Recherche Opérationnelle 1A Théorie des graphes Connexité + Cycles + Graphes orientés

Zoltán Szigeti

Ensimag, G-SCOP

Chaînes

Définitions

- (a) Chaîne : une suite alternée de sommets et d'arêtes :
 - $v_0e_1v_1e_2\dots e_kv_k$, telle que $e_i=v_{i-1}v_i$ pour $1\leq i\leq k$.
 - (s, t)-chaîne : une chaîne de $s = v_0$ à $t = v_k$.
- (b) Chaîne simple : chaîne telle que les arêtes sont distinctes.
- (c) Chaîne élémentaire : chaîne telle que les sommets sont distincts.

(c)

Théorème

Les conditions suivantes sont équivalentes :

- (a) Il existe une (s, t)-chaîne.
- (b) Il existe une (s, t)-chaîne simple.
- (c) Il existe une (s, t)-chaîne élémentaire.

Théorème

Les conditions suivantes sont équivalentes :

- (a) Il existe une (s, t)-chaîne.
- (b) Il existe une (s, t)-chaîne simple.
- (c) Il existe une (s, t)-chaîne élémentaire.

$$(c) \Longrightarrow (b) \Longrightarrow (a) : \text{ évident.}$$

Théorème

Les conditions suivantes sont équivalentes :

- (a) Il existe une (s, t)-chaîne.
- (b) Il existe une (s, t)-chaîne simple.
- (c) Il existe une (s, t)-chaîne élémentaire.

- $(c) \Longrightarrow (b) \Longrightarrow (a)$: évident.
- $(a) \Longrightarrow (c)$:

Théorème

Les conditions suivantes sont équivalentes :

- (a) Il existe une (s, t)-chaîne.
- (b) Il existe une (s, t)-chaîne simple.
- (c) Il existe une (s, t)-chaîne élémentaire.

- $(c) \Longrightarrow (b) \Longrightarrow (a) : \text{ \'evident}.$
- $(a) \Longrightarrow (c)$:
 - Soit P une (s, t)-chaîne ayant un nombre minimum d'arêtes.

Théorème

Les conditions suivantes sont équivalentes :

- (a) Il existe une (s, t)-chaîne.
- (b) Il existe une (s, t)-chaîne simple.
- (c) Il existe une (s, t)-chaîne élémentaire.

e₁ e₂ e₃ v₀ v₁ v₂ v₃

- $(c) \Longrightarrow (b) \Longrightarrow (a)$: évident.
- $(a) \Longrightarrow (c)$:
 - Soit P une (s, t)-chaîne ayant un nombre minimum d'arêtes.
 - Si $v_i = v_j$ alors en supprimant la sous-suite $v_i e_i \dots v_{j-1} e_j$ entre v_i et v_j on a une (s, t)-chaîne qui est plus courte que P, contradiction.

Théorème

Les conditions suivantes sont équivalentes :

- (a) Il existe une (s, t)-chaîne.
- (b) Il existe une (s, t)-chaîne simple.
- (c) Il existe une (s, t)-chaîne élémentaire.

- $(c) \Longrightarrow (b) \Longrightarrow (a)$: évident.
- $(a) \Longrightarrow (c)$:
 - Soit P une (s, t)-chaîne ayant un nombre minimum d'arêtes.
 - Si $v_i = v_j$ alors en supprimant la sous-suite $v_i e_i \dots v_{j-1} e_j$ entre v_i et v_j on a une (s, t)-chaîne qui est plus courte que P, contradiction.
 - P est donc élémentaire.

Définitions : pour un sous-ensemble X de sommets,

- **①** coupe de X: l'ensemble $\delta(X)$ des arêtes entre X et $V(G) \setminus X$.
- 2 degré de X : $d(X) = |\delta(X)|$.

Définitions : pour un sous-ensemble X de sommets,

- **1** coupe de X: l'ensemble $\delta(X)$ des arêtes entre X et $V(G) \setminus X$.
- ② degré de X : $d(X) = |\delta(X)|$.

