PATENT ABSTRACTS OF JAPAN

(11)Publication number:

06-194834

(43) Date of publication of application: 15.07.1994

(51)Int.CI.

G03F 7/028 G03C 1/685 GO3F G03F G03F 7/039 H01L 21/027

(21)Application number : 04-347042

(71)Applicant: HOECHST JAPAN LTD

(22)Date of filing:

25.12.1992

(72)Inventor: KUDO TAKANORI

MASUDA SEIYA

KINOSHITA YOSHIAKI

KURAUSU YURUGEN SHIBERA

ENDO HAJIME

SUEHIRO NATSUMI **OKAZAKI HIROSHI**

(54) PATTERN FORMING MATERIAL

(57)Abstract:

PURPOSE: To obtain a pattern forming material which has a broad exposure tolerance and shows lesser extent of the pattern dimensional change due to the exposure change by adding a compound that forms a base or increases in its basicity at the time of irradiating it with actinic rays.

CONSTITUTION: The pattern forming material comprises a compound A that forms an acid at the time of irradiating it with actinic rays, a compound B that forms a base or increases in its basicity at the time of irradiating it with actinic rays, a compound C that has at least one bond cleavable with acid, and/or a compound D that is insoluble in water but soluble in alkaline aqueous solution. Examples of the component A are HSbF6, HAsF6, or diazonium, phosphonium and iodonium salts of HPF6. An example of compound B is the compound represented by the formula that forms a base at the time of irradiating it with actinic rays. In the formula, Ar is an aromatic or nitro-substituted aromatic group; Each of R1-R6 is a hydrogen atom, an alkyl or aromatic group.

A CHOCN
$$\left\langle \begin{array}{c} R^1 \\ R^2 \end{array} \right\rangle$$

LEGAL STATUS

[Date of request for examination]

14.09.1999

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number] 3148426
[Date of registration] 12.01.2001
[Number of appeal against examiner's decision of rejection]
[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(12)公開特許公報 (A)

(19)日本国特許庁 (JP)

(11)特許出願公開番号

特開平 6-194834

(43)公開日 平成6年(1994)7月15日

·	5							
51) Int. Cl.		識別記号		F I				
G03F	7/028							
G03C	1/685		8910-2H					
G03F	7/004	503						
	7/038	505						
			7352-4M	H011	21/30	301	R	
				審査請求	未請求	請求項の数 10	(全10頁)	最終頁に続く
(21)出願番号		特願平 4-347042		(71)	出願人	000113137		
						ヘキストジャパン	株式会社	
(22)出願日		平成 4 年 (1992)12月25日				東京都港区赤坂8	丁目 10番1	6号
				(72)	発明者	工藤隆範		
						埼玉県狭山市北入	曾 323-1	ミヤノ第 2
						コーポ 203号	•	
				(72)	発明者	増 田 誠 也		
						埼玉県所沢市御幸	町7-6-	308
				(72)	発明者	木下義章		
					•	埼玉県狭山市新狭	山2丁目 18	3-22 パーク
						ハウス新狭山 201	· · · · - · · ·	
				(74)	代理人	弁理士 佐藤		夕)
							()/0	/
								最終頁に続く

(54)【発明の名称】パターン形成用材料

(57)【要約】

【目的】 露光裕度が広く、露光量変化に対してパターン寸法変化の少ないパターン形成材料を提供すること。

【構成】 (A) 活性線の照射により酸を生成する化合物、(B) 活性線照射により塩基を生成もしくは塩基性の増大する化合物、(C) 酸により開裂しうる結合を少なくとも1つ有する化合物、および/または(D) 水に不溶であるが、アルカリ水溶液には可溶である化合物、を含むことを特徴とする、パターン形成用材料。

【特許請求の範囲】

【請求項1】(A)活性線の照射により酸を生成する化合物、

- (B) 活性線照射により塩基を生成もしくは塩基性の増 大する化合物、
- (C) 酸により開裂しうる結合を少なくとも1つ有する 化合物、および/または
- (D) 水に不溶であるが、アルカリ水溶液には可溶である化合物、を含むことを特徴とする、パターン形成用材

$$\begin{array}{c|c}
O & \text{Normal} \\
\text{Archocn} & \\
\downarrow \\
R^3
\end{array}$$

