Latent Variable Models with Blimp

Brian T. Keller

Assistant Professor Statistics, Measurement, & Evaluation in Education Educational, School, & Counseling Psychology University of Missouri

Developer, Blimp

Blimp Software

- General-purpose Bayesian estimation for regression and path models.
- Single and multilevel models
- Allows for latent variables, incomplete predictors and outcomes
- Interactive and nonlinear effects
- Nonnormal data
- And more!

Available at

 $\verb|https://www.appliedmissingdata.com/blimp|$

Workshop Content

Blimp available at

https://www.appliedmissingdata.com/blimp

Workshop content at

https://github.com/blimp-stats/Yonsei-Workshop

Acknowledgements

Craig Enders, Ph.D. (UCLA)

Han Du, Ph.D. (UCLA)

Jiwon Kim, Ph.D. (UT Austin)

Suyoung Kim, M.A. (UT Austin)

Workshop Outline

Day 1:

An Introduction to Missing Data and Bayesian Statistics with Blimp

Day 2:

- Finish remaining material from Day 1.
- Latent Variable Models with Blimp

Day 1's Review

- Missing Data Processes
- Introduction to Bayesian Statistics
- Fitting Regression Models in Blimp
- Understanding Blimp Output
- Incomplete Categorical Variables
- Interaction Effects in Blimp

Day 2's Overview

- Latent Variable Modeling with Blimp
- Latent Interactions with Blimp
- Overview of Estimation and Latent Scores
- Evaluating Latent Interactions
- Multilevel Analysis Example
- Parallel Growth Process Example

$$Y = \beta_0 + \beta_1 M + \beta_2 X + \beta_3 (M \times X) + \epsilon$$

$$\eta_Y = \beta_0 + \beta_1 \eta_M + \beta_2 \eta_X + \beta_3 (\eta_M \times \eta_X) + \zeta$$

Latent Variable Modeling with Blimp

Factored Regression Models

Suppose, we are interested in modeling a three variable problem with X, Y, and Z.

Their joint distribution are represented symbolically as:

Often, we may assume that all three variables follow a multivariate normal distribution with some unknown mean vector (μ) and covariance matrix (Σ):

$$f(X, Y, Z) = \mathcal{N}_3(\boldsymbol{\mu}, \boldsymbol{\Sigma})$$

As an alternative to modeling the joint distribution, we can model this density using conditional models.

By applying the Chain Rule of Probability, we *factorize* the distribution into three univariate distributions:

$$f(X, Y, Z) = f(X \mid Y, Z) \times f(Y \mid Z) \times f(Z)$$

We then specify models for these three distributions. For example, a saturated covariance matrix can be modeled via three linear regressions:

$$f(X \mid Y, Z) \rightarrow X \sim \mathcal{N}\left(\alpha_0 + \alpha_1 Y + \alpha_2 Z, \sigma_{rX}^2\right)$$
 $f(Y \mid Z) \rightarrow Y \sim \mathcal{N}\left(\beta_0 + \beta_1 Z, \sigma_{rY}^2\right)$
 $f(Z) \rightarrow Z \sim \mathcal{N}\left(\gamma_0, \sigma_Z^2\right)$

Note: We are using the regression coefficients as a tool to maintain the associations among the variables.

For example, the β_1 coefficient is a *reparameterization* of the covariance (σ_{YZ}):

$$\sigma_{YZ} = \beta_1 \sigma_Z^2$$

Measurement Models as Factored Regressions

Suppose our trivariate example loads onto a single latent factor:

The common factor model assumes a multivariate normal distribution, with a model implied mean structure and covariance matrix:

$$f(X, Y, Z) = \mathcal{N}_3(\widehat{\boldsymbol{\mu}}, \widehat{\boldsymbol{\Sigma}})$$

$$\widehat{\mu} =
u + \Lambda lpha$$
 and $\widehat{\Sigma} = \Lambda \Psi \Lambda^\intercal + \Theta$

