Priority Queues

Review

- Work lists: data structures that
 - o store elements and
 - give them back one at a time in some order
- Stacks: retrieve the element inserted most recently
- Queues: retrieve the element that has been there longest
- Priority queues: retrieve the most "interesting" element

The Work List Interface

Recall the work list interface template:

```
Now,
                                                                    fully generic
                   Work List Interface
// typedef void* elem;
                          // Decided by client
 // typedef _____* wl_t;
 bool wl_empty(wl_t W)
                                                   @*/;
  /*@requires W != NULL;
 wl_t wl_new()
  /*@ensures \result != NULL && wl_empty(\result); @*/;
 void wl_add(wl_t W, elem e)
  /*@requires W != NULL && e != NULL;
                                                   @*/
                                                   @*/;
  /*@ensures !wl_empty(W);
 elem wl_retrieve(wl_t W)
  /*@requires W != NULL && !wl_empty(W);
                                                   @*/
  /*@requires \result != NULL;
                                                   @*/;
```

This is not the interface of an actual data structure but a general template for the work lists we are studying

Priority Queues

Priority Queues

... retrieve the *most "interesting"* element

- Elements are given a priority
 - retrieves the element with the highest priority
 - several elements may have the same priority
- Examples
 - o emergency room
 - highest priority = most severe condition
 - processes in an OS
 - ➤ highest priority = well, it's complicated
 - homework due
 - ➤ Highest priority = ...

Towards a Priority Queue Interface

It will be convenient

to have **Priority Queue Interface** a peek // typedef void* elem; // Decided by client function // typedef _____* pq_t; o it returns bool pq_empty(pq_t Q) /*@requires Q != NULL; @*/; the highest priority pq_t pq_new() /*@ensures \result != NULL && pq_empty(\result); @*/; element without void pq_add(pq_t Q, elem e) /*@requires Q != NULL && e != NULL; @*/ removing it /*@ensures!pq_empty(Q); @*/; elem pq_rem (pq_t Q) /*@requires Q != NULL && !pq_empty(Q); @*/ /*@ensures \result != NULL: @*/; Added elem pq_peek (pq_t Q) /*@requires Q != NULL && !pq_empty(Q); @*/ /*@ensures \result != NULL && !pq_empty(Q);

This is the work list interface with names changed

How to Specify Priorities?

Mention it as part of pq_add

- O How do we assign a priority to an element?
 - > the same element should always be given the same priority
 - > priorities should form some kind of order
- O Do bigger numbers represent higher or lower priorities?

People are bad at being consistent

How to Specify Priorities?

- 2. Make the priority part of an elem
 - o and provide a way to retrieve it

int get_priority(elem e)

- O How do we assign a priority to an element?
 - > the same element should always be given the same priority
 - > priorities should form some kind of order
- Ob bigger numbers represent higher or lower priorities?

How to Specify Priorities?

3. Have a way to tell which of two elements has higher priority

bool has_higher_priority(elem e1, elem e2)

Given two elements, saying which one has higher priority is easier

- o it returns true if e1 has strictly higher priority than e2
- It is the client who should provide this function
 - > only they know what elem is
- For the priority queue library to be generic, we turn it into a type definition

typedef bool has_higher_priority_fn(elem e1, elem e2);

and have pq_new take a priority function as input

The Priority Queue Interface

f(e1, e2) returns true if e1 has strictly higher priority than e2

> We commit to the priority function when creating the queue

Priority Queue Implementations

	Unsorted array/list	Sorted array/list	AVL trees	Heaps
add	O(1)	O(n)	O(log n)	O(log n)
rem	O(n)	O(1)	O(log n)	O(log n)
peek	O(n)	O(1)	O(log n)	O(1)

Heaps

Heaps

 A heap is a type of binary tree used to implement priority queues

- Since add and rem have cost O(log n), a heap is a balanced binary tree
 in fact, they are as balanced a tree can be
- Since peek has cost O(1), the highest priority element must be at the root
 - in fact, the elements on any path from a leaf to the root are ordered in increasing priority order

Heaps Invariants

1. Shape invariant

2. Ordering invariant

 The priority of a child is lower than or equal to the priority of its parent or equivalently

The priority of a parent is higher than or equal to the priority of its children

The Many Things Called Heaps

- A heap is a type of binary tree used to implement priority queues
- A heap is also any priority queue where priorities are integers
 - o it is a min-heap if smaller numbers represent higher priorities
 - o it is a max-heap if bigger numbers represent higher priorities
- A heap is the segment of memory we called allocated memory

This is a significant source of confusion

Min-heaps

- Any priority queue where priorities are integers and smaller numbers represent higher priorities
- In practice, most priority queues are implemented as min-heaps
 - o and heap is also shorthand for min-heap _____more confusion!
- Most of our examples will be min-heaps
 - 1. Shape invariant
 - 2. Ordering invariant
 - The value of a child s ≥ the value of its parent or equivalently
 - ➤ The value of a parent is ≤ the value of its children

Activity

Draw a min-heap with values 1, 2, 2, 9, 7

Activity

Draw a min-heap with values 1, 2, 2, 9, 7

... and several more

Insertion into a Heap

Strategy

Min-heap version

- Maintain the shape invariant
- Temporary break and then restore the ordering invariant

Example

- We start by putting the new element in the only place that maintains the shape invariant
 - but doing so may break the ordering invariant

O How to fix it?

