Section 1.4 – Inverse, Exponential & Logarithmic Functions

One-to-One Function

A function f is one-to-one (1-1) if different inputs have different outputs that is,

if
$$a \neq b$$
, then $f(a) \neq f(b)$

Or if
$$f(a) = f(b)$$
, then $a = b$

Definition of Inverse Function

Let f be one-to-one function with domain D and range R. A function g with domain R and range D is the *inverse function* of f, provided the following condition is true for every x in D and every y in R:

$$y = f(x)$$
 iff $x = g(y)$

If the inverse of a function f is also a function, it is named f^{-1} read "f – inverse"

The -1 in f^{-1} is not an exponent! And is not equal to

Domain and **Range** of f and f^{-1}

domain of
$$f^{-1}$$
 = range of f

range of
$$f^{-1} = domain of f$$

Example

For the given function $f(x) = \frac{2x+3}{x+5}$

- a) Is f(x) one-to-one function
- b) Find $f^{-1}(x)$, if it exists
- c) Find the domain and range of f(x) and $f^{-1}(x)$

Solution

a)
$$f(a) = f(b)$$

$$\frac{2a+3}{a+5} = \frac{2b+3}{b+5}$$

$$2ab+10a+3b+15 = 2ab+10b+3a+15$$

$$7a = 7b$$

$$a = b \quad \checkmark$$

$$f(x) \text{ is } 1-1$$

b)
$$y = \frac{2x+3}{x+5}$$

 $xy+5y=2x+3$
 $x(y-2)=3-5y$
 $x = \frac{-5y+3}{y-2}$
 $f^{-1}(x) = \frac{-5x+3}{x-2}$

- c) Domain of $f(x) = \text{Range of } f^{-1}(x) : \mathbb{R} \{-5\}$
 - Range of $f(x) = \text{Domain of } f^{-1}(x) \colon \mathbb{R} \{2\}$

Definition (Exponential Functions)

The exponential function f with base b is defined by

$$f(x) = b^{x}$$
 or $y = b^{x}$
Base

where b > 0, $b \ne 1$ and \boldsymbol{x} is any real number.

Graphing Exponential

1. Define the Horizontal Asymptote $f(x) = b^x \pm d$ $y = 0 \pm d$

The exponential function always equals to 0 $x \to \infty$ or $x \to -\infty \Rightarrow f(x) \to 0$

2. Define/Make a table

(Force your exponential to = 0, then solve for x)

	x	f(x)	
	x-1		
	\boldsymbol{x}		
	x+1		

Domain: $(-\infty,\infty)$

Range: (d, ∞)

Example

$$f(x) = 3^{x}$$
Asymptote: $y = 0$

х	f(x)
-1	1/3
0	1
1	3

Example

Sketch
$$f(x) = 3^{x-2}$$

Solution

Shift right 2 unit

Asymptote: y = 0

Domain: \mathbb{R}

Range: $(0, \infty)$

х	f(x)
1	1/3
2	1
3	3

Example

Sketch the graph of $f(x) = 2^{-x^2}$

Solution

$$f(x) = \frac{1}{2^{x^2}}$$

Asymptote: y = 0

Domain: \mathbb{R}

Range: (0, 1]

$\boldsymbol{\mathcal{X}}$	f(x)
±0	1
±1	$\frac{1}{2}$
±2	1 16

Natural Base e

The irrational number $e \approx 2.71828$ is called natural base $f(x) = e^x$ is called natural exponential function

Example

Sketch
$$f(x) = e^{x+3} + 1$$

Solution

Asymptote: y = 1

Domain: \mathbb{R}

Range: $(1, \infty)$

x	f(x)
-4	1.4
-3	2
4	3.7

Logarithmic Function (*Definition*)

For x > 0 and $b > 0, b \ne 1$

$$y = \log_b x$$
 is equivalent to $x = b^y$

$$y = \log_b x \Leftrightarrow x = b^y$$
Base

The function $f(x) = \log_b x$ is the logarithmic function with base b.

