Apuntes de Cálculo Grado en Ingeniería Informática

Unidepot

Granada, 2024-2025

${\bf \acute{I}ndice}$

Ι	Tema 1: Fundamentos de Cálculo
1.	Funciones Elementales
	1.1. Conceptos Fundamentales
	1.2. La Función Coseno
	1.3. Función Inversa
	1.4. Paridad y Periodicidad
	1.5. Acotación y Extremos
	1.6. Monotonía
	1.7. Catálogo de Funciones Elementales
	1.7.1. Funciones Potenciales
	1.7.2. Función Exponencial y Logarítmica
	1.7.3. Funciones Trigonométricas y sus Inversas
2.	El Conjunto de los Números Reales
	2.1. Propiedades Algebraicas y de Orden
	2.2. Conjuntos Numéricos y Acotación
	2.3. Valor Absoluto y Ejercicios
3.	Números Complejos
	3.1. Definición y Formas
	3.2. Operaciones y Fórmula de Moivre
Π	Tema 2: Sucesiones y Series
4	Consider to the Nider on a Declar
4.	Sucesiones de Números Reales
	4.1. ¿Qué es una sucesión?
	4.2. Sucesión convergente
	4.3. Sucesiones acotadas
	4.4. Propiedades del límite
	4.5. Sucesiones monótonas
	4.6. Principio de inducción

5 .	Criterios de Convergencia para Sucesiones	
	5.1. Sucesiones divergentes	
	5.2. Álgebra de sucesiones divergentes	
	5.3. Indeterminaciones	
	5.5. Indeterminaciones con potencias y Regla del número e	
6.	Series de Números Reales	1
	6.1. ¿Qué es una serie?	
	6.2. Series convergentes	
	6.4. Algunas propiedades	
	6.5. Criterios de convergencia para series de términos positivos	
Π	I Tema 3: Límite Funcional y Cálculo de Límites	1
7	Límite Funcional	1
•	7.1. Definición de Límite Funcional	
	7.2. Límites Laterales	
	7.3. Álgebra de Límites Finitos	-
	7.4. Límites Infinitos y Límites en el Infinito]
8.	Cálculo de Límites	1
	8.1. Indeterminaciones	-
	8.2. Escala de Infinitos	-
	8.3. Expresiones Potenciales y Regla del Número e	
	8.4. Ejercicios Sugeridos y Soluciones]
9.	Límite Funcional	1
	9.1. Definición de Límite Funcional]
	9.2. Límites Laterales	_
	9.3. Álgebra de Límites Finitos	
	9.4. Límites Infinitos y Límites en el Infinito	-
1 0	.Cálculo de Límites	1
	10.1. Indeterminaciones	-
	10.2. Escala de Infinitos	
	10.3. Expresiones Potenciales y Regla del Número e	1
11	.Continuidad de Funciones	1
	11.1. Definición de Continuidad	
	11.2. Operaciones y Teoremas Fundamentales	1
ττ	/ Tema 4: Cálculo Diferencial	1

12.La Derivada de una Función	18
12.1. Definición de Derivada	18
12.2. Derivadas Laterales	18
12.3. Relación entre Continuidad y Derivabilidad	18
12.4. Interpretación Geométrica y Reglas de Derivación	18
13. Teorema del Valor Medio y Consecuencias	19
13.1. Extremos Relativos y Absolutos	19
13.2. Teoremas de Rolle y del Valor Medio	19
13.3. Monotonía, Concavidad y Convexidad	19
13.4. Criterios para determinar extremos relativos	19
14.Reglas de L'Hôpital	20
15.Polinomio de Taylor	20
15.1. Definición y Propiedades	20
16. Aplicaciones del Cálculo Diferencial	21
16.1. Cálculo de la imagen, desigualdades y número de soluciones	21
16.2. Problemas de Optimización	21
V Tema 5: Cálculo Integral	กา
V Tema 5: Cálculo Integral	23
17.La Integral de Riemann	23
17.1. Planteamiento del problema: el área bajo una curva	23
17.2. Definición de la Integral de Riemann	23
17.3. Funciones Integrables y Propiedades	23
17.4. La Regla de Barrow y las Integrales Impropias	24
18.El Teorema Fundamental del Cálculo	24
18.1. Regla de Derivación de Funciones Definidas por Integrales	25
19.Cálculo de Primitivas	25
19.1. Integración por Partes	25
19.2. Integración por Cambio de Variable (Sustitución)	25
19.3. Integración de Funciones Racionales	26
19.4. Integración de Funciones Trigonométricas e Irracionales	26

Parte I

Tema 1: Fundamentos de Cálculo

1. Funciones Elementales

1.1. Conceptos Fundamentales

Definición 1.1 (Función). Una función $f:A\to B$ es una regla que asigna a cada elemento x de un conjunto A (llamado **dominio**) un único elemento f(x) de un conjunto B (llamado **codominio**).

- Imagen de f: Es el conjunto de todos los valores que la función toma. Se denota por $f(A) = \{f(x) : x \in A\}$.
- Gráfica de f: Es el conjunto de pares ordenados (x, f(x)) donde x pertenece al dominio. Se denota por $Gr(f) = \{(x, f(x)) : x \in A\}$.
- Preimagen de un valor $\mathbf{b} \in \mathbf{B}$: Es el conjunto de elementos del dominio cuya imagen es b. Se denota por $f^{-1}(b) = \{x \in A : f(x) = b\}$.

1.2. La Función Coseno

Consideremos la función $f:[0,2\pi]\to\mathbb{R}$ definida por $f(x)=\cos(x)$. La imagen de esta función en el intervalo $[0,2\pi]$ es [-1,1].

1.3. Función Inversa

Para que una función $f: A \to B$ tenga una inversa, debe ser biyectiva.

- **Definición 1.2** (Biyectividad). **Inyectiva**: Una función es inyectiva si a elementos distintos del dominio les corresponden imágenes distintas. Formalmente: $x \neq y \implies f(x) \neq f(y)$.
 - Sobreyectiva: Una función es sobreyectiva si su imagen es igual al codominio. Formalmente: f(A) = B.
 - Biyectiva: Una función es biyectiva si es inyectiva y sobreyectiva a la vez.

Definición 1.3 (Función Inversa). Si $f: A \to B$ es una función invectiva, su función inversa, denotada por $f^{-1}: f(A) \to A$, es la única función que cumple $f^{-1}(f(x)) = x$, $\forall x \in A$. La gráfica de f^{-1} es simétrica a la gráfica de f respecto a la recta f rect

1.4. Paridad y Periodicidad

Sea una función $f: A \to \mathbb{R}$.

■ Función Par: si f(x) = f(-x) para todo $x \in A$. Su gráfica es simétrica respecto al eje Y.

- Función Impar: si f(x) = -f(-x) para todo $x \in A$. Su gráfica es simétrica respecto al origen.
- Función Periódica: si existe un número T > 0 tal que f(x) = f(x+T) para todo $x \in A$. El menor de estos T se llama período.

1.5. Acotación y Extremos

Definición 1.4 (Acotación). Sea $f: A \to \mathbb{R}$.

- Acotada Superiormente: si existe $M \in \mathbb{R}$ tal que $f(x) \leq M$ para todo $x \in A$.
- Acotada Inferiormente: si existe $N \in \mathbb{R}$ tal que $f(x) \geq N$ para todo $x \in A$.
- Acotada: si está acotada superior e inferiormente.

Definición 1.5 (Extremos). Sea $f: A \to \mathbb{R}$.

- f alcanza su **máximo** en $a_0 \in A$ si $f(a) \leq f(a_0)$ para todo $a \in A$.
- f alcanza su **mínimo** en $a_0 \in A$ si $f(a) \ge f(a_0)$ para todo $a \in A$.

