

Calculate

Binomial

p = 0.5

probability *P* from

distribution with

Reject H_0 if $P < \alpha$

Asymmetric data?

Mann-Whitney U-test

Calculate the sum ranks for each group (W)

2 samples

Calculate U-statistic for each group n<8

- Sign-test Wilcoxon Sign-rank test Calculate sign of Calculate sign of differences from differences from reference median
 - reference median Calculate ranks, r_i Multiply ranks by their
 - sign Calculate rank sums and
 - select minimum

 - Get W_{crit} from table Reject H_0 if $W < W_{crit}$

Get
$$U_{crit}$$
 from table Reject H_0 if
$$\min(U_1, U_2) < U_{crit}$$

$$\sigma_U^2 = \frac{n_1 n_2}{2}$$

$$\sigma_U^2 = \frac{n_1 n_2 (n_1 + n_2 + 1)}{12}$$

$$Z_i = \frac{U_i - \mu_U + c_i}{\sigma_U}$$

Calculate p using Φ Reject H_0 if $p < \alpha$

H = -3(N+1)

$$+\frac{12}{N(N+1)}\sum_{i=1}^{k}\frac{W_{i}^{2}}{J_{i}}$$

>2 samples

each group

Kruskall-Wallis

Calculate the sum ranks for

- Calculate p value from
- χ^2 distribution with $\nu = I 1$ Reject H_0 if $p < \alpha$