Relational Verification Beyond Shape Analysis

with Suresh Jagannathan

$$(5^3)$$

Simon PJ's Spectrum*

```
Hindley-Milner Types
α list α tree
```

: α tree $\longrightarrow \alpha$ list

```
Dependent Types + HOL
```

Theorem.

$$\forall (\alpha: type). \forall (t: \alpha tree).$$

len(f t) = size(t)

Increasingly precise specification Coq ypes The spectrum of confidence Increasing Hammer Tactical nuclear weapon (cheap, easy confidence that the (expensive, needs a trained to use, program does what user, but very effective limited you want indeed) effectivenes)

^{*}Simon Peyton Jones, Fun with Type Functions, OPLSS'13

Simon PJ's Spectrum

Hindley-Milner Types

- Basic Safety
- Automated type checking
- Full type inference

Dependent Types + HOL

- Full Functional Verification
- User-driven type checking
- No type inference

Simon PJ's Spectrum

Statically ensuring strong semantic guarantees

??

Effective verification

Easy to use

Automatic Type Checking

Type Inference

SMT-enabled refinement types ...

.. is a promising approach

eg: Liquid, Types*
"Logically Qualified" ML Types

fun max x y = if y>x then y else x

Proposition in decidable logic (eg: linear arithmetic)

max : x:int
$$\longrightarrow$$
 y:int \longrightarrow {V:int | $\vee \geq x \land \vee \geq y$ }

VC
$$y>x \vdash [y/v] (v\ge x \land v\ge y)$$
 \longrightarrow Z 3

max typesafe

^{*}P Rondon, M Kawaguchi, and R Jhala, Liquid Types, PLDI'08

But ...

- ... a stereotypical ML/Haskell function is
 - Symbolic (polymorphic), and
 - Higher-order

```
rev map concat foldl foldr traverse treeBalance filter exists quicksort
```

What are their "liquid" refinement types?

```
traverse : {t:\alpha tree} \longrightarrow {l:\alpha list |\phi} What goes here?
```

Overview

- CATALYST: A refinement type-based approach to automatically verify shape invariants of functional programs [ICFP'14].
- General relational verification with CATALYST
- Non-trivial Annotation burden as the cost of effective verification.
- Type inference as means to reduce the cost.

traverse

Our Goal

We intend to capture rich relationships between shapes of data structures as type refinements

```
traverse : \{t:\alpha\ tree\} \longrightarrow \{1:\alpha\ list|\phi\} predicate\ over\ Shape(1)\ \&\ Shape(t)
```

Key Observation

.. is that relations can express fine-grained shapes

forward-order backward-order

pre-order def-use

post-order tree-membership

list-membership in-order

SSA use-def

Relations!

For Example ...

in-order of t is binary relation such that: in-order(x_i,x_j) $\Leftrightarrow i \leq j$

$$R_{io}(t) = \{(x_i,x_j) \mid i \leq j\}$$

fwd-order of 1 is binary relation such that: $fwd-order(x_i,x_j) \Leftrightarrow i \leq j$

$$R_{fo}(l) = \{(x_i, x_j) \mid i \leq j\}$$

$$R_{fo}(l) = R_{io}(t)$$

For Example ...

in-order of t is binary relation such that: in-order(x_i,x_j) $\Leftrightarrow i \leq j$

$$R_{io}(t) = \{(x_i,x_j) \mid i \leq j\}$$

fwd-order of 1 is binary relation such that: $fwd-order(x_i,x_j) \Leftrightarrow i \leq j$

$$R_{fo}(1) = \{(x_i, x_j) \mid i \leq j\}$$

traverse : {t: α tree} \longrightarrow {1: α list | $R_{fo}(l) = R_{io}(t)$ }

Relational type of traverse

The Language of Relations ...

... with relational operators (\cup, \times) , is capable of expressing fine-grained shapes.