1.6. Monotonía

Definición 1.6 (Función Monótona). Sea $f: A \subseteq \mathbb{R} \to \mathbb{R}$.

- Creciente: si para $x, y \in A$ con $x \le y$, se cumple $f(x) \le f(y)$.
- **Decreciente**: si para $x, y \in A$ con $x \le y$, se cumple $f(x) \ge f(y)$.
- Estrictamente Creciente: si para $x, y \in A$ con x < y, se cumple f(x) < f(y).
- Estrictamente Decreciente: si para $x, y \in A$ con x < y, se cumple f(x) > f(y).

1.7. Catálogo de Funciones Elementales

1.7.1. Funciones Potenciales

Son de la forma $f(x) = x^b$ con $b \in \mathbb{R}, b \neq 0$, y dominio \mathbb{R}^+ .

- Son biyectivas de \mathbb{R}^+ en \mathbb{R}^+ .
- Su derivada es $f'(x) = bx^{b-1}$.
- Propiedad: $(xy)^b = x^b y^b$.
- Si b > 0, es estrictamente creciente. $\lim_{x\to 0^+} x^b = 0$ y $\lim_{x\to +\infty} x^b = +\infty$.
- Si b < 0, es estrictamente decreciente. $\lim_{x\to 0^+} x^b = +\infty$ y $\lim_{x\to +\infty} x^b = 0$.

1.7.2. Función Exponencial y Logarítmica

La función exponencial $f(x) = e^x$ es biyectiva de \mathbb{R} en \mathbb{R}^+ , estrictamente creciente y su derivada es ella misma. La función logaritmo natural $f(x) = \ln(x)$ es su inversa.

1.7.3. Funciones Trigonométricas y sus Inversas

Las funciones seno, coseno y tangente son periódicas. Sus inversas (arcoseno, arcocoseno, arcotangente) se definen restringiendo el dominio de las originales para que sean biyectivas.

2. El Conjunto de los Números Reales

2.1. Propiedades Algebraicas y de Orden

El conjunto de los números reales, \mathbb{R} , con la suma y el producto, es un cuerpo conmutativo. Además, posee una relación de orden total \leq compatible con las operaciones.

2.2. Conjuntos Numéricos y Acotación

 $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R}$. Un conjunto $A \subset \mathbb{R}$ está **acotado** si existen $m, M \in \mathbb{R}$ tales que $m \leq a \leq M$ para todo $a \in A$.

2.3. Valor Absoluto y Ejercicios

Definición 2.1. $|x| = \max\{x, -x\}$. Propiedad clave: $|a| \le b \iff -b \le a \le b$.

Ejercicio 2.1. Resolver |x-1| < 2.

Solución 2.1. $-2 < x - 1 < 2 \implies -1 < x < 3$. Solución: (-1, 3).

Ejercicio 2.2. Resolver $\left|\frac{x+1}{x-1}\right| \leq 2$.

Solución 2.2. Para $x \neq 1$, la inecuación es $|x+1| \leq 2|x-1|$. Elevando al cuadrado: $(x+1)^2 \leq 4(x-1)^2$, lo que lleva a $3x^2 - 10x + 3 \geq 0$. Las raíces son 1/3 y 3. Como la parábola abre hacia arriba, la solución es $(-\infty, 1/3] \cup [3, +\infty)$.

3. Números Complejos

3.1. Definición y Formas

Un número complejo es de la forma z=a+ib. El **conjugado** es $\bar{z}=a-ib$ y el **módulo** es $|z|=\sqrt{a^2+b^2}$. La **forma polar** es $z=|z|(\cos\theta+i\sin\theta)=|z|e^{i\theta}$.

3.2. Operaciones y Fórmula de Moivre

La **fórmula de Moivre** se usa para potencias: $z^n = |z|^n(\cos(n\theta) + i\sin(n\theta))$.

Ejercicio 3.1. Calcular $(1+i)^{10}$.

Solución 3.1. 1+i en forma polar es $\sqrt{2}e^{i\pi/4}$. $(1+i)^{10} = (\sqrt{2})^{10}e^{i(10\pi/4)} = 32e^{i(5\pi/2)} = 32(\cos(5\pi/2) + i\sin(5\pi/2)) = 32(0+i) = 32i$.

Parte II

Tema 2: Sucesiones y Series

4. Sucesiones de Números Reales

4.1. ¿Qué es una sucesión?

Una sucesión es una lista ordenada de números reales. Por ejemplo, $2,4,8,...,2^n,...$ o 1,1/2,1/3,...,1/n,...

Definición 4.1. Una sucesión de números reales es una aplicación del conjunto de los números naturales en el conjunto de los números reales.

Si $f: \mathbb{N} \to \mathbb{R}$, $f(n) = x_n$ es una sucesión, la denotaremos $\{x_n\}_{n \in \mathbb{N}}$ y diremos que x_n es el término general.

4.2. Sucesión convergente

Definición 4.2. Diremos que la sucesión $\{x_n\}_{n\in\mathbb{N}}$ es convergente si existe $L\in\mathbb{R}$ verificando que, para cada $\epsilon>0$, existe $n_0\in\mathbb{N}$ tal que $|x_n-L|<\epsilon$, para cualquier $n\geq n_0$. En ese caso escribiremos que lím $_{n\to\infty}x_n=L$.

- La sucesión constante $\{c\}_{n\in\mathbb{N}}$ es convergente y su límite es c.
- La sucesión $\{\frac{1}{n}\}_{n\in\mathbb{N}}$ es convergente a cero.
- La sucesión $\{n\}_{n\in\mathbb{N}}$ no es convergente $(\{n\}_{n\in\mathbb{N}}\to +\infty)$.
- La sucesión $\{(-1)^n\}_{n\in\mathbb{N}}$ no es convergente.

4.3. Sucesiones acotadas

Definición 4.3. 1. La sucesión $\{x_n\}$ está acotada superiormente (resp. inferiormente) si existe $M \in \mathbb{R}$ verificando que $x_n \leq M$ (resp. $x_n \geq M$), para todo $n \in \mathbb{N}$.

2. La sucesión está acotada si lo está superior e inferiormente, es decir, si existe $M \in \mathbb{R}$ tal que $|x_n| \leq M$, para cualquier natural n.

Proposición 4.1. Toda sucesión convergente es acotada. El recíproco no es cierto (ej: $\{(-1)^n\}$).

4.4. Propiedades del límite

Proposición 4.2. Sean $\{x_n\}$ y $\{y_n\}$ dos sucesiones convergentes.

- 1. $\lim(x_n + y_n) = \lim x_n + \lim y_n$.
- 2. $\lim (x_n \cdot y_n) = (\lim x_n) \cdot (\lim y_n)$.
- 3. si lím $y_n \neq 0$ entonces lím $\frac{x_n}{y_n} = \frac{\lim x_n}{\lim y_n}$.
- 4. si $x_n \leq y_n$ para todo n, entonces lím $x_n \leq$ lím y_n .

Si lím $x_n = 0$ y $\{y_n\}$ está acotada, entonces lím $(x_n y_n) = 0$.

4.5. Sucesiones monótonas

Definición 4.4. Una sucesión $\{x_n\}$ es **creciente** si cumple que $x_n \leq x_{n+1}$ para todo n. Análogamente, es **decreciente** si $x_n \geq x_{n+1}$ para todo n. Diremos que es **monótona** si es creciente o decreciente.

Proposición 4.3. Toda sucesión monótona y acotada es convergente.

4.6. Principio de inducción

El conjunto de los números naturales, $\mathbb{N}=\{1,2,3,\ldots\}$, es el conjunto más pequeño que verifica que $1\in\mathbb{N}$ y que si $n\in\mathbb{N}\Rightarrow n+1\in\mathbb{N}$. El principio de inducción nos permite usar estas dos propiedades para demostrar que una afirmación A(n) es cierta para todo $n\in\mathbb{N}$.