【化2】

【化3】

$$Arso_2N < \frac{R^2}{R^3}$$

(式中、Arはニトロ置換芳香族基、または芳香族基、R¹, R², R³は水素原子、アルキル基、又は芳香族基、Xはアルキレン基を表わす。)及び/又は次の一般式(IV)~(VII)で示される、活性線の照射により塩

$$\begin{array}{c|c}
R^1 & R^2 \\
\hline
X & O & O \\
\downarrow & & \\
R^3 & & O \\
\end{array}$$

【化5】

$$x \xrightarrow{R^1 \quad R^2} N \xrightarrow{N \quad O \quad Q}_{Y}$$

【化6】

$$x \xrightarrow{R^1 \xrightarrow{R^2}} 0 \xrightarrow{Y}$$

料。

【請求項2】前配(C)の酸により開裂しうる結合がCーOーC結合および/またはCーNーC結合であることを特徴とする、請求項1に記載のパターン形成用材料。 【請求項3】化合物(B)として、次の一般式(I)ないし(III)で示される、活性線の照射により塩基を生成する化合物を少くとも1つ、

【化1】

(1)

(11)

(111)

基性の増大する化合物を少くとも1つ含むことを特徴とする、請求項1または2に記載のパターン形成用材料。 【化4】

(IV)

(V)

(11)

【化7】

$$\begin{array}{c|c}
R^1 & R^2 \\
 & \\
N & O
\end{array}$$

(式中、 R ¹ , R ² 及び R ³ は、それぞれ水素原子又は アルキル基であり、それらは同一であってもよいし、た がいに異なっていてもよい。 X 及び Y はアルキル基、ア ルコキシ基、ハロゲン基、ニトロ基又は水素原子であ り、それらは同一であってもよい。)

【請求項4】活性線の照射により酸を発生する化合物 (A) として、次の(1)~(4)の化合物を少くとも1つ含むことを特徴する、請求項1~3のいずれか1項に記載のパターン形成用材料。

(1) HSbF。、HAsF。、HPF。、又はRSO ,H(ただしRはアルキル基、芳香族又はフルオロアル キル基)のジアゾニウム塩、ホスホニウム塩及びイオド

$$R^4 - SO_2 - C - SO_2 - R^6$$

$$N_2$$

(式中、R 、R 、はそれぞれアルキル基、シクロアルキル基、芳香族基、又はヘテロアリール基を表わす。) 【請求項6】酸により開裂しうるC-O-C結合およびまたはC-N-C結合を少くとも1つ有する化合物が一

(式中、R¹ は炭素数1~4のアルキレン基、 R¹ は炭素数1~4のアルキル基、 R¹ は炭素数1~10のアルキル又はアリール基、 Xは-CO-、-OCO-又は-NHCO-より選ばれ

Mは1以上の整数である。)

る基であり、

【請求項7】水に不溶であるが、アルカリ水溶液には可溶である化合物として、フェノール性水酸基を有する化合物であることを特徴とする、請求項1~6のいずれか1項に記載のパターン形成用材料。

【請求項8】水に不溶であるが、アルカリ水溶液には可溶である化合物としてビニルフェノール、アルキル置換ビニルフェノールのホモポリマーあるいはそれらのコポリマー、あるいはそれらの混合物もしくはそれらと他のフェノール性水酸基を有する化合物との混合物であることを特徴とする、請求項1~7のいずれか1項に記載のパターン形成用材料。

(111)

ニウム塩

- (2) トリクロロメチルトリアジン、トリクロロメチル10 オキサジアゾール及びそれらの誘導体
 - (3) スルホン酸フェノリックエステル又はニトロペン ジルエステル
 - (4) ビススルホニルジアゾメタン

【請求項5】活性線の照射により酸を発生する化合物 (A)として、次の一般式で示されるピススルホニルジ アゾメタンを含むことを特徴とする、請求項4に記載の パターン形成用材料。

【化8】

(IIIV)

般式 (IX) で示される化合物であることを特徴とする、 請求項1~5のいずれか1項に記載のパターン形成用材 料。

【化9】

(11)

【請求項9】照射により塩基を生成もしくは塩基性の増大する化合物(B)の全含有率が、照射により酸を生成する化合物(A)に対して200mol%~0.1mol%であることを特徴とする、請求項1~8のいずれか1項に記載のパターン成形用材料。

【請求項10】照射により塩基を生成もしくは塩基性の 40 増大する化合物 (B) の全含有率が、照射により酸を生成する化合物 (A) に対して50mol%~0.2mol%であることを特徴とする、請求項9に記載のパターン成形用材料。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、半導体装置等の製造に おいて所望のパターンを基板上に形成するのに使用され るパターン形成用材料に関する。より詳しくは、本発明 は、特に露光裕度が大きく、露光エネルギー変化に対し 50 てパターン寸法変化の少ないパターンを与えるパターン

