lA pour l'économie d'énergie des stations telecom

Projet de Fin d'Etudes

Pierre-Eliot Jourdan

Jeudi 7 Septembre 2023

Superviseurs : Lorenzo Maggi, Ryo Koblitz

Nokia Bell Labs

Site de Massy, lle-de-France

- Nokia (1865) : micro-ordinateurs, téléphones mobiles... infrastructures plus récemment
- Laboratoires Bell Labs (1879) : satellites, capteurs, télécommunications... racheté par Nokia en 2016

Aujourd'hui 4 secteurs de recherche :

Contexte

- Nombre d'utilisateurs grandissant...
- Station telecom:
 - → 4-5 kW (reseaux 4G/5G)
- → RAN = 1% de la consommation d'énergie d'un pays tout entier
- **Objectif**: Réduire la consommation d'énergie des stations telecom
- **Contrainte**: Préserver une bonne qualité de service pour les utilisateurs

Problème étudié

Problème complexe :

- → Problème combinatoire : la dimension peut exploser
- → Plusieurs facteurs inconnus (traffic, état du canal de transmission ...)
- → Incertitudes sur les temps de latence

Exemple d'architecture de station télécom

Etat de l'art

Techniques existantes:

- → Activation de cellules ("cell switch-off" → travaux effectués à Nokia)
- → Activation opportuniste ("micro-DTX")
- → Activation d'antennes ("MIMO-muting")

Qualité de service

KPIs, fenêtre glissante, budget

KPI (Key Performance Indicator) : valeur assignee à chaque cellule, avec une limite de performance y Vérification de performance à l'instant t:

$$OK_t = 1(\bigcap_{k=1}^K KPI_k \ge y_k)$$

Performances historiques récentes (fenêtre glissante) :

$$\overline{OK_t} = \frac{1}{T^{OK}} \sum_{i=0}^{T^{OK}-1} OK_{t-i}.$$

Budget: $b_t = \overline{OK_t} - x$. La qualité de service est respectée ssi : $b_t \ge 0$.

NB: Les limites y_k et x définies par les clients (paramètres d'entrée du modèle).

Consommation d'énergie Charge, modèle linéaire de consommation

- **Charge** L_t : % de resource utilisé par tous les utilisateurs connectés à une cellule à un instant t
- Hypothèse: charge uniformément répartie entre les cellules actives.
- $L_t = \min(L_0 \frac{n_{totalTX}}{n_{activeTX}}$, 100) si $n_{activeTX} \neq 0$ et $L_t = 0$ sinon.
- $L_0 \rightarrow$ fluctuations du traffic

- Modèle de consommation linéaire :
- Si cellule active: $E_{consumption} = AL_t + B$,
- Sinon: $E_{consumption} = X$

Où les coefficients A, B et X ont été fournies par Nokia

Processus de Décision Markovien (MDP)

- **Etats**: $s_t = (\sigma_t, b_t)$ (configuration actuelle + budget)
- Actions : a_t = configuration suivante σ'
- Probabilités de transition:
 - $-b_t \rightarrow b_{t+1}$:
 - Dépend de $\Pr(OK_{t+1} = 1 | \sigma_{t+1}) \rightarrow \text{donné par Nokia}$
 - Dépend du nombre de $OK_i = 1$ dans la fenêtre glissante
 - $\sigma_t \rightarrow \sigma_{t+1}$ (temps de latence) :
 - Pr(changement de configuration) = $\lambda(\sigma_t, a_t)$
 - $Pr(m\hat{e}me\ configuration) = (1 \lambda(\sigma_t, a_t))$
- Coût: $u(s_t, a_t) = E_{consumption}(\sigma_t) + \ell_{KPI}(b_t)$ avec:
 - $\ell_{\mathit{KPI}}(b_t) = 0$ si $b_t \geq 0$
 - $\ell_{KPI}(b_t) = KPI_{coeff} \times |b_t|$ si $b_t < 0$, avec $KPI_{coeff} > 0$
- **Objectif**: minimiser le coût à long-terme : $\min_{\pi} \mathbb{E}_{\pi}[\sum_{t\geq 0} \beta^t u(s_t)]$ $0 \leq \beta \leq 1$ coefficient d'actualisation et π une strategie (**politique**)

