

Equilibrio e stabilità di sistemi dinamici

Criteri di stabilità per sistemi dinamici LTI

## Criteri di stabilità per sistemi dinamici LTI

- Introduzione ai criteri di stabilità
- Regola dei segni di Cartesio
- Criterio di Routh-Hurwitz
- Esempi di applicazione del criterio di Routh
- Criterio di Jury
- Esempi di applicazione del criterio di Jury



Criteri di stabilità per sistemi dinamici LTI

Introduzione ai criteri di stabilità

## Introduzione ai criteri di stabilità (1/2)

I criteri fino ad ora considerati per lo studio della stabilità interna di sistemi dinamici, a dimensione finita, MIMO, lineari e stazionari (LTI), richiedono la conoscenza degli autovalori della matrice A di stato del sistema ⇒ richiedono il calcolo esplicito delle radici del polinomio caratteristico

$$p(\lambda) = \det(\lambda I - A) = a_n \lambda^n + a_{n-1} \lambda^{n-1} + \ldots + a_1 \lambda + a_0$$

- ightharpoonup I criteri che verranno ora introdotti permettono di studiare la stabilità dei sistemi dinamici LTI senza richiedere il calcolo esplicito delle radici di  $p(\lambda)$ 
  - ⇒ sono di particolare utilità nei casi in cui
    - Non si abbiano a disposizione strumenti di calcolo
    - ullet Il polinomio  $p(\lambda)$  dipenda da parametri variabili

## Introduzione ai criteri di stabilità (2/2)

### In particolare:

- La Regola dei segni di Cartesio fornisce in generale solo una condizione necessaria affinché tutte le radici di  $p(\lambda)$  siano a parte reale strettamente minore di 0
- Il Criterio di Routh-Hurwitz fornisce una condizione necessaria e sufficiente affinché tutte le radici di  $p(\lambda)$  siano a parte reale strettamente minore di 0
- Il Criterio di Jury fornisce una condizione necessaria e sufficiente affinché tutte le radici di  $p(\lambda)$  siano in modulo strettamente minori di 1



# Criteri di stabilità per sistemi dinamici LTI

Regola dei segni di Cartesio

## Regola dei segni di Cartesio (1/3)

Dato il polinomio a coefficienti reali di grado n

y(t) = Cx(t)

$$p(\lambda) = a_n \lambda^n + a_{n-1} \lambda^{n-1} + \ldots + a_1 \lambda + a_0$$

il numero di radici reali **positive** è pari al numero  $\nu$  di variazioni di segno fra coefficienti consecutivi non nulli o è inferiore a  $\nu$  per un multiplo intero di 2

Esempio:

$$p(\lambda) = \lambda^3 + \lambda^2 - \lambda - 1$$

c'è una sola variazione di segno in  $p(\lambda) \Rightarrow p(\lambda)$  ha una sola radice reale positiva; infatti  $p(\lambda) = \lambda^3 + \lambda^2 - \lambda - 1 = (\lambda + 1)^2 (\lambda - 1)$ 

## Regola dei segni di Cartesio (2/3)

Corollario: dato il polinomio a coefficienti reali

$$p(\lambda) = a_n \lambda^n + a_{n-1} \lambda^{n-1} + \ldots + a_1 \lambda + a_0$$

il numero di radici reali **negative** è pari al numero w di variazioni di segno fra coefficienti consecutivi non nulli del polinomio  $p(-\lambda)$  o è inferiore a w per un multiplo intero di 2

Esempio:

$$p(\lambda) = \lambda^3 + \lambda^2 - \lambda - 1 = (\lambda + 1)^2 (\lambda - 1) \implies p(-\lambda) = (-\lambda)^3 + (-\lambda)^2 - (-\lambda) - 1 = -\lambda^3 + \lambda^2 + \lambda - 1$$

ci sono 2 variazioni di segno in  $p(-\lambda) \Rightarrow p(\lambda)$  ha 2 o 0 radici reali negative

## Regola dei segni di Cartesio (3/3)

- Condizione necessaria ma in generale non sufficiente affinché  $p(\lambda)$  abbia tutte le n radici a parte reale strettamente negativa è che non ci siano variazioni di segno fra coefficienti consecutivi non nulli
- **Caso particolare:** nel caso n=2

$$p(\lambda) = a_2 \lambda^2 + a_1 \lambda + a_0$$

condizione necessaria e sufficiente affinché  $p(\lambda)$  abbia entrambe le radici a parte reale strettamente negativa è che i 3 coefficienti  $a_2$ ,  $a_1$  e  $a_0$  siano di segno concorde (cioè tutti > 0 oppure tutti < 0) e quindi non presentino alcuna variazione di segno



## Criteri di stabilità per sistemi dinamici LTI

### Criterio di Routh-Hurwitz

Premessa: condizione necessaria affinché tutte le n radici del polinomio a coefficienti reali di grado n

$$p(\lambda) = a_n \lambda^n + a_{n-1} \lambda^{n-1} + ... + a_1 \lambda + a_0$$

siano a parte reale strettamente minore di 0 è che tutti gli n+1 coefficienti  $a_n$ ,  $a_{n-1}$ , ...,  $a_1$ ,  $a_0$  siano di segno concorde (cioè tutti > 0 oppure tutti < 0)

- ➤ Il criterio di Routh si esprime con riferimento al segno degli elementi della prima colonna della tabella di Routh avente le seguenti caratteristiche:
  - $\bullet$  È costituita in generale da n+1 righe
  - Gli elementi delle prime due righe sono costituiti dai coefficienti di  $p(\lambda)$ , opportunamente distribuiti
  - L'ultima riga è costituita dal coefficiente  $a_0$  di  $p(\lambda)$

$$p(\lambda) = a_{n}\lambda^{n} + a_{n-1}\lambda^{n-1} + \dots + a_{1}\lambda + a_{0}$$

$$n \mid a_{n} \mid a_{n-2} \mid a_{n-4} \mid \dots$$

$$n-1 \mid a_{n-1} \mid a_{n-3} \mid a_{n-5} \mid \dots$$



$$p(\lambda) = a_{n}\lambda^{n} + a_{n-1}\lambda^{n-1} + \dots + a_{1}\lambda + a_{0}$$

$$n \mid a_{n} \mid a_{n-2} \mid a_{n-4} \mid \dots$$

$$n-1 \mid a_{n-1} \mid a_{n-3} \mid a_{n-5} \mid \dots$$

$$n-2 \mid b_{n-2} \mid a_{n-4} \mid a_{n-5} \mid \dots$$

$$b_{n-4} \mid a_{n-5} \mid a_{n-4} \mid a_{n-1} \mid a_{n-5} \mid a_{n-1} \mid a_{n-5} \mid a_{n-1} \mid a_{n-5} \mid a_{n-1} \mid a_{n-1} \mid a_{n-5} \mid a_{n-1} \mid a_{n-1} \mid a_{n-5} \mid a_{n-1} \mid a_{n-5} \mid a_{n-1} \mid a_{n-1} \mid a_{n-5} \mid a_{n-1} \mid a_{n-1} \mid a_{n-5} \mid a_{n-1} \mid$$

