Máquinas de Turing no-determinísticas (MTND)

- Una MTND tiene los mismos componentes que vimos para una MTD, con la siguiente excepción.
- Un programa en una MTND es una tabla que mapea un par (q_i, t_i) a un conjunto de ternas $(q_f, t_f, \{0, +1, -1\})$.
- Una MTND resuelve un problema de decisión si existe una secuencia de alternativas que lleva a un estado de aceptación si y sólo si la respuesta es "sí".

Clases P y NP

- Un problema de decisión está en la clase P si las instancias "sí" son reconocidas por una MTD polinomial.
- Un problema de decisión está en la clase NP si las instancias "sí" son reconocidas por una MTND polinomial.
- Alternativamente, La clase NP se puede definir como el conjunto de problemas de decisión que admiten un certificado polinomial.
- Relaciones entre las clases:
 - 1. $P \subseteq NP$
 - 2. **Problema abierto:** ¿Es P = NP?

Ejemplo: Conjunto independiente máximo

Dado un grafo G = (V, X) y un entero k, ¿tiene G un conjunto independiente de tamaño mayor o igual a k?

guess(S): función multivaluada que retorna un nuevo elemento de S.

```
\begin{split} I &:= \emptyset \\ S &:= V \\ \text{mientras} \quad S \neq \emptyset \text{ hacer} \\ v &:= guess(S) \\ S &:= S \setminus \{v\} \\ \text{si } I \cup \{v\} \text{ es independiente entonces } I := I \cup \{v\} \\ \text{si } |I| \geq k \text{ entonces retornar ''si''} \\ \text{fin mientras} \\ \text{retornar ''no''} \end{split}
```

Transformaciones polinomiales

Todavía no se demostró que exista un problema en NP \setminus P. Mientras tanto, se estudian clases de complejidad "relativa", es decir, que establecen orden de dificultad entre problemas.

- Una transformación o reducción polinomial de un problema de decisión Π₁ a uno Π₂ es una función que se computa en tiempo polinomial y transforma una instancia I₁ de Π₁ en una instancia I₂ de Π₂ tal que I₁ tiene respuesta "sí" para Π₁ si y sólo si I₂ tiene respuesta "sí" para Π₂.
- El problema de decisión Π_1 se reduce polinomialmente a otro problema de decisión Π_2 , $\Pi_1 \leq_p \Pi_2$, si existe una transformación polinomial de Π_1 a Π_2 .

Si $\Pi'' \leq_p \Pi'$ y $\Pi' \leq_p \Pi$ entonces $\Pi'' \leq_p \Pi$, ya que la composición de dos reducciones polinomiales es una reducción polinomial.

Problemas NP-completos

Definición:

Un problema Π es **NP-completo** si:

- 1. $\Pi \in NP$.
- 2. Para todo $\Pi' \in NP$, $\Pi' \leq_p \Pi$.

• ¿Qué pasa si existe un problema en NP-c ∩ P?

- ¿Qué pasa si existe un problema en NP-c ∩ P?
- Implicaría que P=NP.

- ¿Qué pasa si existe un problema en NP-c ∩ P?
- Implicaría que P=NP.
 - Si Π ∈ NP-c ∩ P, existe un algoritmo polinomial que resuelve Π, por estar Π en P. Por otro lado, como Π es NP-completo, para todo Π' ∈ NP, Π' ≤_p Π.

 $P \neq NP$? La pregunta del millón...

- ¿Qué pasa si existe un problema en NP-c ∩ P?
- Implicaría que P=NP.
 - Si Π ∈ NP-c ∩ P, existe un algoritmo polinomial que resuelve Π, por estar Π en P. Por otro lado, como Π es NP-completo, para todo Π' ∈ NP, Π' ≤_p Π.
 - Sea Π' ∈ NP. Apliquemos la reducción polinomial que transforma instancias de Π' en instancias de Π y luego el algoritmo polinomial que resuelve Π. Por definición de reducción polinomial, es fácil ver que lo que se obtiene es un algoritmo polinomial que resuelve Π'.

- ¿Qué pasa si existe un problema en NP-c ∩ P?
- Implicaría que P=NP.
 - Si Π ∈ NP-c ∩ P, existe un algoritmo polinomial que resuelve
 Π, por estar Π en P. Por otro lado, como Π es NP-completo,
 para todo Π' ∈ NP, Π' ≤_p Π.
 - Sea Π' ∈ NP. Apliquemos la reducción polinomial que transforma instancias de Π' en instancias de Π y luego el algoritmo polinomial que resuelve Π. Por definición de reducción polinomial, es fácil ver que lo que se obtiene es un algoritmo polinomial que resuelve Π'.
- Hasta el momento no se conoce ningún problema en NP-c ∩ P, así como tampoco se ha demostrado que un problema esté en NP \ P. En ese caso, obviamente, se probaría que P ≠ NP.

