

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS - 1963 - A

DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT CENTER

Bethesda, Maryland 20084

AD-A159 804

INFLUENCE OF HULL FORM PARAMETERS
ON ROLL MOTION

by

David A. Walden and Paul J. Kopp

APPROVED FOR PUBLIC RELEASE - DISTRIBUTION UNLIMITED

SHIP PERFORMANCE DEPARTMENT

April 1985

DTNSRDC/SPD-1143-01

85 10 04 088

MAJOR DTNSRDC ORGANIZATIONAL COMPONENTS

UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE

AD-A159 804

	REPORT DOCU	MENTATION	PAGE			
1. REPORT SECURITY CLASSIFICATION		16. RESTRICTIVE	MARKINGS			
Unclassified 2a SECURITY CLASSIFICATION AUTHORITY		2 0/570/04/7/04	/AVAILABILITY OF	0000	07	
28 SECURITY CLASSIFICATION AUTHORITY					ik i	
26 DECLASSIFICATION / DOWNGRADING SCH	EDULE	Distribut	ion Unlimite	ed		
4 PERFORMING ORGANIZATION REPORT NU	MBER(S)	5 MONITORING	ORGANIZATION R	EPORT	NUMBER(S	*
DTNSRDC/SPD-1143-01		<u> </u>				
6 NAME OF PERFORMING ORGANIZATION	66 OFFICE SYMBOL		ONITORING ORGA			
Javid W. Taylor Naval Ship Research & Development Cent	(If applicable) er Code 1561	Naval Se	ea Systems Co	ommai	ıd	
6c ADDRESS (City, State, and ZIP Code)	er code 1501		ty. State, and ZIP	Codel		
oc Abbress (cry, state, and an edge)		70 Abonessites	ty, state, and the	code,		
Bethesda, Maryland 20084-	000	Washingt	on, D.C. 20	362-	5101	
84 NAME OF FUNDING SPONSORING	86 OFFICE SYMBOL	9 PROCUREMEN	T INSTRUMENT ID	ENTIFIC	ATION NU	MBER
ORGANIZATION	(If applicable)	1				
Naval Sea Systems Command	Code 05R	<u> </u>				
8: ADDRESS (City, State, and ZIP Code)		PROGRAM	FUNDING NUMBER	TASK		WORK UNIT
Washington, D.C. 20362-510	1	ELEMENT NO	NO	NO		ACCESSION NO
		62543N	SF-43-421	421-	-150-100	A 1506-120
· ·	NE COVERED	14 DATE OF REPO	ORT (Year, Month,	Day)	15 PAGE	COUNT
Final FROM		1985 Apr	11		25	
16 SUPPLEMENTARY NOTATION 17 COSATI CODES	18 SUBJECT TERMS	Continue on rever	se if necessary and	d ident	ify by bloc	k number)
FIELD GROUP SUB-GROU	Roll Motion					
	Regression A	nalysis				
13 ABSTRACT (Continue on reverse if nece	eam, and identify by black	number)				
This report describes hull form parameters. A dathe effect of hull form on wave direction and the maxi roll fins are also presented	ta base of 17 ship roll angle are per num observed roll	s is describ formed for t angle. Data	ed and regre hree values	ession of sips t	n analy	ses for ding to
☑ /hclassifieD/unlimiteD ☐ SAMI		Unclassif:	Led .			
228 NAME OF RESPONSIBLE INDIVIDUAL		226 TELEPHONE	(Include Area Code			
Paul J. Kopp		(202) 227-	-1192		<u> lode 156</u>	1

DD FORM 1473, 84 MAR

83 APR edition may be used until exhausted

SECURITY CLASSIFICATION OF THIS PAGE

TABLE OF CONTENTS

Pa,	ge
LIST OF FIGURES	ii
LIST OF TABLES	iv
NOTATION	v
ABSTRACT	1
ADMINISTRATIVE INFORMATION	1
INTRODUCTION	1
HULL FORM AND ROLL MOTION DATA BASE	1
STATISTICAL ANALYSIS OF ROLL MOTION	1
CONCLUSIONS	. 4
REFERENCES	5
LIST OF FIGURES	
DIST OF FIGURES	
1 - GM/B versus Roll Angle	7
2 - (KM/B) ² versus Roll Angle	7
3 - (B/T) ² versus Roll Angle	8
4 - Prismatic Coefficient versus Roll at 60, 90, and 120 Degree Headings	8
5 - Summary of Stepwise Regression for Beam Seas	9
6 - Prismatic Coefficient versus Maximum Expected Roll	10
7 - Roll Variation with Heading and GM/B	11
8 - Roll Reduction Using Anti-Roll Fins in Beam Seas	12
9 - Roll Reduction Using Anti-Roll Fins, Maximum Expected Roll	12
10 - Operability With and Without Anti-Roll Fins	12