Predicates $(=, \subset)$ over relations let us relate shapes

```
For Eg:  \text{traverse : } \{\text{t:}\alpha \text{ tree}\} \ \longrightarrow \ \{\text{l:}\alpha \text{ list} \ | \ R_{fo}(l) = R_{io}(t)\}
```

Relations can be constructed from a small set of primitives (R_{id} , R_{null} , R_{eq} ,...)

However ...

Parametricity

For higher-order & polymorphic functions, we need "parametric" constructs:

- Relationally Parametric Types
- Parametric Relations

Parametricity

For higher-order & polymorphic functions, we need "parametric" constructs:

- Relationally Parametric Types
- Parametric Relations

 $\text{id}\,:\,\alpha\longrightarrow\alpha$

id is agnostic of shape of its argument

Shape of the argument is also the shape of its result

Relational Parameters

id is agnostic of shape of its argument

Denote with an abstract relation

Shape of the argument is also the shape of its result

(P) Id:
$$\{x:\alpha\} \longrightarrow \{y:\alpha \mid \rho(y) = \rho(x)\}$$

Relationally parametric type of id

Parametricity

For higher-order & polymorphic functions, we need "parametric" constructs:

- Relationally Parametric Types
- Parametric Relations

Parametric Relations ...

... let us parameterize relations over relations

Relates substructures of elements of t as defined by ρ

Very useful to express fine-grained shapes!

For Example ...

$$R_{io}(t) = \{((x_i, y_i), (x_j, y_j)) \mid i \leq j\}$$

$$R_{io}[\rho](t) = \{(\rho(x_i, y_i), \rho(x_j, y_j)) \mid i \leq j\}$$

Let R_{fst} be a relation on pairs, such that

$$R_{fst}(x,y) = \{x\}$$

$$R_{io}[R_{fst}](t) = \{(x_i,x_j) \mid i \leq j\}$$

in-order among first-components of pairs in t

In Summary ...

ML Type
$$A \rightarrow B$$

(extended to)

Type refinements

 $(\rho) \ x \colon \{ v \colon A \mid \phi_A \} \rightarrow \{ v \colon B \mid \phi_B \}$

Relational parameters on types

 $R_B(v) = R_A(x)$

Simple inductive relations

 (or)
 $R_B[\rho](v) = R_A[\rho](x)$

Parametric inductive relations

In Summary ...

We have <u>automatically</u> verified ...

Lists	Okasaki trees	Functional Graphs		MLton functions
rev	inOrder	folds		7 7
concat	preOrder	traversals		alpha-rename substitutions
map	postOrder	maps		SUBSTITUTIONS
foldl	treefoldl	•		
foldr	treefoldr	•	1	
exists	balance			
filter	rotate			
•	•			
·	•			

Observe ...

Lists	Okasaki trees	Functional Graphs			MLton functions		
rev	inOrder	fol	.ds				
concat	preOrder	traversals maps			alpha-rename substitutions SSA		
map	postOrder						
foldl	treefoldl	_					
foldr	treefoldr	•					
exists	balance		— :				
filter	rotate		They have nothing to				
•	• •		do with shape/size of list/graph				

Relational verification can go beyond verifying shape invariants

For example ...

Can we write a spec for quicksort that should be valid regardless of how it is implemented?

Think in terms of order

$$\underbrace{ \begin{array}{c} l_1 \\ \text{quicksort} : \alpha \ \text{list} \end{array} } \underbrace{ \begin{array}{c} f \\ (\alpha \longrightarrow \alpha \longrightarrow bool) \end{array} \longrightarrow \alpha \ \text{list}$$

a relation!

Result list is the input list sorted as per the order determined by the comparator function (f).