$$p(\lambda) = a_{n}\lambda^{n} + a_{n-1}\lambda^{n-1} + \dots + a_{1}\lambda + a_{0}$$

$$\begin{array}{c|cccc}
n & a_{n} & a_{n-2} & a_{n-4} & \cdots \\
n-1 & a_{n-1} & a_{n-3} & a_{n-5} & \cdots \\
n-2 & b_{n-2} & b_{n-4} & b_{n-6} & \cdots \\
n-3 & c_{n-5} & c_{n-7} & \cdots
\end{array}$$

$$b_{n-2} = -\begin{vmatrix} a_{n} & a_{n-2} \\ a_{n-1} & a_{n-3} \\ b_{n-2} & b_{n-4} \end{vmatrix} / b_{n-2}$$

$$c_{n-3} = -\begin{vmatrix} a_{n-1} & a_{n-3} \\ b_{n-2} & b_{n-4} \\ a_{n-1} & b_{n-2} \\ b_{n-2} & b_{n-4} \end{vmatrix} / b_{n-2}$$

$$p(\lambda) = a_{n}\lambda^{n} + a_{n-1}\lambda^{n-1} + \dots + a_{1}\lambda + a_{0}$$

$$n \mid a_{n} \mid a_{n-2} \mid a_{n-3} \mid a_{n-5} \mid \dots$$

$$n-1 \mid b_{n-2} \mid b_{n-4} \mid b_{n-6} \mid \dots$$

$$n-3 \mid c_{n-3} \mid a_{n-1} \mid a_{n-3} \mid a_{n-4} \mid a_{n-1} \mid a_{n-5} \mid \dots$$

$$b_{n-2} = - \begin{vmatrix} a_{n} & a_{n-2} \\ a_{n-1} & a_{n-3} \\ b_{n-2} & b_{n-4} \end{vmatrix} / a_{n-1}, b_{n-4} = - \begin{vmatrix} a_{n} & a_{n-4} \\ a_{n-1} & a_{n-5} \\ b_{n-2} & b_{n-6} \end{vmatrix} / a_{n-1}, \dots$$

$$c_{n-3} = - \begin{vmatrix} a_{n-1} & a_{n-3} \\ b_{n-2} & b_{n-4} \end{vmatrix} / b_{n-2}, c_{n-5} = - \begin{vmatrix} a_{n-1} & a_{n-5} \\ b_{n-2} & b_{n-6} \end{vmatrix} / b_{n-2}, \dots$$

$$p(\lambda) = a_{n}\lambda^{n} + a_{n-1}\lambda^{n-1} + \dots + a_{1}\lambda + a_{0}$$

$$n \mid a_{n} \quad a_{n-2} \quad a_{n-4} \quad \dots$$

$$n-1 \mid a_{n-1} \quad a_{n-3} \quad a_{n-5} \quad \dots$$

$$n-2 \mid b_{n-2} \quad b_{n-4} \quad b_{n-6} \quad \dots$$

$$n-3 \mid c_{n-3} \quad c_{n-5} \quad c_{n-7} \quad \dots$$

$$\dots \quad \dots \quad \dots$$

$$0 \mid a_{0} \quad 0 \quad 0 \quad \dots$$

$$b_{n-2} = -\begin{vmatrix} a_{n} & a_{n-2} \\ a_{n-1} & a_{n-3} \\ b_{n-2} & b_{n-4} \end{vmatrix} \middle/ a_{n-1}, b_{n-4} = -\begin{vmatrix} a_{n} & a_{n-4} \\ a_{n-1} & a_{n-5} \\ b_{n-2} & b_{n-6} \end{vmatrix} \middle/ a_{n-1}, \dots$$

$$c_{n-3} = -\begin{vmatrix} a_{n-1} & a_{n-3} \\ b_{n-2} & b_{n-4} \end{vmatrix} \middle/ b_{n-2}, c_{n-5} = -\begin{vmatrix} a_{n-1} & a_{n-5} \\ b_{n-2} & b_{n-6} \end{vmatrix} \middle/ b_{n-2}, \dots$$

#### **➤** Criterio di Routh-Hurwitz:

condizione necessaria e sufficiente affinché tutte le radici di  $p(\lambda)$  siano a parte reale strettamente minore di 0 è che tutti gli elementi della prima colonna della tabella di Routh siano di segno concorde (cioè tutti > 0 oppure tutti < 0)

### Corollario del criterio di Routh-Hurwitz

Corollario del criterio di Routh-Hurwitz:

se la tabella di Routh può essere completata (cioè nessun elemento della sua prima colonna è nullo):

- ullet Nessuna radice di  $p(\lambda)$  ha parte reale nulla
- Il numero di radici di  $p(\lambda)$  a parte reale strettamente maggiore di 0 è dato dal numero delle variazioni di segno presenti nella prima colonna della tabella



Criteri di stabilità per sistemi dinamici LTI

Esempi di applicazione del criterio di Routh





### **Esempio #1 (1/6)**

- ► Dato il seguente polinomio di grado n = 4  $p(\lambda) = \lambda^4 + 6\lambda^3 + 8\lambda^2 + \lambda + 1$ 
  - analizzarne le radici mediante il solo criterio di Routh
- ➤ La tabella di Routh corrispondente è la seguente:

$$b_2 = - \begin{vmatrix} 1 & 8 \\ 6 & 1 \end{vmatrix} / 6 = -(1-48)/6 = 47/6$$





### **Esempio #1 (2/6)**

ightharpoonup Dato il seguente polinomio di grado n=4

$$p(\lambda) = \lambda^4 + 6\lambda^3 + 8\lambda^2 + \lambda + 1$$

- analizzarne le radici mediante il solo criterio di Routh
- La tabella di Routh corrispondente è la seguente:

$$b_0 = - \begin{vmatrix} 1 & 1 \\ 6 & 0 \end{vmatrix} / 6 = -(0-6)/6 = 1$$





## **Esempio #1 (3/6)**

ightharpoonup Dato il seguente polinomio di grado n = 4

$$p(\lambda) = \lambda^4 + 6\lambda^3 + 8\lambda^2 + \lambda + 1$$

analizzarne le radici mediante il solo criterio di Routh

➤ La tabella di Routh corrispondente è la seguente:

$$b_{-2} = - \begin{vmatrix} 1 & 0 \\ 6 & 0 \end{vmatrix} / 6 = 0 = b_{-4} = \dots$$





