

Al6101 Introduction to Al and Al Ethics

Reinforcement Learning

Assoc Prof Bo AN

www.ntu.edu.sg/home/boan

Email: boan@ntu.edu.sg

Office: N4-02b-55

- Intro of reinforcement learning
- Some RL algorithms
- Advanced materials:
 - Policy gradient methods
 - Exploitation vs exploration

Reinforcement Learning

What makes reinforcement learning different from other machine learning paradigms?

- There is no supervisor, only a reward signal
- Feedback is delayed, not instantaneous
- Time really matters (sequential, non i.i.d data)
- Agent's actions affect the subsequent data it receives

Examples of Reinforcement Learning

Robotic control

The Game of Go

Video games

Recommendation System

Agent and Environment

- The observation is the perception of the environment for agent
- The action will change the outside environment
- The reward is a scalar value indicates how well agent is doing at step t

The agent's job is to maximize the cumulative reward

Major Components of an RL Agent

- Policy: agent's behavior function
- Value function: how good is each state and/or action
- Model: agent's representation of the environment

Reinforcement Learning

Motivation

- In last lecture, we compute the value function and find the optimal policy
- But if without the transition function P(s'|s,a)?
- We can learn the value function and find the optimal policy without transition
 - From experience

- Types
 - Monte Carlo
 - Q-Learning
 - **DQN**

What is Monte Carlo

- Idea behind MC:
 - Just use randomness to solve a problem
- Simple definition:
 - Solve a problem by generating suitable random numbers and observing the fraction of numbers obeying some properties
- An example for calculating π (not policy in RL):

$$- S_{red} = \frac{1}{4}\pi r^2, S_{squre} = r^2$$

- putting dots on the square randomly for n = 3000 times
- $-\pi \approx 4 \times \frac{N_{red}}{n}$, N_{red} is the number of dots in the circle

Monte Carlo in RL: Prediction

- Basic Idea: we run in the world randomly and gain experience to learn
- What experience? Many trajectories!

-
$$(s_1, a_1, r_2, s_2, a_2, r_3, ..., s_T), ...$$

- What we learn? Value function!
 - Recall that the return is the total discounted rewards:

$$G_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \dots + \gamma^n r_{t+n} + \dots = \Sigma_i \gamma^i r_{t+i}$$

Recall that the value function is the expected return from s

$$V_{\pi}(s) = \mathbb{E}_{\pi}[G_t|S_t = s]$$

- How we learn?
 - Use experience to learn an empirical state value function $\tilde{V}_{\pi}(s) = \frac{1}{N} \sum_{i=1}^{N} G_{i,s}$

An Example

- One-dimensional grid world
 - A robot is in a 1x4 world
 - State: current cell $s \in [cell_1, cell_2, cell_3, cell_4]$
 - Action: left or right
 - Reward:
 - Move one step (-1)
 - Reach the destination cell (+10) (ignoring the one-step reward)

One-dimensional Grid World

- Trajectory or episode:
 - The sequence of states from the staring state to the terminal state
 - Robot starts in cell₂, ends in cell₄

Start point Destination

cell₁ cell₂ cell₃ cell₄

The representation of the three episodes

Compute Value Function

- Idea: Average return observed after visits to (s, a)
- First-visit MC: average returns only for first time (s, a) is visited in an episode
- Return in one episode (trajectory):

$$G_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \dots + \gamma^n r_{t+n} + \dots = \Sigma_i \gamma^i r_{t+i}$$

• We calculate the return for $cell_2$ of first episode with $\gamma = 0.9$

$$G_t = -1 \times 0.9^0 + 10 \times 0.9^1 = 8$$

Compute Value Function (cont'd)

• Similarly the return for $cell_2$ of second episode with $\gamma = 0.9$

• Similarly the return for $cell_2$ of third episode with $\gamma = 0.9$

• The empirical value function for $cell_2$ is $\frac{8+4.58+4.58}{3}=5.72$

Compute Value Function (cont'd)

 Given these three episodes, we compute the value function for all non-terminal state

$$\begin{array}{c|cccc} 6.2 & 5.72 & 8.73 \\ cell_1 & cell_2 & cell_3 \end{array}$$

We can get more accurate value function with more episodes

First Visit Monte Carlo Policy Evaluation

- Average returns only for the first time s is visited in an episode
- Algorithm
 - Initialize:
 - π ← policy to be evaluated
 - *V* ← an arbitrary state-value function
 - Returns(s) ← an empty list, for all state s
 - Repeat many times:
 - Generate an episode using π
 - For each state s appearing in the episode:
 - $-R \leftarrow$ return following the first occurrence of s
 - Append R to Returns(s)
 - V(s) ← average(Returns(s))

Monte Carlo in RL: Control

- Now, we have the value function of all states given a policy
- We need to improve policy to be better
- Policy Iteration
 - Policy evaluation
 - Policy improvement
- However, we need to know how good an action is

