МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Факультет прикладной математики и инворматики Кафедра математического моделирования и анализа данных

Отчет по лабораторной работе 4 Дискриминантный анализ неоднородных данных

Выполнил: Карпович Артём Дмитриевич студент 3 курса 7 группы

Преподаватель: Малюгин Владимир Ильич

Дискриминантный анализ неоднородных данных

Опираясь на процесс предварительного анализа в лабораторной работе 3, можно точно сказать, что мы имеем четкое разделение на два кластера.

Подгрузили необходимый dataset, создали dataframe с необходимыми нам видами ириса "setosa" и "virginica". Так же для более удобной работы переименовали переменные.

```
[2]: ds = datasets.load_iris()

ext_target = ds.target[:, None]
df = pd.DataFrame(
    np.concatenate((ds.data, ds.target_names[ext_target]), axis=1),
    columns=ds.feature_names + ['target_name'])

df = df.loc[df['target_name'] != 'versicolor'].reset_index(drop=True)

df = df.rename(columns={
    'sepal width (cm)': 'sepalwid',
    'sepal length (cm)': 'sepallen',
    'petal length (cm)': 'petallen',
    'petal width (cm)': 'petalwid'})

df
```

```
[2]:
        sepallen sepalwid petallen petalwid target_name
                                          0.2
     0
              5.1
                       3.5
                                 1.4
                                                    setosa
                                          0.2
     1
              4.9
                       3.0
                                 1.4
                                                    setosa
     2
              4.7
                       3.2
                                 1.3
                                          0.2
                                                    setosa
                                          0.2
     3
              4.6
                       3.1
                                1.5
                                                    setosa
             5.0
                       3.6
                                1.4
                                          0.2
                                                    setosa
              . . .
                       . . .
                                 . . .
                                           . . .
     95
              6.7
                       3.0
                                 5.2
                                          2.3
                                                 virginica
```

```
96
        6.3
                 2.5
                          5.0
                                    1.9
                                          virginica
97
        6.5
                 3.0
                          5.2
                                          virginica
                                    2.0
98
        6.2
                 3.4
                          5.4
                                    2.3
                                          virginica
99
        5.9
                 3.0
                          5.1
                                    1.8
                                          virginica
```

[100 rows x 5 columns]

Для применения необходимых нам алгоритмов разделим выборку на обучающую и тестовую в соотношении 80 на 20.

```
[3]: features = df.drop(columns=['target_name'], axis=1)
labels = df["target_name"]

X_train, X_test, y_train, y_test = train_test_split(features, labels, __

→test_size=0.20, random_state=0)
```

Линейный дискриминантный анализ

Создадим модель линейного дискриминантного анализа, который обучается на ранее созданной обучающей выборке признаков X_train и векторе меток классов у_train. Это позволяет модели изучить зависимости между признаками и классами с целью классификации данных. Для оценки качества построенной модели выполняется кросс-валидация модели LDA на тестовых данных, представленных в матрице признаков X_test и векторе меток классов у_test. Кросс-валидация разбивает данные на k блоков, обучает модель на k-1 блоке и оценивает ее производительность на оставшемся блоке. Это повторяется несколько раз для более надежной оценки. И вычисляем среднее значение оценок, показывающее то, насколько точно наша модель может предсказывать исход по полученным данным.

1.0

В нашем случае оценка равна 1.0, что говорит о том, что наша модель способна идеально предсказать вид ириса.

