Notion de norme

Vallaeys Pascal

15 avril 2024

Références:

Exercices de la banque CCINP:

Méthodes standard des exercices :

- Justifier qu'une forme est une norme.
- Montrer que deux normes sont ou ne sont pas équivalentes.
- Connaître les définitions de topologie associées à une norme.

2 Exercices incontournables:

Exercice 1: (Mines MP 2022)

Soit $E = \mathcal{C}^1([0,1],\mathbb{R})$. On pose pour tout $f \in E : ||f||_1 = \int_0^1 |f(x)| dx$ et :

$$N_1(f) = ||f||_1 + ||f'||_1 \text{ et } N_2(f) = |f(0)| + ||f'||_1.$$

- 1. Montrer que N_1 et N_2 sont des normes.
- 2. N_1 et N_2 sont-elles équivalentes?

Exercice 2: (Mines télécom MP 2022)

On pose pour tout l'exercice $E = \mathcal{C}^0([a, b], \mathbb{R})$.

- 1. Donner les normes $\|\cdot\|_1$ et $\|\cdot\|_{\infty}$ sur E.
- 2. Justifier or alement, en ne donnant que les arguments importants, que $\|\cdot\|_1$ est une norme.
- 3. Montrer que si $(f_n)_{n\in\mathbb{N}}\in E^{\mathbb{N}}$ converge au sens de $\|\cdot\|_{\infty}$, alors elle converge au sens de $\|\cdot\|_1$. 4. Les normes $\|\cdot\|_1$ et $\|\cdot\|_{\infty}$ sont-elles équivalentes?

Exercice 3: (Mines MP 2021)

Soit $\|\cdot\|_{\infty}$ la norme de la convergence uniforme et $E=\{f\in\mathcal{C}^1([0,1])|f(0)=0\}$. On considère n et N $\forall f \in E, \ n(f) = ||f + f'||_{\infty} \ \text{et} \ N(f) = ||f||_{\infty} + ||f'||_{\infty}$

- 1. Montrer que n et N sont des normes.
- 2. Montrer qu'elles sont équivalentes. On pourra remarquer que $f(x) = \int_0^x f'(t) dt$ et que pour $g(t) = e^t f(t)$, on a $f'(t) = e^{-t}(g'(t) - g(t))$.

Exercice 4: (IMT MP 2019)

Soit
$$E = C^0([0,1], \mathbb{R})$$
 et $f \in E$. On note $N(f) = \sup \left\{ \left| \int_0^1 f(t) t^n dt \right| ; n \in \mathbb{N} \right\}$.

Montrer que N est une norme sur E.

Exercice 5:

- a) Démontrer la deuxième inégalité triangulaire pour une norme dans un espace vectoriel normé.
- b) En déduire que $\|.\|: \overrightarrow{x} \to \mathbb{R}$ est 1-Lischitzienne.

Exercice 6:

a) Existe-t-il une norme N sur $E = M_n(\mathbb{R})$ telle que pour toutes matrices A et B de E, on ait $N(AB) = M_n(\mathbb{R})$

1

b) Même question avec $N(AB) \leq N(A).N(B)$

Exercice 7:

a) Montrer que deux normes sont égales si et seulement si elles possèdent la même boule unité.

b) Par ailleurs, quelle influence a l'équivalence de deux normes pour leurs boules de centre O?

Exercice 8:

Sur $E=C^1([0,1],\mathbb{R})$, on pose $||f|| = |f(0)| + ||f'||_{\infty}$.

- a) Montrer que l'on obtient ainsi une norme.
- b) Est-elle équivalente à la norme uniforme $\|.\|_{\infty}$?

Exercice 9:

Soit $(A_k) \in (M_n(\mathbb{C}))^{\mathbb{N}}$ une suite bornée. On note pour tout entier naturel non nul $p: B_p = \frac{1}{p} \sum_{k=0}^{p-1} A^k$.

- a) Montrer que la suite (B_n) admet une valeur d'adhérence noté B.
- b) Montrer que BA=B puis $B^2 = B$.
- c) Montrer que $Ker(B) = Im(A I_n)$ et $Im(B) = Ker(A I_n)$.
- d) En déduire que la suite (B_p) converge.

3 Exercices de niveau 1:

Exercice 10: (CCINP MP 2021)

Soit $(E, \|\cdot\|)$ espace vectoriel normé.

