Funkcija Greške i Optimizacija

Predavač: Aleksandar Kovačević

Slajdovi preuzeti sa CS 231n, Stanford

http://cs231n.stanford.edu/

Sa prošlog predavanja ... Izazovi kod klasifikacije slika

Pozcija kamere

Osvetljenje

Deformacija

Okluzija

Pretrpana pozadina

Varijabilnost unutra klase

Sa prošlog predavanja... nadgledano učenje, kNN

Sa prošlog predavanja ... Linearni klasifikator

Sa prošlog predavanja ... Danas: Funkcija greške /Optimizacija

	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		
airplane	-3.45	-0.51	3.42
automobile	-8.87	6.04	4.64
bird	0.09	5.31	2.65
cat	2.9	-4.22	5.1
deer	4.48	-4.19	2.64
dog	8.02	3.58	5.55
frog	3.78	4.49	-4.34
horse	1.06	-4.37	-1.5
ship	-0.36	-2.09	-4.79
truck	-0.72	-2.93	6.14

TODO:

- Definisanje funkcije greške (*loss function*) koja kvantifikuje kvalitet skorova za slike iz obučavajućeg skupa
- Nađemo način da automatski odredimo W i b tako da minimizujemo funkciju greške. (optimizacija)

3

cat 3.2 1.3

2.2

5.1 car

4.9 2.5

-1.7 frog

2.0

-3.1

cat

3.2

1.3 **4.9** 2.2

car 5.1 frog -1.7

7 2.0

2.5 **-3.1**

Fukcija greške modela SVM za više klasa:

Za primer (x_i, y_i)

gde je y, klasa (ceo broj),

gde je x_i slika

Gde se skor računa kao: $s=f(x_i,W)$

funkcija greške za SVM je oblika: $\frac{1}{100} = \frac{1}{100} = \frac{1}{1$

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

2.2

2.5

cat **3.2** 1.3 car 5.1 **4.9**

frog

5.1 **4.9** -1.7 2.0

-1.7 2.0 **-3.1**

Fukcija greške modela SVM za više klasa:

Za primer (x_i,y_i) gde je x_i slika gde je y_i klasa (ceo broj) , Gde se skor računa kao: $s=f(x_i,W)$

funkcija greške za SVM je oblika:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

$$s_{j} - s_{y_{i}} + 1 \le 0$$

$$-s_{y_{i}} \le -s_{j} - 1$$

$$s_{y_{i}} \ge s_{j} + 1$$

cat

car

frog

3.2 5.1

-1.7

Greške:

1.3 2.2

4.9 2.5

2.0 -3.1

Fukcija greške modela SVM za više klasa:

Za primer (x_i, y_i) gde je x_i slika gde je y, klasa (ceo broj), Gde se skor računa kao: $s = f(x_i, W)$

funkcija greške za SVM je oblika:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

 $= \max(0, 5.1 - 3.2 + 1)$ $+\max(0, -1.7 - 3.2 + 1)$ = max(0, 2.9) + max(0, -3.9)

= 2.9 + 0

= 2.9

1.3

4.9

2.0

cat

frog

Greške:

3.2 car

5.1

-1.7

2.9

2.2

2.5 -3.1

= 0 + 0= 0

Lecture 3 - 1

Fukcija greške modela SVM za više klasa:

Za primer (x_i, y_i) gde je x_i slika gde je y, klasa (ceo broj), Gde se skor računa kao: $s = f(x_i, W)$

funkcija greške za SVM je oblika:

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$
= $\max(0, 1.3 - 4.9 + 1)$

 $+\max(0, 2.0 - 4.9 + 1)$ $= \max(0, -2.6) + \max(0, -1.9)$

11 Jan 2016

2.2

cat

frog

Greške:

3.2 5.1 car

-1.7

2.9

1.3

4.9

2.5 2.0 -3.1

10.9

Fukcija greške modela SVM za više klasa:

Za primer (x_i, y_i) gde je x_i slika gde je y, klasa (ceo broj), Gde se skor računa kao: $s = f(x_i, W)$

funkcija greške za SVM je oblika:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

