Relational Algebra

CSC365 Spring 2019

What is Algebra?

- Algebra consists of operators and operands
- Operators
 - o +, -, *, /, etc.
- Operands
 - Constants
 - Numbers such as 1, 2, 3, 4
 - Variables
 - **■** X, y
 - Algebraic expressions
 - \blacksquare (3/2) * (2* x + y)

Relational Algebra

- Operands
 - Relations, Algebraic Expressions
- Operators:
 - σ: Selection
 - π: Projection
 - ×: Cartesian Product
 - U: Union
 - -: Difference
 - ρ: Rename
 - ∩: Intersection
 - ⋈: Natural Join
 - M_c: Theta Join

Terminologies

- Degree
 - The number of attributes in a relation
- Cardinality
 - The number of tuples in a relation

Stars

name	gender	birthdate
Tom Hanks	male	12/26/86
Kevin Bacon	male	07/08/58
Jennifer Lawrence	female	08/15/90

Movies

id	title	year	length	imdb
1	Footloose	1984	110	6.5
2	The Hunger Games	2012	142	7.2
3	Apollo 13	1995	140	7.6
4	Saving Private Ryan	1998	170	8.6

StarsIn

star	mid
Kevin Bacon	1
Jennifer Lawrence	2
Tom Hanks	3
Tom Hanks	4
Kevin Bacon	3

σ: Selection

- σc(R)
 - Applied to a relation R, produces a new relation with a subset of R's tuples.
 - The tuples in the resulting relation are those that satisfies some condition C on the attributes of R.

Movies

id	title	year	length	imdb						
1	Footloose	1984	110	6.5	110 >= 120 ? False	id	title	year	length	imdb
2	The Hunger Games	2012	142	7.2	142 >= 120 ? True	> 2	The Hunger Games	2012	142	7.2
3	Apollo 13	1995	140	7.6	140 >= 120 ? True	> 3	Apollo 13	1995	140	7.6
4	Saving Private Ryan	1998	170	8.6	170 >= 120 ? True	> 4	Saving Private Ryan	1998	170	8.6

 σ year >= 2000 and imdb >= 7.0 (Movies)

Movies

id	title	year	length	imdb	
1	Footloose	1984	110	6.5	1984 >= 2000 and 6.5 ? False
2	The Hunger Games	2012	142	7.2	2012 >= 2000 and 7.2 ? True
3	Apollo 13	1995	140	7.6	1995 >= 2000 and 7.6 ? False
4	Saving Private Ryan	1998	170	8.6	1998 >= 2000 and 8.6 ? False

	1984 >= 2000 and 6.5 >= 7.0 ? False	
	0040 - 0000 7.0 - 7.0	١.
	2012 >= 2000 and 7.2 >= 7.0 ? True	
_		
	1995 >= 2000 and 7.6 >= 7.0 ? False	
		,
	1998 >= 2000 and 8.6 >= 7.0 ? False	
		•

id	title	year	length	imdb
2	The Hunger Games	2012	142	7.2

π: Projection

- TA1,A2,...An (R)
 - Produces from a relation R a new relation that has only some of R's columns.
 - Produces a set of tuples: Duplicate tuples are eliminated.

 π_{star} (StarsIn)

StarsIn

star	mid
Kevin Bacon	1
Jennifer Lawrence	2
Tom Hanks	3
Tom Hanks	4
Kevin Bacon	3

star
Kevin Bacon
Jennifer Lawrence
Tom Hanks

Duplicate Preserving Projection

π^dstar (StarsIn)

StarsIn

star	mid
Kevin Bacon	1
Jennifer Lawrence	2
Tom Hanks	3
Tom Hanks	4
Kevin Bacon	3

star
Kevin Bacon
Jennifer Lawrence
Tom Hanks
Tom Hanks
Kevin Bacon

- ×: Cartesian Product
- RxS
 - Produces cross product of two sets R and S.
 - With each row in relation R, every row from relation S is paired.
 - The components from R precede those from S.
 - The name of each relation will be prepended to duplicate attributes for disambiguation.

