Бэггинг и случайные леса

Повторение

Предсказание стоимости квартиры

• Линейная модель с полиномиальными признаками:

Решающее дерево

- Внутренние вершины: предикаты $\left[x_{\!\scriptscriptstyle j} < t\right]$
- Листья: прогнозы $c \in \mathbb{Y}$

Решающее дерево

gini = 0.0

samples = 84

value = [0, 84]

Решающее дерево

Сложность дерева

- Решающее дерево можно строить до тех пор, пока каждый лист не будет соответствовать ровно одному объекту
- Деревом можно идеально разделить любую выборку!
- Если только нет объектов с одинаковыми признаками, но разными ответами

Решающее дерево для регрессии

Решающее дерево для регрессии

Прогнозы в листьях

- Наш выбор: константные прогнозы $c_{\mathrm{v}} \in \mathbb{Y}$
- Регрессия:

$$c_{\mathbf{v}} = \frac{1}{|R_{\mathbf{v}}|} \sum_{(\mathbf{x}_{\mathbf{i}}, \mathbf{y}_{\mathbf{i}}) \in \mathbf{R}_{\mathbf{v}}} y_{\mathbf{i}}$$

• Классификация:

$$c_{v} = \arg\max_{k \in \mathbb{Y}} \sum_{(x_{i}, y_{i}) \in R_{v}} [y_{i} = k]$$

Жадное построение

- Разберёмся на примере
- Начнём с задачи классификации

Как сравнить разбиения?

или

Энтропия

- Дискретное распределение
- Принимает n значений с вероятностями p_1,\dots,p_n
- Энтропия:

$$H(p_1, ..., p_n) = -\sum_{i=1}^{n} p_i \log p_i$$

Критерий Джини

$$H(p_1, ..., p_K) = \sum_{i=1}^K p_i (1 - p_i)$$

• Вероятность ошибки случайного классификатора, который выдаёт класс k с вероятностью p_k

Критерий информативности

$$Q(R, j, t) = H(R) - \frac{|R_{\ell}|}{|R|} H(R_{\ell}) - \frac{|R_r|}{|R|} H(R_r) \to \max_{j, t}$$

Или так:

$$Q(R, j, t) = \frac{|R_{\ell}|}{|R|} H(R_{\ell}) + \frac{|R_r|}{|R|} H(R_r) \to \min_{j, t}$$

Задача регрессии

$$H(R) = \frac{1}{|R|} \sum_{(x_i, y_i) \in R} (y_i - y_R)^2$$

$$y_{R} = \frac{1}{|R|} \sum_{(x_{i}, y_{i}) \in R} y_{i}$$

• То есть «хаотичность» вершины можно измерять дисперсией ответов в ней

Жадный алгоритм

- SplitNode (m, R_m)
- Если выполнен критерий останова, то выход
- Ищем лучший предикат: $j, t = \arg\min_{\mathbf{j}, \mathbf{t}} Q(R_m, j, t)$
- Разбиваем с его помощью объекты: $R_\ell = \left\{\{(x,y) \in R_m | \left[x_j < t\right]\right\}$, $R_r = \left\{\{(x,y) \in R_m | \left[x_j \geq t\right]\right\}$
- Повторяем для дочерних вершин: SplitNode (ℓ,R_ℓ) и SplitNode (r,R_r)

Резюме

- Решающие деревья позволяют строить сложные модели, но есть риск переобучения
- Деревья строятся жадно, на каждом шаге вершина разбивается на две с помощью лучшего из предиктов
- Алгоритм довольно сложный и требует перебора всех предикатов на каждом шаге

Неустойчивость деревьев

Устойчивость моделей

- $X = (x_i, y_i)_{i=1}^{\ell}$ обучающая выборка
- Обучаем модель a(x)
- Ожидаем, что модель устойчивая
- То есть не сильно меняется при небольших изменениях в $\it X$
- $ilde{X}$ случайная подвыборка, примерно 90% исходной

Устойчивость моделей

- $ilde{X}$ случайная подвыборка, примерно 90% исходной
- Что будет происходить с деревьями на разных подвыборках?