### **Esempio #1 (4/6)**

- ► Dato il seguente polinomio di grado n = 4 $p(\lambda) = \lambda^4 + 6\lambda^3 + 8\lambda^2 + \lambda + 1$ analizzarne le radici mediante il solo criterio di Routh
- ➤ La tabella di Routh corrispondente è la seguente:





### **Esempio #1 (5/6)**

■ Dato il seguente polinomio di grado n = 4

$$p(\lambda) = \lambda^4 + 6\lambda^3 + 8\lambda^2 + \lambda + 1$$

analizzarne le radici mediante il solo criterio di Routh

➤ La tabella di Routh corrispondente è la seguente:

| 4 | 1                          | 8           | 1           | 0     | • • • |
|---|----------------------------|-------------|-------------|-------|-------|
| 3 | 6                          | 1           | 0           | 0     | • • • |
| 2 | 47/6                       | 1           | 0           | • • • | • • • |
| 1 | 11/47                      | <i>C</i> _1 | <i>C</i> _3 | • • • | • • • |
| 0 | 47/6<br>11/47<br>$a_0 = 1$ | 0           | 0           | • • • | • • • |
|   |                            | 0           | / 47/6      | 0 -   |       |

$$c_{-1} = - \begin{vmatrix} 6 & 0 \\ 47/6 & 0 \end{vmatrix} / 47/6 = 0 = c_{-3} = \dots$$





## Esempio #1 (6/6)

- Dato il seguente polinomio di grado n = 4  $p(\lambda) = \lambda^4 + 6\lambda^3 + 8\lambda^2 + \lambda + 1$ analizzarne le radici mediante il solo criterio di Routh
- ➤ La tabella di Routh corrispondente è la seguente:

| 4 | 1                                                                                           | 8 | 1 | 0 | • • • |
|---|---------------------------------------------------------------------------------------------|---|---|---|-------|
| 3 | 6                                                                                           | 1 | 0 | 0 | • • • |
| 2 | 47/6                                                                                        | 1 | 0 | 0 | • • • |
| 1 | 11/47                                                                                       | 0 | 0 | 0 | • • • |
| 0 | $   \begin{array}{c}     1 \\     6 \\     47/6 \\     11/47 \\     a_0 = 1   \end{array} $ | 0 | 0 | 0 | • • • |

Tutti gli elementi della prima colonna sono concordi  $\Rightarrow$  tutte le radici di  $p(\lambda)$  sono a parte reale < 0





### **Esempio #2 (1/5)**

- Dato il seguente polinomio di grado n=3  $p(\lambda) = 0.2\lambda^3 + 1.2\lambda^2 + 1.2$  analizzarne le radici mediante il solo criterio di Routh
- Non tutti i coefficienti di  $p(\lambda)$  sono di segno concorde poiché  $a_1 = 0$ 
  - $\Rightarrow$  non tutte le radici di  $p(\lambda)$  sono a parte reale < 0





### Esempio #2 (2/5)

- Dato il seguente polinomio di grado n=3  $p(\lambda) = 0.2\lambda^3 + 1.2\lambda^2 + 1.2$  analizzarne le radici mediante il solo criterio di Routh
- ➤ La tabella di Routh corrispondente è la seguente:





## Esempio #2 (3/5)

- ► Dato il seguente polinomio di grado n = 3  $p(\lambda) = 0.2\lambda^3 + 1.2\lambda^2 + 1.2$ analizzarne le radici mediante il solo criterio di Routh
- ➤ La tabella di Routh corrispondente è la seguente:





## Esempio #2 (4/5)

- ► Dato il seguente polinomio di grado n = 3  $p(\lambda) = 0.2\lambda^3 + 1.2\lambda^2 + 1.2$ analizzarne le radici mediante il solo criterio di Routh
- ➤ La tabella di Routh corrispondente è la seguente:

ightharpoonup Ci sono due variazioni di segno nella prima colonna  $\Rightarrow$  due radici di  $p(\lambda)$  sono a parte reale > 0





## Esempio #2 (5/5)

- Dato il seguente polinomio di grado n = 3  $p(\lambda) = 0.2\lambda^3 + 1.2\lambda^2 + 1.2$  analizzarne le radici mediante il solo criterio di Routh
- ➤ La tabella di Routh corrispondente è la seguente:
  - $\begin{bmatrix} 3 & 0.2 & 0 & 0 & \cdots \\ 2 & 1.2 & 1.2 & 0 & \cdots \\ 1 & -0.2 & 0 & 0 & \cdots \\ 0 & a_0 = 1.2 & 0 & 0 & \cdots \end{bmatrix}$
- Non ci sono elementi nulli nella prima colonna  $\Rightarrow$  nessuna radice di  $p(\lambda)$  è a parte reale nulla  $\Rightarrow$  solo una radice di  $p(\lambda)$  è a parte reale < 0





### Esempio #3

Dato il seguente polinomio a coefficienti reali  $a_i \neq 0$   $p(\lambda) = a_2 \lambda^2 + a_1 \lambda + a_0$ 

y(t) = Cx(t)

analizzarne le radici solo mediante il criterio di Routh

➤ La tabella di Routh corrispondente è la seguente:

La prima colonna della tabella è data esattamente dai coefficienti del polinomio  $p(\lambda) \Rightarrow$  il criterio e il corollario di Routh-Hurwitz dimostrano la regola di Cartesio per polinomi di II grado





### Esempio #4 (1/9)

- Dato il seguente polinomio in cui il parametro  $k \in \mathbb{R}$   $p(\lambda) = \lambda^4 + 6\lambda^3 + 8\lambda^2 + k\lambda + k$  per quali k le radici sono tutte a parte reale < 0?
- Condizione necessaria è che tutti i coefficienti di  $p(\lambda)$  siano di segno concorde  $\Rightarrow$

• 
$$a_4 = 1 > 0, \forall k$$
  
•  $a_3 = 6 > 0, \forall k$   
•  $a_2 = 8 > 0, \forall k$   
•  $a_1 = k > 0$   
•  $a_1 = k > 0$   
•  $a_0 = k > 0$ 

Per avere una condizione nécessaria e sufficiente, occorre calcolare la tabella di Routh





## Esempio #4 (2/9)

- Dato il seguente polinomio in cui il parametro  $k \in \mathbb{R}$   $p(\lambda) = \lambda^4 + 6\lambda^3 + 8\lambda^2 + k\lambda + k$  per quali k le radici sono tutte a parte reale < 0?
- La tabella di Routh corrispondente è la seguente:

| 4 | 1         | 8        | k               | 0     | • • • |
|---|-----------|----------|-----------------|-------|-------|
| 3 | 6         | k        | 0               | 0     | • • • |
| 2 | $b_2$     | $b_0$    | $b_{\!-\!2}$    | • • • | • • • |
| 1 | $c_1^2$   | $C_{-1}$ | c <sub>-3</sub> | • • • | • • • |
| 0 | $a_0 = k$ | 0        | 0               | • • • | • • • |

$$b_2 = - \begin{vmatrix} 1 & 8 \\ 6 & k \end{vmatrix} / 6 = -(k-48)/6 = \frac{48-k}{6}$$





