# Difusión en redes: Modelos epidemiológicos

Aníbal Olivera Morales

#### 1. Modelamiento con matemática continua

- 1. Las dos hipótesis
- 2. SI Model
- 3. Tiempo característico
- 4. SIS Model
- 5. Estado endémico y número reproductivo básico
- 6. SIR Model
- 2. Modelamiento con matemática discreta
  - 1. Degree block approximation
  - 2. Predicciones para redes libres de escala
  - 3. Tasa de difusión
  - 4. Redes de contacto

Modelamiento con matemática continua

## Modelación epidemiológica

• Hay una variada paleta de fenómenos que comúnmente son descritos como procesos de difusión en redes:

| PHENOMENA                | AGENT                     | NETWORK                          |
|--------------------------|---------------------------|----------------------------------|
| Venereal Disease         | Pathogens                 | Sexual Network                   |
| Rumor Spreading          | Information, Memes        | Communication Network            |
| Diffusion of Innovations | Ideas, Knowledge          | Communication Network            |
| Computer Viruses         | Malwares, Digital viruses | Internet                         |
| Mobile Phone Virus       | Mobile Viruses            | Social Network/Proximity Network |
| Bedbugs                  | Parasitic Insects         | Hotel - Traveler Network         |
| Malaria                  | Plasmodium                | Mosquito - Human network         |

## Modelación epidemiológica

• La representación matemática típica de una contagio se basa en cambios en *estados* básicos. (Compartmentalization)

S(t): individuos susceptibles en tiempo t.

I(t): individuos *infectados* en tiempo t.

R(t): individuos recuperados en tiempo t.

 Asumamos que cada individuo tiene la misma probabilidad de interactuar con persona infectada (Homogenous mixing)

#### SI Model

• Usemos como variables a la *proporción* de personas en cada estado

$$s(t) = S(t)/N, \quad i(t) = I(t)/N$$

• Por lo que la proporción de nuevos infectados es

$$rac{di}{dt}=eta\langle k
angle si$$

• Pero s + i = 1:

$$rac{di}{dt} = eta \langle k 
angle (1-i)i$$
 — Queremos la solución  $i(t)$ 

#### SI Model

Solución del modelo SI

$$i(t) = rac{i_0 e^{eta \langle k 
angle t}}{1 - i_0 + i_0 e^{eta \langle k 
angle t}}$$

• Existe un valor de t para el cual i(t) pprox 1/e , y lo llamamos  $tiempo\ caracter\'istico$ 

$$au = rac{1}{eta \langle k 
angle}$$



#### SIS Model

- Ya sea por el sistema inmune o por tratamiento, por lo general la gente se recupera. Vuelven al estado *S*.
- Supongamos que se recuperan a una tasa fija  $\mu$  .
- El número de infectados en el tiempo t

$$rac{di}{dt} = egin{aligned} \beta\langle k 
angle i(1-i) - \mu i \end{aligned}$$
 Nuevos Vuelven a ser infectado susceptibles

Esta ecuación tiene solución

$$i = igg(1 - rac{\mu}{eta \langle k 
angle}igg)rac{Ce^{(eta \langle k 
angle - \mu)t}}{1 + Ce^{(eta \langle k 
angle - \mu)t}}$$

#### SIS Model

Solución del modelo SIS

$$i = \left(1 - rac{\mu}{eta \langle k 
angle}
ight) rac{Ce^{(eta \langle k 
angle - \mu)t}}{1 + Ce^{(eta \langle k 
angle - \mu)t}}$$

• Estado **endémico**  $\mu < eta \langle k 
angle$ 

El número de nuevos infectados es igual al de nuevos recuperados.

• Estado libre de infección  $\mu > \beta \langle k \rangle$ 

Exponencial negativa, no infección.



