线性空间自测题

- 一、 选择题.
- 1.设向量组(1): $\alpha_1, \alpha_2, \alpha_3$ 与向量组(2):
- β_1, β_2 , 等价,则(A).
- (A) 向量组(1) 线性相关
- (B) 向量组(2) 线性无关
- (C) 向量组(1)线性无关
- (D) 向量组(2)线性相关

【解题过程】

若向量组(1): $\alpha_1, \alpha_2, \alpha_3$ 与向量组(2): β_1, β_2 等价,则 $R(\alpha_1, \alpha_2, \alpha_3) = R(\beta_1, \beta_2)$. 那么 $R(\alpha_1, \alpha_2, \alpha_3) = R(\beta_1, \beta_2) \le 2$,由此一定可得向量组(1)线性相关.

- 2.设n维向量组 $\alpha_1,\alpha_2,\cdots,\alpha_m$ 线性无关 ,则 (D) .
 - (A) 向量组中增加一个向量后仍线性无关
- (B) 向量组中去掉一个向量后仍线性无关
- (C) 向量组中每个向量都去掉第一个分量 后仍线性无关
- (D) 向量组中每个向量任意增加一个分量 后仍线性无关
- 3. 设 $A: \alpha_1, \alpha_2, \alpha_3, \alpha_4$ 是一组 n 维向量,且 $\alpha_1, \alpha_2, \alpha_3$ 线性相关,则(D).
 - (A) A的秩等于4
- (B) A的秩等于n
- (C) A的秩等于1
- (D) A的秩小于等于3

【解题过程】 $\alpha_1,\alpha_2,\alpha_3$ 线性相关,则

 $R(\alpha_1,\alpha_2,\alpha_3) \le 2$, 于是 A 的秩小于等于 3.

4.设 β 不能由非零向量 $\alpha_1, \alpha_2, \dots, \alpha_s$ 线性表示,则(D).

- (A) $\alpha_1, \alpha_2, \dots, \alpha_s$ 线性相关
- (B) $\alpha_1, \alpha_2, \dots, \alpha_s, \beta$ 线性相关
- (C) β 与某个 α , 线性相关
- (D) β 与任一 α_i 都线性无关

【解题过程】若 β 与任一 α_i 都线性相关,则 β 能由非零向量 $\alpha_1,\alpha_2,\cdots,\alpha_s$ 线性表示,与 条件矛盾.

二、填空题.

1.设n维向量组 $\alpha_1, \alpha_2, \alpha_3$ 线性相关,则向量组 $\alpha_1 - \alpha_2, \alpha_2 - \alpha_3, \alpha_3 - \alpha_1$ 的秩 $r \le 2$.

【解题过程】

$$\begin{split} & \left(\alpha_1-\alpha_2\right)+\left(\alpha_2-\alpha_3\right)+\left(\alpha_3-\alpha_1\right)=0, \, \text{则向量} \\ & \text{组} \,\,\alpha_1-\alpha_2,\alpha_2-\alpha_3,\alpha_3-\alpha_1\, \text{线性相关,} \,\, \text{于是} \\ & \alpha_1-\alpha_2,\alpha_2-\alpha_3,\alpha_3-\alpha_1\, \text{的秩} \, r\leq 2. \end{split}$$

- 2.向量组 α , β , γ 线性相关的充分必要条件为 $r \le 2$.
- 3.设 α_1,α_2 线性无关,而 $\alpha_1,\alpha_2,\alpha_3$ 线性相关,则 $\alpha_1,2\alpha_2,3\alpha_3$ 的极大无关组为 $\alpha_1,2\alpha_2$.

【解题过程】 α_1,α_2 线性无关,而 $\alpha_1,\alpha_2,\alpha_3$ 线性相关,则 $\alpha_1,2\alpha_2,3\alpha_3$ 中 $\alpha_1,2\alpha_2$ 线性无关且 $3\alpha_3$ 可由 $\alpha_1,2\alpha_2$ 线性表示.于是

 $\alpha_1, 2\alpha_2, 3\alpha_3$ 的极大无关组为 $\alpha_1, 2\alpha_2$.

4. 已知 $\alpha_1 = (1,3,2,4)$, $\alpha_2 = (2,6,k,8)$ 线性相关,则 k = 4.

【解题过程】 $\alpha_1 = (1,3,2,4), \alpha_2 = (2,6,k,8)$

线性相关,则 $\alpha_2 = (2,6,k,8) = 2\alpha_1$,即k = 4.

5.已知向量组 α,β,γ 线性相关,而向量组 β,γ,δ 线性无关,则向量组 α,β,γ 的秩为r=2.

