

REPORT DOCUMENTATION PAGE

*Form Approved
OMB No. 0704-0188*

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. **PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.**

1. REPORT DATE (DD-MM-YYYY) 04 Jan 2016		2. REPORT TYPE Briefing Charts		3. DATES COVERED (From - To) Nov 2015 – Jan 2016	
4. TITLE AND SUBTITLE Application of Detailed Chemical Kinetics to Combustion Instability Modeling		5a. CONTRACT NUMBER			
		5b. GRANT NUMBER			
		5c. PROGRAM ELEMENT NUMBER			
6. AUTHOR(S) Harvazinski, Matt; Talley, Doug; Sankaran, Venke		5d. PROJECT NUMBER			
		5e. TASK NUMBER			
		5f. WORK UNIT NUMBER Q0A1			
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Air Force Research Laboratory (AFMC) AFRL/RQRC 10 E. Saturn Blvd Edwards AFB, CA 93524-7680			8. PERFORMING ORGANIZATION REPORT NO.		
9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) Air Force Research Laboratory (AFMC) AFRL/RQR 5 Pollux Drive Edwards AFB, CA 93524-7048			10. SPONSOR/MONITOR'S ACRONYM(S)		
			11. SPONSOR/MONITOR'S REPORT NUMBER(S) AFRL-RQ-ED-VG-2015-436		
12. DISTRIBUTION / AVAILABILITY STATEMENT Approved for public release; distribution unlimited					
13. SUPPLEMENTARY NOTES For presentation at AIAA SciTech 2016 (January 2016) PA Case Number: #15705; Clearance Date: #12/15/2015 <u>This document contains in-house research only which is relevant to work done on this contract</u>					
14. ABSTRACT Briefing Charts					
15. SUBJECT TERMS N/A					
16. SECURITY CLASSIFICATION OF:			17. LIMITATION OF ABSTRACT SAR	18. NUMBER OF PAGES 35	19a. NAME OF RESPONSIBLE PERSON E. Weber
a. REPORT Unclassified	b. ABSTRACT Unclassified	c. THIS PAGE Unclassified			19b. TELEPHONE NO (include area code) N/A

Application of Detailed Chemical Kinetics to Combustion Instability Modeling

Matt Harvazinski, Doug Talley, Venke Sankaran

Air Force Research Laboratory
Edwards AFB, CA

Challenges of Combustion Instability

Combustion instability is an organized, oscillatory motion in a combustion chamber sustained by combustion.

CI caused a four year delay in the development of the F-1 engine used in the Apollo program

- > 2000 full scale tests
- > \$400 million for propellants alone (2010 prices)

Irreparable damage can occur in less than 1 second.

Damaged engine injector faceplate caused by combustion instability

“Combustion instabilities have been observed in almost every engine development effort, including even the most recent development programs”

– JANNAF Stability Panel Draft (2010)

Prior Work – Kinetics Used

- **Simulations:**
 - 1) 3D real geometry
 - 2) Unsteady
 - 3) Long run-times
 - 4) Coupled physics
- **1- 4 have forced the use of simplified kinetics**
 - Global reactions

Complex Flowfield

Global mechanisms can be tuned but have limited parameters to adjust

The flowfields contains widely varying parameters, making tuning to operating conditions difficult at best

Mixture fraction for the same operating condition at different times

Single Step Results

Simulation

Experiment

Amplitudes under predicted by 10%,
Frequencies over predicated by 15% (or more)

Two-dimensional Study

2D study showed substantial improvement in amplitudes with detailed kinetics,
BUT, 2D predictions were always worse compared with 3D

Sardeshmukh et al. 2015

Current Work: Detailed kinetics in 3D

	Global	Detailed GRI-1.2
Number of reactions	1	177
Number of species	4	31
Number of cores	960	21,600
Core hours per ms	11,520	259,200

**Extremely
Expensive!**

**22.5× more
than Global**

Experimental Results

Unsteady pressure for a translating test

PSD power for the first mode

Instability Mechanism

Unstable Operating Point

Fluctuating Pressure

Marginally Stable

More cycle to cycle variability

Unstable

Steep-fronted waves

PSD Analysis – Marginally Stable

Global

Detailed

Experiment

Global simulation – 40 ms (35 ms of data used for analysis)
Detailed Simulation – 20 ms (15 ms of data used for analysis)

