

549, 476
Rec'd PCT/PTO 15 SEP 2005

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

10/549476

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date
23 December 2004 (23.12.2004)

PCT

(10) International Publication Number
WO 2004/110744 A1

(51) International Patent Classification⁷: B32B 9/00, 31/00, 27/04

(21) International Application Number: PCT/IB2004/001732

(22) International Filing Date: 21 May 2004 (21.05.2004)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
TO2003A000459 18 June 2003 (18.06.2003) IT

(71) Applicant (for all designated States except US): TALTOS S.R.L. [IT/IT]; Via Della Repubblica, 2, I-10060 Inverso Pinasca (IT).

(72) Inventor; and

(75) Inventor/Applicant (for US only): LUNARDI, Mauro [IT/IT]; Via Marchesini Gobetti, 10, I-10134 Torino (IT).

(74) Agents: ROBBA, Pierpaolo et al.; Interpatent S.R.L., Via Caboto, 35, I-10129 Torino (IT).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

— with international search report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: A METHOD OF MAKING DECORATIVE PANELS OF STONE MATERIAL OR THE LIKE

(57) Abstract: A stack or package (1) is formed comprising slabs (2) of the decorative stone material, and framework or reinforcement layers (3) and separating layers between panels (4). Then the package is placed inside a liquid-tight formwork (10), and a depression is therein created and maintained while feeding a hardenable fluid binder (15) intended for encapsulating and impregnating stack (1), consolidating possible fractures of slabs (2). Afterwards, the binder is made to harden so to obtain a monolithic block that is cut to produce panels comprising at least one decorative slab (2) joined to at least one framework layer (3). The stack (1) can include slabs (2) of different sizes and, during the stack (1) formation or before treating with the binder (15), the possible size differences are compensated.

WO 2004/110744 A1

"A METHOD OF MAKING DECORATIVE PANELS OF STONE MATERIAL OR THE
LIKE"

DESCRIPTION

The present invention refers to a method of making
5 decorative panels comprising slabs of stone material or the like,
for instance marble or granite..

Known methods show that, to this purpose, on a basis support
a stack or package of layers is formed, said layers consisting of
parallel slabs of the decorative stone material, and of additional
10 layers, such as framework or reinforcement layers and separating
layers between the panels. Then the package is placed inside a
liquid-tight formwork, and a depression is therein created and
maintained while feeding a hardenable fluid binder intended for
encapsulating the stack and for penetrating into interstices among
15 slabs, consolidating possible fractures of the slabs themselves.
Afterwards, the binder is made to harden so to obtain a monolithic
block that is cut to produce panels comprising at least one
decorative slab joined to at least one framework layer.

Examples of these methods are disclosed in WO-A 91/08093 and
20 in the Italian patent application No. T092A000988. WO-A 91/08093
further suggests to insert, between one head of the stack and the
adjacent wall of the formwork, a bin-shaped filling element in
order to fill the empty space left by a stack formed with slabs of
length smaller than the formwork. This prevents wastes of quite
25 expensive binder.

The known method has a certain number of disadvantages.

The stack must be formed with equal slabs, and this is not easily obtainable due to the different sizes of the raw blocks, or a trim is required, which makes costs increase.

5 Moreover, a series of different filling elements must be provided so to be adapted to different lengths stacks, and this makes costs increase too. As the number of different filling elements will be obviously limited, an exact compensation will be rarely possible and there will be often need to fill the remaining
10 empty spaces with the quite expensive binder.

Furthermore, it is difficult to obtain in the formwork vacuum conditions such as to allow the penetration of the binder all over the block, due to the presence of both humidity and gaseous residuals generated by the binder.

15 Finally, the raw panels obtained after cutting have a reinforcement layer on one side only of the stone material slab: so it is automatically identified the side to be polished (that without reinforcement), and this implies the impossibility to produce slabs with different superficial treatments; such as open-
20 stain or continuous-vein slabs.

As it is known, actually, by cutting a thick slab in half, the open-stain are the two internal sides, the continuous-vein are instead the internal side of a slab and the external side of the other one, the aesthetic result being of course very different.

25 According to the invention a method is instead provided that

overcomes the drawbacks of the known prior art.

These and other objects of the present invention are achieved with the method defined in the following claims.

