Advanced Mathematics

Second order differential equations. Laplace Transform.

- 1. (*) The solutions of the characteristic equation associated to a linear, second order ODE with constant coefficients are $\lambda_1 = -1$ and $\lambda_2 = 0$. Find the differential equation and its general solution. Do the same for the case $\lambda_1 = -1$ y $\lambda_2 = 2$.
- 2. Find the general solutions of the following differential equations:
 - 1) y'' y = 0 2) y'' 8y' + 15y = 0 3) y'' 3y' 10y = 0. 4) y'' 6y' + 25y = 0
 - 5) 2y'' + 2y' + 3y = 0 6) y'' + 2y' + y = 0 7) y'' + 4y = 0
- 3. Find the general solutions of the following non-homogeneous differential equations:

 - 1) $y'' + 3y' 10y = 6e^{4x}$ 2) $y'' 4y' + 4y = 2e^{2t} + \frac{t}{2}$ 3) $y'' 3y' + 2y = 14\sin(2x) 18\cos(2x)$ 4) $y'' + 4y = 3\sin(x)$ 5) $y'' 2y' + 2y = e^x\sin(x)$ 6) $2y'' 4y' 8y = -50\cos(3x) 40\sin(3x)$.
- 4. Solve the following boundary value problem:

$$x'' + x' - 6x = 0$$
, $x(0) = 1$ and $x(\infty) = 0$.

- 5. Solve the following initial and boundary value problems:

- 1) y'' 5y' + 6y = 0, $y(1) = e^2$, $y'(1) = 3e^2$ 2) y'' 6y' + 9y = 0, y(0) = 3, y'(0) = 11 3) $2y'' y' + 2y = e^{4x}$, y(0) = 3, y'(0) = 2 4) y'' y' 5y = 1, $\lim_{x \to \infty} y(x) = -\frac{1}{5}$ 5) $y'' 5y' + 6y = 2e^{-2t}(9\sin(2t) + 4\cos(2t))$, $\lim_{t \to \infty} y(t) = 0$.
- 6. (*) Assume that the roots of the polinomial $\lambda^2 + a\lambda + b = 0$ have negative real part. Prove that every solution to the ODE x'' + ax' + bx = 0 satisfies $\lim_{t\to\infty} x(t) = 0$.
- 7. (*) Let a, b and c be three positive constants. Prove that the difference between any two of the solutions of the equation ax'' + bx' + cx = g(t), where $g: \mathbb{R} \to \mathbb{R}$ is a continuous function, converges to zero when $t \to \infty$.
- 8. Consider the ODE $x'' + a_1x' + a_0x = q(t)$, with $a_0 \neq 0$, where q is a polinomial of degree 2. Prove that there is a particular solution of the equation which is also a polinomial of degree 2.
- 9. Consider the ODE $x'' + a_1x' + a_0x = q(t)$.
 - a) If $q(t) = e^{\alpha t}$, prove that the equation admits a particular solution of one of this forms: $Ae^{\alpha t}$ when α is not a root of the characteristic equation, $Ate^{\alpha t}$, when α is a simple root of the characteristic equation, and $At^2e^{\alpha t}$ in the case that α is a double root of the characteristic equation.
 - b) If $q(t) = \cos \alpha t$, prove that the equation admits a particular solution of the forms $A \cos \alpha t + B \sin \alpha t$ or $t(A\cos\alpha t + B\sin\alpha t)$, if $\pm\alpha i$ are roots of the characteristic equation.
- 10. **Damped Oscilator** A disk, fixed to a mass m, is inmersed in a fluid that performs a damping force (ie. friction) $-b\frac{dx}{dt}$. The elastic restoring force of a spring is -kx. Write and solve the equation for the damped spring (See Figure ??).

Figure 1: Damped oscilator

11. (*) In an RLC circuit (Resistor, inductor, capacitor, see Figure??) the potential drop on each element are given by:

Resistance: $V_R = -RI$

Inductor: $V_L = -L\frac{dI}{dt}$ Capacitor: $\frac{dV_C}{dt} = -\frac{1}{C}I(t)$ (where R, L, and C are constants and I is the current, dependent on time). If E(t) denotes the voltage of a battery, find the differential equation of the system under Kirchoff laws. Take the derivative of the final expression and compare with the previous exercise.

