Conjunto 7Problemas sobre interferência

1. Interferência duma cunha (Hecht 9.41). Forme um filme de ar em forma de cunha com duas lamelas de vidro e um pedaço de papel de espessura de 7.618x10⁻⁵ m de espessura como separador numa das bordas dos vidros. Se iluminar o conjunto com luz de comprimento de onda de 550 nm de cima para baixo, determine o número de franjas claras que se podem observar ao longo da cunha

2. **Interferência de filmes finos**: Explique sucintamente as franjas observadas nesta imagem duma bolha de sabão segurado no vertical:

3. As duplas fendas de Young:

Na descrição da experiência e Young é assumido que as duas fendas emitam ondas esféricas

$$\mathcal{E} = \mathcal{E}_{S} \frac{e^{ikr}}{ikr}$$

onde r é a distância entre a fonte no ponto (x´,0) e (x,z) no plano de observação.

(a) Rescreve a onda esférica na aproximação Fraunhofer,

$$r = \overline{r} - x'x/z$$

onde \overline{r} é a distância entre (0,0) e (x,z) e verifique que pode ser escrito na forma

$$\mathcal{E} = \mathcal{E}_{S} \frac{e^{ik\overline{r}}}{ik\overline{r}} [1 + \varepsilon] e^{i\phi}$$

Determine a dependência das correções na amplitude $\, \varepsilon \,$ e na fase $\, \phi \,$ nos valores de $\, x', x \,$ e $\, z \,$.

(b) Na experiência de dupla fenda que o Thomas Young realizou as posições das fendas foram no $x'=\pm 1mm$ enquanto a distância até a ecrã de observação

- foi z=2m. Ou que pode concluir sobre a relevância da correção de fase ϕ e da correção na amplitude, ε no limite paraxial, i.e. quando $\sin\theta \approx \theta \approx x/z$?
- (c) Qual foi a distância entre o máximo central e o primeiro mínimo para um comprimento de onda λ = 500nm (luz verde) na experiência de Young? para λ = 600nm (luz vermelho)?
- 4. **Rede de difração** Uma rede de difração tem 8000 riscas em cada cm e é iluminado por uma lâmpada de sódio.
 - (a) Qual é a separação angular entre as linhas D1 e D2 com comprimentos de onda 589.0nm e 589.6nm na primeira ordem de difração assumindo incidência normal?
 - (b) Pode ganhar resolução ao usar as ordens superiores? Qual é o limite?
- 5. Interferometro Fabry-Perot Demonstre que a banda espetral livre (separação entre as ressonâncias) dum interferómetro Fabry-Perot é $\Delta\lambda=\lambda^2/(2n\ell)$. Imagine que quer usar placa fina de dióxido de titânio (TiO2, n =2.613) para observar a separação entre as linhas espetroscópicas de sódio D com os comprimentos de onda 589.0 nm e 589.6 nm. Qual espessura de placa devia usar?
- 6. Interferometro de Michelson e ondas gravitacionais.
 - Um interferometro de Michelson é ajustada até a diferença em caminhos óticos entre os dois braços $\ell_1-\ell_2$ é tal que a intensidade à saída seja igual á uma metade do seu valor máximo. Uma onda gravítica passa pelo interferometro e faça que um braço encolha por uma distância $\Delta\ell$ enquanto o outro braço dilata por a mesma distância.
 - (a) Encontre uma expressão para intensidade à saída do interferometro em função de $\Delta\ell$ assumindo que $\Delta\ell\ll\lambda$.
 - (b) Na versão do interferometro Ligo cada braço tem 4km de comprimento, a potência a circular em cada braço é 0.8MW e o comprimento de onda é $\lambda = 532$ nm. Se diferença mínima detetável no sinal é 1 μ W, qual é o valor mínimo da razão $\Delta \ell / \ell$ que é detetável em princípio?
 - (c) Quais são as vantagens dum interferometro de Michelson em relação dum interferometro de 2 fendas de Young para detetar ondas gravíticas?