Здравствуйте!

Лекция №5

Сходимость несобственных интегралов второго рода от неотрицательных функций

Пусть функции f(x)и g(x) неотрицательны (то есть $f(x) \ge 0$ и $g(x) \ge 0$) и **точка b является особой точкой** для обеих из них. Приводимые ниже теоремы полностью аналогичны соответствующим теоремам для несобственных интегралов первого рода.

Теорема 1. Для сходимости $\int_{a}^{b} f(x) dx$ необходимо и достаточно, чтобы

$$\exists L < +\infty \ \forall \eta \ 0 < \eta < b - a \int_{a}^{b - \eta} f(x) dx \le L.$$

Доказательство.

Рассмотрим функцию $\Phi(\eta) = \int_a^{b-\eta} f(x) dx$. Если $\eta \downarrow$, то область интегрирования увеличивается, а так как $f(x) \ge 0$, то и $\Phi(\eta) \uparrow$. Поэтому, для существования конечного $\lim_{\eta \to +0} \Phi(\eta)$, согласно теоремы о монотонно возрастающей функции, необходимо и достаточно, чтобы она была ограниченной сверху, то есть должно быть выполнено условие

$$\exists L < +\infty \ \forall \eta \ 0 < \eta < b - a \ \Phi(\eta) = \int_{a}^{b - \eta} f(x) dx \le L,$$

что и требовалось доказать.

Теорема 2. Пусть $\forall x \in [a,b) \ f(x) \leq g(x)$. Тогда

- а) из сходимости $\int_a^b g(x)dx$ следует сходимость $\int_a^b f(x)dx$; б) из расходимости $\int_a^b f(x)dx$ следует расходимость $\int_a^b g(x)dx$.

Доказательство.

A) Пусть $\int_{a}^{b} g(x)dx$ сходится. Тогда, согласно теореме 1,

$$\exists L < +\infty \ \forall \eta \ 0 < \eta < b - a \ \int_{a}^{b - \eta} g(x) dx \le L.$$

Ho $\forall x \in [a,b)$ $f(x) \leq g(x)$ и поэтому

$$\forall \eta \ 0 < \eta < b - a \quad \int_{a}^{b - \eta} f(x) dx \le \int_{a}^{b - \eta} g(x) dx \le L,$$

и, согласно теореме 1, $\int_{a}^{b} f(x)dx$ сходится.

Б) Пусть $\int f(x)dx$ расходится. Так как $f(x) \ge 0$, то это означает,

что $\lim_{\eta \to +0} \int_{a}^{b-\eta} f(x) dx = +\infty$. Ho, так как $g(x) \ge f(x)$,

$$\int_{-\eta}^{b-\eta} g(x) dx \ge \int_{-\eta}^{b-\eta} f(x) dx$$
, и поэтому

 $\lim_{\eta \to +0} \int_{a}^{b-\eta} g(x) dx \ge \lim_{\eta \to +0} \int_{a}^{b-\eta} f(x) dx = +\infty,$ что и означает, что $\lim_{\eta \to +0} \int_{a}^{b-\eta} g(x) dx = +\infty$, то есть $\int_{a}^{b} g(x) dx$ расходится.

Теорема 3. Пусть $\exists \lim_{x \to b} \frac{f(x)}{g(x)} = K$, $0 < K < +\infty$. Тогда интегралы

 $\int_{a}^{b} f(x)dx$ и $\int_{a}^{b} g(x)dx$ сходятся или расходятся одновременно.

Доказательство.

1. В формулировке теоремы сказано, что $\exists \lim_{x \to b} \frac{f(x)}{g(x)} = K$. Согласно определению предела это значит, что

$$\forall \varepsilon > 0 \quad \exists \eta > 0 \quad \forall x \quad b - \eta \le x < b \quad K - \varepsilon < \frac{f(x)}{g(x)} < K + \varepsilon. \tag{*}$$

2. Пусть $\int_{a}^{b} g(x)dx$ сходится. В (*) рассмотрим вторую половину

неравенства, которую запишем в виде $f(x) < (K + \varepsilon)g(x)$. Тогда имеем следующую цепочку следований (сообразите сами, где идет ссылка на свойства несобственных интегралов и где на теорему 2):

$$\int_{a}^{b} g(x)dx \operatorname{сходится} \Rightarrow \int_{b-\eta}^{b} g(x)dx \operatorname{сходится} \Rightarrow \int_{b-\eta}^{b} (K+\varepsilon)g(x)dx \operatorname{сходится}$$

$$\Rightarrow \int_{b-\eta}^{b} f(x)dx \operatorname{сходится} \Rightarrow \int_{a}^{b} f(x)dx \operatorname{сходится}.$$

3. Пусть теперь $\int_a^{\varepsilon} f(x)dx$ сходится. Возьмем є настолько малым, чтобы было $K - \varepsilon > 0$. Тогда из левого неравенства в (*) следует, что $g(x) < f(x)/(K - \varepsilon)$ и мы имеем следующую цепочку следований (и снова сообразите сами, где идет ссылка на свойства несобственных интегралов и где на теорему 2):

интегралов и где на теорему 2).
$$\int_{a}^{b} f(x)dx \operatorname{сходится} \Rightarrow \int_{b-\eta}^{b} f(x)dx \operatorname{сходится} \Rightarrow \int_{b-\eta}^{b} \frac{f(x)}{K-\varepsilon} dx \operatorname{сходится} \Rightarrow \int_{b-\eta}^{b} g(x)dx \operatorname{сходится} \Rightarrow \int_{a}^{b} g(x)dx \operatorname{сходится}.$$

Практический признак сходимости.

