1 Modèles basés sur le réflex

1.1 Prédicteurs linéaires

Dans cette section, nous allons explorer les modèles basés sur le réflex qui peuvent s'améliorer avec l'expérience s'appuyant sur des données ayant une correspondance entrée-sortie.

 \square Vecteur caractéristique – Le vecteur caractéristique (en anglais feature vector) d'une entrée x est noté $\phi(x)$ et se décompose en :

$$\phi(x) = \begin{bmatrix} \phi_1(x) \\ \vdots \\ \phi_d(x) \end{bmatrix} \in \mathbb{R}^d$$

□ Score – Le score s(x,w) d'un exemple $(\phi(x),y) \in \mathbb{R}^d \times \mathbb{R}$ associé à un modèle linéaire de paramètres $w \in \mathbb{R}^d$ est donné par le produit scalaire :

$$s(x,w) = w \, \cdot \, \phi(x)$$

1.1.1 Classification

 \square Classifieur linéaire – Étant donnés un vecteur de paramètres $w \in \mathbb{R}^d$ et un vecteur caractéristique $\phi(x) \in \mathbb{R}^d$, le classifieur linéaire binaire f_w est donné par :

$$f_w(x) = \operatorname{sign}(s(x,w)) = \left\{ \begin{array}{ll} +1 & \text{if } w \cdot \phi(x) > 0 \\ -1 & \text{if } w \cdot \phi(x) < 0 \\ ? & \text{if } w \cdot \phi(x) = 0 \end{array} \right.$$

□ Marge – La marge (en anglais margin) $m(x,y,w) \in \mathbb{R}$ d'un exemple $(\phi(x),y) \in \mathbb{R}^d \times \{-1,+1\}$ associée à un modèle linéaire de paramètre $w \in \mathbb{R}^d$ quantifie la confiance associée à une prédiction : plus cette valeur est grande, mieux c'est. Cette quantité est donnée par :

$$m(x,\!y,\!w) = s(x,\!w) \times y$$