第十章 格与布尔代数

- •10.1 格的定义与性质
- •1. 定义
- 与群,环,域,不同,格与布尔代数的基集都是一个偏序集,格是具有两个二元运算的代数系统,是一个特殊的偏序集,布尔代数是一个特殊的格。
- 定义10. 1: 设〈S, \leq 〉是偏序集,若 $\forall x, y \in S$, $\{x, y\}$ 都有上下确界,则称〈S, \leq 〉为格(Lattice)
- >(1)偏序集的任一子集并非都有上下确界,
- ►(2)偏序集的某一子集的上下确界若存在,则唯一, 格的定义确定了上下确界的存在性,
- \triangleright (3) $\{x, y\}$ 的上确界记为 $x \lor y$,下确界记为 $x \land y$

• 定义10. 2: 设f是含有格中元素及符号=, ≤, ≥, ∨, ∧的命题, 令 f*是将f中≤, ≥, ∨, ∧分别 替换为≥, ≤, ∧, ∨所得到的命题,则称 f* 是f 的对偶命题或称对偶式。

格的对偶原理:若f对一切格为真,则 f^* 也对一切格为真。

例:若: $\forall a,b \in L, a \land b \leq a$, 则 $\forall a,b \in L, a \lor b \geq a$ 成立。

- 定理10.1: 设〈L、 \leq 〉是格,则运算 \vee 、 \wedge 满足交换律,结合律,幂等律,吸收律,即 $\forall a,b,c \in L$
 - $(1): a \lor b = b \lor a, \quad a \land b = b \land a;$
 - $(2): (a \lor b) \lor c = a \lor (b \lor c), \quad (a \land b) \land c = a \land (b \land c);$
 - $(3): a \lor a = a, \quad a \land a = a;$
 - $(4): a \lor (a \land b) = a, \quad a \land (a \lor b) = a.$

证:(1).由定义知,成立;

- (2).由上确界定义 $(a \lor b) \lor c \ge a \lor b \ge b$, $(a \lor b) \lor c \ge c \Rightarrow$
- $(a \lor b) \lor c \ge b \lor c$, $X(a \lor b) \lor c \ge a \lor b \ge a$,
- $\therefore (a \lor b) \lor c \ge a \lor (b \lor c)$ 同理: $(a \lor b) \lor c \le a \lor (b \lor c)$
- $\therefore (a \lor b) \lor c = a \lor (b \lor c)$
- 由偏序关系的对偶性知 $(a \land b) \land c = a \land (b \land c)$
- (3)由自反性, $a \le a$, 则a是a的一个上界, 而 $a \lor a$ 是a与a的一个
- 最小上界 :: $a \lor a \le a$, 而 $a \le a \lor a$:: 由反对称性: $a = a \lor a$,
- 由对偶原理: $a = a \wedge a$
- $(4).a \lor (a \land b) \ge a$,又 $a \le a, a \land b \le a$ ∴ $a \not\in a = a \land b$ 的上界,而 $a \lor (a \land b)$
- 是a与 $a \wedge b$ 的最小上界,: $a \vee (a \wedge b) \leq a$,由反对称性: $a \vee (a \wedge b) = a$
- 由对偶原理,得: $a \wedge (a \vee b) = a$

- ▶由定理10.1知,格的两个运算满足交换律,结合律,幂等律,因此可以考虑用带有这4条性质的2个二元运算 ∨, ∧, 来像群, 环, 域, 一样定义格, 即用<L, ∨, ∧ >来定义格, 可以证明这是可行的。
- 定理10. 2: 设〈S, *, o〉是具有二个二元运算的代数系统,且*, o运算满足交换律,结合律,吸收律,则可以适当定义S中的偏序 \leq ,使得〈S, \leq 〉构成一个格,且 $\forall a,b \in S$,有 $a \land b = a * b,a \lor b = a \circ b$

证:(1)先证: *,∘满足幂等律(吸收律⇒幂等律)

 $\forall a \in S$, 由吸收律得: $a*a = a*(a\circ(a*a)) = a$, 同理 $a\circ a = a$

(2)定义S上的二元关系R, $\forall a,b \in S$,有 $< a,b > \in R \Leftrightarrow a \circ b = b$

 $\Leftrightarrow a \leq b$ 则, R为偏序关系, $:: \forall a,b,c \in S$, 有,

自反性: $a \circ a = a \Rightarrow \langle a, a \rangle \in R$

反对称: $aRb \Leftrightarrow a \circ b = b$ $bRa \Leftrightarrow b \circ a = a$ $\Rightarrow a = b$

