HW Set 6 (Due day: Nov 18, 12pm)

- 1. Show that the set function defined at Page 303 is regular on \mathcal{E} .
- 2. Show that every non-decreasing function $f:\mathbb{R}\to\mathbb{R}$ is Lebesgue measurable.
- 3. Show that $f: \mathbb{R} \to \mathbb{R}$ is Lebesgue measurable and f = g a.e. with respect to Lebesgue measure, then $g: \mathbb{R} \to \mathbb{R}$ is also Lebesgue measurable.
- 4. If $\{f_n\}$ is a sequence of measurable functions, prove that the set of points x at which $\{f_n(x)\}$ converges is measurable.
- 5. If $f \geq 0$ and $\int_E f \ d\mu = 0$, prove that f(x) = 0 almost everywhere on E. Hint: Let E_n be the subset of E on which f(x) > 1/n. Write $A = \bigcup E_n$. Then $\mu(A) = 0$ if and only if $\mu(E_n) = 0$ for every n.
- 6. Put

$$g(x) = \begin{cases} 0 & \text{if } 0 \le x \le \frac{1}{2}, \\ 1 & \text{if } \frac{1}{2} < x \le 1, \end{cases}$$

and

$$f_{2k}(x) = g(x)$$
 if $0 \le x \le 1$,
 $f_{2k+1}(x) = g(1-x)$ if $0 \le x \le 1$.

Show that

$$\liminf_{n \to \infty} f_n(x) = 0 \quad \text{for all } 0 \le x \le 1,$$

but

$$\int_0^1 f_n(x) \ dx = \frac{1}{2}.$$

- 7. If $\int_A f \ d\mu = 0$ for every measurable subset A of a measurable set E, then f(x) = 0 almost everywhere on E.
- 8. Suppose f and g are extended real-valued measurable functions in $\mathcal{L}^1(X,\mathcal{M},\mu)$. Show that f=g a.e. with respect to μ if and only if

$$\int_{A} f \ d\mu = \int_{A} g \ d\mu, \quad \forall A \in \mathcal{M}.$$