyrimidin-3-yl-	6-Chlor-biphenyl-2-	N-Propyl-tetrazolyl-	N-Methyl-2-Pyrrolyl-	3-Thienyl	2,5-Di-methyl-furanyl-3-	2-Aminothiazol-4yl-	3-Benzthienyl-	4-Methylthiazol-	3-Benzthienyl-	5-Methyl imidazol-4-yl-	2-Aminothiazol-4yl-	2-Me-4-Oxazolyl-

Tabelle 9:

N-Me-2-Purroly	Me	I	Ę,		tBut	I	CH2-C-CH2	S -(CH ₂) ₇ -
2-Me-4-Oxazolvi	iProp	ï	ær.		F.	I	CH2-N-CH2	CONH(CH ₂) ₄ -
2 5-Dimethyl-furanyl-	W	×	I		I	I	CH=C-CH2	S-CH ₂ -CH=CH-CH ₂
3-Br-Pvrimidin-5-vl-	We W	I	Me	I	тú	Me	CH2-N-CH2	S -(CH ₂) ₃ -
n-Butyl-tetrazolyl-	But	I	ш		Н	I	CH ₂ -N-CH ₂	-(CH ₂) ₄ -
3-Benzthienvl-	Μe	I	CHF,		I	I	CH ₂ -C=CH	S -(CH ₂) ₃ -
N-Me-2-Pvrrolvi	Me	I	F.		tBut	I	CH2-C-CH2	S –(CH ₂) ₃
TetrazolvI-	cProp	I	iProp		GF ₃	I	CH2-N-CH2	-(CH ₂)4-
Propyl-tetrazolyl-	ជ័	I	F		nProp	I	CH ₂ -N-CH ₂	-(CH ₂) ₄ -
Oxadiazol-2-vi-	cProp	I	, F		エ	I	CH2-N-CH2	-(CH ₂) ₄ -
5-Ethyl imidazol-4-vl-	cProp	Prop	ī		But	I	CH2-N-CH2	-(CH ₂)4-
4-Imidazolvi-	We W	I	tBut		tBut	I	CH2-N-CH2	$S-CH_2-C(=CH_2)-CH_2-$
2-Pvrazinyl-	cProp	I	tBut		P.	I	CH=C-CH2	O -(CH ₂) ₄ -
2-Me-4-Oxazolvi-	Me	I	tBut		1-Pyrrolyi	I	CH2-CH-CH2	$S-CH_2-C(CH_3)=CH-CH_2-$
4-Pvrimidyl-	ដែ	I	Pent		2,4-OMe-Ph	I	CH2-N-CH2	
Oxadiazol-2-vl-	Hex	I	P.		tBut	I	CH ₂ -N-CH ₂ -	S-(CH ₂)4-

Beispiele für galenische Applikationsformen

A) Tabletten

5 Auf einer Tablettenpresse werden in üblicher Weise Tabletten folgender Zusammensetzung gepreßt:

40 mg Substanz des Beispiels 1

120 mg Maisstärke

10 13,5 mg Gelatine

45 mg Milchzucker

2,25 mg Aerosil® (chemisch reine Kieselsäure in submikroskopisch feiner Verteilung)

6,75 mg Kartoffelstärke (als 6 %iger Kleister)

15

B) Dragees

20 mg Substanz des Beispiels 4

60 mg Kernmasse

20 70 mg Verzuckerungsmasse

Die Kernmasse besteht aus 9 Teilen Maisstärke, 3 Teilen Milchzucker und 1 Teil Vinylpyrrolidon-Vinylacetat-Mischpolymerisat 60:40. Die Verzuckerungsmasse besteht aus

25

5 Teilen Rohrzucker, 2 Teilen Maisstärke, 2 Teilen Calciumcarbonat und 1 Teil Talk. Die so hergestellten Dragees werden anschließend mit einem magensaftresistenten Überzug versehen.

30

Biologische Untersuchungen - Rezeptorbindungsstudien

1) D₃-Bindungstest

35

Für die Bindungsstudien wurden klonierte humane D_3 -Rezeptor-exprimierende CCL 1,3 Mäusefibroblasten, erhältlich bei Res. Biochemicals Internat. One Strathmore Rd., Natick, MA 01760-2418 USA, eingesetzt.