Рассмотрим тестовую выборку и сравним то, что предсказала наша модель и заданные значения.

```
[5]: predictions = LDA.predict(X_test)
```

```
df_ = pd.DataFrame(X_test.copy())
df_['Given'] = y_test
df_['Prediction'] = predictions
df_['Accuracy'] = df_['Given'] == df_['Prediction']
print(df_)
```

	${\tt sepallen}$	${\tt sepalwid}$	${\tt petallen}$	petalwid	Given	Prediction	Accuracy
26	5.0	3.4	1.6	0.4	setosa	setosa	True
86	6.3	3.4	5.6	2.4	virginica	virginica	True
2	4.7	3.2	1.3	0.2	setosa	setosa	True
55	7.6	3.0	6.6	2.1	virginica	virginica	True
75	7.2	3.2	6.0	1.8	virginica	virginica	True
93	6.8	3.2	5.9	2.3	virginica	virginica	True
16	5.4	3.9	1.3	0.4	setosa	setosa	True
73	6.3	2.7	4.9	1.8	virginica	virginica	True
54	6.5	3.0	5.8	2.2	virginica	virginica	True
95	6.7	3.0	5.2	2.3	virginica	virginica	True
53	6.3	2.9	5.6	1.8	virginica	virginica	True
92	5.8	2.7	5.1	1.9	virginica	virginica	True
78	6.4	2.8	5.6	2.1	virginica	virginica	True
13	4.3	3.0	1.1	0.1	setosa	setosa	True
7	5.0	3.4	1.5	0.2	setosa	setosa	True
30	4.8	3.1	1.6	0.2	setosa	setosa	True
22	4.6	3.6	1.0	0.2	setosa	setosa	True
24	4.8	3.4	1.9	0.2	setosa	setosa	True
33	5.5	4.2	1.4	0.2	setosa	setosa	True
8	4.4	2.9	1.4	0.2	setosa	setosa	True

В колонке "Ассигасу" видно, что для всех 20 элементов предсказание было точным.

Отобразим результаты анализа.

```
plt.legend(loc='best', shadow=False, scatterpoints=1)
plt.show()
```


На графике точно видно разделение на два класса "setosa"и "virginica".

Квадратичный дискриминантный анализ

Создадим модель квадратичного дискриминантного анализа, который обучается по тому же принципу, что и LDA. Проверка так же идентична LDA.

1.0

В нашем случае оценка равна 1.0, что говорит о том, что наша модель способна идеально предсказать вид ириса.

Рассмотрим тестовую выборку и сравним то, что предсказала наша модель и заданные значения

```
[8]: predictions = QDA.predict(X_test)

df_ = pd.DataFrame(X_test.copy())

df_['Given'] = y_test

df_['Prediction'] = predictions

df_['Accuracy'] = df_['Given'] == df_['Prediction']

print(df_)
```

	gonallon	gonalitid	petallen	notaliid	Civon	Prediction	Accuracy
00	-	-	-	-			•
26	5.0	3.4	1.6	0.4	setosa		True
86	6.3	3.4	5.6	2.4	virginica	virginica	True
2	4.7	3.2	1.3	0.2	setosa	setosa	True
55	7.6	3.0	6.6	2.1	virginica	virginica	True
75	7.2	3.2	6.0	1.8	virginica	virginica	True
93	6.8	3.2	5.9	2.3	virginica	virginica	True
16	5.4	3.9	1.3	0.4	setosa	setosa	True
73	6.3	2.7	4.9	1.8	virginica	virginica	True
54	6.5	3.0	5.8	2.2	virginica	virginica	True
95	6.7	3.0	5.2	2.3	virginica	virginica	True
53	6.3	2.9	5.6	1.8	virginica	virginica	True
92	5.8	2.7	5.1	1.9	virginica	virginica	True
78	6.4	2.8	5.6	2.1	virginica	virginica	True
13	4.3	3.0	1.1	0.1	setosa	setosa	True
7	5.0	3.4	1.5	0.2	setosa	setosa	True
30	4.8	3.1	1.6	0.2	setosa	setosa	True
22	4.6	3.6	1.0	0.2	setosa	setosa	True
24	4.8	3.4	1.9	0.2	setosa	setosa	True
33	5.5	4.2	1.4	0.2	setosa	setosa	True
8	4.4	2.9	1.4	0.2	setosa	setosa	True

В колонке "Ассигасу" видно, что для всех 20 элементов предсказание было точным.

