TABLE OF INFORMATION FOR 2010 and 2011

CONSTANTS AND CONVERSION FACTORS

Proton mass, $m_p = 1.67 \times 10^{-27} \text{ kg}$

Neutron mass, $m_n = 1.67 \times 10^{-27} \text{ kg}$

Electron mass, $m_e = 9.11 \times 10^{-31} \text{ kg}$

Avogadro's number, $N_0 = 6.02 \times 10^{23} \text{ mol}^{-1}$

Universal gas constant, $R = 8.31 \text{ J/(mol \cdot K)}$

Boltzmann's constant, $k_B = 1.38 \times 10^{-23} \text{ J/K}$

 $e = 1.60 \times 10^{-19} \text{ C}$ Electron charge magnitude,

1 electron volt, $1 \text{ eV} = 1.60 \times 10^{-19} \text{ J}$

 $c = 3.00 \times 10^8 \text{ m/s}$ Speed of light,

Universal gravitational

constant,

 $G = 6.67 \times 10^{-11} \text{ m}^3/\text{kg} \cdot \text{s}^2$

Acceleration due to gravity at Earth's surface,

 $g = 9.8 \text{ m/s}^2$

1 unified atomic mass unit.

$$1 \text{ u} = 1.66 \times 10^{-27} \text{ kg} = 931 \text{ MeV}/c^2$$

Planck's constant,

$$h = 6.63 \times 10^{-34} \text{ J} \cdot \text{s} = 4.14 \times 10^{-15} \text{ eV} \cdot \text{s}$$

 $hc = 1.99 \times 10^{-25} \text{ J} \cdot \text{m} = 1.24 \times 10^3 \text{ eV} \cdot \text{nm}$ $\epsilon_0 = 8.85 \times 10^{-12} \,\mathrm{C}^2/\mathrm{N} \cdot \mathrm{m}^2$

Vacuum permittivity,

Coulomb's law constant,
$$k = 1/4\pi\epsilon_0 = 9.0 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2$$

Vacuum permeability,

$$\mu_0 = 4\pi \times 10^{-7} \text{ (T-m)/A}$$

Magnetic constant, $k' = \mu_0/4\pi = 1 \times 10^{-7} \text{ (T-m)/A}$

1 atmosphere pressure,

$$1 \text{ atm} = 1.0 \times 10^5 \text{ N/m}^2 = 1.0 \times 10^5 \text{ Pa}$$

LINE	meter,	m	mole,	mol	watt,	W	farad,	F
	kilogram,	kg	hertz,	Hz	coulomb,	C	tesla,	T
UNIT SYMBOLS	second,	S	newton,	N	volt,	V	degree Celsius,	°C
SIMBOLS	ampere,	A	pascal,	Pa	ohm,	Ω	electron-volt,	eV
	kelvin,	K	joule,	J	henry,	Н		

PREFIXES				
Factor	Prefix	Symbol		
10 ⁹	giga	G		
10 ⁶	mega	M		
10 ³	kilo	k		
10^{-2}	centi	c		
10^{-3}	milli	m		
10^{-6}	micro	μ		
10^{-9}	nano	n		
10^{-12}	pico	p		

VALUES OF TRIGONOMETRIC FUNCTIONS FOR COMMON ANGLES							
θ	0°	30°	37°	45°	53°	60°	90°
$\sin \theta$	0	1/2	3/5	$\sqrt{2}/2$	4/5	$\sqrt{3}/2$	1
$\cos \theta$	1	$\sqrt{3}/2$	4/5	$\sqrt{2}/2$	3/5	1/2	0
$\tan \theta$	0	$\sqrt{3}/3$	3/4	1	4/3	$\sqrt{3}$	8

The following conventions are used in this exam.

- I. Unless otherwise stated, the frame of reference of any problem is assumed to be inertial.
- II. The direction of any electric current is the direction of flow of positive charge (conventional current).
- For any isolated electric charge, the electric potential is defined as zero at an infinite distance from the charge.
- *IV. For mechanics and thermodynamics equations, W represents the work done on a system.

