1^{er} Contrôle Continu de Mécanique du Point 2 (13/03/2024) - Faculté de Sciences et Technologie - UPEC Responsable TD: Felipe FIGUEREDO ROCHA (felipe.figueredo-rocha@u-pec.fr)

		F)
NOM:	Prénom:	Numéro:
Licence:	Groupe:	Note:

Rappels (regarder le tableau aussi)

- Calculettes et téléphones interdits.
- N'oubliez vos noms en toutes les feuilles, les unités, des flèches au-dessus des vecteurs, etc.
- Norme produit vectoriel: $|\vec{a} \wedge \vec{b}| = ||a|| ||b|| |\sin \theta(\vec{a}, \vec{b})|$.
- Si $(\vec{u}_x, \vec{u}_y, \vec{u}_z)$ est dite une base orthonormé direct, on a: $\vec{u}_x \wedge \vec{u}_y = \vec{u}_z, \, \vec{u}_y \wedge \vec{u}_z = \vec{u}_x, \, \vec{u}_z \wedge \vec{u}_x = \vec{u}_y.$

- Repère polaire: $\begin{cases} \vec{u}_r &= \cos\theta \vec{u}_x + \sin\theta \vec{u}_y, \\ \vec{u}_\theta &= -\sin\theta \vec{u}_x + \cos\theta \vec{u}_y \end{cases}$
- Repère de Frénet : $\dot{s}=\|\vec{v}\|,\; \vec{v}=\dot{s}\vec{T}$ et $\vec{a}=\ddot{s}\vec{T}+\frac{\dot{s}^2}{R}\vec{N}$
- Theorème du moment cinétique :

$$\frac{d\vec{L}_0}{dt} = \sum \vec{M}_0(\vec{f}), \quad \text{où } \vec{L}_0 = \vec{OM} \wedge m\vec{v}, \vec{M}_0(\vec{f}) = \vec{OM} \wedge \vec{f}$$

Q1 Application du produit vectoriel dans la force électromagnétique (8pts)

La force électromagnétique appliqué à une particule M de charge q, vitesse \vec{v} , dans un champs électrique \vec{E} et champs magnétique \vec{B} est donné par $\vec{f}_{EB} = q(\vec{E} + \vec{v} \wedge \vec{B})$. On pose $\vec{f}_E = q\vec{E}$, $\vec{f}_B = q(\vec{v} \wedge \vec{B})$, tel que $\vec{f}_{EB} = \vec{f}_E + \vec{f}_B$. On va considérer que q est **négatif** et $\vec{E} = E\vec{u}_x$, $\vec{B} = B\vec{u}_y$, $\vec{v} = v\vec{u}_z$, avec E, B et v nombres **positifs**. Choisissez 2 plans entre les 3 possibilités en repère cartésien (Oxy, Oxz ou Oyz) pour les questions suivantes.

- a) Indiquer votre choix dans les cases correspondants et placer le troisième vecteur de la base cartésienne à l'origine cohérent avec votre choix (rappel: \otimes ou \odot sont respectivement un vecteur rentrant ou sortant du plan.)
- b) Dessiner les vecteurs \vec{v} , \vec{B} et \vec{E} (obs: dans les deux plans, la taille des flèches n'est pas important).
- c) Dessiner les vecteurs $\vec{f_E}$ et $\vec{f_B}$ (même observations que b)).
- d) Donner l'expression de \vec{f}_{EB} en fonction de q, E, B et v.
- e) Pour quelle valeur de v (en fonction des autres données), la force $\vec{f}_{EB} = \vec{0}$.
- f) On pose v_0 la valeur critique trouvé en e). Dessiner le vecteur \vec{f}_{EB} pour $v > v_0$ (même observation que b)).

Q2: Un esquimau sur un igloo (12pts)

L'enfant se laisse glisser avec frottement \vec{f} (avec sa norme noté par f) depuis le sommet de l'igloo qui a la forme d'une demisphère de rayon R et de centre O. La position de l'enfant, assimilé à un point matériel M de masse m est repérée par l'angle θ par rapport à \vec{u}_x (augmentant un direction à \vec{u}_y). La norme de l'accéleration de la pesanteur est dénoté g, tel $\vec{g} = -g\vec{u}_y$ point vers le bas. L'objectif de cet exercice est d'étudier le mouvement en repère de **Frénet**.

a) (1,0pt) Complétez la figure ci-dessous en plaçant \vec{T} (supposant $\dot{\theta} > 0$), \vec{N} et $\vec{B} = \vec{T} \wedge \vec{N}$ (Obs: $(\vec{T}, \vec{N}, \vec{B})$ forme un base orthonormée direct).

- b) (1,5pt) Donner les expressions de toutes les forces en repère de Frénet.
- c) (1,5pt) Calculer les moments de chacune de ces forces par rapport au point O.
- d) (1,5pt) Calculer le moment cinétique de l'enfant par rapport au point O.
- e) (1,5pt) Appliquer le théorème du moment cinétique à ce mouvement.
- f) (1,5pt) Appliquer le principe fondamentale de la dynamique (PFD) projeté sur le vecteur normale du repère de Frénet.
- g) (2,0pt) On va supposer que $f = \alpha R_N$ ($\alpha > 0$ un coefficient donné). Trouver une équation différentielle unique avec les résultats des exercises e) et f).
- h) (1,5pt) Expliquer la différence principale entre le vecteur T en repère de Frénet et de \vec{u}_{θ} dans le repère cylindrique. Quel est l'intérêt de l'utilisation du repère Frénet pour modéliser le frottement par rapport l'utilisation du repère cylindrique.

Q1 correction

- a) Voir figure.
- b) Voir figure.
- c) Comme q est négatif \vec{f}_E est dans le sens contraire à \vec{E} . $\vec{f}_B = q\vec{v} \wedge \vec{B} = qvB\vec{u}_z \wedge \vec{u}_y = -qvB\vec{u}_x$. Comme (-qvB) > 0, \vec{f}_B pointe dans le sens positif de \vec{u}_x . Voir la figure pour le dessin.
- d) On sait que $\vec{f}_E=q\vec{E}=qE\vec{u}_x$. De la question précédent, on a donc $\vec{f}_{EB}=\vec{f}_E+\vec{f}_B=q(E-Bv)\vec{u}_x$.
- e) On aura $\vec{f}_{EB} = \vec{0}$ pour v = E/B.
- f) Si $v > v_0 = E/B$, le terme q(E vB) > 0, donc \vec{f}_{EB} pointe vers \vec{u}_x (voir figure).
- g) On a $\vec{f}_{EB} = q(E vB)\vec{u}_x$, donc:

$$\begin{split} \vec{M}_0(\vec{f}_{EB}) &= (a\vec{u}_x + b\vec{u}_y + c\vec{u}_z) \wedge q(E - vB)\vec{u}_x \\ &= q(E - vB)b\vec{u}_y \wedge \vec{u}_x + q(E - vB)c\vec{u}_z \wedge \vec{u}_x \\ &= -q(E - vB)b\vec{u}_z + q(E - vB)c\vec{u}_y \end{split}$$