Пусть **b** – особая точка и
$$\exists \lim_{x \to b} (b-x)^{\lambda} f(x) = K$$
, $0 < K < +\infty$.

Тогда $\int_{a}^{b} f(x) dx$ сходится при $\lambda < 1$ и расходится при $\lambda \ge 1$.

(Заметим снова, что вопрос о том, как же находить λ , остается на данном этапе открытым).

Доказательство.

Возьмем функцию g(x) в виде $g(x) = \frac{1}{(b-x)^{\lambda}}$. Тогда условие

теоремы 3 примет вид $\exists \lim_{x \to b} (b-x)^{\lambda} f(x) = K$, $0 < K < +\infty$ и $\int_{a}^{b} f(x) dx$ сходится или расходится одновременно с интегралом $\int_{a}^{b} \frac{dx}{(b-x)^{\lambda}}$.

Рассмотрим поэтому вопрос о сходимости этого интеграла.

Пусть λ ≠ 1. Тогда

$$\int_{a}^{b-\eta} \frac{dx}{(b-x)^{\lambda}} = \int_{\eta}^{b-a} \frac{du}{u^{\lambda}} = \int_{\eta}^{b-a} u^{-\lambda} du =$$

$$= \frac{u^{-\lambda+1}}{-\lambda+1} \Big|_{\eta}^{b-a} = \frac{(b-a)^{1-\lambda} - \eta^{1-\lambda}}{1-\lambda}.$$

Будут два варианта:

а) $\lambda < 1$. В этом случае $1 - \lambda > 0$, поэтому $\lim_{\eta \to +0} \eta^{1-\lambda} = 0$ и

$$\int_{a}^{b} \frac{dx}{(b-x)^{\lambda}} = \lim_{\eta \to +0} \int_{a}^{b-\eta} \frac{dx}{(b-x)^{\lambda}} = \frac{(b-a)^{1-\lambda}}{1-\lambda}$$

так что $\int_{-\infty}^{b} \frac{dx}{(b-x)^{\lambda}}$ сходится.

б) $\lambda > 1$. В этом случае $1 - \lambda < 0$, поэтому $\lim_{\eta \to +0} \eta^{1-\lambda} = +\infty$ и

$$\int_{a}^{b} \frac{dx}{(b-x)^{\lambda}} = \lim_{\eta \to +0} \int_{a}^{b-\eta} \frac{dx}{(b-x)^{\lambda}} = +\infty,$$

так что $\int_{a}^{b} \frac{dx}{(b-x)^{\lambda}}$ расходится.

2. λ = 1. Тогда

$$\int_{a}^{b} \frac{dx}{b-x} = \lim_{\eta \to +0} \int_{a}^{b-\eta} \frac{dx}{b-x} = \lim_{\eta \to +0} \int_{\eta}^{b-a} \frac{du}{u} = \lim_{\eta \to +0} \left(\ln(b-a) - \ln \eta \right) = +\infty,$$

так что $\int_{a}^{b} \frac{dx}{b-x}$ расходится.

Таким образом, $\int_{a}^{b} \frac{dx}{(b-x)^{\lambda}}$ сходится при $\lambda < 1$ и расходится при

 $\lambda \ge 1$. По теореме $3\int_{a}^{b} f(x)dx$ также сходится при $\lambda < 1$ и расходится при $\lambda \ge 1$.

Главные значения несобственных интегралов

Вернемся к интегралу $\int_{-\infty}^{\infty} f(x) dx$. Его определение было

следующим:

$$\int_{-\infty}^{+\infty} f(x)dx = \lim_{B \to -\infty} \int_{B}^{a} f(x)dx + \lim_{A \to +\infty} \int_{a}^{A} f(x)dx \quad (a - \text{любоe}).$$

Обратите внимание на одну деталь: в этом определении **два** предела и величины A и B совершенно **не связаны** друг с другом, они живут «каждый сам по себе».

Так вот, **главным значением** этого интеграла называется величина

$$V.p. \int_{-\infty}^{\infty} f(x) dx = \lim_{A \to +\infty} \int_{-A}^{A} f(x) dx.$$

(V.р. — первые буквы слов «valeur principale», что, в переводе с французского, и означает «главное значение»). Обратите внимание на то, что здесь только **один** предел. Это выражение получается из предыдущего, если завязать величины A и B соотношением B = -A.

Если $\int_{-\infty}^{\infty} f(x)dx$ не существует, но существует V.р. $\int_{-\infty}^{\infty} f(x)dx$, то говорят, что интеграл $\int_{-\infty}^{\infty} f(x)dx$ существует в смысле главного значения.