40

Zellpräparation

Die D3 exprimierenden Zellen wurden in RPMI-1640 mit 10 % fötalem Kälberserum (GIBCO Nr. 041-32400 N); 100 E/ml Penicillin und 0,2 % Streptomycin (GIBCO BRL, Gaithersburg, MD, USA) vermehrt. Nach 48 h wurden die Zellen mit PBS gewaschen und mit 0,05 % trypsinhaltiger PBS 5 min inkubiert. Danach wurde mit Medium neutralisiert und die Zellen durch Zentrifugation bei 300 g gesammelt. Zur Lyse der Zellen wurde kurz das Pellet mit Lysispuffer (5mM Tris-HCl, pH 7,4 mit 10 % Glycerin) gewaschen und danach in einer Konzentration von 10⁷-Zellen / ml Lysispuffer 30 min bei 4 °C inkubiert. Die Zellen wurden bei 200 g 10 min zentrifugiert und das Pellet in flüssigem Stickstoff gelagert.

Bindungstests

10

15

5

Für den D_3 -Rezeptorbindungstest wurden die Membranen in Inkubationspuffer (50 mM Tris-HCl, pH 7,4 mit 120 mM NaCl, 5 mM KCl, 2 mM CaCl₂, 2 mM MgCl₂, 10μ M Quinolinol, 0,1 % Ascorbinsäure und 0,1 % BSA) in einer Konzentration von ca. 10^6 Zellen/250 μ l Testansatz suspendiert und bei 30 °C mit 0,1 nM 125 Jodsulpirid in Anwesenheit und Abwesenheit von Testsubstanz inkubiert. Die unspezifische Bindung wurde mit 10^{-6} M Spiperon bestimmt.

Nach 60 min wurde der freie und der gebundene Radioligand durch Filtration über GF/B Glasfaserfilter (Whatman, England) an einem Skatron-Zellsammler (Skatron, Lier, Norwegen) getrennt und die Filter mit eiskaltem Tris-HCl-Puffer, pH 7,4 gewaschen. Die auf den Filtern gesammelte Radioaktivität wurde mit einem Packard 2200 CA Flüssigkeitszintillationszähler guantifiziert.

Die Bestimmung der K_i -Werte erfolgte über nichtlineare Regressionsanalyse mit dem Programm LIGAND.

30

45

2) D₂-Bindungstest

Zellkultur

HEK-293 Zellen mit stabil exprimierten humanen Dopamin-D2A-Rezeptoren wurden in RPMI 1640 mit Glutamax ITM und 25 mM HE-PES mit 10% fötalem Kälberserumalbumin kultiviert. Alle Medien enthielten 100 Einheiten pro ml Penicillin und 100 μg/ml Streptomycin. Die Zellen wurden in feuchter Atmosphäre mit 5% CO₂ bei 37 °C gehalten.

Die Zellpräparation für Bindungsstudien erfolgte durch Trypsinisierung (0,05% Trypsinlösung) für 3-5 Minuten bei Raumtemperatur. Danach wurden die Zellen bei 250 g 10 Minuten zentrifugiert und 30 Minuten bei 4 °C mit Lysispuffer (5 mM Tris-HCl, 10% Glycerol, pH 7,4) behandelt. Nach Zentrifuga-

om hai 250 m film 10 Wind

tion bei 250 g für 10 Minuten wurde der Rückstand bei -20 °C bis zum Gebrauch aufbewahrt.

Rezeptorbindungstests

5

Dopamin- D_2 -Rezeptor "low affinity state" mit 125 I-Spiperon (81 TBg/mmol, Du Pont de Nemours, Dreieich)

Die Ansätze (1 ml) setzten sich zusammen aus 1 x 10^5 Zellen in In- 10 kubationspuffer (50 mM Tris, 120 mM NaCl, 5 mM KCl, 2 mM MgCl₂ und 2 mM CaCl₂, pH 7,4 mit HCl) und 0,1 nM 125 I-Spiperon (totale Bindung) oder zusätzlich 1 μ M Haloperidol (unspezifische Bindung) oder Prüfsubstanz.

15 Nach erfolgter Inkubation bei 25 °C für 60 Minuten wurden die Ansätze über GF/B Glasfaserfilter (Whatman, England) an einem Skatron-Zellsammler (Fa. Zinsser, Frankfurt) filtriert und die Filter mit eiskaltem 50 mM Tris-HCl-Puffer, pH 7,4 gewaschen. Die auf den Filtern gesammelte Radioaktivität wurde mit einem Packard 20 2200 CA Flüssigkeitszintillationszähler quantifiziert.