Ejercicios Sugeridos y Soluciones

Ejercicio 4.1. Comprueba que: $1 + 2 + 3 + \cdots + n = \frac{n(n+1)}{2}, \forall n \in \mathbb{N}.$

Solución 4.1. • Caso base (n=1): $1 = \frac{1(1+1)}{2} = 1$. Se cumple.

■ Paso inductivo: Suponemos que es cierto para un $k \ge 1$: $1 + \cdots + k = \frac{k(k+1)}{2}$. Debemos probarlo para k + 1:

$$(1+\cdots+k)+(k+1)=\frac{k(k+1)}{2}+(k+1)=(k+1)\left(\frac{k}{2}+1\right)=\frac{(k+1)(k+2)}{2}$$

La fórmula se cumple para k+1. Por el principio de inducción, es válida para todo $n \in \mathbb{N}$.

Ejercicio 4.2. Comprueba que la sucesión $x_1 = 1$, $x_{n+1} = \sqrt{2 + x_n}$ es creciente, está acotada y calcula su límite.

Solución 4.2. 1. Monotonía (creciente por inducción):

- Caso base: $x_1 = 1, x_2 = \sqrt{3} \approx 1{,}73. \ x_1 \le x_2.$
- Hipótesis: $x_k \le x_{k+1}$ para algún $k \ge 1$.
- Paso inductivo: $x_k \le x_{k+1} \implies 2 + x_k \le 2 + x_{k+1} \implies \sqrt{2 + x_k} \le \sqrt{2 + x_{k+1}} \implies x_{k+1} \le x_{k+2}$. La sucesión es creciente.
- 2. Acotación (acotada superiormente por 2 por inducción):
 - Caso base: $x_1 = 1 \le 2$.
 - Hipótesis: $x_k \leq 2$ para algún $k \geq 1$.
 - Paso inductivo: $x_k \le 2 \implies 2 + x_k \le 4 \implies x_{k+1} = \sqrt{2 + x_k} \le \sqrt{4} = 2$. La sucesión está acotada superiormente por 2.
- 3. **Límite**: Al ser monótona creciente y acotada superiormente, es convergente. Llamemos L a su límite. L debe satisfacer la recurrencia: $L = \sqrt{2+L} \implies L^2 = 2+L \implies L^2-L-2=0$. Las soluciones de la ecuación son L=2 y L=-1. Como todos los términos de la sucesión son positivos, el límite debe ser L=2.

8

5. Criterios de Convergencia para Sucesiones

5.1. Sucesiones divergentes

Definición 5.1. • $\{a_n\}$ diverge positivamente $(lim_{n\to\infty}a_n=+\infty)$ si $\forall M\in\mathbb{R}, \exists n_0\in\mathbb{N}: n\geq n_0\Rightarrow a_n\geq M.$

■ $\{a_n\}$ diverge negativamente $(lim_{n\to\infty}a_n=-\infty)$ si $\forall M\in\mathbb{R}, \exists n_0\in\mathbb{N}: n\geq n_0\Rightarrow a_n\leq M$.

Las sucesiones divergentes no están acotadas. $\{x_n\} \to +\infty \iff \{-x_n\} \to -\infty$.

5.2. Álgebra de sucesiones divergentes

Sean $\{a_n\}$ y $\{b_n\}$ dos sucesiones de números reales.

- 1. Si lím $a_n = +\infty$ y $\{b_n\}$ está acotada inferiormente, entonces lím $(a_n + b_n) = +\infty$.
- 2. lím $|a_n| = +\infty$ si, y sólo si, lím $\frac{1}{a_n} = 0$.
- 3. Si lím $a_n = +\infty$ y $b_n \ge k > 0$ para n grande, entonces lím $a_n b_n = +\infty$.

Simbólicamente: $+\infty + L = +\infty, +\infty + \infty = +\infty, +\infty \cdot L = +\infty$ (si L > 0), $\frac{1}{+\infty} = 0$.

5.3. Indeterminaciones

Las siguientes situaciones requieren un estudio particular: " $\infty - \infty$ ", " $0 \cdot \infty$ ", " $\frac{0}{0}$ ", " $\frac{\infty}{\infty}$ ", " 1^{∞} ", " ∞^0 ", " ∞^0 ", " 0^0 ".

5.4. Escala de infinitos

Proposición 5.1. Sean a > 1 y b > 0 números reales. Entonces:

$$\lim_{n\to\infty}\frac{\log(n)}{n^b}=\lim_{n\to\infty}\frac{n^b}{a^n}=\lim_{n\to\infty}\frac{a^n}{n^n}=0.$$

Simbólicamente: $\log(n) \ll n^b \ll a^n \ll n^n$.

5.5. Indeterminaciones con potencias y Regla del número e

Cuando se presente una sucesión $\{x_n^{y_n}\}$, se usa la fórmula $x_n^{y_n} = e^{y_n \log(x_n)}$.

Proposición 5.2 (Regla del número e). Sea $\{x_n\}$ una sucesión convergente a 1 y sea $\{y_n\}$ una sucesión cualquiera. Entonces:

9

- $\text{lim } y_n(x_n 1) = L \in \mathbb{R} \iff \lim x_n^{y_n} = e^L.$
- $\lim y_n(x_n-1) = +\infty \iff \lim x_n^{y_n} = +\infty.$
- $\text{Ifm } y_n(x_n 1) = -\infty \iff \lim x_n^{y_n} = 0.$

Ejercicios Sugeridos y Soluciones

Ejercicio 5.1. Calcular los siguientes límites:

1.
$$\lim(\sqrt{n+1}-\sqrt{n})$$

2.
$$\lim \frac{n^4+2n+7}{2n^3+n+7}$$

3.
$$\lim \frac{2^n + n}{3^n - n}$$

4. lím
$$\left(\frac{n+1}{n}\right)^n$$

5.
$$\lim \left(\frac{n^2 - n + 3}{n^2 + 2n - 2}\right)^{n+3}$$

Solución 5.1. 1. Es una indet. " $\infty - \infty$ ". Multiplicamos por el conjugado:

$$\lim_{n \to \infty} \frac{(\sqrt{n+1} - \sqrt{n})(\sqrt{n+1} + \sqrt{n})}{\sqrt{n+1} + \sqrt{n}} = \lim_{n \to \infty} \frac{n+1-n}{\sqrt{n+1} + \sqrt{n}} = \lim_{n \to \infty} \frac{1}{\sqrt{n+1} + \sqrt{n}} = 0$$

2. Es " $\frac{\infty}{\infty}$ ". El grado del numerador (4) es mayor que el del denominador (3).

$$\lim_{n \to \infty} \frac{n^4 + 2n + 7}{2n^3 + n + 7} = +\infty$$

3. Es " $\frac{\infty}{\infty}$ ". Dividimos por el término dominante (3^n) :

$$\lim_{n \to \infty} \frac{(2/3)^n + n/3^n}{1 - n/3^n} = \frac{0+0}{1-0} = 0$$

4. Es "1°". Usamos la regla del número e. $x_n = \frac{n+1}{n}, y_n = n$.

$$L = \lim_{n \to \infty} n \left(\frac{n+1}{n} - 1 \right) = \lim_{n \to \infty} n \left(\frac{1}{n} \right) = 1$$

Por tanto, el límite es $e^1 = e$.

5. Es " 1^{∞} ". $x_n = \frac{n^2 - n + 3}{n^2 + 2n - 2}$, $y_n = n + 3$.

$$L = \lim_{n \to \infty} (n+3) \left(\frac{n^2 - n + 3}{n^2 + 2n - 2} - 1 \right) = \lim_{n \to \infty} (n+3) \left(\frac{-3n + 5}{n^2 + 2n - 2} \right) = -3$$

Por tanto, el límite es e^{-3} .

