Amath 574

Local P-adaptivity with the Discontinuous Galerkin Method

Devin Light Scott Moe

March 13th, 2015

1D DG-FEM

Conservation law weak form:

Multiply by test function:

$$\frac{1}{2} \int_{-1}^{1} \varphi^{(\ell)} \Big\{ q_{,t} + f(q)_{,x} \Big\} \, d\xi = 0$$

■ Integrate by parts

$$\frac{1}{2} \int_{-1}^{1} \varphi^{(\ell)} q_{,t} d\xi = \frac{1}{\Delta x} \left(\int_{-1}^{1} f\left(q^{h}\right) \varphi_{\xi}^{(k)} d\xi - \left[(\varphi^{(k)} f(q))|_{\xi=1} - (\varphi^{(k)} f(q))|_{\xi=-1} \right] \right)$$

■ Galerkin ansatz:

$$q(t,\xi) \sim \sum_{k=0}^{N} Q^{(k)}(t) \, \varphi^{(k)}(\xi)$$

1D DG-FEM

Conservation law weak form:

■ Use an Orthogonal Basis:

$$rac{1}{2} \int_{-1}^{1} arphi^{(\ell)} q_{,t} = rac{1}{2k+1} \dot{Q}^{(k)}$$

Semi-discrete:

$$\dot{Q}_{i}^{(k)} = \frac{2k+1}{\Delta x} \int_{-1}^{1} f\left(q^{h}\right) \varphi_{\xi}^{(k)} d\xi - \frac{2k+1}{\Delta x} \left[\varphi^{(k)}(1) F_{i+\frac{1}{2}} - \varphi^{(k)}(-1) F_{i-\frac{1}{2}}\right]$$

• For k = 0:

$$\dot{Q}_{i}^{(0)} = -\frac{1}{\Delta x} \left[F_{i+\frac{1}{2}} - F_{i-\frac{1}{2}} \right]$$

Orthogonal Series

- For continuous functions series coefficients converge.
- Coefficients give us a proxy for error.
- Small coefficients have little effect on our solution. If f has a derivative ν of bounded variation

$$||f - f_p|| = \sum_{i=p+1}^{\infty} c_k \varphi^{(k)}(\xi) \le \frac{1}{\nu(p-\nu)^{\nu}}$$

hp-Adaptivity

- Discretize domain with cells of size h
- h-adaptivity → Adaptive Mesh Refinement
- Discretize using piecewise continuous polynomials of order p.
- p-adaptivity → Add higher order polynomials:

$$q(t,\xi) = \sum_{k=0}^{p} Q^{(k)}(t) \varphi^{(k)}(\xi)$$

■ For smooth functions: higher order polynomials → MUCH better approximation

Constructing an Algorithm

- For DG p can be different on each cell
- The highest coefficient gives an indication of error on each cell
- Each coefficient requires extra work
- Idea:
 - 1 Very small coefficients \rightarrow can be ignored
 - **2** Large coefficients \rightarrow need more resolution
- This is complicated by the PDE
 - 1 All PDEs \rightarrow propagate information
 - Hyperbolic PDEs \rightarrow propagation is finite
 - 3 Cells with high-order neighbors may soon need high-order

Outline of the Algorithm

 \blacksquare Pick a maximum order p_M and project initial conditions

Our P-adaptive algorithm:

- $lue{1}$ Eliminate coefficients below a tolerance ϵ
- Determine time-interval between local order modifications
- Set buffer region (determined from characteristic speeds)
- 4 Evolve coefficients over the interval
- 5 Repeat until we have reached the final time

Buffer Regions

Buffer Regions

