

Applied stochastic processes Review for midterm

Jie Xiong

Department of Mathematics Southern University of Science and Technology Shenzhen, China, 518055

Review for midterm

1. If X has pdf f_X and g is 1-to-1, then Y = g(X) has pdf

$$f_Y(y) = f_X(g^{-1}(y)) \left| \frac{d}{dy} g^{-1}(y) \right|.$$

Review for midterm

1. If X has pdf f_X and g is 1-to-1, then Y = g(X) has pdf

$$f_Y(y) = f_X(g^{-1}(y)) \left| \frac{d}{dy} g^{-1}(y) \right|.$$

2. If $X = (X_1, X_2)$ has joint pdf $f_X(x)$ and $g: \mathbb{R}^2 \to \mathbb{R}^2$ is 1-to-1, then $(Y_1, Y_2) = Y = g(X)$ has joint pdf f_Y given by

$$f_Y(y) = f_X(g^{-1}(y))|J|^{-1}$$

where J is the Jacobian determinant

$$J = \begin{vmatrix} \frac{\partial g_1}{\partial x_1} & \frac{\partial g_1}{\partial x_2} \\ \frac{\partial g_2}{\partial x_1} & \frac{\partial g_2}{\partial x_2} \end{vmatrix}$$

$$\phi(t) = \mathbb{E}(e^{tX}) = \begin{cases} \sum_{x} e^{tx} p(x) & \text{if } X \text{ discrete} \end{cases}$$

$$\phi(t) = \mathbb{E}(e^{tX}) = \begin{cases} \sum_{x} e^{tx} p(x) & \text{if } X \text{ discrete} \\ \int_{-\infty}^{\infty} e^{ix} f(x) dx & \text{if } X \text{ continuous.} \end{cases}$$

$$\phi(t) = \mathbb{E}(e^{tX}) = \begin{cases} \sum_{x} e^{tx} p(x) & \text{if } X \text{ discrete} \\ \int_{-\infty}^{\infty} e^{ix} f(x) dx & \text{if } X \text{ continuous.} \end{cases}$$

$$\mathbb{E}(X^n) = \phi^{(n)}(0).$$

$$\phi(t) = \mathbb{E}(e^{tX}) = \begin{cases} \sum_{x} e^{tx} p(x) & \text{if } X \text{ discrete} \\ \int_{-\infty}^{\infty} e^{ix} f(x) dx & \text{if } X \text{ continuous.} \end{cases}$$

$$\mathbb{E}(X^n) = \phi^{(n)}(0).$$

• If X and Y are independent and a, b are constants, then

$$\phi_{aX+bY}(t) = \phi_X(at)\phi_Y(bt).$$

$$\phi(t) = \mathbb{E}(e^{tX}) = \begin{cases} \sum_{x} e^{tx} p(x) & \text{if } X \text{ discrete} \\ \int_{-\infty}^{\infty} e^{ix} f(x) dx & \text{if } X \text{ continuous.} \end{cases}$$

$$\mathbb{E}(X^n) = \phi^{(n)}(0).$$

• If X and Y are independent and a, b are constants, then

$$\phi_{aX+bY}(t) = \phi_X(at)\phi_Y(bt).$$

4. A stochastic process is a family of random variables $\{X_t: t \in \mathbb{T}\}$ with time set \mathbb{T} and state S.

$$p_{X|Y}(x|y) = \frac{p(x,y)}{p_Y(y)},$$

is the conditional pmf of X given Y = y.

$$p_{X|Y}(x|y) = \frac{p(x,y)}{p_Y(y)},$$

is the conditional pmf of X given Y = y.

• The conditional expectation of X given Y = y:

$$E(X|Y=y) = \sum_{x} x p_{X|Y}(x|y).$$

$$p_{X|Y}(x|y) = \frac{p(x,y)}{p_Y(y)},$$

is the conditional pmf of X given Y = y.

• The conditional expectation of X given Y = y:

$$E(X|Y = y) = \sum_{x} x p_{X|Y}(x|y).$$

• The conditional expectation of X given Y is

$$E(X|Y) = \sum_{x} x p_{X|Y}(x|Y).$$

$$p_{X|Y}(x|y) = \frac{p(x,y)}{p_Y(y)},$$

is the conditional pmf of X given Y = y.

• The conditional expectation of X given Y = y:

$$E(X|Y = y) = \sum_{x} x p_{X|Y}(x|y).$$

• The conditional expectation of X given Y is

$$E(X|Y) = \sum_{x} x p_{X|Y}(x|Y).$$

• If X and Y are independent, then E(X|Y) = E(X).

