Ещё о равенстве

η -преобразование

Определение

Если x не входит свободно в F, то можем определить η -редукцию:

$$\lambda x.F x \rightarrow_{\eta} F$$

и η-экспансию:

$$F \rightarrow_{\eta} \lambda x.F x$$

Язык Аренд можно попросить применить эта-экспансию (указав двойное подчёркивание на месте ожидаемого параметра):

```
\func s (a : (Nat -> Nat) -> Nat) (x : Nat -> Nat) => a (x 5 Nat.+ __) \func s' (a : (Nat -> Nat) -> Nat) (x : Nat -> Nat) => a (\lam z => x 5 Nat.+ z)
```

\func s_id : smthf (\lam f => f 0) (\lam x => x Nat.+ 1) = 6 => idp

Ещё немного об эта-экспансии

```
Вариант также корректен:
alpha (x Nat. + 5)
А вот такая запись:
alpha (x (id ) Nat. + 5)
означает
alpha (x (\lambda u => id u) Nat.+ 5)
Пример
Сжатие путей
\int \int a dx dx = A \cdot \int a dx = A \cdot (i : I)
      : a = p @ i => path (p @ I.squeeze i __)
```

Высшие индуктивные типы: фактор-множества

Определение

Пусть задано A и отношение на нём: $R \subseteq A \times A$. Тогда фактор-множество:

$$A/_R := \{\{\langle x, y \rangle | y \in A, R(x, y)\} \mid x \in A\}$$

В Аренде фактор-множество задаётся довольно схожим образом:

```
\truncated \data Quotient {A : \Type} (R : A -> A -> \Type) : \Set
| in A
| ~-equiv (x y : A) (R x y) : in x = in y
```

Высший индуктивный тип Quotient содержит конструктор для значений (in $^{\sim}$) и конструктор для равенства ($^{\sim}$ -equiv).

Работа с высшими индуктивными типами

```
\func IntEqual (a b : \Sigma Nat Nat) : \Prop => a.1 Nat.+ b.2 = a.2 Nat.+ b.1
\func Integer => Quotient IntEqual
\func prove01=10 : 0 Nat. + 1 = 1 Nat. + 0 => idp
\func idpx : in^{(1,1)} = in^{(1,1)} = in^{(1,1)}
 \lim i = -equiv (0,0) (1,1) prove01=10 i
\func plus (a b : Integer) : Integer \elim a,b
  in~ a, in~ b => Quotient.in~ (a.1 Nat.+ b.1, a.2 Nat.+ b.2)
  -- ^{\sim}-equiv (x y : A) (R x y) : in ^{\sim} x = in ^{\sim} y
  | in a, -equiv (xa, xb) (ya, yb) r =>
    -- r : xa+yb=xb+ya
    -- Tpe6yercs: in~ (a.1 Nat. + xa, a.2 Nat. + xb) = in~ (a.1 Nat. + ya, a.2 Nat. + yb)
    -- То есть: a.1+xa + a.2+vb = a.2+xb + a.1+va
    Quotient. ~-equiv (a.1 Nat. + xa, a.2 Nat. + xb) (a.1 Nat. + ya, a.2 Nat. + yb) {?} __
  -equiv x y r i, in a => {?}
```

Пропы

```
Докажем props-equal {A : \Prop} (a b : A) : a = b \lemma props-equal {A : \Prop} {a a' : A} : a = a' => \case truncP (inP a) (inP a') __ \with { | inP x => x }
```

Парадокс Жирара

Расширение обобщённых типовых систем

Расширение обобщённых типовых систем, 5 уровней:

Nº	название	обозначение, примеры
0	термы: доказательства	x, λp.q,
1	типы: утверждения	1 = 1
2	рода: семейства утверждений	*
3	сорт «квадратик»	🗌 (единственный представитель)
4	сорт «треугольник»	riangle (единственный представитель)

Обобщённые типовые системы, системы U и U^-

Название	Аксиомы	Правила
λHOL	*: <u>, : </u> : <u></u>	$(\star,\star),\;(\square,\square),\;(\square,\star)$
	*:, : <u></u>	(\star,\star) , (\square,\square) , (\square,\star) , (\triangle,\star)
λU^{-}	*:, : <u></u>	(\star,\star) , (\square,\square) , (\square,\star) , (\triangle,\square)
λU	*:, : △	(\star,\star) , (\square,\square) , (\square,\star) , (\triangle,\square) , (\triangle,\star)

Парадокс Бурали-Форте

Теорема

Множества всех ординалов не существует

Доказательство.

Пусть Ω — множество всех ординалов.