【解题过程】若向量组 β , γ , δ 线性无关,则向量组 β , γ 线性无关。向量组 α , β , γ 线性相

关,则向量组 α , β , γ 的秩为 2.

- 三、判断题(正确的在括号里打"√",错误的打"×")
- 1.如果向量组 α, β, γ 只有一个极大无关组,

则 α , β , γ 一定线性无关.(×)

【解题过程】举出反例:

$$\alpha = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \beta = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \gamma = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

2.设 α , β 线性相关, $\gamma \neq 0$,则 $\alpha + \gamma 与 \beta + \gamma$ 线性相关. (×)

【解题过程】举出反例:

$$\alpha = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \beta = \begin{pmatrix} 2 \\ 0 \end{pmatrix}, \gamma = \begin{pmatrix} -1 \\ 1 \end{pmatrix}.$$

3.如果 $\alpha - \beta + 2\gamma \neq 0$,则 α, β, γ 线性无关.

(×)

【解题过程】举出反例:

$$\alpha = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \beta = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \gamma = \begin{pmatrix} 0 \\ 1 \end{pmatrix}.$$

4.向量组的秩就是它的极大线性无关组的个数. (×)

【解题过程】向量组的秩就是它的极大线性 无关组所含向量的个数.

5.如果向量组 $\alpha_1 = (a,b), \alpha_2 = (c,d)$ 线性无关,那么向量组 $\beta_1 = (a,c), \beta_2 = (b,d)$ 一定线性无关. $(\sqrt{})$

【 解 题 过 程 】 若 向 量 组 $\alpha_1 = (a,b), \alpha_2 = (c,d)$ 线 性 无 关 , 则 $\begin{vmatrix} a & c \\ b & d \end{vmatrix} = ad - bc \neq 0$. 假设存在实数 k_1, k_2 , 使

得
$$k_1\beta_1 + k_2\beta_2 = 0$$
, 即
$$\begin{cases} ak_1 + bk_2 = 0 \\ ck_1 + dk_2 = 0 \end{cases}$$

$$\begin{cases} ak_1 + bk_2 = 0 \\ ck_1 + dk_2 = 0 \end{cases}$$
 的 系 数 矩 阵 为

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, |A| = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc \neq 0,$$
 \exists \exists \exists

$$\begin{cases} ak_1 + bk_2 = 0 \\ ck_1 + dk_2 = 0 \end{cases}$$
 仅 有 非 零 解 , 即

$$\beta_1 = (a,c), \beta_2 = (b,d)$$
线性无关.

四、已知 $\alpha_1,\alpha_2,\alpha_3$ 是 R^3 的一组基,证明 $\alpha_1+\alpha_2,\alpha_2+\alpha_3,\alpha_3+\alpha_1$ 线性无关.

【 解 题 过 程 】 反 证 法 : 若 $\alpha_1 + \alpha_2, \alpha_2 + \alpha_3, \alpha_3 + \alpha_1$ 线性相关,则存在不 全 为 零 的 实 数 k_1, k_2, k_3 , 使 得 $k_1(\alpha_1 + \alpha_2) + k_2(\alpha_2 + \alpha_3) + k_3(\alpha_3 + \alpha_1) = 0$, 即

$$(k_1 + k_3)\alpha_1 + (k_1 + k_2)\alpha_2 + (k_2 + k_3)\alpha_3 = 0.$$

即

$$(k_1 + k_3)\alpha_1 + (k_1 + k_2)\alpha_2 + (k_2 + k_3)\alpha_3 = 0.$$

$$: \alpha_1, \alpha_2, \alpha_3 \in \mathbb{R}^3$$
的一组基

$$\therefore k_1 = 0, k_2 = 0, k_3 = 0.$$
 与 k_1, k_2, k_3 为 不 全 为

零的实数矛盾,于是 $\alpha_1 + \alpha_2, \alpha_2 + \alpha_3, \alpha_3 + \alpha_1$ 线性无关.

五、已知
$$\begin{cases} \beta_1 = \alpha_1 + \alpha_2 + \alpha_3 \\ \beta_2 = \alpha_1 + \alpha_2 + 2\alpha_3 \\ \beta_3 = \alpha_1 + 2\alpha_2 + 3\alpha_3 \end{cases}$$
,证明

 $\alpha_1, \alpha_2, \alpha_3$ 与 $\beta_1, \beta_2, \beta_3$ 等价.

