FCC REPORT

Report No: CCISE170402803

(Bluetooth)

Applicant: LAVA INTERNATIONAL (H.K) LIMITED

Address of Applicant: UNIT L 1/F MAU LAM COMM BLDG 16-18 MAU LAM ST,

JORDAN KL, HK

Equipment Under Test (EUT)

Product Name: Mobile Phone

Model No.: iris 80

Trade mark: LAVA

FCC ID: 2AEE8LAVAIRIS80

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 13 Apr., 2017

Date of Test: 14 Apr., to 28 Apr., 2017

Date of report issued: 02 May, 2017

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	02 May, 2017	Original

Tested by: Over then Date: 02 May, 2017

Test Engineer

Reviewed by: O2 May, 2017

Project Engineer

3 Contents

			Page
1	С	OVER PAGE	1
2	V	ERSION	2
3	C	ONTENTS	2
3			
4	T	EST SUMMARY	4
5	G	ENERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T.	_
	5.3	TEST MODE	
	5.4	Measurement Uncertainty	7
	5.5	LABORATORY FACILITY	7
	5.6	LABORATORY LOCATION	7
	5.7	TEST INSTRUMENTS LIST	8
6	T	EST RESULTS AND MEASUREMENT DATA	9
	6.1	ANTENNA REQUIREMENT	9
	6.2	CONDUCTED EMISSIONS	10
	6.3	CONDUCTED OUTPUT POWER	13
	6.4	20dB Occupy Bandwidth	
	6.5	CARRIER FREQUENCIES SEPARATION.	
	6.6	HOPPING CHANNEL NUMBER	
	6.7	DWELL TIME	
	6.8	PSEUDORANDOM FREQUENCY HOPPING SEQUENCE	_
	6.9	BAND EDGE	
	٠.	.9.1 Conducted Emission Method	
	_	.9.2 Radiated Emission Method	
	6.10	Spurious Emission	
		.10.2 Radiated Emission Method	
_	_		
7	TI	EST SETUP PHOTO	62
8	E	UT CONSTRUCTIONAL DETAILS.	63

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna Requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(1)	Pass
20dB Occupied Bandwidth	15.247 (a)(1)	Pass
Carrier Frequencies Separation	15.247 (a)(1)	Pass
Hopping Channel Number	15.247 (a)(1)	Pass
Dwell Time	15.247 (a)(1)	Pass
Radiated Emission	15.205/15.209	Pass
Band Edge	15.247(d)	Pass

Pass: The EUT complies with the essential requirements in the standard.

Report No: CCISE170402803

5 General Information

5.1 Client Information

Applicant:	LAVA INTERNATIONAL (H.K) LIMITED
Address of Applicant:	UNIT L 1/F MAU LAM COMM BLDG 16-18 MAU LAM ST, JORDAN KL, HK
Manufacturer:	LAVA INTERNATIONAL (H.K) LIMITED
Address of Manufacturer:	UNIT L 1/F MAU LAM COMM BLDG 16-18 MAU LAM ST, JORDAN KL, HK

5.2 General Description of E.U.T.

•					
Product Name:	Mobile Phone				
Model No.:	iris 80				
Operation Frequency:	2402MHz~2480MHz				
Transfer rate:	1/2/3 Mbits/s				
Number of channel:	79				
Modulation type:	GFSK, π/4-DQPSK, 8DPSK				
Modulation technology:	FHSS				
Antenna Type:	Internal Antenna				
Antenna gain:	1 dBi				
Power supply:	Rechargeable Li-polymer battery DC3.8V-2500mAh				
AC adapter:	Model: CLV-15				
	Input: AC100-300V 50/60Hz 0.15A				
Output: DC 5.0V, 1A					

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
2	2404MHz	22	2424MHz	42	2444MHz	62	2464MHz
3	2405MHz	23	2425MHz	43	2445MHz	63	2465MHz
4	2406MHz	24	2426MHz	44	2446MHz	64	2466MHz
5	2407MHz	25	2427MHz	45	2447MHz	65	2467MHz
6	2408MHz	26	2428MHz	46	2448MHz	66	2468MHz
7	2409MHz	27	2429MHz	47	2449MHz	67	2469MHz
8	2410MHz	28	2430MHz	48	2450MHz	68	2470MHz
9	2411MHz	29	2431MHz	49	2451MHz	69	2471MHz
10	2412MHz	30	2432MHz	50	2452MHz	70	2472MHz
11	2413MHz	31	2433MHz	51	2453MHz	71	2473MHz
12	2414MHz	32	2434MHz	52	2454MHz	72	2474MHz
13	2415MHz	33	2435MHz	53	2455MHz	73	2475MHz
14	2416MHz	34	2436MHz	54	2456MHz	74	2476MHz
15	2417MHz	35	2437MHz	55	2457MHz	75	2477MHz
16	2418MHz	36	2438MHz	56	2458MHz	76	2478MHz
17	2419MHz	37	2439MHz	57	2459MHz	77	2479MHz
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
19	2421MHz	39	2441MHz	59	2461MHz		

5.3	Test	mo	ah
J.J	1621	HILL	uc

Transmitting mode:	Keep the EUT in transmitting mode with worst case data rate.
Remark	GFSK (1 Mbps) is the worst case mode.

