Cross-Lingual Fact-Check Retrieval Using Contrastive Learning and Knowledge Distillation Web Retrieval and Mining Final Project Proposal

Yi-Xuan JIANG James Ting-Kuan HSIEH

National Taiwan University

May 2025

Outline

- Introduction
- 2 Methodology
- Seriments
- Project Plan

Problem Statement

- Challenge: Misinformation spreads rapidly across languages
- Task: SemEval-2025 Task 7 Multilingual and Crosslingual Fact-Check Retrieval
- **Goal:** Retrieve relevant fact-checked claims for social media posts across multiple languages

Why This Matters

- Resource Optimization for fact-checking organizations
- Cross-Border Information Flow tracking
- Timely Response to viral misinformation
- O Broader Coverage across language barriers
- Societal Impact on public discourse and decision-making

SemEval 2025 Task 7 Overview

- **Task:** Given a social media post, retrieve relevant fact-checked claims from a large multilingual database
- Languages: English, Spanish, French, German, Italian, Portuguese, Arabic, Hindi, etc.
- Primary Challenge: Finding semantic equivalence across languages
- Data: MultiClaim dataset with posts and fact-checks in multiple languages
- Evaluation: success@k metrics (primarily success@10)

Multilingual Dense Retrieval Architecture

- Dual-encoder architecture using multilingual language models
- Encode posts and fact-checks into a shared embedding space
- Base models: XLM-RoBERTa, mBERT, LaBSE

Key Technical Approaches

Contrastive Learning

- In-batch negatives and hard negative mining
- Training with positive and negative examples

Knowledge Distillation

- Using larger teacher models (multilingual-T5, BLOOM)
- Distilling knowledge into efficient student models

Translation-Augmented Training

- Data augmentation with translations
- Learning semantic equivalence across languages

Retrieval Enhancement Techniques

Query Expansion

- Multilingual WordNet/BabelNet
- Adding synonyms and related terms

Reranking

- Two-stage retrieval approach
- Lightweight initial retrieval (BM25)
- Cross-encoder reranking

Multimodal Integration

- OCR for text in images
- Combining image text with post text

Language-Specific Processing

- Language identification
- Custom tokenization and normalization

Generative Pseudo Labeling for Unsupervised Multilingual Retrieval

- Approach from Chen et al. (EACL 2024)
- Creating synthetic training data for low-resource languages
- Using LLMs to generate pseudo-aligned text pairs
- Helping bridge gaps between languages with limited parallel data

Anticipated Challenges

- Semantic Drift Across Languages
 - Concepts may not map perfectly between languages
- Computational Efficiency
 - Balancing performance with inference speed
- Data Imbalance
 - Varying amounts of training data across languages
- Cultural Context
 - Misinformation often relies on cultural references
- Translation Quality
 - Variable quality of translations in the dataset

Evaluation Metrics

- Primary Metric (SemEval Task):
 - success@10 Whether the correct fact-check appears in top 10 results
- Additional Internal Metrics:
 - Mean Reciprocal Rank (MRR)
 - Normalized Discounted Cumulative Gain (NDCG)
 - Precision and Recall at various cutoffs (P@k, R@k)
 - Language-specific performance analysis

Ablation Studies

Component Contribution Analysis:

- Performance with/without OCR text
- Comparing different embedding models
- Impact of knowledge distillation
- Value of translation augmentation
- Effect of generative pseudo labeling

Language-Specific Analysis:

- Performance across different language pairs
- Impact of language families on crosslingual retrieval

Datasets and Resources

Primary Dataset:

MultiClaim dataset from SemEval-2025 Task 7

• Additional Resources:

- CLEF CheckThat! Lab datasets
- MultiLingual Misinformation Dataset (MLMD)
- Fact-checking websites (Snopes, PolitiFact, etc.)

Technical Stack:

- Hugging Face Transformers
- PyTorch
- FAISS for efficient similarity search

Experimental Setup

Cross-Validation Approach:

- 5-fold CV preserving language distribution
- 4 folds for training, 1 for validation

Hyperparameter Tuning:

- Bayesian optimization
- Focus on embedding size, learning rate, batch size

• Analysis:

- Language-specific performance evaluation
- Error analysis by claim type and language pair

Project Timeline

Date	Milestone	Activities
May 2	Proposal submission	Submit proposal document
May 3-8	Data exploration	Preprocessing, repository setup
May 9	Feedback review	Adjust plans based on feedback
May 10-16	Baseline models	BM25, TF-IDF implementation
May 17-23	Core development	Multilingual embedding models
May 24-30	Advanced features	Contrastive learning, distillation
May 31-Jun 4	Finalization	System integration, testing
Jun 6	Final submission	Presentation and report

References

- Reimers, N., & Gurevych, I. (2019). Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks. EMNLP-IJCNLP 2019.
- 2 Conneau, A., et al. (2020). Unsupervised Cross-lingual Representation Learning at Scale. ACL 2020.
- Feng, F., et al. (2022). Language-agnostic BERT Sentence Embedding. ACL 2022.
- Nakov, P., et al. (2021). The CLEF-2021 CheckThat! Lab on Detecting Check-Worthy Claims, Previously Fact-Checked Claims, and Fake News. ECIR 2021.
- Shaar, S., et al. (2020). That is a Known Lie: Detecting Previously Fact-Checked Claims. *ACL 2020*.
- Ochen, P., et al. (2024). Unsupervised Multilingual Dense Retrieval via Generative Pseudo Labeling. EACL 2024.

Thank You!

Questions?

Yi-Xuan JIANG: b10902010@ntu.edu.tw

James: r13921031@ntu.edu.tw

Ting-Kuan HSIEH: b10701166@ntu.edu.tw