Логический вентиль

Материал из Википедии — свободной энциклопедии

Логический вентиль — базовый элемент цифровой схемы, выполняющий элементарную логическую операцию $^{[1]}$, преобразуя таким образом множество входных логических сигналов в выходной логический сигнал. Логика работы вентиля основана на битовых операциях $^{[2]}$ с входными цифровыми сигналами в качестве операндов. При создании цифровой схемы вентили соединяют между собой, при этом выход используемого вентиля должен быть подключён к одному или к нескольким входам других вентилей. В настоящее время в созданных человеком цифровых устройствах доминируют электронные логические вентили на базе полевых транзисторов, однако в прошлом для создания вентилей использовались и другие устройства, например, электромагнитные реле, гидравлические устройства, а также механические устройства. В поисках более вентилей исследуются квантовые устройства[3][4], совершенных логических биологические молекулы[5], фононные тепловые системы[6].

В цифровой электронике логический уровень сигнала представлен в виде уровня напряжения (попадающего в один из двух диапазонов) или в виде значения $\frac{1000}{100}$ том зависит от типа используемой технологии построения электронной логики $\frac{100}{100}$. Поэтому любой тип электронного вентиля требует наличия питания для приведения выходного сигнала к необходимому уровню.

Пример работы схемы двухступенчатого Т-триггера с парафазным входом на двух парафазных D-триггерах на восьми логических вентилях **2И-НЕ**. Слева — входы, справа — выходы. Синий цвет соответствует 0, красный — 1

Содержание

История

Логические вентили

Реализация

Примечания

См. также

История

Впервые математически точно двоичная система счисления была подробно описана немецким математиком Готфридом Вильгельмом Лейбницем (публикация от 1705 года). Он также разъяснил, как с помощью этой системы можно объединить принципы арифметики и логики.

Первые логические вентили были реализованы механически. В 1837 году английский изобретатель <u>Чарльз Бэббидж</u> разработал вычислительную машину, названную им <u>аналитической</u> (<u>англ.</u> *Analytical Engine*), которая считается прообразом современного компьютера.

В 1847 году английский математик и логик <u>Джордж Буль</u> в своём трактате «Математический анализ логики» (англ. *Тhe Mathematical Analysis of Logic*) заложил основы современной алгебры логики, связав её с <u>логикой высказываний</u>. При этом он ввёл свою <u>алгебраическую систему</u>, которая содержала следующие функции: *конъюнкция* (логическое умножение, оператор «AND»), *дизъюнкция* (логическое сложение, оператор «OR») и *отрицание* (оператор «NOT»). Впоследствии данная алгебра была названа <u>булевой</u>.

В том же 1847 году шотландский математик и логик <u>Огастес де Морган</u> опубликовал правила, связывающие пары логических операций при помощи логического отрицания (Законы де Моргана).

В 1881 г. американский математик и логик <u>Чарльз Сандерс Пирс</u> теоретически доказал, что функция «инверсия дизьюнкции» является универсальной и позволяет заменить все другие логические функции. Данная функция получила имя «функция Пирса», знак операции — <u>стрелка Пирса</u> ↓. Позже элемент, реализующий данную функцию,

стали называть элементом Пирса или «ИЛИ-НЕ» (<u>англ.</u> NOR gate, см. таблицу). Данная работа была опубликована только в 1933 году.

В 1907 г. американский изобретатель <u>Ли де Форест</u> вводит в вакуумную лампу <u>Джона Флеминга</u> третий электрод — <u>управляющую сетку</u> и получает триод, который может работать не только в качестве усилителя электрических сигналов, но и в качестве простейшего переключателя (вентиля).

В 1913 г. американский математик и логик <u>Генри Морис Шеффер</u> теоретически доказал, что функция «инверсия конъюнкции» является универсальной и позволяет заменить все другие логические функции. Данная функция получила имя «функция Шеффера», знак операции — <u>штрих Шеффера</u> |. Позже элемент, реализующий данную функцию, стали называть элементом Шеффера или «И-НЕ» (англ. *NAND gate*, см. таблицу).

В 1927 г. российский советский математик и логик <u>Иван Иванович Жегалкин</u> представил алгебру логики как арифметику вычетов по модулю 2. Данная универсальная функция получила позднее название «полином Жегалкина», а знак операции — Ф. Позже элемент, реализующий данную функцию, стали называть «исключающее ИЛИ» (англ. XOR gate).

В 1935 г. немецкий инженер <u>Конрад Цузе</u> разрабатывает для своей <u>вычислительной машины Z1</u> первые действующие электромеханические вентили.

В 1947 г. Уильям Шокли, Джон Бардин и <u>Уолтер Браттейн</u> в лабораториях <u>Bell Labs</u> впервые создают действующий <u>биполярный транзистор</u>. Позднее транзисторы заменили <u>вакуумные лампы</u> в большинстве электронных устройств, совершив революцию в создании интегральных схем.

