Technical Debt at Scale

Jonas Grunert - Code Repository Mining - 20.7.2020 - SS 2020

Agenda

- 1. Recap
- 2. Data Mining Setup
- 3. Crawled Data
- 4. Cluster Analysis
- 5. Prediction
- 6. Outlook
- 7. Future Work

Recap

Building a tool, that warns of tech debt, based upon indicators, which can be found in similarities and patterns in the Git history

Data Mining Setup

Collect Metainformation

- per Commit
- Using PyDriller

More meta information may be helpful

Calculate TD-Index

- per Commit
- Using Sonarqube

 Long running analysis in comparison to PyDriller

SQALE Calculation

- Built upon different indices
- Calculated by Sonarqube
- Quality Index and Business Index exist
- Quality index used by Sonarqube

Repository Selection

Calculate TD-Index

- Long running repos
- JavaScript Staple
 Repositories
- At least 2000 commits
- Older than 3 years

Repositories selected

- lodash
- svelte
- rollup
- axios
- parcel

Crawled Data

Commit data

Project, commit hash, commit message

Author, committer, dates

Code lines changed Added lines Removed lines

Hunks Count Files changed Git over time data

Code lines changed Over 3 commits Over 5 commits

Added lines Over 3 commits Over 5 commits

Removed lines Over 3 Commits Over 5 Commits

Contributors
Over 3 commits
Over 5 commits

Tech Debt data

Sonarqube data (SQALE)

Delta Maintainability Index

Cluster Analysis

Normalized PCA

Color respond to SQALE rating No clusters visible

Variance

Low variance on PC1 Low decline in variance

- Unlikely to find a correlation / make a prediction
- More change centric metrics probably needed

Prediction

Predicting SQALE Number or Complexity Number 20% Testdata

Decision tree

- ~60% accuracy for SQALE
- Way lower for complexity $(\sim 40\%)$
- Bump of 20% accuracy with "% comments" and "% duplicated lines"
- Accuracy plateaus with a max depth of 20 nodes

Random forest

- ~60% accuracy for SQALE
- Way lower for complexity $(\sim 40\%)$
- Grid search did enable ~5% accuracy gain

R^2 : ~0.57

Linear Regression

- Errors mostly to the correct trend
- May be better at predicting an increase or decrease

Page 8

Outlook

Crawler

- More diff based metrics
 e.g. word count
- Easier to obtain tech debt metric
- More contributor based metrics

Data preperation

- In/decrease of tech debt
- Histogram visualization
- Smaller repositories

Data analysis

- PC1 Variance to about 60%
- Additional visualization
- Prediction of increase or decrease of tech debt

Summary

Already done

- Data gathering
- Complex data analysis
- Simple prediction models

Future work

- Analyze different Tech Debt metrics
- Fasten data gathering
- Analyze prediction
- Develop into a git hook