② 日本分類 60 Int · Cl2. C 07 B 1/00 C 11 C 3/12 16 A 0 16 A 012-1 19 D 3 19日本国特許庁

(1)特許出願公告

昭50—9762

昭和50年(1975)4月16日 60公告

庁内整理番号 6227-43

発明の數 2

(全 6 頁)

図多不飽和結合を有する有機化合物の連続式およ び選択接触部分水素化法およびその装置

砂特 顧 昭44-16572

砂田 顧 昭◆4(1969)3月6日 優先権主張 201968年3月25日10オース

トリア国のA2937/68

個発 明 者 ギユンテル・マクス・ロイテリツ スイス国プラツテルン・ツエーン テンシユトラーセ106

砂出 願 人 プス・アクチエンゲゼルシャフト スイス国バーゼル・バルフセルブ ラツツ6

砂代 理 人 弁理士 曽我道照

図面の簡単な説明

第1図は環型反応器の形状における反応装置を 示す図であり、第2図は第1図に示すインゼクタ の強度を示す図である。

発明の詳細な説明

本発明は液体状態において触媒と混合され、多 段中を順次に循環する多不飽和結合を有する有機 化合物の連続式および選択的接触部分水素化法に 関する。

明な融点におけるデイラテーション(dilatation) 一温度曲線の傾斜角αなる大きな角度によつて表 わされる融解特性である。ある温度における脂肪 の融解範囲すなわちデイラテーションは脂肪本体 の固形成分および液状成分の間の比に依存し、従 30 ら避けられたのである。 つて可塑性と因果関係にある。

他方において上記した要請に応じる固形成分と 液状成分との間の比は水素と多不飽和脂肪酸との 間の不均質触媒反応を、モノエン類の相当程度を 高融点の完全に飽和した脂肪酸誘導体に変えると 35 水素化の連続式実施は不経済となるのであらう。 となしに、ある種の脂肪酸の多二重結合が複数段 階で飽和されるように調節することができるか否

かに依存しているのである。選択的水素化はこの ようにして達成されるのである。

しかし、これらの所望の主反応とは別に、二重 結合の移動によつて完全に飽和した脂肪酸の融点 5 よりも低い融点を持ちながら正常の室温において は固体である位置異性体および立体異性体を生ず る副反応が起る。これらの異性化は水素の消費な くして起り、これらはむしろ水素の不足によつて 促進される。

従つてデイラテーションー温度曲線の傾斜角度 10 が少くともその最終水業化段階においては大きい マーガリン脂肪の製造のための慣用の反応方法は 完全に水素化された脂肪酸の生成を大巾に除くよ うに期待される操作条件が好まれるが、このよう 15 な条件は不幸にも上記した副反応を促進するので ある。反応の所望の遂行の結果はヨウ素価の測定 に関連して測定することができ、飽和脂肪酸と異 性化した直鎖脂肪酸との正確な比較はデイラテー ションー温度曲線の大きな傾斜角によつて表わさ 20 れるのである。

選択性は触媒表面上に化学吸着された水素と化 学吸着されたポリエンとの比によつて大きく影響・ されることは既知である。この理由のために好適 な触媒のほかに (CH2/C油) 触媒比をできるだ 均質の基体脂肪の本質的特徴は40℃以下の透 25 け低く保つために特別の条件が選ばれていたので ある。低い反応温度よりもむしろかなりの反応温 度と中位の圧力とが施され、とりわけ反応成分の 余りにも大きな混合強度は増大した物質移動抵抗 により(CH2/C油)接触の相対的減少になるか

> しかしこの一般的な慣用の操作は反応期間が長 い不便があり、こうして魚油の場合に70ないし 90のヨウ素価の差を与えるようなヨウ素価を大 きく減少させることが必要である場合には選択的 例えば連続式水素化の既知の一方法および装置は ガス空間と自由に連絡している特殊の混合室内で

循環して回る不均質液相を泡立てることから成る。 良好な選択性を持つためにはこの装置は慣用のか きまぜ機によつて与えられる混合強度を甚だしく 超えることができず、その結果ヨウ素価における 循環速度に於てのみ得られるのである。その上四 方八方からの水素の進入は水素の餌節された適用 量を妨げる。水素雰囲気中にノズルによつて不均 質液体を噴霧するか或はうず巻きポンプ中で水素 な混合を必要とする他の方法は選択性が不充分な ために実際上の重要性を得ることはできなかつた のである。

本発明方法は各段階においてかつ各循環期間中 させて物質移動抵抗を除去し、この反応混合物に 調節量の水素を供給し、各段階の循環速度および 温度を別個に調節し得るものとなし、ガスクツシ **ヨンの全圧、反応圧力および全加工原料の畳を調** 節することから成る。