Логические вентили

Логический	Условн	ые графические с		Таблица истинности		
вентиль	<u>ΓΟCT</u> 2.743- 91	IEC 60617-12: US ANSI 91-1984				
НЕ (англ. NOT gate)	A	A — 1 0—Y	A—out	$egin{aligned} & ext{Отрицание} \ & Y = \overline{A} \ & Y = \neg A \ & Y = ilde{A} \end{aligned}$	A Y 0 1 1 0	
И (англ. AND gate)	A- & -Y	A — & B — Y	A out	$egin{aligned} KOHSHOHKHHH\\ egin{aligned} ar{Y} &= A \wedge B \\ Y &= A \& B \\ Y &= AB \end{aligned}$	A B Y 0 0 0 0 1 0 1 0 0 1 1 1	
ИЛИ (англ. OR gate)	A-1 B	A — ≥1 B — Y	Aout	Дизъюнкция $Y = A \lor B$ $Y = A + B$	A B Y 0 0 0 0 1 1 1 0 1 1 1 1	
НЕ И (И-НЕ) (англ. NAND gate) Элемент Шеффера	A— & —Y	A — & O—Y	A out	$Y = \overline{A \wedge B}$ $Y = \overline{A \wedge B}$ $Y = \overline{A \cdot B}$ $Y = \overline{AB}$ $Y = A B$	A B Y 0 0 1 0 1 1 1 0 1 1 1 0	
НЕ ИЛИ (ИЛИ-НЕ) (англ. NOR gate) Элемент Пирса	A—1 B—Y	A	Ao_out	$Y = \overline{A \lor B}$ $Y = A \overline{\lor} B$ $Y = \overline{A + B}$ $Y = A - B$	A B Y 0 0 1 0 1 0 1 0 0 1 1 0	

Исключающее	A-=1	A ==1	TH-A	Строгая	Α	В	Υ
ИЛИ (англ. XOR gate)	В	в	B	$egin{aligned} \mathcal{A}$ ИЗЪЮНКЦИЯ $Y = A \ oldsymbol{ol}oldsymbol{ol}oldsymbol{ol}oldsymbol{oldsymbol{oldsymbol{ol}oldsymbol{oldsymbol{oldsymbol{oldsymbol{ol{oldsymbol{ol{ol}}}}}}}}}}}}}}}}}}}}}}$	0	0	0
					0	1	1
сложение по					1	0	1
модулю 2					1	1	0
Исключающее				Экриро полица	Α	В	Υ
ИЛИ				Эквиваленция	0	0	1
с инверсией	A — =1	A — =1	A-H	$Y = A \underline{\vee} B$		U	
(англ. <i>XNOR</i>	_	p-Y	B D out	$Y = A \overline{\vee} B$	0	1	0
gate)	В	в—		$Y = \overline{A \oplus B}$	1	0	0
равнозначность				$Y = A \odot B$	1	1	1

Реализация

Примечания

- 1. gpntb.ru Термины микроэлекроники (http://www.gpntb.ru/win/book/3/Doc25.HTML)
- 2. Например: 2И-HE (NAND), XOR (исключающее ИЛИ) и другие.
- 3. scientific.ru (http://www.scientific.ru/journal/news/0305/n020305.html) Квантовый логический вентиль на сверхпроводниках
- 4. <u>pereplet.ru (http://www.pereplet.ru/obrazovanie/stsoros/964.html)</u> <u>Спиновые</u> логические вентили на основе квантовых точек
- 5. skms.impb.psn.ru
 (https://web.archive.org/web/20120205171904/http://skms.impb.psn.ru/articles/art06_06.pdf) Электронный логический вентиль ХОR на основе ДНК.
- 6. Wang, Lei and Li, Baowen. Thermal Logic Gates: Computation with Phonons (https://dx.doi.org/10.1103/physrevlet t.99.177208) (англ.) // Physical Review Letters. APS, 2007. Vol. 99, no. 17.
- 7. Наиболее известные это КМОП, ТТЛ, N-МОП, ЭСЛ, ДТЛ, РТЛ.

См. также

• Логические элементы

- Нейрон структурный аналог логического вентиля.
- Квантовый вентиль логический вентиль подчиняющийся законам квантовой логики

VСточник — https://ru.wikipedia.org/w/index.php?title=Логический_вентиль&oldid=113523345

Эта страница в последний раз была отредактирована 10 апреля 2021 в 19:27.

Текст доступен по лицензии Creative Commons Attribution-ShareAlike; в отдельных случаях могут действовать дополнительные условия.

Wikipedia® — зарегистрированный товарный знак некоммерческой организации Wikimedia Foundation, Inc.