Рассмотрим вычисление главного значения V.p. $\int f(x)dx$.

Пусть f(x) — нечетная функция, то есть f(-x) = -f(x). Тогда очевидно, что $\int_{-A}^{A} f(x) dx = 0$ и поэтому в данной ситуации

$$V.p. \int_{-\infty}^{\infty} f(x) dx = 0.$$

Пусть теперь f(x) — четная функция, то есть f(-x) = f(x). Тогда очевидно, что $\int_{-A}^{A} f(x) dx = 2 \int_{0}^{A} f(x) dx$ и поэтому в данной ситуации

$$V.p. \int_{-\infty}^{\infty} f(x) dx = 2 \int_{0}^{\infty} f(x) dx.$$

В общем случае f(x) можно представить в виде $f(x) = \varphi(x) + \psi(x)$, где

$$\varphi(x) = \frac{f(x) + f(-x)}{2}, \quad \psi(x) = \frac{f(x) - f(-x)}{2}.$$

Очевидно, что $\phi(x)$ есть четная функция, а $\psi(x)$ – нечетная. Поэтому

V.p.
$$\int_{-\infty}^{\infty} f(x) dx = 2 \int_{0}^{\infty} \varphi(x) dx = \int_{0}^{\infty} [f(x) + f(-x)] dx$$
,

что и является рабочей формулой для вычисления $V.p.\int_{-\infty}^{\infty} f(x)dx$.

Рассмотрим теперь несобственные интегралы второго рода. Пусть c есть особая точка функции f(x) и a < c < b. Тогда, как уже говорилось выше,

$$\int_{a}^{b} f(x)dx = \lim_{\eta_{1} \to +0} \int_{a}^{c-\eta_{1}} f(x)dx + \lim_{\eta_{2} \to +0} \int_{c+\eta_{2}}^{b} f(x)dx.$$

Снова обратите внимание на то, что в этом определении **два** предела и величины η_1 и η_2 никак друг с другом не связаны. Главное значение этого интеграла определяется так

$$V.p. \int_{a}^{b} f(x)dx = \lim_{\eta \to +0} \left[\int_{a}^{c-\eta} f(x)dx + \int_{c+\eta}^{b} f(x)dx \right],$$

то есть величины η_1 и η_2 стали **одинаковыми** и предел **один**.

Преобразование несобственных интегралов Интегрирование по частям

Пусть функции u(x) и v(x) непрерывны на промежутке [a,b) и точка b является особой точкой по крайней мере для одной из них. Тогда, вспоминая формулу интегрирования определенных интегралов по частям, получим

$$\int_{a}^{b-\eta} u dv = u(b-\eta)v(b-\eta) - u(a)v(a) - \int_{a}^{b-\eta} v du.$$

Сделаем предельный переход $\eta \to 0$. Переменная η есть в трех слагаемых. Если существуют два предела, то существует и третий, и мы получим

$$\int_{a}^{b} u dv = \lim_{\eta \to +0} \left[u(b - \eta)v(b - \eta) \right] - u(a)v(a) - \int_{a}^{b} v du,$$

что является формулой интегрирования по частям в несобственных интегралах.

Для несобственных интегралов первого рода она принимает вид

$$\int_{a}^{\infty} u dv = \lim_{A \to +\infty} \left[u(A)v(A) \right] - u(a)v(a) - \int_{a}^{\infty} v du.$$

Замена переменных

Теорема. Пусть

- **1.** f(x) определена на [a,b) (**b** особая точка);
- 2. $x = \varphi(t)$, где на $[\alpha, \beta) \varphi(t)$ и существует непрерывная $\varphi'(t)$;
- 3. $\varphi(\alpha) = a \mathbf{u} \lim_{t \to \beta} \varphi(t) = b$.

Тогда имеет место формула

$$\int_{a}^{b} f(x)dx = \int_{\alpha}^{\beta} f(\varphi(t))\varphi'(t)dt.$$

Доказательство.

Пусть $b - \eta = \phi(\beta - \eta')$. В силу непрерывности $\phi(t)$ при $\eta \to 0$ также и $\eta' \to 0$. Вспоминая замену переменных в определенных интегралах, имеем:

$$\int_{a}^{b-\eta} f(x)dx = \int_{\alpha}^{\beta-\eta'} f(\varphi(t))\varphi'(t)dt.$$

После предельного перехода $\eta \to 0$, получаем

$$\int_{a}^{b} f(x)dx = \int_{\alpha}^{\beta} f(\varphi(t))\varphi'(t)dt.$$

Пример.

Рассмотрим интеграл $\int_{0}^{\infty} \sin(x^2) dx$, который называется интегралом

Френеля. Вопрос о его сходимости не может быть решен на основании изученных нами признаков.

Сделаем замену переменных $x = \sqrt{t}$. Тогда $dx = dt/2\sqrt{t}$ и мы имеем:

$$\int_{0}^{\infty} \sin(x^2) dx = \frac{1}{2} \int_{0}^{\infty} \frac{\sin t}{\sqrt{t}} dt.$$

Получившийся интеграл сходится по признаку Дирихле.