Accepted Manuscript

Safe landing strategies during a fall: Systemic review and meta-analysis

Yaejin Moon, MSc, Jacob J. Sosnoff, PhD

PII: S0003-9993(16)30906-6

DOI: 10.1016/j.apmr.2016.08.460

Reference: YAPMR 56653

To appear in: ARCHIVES OF PHYSICAL MEDICINE AND REHABILITATION

Received Date: 22 March 2016

Revised Date: 8 July 2016

Accepted Date: 3 August 2016

Please cite this article as: Moon Y, Sosnoff JJ, Safe landing strategies during a fall: Systemic review and meta-analysis, *ARCHIVES OF PHYSICAL MEDICINE AND REHABILITATION* (2016), doi: 10.1016/j.apmr.2016.08.460.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Safe landing strategies: a review

Safe landing strategies during a fall: Systemic review and meta-analysis

Yaejin Moon, MSc, Jacob J. Sosnoff, PhD

Department of Kinesiology and Community Health
University of Illinois at Urbana-Champaign
906 S Goodwin Ave, Urbana, IL 61801

Conflict of interest statement: Dr. Sosnoff reports grants from National Multiple Sclerosis Society, grants from Consortium of MS Centers, grants from MC10, Inc, grants from NIH, personal fees from Third Bridge Consulting, outside the submitted work.

Correspondence: Yaejin Moon, University of Illinois at Urbana-Champaign, Department of Kinesiology and Community Health, 301 Freer Hall, 906 South Goodwin Ave., Urbana, IL, 61801; Email: ymoon9@illinois.edu; Phone: (217) 244-7006; Fax (217) 244-7322.

1	Safe landing strategies during a fall: Systemic review and meta-analysis
2	
3	Abstract
4	Objective: To systematically synthesize information on safe landing strategies for a fall and
5	quantitatively examine the effects of the strategies to reduce risk of injury from a fall.
6	Data Sources: PubMed, Web of science, Cumulative Index to Nursing and Allied Health
7	Literature, and Cochrane Library
8	Study Selection: Databases were searched using the combinations of keywords of "falls",
9	"strategy", "impact" and "load". Randomized control trials, cohort studies, pre-post studies, or
10	cross-sectional studies were included.
11	Data Extraction: The fall strategies were extracted and categorized by falling direction.
12	Measurements of impact loads that reflect the risk of injuries were extracted (e.g. impact velocity
13	impact force, fall duration, and impact angle). Hedges g was used as effect size to quantify effect
14	of a protective landing strategy to reduce the impact load.
15	Data Synthesis: A total of seven landing strategies (squatting, elbow flexion, forward rotation,
16	martial arts rolling, martial arts slapping, relaxed muscle, and stepping) in 13 studies were
17	examined. In general, all strategies, except for the martial arts slapping technique, significantly
18	reduced impact load (g's=0.73 to 2.70). Squatting was an efficient strategy to reduce impact in
19	backward falling (g=1.77) while elbow flexion with outstretched arms was effective in forward
20	falling (g=0.82). Also, in sideways falling strategies, martial arts rolling (g=2.70) and forward
21	rotation (g=0.82) were the most efficient strategies to reduce impact load.

22	Conclusions: The result showed that landing strategies have significant effect on reducing
23	impact load during a fall and might be effective to reduce impact load of falling. The current
24	study also highlighted limitations of the previous studies which focused on a young population
25	and self-initiated falls. Further investigation with elderly individuals and unexpected falls is
26	necessary to verify effectiveness and suitableness of the strategies to at-risk population in real-
27	life falls.
28	Key words: Falls; Impact; Strategy; Injury
29	Abbreviations: Cumulative Index to Nursing and Allied Health Literature, CINAHL; effect size
30	ES; martial arts, MA; randomized control trial, RCT;
31	
32	Introduction
33	
34	
35	A fall is an unexpected event in which an individual comes to rest on the ground floor or lower
36	level ¹ . They are one of the leading causes of injury and death among the elderly ² . An estimated
37	40% of community-dwelling people aged over 65 years fall at least once a year, and nearly 15%
38	fall twice or more per year ³ . Falls result in 62.5% (2.5 million) of non-fatal injuries of older
39	adults in the United States that require treatment in emergency departments and hospitalization ⁴ .
40	The direct medical cost for fall related injuries reaches \$19 billion annually in the U.S. alone ⁵ . In
41	addition, as the population ages, the number of annual fall related injuries in the United States is
42	expected to increase to 5.7 million by the year 2030 ⁶ . Given the frequency of falls and the

43	severity of fall related injuries, insights are clearly necessary to decrease the risk of injury from
44	falls.
45	
46	Injury prevention efforts have been mainly targeted intrinsic (e.g. muscle weakness, balance
47	problem, cognitive function) or extrinsic (e.g. environmental hazards, assistive devices) fall risk
48	factors ⁷ . For example, fall prevention programs often consist of recommendations on
49	environmental modification (e.g. improving lighting, installing handrails), behavioral education
50	(e.g. not hurrying while walking, using a mobility device), and exercise training (e.g. muscle
51	strengthening, tai-chi) ⁸ . Exercise interventions are one of the most efficient approaches to
52	reduce fall risk as it can significantly improve physiological capacity for balance and reduced
53	monthly rate of falling in older adults ⁸ . It is important to note that despite the benefits of
54	targeted exercise training, participants within these program still fall ^{7, 9} .
55	
56	An alternative approach that rehabilitation specialists could implement is to teach individuals
57	how to fall in such a manner to reduce injury. It has been speculated that there are unique
58	protective movements which enable safe landing during a fall ¹⁰ . However, the efficiency and
59	mechanisms of the protective movement strategies have received relatively little attention.
60	
61	A few studies have suggested that safe landing strategies may be effective in reducing the risk of
62	injury from falling. The risk of injury has been quantified by various biomechanical parameters
63	(e.g. force, velocity) that reflect magnitude of loads applied to the body at impact (i.e. impact
64	severity). Also the types of strategies are based on the falling direction and the part of body being