RxS

R

Α	В
1	2
3	4

X B C D
2 5 6
4 7 8
9 10 11

Α	R.B	S.B	С	D
1	2	2	5	6
1	2	4	7	8
1	2	9	10	11
3	4	2	5	6
3	4	4	7	8
3	4	9	10	11

Mc: Theta Join

- R ⋈_c S
 - Pair tuples from two relations on some condition c
 - \circ Equivalent to σ_c (R x S)
 - i. Take the product of R and S
 - ii. Select from the product only those tuples that satisfy the condition c.

$R \bowtie_{A \leq D} S$

R

Α	В	С
1	2	3
6	7	8
9	7	8

В	С	D
2	3	4
2	3	5
7	8	10

Α	R.B	R.C	S.B	S.C	D
1	2	3	2	3	4
1	2	3	2	3	5
1	2	3	7	8	10
6	7	8	7	8	10
9	7	8	7	8	10

Set Operations on Relations

 $R \cup S$, $R \cap S$, R - S

- The two relations need to have the same set of attributes
 - The type of each attribute must be the same as well.
- The order of attributes need to match.

U: Union

R∪S

- Union of two relations R and S
- The two relations need to have the same set of attributes
- The order of attributes need to match
- Duplicates are removed

$$\sigma$$
 year >= 2000 (Movies) U σ length < 120 (Movies)

Can be re-written as

$$\sigma$$
 year >= 2000 OR length < 120 (Movies)

σ year >= 2000 (Movies)

id	title	year	length	imdb
2	The Hunger Games	2012	142	7.2

σ length < 120 (Movies)

id	title	year	length	imdb
1	Footloose	1984	110	6.5

id	title	year	length	imdb
1	Footloose	1984	110	6.5
2	The Hunger Games	2012	142	7.2

∩: Intersection

\bullet R \cap S

- Intersection of two relations R and S
- The two relations need to have the same set of attributes
- The order of attributes need to match

$$\sigma$$
 year >= 2000 (Movies) $\cap \sigma$ imdb > 7.0 (Movies)

Can be re-written as

$$\sigma$$
 year >= 2000 AND imdb > 7.0 (Movies)

σ year >= 2000 (Movies)

id	title	year	length	imdb
2	The Hunger Games	2012	142	7.2

 σ imdb > 7.0 (Movies)

			,	
id	title	year	length	imdb
2	The Hunger Games	2012	142	7.2
3	Apollo 13	1995	140	7.6
4	Saving Private Ryan	1998	170	8.6

id	title	year	length	imdb
2	The Hunger Games	2012	142	7.2

- : Difference

• R-S

- The set of elements that are in R but not in S.
 - R S is not equivalent to S R
- The two relations need to have the same set of attributes
- The order of attributes need to match

 σ imdb > 7.0 (Movies) - σ year > 2000 (Movies)

σ imdb > 7.0 (Movies)

id	title	year	length	imdb
2	The Hunger Games	2012	142	7.2
3	Apollo 13	1995	140	7.6
4	Saving Private Ryan	1998	170	8.6

σ year > 2000 (Movies)

id	title	year	length	imdb
2	The Hunger Games	2012	142	7.2

id	title	year	length	imdb
3	Apollo 13	1995	140	7.6
4	Saving Private Ryan	1998	170	8.6

ρ: Rename

- ρ s(A1,A2,...An)(R)
 - Rename a relation R as S with attributes named as A1,A2,...An
- ρ s(R)
 - Rename only the relation name
- ρ (A1,A2,...An)(R)
 - Rename only attribute names

 ρ RS(A, B, C, E, F, G) (R Ma<D S)

R

Α	В	С
1	2	3
6	7	8
9	7	8

RS

Α	В	С	E	F	G
1	2	3	2	3	4
1	2	3	2	3	5
1	2	3	7	8	10
6	7	8	7	8	10
9	7	8	7	8	10

How can you get a movie with maximum length?

Equi-Join

- A special case of theta join where the condition c contains only equalities.
- Result schema is similar to cross-product, but only one copy of fields for which equality is specified (projection with optional rename).
- For example
 - $\circ \quad R \bowtie_{B,C} S = \pi_{A,R.B->B,R.C->C,D}(R \bowtie_{R.B=S.B \text{ and } R.C=S.C} S)$

R		
Α	В	С
1	2	3
6	7	8
9	7	8

Α	В	С	D
1	2	3	4
1	2	3	5
6	7	8	10
9	7	8	10

⋈: Natural Join

• R⋈S

- Equi-Join on all common fields.
 - Pairs only those tuples from R and S that agree in attributes which are common to the schemas of R and S
- Can be re-written as Projection of Selection of the cartesian product of R and S, optionally with Rename applied to common attributes.