形成用材料に関する。

[0002]

【従来の技術】従来より活性線の照射により酸を発生さ せ、これを触媒として、ポリマーを(熱)分解あるいは (熱) 架橋させポリマーの溶解度を変化させてパターン を形成する化学増幅型レジストが多数知られている。例 えばE. Reichmanis, S. A. MacDomald, T. Iwayanagi, ACS Sym p. Ser., 412, 25-112(1989) に記載されている。これらの 化学増幅型レジストは感度、解像度の比較的優れたもの として知られている。また、加熱により酸を生成する物 質と活性線の照射により塩基を生成する物質を組みあわ せ、照射後加熱することにより未露光部では加熱によっ て生成した酸を触媒としてポリマーを熱架橋させ、露光 部では、照射によって生成した塩基で上配酸を中和し て、酸による熱架橋をそ止してパターンを形成する方法 も知られている。例えば S. Matuszazak et al. J. Mater. C hem.,1,1045(1991)では、特に高感度レジストとして記 載されている。

【0003】一方、上記化学増幅型レジストとは別に、 感光性組成物にスピロピラン等のフォトクロミック性色 素を添加したものも知られている。

【0004】例えば増感作用のあるフォトクロミック性色素をしくは減感作用のあるフォトクロミック性色素をレジストに加えて感度を調整する方法(特公昭61-32662)。ポジ型レジストにスピロピランを加えポジ型及びネガ型いずれのバターンでも形成できるようにしたレジスト材料(特開昭56-35130)、電子ピーム用ネガ型レジストと紫外線用ポジ型レジストとフォトクロミック材料を配合し、基板に対する密着性及び解像力を改良したホトレジスト(特公平3-3210)等がある。

【0005】しかしながら、照射により酸を生成する物質と照射により塩基を生成もしくは塩基性の増大する物質を含む化学増幅型レジスト及び上記化学増幅型レジストの露光裕度を向上させる有効な方法は未だ知られていない。

[0006]

【発明が解決しようとする課題】上記のような従来技術においては、半導体装置等の製造に適用する際のプロセス制御性については配慮されておらず、特に化学増幅型レジストにおいては、露光量の変動によりパターン寸法が大幅に変化する問題があった。

【0007】例えば、ラインとスペースのパターンを用いて、露光すると露光量のわずかな増加により、ポジ型レジストでは、ラインが細くなり、ネガ型ではラインが太くなるため、パターン寸法の制御は困難であった。

【0008】本発明の目的は、露光裕度が広く、露光量 変化に対してパターン寸法変化の少ないパターン形成材 料を提供することにある。

[0009]

【課題を解決するための手段】本発明者らは、上記の状況に鑑みて鋭意研究を行なった結果、照射により酸を発生させ、これを触媒としてポリマーを分解あるいは架構させ、ポリマーの溶解度を変化させてパターンを形成する化学増幅型レジストに対し、照射により塩基を生成あるいは塩基性の増大する化合物を加えることにより、露光裕度が大幅に改善されることを見出した。

【0010】すなわち、本発明によるバターン形成用材料は、(A)活性線の照射により酸を生成する化合物、10(B)活性線照射により塩基を生成もしくは塩基性の増大する化合物、(C)酸により開裂しうる結合を少なくとも1つ有する化合物、および/または(D)水に不溶であるが、アルカリ水溶液には可溶である化合物、を含むことを特徴とするものである。

【0011】上記の活性線照射により酸を生成する化合 物としては、例えばHSbF 。、HAsF。、またはH PF 6 (J.V.Crivello, Polym. Eng. Sci., 23, 953 (198 3))、RSO, H(ただしRはアルキル基、芳香族基又 はフルオロアルキル基である。) のジアゾニウム塩、ホ 20 スホニウム塩、スルホニウム塩またはイオドニウム塩; ハロゲン化合物 (特開平1-106039、EP-A 0232972, US-A3, 615, 455, US-A 3, 686, 084, US-A 3, 912, 61 6 参照)、特にトリクロロメチルトリアジン誘導体 (D E-A 1298414, ...DE-A 2, 243, 6 21, DE-A 2, 306, 248, DE-A 306, 249, US-A 4,619,998、及び 4,696,888参照)、または、トリクロロメチル オキサジアゾール誘導体(US-A 4, 212, 97 30 0. US-A 4, 279, 982, US-A 71,106、US-A 4,371,606参照); スルホン酸フェノリックエステル(T.Ueno et al.,Poly mers for Microelectronics.,413-424(1990)) またはニ トロペンジルエステル (F.M.Houlian et al.,Macromo 1., 21, 2001(1988)) ; ピススルホニルジアゾメタン (特開平3-103854) 等があげられる。ピススル ホニンジアゾメタンは、たとえば以下のような一般的で 示される。

