	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
04/23/2015		Julio Posse

1	hatteries	can	cause	heat	explosions	and	fire?
				11000		~~	

- 2 MR. HAFNER: Objection to form.
- A Well, I cannot talk about explosions, because
- 4 Sony has devices, Sony cells have devices will not
- 5 allow the battery to explode, but I can describe how
- 6 can they overheat.
- 7 BY MR. BERGENN:
- 8 Q And when they overheat can they have thermal
- 9 runaways?
- 10 A I don't know what you mean by the term
- 11 thermal runaway.
- 0 Well, is it your testimony that you don't
- 13 know of a single instance of a lithium ion battery
- 14 produced by Sony or one of its contractors that
- 15 resulted in a fire?
- 16 A No, that's not what I said.
- 17 O Okay. So how is it that it results in a
- 18 fire? Describe the process by which a battery results
- 19 in a fire?
- 20 A Well, one issue could be overcharging, right,
- 21 that is if a mechanism that could, the battery could
- 22 be overcharged. Many, many things have to happen for
- 23 that battery or cell to overcharge.
- Q And when it over charges, or something
- 25 happens to it and it gets to a certain point, how is

(04/23/20	WANDA OVALLES, ET AL. vs. SONY ELECTRONICS INC., ET AL. Julio Posse
	1	it that it goes from that point into fire? What makes
	2	the fire?
	3	A The electrolyte, once it starts to reach a
	4	certain temperature, it becomes a gas, and if the gas
	5	is expelled from the cell, that might ignite.
	6	Q Right. And when gas ignites, it causes fire?
	7	A Correct.
	8	Q And when gas ignites in a contained
	9	environment where the pressure increases, that causes
	10	an explosion?
	11	MR. HAFNER: Objection to form.
	12	BY MR. BERGENN:
	13	Q That's the basic physics, right?
	14	A Yes.
	15	Q Can you think of any method by which, in an
	16	enclosed environment, gas is ignited and there's no
	17	explosion?
	18	A Yes. If there is a safety vent, for example,
	19	that breaks when the pressure reaches a certain point,
	20	it will escape through the opening and not explode,
	21	explode meaning break in the can. So that will not
	22	happen.
	23	Q So when it breaks, but doesn't breaks the
	1	

can --

Α

Correct.

24

25

04/23/2		ANDA	A OVALLES, ET AL. vs. SONY ELECTRONICS INC., ET AL. Julio Posse
1	Ç	Q	That's because it shoots out the end?
2	I	A	Correct.
3	Ç	Q	And when it shoots out the end, what's the
4	word y	you	use to describe that phenomenon?
5	Ĩ	A	Venting.
6	(Q	Oh, venting. And when it vents, does it vent
7	expel	ling	g superheated fire.
8	Ĭ	A	Superheated fire?
9	(Q	What's the temperature when it vents?
,10	Ī	A	I would say it's over 2000 degrees.
11	(Q	And what is it that vents?
12	Ĩ	A	The gas from the electrolyte becoming,
13	becaus	se t	the rise in temperature will become gas, and
14	that v	wil	l expel.
15	(Q	What else comes out besides gas? At 2000
16	degre	es	
17]	A	You might have
18	(Q	does copper or aluminum melt?
19	j	A	Yes, you might have particles. Sorry.
20	(Q	And when the gas ignites, within the gas are
21	these	ot.	her metals, correct?
22		A	Correct.
23	(Q	Every lithium ion battery consists at that
24	point	of	gas and metals?
25			MR. HAFNER: Objection to form.

(04/23/2	WANDA OVALLES, ET AL. vs. SONY ELECTRONICS INC., ET AL. Julio Posse
	1	A Yes.
	2	BY MR. BERGENN:
	3	Q And when that gas ignites to 2000 degrees,
	4	those metals vent with the gas, don't they?
	5	A It's possible, yes.
	6	Q Generally that's what happens?
	7	A Yes.
	8	Q When it doesn't happen, that would be an
	9	exception, correct?
	10	A The depends on the event, how the event
	11	occurs inside the cell, what the short circuit is, and
	12	the intensity of the current path.
	13	Q Okay. But generally speaking, when a cell
	14	vents at 2000 degrees, it expels the gas and the
	15	liquid metal, correct?
	16	A Yes, generally.
	17	Q And that means liquid metal is being
	18	propelled outside the battery at that point, correct?
	19	MR. HAFNER: Objection to form.
	20	A Maybe, maybe not.
	21	BY MR. BERGENN:
	22	Q Right. Generally speaking. I can't cover
	23	every single one here, but generally speaking when
	24	you've got 2000 degree ignited gas, and it is
	25	surrounding metal that has a temperature of being