Die Auswertung erfolgte wie unter a).

Die Bestimmung der K_i -Werte erfolgte über nichtlineare Regres-25 sionsanalyse mit dem Programm LIGAND oder durch Umrechnung der IC_{50} -Werte mit Hilfe der Formel von Cheng und Prusoff.

Die erfindungsgemäßen Verbindungen zeigen in diesen Tests sehr gute Affinitäten am D_3 -Rezeptor (< 1 μ molar, insbesondere < 100 30 nmolar) und hohe Selektivitäten gegenüber dem D_3 -Rezeptor.

35

Patentansprüche

1. Triazolverbindungen der Formel I

10

5

worin

Ar1 für Phenyl, Naphthyl oder einen 5- oder 6-gliedrigen heterocyclischen aromatischen Ring mit 1 bis 4 Heteroato-15 men, die unabhängig voneinander ausgewählt sind unter O, S und N, steht, wobei Ar1 gegebenenfalls 1, 2, 3 oder 4 Substituenten aufweist, die unabhängig voneinander ausgewählt sind unter C₁-C₆-Alkyl, das gegebenenfalls durch OH, OC1-C6-Alkyl, Halogen oder Phenyl substituiert ist, C₁-C₆-Alkoxy, C₂-C₆-Alkenyl, C₂-C₆-Alkinyl, C₃-C₆-Cycloal-20 kyl, Halogen, CN, COOR², NR²R², NO₂, SO₂R², SO₂NR²R² und Phenyl, das gegebenenfalls durch C1-C6-Alkyl, OC1-C6-Alkyl, NR²R², CN, CF₃, CHF₂, oder Halogen substituiert ist und wobei der erwähnte heterocyclische, aromatische Ring gegebenenfalls mit einem Phenylring auch kondensiert sein 25 kann;

A für geradkettiges oder verzweigtes C₄-C₁₀-Alkylen oder geradkettiges oder verzweigtes C₃-C₁₀-Alkylen steht, das wenigstens eine Gruppe Z umfasst, die ausgewählt ist unter O, S, NR², CONR², COO, CO, einer Doppel- oder Dreifachbindung,

B für einen Rest der Formel steht:

oder wenn Ar¹ für den 5- oder 6-gliedrigen, heterocyclischen aromatischen Ring, der wie angegeben substituiert sein kann, steht, B auch für einen Rest der Formeln

$$-N$$
 $N-$, $-N$ oder

5

stehen kann,

- Ar² für Phenyl, Pyridyl, Pyrimidinyl oder Triazinyl steht, wobei Ar2 gegebenenfalls ein bis vier Substituenten aufweisen kann, die unabhängig voneinander ausgewählt sind 15 unter OR², C₁-C₆-Alkyl, C₂-C₆-Alkenyl, C₂-C₆-Alkinyl, C₁-C₆-Alkoxy-C₁-C₆-alkyl, Halogen-C₁-C₆-alkyl, Halogen-C₁-C₆-alkoxy, Halogen, CN, NO₂, SO₂R², NR²R², SO₂NR²R², einem 5- oder 6-gliedrigen carbocyclischen, aromatischen oder nicht-aromatischen Ring und einem 5- oder 6-gliedrigen, 20 heterocyclischen aromatischen oder nicht-aromatischen Ring mit 1 oder 2 Heteroatomen, die ausgewählt sind unter O, S und N, wobei der carbocyclische oder heterocyclische Ring gegebenenfalls durch C₁-C₆-Alkyl, Phenyl, Phenoxy, Halogen, OC₁-C₆-Alkyl, OH, NO₂ oder CF₃ substituiert und/ 25 oder mit einem Phenylring kondensiert sein kann und wobei Ar² gegebenenfalls mit einem carbocyclischen, aromatischen oder nichtaromatischen Ring und einem 5- oder 6-gliedrigen, heterocyclischen aromatischen oder nichtaromatischen Ring mit 1 oder 2 Heteroatomen, die ausge-30 wählt sind unter O, S und N, kondensiert sein kann,
 - R^1 für H, C_3 - C_6 -Cycloalkyl oder C_1 - C_6 -Alkyl, das gegebenenfalls durch OH, OC_1 - C_6 -Alkyl oder Phenyl substituiert ist, steht;

