Pi-système

En <u>mathématiques</u>, un π-système (ou **pi-système**) sur un ensemble X est un ensemble de parties de X stable par intersection $\frac{1}{2}$. Les π-systèmes font parties des <u>familles</u> d'ensembles que l'on rencontre en <u>théorie</u> de la <u>mesure</u> et <u>théorie</u> des <u>probabilités</u>. On sait par exemple grâce au <u>lemme</u> de classe monotone que deux <u>mesures finies</u>, et en particulier deux <u>mesures de probabilités</u>, dont les valeurs coïncident sur un π-système, coïncident également sur la <u>tribu engendrée</u> par le dit π-système $\frac{2}{2}$. Les π-systèmes offrent donc une famille d'ensembles de prédilection, et relativement simple $\frac{3}{2}$, pour vérifier l'égalité de deux mesures ou bien l'unicité de la construction d'une mesure.

Sommaire

Définition

Exemples

Propriétés

Notes et références

Définition

Définition $^{1,\frac{4}{}}$ — Soit X un ensemble. On appelle π -système sur X, un ensemble \mathcal{C} de parties de X qui vérifie la propriété suivante :

$$A, B \in \mathcal{C} \Rightarrow A \cap B \in \mathcal{C}$$
.

Il est important de remarquer que certains auteurs requièrent dans la définition la condition supplémentaire que \mathcal{C} ne soit pas vide $\frac{3}{2}$, ou bien encore que \mathbf{X} appartienne à \mathbf{C} . Ceci évitant la manipulation du π-système vide dans les preuves. On peut faire remonter l'usage du terme π-système au moins jusqu'au mathématicien Eugene Dynkin en $1961^{\frac{1}{2}}$.

Exemples

- Une algèbre d'ensemble est un π-système, et par conséquent une tribu l'est aussi.
- Une topologie est un π-système.
- L'ensemble des <u>intervalles</u> semi-ouverts à droite, $\{[a,b) \mid a,b \in \mathbf{R}, a < b\}$ (en y adjoignant l'intervalle vide) est un π -système. Il en va de même pour les autres familles d'intervalles même non bornés.

Propriétés

Dans cette section établissons quelques propriétés des π -systèmes qui ne sont pas étrangères à celle des tribus.

Propriété — L'intersection d'une famille quelconque de π-systèmes sur un même ensemble est un π -système.

Démonstration

Soit Λ un ensemble non-vide et $(P_{\lambda})_{\lambda \in \Lambda}$ une famille de π -systèmes sur un ensemble X. Si A et B appartiennent à l'intersection de cette famille, ils appartiennent à chacun de ses membres et donc l'intersection $A \cap B$ appartient aussi à chacun de ses membres. On conclut aisément que l'intersection $A \cap B$ appartient à l'intersection de cette famille de π -système. Dans le cas où Λ est l'ensemble vide, l'intersection correspond à l'ensemble des parties de X qui forment un π -système $\frac{5}{2}$.

Comme conséquence directe de cette propriété, on obtient que pour toute famille \mathcal{E} de parties d'un ensemble X il existe un plus petit π -système qui la contient, au sens de l'inclusion des ensembles. On pourrait l'appeler le π -système engendré par \mathcal{E} par analogie avec les tribus engendrées. Il est unique et se construit comme l'intersection de tous les π -systèmes qui contiennent \mathcal{E} .

Propriété — L'image réciproque d'un π -système sur un ensemble X par une fonction d'un ensemble Y dans X est un π -système sur Y.

Démonstration

Cette propriété est évidente de part les propriétés élémentaires des <u>fonctions réciproques</u>, cependant on rappelle que si P est le π -système et f la fonction, l'image réciproque du π -système est constituée des ensembles $f^{-1}(A)$ pour A dans P.

Dans le cas remarquable d'une <u>variable aléatoire réelle</u> X définie sur un <u>espace de probabilité</u> Ω , les ensembles $\{X \leq a\} = \{\omega \mid X(\omega) \leq a\}$ pour a réel est un π -système. Par ailleurs on obtient la <u>fonction de répartition</u> F_X de X comme les probabilités des ensembles de ce π -système en posant $F_X(x) = \mathbf{P}(\{X \leq x\})$ pour tout x réel où \mathbf{P} désigne la <u>mesure de probabilité</u> considérée sur Ω . Celle-ci permet de caractériser la <u>loi de la variable aléatoire</u> X.

