

Estudante: Barbara Letícia da Silva.

Prontuário: CJ3029921.

1° Semestre.

Professor: Josivan Pereira da Silva.

Disciplina: Arquitetura de Computadores - CJOARQC.

Atividade de Pesquisa e Resolução de Exercícios Conversão entre Sistemas Numéricos – Decimal, Hexadecimal e Octal

Parte 1 – Decimal ↔ Hexadecimal (sem passar por binário).

Tarefa de Pesquisa

Pesquise como realizar conversões diretas:

- De decimal para hexadecimal sem passar pelo binário.
- De hexadecimal para decimal sem passar pelo binário.

Dica: Observe que a base decimal é 10 e a base hexadecimal é 16, e que o processo envolve divisões sucessivas por 16 ou expansão posicional com potências de 16.

Explique como foi o método que você achou para converter diretamente de **Decimal** para **Hexa**, e de **Hexa** para **decimal**, **sem passar por binário**, tem que ser conversões diretas.

Explique os métodos que descobriu:

R: Método para converter Decimal para Hexadecimal (Direto)

O processo baseia-se em divisões sucessivas por 16. Você divide o número decimal por 16, anota o resto (convertendo valores de 10 a 15 para A-F), e repete o processo

com o quociente até que ele se torne zero. O número hexadecimal é formado pelos restos escritos na ordem inversa (do último ao primeiro).

Método para converter Hexadecimal para Decimal (Direto)

O processo utiliza soma ponderada por potências de 16. Cada dígito hexadecimal (convertendo letras A-F em valores de 10 a 15) é multiplicado por 16ⁿ, onde n é a posição do dígito (contada da direita para a esquerda, começando em zero). O resultado decimal é a soma de todos esses produtos.

Esses métodos são totalmente diretos, envolvendo apenas operações entre as bases 10 e 16, sem qualquer intermediação do binário.

Exercícios (após a pesquisa), resolva e mostre os resultados:

1. Converter 754₁₀ para hexadecimal.

A Figura abaixo apresenta a resolução do exercício número 1.

1 754 10 para hereaderimal				
754 20 15		+ JAMESSO (A)		
-64 47 116				
114 -32 (2)	2152	\$1 (987) ()		
-112 (15)	4	consertendo		
(2)	Q: 2F2 11			

Figura 1

2. Converter 4821₁₀ para hexadecimal.

A Figura abaixo apresenta a resolução do exercício número 2.

2) 4821 14	gara hereadecen	nal
4821 10		
48	301 L16	(a) (437 (s)
\$21	-16 18 L16	12135
-16	-141 -16 (1)	1 Ronvertendo
(5)	128 (2)	B: 12D5 16
	(13)	

Figura 2

3. Converter $9F_{16}$ para decimal.

A Figura abaixo apresenta a resolução do exercício número 3.

Figura 3

4. Converter 3B7₁₆ para decimal.

A Figura abaixo apresenta a resolução do exercício número 4.

Figura 4

Parte 2 – Sistema Octal (novo sistema a pesquisar).

Tarefa de Pesquisa

Pesquise:

• O que é o sistema octal (base 8)?

R: O sistema octal é um sistema de numeração posicional que utiliza 8 símbolos (dígitos de 0 a 7) para representar valores. Sua base é 8, sentido cada posição representa uma potência de 8.

• Onde e para que ele é usado em computação?

R: Historicamente, o octal foi amplamente utilizado em computação como uma alternativa mais compacta ao binário, especialmente em sistemas que trabalhavam com múltiplos de 3 *bits* (como *mainframes* antigos ou para representar permissões de arquivo em *UNIX/Linux*). Porém, hoje foi substituído em grande parte pelo hexadecimal (mais eficiente para representar *bytes* de 8 *bits*). Ainda é relevante em contextos específicos, como permissões de arquivo em sistemas baseados em *UNIX*.

• Como converter entre **decimal** ↔ **octal** diretamente?

