

Available online at www.sciencedirect.com

European Journal of Combinatorics

European Journal of Combinatorics 25 (2004) 675-683

www.elsevier.com/locate/ejc

On quotients of posets, with an application to the q-analog of the hypercube

Murali K. Sriniyasan

Department of Mathematics, Indian Institute of Technology, Bombay, Powai, Mumbai 400076, India

Received 11 April 2003; accepted 18 September 2003

Abstract

Let G be a finite group having an order preserving and rank preserving action on a finite ranked poset P. Let P/G denote the quotient poset. A well known result in algebraic Sperner theory asserts that an order raising G-linear map on V(P) (the complex vector space with P as basis) satisfying the full rank property induces an order raising linear map on V(P/G), also satisfying the full rank property. In this paper we prove a kind of converse result that has applications to Boolean algebras and their cubical and g-analogs.

For a finite ranked poset P, let L denote the Lefschetz order raising map taking an element to the sum of the elements covering it and let P_i , $0 \le i \le n$, where $n = \operatorname{rank}(P)$, denote the set of elements of rank i. We say that P is unitary Peck (respectively, unitary semi-Peck) if the map

$$L^{n-2i}: V(P_i) \to V(P_{n-i}), \qquad i < n/2$$

is bijective (respectively, injective). We show that the q-analog of the n-cube is unitary semi-Peck. © 2003 Elsevier Ltd. All rights reserved.

MSC (2000): Primary 05E25; Secondary 06A07, 06A11

Keywords: Sperner theory; Group actions; Quotients of posets; Fixed points

1. Introduction

Let P be a finite poset (we follow Engel [1] for poset terminology). A *rank function* on P is a function $r: P \to \mathbb{N}$ such that r(p) = 0 for some minimal element of P and r(q) = r(p) + 1 whenever q > p (i.e., q covers p). The number $r(P) = \max\{r(p) : p \in P\}$

E-mail address: mks@math.iitb.ac.in (M.K. Srinivasan).

is called the *rank* of P. For $0 \le i \le n$, where n = r(P), the ith level set of P is defined by $P_i = \{p \in P : r(p) = i\}$ and the number $W_i = |P_i|$ is called the ith Whitney number. The sequence $R(P) = (W_0, W_1, \ldots, W_n)$ is called the *rank sequence* of P. We say that P is *rank symmetric* if $W_i = W_{n-i}$, $0 \le i \le n$, and *rank unimodal* if $W_j \ge \min\{W_i, W_k\}$, $0 \le i \le j \le k \le n$. We consider finite ranked posets only.

A ranked poset P is Sperner if no antichain (= set of pairwise incomparable elements) of P has cardinality greater than the largest Whitney number. More generally, P is k-Sperner if no union of k antichains has cardinality greater than the sum of the k largest Whitney numbers, and is strongly Sperner if it is k-Sperner for $1 \le k \le r(P) + 1$. We say that P is a Peck poset if it is rank symmetric, rank unimodal, and strongly Sperner.

In Chapter 6 of [1], Engel presents three algebraic techniques for showing that a ranked poset is strongly Sperner: product theorems, finite group actions, and representations of the Lie algebra $\mathfrak{sl}(2,\mathbb{C})$. This paper deals with finite group actions. Let us explain this in more detail.

For a finite set S, let V(S) denote the (complex) vector space with S as basis. If P is a rank-n poset, then, for $0 \le i \le n$, $V(P_i)$ denotes the subspace of V(P) generated by the ith level set P_i and we set $V(P_{n+1}) = \{0\}$. A raising linear map on V(P) is a linear map $f: V(P) \to V(P)$ satisfying $f(V(P_i)) \subseteq V(P_{i+1})$, $0 \le i \le n$. An order raising linear map on V(P) is a raising linear map $f: V(P) \to V(P)$ such that, for $p \in P$ with F(P) = 10, we have F(P) = 11 is defined by F(P) = 12 if F(P) = 13 if F(P) = 14 if F(P) = 15 if F(P) = 15 if F(P) = 16 if F(P) = 17 is defined by F(P) = 18 if F(P) = 19 if F(P) = 19 if F(P) = 19 if F(P) = 19 is defined by F(P) = 19 if F(P) = 19 is defined by F(P) = 19 if F(P) = 19

