Introduction to survival analysis

Jorge N. Tendeiro

Department of Psychometrics and Statistics Faculty of Behavioral and Social Sciences University of Groningen

j.n.tendeiro@rug.nl

O jorgetendeiro/Seminar-2020-Survival-Analysis

Plan for today

Gentle introduction to survival analysis.

Source:

Harrell, F. E., Jr. (2015). Regression Modeling strategies, 2nd edition.

Springer

Chapters:

17, 18, and 20.

Survival analysis (SA)

Data:

For which the time until the event is of interest.

▶ This goes beyond *logistic regression*, which focuses on the *occurrence* of the event.

Outcome variable:

- ightharpoonup T = Time until the event.
- ▶ Often referred to as *failure time*, *survival time*, or *event time*.

Examples

Survival time: Time until...

▶ death, desease, relapse.

Failure time: Time until...

▶ product malfunction.

Event time: Time until...

▶ graduation, marriage, divorce.

Advantages of SA over typical regression models

- ► SA allows modeling units that did not fail up to data collection (*censored on the right* data).
- ▶ Regression could be considered to model the expected survival time. But:
 - ✓ Survival time is often not normally distributed.
 - ✓ P(survival > t) is often more interesting than $\mathbb{E}(\text{survival time})$.

Censoring

We focus on

Three main functions

Recall that the outcome variable is T = time until event.

► Survival function:

$$S(t) = P(T > t) = 1 - F(t),$$

where $F = P(T \le t)$ is distribution function of T.

► Cumulative hazard function:

$$\Lambda(t) = -\log(S(t))$$

► Hazard function:

$$\lambda(t) = \Lambda'(t)$$

Survival function

$$S(t) = P(T > t) = 1 - F(t)$$

Example:

If event = death, then S(t) = prob. that death occurs after time t.

Properties:

- ightharpoonup S(0) = 1.
- ightharpoonup Non-increasing function of t.

Cumulative hazard function

$$\Lambda(t) = -\log(S(t))$$

Idea:

Accumulated risk up until time t.

Properties:

- $ightharpoonup \Lambda(0) = 0.$
- ► Non-decreasing function of *t*.

Hazard function

$$\lambda(t) = \Lambda'(t)$$

Idea:

Instantaneous event rate.

Relation between the three function

All functions are related:

Any two functions can be derived from the third function.

▶ The three functions are equivalent ways of describing the same random variable (T = time until event).

Given	S(t)	$\Lambda(t)$	$\lambda(t)$
S(t) =		$\exp(-\Lambda(t))$	$\exp\left(-\int_0^t \lambda(v)dv\right)$
` '	-log(S(t))		$\int_0^t \lambda(v) dv$
$\lambda(t) =$	$-\frac{S'(t)}{S(t)}$	$\Lambda'(t)$	•