Class Size

Largest Observation – Smallest Observation

Number of Classes for

 $2^c \ge n$

distribution

Sample Mean

 $\overline{x} = \frac{\sum_{i=1}^{n} x_i}{\sum_{i=1}^{n} x_i} = \frac{x_1 + x_2 + \dots + x_n}{\sum_{i=1}^{n} x_i}$

Sample Variance

 $s^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}{x_{i} - \overline{x}} = \frac{(x_{1} - \overline{x})^{2} + (x_{2} - \overline{x})^{2} + \dots + (x_{n} - \overline{x})^{2}}{n - 1}$

Sample Standard deviation

 $S = \sqrt{S^2}$

Population Mean

 μ .

Population Variance

 $\sigma^{2} = \frac{\sum_{i=1}^{N} (x_{i} - \mu)^{2}}{N} = \frac{(x_{1} - \mu)^{2} + (x_{2} - \mu)^{2} + \dots + (x_{N} - \mu)^{2}}{N}$

Population Standard Deviation

Probability of a Single Event A

 $P(A) = \frac{(\# of \ occurences \ of \ A)}{(total \# of \ possible \ outcomes)}$

Intersection of two events

 $P(A \cap B)$

Conditional probability

 $P(A|B) = \frac{P(A \cap B)}{P(B)}$ $P(A \cap B) = P(A)P(B)$ and P(A|B) = P(A)

Independence: if A and B are independent

 $P(A \cap B) = 0$ $P(A \cup B) = P(A) + P(B)$

Mutually Exclusive: if A and B are mutually exclusive

 $P(A \cup B) = P(A) + P(B) - P(A \cap B)$

Mutually Exclusive: if A and B are NOT mutually exclusive

If S₁...S_k are a set of mutually exclusive and exhaustive set of events.

Bayes Theorem

$$P(S_{i}|E) = \frac{P(S_{i} \cap E)}{P(E)} = \frac{P(S_{i})P(E|S_{i})}{P(E)}$$

$$= \frac{P(S_{i})P(E|S_{i})}{P(S_{1})P(E|S_{1}) + P(S_{2})P(E|S_{2}) + \dots + P(S_{k})P(E|S_{k})}$$

Three Types of Probability and Notation

Types of Probability	Symbols	Complitions of Statisfical Independence	Conditions of Statistical Dependence
Marginal	P(A)	P(A)	$P(\mathcal{A})$
Joint	P(AB)	$P(A) \times P(B)$	$P(A B) \times P(B)$
Conditional	P(A B)	P(A)	$\frac{P(AB)}{P(B)}$

$$C_x^n = \frac{n!}{x! (n-x)!}$$

$$_{n}P_{x}=\frac{n!}{(n-x)!}$$

$$\sum_{\text{all }x} p(x) = 1$$

$$EV = \mu_X = \sum_{All \, x} x \, p(x)$$

$$\sigma_X^2 = \sum_{All\,x} (x - \mu_X)^2 p(x)$$

n = number of samples; p = probability of success; q = 1-

Mean:
$$\mu_x = np$$
;