6. For continuous random variables, then, the conditional pdf of X given Y=y is

$$f_{X|Y}(x|y) = \frac{f(x,y)}{f_Y(y)}.$$

6. For continuous random variables, then, the conditional pdf of X given Y=y is

$$f_{X|Y}(x|y) = \frac{f(x,y)}{f_Y(y)}.$$

• The conditional expectation of X given Y = y is

$$E(X|Y=y) = \int_{-\infty}^{\infty} x f_{X|Y}(x|y) dx.$$

6. For continuous random variables, then, the conditional pdf of X given Y=y is

$$f_{X|Y}(x|y) = \frac{f(x,y)}{f_Y(y)}.$$

• The conditional expectation of X given Y = y is

$$E(X|Y=y) = \int_{-\infty}^{\infty} x f_{X|Y}(x|y) dx.$$

 \bullet The conditional expectation of X given Y is

$$E(X|Y) = \int_{-\infty}^{\infty} x f_{X|Y}(x|Y) dx.$$

7. Calculating expectation by conditioning

$$E(X) = E(E(X|Y)).$$

7. Calculating expectation by conditioning

$$E(X) = E(E(X|Y)).$$

8. Calculating variance by conditioning

$$V(X) = E(V(X|Y)) + V(E(X|Y)).$$

7. Calculating expectation by conditioning

$$E(X) = E(E(X|Y)).$$

8. Calculating variance by conditioning

$$V(X) = E(V(X|Y)) + V(E(X|Y)).$$

9. Calculating probability by conditioning

$$P(A) = E(P(A|Y)).$$

10. $\{X_n\}$ is a Markov chain if

which is the *transition matrix* of the chain.

$$\mathbb{P}(X_{n+1}=j|X_n=i,\ X_{n-1}=i_{n-1},\ \cdots,\ X_0=i_0)=p(i,j),$$

10. $\{X_n\}$ is a Markov chain if

$$\mathbb{P}(X_{n+1}=j|X_n=i,\ X_{n-1}=i_{n-1},\ \cdots,\ X_0=i_0)=p(i,j),$$

which is the transition matrix of the chain.

• The *m*-step transition matrix is P^m , namely, $P^{(m)} = P^m$.

• $T_y = \inf\{n \ge 1 : X_n = y\}$ is first time return to (or reach) y.

• $T_y = \inf\{n \ge 1 : X_n = y\}$ is first time return to (or reach) y.

$$\rho_{yy} = \mathbb{P}_y(T_y < \infty)$$

is the prob. of returning to initial y eventually.

•

• $T_y = \inf\{n \ge 1 : X_n = y\}$ is first time return to (or reach) y.

$$\rho_{yy} = \mathbb{P}_y(T_y < \infty)$$

is the prob. of returning to initial y eventually.

$$T_y^1 = T_y, \quad T_y^k = \inf\{n > T_y^{k-1}: \ X_n = y\}.$$

•

•

• $T_y = \inf\{n \ge 1 : X_n = y\}$ is first time return to (or reach) y.

$$\rho_{yy} = \mathbb{P}_y(T_y < \infty)$$

is the prob. of returning to initial y eventually.

$$T_y^1 = T_y, \quad T_y^k = \inf\{n > T_y^{k-1}: \ X_n = y\}.$$

$$\mathbb{P}_y(T_y^k < \infty) = \rho_{yy}^k.$$

• y is transient if $\rho_{yy} < 1$.

- y is transient if $\rho_{yy} < 1$.
- 2 y is recurrent if $\rho_{yy} = 1$.

- y is transient if $\rho_{yy} < 1$.
- 2 y is recurrent if $\rho_{yy} = 1$.
 - If y is transient, then

$$\mathbb{P}_y(X_n = y, i.o.) = 0.$$

- y is transient if $\rho_{yy} < 1$.
- 2 y is recurrent if $\rho_{yy} = 1$.
- If y is transient, then

$$\mathbb{P}_y(X_n = y, i.o.) = 0.$$

• If y is recurrent, then

$$\mathbb{P}_{y}(X_{n} = y, i.o.) = 1.$$

$$\rho_{xy} \equiv \mathbb{P}_x(T_y < \infty) > 0.$$

$$\rho_{xy} \equiv \mathbb{P}_x(T_y < \infty) > 0.$$

• If $x \to y$ and $y \to z$, then $x \to z$.

$$\rho_{xy} \equiv \mathbb{P}_x(T_y < \infty) > 0.$$

- If $x \to y$ and $y \to z$, then $x \to z$.
- If $\rho_{xy} > 0$ and $\rho_{yx} < 1$, then x is transient.

$$\rho_{xy} \equiv \mathbb{P}_x(T_y < \infty) > 0.$$

- If $x \to y$ and $y \to z$, then $x \to z$.
- If $\rho_{xy} > 0$ and $\rho_{yx} < 1$, then x is transient.
- If x is recurrent and $\rho_{xy} > 0$, then $\rho_{yx} = 1$.

