Cryptanalysis

Jiageng Chen

Content

- Overview
- Block Ciphers:
 - Linear
 - Differential
 - Other Attacks
 - Statistical Analysis

Differential and Linear Cryptanalysis Origins

- Differential cryptanalysis originally defined on DES
- Eli Biham and Adi Shamir, Differential Cryptanalysis of the Data Encryption Standard, Springer Verlag, 1993.
- Linear cryptanalysis first defined on Feal by Matsui and Yamagishi, 1992.
- Matsui later published a linear attack on DES.

Differential Cryptanalysis

1. Block ciphers are usually composed by iterating R rounds of similar nonlinear operations.

2. We track the difference value of input messages X to Y, try to build an efficient distinguisher

- 3. Then the attacker by guessing subkey K0 used in last rounds, decrypt Z to match Y.
- 4. The statistical behavior for the correct key K0 will be much more significant than other wrong keys, which allow us to identify the correct the key k0.
- 5. The rest of the subkey can be recovered in the same way by peeling off last rounds.

Efficient long differential path $X \to \Delta Y$ is crucial to the success of the attack

Differential Cryptanalysis - Simple case

- Consider the simple XOR encryption : $c = m \oplus k$
- What if we use the key twice?
 - $c_0 \oplus c_1 = (m_0 \oplus k) \oplus (m_1 \oplus k) = m_0 \oplus m_1$
- While we might not get much information from considering a single message and ciphertext, we might gain much more by considering pairs of messages and ciphertext
- Secret key k could be entirely removed by simply manipulating the ciphertexts

Cipher One

Aprier One		CIPHERONE $(m_0, k_0 k_1)$	CIPHERONE $(m_1, k_0 k_1)$
	•	$u_0 = m_0 \oplus k_0$	$u_1 = m_1 \oplus k_0$
k_0 k		$v_0 = S[u_0]$	$v_1 = S[u_1]$
↓		$c_0 = v_0 \oplus k_1$	$c_1 = v_1 \oplus k_1$
$m \longrightarrow \oplus \longrightarrow u \longrightarrow [S] \longrightarrow v \longrightarrow \oplus$	$\rightarrow - c$		•

- Trace a difference between two plaintexts
- Cryptanalyst does know the value of the difference between these two internal values since

$$u_0 \oplus u_1 = (m_0 \oplus k_0) \oplus (m_1 \oplus k_0) = m_0 \oplus m_1$$

- We can guess the value of k1 and compute the values of v0 and v1 directly from c0 and c1.
- Since $S[\cdot]$ is publicly known and invertible, we can compute $S^{-1}[v0]$ and $S^{-1}[v1]$.
- For the correct value of k1, the cryptanalyst does know that

$$u_0 \oplus u_1 = S^{-1}[v_0] \oplus S^{-1}[v_1]$$

Cipher Two

- We can work backwards and guess the value of k2 to compute x0 and x1, and thus w0 and w1.
- We don't know k1, but we can compute $v0 \oplus v1$
- Starting from m0 and m1, we also know u0⊕u1

$$u0 \oplus u1 \rightarrow S \rightarrow v0 \oplus v1$$

Cannot be determined uniquely!!

Inputs and output relations for i and $j = i \oplus f$ across $S[\cdot]$.

i	j	S[i]	S[j]	$S[i] \oplus S[j]$
0	f	6	b	d
1	е	4	9	d 6
2 3	d	с 5	a	6
3	С	5	8	d
4 5	b	0	d	d
5	a	7	3	4
6	9	2	f	d
7	8	е	1	d f f
8	7	1	е	f
9	6	f	2	d
a	5	3	7	d 4
b	4 3	d	0	d
C		8	5	d
d	2	a	С	6
e f	1	9	4	d
f	0	b	6	d