6. Series de Números Reales

6.1. ¿Qué es una serie?

Una serie es un tipo particular de sucesión: la que se obtiene al sumar, uno a uno, los términos de una lista.

Definición 6.1. Sea $\{a_n\}$ una sucesión de números reales. Consideremos la sucesión $\{s_n\}$ definida como $s_n = a_1 + a_2 + \cdots + a_n = \sum_{k=1}^n a_k$. A esta sucesión $\{s_n\}$ la llamaremos serie de término general a_n y la notaremos $\sum_{n\geq 1} a_n$. A los términos s_n se les llama sumas parciales.

6.2. Series convergentes

La serie $\sum a_n$ es convergente si lo es la sucesión de sumas parciales. Llamaremos **suma** de la serie a dicho límite:

$$\sum_{n=1}^{\infty} a_n = \lim_{n \to \infty} (a_1 + a_2 + \dots + a_n)$$

Proposición 6.1 (Condición necesaria para la convergencia). Si la serie $\sum a_n$ es convergente, entonces su término general tiende a cero (lím $a_n = 0$). Recíprocamente, si el término general no tiende a cero, la serie no es convergente.

6.3. Algunos ejemplos: Progresiones geométricas y serie armónica

- Progresión geométrica: La suma parcial es $1 + r + \cdots + r^n = \frac{1 r^{n+1}}{1 r}$.
 - **Proposición 6.2.** La serie $\sum_{n\geq 0} r^n$ es convergente si y solo si $r\in (-1,1)$, y en ese caso, $\sum_{n=0}^{\infty} r^n = \frac{1}{1-r}$.
- La serie armónica: $\sum \frac{1}{n}$. Se puede demostrar que sus sumas parciales no están acotadas, por tanto, no es convergente.
- La serie armónica generalizada: $\sum \frac{1}{n^{\alpha}}$ es convergente si y solo si $\alpha > 1$.

6.4. Algunas propiedades

- $\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{k} a_n + \sum_{n=k+1}^{\infty} a_n.$

6.5. Criterios de convergencia para series de términos positivos

- Criterio de la raíz o de Cauchy: Sea $L = \lim \sqrt[n]{a_n}$. Si L < 1, $\sum a_n$ converge. Si L > 1, no converge. Si L = 1, no hay información.
- Criterio del cociente o de D'Alembert: Sea $L = \lim_{n \to \infty} \frac{a_{n+1}}{a_n}$. Si L < 1, $\sum a_n$ converge. Si L > 1, no converge. Si L = 1, no hay información.
- Criterio de comparación: Sean $\{a_n\}$, $\{b_n\}$ sucesiones de términos positivos con $a_n \leq b_n$. Si $\sum b_n$ converge, entonces $\sum a_n$ converge. Si $\sum a_n$ no converge, entonces $\sum b_n$ no converge.
- Criterio de comparación por paso al límite: Se compara $\sum a_n$ con una serie conocida $\sum b_n$ calculando $L = \lim \frac{a_n}{b_n}$. Si $0 < L < \infty$, ambas series tienen el mismo carácter.

11

Ejercicios Sugeridos y Soluciones

Ejercicio 6.1. Calcular la suma de la serie $\sum_{n=3}^{\infty} \frac{2^n-1}{3^{n+1}}$.

Solución 6.1. La separamos en dos series geométricas, usando la fórmula $\sum_{n=k}^{\infty} r^n = \frac{r^k}{1-r}$:

$$\sum_{n=3}^{\infty} \frac{2^n - 1}{3^{n+1}} = \frac{1}{3} \sum_{n=3}^{\infty} \left(\frac{2}{3}\right)^n - \frac{1}{3} \sum_{n=3}^{\infty} \left(\frac{1}{3}\right)^n$$

$$= \frac{1}{3} \left[\frac{(2/3)^3}{1 - 2/3}\right] - \frac{1}{3} \left[\frac{(1/3)^3}{1 - 1/3}\right]$$

$$= \frac{1}{3} \left[\frac{8/27}{1/3}\right] - \frac{1}{3} \left[\frac{1/27}{2/3}\right]$$

$$= \frac{1}{3} \left(\frac{8}{9}\right) - \frac{1}{3} \left(\frac{1}{18}\right)$$

$$= \frac{8}{27} - \frac{1}{54} = \frac{16 - 1}{54} = \frac{15}{54} = \frac{5}{18}$$

Ejercicio 6.2. ¿Es convergente la serie $\sum \left(\frac{1+n}{2+n}\right)^{3n^2+1}$?

Solución 6.2. Usamos el criterio de la raíz. Sea $a_n = \left(\frac{n+1}{n+2}\right)^{3n^2+1}$.

$$\sqrt[n]{a_n} = \left(\frac{n+1}{n+2}\right)^{\frac{3n^2+1}{n}} = \left(\frac{n+1}{n+2}\right)^{3n+1/n}$$

El límite de la base es lím $\frac{n+1}{n+2} = 1$. El límite del exponente es lím $(3n+1/n) = \infty$. Tenemos una indeterminación 1^{∞} . Calculamos el límite de la raíz usando la regla del número e:

$$\lim_{n \to \infty} \sqrt[n]{a_n} = \lim_{n \to \infty} \left(1 + \frac{-1}{n+2} \right)^{3n+1/n}$$

El exponente para la 'e' será:

$$L = \lim_{n \to \infty} (3n + 1/n) \left(\frac{-1}{n+2} \right) = \lim_{n \to \infty} \frac{-3n - 1/n}{n+2} = -3$$

El límite es e^{-3} . Como $L = e^{-3} < 1$, la serie **es convergente**.

Parte III

Tema 3: Límite Funcional y Cálculo de Límites

7. Límite Funcional

7.1. Definición de Límite Funcional

Definición 7.1. Sea I un intervalo, $f: I \to \mathbb{R}$, y a un punto de I o de sus extremos. Se dice que el **límite de** f(x) **cuando** x **tiende a** a es L, y se escribe $\lim_{x\to a} f(x) = L$, si para toda sucesión $\{x_n\}$ que converge a a (con $x_n \neq a$), la sucesión de sus imágenes $\{f(x_n)\}$ converge a L.

7.2. Límites Laterales

- Límite por la derecha: $\lim_{x\to a^+} f(x) = L$. Se considera únicamente sucesiones $\{x_n\}$ que se acercan a a con valores mayores que a $(x_n > a)$.
- Límite por la izquierda: $\lim_{x\to a^-} f(x) = L$. Análogamente, con valores menores que a $(x_n < a)$.

Un límite existe si y solo si los dos límites laterales existen y son iguales.

7.3. Álgebra de Límites Finitos

Sean $\lim_{x\to a} f(x)$ y $\lim_{x\to a} g(x)$ finitos.

- 1. $\lim_{x\to a} (f(x) + g(x)) = \lim_{x\to a} f(x) + \lim_{x\to a} g(x)$.
- 2. $\lim_{x\to a} (f(x)g(x)) = \lim_{x\to a} f(x) \cdot \lim_{x\to a} g(x)$.
- 3. Si $\lim_{x\to a} g(x) \neq 0$, entonces $\lim_{x\to a} \frac{f(x)}{g(x)} = \frac{\lim_{x\to a} f(x)}{\lim_{x\to a} g(x)}$.
- 4. Si $\lim_{x\to a} f(x) = 0$ y g es una función acotada, entonces $\lim_{x\to a} (f(x)g(x)) = 0$.