The factored regression approach explicitly focuses on the joint distribution of the three indicators and latent factor:

$$f(X, Y, Z, \eta)$$

We fully factored the multivariate distribution into a product of four univariate distributions:

$$f(X, Y, Z, \eta) = f(X \mid Y, Z, \eta) \times f(Y \mid Z, \eta) \times f(Z \mid \eta) \times f(\eta)$$

$$f(X \mid Y, Z, \eta) \times f(Y \mid Z, \eta) \times f(Z \mid \eta) \times f(\eta)$$

$$f(X \mid \eta) \times f(Y \mid \eta) \times f(Z \mid \eta) \times f(\eta)$$

$$f(X \mid \eta) \rightarrow \qquad x_i = \nu_1 + \lambda_1 \eta_i + r_{Xi}$$
 $f(Y \mid \eta) \rightarrow \qquad y_i = \nu_2 + \lambda_2 \eta_i + r_{Yi}$
 $f(Z \mid \eta) \rightarrow \qquad z_i = \nu_3 + \lambda_3 \eta_i + r_{Zi}$
 $f(\eta) \rightarrow \qquad \eta_i = \alpha + \zeta_i$

What if my indicators are categorical?

$$f(X \mid \eta)
ightarrow \qquad ext{probit}(x_i) =
u_1 + \lambda_1 \eta_i + r_{Xi}$$
 $f(Y \mid \eta)
ightarrow \qquad ext{probit}(y_i) =
u_2 + \lambda_2 \eta_i + r_{Yi}$
 $f(Z \mid \eta)
ightarrow \qquad ext{probit}(z_i) =
u_3 + \lambda_3 \eta_i + r_{Zi}$
 $f(\eta)
ightarrow \qquad \eta_i =
alpha +
alpha_i$

Latent Interactions in Blimp

Latent Interactions with Blimp

Factor the joint density into measurement and structural densities:

$$f(\mathbf{X}, \mathbf{M}, \mathbf{Y}, \eta_X, \eta_M, \eta_Y) = f(\mathbf{X}, \mathbf{M}, \mathbf{Y}, | \eta_X, \eta_M, \eta_Y) \times f(\eta_X, \eta_M, \eta_Y)$$

Boldface variables represent the set of all indicators:

$$\mathbf{X} = \{X_1, X_2, X_3\}$$
 $\mathbf{M} = \{M_1, M_2, M_3\}$ $\mathbf{Y} = \{Y_1, Y_2, Y_3\}$

We factor the measurement density into three separate densities:

$$f(\mathbf{X}, \mathbf{M}, \mathbf{Y} \mid \eta_X, \eta_M, \eta_Y) = f(\mathbf{X} \mid \eta_X) \times f(\mathbf{M} \mid \eta_M) \times f(\mathbf{Y} \mid \eta_Y)$$

Each of the three conditional densities map onto the single factor model.

For example:
$$f(\mathbf{X} \mid \eta_X) = f(X_1 \mid \eta_X) \times f(X_2 \mid \eta_X) \times f(X_3 \mid \eta_X)$$

Factored Structural Density

We factor the structural density into three separate densities:

$$f(\eta_X, \eta_M, \eta_Y) = f(\eta_Y \mid \eta_M, \eta_X) \times f(\eta_M \mid \eta_X) \times f(\eta_X)$$

The form of the models map onto a simple linear regression with an $\eta_M \times \eta_X$ interaction:

$$f(\eta_{Y} \mid \eta_{X}, \eta_{M}) \rightarrow \eta_{Yi} = \alpha_{Y} + \beta_{1}\eta_{Mi} + \beta_{2}\eta_{Xi} + \beta_{3}\eta_{Mi} \times \eta_{Xi} + \zeta_{Yi}$$

$$f(\eta_{M} \mid \eta_{X}) \rightarrow \eta_{Mi} = \alpha_{M} + \gamma_{1}\eta_{Xi} + \zeta_{Mi}$$

$$f(\eta_{X}) \rightarrow \eta_{Xi} = \alpha_{X} + \zeta_{Xi}$$

Blimp Syntax

ATENT: eta x eta m eta y; MODEL: structural model: # Label for organization eta v ~ eta x eta m eta x*eta m; eta m \sim eta x: eta $x \sim intercept@0;$ measurement model: # Label for organization eta x -> x1@1 x2 x3;eta m -> m1@1 m2 m3: eta_y -> y1@1 y2 y3;

What if M is an observed variable?

