Solution Bank

Chapter review 8

1 a
$$2=5+2x-x^2$$

$$\Rightarrow x^2-2x-3=0$$

$$\Rightarrow (x-3)(x+1)=0$$

$$\Rightarrow x=-1(A), 3(B)$$

b Area of
$$R = \int_{-1}^{3} (5 + 2x - x^2 - 2) dx$$

$$= \int_{-1}^{3} (3 + 2x - x^2) dx$$

$$= (3x + x^2 - \frac{1}{3}x^3)_{-1}^{3}$$

$$= (9 + 9 - \frac{27}{3}) - (-3 + 1 + \frac{1}{3})$$

$$= 9 + 2 - \frac{1}{3}$$

$$= 10\frac{2}{3}$$

2 **a**
$$(x^{\frac{1}{2}} - 4)(x^{-\frac{1}{2}} - 1)$$

 $= 1 - 4x^{-\frac{1}{2}} - x^{\frac{1}{2}} + 4 = 5 - 4x^{-\frac{1}{2}} - x^{\frac{1}{2}}$
 $\int (x^{\frac{1}{2}} - 4)(x^{-\frac{1}{2}} - 1) dx = 5x - \frac{4x^{\frac{1}{2}}}{\frac{1}{2}} - \frac{x^{\frac{3}{2}}}{\frac{3}{2}} + c$
 $= 5x - 8x^{\frac{1}{2}} - \frac{2}{3}x^{\frac{3}{2}} + c$

$$\mathbf{b} \quad \int_{1}^{4} \left(x^{\frac{1}{2}} - 4 \right) \left(x^{-\frac{1}{2}} - 1 \right) \, \mathrm{d}x = \left(5x - 8x^{\frac{1}{2}} - \frac{2}{3} x^{\frac{3}{2}} \right)_{1}^{4}$$

$$= \left(20 - 8 \times 2 - \frac{2}{3} \times 2^{3} \right) - \left(5 - 8 - \frac{2}{3} \right)$$

$$= 4 - \frac{16}{3} + 3 + \frac{2}{3}$$

$$= 7 - \frac{14}{3}$$

$$= \frac{7}{2} \text{ or } 2\frac{1}{2}$$

3 **a**
$$(x-3)^2 = x^2 - 6x + 9$$

So $x(x-3)^2 = x^3 - 6x^2 + 9x$
 $y = 0 \Rightarrow x = 0 \text{ or } 3 \text{ (twice)}$
So A is the point $(3, 0)$.

3 **b**
$$\frac{dy}{dx} = 0 \Rightarrow 0 = 3x^2 - 12x + 9$$

$$\Rightarrow 0 = 3(x^2 - 4x + 3)$$

$$\Rightarrow 0 = 3(x - 3)(x - 1)$$

$$\Rightarrow 0 = 1 \text{ or } 3$$

$$x = 3 \text{ at } A \text{, the minimum, so } B \text{ is } (1, 4)$$
(Found by substituting $x = 1$ into original equation.)

c Area of
$$R = \int_0^3 (x^3 - 6x^2 + 9x) dx$$

$$= \left(\frac{1}{4}x^4 - 2x^3 + \frac{9}{2}x^2\right)_0^3$$

$$= \left(\frac{81}{4} - 2 \times 27 + \frac{9}{2} \times 9\right) - (0)$$

$$= 6\frac{3}{4}$$

4 a
$$y = 3x^{\frac{1}{2}} - 4x^{-\frac{1}{2}}$$

$$\frac{dy}{dx} = \frac{3}{2}x^{-\frac{1}{2}} + \frac{1}{2} \times 4x^{-\frac{3}{2}}$$

