ldp-cramer

zhaof17

May 2021

1 Cramér theorem for discrete random variable

Using Sanov's theorem to prove Cramér theorem for discrete random variables. Suppose X_i are i.i.d. distribution $(\sim P_X)$ from $\Omega \to \mathcal{X} \subset \mathbb{R}$ where $|\mathcal{X}| < \infty$. Denote $x_{\min} = \min \mathcal{X}$ and $x_{\max} = \max \mathcal{X}$. The log-MGF for X is defined as $\psi_X(t) = \log M_X(t) = \log \mathbb{E}[\exp(tX)]$. $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$. For any set $A \in \mathbb{R}$,

$$-\inf_{t\in A^o} I(t) \le \liminf_{n\to\infty} \frac{1}{n} \log P(\bar{X}_n \in A) \le \limsup_{n\to\infty} \frac{1}{n} \log P(\bar{X}_n \in A) \le -\inf_{t\in A} I(t)$$

where A^o is the interior of A. The rate function I(t) is continuous at $t \in [x_1, x_M]$ and satisfies

$$I(t) = \psi_X^*(t) := \sup_{\lambda \in \mathbb{R}} \{ \lambda t - \psi_X(\lambda) \}$$
 (2)

That is, I(t) is equal to the conjugate transpose of $\psi_X(t)$.

Proof. From Sanov's theorem, we have

$$-\inf_{Q_X \in \Gamma^o} D(Q_X || P_X) \le \liminf_{n \to \infty} \frac{1}{n} \log P(\hat{P}_{X^n} \in \Gamma)$$

$$\le \limsup_{n \to \infty} \frac{1}{n} \log P(\hat{P}_{X^n} \in \Gamma) \le -\inf_{Q_X \in \Gamma} D(Q_X || P_X)$$
(3)

where $\Gamma:=\{Q_X:\mathbb{E}_{Q_X}[X]\in A\}$. It is obvious that $\bar{X}_n=\mathbb{E}_{\hat{P}_{X^n}}[X]$. Therefore $\hat{P}_{X^n}\in\Gamma\iff \bar{X}\in A$. Besides, we define $I(t)=\inf_{Q_X:\mathbb{E}_{Q_X}[X]=t}D(Q_X||P_X)$. Then $\inf_{Q_X\in\Gamma}D(Q_X||P_X)=\inf_{t\in A}I(t)$ and $\inf_{Q_X\in\Gamma^o}D(Q_X||P_X)=\inf_{t\in A^o}I(t)$ (The open property of Γ and A are equivalent). Therefore, we have shown (1). Next we show that $I(t)=\psi_X^*(t)$, which is established by Lagrange duality. The Lagrange function for I(t) is $L(Q_X,\lambda,\mu)=D(Q_X||P_X)-\lambda(\mathbb{E}_{Q_X}[X]-t)-\mu(\mathbb{E}_{Q_X}[1]-1)$. After minimize $L(Q_X,\lambda,\mu)$ over Q_X , we get $Q_X(x)=P_X(x)\exp(\lambda X-\psi_X(\lambda))$ and $\inf_{Q_X}L(Q_X,\lambda,\mu)=\lambda t-\psi_X(\lambda)$. By the weak duality property we have $\psi_X^*(t)\leq I(t)$. On the other hand, for given t, when λ satisfies $t=\psi_X'(\lambda)$ and $Q_X(x)=P_X(x)\exp(\lambda X-\psi_X(\lambda))$ simultaneously, $\psi_X^*(t)=\lambda t-\psi_X(\lambda)=L(Q_X,\lambda,\mu)$. Under such circumstance, we also have $\mathbb{E}_{Q_X}[X]=t$ and $\mathbb{E}_{Q_X}[1]=1$. Therefore, $L(Q_X,\lambda,\mu)=D(Q_X||P_X)\geq I(t)$.

That is, $\psi_X^*(t) \geq I(t)$. In conclusion, $I(t) = \psi_X^*(t)$ when $t = \psi_X'(\lambda)$ has solution in \mathbb{R} .

If $t=x_1$, we can show that $I(x_1)=\log\frac{1}{P_X(x_1)}$ since Q_X has probability 1 at x_1 . On the other hand, $\psi_X^*(x_1)=\sup_{\lambda}\log\frac{e^{\lambda x_1}}{\sum_{x\in\mathcal{X}}P(x)\exp(\lambda x)}=\lim_{\lambda\to\infty}\log\frac{e^{\lambda x_1}}{\sum_{x\in\mathcal{X}}P(x)\exp(\lambda x)}=\log\frac{1}{P_X(x_1)}$. The case for $t=x_M$ can be shown similarly. Therefore, at the end point we also have $I(t)=\psi^*(t)$.

2 Convex property of log-MGF and its conjugate

- 1. log-MGF $\psi_X(t)$ is a convex function
- 2. $\psi_X^*(t)$ is a convex function

Proof. To show that log-MGF is convex, we show $\psi_X''(t) > 0$. Let $P_X^{(t)}(x) = P_X(x) \exp(tx - \psi_X(t))$, which is a probability distribution. Then $\psi_X''(t) = \operatorname{Var}_{P_X^{(t)}}[X] > 0$. To show $\psi_X^*(t)$ is a convex function, we use the definition of convex functions. That is, we verify $\psi_X^*(\theta t_1 + (1 - \theta)t_2) \leq \theta \psi_X^*(t_1) + (1 - \theta)\psi_X^*(t_2)$.

3 Using Cramér's theorem to prove Strong Law of Large Number

Suppose X_1, \ldots, X_n are i.i.d. sampled (same with X) and $\mathbb{E}[X]$ exists, then $X_n \xrightarrow{a.s.} \mathbb{E}[X]$.

Proof. For any $\epsilon>0$, we define $E_n=\{w||\bar{X}_n(w)-\mathbb{E}[X]|\geq\epsilon\}$. By Cramér's theorem, the series sum $\sum_{n=1}^{+\infty}P(E_n)$ converges since $P(E_n)$ decays exponentially fast. Then by Borel Cantelli Lemma, $P(\cap_{k=1}^{+\infty}\cup_{n\geq k}\{w||\bar{X}_n(w)-\mathbb{E}[X]|\geq\epsilon\})=0$ for any $\epsilon>0$, which is equivalent to $P(\lim_{n\to\infty}\bar{X}_n=\mathbb{E}[X])=1$.