

]-

RS232 MUX

QSPI Flash Memory

lp87521-q1.pdf

LP8752x-Q1
Buck Converter

Expansion
Header
UART, SPI/CAN,
GPIOs, HOST_INT,
SOP2, RST,
NERROR_OUT,
MUX_EN

IWR6843AOP mmWave Sensor

PDF

iwr6843aop.pdf

40 MHz Crystal Oscillator

Potential Architecture

Advantages:

- 1. Microcontroller can run C/C++
- 2. The server can run Python, allowing for the use of any libraries
- 3. Avoid the need to transcompile or rewrite code in C
- 4. As many radar sensors as required can be connected to the server
- 5. May require no BGA soldering
- 6. Avoids time and complexity costs associated with implementing the AOP directly on the board

Disadvantages:

- Requires the ability to transfer the data produced by the radar early in the computation process
- 2. Streaming the data before any significant computation has taken place may result in large data transfers
- 3. Requires writing robust C code for the microcontroller
- 4. AOP thermal management may be a challenge

Hardware Data Flow Description

Custom PCB

SPI - Serial Peripheral Interface
SDIO – Secure Digital Input Output
Wi-Fi 6E – Tri-band 2x2 MIMO IEEE 802.11 WLAN

Estimation of Device Cost

Item	Est. Cost Per Device
Mistral AOP Module	\$109
Sona Wireless Module	\$29
STM Microcontroller	\$10
Passive Components	\$15
Connectors and Mounting Hardware	\$15
Enclosure	\$15
4 Layer Board Fabrication (In USA)	\$66
Total Without Assembly	\$259