$$(x,y) \in R_{fo}(l_1)$$

$$(x,y) \in R_{fo}(l_2)$$

$$(y,x) \in R_{fo}(l_2)$$

Let **R** be the relation denoting the order induced by the comparator function

```
(R) quicksort : \alpha list \longrightarrow \{y:\alpha\} \longrightarrow \{v:bool \mid v=true \Leftrightarrow R(x,y)\}) \longrightarrow \alpha list \downarrow type of the comparator function
```

```
(R) quicksort : \alpha list \longrightarrow (\{x:\alpha\} \longrightarrow \{y:\alpha\} \longrightarrow \{v:bool \mid v=true \Leftrightarrow R(x,y)\}) \longrightarrow \alpha list
```

```
(R) quicksort : \alpha list \longrightarrow (\{x:\alpha\} \longrightarrow \{y:\alpha\} \longrightarrow \{v:bool \mid v=true \Leftrightarrow R(x,y)\}) \longrightarrow \alpha list
```

$$(x,y) \in R_{fo}(l_1)$$

$$(x,y) \in R_{fo}(l_2)$$

$$(x,y) \in R_{fo}(l_2)$$

$$(y,x) \in R_{fo}(l_2)$$

```
(R) quicksort: \{l_1:\alpha \text{ list}\} \longrightarrow (\{x:\alpha\} \longrightarrow \{y:\alpha\}\})
                                                     \longrightarrow {v:bool | v=true \Leftrightarrow R(x,y)})
                                   \longrightarrow \{l_2: \alpha \text{ list } \mid \varphi\}
                                                                (has to express)
                                   R(X,Y) = true x ... y
                                                                          (x,y) \in R_{fo}(l_2)
                                  R(x,y) = false \dots y \dots x \dots
        (x,y) \in R_{fo}(l_1)
                                                                          \overline{(y,x)} \in R_{fo}(l_2)
```

So, the relational type is ...

```
(R) quicksort: \{l_1:\alpha \text{ list}\} \longrightarrow \{\{x:\alpha\} \longrightarrow \{y:\alpha\} \ \longrightarrow \{v:bool \mid v=true \Leftrightarrow R(x,y)\}\}
\longrightarrow \{l_2:\alpha \text{ list } \mid \phi\}
\updownarrow
\forall (x,y) \in R_{fo}(l_1) \cdot R(x,y) \Rightarrow (x,y) \in R_{fo}(l_2) \land \neg R(x,y) \Rightarrow (y,x) \in R_{fo}(l_2)
```

Full-functional correctness of quicksort can be verified automatically!

In reality ...

.. this is what the actual type looks like:

Fold Left

Here is a (relatively simple) relational type of fold_left:

Types for First-Order functions ...

...are also non-trivial

reverse:

```
(R) rev : {l : 'a list} -> {v : 'a list | Rmem[R](v) = Rmem[R](1) / Robs[R](v) = Roas[R](1)}
```

concat:

Pain points

- Crafting an appropriate relational type requires considerable effort.
- Annotation burden is non-trivial.

How do we relax this burden?

Type Inference*

- Conventional approach (constraint generation + solving) does not work.
 - Constraints are of form $\phi_0 \Rightarrow \phi_1$, where ϕ_0 and ϕ_1 are formulas in relational logic.
 - Unification is too severe. (eg: $x \in \{1,2\} \neq x \in \{1\}$ yet $x \in \{1,2\} \Rightarrow x \in \{1\}$).
 - Trial and error may not terminate in practice: too many (if not infinite) candidates for ϕ_0 and ϕ_1 .

*Note: CATALYST already has local (within-function) type inference

Type Inference - Unconventional Approaches

Using simple Under-Specifications to derive rich relational specifications.

Easier to write than

 $R_{fo}[R](l) = R_{bo}[R](rev l)$

- Eg: \forall (1:'a list). rev (rev 1) = 1)
- CEGAR and CEGIS: learning from errors for better trial and error.
- Using tests to "Learn Dependent Types" [Zhu, Jagannathan & Nori, MVD'14]

Conclusion

Statically ensuring strong semantic guarantees

??

Effective verification

Easy to use

Automatic Type Checking

Type Inference

Conclusion

shape invariants and beyond!

CATALYST

- Effective verification
- Easy to use

- Automatic Type Checking
- Type Inference

Increasingly precise specification Coq Types The spectrum of confidence Increasing Hammer Tactical nuclear weapon (cheap, easy confidence that the (expensive, needs a trained to use, program does what user, but very effective limited you want indeed) effectivenes)

Thank you

http://tycon.github.io/catalyst/