Отчет по лабораторной работе № 12

Архитектура компьютера, раздел Операционные системы

Кусоро Майова Джеймс

Содержание

Цель	
Задание	
Теоретическое введение	
Выполнение лабораторной работы	
Выводы	
••	
Ответы на контрольные вопросы	
Список литературы	12

Цель

Изучить основы программирования в оболочке ОС UNIX/Linux. Научиться писать небольшие командные файлы.

Задание

- 1. Написать скрипт, который при запуске будет делать резервную копию самого себя (то есть файла, в котором содержится его исходный код) в другую директорию backup в вашем домашнем каталоге. При этом файл должен архивироваться одним из архиваторов на выбор zip, bzip2 или tar. Способ использования команд архивации необходимо узнать, изучив справку.
- 2. Написать пример командного файла, обрабатывающего любое произвольное число аргументов командной строки, в том числе превышающее десять. Например, скрипт может последовательно распечатывать значения всех переданных аргументов.
- 3. Написать командный файл аналог команды ls (без использования самой этой ко- манды и команды dir). Требуется, чтобы он выдавал информацию о нужном каталоге и выводил информацию о возможностях доступа к файлам этого каталога.

4. Написать командный файл, который получает в качестве аргумента командной строки формат файла (.txt, .doc, .jpg, .pdf и т.д.) и вычисляет количество таких файлов в указанной директории. Путь к директории также передаётся в виде аргумента ко- мандной строки.

Теоретическое введение

Командный процессор (командная оболочка, интерпретатор команд shell) это про-грамма, позволяющая пользователю взаимодействовать с операционной системой компьютера. В операционных системах типа UNIX/Linux наиболее часто используются следующие реализации командных оболочек: - оболочка Борна (Bourne shell или sh) — стандартная командная оболочка UNIX/Linux, содержащая базовый, но при этом полный набор функций; - C-оболочка (или csh) — надстройка на оболочкой Борна, использующая С-подобный синтаксис команд с возможностью сохранения истории выполнения команд; - оболочка Корна (или ksh) — напоминает оболочку С, но операторы управления програм- мой совместимы с операторами оболочки Борна; - BASH — сокращение от Bourne Again Shell (опять оболочка Борна), в основе своей сов-мещает свойства оболочек С и Корна (разработка компании Free Software Foundation). POSIX (Portable Operating System Interface for Computer Environments) — набор стандартов описания интерфейсов взаимодействия операционной системы и прикладных программ. Стандарты POSIX разработаны комитетом IEEE (Institute of Electrical and Electronics Engineers) для обеспечения совместимости различных UNIX/Linux-подобных опера- ционных систем и переносимости прикладных программ на уровне исходного кода. POSIX-совместимые оболочки разработаны на базе оболочки Корна.

Выполнение лабораторной работы

Я создала файл project.sh. В этом файле я написала скрипт ,который при запуске будет делать резервную копию самого себя (то есть файла, в котором содержится его исходный код) в другую директорию backup в домашнем каталоге. Затем я создала исполняемый файл и запускала его:

```
james@fedora:~$ touch project.sh
james@fedora:~$ gedit project.sh
```

Создание project.sh

tar -cvf ~/backup/project.tar project.sh

```
Open *project.sh *project.sh *project.sh
```

Скрипт

```
james@fedora:~$ chmod +x project.sh
james@fedora:~$
```

Создание исполняемого файла

```
james@fedora:~$ mkdir backup
james@fedora:~$ ./project.sh
project.sh
james@fedora:~$ ls backup/
project.tar
james@fedora:~$
```

Запуск файла

Я проверила с помощью cat,что копия содержит скрипт из оригинала:

```
project.kar

james@fedora:-$ cat backup/project.tar

project.sh0900755000175000017500001750000000000115007360366012045 Oustar jamesjamestar -cvf ~/backup/project.tar project.sh

james@fedora:-$
```

Проверка копии файла

Создала другой файл project 1.sh. Написала код, обрабатывающий любое произвольное число аргументов командной строки. Сделала его исполняемый и запускала его:

```
james@fedora:-$ touch projectl.sh
james@fedora:-$ gedit projectl.sh
^C
james@fedora:-$ chmod +x projectl.sh
```