	Page
LIST OF TABLES	
1 - Hull Form Characteristics	. 14
2 - Significant Single Amplitude Roll Angle	. 15
3 - Linear Regressions of a Single Independent Variable on Roll Angle at 60, 90, and 120 Degree Headings	. 16
4 - Linear Regression of a Single Independent Variable on Maximum Expected Roll Angle	. 17
5 - Multi-Variable Regressions for 60, 90, and 120 Degree Headings	. 18
6 - Multi-Variable Regression for Maximum Expected Roll Angle	. 19
7 - Roll Separated by GM/B Ranges and Heading	. 20

NOTATION

L	Length between perpendiculars
В	Ship beam
$c_{\mathbf{p}}$	Prismatic coefficient
Cw	Waterplane coefficient
c _x	Maximum section area coefficient
GM	Metacentric height
KM	Vertical location of metacenter above the baseline
LCF	Longitudinal center of floatation expressed as percentage of L aft of the forward perpendicular
P%	p statistic (expected error, see page 3)
T	Ship draft
VCG	Vertical center of gravity
Δ	Displacement

A0098	ston For	
9 ×	77 10 X	1
	1	
; = = : :		
Piotes Av., 10		
Dist ,		1
AI		

ABSTRACT

This report describes a statistical analysis of ship roll response as influenced by hull form parameters. A data base of 17 ships is described and regression analyses for the effect of hull form on roll angle are performed for three values of ship heading to wave direction and the maximum observed roll angle. Data for the ships that have antiroll fins are also presented.

ADMINISTRATIVE INFORMATION

Funding for this work was provided by the Ship Performance and Hydromechanics Program under Program Element Number 62543N, Subj Project SF43-421. At the David W. Taylor Naval Ship Research and Development Center it is identified as Work Unit 1506-120.

INTRODUCTION

The success of Bales in quantifying the relation between hull form parameters and seakeeping performance in head seas has led to great interest in extending this work to oblique seas. The most important additional motion introduced by this extension is roll. The present work describes an investigation into the feasibility of developing seakeeping performance estimates based on hull form parameters for roll motion in a manner analogous to Bales' work for head seas.

HULL FORM AND ROLL MOTION DATA BASE

In order to investigate the roll response of surface combatants, a data base of 17 ships was selected. These ships are frigates and destroyers and are a subset of ships used by Bales¹. Seven of the 17 ships are equipped with antiroll fins and data is presented for these ships with and without antiroll fins.

The principal dimensions and hull form parameters are listed in Table 1.

ROLL MOTION ANALYSIS

Ship motion calculations were carried out using the Navy's Standard Ship Motion Program (SMP81)² from which tabulated values of roll angles for long-crested seas were obtained. Roll angle data for ship headings to the wave direction of

^{*}A complete listing of references is given on page 5.

60 (bow), 90 (beam), and 120 (quartering) degrees were extracted from the SMP81 output as well as the maximum observed roll angle.* In all cases, a Bretschneider spectrum with a significant wave height of 3.5 meters and a ship speed of 30 knots was used. These are conditions in which frigates are expected to be fully operational. Table 2 contains a summary of the computed significant single amplitude roll angles.

To analyze the data, several regressions using ship characteristics and roll response were performed. These regressions were done using both multivariable stepwise and single independent variable regression methods.

In order to maintain statistical confidence in a regression with a relatively small sample size, a minimum number of independent variables should be used. To achieve this, two sets of regression calculations were performed. The first set of regressions uses a relatively large number of independent variables, while the second set of regressions use a much smaller number of variables.