[0012]

40 【化10】

$$R^4 - SO_2 - C - SO_2 - R^5$$

(式中、R 4 、R 5 はそれぞれアルキル基、シクロアルキル基、芳香族基又はヘテロアリール基を表わす。) 上記の活性線照射により塩基を生成するものとしては、例えば、次の一般式で示されるカルパメート基 (特に2-50 ニトロペンジルカルパメート基) ヤスルホンアミド基を

有するものがあげられる。これらは活性線照射により、 例えば次の反応によって塩基であるアミンを生成する。

【0013】 【化11】

$$\begin{array}{c|c} & O & \\ \parallel & R^1 & \\ \text{Archocn} < \frac{R^1}{R^2} & \xrightarrow{\text{\mathcal{R}}} & \text{Arcor}^3 + \text{CO}_2 + < \frac{R^1}{R^2} > \text{NH} \\ \parallel & \mathbb{R}^3 & \end{array}$$

[0014]

$$\rightarrow$$
 2Arcor³ + 2co₂ + $\stackrel{R^1}{>}$ NXN $\stackrel{R^2}{=}$

[0015]

【化13】

$$Ar \cdot \cdot so_{2}N < R^{2} \longrightarrow Hso_{2}N < R^{2} \longrightarrow HN < R^{2}$$

$$So_{2} + \cdot N < R^{2} \longrightarrow SH$$

$$So_{2} + \cdot N < R^{3} \longrightarrow SH$$

(式中、Arはニトロ置換芳香族基、または芳香族基、 R, 、R, およびR, は水素原子、アルキル基または芳 香族基、Xはアルキレン基を表わす。) より具体的に は、ニトロペンジルシクロヘキシルカルパメート、ニト ロベンジルシクロヘキシルカルパメート、3,5-ジメ トキシベンジルシクロヘキシルカルパメート、3-二ト ロフェニルシクロヘキシルカルパメート、ペンジルシク ロヘキシルカルパメート、 [[(2-ニトロペンジル) オキシ] カルポニル] シクロヘキシルアミン、 [[(2 -ニトロベンジル) オキシ] カルボニル] ピペリジン、 ピス [[(2-ニトロベンジル) オキシ] カルボニル] ピペラジン、ピス [[(2-ニトロペンジル) オキシ] カルボニル] ヘキセンー1, 6ージアミン、[[(2, 6-ジニトロペンジル) オキシ] カルポニル] シクロヘ キシルアミン、ピス [[(2,6-ジニトロペンジル) オキシ] カルボニル] ヘキセン-1, 6-ジアミン、N

ー [((2-ニトロフェニル) -1-メチルメトキシ] カルボニル] シクロヘキシルアミン、N-[[(2-ニトロフェニル) -1-メチルメトキシ] カルボニル] オクタデシルアミン、ピス [[(α-メチル-2-ニトロベンジル) オキシ] カルボニル] ヘキサン-1, 6-ジ でまン、N-[[(2, 6-ジニトロフェニル) -1-メチルメトキシ] カルボニル] シクロヘキシルアミン、N-[[(2-ニトロフェニル) -1-(2'-ニトロフェニル) メトキシ] カルボニルシクロヘキシルアミン、N-[[(2, 6-ジニトロフェニル) -1-(2', 6'-ジニトロフェニル) メトキシ] カルボニル] シクロヘキシルアミン、N-シクロヘキシルー4-メチルフェニルスルホンアミド、N-シクロヘキシルー2-ナフチルスルホンアミド等が好ましい。

【0016】また、活性線照射により塩基性の増大する 50 化合物としては、例えば、次の一般式で示されるスピロ

ピラン類、スピロオキサジン類があげられ、これらは照 射により次の異性化を行なう。

$$X \xrightarrow{\mathbb{R}^1 \mathbb{R}^2} O \xrightarrow{\mathbb{R}^3} Y$$

[0018]

$$X \xrightarrow{\mathbb{R}^1 \mathbb{R}^2} O \xrightarrow{\mathbb{R}^3} V$$

[0019]

$$X \xrightarrow{\mathbb{R}^1 \mathbb{R}^2} X \xrightarrow{\mathbb{R}^3} X$$

【化16】

【化17】

$$X \xrightarrow{\mathbb{R}^1 \mathbb{R}^2} X \xrightarrow{\mathbb{R}^3} X \xrightarrow{\mathbb{R}^$$

