



## Microcontroladores





Prof.º: Pablo Jean Rozário



pablo.jean@padotec.com.br



/in/pablojeanrozario



https://github.com/Pablo-Jean

Introdução aos Microcontroladores

## Índice da Aula #1



- Exemplos de Aplicação
- O que são Microcontroladores
- Microcontroladores x Microprocessadores
- Arquitetura de Microcontroladores
- Registradores
- Program Counter e a Stack
- Set de Instruções
- Kit de Desenvolvimento
- STM32CubeIDE
- Lista de Exercícios #1



## INTRODUÇÃO



## **Ementa**



| Aula | Descrição                    | Aula | Descrição                           |  |
|------|------------------------------|------|-------------------------------------|--|
| 1    | Apresentação de Conceitos    | 7    | Atividades                          |  |
|      | Apresentação do kit STM32    | •    | Alividades                          |  |
|      | Tipos especiais de (u)int    |      |                                     |  |
| 2    | Registradores e Clock do uC  | 8    | Comunicação Serial I <sup>2</sup> C |  |
|      | Entradas e Saídas IOs        |      |                                     |  |
| 3    | Estruturas em C              | 9    | Timers e RTC                        |  |
|      | Interrupções em IOs          | 9    |                                     |  |
| 4    | Conversor A/D e Interrupções | 10   | PWM                                 |  |
| 5    | Comunicação Serial UART      | 11   | Desenvolvimento de Projetos         |  |
| 6    | Comunicação Serial SPI       | 12   |                                     |  |

## Exemplos de Aplicação



Como Exemplos de sistemas embarcados temos:

- Brinquedos eletrônicos;
- Periféricos de computadores: Mouse, teclado, controles de vídeo game;
- Consoles: Sony Playstation, Microsoft Xbox, Nintendo, etc;
- Automotivo: ECU, central multimídia, painel de instrumentos;
- Eletrodomésticos: Cafeteiras expressas, micro-ondas;
- Bélico: Armamentos, sistemas de controle;
- Industrial: CLPs, sensores;

## **Exemplos**













## **MICROCONTROLADORES**



## Microcontrolador - O Que É



• Um microcontrolador é um componente eletrônico SoC (System on Chip), que possui capacidade de processamento, memórias, periféricos, interfaces de comunicação, entre outros.

• Em geral microcontroladores são muito menos potentes

que computadores comuns.

 No entanto estas capacidades variam muito entre modelos e fabricantes.

#### **Microcontroladores**





#### **Microcontroladores**





## Microcontroladores - Estrutura



Barramento de Temporização e Controle : Define o dispositivo de IO no barramento de endereços por um período de tempo definido, além do sentido:

Barramento de endereços : Informa ao periférico qual endereço da informação que deseja ser alterado ou ler.

Barramento de Dados : Por onde é transferida a informação, para escrita ou leitura.

# Microcontrolador ou Microprocessador Labs



| Característica | Microprocessadores       | Microcontrolador                      |  |
|----------------|--------------------------|---------------------------------------|--|
| Periféricos    | Necessita de periféricos | Periféricos integrados                |  |
| remencos       | externos                 | no chip                               |  |
| Memória        | Permite vários formatos  | Poucos tipos de dados (8, 16 ou       |  |
| Wiemona        | de dados                 | 32 bits)                              |  |
| Processamento  | ALU Complexa e possui    | ALU limitada e ausência de            |  |
| riocessamento  | coprocessador            | coprocessamento                       |  |
| Custo          | Custo elevado            | Baixo custo, a depender da plataforma |  |
| Consumo        | Alto consumo de enegeria | Possui métodos para economia de       |  |
| Consumo        |                          | energia                               |  |

#### Características



Os microcontroladores variam muito de modelos e fabricantes.

Com diferentes capacidades e diferentes periféricos.

Sempre de forma a atender determinados projetos, pois cada um possui suas peculiaridades.

É sempre importante levantar as necessidades do projeto.

