Ordinal Regression Models

Categorical and Limited Dependent Variables
Paul A. Jargowsky

Probit: Latent Variable Approach

$$Y_i^* = \mathbf{x}_i \mathbf{\beta} + u_i \quad u_i \sim N(0, \sigma^2)$$
For example:
$$Y_i^* = \beta_1 + \beta_2 X_i + u_i$$

But Y_i^* is a latent (unobserved) variable, so we can assume any scale. Assume variance = 1.

$$u_i \sim N(0,1)$$

However, only Y_i is observed:

- If $Y_i^* > 0$ then $Y_i = I$
- If $Y_i^* \le 0$ then $Y_i = 0$

Examples: either you are married or not, but different people have more or less propensity to be married.

Given a specific X value, the probability of Y=1 depends on the distribution of the disturbance term.

Probability Distribution of u_i

$$\Pr(Y_i = 1 \mid X_i) = \Pr(\mathbf{x}_i \boldsymbol{\beta} + u_i > 0)$$

In General

$$Pr(Y_i = 1 | \mathbf{x}_i) = Pr(u_i < \mathbf{x}_i \boldsymbol{\beta})$$
$$= \Phi(\mathbf{x}_i \boldsymbol{\beta})$$

Note:
$$\mathbf{x}_i = [X_{2i}, ..., X_{Ki}]$$

- This is the standard equation for probit.
- This time we used an assumption about the distribution of the error term to derive it.
- If you assume a logistic distribution for the disturbance term, you get the logit model.

Ordinal Variables

- Definition?
- Examples?
 - Education (level attained vs. years)
 - Sears tool grades: good, better, best
- What about color? occupation?

$$Assume Y_i = \begin{cases} 1 & A & \text{Drop out} & \dots \\ 2 & B & \text{HS Grad} & \dots \\ 3 & C & \text{College Degree} & \dots \\ 4 & D & \text{Graduate Degree} & \dots \end{cases}$$

Subtract X_iB

By assumption, all u_i follow a standard normal distribution.

Probability of outcome $Y_i = 1$

$$P_{1i} = \Pr(Y_i = 1 \mid X_i)$$

$$= \Pr(\mathbf{x}_i \boldsymbol{\beta} + u_i < C_1)$$

$$= \Pr(u_i < C_1 - \mathbf{x}_i \boldsymbol{\beta})$$

Since
$$u_i \sim N(0,1)$$

$$\Pr(Y_i = 1 \mid X_i) = \Pr(u_i < C_1 - \mathbf{x}_i \mathbf{\beta})$$

$$= \Phi(C_1 - \mathbf{x}_i \mathbf{\beta})$$

Probability of $Y_i = 2$

$$\Pr(Y_i = 2 \mid X_i) = \Pr[(C_1 - \mathbf{x}_i \boldsymbol{\beta}) < u_i < (C_2 - \mathbf{x}_i \boldsymbol{\beta})]$$
$$= \Phi(C_2 - \mathbf{x}_i \boldsymbol{\beta}) - \Phi(C_1 - \mathbf{x}_i \boldsymbol{\beta})$$

Probability of $Y_i = 3$

$$\Pr(Y_i = 3 \mid X_i) = ??$$

$$\Pr(Y_i = 3 \mid X_i) = \Pr[(C_2 - \mathbf{x}_i \boldsymbol{\beta}) < u_i < (C_3 - \mathbf{x}_i \boldsymbol{\beta})]$$
$$= \Phi(C_3 - \mathbf{x}_i \boldsymbol{\beta}) - \Phi(C_2 - \mathbf{x}_i \boldsymbol{\beta})$$

Probability of $Y_i = 4$

$$\Pr(Y_i = 4 \mid X_i) = ??$$

$$\Pr(Y_i = 4 \mid X_i) = \Pr[u_i > (C_3 - \mathbf{x}_i \mathbf{\beta})]$$
$$= 1 - \Phi(C_3 - \mathbf{x}_i \mathbf{\beta})$$

