MLDS Homework 2-2 Report

這一題實做的model為seq2seq的attention版本,attention只採用第二層GRU的hidden,每次隨機從dataset取100句,每個batch更新一次,詳細的參數設定以及Attention架構圖為以下:

- dictionary size = 71000/6800
- max length = 15
- batch size = 100
- encoder/decoder hidden size = 800
- encoder/decoder gru = 2 layers
- encoder/decoder optimizer = Adam
- learning rate = 0.001
- epochs = 100000~150000

在training中我們比較了兩種變數對於model的影響,分別為dictionary size以及teacher forcing rate。dictionary size比較分別移除frequency<5以及frequency<150的詞,分別得到約71000字以及6800字。teacher forcing rate則比較constant值1.0以及0.5。另外在testing過程中分別比較有無beam search的差異。在有beam search的testing中我們發現預測出短句的機率較高(原因是因為短句後面皆為{PAD}的機率遠高於其他詞),因此我們加了lenghth normalization,將{EOS}後面預測出來的字的機率不計算,只以預測句中到{EOS}的長度除{EOS}前的機率log相加。結果為下表:

	Beam Search	Length Normalization	Perplexity(<100)	Correlation(>45)
largeDic highTF	No	1	8.886030	0.55451
	Yes	No	8.224528	0.51542
		Yes	7.736847	0.52743
smallDic highTF	No	1	10.113701	0.53234
	Yes	No	8.191511	0.49922
		Yes	7.510231	0.50701
LargeDic lowTF	No	1	59.103105	0.42009

	Yes	No	31.204263	0.47535
		Yes	34.374392	0.44825
smallDic lowTF	No	1	48.116261	0.45997
	Yes	No	23.086570	0.50935
		Yes	26.151728	0.47528

註: largeDic: 71000 words, smallDic: 6800 words

highTF: 1.0 teacher forcing, lowTF: 0.5 teacher forcing

由上表可知,dictionary大小對於Perplexity以及Correlation的影響並不大也無直接相關,推測可能常用的詞也就幾千個左右,開在大無法再進步了。

接著是teacher forcing=1.0的方法下去train的結果會比teacher forcing=0.5的結果Perplexity低很多,Correlation也高出大約0.1,可能是因為task較難一開始不使用teacher forcing沒辦法讓這個model學會。下方左圖為teacher forcing=1.0、右圖為teacher forcing=0.5的幾句output結果比較,可以明顯看出左圖的句子都大多有合理的文法與意思,但是右圖的句子就顯得意義不明。

因為teacher forcing=0.5可以視為train失敗,因此再來以下情況都只針對teacher forcing=1.0 做比較。

比較beam search結果,可以看到在Perplexity都有下降的趨勢,表示用詞的豐富度增高,Correlation上會因為用了比較不相關的詞而略為下降。最後是比較使用beam search下有無length normalize的結果,length normalize皆可以讓beam search的Perplexity下降以及Correlation上升,結果變更好。下方三張圖從左到右分別為1. 沒有beam search、2. 有beam search沒有length normalize、3. 有beam search有length normalize。

README:

Dependencies:

- pytorch 0.3.1
- numpy 1.14.1

training與testing指令:

- training: python3 2-2/train_2gru_attn.py [clr_conversation.txt] [word_min_freq] [teacher forcing ratio]
- testing: python3 2-2/test_2gru_attn.py [word_dict.txt] [encoder model] [decoder model] [test_input path] [test_output path] [is_beam_search] [is_beam_normalize]

best result 指令:

- training: python3 train_2gru_attn.py 5 1.0 => output: encoder.pt decoder.pt word_dict.txt
- testing: python3 test_2gru_attn.py word_dict.txt encoder.pt decoder.pt test_input.txt test_output.txt 0 0 => output: test_output.txt

分工表			
r06725008 郭毓棠	2-1 model/train、2-1 report		
r06725005 郝思喬	2-2 model/train、2-2 beam norm、2-2 report		
r06725020 劉冠宏	2-1 attention、2-2 attention、2-2 beam search		