- $= \max(0, 2.2 (-3.1) + 1)$ $+\max(0, 2.5 - (-3.1) + 1)$
- $= \max(0, 5.3) + \max(0, 5.6)$ = 5.3 + 5.6
- = 10.9

		The second second	the Billi
cat	3.2	1.3	2.2
car	5.1	4.9	2.5
frog	-1.7	2.0	-3.1
Greške:	2.9	0	10.9

Fukcija greške modela SVM za više klasa:

Za primer (x_i, y_i)

gde je x_i slika

Lecture 3 -

gde je y, klasa (ceo broj), Gde se skor računa kao: $s = f(x_i, W)$ funkcija greške za SVM je oblika:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Greška za sve tri slike je prosek grešaka:

$$L=rac{1}{N}\sum_{i=1}^{N}L_{i}$$

$$L = \frac{1}{N} \sum_{i=1}^{N} L_i$$

$$L = (2.9 + 0 + 10.9)/3$$

$$= 4.6$$

	wite-	all marine will	
cat	3.2	1.3	2.2
car	5.1	4.9	2.5
frog	-1.7	2.0	-3.1
Greške:	2.9	0	10.9

Fukcija greške modela SVM za više klasa:

gde je y $_i$ klasa (ceo broj) , Gde se skor računa kao: $s=f(x_i,W)$ funkcija greške za SVM je oblika:

 $L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$

Šta bi bilo ako bi L_i računali za sve klase tj. i za j=y_i?

Za primer (x_i, y_i)

gde je x_i slika

	William William	A STATE OF THE STA	30000
cat	3.2	1.3	2.2
car	5.1	4.9	2.5
frog	-1.7	2.0	-3.1
Greške:	2.9	0	10.9

Fukcija greške modela SVM za više klasa: Za primer (x_i, y_i)

gde je x_i slika gde je y, klasa (ceo broj), Gde se skor računa kao: $s = f(x_i, W)$ funkcija greške za SVM je oblika:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Šta bi bilo ako bi korsitili:

Lecture 3 - 14

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)^2$$

	-	A STREET, SAN	The state of the s
cat	3.2	1.3	2.2
car	5.1	4.9	2.5
frog	-1.7	2.0	-3.1
Greške:	2.9	0	10.9

Fukcija greške modela SVM za više klasa: Za primer (x_i, y_i)

gde je x_i slika

Lecture 3 -

gde je y, klasa (ceo broj), Gde se skor računa kao: $s = f(x_i, W)$ funkcija greške za SVM je oblika: $L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$

Koje su min i max vrednosti za funkciju greške?

2.9

Greške:

cat	3.2	1.3	2.2
car	5.1	4.9	2.5
frog	-1.7	2.0	-3.1

Fukcija greške modela SVM za više klasa: Za primer (x_i, y_i)

gde je x_i slika

Lecture 3 - 16

gde je y, klasa (ceo broj), Gde se skor računa kao: $s = f(x_i, W)$ funkcija greške za SVM je oblika: $L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$

Obično se vrednosti W inicijalizuju na jako male

brojeve ~= 0. Koje su tada vrednosti funcije greške?

10.9

numpy kod za SVM primer:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

```
def L i vectorized(x, y, W):
  scores = W.dot(x)
 margins = np.maximum(0, scores - scores[y] + 1)
  margins[y] = 0
  loss i = np.sum(margins)
  return loss i
```

$$f(x, W) = Wx$$

$$L = rac{1}{N} \sum_{i=1}^{N} \sum_{j
eq y_i} \max(0, f(x_i; W)_j - f(x_i; W)_{y_i} + 1)$$

Naša funkcija greške ima bag:

$$f(x,W) = Wx$$
 $L = rac{1}{N} \sum_{i=1}^N \sum_{j
eq y_i} \max(0,f(x_i;W)_j - f(x_i;W)_{y_i} + 1)$

