

Programmierung und Deskriptive Statistik

BSc Psychologie WiSe 2024/25

Belinda Fleischmann

Datum	Einheit	Thema	Form
15.10.24	R Grundlagen	(1) Einführung	Seminar
22.10.24	R Grundlagen	(2) R und Visual Studio Code	Seminar
29.10.24	R Grundlagen	(2) R und Visual Studio Code	Übung
05.11.24	R Grundlagen	(3) Vektoren, (4) Matrizen	Seminar
12.11.24	R Grundlagen	(5) Listen und Dataframes	Seminar
	Leistungsnachweis 1		
19.11.24	R Grundlagen	(6) Datenmanagement	Seminar
26.11.24	R Grundlagen	(2)-(6) R Grundlagen	Übung
03.12.24	Deskriptive Statistik	(7) Häufigkeitsverteilungen	Seminar
10.12.24	Deskriptive Statistik	(8) Verteilungsfunktionen und Quantile	Seminar
	Leistungsnachweis 2		
17.12.24	Deskriptive Statistik	(9) Maße der zentralen Tendenz und Datenvariabilität	Seminar
	Weihnachtspause		
07.01.25	R Grundlagen	(10) Strukturiertes Programmieren: Kontrollfluss, Debugging	Seminar
14.01.25	Deskriptive Statistik	(11) Anwendungsbeispiel	Übung
	Leistungsnachweis 3		
21.01.25	Deskriptive Statistik	(11) Anwendungsbeispiel	Seminar
28.01.25	Deskriptive Statistik	(11) Anwendungsbeispiel, Q&A	Seminar

(11) Anwendungsbeispiel

Datenvorverarbeitung

Deskriptive Statistiken

Visualisierung

Parameterschätzung

Konfidenzintervalle

Hypothesent ests

Datenvorverarbeitung

Deskriptive Statistiken

Visualisierung

 ${\sf Parameters ch\"{a}tzung}$

Konfidenzintervalle

Hypothesentests

Forschungsfrage

Evidenzbasierte Evaluation von Psychotherapieformen bei Depression

Welche Therapieform ist bei Depression wirksamer?

Online Psychotherapie

Klassische Psychotherapie

Beispiel: Evaluation von Psychotherapieformen bei Depression

Becks Depressions-Inventar (BDI) zur Depressionsdiagnostik

- 0 8 keine Depression
- 9 13 minimale Depression
- 14 19 leichte Depression
- 20 28 mittelschwere Depression
- 29 63 schwere Depression

Einlesen des Datensatzes mit read.table()

```
file_path <- file.path(data_dir_path, "psychotherapie_datensatz.csv")
# file_path könnte beispielsweise so aussehen:
# "/home/username/uni/progr-und-deskr-stat-24/Daten/psychotherapie_datensatz.csv"
D <- read.table(file_path, sep = ",", header = TRUE)</pre>
```

Daten der ersten acht Proband:innen jeder Gruppe

	Bedingung	Pre.BDI	Post.BDI
1	Klassisch	17	9
2	Klassisch	20	14
3	Klassisch	16	13
4	Klassisch	18	12
5	Klassisch	21	12
6	Klassisch	17	14
7	Klassisch	17	12
8	Klassisch	17	9
51	Online	22	16
52	Online	19	15
53	Online	21	13
54	Online	18	15
55	Online	19	13
56	Online	17	16
57	Online	20	13
58	Online	19	16

Bonus: Datensimulation

```
# Seed setzen
set.seed(5)
                                                  # Startwert für den Zufallsgenerator setzen
# Simulationsparameter
      <- 50
                                                  # Proband:innnen pro Gruppe
mu <- c(
                                                  # Erwartungswertparameter
 18. 12.
                                                  # Pre und Post der Gruppe Klassisch
 19. 14)
                                                  # Pre und Post der Gruppe Online
sigsqr <- 3
                                                  # Varianzparameter (gleich für alle Gruppen)
# Datensimulation
D <- data.frame(
        "Bedingung" = c(
         rep("Klassisch", n), rep("Online", n)), # n-mal "Klassisch", n-mal "Online"
        "Pre BDT" = c(
         round(rnorm(n, mu[1], sqrt(sigsqr))), # n Zufallswerte aus Normalveritung mit mu[1]
         round(rnorm(n, mu[3], sgrt(sigsgr)))), # n Zufallswerte aus Normalveritung mit mu[3]
        "Post BDT" = c(
         round(rnorm(n, mu[2], sqrt(sigsqr))), # n Zufallswerte aus Normalveritung mit mu[2]
         round(rnorm(n, mu[4], sqrt(sigsqr))))
                                                # n Zufallswerte aus Normalveritung mit mu[4]
# Datenspeicherung
fname <- file.path(data_path, "psychotherapie_datensatz.csv")</pre>
write.csv(D, file = fname)
```