The factorization of the structural model barely changes:

$$f(\eta_Y \mid \eta_X, M) \to \eta_{Yi} = \alpha_Y + \beta_1 m_i + \beta_2 \eta_{Xi} + \beta_3 (m_i \times \eta_{Xi}) + \zeta_{Yi}$$

$$f(M \mid \eta_X) \to m_i = \alpha_M + \gamma_1 \eta_{Xi} + r_{Mi}$$

$$f(\eta_X) \to \eta_{Xi} = \alpha_X + \zeta_{Xi}$$

What if X is a nominal variable?

For example, *X* is 3-categories (two dummy codes):

$$X = [D_1, D_2]$$

If *X* is fully observed:

$$f(\eta_Y \mid X, M) \rightarrow \eta_{Yi} = \alpha_Y + \beta_1 m_i + \beta_2 d_{1i} + \beta_3 d_{2i} + \beta_4 (m_i \times d_{1i}) + \beta_5 (m_i \times d_{2i}) + \zeta_{Yi}$$

$$f(M \mid X) \rightarrow m_i = \alpha_M + \gamma_1 d_{1i} + \gamma_2 d_{2i} + r_{Mi}$$

If *X* is *incomplete*:

$$f(\eta_Y \mid X, M) \rightarrow \qquad \qquad \eta_{Yi} = \alpha_Y + \beta_1 m_i + \beta_2 d_{1i} + \beta_3 d_{2i} + \\ \beta_4(m_i \times d_{1i}) + \beta_5(m_i \times d_{2i}) + \zeta_{Yi}$$

$$f(M \mid X) \rightarrow \qquad m_i = \alpha_M + \gamma_1 d_{1i} + \gamma_2 d_{2i} + r_{Mi}$$

$$f(X) \rightarrow \qquad \text{probit}\left(\begin{bmatrix} d_{1i} \\ d_{2i} \end{bmatrix}\right) = \begin{bmatrix} \alpha_{D1} \\ \alpha_{D2} \end{bmatrix} + \begin{bmatrix} e_{D1i} \\ e_{D2i} \end{bmatrix}$$

Overview of Estimation and Latent Scores

Markov chain Monte Carlo (MCMC Estimation

Do for t = 1 to T iterations:

- Sampling the parameters conditional on the observed and imputed data
- Sampling the missing observations conditional on observed data and previously sampled parameters

Repeat

Estimate Regression Models

Fill-in Missing Values

 $f(\eta_X)$ $f(\mathbf{X} \mid \eta_X)$

 $f(\eta_M \mid \eta_X)$

 $f(\mathbf{M} \mid \eta_{N})$

 $f(\eta_Y \mid \eta_{X_2})$

Analyzing Multiply Imputed Factor Scores

An advantage of using the Bayesian-based approaches is obtaining factored scores for any latent factor.

These factor scores are a byproduct of the estimation procedure, where the latent variables are treated as missing variables that must be imputed.

- 1 Fit the model via Bayes
- 2 Save multiple copies of the latent factor scores
- 3 Fit an ordinary least squares regression for each copy
- 4 Use multiple imputation pooling formulas (Rubin, 1987) to pool the estimates and standard errors

Monte Carlo Simulation Study

$$\eta_Y = \alpha_Y + \beta_1 \eta_{Mi} + \beta_2 \eta_{Xi} + \beta_3 \eta_{Mi} \times \eta_{Xi} + \zeta_{Yi}$$

Coefficients	% Bias		Cove	erage	RMSE Ratio
	Imp	Bay	Imp	Bay	(Imp / Bay)
$\eta_X\left(eta_1 ight)$	1.043	0.801	0.932	0.934	1.009
$\eta_{M}\left(eta_{2} ight)$	0.683	0.505	0.948	0.942	1.008
$\eta_{\rm X} imes \eta_{\rm M} \left(eta_3 ight)$	1.319	1.005	0.966	0.956	1.012

Evaluating Latent Interactions in Blimp

Traditional SEM fit indices and tests generally do not perform well when testing for interactions (Asparouhov & Muthén, 2021).

This is due to likelihood-based SEM approaches fitting to only the first and second-order moments of the distribution (mean vector and covariance matrix).

Using the imputed factor scores allows us to simplify the problem and use traditional regression diagnostics.

Residual Based Diagnostics

Compute the residuals based on fitting a linear regression to each imputed data set.

