UNIVERSIDADE FEDERAL DE MINAS GERAIS

Técnicas de Modelagem de Sistemas Dinâmicos

Tarefa 4: Métodos Não Paramétricos

Autor

João Pedro Araújo Ferreira Campos

Professor Dr.

Bruno Otávio Soares Teixeira

1 Introdução

Em identificação de sistemas, métodos não paramétricos são aqueles que não fornecem um modelo matemático dado por uma equação, mas sim uma representação gráfica do que está sendo modelado [1]. Representações gráficas, como a resposta ao impulso e a resposta em frequência, são úteis para observar a dinâmica da planta e também para se estimar modelos paramétricos do sistema. Neste trabalho são tratadas algumas técnicas de obtenção de modelos não paramétricos, em especial usando sinais de entrada pseudo-aleatórios (PRBS) e dando atenção às funções de correlação cruzada e de autocorrelação, de grande interesse em identificação de sistemas graças à sua robustez ao ruído.

2 Função de Autocorrelação

Dado o sinal:

$$u(k) = 0.9e(k-1) + 0.8(k-2) + 0.7e(k-3) + e(k)$$

em que e(k) é ruído branco que segue a distribuição normal padrão $\mathcal{N}(0,1)$, deseja-se estimar sua $r_u(k)$ numericamente. O resultado, obtido por meio da função @myccf, pode ser visto na figura 1.

Figura 1: Autocorrelação do sinal u(k)

Da figura, percebe-se que para um atraso τ de 0, 1, 2 e 3 a função de autocorrelação fornece valores fora do intervalo de confiança, indicando correlação. Para $\tau=4$ e $\tau=5$ não se vê mais correlação, o que é esperado pois u(k) é descrito por uma equação de diferenças de ordem 3. Importante também notar que para um atraso de 0 a correlação é máxima, e diminui conforme o atraso aumenta.

3 Sinal Binário Pseudoaleatório

Foi gerado um sinal binário pseudoaleatório (PRBS) de 6 bits e intervalo entre bits $T_b = 1$. Por ser gerado com 6 bits, o sinal é periódico com período $T = 2^6 - 1 = 63$. A figura 2 mostra o sinal gerado; a partir dela é possível perceber sua peridiocidade.

Figura 2: Sinal PRBS

A função @myccf foi utilizada para se obter a função de autocorrelação do sinal. O resultado é visto na figura 3.

Figura 3: Autocorreção do sinal PRBS

Para um sinal aleatório "verdadeiro", isto é, um sinal em que não se encontra nenhuma peridiocidade, é esperado que sua função de autocorrelação seja diferente de zero apenas para $\tau=0$, pois qualquer atraso faria com que o sinal não apresentasse qualquer relação com si mesmo. Da figura 3 percebe-se que de fato o ponto em que a função assume seu maior valor é para $\tau=0$, o que indica a semelhança entre o PRBS e um sinal puramente aleatório. Entretanto, por ser pseudoaleatório com período T=63, vemos que para $\tau=-63$ e $\tau=63$ a função também apresenta valores diferentes de zero.

3.1 Efeitos da variação de T_b

Deseja-se, agora, observar o efeito de se aumentar gradativamente o intervalo entre bits T_b do sinal binário pseudoaleatório da seção anterior. São observadas as mudanças na função de autocorrelação e no espectro do sinal. Primeiramente, foram feitas as simulações com $T_b=2$.

Figura 4: Autocorreção do sinal PRBS, Tb=2

Se o sinal PRBS com $T_b = 1$ possui período T = 63, o sinal com $T_b = 2$ possui T = 126, já que o tempo de permanência dobrou. Isso é corroborado pela figura 4. Na figura 5, pode-se ver o espectro do sinal.

Figura 5: Espectro do sinal PRBS, Tb=2

Ao aumentar o tempo de permanência para $T_b = 3$, o período do sinal aumenta ainda mais, de forma que a função de correlação apresenta valores diferentes de zero apenas

em torno de $\tau=0$, conforme a figura 6. O esperado é que, com o aumento do período, o sinal PRBS comece a ganhar características de um pulso unitário. Isso significa que seu espectro deve começar a apresentar semelhanças com o espectro do pulso, que é uma função sinc no domínio da frequência. Esse efeito começa a ser observável na figura 7

Figura 6: Autocorrelação do sinal PRBS, Tb=3

Figura 7: Espectro do sinal PRBS, Tb=3

Aumentando ainda mais o tempo de permanência, fica mais claro a tendência do sinal PRBS de se comportar como um pulso. Para $T_b = 10$, vemos como o sinal perde sua característica de rápida oscilação, conforme a figura 8.

