

Background

- Key Statistic for predicting population health
- Regularly monitored by WHO and health departments of all countries
- Various global characteristics affect its trend.
- Changed significantly in the past 20 years dur to increased growth in health sector

Problem Statement

Assessing the relationship between the various predictive factors that affect an individual's life expectancy in 193 countries.

Correlation Heatmap

Top Positive correlations:

- Schooling
- Income

- 0.8

0.6

- 0.4

- 0.2

- 0.0

- -0.2

- -0.4

-0.6

Top Negative correlations:

- Adult Mortality
- HIV/AIDS

Life Expectancy over the years

Chloropleth map of Life Expectancy

Animated version: https://skundu01.github.io/

Annual Evolution of Life Expectancy

Distribution of Life Expectancy in Developing vs Developed Countries

Violin plot of Life expectancy based on status

Life expectancy Based on Countries status

Life Expectancy vs Adult Mortality

Life Expectancy vs Infant Deaths

Life Expectancy vs Schooling

Life Expectancy vs GDP

Life expectancy vs Alcohol Consumption

Life Expectancy vs HIV/AIDS

Life Expectation vs Total Income

Life Expectancy vs Total Expenditure

Data Cleaning and Preprocessing

- 3 columns contained about 25% missing data
- Simple Imputer used to impute values with the median values
- Numerical values normalized by MinMaxScaler
- Categorical values encoded by Label Encoder
- 80–20 train-test split created with shuffle

Models used

- Linear Regression
- Lasso Regression
- Ridge Regression
- Random Forest Regressor
- XG Boost Regressor

Model Performance Comparison

Model Name	RMSE	R2
Linear	0.074506	0.822111
Regression		
Lasso	0.078636	0.801845
Regression		
Ridge	0.074777	0.820814
Regression		
Random Forest	0.031716	0.967766
Regression		
XG Boost	0.030095	0.970976
Regression		

Model Performance Metrics

Comparison of RMSE scores of different models

Model
Performance
Metrics contd...

LOWER THE RMSE SCORE, BETTER THE MODEL

Hyperparameter tuning and Feature Selection

RANDOM FOREST

Conclusion

Most important predictors according to Random Forest

- HIV/AIDS
- Adult Mortality
- Income
- Schooling

Most important predictors according to XG Boost

- HIV/AIDS
- Income
- Infant deaths
- Adult Mortality

- Kenneth Gil-Pasquel (Mentor)
- Springboard team
- World Health Organization
- Kaggle
- Cover images Google images