Naša funkcija greške ima bag:

$$f(x,W) = Wx$$
 $L = rac{1}{N} \sum_{i=1}^N \sum_{j
eq y_i} \max(0,f(x_i;W)_j - f(x_i;W)_{y_i} + 1)$

Recimo da smo pronašli W tako da je L = 0. Da li je to W jedinstveno?

cat	3.2

2.2 2.5

2.9 Greške:

 $L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$

Ranije:

$$= \max(0, 1.3 - 4.9 + 1) + \max(0, 2.0 - 4.9 + 1) = \max(0, -2.6) + \max(0, -1.9) = 0 + 0 = 0$$

Sa duplo većim W:

$$= \max(0, 2.6 - 9.8 + 1) + \max(0, 4.0 - 9.8 + 1) = \max(0, -6.2) + \max(0, -4.8)$$

$$= 0 + 0$$

Regularizacija težina

lambda = jačina regularizacije (hiper-parametar)

$$L=rac{1}{N}\sum_{i=1}^{N}\sum_{j
eq y_i}\max(0,f(x_i;W)_j-f(x_i;W)_{y_i}+1)+\lambda R(W)$$

Tipično se koristi:

L2 regularizacija

 $egin{aligned} R(W) &= \sum_k \sum_l W_{k,l}^2 \ R(W) &= \sum_k \sum_l |W_{k,l}| \end{aligned}$

L1 regularizacija

 $R(W) = \sum_{k} \sum_{l} \beta W_{k,l}^2 + |W_{k,l}|$

Elastic net (L1 + L2)

Dropout (kasnije tokom kursa)

L2 regularizacija: motivacija

$$egin{aligned} x &= [1,1,1,1] \ & w_1 &= [1,0,0,0] \ & w_2 &= [0.25,0.25,0.25,0.25] \end{aligned}$$

$$w_1^T x = w_2^T x = 1$$

cat **3.2**

car 5.1

skorovi = nenormalizovane log verovatnoće klasa (nenormalizovane znači da se ne sabiraju na 1)

$$s=f(x_i;W)$$

cat **3.2**

car 5.1

skorovi = nenormalizovane log verovatnoće klasa

$$P(Y=k|X=x_i)=rac{e^{s_k}}{\sum_j e^{s_j}}\,s=f(x_i;W)$$

cat **3.2**

car 5.1

skorovi = nenormalizovane log verovatnoće klasa

$$P(Y=k|X=x_i)=rac{e^{s_k}}{\sum_j e^{s_j}}s=f(x_i;W)$$

cat **3.2**

car

5.1

frog -1.7

Softmax funkcija

skorovi = nenormalizovane log verovatnoće klasa

$$P(Y=k|X=x_i)=rac{e^{s_k}}{\sum_j e^{s_j}} s=f(x_i;W)$$

Maksimizujemo log verovatnošt (log likelihood) – obično se minimizuje negativna log verovatnost:

$$L_i = -\log P(Y=y_i|X=x_i)$$

cat **3.2**

car 5.1

skorovi = nenormalizovane log verovatnoće klasa

$$P(Y=k|X=x_i)=rac{e^{s_k}}{\sum_i e^{s_j}}\,s=f(x_i;W)$$

Maksimizujemo log verovatnost (log likelihood) – obično se minimizuje negativna log verovatnost:

$$L_i = -\log P(Y=y_i|X=x_i)$$

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$

cat **3.2**

car 5.1

Zašto koristimo log od funkcije greške?

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$

cat **3.2**

car 5.

frog -1.7

nenormalizovane log verovatnoće

$$L_i = -\log(rac{e^{sy_i}}{\sum_{j}e^{s_j}})$$

nenormalizovane verovatnoće

nenormalizovane log verovatnoće

$$L_i = -\log(rac{e^{sy_i}}{\sum_i e^{s_j}})$$

nenormalizovane verovatnoće

nemormalizovane log verovatnoće

verovatnoće

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$

nenormalizovane verovatnoće

nemormalizovane log verovatnoće

verovatnoće

log vs. -log

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$

Koje su moguće min i max vrednosti za L_i?

