Numéro de place Numéro d'inscription								Sin	Signature														
- 3-2-0-0	NUIIIUU U I	IISCIIPIIUII	\vdash		\Box	<u> </u>		1 019	T	_							_		<u> </u>		_		
66		Nom																					
Š	. ▼	Prénom																					
CONCOURS CEN	TRALE•SUPÉLEC		Épreuv	e : S21	PSI																		
Ne rien porter sur cette feuille avant d'avoir complètement rempli l'entête Feuille													/		Γ								
			$_{ m stions}$									sat	ion						!/_ _		<u>!</u>		
I	Pour i allant Calc		N_{K_p}			All	gorn	J11111	e u	орі	.11111	sau.	1011	ue	K_p								
		P		P																			
Algorithm																							
	no 1																						
																					_		
																					_		
Algorith																					_		
	ne 2																						
																					_		
																				_	_		

Fin pour

Annexe: Modélisation et caractérisation du système de positionnement des roues

Figure A Configuration normale de travail

 $Les \ liaisons \ entre \ les \ différents \ solides \ supposés \ indéformables \ sont \ mod\'elis\'ees \ par \ les \ liaisons \ parfaites \ suivantes :$

- une liaison pivot d'axe (O_3, \vec{y}_0) entre la roue (3) et le bâti (0);
- une liaison pivot d'axe (O_0, \vec{x}_0) entre le support des rouleaux d'entrainement (sre) et le bâti (0);
- une liaison pivot d'axe (O_1, \vec{y}_0) entre le rouleau (re_1) et le support des rouleaux d'entrainement (sre);
- une liaison pivot d'axe (O_2, \vec{y}_0) entre le rouleau (re_2) et le support des rouleaux d'entrainement (sre);
- une liaison sphérique de centre A entre le corps de vérin (1) et le bâti (0);
- une liaison sphérique de centre B entre la tige (2) et le support des rouleaux d'entrainement (sre);
- une liaison pivot-glissant d'axe (A, \vec{z}_0) entre le corps de vérin (1) et la tige (2) ;
- une liaison sphère-plan de normale (I_1, \vec{z}_1) entre le rouleau (re_1) et la roue (3) ;
- une liaison sphère-plan de normale (I_2, \vec{z}_2) entre le rouleau (re_2) et la roue (3).

Paramétrage et hypothèses

- chaque motoréducteur (MR_i) , $i \in [1;2]$ est composé d'une machine électrique (M_i) et d'un réducteur (R_i) ;
- lors du reprofilage de la roue, le support des rouleaux d'entrainement (sre) est supposé fixe par rapport au bâti (0);
- $\overrightarrow{I_1O_3} \cdot \vec{z}_1 = \overrightarrow{I_2O_3} \cdot \overrightarrow{z_2} = R = 0.47 \; \mathrm{m} \; ;$
- $-\overrightarrow{O_1I_1} \cdot \overrightarrow{z_1} = \overrightarrow{O_2I_2} \cdot \overrightarrow{z_2} = R_{re} = 175 \text{ mm}$;
- vecteurs vitesse de rotation :
 - $\vec{\Omega}_{3/0} = \omega_3 \vec{y}_0 \text{ avec } \omega_3 < 0$;
 - $\overrightarrow{\Omega}_{re_i/sre} = \omega_{re_i} \overrightarrow{y}_0, i \in \llbracket 1; 2 \rrbracket;$
 - $\overrightarrow{\Omega}_{M_i/sre} = \omega_{m_i} \overrightarrow{y}_0, i \in [1; 2].$

Modélisation des actions mécaniques transmissibles

— Actions mécaniques exercées par le rotor de la machine électrique (M_i) sur l'entrée du réducteur (R_i) :

$$\left\{\,\mathcal{T}_{M_i\to R_i}\,\right\} = \left\{ \begin{matrix} \vec{0} \\ \mathcal{C}_{mi}\vec{y}_0 \end{matrix}\right\}_{O_i}, i\in [\![1;2]\!];$$

- Les deux chaines d'énergie sont identiques donc $\mathcal{C}_{m1}=\mathcal{C}_{m2}=\mathcal{C}_m$;
- Actions mécaniques exercées par la roue sur l'outil : $\left\{\mathcal{T}_{3 \to \text{outil}}\right\} = \left\{\vec{R}_{3 \to \text{outil}}\right\}_C$ avec $\vec{R}_{3 \to \text{outil}} \cdot \vec{x}_0 = f_{cx}$ et

 $\vec{R}_{3 \to \text{outil}} \cdot \vec{z}_0 = f_{cz}$. Le paramétrage de la position du point de contact C entre la roue et l'outil est précisé sur la figure B.

Profil simplifié de la roue

L'axe (O_3, \vec{y}_0) étant un axe de symétrie de révolution de la roue, seule la moitié du profil est schématisé en figure B. L'outil décrit une trajectoire correspondant à une génératrice du profil à obtenir.

Figure B Paramétrage du profil simplifié de la roue (3)

Caractéristiques de l'opération [OP2]

- Le contact entre l'outil et la roue est supposé ponctuel au point C;
- Le porte-outil se déplace dans le plan $(O_3, \vec{y}_0, \vec{z}_0)$;
- Les points C_0 et C_1 correspondent respectivement au premier et dernier point de contact de l'outil avec la roue;
- L'opérateur impose la valeur de la composante de la vitesse $\vec{V}(C \in \text{outil}/3)$ selon \vec{x}_0 . Cette composante est constante et est appelée vitesse de coupe $V_c = -\vec{V}(C \in \text{outil}/3) \cdot \vec{x}_0$;
- La vitesse du point C de l'outil par rapport au bâti du tour en fosse est : $\vec{V}(C \in \text{outil}/0) = V_f(t)\vec{u} = -b\omega_3\vec{u}$ avec $\vec{u} = \frac{\overline{C_0C_1}}{\|\overline{C_0C_1}\|}$ et $\omega_3 < 0$ la vitesse de rotation de la roue par rapport au bâti du tour en fosse autour de l'axe (O_3, \vec{y}_0) . Le paramètre b est une constante définie par l'opérateur, elle correspond à la distance parcourue par l'outil dans la direction \vec{u} lorsque la roue tourne d'un radian.

Figure C Diagramme des exigences des conditions de coupe

Questions 22 et 23 : Diagramme de Bode associé à la fonction de transfert $N_2(p)$

