Міністерство освіти і науки України Національний авіаційний університет Навчально-науковий інститут комп'ютерних інформаційних технологій Кафедра комп'ютеризованих систем управління

Лабораторна робота №3 з дисципліни «Комп'ютерна електроніка» на тему «Дослідження біполярного транзистора у ключовому режимі для схеми с загальним емітером» Варіант №3

Виконав: студент ННІКІТ СП-225 Клокун Владислав Перевірив: Андрєєв О. В.

Київ 2017

1 Мета та основні завдання роботи

- 1. Закріпити теоретичні знання з фізики процесів, що відбуваються в біполярному тразисторі, який працює в ключовому режимі.
- 2. Набути практичних навичок у визначенні основних параметрів перехідних процесів.
- 3. Вивчити процеси, що відбуваються у біполярному транзисторі у ключовому режимі.
- 4. Вивчити, від чого залежить час увімкнення й вимкнення біполярного транзистора.

2 Принципова схема віртуальної лабораторної установки

Принципова схема віртуальної лабораторної установки для дослідження біполярного транзистора у ключовому режимі зображена на рис. 1.

Рис. 1: Принципова схема віртуальної лабораторної установки

3 Хід роботи

Вмикаємо біполярний транзистор за схемою з загальним емітером. Для цього встановлюємо перемикач SA1 в нижнє положення. Відключаємо діод, встановивши перемикач SA2 у верхнє положення. Вмикаємо осцилограф та встановлюємо на ньому такі режими і масштаби:

Time Base $0.2 \mu s/div$ Y/T; Auto Channel A 2 V/div DC Channel B 5 V/div DC

Вмикаємо функціональний генератор та налаштовуємо його на генерацію прямокутних імпульсів. Встановлюємо такі налаштування:

Frequency 1 MHz Duty cycle 50% Amplitude 1,5 V

Запускаємо віртуальну установку на моделювання. На екрані осцилографа з'явилась часова діаграма вхідної і вихідної напруг транзистора. Призупиняємо моделювання і вимірюємо амплітуди вхідного імпульсу: $U_{\rm E}=1.5\,{\rm B}$ та вихідного імпульсу: $U_{\rm K}=10\,{\rm B}$. Амплітуда вихідного імпульсу близька за значенням до напруги $E_{\rm K}=10\,{\rm B}$, отже транзистор знаходиться в *режимі насичення*. За допомогою візирних ліній визначаємо часові параметри з діодом і без.

		_		
Параметр	Значення		Параметр	Значення
$t_{ m 3T}$	2,5 нс		t_{3T}	0 нс
$t_{ m HP}$	11,8 нс		$t_{ m HP}$	91 нс
$t_{ m P}$	3,6 нс		$t_{ m P}$	125 нс
$t_{ m C\Pi}$	7,6 нс	_	$t_{ m C\Pi}$	64 нс
(а) 3 вимкненим ліолом			(б) 3 ввімкненим ліолом	

а) 3 вимкненим діодом (б) 3 ввімкненим діодом

Табл. 1: Часові параметри біполярного транзистора, підключеного за схемою с загальним емітером при $U_{\rm E}=1,5~{\rm B}$

За отриманими часовими параметрами рахуємо $t_{\rm BBIMK}$ і $t_{\rm BUMK}$:

$$t_{\text{BBIMK}} = t_{\text{3T}} + t_{\text{HP}} = 14,3 \,\text{Hc}, \quad t_{\text{BWMK}} = t_{\text{P}} + t_{\text{CII}} = 11,2 \,\text{Hc}.$$

Для ввімкненого діода:

$$t_{\text{BBIMK}} = t_{3T} + t_{\text{HP}} = 91 \,\text{Hc}, \quad t_{\text{BWMK}} = t_{\text{P}} + t_{\text{CH}} = 189 \,\text{Hc}.$$

Рис. 2: Часова діаграма вхідної і вихідної напруг для $U_{\rm E}=1,5~{\rm B}$ з вимкненим діодом

Рис. 3: Часова діаграма вхідної і вихідної напруг для $U_{\rm E}=1,5\,{\rm B}$ з ввімкненим діодом

Відключаємо діод. На функціональному генераторі встановлюємо амплітуду вхідних імпульсів рівну $U_{\rm BX}=0.7~{\rm B}$. При цьому амплітуда вихідних імпульсів зменшилась. Біполярний транзистор знаходиться в *активному режимі*. За допомогою візирних ліній визначаємо часові параметри.

