INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI

Department of Chemical Engineering

CL 651 – Foundations of Data Science for Engineers

Assignment-5

Function Approximation Methods

Date:10/04/2022

Q1. For the following data find the pearson correlation for the pairs $(x; y_1)$ and $(x; y_2)$ and comment on the relationships between variables in each pair.

\boldsymbol{x}	1	3	10	2	9	6	<i>10</i>	1	5	2
y_1	3	9	<i>30</i>	6	27	18	<i>30</i>	3	15	6
y_2	4	12	103	7	84	39	103	4	28	7

Q2. For the data given below, find the Spearman's correlation and comment on the relation between x and y.

1	\boldsymbol{x}	2	3	-1	2	2	-1	-2	1	4	0
	y	4	9	1	4	4	1	4	1	16	0

Q3. For the data given below, Find Kendall's correlation and test the hypothesis that the two quantiles are uncorrelated

					24					
у	10	6	12	11	12	5	15	9	11	12

Q4. Consider following data set where x is the number of units sold and y is the profit. If the true relation between x and y is linear, $y = \beta_0 + \beta_1 x$ find the parameters β_0 and β_1 , that best fits the data. Comments on the validity of assumption made on the noise/error using q-q plot

X	1	2	3	4	5	6	7	8	9	10
y	4.04	6.56	10.67	13.73	16.14	19.14	21.94	25.67	27.98	30.64

Q5. If the test set is as shown below, calculate R^2 and comment on the performance of the linear model estimated in Q4.

2	C	25 26		27	28	29	30
3	7	101.75	105.75	109.75	113.75	117.75	121.75

Q6. For the problem discussed in Q4, before production, the manager derived from first principles that the relation between y and x is $y = 1.25 + \beta_1 x$ with $\beta_1 = 3$. Comment whether the data given can be thought as coming from the true model given that the error variance is 1.2.

Q7. A food delivery chain was analyzing the time required to deliver the food and recorded the following information

Distance between hotel and destination (d)	8.2	10.7	9	8.2	6.4	9.7	6.6	13.4	14.5	5.8
Number of items in the order (n)	7	5	5	7	1	2	1	7	6	7
Time for delivery (t)	32.35	38.08	33.03	32.11	21.74	32.77	22.69	47.73	50.53	24.85

- i. Find out the linear model relating time for delivery (t) to independent variables distance d and the number of items (n).
- ii. Find r-squared and adjusted r-squared for the model built in part (i).
- iii. Fit a normal distribution to the residual/error between true time and predicted time.

 Draw the q-q plot and comment on the validity of assumption.

Q8. A company produces 3 different items A,B and C. The data below shows the sale of these items in one day and the profit made by the company on that day

(Sales of item A)	8	11	9	8	6	10	7	13	14	6
x_2 (Sales of item B)	6	4	15	7	1	1	0	7	6	7
(Sales of item C)	49	40	23	39	6	32	7	47	26	21
Profit (y)	93.26	89.76	60.78	79.34	28.23	75.83	32.74	105.59	79.68	48.86

- i. find the best multi-linear model using backward elimination
- ii. find the best multi-linear model using forward elimination
- **Q9.** Consider the data given in Q8, Build the best multi-linear model using Lasso regression.

Q.10. Manufacturing cost of cylindrical tank of various surface areas are given below: If the model to predict y is given by, $\hat{y} = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3$. Perform ridge regression to find the optimal parameters of the model.

Curved Surface Area (x_1)	15	17	16	15	14	16	14	19	20	14
Base Area (x_2)	7	5	5	7	1	2	1	7	6	7
Total Area (x_3)	22	22	21	22	15	18	15	26	26	21
Cost (y)	797.2	793.8	758.7	792.5	536.4	651.1	543.2	937.1	943.1	755.2