```
In [1]:
         import numpy as np
         import matplotlib.pyplot as plt
         %matplotlib inline
         import seaborn as sns
         import pandas as pd
         sns.set(style='whitegrid')
In [2]:
         import warnings
         warnings.filterwarnings('ignore')
         df=pd.read_csv(r"C:\Users\Admin\Desktop\class\resume project\EDA- HEALTHCARE DOM
In [3]:
         df
In [4]:
Out[4]:
               age
                    sex
                          ср
                              trestbps
                                        chol fbs restecg
                                                            thalach exang
                                                                              oldpeak
                                                                                               ca
            0
                63
                           3
                                   145
                                         233
                                                1
                                                         0
                                                                 150
                                                                           0
                                                                                   2.3
                                                                                            0
                                                                                                0
                       1
            1
                37
                           2
                                   130
                                         250
                                                0
                                                          1
                                                                 187
                                                                           0
                                                                                   3.5
                                                                                            0
                                                                                                0
                       1
            2
                41
                       0
                           1
                                   130
                                         204
                                                0
                                                         0
                                                                172
                                                                           0
                                                                                   1.4
                                                                                            2
                                                                                                0
            3
                                   120
                                         236
                                                         1
                                                                178
                                                                           0
                                                                                   8.0
                                                                                            2
                56
                       1
                           1
                                                0
                                                                                                0
            4
                       0
                           0
                                   120
                                         354
                                                0
                                                         1
                                                                163
                                                                           1
                                                                                   0.6
                                                                                            2
                                                                                                0
                57
                 •••
                                           •••
          298
                           0
                                   140
                                         241
                                                0
                                                         1
                                                                 123
                                                                           1
                                                                                   0.2
                                                                                            1
                                                                                                0
                57
                       0
          299
                                   110
                                         264
                45
                       1
                           3
                                                0
                                                         1
                                                                132
                                                                           0
                                                                                   1.2
                                                                                                0
          300
                                   144
                                         193
                                                         1
                                                                           0
                                                                                                2
                68
                       1
                           0
                                                1
                                                                 141
                                                                                   3.4
                                                                                            1
          301
                57
                                   130
                                         131
                                                0
                                                          1
                                                                           1
                       1
                           0
                                                                115
                                                                                   1.2
                                                                                                1
                                                         0
                                                                           0
          302
                57
                       0
                           1
                                   130
                                         236
                                                0
                                                                174
                                                                                   0.0
                                                                                            1
                                                                                                1
         303 rows × 14 columns
         DATA KEYWORDS
         age: age in years
         sex: (1 = male; 0 = female)
         cp: chest pain type
         trestbps: resting blood pressure (in mm Hg on admission to the hospital)
         chol: serum cholestoral in mg/dl
         fbs: (fasting blood sugar > 120 mg/dl) (1 = true; 0 = false)
```

restecg: resting electrocardiographic results

thalach: maximum heart rate achieved

exang: exercise induced angina (1 = yes; 0 = no)

oldpeak: ST depression induced by exercise relative to rest

slope: the slope of the peak exercise ST segment

ca: number of major vessels (0-3) colored by flourosopy

thal: 3 = normal; 6 = fixed defect; 7 = reversable defect

target: 1 or 0

In [5]: df.shape

Out[5]: (303, 14)

In [6]: df.head()

Out[6]: trestbps chol fbs restecg thalach exang oldpeak slope age sex ср ca thal 2.3 3.5 1.4 8.0 0.6