- die Reste R^2 , die gleich oder verschieden sein können, für H oder C_1 - C_6 -Alkyl, das gegebenenfalls durch OH, OC_1 - C_6 -Alkyl oder Phenyl substituiert ist, stehen;
- sowie deren Salze mit physiologisch verträglichen Säuren.
 - 2. Verbindungen nach Anspruch 1 der Formel I, worin
- Ar¹ für Phenyl, Naphthyl oder einen 5- oder 6-gliedrigen heterocyclischen aromatischen Ring mit 1 bis 3 Heteroatomen, die ausgewählt sind unter O, S und N, steht, wobei Ar¹ gegebenenfalls 1, 2, 3 oder 4 Substituenten aufweist,

die unabhängig voneinander ausgewählt sind unter C_1 - C_6 -Alkyl, das gegebenenfalls durch OH, OC_1 - C_6 -Alkyl, Halogen oder Phenyl substituiert ist, C_1 - C_6 -Alkoxy, C_2 - C_6 -Alkenyl, C_2 - C_6 -Alkinyl, C_3 - C_6 -Cycloalkyl, Halogen, CN, $COOR^2$, NR^2R^2 , NO_2 , SO_2R^2 , $SO_2NR^2R^2$ oder Phenyl, das gegebenenfalls durch C_1 - C_6 -Alkyl, OC_1 - C_6 -Alkyl, NR^2R^2 , CN, CF_3 , CHF_2 oder Halogen substituiert ist, und wobei der erwähnte heterocyclische, aromatische Ring gegebenenfalls mit einem Phenylring kondensiert sein kann;

10

15

- A für geradkettiges oder verzweigtes C₄-C₁₀ Alkylen oder geradkettiges oder verzweigtes C₃-C₁₀-Alkylen steht, das wenigstens eine Gruppe umfasst, die ausgewählt ist unter O, S, NR², CONR², COO, CO, einer Doppel- oder Dreifachbindung,
 - B für einen Rest der Formel steht:

- Ar² für Phenyl, Pyridyl, Pyrimidinyl oder Triazinyl steht, wobei Ar2 gegebenenfalls ein bis vier Substituenten auf-25 weisen kann, die unabhängig voneinander ausgewählt sind unter OR^2 , C_2 - C_6 -Alkenyl, C_2 - C_6 -Alkinyl, C_1 - C_6 -Alkoxy-C₁-C₆-alkyl, Halogen-C₁-C₆-alkyl, Halogen-C₁-C₆-alkoxy, Halogen, CN, NO₂, SO₂R², NR²R², SO₂NR²R², einem 5- oder 6-gliedrigen carbocyclischen, aromatischen oder nicht-30 aromatischen Ring und einem 5- oder 6-gliedrigen, heterocyclischen aromatischen oder nicht-aromatischen Ring mit 1 oder 2 Heteroatomen, die ausgewählt sind unter O, S und N, wobei der carbocyclische oder heterocyclische Ring gegebenenfalls substituiert sein kann durch C1-C6-Alkyl, 35 Phenyl, Phenoxy, Halogen, OC₁-C₆-Alkyl, OH, NO₂ oder CF₃ und wobei Ar2 gegebenenfalls mit einem carbocyclischen oder heterocyclischen Ring der oben definierten Art kondensiert sein kann,
- 40 R¹ für H, C_3 - C_6 -Cycloalkyl oder C_1 - C_6 -Alkyl, das gegebenenfalls durch OH, OC_1 - C_6 -Alkyl oder Phenyl substituiert ist, steht;
- die Reste R², die gleich oder verschieden sein können, für H

 oder C₁-C₆-Alkyl, das gegebenenfalls durch OH, OC₁-C₆-Alkyl oder Phenyl substituiert ist, stehen;

sowie deren Salze mit physiologisch verträglichen Säuren.

- Verbindungen nach Anspruch 1 oder 2 der Formel I, worin A für C₄-C₁₀-Alkylen oder C₃-C₁₀-Alkylen steht, das gegebenenfalls wenigstens eine Gruppe Z umfasst, die ausgewählt ist unter O, S und einer Doppel- oder Dreifachbindung.
- Verbindungen nach einem der vorhergehenden Ansprüche der Formel I, worin Ar¹ für Phenyl, Naphthyl, Pyrrolyl, Thienyl, Furanyl, Thiazolyl, Imidazolyl, Oxazolyl, Oxadiazolyl, Tetrazolyl, Isoxazolyl, Pyridinyl, Pyrazinyl, Pyrimidinyl, Benzthiophenyl, Indolyl oder Benzofuranyl steht, wobei Ar¹, wie in Anspruch 1 angegeben, substituiert oder kondensiert sein kann.

