

ДИЗАЙН ПРОГРАММИРУЕМЫХ ВЗАИМОДЕЙСТВИЙ НУКЛЕИНОВЫХ КИСЛОТ ДЛЯ РЕГУЛЯЦИИ ЭКСПРЕССИИ

Дипломную работу выполнил Фескин Павел Григорьевич Научный руководитель: профессор, д-р ф.-м. наук, чл.-корр. РАН Шайтан Алексей Константинович

Регуляция экспрессии генов

Антисмысловые олигонуклеотиды как лекарственный препарат

Нанотехнологии в терапии

Идеальное лекарство должно быть селективным и специфичным

ДНК Нанотехнологии в терапии

Явление кооперативности

Кооперативное связывание кислорода гемоглобином

Веб-сайт BioNinja

связывания; $[R]_0$ — начальная концентрация рецептора; $nL + R \rightleftarrows L_n R$ [L] — концентрация свободного лиганда;

n – число сайтов

 $[L]_{bound}$ — концентрация связанного лиганда; F – доля связывания.

Уравнение Хилла

$$nL + R \underset{k_{-}}{\overset{k_{+}}{\rightleftharpoons}} L_{n}R$$

$$F = \frac{[L]_{bound}}{n[R]_{0}} = \frac{[L]^{n}}{K_{d} + [L]^{n}}$$

Цель и задачи работы

Цель работы:

Разработка и исследование усовершенствованных систем регуляции экспрессии генов на основе олигонуклеотидных последовательностей, способных к кооперативным взаимодействиям, и тестирование таких систем экспериментальными методами.

Задачи:

- 1. Предложить ряд молекулярных систем на основе олигонуклеотидов, при взаимодействии которых проявляются эффекты кооперативности, и провести теоретический анализ методами молекулярного моделирования и химической кинетики поведения данных систем;
- 2. На основе теоретического анализа разработать систему взаимодействующих олигонуклеотидов, проявляющих эффект кооперативности в заданных диапазонах концентраций и при заданных условиях;
- 3. Проверить способность спроектированных олигонуклеотидов *in vitro* к кооперативному взаимодействию.

Общий план работы

Анализ кинетики поведения систем олигонуклеотидов

Олигонуклеотидные взаимодействия в системе

Уравнения, описывающие систему олигонуклеотидов

$$1)~L1+L2 \rightleftarrows_{K1} L12$$

$$2)\ L12 + R \underset{K2}{\rightleftarrows} L12R$$

$$3)\ L1 + R \rightleftarrows_{K3} L1R$$

$$4)~L2+R\mathop{\rightleftarrows}_{K3}L2R$$

5)
$$L1R + L2 \underset{K4}{\rightleftarrows} L12R$$

$$6)~L2R + L1 \underset{K4}{\rightleftarrows} L12R$$

Эффект кооперативности в системе олигонуклеотидов

Кривая связывания R L1 и L2 для случая наибольшего эффекта кооперативности

$$2)\ L12 + R \rightleftarrows_{K2} L12R$$

$$3) \ L1 + R \mathop{\rightleftarrows}_{K3} L1R$$

$$4)~L2+R \underset{K3}{\rightleftarrows} L2R$$

5)
$$L1R + L2 \rightleftarrows_{K4} L12R$$

$$6) \ L2R + L1 \rightleftarrows_{K4} L12R \ \ \rat{1}$$

Эффект кооперативности в системе олигонуклеотидов

Кривая связывания R L1 и L2 для случая наибольшего эффекта кооперативности

Эффект кооперативности в системе олигонуклеотидов

 $+ K2 = K3^2$

K4 = K1 * K3

Эффект кооперативности наблюдается при низких значениях K_1 и K_3 , причем $K_1 > K_3$

$$1) \ L1 + L2 \rightleftarrows_{K1} L12$$

$$2)\ L12 + R \rightleftarrows_{K2} L12R$$

3)
$$L1+R \underset{K3}{\rightleftarrows} L1R$$

$$4)~L2+R \rightleftarrows_{K3} L2R$$

$$5)~L1R + L2 \underset{K4}{\rightleftarrows} L12R$$

$$6)~L2R+L1 \underset{K4}{\rightleftarrows} L12R$$

Дизайн олигонуклеотидов с усиленным эффектом кооперативности

Анализ поведения системы олигонуклеотидов

Анализ поведения системы олигонуклеотидов

Анализ кинетики связывания лиганда с рецептором

Экспериментальные кривые связывания исследуемой системы и контроля

Кооперативный эффект тестируемой системы и контроля практически совпадают, что объясняется кооперативным раскручиванием смежных областей у коротких олигонуклеотидов при гибридизации: Лохов, 1990; Koval, 1999

Анализ кинетики связывания лиганда с рецептором

Кооперативный эффект исследуемой системы значительно превосходит контрольный; При этом наблюдаемый эффект сильнее, измеренный с короткой цепью R, что может быть большей связано гибкостью длинной матрицы Rao, 2014

Выводы

- Был проведен теоретический анализ двух молекулярных систем на основе олигонуклеотидов, при взаимодействии которых проявляются эффекты кооперативности;
- На основе проведенного анализа была разработана система олигонуклеотидов, проявляющих кооперативные эффекты в заданном диапазоне концентраций и условий среды;
- Спроектированные олигонуклеотиды были проверены *in vitro* к кооперативному взаимодействию.