Discussion

► Transformation Challenge

Announcements Oct 13

- Masks → Thank you!
- Quiz 3.2-3.3 Friday
- WeBWorK 3.2 & 3.3 due tonite!
- Special office hr: Thu 11-12 Teams (special time!)
- Midterm 2 Oct 20 8–9:15p on Teams
- Use Piazza for general questions
- Many TA office hours listed on Canvas
- Section M web site: Google "Dan Margalit math", click on 1553
 - future blank slides, past lecture slides, advice
- Old exams: Google "Dan Margalit math", click on Teaching
- Tutoring: http://tutoring.gatech.edu/tutoring
- PLUS sessions: http://tutoring.gatech.edu/plus-sessions
- Math Lab: http://tutoring.gatech.edu/drop-tutoring-help-desks
- Counseling center: https://counseling.gatech.edu
- You can do it!

Section 3.3

Linear Transformations

Linear transformations are matrix transformations.

Every (linear transformation is a matrix transformation.) Theorem.

Given a linear transformation $T:\mathbb{R}^n \to \mathbb{R}^m$ the standard matrix is:

Why? Notice that $Ae_i = T(e_i)$ for all i. Then it follows from linearity that T(v) = Av for all v.

Linear transformations are matrix transformations

Find the standard matrix for the linear transformation of \mathbb{R}^2 that projects onto the y-axis and then rotates counterclockwise by $\pi/2$.

Find
$$T(e_1)$$
, $T(e_2)$

Proj

to y -ani)

 $T(e_1) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$

$$A = (T(e_1) T(e_2)) = \begin{pmatrix} 0 & -1 \\ 0 & 0 \end{pmatrix}$$

rotate The clockwise

then scale by 1/2

in y-div. Discussion Discussion Question Find a matrix that does this. e,

Section 3.4

Matrix Multiplication

Section 3.4 Outline

- Understand composition of linear transformations
- Learn how to multiply matrices
- Learn the connection between these two things

Function composition

Remember from calculus that if f and g are functions then the composition $f\circ g$ is a new function defined as follows:

$$f \circ g(x) = f(g(x))$$

In words: first apply g, then f.

Example: $f(x) = x^2$ and g(x) = x + 1.

Note that $f \circ g$ is usually different from $g \circ f$.

$$f \circ g(x) = (x+1)^2$$
 $g \circ f(x) = x^2 + 1$

Composition of linear transformations

We can do the same thing with linear transformations $T: \mathbb{R}^p \to \mathbb{R}^m$ and $U: \mathbb{R}^n \to \mathbb{R}^p$ and make the composition $T \circ U$.

Notice that both have an p. Why?

What are the domain and codomain for $T \circ U$?

Natural question: What is the matrix for $T \circ U$? We'll see!

Associative property: $(S \circ T) \circ U = S \circ (T \circ U)$

Why?

Composition of linear transformations

Example. T= projection to y axis and $Scale y-dir by <math>\frac{1}{2}$ U= reflection about y=x in \mathbb{R}^2 rotate clock by $\frac{\pi}{2}$

What is the standard matrix for $T \circ U$?

What about $U \circ T$? To $U \Leftrightarrow \begin{pmatrix} 0 & 1 \\ -\frac{1}{2} & 0 \end{pmatrix}$

$$T \iff \begin{pmatrix} 1 & 0 \\ 0 & 1/2 \end{pmatrix}$$

$$(1 & 0)$$

$$(2 & 0)$$

$$(3 & 0)$$

$$(4 & 0)$$

$$(4 & 0)$$

$$(5 & 0)$$

$$(7 & 0)$$

usual recipe

$$V \circ T \iff \begin{pmatrix} 0 & \frac{1}{2} \\ -1 & 0 \end{pmatrix}$$

Matrix Multiplication

And now for something completely different (not really!)

Suppose A is an $m \times n$ matrix. We write a_{ij} or A_{ij} for the *ij*th entry.

