

Algoritmos de Caminhos Mínimos: Dijkstra e Floyd

Eduarda Coppo - eduardacoppopkm@gmail.com Pedro Henrique Vieira de Oliveira Azevedo - pedro.hvo.azevedo@gmail.com

Teoria dos Grafos

Introdução

- Minimizar o custo de travessia de um grafo entre dois nós v e w.
- Os algoritmos que iremos apresentar possuem características diferentes para a solucionar o problema do caminho mínimo:
 - Algoritmo de Dijkstra:
 - De um vértice v até um vértice w;
 - De um vértice v para todos os vértices do grafo;
 - Para todos os pares de vértices.
 - Algoritmo de Floyd:
 - Para todos os pares de vértices.

• É hora da revisão!

Algoritmo de Dijkstra – Representação do Grafo


```
struct
type_graph{
   int vertex;
   int cost;
   struct
type_graph
*prox;
};
```

```
t_graph** add_to_list_undir(t_graph **adjacent_list,
int u, int v, int w){
    t_graph *c, *p;
    c = new_node;
    c->vertex = v; c->cost = w; c->prox = NULL;
    p = adjacent_list[u];
    while ( p -> prox != NULL ){
        p = p -> prox;
    }
    p -> prox = c;
    return (adjacent_list);
}
```


1	->	2 7	3 9	6 14	
2	->	1 7	3 10	4 15	
3	->	1 9	2 10	4 11	6 2
4	->	2 15	3 11	5 6	
5	->	4 6	6 9		
6	->	1 14	3 2	5 9	


```
typedef struct{
  int *distancia;
  int *anterior;
  int *fechado;
}t_graph_info;
```

```
t_graph_info dijkstra_array (t_graph** adjacent_list, int graph_size, int vertex_ini, int
vertex end){
  INICIALIZAÇÕES DE r.distancia, r.anterior, r.fechado
  while (k!=vertex_end){
    for (i=0; i<graph size; i++){</pre>
       if(aberto[i]==1 && r.distancia[i]<menor){</pre>
         menor = r.distancia[i]; k=i;
    r.fechado[k] = 1; t graph* p;
    for(p = adjacent list[k]; p!=NULL; p = p->prox){
       if(r.fechado[p->vertex]!=1){
         custo = MIN (r.distancia[p->vertex], (r.distancia[k]+p->cost));
         if(custo < r.distancia[p->vertex]){
           r.distancia[p->vertex] = custo; r.anterior[p->vertex] = k;
```



```
typedef struct{
  int *distancia
  int *anterior;
  int *fechado;
}t_graph_info;
```

```
t_graph_info dijkstra_array (t_graph** adjacent_list, int graph_size, int vertex_ini, int
   for (i=0; i<graph size; i++){
      if(aberto[i]==1 && r.distancia[i]<menor){</pre>
                                                      GARGALO! O(n)
         menor = r.distancia[i]; k=i;
```



```
typedef struct{
  int *distancia
  int *anterior;
  int *fechado;
}t graph info;
```

```
t_graph_info dijkstra_array (t_graph** adjacent_list, int graph_size, int vertex_ini, int
 while (k!=vertex_end){ 🛑
                                                   O(m), m \leq n
    for (i=0; i<graph size; i++){</pre>
      if(aberto[i]==1 && r.distancia[i]<menor){</pre>
                                                      •GARGALO! O(n)
         menor = r.distancia[i]; k=i;
    r.fechado[k] = 1; t_graph* p;
    for(p = adjacent_list[k]; p!=NULL; p = p->prox){
      if(r.fechado[p->vertex]!=1){
         custo = MIN (r.distancia[p->vertex], (r.distancia[k]+p->cost));
         if(custo < r.distancia[p->vertex]){
           r.distancia[p->vertex] = custo; r.anterior[p->vertex] = k;
```



```
typedef struct{
   int *distancia
   int *anterior;
   int *fechado;
}t_graph_info;
```

```
t_graph_info dijkstra_array (t_graph** adjacent_list, int graph_size, int vertex_ini, int
            Complexidade
                                                 n \leq n
                      Total:
                                                 \mathsf{GALO}!\ O(n)
                  O(m * n)
   for(p = adjacent list[k]; p!=NULL; p = p->prox){
```


