CONNECTING KANI'S LEMMA AND PATH-FINDING IN THE BRUHAT-TITS TREE TO COMPUTE SUPERSINGULAR ENDOMORPHISM RINGS

KIRSTEN EISENTRÄGER AND GABRIELLE SCULLARD

APPENDIX A. USING HIGHER-DIMENSIONAL ISOGENIES FOR ENDOMORPHISM-TESTING

A.1. Isogenies between polarized abelian varieties and their degrees.

Definition A.1. [Mil86, p. 126] A polarization of an abelian variety X defined over a field k is an isogeny $\lambda: X \to X^{\vee}$ to the dual variety X^{\vee} so that $\lambda_{\overline{k}} = \phi_{\mathcal{L}}$ for some ample invertible sheaf \mathcal{L} on $X_{\overline{k}}$. Here $\phi_{\mathcal{L}}: A(k) \to \operatorname{Pic}(A)$ is the map given by $a \mapsto t_a^* \mathcal{L} \otimes \mathcal{L}^{-1}$ with t_a the translation-by-a map.

Definition A.2. Given a positive integer N, an N-isogeny $\Phi: (A, \lambda_A) \to (B, \lambda_B)$ between principally polarized abelian varieties (A, λ_A) and (B, λ_B) is an isogeny such that $\Phi^{\vee} \circ \lambda_B \circ \Phi = N\lambda_A$. Here $\Phi^{\vee}: B^{\vee} \to A^{\vee}$ is the dual isogeny. An (N, N)-isogeny $\Phi: (A, \lambda_A) \to (B, \lambda_B)$ of abelian varieties of dimension g is an N-isogeny whose kernel is isomorphic to $(\mathbb{Z}/N\mathbb{Z})^g$.

Let A be an abelian variety with a polarization λ . Since λ is an isogeny $A \to \hat{A}$, it has an inverse in $\text{Hom}(\hat{A}, A) \otimes \mathbb{Q}$. The *Rosati involution* on $\text{Hom}(\hat{A}, A) \otimes \mathbb{Q}$ corresponding to λ is

$$a \mapsto a^{\dagger} = \lambda^{-1} \circ \hat{\alpha} \circ \lambda$$
.

In this paper we will consider endomorphisms of products of elliptic curves and abelian varieties. Given an abelian variety A, an integer r > 1 and isogenies $\phi_{i,j} : A \to A$ for $1 \le i, j \le r$, the $r \times r$ matrix $M = (\phi_{i,j})$ represents the isogeny

$$\Phi: A^r \to A^r \text{ sending}$$

 $(P_1, \dots, P_r) \text{ to } (\phi_{1,1}(P_1) + \dots + \phi_{1,r}(P_r), \dots, \phi_{r,1}(P_1) + \dots + \phi_{r,r}(P_r)).$

We refer to this as the matrix form of Φ .

Definition A.3. Let A be a principally polarized abelian variety. Consider $\Phi: A^r \to A^r$ given by its matrix form $M = (\phi_{i,j})_{i,j=1,\dots,r}$ as above. Let $\phi_{i,j}^{\dagger}: A \to A$ be the Rosati involution of $\phi_{i,j}$. Define $\hat{\Phi}$ to be the endomorphism represented by the matrix $\hat{M} = (\phi_{j,i}^{\dagger})_{i,j=1,\dots,r}$.

Definition A.2 can also be rephrased as follows, see [Rob23, Section 3.1].

Proposition A.4. Let A be principally polarized, and let $\Phi: A^r \to A^r$ be an isogeny with matrix form M. Then $\hat{M} \cdot M = N \cdot Id_r$ if and only if Φ is an N-isogeny with respect to the product polarization.

Proposition A.5. Let E be an elliptic curve. Let $\Phi: E^k \to E^k$ be an N-isogeny of principally-polarized abelian varieties whose matrix form is $M = (\phi_{i,j})$. Then the degrees of the isogenies $\phi_{i,j}: E \to E$ are bounded above by N.

Proof. If Φ is an N-isogeny, then we write $\hat{M} \cdot M = N \cdot \text{Id}$. In particular, the *i*-th diagonal entry of $\hat{M} \cdot M$ is given by $\sum_{j=1}^k \phi_{j,i}^{\dagger} \phi_{j,i} = N$. For elliptic curves, $\phi_{j,i}^{\dagger}$ is the dual of $\phi_{j,i}$, so we have $\sum_{j=1}^k \deg(\phi_{j,i}) = N$ (where we define the degree of the 0 map to be 0). As the degree of an isogeny is nonnegative, we have $\deg(\phi_{j,i}) \leq N$.

A.2. **Isogeny Diamonds and Kani's Lemma.** We now give the definition of an isogeny diamond in the setting of abelian varieties. This was first introduced by Kani [Kan97] for elliptic curves and generalized in [Rob23] to principally polarized abelian varieties.

Definition A.6. A (d_1, d_2) -isogeny diamond configuration is a $d_1 \cdot d_2$ -isogeny $f : A \to B$ between principally polarized abelian varieties of dimension g which has two factorizations $f = f'_1 \circ f_1 = f'_2 \circ f_2$ with f_1 a d_1 -isogeny, f_2 a d_2 -isogeny and d_1, d_2 relatively prime.

$$A \xrightarrow{f_1} A_1$$

$$f_2 \downarrow \qquad f_1' \downarrow$$

$$A_2 \xrightarrow{f_2'} B$$

Lemma A.7 (Kani's Lemma). Let $f = f'_1 \circ f_1 = f'_2 \circ f_2$ be a (d_1, d_2) -isogeny diamond configuration. Then $F = \begin{pmatrix} f_1 & \tilde{f}'_1 \\ -f_2 & f'_2 \end{pmatrix}$ is d-isogeny $F : A \times B \to A_1 \times A_2$ with $d = d_1 + d_2$ and kernel $\text{Ker } F = \{(\tilde{f}_1(P), f'_1(P)) : P \in A_1[d]\}$.

Proof. This is Lemma 6 in [Rob23], which generalizes Theorem 2.3 in [Kan97]. \Box

A.3. Endomorphism-Testing Algorithm.

Algorithm A.8. Endomorphism-Testing Algorithm

Input: Elliptic curve E defined over \mathbb{F}_{p^k} ; $\beta \in \text{End}(E)$ which is written as a sum $\beta = b_1\beta_1 + b_2\beta_2 + b_3\beta_3 + b_4\beta_4$ where β_i are endomorphisms which can be evaluated efficiently at powersmooth points of E and $b_i \in \mathbb{Z}$; n a positive integer; Q the norm form such that $Q(x_1, x_2, x_3, x_4) = \deg(\sum_{i=1}^4 x_i\beta_i)$

Output: TRUE if $\frac{\beta}{n}$ is an endomorphism of E and FALSE if $\frac{\beta}{n}$ is not an endomorphism.

