1. Solve the inequality

$$\frac{3x+5}{x-2} \le 1$$

and write the answer in interval notation.

Xingjian Solution: Move right hand side to left hand side, you will get:

$$\frac{3x+5}{x-2} - 1 \le 0.$$

Simplify it, then you will get:

$$\frac{3x+5-x+2}{x-2} = \frac{2x+7}{x-2} \le 0.$$

Then we need to find the critical point: one is $x = -\frac{7}{2}(\text{from } 2x + 7 = 0)$ The other one is x = 2(from x - 2 = 0 but we can not take this value[it shows up in denominator!])

Then our next step is we can draw the number line:

	x = -4	x = 0	x = 3
x-2	-6 (-)	-2(-)	1 (+)
2x+7	-1 (-)	7 (+)	13 (+)

Then choose for "-" sign for inequality less and equal to 0, we will get $(-\frac{7}{2}, 2]$. the answer $(-\frac{7}{2}, 2]$.

2. Find the domain of the function and write your answer in interval notation.

$$f(x) = \frac{\sqrt{2x - 2}}{x - 1}$$

First $x-1 \neq 0$ in denominator, that implies $x \neq 1$. Second, $2x-2 \geq 0$, that implies $x \geq 1$. By intersection, $x \in (1, \infty)$.

> Xingjian Xu xingjianxu@ufl.edu LIT 453