MÈTODES NUMÈRICS II. Curs 2022/23. Semestre de primavera EXERCICI PRÀCTIC 1

RESOLUCIÓ NUMÈRICA D'UN PROBLEMA DE STURM-LIOUVILLE

Problema de Sturm-Liouville

Siguin $a, b \in \mathbb{R}$, a < b, i p(x), q(x) i r(x) tres funcions contínues de [a, b] a \mathbb{R} . Es considera el problema de trobar $\lambda \in \mathbb{C}$ i y(x) funció no identicament nul·la de [a, b] a \mathbb{C} tals que es verifiqui:

$$\begin{cases} y''(x) + p(x)y'(x) + q(x)y(x) + \lambda r(x)y(x) = 0, & \forall x \in [a, b], \\ y(a) = y(b) = 0. \end{cases}$$
 (1)

Aquests valors λ s'anomenen valors propis (VAPS) i les funcions associades y(x) s'anomenen funcions pròpies.

És evident que $y(x) \equiv 0$ és solució de (1)-(2) per a qualsevol $\lambda \in \mathbb{C}$. Aquesta solució trivial no interessa. Per això es volen trobar els valors λ per als quals el problema té solucions y(x) no idènticament nul·les. Observem que el conjunt de totes les funcions associades a un mateix valor λ formen un espai vectorial.

Suposarem que r(x) és positiva a [a,b] ja que, en aquest cas, se sap que els valors propis formen un conjunt numerable, són reals i no estan fitats superiorment.

Les equacions (1)-(2) constitueixen un Problema de Sturm-Liouville (PSL) o un problema de valors propis per a equacions diferencials ordinàries (PVP-EDO). Les condicions de contorn homogènies (2) poden ser més generals.

Exemple 1. El PVP-EDO $y'' + 3y' + 2y + \lambda y = 0$, y(0) = y(1) = 0, té solucions

$$\lambda_i = (1 + 4i^2\pi^2)/4, \ y_i(x) = e^{-3x/2}\sin(i\pi x), \ i = 1, 2, 3, \dots$$

Exemple 2. El PVP-EDO $x^2y'' + xy' + \lambda y = 0$, y(1) = y(2) = 0, té solucions

$$\lambda_i = (i\pi/\ln 2)^2$$
, $y_i(x) = \sin(i\pi \ln x/\ln 2)$, $i = 1, 2, 3, \dots$

Per a funcions p(x), q(x) i r(x) arbitràries, no hi ha mètodes analítics per a trobar exactament els VAPS i les funcions associades. Aquí es proposa usar un mètode numèric relativament simple per a trobar aproximacions d'un nombre finit de valors propis.

Discretització i aproximació de les derivades per diferències finites

Es discretitza el problema fixant un valor enter n>1 i definint el pas de discretització h=(b-a)/(n+1) i els punts de discretització $x_i=a+ih$, $\forall i=0\div n+1$. Observem que $x_0=a$ i $x_{n+1}=b$.

No es buscaran funcions no nul·les y(x) definides per a $x \in [a, b]$, sinó vectors no nuls $(y(x_1), \dots, y(x_n))$ de \mathbb{R}^n . Observem que $y(x_0) = y(a) = 0$ i $y(x_{n+1}) = y(b) = 0$ són valors coneguts.

Notem $y(x_i) \equiv y_i$, $(\forall i)$ i considerem diferències finites de segon ordre per a aproximar derivades:

$$\forall i = 1 \div n \quad y''(x_i) \approx \frac{y_{i+1} - 2y_i + y_{i-1}}{h^2} , \quad y'(x_i) \approx \frac{y_{i+1} - y_{i-1}}{2h} .$$

Substituint aquestes expressions a (1) en $x = x_i$ $(i = 1 \div n)$, notant $p(x_i) \equiv p_i$, $q(x_i) \equiv q_i$, $r(x_i) \equiv r_i$, canviant els signes, dividint per r_i i agrupant termes adequadament, s'obté

$$\left(-\frac{1}{h^2r_i} + \frac{p_i}{2hr_i}\right)y_{i-1} + \left(\frac{2}{h^2r_i} - \frac{q_i}{r_i} - \lambda\right)y_i + \left(-\frac{1}{h^2r_i} - \frac{p_i}{2hr_i}\right)y_{i+1} = 0 , \quad i = 1 \div n .$$

Observem que quan i = 1 apareix $y_0 = y(x_0) = 0$, i que quan i = n apareix $y_{n+1} = y(x_{n+1}) = 0$. Per tant, s'ha obtingut un sistema lineal homogeni de n equacions i n+1 incògnites $y_1, \ldots, y_n, \lambda$. A més, el sistema té un vector solució $y = (y_1, \ldots, y_n)$ no nul si i només si el valor λ corresponent és un valor propi d'una matriu $n \times n$ tridiagonal. Per tant, el PVP-EDO ha quedat reduït a un PVP algebraic. Resolent aquest darrer problema s'obtindran aproximacions de n valors propis del problema inicial.