$$\frac{dy}{dx} = \frac{3}{2}x^{-\frac{1}{2}} + 2x^{-\frac{3}{2}}$$

b
$$\int y \, dx = \int \left(3x^{\frac{1}{2}} - 4x^{-\frac{1}{2}}\right) dx$$
$$= \frac{3x^{\frac{3}{2}}}{\frac{3}{2}} - \frac{4x^{\frac{1}{2}}}{\frac{1}{2}} + c$$
$$= 2x^{\frac{3}{2}} - 8x^{\frac{1}{2}} + c$$

$$c \int_{1}^{3} y \, dx = \left(2x^{\frac{3}{2}} - 8x^{\frac{1}{2}}\right)_{1}^{3}$$

$$= \left(2 \times 3\sqrt{3} - 8\sqrt{3}\right) - \left(2 - 8\right)$$

$$= -2\sqrt{3} + 6$$

$$= 6 - 2\sqrt{3}$$
So $A = 6$ and $B = -2$

5 **a**
$$y = 12x^{\frac{1}{2}} - x^{\frac{3}{2}}$$

 $\frac{dy}{dx} = 6x^{-\frac{1}{2}} - \frac{3}{2}x^{\frac{1}{2}}$
 $= \frac{3}{2}x^{-\frac{1}{2}}(4-x)$

b
$$\frac{dy}{dx} = 0 \Rightarrow x = 4, y = 12 \times 2 - 2^3 = 16$$

So *B* is the point (4,16).

1

Solution Bank

5 c Area = $\int_0^{12} \left(12x^{\frac{1}{2}} - x^{\frac{3}{2}}\right) dx$ $= \left(\frac{12x^{\frac{3}{2}}}{\frac{3}{2}} - \frac{x^{\frac{5}{2}}}{\frac{5}{2}}\right)_{0}^{12}$ $=\left(8x^{\frac{3}{2}}-\frac{2}{5}x^{\frac{5}{2}}\right)^{12}$ $= \left(8 \times \sqrt{12^3} - \frac{2}{5}\sqrt{12^5}\right) - (0)$ =133(3 s.f.)

6 a
$$x(8-x)=12$$

$$\Rightarrow 8x-x^2=12$$

$$\Rightarrow 0=x^2-8x+12$$

$$\Rightarrow 0=(x-6)(x-2)$$

$$\Rightarrow x=2 \text{ or } x=6$$
M is on the same line as L.

So M is the point (6,12).

b Area = $\int_{0}^{8} (8x - x^2) dx$ $=\left(4x^2-\frac{x^3}{3}\right)^8$ $=(4\times64-\frac{512}{3})-(4\times36-\frac{216}{3})$ $=256-170\frac{2}{3}-144+72$ $=13\frac{1}{3}$

7 a A is the point (1,0), B is the point (5,0).

$$x-1 = (x-1)(x-5)$$

$$\Rightarrow 0 = (x-1)(x-5-1)$$

$$\Rightarrow 0 = (x-1)(x-6)$$

$$\Rightarrow x = 1, x = 6$$

So C is the point (6,5).

7 b Drop a perpendicular from C to the x-axis to a point D.

The area of the shaded region is

Area of triangle ABD $\int_{5}^{6} (x-1)(x-5) dx$ = Area of ABD $-\int_{5}^{6} (x^2 - 6x + 5) dx$

Area =
$$\left(\frac{1}{2} \times 5 \times 5\right) - \int_{5}^{6} \left(x^{2} - 6x + 5\right) dx$$

= $12 \frac{1}{2} - \left[\frac{1}{3}x^{3} - 3x^{2} + 5x\right]_{5}^{6}$
= $12 \frac{1}{2} - \left[\left(72 - 108 + 30\right) - \left(41\frac{2}{3} - 75 + 25\right)\right]$
= $12 \frac{1}{2} - \left(-6\right) - \left(-8\frac{1}{3}\right)$
= $12 \frac{1}{2} + 6 + 8\frac{1}{3}$
= $26\frac{5}{6}$

8 a For the point A, which lies on the line and the curve

$$4q + 25 = p + 40 - 16$$

 $\Rightarrow 4q = p - 1$ (1)

