Human Activity Classification using Radar

Content

Project Description

Data Processing

Neural Network

Conclusion

Future Work

Project Description

tps://eprints.gla.ac.uk/223726/1/223726.pdf

Data Processing

Data Processing

Data Processing

CFAR

Detect targets by <u>dynamically adjusting the detection threshold</u> based on the average power of surrounding cells, thereby maintaining a consistent false alarm rate despite varying noise and clutter conditions.

CFAR Detection Result for Range time plot

Neural Network

CNN MobileNet V2 ResNet V2

Same Radar Processed Data and Train-Validation-Test Split

CNN

Layer (type)	Output Shape	Param #
conv2d_21 (Conv2D)	(None, 256, 256, 32)	2,432
max_pooling2d_9 (MaxPooling2D)	(None, 128, 128, 32)	0
conv2d_22 (Conv2D)	(None, 128, 128, 64)	18,496
max_pooling2d_10 (MaxPooling2D)	(None, 64, 64, 64)	0
conv2d_23 (Conv2D)	(None, 64, 64, 128)	73,856
max_pooling2d_11 (MaxPooling2D)	(None, 32, 32, 128)	0
conv2d_24 (Conv2D)	(None, 32, 32, 128)	147,584
max_pooling2d_12 (MaxPooling2D)	(None, 16, 16, 128)	0
conv2d_25 (Conv2D)	(None, 16, 16, 64)	73,792
max_pooling2d_13 (MaxPooling2D)	(None, 8, 8, 64)	0
conv2d_26 (Conv2D)	(None, 8, 8, 32)	18,464
max_pooling2d_14 (MaxPooling2D)	(None, 4, 4, 32)	0
dropout_4 (Dropout)	(None, 4, 4, 32)	0
flatten_4 (Flatten)	(None, 512)	Θ
dense_8 (Dense)	(None, 512)	262,656
activation_4 (Activation)	(None, 512)	0
dense_9 (Dense)	(None, 6)	3,078

- 6 Convolutional Layers (Relu)
- 6 Max Pooling Layers (2,2)
 - 1 Drop Out Layer (40%)
- One Flatten Layer (For Dense)
 - One Dense Layer(Relu)
- Final Dense with Result (Softmax)
 - 600,358 Parameters in total

Total params: 600,358 (2.29 MB)
Trainable params: 600,358 (2.29 MB)

CNN Result

Highest Test Accuracy: 95.01%
Test Group: DT+RT+DR

DT alone scores very high!

CNN Result

Test Group: DT+RT+DR

Drink - Pick Problematic Movements

MobileNet V2

Inspired by

Z. Xiaolong, etc. - A lightweight network model for human activity classifiction based on pre-trained mobilenetv2

Transfer Learning in MobileNet V2-140-224

140% width multiplier

Processes **224x224** pixel images

6,000,000 parameters

Inverted Residuals architecture

Optimizes accuracy and efficiency for **Mobile Devices**

Adjust the **input layer** and **output layer** to adjust out dataset

Change the **learning rate**

Adjust the **dropout rate**

MobileNet V2 Result

Highest Test Accuracy: 88.17%
Test Group: DT+RT+DR

Accuracy of DR is Higher than RT and DT

MobileNet V2

Test Group: DT+RT+DR

ResNet V2

Transfer Learning in ResNet V2 - 152

152 Layers

Deep Residual Network 60,192,808

parameters

Good at

Image Classification

Residual Blocks

addresses the vanishing gradient problem

Adjust the **input layer and output layer** to adjust out
dataset

Change the **learning rate**

Adjust the **dropout rate**

ResNet V2 Result

Highest Test Accuracy: 82.82%

Test Group: DT+DR

Need Fine Tunning to get better result

ResNet V2 Result

Test Group: DT+RT+DR

Conclusion

Model Size:

ResNet V2 > MobileNet V2 > CNN

Accuracy:

ResNet V2 < MobileNet V2 < CNN

Best Model:

CNNs can successfully classify the human activity with 95% accuracy.

Best Data and Data Group:

The DR and DT domain contains the most valuable information.

Combining the Data from different domain can increase the accuracy.

Future work

1. Complex Dataset Evaluation

Test channel encoding on complex/benchmark datasets to assess generalization and accuracy improvement over spectrograms.

2. Fine-Tuning the Models

Fine-tune models to evaluate accuracy enhancement with channel encoding.

3. Feature Importance Analysis

Generate heatmaps to identify significant plot features and gain insights into important characteristics.

Thank You