Statistical Computing

Michael Mayer

February 2023

Statistical Computing: What will we do?

Chapters

- 1. R in Action
- 2. Statistical Inference
- 3. Linear Models
- 4. Model Selection and Validation
- 5. Trees
- 6. Neural Nets

Remarks

- Chapters 3 to 6: Statistical ML in Action
- Two weeks per chapter
- Exercises at end of chapter notes

Neural Nets

Outline

- Understanding Neural Nets
- Practical Considerations
- Extended examples

Neural Nets

- Around since the 1950ies
- Underwent different development steps, e.g.
 - use of backpropagation
 - ► GPUs
- ► Black Box
- ► TensorFlow/Keras, PyTorch

"Swiss Army Knife" among ML Algorithms

Can fit linear models

Learn interactions
and non-linear terms

>1 Responses possible

Flexible and mixed in- and output dimensions

Fit data larger than RAM

Non-linear Learn «online» dimension reduction

Sequential and spatial in- and output

Flexible loss functions

Understanding Neural Nets in three Steps

- 1. Linear regression as neural net
- 2. Hidden layers
- 3. Activation functions

Using diamonds data

Step 1: Linear Regression as Neural Net

- ightharpoonup $\mathbb{E}(\mathsf{price}) = \alpha + \beta \cdot \mathsf{carat}$
- OLS $\hat{\alpha} \approx -2256, \ \hat{\beta} \approx 7756$
- Represented as neural network graph

The Optimization Algorithm

Mini-batch gradient descent with backpropagation

Notation: Neural net f_{β} ; its total loss on data D and loss function L:

$$Q(f_{\beta},D) = \sum_{(y_i,\mathbf{x}_i)\in D} L(y_i,f_{\beta}(\mathbf{x}_i))$$

- 1. Init: Randomly initialize parameter vector β by $\hat{\beta}$
- 2. Forward: Calculate $Q(f_{\hat{\beta}}, D_{\text{batch}})$ on batch
- 3. Backprop: Modify $\hat{\beta}$ to improve $Q(f_{\hat{\beta}}, D_{\mathsf{batch}})$
 - 3.1 Calculate partial derivatives $\nabla \hat{\beta} = \frac{\partial Q(f_{\beta}, D_{\text{batch}})}{\partial \beta} \mid_{\beta = \hat{\beta}} \text{ using backprop (=?)}$
 - 3.2 Gradient descent: Move slightly into right direction: $\hat{\beta} \leftarrow \hat{\beta} \lambda \cdot \nabla \hat{\beta}$
- 4. Repeat Steps 2 and 3 until one epoch is over
- 5. Repeat Step 4 until some stopping criterion triggers

SGD? Local minima?

Step 2: Hidden Layers

- Add hidden layers for more parameters (= flexibility)
- Their nodes are latent/implicit variables
- Representational learning
- Encoding?
- Deep neural net?

Step 3: Activation Functions

Non-linear transformations σ of node values necessary!

Two purposes

- Imply interactions and non-linear terms
- Inverse link as in GLMs

Practical Considerations

Input standardization Validation and tuning of main parameters **Missing values** Categorical input Callbacks **Types of layers** Interpretation **Optimizer Overfitting and Custom losses and Choosing the** regularization evaluation metrics architecture

Example: Diamonds

Excursion: Model-Agnostic Importance Measure

Permutation importance of feature $X^{(j)}$, data D, and performance measure S:

$$\mathsf{PVI}(j,D) = S(\hat{f},D^{(j)}) - S(\hat{f},D)$$

- \triangleright $D^{(j)}$ is version of D with randomly permuted values in j-th feature column
- ▶ Read: How much S worsens after shuffling column j? The larger, the more important. If 0, feature is unimportant
- ightharpoonup Computationally cheap ightarrow repeat m times
- Model is never refitted
- Training or test data?

Embeddings

Represent unordered categorical X with K levels by $m \ll K$ numeric features

Embedding layer

- X integer encoded
- ightharpoonup Dummy matrix \tilde{X} with K columns
- ▶ Multiply \tilde{X} with $(K \times m)$ matrix β
- ightharpoonup Embedding matrix eta estimated like other parameters
- ightharpoonup Trick: $\tilde{X}\beta$ is calculated via index slicing from X and β
 - $ightarrow ilde{X}$ is never materialized

Example

Taxi trips

Excursion: Analysis Scheme X

T(Y): quantity of interest

Steps

- 1. Calculate T(Y) on the full data
- 2. Calculate T(Y) stratified by covariates $X^{(j)} o$ bivariate associations
- 3. Accompany Step 2 by ML model \rightarrow multivariate associations
 - Study model performance
 - ightharpoonup Study variable importance ightarrow sort results of Step 2
 - ightharpoonup Study PDP (or similar) for each $X^{(j)}$ and compare with Step 2

Comparison of ML Algorithms

Aspect	GLM	Neural Net	Decision Tree	Boosting	Random Forest	k-Nearest Neighbour
Scalable			©	<u>•</u>	•	<u> </u>
Easy to tune	•	••	••	••	<u>•</u>	••
Flexible losses	<u>•</u>	*	<u>•</u>	<u>•</u>	••	••
Regularization	✓	✓	✓	✓	✓	✓
Case weights	✓	✓	✓	✓	✓	✓
Missing input allowed	<u>©</u>	⇔	✓	✓	©	©
Interpretation		••	*	••	••	•
Space on disk			*	<u> </u>	⊙	⊙
Birth date (approx.)	1972 (Nelder & Wedderburn)	1974 Backprop (Werbos)	1984 (Breiman et al.)	1990 (Schapire)	2001 (Breiman)	1951 (Fix & Hodges)