65	protected. For example, martial arts (MA) fall techniques, characterized by rolling movements of
66	the trunk, have been observed to efficiently protect the hips in sideways fall 11. A narrative
67	review in 2003 summarized landing strategies to reduce loading on upper extremity when falling
68	¹² . Based on the available evidence, it concluded that the elbow flexion in forward fall can
69	significantly reduce impact force applied to the wrist. Although an important step in synthesizing
70	the data, it focused only on upper extremity injury and provided minimal information concerning
71	falls in non-forward directions (e.g. sideway falls).
72	
73	In the past decade, landing strategies to reduce the impact severity have been further investigated
74	and sufficient amount of evidence of their effect has been gained allowing for quantitative
75	synthesis of information. The effects of safe landing strategies to reduce risk of fall-related injury
76	is seemingly associated with multiple factors including the location of impact, direction of falling
77	and magnitude of loads applied to the body at impact ¹³ . Therefore, the purpose of this review is
78	to systematically synthesize information on safe landing strategies and quantitatively examine
79	the effects of the strategies via meta-analysis.
80	
81	Methods
82	
83	Study selection criteria
84	Studies that met all of the following criteria were included in the review – study design:
85	randomized control trial (RCT), cohort study, pre-post study, or cross-sectional study; subject:

86	human; main outcome: kinetic or kinematic impact severity measurements including impact
87	velocity, impact force, fall duration, impact angle; and language: English. Studies were excluded
88	from the review if they met one or more of the following exclusion criteria: 1) only computer
89	simulation; 2) non-experimental design (questionnaire study); 3) a study without (did not include)
90	kinetic or kinematic impact severity measurement; 4) fall simulation without ground impact; 5)
91	a study without comparative responses of falling strategy; 6) non-English publication; 7) review
92	paper or case study; and 8) non-peer reviewed article (e.g., dissertation or conference
93	proceeding).
94	
95	Search strategy
96	The systematic review protocol described in the Preferred Reporting Items for Systemic Reviews
97	and Meta-Analysis statement 14 were adopted to guide the review process. The search retrieved
98	articles from 1980 and continued until January 2016.
99	Keyword search was performed in PubMed, Web of science, Cumulative Index to Nursing and
100	Allied Health Literature (CINAHL), and Cochrane Library. The search algorithm included all
101	possible combinations of keywords (with wildcard characters) from the following four groups: (1)
102	fall OR falls OR "sideways falls" OR "lateral falls" OR "forward falls" OR "backward falls" (2)
103	technique* OR training OR strategy* OR protective OR response* OR reflex (3) "femoral
104	fracture" OR "hip fracture" OR "hip impact" OR "wrist fracture" OR osteoporosis OR "bone
105	fracture" and (4) biomechanic* OR kinematic* OR kinetic* OR EMG OR "muscle activation"
106	OR velocity OR force. The search algorithm for each database is provided in Appendix 1. Both
107	authors (Y.M, J.S.) independently assessed titles and abstracts of the identified articles to

determine whether or not the articles were eligible. Full-text articles were obtained when either reviewer decided that the article potentially fulfilled the inclusion criteria.

We also conducted a cited reference search (i.e., forward reference search) and a reference list search (i.e., backward reference search) based on the articles meeting the study selection criteria that were identified from keyword search. Articles identified through forward/backward reference search were further screened and evaluated using the same study selection criteria. We repeated the reference search on all newly-identified articles until no additional relevant articles were found.

Data extraction

A standardized data extraction form was used to collect the following methodological and outcome variables from each included study: author(s), publication year, study design, protective landing strategy, comparative normal landing strategy, fall simulation method (i.e., self-initiated vs. unexpected fall, standing vs. kneeling fall, direction of falls, instruction of landing strategy), impact body part, sample size, participant demographics (i.e., gender, age, height, weight), and impact severity outcome (i.e., impact velocity, impact kinetic energy, impact force, fall duration, and impact angle). Impact velocity was defined as the velocity of the body part just prior to impact¹³. Impact kinetic energy was defined as $\frac{1}{2}mv^2$ where m is an anthropometric mass of the body part and v is the impact velocity¹³. Impact force was defined as the initial peak force in the vertical direction at impact¹¹. Fall duration was defined as the time between fall initiation and initial impact¹⁵. Impact angle indicated how close the individual came to directly impacting the

130	lateral side of the pelvis (or greater trochanter of the proximal femur) ¹⁶ . 0 degree reflected direct
131	impact to the lateral aspect of the pelvis, and +/-90 degree reflected impact to the buttocks or
132	anterior aspect of the pelvis ¹⁶ .
133	
134	Quantitative data synthesis
135	For a protective fall strategy included in more than two papers, meta-analysis was performed to
136	estimate the pooled effect size (ES) of the effect of landing strategy. In the present study,
137	measure of Hedges g was obtained as ES and used to quantify difference of impact severity
138	between a protective landing strategy and a normal landing strategy. Conventionally, g values of
139	0.2, 0.5 and 0.8 are considered to represent small, medium and large effects, respectively. A
140	random-effect model was estimated given a P-value less than 0.05 from the Cochran's Q test or
141	an I ² statistics at or above 50%; otherwise, a fixed-effect model was estimated.
142	Publication bias was assessed by the Egger's test. Publication bias occurs when the results of
143	published studies are not representative of results of all completed studies ¹⁷ . All statistical
144	analyses were conducted using Stata 14.0 SE version ^a . All analyses used one-sided tests based
145	on the hypothesis that landing strategies reduces impact severity, and P-values equal or less than
146	0.05 were considered statistically significant. Forest plots were generated using Review Manager
147	software ^b .
148	
149	Study quality assessment

Study quality was assessed by the following criteria ¹⁷ . (1) Was the research question clearly
stated? (2) Were the inclusion and exclusion criteria clearly stated? (3) Were the protective
landing strategy and comparative strategy clearly stated? (4) Were the main findings of the study
clearly described? (5) Did the selected parameters indicate impact severity? (6) Was the
definition of initial impact well described? (7) Was the fall simulation condition clearly stated
and uniformly applied to all participants? (8) Was the fall simulation protocol appropriate to
reflect real-life fall situation? (9) Was a sample size justification via power analysis provided?
(10) Were potential confounders properly controlled in the analysis? Both authors (Y.M., J.S.)
independently scored each study based on these 10 criteria, with disagreement resolved through
discussion. Scores for each criterion range from 0 to 2, depending on whether the criterion was
unmentioned or unmet (0), partially met (1), or completely met (2). The possible total study
score ranges between 0 and 20. Study quality score helped measure the strength of study
evidence, but was not used to determine the inclusion of studies.