#### **SIS Model**

Es decir que solo algunas infecciones son exitosas.
 ¿Qué gobierna esta diferencia?

$$au = rac{1}{eta \langle k 
angle - \mu} \quad lacksquare \quad au = rac{1}{\mu \left( R_0 - 1 
ight)}$$

• Donde definimos el *basic reproductive number* 

$$R_0=rac{eta\langle k
angle}{\mu}$$

- Si  $R_0 > 1$  , hay estado **endémico**.
- Si  $R_0 < 0$  , la infección muere.

| DISEASE                    | TRANSMISSION     | $R_0$ |
|----------------------------|------------------|-------|
| Measles                    | Airborne         | 12-18 |
| Pertussis                  | Airborne droplet | 12-17 |
| Diptheria                  | Saliva           | 6-7   |
| Smallpox                   | Social contact   | 5-7   |
| Polio                      | Fecal-oral route | 5-7   |
| Rubella                    | Airborne droplet | 5-7   |
| Mumps                      | Airborne droplet | 4-7   |
| HIV/AIDS                   | Sexual contact   | 2-5   |
| SARS                       | Airborne droplet | 2-5   |
| Influenza<br>(1918 strain) | Airborne droplet | 2-3   |

### **SIR Model**

- Ahora hay recuperación. O muerte.
- Supongamos que la tasa de recuperación promedio es  $\mu$ .

$$egin{aligned} rac{ds}{dt} &= -eta \langle k 
angle i(1-i-r) \ rac{di}{dt} &= eta \langle k 
angle i(1-i-r) - \mu i \ rac{dr}{dt} &= \mu i \end{aligned}$$
 Recuperados





SI

SIS

SIR

Exponential Regime:

Number of infected individuals grows exponentially

$$i = \frac{i_0 e^{\beta \langle k \rangle_t}}{1 - i_0 + i_0 e^{\beta \langle k \rangle_t}}$$

$$i = \left(1 - \frac{\mu}{\beta \langle k \rangle}\right) \frac{Ce^{(\beta \langle k \rangle - \mu)t}}{1 + Ce^{(\beta \langle k \rangle - \mu)t}}$$

No closed solution

Final Regime:

Saturation at  $t \rightarrow = \infty$ 

$$i(\infty) = 1$$

$$i(\infty) = 1 - \frac{\mu}{\beta \langle k \rangle}$$

$$i(\infty)=0$$

Epidemic Threshold:

Disease does not always spread

No threshold

 $R_0 = 1$ 

 $R_0 = 1$ 

Modelamiento con matemática discreta

#### Difusión en redes

• Las suposiciones con las que estábamos trabajando son falsas:

Un individuo puede transmitir un patógeno solo a aquellos con quienes entra en contacto, por lo tanto, los patógenos se propagan en una red compleja.



#### Difusión en redes

• En 2001, Pastor-Satorrás y Vestignani publicaron en *PRL* una forma de dar cuenta de la estructura de red, llamada degree block approximation

$$egin{aligned} rac{di}{dt} &= eta \langle k 
angle (1-i)i \ & igg| \ rac{di_k}{dt} &= eta k \left(1-i_k
ight) \Theta_k \end{aligned}$$

Fracción de vecinos infectados de un nodo con grado *k* susceptible



• Antes: 1 ecuación diferencial.

Ahora:  $k_{max}$  ecuaciones diferenciales acopladas.

## SI model – degree block approximation

$$rac{di_k}{dt} = eta k (1 - i_k) \Theta_k$$

Para etapas tempranas

$$rac{di_k}{dt}pproxeta k\Theta_k$$

 Para redes sin correlación de grado

$$rac{di_k}{dt}pprox eta ki_0rac{\langle k
angle-1}{\langle k
angle}e^{t/ au^{
m SI}},$$

Donde

$$au^{
m SI} = rac{\langle k 
angle}{eta \left( \langle k^2 
angle - \langle k 
angle 
ight)}$$
 Tiempo característico

## SI model – degree block approximation

• La solución analítica tiene dependencia explícita en *k* 

$$rac{di_k}{dt}pprox eta ki_0rac{\langle k
angle-1}{\langle k
angle}e^{t/ au^{ ext{SI}}}, \hspace{1cm} igsquare i_k=i_0\left[1+rac{k(\langle k
angle-1)}{\langle k^2
angle-\langle k
angle}\left(e^{t/ au^{ ext{sI}}}-1
ight)
ight]$$



Los *hubs* se enteran antes de las noticias

#### Redes libres de escala – significado de libre de escala

 Para una red con distribución <u>power-law</u>, su n-ésimo momento:

$$\langle k^n 
angle = C rac{k_{ ext{max}}^{n-\gamma+1} - k_{ ext{min}}^{n-\gamma+1}}{n-\gamma+1}$$