Report No: CCISE170402803

The sample was placed 0.8m(below 1GHz)/1.5m(above 1GHz) above the ground plane of 3m chamber*. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working with a fresh battery, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

5.4 Measurement Uncertainty

Items	Expanded Uncertainty (Confidence of 95%)
Conducted Emission (9kHz ~ 30MHz)	2.14 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	4.24 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	4.35 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	4.44 dB (k=2)
Radiated Emission (18GHz ~ 26.5GHz)	4.56 dB (k=2)

5.5 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

■ IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.6 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

Report No: CCISE170402803

5.7 Test Instruments list

Radiated Emission:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
1	3m SAC	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017	
2	BiConiLog Antenna	SCHWARZBECK	VULB9163	CCIS0005	02-25-2017	02-24-2018	
3	Horn Antenna	SCHWARZBECK	BBHA9120D	CCIS0006	02-25-2017	02-24-2018	
4	Pre-amplifier (10kHz-1.3GHz)	HP	8447D	CCIS0003	02-25-2017	02-24-2018	
5	Pre-amplifier (1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	02-25-2017	02-24-2018	
6	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	02-25-2017	02-24-2018	
7	Horn Antenna	ETS-LINDGREN	3160	GTS217	02-25-2017	02-24-2018	
8	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP30	CCIS0023	02-25-2017	02-24-2018	
9	EMI Test Receiver	Rohde & Schwarz	ESRP7	CCIS0167	02-25-2017	02-24-2018	
10	Loop antenna	Laplace instrument	RF300	EMC0701	02-25-2017	02-24-2018	
11	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	
12	Coaxial Cable	N/A	N/A	CCIS0018	02-25-2017	02-24-2018	
13	Coaxial Cable	N/A	N/A	CCIS0020	02-25-2017	02-24-2018	

Cond	Conducted Emission:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)		
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	08-23-2014	08-22-2017		
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	02-25-2017	02-24-2018		
3	LISN	CHASE	MN2050D	CCIS0074	02-25-2017	02-24-2018		
4	Coaxial Cable	CCIS	N/A	CCIS0086	02-25-2017	02-24-2018		
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		

6 Test results and Measurement Data

6.1 Antenna requirement

Standard requirement:

FCC Part 15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The Bluetooth antenna is an integral antenna which permanently attached, and the best case gain of the antenna is 1 dBi.

6.2 Conducted Emissions

Test Requirement:	FCC Part 15 C Section 1	5.207		
Test Method:	ANSI C63.4:2014			
Test Frequency Range:	150 kHz to 30 MHz			
Class / Severity:	Class B			
Receiver setup:	RBW=9 kHz, VBW=30 k	Uz Swoon timo-auto		
•		Limit (dDu\/\	
Limit:	Frequency range (MHz)	Quasi-peak	Average	
	0.15-0.5	66 to 56*	56 to 46*	
	0.5-5	56	46	
	5-30	60	50	
	* Decreases with the log	arithm of the frequency.		
Test setup:	Reference	Plane		
	AUX Filter AC power Equipment E.U.T Test table/Insulation plane Remark E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m			
Test procedure:	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2014 on conducted measurement. 			
Test Instruments:	Refer to section 5.7 for details			
Test mode:	Bluetooth (Continuous transmitting) mode			
Test results:	Pass			

Measurement Data:

Line:

Trace: 7

: CCIS Shielding Room : FCC PART15 B QP LISN LINE Site Condition

: Mobile Phone EUT Model : iris 80 Test Mode : BT mode
Power Rating : AC 120V/60Hz
Environment : Temp: 23 C Huni:56% Atmos:101KPa

