報告書

1 今週の進捗

- MLM を用いた実験の5回試行
- tail に関して見出し語のみを推定した実験の3回試行
- 学習時の MASK 位置を tail の見出し語に固定した実験

2 KG-BERT [1]

2.1 データセット

表 1 に本実験で用いるデータセットである WN18RR におけるデータ数を示す.

表 1: データセット

Dataset	Entity	Relation	Train	Validation	Test
WN18RR	40,943	11	86,835	3,034	3,134

2.2 MLM を用いた実験

ナレッジグラフにおける tail 推定モデルとして, BERT の Masked Launguage Model (MLM) を適用した実験をする. 入力として, head, relation, tail の説明文を用い, tail の見出し語を MASK として推定させる. 表 2 に入力と出力の例を示す. このとき, tail の見出し語の単語数は複数になる可能性がある. また, 表 3 に本実験のパラメータを示す. 本実験は 5 回試行する.

表 2: MLM の入力と出力の例

triple	Head	Relation	Tail
入力	family crocodylidae, true crocodiles	member meronym	[MASK], a genus of Malayan crocodiles
出力			tomistoma

表 3: パラメータ

パラメータ	値	
学習率	5e-5	
epoch	20	
mlm probability	0.15	
batch size	32	
max seq length	128	

2.3 tail に関して見出し語のみを推定した実験

ナレッジグラフにおける tail 推定モデルとして, BERT の Masked Launguage Model (MLM) を適用した実験をする. 入力として, head, relation を用い, tail の見出し語を MASK として推定させる. 表 4 に入力と出力の例を示す. このとき, tail の見出し語の単語数は複数になる可能性がある. また, 表 5 に本実験のパラメータを示す. 本実験は 3 回試行する.

表 4: MLM の入力と出力の例

triple Head		Relation	Tail
入力	family crocodylidae, true crocodiles	member meronym	[MASK]
出力			tomistoma

表 5: パラメータ

	-
パラメータ	値
学習率	5e-5
epoch	20
batch size	32
max seq length	128

2.3.1 実験結果

評価指標として Hits@k を使用する. Hits@k とは、予測したエンティティを順位付けしたときに、上位 k 個以内に正解が含まれている割合のことを指し、値が大きいとき推定精度が良いと判断される.

表 6 に上記実験の結果を示す. 比較として KG-BERT における文献値と再現実験の結果も示している. 評価指標の MR と MRR については MLM を用いた実験では実装できていない.

WN18RR モデル Hits@1 MRMRR Hits@3 Hits@10 KG-BERT (文献值) 52.4 97 KG-BERT (再現実験) 117.770.2512.4129.44 51.85MLM (5 回試行) 44.08 ± 0.47 56.60 ± 0.42 61.79 ± 0.32 MLM (tail 見出し語) (3 回試行) 15.33 ± 0.80 29.22 ± 0.40 40.25 ± 0.75

表 6: MLM を用いた実験結果

KG-BERT における文献値と再現実験の結果と比較すると、Hits@k において MLM を用いた実験のほうが良い精度となっていることがわかる。しかし、KG-BERT では見出し語と説明文を含めた tail を推定しているのに対し、MLM を用いた実験では tail の見出し文のみを推定している。そのため、KG-BERT の実験結果と正確な比較はできていない。

KG-BERT と条件を揃えるためにした tail の見出し語の推定実験の結果では, Hits@1 において KG-BERT よりも精度が良くなっているが, Hits@3, 10 では KG-BERT のほうが良い精度となっている.

2.4 学習時の MASK 位置を tail の見出し語に固定した実験

現在コードを書いており、学習のコードは完成しているがテストのコードが完成していない.

3 今後したいこと

- MLM を用いた実験の改良
- ナレッジグラフ推論チャレンジのデータセットの適用

4 KG-BERT のモデル図

Triple Label $y \in \{0, 1\}$

図 1: KG-BERT model [1]

参考文献

[1] Liang Yao, Chengsheng Mao, and Yuan Luo. KG-BERT: BERT for knowledge graph completion. CoRR, Vol. abs/1909.03193, , 2019.