7.4. Límites Infinitos y Límites en el Infinito

- Asíntotas Verticales: Se producen cuando $\lim_{x\to a} f(x) = \pm \infty$.
- Asíntotas Horizontales: Se producen cuando $\lim_{x\to\pm\infty} f(x) = L$.

El álgebra de límites se extiende para incluir operaciones con $\pm \infty$, dando lugar a las indeterminaciones ya conocidas.

8. Cálculo de Límites

8.1. Indeterminaciones

Al igual que con sucesiones, en el cálculo de límites funcionales aparecen indeterminaciones que hay que resolver:

$$\infty - \infty$$
, $0 \cdot \infty$, $\frac{0}{0}$, $\frac{\infty}{\infty}$, 1^{∞} , 0^{0} , ∞^{0}

8.2. Escala de Infinitos

Para b > 0 y a > 1, la jerarquía de crecimiento cuando $x \to +\infty$ es:

$$\lim_{x \to +\infty} \frac{\log(x)}{x^b} = \lim_{x \to +\infty} \frac{x^b}{a^x} = \lim_{x \to +\infty} \frac{a^x}{x^x} = 0$$

8.3. Expresiones Potenciales y Regla del Número e

Para calcular el límite de $f(x)^{g(x)}$, se utiliza la identidad $f(x)^{g(x)} = e^{g(x)\log(f(x))}$. Para la indeterminación 1^{∞} , donde lím $_{x\to a} f(x) = 1$ y lím $_{x\to a} g(x) = \infty$, se aplica la regla:

$$\lim_{x \to a} f(x)^{g(x)} = e^L, \quad \text{donde} \quad L = \lim_{x \to a} g(x)[f(x) - 1]$$

8.4. Ejercicios Sugeridos y Soluciones

Ejercicio 8.1. Calcula $\lim_{x\to+\infty} \frac{e^x+2x+\log(x)}{x^3+3e^x+1}$

Solución 8.1. Es una indeterminación del tipo " $\frac{\infty}{\infty}$ ". El término dominante tanto en el numerador como en el denominador es e^x . Dividimos todo por e^x :

$$\lim_{x \to +\infty} \frac{1 + 2\frac{x}{e^x} + \frac{\log(x)}{e^x}}{\frac{x^3}{e^x} + 3 + \frac{1}{e^x}}$$

Por la escala de infinitos, todos los cocientes tienden a 0.

$$\frac{1+0+0}{0+3+0} = \frac{1}{3}$$

Ejercicio 8.2. Calcula $\lim_{x\to +\infty} x^{1/x}$ y $\lim_{x\to 0^+} x^x$.

Solución 8.2. Ambos son indeterminaciones (∞^0 y 0^0). Usamos la identidad $f(x)^{g(x)} = e^{g(x)\log(f(x))}$.

- Para lím $_{x\to +\infty} x^{1/x}$: Calculamos el límite del exponente lím $_{x\to +\infty} \frac{1}{x} \log(x) = \text{lím}_{x\to +\infty} \frac{\log(x)}{x} = 0$ (por escala de infinitos). El límite es $e^0 = \mathbf{1}$.
- Para lím_{$x\to 0^+$} x^x : Calculamos el límite del exponente lím_{$x\to 0^+$} $x\log(x)$. Esto es una indeterminación $0\cdot (-\infty)$, que se puede resolver por L'Hôpital escribiéndola como $\frac{\log(x)}{1/x}$, cuyo límite es 0. El límite final es $e^0=1$.

14

Ejercicio 8.3. Calcula
$$\lim_{x\to+\infty} \left(\frac{x^2+1}{x^2+3x}\right)^{x^2+\log(x)}$$
.

Solución 8.3. Es una indeterminación 1^{∞} . Aplicamos la regla del número e.

$$L = \lim_{x \to +\infty} (x^2 + \log(x)) \left[\frac{x^2 + 1}{x^2 + 3x} - 1 \right]$$

$$L = \lim_{x \to +\infty} (x^2 + \log(x)) \left[\frac{x^2 + 1 - (x^2 + 3x)}{x^2 + 3x} \right]$$

$$L = \lim_{x \to +\infty} (x^2 + \log(x)) \left[\frac{1 - 3x}{x^2 + 3x} \right]$$

$$L = \lim_{x \to +\infty} \frac{-3x^3 - 3x \log(x) + x^2 + \log(x)}{x^2 + 3x}$$

Es un cociente de polinomios donde el grado del numerador (3) es mayor que el del denominador (2).

$$L = -\infty$$

Por tanto, el límite original es $e^{-\infty} = \mathbf{0}$.

9. Límite Funcional

9.1. Definición de Límite Funcional

Definición 9.1. Sea I un intervalo, $f: I \to \mathbb{R}$, y a un punto de I o de sus extremos. Se dice que el **límite de** f(x) **cuando** x **tiende a** a es L, y se escribe $\lim_{x\to a} f(x) = L$, si para toda sucesión $\{x_n\}$ que converge a a (con $x_n \neq a$), la sucesión de sus imágenes $\{f(x_n)\}$ converge a L.

9.2. Límites Laterales

- Límite por la derecha: $\lim_{x\to a^+} f(x) = L$. Se considera únicamente sucesiones $\{x_n\}$ que se acercan a a con valores mayores que a $(x_n > a)$.
- Límite por la izquierda: $\lim_{x\to a^-} f(x) = L$. Análogamente, con valores menores que a $(x_n < a)$.

Un límite existe si y solo si los dos límites laterales existen y son iguales.

9.3. Álgebra de Límites Finitos

Sean $\lim_{x\to a} f(x)$ y $\lim_{x\to a} g(x)$ finitos.

- 1. $\lim_{x\to a} (f(x) + g(x)) = \lim_{x\to a} f(x) + \lim_{x\to a} g(x)$.
- 2. $\lim_{x\to a} (f(x)g(x)) = \lim_{x\to a} f(x) \cdot \lim_{x\to a} g(x)$.
- 3. Si $\lim_{x\to a} g(x) \neq 0$, entonces $\lim_{x\to a} \frac{f(x)}{g(x)} = \frac{\lim_{x\to a} f(x)}{\lim_{x\to a} g(x)}$.
- 4. Si $\lim_{x\to a} f(x) = 0$ y g es una función acotada, entonces $\lim_{x\to a} (f(x)g(x)) = 0$.

9.4. Límites Infinitos y Límites en el Infinito

- Asíntotas Verticales: Se producen cuando $\lim_{x\to a} f(x) = \pm \infty$.
- Asíntotas Horizontales: Se producen cuando $\lim_{x\to\pm\infty} f(x) = L$.

El álgebra de límites se extiende para incluir operaciones con $\pm \infty$, dando lugar a las indeterminaciones ya conocidas.

10. Cálculo de Límites

10.1. Indeterminaciones

Al igual que con sucesiones, en el cálculo de límites funcionales aparecen indeterminaciones que hay que resolver:

10.2. Escala de Infinitos

Para b>0 y a>1, la jerarquía de crecimiento cuando $x\to+\infty$ es:

$$\lim_{x \to +\infty} \frac{\log(x)}{x^b} = \lim_{x \to +\infty} \frac{x^b}{a^x} = \lim_{x \to +\infty} \frac{a^x}{x^x} = 0$$

10.3. Expresiones Potenciales y Regla del Número e

Para calcular el límite de $f(x)^{g(x)}$, se utiliza la identidad $f(x)^{g(x)} = e^{g(x)\log(f(x))}$. Para la indeterminación 1^{∞} , donde $\lim_{x\to a} f(x) = 1$ y $\lim_{x\to a} g(x) = \infty$, se aplica la regla:

$$\lim_{x \to a} f(x)^{g(x)} = e^L, \quad \text{donde} \quad L = \lim_{x \to a} g(x)[f(x) - 1]$$

Ejercicios Sugeridos y Soluciones (Límites)

Ejercicio 10.1. Calcula $\lim_{x\to+\infty} \frac{e^x+2x+\log(x)}{x^3+3e^x+1}$.