Detailed Comparison

Marginally Stable

Mode	Experiment			Global			Detailed		
	f , Hz	p'_{ptp} , kPa	f_i/f_1	f , Hz	p'_{ptp} , kPa	f_i/f_1	f , Hz	p'_{ptp} , kPa	f_i/f_1
1	1379	121.70	1.00	1714	129.54	1.00	1533	146.65	1.00
2	2734	5.86	1.98	3428	20.57	1.98	2733	73.12	1.78
3	3882	16.03	2.82	4429	27.57	2.58	4200	36.37	2.74

Error in the frequency is reduced from 20% to 11%

Error in 1st mode amplitude goes from 6% too high to 18% too high

Amplitudes of the harmonic also show an increase

PSD Analysis - Unstable

Global

Detailed

Experiment

Global simulation – 40 ms (35 ms of data used for analysis)
Detailed Simulation – 20 ms (15 ms of data used for analysis)

Detailed Comparison

Unstable Stable

Mode	Experiment			Global			Detailed		
	f , Hz	p'_{ptp} , kPa	f_i/f_1	f , Hz	p'_{ptp} , kPa	f_i/f_1	f , Hz	p'_{ptp} , kPa	f_i/f_1
1	1324	387.15	1.00	1543	349.10	1.00	1467	416.79	1.00
2	2655	89.29	2.01	3114	87.55	2.01	2933	130.41	2.00
3	3979	46.37	3.01	4629	36.25	3.00	4400	64.88	3.00

Error in the frequency is reduced from 15% to 10%

Error in 1st mode amplitude goes from 10% too low to 7% too high

Amplitudes of the harmonic also show an increase

Detailed Results - Unstable

Detailed Cycle Evaluation

Global

Detailed

Time 1

Global

Heat Release, MW/m³

(b) Time 1.

Detailed

Heat Release, MW/m³

(b) Time 1.

Static Pressure, Pa

CH₄ Mass Fraction

(a) Time 1.

Static Pressure, Pa

CH₄ Mass Fraction

(a) Time 1.

Time 2

Global

(d) Time 2.

Detailed

(d) Time 2.

(c) Time 2.

(c) Time 2.

Time 3

Global

(f) Time 3.

Detailed

(f) Time 3.

(e) Time 3.

(e) Time 3.

Time 4

Global

(h) Time 4.

Detailed

(h) Time 4.

(g) Time 4.

(g) Time 4.

Time 5

Global

(j) Time 5.

Detailed

(j) Time 5.

(i) Time 5.

(i) Time 5.

Time 6

Global

(l) Time 6.

Detailed

(l) Time 6.

(k) Time 6.

(k) Time 6.

Detailed Results – Marginally Stable

Detailed Cycle Evaluation

Global

Detailed

Time 1

Global

Heat Release, MW/m³

(b) Time 1.

Detailed

Heat Release, MW/m³

(b) Time 1.

Static Pressure, Pa

(a) Time 1.

CH₄ Mass Fraction

(a) Time 1.

Static Pressure, Pa

(a) Time 1.

Time 2

Global

(d) Time 2.

Detailed

(d) Time 2.

(c) Time 2.

(c) Time 2.

Time 3

Global

(f) Time 3.

Detailed

(f) Time 3.

(e) Time 3.

(e) Time 3.

Time 4

Global

(h) Time 4.

Detailed

(h) Time 4.

(g) Time 4.

(g) Time 4.

Time 5

Global

(j) Time 5.

Detailed

(j) Time 5.

(i) Time 5.

(i) Time 5.

Time 6

Global

(l) Time 6.

Detailed

(l) Time 6.

(k) Time 6.

(k) Time 6.

Summary and Conclusions

- A comparison of global and detailed kinetics mechanisms was completed for two operating conditions of a rocket injector
- Detailed kinetics showed higher amplitudes and lower frequencies
 - Frequencies still do not match experimental values, heat transfer is the remaining unknown
- The cyclic heat release of the unstable case was predicted by both mechanisms

Summary and Conclusions

- **Similar results between both mechanisms suggest that in this configuration:**
 - The flow is mixing dominated
 - The coupling between pressure and heat release is captured sufficiently by the global mechanism
 - Differences in the heat release locations is a secondary effect and does not drive the instability
- **The prior improvement observed in the 2D simulations suggests that the poor ability to predict mixing in 2D is the key problem, not the simplicity of the kinetics.**

Questions

Acknowledgments

All computing resources were provided by the DoD high performance computing modernization program. Substantial resources for the detailed chemistry simulations were obtained through the TI-14 and TI-15 Capability Applications Project, Phase II.