Создание project1.sh

```
1 for A in $*
2 do echo $A
3 done
4
```

Kod project1.sh

for A in \$*
do echo \$A
done

```
^C
james@fedora:~$ ./project1.sh 10 20 30 40 50 100 winner winner fidget spinner
10
20
30
40
50
100
winner
winner
fidget
spinner
james@fedora:~$
```

Запуск project1.sh

Создала файл project2.sh и в нем написала программу - аналог команды ls. Она выводит информацию о возможностях доступа к файлам этого каталога и информацию о нужном каталоге:

```
james@fedora:~$ chmod +x project2.sh
james@fedora:~$ gedit project2.sh
james@fedora:~$
```

Создание project2.sh

```
for A in *
do
  if test -d "$A"
  then
     echo "$A^ is a directory"
     echo "$A: is a file and"
     if test -w $A
     then
        echo " is writable"
          if test -r $A
          then
             echo "is readable"
        else
          echo "Neither raedable nor writable"
        fi
     fi
done
```

Программа project2.sh

```
james@fedora:~$ ./project2.sh
abc1: is a file and
is writable
is readable
australia is a directory
backup is a directory
bin is a directory
CHANGELOG.md: is a file and
is writable
is readable
config is a directory
conf.txt: is a file and
is writable
is readable
COURSE: is a file and
is writable
is readable
Desktop is a directory
Documents is a directory
Downloads is a directory
equipment: is a file and
is writable
is readable
```

Запуск программы

Создала файл project3.sh и в нем написала код, который олучает в качестве аргумента командной строки формат файла (.txt, .doc, .jpg, .pdf и т.д.) и вычисляет количество таких файлов в указанной директории.

```
james@fedora:~$ gedit project3.sh
^C
james@fedora:~$ chmod +x project3.sh
james@fedora:~$ ./project3.sh
Enter file format:
jpg
Enter directory:
/home/james
0
james@fedora:~$
```

Kod project3.sh

```
echo "Enter file format: "
read format
echo "Enter directory: "
read directory
find "${directory}" -name ".${format}" -type f | wc -l
```

Запуск project3.sh

Выводы

При выполнении данной работы я научилась писать небольшие командные файлы.

Ответы на контрольные вопросы

1. Командные процессоры или оболочки - это программы, позволяющие пользователю взаимодействовать с компьютером. Их можно рассматривать как настоящие интерпретируемые языки, которые воспринимают команды пользователя и обрабатывают их. Поэтому командные процессоры также называют интерпретаторами команд. На языках оболочек можно писать программы и выполнять их подобно любым другим программам. UNIX обладает большим количеством оболочек. Наиболее популярными являются следующие четыре оболочки: -оболочка Борна (Bourne) - первоначальная командная оболочка UNIX: базовый, но полный набор функций; -С-оболочка - добавка университета Беркли к коллекции оболочек: она надстраивается над оболочкой Борна, используя С-подобный синтаксис команд, и сохраняет историю выполненных команд; -

- оболочка Корна напоминает оболочку С, но операторы управления программой совместимы с операторами оболочки Борна; -BASH сокращение от Bourne Again Shell (опять оболочка Борна), в основе своей совмещает свойства оболочек С и Корна (разработка компании Free Software Foundation).
- 2. POSIX (Portable Operating System Interface for Computer Environments)интерфейс переносимой операционной системы для компьютерных
 сред. Представляет собой набор стандартов, подготовленных
 институтом инженеров по электронике и радиотехники (IEEE),
 который определяет различные аспекты построения операционной
 системы. POSIX включает такие темы, как программный интерфейс,
 безопасность, работа с сетями и графический интерфейс. POSIXсовместимые оболочки являются будущим поколением оболочек
 UNIX и других ОС. Windows NT рекламируется как система,
 удовлетворяющая POSIX-стандартам. POSIX-совместимые оболочки
 разработаны на базе оболочки Корна; фонд бесплатного
 программного обеспечения (Free Software Foundation) работает над тем,
 чтобы и оболочку ВАSH сделать POSIX-совместимой.
- 3. Командный процессор bash обеспечивает возможность использования переменных типа строка символов. Имена переменных могут быть выбраны пользователем. Пользователь имеет возможность присвоить переменной значение некоторой строки символов. Например, команда mark=/usr/andy/bin присваивает значение строки символов /usr/andy/bin переменной mark типа строка символов. Значение, присвоенное некоторой переменной, может быть впоследствии использовано. Для этого в соответствующем месте командной строки должно быть употреблено имя этой переменной, которому предшествует метасимвол Напримеркоманда {uma переменной} например, использование команд b=/tmp/andy-ls-l myfile > blsn риведетк переназначению станда ртноговыводако манды scme рминалан bls приведет к подстановке в командную строку значения переменной bls. Если переменной bls не было предварительно присвоено никакого значения, то ее значением является символ пробел. Оболочка bash позволяет создание массивов. Для создания массива используется команда set с флагом -A. За флагом следует имя переменной, а затем список значений, разделенных пробелом. Например, set -A states Delaware Michigan "New Jersey" Далее можно сделать добавление в массив, например, states[49]=Alaska. Индексация массивов начинается с нулевого элемента.
- 4. Команда let является показателем того, что последующие аргументы представляют собой выражение, подлежащее вычислению. Простейшее выражение это единичный терм (term), обычно целочисленный. Целые числа можно записывать как последовательность цифр или в любом базовом формате. Этот