Q-value

- Estimate how good an action is when staying in a state
- Defined as the expected return starting from s, taking the action a and thereafter following policy π

$$Q^{\pi}(s,a) = \mathbb{E}_{\pi}[G_t|S_t = s, A_t = a]$$

- Representation: A table
 - Filled with the Q-vale given a state and an action

Computing Q-value

- MC for estimating Q:
 - A slight difference from estimating the value function
 - Average returns for state-action pair (s, a) is visited in an episode
- We calculate the return for $(cell_2, right)$ of first episode with $\gamma = 0.9$

Compute Q-Value (cont'd)

• Similarly the return for $(cell_2, right)$ of second episode with $\gamma = 0.9$

• Similarly the return for $(cell_2, right)$ of third episode with $\gamma = 0.9$

• The empirical Q-value function for $(cell_2, right)$ is $\frac{8+4.58+8}{3} = 6.86$

- Filling the Q-table
 - By going through all state-action pairs, we get a complete Q-table with all the entries filled
 - A possible Q-table example cell₁cell₂cell₃

Selecting action

$$\pi'(s) = \operatorname{argmax}_{a \in A} Q^{\pi}(s, a)$$

At $cell_1$, $cell_2$ and $cell_3$, we choose right

MC control algorithm

Q-Learning

old estimation

- Previously, we need the whole trajectory
- In Q-Learning, we only need one-step trajectory: (s, a, r, s')
- The difference is the Q-value computing
 - Previously:

$$\tilde{Q}_{\pi}(s,a) = \frac{1}{N} \Sigma_{i=1}^{N} G_{i,s}$$

Now, updating rule:

$$Q_{new}(S_t, A_t) \leftarrow Q_{old}(S_t, A_t) + \alpha (R_{t+1} + \gamma \max_{a} Q_{old}(S_{t+1}, a) - Q_{old}(S_t, A_t))$$

new estimation

learning rate

new sample

Q-Learning

Q-learning (off-policy TD control) for estimating $\pi \approx \pi_*$

Algorithm parameters: step size $\alpha \in (0,1]$, small $\varepsilon > 0$ Initialize Q(s,a), for all $s \in S^+, a \in \mathcal{A}(s)$, arbitrarily except that $Q(terminal, \cdot) = 0$ Loop for each episode: Initialize SLoop for each step of episode: Choose A from S using policy derived from Q (e.g., ε -greedy) Take action A, observe R, S' $Q(S,A) \leftarrow Q(S,A) + \alpha \left[R + \gamma \max_a Q(S',a) - Q(S,A)\right]$ $S \leftarrow S'$ until S is terminal

A Step-by-step Example

- 5-room environment as MDP
 - We'll number each room 0 through 4
 - The outside of the building can be thought of as one big room 5
 - End at room 5
 - Notice that doors at rooms 1 and 4 lead into the building from room 5 (outside)

A Step-by-step Example (cont'd)

- Goal
 - Put an agent in any room, and from that room, go outside (or room 5)
- Reward
 - The doors that lead immediately to the goal have an instant reward of 100
 - Other doors not directly connected to the target room have zero reward

Q-Learning Step by Step

- Initialize matrix Q as a zero matrix
- $\alpha = 0.01, \gamma = 0.99$
- Loop for each episode until converge
 - Initial state: current we are in room 1 (1st outer loop)
 - Loop for each step of episode (until reach room 5)
 - ... (Next slide)

Q-Learning Step by Step (cont'd)

- ... (last slide)
 - Loop for each step of episode (until room 5)
 - By random selection, we go to 5
 - We get 100 reward
 - Update Q: $Q_{new}(S_t, A_t) \leftarrow Q_{old}(S_t, A_t) + \alpha(R_{t+1} + \gamma \max_{a} Q_{old}(S_{t+1}, a) Q_{old}(S_t, A_t))$
 - At room 5, we have 3 possible actions: go to 1, 4 or 5; We select the one with max reward

$$- Q_{new}(1,5) \leftarrow Q_{old}(1,5) + \alpha \left(100 + \gamma \max_{a} Q_{old}(5,a) - Q_{old}(1,5)\right) = 0 + 0.01 \times (100 + 0.99 \times 0 - 0) = 1$$

Q-Learning Step by Step (cont'd)

When we loop many episodes, we can get

$$Q = \begin{bmatrix} 0 & 1 & 2 & 3 & 4 & 5 \\ 0 & 0 & 0 & 0 & 80 & 0 \\ 0 & 0 & 0 & 64 & 0 & 100 \\ 0 & 0 & 0 & 64 & 0 & 0 \\ 0 & 80 & 51 & 0 & 80 & 0 \\ 4 & 0 & 0 & 64 & 0 & 100 \\ 5 & 0 & 80 & 0 & 0 & 80 & 100 \end{bmatrix}$$

