MSEG201 LQ1 formula sheet

Kyle Wodehouse

September 19, 2024

$$\begin{split} k &= 1.38 \times 10^{-23} \text{ J/atom} \cdot \text{K} \\ k &= 8.62 \times 10^{-5} \text{ eV/atom} \cdot \text{K} \\ N_A &= 6.022 \times 10^{23} \text{ atoms/mol} \end{split}$$

$$\begin{split} R &= 8.314 \text{ J/mol} \cdot \text{K} \\ e &= 1.6 \times 10^{-19} \text{ C} \\ m_e &= 9.11 \times 10^{-31} \text{ kg} \end{split}$$

$$\begin{split} m_p &= 1.67 \times 10^{-27} \text{ kg} \\ m_n &= 1.67 \times 10^{-27} \text{ kg} \\ \lambda_{Cu_{K-\alpha}} &= 1.54 \text{ Å} \end{split}$$

Prefix	Symbol	Factor	Prefix	Symbol	Factor
pico	p	10^{-12}	milli	m	10^{-3}
angstrom	Å	10^{-10}	centi	$^{\mathrm{c}}$	10^{-2}
nano	\mathbf{n}	10^{-9}	deci	d	10^{-1}
$_{ m micro}$	μ	10^{-6}			

System	coordination	APF	atoms	r a relationship	close packed	reflection rule	plane ex
FCC	12	0.74	4	$4r = \sqrt{2}a$	face diagonal	h,k,l all even or odd	(111), (200)
BCC	8	0.68	2	$4r = \sqrt{3}a$	body diagonal	h+k+l=2n	(111), (200), (220)
SC	6	0.52	1	2r = a	edge	all	all!
HCP	12	0.74	2	$2r = a; c = \sqrt{\frac{8}{3}}a$	base edge		

System	interstitial sites	
FCC	octahedral edges; mid diagonals tetrahedral	
		_

BCC octahedral edge centers & face centers; tetrahedral face diamonds

r_{cat}/r_{an}	coordination	structure	example	formula units/cell
< 0.155	2	linear		2
0.155 - 0.225	3	trigonal planar		3
0.225 - 0.414	4	tetrahedral	zincblende	4
0.414 - 0.732	6	octahedral	rock salt; NaCl	4
0.732 - 1.0	8	cubic	CsCl	1
AX_2	8	flourite/antiflourite	CaF_2	4

notation: (hkl) is a plane, [uvw] is a direction, {hkl} is a family of planes

cubics	ceramics	$\ln\left(\frac{N_{v2}}{N_{v1}}\right) = \frac{-Q_v}{k} \left(\frac{1}{T_2} - \frac{1}{T_1}\right)$
$\rho = \frac{n \cdot A}{V \cdot N_A}$	$\frac{N_s}{N} = \exp\left(\frac{-Q_s}{2kT}\right)$, , , , , , , , , , , , , , , , , , , ,
ceramics	N_A	$E = E_A + E_R$
$\rho = \frac{n\left(\sum A_c + \sum A_a\right)}{V \cdot N_A}$	$N = \rho \cdot rac{N_A}{\mu}$ $n\lambda = 2d\sin(heta)$	$E_A = -rac{A}{r}$
metals		,
$\frac{N_v}{N} = \exp\left(\frac{-Q_v}{kT}\right)$	$d = \frac{a}{\sqrt{h^2 + k^2 + l^2}}$	$E_R = \frac{B}{r^n}$

equlateral triangle: $A = \frac{\sqrt{3}}{4}a^2$ volume of a sphere: $V = \frac{4}{3}\pi r^3$ area of a circle: $A = \pi r^2$ volume of a cylinder: $V = \pi r^2 h$

volume of a cone: $V = \frac{1}{3}\pi r^2 h$ volume of a pyramid: $V = \frac{1}{3}A_b h$ volume of a tetrahedron: $V = \frac{1}{6}\sqrt{2}a^3$

volume of a cube: $V=a^3$ circle circumference: $C=2\pi r$ triangle area: $A=\frac{1}{2}bh$ pythagorean: $a^2+b^2=c^2$

30-60-90: $a, a\sqrt{3}, 2a$ 45-45-90: $a, a, a\sqrt{2}$ 1 radian: 57.3° 1 degree: $\frac{\pi}{180}$ radians

solid solutions

- $\Delta r < 15\%$ (similar atomic radii)
- ullet as ΔEN decreases, solubility increases
- same structure (i.e. both FCC)
- a metal dissolves better in higher valency host

Defects

- vacancies—absence of atom, distorts planes
- dislocations-line defect, edge or screw
- frenkel-cation vacancy + cation interstitial
- shottky–cation and anion vacancy
- edge dislocation—extra half plane of atoms
- bergers vector—direction and magnitude of dislocation
- screw dislocation—spiral planar defect

Grains

- ullet grain boundary–interface between grains
- angle boundary–interface between grains with different orientations
- high angle boundaries leads to higher surface energy
- smaller grains have higher surface energy
- anisotropy–directional dependence of properties

 $\begin{array}{c|c} \text{Larger } E_0 & \text{Larger } T_m \\ \text{Smaller } E_0 & \text{Larger } \alpha \end{array}$