14. Decomposition

14. Decomposition

ullet A set A is *closed* if it is impossible to get out.

14. Decomposition

- A set A is *closed* if it is impossible to get out.
- A set B is irreducible if $\forall i, j \in B, i \rightarrow j$.

14. Decomposition

- A set A is *closed* if it is impossible to get out.
- A set B is irreducible if $\forall i, j \in B, i \to j$.
- If C is a finite closed irreducible set, then all states in C are recurrent.

14. Decomposition

- A set A is *closed* if it is impossible to get out.
- A set B is irreducible if $\forall i, j \in B, i \rightarrow j$.
- If C is a finite closed irreducible set, then all states in C are recurrent.
- If the state space S is finite, then S can be written as a disjoint union

$$S = T \cup R_1 \cup \cdots \cup R_k$$

where T is a set of transient states and R_i , $1 \le i \le k$, are closed irreducible sets of recurrent states.

$$N(y) = \#$$
 of visits to y .

•

$$N(y) = \#$$
 of visits to y .

$$\mathbb{E}_{x}N(y) = \frac{\rho_{xy}}{1 - \rho_{yy}} = \sum_{n=1}^{\infty} p^{n}(x, y).$$

•

$$N(y) = \#$$
 of visits to y .

$$\mathbb{E}_x N(y) = \frac{\rho_{xy}}{1 - \rho_{yy}} = \sum_{n=1}^{\infty} p^n(x, y).$$

 \bullet y is recurrent iff

$$\sum_{n=1}^{\infty} p^n(y,y) = \mathbb{E}_y N(y) = \infty.$$

•

$$N(y) = \#$$
 of visits to y .

$$\mathbb{E}_x N(y) = \frac{\rho_{xy}}{1 - \rho_{yy}} = \sum_{n=1}^{\infty} p^n(x, y).$$

 \bullet y is recurrent iff

$$\sum_{n=1}^{\infty} p^n(y,y) = \mathbb{E}_y N(y) = \infty.$$

• If x is recurrent and $x \to y$, then y is recurrent.

•

$$N(y) = \#$$
 of visits to y .

$$\mathbb{E}_x N(y) = \frac{\rho_{xy}}{1 - \rho_{yy}} = \sum_{n=1}^{\infty} p^n(x, y).$$

 \bullet y is recurrent iff

$$\sum_{n=1}^{\infty} p^n(y,y) = \mathbb{E}_y N(y) = \infty.$$

- If x is recurrent and $x \to y$, then y is recurrent.
- In a finite closed set there has to be at lease one recurrent state.

16. Vector π is a stationary distribution if $\pi P = \pi$.

- 16. Vector π is a stationary distribution if $\pi P = \pi$.
 - Suppose that the $k \times k$ transition matrix is irreducible. Then, there is a unique solution to $\pi P = \pi$ with $\sum_{i=1}^{k} \pi_i = 1$. Further, $\pi_i > 0$, $\forall i$.

17. Transition matrix P is double stochastic if its each column sums to 1, i.e.

$$\sum_{x} p(x, y) = 1, \quad \forall y.$$

17. Transition matrix P is *double stochastic* if its each column sums to 1, i.e.

$$\sum_{x} p(x, y) = 1, \quad \forall y.$$

• If P is double stochastic with N states, then $\pi(x) = \frac{1}{N}$, $\forall x$ is a stationary distribution.

18. A distribution π satisfies the detailed balance condition if

$$\pi(x)p(x,y) = \pi(y)p(y,x), \quad \forall x,y \in S.$$

18. A distribution π satisfies the detailed balance condition if

$$\pi(x)p(x,y) = \pi(y)p(y,x), \quad \forall x,y \in S.$$

• If π satisfies the DBC, then π is a stationary distribution.