Standard Deviation:
$$\sigma_x = \sqrt{npq}$$

Probability of x successes:
$$p(x) = \frac{n!}{x!(n-x!)} p^x q^{n-x}$$

Poisson Random Variable x

Mean
$$\mu$$

Probability of an event occurring x times in a specified

interval:
$$p(x) = \frac{e^{-\mu}\mu^x}{x!}$$

Cumulative Probability of a Discrete Random Variable x

$$p(x \le y) = \sum_{n=0}^{y} p(x)$$

Continuous Uniform Random Variable x such that $c \le x \le d$

Mean
$$\mu_x = \frac{x=0}{c+d}$$

Standard Deviation $\sigma_{\chi} = \sqrt{\frac{d-c}{\sqrt{12}}}$

$$p(a \le x \le b) = \frac{b - a}{d - c}$$

Normal Random Variable x

Mean μ_x ; Standard Deviation σ_x

To find $p(x \le a)$, convert to a standard normal

$$z = \frac{x - \mu}{\sigma}$$

Exponential Random Variable x Mean μ_x = Standard Deviation σ_x = $1/\lambda$

$$p(x \le b)) = 1 - e^{-\lambda b}$$

Sampling Distribution of the

$$\mu_{\bar{x}} = \mu_{x}$$

$$\sigma_{\bar{x}} = \frac{\sigma_{x}}{\sqrt{n}}$$

$$\sigma_{\overline{x}} = \frac{\sigma_x}{\sqrt{n}} \sqrt{\frac{N-n}{N-1}}$$
 Correction factor for a finite population

Sampling Distribution of the Sample Proportion

$$\mu_{\bar{p}} = p$$

$$\sigma_{\bar{p}} = \sqrt{\frac{p(1-p)}{n}}$$

Confidence intervals

z based:
$$[\bar{x} \pm z\alpha_{/2} \frac{\sigma}{\sqrt{n}}]$$

t based: $[\bar{x} \pm t\alpha_{/2} \frac{s}{\sqrt{n}}]$
Proportions: $[\hat{p} \pm z\alpha_{/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}]$

Finite populations without replacement:

$$\left[\bar{x} \pm z\alpha/2 \frac{s}{\sqrt{n}} \sqrt{\frac{N-n}{N-1}}\right]$$

Finite proportions without replacement: $[\hat{p} \pm$

$$Z\alpha/2\sqrt{\frac{\hat{p}(1-\hat{p})}{n}\frac{N-n}{N}}$$

Hypothesis Testing (one sample)

- 1. State null and alternative hypothesis
- 2. Select level of significance
- 3. Select the appropriate test statistic from the list below:

elow:
a.
$$z = \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}}$$
 or $x = \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}}$
b. $t = \frac{\bar{x} - \mu_0}{s / \sqrt{n}}$, $df = n-1$
c. $z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}$ or $z = \frac{(n-1)s^2}{\sigma_0^2}$ for variance, $df = n-1$

- 4. Find p value or critical value
- 5. Decide whether to reject null hypothesis based on p value or comparison of critical value with test statistic.

Hypothesis Testing (two independent samples)

Follow steps 1-2 and 4-5 above

3. Select the appropriate test statistic from the list below:

a.
$$z = \frac{(\bar{x}_1 - \bar{x}_2) - D_0}{\sqrt{\frac{\sigma_1^2 + \sigma_2^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$$

a.
$$z = \frac{(\bar{x}_1 - \bar{x}_2) - D_0}{\sqrt{\frac{\sigma_1^2 + \sigma_2^2}{n_1 + n_2}}}$$

b. $t = \frac{(\bar{x}_1 - \bar{x}_2) - D_0}{\sqrt{\frac{s_1^2 + s_2^2}{n_1 + n_2}}}$ for unequal variances, df = min (n₁-1,

c.
$$t = \frac{(\bar{x}_1 - \bar{x}_2) - D_0}{\sqrt{s_p^2 \frac{1}{n_1} + \frac{1}{n_2}}}$$
 for equal variances where $s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$ and $df = n_1 + n_2 - 2$

d.
$$F = \frac{S_1^2}{S_2^2}$$
 for variance $df_1 = n_2 - 1$; $df_2 = n_1 - 1$;

Hypothesis Testing (paired samples)

Sample Size

Follow steps 1-2 and 4-5 above

3.
$$t = \frac{\bar{d} - D_0}{S_d / \sqrt{n}}$$
$$n = (\frac{Z\alpha / 2}{F})^2$$

Proportions: $n = p (1 - p)(\frac{z\alpha/2}{r})^2$

Chi-squared Goodness of fit

1. Calculate Expected Values based on null

2.
$$\chi^2 = \sum_{i=1}^k \frac{(f_i - E_i)^2}{E_i}$$

3. df = k - 1 - m; m = # of parameters estimated

Chi-squared test for independence

1.
$$E_{ij} = \frac{r_i c_j}{n}$$
 where $r_i = row \ total \ for \ row \ i; $c_j = column \ total \ for \ column \ j$$