Datenvorverarbeitung

Deskriptive Statistiken

Visualisierung

Parameterschätzung

Konfidenzintervalle

Hypothesent ests

Datenvorverarbeitung

Überlegungen für die Datenvorverarbeitung

- Studienfokus ist die Veränderung der Depressionsymptomatik durch Therapieformen.
- Für jede Proband:in ergibt sich diese Veränderung als Differenz zwischen Post.BDI und Pre.BDI.
- Eine Reduktion der Depressionssymptomatik ergibt dabei einen negativen Wert.
- Es ist intuitiver, Verbesserungen mit positiven Zahlen zu repräsentieren.
- Als Quantifizierung des Therapieeffekts bei Proband:in i bietet sich also folgendes Maß an

$$\Delta \mathsf{BDI}[\mathsf{i}] := -(\mathsf{Post.BDI}[\mathsf{i}] - \mathsf{Pre.BDI}[\mathsf{i}]) \tag{1}$$

ullet Wir betrachten in der Folge also das ΔBDI Maß mit folgenden Interpretationen

$\Delta \mathrm{BDI} > 0$	Verminderung der Depressionsymptomatik	Wirksame Therapie
$\Delta \mathrm{BDI} = 0$	Keine Veränderung der Depressionsymptomatik	Wirkungslose Therapie
$\Delta \mathrm{BDI} < 0$	Verstärkung der Depressionsymptomatik	Schädigende Therapie

Datenvorverarbeitung

Hinzufügen einer $\Delta \mathrm{BDI}$ Spalte zum Dataframe

```
fname <- file.path(data_path, "psychotherapie_datensatz.csv")  # Einlesen

D <- read.table(fname, sep = ",", header = TRUE)  # Rohdaten

D$Delta.BDI <- -(D$Post.BDI - D$Pre.BDI)  # \Delta BDI Maß</pre>
```

Daten der ersten acht Proband:innen jeder Gruppe

	Bedingung	Pre.BDI	Post.BDI	Delta.BDI
1	Klassisch	17	9	8
2	Klassisch	20	14	6
3	Klassisch	16	13	3
4	Klassisch	18	12	6
5	Klassisch	21	12	9
6	Klassisch	17	14	3
7	Klassisch	17	12	5
8	Klassisch	17	9	8
51	Online	22	16	6
52	Online	19	15	4
53	Online	21	13	8
54	Online	18	15	3
55	Online	19	13	6
56	Online	17	16	1
57	Online	20	13	7
58	Online	19	16	3

Datenvorverarbeitung

Deskriptive Statistiken

Visualisierung

Parameterschätzung

Konfidenzintervalle

Hypothesent ests

Deskriptive Statistiken

Bedingungsunabhängige Auswertung

```
# Initialisierung eines Dataframes
data
            <- D$Delta.BDT
                                                             # Datenvektor aus Dataframe kopieren
deskr_stat
            <- data.frame(
                                                             # Dataframeerzeugung
                  n
                          = length(data),
                                                             # Stichprobengröße
                          = max(data).
                 Max
                                                             # Maximum
                 Min = min(data),
                                                             # Minimum
                 Median = median(data),
                                                             # Mediane
                 Mean = mean(data),
                                                             # Mittelwert
                 Var = var(data),
                                                             # Varianz
                          = sd(data)
                  Std
                                                             # Standardabweichung
print(deskr_stat)
                                                             # Ausgabe
```

```
n Max Min Median Mean Var Std
```

Bedingungsabhängige Auswertung

```
# Initialisierung eines Dataframes
             <- c("Klassisch", "Online")
                                                                # Therapiebedingungen
th_bed
n_th_bed
             <- length(th_bed)
                                                                # Anzahl Therapiebedingungen
deskr_stat
            <- data.frame(
                                                                # Dataframeerzeugung
                            = rep(NaN, n th bed),
                                                                # Stichprobengrößen
                   May
                            = rep(NaN, n th bed),
                                                                # Maxima
                            = rep(NaN, n_th_bed),
                   Min
                                                                # Minima
                   Median
                            = rep(NaN, n th bed),
                                                                # Mediane
                            = rep(NaN, n_th_bed),
                   Mean
                                                                # Mittelwerte
                            = rep(NaN, n th bed),
                   Var
                                                                # Varianzen
                            = rep(NaN, n th bed).
                   Std
                                                                # Standardabweichungen
                   row.names = th bed
                                                                # Zeilenbenennung
# Iterationen über Therapiebedingungen
for (i in seq_along(th_bed)){
  data
                       <- D$Delta.BDI[D$Bedingung == th bed[i]]
                                                                # Daten filtern
 deskr stat$n[i]
                      <- length(data)
                                                                # Stichprobengröße
 deskr stat$Max[i]
                       <- max(data)
                                                                # Maxima
 deskr stat$Min[i]
                      <- min(data)
                                                                # Minima
 deskr stat$Median[i] <- median(data)
                                                                # Mediane
 deskr stat$Mean[i]
                     <- mean(data)
                                                                # Mittelwerte
 deskr stat$Var[i]
                      <- var(data)
                                                                # Varianzen
 deskr_stat$Std[i]
                                                                # Standardabweichungen
                      <- sd(data)
```

Deskriptive Statistiken

Bedingungsabhängige Auswertung

```
# Ausgabe
print(deskr_stat)
```

```
n Max Min Median Mean Var Std
Klassisch 50 12 -1 6 6.16 7.075918 2.660060
Online 50 9 1 5 4.92 3.911837 1.977836
```

- Die Anzahl der Proband:innen in beiden Therapiegruppen ist gleich.
- ullet Die Spannbreite der ΔBDI Daten ist in der klassischen Therapieform leicht erhöht.
- Median und Mittelwert nehmen für die klassische Therapieform leicht höhere Werte an.
- Ein Δ BDI Mittelwertsunterschied von 1 ist klinisch wohl eher vernachlässigbar.
- Median und Mittelwert sind in beiden Therapieformen ähnlich (unimodale Verteilung).
- Die Variabilitätsmaße zeigen eine etwas erhöhte Variabilität in der klassischen Therapieform.