本発明の他の面によれば有機化合物の連続式お よび選択的接触部分水素化用装置は多段反応装置 好ましくは環状反応器から成り、前記複数段の各 各には処理されるべき物質が横断方向に流れる反 応室、該反応段階の各々に対する循環導管、該反25 に具えられた開口部20を通して段階1に戻るよ 応段階に具備され、循環導管の入口末端に連結さ れたインゼクタ、眩インゼクタを収容する吸引室 および予め定めた圧力の下に予め定めた量の水素 を供給する吸引室中に開口している導管とが含ま れる。

反応室の中央下部は流れの通路を備えた隔壁に よつて複数区割に小区分され、吸引室はその中央 区割領域内に配置される。

新鮮な水素を供給する導管は吸引室領域におけ 導管は容積計および調節弁を備えている。

本発明によつて提唱される方法により有機化学 の分野において選ばれた結合において予め定めた 部分水素化を得るのに多方面に亘り有利に適用す ることができる。下記において1例としてオレフ 40 イン性二重結合の連続式部分水素化について説明 する。本発明方法により達成される進歩はこの場 合にはマーガリン製造用の基本的脂肪によつて満 足される賭要求に合う予め定めた製品のような多

一不飽和脂肪酸誘導体の二重結合の水素化によつ て殊に容易に示すことができる。

実際には本発明により提唱される方法は部分水 素化用に運転される環状型カスケード式反応器に 上述した減少は普通の操作条件の下では不経済な 5 より、得られる脂肪がそれらの物理的および化学 的性質により、とりわけ大きな傾斜角を持つディ ラテーションー温度曲線によつてマーガリン用の 高級基本脂肪として使用することができるような 具合に遂行され、更に製品の生産高が大きく、か と液相とを乱流混合するような反応体の一層強烈 10 つ経済的であり、ヨウ素価の70単位よりも多く 減少することによつて推量されりる二重結合の飽 和が測定されるのである。

添付の図において第1図は環状反応器の形をな した反応装置の一段階を示す。図中に1と名付け に反応混合物中に短期間の大きなセン断力を発生 15 るものは反応段階であり、これを通つて処理され るべき物質が横断方向に流れる。触媒と混合され た反応液体は導管16を通して前記したカスケー ド中に導入され、生成物は導管17を通してカス ケードから辨出される。段階1は開口部14を持 20 つ隔壁 9 によつて隣接する室から分離され、鮫開 口部によつて個々の段階の間に連通が与えられる。

> 循環導管18は循環ポンプ2によつて処理され るべき物質が段階1の最下部でかつ下方に向いた テーパーを持つ部分19から吸引され、その上部 うに段階1に連結されている。冷却器3が導管 18中で循環ポンプ2の上流側に配置され、予熱 器4が循環ポンプ2の下流側に配置されている。

開口部20に連結してインゼクタ5があり、そ 30 の吸引部分け室12によつて囲まれ、インゼクタ のノズル5は2個の垂直隔嵌9の間の空間中に延 伸している。

更にガス循環導管21が室12を囲む空間22 と室12の内部とを連絡するように配置される。 る隔壁上の空間中に開口することができ、鮫供給 35 容積計10および調節弁11とが該循環導管21 中に配置されており、そのほかの弁が数字23に よつて示されている。

> 新鮮な水素は導管15を通して供給され、これ もまた容積計6および調節弁7を含んでいる。

懸濁した触媒を含む液相は循環ポンプ2によつ て段階1のテーパー付き部分19から冷却器3を 経て吸引され、最初の運転まだは弱い発熱反応にの み必要とされる予熱器 4を経てインゼクタ 5を通 つて供給される。反応に必要とされる水素量はガ

スクツション8からガス気密のように密封され、 かつ容積計10および調節弁11を通して循環系 から水素を供給されている吸引室12からインゼ クタ5によつて吸引される。 残余のガス室から密 **封された吸引室12を使用することによつて各反 5** 応瓔について別個に調節しうるそして制御できる 量で、その量が液体の循環とは無関係な量の水素 が進入するのを可能となす。従来知られた構造で は全反応段階に共通なガスクツションは混合室に 容易に入ることができ、その結果個々の混合室へ 10 の独立した供給は不可能である。何となれば循環 系からの水素の中央の進入を絞れば不足量は眩供 給に影響を与える可能性なしにガスクツションか ら自動的に供給されるからである。

共通のガスクツション8を収容する空間22は 15 導管15を通して新鮮な水素を直接に供給され、 クツション8の圧は一定に保たれる。

インゼクタの使用は反応速度を異常に増大させ、 インゼクタにおける大きなセン断力の発生は物質 移動抵抗を大部分除去するのに適合している。高 20 セン断力の好ましい効果は極めて短い有効時間に 基ずく。とれらのセン断力が反応液体に循環無に 各反応環において施される。更に個々の反応環の 各において水素の制御された量が別個に加えられ、 その水素の附与は液体の循環とは無関係に制御さ 25 は m-4 0 0 の循環比と 2 倍の操作圧力とを使用 れているのである。