Algoritmo de Dijkstra – minHeap Binária

Uma heap é uma árvore binária balanceada

Pai: $\frac{i-1}{2}$

Filho Esquerda: (2 * i) + 1

Filho Direita: (2 * i) + 2

- No algoritmo de Dijkstra substituímos o loop que busca a menor distância pela heap.
- O vértice com menor distância sempre estará no topo da heap juntamente com o identificador do vértice.

Algoritmo de Dijkstra – minHeap Binária

```
typedef struct{
    float key;
    int dataIndex;
}HeapItem;

typedef struct{
HeapItem *H;
    int *map;
    int n;
    int size;
    int size_map;
}Heap;
```

```
t_graph_info dijkstra_heap (t_graph** adjacent_list, int graph_size, int vertex_ini, int
vertex end){
  Heap *h = createHeap();
  for(i = 0; i < graph size; i++){
    if(i == vertex ini) insert(h,i,0);
    else insert(h,i,inf);
  while (k!=vertex_end){
    k = removeMin(h);
    t graph* p;
    for(p = adjacent list[k]; p!=NULL; p = p->prox){
      dist_v1 = h->H[h->map[p->vertex]].key; dist_k = h->H[h->map[k]].key; edge_weight = p->cost;
      if(dist_v1 > (dist_k + edge_weight)){
         dist_v1 = dist_k + edge_weight;
         r.anterior[p->vertex] = k;
         changeKey(h,h->H[h->map[p->vertex]].dataIndex,dist v1);
      }}}
```

Algoritmo de Dijkstra – minHeap Binária Inserção

00

Algoritmo de Dijkstra – minHeap Binária

```
typedef struct{
    float key;
    int dataIndex;
}HeapItem;

typedef struct{
HeapItem *H;
    int *map;
    int n;
    int size;
    int size_map;
}Heap;
```

```
t_graph_info dijkstra_heap (t_graph** adjacent_list, int graph_size, int vertex_ini, int
vertex end){
  Heap *h = createHeap();
  for(i = 0; i < graph size; i++){
    if(i == vertex ini) insert(h,i,0);
    else insert(h,i,inf);
  while (k!=vertex_end){
    k = removeMin(h);
    t graph* p;
    for(p = adjacent list[k]; p!=NULL; p = p->prox){
      dist_v1 = h->H[h->map[p->vertex]].key; dist_k = h->H[h->map[k]].key; edge_weight = p->cost;
      if(dist_v1 > (dist_k + edge_weight)){
         dist_v1 = dist_k + edge_weight;
         r.anterior[p->vertex] = k;
         changeKey(h,h->H[h->map[p->vertex]].dataIndex,dist v1);
      }}}
```


00

Algoritmo de Dijkstra – minHeap Binária

```
typedef struct{
    float key;
    int dataIndex;
}HeapItem;

typedef struct{
HeapItem *H;
    int *map;
    int n;
    int size;
    int size_map;
}Heap;
```

```
t_graph_info dijkstra_heap (t_graph** adjacent_list, int graph_size, int vertex_ini, int
vertex end){
  Heap *h = createHeap();
  for(i = 0; i < graph size; i++){
    if(i == vertex ini) insert(h,i,0);
    else insert(h,i,inf);
  while (k!=vertex_end){
    k = removeMin(h);
    t graph* p;
    for(p = adjacent list[k]; p!=NULL; p = p->prox){
      dist_v1 = h->H[h->map[p->vertex]].key; dist_k = h->H[h->map[k]].key; edge_weight = p->cost;
      if(dist_v1 > (dist_k + edge_weight)){
         dist_v1 = dist_k + edge_weight;
         r.anterior[p->vertex] = k;
         changeKey(h,h->H[h->map[p->vertex]].dataIndex,dist v1);
      }}}
```

00

00

00

00

00

Algoritmo de Dijkstra – minHeap Binária

• O máximo de operações a serem feitas seriam no máximo a altura da árvore o que faz com que o custo computacional das operações da heap, tanto na remoção quanto na changeKey sejam $O(\log n)$.