^{*}Not on the Table of Information for Physics C, since Thermodynamics is not a Physics C topic.

ADVANCED PLACEMENT PHYSICS B EQUATIONS FOR 2010 and 2011

NEWTONIAN MECHANICS

$$v = v_0 + at$$

a = acceleration

F = force

$$x = x_0 + v_0 t + \frac{1}{2}at^2$$
 $f = \text{frequency}$

$$x = x_0 + v_0 \iota + \frac{1}{2} u \iota$$

h = height

$$v^2 = {v_0}^2 + 2a(x - x_0)$$
 $J = \text{impulse}$

K = kinetic energy

$$\sum \mathbf{F} = \mathbf{F}_{net} = m\mathbf{a}$$
 $k = \text{spring constant}$

 ℓ = length

$$F_{fric} \leq \mu N$$

m = mass

$$a = \frac{v^2}{2}$$

N = normal force

$$a_c = \frac{v^2}{r}$$

P = power

$$\tau = rF \sin \theta$$

p = momentumr = radius or distance

T = period

$$\mathbf{p} = m\mathbf{v}$$

t = time

$$\mathbf{J} = \mathbf{F} \Delta t = \Delta \mathbf{p}$$

U = potential energy

v = velocity or speedW = work done on a system

$$K = \frac{1}{2}mv^2$$

x = position

 $\Delta U_{\varphi} = mgh$

 μ = coefficient of friction

 $W = F\Delta r\cos\theta$

 θ = angle τ = torque

$$P_{avg} = \frac{W}{\Delta t}$$

 $P = F \nu \cos \theta$

$$\mathbf{F}_{s} = -k\mathbf{x}$$

$$U_s = \frac{1}{2}kx^2$$

$$T_s = 2\pi \sqrt{\frac{m}{k}}$$

$$T_p = 2\pi \sqrt{\frac{\ell}{g}}$$

$$T = \frac{1}{f}$$

$$F_G = -\frac{Gm_1m_2}{r^2}$$

$$U_G = -\frac{Gm_1m_2}{r}$$

ELECTRICITY AND MAGNETISM

$$F = \frac{1}{4\pi\epsilon_1} \frac{q_1 q_2}{r^2}$$

A = area

$$F = \frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{r^2}$$

B = magnetic fieldC = capacitance

$$\mathbf{E} = \frac{\mathbf{F}}{a}$$

d = distanceE = electric field

$$U_E = qV = \frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{r}$$

$$E_{avg} = -\frac{V}{d}$$

I = current ℓ = length

$$V = \frac{1}{4\pi\epsilon_0} \sum_{i} \frac{q_i}{r_i}$$

P = powerQ = charge

$$4\pi\epsilon_0 \frac{2\pi}{n}$$

q = point chargeR = resistance

$$C = \frac{Q}{V}$$

r = distancet = time

$$C = \frac{\epsilon_0 A}{d}$$

U = potential (stored) energy

$$U_c = \frac{1}{2}QV = \frac{1}{2}CV^2$$

V = electric potential or potential difference

$$I_{avg} = \frac{\Delta Q}{\Delta t}$$

v = velocity or speed ρ = resistivity

$$R = \frac{\rho \ell}{A}$$

 θ = angle $\phi_m = \text{magnetic flux}$

$$V = IR$$

$$P = IV$$

$$C_p = \sum_i C_i$$

$$\frac{1}{C_s} = \sum_{i} \frac{1}{C_i}$$

$$R_{S} = \sum_{i} R_{i}$$

$$\frac{1}{R_p} = \sum_{i} \frac{1}{R_i}$$

