CMP 2023 Data Mining Project Report

Dan Kha PHAM xnf21ktu@uea.ac.uk

March 2022

1 Introduction

To start accessing data about diabetes, I applied the path in road map learned in the module. The goal of the project is to predict the correct patient is positive with diabetes mellitus. The data set contains a lot of medical indexes. Therefore, the first thing to do is to understand the data. Also, I looking for similar researches that has been done to see how they are deliberately carried out, to understand the procedure of proceeding the project (Aljumah et al. 2013), (Yang et al. 2021), (Kavakiotis et al. 2017). The first step is to do data exploration, get descriptive statistics of the variables in the data set, and do some initial research on missing values.

2 Data Exploration, Cleaning and Pre-processing

2.1 Loading Data and Describe Dataset

In the first step of Data Exploration, after loading the dataset and conducting descriptive statistics. I confirmed that the dataset has all 79,159 fields and 88 variables. In which only 3 variables are objects including "ethnicity", "gender", "icu-type". The rest are all numerical variables. I proceed to filter the list of variables that have more than 60% of missing value, the list includes 38 numerical variables. I decided to remove all of these variables, because of the lack of too many lines of data. If kept, these variables will cause the model to be skewed and biased. The remaining dataset consists of 79159 x 50, total cells include 3,957,950, total missing 468,325, missing data rate is 11.83% (Figure 1). I tried understand to basic lab indicators in the data set (Ong & Penm 2019).

2.2 Data Cleaning

2.2.1 Numerical Data

Next, I proceed doing further data cleaning. By dropping all the age variable with value equal 0, working on the relation between BMI, height and weight. Then drop all the fields that both height and weight are missing. I also found that BMI are incorrect computed in approximately 3000 fields, hence I recomputed it based on the given height and weight.

2.2.2 Categorical Data

Since the missing percentage in "Gender" is just 0.04%, I decided to drop all the null rows in it. For "Ethnicity" variable, after plotted the distribution. I decided to put all the Null value of "Ethnicity" to "Other/Unknown" category.

Figure 1: Missing plot

Figure 2: Ethnicity Distribution

Figure 3: ICU_{type} Distribution

2.2.3 Handle Correlate Variables and Missing Model

After done dealing with object columns, I proceed finding duplicate columns, there is no Duplicate column in the data frame. I proceed handle the correlate variables, I run correlate statistics for the data set and find out that 10 pairs of labs indicators are high correlated to each others (all of those are between max's and min's), "Readmission_status" seems having no involve to the data-set (Figure 5), and GCS Score can be the combination of both Eye and Motor in our dataset (Enriquez et al. 2019). Therefore, I decided to take the average of the two Max and Min variables, to replace 2 of them for all 10 pairs variables, take the sum of 2 GCS variables to formulate one single GCS Score column and drop the irrelevant variables. After that, realizing there are d1_albumin, d1_bilirubin and h1_glucose which are accounted for more than 50%. Since these missing are important for target variable, and they are not Missing Complete at Random (MCAR) (Figure 4). I'm try making model for the missingness of the 5 highest missing percent variables. Which then added 5 more columns. After all, I concatenated the missingness model to the Data Frame make it finally become 78570 rows and 43 columns.

Figure 4: Missingness Correlation

From here I think about whether or not this data is vital to determine our target variable, which is to determine whether or not the patient is having diabetes mellitus. Therefore, I divided the data set into 2 groups, 1 group of patients with diabetes, the other group of patients without diabetes. Although, according to the graphs, Platelets variables does not seems to convey significant information, I found this research article about its importance (Santilli et al. 2015), I decided to keep all the outliers the same they are. Because, the outliers may contain the information the ones who is diabetes. And vice versa, those patients' data become outliers because of their diabetes situation. It is not optimised to drop all the outliers away from this data set. Since we are looking for the abnormal to distinguish the unique features of diabetes mellitus. By that thinking, I plot KDE for all variables to distinguish which variables important than others (Figure 6).

Figure 5: Correlation of all variables

Figure 6: KDE plot 1

2.3 Data Pre-Processing

2.3.1 Encode Categorical Data

Then I proceed on encode binary for "Gender" and One Hot Encoder for "Ethnicity" and "ICU_Type". I took the Encode columns to replace those Categorical object columns. At this stage, the whole data set contains only numerical data types.

2.3.2 Split the Data set

At this point, the data is well cleaned and ready to handle the missingness either by drop all the NaN or by imputation. However, in order to keep the truthfulness and unbiased of test data. I split the data set into Train set and Test set with 67% and 33% respectively.

2.3.3 Train and Test data set Imputation

At this stage, there are decisions to impute the missing data or to drop all of them. But drop all the N/A would make the data set lost too many information. Therefore, I chose to impute all the missing data at once based on MICE method (Austin et al. 2021) (Jakobsen et al. 2017).

