1. More logical equivalence examples

Laws of Logical Equivalence						
Name	OR version	AND version				
Commutative	A + B = B + A	A * B = B * A				
Associative	(A + B) + C = A + (B + C)	(A * B) * C = A * (B * C)				
Distributive	A + (B * C) = (A + B) * (A + C)	A * (B + C) = (A * B) + (A * C)				
Idempotent	A + A = A	A * A = A				
l d o o titu	A + 0 = A	A * 1 = A				
Identity	A + 1 = 1	A * 0 = 0				
Complement	A +~A = 1	A * ~A = 0				
Complement	~1 = 0	~0 = 1				
Double Negative	~(~A) = A					
De Morgan's	~(A + B) = ~A * ~B	~(A * B) = ~A + ~B				
Absorption	A + (A * B) = A	A * (A + B) = A				

a. Prove the OR version of the Absorption Law, A + A * B = A.

b. Simplify the following digital logic circuit using propositional algebra.

- 2. More on gates
 - a. Functionally complete sets
 - i. AND, OR, NOT
 - ii. AND, NOT
 - iii. OR, NOT
 - iv. NAND \uparrow is the NAND operator.
 - v. NOR \downarrow is the NOR operator.
- 3. Truth tables
 - b. Minterms
 - c. Maxterms
 - d. Example: 3-variable Boolean function true when A is true, B is true, and C is false

- 4. Synthesizing using gates
 - e. Consider a Boolean function of three variables
 - i. True when either, but not both, of the first two variables is true

Index	Α	В	С	f(A, B, C)	Minterm	Maxterm
0	0	0	0			
1	0	0	1			
2	0	1	0			
3	0	1	1			
4	1	0	0			
5	1	0	1			
6	1	1	0			
7	1	1	1			

f. Sum-of-products

i. Can simplify using equivalence laws to reduce number of gates

g. Product-of-sums

i. Can also simplify using laws of equivalence