Results

167 Study selection

As Figure 1 shows, a total of 380 unduplicated articles were identified through keyword and reference search. 354 of them were excluded in title and abstract screening. The remaining 26 articles were reviewed in full texts, and 13 of them were excluded for not meeting the study

171	selection criteria as listed in Figure 1. Finally, the remaining 13 articles ^{11, 13, 15, 16, 18-26} were
172	included in the review.
173	
174	Basic characteristics of selected studies
175	Basic characteristics of selected studies are summarized in Table 1. There were 11 pre-post
176	studies and two cohort studies. Overall, 60% of the participants were female. There were 5
177	studies that recruited females only and 3 studies that recruited males only. Average age was
178	under 30 years old in 12 out of 13 studies (average: 28.0+/-13.2 yrs, range: 21-28.3 yrs). Only
179	one study investigated individuals over 65 old (average: 69.5 +/-5.9 yrs).
180	
181	6 papers (46%) utilized self-initiated falls from a kneeling position while 2 studies (15%)
182	examined self-initiated falls from a standing position. There were 4 studies (31%) that utilized
183	tether release from a standing position. Among them, one study informed participants of the
184	timing of tether release while the remaining 3 released it unexpectedly. One paper used
185	unexpected translation of a surface in standing position to induce a fall.
186	
187	The most frequently reported impact severity parameters were impact velocity (10 studies, 77%)
188	and impact force (7 studies, 54%). In addition, three studies (23%) reported impact angle of the
189	trunk, two studies (13%) reported fall duration and two studies (13%) utilized impact kinetic
190	energy as impact severity parameters.
191	

192	Fall strategies based on falling directions
193	Figure 2 demonstrates the types of safe landing strategies and comparative strategies based on
194	falling direction. 9 studies (69%) investigated falls to the side. Among the side-fall studies, the
195	effect of martial arts (MA) technique such as a judo fall has been investigated in the greatest
196	number of reports (5 papers). Two studies investigated the influence of muscle relaxation and
197	one study examined the influence of stepping prior to impact. Also there was one study that
198	compared the influence of forward rotation of the trunk to that of backward rotation. All of the
199	studies examined impact severity at the hip.
200	
201	There were 2 studies (15%) that investigated falling in a backward direction. Both studies
202	examined effect of squat motion on diminishing impact severity at the hip and wrist. Two studies
203	(15%) examined falls in a forward direction. Both studies investigated the effect of elbow flexion
204	when impacting the ground with outstretched hands. The studies investigated impact severity at
205	the elbow, shoulder, wrist and neck.
206	
207	Meta-analysis on falling strategy
208	MA rolling and MA slapping strategies have been reported in a sufficient number of papers to
209	conduct meta-analysis. Figure 3 demonstrates the forest plots of each meta-analysis. Overall, the
210	reported effect sizes were heterogeneous in all parameters of all strategies except impact angle of
211	MA rolling technique. All parameters in MA rolling have significant effect sizes (Ps≤0.05) but
212	effect sizes were not significant for any parameters in MA slapping (Ps>0.05).

213	
214	Effect of safe falling strategy
215	Table 2 summarized the effect of safe falling strategies. In the backward fall investigations, it
216	was reported that a squatting strategy can reduce impact velocity of the wrist by 11% ($g=1.09$)
217	and the hip by 18% (g=1.97). Also the squatting significantly reduced impact energy of the hip
218	by 44% ($g=1.77$). Squatting also significantly shortened the fall duration from the initiation of a
219	fall to the ground of the wrist (14%, $g=1.73$).
220	
221	In the forward fall investigations, there was a significant effect of elbow flexion strategy on
222	reducing impact force of the elbow by 40% (g =0.43), the shoulder by 26% (g =0.90), the wrist by
223	26% (g =0.82) and the hand by 14% (g =0.55). However, impact velocity of the neck was not
224	influenced by the elbow flexion strategy.
225	
226	Figure 4 displayed effect sizes of the sideway fall strategies. Forward rotation exhibited the
227	largest effect size on reducing hip impact velocity followed by stepping strategy, MA rolling,
228	and relaxed muscle strategy. Also forward rotation significantly diminished impact energy on hip
229	by 34% (<i>g</i> =1.00).
230	
231	MA rolling was the only strategy that significantly decreased hip impact force (25% reduction,
232	g=2.70). MA rolling and relaxed muscle strategies both reduced impact angle of the trunk (i.e.
233	less vertical) by approximately 60% (MA rolling: $g=1.33$, relaxed muscle: $g=0.73$). Also, the

234	stepping strategy significantly increased fall duration by 13% ($g=1.56$) while MA rolling did not
235	have influence on fall duration.
236	
230	
237	MA slapping did not have significant influence on any of reported impact severity parameters.
238	Egger's test indicates none of the strategies has publication bias (P>0.05).
239	
240	Study quality assessment
241	Table 3 reports results of study quality assessment. Studies included in the review on average
242	scored 13.5 out of 20 and ranged between 8 and 18. The distribution of qualification differed
243	substantially across criteria. 7 out of 13 studies included in the review clearly described their
244	main findings, properly described a protective landing strategy and a controlled strategy,
245	uniformly applied fall simulation to all participants, and clearly indicated potential confounders
246	^{13, 15, 16, 21-23, 25} . In contrast, only one study provided sample size justification ¹⁵ and only two
247	studies clearly stated inclusion and exclusion criteria ^{15, 25} .
248	
249	Discussion
250	
251	
252	Falls are one of the most frequent causes of injury related morbidity and mortality among the
253	elderly ² . It is noted that 40% of individuals over 65 years old fall each year and 30% of those

falls cause moderate to severe injuries ²⁷ . Given the adverse consequence of falls, a significa	nt
amount of scientific inquiry has focused on their prevention ⁹ . In contrast, considerably less	
attention has been paid to strategies of safe landing (i.e. falling without being injured). It has	
been proposed that natural responses to falls by older adults may not optimally reduce injury	risk
²⁴ . Consequently, over the past two decades, researchers have attempted to examine efficienc	y of
safe landing strategies to reduce impact severity of falls.	
The current review provides a comprehensive understanding of safe landing strategies and th	eir
unique contributions on reducing impact severity. In addition, it also illustrates the gaps in th	e
current literature. A total of seven landing strategies (squatting, elbow flexion, forward rotation)	on,
MA rolling, MA slapping, relaxed muscle, and stepping) in 13 investigations encompassing 2	219
individuals were examined. The results show all of the strategies except MA slapping have	
significant effect on reducing impact severity when implemented during a fall.	
The results indicated that each strategy has distinctive advantages on reducing impact severit	y.
Squatting and elbow flexion reduce impact velocity and force through absorption of energy in	n
the eccentrically contracting muscles of the lower and upper extremities ^{13, 20} . Therefore,	
sufficient muscle strength of the extremities is essential to maximize efficiency of these	
strategies. Also a few strategies enhance energy distribution by increasing the contact area of	the
body. Specifically, while sideways falling has high risk of direct contact of the proximal fem	ur,

forward rotation leads to landing on the knees, hands, and pelvis nearly simultaneously. This

approach spreads out the impact energy across the location and results in a reduction of impact

severity ^{25, 26} . Also MA rolling induces optimal distribution of the impact force applied to b	ody
part along the contact path while rolling ²⁴ .	