Solución 10.1. Es una indeterminación del tipo " $\frac{\infty}{\infty}$ ". El término dominante es e^x . Dividimos todo por e^x :

$$\lim_{x \to +\infty} \frac{1 + 2\frac{x}{e^x} + \frac{\log(x)}{e^x}}{\frac{x^3}{e^x} + 3 + \frac{1}{e^x}} = \frac{1 + 0 + 0}{0 + 3 + 0} = \frac{1}{3}$$

Ejercicio 10.2. Calcula $\lim_{x\to+\infty} \left(\frac{x^2+1}{x^2+3x}\right)^{x^2+\log(x)}$.

Solución 10.2. Es una indeterminación 1^{∞} . Aplicamos la regla del número e.

$$L = \lim_{x \to +\infty} (x^2 + \log(x)) \left[\frac{x^2 + 1}{x^2 + 3x} - 1 \right] = \lim_{x \to +\infty} (x^2 + \log(x)) \left[\frac{1 - 3x}{x^2 + 3x} \right]$$
$$L = \lim_{x \to +\infty} \frac{-3x^3 - 3x \log(x) + x^2 + \log(x)}{x^2 + 3x} = -\infty$$

El límite original es $e^{-\infty} = \mathbf{0}$.

11. Continuidad de Funciones

11.1. Definición de Continuidad

Definición 11.1. Sea una función $f:A\to\mathbb{R}$ y un punto $a\in A$. Se dice que f es continua en a si se cumple que:

$$\lim_{x \to a} f(x) = f(a)$$

11.2. Operaciones y Teoremas Fundamentales

- Las operaciones (suma, producto, cociente) y la composición de funciones continuas dan como resultado funciones continuas en sus dominios.
- Teorema de Bolzano: Si f es continua en [a,b] y f(a) y f(b) tienen signos distintos, existe un $c \in (a,b)$ tal que f(c) = 0.
- Teorema del Valor Intermedio: Una función continua en un intervalo toma todos los valores intermedios entre dos puntos de su imagen.
- Teorema de Weierstrass: Una función continua en un intervalo cerrado y acotado [a, b] alcanza en él un máximo y un mínimo absolutos.

Ejercicios Sugeridos y Soluciones (Continuidad)

Ejercicio 11.1 (Aplicación del Teorema de Bolzano). Demostrar que la ecuación $\cos(x) = \arctan(x) - 1$ tiene al menos una solución.

Solución 11.1. Consideremos la función $f(x) = \cos(x) - \arctan(x) + 1$. Esta función es continua en todo \mathbb{R} . Evaluamos en los extremos de un intervalo, por ejemplo $[0, \pi]$:

- $f(0) = \cos(0) \arctan(0) + 1 = 1 0 + 1 = 2 > 0$.
- $f(\pi) = \cos(\pi) \arctan(\pi) + 1 = -1 \arctan(\pi) + 1 = -\arctan(\pi) < 0$.

Como f es continua en $[0, \pi]$ y cambia de signo en los extremos, el Teorema de Bolzano garantiza que existe al menos un $c \in (0, \pi)$ tal que f(c) = 0, que es una solución de la ecuación.

Parte IV

Tema 4: Cálculo Diferencial

12. La Derivada de una Función

12.1. Definición de Derivada

Definición 12.1. Sea una función $f: I \to \mathbb{R}$ y un punto $a \in I$. Se dice que f es derivable en a si existe y es finito el siguiente límite:

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

Al valor f'(a) se le llama la derivada de f en el punto a. Una notación alternativa usando un incremento h es:

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

12.2. Derivadas Laterales

De forma análoga a los límites, se pueden definir las derivadas laterales:

- Derivada por la derecha: $f'(a^+) = \lim_{x \to a^+} \frac{f(x) f(a)}{x a}$.
- Derivada por la izquierda: $f'(a^-) = \lim_{x \to a^-} \frac{f(x) f(a)}{x a}$

Una función es derivable en un punto si y solo si existen sus derivadas laterales y coinciden.

Ejercicio 12.1. Estudiar la derivabilidad de f(x) = |x| en x = 0.

Solución 12.1. Calculamos las derivadas laterales en a = 0.

- $f'(0^+) = \lim_{x \to 0^+} \frac{|x| |0|}{x 0} = \lim_{x \to 0^+} \frac{x}{x} = 1.$
- $f'(0^-) = \lim_{x \to 0^-} \frac{|x| |0|}{x 0} = \lim_{x \to 0^-} \frac{-x}{x} = -1.$

Como las derivadas laterales son distintas, la función **no es derivable** en x=0.

12.3. Relación entre Continuidad y Derivabilidad

Proposición 12.1. Si una función es derivable en un punto, entonces es continua en dicho punto.

El recíproco no es cierto. Una función puede ser continua pero no derivable, como f(x) = |x| en x = 0.

12.4. Interpretación Geométrica y Reglas de Derivación

La derivada f'(a) representa la **pendiente de la recta tangente** a la gráfica de la función en el punto (a, f(a)). La ecuación de dicha recta es:

$$y = f(a) + f'(a)(x - a)$$

Las reglas de derivación para la suma, producto, cociente y la **regla de la cadena** $(g \circ f)'(a) = g'(f(a)) \cdot f'(a)$ permiten calcular la derivada de funciones complejas.

13. Teorema del Valor Medio y Consecuencias

13.1. Extremos Relativos y Absolutos

Definición 13.1. • Un punto a es un **máximo (o mínimo) absoluto** si $f(x) \le f(a)$ (o $f(x) \ge f(a)$) para todo x en el dominio.

■ Un punto a es un **máximo (o mínimo) relativo** si $f(x) \le f(a)$ (o $f(x) \ge f(a)$) para todo x en un entorno de a.

Proposición 13.1 (Condición Necesaria de Extremo Relativo). Si f es derivable en a y alcanza un extremo relativo en a, entonces f'(a) = 0. A estos puntos se les llama **puntos** críticos.

13.2. Teoremas de Rolle y del Valor Medio

Proposición 13.2 (Teorema de Rolle). Sea $f : [a, b] \to \mathbb{R}$ continua en [a, b] y derivable en (a, b). Si f(a) = f(b), entonces existe un $c \in (a, b)$ tal que f'(c) = 0.

Proposición 13.3 (Teorema del Valor Medio). Sea $f:[a,b] \to \mathbb{R}$ continua en [a,b] y derivable en (a,b). Entonces existe un $c \in (a,b)$ tal que:

$$f(b) - f(a) = f'(c)(b - a)$$

Geométricamente, existe un punto donde la pendiente de la recta tangente es paralela a la recta secante que une los extremos del intervalo.

13.3. Monotonía, Concavidad y Convexidad

El signo de la primera y segunda derivada determina la forma de la función:

- Monotonía:
 - Si $f'(x) \ge 0$ en un intervalo I, f es **creciente** en I.
 - Si $f'(x) \leq 0$ en I, f es **decreciente** en I.
- Concavidad/Convexidad:
 - Si $f''(x) \ge 0$ en I, f es **convexa** en I (la gráfica se curva "hacia arriba").
 - Si $f''(x) \le 0$ en I, f es **cóncava** en I (la gráfica se curva "hacia abajo").

13.4. Criterios para determinar extremos relativos

- Criterio de la primera derivada: Si f'(a) = 0, se estudia el signo de f'(x) a la izquierda y derecha de a. Si el signo cambia de '+' a '-', hay un máximo relativo. Si cambia de '-' a '+', hay un mínimo relativo.
- Criterio de la segunda derivada: Sea f'(a) = 0. Si f''(a) > 0, hay un mínimo relativo. Si f''(a) < 0, hay un máximo relativo. Si f''(a) = 0, el criterio no decide y se usan derivadas de orden superior.