For the point B, which lies on the line and the curve

$$8q + 25 = p + 80 - 64$$

 $\Rightarrow 8q = p - 9$ (2)
Subtracting (2) – (1)
 $\Rightarrow 4q = -8$
 $\Rightarrow q = -2$
Substituting into (1)

 $\Rightarrow p = 1 + 4q$

$$\Rightarrow p = -7$$

Solution Bank

? Pearson

8 b At A, y = 4q + 25 = 17So C is given by

So C is given by
$$17 = -7 + 10x - x^{2}$$

$$x^{2} - 10x + 24 = 0$$

$$(x - 6)(x - 4) = 0$$

$$x = 4, x = 6$$

So C is the point (6,17)

c The required area is $\int_{4}^{6} (-7 + 10x - x^{2}) dx - \text{area of rectangle}$

Area =
$$\left(-7x + 5x^2 - \frac{1}{3}x^3\right)_4^6 - 34$$

= $\left(-42 + 180 - 72\right) - \left(-28 + 80 - \frac{64}{3}\right) - 34$
= $\frac{4}{3}$ or $1\frac{1}{3}$

9 $A^{2} = \int_{4}^{9} \left(\frac{3}{\sqrt{x}} - A\right) dx$ $= \int_{4}^{9} \left(3x^{-\frac{1}{2}} - A\right) dx$ $= \left[\frac{3x^{\frac{1}{2}}}{\frac{1}{2}} - Ax\right]_{4}^{9}$ $= \left[6x^{\frac{1}{2}} - Ax\right]_{4}^{9}$ $= \left(6(9)^{\frac{1}{2}} - A(9)\right) - \left(6(4)^{\frac{1}{2}} - A(4)\right)$ = (18 - 9A) - (12 - 4A) 0 = (A + 6)(A - 1) A = -6 or A = 1

10 a f'(x) =
$$\frac{(2-x^2)^3}{x^2}$$

= $\frac{(2-x^2)(2-x^2)(2-x^2)}{x^2}$
= $\frac{(4-4x^2+x^4)(2-x^2)}{x^2}$
= $x^{-2}(8-12x^2+6x^4-x^6)$
= $8x^{-2}-12+6x^2-x^4$
So $A = 6$ and $B = -1$

b
$$f''(x) = -16x^{-3} + 12x - 4x^3$$

$$c f(x) = \int (8x^{-2} - 12 + 6x^2 - x^4) dx$$

$$= \frac{8x^{-1}}{-1} - 12x + \frac{6x^3}{3} - \frac{x^5}{5} + c$$

$$= -\frac{8}{x} - 12x + 2x^3 - \frac{x^5}{5} + c$$
When $x = -2$ and $y = 9$

$$-\frac{8}{-2} - 12(-2) + 2(-2)^3 - \frac{(-2)^5}{5} + c = 9$$

$$4 + 24 - 16 + \frac{32}{5} + c = 9$$

$$c = -\frac{4}{5}$$

$$f(x) = -\frac{8}{x} - 12x + 2x^3 - \frac{x^5}{5} - \frac{47}{5}$$

11 a
$$y = 3 - 5x - 2x^2$$

When $y = 0$, $3 - 5x - 2x^2 = 0$
 $(3 + x)(1 - 2x) = 0$
 $x = -3$ or $x = \frac{1}{2}$

The points are A(-3, 0) and $B(\frac{1}{2}, 0)$.