- формат radix#number, где radix (основание системы счисления) любое число не более 26. Для большинства команд основания систем счисления это 2 (двоичная), 8 (восьмеричная) и 16 (шестнадцатеричная). Простейшими математическими выражениями являются сложение (+), вычитание (-), умножение (*), целочисленное деление (/) и целочисленный остаток (%). Команда let берет два операнда и присваивает их переменной.
- 5. Оператор Синтаксис Результат!! exp Если exp равно 0, возвращает 1; иначе 0! = exp1! = exp2 Если exp1 не равно exp2, возвращает 1; иначе 0% exp1%exp2 Возвращает остаток от деления exp1 на exp2 % = var=%exp Присваивает остаток от деления var на exp переменной var & exp1&exp2 Возвращает побитовое AND выражений exp1 и exp2 & exp1&exp2 Если и exp1 и exp2 не равны нулю, возвращает 1; иначе 0 & var & exp Присваивает var побитовое AND перемен- ных var и выражения exp * exp1 * exp2 Умножает exp1 на exp2 = var = exp Умножает exp на значение var и присваивает результат переменной var + exp1 + exp2 Складывает exp1 и exp2 + exp + exp Складывает exp со значением var и результат присваивает var exp Операция отрицания exp (называется унарный минус) expl exp2 Вычитает exp2 из exp1 exp exp Вычитает exp из значения var и присваи- вает результат var / exp / exp2 Делит exp1 на exp2 / exp / exp Делит var на exp и присваивает результат var < expl < exp2

Если $\exp 1$ меньше, чем $\exp 2$, возвращает 1, иначе возвращает 0 « $\exp 1$ « $\exp 2$ Сдвигает $\exp 1$ влево на $\exp 2$ бит «= $\exp 1$ Побитовый сдвиг влево значения $\exp 1$ чаг на $\exp 2$ ехр1 ехр1 меньше, или равно $\exp 2$, возвращает 1; иначе возвращает 0 = $\exp 1$ равно $\exp 2$. Возвращает 1; иначе возвращает 0 = $\exp 1$ равно $\exp 2$. Возвращает 1; иначе возвращает 1; иначе возвращает 1 если 10 ехр11 если 11 больше, чем 12; иначе 13 ехр14 если 14 ехр15 право на 15 ехр16 больше, или равно 16 ехр17 ехр18 право на 17 ехр18 право на 18 ехр18 право на 19 вграво значения 19 ехр19 ехр19 ехр19 ехр19 ехр19 иначе 19 ехр19 ехр19 вграво значения 19 ехр19 ехр19 ехр19 вграво значения 19 ехр19 ехр19 ехр19 ехр19 вграво значения 19 ехр19 ехр19 ехр19 ехр19 вграво значения 19 ехр19 ехр19 ехр19 ехр19 ехр19 вграво значения 19 ехр19 ехр19

выражений $\exp 1$ и $\exp 2$ ^= $\exp 7$ Присваивает $\exp 7$ побитовое исключающее $\exp 7$ и $\exp 7$ побитовое $\exp 7$ побитовое $\exp 7$ и $\exp 7$ побитовое $\exp 7$ и $\exp 7$ переменой $\exp 7$ и $\exp 7$ переменой $\exp 7$ перемения \exp

