Neural Chinese Word Segmentation as Sequence-to-sequence Translation

Xuewen Shi, Heyan Huang, Ping Jian, Yuhang Guo, Xiaochi Wei and Yikun Tang {xwshi,hhy63,pjian,guoyuhang,wxchi,tangyk}@bit.edu.cn

报告人:史学文

Outline

- Chinese word segmentation
- Chinese spelling correction
- Related works
- Conclusion

Background

- Chinese Word Segmentation (CWS)
 - Basic task of Chinese NLP
 - Popular algorithm : HMM、CRF etc.
 - Popular open source CWS toolkit: <u>NLPIR</u>, <u>HIT-LTP</u>, <u>jieba</u> etc.
- Chinese Weibo Text
 - New words; foreign language; informal grammar

CWS

国外/有/只/名叫/TIngelIng/的/喵/,/好像/一/颗/纯黑/的/小/煤球/~

国外有只名叫TIngelIng的喵,好像一颗纯黑的小煤球~

CWS: Popular Approaches

bessbebm.....messsbessbes

国外/有/只/名叫/TIngelIng/的/喵/,/好像/一/颗/纯黑/的/小/煤球/~

Sequence labeling

国外有只名叫TIngelIng的喵,好像一颗纯黑的小煤球~

CWS: Our Approach

Target characters sequence with delimiters '/' :

bessbebm.....messsbessbes

国外/有/只/名叫/TIngelIng/的/喵/,/好像/一/颗/纯黑/的/小/煤球/~

Sequence labeling

Sequence-to-sequence translation

Source characters sequence:

国外有只名叫TIngelIng的喵,好像一颗纯黑的小煤球~

Model Comparison

Popular approaches

$$P(T|X) = ?$$

Our approach:

$$P(\mathbf{Y}|X) = \prod_{t}^{T} p(y_y|y_1, ..., y_{t-1}, X)$$
$$p(y_t|y_1, ..., y_{t-1}, X) = g(y_{t-1}, s_t, X)$$

Model Architecture

Model architecture: attention-based encoder-decoder [Bahdanau et al., 2015]

Formulation

$$\alpha_{t,i} = \frac{\exp(e_{t,i})}{\sum_{k=1}^{N} \exp(e_{t,k})}$$
 $e_{t,i} = a(s_{t-1}, h_i)$

• Encoder:

Maps
$$X = [x_1, ..., x_N]$$

into $H = [h_1, ..., h_N]$
 $\overleftarrow{h}_i = \overleftarrow{f}(\overleftarrow{h}_{i+1}, x_i) \qquad \overrightarrow{h}_i = \overrightarrow{f}(\overrightarrow{h}_{i-1}, x_i)$
 $h_i = \begin{bmatrix} \overrightarrow{h}_i \\ \overleftarrow{h}_i \end{bmatrix}$

喵

 y_t

Post-editing

- WHY: translating errors
- Example:

Outputs: 岛国/一/超/精分/的/小品/《/UNK道/UNK/UNK子/》/,/看完/之后/我/想/说/,/为什么/我/没有/这么/"/通情达理/"/的/老爸/呢/?

Post-editing

 Longest common subsequence (LCS) based postediting method

Ctoro 1	S B E S B E S	Labels	
Step1	《/UNK道/UNK/UNK子/》	Outputs	
	S B E S B E S	Labels	
Step2	《UNK道 UNK UNK子》	Outputs	
	《 極 道 の 親子》	Inputs	
	《 道 子》	LCS	
Step3	S B E S B E S	Labels	
	《 / 極 道 / の / 親 子/》	PE outputs	

The source code is available at https://github.com/SourcecodeSharing/CWSpostediting

Setup

Model Setup

 Source code: GroundHog https://qithub.com/lisa-groundhog/GroundHog

- Vocabulary size 7190, hidden size 1000, embedding size 620
- Seq2seq baseline: Moses phrase-based statistical machine translation model

Dataset

- Weibo text¹ [Qiu et al., 2016]
- PKU and MSRA² [Emerson et al., 2005]

Datasets		Training			Testing	
Datasets	Sentences	Words	Characters	Sentences	Words	Characters
Weibo	20,135	421,166	688,743	8,592	187,877	315,865
PKU	43,475	1,109,947	1,826,448	4,261	104,372	172,733
MSRA	86,924	2,368,391	4,050,469	3,985	106,873	184,355

^{1:} https://github.com/FudanNLP/NLPCC-WordSeg-Weibo

^{2:} http://sighan.cs.uchicago.edu/bakeoff2005/

Pre-training

• *WHY*:

- Large scale free parameters
- Small training data
- To avoid underfitting or overfitting

Datasets	Р	R	F
Weibo	89.8	89.5	89.6
PKU	87.0	88.6	87.8
MSRA	95.1	93.2	94.1

Pseudo Data:

- Dataset: UN1.0 [<u>Ziemski et al., 2016</u>]
- Chinese word segmentation toolkit: LTP [Che et al., 2010]
- P, R and F score on pseudo test data: 98.2, 97.1 and 97.7

Weibo Results

Groups	Models	Stan	Standard Scores			Weighted Scores		
Groups	Wodels	Р	R	F	P	R	F	
A	LTP [3]	83.98	90.46	87.09	69.69	80.43	74.68	
	S1	94.13	94.69	94.41	79.29	81.62	80.44	
B [16]	S2	94.21	95.31	94.76	78.18	81.81	79.96	
	S3	94.36	95.15	94.75	78.34	81.34	79.81	
	S4	93.98	94.78	94.38	78.43	81.20	79.79	
	S5	93.93	94.80	94.37	76.24	79.32	77.75	
	S6	93.90	94.42	94.16	75.95	78.20	77.06	
	S7	93.82	94.60	94.21	75.08	77.91	76.47	
	S8	93.74	94.31	94.03	74.90	77.14	76.00	
	S9	92.89	93.65	93.27	71.25	73.92	72.56	
	Moses PB w/ 3-gram LM	92.42	92.26	92.34	76.74	77.23	76.98	
M	Moses PB w/ 5-gram LM	92.37	92.26	92.31	76.58	77.25	76.91	
	RNNsearch w/o fine-tuning	86.10	88.82	87.44	68.88	75.20	71.90	
	RNNsearch	92.09	92.79	92.44	75.00	78.27	76.60	
	RNNsearch w/ post-editing	93.48	94.60	94.04	76.30	79.99	78.11	
	Turiscarch w/ post-editing	(>S9)	(>S6)	(>S8)	(>S5)	(>S5)	(>S5)	

Weibo Examples

Reference 安心/持股/ , /别/一惊一乍/。 Not in the 安心/持股/,/别/一惊一乍/。 This work training data 安心/持/股/,/别/一/惊/一/乍/。 LTP 网传/《/唐/十八陵/五人/石马/洗澡/千年/包浆/被/清洗》/。 Reference 网传/《/唐/十八陵/石人/石马/洗澡/千/年/包浆/被/清洗/》/。 This work LTP 网传/《 唐/十八/陵石/人/石马/洗澡/千/年/包浆/被/清洗/》/。 Reference 据/报道/,/该/案/疑点/众多/,/且/刘/受过/刑讯逼供。 This work 据/报道/ , /该/案/疑点/众多/ , /且/刘/受/过/刑讯/逼供。 据/报道/ , /该案/疑点/众多/ , /且/刘受/过/刑讯/逼供。 LTP

Weibo Examples

陈睿 🗸 🀽

4月4日 21:51 来自 iPhone 7

几年后才发现。。。原来夏川真凉的初恋男友是486啊。。。 😲 😲 😲 #我女友

与青梅竹马的惨烈修罗场#

Input

几年后才发现。。。原来夏川真凉的初恋男友是486啊。。。 [晕][晕] #我女友与青梅竹马的惨烈修罗场#

Output

几/年/后/才/发现/。/。/。/原来/<mark>夏川/真凉</mark>/的/初恋/男友/是/486/啊/。/。/。/ [/晕/] /[/晕/] /[/晕/] /#/我/女友/与/青梅/竹马/的/惨烈/修罗场/#

LTP

几/年/后/才/发现/。。。/原来/<mark>夏川真凉</mark>/的/初恋/男友/是/486/啊/。。。/ [/晕/] /[/晕/] /[/晕/] /#/我/女友/与/青梅竹马/的/惨烈/修罗场/#