- (1) Compute $\deg(\beta)$. If $n^2 \nmid \deg(\beta)$, conclude that $\frac{\beta}{n}$ is not an endomorphism and output FALSE. Otherwise, set $N := \deg(\beta)/n^2$.
- (2) Choose $a \in \mathbb{Z}$ such that N' := N + a is powersmooth and gcd(N', n) = 1.
- (3) Compute integers $a_1, a_2, a_3, a_4 \in \mathbb{Z}$ such that $a_1^2 + a_2^2 + a_3^2 + a_4^2 = a$. Let $\alpha \in \text{End}(E^4)$ be the a-isogeny, given by the matrix

$$\begin{pmatrix} a_1 & -a_2 & -a_3 & -a_4 \\ a_2 & a_1 & a_4 & -a_3 \\ a_3 & -a_4 & a_1 & a_2 \\ a_4 & a_3 & -a_2 & a_1 \end{pmatrix}.$$

(4) Compute $K := \{(\frac{\widehat{\beta}}{n} \cdot \operatorname{Id}_4(P), \alpha(P)) : P \in E^4[N+a]\}$. Note that K can be computed even if $\frac{\beta}{n}$ is not an endomorphism: we can compute $\widehat{\beta}$ on E[N+a], and by choice of a, n is invertible mod N+a.

- (5) Determine if $F: E^8 \to E^8/K$ is an endomorphism of principally polarized abelian varieties. (We do so by computing an appropriate theta structure for E^8/K and checking that the projective theta constant of E^8 is the same as the projective theta constant of E^8/K .) If not, then terminate and conclude that $\frac{\beta}{n}$ is not an endomorphism.
- (6) Choose $M > \sqrt{\deg(\beta)} + \sqrt{n^2(N+a)}$ which is powersmooth. We check if $F_{ij}|_{E[M]} = \psi^{\underline{\beta}}_{n}|_{E[M]}$ for some $\psi \in \operatorname{Aut}(E)$, by evaluating the composition $E \xrightarrow{\iota_{i}} E^{8} \xrightarrow{F} E^{8} \xrightarrow{\pi_{j}} E$ on E[M]. If for some F_{ij} we have $F_{ij}|_{E[M]} = \psi^{\underline{\beta}}_{n}|_{E[M]}$, then we terminate and output TRUE. If no entry F_{ij} satisfies $F_{ij} = \psi^{\underline{\beta}}_{n}$, then terminate and output FALSE.

Proposition A.9. Algorithm A.8 is correct and runs in time polynomial in $\log(p^k)$ and $\log(\deg(\beta))$.

The proof of Proposition A.9 follows from Lemmas A.11, A.14, and A.15 below.

Lemma A.10. Suppose $\psi \in \text{Aut}(E^n, \lambda)$, where λ is the product polarization on E^n . Suppose ψ is written as an $n \times n$ matrix, as in the notation of Section 2. Then for each i, ψ_{ij} is nonzero for exactly one j; for each j, ψ_{ij} is nonzero for exactly one i; and whenever ψ_{ij} is nonzero, then ψ_{ij} is an automorphism of E.

Proof. As ψ preserves the polarization on E^n , we have that $\lambda = \psi^{\vee} \lambda \psi$. Therefore $\psi^{\dagger} \psi = 1$, where ψ^{\dagger} denotes the image of ψ under the Rosati involution.

If M denotes the matrix form of ψ , then the matrix form of ψ^{\dagger} is the conjugate transpose M^* of M, so that $\psi_{ij}^{\dagger} = \widehat{\psi_{ji}}$, the dual of ψ_{ji} [Rob23, Lemma 3]. Thus $M^*M = \mathrm{Id}_n$.

Fix $1 \le i \le n$. We have $\sum_{k=1}^{n} \widehat{\psi_{ik}} \psi_{ik} = \sum_{k=1}^{n} \deg(\psi_{ik}) = 1$. As $\deg(\psi_{ik})$ is a positive integer whenever ψ_{ik} is nonzero, we have that $\deg(\psi_{ik}) \ne 0$ for exactly one k, and for this k, we have $\deg(\psi_{ik}) = 1$.

For $j \neq i$, we have $\sum_{k=1}^{n} \widehat{\psi_{ik}} \psi_{jk} = 0$. As $\psi_{ik} = 0$ for all but one k, we have, for this k, that $\widehat{\psi_{ik}} \psi_{jk} = 0$, which implies $\psi_{jk} = 0$.

This shows that there is a unique nonzero entry in the i-th row, and that it is the only nonzero entry in its column. As there are n rows and n columns, this shows that there is a unique nonzero entry in each column, which is necessarily an automorphism.

Lemma A.11. Let $\beta \in End(E)$ and n a positive integer. If $\frac{\beta}{n}$ is an endomorphism, then Algorithm A.8 outputs True.

Proof. Let $\phi = \frac{\beta}{n} \in \text{End}(E)$. Then $\deg(\phi) = \frac{\deg(\beta)}{n^2} = N$. By construction of α (which is built out of scalar multiplications), we have the following commutative diagram, which is an (N, a)-isogeny diamond configuration.

$$E^{4} \xrightarrow{\phi \cdot \operatorname{Id}_{4}} E^{4}$$

$$\downarrow^{\alpha} \qquad \qquad \downarrow^{\alpha}$$

$$E^{4} \xrightarrow{\phi \cdot \operatorname{Id}_{4}} E^{4}$$

By Kani's Lemma, there is an (N+a)-endomorphism $G:(E^8,\lambda)\to (E^8,\lambda)$, where λ is the product polarization, such that G is given by the matrix $\begin{pmatrix} \phi\cdot \operatorname{Id}_4 & \alpha^\dagger \\ -\alpha & \widehat{\phi}\cdot \operatorname{Id}_4 \end{pmatrix}$. Moreover, as a

was chosen such that (N, a) = 1, we can write $\ker(G) = \{\widehat{\phi} \cdot \operatorname{Id}_4(P), \alpha(P) : P \in E^4[N + a]\},$ which is precisely K as constructed in Step 4.

If F is an isogeny with ker(F) = K, then F is an (N + a)-endomorphism of principally polarized abelian varieties (and the computed theta constants are equal). Therefore, we proceed to Step 6.