Théorème

- 1 Il existe une (s, t)-chaîne dans G = (V, E)
- $2 d(X) \ge 1 \forall X : s \in X \subseteq V \setminus t.$

Démonstration de nécessité

- Supposons qu'il existe une (s, t)-chaîne $P = v_1 v_2 \dots v_k$ et que $s \in X \subseteq V \setminus t$.
- ② Soit *i* le plus petit indice tel que $v_i \in V \setminus X$ (existe car $v_k \in V \setminus X$).
- **3** Comme $v_1 \in X$, on a $i \ge 2$, d'où $v_{i-1} \in X$, et donc
- ① l'arête $v_{i-1}v_i$ de P appartient à la coupe définie par X, d'où
- **⑤** d(X) ≥ 1.

Démonstration de suffisance

- **③** Supposons que $d(X) \ge 1$ $\forall X : s \in X \subseteq V \setminus t$.
- 2 Soit $X = \{v \in V : \text{il existe une } (s, v) \text{-chaîne } P_v \text{ dans } G\}.$
- **3** On a $s \in X$ et d(X) = 0: s'il existait $vw \in E, v \in X, w \in V \setminus X$ alors $P_v + vw$ serait une (s, w)-chaîne, ainsi on a $w \in X$, une contradiction.
- **1** Par la condition, on a $t \in X$, c'est-à-dire
- \odot qu'il existe une (s, t)-chaîne.

Trouver une (s, t)-chaîne

Algorithme Chaîne

```
ENTRÉE : Un graphe G et deux sommets distincts s et t de G.
SORTIE : Une (s,t)-chaîne P de G ou un certificat X qu'il n'y en a pas.
Etape 0: Initialisation. S := \{s\}.
```

Etape 1: Marquage.

Tant que $t \notin S$ et qu'il existe une arête uv de G telle que $u \in S, v \notin S$ faire :

$$S := S \cup \{v\}, \ p(v) := u.$$

Etape 2: Construction de la chaîne.

Si $t \in S$ faire : v := t, P := v, tant que $v \neq s$ faire : u := p(v), e := uv, P := ueP, v := u, STOP.

Etape 3: Construction du certificat. X := S, STOP.

Définitions

- graphe connexe : Il existe une chaîne entre chaque paire de sommets dans le graphe.
- composantes connexes d'un graphe : Les sous-graphes connexes maximaux du graphe.

Définitions

- graphe connexe : Il existe une chaîne entre chaque paire de sommets dans le graphe.
- composantes connexes d'un graphe : Les sous-graphes connexes maximaux du graphe.

Remarques

- $oldsymbol{0}$ G est connexe \iff G a exactement une composante connexe.
- 2 Il n'y a pas d'arêtes entre les composantes connexes.

Définitions

- graphe connexe : Il existe une chaîne entre chaque paire de sommets dans le graphe.
- composantes connexes d'un graphe : Les sous-graphes connexes maximaux du graphe.

Remarques

- \bigcirc G est connexe \iff G a exactement une composante connexe.
- Il n'y a pas d'arêtes entre les composantes connexes.

Théorème (Caractérisation d'un graphe connexe)

Un graphe G = (V, E) est connexe \iff $d(X) \ge 1 \quad \forall \emptyset \ne X \subset V$.

$$\leftarrow$$

$$\emptyset \neq X \subset V$$

Définitions

- graphe connexe : Il existe une chaîne entre chaque paire de sommets dans le graphe.
- composantes connexes d'un graphe : Les sous-graphes connexes maximaux du graphe.

Remarques

- \bigcirc G est connexe \iff G a exactement une composante connexe.
- ② Il n'y a pas d'arêtes entre les composantes connexes.

Théorème (Caractérisation d'un graphe connexe)

Un graphe G = (V, E) est connexe \iff $d(X) \ge 1 \quad \forall \emptyset \ne X \subset V$.

Facile

Décider si G est connexe.

Cycles

Définitions

- (a) Cycle: une séquence circulaire de sommets et d'arêtes: $v_0e_1v_1e_2...v_{k-1}e_k$, telle que $e_i=v_{i-1}v_i$ pour $1 \le i \le k-1$ et $e_k=v_{k-1}v_0$ sont des arêtes distinctes
- (b) Cycle élémentaire : un cycle dont les sommets sont distincts.