$HERTWO(m_0,k_0 k_1 k_2)$	CIPHERTWO $(m_1, k_0 k_1 k_2)$
$u_0 = m_0 \oplus k_0$	$u_1 = m_1 \oplus k_0$
$v_0 = S[u_0]$	$v_1 = S[u_1]$
$w_0 = v_0 \oplus k_1$	$w_1 = v_1 \oplus k_1$
$x_0 = S[w_0]$	$x_1 = S[w_1]$
$c_0 = x_0 \oplus k_2$	$c_1 = x_1 \oplus k_2$

$$c = S[S[m \oplus k_0] \oplus k_1] \oplus k_2$$

x	0	1	2	3	4	5	6	7	8	9	a	b	С	d	е	f
S[x]	6	4	С	5	0	7	2	е	1	f	3	d	8	а	9	b

If
$$u0 \oplus u1 = f$$
, then Pr ($S[u_0] \oplus S[u_1] = d$)= 10/16

Correct guess of k2 will let us find the match 10 times out of 16, While incorrect guess will result in random behavior (1/16)

Differential Table

	0	1	2	3	4	5	6	7	8	9	a	b	С	d	е	f
0	16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
1	-	-	6	-	-	-	-	2	-	2	-	-	2	-	4	-
2	-	6	6	-	-	-	-	-	-	2	2	-	-	-	-	-
3	-	_	-	6	-	2	-	-	2	_	-	-	4	-	2	-
4	-	_	-	2	-	2	4	-	-	2	2	2	-	-	2	-
5	-	2	2	-	4	-	-	4	2	-	-	2	-	-	_	-
6	-	_	2	-	4	-	-	2	2	_	2	2	2	-	-	-
7	-	_	-	_	-	4	4	-	2	2	2	2	-	-	_	-
8	-	_	-	_	-	2	-	2	4	_	-	4	-	2	_	2
9	-	2	-	_	-	2	2	2	-	4	2	-	-	-	_	2
a	-	_	-	_	2		-	-	-	4	4	-	2	2	_	-
b	-	-	-	2	2	-	2	2	2	_	-	4	-	-	2	-
С	-	4	-	2	-	2	-	-	2	-	-	-	-	-	6	-
d	-	-	-	-	-	-	2	2	-	-	-	-	6	2	-	4
е	-	2	-	4	2	-	-	-	-	-	2	-	-	-	-	6
f	_	-	-	-	2	-	2	-	-	-	-	-	-	10	-	2
	•															

The difference distribution table for S[·]. There is a row for each input difference d_{in} and the frequency with which a given output difference d_{out} occurs is given across the row. The entry (d_{in},d_{out}) divided by 16 gives the probability that a difference d_{in} gives difference d_{out} when taken over all possible pairs with difference d_{in}

Differential Characteristics

A pair (α,β) for which two inputs with difference α lead to two outputs with difference β is called a (differential) characteristic across the operation $S[\cdot]$

$$\alpha \stackrel{S}{\rightarrow} \beta$$
.

For example: $Pr(\mathbf{f} \xrightarrow{S} \mathbf{d}) = 10/16$

How about combining two S-Boxes?

$$\mathbf{f} \xrightarrow{S} \mathbf{d} \qquad \qquad \mathbf{d} \xrightarrow{S} \mathbf{c}$$
10/16 \quad 6/16

Pr(
$$\mathbf{f} \xrightarrow{S} \mathbf{d} \xrightarrow{S} \mathbf{c}$$
)= 10/16 x 6/16

Thus an attacker who chooses pairs of messages related by the difference f can expect the difference y0 \oplus y1 to take the value c with probability 15/64 > 4/64

Cipher Four

$$(\alpha_{1},\alpha_{2},\alpha_{3},\alpha_{4}) \xrightarrow{S} (\beta_{1},\beta_{2},\beta_{3},\beta_{4})$$

$$(\beta_{1},\beta_{2},\beta_{3},\beta_{4}) \xrightarrow{P} (\gamma_{1},\gamma_{2},\gamma_{3},\gamma_{4})$$

$$(\alpha_{1},\alpha_{2},\alpha_{3},\alpha_{4}) \xrightarrow{\mathscr{R}} (\gamma_{1},\gamma_{2},\gamma_{3},\gamma_{4})$$

$$1 = \begin{cases} (0,0,0,\mathtt{f}) \stackrel{S}{\rightarrow} (0,0,0,\mathtt{d}) \\ (0,0,0,\mathtt{d}) \stackrel{P}{\rightarrow} (1,1,0,\mathtt{1}) \end{cases} \quad (0,0,0,\mathtt{f}) \stackrel{\mathscr{R}}{\longrightarrow} (1,1,0,\mathtt{1})$$