Selection of the variables for the first set of regressions was based on an understanding of ship roll and previous analysis of the data used in this investigation. Ship motion theory indicates that the primary factors that determine roll response are functions of mass distribution (gyradius and the vertical center of mass), hydrodynamic damping (bilge keel area for example), and excitation force (governed by hull form, wave height and slope, and wave encounter frequency). One goal of the study was to determine if roll response could be predicted given the level of detail available at very early design stages. While vertical center of gravity and thus metacentric height is usually not available, it was decided to include metacentric height so that it would be possible to make a comparison of the regressions with and without the metacentric height included. Based on the regressions performed previously, the geometric variables that are considered to be of importance are ship length, beam, draft, prismatic coefficient, waterplane coefficient, and displacement.

The first set of regressions uses GM/B, KM/B, B/T, C_p , C_w and the squares of these variables. Additionally, displacement-length ratio and bilge keel area divided by length square are included. Table 3 shows the results of the single variable regressions for ship headings of 60, 90, and 120 degrees. Table 4 shows

^{*}The convention used in SMP81 is 0 degrees for head seas and 180 degrees for following seas.

the same regression results for the maximum observed roll angle. Results of the multivariable regression for the first selection of variables are not given because the number of variables used in the regression was close to the number of observations, leading to statistical uncertainty in the numeric results. The order in which variables were selected in each step of the regression was, however, used to determine the relative importance of each variable, since selection order is based on the sum of the squares reduced by the addition of a variable in the regression equation.

From the first set of regression results, the coefficient of determination for the single variable regressions and the order of selection for the multivariable regressions are used to reduce the number of variables. For the cases of ship headings of 60, 90, and 120 degrees, the variables that had the highest coefficient of determination and early selection were the same: GM/B, $(KM/B)^2$, $(B/T)^2$, and C_p . Plots of these coefficients versus roll angle at the three headings can be found in Figures 1 through 4. Figure 5 shows the cumulative proportion of the sum square reduced at each step in the multiple regression for beam seas. It can be seen that when GM/B is available, it gives the largest contribution. When GM/B is not used, $(KM/B)^2$ gives the largest contribution, but the fit result is never as good as when GM/B is used. In the case of the maximum observed roll angle, a different set of variables was found to be significant, i.e., $(C_p)^2$, $A/(L/100)^3$, C_w^2 and $(B/T)^2$. Figure 6 shows prismatic coefficient versus maximum expected roll angle. These two sets of variables then become the variables for the second set of regressions.

Tables 5 and 6 give the results for the second set of regressions. Table 5 gives the results for the multivariable regressions with and without GM/B for 60, 90, and 120 degree ship headings. Table 6 gives the results of the regression on the maximum observed roll angle. The coefficient of each variable in the regression equation is the slope of the regression plane in that dimension while the constant is the intercept of the regression plane with the roll angle axis. The standard deviation of the regression will give the range of error of the regression when multiplied by the square root of the number of independent variables. The p% statistic is an indication of the expected error of the standard deviation as compared to the entire population and depends on the number of variables in the regression and the sample size^{3,4}.

Table 7 shows the roll angles for the ships in the data base separated into groups of three GM/B ranges. The average roll angle for each range is plotted against ship heading in Figure 7. As the ship's heading goes from head to beam and then following seas, the influence of GM/B reverses. This can also be seen in the coefficients of the regression planes shown in Table 5. This agrees with trends shown by Schmitke⁵.

Figures 8 and 9 show the roll reduction obtained by using antiroll fins in beam seas and for the heading of maximum roll angle. The average reduction in roll is 64 percent for beam and 66 percent for the heading of maximum roll. Since the primary factors that control roll reduction with fins are the controller system and fin size, no correlation between hull form and roll reduction was observed.

Figure 10 shows the increase in operability for a destroyer hull form due to the addition of antiroll fins. Operability in this case is defined as the percentage of the time that the ship can operate in the winter North Atlantic without exceeding 8 degrees of roll, 3 degrees of pitch, 30 deck wetnesses per hour, 20 slams per hour, and 0.4g vertical acceleration at the bridge.

CONCLUSIONS

It has been shown that the dominant influence on roll response is metacentric height. This makes the estimation of roll response at very early design stages difficult since the location of the VCG is not available. Further, it is not possible to provide guidance on parameters other than GM because change in these parameters can have positive or negative influence on roll motion depending on the value of GM. Since it has been shown in a recent investigation for the Naval Studies Board, that adequately sized antiroll fins can reduce roll to the point where it is not the limiting motion, the recommended procedure for Navy combatants is to develop hull forms to reduce pitch and heave related responses and to provide adequate fins and bilge keels to reduce roll.