【解题过程】
$$\begin{cases} \beta_1 = \alpha_1 + \alpha_2 + \alpha_3 \\ \beta_2 = \alpha_1 + \alpha_2 + 2\alpha_3 \\ \beta_3 = \alpha_1 + 2\alpha_2 + 3\alpha_3 \end{cases}, 即$$

 $\beta_1, \beta_2, \beta_3$ 可由 $\alpha_1, \alpha_2, \alpha_3$ 线性表示;

易知:

$$\alpha_3 = \beta_2 - \beta_1, \alpha_2 = \beta_1 - 2\beta_2 + \beta_3, \alpha_3 = \beta_1 + \beta_2 - \beta_3,$$

即 $\alpha_1, \alpha_2, \alpha_3$ 可由 $\beta_1, \beta_2, \beta_3$ 线性表示.于是

 $\alpha_1, \alpha_2, \alpha_3$ 与 $\beta_1, \beta_2, \beta_3$ 等价.

六、设n维向量组(1): $\alpha_1, \alpha_2, \dots, \alpha_s$ 的秩为

$$r_1$$
; (2): $\beta_1, \beta_2, \dots, \beta_s$ 的秩为 r_2 ; (3):

 $\alpha_1 + \beta_1, \alpha_2 + \beta_2, \dots, \alpha_s + \beta_s$ 的 秩 为 r_3 . 证 明 $r_1 + r_2 \ge r_3$.

【解题思路】若 $\beta_1, \beta_2, \cdots, \beta_s$ 线性无关且可

以由 $\alpha_1, \alpha_2, \dots, \alpha_r$ 线性表出,则 $s \le t$.

【解题过程】设 $\alpha_1,\alpha_2,\cdots,\alpha_s$ 的极大线性无

关组为 $\delta_1, \dots, \delta_r$, $\beta_1, \beta_2, \dots, \beta_s$ 的极大线性

无 关 组 为 $\phi_1, \dots, \phi_{r_5}$,

 $\alpha_1 + \beta_1, \alpha_2 + \beta_2, \cdots, \alpha_s + \beta_s$ 的极大线性无关组为 $\varphi_1, \cdots, \varphi_{r_0}$

 $\alpha_1 + \beta_1, \alpha_2 + \beta_2, \cdots, \alpha_s + \beta_s$ 可以由 $\alpha_1, \alpha_2, \cdots, \alpha_s$ 和 $\beta_1, \beta_2, \cdots, \beta_s$ 线性表出,则 $\varphi_1, \cdots, \varphi_{r_3}$ 可以由 $\delta_1, \cdots, \delta_{r_1}$ 和 $\phi_1, \cdots, \phi_{r_2}$ 线性表出,故 $r_3 \leq r_1 + r_2$.

七、判断下列向量组的线性相关性,并说明 理由.

(1)
$$\alpha_1 = (2,4,7), \alpha_2 = (0,2,5), \alpha_3 = (1,1,1).$$

(2)
$$\gamma_1 = (1,2,3), \gamma_2 = (0,2,3), \gamma_3 = (1,3,2).$$

【解题过程】

(1)
$$\alpha_1 = (2,4,7), \alpha_2 = (0,2,5), \alpha_3 = (1,1,1)$$

线性相关,理由如下:假设存在实数

 k_1, k_2, k_3 , 使得 $k_1\alpha_1 + k_2\alpha_2 + k_3\alpha_3 = 0$, 即

$$\begin{cases} 2k_1 + k_3 = 0 \\ 4k_1 + 2k_2 + k_3 = 0 \\ 7k_1 + 5k_2 + k_3 = 0 \end{cases}, \begin{cases} 2k_1 + k_3 = 0 \\ 4k_1 + 2k_2 + k_3 = 0 \text{ in } \end{cases}$$
$$\begin{cases} 7k_1 + 5k_2 + k_3 = 0 \\ 7k_1 + 5k_2 + k_3 = 0 \end{cases}$$

数矩阵为
$$A = \begin{pmatrix} 2 & 0 & 1 \\ 4 & 2 & 1 \\ 7 & 5 & 1 \end{pmatrix}, |A| = \begin{vmatrix} 2 & 0 & 1 \\ 4 & 2 & 1 \\ 7 & 5 & 1 \end{vmatrix} = 0,$$

于 是
$$\begin{cases} 2k_1+k_3=0\\ 4k_1+2k_2+k_3=0 \text{ 有 非 零 解 , 即}\\ 7k_1+5k_2+k_3=0 \end{cases}$$

 $\alpha_1 = (2,4,7), \alpha_2 = (0,2,5), \alpha_3 = (1,1,1)$ 线性相关.