- 6. Что означает операция (())? Условия оболочки bash.
- 7. Имя переменной (идентификатор) это строка символов, которая отличает эту переменную от других объектов программы (идентифицирует переменную в программе). При задании имен переменным нужно соблюдать следующие правила: \$ первым символом имени должна быть буква. Остальные символы буквы и

цифры (прописные и строчные буквы различаются). Можно использовать символ «_»; \$ в имени нельзя использовать символ «.»; \$ число символов в имени не должно превышать 255; \$ имя переменной не должно совпадать с зарезервированными (служебными) словами языка. Var1, PATH, trash, mon, day, PS1, PS2 Другие стандартные переменные: -НОМЕ — имя домашнего каталога пользователя. Если команда cd вводится без аргументов, то происходит переход в каталог, указан- ный в этой переменной . -IFS — последовательность символов, являющихся разделителями в командной строке. Это символы пробел, табуляция и перевод строки(new line). -MAIL командный процессор каждый раз перед выводом на экран промптера проверяет содержимое файла, имя которого указано в этой переменной, и если содержимое этого файла изменилось с момента последнего ввода из него, то перед тем как вывести на терминал промптер, командный процессор выводит на терминал сообщение You have mail (у Вас есть почта). -TERM — тип используемого терминала. -LOGNAME — содержит регистрационное имя пользователя, которое устанавливается автоматически при входе в систему. В командном процессоре Си имеется еще несколько стандартных переменных. Значение всех переменных можно просмотреть с помощью команды set.

- 8. Такие символы, как ' < > * ? | "& являются метасимволами и имеют для командного процессора специальный смысл.
- 9. Снятие специального смысла с метасимвола называется экранированием метасимвола. Экранирование может быть осуществлено с помощью предшествующего метасимволу символа, который, в свою очередь, является метасимволом. Для экранирования группы метасимволов, ее нужно заключить в одинарные кавычки. Строка, заключенная в двойные кавычки, экранирует все метасимволы, кроме \$, `,, ". Например,-echo выведет на экран символ,-echo ab'|'сdвыдаст строку ab/cd.
- 10. Последовательность команд может быть помещена в текстовый файл. Такой файл называется командным. Далее этот файл можно выполнить по команде bash командный_файл [аргументы] Чтобы не вводить каждый раз последовательности символов bash, необходимо изменить код защиты этого командного файла, обеспечив доступ к этому файлу по выполнению. Это может быть сделано с помощью команды chmod +x имя_файла Теперь можно вызывать свой командный файл на выполнение просто, вводя его имя с терминала так, как будто он является выполняемой программой. Командный процессор распознает, что в Вашем файле на самом деле хранится не выполняемая программа, а программа, написанная на языке программирования оболочки, и осуществит ее интерпретацию.

11. Группу команд можно объединить в функцию. Для этого существует ключевое слово function, после которого следует имя функции и список команд, заключенных в фигурные скобки. Удалить функцию можно с помощью команды unset с флагом-f. Команда typeset имеет четыре опции для работы с функциями: -f — перечисляет определенные на текущий момент функции; --ft— при последующем вызове функции инициирует ее трассировку; --fx— экспортирует все перечисленные функции в любые дочерние программы оболочек; --

fu— обозначает указанные функции как автоматически загружаемые. Автоматически загружаемые функции хранятся в командных файлах, а при их вызове оболочка просматривает переменную FPATH, отыскивая файл с одноименными именами функций, загружает его и вызывает эти функции.

- 12. ls -lrt Если есть d, то является файл каталогом
- 13. Используется команда set с флагом -A. За флагом следует имя переменной, а затем список значений, разделенных пробелом. Например, set -A states Delaware Michigan "New Jersey" Далее можно сделать добавление в массив, например, states[49]=Alaska. Индексация массивов начинается с нулевого элемента. В командном процессоре Си имеется еще несколько стандартных переменных. Значение всех переменных можно просмотреть с помощью команды set. Наиболее распространенным является сокращение, избавляющееся от слова let в программах оболочек. Если объявить переменные целыми значениями, любое присвоение автоматически трактуется как арифметическое. Используйте typeset -i для объявления и присвоения переменной, и при последующем использовании она становится целой. Или можете использовать ключевое слово integer (псевдоним для typeset -l) и объявлять переменные целыми. Таким образом, выражения типа x=y+z воспринимаются как арифметические. Группу команд можно объединить в функцию. Для этого существует ключевое слово function, после которого следует имя функции и список команд, заключенных в фигурные скобки. Удалить функцию можно с помощью команды unset c флагом -f . Команда typeset имеет четыре опции для работы с функциями: --f — перечисляет определенные на текущий момент функции; --ft — при последующем вызове функции инициирует ее трассировку; --fx — экспортирует все перечисленные функции в любые дочерние программы оболочек; --fu — обозначает указанные функции как автоматически загружаемые. Автоматически загружаемые функции хранятся в командных файлах, а при их вызове оболочка просматривает переменную FPATH, отыскивая файл с одноименными именами функций, загружает его и вызывает эти функции. В переменные mon и day будут считаны соответствующие значения, введенные с клавиатуры, а переменная trash нужна для того, чтобы отобрать всю

