Министерство образования Республики Беларусь

Учреждение образования

БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

Факультет компьютерных систем и сетей Кафедра электронных вычислительных машин

Дисциплина: Системное программное обеспечение вычислительных машин (СПОВМ)

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

к курсовому проекту на тему:

«Виртуальный CD-ROM»

Студент: гр.350501 Соловцов В. В.

Руководитель: Яночкин А.Л.

Минск 2015

СОДЕРЖАНИЕ

СОДЕРЖАНИЕ

ВВЕДЕНИЕ

- 1. ТЕХНИЧЕСКОЕ ЗАДАНИЕ
 - 1.1 Общие сведения
 - 1.2 Назначения и цели программного средства
 - 1.3 Требования к программному средству
- 2. ОБЗОР ЛИТЕРАТУРЫ
 - 2.1 Драйвер виртуального диска
 - 2.1.1 Обработка запросов Plug and Play
 - 2.1.2 Обработка расширенных запросов
 - 2.1.3 Инициализация драйвера
- 3. СИСТЕМНОЕ ПРОЕКТИРОВАНИЕ
 - 3.1 Структурная схема программы
- 4. ФУНКЦИОНАЛЬНОЕ ПРОЕКТИРОВАНИЕ
 - 4.1 Процедуры драйвера
 - 4.1.1 Процедура инициализации драйвера DriverEntry
 - 4.1.2 Процедура создания устройства VCDromCreateDevice
 - 4.1.3 Процедура удаления устройства VCDromDeleteDevice
 - 4.1.4 Процедура контроля устройства VCDromDeviceControl
 - 4.2 Процедуры вызывающей программы
 - 4.2.1 Процедура монтирования диска VCDromMount
 - 4.2.2 Процедура изъятия диска VCDromUnmount
- 5. ТЕСТИРОВАНИЕ ПРОГРАММЫ
- 6. РУКОВОДСТВО ПОЛЬЗОВАТЕЛЯ
 - 6.1 Установка программы VirtualCDRom
 - 6.2 Способ взаимодействия пользователя с программой

ЗАКЛЮЧЕНИЕ

СПИСОК ЛИТЕРАТУРЫ

ВВЕДЕНИЕ

СD- и DVD-диски относятся к числу самых популярных сегодня внешних носителей информации, и на них хранятся самые разнообразные данные — начиная от программного обеспечения и заканчивая фото- и музыкальными коллекциями. Однако работать с ними не всегда удобно, и причин тому несколько. СD- и DVD-диски необходимо вставлять в накопитель, и обмен данными с ними производится заметно медленнее, чем с жестким диском, — в итоге, например, запуск программы с компакт-диска потребует заметно больше времени, чем с винчестера. CD- и DVD-диски перестают читаться в случае появления на них сбойных секторов или если их поцарапать, что рано или поздно происходит при активной эксплуатации. Мобильные пользователи сталкиваются с еще одной сложностью: отправляясь в командировку, им приходится брать с собой весь комплект дисков, который может потребоваться в работе, что увеличивает размер багажа.

Избежать подобных проблем можно, скопировав информацию с компакт-дисков на винчестер, но данный вариант подходит далеко не для каждого диска. Например, диски с играми, лицензионными базами данных и т.п. при копировании на винчестер нередко отказываются работать. В таких случаях придется пойти другим путем: создать на компьютере виртуальные CD- и DVD-приводы и поместить в них образы часто используемых дисков. Технически это предполагает прохождение двух этапов. Вначале потребуется создать нужные файлы образов дисков (то есть виртуальные компакт-диски) — это можно сделать с помощью программ для записи и копирования CD-DVD-дисков, и сохранить данные образы на жестком диске. А затем необходимо воспользоваться специальной программой-эмулятором виртуальных накопителей с помощью которой придется создать нужное число виртуальных CD/DVD-приводов и подключить в каждом из них по подготовленному образу диска.

В итоге с виртуальными компакт-дисками можно будет работать точно так же, как и с настоящими. Более того, это намного быстрее и комфортнее. Вопервых, ускорится доступ к информации, поскольку с жесткого диска информация считывается гораздо быстрее, чем с компакт-диска, к тому же для запуска виртуального диска не требуется вставлять диск в накопитель (достаточно щелкнуть по его иконке). Во-вторых, уменьшится вероятность потери ценных данных в результате выхода дисков из строя, ведь CD- и DVDдиски не вставляются в накопитель, а потому их поверхность не изнашивается. Кроме ΤΟΓΟ, открываются дополнительные возможности, например, применение виртуальных компакт-дисков на компьютерах, не имеющих физического CD/DVD-привода.

