OFFBOARD DRONE **APPLICATION USING** DIFFERENT **POSITIONING TECNIQUES**

EMBEDDED SYSTEMS PROJECT

Corradini Giacomo 236873

Pettene Mattia 239145

PX4 OVERVIEW

- Modular Architecture
- Open source
- Robust and deep integration with companion computer and robotics APIs
- uXRCE-DDS middleware

HARDWARE DESCRIPTION

- Holybro QAV250
- Pixhawk 4 mini
- Raspberry Pi 4
- Qualysis camera

- DWM1001C (UWB)
- MB1202 (Sonar)
- Communication
- Custom airframe

BRIDGES

- External position estimation
- Reference frame trasformation for correct data fusion
- Publish in vehicle_visual_odometry

```
# Vehicle odometry data. Fits ROS REP 147 for aerial vehicles
       uint64 timestamp
                                       # time since system start (microseconds)
       uint64 timestamp sample
       uint8 POSE_FRAME_UNKNOWN = 0
       uint8 POSE FRAME NED
                                 = 1 # NED earth-fixed frame
       uint8 POSE FRAME FRD
                                = 2 # FRD world-fixed frame, arbitrary heading reference
       uint8 pose_frame
                                   # Position and orientation frame of reference
       float32[3] position
                                   # Position in meters. Frame of reference defined by local frame. NaN if invalid/unknown
10
       float32[4] q
                                   # Quaternion rotation from FRD body frame to reference frame. First value NaN if invalid/unknown
11
12
```


PROGRAM STRUCTURE

- timer_callback()
- publish_trajectory_setpoint()

Algorithm 1: timer_callback()

```
// Arm and takeoff
1 if offboard\_setpoint\_counter\_ == 0 then
     arm()
     takeoff()
4 end
  // Trajectory setpoint
5 if takeoff\_finished == 1 and len(point\_list)! = 0
   then
     publish\_vehicle\_command(VehicleCommand.
      VEHICLE\_CMD\_DO\_SET\_MODE, 1., 6.
     publish\_offboard\_control\_mode()
     publish_trajectory_setpoint()
9 end
  // Land (when the list is empty and
      all points are reached)
10 if len(point\_list) == 0 then
     land()
12 end
  // Disarm
13 if landing\_flag == true then
     disarm()
15 end
16 offboard\_setpoint\_counter\_+ = 1
```

Algorithm 2: publish_trajectory_setpoint()

```
1 msg = TrajectorySetpoint()
2 point = self.point\_list
3 range = self.range
  // check the list is not empty
4 if len(point) > 0 then
     msg.position = [point[0].x, point[0].y, point[0].z]
     msg.velocity = [self.velx, self.vely, self.velz]
     // point is reached
     if self.distance(point[0]) \le range then
        // delete the reached point from
             the list
        point.pop(0)
     end
10 end
11 msq.timestamp =
   int(Clock().now().nanoseconds/1000)
12 self.trajectory_setpoint_publisher_.publish(msg)
```


SIMULATIONS - GPS

- Gazebo environment
- GPS plugin

SIMULATIONS - MOCAP

- External position estimation
- No outdoor sensors (GPS, barometer)
- Noisy Position Gazebo plugin

SIMULATIONS - UWB

- External position estimation
- Noisy UWB Gazebo plugin
- Multilateration algorithm

EXPERIMENTAL RESULTS - GPS

- Safety conditions
- Turns around set points
- Starting point

EXPERIMENTAL RESULTS - MOCAP

- External position estimation
- Motion capture to PX4 bridge
- Accurate and precise positioning system

EXPERIMENTAL RESULTS - UWB

- External position estimation
- UWB to PX4 bridge
- DTDOA algorithm

EXPERIMENTAL RESULTS - SONAR

- Height position estimation
- MB1202 bridge
- Initial and final steps
- Maximum error

CONCLUSIONS

- Positioning techniques comparison
- Possible future implementations

GPS

Difficult to control in position

RTK module to improve precision

MOCAP

Accurate and precise

Usefull as ground trouth

High cost positioning technique

UWB

Low cost promising positioning technique

Improve the UWB infrustructure accuracy

Outliers rejection is mandatory

SONAR

Good low cost height estimate

Outliers rejection is mandatory