First path

$$2 \begin{cases} (1,1,0,1) \xrightarrow{S} (2,2,0,2) \\ (2,2,0,2) \xrightarrow{P} (0,0,d,0) \end{cases} (1,1,0,1) \xrightarrow{\mathscr{R}} (0,0,d,0)$$

$$\frac{10}{16} \times (\frac{6}{16})^3 = \frac{135}{4096}$$
 Not Good!!

$$\frac{10}{16} \times \left(\frac{6}{16}\right)^3 = \frac{135}{4096}$$

 $(0,0,2,0) \xrightarrow{S} (0,0,2,0) \text{ and } (0,0,2,0) \xrightarrow{P} (0,0,2,0) \qquad (0,0,2,0) \xrightarrow{\mathscr{R}} (0,0,2,0)$ Second path

 $(0,0,2,0) \xrightarrow{\mathscr{R}} (0,0,2,0) \xrightarrow{\mathscr{R}} (0,0,2,0) \qquad \left(\frac{6}{16}\right)^2$ Two rounds:

 $(6/16)^4 = 0.02 < 1/16 = 0.06$ Four rounds: **Problem?**

Differentials

• There could be more than one paths connecting $\alpha \to \beta$

$$(0,0,2,0) \xrightarrow{\mathscr{R}} ? \xrightarrow{\mathscr{R}} ? \xrightarrow{\mathscr{R}} (0,0,2,0)$$

Four paths
$$\begin{array}{c} (0,0,2,0) \xrightarrow{\mathscr{R}} (0,0,2,0) \xrightarrow{\mathscr{R}} (0,0,2,0) \xrightarrow{\mathscr{R}} (0,0,2,0) \xrightarrow{\mathscr{R}} (0,0,2,0) \xrightarrow{\mathscr{R}} (0,0,2,0) \xrightarrow{\mathscr{R}} (0,0,0,1) \xrightarrow{\mathscr{R}} (0,0,1,0) \xrightarrow{\mathscr{R}} (0,0,2,0), \\ (0,0,2,0) \xrightarrow{\mathscr{R}} (0,0,0,2) \xrightarrow{\mathscr{R}} (0,0,1,0) \xrightarrow{\mathscr{R}} (0,0,2,0) \xrightarrow{\mathscr{R}} (0,0,2,0), \\ (0,0,2,0) \xrightarrow{\mathscr{R}} (0,0,2,0) \xrightarrow{\mathscr{R}} (0,0,0,2) \xrightarrow{\mathscr{R}} (0,0,0,2) \xrightarrow{\mathscr{R}} (0,0,2,0). \end{array}$$

Now the probability becomes $4 \times (\frac{6}{16})^{\overline{4}} = \frac{81}{1024}$.

Recovering the key bits

- Use differential $(0,0,2,0) \xrightarrow{\mathscr{R}} ? \xrightarrow{\mathscr{R}} ? \xrightarrow{\mathscr{R}} ? \xrightarrow{\mathscr{R}} (0,0,2,0)$ with prob 0.08
- We assume that a pair survives the filtering process with probability $7387/65536 \approx 0.11$
- Attacker receives the encryption of t message pairs which satisfy the starting difference (0, 0, 2, 0).
- $t \times 7387/65536 \simeq t \times 0.11$ pairs to survive filtering
- Pairs that satisfy the differential and there will be t x 0.08
- Over t chosen message pairs, we would expect roughly $t \times (0.11-0.08) = t \times 0.03$ incorrect values for the target bits to be suggested.

If t=500, correct key bits will be suggested 500x0.08=40 times, while wrong key bits will be suggested 500x0.03=15 times. Thus we can recover the right one.