A chain $p_1 < p_2 < \cdots < p_t$ in a ranked poset is *saturated* if p_i covers p_{i-1} for $2 \le i \le t$. Griggs [2] proved that a ranked poset P is rank unimodal and strongly Sperner if and only if, for all $0 \le i \le j \le r(P)$, there exist $\min\{W_i, W_j\}$ pairwise disjoint saturated chains in P starting at some element in the ith level and ending at some element in the jth level. Using this characterization, Stanley [10] showed that a ranked poset P is rank unimodal and strongly Sperner if and only if there exists an order raising linear map on V(P) having full rank. It follows that a ranked poset P, with r(P) = n, is Peck if and only if there is an order raising linear map $f: V(P) \to V(P)$ such that, for $0 \le i < n/2$, the linear map $f^{n-2i}: V(P_i) \to V(P_{n-i})$ is bijective (to see this, it is enough to observe that $f_{ij} = f_{kj} \circ f_{ik}$, for $0 \le i \le k \le j \le n$). We say that P is unitary Peck if this property holds for the Lefschetz order raising map, i.e., $L^{n-2i}: V(P_i) \to V(P_{n-i})$, $0 \le i < n/2$, is bijective.

A ranked poset P, with r(P) = n, is said to be *semi-Peck* (respectively *unitary semi-Peck*) if, for some order raising linear map $f: V(P) \to V(P)$ (respectively for the Lefschetz order raising map $L: V(P) \to V(P)$), the maps $f^{n-2i}: V(P_i) \to V(P_{n-i})$ (respectively $L^{n-2i}: V(P_i) \to V(P_{n-i})$), $0 \le i < n/2$, are injective.

Group actions are a tool for showing that certain order raising linear maps have full rank. Let G be a finite group having an order preserving and rank preserving action on a finite ranked poset P, i.e., $x \le y$ implies $gx \le gy$ and r(x) = r(gx), for all $x, y \in P$, $g \in G$. The *quotient of* P *under* G, denoted P/G, is the ranked poset whose underlying set is the

set of all orbits of the action of G on P and whose order relation is given by: $O_1 \le O_2$ in P/G if and only if, for some $x \in O_1$, $y \in O_2$, we have $x \le y$ in P. It is easily seen that this makes P/G into a ranked poset with rank function given by $r_{P/G}(O) = r(x)$, $x \in O$.

A linear map $f: V(P) \to V(P)$ is said to be G-linear if f commutes with the action of G, i.e., f(gv) = gf(v), $g \in G$, $v \in V(P)$. Two integer sequences (a_0, a_1, \ldots, a_n) and (b_0, b_1, \ldots, b_n) of the same length are said to be of the same type provided, for all i, j, we have $a_i \leq a_j$ if and only if $b_i \leq b_j$. The following theorem is due to Harper [3], Pouzet and Rosenberg [8], and Stanley [11] (for an exposition see Theorem 6.1.9 in Chapter 6 of Engel [1]).

Theorem 1.1. Let G be a finite group having an order preserving and rank preserving action on a finite ranked poset P. Let f be an order raising G-linear map on V(P) having full rank. Then

- (i) R(P) and R(P/G) have the same type.
- (ii) There is an order raising linear map f/G on V(P/G) having full rank.

In the case of Peck/semi-Peck posets, Theorem 1.1 simplifies to the following result.

Theorem 1.2. Let G be a finite group having an order preserving and rank preserving action on a finite ranked poset P of rank n. Let f be an order raising G-linear map on V(P). Suppose that, for $0 \le i < n/2$, the map $f^{n-2i}: V(P_i) \to V(P_{n-i})$ is injective (respectively bijective).

Then there exists an order raising linear map f/G on V(P/G) such that, for $0 \le i < n/2$, the map $(f/G)^{n-2i} : V((P/G)_i) \to V((P/G)_{n-i})$ is injective (respectively bijective).

Since the Lefschetz order raising map is G-linear, it follows that the quotient of a unitary Peck poset (respectively unitary semi-Peck poset) is Peck (respectively semi-Peck) (see [11] for an application of this result to the poset of partitions contained in a rectangle). In Theorem 2.3 of Section 2 we give a kind of converse to Theorem 1.2 (a similar converse can be stated for Theorem 1.1, though its formulation is more cumbersome) and in Section 3 we use this result to show that the g-analog of the n-cube is unitary semi-Peck.