Natural Join: π A,R.B->B, R.C->C, D(σ R.B = S.B AND R.C = S.C (R x S))

R

Α	В	С
1	2	3
6	7	8
9	7	8

В	С	D
2	3	4
2	3	5
7	8	10

Α	В	С	D
1	2	3	4
1	2	3	5
6	7	8	10
9	7	8	10

Outer Join

- R ⋈ S : (Full) Outer Join
 - Include everything from both tables, filling missing values from both tables with null.
- R ⋈ S : Left Outer Join
 - Include everything from left table, filling missing values from right table with null
- R ⋈ S : Right Outer Join
 - Include everything from right table, filling missing values from left table with null

Examples: $R \bowtie S$

R

mid	title	year	length	imdb
1	Footloose	1984	110	6.5
2	The Hunger Games	2012	142	7.2
3	Apollo 13	1995	140	7.6

star	mid
Kevin Bacon	1
Jennifer Lawrence	2
Tom Hanks	4

mid	title	year	length	imdb	Star
1	Footloose	1984	110	6.5	Kevin Bacon
2	The Hunger Games	2012	142	7.2	Jennifer Lawrence
3	Apollo 13	1995	140	7.6	Null
4	Null	Null	Null	Null	Tom Hanks

Examples: R ⋈ S

R

mid	title	year	length	imdb
1	Footloose	1984	110	6.5
2	The Hunger Games	2012	142	7.2
3	Apollo 13	1995	140	7.6

star	mid
Kevin Bacon	1
Jennifer Lawrence	2
Tom Hanks	4

mid	title	year	length	imdb	Star
1	Footloose	1984	110	6.5	Kevin Bacon
2	The Hunger Games	2012	142	7.2	Jennifer Lawrence
3	Apollo 13	1995	140	7.6	Null

Examples: R ⋈S

R

mid	title	year	length	imdb
1	Footloose	1984	110	6.5
2	The Hunger Games	2012	142	7.2
3	Apollo 13	1995	140	7.6

star	mid
Kevin Bacon	1
Jennifer Lawrence	2
Tom Hanks	4

mid	title	year	length	imdb	Star
1	Footloose	1984	110	6.5	Kevin Bacon
2	The Hunger Games	2012	142	7.2	Jennifer Lawrence
4	Null	Null	Null	Null	Tom Hanks

Semi-join

- R ⋉ S : Left semi-join
 - Returns tuples from the left table that join with the right table.
 - Columns from the right table do not appear
- R ⋈ S : Right semi-join
 - Returns tuples from the right table that join with the left table.
 - Columns from the left table do not appear

R

mid	title	year	length	imdb
1	Footloose	1984	110	6.5
2	The Hunger Games	2012	142	7.2
3	Apollo 13	1995	140	7.6

S

star	mid
Kevin Bacon	1
Jennifer Lawrence	2
Tom Hanks	4

 $R \ltimes S$

n	mid	title	year	length	imdb
1	I	Footloose	1984	110	6.5
2	2	The Hunger Games	2012	142	7.2

R

mid	title	year	length	imdb
1	Footloose	1984	110	6.5
2	The Hunger Games	2012	142	7.2
3	Apollo 13	1995	140	7.6

S

<u> </u>	
star	mid
Kevin Bacon	1
Jennifer Lawrence	2
Tom Hanks	4

 $R \times S$

star	mid
Kevin Bacon	1
Jennifer Lawrence	2

Exercise Instances

Boats

<u>bid</u>	<u>bna</u> me	<u>bco</u> lor
101	Gippy	red
103	Fullsail	green

Reserves

sid	<u>bid</u>	day	
22	101	10/10/96	
58	103	11/12/96	

Sailors

sid	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0

Find names of sailors who've reserved boat #103

> Solution 1:
$$\pi_{sname}((\sigma_{bid=103} \text{Reserves}) \bowtie Sailors)$$