 $\Leftrightarrow aRc$

记R为≤

 $\mathbb{H}a \wedge b = a * b$

(3) < *S*, ≤> 构成格: $\forall a,b \in S$, $\overrightarrow{a}: a \circ (a \circ b) = (a \circ a) \circ b = a \circ b$, $b \circ (a \circ b) = a \circ (b \circ b) = a \circ b$ $\therefore a \leq a \circ b, b \leq a \circ b, 即 a \circ b \neq a, b$ 的上界; 设c为 $\{a,b\}$ 的上界,则 $a \le c \Rightarrow a \circ c = c$, $b \le c \Rightarrow b \circ c = c$ $\therefore (a \circ b) \circ c = a \circ (b \circ c) = a \circ c = c \quad \therefore a \circ b \in \{a,b\}$ 的最小上界,即 $a \lor b = a \circ b$ $\begin{vmatrix} a \circ b = b \Rightarrow a * b = a * (a \circ b) = a \\ a * b = a \Rightarrow a \circ b = (a * b) \circ b = b \end{vmatrix} \Rightarrow a \circ b = b \Leftrightarrow a \le b \Leftrightarrow a * b = a$ $(a*b)*a = (a*a)*b = a*b \Rightarrow a*b \le a$ $(a*b)*b = a*(b*b) = a*b \Rightarrow a*b \leq b$ $\therefore a*b \in a,b$ 的下界; 设c为{a,b}的下界,则c*a=c,c*b=c, (c*(a*b)) = (c*a)*b = c*b = c (c*a)*b = c

由定理10.1,10.2可知:

 $< L, \le >$ 是格 $\xrightarrow{\begin{subarray}{c} \begin{subarray}{c} \begin{s$

代数系统 $\langle S,*,\circ\rangle,*,\circ$ 满足交换,结合,吸收幂等)律 $\xrightarrow{\text{诱导出}}$

 $< S, \le >$ 成一个格,且 $a \wedge b = a * b$, $a \vee b = a \circ b$

令: $\gamma = \{ \langle L, \leq \rangle | \langle L, \leq \rangle \}$ 是格}, $\beta = \{ \langle L, *, \circ \rangle | \langle L, *, \circ \rangle \}$ 是代数系统,*与。

是二元运算,且满足交换律,结合律,吸收幂等)律}

定义映射 $f: \gamma \to \beta$,对 $\forall < L, \le > \in \gamma$, $f(< L, \le >) = < L, *, \circ >$,其中 $< L, *, \circ >$

是 < L, \le > 诱导出的代数系统,

定义映射 $g: \beta \to \gamma$,对 $\forall < L, *, \circ > \in \beta$, $g(< L, *, \circ >) = < L, \le >$,其中 $< L, \le >$

是 < L,*, \circ > 诱导出的格,

则有: $f \circ g = I_{\gamma}$, $g \circ f = I_{\beta}$

- 因此,根据定理10.1,10.2,可以用代数系统的方式来定义格。
- 定义10. 3: 设〈S,*,o〉是代数系统, *,o 是二元运算且满足交换律,结合律,吸收律(幂等律),则〈S,*,o〉构成一个格。
- 2. 性质
- 定理10. 3: 设〈L, \leq 〉是格,则 $\forall a,b \in L$,有
- $(1)a \le a \lor b$, $b \le a \lor b$, $a \land b \le a$, $a \land b \le b$;
- $(2)a \le b$, $c \le d \Rightarrow a \lor c \le b \lor d$, $a \land c \le b \land d$;
- $(3)a \le b \Rightarrow a \lor c \le b \lor c, \ a \land c \le b \land c;$
- $(4)a \le b \Leftrightarrow a \land b = a \Leftrightarrow a \lor b = b;$ $(5)a \lor (b \land c) \le (a \lor b) \land (a \lor c);$
- $(6)a \le c \Leftrightarrow a \lor (b \land c) \le (a \lor b) \land c.$

 $\therefore a \leq b \Leftrightarrow a \wedge b = a \Leftrightarrow a \vee b = b$;

证:(1)直接由定义; $(2)a \le b$, $c \le d$, 由(1)知: $b \le b \lor d$, $d \le b \lor d$, 由 \le 的传递性, 得 $a \le b \lor d$, $c \le b \lor d$, : $b \lor d$ 是a = c的一个上界,而 $a \lor c$ 是a,c的 最小上界, $:: a \lor c \le b \lor d$, 同理 $a \land c \le b \land d$; $(3)a \leq b$, $c \leq c$, 由(2)得: $a \vee c \leq b \vee c$, $a \wedge c \leq b \wedge c$; $(4)(\Rightarrow)$: $a \le b$, 而 $a \le a$, 由(2)得: $a \land a = a \le a \land b$, 同时由 $(1)a \land b \le a$: $a = a \land b$ (\Leftarrow) : $a = a \land b$, $\bigcup a \lor b = (a \land b) \lor b = b$, $\overline{\Box} a \le a \lor b = b$, 即 $a \leq b$ 另一方面, $a = a \land b \Rightarrow a \lor b = b$, 即 $a \lor b = b$ 且 $b = a \lor b$,得: $a \land b = a \land (a \lor b) = a$

```
(5)a \le a, b \land c \le b 由(2)得: a \lor (b \land c) \le a \lor b, a \le a, b \land c \le c 由(2)得: a \lor (b \land c) \le a \lor c, \therefore a \lor (b \land c) = (a \lor (b \land c)) \land (a \lor (b \land c)) \le (a \lor b) \land (a \lor c); (6)(年): a \lor (b \land c) \le (a \lor b) \land c, 而a \le a \lor (b \land c),(a \lor b) \land c \le c \therefore 由传递性: a \le c (\Rightarrow): a \le c, 则a \lor c = c, 代入(5)得: a \lor (b \land c) \le (a \lor b) \land (a \lor c) = (a \lor b) \land c.
```