 $\log_h x$: <u>read</u> log base b of x

log x means $log_{10} x$

ln x means $log_e x$ ln x read "el en of x"

Example

Write the equation in its equivalent exponential form:

$$3 = \log_7 x \qquad \Rightarrow x = 7^3$$

Write the equation in its equivalent logarithmic form:

$$2^5 = x \qquad \Rightarrow 5 = \log_2 x$$

Basic Logarithmic Properties

$$\log_b b = 1 \quad \rightarrow \quad b = b^1 \qquad \qquad \log_b 1 = 0 \quad \rightarrow 1 = b^0$$

Inverse Properties

$$\log_b b^x = x \qquad \qquad b^{\log_b x} = x$$

Change-of-Base Logarithmic

$$\log_b M = \frac{\log_a M}{\log_a b} \qquad \qquad \log_b M = \frac{\log M}{\log b} \quad \textit{or} \quad \log_b M = \frac{\ln M}{\ln b}$$

Domain

The domain of a logarithmic function of the form $f(x) = \log_b x$ is the set of all positive real numbers. (*Inside* the log has to be > 0)

 $Range: \mathbb{R}$

Example

Find the domain of

- a) $f(x) = \log_4(x-5)$
- Domain: x > 5
- $b) \quad f(x) = \ln(4 x)$
- *Domain*: x < 4
- c) $h(x) = \ln(x^2)$
- **Domain**: $\mathbb{R} \{0\}$ or $\{x | x \neq 0\}$ or $(-\infty, 0) \cup (0, \infty)$

Graphs of Logarithmic Functions

Example

Graph $g(x) = \log(x-2)+1$

Solution

Asymptote: x = 2

Domain: x > 2

Range: \mathbb{R}

\boldsymbol{x}	g(x)
-2	
2.5	.7
3	1
4	1.3

Example

Graph $f(x) = \log_3 |x|$ for $x \neq 0$

Solution

$$f(-x) = \log_3 |-x| = \log_3 |x| = f(x)$$

 \therefore The graph is symmetric with respect to the *y*-axis.