Soit $u \in \mathcal{L}(E)$ vérifiant $\forall x \in E, \|u(x)\| \leq \|x\|$ et $V_n \in \mathcal{L}(E)$ défini par $\forall n \in \mathbb{N}, V_n = \sum_{k=0}^n u^k$. 1. a) Soit $a \in E$, montrer que $\frac{1}{n+1} \|u^n(a) - a\| \underset{n \to +\infty}{\longrightarrow} 0$. b) Exprimer $V_n \circ (u - \mathrm{Id}_E)$ en fonction de u^{n+1} .

- c) Montrer que $\operatorname{Im}(u \operatorname{Id}_E) \cap \operatorname{Ker}(u \operatorname{Id}_E) = \{0_E\}.$
- 2. Si E est de dimension finie, Montrer que $\operatorname{Im}(u-\operatorname{Id}_E)$ et $\operatorname{Ker}(u-\operatorname{Id}_E)$ sont supplémentaires dans E.
- 3. (Le candidat n'était plus sûr de l'énoncé, reconstruction proposée par le modérateur). Dans le cas général, on suppose $\operatorname{Im}(u - \operatorname{Id}_E)$ et $\operatorname{Ker}(u - \operatorname{Id}_E)$ supplémentaires; soit p le projecteur sur $\operatorname{Ker}(u - \operatorname{Id}_E)$ parallèlement à $\operatorname{Im}(u - \operatorname{Id}_E)$.

Pour tout $x \in E$, exprimer p(x) à l'aide des vecteurs $V_n(x)$.

Exercice 11 : (IMT MP 2019)

Pour $\lambda \in \mathbb{C}$, on note $e_{\lambda}: x \to e^{\lambda x}$. On note F le sous-espace de $\mathbb{C}^{\mathbb{R}}$ engendré par $(e_{\lambda})_{\lambda \in \mathbb{C}}$. Montrer qu'en posant, pour $f \in F$, $N(F) = \sum_{n=0}^{+\infty} \frac{\left|f^{(n)}(0)\right|}{n!}$, on définit une norme sur F.

Exercice 12:

Soit n un entier naturel non nul.

- a) Montrer qu'il existe $\alpha > 0$ tel que $\forall P \in \mathbb{R}_n[X], \sum_{k=0}^n |P(k)| \le \alpha. \int_{-1}^1 \sqrt{1-X^2}. |P(X)|.dX.$
- b) Si r est un entier naturel, montrer qu'il existe $\alpha > 0$ tel que $\forall P \in \mathbb{R}_n [X], \sum_{k=0}^r |P(k)| \le \alpha. \int_{-1}^1 \sqrt{1-X^2}. |P(X)|.dX$.

Exercice 13:

Soit $E = \mathbb{R}_n [X]$ et $a_0 < a_1 < ... < a_n$ des réels. Soit $(P_k) \in (\mathbb{R}_n [X])^{\mathbb{N}}$. Montrer que $\|P_k\|_{\infty}^{[0,1]} \to 0$ si et seulement si $\forall i \in [0,n], P_k(a_i) \to 0$.

Exercices de niveau 2: 4

Exercice 14:

Soit E un K-espace vectoriel normé. On dit d'une suite $(u_n) \in E^{\mathbb{N}}$ qu'elle est de Cauchy si : $\forall \varepsilon > 0, \exists n_0 \in \mathbb{N}$ tq $\forall n, p \geq n_0, |u_n - u_p| \leq \varepsilon.$

- a) Montrer qu'une suite convergente est de Cauchy.
- b) Montrer que si $E=K=\mathbb{Q}$, il existe des suites de Cauchy non convergentes.
- c) Montrer que si $E = K = \mathbb{R}$, toute suite de Cauchy est convergente.
- d) Montrer que l'image d'une suite de Cauchy par une application uniformément continue est une suite de Cauchy.
 - e) Que dire si l'application est juste supposée continue?

Exercice 15: (Centrale MP)

Pour tout polynôme P de $E = \mathbb{R}[X]$, on pose $N_1(P) = \sum_{n=0}^{+\infty} |P^{(n)}(0)|$ et $N(P) = \sum_{n=0}^{+\infty} |P^{(n)}(n)|$.

