A construction of finite-dimensional faithful representation of Lie algebra

Yurii A.Neretin

The Ado theorem is a fundamental fact, which has a reputation to be a 'strange theorem'. We give its natural proof.

1. Construction of faithful representation. Consider a finite-dimensional Lie algebra \mathfrak{g} . Assume that \mathfrak{g} is a semidirect product $\mathfrak{p} \ltimes \mathfrak{n}$ of a subalgebra \mathfrak{p} and a nilpotent ideal \mathfrak{n} . Assume that the adjoint action of \mathfrak{p} on \mathfrak{n} is faithful, i.e., for any $z \in \mathfrak{p}$, there exists $x \in \mathfrak{n}$ such that $[z, x] \neq 0$.

Consider the minimal k such that all the commutators

$$[\dots [[x_1, x_2], x_3], \dots, x_k], \qquad x_j \in \mathfrak{n}$$

are 0.

Denote by $U(\mathfrak{n})$ the enveloping algebra of \mathfrak{n} . The algebra \mathfrak{n} acts on $U(\mathfrak{n})$ by the left multiplications. The algebra \mathfrak{p} acts on $U(\mathfrak{n})$ by the derivations

$$d_z x_1 x_2 x_3 \dots x_l = [z, x_1] x_2 x_3 \dots x_l + x_1 [z, x_2] x_3 \dots x_l + \dots,$$
 where $z \in \mathfrak{p}$.

This defines the action of the semidirect product $\mathfrak{p} \ltimes \mathfrak{n} = \mathfrak{g}$ on $U(\mathfrak{n})$.

Denote by I the subspace in $U(\mathfrak{n})$ spanned by all the products $x_1x_2...x_N$, where N > k + 2. Obviously,

- 1. I is the two-side ideal in $U(\mathfrak{n})$.
- 2. Consider the linear span \mathcal{A} of all the elements having the form $1, x, x_1x_2 \in U(\mathfrak{n})$. Obviously, $I \cap \mathcal{A} = 0$
 - 3. I is invariant with respect to the derivations d_z .

Obviously, the module $U(\mathfrak{n})/I$ is a finite-dimensional faithful module over \mathfrak{g} .

2. The Ado theorem.

LEMMA 1. Any finite-dimensional Lie algebra q admits an embedding to an algebra g such that

- a) $\mathfrak g$ is a semidirect product of a reductive subalgebra $\mathfrak p$ and a nilpotent ideal $\mathfrak n;$
- b) the action of \mathfrak{p} on \mathfrak{n} is completely reducible.

Obviously, Lemma 1 implies the Ado theorem. Indeed, g admits a decomposition

$$\mathfrak{g}=\mathfrak{p}'\oplus(\mathfrak{p}''\ltimes\mathfrak{n})$$

where \mathfrak{p}' , \mathfrak{p}'' are reductive subalgebras and the action of \mathfrak{p}'' on \mathfrak{n} is faithfull. After this, it is sufficient to apply the construction of p.1.

REMARK. The Ado theorem implies Lemma 1 modulo the Chevalley construction of algebraic envelope of a Lie algebra. But Lemma 1 itself can be easily proved directly.

3. Killing lemma. Let \mathfrak{g} be a Lie algebra, let d be its derivation. For an eigenvalue λ , denote by \mathfrak{g}_{λ} its root subspace $\mathfrak{g}_{\lambda} = \bigcup_{k} \ker(d - \lambda)^{k}$; we have $\mathfrak{g} = \oplus \mathfrak{g}_{\lambda}$. As it was observed by Killing, $x \in \mathfrak{g}_{\lambda}$, $y \in \mathfrak{g}_{\mu}$ implies $[x, y] \in \mathfrak{g}_{\lambda+\mu}$.

