Project Development Phase

Delivery of Sprint 1

Date	9 November 2022
Team ID	PNT2022TMID07640
Project Name	Classification of Arrhythmia by Using Deep Learning with 2-D ECG Spectral Image Representation

Task 1:

Download the dataset:

The dataset has been downloaded and the drive link is given https://drive.google.com/drive/folders/1h_v0ja8sMe4FbeYO85fGH7Zgsa2UTO
https://drive.google.com/drive/fo

Code:

#UNZIPPING THE DATASET !unzip '/content/drive/MyDrive/IBM/Dataset/Classification of Arrhythmia by Using Deep Learning with 2-D ECG Spectral Image Representation.zip'

Output:

Task 2:

Image Preprocessing:

Import ImageDataGenerator Library:

Code:

#IMPORTING THE IMAGEDATAGENERATOR LIBRARY

from keras.preprocessing.image import ImageDataGenerator

Configure ImageDataGenerator class:

Code:

#SETTING PARAMETER FOR IMAGE DATA AUGMENTATION TO THE TRAINING DATA

train_datagen=ImageDataGenerator(rescale=1./255,shear_range=0.2,zoom_range=0.2,horizontal_flip=True)

#IMAGE DATA AUGMENTATION TO THE TESTING DATA

test_datagen=ImageDataGenerator(rescale=1./255)

Apply ImageDataGenerator Functionality to Trainset and Testset:

Code:

#PERFORMING DATA AUGMENTATION TO TRAIN DATA

x_train=train_datagen.flow_from_directory(directory='/content/data/train',target_size=(64,64),batch_size=32,class_mode="categorical")

#PERFORMING DATA AUGMENTATION TO TEST DATA

x_test=test_datagen.flow_from_directory(directory='/content/data/test', target_size=(64,64),batch_size=32,class_mode="categorical")

Output:

Task 3:

Model Building:

Import Libraries:

Code:

#IMPORTING LIBRARIES

import numpy as np #used for numerical analysis import tensorflow #open source used for both ML and DL for computation from tensorflow.keras.models import Sequential #it is a plain stack of layers from tensorflow.keras import layers #A layer consists of Tensorin Tensor-out computation function

#DENSE LAYER IS THE REGULAR DEEPLY CONNECTED NURAL NETWORK LAYER

from tensorflow.keras.layers import Dense,Flatten

FLATTEN-USED FOR FLATTENING THE INPUT OR CHANGE THE DIRECTION

from tensorflow.keras.layers import Conv2D,MaxPooling2D #convolution La yer

Initialize Model:

Code:

#INITIALIZING
MODEL
model=Sequential()