

www.hds.utc.fr

Projet ERASMO : système de localisation intègre pour le véhicule autonome

Journée outils logiciels et matériels pour la recherche sur les véhicules terrestres autonomes

Philippe XU
Heudiasyc, UTC/CNRS
U2IS, ENSTA Paris

5 Octobre, 2023

Consortium

Position error:

$$PE = \|\hat{X} - X\|$$

Accuracy:

$$MSE(\hat{X}) = \mathbb{E}\left[\left\|\hat{X} - X\right\|^2\right]$$

$$= \|\mathbb{E}[\hat{X}] - X\|^{2} + \mathbb{E}[\|\hat{X} - \mathbb{E}[\hat{X}]\|]^{2}$$
$$= \|\text{Bias}(\hat{X})\|^{2} + \text{trace}(\text{Var}(\hat{X}))$$

Trueness (« justesse »)

Precision (« fidélité »)

Accuracy (« exactitude »)

It was highlighted by multiple experts that the importance of "accuracy" is often over-emphasised and that the integrity and availability of the position data must also be considered.

European Union Agency for the Space Programme (EUSPA), *PPP-RTK market and technology report*, 2019.

 $\hat{X} - X_{\parallel}$ $\hat{X} - \mathbb{E}[\hat{X}] \parallel]^{2}$ $\operatorname{ce}\left(\operatorname{Var}(\hat{X})\right)$

cision délité »)

Position error (PE)

Accuracy (« exactitude »)

Position error:

$$PE = \|\hat{X} - X\|$$

Protection level:

$$\mathbb{P}\big(PE > PL(\alpha)\big) \le \alpha$$

Target integrity risk: α

Alert limit: AL

System availability:

$$\mathbb{P}(PL < AL)$$

Solution ERASMO

Solution GNSS

Overcoming the limitations of RTK and PPP

- > From the <u>RTK</u> point of view
- To overcome its disadvantages (high bandwidth, high update rate and dense network) → instead of providing the measurements from the network of base stations

 (Observation State Representation OSR) the evolution is to provide precise orbits and clocks along with iono measurements (State Space Representation SSR)
- Thus reducing the bandwidth, the update rate and allowing to have less dense station networks.

- From the <u>PPP</u> point of view
- To overcome its disadvantages (<u>convergence time</u>), the <u>evolution</u> is **to provide**, in addition to the precise orbits and clocks, **regional ionosphere measurements**
- Thus reducing the convergence time to a few tens of seconds at the cost of needing a low dense station network to provide the iono measurements.

- > The evolution of both methods converge into a set of techniques, a.k.a. *PPP-RTK*
- PPP-RTK provides SSR corrections (precise orbits and clocks along with ionosphere measurements) based on a low dense station network (~a few hundreds of km) allowing the user navigation algorithm to converge and reach cm/dm accuracy in a few tens of seconds

Performance

Scenario	GNSS	HD-map/Camera/LiDAR		Artisense
		Camera (road marking)	LiDAR	
Open-sky (rural, i.e. few visual features)	High	Middle	Low	Low
Peri-urban	Middle	High	Middle	Middle
Urban (with multipath and NLOS)	Low	High	High	High
Indoor parking	N/A	Low	Low	High

Scenario	GNSS	HD-map/Camera/LiDAR		Artisense
		Camera (road marking)	LiDAR	
Night	High	Low	High	Middle/Low
Foggy	High	Middle/Low	Middle/Low	Middle/Low
Rainy	High	Middle/Low	Middle/Low	Middle/Low

Scenario	GNSS	HD-map/Camera/LiDAR		Artisense
		Camera (road marking)	LiDAR	
Sparse	Independent	High	High	High
Nominal	Independent	Middle	High	Middle
Dense	Independent	Low	Middle	Low

Experiments in Compiègne, France

Driving environments

- Rural (green)
- Peri-urban (blue)
- Urban (yellow)

Weather and light conditions

- Sunny
- Rain
- Night

Traffic conditions

- Normal
- Dense

Driving environments

Traffic conditions

Dataset

Date [dd-mm-yyyy]	Time [h:min]	Weather	Traffic
10-05-2022	10:00-11:30	sunny	nominal
19-05-2022	17:00-18:30	sunny	dense
20-05-2022	14:30-15:30	little rainy	nominal
24-05-2022	09:00-10:00	sunny	nominal
28-06-2022	10:00-11:00	sunny	nominal
06-07-2022	10:00-11:00	sunny	nominal
15-07-2022	10:00-11:00	sunny	nominal
20-09-2022	09:15-11:00	cloudy	nominal
28-09-2022	14:50-15:40	sunny	nominal