In general, for choices j=1,2,...,J

For j = 1:

$$P_{1i} = \Pr(Y_i = 1 \mid \mathbf{x}_i) = \Phi(C_1 - \mathbf{x}_i \boldsymbol{\beta}) \quad Note : \mathbf{x}_i = [X_{2i}, ..., X_{Ki}]$$

For j = 2:

$$P_{2i} = \Pr(Y_i = 2 \mid \mathbf{x}_i) = \Phi(C_2 - \mathbf{x}_i \boldsymbol{\beta}) - \Phi(C_1 - \mathbf{x}_i \boldsymbol{\beta})$$

For j = 2, 3, ..., (J-1):

$$P_{ji} = \Pr(Y_i = j \mid \mathbf{x}_i) = \Phi(C_j - \mathbf{x}_i \boldsymbol{\beta}) - \Phi(C_{j-1} - \mathbf{x}_i \boldsymbol{\beta})$$

For j = J:

$$P_{Ji} = \Pr(Y_i = J \mid \mathbf{x}_i) = 1 - \Phi(C_{J-1} - \mathbf{x}_i \boldsymbol{\beta})$$

In general, for any
$$\mathbf{x}_i$$

Given
$$j = \{1, 2, ..., J\}$$

$$P_{ji} = \Pr(Y_i = j \mid \mathbf{x}_i)$$

$$= \Phi(C_j - \mathbf{x}_i \boldsymbol{\beta}) - \Phi(C_{j-1} - \mathbf{x}_i \boldsymbol{\beta})$$

To cover the extreme cases, we define:

$$C_0 = -\infty \qquad P_{1i} = \Phi(C_1 - \mathbf{x}_i \mathbf{\beta}) - \Phi(-\infty - \mathbf{x}_i \mathbf{\beta})$$
$$= \Phi(C_1 - \mathbf{x}_i \mathbf{\beta})$$

$$C_{J} = \infty$$

$$P_{Ji} = \Phi(\infty - \mathbf{x}_{i}\boldsymbol{\beta}) - \Phi(C_{J-1} - \mathbf{x}_{i}\boldsymbol{\beta})$$

$$= 1 - \Phi(C_{J-1} - \mathbf{x}_{i}\boldsymbol{\beta})$$

Estimation by MLE

$$Y_{i} = \{1, 2, ..., J\} \quad P_{i} = \Pr(Y_{i} \mid \mathbf{x}_{i})$$

$$\mathcal{L} = \prod_{i=1}^{n} [P_{i}] = \prod_{i=1}^{n} \left[\Phi(C_{Y_{i}} - \mathbf{x}_{i}\boldsymbol{\beta}) - \Phi(C_{Y_{i}-1} - \mathbf{x}_{i}\boldsymbol{\beta}) \right]$$

$$\ln \mathcal{L} = \sum_{i=1}^{n} \ln \left[\Phi(C_{Y_{i}} - \mathbf{x}_{i}\boldsymbol{\beta}) - \Phi(C_{Y_{i}-1} - \mathbf{x}_{i}\boldsymbol{\beta}) \right]$$

$$\ln L = \sum_{i=1}^{n} \ln \left[\Phi(C_{Y_{i}} - \mathbf{x}_{i}\hat{\boldsymbol{\beta}}) - \Phi(C_{Y_{i}-1} - \mathbf{x}_{i}\hat{\boldsymbol{\beta}}) \right]$$

$$Max(\ln L) \text{ with respect to: } \hat{\beta}_{k}, C_{i}$$

We assume independence and estimate the model using ML.

Identification Problem

$$\begin{split} \Phi\left(C_{j} - \mathbf{x}_{i}\boldsymbol{\beta}\right) &= \Phi\left(C_{j} - \hat{\beta}_{1} - \hat{\beta}_{2}X_{2i} - \ldots\right) \\ &= \Phi\left(\left(C_{j} + \boldsymbol{\delta}\right) - \left(\hat{\beta}_{1} + \boldsymbol{\delta}\right) - \hat{\beta}_{2}X_{i} - \ldots\right) \\ &= \Phi\left(\mathbf{C}_{j}' - \hat{\beta}_{1}' - \hat{\beta}_{2}X_{2i} - \ldots\right) \end{split}$$

- In other words, if we shift the intercept and cutoffs by the same amount, the probabilities and likelihoods are unaffected.
- Must make an identifying assumption.
- Most common to assume either that $\beta_1=0$ or $C_1=0$.
- Stata assumes β_I =0 (no constant).
- Slopes are unaffected by the assumption.