## Esempio #4 (3/9)

- Dato il seguente polinomio in cui il parametro  $k \in \mathbb{R}$   $p(\lambda) = \lambda^4 + 6\lambda^3 + 8\lambda^2 + k\lambda + k$  per quali k le radici sono tutte a parte reale < 0?
- ➤ La tabella di Routh corrispondente è la seguente:

$$b_0 = - \begin{vmatrix} 1 & k \\ 6 & 0 \end{vmatrix} / 6 = -(0-6k)/6 = k$$





## Esempio #4 (4/9)

- Dato il seguente polinomio in cui il parametro  $k \in \mathbb{R}$   $p(\lambda) = \lambda^4 + 6\lambda^3 + 8\lambda^2 + k\lambda + k$  per quali k le radici sono tutte a parte reale < 0?
- ➤ La tabella di Routh corrispondente è la seguente:

$$b_{-2} = - \begin{vmatrix} 1 & 0 \\ 6 & 0 \end{vmatrix} / 6 = 0 = b_{-4} = \dots$$





#### Esempio #4 (5/9)

- Dato il seguente polinomio in cui il parametro  $k \in \mathbb{R}$   $p(\lambda) = \lambda^4 + 6\lambda^3 + 8\lambda^2 + k\lambda + k$  per quali k le radici sono tutte a parte reale < 0?
- ➤ La tabella di Routh corrispondente è la seguente:

$$c_1 = - \left| \begin{array}{cc} 6 & k \\ \frac{48-k}{6} & k \end{array} \right| / \frac{48-k}{6} = -\frac{36k - (48-k)k}{48-k} = \frac{(12-k)k}{48-k}$$





#### Esempio #4 (6/9)

- Dato il seguente polinomio in cui il parametro  $k \in \mathbb{R}$   $p(\lambda) = \lambda^4 + 6\lambda^3 + 8\lambda^2 + k\lambda + k$  per quali k le radici sono tutte a parte reale < 0?
- ➤ La tabella di Routh corrispondente è la seguente:





# Esempio #4 (7/9)

- Dato il seguente polinomio in cui il parametro  $k \in \mathbb{R}$   $p(\lambda) = \lambda^4 + 6\lambda^3 + 8\lambda^2 + k\lambda + k$  per quali k le radici sono tutte a parte reale < 0?
- La tabella di Routh corrispondente è la seguente:

|   |                        |   |   | <u> </u> |       |
|---|------------------------|---|---|----------|-------|
| 4 | 1                      | 8 | k | 0        | • • • |
| 3 | 6                      | k | 0 | 0        | • • • |
| 2 | $\frac{48 - k}{6}$     | k | 0 | 0        | •••   |
| 1 | $\frac{(12-k)k}{48-k}$ | 0 | 0 | 0        | • • • |
| 0 | $a_0 = k$              | 0 | 0 | 0        | • • • |

 $\Rightarrow$  occorre vedere per quali k tutti gli elementi della prima colonna della tabella di Routh sono concordi





# Esempio #4 (8/9)

4

3

2

1

0

1

 $\frac{48-k}{6}$ 

 $\frac{(12-K)k}{48-k}$ 

 $a_0 = k$ 

8

K

k

0

U

0

• • •

0

**1** 

• 1 > 0, 
$$\forall k$$

- 6 > 0,  $\forall k$
- $(48 k)/6 > 0 \Rightarrow k < 48$

• 
$$\frac{(12-k)k}{48-k} > 0 \Rightarrow (12-k)k > 0$$
, poiché  $k < 48 \Rightarrow 0 < k < 12$ 

• 
$$a_0 = k > 0 \Rightarrow k > 0$$



# Esempio #4 (9/9)

Tutti gli elementi della prima colonna della tabella di Routh sono di segno concorde (e in particolare > 0) per

y(t) = Cx(t)

 $\Rightarrow$  per tali valori di k le radici del polinomio  $p(\lambda)$  sono tutte a parte reale strettamente negativa





# Esempio #5 (1/4)

- Dato il seguente polinomio in cui il parametro  $k \in \mathbb{R}$   $p(\lambda) = \lambda^3 + k\lambda^2 + (15k + 1)\lambda + 50k$  per quali k le radici sono tutte a parte reale < 0?
- Condizione necessaria è che tutti i coefficienti di  $p(\lambda)$  siano di segno concorde  $\Rightarrow$

• 
$$a_3 = 1 > 0, \forall k$$
  
•  $a_2 = k > 0$   
•  $a_1 = 15k + 1 > 0 \Rightarrow k > -1/15$   
•  $a_0 = 50k > 0 \Rightarrow k > 0$ 

Per avere una condizione necessaria e sufficiente, occorre calcolare la tabella di Routh





# Esempio #5 (2/4)

- Dato il seguente polinomio in cui il parametro  $k \in \mathbb{R}$   $p(\lambda) = \lambda^3 + k\lambda^2 + (15k + 1)\lambda + 50k$  per quali k le radici sono tutte a parte reale < 0?
- ➤ La tabella di Routh corrispondente è la seguente:

$$b_1 = - \begin{vmatrix} 1 & 15k+1 \\ k & 50k \end{vmatrix} / k = - \frac{50k-k(15k+1)}{k} = 15k-49$$



# Esempio #5 (3/4)

- Dato il seguente polinomio in cui il parametro  $k \in \mathbb{R}$   $p(\lambda) = \lambda^3 + k\lambda^2 + (15k + 1)\lambda + 50k$  per quali k le radici sono tutte a parte reale < 0?
- ➤ La tabella <u>di Routh</u> corrispondente è la seguente:

| 3 | 1                | 15 <i>k</i> + 1 | 0 | •••   |
|---|------------------|-----------------|---|-------|
| 2 | k                | 50 <i>k</i>     | 0 | • • • |
| 1 | 15 <i>k</i> – 49 | 0               | 0 | • • • |
| 0 | $a_0 = 50k$      | 0               | 0 | • • • |

 $\Rightarrow$  occorre vedere per quali valori di k tutti gli elementi della prima colonna della tabella di Routh sono di segno concorde



# Esempio #5 (4/4)

➤ La tabella di Routh corrispondente è la seguente:

3 | 1 | 15
$$k+1$$
 | 0 | ...  
2 |  $k$  | 50 $k$  | 0 | ...  
1 | 15 $k-49$  | 0 | ... | ...  
0 |  $a_0 = 50k$  | 0 | ... | ...  
• 1 > 0,  $\forall k$   
•  $k > 0$   
• 15 $k-49 > 0 \Rightarrow k > 49/15$   
•  $a_0 = 50k > 0$  |  $\Rightarrow k > 49/15 = 3.2\overline{6}$ 

 $\Rightarrow$  per k > 49/15 le radici del polinomio  $p(\lambda)$  sono tutte a parte reale strettamente positiva





# Esempio #6 (1/7)

- Dato il seguente polinomio in cui i parametri  $\alpha, \beta \in \mathbb{R}$   $p(\lambda) = \lambda^4 + \lambda^3 + (\alpha + 5)\lambda^2 + 2\lambda + \beta + 3$  per quali  $\alpha, \beta$  le radici sono tutte a parte reale < 0?
- Condizione necessaria è che tutti i coefficienti di  $p(\lambda)$  siano di segno concorde  $\Rightarrow$

• 
$$a_4 = 1 > 0$$
,  $\forall \alpha, \forall \beta$   
•  $a_3 = 1 > 0$ ,  $\forall \alpha, \forall \beta$   
•  $a_2 = \alpha + 5 > 0 \Rightarrow \alpha > -5$   
•  $a_1 = 2 > 0$ ,  $\forall \alpha, \forall \beta$   
•  $a_0 = \beta + 3 > 0 \Rightarrow \beta > -3$   
•  $a_0 = \beta + 3 > 0 \Rightarrow \beta > -3$ 

Per avere una condizione necéssaria e sufficiente, occorre calcolare la tabella di Routh





# Esempio #6 (2/7)

- Dato il seguente polinomio in cui i parametri  $\alpha, \beta \in \mathbb{R}$   $p(\lambda) = \lambda^4 + \lambda^3 + (\alpha + 5)\lambda^2 + 2\lambda + \beta + 3$  per quali  $\alpha, \beta$  le radici sono tutte a parte reale < 0?
- ➤ La tabella di Routh corrispondente è la seguente:

$$b_2 = - \begin{vmatrix} 1 & \alpha + 5 \\ 1 & 2 \end{vmatrix} / 1 = -(2 - (\alpha + 5)) = \alpha + 3$$





# Esempio #6 (3/7)

- Dato il seguente polinomio in cui i parametri  $\alpha, \beta \in \mathbb{R}$   $p(\lambda) = \lambda^4 + \lambda^3 + (\alpha + 5)\lambda^2 + 2\lambda + \beta + 3$  per quali  $\alpha, \beta$  le radici sono tutte a parte reale < 0?
- ➤ La tabella di Routh corrispondente è la seguente:

$$b_0 = - \begin{vmatrix} 1 & \beta + 3 \\ 1 & 0 \end{vmatrix} / 1 = \beta + 3$$





# Esempio #6 (4/7)

- Dato il seguente polinomio in cui i parametri  $\alpha, \beta \in \mathbb{R}$   $p(\lambda) = \lambda^4 + \lambda^3 + (\alpha + 5)\lambda^2 + 2\lambda + \beta + 3$  per quali  $\alpha, \beta$  le radici sono tutte a parte reale < 0?
- ➤ La tabella di Routh corrispondente è la seguente:

$$c_1 = - \left| \begin{array}{cc} 1 & 2 \\ \alpha + 3 & \beta + 3 \end{array} \right| / (\alpha + 3) = - \frac{\beta + 3 - 2(\alpha + 3)}{\alpha + 3} = \frac{2\alpha - \beta + 3}{\alpha + 3}$$





# Esempio #6 (5/7)

- Dato il seguente polinomio in cui i parametri  $\alpha, \beta \in \mathbb{R}$   $p(\lambda) = \lambda^4 + \lambda^3 + (\alpha + 5)\lambda^2 + 2\lambda + \beta + 3$  per quali  $\alpha, \beta$  le radici sono tutte a parte reale < 0?
- ➤ La tabella di Routh corrispondente è la seguente:

 $\Rightarrow$  occorre vedere per quali  $\alpha$ ,  $\beta$  tutti gli elementi della prima colonna della tabella sono concordi





# **Esempio #6 (6/7)**

 $\alpha$  + 5  $\beta$  + 3

 $\begin{array}{c|cccc}
1 & 2 & 0 \\
\alpha + 3 & \beta + 3 & 0 \\
\hline
\frac{2\alpha - \beta + 3}{\alpha + 3} & 0 & 0 \\
a_0 = \beta + 3 & 0 & 0
\end{array}$ 

• 1 > 0,  $\forall \alpha$ ,  $\forall \beta$ 

- 1 > 0,  $\forall \alpha$ ,  $\forall \beta$
- $\alpha + 3 > 0 \Rightarrow \alpha > -3$
- $\frac{2\alpha-\beta+3}{\alpha+3} > 0 \Rightarrow 2\alpha-\beta+3 > 0$ , poiché  $\alpha > -3 \Rightarrow \beta < 2\alpha+3$
- $a_0 = \beta + 3 > 0 \Rightarrow \beta > -3$



# Esempio #6 (7/7)

Tutti gli elementi della prima colonna della tabella di Routh sono di segno concorde (e in particolare > 0) per

y(t) = Cx(t)

$$\{-3 < \beta < 2\alpha + 3\} \land \{\alpha > -3\}$$

- $\Rightarrow$  per tali valori di  $\alpha$ ,  $\beta$  le radici del polinomio  $p(\lambda)$  sono tutte a parte reale strettamente negativa
- Rappresentando geometricamente i vari vincoli sul piano cartesiano  $(\alpha, \beta)$ , si vede che il vincolo  $\alpha > -3$  è già automaticamente soddisfatto dalla condizione  $-3 < \beta < 2\alpha + 3$





# Criteri di stabilità per sistemi dinamici LTI

# Criterio di Jury

Condizione necessaria e sufficiente affinché tutte le n radici del polinomio a coefficienti reali di grado n  $p(\lambda) = a_n \lambda^n + a_{n-1} \lambda^{n-1} + ... + a_1 \lambda + a_0$ siano in modulo strettamente minori di 1 è che

- $\bullet$  Nel caso n=2, siano soddisfatte 3 disuguaglianze:
  - 1)  $p(\lambda = 1) > 0$

y(t) = Cx(t)

