

A study of Nutrition + Alternative Foods

Team 14 Conor Doyle, Heidi Eren, Julia Luo, Justin Wang

Motivation

- Food nutrition is often difficult to understand
- People on special diets
 (religious/dietary) often have a had hard
 time getting their necessary nutrition
- We wanted to find a way to provide alternative foods that contain similar nutritional values to standard foods

of Americans follow some sort of special diet

https://www.cdc.gov/nchs/products/databriefs/db389.htm

Data Source

/	name	serving_size	calories	total_fat	saturated_fat	cholesterol	sodium	choline	folate	 fat	saturated_fatty_acids	monounsaturated_fatty_acids
	0 Cornstarch	100 g	381	0.1g	NaN	0	9.00 mg	0.4 mg	0.00 mcg	 0.05 g	0.009 g	0.016 g
-	Nuts, pecans	100 g	691	72g	6.2g	0	0.00 mg	40.5 mg	22.00 mcg	 71.97 g	6.180 g	40.801 g
	2 Eggplant, raw	100 g	25	0.2g	NaN	0	2.00 mg	6.9 mg	22.00 mcg	 0.18 g	0.034 g	0.016 g
	3 Teff, uncooked	100 g	367	2.4g	0.4g	0	12.00 mg	13.1 mg	0	 2.38 g	0.449 g	0.589 g
	4 Sherbet, orange	100 g	144	2g	1.2g	1mg	46.00 mg	7.7 mg	4.00 mcg	 2.00 g	1.160 g	0.530 g

- We needed the nutritional facts for a lot of different types of food.
- The dataset above contains more than 8,700 foods
- Includes nutritional facts like protein, vitamins, calories, carbs, etc.
- Foods are all standardized to serving size of 100 grams.

- Replaced NaN values with 0
- Normalized scale of nutritional values into the same units (milligrams)
- Dropped unnecessary columns and strings (units)
- Grouped food items by food categories (first word in food item name)

```
for column in df_nutrition.columns:
    # check for incompatible columns
    if column == "name":
        continue

# fill the NAN values with 0 and initialize list to store new converted values
    df_nutrition = df_nutrition.fillna("0g")|
```

```
new col values = []
# loop through each row in column
for nutrient in df nutrition.loc[:,column]:
    # skip non-ints
    if type(nutrient) == int:
        new col values.append(nutrient)
    # index loop through each value which is a string
    for i in range(len(nutrient)):
        # find unit
        unit = ""
        if nutrient[i:] in scales:
            unit = nutrient[i:]
            number = nutrient[:i]
            number = float(number)
    # find conversion value from scales and convert to a new value
    scale = scales[unit]
    new num = number * scale
    # add converted value to list
    new col values.append(new num)
# set converted values
if len(new col values) != 0:
    new values = pd.Series(new col values)
    df nutrition.loc(:.column) = new values
```

creates a new column "food categories"

	food_categories	name	serving_size	calories	total_fat	saturated_fat	cholesterol	sodium	choline	folate	 fat	saturated_fatty_acids
0	Cornstarch	Cornstarch	100000.0	381	100.0	0.0	1.1	9.0	0.4	0.000	 50.0	9.0
1	Nuts	Nuts, pecans	100000.0	691	72000.0	6200.0	1.1	0.0	40.5	0.022	 71970.0	6180.0
2	Eggplant	Eggplant, raw	100000.0	25	200.0	0.0	1.1	2.0	6.9	0.022	 180.0	34.0
3	Teff	Teff, uncooked	100000.0	367	2400.0	400.0	1.1	12.0	13.1	22.000	 2380.0	449.0
4	Sherbet	Sherbet, orange	100000.0	144	2000.0	1200.0	1.0	46.0	7.7	0.004	 2000.0	1160.0
8784	Beef	Beef, raw, all grades, trimmed to 0" fat, sepa	100000.0	125	3500.0	1400.0	62.0	54.0	64.5	0.004	 3500.0	1353.0
8785	Lamb	Lamb, cooked, separable lean only, composite o	100000.0	206	8900.0	3900.0	109.0	50.0	64.5	0.000	 8860.0	3860.0

Cleaned data!

Macronutrients

Machine Learning - Clustering

- After PCA and Scale Normalization, we clustered foods with similar nutritional value
- Goal:
 - Observe categorical variance within each cluster
 - Different food categories within each cluster
 - Given a food, recommend alternative foods in same cluster

How many clusters to use?

Number of clusters vs mean distance to centroids

No distinct elbow = no distinctly good number of clusters to use

Determining how many clusters to use for k-means cluster plot

pca0

Food clusters Interactive plot

Alternative Food System - Sample 1

Inputted Food: Ground Beef

Alternatives:

- Avocados
- Fish Liver
- Turkey
- Pork

Inputted Food: Peanuts

Alternatives:

- Pistachio
- Poppy Seeds
- Goat Cheese
- Sunflower Seeds
- Lamb Liver

find_n_closest("Peanuts, raw, all types", 50)

'Nuts, raw, pistachio nuts': 2.0800703948798422,

'Seeds, flaxseed': 2.0905638858830353,

'Spices, poppy seed': 2.117423075407111,

'Seeds, paste, sesame butter': 2.1179571867348153,

'Lamb, soaked and fried, cooked, liver, imported, New Zealand': 2.1285297375837056,

'Nuts, without salt added, with peanuts, dry roasted, mixed nuts': 2.1477356610811413, 'Nuts, raw, cashew nuts': 2.1498811046720023.

'Seeds, dried, whole, sesame seeds': 2.1894384593926834,

'Nuts, lightly salted, without peanuts, oil roasted, mixed nuts': 2.3645200434329974,

'Seeds, roasted and toasted, whole, sesame seeds': 2.3674066017153255,

'Nuts, without salt added, plain, cashew butter': 2.468518141341181,

'Cheese, hard type, goat': 2.5390124447800115,

'Seeds, without salt, toasted, sunflower seed kernels': 2.550753067723989,

'Wheat germ, crude': 2.5737125839980384,

'Nuts, with salt added, with peanuts, dry roasted, mixed nuts': 2.629742759599611,

'Nuts, without salt added, oil roasted, cashew nuts': 2.7058581599937024,

'Nuts, with salt added, oil roasted, cashew nuts': 2.707430673222643,

'Nuts, without salt added, without peanuts, oil roasted, mixed nuts': 2.7352047630241025,

'Seeds, dried, watermelon seed kernels': 2.753660241289099,

'Seeds, with salt added, toasted, sunflower seed kernels': 2.820803706969269,

Takeaways

- Our plans changed a lot: originally wanted to explore nutrition and implement a health score, but it wasn't a realistic goal
- Nutrition is very complex: foods we assumed were very different others were actually similar, and vice versa
- Limitations: our recommendation system doesn't consider whether a food is healthy

Citations

- https://www.kaggle.com/datasets/trolukovich/nutritional-values-forcommon-foods-and-products
- https://www.healthline.com/health/food-nutrition/six-essential-nutrie nts#minerals
- https://my.clevelandclinic.org/health/articles/4182-fat-and-calories
- https://www.fda.gov/food/new-nutrition-facts-label/how-understandand-use-nutrition-facts-label

