Supporting Information for "Hierarchical Cancer Heterogeneity Analysis Based
On Histopathological Imaging Features" by Mingyang Ren, Qingzhao Zhang,
Sanguo Zhang, Tingyan Zhong, Jian Huang, and Shuangge Ma

A. Proof of Theorem 1

Recall that the penalized objective function is:

$$Q(\boldsymbol{\beta}, \boldsymbol{\gamma}) = \frac{1}{2} \sum_{i=1}^{n} (y_i - \boldsymbol{x}_i^{\top} \boldsymbol{\beta}_i - \boldsymbol{z}_i^{\top} \boldsymbol{\gamma}_i)^2$$

$$+ \sum_{1 \leq j < m \leq n} p\left(\sqrt{\|\boldsymbol{\beta}_j - \boldsymbol{\beta}_m\|_2^2 + \|\boldsymbol{\gamma}_j - \boldsymbol{\gamma}_m\|_2^2}, \lambda_1\right) + \sum_{1 \leq j < m \leq n} p\left(\|\boldsymbol{\beta}_j - \boldsymbol{\beta}_m\|_2, \lambda_2\right),$$
(A.1)

where $\boldsymbol{\beta} = (\boldsymbol{\beta}_1^\top, \cdots, \boldsymbol{\beta}_n^\top)^\top$, $\boldsymbol{\gamma} = (\boldsymbol{\gamma}_1^\top, \cdots, \boldsymbol{\gamma}_n^\top)^\top$, and $p(\cdot, \lambda)$ is a concave penalty function with tuning parameter $\lambda > 0$.

A.1 Notations and preparation

It is noted that some of the following notations, definitions, and conditions have been provided in the main text. We also provide them here for completeness.

Denote the true values of parameters as $\boldsymbol{\beta}^* = (\boldsymbol{\beta}_1^{*\top}, \cdots, \boldsymbol{\beta}_n^{*\top})^{\top}$ and $\boldsymbol{\gamma}^* = (\boldsymbol{\gamma}_1^{*\top}, \cdots, \boldsymbol{\gamma}_n^{*\top})^{\top}$. Let $\{\boldsymbol{\alpha}_1^*, \cdots, \boldsymbol{\alpha}_{K_1}^*\}$ and $\{\boldsymbol{\delta}_1^*, \cdots, \boldsymbol{\delta}_{K_2}^*\}$ be the distinct values of $\boldsymbol{\beta}^*$ and $\boldsymbol{\gamma}^*$, respectively, and $\mathcal{T}_{k_2}^* = \{i: \boldsymbol{\gamma}_i^* = \boldsymbol{\delta}_{k_2}^*\}, 1 \leqslant k_2 \leqslant K_2$. With the hierarchical structure, there exists a mutually exclusive partition of $\{1, \cdots, K_2\}$: $\{\mathcal{H}_1, \cdots, \mathcal{H}_{K_1}\}$ satisfying $\boldsymbol{\beta}_i^* = \boldsymbol{\alpha}_{k_1}^*$, if $i \in \mathcal{G}_{k_1}^*$, where $\mathcal{G}_{k_1}^* = \bigcup_{k_2 \in \mathcal{H}_{k_1}} \mathcal{T}_{k_2}^*$, $1 \leqslant k_1 \leqslant K_1$. Then, each of $\{\mathcal{T}_1^*, \cdots, \mathcal{T}_{K_2}^*\}$ and $\{\mathcal{G}_1^*, \cdots, \mathcal{G}_{K_1}^*\}$ constitutes a mutually exclusive partition of $\{1, \cdots, n\}$. Denote $\boldsymbol{\alpha}^* = (\boldsymbol{\alpha}_1^{*\top}, \cdots, \boldsymbol{\alpha}_{K_1}^{*\top})^{\top}$ and $\boldsymbol{\delta}^* = (\boldsymbol{\delta}_1^{*\top}, \cdots, \boldsymbol{\delta}_{K_2}^{*\top})^{\top}$. Denote the minimal differences of the common values between two (sub-)subgroups as $b_1 = \min_{1 \leqslant k \neq k' \leqslant K_2} \|\boldsymbol{\delta}_k^* - \boldsymbol{\delta}_{k'}^*\|_2 = \min_{j \in \mathcal{T}_k^*, m \in \mathcal{T}_{k'}^*, 1 \leqslant k \neq k' \leqslant K_2} \|\boldsymbol{\gamma}_j^* - \boldsymbol{\gamma}_m^*\|_2$ and $b_2 = \min_{1 \leqslant k \neq k' \leqslant K_1} \|\boldsymbol{\alpha}_k^* - \boldsymbol{\alpha}_{k'}^*\|_2 = \min_{j \in \mathcal{G}_k^*, m \in \mathcal{G}_{k'}^*, 1 \leqslant k \neq k' \leqslant K_1} \|\boldsymbol{\beta}_j^* - \boldsymbol{\beta}_m^*\|_2$. Write $|\mathcal{T}_{\min}| = \min_{1 \leqslant k_2 \leqslant K_2} |\mathcal{T}_{k_2}^*|$ and $|\mathcal{G}_{\min}| = \min_{1 \leqslant k_1 \leqslant K_1} |\mathcal{G}_{k_1}^*|$, where $|\cdot|$ is the cardinality of a set. Define:

$$\mathcal{M}_{\mathcal{G}^*} = \{ \boldsymbol{\beta} \in \mathbb{R}^{nq} : \boldsymbol{\beta}_i = \boldsymbol{\beta}_j, \text{ for any } i, j \in \mathcal{G}_{k_1}^*, 1 \leqslant k_1 \leqslant K_1 \},$$

$$\mathcal{M}_{\mathcal{T}^*} = \{ \boldsymbol{\gamma} \in \mathbb{R}^{np} : \boldsymbol{\gamma}_i = \boldsymbol{\gamma}_j, \text{ for any } i, j \in \mathcal{T}^*_{k_2}, 1 \leqslant k_2 \leqslant K_2 \}.$$

Let $\widetilde{\boldsymbol{W}}_{1} = \{w_{ik_{1}}^{(1)}\}$ be an $n \times K_{1}$ matrix with $w_{ik_{1}}^{(1)} = 1$ for $i \in \mathcal{G}_{k_{1}}^{*}$ and $w_{ik_{1}}^{(1)} = 0$ otherwise, $\widetilde{\boldsymbol{W}}_{2} = \{w_{ik_{2}}^{(2)}\}$ be an $n \times K_{2}$ matrix with $w_{ik_{2}}^{(2)} = 1$ for $i \in \mathcal{T}_{k_{2}}^{*}$ and $w_{ik_{2}}^{(2)} = 0$ otherwise, $\boldsymbol{W}_{1} = 0$

 $\widetilde{\boldsymbol{W}}_1 \otimes \boldsymbol{I}_q$, and $\boldsymbol{W}_2 = \widetilde{\boldsymbol{W}}_2 \otimes \boldsymbol{I}_p$. So each $\boldsymbol{\beta} \in \mathcal{M}_{\mathcal{G}^*}$ can be rewritten as $\boldsymbol{\beta} = \boldsymbol{W}_1 \boldsymbol{\alpha}$, where $\boldsymbol{\alpha} = (\boldsymbol{\alpha}_1^\top, \cdots, \boldsymbol{\alpha}_{K_1}^\top)^\top$, and $\boldsymbol{\alpha}_{k_1}$ is the $q \times 1$ vector of the k_1 th subgroup-specific parameter for $k_1 = 1, \cdots, K_1$. Similarly, each $\boldsymbol{\gamma} \in \mathcal{M}_{\mathcal{T}^*}$ can be rewritten as $\boldsymbol{\gamma} = \boldsymbol{W}_2 \boldsymbol{\delta}$. Denote $\boldsymbol{y} = (y_1, \cdots, y_n)^\top$, $\boldsymbol{X} = \operatorname{diag}(\boldsymbol{x}_1^\top, \cdots, \boldsymbol{x}_n^\top)$, and $\boldsymbol{Z} = \operatorname{diag}(\boldsymbol{z}_1^\top, \cdots, \boldsymbol{z}_n^\top)$. Define $\boldsymbol{U} = (\boldsymbol{X}\boldsymbol{W}_1, \boldsymbol{Z}\boldsymbol{W}_2)$.

Consider the oracle estimator for (β, γ) , under which the true hierarchical subgrouping memberships $\{\mathcal{G}_1^*, \cdots, \mathcal{G}_{K_1}^*\}$ and $\{\mathcal{T}_1^*, \cdots, \mathcal{T}_{K_2}^*\}$ are known. Specifically,

$$(\widehat{\boldsymbol{\beta}}^{o}, \widehat{\boldsymbol{\gamma}}^{o}) = \underset{\boldsymbol{\beta} \in \mathcal{M}_{\mathcal{C}^{*}}, \boldsymbol{\gamma} \in \mathcal{M}_{\mathcal{T}^{*}}}{\operatorname{argmin}} \frac{1}{2} \|\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta} - \boldsymbol{Z}\boldsymbol{\gamma}\|_{2}^{2},$$
(A.2)

and correspondingly, the oracle estimators for the common coefficients α and δ are:

$$(\widehat{\boldsymbol{\alpha}}^{o}, \widehat{\boldsymbol{\delta}}^{o}) = \underset{\boldsymbol{\alpha} \in \mathbb{R}^{K_{1q}}}{\operatorname{argmin}} \frac{1}{2} \|\boldsymbol{y} - \boldsymbol{X}\boldsymbol{W}_{1}\boldsymbol{\alpha} - \boldsymbol{Z}\boldsymbol{W}_{2}\boldsymbol{\delta}\|_{2}^{2}.$$
(A.3)

Define the 2-norm of a q-dimensional vector $\mathbf{d} = (d_1, \dots, d_q)^{\top}$ as $\|\mathbf{d}\|_2 = \sqrt{\sum_{j=1}^q d_j^2}$. For a matrix \mathbf{A} , denote its smallest/largest eigenvalue as $\psi_{\min}(\mathbf{A})/\psi_{\max}(\mathbf{A})$ and 2-norm as $\|\mathbf{A}\|_2 = \psi_{\max}^{1/2}(\mathbf{A}^{\top}\mathbf{A})$. The following conditions are assumed.

CONDITION A.1: $\rho(t) = \lambda^{-1} p(t, \lambda)$ is concave in $t \in [0, \infty)$ with a continuous derivative $\rho'(t)$ satisfying $\rho(0+) = 1$, and $\rho'(0+)$ is independent of λ . There exists a constant $0 < a < \infty$ such that $\rho(t)$ is constant for all $t \geqslant a\lambda$.

CONDITION A.2: $\boldsymbol{\epsilon} = (\epsilon_1, \dots, \epsilon_n)^{\top}$ is sub-Gaussian. That is, $\operatorname{pr}(|\boldsymbol{d}^{\top}\boldsymbol{\epsilon}| > \|\boldsymbol{d}\|_2 v) \leqslant 2 \exp(-c_1 v^2)$ for any vector $\boldsymbol{d} \in \mathbb{R}^n$ and v > 0, where $0 < c_1 < \infty$.

CONDITION A.3: \boldsymbol{x}_i and \boldsymbol{z}_i , $i=1,\cdots,n$ are bounded almost surely, and $\psi_{\min}(\boldsymbol{U}^{\top}\boldsymbol{U}) \geqslant C_0|\mathcal{T}_{\min}|$ for some constant $C_0 > 0$.

To prove Theorem 1, it is equivalent to establishing the following Results 1 and 2.

RESULT 1: Suppose that Conditions A.1 - A.3 hold. Assume $|\mathcal{T}_{\min}| \gg \sqrt{(K_1 q + K_2 p) n \log n}$.

Then, with probability tending to 1,

$$\sup_{i} \|\widehat{\boldsymbol{\beta}}_{i}^{o} - \boldsymbol{\beta}_{i}^{*}\|_{2} + \sup_{i} \|\widehat{\boldsymbol{\gamma}}_{i}^{o} - \boldsymbol{\gamma}_{i}^{*}\|_{2} = O_{p}(\tau_{n}),$$

where $\tau_n = |\mathcal{T}_{\min}|^{-1} \sqrt{(K_1 q + K_2 p) n \log n}$.

RESULT 2: Assume that $b_1 > (a + 0.5)\lambda_1 \gg \tau_n$, $b_2 > (a + 0.5)\lambda_2 \gg \tau_n$, where a is the regularization parameter of the concave penalty defined in Condition A.1, and that the conditions in Result 1 hold. Then there exists $(\widehat{\beta}, \widehat{\gamma})$, a local minimizer of $Q(\beta, \gamma)$ defined in (A.1), that satisfies:

$$\operatorname{pr}\left((\widehat{\boldsymbol{\beta}},\widehat{\boldsymbol{\gamma}})=(\widehat{\boldsymbol{\beta}}^o,\widehat{\boldsymbol{\gamma}}^o)\right)\to 1.$$

A.2 Proof of Result 1 in Theorem 1

Recall that:

$$\begin{split} (\widehat{\boldsymbol{\alpha}}^{o\top}, \widehat{\boldsymbol{\delta}}^{o\top})^{\top} &= \operatorname*{argmin}_{\boldsymbol{\alpha} \in \mathbb{R}^{K_1q}, \boldsymbol{\delta} \in \mathbb{R}^{K_2p}} \frac{1}{2} \| \boldsymbol{y} - \boldsymbol{X} \boldsymbol{W}_1 \boldsymbol{\alpha} - \boldsymbol{Z} \boldsymbol{W}_2 \boldsymbol{\delta} \|_2^2 \\ &= \operatorname*{argmin}_{\boldsymbol{\alpha} \in \mathbb{R}^{K_1q}, \boldsymbol{\delta} \in \mathbb{R}^{K_2p}} \frac{1}{2} \| \boldsymbol{y} - \boldsymbol{U} (\boldsymbol{\alpha}^{\top}, \boldsymbol{\delta}^{\top})^{\top} \|_2^2 \\ &= (\boldsymbol{U}^{\top} \boldsymbol{U})^{-1} \boldsymbol{U}^{\top} \boldsymbol{y}, \end{split}$$

where $\boldsymbol{U} = (\boldsymbol{X}\boldsymbol{W}_1, \boldsymbol{Z}\boldsymbol{W}_2)$. Then,

$$\left((\widehat{oldsymbol{lpha}}^o - oldsymbol{lpha}^*)^ op, (\widehat{oldsymbol{\delta}}^o - oldsymbol{\delta}^*)^ op
ight)^ op = (oldsymbol{U}^ op oldsymbol{U})^{-1} oldsymbol{U}^ op oldsymbol{\epsilon},$$

and

$$\sqrt{\|\widehat{\boldsymbol{\alpha}}^o - \boldsymbol{\alpha}^*\|_2^2 + \|\widehat{\boldsymbol{\delta}}^o - \boldsymbol{\delta}^*\|_2^2} \leqslant \|(\boldsymbol{U}^\top \boldsymbol{U})^{-1}\|_2 \|\boldsymbol{U}^\top \boldsymbol{\epsilon}\|_2. \tag{A.4}$$

By Condition A.3,

$$\|(\boldsymbol{U}^{\top}\boldsymbol{U})^{-1}\|_{2} = \psi_{\min}^{-1}(\boldsymbol{U}^{\top}\boldsymbol{U}) \leqslant C_{0}^{-1}|\mathcal{T}_{\min}|^{-1}.$$
 (A.5)

In addition,

$$\operatorname{pr}(\|\boldsymbol{U}^{\top}\boldsymbol{\epsilon}\|_{\infty} > C\sqrt{n\log n}) \leqslant \operatorname{pr}(\|(\boldsymbol{X}\boldsymbol{W}_{1})^{\top}\boldsymbol{\epsilon}\|_{\infty} > C\sqrt{n\log n}) + \operatorname{pr}(\|(\boldsymbol{Z}\boldsymbol{W}_{2})^{\top}\boldsymbol{\epsilon}\|_{\infty} > C\sqrt{n\log n}),$$
for some constant $0 < C < \infty$. By Condition A.3, $\sum_{i=1}^{n} x_{ij}^{2} I(i \in \mathcal{G}_{k_{1}}^{*}) = O(|\mathcal{G}_{k_{1}}^{*}|).$ That is,
$$\operatorname{for} j = 1, \cdots, q, \text{ there exists } 0 < c_{j} < \infty \text{ satisfying } \sum_{i=1}^{n} x_{ij}^{2} I(i \in \mathcal{G}_{k_{1}}^{*}) = c'_{j} |\mathcal{G}_{k_{1}}^{*}|. \text{ Moreover,}$$

$$\|(\boldsymbol{X}\boldsymbol{W}_{1})^{\top}\boldsymbol{\epsilon}\|_{\infty} = \sup_{1 \leq j \leq q, 1 \leq k_{1} \leq k_{1}} |\sum_{i=1}^{n} x_{ij} \epsilon_{i} I(i \in \mathcal{G}_{k_{1}}^{*})|. \tag{A.6}$$

By (A.6), Condition A.2, and Condition A.3, we have

$$\operatorname{pr}\left(\|(\boldsymbol{X}\boldsymbol{W}_{1})^{\top}\boldsymbol{\epsilon}\|_{\infty} > C\sqrt{n\log n}\right)$$

$$\leqslant \sum_{1\leqslant j\leqslant q, 1\leqslant k_{1}\leqslant K_{1}} \operatorname{pr}\left(\left|\sum_{i=1}^{n} x_{ij}\epsilon_{i}I(i\in\mathcal{G}_{k_{1}}^{*})\right| > C\sqrt{n\log n}\right)$$

$$\leqslant \sum_{1\leqslant j\leqslant q, 1\leqslant k_{1}\leqslant K_{1}} \operatorname{pr}\left(\left|\sum_{i=1}^{n} x_{ij}\epsilon_{i}I(i\in\mathcal{G}_{k_{1}}^{*})\right| > \sqrt{c'_{j}|\mathcal{G}_{k_{1}}^{*}|}C\sqrt{c_{j}^{-1}}\sqrt{\log n}\right)$$

$$\leqslant 2K_{1}qn^{-C_{1}},$$

where $C_1 = c_1 C^2 / c'$, $c' = \max_{1 \le j \le q} c'_j$. Similarly, $\operatorname{pr} \left(\| (\boldsymbol{Z} \boldsymbol{W}_2)^\top \boldsymbol{\epsilon} \|_{\infty} > C \sqrt{n \log n} \right) \le 2K_2 p n^{-C_2}$ for some constant $0 < C_2 < \infty$. So,

$$\operatorname{pr}(\|\boldsymbol{U}^{\top}\boldsymbol{\epsilon}\|_{\infty} > C\sqrt{n\log n}) \leqslant 2(K_1q + K_2p)n^{-\min\{C_1, C_2\}}.$$

Note that $\|\boldsymbol{U}^{\top}\boldsymbol{\epsilon}\|_{2} \leqslant \sqrt{K_{1}q + K_{2}p}\|\boldsymbol{U}^{\top}\boldsymbol{\epsilon}\|_{\infty}$. Then

$$\operatorname{pr}(\|\boldsymbol{U}^{\top}\boldsymbol{\epsilon}\|_{2} > C\sqrt{(K_{1}q + K_{2}p)n\log n}) \leqslant \operatorname{pr}(\|\boldsymbol{U}^{\top}\boldsymbol{\epsilon}\|_{\infty} > C\sqrt{n\log n})$$

$$\leqslant 2(K_{1}q + K_{2}p)n^{-\min\{C_{1},C_{2}\}}.$$
(A.7)

By (A.4), (A.5), and (A.7), with probability at least $1 - 2(K_1q + K_2p)n^{-\min\{C_1,C_2\}}$, we have

$$\sqrt{\|\widehat{\boldsymbol{\alpha}}^o - \boldsymbol{\alpha}^*\|_2^2 + \|\widehat{\boldsymbol{\delta}}^o - \boldsymbol{\delta}^*\|_2^2} \leqslant CC_0^{-1} |\mathcal{T}_{\min}|^{-1} \sqrt{(K_1 q + K_2 p) n \log n}.$$

Then,

$$\sup_{i} \|\widehat{\boldsymbol{\beta}}_{i}^{o} - \boldsymbol{\beta}_{i}^{*}\|_{2} \leqslant \sup_{k} \|\widehat{\boldsymbol{\alpha}}_{k}^{o} - \boldsymbol{\alpha}_{k}^{*}\|_{2} \leqslant \|\widehat{\boldsymbol{\alpha}}^{o} - \boldsymbol{\alpha}^{*}\|_{2} \leqslant \tau_{n}',$$

where $\tau'_n = CC_0^{-1}|\mathcal{T}_{\min}|^{-1}\sqrt{(K_1q + K_2p)n\log n}$. Similarly, $\sup_i \|\widehat{\boldsymbol{\gamma}}_i^o - \boldsymbol{\gamma}_i^*\|_2 \leqslant \tau'_n$. This concludes the proof of Result 1.