Figure 2: RLC circuit

12. a) (*) Given $f: \mathbb{R} \to [0, \infty)$. Assume that $Lf(s_0) := \int_0^\infty f(t)e^{-s_0t}dt$ exists for some $s_0 > 0$ and also $\lim_{t\to\infty} e^{-s_0t} f(t) = 0$. Prove that, for all $s > s_0$ the following integral has a finite value:

$$Lf(s) = \int_0^\infty f(t)e^{-st}dt.$$

The function Lf is the Laplace Transform of the function f. Verify that the domain of Lf is at least $[s_0,\infty).$

- b) Verify the following table of transforms:

- 1) f(x) = 1 has $Lf(s) = \frac{1}{s}$ 2) f(x) = x has $Lf(s) = \frac{1}{s^2}$ 3) $f(x) = e^{-\alpha x}$ has $Lf(s) = \frac{1}{s+\alpha}$ 4) $f(x) = \sin \beta x$ has $Lf(s) = \frac{\beta}{s^2+\beta^2}$. 5) $f(x) = \cos \beta x$ has $Lf(s) = \frac{s}{s^2+\beta^2}$. 6) Find Lf(s), where $f(x) = e^{3x} \sin x$.
- 13. Prove the following properties of the Laplace transform:
 - a) For functions f and g and $\alpha, \beta \in \mathbb{R}$ we have that $L(\alpha f + \beta g) = \alpha L f + \beta L g$.
 - b) If f is twice differentiable, then Lf'(s) = sLf(s) f(0) and $Lf''(s) = s^2Lf(s) sf(0) f'(0)$.
- 14. Find the Laplace transform of the following functions:

$$f(t) = \left\{ \begin{array}{ll} x \sin x, & x \ge 3 \\ 0, & x < 3 \end{array} \right., \quad \text{and} \quad g(t) = \left\{ \begin{array}{ll} x, & 0 \le x < 1 \\ 0, & x \ge 1. \end{array} \right.$$

- 15. Consider the functions:
 - 1) $Lf(s) = \frac{1}{s+3}$ 2) $Lf(s) = \frac{4}{s^2+3s+1}$ 3) $Lf(s) = \frac{s}{s^2-4s+3}$ 4) $Lf(s) = \frac{s-7}{25+(s-7)^2}$ 5) $Lf(s) = \frac{s+1}{s^2+1}$. in each case find f, ie. the inverse Laplace transform.

- 16. (*) Let $H(s) = \frac{1}{s+3}$, $H(s) = \frac{4}{s^2+3s+1}$ and $H(s) = \frac{s}{s^2-4s+3}$ be three transference functions of electric circuits. Find the differential equations for those circuits.
- 17. Solve the following initial value problems by means of the Laplace transform:

 - a) y'' 6y' + 5y = 0, y(0) = 3, y'(0) = 11 b) y'' + 4y' + 5y = 0, y(0) = 1, y'(0) = 0 c) $\begin{cases} \frac{d^2y}{dx^2} 3\frac{dy}{dx} + 2y = e^{3x} \\ y(0) = 1, y'(0) = 0 \end{cases}$ d) $\begin{cases} \frac{d^2y}{dx^2} + 5\frac{dy}{dx} + 6y = e^{-2x} \\ y(0) = 1, y'(0) = 0 \end{cases}$ e) $\begin{cases} \frac{d^2y}{dx^2} + 2\frac{dy}{dx} + y = e^{-x} + 3 \\ y(0) = 0, y'(0) = 0 \end{cases}$

LAPLACE TRANSFORM TABLE

The following functions of the independent variable t have Laplace transforms given by the functions of s on the right:

1. If
$$f(t) = 1$$
, $\forall t$ then $Lf(s) = \frac{1}{s}$

2. If
$$f(t) = \sin(\alpha t)$$
, then $Lf(s) = \frac{\alpha}{s^2 + \alpha^2}$

3. If
$$f(t) = \cos(\alpha t)$$
, then $Lf(s) = \frac{s}{s^2 + \alpha^2}$

4. If
$$f(t) = e^{-\alpha t}$$
, then $Lf(s) = \frac{1}{s+\alpha}$

5. If
$$f(t) = \sinh(\alpha t)$$
, then $Lf(s) = \frac{\alpha}{s^2 - \alpha^2}$

6. If
$$f(t) = \cosh(\alpha t)$$
, then $Lf(s) = \frac{s}{s^2 - \alpha^2}$

7. If
$$f(t) = e^{-\alpha t} \sin(\beta t)$$
, then $Lf(s) = \frac{\beta}{(s+\alpha)^2 + \beta^2}$

8. If
$$f(t) = e^{-\alpha t} \cos(\beta t)$$
, then $Lf(s) = \frac{s+\alpha}{(s+\alpha)^2+\beta^2}$

9. In general, given
$$f(t)$$
, then $L[e^{-\alpha t}f(t)](s) = Lf(s+\alpha)$

10. If
$$f(t) = t^n$$
, then $Lf(s) = \frac{\Gamma(n+1)}{s^{n+1}}$, (Γ is the Euler's Gamma function).

11. If
$$f(t) = te^{-\alpha t}$$
, then $Lf(s) = \frac{1}{(s+\alpha)^2}$

12. If
$$f(t) = t \sin(\alpha t)$$
, then $Lf(s) = \frac{2\alpha s}{(s^2 + \alpha^2)^2}$

13. If
$$f(t) = t \cos(\alpha t)$$
, then $Lf(s) = \frac{s^2 - \alpha^2}{(s^2 + \alpha^2)^2}$

14. In general, given
$$f(t)$$
, then $L[t^n f(t)](s) = (-1)^n \frac{\partial^n Lf(s)}{\partial s^n}$