Algoritmo de Dijkstra – minHeap Binária

```
typedef struct{
    float key;
    int dataIndex;
}HeapItem;

typedef struct{
HeapItem *H;
    int *map;
    int n;
    int size;
    int size_map;
}Heap;
```

```
t_graph_info dijkstra_heap (t_graph** adjacent_list, int graph_size, int vertex_ini, int
             Complexidade
 for(i = 0;
                       Total:
 while (k!
               O(m \log n)
   k = rer
   t grap
   for(p = adjacent_list[k]; p!=NULL; p = p->prox){
     if(dist_v1 > (dist_k + edge_weight)){
       dist_v1 = dist_k + edge_weight;
```


- Cada instância foi dividida em um caminho fácil, médio e difícil.
- Vértice 1 como ponto de partida para todos as instâncias.
 - Difícil (df) = primeiro vértice periférico encontrado

• Médio (md) =
$$\frac{df}{2} - 100 < \frac{df}{2} < \frac{df}{2} + 100$$

• Fácil (fa) =
$$\frac{md}{2} - 100 < \frac{md}{2} < md + 100$$

Resultados Computacionais – NY

Vértices: 264346 | Arestas: 733846

NY.d	TEMPO DE EXECU	CUSTO	
Fácil	13.848363 secs	0.016686 secs	359425
Médio	1 min 7 secs	0.067572 secs	719659
Difícil	1 min 52 secs	0.111725 secs	1440081

NY.t	TEMPO DE EXECU	CUSTO	
Fácil	9.890253 secs	0.014851 secs	477526
Médio	1 min 14 secs	0.080786 secs	957198
Difícil	1 min 57 secs	0.114438 secs	1916421

Resultados Computacionais – NY.d

Resultados Computacionais – NY.t

Resultados Computacionais – BAY

Vértices: 321270 | Arestas: 800172

BAY.d	TEMPO DE EXECU	CUSTO	
Fácil	40.983618 secs	0.039093 secs	539988
Médio	1 min 54 secs	0.096090 secs	1082034
Difícil	2 mins 45 secs	0.138710 secs	2165941

BAY.t	TEMPO DE EXECU	CUSTO	
Fácil	57.966595 secs	0.053536 secs	866301
Médio	2 mins 13 secs	0.117376 secs	1737617
Difícil	2 mins 45 secs	0.145794 secs	3480192

Resultados Computacionais – BAY.d

Resultados Computacionais – BAY.t

Resultados Computacionais – COL

Vértices: 435666 | Arestas: 1057066

COL.d	TEMPO DE EXECUÇÃO (Vetor Heap)		CUSTO
Fácil	3 mins 28 secs	0.098990 secs	1804428
Médio	5 mins 26 secs	0.150582 secs	3616936
Difícil	7 mins 6 secs	0.195049 secs	7246198

COL.t	TEMPO DE EXECUÇÃO (Vetor Heap)		CUSTO
Fácil	3 mins 21 secs	0.098132 secs	2694987
Médio	5 mins 45 secs	0.164361 secs	5483070
Difícil	7 mins 23 secs	0.196074 secs	10935293

Resultados Computacionais – COL.d

Resultados Computacionais – COL.t

Resultados Computacionais – FLA

Vértices: 1070376 | Arestas: 2712798

FLA.d	TEMPO DE EXECUÇÃO (Vetor Heap)		CUSTO
Fácil	3 mins 13 secs	0.074377 secs	2907930
Médio	8 mins 17 secs	0.149866 secs	5829987
Difícil	30 mins 20 secs	0.491751 secs	11674195