A.3 Proof of Result 2 in Theorem 1

Define

$$Q(\boldsymbol{\beta}, \boldsymbol{\gamma}) = \ell(\boldsymbol{\beta}, \boldsymbol{\gamma}) + P(\boldsymbol{\beta}, \boldsymbol{\gamma}), \ Q^{o}(\boldsymbol{\beta}, \boldsymbol{\gamma}) = \ell^{o}(\boldsymbol{\beta}, \boldsymbol{\gamma}) + P^{o}(\boldsymbol{\beta}, \boldsymbol{\gamma}),$$

where

$$\ell(\boldsymbol{\beta}, \boldsymbol{\gamma}) = \frac{1}{2} \| \boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta} - \boldsymbol{Z}\boldsymbol{\gamma} \|_{2}^{2}, \ P(\boldsymbol{\beta}, \boldsymbol{\gamma}) = P_{1}(\boldsymbol{\beta}, \boldsymbol{\gamma}) + P_{2}(\boldsymbol{\beta}, \boldsymbol{\gamma}),$$

$$P_{1}(\boldsymbol{\beta}, \boldsymbol{\gamma}) = \sum_{1 \leq j < m \leq n} p\left(\sqrt{\|\boldsymbol{\beta}_{j} - \boldsymbol{\beta}_{m}\|_{2}^{2} + \|\boldsymbol{\gamma}_{j} - \boldsymbol{\gamma}_{m}\|_{2}^{2}}, \lambda_{1}\right),$$

$$P_{2}(\boldsymbol{\beta}, \boldsymbol{\gamma}) = \sum_{1 \leq j < m \leq n} p\left(\|\boldsymbol{\beta}_{j} - \boldsymbol{\beta}_{m}\|_{2}, \lambda_{2}\right),$$

$$\ell^{o}(\boldsymbol{\beta}, \boldsymbol{\gamma}) = \frac{1}{2} \| \boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta} - \boldsymbol{Z}\boldsymbol{\gamma} \|_{2}^{2}, \text{ s.t. } \boldsymbol{\beta} \in \mathcal{M}_{\mathcal{G}^{*}}, \boldsymbol{\gamma} \in \mathcal{M}_{\mathcal{T}^{*}},$$

$$P^{o}(\boldsymbol{\beta}, \boldsymbol{\gamma}) = P_{1}^{o}(\boldsymbol{\beta}, \boldsymbol{\gamma}) + P_{2}^{o}(\boldsymbol{\beta}),$$

$$P_{1}^{o}(\boldsymbol{\beta}, \boldsymbol{\gamma}) = \sum_{1 \leq j < m \leq n} p\left(\sqrt{\|\boldsymbol{\beta}_{j} - \boldsymbol{\beta}_{m}\|_{2}^{2} + \|\boldsymbol{\gamma}_{j} - \boldsymbol{\gamma}_{m}\|_{2}^{2}}, \lambda_{1}\right), \text{ s.t. } \boldsymbol{\beta} \in \mathcal{M}_{\mathcal{G}^{*}}, \boldsymbol{\gamma} \in \mathcal{M}_{\mathcal{T}^{*}},$$

$$P_{2}^{o}(\boldsymbol{\beta}) = \sum_{1 \leq j < m \leq n} p\left(\|\boldsymbol{\beta}_{j} - \boldsymbol{\beta}_{m}\|_{2}, \lambda_{2}\right), \text{ s.t. } \boldsymbol{\beta} \in \mathcal{M}_{\mathcal{G}^{*}}.$$

Let $G_1: \mathcal{M}_{\mathcal{G}^*} \to \mathbb{R}^{K_1q}$ be the mapping such that $G_1(\boldsymbol{\beta})$ is the $K_1q \times 1$ vector consisting of K_1 vectors with dimension q, and its k_1 th vector component equals the common value of $\boldsymbol{\beta}_i$ for $i \in \mathcal{G}_{k_1}^*$. Let $\check{G}_1: \mathbb{R}^{nq} \to \mathbb{R}^{K_1q}$ be the mapping such that $\check{G}_1(\boldsymbol{\beta}) = \{|\mathcal{G}_{k_1}^*|^{-1} \sum_{i \in \mathcal{G}_{k_1}^*} \boldsymbol{\beta}_i^\top, k_1 = 1, \cdots, K_1\}^\top$. Clearly, when $\boldsymbol{\beta} \in \mathcal{M}_{\mathcal{G}^*}$, $G_1(\boldsymbol{\beta}) = \check{G}_1(\boldsymbol{\beta})$. Similarly, define $G_2: \mathcal{M}_{\mathcal{T}^*} \to \mathbb{R}^{K_2p}$ and $\check{G}_2(\boldsymbol{\gamma}) = \{|\mathcal{T}_{k_2}^*|^{-1} \sum_{i \in \mathcal{T}_{k_2}^*} \boldsymbol{\gamma}_i^\top, k_2 = 1, \cdots, K_2\}^\top$. For any $\boldsymbol{\beta} \in \mathbb{R}^{nq}$, $\boldsymbol{\gamma} \in \mathbb{R}^{np}$, denote $\check{\boldsymbol{\beta}} = G_1^{-1} \left(\check{G}_1(\boldsymbol{\beta}) \right)$, $\check{\boldsymbol{\gamma}} = G_2^{-1} \left(\check{G}_2(\boldsymbol{\gamma}) \right)$. Clearly, $\check{\boldsymbol{\beta}} \in \mathcal{M}_{\mathcal{G}^*}$, $\check{\boldsymbol{\gamma}} \in \mathcal{M}_{\mathcal{T}^*}$, and

$$Q(\breve{\boldsymbol{\beta}}, \breve{\boldsymbol{\gamma}}) = Q^{o}(\breve{\boldsymbol{\beta}}, \breve{\boldsymbol{\gamma}}). \tag{A.8}$$

Consider the neighborhood of (β^*, γ^*) :

$$\mathcal{C} = \{\boldsymbol{\beta} \in \mathbb{R}^{qn}, \boldsymbol{\gamma} \in \mathbb{R}^{pn} : \sup_{i} \|\boldsymbol{\beta}_{i} - \boldsymbol{\beta}_{i}^{*}\|_{2} \leqslant \tau_{n}', \sup_{i} \|\boldsymbol{\gamma}_{i} - \boldsymbol{\gamma}_{i}^{*}\|_{2} \leqslant \tau_{n}'\}.$$

By Result 1, there exists an event E_1 in which:

$$\sup_{i} \|\widehat{\boldsymbol{\beta}}_{i}^{o} - \boldsymbol{\beta}_{i}^{*}\|_{2} \leqslant \tau_{n}', \sup_{i} \|\widehat{\boldsymbol{\gamma}}_{i}^{o} - \boldsymbol{\gamma}_{i}^{*}\|_{2} \leqslant \tau_{n}', i = 1, \cdots, n,$$

and $\operatorname{pr}(E_1^C) \leq 2(K_1q + K_2p)n^{-\min\{C_1,C_2\}}$. Thus $(\widehat{\boldsymbol{\beta}}^{o^{\top}},\widehat{\boldsymbol{\gamma}}^{o^{\top}})^{\top} \in \mathcal{C}$. With the following two steps, we show that $(\widehat{\boldsymbol{\beta}}^{o^{\top}},\widehat{\boldsymbol{\gamma}}^{o^{\top}})^{\top}$ is a strict local minimizer of objective function (A.1) with probability approaching 1.

(i) On event
$$E_1$$
, for any $(\check{\boldsymbol{\beta}}^\top, \check{\boldsymbol{\gamma}}^\top) \in \mathcal{C}$ and $(\check{\boldsymbol{\beta}}^\top, \check{\boldsymbol{\gamma}}^\top) \neq (\widehat{\boldsymbol{\beta}}^{o\top}, \widehat{\boldsymbol{\gamma}}^{o\top})^\top$, $Q(\check{\boldsymbol{\beta}}, \check{\boldsymbol{\gamma}}) > Q(\widehat{\boldsymbol{\beta}}^{o}, \widehat{\boldsymbol{\gamma}}^{o})$.

(ii) There is an event E_2 such that $\operatorname{pr}(E_2^C) \leqslant 2n^{-1}$. On event $E_1 \cap E_2$, there is a neighborhood of $(\widehat{\boldsymbol{\beta}}^{o^{\top}}, \widehat{\boldsymbol{\gamma}}^{o^{\top}})^{\top}$, denoted by \mathcal{C}_n , such that $Q(\boldsymbol{\beta}, \boldsymbol{\gamma}) \geqslant Q(\widecheck{\boldsymbol{\beta}}, \widecheck{\boldsymbol{\gamma}})$, for any $(\boldsymbol{\beta}^{\top}, \boldsymbol{\gamma}^{\top})^{\top} \in \mathcal{C} \cap \mathcal{C}_n$ and a sufficiently large n.

With the results in (i) and (ii), for any $(\boldsymbol{\beta}^{\top}, \boldsymbol{\gamma}^{\top})^{\top} \in \mathcal{C} \cap \mathcal{C}_n$ and $(\boldsymbol{\beta}^{\top}, \boldsymbol{\gamma}^{\top})^{\top} \neq (\widehat{\boldsymbol{\beta}}^{o^{\top}}, \widehat{\boldsymbol{\gamma}}^{o^{\top}})^{\top}$ on $\mathcal{C} \cap \mathcal{C}_n$, we have $Q(\boldsymbol{\beta}, \boldsymbol{\gamma}) > Q(\widehat{\boldsymbol{\beta}}^{o}, \widehat{\boldsymbol{\gamma}}^{o})$. So $(\widehat{\boldsymbol{\beta}}^{o^{\top}}, \widehat{\boldsymbol{\gamma}}^{o^{\top}})^{\top}$ is a strict local minimizer of (A.1) on event $\mathcal{C} \cap \mathcal{C}_n$ with $\operatorname{pr}(E_1 \cap E_2) \geqslant 1 - 2(K_1q + K_2p + 1)n^{-\min\{C_1, C_2, 1\}}$ for a sufficiently large n.

First, we prove the result in (i). For any $\boldsymbol{\beta} \in \mathcal{C}$, let $\check{G}_1(\boldsymbol{\beta}) = (\boldsymbol{\alpha}_1^\top, \cdots, \boldsymbol{\alpha}_{K_1}^\top)^\top$. Then $\|\boldsymbol{\alpha}_{k_1} - \boldsymbol{\alpha}_{k_1'}\|_2 \geqslant \|\boldsymbol{\alpha}_{k_1}^* - \boldsymbol{\alpha}_{k_1'}^*\|_2 - 2\sup_{k_1} \|\boldsymbol{\alpha}_{k_1} - \boldsymbol{\alpha}_{k_1}^*\|_2$, and

$$\sup_{k_{1}} \|\boldsymbol{\alpha}_{k_{1}} - \boldsymbol{\alpha}_{k_{1}}^{*}\|_{2}^{2} = \sup_{k_{1}} \||\mathcal{G}_{k_{1}}^{*}|^{-1} \sum_{i \in \mathcal{T}_{k_{1}}^{*}} \boldsymbol{\beta}_{i} - \boldsymbol{\alpha}_{k_{1}}^{*}\|_{2}^{2} = \sup_{k_{1}} \||\mathcal{G}_{k_{1}}^{*}|^{-1} \sum_{i \in \mathcal{G}_{k_{1}}^{*}} (\boldsymbol{\beta}_{i} - \boldsymbol{\beta}_{i}^{*})\|_{2}^{2}
= \sup_{k_{1}} |\mathcal{G}_{k_{1}}^{*}|^{-2} \|\sum_{i \in \mathcal{G}_{k_{1}}^{*}} (\boldsymbol{\beta}_{i} - \boldsymbol{\beta}_{i}^{*})\|_{2}^{2} \leqslant \sup_{k_{1}} |\mathcal{G}_{k_{1}}^{*}|^{-1} \sum_{i \in \mathcal{G}_{k_{1}}^{*}} \|\boldsymbol{\beta}_{i} - \boldsymbol{\beta}_{i}^{*}\|_{2}^{2}$$

$$\leqslant \sup_{i} \|\boldsymbol{\beta}_{i} - \boldsymbol{\beta}_{i}^{*}\|_{2}^{2} \leqslant \tau_{n}^{\prime 2}.$$

$$(A.9)$$

Note that $b_2 = \min_{1 \leq k_1 \neq k_1' \leq K_1} \|\boldsymbol{\alpha}_{k_1}^* - \boldsymbol{\alpha}_{k_1'}^*\|_2$ is sufficiently large such that $b_2 > (a+0.5)\lambda_2$ and $\lambda_2 \gg \tau_n'$. Then for any k_1 and k_1' , $\|\boldsymbol{\alpha}_{k_1} - \boldsymbol{\alpha}_{k_1'}\|_2 \geqslant b_2 - 2\tau_n' > a\lambda_2$. So $p(\|\boldsymbol{\alpha}_{k_1} - \boldsymbol{\alpha}_{k_1'}\|_2, \lambda_2)$ is a constant. Also note that for any $\boldsymbol{\beta} \in \mathcal{M}_{\mathcal{G}^*}$,

$$P_2^o(\boldsymbol{\beta}) = \sum_{1 \leqslant j < m \leqslant n} p\left(\|\boldsymbol{\beta}_j - \boldsymbol{\beta}_m\|_2, \lambda_2\right) = \sum_{1 \leqslant k_1 < k_1' \leqslant K_1} |\mathcal{G}_{k_1}^*| |\mathcal{G}_{k_1'}^*| p\left(\|\boldsymbol{\alpha}_{k_1'} - \boldsymbol{\alpha}_{k_1'}\|_2, \lambda_2\right).$$

So $P_2^o(\beta)$ is a constant that does not depend on β , for any $\beta \in \mathcal{C} \cap \mathcal{M}_{\mathcal{G}^*}$.

Moreover, for any $\boldsymbol{\beta} \in \mathcal{C} \cap \mathcal{M}_{\mathcal{G}^*}$ and $\boldsymbol{\gamma} \in \mathcal{C} \cap \mathcal{M}_{\mathcal{T}^*}$, let $\check{G}_2(\boldsymbol{\gamma}) = (\boldsymbol{\delta}_1^\top, \cdots, \boldsymbol{\delta}_{K_2}^\top)^\top$. We have

$$\begin{split} P_1^o(\boldsymbol{\beta}, \boldsymbol{\gamma}) &= \sum_{1 \leq j < m \leq n} p\left(\sqrt{\|\boldsymbol{\beta}_j - \boldsymbol{\beta}_m\|_2^2 + \|\boldsymbol{\gamma}_j - \boldsymbol{\gamma}_m\|_2^2}, \lambda_1\right) \\ &= \sum_{1 \leq k_2 < k_2' \leq K_2} |\mathcal{T}_{k_2}^*| |\mathcal{T}_{k_2'}^*| p\left(\sqrt{\|\boldsymbol{\alpha}_{h(k_2)} - \boldsymbol{\alpha}_{h(k_2')}\|_2^2 + \|\boldsymbol{\delta}_{k_2} - \boldsymbol{\delta}_{k_2'}\|_2^2}, \lambda_1\right), \end{split}$$

where $h(k_2) = \sum_{k_1=1}^{K_1} k_1 I(k_2 \in \mathcal{H}_{k_1})$. Similarly, $P_1^o(\boldsymbol{\beta}, \boldsymbol{\gamma})$ is a constant that does not depend on $\boldsymbol{\beta}$ or $\boldsymbol{\gamma}$. Therefore, $P^o(\boldsymbol{\beta}, \boldsymbol{\gamma}) = P_1^o(\boldsymbol{\beta}, \boldsymbol{\gamma}) + P_2^o(\boldsymbol{\beta})$ is a constant for any $\boldsymbol{\beta} \in \mathcal{C} \cap \mathcal{M}_{\mathcal{G}^*}$ and $\boldsymbol{\gamma} \in \mathcal{C} \cap \mathcal{M}_{\mathcal{T}^*}$.