In [7]: df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 303 entries, 0 to 302
Data columns (total 14 columns):
    Column
              Non-Null Count Dtype
              _____
              303 non-null
0
    age
                              int64
1
              303 non-null
                              int64
    sex
2
              303 non-null
                              int64
    ср
    trestbps 303 non-null
3
                              int64
4
    chol
              303 non-null
                              int64
5
    fbs
              303 non-null
                             int64
    restecg 303 non-null
                             int64
6
7
              303 non-null
    thalach
                              int64
8
              303 non-null
                              int64
    exang
9
    oldpeak
              303 non-null
                              float64
                              int64
10 slope
              303 non-null
              303 non-null
                              int64
11 ca
12 thal
              303 non-null
                              int64
13 target
              303 non-null
                              int64
dtypes: float64(1), int64(13)
```

In [8]: df.describe()

memory usage: 33.3 KB

Out[8]:		age	sex	ср	trestbps	chol
	count	303.000000	303.000000	303.000000	303.000000	303.000000

	9-		-P	и со со ро			
count	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000	303.0000
mean	54.366337	0.683168	0.966997	131.623762	246.264026	0.148515	0.5280
std	9.082101	0.466011	1.032052	17.538143	51.830751	0.356198	0.5258
min	29.000000	0.000000	0.000000	94.000000	126.000000	0.000000	0.0000
25%	47.500000	0.000000	0.000000	120.000000	211.000000	0.000000	0.0000
50%	55.000000	1.000000	1.000000	130.000000	240.000000	0.000000	1.0000
75%	61.000000	1.000000	2.000000	140.000000	274.500000	0.000000	1.0000
max	77.000000	1.000000	3.000000	200.000000	564.000000	1.000000	2.0000
4							

df.dtypes #data types of each column in the data set

```
Out[9]:
         age
                        int64
         sex
                        int64
                        int64
         ср
         trestbps
                        int64
         chol
                        int64
         fbs
                        int64
         restecg
                        int64
         thalach
                        int64
         exang
                        int64
                      float64
         oldpeak
         slope
                        int64
         ca
                        int64
         thal
                        int64
         target
                        int64
```

dtype: object

fbs

reste

```
In [10]:
         df.columns
Out[10]: Index(['age', 'sex', 'cp', 'trestbps', 'chol', 'fbs', 'restecg', 'thalach',
                 'exang', 'oldpeak', 'slope', 'ca', 'thal', 'target'],
                dtype='object')
         univariante, bi variante and multi variante analysis of the give data
In [11]:
         df['target'].unique() #in target 0 is no heart disease and 1 is heart disease
Out[11]: array([1, 0], dtype=int64)
In [12]: df['target'].nunique()
Out[12]: 2
In [13]: df['target'].value_counts()
Out[13]: target
          1
               165
               138
          Name: count, dtype: int64
In [14]: f,ax=plt.subplots(figsize=(8,6)) #this visulization tells there are more heart p
         ax=sns.countplot(data=df,x='target')
         plt.show()
           160
           140
           120
           100
            80
            60
            40
            20
             0
                                  0
                                                                        1
                                                   target
In [15]: df.groupby('sex')['target'].value_counts() # here grouping of sex and target is
```

```
Out[15]: sex target
0 1 72
0 24
1 0 114
1 93
```

Name: count, dtype: int64

in this graph the 0 and 1 on xticks refers to gender and plot will refer to presence of heart disease

Out of 96 females - 72 have heart disease and 24 do not have heart disease.

out of 207 males - 93 have heart disease and 114 do not have heart disease.

```
In [17]: ax=sns.catplot(x='target',col='sex',data=df,kind='count') #in this graph it is v
```


In [18]: ax=sns.countplot(y='target',hue='sex',data=df) # in this graph ,target is visuli

In [21]: ax=sns.countplot(x='target',hue='fbs',data=df)

fbs refers to food blood sugar in this visualization is the comparion of fbs and presence of heart disease

fbs 0 is false and fbs 1 is true (fasting blood sugar > 120 mg/dl)

In [22]: ax=sns.countplot(x='target',hue='exang',data=df)

in this visualization comparion of target to exercise induced angina (exang) is done