In addition to the dynamic aspect of impact severity, change of loading configuration could also reduce risk of injury. The result indicated that MA rolling and relaxed muscles result in less vertical trunk angle at impact and reduce energy absorbed by hip ²². On the other hand, a few strategies enable better preparation for safe landing. The stepping strategy increases fall duration, consequently allowing for enough time to adjust and avoid injures. For instance even unsuccessful attempts to recover balance through stepping was observed to be beneficial in reducing impact severity ¹⁶. Also, forward rotation during a sideways fall not only dissipates impact energy but also allows subjects to coordinate their movement through visualization of the landing surface prior to impact ²⁵. Lastly, although MA slapping does not show any difference in impact severity, it was reported that the strategy is essential to maintain stability during MA rolling ²². An appropriate technique should be selected considering the unique benefits of each landing strategy.

It has been speculated that elderly individuals have altered response of falling that leads to increased risk of injury ^{28, 29}. The benefit of the techniques depends on muscle strength and early initiation of the techniques ^{13, 29}. However, older individuals might have a diminished ability to perform the protective strategies due to reduced muscle strength, delayed reaction time and belated detection of imbalance ^{12, 29}. Further examination on influence of aging on the efficiency of strategies is warranted.

2	n	C

The current review classified strategies based on the direction of falls. Since the direction of a fall influences the part of the body that impacts the ground, an appropriate strategy should be selected based on the falling direction¹². Given that falling to the side has a 6-fold greater risk for hip fracture than forward or backward falls ³⁰, they have been the focus of the majority of research.

Although previous literature has documented distinctive benefits between safe landing strategies, several limitations have been observed. It is notable that only one study included elderly subjects, while the majority of studies were conducted with young healthy subjects. Consequently, it is debatable whether these fall techniques would be both effective and suitable for the older adults. For instance, although the martial arts rolling may be an effective strategy, it may not be practical to teach this technique to individuals at risk of falls. It is important to note that some protective responses have associated risks that might lead to adverse consequence when performed inappropriately. For example, elbow flexion might increase the risk of head impact as the distance between the head and ground decreases with this strategy ²⁹. Also although squatting reduces impact velocity, it significantly decreases fall duration reducing the time to prepare for safe landing ²⁸. Further investigations on the strategies with older adults and clinical populations are essential to generalize effectiveness of the fall techniques to at risk population.

Various parameters were utilized to represent fall severity. Impact velocity, force, and energy represent the external load at impact while trunk angle reflects body configuration at impact and

falling duration indicates timecourse of the fall ¹² . While impact velocity has been utilized the
most, it was observed that impact velocity does not always reflect impact force which is a direct
indication of external load ²⁴ . It was suggested that when impact force measurements are not
possible for a safety reason, it is more appropriate to combine impact velocity with energy
estimates ²⁴ .
Also, it is not clear whether the reductions in impact severity parameters are clinically
meaningful. Fracture risk not only depends on the external load applied on the body, but also on
the load necessary to cause a fracture ¹⁹ . Therefore, it is not clear whether the observed reduction
of fall severity in young adults is sufficient to minimize injury in individuals who may have
diminished bone density and tissue tolerance. Additionally, while backward falling is reported to
be the leading cause of traumatic brain injury ³¹ , risk of head injury has been neglected in fall
severity measurements. Therefore, such parameters are warranted to be included to provide a
more valid evidence of clinical significance of the strategies.
Lastly, falls performed in the previous studies differ in some aspects from most falls in daily life.
For safety reasons, majority of studies utilized self-initiated falls or falls from kneeling height.
However, most falls in real life are caused by sudden loss of balance due to an unexpected slip or

trip, or loss of stability ¹³. It is possible that protective responses in self-initiated falls were

governed by motor plans selected before fall initiation ¹⁰. In addition, the activity of the faller at

the time of imbalance such as reaching, bending, walking, rising, or turning may influence ability

to modulate impact severity through the strategies ¹³. Recently, there was an attempt to overcome

342	the bias of lab-based falls by analyzing real life falls captured by video footage in long-term care
343	facilities ³² . The investigation described that real-life falling had a 16% lower pelvis impact
344	velocity than lab-based ones supporting a discrepancy between methodological approaches ³² .
345	Consequently, it is promising to further utilize innovative experimental design that could reflect
346	real life falling in a safe manner.
347	
348	Study limitations
349	The current meta-analysis has a few limitations. First, because of the small number of studies on
350	a given landing strategy, meta-analysis was only available for a limited number. Therefore,
351	further examinations on each landing strategy are necessary. Additionally, heterogeneity of
352	impact severity metrics further prevented synthesizing information regarding the effect of
353	landing strategies. Thus, it is necessary to identify the gold-standard of impact severity metrics to
354	examine risk of injury of falling. Lastly, most studies had small and/or unrepresentative samples,
355	which compromised generalizability of study findings.
356	
357	Conclusion
358	
359	In conclusion, this study systemically reviewed and quantitatively synthesized findings from
360	existing studies on safe landing strategies. The result showed that all of the strategies except MA
361	slapping have a significant effect on reducing the impact severity of various falls. An appropriate
362	technique should be selected based on falling direction and individual capacity. Further

363	investigation with elderly individuals is necessary to verify effectiveness and suitableness of the
364	strategies to at-risk populations. Also, to ensure more valid evidence of the benefits of the
365	strategies, severity parameters reflecting practical fracture risk should be added and innovative
366	methods to simulate real-life falls need to be designed.
367	
368	
369	
370	
371	
372	
373	
374	
375	
376	
377	
378	
379	
380	
381	
382	
383	
384	
385	
386	
387	
388	References
389	