- •1. 子格
- 定义10. 4: 设代数系统〈L,*,o〉是一个格, $S \subseteq L$, **若S满足**: (1) $S \neq \emptyset$, (2)运算*和。对S封闭,则称〈S,*,o〉是〈L,*,o〉的子格。
- 定义10. 5: 设〈L, \leq 〉是一个格, $S \subseteq L$,若S满足: $(1)S \neq \emptyset$ $(2)\forall a,b \in S$,有 $a \lor b \in S$, $a \land b \in S$,则称〈S, \leq 〉是〈L, \leq 〉的子格。
- 例10-1: (1) 设〈L, 《〉是一个格,其中 b L= {a, b, c, d, e} ,其哈斯图如右图。 $S_1 = \{a,b,c,d\}, S_2 = \{a,b,c,e\}, 则 < S_1, \le > 是 < L, \le >$ 的子格, $< S_2, \le >$ 不是 $< L, \le >$ 的子格。

•2. 格同态

- 定义10. 6: 设 L_1 和 L_2 是格, $\varphi:L_1 \to L_2$, 若 $\forall a,b \in L_1$ 有 $\varphi(a \land b) = \varphi(a) \land \varphi(b)$, $\varphi(a \lor b) = \varphi(a) \lor \varphi(b)$,则称 φ 为 格 L_1 到 L_2 的同态映射,简称格同态,若 φ 是双射,则称 φ 为格同构。
- 定义10. 7: 设 L_1 和 L_2 是格,其中 \leq_1,\leq_2 分别为格 L_1,L_2 上的偏序关系,存在映射 $f:L_1\to L_2, \forall a,b\in L_1$,若 $a\leq_1 b\Rightarrow f(a)\leq_2 f(b)$,称f是序同态,若f是双射,则称f是序同构。
- (格同态定理) 定理10. 4: (1) 设 φ 是格 $< L_1, \le_1 >$ 到 格 $< L_2, \le_2 >$ 的同态,则 φ 是序同态,即同态是保序的,即 $\forall x, y \in L_1, \ \ f(x \le_1) y \Rightarrow \varphi(x) \le_2 \varphi(y)$

(2) φ 是双射,则 φ 是< L_1 , \leq_1 >到< L_2 , \leq_2 > 的同构的充要条件是 $\forall x, y \in L_1$, 有 $x \leq_1 y \Leftrightarrow \varphi(x) \leq_2 \varphi(y)$

$$i \mathbb{L}: (1): \forall x, y \in L_1, x \leq_1 y \Leftrightarrow x \vee y = y$$

$$\therefore \varphi(y) = \varphi(x \vee y) = \varphi(x) \vee \varphi(y) \quad \therefore \varphi(x) \leq_2 \varphi(y);$$

$$(2)$$
:(\Rightarrow)由(1)得: $x \leq_1 y \Rightarrow \varphi(x) \leq_2 \varphi(y)$,反之: $\varphi(x) \leq_2 \varphi(y)$

$$\Rightarrow \varphi(x) \lor \varphi(y) = \varphi(y) = \varphi(x \lor y) \Rightarrow y = x \lor y \Rightarrow x \le_1 y$$

$$(\Leftarrow)$$
 $\forall x, y \in L_1, x \leq_1 y \Leftrightarrow \varphi(x) \leq_2 \varphi(y)$

$$\Leftrightarrow x \lor y = z$$
, $\emptyset x \le_1 z$, $y \le_1 z \Rightarrow \varphi(x) \le_2 \varphi(z)$, $\varphi(y) \le_2 \varphi(z)$

$$\therefore \varphi(x) \lor \varphi(y) \le \varphi(z) = \varphi(x \lor y)$$

另一方面, φ 是满射, $\varphi(x)$, $\varphi(y) \in L_2$,则 $\varphi(x) \lor \varphi(y) \in L_2$ 则必存在 $u \in L_1$,使得 $\varphi(u) = \varphi(x) \lor \varphi(y)$

例10-2:在同构意义下:具有1,2,3个元素的格分别同构于元素个数相同的链,4个元素的格必同构于下图4元素格之一,5个元素的格必同构于下图5元素格之一

• 定义10. 8: 设 L_1 和 L_2 是格,定义 $L_1 \times L_2$ 上的二元运算 \bigcup , \bigcap : 对 \forall < a_1 , b_1 >,< a_2 , b_2 >∈ $L_1 \times L_2$, 有:

$$< a_1, b_1 > \bigcap < a_2, b_2 > = < a_1 \land a_2, b_1 \land b_2 >$$

 $< a_1, b_1 > \bigcup < a_2, b_2 > = < a_1 \lor a_2, b_1 \lor b_2 >$

则称 $< L_1 \times L_2$, \cap , $\cup >$ 为 L_1 和 L_2 的直积。

▶直积仍是格(证明满足交换,结合,吸收律即可)

