West & Harrison Chapter 10, Problem 7

The Dans

Thursday, March 16, 2017

The quarterly sales and cost index of a confectionary product are given in figure 1. The goal is to fit a DLM to the sales

	SALES				COST			
	Quarter				Quarter			
Year	1	2	3	4	1	2	3	4
1975	157	227	240	191	10.6	8.5	6.7	4.1
1976	157	232	254	198	1.9	0.4	1.1	1.9
1977	169	234	241	167	0.2	2.9	4.1	-1.4
1978	163	227	252	185	-4.0	-4.5	-5.3	-8.4
1979	179	261	264	196	-12.8	-13.2	-10.1	-4.6
1980	179	248	256	193	-1.1	-0.1	0.0	-2.5
1981	186	260	270	210	-5.1	-6.4	-8.0	-6.5
1982	171	227	241	170	-3.7	-1.3	6.1	16.5
1983	140	218	208	193	22.9	23.9	18.0	8.3
1984	184	235	245	209	2.9	0.7	-2.4	-7.0
1985	206	260	264	227	-9.8	-10.6	-12.3	-13.2

Figure 1: The data associated with the problem

with first-order polynomial, regression on cost, and full seasonal components. Based on previous information,

- the underlying level of the series when cost is zero is 220 with a nominal standard error of 15
- the regression coefficient of cost is estimated as -1.5 with a standard error of about 0.7
- the seasonal factors for the four quarters of the first year are expected to be -50, 25, 50, -25, with nominal standard errors of 25, 15, 25, and 15, respectively
- the trend, regression, and seasonal components are initially assumed to be uncorrelated
- the observational variance is estimated as 100, with initial degrees of freedom of 12

Using this information, we are to analyze the series along the following lines:

(a) Using the information provided for the seasonal factors above, apply Theorem 8.2 to derive the appropriate initial prior that satisfies the zero-sum constraint.

Theorem 8.2: Imposing the constraint $\mathbf{1}'\phi = 0$ on the prior $(\phi_0|\mathcal{D}_0^*) \sim N(\mathbf{m}_0^*, \mathbf{C}_0^*)$ and writing $U = \mathbf{1}'\mathbf{C}_0^*\mathbf{1}$ and $\mathbf{A} = \mathbf{C}_0^*\mathbf{1}/U$ gives the revised joint prior

$$\begin{split} &(\boldsymbol{\phi}_0|\mathcal{D}_0) \sim \mathrm{N}(\mathbf{m}_0, \mathbf{C}_0), \\ &\mathbf{m}_0 = \mathbf{m}_0^* - \mathbf{A}\mathbf{1}'\mathbf{m}_0^*, \\ &\mathbf{C}_0 = \mathbf{C}_0^* - \mathbf{A}\mathbf{A}'U. \end{split}$$

Using the given information for the seasonal components,

$$\mathbf{m}_0^* = (-50, 25, 50, -25)'$$

$$\mathbf{C}_0^* = \begin{pmatrix} 625 & 0 & 0 & 0\\ 0 & 225 & 0 & 0\\ 0 & 0 & 625 & 0\\ 0 & 0 & 0 & 225 \end{pmatrix}.$$

Applying Theorem 8.2 yields

$$\begin{split} U &= 1700 \\ A &= (0.3676471, 0.1323529, 0.3676471, 0.1323529)' \\ \mathbf{m}_0^s &= (-50, 25, 50, -25)' \\ \mathbf{C}_0^s &= \begin{pmatrix} 395.22 & -82.72 & -229.78 & -82.72 \\ -82.72 & 195.22 & -82.72 & -29.78 \\ -229.78 & -82.72 & 395.22 & -82.72 \\ -82.72 & -29.78 & -82.72 & 195.22 \end{pmatrix}. \end{split}$$

This leads to the initial prior satisfying the zero-sum constraint for the seasonal components to be $(\phi_0|\mathcal{D}_0) \sim N(\mathbf{m}_0^s, \mathbf{C}_0^s)$. Given a state vector $\boldsymbol{\theta}_t = (\theta_{1,t}, \theta_{2,t}, \phi_{1,t}, \dots, \phi_{4,t})'$, the initial prior for the DLM is of the form $(\boldsymbol{\theta}_0|\mathcal{D}_0) \sim N(\mathbf{m}_0, \mathbf{C}_0)$, where

$$\mathbf{m}_0 = (220, -1.5, -50, 25, 50, -25)'$$

$$\mathbf{C}_0 = \begin{pmatrix} 225.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\ 0.00 & 0.49 & 0.00 & 0.00 & 0.00 & 0.00 \\ 0.00 & 0.00 & 395.22 & -82.72 & -229.78 & -82.72 \\ 0.00 & 0.00 & -82.72 & 195.22 & -82.72 & -29.78 \\ 0.00 & 0.00 & -229.78 & -82.72 & 395.22 & -82.72 \\ 0.00 & 0.00 & -82.72 & -29.78 & -82.72 & 195.22 \end{pmatrix}.$$

(b)