- 2)  $(-1)^n p(\lambda = -1) > 0$
- 3)  $|a_n| > |a_0|$
- Nel caso n > 2, oltre alle 3 precedenti disuguaglianze, siano soddisfatte anche altre n 2 disuguaglianze fra i moduli di alcuni elementi della **tabella di Jury** seguente, costituita da n 1 coppie di righe

$$p(\lambda) = a_n \lambda^n + a_{n-1} \lambda^{n-1} + \dots + a_1 \lambda + a_0$$

$$n \mid a_0 \quad a_1 \quad a_2 \quad \cdots \quad a_{n-2} \quad a_{n-1} \quad a_n$$

$$n \mid a_n \quad a_{n-1} \quad a_{n-2} \quad \cdots \quad a_2 \quad a_1 \quad a_0$$

$$p(\lambda) = a_{n}\lambda^{n} + a_{n-1}\lambda^{n-1} + \dots + a_{1}\lambda + a_{0}$$

$$n \mid a_{0} \quad a_{1} \quad a_{2} \quad \dots \quad a_{n-2} \quad a_{n-1} \quad a_{n}$$

$$n \mid b_{0} \quad a_{n-1} \quad a_{n-2} \quad \dots \quad a_{2}, \quad a_{1} \quad a_{0}$$

$$n-1 \mid b_{0} \quad b_{1} \quad b_{2} \quad \dots \quad b_{n-2} \quad b_{n-1}$$

$$b_{0} = \begin{vmatrix} a_{0} & a_{n} \\ a_{n} & a_{0} \end{vmatrix}, \quad b_{1} = \begin{vmatrix} a_{0} & a_{n-1} \\ a_{n} & a_{1} \end{vmatrix}, \quad b_{2} = \begin{vmatrix} a_{0} \\ a_{n} \end{vmatrix}, \quad a_{n-2} \mid a_{n-2} \mid$$

$$p(\lambda) = a_{n}\lambda^{n} + a_{n-1}\lambda^{n-1} + \dots + a_{1}\lambda + a_{0}$$

$$n \mid a_{0} \mid a_{1} \mid a_{2} \mid \dots \mid a_{n-2} \mid a_{n-1} \mid a_{n}$$

$$n \mid b_{0} \mid a_{n} \mid a_{n-1} \mid a_{n-2} \mid \dots \mid a_{2} \mid a_{1} \mid a_{0}$$

$$n-1 \mid b_{0} \mid a_{1} \mid b_{2} \mid \dots \mid b_{n-2} \mid b_{n-1}$$

$$b_{0} = \begin{vmatrix} a_{0} & a_{n} \\ a_{n} & a_{0} \end{vmatrix}, b_{1} = \begin{vmatrix} a_{0} & a_{n-1} \\ a_{n} & a_{1} \end{vmatrix}, b_{2} = \begin{vmatrix} a_{0} & a_{n-2} \\ a_{n} & a_{2} \end{vmatrix}, \dots$$

$$\dots, b_{n-2} = \begin{vmatrix} a_{0} & a_{2} \\ a_{n} & a_{n-2} \end{vmatrix}, b_{n-1} = \begin{vmatrix} a_{0} & a_{1} \\ a_{n} & a_{n-1} \end{vmatrix}$$

$$p(\lambda) = a_{n}\lambda^{n} + a_{n-1}\lambda^{n-1} + \dots + a_{1}\lambda + a_{0}$$

$$n \quad \begin{vmatrix} a_{0} & a_{1} & a_{2} & \cdots & a_{n-2} & a_{n-1} & a_{n} \\ a_{n} & a_{n-1} & a_{n-2} & \cdots & a_{2} & a_{1} & a_{0} \\ n-1 & b_{0} & b_{1} & b_{2} & \cdots & b_{n-2} & b_{n-1} \\ n-1 & b_{n-1} & b_{n-2} & b_{n-3} & \cdots & b_{1} & b_{0} \end{vmatrix}$$

# Criterio di Jury (2/3)

$$p(\lambda) = a_{n}\lambda^{n} + a_{n-1}\lambda^{n-1} + \dots + a_{1}\lambda + a_{0}$$

$$n \quad a_{0} \quad a_{1} \quad a_{2} \quad \dots \quad a_{n-2} \quad a_{n-1} \quad a_{n}$$

$$n \quad a_{n} \quad a_{n-1} \quad a_{n-2} \quad \dots \quad a_{2} \quad a_{1} \quad a_{0}$$

$$n-1 \quad b_{0} \quad b_{1} \quad b_{2} \quad \dots \quad b_{n-2} \quad b_{n-1}$$

$$n-1 \quad b_{n-1} \quad b_{n-2} \quad b_{n-3} \quad \dots \quad b_{1} \quad b_{0}$$

$$n-2 \quad c_{1} \quad c_{2} \quad \dots \quad c_{n-2}$$

$$C_0 = \begin{vmatrix} b_0 & b_{n-1} \\ b_{n-1} & b_0 \end{vmatrix}, C_1 = \begin{vmatrix} b_0 & b_{n-2} \\ b_{n-1} & b_1 \end{vmatrix}, \dots, C_{n-2} = \begin{vmatrix} b_0 \\ b_{n-1} \end{vmatrix}, \begin{vmatrix} b_1 \\ b_{n-2} \end{vmatrix}$$

64

$$p(\lambda) = a_{n}\lambda^{n} + a_{n-1}\lambda^{n-1} + \dots + a_{1}\lambda + a_{0}$$

$$n \quad a_{0} \quad a_{1} \quad a_{2} \quad \cdots \quad a_{n-2} \quad a_{n-1} \quad a_{n}$$

$$n \quad a_{n} \quad a_{n-1} \quad a_{n-2} \quad \cdots \quad a_{2} \quad a_{1} \quad a_{0}$$

$$n-1 \quad b_{0} \quad b_{1} \quad b_{2} \quad \cdots \quad b_{n-2} \quad b_{n-1}$$

$$n-1 \quad b_{n-1} \quad b_{n-2} \quad b_{n-3} \quad \cdots \quad b_{1} \quad b_{0}$$

$$n-2 \quad c_{0} \quad c_{1} \quad c_{2} \quad \cdots \quad c_{n-2}$$

$$n-2 \quad c_{n-2} \quad c_{n-3} \quad c_{n-4} \quad \cdots \quad c_{0}$$

#### Criterio di Jury (3/3)

 $\bullet$  Devono essere soddisfatte le seguenti n-2 diseguaglianze:

$$|b_0| > |b_{n-1}|, |c_0| > |c_{n-2}|, ..., |z_0| > |z_2|$$



Criteri di stabilità per sistemi dinamici LTI

Esempi di applicazione del criterio di Jury





# Esempio #1 (1/3)

ightharpoonup Dato il seguente polinomio di grado n=3

$$p(\lambda) = 2\lambda^3 + \lambda^2 + \lambda + 0.5$$

analizzarne le radici mediante il solo criterio di Jury

- Affinché tutte le radici di  $p(\lambda)$  siano in modulo strettamente minori di 1 devono esser soddisfatte
  - Le 3 seguenti disuguaglianze che non richiedono la costruzione della tabella di Jury