Identification

- In other words, if we shift the intercept and cutoffs by the same amount, the probabilities and likelihoods are unaffected.
- Must make an identifying assumption.
- Most common to assume either that $\beta_1=0$ or $C_1=0$.
- Stata assumes β_1 =0 (no constant).
- Slopes are unaffected by the assumption.

Example: Challenger Explosion

CNN Video of Challenger Disaster

name	date	time	temp	damage
1	12apr1981	0	66	None
2	12nov1981	214	70	Moderate
3	22mar1982	344	69	None
4	27jun1982	441	80	
5	11nov1982	578	68	None
6	04apr1983	722	67	None
7	18jun1983	797	72	None
8	30aug1983	870	73	None
9	28nov1983	960	70	None
41B	03feb1984	1027	57	Moderate
41C	06apr1984	1090	63	Severe
41D	30aug1984	1236	70	Severe
41G	05oct1984	1272	78	None
51A	08nov1984	1306	67	None
51C	24jan1985	1383	53	Severe
51D	12apr1985	1461	67	Severe
51B	29apr1985	1478	75	Severe
51G	17jun1985	1527	70	Severe
51F	29 jul1985	1569	81	None
51I	27aug1985	1598	76	Moderate
51J	03oct1985	1635	79	None
61A	30oct1985	1662	75	Severe
61B	26nov1985	1689	76	Severe
61C	12jan1986	1736	58	Severe
51L	28jan1986	1752	31	

shuttle.dta

$$damage = \begin{cases} 1 & \text{No damage} \\ 2 & \text{Moderate} \\ 3 & \text{Severe} \end{cases}$$

Source: Lawrence C. Hamilton, Statistics with Stata 3, p. 140 (citing Presidents Report on Challenger Accident 1986)

Ordinal Probit

. oprobit damage time temp

Iteration 0: log likelihood = -22.668661
Iteration 1: log likelihood = -16.938046
Iteration 2: log likelihood = -16.676629
Iteration 3: log likelihood = -16.674263
Iteration 4: log likelihood = -16.674263

Ordered probit regression Number of obs = 23
LR chi2(2) = 11.99
Prob > chi2 = 0.0025
Log likelihood = -16.674263 Pseudo R2 = 0.2644

 damage
 Coef.
 Std. Err.
 z
 P>|z|
 [95% Conf. Interval]

 time
 .0019099
 .0006703
 2.85
 0.004
 .0005962
 .0032236

 temp
 -.0987003
 .047242
 -2.09
 0.037
 -.1912929
 -.0061077

 /cut1
 -4.848873
 3.132957
 -10.98936
 1.29161

 /cut2
 -4.32447
 3.098891
 -10.39818
 1.749245

Initial log likelihood

$$\mathcal{L} = \prod_{i=1}^{n} P_{i} \quad \ln \mathcal{L} = \sum_{i=1}^{n} \ln P_{i} = \sum_{Y_{i}=1} \ln P_{1} + \sum_{Y_{i}=2} \ln P_{2} + \sum_{Y_{i}=3} \ln P_{3}$$

$$\ln L_0 = 11 \left[\ln (0.4783) \right] + 3 \left[\ln (0.1304) \right] + 9 \left[\ln (0.3913) \right]$$

= -22.669

The List of Things

- Different than Binary Logit/Probit
 - A: Predicted Values
 - C: Marginal Effects
 - E: Odds (only in Binary/Ordinal *Logit*)
- Same as Binary Logit/Probit
 - B: Significance of Coefficients
 - D: Discrete Changes
 - F: Goodness of Fit
 - G: Hypothesis Testing