Test Engineer: Carey

Remark

	D J	TTCM	C-11-		TULUL	0	
Freq			Loss	Level	Limit		Remark
MHz	dBu₹	<u>dB</u>	dB	dBu₹	dBu∀	<u>d</u> B	
0.166	44.32	0.14	10.77	55.23	65.16	-9.93	QP
0.166	28.46	0.14	10.77	39.37	55.16	-15.79	Average
0.219	40.13	0.15	10.76	51.04	62.88	-11.84	QP
0.219	24.47	0.15	10.76	35.38	52.88	-17.50	Average
0.381	34.17	0.23	10.72	45.12	58.25	-13.13	QP
0.431	33.86	0.24	10.73	44.83	57.24	-12.41	QP
0.437	21.99	0.24	10.74	32.97	47.11	-14.14	Average
0.549	21.32	0.26	10.77	32.35			
0.661	17.84	0.31	10.77	28.92	46.00	-17.08	Average
0.994	15.00	0.26	10.87	26.13	46.00	-19.87	Average
1.707	31.92	0.31	10.94	43.17	56.00	-12.83	QP
4.070	32.46	0.34	10.89	43.69	56.00	-12.31	QP
	MHz 0.166 0.166 0.219 0.219 0.381 0.431 0.437 0.549 0.661 0.994 1.707	MHz dBuV 0.166 44.32 0.166 28.46 0.219 40.13 0.219 24.47 0.381 34.17 0.431 33.86 0.437 21.99 0.549 21.32 0.661 17.84 0.994 15.00 1.707 31.92	Freq Level Factor MHz dBuV dB 0.166 44.32 0.14 0.166 28.46 0.14 0.219 40.13 0.15 0.219 24.47 0.15 0.381 34.17 0.23 0.431 33.86 0.24 0.437 21.99 0.24 0.549 21.32 0.26 0.661 17.84 0.31 0.994 15.00 0.26 1.707 31.92 0.31	Freq Level Factor Loss MHz dBuV dB dB	MHz dBuV dB dB dBuV 0.166 44.32 0.14 10.77 55.23 0.166 28.46 0.14 10.77 39.37 0.219 40.13 0.15 10.76 51.04 0.219 24.47 0.15 10.76 35.38 0.381 34.17 0.23 10.72 45.12 0.431 33.86 0.24 10.73 44.83 0.437 21.99 0.24 10.74 32.97 0.549 21.32 0.26 10.77 32.35 0.661 17.84 0.31 10.77 28.92 0.994 15.00 0.26 10.87 26.13 1.707 31.92 0.31 10.94 43.17	MHz dBuV dB dB dBuV dBuV 0.166 44.32 0.14 10.77 55.23 65.16 0.166 28.46 0.14 10.77 39.37 55.16 0.219 40.13 0.15 10.76 51.04 62.88 0.219 24.47 0.15 10.76 35.38 52.88 0.381 34.17 0.23 10.72 45.12 58.25 0.431 33.86 0.24 10.73 44.83 57.24 0.437 21.99 0.24 10.74 32.97 47.11 0.549 21.32 0.26 10.77 32.35 46.00 0.661 17.84 0.31 10.77 28.92 46.00 0.994 15.00 0.26 10.87 26.13 46.00 1.707 31.92 0.31 10.94 43.17 56.00	Freq Level Factor Loss Level Line Limit MHz dBuV dB dB dBuV dBuV dB

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

Neutral:

Trace: 5

Site

: CCIS Shielding Room : FCC PART15 B QP LISN NEUTRAL Condition

: Mobile Phone EUT Model : iris 80

Test Mode : BT mode Power Rating : AC 120V/60Hz

Environment : Temp: 23 °C Huni:56% Atmos:101KPa Test Engineer: Carey

(emark								
	Freq	Read Level	LISN Factor	Cable Loss		Limit Line	Over Limit	Remark
	MHz	—dBu₹	<u>dB</u>	<u>d</u> B	dBu₹	—dBu₹	dB	
1	0.194	43.06	0.15	10.76	53.97	63.84	-9.87	QP
2	0.437	36.76	0.23	10.74	47.73	57.11	-9.38	QP
3	0.437	32.05	0.23	10.74	43.02	47.11	-4.09	Average
4	0.481	38.88	0.24	10.75	49.87	56.32	-6.45	QP
1 2 3 4 5 6 7 8 9	0.494	29.87	0.24	10.76	40.87	46.10	-5.23	Average
6	0.538	38.50	0.26	10.76	49.52	56.00	-6.48	QP
7	0.546	32.72	0.26	10.76	43.74	46.00	-2.26	Average
8	0.658	28.19	0.31	10.77	39.27	46.00	-6.73	Average
9	0.994	34.61	0.26	10.87	45.74	56.00	-10.26	QP
10	1.269	24.49	0.26	10.90	35.65	46.00	-10.35	Average
11	1.810	23.31	0.26	10.95	34.52	46.00	-11.48	Average
12	2.155	34.97	0.27	10.95	46.19	56.00	-9.81	QP

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

6.3 Conducted Output Power

Test Requirement:	FCC Part 15 C Section 15.247 (b)(1)	
Test Method:	ANSI C63.10:2013 and DA00-705	
Receiver setup:	RBW=1MHz, VBW=3MHz, Detector=Peak (If 20dB BW ≤1 MHz) RBW=3MHz, VBW=10MHz, Detector=Peak (If 20dB BW > 1 MHz and < 3MHz)	
Limit:	125 mW(21 dBm)	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 5.7 for details	
Test mode:	Non-hopping mode	
Test results:	Pass	