- a) Montrer que N_1 et N sont des normes sur E.
- b) Sont-elles équivalentes?
- c) Trouver une norme de E telle que la suite (X^k) converge vers 0.
- d) Soit P fixé dans E. Trouver une norme sur E telle que la suite (X^k) converge vers P.

Exercice 16: (TPE MP 2018)

Soit $(P_n) \in (\mathbb{R}_d[X])^{\mathbb{N}}$ telle que (P_n) converge simplement vers P.

En utilisant les polynômes
$$L_k(X) = \prod_{\substack{0 \leq i \leq d \\ i \neq k}} \frac{X-i}{k-i}$$
, montrer que $P \in \mathbb{R}_d[X]$. Montrer que la suite (P_n)

converge uniformément vers P sur tout segment.

5 Exercices de niveau 3:

Exercice 17: (ENS MPi 2022???)

On considère $E = \mathbb{C}_n[X]$. Pour $P = \sum_{k=0}^n a_k X^k$, on note $||P||_0 = \sup_{0 \le k \le n} |a_k|$ (on ne redémontrera pas qu'il s'agit d'une norme sur E). On note $||P|| = ||P||_0 + ||P'||_0 + \cdots + ||P^{(n)}||_0$. Soit $S = \{P \in E \mid \deg P = n \text{ et } P \text{ a } n \text{ racines distinctes}\}$.

- 1. Montrer que $\|\cdot\|$ est une norme sur E.
- 2. Montrer que S est un ouvert de E.

Indication(s) fournie(s) par l'examinateur pendant l'épreuve On montrera le lemme suivant : Lemme. Soit $P \in S$. On note $\alpha_1, ..., \alpha_n$ ses racines distinctes. Pour i entier compris entre 1 et n, soit $D_i = D(\alpha_i, r)$ un disque centré en α_i de telle sorte que $\forall i \neq j, D_i \cap D_j = \emptyset$ et r > 0. Alors pour tout i, il existe $a \in]0, 1[, a \leqslant r, \varepsilon > 0, C > 0$ tels que $: \forall x, y \in D_i' = D(\alpha_i, a), \forall Q \in E, ||Q - P|| < \varepsilon \Rightarrow |Q(x) - Q(y)| \geqslant C|x - y|$ Pour cela, on considérera l'application $\lambda : E \times \mathbb{C} \times \mathbb{C} \to \mathbb{R}$ telle que $\lambda(Q, x, y) = \left|\frac{Q(x) - Q(y)}{x - y}\right|$.

Commentaires divers:

Je ne suis pas parvenu à la fin de l'exercice, seulement à la fin de la démonstration du lemme.

Exercice 18:

On pose $F = \{ f \in C^2([0,1], \mathbb{R}) / f(0) = f'(0) = 0 \}.$

- a) Justifier rapidement le fait que F est un \mathbb{R} -espace vectoriel.
- b) Montrer que $N_1(f) = \sup_{[0,1]} |f| + \sup_{[0,1]} |f''|$ et $N_2(f) = \sup_{[0,1]} |f + f''|$ sont des normes sur F.
- c) Sont-elles équivalentes?
- d) Les comparer à $\|.\|_{\infty}$.
- e) Procéder de même avec $N_3(f) = ||f + f' + f''||_{\infty}$.

Exercice 19:

Soient p>1 et q>1 tels que $\frac{1}{p} + \frac{1}{q} = 1$.

- a) Montrer que si x et y sont des réels positifs, $xy \leq \frac{x^p}{p} + \frac{y^q}{q}$.
- b) En déduire que $\sum_{k=1}^{n} |x_k.y_k| \le \left(\sum_{k=1}^{n} x_k^p\right)^{\frac{1}{p}} \left(\sum_{k=1}^{n} y_k^q\right)^{\frac{1}{q}}.$
- c) En déduire que $\|X\| = \left(\sum\limits_{k=1}^n x_k^p\right)^{\frac{1}{p}}$ définit une norme sur $\mathbb{R}^n.$

Exercice 20:

Soit $(u_n) \in \mathbb{R}^{\mathbb{N}}$ une suite telle que $\lim_{n \to +\infty} (u_{n+1} - u_n) = 0$. Montrer que l'ensemble des valeurs d'adhérence de cette suite est un intervalle.

Donner un exemple non trivial d'une telle suite.