[0020]

$$\begin{array}{c|c}
R^1 & R^2 \\
X & & \\
N & - O
\end{array}$$

(式中、R 、 、R 、 およびR 、 は、それぞれ、水素原子またはアルキル基であり、それらは同一であってもよいし、たがいに異なっていてもよい。 XおよびYは、アルキル基、アルコキシ基、ハロゲン原子、ニトロ基または水素原子であり、それらは同一であってもよい。) これらの化合物は、分子中にアミノ基を有するため塩基性であるが、照射により異性化してフェノラートイオンを生じるため塩基性が増大する。

【0021】上記スピロピラン類、スピロオキサジン類として、具体的には、次の化合物を例示することができる。1, 3, 3-トリメチルインドリノベンゾピリロスピラン、1, 3, 3-トリメチルインドリノ-8'-メトキシベンゾピリロスピラン、1, 3, 3-トリメチルインドノリ- β -ナフトピリロスピラン、1, 3, 3-トリメチルインドノリ- β -ナフトピリロスピラン、1, 1

3,3-トリメチルインドノリー6´ーニトロベンゾビリロスピラン、1,3,3-トリメチルインドノリー6´ープロモベンゾピリロスピラン、1,3,3-トリメチルインドノリー6´ーヒドロキシベンゾビリロスピラン等である。

【0022】上記活性線照射により塩基を生成する物質もしくは塩基性の増大する物質を活性線照射により酸を発生させこれを触媒としてポリマーを分解あるいは架橋させる化学増幅型レジストに添加し、本発明のパターン形成用材料として使用できる。

【0023】照射により塩基を生成もしくは塩基性の増大する化合物 (B) の全含有率は、増大するにしたがい感度、解像度が低下することがあるため、照射により酸を生成する化合物 (A) に対して200 mol %~0.1

50 mol %であることが好ましく、さらに好ましくは、50

mol %~0.2 mol %である。

【0024】照射に用いる光源としては、例えば、19 0nm~450 nm好ましくは、200 nm~400 nm、特に 好ましくは、200~300 nm領域のUV照射を使用す るが、電子線及びX線照射も好適である。

【0025】(C)の酸により開裂しうる結合、好ましくはC-O-C結合および/またはC-N-C結合を少くとも1つ有する物質として、特に次のものが好適であることがわかっている。

- a) 少くとも1つのオルトカルボン酸エステルおよび /又はカルボン酸アミドアセタール基を含む化合物。
- b) 主鎖中に反復アセタールおよび/又はケタール基を含むオリゴマー又はポリマー。
- c) 少くとも1つのエノールエーテル又はNーアシルアミノカーボネート基を含む化合物。
- d) $\beta-$ ケトエステル又は $\beta-$ ケトアミドの環状アセタールまたはケタール。
- e) 3級アルコール系のエーテル。
- f) 3級アリル位またはベンジルアルコールのカルボン酸エステル及び炭酸エステル。

【0026】より具体的には、

$$x = \bigcup_{\substack{R^1 \\ N \\ \downarrow 3}} x^2$$

(D) に該当する化合物としては、ポリピニルフェノール、ノボラック樹脂等のフェノール樹脂及びそれらの誘導体があげられる。また上記フェノール樹脂の〇H基をテトラヒドロフラニル基、テトラヒドロピラニル基、 tーブトキシカルボキシル基、アセトキシ基等で保護し、酸により開裂しうるC-O-C結合を導入したものを用いてもかまわない。

【0028】好適なものとしてより具体的には、ポリヒドロキシスチレン及びそのアルキル誘導体、例えば3-メチルー4-ヒドロキシスチレンのホモポリマー又はコポリマーまたは、アクリル酸とフェノール基を含む芳香族化合物とのエステル又はアミドである。スチレン、メタクリル酸メタクリレート、アクリル酸メタクリレート等をコポリマー中のコモノマーとして使用することも可能である。

【0029】ケイ繋を含むビニルモノマ例えばビニルトリメチルシランを用いて上記種類のコポリマーを調製すると特にブラズマエッチングに対する耐性を高めた材料が得られる。これらの材料の透明度は問題となる領域において一般に高いので、バターン形状を改善することができる。

