

# On proving scalar multiplications in SNARKs

Youssef El Housni (Joint work with Thomas Piellard)

Linea<sup>\*</sup>



## Youssef El Housni



- Cryptographer at ConsensysCo-maintainer of gnark
- Co-developer of Linea







# Outline



- 2. Scalar multiplication
- 3. Scalar multiplication in SNARKs
  - a. Fake GLV
  - b. 4D fake GLV





#### Motivation

ECC

Elliptic curves cryptography (ECC) is used for **key agreement**, **digital signatures**, **pseudo-random generators** and **(zk) SNARKs** 

Proving ECC

**SNARK recursion** 

zkEVM

Account abstraction

Verkle trie



Linea\*

### **ECC**

E(Fp): 
$$y^2=x^3+ax+b$$
 and  $r \mid \#E$ 

Operations on E(Fp)[r]:

- Addition:

$$P1 + P2 = P3$$

Scalar multiplication: [n]P = P + P + ... + P



- Doubling:

$$[2]P1 = P1+P1 = P3$$

## Proving ECC

SNARK recursion

(Linea)

BLS12-377

Proof of a proof:

BW6-761

- 1st proof verification requires scalar multiplication
- 2nd proof generation
   requires proving previous
   scalar multiplications

- ECDSA signatures on secp256k1 curve
- BN254\* precompile (ECMUL)
- Aggregation (SNARK recursion)

\* soon BLS12-381 too in Pectra

Account abstraction

ECDSA signatures on P-256 or Ed25519

Verkle trie

(multi) Scalar multiplications on **Bandersnatch** curve

## Standard scalar multiplication

#### left-to-right double-and-add

```
INPUT: s = (s_{t-1},..., s_1, s_0), P \in E(Fp).
OUTPUT: [s]P.
```

- 1. Q ← ∞.
- 2. For i from t-1 downto 0 do
  - 2.1 Q ← 2Q.
  - 2.2 If  $s_i = 1$  then  $Q \leftarrow Q + P$ .
- 3. Return(Q).

- secp256k1
- P-256
- Ed25519
- BN254
- BLS12-381
- BLS12-377
- BW6-761
- Bandersnatch

Linea<sup>\*</sup>

## GLV endomorphism

#### Example 1:

Curves of the form E:  $y^2=x^3+b$  (a=0, D=3)

P(x,y) in  $E: \phi(P) = [\lambda]P$  for some fixed  $\lambda$   $\phi(P) = (wx, y)$  for some fixed w

- secp256k1
- BN254
- BLS12-381
- BLS12-377
- BW6-761

#### Example 2:

Curves with D=8

P(x,y) in E :  $\phi(P) = [\lambda]P$  for some fixed  $\lambda$   $\phi(P) = (u^2(x^2+wx+t) / (x+w), y(x^2+2wx+v) / (x+w)^2)$ for some fixed u, v, w, t

• Bandersnatch



### GLV scalar multiplication

How to compute [s]P?

- Write s as s1 +  $\lambda$  s2 mod r with s1, s2 <  $\sqrt{r}$
- $[s]P = [s1]P + [\lambda s2]P = [s1]P + [s2]\phi(P)$
- Use Strauss-Shamir trick to compute [s1]P + [s2]\( \phi(P) \) simultaneously

INPUT: s and  $P \in E(Fp)$ . OUTPUT: [s]P.

- 1. Find s1 and s2 s.t. s = s1 +  $\lambda$  \* s2 mod r
  - 1.1 let s1 = (s1  $\{t-1\},...,$  s1 1, s1 0)
  - 1.2 and s2 = =  $(s2_{t-1},..., s2_1, s2_0)$
- 2. P1  $\leftarrow$  P, P2  $\leftarrow \phi$ (P), P3  $\leftarrow$  P1+P2 and Q  $\leftarrow$  P3.
- 3. For i from t-1 downto 0 do
  - 3.1 Q ← 2Q.
  - 3.2 If s1 i = 0 and s2 i = 0 then  $Q \leftarrow Q$ .
  - 3.3 If s1 i = 1 and s2 i = 0 then  $Q \leftarrow Q + P1$ .
  - 3.4 If s1 i = 0 and s2 i = 1 then  $Q \leftarrow Q + P2$ .
  - 3.5 If s1\_i = 1 and s2\_i = 1 then  $Q \leftarrow Q + P3$ .
- 4. Return(Q).

#### Linea<sup>\*</sup>

## Scalar multiplication in SNARKs

#### right-to-left double-and-add

INPUT:  $s = (s_{t-1},..., s_1, s_0), P \in E(Fp).$ OUTPUT: [s]P.