REFERENCES

- 1. Bales, Nathan K., "Optimizing the Seakeeping Performance of Destroyer-Type Hulls," Thirteenth Symposium on Naval Hydrodynamics, Tokyo, Japan (Oct 1980).
- 2. Meyers, W.G., T.R. Applebee and A.E. Baitis, "User's Manual for the Standard Ship Motion Program, SMP," Report DTNSRDC/SPD-0936-01 (Sep 1981).
- 3. Crow, Edwin L., Frances A. Davis and Margaret W. Maxfield, "Statistics Manual," Dover Publications, Inc., New York.
- 4. Bennett, Carl A., and Norman L. Franklin, "Statistical Analysis in Chemistry and the Chemical Industry," John Wiley & Sons, Inc., New York (1967).
- 5. Schmitke, Rodney T., "The Influence of Displacement, Hull Form, Appendages, Metacentric Height and Stabilization on Frigate Rolling in Irregular Seas," SNAME STAR Symposium (1980).

Figure 1 - GM/B versus Roll Angle

Figure 2 - $(KM/B)^2$ versus Roll Angle

DTNSRDC ISSUES THREE TYPES OF REPORTS

- 1. DTNSRDC REPORTS, A FORMAL SERIES, CONTAIN INFORMATION OF PERMANENT TECHNICAL VALUE. THEY CARRY A CONSECUTIVE NUMERICAL IDENTIFICATION REGARDLESS OF THEIR CLASSIFICATION OR THE ORIGINATING DEPARTMENT.
- 2. DEPARTMENTAL REPORTS, A SEMIFORMAL SERIES, CONTAIN INFORMATION OF A PRELIMINARY, TEMPORARY, OR PROPRIETARY NATURE OR OF LIMITED INTEREST OR SIGNIFICANCE. THEY CARRY A DEPARTMENTAL ALPHANUMERICAL IDENTIFICATION.
- 3. TECHNICAL MEMORANDA, AN INFORMAL SERIES, CONTAIN TECHNICAL DOCUMENTATION OF LIMITED USE AND INTEREST. THEY ARE PRIMARILY WORKING PAPERS INTENDED FOR INTERNAL USE. THEY CARRY AN IDENTIFYING NUMBER WHICH INDICATES THEIR TYPE AND THE NUMERICAL CODE OF THE ORIGINATING DEPARTMENT. ANY DISTRIBUTION OUTSIDE DTNSRDC MUST BE APPROVED BY THE HEAD OF THE ORIGINATING DEPARTMENT ON A CASE BY-CASE BASIS.