- избыточно введенную информацию и игнорировать ее. Изъять переменную из программы можно с помощью команды unset.
- 14. Символ \$ является метасимволом командного процессора. Он используется, в частности, для ссылки на параметры, точнее, для получения их значений в командном файле. В командный файл можно передать до девяти параметров. При использовании где-либо в командном файле комбинации символов i, где 0 < i < 10, вместо нее будет осуществлена подстановка значения параметра с порядковым номером і, т.е. аргумента командного файла с порядковым номером і. Использование комбинации символов \$0 приводит к подстановке вместо нее имени данного командного файла. Примере: пусть к командному файлу where имеется доступ по выполнению и этот командный файл содержит следующий конвейер: who | grep \$1 Если Вы введете с терминала команду: where andy, то в случае, если пользователь, зарегистрированный в ОС UNIX под именем andy, в данный момент работает в ОС UNIX, на терминал будет выведена строка, содержащая номер терминала, используемого указанным пользователем. Если же в данный момент этот пользователь не работает в ОС UNIX, то на терминал не будет выведено ничего. Команда grep производит контекстный поиск в тексте, поступающем со стандартного ввода, для нахождения в этом тексте строк, содержащих последовательности символов, переданные ей в качестве аргументов, и выводит результаты своей работы на стандартный вывод. В этом примере команда grep используется как фильтр, обеспечивающий ввод со стандартного ввода и вывод всех строк, содержащих последовательность символов andy, на стандартный вывод. В ходе интерпретации этого файла командным процессором вместо комбинации символов \$1 осуществляется подстановка значения первого и единственного параметра andy. Если предположить, что пользователь, зарегистрированный в ОС UNIX под именем andy, в данный момент работаетв

OC UNIX, то на терминале Вы увидите примерно следующее: \$ where andy andy ttyG Jan 14 09:12 \$ Определим функцию, которая изменяет каталог и печатает список файлов: \$ function clist { > cd \$1 > ls > }. Теперь при вызове команды clist каталог будет изменен каталог и выведено его содержимое.

- 15. \$* отображается вся командная строка или параметры оболочки;
- \$? код завершения последней выполненной команды;
- \$\$ уникальный идентификатор процесса, в рамках которого выполняется командный процессор;
- \$! номер процесса, в рамках которого выполняется последняя вызванная на выполнение в командном режиме команда;

\$- — значение флагов командного процессора;

You can't use 'macro parameter character #' in math mode \${#} — возвращает целое число — количество слов, которые были результатом \$;

- \${#name} возвращает целое значение длины строки в переменной name;
- $n=\{n\}$ обращение к n-ному элементу массива;
- name[*] перечисляет все элементы массива, разделенные пробелом;
- \${name[@]} то же самое, но позволяет учитывать символы пробелы в самих переменных;
- \${name:-value} если значение переменной name не определено, то оно будет заменено на указанное value;
- \${name:value} проверяется факт существования переменной;
- \${name=value} если name не определено, то ему присваивается значение value;
- \${name?value} останавливает выполнение, если имя переменной не определено, и выводит value, как сообщение об ошибке;
- этовыражениеработаетпротивоположно {name-value}. Если переменная определена, то подставляется value;
- \${name#pattern} представляет значение переменной name с удаленным самым коротким левым образцом (pattern);
- \${#name[*]} и \${#name[@]} эти выражения возвращают количество элементов в массиве name.

\$# вместо нее будет осуществлена подстановка числа параметров, указанных в командной строке при вызове данного командного файла на выпол

Список литературы

Архитектура ЭВМ