1) 
$$p(\lambda = 1) > 0$$
?

$$p(\lambda = 1) = 2 + 1 + 1 + 0.5 = 4.5 > 0$$

2) 
$$(-1)^n p(\lambda = -1) > 0$$
?

$$(-1)^3 p(\lambda = -1) = -(-2 + 1 - 1 + 0.5) = 1.5 > 0$$

3) 
$$|a_n| > |a_0|$$
?

$$|a_3| = 2| = 2 > |a_0| = 0.5| = 0.5$$





#### Esempio #1 (2/3)

- Dato il seguente polinomio di grado n = 3  $p(\lambda) = 2\lambda^3 + \lambda^2 + \lambda + 0.5$  analizzarne le radici mediante il solo criterio di Jury
- ightharpoonup Affinché tutte le radici di  $p(\lambda)$  siano in modulo strettamente minori di 1 devono esser soddisfatte
  - Essendo n > 2, anche n 2 = 1 disuguaglianza che richiede la costruzione della tabella di Jury seguente, costituita da n 1 = 2 coppie di righe





# Esempio #1 (3/3)

The Dato il seguente polinomio di grado n = 3

$$p(\lambda) = 2\lambda^3 + \lambda^2 + \lambda + 0.5$$

analizzarne le radici mediante il solo criterio di Jury

➤ La tabella di Jury corrispondente è la seguente:

$$b_0 = \begin{vmatrix} 0.5 & 2 \\ 2 & 0.5 \end{vmatrix} = -3.75$$
,  $b_1 = \begin{vmatrix} 0.5 & 1 \\ 2 & 1 \end{vmatrix} = -1.5 = b_2$ 





# Esempio #1 (3/3)

ightharpoonup Dato il seguente polinomio di grado n=3

$$p(\lambda) = 2\lambda^3 + \lambda^2 + \lambda + 0.5$$

analizzarne le radici mediante il solo criterio di Jury

➤ La tabella di Jury corrispondente è la seguente:

| 3 | 0.5   | 1           | 1             | 2   |
|---|-------|-------------|---------------|-----|
| 3 | 2     | 1           | 1             | 0.5 |
| 2 | _3.75 | -1.5        | <b>-1.5</b>   |     |
| 2 | -1.5  | <b>-1.5</b> | <i>–</i> 3.75 |     |





## Esempio #1 (3/3)

► Dato il seguente polinomio di grado n = 3

$$p(\lambda) = 2\lambda^3 + \lambda^2 + \lambda + 0.5$$

analizzarne le radici mediante il solo criterio di Jury

➤ La tabella di Jury corrispondente è la seguente:

3 | 0.5 | 1 | 1 | 2  
3 | 2 | 1 | 1 | 0.5  
2 | -3.75 | -1.5 | -1.5 |  
2 | -1.5 | -1.5 | -3.75  

$$|b_0 = -3.75| = 3.75 > |b_2 = -1.5| = 1.5$$

Tutte le disuguaglianze richieste dal criterio di Jury sono soddisfatte  $\Rightarrow$  tutte le radici del polinomio  $p(\lambda)$  sono in modulo strettamente minori di 1





- Dato il seguente polinomio di grado n=4  $p(\lambda) = 2\lambda^4 + \lambda^3 + 3\lambda^2 + 0.5\lambda 1$  analizzarne le radici mediante il solo criterio di Jury
- Affinché tutte le radici di  $p(\lambda)$  siano in modulo strettamente minori di 1 devono esser soddisfatte
  - Le 3 seguenti disuguaglianze che non richiedono la costruzione della tabella di Jury

1) 
$$p(\lambda = 1) > 0$$
?  
 $p(\lambda = 1) = 2 + 1 + 3 + 0.5 - 1 = 5.5 > 0$   
2)  $(-1)^n p(\lambda = -1) > 0$ ?  
 $(-1)^4 p(\lambda = -1) = 2 - 1 + 3 - 0.5 - 1 = 2.5 > 0$   
3)  $|a_n| > |a_0|$ ?  
 $|a_4 = 2| = 2 > |a_0 = -1| = 1$ 





- Dato il seguente polinomio di grado n=4  $p(\lambda) = 2\lambda^4 + \lambda^3 + 3\lambda^2 + 0.5\lambda 1$  analizzarne le radici mediante il solo criterio di Jury
- Affinché tutte le radici di  $p(\lambda)$  siano in modulo strettamente minori di 1 devono esser soddisfatte
  - Essendo n > 2, anche altre n 2 = 2 disuguaglianze che richiedono la costruzione della tabella di Jury seguente, costituita da n 1 = 3 coppie di righe





- Dato il seguente polinomio di grado n=4  $p(\lambda) = 2\lambda^4 + \lambda^3 + 3\lambda^2 + 0.5\lambda 1$  analizzarne le radici mediante il solo criterio di Jury
- La tabella di Jury corrispondente è la seguente:

$$b_0 = \begin{vmatrix} -1 & 2 \\ 2 & -1 \end{vmatrix} = -3, b_1 = \begin{vmatrix} -1 & 1 \\ 2 & 0.5 \end{vmatrix} = -2.5$$

$$b_2 = \begin{vmatrix} -1 & 3 \\ 2 & 3 \end{vmatrix} = -9, b_3 = \begin{vmatrix} -1 & 0.5 \\ 2 & 1 \end{vmatrix} = -2$$





- Dato il seguente polinomio di grado n=4  $p(\lambda) = 2\lambda^4 + \lambda^3 + 3\lambda^2 + 0.5\lambda 1$  analizzarne le radici mediante il solo criterio di Jury
- La tabella di Jury corrispondente è la seguente:

```
    4
    -1
    0.5
    3
    1
    2

    4
    2
    1
    3
    0.5
    -1

    3
    -3
    -2.5
    -9
    -2

    3
    -2
    -9
    -2.5
    -3
```





- Dato il seguente polinomio di grado n=4  $p(\lambda) = 2\lambda^4 + \lambda^3 + 3\lambda^2 + 0.5\lambda 1$  analizzarne le radici mediante il solo criterio di Jury
- La tabella di Jury corrispondente è la seguente:

$$c_0 = \begin{vmatrix} -3 & -2 \\ -2 & -3 \end{vmatrix} = 5, c_1 = \begin{vmatrix} -3 & -9 \\ -2 & -2.5 \end{vmatrix} = -10.5, c_2 = \begin{vmatrix} -3 & -2.5 \\ -2 & -9 \end{vmatrix} = 22$$