15

5. Verbindungen nach Anspruch 4 der Formel I, worin Ar¹ für Phenyl, Thienyl, Furanyl, Tetrazolyl, Pyrrolyl oder Pyrazinyl steht und, wie in Anspruch 1 angegeben, substituiert sein kann.

20

- 6. Verbindungen nach einem der vorhergehenden Ansprüche der Formel I, worin Ar^1 unsubstituiert ist oder 1, 2, 3 oder 4 Substituenten aufweist, die unabhängig voneinander ausgewählt sind unter CN, C_1 - C_6 -Alkyl, OH, OC_1 - C_6 -Alkyl, Phenyl und Halogen.
- 7. Verbindungen nach einem der vorhergehenden Ansprüche der Formel I, worin R^1 für H, C_1 - C_6 -Alkyl oder C_3 - C_6 -Cycloalkyl steht.

30

35

45

- 8. Verbindungen nach einem der vorhergehenden Ansprüche der Formel I, worin Ar² für Phenyl, Pyridinyl oder Pyrimidinyl steht, das gegebenenfalls einen oder zwei Substituenten aufweist, die unabhängig voneinander ausgewählt sind unter C₁-C₆-Alkyl, C₂-C₆-Alkinyl, Halogen, CN, Halogenalkyl, OAlkyl, NO₂, Phenyl, Pyrrolyl, Imidazolyl, Pyrazolyl, Thienyl, Indolyl, Cyclopentyl und Cyclohexyl.
- 9. Verbindungen nach Anspruch 8 der Formel I, worin der oder die Substituenten unabhängig voneinander ausgewählt sind unter C₁-C₆-Alkyl, Phenyl, NO₂, und Halogenalkyl, insbesondere CF₃, CHF₂ und CF₂Cl.
 - 10. Verbindungen nach Anspruch 1 der Formel I, worin

Ar¹ für Phenyl steht, das gegebenenfalls durch C_1 - C_6 -Alkyl, OC_1 - C_6 -Alkyl, CN, Phenyl oder Halogen substituiert ist;

A die in Anspruch 2 angegebenen Bedeutungen besitzt;

5

B für
$$-$$
N $-$ steht, und

Ar² für Pyrimidinyl steht, das gegebenenfalls substituiert ist durch C₁-C₆-Alkyl, Halogen-C₁-C₆-alkyl, Halogen-C₁-C₆-alkoxy, Pyrrolyl oder Indolyl.

- 11. Verbindungen nach Anspruch 10 der Formel I, worin
- Ar¹ für Phenyl steht, das gegebenenfalls substituiert ist durch $C_1-C_6-Alkyl$, $OC_1-C_6-Alkyl$ oder Halogen und
 - A für $-S(CH_2)_{3-10}$ oder $-(CH_2)_{4-10}$ steht.
- 20 12. Verbindungen nach einem der Ansprüche 1 bis 9 der Formel I, worin Ar¹ für einen 5- oder 6-gliedrigen heterocyclischen aromatischen Ring mit 1 bis 4 Heteroatomen, die unabhängig voneinander ausgewählt sind unter O, S und N, steht, wobei der Ring wie in Anspruch 1 angegeben substituiert oder kondensiert sein kann, B für

$$-N$$
 $N-$, $-N$ oder

30

$$-N$$

steht und A und Ar² die in Anspruch 1 angegebenen Bedeutungen besitzen.

- 13. Pharmazeutisches Mittel, enthaltend wenigstens eine Verbindung nach einem der Ansprüche 1 bis 12, gegebenenfalls zusammen mit physiologisch akzeptablen Trägern und/oder Hilfsstoffen.
- 14. Verwendung wenigstens einer Verbindung nach einem der Ansprüche 1 bis 12 zur Herstellung eines pharmazeutischen
 45 Mittels zur Behandlung von Erkrankungen, die auf Dopamin-D3-Rezeptorantagonisten bzw. -agonisten ansprechen.

