1 Numerical solution: main text

	Description	Value	Notes
$\overline{\psi}$	IES	0.75	
σ	trade elasticity	1.5	?
ς	home bias	0.4	?
ν	Frisch elasticity	0.75	?
α	1 - labor share	0.33	
δ	depreciation rate	0.025	
ϵ	elast. of subs. across workers	20	
χ^W	Rotemberg wage adj. costs	400	$\approx \mathbb{P}(\text{adjust}) = 5 \text{ qtrs}$
ϕ^{π}	Taylor coeff. on inflation	1.5	?
$\underline{\varphi}$	disaster shock	-0.10	?
p	disaster risk	0.4%	E[p] = 0.5% (?)
$ ho^p$	dis. risk persistence	0.75	$\rho(p) = 0.7$
σ^p	dis. risk std. dev.	0.55	$\sigma(p)/E[p] = 1$
ω^d	safety skewness	0.002	$skew(\omega) = 6.1$
$ ho^{\omega}$	safety persistence	0.4	$\rho(\omega) = 0.3$
$\rho^{p\omega}$	corr. safety, disaster	0.5	$\rho(p,\omega) = 0.4$

Table 1: externally set parameters

	Description	Value	Moment	Target	Model
ζ^*	rel. pop.	1.6	$y^*/(sy)$	1.6	1.6
σ^z	std. dev. prod.	0.002	$\sigma(\Delta \log c)$	0.5%	0.5%
σ^F	std. dev. rel. prod.	0.005	$\sigma(\Delta \log y^*)$	0.8%	0.8%
$ ho^F$	persist. rel. prod.	0.9	$\rho(y^*/y, y_{-4}^*/y_{-4})$	0.6	0.5
χ^x	capital adj cost	3	$\sigma(\Delta \log x)$	1.6%	1.6%
β^*	disc. fac. Foreign	0.9892	$4\mathbb{E}r$	2.0%	2.0%
β	disc. fac. Home	0.9887	nfa/(4y)	-23%	-23%
σ^{ω}	std. dev. safety	0.91	$\rho_{-1}\left(r^e, r^* + \Delta \log q - r\right)$	0.5	0.5
γ^*	RRA Foreign	24	$4\mathbb{E}\left[r^e-r\right]$	5.1%	5.2%
γ	RRA Home	21	$\beta((\Delta nfa)/y, r^e-r)$	0.5	0.6
\bar{b}^g	safe debt/agg. cons.	0.127	$b_{H,s}^*/(4y)$	3.8%	3.8%
$\bar{ u}$	ℓ disutility	0.73	ℓ	1	1.0
$\bar{ u}^*$	ℓ^* disutility	0.71	ℓ^*	1	1.0
\overline{i}	Taylor intercept Home	0.49%	$\log P/P_{-1}$	0.0%	0.0%
\bar{i}^*	Taylor intercept Foreign	0.47%	$\log P^*/P_{-1}^*$	0.0%	0.0%

Table 2: targeted moments and calibrated parameters

Notes: second moments are reported over quarterly frequency. Data moments are estimated over Q1 1995 – Q4 2019. Model moments are computed by (i) simulating model for 20,000 quarters and discarding first 10,000 quarters; (ii) drawing 100 starting points from remaining 10,000 quarters; (iii) simulating 100 samples beginning from these starting points, with no disaster realizations in sample; (iv) computing moments for each sample and averaging across samples.

Figure 2: effects of increase in disaster probability

Figure 3: effects of increase in safety

	Data	Model	Νο ω	$\gamma = \gamma^*$
$\beta(r_{t+1}^* - \Delta \log q_{t+1} - r_{t+1}, \log y_t - \log y_{t-4})$	-0.17	-0.11	0.00	-0.11
	(0.11)			
$\beta(r_{t+1}^* - \Delta \log q_{t+1} - r_{t+1}, r_{t+1}^e)$	0.23	0.06	-0.00	0.06
	(0.04)			
$\beta((\Delta n f a_{t+1})/y_t, r_{t+1}^* - \Delta \log q_{t+1} - r_{t+1})$	1.38	1.45	-3.39	0.25
	(0.30)			
Memo: $(k-\kappa)/(4y)$		59.8%	50.2%	0.1%
$b_H/(4y)$		-102.5%	151.3%	14.3%
$b_F/(4y)$		19.8%	-224.6%	-15.9%

Table 3: comovements in the international monetary system

Notes: data moments estimated over 1995 - 2019. Standard errors are given in parenthesis. First two rows use monthly data and thus ? standard errors with 4 lags to correct for overlapping observations. Model moments are computed as described in note to Table ??.

Moment	Data	Model	No ω	$\gamma = \gamma^*$
$\sigma(4r_t)$	2.9%	4.1%	2.1%	4.1%
$\sigma(4[r_t^e - r_t])$	33.6%	17.2%	11.2%	17.5%
$\sigma(4[r_t^* - \Delta \log q_t - r_t])$	15.5%	1.9%	0.3%	1.9%
$\sigma(\Delta \log q_t)$	3.8%	0.3%	0.2%	0.3%
$\sigma(\Delta \log E_t)$	3.8%	0.4%	0.2%	0.4%
$\overline{\sigma(\Delta \log q_t, \Delta \log c_t^* - \Delta \log c_t)}$	0.10	0.91	0.92	0.97

Table 4: additional second moments

Notes: data moments are estimated over Q1 1995 – Q4 2019. Standard errors are given in parenthesis. Model moments are computed as described in note to Table ??.