Параметр	Значення		Параметр	Значення
t_{3T}	7,8 нс		t_{3T}	0 нс
$t_{ m HP}$	115 нс		$t_{ m HP}$	377 нс
$t_{ m P}$	0 нс		$t_{ m P}$	1 нс
$t_{ m C\Pi}$	5 нс		$t_{ m C\Pi}$	20 нс
(а) 3 вимкненим діодом			(б) 3 ввімкненим діодом	

Табл. 2: Часові параметри біполярного транзистора, підключеного за схемою с загальним емітером при $U_{\rm E}=0.7~{\rm B}$

За отриманими часовими параметрами рахуємо $t_{\rm BBIMK}$ і $t_{\rm BUMK}$:

$$t_{\rm BBIMK} = t_{\rm 3T} + t_{\rm HP} = 115 \, {\rm Hc}, \quad t_{\rm BWMK} = t_{\rm P} + t_{\rm CII} = 5 \, {\rm Hc}.$$

Для ввімкненого діода:

$$t_{\rm BBIMK} = t_{\rm 3T} + t_{\rm HP} = 377 \, {\rm Hc}, \quad t_{\rm BUMK} = t_{\rm P} + t_{\rm CII} = 20 \, {\rm Hc}.$$

Рис. 4: Часова діаграма вхідної і вихідної напруг для $U_{\rm E}=0.7\,{\rm B}$ з вимкненим діодом

Рис. 5: Часова діаграма вхідної і вихідної напруг для $U_{\rm E}=0.7\,{\rm B}$ з ввімкненим діодом

Відключаємо діод. На функціональному генераторі встановлюємо амплітуду вхідних імпульсів рівну $U_{\rm BX}=2,3$ В. При цьому збільшились амплітуда вихідних імпульсів і час $t_{\rm P}$. Біполярний транзистор знаходиться в режимі глибокого насичення. Визначаємо часові параметри з вимкненим і ввімкненим діодом.

		_		
Параметр	Значення		Параметр	Значення
t_{3T}	0 нс	-	t_{3T}	0 нс
$t_{ m HP}$	26 нс		$t_{ m HP}$	46 нс
$t_{ m P}$	5 нс		$t_{ m P}$	216 нс
$t_{ m C\Pi}$	5 нс	_	$t_{ m C\Pi}$	81 нс
(а) З вимкненим діодом		-	(б) З ввімкненим діодом	

Табл. 3: Часові параметри біполярного транзистора, підключеного за схемою с загальним емітером при $U_{\rm E}=2,3~{\rm B}$

За отриманими часовими параметрами рахуємо $t_{\rm BBIMK}$ і $t_{\rm BUMK}$:

$$t_{\rm BBIMK} = t_{\rm 3T} + t_{\rm HP} = 115 \, {\rm Hc}, \quad t_{\rm BMMK} = t_{\rm P} + t_{\rm CII} = 5 \, {\rm Hc}.$$

Для ввімкненого діода:

$$t_{\rm BBIMK} = t_{\rm 3T} + t_{\rm HP} = 46 \, {\rm Hc}, \quad t_{\rm BUMK} = t_{\rm P} + t_{\rm CII} = 397 \, {\rm Hc}.$$

Рис. 6: Часова діаграма вхідної і вихідної напруг для $U_{\rm E}=2,3~{\rm B}$ з вимкненим діодом

Рис. 7: Часова діаграма вхідної і вихідної напруг для $U_{\rm E}=2,3~{\rm B}$ з ввімкненим діодом

4 Висновки

Виконуючи дану лабораторну роботу, вдалось визначити за експериментальними даними, що при ввімкнені біполярного транзистора у схемі з загальним емітером, він найшвидше перемикається в режимі насичення з вимкненим діодом: $t_{\rm BBIMK}+t_{\rm BUMK}=25,5$ нс.