04/23/2	WANDA OVALLES, ET AL. vs. SONY ELECTRONICS INC., ET AL. Julio Posse
1	liquefied substantially below 2000 degrees, correct?
2	A Correct.
3	Q So generally speaking when those things
4	ignite, they expel liquid metal?
5	A Well, again, it depends on the situation. If
6	you have a cell here and another cell in a series with
7	that in place immediately adjacent to that, that is
8	going to contain expulsion of gases.
9	Q Right. So when the gas expels with the metal
10	and there is no next cell, or there is no, I guess,
11	boundary, there is no intervening metal, that's going
12	to shoot out, correct?
13	A If you consider the cell by itself in the
14	surface, yes, I would agree with that.
15	Q Okay. So how is it that lithium ion cells
16	sometimes have that experience? What causes that?
17	A To my knowledge what could cause that
18	experience is a short circuit inside the cell when the
19	separator is perforated by a particle that has been
20	introduced, and that could be the cause, or an
21	internal short circuit in case of some cells that are
22	not manufactured to the correct standard.
23	Q And that's very rare, correct, when that
24	happens. That's not a common phenomenon. It's not

like a certain percentage of lithium ion cells are

25

04/23/2015 WANDA OVALLES, ET AL. VS. SONT ELECTRONICS INC., ET AL.

- 1 going to just have this phenomenon. It's a very rare
- 2 occurrence, correct?
- 3 A Correct.
- 4 O And what you've described is a particle or a
- 5 short circuit due to manufacturing not made to code,
- 6 or made to specifications?
- 7 A Standards, yes.
- 8 Q Right. Are there any other things that have
- 9 happened to your knowledge that have resulted in these
- 10 expulsions of 2000 degree gas via lithium ion cell?
- 11 A When a battery explodes already to a fire and
- 12 it discharges and is exposed to a fire, an external
- 13 fire, could potentially short circuit inside and cause
- 14 the same effect, I've seen that.
- 15 Q So those are three different things that
- 16 you've identified. In your experience, are there any
- 17 other circumstances where lithium ion batteries have
- 18 been superheated and expelled the 2000 degree gas with
- 19 the inside of the cell?
- 20 A Not that I recall at the moment.
- Q Have you ever read anything at SEL that lists
- 22 the various potential things that can cause this
- 23 phenomenon?
- 24 A No.
- 25 Q So I don't have to keep calling it this

04/23/2	WANDA OVALLES, ET AL. vs. SONY ELECTRONICS INC., ET AL. Julio Posse
1	Q Is it your testimony that there has never
2	been a Sony cell or battery that had a defect?
3	A I didn't say that.
4	Q I'm asking you.
5	A No.
6	Q Is it your testimony that there have been
7	Sony cells and batteries with defects?
8	A Yes.
9	Q Can you describe the defects with which you
10	are familiar?
11	A My understanding is that, and that's the
12	reason for the recall in 2006, that there were some
13	cells in which particles were introduced during the
14	manufacturing process, and that could be considered a
15	defect.
16	Q And why? Why is that a defect to have
17	particles introduced during the manufacturing?
18	A If the particles are over a certain size,
19	they can perforate the separator and cause a short
20	circuit internal to the battery.
21	Q And what happens if that happens?
22	A It depends where the particle is located.
23	Q Right. And describe the range of things that
24	have happened when particles have been introduced
25	during their manufacture?

	WANDA OVALLES, ET AL. vs. SONY ELECTRONICS INC., ET AL.	
04/23/2015		

,	14/23/20	15 Julio i Osse
	1	A Well, it could be something just from a
	2	failure, the cell stopped to work, and it could be
	3	something as to venting. If the particle is in the
	4	right location, it could be venting.
	5	Q And how is it that the particle results in
	6	venting?
	7	A Because it perforates the separator, and it
	8	produces a short circuit.
	9	Q And when it produces a short circuit, why
	10	does that result sometimes in venting?
	11	A Because it generates internal heat, and there
	12	could be, the short circuit could increase in size
	13	given the hole in the separator, could increase in
	14	size. The separator is typically itself healing, but
	15	if the particle exceeds certain size, it won't
	16	self-heal, and it will cause enough heat, the short
	17	circuit will cause enough heat to have the cell vent.
	18	Q And that has happened before?
	19	A Yes.
	20	Q And that happened enough times to result in a
	21	recall?
	22	A Yes.
	23	Q And when was it that you first learned that
	24	that happened?
	25	A I heard about it I don't know the exact

Julio Posse