Universidade Federal de Santa Maria

CENTRO DE TECNOLOGIA

DEPARTAMENTO DE ELETRÔNICA E COMPUTAÇÃO

DISCIPLINA: PRINCÍPIOS DE TELECOMUNICAÇÕES

Estudo sobre Modulação de Sinais

Autores: Caio S. Guedes <caio_ee@hotmail.com> Marcelo Brum <marcelobrum.rs@gmail.com> Renan Birck Pinheiro <renan.ee.ufsm@gmail.com>.

Santa Maria, 25 de Junho de 2012.

Conteúdo

1	Introdução		3	
2	Experimento 1: Modulação AM a diodo			
	2.1	3		3
		2.1.1	Modulação em Amplitude com Portadora Suprimida (AM-DSB-SC)	3
		2.1.2	Modulação em Amplitude com Portadora (AM-DSB)	4
	2.2	Proced	limento experimental	4
		2.2.1	Modulação por diodo	5
		2.2.2	Demodulação do sinal	5
3	Exp	erimen	to 2: Modulação AM a transistor	6
4	Experimento 3: Transmissão e recepção de FM		7	
	4.1	Demo	dulação FM	7
5	Experimento 4: Modulação por código de pulso (PCM)			8
	5.1 Introdução			8

Introdução

Neste trabalho serão abordadas as práticas feitas em laboratório, na discplina de Princípios de Telecomunicações, visando estudar o funcionamento das modulações em amplitude (AM) e em frequência (FM). Também será abordada a modulação por códigos de pulso (PCM).

Experimento 1: Modulação AM a diodo

2.1 Fundamentação Teórica

Para ambas as modulações, sejam:

• um sinal senoidal modulante dado por

$$v_s = A_s \cos(\omega_s t + \phi) \tag{2.1}$$

• uma portadora dada por

$$v_c = A_c \cos(\omega_c t + \phi) \tag{2.2}$$

tal que $\omega_c > \omega_s$. A fase dos sinais é fixa em 0, assim eliminando-se ϕ .

2.1.1 Modulação em Amplitude com Portadora Suprimida (AM-DSB-SC)

Nos domínios do tempo e da frequência ela é dada por

$$v_m = v_s v_c = A_s A_c \cos(\omega_s t) \cos(\omega_c t) \tag{2.3}$$

o que no domínio da frequência dá

$$\mathcal{F}(V_m) = \frac{A_s A_c \delta(\omega_s - \omega_c) + \delta(\omega_s + \omega_c)}{2}$$
 (2.4)

O principal problema dessa modulação é que o receptor precisa gerar sua própria portadora para demodulação do sinal.

2.1.2 Modulação em Amplitude com Portadora (AM-DSB)

Nesta modulação, transmite-se a portadora juntamente ao sinal. Então a modulação pode ser escrita como

$$v_m = \underbrace{v_s v_c}_{AM-DSB-SC} + \underbrace{v_c}_{portadora\ adicional} = v_c[1+v_s]$$
 (2.5)

2.2 Procedimento experimental

Problema proposto:

Implemente o circuito da Figura 1 e calcule a frequência de ressonância do filtro passa faixa. Ajuste a frequência de $E_o(t)$ para o valor calculado. Ajuste a frequência de a(t) para 1KHz. Faça a amplitude de $E_0(t)$ igual a 10V pico a pico e a de a(t) 3V pico a pico. Apresente suas conclusões a respeito do uso do filtro e da frequência de ressonância obtida.

O circuito da figura 2.1 foi montado em uma protoboard:

Figura 2.1: Modulador AM a diodo.

Para sintonizar a portadora, calcula-se a frequência de ressonância do filtro LC da saída:

$$f_0 = \frac{1}{2\pi\sqrt{LC}}\tag{2.6}$$

Para os valores fornecidos (C=2,2nF e $L=1000\mu F$) ter-se-á que essa frequência será de cerca de 107 KHz.

Após sintonizados os sinais de portadora e da modulante, na saída (ponto C) constatase a modulação do sinal. Neste contexto, o indutor e o capacitor agem no sentido de limitar a faixa de frequência do sinal modulado.

Disto se determinam:

- Frequências dos sinais portador e modulante: 107 KHz e 1 KHz, respectivamente.
- Índice de modulação:
- Forma de onda:
- · Potência média do sinal:

2.2.1 Modulação por diodo

Pergunta:

Explique como o diodo possibilita a modulação do sinal Eo (t) no circuito implementado na matriz de contatos e apresente o equacionamento que demonstra tal método de modulação.

Suponhamos o diodo como uma chave que permite apenas a passagem da região positiva da onda da portadora. Esse diodo pode ser considerado como um dispositivo não linear, expresso por $e_1(t) = ae_0(t) + be_0^2(t)$.

Ao diodo chega a soma dos sinais da portadora e da modulante: $e_0(t) = v_s + v_c$.

2.2.2 Demodulação do sinal

Experimento 2: Modulação AM a transistor

Figura 3.1: Modulador AM a transistor.

O sinal modulado é gerado utilizando-se os transistores BF494 [4], de alta frequência (até 120 MHz, conforme sua *datasheet*). O sinal de áudio oscila pelo transistor Q_1 , e a portadora pelo transistor Q_2 . Tal circuito se comporta como um multiplicador de sinais. A junção desses sinais é feita no capacitor C_3 , que já remove qualquer nível DC que exista na saída dos transistores, e o filtro LC formado por L_1 e C_4 tratará de permitir apenas o nível de sinal relevante.

Experimento 3: Transmissão e recepção de FM

4.1 Demodulação FM

Ela também pode ser feita utilizando-se um circuito PLL (*Phase-Locked Loop*), o qual foge do foco do presente trabalho.

Experimento 4: Modulação por código de pulso (PCM)

5.1 Introdução

PCM é uma técnica para a representação de sinais analógicos convertidos para formato digital, visando transmissão ou posterior processamento. Uma codificação em PCM transforma uma amostra quantizada em um número codificado. [1]

Fundamentalmente, a técnica consiste na quantização dos dados através de um conversor A/D. No lado do receptor existirá um conversor D/A que irá fazer o processo oposto.

Bibliografia

- [1] MACHADO, R. Notas de aula da disciplina de Comunicação de Dados. Disponível em http://www.ufsm.br/gpscom/professores/Renato% 20Machado/comunicacaodedados.html. Acessado em 12/06/2012.
- [2] **Euler Formula**. Disponível em http://mathworld.wolfram.com/ EulerFormula.html. Acessado em 23/06/2012.
- [3] LAMAR, V. M. Modulação em Amplitude. Disponível em http://www.cic.unb.br/~lamar/te060/Apostila/Capitulo2.pdf. Acesso em 23/06/2012.
- [4] BF494, BF495 NPN Medium-Frequency Transistors. Disponível em http://www.datasheetcatalog.org/datasheet/philips/BF494B.pdf. Acesso em 23/06/2012.