UNIVERSITATEA POLITEHNICA DIN BUCURESTI

Facultatea____

CHESTIONAR DE CONCURS

Numărul legitimației de bancă ______

Prenumele tatălui

DISCIPLINA: Algebră și Elemente de Analiză Matematică M1A

VARIANTA C

- 1. Să se rezolve ecuația $2^{x+1} = 8$. (5 pct.)
 - a) x = 5; b) x = 2; c) x = 3; d) x = 4; e) x = 0; f) x = -3.
- 2. Să se calculeze $I = \int_0^1 (x^2 x) dx$ (5 pct.)
 - a) $I = \frac{1}{2}$; b) I = 2; c) I = 0; d) $I = \frac{2}{3}$; e) I = 6; f) $I = -\frac{1}{6}$.
- 3. Ecuația $\sqrt{x-1} + x = 7$ are soluția: (5 pct.)
 - a) x = 6; b) x = 1; c) x = 0; d) x = -1; e) x = 2; f) x = 5.
- 4. Suma soluțiilor ecuației $x^2 x 2 = 0$ este: (5 pct.)
 - a) 2; b) 3; c) 5; d) $\sqrt{2}$; e) 1; f) 0.
- 5. Fie numărul complex z = 1 + 2i. Atunci: (5 pct.)
 - a) |z| = 6; b) |z| = 0; c) $|z| = \sqrt{7}$; d) |z| = -1; e) $|z| = \sqrt{5}$; f) |z| = 4.
- 6. Să se calculeze determinantul $D = \begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{vmatrix}$. (5 pct.)
 - a) D=3; b) D=1; c) D=5; d) D=2; e) D=0; f) D=4.
- 7. Fie $E = \sqrt{4} + \sqrt[3]{8} + \sqrt[4]{16}$. Atunci: (5 pct.)
 - a) E = 6; b) E = 3; c) E = 12; d) E = 28; e) E = 1; f) E = 7.
- 8. Fie funcția $f(x) = \begin{cases} 2x^2 + x + 2, & x < 0 \\ x + m, & x \ge 0 \end{cases}$. Determinați $m \in \mathbb{R}$ pentru care funcția f este continuă. (5 pct.)
 - a) m = 4; b) m = 11; c) m = 2; d) m = 1; e) m = 5; f) m = 7.
- 9. Mulțimea soluțiilor ecuației |x-1|=3 este: (5 pct.)
 - a) \emptyset ; b) $\{-2,4\}$; c) $\{5\}$; d) $\{3\}$; e) $\{5,7\}$; f) $\{0,1\}$.

- 10. Pentru $m \in \mathbb{C} \setminus \{0\}$ se definește legea de compoziție: $z_1 * z_2 = mz_1z_2 im(z_1 + z_2) m + i$, $\forall z_1, z_2 \in \mathbb{C}$. Să se calculeze suma modulelor valorilor lui m pentru care simetricul elementului 1+i este 2+i. (5 pct.) a) 4; b) $\sqrt{2}$; c) $\sqrt{3}$; d) $\sqrt{5}$; e) 2; f) 1.
- 11. Fie funcția $g: \mathbb{R} \to \mathbb{R}$, $g(x) = \int_0^{x^2} e^{t^2} dt$. Atunci: (5 pct.)
 - a) g este concavă; b) g are două puncte de extrem; c) g este convexă; d) g'(0) = 7; e) g este crescătoare; f) g este descrescătoare.
- 12. Mulțimea valorilor lui $m \in \mathbb{R}$ pentru care ecuația $2 \ln |x| = mx^2 + 1$ are două soluții reale distincte este: (5 pct.)
 - a) $m \in \left(-\infty, -\frac{1}{e^2}\right] \cup \left[\frac{1}{e^2}, 1\right];$ b) $m \in \left[\frac{1}{e^2}, +\infty\right];$ c) $m \in \left\{\frac{1}{e^2}\right\} \cup \left(1, e\right];$ d) $m \in \left(-\infty, 0\right] \cup \left\{\frac{1}{e^2}\right\};$ e) $m \in \left(-\infty, \frac{1}{e^2}\right];$ f) $m \in \left(-\infty, 1\right).$
- a) E = 2; b) E = 15; c) E = -5; d) E = 0; e) E = 20; f) E = 10.
- **14.** Fie polinomul $f = X^3 3X^2 + 2X$. Dacă x_1 , x_2 , x_3 sunt rădăcinile polinomului f, atunci $E = x_1^2 + x_2^2 + x_3^2$ este egală cu: (5 pct.)
 - .
- **15.** Fie $h: \mathbb{R} \to \mathbb{R}$, $h(x) = x^3 3x$. Atunci h'(1) este: (5 pct.) a) -4; b) 0; c) $\frac{3}{4}$; d) $-\frac{2}{3}$; e) $\frac{1}{2}$; f) $\frac{2}{3}$.
- 16. Fie matricele: $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ și $B = \begin{pmatrix} 0 & 1 \\ -1 & 2 \end{pmatrix}$. Să se determine matricea C = AB BA. (5 pct.)
- a) $C = \begin{pmatrix} -1 & 3 \\ 2 & 4 \end{pmatrix}$; b) $C = \begin{pmatrix} 1 & 6 \\ -4 & 3 \end{pmatrix}$; c) $C = \begin{pmatrix} -5 & 1 \\ -9 & 5 \end{pmatrix}$; d) $C = \begin{pmatrix} 2 & 7 \\ 9 & -2 \end{pmatrix}$; e) $C = \begin{pmatrix} 0 & 1 \\ 4 & 5 \end{pmatrix}$; f) $C = \begin{pmatrix} -7 & -5 \\ 0 & 1 \end{pmatrix}$.
- 17. Soluția reală a ecuației $\frac{2}{3}x \frac{x-1}{2} = x$ este: (5 pct.)
 - a) -1; b) $\frac{2}{7}$; c) $\frac{3}{5}$; d) 1; e) 0; f) $-\frac{1}{11}$.

13. Calculați $E = C_5^2 + C_5^3$. (5 pct.)

a) 5; b) 7; c) 2; d) -2; e) 4; f) -4.

- 18. Să se rezolve sistemul $\begin{cases} x y = 1 \\ x + 2y = 4 \end{cases}$. (5 pct.)
 - a) x = 2, y = 1; b) x = -2, y = -2; c) x = -1, y = 3; d) x = 5, y = -4; e) x = 4, y = 0; f) x = 0, y = -1.