A: Predicted Values of Y* for Mission 41C

$$\hat{Y}_{i}^{*} = \mathbf{x}_{i}\hat{\boldsymbol{\beta}} = \hat{\boldsymbol{\beta}}_{2}time_{i} + \hat{\boldsymbol{\beta}}_{3}temp_{i}$$

$$= 0.00191(1090) - 0.0987(63)$$

$$= -4.14$$

A: Predicted Values of Y* for Challenger

$$\hat{Y}_{i}^{*} = \mathbf{x}_{i}\hat{\boldsymbol{\beta}} = \hat{\beta}_{2}time_{i} + \hat{\beta}_{3}temp_{i}$$

$$= 0.00191(1752) - 0.0987(31)$$

$$= -0.27$$

A: Predicted Probabilities for Mission 41C

$$\mathbf{x}_{i}\hat{\boldsymbol{\beta}} = -4.14$$

$$\Pr(1) = \Phi(C_1 - \mathbf{x}_i \boldsymbol{\beta})$$

$$\Pr(2) = \Phi(C_2 - \mathbf{x}_i \mathbf{\beta}) - \Phi(C_1 - \mathbf{x}_i \mathbf{\beta})$$

$$\Pr(3) = 1 - \Phi(C_2 - \mathbf{x}_i \boldsymbol{\beta})$$

FYI, Code to Produce the Graphs

A: Predicted Probability of Severe Damage at 31 Degrees and Day 1752

$$\hat{Y}_{i}^{*} = \mathbf{x}_{i}\hat{\boldsymbol{\beta}} = \hat{\beta}_{2}time_{i} + \hat{\beta}_{3}temp_{i}$$

$$= 0.00191(1752) - 0.0987(31)$$

$$= 0.27$$

$$\Pr(Y_i = 3) = 1 - \Phi(C_2 - \mathbf{x}_i \hat{\boldsymbol{\beta}})$$

A: Stata Tools

Built in:

predict p1 p2 p3
predict xb, xb
margins
marginsplot

Predicted Values Linear predictor

Long and Freese (spost13): mchange

mchangeplot mtable

Long and Freese: mtable . mtable, at(temp=(30(10)80) time=(0 1090 1752))

Expression:	Pr(damage),	predict(ou	ıtcome())		
	time	temp	None	Moderate	Severe
1	,	30	0.030	0.057	0.914
2	0	40	0.184	0.169	0.647
3	0	50	0.534	0.195	0.271
4	0	60	0.858	0.087	0.055
5	0	70	0.980	0.015	0.005
6	0	80	0.999	0.001	0.000
7	1090	30	0.000	0.000	1.000
8	1090	40	0.001	0.006	0.993
9	1090	50	0.023	0.048	0.929
10	1090	60	0.157	0.158	0.686
11	1090	70	0.491	0.201	0.308
12	1090	80	0.833	0.099	0.068
13	1752	30	0.000	0.000	1.000
14	1752	40	0.000	0.000	1.000
15	1752	50	0.001	0.003	0.997
16	1752	60	0.012	0.029	0.960
17	1752	70	0.099	0.124	0.777
18	1752	80	0.382	0.207	0.411

C: Marginal Effects (on Y*)

$$\hat{Y}_{i}^{*} = \mathbf{x}_{i}\hat{\boldsymbol{\beta}} = \hat{\boldsymbol{\beta}}_{2}time_{i} + \hat{\boldsymbol{\beta}}_{3}temp_{i}$$
$$= 0.00191(time_{i}) - 0.0987(temp_{i})$$

The latent variable is continuous and linear. Effects on the latent variable are easy to calculate.

The underlying latent variable is related to temperature. The actual outcome depends and the latent variable and the disturbance term. The whole relationship rises over time. Eventually, the program hit a fourth category: catastrophic damage.

