Rettelser

Fatal: Mere teori om impedans-tilpasningen - AB	6
Fatal: Men hvorfor er det vigtigt? Teorien bag! - AB	6
Fatal: Find ud af at lave det i matlab!!!! LS	7
Fatal: Start mere generelt. Mere teori om lydm før vi angriber enheden. Mere teori om impedans-tilpasningen - AB	9
Fatal: Men hvorfor er det vigtigt? Teorien bag! - AB	10
Fatal: Find ud af at lave det i matlabill LS	10

Ingeniørhøjskolen Aarhus

E6Bac - Forprojekt

Forbedring af Bas-Gengivelse v. Placering af Resonans-Rør

Rapport

GRUPPE 1

Navn	${\bf Studienummer}$
Alexander Dahl Bennedsen(E)	201310498
Lasse Stenhøj Kofoed(E)	201407500
Thomas Skovgaard Rasmussen(E)	201406754

DATO: 30. MAJ 2017

Indholdsfortegnelse

${f Indholds for tegnelse}$	3
Kapitel 1 Projektformulering	5
Kapitel 2 Teori	6
2.1 Højtaler	6
2.2 Kabinet	8
Kapitel 3 Simuleringer	9
3.1 Højtaler	9
3.2 Kabinet	11
3.3 Rum	11
Kapitel 4 Målinger 1	12
4.1 Måleteknik	12
Kapitel 5 Konklusion 1	13
Litteratur 1	14

Resume

Noget klogt her

Projektformulering

For at undgå akustisk kortslutning af en højtalerenhed, har man gennem historien fundet forskellige metoder til at modvirke dette fysiske fænomen. Den akustiske kortslutning forekommer ved de laveste frekvenser, hvor bølgelængden er meget stor ift. højtalerenhedens overfladeareal, og dermed er enheden ikke i stand til at danne differens i luftrykket mellem enhedens for- og bagside.

Ved at sætte enheden i et kabinet, kan man undgå denne akustiske kortslutning i høj grad, og ydermere udnytte kabinettets egen-resonans til at forbedre højtalerenhedens gengivelse af de lavere frekvenser.

Denne resonans er beskrevet som det princip man kalder for ventileret kabinet, eller "basreflex-kabinet"; Et princip der benytter et rør i kabinettet, som, ved korrekt afstemning, kan en forstærkning ved resonans og dermed opnå et højere gain ved de laveste frekvenser. En billigere løsning end slave-kabinettet og mere effektiv løsning end det lukkede kabinet.

Vores projekt vil, foruden at designe et sådan kabinet, gå på at eksperimentere med at opnå et yderligere gain ved de laveste frekvenser ud fra placering af røret i kabinettet, samt refleksion fra nærtliggende overflader.

Formålet med projektet er, at ramme et afstandsmæssigt "sweet-spot", hvor røret danner yderligere konstruktiv interferens med overfladen den er i nærheden af, og dermed giver mulighed for at forstærke basgengivelsen yderligere.

Hertil ønskes en konklusion på, hvorvidt disse parametre vil gøre en psyko-akustisk forskel for brugeren.

2.1 Højtaler

En elektrodynamisk højtaler omsætter elektrisk energi til akustisk energi vha en svingspole som sætter højtalerens membran i svingninger som dermed frembringer lyd. Som model taler man oftest om en elektrisk model for selve svingspolens kobbermodstand og selvinduktion, en mekanisk model for membranens masse og udsvingets begrænsning, samt en akustisk model for lydens udstråling. De tre modeller har en stor kobling idét der udveksles energi på tværs af modellerne. Dermed kan den impedansen for den elektriske model afspejle de andre modellers indvirkning på højtalerens Thiele-Small-parametre beskrevet i tabel 3.1.

¹ Højtaleren der benyttes til projektet er en 6.5"mellemtone elektrodynamisk højtaler af mærket FW168[1] fra firmaet Fountek [2].

På figur 3.1 ses den komplette model for højtalerens elektriske, mekaniske og akustiske model.[3] Komponentværdierne og forklaringen af disse, kan ses i tabel 3.1.

Figur 2.1. Komplet model fro højtalerens elektrisk, mekaniske- og akustiske system.

Omregner man modellen til en komplet elektrisk model, kan man udregne den elektriske impedans Z_E for modellen. Denne impedans har et toppunkt ved højtalerens resonansfrekvens, og en minimumsværdi ved svingspolens R_E -værdi. ²

Med værdierne fra tabel 3.1, som er opgivet i højtalerens datablad[1], udregnes den elektriske impedans for højtaleren i ligning 3.1

$$Z_E(s) = R_E + sL_E + \frac{Bl^2}{\omega_s M_{MS}} \frac{\omega_s s}{s^2 + \frac{1}{Q_{MS}} \omega_s s + \omega_s^2}$$

$$(2.1)$$

¹FiXme Fatal: Mere teori om impedans-tilpasningen - AB

²FiXme Fatal: Men hvorfor er det vigtigt? Teorien bag! - AB

Thiele-Small parameter	Symbol	Værdi for FW168
Svingspolens DC modstand	R_E	7.2Ω
Svingspolens selvinduktion	L_E	1mH
Elektrisk godhed	Q_{ES}	0.452
Masse af bevægeligt system	M_{MS}	14.7g
Eftergivelighed af styr	C_{MS}	0.821mm/N
Mekanisk godhed	Q_{MS}	3.246
Mekanisk tabsmodstnd	R_{MS}	$\frac{1}{Q_{MS}} \sqrt{\frac{M_{MS}}{C_{MS}}} = 1.304 Ns/m$
Resonansfrekvens	f_s	$\frac{1}{2\pi\sqrt{M_{MS}C_{MS}}} = 45.813Hz$
Ækvivalent volumen	V_{AS}	$16.5L = 0.017m^3$
Kraftfaktor	Bl	8.2Tm
Membranens effektive areal	S_D	$119cm^2$
Maksimal lineær bevægelse	X_{MAX}	$4.6mm\pm$

$$=7.2\Omega+s\cdot 1mH+\frac{(8.2Tm)^2}{287.8Hz\cdot 14.7gm}\frac{287.8Hz\cdot s}{s^2+\frac{1}{3.246}287.8Hz\cdot s+(287.8Hz)^2} \eqno(2.2)$$

