Lembar Jawaban Kalkulasi Neural Network

Pada lembar jawaban ini, kamu dapat menuliskan cara mengkalkulasikan nilai-nilai yang diminta pada arsitektur neural network sesuai soal, ya, semangat!

Pertama, masukkan dulu nilai initial value dan randomnya ya ...

Initial Value

X 1	X 2	Х3	α	Threshold	Y _{d,6}
0,7	0,8	0,9	0,1	-1	0

Initial Random

W ₁₄	W ₁₅	W ₂₄	W ₂₅	W ₃₄	W ₃₅	W ₄₆	W ₅₆	θ ₄	0 ₅	Θ_6
0,5	0,6	0,3	1,1	-1	0,1	-1,1	-0,7	0,2	0,3	0,4

Jika sudah selesai, kita akan masuk ke langkah-langkah kalkulasi, sebagai berikut:

Forward Pass

Forward Pass merupakan hasil dari langkah 1 pada proses kalkulasi di challenge deck. Oleh karena itu kamu tuliskan langkah kalkulasi yang kamu lakukan untuk mencari nilai-nilai di bawah ini, ya

<u>Langkah 1: Menghitung output Neuron 4 (y_4), Neuron 5 (y_5), Neuron 6 (y_6), dan Error menggunakan sigmoid function</u>

$$\begin{array}{ll} Y_4 & = \text{Sigmoid} \; (X_1 \, W_{14} + X_2 \, W_{24} + X_3 \, W_{34} - \theta_4) \\ & = \frac{1}{(1 + e^{-(0,7 \times 0,5 + 0,8 \times 0,3 + 0,9 \times (-1) - 0,2)})} \\ & = \frac{1}{(1 + e^{-(0,35 + 0,24 - 0,9 - 0,2)})} \\ & = \frac{1}{(1 + e^{-(0,35 + 0,24 - 0,9 - 0,2)})} \\ & = 0,375 \\ Y_5 & = \text{Sigmoid} \; (X_1 \, W_{15} + X_2 \, W_{25} + X_3 \, W_{35} - \theta_5) \\ & = \frac{1}{(1 + e^{-(0,7 \times 0,6 + 0,8 \times 1,1 + 0,9 \times 0,1 - 0,3)})} \\ & = \frac{1}{(1 + e^{-(0,7 \times 0,6 + 0,8 \times 1,1 + 0,9 \times 0,1 - 0,3)})} \\ & = \frac{1}{(1 + e^{-(0,42 + 0,88 + 0,09 - 0,3)})} \\ & = 0,748 \\ Y_6 & = \text{Sigmoid} \; (Y_4 \, W_{46} + Y_5 \, W_{56} - \theta_6) \\ & = \frac{1}{(1 + e^{-(0,375 \times (-1,1) + 0,748 \times (-0,7) - 0,4)})} \\ & = \frac{1}{(1 + e^{-(-0,4125 - 0.5236 - 0,4)})} \\ & = \frac{1}{(1 + e^{1,3361})} \end{array}$$

e =
$$Y_{d6} - Y_6$$

= $0 - 0,208$
= $-0,208$

Lalu isi rangkuman hasilnya di tabel ini ya ...

Y ₄	Y ₅	Y ₆	е
0,375	0,748	0,208	-0,208

Backward Pass

Sementara itu, nilai-nilai dari backward pass didapatkan dengan menjalankan langkah 2, 3, dan 4. Jangan lupa tuliskan proses dan hasil kalkulasinya pada tempat yang telah disediakan di bawah, ya

<u>Langkah 2: Hitung error gradient untuk Neuron 6 di Output Layer dan weight corrections</u>

$$δ_6$$
= $Y_6 (1 - Y_6) e$
= $0,208 \times (1 - 0,208) \times (-0,208)$
= $-0,034$

$$∇_{46}$$
= $α \times Y_4 \times δ_6$
= $0,1 \times 0,375 \times (-0,034)$
= $-0,001275$

$$∇_{56}$$
= $α \times Y_5 \times δ_6$
= $0,1 \times 0,748 \times (-0,034)$
= -0.00254

$$∇_{6}$$
= $α \times (-1) \times δ_6$
= $0,1 \times (-1) \times (-0,034)$
= $0,0034$

Lalu isi rangkuman hasilnya di tabel ini ya ...