Linear Cryptanalysis – The idea

$$c = S[m \oplus k_0] \oplus k_1$$

Assume that an attacker knows a message m and the corresponding ciphertext c.

$$u = m \oplus k_0$$
, $v = S[u]$, and $c = v \oplus k_1$

$$m \longrightarrow \stackrel{\downarrow}{\oplus} \longrightarrow u \longrightarrow \boxed{S} \longrightarrow v \longrightarrow \stackrel{\downarrow}{\oplus} \longrightarrow c$$

We view our blocks of input, output, and key as column vectors of bits. So if we wish to identify specific bits of vector x we can do so by premultiplying column vector by a row vector which acts as a mask

$$(1,0,0,0) \times \begin{pmatrix} m_3 \\ m_2 \\ m_1 \\ m_0 \end{pmatrix} = m_3$$
, and $(0,0,1,0) \times \begin{pmatrix} m_3 \\ m_2 \\ m_1 \\ m_0 \end{pmatrix} = m_1$

$$(1,0,1,1) \times \begin{pmatrix} m_3 \\ m_2 \\ m_1 \\ m_0 \end{pmatrix} \oplus (1,0,1,1) \times \begin{pmatrix} k_3 \\ k_2 \\ k_1 \\ k_0 \end{pmatrix} = m_3 \oplus m_1 \oplus m_0 \oplus k_3 \oplus k_1 \oplus k_0$$

Linear Cryptanalysis – The idea

$$m \xrightarrow{\downarrow^{\downarrow}} u \longrightarrow \boxed{S} \longrightarrow v \xrightarrow{\downarrow^{\downarrow}} c$$

$$c_3 = m_3 \oplus m_1 \oplus m_0 \oplus k_3 \oplus k_1 \oplus k_0$$
, Can be written by using mask

$$\alpha \cdot c = \beta \cdot m \oplus \beta \cdot k$$
, $\alpha = (1,0,0,0)$ and $\beta = (1,0,1,1)$.

Pr (
$$\alpha \cdot c = \beta \cdot m \oplus \beta \cdot k$$
,) \neq 1/2
$$(\alpha \cdot m) = (\alpha \cdot k_0) \oplus (\alpha \cdot u)$$
 with probability 1
$$(\alpha \cdot u) = (\beta \cdot v)$$
 with probability p
$$(\beta \cdot v) = (\beta \cdot k_1) \oplus (\beta \cdot c)$$
 with probability 1.

We can just add these equations together to get

$$(\alpha \cdot m) \oplus (\alpha \cdot u) \oplus (\beta \cdot v) = (\alpha \cdot k_0) \oplus (\alpha \cdot u) \oplus (\beta \cdot v) \oplus (\beta \cdot k_1) \oplus (\beta \cdot c),$$

$$(\alpha \cdot m) \oplus (\beta \cdot c) = (\alpha \cdot k_0) \oplus (\beta \cdot k_1) \text{ with probability } p$$

$$(\alpha \cdot m) \oplus (\beta \cdot c) = (\alpha \cdot k_0) \oplus (\beta \cdot k_1) \text{ with probability } p$$
P=0 We are happy at both cases. Why?

Message and ciphertext

Non-linear part

S-Box

X																
S[x]	f	е	b	С	6	d	7	8	0	3	9	а	4	2	1	5

mask

$$\alpha=(1,0,0,1)$$
 and $\beta=(0,0,1,0)$

Count the number of times that $\alpha \cdot x = \beta \cdot S[x]$

X	0	1	2	3	4	5	6	7	8	9	a	b	С	d	е	f
S[x]	f	е	b	С	6	d	7	8	0	3	9	a	4	2	1	5
$\alpha \cdot x$	Λ	1	Λ	1	Λ	1	Λ	1	1	Λ	1	Λ	1	Λ	1	Λ
$\frac{\beta \cdot S[x]}{\beta \cdot S[x]}$																

What is the probability? 14/16

$$(\alpha \cdot m) \oplus (\beta \cdot c) \oplus 1 = (\alpha \cdot k_0) \oplus (\beta \cdot k_1)$$