PKU & MSRA Results

Groups	Models		PKU		MSRA		
Groups	Models	P	R	F	P	R	F
A	LTP [3]	95.9	94.7	95.3	86.8	89.9	88.3
	Zheng et al., 2013 [25]	93.5	92.2	92.8	94.2	93.7	93.9
В	Pei et al., 2014 [13]	94.4	93.6	94.0	95.2	94.6	94.9
	Chen et al., 2015 [4]	96.3	95.9	96.1	96.2	96.3	96.2
	Chen et al., 2015 [5]	96.3	95.6	96.0	96.7	96.5	96.6
	Cai and Zhao, 2016 [2]	95.8	95.2	95.5	96.3	96.8	96.5
\mathbf{C}	Zhang et al., 2013 [23]	-	-	96.1	_	-	97.4
	Moses PB w/ 3-gram LM	92.9	93.0	93.0	96.0	96.2	96.1
	Moses PB w/ 5 -gram LM	92.7	92.8	92.7	95.9	96.3	96.1
	Moses PB w/ 3-gram LM w/ CSC	92.9	93.0	92.9	95.3	96.5	95.9
M	Moses PB w/ 5-gram LM w/ CSC	92.6	93.2	92.9	95.9	96.3	96.1
	RNNsearch w/o fine-tuning	93.1	92.7	92.9	84.1	87.9	86.0
	RNNsearch	94.7	95.3	95.0	96.2	96.0	96.1
	RNNsearch w/ post-editing	94.9	95.4	95.1	96.3	96.1	96.2
	RNNsearch w/ CSC	95.2	94.6	94.9	96.1	96.1	96.1
	RNNsearch w/ CSC and post-editing	95.3	94.7	95.0	96.2	96.1	96.2

Outline

- Chinese word segmentation
- Chinese spelling correction
- Related works
- Conclusion

Chinese Spelling Correction (CSC)

Motivation

- Sequence-to-sequence CWS is unnecessary and bring into other problems
- End-to-end NLP preprocessing framework

Manual constructed data

 Correct-to-wrong dictionary counting from SIGHAN 2014 [Yu et al., 2014]

Original input	在这个基础上,公安机关还从原料采购等方面加以严格控制,统一发放"准购证"。
Modified input	在这个基础上,公安机关还从 <mark>源</mark> 料采购等方面加以严格控 制,统一发放"准购证"。
Gold standard	在/这个/基础/上/ , /公安/机关/还/从/原料/采购/等/方面/加以/严格/控制/ , /统一/发放/ "/准/购/证/" /。

CSC Results

PKU

Models	P	R	F
Modified testing data	99.0	99.0	99.0 (-1.0)
LTP [3]	94.0	93.2	93.6 (-1.7)
Moses PB w/ 3-gram LM	90.8	91.5	91.2 (-1.8)
Moses PB w/ 3-gram LM w/ CSC	92.7	92.9	92.8 (-0.1)
Moses PB w/ 5-gram LM	90.6	91.3	91.0 (-1.7)
Moses PB w/ 5-gram LM w/ CSC	92.3	93.0	92.6 (-0.3)
RNNsearch	93.2	93.2	93.2 (-1.8)
RNNsearch w/ CSC	95.0	94.5	94.8 (-0.1)

MSRA

Models	P	R	F
Modified testing data	98.5	98.5	98.5 (-1.5)
LTP [3]	84.8	88.4	86.6 (-1.7)
Moses PB w/ 3-gram LM	93.7	94.6	94.2 (-1.9)
Moses PB w/ 3-gram LM w/ CSC	95.0	96.3	95.6 (-0.3)
Moses PB w/ 5-gram LM	93.7	94.7	94.2 (-1.9)
Moses PB w/ 5-gram LM w/ CSC	94.6	95.9	95.3 (-0.7)
RNNsearch	93.8	94.7	94.2 (-1.9)
RNNsearch w/ CSC	96.0	96.0	96.0 (-0.1)

CSC Examples

Gold standard (/新华社/北京/12月/31日/电/)

Modified input (新华社背景12月31日电)

(/新华社/北京/12月/31日/电/) Output

Gold standard

正是/在/这样/的/国际/和/国内/经济/社会/背景/下/, /加纳/民众/思/变/心切/,/特别/是/向来/支持/全国/ 民主/大会党/的/广大/农民/倒戈/,/直接/导致/执政党

/在/这次/大选/中/败北/。

Modified input

正是在这样的国际和国内经济社会背景下,加纳民众思 变心切,特别是向来支持全国民主大会党的广大农民倒

戈,直接导致执政党在这次大选中败北。

Output

正是/在/这样/的/国际/和/国内/经济社会/背景/下/,/ 加纳/民众/思变/心切/ , /特别/是/向来/支持/全国/民 主/大会党/的/广大/农民/倒戈/,/直接/导致/执政党/ 在/这次/大选/中/败北/。