2. Group actions

Let G be a finite group acting on the finite sets S and T. Denote the subspace of V(S) consisting of vectors fixed by all elements of G by $F(G, S) = \{v \in V(S) : gv = v \text{ for all } g \in G\}$. Similarly define F(G, T).

Lemma 2.1. Let $f: V(S) \to V(T)$ be G-linear. Then

- (i) $f(F(G, S)) \subseteq F(G, T)$.
- (ii) $f: V(S) \to V(T)$ surjective implies $f: F(G, S) \to F(G, T)$ surjective.
- (iii) $f: V(S) \to V(T)$ injective implies $f: F(G, S) \to F(G, T)$ injective.

Proof. The action of G on S and T gives rise to permutation representations of G on V(S) and V(T) respectively. The subspaces F(G,S) and F(G,T) are the isotypical components

(in V(S) and V(T) respectively) of the trivial representation of G. The result now follows from Schur's lemma. \square

Lemma 2.2. Let $f: V(S) \rightarrow V(T)$ be G-linear.

- (i) Suppose that, for each $t \in T$, we can find a subgroup $G_t \subseteq G$ fixing t (i.e., gt = t for all $g \in G_t$) such that $f : F(G_t, S) \to F(G_t, T)$ is surjective. Then $f : V(S) \to V(T)$ is surjective.
- (ii) Suppose that, for each $s \in S$, we can find a subgroup $G_s \subseteq G$ fixing s such that $f: F(G_s, S) \to F(G_s, T)$ is injective. Then $f: V(S) \to V(T)$ is injective.
- **Proof.** (i) Let $t \in T$. By assumption $t \in F(G_t, T)$ and there exists $v \in F(G_t, S)$ such that f(v) = t. It follows that f(V(S)) = V(T).
 - (ii) This part can be deduced from part(i) using dual spaces and dual representations. We can also give a direct proof as follows.

Let $f(\sum_{y \in S} c_y y) = 0$, for some $c_y \in \mathbb{C}$. We need to show that $c_y = 0$ for all $y \in S$. Fix $s \in S$. Let $S = O_1 \uplus O_2 \uplus \cdots \uplus O_t$ (disjoint union) be the decomposition of S into orbits under the action of G_s on S. Without loss of generality we can assume that $O_1 = \{s\}$. For $2 \le j \le t$, let $w_j = \sum_{y \in O_j} y$. Then a standard fact on group actions says that s, w_2, \ldots, w_t form a basis for $F(G_s, S)$. Since $f(\sum_{y \in S} c_y y) = 0$ and f is G-linear, we have

$$0 = \left(\sum_{g \in G_s} g\right) f\left(\sum_{y \in S} c_y y\right) = f\left(\left(\sum_{g \in G_s} g\right) \left(\sum_{y \in S} c_y y\right)\right)$$
$$= f(|G_s|c_s s + b_2 w_2 + \dots + b_t w_t),$$

for some $b_2, \ldots, b_t \in \mathbb{C}$. Since f, restricted to $F(G_s, S)$, is injective we have $c_s = 0$.

Let G be a finite group having an order preserving and rank preserving action on a finite ranked poset P. Let $f:V(P)\to V(P)$ be an order raising G-linear map. The space V(P/G) can be identified with F(G,P) (an orbit O going to the vector $\sum_{p\in O}p$) and thus, by Lemma 2.1, there is a well defined (order raising) linear map $f/G:V(P/G)\to V(P/G)$, called the *induced map*. An application of Lemma 2.2 now gives the following result.

Theorem 2.3. Let G be a finite group having an order and rank preserving action on a finite ranked poset P of rank n. Let f be an order raising G-linear map on V(P). Suppose that, for every $0 \le i < n/2$ and every $p \in P_i$, we can find a subgroup $G_p \subseteq G$ fixing p such that $(f/G_p)^{n-2i}: V((P/G_p)_i) \to V((P/G_p)_{n-i})$ is injective. Then $f^{n-2i}: V(P_i) \to V(P_{n-i})$ is injective. \square

The following result provides a triangular criterion for applying Theorem 2.3 when f is the Lefschetz order raising map.