Since $(\widehat{\boldsymbol{\beta}}^{o^{\top}}, \widehat{\boldsymbol{\gamma}}^{o^{\top}})^{\top}$ is the unique minimizer of $\ell^{o}(\boldsymbol{\beta}, \boldsymbol{\gamma}), \ell^{o}(\boldsymbol{\check{\beta}}, \boldsymbol{\check{\gamma}}) > \ell^{o}(\widehat{\boldsymbol{\beta}}^{o}, \widehat{\boldsymbol{\gamma}}^{o})$ for any $(\boldsymbol{\check{\beta}}^{\top}, \boldsymbol{\check{\gamma}}^{\top}) \in \mathcal{C}$ and $(\boldsymbol{\check{\beta}}^{\top}, \boldsymbol{\check{\gamma}}^{\top})^{\top} \neq (\widehat{\boldsymbol{\beta}}^{o^{\top}}, \widehat{\boldsymbol{\gamma}}^{o^{\top}})^{\top}$. Note that $\boldsymbol{\check{\beta}}, \widehat{\boldsymbol{\beta}}^{o} \in \mathcal{M}_{\mathcal{G}^*}$, and $\boldsymbol{\check{\gamma}}, \widehat{\boldsymbol{\gamma}}^{o} \in \mathcal{M}_{\mathcal{T}^*}$. So $P^{o}(\boldsymbol{\check{\beta}}, \boldsymbol{\check{\gamma}}) = P^{o}(\widehat{\boldsymbol{\beta}}^{o}, \widehat{\boldsymbol{\gamma}}^{o})$, and we have $Q^{o}(\boldsymbol{\check{\beta}}, \boldsymbol{\check{\gamma}}) > Q^{o}(\widehat{\boldsymbol{\beta}}^{o}, \widehat{\boldsymbol{\gamma}}^{o})$. By (A.8), $Q(\boldsymbol{\check{\beta}}, \boldsymbol{\check{\gamma}}) > Q(\widehat{\boldsymbol{\beta}}^{o}, \widehat{\boldsymbol{\gamma}}^{o})$. Therefore, the result in (i) is proved.

Next, we prove the result in (ii). Given a positive sequence ϕ_n , consider $C_n = \{ \boldsymbol{\beta} \in \mathbb{R}^{nq}, \boldsymbol{\gamma} \in \mathbb{R}^{np} : \sup_i \|\boldsymbol{\beta}_i - \widehat{\boldsymbol{\beta}}_i^o\|_2 \leqslant \phi_n, \sup_i \|\boldsymbol{\gamma}_i - \widehat{\boldsymbol{\gamma}}_i^o\|_2 \leqslant \phi_n \}$. For $(\boldsymbol{\beta}^\top, \boldsymbol{\gamma}^\top)^\top \in \mathcal{C} \cap \mathcal{C}_n$ and $(\boldsymbol{\breve{\beta}}^\top, \boldsymbol{\breve{\gamma}}^\top)^\top \in \mathcal{C}$, by Taylor's expansion,

$$Q(\boldsymbol{\beta}, \boldsymbol{\gamma}) - Q(\boldsymbol{\beta}, \boldsymbol{\gamma}) = q_1 + q_2 + q_3 + q_4,$$

where

$$q_{1} = -(\boldsymbol{y} - \boldsymbol{X}\widetilde{\boldsymbol{\beta}} - \boldsymbol{Z}\widetilde{\boldsymbol{\gamma}})^{\top} \boldsymbol{X} (\boldsymbol{\beta} - \boldsymbol{\check{\beta}}),$$

$$q_{2} = -(\boldsymbol{y} - \boldsymbol{X}\widetilde{\boldsymbol{\beta}} - \boldsymbol{Z}\widetilde{\boldsymbol{\gamma}})^{\top} \boldsymbol{Z} (\boldsymbol{\gamma} - \boldsymbol{\check{\gamma}}),$$

$$q_{3} = \sum_{i=1}^{n} \frac{\partial P(\widetilde{\boldsymbol{\beta}}, \widetilde{\boldsymbol{\gamma}})}{\partial \boldsymbol{\beta}_{i}^{\top}} (\boldsymbol{\beta}_{i} - \boldsymbol{\check{\beta}}_{i}),$$

$$q_{4} = \sum_{i=1}^{n} \frac{\partial P(\widetilde{\boldsymbol{\beta}}, \widetilde{\boldsymbol{\gamma}})}{\partial \boldsymbol{\gamma}_{i}^{\top}} (\boldsymbol{\gamma}_{i} - \boldsymbol{\check{\gamma}}_{i}),$$

 $\widetilde{\boldsymbol{\beta}} = \varsigma \boldsymbol{\beta} + (1 - \varsigma) \widecheck{\boldsymbol{\beta}}$, and $\widetilde{\boldsymbol{\gamma}} = \varsigma \boldsymbol{\gamma} + (1 - \varsigma) \widecheck{\boldsymbol{\gamma}}$ for some constant $\varsigma \in (0, 1)$.

First, we consider q_1 and q_2 . Let $\mathbf{D}_{1j} = (y_j - \mathbf{x}_j^{\top} \widetilde{\boldsymbol{\beta}}_j - \mathbf{z}_j^{\top} \widetilde{\boldsymbol{\gamma}}_j) \mathbf{x}_j$, $j = 1, \dots, n$. q_1 can be rewritten as:

$$\begin{split} q_1 &= -\sum_{j=1}^n \boldsymbol{D}_{1j}^\top (\boldsymbol{\beta}_j - \boldsymbol{\breve{\beta}}_j) = -\sum_{k_1=1}^{K_1} \sum_{j \in \mathcal{G}_{k_1}^*} \frac{\boldsymbol{D}_{1j}^\top (\boldsymbol{\beta}_j - \boldsymbol{\beta}_m + \boldsymbol{\beta}_m - \boldsymbol{\breve{\beta}}_j)}{|\mathcal{G}_{k_1}^*|} \\ &= -\left[\sum_{k_1=1}^{K_1} \sum_{j,m \in \mathcal{G}_{k_1}^*} \frac{\boldsymbol{D}_{1j}^\top (\boldsymbol{\beta}_j - \boldsymbol{\beta}_m)}{|\mathcal{G}_{k_1}^*|} + \sum_{k_1=1}^{K_1} \sum_{j \in \mathcal{G}_{k_1}^*} \boldsymbol{D}_{1j}^\top \left(\sum_{m \in \mathcal{G}_{k_1}^*} \frac{\boldsymbol{\beta}_m}{|\mathcal{G}_{k_1}^*|} - \boldsymbol{\breve{\beta}}_j \right) \right]. \end{split}$$

Note that for $j,m\in\mathcal{G}_{k_1}^*$, $\breve{\boldsymbol{\beta}}_j=\breve{\boldsymbol{\beta}}_m=\sum_{m\in\mathcal{G}_{k_1}^*}\frac{\boldsymbol{\beta}_m}{|\mathcal{G}_{k_1}^*|}.$ So

$$q_{1} = -\sum_{k_{1}=1}^{K_{1}} \sum_{j,m \in \mathcal{G}_{k_{1}}^{*}} \frac{\boldsymbol{D}_{1j}^{\top}(\boldsymbol{\beta}_{j} - \boldsymbol{\beta}_{m})}{|\mathcal{G}_{k_{1}}^{*}|}$$

$$= -\left[\sum_{k_{1}=1}^{K_{1}} \sum_{j,m \in \mathcal{G}_{k_{1}}^{*}} \frac{\boldsymbol{D}_{1j}^{\top}(\boldsymbol{\beta}_{j} - \boldsymbol{\beta}_{m})}{2|\mathcal{G}_{k_{1}}^{*}|} + \sum_{k_{1}=1}^{K_{1}} \sum_{j,m \in \mathcal{G}_{k_{1}}^{*}} \frac{\boldsymbol{D}_{1m}^{\top}(\boldsymbol{\beta}_{m} - \boldsymbol{\beta}_{j})}{2|\mathcal{G}_{k_{1}}^{*}|}\right]$$

$$= -\sum_{k_{1}=1}^{K_{1}} \sum_{j,m \in \mathcal{G}_{k_{1}}^{*},j < m} \frac{(\boldsymbol{D}_{1j} - \boldsymbol{D}_{1m})^{\top}(\boldsymbol{\beta}_{j} - \boldsymbol{\beta}_{m})}{|\mathcal{G}_{k_{1}}^{*}|}$$

$$\geqslant -\sum_{k_{1}=1}^{K_{1}} \sum_{j,m \in \mathcal{G}_{k_{1}}^{*},j < m} 2|\mathcal{G}_{\min}|^{-1} \sup_{j} \|\boldsymbol{D}_{1j}\|_{2} \|\boldsymbol{\beta}_{j} - \boldsymbol{\beta}_{m}\|_{2}.$$
(A.10)

Moreover,

$$\boldsymbol{D}_{1j} = (y_j - \boldsymbol{x}_j^{\top} \widetilde{\boldsymbol{\beta}}_j - \boldsymbol{z}_j^{\top} \widetilde{\boldsymbol{\gamma}}_j) \boldsymbol{x}_j = [\epsilon_j - \boldsymbol{x}_j^{\top} (\boldsymbol{\beta}_j^* - \widetilde{\boldsymbol{\beta}}_j) - \boldsymbol{z}_j^{\top} (\boldsymbol{\gamma}_j^* - \widetilde{\boldsymbol{\gamma}}_j)] \boldsymbol{x}_j.$$
Then, $\sup_j \|\boldsymbol{D}_{1j}\|_2 \leqslant \sup_j \left\{ \|\boldsymbol{x}_j\|_2 \left(|\epsilon_j| + \|\boldsymbol{x}_j\|_2 \|\boldsymbol{\beta}_j^* - \widetilde{\boldsymbol{\beta}}_j\|_2 + \|\boldsymbol{z}_j\|_2 \|\boldsymbol{\gamma}_j^* - \widetilde{\boldsymbol{\gamma}}_j\|_2 \right) \right\}.$
Note that $\sup_j \|\widecheck{\boldsymbol{\beta}}_j - \boldsymbol{\beta}_j^*\|_2 = \sup_{k_1} \|\boldsymbol{\alpha}_{k_1} - \boldsymbol{\alpha}_{k_1}^*\|_2 \leqslant \tau_n'$, following from (A.9). And then

$$\sup_{j} \|\widetilde{\boldsymbol{\beta}}_{j} - \boldsymbol{\beta}_{j}^{*}\|_{2} \leqslant \varsigma \sup_{j} \|\boldsymbol{\beta}_{j} - \boldsymbol{\beta}_{j}^{*}\|_{2} + (1 - \varsigma) \sup_{j} \|\widecheck{\boldsymbol{\beta}}_{j} - \boldsymbol{\beta}_{j}^{*}\|_{2} \leqslant \varsigma \tau_{n}' + (1 - \varsigma)\tau_{n}' = \tau_{n}'. \quad (A.11)$$

Similarly, $\sup_{j} \|\widetilde{\boldsymbol{\gamma}}_{j} - \boldsymbol{\gamma}_{j}^{*}\|_{2} \leqslant \tau_{n}'$. By Condition A.2, $\operatorname{pr}(\|\boldsymbol{\epsilon}\|_{\infty}) > \sqrt{2(\log n)/c_{1}} \leqslant \sum_{i=1}^{n} \operatorname{pr}(|\epsilon_{i}|) > \sqrt{2(\log n)/c_{1}} \leqslant 2/n$. By Condition A.3, $\sqrt{2(\log n)/c_{1}} \gg \tau_{n}' \max\{\sup_{i} \|\boldsymbol{x}_{i}\|_{2}, \sup_{i} \|\boldsymbol{z}_{i}\|_{2}\}$.

Therefore, there is an event E_2 such that $pr(E_2^C) \leq 2/n$, and on E_2 ,

$$\sup_{j} \|\boldsymbol{D}_{1j}\|_{2} \leqslant C_{D_{1}} \sqrt{\log n}, \tag{A.12}$$

for some constant $0 < C_{D_1} < \infty$. Combining (A.10) and (A.12), we have:

$$q_1 \geqslant -\sum_{k_1=1}^{K_1} \sum_{j,m \in \mathcal{G}_{k_1}^*, j < m} 2C_{D_1} |\mathcal{G}_{\min}|^{-1} \sqrt{\log n} \|\boldsymbol{\beta}_j - \boldsymbol{\beta}_m\|_2.$$
 (A.13)

Similarly, for some constant $0 < C_{D_2} < \infty$,

$$q_{2} \geqslant -\sum_{k_{2}=1}^{K_{2}} \sum_{j,m \in \mathcal{T}_{k_{2}}^{*},j < m} 2C_{D_{2}} |\mathcal{T}_{\min}|^{-1} \sqrt{\log n} \|\boldsymbol{\gamma}_{j} - \boldsymbol{\gamma}_{m}\|_{2}$$

$$\geqslant -\sum_{k_{2}=1}^{K_{2}} \sum_{j,m \in \mathcal{T}_{k_{*}}^{*},j < m} 2C_{D_{2}} |\mathcal{T}_{\min}|^{-1} \sqrt{\log n} \sqrt{\|\boldsymbol{\beta}_{j} - \boldsymbol{\beta}_{m}\|_{2}^{2} + \|\boldsymbol{\gamma}_{j} - \boldsymbol{\gamma}_{m}\|_{2}^{2}}.$$
(A.14)

Next, we consider q_3 and q_4 :

$$\begin{split} q_{3} &= q_{31} + q_{32}, \\ q_{31} &= \lambda_{2} \sum_{j=1}^{n} \sum_{j \neq m} \rho'(\|\widetilde{\boldsymbol{\beta}}_{j} - \widetilde{\boldsymbol{\beta}}_{m}\|_{2}) \|\widetilde{\boldsymbol{\beta}}_{j} - \widetilde{\boldsymbol{\beta}}_{m}\|_{2}^{-1} (\widetilde{\boldsymbol{\beta}}_{j} - \widetilde{\boldsymbol{\beta}}_{m})^{\top} (\boldsymbol{\beta}_{j} - \widecheck{\boldsymbol{\beta}}_{j}), \\ q_{32} &= \lambda_{1} \sum_{j=1}^{n} \sum_{j \neq m} \rho'(\sqrt{\|\widetilde{\boldsymbol{\beta}}_{j} - \widetilde{\boldsymbol{\beta}}_{m}\|_{2}^{2} + \|\widetilde{\boldsymbol{\gamma}}_{j} - \widetilde{\boldsymbol{\gamma}}_{m}\|_{2}^{2}) (\|\widetilde{\boldsymbol{\beta}}_{j} - \widetilde{\boldsymbol{\beta}}_{m}\|_{2}^{2} + \|\widetilde{\boldsymbol{\gamma}}_{j} - \widetilde{\boldsymbol{\gamma}}_{m}\|_{2}^{2})^{-1/2} \\ & \cdot (\widetilde{\boldsymbol{\beta}}_{j} - \widetilde{\boldsymbol{\beta}}_{m})^{\top} (\boldsymbol{\beta}_{j} - \widecheck{\boldsymbol{\beta}}_{j}), \\ q_{4} &= \lambda_{1} \sum_{j=1}^{n} \sum_{j \neq m} \rho'(\sqrt{\|\widetilde{\boldsymbol{\beta}}_{j} - \widetilde{\boldsymbol{\beta}}_{m}\|_{2}^{2} + \|\widetilde{\boldsymbol{\gamma}}_{j} - \widetilde{\boldsymbol{\gamma}}_{m}\|_{2}^{2}) (\|\widetilde{\boldsymbol{\beta}}_{j} - \widetilde{\boldsymbol{\beta}}_{m}\|_{2}^{2} + \|\widetilde{\boldsymbol{\gamma}}_{j} - \widetilde{\boldsymbol{\gamma}}_{m}\|_{2}^{2}) \\ & \cdot (\widetilde{\boldsymbol{\gamma}}_{j} - \widetilde{\boldsymbol{\gamma}}_{m})^{\top} (\boldsymbol{\gamma}_{j} - \widecheck{\boldsymbol{\gamma}}_{j}). \end{split}$$

Denote $\boldsymbol{\theta} = (\boldsymbol{\beta}^{\mathsf{T}}, \boldsymbol{\gamma}^{\mathsf{T}})^{\mathsf{T}}$. Then,

$$\begin{split} &\widetilde{q}_{4} = q_{4} + q_{32}, \\ &= \lambda_{1} \sum_{j=1}^{n} \sum_{j \neq m} \rho'(\|\widetilde{\boldsymbol{\theta}}_{j} - \widetilde{\boldsymbol{\theta}}_{m}\|_{2}) \|\widetilde{\boldsymbol{\theta}}_{j} - \widetilde{\boldsymbol{\theta}}_{m}\|_{2}^{-1} (\widetilde{\boldsymbol{\theta}}_{j} - \widetilde{\boldsymbol{\theta}}_{m})^{\top} (\boldsymbol{\theta}_{j} - \widecheck{\boldsymbol{\theta}}_{j}) \\ &= \lambda_{1} \sum_{j < m} \rho'(\|\widetilde{\boldsymbol{\theta}}_{j} - \widetilde{\boldsymbol{\theta}}_{m}\|_{2}) \|\widetilde{\boldsymbol{\theta}}_{j} - \widetilde{\boldsymbol{\theta}}_{m}\|_{2}^{-1} (\widetilde{\boldsymbol{\theta}}_{j} - \widetilde{\boldsymbol{\theta}}_{m})^{\top} (\boldsymbol{\theta}_{j} - \widecheck{\boldsymbol{\theta}}_{j}) \\ &+ \lambda_{1} \sum_{j > m} \rho'(\|\widetilde{\boldsymbol{\theta}}_{m} - \widetilde{\boldsymbol{\theta}}_{j}\|_{2}) \|\widetilde{\boldsymbol{\theta}}_{m} - \widetilde{\boldsymbol{\theta}}_{j}\|_{2}^{-1} (\widetilde{\boldsymbol{\theta}}_{m} - \widetilde{\boldsymbol{\theta}}_{j})^{\top} (\boldsymbol{\theta}_{m} - \widecheck{\boldsymbol{\theta}}_{m}) \\ &= \lambda_{1} \sum_{j < m} \rho'(\|\widetilde{\boldsymbol{\theta}}_{j} - \widetilde{\boldsymbol{\theta}}_{m}\|_{2}) \|\widetilde{\boldsymbol{\theta}}_{j} - \widetilde{\boldsymbol{\theta}}_{m}\|_{2}^{-1} (\widetilde{\boldsymbol{\theta}}_{j} - \widetilde{\boldsymbol{\theta}}_{m})^{\top} [(\boldsymbol{\theta}_{j} - \widecheck{\boldsymbol{\theta}}_{j}) - (\boldsymbol{\theta}_{m} - \widecheck{\boldsymbol{\theta}}_{m})] \\ &= \lambda_{1} \sum_{k_{2} = 1} \sum_{j, m \in \mathcal{T}_{k_{2}}^{*}, j < m} \rho'(\|\widetilde{\boldsymbol{\theta}}_{j} - \widetilde{\boldsymbol{\theta}}_{m}\|_{2}) \|\widetilde{\boldsymbol{\theta}}_{j} - \widetilde{\boldsymbol{\theta}}_{m}\|_{2}^{-1} (\widetilde{\boldsymbol{\theta}}_{j} - \widetilde{\boldsymbol{\theta}}_{m})^{\top} (\boldsymbol{\theta}_{j} - \widetilde{\boldsymbol{\theta}}_{m})^{\top} (\boldsymbol{\theta}_{j} - \widetilde{\boldsymbol{\theta}}_{m}) \\ &+ \lambda_{1} \sum_{k_{2} < k_{2}'} \sum_{j \in \mathcal{T}_{k_{2}}^{*}, m \in \mathcal{T}_{k_{2}'}^{*}} \rho'(\|\widetilde{\boldsymbol{\theta}}_{j} - \widetilde{\boldsymbol{\theta}}_{m}\|_{2}) \|\widetilde{\boldsymbol{\theta}}_{j} - \widetilde{\boldsymbol{\theta}}_{m}\|_{2}^{-1} (\widetilde{\boldsymbol{\theta}}_{j} - \widetilde{\boldsymbol{\theta}}_{m})^{\top} [(\boldsymbol{\theta}_{j} - \widecheck{\boldsymbol{\theta}}_{j}) - (\boldsymbol{\theta}_{m} - \widecheck{\boldsymbol{\theta}}_{m})]. \end{split}$$

The last equality is from $\check{\boldsymbol{\theta}}_j = \check{\boldsymbol{\theta}}_m$ for $j, m \in \mathcal{T}_{k_2}^*, k_2 = 1, \cdots, K_2$.

