ASA Results

Parameter estimates

Parameter	Estimate	SE
dummy	0.0000	NA
fsh sel50	74.8540	NaN
fsh sel95	42.8400	12.3168
srv sel50	1.9279	0.1990
srv sel95	4.4244	0.4650
fsh_logq	-9.9588	0.8555
srv1_logq	-7.8321	0.9580
srv2_logq	-8.6438	0.9119
mr_logq	-0.0006	0.0100
log_rbar	13.8677	0.3623
log_rec_devs	-0.0726	2.3009
log_rec_devs	-0.0717	2.3080
log_rec_devs	-0.0681	2.3160
log_rec_devs	-0.0612	2.3253
log_rec_devs	-0.0500	2.3361
log_rec_devs	-0.0324	2.3491
log_rec_devs	-0.0067	2.3649
log_rec_devs	0.0279	2.3844
log_rec_devs	0.0726	2.4089
log_rec_devs	0.1271	2.4397
$\log_{ m rec_devs}$	0.1915	2.4789
$\log_{eq} - \log_{eq} $	0.2648	2.5291
$\log_{eq} - \log_{eq} $	0.3450	2.5930
$\log_{ m rec_devs}$	0.4286	2.6730
$\log_{ m rec_devs}$	0.5101	2.7682
$\log_{ m rec_devs}$	0.5841	2.8707
$\log_{ m rec_devs}$	0.6501	2.9506
\log_{rec_devs}	0.2837	1.7680
\log_{rec_devs}	0.6820	1.2932
\log_{rec_devs}	0.4947	1.2045
\log_{rec_devs}	0.5092	1.0345
\log_{rec_devs}	0.8545	0.8540
\log_{rec_devs}	0.4287	0.8671
\log_{rec_devs}	0.3793	0.7932
log_rec_devs	0.2766	0.7524
log_rec_devs	0.4916	0.6295
log_rec_devs	0.5274	0.5909
log_rec_devs	0.3588	0.5954
log_rec_devs	0.4799	0.5436
log_rec_devs	0.6148	0.4923
log_rec_devs	0.5030	0.4866
log_rec_devs	0.7024	0.4378
log_rec_devs	0.6371	0.4317
log_rec_devs	0.6738	0.4142
log_rec_devs	0.6737	0.4029

(continued)

Parameter	Estimate	SE
log_rec_devs	0.9756	0.3672
log_rec_devs	1.1039	0.3509
log_rec_devs	1.1894	0.3400
log_rec_devs	1.2516	0.3321
log_rec_devs	0.8748	0.3465
log_rec_devs	0.9468	0.3371
log_rec_devs	0.9012	0.3345
log_rec_devs	0.6796	0.3406
log_rec_devs	0.4937	0.3453
log_rec_devs	0.3493	0.3476
log_rec_devs	0.1846	0.3495
log_rec_devs	0.1150	0.3449
log_rec_devs	-0.0118	0.3438
log_rec_devs	-0.1634	0.3438
log_rec_devs	-0.2091	0.3380
log_rec_devs	-0.0967	0.3249
log_rec_devs	-0.1729	0.3211
log_rec_devs	-0.1248	0.3125
log_rec_devs	-0.0589	0.3039
log_rec_devs	0.2194	0.2926
log_rec_devs	0.1447	0.2917
log_rec_devs	0.4400	0.2852
log_rec_devs	0.3900	0.2860
log_rec_devs	0.2151	0.2898
log_rec_devs	0.1684	0.2919
log_rec_devs	-0.2248	0.3003
log_rec_devs	-0.5618	0.3087
log_rec_devs	-0.7368	0.3157
log_rec_devs	-0.9866	0.3261
log_rec_devs	-0.9994	0.3312
log_rec_devs	-1.1292	0.3410
log_rec_devs	-1.3196	0.3548
log_rec_devs	-1.1621	0.3565
log_rec_devs	-1.1684	0.3657
log_rec_devs	-1.3640	0.3811
log_rec_devs	-1.7930	0.4114
log_rec_devs	-1.9610	0.4346
log_rec_devs	-2.0195	0.4574
log_rec_devs	-1.6363	0.4549
log_rec_devs	-1.3527	0.4662
log_rec_devs	-1.6335	0.5351
log_rec_devs	-2.7245	0.8815
log_Fbar	-3.7066	0.4808
log_F_devs	-2.2192	0.3974
log_F_devs	-3.2749	0.3969
log_F_devs	-2.7434	0.3966
log_F_devs	-2.8324	0.3963
log_F_devs	-2.1265	0.3961
log_F_devs	-0.2222	0.3953
log F devs	0.1234	0.3938

(continued)

(continued)		
Parameter	Estimate	SE
log_F_devs	0.1197	0.3921
log_F_devs	0.2513	0.3903
log_F_devs	0.2006	0.3884
log_F_devs	0.1396	0.3867
log_F_devs	0.3763	0.3848
log_F_devs	0.5267	0.3825
log_F_devs	0.9019	0.3796
log_F_devs	0.7736	0.3766
log_F_devs	0.7951	0.3739
log_F_devs	0.8827	0.3714
log_F_devs	0.9310	0.3691
log_F_devs	0.9572	0.3674
log_F_devs	0.5622	0.3665
log_F_devs	0.6099	0.3663
log_F_devs	0.3132	0.3666
log_F_devs	0.2971	0.3672
log_F_devs	0.3560	0.3682
log_F_devs	0.5220	0.3698
log_F_devs	0.5182	0.3722
log_F_devs	0.5866	0.3754
log_F_devs	0.3857	0.3793
log_F_devs	0.4679	0.3837
log_F_devs	0.2198	0.3884
log_F_devs	0.2350	0.3932
log_F_devs	0.1292	0.3984
log_F_devs	0.3287	0.4044
log_F_devs	0.3940	0.4120
log_F_devs	0.2643	0.4202
log_F_devs	0.3219	0.4290
log_F_devs	0.1953	0.4383
log_F_devs	0.3507	0.4483

Catchability

Estimates on natural scale

Fishery q: 0

Survey (1-hr soak) q: 0.0004

Survey (3+hr soak) q
: $0.0002\,$

Mark-recapture q: 0.9994

Likelihood components

Catchability priors: 4.6545, 0.4272, 1.507, 0.0017

Catch: 0.0074

Abundance indices (fsh, srv1, srv2, mr): 12.2961, 4.7457, 7.1891, 0.0915

 ${\rm Age\ comp\ 2793.2598,\ 3467.2867}$

Multinomial offsets 2.8754, 33.992

Penalty on fishing mortality deviations: 4.3919

Penalty on recruitment deviations: 5.2309

Total likelihood: 6301.0895

Time series of catch and abundance indices

Residuals for time series of catch and abundance indices

Standardized residuals:

Derived time series of recruitment, abundance, and biomass

Estimate of fishing mortality

On natural scale

Fits to age comps

Model performance • Observed greater than estimated • Observed less than estimated

Fits to fishery age comps

Fits to survey age comps

Selectivity