If
$$A$$
 is $m \times n$ and B is $n \times p$, then AB is $m \times p$ and AB is $m \times p$ and

where r_i is the ith row of A, and b_j is the jth column of B.

Or: the jth column of AB is A times the jth column of B.

$$B.\begin{pmatrix} 456 \end{pmatrix} \begin{pmatrix} 2 \\ 2 \end{pmatrix}^{-1} \begin{pmatrix} -4 \\ -13 \end{pmatrix} = \begin{pmatrix} -4 \\ -13 \end{pmatrix}$$

$$B.\begin{pmatrix} 456 \end{pmatrix} \begin{pmatrix} -2 \\ -13 \end{pmatrix} = \begin{pmatrix} -4 \\ -13 \end{pmatrix}$$

Matrix Multiplication and Linear Transformations

As above, the composition $T \circ U$ means: do U then do T

Fact. Suppose that A and B are the standard matrices for the linear transformations $T:\mathbb{R}^n\to\mathbb{R}^m$ and $U:\mathbb{R}^p\to\mathbb{R}^n$. The standard matrix for $T\circ U$ is AB.

Why?

composing smultiplying matrices.

$$(T \circ U)(v) = T(U(v)) = T(Bv) = A(Bv) = (AB)$$

So we need to check that A(Bv) = (AB)v. Enough to do this for $v = e_i$. In this case Bv is the ith column of B. So the left-hand side is A times the ith column of B. The right-hand side is the ith column of AB which we already said was A times the ith column of B. It works!

Matrix Multiplication and Linear Transformations

Fact. Suppose that A and B are the standard matrices for the linear transformations $T: \mathbb{R}^p \to \mathbb{R}^m$ and $U: \mathbb{R}^n \to \mathbb{R}^p$. The standard matrix for $T \circ U$ is AB.

Example. T= projection to y axis and U= reflection about y=x in \mathbb{R}^2

What is the standard matrix for $T \circ U$?

$$ToU \Leftrightarrow \begin{pmatrix} 0 & 1 \\ -1/2 & 0 \end{pmatrix}$$

$$rot. clock The$$

$$\begin{pmatrix} \begin{pmatrix} 0 \\ -1 \end{pmatrix} & 0 \end{pmatrix} = \begin{pmatrix} -1/2 & 0 \\ -1/2 & 0 \end{pmatrix}$$

$$\uparrow \circ U$$

$$\begin{pmatrix} 1 & 0 \\ 0 & 1/2 \end{pmatrix} = \begin{pmatrix} 0 & 4/2 \\ -1 & 0 \end{pmatrix}$$

$$\begin{array}{c}
\uparrow \longleftrightarrow \begin{pmatrix} 1 & 0 \\ 0 & 1_2 \end{pmatrix} \\
\downarrow \downarrow \longleftrightarrow \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}
\end{array}$$

To U same as:
$$\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} 1/2 & 6 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -1/2 & 0 \end{pmatrix}$$

Linear transformations are matrix transformations

Find the standard matrix for the linear transformation of \mathbb{R}^3 that reflects through the xy-plane and then projects onto the yz-plane.

Discussion Question

Are there nonzero matrices A and B with AB=0?

- 1. Yes
- 2. No

Properties of Matrix Multiplication

- A(BC) = (AB)C
- A(B+C) = AB + AC distrib.
- (B+C)A = BA + CA
- r(AB) = (rA)B = A(rB)
- $\bullet (AB)^T = B^T A^T$
- $I_m A = A = A I_n$, where I_k is the $k \times k$ identity matrix.

Multiplication is associative because function composition is (this would be hard to check from the definition!).

Warning!

- AB is not always equal to BA
- AB = AC does not mean that B = C
- AB = 0 does not mean that A or B is 0

More rabbits

Recall that the following matrix describes the change in our rabbit population from this year to the next:

What matrix should we use if we want to describe the change in the rabbit population from this year to two years from now? Or 10 years from now?