•1. 分配格

- 一般来说,对格 (L, \land, \lor) ,有 $\forall a, b, c \in L$,则 $a \lor (b \land c) \le (a \lor b) \land (a \lor c)$
- 定义10. 9: 设 (L, \wedge , \vee) 是格,若 $\forall a,b,c \in L$,有 $a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c)$, $a \vee (b \wedge c) = (a \vee b) \wedge (a \vee c)$ 则称L为分配格。

例: (1)

$$(2) < \rho(A), \cap, \cup >, < \rho, \land, \lor >$$

- 定理10.5: L是格,则L是分配格<=>L中不含有与钻石格或五角格同构的子格。
- 推论: (1)小于五元的格都是分配格; (2)任何一条链都是分配格。
- (分配格的性质) 定理10. 6: 若L是格,则L是分配格当且仅当 $\forall a,b,c \in L,a \land b = a \land c \perp a \lor b = a \lor c \Rightarrow b = c$ 证:(⇒) L是分配格,则 $\forall a,b,c \in L$ 有 $b = b \lor (a \land b) = b \lor (a \land c) = (b \lor a) \land (b \lor c)$ = $(a \lor c) \land (b \lor c) = (a \land b) \lor c = (a \land c) \lor c = c$

(ლ)用反证法,若 $\forall a,b,c \in L$,有 $a \land b = a \land c$, $a \lor b = a \lor c \Rightarrow b = c$ 成立,而L不是分配格,则:L中必含有与钻石格或五角格同构的子格若与钻石格同构,设为u,v,x,y,z},且u,v分别为最小元和最大元 $x \land y = x \land z = u$, $x \lor y = x \lor z = v$,由假设应有y = z,与 $y \ne z$ 矛盾。若与五角格同构,同理可证,:命题成立。

一命题条件 $a \land b = a \land c, a \lor b = a \lor c$ 同时成立,否则不正确。

反例:分配格 $< \rho(\{a,b\}), \cap, \cup > +$:

$$\emptyset \cap \{a\} = \emptyset \cap \{b\}, \ \ \{a\} \neq \{b\}$$

 $\{a,b\} \cup \{a\} = \{a,b\} \cup \{b\}, \ \ \{a\} \neq \{b\}$

- •2. 模格
- 定义10. 10: 设 (L, \wedge , \vee) 是格,若 $\forall a,b,c \in L$,有: $a \le c \Rightarrow a \lor (b \land c) = (a \lor b) \land c$ (模律),则称(L, \wedge , \vee) 为模格,也称为戴德金格。
- 定理10.7: 格L是模格的充要条件是它不含有同构于五角格的子格。
- 定理10. 8: 设(L, \wedge , \vee)为分配格,则(L, \wedge , \vee)是模格证: $\forall a,b,c \in L$,若 $a \leq c$,则 $a \wedge c = a$,且有 $(a \vee b) \wedge c = (a \wedge c) \vee (b \wedge c) = a \vee (b \wedge c)$ $\therefore L$ 是模格。

•3. 有界格

- 定义10. 11: 设L是格,若存在 $a \in L$,使得 $\forall x \in L$,有 $a \le x$,则称a为L的全下界,若存在 $b \in L$,使得 $\forall x \in L$,有 $x \le b$,则称b为L的全上界。
- \blacktriangleright (1):有限格 $L = \{a_1, a_2, \dots a_n\}$ 一定是有界格,全下界 $a_1 \wedge a_2 \wedge \dots \wedge a_n$,全上界 $a_1 \vee a_2 \vee \dots \vee a_n$;
- ▶ (2): 无限格可以为有界格,如 < \(\rho(B),\cap(B),\cap(B) \) 全下界
 ∅,全上界B;
- ▶(3):全上界,全下界唯一,分别记为1和0
- 定义10. 12: 设L是格,若L存在全上界和全下界,则称L为有界格,记为 $< L_{,\land,\lor,0,1}>$

• 定理10. 9: 设 < L, \land , \lor , 0, 1 > 为有界格,则 $\forall a \in L$,有 $a \land 0 = 0$, $a \lor 0 = a$, $a \land 1 = a$, $a \lor 1 = 1$

$$i \mathbb{E} : 0 \le a \Leftrightarrow 0 \lor a = a \Leftrightarrow 0 \land a = 0$$

$$a \le 1 \Leftrightarrow a \land 1 = a \Leftrightarrow a \lor 1 = 1$$

- •4. 有补格
- 定义10. 13: 设 < L, \land , \lor ,0,1 > 是有界格, $a \in L$,若存在 $b \in L$,使得 $a \land b = 0$ 且 $a \lor b = 1$,则称b是a的补元。
- ▶ 补元的性质: (1):补元素相互的; (2):并非有界格的每个元素都有补元,而有补元也不一定唯一; (3):0,1互为补元,且唯一。

• 定理10. 10: 设 < L, \land , \lor , 0, 1 > 是有界分配格,若 $a \in L$ 且对于a存在补元b,则b是a的唯一补元。

证: 设 $c \in L$ 也是a的补元,则: $a \lor c = 1$, $a \land c = 0$;

而b是a的补元,即有 $a \lor b = 1$, $a \land b = 0$

 $\therefore a \lor c = a \lor b, \quad a \land c = a \land b$

由于L是分配格,:有b=c.

