Aufgabenblatt 13

Aufgabe 54

In einer Lackiererei werden Autos mit *n* verschiedenen Farben lackiert (jedes Auto bekommt eine von *n* Farben). Nach jedem Lackieren muss die Anlage gereinigt werden. Welches Problem muss gelöst werden und welcher Algorithmus ist dafür geeignet?

Aufgabe 55

Begründen Sie, dass die Nearest-Neighbor-Heuristik für das TSP einen beliebig schlechte Lösung liefern kann.

Aufgabe 56

In einem Budget sind noch 10\$ vorhanden. Wieviel kann davon durch den Kauf folgender Artikel (keine mehrfachen Käufe) ausgegeben werden: Locher: 4\$, Druckerpapier: 8\$, Folien 7\$, Blumentopf 5\$? Wenden Sie den Algorithmus aus der Vorlesung an.

Aufgabe 57

Aufgabe 58 (Hausaufgabe)

Das 0/1-Rucksack-Problem ist

$$KP = \bigcup_{n \ge 1} \{(x_1, \dots, x_n, G, v_1, \dots, v_n, y) \mid$$

Es gibt ein $S \subseteq \{1, \dots, n\}$ mit $\sum_{s \in S} x_s \le G$ und $y \le \sum_{s \in S} v_s\}$

Dabei sind x_s das Gewicht und v_s der Wert des Gegenstands s. Zeigen Sie:

- a) $KP \in \mathbf{NP}$
- b) Aus $KP \in \mathbf{P}$ folgt $Rucksack \in \mathbf{P}$