14. Reglas de L'Hôpital

Las reglas de L'Hôpital son una herramienta fundamental para resolver indeterminaciones del tipo " $\frac{0}{0}$ " y " $\frac{\infty}{\infty}$ ".

Proposición 14.1 (Reglas de L'Hôpital). Sean f y g funciones derivables cerca de a y $g'(x) \neq 0$.

- Primera Regla (0/0): Si $\lim_{x\to a} f(x) = \lim_{x\to a} g(x) = 0$ y existe $\lim_{x\to a} \frac{f'(x)}{g'(x)} = L$, entonces $\lim_{x\to a} \frac{f(x)}{g(x)} = L$.
- Segunda Regla (∞/∞) : Si $\lim_{x\to a} |g(x)| = +\infty$ y existe $\lim_{x\to a} \frac{f'(x)}{g'(x)} = L$, entonces $\lim_{x\to a} \frac{f(x)}{g(x)} = L$.

Estas reglas también son válidas para límites en $\pm \infty$ y para cuando L es $\pm \infty$.

Ejercicio 14.1. Estudiar para qué valor de a, la función $f(x) = \begin{cases} \frac{\ln(1-\sin(x))-2\ln(\cos(x))}{\sin(x)} & \text{si } x \neq 0 \\ a & \text{si } x = 0 \end{cases}$ es continua en cero.

Solución 14.1. Para que sea continua, $\lim_{x\to 0} f(x)$ debe ser igual a f(0) = a. Calculamos el límite. Es una indeterminación 0/0. Aplicamos L'Hôpital:

$$\lim_{x \to 0} \frac{\frac{-\cos(x)}{1 - \sin(x)} - 2\frac{-\sin(x)}{\cos(x)}}{\cos(x)} = \lim_{x \to 0} \frac{\frac{-\cos(x)}{1 - \sin(x)} + 2\tan(x)}{\cos(x)}$$

Evaluando en x = 0:

$$\frac{\frac{-1}{1-0} + 2(0)}{1} = -1$$

Por tanto, para que la función sea continua, a = -1.

15. Polinomio de Taylor

15.1. Definición y Propiedades

Definición 15.1. Sea f una función n veces derivable en a. El Polinomio de Taylor de orden n de f centrado en a es:

$$P_n(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x - a)^n$$

Este es el único polinomio de grado $\leq n$ que tiene las mismas n primeras derivadas que f en el punto a. Si a=0, se llama Polinomio de McLaurin.

Proposición 15.1 (Fórmula de Taylor con resto de Lagrange). Si f es n + 1 veces derivable, el error cometido al aproximar f(x) por $P_n(x)$ es:

$$R_n(x) = f(x) - P_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1}$$

para algún c entre a y x.

Ejercicio 15.1. Calcula \sqrt{e} con un error absoluto menor que 10^{-3} .

Solución 15.1. Usamos el polinomio de McLaurin (a=0) de $f(x)=e^x$. Queremos aproximar $f(1/2)=e^{1/2}$. El resto de Lagrange es $R_n(1/2)=\frac{f^{(n+1)}(c)}{(n+1)!}(1/2)^{n+1}=\frac{e^c}{(n+1)!2^{n+1}}$, con $c\in(0,1/2)$. Para acotar el error, usamos el valor más grande posible para e^c , que es $e^{1/2}<\sqrt{3}<2$. $|R_n(1/2)|<\frac{2}{(n+1)!2^{n+1}}=\frac{1}{(n+1)!2^n}$. Buscamos n tal que $\frac{1}{(n+1)!2^n}<10^{-3}$.

- $n=1: \frac{1}{2! \cdot 2} = 1/4$
- $n=2: \frac{1}{3! \cdot 4} = 1/24$
- $n=3: \frac{1}{4!\cdot 8} = 1/192$
- n=4: $\frac{1}{51.16} = \frac{1}{120.16} = 1/1920 < 10^{-3}$.

Necesitamos el polinomio de orden 4: $P_4(x) = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \frac{x^4}{24}$. $\sqrt{e} \approx P_4(1/2) = 1 + \frac{1}{2} + \frac{1}{8} + \frac{1}{48} + \frac{1}{384} \approx \mathbf{1,6484375}$.

16. Aplicaciones del Cálculo Diferencial

16.1. Cálculo de la imagen, desigualdades y número de soluciones

El estudio de la monotonía y los extremos de una función permite:

- Calcular la imagen de una función: Encontrando sus extremos absolutos y los límites en los extremos de su dominio.
- Probar desigualdades: Para probar $f(x) \ge g(x)$, se puede estudiar el mínimo de la función h(x) = f(x) g(x).
- Calcular el número de soluciones de una ecuación: La ecuación f(x) = k tiene tantas soluciones como veces la gráfica de f corte la recta horizontal y = k. Esto se determina estudiando la monotonía y los extremos relativos de f.

16.2. Problemas de Optimización

Ejercicio 16.1. Calcula las dimensiones del rectángulo de mayor área que puede inscribirse en un semicírculo de radio r.

Solución 16.1. Sea el semicírculo definido por $y=\sqrt{r^2-x^2}$ para $x\in [-r,r]$. Un rectángulo inscrito tendrá su base en el eje x y sus vértices superiores en la curva. Si un vértice es (x,y), la base del rectángulo es 2x y la altura es y. El área a maximizar es $A(x)=2x\cdot y=2x\sqrt{r^2-x^2}$, para $x\in [0,r]$. Calculamos la derivada A'(x) e igualamos a 0 para encontrar los puntos críticos.

$$A'(x) = 2\sqrt{r^2 - x^2} + 2x\frac{-2x}{2\sqrt{r^2 - x^2}} = 2\sqrt{r^2 - x^2} - \frac{2x^2}{\sqrt{r^2 - x^2}} = 0$$

$$2(r^2 - x^2) = 2x^2 \implies r^2 - x^2 = x^2 \implies r^2 = 2x^2 \implies x = \frac{r}{\sqrt{2}}$$

Este es el punto crítico. Se puede comprobar que es un máximo. Las dimensiones son:

- Base: $2x = 2\frac{r}{\sqrt{2}} = r\sqrt{2}$.
- Altura: $y = \sqrt{r^2 (r/\sqrt{2})^2} = \sqrt{r^2 r^2/2} = \sqrt{r^2/2} = \frac{r}{\sqrt{2}}$.

Parte V

Tema 5: Cálculo Integral

17. La Integral de Riemann

17.1. Planteamiento del problema: el área bajo una curva

Dada una función $f:[a,b] \to \mathbb{R}$ acotada y no negativa, el problema de la integral de Riemann consiste en asignar un valor numérico al área de la región delimitada por la gráfica de la función, el eje de abscisas y las rectas verticales x=a y x=b. La idea es aproximar este área mediante la suma de las áreas de rectángulos.

17.2. Definición de la Integral de Riemann

Se considera una **partición** del intervalo [a, b], que es un conjunto finito de puntos $P = \{x_0, x_1, ..., x_n\}$ tal que $a = x_0 < x_1 < ... < x_n = b$. Para esta partición, se define la **suma de Riemann** como:

$$\Sigma(f, P) = \sum_{i=1}^{n} f(t_i)(x_i - x_{i-1}), \text{ donde } t_i \in [x_{i-1}, x_i]$$

La **integral de Riemann** de f en [a,b] se define como el límite de estas sumas cuando la .anchura" de los rectángulos de la partición tiende a cero:

$$\int_{a}^{b} f(x)dx = \lim_{|P| \to 0} \Sigma(f, P)$$

Por convenio, $\int_b^a f(x)dx = -\int_a^b f(x)dx$ y $\int_a^a f(x)dx = 0$.

