

APPROVAL SHEET

MR12, MR10, MR08, MR06, MR04

±1%, ±5%

Thick film General Purpose Chip Resistors Size 1206, 1210, 0805, 0603, 0402 Automotive & Military Compliant

FEATURE

- 1. High reliability and stability ±1%
- 2. Sulfuration resistant ASTM B-809 60'C 500 hrs
- 3. Automotive AEC Q-200 & Military MIL-STD Compliant
- 4. 100% CCD inspection
- 5. RoHS 2 compliant and Halogen free products

APPLICATION

- Automotive application
- · Consumer electrical equipment
- EDP, Computer application
- Telecom application

DESCRIPTION

The resistors are constructed in a high grade ceramic body (aluminum oxide). Internal metal electrodes are added at each end and connected by a resistive paste that is applied to the top surface of the substrate. The composition of the paste is adjusted to give the approximate resistance required and the value is trimmed to within tolerance by laser cutting of this resistive layer.

The resistive layer is covered with a protective coat. Finally, the two external end terminations are added. For ease of soldering the outer layer of these end terminations is a Tin (lead free) alloy.

Fig 1. Construction of a Chip-R

QUICK REFERENCE DATA

Item	General Specification										
Series No.	MR	10	MR	MR12		MR08		R06	MR04		
Size code	1210(3225)	1206(3216)	0805(2012)	0603((1608)	0402(0402(1005)	
Resistance				1Ω~10	MΩ (±5% t	olerance),	Jumper				
Range				1Ω	2~10MΩ (±	1% toleran	ce)				
Resistance	±1%	±5%	±1%	±5%	±1%	±5%	±1%	±5%	±1%	±5%	
Tolerance	E96/E24	E24	E96/E24	E24	E96/E24	E24	E96/E24	E24	E96/E24	E24	
TCR (ppm/°C)											
R > 1MΩ	≤ ±	200	≤ ±	200	≤ ±	200	≤ ±	200	≤ ± 200		
$10\Omega < R \le 1M\Omega$	≤ ±	100	≤ ±	100	≤ ± 100		≤ ± 100		≤ ± 100		
$R \le 10\Omega$	-200~	+400	-200~	+400	-200~	-200~+400 -200~-		~+400	-200-	~ + 400	
Max. dissipation @ T _{amb} =70°C	1/2	W	1/4	W	1/4	·W	1/8	3 W	1/1	0 W	
Max. Operation Voltage (DC or RMS)	20	200V 200V		0V	150V		75V		50V		
Max. Overload Voltage (DC or RMS)	40	0V	400V 300V 150V		60V	100V					
Climatic category (IEC 60068)	55/155/56										

Note:

- 1. This is the maximum voltage that may be continuously supplied to the resistor element, see "IEC publication 60115-8"
- 2. Max. Operation Voltage : So called RCWV (Rated Continuous Working Voltage) is determined by $RCWV = \sqrt{RatedPower \times Resistance\ Value} \text{ or Max. RCWV listed above, whichever is lower.}$
- 3. The resistance of Jumper is defined $< 0.05\Omega$.

DIMENSIONS (unit: mm)

	MR10	MR12	MR08	MR06	MR04
L	3.10 ± 0.10	3.10 ± 0.10	2.00 ± 0.10	1.60 ± 0.10	1.00 ± 0.05
W	2.60 ± 0.10	1.60 ± 0.10	1.25 ± 0.10	0.80 ± 0.10	0.50 ± 0.05
Т	0.55 ± 0.10	0.60 ± 0.15	0.50 ± 0.15	0.45 ± 0.15	0.35 ± 0.05
Tb	0.50 ± 0.20	0.45 ± 0.20	0.40 ± 0.20	0.30 ± 0.15	0.25 ± 0.10
Tt	0.50 ± 0.20	0.50 ± 0.20	0.40 ± 0.20	0.30 ± 0.10	0.20 ± 0.10

MARKING

Size \ Nr. Of digit of code\tolerance	±5%	±1%	
1210/1206/0805	3-digits marking	4-digits marking	
0603 (1608)	3-digits marking 3-digits marking		
0402(1005)	N0 MA	RKING	

3-digits marking ($\pm 5\%$: 1206, 1210, 0805 & 0603)

Each resistor is marked with a three digits code on the protective coating to designate the nominal resistance value.