Композиция моделей

- У нас получилось N деревьев: $b_1(x), ..., b_N(x)$
- Объединим их через голосование большинством (majority vote):

$$a(x) = \arg\max_{y \in \mathbb{Y}} \sum_{n=1}^{N} [b_n(x) = y]$$

Выбираем класс, который выбрало выдавших класс у большинство деревьев

Композиция моделей

Композиция моделей

Голосование по большинству и усреднение

Majority vote

Majority vote

- Дано: N базовых алгоритмов $b_1(x), ..., b_N(x)$
- Композиция: класс, за который проголосовало больше всего базовых алгоритмов

$$a(x) = \arg\max_{y \in \mathbb{Y}} \sum_{n=1}^{N} [b_n(x) = y]$$

Majority vote

- Наблюдение: усреднение результатов повышает их точность
- Измерение артериального давления
- Измерение скорости света
- Усреднение соседних пикселей изображения

Композиции моделей

Общий вид: классификация

- $b_1(x), ..., b_N(x)$ базовые модели
- Каждая хотя бы немного лучше случайного угадывания
- Композиция: голосование по большинству (majority vote)

$$a_N(x) = \arg\max_{y \in \mathbb{Y}} \sum_{n=1}^N [b_n(x) = y]$$

Общий вид: регрессия

- $b_1(x), ..., b_N(x)$ базовые модели
- Каждая хотя бы немного лучше случайного угадывания
- Композиция: усреднение

$$a_N(x) = \frac{1}{N} \sum_{n=1}^{N} b_n(x)$$

Бустинг

- Каждая следующая модель исправляет ошибки предыдущих
- Например, градиентный бустинг

Бэггинг

- Bagging (<u>b</u>ootstrap <u>aggregating</u>)
- Базовые модели обучаются независимо
- Каждый обучается на подмножестве обучающей выборки
- Подмножество выбирается с помощью бутстрапа

Бутстрап

- Выборка с возвращением
- Берём ℓ элементов из X
- Пример: $\{x_1, x_2, x_3, x_4\} \rightarrow \{x_1, x_2, x_2, x_4\}$
- В подвыборке будет ℓ объектов, из них около 63.2% уникальных
- Если объект входит в выборку несколько раз, то мы как бы повышаем его вес

Случайные подпространства

- Выбираем случайное подмножество признаков
- Обучаем модель только на них
- Может быть плохо, если имеются важные признаки, без которых невозможно построить разумную модель

Виды рандомизации

- Бэггинг: случайная подвыборка
- Случайные подпространства: случайное подмножество признаков

Резюме

- Будем объединять модели в композиции через усреднение или голосование большинством
- Бэггинг композиция моделей, обученных независимо на случайных подмножествах объектов
- Можно ещё рандомизировать по признакам
- Как лучше всего?

Смещение и разброс моделей

Разложение ошибки на смещение и разброс

$$L(\mu) = \underbrace{\mathbb{E}_{x,y} \Big[\big(y - \mathbb{E}[y \mid x] \big)^2 \Big]}_{\text{шум}} + \underbrace{\mathbb{E}_{x} \Big[\big(\mathbb{E}_{X} \big[\mu(X) \big] - \mathbb{E}[y \mid x] \big)^2 \Big]}_{\text{разброс}} + \underbrace{\mathbb{E}_{x} \Big[\big(\mu(X) - \mathbb{E}_{X} \big[\mu(X) \big] \big)^2 \Big] \Big]}_{\text{разброс}}$$

• Разберём на уровне идеи

Разложение ошибки на смещение и разброс

- Ошибка модели складывается из трёх компонент
- Шум (noise) характеристика сложности и противоречивости данных
- Смещение (bias) способность модели приблизить лучшую среди всех возможных моделей
- Разброс (variance) устойчивость модели к изменениям в обучающей выборке

Смещение и разброс

- Высокое смещение может говорить о недообучении (слишком большая ошибка)
- Высокий разброс может говорить о переобучении (слишком сложная модель)

Bias-variance tradeoff

Смещение и разброс: линейная модель

Бэггинг

- Смещение $a_N(x)$ такое же, как у $b_n(x)$
- Разброс $a_N(x)$:

$$\frac{1}{N}$$
 (разброс $b_n(x)$) + ковариация $(b_n(x), b_m(x))$

- Если базовые модели независимы, то разброс уменьшается в N раз!
- Чем более похожи выходы базовых моделей, тем меньше эффект от построения композиции