FLA.t	TEMPO DE EXECUÇÃO (Vetor Heap)		CUSTO
Fácil	3 mins 36 secs	0.077648 secs	3417632
Médio	11 mins 45 secs	0.206668 secs	6870773
Difícil	30 mins 3 secs	0.508526 secs	13776909

Resultados Computacionais – FLA.d

Resultados Computacionais – FLA.t

- Caminho mais curto entre todos os pares de vértices.
- Grafo orientado e valorado.
- Ciclos negativos não são permitidos.
- Arestas negativas são permitidas.


```
let V be the number of vertices in a graph
2 let dist be a |V| × |V| array of minimum distances initialized to ∞ (infinity)
3 for each edge (u,v)
     dist[u][v] \leftarrow w(u,v) // the weight of the edge (u,v)
5 for each vertex v
    dist[v][v] \leftarrow 0
7 for k from 1 to |V|
     for i from 1 to |V|
       for j from 1 to |V|
10
          if dist[i][j] > dist[i][k] + dist[k][j]
11
             dist[i][i] \leftarrow dist[i][k] + dist[k][j]
12
          end if
```


2 let dist be a |V| x |V| array of minimum distances initialized to ∞ (infinity)

	1	2	3	4
1	8	8	8	8
2	8	8	8	∞
3	8	8	8	∞
4	80	80	80	∞

- 3 for each edge (u,v)
- 4 dist[u][v] \leftarrow w(u,v)
- 5 for each vertex v
- 6 $\operatorname{dist}[v][v] \leftarrow 0$

	1	2	3	4
1	0	8	-2	∞
2	4	0	3	∞
3	8	8	0	2
4	8	-1	8	0

```
    7 for k from 1 to |V|
    8 for i from 1 to |V|
    9 for j from 1 to |V|
    10 if dist[i][j] > dist[i][k] + dist[k][j]
    11 dist[i][j] ← dist[i][k] + dist[k][j]
    12 end if
```



```
    10 if dist[i][j] > dist[i][k] + dist[k][j]
    11 dist[i][j] ← dist[i][k] + dist[k][j]
```

k = 1	1	2	3	4
1	0	8	-2	8
2	4	0	2	8
3	8	8	0	2
4	80	-1	80	0

k = 2	1	2	3	4
1	0	8	-2	8
2	4	0	3	∞
3	∞	80	0	2
4	3	-1	1	0


```
    10 if dist[i][j] > dist[i][k] + dist[k][j]
    11 dist[i][j] ← dist[i][k] + dist[k][j]
```

k = 3	1	2	3	4	k = 4	1	2	3	4
1	0	∞	-2	0	1	0	-1	-2	∞
2	4	0	2	4	2	4	0	3	∞
3	∞	∞	0	2	3	5	1	0	2
4	∞	-1	∞	0	4	3	-1	1	0


```
1 let V be the number of vertices in a graph
2 let dist be a |V| x |V| array of minimum distances initialized to ∞ (infinity)
  let next be a |V| x |V| array of adjacent vertices initialized to -1
4 for each edge (u,v)
     dist[u][v] \leftarrow w(u,v) // the weight of the edge (u,v)
    next[u][v] \leftarrow v
  for each vertex v
     dist[v][v] \leftarrow 0
  for k from 1 to |V|
      for i from 1 to |V|
10
        for j from 1 to |V|
11
12
           if dist[i][j] > dist[i][k] + dist[k][j]
13
              dist[i][i] \leftarrow dist[i][k] + dist[k][i]
14
              next[i][j] \leftarrow next[i][k]
15
           end if
```


• Devido aos 3 loops for aninhados, a complexidade do algoritmo de Floyd para todos os casos de teste é $O(n^3)$.

Vértices: 3353 | Arestas: 8870

TEMPO DE EXECUÇÃO						
Dijkstra (Ve	etor Heap)	Floyd (Matriz Vetor)				
1 min 3 secs	0.000486 secs	1 min 52 secs	5 mins 32 secs			

As matrizes de distância e de recuperação de caminhos geradas pelos algoritmos de Floyd e Dijkstra são exatamente iguais.

DÚVIDAS???