

Principal Component Analysis

~Abhishek Kumar

PCA

Unsupervised

Curse of dimensionality

- Data points
 - # of skidding incidents
 - # of burst water pipes
 - Snow-plow expenditure
 - # of school closures
 - # of patient with heat stroke
 - ~~ Temperature

Curse of dimensionality

Dataset which are high dimensional

• Examples?

Machine learning are statistical methods

Dimensionality grows, less observation

More dimensions ----- Sparse dataset

Dealing with High diemsionality

- Domain knowledge
- Make assumptions about dimension
 - Independence
 - Smoothness
 - Symmetry
- Reduce the dimensionality
 - Create new set of dimension

Goal

Represent instances with fewer variables

Two ways

- Feature Selection
 - Pick a subset of original dimension

- Feature extraction
 - Construct new set of dimension

Principal Component Analysis

- Defines the set of principal components
- 1st: direction of the greatest variability
- 2nd: perpendicular to 1st
- 3rd:perpendicular to 2nd and so on
- m << d

Why greatest variablity

Taking a picture

Covariance Eigenvector

- Center data to zero
- Compute co-variance metrics
- Multiply a vector by \Σ:
- Want vector which are not turned

Finding Eigenvectors

How many dimensions?

- Eigenvector e₁ ----- e_d
- Eigenvalue = variance across e_i
- Pick e_i that explains most variance

Pick first m eigenvector which covers 90% of the total variance

Use scree-plot

PCA

- 1. Correlated High dimensional data
- 2. Center the points (want dimension of highest variance)
- 3. Compute Covariance metrics
- 4. Find Eigenvectors and Eigenvalues
- 5. Pick m<d eigenvectors with highest eigenvalues
- 6. Project data points to those eigenvectors
- 7. Uncorrelated low-d data

Issues

- Covariance extremely sensitive to large values
- Multiply one attribute by large number
- Dominates covariance
- Becomes principal component
- Normalize each dimension to zero mean and unit variance
- PCA assume underlying space is linear

Discussion

Thank you!