Theorem 2.4. Let G be a finite group having an order and rank preserving action on a finite ranked poset P of rank n. Suppose that, for every $0 \le i < n/2$ and every $p \in P_i$, we can find a subgroup $G_p \subseteq G$ fixing p, a map $\chi_p : (P/G_p)_i \to (P/G_p)_{n-i}$ and a linear order $<_p$ on $(P/G_p)_i$ such that the following three conditions hold:

- (i) χ_p is injective.
- (ii) $O < \chi_p(O)$, for every $O \in (P/G_p)_i$.
- (iii) $N, O \in (P/G_p)_i$ and $N <_p O$ implies $O \nleq \chi_p(N)$.

Then $L^{n-2i}: V(P_i) \to V(P_{n-i}), 0 < i < n/2$ is injective and P is unitary semi-Peck.

Proof. Let $0 \le i < n/2$ and fix $p \in P_i$. Put $k = |(P/G_p)_i|$ and $l = |(P/G_p)_{n-i}|$. Let M be the $k \times l$ matrix, with rows indexed by $(P/G_p)_i$, with columns indexed by $(P/G_p)_{n-i}$, and with row O (where $O \in (P/G_p)_i$) given by $(L/G_p)^{n-2i}(O)$. Assume that the rows are listed in the order given by $<_p$. Assume that the first k columns are indexed, in order, by $\chi_p(O)$, $O \in (P/G_p)_i$ (this is possible, since χ_p is injective). Let N denote the $k \times k$ submatrix of M given by the first k columns. Conditions (ii) and (iii) in the statement imply that N is upper triangular with nonzero diagonals. It follows that N, and hence M, has full row rank. The conclusion now follows from Theorem 2.3. \square

3. q-Analog of the hypercube

The main examples to which the theory of Section 2 applies are the Boolean algebras and their cubical and q-analogs. The case of subsets and subspaces has been considered by Kantor [5], so we will concentrate on cubical analogs. Let B_n denote the poset of all subsets of $[n] = \{1, 2, ..., n\}$, ordered by inclusion. The q-analog of B_n , denoted $B_n(q)$, is the poset of subspaces (under inclusion) of an n-dimensional vector space over \mathbb{F}_q , the finite field with q elements. B_n is ranked by cardinality and $B_n(q)$ is ranked by dimension.

We now define the cubical analog of B_n . Let $H_n = \{(x_1, \ldots, x_n) : x_i \in \{0, 1\} \text{ for all } i\}$ denote the discrete hypercube. For $I \subseteq [n]$ and $\alpha : I \to \{0, 1\}$ (when I is empty we take α to be the unique function with empty domain and co-domain $\{0, 1\}$) define

$$F(I, \alpha) = \{(x_1, \dots, x_n) \in H_n : x_i = \alpha(i) \text{ for } i \in I\}.$$

A face of H_n is a subset of H_n of the form $F(I, \alpha)$, for some $I \subseteq [n]$ and $\alpha : I \to \{0, 1\}$. The cubical poset C_n is defined as the set of all faces of H_n , ordered by reverse inclusion, i.e., for faces S_1 , S_2 of H_n , we have $S_1 \leq S_2$ if and only if $S_2 \subseteq S_1$. If $S_1 = F(I, \alpha)$ and $S_2 = F(I, \beta)$ are faces then we have

$$S_1 \le S_2$$
 if and only if $I \subseteq J$ and $\beta(i) = \alpha(i)$ for all $i \in I$. (1)

Clearly, C_n is a rank-n poset with rank function given by $r(F(I, \alpha)) = |I|$.

The *q*-analog of C_n was defined by Harper [4]. First we derive an alternate description of C_n . An interval in B_n is a subset of B_n of the form $[X, Y] = \{Z \subseteq [n] : X \subseteq Z \subseteq Y\}$, for some $X, Y \subseteq [n], X \subseteq Y$. Int (B_n) denotes the poset of all intervals in B_n , ordered by reverse inclusion, i.e., if [X, Y] and $[X_1, Y_1]$ are intervals then

$$[X, Y] \le [X_1, Y_1]$$
 if and only if $X \subseteq X_1 \subseteq Y_1 \subseteq Y$. (2)

It is easily seen that $Int(B_n)$ is a rank-n poset with rank function given by r([X, Y]) = n - (|Y| - |X|).

