- 1. Să se calculeze $(1+i)^2$. (5 pct.)
 - a) i; b) 1; c) 4i; d) 0; e) -2 + i; f) 2i.
- 2. Să se determine valoarea parametrului real m pentru care x=2 este soluție a ecuației $x^3+mx^2-2=0$. (5 pct.)
 - a) 1; b) $\frac{1}{2}$; c) 3; d) $\frac{3}{4}$; e) $\frac{5}{2}$; f) $-\frac{3}{2}$.
- 3. Să se determine $m \in \mathbb{R}$ astfel încât funcția $f(x) = \begin{cases} x + 2m, & x \le 0 \\ m^2x + 4, & x > 0 \end{cases}$ să fie continuă pe \mathbb{R} . (5 pct.)
 - a) m = 2; b) m = 0; c) m = -2; d) m = 1; e) $m \in \mathbb{R}$; f) m = -3
- 4. Fie funcția $f: \mathbb{R} \setminus \{0\} \to \mathbb{R}$, $f(x) = \frac{x-1}{x}$. Să se calculeze f'(2). (5 pct.) a) $\frac{1}{9}$; b) $-\frac{1}{2}$; c) $\frac{1}{4}$; d) $\frac{2}{9}$; e) 0; f) 2.
- 5. Soluția ecuației $\sqrt[3]{x-1} = -1$ este: (5 pct.)
 - a) -3; b) 0; c) 3; d) -1; e) Ecuația nu are soluții; f) 1.
- 6. Fie ecuația $x^2 mx + 1 = 0$, $m \in \mathbb{R}$. Să se determine valorile lui m pentru care ecuația are două soluții reale și distincte. (5 pct.)
 - a) \emptyset ; b) $(-\infty, -2) \cup (2, \infty)$; c) $(0, \infty)$; d) \mathbb{R} ; e) $(-\infty, 0)$; f) $(-\infty, -1) \cup (2, \infty)$.
- 7. Multimea soluțiilor ecuației $x^2 5x + 4 = 0$ este: (5 pct.)
 - a) \emptyset ; b) $\{-1, 1\}$; c) $\{1, 4\}$; d) $\{0, -3\}$; e) $\{-1, 4\}$; f) $\{0, 3\}$.
- 8. Soluția ecuației $2^{x+1} = 16$ este: (5 pct.)
 - a) 3; b) 2; c) 0; d) -2; e) -1; f) 1.
- 9. Valoarea determinantului $\begin{vmatrix} 2 & -1 & 0 \\ 0 & 0 & 2 \\ 1 & 1 & 0 \end{vmatrix}$ este: (5 pct.)
 - a) 4; b) -6; c) -2; d) 0; e) 2; f) 5.
- 10. Să se determine funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 + ax + b$ astfel încât f(0) = 1, f(1) = 0. (5 pct.)
 - a) $x^2 + 4x + 5$; b) $x^2 1$; c) $x^2 + 1$; d) $x^2 2x + 1$; e) $x^2 + x + 1$; f) $x^2 3x$.
- 11. Să se rezolve inecuația x + 2 < 4 x. (5 pct.)
 - a) $x \in (0,1) \cup (1,\infty)$; b) $x \in (0,\infty)$; c) $x \in (-\infty,1)$; d) $x \in (-1,1)$; e) $x \in (1,\infty)$; f) \emptyset .
- 12. Valoarea integralei $\int_{0}^{1} (6x^2 + 2x) dx$ este: (5 pct.)
 - a) $\frac{1}{2}$; b) -2; c) 0; d) $\frac{1}{3}$; e) 3; f) 4.
- 13. Câte puncte de extrem local are funcția $f: \mathbb{R} \to \mathbb{R}, f(x) = x^3 3x^2$? (5 pct.)
 - a) Şase; b) Patru; c) Unul; d) Trei; e) Niciunul; f) Două.
- 14. Fie $l = \lim_{x \to 1} \frac{x^2 + x 2}{x 1}$. Atunci: (5 pct.)
 - a) l = 1; b) l = 5; c) l = 0; d) l = 3; e) l = 2; f) l = -1.
- 15. Să se calculeze $x + \frac{2}{x}$ pentru $x = -\frac{1}{2}$. (5 pct.)
 - a) $\frac{5}{2}$; b) 3; c) $-\frac{7}{2}$; d) 4; e) $\frac{9}{2}$; f) $-\frac{9}{2}$.

- 16. Fie sistemul de ecuații $\begin{cases} mx + y = 1 \\ 4x 2y = -1 \end{cases}$, $m \in \mathbb{R}$. Pentru ce valori ale lui m sistemul are soluție unică? (5 pct.)
 - a) $m \in \mathbb{R}$; b) $m \in (-\infty, -2]$; c) $m \in (-3, 3)$; d) $m \in [-5, 5]$; e) $m \in \mathbb{R} \setminus \{-2\}$; f) $m \in (-3, 1)$.
- 17. Să se scrie în ordine crescătoare numerele $\sqrt{2}, \sqrt{3}, \frac{\pi}{2}$. (5 pct.)
 - a) $\sqrt{2}, \frac{\pi}{2}, \sqrt{3};$ b) $\sqrt{3}, \sqrt{2}, \frac{\pi}{2};$ c) $\frac{\pi}{2}, \sqrt{3}, \sqrt{2};$ d) $\sqrt{3}, \frac{\pi}{2}, \sqrt{2};$ e) $\frac{\pi}{2}, \sqrt{2}, \sqrt{3};$ f) $\sqrt{2}, \sqrt{3}, \frac{\pi}{2}.$
- 18. Fie polinomul $P(X) = X^3 3X^2 + 2X$ cu rădăcinile x_1, x_2, x_3 . Să se calculeze $E = x_1^2 + x_2^2 + x_3^2$. (5 pct.)
 - a) E = 1; b) E = -2; c) E = 3; d) E = 5; e) E = 0; f) E = -4.