Assignment 4

Due Friday, Nov 17, 2017 at 11:59pm. Individual assignment. No group work allowed. Weight: 5% of the final grade.

Question 1:

Let there be 3 processes: P0, P1, and P2. Let there be 1 resource type A with 2 instances.

Then a snapshot of an unsafe state may look like this:

	<u>Allocation</u>	<u>Max</u>	<u>Available</u>	<u>Need</u>
	Α	Α	Α	Α
P0	1	2	1	0
P1	0	2		2
P2	0	1		1

Let the following be a sequence of execution leading to a deadlock: **P1-P0-P2**Upon granting the 1 available resource to P1, both resources are allocated to P0 and P1 respectively, but neither has enough resources to finish executing. Thus, a deadlock occurs.

Let the following be a sequence of execution not leading to a deadlock: **P2-P0-P1**

P2: available = $1 + 0 \rightarrow 1$ P0: available = $1 + 1 \rightarrow 2$ P1: available = $2 + 0 \rightarrow 2$

Question 2:

The following state is given.

	<u>Allocation</u>	<u>Max</u>	<u>Available</u>	<u>Need</u>
	ABCDE	ABCDE	ABCDE	ABCDE
P0	10211	11213	0 0 <u>x</u> 1 2	01002
P1	20110	22210		02100
P2	11010	21310		10300
P3	11110	11221		00111

Marc-Andre Fichtel - 30014709 CPSC 457 - Fall 2017

The smallest possible value for x is 1, such that Available_{ABCDE} = (0,0,1,1,2).

The step-by-step execution order using the Safety Algorithm (i.e. Banker's Algorithm) looks as follows:

P3: available = (0,0,1,1,2) + (1,1,1,1,0) = (1,1,2,2,2)

P0: available = (1,1,2,2,2) + (1,0,2,1,1) = (2,1,4,3,3)

P2: available = (2,1,4,3,3) + (1,1,0,1,0) = (3,2,4,4,3)

P1: available = (3,2,4,4,3) + (2,0,1,1,0) = (5,2,5,5,3)