- 1. Легко заметить, что Ω является ординалом:
 - ▶ Все ординалы сравнимы (если есть аксиома выбора) линейный порядок
 - Если множество ординалов $X \subseteq \Omega$ непусто $(x \in X)$, то в $\min X = \min(x' \cap X)$. Поскольку x' ординал, то в любом его непустом подмножестве есть минимум полный порядок.
 - ► Если $y \in x$ и $x \in \Omega$, то y ординал транзитивность.
- 2. Однако, любой ординал $\alpha \in \Omega$, то есть $\Omega < \Omega$
- 3. Однако, это есть противоречие с определением строгого порядка.

Порядковые типы

Definition

Множества (A,<) и (B,\sqsubset) имеют одинаковый *порядковый тип*, если существует биекция между ними, сохраняющая порядок:

$$\forall a \in A. \forall b \in A. a < b \leftrightarrow f(a) \sqsubset f(b)$$

Definition

Операции перехода от множества к порядковому типу и назад:

- 1. σ по порядковому типу (по соответствующему ординалу) получить вполне упорядоченное множество: $\sigma \alpha = \{t : \text{ординал} | t < \alpha \}$
- 2. au по вполне упорядоченному множеству получить его порядковый тип: au X Заметим, что (здесь X некоторое множество ординалов):

$$\sigma au X = \{ eta : \mathsf{opдинan} | eta < au X \} = \{ au \sigma lpha | lpha \in X \}$$

Парадоксальные универсумы

Напомним, что $X \to Y := \Pi x^X . Y$.

Definition

Булеан множества S (power set) — множество всех предикатов на S:

$$\wp:S\to\star$$

Рассмотрим $\sigma:\mathcal{U}\to\wp\mathcal{U}$ и $\tau:\wp\mathcal{U}\to\mathcal{U}$

Definition

 ${\mathcal U}$ парадоксален, если для всех $X \in \wp {\mathcal U}$ выполнено

$$\sigma\tau X = \{\tau\sigma x | x \in X\}$$

Предшественники

Фиксируем парадоксальный универсум ${\mathcal U}$ вместе с отображениями σ и au.

Definition

Назовём y предшественником x (y < x), если $y \in \sigma x$.

Lemma (о выражении предшественника)

Если $t < au\sigma x$, то $t = au\sigma y$ для некоторого y < x

Доказательство.

Пусть $X = \sigma x = \{y | y < x\}$; это множество всех предшественников x. $t < \tau \sigma x$, то есть $t \in \sigma \tau \sigma x$, то есть $t \in \sigma \tau X$, то есть (по парадоксальности) $t \in \{\tau \sigma y | y \in X\}$, то есть $t = \tau \sigma y$ для некоторого $y \in X$, то есть $t = \tau \sigma y$ при y < X.

Lemma

Если p < q, то $\tau \sigma p < \tau \sigma q$

Индуктивность и фундированность

Definition

Рассмотрим универсум \mathcal{U} . Индуктивность множеств и фундированность:

1. $X \subseteq \mathcal{U}$ — индуктивное, если всякий x, предшественники которого содержатся в X, сам содержится в X:

Если для всех y < x выполнено $y \in X$, то $x \in X$

2. $x \in \mathcal{U}$ — фундированный, если x принадлежит всем индуктивным множествам.

Mножество Ω

Definition

Фиксируем некоторый универсум $\langle \mathcal{U}, \sigma, \tau \rangle$. Тогда $\Omega = \tau\{x|x$ фундирован, $x \in \mathcal{U}\}$ — порядковый тип множества всех фундированных множеств.

Легко заметить, что $\Omega \in \mathcal{U}$.

Лемма

Если X индуктивно, то и $T=\{y| au\sigma y\in X\}$ также индуктивно.

Доказательство.

Для индуктивности T нужно показать, что если y < x влечёт $y \in T$, то $x \in T$. Фиксируем x, что $\tau \sigma y \in X$ для всех y < x. Тогда заметим, что если $k < \tau \sigma x$, то найдётся такой y, что $k = \tau \sigma y$ и y < x (лемма о выражении предшественника), то есть $k \in X$. Значит (индуктивность X), $\tau \sigma x \in X$, то есть $x \in T$.

Ω фундировано

Лемма

В парадоксальном универсуме $(\sigma \tau X = \{\tau \sigma x | x \in X\})$ множество Ω фундировано.

Доказательство.

- Фиксируем индуктивное $X \subseteq \mathcal{U}$. Чтобы показать $\Omega \in X$, по определению индуктивности надо показать, что если $t < \Omega$, то $t \in X$. Пусть F множество всех фундированных элементов, $F \subseteq \mathcal{U}$.
- ▶ Пусть $t<\Omega$, тогда $t\in\sigma\Omega$ (определение предшествования), отсюда $\sigma\Omega=\sigma\tau F$ (определение Ω).
- ▶ По парадоксальности, $\sigma \tau F \subseteq \{\tau \sigma x | x \in F\}$, то есть $t \in \sigma \Omega \subseteq \{\tau \sigma x | x \in F\}$, то есть $t = \tau \sigma \omega$ при некотором $\omega \in F$.
- ▶ Поскольку X индуктивно, то по лемме и множество $T = \{y | \tau \sigma y \in X\}$ индуктивно. По определению, ему принадлежат все фундированные элементы: $F \subseteq T$. Значит, $\omega \in F$ влечёт $\omega \in T$, то есть $t = \tau \sigma \omega \in X$.