After imputation, the data set is varied from the original (Schweizer et al. 2020). Although provide more distribute to the mean area by imputed missing data, it mostly keep the same distribution as like the original data, (Figure 7). I leave the Test set untouched until using it for Supervised Learning.

2.3.4 Outliers Detection

Then I proceeding handle the outliers for the train set only. First by using Boxplot IQR method to get the total percentage of the outliers, which are 1.83%. I will use this rate to fill in the contamination parameters of Local Outlier Factor (LOF) and Isolation Forest methods.

For the safeness of keeping genuine data, I would remove only those data which seems really unrealistic (Torkey et al. 2021)(Maniruzzaman et al. 2018). The results by using DBScan, LOF and Isolation Forest method is shown in Figure 9 where the green dots are the outliers. DBScan give the result of just 33 outliers, preserve the data set the most out of the 3 methods. Therefore, I would chose to use data set of DBScan to keep proceeding on Feature Selection.

3 Supervised Learning

3.1 Feature Selection

To begin with Classification, I run Feature selection to see the importance of the variables, then I will keep only those which have high distinguish impact only.

For my data set, the results return with high F-Scores give more confidence for the distinguish factors (Figure 10). I then decided to choose up to 20 features from both F_Regression and Mutual Info Classif Scores to assure do not miss any significant variables. Then I proceed to the correlation between those selected features, and decided to remove the features that has correlation higher than 0.60, except for feature "d1_bun_avg" and "creatinine_apache" since those features is importance for classify the target variable (Mukaka 2012). The final result appears the data set is now ready for Low level tasks. I repeat the same process for the Test Set, to make sure both Data set have the same variables structure. (Figure 11).

Figure 7: Imputed Result with Blue means Imputed data, Orange means Old data

Figure 8: Boxplot outliers data

Figure 9: Outliers Detection

				Feat names	F Scores
	Feat_names	F_Scores	34	h1 glucose avg	0.114721
34	h1_glucose_avg	8603.172252	8	d1 glucose min	0.032961
7	bmi	1909.629618	28	d1 bun avg	0.022311
6	weight	1622.634027	13	creatinine apache	0.021583
39	missing_h1_glucose	1472.989625	7	bmi	0.021305
28	d1_bun_avg	1468.953085	1	hospital id	0.018160
8	d1_glucose_min	1168.433776	6	weight	0.017950
13	creatinine_apache	1097.150920	3	age	0.015915
3	age	467.531312	39	missing h1 glucose	0.014113
31	d1_potassiu_avg	431.802636	29	d1 hco3 avg	0.006929
50	e_Caucasian	168.116536	31	d1_ncos_avg	0.005413
46	ICU_Neuro ICU	124.897069	38	missing d1 bilirubin	0.004637
48	e_African American	101.466025	50	e Caucasian	0.004100
32	d1_sodiu_avg	83.668240	24	gcs score	0.003882
35	missing_creatinine	80.781965	47	ICU SICU	0.003624
29	d1_hco3_avg	70.910978	37	missing_d1_albumin	0.003243
26	d1_albumin_avg	63.797960	12	heart rate apache	0.002812
24	gcs_score	60.819841	48	e African American	0.002637
11	d1_heartrate_max	53.111417	2	gender	0.002631
41	ICU_CSICU	51.247297	15	map apache	0.002609
27	d1_bilirubin_avg	40.720873	53	e Other/Unknown	0.002600
47	ICU_SICU	32.867771	41	ICU CSICU	0.002519
52	e_Native American	32.597401	40	ICU CCU-CTICU	0.002517
12	heart_rate_apache	30.582633	23	ventilated apache	0.002517
30	d1_platelets_avg	26.131460	5	height	0.002373
44	ICU_MICU	18.985631	35	missing creatinine	0.002372
17	cirrhosis	14.645914	10	intubated apache	0.002322
22	solid_tumor_with_metastasis	13.727430	45	ICU Med-Surg ICU	0.002143
23	ventilated_apache	12.895736	14	h1_spo2_max	0.002033
51	e_Hispanic	12.451726	27	d1 bilirubin avg	0.001434
14	h1_spo2_max	12.205804	44	ICU MICU	0.001323
37	missing d1 albumin	11.772814	20	leukemia	0.001140

Figure 10: Feature Selection Result

3.2 Balancing Train set

After split, the y_train data has 33 thousand of value 0 and 18 thousand of value 1, this make the data imbalance. Downsample would make us lose the information of the non target variable, but Upsample would make it replicate of the target data, making bias in prediction. Therefore I chose to downsample the data.