Moment	Data	Model	Νο ω	$\gamma = \gamma^*$
$\sigma(\Delta \log y_t)$	0.59%	0.61%	0.44%	0.60%
$\sigma(\Delta \log y_t^*)$	0.81%	0.81%	0.75%	0.81%

Table 5: output volatility

Notes: data moments estimated over Q1 1995 - Q4 2019. Model moments are computed as described in note to Table ??.

Moment	Data	Model	No ω	$\gamma = \gamma^*$
$\sigma((\Delta n f a_t)/y_t)$	11.0%	3.3%	1.6%	0.8%
$\sigma(nx_t/y_t)$	1.0%	1.0%	0.8%	0.8%
$\sigma((\Delta n f a_t - n x_t)/y_t)$	10.9%	3.1%	1.8%	0.2%
$\Delta n f a/y$	-2.8%	0.2%	0.1%	0.0%
nx/y	-3.2%	-0.6%	-0.2%	0.1%
$(\Delta nfa - nx)/y$	0.4%	0.7%	0.3%	-0.1%

Table 6: U.S. net foreign asset volatility

Notes: volatilities in data estimated over Q1 2006 - Q4 2019 since BEA IIP data is available quarterly only after that date; means are estimated using annual data over Q1 1995 - Q4 2019. Model moments are computed as described in note to Table ??.

	Model	No ω	$\gamma = \gamma^*$
As share of $Var((\mathbb{E}_t - \mathbb{E}_{t-1})nfa_t)$:			
$Cov\left(-(\mathbb{E}_{t} - \mathbb{E}_{t-1})\sum_{h=1}^{500} \left(\prod_{i=1}^{h} \frac{1}{1+r_{t+i}^{k}}\right) nx_{t+h}, (\mathbb{E}_{t} - \mathbb{E}_{t-1})nfa_{t}\right)$	32.3%	76.2%	99.1%
$Cov\left(-(\mathbb{E}_t - \mathbb{E}_{t-1})\sum_{h=1}^{500} \left(\prod_{i=1}^h \frac{1}{1+r_{t+i}^k}\right) val_{t+h}, (\mathbb{E}_t - \mathbb{E}_{t-1}) nfa_t\right)$			
$Cov\left(\left(\mathbb{E}_{t} - \mathbb{E}_{t-1}\right)\left(\prod_{i=1}^{500} \frac{1}{1+r_{t+i}^{k}}\right) nfa_{t+500}, \left(\mathbb{E}_{t} - \mathbb{E}_{t-1}\right) nfa_{t}\right)$	0.1%	0.1%	-0.0%

Table 7: understanding U.S. external adjustment

Notes: moments are computed as described in note to Table ??, but including disaster realizations.

Figure 4: simulation using observed p and ω series

Notes: p is from ? and ω is from ? (demeaned). Both are scaled to match volatilities of p and ω in model. Given these shocks, figure depicts average paths starting from 100 points drawn from ergodic distribution as described in note to Table ??.

		Model		
	Data	$\operatorname*{Constant}_{i}$	Active Taylor	
Impact effects				
$\log E_t$	-72bp	-100bp	-18bp	
$\log P_t r_t^e$	+151bp	+135bp	+29bp	
$\Delta n f a_t / y_t$		+436bp	+67bp	
$\Delta(nfa_t - nx_t)/y_t$		+351bp	+63bp	
Peak effects				
$\log y_t$		+79bp	+11bp	
$\log y_t^*$		+21bp	+4bp	

Table 8: effects of dollar swap lines

Notes: data column are cumulative estimates from ? for March 19-20, 2020 announcements (Table 1 in that paper). Model columns simulate a decrease in ω_t of 14bp starting from the average of the model's ergodic distribution.

2 Numerical solution: appendix

Figure 5: effects of increase in safety under alternative monetary policy rules

Notes: impulse responses are average responses starting from 100 points drawn from ergodic distribution as described in note to Table ??.

	Model	$\phi^y = 0.5/4$	$\phi^y = 0.5/4, \rho^i = 0.5$
$\beta(r_{t+1}^* - \Delta \log q_{t+1} - r_{t+1}, \log y_t - \log y_{t-4})$	-0.11	-0.10	-0.13
$\beta(r_{t+1}^* - \Delta \log q_{t+1} - r_{t+1}, r_{t+1}^e)$	0.06	0.06	0.08
$\beta((\Delta n f a_{t+1})/y_t, r_{t+1}^* - \Delta \log q_{t+1} - r_{t+1})$	1.45	1.30	0.86
Memo: $(k-\kappa)/(4y)$	59.8%	51.9%	37.7%
$b_H/(4y)$	-102.5%	-127.0%	-72.5%
$b_F/(4y)$	19.8%	52.1%	12.9%

Table 9: comovements under alternative monetary policy rules

Notes: moments are computed as described in note to Table ??.