C: Marginal Effects (Probabilities)

$$\hat{P}_{j} = \Phi \left(C_{j} - \mathbf{x}_{i} \hat{\boldsymbol{\beta}} \right) - \Phi \left(C_{j-1} - \mathbf{x}_{i} \hat{\boldsymbol{\beta}} \right)$$

Effects on the probabilities are more important.

$$\frac{\partial \hat{P}_{j}}{\partial X_{k}} = \frac{\partial \Phi(C_{j} - \mathbf{x}_{i}\hat{\boldsymbol{\beta}})}{\partial X_{k}} - \frac{\partial \Phi(C_{j-1} - \mathbf{x}_{i}\hat{\boldsymbol{\beta}})}{\partial X_{k}} = \phi(C_{j} - \mathbf{x}_{i}\hat{\boldsymbol{\beta}})(-\hat{\boldsymbol{\beta}}_{k}) - \phi(C_{j-1} - \mathbf{x}_{i}\hat{\boldsymbol{\beta}})(-\hat{\boldsymbol{\beta}}_{k}) = \hat{\boldsymbol{\beta}}_{k} \left[\phi(C_{j-1} - \mathbf{x}_{i}\hat{\boldsymbol{\beta}}) - \phi(C_{j} - \mathbf{x}_{i}\hat{\boldsymbol{\beta}}) \right]$$

C: Example: Marginal Effects for Mission 41C

$$\mathbf{x}_{i}\hat{\boldsymbol{\beta}} = 0.00191(1090) - 0.0987(63) = -4.14$$

$$\frac{\partial \hat{P}_{j}}{\partial X_{k}} = \hat{\beta}_{k} \left[\phi \left(C_{j-1} - \mathbf{x}_{i} \hat{\boldsymbol{\beta}} \right) - \phi \left(C_{j} - \mathbf{x}_{i} \hat{\boldsymbol{\beta}} \right) \right]$$

$$\frac{\partial \hat{P}_{1}}{\partial temp} = (-0.0987) \left[-\phi(-4.85 + 4.14) \right]$$

$$= (0.0987)\phi(-0.71)$$

$$= (0.0987)(0.31)$$
How to calculate this?
$$= +0.0306$$

Standard Normal Density Function

$$\phi(z) = \frac{1}{\sqrt{2\pi}} e^{-\left(\frac{1}{2}\right)z^2}$$

$$\phi(-0.71) = \frac{1}{\sqrt{2\pi}} e^{-\left(\frac{1}{2}\right)(-0.71^2)}$$

$$= (0.4) e^{0.252}$$

$$= 0.31$$

- . display normalden(-0.71)
- .31006028

Not the same as capital phi (Φ) .

- . display normalden(0.71)
- .31006028

Note the symmetry.

$$\frac{\partial \hat{P}_{2}}{\partial temp} = (-0.0987) \left[\phi(-4.85 + 4.14) - \phi(-4.32 + 4.14) \right]$$

$$= (-0.0987) \left[\phi(-0.71) - \phi(-0.18) \right]$$

$$= (-0.0987) (0.31 - 0.39)$$

$$= 0.0079$$

$$\frac{\partial \hat{P}_{3}}{\partial temp} = (-0.0987) \left[\phi(-4.32 + 4.14) \right]$$

$$= (-0.0987) \left[\phi(-0.18) \right]$$

$$= (-0.0987) (0.39)$$

$$= -0.0385$$

C: Marginal Effect at the Means margins, predict(outcome(3)) dydx(time temp) atmeans Conditional marginal effects Number of obs = 23 Model VCE : OIM Expression : Pr(damage==3), predict(outcome(3)) dy/dx w.r.t. : time temp at : time = 1137.13 (mean) temp = 69.56522 (mean) | Delta-method | dy/dx Std. Err. z P>|z| [95% Conf. Interval] | time | .0007116 .0002535 2.81 0.005 .0002147 .0012084 temp | -.0367727 .0182605 -2.01 0.044 -.0725627 -.0009827

Average Marginal Effects (Arguably better)