For better explanation reference is made to the attached 5 drawings, in which:

- fig. 1 is a schematic elevation view showing the formation of a stack of slabs;
- fig. 2 is a sectional partial view, scaled up, of the stack of fig. 1;
- 10 - fig. 3 is a vertical section schematic view of a formwork in which the binder casting takes place;
- fig. 4 is a schematic view from the above of a stack portion impregnated with binder;
- fig. 5 is a vertical section schematic view showing the cutting 15 step of a lateral side of the stack of fig. 4; and
- fig. 6 is a vertical section schematic view of a raw panel.

With reference to figures 1 and 2, numeral 1 denotes a stack of superimposed layers comprising slabs 2 of the decorative material, for instance marble, granite, etc., alternated with 20 additional layers 3, 4. If slabs 2 in stack 1 have different sizes, it is possible, already during the stack formation, to make a compensation of the size differences by arranging along one or more edges of the smaller slabs elements 20A of stiff material, for instance pieces of the same slabs 2 material. These additions 25 will be kept in position, in this step, by the weight of the

overlaying slabs.

An alternative way of carrying out such compensation will be described later on.

Layers 3 are framework sheets or thin slabs, while layers 4
5 are separating or detaching layers between the single panels and they consist of sheets or thin slabs too or of a fluid layer.

As also disclosed in WO-A 91/08093, stack 1 is formed on a support structure 5, capable of supporting, all their extension long, slabs of commercially used maximum sizes (for instance about 10 3.50 m x 1.55 m). Support 5 can comprise only a horizontal basis, as in figure 1, or the basis and a longitudinal vertical wall. The second solution is useful for forming a stack 1 with vertical slabs or for vertically arranging a stack such as that of fig. 1 before feeding a fluid binder inside a cast container. Slabs 2 are 15 stacked by using for instance a travelling crane system having a frame 6 vertically movable and equipped with suction caps 7, while the additional layers 3 and 4 can be applied by hand.

Each slab 2 is in contact, on both its main sides, with a reinforcement layer 3, and each of the two reinforcement layers 3
20 associated to a slab 2 is in contact with a separating layer 4. Preferably, the reinforcement layers 3 have such a structure to allow the passage of the fluid binder (for instance a synthetic resin hardenable at room temperature), intended for impregnating and encapsulating stack 1. Layers 3 have for instance a net structure. Thanks to the presence of layers 3 on both sides of
25

each slab 2, the binder effectively penetrates all over stack 1, entirely consolidating possible fractures in slabs 2.

Separating layers 4 are made of a material that does not adhere to the binder, so to make the separation of adjacent panels 5 easy.

Further features about the structure and the materials of layers 3 and 4 are contained in said prior documents, to which reference is made.

With reference to figures 3 and 4, around stack 1 a liquid-tight sturdy metallic formwork 10 is formed that, in the shown embodiment, works also as an autoclave for the impregnation of stack 1 with the fluid binder. Formwork 10 is constructed by joining the necessary lateral walls 8 to support 5 and by adding a closing lid 9. Not shown gaskets guarantee the tightness. Some room for the passage of the binder must be left between the sides of stack 1 and the walls of framework 10, and to this purpose spacing elements, not shown, can be employed. If the stack sizes do not correspond to those of the formwork 10 (except the aforesaid space), filling elements 21, which will be described later on, are provided between lateral walls 8 and stack 1. Formwork 10 is constructed after having arranged stack 1 with the layers being substantially vertical.

Formwork 10 can also form a simple cast container, open on one side, that will be further inserted into a suitable autoclave.

Before feeding the binder, possible differences among the

sizes of slabs 2 are compensated, in case these differences have not already been compensated during the formation of stack 1.

To this purpose, a high density (higher than the one of the binding material) expandable material, for instance polyurethane, 5 is introduced into formwork 10. This material is fed at the liquid state through one or more ducts 11 and it is made or let to expand so to fill the empty spaces left from small size slabs 2. Due to the high density, the expandable material remains confined near the edges of slabs 2, and it does not penetrate into the spaces 10 between the various layers of stack 1. The presence of an expanded material on the periphery of the layers adjacent to the involved slab is not important, since such material will be removed with cutting.

The same material can be employed to form, at least 15 partially, the filling elements 21 necessary to bring stack 1 in contact with the walls of formwork 10. In this case, the filling elements formation will take place simultaneously to the size differences compensation of the slabs: practically, one or more filling elements 21 will have protruding portions that join the 20 involved slabs, as shown in 20B in fig. 4.

The expanded and solidified material of these elements 21 can be also recovered after the panels separation and reused for an approximate adaptation between the sizes of stack 1 and formwork 10. Then liquid material will be added to compensate the 25 remaining differences. The solid filling elements 21 can be

mounted in the formwork before introducing stack 1.

