

### Grundlagen der Informatik

Prof. Dr. J. Schmidt

Fakultät für Informatik

GDI – WS 2020/21 Zahlendarstellung – Zahlensysteme

## Leitfragen 2.1

Kapitel 2: Zahlendarstellung

 Wie werden die Begriffe Nachricht, Information und Daten in der Informatik definiert?

 Welche Zahlensysteme spielen in der Informatik eine besondere Rolle?

## Definition Nachricht (1)

#### Kapitel 2: Zahlendarstellung

- Stützt sich auf den Begriff des "Alphabets"
- Alphabet besteht aus
  - einer abzählbaren Menge von Zeichen (Zeichenvorrat) und
  - einer Ordnungsrelation (Regel, durch die feste Reihenfolge der Zeichen definiert ist)

### Beispiele:

- {a, b, c, ..., z}
   Menge aller Kleinbuchstaben in lexikografischer Ordnung
- {0, 1, 2, ..., 9}
   endliche Menge der ganzen Zahlen 0 bis 9 mit der Ordnungsrelation "<"</li>
- {2, 4, 6, ...}
   unendliche Menge der geraden natürlichen Zahlen mit der Ordnungsrelation "<"</li>
- {0, 1}
   Binärziffern 0 und 1 mit 0 < 1</li>

## Definition Nachricht (2)

Kapitel 2: Zahlendarstellung

### Nachricht

- ist eine aus den Zeichen eines Alphabets gebildete Zeichenfolge
- Zeichenfolge muss nicht endlich sein, aber abzählbar
  - d.h. die einzelnen Zeichen müssen durch eine Abbildung auf die natürlichen Zahlen durchnummeriert werden können
  - damit ist die Identifizierbarkeit der Zeichen sichergestellt



### Weitere wichtige Begriffe

Kapitel 2: Zahlendarstellung

## Nachrichtenraum N(A)

- Menge aller Nachrichten, die mit den Zeichen des Alphabets A gebildet werden können
- entspricht der Kleeneschen Hülle A\* des Alphabets A

# Eingeschränkter Nachrichtenraum N(A<sup>s</sup>)

- nur Zeichenreihen mit einer maximalen Länge s sind enthalten
- entspricht A<sup>0</sup> ∪ A<sup>1</sup> ∪ A<sup>2</sup> ∪ ... A<sup>s</sup>, wobei A<sup>s</sup> die Menge aller Zeichenketten über A mit exakt Länge s ist

# Zusammenhang Nachricht – Information

- Information
  - stellt den Bedeutungsgehalt einer Nachricht dar
- Zuordnung (Abbildung) notwendig



- muss nicht eindeutig sein
- verschiedene Interpretationen möglich
- Das heißt:
  - Information ist vielschichtiger Begriff
  - Informationen sind nicht exakt definierbare abstrakte Objekte
- Formale (statistische) Definition des Informationsbegriffs durch Claude Shannon
  - $\rightarrow$  folgt

### Daten

#### Kapitel 2: Zahlendarstellung

- Zum Zweck der (formalen) Bearbeitung (z.B. mit Hilfe eines Rechners)
  - werden Informationen durch Daten repräsentiert
  - und als solche gespeichert



Konrad Ernst Otto Zuse

geb. 22.06.1910

 Informationen werden durch Nullen und Einsen im Rechner repräsentiert

### Kleinste Informationseinheit

Kapitel 2: Zahlendarstellung

# Bit (Binary Digit)

- Alphabet = {0, 1}
- Einzelne Binärstelle, die ein Computer speichert
- Zwei Möglichkeiten: Binärer Code (Zeichen 0 und 1)
- Notwendig, da technisch einfach realisierbar z.B. mit
  - elektrischer Ladung
  - elektrischer Spannung
  - Magnetisierung

$$(0 = 0 \text{ Volt}; 1 = 5 \text{ Volt})$$

(0/1 je nach Polung der Magnetisierung)

# Bitfolgen (1)

- 2-Bitfolge
  - 4 Möglichkeiten (00, 01, 10, 11)
- 3-Bitfolge
  - 8 Möglichkeiten (000, 001, 010, 011, 100, 101, 110, 111)
- Allgemein gilt: Jedes zusätzliche Bit verdoppelt die Anzahl der möglichen Bitfolgen.
  - → Es gibt genau 2<sup>N</sup> mögliche Bitfolgen der Länge N.