2.
$$\chi^2 = \sum_{all\ cells} \frac{(f_{ij} - E_{ij})^2}{E_{ij}}$$

3.
$$df = (r-1)(c-1)$$

Simple Linear Regression

Equation of a line: $y = \beta_0 + \beta_1 x + \epsilon$

Significance of slope:

$$H_0: \beta_1 = 0; H_a: \beta_1 \neq 0; t = \frac{b_1}{s_{b1}} \text{ with df = n-1}$$

Confidence Interval for mean value of $\hat{y} = \hat{y} \pm \hat{y}$ $t\alpha_{/2} s\sqrt{Distance\ Value}$

Prediction Interval for individual value of $\hat{y} = \hat{y} \pm t\alpha_{/2} s\sqrt{1 + Distance\ Value}$

$$r^2 = \frac{explained\ variation}{total\ variation}$$

Significance of r:

$$t = \frac{r\sqrt{n-2}}{\sqrt{1-r^2}}$$

with df = n-2

Multiple Linear Regression

Equation of a line: $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \cdots + \beta_k x_k + \epsilon$

Adjusted R²= $(R^2 - \frac{k}{n-1})(\frac{n-1}{n-(k+1)})$

Statistical Process Control

$$\begin{split} CL &= \mu_{\overline{x}} &\approx \overline{\overline{x}} \\ UCL &= \mu_{\overline{x}} + 3\sigma_{\overline{x}} &\approx \overline{\overline{x}} + A_2 \overline{R} \\ LCL &= \mu_{\overline{x}} - 3\sigma_{\overline{x}} &\approx \overline{\overline{x}} - A_2 \overline{R} \end{split}$$

$$LCL_{p} \qquad UCL_{p}$$

$$p-3\sqrt{\frac{p(1-p)}{n}} \qquad p+3\sqrt{\frac{p(1-p)}{n}}$$

$$LCL_{c} = \overline{c} - 3\sqrt{\overline{c}} \qquad UCL_{c} = \overline{c} + 3\sqrt{\overline{c}}$$

Natural Tolerance Limits

$$\left[\overline{\overline{x}} \pm 3\left(\frac{\overline{R}}{d_2}\right)\right] = \left[\overline{\overline{x}} - 3\left(\frac{\overline{R}}{d_2}\right), \ \overline{\overline{x}} + 3\left(\frac{\overline{R}}{d_2}\right)\right]$$

ANOVA table

Source of	Sum of Squares	Degrees of	Mean Squares	F value
Variation	_	Freedom		
Between Groups	SSTr	c-1	MSTr = SSTr/c-1	MSTr/MSE
Within Groups	SSE	n-c	MSE = SSE/n-c	
Total	SSTo	n-1		

Cumulative Areas under the Standard Normal Curve (continued)

 Z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.03	0.00	0.00
							,	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0,5438	0.5478	0.5517	, 0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0,3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	. 0.7357	0.7389	0.7422	0.7454	0.7486	0.7518	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159 -	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
F = 1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	8888.0	0.8907	0.8925	0,8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0,9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932 .	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0. 9 953 .	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	· 0,9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.99865	0.99869	0.99874	0.99878	0.99882	0.99886	0.99889	0.99893	0.99897	0.99900
3.1	0.99903	0.99906	0.99910	0.99913	0.99916	0.99918	0.99921	0.99924	0.99926	0.99929
3.2	0.99931	0.99934	0.99936	0.99938	0.99940	0.99942	0.99944	0.99946	0.99948	0.99950
3.3	0.99952	0.99953	0.99955	0.99957	0,99958	0.99960	0.99961	0.99962	0.99964	0.99965
3.4	0.99966	0.99968	0,99969	0.99970	0.99971	0.99972	0.99973	0.99974	0.99975	0.99976
3.5	0.99977	0.99978	0,99978	0.99979	0.99980	0.99981	0.99981	0.99982	0.99983	0.99983
3.6	0.99984	0.99985	0.99985	0.99986	0.99986	0.99987	0.99987	0.99988	0.99988	0.99989
3.7	0.99989	0.99990	0.99990	0.99990	0.99991	0.99991	0.99992	0.99992	0.99992	0.99992
3.8	0.99993	0.99993	0.99993	0.99994	0.99994	0.99994	0.99994	0.99995	0,99995	0.99995
3.9	0.99995	0.99995	0.99996	0.99996	0.99996	0.99996	0.99996	0.99996	0,99997	0.99997