For
$$j \in \mathcal{T}_{k_2}^*$$
, $m \in \mathcal{T}_{k_2'}^*$, $k_2 \neq k_2'$, $\|\widetilde{\boldsymbol{\theta}}_j - \widetilde{\boldsymbol{\theta}}_m\|_2 \geqslant \|\widetilde{\boldsymbol{\gamma}}_j - \widetilde{\boldsymbol{\gamma}}_m\|_2 \geqslant \min_{j \in \mathcal{T}_{k_2}^*, m \in \mathcal{T}_{k_2'}^*} \|\boldsymbol{\gamma}_j^* - \boldsymbol{\gamma}_m^*\|_2 - 2\sup_j \|\widetilde{\boldsymbol{\gamma}}_j - \boldsymbol{\gamma}_j^*\|_2 \geqslant b_1 - 2\tau_n' > a\lambda_1$, and so $\rho'(\|\widetilde{\boldsymbol{\theta}}_j - \widetilde{\boldsymbol{\theta}}_m\|_2) = 0$. Noting that for $j, m \in \mathcal{T}_{k_2}^*$,

 $\widetilde{\boldsymbol{\theta}}_j - \widetilde{\boldsymbol{\theta}}_m = \varsigma(\boldsymbol{\theta}_j - \boldsymbol{\theta}_m)$, we have:

$$\widetilde{q_4} = \lambda_1 \sum_{k_2=1}^{K_2} \sum_{j,m \in \mathcal{T}_{k_0}^*, j < m} \rho'(\|\widetilde{\boldsymbol{\theta}}_j - \widetilde{\boldsymbol{\theta}}_m\|_2) \|\boldsymbol{\theta}_j - \boldsymbol{\theta}_m\|_2.$$

Similar to (A.9), $\sup_{j} \|\check{\boldsymbol{\theta}}_{j} - \widehat{\boldsymbol{\theta}}_{j}^{o}\|_{2} \leqslant \sup_{j} \|\boldsymbol{\theta}_{j} - \widehat{\boldsymbol{\theta}}_{j}^{o}\|_{2}$. And note that $\check{\boldsymbol{\theta}}_{j} = \check{\boldsymbol{\theta}}_{m}$ for $j, m \in \mathcal{T}_{k_{2}}^{*}$. Then it can be shown that:

$$\sup_{j} \|\widetilde{\boldsymbol{\theta}}_{j} - \widetilde{\boldsymbol{\theta}}_{m}\|_{2} = \sup_{j} \|\widetilde{\boldsymbol{\theta}}_{j} - \widecheck{\boldsymbol{\theta}}_{j} + \widecheck{\boldsymbol{\theta}}_{m} - \widetilde{\boldsymbol{\theta}}_{m}\|_{2} \leqslant 2 \sup_{j} \|\widetilde{\boldsymbol{\theta}}_{j} - \widecheck{\boldsymbol{\theta}}_{j}\|_{2} \leqslant 2 \sup_{j} \|\boldsymbol{\theta}_{j} - \widecheck{\boldsymbol{\theta}}_{j}\|_{2}$$

$$\leqslant 2(\sup_{j} \|\boldsymbol{\theta}_{j} - \widehat{\boldsymbol{\theta}}_{j}^{o}\|_{2} + \|\widecheck{\boldsymbol{\theta}}_{j} - \widehat{\boldsymbol{\theta}}_{j}^{o}\|_{2}) \leqslant 4 \sup_{j} \|\boldsymbol{\theta}_{j} - \widehat{\boldsymbol{\theta}}_{j}^{o}\|_{2} \leqslant 8\phi_{n}.$$

Therefore, $\rho'(\|\widetilde{\boldsymbol{\theta}}_k - \widetilde{\boldsymbol{\theta}}_m\|_2) \geqslant \rho'(8\phi_n)$ by the concavity of $\rho(\cdot)$. So we have:

$$\widetilde{q_4} \geqslant \sum_{k_2=1}^{K_2} \sum_{j,m \in \mathcal{T}_{k_0}^*, j < m} \lambda_1 \rho'(8\phi_n) \|\boldsymbol{\theta}_j - \boldsymbol{\theta}_m\|_2. \tag{A.15}$$

Similarly,

$$q_{31} \geqslant \sum_{k_1=1}^{K_1} \sum_{j,m \in \mathcal{G}_{k_*}^*, j < m} \lambda_2 \rho'(4\phi_n) \|\boldsymbol{\beta}_j - \boldsymbol{\beta}_m\|_2.$$
 (A.16)

By (A.13), (A.14), (A.15), and (A.16), we have:

$$Q(\boldsymbol{\beta}, \boldsymbol{\gamma}) - Q(\boldsymbol{\check{\beta}}, \boldsymbol{\check{\gamma}})$$

$$\geqslant \sum_{k_1=1}^{K_1} \sum_{j,m \in \mathcal{G}_{k_1}^*, j < m} \left[\lambda_2 \rho'(4\phi_n) - 2C_{D_1} |\mathcal{G}_{\min}|^{-1} \sqrt{\log n} \right] \|\boldsymbol{\beta}_j - \boldsymbol{\beta}_m\|_2$$

$$+ \sum_{k_2=1}^{K_2} \sum_{j,m \in \mathcal{T}_{k_2}^*, j < m} \left[\lambda_1 \rho'(8\phi_n) - 2C_{D_2} |\mathcal{T}_{\min}|^{-1} \sqrt{\log n} \right] \|\boldsymbol{\theta}_j - \boldsymbol{\theta}_m\|_2.$$

Let $\phi_n = o(1)$, $\rho'(4\phi_n) \to 1$, and $\rho'(8\phi_n) \to 1$. Note that $|\mathcal{G}_{\min}| > |\mathcal{T}_{\min}| \gg \sqrt{(K_1q + K_2p)n\log n}$, $\lambda_1 \gg \tau'_n$, and $\lambda_2 \gg \tau'_n$. Then we have $\min(\lambda_1, \lambda_2) \gg |\mathcal{T}_{\min}|^{-1} \sqrt{\log n}$. Therefore, $Q(\boldsymbol{\beta}, \boldsymbol{\gamma}) - Q(\boldsymbol{\beta}, \boldsymbol{\gamma}) > 0$ for a sufficiently large n. So the result in (ii) is proved. This concludes the proof of Result 2.

B. Details of the computational algorithm

Recall that as iteration t + 1, the updates are:

$$(\boldsymbol{\beta}^{(t+1)}, \boldsymbol{\gamma}^{(t+1)}) = \underset{\boldsymbol{\beta}, \boldsymbol{\gamma}}{\operatorname{argmin}} \mathcal{L}(\boldsymbol{\beta}, \boldsymbol{\gamma}, \boldsymbol{v}^{(t)}, \boldsymbol{\omega}^{(t)}, \boldsymbol{\xi}^{(t)}, \boldsymbol{\eta}^{(t)}), \tag{B.1}$$

$$(\boldsymbol{v}^{(t+1)}, \boldsymbol{\omega}^{(t+1)}) = \underset{\boldsymbol{v}, \boldsymbol{\omega}}{\operatorname{argmin}} \mathcal{L}(\boldsymbol{\beta}^{(t+1)}, \boldsymbol{\gamma}^{(t+1)}, \boldsymbol{v}, \boldsymbol{\omega}, \boldsymbol{\xi}^{(t)}, \boldsymbol{\eta}^{(t)}), \tag{B.2}$$

$$\boldsymbol{\xi}_{jm}^{(t+1)} = \boldsymbol{\xi}_{jm}^{(t)} + \kappa (\boldsymbol{\beta}_{j}^{(t+1)} - \boldsymbol{\beta}_{m}^{(t+1)} - \boldsymbol{v}_{jm}^{(t+1)}), \tag{B.3}$$

$$\eta_{jm}^{(t+1)} = \eta_{jm}^{(t)} + \kappa (\gamma_j^{(t+1)} - \gamma_m^{(t+1)} - \omega_{jm}^{(t+1)}).$$
(B.4)

For (B.1), it is equivalent to minimizing:

$$\frac{1}{2} \sum_{i=1}^{n} (y_i - \boldsymbol{x}_i^{\mathsf{T}} \boldsymbol{\beta}_i - \boldsymbol{z}_i^{\mathsf{T}} \boldsymbol{\gamma}_i)^2 + \frac{\kappa}{2} \sum_{j < m} \|\boldsymbol{\beta}_j - \boldsymbol{\beta}_m - \boldsymbol{v}_{jm}^{(t)} + \frac{\boldsymbol{\xi}_{jm}^{(t)}}{\kappa} \|_2^2 + \frac{\kappa}{2} \sum_{j < m} \|\boldsymbol{\gamma}_j - \boldsymbol{\gamma}_m - \boldsymbol{\omega}_{jm}^{(t)} + \frac{\boldsymbol{\eta}_{jm}^{(t)}}{\kappa} \|_2^2 \\
= \frac{1}{2} \|\boldsymbol{y} - \boldsymbol{X} \boldsymbol{\beta} - \boldsymbol{Z} \boldsymbol{\gamma} \|_2^2 + \frac{\kappa}{2} \|\boldsymbol{H} (\boldsymbol{\beta}^{\mathsf{T}}, \boldsymbol{\gamma}^{\mathsf{T}})^{\mathsf{T}} - (\boldsymbol{v}^{(t)\mathsf{T}}, \boldsymbol{\omega}^{(t)\mathsf{T}})^{\mathsf{T}} + (\boldsymbol{\xi}^{(t)\mathsf{T}}, \boldsymbol{\eta}^{(t)\mathsf{T}})^{\mathsf{T}} / \kappa \|_2^2,$$

where $\boldsymbol{y} = (y_1, \dots, y_n)^{\top}$, $\boldsymbol{X} = \operatorname{diag}(\boldsymbol{x}_1^{\top}, \dots, \boldsymbol{x}_n^{\top})$, $\boldsymbol{Z} = \operatorname{diag}(\boldsymbol{z}_1^{\top}, \dots, \boldsymbol{z}_n^{\top})$, $\boldsymbol{H} = \mathcal{E} \otimes \boldsymbol{I}_{p+q}$, $\mathcal{E} = \{(\boldsymbol{e}_j - \boldsymbol{e}_m, j < m)\}^{\top}$ with \boldsymbol{e}_j being the vector whose jth element is 1 and the remaining ones are 0, \boldsymbol{I}_{p+q} is a $(p+q) \times (p+q)$ identity matrix, and \otimes is the Kronecker product. Then the update for $(\boldsymbol{\beta}^{(t+1)\top}, \boldsymbol{\gamma}^{(t+1)\top})^{\top}$ is:

$$\begin{split} &(\boldsymbol{\beta}^{(t+1)\top}, \boldsymbol{\gamma}^{(t+1)\top})^{\top} \\ = &[(\boldsymbol{X}, \boldsymbol{Z})^{\top} (\boldsymbol{X}, \boldsymbol{Z}) + \kappa \boldsymbol{H}^{\top} \boldsymbol{H}]^{-1} [(\boldsymbol{X}, \boldsymbol{Z})^{\top} \boldsymbol{y} + \kappa \boldsymbol{H}^{\top} \{ (\boldsymbol{v}^{(t)\top}, \boldsymbol{\omega}^{(t)\top})^{\top} - (\boldsymbol{\xi}^{(t)\top}, \boldsymbol{\eta}^{(t)\top})^{\top} / \kappa \}]. \end{split}$$

For (B.2), after removing the terms independent of $(\boldsymbol{v}^{\top}, \boldsymbol{\omega}^{\top})^{\top}$, it is equivalent to minimizing:

$$\frac{\kappa}{2} \| (\boldsymbol{v}_{jm}^{\top}, \boldsymbol{\omega}_{jm}^{\top})^{\top} - (\overline{\boldsymbol{v}}_{jm}^{\top}, \overline{\boldsymbol{\omega}}_{jm}^{\top})^{\top} \|_{2}^{2} + p(\sqrt{\|\boldsymbol{v}_{jm}\|_{2}^{2} + \|\boldsymbol{\omega}_{jm}\|_{2}^{2}}, \lambda_{1}) + p(\|\boldsymbol{v}_{jm}\|_{2}, \lambda_{2})$$

with respect to $(\boldsymbol{v}_{jm}^{\top}, \boldsymbol{\omega}_{jm}^{\top})^{\top}$, where $\overline{\boldsymbol{v}}_{jm}^{\top} = \boldsymbol{\gamma}_{j}^{(t+1)} - \boldsymbol{\gamma}_{m}^{(t+1)} + \boldsymbol{\eta}_{jm}^{(t)}/\kappa$, and $\overline{\boldsymbol{\omega}}_{jm}^{\top} = \boldsymbol{\beta}_{j}^{(t+1)} - \boldsymbol{\beta}_{m}^{(t+1)} + \boldsymbol{\xi}_{jm}^{(t)}/\kappa$. The solution is a hierarchical groupwise thresholding operator corresponding

to $p(\cdot, \lambda)$. Denote $\boldsymbol{u}_{jm} = (\boldsymbol{v}_{jm}^\top, \boldsymbol{\omega}_{jm}^\top)^\top$ and $(s)_+ = sI(s > 0)$. Then, it can be obtained that:

$$\boldsymbol{\omega}_{jm}^{(t+1)} = \overline{\boldsymbol{\omega}}_{jm}^{\top} \text{ and } \boldsymbol{v}_{jm}^{(t+1)} = \overline{\boldsymbol{v}}_{jm}^{\top}, \text{ if } \|\overline{\boldsymbol{u}}_{jm}^{\top}\|_{2} > a\lambda_{1} \text{ and } \|\overline{\boldsymbol{v}}_{jm}^{\top}\|_{2} > a\lambda_{2};$$
 (B.5)

$$\boldsymbol{\omega}_{jm}^{(t+1)} = \frac{[1 - \lambda_1/(\kappa \|\overline{\boldsymbol{u}}_{jm}^{\top}\|_2)]_+}{1 - 1/(a\kappa)} \overline{\boldsymbol{\omega}}_{jm}^{\top} \text{ and } \boldsymbol{v}_{jm}^{(t+1)} = \frac{[1 - \lambda_1/(\kappa \|\overline{\boldsymbol{u}}_{jm}^{\top}\|_2)]_+}{1 - 1/(a\kappa)} \overline{\boldsymbol{v}}_{jm}^{\top},$$

if
$$\|\overline{\boldsymbol{u}}_{jm}^{\top}\|_{2} \leqslant a\lambda_{1}$$
 and $\frac{[1-\lambda_{1}/(\kappa\|\overline{\boldsymbol{u}}_{jm}^{\top}\|_{2})]_{+}}{1-1/(a\kappa)} \cdot \|\overline{\boldsymbol{v}}_{jm}^{\top}\|_{2} > a\lambda_{2};$ (B.6)

$$\boldsymbol{\omega}_{jm}^{(t+1)} = \overline{\boldsymbol{\omega}}_{jm}^{\top} \text{ and } \boldsymbol{v}_{jm}^{(t+1)} = \frac{[1 - \lambda_2/(\kappa \| \overline{\boldsymbol{v}}_{jm}^{\top} \|_2)]_+}{1 - 1/(a\kappa)} \overline{\boldsymbol{v}}_{jm}^{\top},$$

if
$$\|\overline{\boldsymbol{\omega}}_{jm}^{\top}\|_{2}^{2} + \left[\frac{[1 - \lambda_{2}/(\kappa \|\overline{\boldsymbol{v}}_{jm}^{\top}\|_{2})]_{+}}{1 - 1/(a\kappa)}\right]^{2} \cdot \|\overline{\boldsymbol{v}}_{jm}^{\top}\|_{2}^{2} > (a\lambda_{1})^{2} \text{ and } \|\overline{\boldsymbol{v}}_{jm}^{\top}\|_{2} \leqslant a\lambda_{2}; \quad (B.7)$$

$$\boldsymbol{\omega}_{jm}^{(t+1)} = \frac{\overline{\boldsymbol{\omega}}_{jm}^{\top}}{1 + \frac{p'(\boldsymbol{u}_{jm}^{(t)}, \lambda_1)}{\kappa \|\boldsymbol{u}_{jm}^{(t)}\|_2}} \text{ and } \boldsymbol{v}_{jm}^{(t+1)} = \frac{\overline{\boldsymbol{v}}_{jm}^{\top}}{1 + \frac{p'(\boldsymbol{u}_{jm}^{(t)}, \lambda_1)}{\kappa \|\boldsymbol{u}_{jm}^{(t)}\|_2} + \frac{p'(\boldsymbol{v}_{jm}^{(t)}, \lambda_2)}{\kappa \|\boldsymbol{v}_{jm}^{(t)}\|_2}}, \text{ otherwise,}$$
(B.8)

where (B.8) is derived using the local quadratic approximation technique, which leads to an explicit solution at each iteration.

