Folia	Zadanie
5.2	Prove, that the mapping $U \ni u \to C u \in \mathbb{R}_+$ is a norm on
	<i>U</i> equivalent to $\ \cdot\ $, if $C > 0$ and $(U, \ \cdot\)$ is a normed linear space.
5.5	$\dim(U) < +\infty \Longrightarrow U^* = U'$
8.3	Prove the norms $\ \cdot\ _m$, $\ \cdot\ _{0,m}$ equivalence on $H_0^m(\Omega)$.
9.1	Prove, that the mapping defined by (46) is continuous.
9.12	Prove that $y_1 \in GS_{nhom}$.
11.7	Prove the above Proposition 10.
13.2	Prove that the following mapping is linear.
	$B: C^{m}(\Omega) \ni u \to \sum_{0 \le \alpha \le m} a_{\alpha} D^{\alpha} u \in C(\Omega) $ (101)
13.8	Prove above theorem 21.
14.19	Prove that given the assumptions of Lax-Milgram lemma the
	mapping $\Theta: H' \ni \phi \to u \in H$ such that $a(u, v) = \langle \phi, v \rangle \forall v \in H$ is a
	Lipschitz continuous bijection and θ^{-1} is also continuous.
14.21	iii. Prove the symmetry of a assuming that $a_{ij} = a_{ji}$ almost everywhere
	in Ω as an Exercise.