- 1. Lamb, S.E., et al., *Development of a common outcome data set for fall injury prevention trials:* 391 *the Prevention of Falls Network Europe consensus.* J Am Geriatr Soc, 2005. **53**(9): p. 1618-22.
- Centers for Disease Control and Prevention, C. *Ten Leading causes of Death (Charts)*. 2014
 02/01/2016]; Available from: http://webappa.cdc.gov/sasweb/ncipc/mortrate10 us.html.
- 394 3. Stel, V.S., et al., Consequences of falling in older men and women and risk factors for health service use and functional decline. Age and Ageing, 2004. **33**(1): p. 58-65.
- Centers for Disease Control and Prevention, C. *Ten Leading Causes of non-fatal Injury (Charts)*.
 [cited 2015; Available from: http://www.cdc.gov/injury/wisqars/LeadingCauses.html.
- Stevens, J.A., et al., *The costs of fatal and non-fatal falls among older adults.* Inj Prev, 2006. **12**(5): p. 290-5.
- 400 6. Orces, C.H. and H. Alamgir, *Trends in fall-related injuries among older adults treated in emergency departments in the USA.* Injury Prevention, 2014. **20**(6): p. 421-423.
- 402 7. Chang, J.T., et al., *Interventions for the prevention of falls in older adults: systematic review and meta-analysis of randomised clinical trials.* BMJ, 2004. **328**(7441): p. 680.
- Stubbs, B., S. Brefka, and M.D. Denkinger, What Works to Prevent Falls in Community-Dwelling
 Older Adults? Umbrella Review of Meta-analyses of Randomized Controlled Trials. Phys Ther,
 2015. 95(8): p. 1095-110.
- 407 9. Gillespie, L.D., et al., *Interventions for preventing falls in elderly people.* Cochrane Database Syst Rev, 2003(4): p. CD000340.
- 409 10. Hsiao, E.T. and S.N. Robinovitch, *Common protective movements govern unexpected falls from* 410 standing height. Journal of Biomechanics, 1997. **31**(1): p. 1-9.
- 411 11. Weerdesteyn, V., et al., *Martial arts fall techniques reduce hip impact forces in naive subjects* 412 *after a brief period of training.* J Electromyogr Kinesiol, 2008. **18**(2): p. 235-42.
- 413 12. DeGoede, K.M., J.A. Ashton-Miller, and A.B. Schultz, *Fall-related upper body injuries in the older* 414 adult: a review of the biomechanical issues. Journal of Biomechanics, 2003. **36**(7): p. 1043-1053.
- 415 13. Robinovitch, S.N., R. Brumer, and J. Maurer, *Effect of the "squat protective response" on impact velocity during backward falls.* Journal of Biomechanics, 2004. **37**(9): p. 1329-1337.
- 417 14. Moher, D., et al., *Preferred reporting items for systematic review and meta-analysis protocols*418 (*PRISMA-P*) 2015 statement. Syst Rev, 2015. **4**(1): p. 1.
- 419 15. Groen, B.E., et al., *Martial arts fall training to prevent hip fractures in the elderly.* Osteoporos Int, 2010. **21**(2): p. 215-21.
- 421 16. Feldman, F. and S.N. Robinovitch, *Reducing hip fracture risk during sideways falls: evidence in young adults of the protective effects of impact to the hands and stepping.* J Biomech, 2007. 423 **40**(12): p. 2612-8.
- 424 17. Littell, J.H., J. Corcoran, and V. Pillai, Systematic Reviews and Meta-analysis. 2008.
- Sabick, M.B., et al. *Active responses decrease impact forces at the hip and shoulder in falls to the side*. Journal of biomechanics, 1999. **32**, 993-8.
- 427 19. van der Zijden, A.M., et al., *Can martial arts techniques reduce fall severity? An in vivo study of femoral loading configurations in sideways falls*. J Biomech, 2012. **45**(9): p. 1650-5.
- 429 20. Chou, P.-H., et al., *Effect of elbow flexion on upper extremity impact forces during a fall.* Clinical Biomechanics, 2001. **16**(10): p. 888-894.
- vandenKroonenberg, A.J., W.C. Hayes, and T.A. McMahon, *Hip impact velocities and body configurations for voluntary falls from standing height.* Journal of Biomechanics, 1996. 29(6): p. 807-811.
- 434 22. Groen, B.E., V. Weerdesteyn, and J. Duysens, *Martial arts fall techniques decrease the impact* 435 *forces at the hip during sideways falling.* Journal of Biomechanics, 2007. **40**(2): p. 458-462.
- 436 23. Lo, J., et al., *On reducing hand impact force in forward falls: results of a brief intervention in young males.* Clinical Biomechanics, 2003. **18**(8): p. 730-736.

438 439	24.	Groen, B.E., V. Weerdesteyn, and J. Duysens, <i>The relation between hip impact velocity and hip impact force differs between sideways fall techniques</i> . Journal of Electromyography and					
440		Kinesiology, 2008. 18 (2): p. 228-234.					
441	25.	Robinovitch, S.N., et al., Strategies for avoiding hip impact during sideways falls. J Bone Miner					
442		Res, 2003. 18 (7): p. 1267-73.					
443	26.	Tan, JS., et al., Wrist impact velocities are smaller in forward falls than backward falls from					
444		standing. Journal of Biomechanics, 2006. 39 (10): p. 1804-1811.					
445	27.	Stevens, J.A., et al., Self-reported falls and fall-related injuries among persons aged>or=65 years					
446		-United States, 2006. J Safety Res, 2008. 39 (3): p. 345-9.					
447	28.	Kim, KJ. and J.A. Ashton-Miller, Biomechanics of fall arrest using the upper extremity: age					
448		differences. Clinical Biomechanics, 2003. 18 (4): p. 311-318.					
449	29.	Sran, M.A., et al., Age Differences in Energy Absorption in the Upper Extremity During a Descent					
450 451		Movement: Implications for Arresting a Fall. Journals of Gerontology Series a-Biological Sciences and Medical Sciences, 2010. 65 (3): p. 312-317.					
452	30.	Parkkari, J., et al., Majority of hip fractures occur as a result of a fall and impact on the greater					
453		trochanter of the femur: a prospective controlled hip fracture study with 206 consecutive					
454		patients. Calcif Tissue Int, 1999. 65 (3): p. 183-7.					
455	31.	Thurman, D.J., et al., Traumatic brain injury in the United States: A public health perspective. J					
456		Head Trauma Rehabil, 1999. 14 (6): p. 602-15.					
457	32.	Choi, W.J. and S.N. Robinovitch, Pressure distribution over the palm region during forward falls					
458		on the outstretched hands. Journal of Biomechanics, 2011. 44(3): p. 532-539.					
459							
460	Suppl	liers					
461	^a Stata	Corp, College Station, TX					
462	^b Revl	Man 5.3., Cochrane Collaboration, Oxford, UK					
463							
464	Figur	e 1. Flow chart of study selection (two column fitting image)					
465	Figur	e 2. Schematic representation of safe landing techniques and comparative techniques (two					
466	colun	nn fitting image)					
467	Figur	e 3. Forest plots of effect of (a) martial arts (MA) rolling (b) MA slapping to reduce impact					
468	sever	ity. Standard mean difference was calculated by Hedge's g effect size. (two column fitting					
469	image	2)					
470	Figur	e 4. Effect sizes (Hedges g) of side-way safe landing strategies. NS = non-significant effect					
471	size (1.5 column fitting image)						