- Dato il seguente polinomio di grado n=4  $p(\lambda) = 2\lambda^4 + \lambda^3 + 3\lambda^2 + 0.5\lambda 1$  analizzarne le radici mediante il solo criterio di Jury
- La tabella di Jury corrispondente è la seguente:

```
    4
    -1
    0.5
    3
    1
    2

    4
    2
    1
    3
    0.5
    -1

    3
    -3
    -2.5
    -9
    -2

    3
    -2
    -9
    -2.5
    -3

    2
    5
    -10.5
    22

    2
    22
    -10.5
    5
```





La tabella di Jury corrispondente è la seguente:

4 | -1 | 0.5 | 3 | 1 | 2  
4 | 2 | 1 | 3 | 0.5 | -1  
3 | -3 | -2.5 | -9 | -2  
3 | -2 | -9 | -2.5 | -3  
2 | 5 | -10.5 | 22  
2 | 22 | -10.5 | 5  

$$|b_0 = -3| = 3 > |b_3 = -2| = 2$$

$$ma |c_0 = 5| = 5 < |c_2 = 22| = 22$$

Non tutte le disuguaglianze richieste dal criterio di Jury sono soddisfatte  $\Rightarrow$  non tutte le radici di  $p(\lambda)$  sono in modulo strettamente minori di 1



#### Esempio #3 (1/4)

- Dato il seguente polinomio in cui il parametro  $k \in \mathbb{R}$   $p(\lambda) = 2\lambda^3 + \lambda^2 + \lambda + 0.5k$  per quali k tutte le radici sono in modulo < 1?
- Affinché tutte le radici di  $p(\lambda)$  siano in modulo strettamente minori di 1 devono esser soddisfatte
  - Le 3 seguenti disuguaglianze che non richiedono la costruzione della tabella di Jury

1) 
$$p(\lambda = 1) > 0$$
?  
 $p(\lambda = 1) = 4 + 0.5k > 0 \Rightarrow k > -8$ 

2) 
$$(-1)^n p(\lambda = -1) > 0$$
?  
 $(-1)^3 p(\lambda = -1) = 2 - 0.5k > 0 \Rightarrow k < 4$ 

3) 
$$|a_n| > |a_0|$$
?  
 $|a_3| = 2| = 2 > |a_0| = 0.5k = 0.5|k| \Rightarrow |k| < 4$ 



# Esempio #3 (2/4)

Dato il seguente polinomio in cui il parametro  $k \in \mathbb{R}$   $p(\lambda) = 2\lambda^3 + \lambda^2 + \lambda + 0.5k$  per quali k tutte le radici sono in modulo < 1?

y(t) = Cx(t)

- ightharpoonup Affinché tutte le radici di  $p(\lambda)$  siano in modulo strettamente minori di 1 devono esser soddisfatte
  - Essendo n > 2, anche n 2 = 1 disuguaglianza che richiede la costruzione della tabella di Jury seguente, costituita da n 1 = 2 coppie di righe





- Dato il seguente polinomio in cui il parametro  $k \in \mathbb{R}$   $p(\lambda) = 2\lambda^3 + \lambda^2 + \lambda + 0.5k$  per quali k tutte le radici sono in modulo < 1?
- La tabella di Jury corrispondente è la seguente:

3 
$$0.5k$$
 1 1 2 3 3 2 1 1 0.5k 2  $b_0$   $b_1$   $b_2$ 

$$b_0 = \begin{vmatrix} 0.5k & 2 \\ 2 & 0.5k \end{vmatrix} = 0.25k^2 - 4, b_1 = \begin{vmatrix} 0.5k & 1 \\ 2 & 1 \end{vmatrix} = 0.5k - 2 = b_2$$



- Dato il seguente polinomio in cui il parametro  $k \in \mathbb{R}$   $p(\lambda) = 2\lambda^3 + \lambda^2 + \lambda + 0.5k$  per quali k tutte le radici sono in modulo < 1?
- La tabella di Jury corrispondente è la seguente:

```
3 0.5k 1 1 2
3 2 1 1 0.5k
2 0.25k^2-4 0.5k-2 0.5k-2
2 0.5k-2 0.5k-2
```





- Dato il seguente polinomio in cui il parametro  $k \in \mathbb{R}$   $p(\lambda) = 2\lambda^3 + \lambda^2 + \lambda + 0.5k$  per quali k tutte le radici sono in modulo < 1?
- La tabella di Jury corrispondente è la seguente:
  - 3 0.5k 1 1 2 3 2 1 1 0.5k2 0.25 $k^2$ -4 0.5k-2 0.5k-2 2 0.5k-2 0.5k-4
  - $\Rightarrow$  deve essere soddisfatta anche la disuguaglianza  $\left| b_0 = 0.25k^2 4 \right| > \left| b_2 = 0.5k 2 \right|$



#### **Esempio #3 (4/4)**

- Dato il seguente polinomio in cui il parametro  $k \in \mathbb{R}$   $p(\lambda) = 2\lambda^3 + \lambda^2 + \lambda + 0.5k$  per quali k tutte le radici sono in modulo < 1?
- Affinché tutte le radici di  $p(\lambda)$  siano in modulo strettamente minori di 1 deve risultare allora che

1) 
$$p(\lambda = 1) = 4 + 0.5k > 0 \Rightarrow k > -8$$

2) 
$$(-1)^n p(\lambda = -1) = 2 - 0.5k > 0 \Rightarrow k < 4$$

3) 
$$|a_n| > |a_0| \Rightarrow |k| < 4$$

4) 
$$|b_0 = 0.25k^2 - 4| > |b_2 = 0.5k - 2| \Leftrightarrow$$
  
 $|0.5k + 2| \cdot |0.5k - 2| > |0.5k - 2| \Leftrightarrow$   
 $per |k| < 4, |0.5k + 2| > 1 \Rightarrow k > -2$ 

 $\Rightarrow$  occorre complessivamente che -2 < k < 4

 $p(\Lambda) = \Lambda^2 - 1.2(1 - \kappa)\Lambda + 0.2$ Esempio: Per queli KEIR, le radici de p(1) haus: . 1 . 1 < 1 . Re > 0 Par redere ne 1.1 < 1, use contens de Jury: · p(1=1) = 1-1.2(1-K)+0.2=1.2K>0 => K70/1 · (-1) p(1=-1)=1+1.2(1-K)+0.2=2.6-1.(K>0 =D K < 2 · | a2 |= |1 |= 1 > | a0 |= |0.2 |= 0.2, YK Ø < K < 2 => Per evere 2 radició con Pe > 0, dalla vegols de segui de Cartesia enchieda 2 variations di sego in p(L): an= an = 1 > 0 4K a, = - 1.2 (A-K) < 0 = 1 -1.2+1.2K < 0 = 0 | K < 1 | a0=0.2>0, YK Quade occare 0 < K < 1