Esquema de clases

¿Cómo se prueba que un problema es NP-completo?

El problema SAT consiste en decidir si, dada una fórmula lógica φ expresada como conjunción de disyunciones (ej:

 $\varphi = x_1 \wedge (x_2 \vee \neg x_1) \wedge (x_3 \vee \neg x_4 \vee x_1)$, existe una valuación de sus variables que haga verdadera φ .

Teorema de Cook-Levin (1971): SAT es NP-completo.

La demostración de Cook es directa: considera un problema genérico $\Pi \in \mathsf{NP}$ y una instancia genérica $d \in D_\Pi$. A partir de la hipotética NDTM que resuelve Π , genera en tiempo polinomial una fórmula lógica $\varphi_{\Pi,d}$ en forma normal (conjunción de disyunciones) tal que d tiene respuesta "sí" en Π si y sólo si $\varphi_{\Pi,d}$ es satisfactible.

La idea es escribir una fórmula que exprese exactamente que la NDTM \mathcal{M} que resuelve Π , para el input d, termina en un estado q_{si} .

La idea es escribir una fórmula que exprese exactamente que la NDTM \mathcal{M} que resuelve Π , para el input d, termina en un estado q_{si} .

Para eso, se definen variables que van a expresar si el i-ésimo casillero de la cinta contiene cierto valor en el j-ésimo paso o no, si la cabeza de la máquina está en el i-ésimo casillero de la cinta en el j-ésimo paso o no, si la máquina está en un cierto estado en el j-ésimo paso o no.

La idea es escribir una fórmula que exprese exactamente que la NDTM \mathcal{M} que resuelve Π , para el input d, termina en un estado q_{si} .

Para eso, se definen variables que van a expresar si el i-ésimo casillero de la cinta contiene cierto valor en el j-ésimo paso o no, si la cabeza de la máquina está en el i-ésimo casillero de la cinta en el j-ésimo paso o no, si la máquina está en un cierto estado en el j-ésimo paso o no.

El alfabeto y la cantidad de estados e instrucciones de \mathcal{M} son finitos y son constantes para el problema Π . La cantidad de pasos y posiciones de la cinta a considerar está acotada por el polinomio P que acota, dado el tamaño del input d, la cantidad máxima de pasos P(|d|) en que la máquina llega al estado q_{si} si d es una instancia de respuesta "sí".

La fórmula expresa que:

 en cada paso cada casillero de la cinta contiene exactamente un símbolo (incluyendo el blanco)

- en cada paso cada casillero de la cinta contiene exactamente un símbolo (incluyendo el blanco)
- en cada paso la cabeza está en exactamente una posición

- en cada paso cada casillero de la cinta contiene exactamente un símbolo (incluyendo el blanco)
- en cada paso la cabeza está en exactamente una posición
- en cada paso la máquina está en exactamente un estado

- en cada paso cada casillero de la cinta contiene exactamente un símbolo (incluyendo el blanco)
- en cada paso la cabeza está en exactamente una posición
- en cada paso la máquina está en exactamente un estado
- cada transición de variables de un paso al siguiente es válida de acuerdo a las tuplas que definen la máquina

- en cada paso cada casillero de la cinta contiene exactamente un símbolo (incluyendo el blanco)
- en cada paso la cabeza está en exactamente una posición
- en cada paso la máquina está en exactamente un estado
- cada transición de variables de un paso al siguiente es válida de acuerdo a las tuplas que definen la máquina
- en algún paso la máquina está en estado q_{si}.

¿Cómo se prueba que un problema es NP-completo?

A partir del Teorema de Cook, la técnica standard para probar que un problema Π es NP-completo aprovecha la transitividad de \leq_p , y consiste en lo siguiente:

- Mostrar que Π está en NP.
- 2. Elegir un problema Π' apropiado que se sepa que es NP-completo.
- 3. Construir una reducción polinomial f de Π' en Π .

¿Cómo se prueba que un problema es NP-completo?

A partir del Teorema de Cook, la técnica standard para probar que un problema Π es NP-completo aprovecha la transitividad de \leq_p , y consiste en lo siguiente:

- 1. Mostrar que Π está en NP.
- 2. Elegir un problema Π' apropiado que se sepa que es NP-completo.
- 3. Construir una reducción polinomial f de Π' en Π .

La segunda condición en la definición de problema NP-completo sale usando la transitividad: sea Π'' un problema cualquiera de NP. Como Π' es NP-completo, $\Pi'' \leq_p \Pi'$. Como probamos que $\Pi' \leq_p \Pi$, resulta $\Pi'' \leq_p \Pi$.