- We use two counters T0 and T1 which are initialized to T0 = T1 = 0
- Increment the counter T0 by 1 if evaluate the left-hand side of the equation to 0
- Increment the counter T1 by 1 if evaluate the left-hand side of the equation to 1
- Request the encryptions of N known plaintexts
- Count the number of 1s on the left side of the equation.
- If $(\alpha \cdot k0) \oplus (\beta \cdot k1) = 1$, then our counter T0 should have the value 2N/16, and T1 should be 14N/16
- Determine one bit of the key

Joining Approximation
$$k_0 \\ m \to \stackrel{k_1}{\oplus} \to u \to \stackrel{k_2}{\boxtimes} \to v \to \stackrel{\downarrow}{\oplus} \to w \to \stackrel{\downarrow}{\boxtimes} \to x \to \stackrel{\downarrow}{\oplus} \to c$$

$$(\boldsymbol{\alpha} \cdot \boldsymbol{m}) = (\boldsymbol{\alpha} \cdot k_0) \oplus (\boldsymbol{\alpha} \cdot \boldsymbol{u}),$$

$$(\boldsymbol{\beta} \cdot \boldsymbol{v}) = (\boldsymbol{\beta} \cdot k_1) \oplus (\boldsymbol{\beta} \cdot \boldsymbol{w}),$$

$$(\boldsymbol{\gamma} \cdot \boldsymbol{x}) = (\boldsymbol{\gamma} \cdot k_2) \oplus (\boldsymbol{\gamma} \cdot \boldsymbol{c}).$$

$$\alpha \cdot u = \beta \cdot S[u] = \beta \cdot v$$
 with probability $p_1 \neq \frac{1}{2}$ and $\beta \cdot w = \gamma \cdot S[w] = \gamma \cdot x$ with probability $p_2 \neq \frac{1}{2}$.

$$(\alpha \cdot m) \oplus (\gamma \cdot c) \oplus (\alpha \cdot u) \oplus (\beta \cdot v) \oplus (\beta \cdot w) \oplus (\gamma \cdot x) = (\alpha \cdot k_0) \oplus (\beta \cdot k_1) \oplus (\gamma \cdot k_2),$$

$$(\alpha \cdot u) = (\beta \cdot v) \text{ with probability } p_1$$

$$(\beta \cdot w) = (\gamma \cdot x) \text{ with probability } p_2,$$

What is the total probability that the following equation hold?

$$(\alpha \cdot m) \oplus (\gamma \cdot c) = (\alpha \cdot k_0) \oplus (\beta \cdot k_1) \oplus (\gamma \cdot k_2)$$

1. In the case $\alpha \cdot u = \beta \cdot v$ and $\beta \cdot w = \gamma \cdot x$, then we have that

$$(\alpha \cdot m) \oplus (\gamma \cdot c) = (\alpha \cdot k_0) \oplus (\beta \cdot k_1) \oplus (\gamma \cdot k_2) \qquad p_1 \times p_2$$

2. A similar equation results if $\alpha \cdot u = (\beta \cdot v) \oplus 1$ and $\beta \cdot w = (\gamma \cdot x) \oplus 1$. $(1 - p_1) \times (1 - p_2)$.

Together:
$$p_1p_2 + (1-p_1)(1-p_2)$$
.

Piling-up lemma and Linear Approximation Table

Matsui

- Know $Pr(V_i = 0) = \frac{1}{2} + e_i$
- $Pr(V_1 \oplus V_2 \oplus \cdots \oplus V_n = 0) = \frac{1}{2} + 2^{n-1} \prod e_i$
- V_i' s are independent random variables
- e_i is the bias $-\frac{1}{2} \le e_i \le \frac{1}{2}$

Use to combine linear equations if view each as independent random variable

By choosing
$$\alpha = \beta = \gamma = d$$
, $(\alpha \cdot m) \oplus (\gamma \cdot c) = (\alpha \cdot k_0) \oplus (\beta \cdot k_1) \oplus (\gamma \cdot k_2)$

holds with probability
$$\frac{1}{8} \times \frac{1}{8} + \frac{7}{8} \times \frac{7}{8} = \frac{25}{32} = \frac{1}{2} + \frac{9}{32}$$
.

$$N = |p-1/2|^{-2}$$
 Messages are required!

