Assignment 2 - DFAs and Propositional Logic

CS 234

Daniel Lee

1 DFAs and Propositional Logic on Paper

Give the full 5-tuple for DFAs for the following languages:

2.2. $\{w\in\{0,1\}^*: w \text{ ends with a } 1\}$

 $(\{q_0,q_1\},\{0,1\},\delta,q_0,\{q_1\})$

δ	0	1
q_0	q_0	q_1
q_1	q_0	q_1

2.4. $\{w \in \{0,1\}^* : w \text{ has } 01 \text{ as a substring } \}$

 $(\{q_0,q_1,q_2\},\{0,1\},\delta,q_0,\{q_2\})$

δ	0	1
q_0	q_1	q_0
q_1	q_1	q_2
q_2	q_2	q_2

Draw DFAs for the following languages:

2.8. $\{w \in \{0,1\}^* : w \text{ has an even number of 0s and an odd number of 1s}\}$

2.12. $\{w \in \{0,1\}^* : \text{the third character in } w \text{ is } 0\}$

2.14. $\{w \in \{0,1\}^* : w \text{ starts or ends with a } 0\}$

2.15. $\{w \in \{0,1\}^* : w \text{ has exactly one } 0\}$

2.16. $\{w \in \{0,1\}^*: w \text{ contains } 10 \text{ but not } 1010\}$

2.18. $\{w \in \{0,1\}^* : w \text{ contains at most two 0s and at least one 1}\}$

2.19. $\{w \in \{0,1\}^* : \text{the number of 0s in } w \text{ is divisble by 3}\}$

2.24. $\{w\in\{0,\dots,9\}^*:w\text{ is divisible by 5 in decimal }\}$ (Let λ be in the language and ignore leading 0s.)

2.27. $\{w \in \{A,C,G,T\}^*: w \text{ has the substring ATG followed later by the substring TAA or TAG or TGA }\}$

Determine whether each of the following statements is true or false. Give a one line explanation for each.

3.4. (Assume that x=3) $(x\leq 3)\vee (x\leq 2)$

True. The above statement's value is true if either $(x \le 3)$ or $(x \le 2)$ is true and the given assumption makes the statement $(x \le 3)$ to true.

3.5. (Assume that x = 3 and y = 4) $(x < y) \land (x + 1 \le y)$

True. Based on the given assumption, the statement (x < y) is true and also $(x + 1 \le y)$ is true, which the conjunction's value that is based on these two statement results true.

Write each of the following statements in symbolic form in terms of \neg , \wedge , and \vee operations

3.13. The value x is smaller than zero or at least eleven.

$$(x < 0) \lor (x \ge 11)$$

3.19. Exactly two of the values x, y, z are equal to ten.

$$(x = 10 \land y = 10 \land \neg(z = 10)) \lor (x = 10 \land \neg(y = 10) \land z = 10) \lor (\neg(x = 10) \land y = 10 \land z = 10)$$

Show whether the following pairs of expressions are equivalent by creating truth tables for them. Be sure to show each of the intermediate steps for each expression.

3.27. $A \wedge (A \vee B)$ and A

A	B	$A \lor B$	$A \wedge (A \vee B)$
F	F	F	F
F	$\mid T \mid$	Γ	F
T	F	Т	m T
T	Т	T	m T

3.33. $A \vee (B \wedge C)$ and $(A \vee B) \wedge (A \vee C)$

A	B	C	$A \lor B$	$A \lor C$	$B \wedge C$	$A \lor (B \land C)$	$(A \lor B) \land (A \lor C)$
F	F	F	F	F	F	F	F
F	F	$\mid T \mid$	F	Γ	F	F	F
F	$\mid T \mid$	F	Γ	F	F	F	F
F	$\mid T \mid$	T	Γ	Γ	Γ	Γ	ight]
T	F	F	Γ	Γ	F	Γ	ight] T
T	F	T	Γ	Γ	F	Γ	ight] T
T	$\mid T \mid$	F	T	Γ	F	ight] ight.	T
T	$\mid T \mid$	$\mid T \mid$	Γ	Γ	T	m T	Γ

Write each of the following statements in the form $P \Rightarrow Q$ or $P \Leftrightarrow Q$, stating the values of P and Q for each.

3.36. The sum of two numbers is an integer if both numbers are integers.

P: Both numbers are integers.

Q: The sum of two numbers is an integer.

 $P \Rightarrow Q$

3.38. It is safe to divide by x only if $x \neq 0$.

P: It is safe to divide by x.

 $Q: x \neq 0$

 $P\Rightarrow Q$

Show whether the following pairs of expressions are equivalent by creating truth tables for them. Be sure to show each of the intermediate steps for each expression.

3.40. $A \lor B$ and $\neg A \Rightarrow B$

A	B	$\neg A$	$A \lor B$	$\neg A \Rightarrow B$
F	F	Т	F	F
\mathbf{F}	$\mid T \mid$	T	Τ	Γ
Τ	F	F	Т	\mathbf{T}
Τ	Γ	F	Γ	${ m T}$

3.41. $A \wedge B$ and $A \Rightarrow \neg B$

A	B	$\neg B$	$A \wedge B$	$A \Rightarrow \neg B$
F	F	Т	F	T
F	$\mid T \mid$	F	F	T
$\mid T \mid$	F	T	F	Γ
Γ	Т	F	T	F

3.42. $A \Leftrightarrow B$ and $(\neg A \lor B) \land (A \lor \neg B)$

A	B	$\neg A$	$\neg B$	$\neg A \lor B$	$A \vee \neg B$	$(\neg A \lor B) \land (A \lor \neg B)$	$A \Leftrightarrow B$
F	F	Т	T	Т	Т	T	Т
F	T	\mathbf{T}	F	$^{\rm T}$	F	\mathbf{F}	F
T	F	F	Γ	F	T	\mathbf{F}	F
T	$\mid T \mid$	F	F	Т	T	m T	T

3.44.
$$(A \Rightarrow B) \lor (A \Rightarrow C)$$
 and $A \Rightarrow (B \lor C)$

A	В	C	$A \Rightarrow B$	$A \Rightarrow C$	$B \lor C$	$(A \Rightarrow B) \lor (A \Rightarrow C)$	$A \Rightarrow (B \lor C)$
F	F	F	Т	T	F	Т	Т
F	F	Τ	Γ	${ m T}$	T	T	${ m T}$
F	Т	F	Γ	${ m T}$	Γ	Т	${f T}$
F	Т	Τ	Γ	${ m T}$	Γ	Т	${ m T}$
T	F	F	F	\mathbf{F}	F	F	\mathbf{F}
T	F	Τ	F	${ m T}$	Γ	Т	${f T}$
T	Т	F	T	F	T	Γ	${ m T}$
T	Т	Τ	T	$^{\rm T}$	Γ	T	${ m T}$

3.46.
$$(A \Rightarrow C) \land (B \Rightarrow C)$$
 and $(A \lor B) \Rightarrow C$

A	B	C	$A \Rightarrow C$	$B \Rightarrow C$	$A \lor B$	$(A \Rightarrow C) \land (B \Rightarrow C)$	$(A \lor B) \Rightarrow C$
F	F	F	T	Т	F	T	T
F	F	Γ	Γ	Γ	F	T	T
F	$\mid T \mid$	F	Γ	F	Γ	F	F
F	$\mid T \mid$	Т	Γ	Γ	Γ	Т	T
T	F	F	F	Γ	Γ	F	F
T	F	Т	Γ	T	Γ	T	m T
T	$\mid T \mid$	F	F	F	Γ	F	F
T	$\mid T \mid$	Γ	T	Т	Т	T	T