Datenvorverarbeitung

Deskriptive Statistiken

Visualisierung

Parameterschätzung

Konfidenzintervalle

Hypothesent ests

Murrell (2019)

Online-Buch, Chang (2013)

R Funktionalitäten für Abbildungen

Base Graphics

- Erstellung und bedarfsgerechte Anpassung von Abbildungen
- Eher low-level, fine tuning orientiert

Lattice und ggplot2

- Erstellung und bedarfsgerechte Anpassung von Abbildungen
- Eher high level, an der eigenen Philosophie orientiert

Base Graphics, lattice und ggplot2 können ähnliche Abbildungen generieren

LaTeX Typesetting ist in allen Paketen unterentwickelt

R Funktionalitäten für Abbildungen

Base Graphics

- Erstellung und bedarfsgerechte Anpassung von Abbildungen
- Eher low-level, fine tuning orientiert

Lattice und ggplot2

- Erstellung und bedarfsgerechte Anpassung von Abbildungen
- Eher high level, an der eigenen Philosophie orientiert

Base Graphics, lattice und ggplot2 können ähnliche Abbildungen generieren

LaTeX Typesetting ist in allen Paketen unterentwickelt

Figure 2.5 High-level base graphics plotting functions for producing plots of a single variable. Where the function can be used to produce more than one type of plot, the relevant data type is shown (in gray). For example, plot(mumeric) means that this is what the plot() produces when it is given a single numeric argument.

Figure 2.6. High-level base graphics plotting functions for producing plots of two variables. Where the function can be used to produce more than one type of plot, the relevant data type is shown (in gray). For example plot(c_{m,m}, x_c) represents calling the plot() function with a numeric vector as the first argument and a factor as the second argument.

Figure 2.7 High-level base graphics plotting functions for producing plots of many variables. Where the function can be used to produce more than one type of plot, the relevant data type is shown (in gray).

Figure 2.2
Four variations on a scatterplot. In each case, the plot is produced by a call to the plot() function with the same data, all that changes is the value of the type argument. At top-left, type="p" to give points (data symbols), at top-right, type="1" to give lines, at bottom-left, type="b" to give both, and at bottom-right, type="h" to give histogram-like vertical lines.

Figure 2.9
Standard arguments for high-level functions. All four plots are produced by calls to the plot() function with the same data, but with different standard plot function arguments specified: the top-left plot makes use of the lud argument to control line thickness; the top-right plot uses the col argument to control line tope; the bottom-left plot makes use of the luy argument to control line type; and the bottom-right plot uses the vilu argument to control the scale on the v-axis.

Figure 1.3
A customized scatterplot produced using R. This is created by starting with a simple scatterplot and augmenting it by adding an additional y-axis and several additional sets of lines, polygons, and text labels.

Code Outline

```
# Initialisierung einer neuen Abbildung
dev.new()
# Abbildungsparameter
par(
 z.B. Arrangement von Panels, Begrenzungsstile, Schriftfonts, etc
# Higher-level Abbildungsfunktion wie plot(), hist(), barplot(), ...
plot(
 z.B. x- und v-Daten, Achsenlimits, Achsenbeschriftungen, Titel, Farben, etc.
 Jeder Aufruf einer higher-level Graphikfunktion belegt ein neues Subpanel!
# Hinzufügen weiterer Daten mit lower-level Abbildungsfunktionen zum aktuellen Panel
z.B. points(), lines(), abline()
# Weitere Graphikannotation zu aktuellem Panel
z.B. legend(), text()
# Speichern der Abbildung (Größenverhältnisse erst hier final festgelegt)
z.B. dev.copy2pdf()
```