Define a map $\Gamma: C_n \to \operatorname{Int}(B_n)$ by $\Gamma(F(I, \alpha)) = [X, Y]$, where $X = \{i \in I : \alpha(i) = 1\}$ and $Y = X \cup ([n] - I)$. Using (1) and (2) we see that Γ is a rank preserving order isomorphism.

We now define $C_n(q)$, the q-analog of C_n , to be $\operatorname{Int}(B_n(q))$, the poset of intervals in $B_n(q)$ ordered by reverse inclusion. In more detail, let $S_n(q)$ denote an n-dimensional vector space over \mathbb{F}_q and let $B_n(q)$ denote the poset of subspaces of $S_n(q)$ (under inclusion). Elements of $C_n(q)$ are intervals in $B_n(q)$ of the form $[U, W] = \{N \in B_n(q) : U \subseteq N \subseteq W\}$, for subspaces U, W of $S_n(q), U \subseteq W$. If [U, W] and $[U_1, W_1]$ are intervals then

$$[U, W] \leq [U_1, W_1]$$
 if and only if $U \subseteq U_1 \subseteq W_1 \subseteq W$.

It is easily seen that $C_n(q)$ is a rank-n poset with rank function given by

$$r([U, W]) = n - (\dim W - \dim U) = \dim U + \operatorname{codim} W.$$

Harper [4] proved that $C_n(q)$ is a normal poset (for the definition see [1]) with logconcave Whitney numbers. In particular, $C_n(q)$ is rank unimodal and strongly Sperner. It follows that there is an order-raising linear map on $V(C_n(q))$ having the full rank property. The rank-1 vs. rank-n incidence matrix of C_n (i.e., the $2n \times 2^n$ facet-vertex incidence matrix of the hypercube) is not of full rank and thus the Lefschetz order-raising map of C_n (and similarly, $C_n(q)$) is not of full rank. We show below that $C_n(q)$ is unitary semi-Peck (a proof that C_n is unitary semi-Peck is given in [1] using the product theorem).

Let G denote the (finite) group (under composition) of all nonsingular \mathbb{F}_q -linear transformations of $S_n(q)$. The group G acts on $C_n(q)$ by

$$g \cdot [X, Y] = [g(X), g(Y)], \qquad g \in G, [X, Y] \in C_n(q).$$

Clearly, this action is rank and order preserving.

For the rest of this section fix m < n/2 and fix $[X, Y] \in C_n(q)$ with $r([X, Y]) = \dim X + \operatorname{codim} Y = m$.

Given $[X_1, Y_1] \in C_n(q)$, define the *relative position of* $[X_1, Y_1]$ *with respect to* [X, Y] to be the 4-tuple

$$d([X_1, Y_1]) = (\dim X \cap X_1, \dim Y \vee X_1, \operatorname{codim} X \cap Y_1, \operatorname{codim} Y \vee Y_1).$$

We put the *lexical order* on elements of \mathbb{N}^4 , i.e., $s = (s_1, s_2, s_3, s_4) <_l t = (t_1, t_2, t_3, t_4)$ if, for some i = 0, 1, 2, 3, we have $s_1 = t_1, \ldots, s_i = t_i$, and $s_{i+1} < t_{i+1}$. We write $s \le_l t$ if s = t or $s <_l t$.

Note that $[X_1, Y_1] < [X_2, Y_2]$, i.e., $X_1 \subset X_2 \subset Y_2 \subset Y_1$ implies

$$d([X_1, Y_1]) <_l d([X_2, Y_2]). \tag{3}$$

Let $H = \{g \in G : g(X) = X, g(Y) = Y\}$ denote the subgroup of all elements of G fixing [X, Y]. The orbits of $C_n(q)$, under the action of H, will be called H-orbits.