QU/S R60 R90 RMAX R120 ahlp # 0.050 1.71 2.89 16.96 15 0.064 3.76 5.79 13.52 6.42 6 0.053 1.89 3.61 16.34 16 0.064 4.06 6.85 15.00 7.15 17 0.060 2.36 4.33 12.25 5 0.086 3.97 6.51 19.20 9.97 7 0.064 2.86 6.70 21.18 10.94 12 0.094 2.73 6.20 25.65 10.87 11 0.072 2.74 5.27 34.67 13 0.095 3.02 5.61 17.39 8.68 14 0.072 2.74 5.27 34.67 13.70 4.00 0.095 3.37 5.92 19.98 9.68 14 0.072 2.74 4.94 5.77 4.97 13.70 8.63 14 0.072 3.06 4.96 <t< th=""><th>0.4/6</th><th>CH/8= 0.05 · 0.06</th><th>•</th><th></th><th></th><th></th><th>CM/8= 0</th><th>GM/8= 0.08 - 0.10</th><th>6</th><th></th><th></th><th>•</th></t<>	0.4/6	CH/8= 0.05 · 0.06	•				CM/8= 0	GM/8= 0.08 - 0.10	6			•
0 1.71 2.89 16.96 15 5 1.89 3.61 16.34 16 0 2.36 4.33 12.25 5 6 2.68 6.70 21.18 10.94 12 2 2.74 5.25 10.54 5.79 13 2 4.94 5.27 34.67 12.29 4 2 3.06 4.97 13.70 8.67 3	8	1 40	<u>&</u>	R105	. 120 81.20	ship #	8/ND	1 99	86	BHAX	R120	e dife
5 1.89 3.61 16.34 16 0 2.38 4.33 12.25 5 6 2.68 6.70 21.18 10.94 12 2 2.74 5.25 10.54 5.79 13 2 4.94 5.27 36.67 12.29 4 2 3.06 4.97 13.70 8.67 3	0.050	£.1	2.80		16.98	15	0.084	3.76	5.2	13.52	6.42	٠
0 2.36 4.33 12.25 5 6 2.66 6.70 21.18 10.94 12 2 2.74 5.25 10.54 5.79 13 2 4.94 5.27 36.67 12.29 4 2 3.06 4.97 13.70 8.67 3	0.055	1.89	3.61		16.34	5	90.0	9.7	6.85	15.00	7.15	11
6 2.68 6.70 21.18 10.94 12 2 2.74 5.25 10.54 5.79 13 2 4.94 5.27 34.67 12.29 4 2 3.06 4.97 13.70 8.67 3 4 2.771 4.717 20.523 11.694	0.00	2.38	4.33		12.25	.	0.088	3.97	6.51	19.20	4.67	~
2 2.74 5.25 10.54 5.79 13 2 4.94 5.27 34.67 12.29 4 2 3.06 4.97 13.70 8.67 3 4 2.771 4.717 20.523 11.694	9.06	2.68	۶.9	21.18	70.0	12	0.0%	2.73	6.20	25.65	10.87	=
2 4.94 5.27 36.67 12.29 4 2 3.06 4.97 13.70 8.67 3 4 2.771 4.717 20.523 11.694	0.072	2.74	5.3	10.54	8.5	t3	0.095	3.05	5.61	17.39	8.68	±
2 3.06 4.97 13.70 8.67 3 a 4 2.771 4.717 20.523 11.894	0.072	\$.	5.27	28.67	12.29	•	0.098	3.37	5.95	19.98	9.68	2
4 2.771 4.717 20.523 11.894	0.072	3.06		13.70	8.67	m						
2.771 4.717 20.523 11.894 0.091 3.488 6.147 18.457	rverage						average					
	0.064	2.771	4.717	20.523	11.694		0.091	3.488	6.147	18.457	8.73	

GW/8 R60	09	<u>8</u>	R90 RMAX R120 ship #	R120	3 0 1 0 3
0.102	4.36	% .	20.67	8.56	7
0.102	4.54	7.46	24.05	8.53	•••
0.103	3.49	6.86	19.95	8.46	-
0.117	5.41	9.59	14.58	6.18	۰
average					
0.106	4.450	7,893	19.813	7.933	

TABLE 7 - ROLL SEPARATED BY GM/B RANGES AND HEADING

GM/8= 0.10 - 0.12

.

TABLE 6 - MULTI-VARIABLE REGRESSION FOR MAXIMUM EXPECTED ROLL ANGLE

	103.42720	-0.14628	-59.94104	-0.61700	10.37530		21%		5.63	X07
Coerricients:	Cp^2	Disp-L	CM/2	(B/T)^2	Constant:	Cumulative Sum of	Squares Reduced:	Standard	Deviation:	×

	GN/8 Included	GN/8 Not Included		GM/B Included	CM/B Not Included
	In Regression	In Regression		In Regression	In Regression
60 Degree Heading			90 Degree Meading		
Coefficients:		-	Coefficients:		
	28.61994	. 41 .	8/X5	71.88931	. **
(101/8)~5		-37,13960	(104/8)~5	-3.71507	-55.06761
(8/1)~2		-0.21686	(8/1)^2	-0.22251	-0.27163
8	-0.77042	-2.84692	8	2.76008	-2.45580
Cone tant:		13.70484	Constant:	1.12526	19.62796
Cumilative Sum of	•		Cumulative Sum of		
Squares Reduced:	229	53%	Squares Reduced:	63X	X97
Standard			Standard		
Deviation:	0.58	0.69	Deviation:		1.14
뫮	X07	K.	¥	X07	ĸ

