

Název a adresa školy:	Střední škola průmyslová a umělecká, Opava, příspěvková organizace, Praskova 399/8, Opava, 746 01		
IČO:	47813121		
Projekt:	OP VK 1.5		
Název operačního programu:	OP Vzdělávání pro konkurenceschopnost		
Typ šablony klíčové aktivity:	III/2 Inovace a zkvalitnění výuky prostřednictvím ICT (20 vzdělávacích materiálů)		
Název sady vzdělávacích materiálů:	STT I		
Popis sady vzdělávacích materiálů:	Strojírenská technologie, 1. ročník		
Sada číslo:	B-06		
Pořadové číslo vzdělávacího materiálu:	17		
Označení vzdělávacího materiálu: (pro záznam v třídní knize)	VY_32_INOVACE_B-06-17		
Název vzdělávacího materiálu:	Kalení II		
Zhotoveno ve školním roce:	2011/2012		
Jméno zhotovitele:	Ing. Hynek Palát		

Rozdělení kalení podle výsledné struktury

Martenzitické	martenzit – jehlicovitá, tvrdá, křehká stukturA
Termální T _{kalení} = 220°C - 230°C volně chladit na vzduchu.	Nevzniká vnitřní pnutí, nemusíme popouštět.
Zmrazováním T _{kalení} = 200°C, pak 0°C.	Zbytkový Austenit →M. nutno popouštět!
Bainitické T _{kalení} = 400°C.	Výsledná struktura je bainit nemusíme popouštět.
Povrchové kalení T _{popouš.} = 150°C -250°C.	Houževnaté jádro, tvrdý povrch odolný proti Hl. zakalení závisí na hl. cementování.

Austenit se rozpadá na ferit a cementit

- Platí zákon zachování hmoty;
- Perlit = $Fe\alpha + Fe_3C$;
- Martenzit = $Fe_{\alpha} + Fe_{3}C$;
- Bainit = $Fe_{\alpha} + Fe_{3}C$.

Struktury po kalení

Struktura	Teplota ochlazování	Vlastnosti	Mikroskopický vzorek
perlit	kolem 600°C	směs feritu a cementitu;málo tvrdý;	
bainit	kolem 400°C	 tvrdší, jemnější struktura než perlit; 	_2 μm_
martenzit	kolem 200°C	 nejtvrdší složka oceli. 	

Kalení

Podle způsobu rozpadu austenitu - podle způsobu ochlazování, rozdělujeme kalení na izotermické a anizotermické;

• průběh kalení zaznamenáváme do diagramů IRA a ARA.

IRA DIAGRAM

- Materiál ohřejeme na teplotu A;
- vydržíme na této teplotě;
- ochlazujeme V kritickou na např.200°C (martenzit);
- T [°C] musíme pak udržet na vkonst.
 = 200oC, aby se veškerý A → M;
- průběh kalení zaznamenáváme do diagramu IRA.

ARA DIAGRAM

- Anizotermický rozpad austenitu; anizotermický = nekonstantní, plynulá T; k rozpadu A dochází za T ≠ kons., ochlazování probíhá plynule; struktura je tvořena směsí perlitu, bainitu, martenzitu;
- nejčastější způsob kalení.

Popouštění

- Po martenzitickém kalení následuje většinou popouštění.
- ↓ tvrdost a ↑ houževnatost.
- Ohřevu na T popouštění nikdy nepřekročí 727°C.
- T popouštění = 200°C až 300°C.

Popouštění rozdělujeme na:

- a) popouštění za nízkých teplot: získáme bainit a martenzit s nižší tvrdostí, T_{popouštění} = 350°C;
- a) popouštění za vysokých teplot zušlechťování: T_{popouštění} = 350°C - 700°C.

Úkoly:

- Co mají společného a v čem se liší struktury perlit, bainit a martenzit?
- Kdy provádíme popouštění?
- Jaký je rozdíl v průběhu rychlosti ochlazování u kalení IRA a ARA?
- Co znamená označení P_s a P_f?
- Umíme z diagramu IRA odečíst délku prodlevy při přeměně austenitu na perlit? Naznačte v diagramu, okótujte t prodlevy .
- Vysvětlete přeměnu austenitu na perlit z hlediska zákona zachování hmoty.

Seznam použité literatury

- Hluchý, M., Kolouch, J. Strojírenská technologie 1 2.díl, 3.
 vyd. Praha: Scientia, 2002. ISBN 80-7183-265-0.
- Dillinger, J. a kol. Moderní strojírenství pro školu a praxi,
 Praha: Europa Sobotáles, 2007. ISBN 978-80-86706-19-1.