Cycles

Définitions

- (a) Cycle: une séquence circulaire de sommets et d'arêtes: $v_0e_1v_1e_2\dots v_{k-1}e_k$, telle que $e_i=v_{i-1}v_i$ pour $1\leq i\leq k-1$ et $e_k=v_{k-1}v_0$ sont des arêtes distinctes \iff une chaîne simple dont les extrémités coïncident.
- (b) Cycle élémentaire : un cycle dont les sommets sont distincts.

Motivation

Est-il possible de dessiner les arêtes des graphes suivants consécutivement

- sans lever le crayon et
- 2 sans passer deux fois sur la même arête?

 ${\it G}_{1}$ et ${\it G}_{3}$: On peut dessiner les arêtes dans l'ordre indiqué sur la Figure.

 G_1 et G_3 : On peut dessiner les arêtes dans l'ordre indiqué sur la Figure.

G₂: il n'est pas possible:

- ① Supposons qu'il y ait une solution pour G_2 , avec v_1 et v_m premier et dernier sommet visité.
- ② Si on a passé k fois par un sommet $v \neq v_1, v_m$ alors d(v) = 2k.
- 3 G2 devrait donc contenir au plus deux sommets de degré impair.
- $oldsymbol{G}$ Or les trois sommets de $oldsymbol{G}_2$ indiqués sur la Figure sont de degré impair.

Définition

- **1** Chaîne eulérienne de G: chaîne simple contenant chaque arête de G.
- 2 Cycle eulérien de G : cycle contenant toutes les arêtes de G.
- 3 Graphe eulérien : graphe qui possède un cycle eulérien.

Définition

- ① Chaîne eulérienne de G: chaîne simple contenant chaque arête de G.
- 2 Cycle eulérien de G: cycle contenant toutes les arêtes de G.
- **3** Graphe eulérien : graphe qui possède un cycle eulérien.

Théorème (Caractérisation des graphes eulériens)

Un graphe G sans sommet isolé (v isolé : d(v) = 0) est eulérien \iff

- il est connexe et
- 2 tous ses sommets sont de degré pair.

Caractérisation des graphes eulériens

Théorème

Un graphe G sans sommet isolé est eulérien \Longleftrightarrow

- (a) il est connexe et
- (b) tous ses sommets sont de degré pair.

Caractérisation des graphes eulériens

Théorème

Un graphe G sans sommet isolé est eulérien \iff

- (a) il est connexe et
- (b) tous ses sommets sont de degré pair.

Facile

Décider si *G* est eulérien.

Caractérisation des graphes eulériens

Théorème

Un graphe G sans sommet isolé est eulérien \iff

- (a) il est connexe et
- (b) tous ses sommets sont de degré pair.

Facile

Décider si G est eulérien.

Démonstration de la nécessité

- **3** Soit C un cycle eulérien de G, donc E(G) = E(C).
- 2 Puisque G n'a pas de sommet isolé, V(G) = V(C).
- 3 Pour toute paire $u, v \in V(G)$, en parcourant le cycle C, on a une (u, v)-chaîne, donc le graphe est connexe.
- If Si C passe k fois par un sommet v alors $d_G(v) = d_C(v) = 2k$.

(Sans) démonstration de la suffisance

Algorithme de Fleury

```
Entrée : Un graphe connexe G dont tous les sommets sont de degré pair. Sortie : Un cycle eulérien C de G.
```

Etape 1: *Initialisation*.

Choisir un sommet u de G, C := u.

Etape 2: Construction du cycle.

Tant que u n'est pas un sommet isolé de G faire : Choisir une arête e = uv de G incidente à u, si possible contenue dans un cycle de G.

```
C := Cev,

G := G - e,

u := v.
```

Etape 3: Fin de l'algorithme.

STOP.

Motivation : Problème du Voyageur de commerce

- Le voyageur de commerce doit passer par chaque grande ville de la France une et une seul fois en minimisant la distance parcourue.
- 2 Dans un graphe complet avec des coûts sur les arêtes, trouver un cycle élémentaire contenant tous les sommets dont le coût total est minimal.