# Modelos de Microcontroladores Labs



|               | PIC16F1824 | MSP430FR2433 | STM32G0B1RE | CC2642R   |
|---------------|------------|--------------|-------------|-----------|
| Fabricante    | Microchip  | Texas        | ST          | Texas     |
| Core          | PIC16      | MSP430       | ARM M0+     | ARM M4F   |
| Bits          | 8bits      | 16bits       | 32bits      | 32bits    |
| Flash         | 7KB        | 15.5K        | 512KB       | 352KB     |
| RAM           | 256B       | 4K           | 144KB       | 80KB      |
| I/Os          | 12         | 19           | 60          | 31        |
| ADC           | 10bits     | 10bits       | 12bits      | 12bits    |
| SPI           | X          | X            | X           | X         |
| I2C           | X          | X            | X           | Х         |
| UART          | X          | X            | X           | X         |
| <b>EEPROM</b> | X          | <u>-</u>     | -           | -         |
| Extra         | -          | FRAM         | USB OTG     | Bluetooth |

## **Arquiteturas**



Existem duas principais arquiteturas base para os microcontroladores:

#### **Von Neumann**

Desenvolvida por John Von Neumann em 1945. Segue o conceito de armazenar instruções e dados em uma mesma memória.

#### **Harvard**

Desenvolvida para superar um gargalo causado pela Von Neumann, separa o barramento de dados do barramento de programa.

#### Von Neumann X Harvard





#### Von Neumann X Harvard



| Von Neumann                   | Harvard                          |  |
|-------------------------------|----------------------------------|--|
| O mesmo endereço físico é     | Diferentes endereços físicos são |  |
| utilizado para memória de     |                                  |  |
| programa e memória de dados   | utilizados pelas memórias        |  |
| O barramento da memória de    | O barramentos das memórias       |  |
| programa e da memória de      | é isolado                        |  |
| dados é compartilhado         | e isolado                        |  |
| É necessário pelo menos dois  | Uma instrução pode ser           |  |
| ciclos de clock para executar | executada em um ciclo de         |  |
| uma única instrução           | clock                            |  |

#### Von Neumann X Harvard



| Von Neumann                                                              | Harvard                                                            |
|--------------------------------------------------------------------------|--------------------------------------------------------------------|
| Possui custo menor                                                       | Possui um custo mais elevado<br>se comparado a Von Neumann         |
| Não é possível acessar uma<br>instrução e ler/escrever ao<br>mesmo tempo | E possível ler/escrever ao mesmo<br>tempo que acessa uma instrução |
| Muito utilizado em computadores e microcontroladores ARM                 | Utilizado em microcontroladores e processamento de sinais          |

## Registradores



São locais de memória onde é possível realizar operação de escrita e/ou leitura (*read/write*).

Como exemplo a memória RAM, que tem por característica altíssima velocidade e perde os dados ao ser desenergizado.



#### **SFRs**



Microcontroladores possuem um tipo especial de registradores, Special Function Registers (SFR), que são locais de memória que podem ser lidos e/ou escritos **mas** que estão conectados diretamente ao *hardware*.

Cada *bit* (ou mais) de um SFR é designado a uma função, podendo ser de dois tipos:

Control bit: acionam um determinado elemento de hardware

Flag bit: Controlado pelo hardware, indica status ou eventos.

#### **SFRs**



Todas as informações dos SRFs podem ser encontradas nos documentos, explicando em detalhes suas funcionalidades, endereço, valor inicial, etc.

A seguir, veremos um dos registradores de controle das GPIOs

de um STM32.



## **Program Counter - PC**



O Program Counter soluciona o problema de dizer onde o programa está.

Nada mais é do que um ponteiro que aponta para a próxima instrução que deverá ser executada.

No **POR** (*Power On Reset*) o PC inicia sempre no endereço 0x0000, e é incrementado automaticamente ao executar a próxima instrução.



## **Program Counter - PC**



O contador é incrementado a cada instrução até o momento em que:

- Seja alterado por uma instrução (causando um jump na aplicação);
- Em uma chamada de função;
- Na ocorrência de um evento de interrupção.



#### **Stack**



A stack é uma pilha que é utilizada em chamadas de função e desvios causados por interrupções.

Armazena o endereço da próxima instrução que seria executada na ocorrência da chamada de função ou interrupção.



#### Stack - Passos



- 1 É feito o **PUSH** na *stack* do valor do *Program Counter* (PC) no momento do desvio;
- 2 O PC é modificado com o endereço de início da subrotina;
- 3 O programa então pula (jump) e executa a subrotina;
- 4 Quando ocorre a chamada de *return*, é feito um **POP** na *stack*, e o valor atribuído ao PC;
- 5 O programa retorno a próximo instrução que seria executada antes da chamada da função.