A & Table

		<u> </u>			ť.005	t _{.001}	t,0005 ·
-CE	t _{.100}	t.050	t _{.025}	t, ₀₁	63.657	318.31	636.62
df	*.100 3,078	6.314	12.706	31.821	9,925	22,326	31.598
1	1.886	2.920	4,303	6.965	5.841	10.213	12.924
2	1.638	2,353	3.182	4.541	4.604	7.173	8.610
3	1.533	2,132	2.776	3.747	4.032	5,893	6.869
4	1.476	2.015	2.571	3.365	3.707 ·	5.208	5,959
5	1.440	1.943	2.447	3.143	3.499	4,785	5,408
6	1,415	1.895	2.365	2.998	3,355	4,501	5.041
7	1,397	1.860	2.306	2.896	3,250	4.297	4,781
8	1,383	1.833	2.262	2.821	3.169	4.144	4.587
9	1,363	1.812	2,228	2.764	3.105	4.025	4.437
10	1,363	1,796	2.201	2.718	3,055	3,930	4.318
11	1,355	1.782	2.179	2.681	3.012	3,852	4.221
12		1,771	2.160	2.650	2.977	3.787	4.140
13	1.350	1.761	2.145	2.624	2.947	3,733	4.073
14	1.345 1.341 ⁻	1,753	2.131	2,602	2.947 2.921	3,686	4.015
15		1.746	2,120	2.583	2.898	3,646	3.965
16	1.337	1,740	2.110	2,567	2.878	3.610	3.922
17	1.333	1.734	2.101	2.552	2.861	3.579	3.883
18	1,330	1.729	2.093	2.539	2.845	3.552	3,850
19	1,328	1.725	2.086	2.528	2.831	3,527	3.819
20	1.325 1.323	1.721	2.080	2,518		3,505	3.792
21	•	1.717	2.074	2.508	2.819	3.485	3.767
22	1.321	1.714	2.069	2.500	2.807	3,467	3.745
23	1,319	1,711	2.064	2.492	2.797	3,450	3.725
24	1.318	1.708	2.060	2.485	. 2.787	3,435	3.707
25	1.316	1.706	2.056	2.479	2.779	3.421	3,690
26	1,315	1.703	2.052	2.473	2.771	3,408	3.674
27	1.314	. 1.701	2.048	2.467	2,763	3,396	3.659
28	1.313	1.699	2.045	2.462	2.756 2.750	3,385	3,646
. 29	1.311	1,697	2.042	2.457	2.704	3.307	3.551
30	1,310	1,684	2.021	2,423		3.232	3,460
40	1.303	1.671	2,000	2.390	2.660 2.617	3,160	3.373
60	1.296	1,658	1.980	2.358	2.576	3,090	3.291
120	1,289	1,645	1,960	. 2,326	2,570	2.7-4	
00	1.282	1.010					

TABLE A.1 (continued)
Binomial Probabilities (n equal to 16 and 18)