# Bitfolgen (2)

- Rechner arbeiten immer nur mit Gruppen von Bits
  - typisch: 8 Bits, 16 Bits, 32 Bits oder 64 Bits
- Byte
  - eigentlich: die kleinste per Adressbus adressierbare Datenmenge eines Systems
  - heute üblich: eine Gruppe von 8 Bits nennt man ein Byte
- Ein Byte kann verwendet werden, um z.B. folgendes zu speichern:
  - eine Zahl zwischen 0 und 255,
  - eine Zahl zwischen -128 und +127,
  - ein kodiertes Zeichen (in einem Zeichencode z.B. ASCII)
  - die Farbkodierung eines Punktes in einer Graphik bzw. in einem Bild genannt "Pixel" (Pixel = Picture Element)



# Datei- und Speichergrößen

#### Kapitel 2: Zahlendarstellung

- Eine Datei ist eine beliebig lange Folge von Bytes (gespeichert auf einem Datenträger)
- Größe einer Datei = Anzahl der darin enthaltenen Bytes Maßeinheiten

$$k = 1024 = 2^{10} \cong 10^3$$
 (k = Kilo)  
 $M = 1024^2 = 2^{20} \cong 10^6$  (M = Mega)  
 $G = 1024^3 = 2^{30} \cong 10^9$  (G = Giga)  
 $T = 1024^4 = 2^{40} \cong 10^{12}$  (T = Tera)  
 $P = 1024^5 = 2^{50} \cong 10^{15}$  (P = Peta)  
 $N = 1024^6 = 2^{60} \cong 10^{18}$  (E = Exa)

 Nomenklatur uneinheitlich, manchmal werden auch die bekannten metrischen Werte verwendet (z.B. bei Festplatten)

### Datei- und Speichergrößen

- zur klareren Abgrenzung:
   Vorschlag der Verwendung anderer Präfixe
- bereits 1996, standardisiert in Norm IEC 80000-13:2008
- konnte sich bisher noch nicht vollständig durchsetzen

```
Kibibyte (KiB) = 2^{10} Byte (Ki = Kilo, bi = binär)

Mebibyte (MiB) = 2^{20} Byte (Me = Mega)

Gibibyte (GiB) = 2^{30} Byte (Gi = Giga)

Tebibyte (TiB) = 2^{40} Byte (Te = Tera)
```

### Zeiteinheiten

- Es werden dezimale Einheiten benutzt
- Zeitangaben
  - 2,6 GHz Prozessor mit 2,6 · 10<sup>9</sup> = 2 600 000 000 Hertz
     (Schwingungen pro Sekunde) getaktet
  - ein Takt dauert also 1/(2,6 · 10<sup>9</sup>) = 0,38 · 10<sup>-9</sup> s, das sind 0,38 ns



### Darstellung von Zahlen

- Fokus: effiziente und eindeutig umkehrbare Zuordnung zwischen Zahlen und Bitfolgen
- Bitfolgen einer festen Länge N
   → 2<sup>N</sup> viele Zahlen darstellbar
- Gebräuchlich sind N = 8, 16, 32 oder 64.

- Man repräsentiert durch die Bitfolgen der Länge N
  - die natürlichen Zahlen von 0 bis 2<sup>N</sup> 1, oder
  - die ganzen Zahlen zwischen -2<sup>N-1</sup> und 2<sup>N-1</sup> 1, oder
  - ein Intervall der reellen Zahlen mit begrenzter Genauigkeit



## Positionssysteme

- Auch Stellenwertsysteme genannt
- Wert einer Zahl ist abhängig von der Position der Zeichen
  - Vorteil: einfache Rechenregeln
- Beispiele:
  - Dualsystem
  - Oktalsystem
  - Dezimalsystem
  - Hexadezimalsystem



### Positionssystem bei natürlichen Zahlen

- Positionssystem mit der Basis B ist ein Zahlensystem, in dem eine Zahl nach Potenzen von B zerlegt wird
- Eine natürliche Zahl n wird durch folgende Summe dargestellt:

$$n = \sum_{i=0}^{N-1} b_i \cdot B^i$$
 wobei Folgendes gilt:

- B = Basis des Zahlensystems ( $B \in \mathbb{N}, B \geq 2$ )
- b = Ziffern  $(b_i \in \mathbb{N}_0, 0 \le b_i < B)$
- N = Anzahl der Stellen

## Dezimalsystem

- Darstellung einer ganzen Zahl z
  - Summe von Potenzen zur Basis 10
  - $z = a_n 10^n + a_{n-1} 10^{n-1} + ... + a_2 10^2 + a_1 10^1 + a_0 10^0$ , wobei  $a_0, a_1, a_2, ... \in \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$
  - Beispiel

$$4711 = 4 \cdot 10^{3} + 7 \cdot 10^{2} + 1 \cdot 10^{1} + 1 \cdot 10^{0}$$
  
=  $4 \cdot 1000 + 7 \cdot 100 + 1 \cdot 10 + 1$ 

### Dualsystem

#### Kapitel 2: Zahlendarstellung

- Darstellung der Zahlen zur Basis 2 und den Grundziffern {0,1}
- Die Bitfolge 1101 hat beispielsweise den Zahlenwert:

$$1101 = 1 \cdot 2^{3} + 1 \cdot 2^{2} + 0 \cdot 2^{1} + 1 \cdot 2^{0}$$

$$= 1 \cdot 8 + 1 \cdot 4 + 0 \cdot 2 + 1$$

$$= 13$$

Schreibweise:

$$(1101)_2 = (13)_{10}$$

### Oktalsystem

- Nachteil Dualsystem: sehr lange Zahlen und deshalb schwer zu merken
  - Ansatz: Zusammenfassung einer Anzahl von binären Stellen
- Oktalsystem
  - 3 binäre Stellen werden zu einer Oktalstelle zusammengefasst
  - Darstellung der Zahlen zur Basis 2<sup>3</sup> = 8 und der Grundziffern {0,1,2,3,4,5,6,7}
  - Beispiele

$$(4711)_8 = 4 \cdot 8^3 + 7 \cdot 8^2 + 1 \cdot 8^1 + 1 \cdot 8^0 = (2505)_{10}$$

$$(53)_{10} = (110 \ 101)_2 = (65)_8$$



### Hexadezimalsystem

- Noch kompaktere Zahlendarstellung
  - 4 binäre Stellen werden zu einer Hexadezimalstelle zusammengefasst
  - Darstellung der Zahlen zur Basis 2<sup>4</sup> = 16 und die 16 Grundziffern {0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F}
  - Beispiele

```
(53)_{10} = (0011 \ 0101)_{2}
= (35)_{16}
```

```
(4711)_8 = (100 111 001 001)_2
= (1001 1100 1001)_2
= (9C9)_{16}
```

## Positionssystem bei gebrochenen Zahlen

#### Kapitel 2: Zahlendarstellung

- Bei gebrochenen Zahlen trennt ein Punkt (Komma im Deutschen) in der Zahl
  - den ganzzahligen Teil der Zahl
  - vom gebrochenen Teil (Nachkommateil).
- Eine gebrochene Zahl n wird durch folgende Summe dargestellt:

$$n = \sum_{i=-M}^{N-1} b_i \cdot B^i \quad \text{wobei Folgendes gilt:}$$

 $B = Basis des Zahlensystems (B \in \mathbb{N}, B \ge 2)$ 

 $b = Ziffern (b_i \in \mathbb{N}_0, 0 \le b_i < B)$ 

N = Anzahl der Stellen vor dem Punkt (Komma)

M = Anzahl der Stellen nach dem Punkt (Komma)



### Beispiele gebrochene Zahlen

$$(17,05)_{10} = 1 \cdot 10^{1} + 7 \cdot 10^{0} + 0 \cdot 10^{-1} + 5 \cdot 10^{-2}$$

$$(3758,0)_{10} = 3 \cdot 10^3 + 7 \cdot 10^2 + 5 \cdot 10^1 + 8 \cdot 10^0$$

$$(9,702)_{10} = 9 \cdot 10^{0} + 7 \cdot 10^{-1} + 0 \cdot 10^{-2} + 2 \cdot 10^{-3}$$

$$(0,503)_{10} = 0.10^{0} + 5.10^{-1} + 0.10^{-2} + 3.10^{-3}$$