Visualisierung der bedingungsabhängigen Histogramme

```
# Histogrammparameter
         <- 1
                                                                  # gewünschte Klassenbreite
h
b 0
         <- min(D$Delta.BDI)
                                                                  # b 0
         <- max(D$Delta.BDI)
                                                                  # b 0
b k
         \leftarrow ceiling((b_k - b_0) / h)
                                                                  # Anzahl der Klassen
         \leftarrow seq(b_0, b_k, by = h)
                                                                  # Klassen [b_{j-1}, b_j[
vlimits \leftarrow c(0, .25)
                                                                  # v-Achsenlimits
xlimits \leftarrow c(-2, 14)
                                                                  # x-Achsenlimits
th bed <- c("Klassisch" , "Online")
                                                                  # Therapiebedingungen
labs
         <- c("Klassische Therapie", "Online Therapie")
                                                                  # Abbildungslabel
# Abbildungsparameter
                                                                  # für Details siehe ?par
par(
  mfcol
            = c(1, 2),
                                                                  # 1 x 2 Panelstruktur
                                                                  # Serif-freier Fonttyp
  family
            = "sans".
  pty
            = "m",
                                                                  # Maximale Abbildungsregion
            = "1",
                                                                  # L förmige Box
  btv
  las
                                                                  # Horizontale Achsenbeschriftung
  xaxs
            = "i",
                                                                  # x-Achse bei y = 0
            = "i".
                                                                  # v-Achse bei x = 0
  vaxs
  font.main = 1,
                                                                  # Non-Bold Titel
  cex
          = 1,
                                                                  # Textvergrößerungsfaktor
  cex.main = 1
                                                                  # Titeltextvergrößerungsfaktor
# Iteration über Therapiebedingungen
for(i in seq_along(th_bed)){
  hist(
    D$Delta.BDI[D$Bedingung == th_bed[i]],
                                                                  # Delta.BDI Werte von Therapiebedingung i
    breaks = b.
                                                                  # Histogrammklassen
                                                                  # normierte relative Häufigkeit
    frea = F.
    xlim = xlimits,
                                                                  # x-Achsenlimits
                                                                  # v-Achsenlimits
    vlim = vlimits.
    xlab = TeX("$\\Delta$ BDI"),
                                                                  # x-Achsenbeschriftung
    ylab = "",
                                                                  # y-Achsenbeschriftung
    main = labs[i]
                                                                  # Titelbeschriftung
# PDF Speicherung
dev.copv2pdf(
  file
              = file.path(abb_dir, "pds_11_histogramm.pdf"),
  width
              = 8,
              = 4
  height
```

Visualisierung der bedingungsabhängigen Histogramme


```
# Abbildungsparameter
                                                # für Details siehe ?par
par(
 mfcol
           = c(1,2),
                                                # 1 x 2 Panelstruktur
 family
           = "sans",
                                                # Serif-freier Fonttyp
           = "m",
                                                # Maximale Abbildungsregion
 pty
           = "1",
                                                # L-förmige Box
 bty
            = 1,
                                                # Horizontale Achsenbeschriftung
 las
 xaxs
           = "i",
                                                # x-Achse bei y = 0
                                                # y-Achse bei x = 0
 vaxs
           = "i".
 font.main = 1.
                                                # Non-Bold Titel
                                                # Textvergrößerungsfaktor
           = 1.
 cex
                                                # Titeltextvergrößerungsfaktor
 cex.main = 1.5
```

```
# Linkes Panel: Balkendiagramm mit Fehlerbalken
# Stichprobenmittelwert und Standardabweichung extrahieren
         <- deskr stat$Mean
                                                  # Gruppenmittelwert
         <- deskr stat$Std
                                                  # Gruppenstandardabweichung
names(mw) <- th_bed
                                                  # barplot braucht x-Werte als names
# Mit der Funktion barplot() ein Balkendiagramm plotten
x <- barplot(
                                                   # Speichern der der x-Ordinaten (?barplot für Details)
 height = mw,
                                                   # Mittelwerte als Balkenhöhe
 col
      = "gray90",
                                                   # Balkenfarbe
 vlim = c(0,12),
                                                  # y-Achsenbegrenzung
 xlim = c(0.3).
                                                  # x-Achsenbegrenzung
 xlab = "Bedingung",
                                                   # x-Achsenbeschriftung
 main = TeX("$\\Delta BDT$")
                                                  # Titel
# Mit der Funktion arrows() Fehlerbalken zeichnen
arrows(
 ×Ω
       = x,
                                                   # arrow start x-ordinate
 v0
       = mw - sd.
                                                   # arrow start y-ordinate
 x1 = x.
                                                   # arrow end v-ordinate
 v1
      = mw + sd.
                                                   # arrow end v-ordinate
 code = 3,
                                                  # Pfeilspitzen beiderseits
 angle = 90,
                                                  # Pfeilspitzenwinkel -> Linie
 length = 0.05
                                                  # Linielänge
```

```
# Rechtes Panel: Boxplot

# Mit der Funktion boxplot() boxplots zeichnen
boxplot(

D$Delta.BDI - D$Bedingung,  # Gruppierung der Delta.BDI Daten nach D$Bedingung mit "-"
ylim = c(0, 12),  # y-Achsenbegrenzung
col = "gray90",  # Boxfarbe
ylab = "",  # y-Achsenbeschriftung
xlab = "Bedingung",  # x-Achsenbeschriftung
main = TeX("$\Delta BDI$")  # Titel

}
```


 ${\sf Datenvor verar beitung}$

Deskriptive Statistiken

Visualisierung

Parameterschätzung

Konfidenzintervalle

Hypothesent ests

Standardannahmen in der Frequenstistischen Inferenz

Modellannahmen für Parameterschätzung und Konfidenzintervalle

Motiviert durch die therapieabhängige Visualisierung der ΔBDI -Daten und unseren wissenschaftssoziologischen Kontext legen wir das folgende Normalverteilungsmodell zugrunde:

Für die Δ BDI-Reduktion y_{ij} der jten Proband:in in der iten Therapiebedingung nehmen wir an:

$$y_{ij} = \mu_i + \epsilon_{ij}, \quad \epsilon_{ij} \sim N(0, \sigma_i^2), \quad i = 1, 2, j = 1, ..., 50.$$
 (2)

Die Reduktion y_{ij} wird also durch eine innerhalb der iten Therapiebedingung identische mittlere Reduktion $\mu_i \in \mathbb{R}$ und eine Proband:innen-spezifische normalverteilte Abweichung ϵ_{ij} erklärt.