Thus the Lie algebra \mathfrak{g} admits the gradation by the eigenvalues of d. Consider the gradation operator $d_s: \mathfrak{g} \to \mathfrak{g}$ defined by $d_s v = \lambda v$ if $v \in \mathfrak{g}_{\lambda}$. Obviously, d_s is a derivation, and $dd_s = d_s d$. We also consider the derivation $d_n := d - d_s$, this operator is nilpotent (the equality $d = d_n + d_s$ is called the Jordan-Chevalley decomposition). Clearly,

$$\ker d_s \supset \ker d; \qquad \ker d_n \supset \ker d;$$
 (1)

$$\operatorname{im} d_s \subset \operatorname{im} d_s; \qquad \operatorname{im} d_n \subset \operatorname{im} d_s$$
 (2)

4. Elementary expansions. Let \mathfrak{q} be a Lie algebra, let I be an ideal of codimension 1. Let $x \notin I$. Denote by d the operator $\mathrm{Ad}_x : I \to I$. Consider the corresponding pair of derivations d_s , d_n . Consider the space

$$\mathfrak{g}' = \mathbb{C}y + \mathbb{C}z + I$$

where y, z are formal vectors. We equip this space with a structure of a Lie algebra by the rule

$$[y, z] = 0,$$
 $[y, u] = d_s u,$ $[z, u] = d_n u,$ for all $u \in I$

and the commutator of $u, v \in I$ is the same as it was in I.

The subalgebra $\mathbb{C}(y+z) \oplus I \subset \mathfrak{q}'$ is isomorphic \mathfrak{q} . We say that \mathfrak{q}' is an elementary expansion of \mathfrak{q} .

Obviously, $[\mathfrak{q}',\mathfrak{q}'] = [\mathfrak{q},\mathfrak{q}].$

For a general Lie algebra, the required embedding to a semidirect product can be obtained by a sequence of elementary expansions.

5. Proof of Lemma 1. Let \mathfrak{q} be a Lie algebra. Let \mathfrak{h} be its Levi part, and \mathfrak{r} be the radical. Denote by \mathfrak{m} the nilradical of \mathfrak{q} , i.e., $\mathfrak{m} = [\mathfrak{q}, \mathfrak{r}]$; recall that \mathfrak{m} is a nilpotent ideal, and $[\mathfrak{q}, \mathfrak{q}] = \mathfrak{h} \ltimes \mathfrak{m}$ (see [1], 1.4.9).

Consider a nilpotent ideal $\mathfrak n$ of $\mathfrak q$ containing the nilradical $\mathfrak m$. Consider a subalgebra $\mathfrak p \supset \mathfrak h$ such that the adjoint action of $\mathfrak p$ on $\mathfrak q$ is completely reducible and $\mathfrak p \cap \mathfrak n = 0$; for instance, the can choice $\mathfrak n = \mathfrak m$, $\mathfrak p = \mathfrak h$.

Obviously, the \mathfrak{q} -module $\mathfrak{q}/(\mathfrak{p} \ltimes \mathfrak{n})$ is trivial. Consider any subspace I of codimension 1 containing $\mathfrak{p} \ltimes \mathfrak{n}$, obviously I is an ideal in \mathfrak{q} . Since the action of \mathfrak{p} on \mathfrak{q} is completely reducible, there exists a \mathfrak{p} -invariant complementary subspace for I. Let x be an element of this subspace. Since the \mathfrak{p} -module \mathfrak{q}/I is trivial, x commutes with \mathfrak{p} . We apply the elementary expansion to these data.

We obtain the new algebra $\mathfrak{q}' = \mathbb{C}y + \mathbb{C}z + I$ with the nilpotent ideal $\mathfrak{n}' = \mathbb{C}z + \mathfrak{n}$ and with the reductive subagebra $\mathfrak{p}' = \mathbb{C}y \oplus \mathfrak{p}$ (by (1), y commutes with \mathfrak{p}).

It remains to notice that

$$\dim \mathfrak{q}' - \dim \mathfrak{p}' - \dim \mathfrak{n}' = \dim \mathfrak{q} - \dim \mathfrak{p} - \dim \mathfrak{n} - 1$$

and we can repeat the same construction.

References

[1] J.Dixmier, Enveloping algebras, North.Holland Publ.Co, 1977

Addres:

Math.Physics Group, ITEP, B.Cheremushkinskaya, 25, Moscow, Russia

&

Independent University of Moscow

&

ESI, Vienna, Austria (January, 2002).

neretin@main.mccme.rssi.ru