Simple architecture

Résultats (1/5)

Paramètres : $T_{OK} = 100$, Limite budget = 0.8, $(n_{OK} \ge 80)$, $\overline{KP}I_{PENcoeff} = 10^5, L_0 = 50$

Résultats (2/5) – Distribution stationnaire

Résultats (3/5)

• Paramètres: $T_{OK}=30$, Limite budget = 0.8 ($n_{OK} \ge 80$), $KPI_{PENcoeff}=10^4$, $L_0=50$

Résultats (4/5) – Distribution stationnaire

Résultats (5/5) – Comparaison de politiques Coût à long terme

- Stratégie "Random" = on sélectionne dans chaque état des actions de manière aléatoire
- Stratégie "Greedy" = on allume toutes les antennes si budget < 0, sinon on éteint tout

$$KPI_{PENcoeff} = 10^5$$

$$KPI_{PENcoeff} = 10^3$$

Etapes suivantes

- → Reinforcement Learning (RL): basé sur le MDP
- → Simulateur de station (sans hypothèses)
- → Environnement Gymnasium (Python)
- → Application d'**algorithmes** pour entrainer l'agent

Bilan

- MDP = bonnes performances -> solution RL = piste intéressante
- Découverte des télécoms, de Gym...
- Dépôt d'un brevet
- Projet en cours >> finir le modèle RL
- Solution qui marche sur simulateur → l'intégrer aux réseaux actuels

Slides supplémentaires – travaux en cours / explications...

Markov Decision Process (MDP)

- **Etats**: $s_t = (\sigma_t, b_t)$ (configuration actuelle + budget)
- Actions : a_t = configuration suivante σ'
- Probabilités de transition: 2 transitions à traiter
 - $-b_t \to b_{t+1}: p_t^i$
 - Dépend du nombre de 1 dans la fenêtre glissante \rightarrow 3 transitions possibles (i=-1,0,+1)
 - Dépend de $\Pr(OK_{t+1} = 1 | \sigma_{t+1}) \rightarrow$ donné par Nokia
 - $\sigma_t \rightarrow \sigma_{t+1}$ (temps de latence) :
 - $\Pr(\sigma_{t+1} = \sigma', b_{t+1} = b_t + i | a_t = \sigma') = \lambda(\sigma_t, a_t) p_t^i$, $\forall i = -1, 0, +1$ (changement de configuration)
 - $\Pr(\sigma_{t+1} = \sigma_t, b_{t+1} = b_t + i | a_t = \sigma') = (1 \lambda(\sigma_t, a_t)) p_t^i$, $\forall i = -1, 0, +1 \text{ (même configuration)}$
- Coût: $u(s_t, a_t) = E_{consumption}(\sigma_t) + \ell_{KPI}(b_t)$ avec:
 - $\ell_{KPI}(b_t) = 0$ si $b_t \ge 0$ (bons KPIs)
 - $\ell_{KPI}(b_t) = KPI_{coeff} \times b_t$ si $b_t < 0$ (mauvais KPIs) avec $KPI_{coeff} > 0$
- **Objectif**: minimiser le coût à long-terme : $\min_{\pi} \mathbb{E}_{\pi}[\sum_{t\geq 0} \beta^t u(s_t)]$

 $0 \le \beta \le 1$ facteur de réduction et π une strategie (**politique**)

Observations

Evolution du budget sur le simulateur BTS, $0 \le L_0 \le 20$

Observations

Evolution du budget sur le simulateur BTS, $40 \le L_0 \le 60$