• 定义10. 14: 设 $< L, \land, \lor, 0, 1 >$ 是有界格,若 $\forall a \in L$ 在L中都有a的补元存在,则称L是有补格。

- •1. 概念
- 定义10.15:如果一个格是有补分配格,则称它为 布尔代数。
- 一有补格保证每个元素有补元,分配格保证每个元素的补元的唯一性,因此,可将求补元看作是布尔代数的一元运算,即 $< B, \land, \lor, 0, 1> \Rightarrow < B, \land, \lor, ', 0, 1>$

例: $(1):<\{0,1\},\land,\lor,'>,(2)<\rho(S),\cap,\bigcup,\sim>.$

• 定理10. 11: 设 $< B, \land, \lor, ', 0, 1 >$ 是布尔代数,则 $(1) \forall a \in B, (a')' = a,$

$$(2) \forall a, b \in B, (a \land b)' = a' \lor b', (a \lor b)' = a' \land b'$$

证:(1).::(a')',a都是a'的补元,由补元的唯一性,知a = (a')' (2).($a \wedge b$) \vee ($a' \vee b'$) = ($a \vee a' \vee b'$) \wedge ($b \vee a' \vee b'$) = ($1 \vee b'$) \wedge ($a' \vee 1$) = $1 \wedge 1 = 1$ ($a \wedge b$) \wedge ($a' \vee b'$) = ($a \wedge b \wedge a'$) \vee ($a \wedge b \wedge b'$) = ($0 \wedge b$) \vee ($a \wedge 0$) = $0 \vee 0 = 0$:. $a' \vee b' = (a \wedge b)'$,同理($a \vee b$)' = $a' \wedge b'$

布尔代数:交换律,结合律,吸收律,分配律,存在补元,可用交换律,分配律,同一律,补元律代替。另一等价定义:

• 定义10. 16: $\langle B, \wedge, \vee, ' \rangle$ 是代数系统, $\langle A, \vee \rangle$ 是二元运算,且 $\langle A, \vee \rangle$ 满足: (1) 交换律,(2) 分配律,(3) 同一律: 存在 $\langle B, \rangle$ 对 $\langle A, \rangle$ 有 $\langle B, \rangle$ 是布尔代数。

▶(1): ∧: 幺元为1; ∨: 幺元为0(同一律)。可证: ∧:零元为0; ∨: 零元为1。

$$a \wedge 0 = (a \wedge 0) \vee 0 = (a \wedge 0) \vee (a \wedge a') = a \wedge (0 \vee a') = a \wedge a' = 0$$
$$a \vee 1 = (a \vee 1) \wedge 1 = (a \vee 1) \wedge (a \vee a') = a \vee (1 \wedge a') = a \vee a' = 1$$

 \triangleright (2): 吸收律成立。对 $\forall a,b \in B$,有: $a \lor (a \land b) = (a \land 1) \lor (a \land b) = a \land (1 \lor b) = a \land 1 = a$

$$a \wedge (a \vee b) = (a \vee 0) \wedge (a \vee b) = a \vee (0 \wedge b) = a \vee 0 = a$$

▶结合律成立。 $\forall a,b,c \in B$,有:

$$i): a \lor b = a \lor c, \exists a' \lor b = a' \lor c \Rightarrow (a \lor b) \land (a' \lor b) = (a \lor c) \land (a' \lor c) \Rightarrow b = c$$

$$ii$$
): $\overrightarrow{m}a \lor (a \land (b \land c)) = a$

$$a \lor ((a \land b) \land c) = (a \lor (a \land b)) \land (a \lor c) = a \lor (a \land c) = a$$

$$a' \lor (a \land (b \land c)) = (a' \lor a) \land (a' \lor (b \land c))$$

$$=1 \land (a' \lor (b \land c)) = a' \lor (b \land c)$$

$$a' \lor ((a \land b) \land c) = (a' \lor (a \land b)) \land (a' \lor c)$$

= $((a' \lor a) \land (a' \lor b)) \land (a' \lor c) = (1 \land (a' \lor b)) \land (a' \lor c)$
= $(a' \lor b) \land (a' \lor c) = a' \lor (b \land c)$
由 i : $a \land (b \land c) = (a \land b) \land c$,同理 $a \lor (b \lor c) = (a \lor b) \lor c$

•2. 子布尔代数

• 定义10. 17: 设 $< B, \land, \lor, ', 0, 1 >$ 是布尔代数, $S \subseteq B$,若 $0, 1 \in S$,且S对人, \lor ,'封闭,则称S是B的子布尔代数。

例: (1)对任何布尔代数<B,<,, \lor ,',0,1> 恒有子布尔代数<B,<, \lor ,',0,1> 和<0,1},<, \bullet , \lor ,',0,1> 均为B的平凡布尔代数。

$$S_1 = \{1, a, f, 0\}$$
 \sqrt{a} 与f互为补元 $S_2 = \{1, a, c, e\}$ \times $0 \notin S_2$