> Solution 2:
$$\rho$$
 (Templ, $\sigma_{bid=103}$ Reserves)

$$\rho$$
 (Temp2, Temp1 \bowtie Sailors)

$$\pi_{sname}$$
 (Temp2)

> Solution 3:
$$\pi_{sname}(\sigma_{bid=103}(\text{Reserves} \bowtie Sailors))$$

Find names of sailors who've reserved a red boat

Information about boat color only available in Boats; so need an extra join:

$$\pi_{sname}((\sigma_{color='red'}, Boats) \bowtie Reserves \bowtie Sailors)$$

> A more efficient solution:

$$\pi_{sname}(\pi_{sid}((\pi_{bid}\sigma_{color='red'}Boats)\bowtie Res)\bowtie Sailors)$$

> A query optimizer can find this given the first solution!

Find sailors who've reserved a red or a green boat

```
\rho rgBoats (\sigmabcolor='red' OR bcolor='green' (\sigmabcolor='green' (\sigmabcolor='green')
```

```
\pi sname(rgBoats \bowtie_{\text{rgBoats.bid=RS.bid}} (\rho \text{ RS (Reserves.sid=Sailors.sid} Sailors)))
```

Find sailors names who've reserved a red <u>and</u> a green boat Provious approach won't work! Must identify

Previous approach won't work! Must identify sailors who've reserved red boats, sailors who've reserved green boats, then find the intersection (note that *sid* is a key for Sailors):

```
\rho (Tempred, \pi_{sid} ((\sigma_{color} = red) Boats) \bowtie Reserves))
\rho (Tempgreen, \pi_{sid} ((\sigma_{color} = green) Boats) \bowtie Reserves))
\pi_{sname} ((Tempred \cap Tempgreen) \bowtie Sailors)
```

Duplicate Elimination

- δ(R)
- Produces a relation with one copy of each tuple that appears in R one or more times.

R	
Α	В
1	2
3	4
1	2

Ŏ(R)		
Α	В	
1	2	
3	4	

Grouping Operator

- γ_L(R)
 - L is a list of elements that are either:
 - Individual (grouping) attributes
 - AGG(A), where AGG is one of the aggregation operators and A is an attribute.
 - Possible aggregates: SUM, AVG, COUNT, MIN, and MAX
 - You can use -> to rename attributes.

Applying γ_L(R)

- Group R according to all the grouping attributes on list L.
 - That is, form one group for each distinct list of values for those attributes in R.
- Within each group, compute AGG(A) for each aggregation on list L.
- Results has grouping attributes and aggregations as attributes.

The count aggregate

- count(*)
 - Counts the number of tuples
- count(A)
 - Counts the number of tuples (including duplicates)
 where the attribute A is not null.

R

Α	В	С
1	2	3
4	5	6
1	2	5

 $V_{A,B,COUNT(C)}(R) =$

First, group R

Α	В	С
1	2	3
1	2	5
4	5	6

Then, count C within groups

Α	В	COUNT(C)
1	2	2
4	5	1

R

Α	В	С
1	2	3
4	5	6
1	2	5

 $V_{A,B,AVG(C)}(R) =$

First, group R

Α	В	С
1	2	3
1	2	5
4	5	6

Then, average C within groups

Α	В	AVG(C)
1	2	4
4	5	6

R

Α	В	С
1	2	3
4	5	6
1	2	5

 $\gamma_{A,B,MAX(C)}(R) =$

First, group R

Α	В	С
1	2	3
1	2	5
4	5	6

Then, find max of C within groups

Α	В	MAX(C)
1	2	5
4	5	6

R

Α	В	С
1	2	3
4	5	6
1	2	5

 $\gamma_{A,B,MIN(C)}(R) =$

First, group R

Α	В	С
1	2	3
1	2	5
4	5	6

Then, find min of C within groups

Α	В	MIN(C)
1	2	3
4	5	6

Sorting

- T A1 [asc|desc], A2[asc|desc], ... (R)
 - Sort tuples on specified attributes in either:
 - asc
 - ascending order (default)
 - desc
 - descending order