Asymptote: x = 0

Domain: $\mathbb{R} - \{0\}$

Range: \mathbb{R}

Exercises Section 1.4 – Inverse, Exponential & Logarithmic Functions

(1-9) Determine whether the function is *one*-to-*one*

1.
$$f(x) = 3x - 7$$

4.
$$f(x) = \sqrt[3]{x}$$

7.
$$f(x) = (x-2)^3$$

2.
$$f(x) = x^2 - 9$$

$$f(x) = |x|$$

8.
$$y = x^2 + 2$$

$$3. \qquad f(x) = \sqrt{x}$$

6.
$$f(x) = \frac{2}{x+3}$$

9.
$$f(x) = \frac{x+1}{x-3}$$

10. Given the function $f(x) = (x+8)^3$

a) Find
$$f^{-1}(x)$$

b) Graph f and f^{-1} in the same rectangular coordinate system

c) Find the domain and the range of f and f^{-1}

(11-38) For the given functions

a) Is f(x) one-to-one function

b) Find $f^{-1}(x)$, if it exists

c) Find the domain and range of f(x) and $f^{-1}(x)$

11.
$$f(x) = \frac{2x}{x-1}$$

20.
$$f(x) = \frac{3x-1}{x-2}$$

30.
$$f(x) = 2 - 3x^2$$
; $x \le 0$

12.
$$f(x) = \frac{x}{x-2}$$

21.
$$f(x) = \frac{3x-2}{x+4}$$

31.
$$f(x) = 2x^3 - 5$$

13.
$$f(x) = \frac{x+1}{x-1}$$

22.
$$f(x) = \frac{-3x - 2}{x + 4}$$

32.
$$f(x) = \sqrt{3-x}$$

14.
$$f(x) = \frac{2x+1}{x+3}$$

23.
$$f(x) = \sqrt{x-1}$$
 $x \ge 1$

33.
$$f(x) = \sqrt[3]{x} + 1$$

15.
$$f(x) = \frac{3x - 1}{x - 2}$$

24.
$$f(x) = \sqrt{2-x}$$
 $x \le 2$

34.
$$f(x) = (x^3 + 1)^5$$

16.
$$f(x) = \frac{2x}{x-1}$$

25.
$$f(x) = x^2 + 4x$$
 $x \ge -2$

35.
$$f(x) = x^2 - 6x$$
; $x \ge 3$

17.
$$f(x) = \frac{x}{x-2}$$

26.
$$f(x) = 3x + 5$$

36.
$$f(x) = (x-2)^3$$

18.
$$f(x) = \frac{x+1}{x-1}$$

27.
$$f(x) = \frac{1}{3x - 2}$$

37.
$$f(x) = \frac{x+1}{x-3}$$

19.
$$f(x) = \frac{2x+1}{x+3}$$

28.
$$f(x) = \frac{3x+2}{2x-5}$$

38.
$$f(x) = \frac{2x+1}{x-3}$$

29.
$$f(x) = \frac{4x}{x-2}$$

- 39. Simplify the expression $\frac{\left(e^x + e^{-x}\right)\left(e^x + e^{-x}\right) \left(e^x e^{-x}\right)\left(e^x e^{-x}\right)}{\left(e^x + e^{-x}\right)^2}$
- **40.** Simplify the expression $\frac{\left(e^x e^{-x}\right)^2 \left(e^x + e^{-x}\right)^2}{\left(e^x + e^{-x}\right)^2}$
- (41 52)Write the equation in its equivalent logarithmic form