例

脱酸し予備漂白した、初期ヨウ素価147を持 つ魚油を4段階オスケード式銀型反応器を通して 1時間100 Lの加工原料の割合で、循環比m = 30 80で通過させた。循環比「m」とは1時間当り 循環された量と 1 時間当りの加工原料との間の比 を意味するものとする。各類の反応温度は160 ないし190℃の範囲内にあり、その結果各反応 段階は実質上同じ変換率であつた。この操作は特 35 時間が同じ反応条件の下で全体でヨウ素価70の に等ましい触媒の効力を生じた。得られた生成物 の賭指標は下記の表に示す通りである。

表

		魚	油。			
		非水素化	水素化			
	ョウ素価(投入側)	1 4 7	1	4	7	
	ョウ素価(生産物側)			7	7	
	酸価	0. 4			0	. 4
)	「すべり落ちる」融点で			3	1.	3
	透明な融点で			3	5.	. 3
	聚固点℃	2 4.9		2	6	0
	デイラテーション10℃	- ·	1	0	3	7
5	200	_		6	9	0
	25℃			5	0	7
	300	· _·		2	7	0
	3 5 ℃				5	9
)	40℃				1	5
	トランス異性脂肪酸	7			4	5

このような環型をなした慣用の混合室を使用す る場合上述の装置で得られたのと同じ反応器効率 してのみ得ることができる。しかしm-400と いり循環数は1日当り約100トンの大装置につ いては経済的にこれを用いることはできないので ある。

さらに反応器環における連続式循環は有利な混 合効果を与える。インゼクタの高度な強度は第2 図から推論することができる。この図はまた魚油 (初期ヨウ素価147、最終ヨウ素価77)の水 素化に対して一般に比較値の10に減少された仄応 減少を伴つて達成され得ることを示している。

他の魚油脂肪の一連の部分水素化も77ないし 78のヨウ素価を生じ、20℃におけるデイラテ ーションは少くとも575で、30℃においては **40 275よりも大きくなく、40℃以下の透明融点** が得られたことを注目すべきである。

4個の反応器環を含むカスケードの連続式運転 はもしインゼクタの上流倒の圧力が水素のガスク ツション圧力に関して 2.5 気圧(1平方インチ当

り35.56ポンド)で、吸引圧力が約0.8気圧 (1平方インチ当り11.4ポンド)であり、同時 に完全なカスケードに対して循環数「m」が70 以上好ましくは100に調節され、反応温度が 160ないし190℃に保たれるならば確保され 5 すべての点において説明のためのもので、これに る。反応液に関して 0.0 4 ないし 1 %のニッケル の範囲における市販のニッケル触媒が使用された。

最後に上記により提唱した装置に関連した上述 の方法によつて下記の利点が得られることに注目 すべきである。

液体が比較的少容積であることは濃度と温度と の均一な分布を与える連続式に配置されたかきま ぜ式容器から得られる利益と同様な利益を生じ、 その利益に本発明では管状反応器の比較的短い滞 **瑗比「m」は広い範囲に亘つて実現することがで** き、その結果油脂の水素化以外の他の多くの化学 反応に容易にそして最適なように適合させること ができる。大量の熱さえも効果的に放出できるこ と、流れの方向に沿つて温度を自由に選択できる 20 る前記方法。 外形、特殊な混合ノメルによる不均質反応の場合 での物質移動抵抗の広汎な除去は本発明方法のさ らに利点とするところである。

水素化の選択性と废合とは処理すべき化合物に 従つて容易にかつ確実に調節することができる。 25 に連結されたインゼクタ、前配インゼクタを収納 最終生成物の再現性ある一定の物理-化学的特性 が得られる。

ガスクツションを形成するガスは多かれ少かれ 二次的に反応に関与する型のガスまたは蒸気であ ることができ、その場合には新鮮な水素を当然吸 30

引宰12に直接供給するものとする。

本発明は本発明の精神および本質的な特徴から **逸脱することなく他の特定の形に具体化すること** ができる。従 つ て 本 明細書に記載の具体化例は 制限するものではなく、特許請求の範囲に示す本 発明の範囲および特許請求の範囲に配載の発明と 同効物の意義および範囲に入り来るすべての改変 も本発明に包含されるものである。

10 釣特許請求の範囲

1 液体の状態において触媒と混合し、順次複数 段階において循環する多不飽和結合を有する有機 化合物の連続式および選択的部分水素化を行う方 法において各段階において反応混合物中に短期間 留時間範囲が組合わされるのである。反応室の備 15 の大きなセン断力を発生させて物質移動抵抗を除 去する工程と、反応混合物に制御された量の水素 を供給し、各段階の循環速度と温度とを別個に調 節し得るものとなし、ガスクツションの全体の圧 力および全加工原料の量を制御する工程とから成

> 2 多段反応装置の各段階が反応室(この反応室 を通して処理されるべき物質が横断方向に流れる ものとする)、前配各反応室に対する循環導管、 前記反応室に備えられ、前記循環導管の入口末端 する吸引室および予め定めた圧力の下で予め定め た畳の水素を供給するための前記吸引室中に開口 した導管を含むことから成る有機化合物の連続式 選択的接触部分水素化用装置。

FIG. 1

. /