1

Mains - 14.A+B

ai24btech11030 - Shiven Bajpai

Section - E

1) Prove that $\cos \tan^{-1} \sin \cot^{-1} x = \sqrt{\frac{x^2+1}{x^2+2}}$. (2002 - 5 Marks)

Section - F

1) Match The Following

(2005 - 6M)

Column I

Column II

a)
$$\sum_{i=1}^{\infty} \inf \tan^{-1} \left(\frac{1}{2i^2} \right) = t$$
, then $\tan t = 1$

- a) 1
- b) Sides a, b, c of a triangle ABC are in AP and b) $\frac{\sqrt{5}}{3}$ $\cos \theta_1 = \frac{a}{b+c}, \cos \theta_2 = \frac{b}{a+c}, \cos \theta_3 = \frac{c}{a+b}$ then $\tan^2\left(\frac{\theta_1}{2}\right) + \tan^2\left(\frac{\theta_3}{2}\right) =$ c) $\frac{2}{3}$
- c) A line is perpendicular to x + 2y + 2z = 0 and passes through (0,1,0). The perpendicular distance of this line from the origin is
- 2) Let (x, y) be such that $\sin^{-1}(ax) + \cos^{-1}(bxy) = \frac{\pi}{2}$. Match the statements in Column 1 with statements in Column II and indicate your answer by darkening the appropriate bubble in the 4x4 matrix given in the ORS.

a) If
$$a = 1$$
 and $b = 0$, then (x, y)

a) lies on the circle
$$x^2 + y^2 = 1$$

b) If
$$a = 1$$
 and $b = 1$, then (x, y)

b) lies on
$$(x^2 - 1)(y^2 - 1) = 0$$

c) If
$$a = 1$$
 and $b = 2$, then (x, y)

c) lies on
$$y = x$$

d) If
$$a = 2$$
 and $b = 2$, then (x, y)

d) lies on
$$(4x^2 - 1)(y^2 - 1) = 0$$

DIRECTIONS(Q.3): Following questions has matching lists. The codes for the lists have choices (a), (b), (c) and (d) out of which ONLY ONE is correct.

3) a)
$$\left(\frac{1}{y^2} \left(\frac{\cos(\tan^{-1} y) + y \sin(\tan^{-1} y)}{\cot(\sin^{-1} y) + \tan(\sin^{-1} y)}\right)^2 + y^4\right)^{\frac{1}{2}}$$
 takes value a) $\frac{1}{2} \sqrt{\frac{5}{3}}$

- b) If $\cos x + \cos y + \cos z = 0 = \sin x + \sin y + \sin z$ b) then possible value of $\cos \frac{x-y}{2}is$
- c) If $\cos\left(\frac{\pi}{4} x\right)\cos 2x + \sin x\sin 2x\sec x = \cos x\sin 2x\sec x + \cos\left(\frac{\pi}{4} + x\right)\cos 2x$ then possible value of $\sec x$ is
- d) If $\cot\left(\sin^{-1}\sqrt{1-x^2}\right) = \sin\left(\tan^{-1}\left(x\sqrt{6}\right)\right), x \neq 0$

Codes:

- (a) 4 3 1 2
- (b) 4 3 2 1
- (c) 3 4 2 1
- (d) 3 4 1 2

I - Integer Value Correct Type

1) The number of real solutions of the equation $\sin^{-1}()$