DISCRETE MATH 37181 HOMEWORK 5

MURRAY ELDER

INSTRUCTIONS. Try these sometime after the lecture and before your workshop.

1. Consider the function $f: \mathbb{N} \to \mathbb{N}$ defined by the recursive definition

$$f(0) = 1$$

 $f(n) = nf(n-1)$ $n > 0$.

The value of f(7) is

- **A**. 2520
- **B**. 28
- **C**. 5040
- **D**. 420
- **E**. none of the above.

2. What is another name for the function defined in Question 1?

3. Define a function $A: \mathbb{N}^2 \to \mathbb{N}$ using the following recursive definition.

$$\begin{array}{lll} A(0,n) & = & n+1 & n \geqslant 0, \\ A(m,0) & = & A(m-1,1) & m>0, \\ A(m,n) & = & A(m-1,A(m,n-1)) & m,n>0. \end{array}$$

Then A(2,1) is equal to

- **A**. 5
- **B**. 4
- **C**. 100
- **D**. 6
- E. none of the above.

- 4. Let $A = \{1, 2, 3, 4\}$ and $B = \{a, b, c\}$.
 - (a) Give an example of a one-to-one function from A to B.¹
 - (b) Give an example of an onto function from A to B.
 - (c) How many different functions are there from A to B?
 - (d) Give an example of a relation from A to B that is not a function.
- 5. Let $A = \mathbb{N}$ and \mathscr{R} be the relation defined by " $a\mathscr{R}b$ if a < b or $5 \mid (b-a)$ ". So for example $(1,6) \in \mathscr{R}$ and $(6,1) \in \mathscr{R}$.
 - (a) Is \mathscr{R} reflexive?
 - (b) Is \mathscr{R} symmetric?
 - (c) Is \mathscr{R} antisymmetric?
 - (d) Is \mathcal{R} transitive?
- 6. If A is a set, the notation |A| means the number of elements in A. Let |A| = 4 and |B| = 3.
 - (a) What is $|A \times B|$?
 - (b) How many functions are there from A to B?
 - (c) How many relations are there from A to B?
 - (d) How many one-to-one functions are there from A to B?
 - (e) How many one-to-one functions are there from B to A?

¹Hint: give an example means write $f = \{(1, a), (2, b), (2, c) \text{ etc}\}$

Brief solutions:

- 1. **C** 5040
- 2. *n*!
- 3. **A** 5

$$A(1,1) = A(0, A(1,0)) = A(0, A(0,1)) = A(0,2) = 3$$

$$A(1,2) = A(0, A(1,1)) = A(1,1) + 1 = 4$$

$$A(1,3) = A(0, A(1,2)) = A(1,2) + 1 = 5$$

$$A(2,1) = A(1, A(2,0)) = A(1, A(1,1)) = A(1,3) = 5$$

- 4. (a) Does not exist. Not enough elements in B. Need $|A| \leq |B|$.
 - (b) $f = \{(1, a), (2, b), (3, c)(4, a)\}.$
 - (c) $3^4 = 81$. 3 choices for f(1), 3 choices for f(2), etc.
 - (d) $\mathcal{R} = \{(1, a), (1, b)\}.$
- 5. (a) Yes since 5 divides (a-a)=0 for all $a \in \mathbb{N}$.
 - (b) Not symmetric, $(1,2) \in \mathcal{R}$ because 1 < 2, but (1-2) = -1 is not divisible by 5 and $2 \not< 1$ so $(2,1) \notin \mathcal{R}$.
 - (c) Not antisymmetric. (0,5) and (5,0) are both in \mathcal{R} but $0 \neq 5$.
 - (d) Not transitive. (4,7) and (7,2) are in \mathcal{R} but (4,2) is not.
- 6. (a) 12.
 - (b) $3^4 = 81$ (same as Question 4(c)).
 - (c) A relation can be any subset of $\mathcal{P}(A \times B)$, and the size of the power set of a set of size 12 is $2^{12} = 4096$ (induction problem Lecture 4).
 - (d) There are none.
 - (e) For f(a) there are 4 possible choices. Then for f(b) we only have 3 numbers to choose from, and then for f(c) only 2 numbers left, so $4 \times 3 \times 2 = 24$.