Dieses Modell ist äquivalent zur Aussage:

$$y_{i1}, ..., y_{i50} \sim N(\mu_i, \sigma_i^2)$$
. (3)

Innerhalb jeder Therapiebedingung werden die ΔBDI -Werte somit als unabhängig und identisch verteilte Zufallsvariablen modelliert.

Standardannahmen in der Frequenstistischen Inferenz

Die Standardproblemstellungen der Frequentistischen Inferenz führen zu folgenden Fragen:

- 1. Was sind sinnvolle Schätzwerte für die wahren, aber unbekannten Parameter μ_1,μ_2 und σ_1^2,σ_2^2 ?
- 2. Wie gelingt im Sinne einer Intervallschätzung eine möglichst sichere Schätzung dieser Parameter?
- 3. Entscheiden wir uns sinnvollerweise für die Hypothese, dass gilt $\mu_1=\mu_2$?

Parameterschätzung

mu_ML sigsqr_VAR 1 6.16 7.075918 2 4.92 3.911837

Zur Parameterschätzung im vorliegenden Modell nutzen wir

- den Maximum Likelihood Schätzer für μ_i
- ullet den Varianzschätzer für σ_i^2

```
# Initialisierung eines Dataframes
th bed <- c("Klassisch", "Online")
                                                                    # Therapiebedingungen
n th bed <- length(th bed)
                                                                   # Anzahl Therapiebedingungen
theta hats <- data.frame(
                                                                   # Dataframeerzeugung
 mu ML = rep(NaN, n th bed).
                                                                   # ML Schätzer für \mu i
 sigsqr_VAR = rep(NaN, n_th_bed)
                                                                   # Varianzschätzer für \sigma^2 i
# Iterationen über Therapiebedingungen
for(i in 1:n_th_bed){
                          <- D$Delta.BDI[D$Bedingung == th bed[i]] # Daten
 data
 theta_hats$mu_ML[i]
                                                                   # ML Schätzer für \mu_i
                     <- mean(data)
 theta_hats$sigsqr_VAR[i] <- var(data)
                                                                   # Varianzschätzer für \sigma_2^_i
# Ausgabe
print(theta_hats)
```

Tipps für μ_i und σ_i^2 auf Grundlage dieser unverzerrten Schätzer sind also

$$\hat{\mu}_1 = 6.16, \quad \hat{\mu}_2 = 4.92, \quad \hat{\sigma}_1^2 = 7.08, \quad \hat{\sigma}_2^2 = 3.91.$$
 (4)

Die mit diesen Tipps assoziierte Unsicherheit ist hier nicht angegeben.

Beispieldatensatz

Datenvorverarbeitung

Deskriptive Statistiken

Visualisierung

Parameterschätzung

Konfidenzintervalle

Hypothesentests

Konfidenzintervalle

Konfidenzintervalle für die Erwartungswertparameterschätzer

```
# Analyseparameter
th_bed <- c("Klassisch", "Online")
                                                       # Therapiebedingungen
n_th_bed <- length(th_bed)
                                                       # Anzahl an Therapiebedingungen
        <- 50
                                                       # Anzahl von Beobachtungen pro Therapiebedingung
kappa <- data.frame(
                                                       # Dataframeerzeugung
 G u = rep(NaN, n th bed).
                                                       # untere KT Grenze
                                                       # Erwartungswertparameterschätzer
 mu_hat = rep(NaN, n_th_bed),
 G o = rep(NaN, n th bed).
                                                        # obere KI Grenze
 row.names = th bed
                                                        # Therapiebedingungen
# Konfidenzintervallparameter
delta <- 0.95
                                                       # Konfidenzlevel
t_delta \leftarrow qt((1 + delta) / 2, n - 1)
                                                       # \Psi^-1((\delta + 1)/2, n-1)
# Konfidenzintervallevaluation
for(i in 1:n th bed){
  data
             <- D$Delta.BDI[D$Bedingung == th_bed[i]] # Stichprobenrealisierung
 y_bar
             <- mean(data)
                                                       # Stichprobenmittel
             <- sd(data)
                                                       # Stichprobenstandardabweichung
 kappa$G u[i] <- v bar - (S / sgrt(n)) * t delta
                                                       # untere KI Grenze
 kappa$mu hat[i] <- v bar
                                                       # Erwartungswertparameterschätzer
 kappa$G_o[i]  <- y_bar + (S / sqrt(n)) * t_delta
                                                     # obere KT Grenze
# Ausgabe
print(kappa)
```