【0030】マレインイミドのホモポリマー又はコポリマーを使用しても同様の効果が得られる。

- a) の例としてDE-A 2, 610, 842及び2, 928, 636
- b) としてDE-C 2,306,248及び2,71
- 8, 254
- c) としてEP-A 0.006,626及び0.00 6627
- d) としてEP-A 0.202,196
- e) としてUS-A 4,603,101
- f)としてUS-A 4,491,628及び J.M.Frec
- 10 het et al, J. Imaging Sci., <u>30</u>, 59-64(1986) に開示されているものがあげられ、この他にもDE-A

3,730,783、 G.Powlowski et al., J.Photopo lym Sci, Technol., <u>5</u>,55-60 (1992) 、特公平1-106041、特公昭60-20738、等に記載のアセタール樹脂や M.J.O'Brien et al., SPIE Symp.Proc., <u>920</u>_,42(1980) に記載の tープトキシカルボキシレート等があげられる。また、 (C) の化合物として、好ましくは以下の一般式で示される化合物が用いられる。

[0027]

20 【化18】

(11)

【0031】スチレン、置換スチレン、ビニルエーテル、ビニルエステル、ビニルシリル化合物、 (メタ) ア 30 クリル酸エステルもコモノマーとして使用できる。

【0032】スチレンのコポリマーを水性アルカリ溶液 における溶解性を増加させるコモノマーと共に使用して もよく、例えば無水マレイン酸、マレイン酸半エステル 等が含まれる。

【0033】また、上記材料を混合したものを用いても かまわない。さらに所望により染料、顔料、湿潤剤及び レベリング剤の他にポリグリコール、セルロースエステ ル等を本発明によるパターン形成用材料に加えて成膜 性、塗布性、密着性、等の特性の改善も可能である。好 40 ましくは、本発明のパターン形成用材料は、例えばエチ レングリコール、グリコールエーテル、グリコールモノ メチルエーテル、グリコールジメチルエーテル、グリコ ールモノエチルエーテル、又はプロピレングリコールモ ノアルキルエーテル、脂肪族エステル (例えば、酢酸エ チル、酢酸nープチル、プロピレングリコールモノアル キルエーテルアセテート、特にプロピレングリコールモ ノメチルエーテルアセテート又は酢酸アミル)、ケトン (例えばメチルエチルケトン、シクロペンタノン、シク ロヘキサノン)、ジメチルホルムアミド、ジメチルアセ 50 トアミド、ヘキサメチルリン酸アミド、N-メチルピロ

リドン、プチロラクトン、テトラヒドロフラン及びこれ らの混合物に溶解する。グリコールエーテル、脂肪族エ ステル及びケトンが特に好ましい。

【0034】最終的には溶剤の選択は、使用する塗布方 法、望ましい膜の厚さ、及び乾燥条件に応じて決まる。 このパターン形成用材料の成分で調製した溶液は原則的 に5~60重量%、好ましくは50重量%までの固形分 を含有する。

【0035】また、パターン形成用材料の必須成分の混 合比は、パターン形成時の照射する光の感度、パターン 形状等から決められる。

【0036】上記混合比は組み合わせる材料の種類によ っても混合比は異なるが、例えば(A)の照射により酸 を生成する化合物の含有量は、固形分の総重量に対して 一般に 0. 5~25 重量%、好ましくは、1~10 重量 %である。(C)の酸により開裂しうる結合を少くとも 1つ有する化合物の含有量は、固形分の総重量に対して 1~60重量%、好ましくは、5~35重量%である。 【0037】 (D) の水に不溶であるがアルカリ水溶液 には可溶である化合物の含有量は、固形分の総重量に対 して、1~90重量%、特に5~90重量%、好ましく は50~90重量%である。また(C)と(D)は、同 一の化合物であってもよく、その場合は固形分の総重量 に対して、75~99.5重量%、好ましくは80~9 9 重量%である。

【0038】上記化学増幅型レジストの具体例として は、E.Reichmanis et al., ACS Symp.Ser., 412, 25-1 12(1989), E.Reichmanis et al., Chem. Mater., 3, 394-407 (1991), L. Schlegel et al., Microelec. Eng., 13, 33(1991) 等があげられる。