Appendix 1 Keyword search strategy

Database	Key terms and algorithm
PubMed/Medline	(fall OR falls OR "sideways falls" OR "lateral falls" OR "forward
	falls" OR "backward falls") AND (technique* OR training OR strateg*
	OR protective OR response* OR reflex) AND ("femoral fracture" OR
	"hip fracture" OR "hip impact" OR "wrist fracture" OR osteoporosis
	OR "bone fracture") AND (biomechanic* OR kinematic* OR kinetic*
	OR EMG OR "muscle activation" OR velocity OR force)
	Refined by: Humans, English
Web of Science	(TS = (fall OR falls OR "sideways falls" OR "lateral falls" OR
	"forward falls" OR "backward falls") AND TS = (technique* OR
	training OR strateg* OR protective OR response* OR reflex) AND TS
	= ("femoral fracture" OR "hip fracture" OR "hip impact" OR "wrist
	fracture" OR osteoporosis OR "bone fracture") AND TS =
	(biomechanic* OR kinematic* OR kinetic* OR EMG OR "muscle
	activation" OR velocity OR force))
	Refined by: LANGUAGE: (English)
CINAHL	(fall OR falls OR "sideways falls" OR "lateral falls" OR "forward
	falls" OR "backward falls") AND (technique* OR training OR strateg*
	OR protective OR response* OR reflex) AND ("femoral fracture" OR
	"hip fracture" OR "hip impact" OR "wrist fracture" OR osteoporosis
	OR "bone fracture") AND (biomechanic* OR kinematic* OR kinetic*
	OR EMG OR "muscle activation" OR velocity OR force)
	Refined by: English
Cochrane Library	(fall OR falls OR "sideways falls" OR "lateral falls" OR "forward
	falls" OR "backward falls") AND (technique* OR training OR strateg*
	OR protective OR response* OR reflex) AND ("femoral fracture" OR
	"hip fracture" OR "hip impact" OR "wrist fracture" OR osteoporosis
	OR "bone fracture") AND (biomechanic* OR kinematic* OR kinetic*
	OR EMG OR "muscle activation" OR velocity OR force)

Table 1. Basic Characteristics of the studies

Author(year)/ study design	Fall direction	Safe landing strategy	Subjects	Fall simulation method	Impact part / Impact severity parameter	Fall strategy instructions
²⁶ Tan (2006) / PP	Backward	Squatting	N=12 (F=9); Age = 27.6+/- 10.7 yrs	Unexpected tether release in standing position	Wrist/ Impact velocity; Fall duration	Participants performed backward fall with knee flexed. They were instructed to land as softly as possible and reduce impact to the hips
¹³ Robinovitch (2004) / PP	Backward	Squatting	N=23 (F=23); Age = 24+/-5 yrs	Unexpected tether release in standing position	Hip/ Impact velocity; Impact kinetic energy	"Squatting during descend" did not mean to simply collapse the knees and hip into full flexion during descent, but rather to flex the knees and hips while contracting the muscles spanning these joints, as is done to slow the speed of descent during sitting
²⁰ Chou (2001) / PP	Forward	Elbow Flexion	N=11(F=0); Age=26.1+/- 2.6 yrs	Self-initiated fall in standing position	Elbow; Shoulder; Wrist/ Impact force	Subjects were asked to spontaneously flex the elbow after the moment of impact. This action was very similar to a flexion motion during a push-up.
²³ Lo (2003) / RCT	Forward	Elbow Flexion	N=29(F=0); Age=23+/-3 yrs	Expected tether release in standing position	Wrist; Neck/Impact force; Impact velocity	Reduce your elbow extension speed prior to hand- ground impact; avoid acceleration of your hand into the ground at impact- just hold it steady and wait for the ground to hit it; Land with a slightly flexed elbow angle; do not ever land with a straight elbow; attempt to catch the ground;
²⁵ Robinovitch (2003) / PP	Side	Forward/ Backward Rotation	N=22(F=22); Age=23+/-5 yrs	Unexpected tether release in standing position	Hip/ Impact velocity; Impact kinetic energy	Participants were instructed to "land as softly as possible" and to "avoid impacting the hip or side of the thigh during the fall". Also the participants were instructed to either rotate forward during descent to land on the outstretched hands or to rotate backward during descent to land on the buttocks. Finally, we instructed the subjects to keep their knees extended during descent.
²² Groen (2007) / PP	Side	Martial arts fall (Rolling & Slapping)	N=11(F=0); Age=24.2+/- 3.8 yrs	Self-initiated fall in kneeling position	Hip/Impact force; Impact velocity; Impact angle	The Martial Arts technique is derived from Judo. The fall is changed into a rolling movement, which allows for an optimal distribution of impact applied to any site along the contact path. In slapping condition, the arm is used to break the fall.