Konfidenzintervalle

Konfidenzintervalle für die Varianzparameterschätzer

```
# Analyseparameter
th bed <- c("Klassisch", "Online")
                                                           # Therapiebedingungen
                                                           # Anzahl an Therapiebedingungen
n th bed <- length(th bed)
       <- 50
                                                           # Anzahl von Beobachtungen pro Therapiebedingung
kappa <- data.frame(
                                                           # Dataframeerzeugung
 Gu
            = rep(NaN, n th bed),
                                                           # untere KT Grenze
 sigsqr_hat = rep(NaN, n_th_bed),
                                                           # Varianzparameterschätzer
          = rep(NaN, n th bed).
                                                           # obere KI Grenze
 row.names = th bed
                                                           # Therapiebedingungen
# Konfidenzintervallparameter
delta
        <- 0.95
                                                           # Konfidenzlevel
u_delta <- qchisq((1 - delta) / 2, n - 1)
                                                           # \Xi^2((1-\delta)/2; n - 1)
u delta p <- gchisg((1 + delta) / 2, n - 1)
                                                           # \Xi^2((1+\delta)/2: n - 1)
# Konfidenzintervallevaluation
for(i in 1:n_th_bed){
                 <- D$Delta.BDI[D$Bedingung == th bed[i]]
                                                           # Stichprobenrealisierung
 data
 S2
                 = var(data)
                                                           # Stichprobenvarianz
 kappa$G_u[i]
                     = (n - 1) * S2 / u_delta_p
                                                           # untere KT Grenze
 kappa$sigsqr_hat[i] = S2
                                                           # Varianzparameterschätzer
 kappa$G_o[i] = (n - 1) * S2 / u_delta
                                                           # obere KT Grenze
# Ausgabe
print(kappa)
```

G_u sigsqr_hat G_o Klassisch 4.937455 7.075918 10.987828 Online 2.729613 3.911837 6.074489 Beispieldatensatz

 ${\sf Datenvor verar beitung}$

Deskriptive Statistiken

Visualisierung

Parameterschätzung

Konfidenzintervalle

Hypothesentests

(1) Anwendungsszenario und (2) Frequentistisches Inferenzmodell

Was ist das zugrundeliegende Statistische Modell?

Wir nehmen an, dass die Δ BDI Werte, also der uns vorliegende Datensatz Realisierungen von unabhängig verteilten Zufallsvariablen

$$y_{ij} \sim N(\mu_i, \sigma^2), i = 1, 2, j = 1, ..., 50$$
 (5)

sind, wobei i die Therapiebedingung (1 = Klassisch, 2 = Online) und j den Proband:innen Index in der iten experimentellen Bedingung bezeichnen. Innerhalb einer Bedingung sind diese Zufallsvariablen also unabhängig und identisch verteilt.

Motivation für Hypothesentests

Die Parameter μ_1, μ_2 und σ^2 sind unbekannt. Basierend auf unserem Datensatz schätzen wir Werte für die Parameter. Da wir davon ausgehen, dass eine Realisierung von Zufallsvariablen *Zufälligkeit* enthält, können wir uns nicht sicher sein, dass diese Schätzungen die wahren Parameterwerte widerspiegeln. Deshalb möchten wir die mit unserer Schätzung verbundenen Unsicherheit beim inferentiellen Vergleich von μ_1 mit μ_2 quantifizieren.

Geeigneter Hypothesentest für vorliegende Forschungsfrage

Dafür können wir einen Zweistichproben-T-Test bei unabhängigen Stichproben unter Annahme identischer Varianz durchführen.

Wir wollen die Hypothesen $H_0: \mu_1=\mu_2$ und $H_1: \mu_1\neq \mu_2$ mit einem Signifikanzniveau von $\alpha_0=0.05$ testen und verwenden dafür einen zweiseitigen Zweistichproben-T-Test.

(3) Testhypothesen

Was sind geeignete Null- und Alternativhypothesen? Was soll der Typ-I Fehler sein?

Wir betrachten die einfache Nullhpothese und die zusammengesetzte Alternativhypothese

$$H_0: \mu_1 - \mu_2 = \mu_0 \tag{6}$$

$$H_1: \mu_1 - \mu_2 \neq \mu_0. \tag{7}$$

Mit $\mu_0=0$ ist das äquivalent zu

$$H_0: \mu_1 = \mu_2$$
 (8)

$$H_1: \mu_1 \neq \mu_2$$
 (9)

(4) Definition und (5) Verteilung der Teststatistik

Was ist der "Testgegenstand"? Was ist die Kenngröße, die getestet wird?