Lemma 3.1. Let $[X_1, Y_1], [X_2, Y_2] \in C_n(q)$. Then they are in the same H-orbit if and only if

- (i) dim $X_1 = \dim X_2$ and codim $Y_1 = \operatorname{codim} Y_2$.
- (ii) $d([X_1, Y_1]) = d([X_2, Y_2]).$

Proof. (Only if). Let $X_2 = g(X_1)$ and $Y_2 = g(Y_1)$ for some $g \in H$. Clearly, condition (i) in the statement of the lemma holds. Now, since g is nonsingular and fixes X, we

have $g(X \cap X_1) = g(X) \cap g(X_1) = X \cap X_2$ and hence $\dim(X \cap X_1) = \dim(X \cap X_2)$. Similarly, we can show the other three equalities and conclude $d([X_1, Y_1]) = d([X_2, Y_2])$. (if) Consider the following two chains of eight subspaces of $S_n(g)$:

$$X_1 \cap X \subseteq Y_1 \cap X \subseteq X \subseteq X \vee (Y \cap X_1) \subseteq X \vee (Y \cap Y_1) \subseteq Y \subseteq Y \vee X_1 \subseteq Y \vee Y_1 \tag{4}$$

$$X_2 \cap X \subseteq Y_2 \cap X \subseteq X \subseteq X \vee (Y \cap X_2) \subseteq X \vee (Y \cap Y_2) \subseteq Y \subseteq Y \vee X_2 \subseteq Y \vee Y_2. \tag{5}$$

From the hypothesis the dimension of the first three and last three subspaces of chain (4) are equal to the dimensions of the corresponding subspaces in chain (5). Now,

$$\dim X_1 = \dim Y \cap X_1 + \dim Y \vee X_1 - \dim Y = \dim X \cap X_1 + \dim X \vee (Y \cap X_1) - \dim X + \dim Y \vee X_1 - \dim Y.$$
 (6)

We can write down similar formulas for the dimensions of X_2 , Y_1 and Y_2 . It follows from the hypothesis that the dimensions of the fourth and fifth subspaces are also the same in chains (4) and (5).

Choose a basis $\{u_{ij}: 1 \le i \le 9, 1 \le j \le k_i\}$ of $S_n(q)$ with the following property (it is easily seen that such a basis exists):

- (a) $\{u_{1j} : 1 \le j \le k_1\}$ is a basis of $X_1 \cap X$.
- (b) $\{u_{ij}: 1 \le i \le 2, 1 \le j \le k_i\}$ is a basis of $Y_1 \cap X$.
- (c) $\{u_{ij} : 1 \le i \le 3, 1 \le j \le k_i\}$ is a basis of X.
- (d) $\{u_{ij}: 1 \le i \le 4, 1 \le j \le k_i\}$ is a basis of $X \vee (Y \cap X_1)$ and $u_{4j} \in Y \cap X_1$, $1 \le j \le k_4$.
- (e) $\{u_{ij}: 1 \le i \le 5, 1 \le j \le k_i\}$ is a basis of $X \lor (Y \cap Y_1)$ and $u_{5j} \in Y \cap Y_1, 1 \le j \le k_5$.
- (f) $\{u_{ij} : 1 \le i \le 6, 1 \le j \le k_i\}$ is a basis of Y.
- (g) $\{u_{ij}: 1 \le i \le 7, 1 \le j \le k_i\}$ is a basis of $Y \vee X_1$ and $u_{7i} \in X_1, 1 \le j \le k_7$.
- (h) $\{u_{ij}: 1 \le i \le 8, 1 \le j \le k_i\}$ is a basis of $Y \vee Y_1$ and $u_{8j} \in Y_1, 1 \le j \le k_8$.

It follows from (6) that

$$\{u_{ij}: i \in \{1, 4, 7\}, \ 1 \le j \le k_i\} \text{ is a basis of } X_1.$$
 (7)

Similarly we can show that

$$\{u_{ij}: i \in \{1, 2, 4, 5, 7, 8\}, 1 \le j \le k_i\}$$
 is a basis of Y_1 .

Now choose a basis $\{v_{ij}: 1 \le i \le 9, 1 \le j \le k_i\}$ of $S_n(q)$ satisfying properties (a) to (h) above, with u_{ij} replaced with v_{ij} , X_1 replaced by X_2 , and Y_1 replaced by Y_2 (this is possible since the dimension sequences of the chains (4) and (5) are identical).