GA/B Included GA/B Not Included In Regression In Regression

120 Degree Heading

	• ¥# •	120.01780	0.62976	3.30193	-18.97141		53X		2.15	372
	-76.95155	65.04913	0.57719	-2.28124	0.83420	*	63%		1 .8	40 4
Coefficients:	8/18	(KOI/B)^2	(8/1)^2	8	Constant:	Cumulative Sum of	Squares Reduced:	Standard	Devistion:	*1

TABLE 5 - MULTI-VARIABLE REGRESSIONS FOR 60, 90 AND 120 DEGREE HEADINGS

	E S	5	(GN/B)^2	8/103	(KCK/B)^2	1/8	(B/T)^2	AREA/L^2	DISP-L	ප	Cp^2	3	CA-2
Maximum Expected													•
Roll Angle													
	10.54		0.0025	0.3738	0.1397	2.5605	6.5560	0.0066	50.9415	0.5800	0.3364	0.7130	0.5064
and Xee	36.67	0.1172	0.0137	0.4563	0.2082	3.7318	13.9261	0.0138	77.7691	0.6700	0.4489	0.8150	0.6642
ever age	18.67		0.0073	0.4133	0.1712	3.1445	9.9713	0.0108	63.0614	0.6194	0.3844	0.7585	0.5761
Intercept		14.7046	16.8421	22.5628	20.5448	32.8230	26.0233	14.0995	4.2007	-34.1712	-7.2758	-17.3188	0.8417
stope		47.5585	250.7170	-9.4276	-10.9692	-4.5021	-0.7378	421.4876	0.2294	85.3030	9067.79	47.4445	30.9389
variance of x		0.000	0.00001	0.0005	0.0003	0.0891	3.5172	0.000003	60.1752	0.0008	0.0012	0.000	0.0021
variance of y 38.60	38.60												
var of regression	8	40.1309	40.3470	1279.04	40.9754	39,0975	38.9850	40.4372	37.6518	35.1722	35.1934	38.83%	38.6459
correlation coeff	if	0.1469	0.1277	-0.0326	-0.0315	-0.2163	-0.2227	0.1188	0.2864	0.3775	0.3768	0.2304	0.2300
coef of determination	retion	0.0216	0.0163	0.0011	0.0010	0.0468	0.0496	0.0141	0.0820	0.1425	0.1420	0.0531	0.0529