Motivation : Problème du Voyageur de commerce

- Le voyageur de commerce doit passer par chaque grande ville de la France une et une seul fois en minimisant la distance parcourue.
- ② Dans un graphe complet avec des coûts sur les arêtes, trouver un cycle élémentaire contenant tous les sommets dont le coût total est minimal.

Définitions

- Cycle hamiltonien de G : cycle élémentaire contenant tous les sommets de G.
- ② Graphe hamiltonien : graphe qui possède un cycle hamiltonien.

Motivation : Problème du Voyageur de commerce

- Le voyageur de commerce doit passer par chaque grande ville de la France une et une seul fois en minimisant la distance parcourue.
- ② Dans un graphe complet avec des coûts sur les arêtes, trouver un cycle élémentaire contenant tous les sommets dont le coût total est minimal.

Définitions

- Cycle hamiltonien de *G* : cycle élémentaire contenant tous les sommets de *G*.
- Graphe hamiltonien : graphe qui possède un cycle hamiltonien.

Problème

Décider si un graphe donné est hamiltonien.

Application

Sur un échiquier $8\times 8~(\mathrm{Fig.}~(a))$, un cavalier posé sur la case en bas à gauche, peut-il se déplacer de telle sorte qu'il revienne à la case de départ après avoir exploré chacune des cases une fois et une seule fois ?

(b)
$$9 \times 9$$

Solution

A l'échiquier $k \times k$ on associe le graphe $G_{k \times k}$ suivant :

les sommets sont les cases et deux sommets sont reliés par une arête si les deux cases correspondantes sont disposées de manière à ce qu'un mouvement du cavalier permette de passer de l'une à l'autre.

La question est : ce graphe possède-t-il un cycle hamiltonien ?

Une condition suffisante

Théorème (Dirac) (sans démonstration)

Si G est un graphe simple à $n \ge 3$ sommets tel que chaque sommet est de degré supérieur ou égal à n/2, alors G est hamiltonien.

Complexité

Complexité

Facile

S'il existe un cycle hamiltonien :

Difficile

Facile

S'il existe un cycle hamiltonien : certificat = un cycle hamiltonien.

Difficile

Facile

S'il existe un cycle hamiltonien : certificat = un cycle hamiltonien.

Difficile

S'il n'existe pas de cycle hamiltonien:

Facile

S'il existe un cycle hamiltonien : certificat = un cycle hamiltonien.

Difficile

S'il n'existe pas de cycle hamiltonien: on n'a pas de certificat.

Facile

S'il existe un cycle hamiltonien : certificat = un cycle hamiltonien.

Difficile

S'il n'existe pas de cycle hamiltonien: on n'a pas de certificat.

Difficile

Problème du Voyageur de commerce.

Définitions

Graphe orienté G = (V, A):

- sommets : $V(G) = \{v_1, \ldots, v_n\},\$
- arcs : $A(G) = \{a_1, \dots, a_m\}$, un arc est un couple de sommets,
- extrémité initiale : v_i pour l'arc $a_i = v_i v_k$,
- extrémité terminale : v_k pour l'arc $a_i = v_i v_k$,
- Attention ! : $v_i v_k \neq v_k v_i$.

- degré sortant $d^+(v)$ du sommet v: le nombre d'arcs sortants de v,
- degré entrant $d^-(v)$ du sommet v: le nombre d'arcs entrants dans v.

Définition

- degré sortant $d^+(v)$ du sommet v: le nombre d'arcs sortants de v,
- degré entrant $d^-(v)$ du sommet v: le nombre d'arcs entrants dans v.

Théorème : Pour un graphe orienté G = (V, A)

La somme des degrés sortants des sommets est égale à la somme des degrés entrants des sommets.

$$\sum_{v \in V} d^+(v) = \sum_{v \in V} d^-(v).$$

Définition

- degré sortant $d^+(v)$ du sommet v: le nombre d'arcs sortants de v,
- degré entrant $d^-(v)$ du sommet v: le nombre d'arcs entrants dans v.