Linear Approximation Table

$\overline{}$															
	1	2	3	4	5	6	7	8	9	a	b	C	d	е	f
1	-2		2		-2	4	-2	2	4	2		-2		2	
2	2	-2		-2			2	2	4		2	4	-2	-2	
3	4	2	2	-2	2					2	-2	-2	-2		4
4		-2	2	2	-2			-4		2	2	2	2		4
5	-2	2		2	4		2	-2	4		-2		2	-2	
6	-2		2		2	4	2	2	-4	2		2		-2	
7				4		-4					4		4		
8		-2	2	-4		2	2	-4		-2	-2			2	-2
9	-2	-6			2	-2		2			-2	-2			2
a	-2		-6	-2		2		-2		2			-2		2
b				2	-2	2	-2			-4	-4	2	-2	-2	2
С				-2	-2	-2	-2			4	-4	2	2	-2	-2
d	-2		2	2		-2		-2		2			-6		-2
е	2	-2			2	2	-4	-2			2	-2		-4	-2
f	-4	2	2	-4		-2	-2			-2	2			-2	2

If we divide entry (i, j) by 16 and add 1/2 then this gives the probability that an input masked by i equals the output masked by j

Cipher D

First Round
$$(000d) \xrightarrow{S} (000d) \qquad \frac{1}{2} - \frac{6}{16}$$

$$(000d) \xrightarrow{\mathscr{R}} (1101)$$

Second Round
$$(1101) \xrightarrow{S} (6606) \xrightarrow{P} (0dd0), \frac{1}{2} + 2^2 (\frac{4}{16})^3 = \frac{1}{2} + \frac{1}{16}$$

$$(000d) \xrightarrow{\mathscr{R}} (1101) \xrightarrow{\mathscr{R}} (0dd0) \xrightarrow{1/2+2\times(-6/16\times1/16)} = \frac{1}{2} + \frac{3}{64}$$

We can continue to go on, but result is not good

Cipher D

$$(8000) \xrightarrow{\mathscr{R}} (8000) \qquad \frac{1}{2} = \frac{4}{16}$$

$$(8000) \xrightarrow{\mathscr{R}} (8000) \xrightarrow{\mathscr{R}} (8000) \quad \left(\frac{1}{4}\right)^2 + \left(\frac{3}{4}\right)^2 = \frac{5}{8} = \frac{1}{2} + \frac{1}{8}$$

$$(8000) \xrightarrow{\mathscr{R}} (8000) \xrightarrow{\mathscr{R}} (8000) \xrightarrow{\mathscr{R}} (8000) \xrightarrow{\mathscr{R}} (8000)$$

$$\frac{1}{2} + 2^3 \left(\frac{1}{4}\right)^4 = \frac{17}{32} = \frac{1}{2} + \frac{1}{32}$$

Linear Hull

Again, more than one paths

$$(8,0,0,0) \xrightarrow{\mathscr{R}} (*,*,*,*) \xrightarrow{\mathscr{R}} (*,*,*,*) \xrightarrow{\mathscr{R}} (*,*,*,*) \xrightarrow{\mathscr{R}} (8,0,0,0)$$

For example:

$$(8000) \xrightarrow{\mathscr{R}} (0800) \xrightarrow{\mathscr{R}} (4000) \xrightarrow{\mathscr{R}} (8000) \xrightarrow{\mathscr{R}} (8000)$$

$$(8000) \xrightarrow{\mathscr{R}} (8000) \xrightarrow{\mathscr{R}} (0800) \xrightarrow{\mathscr{R}} (4000) \xrightarrow{\mathscr{R}} (8000)$$

Key Recovery and Data Complexity

Assume the approximation: $(m \cdot \alpha) \oplus (c \cdot \beta) = (k \cdot \gamma)$ and $p = \frac{1}{2} + \varepsilon$ $\varepsilon > 0$.

Given *N* plaintexts *m* and corresponding ciphertexts *c* we can recover one key bit as follows. Let T_0 denote the number of times $(m \cdot \alpha) \oplus (c \cdot \beta)$ is equal to 0 while T_1 denotes the number of times $(m \cdot \alpha) \oplus (c \cdot \beta)$ is equal to 1.