1 = 16											
x↓	.05	.10	.15	.20	,25	.30	.35	.40	.45	.50	
0	.4401	.1853	.0743	,0281	,0100	.0033	.0010	.0003	.0001	.0000	16
1	.3706	.3294	.2097	.1126	.0535	.0228	.0087	.0030	.0009	.0002	15
2	.1463	.2745	,2775	.2111	.1336	.0732	.0353	.0150	.0056	.0018	14
3	.0359	.1423	.2285	,2463	.2079	.1465	.0888	.0468	.0215	.0085	13
4	,0061	.0514	.1311	.2001	.2252	.2040	.1553	.1014	.0572	.0278	1,2
5	,0008	.0137	.0555	.1201	.1802	.2099	.2008	.1623	.1123	.0667	1
6	.0001	.0028	,0180	.0550	.1101	.1649	.1982	.1983	.1684	.1222	10
7	.0000	.0028	.0045	.0197	.0524	.1010	.1524	.1889	.1969	.1746	9
8	.0000	.0001	.0009	.0055	.0197	.0487	.0923	.1417	.1812	.1964	í
9	.0000	.0000	.0001	.0012	.0058	.0185	.0442	.0840	.1318	.1746	
	.0000	.0000	.0000	.0002	.0014	.0056	.0167	.0392	.0755	.1222	(
10 11	.0000	.0000	.0000	.0000	.0002	.0013	.0049	.0142	.0337	.0667	´ :
12	.0000	.0000	.0000	.0000	.0000	.0002	.0011	.0040	.0115	.0278	4
13	.0000	.0000	.0000	.0000	.0000	.0000	.0002	.0008	.0029	.0085	3
	.0000	.0000	.0000	,0000	.0000	.0000	.0000	.0001	.0005	.0018	:
14	.0000	,0000,	.0000	.0000	.0000	.0000	.0000	.0000	.0001	.0002	
15	,95	.90	.85	.80	.75	.70	.65	.60	.55	,50	X
	כע,	.90	,05	,00							
n = 18											
√x	.05	.10	.15	.20	.25	.30	.35	.40	.45 	.50	
0	.3972	.1501	.0536	.0180	.0056	.0016	.0004	.0001	.0000	.0000	18
1	.3763	.3002	.1704	.0811	.0338	.0126	.0042	.0012	.0003	.0001	1
2	.1683	.2835	,2556	.1723	.0958	.0458	.0190	.0069	.0022	.0006	1
3	.0473	,1680	.2406	.2297	.1704	.1046	.0547	.0246	.0095	.0031	1
4	.0093	.0700	.1592	.2153	.2130	.1681	.1104	.0614	.0291	.0117	1
5	.0014	.0218	.0787	.1507	.1988	.2017	.1664	.1146	.0666	.0327	1
6	.0002	.0052	.0301	.0816	.1436	.1873	.1941	.1655	.1181	.0708	1
7	.0000	.0010	.0091	.0350	.0820	.1376	.1792	.1892	.1657	.1214	1
8	.0000	.0002	.0022	.0120	.0376	.0811	.1327	.1734	.1864	.1669	1
9	.0000	.0000	.0004	.0033	.0139	.0386	.0794	.1284	.1694	.1855	
10	.0000	.0000	.0001	.0008	.0042	.0149	.0385	.0771	.1248	.1669	i
11	.0000	.0000	,0000	.0001	.0010	.0046	.0151	.0374	.0742	.1214	
12	,0000	.0000	.0000	,0000	.0002	.0012	.0047	.0145	.0354	.0708	
13	.0000	.0000	.0000	.0000	.0000	.0002	.0012	.0045	,0134	.0327	
14	.0000	.0000	.0000	.0000	.0000	.0000	.0002	.0011	.0039	.0117	•
15	.0000	,0000	.0000	.0000	.0000	.0000	.0000	.0002	.0009	.0031	
16	.0000	,0000	.0000	.0000	.0000	.0000	.0000	.0000	.0001	.0006	
10			.0000	.0000	,0000	,0000	.0000	.0000	.0000	.0001	
17	.0000	.0000	.0000	.0000				.60	.55	.50	X