By [Kan97, Proposition 1.1], there is an automorphism $\psi: E^8 \to E^8$ which preserves the product polarization and such that $F = \psi G$. By Lemma A.10 each row and each column of the matrix form of ψ has exactly one nonzero entry, which is an automorphism of E. Thus, the entries of the matrix form of F are precisely the entries of the matrix form of G, composed with an automorphism of E. In particular, four of the nonzero entries of F will be given by $\psi_{ij}\phi$ for some automorphism $\psi_{ij} \in \text{End}(E)$.

Lemma A.12. The subgroup K in Step 4 of Algorithm A.8 is a maximally isotropic subgroup of $E^{8}[N+a]$ (whether or not $\frac{\beta}{n}$ is an endomorphism). Thus, K is the kernel of an (N+a)isogeny with respect to some polarization on E^8 .

Proof. Let K denote the subgroup in Step 4 of Algorithm A.8, which is precisely the image of $F^{\dagger} = \begin{pmatrix} \frac{1}{n} \widehat{\beta} \cdot \operatorname{Id}_4 & -\alpha^{\dagger} \\ \alpha & \frac{1}{n} \beta \cdot \operatorname{Id}_4 \end{pmatrix}$ on $(E^4 \times E^4)[N+a]$

Let $m \in \mathbb{Z}$ such that $mn \equiv 1 \pmod{N+a}$. Consider the following isogeny factorization configuration:

$$E^{4} \xrightarrow{m\beta \cdot \operatorname{Id}_{4}} E^{4}$$

$$mn\alpha \downarrow \qquad \qquad \downarrow mn\alpha$$

$$E^{4} \xrightarrow{m\beta \cdot \operatorname{Id}_{4}} E^{4}$$

By Kani's Lemma, there is an $m^2n^2(N+a)$ -endomorphism of E^8 with respect to the product polarization, given by $F' = \begin{pmatrix} m\beta \cdot \operatorname{Id}_4 & mn\alpha^\dagger \\ -mn\alpha & m\widehat{\beta} \cdot \operatorname{Id}_4 \end{pmatrix}$ and with kernel equal to the image of $F'^\dagger = \begin{pmatrix} m\widehat{\beta} \cdot \operatorname{Id}_4 & -mn\alpha^\dagger \\ mn\alpha & m\beta \cdot \operatorname{Id}_4 \end{pmatrix}$ on $(E^4 \times E^4)[m^2n^2(N+a)]$. Let $K' = F'^\dagger(E^4 \times E^4)[m^2n^2(N+a)]$

of
$$F'^{\dagger} = \begin{pmatrix} m\widehat{\beta} \cdot \operatorname{Id}_4 & -mn\alpha^{\dagger} \\ mn\alpha & m\beta \cdot \operatorname{Id}_4 \end{pmatrix}$$
 on $(E^4 \times E^4)[m^2n^2(N+a)]$. Let $K' = F'^{\dagger}(E^4 \times E^4)[m^2n^2(N+a)]$. By Kani's Lemma, K' is a maximal isotropic subgroup of $E^8[m^2n^2(N+a)]$.

First, note that $K' \cap E^8[N+a]$ is a maximal isotropic subgroup of $E^8[N+a]$. If $e_{m^2n^2(N+a)}$ is the Weil pairing on $E^{8}[m^{2}n^{2}(N+a)]$ and $P,Q \in E^{8}[N+a] \cap K'$, then $1 = e_{m^{2}n^{2}(N+a)}(P,Q) = e_{m^{2}n^{2}(N+a)}(P,Q)$ $e_{N+a}(mnP, mnQ)$ by compatibility of the Weil pairing. By choice of m, we have $e_{N+a}(mnP, mnQ) =$ $e_{N+a}(P,Q)$. Thus, $K' \cap E^{8}[N+a]$ is an isotropic subgroup of $E^{8}[N+a]$. Since K' is a maximal isotropic subgroup of $E^8[m^2n^2(N+a)]$, and $(m^2n^2, N+a)=1$, we have $K'\cap E^8[N+a]$ has order $(N+a)^8$ and is therefore a maximal isotropic subgroup of $E^8[N+a]$.

Finally, we have $K = K' \cap E^8[N+a]$. It is clear that $K \subset K' \cap E^8[N+a]$, since $F^{\dagger} = F'^{\dagger}$ on $E^{8}[N+a]$. Moreover, by the description of K as $\{(\frac{\hat{\beta}}{n}\cdot \mathrm{Id}_{4}(P),\alpha(P)): P\in E^{4}[N+a]\}$, where β and α have degrees coprime to N+a, it is clear that the order of $\#K=(N+a)^8=$ $\#(K' \cap E^8[N+a])$. Thus, K is a maximal isotropic subgroup of $E^8[N+a]$.

By [Kan97, Proposition 1.1], K is therefore the kernel of an N + a-isogeny with respect to some polarization.

The following lemma shows that an endomorphism is uniquely determined by its degree and its action on M-torsion, for suitably large M (depending on the degree).

Lemma A.13. Let E be an elliptic curve and $\phi, \psi \in End(E)$. Let $M > \sqrt{\deg(\phi)} + \sqrt{\deg(\psi)}$. If $\psi|_{E[M]} = \phi|_{E[M]}$, then $\psi = \phi$.

Proof. For contradiction, assume the hypotheses of the lemma and that $\phi - \psi$ is nonzero. Since $\psi|_{E[M]} = \phi|_{E[M]}$, $E[M] \subset \ker(\phi - \psi)$. Since $\phi - \psi$ is nonzero, we must have $\phi - \psi = M\gamma$ for some nonzero $\gamma \in \operatorname{End}(E)$. Thus, $\deg(\phi - \psi) = M^2 \deg(\gamma)$. By the Cauchy-Schwartz inequality, $\deg(\phi - \psi) \leq (\sqrt{\deg(\phi)} + \sqrt{\deg(\psi)})^2$. Hence $M^2 \leq M^2 \deg(\gamma) \leq (\sqrt{\deg(\phi)} + \sqrt{\deg(\psi)})^2$, which is a contradiction.

Lemma A.14. If $\frac{\beta}{n}$ is not an endomorphism, Algorithm A.8 outputs False.

