Московский физико-технический институт (государственный университет) Факультет общей и прикладной физики

Лабораторная работа №2.2, 2.3

(Общая физика: квантовая физика)

Изучение спектров атома водорода и молекулы иона

Работу выполнили: Вихлянцев Константин, Цедрик Андрей, группа Б01-109

г. Долгопрудный 2023 год

Цель работы: Исследовать спектральные закономерности в оптическом спектре водорода. По результатам измерений вычислить постоянную Ридберга. Исследовать спектр поглощения паров йода в видимой области; по результатам измерения вычислить энергию колебательного кванта молекулы йода и энергию ее диссоциации в основном и возбужденном состояниях.

1. Теоретическое введение

1.1 Спектр водорода

Длины волн спектральных линий водородоподобного атома описываются формулой Бальмера:

$$\frac{1}{\lambda_{mn}} = RZ^2 \left(\frac{1}{n^2} - \frac{1}{m^2} \right) \tag{1}$$

В нашей работе изучается серия Бальмера, т.е. переходы при n=2 и линии m=3,4,5,6, обозначаемые как $H_{\alpha},H_{\beta},H_{\gamma},H_{\delta}.$

1.2 Спектр йода

Рис. 1: Электронные и электронноколебательные энергетические уровни двухатомной молекулы

Оптические переходы (переходы, связанные с излучением фотонов в видимом диапазоне длин волн, т. е. фотонов с энергией порядка двух электрон-вольт) соответствуют переходам между различными электронными состояниями молекулы. При этом обычно происходят также изменения ее вращательного и колебательного состояний.

Энергетическое положение линий поглощения описывается выражением

$$h\nu_{(0,n2)} = E_2 - E_1 + h\nu_2 \left(n_2 + \frac{1}{2}\right) - \frac{h\nu_1}{2}$$
 (2)

2. Выполнение работы

Сначала выполним градуировку монохроматора. Проведем серию измерений для линий спектра неона, а затем ртути, снимая зависимость длины волны света от параметра θ барабана монохроматора. Погрешность измерения параметра определим как $\sigma_{\theta}=5^{\circ}$ Результаты занесем в таблицу и построим график зависимости, профитировав функцию $\lambda(\theta)$ по следующей формуле:

$$\lambda = a \cdot \theta^3 + b \cdot \theta^2 + c \tag{3}$$

	ı			
№ линии	θ , °	λ, \mathring{A}		
Линии спектра неона				
1.	2944	7032		
2.	2916	6929		
3.	2850	6717		
4.	2836	6678		
5.	2812	6599		
6.	2788	6533		
7.	2778	6507		
8.	2740	6402		
9.	2734	6383		
10.	2714	6334		
11.	2704	6305		
12.	2686	6267		
13.	2666	6217		
14.	2644	6164		
15.	2646	6143		
16.	2616	6096		
17.	2606	6074		
18.	2586	6030		
19.	2560	5976		
20.	2546	5945		
21.	2517.5	5882		
22.	2500	5852		
23.	2240	5401		
24.	2202	5341		
25.	2192	5331		
Линии спектра ртути				
<i>K</i> 1	2902	6907		
K2	2674 623			
1.	2470 579			
2.	2456	5770		
3.	2278	5460		
4.	1854	4916		
5.	1192	4358		
6.	634	4047		
	1	1		

Таблица 1: Градуировка монохроматора

Рис. 2: Градуировка монохроматора по спектральным линиям неоновой и ртутуной ламп

	Estimate	Standard Error
$a \ [\mathring{A} \cdot 10^{-8}]$	9.72	0.07
$b \ [\mathring{A} \cdot 10^{-5}]$	4.50	0.50
$c \ [\mathring{A} \cdot 10^3]$	4.07	0.009

Таблица 2: Фит рис. 2 функцией (3)

Рассмотрим линии спектра водорода и из градуировочной кривой опеределим их длины волн. Результаты сведем в таблицу и построим график связи длины волны и номера перехода, проверяя формулу Бальмера (1):

Линия спектра	θ , °	$\lambda, \ \mathring{A}$	m	$\frac{1}{n^2} - \frac{1}{m^2}$	$\frac{1}{\lambda}$, $10^{-4}\mathring{A}^{-1}$	$\sigma_{\frac{1}{\lambda}}, 10^{-4} \mathring{A}^{-1}$
H_{lpha}	2792	6535	3	0.139	1.53	0.046
H_{eta}	1798	4780	4	0.188	2.09	0.062
H_{γ}	1198	1198	5	0.21	2.32	0.069

Таблица 3: Определение линий спектра водорода

Рис. 3: Проверка формулы Бальмера

	Estimate	Standard Error
a	11.0729	0.057
b	-0.00154	0.00890

Таблица 4: Фит рис. 3 функцией y = ax + b

Отсюда можно определить постоянную Ридберга

$$R = (110729 \pm 570) \text{ cm}^{-1}$$

Теперь измерим спектр молекулы йода. Определим на монохроматоре деления, соответствующие длинноволновой линии и линии, отстоящей на 6 от нее, а также границу схождения спектра.

- 1. $\theta_{1,0} \approx 2620, \ \lambda_{1,0} \approx 6126 \ \mathring{A}, \ \nu_{1,0} \approx 4.9 \cdot 10^{14} \ \Gamma$ ц, $h\nu_{1,0} \approx 2.03 \ {\rm эB}$
- 2. $\theta_{1,5} \approx 2510, \; \lambda_{1,5} \approx 5890 \; \mathring{A}, \; \nu_{1,5} \approx 5.1 \cdot 10^{14} \; \Gamma$ ц, $h\nu_{1,5} \approx 2.11 \; \mathrm{эB}$
- 3. $\theta_{\rm rp} \approx 1990,~\lambda_{\rm rp} \approx 5014~\mathring{A},~\nu_{\rm rp} \approx 6.0 \cdot 10^{14}~\Gamma$ ц, $h\nu_{\rm rp} \approx 2.47~{\rm pB}$

Отсюда энергия колебательного кванта возбужденного состояния молекулы йода согласно (2)

$$h\nu_2 = \frac{h\nu_{1,5} - h\nu_{1,0}}{5} = 0.016 \pm 0.008 \text{ sB}$$

Вычислим по формуле (2) разницу $E_2 - E_1 = h\nu_{\rm эл}$, сделав сдвиг серии на 1 (вычтя $h\nu_1$):

$$h\nu_{\text{\tiny 9J}} = h\nu_{1,0} - \frac{1}{2}h\nu_2 + \frac{3}{2}h\nu_1 \approx 2,06 \pm 0,02 \text{ 9B}$$

Отсюда по рисунку рис. 1 получаем энергии диссоциации частицы в основном (D_1) и возбужденном состоянии, считая $E_a=0.94$ эВ:

$$D_1 = h\nu_{rp} - E_a \approx 1.53 \pm 0.03$$
9B, $D_2 = h\nu_{rp} - h\nu_{gg} \approx 0.41 \pm 0.05$ 9B

3. Вывод

Мы изучили спектры в оптических спектрах водорода и йода, экспериментально проверили справедливость формулы Бальмера и нашли постоянную Ридберга, которая в пределах погрешность совпадает с табличной ($R=109677.6~{\rm cm}^{-1}$), и оценили энергии квантов возбужденного состояния молекулы, энергию диссоциации частиц и энергию электронного перехода.