Die T-Teststatistik für den Zweistichproben-T-Test ist gegeben durch

$$T = \sqrt{\frac{n_1 n_2}{n_1 + n_2}} \left(\frac{\bar{y}_1 - \bar{y}_2 - \mu_0}{s_{12}} \right) \tag{10}$$

und dessen Verteilung durch

$$T \sim t(d, n_1 + n_2 - 2)$$
 (11)

mit Nichtzentralitätsparameter

$$d = \sqrt{\frac{n_1 n_2}{n_1 + n_2}} \left(\frac{\mu_1 - \mu_2 - \mu_0}{\sigma} \right). \tag{12}$$

wobei $ar{y}_1$ und $ar{y}_2$ die Stichprobenmittel der Gruppen Klassische und Online-Therapie, respektive sind, n_1 und n_2 die jeweiligen Stichprobengrößen und $s_{12}=\sqrt{s_{12}^2}$ die gepoolte Stichprobenstandardabweichung. Die gepoolte Stichprobenvarianz ist gegeben durch

$$s_{12}^2 := \frac{\sum_{j=1}^{n_1} (y_{1j} - \bar{y}_1)^2 + \sum_{j=1}^{n_2} (y_{2j} - \bar{y}_2)^2}{n_1 + n_2 - 2} \tag{13}$$

(6) Testdefinition

Wie funktioniert der Test?

$$\phi(y) := 1_{\{|T| \ge k\}} = \begin{cases} 1 & |T| \ge k \\ 0 & |T| < k \end{cases}$$
 (14)

(7) Testgütefunktion

Wie hoch ist die Wahrscheinlichkeit, dass der Test den Wert 1 ergibt unter verschiedenen möglichen wahren, aber unbekannten Parameterwerten?

Theorem (Testgütefunktion des Zweistichproben-T-Tests)

Es sei ϕ der im obigen Modell formulierte Zweistichproben-T-Test. Dann ist die Testgütefunktion von ϕ gegeben durch

$$q_{\phi}: \mathbb{R}^2 \rightarrow [0,1], (\mu_1,\mu_2) \mapsto q_{\phi}(\mu_1,\mu_2) := 1 - \psi(k;d_{\mu},n_1+n_2-2) + \psi(-k;d_{\mu},n_1+n_2-2) \tag{15}$$

wobei $\psi(\cdot;d_{\mu},n_1+n_2-2)$ die KVF der nichtzentralen t-Verteilung mit Nichtzentralitätsparameter

$$d_{\mu} := \sqrt{\frac{n_1 n_2}{n_1 + n_2}} \frac{\mu_1 - \mu_2}{\sigma} \tag{16}$$

und Freiheitsgradparameter $n_1 + n_2 - 2$ bezeichnet.

(7) Testgütefunktion

$$q_{\phi}(\mu_1,\mu_2)=\mathbb{P}_{\mu}(\phi(y)=1) \text{ für } \sigma^2=3,\ \mu_0=0,\ n_1=50,\ n_2=50 \text{ und } k=1,2,3.$$

(8) Testumfangkontrolle

Wie kann ich die Wahrscheinlichkeit dafür, dass der Test den Wert 1 ergibt, obwohl der Nullhypothesenparameterwert "wahr" wäre (Typ-I Fehler) kontrollieren?

Theorem (Testumfangkontrolle)

 ϕ sei der im obigen Testszenario definierte Test. Dann ist ϕ ein Level- α_0 -Test mit Testumfang α_0 , wenn der kritische Wert definiert ist durch

$$k_{\alpha_0} := \psi^{-1} \left(1 - \frac{\alpha_0}{2} \, ; n_1 + n_2 - 2 \right), \tag{17} \label{eq:kappa}$$

wobei $\psi^{-1}(\cdot;n_1+n_2-2)$ die inverse KVF der t-Verteilung mit n_1+n_2-2 Freiheitsgraden ist.

Zweistichproben-T-Test: Manuelle Berechnung basierend auf den zugrunde liegenden Formeln

```
# Datenauswahl
         <- D$Delta.BDI[D$Bedingung == "Klassisch"]
                                                                          # \Delta.BDI Daten Klassische Therapie
y_1
y_2
       <- D$Delta.BDI[D$Bedingung == "Online"]
                                                                          # \Delta.BDI Daten Online Therapie
      <- length(v_1)
                                                                          # Stichprobengröße n_1
n_1
n_2
       <- length(v_2)
                                                                          # Stichprobengröße n_2
alpha 0 <- 0.05
                                                                          # Signifikanzniveau
mu_0 <- 0
                                                                          # H_O Hypothesenparameter, hier \mu_O = 0
k_alpha_0 \leftarrow qt(1 - (alpha_0 / 2), n_1 + n_2 - 2)
                                                                          # kritischer Wert
y_bar_1 <- mean(y_1)</pre>
                                                                          # y_bar_1
v bar 2 <- mean(v 2)
                                                                          # v bar 2
s_12 <- sqrt(
               (sum((y_1 - y_bar_1)^2) + sum((y_2 - y_bar_2)^2))/
                                                                          # gepoolte Standardabweichung s_12
               (n 1 + n 2 - 2)
            )
         <- (sgrt(
                                                                          # Zweistichproben-T-Teststatistik
              (n_1 * n_2) / (n_1 + n_2)
             * ((y_bar_1 - y_bar_2 - mu_0) / s_12)
if (abs(t) >= k_alpha_0) {
                                                                          # Test 1 {|T >= k alpha 0|}
                                                                          # Ablehnen von H O
 phi <- 1
} else {
 phi <- 0
                                                                          # Nicht-Ablehnen von H O
pval \leftarrow 2 * (1 - pt(abs(t), n_1 + n_2 - 2))
                                                                          # p-Wert (pt() hat default ncp=0)
```