【0039】本発明の材料を塗布する好適な基材して は、キャパシター、半導体、多層プリント基板回路又は 集積回路を構成もしくは製造するあらゆる材料を使用で きる。特に、熱的に酸化したケイ素材料および/又は所 望によりドーピングしてあってもよい:アルミニウム被 覆したケイ素材料、その他例えば窒化ケイ素、ガリウム ヒ素、及びリン化インジウムなど半導体技術で一般的な 基材を例示できる。

【0040】さらに、液晶表示装置製造で公知の基材、 例えばガラス及び酸化インジウムスズ、さらに金属板、 及び金属ホイル (例えばアルミニウム、銅又は亜鉛)、 あるいは金属蒸着面、所望によりアルミニウム被覆した SiO、材、紙などが好適である。

【0041】これらの基材は、加熱処理、表面研磨、エ ッチング、又は試薬で処理して、特性の改良例えば親水 性の強化などをしてもよい。

【0042】具体例として、レジストと基板間の密着性 を改良するために、密着性促進剤を含めてもよく、ケイ 素、二酸化ケイ素の場合、3-アミノプロピルトリエト キシシラン、ヘキサメチルジシラザン等のシランカップ

リング剤を適用できる。

【0043】層の厚さは、応用分野により異なるが例え ば0.1~100μm、特に1~10μmの範囲にあ

14

【0044】本発明を基材に適用する方法としては、例 えば溶液のかたちにして、スプレー流し塗り、ロール塗 布、スピンコート、ディップ盤布により基板に塗布する ことができる。次いで、溶剤を蒸発により除去し、パタ ーン形成用材料を基材上に残す。溶剤の除去は、所望に 10 より加熱もしくは/及び減圧により促進することができ る。加熱温度は、上記パターン形成用材料及び基材の劣 化がおこらないことが重要であり、例えば150℃まで 加熱することができる。次いで、その層にパターンを映 すように照射する。次いで、その層を現像液で処理し、 材料の照射された部分を溶解し、パターンを出現させ る。材料によっては、照射された部分が不溶化され、未 照射部分を溶解してパターンを出現させることも可能で ある。また照射後、加熱した後現像してもよい。この加 熱により例えば感度をさらに向上させることができる。 20 加熱温度としては、パターンの形状、基材の劣化等がお こらないことが望ましく、例えば200℃以下で行うこ とができる。

【0045】現像液としては、例えばアルカリ金属及び /またはアルカリ土類金属、特にアンモニウムイオンの ケイ酸塩、メタケイ酸塩、水酸化物、リン酸水素塩、ア ンモニア等を使用する。

【0046】金属イオンを含まない現像剤として例えば US-A 4, 729, 941, EP-A 2. 733等に記載の公知のものを使用することができ 30 る。

【0047】また、本発明のパターン形成用材料からな る層の上層または/及び下層に例えば反射防止、コント ラスト向上等の目的の膜を適用することも可能であり、 例えば、 C.F. Cyons et al., SPIE Proc., 1674, 523(199 2)、T.Tanaka et al., J. Electrochem. Soc., 137, 3990 (1990)、 T. Iwayanagi et al., J. Electrochem. Soc., 134, 963(1987)、S.Uchino et al.,ACS Symposium Series, 3 46_,188(1987) 等があげられる。

[0 0 4 8]

40 【作用】本発明のパターン形成用材料が優れた露光裕度 を示すのは、これまで得られた知見より、次の機構によ るものと推定される。

【0049】すなわち従来の化学増幅型レジストのよう に照射により塩基を生成もしくは塩基性の増大する化合 物を含まない場合、照射量の増大によりパターン形成反 応の触媒であるプロトン濃度が急激に増大するので、パ ターン寸法が大きく変化する。しかし、本発明では、照 射により塩基を生成もしくは塩基性の増大する化合物を 含むため、照射量の増大に伴ってプロトン濃度が増大す

50 る一方、これらを中和する塩基の濃度も増大する。 した

がって照射量の変動によるプロトン濃度変化が緩和され、一種の緩衝効果が得られるため、露光裕度が向上するのである。

[0050]

【実施例】以下、実施例により本発明を具体的に説明する。本発明は、これら実施例の記載により限定されるものではない。

実施例1

下記組成のパターン形成用材料を調製した。

【0051】ポリ [(3-メチル-4-ヒドロキシスチレン), -CO-(4-ヒドロキシスチレン), (平均分子量MW:16,000)70重量部、

構造式

[0052]

で示されるポリアセタール(平均分子量MW:2,800)30重量部これに照射により酸を発生する化合物である、a,aービス(4ークロロフェニル)ジアゾメタン2重量部を加え、プロビレングリコールモノメチルエーテルアセテート400重量部に溶解した。