3-digits marking ($\pm 1\%$: 0603)

Nomina	l resistan	се			Description										
1.E-24 s	series			As <i>0603</i>	0603 WR06X ±5%.										
2.E-96 s	series			The 1st to	wo digit o	codes ar	e referrin	g to the	CODE or	the tab	le, the 3rd	d code is	s the inde	x of resi	stance
				Y=10 ⁻² ,	X=10 ⁻¹ ,	A=10 ⁰ ,	B=10 ¹ ,	C=10 ² ,	D=10 ³ ,	E=10 ⁴ ,	F=10 ⁵				
						EX:	17.8 Ω=	25X,17	'8Ω=25A	,1K78	=25B				
							17K8=2	25C · 17	'8K=25D	, 1M78	=25E				
3. Rema	ark			There is	no marki	ng for th	e items a	re not u	nder E-24	and E-	96 series				
CODE	R_value	CODE	R_value	CODE	R_Value	CODE	R_value	CODE	R_value	CODE	R_value	CODE	R_value	CODE	R_value
01	100	13	133	25	178	37	237	49	316	61	422	73	562	85	750
02	102	14	137	26	182	38	243	50	324	62	432	74	576	86	768
03	105	15	140	27	187	39	249	51	332	63	442	75	590	87	787
04	107	16	143	28	191	40	255	52	340	64	453	76	604	88	806
05	110	17	147	29	196	41	261	53	348	65	464	77	619	89	825
06	113	18	150	30	200	42	267	54	357	66	475	78	634	90	845
07	115	19	154	31	205	43	274	55	365	67	487	79	649	91	866
08	118	20	158	32	210	44	280	56	374	68	499	80	665	92	887
09	121	21	162	33	33 215 45 287 57 383 69 511 81 681 93							909			
10	124	22	165	34	34 221 46 294 58 392 70 523 82 698 94 9							931			
11	127	23	169	35	35 226 47 301 59 402 71 536 83 715 95							953			
12	130	24	174	36	232	48	309	60	412	72	549	84	732	96	976

4-digits marking (\pm 1%: 1210/1206/0805)

Each resistor is marked with a four digits code on the protective coating to designate the nominal resistance value.

Example

RESISTANCE	10Ω	12Ω	100Ω	6800Ω	47000Ω
3-digits marking (1210, 1206, 0805, 0603 ±5%)	100	120	101	682	473
4-digits marking	10R0	12R0	1000	6801	4702

FUNCTIONAL DESCRIPTION

Product characterization

Standard values of nominal resistance are taken from the E24 series for resistors with a tolerance of $\pm 5\%$, and E24+E96 series for resistors with a tolerance of $\pm 1\%$. The values of the E24/E96 series are in accordance with "IEC publication 60063".

Derating

The power that the resistor can dissipate depends on the operating temperature; see Fig.2.1

Figure 2.1 Maximum dissipation in percentage of rated power as a function of the ambient temperature

MOUNTING

Due to their rectangular shapes and small tolerances, Surface Mountable Resistors are suitable for handling by automatic placement systems.

Chip placement can be on ceramic substrates and printed-circuit boards (PCBs).

Electrical connection to the circuit is by individual soldering condition.

The end terminations guarantee a reliable contact.

SOLDERING CONDITION

The robust construction of chip resistors allows them to be completely immersed in a solder bath 260°C for 10 seconds. Therefore, it is possible to mount Surface Mount Resistors on one side of a PCB and other discrete components on the reverse (mixed PCBs).

Surface Mount Resistors are tested for solderability at 235°C during 2 seconds. The test condition for no leaching is 260°C for 30 seconds. Typical examples of soldering processes that provide reliable joints without any damage are given in Fig 3.

Fig 3. Infrared soldering profile for Chip Resistors

CATALOGUE NUMBERS

The resistors have a catalogue number starting with .

MR12	x	472_	J	Т	L
Automotive code MR10: 1210 MR12: 1206 MR08: 0805 MR06: 0603 MR04: 0402	Type code X: Jumper $ \pm 5\%, \ 1\Omega \sim 10 M\Omega \\ \pm 1\%, \ 10\Omega \sim 1 M\Omega \\ W: \\ \pm 1\%, \ < 10\Omega; \ > 1 M\Omega $	Resistance code $\pm 5\%$, E24: 2 significant digits followed by no. of zeros and a blank $220\Omega = 221_$ $4K7 = 472_$ $10\Omega = 100_$ $1\Omega = 1R0_$ ("_" means a blank) Resistance code $\pm 1\%$, E24+E96: 3 significant digits followed by no. of zeros $E96: 37.4K\Omega = 3742$ $E24: 220\Omega = 2200$ $4K7 = 4701$ $10\Omega = 10R0$ $1\Omega = 1R00$	Tolerance F:±1% J:±5% P:Jumper	Packaging code T: 7" Reeled taping D: 7" Reel 20K/RL 0402 size Q: 10" Reeled taping G: 13" Reeled taping B: Bulk	Termination code L = Sn base (lead free)

^{*} Anti-Sulfuration test conditions: ASTM B-809-95 60'C 500hrs, criteria: +/-1%!