• 定理10. 12 (判定定理): 设 $< B, \land, \lor, ', 0, 1 >$ 是布尔代数, $S \subseteq B \coprod S \neq \emptyset$,若 $\forall a, b \in S, a \lor b \in S, a' \in S$, 则S是B的子布尔代数,记作 $< S, \land, \lor, ', 0, 1 >$

证: 若 $\forall a,b \in S$, 则 $a',b' \in S$, $(a' \lor b')' = a \land b \in S$

又 $S \neq \emptyset$, ∴存在 $a \in S$, 因此 $a' \in S$, ∴ $a \land a' = 0 \in S$,

 $a \lor a' = 1 \in S$

- •3. 布尔代数的同态
- 定义10. 18: 设< B_1 , \land , \lor ,',0,1 > 和< B_2 , \bigcap , \bigcup , \sim , θ ,e > 是两个布尔代数, $\varphi: B_1 \to B_2$,若 $\forall a,b \in B_1$,有:

$$\varphi(a \lor b) = \varphi(a) \bigcup \varphi(b), \quad \varphi(a \land b) = \varphi(a) \bigcap \varphi(b), \quad \varphi(a') = \varphi(a)$$

则称 φ 为 B_1 到 B_2 的布尔同态,若 φ 为双射,则为布尔同构。

- •4. 有限布尔代数的结构
- 定义10. 19: 设L是格,若a是0的覆盖,则称a是L中的原子,即: $0 \in L, a \in L$,若 $\forall b \in L$,有 $0 < b \le a \Rightarrow a = b$
- 定理10. 13: 设 $< B, \land, \lor, ', 0, 1 >$ 是布尔代数,B中元素a是原子的充要条件是a \neq 0,且对 $\forall x \in B$,有:

$$x \wedge a = a \overrightarrow{\boxtimes} x \wedge a = 0$$

证:(⇒):a是原子,显然 $a \neq 0$,另设 $x \land a \neq a$; 由于 $x \land a \leq a$,因而 $0 \leq x \land a < a$, $\therefore x \land a = 0$; (⇐): $0 \leq x \land a \neq 0$, $\forall x \in B$, $fx \land a = a$ 或 $x \land a = 0$, 若a不是原子,则必有 $b \in B$,使得0 < b < a,于是 $b \land a = b$, $\because b \neq 0$, $b \neq a$ $\therefore b \land a = b$ 与 $b \land a = a$ 或0矛盾。

• 定理10. 14: 设L是格, a, b是L中的原子, 若a≠b, 则a ∧ b=0。

证:假设 $a \land b \neq 0$,则有 $0 < a \land b \leq a$, $0 < a \land b \leq b$ 由于a,b是原子,得: $a \land b = a = b$ 矛盾

• 定理10. 15: 设B是有限布尔代数, $\forall x \in B, x \neq 0$,令 $T(x) = \{a_1, a_2, \dots, a_n\}$ 是B中所有《x的原子构成的集合 $(T(x) = \{a \mid a \in B, a \notin B, a \notin B, a \notin A, a \notin B, a \notin B$

 $x = a_1 \lor a_2 \lor \cdots \lor a_n$,称为x的原子表示,且该表示唯一 即若 $x = a_1 \lor a_2 \lor \cdots \lor a_n = b_1 \lor b_2 \lor \cdots \lor b_m$ 则 $\{a_1, a_2, \dots, a_n\} = \{b_1, b_2, \dots, b_m\}$ $\text{i.i.:} \quad \diamondsuit y = a_1 \lor a_2 \lor \cdots \lor a_n, \quad \text{i.i.} \quad \exists f : a_i \le x (i = 1, 2, \cdots, n) \quad \therefore y \le x$ 再证 $y \ge x$,首先证 $x \land y' = 0$,若 $x \land y' \ne 0$,则必存在元素 $t_1, t_2, \dots t_s$ 使得 t_1 覆盖0, t_2 覆盖 t_1 , t_s 覆盖 t_{s-1} ,且 $t_s = x \wedge y'$:. 有 $t_1 \le x$, $t_1 \le y'$, t_1 为原子 $\in T(x)$, 设 $a_i = t_1$ \therefore 有 $t_1 \le y' \Leftrightarrow t_1 = t_1 \land y' = a_i \land (a_1 \lor a_2 \lor \cdots \lor a_n)'$ $= a_i \wedge a_1' \wedge a_2' \wedge \cdots \wedge a_n' = a_i \wedge a_i' \wedge (a_1' \wedge a_2' \wedge \cdots \wedge a_{i-1}' \wedge a_{i+1}' \wedge \cdots \wedge a_n')$ $= 0 \wedge (a'_1 \wedge a'_2 \wedge \cdots \wedge a'_{i-1} \wedge a'_{i+1} \wedge \cdots \wedge a'_n) = 0$ 与 $0 < t_1$ 矛盾, $\therefore x \wedge y' = 0$

 $b_i \in \{a_1, a_2, \dots, a_n\}$

 $\therefore \{a_1, a_2, \dots, a_n\} = \{b_1, b_2, \dots, b_m\}$

則
$$y = y \lor 0 = y \lor (x \land y') = (y \lor x) \land (y \lor y') = (y \lor x) \land 1 = y \lor x$$

