

Lista de exercícios 3

Questão 1. Considere o sistema:

$$\begin{bmatrix} 10^{-4} & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$$

onde $b_1 \neq 0$ e $b_2 \neq 0$. A solução exata é

$$x_1 = \frac{-b_1 + b_2}{1 - 10^{-4}}, \qquad x_2 = \frac{b_1 - 10^{-4}b_2}{1 - 10^{-4}}.$$

- (a) Resolva o sistema acima tomando $b_1 = 1$ e $b_2 = 2$ por meio da eliminação de Gauss sem permutação, realizada com três dígitos significativos e arredondamento para o mais próximo.
- (b) Calcule o erro relativo da solução obtida em (a) sabendo que a solução exata é $x_1 \approx 1,00$ e $x_2 \approx 1,00$.
- (c) Repita as operações dos itens (a) e (b) utilizando pivotamento parcial simples.
- (d) Determine valores de b_1 e b_2 de modo que a eliminação de Gauss sem permutação realizada com três dígitos significativos e arredondamento para o mais próximo possa conduzir à solução exata.

Questão 2. Considere a matriz:

$$\mathbf{A} = \begin{bmatrix} 0 & 2 & 3 \\ 0 & -1 & 1 \\ 1 & 1 & -1 \end{bmatrix}.$$

- (a) Obtenha a fatoração **PA** = **LU** utilizando pivotamento parcial simples.
- (b) Utilize a fatoração obtida em (a) para resolver o sistema $\mathbf{A}\mathbf{x} = \begin{bmatrix} -1 & 0 & 1 \end{bmatrix}^\mathsf{T}$.

Questão 3. Mostre os seguintes resultados:

- (a) O produto de duas matrizes triangulares inferiores é triangular inferior.
- (b) O produto de duas matrizes triangulares inferiores com diagonal unitária é triangular inferior com diagonal unitária.
- (c) A inversa de uma matriz triangular inferior com diagonal unitária é triangular inferior com diagonal unitária.

Dica: nos itens (a) e (b), analise cada coeficiente do produto de duas matrizes $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{n \times n}$ utilizando a representação:

$$(\mathbf{AB})_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}.$$

Questão 4.

- (a) Suponha que **A** é uma matriz $n \times n$ invertível que possui uma fatoração **LU**. Mostre que essa fatoração é *única*.
- (b) Forneça uma matriz que não possui fatoração $\mathbf{L}\mathbf{U}$ e outra cuja fatoração não é única. Dica: construa matrizes 2×2 .

Questão 5. Determine todos os valores de $a \in \mathbb{R}$ para que a matriz:

$$\mathbf{A} = \begin{bmatrix} 1 & a & a \\ a & 1 & a \\ a & a & 1 \end{bmatrix}$$

seja definida positiva.

Questão 6. Resolva o sistema abaixo usando a fatoração de Cholesky.

$$\begin{bmatrix} 1 & 2 & 2 \\ 2 & 5 & 6 \\ 2 & 6 & 9 \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \\ x_2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}.$$

Questão 7. Prove que se uma matriz invertível $\mathbf{A} \in \mathbb{R}^{n \times n}$ possui uma fatoração de Cholesky $\mathbf{A} = \mathbf{L}\mathbf{L}^\mathsf{T}$ com $\mathbf{L} \in \mathbb{R}^{n \times n}$ triangular inferior, então \mathbf{A} é simétrica e positiva definida. Dica: você precisará do fato de que se uma matriz \mathbf{A} é não singular, então $\mathbf{A}\mathbf{x} \neq \mathbf{0}$ para todo $\mathbf{x} \neq \mathbf{0}$.

Questão 8. Considere o sistema:

$$\begin{bmatrix} 3 & 1 & 0 \\ 1 & a & 0 \\ 0 & a & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \quad a \in \mathbb{R}.$$

- (a) Para quais valores de a a matriz desse sistema é diagonal dominante?
- (b) Determine todos os valores de *a* para os quais esse sistema pode ser resolvido pelos métodos de Jacobi e Gauss-Seidel.
- (c) Realize três iterações dos métodos de Jacobi e Gauss-Seidel, iniciando com $\mathbf{x}^{(0)} = [0, 1, 0]$.

Questão 9. Mostre que se **A** é uma matriz com diagonal estritamente dominante, então o método de Jacobi converge.

Cálculo Numérico Prof. Vicente Helano Período 2023.1

Questão 10. Seja **A** = $[a_{ij}]$, $1 \le i, j \le 1000$, definida por:

$$a_{ij} = \begin{cases} i, & \text{se } i = j \\ rac{1}{2}, & \text{se } |i - j| \le 2 \\ 0, & \text{caso contrário} \end{cases}$$

- (a) Construa a matriz A usando um arranjo da NumPy.
- (b) Utilize a função spy da Matplotlib para visualizar a matriz **A**. [Dica: consulte a página https://matplotlib.org/stable/gallery/images_contours_and_fields/spy_demos.html]
- (c) Defina x_e como sendo o vetor cujas componentes são todas iguais a 1. Calcule b = Ax_e e resolva o sistema Ax = b usando: (i) decomposição LU sem pivotamento, (ii) decomposição LU com pivotamento parcial simples, (iii) decomposição LU com pivotamento parcial escalado, (iv) decomposição de Cholesky, (v) método de Jacobi e (vi) método de Gauss-Seidel.
- (d) Calcule os erros relativos usando a norma $\|\cdot\|_2$. [Dica: utilize a função norm do pacote linalg da NumPy.]
- (e) Qual método se saiu melhor considerando a relação tempo × precisão?