MR10, MR12, MR08, MR06:

1. Reeled tape packaging : 8mm width paper taping 5000pcs per 7" reel, 10kpcs per 10" reel, 20kpcs per 13" reel.

2. Bulk packaging : 5000pcs per poly-bag

MR04:

1. Reeled tape packaging: 8mm width paper taping 10,000pcs per reel,

2. Bulk packaging : 10,000pcs per poly-bag

TEST AND REQUIREMENTS

Essentially all tests are carried out according to the schedule of IEC publication 115-8, category LCT/UCT/56(rated temperature range: Lower Category Temperature, Upper Category Temperature; damp heat, long term, 56 days). The testing also meets the requirements specified by EIA, EIAJ and JIS.

The tests are carried out in accordance with IEC publication 68, "Recommended basic climatic and mechanical robustness testing procedure for electronic components" and under standard atmospheric conditions according to IEC 60068-1, sub-clause 5.3. Unless otherwise specified, the following value supplied:

Temperature: 15°C to 35°C. Relative humidity: 45% to 75%.

Air pressure: 86kPa to 106 kPa (860 mbar to 1060 mbar). All soldering tests are performed with midly activated flux.

TEST	DDOCEDURE / TEST METUOD	REQUIREMENTS	
TEST	PROCEDURE / TEST METHOD	Resistance	0Ω
Electrical Characteristics	- DC resistance values measurement - Temperature Coefficient of Resistance (T.C.R)	Within the specified tolerance Refer to "QUICK REFERENC	
JISC5201-1: 1998 Clause 4.8	Natural resistance change per change in degree centigrade. $\frac{R_2-R_1}{R_1(t_2-t_1)}\times 10^6 \ \ (\text{ppm/°C}) \ \ t_1:20^{\circ}\text{C}+5^{\circ}\text{C}-1^{\circ}\text{C}$ R ₁ : Resistance at reference temperature		
	R ₂ : Resistance at test temperature		
Resistance to soldering heat (R.S.H) MIL-STD-202	Un-mounted chips completely immersed for 10±1second in a SAC solder bath at $270^{\circ}\!$	Δ R/R max. \pm (0.5%+0.05 Ω) No visible damage	<50mΩ
method 210			
Solderability J-STD-002	 a) Bake the sample for 155°C dwell time 4hrs/ solder dipping 235°C/5sec. b) Steam the sample dwell time 1 hour/ solder dipping 260°C/7sec. 	95% coverage min., good tir no visible damage	nning and
Temperature cycling JESD22 method JA-104	1000 cycles, -55°C ~ +155°C, dwell time 5~10min	Δ R/R max. \pm (0.5%+0.05 Ω) No visible damage	<50mΩ
Moisture Resistance MIL-STD-202 method 106	65±2°C, 80~100% RH, 10 cycles, 24 hours/ cycle	Δ R/R max. \pm (0.5%+0.05 Ω) No visible damage	<50mΩ
Bias Humidity MIL-STD-202 method 103	1000+48/-0 hours; 85°C, 85% RH, 10% of operation power	Δ R/R max. \pm (1%+0.05 Ω) No visible damage	<50mΩ
Operational Life MIL-STD-202 method 108	1000+48/-0 hours; 35% of operation power, 125±2°C	Δ R/R max. \pm (1%+0.05 Ω) No visible damage	<50mΩ