3.3 Classification

At this stage, I run pipeline with option to normalised the data of all classifiers I can use, which are Logistic Regression, SVC, Multi-layer Perceptron, KNeighbors, Decision Tree, Random Forest and Gradient Boosting. Of all classification methods, I let the algorithm to run with default parameters. I got the results in Figure 12. As of all methods, the Random Forest return the highest test_score (approx 90.9%) with acceptable standard deviation.

Therefore, I decided to choose Random Forest to be the Classification method for this problems. At this stage, I would tune the best parameters for Random Forest classifiers. Using RandomizedSearchCV and GridSearchCV with pipeline of selectKbest, tranforms the data, all together to find out the best procedure for classifying the target result. In transformers method, I added StandardScaler, MinMaxScaler, Normalizer, PowerTransformer and Quantile-Transformer. Through using SearchCV algorithm, I have cross-validation the result on the data set. The best combination of parameters for this algorithm is shown in Figure 13.

However, on the Test set, the Precision and Recall is just 57% and 84%, this appears incorrectness in the predict ability. But in the perception of detecting patient with False Positive is better than False Negative, I decided to try other Classifiers that having more accuracy in both precision and recall for positive detected. After many tests and trials, I finally

Figure 11: Correlation of Selected Features

LogisticRegression()	MLPClassifier()	DecisionTreeClassifier()
fit_time mean 0.050983524322509764	fit_time mean 22.247143936157226	fit_time mean 3.355861043930054
fit_time std 0.0023148390672020737	fit_time std 0.6440884302199374	fit_time std 0.048091109948604424
score_time mean 0.0066009521484375	score_time mean 0.017403411865234374	score_time mean 0.007220792770385742
score_time std 0.001199635017704931	score_time std 0.0008001090143977144	score_time std 0.0007695701383865034
test_score mean 0.706482643245504	test_score mean 0.7875784190715182	test_score mean 0.8890840652446675
test_score std 0.008434049625300529	test_score std 0.022480046297476755	test_score std 0.0026668839091476162
SVC()	<pre>KNeighborsClassifier(n_neighbors=3)</pre>	RandomForestClassifier()
fit_time mean 52.55921983718872	fit_time mean 0.09825773239135742	fit_time mean 31.826132917404173
fit_time std 0.8111808978709214	fit_time std 0.005458987340936715	fit_time std 0.813517019578563
score_time mean 15.877251195907593	score_time mean 4.546340990066528	score_time mean 0.17671937942504884
score_time std 0.2733116543664008	score_time std 0.09302895712990493	score_time std 0.009388291442039306
test_score mean 0.7982852363028021	test_score mean 0.8147636971978252	test_score mean 0.9089920535340861
test_score std 0.006688623271168158	test_score std 0.004251622067034913	test_score std 0.0021011889062451682

Figure 12: Classifiers' Result

Figure 13: RandomForest Result on Test set

tuned MLPClassifier's hyperparameters to return good results for the meters that I am looking for as shown in Figure 14.

This time the overall Accuracy is higher than RandomForest method (approx 74%) comes with the compromise of losing 3% in the Recall meter. To judge which classification method should be used for this Supervised Learning Project. I would prefer Recall meter than the overall accuracy, in the sense that RandomForest Classifier would safer in real life diagnose purpose. Despite the fact that it performance is poor on Precision of positive patients, when facing emergency cases in reality, the option to take safer procedure is always better as the cautiousness is always needed in medical field since every one minor mistake could terribly aggravate the patient's condition.

4 Unsupervised Learning

As doing Unsupervised Learning means we do not give labels for the algorithm learn from that, but to let it decide by itself. Hence, the predicted outcome seems to be not promising. I used whole data set after dropped the target variable to apply clustering. Using Silhouette score to choose number of clusters to be 2, I have tried using Feature Agglomeration to reduce the dimension of the data set to 4 features. Then using adjusted mutual info score and adjusted rand score to measure the accuracy. The scores are 8.4% and 6.1% respectively.

Then I tried using PCA (Ding & He 2004) to reduce the dimension of the data set as in Figure 16. I chose to keep 80% of the explained variance, hence 4 components. Then proceeding on choose the number of clusters, the same Silhouette scores give the result of 2 clusters (Figure 17). At this stage, I proceed Clustering with KMeans and PCA, the illustration result is in Figure 18. However, The result with PCA method is similar to Agglomeration method.

Figure 14: MLPClassifier Result Test set

Figure 15: AUROC Curve of MLP Classifier

Figure 16: PCA Components

Figure 17: Silhouette Scores

Figure 18: PCA Result on 2D dimension

5 Conclusion

Through the whole process of doing this project, follow the outlined road map, starting from understanding the project purpose, understanding the data set in hand, conducting Exploration Data Analysis (EDA), Data Cleaning and Pre-processing, then finally proceed Supervised and Unsupervised Learning. I have found that EDA processing takes the most time and effort. From there, we can have a nice set of data, ready to use for the next low-level tasks. It is also a process that greatly affects the output of algorithms in Machine Learning.