nenormalizovane verovatnoće

nemormalizovane log verovatnoće

verovatnoće

Softmax Klasifikator (Multinominalna Logistička Regresija)

$$L_i = -\log(rac{e^{sy_i}}{\sum_i e^{s_j}})$$

na jako male brojeve ~= 0. Koje su tada vrednosti funcije

greške?

nemormalizovane verovatnoće

cat ~ 0 ~ 1 ~ 1 ~ 1 $\sim 1/(1+1+1)$ frog ~ 0 ~ 1 ~ 1 $\sim 1/(1+1+1)$ $\sim 1/(1+1+1)$

nemormalizovane log verovatnoće

verovatnoće

 $L_i = -\log(\sim 1/3)$

Obično se vrednosti W inicijalizuju

Softmax vs. SVM

$$L_i = -\log(rac{e^{sy_i}}{\sum_i e^{s_j}})$$

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Softmax vs. SVM

$$L_i = -\log(rac{e^{sy_i}}{\sum_{i}e^{s_j}})$$

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

recimo da imamo skorove: [10, -2, 3] [10, 9, 9] [10, -100, -100] $y_i = 0$ Šta se dešava sa obe funkcije greške ako uzmemo jednu tačku i malo je pomeramo u prostoru?

Optimizacija

Rezime

- Imamo skup parova (x,y)
- Imamo skor funkciju:
- Imamo funkciju greške:

$$s=f(x;W) \overset{\mathsf{npr.}}{=} W x$$

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$
 SVM $L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$ $L = rac{1}{N} \sum_{i=1}^N L_i + R(W)$ Greška + Regularizacija

Optimizacija - Strategija #1: Random pretraga

```
# assume X train is the data where each column is an example (e.g. 3073 x 50,000)
# assume Y train are the labels (e.g. 1D array of 50,000)
# assume the function L evaluates the loss function
bestloss = float("inf") # Python assigns the highest possible float value
for num in xrange(1000):
 W = np.random.randn(10, 3073) * 0.0001 # generate random parameters
 loss = L(X train, Y train, W) # get the loss over the entire training set
 if loss < bestloss: # keep track of the best solution
   bestloss = loss
   bestW = W
 print 'in attempt %d the loss was %f, best %f' % (num, loss, bestloss)
# prints:
# in attempt 0 the loss was 9.401632, best 9.401632
# in attempt 1 the loss was 8.959668, best 8.959668
# in attempt 2 the loss was 9.044034, best 8.959668
# in attempt 3 the loss was 9.278948, best 8.959668
# in attempt 4 the loss was 8.857370, best 8.857370
# in attempt 5 the loss was 8.943151, best 8.857370
# in attempt 6 the loss was 8.605604, best 8.605604
# ... (trunctated: continues for 1000 lines)
```

Šta dobijamo na test skupu...

```
# Assume X_test is [3073 x 10000], Y_test [10000 x 1]
scores = Wbest.dot(Xte_cols) # 10 x 10000, the class scores for all test examples
# find the index with max score in each column (the predicted class)
Yte_predict = np.argmax(scores, axis = 0)
# and calculate accuracy (fraction of predictions that are correct)
np.mean(Yte_predict == Yte)
# returns 0.1555
```

15.5% tačnost! nije loše! (State-of-the-Art, SOTA je ~95%)

Fei-Fei Li & Andrej Karpathy & Justin Johnson

Fei-Fei Li & Andrej Karpathy & Justin Johnson

Strategija #2: **Pratimo nagib (slope)**

Kod funkcije jedne promenljive, izvod funkcije dat je sa:

$$rac{df(x)}{dx} = \lim_{h o 0} rac{f(x+h) - f(x)}{h}$$

Kad imamo više promenljivih (atributa), gradijent je vektor parcijalnih izvoda po svim atributima.