In a variant, the filling elements 21 are made of air cushions: these can be introduced too in formwork 10 before stack 1.

5 Fluid binder 15 feeding takes place after that a depression has been created in formwork 10, by evacuating air through one or more ducts 12. During air evacuation from formwork 10, stack 1 is advantageously heated so that the possible humidity still present upon reaching the vacuum condition evaporates. Moreover, formwork
10 10 can be associated to a freezing system (not shown) for the humidity evaporated in consequence of heating. This way the remaining humidity is made unimportant for the cycle.

Binder 15 is fed from the top, through a duct 13 provided in lid 9, or from the bottom to facilitate the evacuation of the 15 remaining air. It is spread out into all the interstices among the single components of stack 1, around stack 1 and below it, also completely or partially wrapping the filling elements 21. Penetration inside stack 1 is facilitated by the presence of the reticular reinforcement layers 3 on both sides of each slab.
20 Binder feeding ends when all stack 1 is covered by a liquid binder head of a few centimetres.

Binder 15 is degassed while is fed in the formwork, so to reduce the generation of gaseous residuals. In order to help to create vacuum conditions, a washing of formwork 10 with inert 25 gases is also preferably carried out, said washing allowing to

eliminate humidity residuals.

Upon termination of the binder feeding, the inside of formwork 10 is brought to a pressure higher than the atmospheric pressure so to create a piston effect that facilitates the 5 hardening. Once the binder is hardened, a monolithic block is obtained in which hardened binder 15 wraps stack 1, consolidating possible deposits 20A for adapting sizes for single slabs 2, and wrapping or joining filling elements 21 to stack 1, as visible in fig. 4. In this figure are visible a slab 2A having an addition 10 20A obtained during the formation of stack 1, and a slab 2B having an addition 20B obtained from the expandable material and integrated with a filling element 21.

The monolithic block is taken out from formwork 10 and it is brought to a cutting station, where cutting preferably takes place 15 according to the modes disclosed in the Italian patent application No. T092A000988. In other words, and as visible in fig. 5, block 16 is cut, on all the lateral sides, perpendicularly to slabs 2 extension plane, so to remove not only the layer of hardened binder 15, but also possible layers of expanded material and solid 20 filling elements 21 and an edge portion 22 of stack 1 layers. This way separating layers 4 not adhering to the binder are exposed to air and an easy separation of the panels is allowed, as disclosed in said Italian patent application.

As said, solidified filling elements 21 can then be reused.

25 In fig. 6 a raw panel is shown obtained by block 16. Panel

25 has a reinforcement layer 3 on both sides. One of such layers shall be obviously removed in the following polishing step. Nevertheless, the fact of being able to choose the side to be polished causes the possibility to choose among different kinds of 5 superficial polishing, for instance in order to obtain open-stain or continuous-vein slabs.

It is evident that what has been disclosed is given as a non limiting example and that variants and modifications are possible without going out the protective scope of the invention..

CLAIMS

1. A method of making decorative panels of stone material or the like, wherein:

- a stack (1) is formed consisting of parallel slabs (2) of the decorative stone material and of additional layers (3, 4), comprising framework layers (3) and separating layers (4) between panels;
- the stack is placed inside a liquid-tight container (10), interposing at least between one head of the stack (1) and one wall of the container (10) possible filling elements (21) if the stack (1) has a length smaller than the container (10);
- a depression is created in the container, said depression being maintained while feeding a hardenable binder (15), intended for impregnating and encapsulating the stack (1), the binder (15) being of a material that does not adhere to the separating layers (4);
- the binder (15) is let or made to harden so to obtain a monolithic block (16) that is then cut to produce raw panels (25) comprising at least one decorative slab (2) joined to at least one framework layer (3);
characterised in that: possible size differences among slabs (2) in the stack (1) are compensated; filling elements (21) are also introduced or formed in the container (10) in order to fill empty spaces left from a stack (1) having a length smaller than the container (10); and, as filling elements (21), expandable elements

are at least partially employed.

2. A method according to claim 1, characterised in that, in order to compensate said size differences among slabs (2), onto one or more edges of small size slabs, additions (20B) of high density expandable material are made that fill the recesses existing on the sides of the stack (1) in correspondence to said small size slabs.

3. A method according to claim 2, characterised in that said high density expandable material is fed in the container (10) at 10 the liquid state and it is let or made to expand before feeding the binder (15).

