Student Information

Full Name: Batuhan Akçan

Id Number: 2580181

Answer 1

a) Pick $-2, 2 \in \mathbb{R}$. $f(-2) = f(2) = 4 \in \mathbb{R}$. So, f is not injective.

Pick $-2 \in \mathbb{R}$. $f(x) \neq -2 \quad \forall x \in \mathbb{R}$. So, f is not surjective.

b) $(f(x) = f(y)) \to (x = y) \quad \forall x, y \in \mathbb{R}^+$ So, f is injective.

Pick $-2 \in \mathbb{R}$. $f(x) \neq -2 \quad \forall x \in \mathbb{R}^+$. So, f is not surjective.

c) Pick $-2, 2 \in \mathbb{R}$. $f(-2) = f(2) = 4 \in \mathbb{R}^+$. So, f is not injective.

 $\forall y \in \mathbb{R}^+$ $\exists x \text{ such that } f(x) = y.$ So, f is surjective.

d) $(f(x) = f(y)) \rightarrow (x = y) \quad \forall x, y \in \mathbb{R}^+$ So, f is injective.

 $\forall y \in \mathbb{R}^+ \quad \exists x \text{ such that } f(x) = y.$ So, f is surjective.

Answer 2

- a) $\forall \varepsilon \in \mathbb{R} \ \exists \delta \in \mathbb{Z} \ \forall x \in A \ (||x-x_0|| < \delta \to ||f(x)-f(x_0)|| < \varepsilon)$. Therefore, f is continuous.
- **b)** Assume f is not a constant function. Then

 $\exists \varepsilon \in \mathbb{Z} \quad \neg \exists \delta \in \mathbb{R} \quad \forall x \in A \quad (||x - x_0|| < \delta \rightarrow ||f(x) - f(x_0)|| < \varepsilon)$

So f must be a constant function in order to be continuous.

Answer 3

a) BASIS: n=2. $X_2 = A_1 \times A_2$ is countable since A_1 and A_2 are countable.

IND. STEP: Assume that X_k is countable. Then $X_{k+1} = A_1 \times A_2 \times ... \times A_k \times A_{k+1} = X_k \times A_{k+1}$

is countable since X_k and A_{k+1} are countable. Hence, X_{k+1} is countable.

b) Let $S = X \times X \times ...$. Suppose S is countable. Let $E_n : n \in \mathbb{N}$ be an enumeration of S. For each n, pick two points $a_n, b_n \in E_n$. Then define a function $F \in S$ as:

$$F(n) = \left\{ \begin{array}{ll} b_n, & \text{if } E_n(n) = a_n \\ a_n, & \text{otherwise} \end{array} \right\}$$
 (1)

So, $E_n \neq F$ and $F \in S$ which is a contradiction. Hence, S is uncountable.

Answer 4

$$(n!)^2$$
, 5^n , 2^n , $n^{51} + n^{49}$, n^{50} , $\sqrt{n} \log n$, $(\log n)^2$

a) Let $\sum a_n = \frac{5^n}{(n!)^2}$. Apply ratio test:

 $\lim_{n\to\infty} \left|\frac{a_{n+1}}{a_n}\right| = \lim_{n\to\infty} \left|\frac{5^{n+1}}{((n+1)!)^2} \frac{(n!)^2}{5^n}\right| = \lim_{n\to\infty} \left|\frac{5}{(n+1)^2}\right| = 0 < 1$. So the series $\sum a_n$ is absolutely convergent thus convergent. Therefore, $5^n = O((n!)^2)$.

b)
$$\lim_{x\to\infty} \frac{2^x}{5^x} = \lim_{x\to\infty} (\frac{2}{5})^x = 0 \to 2^n = O(5^n).$$

c)
$$\lim_{x\to\infty} \frac{x^{51}+x^{49}}{2^x} = \dots = \lim_{x\to\infty} \frac{(51!)x}{2^x(\ln 2)^{50}} = \lim_{x\to\infty} \frac{51!}{2^x(\ln 2)^{51}} = 0 \to n^{51} + n^{49} = O(2^n).$$

d)
$$\lim_{x\to\infty} \frac{x^{50}}{x^{51}+x^{49}} = \lim_{x\to\infty} \frac{1}{x} = 0 \to n^{50} = O(n^{51} + n^{49}).$$

e)
$$\lim_{x\to\infty} \frac{\sqrt{x}\log x}{x^{50}} = \lim_{x\to\infty} \frac{\log x}{x^{99/2}} = \lim_{x\to\infty} \frac{\frac{1}{x\ln 10}}{\frac{99}{2}x^{97/2}} = \lim_{x\to\infty} \frac{99x^{95/2}}{2\ln 10} = 0 \to \sqrt{n}\log n = O(n^{50})$$

$$\mathbf{f)} \quad \lim_{x \to \infty} \frac{(\log x)^2}{\sqrt{x} \log x} = \lim_{x \to \infty} \frac{\log x}{\sqrt{x}} = \lim_{x \to \infty} \frac{\frac{1}{x \ln 10}}{\frac{1}{2\sqrt{x}}} = \lim_{x \to \infty} \frac{2}{\sqrt{x} \ln 10} = 0 \to (\log n)^2 = O(\sqrt{n} \log n).$$

Answer 5

a)
$$\gcd(94, 134) = \gcd(134, 94) = \gcd(94, 40) = \gcd(40, 14) = \gcd(14, 12) = \gcd(12, 2) = \gcd(2, 0) = 2$$

b) Let P: Every even integer greater than 2 is the sum of two primes.

Let Q: Every integer greater than 5 is the sum of three primes.

We must prove that both $P \to Q$ and $Q \to P$ holds.

1)
$$P \rightarrow Q$$

Assume P. Let n be an even integer and n > 2. Then, n = x + y where x,y are prime. Add 3 to the equation: n + 3 = x + y + 3 where n + 3 > 5. So, every integer a = n + 3 > 5 except 6 is the sum of three primes x, y, 3. Also, 6 = 2 + 2 + 2. Therefore, $P \to Q$.

$$Q \rightarrow P$$

Assume Q. Let n > 5 be an integer. Then, n = x + y + z where x,y,z are prime. Then,

b=n-z=x+y where b>n-z. Pick z=3 . Then the statement $\,b=x+y\,$ is equivalent to $P\,$ for every n except 6. Proof for 6: $\,6=3+3$. Therefore, $\,Q\to P.\,$ Hence, $\,P\equiv Q$.