## Stack - Exemplo





## Stack - Implementações



A *stack* pode ser implementada por:

- Software : (STM8, STM32) a *stack* é armazenada na memória RAM e pode ser definido pelo desenvolvedor no programa. Porém, parte da memória RAM é perdida, apesar da flexibilidade.
- Hardware : (PIC16, PIC18) a *stack* possui um registrador em hardware dedicado.

## Set de Instruções



O *Instruction set* ou set de instruções é o conjunto de todas instruções que são compreendidas e executadas pelo microcontrolador.

Quando um programa é compilado e gravado no microcontrolador, o binário gerado nada mais é do que a sequência de instruções geradas para atingir a finalidade desejada.

## Set de Instruções - Exemplo



Exemplo de instruções de um core PIC18.

```
MOVLW 10H ; Set 0x10 to the WREG

MOVF 20H, 1, 0 ; Move 0x10 to the address 0x20

MOVLW 5H ; Set 0x5 to the WREG

ADDWF 20H, 1, 0 ; Sum WREG with value on 0x20

; (0x10+0x5) and stores in 0x20
```

## Set de Instruções - Categorias



Os sets de instruções variam de cada *core* de microcontroladores. E estes possuem duas categorias.

- CISC (Complex Instruction Set Computer): Grande gama de instruções, sendo algumas realizadas por microprogramas gravados na CPU. Geralmente associado a arquitetura Von Neumann.
- **RISC** (*Reduced Instruction Set Computer*) : Pequeno conjunto de instruções mais simples, sendo mais barato de produzir e permite frequência de operação mais alto.

#### 8 ou 32 Bits



Apesar de a linguagem C abstrair diversas peculiaridades, existem diferenças consideráveis entre a arquitetura dos microcontroladores.

Notável principalmente quando se trabalha em baixo nível, o assembly. Que é uma linguagem de programação que envolve apenas as instruções do microcontrolador.

O que define os bits é o tamanho do barramento de dados.

## Mão na Massa





#### **NUCLEO-G0B1RE**



Utilizaremos o kit NUCLEO-G0B1RE da ST.

Utiliza um STM32G0B1RE como microcontrolador, 1 botão e 1

LED na placa, debugger integrado e conectores para conexões

externas.



#### **NUCLEO-G0B1RE**



# Principais recursos do microcontrolador:

- Unidade de cálculo CRC
- 12 timers + RTC
   alimentado por bateria
- Controlador DMA
- ADC e DAC de 12 bits
- três interfaces I2C

- Seis USART + 2 LPUART
- Três SPI
- Interface HDMI
- USB OTG
- Dois I2S
- Entre outros



#### Instalar o STM32CubelDE



Neste momento, vamos instalar a IDE que iremos utilizar para desenvolver nosso kit.

O download do software está no Classroom.

E também materiais relacionados ao microcontrolador.



## Código exemplo



Está disponível também um código exemplo para testarmos a placa e a instalação assim que concluído.

Para acessar, basta acessar o github da Pado Labs https://github.com/padolabs/firmware-A1-Test

### Dúvidas ??



#### When you leave AVR for STM32



#### Referências



GEEKS, Geeks for. Difference between Von Neumann and Harvard Architecture. 2021.

https://www.geeksforgeeks.org/difference-between-von-neumann-and-harvard-architecture . Acesso em 10 de Dezembero de 2021.

GIMENEZ, Salvador Pinillos. **Microcontroladores 8051: teoria do Hardware e do Software: aplicações em controle digital: laboratório e simulação**. 1. ed. [S.I.], 2002. ISBN 9788587918284.

STMICROELETRONICS. RM0444 - Reference Manual. 5. ed. [S.I.], 2020. STM32G0x1 advanced Arm ® -based 32-bit MCUs.

\_\_\_\_\_ . **UM2324 - User Manual**. 4. ed. [S.I.], 2021. STM32 Nucleo-64 boards (MB1360).

The Cortex-M0 Unstruction Set. 2021. <a href="https://developer.arm.com/documentation/dui0497/a/the-cortex-m0-instruction-set">https://developer.arm.com/documentation/dui0497/a/the-cortex-m0-instruction-set</a>. Acesso em 10 de Dezembro de 2021.

WILDER, Jon. A beginner's guide to microcontrollers. 2015.

https://www.microcontrollertips.com/a-beginners-guide-to-microcontrollers-fag/. Acesso em 10 de Dezembro de 2021.



#### Lista de Exercícios #1





Introdução aos microcontroladores

