

Analysis and Design of Algorithms

Asymptotic Analysis

Asymptotic Analysis

The **exact running time** of an algorithm is a complex expression, therefore, we **estimate it**.

We consider only the **highest order** term of expression and we **suppress** any constant factors

Example:

3n²+2n+4 is n² asymptotically

Asymptotically rank the following functions: $n, n^{1/2}, log(n), log(log(n)), log^2(n), (\frac{1}{3})^n, 4, (\frac{3}{2})^n, n!$

- Asymptotic notations are mathematical tools to represent the time complexity of algorithms for asymptotic analysis
- There are 2 methods to find the complexity class of an algorithm:

1 Definition

2 Limit Test

Asymptotic Notations: Definiton

Big-Oh Notation: T(n) = O(f(n))

There exists positive constants c and no where:

 $0 \le T(n) \le cf(n)$ for all $n \ge n_0$ Big-Omega Notation: $T(n) = \Omega(f(n))$

There exists positive constants c and no where:

 $T(n) \ge cf(n) \ge 0$ for all $n \ge n_0$ Big-Theta Notation: $T(n) = \Phi(f(n))$

There exists c₁, c₂ and n₀ where:

 $0 \le c_1 f(n) \le T(n) \le c_2 f(n)$ for all $n \ge n_0$

For every given f(n) and g(n) prove that $f(n) = \Theta(g(n))$

a)
$$g(n) = n^3$$
, $f(n) = 3n^3 + n^2 + n$

b)
$$g(n) = 2^n$$
, $f(n) = 2^{n+1}$

c)
$$g(n) = \ln(n), f(n) = \log_{10}(n) + \log_{10}(\log_{10} n)$$

Asymptotic Notations: Definiton II

Small-Oh Notation: T(n) = o(f(n))

For any positive constant c, there is a positive constant n₀ where:

 $0 \le T(n) < cf(n)$ for all $n \ge n_0$

Small-Omega Notation: $T(n) = \omega(f(n))$

For any positive constant c, there is a positive constant n₀ where:

 $0 \le T(n) > cf(n)$ for all $n \ge n_0$

Asymptotic Notations: Limit Test

The limit test is used to determine the dominance class of a function

Asymptotic Notations and the Limit Test

If
$$\lim_{n\to\infty} \frac{f(n)}{g(n)}$$

- **1** = 0, then f(n) = o(g(n)).
- $2 = \infty$, then f(n) = w(g(n)).
- $\mathbf{3} = c \in \mathbb{R}^+$, then $f(n) = \Theta(g(n))$.
- $4 \neq \infty$, then f(n) = O(g(n)).
- **5** \neq 0, then $f(n) = \Omega(g(n))$.

Nourhan Ehab

Exercise 2-4 From CLRS (©MIT Press 2001)

For every given f(n) and g(n) prove that $f(n) = \Theta(g(n))$

a)
$$g(n) = n^3$$
, $f(n) = 3n^3 + n^2 + n$

b)
$$g(n) = 2^n$$
, $f(n) = 2^{n+1}$

c)
$$g(n) = \ln(n), f(n) = \log_{10}(n) + \log_{10}(\log_{10} n)$$

Exercise 2-5

For every given f(n) and g(n) prove that f(n) = o(g(n)) or $f(n) = \omega(g(n))$

a)
$$f(n) = n^3$$
, $g(n) = n^2$

b)
$$f(n) = \log(n), g(n) = \log^2(n)$$

Exercise 2-6 From CLRS (©MIT Press 2001)

Let f(n) and g(n) be asymptotically non-negative functions. Using the basic definition of Θ -notation, prove that $\max(f(n),g(n))=\Theta(f(n)+g(n)).$

All done!