TABLE A.6 An FTable: Values of F.os

		- 1	254.3		7 C																													1.39		
		120 œ	253.3 2	7 L	0 L	00.0	4.40	3.70	3.27	2.97	2.75	2.58	2,45	2.34	2.25	2,18	2.11	2.06	2.01	1.97	1.93	1.90	1.87	1.84	1.81	1.79	1.77	1.75	1.73	1.71	1.70	1.68	1,58	1.47	1.35	1.22
		. 09	252.2																																	
		40 (אָרָי ניי																													1.59		- 1
		30 4		<u> </u>	, 0, 1 20, 1 1, 10, 1	ر در در در در	4.50	3.81	3.38	3.08	2.86	2.70	2.57	2.47	2.38	2.31	2.25	2.19	2.15	2.11	2.07	2,04	2.01	1.98	1.96	1.94	1.92	1.90	1.88	1.87	1.85	1.84	1.74	1,65	1.55	1.46
		24 3		24.6	, c 1 1 1 1	7.5	4.53	ж 2	3.41	3.12	2.90	2.74	2.61	2.51	2.42	2,35	2.29	2.24	2.19	2.15	2.11	2.08	2.05	2.03	2.01	1.98	1.96	1.95	1.93	1.91	1.90	1.89	1.79	1.70	1.61	1.52
		20 2	2		5.50 5.00 5.00	, v	4.56	3.87	3.44	3.15	2.94	2.77	2,65	2.54	2.46	2.39	2.33	2.28	2.23	2.19	2.16	2.12	2.10	2.07	2.05	2.03	2.01	1.99	1.97	1.96	1.94	1.93	1.84	1.75	1.66	1.57
			245.9 24																																	
	(df_{1})	15	243.9 24																															1.92		- 1
	Numerator Degrees of Freedom ($d\mathcal{F}_{i}$	12			ກ ເ ໝໍ່ເ																													1.99		
	rees of F	10	240.5 24						3.68																									2.04		
	ator Deg	σn .	238.9 24(_		4.15																										2.10		
	Numer	60	١,			_	•=		_																									2.17		
		7	2	33 19.35																																
***************************************		9	"																															37 . 2.25		
		ь	1.4																															3 2.37		- 1
		4	224.6																																	
		m	215.7																																	- 1
		2	199.5																																	
		~	161.4	18.51	10.13	7.71	6.61	5.99	5.59	5.32	5.12	4.96	4.84	4.75	4,67	4.60	4.54	4.49	4.45	4.41	4.38	4.35	4.32	4.30	4.28	4.26	4.24	4.23	4.21	4.20	4.18	4.17	4.08	4.00	3.92	3.84
	off,	df ₂	1	7	m	4	ហ	9	7	∞	on .	₽ (³).	(q	m 5	g qc			<u>و</u> : 0						rin 23				56	27	28	53	8	40	09	120	8

Source: M. Merrington and C. M. Thompson, "Tables of Percentage Points of the Inverted Beta (F)-Distribution," Biometrika 33 (1943), pp. 73-88. Reproduced by permission of the Biometrika Trustees.

(table continued)