R: Decimal para Octal:

Método: Divisões sucessivas por 8.

Divide-se o número decimal por 8, anota-se o resto, e repete-se o processo com o quociente até que ele não seja divisível por oito ou seja igual a zero. O número octal é formado pelos restos lidos na ordem inversa (do último ao primeiro).

Octal para Decimal:

Método: Soma ponderada por potências de 8.

Cada dígito octal é multiplicado por 8ⁿ (onde n é a posição do dígito, começando por 0 da direita para a esquerda). O resultado decimal é a soma desses produtos.

• Como converter entre **binário** ↔ **octal**?

R: Binário para Octal:

Método: Agrupamento de 3 bits (da direita para a esquerda).

Agrupa-se os *bits* binários em conjuntos de 3 (completando com zeros à esquerda se necessário). Cada grupo de 3 *bits* é convertido diretamente em seu dígito octal equivalente.

Octal para Binário:

Método: Conversão direta dígito a dígito.

Cada dígito octal é expandido para seu equivalente binário de 3 *bits*. A sequência binária final é a junção desses grupos.

Dica: Cada dígito octal equivale a 3 bits binários.

Explique como foi o método que você achou para converter de **Decimal** para

Octal, e de binário para octal.

Explique os métodos que descobriu:

R: Decimal → **Octal:** Divisões sucessivas por 8 (restos lidos na ordem inversa).

Octal → Decimal: Soma de dígitos multiplicados por potências de 8.

Binário → **Octal:** Agrupamento de *bits* em trios e conversão direta.

Octal → **Binário:** Substituição de cada dígito octal por 3 *bits*.

Todos esses métodos são diretos e não necessitam de intermediários como o hexadecimal. A relação chave é que cada dígito octal corresponde exatamente a 3 *bits* binários, simplificando a conversão entre essas bases.

Exercícios (após a pesquisa):

a) Decimal ↔ Octal

1. Converter 256_{10} para octal.

A Figura abaixo apresenta a resolução do exercício número A1.

Figura A1

2. Converter 437₁₀ para octal.

A Figura abaixo apresenta a resolução do exercício número A2.

Figura A2

3. Converter 745₈ para decimal.

A Figura abaixo apresenta a resolução do exercício número A3.

Figura A3

4. Converter 1273₈ para decimal.

A Figura abaixo apresenta a resolução do exercício número A4.

(4) (12738)
321\$
1273
3×8°= 3×1=3
7×81 = 7×8 = 56
$2 \times 8^2 = 2 \times 64 = 128$
$1 \times 8^3 = 1 \times 512 = 512$
3+56+128+512
R: 699 10

Figura A4

b) Binário \leftrightarrow Octal

1. Converter 110101_2 para octal.

A Figura abaixo apresenta a resolução do exercício número B1.

B) BÎNÁRIO - OCTAL					
1 110 101 2	110 101 2				
210	210				
1 10	101				
$\emptyset \times 2^{\emptyset} = \emptyset \times 1 = \emptyset +$	1×2 = 1×1 = 1+				
$1 \times 2^2 = 4 \times 2 = 2 +$	$1 \times 0^1 = 1 \times 0 = 0 +$				
1 × 2 = 1 × 4 = 4 +	1 x 2 = 1 x 4 = 4 +				
$\phi + 2 + 4 = 6$	1+0+4=5				
a: 65 8					

Figura B1

2. Converter 111100110_2 para octal.

A Figura abaixo apresenta a resolução do exercício número B2.

(2) 111 100 110 2			
210	219	210	
111	100	110	
1×2 = 1×1 = 1+	0x2=0x1=0	$\phi \times 2^{\circ} = \phi \times 1 = \phi$	
$1 \times 2^{1} = 1 \times 2 = 2 +$	1 x 21 = p x 2= p	$1 \times 2^1 = 1 \times 2 = 2$	
1 x 2 2 = 1 x 4 = 4 +	1×22=1×4=4	$1 \times 2^{d} = 1 \times 4 = 4$	
1+2+4=7	0+0+4=4	\$ + 2 + 4 = 6	
R: 746 8			

Figura B2

3. Converter 457₈ para binário.

A Figura abaixo apresenta a resolução do exercício número B3.