It is now clear that the nonsingular linear transformation $g \in G$ taking u_{ij} to v_{ij} belongs to H and satisfies $g \cdot [X_1, Y_1] = [X_2, Y_2]$. \square

For $[A, B] \in C_n(q)$, the orbit under the H-action containing [A, B] will be denoted $\overline{[A, B]}$. Note that whenever $\overline{[A, B]} = \overline{[C, D]}$ we have dim $A = \dim C$, codim $B = \operatorname{codim} D$, and d([A, B]) = d([C, D]). This will be used tacitly in what follows.

Lemma 3.2. Consider an H-orbit $\overline{[X_1, Y_1]}$ with $r([X_1, Y_1]) = m$. Then there is an unique H-orbit $\overline{[X_2, Y_2]}$ satisfying

- (i) $r([X_2, Y_2]) = n m$.
- (ii) $\overline{[X_1, Y_1]} < \overline{[X_2, Y_2]}$.

- (iii) $\operatorname{codim} Y_1 = \operatorname{codim} Y_2$.
- (iv) $d([X_1, Y_1]) = d([X_2, Y_2]).$

The orbit $\overline{[X_2,Y_2]}$ is denoted $\phi(\overline{[X_1,Y_1]})$ and we have defined a function $\phi:(C_n(q)/H)_m\to (C_n(q)/H)_{n-m}$.

Proof. (Uniqueness). Let $\overline{[X_2, Y_2]}$ and $\overline{[X_3, Y_3]}$ satisfy the conditions (i) to (iv) of the lemma. From (i) and (iii) we get dim $X_2 = \dim X_3$ and codim $Y_2 = \operatorname{codim} Y_3$. Since $d([X_2, Y_2]) = d([X_3, Y_3])$, uniqueness now follows from Lemma 3.1.

(Existence). Consider the chain of subspaces (4). From (6) we have

$$\dim X \vee (Y \cap X_1) = \dim X_1 - \dim X \cap X_1 + \dim X + \dim Y - \dim Y \vee X_1.$$

Similarly

$$\dim X \vee (Y \cap Y_1) = \dim Y_1 - \dim X \cap Y_1 + \dim X + \dim Y - \dim Y \vee Y_1.$$

Subtracting we get

$$\dim X \vee (Y \cap Y_1) - \dim X \vee (Y \cap X_1)$$

$$= \dim Y_1 - \dim X_1 + \dim X \cap X_1 - \dim X \cap Y_1 + \dim Y \vee X_1 - \dim Y \vee Y_1$$

$$= n - m + \dim X \cap X_1 - \dim X \cap Y_1 + \dim Y \vee X_1 - \dim Y \vee Y_1$$

$$\geq n - m + 0 - \dim X + \dim Y - n$$

$$= n - 2m.$$
(8)

Now choose a basis $\{u_{ij}: 1 \le i \le 9, 1 \le j \le k_i\}$ of $S_n(q)$ satisfying properties (a) to (h) stated in the proof of Lemma 3.1. By (8) we have $k_5 \ge n - 2m$. Now put $Y_2 = Y_1$ and $X_2 = \text{Span } (X_1 \cup \{u_{5j}: 1 \le j \le n - 2m\})$.

By (7) we have dim $X_2 = \dim X_1 + n - 2m$ and thus $r([X_2, Y_2]) = m + n - 2m = n - m$. Clearly $[X_1, Y_1] \le [X_2, Y_2]$. We are now left to check that $d([X_1, Y_1]) = d([X_2, Y_2])$.

Let $v \in X \cap X_2$. Since $\{u_{ij} : 1 \le i \le 3, 1 \le j \le k_i\}$ is a basis of X and $\{u_{ij} : i \in \{1, 4, 7\}, 1 \le j \le k_i\} \cup \{u_{5j} : 1 \le j \le n - 2m\}$ is a basis of X_2 , we must have $v \in \text{Span } \{u_{1j} : 1 \le j \le k_1\} = X_1 \cap X$. It follows that $X_1 \cap X = X_2 \cap X$. Since $\{u_{5j} : 1 \le j \le k_5\} \subseteq Y$, it follows that $Y \vee X_1 = Y \vee X_2$. Since $Y_1 = Y_2$, we now have $d([X_1, Y_1]) = d([X_2, Y_2])$. \square

Lemma 3.3. (i) ϕ is injective.