Note: PP=Pre-post study; randomized control trial, RCT;

(Table 1 continued)

Author(year)/ study design	Fall direction	Safe landing strategy	Subjects	Fall simulation method	Impact part / severity parameter	Fall strategy instructions
¹⁹ van der Zijden (2012) / PP	Side	Martial arts fall	N=12(F=3); Age=27.6+/- 10.7 yrs	Self-initiated fall in kneeling position	Hip/Impact force; Impact angle	Followed method of Groen 2007
²⁴ Groen (2008) / PP	Side	Martial arts fall (Rolling & Slapping)	N=5(F=0); Age=23.8+/- 4.1 yrs	Self-initiated fall in kneeling position	Hip/ Impact force; Impact velocity	Followed method of Groen 2007
Weerdesteyn (2008) / PP	Side	Martial arts fall (Rolling & Slapping)	N=10(F=10); Age=28.3+/- 6.6 yrs	Self-initiated fall in kneeling position	Wrist/Impact force	A sideways martial arts technique is characterized by trunk lateral flexion and rotation and shoulder protraction in order to enable rolling on after impact. This allows for an optimal distribution of impact applied to any site along the contact path. In addition, arms can be slapped on the ground after hip and trunk impact.
15Groen (2010) / PP	Side	Martial arts fall (Rolling & Slapping)	N=25(F=19); Age=69.5+/- 5.9 yrs	Self-initiated fall in kneeling position	Hip/Impact force; Impact velocity; Fall duration	Followed method of Groen 2007
¹⁸ Sabick (1999) / PP	Side	Relaxed muscle, Slap	N=9(F=2); Age=NR	Self-initiated fall in kneeling position	Hip/Impact force; Impact velocity	The subject was told to fall with his body "as relaxed as possible". Also the participants were instructed to perform a slap fall
²¹ Van den Kroonenberg (1996) / PP	Side	Relaxed muscle	N=6(F=NR); Age=23.7+/- 3.67 yrs	Self-initiated fall in standing position	Hip/Impact velocity; Impact angle	To investigate the effect of muscle activity on fall dynamics, the subjects were instructed either to fall as relaxed as they could, almost as if they had fainted, or, in another series, to fall naturally, using the musculature of their lower extremity as they would in a 'normal' reflex-mediated fall.
¹⁶ Feldman (2007) / Cohort	Side	Stepping	N=44(F=31); Age=21+/-2 yrs	Unexpected translation of surface in standing position	Hip/ Fall duration; Impact velocity	The study classified a trial as involving a "complete step", if there was lifting and repositioning of the left (loaded) foot in a more lateral position on the ground, or the right (unloaded) foot in a more medial location, before impact to a hand, knee, or the pelvis.

Note: PP=Pre-post study; randomized control trial, RCT;

Table 2. Quantitative effect of protective strategies

Fall direction	Safe landing strategy	Impact part	Severity parameter	Statistical result
Backward	Squatting vs no-	Wrist	Impact velocity	Significantly ↓ (2.27+/-0.30 m/s to 2.01+/-0.13 m/s)
	squatting		Fall duration	Significantly ↓ (873+/-67 ms to 749+/-72 ms)
		Hip	Impact velocity	Significantly \downarrow (3.3+/-0.3 m/s to 2.7 +/- 0.3 m/s)
			Impact Energy	Significantly \downarrow (307+/-90 J to 172+/-56 J)
Forward	Elbow flexion vs	Hand	Impact force	Significantly \downarrow (880+/-40 N to 745+/-42N)
	Elbow extension when	Wrist	Impact force	Significantly \downarrow (11.2+/-3.6 N/kg.g 8.2+/-3.4 N/kg.g)
	catching the ground		Impact velocity	Significantly \downarrow (2.66+/-0.21 m/s to 2.52+/-0.15 m/s)
		Elbow	Impact force	Significantly \downarrow (10.3+/-6.5 N/kg.g to 6.2+/- 11 N/kg.g)
		Shoulder	Impact force	Significantly \downarrow (32.6 +/-6.5 N/kg.g to 24.1 +/- 11 N/kg.g)
		Neck	Impact velocity	Not significantly different (2.69+/-0.25m/s vs 2.68+/-0.24m/s)
Side	Forward rotation vs backward rotation	Hip	Impact velocity Impact Energy	Significantly \downarrow in forward rotation (2.95 +/- 0.25 m/s to 2.45 +/- 0.77 m/s) Significantly \downarrow in forward rotation (238 +/- 70 J to 156 +/- 90 J)
	MA Rolling vs	Hip	Fall duration	Not significantly different (246+/-92 ms vs 235 +/-72ms)
	blocking fall		Impact force Impact velocity Impact angle	Significantly ↓ in 5 out of 5 papers (Values are provided at Fig 3) Significantly ↓ in 3 out of 4 papers (Values are provided at Fig 3) Significantly less vertical in 2 out of 2 papers (Values are provided at Fig 3)
	MA Slapping vs no- slap when performing Martial arts fall	Hip	Impact force Impact velocity Impact angle	Not significantly different in 2 out of 3 papers (Values are provided at Fig 3) Not significantly different in 2 out of 2 papers (Values are provided at Fig 3) Not significantly different (17+/-5 degree vs 15+/-4 degree)
	Relaxed muscle vs Stiffed muscle	Hip	Impact force Impact velocity Impact angle	Not significantly different $(2.76+/-0.83 \text{ N/kg.g} \text{ and } 2.69+/-0.68 \text{ N/kg.g})$ Significantly \downarrow $(3.31 +/- 0.43 \text{ m/s} \text{ to } 3.09 +/- 0.41 \text{m/s})$ Significantly less vertical $(13.6 +/- 11.2 \text{ degree to } 21.8 +/-10.4 \text{ degree})$
	Stepping vs non-stepping before falling	Hip	Fall duration Impact velocity	Significantly \uparrow (613 +/- 53 ms to 691 +/- 46 ms) Significantly \downarrow (3.16 +/- 0.74 to 2.46 +/- 0.94 m/s)

Note: MA=martial arts; ↓=reduced; ↑=increased

Table 3. Study quality assessment

Criterion	Mean	SD
1. Was the research question clearly stated?	1.9	0.3
2. Were the inclusion and exclusion criteria clearly stated?	0.7	0.8
3. Were the protective landing strategy and comparative strategy clearly stated?	1.9	0.3
4. Were the main findings of the study clearly described?	1.9	0.3
5. Did the selected parameters indicate impact severity?	0.8	0.6
6. Was definition of initial impact well described?	1.4	1.0
7. Was fall simulation condition clearly stated and uniformly applied to all participants?	1.8	0.4
8. Was fall simulation protocol appropriate to reflect real-life fall situation?	0.5	0.7
9. Was a sample size justification via power analysis provided?	0.2	0.6
10. Were potential confounders (age, gender, height, weight) properly described in the analysis?	1.6	0.7
Total score	13.5	2.7

Notes: Scores for each criterion range from 0 to 2, depending on whether the criterion was unmentioned or unmet (0), partially met (1), or completely met (2). The total study score ranges between 0 and 20.

