

ISL Lab Seminar Jin Hyung Kim 2015.05.15.

Contents

Introduction

Vision only motion estimation

Robust Aged Feature set

Future Work

Visual Odometry

Tradeoff Issue: Match & Track

Image System Laboratory

Introduction: Visual Odometry

Visual Odometry

- The process of estimating the egomotion of an agent using only the input of a single or multiple cameras attached to it
- The term VO was coined in 2004 by Nister in his paper*
 - ➤ Was chosen for its similarity to wheel odometry

SL Image System Laboratory

Visual Odometry

Advantages of VO

- Is not affective by wheel slip in uneven terrain or other adverse conditions
- Provides accurate trajectory estimates
- Additional near space information acquisition
 - ➤ IMU, GPS, Wheel Odometry : egomotion only
- Low cost comparing to IMU, Laser Odometry
- Capable in GPS-denied environments
 - > Underwater, Aerial, indoor, another planet

IL Image System Laboratory

Positive condition for VO

Static scene with enough textured features

VO Pipeline (2D to 2D)

Image Sequence

Feature Detection

Feature Matching or Tracking

Motion Estimation

• 2D-2D, 3D-3D, 3D-2D

Local Optimization

Bundle adjustment

Degradation(Noise, Gain), Calibration(Lens Distortion)

SIFT, SURF, Harris Corner, GFTT, FAST, etc.

Matching(descriptor), Tracking(Optical Flow)

Essential matrix from image feature correspondences

Iterative refinement to increase accuracy of trajectory

Tradeoff: baseline & correspondence

Camera movement

Feature Tracking

long baseline : High ME accuracy Poor feature correspondence (even heavy computation for descriptor)

Short baseline : low ME accuracy

Guaranteed feature correspondence

Feature Matching

Match after track

long baseline : High ME accuracy Guaranteed feature correspondence

Limit of "Match after Track"

• Feature blinking problem : decreasing number of feature

L Image System Laboratory

Robust Aged Feature set

How to obtain accurate Essential matrix.

- Sufficient reliable correspondences
 - Repeatable & Traceable feature extraction(Aging & tracking)
 - ➤ Adding feature of new part of scene(Feature detection & matching)
 - ➤ Outlier rejection
- Sufficient long baseline length
 - > Sufficient pixel movement

V0 : Real-time

- Low-complex feature detector
- Low-computational descriptor
- Simple tracking algorithm

Increase the number of features as many as possible & Select the reliable features and keep traceable...

Inage System Laboratory

Robust Aged Feature set

Structure of RAF

SL Image System Laborator

VO Procedure using RAFset

5L Image System Laboratory

Outlier Filter for Optical Flow output

Correspondence outlier

Caused by Noise, blinking feature, moving object, etc.

Outlier filtering

 $T_{outlier} = \overline{e} + \sigma_e$

$$e_{i} = \sqrt{(x_{i} - x_{i})^{2} + (y_{i} - y_{i})^{2}}$$
 $\bar{e} = \sum_{i=0}^{n} e_{i}, \qquad \sigma_{e} = \sqrt{\sum_{i=0}^{n} e_{i}^{2} - \bar{e}^{2}}$

$$e_i = \sqrt{(x_i - x_i)^2 + (y_i - y_i)^2}$$
 where, $(x, y) \leftarrow correspondence \rightarrow (x', y')$

Inliers should be smaller than $T_{outlier}$

Overlap check

In order to reduce computation, check overlapped features.

(Near distance)

L Image System Laboratory

Aging Strategy

De-aging

• Disappeared [1/n]

Aging

- Tracked
- Overlapped
- Reappeared

L Image System Laboratory

Stop state detection

Even static situation, Motion vector occurs in image

- Vibration of camera mount
- Scattering noise
- Illumination blinking

Using average amplitude of Motion vectors

$$e_i = \sqrt{(x_i - x_i)^2 + (y_i - y_i)^2}$$

where,
$$(x, y) \leftarrow (x', y')$$

$$\overline{e} = \sum_{i=0}^{n} e_i$$

if $\overline{e} < T_m$, than the cam is stopped

L Image System Laboratory

Sufficient pixel movement detection

Also, using Accumulated Average amplitude of MVs

- However, amplitude of MV is scalar.
 - > Recognizes periodic movement to large movement

- Therefore it is required to use displacement btw. Initial frame to current frame
- In order to reduce computation load,
 - ➤ Calculates displacement when sufficient amplitude of MV accumulated.
 - ➤ Not per frame

L Image System Laboratory

Future work

- Descriptor management
- Scale problem
- Visualization
- Experiment

L Image System Laboratory