At Specific Values margins, dydx(temp) /// at(temp=(30 40 50 60 70 80) /// time=(0 1090 1752)) predict(outcome(3)) Conditional marginal effects Number of obs = 23 Expression : Pr(damage==3), predict(outcome(3)) dy/dx w.r.t. : temp : time : time 40 temp 18._at : time 1752 Delta-method dy/dx Std. Err. z P>|z| [95% Conf. Interval] _at | 1 -.0155434 .031077 -0.50 0.617 -.0764531 2 -.0366821 .0114117 -3.21 0.001 -.0590487 -.0143155 18 | -.0383878 .0161171 -2.38 0.017 -.0699768 -.0067988

oprobit: Chang				
Expression: Pr				
	None	Moderate	Severe	
time				
+1	-0.001	0.000	0.001	
p-value	0.000	0.731	0.000	
+SD	-0.240	-0.022	0.262	
p-value	0.000	0.443	0.000	
Marginal	-0.001	0.000	0.001	
p-value	0.000	0.729	0.000	
temp				
+1	0.027	-0.001	-0.026	
p-value	0.013	0.684	0.004	
+SD	0.190	-0.023	-0.167	
p-value	0.004	0.414	0.001	
Marginal	0.027	-0.001	-0.026	
p-value	0.014	0.755	0.005	
Average predic	tions			
	None	Moderate	Severe	
		0.145	0 303	

Logit vs. Probit

The logit function can be used in a similar way.

Probit

F	Probability De	nsity Function
f(xib)		
_	X	В
_	Cumulative	e Probability
(B)	Cumulative	e Probability
F(X:B) 1	Cumulative	e Probability

Logit

$$P_i = \Phi(\mathbf{x}_i \boldsymbol{\beta}) = see \ table$$
 $P_i = \Lambda(\mathbf{x}_i \boldsymbol{\beta}) = \frac{e^{\mathbf{x}_i \boldsymbol{\beta}}}{1 + e^{\mathbf{x}_i \boldsymbol{\beta}}}$

Interesting Notes about Logit

$$P(1-P) = \Lambda(\mathbf{x}_{i}\boldsymbol{\beta})(1-\Lambda(\mathbf{x}_{i}\boldsymbol{\beta}))$$

$$= \left(\frac{e^{\mathbf{x}_{i}\boldsymbol{\beta}}}{1+e^{\mathbf{x}_{i}\boldsymbol{\beta}}}\right)\left(\frac{1}{1+e^{\mathbf{x}_{i}\boldsymbol{\beta}}}\right) = \frac{e^{\mathbf{x}_{i}\boldsymbol{\beta}}}{\left(1+e^{\mathbf{x}_{i}\boldsymbol{\beta}}\right)^{2}}$$

$$= \lambda(\mathbf{x}_{i}\boldsymbol{\beta})$$

So the logit marginal effects formula is actually comparable to the probit one.

$$\frac{\partial P_{ji}}{\partial X_k} = \phi(\mathbf{x}_i \mathbf{\beta}) \beta_k$$
$$\frac{\partial P_{ji}}{\partial X_k} = \lambda(\mathbf{x}_i \mathbf{\beta}) \beta_k$$

$$Var(normal) = 1, SD_{normal} = 1$$

$$Var(logit) = \frac{\pi^2}{3} = 3.29, SD_{logit} = 1.8$$

Ordinal Logit: Formulation

Given
$$j = \{1, 2, ..., J\}$$

$$P_{ji} = \Pr(Y_i = j \mid X_i)$$

$$= \Lambda(C_j - \mathbf{x}_i \mathbf{\beta}) - \Lambda(C_{(j-1)} - \mathbf{x}_i \mathbf{\beta})$$

$$\Lambda \left(C_j - \mathbf{x}_i \mathbf{\beta} \right) = \frac{e^{\left(C_j - \mathbf{x}_i \mathbf{\beta} \right)}}{1 + e^{\left(C_j - \mathbf{x}_i \mathbf{\beta} \right)}} = \frac{1}{1 + e^{-\left(C_j - \mathbf{x}_i \mathbf{\beta} \right)}}$$

$$\frac{\partial P_{ji}}{\partial X_k} = \hat{\beta}_k \left[\lambda \left(C_{(j-1)} - \mathbf{x}_i \hat{\mathbf{\beta}} \right) - \lambda \left(C_j - \mathbf{x}_i \hat{\mathbf{\beta}} \right) \right]$$