(ii) Let
$$\overline{[X_1, Y_1]}$$
, $\overline{[X_2, Y_2]} \in (C_n(q)/H)_m$. Then

$$d(\overline{[X_1,Y_1]}) <_l d(\overline{[X_2,Y_2]}) \text{ implies } \overline{[X_2,Y_2]} \not< \phi(\overline{[X_1,Y_1]}).$$

- **Proof.** (i) Let $\overline{[X_3, Y_3]} = \phi(\overline{[X_1, Y_1]}) = \phi(\overline{[X_2, Y_2]})$. By Lemma 3.2 we have $\dim Y_3 = \dim Y_1 = \dim Y_2$, $\dim X_3 = \dim X_1 + n 2m = \dim X_2 + n 2m$, and $d([X_3, Y_3]) = d([X_1, Y_1]) = d([X_2, Y_2])$. It now follows from Lemma 3.1 that $\overline{[X_1, Y_1]} = \overline{[X_2, Y_2]}$.
 - (ii) Assume that $\overline{[X_2, Y_2]} < \phi(\overline{[X_1, Y_1]})$. Then we have $d([X_2, Y_2]) \leq_l d([X_1, Y_1])$, by (3) and Lemma 3.1. This is a contradiction. Thus $\overline{[X_2, Y_2]} \not< \phi(\overline{[X_1, Y_1]})$. \square

Lemma 3.3 and condition (ii) of Lemma 3.2 now show that the map ϕ satisfies the hypothesis of Theorem 2.4. We thus have the following result.

Theorem 3.4. $C_n(q)$ is unitary semi-Peck.

Finally, we would like to state the following problem: Consider the rank-n lattice $\Pi(n+1)$ of partitions of [n+1], ordered by reverse refinement. In Section 6.3 of [1], Engel conjectures (at the bottom of p. 253) that every geometric lattice is semi-Peck. For partition lattices this was proved in Loeb et al. [7] and [9] by constructing a covering of the bottom half of $\Pi(n+1)$ by symmetric chains. We can ask whether partition lattices are unitary semi-Peck. In an important paper, Kung [6] shows that $L^{j-i}: V(\Pi(n+1)_i) \to V(\Pi(n+1)_j), i \le j \le \lceil n/2 \rceil$, is injective. We conjecture that partition lattices are unitary semi-Peck. The symmetric group S_{n+1} acts on $\Pi(n+1)$ by substitution and therefore Theorem 2.3 is applicable in principle. We do not know whether a quotient argument can be used in some way to prove that partition lattices are unitary semi-Peck.

References

- [1] K. Engel, Sperner Theory, Cambridge University Press, Cambridge, 1997.
- [2] J.R. Griggs, On chains and Sperner k-families in ranked posets, J. Combin. Theory Ser. A 28 (1980) 156–168.
- [3] L.H. Harper, Morphisms for the strong Sperner property of Stanley and Griggs, Linear and Multilinear Algebra 16 (1984) 323–337.
- [4] L.H. Harper, A Sperner theorem for the interval order of a projective geometry, J. Combin. Theory Ser. A 28 (1980) 82–88.
- [5] W.M. Kantor, On incidence matrices of finite projective and affine spaces, Math. Z. 124 (1972) 315-318.
- [6] J.P.S. Kung, The radon transforms of a combinatorial geometry II. Partition lattices, Adv. Math. 101 (1993) 114–132.
- [7] D. Loeb, E. Damiani, O. d'Antona, Decompositions of B_n and Π_n using symmetric chains, J. Combin. Theory Ser. A 65 (1994) 151–157.
- [8] M. Pouzet, I.G. Rosenberg, Sperner properties for groups and relations, European J. Combin. 7 (1986) 349–370.
- [9] M.K. Srinivasan, Order-matchings in the partition lattice, J. Combin. Theory Ser. A 72 (1995) 315-317.
- [10] R.P. Stanley, Weyl groups, the hard Lefschetz theorem, and the Sperner property, SIAM J. Algebraic Discrete Methods 1 (1980) 168–184.
- [11] R.P. Stanley, Quotients of Peck posets, Order 1 (1984) 29-34.