(continued)
(G)
4
₹
ш
الب
123
⋖
-

Entry	entry is q _{.05}					·				1 .									1
>	2	m	4	ī.	9	7	∞	6	10	11	12	13	14	15	16	17	18	19	20
	6	. 0 7.0	9.00	27.1	40.4	1			1 -	1	52.0	53.2	54.3	55.4	56.3	57.2	58.0	58.8	59.6
- (0.0	4		•							14.7	15.1	15.4	15.7	15.9	16.1	16.4	16.6	16.8
7 (80.0										9.95	10.2	10.3	10.5	10.7	10.8	11.0	11.1	11.2
י מי	0.50										8.21	8.37	8.52	8.66	8.79	8.91	9.03	9.13	9.23
⇒ ե	ກຸດ										7.32	7.47	7.60	7.72	7.83	7.93	8.03	8.12	8.21
חי	40.0 40.0								6.49	6.65	6.79	6.92	7.03	7.14	7.24	7.34	7.43	7.51	7.59
1 0	0 10										6.43	6.55	99.9	6.76	6.85	6.94	7.02	7.10	7.17
~ 0	† 0 0 0										6.18	6.29	6.39	6.48	6.57	6.65	6.73	6.80	6.87
0 0	מילים מילים מילים										5.98	60.9	6.19	6.28	6.36	6.44	6.51	6.58	6.64
n ç	0.40 140										5.83	5.93	6.03	6.11	6.19	6.27	6.34	6.40	6.47
2 ₹											5.71	5.81	5.90	5.98	90.9	6.13	6.20	6.27	6.33
= \$											5.61	5.71	5,80	5.88	5.95	6.02	6.09	6.15	6.21
7 5											5.53	5,63	5.71	5.79	5.86	5,93	5.99	6.05	6.11
<u>.</u>											5.46	5,55	5.64	5.71	5.79	5,85	5.91	5.97	6.03
i t											5.40	5.49	5.57	5.65	5.72	5.78	5.85	5.90	5.96
ភូមួ											5.35	5.44	5,52	5,59	5.66	5.73	5.79	5.84	2,90
1 10											5.31	5.39	5.47	5.54	5.61	5.67	5.73	5.79	5.84
: ×											5.27	5.35	5.43	5.50	5.57	5.63	5.69	5.74	5.79
2 2											5.23	5.31	5.39	5.46	5.53	5,59	5,65	5.70	5.75
5 5											5.20	5.28	5.36	5.43	5.49	5.55	5.61	2.66	5.71
3 6											5.10	5.18	5.25	5.32	5.38	5,44	5.49	5,55	5.59 5.59
1 0											5.00	5.08	5.15	5,21	5.27	5,33	5.38	5.43	5.47
3 8											4.90	4.98	5.04	5.11	5.16	5.22	5.27	5,31	236
? 6											4.81	4.88	4.94	2.00	5.06	5.11	5.15	5.20	5.24
3 6											4.71	4.78	4.84	4.90	4.95	2.00	5.04	5.09	5.13 13
3 8	2.77	3.31	3.63	3.86	4.03	4.17	4.29	4.39			4.62	4.68	4.74	4.80	4.85	4.89	4.93	4.97	5.01