Исходя из всего этого, было принято решение разработать программное средство, позволяющее осуществлять виртуализацию оптических дисков.

1. ТЕХНИЧЕСКОЕ ЗАДАНИЕ

1.1 Общие сведения.

Название: «Виртуальный CD-ROM».

«Виртуальный CD-ROM» – программа для создания виртуальных приводов.

1.2 Назначения и цели программного средства.

Назначения: программа предназначена для виртуализации оптических дисков.

Цели: облегчение и ускорение работы с оптическими дисками, уменьшение количества CD- и DVD-дисков, требующихся для использования как на работе, так и на домашнем ПК.

1.3 Требования к программному средству

Данное программное средство должно уметь создавать несколько активных виртуальных приводов, поддерживать популярные форматы образов (iso) и иметь удобный и понятный интерфейс.

2. ОБЗОР ЛИТЕРАТУРЫ

В этом разделе будут рассмотрены основные теоритические сведения, необходимые для создания программы «Виртуальный CD-ROM».

2.1 Драйвер виртуального диска

В Windows виртуальные диски реализуются с помощью драйверов режима ядра (kernel mode drivers). Драйвер реализуется как набор процедур, каждая из которых предназначена для реализации отдельного типа обращений к драйверу со стороны диспетчера ввода/вывода. Процедуры, которые необходимо поддерживать драйверу приведены в таблице 1 [3].

Таблица 1

Процедура	Описание
DriverEntry	Выполняется при загрузке драйвера операционной системой. Здесь драйвер регистрирует свои остальные точки входа и выполняет свою общую инициализацию.
Unload	Вызывается при выгрузке драйвера. Здесь необходимо освободить все затребованные ресурсы.
AddDevice	Здесь создаётся объект-устройство, соответствующий полученному уведомлению от менеджера устройств, и выполняется инициализация данных, специфичных для данного устройства.
DispatchPnP	Выполняет обработку специфичных Plug&Play запросов, таких как инициализация устройства, остановка, удаление устройства и обработка остальных запросов.
DispatchPower	Выполняет обработку запросов по управлению питанием устройства.
DispatchSystemControl	Обрабатывает запросы от подсистемы инструментария Windows (WMI)
DispatchCreate,	Обслуживают запросы на чтение запись данных для устройства.
DispatchClose,	
DispatchRead,	
DispatchWrite	

2.1.1 Обработка запросов Plug and Play

В процессе работы диспетчер ввода вывода может динамически управлять состоянием устройства: запускать, останавливать и выгружать. Реализация этих функций драйвером устройства хранения обеспечивает при

обработке специфичных PnP IRP пакетов. В таблице 2 приведены описания IRP пакетов, которые должны поддерживаться.

Таблица 2

IRP_MN_Xxx	Описание
IRP_MN_START_DEVICE	Инициализация устройства с заданными ресурсами
IRP_MN_QUERY_STOP_DEVICE	Проверка осуществимости остановки устройства для перераспределения ресурсов
IRP_MN_STOP_DEVICE	Остановка устройства с потенциальной возможность. перезапуска или удаления из системы
IRP_MN_CANCEL_STOP_DEVICE	Уведомляет, что предыдущий запрос на остановку не получит дальнейшего развития
IRP_MN_QUERY_REMOVE_DEVICE	Проверка осуществимости безопасного удаления устройства
IRP_MN_REMOVE_DEVICE	Выполнить безопасное удаление устройства
IRP_MN_CANCEL_REMOVE_DEVICE	Уведомляет, что предыдущий запрос на удаление не получит дальнейшего развития
IRP_MN_SURPRISE_REMOVAL	Уведомляет, что устройство было удалено без предварительного предупреждения

Применительно к виртуальному диску большая часть этих сообщений не влечет каких-либо дополнительных действий, т.к. у виртуального диска нет дополнительных буферов, данные с которые должны быть записаны на диск при остановке устройства, или поддержки функций управления электропитанием устройства.

2.1.2 Обработка расширенных запросов

Для управления самим устройством диспетчер ввода/вывода посылает драйверу пакет с кодом управления вводом/выводом(IOCTL) [1].

Некоторые коды управления:

IOCTL_DISK_GET_PARTITION_INFO – сообщить о типе, размере и природе раздела диска.

IOCTL_DISK_GET_PARTITION_INFO_EX – сообщить расширенную информацию о диске.