δ_6	$ abla_{46}$	$ abla_{56}$	∇ θ 6
-0,034	-0,001275	-0.00254	0,0034

<u>Langkah 3: Hitung error gradients untuk Neuron 4 dan Neuron 5 di Middle</u> <u>Layer/Hidden Layer</u>

$$\begin{split} \delta_4 &= Y_4 \left(1 - Y_4 \right) \times \delta_6 \times W_{46} \\ &= 0,375 \times \left(1 - 0,375 \right) \times \left(-0,034 \right) \times \left(-1,1 \right) \\ &= 0,00876 \\ \delta_5 &= Y_5 \left(1 - Y_5 \right) \times \delta_6 \times W_{56} \\ &= 0,748 \times \left(1 - 0,748 \right) \times \left(-0,034 \right) \times \left(-0,7 \right) \\ &= 0,00448 \end{split}$$

Lalu isi rangkuman hasilnya di tabel ini ya ...

δ_4	δ₅		
0,00876	0,00448		

Langkah 4: Hitung weight corrections

$$\nabla w_{14} = \alpha \times X_1 \times \delta_4$$

$$= 0,1 \times 0,7 \times 0,00876$$

$$= 0,0006132$$

$$\nabla w_{24} = \alpha \times X_2 \times \delta_4$$

$$= 0,1 \times 0,8 \times 0,00876$$

$$= 0,0007008$$

$$\nabla w_{34} = \alpha \times X_3 \times \delta_4$$

$$= 0,1 \times 0,9 \times 0,00876$$

$$= 0,0007884$$

$$\nabla \theta_4 = \alpha \times (-1) \times \delta_4$$

$$= 0,1 \times (-1) \times 0,00876$$

$$= -0,000876$$

$$\nabla w_{15} = \alpha \times X_1 \times \delta_5$$

$$= 0,1 \times 0,7 \times 0,00448$$

$$= 0,0003136$$

$$\nabla w_{25} = \alpha x X_2 x \delta_5$$

$$= 0.1 \times 0.8 \times 0.00448$$

$$\nabla w_{35} = \alpha x X_3 x \delta_5$$

$$= 0.1 \times 0.9 \times 0.00448$$

$$\nabla \theta_5 = \alpha \times (-1) \times \delta_5$$

$$= 0.1 \times (-1) \times 0.00448$$

Lalu isi rangkuman hasilnya di tabel ini ya ...

$ abla \mathbf{w}_{14}$	∇w_{24}	$\nabla \mathbf{w}_{34}$	∇θ4	$ abla \mathbf{w}_{15}$	$ abla \mathbf{w}_{25}$	$ abla \mathbf{w}_{35}$	∇ θ ₅
0,0006132	0,0007008	0,0007884	-0,000876	0,0003136	0,0003584	0,0004032	-0,000448

Backward Pass

Last but not least, adalah nilai-nilai dari updated weight didapatkan dengan menjalankan langkah nomor 5. Seperti biasa, tuliskan proses dan hasil kalkulasinya pada tempat yang telah disediakan di bawah, ya

<u>Langkah 5: Hitung semua weights dan theta pada arsitektur yang telah diperbarui</u>

$$w_{14} = w_{14} + \nabla w_{14}$$

$$= 0,5 + 0,0006132$$

$$w_{15} = w_{15} + \nabla w_{15}$$

$$w_{24} = w_{24} + \nabla w_{24}$$

$$\begin{array}{lll} w_{25} & = w_{25} + \nabla w_{25} \\ & = 1,1 + 0,0003584 \\ & = 1,1003584 \\ & = 1,1003584 \\ & = w_{34} + \nabla w_{34} \\ & = -1 + 0,0007884 \\ & = -0.9992116 \\ & = w_{35} + \nabla w_{35} \\ & = 0,1 + 0,0004032 \\ & = 0,1004032 \\ & = 0,1004032 \\ & = 0,2 - 0,000876 \\ & = 0,199124 \\ & = 0,2 - 0,000448 \\ & = 0,299552 \\ & = 0,6 + \nabla \theta_6 \\ \end{array}$$

= 0.4 + 0.0034

= 0,4034

Lalu isi rangkuman hasilnya di tabel ini ya ...

W ₁₄	W ₁₅	W ₂₄	W ₂₅	W ₃₄	W ₃₅	θ_3	Θ_4	θ₅
0,50061	0,6003136	0,3007008	1,1003584	-0.999211	0,1004032	0,199124	0,299552	0,4034

Hore, kamu sudah menyelesaikan satu dari tiga proyek challenge, semoga mendapatkan hasil yang maksimal dan selamat bersenang-senang~