FICHE 08-02: Sur la composition

Yvann Le Fay

Novembre 2019

Enoncé

Soit $g \in \mathcal{L}(E)$ avec E de dimension finie. Soit $\varphi(g) : f \mapsto f \circ g$. Pour tout $\lambda \in \operatorname{Sp} g$, calculer $\dim E_{\lambda}(\varphi(g))$. Montrer que g est diagonalisable si et seulement si $\varphi(g)$ l'est.

Solution

On a

$$f \in E_{\lambda}(\varphi(g)) \iff g \circ f = \lambda f \iff \operatorname{im} f \subset E_{\lambda}(g)$$

On en déduit donc que $\dim E_{\lambda}(\varphi(g)) = n \dim E_{\lambda}(g)$ et ainsi $n^2 = \sum_{\lambda \in \operatorname{Sp} \varphi(g)} \dim E_{\lambda}\varphi(g) \iff n = \sum_{\lambda \in \operatorname{Sp} g} \dim E_{\lambda}g$, i.e $\varphi(g)$ est diagonalisable si et seulement si g l'est.