Images

Jenny Hong Ahmed Bou-Rabee Stephen Boyd

EE103

Stanford University

October 18, 2015

Outline

Representation

Linear operations

In-painting

Image de-blurring

Monochrome images

- ▶ a.k.a. monochrome or gray-scale image
- ightharpoonup image represented by its brightness values at an array of $m \times n$ locations (pixels)
- typical sizes
 - thumbnail: 16×16 , 64×64 , 128×128
 - $4K \times 6K = 24M$ pixels
 - HD is 1280×720 pixels
- ▶ can represent by an $m \times n$ matrix X or by a single vector $x \in \mathbf{R}^{mn}$ with some encoding of the pixel locations, e.g.,

$$X_{ij} = x_k, \quad k = m(j-1) + i, \quad k = 1, \dots, mn$$

(this stacks the columns of X, from left to right)

Brightness values

- $ightharpoonup x_i$ is brightness of pixel i
- ▶ typically $0 \le x_i \le 1$ where 0 is black and 1 is white
- ▶ values outside [0,1] are clipped (so $x_i < 0$ shows up as black)
- if x is an image, -x is completely black
- ▶ *negative image* is given by 1 x
- ightharpoonup avg(x) is average intensity (brightness) of image
- ▶ std(x) corresponds to image *constrast*

Scaling, shifting, and adding images

what does image

$$y = a(x - \mathbf{avg}(x)\mathbf{1}) + (\mathbf{avg}(x) + b)\mathbf{1} = ax + c\mathbf{1}$$
 ($c = (1 - a)\mathbf{avg}(x) + b$) look like?
- a scale contrast
- b shifts brightness

- $y_i = x_i^{\gamma}$ is called γ -correction (widely used)
- ▶ if x and y are images, x + y is perceived as composite or combination of the images (and isn't natural, except in some cases)

Examples

original

Examples

pumpkins

flowers

(pumpkins+flowers)/2

Color images

- ▶ humans perceive 3 colors, which can be represented in different ways (e.g., RGB, CMYK)
- most common is RGB (Red-Green-Blue)
- \triangleright color represented as a 3-vector (r, g, b), with r, g, b between 0 and 1
 - -(1,0,0) is bright red
 - (1,0,1) is bright purple
 - (0.2, 0.2, 0.2) is a gray
- ▶ $m \times n$ image given by 3 $m \times n$ matrices or one vector $x \in \mathbf{R}^{3mn}$

Colors

- ► (1,0,0), (0,1,0), (0,0,1)
- ► (1,1,0), (0,1,1), (1,0,1)
- ► (0.2,0.2,0.2), (0.5,0.5,0.5), (0.75,0.75,0.75)

Color images

Converting color to monochrome

- lacktriangle color pixel values converted to monochrome using $y_i = w^T(r_i, g_i, b_i)$
 - obvious choice: w = (1/3, 1/3, 1/3)
 - another common choice: w = (0.299, 0.587, 0.114)
 - other choices used for special effects

Converting color to monochrome

Video

- video is represented as a sequence of images captured periodically
- ▶ each image is called a *frame*
- ▶ typical frame rates: 24, 30, or 60 frames per second

Outline

Representation

Linear operations

In-painting

Image de-blurring

Linear image mappings

- for y and x images, linear mapping y=Ax can represent many common operations on images
 - color to monochrome conversion
 - color correction
 - any mapping from original to distorted pixel locations (e.g., flipping, stretching)
 - blurring
 - changing to lower or higher resolution
 - vertical and horizontal differencing

Moving pixels

- ightharpoonup pixel at location i in image y is the pixel at value j=d(i) in image x
- ightharpoonup d(i) gives distortion map
- examples: flipping, zooming, rotating, shifting, key correction
- some issues/details:
 - we'll need to approximate the location of the pixels
 - we need to do something with \boldsymbol{y} pixels that don't correspond to any \boldsymbol{x} pixels
- ▶ y = Ax, where ith row of A is $e_{d(i)}^T$ (or 0, if y_i doesn't correspond to any x pixel)

Flipping images

original image

Blurring images

- lacktriangle represent image as $m \times n$ matrix X
- ightharpoonup represent blur point spread function as $p \times q$ matrix B
- ▶ blurred image is given by Y with

$$Y_{ij} = \sum_{k,l} X_{i-k+1,j-l+1} B_{k,l}$$

where

- the sum is over all integers k, l
- we interpret X_{ij} and $B_{k,l}$ as zero when the indices are out of range
- ▶ called 2-D convolution of X and B, denoted Y = X * B or Y = A * B
- blurring is model of effects of optical imperfections, motion blur, ...