Ordinal Logit of Shuttle Problem

```
. ologit damage time temp

Iteration 0: log likelihood = -22.668661

Iteration 1: log likelihood = -17.142763

Iteration 2: log likelihood = -16.723266

Iteration 3: log likelihood = -16.700438

Iteration 4: log likelihood = -16.700337
```

Number of obs = Ordered logistic regression LR chi2(2) = 11.94 Prob > chi2 = 0.0026 Pseudo R2 = 0.2633 Log likelihood = -16.700337damage | Coef. Std. Err. z P>|z| [95% Conf. Interval] time | .0035179 .0014664 2.40 0.016 .0006438 .006392 temp | -.1687129 .0855747 -1.97 0.049 -.3364363 -.0009896

/cut1 | -7.923562 5.448151 /cut2 | -7.031049 5.368454 -18.60174 2.754618 -17.55303 3.490928

A. Predicted Probabilities

$$\mathbf{x}_{i}\hat{\boldsymbol{\beta}} = \hat{\beta}_{2}time_{i} + \hat{\beta}_{3}temp_{i}$$

$$= 0.00352(1752) - 0.169(31)$$

$$= 0.93$$

$$\Pr(Y_i = 3) = 1 - \Lambda \left(C_2 - \mathbf{x}_i \hat{\boldsymbol{\beta}} \right)$$
$$= 1 - \Lambda \left(-7.03 - 0.93 \right)$$
$$= 1 - \frac{1}{1 + e^{-(-7.96)}} \approx 1$$

$$Pr(Y_i = 1) = ? Pr(Y_i = 2) = ?$$

Cumulative Probabilities

$$Y_{i} = \{1, 2, 3, 4\} \qquad F = \Phi() \text{ or } \Lambda()$$

$$\Pr(Y_{i} = 4 \mid X_{i}) = 1 - F(C_{3} - \mathbf{x}_{i}\boldsymbol{\beta})$$

$$\Pr(Y_{i} = 3 \mid X_{i}) = F(C_{3} - \mathbf{x}_{i}\boldsymbol{\beta}) - F(C_{2} - \mathbf{x}_{i}\boldsymbol{\beta})$$

$$\Pr(Y_{i} = 2 \mid X_{i}) = F(C_{2} - \mathbf{x}_{i}\boldsymbol{\beta}) - F(C_{1} - \mathbf{x}_{i}\boldsymbol{\beta})$$

$$\Pr(Y_{i} = 1 \mid X_{i}) = F(C_{1} - \mathbf{x}_{i}\boldsymbol{\beta})$$

$$\Pr(Y_{i} \leq 4 \mid X_{i}) = 1$$

$$\Pr(Y_{i} \geq 3 \mid X_{i}) = F(C_{3} - \mathbf{x}_{i}\boldsymbol{\beta})$$

$$\Pr(Y_{i} \leq 2 \mid X_{i}) = F(C_{2} - \mathbf{x}_{i}\boldsymbol{\beta})$$

 $\Pr(Y_i \le 1 \mid X_i) = F(C_1 - \mathbf{x}_i \mathbf{\beta})$

These regressions have the same slope but different intercepts. Hence, they are known as parallel logits or probits. This is an implicit assumption of these ordinal models.

E. Ordinal Logit Only: Odds

$$\Omega_{Y_i \le j} = \frac{\Pr(Y_i \le 3)}{1 - \Pr(Y_i \le 3)} = \frac{\Lambda(C_3 - \mathbf{x}_i \mathbf{\beta})}{1 - \Lambda(C_3 - \mathbf{x}_i \mathbf{\beta})} \quad \text{let } C_3 - \mathbf{x}_i \mathbf{\beta} = \theta$$

$$= \frac{\left(\frac{e^{\theta}}{1 + e^{\theta}}\right)}{1 - \left(\frac{e^{\theta}}{1 + e^{\theta}}\right)} = \frac{e^{\theta}}{1 + e^{\theta} - e^{\theta}} = e^{\theta}$$