Coloreo es NP-completo

A partir de un algoritmo de backtracking para coloreo es fácil construir una NDTM para el problema de coloreo, por lo tanto está en NP.

Coloreo es NP-completo

A partir de un algoritmo de backtracking para coloreo es fácil construir una NDTM para el problema de coloreo, por lo tanto está en NP.

Para probar que coloreo es NP-completo, vamos entonces a reducir SAT a coloreo.

Coloreo es NP-completo

A partir de un algoritmo de backtracking para coloreo es fácil construir una NDTM para el problema de coloreo, por lo tanto está en NP.

Para probar que coloreo es NP-completo, vamos entonces a reducir SAT a coloreo.

Tomemos una instancia genérica de SAT $\varphi = C_1 \wedge \cdots \wedge C_m$. Vamos a construir un grafo G y determinar un número k de manera que φ sea satisfactible si y sólo si G se puede colorear con k-colores.

Reducción de SAT a coloreo

G tiene:

- V₁: un vértice por cada variable negada y afirmada, todos adyacentes entre si.
- V₂: un vértice por cada cláusula, adyacente a los literales de V₁ que no aparecen en la cláusula.
- V₃: otro vértice por cada variable, adyacente a todo V₂ y a los literales de V₁ correspondientes a otras variables.

k = dos veces la cantidad de variables.

$$\varphi = (x_1 \vee \neg x_2 \vee x_3) \wedge (x_2 \vee \neg x_3)$$

Queda como ejercicio escribir formalmente la reducción y demostrar que es una reducción polinomial de SAT a coloreo.

Reducción de SAT a coloreo

$$\varphi = (x_1 \vee \neg x_2 \vee x_3) \wedge (x_2 \vee \neg x_3)$$

El problema 3-SAT es una variante del problema SAT, en el cual cada cláusula tiene exactamente tres literales. Como es una restricción del dominio de SAT, está en NP, y en principio es "no más difícil" que SAT.

El problema 3-SAT es una variante del problema SAT, en el cual cada cláusula tiene exactamente tres literales. Como es una restricción del dominio de SAT, está en NP, y en principio es "no más difícil" que SAT.

Para probar que 3-SAT es NP-completo, vamos entonces a reducir SAT a 3-SAT.

El problema 3-SAT es una variante del problema SAT, en el cual cada cláusula tiene exactamente tres literales. Como es una restricción del dominio de SAT, está en NP, y en principio es "no más difícil" que SAT.

Para probar que 3-SAT es NP-completo, vamos entonces a reducir SAT a 3-SAT.

Tomemos una instancia genérica de SAT $\varphi = C_1 \wedge \cdots \wedge C_m$. Vamos a reemplazar cada C_i por una conjunción de disyunciones φ_i' , donde cada disyunción tenga tres literales, y de manera que φ sea satisfactible si y sólo si $\varphi_1 \wedge \cdots \wedge \varphi_m$ lo es.

• Si *C_i* tiene tres literales, queda como está.

- Si C_i tiene tres literales, queda como está.
- C_i tiene menos de tres literales, agregamos nuevas variables como en el ejemplo:

$$(x_1 \vee \neg x_2) \rightarrow (x_1 \vee \neg x_2 \vee y) \wedge (x_1 \vee \neg x_2 \vee \neg y)$$

- Si C_i tiene tres literales, queda como está.
- C_i tiene menos de tres literales, agregamos nuevas variables como en el ejemplo:

$$(x_1 \vee \neg x_2) \rightarrow (x_1 \vee \neg x_2 \vee y) \wedge (x_1 \vee \neg x_2 \vee \neg y)$$

Si C_i tiene cuatro o más literales, agregamos nuevas variables como en el ejemplo:

$$(x_1 \vee \neg x_2 \vee x_3 \vee x_4 \vee \neg x_5) \rightarrow$$
$$(x_1 \vee \neg x_2 \vee y_1) \wedge (\neg y_1 \vee x_3 \vee y_2) \wedge (\neg y_2 \vee x_4 \vee \neg x_5)$$

- Si C_i tiene tres literales, queda como está.
- C_i tiene menos de tres literales, agregamos nuevas variables como en el ejemplo:

$$(x_1 \vee \neg x_2) \rightarrow (x_1 \vee \neg x_2 \vee y) \wedge (x_1 \vee \neg x_2 \vee \neg y)$$

Si C_i tiene cuatro o más literales, agregamos nuevas variables como en el ejemplo:

$$(x_1 \vee \neg x_2 \vee x_3 \vee x_4 \vee \neg x_5) \rightarrow$$
$$(x_1 \vee \neg x_2 \vee y_1) \wedge (\neg y_1 \vee x_3 \vee y_2) \wedge (\neg y_2 \vee x_4 \vee \neg x_5)$$

Queda como ejercicio escribir formalmente la reducción y demostrar que es una reducción polinomial de SAT a 3-SAT.