γ	$=\gamma^*$	Model	Model	Model	Model
σ^ω	0	0	Model	Model	Model
$b_{H,s}^g$	n/a	n/a	0	Model	Model
$ ho^{p,\omega}$	n/a	n/a	0	0	Model
k/a	100.00%	137.09%	137.70%	137.74%	142.41%
b_H/a	105.94%	73.34%	4.69%	1.82%	-51.94%
b_F/a	-105.94%	-110.43%	-42.39%	-39.56%	9.53%
$\frac{1}{\rho_t(r_{t+1}^* - \Delta \log q_{t+1} - r_{t+1}, \log m_{t,t+1})}$	0.06	0.09	0.02	0.02	-0.53
$\rho_t(r_{t+1}^* - \Delta \log q_{t+1} - r_{t+1}, \log m_{t,t+1}^* + \Delta \log q_{t+1})$	0.07	0.08	0.02	0.02	-0.49

Table 10: portfolios and risk premium

Notes: model moments are computed as described in note to Table 2. $\,$

Figure 6: simulation using observed p and ω series

Notes: see notes to Figure ??.

Figure 7: simulation using observed p and ω series

Notes: see notes to Figure ??.

Figure 9: effects of safety shock in model and data

Notes: in data, impulse responses estimated as in Figure ?? except using quarterly data over Q1 1995 – Q4 2019. In model, innovation to ω_t equals estimated innovation in swapped G10/Tbill spread, multiplied by ratio of unconditional volatilities of ω_t in model to swapped G10/Tbill spread in data.

Figure 10: effects of increase in disaster probability - 1/2

Figure 11: effects of increase in disaster probability - 2/2

Figure 12: effects of disaster realization - 1/2

Figure 13: effects of disaster realization - 2/2

Figure 14: effects of global productivity shock - 1/2

Figure 15: effects of global productivity shock - $2/2\,$

Figure 16: effects of relative productivity shock - 1/2

Figure 17: effects of relative productivity shock - 2/2

Figure 18: effects of safety shock - 1/2

Figure 19: effects of safety shock - 2/2

3 Additional results

Q3 07 - Q3 09	Data	Model
$\Delta \log y$	-4.7536%	-1.3304%
$\Delta \log y^*$	-5.1183%	-1.4699%
$\Delta n f a/y$	-10.0397%	-8.6086%

Table A1: Output decline

	Model	Νο ω	$\gamma = \gamma^*$
As share of $Var((\mathbb{E}_t - \mathbb{E}_{t-1})nfa_t)$:			
$Cov\left(-(\mathbb{E}_t - \mathbb{E}_{t-1})\sum_{h=1}^{500} \left(\prod_{i=1}^h \frac{1}{1+r_{t+i}^k}\right) nx_{t+h}, (\mathbb{E}_t - \mathbb{E}_{t-1})nfa_t\right)$	32.3%	76.2%	99.1%
$Cov\left(-(\mathbb{E}_t - \mathbb{E}_{t-1})\sum_{h=1}^{500} \left(\prod_{i=1}^h \frac{1}{1+r_{t+i}^k}\right) val_{t+h}, (\mathbb{E}_t - \mathbb{E}_{t-1}) nfa_t\right)$	67.6%	23.8%	0.9%
$Cov\left(-(\mathbb{E}_t - \mathbb{E}_{t-1})\sum_{h=1}^{500} \left(\prod_{i=1}^h \frac{1}{1+r_{t+i}^k}\right) val_{t+h}^r, (\mathbb{E}_t - \mathbb{E}_{t-1}) nfa_t\right)$	67.0%	23.4%	-0.1%
$Cov\left(-(\mathbb{E}_{t} - \mathbb{E}_{t-1})\sum_{h=1}^{500} \left(\prod_{i=1}^{h} \frac{1}{1+r_{t+i}^{k}}\right) val_{t+h}^{r^{*}}, (\mathbb{E}_{t} - \mathbb{E}_{t-1}) nfa_{t}\right)$	0.3%	0.4%	0.1%
$Cov\left(-(\mathbb{E}_t - \mathbb{E}_{t-1})\sum_{h=1}^{500} \left(\prod_{i=1}^h \frac{1}{1+r_{t+i}^k}\right) val_{t+h}^s, (\mathbb{E}_t - \mathbb{E}_{t-1}) nfa_t\right)$	0.4%	0.0%	0.8%
$Cov\left(\left(\mathbb{E}_{t} - \mathbb{E}_{t-1}\right)\left(\prod_{i=1500200} \frac{1}{1+r_{t+i}^{k}}\right) nfa_{t+500}, \left(\mathbb{E}_{t} - \mathbb{E}_{t-1}\right) nfa_{t}\right)$	0.1%	0.1%	-0.0%

Table 7: understanding U.S. external adjustment

Notes: moments are computed as described in note to Table ??, but including disaster realizations.