TABLE 4 - LINEAR REGRESSIONS OF A SINGLE INDEPENDENT VARIABLE ON MAXIMUM EXPECTED ROLL ANGLE

60 Degreeg Neading	:												
	7.7	0.0498	0.0025	0.3738	0.1397	2.5605	6.5560	0.0066	50.9415	0.5800	0.3364	0.7130	0.5084
	5.41	0.1172	0.0137	0.4563	0.2082	3.7318	13.9261	0.0138	77.7691	0.6700	0.4489	0.8150	0.6642
ever ege	3.42	0.0633	0.0073	0.4133	0.1712	3.1445	9.9713	0.0108	63.0614	0.6194	0.3844	0.7585	0.5761
Intercept		0.1591	1.7239	15.8288	9.6799	6.4341	5.0527	3.5759	3,1384	8.4696	5.8005	6.8875	5.1646
aco)s		39.1361	233.0150	-30.0261	-36.5609	-0.9587	.0.1638	-14.4390	0.0045	-8.1532	-6.1946	·4.5725	-3.0291
verience of x		0.000	0.00001	0.000	0.0003	0.0891	3.5172	0.000003	60.1752	0.0008	0.0012	0.000	0.0021
vertence of y	1.09												
var of regression	ē	0.5555	0.5769	0.7139	0.7018	1.067	1.0547	1,1543	1.1537	1.1015	1.1059	1.1347	1.1341
correlation coeff	af.	0.7204	0.7074	-0.6179	.0.6263	-0.2745	-0.2946	-0.0243	0.0332	-0.2150	-0.2061	.0.1323	-0.1342
coef of determination	inetion	0.5190	0.5005	0.3618	0.3923	0.0753	0.0868	0.0006	0.0011	0.0462	0.0425	0.0173	0.0180
90 Degree Heading													
	2.89	0.0498	0.0025	0.3738	0.1397	2.5605	6.5560	9900.0	50.9415	0.5800	0.3364	0.7130	0.5064
max far.e	9.59	0.1172	0.0137	0.4563	0.2082	3.7318	13.9261	0.0138	77.7691	0.6700	0.4489	0.8150	0.6642
average	5.97	0.0633	.0.0073	0.4133	0.1712	3.1445	9.9713	0.0108	63.0614	0.61%	0.3844	0.7585	0.5761
intercept		-0.0250	2.7980	24.1393	15.1473	9.7446	7.9828	5.9106	7.2281	13.0987	9.3815	8.8877	7.47
e do le		7.8%	435.7637	-43.9655	-53.6017	-1.2008	-0.2020	5.3731	-0.0200	-11.5107	-8.8783	-3.6464	-2.6220
variance of x		0.0004	0.00001	0.0005	0.0003	0.0891	3.5172	0.000003	60.1752	0.0008	0.0012	0.000	0.0021
variance of y	2.53												
var of regression	<u>\$</u>	0.6662	90.970	1.7468	1.7184	2.5558	2.5399	2.6922	2.6668	2.5859	2.5915	2.6780	2.6767
correlation coeff	ef.	0.8673	0.8665	-0.5926	-0.6014	-0.2252	0.2380	0.0059	-0.0973	-0.1988	-0.1935	0.0729	-0.0761
coef of determination	inetion	0.7326	0.7308	0.3512	0.3617	0.0507	0.0566	0000	0.0095	0.0395	0.0374	0.0053	0.0058
120 Degree Heading													
	2.9	0.0498	0.0025	0.3738	0.1397	2.5605	6.5560	9900.0	50.9415	0.5800	0.3364	0.7130	0.5064
mex frame	16.98	0.1172	0.0137	0.4563	0.2062	3.7318	13.9261	0.0138	77.7691	0.6700	0.4489	0.8150	0.6642
8467898	8.6	0.0633	0.0073	0.4133	0.1712	3.1445	9.9713	0.0108	63.0614	0.6194	0.3844	0.7565	0.5761
intercept		19.5612	14.6844	-28.8765	-9.7912	0.5111	5.0343	5.3751	3.6621	-3.8082	3.4749	-3.3072	3,4502
stops		-115.916	-656.876	93.8357	115.0225	2.9874	0.4884	418.0454	0.0990	22.1386	16.7276	17.4192	11.2033
variance of x		0.0004	0.00001	0.0005	0.0003	0.0891	3.5172	0.000003	60.1752	0.0008	0.0012	0.000	0.0021
variance of y	10.46												
var of regression	Ē	5.65	6.5180	6.8045	6.6269	10.2666	10.2199	10.5418	10.4648	10.7178	10,7337	10.8180	10.8268
correlation coeff	-1.	-0.6880	0.6430	0.6226	0.6353	0.2757	0.2833	0.2264	0.2375	0.1882	0.17%	0.1625	0.1600
coef of determination	inetian	0.4733	0.4134	0.3876	0.4036	0.0760	0.0802	0.0513	0.0564	0.0354	0.0322	0.0264	0.0256

TABLE 3 - LINEAR REGRESSIONS OF A SINGLE INDEPENDENT VARIABLE ON ROLL ANGLE AT 60, 90, AND 120 DEGREE HEADINGS

					_	Maximum 90 Degree	90 Degree
gifts	Nexten	Heading	60 Degree	90 Degree	60 Degree 90 Degree 120 Degree Roll With Neading	Roll With	Meading
Mumber	Roll	at Max	Heading	Heading	heading	Fire	With Fine
	19.95	2	3.49	6.86	9.46	6.9	3.49
~	20.67	50	4.36	7.66	8.56	1.6	3.51
F	5.3	ž	3.06	4.97	8.67	17.9	1.18
•	79.95	5	- 4:4	5.27	12.90	5.08	0.77
.	12.25	120	2.38	4.33	12.23	7.58	1.67
•	13.52	<u>5</u>	3.76	5.3	27.9	_	_
_	19.20	50	3.97	6.51	9.97	_	_
•••	24.05	<u>5</u>	1.54	7.46	8.53	_	_
•	14.58	Ę	5.41	9.59	6.18		_
2	19.98	5	3.37	5.92	89.6	5.74	1.86
=	23.65	ž	2.73	6.20	10.87	5.30	1.86
12	21.18	ð	2.68	e.3	₹.01 _	_	_
5	70.5%	ā	2.74	5.2	5.3	_	_
*	17.39	50	3.02	5.61	8.69	_	_
5	16.96	8	1.7	2.89	16.98	_	
2	16.34	120	1.89	3.61	16.34		_
14	15.00	50	4.08	6.85	7.15	_	
everage	18.67		3.42	5.97	9.90		
minia	10.54		1.7	5.89	5.73		
mexim.	79.67		5.41	9.59	16.98		

