A mathematical modeling toolbox for ion channels and transporters across cell membranes

Shadi Zaheria, Fatemeh Hassanipoura,*

^aDepartment of Mechanical Engineering, The University of Texas at Dallas, Richardson, TX, 75080, USA

- The following supplementary material is from " A mathematical modeling toolbox for ion channels
- 2 and transporters across cell membranes" manuscript. It contains an overview of all equations
- 3 related to Ion channels, Pumps, Cotransporters, and Symporters, organized in a table form. The
- 4 detailed transporters along with the descriptions of their equatuons can be found from here.

^{*}This document is the result of the research project funded by the National Science Foundation.

^{*}Corresponding author

24 2.2. Proton-ATPase (H-ATPase)

Proton-ATPase (H – ATPase)		Ref
		[32]
$J_{H,HATPase}^{M-N(a)} = -J_{H,HATPase}^{max} \frac{1}{1 + exp\left(\zeta(v_H^{M-N(a)} - v_{1/2,H-ATPase}^{M-N(a)})\right)}$	(112)	
$J_{H,HATPase}^{M-N(b)} = J_{H,HATPase}^{max} \frac{1}{1 + exp\left(-\zeta(v_H^{M-N(b)} - v_{1/2,H-ATPase}^{M-N(b)})\right)}$	(113)	
$J_{H,H-ATPase}^{M(i)-N(e)} = J_{H,HATPase}^{max} \frac{[H^+]_{M(cell)}}{K_{H,H-ATPase}^{M(cell)} + [H^+]_{M(cell)}}$	(114)	[29]

Table 11: The corresponding equations describing the flux and current transported via proton-ATPase (H-ATPase) pumps across the cell membrane