Proof. Assume $F: E^8 \to E^8$ respects the product polarization and has kernel K as defined in Step 4. Let F_{ij} be an entry in the matrix form of F. Then $\deg(F_{ij}) \leq (N+a)$. If $F_{ij}|_{E[M]} = \frac{\psi \beta}{n}|_{E[M]}$ for some $M > \sqrt{\deg(\beta)} + \sqrt{n^2(N+a)}$ and an automorphism ψ , then $nF_{ij}|_{E[M]} = \psi \beta|_{E[M]}$. As we know $\psi \beta$, nF_{ij} are endomorphisms, and $M > \sqrt{\deg(\beta)} + \sqrt{n^2(N+a)} > \sqrt{\deg(\psi \beta)} + \sqrt{n \deg(F_{ij})}$, Lemma A.13 implies that $\frac{\beta}{n} = \psi^{-1}F_{ij} \in \operatorname{End}(E)$.

Lemma A.15. Algorithm A.8 runs in time polynomial in $\log(p^k)$ and $\log(\deg(\beta))$.

Proof. Let B be a powersmoothness bound for N+a (as in Step 2), and let C be a powersmoothness bound for M (as in Step 6). Given Q, computing the degree $\deg(\beta)$ amounts to evaluating the quaternary quadratic form Q at (b_1, b_2, b_3, b_4) . Finding a_1, a_2, a_3, a_4 can be done in time $O((\log(a))^2(\log\log(a))^{-1})$, see [RS86, PT18].

Computing a basis for K means first computing a basis for E[N+a]; decomposing into at most $\log(N+a)$ prime power parts, this can be done in $O(B^2 \log(p^k)^2 \log(N+a))$ operations [Rob23, Lemma 7]. Evaluating $\widehat{\beta}$ on a basis for E[N+a] and α on the induced basis for $E^4[N+a]$ can be done efficiently by our assumption on β and powersmoothness of N+a.

For Step 5, we need to check that F is truly an endomorphism. We place the additional data of a symmetric theta structure of level 2 on E^8 , by taking an appropriate symplectic basis of E[4] if N+a is odd, or $E[2^{m+2}]$ where 2^m is the largest power of 2 dividing N+a otherwise. (See Proposition C.2.6 of [DLRW23] and the preceding remark about how to choose a basis which is compatible with K in different cases.) Decomposing K into prime components and using the previous data, we can compute the theta null point of E^8/K with the induced theta structure in $O(\ell_{N+a}^8 \log(N+a))$ operations, where ℓ_{N+a} is the largest prime dividing N+a. (See Theorem C.2.2 and Theorem C.2.5 of [DLRW23].) Finally, as F may not preserve the product theta structure even if it is the desired endomorphism, we need to act on the theta null point by a polarization-preserving matrix in order to directly compare theta null points. When N+a is odd, this matrix is computed explicitly [DLRW23, Proposition C.2.4] from the action of F on E[4], which can also be evaluated in $O(\ell_{N+a}^8 \log(N+a))$ operations. This gives $O(B^8 \log(N+a))$ operations for this step.

In Step 6, computing a basis for the prime-power parts of E[M] takes $O(C^2 \log(p^k)^2 \log(M))$ operations. If F is an endomorphism, then having already computed theta coordinates for E^8 and E^8/K in the previous step, we can evaluate F in terms of theta coordinates [DLRW23, Theorem C.2.2, Theorem C.2.5] and translate back to Weierstrass coordinates to check the equality. Note that there are only finitely many, and usually two, automorphisms to consider.

Each evaluation costs $O(\ell_{N+a}^8 \log(N+a))$ operations where ℓ_{N+a} is the largest prime dividing N+a. There are 64 entries F_{ij} to check, by checking the equality on at most $2\log(M)$ points. Thus, this step requires at most $O(C^2 \log(p^k)^2 \log(M) + B^8 \log(N+a) \log(M))$ operations.

Now, we show that B and C can be taken polynomially sized in $\deg(\beta)$, that N+a is $\tilde{O}(\deg(\beta))$, and that M is $\tilde{O}(1+n)\sqrt{\log(\deg(\beta))\deg(\beta)}$. Here, \tilde{O} ignores logarithmic factors.

M and C are easier to analyze, as we have no restrictions on the primes which can divide M. When $k \geq 6$, we have that the k-th prime p_k satisfies $k \log(k) < p_k < k(\log(k) + \log\log(k))$ [RS62, Corollary of Theorem 3]. Therefore, we can take M to be a product of the first k primes where k is at most $\log(\sqrt{\deg(\beta)} + \sqrt{n^2(N+a)})$ and $C = \tilde{O}(\log(\sqrt{\deg(\beta)} + \sqrt{n^2(N+a)}))$. Such a product is bounded by $\tilde{O}((\log(\sqrt{\deg(\beta)} + \sqrt{n^2(N+a)}))(\sqrt{\deg(\beta)} + \sqrt{n^2(N+a)}))$.

We can bound N+a and B similarly. However, N+a is chosen to be coprime to Nn (equivalently, coprime to $\deg(\beta)$), so we instead take N+a to be the product of the first at most $\log(N)$ primes which are coprime to Nn. Then we can take $B = \tilde{O}(\log(\deg(\beta)))$, noting that Nn has at most $\log(\deg(\beta))$ prime factors, so the largest prime we use is the k-th prime for $k \leq 2\log(\deg(\beta))$. The smallest such product which is larger than N is at most $\tilde{O}(\log(\deg(\beta))N)$. Thus, we have $N+a=\tilde{O}(\deg(\beta))$.

Returning to
$$M$$
 and C , we get $\sqrt{\deg(\beta)} + \sqrt{n^2(N+a)} \leq \tilde{O}((1+n)\sqrt{\log(\deg(\beta))\deg(\beta)})$.
Hence $M = \tilde{O}((1+n)\sqrt{\log(\deg(\beta))\deg(\beta)})$ and $C = \tilde{O}(\log((1+n)\sqrt{\log(\deg(\beta)\deg(\beta)}))$.

One can get speedups by replacing E^8 by E^4 and tweaking parameters as discussed by Robert in [Rob23, Section 6]; for simplicity and for a proven complexity we don't go into those details here.

APPENDIX B. AN EXPLICIT ISOMORPHISM WITH THE MATRIX RING

Proof of Proposition 5.1. in [ES25].

Proof. We first compute the degree map Q, such that $Q(a_1, a_2, a_3, a_4) = \deg(a_1 + a_2\alpha + a_3\gamma + a_4\alpha\gamma)$, extending \mathbb{Z} -scalars of the usual degree map to \mathbb{Z}_q . The coefficients are specified by the value of the reduced traces $\operatorname{Trd}(\beta_i\hat{\beta}_j)$ where β_i and β_j range over all elements of the basis; this can be done in time polynomial in $\log(\deg(\alpha)\deg(\gamma))$ and $\log(p)$ via a modified Schoof's algorithm, by evaluating the products on sufficiently large torsion.