Valors i vectors propis d'una matriu tridiagonal usant potència inversa desplaçada

Es volen trobar valors i vectors propis (VAPS i VEPS) d'una matriu tridiagonal de dimensió $n \times n$:

$$A = \begin{pmatrix} a_1 & b_1 & 0 & \dots & 0 \\ c_2 & a_2 & b_2 & \dots & \dots \\ 0 & \dots & \dots & \dots & 0 \\ \dots & 0 & c_{n-1} & a_{n-1} & b_{n-1} \\ 0 & \dots & 0 & c_n & a_n \end{pmatrix}.$$

Els VAPS són els valors λ que verifiquen $0 = det(A - \lambda I)$. Per a qualsevol valor λ , el determinant anterior es pot avaluar molt fàcilment usant la recurrència:

$$\begin{cases} d_0 = 1, \\ d_1 = a_1 - \lambda, \\ \forall i = 2, \dots, n \quad d_i = (a_i - \lambda)d_{i-1} - b_{i-1}c_i d_{i-2}, \end{cases}$$

de manera que $det(A - \lambda I) = d_n$.

Fixem-nos que, si $b_{i-1}c_i > 0$ ($\forall i = 2 \div n$) llavors la recurrència anterior és la mateixa que la que s'obté si es canvien b_{i-1} i c_i pel valor comú $(b_{i-1}c_i)^{1/2}$, amb la qual cosa la matriu és simètrica i els seus VAPS són valors reals.

Aleshores, una manera de calcular els VAPS reals i VEPS associats de la matriu A és la següent:

- (1) S'usa el teorema de Gerschgorin per a trobar una fita inferior S_m i una fita superior S_M dels VAPS reals. Si introduïm $c_1 = b_n = 0$ llavors $S_m = \min_i \{a_i |b_i| |c_i|\}, S_M = \max_i \{a_i + |b_i| + |c_i|\}.$
- (2) Es fixa un pas (petit) s > 0 i es va avaluant $det(A \lambda I)$ per a valors $\lambda = S_m + js$, $j \ge 0$, fins arribar a S_M .
- (3) Cada vegada que es detecti un canvi de signe entre dues avaluacions consecutives, s'ha localitzat un VAP. Llavors s'usa el *mètode de la potència inversa desplaçada* per a trobar-lo. Això és:
- Suposem que t és una bona aproximació d'un valor propi λ_i de A.
- Com que la matriu $(A-tI)^{-1}$ té VAPS $1/(\lambda_1-t),\ldots,1/(\lambda_n-t)$, aplicant el mètode de la potència a aquesta matriu es convergeix (ràpidament) al seu VAP dominant, el qual és $\mu=1/(\lambda_i-t)$. Així obtenim el VAP de A buscat $\lambda_i=t+1/\mu$.
- Recordem una implementació del mètode de la potència inversa desplaçada. Sigui $x^0 \in \mathbb{R}^n$ un vector qualsevol amb components a [-1, +1] i alguna component +1. Per a cada $k \geq 1$ fem:

$$z^k = (A-tI)^{-1}x^{k-1}$$
, $s_k = \text{component de modul maxim de} z^k$, $x^k = (1/s_k)z^k$.

Els valors s_k convergeixen cap al VAP dominant de $(A-tI)^{-1}$, i els vectors x^k convergeixen cap a un VEP associat.

Nota. En el càlcul inicial de cada iteració, no s'ha de calcular una matriu inversa i aplicar-la a un vector, sinó que s'ha de resoldre directament un sistema tridiagonal $(A - tI)z^k = x^{k-1}$. És eficient fer-ho calculant la factorització (A - tI) = LU abans de començar les iteracions.

Enunciat

Programeu el mètode explicat per a resoldre aproximadament un problema de Sturm-Liouville. Proveu el vostre programa en casos que es coneguin les solucions exactes per tal de comprovar si va gaire bé.

Nota. Si teniu problemes d'overflow quan n va augmentant, canvieu la matriu A per la matriu h^2A , trobeu els VAPS λ_i 's d'aquesta, i llavors els VAPS de A seran els valors $\lambda_i/(h^2)$.

Bibliografia

Per al problema teòric de Sturm-Liouville:

Trenc, W.F.: Elementary Differential Equations with Boundary Values Problems. LibreTexts.

Per a la resta, els apunts del CV.