$$F_B = qvB\sin\theta$$

$$F_B = BI\ell \sin\theta$$

$$B = \frac{\mu_0}{2\pi} \frac{I}{r}$$

$$\phi_m = BA\cos\theta$$

$$\boldsymbol{\varepsilon}_{avg} = -\frac{\Delta\phi_m}{\Delta t}$$

$$\varepsilon = B\ell v$$

ADVANCED PLACEMENT PHYSICS B EQUATIONS FOR 2010 and 2011

FLUID MECHANICS AND THERMAL PHYSICS

		- /	T 7
ο	=	m/	V

$$P = P_0 + \rho g h$$

$$F_{buov} = \rho V g$$

$$A_1 v_1 = A_2 v_2$$

$$P + \rho g y + \frac{1}{2} \rho v^2 = \text{const.}$$

$$\Delta \ell = \alpha \ell_0 \Delta T$$

$$H = \frac{kA\Delta T}{I}$$

$$P = \frac{F}{A}$$

$$PV = nRT = Nk_BT$$

$$K_{avg} = \frac{3}{2}k_BT$$

$$v_{rms} = \sqrt{\frac{3RT}{M}} = \sqrt{\frac{3k_BT}{\mu}}$$

$$W = -P\Delta V$$

$$\Delta U = O + W$$

$$e = \left| \frac{W}{Q_H} \right|$$

$$e_c = \frac{T_H - T_C}{T_H}$$

A = area

e = efficiency

F = force

h = depth

H = rate of heat transfer

k =thermal conductivity

 K_{avg} = average molecular kinetic energy

 $\ell = length$

L =thickness

m = mass

M = molar mass

n = number of moles

N = number of molecules

P = pressure

Q = heat transferred to asystem

T = temperature

U = internal energy

V = volume

v = velocity or speed

 v_{rms} = root-mean-square

velocity

W =work done on a system

y = height

 α = coefficient of linear expansion

 $\mu = \text{mass of molecule}$

 ρ = density

ATOMIC AND NUCLEAR PHYSICS

$$E = hf = pc$$

$$E = energy$$

$$K_{\text{max}} = hf - \phi$$

f = frequency

K = kinetic energy

 $\lambda = \frac{h}{n}$

m = mass

p = momentum

 λ = wavelength

 $\Delta E = (\Delta m)c^2$

 ϕ = work function

WAVES AND OPTICS

$$v = f\lambda$$

d = separation

$$n = \frac{c}{}$$

f = frequency or focal length

 $n_1 \sin \theta_1 = n_2 \sin \theta_2$

h = heightL = distance

$$\sin \theta_{\mathcal{C}} = \frac{n_2}{n_1}$$

M = magnificationm =an integer

$$\frac{1}{s_i} + \frac{1}{s_0} = \frac{1}{f}$$

n = index ofrefraction

R = radius of

$$M = \frac{h_i}{h_0} = -\frac{s_i}{s_0}$$

curvature s = distance

$$M = \frac{h_i}{h_0} = -\frac{s_i}{s_0}$$

v = speed

$$f = \frac{R}{2}$$

x = position λ = wavelength

$$d\sin\theta = m\lambda$$

$$\theta$$
 = angle

A = area

b = base

h = height

 $\ell = length$

w = width

r = radius

V = volume

C = circumference

S = surface area

$$x_m \approx \frac{m\lambda L}{d}$$

GEOMETRY AND TRIGONOMETRY

Rectangle

A = bh

Triangle

 $A = \frac{1}{2}bh$

