Approximate Chemical Shifts of Carbons in ¹³C-NMR Spectra

Type of Carbon	Chemical Shift (δ)
I° Alkyl, RCH₃	0-40
2° Alkyl, RCH₂R	10–50
3° Alkyl, RCHR ₂	15–50
Alkyl halide or amine, ————————————————————————————————————	10–65
(X = Cl, Br, or N-)	
ı	
Alcohol or ether, —C—O	50–90
Alkyne, —C≡	60–90
Alkene, C=	100–170
Aryl, C—	100–170
Nitriles, —C≡N	120–130
$\begin{array}{c c} & O & & \\ & \parallel & & \\ & Amides, & -C-N- & \end{array}$	150–180
Carboxylic acids, esters, $-C-O$	160–185
Aldehydes, ketones, —C—	180–215

Approximate Chemical Shifts of Hydrogens in ¹H-NMR Spectra

Type of Hydrogen	Chemical Shift (δ)
—С—С Н ₃	0.9
$C=C-CH_3$	1.6
C≡C−H	1.8
N—H	I–3
O—H	2–5
O R-O-C-CH ₃	
$R-O-C-CH_3$	2.0
O C—C H 3	
Ċ−C <mark>H</mark> ₃	2.2
N—CH ₃	2.2
I—CH ₃	2.2
$N \equiv C - CH_3$	2.2
Ph—CH ₃	2.3
Br—CH ₃	2.7
Cl—CH ₃	3.0
O—CH ₃	3.3
Ö	
O C-O-C H ₃	3.7
O_2N-CH_3	4.1
F—CH ₃	4.2
C=C\H	5.5–6.5
H	7–8
O C—H C—O—H	10
O 	12

Note that these positions are only approximate. Furthermore, most of these positions are given for CH₃ groups. CH₂ groups appear farther downfield by about 0.3 ppm and CH groups by about 0.7 ppm.