

Problem:

"Pacific Northwest seedstock crisis"

- common in hatchery practice
- increases production 30-50%

- beneficial in the short-term
- expensive/labor intensive

Pz

Cons

Chemical buffering

(i.e. sodium bicarbonate)

- common in hatchery practice
- increases production 30-50%

- beneficial in the short-term
- expensive/labor intensive

OA Remediation: The **Animals**

Adaptive potential

Stress conditioning

Priming with sub-lethal exposure(s) to increase stress-resilience and performance under a **subsequent encounter**

Adaptive potential: Hormetic priming

Adaptive potential

Stress conditioning

Priming with sub-lethal exposure(s) to increase stress-resilience and performance under a **subsequent encounter**

Adaptive potential: Hormetic priming

Adaptive potential

Stress conditioning

Priming with sub-lethal exposure(s) to increase stress-resilience and performance under a **subsequent encounter**

Initial stress encounter Fitness Control Level of stress exposure

Adaptive potential: Hormetic priming

Adaptive potential

Stress conditioning

Priming with sub-lethal exposure(s) to increase stress-resilience and performance under a subsequent encounter

Subsequent stress encounter

Level of stress exposure

Applied in geoduck aquaculture

Applied in geoduck aquaculture

- magnitude
- duration
- frequency

"Matched" stress can elicit acclimation

Relevance to dynamic environmental conditions

Driver of hormetic priming Can be **beneficial** in **moderate doses**

Conserved

DNA/lipid repair proteins energy metabolism stress signaling cell death

ROS-scavanging

Integrative metrics for energy partitioning & performance

Representative of stress limitations

Questions:

Can repeated stress encounters affect phenotype?

What is the **timing** and **stress intensity** to elicit environmental learning?

Primary exposure

110 days

RESULTS

Schematic

Data

PHYSIOLOGY

PHYSIOLOGY

moderate stress

Postlarval stress acclimation and repeated stress exposure to hypercapnic seawater increases respiration rate in juvenile clams

PHYSIOLOGY

Shell size

moderate stress severe moderate

Shell size

PHYSIOLOGY

Organic biomass

Third exposure

PHYSIOLOGY

Organic biomass

Third exposure

CELLULAR STRESS RESPONSE

Total Antioxidant Capacity

Third exposure

CELLULAR STRESS RESPONSE

Total Antioxidant Capacity

Third exposure

CELLULAR STRESS RESPONSE

Total Antioxidant Capacity

Takeaways

Can repeated stress encounters 'prime' phenotype?

- Early moderate stress acclimation elicited a larger phenotype associated with lower CSR
- Plasticity of bioenergetic and subcellular responses to OA

Mismatched

Matched

Early-life acclimation

ambient

moderate stress

Can repeated stress encounters 'prime' phenotype?

- Early moderate stress
 acclimation elicited a larger
 phenotype associated with
 lower CSR
- Plasticity of bioenergetic and subcellular responses to OA

What is the timing and stress intensity to elicit this reponses?

- Geoduck clams are relatively resilient to moderate and extreme pCO2 levels
- Stress post 'settlement' may elicit adaptive phenotypic variation

Future directions...

Acknowledgements

- Hollie Putnam
- Steven Roberts
- Brent Vadopalas
- Shelly Trigg
- Kurt Grinnell
- Matt Henderson
- Josh Valley
- Clara Duncan

Emma Strand, Kevin Wong, Kaitlyn Mitchell

References

- Barton, A., Waldbusser, G. G., Feely, R. A., Weisberg, S. B., Newton, J. A., Hales, B., ... & King, T. (2015). Impacts of coastal acidification on the Pacific Northwest shellfish industry and adaptation strategies implemented in response. *Oceanography*, 28(2), 146-159.
- Barton, A., Hales, B., Waldbusser, G. G., Langdon, C., & Feely, R. A. (2012). The Pacific oyster, Crassostrea gigas, shows negative correlation to naturally elevated carbon dioxide levels: Implications for near-term ocean acidification effects. *Limnology and oceanography*, 57(3), 698-710.
- Costantini, D., Monaghan, P., & Metcalfe, N. B. (2012). Early life experience primes resistance to oxidative stress. *Journal of Experimental Biology*, 215(16), 2820-2826.
- Fawcett, T. W., & Frankenhuis, W. E. (2015). Adaptive explanations for sensitive windows in development. *Frontiers in Zoology*, 12(S1), S3.
- Feely, R. A., Alin, S. R., Newton, J., Sabine, C. L., Warner, M., Devol, A., ... & Maloy, C. (2010). The combined effects of ocean acidification, mixing, and respiration on pH and carbonate saturation in an urbanized estuary. *Estuarine, Coastal and Shelf Science*, 88(4), 442-449.
- Haider, F., Falfushynska, H., Ivanina, A. V., & Sokolova, I. M. (2016). Effects of pH and bicarbonate on mitochondrial functions of marine bivalves. *Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology*, 198, 41-50.
- Gurr, S. J., Trigg, S. A., Vadopalas, B., Roberts, S. B., & Putnam, H. M. (2020). Repeat exposure to hypercapnic seawater modifies performance and oxidative status in a tolerant burrowing clam. *bioRxiv*.
- Tomanek, L. (2011). Environmental proteomics: changes in the proteome of marine organisms in response to environmental stress, pollutants, infection, symbiosis, and development. *Annual review of marine science*, *3*, 373-399.
- Reum, J. C., Alin, S. R., Feely, R. A., Newton, J., Warner, M., & McElhany, P. (2014). Seasonal carbonate chemistry covariation with temperature, oxygen, and salinity in a fjord estuary: implications for the design of ocean acidification experiments. *PloS one*, 9(2), e89619.
- Sokolova, I. M. (2013). Energy-limited tolerance to stress as a conceptual framework to integrate the effects of multiple stressors. *Integrative and comparative biology*, *53*(4), 597-608.
- Washington Sea Grant (2015) *Shellfish Aquaculture in Washington State*. Final report to the Washington State Legislature, Washington Sea Grant.