Circle

 $A = \pi r^2$

 $C = 2\pi r$

Parallelepiped

 $V = \ell w h$ Cylinder

 $V = \pi r^2 \ell$

$$S = 2\pi r\ell + 2\pi r^2$$

Sphere

$$V = \frac{4}{3}\pi r^3$$

$$S=4\pi r^2$$

Right Triangle

$$a^2 + b^2 = c^2$$

$$\sin\theta = \frac{a}{c}$$

$$\cos\theta = \frac{b}{c}$$

$$\tan \theta = \frac{a}{b}$$

ADVANCED PLACEMENT PHYSICS C EQUATIONS FOR 2010 and 2011

MECHANICS					
$v = v_0 + at$	a = acceleration				
	F = force				
$x = x_0 + v_0 t + \frac{1}{2} a t^2$	f = frequency				
2	h = height				
$v^2 = {v_0}^2 + 2a(x - x_0)$	I = rotational inertia				
0 (0)	J = impulse				
$\sum \mathbf{F} = \mathbf{F}_{net} = m\mathbf{a}$	K = kinetic energy				
1	k = spring constant				
$\mathbf{F} = \frac{d\mathbf{p}}{dt}$	$\ell = \text{length}$				
dt	L = angular momentum				
$\mathbf{J} = \int \mathbf{F} dt = \Delta \mathbf{p}$	m = mass				
$\mathbf{J} = \mathbf{u} \mathbf{v} - \mathbf{\Delta} \mathbf{P}$	N = normal force				
$\mathbf{p} = m\mathbf{v}$	P = power				
	p = momentum r = radius or distance				
$F_{fric} \le \mu N$	\mathbf{r} = position vector				
(T = position vector $T = period$				
$W = \int \mathbf{F} \cdot d\mathbf{r}$	t = time				
1	U = potential energy				
$K = \frac{1}{2}mv^2$	v = velocity or speed				
\mathcal{L}	W = work done on a system				
$P = \frac{dW}{dt}$	x = position				
dt	$\mu = \text{coefficient of friction}$				
$P = \mathbf{F} \bullet \mathbf{v}$	θ = angle				
1 1 1	$\tau = \text{torque}$				
$\Delta U_g = mgh$	ω = angular speed				
	α = angular acceleration				
$a_c = \frac{v^2}{r} = \omega^2 r$					
r					
$\tau = \mathbf{r} \times \mathbf{F}$	$\mathbf{F}_{s} = -k\mathbf{x}$				
Σ = - Ιω	1, 2				
$\sum \mathbf{\tau} = \mathbf{\tau}_{net} = I\mathbf{\alpha}$	$U_{\rm S} = \frac{1}{2}kx^2$				
$I = \int r^2 dm = \sum mr^2$	2- 1				
$I = \int I \ am = \sum mI$	$T = \frac{2\pi}{\omega} = \frac{1}{f}$				
$\mathbf{r}_{cm} = \sum m\mathbf{r}/\sum m$	w = f				
	$T_{S} = 2\pi \sqrt{\frac{m}{k}}$				
$v = r\omega$	$I_S = 2\pi\sqrt{\frac{k}{k}}$				
$\mathbf{L} = \mathbf{r} \times \mathbf{p} = I\mathbf{\omega}$	<i>[</i>				
-	$T_p = 2\pi \sqrt{\frac{\ell}{g}}$				
$K = \frac{1}{2}I\omega^2$	10				
<i>L</i>	$\mathbf{F}_G = -\frac{Gm_1m_2}{r^2}\hat{\mathbf{r}}$				
$\omega = \omega_0 + \alpha t$	r^2				

 $\theta = \theta_0 + \omega_0 t + \frac{1}{2} \alpha t^2 \qquad U_G = -\frac{G m_1 m_2}{r}$