CSC Examples

Gold standard 港澳/回归/ , /台湾/父老/ , /统一/人心/正义/稠/。

Modified input 港澳回归,台弯父老,统一人心正义稠。

Output 港澳/回归/ , /台湾/父老/ , /统一/人心/正义稠/。

Gold standard

令/人/疑惑/的/是/,/直到/11月/30日/还/坚持/罢免书/无效/的/乡/政府/,/突然/来/了/个/180/度/的/大/转弯/,/ 不再/提/核实/问题/,/仓促/决定/于/12月/5日/召开/罢免/大会/。

Modified input

令人疑惑的是,至到11月30日还坚持罢免书无效的乡政府, 突然来了个180度的大转弯,不再提核实问题,仓促决定于 12月5日召开罢免大会。

Output

令/人/疑惑/的/是/,/直到/11月/30日/还/坚持/罢免书/无效/的/乡政府/,/突然/来/了/个/180/度/的/大/转弯/,/不再/提/核实/问题/,/仓促/决定/于/12月/5日/召开/罢免/大会/。

Outline

- Chinese word segmentation
- Chinese spelling correction
- Related works
- Conclusion

Related Works

Neural CWS

- Neural sequence labelling [Zheng et al., 2013; Pei et al., 2014; Chen et al., 2015a; Chen et al., 2015b]
- Direct segmentation learning [Cai and Zhao, 2016]
- Sequence-to-sequence model
 - Neural machine translation [<u>Sutskever et al., 2014</u>; <u>Bahdanau et al., 2015</u>]
 - Sequence-to-dependency [<u>Wu et al., 2017</u>]
 - AMR [Konstas et al., 2017]

Outline

- Chinese word segmentation
- Chinese spelling correction
- Related works
- Conclusion

Conclusion

- First treat CWS as a sequence-to-sequence translation task and introduce an attention-based encoder-decoder framework into CWS
- Propose an LCS based post-editing method to deal with possible translation errors
- Let our sequence-to-sequence CWS model simultaneously tackle CSC in an end-to-end mode, and well validate its applicability in our experiments.

Thanks for Attention

References

- Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014)
- Cai, D., Zhao, H.: Neural word segmentation learning for chinese. arXiv preprint arXiv:1606.04300 (2016)
- Che, W., Li, Z., Liu, T.: Ltp: A chinese language technology platform. In: Proceedings of the 23rd International Conference on Computational Linguistics: Demonstrations. pp. 13{16. Association for Computational Linguistics (2010)
- Chen, X., Qiu, X., Zhu, C., Huang, X.: Gated recursive neural network for Chinese word segmentation. In: ACL (1). pp. 1744(1753 (2015a)
- Chen, X., Qiu, X., Zhu, C., Liu, P., Huang, X.: Long short-term memory neural networks for chinese word segmentation. In: EMNLP. pp. 1197{1206 (2015b)
- Emerson, T.: The second international chinese word segmentation bakeoff. In: Proceedings of the fourth SIGHAN workshop on Chinese language Processing. vol. 133 (2005)
- Konstas, I., Iyer, S., Yatskar, M., Choi, Y., & Zettlemoyer, L. (2017). Neural AMR: Sequence-to-Sequence Models for Parsing and Generation. arXiv preprint arXiv:1704.08381.
- Pei, W., Ge, T., Chang, B.: Max-margin tensor neural network for chinese word segmentation. In: ACL (1). pp. 293{303 (2014)
- Qiu, X., Qian, P., Shi, Z.: Overview of the NLPCC-ICCPOL 2016 shared task: Chinese word segmentation for micro-blog texts. In: Proceedings of The Fifth Conference on Natural Language Processing and Chinese Computing & The Twenty Fourth International Conference on Computer Processing of Oriental Languages (2016)
- Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. In: Advances in neural information processing systems. pp. 3104(3112 (2014)
- Wu, S., Zhang, D., Yang, N., Li, M., & Zhou, M. (2017). Sequence-to-Dependency Neural Machine Translation. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers) (Vol. 1, pp. 698-707).
- Yu, L.C., Lee, L.H., Tseng, Y.H., Chen, H.H., et al.: Overview of sighan 2014 bake-off for chinese spelling check. In: Proceedings of the 3rd CIPSSIGHAN Joint Conference on Chinese Language Processing (CLP' 14). pp. 126(132 (2014))
- Zheng, X., Chen, H., Xu, T.: Deep learning for chinese word segmentation and postagging. In: EMNLP. pp. 647{657 (2013)
- Ziemski, M., Junczys-Dowmunt, M., Pouliquen, B.: The united nations parallel corpus v1. 0. In: Proceedings of the Tenth International Conference on Language Resources and Evaluation LREC. pp. 23{28 (2016)