4. Hashing

Betrachte eine Hashtabelle der Größe m = 10.

- (a) Welche der folgenden Hashfunktionen ist für Hashing mit verketteten Listen am besten geeignet? Begründen Sie Ihre Wahl!
 - (i) $h_1(x) = (4x+3) \mod m$

```
1 h_1(1) = (4 \cdot 1 + 3) \mod 10 = 7

2 h_1(2) = (4 \cdot 2 + 3) \mod 10 = 1

3 h_1(3) = (4 \cdot 3 + 3) \mod 10 = 5

4 h_1(4) = (4 \cdot 4 + 3) \mod 10 = 9

5 h_1(5) = (4 \cdot 5 + 3) \mod 10 = 3

6 h_1(6) = (4 \cdot 6 + 3) \mod 10 = 7

7 h_1(7) = (4 \cdot 7 + 3) \mod 10 = 1

8 h_1(8) = (4 \cdot 8 + 3) \mod 10 = 5

9 h_1(9) = (4 \cdot 9 + 3) \mod 10 = 9

10 h_1(10) = (4 \cdot 10 + 3) \mod 10 = 3
```

(ii) $h_2(x) = (3x+3) \mod m$

```
1 h_2(1) = (3 \cdot 1 + 3) \mod 10 = 6

2 h_2(2) = (3 \cdot 2 + 3) \mod 10 = 9

3 h_2(3) = (3 \cdot 3 + 3) \mod 10 = 2

4 h_2(4) = (3 \cdot 4 + 3) \mod 10 = 5

5 h_2(5) = (3 \cdot 5 + 3) \mod 10 = 8

6 h_2(6) = (3 \cdot 6 + 3) \mod 10 = 1

7 h_2(7) = (3 \cdot 7 + 3) \mod 10 = 4

8 h_2(8) = (3 \cdot 8 + 3) \mod 10 = 7

9 h_2(9) = (3 \cdot 9 + 3) \mod 10 = 0

10 h_2(10) = (3 \cdot 10 + 3) \mod 10 = 3
```

Damit die verketteten Listen möglichst klein bleiben, ist eine möglichst gleichmäßige Verteilung der Schlüssel in die Buckets anzustreben. h_2 ist dafür besser geeignet als h_1 , da h_2 in alle Buckets Schlüssel ablegt, h_1 jedoch nur in Buckets mit ungerader Zahl.

- (b) Welche der folgenden Hashfunktionen ist für Hashing mit offener Adressierung am besten geeignet? Begründen Sie Ihre Wahl!
 - (i) $h_1(x,i) = (7 \cdot x + i \cdot m) \mod m$
 - (ii) $h_2(x, i) = (7 \cdot x + i \cdot (m 1)) \mod m$