R

Α	В	С
1	2	3
4	5	6
1	2	1

 $T_{A,B}(R) =$

Α	В	С
1	2	3
1	2	1
4	5	6

 $T_{A,B,C}(R) =$

Α	В	С
1	2	1
1	2	3
4	5	6

 $T_{A \text{ desc},B \text{ desc},C \text{ desc}}(R) =$

Α	В	С
4	5	6
1	2	3
1	2	1

Division

R/S

- Not an essential operation
- A shorthand for combinations of basic operators
- Disqualifier(x) := $\pi_x((\pi_x(R) \times S) R)$
 - Compute all x values that are not 'disqualified' by some y value in S.
 - o x value is disqualified if by attaching y value from S, we obtain an xy tuple that is not in R.
- $\pi_{\kappa}(R)$ Disqualifier

Linear Notation for Expressions

- Invent new names for intermediate relations, and assign them values that are algebraic expressions.
- Renaming of attributes implicit in schema of new relation.

Examples: R/S

R

А	В
1	1
1	2
2	3
2	4
3	2
4	2
4	4

S

В	
2	

 $\pi_A(R) \times S$

А	В
1	2
2	2
3	2
4	2

 $(\pi_A(R) \times S) - R$

A	В
2	2

 $D(A) := \pi_A((\pi_A(R) \times S) - R)$

Α	
2	

 $R/S = \Pi_A(R) - D$

Α	
1	
3	
4	

Examples: R/S2

R

Α	В
1	1
1	2
2	3
2	4
3	2
4	2
4	4

S2

В	Α	В
2	1	2
4	1	4
	2	2
	2	4
	3	2

3

4

4

4

4

 $\pi_A(R) \times S2$

 $(\Pi_A(R) \times S2) - R$

Α	В
1	4
2	2
3	4

 $D(A) := \pi_A((\pi_A(R) \times S2) - R)$

Α	
1	
2	
3	

$$R/S2 = \pi_A(R) - D$$

A 4

Example: Taken / Prerequisite

T

student	course
A	101
Α	202
В	101
В	202
С	101

P

course
101
202

 $\Pi_{\text{student}}(T) \times P$

IIstudent(I) X P	
student	course
Α	101
Α	202
В	101
В	202
С	101
С	202

 $(\Pi_{\text{student}}(T) \times P) - T$

()	
student	course
С	202

 $D(student) := (\pi_{student}(\pi_{student}(T) \times P) - T))$

student
С

 $T/P = \Pi_A(p) - D$

student	
Α	
В	

Combining Operations to Form Queries

- Relational Algebra allows us to form expressions of arbitrary complexity by applying operations to the result of other operations.
- It is also possible to represent expressions as expression trees.

Examples: π title, year (σ year >= 2000 (Movies) $\cap \sigma$ imdb >= 7.0 (Movies))

- 1. Select tuples from Movies that have year >= 2000
- 2. Select tuples from Movies that have imdb score >= 7.0
- 3. Computer the intersection of 1 and 2
- 4. Project the relation from 3 onto attribute title and year

 $\sigma_{\text{Movies.mid=StarsIn.mid}} \text{ and StarsIn.star='Kevin Bacon'} \text{ } \left(\text{Movies } x \text{ StarsIn} \right)$

Equivalent Expressions and Query Optimization

- An expression can be converted to other equivalent expression.
- An important job of the query optimizer is to replace one expression of relational algebra by an equivalent expression that is more efficiently evaluated.

Summary

- Operands
 - Relations, Algebraic Expressions
- Operators:
 - σ: Selection (selecting rows)
 - π: Projection (selecting columns)
 - ×: Cartesian Product
 - U: Union
 - -: Difference
 - ∩: Intersection
 - M: Natural Join
 - Mc: Theta Join

Summary

- Operators:
 - o M, M: Outer Joins Include all tuples from one or both relations
 - ⋉, ⋊: Semi Joins the joined relation include attributes from only one relation
 - ρ: Rename
 - δ: Duplicate Elimination
 - /: Division
 - γ: Grouping Operator
 - COUNT, SUM, AVG, MAX, MIN: Aggregation Operators
 - o T : Sorting

Summary

- Degree
 - The number of attributes in a relation
- Cardinality
 - The number of tuples in a relation