3 457 8	zpara si	Prásis	(8 8 F & L) (A
100 10	7117 ->	conversão	direta
	getal,	Binavier	X S II = S X C
	ϕ	\$ \phi \phi	= + 02 =
	1	$\phi\phi\perp$	
TAGELA	2,	= \$1\$	= 9020
VÁLIDA P/	3 21	411	28+5
EXERAÇÃOS	4	100	
354	5	141	
	6	110	
	7	JADDI	- क्षेत्रेक्ष (8

Figura B3

4. Converter 732₈ para binário.

A Figura abaixo apresenta a resolução do exercício número B4.

Figura B4

Reflexão Final

Depois de realizar as conversões com o sistema **octal**, responda:

• Você encontrou semelhanças entre as conversões envolvendo **octal** e as conversões que já estudamos com **hexadecimal**?

R: Sim, encontrei várias semelhanças. Ambas são sistemas numéricos posicionais que servem como uma espécie de "atalho" que são mais compactos para representar números binários.

• Quais são essas semelhanças?

R: A principal semelhança está na relação direta com o binário. O hexadecimal agrupa 4 *bits* (16 = 2^4) e o octal agrupa 3 *bits* (8 = 2^3). Ambas as conversões para binário são feitas substituindo cada dígito pelo seu equivalente em binário com o número fixo de *bits* (3 para **octal**, 4 para **hexadecimal**). A conversão para decimal também segue a mesma lógica: multiplicar cada dígito pela base elevada à posição e somar os resultados.

• Você saberia converter de **Octal** ↔ **Decimal** ? Pesquise e aprenda, posso pedir na prova.

R: Sim, sei converter. Para converter de octal para decimal, é preciso usar a notação posicional: multiplicar cada dígito por 8 elevado à potência de sua posição (começando da direita com 8^0) e somar os resultados. Para converter de decimal para octal, é preciso fazer divisões sucessivas por 8 e anotar os restos de trás para frente.

• Você saberia converter de **Octal** ↔ **Binário** ? Pesquise e aprenda, aqui não é o ensino médio; se vire com o que já sabe e aprenda, sozinho, coisas novas e relacionadas.

R: Sim, é bem direto. Como 8 é 2³, cada dígito octal corresponde exatamente a 3 *bits*. Para converter octal para binário, é necessário substituir cada dígito pelo seu equivalente em binário com 3 dígitos. Exemplo: 57₈ = 101 111₂ (pois 5₈ = 101₂ e 7₈ = 111₂). Para converter binário para octal, agruparemos os *bits* de trás para frente em grupos de 3, se necessário completar com zeros à esquerda, e converter cada grupo para seu dígito octal correspondente.

Referências Bibliográficas

Binário x Decimal x Hexadecimal: Conheça os sistemas de numeração.

Disponível em: https://embarcados.com.br/binario-decimal-hexadecimal-sistemas-de-numeracao/

Acesso em 31 de Agosto de 2025.

Sistema de numeração: Binário, Octal, Decimal e Hexadecimal. Disponível em:

https://growthcode.com.br/programacao/sistemas-de-numeracao-binario-octal-decimal-e-hexadecimal/

Acesso em 31 de Agosto de 2025.

Arquitetura de Computadores/CJOARQ Conversão de Números Decimais e Binários - Prof. Dr Josivan.

Disponível em : https://suap.ifsp.edu.br/media/private-media/edu/material_aula/cee47aeccb94-3c45eb89becd465ba5b31206580151f3.pdf?
st=d7yzoMSiL3zYh07OdacOpQ&e=1756751177

Acesso em 31 de Agosto de 2025.