Intro to R Markdown

How to

- start sections
- italicize, get bold text
- packages
- insert R code
 - code that isn't evaluated
 - results with hidden code(?)
 - make "random" results repeat

Hypothesis tests: first look

Do an analysis of soccer picks by Paul the Octopus:

- accurately picked 8 out of 8 matches in 2010 World Cup
 - method
 - 7 matches involved Germany, 8th was the final
- accurately picked 4 out of 6 German matches in UEFA Euro 2008

Other items:

- parameter vs. statistic
- null and alternative hypotheses, null distribution
- meaning of *P*-value
- conclusion
 - significance level α
 - statistical significance
 - no such thing as "accepting a null hypothesis"
 - from "How Not to Be Wrong", by Jordan Ellenberg: Bible codes, Baltimore stockbroker

- relevant commands: dbinom(), pbinom(), binom.test()
- asymmetric distributions: Binom(20, 0.25), test stat is 9 "correct" answers
- Recall: We can get an approximate *P*-value using simulation

Type I and II errors

- A conclusion following an hypothesis test comes under uncertainty, will be wrong some of the time (*error*)
- Definitions:

· Roughly speaking,

$$P(\text{Type I error}) = P(\text{rejection of } \mathbf{H_0} \mid \mathbf{H_0} \text{ is true}) \approx \alpha.$$

• Use β to denote P(Type Terror). Intuitively β rises as α shrinks, but β is more difficult to quantify.

Computing β comes down to calculating the probability of *not* falling in the **rejection region**.

• The **power** of a test is the <u>probability</u> of rejecting a false null hypothesis, so power equals $1 - \beta$ (making it similarly difficult to calculate).

Example: 100 flips of a coin. Consider hypotheses

$$\mathbf{H}_0$$
: $\pi = 0.5$ \mathbf{H}_a : $\pi \neq 0.5$.

Taking $\alpha = 0.05$, compute the rejection region for the count X of heads to be $[0,39] \cup [61,100]$. Then compute and graph β for each alternative value $\pi_a = 0,0.01,0.02,\ldots,0.99,1.00$.