$$\mathbf{b} \quad \int_{-3}^{\frac{1}{2}} (3 - 5x - 2x^2) \, dx$$

$$= \left[3x - \frac{5x^2}{2} - \frac{2x^3}{3} \right]_{-3}^{\frac{1}{2}}$$

$$= \left(3\left(\frac{1}{2}\right) - \frac{5\left(\frac{1}{2}\right)^2}{2} - \frac{2\left(\frac{1}{2}\right)^3}{3} \right)$$

$$- \left(3(-3) - \frac{5(-3)^2}{2} - \frac{2(-3)^3}{3} \right)$$

$$= \left(\frac{3}{2} - \frac{5}{8} - \frac{1}{12} \right) - \left(-9 - \frac{45}{2} + \frac{54}{3} \right)$$

$$= 14 \frac{7}{24}$$

Solution Bank

12 a
$$(x-4)(2x+3) = 0$$

 $x = 4$ or $x = -\frac{3}{2}$

The points are $A(-\frac{3}{2}, 0)$ and B(4, 0).

$$\mathbf{b} \ R = \int_{-\frac{3}{2}}^{4} (x-4)(2x+3) \, dx$$

$$= \int_{-\frac{3}{2}}^{4} (2x^2 - 5x - 12) \, dx$$

$$= \left[\frac{2x^3}{3} - \frac{5x^2}{2} - 12x \right]_{-\frac{3}{2}}^{4}$$

$$= \left(\frac{2(4)^3}{3} - \frac{5(4)^2}{2} - 12(4) \right)$$

$$- \left(\frac{2(-\frac{3}{2})^3}{3} - \frac{5(-\frac{3}{2})^2}{2} - 12(-\frac{3}{2}) \right)$$

$$= \left(\frac{128}{3} - 40 - 48 \right) - \left(-\frac{9}{4} - \frac{45}{8} + 18 \right)$$

$$= -55 \frac{11}{24}$$

Area =
$$55\frac{11}{24}$$

13 a
$$x(x-3)(x+2) = 0$$

$$x = 0, x = 3 \text{ or } x = -2$$

The points are A(-2, 0) and B(3, 0).

b
$$\int_{-2}^{0} x(x-3)(x+2) dx - \int_{0}^{3} x(x-3)(x+2) dx = \int_{-2}^{0} (x^3 - x^2 - 6x) dx - \int_{0}^{3} (x^3 - x^2 - 6x) dx$$

$$= \left[\frac{x^4}{4} - \frac{x^3}{3} - 3x^2\right]_{-2}^{0}$$

$$\int_{-2}^{0} (x^3 - x^2 - 6x) dx = \left[\frac{x^4}{4} - \frac{x^3}{3} - \frac{6x^2}{2}\right]_{-2}^{0} = \left(\frac{0^4}{4} - \frac{0^3}{3} - 3(0)^2\right) - \left(\frac{(-2)^4}{4} - \frac{(-2)^3}{3} - 3(-2)^2\right)$$

$$= 0 - \left(4 + \frac{8}{3} - 12\right)$$

$$= 5\frac{1}{3}$$

$$\int_0^3 (x^3 - x^2 - 6x) \, dx = \left[\frac{x^4}{4} - \frac{x^3}{3} - 3x^2 \right]_0^3$$

$$= \left(\frac{3^4}{4} - \frac{3^3}{3} - 3(3)^2 \right) - \left(\frac{0^4}{4} - \frac{0^3}{3} - 3(0)^2 \right)$$

$$= \left(\frac{81}{4} - 9 - 27 \right)$$

$$= -15\frac{3}{4}$$

Total area is $5\frac{1}{3} - (-15\frac{3}{4}) = 21\frac{1}{12}$

Solution Bank

14 a
$$y = \frac{5}{x^2 + 1}$$

A 1 1									
x	0	0.5	1	1.5	2	2.5	3		
$\frac{5}{x^2+1}$	5	4	2.5	1.538	1	0.690	0.5		

$$\mathbf{b} \quad A = \int_{0}^{3} \left(\frac{5}{x^2 + 1} \right) \mathrm{d}x$$

$$\int_{a}^{b} y \, dx = \frac{1}{2} h \left(y_0 + 2 \left(y_1 + y_2 + \dots + y_{n-1} \right) + y_n \right)$$