On input \mathcal{O}_0 , specified by the multiplication table and Q, we compute a q-maximal q-enlargement of \mathcal{O}_0 , denoted $\tilde{\mathcal{O}}$ [Voi13, Algorithms 3.12, 7.9, 7.10]. More specifically, Algorithm 3.12 produces a basis for $\mathcal{O}_0 \otimes \mathbb{Z}_q$ such that the norm form is normalized. Algorithm 7.9 gives a basis for a potentially larger "q-saturated" order, whose elements are of the form $\frac{x}{q^k}$. Here, x has coefficients in terms of the original basis of size at most $\max(\operatorname{Trd}(\beta_i\hat{\beta}_j))^4$, where β_i and β_j range over basis elements of the original basis. The power k in the denominator is at most $\lfloor j/2 \rfloor$ where j is the valuation of the atomic form corresponding to the basis element, and hence $k \leq e = v_q(\operatorname{discrd}(\mathcal{O}_0))$.

Since $|\operatorname{Trd}(\beta_i\hat{\beta}_j)| \leq 2\sqrt{\deg(\beta_i)\deg(\beta_j)}$, the coefficients are of size at most $16\deg(\alpha)^2\deg(\gamma)^2$. Applying Algorithm 7.10 adjoins a zero divisor mod q, which is of the form $\frac{x}{q}$; here, x is expressed as linear combinations of the basis with coefficients of size at most $16q^2\deg(\alpha)^2\deg(\gamma)^2$. Thus, the basis which is output for $\tilde{\mathcal{O}}$ has coefficients (in terms of the basis $\{1, \alpha, \gamma, \alpha\gamma\}$)

which are polynomially-sized in $\deg(\alpha)$, $\deg(\gamma)$, and q. Therefore, a basis element $\frac{\beta}{q^k}$ satisfies $\log(\deg(\beta))$ is at most polynomially-sized in $\log(\deg(\alpha))$, $\log(\deg(\gamma))$, and $\log(q)$.

Proposition B.1. Given a basis and multiplication table for a q-maximal order $\tilde{\mathcal{O}}$, and a precision q^r , there is an algorithm which computes a zero divisor $x \in \tilde{\mathcal{O}} \otimes \mathbb{Z}_q$, up to precision q^r . In other words, there is an algorithm to compute an element $x \in \tilde{\mathcal{O}} \otimes \mathbb{Z}_{(q)}$ such that there exists a zero divisor $x' \in \tilde{\mathcal{O}} \otimes \mathbb{Z}_q$ with $v_q(x-x') \geq r$. The element x is expressed as a linear combination of the given basis such that coefficients are polynomially-sized in q^r and $\deg(\beta_i) \deg(\beta_j)$, where β_i and β_j range over elements of the given basis. The runtime is polynomial in $\log(q^r)$ and the size of $\tilde{\mathcal{O}}$.

Proof. First, use [Voi13, Algorithm 3.12] on $\tilde{\mathcal{O}} \otimes \mathbb{Z}_q$ to obtain a normalized basis $\{f_1, f_2, f_3, f_4\}$ for $\tilde{\mathcal{O}} \otimes \mathbb{Z}_q$. Note that, clearing denominators by units in \mathbb{Z}_q if necessary, we can ensure $f_i \in \mathcal{O}_0 \otimes \mathbb{Z}_{(q)}$.

As \mathcal{O} is q-maximal, the output basis being normalized means that the reduced norm form $Q(x_1, x_2, x_3, x_4) = \operatorname{Nrd}(\sum_{i=1}^4 x_i f_i)$ is given by a sum of atomic forms.

When q is odd, this means that $Q(x_1, x_2, x_3, x_4) = \sum_{i=1}^4 a_i x_i^2$ where $a_i \in (\mathbb{Z}_q)^\times$ and $\operatorname{Trd}(f_i \hat{f}_j) = 0$ when $i \neq j$. When q = 2, atomic forms are of one of the two following types: (i) ax^2 for $a \in (\mathbb{Z}_q)^\times$ or (ii) $a_i x_i^2 + a_{ij} x_i x_j + a_j x_i^2$ such that $v_2(a_{ij}) \leq v_2(a_i) \leq v_2(a_j)$ and $v_2(a_i)v_2(a_{ij}) = 0$. Up to reordering basis elements if necessary, we may therefore write $Q(x_1, x_2, x_3, x_4) = A_{12}(x_1, x_2) + A_{34}(x_3, x_4)$, where A_{ij} is either atomic of type (ii) or a sum of atomic forms of type (i).

We split up rest of the proof into the case that q is odd and q = 2: We first produce a nonzero element $x \in (\mathbb{Z}/q\mathbb{Z})^4$ such that $Q(x) \equiv 0 \pmod{q}$. Then, we show that there exists a lift x' in $\tilde{\mathcal{O}} \otimes \mathbb{Z}_q$, and we compute and output a lift of x in $\tilde{\mathcal{O}} \otimes \mathbb{Q}$ up to our desired precision q^r . In each case, the coefficients (in terms of the f_i) x_1, x_2, x_3, x_4 will be chosen mod q^r , so the resulting output coefficients (in terms of the input basis) is polynomially-sized in q^r and $\deg(\beta_i) \deg(\beta_i)$.

Case 1: q is odd. Then the resulting reduced norm form is given by $Q(x_1, x_2, x_3, x_4) = \operatorname{Nrd}(\sum_{i=1}^4 x_i f_i) = \sum_{i=1}^4 a_i x_i^2$. The coefficients a_i may be rational, but $v_q(a_i) = 0$, so we may replace a_i by an integer mod q^r . Then there is a nonzero solution $(x_1, x_2, x_3) \in (\mathbb{F}_q)^3$ to the equation $\sum_{i=1}^3 a_i x_i^2 \equiv 0$, which can be found by a deterministic algorithm running in polynomial time in $\log(q)$ [vdW05]. Reindexing the basis elements f_i and the corresponding a_i as necessary, we can assume $x_1 \neq 0$, so that the quadratic polynomial $Q_1(x) = Q(x, x_2, x_3, 0)$ has a nonzero solution, x_1 , mod q. Furthermore, $Q'_1(x_1) = 2a_1x_1$, which is nonzero mod q. Thus, by Hensel's Lemma, x can be lifted to a solution to $Q_1(x) = 0$ over \mathbb{Z}_q . A solution mod q^r can be recovered in (at most) r-1 Hensel lifts, each running in polynomial time in $\log(q)$ (see [vzGG13, Algorithm 15.10 and Theorem 15.11] or [Coh93, Theorem 3.5.3]).

