

Second Labs on Real-Time Scheduling

Guohao DAI

November 25th, 2022

Exercise 1

Let's assume the following task sharing resources R_1 , R_2 and R_3 :

	First release	WCET	D	P	Priority
T_1	6	$3: \ \ \ R_1$	6	20	4
T_2	4	$5: \begin{array}{ c c c c c c c c c c c c c c c c c c c$	11	20	3
T_3	2	$5: \begin{array}{ c c c c c c c c c c c c c c c c c c c$	15	20	2
$oxed{T_4}$	0	$5: \begin{array}{ c c c c c c c c c c c c c c c c c c c$	18	20	1

1. The Simulation of this configuration without a specific protocol for resource allocation is *not schedulable*. Because T_1 missed its deadline twice: (absolute deadline = 12; completion deadline = 17) and (absolute deadline = 32; completion deadline = 37).

- 2. The Simulation of this configuration with the Priority Inheritance protocol for resource allocation is *not schedulable*. Because T_1 and T_2 both missed its deadline twice:
 - T_1 : (absolute deadline = 12; completion deadline = 15) and (absolute deadline = 32; completion deadline = 35).
 - T_2 : (absolute deadline = 15; completion deadline = 16) and (absolute deadline = 35; completion deadline = 36).

3. The Simulation of this configuration with the Stack-based Protocol (Immediate Ceiling Inheritance Protocol) for resource allocation *is schedulable*.

Exercice 2

Let's assume the following task sharing resources R_1 , R_2 , R_3 and R_4 :

1	First release	WCET	D	P	Priority
T_1	6	$4: \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	6	20	4
T_2	4	$4: \begin{array}{ c c c c c c c c c c c c c c c c c c c$	9	20	3
T_3	2	$4: \begin{array}{ c c c c c c c c c c c c c c c c c c c$	13	20	2
T_4	0	$4: \begin{array}{ c c c c c c c c c c c c c c c c c c c$	16	20	1

The Simulation of this task configuration is *not schedulable* because of every task's WCET(capacity).

Scheduling simulation, Processor proc1: - Number of context switches: 3 - Number of preemptions: 0

⁻ Task response time computed from simulation :

T1 => 0/worst, response time not computed since the task did not run all its capacity
T2 => 0/worst, response time not computed since the task did not run all its capacity
T3 => 0/worst, response time not computed since the task did not run all its capacity
T4 => 0/worst, response time not computed since the task did not run all its capacity
One or several tasks did not complete their execution.

Exercice 3

1. Is the following task configuration schedulable on one processor with two cores using a fully global Rate Monotonic scheduler?

	First release	WCET	D	P
T_1	0	2	3	3
T_2	0	2	4	4
T_3	0	7	12	12

- This task configuration schedulable on one processor with two cores is using a fully global Rate Monotonic scheduler: "No deadline missed in the computed scheduling: the task set is schedulable if we computed the scheduling on the feasibility interval."

2. Is the following task configuration schedulable on one processor with two cores using a fully global Rate Monotonic scheduler?

	First release	WCET	D	P
T_1	0	2	4	4
T_2	0	2	4	4
T_3	0	7	12	12

The simulation of this configuration with the Priority Inheritance protocol is not schedulable, because T_3 missed its deadline three times: (absolute deadline = 12; completion deadline = 15), (absolute deadline = 24; completion deadline = 28) and (absolute deadline = 36; completion deadline = 43).

3. The conclusion is that if 2 tasks have the same periods and are synchronized, then for a dual-core processor, both cores will execute both tasks simultaneously. For the third task T_3 , it does not perform well. Compared to the second simulation, the first simulation performs task T_3 better.

Exercice 4

Let's assume the following configuration of tasks.

	First release	WCET	D	P
T_1	0	1	2	2
T_2	0	2	3	3
T_3	0	2	4	4

Exercice 5
Let's assume the following configuration of tasks.

	WCET	D	P
T_1	2	6	6
T_2	4	8	8
T_3	3	10	10
T_4	12	20	20
T_5	1	50	50
T_6	20	50	50
T_7	5	100	100
T_8	1	100	100

- 1. Is it schedulable on three processors with a partitioned First-Fit Rate Monotonic scheduler?
- 2. Same question with a partitioned First-Fit Earliest Deadline First scheduler.

ANSWER:

Firstly, we calculate the processor utilization rate of each task:

Processor 1		Proce			
$U = \sum_{i} U_i = 0.8$		$U = \sum U_i$	- 0.608	$H - \sum H$	≈ 0.733
		Task 8	$U_8 = \frac{C_8}{P_8} = \frac{1}{100}$		
		Task 7	$U_6 = \frac{C_6}{P_6} = \frac{5}{100}$		
Task 3	$U_3 = \frac{C_3}{P_3} = \frac{3}{10}$	Task 5	$U_5 = \frac{C_5}{P_5} = \frac{1}{50}$	Task 6	$U_6 = \frac{C_6}{P_6} = \frac{20}{50}$
Task 2	$U_2 = \frac{C_2}{P_2} = \frac{4}{8}$	Task 4	$U_4 = \frac{C_4}{P_4} = \frac{12}{20}$	Task 1	$U_1 = \frac{C_1}{P_1} = \frac{2}{6}$

The tasks are <u>schedulable</u> on three processors with a partitioned First-Fit Rate Monotonic scheduler and First-Fit Earliest Deadline First scheduler.

First-Fit Rate Monotonic scheduler:

Scheduling simulation, Processor proc3:
- Number of context switches: 32
- Number of preemptions: 13

T8 => 14/worst
- No deadline missed in the computed scheduling: the task set is schedulable if you computed the scheduling on the feasibility interval.

-Task response time computed from simulation : T1 ⇒ 2/worst 1 c5 ⇒ 3/worst - No deadline missed in the computed scheduling : the task set is schedulable if you computed the scheduling on the feasibility interval.

Scheduling simulation, Processor proc1: Number of context switches: 36 Number of contexts witches: 36 Number of contexts witches: 36 Number of contexts witches: 36 Number of context switches: 36 Number of context switches: 36 Number of context switches: 10 Number of context switches: 10 Number of preemptions: 0 - Task response time computed from simulation: Table 13/Worst Table 13/Worst Table 13/Worst Table 13/Worst Table 13/Worst Table 14/Worst Table 19/Worst No deadline missed in the computed scheduling: the task set is schedulable if you computed the scheduling on the feasibility interval. Scheduling simulation, Processor proc3: Number of context switches: 32 - Number of preemptions: 13 - Task response time computed from simulation: T1 => 2/Worst Table 2/Worst Table 2/Worst Table 2/Worst Table 2/Worst Table 2/Worst - No deadline missed in the computed scheduling: the task set is schedulable if you computed the scheduling on the feasibility interval.