17.3. Funciones Integrables y Propiedades

No todas las funciones son integrables, pero las que se usan habitualmente en ingeniería sí lo son:

- Las funciones continuas en [a, b] son integrables.
- Las funciones monótonas en [a, b] son integrables.
- Las funciones con un número finito de discontinuidades en [a, b] son integrables.

Proposición 17.1 (Propiedades de la Integral). Sean f y g funciones integrables en [a, b].

- 1. Linealidad: $\int_a^b (\lambda f(x) + \mu g(x)) dx = \lambda \int_a^b f(x) dx + \mu \int_a^b g(x) dx$.
- 2. Monotonía: Si $f(x) \leq g(x)$ para todo $x \in [a, b]$, entonces $\int_a^b f(x) dx \leq \int_a^b g(x) dx$.
- 3. Aditividad del intervalo: Para cualquier $c \in (a, b)$, se cumple que $\int_a^b f(x)dx = \int_a^c f(x)dx + \int_c^b f(x)dx$.

17.4. La Regla de Barrow y las Integrales Impropias

Definición 17.1 (Primitiva). Una función G(x) es una primitiva de f(x) si G'(x) = f(x).

Proposición 17.2 (Regla de Barrow). Sea $f:[a,b] \to \mathbb{R}$ una función integrable y sea G una primitiva de f. Entonces:

$$\int_{a}^{b} f(x)dx = G(b) - G(a)$$

Definición 17.2 (Integrales Impropias). Se generaliza el cálculo de integrales a intervalos no acotados o a funciones no acotadas mediante el uso de límites:

$$\int_{a}^{+\infty} f(x)dx = \lim_{t \to +\infty} \int_{a}^{t} f(x)dx$$

Ejercicio 17.1. Calcular $\int_0^{\pi} \sin(x) dx$ y $\int_0^{+\infty} \frac{dx}{1+x^2}$.

Solución 17.1. • Una primitiva de sin(x) es G(x) = -cos(x). Aplicando Barrow:

$$\int_0^{\pi} \sin(x) dx = [-\cos(x)]_0^{\pi} = (-\cos(\pi)) - (-\cos(0)) = (-(-1)) - (-1) = 1 + 1 = 2$$

 \blacksquare Una primitiva de $\frac{1}{1+x^2}$ es $G(x)=\arctan(x).$ Es una integral impropia:

$$\int_{0}^{+\infty} \frac{dx}{1+x^{2}} = \lim_{t \to +\infty} [\arctan(x)]_{0}^{t} = \lim_{t \to +\infty} (\arctan(t) - \arctan(0)) = \frac{\pi}{2} - 0 = \frac{\pi}{2}$$

18. El Teorema Fundamental del Cálculo

Este teorema conecta los dos conceptos principales del cálculo: la derivada y la integral.

Definición 18.1 (Función Integral). Sea $f: I \to \mathbb{R}$ una función integrable y sea $a \in I$. La **integral indefinida** o **función integral** de f con base a es la función $F: I \to \mathbb{R}$ definida como:

$$F(x) = \int_{a}^{x} f(t)dt$$

Proposición 18.1 (Teorema Fundamental del Cálculo). Sea f integrable en un intervalo I y sea $F(x) = \int_a^x f(t)dt$.

- 1. F es una función continua en I.
- 2. Si además f es continua en un punto $x \in I$, entonces F es derivable en x y se cumple que F'(x) = f(x).

Esto significa que la función integral de una función continua es una de sus primitivas. Dos primitivas de una misma función se diferencian solo en una constante.

18.1. Regla de Derivación de Funciones Definidas por Integrales

Combinando el TFC con la regla de la cadena, obtenemos una regla general para derivar integrales cuyos límites de integración son funciones:

$$\left(\int_{h(x)}^{g(x)} f(t)dt\right)' = f(g(x))g'(x) - f(h(x))h'(x)$$

Ejercicio 18.1. Calcular la derivada de $H(x) = \int_{x^2}^{\sin(x)} \ln(1+t^2) dt$.

Solución 18.1. Aplicamos la regla anterior con $f(t) = \ln(1+t^2)$, $g(x) = \sin(x)$ y $h(x) = x^2$:

$$H'(x) = \underbrace{\ln(1 + \sin^2(x))}_{f(g(x))} \cdot \underbrace{\cos(x)}_{g'(x)} - \underbrace{\ln(1 + (x^2)^2)}_{f(h(x))} \cdot \underbrace{2x}_{h'(x)} = \cos(x) \ln(1 + \sin^2(x)) - 2x \ln(1 + x^4)$$

Ejercicio 18.2. Calcular $\lim_{x\to 0} \frac{\int_0^{x^2} e^{t^2} dt}{\sin(x^2)}$.

Solución 18.2. Al evaluar en x=0, obtenemos una indeterminación 0/0. Aplicamos la Regla de L'Hôpital. Para derivar el numerador, usamos el TFC: $(\int_0^{x^2} e^{t^2} dt)' = e^{(x^2)^2} \cdot 2x = 2xe^{x^4}$.

$$\lim_{x \to 0} \frac{2xe^{x^4}}{\cos(x^2) \cdot 2x} = \lim_{x \to 0} \frac{e^{x^4}}{\cos(x^2)} = \frac{e^0}{\cos(0)} = \frac{1}{1} = \mathbf{1}$$

19. Cálculo de Primitivas

19.1. Integración por Partes

Se basa en la derivada de un producto. Es útil para integrar productos de funciones.

$$\int u(x)v'(x)dx = u(x)v(x) - \int v(x)u'(x)dx \quad \text{o, de forma abreviada,} \quad \int u\,dv = uv - \int v\,du$$

Ejercicio 19.1. Calcular $\int xe^x dx$.

Solución 19.1. Elegimos u = x y $dv = e^x dx$. Entonces du = dx y $v = e^x$.

$$\int xe^x dx = xe^x - \int e^x dx = xe^x - e^x + C = e^x(x-1) + C$$

19.2. Integración por Cambio de Variable (Sustitución)

Permite transformar una integral complicada en una más sencilla.

$$\int f(g(x))g'(x)dx = \int f(t)dt, \text{ haciendo el cambio } t = g(x)$$

19.3. Integración de Funciones Racionales

Para integrar $\int \frac{P(x)}{Q(x)} dx$:

- 1. Si grado $(P) \ge \operatorname{grado}(Q)$, se realiza la división de polinomios: $\frac{P(x)}{Q(x)} = C(x) + \frac{R(x)}{Q(x)}$.
- 2. Se descompone la fracción propia $\frac{R(x)}{Q(x)}$ en **fracciones simples**, dependiendo de las raíces del denominador Q(x).
 - Raíces reales simples: $\frac{A}{x-a} \to \text{logaritmo}$.
 - Raíces reales múltiples: $\frac{A}{(x-a)^n}$ → potencia.
 - Raíces complejas simples: $\frac{Ax+B}{x^2+px+q}$ → logaritmo + arcotangente.

19.4. Integración de Funciones Trigonométricas e Irracionales

Existen cambios de variable estandarizados para diferentes tipos de integrales trigonométricas (según la paridad de los exponentes) e irracionales (sustituciones trigonométricas).

Ejercicio 19.2. Calcular $\int \cos^2(x) dx$.

Solución 19.2. Se usa la identidad del ángulo doble: $\cos^2(x) = \frac{1+\cos(2x)}{2}$.

$$\int \cos^2(x) dx = \int \frac{1 + \cos(2x)}{2} dx = \frac{1}{2} \int 1 dx + \frac{1}{2} \int \cos(2x) dx = \frac{x}{2} + \frac{\sin(2x)}{4} + C$$