Lamp (Solved) (100 / 100)

Catatan: Penterjemahan soalan dalam Bahasa Melayu disertakan di bawah. Sekiranya terdapat perbezaan antara versi Bahasa Inggeris dan versi Bahasa Melayu, versi Bahasa Inggeris akan diutamakan.

Statement

Evirir the dragon is trying to go to bed but as this is a CP problem there are twenty thousand lamps in his room preventing him from doing so.

There are n lamps numbered 1 to n on the number line. The i^{th} lamp is at p_i on the number line and has brightness b_i .

Evirir is trying to find a spot in his room to sleep, his room spans the entire number line. If he chooses to sleep at position x, the effective brightness of lamp i at x is $\max(0, b_i - |p_i - x|)$.

The total brightness at a position x is the sum of the effective brightness of all lamps at x.

Evirir can only go to bed at position x if the total brightness is less than k. Count how many integer positions there are on the number line such that Evirir the dragon **cannot** go to bed.

Input Format

There are T test cases. The first line consist of a single integer T ($1 \le T \le 2 \cdot 10^5$). Then, T test cases follows.

For each test case:

- The first line consist of two integers n and k $(1 \le n \le 2 \cdot 10^5, 1 \le k \le 10^{18})$.
- The second line consists of n integers, $p_1, p_2 \dots p_n$ ($|p_i| \le 10^{12}, p_1 < p_2 < \dots < p_n$).
- The third line consists of n integers, $b_1, b_2 \dots b_n$ $(1 \le b_i \le 10^{12})$.

It is guaranteed that the sum of n across all T test cases is at most 10^5 .

Additional constraints

- Task 1 (5 points): n = 5, $|p_i|$, $|b_i| \le 15$ for all i
- Task 2 (5 points): n = 10, $|p_i|$, $|b_i| \le 100$ for all i
- Task 3 (15 points): $|p_i|, |b_i| \le 2 \cdot 10^5$ for all i
- Task 4 (15 points): n = 2000, T = 30
- Task 5,6,7 (20 points): No additional constraints.

Output Format

For each test case, print the number of integer positions with effective brightness $\geq k$.

While there are infinitely many integer positions, it can be proven that the answer is always finite.

Sample Input

```
1
4 6
-5 -3 0 7
3 2 6 1
```

2

Explanation

The total brightness of the integer positions in the range [-7, 7] are as follows: $\{1, 2, 4, 5, 6, 5, 5, 6, 5, 4, 3, 2, 1, 0, 1\}$.

Only at positions -3 and 0 is the total brightness at least k.

At all integer positions outside the range [-7, 7], the total brightness is 0 and Evirir can sleep at all of them.

Pernyataan

Evirir sang naga sedang mencuba untuk tidur tetapi memandangkan ini merupakan soalan pertandingan pengaturcaraan, terdapat 20,000 lampu yang menghalangnya untuk tidur.

Terdapat n lampu bernombor 1 hingga n pada suatu garis nombor. Lampu ke-i terletak pada p_i atas garis nombor tersebut dan ia mempunyai kecerahan b_i .

Evirir mencari tempat yang sesuai di biliknya untuk tidur, biliknya merangkumi keseluruhan garis nombor tersebut. Jika dia tidur di posisi x, kecerahan efektif bagi lampu i pada x ialah $\max(0, b_i - |p_i - x|)$.

Kecerahan penuh pada posisi x ialah hasil tambah kecerahan efektif bagi semua lampir pada x.

Evirir hanya boleh tidur di posisi x jika kecerahan penuhnya adalah kurang dari k. Hitungkan bilangan posisi integer yang terletak pada garis nombor supaya Evirir sang naga **tidak boleh** tidur padanya.

Format Input

Terdapat T kes cubaan. Baris pertama terdiri daripada satu integer T ($1 \le T \le 2 \cdot 10^5$). Kemudian, diikuti dengan T kes cubaan.

Bagi setiap kes cubaan:

- Baris pertama terdiri daripada dua integer n dan k $(1 \le n \le 2 \cdot 10^5, 1 \le k \le 10^{18}).$
- Baris kedua terdiri daripada n integer, $p_1, p_2 \dots p_n$ ($|p_i| \le 10^{12}, p_1 < p_2 < \dots < p_n$).
- Baris ketiga terdiri daripada n integer, $b_1, b_2 \dots b_n$ $(1 \le b_i \le 10^{12})$.

Additional constraints

- Task 1 (5 points): n = 5, $|p_i|$, $|b_i| \le 15$ bagi semua i
- Task 2 (5 points): n = 10, $|p_i|$, $|b_i| \le 100$ bagi semua i
- Task 3 (15 points): $|p_i|, |b_i| \le 2 \cdot 10^5$ bagi semua *i*
- Task 4 (15 points): n = 2000, T = 30
- Task 5,6,7 (20 points): No additional constraints. Diketahui bahawa hasil tambah n merangkumi semua T kes cubaan adalah tidak lebih 10^5 .

Format Output

Bagi setiap kes cubaan, cetak bilangan posisi integer dengan kecerahan efektif $\geq k$.

Walaupun terdapat banyak posisi integer yang tidak terhingga, ia boleh dibuktikan bahawa jawapan adalah sentiasa terhingga.

Contoh Input

```
1
4 6
-5 -3 0 7
3 2 6 1
```

Contoh Output

2

Penjelasan

Kecerahan penuh bagi posisi integer dalam julat [-7, 7] adalah seperti berikut: $\{1, 2, 4, 5, 6, 5, 5, 6, 5, 4, 3, 2, 1, 0, 1\}$.

Hanya pada posisi -3 dan 0 kecerahan penuhnya adalah sekurang-kurangnya k.

Di semua posisi integer di luar julat [-7, 7], kecerahan penuh ialah 0 dan Evirir boleh tidur di semua posisi tersebut.

Submit All Outputs

Tasks

Task 1 (5/5 points) Task 2 (5/5 points) Task 3 (15/15 points) Task 4 (15/15 points)

Task 5 (20/20 points) Task 6 (20/20 points) Task 7 (20/20 points)

Task 1 Input

```
2

5 9

-6 -5 6 7 9

6 12 11 3 11

5 19

-1 1 5 7 10

14 15 11 5 10
```

Сору

Output (not your code)

```
25
17
```

Submit

Solved!