Case 2: q = 2. In this case, the resulting reduced norm form is given by the normalized form $Q(x_1, x_2, x_3, x_4) = A_{1,2}(x_1, x_2) + A_{3,4}(x_3, x_4)$. Here $A_{i,j}(x_i, x_j) = a_i x_i^2 + a_{i,j} x_i x_j + a_j x_j^2$. The discriminant of Q, and therefore of $\tilde{\mathcal{O}} \otimes \mathbb{Z}_q$, is $(4a_1a_2 - a_{1,2}^2)(4a_3a_4 - a_{ij})^2$. As $\tilde{\mathcal{O}} \otimes \mathbb{Z}_q$ is 2-maximal, $a_{i,2}$ and $a_{3,4}$ are necessarily nonzero (mod 2).

Let A(y,z) be an atomic form of type (ii), say $A(y,z) = ay^2 + byz + cz^2$ such that $v_2(b) \le v_2(a) \le v_2(c)$. Further assume $v_2(b) = 0$. We show that we can choose $y_0, z_0 \in \mathbb{Z}/2\mathbb{Z}$ such that $A(y_0, z_0) \equiv 1 \pmod{2}$ and at least one of y_0 or z_0 is odd. If $v_2(a) \ge 1$ (and

therefore $v_2(c) \ge 1$ as well), or if $v_2(a) = v_2(c) = 0$, we can set $y_0 \equiv z_0 \equiv 1 \pmod{2}$. Otherwise, in the case that $v_2(a) = 0$ and $v_2(c) > 0$, we can set $y_0 \equiv 1 \pmod{2}$ and $z_0 \equiv 0 \pmod{2}$.

The quadratic form $Q(x_1, x_2, x_3, x_4)$ is the sum of two atomic quadratic forms $A_{1,2}$ and $A_{3,4}$ as above. We obtain a solution mod 2 by choosing x_1, x_2, x_3, x_4 mod 2 as just described. If x_1 and x_2 are both odd, i.e. in the case that a_1 and a_2 are of the same parity, we lift x_2, x_3, x_4 to $\mathbb{Z}/q^r\mathbb{Z}$ to obtain a quadratic polynomial $Q_1(x) = Q(x, x_2, x_3, x_4)$ with a solution mod 2 at $x \equiv 1 \pmod{2}$. Then the derivative $Q'_1(1) = 2a_1 + a_{1,2}x_2$ is a unit in \mathbb{Z}_2 . Otherwise, in the case that x_1 is odd and x_2 is even, we fix integers $x_1, x_3, x_4 \in \mathbb{Z}/q^r\mathbb{Z}$ to obtain a quadratic polynomial $Q_2(x) = Q(x_1, x, x_3, x_4)$ with a solution mod 2 at $x \equiv 0 \pmod{2}$. Then the derivative $Q'_2(0) = a_{1,2}x_1$ is a unit in \mathbb{Z}_2 . In either case, we obtain a solution to $Q = 0 \pmod{2}$ which can be lifted to a solution in \mathbb{Z}_q^4 via Hensel's Lemma. As in the case that q is odd, a solution mod q^r can be recovered in r - 1 lifts, running in polynomial time in $\log(q)$. \square

Proof of Prop 5.2. in [ES25].

Proof. By Proposition B.1, there is an algorithm to compute $x \in \tilde{\mathcal{O}} \otimes \mathbb{Z}_{(q)}$ such that $\operatorname{Nrd}(x) \equiv 0 \pmod{q^r}$. We first use x as input for [Voi13, Algorithm 4.2]to compute nonzero $e \in \tilde{\mathcal{O}} \otimes \mathbb{Z}_q$ such that $e^2 = 0$. As before, we only specify e up to precision q^r and can therefore approximate e with an element of $\tilde{\mathcal{O}} \otimes \mathbb{Z}$. Furthermore, we can choose $e = \sum_{i=1}^4 e_i f_i$ such that for some $i, q \nmid e_i$.

Then, on input e, we use [Voi13, Algorithm 4.3] to compute i' and j' as a \mathbb{Z} -linear combination of $\frac{1}{s}e$ and $\frac{1}{s}f_ie$, for a basis element f_i such that $s = \text{Trd}(f_ie)$ is nonzero.

In fact, we will modify the algorithm by choosing f_i such that $\operatorname{Trd}(f_i e)$ is nonzero mod q. If no such i exists, then $\operatorname{Trd}(ye)=0$ for all $y\in \tilde{\mathcal{O}}$, so we show this cannot happen. Write $y=\sum_{j=1}^4 y_j f_j$ and $e=\sum_{i=1}^4 e_i f_i$, and consider the expression for $\operatorname{Trd}(ye)=-\operatorname{Trd}(y\bar{e})$ given by $\sum_{j=1}^4 \sum_{i=1}^4 -y_i e_j \operatorname{Trd}(f_i \hat{f}_j)$. As $\{f_1, f_2, f_3, f_4\}$ is a normalized basis, the equation simplifies in the following ways, depending on if q is even or odd.

If q is odd, then the expression simplifies to $\sum_{i=1}^{4} -e_i \operatorname{Trd}(f_i \hat{f}_i) y_i$. This is identically 0 mod q if and only if q divides $e_i \operatorname{Trd}(f_i \hat{f}_i)$ for all i. In the notation of the proof of Proposition B.1, $\operatorname{Trd}(f_i \hat{f}_i)$ is exactly $2a_i$ and hence is not divisible by q by q-maximality. Hence, this expression is identically 0 mod q if and only if q divides e_i for all i, we chose e such that this does not happen.

If q = 2, we have that $\operatorname{Trd}(f_i\hat{f}_i) = 2\operatorname{Nrd}(f_i) \equiv 0 \pmod{q}$ for all i, so the only nonzero terms are $-e_1\operatorname{Trd}(f_2\hat{f}_1), -e_2\operatorname{Trd}(f_1\hat{f}_2), -e_3\operatorname{Trd}(f_4\hat{f}_3), -e_4\operatorname{Trd}(f_3\hat{f}_4)$. We have $\operatorname{Trd}(f_1\hat{f}_2) = \operatorname{Trd}(f_2\hat{f}_1) = a_{1,2}$ and $\operatorname{Trd}(f_3\hat{f}_4) = \operatorname{Trd}(f_4\hat{f}_3) = a_{3,4}$, which are not divisible by q as we showed in the proof of Proposition B.1. Hence this expression is identically $0 \mod q$ if and only if q divides e_i for all i, but we chose e such that this does not happen.