C. Additional numerical results

[Figure 1 about here.]

[Figure 2 about here.]

[Figure 3 about here.]

[Figure 4 about here.]

[Figure 5 about here.]

[Figure 6 about here.]

[Figure 7 about here.]

[Figure 8 about here.]

[Figure 9 about here.]

[Figure 10 about here.]

[Figure 11 about here.]

[Figure 12 about here.]

[Figure 13 about here.]

[Figure 14 about here.]

[Figure 15 about here.]

[Table 1 about here.]

[Table 2 about here.]

[Table 3 about here.]

[Table 4 about here.]

[Table 5 about here.]

- [Table 6 about here.]
- [Table 7 about here.]
- [Table 8 about here.]
- [Table 9 about here.]
- [Table 10 about here.]
- [Table 11 about here.]
- [Table 12 about here.]
- [Table 13 about here.]
- [Table 14 about here.]
- [Table 15 about here.]
- [Table 16 about here.]
- [Table 17 about here.]
- [Table 18 about here.]
- [Table 19 about here.]
- [Table 20 about here.]
- [Table 21 about here.]

Figure C1. Analysis of one simulated dataset: modified BIC as a function of λ_1 and λ_2 . The optimal point has $(\lambda_1, \lambda_2) = (0.040, 0.085)$, which corresponds to $(\widehat{K}_1, \widehat{K}_2) = (2, 4)$.

Figure C2. Analysis of one simulated dataset: \widehat{K}_1 and \widehat{K}_2 as a function of λ_1 and λ_2 . To improve presentation, results with extremely small λ_1 and λ_2 values are not shown.

Figure C3. Analysis of one simulated dataset: solutions paths for one component of β_i and one component of γ_i , as a function of λ_1 and λ_2 . To improve presentation, results with extremely small λ_1 and λ_2 values are not shown.

Figure C4. Simulation results for the scenario with correlated x_i and z_i , imbalanced design, and $\mu = 2$. Correlation structures from top to bottom: AR1, AR2, B1, and B2.

Figure C5. Simulation results for the scenario with uncorrelated x_i and z_i , balanced design, and $\mu = 2$. Correlation structures from top to bottom: AR1, AR2, B1, and B2.

Figure C6. Simulation results for the scenario with uncorrelated x_i and z_i , imbalanced design, and $\mu = 2$. Correlation structures from top to bottom: AR1, AR2, B1, and B2.

Figure C7. Simulation results for the scenario with correlated x_i and z_i , balanced design, and $\mu = 0.6$. Correlation structures from top to bottom: AR1, AR2, B1, and B2.

Figure C8. Simulation results for the scenario with correlated x_i and z_i , imbalanced design, and $\mu = 0.6$. Correlation structures from top to bottom: AR1, AR2, B1, and B2.

Figure C9. Simulation results for the scenario with uncorrelated x_i and z_i , balanced design, and $\mu = 0.6$. Correlation structures from top to bottom: AR1, AR2, B1, and B2.

Figure C10. Simulation results for the scenario with uncorrelated x_i and z_i , imbalanced design, and $\mu = 0.6$. Correlation structures from top to bottom: AR1, AR2, B1, and B2.

Figure C11 . Analysis scheme: when the heterogeneity hierarchy is violated. Middle panels: heterogeneity defined by β and by γ . Lower panel: heterogeneity structure obtained with the proposed approach.

Figure C12 . Simulation with the heterogeneity hierarchy violated. Top/bottom: uncorrelated/correlated x_i and z_i .

Figure C13. Data analysis: histogram of the response variable.

Figure C14. Distributions of relative differences in clinical outcomes of the best matched subjects between different (sub-)subgroups. FEV1 (pre/post): percentage comparison to a normal value reference range of the volume of air that a patient can forcibly exhale from the lungs in one second pre/post-bronchodilator. Carbon monoxide diffusion: value measuring the amount of carbon monoxide detected in a patient's lungs. Disease free survival/Overall survival: disease free/overall survival time since initial treatment. 1&2: for subject i in Subgroup 1, identify subject i' in Subgroup 2 that is the closest if measured by $(\boldsymbol{X}, \boldsymbol{Z})$. For a clinical outcome y', the relative difference for subject i in Subgroup 1 and subject i' in Subgroup 2 is calculated as $|y_i' - y_{i'}'|/|y_i'|$. n_1 values are generated for this comparison, where n_1 is the size of Subgroup 1.

 $\bf Figure~C15$. Simulation results based on the LUAD data. Top/bottom: balanced/imbalanced design.

				β	<u> </u>	γ				
Correlation (z_i)	method	per	$\widehat{K_1}$	SC	MSE	per	$\widehat{K_2}$	SC	MSE	
AR1	fusion1	0.00	4.14(1.25)	0.841(0.024)	0.861(0.114)	0.78	4.14(1.25)	0.677(0.012)	1.043(0.081)	
	FMR1	0.51	2.49(0.50)	0.826(0.105)	1.197(0.473)	0.00	2.49(0.50)	0.700(0.020)	1.285(0.368)	
	respclust1	0.17	4.64(1.45)	0.785(0.060)	1.334(0.690)	0.14	4.64(1.45)	0.682(0.034)	1.546(1.025)	
	resiclust1	0.07	4.99(1.24)	0.732(0.034)	1.714(0.738)	0.10	4.99(1.24)	0.632(0.027)	1.752(0.698)	
	FMR2	0.51	2.49(0.50)	0.834(0.096)	1.196(0.471)	0.08	6.10(1.07)	0.742(0.039)	1.511(0.375)	
	respclust2	0.62	2.38(0.49)	0.930(0.718)	1.038(0.651)	0.06	6.47(1.53)	0.774(0.227)	1.689(0.980)	
	resiclust2	0.32	2.68(0.47)	0.767(0.043)	1.198(0.406)	0.01	7.43(1.43)	0.691(0.042)	1.659(0.365)	
	proposed	0.88	2.18(0.58)	0.923(0.051)	0.763(0.150)	0.80	4.40(1.48)	0.712(0.014)	0.973(0.090)	
AR2	fusion1	0.00	3.76(1.34)	0.829(0.039)	0.970(0.181)	0.63	3.76(1.34)	0.669(0.019)	1.246(0.169)	
	FMR1	0.46	2.54(0.50)	0.779(0.105)	1.430(0.472)	0.00	2.54(0.50)	0.677(0.026)	1.781(0.606)	
	respclust1	0.00	5.16(1.02)	0.739(0.025)	1.617(0.971)	0.18	5.16(1.02)	0.650(0.036)	2.008(1.029)	
	resiclust1	0.06	4.99(1.21)	0.712(0.034)	1.860(0.810)	0.16	4.99(1.21)	0.612(0.028)	2.586(1.728)	
	FMR2	0.47	2.53(0.50)	0.801(0.085)	1.423(0.476)	0.01	6.31(0.93)	0.716(0.053)	2.127(0.559)	
	respclust2	0.49	2.51(0.50)	0.798(0.057)	1.157(0.354)	0.06	6.78(1.59)	0.709(0.051)	1.853(0.671)	
	resiclust2	0.49	2.51(0.50)	0.746(0.037)	1.310(0.680)	0.01	6.92(1.54)	0.674(0.051)	2.084(1.204)	
	proposed	0.81	2.22(0.63)	0.854(0.112)	0.942(0.182)	0.69	4.38(1.53)	0.692(0.015)	1.263(0.157)	
B1	fusion1	0.00	3.79(1.12)	0.845(0.028)	0.849(0.112)	0.60	3.79(1.12)	0.678(0.014)	1.025(0.070)	
	FMR1	0.44	2.60(0.60)	0.805(0.106)	1.252(0.411)	0.00	2.60(0.60)	0.693(0.025)	1.390(0.335)	
	respclust1	0.12	4.74(1.40)	0.772(0.052)	1.263(0.475)	0.17	4.74(1.40)	0.676(0.032)	1.411(0.354)	
	resiclust1	0.14	4.62(1.47)	0.731(0.035)	1.592(0.795)	0.13	4.62(1.47)	0.636(0.028)	1.716(0.897)	
	FMR2	0.45	2.55(0.50)	0.819(0.094)	1.240(0.405)	0.04	6.13(1.04)	0.729(0.044)	1.566(0.307)	
	respclust2	0.51	2.49(0.50)	0.835(0.066)	1.020(0.610)	0.03	6.80(1.55)	0.742(0.037)	1.606(0.582)	
	resiclust2	0.42	2.58(0.50)	0.768(0.045)	1.216(0.439)	0.01	7.10(1.44)	0.695(0.042)	1.728(0.741)	
	proposed	0.87	2.89(1.210)	0.900(0.088)	0.815(0.186)	0.62	4.29(1.23)	0.707(0.012)	1.024(0.105)	
B2	fusion1	0.00	3.97(1.24)	0.843(0.032)	0.881(0.137)	0.61	3.97(1.24)	0.677(0.015)	1.112(0.098)	
	FMR1	0.45	2.55(0.50)	0.791(0.108)	1.319(0.504)	0.00	2.55(0.50)	0.684(0.031)	1.624(0.556)	
	respclust1	0.13	4.98(1.36)	0.767(0.047)	1.383(0.676)	0.08	4.98(1.36)	0.662(0.028)	1.706(0.771)	
	resiclust1	0.07	4.98(1.29)	0.719(0.035)	1.685(0.824)	0.08	4.98(1.29)	0.623(0.031)	2.039(0.774)	
	FMR2	0.44	2.56(0.50)	0.805(0.091)	1.322(0.503)	0.02	6.39(1.05)	0.719(0.052)	1.902(0.493)	
	respclust2	0.50	2.50(0.50)	0.820(0.058)	1.093(0.773)	0.03	6.88(1.49)	0.734(0.038)	1.725(0.535)	
	resiclust2	0.43	2.57(0.49)	0.757(0.044)	1.238(0.659)	0.02	7.12(1.53)	0.681(0.045)	1.838(0.592)	
	proposed	0.87	2.54(1.19)	0.873(0.112)	0.860(0.197)	0.67	4.46(1.10)	0.700(0.013)	1.127(0.133)	

Table C2 Simulation with correlated x_i and z_i , imbalanced design, and $\mu = 2$. In each cell, mean(sd).

		, 00770	x_i and z_i , involunced design, and $\mu = 2$. In each cell, mean(sa).						(00).
Correlation (z_i)	method	per	$\widehat{K_1}$	SC	MSE	per	$\widehat{K_2}$	SC	MSE
AR1	fusion1	0.00	3.83(1.22)	0.822(0.025)	0.888(0.118)	0.71	3.83(1.22)	0.629(0.018)	1.118(0.089)
	FMR1	0.46	2.56(0.56)	0.760(0.102)	1.217(0.379)	0.00	2.56(0.56)	0.636(0.029)	1.368(0.363)
	respclust1	0.06	5.15(1.18)	0.655(0.029)	1.599(0.486)	0.14	5.15(1.18)	0.526(0.023)	1.751(0.639)
	resiclust1	0.03	5.12(1.09)	0.659(0.029)	2.372(5.679)	0.15	5.12(1.09)	0.536(0.024)	1.950(1.169)
	FMR2	0.47	2.53(0.50)	0.776(0.087)	1.219(0.378)	0.26	5.62(1.26)	0.695(0.062)	1.515(0.359)
	respclust2	0.36	2.64(0.48)	0.676(0.022)	1.501(0.576)	0.03	7.24(1.49)	0.578(0.035)	1.675(0.356)
	resiclust2	0.27	2.73(0.45)	0.682(0.022)	1.529(0.671)	0.00	7.46(1.41)	0.584(0.038)	1.748(0.541)
	proposed	0.94	2.11(0.45)	0.862(0.032)	0.873(0.130)	0.81	4.27(1.52)	0.634(0.025)	1.056(0.090)
AR2	fusion1	0.00	4.03(2.01)	0.824(0.028)	0.980(0.137)	0.56	4.03(2.01)	0.606(0.020)	1.293(0.173)
	FMR1	0.43	2.61(0.60)	0.757(0.092)	1.327(0.466)	0.00	2.61(0.60)	0.631(0.031)	1.703(0.577)
	respclust1	0.02	5.24(0.97)	0.655(0.025)	1.823(0.683)	0.13	5.24(0.97)	0.509(0.022)	2.321(1.415)
	resiclust1	0.01	5.38(0.89)	0.661(0.023)	2.014(1.006)	0.09	5.38(0.89)	0.522(0.021)	2.402(0.765)
	FMR2	0.44	2.56(0.50)	0.773(0.075)	1.327(0.465)	0.24	5.93(1.51)	0.685(0.067)	2.392(1.547)
	respclust2	0.31	2.69(0.47)	0.673(0.018)	1.696(0.736)	0.04	7.24(1.46)	0.553(0.032)	2.113(1.085)
	resiclust2	0.30	2.70(0.46)	0.679(0.019)	1.761(0.983)	0.01	7.45(1.40)	0.572(0.038)	1.921(0.498)
	proposed	0.84	2.22(0.60)	0.849(0.041)	0.953(0.131)	0.64	4.20(1.21)	0.626(0.022)	1.276(0.142)
B1	fusion1	0.00	3.76(1.35)	0.846(0.027)	0.884(0.129)	0.54	3.76(1.35)	0.624(0.021)	1.007(0.103)
	FMR1	0.49	2.51(0.50)	0.768(0.102)	1.207(0.444)	0.00	2.51(0.50)	0.640(0.022)	1.365(0.366)
	respclust1	0.08	5.05(1.31)	0.654(0.031)	1.614(0.530)	0.08	5.05(1.31)	0.525(0.023)	1.770(0.883)
	resiclust1	0.03	4.91(1.22)	0.657(0.028)	1.885(0.988)	0.15	4.91(1.22)	0.539(0.028)	1.982(0.901)
	FMR2	0.50	2.50(0.50)	0.786(0.083)	1.203(0.444)	0.19	5.61(1.25)	0.697(0.057)	1.533(0.330)
	respclust2	0.30	2.70(0.46)	0.678(0.016)	1.555(0.809)	0.00	7.45(1.37)	0.572(0.037)	1.784(0.522)
	resiclust2	0.34	2.66(0.48)	0.682(0.024)	1.512(0.537)	0.01	7.23(1.48)	0.591(0.043)	1.776(0.627)
	proposed	0.89	2.18(0.54)	0.863(0.030)	0.867(0.120)	0.64	4.18(1.06)	0.635(0.022)	1.060(0.097)
B2	fusion1	0.00	3.55(1.68)	0.822(0.027)	0.887(0.113)	0.64	3.55(1.68)	0.610(0.019)	1.214(0.139)
	FMR1	0.32	2.70(0.52)	0.737(0.092)	1.333(0.423)	0.00	2.70(0.52)	0.636(0.029)	1.618(0.466)
	respclust1	0.04	5.31(1.08)	0.654(0.032)	1.767(0.752)	0.08	5.31(1.08)	0.515(0.021)	2.072(1.107)
	resiclust1	0.08	4.93(1.27)	0.652(0.036)	1.778(0.560)	0.14	4.93(1.27)	0.531(0.026)	2.121(0.654)
	FMR2	0.33	2.67(0.47)	0.758(0.075)	1.335(0.423)	0.15	6.15(1.36)	0.678(0.059)	1.910(0.528)
	respclust2	0.40	2.60(0.49)	0.674(0.021)	1.577(0.396)	0.02	7.13(1.51)	0.567(0.040)	1.938(0.623)
	resiclust2	0.37	2.63(0.49)	0.679(0.023)	1.569(0.558)	0.02	7.28(1.56)	0.580(0.041)	1.826(0.523)
	proposed	0.89	2.17(0.51)	0.856(0.031)	0.890(0.120)	0.71	4.15(0.86)	0.630(0.023)	1.184(0.118)

 $\begin{table c} \textbf{Table C3} \\ \textit{Simulation with uncorrelated x_i and z_i, balanced design, and $\mu=2$. In each cell, mean(sd).} \end{table}$