- 1. Q ← P.
- 2. For i from 1 to t-1 do 2.1 If s\_i = 1 then Q  $\leftarrow$  Q + P. 2.2 P  $\leftarrow$  2P.
- 3. if  $s_0 = 0$  then  $Q \leftarrow Q P$
- 4. Return(Q).

#### GLV-like

INPUT: s and  $P \in E(Fp)$ . OUTPUT: [s]P.

- 1. Find s1 and s2 s.t.  $s = s1 + \lambda * s2 \mod r$ 1.1 let s1 =  $(s1_{t-1},..., s1_1, s1_0)$ 1.2 and s2 =  $(s2_{t-1},..., s2_1, s2_0)$
- 2. Q ← [2](P+ $\phi$ (P)).
- 3. For i from t-1 downto 0 do 3.1 If  $s_{2i+1} = 1$  then  $S \leftarrow [2s_{2i}-1]P$ . 3.2  $S \leftarrow \phi([2s_{2i}-1]P)$ .
- 4. Q ← [2]Q + S
- 4. Return(Q).

Optimized implementation in gnark/std/algebra/emulated/sw\_emulated





## Scalar multiplication in SNARKs

right-to-left double-and-add

GLV-like

- P-256
- Ed25519

- secp256k1
- BN254
- BLS12-381
- BLS12-377
- BW6-761
- Bandersnatch



#### Fake GLV



GLV: [s]P (s on n bits)  $\rightarrow$  [s1]P + [s2] $\phi$ (P) (s1, s2 on n/2 bits)

- Instead of proving that [s]P = Q we prove that [s]P-Q = O
- Write s = u/v mod r with u, v <  $\sqrt{r}$
- Prove that [v\*s]P [v]Q = v\*O or [u]P [v]Q = O (u, v on n/2 bits)

Solution: half-GCD algorithm (i.e. running GCD half-way)

https://hackmd.io/@yelhousni/fake-glv





#### Benchmarks: Fake GLV



Emulated scalar multiplication in a BN254-PLONK:

| P-256              | Old (Joye07)  | New (fake GLV) |
|--------------------|---------------|----------------|
| [s]P               | 738,031 scs   | 385,412 scs    |
|                    | 186,466 r1cs  | 100,914 r1cs   |
| ECDSA verification | 1,135,876 scs | 742,541 scs    |
|                    | 293,814 r1cs  | 195,266 r1cs   |



#### 4D fake GLV

#### Combining the fake GLV with the endomorphism

- Find r1, r2 s.t. r | norm(r1+ $\lambda$ r2) , i.e. r = r1+ $\lambda$ r2

  half-GCD in  $\mathbb{Z}$  (precomputed)
- Find u1, u2, v1, v2 <  $c^*r^{4}$  s.t. s = (u1+ $\lambda$ u2) / (v1+ $\lambda$ v2) mod (r1+ $\lambda$ r2)

$$Half-GCD$$
 in  $K = \mathbb{Q}[\lambda]/f(\lambda)$  where  $f(\lambda) = 0$  mod r

- K needs to be an Euclidean domain
  - Example 1: K is the ring of Eisenstein integers  $\mathbb{Z}[\omega]$
  - Example 2: K =  $\mathbb{Q}[\sqrt{-2}] / \lambda^2 + 2$



Linea<sup>\*</sup>

## Example 1: Eisenstein Integers

- commutative ring of algebraic integers in the algebraic number field ℚ(ω)
   (the third cyclotomic field), i.e. ℤ[ω].
- Of the form  $z = a + b\omega$ , where a and b are integers and  $\omega$  is a primitive third root of unity i.e.  $\omega^2 + \omega + 1 = 0$ .
- Mul:  $(xO+x1\omega)(yO+y1\omega) = (xOyO-x1y1) + (xOy1+x1yO-x1y1)\omega$
- Norm(x0+x1 $\omega$ ) = x0<sup>2</sup> + x1<sup>2</sup> x0\*x1
- Quotient(x, y) =  $Re(x*conj(y))/Norm(y) + \omega Im(x*conj(y))/Norm(y)$
- $c = \log_{3/sqrt(3)}(r)$ . For 128-bit security n/4+9 bits.



#### Benchmarks: 4D fake GLV



Emulated scalar multiplication in a BN254-PLONK:

| scalar mul | old ordinary GLV (scs) | new 4D fake GLV (scs) |
|------------|------------------------|-----------------------|
| secp256k1  | 385,461                | 282,223               |
| BN254      | 381,467                | 279,262               |
| BW6-761    | 1,367,067              | 1,010,785             |
| BLS12-381  | 539,973                | 390,294               |

# Thank you

<u>linea.build</u> <u>gnark.io</u> <u>youssef.elhousni@consensys.net</u> <u>gnark@consensys.net</u>

X: @YoussefElHousn3

TG: @ElMarroqui

GH: @yelhousni