gradijent dW: [0.34,[0.34 + 0.0001]-1.11, -1.11, 0.78, 0.78, 0.12, 0.12, 0.55, 0.55, 2.81, 2.81, -3.1, -3.1, -1.5, -1.5, 0.33,...0.33,...?,...] greška 1.25347 greška 1.25322 Fei-Fei Li & Andrej Karpathy & Justin Johnson 11 Jan 2016 Lecture 3 - 50

W + **h** (za prvi atribut):

W:

gradijent dW: [0.34,[0.34 + 0.0001,**-2.5**, -1.11, -1.11, 0.78, 0.78, 0.12, 0.12, (1.25322 - 1.25347)/0.0001 0.55, 0.55, = -2.52.81, 2.81, $\frac{df(x)}{dx} = \lim \frac{f(x+h) - f(x)}{dx}$ -3.1, -3.1, -1.5, -1.5, 0.33,...?,...] 0.33,...greška 1.25322 greška 1.25347 11 Jan 2016 Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 3 - 51

W + **h** (za prvi atribut):

W:

W:	W + h (drugi atribut):	gradijent dW	/ :
[0.34, -1.11, 0.78, 0.12, 0.55, 2.81, -3.1, -1.5, 0.33,] greška 1.25347	[0.34, -1.11 + 0.0001 , 0.78, 0.12, 0.55, 2.81, -3.1, -1.5, 0.33,] greška 1.25353	[-2.5, ?, ?, ?, ?, ?, ?, ?,	
Fei-Fei Li & Andrej Karpathy & Justin Johnson		Lecture 3 - 52	11 Jan

W:	W + h (treći atribut):	gradijent dW:
[0.34,	[0.34,	[-2.5,
-1.11,	-1.11,	0.6,
0.78,	0.78 + 0.0001 ,	?,
0.12,	0.12,	?,
0.55,	0.55,	?,
2.81,	2.81,	?,
-3.1,	-3.1,	?,
-1.5,	-1.5,	?,
0.33,]	0.33,]	?,]
greška 1.25347	greška 1.25347	
Fei-Fei Li & Andrej Karpathy & Justin Johnson		Lecture 3 - 54 11

Jan 2016

$$egin{aligned} L &= rac{1}{N} \sum_{i=1}^{N} L_i + \sum_k W_k^2 \ L_i &= \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1) \ s &= f(x; W) = Wx \end{aligned}$$

treba nam

 $\nabla_W L$

$$L = rac{1}{N} \sum_{i=1}^N L_i + \sum_k W_k^2$$

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

$$s = f(x; W) = Wx$$

treba $abla_W L$

$$L=rac{1}{N}\sum_{i=1}^{N}L_i+\sum_kW_k^2$$
 $L_i=\sum_{j
eq y_i}\max(0,s_j-s_{y_i}+1)$ $s=f(x;W)=Wx$ treba nam $abla_WL$ Analiza

$$egin{aligned} L &= rac{1}{N} \sum_{i=1}^N L_i + \sum_k W_k^2 \ L_i &= \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1) \ s &= f(x; W) = Wx \end{aligned}$$

$$\nabla_W L = \dots$$

Rezime:

- Numerički izvod: aproksimacija, spor, ali jednostavna formula
- Analitički izvod: tačan, brz, nije ga uvek lako naći, pa postoji mogućnost greške

=>

<u>U praksi:</u> Uvek koristimo analitički izvod, ali ga proverimo numerički. Ovo se zove provera gradijenta (*gradient check*).

Gradijetni Spust (Gradient Descent)

```
# Vanilla Gradient Descent

while True:
    weights_grad = evaluate_gradient(loss_fun, data, weights)
    weights += - step_size * weights_grad # perform parameter update
```


Gradijetni Spust sa Mini-Podskupovima Mini-batch Gradient Descent

koristimo samo deo obučavajućeg skupa da izračunamo gradijent.

```
# Vanilla Minibatch Gradient Descent

while True:
   data_batch = sample_training_data(data, 256) # sample 256 examples
   weights_grad = evaluate_gradient(loss_fun, data_batch, weights)
   weights += - step_size * weights_grad # perform parameter update
```

Tipične veličine podskupova su 32/64/128/256 primera

Primer optimizacije funkcije greške.