Measurement Data:

	GFSK mo	de		
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result	
Lowest	4.41	21.00	Pass	
Middle	4.07	21.00	Pass	
Highest	1.40	21.00	Pass	
-	π/4-DQPSK	mode		
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result	
Lowest	3.56	21.00	Pass	
Middle	3.10	21.00	Pass	
Highest	0.51	21.00	Pass	
	8DPSK mode			
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result	
Lowest	3.56	21.00	Pass	
Middle	3.19	21.00	Pass	
Highest	0.57	21.00	Pass	

Test plot as follows:

Date: 17.APR.2017 20:30:01

Lowest channel

Date: 17.APR.2017 20:30:15

Middle channel

Date: 17.APR.2017 20:30:26

Highest channel

Date: 17.APR.2017 20:31:16

Lowest channel

Date: 17.APR.2017 20:31:06

Middle channel

Date: 17.APR.2017 20:30:57

Highest channel

Date: 17.APR.2017 20:31:28

Lowest channel

Date: 17.APR.2017 20:31:36

Middle channel

Date: 17.APR.2017 20:31:45

Highest channel

6.4 20dB Occupy Bandwidth

Test Requirement:	FCC Part 15 C Section 15.247 (a)(1)
Test Method:	ANSI C63.10:2013 and DA00-705
Receiver setup:	RBW=30 kHz, VBW=100 kHz, detector=Peak
Limit:	NA
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.7 for details
Test mode:	Non-hopping mode
Test results:	Pass

Measurement Data:

Toot shown al	20dB Occupy Bandwidth (kHz)		
Test channel	GFSK	π/4-DQPSK	8DPSK
Lowest	756	1122	1170
Middle	748	1122	1164
Highest	754	1122	1168

Test plot as follows:

Date: 17.APR.2017 20:36:59

Lowest channel

Date: 17.APR.2017 20:36:31

Middle channel

Date: 17.APR.2017 20:36:03

Highest channel

Date: 17.APR.2017 20:34:02

Lowest channel

Date: 17.APR.2017 20:34:53

Middle channel

Date: 17.APR.2017 20:35:24

Highest channel

Date: 17.APR.2017 20:33:33

Lowest channel

Date: 17.APR.2017 20:33:09

Middle channel

Date: 17.APR.2017 20:32:43

Highest channel

6.5 Carrier Frequencies Separation

• • • • • • • • • • • • • • • • • • •	•
Test Requirement:	FCC Part 15 C Section 15.247 (a)(1)
Test Method:	ANSI C63.10:2013 and DA00-705
Receiver setup:	RBW=100 kHz, VBW=300 kHz, detector=Peak
Limit:	0.025MHz or 2/3 of the 20dB bandwidth (whichever is greater)
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.7 for details
Test mode:	Hopping mode
Test results:	Pass

Measurement Data:

GFSK mode				
Test channel	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result	
Lowest	1000	504.00	Pass	
Middle	1000	504.00	Pass	
Highest	1000	504.00	Pass	
	π/4-DQPSK mo	de		
Test channel	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result	
Lowest	1000	748.00	Pass	
Middle	1000	748.00	Pass	
Highest	1000	748.00	Pass	
	8DPSK mode			
Test channel	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result	
Lowest	1000	780.00	Pass	
Middle	1004	780.00	Pass	
Highest	1004	780.00	Pass	

Note: According to section 6.4

Mode	20dB bandwidth (kHz)	Limit (kHz)
Wode	(worse case)	(Carrier Frequencies Separation)
GFSK	756	504.00
π/4-DQPSK	1122	748.00
8DPSK	1170	780.00

Test plot as follows:

Date: 17.APR.2017 20:37:32

Lowest channel

Date: 17.APR.2017 20:37:56

Middle channel

Date: 17.APR.2017 20:38:23

Highest channel

Modulation mode: π/4-DQPSK

Date: 17.APR.2017 20:42:01

*

Lowest channel

Date: 17.APR.2017 20:40:05

Middle channel

Date: 17.APR.2017 20:41:01

Highest channel

Date: 17.APR.2017 20:44:40

Lowest channel

Date: 17.APR.2017 20:43:56

Middle channel

Date: 17.APR.2017 22:23:55

Highest channel

6.6 Hopping Channel Number

Test Requirement:	FCC Part 15 C Section 15.247 (a)(1)	
Test Method:	ANSI C63.10:2013 and DA00-705	
Receiver setup:	RBW=100 kHz, VBW=300 kHz, Frequency range=2400MHz-2483.5MHz, Detector=Peak	
Limit:	15 channels	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 5.7 for details	
Test mode:	Hopping mode	
Test results:	Pass	

Measurement Data:

Mode	Hopping channel numbers	Limit	Result
GFSK, π/4-DQPSK, 8DPSK	79	15	Pass

Test plot as follows:

Date: 17.APR.2017 22:22:56

Date: 17.APR.2017 22:21:34

Date: 17.APR.2017 22:19:03

6.7 Dwell Time

Test Requirement:	FCC Part 15 C Section 15.247 (a)(1)	
Test Method:	ANSI C63.10:2013 and KDB DA00-705	
Receiver setup:	RBW=1 MHz, VBW=1 MHz, Span=0 Hz, Detector=Peak	
Limit:	0.4 Second	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 5.7 for details	
Test mode:	Hopping mode	
Test results:	Pass	

Measurement Data (Worse case):

-	-			
Mode	Packet	Dwell time (second)	Limit (second)	Result
GFSK	DH1	0.12736		
	DH3	0.26624	0.4	Pass
	DH5	0.31083		
π/4-DQPSK	2-DH1	0.12736		
	2-DH3	0.26656	0.4	Pass
	2-DH5	0.31147		
8DPSK	3-DH1	0.10432		
	3-DH3	0.26624	0.4	Pass
	3-DH5	0.31147		

For GFSK, $\pi/4$ -DQPSK and 8DPSK:

The test period: T= 0.4 Second/Channel x 79 Channel = 31.6 s

DH1 time slot=0.398*(1600/(2*79))*31.6=127.36ms DH3 time slot=1.664*(1600/(4*79))*31.6=266.24ms DH5 time slot=2.914*(1600/(6*79))*31.6=310.83ms

2-DH1 time slot=0.398*(1600/ (2*79))*31.6=127.36ms

2-DH3 time slot=1.666*(1600/ (4*79))*31.6=266.56ms

2-DH5 time slot=2.920*(1600/ (6*79))*31.6=311.47ms

3-DH1 time slot=0.326*(1600/ (2*79))*31.6=104.32ms

3-DH3 time slot=1.664*(1600/ (4*79))*31.6=266.24ms

3-DH5 time slot=2.920*(1600/ (6*79))*31.6=311.47ms

Test plot as follows:

Date: 17.APR.2017 22:36:11

DH1

Date: 17.APR.2017 22:36:38

DH3

Date: 17.APR.2017 22:37:03

DH5

Date: 17.APR.2017 22:35:42

2-DH1

Date: 17.APR.2017 22:35:18

2-DH3

Date: 17.APR.2017 22:34:42

2-DH5

Date: 17.APR.2017 22:32:55

3-DH1

Date: 17.APR.2017 22:33:21

3-DH3

Date: 17.APR.2017 22:33:43

3-DH5

Report No: CCISE170402803

6.8 Pseudorandom Frequency Hopping Sequence

Test Requirement: FCC Part 15 C Section 15.247 (a)(1) requirement:

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence

The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- Number of shift register stages: 9
- Length of pseudo-random sequence: 29 -1 = 511 bits
- Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

Each frequency used equally on the average by each transmitter.

The system receivers have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

6.9 Band Edge

6.9.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)	
Test Method:	ANSI C63.10:2013 and DA00-705	
Receiver setup:	RBW=100 kHz, VBW=300 kHz, Detector=Peak	
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 5.7 for details	
Test mode:	Non-hopping mode and hopping mode	
Test results:	Pass	

Test plot as follows:

GFSK

Lowest Channel

Date: 17.APR.2017 22:29:57

Date: 17.APR.2017 22:29:17

No-hopping mode

Hopping mode

Highest Channel

Date: 17.APR.2017 22:28:10

Date: 17.APR.2017 22:28:34

No-hopping mode

Hopping mode

π/4-DQPSK

Lowest Channel

Date: 17.APR.2017 22:30:27

Date: 17.APR.2017 22:31:10

No-hopping mode

Hopping mode

Highest Channel

Date: 17.APR.2017 22:27:46

Date: 17.APR.2017 22:27:21

No-hopping mode

Hopping mode

8DPSK

Lowest Channel

Date: 17.APR.2017 22:32:00

Date: 17.APR.2017 22:31:36

No-hopping mode

Hopping mode

Highest Channel

Date: 17.APR.2017 22:25:50

Date: 17.APR.2017 22:26:29

No-hopping mode

Hopping mode

6.9.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C	Section 15	5 209	and 15 205		
Test Method:	ANSI C63.10:		J.200	7 dild 10.200		
Test Frequency Range:	2.3GHz to 2.50					
Test site:	Measurement		lm			
Receiver setup:	Frequency	Detecto		RBW	VBW	Remark
receiver setup.		Peak	/1	1MHz	3MHz	Peak Value
	Above 1GHz	RMS		1MHz	3MHz	Average Value
Limit:	Eroguon		Lim	nit (dBuV/m @:		Remark
Lillit.	Frequen	СУ	LIII	54.00		verage Value
	Above 10	SHz -		74.00		Peak Value
Test setup:	A ₂ ,			74.00		reak value
	WWWWWW and it	AE EU (Turntable	, ,	Ground Reference Plane	Antenna Antenna To	wer
Test Procedure:	ground at a determine the second second at a determine the second	3 meter can he position as set 3 meter he position as set 3 meter he an height is netermine the nd vertical ent. It is pected enter he antenna variable was eading. Desiver system and width which is nevel of ed, then test be reported in would be	of the eters ounted waried and was to turned the Etting of the terms o	r. The table wat a highest radial away from the away from the top of the from one meaning the from the edit on the EUT was to height as set to Peak laximum Hold EUT in peak me could be stoppherwise the emested one by one as top one to the emested one by one was to the emested one by one away from the top the emested one by one away from the emested one aw	as rotated 360 ation. interference of a variable-from ter to four most the field structure as arranged to see to 360 decent of the phissions that one using pear	receiving neight antenna eters above the rength. Both set to make the ro its worst case er to 4 meters egrees to find the tion and B lower than the eak values of the did not have k, quasi-peak or
Test Instruments:	Refer to sectio			ed and then rep	oriou III a Ua	iia siieei.
Test mode:	Non-hopping n		ialis			
Test mode. Test results:	Passed	iioue				
Pomark:	i asseu					

Remark:

- 1. During the test, pre-scan the GFSK, $\pi/4$ -DQPSK, 8DPSK, and all data were shown in report.
- 2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis is the worst case.

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

GFSK mode

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : Mobile Phone Condition

. muolle Phone

Model : iris 80
Test mode : DH1-L mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer:
RFMARK EUT

REMARK

	Freq		Antenna Factor				Limit Line	Over Limit	Remark	
	MHz	dBu₹	dB/m	₫B	dB	dBu∜/m	dBu∜/m	<u>dB</u>		
1 2 3 4	2341.447 2341.447 2390.000 2390.000	19.52	23.67	4.64 4.64 4.69 4.69	0.00	40.01 47.89	74.00	-13.99 -26.11	Average	

Site : 3m chamber
Condition : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL
EUT : Mobile Phone
Model : iris 80
Test mode : DH1-L mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%

Test Engineer:

REMARK

	Freq		Antenna Factor				Limit Line	Over Limit	Remark
-	MHz	—dBu₹	<u>dB</u> /m	d <u>B</u>	āĒ	dBuV/m	dBuV/m		
1 2 3 4	2338.927 2390.000	21.87 11.87 19.85 7.60	23.68	4.64 4.64 4.69 4.69	0.00 0.00	48.22	54.00 74.00	-13.82 -25.78	Average

Test channel: Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : Mobile Phone Model : iris 80 Test mode : DH1-H mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: REMARK

		Road	Antenna	Cable	Dreamn		Limit	Over	
	Freq		Factor						Remark
-	MHz	dBu₹	dB/m	₫B	<u>ab</u>	dBuV/m	dBuV/m	dB	
1	2483.500	19.87	23.70	4.81	0.00	48.38	74.00	-25.62	Peak
2	2483.500	9.35	23.70	4.81	0.00	37.86	54.00	-16.14	Average
3	2489.724	22.59	23.70	4.82		51.11			
4	2489.724	12.90	23.70	4.82	0.00	41.42	54.00	-12.58	Average

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : Mobile Phone Condition EUT

Model : iris 80
Test mode : DH1-H mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%

Test Engineer: REMARK :

	Freq		Antenna Factor					Over Limit	Remark
32	MHz	—dBuV	<u>d</u> B/m	<u>d</u> B	<u>d</u> B	$\overline{dB}\overline{uV/m}$	$\overline{dBuV/m}$	āB	
1 2 3 4	2483.500 2494.019	The state of the s	23.70 23.70 23.70 23.70	4.81 4.81 4.82 4.82	0.00	40.01 50.59	74.00	-13.99 -23.41	Average

π/4-DQPSK mode

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : Mobile Phone Model : iris 80
Test mode : 2DH1-L mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%

Test Engineer: REMARK :

	Freq		Antenna Factor				Limit Line		Remark
2	MHz	dBu∇	$\overline{dB}/\overline{m}$	<u>d</u> B	<u>d</u> B	$\overline{dB} \overline{uV/m}$	$\overline{dBuV/m}$	āB	
1 2 3 4	2376. 448 2376. 448 2390. 000 2390. 000	11.96 19.71	23.68 23.68	4.67 4.67 4.69 4.69	0.00 0.00	40.31 48.08	74.00	-13.69 -25.92	Average