- According to this Q-table, we can select actions
 - E.g. We are at room 2
 - Greedily select based on maximun of Q value

An Example of Iteration Process

- A complex grid world example
- https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_td.ht ml

Value-based Methods: SARSA

SARSA Introduction

- on-policy: updating the Q with current policy
- Similar to Q-learning with some differences
 - On-policy: update the Q-table with the (s, a, r, s') sar iples generate by the current policy

$$Q(S, A) = Q(S, A) + \alpha \cdot [R + \gamma \cdot (Q(S', A')) - Q(S, A))]$$

The next state and next action in transition samples

Epsilon greedy can still be used to output actions like Q-learning

Value-based Methods: SARSA

Sarsa (on-policy TD control) for estimating $Q \approx q_*$

```
Algorithm parameters: step size \alpha \in (0,1], small \varepsilon > 0

Initialize Q(s,a), for all s \in \mathcal{S}^+, a \in \mathcal{A}(s), arbitrarily except that Q(terminal, \cdot) = 0

Loop for each episode:

Initialize S

Choose A from S using policy derived from Q (e.g., \varepsilon-greedy)

Loop for each step of episode:

Take action A, observe R, S'

Choose A' from S' using policy derived from Q (e.g., \varepsilon-greedy)

Q(S,A) \leftarrow Q(S,A) + \alpha \left[R + \gamma Q(S',A') - Q(S,A)\right]

S \leftarrow S'; A \leftarrow A';

until S is terminal
```

Advanced Materials

Policy Gradient Methods: Background

- How do value function work as a policy?
 - Output actions with the best Q values
- Can we directly learn a policy mapping states to actions?
- Policy gradient methods
 - Learn a parameterized policy that can select actions without consulting a value function
 - Use $\pi(a|s, \theta) = \Pr\{A_t = a \mid S_t = s, \theta_t = \theta\}$ with parameters $\theta \in \mathbb{R}^{d'}$ for the probability that action a is taken at time t given that the environment is in state s at time t
 - The value functions can also be parameterized as $\hat{v}(s,\mathbf{w})$ with parameters $\mathbf{w} \in \mathbb{R}^d$ (optional)
 - Update the parameters by gradient ascent given some performance measures $J(m{ heta})$

$$\boldsymbol{\theta}_{t+1} = \boldsymbol{\theta}_t + \alpha \widehat{\nabla J(\boldsymbol{\theta}_t)}$$

Policy Gradient Methods: Linear Example

- A linear function approximation example of policy gradient methods
 - Parameters of policy function of a linear function, soft-max policy

$$\theta = \{\theta_0, \theta_1, \theta_2\}$$
 action = $\{a_0, a_1, a_2\}$ $s = \{s_0, s_1\}$

$$\pi(s, a_i) = \frac{e^{a_i \theta_0 + s_0 \theta_1 + s_1 \theta_2}}{\sum_{j=0}^{|A|} e^{a_j \theta_0 + s_0 \theta_1 + s_1 \theta_2}}$$

Sampling actions with these probability

- We introduce optimization rules in the following slides
- Deep Neural networks can also be used as the approximation function
 - Deep Reinforcement Learning (DRL)

Policy Gradient Methods

Policy gradient (PG) methods model and optimize the policy directly

$$\pi_{\theta}(s, a) = \mathbb{P}\left[a \mid s, \theta\right]$$

• By maximizing performance measure w.r.t $\pi_{ heta}$

$$J(\theta) = V^{\pi_{\theta}} = E[R]$$

Policy Gradient Methods

- Policy gradient (PG) methods model and optimize the policy directly
- The policy is modeled with a parameterized function respect to θ, π_θ(a|s)

Performance measure
$$J(\theta) = \sum_{s \in \mathcal{S}}^{\substack{\text{Transition} \\ \text{function}}} J(\theta) = \sum_{s \in \mathcal{S}}^{\substack{\text{Transition} \\ \text{Value} \\ \text{function}}} J(\theta) = \sum_{s \in \mathcal{S}}^{\substack{\text{Transition} \\ \text{Value} \\ \text{function}}} J(\theta) = \sum_{s \in \mathcal{S}}^{\substack{\text{Transition} \\ \text{Transition} \\ \text{function}}} J(\theta) = \sum_{s \in \mathcal{S}}^{\substack{\text{Transition} \\ \text{Transition} \\ \text{function}}} J(\theta) = \sum_{s \in \mathcal{S}}^{\substack{\text{Transition} \\ \text{function}}} J(\theta) = \sum_{s \in \mathcal{S}}^{\substack{\text{Transition} \\ \text{Transition}}} J(\theta) = \sum_{s \in \mathcal{S}}^{\substack{\text{Transition} \\ \text{Transition}}} J(\theta) = \sum_{s \in \mathcal{S}}^{\substack{\text{Transition} \\ \text{function}}}} J(\theta) = \sum_{s \in \mathcal{S}}^{\substack{\text{Transition} \\ \text{Transition}}}} J(\theta) = \sum_{s \in \mathcal{S}}^{\substack{\text{Transit$$