即 $x \le y$ $\therefore x = y$, 即 $x = a_1 \lor a_2 \lor \cdots \lor a_n$
唯一性: 设 $x = b_1 \lor b_2 \lor \cdots \lor b_m$ 是 x 的另一原子表示,任 $\mathbf{p}a_i \in T(x)$
 $= \{a_1, a_2, \cdots, a_n\}$,若 $a_i \notin \{b_1, b_2, \cdots, b_m\}$,则由于 $a_i = b_j$ 均为原子,由定理
 10.14 ,有 $a_i \land b_j = 0$ ($j = 1, 2, \cdots, m$)
 $a_i \le x \Leftrightarrow a_i = a_i \land x = a_i \land (b_1 \lor b_2 \lor \cdots \lor b_m)$
 $= (a_i \land b_1) \lor (a_i \land b_2) \lor \cdots \lor (a_i \land b_m) = 0 \lor 0 \lor \cdots \lor 0$
 $= 0 = a_i$ 是原子矛盾。
 $\therefore a_i \in \{b_1, b_2, \cdots, b_m\}$,同理 $\forall b_i \in \{b_1, b_2, \cdots, b_m\}$ 可推出

31/73

• 定理10. 16(有限布尔代数的表示定理): 设

 $< B, \land, \lor, ', 0, 1 >$ 是有限布尔代数,A={a|a∈B且a是原子},则 $< B, \land, \lor, ', 0, 1 > \cong < P(A), \cap, \cup, \sim, \emptyset, A >$

证: 任取 $x \in B$, $\diamondsuit T(x) = \{a \mid a \in B, a \in B, a \in B, a \in A\}$,

则 $T(x) \subseteq A$,定义函数: φ : $B \to P(A)$, $\varphi(x) = T(x)$, $\forall x \in B$ 则 φ 是B到P(A)的同构。

i).任取 $x, y \in B, \forall b$ 有:

 $b \in T(x \land y) \Leftrightarrow b \in A \coprod b \leq x \land y \Leftrightarrow b \in A, b \leq x \coprod b \in A, b \leq y$ $\Leftrightarrow b \in T(x) \coprod b \in T(y) \Leftrightarrow b \in T(x) \cap T(y)$

即 $\forall x, y \in B$ 有 $T(x \land y) = T(x) \cap T(y)$,即 $\varphi(x \land y) = \varphi(x) \cap \varphi(y)$

$$ii$$
).任取 $x, y \in B$, 令 $x = a_1 \lor a_2 \lor \cdots \lor a_n$, $y = b_1 \lor b_2 \lor \cdots \lor b_m$,则 $x \lor y = a_1 \lor a_2 \lor \cdots \lor a_n \lor b_1 \lor b_2 \lor \cdots \lor b_m$,即: $T(x \lor y) = \{a_1, a_2, \cdots, a_n, b_1, b_2, \cdots, b_m\}$ 又 $T(x) = \{a_1, a_2, \cdots, a_n\}$, $T(y) = \{b_1, b_2, \cdots, b_m\}$ ∴ $T(x \lor y) = T(x) \cup T(y)$,即: $\varphi(x \lor y) = \varphi(x) \cup \varphi(y)$ iii).任取 $x \in B$, 存在 $x' \in B$, 使得 $x \lor x' = 1$, $x \land x' = 0$ ∴ $\varphi(x) \cup \varphi(x') = \varphi(x \lor x') = \varphi(1) = A$ $\varphi(x) \cap \varphi(x') = \varphi(x \land x') = \varphi(0) = \emptyset$ ∴ $\varphi(x') = \sim \varphi(x)$

- 推论1: 任何有限布尔代数的基数为 $2^n, n \in N$
- 推论2: 任何具有2ⁿ个元素的布尔代数互相同构(对无限布尔代数不成立)

•5. 布尔表达式

- 定义10. 20: 设 $< B, \land, \lor, ', 0, 1 >$ 是一个布尔代数,B中的元素称为布尔常元,取值于B中元素的变元称为布尔变元。
- 定义10. 21: 设 $< B, \land, \lor, ', 0, 1 >$ 是一个布尔代数,在 B上的布尔表达式定义如下:
- (1). B中任何一个常元是布尔表达式;
- (2). B中任何一个布尔变元是布尔表达式;
- (3). 如果 e_1 , e_2 是布尔表达式,则 e_1' , $e_1 \wedge e_2$, $e_1 \vee e_2$ 也是布尔表达式;
- (4). 有限次使用(1), (2), (3)所构造的符号串是 布尔表达式。

- 定义10. 23: 设 $f_1(x_1, x_2, \dots, x_n)$ 和 $f_2(x_1, x_2, \dots, x_n)$ 是 布尔代数 $< B, \land, \lor, ', 0, 1 >$ 上的两个布尔表达式,如果对n个布尔变元的任意指派, f_1 和 f_2 的值均相等,则称 f_1 与 f_2 是等价的或相等的,记作: $f_1(x_1, x_2, \dots, x_n) = f_2(x_1, x_2, \dots, x_n)$
- ▶(1). 如果能有限次应用布尔代数的公式,将一个布尔表达式化成另一个布尔表达式,就可判定两式是等价的;

