IS code is allowed. Underlining is acceptable, notes are not OK.

Draw neat Diagram, the diagram provided in the question paper may not be fully technically correct.

- Explain why Rivets and HSFG Bolts are good for railway bridges. Use of technical words are important while answering,
- 10 Explain the role of slag in welding. Draw single and double x lap and but joint 10
 - Explain the method of analysis for the two case. Assume all data symbolically.

Design welding joint. (Check block shear also)

6. Find x and maximum possible strength of this joint. (no need to check block shear). 20

5

5

10

Table 5.1 (Cont

Designation	Mass	Sectional area, a	Dimensions				-	Cy	-Ix	
			$A \times B$	/ mm	R _I	R_2 mm	C _x	em (9)	em4 (10)	
(1)	Kg/m (2)	Cm ² (3)	mm×mm (4)	(5)	(6)	(7)	(8)		14.9	
						奶	2.18	2.18	56.0 72.5	
2 80 80 × 6	Washington.	9.29	80×80	6.0 8.0	8,0	34	2.27 2.34	2.27 2.34	87.7 102	1
× 10		12.2 15.0		10.0			2.42	2.42	en 1	
×12		17.8	anvan	an	95		and 10	mm th	icknes	s fo

7. Design a double but joint for two plates of 200mm width and 10 mm thickness for maximum possible load. (Check block shear also)

40

Sample Calculations:

Area of the connected leg =
$$(100 - 6/2) \times 6 = 582 \text{ mm}^2$$

Area of the outstanding leg = $(75 - 6/2) \times 6 = 432 \text{ mm}^2$
 $A_g = 1010 \text{ mm}^2$

(2) Strength governed by yielding of cross section

$$T_{\text{dg}} = A_g f_y / \gamma_{\text{ino}} = (1010 \times 250/1.10) \times 10^{-3} = 229.55 \text{ kN}$$

(5) Strength governed by rupture of critical section

$$T_{\rm dn} = 0.9 f_u A_{\rm nc} / \gamma_{\rm m1} + \beta A_{\rm go} f_y / \gamma_{\rm m0}$$

4 ssuming average length of weld $L_w = 225 \text{ mm}$

$$\beta = 1.4 - 0.076(w/t)(f_y/f_u)(b_s/L_w)$$

Us minimum pitch = 2.5 d and minimum edge distance = 1.6 d

Scanned by CamScanner