TECT	PROCEDURE / TEST METUOR	REQUIREMENTS	3	
TEST	PROCEDURE / TEST METHOD	Resistance ±5%, ±1%	0Ω	
High Temperature	1000+48/-0 hours; without load in a temperature chamber	Δ R/R max. \pm (1%+0.05 Ω)		
Exposure	controlled 155±3°C	No visible damage	<50mΩ	
MIL-STD-202			<301112	
method 108				
Mechanical Shock	1/2 Sine Pulse / 1500g Peak / Velocity 15.4ft/sec	Within the specified		
MIL-STD-202		tolerance	$<$ 50m Ω	
method 213		No visible damage		
Board Flex	Resistors mounted on a 90mm glass epoxy resin PCB(FR4),	Δ R/R max. \pm (1.0%+0.05 Ω).	<50mΩ	
AEC-Q200-005	bending once 2mm for 10sec	No visible damage		
Terminal strength	Pressurizing force: 1Kg, Test time: 60±1sec.	No remarkable damage or re	or removal of	
AEC-Q200-006		the		
		terminations		
Vibration	Test 5g's for 20min., 12 cycles each of 3 orientations	Δ R/R max. \pm (1.0%+0.05 Ω)		
MIL-STD-202		No visible damage	<50mΩ	
method 204				
Thermal shock	Test –55 to 155℃/ dwell time 15min/ Max transfer time 20sec	Δ R/R max. \pm (0.5%+0.05 Ω)		
MIL-STD-202	300cycles	No visible damage	<50mΩ	
method 107				
ESD	Test contact 1.0KV (0.5KV for 0402 only)	ΔR/R max. ±(1%+0.05Ω)		
AEC-Q200-002		No visible damage	<50mΩ	

TEST CONDITION FOR JUMPER (0 Ω)

Item	MR10	MR12	MR08	MR06	MR04			
Power Rating At 70°C	1/2W	1/4W	1/4W	1/8W	1/10W			
Resistance		MAX.50m Ω						
Rated Current	3A	3A 2A 2A 1.5A 1.						
Peak Current	7.5A 5A 5A 3.5A 3A							
Operating Temperature	-55 ~ +155°C							

PACKAGING

Paper Tape specifications (unit :mm)

Series No.	Α	В	W	F	E
MR10	3.60±0.20	3.00±0.20			
MR12	3.60±0.20	2.00±0.20			
MR08	2.40±0.20	1.65±0.20	8.00±0.30	3.50±0.20	1.75±0.10
MR06	1.90±0.20	1.10±0.20			
MR04	1.20±0.10	0.70±0.10			

Series No.	P1	P0	ΦD	Т
MR10/12/08	4.00±0.10			Max. 1.0
MR06	4.00±0.10	4.00±0.10	Φ 1.50 $^{+0.1}_{-0.0}$	0.65±0.05
MR04	2.00±0.10			0.40±0.05

7" Reel dimensions

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Walsin:

```
MR08X1002FTL MR06X1471FTL MR04X16R5FTL MR08X121 JTL MR06X6201FTL MR08W6R34FTL
MR06X8252FTL MR04X1371FTL MR08X1873FTL MR04X1201FTL MR04X3480FTL MR06X1102FTL
MR04W6R20FTL MR06X2321FTL MR04X110 JTL MR06X135 JTL MR06X3161FTL MR08X8661FTL
MR06X1583FTL MR06X7153FTL MR06X3002FTL MR04W6804FTL MR06X3R0 JTL MR08X6802FTL
MR04X4702FTL MR04X1740FTL MR08X242 JTL MR04X6343FTL MR08X4700FTL MR04W1624FTL
MR08X5602FTL MR04X6041FTL MR08X3012FTL MR04X5103FTL MR06X8872FTL MR04X1802FTL MR04X135
JTL MR08X56R2FTL MR04X3832FTL MR06X754 JTL MR04X2402FTL MR08X1210FTL MR06X1131FTL
MR06X8660FTL MR08W1R60FTL MR06X2003FTL MR04X8873FTL MR08X7503FTL MR04X301 JTL MR04X220
JTL MR06X9761FTL MR08X243 JTL MR08X201 JTL MR04W3R92FTL MR06X2051FTL MR08X821 JTL
MR08X5603FTL MR08X164 JTL MR06X302 JTL MR04X2R2 JTL MR04X222 JTL MR08X621 JTL MR08X11R5FTL
 MR06X1004FTL MR08X754 JTL MR06X6812FTL MR08X2433FTL MR08X331 JTL MR06X1960FTL
MR08X3322FTL MR04X5620FTL MR06X3900FTL MR06X221 JTL MR04X6813FTL MR04X1150FTL
MR04X3303FTL MR04X5621FTL MR04X682 JTL MR04X9311FTL MR08X622 JTL MR06X205 JTL
MR06X5103FTL MR08X61R9FTL MR04X1071FTL MR04X3090FTL MR04X685 JTL MR08X1070FTL
MR08X1203FTL MR04X1621FTL MR06X1912FTL MR04X1400FTL MR04X1330FTL MR04X15R4FTL
MR06X2552FTL MR08X1402FTL MR06X4703FTL MR04X9093FTL MR04X1403FTL MR06X330 JTL
MR08X8202FTL
```