Site Condition

3m chamber FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL

EUT : Mobile Phone : iris 80 : 2DH1-L mode Model Test mode

Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: REMARK

	Freq		Antenna Factor				Limit Line		Remark
	MHz	dBu√	<u>dB</u> /m	dB	dB	$\overline{dBuV/m}$	dBuV/m	<u>d</u> B	
1 2 3	2337.901 2337.901 2390.000	22.55 12.55 20.22	23.67	4.64 4.64 4.69	0.00	40.86			Average
4	2390.000	7.61	23.68	4.69					Average

Test channel: Highest

Horizontal:

Frequency (MHz)

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : Mobile Phone Model : iris 80
Test mode : 2DH1-H mode
Power Rating : AC 120V/60Hz
Environment : Temp: 25.5°C Huni: 55%
Test Fraginese:

Test Engineer: REMARK :

			Antenna Factor					
-	MHz	—dBu∜		 <u>ab</u>	dBu√/m	$\overline{dBuV/m}$	<u>dB</u>	
	2483.500 2483.500							

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL : Mobile Phone Condition

EUT Model : iris 80 : 2DH1-H mode Test mode

Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer:

REMARK

Freq		ReadAntenna Cable I Level Factor Loss I						Remark
MHz	dBu₹	<u>dB</u> /m	<u>d</u> B	<u>d</u> B	dBuV/m	dBuV/m	<u>d</u> B	
2483.500 2483.500								

8DPSK mode

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : Mobile Phone : iris 80 Condition

EUT . 1718 80
Test mode : 3DH1-L mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer:
REMARK

REMARK

		Read	Antenna	Cable	Preamp		Limit	Over		
	Freq		Factor				Line	Limit	Remark	
-	MHz	dBu∜	<u>dB</u> /m	<u>d</u> B	<u>dB</u>	dBuV/m	dBuV/m	dB		
1 2	2340.606 2340.606			4.64 4.64				-23.94 -13.94	Peak Average	
3	2390.000 2390.000	19.64	23.68	4.69 4.69	0.00	48.01	74.00	-25.99	Peak Average	

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL

Site Condition EUT : Mobile Phone Model : iris 80
Test mode : 3DH1-L mode
Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer:

REMARK

	Freq		Antenna Factor				Limit Line	Over Limit	Remark
-	MHz	dBu₹	— <u>dB</u> /m	<u>d</u> B	<u>d</u> B	dBuV/m	dBuV/m	<u>d</u> B	
1 2	2339. 207 2339. 207		23.67 23.67	4.64 4.64		51.02 41.02			Peak Average
3	2390.000 2390.000			4.69 4.69		49.00 36.30			Peak Average

Test channel: Highest

Horizontal:

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : Mobile Phone Site Condition EUT

: iris 80
Test mode : 3DH1-H mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer:
REMARK :

Freq		Antenna Factor						
MHz	—dBu₹	— <u>dB</u> /m	<u>d</u> B	<u>dB</u>	$\overline{dBuV/m}$	dBu√/m	<u>dB</u>	
2483.500 2483.500								

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT : Mobile Phone Model : iris 80
Test mode : 3DH1-H mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%

Test Engineer: REMARK

ReadAntenna Cable Preamp Limit Over Line Limit Remark Freq Level Factor Loss Factor Level MHz dBuV dB/m 碅 dB dBuV/m dBuV/m 碅 2483.500 20.70 23.70 4.81 2483.500 8.25 23.70 4.81 0.00 49.21 74.00 -24.79 Peak 0.00 36.76 54.00 -17.24 Average 2483.500

6.10 Spurious Emission

6.10.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)						
Test Method:	ANSI C63.10:2013 and DA00-705						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table						
Test Instruments:	Refer to section 5.7 for details						
Test mode:	Non-hopping mode						
Test results:	Pass						

Test plot as follows:

Date: 17.APR.2017 22:38:26

30MHz~25GHz

Date: 17.APR.2017 22:38:54

30MHz~25GHz

Date: 17.APR.2017 22:39:50

30MHz~25GHz

π/4-DQPSK

Lowest channel

Date: 17.APR.2017 22:41:47

30MHz~25GHz

Date: 17.APR.2017 22:41:03

30MHz~25GHz

Date: 17.APR.2017 22:40:27

30MHz~25GHz

Date: 17.APR.2017 22:42:48

30MHz~25GHz

Date: 17.APR.2017 22:44:27

30MHz~25GHz

Date: 17.APR.2017 22:45:29

30MHz~25GHz

6.10.2 Radiated Emission Method

6.10.2 Radiated Emission M	etnoa							
Test Requirement:	FCC Part 15 C Section 15.209							
Test Method:	ANSI C63.10: 2	013						
Test Frequency Range:	9 kHz to 25 GH:	Z						
Test site:	Measurement D	istance: 3r	m					
Receiver setup:	Frequency	Detecto	or	RBW	VBW	/	Remark	
	30MHz-1GHz	Quasi-pe	eak	120kHz	300kH	Ηz	Quasi-peak Value	
	Above 1GHz	Peak		1MHz	3МН	z	Peak Value	
	Above 1G112	RMS		1MHz	3МН	z	Average Value	
Limit:	Frequency Limit			it (dBuV/m @	23m)		Remark	
	30MHz-88N	ИHz		40.0		Q	Quasi-peak Value	
	88MHz-216	MHz		43.5		Q	Quasi-peak Value	
	216MHz-960	MHz		46.0		Q	Quasi-peak Value	
	960MHz-10	SHz		54.0		Q	Quasi-peak Value	
	Above 1GI	H ₇		54.0			Average Value	
	Above 101	12		74.0			Peak Value	
Test setup:	Above 1(jHz							