Théorème : Pour un graphe orienté G = (V, A)

La somme des degrés sortants des sommets est égale à la somme des degrés entrants des sommets.

$$\sum_{v \in V} d^+(v) = |A| = \sum_{v \in V} d^-(v).$$

Définition

- degré sortant $d^+(v)$ du sommet v: le nombre d'arcs sortants de v,
- degré entrant $d^-(v)$ du sommet v: le nombre d'arcs entrants dans v.

Théorème : Pour un graphe orienté G = (V, A)

La somme des degrés sortants des sommets est égale à la somme des degrés entrants des sommets.

$$\sum_{v \in V} d^+(v) = |A| = \sum_{v \in V} d^-(v).$$

Démonstration

- Calculer la somme des degrés sortants des sommets revient à compter les arcs sortants de chaque sommet et puis à ajouter ces nombres.
- 2 Chaque arc uv est compté exactement une fois dans la somme.

Chemins

- (a) Chemin: une suite alternée de sommets et d'arcs: $v_0e_1v_1e_2...e_k, v_k$, telle que $e_i=v_{i-1}v_i$ pour $1 \le i \le k$.
- (b) Chemin simple: chemin tel que les arcs sont distincts.
- (c) Chemin élémentaire : chemin tel que les sommets sont distincts.

Circuits

- (a) Circuit: une séquence circulaire de sommets et d'arcs: $v_0e_1v_1e_2...v_{k-1}e_k$, telle que $e_i=v_{i-1}v_i$ pour $1 \le i \le k-1$ et $e_k=v_{k-1}v_0$ sont des arcs distincts
- (b) Circuit élémentaire : un circuit dont les sommets sont distincts.

Circuits

- (a) Circuit: une séquence circulaire de sommets et d'arcs: $v_0e_1v_1e_2\ldots v_{k-1}e_k$, telle que $e_i=v_{i-1}v_i$ pour $1\leq i\leq k-1$ et $e_k=v_{k-1}v_0$ sont des arcs distincts \iff un chemin simple dont les extrémités coïncident.
- (b) Circuit élémentaire : un circuit dont les sommets sont distincts.

Circuit élémentaire

Théorème

Si $d^+(v) \ge 1 \ \forall v \in V(G)$ alors il existe un circuit élémentaire.

Circuit élémentaire

Théorème

Si $d^+(v) \ge 1 \ \forall v \in V(G)$ alors il existe un circuit élémentaire.

Démonstration

- On commence un parcours à partir d'un sommet quelconque,
- quand on arrive à un sommet non-visité on peut en sortir, par la condition.
- quand on arrive la première fois à un sommet déjà visité on a un circuit élémentaire entre les deux apparitions de ce sommet.

- Degré sortant $d_G^+(X)$ d'un ensemble X de sommets : nombre d'arcs dont extrémité initiale est dans X, extrémité terminale est dans $V \setminus X$.
- Degré entrant $d_G^-(X)$ d'un ensemble X de sommets : nombre d'arcs dont extrémité initiale est dans $V \setminus X$, extrémité terminale est dans X.

Caractérisation de l'existence d'un (s, t)-chemin

Théorème

Soient s et t deux sommets d'un graphe orienté G = (V, A). Les conditions suivantes sont équivalentes :

- (a) Il existe un chemin de s à t.
- (b) Pour tout X tel que $s \in X \subseteq V \setminus t$, on a $d^+(X) \ge 1$.
- (c) Il existe un chemin élémentaire de s à t.

Algorithme de Marquage

Algorithme de Marquage

Entrée : Un graphe orienté G = (V, A) et un sommet s de G.

SORTIE: S les sommets qui peuvent être atteints depuis S par un chemin, et S et le que S, S contient un S, S contient un S, S contient un S contient un

Étape 0: Initialisation.

$$S := \{s\} \text{ et } F := \emptyset.$$

Étape 1: Marquage.

Tant qu'il existe un arc uv de G tel que $u \in S, v \notin S$ faire :

$$S := S \cup \{v\},$$

$$F := F \cup \{uv\},$$

Étape 2: *Fin de l'algorithme.* STOP.