Los 21 problemas NP-completos de Karp

En 1972, Richard Karp probó usando reducciones polinomiales que 21 problemas fundamentales de grafos y optimización combinatoria son NP-completos.

- 0-1 INTEGER PROGRAMMING (Programación lineal entera)
- CLIQUE (y conjunto independiente)
- SET PACKING (Empaquetamiento de conjuntos)
- VERTEX COVER (Recubrimiento de aristas por vértices)
- SET COVERING (Recubrimiento por conjuntos)
- FEEDBACK NODE SET (Sacar vértices para obtener un DAG)
- FEEDBACK ARC SET (Sacar arcos para obtener un DAG)
- DIRECTED HAMILTONIAN CIRCUIT (Circuito Hamiltoniano dirigido)
- UNDIRECTED HAMILTONIAN CIRCUIT (Circuito Hamiltoniano no dirigido)

Los 21 problemas NP-completos de Karp

- 3-SAT (Satisfacibilidad booleana de 3 variables por cláusula)
- CHROMATIC NUMBER (Coloreo de grafos)
- CLIQUE COVER (Recubrimiento de vértices por cliques)
- EXACT COVER (Recubrimiento por conjuntos exacto)
- HITTING SET (Conjunto de elementos que interseque una familia de conjuntos)
- STEINER TREE (Árbol de peso mínimo que conecte un conjunto de vértices)
- 3-DIMENSIONAL MATCHING (Ménage à trois)
- KNAPSACK (Problema de la mochila)
- JOB SEQUENCING (Secuenciamiento de tareas)
- PARTITION (Partición de conjuntos)
- MAX-CUT (Corte máximo)

Demostraciones de NP-completitud más recientes

Complejidad de k-coloreo en las clases de grafos sin caminos de t vértices inducidos:

k∖t	4	5	6	7	8	
3	O(m) [1]	$O(n^{\alpha})$ [4]	$O(mn^{\alpha})$ [5]	$O(n^{21}(n+m))$ [6]	?	
4	O(m) [1]	P [2]	?	NPC [3]	NPC	
5	O(m) [1]	P [2]	NPC [3]	NPC	NPC	
6	O(m) [1]	P [2]	NPC	NPC	NPC	
:	:	:	:	:	:	٠
	•	•	•	•	•	

- [1] Chvátal, 1984, Corneil, Perl, Stewart 1984.
- [2] Hoàng, Kamiński, Lozin, Sawada, Shu 2010.
- [3] Huang 2013.
- [4] Mellin 2002.
- [5] Randerath, Schiermeyer 2004.
- [6] Bonomo, Chudnovsky, Macely, Schaudt, Stein, Zhong 2014.

La clase NP-difícil

Definición: Un problema de decisión Π es NP-difícil (*NP-hard*) si todo otro problema en NP se puede transformar polinomialmente a Π .

(en la práctica esta definición a veces se usa por un abuso de lenguaje también para problemas que no son de decisión y cuya versión de decisión es NP-completo)

La clase co-NP

- Un problema de decisión pertenece a la clase co-NP si dada una instancia con respuesta "no" y evidencia de la misma, puede ser verificada en tiempo polinomial.
- El problema complemento de un problema de decisión Π, Π^c, es el problema de decisión que responde al complemento de la decisión de Π.
- El problema complemento tiene respuesta "no" si y sólo si Π tiene respuesta "sí".
- La clase co-NP es la clase de los problemas complemento de los problemas de la clase NP.
- La clase de los problemas polinomiales (P), está contenida también en co-NP.

Problemas abiertos

Con estas nuevas definiciones tenemos los siguientes problemas abiertos:

- ¿Es P = NP?
- ¿Es co-NP = NP?
- ¿Es $P = \text{co-NP} \cap \text{NP}$?

Las incógnitas...

Dos mapas posibles para las clases de complejidad

Las incógnitas...

Dos mapas posibles para las clases de complejidad R. Ladner, 1975: Si $P \neq NP$, existe la clase NP-intermedio.

Las incógnitas...

Situación si se probara que $P \neq NP$, $NP \neq co - NP$, $P \neq co - NP \cap NP$

En la práctica ...

- ¿Qué hacer ante un problema del que no sabemos en que clase está?
- ¿Qué importancia tiene saber si un problema está en P o no, desde el punto de vista teórico?
- ¿Qué importancia tiene la misma pregunta desde el punto de vista práctico?
- ¿Qué hacemos si el problema que tenemos en la práctica sabemos que es NP-completo?