19. Let X_n be the MC with transition probability p(i, j) and starting from the stationary distribution.

19. Let X_n be the MC with transition probability p(i, j) and starting from the stationary distribution. Let n be fixed and

$$Y_m = X_{n-m}, \qquad 0 \le m \le n.$$

19. Let X_n be the MC with transition probability p(i, j) and starting from the stationary distribution. Let n be fixed and

$$Y_m = X_{n-m}, \qquad 0 \le m \le n.$$

Then, (Y_m) is a MC with transition probability

$$\hat{p}(i,j) = \frac{\pi(j)p(j,i)}{\pi(i)}.$$

19. Let X_n be the MC with transition probability p(i,j) and starting from the stationary distribution. Let n be fixed and

$$Y_m = X_{n-m}, \qquad 0 \le m \le n.$$

Then, (Y_m) is a MC with transition probability

$$\hat{p}(i,j) = \frac{\pi(j)p(j,i)}{\pi(i)}.$$

• The MC is reversible if $\hat{p}(i,j) = p(i,j), \forall i, j \in S$.

19. Let X_n be the MC with transition probability p(i,j) and starting from the stationary distribution. Let n be fixed and

$$Y_m = X_{n-m}, \qquad 0 \le m \le n.$$

Then, (Y_m) is a MC with transition probability

$$\hat{p}(i,j) = \frac{\pi(j)p(j,i)}{\pi(i)}.$$

- The MC is reversible if $\hat{p}(i, j) = p(i, j), \forall i, j \in S$.
- (X_n) is reversible iff DBC holds.

20. Limit behavior

20. Limit behavior Under S, all states y satisfying $\pi(y) > 0$ are recurrent.

20. Limit behavior Under S, all states y satisfying $\pi(y) > 0$ are recurrent.

21. Let

$$N_n(y) = \sum_{i=1}^{n} 1_{X_i = y}$$

be the # of visits to y before time n.

21. Let

$$N_n(y) = \sum_{i=1}^{n} 1_{X_i = y}$$

be the # of visits to y before time n.

• Suppose (I) and (R) hold. Then,

$$\lim_{n \to \infty} \frac{N_n(y)}{n} = \frac{1}{\mathbb{E}_y T_y}, \qquad a.s$$

21. Let

$$N_n(y) = \sum_{i=1}^n 1_{X_i = y}$$

be the # of visits to y before time n.

• Suppose (I) and (R) hold. Then,

$$\lim_{n \to \infty} \frac{N_n(y)}{n} = \frac{1}{\mathbb{E}_y T_y}, \quad a.s.$$

• Under (I) and (S), we have

$$\pi(y) = \frac{1}{\mathbb{E}_y T_y},$$

22. Under (I), (S) and $\sum_{x} |f(x)| \pi(x) < \infty$, we have

$$\frac{1}{n}\sum_{m=1}^{n}f(X_m)\to\sum_{x}f(x)\pi(x),\qquad a.s$$

22. Under (I), (S) and $\sum_{x} |f(x)| \pi(x) < \infty$, we have

$$\frac{1}{n}\sum_{m=1}^{n}f(X_m)\to\sum_{x}f(x)\pi(x),\qquad a.s$$

Namely, long term average equals spatial average, i.e., ergodicity.

23. A recurrent state x is positive recurrent if $\mathbb{E}_x T_x < \infty$;

For any irreducible chain the following are equivalent:

For any irreducible chain the following are equivalent:

• There is a positive recurrent state.

For any irreducible chain the following are equivalent:

- There is a positive recurrent state.
- 2 There is a stationary distribution π .

For any irreducible chain the following are equivalent:

- There is a positive recurrent state.
- 2 There is a stationary distribution π .
- 3 All states are positive recurrent.

24. Branching process: $X_n = \#$ of individuals in nth generation.

$$\mathbb{P}(Y_i = k) = p_k, \quad k = 0, 1, 2, \cdots.$$

$$\mathbb{P}(Y_i = k) = p_k, \quad k = 0, 1, 2, \cdots.$$

Let

$$\phi(\theta) = \sum_{k=0}^{\infty} p_k \theta^k.$$

$$\mathbb{P}(Y_i = k) = p_k, \quad k = 0, 1, 2, \cdots.$$

Let

$$\phi(\theta) = \sum_{k=0}^{\infty} p_k \theta^k.$$

Let $\rho = \mathbb{P}_1(\text{extinction})$.

$$\mathbb{P}(Y_i = k) = p_k, \quad k = 0, 1, 2, \cdots.$$

Let

$$\phi(\theta) = \sum_{k=0}^{\infty} p_k \theta^k.$$

Let $\rho = \mathbb{P}_1(\text{extinction})$. ρ is the smallest root of $x = \phi(x), \ 0 \le x \le 1$.