Troubles acidobasiques : l'approche de Stewart

Pierre CATOIRE

CCA – Urgences, SAMU et SMUR (CHU Bordeaux)

Nomenclature

Déterminants du pH

Dioxyde de carbone

Bicarbonate

Déterminants du pH

Bicarbonate

OBJECTIFS

Identifier les limites du modèle classique

Comprendre pourquoi il faut changer de modèle

Comprendre un modèle alternatif

Appliquer le modèle

Observation vs. causalité

Relation vs. causalité

Mes patients neurolésés ont plus de séquelles lorsqu'ils maintiennent une pression artérielle basse.

Lorsque le ciel est nuageux, il pleut plus souvent.

Suite à un traumatisme, les patients tachycardes meurent plus souvent.

Devant une hyperkaliémie, j'observe souvent une acidose.

Je dois maintenir une pression artérielle normale suite à une neurolésion.

Lorsque le ciel est nuageux, je dois m'abriter.

Je dois ralentir la fréquence cardiaque des patients traumatisés.

L'acidose est une cause d'hyperkaliémie.

L'exemple du chlore

Table 2. Ranges of volume and electrolyte composition in vomitus, diarrhea fluid, and ileostomy drainage^a

State	Volume (L/d)	[Na ⁺] (mmol/L)	$[K^+]$ (mmol/L)	$[Cl^-]$ (mmol/L)	$[HCO_3^-]$ (mmol/L)
Normal stool	< 0.15	20 to 30	55 to 75	15 to 25	$0_{\rm p}$
Vomitus/NG drainage	0.00 to 3.00	20 to 100	10 to 15	120 to 160	0
Inflammatory diarrhea	1.00 to 3.00	50 to 100	15 to 20	50 to 100	10
Secretory diarrhea	1.00 to 20.00	40 to 140	15 to 40	25 to 105	20 to 75
Congenital chloridorrhea	1.00 to 5.00	30 to 80	15 to 60	120 to 150	<5
Villous adenoma	1.00 to 3.00	70 to 150	15 to 80	50 to 150	Unknown ^c
Ileostomy drainage					
new	1.00 to 1.50	115 to 140	5 to 15	95 to 125	30
adapted	0.50 to 1.00	40 to 90	5	20	15 to 30

Equation : relation ou causalité ?

$$Q = \frac{\Delta P}{R}$$

Equation : relation ou causalité ?

$$Q = \frac{\Delta P}{R}$$

Lorsque la pression augmente, le débit augmente (à résistance constante)

Lorsque la résistance augmente, le débit diminue (à pression constante)

Lorsque la pression augmente, la résistance diminue (à débit constant)

Si j'augmente la pression, alors j'augmente le débit

Si j'augmente la résistance, alors je diminue le débit

Si j'augmente la pression, alors je diminue la résistance

Equation : relation ou causalité ?

$$Q=\frac{\Delta P}{R}$$

Chaque paramètre peut être déterminé par les deux autres

Equation de Henderson-Hasselbach

$$pH = pKa + log_{10} \frac{[A^{-}]}{[AH]}$$
$$AH \leftrightarrow A^{-} + H^{+}$$

$$pH = 6.10 + log_{10} \frac{[HCO_3^-]}{[CO_2]}$$

$$CO_2 + H_2O \leftrightarrow H_2CO_3 \leftrightarrow HCO_3^- + H^+$$

Validation par l'observation

Dilution - contraction

Le modèle de Stewart

Le modèle de Stewart

Dissociation de l'eau

$$K'_{w} = [H^+] \times [OH^-]$$

Conservation de la masse

$$A \leftrightarrow B \Rightarrow [A] = [B]$$

Electroneutralité

Cations = Anions

DIY plasma! – Eau pure

$$H_2O \leftrightarrow H^+ + OH^-$$

$$K'_{w} = [H^{+}][OH^{-}] = 10^{-14}$$

DIY plasma! – Eau pure + ions forts

$$HCl \rightarrow H^{+} + Cl^{-}$$

 $NaOH \rightarrow Na^{+} + OH^{-}$

$$Na + K - Cl + H^+ - OH^- = 0$$

$$SID = Na + K - Cl \sim 42$$

DIY plasma! – Eau pure + ions forts + amino-acides

$$AH \leftrightarrow H^+ + A^-$$

$$pH = pKa + log_{10} \frac{[A^-]}{[AH]}$$

$$A_{tot} = AH + A^-$$
 (albumine, phosphate)