TABLE A.17 A Chi-Square Table: Values of χ^2_{lpha}

	X.2005		7.87944	10.5966	12.8381	14.0002	10.7496	10.3470	21 9550	23,5893	25.1882	26.7569	28.2995	29.8194	31,3193	32.8013	34.2672	35.7185	37,1564	38.5822	39.9968	41,4010	42.7956	44.1813	45.5585	46.9278	48.2899	49.0449	50.9933	32.3356	33.0720	20,700	01.4500	100.10	136 271	128.299	140.169
	X.21		6.63490	44.01034	11,5443	15.2767	15,0003	18.4753	20.0902	21.6660	23.2093	24,7250	26.2170	27.6883	29.1413	30.5779	31,9999	33,4087	34.8053	36.1908	37.5662	38.9321	40.2894	41.6384	42.9798	44.3141	45.5417	40.9630	46.2782	44.58/W	2770305	76.000	88 3794	100 425	112.329	124.116	135.807
	$\chi^2_{.025}$	00000	5.02389	0///0/	41 1/1040	11.145	14 4494	16.0128	17.5346	19.0228	20.4831	21.9200	23.3367	24.7356	26.1190	27,4884	28.8454	30.1910	31.5264	32.8523	34.1696	35.4789	36.7807	38.0757	39.3641	40.6465	41.9232	45.1944	44.4607	45.722	70.77 70.2/17	71 /202	83.2976	95 0231	106.629	118.136	129.561
	$\chi^2_{.05}$	76.60 C	5.04.40 F 001/1	741.00.C	5/4/01/ 6/78/0	11 0705	12,5916	14.0671	15.5073	16.9190	18.3070	19.6751	21.0261	22.3621	23.6848	24.9958	26.2962	27.5871	28.8693	30.1435	31,4104	32.6705	33.9244	35.1725	36.4151	37.63.72 C700.00	20,002	40.1135	7/55.17	9577.67	55 7585	67 5048	79.0819	90.5312	101.879	113,145	124.342
	χ ² .10	2.70554	4.70334	6.25130	77944	92982	10.6446	12.0170	13,3616	14.6837	15.9871	17.2750	18.5494	19.8119	21.0642	22.3072	23.5418	24.7690	25.9894	27.2036	28.4120	29.6151	30,8133	32,0069	33,1963	54.5615	26.77.25	37 0150	30.00	40.05	51 8050	63 1671	74.3970	85.5271	96.5782	107.565	118.498
24.42	$\chi^2_{.90}$	0157009	210720	584375	.063623	1.61031	2.20413	2,83311	3.48954	4.16816	4.86518	5.57779	6.30380	7,04150	7.78953	8,54675	9.31223	10.0852	10.8649	11.6509	12.4426	13.2396	14.0415	0/4°4/	15.658/	17 2010	18 1138	18 9392	19 7677	20 5992	29,0505	37.6886	46,4589	55,3290	64.2778	73.2912	82.3581
	$\chi^2_{.95}$	003937	.102587	341846	.710721	1.145476	1.63539	2.16735	2.73264	3.32511	3,94030	4.57481	5.22603	5.89186	6.57063	7.26094	7.96164	8.67176	9.39046	10.1170	10.8508	11,5913	12.3380	15.0505	15.0404	15 2701	16,1513	16.9279	17,7083	18.4926	26,5093	34.7642	43.1879	51.7393	60,3915	69.1260	77.9295
	$\chi^2_{.975}$	10009821	.0506356	.215795	.484419	.831211	1.237347	1,68987	2.17973	2.70039	3.24697	3.81575	4.40379	5.00874	5.62872	6.26214	6.90766	7,56418	8.230/5	8.50055	2.55083	10.20235	10,5823	11,000	12.4011	13.8439	14.5733	15.3079	16.0471	16.7908	24.4331	32.3574	40.4817	48.7576	57.1532	65.6466	74.2219
	$\chi^2_{.99}$.0001571	.0201007	.114832	.297110	.554300	.872085	1.239043	1.646482	2.087912	2.55821	3.05347	3.57056	4.10691	4.66043	5.22935	5.81221	5,40//6	1,014	0,036,0	0.26040	. 07/50°0	10.10567	10.8564	11 5240	12.1981	12,8786	13.5648	14.2565	14,9535	22.1643	29.7067	37.4848	45,4418	53,5400	61.7541	70.0648
	$\chi^2_{.995}$.	.0000393	.0100251	.0717212	.206990	.411740	.675727	.989265	1.344419	1.734926	2.15585	2.6U3.21	3.0/382	3.56503	4.07468	4.60034	5.14224	5,69/24	0.20401	7,040,00	2 02268	200000 CCCN3 8	9 26042	9.88623	10.5197	11.1603	11.8076	12.4613	13.1211	13.7867	20.7065	27.9907	35.5346	43.2752	51.1720	59.1963	6/.32/6
	df	,-	7	m	4	រក	ø	7	co (on (; 9	<u> </u>	7 (<u>n 5</u>	4 f	<u>.</u> 6	0 (2 0	<u> </u>	יי ר	2 6	: 2	3 8	24	52	56	27	28	29	30	40	20	9	2	8	8 6	001

Source: C. M. Thompson, "Tables of the Percentage Points of the χ^2 Distribution," Biometrika 32 (1941), pp. 188-89. Reproduced by permission of the Biometrika Trustees.