Algorithm 4 Mapping (BOM, Facilities, seed, min_demand, max_demand)

1: Let facilities_mapping be an empty list of alternative facilities for each node in BOM 2: Let processing_time be an empty list indicating processing times of each item in alternative facilities 3: Let inventory be an empty list indicating inventory level of each item in alternative facilities 4: Let PGHG be an empty list indicating production greenhouse gas emission levels for unit processing time of each item in each alternative facility 5: for each i in BOM do ▷ Generating alternative facilities for each node $\texttt{facilities_mapping}[i] \leftarrow \{\}$ $num_facilities \leftarrow U(2, \max(3, |\text{Facilities}|/3))$ 7: $alternative_facilities \leftarrow \texttt{Uniform_sample}(\texttt{Facilities}, \texttt{num_facilities})$ ▷ Choose alternative 8: facilities as a random sample from all facilities $facilities_mapping[i] \leftarrow alternative_facilities$ 9: 10: end for 11: **for** each i in BOM **do** ▶ Generating processing times, inventory and PGHG in alternative facilities for each j in facilities_mapping[i] do 12: processing_time[i][j] $\leftarrow U(5,10)$ 13: $inventory[i][i] \leftarrow U(min_demand \times 2, max_demand \times 2)$ 14: $PGHG[i][j] \leftarrow processing_time[i][j] \times max_demand$ 15: 16: end for 17: end for 18: return facilities_mapping, processing_time, inventory, PGHG