				β		γ				
Correlation (z_i)	method	per	$\widehat{K_1}$	SC	MSE	per	$\widehat{K_2}$	SC	MSE	
AR1	fusion1	0.00	3.83(1.03)	0.839(0.034)	0.877(0.138)	0.68	3.83(1.03)	0.672(0.017)	1.047(0.080)	
	FMR1	0.28	3.02(1.09)	0.746(0.082)	1.143(0.336)	0.00	3.02(1.09)	0.668(0.030)	1.318(0.293)	
	respclust1	0.04	5.15(1.10)	0.674(0.027)	1.746(1.386)	0.11	5.15(1.10)	0.562(0.019)	1.771(1.006)	
	resiclust1	0.02	5.26(1.04)	0.669(0.026)	1.953(1.298)	0.11	5.26(1.04)	0.551(0.017)	1.980(0.722)	
	FMR2	0.30	2.70(0.46)	0.762(0.061)	1.181(0.316)	0.04	6.46(1.11)	0.698(0.047)	1.476(0.263)	
	respclust2	0.26	2.74(0.44)	0.713(0.132)	1.532(0.756)	0.01	7.41(1.41)	0.611(0.145)	1.662(0.409)	
	resiclust2	0.27	2.73(0.45)	0.696(0.019)	1.419(0.205)	0.01	7.47(1.38)	0.584(0.035)	1.673(0.335)	
	proposed	0.79	2.32(0.67)	0.848(0.028)	0.851(0.116)	0.77	4.15(0.83)	0.673(0.014)	1.060(0.096)	
AR2	fusion1	0.00	3.66(1.65)	0.818(0.023)	0.958(0.124)	0.65	3.66(1.65)	0.660(0.013)	1.284(0.113)	
	FMR1	0.30	3.21(1.34)	0.747(0.073)	1.245(0.377)	0.00	3.21(1.34)	0.667(0.030)	1.523(0.454)	
	respclust1	0.02	5.34(0.99)	0.674(0.027)	1.843(0.687)	0.07	5.34(0.99)	0.542(0.015)	2.337(1.274)	
	resiclust1	0.05	5.13(1.18)	0.660(0.032)	1.897(0.392)	0.09	5.13(1.18)	0.537(0.015)	2.518(0.786)	
	FMR2	0.33	2.67(0.47)	0.765(0.054)	1.294(0.355)	0.04	6.50(1.12)	0.700(0.046)	1.883(0.453)	
	respclust2	0.21	2.79(0.41)	0.698(0.017)	1.657(0.475)	0.00	7.66(1.24)	0.563(0.028)	2.126(0.980)	
	resiclust2	0.30	2.70(0.46)	0.688(0.020)	1.526(0.554)	0.03	7.36(1.53)	0.558(0.028)	2.079(0.925)	
	proposed	0.90	2.13(0.42)	0.837(0.033)	0.963(0.128)	0.72	3.93(0.71)	0.667(0.017)	1.245(0.157)	
B1	fusion1	0.00	4.28(0.98)	0.846(0.036)	0.876(0.103)	0.61	4.28(0.98)	0.679(0.017)	1.071(0.109)	
	FMR1	0.13	2.44(1.29)	0.744(0.807)	1.368(0.751)	0.00	2.44(1.28)	0.634(0.225)	1.424(0.718)	
	respclust1	0.01	4.18(2.23)	0.661(0.889)	2.075(1.746)	0.07	4.18(2.23)	0.593(0.121)	2.121(1.023)	
	resiclust1	0.04	4.22(2.20)	0.623(0.890)	2.213(1.698)	0.04	4.22(2.20)	0.556(0.123)	2.275(1.073)	
	FMR2	0.15	2.46(1.32)	0.815(0.484)	1.612(1.348)	0.02	4.56(2.61)	0.544(0.235)	1.797(1.065)	
	respclust2	0.16	2.73(2.06)	0.665(0.152)	2.120(1.181)	0.00	5.28(3.24)	0.506(0.177)	2.180(0.124)	
	resiclust2	0.23	2.66(2.06)	0.655(0.153)	1.994(1.146)	0.01	5.11(3.19)	0.510(0.177)	2.171(0.131)	
	proposed	0.89	2.05(1.10)	0.854(0.848)	1.091(0.889)	0.67	3.95(1.97)	0.659(0.886)	1.281(0.858)	
B2	fusion1	0.00	4.17(1.11)	0.828(0.032)	0.942(0.128)	0.64	4.17(1.11)	0.648(0.017)	1.313(0.121)	
	FMR1	0.31	3.11(1.25)	0.753(0.084)	1.155(0.304)	0.00	3.11(1.25)	0.668(0.023)	1.406(0.374)	
	respclust1	0.06	5.09(1.21)	0.672(0.028)	1.752(0.751)	0.17	5.09(1.21)	0.558(0.021)	2.049(1.241)	
	resiclust1	0.04	5.08(1.20)	0.663(0.035)	2.379(6.268)	0.14	5.08(1.20)	0.548(0.021)	2.072(0.589)	
	FMR2	0.35	2.65(0.48)	0.771(0.067)	1.194(0.312)	0.03	6.42(1.12)	0.704(0.050)	1.617(0.341)	
	respclust2	0.35	2.65(0.48)	0.697(0.020)	1.484(0.396)	0.02	7.18(1.49)	0.595(0.042)	1.789(0.443)	
	resiclust2	0.28	2.72(0.45)	0.694(0.020)	1.438(0.232)	0.02	7.48(1.43)	0.578(0.039)	1.785(0.468)	
	proposed	0.87	2.22(0.60)	0.847(0.031)	0.887(0.128)	0.69	4.27(1.10)	0.672(0.016)	1.133(0.117)	

Table C4 Simulation with uncorrelated x_i and z_i , imbalanced design, and $\mu = 2$. In each cell, mean(sd).

				β	······································	γ , and $\mu = 2$. In each cell, mean(sa).				
Correlation (z_i)	method	per	$\widehat{K_1}$	SC	MSE	per	$\widehat{K_2}$	SC	MSE	
AR1	fusion1	0.00	3.79(1.04)	0.839(0.036)	0.908(0.133)	0.71	3.79(1.04)	0.632(0.024)	1.109(0.149)	
	FMR1	0.56	2.46(0.56)	0.780(0.101)	1.118(0.353)	0.00	2.46(0.56)	0.638(0.021)	1.278(0.322)	
	respclust1	0.01	5.25(1.02)	0.661(0.027)	1.537(0.377)	0.15	5.25(1.02)	0.531(0.021)	1.633(0.409)	
	resiclust1	0.02	5.29(0.99)	0.667(0.023)	1.784(1.139)	0.11	5.29(0.99)	0.539(0.025)	1.822(0.765)	
	FMR2	0.56	2.44(0.50)	0.792(0.084)	1.126(0.354)	0.41	5.23(1.21)	0.700(0.053)	1.387(0.313)	
	respclust2	0.25	2.75(0.44)	0.684(0.017)	1.376(0.260)	0.01	7.52(1.34)	0.584(0.039)	1.674(0.432)	
	resiclust2	0.15	2.85(0.36)	0.690(0.018)	1.463(0.454)	0.03	7.74(1.24)	0.590(0.039)	1.590(0.226)	
	proposed	0.91	2.14(0.47)	0.863(0.029)	0.847(0.119)	0.78	4.11(0.72)	0.637(0.020)	1.031(0.085)	
AR2	fusion1	0.00	4.38(1.31)	0.840(0.025)	0.967(0.110)	0.57	4.38(1.31)	0.625(0.018)	1.294(0.184)	
	FMR1	0.54	2.48(0.56)	0.784(0.093)	1.197(0.427)	0.00	2.48(0.56)	0.640(0.026)	1.565(0.538)	
	respclust1	0.03	5.36(0.99)	0.659(0.025)	1.720(0.671)	0.10	5.36(0.99)	0.513(0.017)	2.055(0.930)	
	resiclust1	0.01	5.26(0.98)	0.659(0.025)	1.881(0.702)	0.14	5.26(0.98)	0.527(0.023)	2.434(1.055)	
	FMR2	0.54	2.46(0.50)	0.797(0.078)	1.202(0.441)	0.41	5.33(1.31)	0.707(0.057)	1.979(0.698)	
	respclust2	0.25	2.75(0.44)	0.678(0.020)	1.626(0.368)	0.00	7.55(1.35)	0.560(0.031)	2.088(0.859)	
	resiclust2	0.28	2.72(0.45)	0.681(0.019)	1.616(0.492)	0.01	7.53(1.43)	0.582(0.041)	1.912(0.663)	
	proposed	0.81	2.33(0.74)	0.862(0.025)	0.934(0.156)	0.66	4.19(0.98)	0.633(0.020)	1.240(0.153)	
B1	fusion1	0.00	3.93(1.09)	0.853(0.041)	0.842(0.146)	0.66	3.93(1.09)	0.637(0.029)	1.037(0.106)	
	FMR1	0.53	2.47(0.50)	0.784(0.094)	1.089(0.330)	0.00	2.47(0.50)	0.642(0.020)	1.261(0.291)	
	respclust1	0.03	5.25(1.06)	0.658(0.026)	1.588(0.674)	0.10	5.25(1.06)	0.530(0.022)	1.730(0.755)	
	resiclust1	0.02	5.20(1.09)	0.662(0.023)	1.651(0.587)	0.09	5.20(1.09)	0.541(0.025)	1.803(0.784)	
	FMR2	0.53	2.47(0.50)	0.793(0.084)	1.089(0.330)	0.44	5.27(1.32)	0.697(0.047)	1.416(0.312)	
	respclust2	0.23	2.77(0.42)	0.685(0.015)	1.382(0.379)	0.02	7.80(1.41)	0.580(0.032)	1.678(0.397)	
	resiclust2	0.21	2.79(0.41)	0.689(0.019)	1.594(1.355)	0.00	7.84(1.31)	0.592(0.040)	1.645(0.401)	
	proposed	0.89	2.14(0.43)	0.867(0.031)	0.840(0.121)	0.72	4.18(1.12)	0.639(0.021)	1.028(0.083)	
B2	fusion1	0.00	3.52(1.11)	0.841(0.026)	0.894(0.127)	0.57	3.52(1.11)	0.626(0.019)	1.171(0.108)	
	FMR1	0.56	2.44(0.50)	0.779(0.098)	1.146(0.395)	0.00	2.44(0.50)	0.636(0.026)	1.424(0.378)	
	respclust1	0.00	5.42(0.89)	0.660(0.021)	1.652(0.505)	0.09	5.42(0.89)	0.521(0.022)	1.955(0.687)	
	resiclust1	0.03	5.18(1.14)	0.660(0.026)	1.875(0.983)	0.09	5.18(1.14)	0.533(0.024)	2.187(1.310)	
	FMR2	0.56	2.44(0.50)	0.792(0.082)	1.146(0.395)	0.44	5.27(1.30)	0.704(0.062)	1.648(0.467)	
	respclust2	0.27	2.73(0.45)	0.678(0.017)	1.503(0.439)	0.00	7.53(1.30)	0.571(0.035)	1.821(0.649)	
	resiclust2	0.26	2.74(0.44)	0.682(0.017)	1.672(1.197)	0.00	7.58(1.34)	0.587(0.035)	1.772(0.458)	
	proposed	0.86	2.25(0.64)	0.859(0.032)	0.866(0.132)	0.66	4.34(1.46)	0.630(0.025)	1.160(0.127)	

 $\begin{table c} \textbf{Table C5} \\ \textit{Simulation with correlated \pmb{x}_i and \pmb{z}_i, balanced design, and $\mu=0.6$. In each cell, mean(sd).} \end{table}$

				β	<u> </u>			γ	
Correlation (z_i)	method	per	$\widehat{K_1}$	SC	MSE	per	$\widehat{K_2}$	SC	MSE
AR1	fusion1	0.00	3.52(1.53)	0.704(0.093)	0.402(0.132)	0.49	3.52(1.53)	0.612(0.118)	0.417(0.081)
	FMR1	0.83	2.22(0.54)	0.738(0.056)	0.400(0.094)	0.00	2.22(0.54)	0.623(0.023)	0.436(0.101)
	respclust1	0.04	5.31(1.08)	0.700(0.022)	0.542(0.357)	0.12	5.31(1.08)	0.597(0.021)	0.586(0.483)
	resiclust1	0.02	5.12(1.11)	0.682(0.026)	0.573(0.244)	0.15	5.12(1.11)	0.580(0.020)	0.625(0.206)
	FMR2	0.85	2.15(0.36)	0.747(0.041)	0.399(0.094)	0.19	5.21(0.85)	0.595(0.044)	0.485(0.100)
	respclust2	0.23	2.77(0.43)	0.722(0.017)	0.410(0.068)	0.00	7.50(1.37)	0.582(0.037)	0.525(0.113)
	resiclust2	0.25	2.75(0.44)	0.706(0.015)	0.417(0.075)	0.02	7.50(1.28)	0.589(0.034)	0.513(0.144)
	proposed	0.83	1.89(0.47)	0.717(0.099)	0.373(0.046)	0.58	3.64(1.42)	0.602(0.123)	0.394(0.090)
AR2	fusion1	0.00	3.57(1.13)	0.682(0.093)	0.409(0.079)	0.65	3.57(1.13)	0.606(0.061)	0.588(0.092)
	FMR1	0.87	2.17(0.51)	0.727(0.045)	0.402(0.077)	0.00	2.17(0.51)	0.613(0.024)	0.513(0.150)
	respclust1	0.02	5.04(1.03)	0.683(0.028)	0.514(0.193)	0.21	5.04(1.03)	0.579(0.022)	0.691(0.388)
	resiclust1	0.00	5.54(0.75)	0.681(0.017)	0.658(0.342)	0.10	5.54(0.75)	0.559(0.024)	0.864(0.436)
	FMR2	0.87	2.14(0.35)	0.733(0.035)	0.403(0.079)	0.17	5.37(0.91)	0.611(0.041)	0.642(0.154)
	respclust2	0.25	2.75(0.44)	0.706(0.024)	0.449(0.074)	0.06	7.48(1.50)	0.580(0.035)	0.612(0.199)
	resiclust2	0.21	2.79(0.41)	0.700(0.017)	0.449(0.082)	0.02	7.54(1.36)	0.590(0.033)	0.704(0.511)
	proposed	0.77	1.89(0.58)	0.694(0.102)	0.393(0.057)	0.71	3.65(0.91)	0.609(0.055)	0.507(0.071)
B1	fusion1	0.00	3.49(1.22)	0.712(0.056)	0.369(0.086)	0.51	3.49(1.22)	0.608(0.041)	0.425(0.107)
	FMR1	0.98	2.02(0.14)	0.756(0.035)	0.369(0.045)	0.00	2.02(0.14)	0.626(0.019)	0.406(0.037)
	respclust1	0.04	5.17(1.15)	0.705(0.025)	0.493(0.195)	0.06	5.17(1.15)	0.601(0.030)	0.547(0.170)
	resiclust1	0.06	5.19(1.14)	0.685(0.028)	0.565(0.195)	0.15	5.19(1.14)	0.583(0.024)	0.587(0.167)
	FMR2	0.98	2.02(0.14)	0.756(0.034)	0.369(0.045)	0.19	5.12(0.73)	0.650(0.023)	0.465(0.070)
	respclust2	0.25	2.75(0.44)	0.727(0.024)	0.384(0.073)	0.02	7.48(1.35)	0.603(0.046)	0.548(0.181)
	resiclust2	0.33	2.67(0.47)	0.710(0.020)	0.391(0.062)	0.02	7.19(1.39)	0.604(0.039)	0.536(0.167)
	proposed	0.77	1.81(0.45)	0.701(0.117)	0.375(0.057)	0.56	3.65(1.34)	0.625(0.018)	0.411(0.047)
B2	fusion1	0.00	3.61(1.42)	0.698(0.063)	0.381(0.076)	0.53	3.61(1.42)	0.617(0.091)	0.443(0.089)
	FMR1	0.81	2.19(0.40)	0.728(0.055)	0.419(0.095)	0.00	2.19(0.40)	0.618(0.023)	0.477(0.114)
	respclust1	0.02	5.44(0.96)	0.704(0.021)	0.478(0.118)	0.10	5.44(0.96)	0.595(0.026)	0.558(0.141)
	resiclust1	0.02	5.50(0.87)	0.689(0.025)	0.578(0.171)	0.08	5.50(0.87)	0.572(0.023)	0.656(0.148)
	FMR2	0.81	2.19(0.40)	0.737(0.041)	0.419(0.095)	0.25	5.21(0.85)	0.624(0.045)	0.555(0.115)
	respclust2	0.17	2.83(0.38)	0.725(0.020)	0.460(0.265)	0.00	7.75(1.15)	0.608(0.046)	0.593(0.199)
	resiclust2	0.23	2.77(0.43)	0.713(0.023)	0.423(0.074)	0.02	7.65(1.36)	0.601(0.045)	0.547(0.133)
	proposed	0.85	1.85(0.36)	0.712(0.098)	0.383(0.057)	0.62	3.54(1.28)	0.612(0.088)	0.445(0.091)

Table C6 Simulation with correlated \mathbf{x}_i and \mathbf{z}_i , imbalanced design, and $\mu = 0.6$. In each cell, mean(sd).

				$\frac{\beta}{\beta}$	<u>J</u> ,	$\mu = 0.6$. In each cell, mean(sa).				
Correlation (z_i)	method	per	$\widehat{K_1}$	SC	MSE	per	$\widehat{K_2}$	SC	MSE	
AR1	fusion1	0.00	3.31(1.32)	0.774(0.073)	0.355(0.063)	0.52	3.31(1.32)	0.514(0.231)	0.409(0.156)	
	FMR1	0.90	2.10(0.30)	0.745(0.046)	0.353(0.061)	0.00	2.10(0.30)	0.535(0.031)	0.410(0.074)	
	respclust1	0.10	5.10(1.36)	0.649(0.032)	0.496(0.258)	0.06	5.10(1.36)	0.521(0.022)	0.547(0.273)	
	resiclust1	0.04	5.08(1.10)	0.650(0.023)	0.526(0.172)	0.21	5.08(1.10)	0.529(0.022)	0.553(0.106)	
	FMR2	0.80	2.10(0.30)	0.747(0.041)	0.353(0.061)	0.49	4.37(0.79)	0.568(0.034)	0.495(0.097)	
	respclust2	0.40	2.60(0.50)	0.672(0.020)	0.504(0.448)	0.06	7.12(1.53)	0.509(0.032)	0.529(0.163)	
	resiclust2	0.29	2.71(0.46)	0.676(0.014)	0.498(0.307)	0.02	7.56(1.59)	0.508(0.036)	0.507(0.106)	
	proposed	0.83	2.15(0.70)	0.738(0.068)	0.348(0.042)	0.58	4.21(1.29)	0.544(0.091)	0.406(0.049)	
AR2	fusion1	0.00	3.69(1.23)	0.708(0.054)	0.373(0.052)	0.61	3.69(1.23)	0.555(0.156)	0.430(0.129)	
	FMR1	0.79	2.29(0.67)	0.736(0.065)	0.407(0.201)	0.00	2.29(0.67)	0.559(0.029)	0.476(0.109)	
	respclust1	0.04	5.23(1.12)	0.645(0.031)	0.621(0.444)	0.10	5.23(1.15)	0.510(0.019)	0.790(0.544)	
	resiclust1	0.04	5.42(0.98)	0.651(0.030)	0.637(0.283)	0.06	5.42(0.98)	0.515(0.019)	0.837(0.375)	
	FMR2	0.73	2.17(0.38)	0.749(0.048)	0.403(0.202)	0.58	4.69(1.09)	0.561(0.043)	0.646(0.165)	
	respclust2	0.37	2.64(0.49)	0.665(0.022)	0.493(0.197)	0.02	7.21(1.53)	0.509(0.030)	0.615(0.172)	
	resiclust2	0.27	2.73(0.45)	0.667(0.021)	0.510(0.217)	0.02	7.35(1.45)	0.500(0.029)	0.649(0.295)	
	proposed	0.77	1.98(0.64)	0.729(0.086)	0.361(0.046)	0.67	4.12(1.22)	0.553(0.089)	0.455(0.056)	
B1	fusion1	0.00	3.48(1.61)	0.724(0.071)	0.361(0.053)	0.53	3.48(1.61)	0.544(0.226)	0.321(0.153)	
	FMR1	0.76	2.04(0.19)	0.750(0.037)	0.383(0.051)	0.00	2.04(0.19)	0.572(0.029)	0.394(0.036)	
	respclust1	0.06	5.21(1.19)	0.655(0.025)	0.520(0.193)	0.10	5.21(1.19)	0.522(0.022)	0.522(0.131)	
	resiclust1	0.02	5.31(1.02)	0.651(0.030)	0.550(0.195)	0.06	5.31(1.02)	0.527(0.020)	0.572(0.267)	
	FMR2	0.76	2.04(0.19)	0.750(0.036)	0.394(0.051)	0.57	4.25(0.59)	0.588(0.038)	0.477(0.071)	
	respclust2	0.33	2.67(0.47)	0.673(0.018)	0.471(0.259)	0.04	7.27(1.63)	0.530(0.038)	0.526(0.123)	
	resiclust2	0.29	2.71(0.46)	0.675(0.017)	0.508(0.435)	0.00	7.44(1.41)	0.539(0.040)	0.530(0.154)	
	proposed	0.81	2.15(0.67)	0.739(0.061)	0.350(0.050)	0.60	4.23(1.52)	0.554(0.071)	0.394(0.041)	
B2	fusion1	0.00	3.79(0.92)	0.755(0.077)	0.350(0.047)	0.65	3.79(0.92)	0.572(0.246)	0.397(0.179)	
	FMR1	0.88	2.02(0.14)	0.758(0.046)	0.368(0.059)	0.00	2.02(0.14)	0.582(0.033)	0.398(0.059)	
	respclust1	0.10	4.96(1.37)	0.649(0.032)	0.533(0.218)	0.08	4.96(1.37)	0.523(0.022)	0.605(0.226)	
	resiclust1	0.04	5.17(1.20)	0.651(0.034)	1.175(4.794)	0.06	5.17(1.20)	0.527(0.018)	0.600(0.114)	
	FMR2	0.88	2.02(0.14)	0.758(0.044)	0.373(0.059)	0.65	4.40(0.77)	0.601(0.033)	0.511(0.085)	
	respclust2	0.42	2.58(0.50)	0.673(0.021)	0.485(0.379)	0.00	7.21(1.55)	0.531(0.037)	0.598(0.202)	
	resiclust2	0.35	2.65(0.48)	0.677(0.023)	0.463(0.231)	0.02	7.35(1.55)	0.535(0.036)	0.554(0.156)	
	proposed	0.92	2.12(0.43)	0.757(0.049)	0.343(0.058)	0.71	3.71(0.75)	0.577(0.053)	0.417(0.058)	

Table C7 Simulation with uncorrelated \mathbf{x}_i and \mathbf{z}_i , balanced design, and $\mu = 0.6$. In each cell, mean(sd).