15. Verbindungen der Formel VIII

worin Ar^1 und R^1 für die in einem der Ansprüche 1, 2, 4 bis 7, 10 und 11 angegebenen Bedeutungen steht.

A. CLASSIFICATION OF SUBJECT MATTER IPC 6 C07D249/12 C07E C07D249/08 C07D401/12 C07D401/14 C07D403/12 C07D405/14 C07D409/14 C07D413/14 C07D417/14 CO7D403/14 A61K31/33 A61K31/41 According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) IPC 6 CO7D A61K Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages Category ' Relevant to claim No. X WO 96 02520 A (BASF AKTIENGESELLSCHAFT) 1 - 151 February 1996 cited in the application see the whole document X BROWNE E J: "N-Unsubstituted 15 1,2,4-triazole-3-aldehydes" TETRAHEDRON LETTERS, no. 12, March 1970, pages 943-4, XP002082579 see the whole document X Further documents are listed in the continuation of box C. Patent family members are listed in annex. Special categories of cited documents: later document published after the international filing date or priority date and not in conflict with the application but "A" document defining the general state of the art which is not considered to be of particular relevance cited to understand the principle or theory underlying the invention earlier document but published on or after the international "X" document of particular relevance; the claimed invention filing date cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another "Y" document of particular relevance; the claimed invention citation or other special reason (as specified) cannot be considered to involve an inventive step when the document is combined with one or more other such docu-"O" document referring to an oral disclosure, use, exhibition or ments, such combination being obvious to a person skilled in the art. document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of the actual completion of theinternational search Date of mailing of the international search report 29 October 1998 11/11/1998 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Allard, M Fax: (+31-70) 340-3016

C (Continue	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	FC1/EF 98/04130
Category °		Relevant to claim No.
X	DATABASE CROSSFIRE Beilstein Informationssysteme GmbH, Frankfurt DE XP002082581 see BRN 1105514 & AUST. J. CHEM., vol. 24, 1971, pages 393-403,	15
X	DATABASE CROSSFIRE Beilstein Informationssysteme GmbH, Frankfurt DE XP002082582 See BRN 1112352 & AUST. J. CHEM., vol. 26, 1973, page 1809, 1811, 1813	15
P,X	WO 97 25324 A (BASF AKTIENGESELLSCHAFT) 17 July 1997 cited in the application see the whole document	1-15
Α	CZARNOCKA-JANOWICZ A ET AL: "Synthesis and pharmacological activity of 5-substituted-s-triazole-3-thiols" DIE PHARMAZIE, vol. 46, no. 2, 1991, pages 109-112, XP002082580 see the whole document	1-15
A .	US 4 577 020 A (GALL M) 18 March 1986 cited in the application see the whole document	1-15
Α	US 4 338 453 A (GALL M) 6 July 1982 cited in the application see the whole document	1-15

PCT/EP 98/04138

					01/ 11	307 04130
Patent do cited in sea		Publication date		Patent family member(s)		Publication date
WO 9602	520 A	01-02-1996	DE	442514		18-01-1996
			AU	311139		16-02-1996
			BG	10111		30-04-1998
			BR	950829		30-12-1997
			CA	219524		01-02-1996
			CN	115291		25-06-1997
			CZ	970009		13-08-1997
		·	EP	0.77260		14-05-1997
			FI	97014		14-01-1997
			HU	7712		02-03-1998
			JP	1050291		17-03-1998
			NO	97016		14-03-1997
			SI	952008	3 A	31-10-1997
WO 9725	324 A	17-07-1997	DE	1960093	4 A	17-07-1997
			AU	144079	7 A	01-08-1997
			HR	97002	1 A	30-04-1998
			NO	98318	7 A	09-09-1998
US 4577	020 A	18-03-1986	NON	NE		
US 4338	453 A	06-07-1982	US	440804	 9 A	04-10-1983
			US	440438		13-09-1983
			ÜS	440438		13-09-1983