```
correlation=df.corr() #corr refers to correlation
In [23]:
In [24]: correlation['target'].sort_values(ascending=False)
Out[24]: target
                      1.000000
                      0.433798
          ср
          thalach
                     0.421741
          slope
                     0.345877
          restecg
                     0.137230
          fbs
                     -0.028046
          chol
                     -0.085239
          trestbps
                    -0.144931
                     -0.225439
          age
                     -0.280937
          sex
                     -0.344029
          thal
                     -0.391724
          ca
                     -0.430696
          oldpeak
                     -0.436757
          exang
          Name: target, dtype: float64
         df['cp'].nunique() # cp refers to chest pain
In [25]:
Out[25]: 4
In [26]: df['cp'].value_counts() # 0,1,2,3 refers to severity of the chest pain
```

```
Out[26]: cp

0 143

2 87

1 50

3 23

Name: count, dtype: int64
```

In [27]: ax=sns.countplot(x='cp',data=df)

In [28]: df.groupby('cp')['target'].value_counts() #grouping of target and chest pain is

```
Out[28]:
           ср
                target
                0
                            104
                1
                             39
           1
                1
                             41
                              9
                0
                1
                             69
                             18
                0
                             16
```

Name: count, dtype: int64

In [29]: ax=sns.countplot(x='cp',hue='target',data=df)

in 0 severity of chest pain the heart disease presence is low

whereas in chest pain severity of 3 the heart disease presence is comparatively high

In [31]: df['thalach'].nunique() # thalach refers to maximum heart rate achieved
Out[31]: 91
In [32]: x=df['thalach'] #visualization of thalach is done using various plots is done
ax=sns.distplot(x,bins=10)


```
In [34]: x=df['thalach']
x=pd.Series(x,name='thalach series')
ax=sns.distplot(x,bins=10)
```



```
In [36]: x=df['thalach']
x=pd.Series(x,name='thalach series')
ax=sns.kdeplot(x,color='r',shade=True)
```



```
In [38]: ax=sns.stripplot(x='target',y='thalach',data=df)
```


comparation of thalach (maximum heart rate achieved) and target (presence of heart disease) is done in the above comparion $\frac{1}{2}$

MULTIVARIANTE ANALYSIS

In [40]: plt.subplots(figsize=(14,10))
 plt.title('correlation heatmap of heart disease')
 ax=sns.heatmap(correlation,square=True,annot=True,fmt='.2f',linecolor='white')

the above heat map tells about the correlation between target with thal,ca,slope,oldpeak,exang,restecg,fbs,chol,trestbps, cp,sex and age

In [41]: **df**

Out[41]:		age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca	tl
	0	63	1	3	145	233	1	0	150	0	2.3	0	0	
	1	37	1	2	130	250	0	1	187	0	3.5	0	0	
	2	41	0	1	130	204	0	0	172	0	1.4	2	0	
	3	56	1	1	120	236	0	1	178	0	0.8	2	0	
	4	57	0	0	120	354	0	1	163	1	0.6	2	0	
	•••							•••						
	298	57	0	0	140	241	0	1	123	1	0.2	1	0	
	299	45	1	3	110	264	0	1	132	0	1.2	1	0	
	300	68	1	0	144	193	1	1	141	0	3.4	1	2	
	301	57	1	0	130	131	0	1	115	1	1.2	1	1	
	302	57	0	1	130	236	0	0	174	0	0.0	1	1	

303 rows × 14 columns

```
In [42]: num_var=['age', 'trestbps','chol','thalach','oldpeak','target']
ax=sns.pairplot(df[num_var],kind='scatter',diag_kind='hist')
```


the above visualization is an pair plot of age, trestbps, chol, thalach, oldpeak, target

```
In [43]:
          df['age'].nunique()
Out[43]:
          df['age'].describe()
In [44]:
Out[44]:
                   303.000000
          count
          mean
                    54.366337
          std
                     9.082101
                    29.000000
          min
          25%
                    47.500000
          50%
                    55.000000
          75%
                    61.000000
                    77.000000
          max
          Name: age, dtype: float64
In [45]: ax=sns.distplot(x=df['age'])
```


univariante analysis of age

In [47]: ax=sns.boxplot(x='target',y='age',data=df)

comparsion of age to the presence of heart disease

In [49]: ax=sns.regplot(x='age',y='trestbps',data=df)

comparsion of age with the trestbps

In [51]: ax=sns.regplot(x='age',y='chol',data=df)

comparsion of age and chol

In [53]: ax=sns.regplot(x='chol',y='thalach',data=df)

comparsion of chol to thalach