Swapping up

- How to fix the violation?
 - swap the child with the parent

 Swapping up may introduce a new violation

Swapping up

- How to fix the violation?
 - swap the child with the parent

or we reach the root

Adding an Element

- General procedure
 - 1. Put the added element in the one place that maintains the shape invariant
 - > the leftmost open slot on the last level
 - or, if the last level is full, the leftmost slot on the next level
 - 2. Repeatedly swap it up with its parent
 - > until the violation is fixed
 - > or we reach the root
 - There is always at most one violation
- The overall process is called sifting up
- This costs $O(\log n)$

o because we make at most $O(\log n)$ swaps

For a heap with *n* elements

Removing the Minimal Element of a Heap

Strategy

- Maintain the shape invariant
- Temporary break and then restore the ordering invariant

Example

- We must return the root
- We replace it with the only element that maintains the shape invariant

• Which violation to fix first?

Swapping down

- Which violation to fix first?
 - If we swap 4 and 9, we end up with **three** violations

• Can we do better?

Swapping down

If we swap 9 and 2, we end up with one violation
at most two in general

- When swapping down, always swap with the child with the highest priority
 - smallest value in a min-heap

Swapping down

Always swap the child with the highest priority

We stop when no new violations are introduced
 or we reach a leaf

Removing an Element

- General procedure
 - 1. Return the root
 - 2. Replace it with the element in the one place that maintains the shape invariant
 - > the rightmost element on the last level

- > until all violations are fixed
- > or we reach a leaf
- This guarantees there are always at most two violations
- The overall process is called sifting down
- This costs $O(\log n)$ For a heap with n elements
 - because we make at most O(log n) swaps

Priority Queue Implementations

	Unsorted array/list	Sorted array/list	AVL trees	Heaps
add	O(1)	O(n)	O(log n)	O(log n)
rem	O(n)	O(1)	O(log n)	O(log n)
peek	O(n)	O(1)	O(log n)	O(1)

Representing Heaps

How to Represent a Heap?

- Borrowing from BSTs, we could use pointers
 - left and right child
 - > needed when sifting down
 - parent node
 - > needed when sifting up

That's a lot of pointers to keep track of!

It also takes up a lot of space

Try writing the swap function!

Can we do better?

Let's number the nodes level by level starting at 1

- Observations:
 - If a node has number i, its left child has number
 - If a node has number i, its right child has number 2i + 1
 - If a node has number i, its parent has number i/2

- If a node has number i, its left child has number
- If a node has number i, its right child has number 2i + 1
- If a node has number i, its parent has number i/2
- By numbering nodes this way, we can navigate the tree up and down using arithmetic

- By numbering nodes this way, we can navigate the tree up and down using arithmetic
- These numbers are contiguous and start at 1

- These numbers are contiguous and start at 1
- Do we know of any data structures that allows accessing data based on consecutive integers?

Arrays!

Representing Heaps using Arrays

Representing Heaps using Arrays

- add will initially put a new element at index 7
- remove will yank the element at index 6

Representing Heaps using Arrays

- add will initially put a new element at index 7
- remove will yank the element at index 6

Bounded Priority Queues

Types of Work Lists

- The work lists we considered so far were unbounded
 - there was no maximum to the number of elements they could hold
- A bounded work list has a capacity fixed at creation time
 we can't add elements once full
- In practice
 - stacks are typically unbounded
 - queues can be either
 - priority queues are often bounded

```
Priority Queue Interface
// typedef void* elem;
                          // Decided by client
typedef bool has_higher_priority_fn(elem e1, elem e2);
// typedef _____* pq_t;
bool pq_empty(pq_t Q)
/*@requires Q != NULL;
                                                 @*/
pq_t pq_new(has_higher_priority_fn* prio)
/*@requires prio != NULL; @*/
/*@ensures \result != NULL && pq_empty(\result); @*/;
void pg add(pg t Q, elem e)
/*@requires Q != NULL && e != NULL;
                                                 @*/
                                                 @*/
/*@ensures!pg empty(Q);
elem pq_rem (pq_t Q)
/*@requires Q != NULL && !pg empty(Q);
                                                 @*/
                                                 @*/;
/*@ensures \result != NULL:
elem pq_peek (pq_t Q)
/*@requires Q != NULL && !pq_empty(Q);
                                                 @*/
/*@ensures \result != NULL && !pq_empty(Q);
```

The Bounded Priority Queue Interface

- pq_new now takes the capacity of the priority queue
- We need a new function to check if it is full

```
o pq_full
```

- We cannot insert an element into a full priority queue
- A priority queue is not full after removing an element

```
Bounded Priority Queue Interface
// typedef void* elem;
                         // Decided by client
typedef bool has_higher_priority_fn(elem e1, elem e2);
// typedef _____* pq_t;
bool pq_empty(pq_t Q)
                                                    @*/;
 /*@requires Q != NULL;
bool pq_full(pq_t Q)
 /*@requires Q != NULL;
                                                    @*/;
pq_t pq_new(int capacity, as_higher_priority_fn* prio)
/*@requires capacity > 0 && prio != NULL; @*/
 /*@ensures \result != NULL && pq_empty(\result);
                                                    @*/;
void pg add(pg t Q, elem e)
/*@requires Q != NULL && !pq_full(Q) && e != NULL;
                                                    @*/
 /*@ensures!pg empty(Q);
                                                    @*/;
elem pg rem (pg t Q)
/*@requires Q != NULL && !pq_empty(Q);
                                                    @*/
                                                    @*/;
 /*@ensures \result != NULL & !pq_full(Q
elem pq_peek (pq_t Q)
/*@requires Q != NULL && !pg empty(Q);
                                                    @*/
 /*@ensures \result != NULL && !pg empty(Q);
                                                    @*/
```