TABLE 2 - SIGNIFICANT SINGLE AMPLITUDE ROLL ANGLE

¥	# Carbon	<u>-</u>	Ship Number 1 2	_ n _	- -	<u>~</u>	•	_	-	•	-	=	2	₽	_ _	₹	<u> </u>	1
:		::::			<u> </u>				:	:		:::	-		:	:::		
-	3	106.38	106.38 J131.00 J109.73 J	LT.901		119.48	161.24	124.36	126.49	93.88	1 77.151	106.00	105.00	128.00	142.50	124.00	121.31	108.51
-	3	13.30	K.71	13.11		14.33	16.70	13.78	14.26	10.92	14.40	±.8 −	1.01	13.33	15.29	13.65	15.24	12.80
-	:	3.78			4.51	3.84	5.97	4.52	4.72	3.43	4.27	3.3	4.30	4.80	4.50	£.93	K	4.22
D SP	Diap (cu. m) 2	7997			3502	3645	2006	35%	1224	1778	3606	2365	2761	7997	5024	3567	4710	2622
•	3	K.0			0.80	0.7 -	0.74	0.73	0.74	0.77	0.71	6.3	0.81	0.82	0.X	6.3 K	£.0	r.
	<u> </u>	97.0			0.81	0.87	9.0	0.7	0.81	0.83	0.78	0.77	0.80	0.63	0.81	0.82	9.0	8 .0
	8	0.63			19.0	0.62	0.56	09.0	9.6	0.59	9.0	59.0	19.0	0.67	0.62	0.61	2.62	0.61
2	3 5	0.58			0.58	0.54	0.58	0.55	0.57	0.57	0.57	0.59	0.55	0.55	0.55	0.55	0.58	6. 5
M MEA	(119			119	*	792	191	189	110	881	137	501	174	902	212	182	118
3	ENI	1.12			8.	8.0	39.	7.7	1.49	1.17	7.5	1.20	9.1	3.36	1.46	7.7	1.50	9.
5	3	1.37			0.92	9.8	1.41	1.21	1.46	1.28	1.41	1.13	6.73 	0.98	1.46	69.0	9.0	8.
G	5	0.103			0.072	0.060	0.064	0.068	0.102	0.117	0.096	0.0%	0.066	0.072	0.095	0.050	0.055	0.0 79.0
92	3	5.2			5.35	5.63	6.67	5.69	5.33	4.37	5.53	5.29	R.4	P. S.	6.24	6.32	6.82	2. 5
*	2	0.395			0.420	0.407	0.399	0.413	0.374	007.0	0.384	0.434	0.427	0.434	0.408	0.456	0.448	0.411
ک	5	8.8			8.62	6.3×	9.6	9.02	8.87	8.60	8.46	8.65	9.54	3.6	9.32	8.	8.	3.6
	5	3.52	1 3.20	3.17	2.82	3.73	2.80	3.05	3.02	3.16	3.37	3.19	2.56	2.78	3.40	3.42	3.21	3.63

TABLE 1 - HULL FORM CHARACTERISTICS

Figure 10 - Operability With and Without Anti-Roll Fins on a Destroyer Hull Form

Figure 8 - Roll Reducting Using Anti-Roll Fins in Beam Seas

Figure 9 - Roll Reduction Using Anti-Roll Fins, Maximum Expected Roll

Roll Variation With Heading And GM/B

Figure 7 - Roll Variation with Heading and GM/B

Prismatic Coefficient Versus Maximum Expected Roll

Figure 6 - Prismatic Coefficient versus Maximum Expected Roll

Figure 5 - Summary of Stepwise Regression for Beam Seas

Figure 3 - $(B/T)^2$ versus Roll Angle

Figure 4 - Prismatic Coefficient versus Roll at 60, 90, and 120 Degree Headings

END

FILMED

11-85

DTIC