Fun with matrix multiplication

Play the Buzz game!

http://textbooks.math.gatech.edu/ila/demos/transform_game.html

In the rotation game, you need to find a composition of shears that gives a rotation!

Summary of Section 3.4

- Composition: $(T \circ U)(v) = T(U(v))$ (do U then T)
- Matrix multiplication: $(AB)_{ij} = r_i \cdot b_j$
- Matrix multiplication: the *i*th column of AB is $A(b_i)$
- Suppose that A and B are the standard matrices for the linear transformations $T:\mathbb{R}^n\to\mathbb{R}^m$ and $U:\mathbb{R}^p\to\mathbb{R}^n$. The standard matrix for $T\circ U$ is AB.
- Warning!
 - ightharpoonup AB is not always equal to BA
 - ightharpoonup AB = AC does not mean that B = C
 - ightharpoonup AB = 0 does not mean that A or B is 0

Typical Exam Questions 3.4

- True/False. If A is a 3×4 matrix and B is a 4×3 matrix, then it makes sense to multiply A and B in both orders.
- ullet True/False. If it makes sense to multiply a matrix A by itself, then A must be a square matrix.
- True/False. If A is a non-zero square matrix, then A^2 is a non-zero square matrix.
- True/False. If $A = -I_n$ and B is an $n \times n$ matrix, then AB = BA.
- Find the standard matrices for the projections to the xy-plane and the yz-plane in \mathbb{R}^3 . Find the matrices for the linear transformations obtained by doing these two linear operations in the two different orders. Are the answers the same?
- Find the standard matrix A for projection to the xy-plane in \mathbb{R}^3 . What is A^2 ?
- Find the standard matrix A for reflection in the xy-plane in \mathbb{R}^3 . Is there a matrix B so that $AB = I_3$?

Section 3.5

Matrix Inverses

Inverses

To solve

$$Ax = b$$

we might want to "divide both sides by A".

We will make sense of this...

Inverses

 $A = n \times n$ matrix.

A is invertible if there is a matrix B with

$$AB = BA = I_n$$

B is called the inverse of A and is written A^{-1}

Example:

$$\left(\begin{array}{cc} 2 & 1 \\ 1 & 1 \end{array}\right)^{-1} = \left(\begin{array}{cc} 1 & -1 \\ -1 & 2 \end{array}\right)$$

The 2×2 Case

Let
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
. Then $\det(A) = ad - bc$ is the determinant of A .

Fact. If
$$\det(A) \neq 0$$
 then A is invertible and $A^{-1} = \frac{1}{\det(A)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$.

If det(A) = 0 then A is not invertible.

Example.
$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}^{-1} = -\frac{1}{2} \begin{pmatrix} 4 & -2 \\ -3 & 1 \end{pmatrix}$$
.

Solving Linear Systems via Inverses

Fact. If A is invertible, then Ax = b has exactly one solution:

$$x = A^{-1}b.$$

Solve

$$2x + 3y + 2z = 1$$
$$x + 3z = 1$$
$$2x + 2y + 3z = 1$$

Using

$$\begin{pmatrix} 2 & 3 & 2 \\ 1 & 0 & 3 \\ 2 & 2 & 3 \end{pmatrix}^{-1} = \begin{pmatrix} -6 & -5 & 9 \\ 3 & 2 & -4 \\ 2 & 2 & -3 \end{pmatrix}$$

Solving Linear Systems via Inverses

What if we change b?

$$2x + 3y + 2z = 1$$
$$x + 3z = 0$$
$$2x + 2y + 3z = 1$$

Using

$$\begin{pmatrix} 2 & 3 & 2 \\ 1 & 0 & 3 \\ 2 & 2 & 3 \end{pmatrix}^{-1} = \begin{pmatrix} -6 & -5 & 9 \\ 3 & 2 & -4 \\ 2 & 2 & -3 \end{pmatrix}$$

So finding the inverse is essentially the same as solving all Ax = b equations at once (fixed A, varying b).