Investigate classical regression diagnostics based on the residuals. Examples:

- Plotting Residuals versus Predicted scores
- Evaluating if correlation remains among residuals.

 Generate imputations of latent factor scores and look at posterior mean of factor scores.

2 Fit a loess model to each imputed data set and obtain the fitted values and standard errors.

3 Pool across all analysis results and create a plot to investigate the fit.

Imputation Model 1:

$$\eta_Y = \alpha_Y + \beta_1 \eta_{Mi} + \beta_2 \eta_{Xi} + \beta_3 (\eta_{Mi} \times \eta_{Xi}) + \zeta_{Yi}$$

- Generate imputations based on Model 1
- Fit regression model without interaction
- Plot Residuals v. Predicted

Model 1 without Latent Interaction

Model 1 without Latent Interaction

Model 1 with Latent Interaction

Model 1 with Latent Interaction

Suppose a researcher is not expecting a latent \times latent interaction.

Imputation Model 0:

$$\eta_Y = \alpha_Y + \beta_1 \eta_{Mi} + \beta_2 \eta_{Xi} + \zeta_{Yi}$$

Model 0 without Latent Interaction

Model 0 with Latent Interaction

Plots of True Score Values

Multilevel Analysis Example in Blimp

$$Y_{ij} = Y_W + Y_B$$

Level-1:
$$M_{ij} = M_B + a_j(X_{ij} - X_B) + r_{ij}$$

Level-2:
$$M_{\rm B} = \alpha_0 + \alpha_2 (Z_j - \mu_Z) + u_{0_j}$$
 $a_j = \alpha_1 + \alpha_3 (Z_j - \mu_Z) + u_{1_j}$

Level-1:
$$Y_{ij} = Y_B + b_j(M_{ij} - M_B) + \beta_2(X_{ij} - X_B) + e_{ij}$$

Level-2:
$$Y_{\rm B} = \beta_0 + \beta_3 (Z_j - \mu_Z) + v_{0_j}$$
 $b_j = \beta_1 + \beta_3 (Z_j - \mu_Z) + v_{1_j}$

Blimp Syntax: Predictor Models

```
LATENT: # Declare Latent Variable Names
    id = y b m b x b a j b j;
MODEL: # Begin Modeling syntax
    predictor model: # Label Block for organization
        # X within and between models
        x ii \sim intercept@x b;
        x_b \sim intercept;
        # 7 Between model
        z j ~ intercept@mu z;
```


Blimp Syntax: *M* and *Y* Models

```
# M within and between model
mediator model:
   m ij \sim intercept@m b (x ij - x b)*a j@1;
   m b ~ intercept (z j - \&mu z);
   a i \sim intercept@alpha 1 (z i - \&mu z)@alpha 3;
# Y within and between model
outcome model:
   y_{ij} \sim intercept@y_b (m_{ij} - m_b)*b_j@1 (x_{ij} - x_b);
   y b \sim intercept (z j - \&mu z);
   b_j ~ intercept@beta_1;
```


Syntax: Compute Indirect Effects

```
PARAMETERS: # Define Parameters
   # Define the Standard deviation of 7
    sd z = sqrt(z j.totalvar);
    ## Indirect effects for...
   # Low 7
    indirect.low = ((alpha 1 - (alpha 3 * sd z)) * beta 1);
   # Mean Z
    indirect.med = alpha 1 * beta 1:
   # High Z
    indirect.high = ((alpha 1 + (alpha 3 * sd z)) * beta 1);
```

Parallel Growth Process Example in Blimp

We have two parallel growth processes:

Blimp Syntax: M Model

```
MODEL:
    m model: # Label for organization
         I m \rightarrow m.101 m.201 m.301 m.401;
         S m \rightarrow m.100 m.201 m.302 m.403;
         m.1 \sim 0: m.2 \sim 0: m.3 \sim 0: m.4 \sim 0:
         m.1 ~~ m.1@var m: # Fix variances to be equal
         m.2 \sim m.2  dvar m;
         m.3 ~~ m.3@var_m;
         m.4 \sim m.4 \text{@var m}:
         I m ∼ S m: # Correlation
```


Blimp Syntax: Y Model

```
v model:
    I_y \rightarrow y.101 y.201 y.301 y.401;
    S v \rightarrow v.100 v.201 v.302 v.403;
    v.1 \sim 0; v.2 \sim 0; v.3 \sim 0; v.4 \sim 0;
    y.1 ~~ y.1@var y; # Fix variances to be equal
    v.2 \sim v.2@var y;
    v.3 ~~ v.3@var_y;
    v.4 ~~ v.4@var v:
    I_y ~~ S_y; # Correlation
```

Blimp Syntax: Structural Model

```
structural_model:
    I_y ~ Intercept I_m S_m;
    S_y ~ Intercept I_m S_m;
```

What about latent by latent interactions?