Смещение и разброс: бэггинг

Случайный лес

Жадный алгоритм

 $SplitNode(m, R_m)$

- 1. Если выполнен критерий останова, то выход
- 2. Ищем лучший предикат: $j, t = \arg\min_{j,t} Q(R_{\rm m}, j, t)$
- 3. Разбиваем с его помощью объекты: $R_{\ell} = \left\{ \{(x,y) \in R_{\mathrm{m}} | [x_{\mathrm{j}} < t] \right\}$, $R_{\mathrm{r}} = \left\{ \{(x,y) \in R_{\mathrm{m}} | [x_{\mathrm{j}} \geq t] \right\}$
- 4. Повторяем для дочерних вершин: SplitNode (ℓ, R_ℓ) и SplitNode (r, R_r)

Выбор предиката

$$j, t = \arg\min_{j,t} Q(R_m, j, t)$$

• Будем искать лучший предикат среди случайного подмножества признаков размера q

Корреляция между деревьями

Hastie, Tibshirani, Friedman. The Elements of Statistical Learning.

Корреляция между деревьями

Рекомендации для q:

- Регрессия: $q = \frac{d}{3}$
- Классификация: $q = \sqrt{d}$

Случайный лес (Random Forest)

```
Для n = 1, ..., N:
```

- 1. Сгенерировать выборку $ilde{X}$ с помощью бустрапа
- 2. Построить решающее дерево $b_n(x)$ по выборке \widetilde{X}
- 3. Дерево строится, пока в каждом листе не окажется не более n_{min} объектов
- 4. Оптимальное разбиение ищется среди с случайных признаков

Выбираются заново при каждом разбиении!

Случайный лес (Random Forest)

• Регрессия:

$$a(x) = \frac{1}{N} \sum_{n=1}^{N} b_n(x)$$

• Классификация:

$$a(x) = \arg\max_{y \in \mathbb{Y}} \sum_{n=1}^{N} [b_n(x) = y]$$

Универсальный метод

- Ошибка сначала убывает, а затем выходит на один уровень
- Случайный лес не переобучается при росте N

Out-of-bag

- Каждое дерево обучается примерно на 63% данных
- Остальные объекты как бы тестовая выборка для дерева
- $X_{\rm n}$ обучающая выборка для $b_{\rm n}(x)$
- Можно оценить ошибку на новых данных:

Out-of-bag (пример)

- 4 объекта: $(x_1, y_1), (x_2, y_2), (x_3, y_3), (x_4, y_4)$
- 3 дерева:
 - Дерево b_1 : train on $(x_1, y_1), (x_2, y_2)$
 - Дерево b_2 : train on $(x_3, y_3), (x_4, y_4)$
 - Дерево b_3 : train on $(x_1, y_1), (x_2, y_2), (x_3, y_3)$

$$Q_{1} = L(y_{1}, b_{2}(x_{1}))$$

$$Q_{2} = L(y_{2}, b_{2}(x_{2}))$$

$$Q_{3} = L(y_{3}, b_{1}(x_{3}))$$

$$Q_{4} = L\left(y_{4}, \frac{1}{2}(b_{1}(x_{4}) + b_{3}(x_{4}))\right)$$

Out-of-bag (пример)

$$Q_{1} = L(y_{1}, b_{2}(x_{1}))$$

$$Q_{2} = L(y_{2}, b_{2}(x_{2}))$$

$$Q_{3} = L(y_{3}, b_{1}(x_{3}))$$

$$Q_{4} = L\left(y_{4}, \frac{1}{2}(b_{1}(x_{4}) + b_{3}(x_{4}))\right)$$

$$Q_{\text{test}} = \frac{1}{4}(Q_{1} + Q_{2} + Q_{3} + Q_{4})$$

Важность признаков

- Перестановочный метод для проверки важности j-го признака
- Перемешиваем соответствующий столбец в матрице «объекты-признаки» для тестовой выборки
- Измеряем качество модели
- Чем сильнее оно упало, тем важнее признак

Резюме

- Случайный лес метод на основе бэггинга, в котором делается попытка повысить разнообразие деревьев
- Метод практически без гиперпараметров
- Можно оценить обобщающую способность без тестовой выборки

Спасибо за внимание!

Ildar Safilo

@Ildar_Saf irsafilo@gmail.com https://www.linkedin.com/in/isafilo/