This shows that $v_q(\operatorname{Trd}(ef_i)) = 0$ for some i, so that $\frac{1}{s} \in \mathbb{Z}_q$, and the elements i' and j' output by Algorithm 4.3 (with this modification) are elements of $\tilde{\mathcal{O}} \otimes \mathbb{Z}_q$ and furnish an isomorphism of $\tilde{\mathcal{O}} \otimes \mathbb{Z}_q \to M_2(\mathbb{Z}_q)$. To get i' and j' in $\tilde{\mathcal{O}}$ rather than in $\tilde{\mathcal{O}} \otimes \mathbb{Q}$, replace $\frac{1}{s}$ by an integer $m \equiv s^{-1} \pmod{q^r}$.

APPENDIX C. KNOWN SUBGRAPH

C.1. Known Subgraph of the Bruhat-Tits Tree. In the general case, the order Λ_0 may not be Bass. We have just shown how to recover Λ_E without having to list each of the local maximal orders containing Λ_0 . Our approach is to determine the distance of Λ_E from $M_2(\mathbb{Z}_q)$, which is the only vertex we know to containing Λ_0 , and then to recover the path from $M_2(\mathbb{Z}_q)$ to Λ_E one step at a time. This second step is the most costly, requiring at most 4(q+1) applications of Algorithm A.8 for each step in the path. In the worst case, Λ_E is e steps from $M_2(\mathbb{Z}_q)$.

If we can describe the set of maximal orders containing Λ_0 as $N_{\ell}(P)$ for a path P and an integer $\ell \geq 0$, we can obtain Λ_E more efficiently. First, we compute the distance r of Λ_E from the path P; next, we compute the order Λ' in P which is closest to Λ_E ; finally, we recover the path from Λ' to Λ_E , one step at a time. As before, this last step is the most costly, but in the worst case, we only need to recover ℓ steps, where $\ell \leq \frac{e}{3}$.

Algorithm C.1. Finding Λ_E When the Subgraph is Known

Input: An order $\mathcal{O}_0 \subset \operatorname{End}(E)$; $e = v_q(\operatorname{discrd}(\mathcal{O}_0))$; a q-maximal q-enlargement \tilde{O} of \mathcal{O}_0 ; an isomorphism $f : \mathcal{O}_0 \otimes \mathbb{Q}_q \to M_2(\mathbb{Q}_q)$ such that $f(\tilde{O} \otimes \mathbb{Z}_q) = M_2(\mathbb{Z}_q)$, given up to precision q^{e+1} ; matrices T_1' and T_2' corresponding to endpoints of a path P and an integer $\ell \geq 0$ such that $\bigcap_{\Lambda \supset f(\mathcal{O}_0 \otimes \mathbb{Z}_q)} \Lambda = \bigcap_{\Lambda \in N_\ell(P)} \Lambda$.

Output: γ such that $\Lambda_E = \gamma^{-1} M_2(\mathbb{Z}_q) \gamma$

- (1) Compute the least $r \leq \ell$ such that $\bigcap_{\Lambda \in N_r(P)} \Lambda \subset \Lambda_E$.
- (2) Partition P into two disjoint paths P_0 and P_1 of equal length, and check if P_0 satisfies $\Lambda_E \in N_r(P_0)$. Set $P' = P_0$ if $\Lambda_E \in N_r(P_0)$ and $P' = P_1$ otherwise. Then replace P by P' and continue until P consists of a single order $T^{-1}M_2(\mathbb{Z}_q)T$.
- (3) Recover the matrix path d_1, d_2, \ldots, d_r of length r from $T^{-1}M_2(\mathbb{Z}_q)T$ to Λ_E , so that $\Lambda_E = (d_r \cdots d_2 d_1 T)^{-1} M_2(\mathbb{Z}_q) d_r \cdots d_2 d_1 T$. Output $d_r \cdots d_2 d_1 T$.

Proposition C.2. Algorithm C.1 requires at most $4(\ell + \log(|P|) + \ell q + 1)$ applications of Algorithm A.8.

Proof sketch:

The extra information about the graph structure allows us to replace $M_2(\mathbb{Z}_q)$ with an order whose which is close to Λ_E , thus minimizing the most costly step (recovering the path step-by-step). However, we stress that it is not clear how to efficiently obtain Λ_1 , Λ_2 , and Λ_3 from Λ_0 .

C.2. **Possible Subgraphs.** We can use Tu's results to describe the subgraph of maximal orders containing any order in $M_2(\mathbb{Q}_q)$. We summarize the possible subgraphs in the following corollary.

Corollary C.3. Suppose Λ is an order in $M_2(\mathbb{Q}_q)$. Let $S = \{\Lambda' \text{ maximal } : \Lambda \subset \Lambda'\}$. Then there exists a path P and an integer $\ell \geq 0$ such that $S = N_{\ell}(P)$.

Proof. By Lemma 3.8 in [ES25], Λ , is contained in only finitely many maximal orders even when Λ is not a finite intersection of maximal orders. Hence the set S of maximal orders containing Λ is a finite set. Let $\Lambda'' = \bigcap_{\Lambda' \in S} \Lambda'$. The set of maximal orders containing Λ is precisely the set of maximal orders containing Λ'' . Thus, it suffices to prove the statement in the case that Λ is equal to a finite intersection of maximal orders.

For the rest of the proof, assume Λ is a finite intersection of maximal orders. By Theorem [Tu11, Theorem 8], we can choose $\Lambda_1, \Lambda_2, \Lambda_3 \in S$ such that $\Lambda = \Lambda_1 \cap \Lambda_2 \cap \Lambda_3$. We need to construct a path P and an integer $\ell \geq 0$ such that for a maximal order Λ' , we have $\Lambda_1 \cap \Lambda_2 \cap \Lambda_3 \subset \Lambda'$ if and only if $\Lambda' \in N_{\ell}(P)$.

By reindexing if necessary, let Λ_1 and Λ_2 be such that $d(\Lambda_1, \Lambda_2)$ is maximal among $d(\Lambda_i, \Lambda_i)$. Let P' denote the path from Λ_1 to Λ_2 , and let $\ell = d(\Lambda_3, P')$.