4. A method according to claim 1, characterised in that, in order to compensate said differences among the slabs (2) sizes, during the stack (1) formation, along one or more edges of small 15 size slabs, stiff elements (20A) are arranged, capable of being joined by the binder to the respective slabs (2).

5. A method according to claim 4, characterised in that said stiff elements (20A) are elements made of the same slabs (2) material.

20 6. A method according to claim 1, characterised in that said filling elements (21) are elements of high density expandable material fed in the container (10) at the liquid state and made or let to expand before feeding the binder (15).

7. A method according to claim 2 or 3 and to claim 6, 25 characterised in that said filling elements (21) are made of the

same expandable material used for said additions (20B), and are formed simultaneously thereto.

8. A method according to claims 1 and 7, characterised in that, in order to make said filling elements (21), solid elements are 5 employed obtained by expanding said expandable material and recovered after cutting, said elements providing for an approximate adaptation between the sizes of the stack and the container (10), liquid expandable material being added to said elements so to fill the remaining empty spaces.

10 9. A method according to anyone of the claims 2, 3 and from 6 to 8, characterised in that said high density expandable material is polyurethane.

10. A method according to claim 1, characterised in that said filling elements (21) consist of air cushions.

15 11. A method according to claim 1, characterised in that, during the stack (1) formation, a framework layer (3) is applied onto each of the main sides of each slab (2) of stone material, each framework layer being associated to a separating layer and the cutting operation producing raw panels comprising a decorative 20 slab (2) provided with a framework layer (3) on both sides.

12. A method according to claim 1, characterised in that, while creating the depression in the container (10) and feeding the binder, the stack (1) is heated so to be brought up to a temperature such as to allow, upon reaching the wanted vacuum 25 conditions, the humidity present in the stack (1) to evaporate.

13. A method according to claim 12, characterised in that the water vapour originating from the evaporation is made to freeze.

14. A method according to claim 12 or 13, characterised in that, during impregnation, a washing of the container (10) with inert 5 gases is carried out in order to eliminate any humidity residual.

15. A method according to anyone of the claims from 12 to 14, characterised in that the binder (15) is made to harden by applying a pressure higher than the atmospheric pressure.

16. A method according to claim 15, characterised in that, upon 10 termination of the binder (15) consolidation, the block (16) is cut along planes perpendicular to the layers, up to a depth such as to remove the solidified binder (15), the possible filling elements (21) and the edge portions (22) of the layers.

17. A decorative panel comprising at least a decorative slab (2) 15 of stone material or the like joined to at least one framework layer (3), obtained through a method according to anyone of the preceding claims.

=====

FIG. 1

FIG. 2

FIG. 3

20B FIG. 4

FIG. 5

FIG. 6

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 B32B9/00 B32B31/00 B32B27/04

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 7 B32B

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	WO 91/08093 A (TECNOMAIERA SRL) 13 June 1991 (1991-06-13) cited in the application Same inventor. Resin binder poured into container containing stack of stone slabs. page 5, paragraph 2 - page 6, paragraph 3 page 10, paragraph 5 - page 14, paragraph 2	1-17

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the International filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"&" document member of the same patent family

Date of the actual completion of the international search

30 August 2004

Date of mailing of the International search report

08/09/2004

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Stinchcombe, J

Information on patent family members

International Application No
/IB2004/001732

Patent document cited in search report	Publication date		Patent family member(s)		Publication date
WO 9108093	A	13-06-1991	IT 1237304 B		27-05-1993
			AT 92394 T		15-08-1993
			AU 635364 B2		18-03-1993
			AU 6731390 A		26-06-1991
			BR 9007877 A		25-08-1992
			CA 2069512 A1		31-05-1991
			CN 1052817 A ,B		10-07-1991
			DE 69002635 D1		09-09-1993
			DE 69002635 T2		11-11-1993
			DK 502880 T3		18-10-1993
			WO 9108093 A1		13-06-1991
			EP 0502880 A1		16-09-1992
			ES 2043393 T3		16-12-1993
			IE 904305 A1		05-06-1991
			JP 7067691 B		26-07-1995
			JP 4505732 T		08-10-1992
			NZ 236234 A		26-08-1993
			PL 288036 A1		23-09-1991
			PT 96039 A ,B		31-08-1992
			RU 2087320 C1		20-08-1997
			TR 25406 A		01-03-1993
			US 5226402 A		13-07-1993
			ZA 9009604 A		30-10-1991