(Funkcija greške opada kroz iteracije - epohe.)

Efekat veličine koraka (ili tempa učenja - learning rate)

Gradijetni Spust sa Mini-Podskupovima Mini-batch Gradient Descent

koristimo samo deo obučavajućeg skupa da izračunamo gradijent.

```
# Vanilla Minibatch Gradient Descent

while True:
   data_batch = sample_training_data(data, 256) # sample 256 examples
   weights_grad = evaluate_gradient(loss_fun, data_batch, weights)
   weights += - step_size * weights_grad # perform parameter update
```

Tipične veličine podskupova su 32/64/128/256 primera

Kasnije tokom kursa radićemo novije metode za promenu težina (momentum, Adagrad, RMSProp, Adam, ...)

(image credits to Alec Radford)

Gradijetni Spust ponavljanje

Kako pronaći minimum funkcije?

- Izvod funkcije predstavlja nagib tangente na krivu funkcije
- Ideja: iterativno ćemo se pomerati ka minimumu
 - levo od minimuma: gradijent je negativan pomeramo se u desno
 - desno od minimuma: gradijent je pozitivan pomeramo se u levo

Gradient descent

• Optimizaciona tehnika: data je (proizvoljna) funkcija $J(\theta)$. Želimo da pronađemo $\min_{\theta} J(\theta)$

GD_visualization_quick_convergence.m

Primena na linearnu regresiju

• Fitovanje modela: želimo da pronađemo parametre θ za koje funkcija greške ima najmanju vrednost

$$J(\theta) = \frac{1}{2N} \sum_{i=1}^{N} (\theta_1 x^{(i)} + \theta_0 - y^{(i)})^2$$

- Ovo možemo uraditi primenom gradient descent algoritma:
 - Ponavljati do konvergencije:

$$heta_d^{(t+1)} = heta_d^{(t)} - lpha rac{\partial}{\partial heta_d} J(heta) ext{ za } d \in \{0,1\}$$

$$\frac{\partial J}{\partial \theta_0} = \frac{1}{N} \sum_{i=1}^{N} (\theta_1 x^{(i)} + \theta_0 - y^{(i)}) = \frac{1}{N} \sum_{i=1}^{N} (h_{\theta}(x^{(i)}) - y^{(i)}) \cdot 1$$

$$\frac{\partial J}{\partial \theta_1} = \frac{1}{N} \sum_{i=1}^{N} (\theta_1 x^{(i)} + \theta_0 - y^{(i)}) x^{(i)} = \frac{1}{N} \sum_{i=1}^{N} (h_{\theta}(x^{(i)}) - y^{(i)}) x^{(i)}$$

Primena na linearnu regresiju

Primena na linearnu regresiju
$$X = \begin{bmatrix} 1 & x^{(1)} \\ 1 & x^{(2)} \\ ... & ... \\ 1 & x^{(N)} \end{bmatrix} \qquad \theta = \begin{bmatrix} \theta_0 \\ \theta_1 \end{bmatrix} \qquad h_{\theta}(x) = X\theta$$

$$\frac{\partial J}{\partial \theta_0} = \frac{1}{N} \sum_{i=1}^{N} (h_{\theta}(x^{(i)}) - y^{(i)}) \cdot 1$$

$$\frac{\partial J}{\partial \theta_1} = \frac{1}{N} \sum_{i=1}^{N} (h_{\theta}(x^{(i)}) - y^{(i)}) x^{(i)}$$

$$\frac{\partial J}{\partial \theta_0} = \frac{1}{N} \sum_{i=1}^{N} (h_{\theta}(x^{(i)}) - y^{(i)}) x^{(i)}$$

$$\frac{\partial J}{\partial \theta_1} = \frac{1}{N} \sum_{i=1}^{N} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right) x^{(i)}$$

$$\theta_d^{(t+1)} = \theta_d^{(t)} - \frac{\alpha}{N} \sum_{i=1}^{N} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right) x_d^{(i)}$$

