

Выпускная квалификационная работа по курсу «Data Science»

Слушатель Андреева Елена Анатольевна

Этапы выполнения работы

- ◆Разведочный анализ данных
- ❖Предобработка данных
- ❖Разработка и обучение регрессионных моделей для прогнозирования «Модуль упругости при растяжении, ГПа» и «Прочность при растяжении, МПа»
- ❖Построение нейронной сети для рекомендации «Соотношение матрицанаполнитель»

Разведочный анализ данных

- описательная статистика данного датасета;
- визуальный анализ гистограмм;
- визуальный анализ диаграмм размаха («ящик с усами»);
- проверка нормальности распределения по критерию Пирсона;
- анализ попарных графиков рассеяния переменных;
- корреляционный анализ с целью поиска коэффициентов

Предобработка данных

Найдем выбросы.

Для поиска выбросов воспользуемся методом 3-х сигм.

```
count_3s = 0
count_iq = 0
for column in df1:
    d = df1.loc[:, [column]]
    # методом 3-х сигм
    zscore = (df1[column] - df1[column].mean()) / df1[column].std()
    d['3s'] = zscore.abs() > 3
    count_3s += d['3s'].sum()
print('Метод 3-х сигм, выбросов:', count_3s)
```

Метод 3-х сигм, выбросов: 24

```
# Удаляем выбросы в датасете с помощью метода трёх сигм outliers = pd.DataFrame(index=df1.index) # Создание пустого датафрей for column in df1: # запускаем цикл по каждому столбцу датафрема zscore = (df1[column] - df1[column].mean()) / df1[column].std() outliers[column] = (zscore.abs() > 3) #определяем выбросы с помо df1 = df1[outliers.sum(axis=1)==0] # фильтруем, оставляя только стро df1.shape (1000, 13)
```


Обучение моделей

Для прогнозирования модуля упругости при растяжении и прочности при растяжении были использованы следующие методы машинного обучения:

- Лассо-регрессия (Lasso);
- Линейная регрессия (LinearRegression);
- Гребневая регрессия (Ridge);
- Регрессионное дерево решений (DecisionTreeRegressor);
- Случайный лес регрессии (RandomForestRegressor);
- Эластичная сеть регрессии (ElasticNetCV);
- Метод опорных векторов для регрессии (SVR);
- Байесовская линейная регрессия (BayesianRidge);
- Ядерная регрессия (KernelRidge).

Нейронная сеть для рекомендации «Соотношение матрица-наполнитель»

Результаты работы нейронных сетей для предсказания "Соотношение матрица-наполнитель"

			R2	RMSE
MLPRegressor	без	подобранных	-0.037495	0.940855
гиперпараметров				
MLPRegressor	c	подобранными	-0.019444	0.932634
гиперпараметрами				
Последовательная н	нейросетн	(Keras)	-0.064893	0.953197
Последовательная	нейросе	ть (Keras) с	-0.085778	0.962499
callback				
Последовательная	нейросе	ть (Keras) с	-0.048021	0.945616
Dropout				

do.bmstu.ru

