DECENTRALIZED LEARNING

- -> A bit of statistical learning
- -> the consensus problem
- Destributed gradient
- lssves with networks
- Adversarials
- -> Federated and friends

min
$$f(x)$$
 $f(x)$
 $f(x)$

min
$$f(x)$$
 x
 $\frac{1}{2}f_i(x)$
 x
 $\frac{1}{3}f_i(x)$

THE CONSENSUS ALG.

$$X_{4i} = \frac{2}{2} w_{ij} X_{i}$$

$$X_{4i} = \begin{bmatrix} X_{i} \\ X_{4i} \end{bmatrix} = \begin{bmatrix} X_{i} \\ X_{4i} \end{bmatrix}$$

$$X_{4i} = \begin{bmatrix} W \\ X_{4i} \end{bmatrix}$$

$$X_{4i} = W X_{4i}$$

$$= W (W X_{4i})$$

$$= W W - W X_{0}$$

$$X_{++} = W^{t}X_{0}$$

$$W^{t} = \frac{1}{n} \left[\frac{1}{n} \left(\frac{1}{n} \right) \right] X_{0}$$

$$\lim_{t\to\infty} X_t^i = \frac{1}{n} \sum_{j=1}^n X_0^j$$

* Self weights one positive.

and non negative

* Network & connected.

 $\chi^i = \sum_{w \in j} \chi^j$

$$X_{t+1} = X_t - \alpha \nabla f(X_t)$$

Distributed Gradient Methor
(Nedic, Gdiste, 2006)

$$X_{tii} = \sum_{i=1}^{n} w_{ij} X_{t} - \alpha \nabla f_{i}(X_{t})$$

min

1. Consensus will happen tunder certain essumpt.

 $\lim_{t\to 0} \chi_t^{i} = C \quad \text{for all}$

 $C = \arg\min_{n \in J=1} \frac{1}{2} f_j(x)$

Time it takes to converse

O ("time it "Network taks X topology)

Centralijes