	ACCEPTED MAN	USCRIPT
Fall direction	Safe landing technique	Comparative technique
Backward	Squatting: Flex the knees and hips while contracting the muscles spanning these joints.	No squatting: Fall backward with the extended knee.
Forward	Elbow Flexion: Catch the ground with the outstretched arms while landing with the slightly flexed elbow.	Elbow extension: Catch the ground with outstretched arms while landing with the extended elbow.
Side	Forward Rotation: Rotate forward during the descent to land on the outstretched hands.	Backward Rotation Rotate backward during the descent to land on the buttocks.
	Martial arts rolling: Flex knee during the decent, flex trunk laterally and rotate slightly backward to facilitate rolling away from the impact point.	Block fall: Stretch out the arm into the direction of the impending the fall while laterally flexing the trunk.
	Martial arts slapping: Slap the arm on the falling side on the ground after the impact of MA rolling.	Martial arts no slapping: Facilitate MA rolling without contacting the ground with the arms
	Stepping: Reposition the foot in a more lateral position during the decent. Relaxed muscle: Fall with the body as relaxed as	No stepping: Stay the foot in the same position during the decent. Non-relaxed muscle: Fall with the tensed
	possible without resisting against to the fall	muscles of the body.

(a) MA rolling vs Block falling

	MA	MA rolling		Block falling				Std. Mean Difference	Std. Mean Difference		
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI		
1.1.1 Hip impact forc	e (N/kg.	g)									
Groen 2007	2.8	0.1	11	3.9	0.1	11	3.1%	-10.58 [-14.13, -7.03]			
Groen 2008	2.97	0.48	5	4.14	0.43	5	7.0%	-2.32 [-4.12, -0.52]			
Groen 2010	2.26	0.35	25	2.46	0.26	25	11.2%	-0.64 [-1.21, -0.07]	*		
van der Zijden 2012	2.4	0.4	12	3.4	0.5	12	9.7%	-2.13 [-3.17, -1.10]			
Weerdesteyn 2008	2.1	0.2	10	2.6	0.3	10	9.5%	-1.88 [-2.97, -0.79]	-		
Subtotal (95% CI)			63			63	40.5%	-2.70 [-4.31, -1.09]	•		
Heterogeneity: Tau ² =				= 4 (P	< 0.00	001); l²	= 89%				
Test for overall effect:	Z = 3.29) (P = 0	0.001)								
1.1.2 Hip impact velo		,									
Groen 2007	1.23			1.4	0.2	11	10.3%	-0.82 [-1.69, 0.06]	•		
Groen 2008	1.22	0.1	5		0.12	5	8.3%	-1.23 [-2.65, 0.19]			
Groen 2010		0.22	25		0.26	25	11.3%	0.16 [-0.39, 0.72]	_ †		
Weerdesteyn 2008	1	0.2	10	1.2	0.2	10	10.1%	-0.96 [-1.89, -0.02]			
Subtotal (95% CI)			51			51	39.9%	-0.58 [-1.28, 0.12]	lacksquare		
Heterogeneity: Tau ² =				= 3 (P =	0.06);	$1^2 = 60$	%				
Test for overall effect:	Z = 1.63	3 (P = 0	0.05)								
1.1.3 Trunk impact a	ngle (de	grees)								
Groen 2007	72	3	11	79	3	11	9.4%	-2.24 [-3.36, -1.13]			
van der Zijden 2012	71	16	12	87	3	12	10.2%	-1.34 [-2.24, -0.44]			
Subtotal (95% CI)			23			23	19.6%	-1.73 [-2.61, -0.86]	◆		
Heterogeneity: Tau ² =	0.14; CI	hi² = 1.	.53, df =	= 1 (P =	0.22);	$ ^2 = 35$	%				
Test for overall effect:	Z = 3.87	7 (P = 0	0.0001)	`	,						
Total (059/ CI)			427			427	400.00/	4 56 1 2 20 0 0 21	A		
Total (95% CI)	4.40.0		137	40.75			100.0%	-1.56 [-2.30, -0.83]	—		
Heterogeneity: Tau ² = 1.16; Chi ² = 61.03, df = 10 (P < 0.00001); I ² = 84%											
Test for overall effect:		,	,			0\ 12	74.00/		Favours [MA rolling] Favours [Block falling]		
Test for subgroup differences: Chi ² = 7.77, df = 2 (P = 0.02), I^2 = 74.2%											

(b) MA slapping vs MA non-slapping

	MA S	Slappi	ing	MA no	on-slap	ping		Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
1.2.1 Hip Impact force	e (N/kg.ç	3)							
Groen 2007	2.87	0.1	11	2.7	0.1	11	18.5%	1.64 [0.64, 2.63]	
Sabick 1999	2.44	0.7	9	2.76	0.83	9	19.4%	-0.40 [-1.33, 0.54]	
Weerdesteyn 2008 Subtotal (95% CI)	2.1	0.2	10 30	2.1	0.2	10 30	20.5% 58.4%	0.00 [-0.88, 0.88] 0.40 [-0.78, 1.57]	+
Heterogeneity: Tau ² =	0.85; Ch	j ² = 9.	52, df =	2 (P = 0	0.009); I	² = 79%	,		
Test for overall effect:	Z = 0.66	(P = 0	0.51)	•	,				
1.2.2 Hip impact velo	ocity (m/s	5)							
Groen 2007	1.23	0.2	11	1.19	0.2	11	21.2%	0.19 [-0.65, 1.03]	+
Weerdesteyn 2008 Subtotal (95% CI)	1	0.2	10 21	1	0.2	10 21	20.5% 41.6%	0.00 [-0.88, 0.88] 0.10 [-0.51, 0.71]	‡
Heterogeneity: Tau ² =	0.00; Ch	j ² = 0.	10, df =	1 (P = 0).76); I²	= 0%			
Test for overall effect:	Z = 0.33	(P = 0	0.75)		,				
Total (95% CI)			51			51	100.0%	0.27 [-0.37, 0.90]	•
Heterogeneity: Tau ² =	0.32; Ch	j² = 9.	98, df =	4 (P = 0	0.04); I ²	= 60%			
Test for overall effect:	Z = 0.82	(P = 0	0.41)	,	,,				-10 -5 0 5 10 Favours [MA slapping] Favours [MA non-slapping]
Test for subgroup diffe	erences: (Chi² =	0.20	f = 1 /P	= 0.66)	I ² = ∩%			ravours [with stapping] ravours [with non-stapping]

