DSM LAB REPORT-6

Group 14: Aaryan Nakul Shah (2024113014)

Lab 6: Latches, Flip-flops and Counters

Experiment-1

Objective:

To assemble and test an SR-Latch using its NOR implementation

Components Used:

Digital Test Kit, CD4001 IC and wires

Reference Circuit:

Procedure:

- 1. Connect the VCC and GND of the Digital Test Kit to the VCC and GND pins of the IC.
- 2. Using two gates of the IC make connections so as to make a circuit as shown above.

Tinkercad Simulation:

https://www.tinkercad.com/things/iIG49lsVEGX-dsmlab6exp1?sharecode=iGSU0PW0EAgvCBub7nUA2EfoxSnC2XQLFpXK_Xu_33o

Outputs:

Observations:

S	R	Q	Q'	Action
0	1	0	1	RESET
1	0	1	0	SET
0	0	UNPREDICTABLE		HOLD
1	1	0	0	FORBIDDEN

Conclusion:

NOR-implementation of SR-Latch assembled and tested.

Experiment-2

Objective:

To assemble and test a JK Master-Slave Flip Flop

Components Used:

Digital Test Kit, ICs = CD4012, CD4001 and wires

Reference Circuit:

Procedure:

- Connect the VCC and GND of the Digital Test Kit to the VCC and GND pins of the ICs.
- 2. Make connections as shown above to form the necessary circuit.

Tinkercad Simulation:

https://www.tinkercad.com/things/iqd6yzODoqe-dsmlab6exp2?sharecode=9lOFSm6O_w44Pu7BucYOmNzR1X6D8LovoZX2b5hBFV4

Output:

JK Master-Slave Flip Flop.mp4

Observations:

Clk	J	K	Q(t+1)
0	X	X	Q(t)
1	0	0	Q(t)
1	0	1	0
1	1	0	1
1	1	1	Q'(t)

Conclusion:

JK Master Slave Flip Flop assembled and tested.

Experiment 3:

Objective:

Using an Arduino to implement a 4-bit up-down ripple counter.

Components Used:

Digital Test Kit, Arduino Uno board and wires

Procedure:

- Connect the VCC and GND of the Digital Test Kit to the VCC and GND of the Arduino.
- 2. Connect the Digital Pins of the Arduino to the Display Points of the Digital Test Kit.
- 3. Write the appropriate code for the up-down counter.

Tinkercad Simulations:

https://www.tinkercad.com/things/4Tkq9BMEozE-dsmlab6exp3?sharecode=huGLRJGLYVb3NPWgBkdN7uYk99QgpbMvQRv4S2gGLXA

```
96 //// YOUR CODE STARTS HERE
 97 Timer t;
98 int pin1 = 10;
99 int pin2 = 11;
100 int pin3 = 12;
101 int pin4 = 13;
102 int eventId1;
103 int eventId2;
104
    int eventId3;
105 int eventId4;
106 void setup() {
107 Serial.begin(9600);
108 pinMode(pin1, OUTPUT);
109 pinMode (pin2, OUTPUT);
110 pinMode(pin3, OUTPUT);
111 pinMode(pin4, OUTPUT);
112 eventId1 = t.oscillate(pin1, 500, LOW);
113 if (eventId1 < 0) {
114 Serial.println("Could not initialize timer");
115 }
116 eventId2 = t.oscillate(pin2, 500 * 2, LOW);
117 if (eventId2 < 0) {
118 Serial.println("Could not initialize timer");
119
    }
120 eventId3 = t.oscillate(pin3, 500 * 2 * 2, LOW);
121 if (eventId3 < 0) {
122 Serial.println("Could not initialize timer");
123 }
124 eventId4 = t.oscillate(pin4, 500 * 2 * 2 * 2, LOW);
125 if (eventId4 < 0) {
126 Serial.println("Could not initialize timer");
127
128
    int afterupcount = t.after(7505, doafterUpcount);
129 int downCount = t.after(7510, DownCountFunc);
130 }
131 void DownCountFunc() {
132 eventId1 = t.oscillate(pin1, 500, HIGH);
133 if (eventId1 < 0) {
134 Serial.println("Could not initialize timer");
135 }
136 eventId2 = t.oscillate(pin2, 500 * 2, HIGH);
137
    if (eventId2 < 0) {
138 Serial.println("Could not initialize timer");
139 }
140 eventId3 = t.oscillate(pin3, 500 * 2 * 2, HIGH);
141 if (eventId3 < 0) {
142 Serial.println("Could not initialize timer");
143 }
144 eventId4 = t.oscillate(pin4, 500 * 2 * 2 * 2, HIGH);
145
    if (eventId4 < 0) {
146 Serial.println("Could not initialize timer");
147
148 int afterupcount = t.after(7505, doafterUpcount);
149 }
150 void doafterUpcount() {
151 t.stop(eventId1);
152 t.stop(eventId2);
153
    t.stop(eventId3);
154 t.stop(eventId4);
155 }
156 void loop() {
157 t.update();
158 }
159 void stopAllTimers() {
160 }
161 //// YOUR CODE ENDS HERE
```

Observations:

The counter displays the numbers 0 to 15 in binary using LEDs. In this representation, a HIGH output of the LED indicates a 1, while a LOW output represents a 0. After reaching 15, the counter begins displaying numbers in reverse order.

Conclusion:

4-bit up-down ripple counter successfully assembled using an Arduino.