【0053】上記禘液に1、3、3ートリメチルインドリノー8′ーメトキシベンゾビリロスピラン(SPと略記)をa、a′ービス(4-クロロフェニル)ジアゾメタンに対して1、6mol%添加した。これを細孔径0、2 μ mのフィルターを用いてろ過し、密着性促進剤(ヘキサメチルジシラザン)で処理したウェハーに35

00 rpm でスピンコートした。ホットプレート上120 でで1分間加熱後の膜厚は1.0μmであった。

16

【0054】複写材料を原画の下でKrFエキシマーレーザーを用いて波長248 nmの紫外光照射を行った。照射後ホットプレート上60℃で1分間加熱後、0.27 Nテトラメチルアンモニウムヒドロキシド水溶液で現像した。

【0055】 走査電子顕微鏡を使ったレジストのパターンプロファイルの検査の結果を第1表に示す。

10 実施例 2

1,3,3-トリメチルインドリノー8´ーメトキシベンゾピリロスピランを1.6mol%から6.4mol%に変更し、実施例1と同様の方法で行った。

実施例3

ポリ (3 - メチルー4 - ヒドロキシスチレン- CO-4 - ヒドロキシスチレン) のかわりにポリ (3 - メチルヒドロキシスチレン) を用いて実施例1と同様の方法で行った。

実施例 4

20 実施例1において1、3、3-トリメチルインドリノー8′-メトキシベンブピリロスピラン0.8 mol%に変更し、同様の方法で行った。

比較例1

実施例1 において1, 3, 3 - トリメチルインドリノー 8′-メトキシベンゾビリロスビランを加えずにバター ン形成用材料の溶液を調製し、同様の方法で行った。

比較例2

実施例3において1,3,3-トリメチルインドリノー8'-メトキシベンゾビリロスピランを加えずにバター30 ン形成用材料の溶液を調製し、同様の方法で行った。 【0056】実施例1~4および比較例1,2の結果を第1表に示す。

[0057]

第1表

実施例及び	SPの酸発生剤に対する	第光量±10%の変化に
比較例番号	添加量 (mol%)	対するパターン形状変化量
実施例1	1. 6	0. 45±0. 01μm
実施例 2	6.4	0.60 ± 0 μ m
実施例3	1. 6	0. 45 ± 0 . $02 \mu m$
実施例 4	0.8	0. 45 ± 0 . $02 \mu m$
比較例1	0	$0.45\pm0.05\mu m$
比較例 2	0	0. 45±0. 05μm

以上の実施例 $1\sim5$ 及び比較例 1 、 2 から次のことがわかる。比較例 1 、 2 においては露光量が ± 1 0 %変化した場合、パターンの寸法が 1 1 0 %以上変化したのに対し、実施例 $1\sim1$ 0 では、パターン寸法変化がいずれも 0 、 0 $1\sim0$ 、 0 2 μ m ϵ 1 5 %以内であり、本発明のパターン形成用材料は、いずれも良好な露光裕度を示すことがわかる。

[0058]

【発明の効果】以上詳細に説明したごとく、本発明のパターン形成用材料の露光裕度を向上させる方法においては活性線照射により酸を生成する化合物と照射により塩基を生成もしくは塩基性の増大する化合物を含んでいることにより、照射量変化に対して級衝効果が得られるため優れた露光裕度を有するパターン形成用材料が得られる

50 【0059】さらに本発明は、ポジ形、ネガ形いずれの

パターン形成用材料についても有効てあり、光源として 紫外光他に可視光、X線、電子線を用いるものに対して も有効であることはいうまでもない。また本発明のパタ ーン形成用材料の上層あるいは下層もしくは上層と下層

に例えば反射防止、コントラストの向上等の目的の膜を 適用することも可能であり、広く実用化が可能で工業上 の利用価値は極めて大きい。

フロントページの続き

(51) Int. Cl. 5 識別記号 庁内整理番号 FΙ 501

技術表示箇所

G 0 3 F 7/039 H O 1 L 21/027

(72)発明者 クラウス ユルゲン シベラ

東京都小金井市緑町5- 12-11 アティカ

(72)発明者 遠 藤 元

埼玉県川越市小仙波町5-7- 30

(72)発明者 末 廣 なつみ

埼玉県川越市中原町2- 10-10 山崎ピル

(72)発明者 岡 崎 博

埼玉県川越市連雀町 22-1-909