$$SID - A^- + H^+ - OH^- = 0$$

DIY Plasma - Eau + ions forts + amino-acides + CO2

$$pH = 6.10 + log_{10} \frac{[HCO_3^-]}{[CO_2]}$$

$$SID - A^{-} - HCO_{3}^{-} + H^{+} - OH^{-} = 0$$

Bonus : $TA_c = TA_m + 0.25 (40 - Alb)$

Le modèle de Stewart, ça marche?

$$N\alpha = 154$$
 $Cl = 154$
 $SID = 0$

$$Na = 140$$

 $Cl = 105$
 $SID = 42$

CONTRACTION

DILUTION

<u>Crit Care.</u> 2006; 10(1): R14.

Published online 2006 Jan 9. doi: 10.1186/cc3970

PMCID: PMC1550864

PMID: <u>16420662</u>

Acetazolamide-mediated decrease in strong ion difference accounts for the correction of metabolic alkalosis in critically ill patients

Miriam Moviat,¹ Peter Pickkers,^{⊠1} Peter HJ van der Voort,² and Johannes G van der Hoeven¹

Conclusion

A single dose of acetazolamide effectively corrects metabolic alkalosis in critically ill patients by decreasing the serum SID. This effect is completely explained by the increased renal excretion ratio of sodium to chloride, resulting in an increase in serum chloride.

Cas clinique

• Une patiente de 94 ans est admise pour hyperkaliémie retrouvée sur un bilan biologique de routine. Elle a un antécédent d'insuffisance rénale chronique stable (DFG 20 mL/min/m²). Elle a présenté les jours précédents des selles diarrhéiques, d'abondance modérée. Sur le plan clinique, elle présente une déshydratation extracellulaire, il n'y a pas d'anomalie circulatoire ou neurologique.

Le bilan réalisé aux urgences retrouve :

- bilan hépatique normal, absence de syndrome inflammatoire, CPK 104 UI/L, troponine normale
- Iono : cf. après
- Echographie rénale ne retrouvant pas d'obstacle uretérovésical.
- ECG ne retrouvant pas de signes de retentissement de l'hyperkaliémie

Jour	10	J1	J2	J5
рН	7.28	7.41		
PaCO2	30	29.3		
HCO3	14.1	18.4	22*	21*
Na	131	135	142	143
K	7.61	5.91	5.5	4.6
Cl	108	110	113	114
urée	14.7	12.5	11.1	11.4
créatinine	349	283	239	199
Albumine	39		28	
TA	16.5	12.5	12.5	12.6

Jour	10	J1
Na u	34	45
Ku	37	14
Cl u	46	49
TA u	25	10
Na/K u	0.92	3.2

Jour	10	J1	J2	J5
рН	7.28	7.41		
PaCO2	30	29.3		
HCO3	14.1	18.4	22*	21*
Na	131	135	142	143
K	7.61	5.91	5.5	4.6
Cl	108	110	113	114
Cl corrigé	115	114	111	112
CI/Na	0.82	0.81	0.80	0.80
urée	14.7	12.5	11.1	11.4
créatinine	349	283	239	199
Albumine	39		28	
SID	30.6	30.9	34.5	33.6
TA mesuré	16.5	12.5	12.5	12.6
TA corrigé	16.8		15.5	

Jour	J0	J1
Na u	34	45
Ku	37	14
Cl u	46	49
TA u	25	10
Na/K u	0.92	3.2

THX!