1					
ELECTRICITY	Y AND MAGNETISM				
$1 q_1q_2$	A = area				
$F = \frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{r^2}$	B = magnetic field				
	C = capacitance				
$\mathbf{E} = \frac{\mathbf{F}}{a}$	d = distance				
L = q	E = electric field				
	$\mathcal{E} = \text{emf}$				
$\oint \mathbf{E} \cdot d\mathbf{A} = \frac{Q}{\epsilon_0}$	F = force				
• • • • • • • • • • • • • • • • • • •	I = current				
dV	J = current density				
$E = -\frac{dV}{dr}$	L = inductance				
	$\ell = \text{length}$				
$V = \frac{1}{4\pi\epsilon_0} \sum_{i} \frac{q_i}{r_i}$	n = number of loops of wire				
$4\pi\epsilon_0 \stackrel{\sim}{\iota} r_i$	per unit length				
1 00	N = number of charge carriers				
$U_E = qV = \frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{r}$	per unit volume				
$4\pi\epsilon_0$	P = power				
~ 0	Q = charge				
$C = \frac{Q}{V}$	q = point charge				
	R = resistance				
$C = \frac{\kappa \epsilon_0 A}{d}$	r = distance				
d	t = time				
$C_p = \sum_i C_i$	U = potential or stored energy				
$p = \sum_{i} c_{i}$	V = electric potential				
1 1	v = velocity or speed				
$\frac{1}{C_c} = \sum_{i} \frac{1}{C_i}$	$\rho = \text{resistivity}$				
$\bigcup_{S} i \bigcup_{i}$	ϕ_m = magnetic flux				
$I = \frac{dQ}{dt}$	$\kappa = \text{dielectric constant}$				
$I = \frac{1}{dt}$	x = dielectric constant				
1 1					
$U_c = \frac{1}{2}QV = \frac{1}{2}CV^2$	$\oint \mathbf{B} \cdot d\mathbf{\ell} = \mu_0 I$				
2 2	\mathcal{G}^{μ}				
$R = \frac{\rho \ell}{A}$	$\mu_0 I d\ell \times \mathbf{r}$				
$K = \frac{1}{A}$	$d\mathbf{B} = \frac{\mu_0}{4\pi} \frac{I d\ell \times \mathbf{r}}{r^3}$				
$\mathbf{E} = \rho \mathbf{J}$	The p				
$\mathbf{E} - \rho \mathbf{J}$	$\mathbf{F} = \int I \ d\boldsymbol{\ell} \times \mathbf{B}$				
$I = Nev_d A$	•				
	$B_s = \mu_0 nI$				
V = IR	(
$R_{S} = \sum_{i} R_{i}$	$\phi_m = \int \mathbf{B} \cdot d\mathbf{A}$				
$\frac{s}{i}$	c do				
1 5 1	$\boldsymbol{\varepsilon} = \oint \mathbf{E} \cdot d\boldsymbol{\ell} = -\frac{d\phi_m}{dt}$				
$\frac{1}{R_n} = \sum_{i} \frac{1}{R_i}$	17				
P	$\varepsilon = -L \frac{dI}{dt}$				
P = IV	at				
	1 2				

 $U_L = \frac{1}{2}LI^2$

ADVANCED PLACEMENT PHYSICS C EQUATIONS FOR 2010 and 2011

GEOMETRY AND TRIGONOMETRY

Rectangle

A = area

$$A = bh$$

C = circumference

Triangle

V = volume

1

S = surface areab = base

 $A = \frac{1}{2}bh$

b = base

Circle

h = height $\ell = \text{length}$

 $A = \pi r^2$

w = width

 $C = 2\pi r$

r = radius

Parallelepiped

$$V = \ell w h$$

Cylinder

$$V=\pi r^2\ell$$

$$S = 2\pi r\ell + 2\pi r^2$$

Sphere

$$V = \frac{4}{3}\pi r^3$$

$$S=4\pi r^2$$

Right Triangle

$$a^2 + b^2 = c^2$$

$$\sin \theta = \frac{a}{c}$$

$$\cos\theta = \frac{b}{c}$$

$$\tan\theta = \frac{a}{b}$$

CALCULUS

$$\frac{df}{dx} = \frac{df}{du}\frac{du}{dx}$$

$$\frac{d}{dx}(x^n) = nx^{n-1}$$

$$\frac{d}{dx}(e^x) = e^x$$

$$\frac{d}{dx}(\ln x) = \frac{1}{x}$$

$$\frac{d}{dx}(\sin x) = \cos x$$

$$\frac{d}{dx}(\cos x) = -\sin x$$

$$\int x^n \, dx = \frac{1}{n+1} x^{n+1}, \, n \neq -1$$

$$\int e^x dx = e^x$$

$$\int \frac{dx}{x} = \ln|x|$$

$$\int \cos x \, dx = \sin x$$

$$\int \sin x \, dx = -\cos x$$