Figura 8: Sinal PRBS, Tb=10

Figura 9: Autocorrelação do PRBS, Tb=10

Figura 10: Espectro do PRBS, Tb=10

Na figura 10, vemos que o espectro já se aproxima daquele de um pulso.

4 O sinal PRBS na Identificação de Sistemas

Deseja-se agora estudar como o sinal binário pseudoaleatório pode ser útil na identificação de sistemas. É dado um sistema dinâmico representado pela seguinte função de transferência:

$$H(s) = \frac{1}{1000s + 1}$$

dessa FT, extrai-se facilmente a informação de que o ganho do sistema é 1 e sua constante de tempo, τ , é

$$\tau = 1000$$

Sabe-se, conforme discutido nas seções anteriores, que o PRBS é um sinal periódico. Entretanto, no problema de identificação de sistemas o cenário ideal seria aquele em que o sistema é excitado com um sinal puramente randômico. Na prática, isso é inviável, pois sinais aleatórios podem gerar desgastes nas partes físicas durante o ensaio, além de possíveis problemas de instabilidade. Portanto, as características do sinal desejáveis para o problema de identificação são aquelas que o aproximam de um sinal aleatório verdadeiro. Assim, é interessante gerar um PRBS com número de bits tal que a peridiocidade do sinal não seja "sentida" pela sistema. Em geral, um sistema chega ao regime permanente após um tempo aproxidamente igual a cinco vezes sua constante de tempo. Então, para que o PRBS não se repita antes de o sistema ter vencido sua dinâmica transitória, foi escolhido um número de bits n=12, gerando um sinal de período T=4095, razoavelmente próximo de $5 \times \tau = 5000$.

O sistema H(s) foi então simulado usando-se como entrada quatro sinais PRBS diferentes, todos com 12 bits, variando o tempo de permanência: $T_b = 1,100,1000$ e 10000.

Figura 11: Simulação com Tb=1

Na primeira simulação, ilustrada pela figura 11, é possível notar que o sistema de primeira ordem respondeu como se excitado por um degrau de amplitude 0.5. A oscilação do sinal de entrada foi intensa demais para que o sistema percebe-se que o sinal varia, fazendo com que a média 0.5 fosse a única componente a estimular de fato o sistema.

Figura 12: Simulação com Tb=100

Para $T_b = 100$, conforme a figura 12, o comportamento do sistema é completamente diferente: ao incrementar Tb, o período do sinal aumentou e sua oscilação tornou-se lenta o suficiente para que o sistema respondesse como responderia a um sinal aleatório, i.e, a oscilação pode ser "sentida" pela planta.

Figura 13: Simulação com Tb=1000

Com $T_b=1000$, o aumento do período e a diminuição na intensidade da oscilação começa a fazer com que o sinal perca sua característica de sinal aleatório, causando menos variações na saída do sistema. Finalmente, com $T_b=10000$, a oscilação se torna tão lenta que o sistema reage como se a entrada fosse um degrau unitário, ou seja, nenhuma oscilação da entrada é percebida pela planta. Esse resultado é ilustrado pela figura 14, que é idêntica à simulação de uma resposta ao degrau unitário de sistema de primeira ordem.

Figura 14: Simulação com Tb=10000

Das simulações feitas, pode-se perceber que é preciso cuidado na aplicação de um sinal PRBS na identificação de sistemas: se o desejável é fazer com que a saída varie o máximo possível, um sinal de entrada com oscilação rápida demais é ruim pois o sistema responde apenas ao valor médio do sinal. Com a oscilação lenta demais, por outro lado, a entrada

não possui qualquer característica de sinal aleatório, e se comporta como um degrau. No caso estudado aqui, o valor ideal de Tb é $T_b=100$, pois foi o PRBS que mais fez variar a saída do sistema.

5 Conclusão

Este trabalho foi importante no entendimento do que são sinais pseudoaleatórios, e qual sua utilidade no contexto de modelagem de sistemas. Pode-se concluir que funções de correlação e sinais do tipo PRBS são ferramentas poderosas, mas um bom entendimento do assunto é fundamental; conhecer bem as ferramentas e a planta permitem ao engenheiro tomar as decisões corretas, já que um PRBS mal escolhido pode levar a resultados ruins, como mostrado na seção 4.

Referências

[1] ANTONIO AGUIRRE, Luis. *Intrudução à identificação de sistemas*. Editora UFMG, 4ª Ed, 2015