- ▶(2). 等价关系将n元布尔表达式集合划分成等价类 , 同一等价类中的布尔表达式等价,等价类数目 有限。
- 定义10. 24: 设 < B, \land , \lor , ', 0, 1 > 是布尔代数,给定n个布尔变元 x_1 , x_2 , \cdots , x_n ,表达式: $\tilde{x}_1 \land \tilde{x}_2 \land \cdots \land \tilde{x}_n$ (\tilde{x}_i 表示 x_i 或 x_i' 两者之一),称为极小项。
- \blacktriangleright (1). n个布尔变元就有 2^n 个不同的极小项,分别记为 $m_0, m_1, \dots, m_{2^n-1}$, 下标是二进制数 a_1, a_2, \dots, a_n 的十进制表示,其中

$$a_i = \begin{cases} 1 & \widetilde{x}_i = x_i \\ 0 & \widetilde{x}_i = x_i' \end{cases}$$

- (2). $m_i \wedge m_j = 0$, 当 $i \neq j$ 时;
- (3). $m_0 \vee m_1 \vee \cdots \vee m_{2^{n}-1} = 1$
- 定义10. 25: 设 < B, \land , \lor ,',0,1 > 是布尔代数,如 $(a_0 \land m_0) \lor (a_1 \land m_1) \lor \cdots \lor (a_{2^n-1} \land m_{2^n-1})$ 的布尔表达式 称为主析取范式,其中 a_i 是布尔常元, m_i 是极小项 $(i=0,1,\cdots,2^n-1)$.
- \triangleright (1). 每个 a_i 有 | B | 种取法,故有n个布尔变元的不同的主析取范式有 | B | $^{2^n}$ 个,当B= {0, 1} 时有 2^{2^n} 个;
- 》(2). 2^n 个极小项,最多能构造出 $|B|^{2^n}$ 个主析取范式,所以一个n元布尔表达式必等价于这 $|B|^{2^n}$ 个主析取范式之一;
- >(3). 可用数理逻辑中的方法,用德摩根律等将一

个n元布尔表达式转化为等价的主析取范式;

 \triangleright (4). 相应的: 极大项: $\widetilde{x}_1 \vee \widetilde{x}_2 \vee \cdots \vee \widetilde{x}_n$

主合取范式为: $(a_0 \lor M_0) \land (a_1 \lor M_1) \land \cdots \land (a_{2^{n-1}} \lor M_{2^{n-1}})$

 a_i 是布尔常元, M_i 是极大项,同样有 $|B|^{2^n}$ 个不同的主合取范式, 2^n 个极大项最多能构造 $|B|^{2^n}$ 个不同的主合取范式。

例: 将布尔代数 < {0, a, b,1}, \land , \lor ,',0,1 > 上的布尔表达式 $f(x_1,x_2) = ((a \land x_1) \land (x_1 \lor x_2')) \lor (b \land x_1 \land x_2)$ 化为主析取范式和主合取范式

解:
$$f(x_1, x_2) = ((a \land x_1) \land (x_1 \lor x_2')) \lor (b \land x_1 \land x_2)$$

 $= (a \land (x_1 \land (x_1 \lor x_2')) \lor (b \land x_1 \land x_2)$
 $= (a \land x_1) \lor (b \land x_1 \land x_2)$
 $= (a \land x_1 \land (x_2 \lor x_2')) \lor (b \land x_1 \land x_2)$
 $= (a \land x_1 \land x_2) \lor (a \land x_1 \land x_2') \lor (b \land x_1 \land x_2)$
 $= (a \land x_1 \land x_2') \lor ((a \lor b) \land x_1 \land x_2)$
 $= (a \land x_1 \land x_2') \lor (x_1 \land x_2)$
 $= (a \land m_2) \lor m_3$
同理 $f(x_1, x_2) = M_0 \land M_1 \land (a \lor M_2)$

- 定义10. 26: 设 $< B, \land, \lor, ', 0, 1 >$ 是一个格,一个从 B^n 到B的函数,如果能够用该布尔代数上的布尔表达式来表达,则称这个函数为布尔函数。
- ▶(1). 每一个n元布尔表达式可以看作是一个n个布尔变元的函数;
- (2). n个变元的主析取范式最多有 $|B|^{2^n}$ 个,二只能代表 $|B|^{2^n}$ 个不同的函数, $|B|^n$ 到|B|的函数共有 $|B|^{|B^n|}=|B|^{|B|^n}$ 个;
- 当B={0,1}时,函数有 2^{2^n} 个,主析取范式 2^{2^n} 个,每个函数均可用布尔表达式表示,当B≠ {0,1}时,如B={0,1,a,b}时,函数有 4^{4^n} 个,主析取范式有 4^{2^n} 个,即当|B|>2时,有些 B^n 到B的函数不能用布尔表达式表示。

》(3). 命题逻辑可以用布尔代数 < $\{F,T\}$, \land , \lor , \sim > 来描述,开关代数可以用布尔代数< $\{$ 断开,闭合 $\}$,并联,串联,反向>来描述。