IOCTL_DISK_IS_WRITABLE – проверка можно ли на диск записывать данные

IOCTL_DISK_SET_PARTITION_INFO – изменить тип раздела

IOCTL_DISK_GET_LENGTH_INFO – получить длину указанного диска, тома или раздела.

IOCTL_CDROM_GET_DRIVE_GEOMETRY – получить информацию о геометрии диска.

IOCTL_CDROM_CHECK_VERIFY – проверить, сменился ли носитель.

2.1.3 Инициализация драйвера

Для инициализация драйвера вызывается следующая процедура (DriverEntry) [2]:

NTSTATUS DriverEntry (IN PDRIVER_OBJECT DriverObject, IN PUNICODE_STRING RegistryPath);

Тип NTSATUS, соответствующий возвращаемому значению, определяет тип ошибки. Многие функции драйвера возвращают значение этого типа. Если работа проходит успешно, результат принимает значение STATUS SUCCESS.

3. СИСТЕМНОЕ ПРОЕКТИРОВАНИЕ

Решение включает в себя непосредственно драйвер виртуального диска и приложение, осуществляющее связь между пользователем и драйвером. Драйвер обеспечивает создание виртуального диска. Драйвер получает IRP (I/O request packet) запросы, обрабатывает их и возвращает результат. Приложение обслуживает запросы от ОС к виртуальным дискам. Структурная схема программы приведена ниже.

3.1 Структурная схема программы

Рис. 3.1 – Структурная схема программы

Из схемы видно, что вызывающая программа (vcdrom.exe) осуществляет монтирование и удаление диска, посредством отправления запросов драйверу (vcdrom.sys). Так же между ними происходит обмен иными запросами (чтение, запись).

4. ФУНКЦИОНАЛЬНОЕ ПРОЕКТИРОВАНИЕ

Данный раздел включает в себя описание основных методов программы.

4.1 Процедуры драйвера

4.1.1 Процедура инициализации драйвера DriverEntry

```
NTSTATUS DriverEntry (IN PDRIVER_OBJECT DriverObject, IN PUNICODE STRING RegistryPath);
```

Где: DriverObject - указатель на объект-драйвер, соответствующий загружаемому драйверу; RegistryPath - указатель на строку в формате Unicode с именем ключа реестра, соответствующего загружаемому драйверу. Возвращаемое значение имеет тип NTSTATUS. Если возвращается успешный завершения, диспетчер ввода/вывода немедленно позволяет производить обработку запросов к объектам-устройствам, созданным драйвером. Во всех остальных случаях драйвер не загружается в память, и запросы к нему не передаются. DriverEntry определяет аппаратное обеспечение, которое драйвер будет контролировать. Это аппаратное обеспечение выделяется драйверу, то есть помечается как находящееся под управлением данного драйвера. В данном методе выполняется вызов функции VCDromCreateDevice, в которой создается объект устройства для каждого физического или логического устройства под управлением данного драйвера, в процессе которого инициализируется структура расширения устройства для каждого созданного объекта устройства.

В данном методе также необходимо сообщить системе остальные процедуры обработки пакетов IRP:

```
DriverObject-> MajorFunction[IRP_MJ_CREATE] = VCDromCreateClose;
DriverObject->MajorFunction[IRP_MJ_CLOSE] = VCDromCreateClose;
DriverObject->MajorFunction[IRP_MJ_READ] = VCDromReadWrite;
DriverObject->MajorFunction[IRP_MJ_WRITE] = VCDromReadWrite;
DriverObject->MajorFunction[IRP_MJ_DEVICE_CONTROL] =
VCDromDeviceControl;
```

DriverObject->DriverUnload = VCDromUnload;

Массив MajorFunction устанавливает соответствие между кодом типа запроса IRP_MJ_NNN и диспетчерской функцией, которая его обрабатывает. Наш драйвер обрабатывает запросы на открытие и закрытие устройства (VCDromCreateClose), чтение и запись (VCDromReadWrite), запросы от подсистемы инструментария Windows (VCDromDeviceControl).

4.1.2 Процедура создания устройства VCDromCreateDevice

NTSTATUS VCDromCreateDevice (IN PDRIVER_OBJECT DriverObject, IN ULONG Number);

Где: DriverObject – указатель на объект драйвера, Number – номер создающегося устройства. Возвращаемое значение имеет тип NTSTATUS.

В данном методе с помощью вызова функции IoCreateDeviceSecure происходит создание объекта именованного устройства с применением указанных настроек безопасности. Далее создается новый системный поток, который выполняется в режиме ядра, с точкой входа VCDromThread.