By maximality of $d(\Lambda_1, \Lambda_2)$, the path P' has length at least 2ℓ . For i = 1, 2, let Λ'_i denote the vertex on the path P' such that $d(\Lambda'_i, \Lambda_i) = \ell$. Let P be the path of vertices from Λ'_1 to Λ'_2 . We will show that $S = N_{\ell}(P)$.

First, note that $\ell = d(\Lambda_3, P)$. Suppose not. Then the closest vertex v' of P' to Λ_3 lies between Λ'_i and Λ_i for some i, and $v' \neq \Lambda'_i$. Then for $j \neq i, j \neq 3$, we have $d(\Lambda_j, \Lambda_i) = d(\Lambda_j, \Lambda'_i) + d(\Lambda'_i, \Lambda_i) = d(\Lambda_j, \Lambda'_i) + d(\Lambda'_i, v') + d(v', \Lambda_i)$. Since $d(v', \Lambda_i) < \ell = d(v', \Lambda_3)$, we have $d(\Lambda_j, \Lambda_i) \leq d(\Lambda_j, v') + d(v', \Lambda_3)$. But $d(\Lambda_j, v') + d(v', \Lambda_3) = d(\Lambda_j, \Lambda_3)$. This contradicts maximality of $d(\Lambda_1, \Lambda_2)$.

Let Λ_4 be a maximal order, and let $m = d(\Lambda_4, P)$. We need to show that $\Lambda_4 \in S$ if and only if $m \leq \ell$. By Lemmas 3.15 and 3.16 in [ES25], this is the same as showing that $d_3(S) = d_3(S \cup \{\Lambda_4\})$ if and only if $m \leq \ell$.

We have $d(\Lambda_1, \Lambda_2) + d(\Lambda_2, \Lambda_4) + d(\Lambda_4, \Lambda_1) = 2d(\Lambda_1, \Lambda_2) + 2m$. We will show that $d_3(S \cup {\Lambda_4}) = 2d(\Lambda_1, \Lambda_2) + 2\max\{\ell, m\}$.

If i=1 or i=2, let P_i denote the path between Λ_3 and Λ_i , and let $n_i=d(\Lambda_4,P_i)$.. We have $d(\Lambda_i,\Lambda_4)+d(\Lambda_4,\Lambda_3)+d(\Lambda_3,\Lambda_i)=2d(\Lambda_i,\Lambda_3)+2n_i$. If $n_i\leq m$, then this is clearly at most $2d(\Lambda_1,\Lambda_2)+2m$. Let v_i denote the vertex of P_i which is closest to Λ_4 , so $d(\Lambda_4,v_i)=n_i$ If $n_i>m$, the path P_i does not contain the closest vertex v on P to Λ_4 and $d(v,v_i)=n_i-m$. In this case, it follows that v_i lies on the path P, as otherwise $v_i=v$ and $n_i=m$, and that v_i is the closest vertex of P to Λ_3 . Thus, $d(\Lambda_1,\Lambda_2)=d(\Lambda_i,v_i)+n_i-m+d(v,\Lambda_j)$, where $j\neq i,3,4$. We also have $d(\Lambda_i,\Lambda_3)=d(\Lambda_i,v_i)+d(v_i,\Lambda_3)$. Thus $2d(\Lambda_i,\Lambda_3)+2n_i=2(d(\Lambda_i,v_i)+n_i-m)+2m\leq 2d(\Lambda_1,\Lambda_2)+2m$.

We have shown that $d_3(S \cup \{\Lambda_4\}) = 2d(\Lambda_1, \Lambda_2) + 2\max\{\ell, m\}$. This is equal to $d_3(S)$ if and only if $m \leq \ell$, and hence Λ_4 is in S if and only if $\Lambda_4 \in N_{\ell}(P)$.

References

- [Coh93] Henri Cohen. A course in computational algebraic number theory, volume 138 of Graduate Texts in Mathematics. Springer-Verlag, Berlin, 1993.
- [DLRW23] Pierrick Dartois, Antonin Leroux, Damien Robert, and Benjamin Wesolowski. SQISignHD: New dimensions in cryptography. Cryptology ePrint Archive, Paper 2023/436, 2023. https://eprint.iacr.org/2023/436.
- [ES25] Kirsten Eisenträger and Gabrielle Scullard. Connecting Kani's lemma and path-finding in the Bruhat-Tits tree to compute supersingular endomorphism rings, 2025. Preprint.
- [Kan97] Ernst Kani. The number of curves of genus two with elliptic differentials. J. Reine Angew. Math., 485:93–121, 1997.
- [Mil86] J. S. Milne. Abelian varieties. In Arithmetic geometry (Storrs, Conn., 1984), pages 103–150. Springer, New York, 1986.
- [PT18] Paul Pollack and Enrique Treviño. Finding the four squares in lagrange's theorem. *Integers*, 18A:A15, 2018.
- [Rob23] Damien Robert. Breaking SIDH in polynomial time. In Advances in cryptology—EUROCRYPT 2023. Part V, volume 14008 of Lecture Notes in Comput. Sci., pages 472–503. Springer, Cham, [2023] ©2023.

- [RS62] J. Barkley Rosser and Lowell Schoenfeld. Approximate formulas for some functions of prime numbers. *Illinois Journal of Mathematics*, 6:64–94, 1962.
- [RS86] Michael O. Rabin and Jeffery O. Shallit. Randomized algorithms in number theory. *Communications on Pure and Applied Mathematics*, 39(S1):S239–S256, 1986.
- [Tu11] Fang-Ting Tu. On orders of M(2, K) over a non-Archimedean local field. Int. J. Number Theory, 7(5):1137-1149, 2011.
- [vdW05] Christiaan E. van de Woestijne. Deterministic equation solving over finite fields. In *International Symposium on Symbolic and Algebraic Computation*, 2005.
- [Voi13] John Voight. Identifying the matrix ring: algorithms for quaternion algebras and quadratic forms. In *Quadratic and higher degree forms*, volume 31 of *Dev. Math.*, pages 255–298. Springer, New York, 2013.
- [vzGG13] Joachim von zur Gathen and Jürgen Gerhard. *Modern computer algebra*. Cambridge University Press, Cambridge, third edition, 2013.

KIRSTEN EISENTRÄGER, DEPARTMENT OF MATHEMATICS, THE PENNSYLVANIA STATE UNIVERSITY, UNIVERSITY PARK, PA 16802, USA, eisentra@math.psu.edu

Gabrielle Scullard, Department of Mathematics, The Pennsylvania State University, University Park, PA 16802, USA, gns49@psu.edu