```
df.isnull().sum()
In [54]:
Out[54]:
                      0
          age
          sex
                      0
                      0
          ср
          trestbps
                      0
          chol
          fbs
                      0
          restecg
                      0
          thalach
                      0
                      0
          exang
          oldpeak
          slope
                      0
          ca
          thal
                      0
          target
          dtype: int64
         assert pd.notnull(df).all().all()
In [55]:
In [56]:
          assert (df>=0).all().all()
In [57]: df
```

3:42 PM	exploratory data analysis of cardiovascular disease													
Out[57]:		age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca	tl
	0	63	1	3	145	233	1	0	150	0	2.3	0	0	
	1	37	1	2	130	250	0	1	187	0	3.5	0	0	
	2	41	0	1	130	204	0	0	172	0	1.4	2	0	
	3	56	1	1	120	236	0	1	178	0	0.8	2	0	
	4	57	0	0	120	354	0	1	163	1	0.6	2	0	
	•••													
	298	57	0	0	140	241	0	1	123	1	0.2	1	0	
	299	45	1	3	110	264	0	1	132	0	1.2	1	0	
	300	68	1	0	144	193	1	1	141	0	3.4	1	2	
	301	57	1	0	130	131	0	1	115	1	1.2	1	1	
	302	57	0	1	130	236	0	0	174	0	0.0	1	1	
	303 rc	ows ×	14 cc	olumi	ns									
	4												l	•
In [58]:	df['a	age']	.desc	ribe	e()									
Out[58]:	coun mean std			0000 36633 0821	37									

min 29.000000 25% 47.500000 50% 55.000000 75% 61.000000 77.000000 max Name: age, dtype: float64


```
df['trestbps'].describe()
In [60]:
Out[60]:
                   303.000000
          count
          mean
                   131.623762
                    17.538143
          std
                    94.000000
          min
                   120.000000
          25%
          50%
                   130.000000
          75%
                   140.000000
          max
                   200.000000
          Name: trestbps, dtype: float64
In [61]:
         plt.subplots(figsize=(5,3))
          ax=sns.boxplot(data=df,x='trestbps')
                                                യ ത
                                                              Φ
                                                          0
            100
                      120
                                140
                                         160
                                                   180
                                                             200
                                trestbps
In [62]:
         df['chol'].describe()
Out[62]:
                   303.000000
          count
                   246.264026
          mean
          std
                    51.830751
          min
                   126.000000
          25%
                   211.000000
                   240.000000
          50%
          75%
                   274.500000
                   564.000000
          max
          Name: chol, dtype: float64
```

plt.subplots(figsize=(5,3))
ax=sns.boxplot(data=df,x='chol')

In [63]:


```
In [64]: df['thalach'].describe()
```

count Out[64]: 303.000000 149.646865 mean 22.905161 std min 71.000000 25% 133.500000 50% 153.000000 75% 166.000000 max 202.000000

Name: thalach, dtype: float64

In [65]: plt.subplots(figsize=(5,3))
 ax=sns.boxplot(data=df,x='thalach')


```
In [66]: df['oldpeak'].describe()
```

```
Out[66]:
          count
                   303.000000
                     1.039604
          mean
          std
                      1.161075
          min
                     0.000000
                     0.000000
          25%
          50%
                     0.800000
          75%
                      1.600000
                      6.200000
          max
```

Name: oldpeak, dtype: float64

```
In [67]: plt.subplots(figsize=(5,3))
    ax=sns.boxplot(data=df,x='oldpeak')
```


here visualization of age,trestbps,chol,thalach,oldpeak by box plot is done inorder to find the outliers in the data