		<i>arroor</i>	700000000000000000000000000000000000000	$\frac{ana \ z_i, \ baian}{oldsymbol{eta}}$	coa accign, a	πω μ	0.01 1.0 00	$\frac{\gamma}{\gamma}$	•(٥ω)•
Correlation (z_i)	method	per	$\widehat{K_1}$	SC	MSE	per	$\widehat{K_2}$	SC	MSE
AR1	fusion1	0.00	3.82(1.53)	0.697(0.087)	0.552(0.693)	0.66	3.82(1.53)	0.621(0.462)	0.594(0.102)
	FMR1	0.87	1.75(0.75)	0.689(0.054)	0.612(0.516)	0.00	1.75(0.75)	0.632(0.469)	0.636(0.506)
	respclust1	0.04	3.85(1.20)	0.674(0.075)	0.804(0.821)	0.08	3.85(2.20)	0.603(0.802)	0.862(0.807)
	resiclust1	0.02	4.41(1.29)	0.645(0.075)	1.175(1.762)	0.06	4.42(2.29)	0.659(0.766)	1.201(0.754)
	FMR2	0.62	1.93(1.06)	0.681(0.057)	0.792(1.118)	0.12	4.03(2.20)	0.658(0.064)	0.874(0.893)
	respclust2	0.23	2.49(1.70)	0.698(0.080)	1.080(1.829)	0.00	5.54(3.15)	0.604(0.819)	1.127(0.819)
	resiclust2	0.31	2.23(1.19)	0.664(0.061)	0.854(1.108)	0.00	5.18(3.11)	0.672(0.089)	0.870(0.897)
	proposed	0.89	1.95(0.25)	0.704(0.084)	0.421(0.904)	0.72	3.91(1.62)	0.634(0.868)	0.531(0.091)
AR2	fusion1	0.00	3.76(1.34)	0.702(0.045)	0.417(0.065)	0.64	3.76(1.34)	0.589(0.134)	0.498(0.096)
	FMR1	0.87	2.21(0.64)	0.715(0.045)	0.419(0.095)	0.00	2.21(0.64)	0.611(0.021)	0.513(0.133)
	respclust1	0.02	5.31(0.96)	0.650(0.026)	0.680(0.267)	0.12	5.31(0.96)	0.513(0.009)	0.861(0.483)
	resiclust1	0.10	5.06(1.35)	0.639(0.048)	0.684(0.188)	0.06	5.06(1.35)	0.511(0.010)	0.866(0.270)
	FMR2	0.88	2.12(0.32)	0.723(0.033)	0.417(0.091)	0.17	5.27(0.77)	0.619(0.037)	0.669(0.148)
	respclust2	0.38	2.62(0.49)	0.672(0.027)	0.563(0.260)	0.02	7.15(1.54)	0.521(0.018)	0.771(0.471)
	resiclust2	0.40	2.60(0.50)	0.673(0.028)	0.530(0.239)	0.06	7.25(1.68)	0.519(0.017)	0.801(0.984)
	proposed	0.96	1.96(0.19)	0.713(0.056)	0.399(0.066)	0.73	4.08(1.19)	0.611(0.021)	0.480(0.054)
B1	fusion1	0.00	3.54(1.75)	0.672(0.067)	0.396(0.065)	0.63	3.54(1.75)	0.559(0.163)	0.436(0.086)
	FMR1	0.96	2.04(0.19)	0.678(0.035)	0.389(0.051)	0.00	2.04(0.19)	0.587(0.025)	0.432(0.045)
	respclust1	0.04	5.04(1.27)	0.647(0.034)	0.520(0.154)	0.08	5.04(1.27)	0.524(0.010)	0.538(0.105)
	resiclust1	0.08	5.08(1.31)	0.641(0.039)	0.596(0.326)	0.12	5.08(1.31)	0.519(0.011)	0.601(0.143)
	FMR2	0.96	2.04(0.19)	0.691(0.027)	0.389(0.051)	0.17	5.06(0.67)	0.616(0.031)	0.495(0.065)
	respclust2	0.35	2.65(0.48)	0.680(0.021)	0.501(0.112)	0.02	7.31(1.52)	0.537(0.021)	0.552(0.185)
	resiclust2	0.44	2.56(0.50)	0.672(0.025)	0.464(0.076)	0.06	6.92(1.58)	0.534(0.018)	0.538(0.163)
	proposed	0.96	2.08(0.39)	0.681(0.035)	0.383(0.046)	0.75	4.06(1.04)	0.575(0.085)	0.425(0.073)
B2	fusion1	0.00	3.85(0.72)	0.675(0.084)	0.415(0.054)	0.69	3.85(0.72)	0.581(0.165)	0.426(0.185)
	FMR1	0.96	2.04(0.19)	0.694(0.039)	0.399(0.067)	0.00	2.04(0.19)	0.594(0.023)	0.464(0.080)
	respclust1	0.02	5.04(1.03)	0.646(0.033)	0.574(0.195)	0.15	5.04(1.03)	0.521(0.014)	0.694(0.390)
	resiclust1	0.06	5.23(1.17)	0.643(0.041)	0.615(0.201)	0.06	5.23(1.17)	0.517(0.013)	0.750(0.314)
	FMR2	0.96	2.04(0.19)	0.704(0.031)	0.399(0.067)	0.19	5.14(0.77)	0.575(0.032)	0.592(0.147)
	respclust2	0.38	2.62(0.49)	0.679(0.022)	0.507(0.105)	0.02	7.17(1.51)	0.531(0.027)	0.582(0.173)
	resiclust2	0.31	2.69(0.47)	0.677(0.020)	0.527(0.253)	0.00	7.35(1.37)	0.527(0.021)	0.600(0.206)
	proposed	0.94	2.00(0.34)	0.688(0.054)	0.393(0.051)	0.77	4.10(1.05)	0.569(0.108)	0.451(0.079)

Table C8 Simulation with uncorrelated \mathbf{z}_i and \mathbf{z}_i , imbalanced design, and $\mu = 0.6$. In each cell, mean(sd).

				$\frac{\beta}{\beta}$	need deergn,	$\mu = 0.0$. In each cell, mean(sa).			
Correlation (z_i)	method	per	$\widehat{K_1}$	SC	MSE	per	$\widehat{K_2}$	SC	MSE
AR1	fusion1	0.00	3.34(1.23)	0.734(0.090)	0.365(0.067)	0.62	3.34(1.23)	0.549(0.059)	0.487(0.167)
	FMR1	0.60	2.46(0.70)	0.705(0.077)	0.416(0.114)	0.00	2.46(0.70)	0.580(0.028)	0.452(0.111)
	respclust1	0.02	5.31(0.96)	0.631(0.027)	0.629(0.292)	0.17	5.31(0.96)	0.479(0.011)	0.624(0.254)
	resiclust1	0.02	5.39(0.99)	0.636(0.026)	0.570(0.190)	0.08	5.39(0.99)	0.496(0.013)	0.617(0.232)
	FMR2	0.62	2.39(0.49)	0.727(0.054)	0.416(0.114)	0.37	5.08(1.06)	0.631(0.050)	0.517(0.122)
	respclust2	0.25	2.75(0.44)	0.658(0.019)	0.517(0.105)	0.02	7.64(1.36)	0.502(0.015)	0.565(0.165)
	resiclust2	0.17	2.83(0.38)	0.663(0.015)	0.520(0.130)	0.00	7.77(1.10)	0.523(0.021)	0.542(0.212)
	proposed	0.92	2.15(0.54)	0.758(0.029)	0.361(0.057)	0.67	4.52(1.04)	0.581(0.025)	0.414(0.053)
AR2	fusion1	0.00	3.48(1.15)	0.774(0.067)	0.436(0.056)	0.60	3.48(1.15)	0.584(0.061)	0.638(0.162)
	FMR1	0.37	2.69(0.61)	0.701(0.074)	0.488(0.162)	0.02	2.69(0.61)	0.594(0.036)	0.674(0.251)
	respclust1	0.04	5.19(1.05)	0.629(0.034)	0.695(0.256)	0.06	5.19(1.05)	0.479(0.012)	0.772(0.282)
	resiclust1	0.04	5.25(1.10)	0.633(0.032)	0.730(0.340)	0.21	5.25(1.10)	0.498(0.018)	0.894(0.418)
	FMR2	0.38	2.62(0.49)	0.725(0.054)	0.491(0.163)	0.10	5.91(1.05)	0.635(0.062)	0.827(0.226)
	respclust2	0.25	2.75(0.44)	0.658(0.022)	0.717(0.349)	0.00	7.52(1.50)	0.500(0.014)	0.785(0.566)
	resiclust2	0.17	2.83(0.38)	0.662(0.023)	0.685(0.432)	0.02	7.85(1.26)	0.529(0.025)	0.590(0.110)
	proposed	0.94	2.15(0.67)	0.779(0.032)	0.421(0.097)	0.67	4.15(1.09)	0.590(0.028)	0.607(0.137)
B1	fusion1	0.00	3.41(2.01)	0.756(0.151)	0.467(0.082)	0.55	3.41(2.01)	0.547(0.245)	0.803(0.160)
	FMR1	0.33	2.38(1.14)	0.697(0.697)	0.680(0.687)	0.00	2.38(1.14)	0.518(0.720)	0.717(0.675)
	respclust1	0.02	4.40(2.01)	0.528(1.605)	0.939(0.479)	0.13	4.40(2.01)	0.418(1.641)	0.975(0.469)
	resiclust1	0.02	4.26(2.01)	0.549(1.006)	0.889(0.932)	0.12	4.26(2.01)	0.447(1.040)	0.879(0.919)
	FMR2	0.37	2.31(1.04)	0.637(1.088)	0.762(0.993)	0.15	4.46(2.02)	0.538(1.106)	0.844(0.969)
	respclust2	0.29	2.48(1.43)	0.548(1.773)	0.909(0.519)	0.02	5.69(2.81)	0.529(1.805)	0.931(0.511)
	resiclust2	0.15	2.52(1.33)	0.590(1.548)	0.899(0.367)	0.00	6.10(3.08)	0.510(1.362)	0.986(0.586)
	proposed	0.91	1.99(1.17)	0.765(1.261)	0.456(0.125)	0.64	3.78(2.18)	0.574(1.089)	0.851(0.323)
B2	fusion1	0.00	3.41(1.16)	0.747(0.074)	0.463(0.066)	0.64	3.41(1.16)	0.616(0.240)	0.541(0.183)
	FMR1	0.29	2.77(0.65)	0.675(0.067)	0.492(0.124)	0.00	2.77(0.65)	0.590(0.035)	0.568(0.128)
	respclust1	0.06	5.04(1.28)	0.621(0.042)	0.659(0.349)	0.10	5.04(1.28)	0.482(0.012)	0.738(0.456)
	resiclust1	0.04	4.94(1.27)	0.625(0.043)	0.673(0.253)	0.13	4.94(1.27)	0.498(0.015)	0.789(0.271)
	FMR2	0.33	2.67(0.47)	0.706(0.046)	0.485(0.121)	0.12	5.83(1.13)	0.627(0.048)	0.660(0.139)
	respclust2	0.21	2.79(0.41)	0.661(0.016)	0.662(0.475)	0.00	7.64(1.30)	0.500(0.012)	0.668(0.298)
	resiclust2	0.15	2.80(0.49)	0.664(0.027)	0.540(0.123)	0.00	7.80(1.54)	0.523(0.022)	0.643(0.267)
	proposed	0.92	2.09(0.52)	0.793(0.173)	0.439(0.102)	0.67	4.22(1.11)	0.634(0.335)	0.504(0.086)

 ${\bf Table~C9} \\ Simulation~with~the~heterogeneity~hierarchy~violated.~In~each~cell,~mean~(sd). \\$

				β				γ	
$\boldsymbol{x}_i\text{-}\boldsymbol{z}_i$	method	per	$\widehat{K_1}$	SC	MSE	per	$\widehat{K_2}$	SC	MSE
Uncorrelated	fusion1	0.00	3.86(1.86)	0.636(0.026)	1.542(0.250)	0.05	3.86(1.86)	0.567(0.030)	1.786(0.251)
	FMR1	0.04	3.52(1.20)	0.637(0.048)	1.658(0.477)	0.77	3.52(1.20)	0.577(0.034)	1.902(0.626)
	respclust1	0.00	5.48(0.78)	0.638(0.018)	1.793(0.558)	0.02	5.48(0.78)	0.535(0.015)	1.886(0.557)
	resiclust1	0.02	5.17(1.17)	0.619(0.020)	1.906(0.866)	0.13	5.17(1.17)	0.531(0.013)	2.133(1.129)
	FMR2	0.06	2.94(0.24)	0.633(0.021)	1.760(0.458)	0.00	7.37(0.91)	0.574(0.034)	2.240(0.529)
	respclust2	0.17	2.83(0.38)	0.640(0.016)	1.878(0.716)	0.00	7.62(1.21)	0.545(0.026)	1.804(0.575)
	resiclust2	0.29	2.71(0.46)	0.626(0.014)	1.625(0.893)	0.00	7.48(1.44)	0.545(0.021)	1.839(0.286)
	proposed	0.94	2.10(0.41)	0.654(0.025)	1.504(0.238)	0.06	4.17(0.71)	0.575(0.026)	1.734(0.308)
Correlated	fusion1	0.00	3.76(1.67)	0.640(0.029)	1.530(0.160)	0.10	3.76(1.67)	0.585(0.041)	1.682(0.242)
	FMR1	0.04	3.69(1.49)	0.655(0.108)	1.570(0.505)	0.65	3.69(1.48)	0.599(0.077)	1.727(0.533)
	respclust1	0.04	4.91(1.33)	0.661(0.206)	1.714(0.593)	0.02	4.92(1.31)	0.553(0.134)	2.032(0.933)
	resiclust1	0.00	5.08(1.18)	0.646(0.196)	1.771(0.317)	0.06	5.09(1.16)	0.549(0.136)	1.955(0.451)
	FMR2	0.06	2.86(0.46)	0.654(0.158)	1.689(0.483)	0.00	7.12(1.45)	0.598(0.101)	2.131(0.529)
	respclust2	0.25	2.82(0.87)	0.673(0.328)	2.100(1.696)	0.00	7.53(1.66)	0.595(0.341)	1.701(0.357)
	resiclust2	0.13	2.94(0.81)	0.669(0.330)	1.827(1.231)	0.00	7.74(1.53)	0.591(0.342)	1.704(0.530)
	proposed	0.92	2.08(0.34)	0.679(0.189)	1.454(0.298)	0.09	3.94(0.78)	0.604(0.199)	1.690(0.338)

Table C10

Sensitivity analysis on the number of Type 2 features: similarity measures for (sub-)subgrouping memberships under different scenarios.

angerent section tos.									
		Subgrou	p	S1	ıb-subgro	oup			
	p=5	p = 10	p = 15	p=5	p = 10	p = 15			
p=5	1.000	1.000	1.000	1.000	0.837	0.821			
p = 10		1.000	1.000		1.000	0.984			
p = 15			1.000			1.000			

Analysis is conducted on all subjects, all Type 1 features, and 5, 10, and 15 top Type 2 features. Similarity is evaluated between the (sub-)subgrouping structures obtained under the three different sets (numbers) of Type 2 features. Perfect agreement is observed for subgrouping, and very high similarity is observed for sub-subgrouping, suggesting that the heterogeneity analysis results are not sensitive to the number of Type 2 features.

Table C11

Data analysis using the proposed approach: comparison of clinical variables between (sub-)subgroups.

Data analysis using the prop	osea appro			(/ 5 1	
Clinical variable (sample size)		Subgroup 1	Subgroup 2	Subgroup 3	p value
Smoking history (118)	1	0	6	7	
	2	7	5	23	
	3	10	6	16	
	4	6	6	26	0.088
		Sub-subgroup 3-1	Sub-subgroup 3-2		
ICD 10 (72)	C34.0	1	0		
	C34.1	30	10		
	C34.2	2	1		
	C34.3	15	7		
	C34.30	0	4		
	C34.8	1	1		0.041

p value: from Fisher's exact test. Smoking history: category describing self-reported current smoking status and smoking history. 1: lifelong non-smoker (less than 100 cigarettes smoked in lifetime); 2: current smoker (including daily smoker and non-daily smoker or occasional smoker); 3: current reformed smoker for greater than 15 years; 4: current reformed smoker for less than or equal to 15 years. ICD 10: tumor site (coded according to the 10th revision of the International Statistical Classification of Diseases and Related Health Problems). C34.00: malignant neoplasm of unspecified main bronchus; C34.1: upper lobe; C34.2: middle lobe; C34.3: lower lobe; C34.30: lower lobe, unspecified bronchus or lung; C34.8: overlapping sites.