Gradient descent

 Ako bismo imali samo jedan primer u skupu podataka, pravilo za ažuriranje parametara je:

$$\theta_d^{(t+1)} = \theta_d^{(t)} - \alpha(h_\theta(x) - y)x_d$$

- Ovo pravilo se naziva LMS (Least Mean Squares) update rule ili Widrow-Hoff learning rule
- Magnituda promene je proporcionalna greški $h_{ heta}(x) y$
 - ako za dati primer naš prediktor daje vrednost veoma sličnu tačnoj vrednosti – nećemo mnogo menjati parametar
 - ako za dati primer prediktor ima veliku grešku promena parametra će biti velika

Batch GD vs. Stohastic GD

• Batch GD: u svakom koraku istovremeno ažuriramo parametre modela koristeći sve trening podatke

for
$$t=1,2,...,D$$
 moramo da izračunamo grešku za sve primere pa tek onda radimo promenu
$$\theta_d^{(t+1)} = \theta_d^{(t)} - \frac{\alpha}{N} \sum_{i=1}^N \left(h_\theta(x^{(i)}) - y^{(i)} \right) x_d^{(i)}$$

Stohastic GD (ili Incremental GD): više puta prolazimo kroz skup podataka. Kad god naiđemo
na trening podatak, ažuriramo gradijent na osnovu tog (jednog) trening podatka

for
$$t=1,2,...,D$$
 nema sume ovde, promenu radimo odmah za svaki primer for $i=1,2,...,N$
$$\theta_d^{(t+1)}=\theta_d^{(t)}-\alpha\big(h_\theta\big(x^{(i)}\big)-y^{(i)}\big)x_d^{(i)}$$

Mini-Batch Stohastic GD

 Batch GD: u svakom koraku istovremeno ažuriramo parametre modela koristeći sve trening podatke

Batch GD vs. Stohastic GD

- Batch GD mora da skenira ceo skup podataka da bi napravio jedan korak
 - Ovo je skupa operacija ako je broj podataka N velik
- Stohastic GD može da napreduje odmah, i napreduje sa svakim uočenim trening podatkom
- Često, stohastic GD dovede θ "blizu" minimuma mnogo brže od batch GD
- Međutim, dešava se da nikada ne "konvergira" u minimum (parametri θ osciluju oko minimuma)
 - U praksi, tačke "blizu" minimuma su dovoljno dobre
- Iz ovih razloga, kada je skup podataka velik, preferiramo stohastic
 GD

Mini-Batch Stohastic GD

- Predstavlja ravnotežu koja ispravlja mane prethodna dva algoritma
- Najčešće se koristi u praksi

Odabir a

$$\theta_d^{(t+1)} = \theta_d^{(t)} - \alpha \frac{\partial}{\partial \theta_d} J(\theta)$$

 Gradient descent može da konvergira u minimum za fiksiranu vrednost α: kako se približavamo minimumu koraci su sve manji jer je gradijent (nagib) sve manji

- Ako se nalazimo levo od minimuma vrednost gradijenta je negativna: θ će da raste
- Ako se nalazimo desno od minimuma vrednost gradijenta je pozitivna: θ se smanjuje

Odabir α

• Za male vrednosti α *gradient descent* je spor

Odabir a

 Za preveliko α gradient descent ne konvergira, a može čak i da divergira

Odabir α - zaključak

• Da bismo odredili α , najbolje je posmatrati grafik funkcije greške $J(\theta)$ u odnosu na broj iteracija (probati α = 0.001, α = 0.01, α = 0.1, α = 1,...):

Došlo je do divergencije. Smanjiti α

Algoritam je spor. Nije konvergirao u zadatom broju

Dobra vrednost α. Algoritam je brzo konvergirao.

- iteracija. Povećati α
 Pored fiksne vrednosti α (koje radi kada je funkcija "strongly convex"), čest izbor je i "stepsize schedule" smanjivanje koraka α sa brojem iteracija:
 - $\eta_t = \alpha/t$ ili $\eta_t = \alpha/\sqrt{t}$