Formeln

Zweistichproben-T-Test: Manuelle Berechnung basierend auf den zugrunde liegenden


```
y_bar_1 = 6.16

y_bar_2 = 98

Signifikanzlevel = 0.05

Kritischer Wert = 1.984467

Teststatistik = 2.645162

Testwert = 1

0.00951137
```

Folgendes können wir aus dieser Zusammenfassung ablesen:

- Die Stichprobenmittel der zwei Datensätze sind 6.16 und 4.92
- · Die Anzahl der Freiheitsgrade ist 98
- Das Signifikanzniveau dieses Tests α_0 ist 0.05
- Der kritische Wert k_{α_0} ist 1.98
- Die T-Teststatistik T hat den Wert 2.65
- Das Ergebnis des Tests ϕ ist 1 (Wie zu erwarten, da hier $T>k_{\alpha_0}$)
- \Rightarrow Wir lehnen die Nullhypothese $H_0: \mu_1 = \mu_2$ ab.
- Der p-Wert beträgt 0.00951

Zweistichproben-T-Tests: R Implementation

```
# R Implementation des Zweistichproben-T-Test
                                             # ?t.test für Details
varphi
         = t.test(
            v_1,
                                             # Datensatz v_1
                                             # Datensatz y_2
           y_2,
            var.equal = TRUE,
                                             # \sigma_1^2 = \sigma_2^2
           alternative = c("two.sided"),
                                           # H_1: \mu_1 \neq \mu_2
            conf.level = 1 - alpha 0)
                                             # \delta = 1 - \alpha 0 (sic!)
# Ausgabe
print(varphi)
```

```
Two Sample t-test data: y.1 and y.2 t = 2.6452, df = 98, p-value = 0.009511 alternative hypothesis: true difference in means is not equal to 0 95 percent confidence interval: 0.3097205 2.1702795 sample estimates: mean of x mean of y 6.16 4.92
```

Folgendes können wir aus dieser Zusammenfassung ablesen:

- Es wurden die Daten verwendet, die in den Variablen y_1 und _2 gespeichert sind.
- Die T-Teststatistik T hat den Wert 2.65
- · Die Anzahl der Freiheitsgrade, engl.: degrees of freedom (df) ist 98
- Die Alternativhypothese ist, dass die "wahre" Differenz zwischen μ1 und μ2 nicht gleich 0 ist.
- Das 95%-Konfidenzintervall der geschätzten Erwartungswertdifferenz ist [0.31, 2.17].
- Die Stichprobenmittel der zwei Datensätze sind 6.16 und 4.92
- Der p-Wert beträgt (gerundet) 0.01.
- \Rightarrow Da dieser Wert kleiner als das festgelegte Signifikanzniveau 0.05 ist, kann die die Nullhypothese $H_0: \mu_1 = \mu_2$ abgelehnt werden

Zweistichproben-T-Tests: R Implementation

Die Werte, die in der automatischen Ausgabe angezeigt werden sind gerundet. Die exakten Werte sind jedoch im Objekt varphi gespeichert und wir können diese aufrufen.

```
# Genauere Ausgabe t
paste(varphi[1])

[1] "c(t = 2.64516155336263)"
# Genauere Ausgabe p
paste(varphi[3])
```

[1] "0.00951137026459394"

Programmierübungen und Selbstkontrollfragen

- Führe alle in dieser Einheit gezeigten Datenanalysen selbstständig durch und halte sie in einem strukturierten R-Skript fest.
- Simuliere einen Beispieldatensatz mit Daten einer Evaluation von 3 verschiedenen Psychotherapieformen bei Depression mit 100 Versuchspersonen pro Gruppe und zwei Messzeitpunkten (vor Intervention und nach Intervention).
- Variiere die Parameter der Simulationen für zwei Szenarien, in denen jeweils in nur einer Gruppe im Mittel ein Unterschied zwischen Pre- und Post-BDI-Werten besteht.
- 4. Berechne die bedingungsabhängigen deskriptiven Statistiken und visualisiere diese.
- 5. Berechne die Parameterschätzer für Erwartungswert und Varianz und bestimme deren Konfidenzintervalle.
- 6. Erläutere die zugrundeliegenden Modellannahmen im Rahmen der Frequentistischen Inferenz.
- 7. Wählen Sie zwei Gruppen, und führen Sie einen Zweistichproben-T-Test durch, um die Hypothese testen, dass ein Unterschied in der BDI-Veänderung zwischen diesen Gruppen besteht. Wählen Sie dafür sinnvolle Null- und Alternativhypothesen. Welche Annahmen müssen Sie vor Durchführung des Tests treffen?
- 8. Erläutere die zugrundeliegenden Modellannahmen im Rahmen der Frequentistischen Inferenz.

Literatur

Chang, Winston. 2013. *R Graphics Cookbook*. Beijing Cambridge Farnham Köln Sebastopol Tokyo: O'Reilly. Murrell, Paul. 2019. *R Graphics*. Third edition. The R Series. Boca Raton: CRC Press, Taylor & Francis Group.