4.1.3 Процедура удаления устройства VCDromDeleteDevice

PDEVICE_OBJECT VCDromDeleteDevice (IN PDEVICE_OBJECT DeviceObject;

Где: DeviceObject – указатель на объект устройства, который следует удалить. Возвращаемое значение – указатель на объект следующего устройства (для реализации функции VCDromUnload, в которой поочередно в цикле удаляются все созданные устройства).

В данном методе системной поток ставится в режим ожидания (KeWaitForSingleObject), уменьшается количество ссылок на объект (ObDereferenceObject) и если количество ссылок становится равным 0, то объект может быть удален системой. Далее происходит освобождение выделенных ранее ресурсов (ExFreePool, SeDeleteClientSecurity) и удаление самого устройства из системы с помощью IoDeleteDevice.

4.1.3 Процедура контроля устройства VCDromDeviceControl

NTSTATUS VCDromDeviceControl (IN PDEVICE_OBJECT DeviceObject, IN
PIRP Irp);

Где: DeviceObject — указатель на объект устройства, для которого обрабатывается IPR (I/O Request Packet) пакет; Irp — указатель на структуру IRP. Структура IRP является частично закрытой структурой, которая представляет собой пакет запроса ввода/вывода.

В данной процедуре определены основные управляющие коды для текущего IRP пакета. Данные о текущем IRP пакете получаются при помощи вызова процедуры IoGetCurrentIrpStackLocation.

4.2 Процедуры вызывающей программы

4.2.1 Процедура монтирования диска VCDromMoutnt

Где: DeviceNumber – номер добавляемого устройства; OpenFileInformation – указатель на структуру OPEN_FILE_INFORMATON, которая формируется до вызова функции. В этой структуре хранится информация о монтируемом устройстве. В случае успешного выполнения функция возвращает 0, иначе -1. Структура OPEN_FILE_INFORMATION:

```
typedef struct _OPEN_FILE_INFORMATION {
    LARGE_INTEGER FileSize;
    BOOLEAN ReadOnly;
    UCHAR DriveLetter;
    USHORT FileNameLength;
    UCHAR FileName[1];
} OPEN_FILE_INFORMATION, *POPEN_FILE_INFORMATION;
```

В данном методе с помощью вызова системной функции DefineDosDevice определяется (флаг DDD_RAW_TARGET_PATH) имя устройства MS-DOS. Далее с помощью функции CreateFile создается устройство. Далее с помощью функции DeviceIoControl устройству посылается управляющий код IOCTL_VCDROM_OPEN_FILE. Драйвер примет этот управляющий код и обработает его. Для завершения

монтирования следует сообщить системе событие, которое выполняет приложение. В данном случае это событие SHCNE_DRIVEADD.

4.2.2 Процедура изъятия диска VCDromUnmount

int VCDromUnmount(char DriveLetter);

Где: DriveLetter – буква диска, который должен быть извлечен. В случае успешного выполнения функция возвращает 0, иначе -1.

В данном методе с помощью вызова системной функции CreateFile открывается раннее созданное устройство. Далее этому устройству с помощью функции DeviceIoControl посылается последовательность управляющих кодов, а именно:

- 1. FSCTL_LOCK_VOLUME используется для блокировки доступа к разделу, если он не используется.
- 2. IOCTL_VCDROM_CLOSE_FILE используется для сообщения драйверу того, что работа завершилась, и следует закрыть ранее открытый файл.
- 3. FSCTL_DISMOUNT_VOLUME используются для отсоединения устройства от раздела.
- 4. FSCTL_UNLOCK_VOLUME используется для разблокировки доступа к разделу.

Далее с помощью функции DefineDosDevice удаляется (флаг DDD_REMOVE_DEFINITION) имя устройства MS-DOS. Для завершения отсоединения следует сообщить системе событие, которое будет выполнено приложением. В данном случае это событие SHCNE_DRIVEREMOVED.

5. ТЕСТИРОВАНИЕ ПРОГРАММЫ

Тестирование проводилось на 32-битной версии Windows 7. В ходе тестирования неполадок не выявлено. Для тестирования программы использовался образ пакета WinDDK от Microsoft:

Рис. 5.1

Для монтирования образа следует вызвать командную строку, далее сменить директорию на ту, в которой находится исполняемый файл программы (в данном примере с:\). Далее ввести команду:

vcdrom /mount 0 c:\WinDDK.iso o:

где 0 – номер устройства, с:\WinDDK.iso – полное имя образа, о: - буква нового диска.