41.
$$2^6 = 64$$

45.
$$b^3 = 343$$

42.
$$5^4 = 625$$

46.
$$8^y = 300$$

43.
$$5^{-3} = \frac{1}{125}$$

47.
$$\sqrt[n]{x} = y$$

44.
$$\sqrt[3]{64} = 4$$

48.
$$\left(\frac{2}{3}\right)^{-3} = \frac{27}{8}$$

49.
$$\left(\frac{1}{2}\right)^{-5} = 32$$

50.
$$e^{x-2} = 2y$$

51.
$$e = 3x$$

52.
$$\sqrt[3]{e^{2x}} = y$$

(53-64) Write the equation in its equivalent exponential form

53.
$$\log_5 125 = y$$

57.
$$\log_6 \sqrt{6} = x$$

61.
$$\log_{\sqrt{3}} 81 = 8$$

54.
$$\log_4 16 = x$$

58.
$$\log_3 \frac{1}{\sqrt{3}} = x$$

62.
$$\log_4 \frac{1}{64} = -3$$

55.
$$\log_5 \frac{1}{5} = x$$

59.
$$6 = \log_2 64$$

63.
$$\log_4 26 = y$$

56.
$$\log_2 \frac{1}{8} = x$$

60.
$$2 = \log_9 x$$

64.
$$\ln M = c$$

(65-71) Evaluate the expression without using a calculator

65.
$$\log_{4} 16$$

67.
$$\log_6 \sqrt{6}$$

69.
$$\log_3 \sqrt[7]{3}$$

71.
$$\log_{\frac{1}{2}} \sqrt{\frac{1}{2}}$$

66.
$$\log_2 \frac{1}{8}$$

68.
$$\log_3 \frac{1}{\sqrt{3}}$$
 70. $\log_3 \sqrt{9}$

70.
$$\log_3 \sqrt{9}$$

(72 - 80) Simplify

72.
$$\log_{5} 1$$

75.
$$10^{\log 3}$$

78.
$$\ln e^{x-5}$$

73.
$$\log_{7} 7^2$$

76.
$$e^{2+\ln 3}$$

79.
$$\log_b b^n$$

74.
$$3^{\log_3 8}$$

77.
$$\ln e^{-3}$$

80.
$$\ln e^{x^2 + 3x}$$

(81 - 108) Find the domain of

81.
$$f(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

82.
$$f(x) = \frac{e^{|x|}}{1 + e^x}$$

83.
$$f(x) = \sqrt{1 - e^x}$$

84.
$$f(x) = \sqrt{e^x - e^{-x}}$$

85.
$$f(x) = \log_5(x+4)$$

86.
$$f(x) = \log_5(x+6)$$

87.
$$f(x) = \log(2 - x)$$

88.
$$f(x) = \log(7 - x)$$

89.
$$f(x) = \ln(x-2)^2$$

90.
$$f(x) = \ln(x-7)^2$$

91.
$$f(x) = \log(x^2 - 4x - 12)$$

92.
$$f(x) = \log\left(\frac{x-2}{x+5}\right)$$

$$93. \quad f(x) = \log\left(\frac{3-x}{x-2}\right)$$

$$94. \quad f(x) = \ln\left(\frac{x^2}{x-4}\right)$$

$$95. \qquad f(x) = \log_3(x^3 - x)$$

96.
$$f(x) = \log \sqrt{2x-5}$$

97.
$$f(x) = 3\ln(5x-6)$$

$$98. \qquad f(x) = \log\left(\frac{x}{x-2}\right)$$

99.
$$f(x) = \ln(x^2 + 4)$$

100.
$$f(x) = \ln|4x - 8|$$

101.
$$f(x) = \ln(x^2 - 9)$$

102.
$$f(x) = \ln |5 - x|$$

103.
$$f(x) = \ln(x-4)^2$$

104.
$$f(x) = \ln(x^2 - 4)$$

105.
$$f(x) = \ln(x^2 - 4x + 3)$$

106.
$$f(x) = \ln(2x^2 - 5x + 3)$$

107.
$$f(x) = \log(x^2 + 4x + 3)$$

108.
$$f(x) = \ln(x^4 - x^2)$$

(109 - 129) Find the *asymptote*, *domain*, and *range* of the given functions. Then, sketch the graph

109.
$$f(x) = 2^x + 3$$

110.
$$f(x) = 2^{3-x}$$

111.
$$f(x) = \left(\frac{2}{5}\right)^{-x}$$

112.
$$f(x) = -\left(\frac{1}{2}\right)^x + 4$$

113.
$$f(x) = 4^x$$

114.
$$f(x) = 2 - 4^x$$

115.
$$f(x) = -3 + 4^{x-1}$$

116.
$$f(x) = 1 + \left(\frac{1}{4}\right)^{x+1}$$

117.
$$f(x) = e^{x-2}$$

118.
$$f(x) = 3 - e^{x-2}$$

119.
$$f(x) = e^{x+4}$$

120.
$$f(x) = 2 + e^{x-1}$$

121.
$$f(x) = \log_{4} (x-2)$$

122.
$$f(x) = \log_4 |x|$$

123.
$$f(x) = (\log_4 x) - 2$$

124.
$$f(x) = \log(3-x)$$

125.
$$f(x) = 2 - \log(x+2)$$

125.
$$f(x) = 2 - \log(x + 2)$$

126.
$$f(x) = \ln(x-2)$$

127.
$$f(x) = \ln(3-x)$$

128.
$$f(x) = 2 + \ln(x+1)$$

129.
$$f(x) = 1 - \ln(x - 2)$$

130. On a study by psychologists Bornstein and Bornstein, it was found that the average walking speed *w*, in feet per second, of a person living in a city of population *P*, in *thousands*, is given by the function:

$$w(P) = 0.37 \ln P + 0.05$$

- a) The population is 124,848. Find the average walking speed of people living in Hartford.
- b) The population is 1,236,249. Find the average walking speed of people living in San Antonio.
- **131.** The loudness of sounds is measured in a unit called a decibel. To measure with this unit, we first assign an intensity of I_0 to a very faint sound, called the threshold sound. If a particular sound has intensity I, then the decibel rating of this louder sound is

$$d = 10\log \frac{I}{I_0}$$

Find the exact decibel rating of a sound with intensity $10,000I_0$

132. Students in an accounting class took a final exam and then took equivalent forms of the exam at monthly intervals thereafter. The average score S(t), as a percent, after t months was found to be given by the function

$$S(t) = 78 - 15 \log(t+1); \quad t \ge 0$$

- a) What was the average score when the students initially took the test, t = 0?
- b) What was the average score after 4 months? 24 months?
- **133.** Starting on the left side of a standard 88–*key* piano, the frequency, in *vibrations* per *second*, of the *n*th note is given by

$$f(n) = (27.5) 2^{\frac{n-1}{12}}$$

- a) Determine the frequency of middle C, key number 40 on an 88-key piano.
- b) Is the difference in frequency between middle C (key number 40) and D (key number 42) the same as the difference in frequency between D (key number 42) and E (key number 44)?