Table C12
Data analysis using fusion1: estimated coefficients.

Data analysis asing fasion1. Estimated coefficients.								
		Subg	group					
Type 1 imaging feature	1	2	3	4				
LymphocytesPN	-3.7020	-1.1639	0.3662	2.9136				
StromaPN	0.5128	-2.4217	0.4677	0.0239				
TumorPN	-0.2276	1.7177	-0.2637	-0.5213				
LymphocytesSN	2.0798	1.7328	-0.3230	-3.4996				
StromaSN	-0.4788	1.0927	-0.2852	0.8715				
TumorSN	-0.8897	-0.7060	-0.2215	-0.2184				
Selected Type 2 imaging feature	1	2	3	4				
AreaShape-Center-Y	-0.3052	0.8259	-0.0007	-0.0342				
AreaShape-Zernike-8-2	-0.8348	1.1945	-0.2851	0.1510				
Granularity-12-ImageAfterMath	-0.8728	0.6760	-0.1072	-0.1008				
Texture-Contrast-maskosingray-3-03	-0.9639	-0.0197	0.4660	1.8763				
Texture-Correlation-maskosingray-3-01	-0.6555	0.0108	0.1709	1.0714				
Texture-DifferenceVariance-ImageAfterMath-3-03	-1.0194	0.1269	-0.1048	2.0625				
Texture-SumVariance-ImageAfterMath-3-00	-0.0542	0.6458	-0.2483	0.4846				
Texture-SumVariance-maskosingray-3-01	0.8556	-0.3614	-0.3454	-4.0015				
Threshold-FinalThreshold-Identifyhemasub2	-0.0754	-1.0471	-0.3465	-2.3389				
Threshold-SumOf Entropies-Identifyeosin primary cytoplasm	-0.2844	-0.5317	-0.1523	-2.5887				

Data analysis using FMR1: estimatea coefficients.									
		Subgroup	•						
Type 1 imaging feature	1	2	3						
LymphocytesPN	0.0000	0.0000	0.0000						
StromaPN	0.0000	0.0000	0.0000						
TumorPN	0.0000	0.0000	0.0000						
LymphocytesSN	0.0098	0.7285	0.0496						
StromaSN	-0.0821	-0.0007	-0.0181						
TumorSN	0.0000	0.0000	0.0000						
Selected Type 2 imaging feature	1	2	3						
AreaShape-Center-Y	0.0000	0.0000	0.0000						
AreaShape-Zernike-8-2	0.0000	0.0000	0.0000						
Granularity-12-ImageAfterMath	0.0000	0.0000	0.0000						
Texture-Contrast-maskosingray-3-03	0.0000	0.0000	0.0000						
Texture-Correlation-maskosingray-3-01	0.0000	0.0000	0.0000						
Texture-DifferenceVariance-ImageAfterMath-3-03	0.0000	0.0000	0.0000						
Texture-SumVariance-ImageAfterMath-3-00	0.0000	0.0000	0.0000						
Texture-SumVariance-maskosingray-3-01	0.0000	0.0000	0.0000						
Threshold-FinalThreshold-Identifyhemasub2	0.0000	0.0000	0.0000						
Threshold-Sum Of Entropies-Identify eos in primary cytoplasm	0.0000	0.0000	0.0000						

0.0000's are estimates with small but nonzero magnitudes.

Table C14
Data analysis using respclust1: estimated coefficients.

Data analysis using respectastr. Estimated coefficients.									
	Subgroup								
Type 1 imaging feature	1	2	3	4					
LymphocytesPN	0.0017	-0.0072	-	-					
StromaPN	-0.1003	-0.1493	-	-					
TumorPN	0.1141	0.1127	-	0.2370					
LymphocytesSN	-0.1017	-	-	-0.3991					
StromaSN	-	-	-	0.4718					
TumorSN	0.2150	-0.6564	-0.0051	-					
Selected Type 2 imaging feature	1	2	3	4					
AreaShape-Center-Y	-0.0291	-0.0051	-	0.2962					
AreaShape-Zernike-8-2	0.0558	0.0014	-0.4136	0.6206					
Granularity-12-ImageAfterMath	-0.0073	0.0366	0.4140	0.2339					
Texture-Contrast-maskosingray-3-03	0.0949	0.3921	-0.1167	-1.2400					
Texture-Correlation-maskosingray-3-01	-0.0122	0.4058	-	-0.2052					
Texture-DifferenceVariance-ImageAfterMath-3-03	0.0604	-0.0072	-	-0.6074					
Texture-SumVariance-ImageAfterMath-3-00	0.0588	0.2892	-	1.6819					
Texture-SumVariance-maskosingray-3-01	-0.0367	-0.6213	-	-					
Threshold-FinalThreshold-Identifyhemasub2	-0.0801	-0.1152	-0.0921	-					
Threshold-Sum Of Entropies-Identify eos in primary cytoplasm	-0.0329	-0.0186	0.1955	-0.8259					

0.0000's are estimates with small but nonzero magnitudes. "-" represents exactly zero.

Table C15

Outa analysis using resiclust1: estimated coefficients

Data analysis using resiclus	Data analysis using resiclust1: estimated coefficients.									
			Subg	group						
Type 1 imaging feature	1	2	3	4	5	6				
LymphocytesPN	-0.2291	-0.2999	-0.3908	0.3494	-0.1772	-5.7874				
StromaPN	-0.8162	-0.1535	-0.3074	-	-1.3838	-				
TumorPN	0.5273	0.0163	0.1683	0.2393	0.6706	-				
LymphocytesSN	0.4092	0.4906	0.4431	-	0.2244	-				
StromaSN	0.2822	0.1078	0.0384	-	-	-				
TumorSN	-	-	-	-	-3.2858	-				
Selected Type 2 imaging feature	1	2	3	4	5	6				
AreaShape-Center-Y	-0.0923	-0.0939	-0.0510	-	0.0519	-				
AreaShape-Zernike-8-2	0.0368	-0.0945	-0.0632	-	0.0301	-				
Granularity-12-ImageAfterMath	-0.0288	-0.0072	-0.1068	-0.3546	0.0422	-				
Texture-Contrast-maskosingray-3-03	0.1925	0.1725	0.1058	-0.2954	0.7146	-				
Texture-Correlation-maskosingray-3-01	-0.1384	0.0030	-0.1570	-	0.4110	-				
Texture-DifferenceVariance-ImageAfterMath-3-03	0.0314	0.0980	-0.0129	-	-0.1170	-				
Texture-SumVariance-ImageAfterMath-3-00	-0.0531	0.0260	0.1069	-	-0.3787	-				
Texture-SumVariance-maskosingray-3-01	0.0128	-0.1915	-0.2124	-	-0.7294	-				
$Threshold\mbox{-} Final Threshold\mbox{-} Identify hem a sub 2$	-0.1393	-0.3555	-0.3188	-	-0.2659	-				
Threshold-SumOfEntropies-Identifyeosin primary cytoplasm	-0.0661	-0.1879	-0.2282	-0.8972	-0.2816	-				

0.0000's are estimates with small but nonzero magnitudes. "-" represents exactly zero.

Table C16
Data analysis using FMR2: estimated coefficients.

Data analysis using FMR2: estimated coeffici		Subgroup	<u> </u>	
Type 1 imaging feature		2		
LymphocytesPN	0.0	0.0000		
StromaPN	0.0	000	0.0000	
TumorPN	0.0	000	0.0000	
LymphocytesSN	0.0	180	0.7786	
StromaSN	-0.0)534	-0.1337	
TumorSN	0.0	0.0000		
	Sı	up		
Selected Type 2 imaging feature	1-1	1-2	2-1	
AreaShape-Center-Y	0.0780	-0.6078	0.0361	
AreaShape-Zernike-8-2	0.0000	0.0160	-	
Granularity-12-ImageAfterMath	-0.1551	0.0000	_	
Texture-Contrast-maskosingray-3-03	0.0000	0.6475	_	
Texture-Correlation-maskosingray-3-01	0.0000	0.0000	-	
Texture-DifferenceVariance-ImageAfterMath-3-03	0.0000	0.0000	-0.1585	
Texture-SumVariance-ImageAfterMath-3-00	0.0000	0.5024	-	
Texture-SumVariance-maskosingray-3-01	0.0000	-0.8290	-	
Threshold-FinalThreshold-Identifyhemasub2	-0.1841	0.0000	-0.0244	
Threshold-Sum Of Entropies-Identify eos in primary cytoplasm	0.0000	-0.4518	-	

0.0000's are estimates with small but nonzero magnitudes. "-" represents exactly zero.

Table C17
Data analysis using respelust2: estimated coefficients

Data analysis using respclust2: estimated coefficients.								
	Subgroup							
Type 1 imaging feature		1	2					
LymphocytesPN		-0.3273		-0.2720				
StromaPN		-1.0007		0.0	278			
TumorPN		0.5415		0.0	999			
LymphocytesSN		0.0990		0.4	509			
StromaSN		0.4804		-0.0	865			
TumorSN		-			-			
		Su	b-subgre	oup				
Selected Type 2 imaging feature	1-1	1-2	1-3	2-1	2-2			
AreaShape-Center-Y	0.0304	-	-	0.0402	0.8169			
AreaShape-Zernike-8-2	0.0327	0.0598	-	0.0850	-0.3311			
Granularity-12-ImageAfterMath	0.0197	0.3035	-	0.0553	-0.1551			
Texture-Contrast-maskosingray-3-03	0.2558	-0.3609	-	0.2078	-0.6644			
Texture-Correlation-maskosingray-3-01	0.0875	0.2616	-	0.2729	-1.5099			
Texture-Difference Variance-Image After Math-3-03	0.0666	-0.1094	-	-0.0306	-			
Texture-SumVariance-ImageAfterMath-3-00	0.0886	-	-	0.1380	-			
Texture-SumVariance-maskosingray-3-01	-0.2548	-	-	-0.1992	-			
Threshold-FinalThreshold-Identifyhemasub2	-0.1543	0.1024	-	-0.0236	-			
Threshold-SumOfEntropies-Identifyeosinprimarycytoplasm	-0.0998	-	-	-0.0251	-1.0401			

^{0.0000&#}x27;s are estimates with small but nonzero magnitudes. "-" represents exactly zero.

Table C18
Data analysis using resiclust2: estimated coefficients.

Data analysis using res	siclust2:	estimate a	i coeffic	ients.				
				Subgro	oup			
Type 1 imaging feature	1 2				3			
LymphocytesPN	-0.0	020		0.2730		_	1.7048	
StromaPN	-0.1	137		0.5963		-		
TumorPN	0.1	662		-0.3384				
LymphocytesSN	0.0	336		0.0277			1.2224	
StromaSN		-		-0.4428				
TumorSN	-0.1130				-			
	Sub-subgroup							
Selected Type 2 imaging feature	1-1	1-2	2-1	2-2	2-3	3-1	3-2	3-3
AreaShape-Center-Y	-0.0483	-0.0065	-	-0.0262	-	-0.0274	0.0491	-
AreaShape-Zernike-8-2	0.0737	0.0253	-	0.0595	-0.1547	-0.1055	-0.2064	-
Granularity-12-ImageAfterMath	0.0250	-0.0197	0.1181	0.0988	-0.0135	0.1005	0.0422	-
Texture-Contrast-maskosingray-3-03	-0.1168	-0.1053	-	-0.6924	-	-0.1256	-	-
Texture-Correlation-maskosingray-3-01	-0.0973	-0.0812	-	-0.0626	-	-	-0.2468	-
Texture-Difference Variance-Image After Math-3-03	0.0614	0.0011	-	1.0835	0.9192	-0.1561	-	-
Texture-SumVariance-ImageAfterMath-3-00	-0.0526	0.0523	-	0.1834	-	-	-	-
Texture-SumVariance-maskosingray-3-01	0.2419	0.0918	0.1505	0.5410	-	0.0289	-	-
$Threshold\mbox{-} Final Threshold\mbox{-} Identify hem a sub 2$	0.0703	0.0215	-	-0.0617	-	-	0.0499	-
Threshold-SumOfEntropies-Identifyeosinprimarycytoplasm	0.0667	0.0387	0.0281	0.0318	-	-	-	_

Threshold-SumOfEntropies-Identifyeosinprimarycytoplasm 0.0667 0.0387 0.0281 0.0000's are estimates with small but nonzero magnitudes. "-" represents exactly zero.

Table C19

Data analysis: concordance in subgrouping between different approaches.

	Бини ининузы. сонсотивное на зиодгоарны остивен индетени арргоиснез.								
	fusion1	FMR1	respclust1	resiclust1	FMR2	respclust2	resiclust2	proposed	
fusion1	(1.000, 1.000)	(0.594, 0.596)	(0.654, 0.646)	(0.681, 0.668)	(0.514, 0.568)	(0.616, 0.658)	(0.657, 0.671)	(0.837, 0.975)	
FMR1		(1.000, 1.000)	(0.819, 0.819)	(0.763, 0.763)	(0.837, 0.899)	(0.758, 0.807)	(0.814, 0.764)	(0.547, 0.594)	
respclust1			(1.000, 1.000)	(0.857, 0.857)	(0.695, 0.762)	(0.908, 0.958)	(0.837, 0.856)	(0.555, 0.654)	
resiclust1				(1.000, 1.000)	(0.634, 0.704)	(0.808, 0.869)	(0.902, 0.946)	(0.555, 0.681)	
FMR2					(1.000, 1.000)	(0.751, 0.746)	(0.709, 0.701)	(0.510, 0.561)	
respclust2						(1.000, 1.000)	(0.813, 0.877)	(0.530, 0.670)	
resiclust2							(1.000, 1.000)	(0.562, 0.687)	
proposed								(1.000, 1.000)	

In each cell, (subgrouping consistency – as defined in Simulation – based on Type 1 imaging features, subgrouping consistency based on Type 2 imaging features).

		β				γ			
	method	per	$\widehat{K_1}$	SC	MSE	per	$\widehat{K_2}$	SC	MSE
balanced	fusion1	0.00	3.15(1.02)	0.767(0.035)	1.521(0.203)	0.58	3.15(1.02)	0.631(0.024)	1.167(0.593)
	FMR1	0.44	2.81(0.87)	0.674(0.110)	1.576(0.456)	0.00	2.81(0.87)	0.512(0.054)	1.648(0.438)
	respclust1	0.09	5.78(1.31)	0.644(0.056)	2.373(0.285)	0.13	5.78(1.31)	0.428(0.028)	2.033(0.394)
	resiclust1	0.12	5.83(0.96)	0.661(0.043)	1.969(0.364)	0.11	5.83(0.96)	0.462(0.037)	2.231(0.413)
	FMR2	0.49	2.51(0.50)	0.664(0.022)	3.127(0.582)	0.16	6.96(1.65)	0.556(0.031)	2.072(0.496)
	respclust2	0.13	2.87(0.34)	0.685(0.011)	3.957(0.644)	0.01	7.65(1.10)	0.495(0.023)	2.173(0.486)
	resiclust2	0.11	2.89(0.31)	0.684(0.013)	3.070(0.523)	0.00	7.81(1.01)	0.500(0.020)	2.386(0.512)
	proposed	0.84	2.28(0.89)	0.774(0.028)	1.479(0.179)	0.61	4.77(1.12)	0.636(0.019)	1.136(0.659)
imbalanced	fusion1	0.00	3.19(1.10)	0.760(0.041)	1.702(0.231)	0.60	3.19(1.10)	0.625(0.019)	1.567(0.489)
	FMR1	0.40	2.88(0.76)	0.697(0.085)	1.437(0.384)	0.00	2.88(0.76)	0.536(0.048)	1.608(0.386)
	respclust1	0.06	5.39(1.86)	0.618(0.086)	2.278(0.694)	0.16	5.39(1.86)	0.487(0.064)	1.844(0.468)
	resiclust1	0.09	5.95(1.92)	0.634(0.079)	3.697(0.596)	0.15	5.95(1.92)	0.465(0.052)	1.966(0.534)
	FMR2	0.52	2.48(0.50)	0.676(0.028)	2.974(0.538)	0.18	6.75(1.54)	0.572(0.042)	1.927(0.504)
	respclust2	0.22	2.78(0.42)	0.592(0.027)	3.263(0.463)	0.02	7.63(1.14)	0.514(0.053)	1.783(0.531)
	resiclust2	0.14	2.86(0.35)	0.598(0.034)	2.610(0.384)	0.01	6.98(1.24)	0.495(0.049)	1.747(0.497)
	proposed	0.88	2.02(0.43)	0.820(0.048)	1.326(0.205)	0.64	3.53(1.08)	0.644(0.044)	1.420(0.375)

Table C21
Data analysis based on PCA: estimated coefficients.

Data analysis based on PCA: estimated coefficients.									
			Subgroup)					
Type 1 imaging feature	1	2							
LymphocytesPN	1.1635	-0.4779							
StromaPN	0.8790	-0.4699							
TumorPN	-0.2417	0.4039							
LymphocytesSN	-2.1352	0.8060							
StromaSN	-1.4939	0.2995							
TumorSN	-1.6771	0.6515							
		Sub-subgroup							
Type 2 imaging feature	1-1	2-1	2-2	2-3	2-4				
PC 1	-0.0945	0.4132	-0.3529	0.4205	0.0341				
PC 2	-1.3002	0.1978	-0.0058	0.5619	-0.0298				
PC 3	-1.6011	-0.2111	-0.1239	0.0017	-0.2781				
PC 4	-0.4473	-0.2193	0.1531	-0.0727	0.0434				
PC 5	-0.1764	0.3298	0.0611	0.2125	-0.2703				
PC 6	0.9042	0.3528	0.0270	-0.0535	0.0292				
PC 7	-0.2324	-0.0515	-0.1611	0.0303	0.2007				
PC 8	-0.5821	0.1377	-0.3605	0.6537	0.2847				
PC 9	-0.1411	0.2147	-0.6851	0.7467	0.0023				
PC 10	0.0145	0.0934	0.0950	0.1590	0.2564				