1. The EUT was placed on the top of a rotating table 0.8m(below 1GHz) Test Procedure: /1.5m(above 1GHz) above the ground at a 3 meter chamber. The table was rotated 360 degrees to determine the position of the highest 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Report No: CCISE170402803

Remark:

Test Instruments:

Test mode:

Test results:

- 1. During the test, pre-scan the GFSK, $\pi/4$ -DQPSK, 8DPSK modulation, and found the GFSK modulation is the worst case.
- 2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis is the worst case.

Refer to section 5.7 for details

Non-hopping mode

Pass

3. 9 kHz to 30 MHz is noise floor, so only shows the data of above 30MHz in this report.

Measurement data:

Below 1GHz

Vertical:

Site Condition : 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M3G) VERTICAL

EUT : Mobile Phone Model : iris 80 Test mode : BT mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%

Test Engineer:

	Freq		Antenna Factor						Remark
	MHz	dBu∇	$-\overline{dB}/\overline{m}$	d <u>B</u>	<u>d</u> B	$\overline{dBuV/m}$	dBuV/m	<u>d</u> B	
1	35.499	40.45	15.05	1.07	29.94	26.63	40.00	-13.37	QP
2	80.644	49.19	6.65	1.69	29.64	27.89	40.00	-12.11	QP
2	127.218	38.88	12.18	2.25	29.35	23.96	43.50	-19.54	QP
4	279.044	36.85	12.19	2.88	28.49	23.43	46.00	-22.57	QP
5	330.195	36.94	13.59	3.04	28.52	25.05	46.00	-20.95	QP
6	566.622	31.39	18.23	3.91	29.05	24.48	46.00	-21.52	QP

Horizontal:

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M3G) HORIZONTAL : Mobile Phone Condition

EUT Model : iris 80 Test mode : BT mode Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: REMARK :

	Freq	ReadA Level	ntenna Factor				Limit Line		
_	MHz	dBu∀		<u>d</u> B	<u>dB</u>	dBuV/m	$\overline{dBuV/m}$	<u>dB</u>	
1	31.071	44.94	12.71	0.78	29.97	28.46	40.00	-11.54	QP
2	57.191	36.28	11.59	1.37	29.79	19.45	40.00	-20.55	QP
2	165.487	45.68	9.84	2.62	29.09	29.05	43.50	-14.45	QP
4	239.987	34.36	11.80	2.82	28.59	20.39	46.00	-25.61	QP
5	489.027	31.20	16.67	3.53	28.93	22.47	46.00	-23.53	QP
6	731.920	30.21	20.00	4.29	28.55	25.95	46.00	-20.05	QP

Above 1GHz:

Test channel:			Lowest		Le	vel:	Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4804.00	48.07	35.99	6.80	41.81	49.05	74.00	-24.95	Vertical	
4804.00	48.06	35.99	6.80	41.81	49.04	74.00	-24.96	Horizontal	
Te	Test channel:		Lowest		Level:		Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4804.00	38.48	35.99	6.80	41.81	39.46	54.00	-14.54	Vertical	
4804.00	38.68	35.99	6.80	41.81	39.66	54.00	-14.34	Horizontal	

Test channel:			Middle		Le	vel:	Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4882.00	47.69	36.38	6.86	41.84	49.09	74.00	-24.91	Vertical	
4882.00	48.38	36.38	6.86	41.84	49.78	74.00	-24.22	Horizontal	
Te	st channel		Middle		Level:		Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4882.00	37.55	36.38	6.86	41.84	38.95	54.00	-15.05	Vertical	
4882.00	38.20	36.38	6.86	41.84	39.60	54.00	-14.40	Horizontal	

Test channel:			Highest		Le	vel:	Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4960.00	48.73	36.71	6.91	41.87	50.48	74.00	-23.52	Vertical	
4960.00	48.67	36.71	6.91	41.87	50.42	74.00	-23.58	Horizontal	
Te	st channel		Highest		Level:		Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4960.00	38.91	36.71	6.91	41.87	40.66	54.00	-13.34	Vertical	
4960.00	38.71	36.71	6.91	41.87	40.46	54.00	-13.54	Horizontal	

Remark

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.