Отобразим результаты анализа.

```
[9]: data_plot = QDA.fit(X, y).predict(X)

target_names = ['setosa', 'virginica']

plt.figure()
colors = ['red', 'green']
lw = 1
for color, target_name in zip(colors, target_names):
```


Получили неоднозначный график, однако всё же возможно провести непрерывную кривую, которая будет четко отделять один класс от другого. На этом заканчивается дискриминатный анализ, результатами которого стала идеальная точность прогноза.

Деревья решений

Рассмотрим такие модели прогнозирования, как деревья решений, а именно классификационное и регрессионное.

Классификационное дерево решений

Начнём с классификационного дерева решений.

```
[10]: dtc = tree.DecisionTreeClassifier()
dtc = dtc.fit(X_train, y_train)
```

Отобразим на графике то, как наша модель распределила важность переменных в составлении прогноза.

```
[11]: importance = dtc.feature_importances_
features = ['sepallen', 'sepalwid', 'petallen', 'petalwid']

for i,v in enumerate(importance):
    print(f'{features[i]}:, Score: {v}')

x = np.array([0, 1, 2, 3])
pyplot.bar([y for y in range(len(importance))], importance)
plt.xticks(x, features)
pyplot.show()
```

sepallen:, Score: 0.0
sepalwid:, Score: 0.0
petallen:, Score: 0.0
petalwid:, Score: 1.0

На графике видно, что наиболее важным явялется переменная PETALWID.

Рассмотрим непосредственно полученное дерево решений.

Что представлено на графике:

- В первой строчке корня можно увидеть условие, по которому модель определяет вид ириса. В данном случае, если petalwid ≤ 1, то ирис у нас вида "setosa", в противном случае "virginica";
- Во второй строчке можно увидеть коэффициент примеси Gini, который указывает на то, насколько у нас засорен класс. В корне класс был выбран "setosa", и коэффициент равен 0.5. Алгоритм останавливает, когда gini = 0, это условие достигается уже на первом уровне, потому и глубина дерева равна двум;

- В третье строке общее число объектов в данной вершине;
- В четвертой строке показано число объектов каждого из классов.

Рассмотрим таблицу, показывающую результаты предсказания модели на тестовой выборке.

```
[13]: df_ = pd.DataFrame(X_test.copy())
    df_['Given'] = y_test
    df_['Prediction'] = dtc.predict(X_test)
    df_['Accuracy'] = df_['Given'] == df_['Prediction']

print(df_)
```

	sepallen	sepalwid	petallen	petalwid	Given	Prediction	Accuracy
26	5.0	3.4	1.6	0.4	setosa	setosa	True
86	6.3	3.4	5.6	2.4	virginica	virginica	True
2	4.7	3.2	1.3	0.2	setosa	setosa	True
55	7.6	3.0	6.6	2.1	virginica	virginica	True
75	7.2	3.2	6.0	1.8	virginica	virginica	True
93	6.8	3.2	5.9	2.3	virginica	virginica	True
16	5.4	3.9	1.3	0.4	setosa	setosa	True
73	6.3	2.7	4.9	1.8	virginica	virginica	True
54	6.5	3.0	5.8	2.2	virginica	virginica	True
95	6.7	3.0	5.2	2.3	virginica	virginica	True
53	6.3	2.9	5.6	1.8	virginica	virginica	True
92	5.8	2.7	5.1	1.9	virginica	virginica	True
78	6.4	2.8	5.6	2.1	virginica	virginica	True
13	4.3	3.0	1.1	0.1	setosa	setosa	True
7	5.0	3.4	1.5	0.2	setosa	setosa	True
30	4.8	3.1	1.6	0.2	setosa	setosa	True
22	4.6	3.6	1.0	0.2	setosa	setosa	True
24	4.8	3.4	1.9	0.2	setosa	setosa	True
33	5.5	4.2	1.4	0.2	setosa	setosa	True
8	4.4	2.9	1.4	0.2	setosa	setosa	True

В таблице все значения были предсказаны правильно, однако такой способ проверки не является достаточно точным, поэтому проведем проверку с помощью кросс-валидации и вычислим среднее значение оценок, показывающее то, насколько точно наша модель может предсказывать исход по полученным данным.