Propriété — Soit $(X_t)_{t \in T}$ une famille d'ensembles indexée par un ensemble T. Si l'on se donne pour chaque t dans T un π -système P_t sur X_t alors, sur le <u>produit cartésien</u> $\Pi_{t \in T} X_t$, la famille de tous les ensembles cylindriques $\frac{4}{}$

$$C_{t_1,\ldots,t_n}(A_{t_1},\ldots,A_{t_n}) = \{x \in \Pi_{t \in T} X_t \mid x(t_i) \in A_{t_i}, \ i = 1,\ldots,n\}$$

où n est un entier, t_1, \ldots, t_n sont éléments de T et pour chaque entier j jusqu'à n, A_{t_j} est un élément de P_{t_j} , forme un π-système.

Démonstration

La démonstration de ce fait consiste essentiellement en un changement de l'indexation du cylindre formé par l'intersection de deux cylindres. Soit deux cylindres $C_{t_1,\ldots,t_n}(A_{t_1},\ldots,A_{t_n})$ et $C_{s_1,\ldots,s_m}(B_{s_1},\ldots,B_{s_m})$, leur intersection est un cylindre $C_{r_1,\ldots,r_k}(D_{r_1},\ldots,D_{r_k})$ où $k\leq n+m$ et les ensembles D_{r_i} sont de la forme A_{t_j} ou B_{s_j} ou $A_{t_j}\cap B_{t_j}$ pour un certain j.

En particulier, lorsque $T=\{1,\ldots,n\}$ est fini, respectivement. $T=\mathbb{N}$, on obtient une construction plus simple de telle manière que l'on peut écrire le π -système comme suit : $\{A_1\times\cdots\times A_n\mid A_i\in P_i\text{ ou }A_i=X_i,\ i=1,\ldots n\}$, respectivement $\{\Pi_{i\in\mathbb{N}}A_i\mid A_i\in P_i\text{ ou }A_i=X_i,\ i\in\mathbb{N}\}$. On remarque aisément en supposant X_i dans P_i pour chaque i que l'on peut simplifier encore ces expressions.

De tels systèmes se rencontrent bien souvent lorsque P_t est en fait une tribu sur X_t , et donc en particulier un π -système. Dans ce cas la famille des cylindres est génératrice de la tribu cylindrique sur l'espace produit qui est une tribu d'usage classique dans l'étude des processus stochastiques $\frac{6}{}$.

Notes et références

- 1. Eugene Dynkin (trad. D. E. Brown), *Theory of Markov processes*, Prentice Hall, Inc., 1961, p.1.
- 2. Marc Briane et Gilles Pagès, Théorie de l'intégration, Vuibert, 2006 (4ème edition), p. 81.
- 3. Lawrence Evans et Ronald Gariepy, *Measure theory and fine properties of functions*, CRC Press, 2015 (revised edition), p.7.
- 4. Olav Kallenberg, Foundations of Modern Probability, Springer, 2002 (2nd edition), p.2
- 5. Voir la section Famille indexée de parties d'un ensemble de la page Tribu.
- 6. E. Dynkin (1961), Op. cit., p.6.

Ce document provient de « https://fr.wikipedia.org/w/index.php?title=Pi-système&oldid=163497412 ».

La dernière modification de cette page a été faite le 13 octobre 2019 à 08:58.

<u>Droit d'auteur</u>: les textes sont disponibles sous <u>licence Creative Commons attribution</u>, <u>partage dans les mêmes conditions</u>; d'autres conditions peuvent s'appliquer. Voyez les <u>conditions</u> d'utilisation pour plus de détails, ainsi que les <u>crédits</u> graphiques. En cas de réutilisation des textes de cette page, voyez <u>comment citer les auteurs et mentionner la licence</u>.

Wikipedia® est une marque déposée de la Wikimedia Foundation, Inc., organisation de bienfaisance régie par le paragraphe 501(c)(3) du code fiscal des États-Unis.