Impedansen vil være størst ved højtalerensresonansfrekvens f_s , som beregnes i ligning 3.3. Dette toppunkts maksimumværdi er givet ved ligning 3.4

$$f_s = \frac{1}{2\pi\sqrt{M_{MS}C_{MS}}} = 45.813Hz \tag{2.3}$$

$$Z_{max} = R_E + \frac{Bl^2}{RMS} = 58.781\Omega \tag{2.4}$$

På figur 3.1^3 ses plottet af ligning 3.1 med værdierne for højtaleren. Kurveforløbet stemmer overens med det beregnede toppunkt f_s og minimumsværdien R_E . Kurveforløbet stemmer ligeledes overens med det opgivne i databladet [1].

³FiXme Fatal: Find ud af at lave det i matlab!!!! LS

 ${\it Figur~2.2.}$ Den elektriske impedans Z_E som funktion af frekvensen

2.2 Kabinet

Ting og sager...

Simuleringer 3

Kort introduktion til kapitlet...

3.1 Højtaler

¹ Højtaleren der benyttes til projektet er en 6.5"mellemtone elektrodynamisk højtaler af mærket FW168[1] fra firmaet Fountek [2].

På figur 3.1 ses den komplette model for højtalerens elektriske, mekaniske og akustiske system.[3] Komponentværdierne og forklaringen af disse, kan ses i tabel 3.1.

Figur 3.1. Komplet model fro højtalerens elektrisk, mekaniske- og akustiske system.

Omregner man modellen til en komplet elektrisk model, kan man udregne den elektriske impedans Z_E for modellen. Denne impedans har et toppunkt ved højtalerens

¹FiXme Fatal: Start mere generelt. Mere teori om lydm før vi angriber enheden. Mere teori om impedans-tilpasningen - AB

Thiele-Small parameter	Symbol	Værdi for FW168
Svingspolens DC modstand	R_E	7.2Ω
Svingspolens selvinduktion	L_E	1mH
Elektrisk godhed	Q_{ES}	0.452
Masse af bevægeligt system	M_{MS}	14.7g
Eftergivelighed af styr	C_{MS}	0.821mm/N
Mekanisk godhed	Q_{MS}	3.246
Mekanisk tabsmodstnd	R_{MS}	$\frac{1}{Q_{MS}} \sqrt{\frac{M_{MS}}{C_{MS}}} = 1.304 Ns/m$
Resonansfrekvens	f_s	$\frac{1}{2\pi\sqrt{M_{MS}C_{MS}}} = 45.813Hz$
Ækvivalent volumen	V_{AS}	$16.5L = 0.017m^3$
Kraftfaktor	Bl	8.2Tm
Membranens effektive areal	S_D	$119cm^{2}$
Maksimal lineær bevægelse	X_{MAX}	$4.6mm\pm$

resonansfrekvens, og en minimumsværdi ved svingspolens R_E -værdi. 2

Med værdierne fra tabel 3.1, som er opgivet i højtalerens datablad[1], udregnes den elektriske impedans for højtaleren i ligning 3.1

$$Z_E(s) = R_E + sL_E + \frac{Bl^2}{\omega_s M_{MS}} \frac{\omega_s s}{s^2 + \frac{1}{Q_{MS}} \omega_s s + \omega_s^2}$$

$$(3.1)$$

$$=7.2\Omega + s \cdot 1mH + \frac{(8.2Tm)^2}{287.8Hz \cdot 14.7gm} \frac{287.8Hz \cdot s}{s^2 + \frac{1}{3.246}287.8Hz \cdot s + (287.8Hz)^2}$$
(3.2)

Impedansen vil være størst ved højtalerensresonansfrekvens f_s , som beregnes i ligning 3.3. Dette toppunkts maksimumværdi er givet ved ligning 3.4

$$f_s = \frac{1}{2\pi\sqrt{M_{MS}C_{MS}}} = 45.813Hz \tag{3.3}$$

$$Z_{max} = R_E + \frac{Bl^2}{RMS} = 58.781\Omega \tag{3.4}$$

På figur 3.1 ³ ses plottet af ligning 3.1 med værdierne for højtaleren. Kurveforløbet stemmer overens med det beregnede toppunkt f_s og minimumsværdien R_E . Kurveforløbet stemmer ligeledes overens med det opgivne i databladet [1].

²FiXme Fatal: Men hvorfor er det vigtigt? Teorien bag! - AB

³FiXme Fatal: Find ud af at lave det i matlab!!!! LS

 ${\it Figur~3.2.}$ Den elektriske impedans Z_E som funktion af frekvensen

3.2 Kabinet

Ting og sager...

3.3 Rum

Ting og sager...

Målinger 4

Kort introduktion til kapitlet...

4.1 Måleteknik

Ting og sager...

Konklusion 5

Her skal der stå noget meget klogt

Litteratur

- [1] Fountek. FW168 Midwoofer Datasheet, 2017.
- [2] Fountek Electronic Co. Ltd. Fountek. URL https://www.fountek.net. Last Visited d. 24/05-2017.
- [3] Tore Arne Skogberg. *Elektroakustik*. 2016. Bilag: Elektroakustik.pdf.