$$\begin{array}{ll} \text{Gradients} & \nabla_{\theta}J(\theta) = \nabla_{\theta} \sum_{s \in \mathcal{S}} d^{\pi}(s) \sum_{a \in \mathcal{A}} Q^{\pi}(s,a) \pi_{\theta}(a|s) \\ & \propto \sum_{s \in \mathcal{S}} d^{\pi}(s) \sum_{a \in \mathcal{A}} Q^{\pi}(s,a) \nabla_{\theta} \pi_{\theta}(a|s) \end{array}$$

Policy Gradient Methods: REINFORCE

 REINFORCE (Monte-Carlo policy gradient) relies on an estimated return by Monte-Carlo methods using episode samples to update the policy parameter θ

$$egin{aligned}
abla_{ heta} J(heta) &\propto \sum_{s \in \mathcal{S}} d^{\pi}(s) \sum_{a \in \mathcal{A}} Q^{\pi}(s,a)
abla_{ heta} \pi_{ heta}(a|s) \ &= \sum_{s \in \mathcal{S}} d^{\pi}(s) \sum_{a \in \mathcal{A}} \pi_{ heta}(a|s) Q^{\pi}(s,a) rac{
abla_{ heta} \pi_{ heta}(a|s)}{\pi_{ heta}(a|s)} \ &= \mathbb{E}_{\pi}[Q^{\pi}(s,a)
abla_{ heta} \ln \pi_{ heta}(a|s)] \end{aligned} \qquad ; ext{Because } (\ln x)' = 1/x \ &= \mathbb{E}_{\pi}[G_t
abla_{ heta} \ln \pi_{ heta}(A_t|S_t)] \qquad ; ext{Because } Q^{\pi}(S_t,A_t) = \mathbb{E}_{\pi}[G_t|S_t,A_t] \end{aligned}$$

$$G_t = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$$

Policy Gradient Methods: REINFORCE

- 1. Initialize the policy parameter θ at random.
- 2. Generate one trajectory on policy π_{θ} : $S_1, A_1, R_2, S_2, A_2, \ldots, S_T$.
- 3. For t=1, 2, ..., T:
 - 1. Estimate the the return G_t ;
 - 2. Update policy parameters: $heta \leftarrow heta + lpha \gamma^t G_t
 abla_{ heta} \ln \pi_{ heta}(A_t | S_t)$

Policy Gradient Methods: Actor-Critic

- Actor-critic methods consist of two models
 - Critic updates the value function parameters w and depending on the algorithm it could be action-value Qw(a|s) or state-value Vw(s)
 - Actor updates the policy parameters θ for $\pi_{\theta}(a|s)$, in the direction suggested by the critic

- 1. Initialize s, θ, w at random; sample $a \sim \pi_{\theta}(a|s)$.
- 2. For $t=1\dots T$:
 - 1. Sample reward $r_t \sim R(s,a)$ and next state $s' \sim P(s'|s,a)$;
 - 2. Then sample the next action $a' \sim \pi_{\theta}(a'|s')$;
 - 3. Update the policy parameters: $\theta \leftarrow \theta + \alpha_{\theta} Q_w(s,a) \nabla_{\theta} \ln \pi_{\theta}(a|s)$;
 - 4. Compute the correction (TD error) for action-value at time t:

$$\delta_t = r_t + \gamma Q_w(s',a') - Q_w(s,a)$$

and use it to update the parameters of action-value function:

$$w \leftarrow w + \alpha_w \delta_t \nabla_w Q_w(s, a)$$

5. Update $a \leftarrow a'$ and $s \leftarrow s'$.

Exploitation vs Exploration

- Online decision-making involves a fundamental choice:
 - Exploitation Make the best decision given current information
 - Exploration Gather more information
- The best long-term strategy may involve short-term sacrifices
- Gather enough information to make the best overall decisions

Restaurant Selection

- Exploitation Go to your favorite restaurant
- Exploration Try a new restaurant

Online Banner Advertisements

- Exploitation Show the most successful advert
- Exploration Show a different advert

Oil Drilling

- Exploitation Drill at the best known location
- Exploration Drill at a new location

Game Playing

- Exploitation Play the move you believe is best
- Exploration Play an experimental move

Naive Exploration

Add noise to greedy policy (e.g. ∈-greedy)

Optimistic Initialization

Assume the best until proven otherwise

Optimism in the Face of Uncertainty

Prefer actions with uncertain values

Probability Matching

Select actions according to probability they are best

Information State Search

Lookahead search incorporating value of information