- Queremos ver el comportamiento para  $k_{max} \rightarrow \infty$ 
  - Todos los momentos con  $n < \gamma 1$  son finitos.
  - Todos los momentos con  $n > \gamma 1$  son infinitos.
- La desviación estándar corresponde al momento n=2.
- Típicamente, estas redes tienen  $2 < \gamma < 3$ .
- Por lo tanto, el grado de un nodo seleccionado aleatoriamente

$$k=\langle k
angle\pm\sigma_k\in[^-\infty,^+\infty]$$



#### Random Network

Randomly chosen node:  $k = \langle k \rangle \pm \langle k \rangle^{1/2}$ Scale:  $\langle k \rangle$ 

Más pequeño

que <*k*>

Scale-Free Network

Randomly chosen node:  $k = \langle k \rangle \pm \infty$ 

Scale: none

## SI model – degree block approximation

Veamos el tiempo característico según topología de red

$$au^{ ext{SI}} = rac{\langle k 
angle}{eta \left( \langle k^2 
angle - \langle k 
angle 
ight)}$$

Para red Erdös-Rényi

$$\langle k^2 
angle = \langle k 
angle (\langle k 
angle + 1) \hspace{1cm} oldsymbol{ au}^{
m SI}_{
m ER} = rac{1}{eta \langle k 
angle}$$

Para red Albert-Barábasi

Otras redes inhomogéneas

$$\langle k^2 
angle > (\langle k 
angle (\langle k 
angle + 1)) \hspace{1cm} oldsymbol{ au}^{
m SI} 
ightarrow {
m Faster}$$

Dispersión redes aleatorias

Exactamente lo que teníamos sin estructura de red!

La infección se difunde instantáneamente!!!!

A mayor inhomogeneidad, mayor rapidez

## Redes de contacto

| NETWORK            | N       | L                | $\langle k \rangle$ | $\langle k_{in}^2 \rangle$ | $\langle k_{out}^2 \rangle$ | $\langle k^2 \rangle$ | $\gamma_{\it in}$ | $\gamma_{out}$ | γ     |
|--------------------|---------|------------------|---------------------|----------------------------|-----------------------------|-----------------------|-------------------|----------------|-------|
| Internet           | 192,244 | 609,066          | 6.34                | -                          | _                           | 240.1                 | _                 | _              | 3.42* |
| WWW                | 325,729 | 1,497,134        | 4.60                | 1546.0                     | 482.4                       | -                     | 2.00              | 2.31           | -     |
| Power Grid         | 4,941   | 6,594            | 2.67                | -                          | _                           | 10.3                  | -                 | -              | Exp.  |
| Mobile Phone Calls | 36,595  | 91,826           | 2.51                | 12.0                       | 11.7                        | -                     | 4.69*             | 5.01*          | _     |
| Email              | 57,194  | 103, <b>7</b> 31 | 1.81                | 94.7                       | 1163.9                      | -                     | 3.43*             | 2.03*          | _     |

Contactos sexuales





Contactos entre aeropuertos

## Resumen – degree block approximation

| MODEL | CONTINUUM EQUATION                                                     | au                                                                                      | $\lambda_c$                               |
|-------|------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------|
| SI    | $\frac{di_k}{dt} = \beta [1 - i_k] k \theta_k$                         | $\frac{\langle k \rangle}{\beta(\langle k^2 \rangle - \langle k \rangle)}$              | 0                                         |
| SIS   | $\frac{di_k}{dt} = \beta [1 - i_k] k \theta_k - \mu i_k$               | $\frac{\langle k \rangle}{\beta \langle k^2 \rangle - \mu \langle k \rangle}$           | $\langle k \rangle$ $\langle k^2 \rangle$ |
| SIR   | $\frac{di_k}{dt} = \beta s_k \theta_k - \mu i_k$ $s_k = 1 - i_l - r_k$ | $\frac{\langle k \rangle}{\beta \langle k^2 \rangle - (\mu + \beta) \langle k \rangle}$ | $\frac{1}{\langle k^2 \rangle} - 1$       |

• Para red Albert-Barábasi

$$\lambda_{
m c}=0$$
  $au=0$ 

- <k> no es suficiente para caracterizar el comportamiento.
- A mayor variedad de grados, mayor rapidez en la difusión.

## Fin

Contagio Complejo Aníbal Olivera