iternationales Aktenzeichen PCT/EP 98/04138 KLASSIFIZIERUNG DES ANMELDUNGSGEGENSTANDES PK 6 C07D249/12 C07D249/08 C07D401/14 C07D403/12 C07D401/12 IPK 6 C07D413/14 C07D403/14 C07D405/14 C07D409/14 C07D417/14 A61K31/33 A61K31/41 Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK **B. RECHERCHIERTE GEBIETE** Recherchierter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole) C07D A61K IPK 6 Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe) C. ALS WESENTLICH ANGESEHENE UNTERLAGEN Betr. Anspruch Nr. Kategorie Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der In Betracht kommenden Teile X WO 96 02520 A (BASF AKTIENGESELLSCHAFT) 1 - 151. Februar 1996 in der Anmeldung erwähnt siehe das ganze Dokument BROWNE E J: "N-Unsubstituted 15 X 1,2,4-triazole-3-aldehydes" TETRAHEDRON LETTERS, Nr. 12, März 1970, Seiten 943-4, XP002082579 siehe das ganze Dokument X Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu Siehe Anhang Patentfamilie entnehmen Spätere Veröffentlichung, die nach deminternationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Besondere Kategorien von angegebenen Veröffentlichungen "A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden "E" älteres Dokument, das jedoch erst am oder nach dem internationalen Theorie angegeben ist Anmeldedatum veröffentlicht worden ist Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden "L" Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden "y Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet soll oder die aus einemanderen besonderen Grund angegeben ist (wie ausgeführt) werden, wenn die Veröffentlichung miteiner oder mehreren anderen "O" Veröffentlichung, die sich auf eine mündliche Offenbarung, Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann nahellegend ist eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach "&" Veröffentlichung, die Mitglied derselben Patentfamilie ist dem beanspruchten Prioritätsdatum veröffentlicht worden ist Datum des Abschlusses der internationalen Recherche Absendedatum des internationalen Recherchenberichts 29. Oktober 1998 11/11/1998

Bevollmächtloter Bediensteter

Allard, M

Formblatt PCT/ISA/210 (Blatt 2) (Juli 1992)

1

Name und Postanschrift der Internationalen Recherchenbehörde

Europäisches Patentamt, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016

C.(Fortsetz	ung) ALS WESENTLICH ANGESEHENE UNTERLAGEN	
Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
X	DATABASE CROSSFIRE Beilstein Informationssysteme GmbH, Frankfurt DE XP002082581 siehe BRN 1105514 & AUST. J. CHEM., Bd. 24, 1971, Seiten 393-403,	15
X	DATABASE CROSSFIRE Beilstein Informationssysteme GmbH, Frankfurt DE XP002082582 siehe BRN 1112352 & AUST. J. CHEM., Bd. 26, 1973, Seite 1809, 1811, 1813	15
P,X	WO 97 25324 A (BASF AKTIENGESELLSCHAFT) 17. Juli 1997 in der Anmeldung erwähnt siehe das ganze Dokument	1-15
Α	CZARNOCKA-JANOWICZ A ET AL: "Synthesis and pharmacological activity of 5-substituted-s-triazole-3-thiols" DIE PHARMAZIE, Bd. 46, Nr. 2, 1991, Seiten 109-112, XP002082580 siehe das ganze Dokument	1-15
Α	US 4 577 020 A (GALL M) 18. März 1986 in der Anmeldung erwähnt siehe das ganze Dokument	1-15
A	US 4 338 453 A (GALL M) 6. Juli 1982 in der Anmeldung erwähnt siehe das ganze Dokument	1-15

iternationales Aktenzeichen

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

PCT/EP 98/04138

Im Recherchenberich geführtes Patentdokur	-	Datum der Veröffentlichung		itglied(er) der Patentfamilie	Datum der Veröffentlichung
WO 9602520	Α	01-02-1996	DE	4425144 A	18-01-1996
			AU	3111395 A	16-02-1996
			BG	101113 A	30-04-1998
			BR	9508294 A	30-12-1997
			CA	2195243 A	01-02-1996
			CN	1152919 A	25-06-1997
			CZ	9700097 A	13-08-1997
			EP	0772604 A	14-05-1997
			FI	970147 A	14-01-1997
			HU	77128 A	02-03-1998
			JP	10502914 T	17-03-1998
			NO	970161 A	14-03-1997
			SI	9520083 A	31-10-1997
WO 9725324	A	17-07-1997	DE	19600934 A	17-07-1997
			AU	1440797 A	01-08-1997
			HR	970021 A	30-04-1998
			NO	983187 A	09-09-1998
US 4577020	Α	18-03-1986	KEII	VE	
US 4338453	 А	06-07-1982	US	4408049 A	04-10-1983
		: - -	ÜS	4404387 A	13-09-1983
			ÜS	4404382 A	13-09-1983

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.