Blurring images

original image

Horizontal and vertical differences

- ightharpoonup X is $m \times n$ image (matrix), x its mn-vector representation
- lacktriangle horizontal first order difference is m imes (n-1) matrix Y with

$$Y_{ij} = X_{i,j+1} - X_{i,j}, \quad i = 1, \dots, m, \quad j = 1, \dots, n-1$$

lacktriangle vertical first order difference is $(m-1) \times n$ matrix Z with

$$Z_{ij} = X_{i+1,j} - X_{i,j}, \quad i = 1, \dots, m-1, \quad j = 1, \dots, n$$

▶ these are linear operations, so we have

$$y = D^{\text{horiz}}x, \qquad z = D^{\text{vert}}x$$

for an m(n-1)-matrix D^{horiz} and an (m-1)n-matrix D^{vert}

ightharpoonup each row contains one +1 and one -1

Horizontal and vertical differences

(shown for 3×3 image)

$$D^{\text{horiz}} = \begin{bmatrix} -1 & & +1 & & & & \\ & -1 & & & +1 & & & \\ & & -1 & & & +1 & & \\ & & & -1 & & & +1 & \\ & & & -1 & & & +1 & \\ & & & & -1 & & & +1 & \\ & & & & -1 & & & +1 & \\ & & & & -1 & & & +1 & \\ D^{\text{vert}} = \begin{bmatrix} -1 & +1 & & & & & \\ & -1 & +1 & & & & \\ & & & & -1 & +1 & \\ & & & & & -1 & +1 & \\ & & & & & & -1 & +1 & \\ & & & & & & & -1 & +1 & \\ & & & & & & & -1 & +1 & \\ \end{bmatrix}$$

Horizontal and vertical differences

Laplacian

the Laplacian function is

$$\mathcal{L}(x) = \|D^{\text{horiz}}x\|^2 + \|D^{\text{vert}}x\|^2$$
$$= \sum_{i=1}^{m-1} \sum_{j=1}^{n-1} \left((X_{i+1,j} - X_{i,j})^2 + (X_{i,j+1} - X_{i,j})^2 \right)$$

(we also write $\mathcal{L}(X)$)

- lackbox $\mathcal{L}(X)$ is a measure of roughness of the image X
 - $\mathcal{L}(X)$ is small when the image is smooth
 - $\mathcal{L}(X)=0$ only if the image is constant
- $ightharpoonup \mathcal{L}(X)$ is used as a regularizer

Outline

Representation

Linear operations

In-painting

Image de-blurring

In-painting

- we are given an image with some pixels values unknown
- in-painting means to guess values of the unknown pixels so the recovered image looks good or natural
- in example below, unknown values are shown as black

Least-squares in-painting

- ightharpoonup corrupted/damaged image is given by $m \times n$ matrix X^{corr}
- $ightharpoonup \mathcal{K} \subset \{1,\ldots,m\} \times \{1,\ldots,n\}$ are the indices of known pixels
- we need to choose an image X that agrees with the given image on known pixels: $X_{ij} = X_{ij}^{\text{corr}}$, $(i,j) \in \mathcal{K}$
- we'll choose X to minimize $\mathcal{L}(X)$, the sum square deviation of all pixel values from their neighbors (small $\mathcal{L}(X)$ gives a smooth image)
- a least-squares problem (variables are unknown pixel values)

In-painting

original image

damaged image

inpainted image

Outline

Representation

Linear operations

In-painting

Image de-blurring

Corrupted image

• y is a linear function of x^{true} , with noise:

$$y = Ax^{\text{true}} + v$$

- ▶ *y* is the *corrupted* image, which we have
- $lacktriangleright x^{\mathrm{true}}$ is the original image, which we want to guess/recover
- ightharpoonup v is a noise, which we assume is small
- ▶ A is a (known) matrix, often a blurring operator
- image de-blurring is guessing x^{true}
- lacktriangle even if A is invertible, the guess $x=A^{-1}y$ could look very bad

Least-squares de-blurring

▶ *least-squares de-blurring*: choose *x* to minimize

$$||Ax - y||^2 + \lambda \mathcal{L}(x)$$

- first term is $||v||^2$
- $ightharpoonup \lambda > 0$ is a regularization parameter
 - large λ makes x smooth
 - small λ makes $||Ax y||^2$ small

De-blurring example

original image

corrupted image

deblurred image with lambda = 0.03

Image de-blurring 31

De-blurring: Effect of regulariziton

Image de-blurring 32