Just a small decision about whether to keep or change an element affects the authenticity of the data. This is very dangerous and difficult, since the original data set has 40% missing data. Because of the cautiousness when dealing with missingness and outliers, I use an AGILE structured workflow, which involves a lot of trial and error, to finally having the most appropriate data set. That is the reason why my Jupyter Notebook scripts is not best organised. By the time finished handling the entire Pre-Processing process, we are considered to have completed 50% of the project, the rest is to run algorithmic models and optimize them.

For this project, it is obvious to utilised Supervised than Unsupervised Learning. In Supervised Learning classification, after tuning algorithm models, the result of Random Forest and Multi-layer Perceptron return the best amongst all methods I tried, in a sense of accuracy and run time. As discussed in the above section, I would prefer Recall meter over overall accuracy since False positive in this matter is safer than False negative (Anand et al. 2018).

References

Aljumah, A. A., Ahamad, M. G. & Siddiqui, M. K. (2013), 'Application of data mining: Diabetes health care in young and old patients', *Journal of King Saud University - Computer and Information Sciences* **25**(2), 127–136.

URL: https://www.sciencedirect.com/science/article/pii/S131915781200039

Anand, R., Stey, P., Jain, S., Biron, D., Bhatt, H., Monteiro, K., Feller, E., Ranney, M., Sarkar, I. & Chen, E. (2018), 'Predicting mortality in diabetic icu patients using machine

- learning and severity indices', AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science 2017, 310–319.
- Austin, P. C., White, I. R., Lee, D. S. & van Buuren, S. (2021), 'Missing data in clinical research: A tutorial on multiple imputation', *Canadian Journal of Cardiology* **37**(9), 1322–1331.
 - URL: https://www.sciencedirect.com/science/article/pii/S0828282X20311119
- Ding, C. & He, X. (2004), 'K-means clustering via principal component analysis', *Proceedings, Twenty-First International Conference on Machine Learning, ICML 2004* 1.
- Enriquez, C., Chisholm, K., Madden, L., Larsen, A., Longpré, T. & Stannard, D. (2019), 'Glasgow coma scale: Generating clinical standards', *Journal of Neuroscience Nursing* **51**, 142–146.
- Jakobsen, J., Gluud, C., Wetterslev, J. & Winkel, P. (2017), 'When and how should multiple imputation be used for handling missing data in randomised clinical trials a practical guide with flowcharts', *BMC Medical Research Methodology* 17.
- Kavakiotis, I., Tsave, O., Salifoglou, A., Maglaveras, N., Vlahavas, I. & Chouvarda, I. (2017), 'Machine learning and data mining methods in diabetes research', *Computational and Structural Biotechnology Journal* 15, 104–116.
 - URL: https://www.sciencedirect.com/science/article/pii/S2001037016300733
- Maniruzzaman, M., Rahman, M., Hasan, M. A., Suri, H., Abedin, M., El-Baz, A. & Suri, J. (2018), 'Accurate diabetes risk stratification using machine learning: Role of missing value and outliers', *Journal of Medical Systems* 42.
- Mukaka, M. (2012), 'Statistics corner: A guide to appropriate use of correlation coefficient in medical research.', *Malawi medical journal: the journal of Medical Association of Malawi* **24 3**, 69–71.
- Ong, J. & Penm, J. (2019), 'How to understand and interpret clinical data', *The Pharmaceutical Journal* **303**.
 - $\textbf{URL:} \qquad https://pharmaceutical-journal.com/article/ld/how-to-understand-and-interpret-clinical-data \\$
- Santilli, F., Simeone, P., Liani, R. & Davì, G. (2015), 'Platelets and diabetes mellitus', Prostaglandins Other Lipid Mediators 120, 28–39. Eicosanoids and related compounds. URL: https://www.sciencedirect.com/science/article/pii/S1098882315000544
- Schweizer, K., Gold, A., Krampen, D. & Wang, T. (2020), 'On modeling missing data of an incomplete design in the cfa framework', Frontiers in Psychology 11.

 URL: https://www.frontiersin.org/article/10.3389/fpsyg.2020.581709
- Torkey, H., Ibrahim, E., Hemdan, E. E.-D., El-Sayed, A. & Shouman, M. (2021), 'Diabetes classification application with efficient missing and outliers data handling algorithms', *Complex Intelligent Systems*.
- Yang, H., Luo, Y., Ren, X., Wu, M., He, X., Peng, B., Deng, K., Yan, D., Tang, H. & Lin, H. (2021), 'Risk prediction of diabetes: Big data mining with fusion of multifarious physical examination indicators', *Information Fusion* **75**, 140–149.
 - URL: https://www.sciencedirect.com/science/article/pii/S1566253521000397