Множество Ω противоречиво

Лемма

 Ω не может быть фундировано.

Доказательство.

Можно показать, используя обратное включение: $\{\tau\sigma x|x\in X\}\subseteq\sigma\tau X$.

Теорема

Множество Ω не существует

Доказательство.

 Ω фундировано, но его фундированность ведёт к противоречию.

Построение парадокса в U^-

Теперь, имея идею парадокса, покажем, что в U^- есть парадоксальные универсумы.

Вспомним изоморфизм Карри-Ховарда: $P(x) \approx x \in \{t \mid P(t)\} \approx X : P(x)$ После этого выразим операции σ , τ и построим Ω .

- 1. $\mathcal{U} = \Pi X : \square . ((\wp X \to X) \to \wp X)$
- 2. $\tau = \lambda X : \wp \mathcal{U}.\lambda A : \square.\lambda c : (\wp A \to A).\lambda a : A.\varphi$, где $\varphi = \Pi P^{\wp A}.(\Pi x^{\mathcal{U}}.X \ x \Rightarrow (P(c(\{x\ A\}\ c)))) \Rightarrow P$ а
- 3. $\sigma = \lambda x : \mathcal{U}.((x \, \mathcal{U}) \, \tau)$

Заметим, что для задания $\mathcal U$ нам требуются правила (\triangle,\Box) .

Несложно показать, что (\mathcal{U},σ, au) — парадоксальный: \mathcal{U} парадоксален, если для всех $X\in \wp\mathcal{U}$ выполнено

$$\sigma \tau X = \{ \tau \sigma x | x \in X \}$$

Например потому, что для всех $X:\wp\mathcal{U}$ выполнено $\sigma \tau X =_{\beta} \bigcap \{P \subseteq \mathcal{U} \mid \forall x \in X. \tau \sigma x \in P\}$

А далее строим Ω и выписываем применение двух утверждений: Ω фундирован и Ω фундирован $\to \bot$.

Упрощённая формула

Рассмотрим $\sigma:\mathcal{U}\to\wp\wp\mathcal{U}$ и $\tau:\wp\wp\mathcal{U}\to\mathcal{U}$. Назовём \mathcal{U} мощным универсумом, если при $C\in\wp\wp\mathcal{U}$ выполнено

$$\sigma\tau C = \{X \mid \{y | \tau\sigma y \in X\} \in C\}$$

Дадим следующие обозначения:

1. Универсум:

$$\mathcal{U} = \Pi x^{\square} . (\wp \wp x \to x) \to \wp \wp x$$

2. Отображения:

$$\tau t = \lambda X^{\square} . \lambda f^{\wp\wp X \to X} . \lambda p^{\wp X} . t \lambda x^{\mathcal{U}} . p(f(x X) f)$$
$$\sigma s = (s \mathcal{U}) \lambda t^{\wp\wp \mathcal{U}} . \tau t$$

3. Вспомогательное:

$$\Delta = \lambda y^{\mathcal{U}}.(\Pi p^{\wp \mathcal{U}}.\sigma yp \to p\tau \sigma y) \to \bot$$

Омега и парадокс

В качестве Ω берём $\tau\{X|X$ индуктивен $\}$:

$$\Omega = \tau \lambda p^{\wp \mathcal{U}}.\Pi x^{\mathcal{U}}.\sigma xp \rightarrow px$$

Тогда следующее выражение обитает в типе «ложь» ($\bot = \Pi p^{\star}.p$):

$$\begin{array}{l} \lambda a_0: \Pi p: \wp \mathcal{U}.(\Pi x: \mathcal{U}.(\sigma x p) \rightarrow (p x)) \rightarrow (p \Omega)). \\ ((a_0 \ \Delta) \ \lambda x^{\mathcal{U}}.\lambda a_2^{(\sigma x \Delta)}.\lambda a_3^{\Pi p:\wp \mathcal{U}.(\sigma x p) \rightarrow p \tau \sigma x}. \\ ((a_3 \ \Delta) \ a_2) \ \lambda p^{\wp \mathcal{U}.(a_3 \ \lambda y: \mathcal{U}.p \tau \sigma y)}(\lambda p^{\wp \mathcal{U}}.a_0 \ \lambda y: \mathcal{U}.(p \tau \sigma y))) \\ \lambda p^{\wp \mathcal{U}}.\lambda a_1^{\Pi x: \mathcal{U}.\sigma x p \rightarrow p x}.(a_1 \ \Omega) \ \lambda x^{\mathcal{U}}.a_1 \ \tau \sigma x \end{array}$$