Blimp Syntax: Structural Model Revised

What if I have a <u>moderated</u> mediation model with observed predictor?

Blimp Syntax: Structural Model Revised

```
structural model:
   I_y ~ Intercept X I_m S_m # Main effects
           X*I m X*S m I m*S m # Two Way interactions
           X*I m*S m:
                       # Three Way interaction
   S v ~ Intercept X I m S m # Main effects
           X*I m X*S m I m*S m # Two Wav interactions
           X*I m*S m:
                      # Three Way interaction
   # M Models
   I m \sim Intercept X;
   S m \sim Intercept X;
```

Preliminary Results from Monte Carlo Study

Results for Latent Intercept of *Y*

	Prop. Bias	LCL (95%)	UCL (95%)
Intercept	-0.033	-0.065	-0.002
X	-0.029	-0.116	0.058
I_m	0.032	-0.010	0.073
S_m	0.009	-0.019	0.036
$I_m \times X$	0.055	-0.045	0.154
$S_m \times X$	-0.025	-0.089	0.040
$\mathrm{I}_m imes \mathrm{I}_m$	0.036	-0.006	0.079
$I_m \times S_m \times X$	-0.084	-0.242	0.074
Resid Var.	-0.003	-0.007	0.002

Results for Latent Slope of Y

	Prop. Bias	LCL (95%)	UCL (95%)
Intercept	-0.013	-0.044	0.018
X	-0.013	-0.101	0.075
I_m	0.024	-0.018	0.067
S_m	-0.003	-0.030	0.023
$I_m \times X$	0.027	-0.070	0.124
$S_m \times X$	-0.048	-0.111	0.015
$\mathrm{I}_m imes \mathrm{I}_m$	0.021	-0.020	0.062
$I_m \times S_m \times X$	0.014	-0.135	0.163
Resid Var.	-0.004	-0.008	0.000

Average ESS for Latent Intercept of *Y*

	Blimp	Mplus	Ratio
Intercept	10818	11140	0.97
X	7949	978	8.13
I_m	4449	4290	1.04
S_m	7500	7051	1.06
$I_m \times X$	4738	557	8.51
$S_m \times X$	6624	907	7.30
$\mathrm{I}_m imes \mathrm{I}_m$	4851	4503	1.08
$I_m \times S_m \times X$	5168	923	5.60
Resid Var.	8343	1481	5.63

Average ESS for Latent Slope of *Y*

Blimp	Mplus	Ratio
11705	11704	1.00
8151	972	8.38
4615	4423	1.04
7523	7286	1.03
4821	545	8.84
6649	897	7.41
5075	4691	1.08
5281	907	5.82
8789	1467	5.99
	11705 8151 4615 7523 4821 6649 5075 5281	11705 11704 8151 972 4615 4423 7523 7286 4821 545 6649 897 5075 4691 5281 907

Approximate run time for one replication:

(Warm Up =
$$10000$$
, Post = 20000 , 2 chains)

- **Mplus** ≈ 12 minutes
- **Blimp** ≈ 36 seconds

Some Other Examples...

- Simple Slopes with Latent Interactions
- Multi-Group Models with Incomplete Groups
- Latent Moderated Mediation with Quadratic Relationship
- Latent Moderated Mediation with Skewed Indicators
- Multilevel Mediation with Ordinal Mediator and Latent Means

Blimp Software

- General-purpose Bayesian estimation for regression and path models.
- Single and multilevel models
- Allows for latent variables, incomplete predictors and outcomes
- Interactive and nonlinear effects
- Nonnormal data
- And more!

Available at

 $\verb|https://www.appliedmissingdata.com/blimp|$