The Basic Linear Attack with Characteristic of Bias $\varepsilon > 0$

- 1. For all N intercepted texts (m, c):
 - Compute $b = (m \cdot \alpha) \oplus (c \cdot \beta)$.
 - If b = 0 increment counter T_0 . Otherwise increment counter T_1 .
- 2. If $T_0 > \frac{N}{2}$ guess that $k \cdot \gamma = \mathbf{0}$. Otherwise guess that $k \cdot \gamma = \mathbf{0}$.

N plaintexts	$\frac{\varepsilon^{-2}}{16}$	$\frac{\varepsilon^{-2}}{8}$	$\frac{\varepsilon^{-2}}{4}$	$\frac{\varepsilon^{-2}}{2}$	$arepsilon^{-2}$
success rate	69%	76%	84%	92%	98%

Last round attack

The Advanced Linear 1R-Attack with Bias $\varepsilon > 0$

- 1. For all N intercepted text pairs (m, c):
 - For all τ values $t = 0, ..., \tau 1$:
 - Compute $b = (m \cdot \alpha_0) \oplus (g^{-1}(c,t) \cdot \alpha_{r-1})$.
 - If b = 0 increment $T_{0,t}$; otherwise increment $T_{1,t}$.
- 2. Identify the counter $T_{i,s}$ for $0 \le i \le 1$ and $0 \le s \le \tau 1$ with the largest value.
- 3. Guess that $k_r = s$.

Successful probability of Linear Cryptanalysis

- Right key key ranks the top r among 2^m keys
- m-bit key is attacked
- Approximation probability is p
- Using n data blocks
- k_0 is the right key, k_i , $1 \le i \le 2^m 1$
- T_i is the counter for the plaintexts satisfying the approximation with key k_i

•
$$X_i = \frac{T_i}{N} - \frac{1}{2}, Y_i = |X_i|$$

• W_i be Y_i sorted in increasing order

$$ar{r}$$
 $ar{w}_1$ $ar{w}_{2^m-r+1}$ $|X_0|$ $ar{w}_{2^m-1}$ small (K_0) large

Advantage: a=m-lgr

Successful attack:
$$\frac{X_0}{p-\frac{1}{2}}>0$$
 and $|X_0|>W_{n-r+1}$

Distribution of some random variables

For the right key K_0 :

Assume $T_0 = \sum C_i$ where $C_i \sim Bernouli(p)$, so we have $T_0 \sim B(n, p) \approx N(np, np(1-p))$

$$X_0 \sim N(p - \frac{1}{2}, p(1-p)/n) \approx N(p - \frac{1}{2}, 1/4n)$$

For the wrong keys K_i :

Assume zero bias for the wrong keys where p = 1/2, Y_i , $i \neq 0 \sim FN(\mu_w, \sigma_w^2) = FN(0, 1/4n)$

FN: folded normal distribution

Theorem (Order statistic). Let $\bar{r}=2^m-2^a$, $W_{\bar{r}}\sim N(\mu_q,\sigma_q^2)$

Random variable	Cumulative function	Density function
Y_i	$F_{\!\scriptscriptstyle\mathcal{W}}$	f_{w}
X_0	F_0	f_0
$W_{ar{r}}$	F_q	f_q

$$\mu_q = F_w^{-1} \left(1 - 2^{-a} \right) = \mu_w + \sigma_w \Phi^{-1} \left(1 - 2^{-a-1} \right)$$

$$\sigma_q = \frac{1}{f_w \left(\mu_q \right)} 2^{-\frac{m+a}{2}} = \frac{\sigma_w}{2\phi \left(\Phi^{-1} \left(1 - 2^{-a-1} \right) \right)} 2^{-\frac{m+a}{2}}$$

Probability derivation

• Assume $p > \frac{1}{2}$, then an a-bit advantage attack on an m-bit key is defined as

$$X_0 > 0$$
 and $X_0 > W_{\bar{r}}$

The success probability Ps is
$$P_S = \int_0^\infty \int_{-\infty}^x f_q(y) dy f_0(x) dx$$