So the odds of "up to category j" vs. "higher than j" is: $\Omega_j = e^{C_j - \mathbf{x}_i \mathbf{\beta}}$

The odds of "higher than j" vs. "up to category j" is one over that:

$$\Omega_{Y>j} = \frac{1}{\Omega_{Y\leq j}} = \frac{1}{e^{C_j - \mathbf{x}_i \beta}} = e^{-(C_j - \mathbf{x}_i \beta)}$$

Odds Ratios in Ordinal Logit:

$$C_{i} - \mathbf{x}_{i}\mathbf{\beta} = C_{i} - \beta_{1} - \beta_{2}X_{2i} - \dots - \beta_{k}X_{ki} - \dots - \beta_{K}X_{Ki}$$

Now increase X_k by one unit (\mathbf{x}'_i) :

$$C_{j} - \mathbf{x}_{i}' \boldsymbol{\beta} = C_{j} - \beta_{1} - \beta_{2} X_{2i} - \dots - \beta_{k} (X_{ki} + 1) - \dots - \beta_{K} X_{Ki}$$
$$= C_{j} - \beta_{1} - \beta_{2} X_{2i} - \dots - \beta_{k} X_{ki} - \beta_{k} - \dots - \beta_{K} X$$

Odds of j or less vs. more than j:

$$\frac{\Omega'_{Y \le j}}{\Omega_{Y \le j}} = \frac{e^{C_j - \beta_1 - \beta_2 X_{2i} - \dots - \beta_k X_{ki} - \beta_k - \dots - \beta_K X_{ki}}}{e^{C_j - \beta_1 - \beta_2 X_{2i} - \dots - \beta_k X_{ki} - \dots - \beta_K X_{ki}}} = e^{-\beta_k} \quad \text{The minus is confusing, so...}$$

Odds of more than j vs. j or less:

$$\frac{\Omega'_{Y>j}}{\Omega_{Y>j}} = \frac{e^{-\left(C_j - \beta_1 - \beta_2 X_{2i} - \dots - \beta_k X_{ki} - \beta_k - \dots - \beta_K X_{Ki}\right)}}{e^{-\left(C_j - \beta_1 - \beta_2 X_{2i} - \dots - \beta_k X_{ki} - \dots - \beta_K X_{Ki}\right)}} = e^{\beta_k}$$
 That's better. And it doesn't matter which j.

And Don't Forget...

- Same as Binary Logit/Probit (and all MLE)
 - B: Significance of Coefficients
 - Asymptotically normal, z test for H_0 : $\beta_k=0$
 - D: Discrete Changes: $\Delta P = P_2 P_1$
 - 1 unit change in X_k
 - Dummy = 1 vs. 0
 - − F: Goodness of Fit − Pseudo R²
 - G: Hypothesis Testing
 - Test for the Model
 - Test for subset of Coefficient

Getting Wild: Heteroskedastic Ordered Probit

$$Y_{i}^{*} = \mathbf{x}_{i} \mathbf{\beta} + \mathbf{u}_{i} \qquad u_{i} \sim N(0, \sigma_{i}^{2})$$

$$\sigma_{i} = e^{\mathbf{z}\gamma} \quad \mathbf{z}\gamma = \gamma_{1} + \gamma_{2}z_{2i} + \dots + \gamma_{k}z_{Ki}$$

$$P_{ji} = \Phi\left(\frac{C_{j} - \mathbf{x}_{i}\mathbf{\beta}}{e^{\mathbf{z}\gamma}}\right) - \Phi\left(\frac{C_{j-1} - \mathbf{x}_{i}\mathbf{\beta}}{e^{\mathbf{z}\gamma}}\right)$$

$$\mathbf{\mathcal{L}} = \dots$$

See Alvarez and Brehm (1998). "Speaking in Two Voices: American Equivocation About the Internal Revenue Service," American Journal of Political Science 42: 418-452.