(2)
$$\gamma_1 = (1,2,3), \gamma_2 = (0,2,3), \gamma_3 = (1,3,2)$$

线性无关,理由如下:假设存在实数 k_1,k_2,k_3 ,使得 $k_1,\gamma_1+k_2,\gamma_2+k_3,\gamma_3=0$,即

$$\begin{cases} k_1+k_3=0\\ 2k_1+2k_2+3k_3=0\\ 3k_1+3k_2+2k_3=0 \end{cases}, \begin{cases} k_1+k_3=0\\ 2k_1+2k_2+3k_3=0\\ 3k_1+3k_2+2k_3=0 \end{cases}$$

系数矩阵为

$$A = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 2 & 3 \\ 3 & 3 & 2 \end{pmatrix}, |A| = \begin{vmatrix} 1 & 0 & 1 \\ 2 & 2 & 3 \\ 3 & 3 & 2 \end{vmatrix} = -5 \neq 0,$$

$$\gamma_1 = (1,2,3), \gamma_2 = (0,2,3), \gamma_3 = (1,3,2)$$
 线性
无关.

八、已知 $\alpha_1, \alpha_2, \dots, \alpha_s$ 及 β 都是n维向量,且 $\beta = \alpha_1 + \alpha_2 + \dots + \alpha_s$. 证 明 : 向 量 组 $\beta - \alpha_1, \beta - \alpha_2, \dots, \beta - \alpha_s$ 线性无关的充分必 要条件是 $\alpha_1, \alpha_2, \dots, \alpha_s$ 线性无关.

【解题过程】
$$\beta - \alpha_1, \beta - \alpha_2, \cdots, \beta - \alpha_s$$
可由

 $\alpha_1, \alpha_2, \cdots, \alpha_s$ 线性表示;

$$\alpha_1 = \beta - \alpha_2 + \dots + \beta - \alpha_s,$$

$$\alpha_2 = (\beta - \alpha_1) + (\beta - \alpha_3) \cdots + (\beta - \alpha_s), \cdots,$$

$$\alpha_s = (\beta - \alpha_1) + (\beta - \alpha_3) \cdots + (\beta - \alpha_{s-1}),$$

即 $\alpha_1, \alpha_2, \dots, \alpha_s$ 可由 $\beta - \alpha_1, \beta - \alpha_2, \dots, \beta - \alpha_s$ 线性表示.于是 $\beta - \alpha_1, \beta - \alpha_2, \dots, \beta - \alpha_s$ 与 $\alpha_1, \alpha_2, \dots, \alpha_s$ 等价.

且 $\beta - \alpha_1, \beta - \alpha_2, \dots, \beta - \alpha_s$ 与 $\alpha_1, \alpha_2, \dots, \alpha_s$ 的 向 量 个 数 相 等 , 则 向 量 组 $\beta - \alpha_1, \beta - \alpha_2, \dots, \beta - \alpha_s$ 线性无关的充分必要条件是 $\alpha_1, \alpha_2, \dots, \alpha_s$ 线性无关.

九、已知 β 可由 $\alpha_1, \alpha_2, \cdots, \alpha_{s-1}, \alpha_s$ 线性表示,但不能由 $\alpha_1, \alpha_2, \cdots, \alpha_{s-1}$ 线性表示.证明 α_s 可由 $\alpha_1, \alpha_2, \cdots, \alpha_{s-1}, \beta$ 线性表示,而不能由 $\alpha_1, \alpha_2, \cdots, \alpha_{s-1}$ 线性表示.

【解题过程】: β 可由 $\alpha_1,\alpha_2,\cdots,\alpha_{s-1},\alpha_s$ 线性表示

:. 存在实数 k_1, k_2, \dots, k_n , 使得

$$\beta = k_1 \alpha_1 + k_2 \alpha_2 + \dots + k_{s-1} \alpha_{s-1} + k_s \alpha_s$$

 $\therefore \beta$ 不能由 $\alpha_1, \alpha_2, \dots, \alpha_{s-1}$ 线性表示

 $\therefore k_s \neq 0$

$$\therefore \alpha_s = -\frac{k_1}{k_s} \alpha_1 - \frac{k_2}{k_s} \alpha_2 - \dots - \frac{k_{s-1}}{k_s} \alpha_{s-1} + \frac{1}{k_s} \beta,$$

于是 α_s 可由 $\alpha_1, \alpha_2, \dots, \alpha_{s-1}, \beta$ 线性表示 假设 α_s 可由 $\alpha_1, \alpha_2, \dots, \alpha_{s-1}$ 线性表示,则 β 可由 $\alpha_1, \alpha_2, \dots, \alpha_{s-1}$ 线性表示,与条件矛盾.于 是 α_s 不能由 $\alpha_1, \alpha_2, \dots, \alpha_{s-1}$ 线性表示.