$$\int_{0}^{3} \left(\frac{5}{x^2 + 1} \right) dx = \frac{1}{2} (0.5) \left(5 + 2 \left(4 + 2.5 + 1.538 + 1 + 0.69 \right) + 0.5 \right)$$

$$= 6.24 (3 \text{ s.f.})$$

$$\mathbf{c} \int_{0}^{3} \left(4 + \frac{5}{x^{2} + 1}\right) dx$$

$$\int_{0}^{3} \left(4 + \frac{5}{x^{2} + 1}\right) dx = \int_{0}^{3} 4 dx + \int_{0}^{3} \left(\frac{5}{x^{2} + 1}\right) dx$$

$$= 12 + 6.24$$

$$= 18.24$$

15 a
$$y = \sqrt{3^x + x}$$

Х	0	0.25	0.5	0.75	1
$\sqrt{3^x + x}$	1	1.251	1.494	1.741	2

$$\mathbf{b} \quad A = \int_{0}^{1} \sqrt{3^x + x} \, \mathrm{d}x$$

$$\int_{a}^{b} y \, dx = \frac{1}{2} h \left(y_0 + 2 \left(y_1 + y_2 + \dots + y_{n-1} \right) + y_n \right)$$

$$\int_{0}^{1} \sqrt{3^x + x} \, dx = \frac{1}{2} (0.25) \left(1 + 2 \left(1.251 + 1.494 + 1.741 \right) + 2 \right)$$

$$= 1.50 \, (3 \text{ s.f.})$$

16 a
$$y = 8 + 4x - x^2$$
 and $y = x^2 - 4x + 8$

$$8 + 4x - x^2 = x^2 - 4x + 8$$

$$2x^2 - 8x = 0$$

$$2x(x-4)=0$$

$$x = 0 \text{ or } x = 4$$

When
$$x = 0$$
, $y = 8$

When
$$x = 4$$
, $y = 8$

So the curves intersect at (0, 8) and (4, 8)

Solution Bank

16 b

The area of the shaded region is given by

$$A = \int_0^4 (8+4x-x^2) dx - \int_0^4 (x^2-4x+8) dx$$

$$= \int_0^4 (8+4x-x^2) dx - \int_0^4 (x^2-4x+8) dx$$

$$= \left[8x+2x^2 - \frac{1}{3}x^3 \right]_0^4 - \left[\frac{1}{3}x^3 - 2x^2 + 8x \right]_0^4$$

$$= \left[\left(8(4)+2(4)^2 - \frac{1}{3}(4)^3 \right) - \left(8(0)+2(0)^2 - \frac{1}{3}(0)^3 \right) \right]$$

$$- \left[\left(\frac{1}{3}(4)^3 - 2(4)^2 + 8(4) \right) - \left(\frac{1}{3}(0)^3 - 2(0)^2 + 8(0) \right) \right]$$

$$= \frac{128}{3} - \frac{64}{3}$$

$$= \frac{64}{3}$$

Alternatively, because the limits are the same

$$A = \int_0^4 (8 + 4x - x^2) - (x^2 - 4x + 8) dx$$

$$= \int_0^4 (8x - 2x^2) dx$$

$$= \left[4x^2 - \frac{2}{3}x^3 \right]_0^4$$

$$= \left[\left(4(4)^2 - \frac{2}{3}(4)^3 \right) - \left(4(0)^2 - \frac{2}{3}(0)^3 \right) \right]$$

$$= \left[\left(\frac{64}{3} \right) - (0) \right]$$

$$= \frac{64}{3}$$

Solution Bank

Challenge

a The shaded area beneath the x-axis is given by

$$A = \int_0^1 x(x-1)(x+2) dx$$

$$= \int_0^1 (x^3 + x^2 - 2x) dx$$

$$= \left[\frac{1}{4}x^4 + \frac{1}{3}x^3 - x^2 \right]_0^1$$

$$= \left(\frac{1}{4}(1)^4 + \frac{1}{3}(1)^3 - (1)^2 \right) - \left(\frac{1}{4}(0)^4 + \frac{1}{3}(0)^3 - (0)^2 \right)$$