После исполнения этих операций в устройствах компьютера должен появится новый диск:

Рис. 5.2

Действительно, диск появился. Теперь с ним можно работать как с обычным диском.

Рис. 5.3

Для удаления диска следует вызвать командную строку, далее сменить директорию на ту, в которой находится исполняемый файл программы (в данном примере c:\). Далее ввести команду:

vcdrom /unmounts o:

После этого диск удалится:

Рис. 5.4

Действительно, диск был изъят из устройств компьютера.

6. РУКОВОДСТВО ПОЛЬЗОВАТЕЛЯ

В данном разделе будут рассмотрены вопрос установки программы и вопрос взаимодействия пользователя с программой.

6.1 Установка программы VCDRom

Для установки программы «VCDRom» следует скопировать драйвер (vcdrom.sys) в директорию %systemroot%\System32\drivers\. Далее следует внести данные в системный реестр, для этого следует дважды нажать по vcdrom.reg, после этого требуется перезагрузить компьютер. Взаимодействие с программой будет рассмотрено ниже.

6.2 Способ взаимодействия пользователя с программой

Для обеспечения взаимодействия с пользователем был выбран консольный интерфейс. Рассмотрим взаимодействие программы с пользователем. Для запуска программы пользователю необходимо открыть командную строку (Win + R, далее ввести cmd и нажать «ОК»), перейти в директорию с исполняемым файлом программы (vcdrom.exe) с помощью команды смены директории cd, и далее ввести в командной строке название исполняемого файла программы (vcdrom.exe). После этих действий пользователь увидит в консоли синтаксис команд для монтирования и удаления дисков (рис. 6.2.1).

```
Microsoft Windows [Version 6.1.7601]
(c) Корпорация Майкрософт (Microsoft Corp.), 2013. Все права защищены.

С:\Users\Администратор\cd c:\
c:\>vcdrom
Menu:
vcdrom /mount \(devicenumber\) \(filename\) \(drive:\)

c:\>

c:\>
```

Рис. 6.2.1 Общий синтаксис команд

Для монтирования диска следует ввести vcdrom /mount, далее номер устройства, полное имя файла, и букву нового диска. Пример представлен на рис 6.2.2.

```
Місгозоft Windows [Version 6.1.7601]
(с) Корпорация Майкрософт (Microsoft Corp.), 2013. Все права защищены.

G:\Users\Aдминистратор>cd c:\
c:\>vcdrom
Menu:
vcdrom /mount (devicenumber) (filename) (drive:>
vcdrom /unmount (drive:)

c:\>vcdrom /mount 0 c:\WinDDK.iso o:
c:\>_
```

Рис. 6.2.2 Синтаксис команды монтирования

После этого в устройствах компьютера появится новый диск О.

Для удаления следует ввести vcdrom /unmount, далее букву диска. Пример представлен на рис. 6.2.3.

```
Администратор: C:\Windows\system32\cmd.exe

Microsoft Windows [Version 6.1.7601]
(c) Корпорация Майкрософт (Microsoft Corp.), 2013. Все права защищены.

C:\Users\Aдминистратор>cd c:\
c:\>vcdrom
Menu:
vcdrom /mount (devicenumber) (filename) (drive:>
vcdrom /unmount (drive:)

c:\>vcdrom /mount 0 c:\WinDDK.iso o:
c:\>vcdrom /unmount o:
c:\>vcdrom /unmount o:
```

Рис. 6.2.3 Удаление

После этого диск удалится из устройств компьютера.

ЗАКЛЮЧЕНИЕ

В ходе работы над курсовым проектом было спроектировано и разработано приложение «Виртуальный СD-ROМ». Данное приложение предназначено для создания виртуального привода на основе имеющегося ізообраза диска. В программе разработана возможность добавлять и удалять виртуальные диски. В дальнейшем планируется заменить консольный интерфейс на более удобный графический интерфейс, также планируется расширить список поддерживаемых образов (bin, dmg, nrg, img).

В ходе разработки данного проекта были получены обширные знания в области проектирования и создания драйверов устройств для операционных систем семейства Windows.

СПИСОК ЛИТЕРАТУРЫ

- [1]. MSDN [Электронный ресурс]. Электронные данные. Режим доступа: https://msdn.microsoft.com/en-us/library/windows/desktop/aa363979(v=vs.85).aspx
- [2]. MSDN [Электронный ресурс]. Электронные данные. Режим доступа: https://msdn.microsoft.com/en-us/library/windows/hardware/ff544113%28v=vs.85%29.aspx
- [3]. В. П. Солдатов, Программирование драйверов Windows.