0.1. SET THEORY

0.1 Set Theory

Definition:

A set is a collection of objects called elements of the set.

Example:

- 1. $S = \{1, 2, 3\} \ (= \{1, 2, 3, 3\})$
- 2. $E = \{\text{Even integers }\}$
- 3. {College students}

Notation:

- $x \in S$ means x is in S.
- $x \notin S$ means x is not in S.
- The empty set \emptyset is the set with no elements.
- $A \subseteq B$ means A is a subset of B (i.e. if $x \in A$, then $x \in B$).
- If $A \subseteq B$ but $B \subsetneq A$ A is a proper subset.

If $A \subseteq B$ and $B \subseteq A$ then A = B. Otherwise $A \neq B$.

We can define more sets in terms of other sets. Set Operations: Let A and B be sets.

- Union: $A \cup B = \{x \mid x \in A \text{ or } x \in B\}$
- Intersection: $A \cap B = \{x \mid x \in A \text{ and } x \in B\}$
- Compliment: $B A = \{x \mid x \in B \text{ and } x \notin A\}$
- Product: $A \times B = \{(a, b) \mid a \in A \text{ and } b \in B\}$

If U is a universal set (set of everything in context), we write $\bar{A} = U - A = \{x \mid x \in U \text{ and } x \notin A\}.$

0.2 Functions and Relations

It is also important to define some types of relations and functions.

0.2.1 Relations

Definition (Relation):

A (binary) **relation** R on a set S is a subset of $S \times S$. If $(a, b) \in R$, we write aRb.

Example (of relations): 1. L "loves" is a relation on $P \times P$ (where P is a set of all people).

2. The set $R = \{(0,0), (0,1), (2,2), (7,18)\}$ is a relation on \mathbb{Z}^+ . We would write 0R0, 0R1, 2R2, and 7R18.

Definition (Equivalence Relation):

An equivalence relation on a set S is a relation s.t.:

- 1. Reflexive: For each $a \in S$, $a \sim a$.
- 2. Symmetric: For $a, b \in S$, if $a \sim b$, then $b \sim a$.
- 3. Transitive: For $a, b, c \in S$, if $a \sim b$ and $b \sim a$

0.2.2 Functions

Functions in the general sense are also a type of relation.

Definition (Function):

A **function**, F from a set A to a set B is a relation s.t.: if aFb and aFb' then b=b'. This is a rule that assigns a unique $a \in A$ to a unique $b \in B$. Write $f: A \to B$ and f(a) = b.