Since $W_{\bar{r}} < 0$ is negligible, the successful conditions can be simplified as $X_0 > W_{\bar{r}}$

$$X_{0} - W_{\bar{r}} \sim N(\mu_{0} - \mu_{q}, \sigma_{0}^{2} + \sigma_{q}^{2}) \qquad P_{S} = P(X_{0} - W_{\bar{r}} > 0)$$

$$= \int_{0}^{\infty} f_{J}(x) dx$$

$$= \int_{-\frac{\mu_{0} - \mu_{q}}{\sqrt{\sigma_{0}^{2} + \sigma_{q}^{2}}}}^{\infty} \phi(x) dx$$

$$= \int_{-\frac{\mu_{0} - \mu_{q}}{\sqrt{\sigma_{0}^{2} + \sigma_{q}^{2}}}}^{\infty} \phi(x) dx$$

$$= \int_{-2\sqrt{N}(|p-1/2| - F_{w}^{-1}(1-2^{-a}))}^{\infty} \phi(x) dx$$

Successful Probability

Theorem. Let Ps be the probability that a linear attack on an m-bit subkey, with a linear approximation of probability p, with n known plaintext blocks, delivers an a-bit or higher advantage. Assuming that the linear approximation's probability to hold is independent for each key tried and is equal to 1/2 for all wrong keys, we have, for sufficiently large m and n,

$$P_S = \Phi\left(2\sqrt{N}|p-1/2| - \Phi^{-1}(1-2^{-a-1})\right)$$

$$N = \left(\frac{\Phi^{-1}(P_S) + \Phi^{-1}(1-2^{-a-1})}{2}\right)^2 \cdot |p-1/2|^{-2}$$

Other Cryptanalysis methods

- Multi-differential attack
- Multi-Linear attack
- Boomerang attack
- Impossible differential attack
- Truncated differential attack
- Meet-in-the-Middle attack

Statistical Test

- Sixteen tests performed on eight sets of data for each cipher.
 - Do not prove cipher is secure
 - Failing a test indicates a weakness
 - NIST AES competition finalists: > 96.33% of cases passing
- What if cipher fails a test?
 - Some relationship between P,C,K but don't know exactly what
 - Example, key with a 1 in bit j may be prone to produce ciphertext with more 0's than 1's.

Statistical Test

- Frequency (Monobit): are proportions of 0's and 1's in the bit sequence close enough to $\frac{1}{2}$.
- Frequency within a Block: Frequency test applied to fixed-sized blocks within the bit sequence.
- Runs: The number of runs (sequence of all 0's or all 1's) in the bit sequence is determined.
- Longest Run of Ones within a Block: The longest run of 1's within a block is determined.
- Binary Matrix Rank: 32-by-32 matrices are created from the bit sequence and their ranks computed. Determines if any linear dependence among fixed-length segments of bits within the sequence.
- Discrete Fourier Transform: determines if there are repetitive patterns in the bit sequence.
- Non-overlapping Template Matching: counts the number of times a m-bit pattern occurs in the bit sequence using a sliding window. The window slides 1 bit when no match and slides m bits when a match occurs so a bit will be involved in at most one match for a given pattern. Ex. m = 9
- Overlapping Template Matching: same as the previous test except that the window always slides 1 bit.

Statistical Test

- Maurer's Universal Statistical: determines if the bit sequence can be compressed based on the number of bits between occurrences of a pattern.
- Lempel-Ziv Compression: determines how much a bit sequence can be compressed based on the number of distinct patterns.
- Linear Complexity: Berlekamp-Massey algorithm is applied to a 1000 bit sequence to determine a linear feedback shift register that produces the sequence. The length of the LFRS indicates if the sequence is sufficiently random.
- Serial: The number of times each 2^m bit pattern occurs is determined, for some integer m.
- Approximate Entropy: The number of times each 2^m and each 2^m (m+1) bit pattern is determined, for some integer m.
- Cumulative Sums: cumulative sum of the bits is computed for each position in the sequence. The sum is computed by adding -1 for each bit that is 0 and adding 1 for each bit that is 1.
- Random Excursions: number of times the cumulative sum crosses zero is determined.
- Random Excursions Variant: number of times the cumulative sum is a particular value is determined.