0.98

Получили оценку равную 0.98, что говорит о том, что наша модель точна на 98%, что явля-

ется достаточно большим значением, и можно сказать, что модель достаточно точна в своих предсказаниях.

Регрессионное дерево решений

Рассмотрим регрессионное дерево решений.

```
[15]: le = LabelEncoder()
  y_train_encoded = le.fit_transform(y_train)

dtr = tree.DecisionTreeRegressor()
  dtr = dtr.fit(X_train, y_train_encoded)
```

Отобразим на графике то, как наша модель распределила важность переменных в составлении прогноза.

```
[17]: importance = dtr.feature_importances_
features = ['sepallen', 'sepalwid', 'petallen', 'petalwid']

for i,v in enumerate(importance):
    print(f'{features[i]}:, Score: {v}')

x = np.array([0, 1, 2, 3])
pyplot.bar([y for y in range(len(importance))], importance)
plt.xticks(x, features)
pyplot.show()
```

sepallen:, Score: 0.0
sepalwid:, Score: 0.0
petallen:, Score: 0.0
petalwid:, Score: 1.0

На графике видно, что наиболее важным явялется переменная PETALWID.

Рассмотрим непосредственно полученное дерево решений.

Получили дерево, похожее на классификационное дерево решений, однако в данном случае для определения точности используется не коэффициент Gini, а квадратичная ошибка, которая применяется аналогичным образом.

Рассмотрим таблицу, показывающую результаты предсказания модели, основываясь на тестовой выборке.

```
[19]: df_ = pd.DataFrame(X_test.copy())
    df_['Given'] = y_test
    df_['Prediction'] = le.inverse_transform(dtr.predict(X_test).astype('int'))
    df_['Accuracy'] = df_['Given'] == df_['Prediction']
    print(df_)
```

Accuracy	Prediction	Given	petalwid	petallen	sepalwid	${\tt sepallen}$	
True	setosa	setosa	0.4	1.6	3.4	5.0	26
True	virginica	virginica	2.4	5.6	3.4	6.3	86
True	setosa	setosa	0.2	1.3	3.2	4.7	2
True	virginica	virginica	2.1	6.6	3.0	7.6	55
True	virginica	virginica	1.8	6.0	3.2	7.2	75
True	virginica	virginica	2.3	5.9	3.2	6.8	93
True	setosa	setosa	0.4	1.3	3.9	5.4	16
True	virginica	virginica	1.8	4.9	2.7	6.3	73
True	virginica	virginica	2.2	5.8	3.0	6.5	54
True	virginica	virginica	2.3	5.2	3.0	6.7	95

53	6.3	2.9	5.6	1.8	virginica	virginica	True
92	5.8	2.7	5.1	1.9	virginica	virginica	True
78	6.4	2.8	5.6	2.1	virginica	virginica	True
13	4.3	3.0	1.1	0.1	setosa	setosa	True
7	5.0	3.4	1.5	0.2	setosa	setosa	True
30	4.8	3.1	1.6	0.2	setosa	setosa	True
22	4.6	3.6	1.0	0.2	setosa	setosa	True
24	4.8	3.4	1.9	0.2	setosa	setosa	True
33	5.5	4.2	1.4	0.2	setosa	setosa	True
8	4.4	2.9	1.4	0.2	setosa	setosa	True

В таблице все значения были предсказаны правильно, однако такой способ проверки не является достаточно точным, поэтому проведем проверку с помощью кросс-валидации и вычислим среднее значение оценок, показывающее то, насколько точно наша модель может предсказывать исход по полученным данным.

0.97

Получили оценку равную 0.97, что говорит о том, что наша модель точна на 97%, что является достаточно большим значением, и можно сказать, что модель достаточно точна в своих предсказаниях.

Вывод

В результате лабораторной работы можно сделать вывод о том, что лучше всего для нашей выборки работает именно дискриминантный анализ, не допуская ошибок, в то время, как деревья решений хоть и точны, но не идеальны.