$$= -\frac{5}{12}$$

So the area beneath the *x*-axis is $\frac{5}{12}$

The shaded area above the x-axis is given by

$$A = \int_{x}^{0} (x^{3} + x^{2} - 2x) dx$$

$$= \left[\frac{1}{4} x^{4} + \frac{1}{3} x^{3} - x^{2} \right]_{x}^{0}$$

$$= \left(\frac{1}{4} (0)^{4} + \frac{1}{3} (0)^{3} - (0)^{2} \right) - \left(\frac{1}{4} (x)^{4} + \frac{1}{3} (x)^{3} - (x)^{2} \right)$$

$$= -\frac{1}{4} x^{4} - \frac{1}{3} x^{3} + x^{2}$$

Since the areas are equal

$$-\frac{1}{4}x^4 - \frac{1}{3}x^3 + x^2 = \frac{5}{12}$$
$$-3x^4 - 4x^3 + 12x^2 = 5$$
$$3x^4 + 4x^3 - 12x^2 + 5 = 0$$

Let
$$f(x) = 3x^4 + 4x^3 - 12x^2 + 5$$

By the factor theorem if (x-1) is a factor then f(1) = 0

$$f(1) = 3(1)^4 + 4(1)^3 - 12(1)^2 + 5 = 0$$

Therefore (x-1) is a factor

Solution Bank

$$\frac{3x^{3} + 7x^{2} - 5x - 5}{x - 1)3x^{4} + 4x^{3} - 12x^{2} + 5}$$

$$\frac{3x^{4} - 3x^{3}}{7x^{3} - 12x^{2}}$$

$$\frac{7x^{3} - 7x^{2}}{-5x^{2} + 5}$$

$$\frac{-5x^{2} + 5x}{5x - 5}$$

$$0$$

$$3x^{4} + 4x^{3} - 12x^{2} + 5 = (x - 1)(3x^{3} + 7x^{2} - 5x - 5)$$
Let $g(x) = 3x^{3} + 7x^{2} - 5x - 5$
By the factor theorem if $(x - 1)$ is a factor then $g(1) = 0$

$$g(1) = 3(1)^{3} + 7(1)^{2} - 5(1) - 5 = 0$$
Therefore $(x - 1)$ is a factor
$$\frac{3x^{2} + 10x + 5}{x - 1)3x^{3} + 7x^{2} - 5x - 5}$$

$$\frac{3x^{3} - 3x^{2}}{10x^{2} - 5x}$$

$$\frac{10x^{2} - 10x}{5x - 5}$$

$$\frac{5x - 5}{0}$$

$$3x^{3} + 7x^{2} - 5x - 5 = (x - 1)(3x^{2} + 10x + 5)$$
and therefore

 $3x^4 + 4x^3 - 12x^2 + 5 = (x-1)^2 (3x^2 + 10x + 5)$ as required

Solution Bank

b
$$(x-1)^2(3x^2+10x+5)=0$$

$$(x-1)^2 = 0$$
 has solutions at $x = 1$

$$3x^2 + 10x + 5 = 0$$
 has solutions at

$$x = \frac{-10 \pm \sqrt{(10)^2 - 4(3)(5)}}{2(3)}$$

$$=\frac{-10\pm\sqrt{40}}{2(3)}$$

$$x = \frac{-5 + \sqrt{10}}{3}$$
 or $x = \frac{-5 - \sqrt{10}}{3}$

Since the *x*-coordinate of *A* lies between x = 0 and x = -2

A has coordinates
$$\left(\frac{-5+\sqrt{10}}{3},0\right)$$

$$x = 1$$
 and $x = \frac{-5 - \sqrt{10}}{3}$ are the x-values where the curve $(x-1)^2(3x^2 + 10x + 5) = 0$ cuts the x-axis.