Matrix Assignment

Mannava Venkatasai

September 2022

Problem Statement:

Find the maximum and minimum values of the function : $f(x) = 9x^2 + 12x + 2$

Solution

Figure 1: $f(x) = 9x^2 + 12x + 2$

The minimum value is caluculated by using gradient descent method.

$$x_{n+1} = x_n - \alpha \nabla f(x_n) \tag{5}$$

$$\implies x_{n+1} = x_n - \alpha \left(18x_n + 12 \right) \tag{6}$$

where

- 1. $\alpha = 0.001$
- 2. x_{n+1} is current value
- 3. x_n is previous value
- 4. precession = 0.00000001
- 5. maximum iterations = 100000000

The minimum values obtained from the python code

The given function has minimum value at

$$x = \frac{-2}{3} \tag{7}$$

$$Minimum = -2 \tag{8}$$

Solution

Part 1

Given the function:

$$f(x) = 9x^2 + 12x + 2\tag{1}$$

This can be written as:

$$f(x) = (3x+2)^2 - 2 (2)$$

$$(3x+2)^2 \ge 0 (3)$$

so

$$f(x) \ge -2\tag{4}$$

The maximum value of f(x) is ∞

Hence the function having only minimum value