

Cross rib requirements							
Live load (KN/m ²)	Span (m)	Condition					
<= 3	<=5	No cross rib					
<=3	>5	One cross rib					
>3	4 to 7	One cross rib					
>3	>7	Three cross rib					

Development length
$$L_{d,compression} = 40 φ$$

$$L_{d,tension} = 60 φ$$

Check of shear

$$q_{u} = \frac{Q_{u}}{bd}$$

$$q_{cu}(uncracked) = 0.16 \int \frac{f_{cu}}{\gamma_{c}} N/mm^{2}$$

$$q_{cu}(cracked) = 0.12 \int \frac{f_{cu}}{\gamma_{c}} N/mm^{2}$$

$$q_{umax} = 0.7 \int \frac{f_{cu}}{\gamma_{c}} N/mm^{2} \le 4.4 N/mm^{2}$$

$$q_{su} = q_{u} - q_{cu}(cracked)$$

$$q_{su} = \frac{A_{st} \left(\frac{f_{yst}}{\gamma_{s}}\right)}{bS}$$

For Hidden Beams and Slabs:

$$q_{cu}$$
 in (MPa) = $0.16 \times \sqrt{\frac{f_{cu}}{y_c}}$

Continuity	tmin two way solid slab	tmin one way solid slab	m
^	Ls/35	Ls/30	1
A	Ls/40	Ls/35	0.87
	Ls/45	Ls/40	0.76

French Equation

$$\mathbf{H}_{B} = -\frac{\mathbf{W}_{1} \ \mathbf{L}_{1}^{3} + \mathbf{W}_{2} \ \mathbf{L}_{2}^{3}}{8 \ (\mathbf{L}_{1} + \mathbf{L}_{2})} + \mathbf{L}_{1} + \mathbf{L}_{2}$$

α, β of the egyptian code

$$\alpha = \frac{r}{2} - 0.15$$
 $\beta = \frac{0.35}{r^2}$

Marcus coefficients

r	1	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	2
α	0.396	0.473	0.543	0.606	0.66	0.706	0.746	0.778	0.806	0.83	0.849
β	0.396	0.333	0.262	0.212	0.172	0.14	0.113	0.093	0.077	0.063	0.053

Grashoff's coefficients

$$\alpha = \frac{r^4}{1 + r^4}$$
 $\beta = \frac{1}{1 + r^4}$ $\alpha = 1 - \frac{1}{3r^2}$ $\beta = 1 - \frac{1}{2r}$

Equivalent load for bending and shear

$$\alpha = 1 - \frac{1}{3r^2} \qquad \beta = 1 - \frac{1}{2r}$$

$$A_{smin}(beams) = smaller\,of\left(\frac{0.225\sqrt{f_{cu}}}{f_{u}}\times b\times d\text{ , 1.3A}_{s}\right)$$

$$\geq (0.15\% \times b \times d)$$
 case of H. G steel.

$$A_{smin}(slabs) = \frac{0.6}{f_y} \times b \times d \quad \geq \\ \left(0.15\% \times b \times d\right) case \ of \ H. \ G \ steel.$$

$$A_{\text{stmin}}$$
 (stirrups) = $(0.4/\text{fy}).\text{b.s}$

Effective width of flange Beffective

The smallest of $(16t_s + b, \frac{L}{5} + b, c.l \text{ to } c.l)$ case of T – section

The smallest of $(6t_s + b, \frac{L}{10} + b, c. l \text{ to edge})$ case of L – section

Moment coefficients (K) for slabs

$$M = \frac{w \times L^2}{K}$$

Shear and Moment coefficients (K) for Beams

$$M = \frac{w \times L^2}{\kappa}$$
 , $Q = w \times L \times K$

Flat Slabs

Moment Distribution factors for empirical method

Woment Distribution factors for empirical method									
Strip	Type of	E	xterior pan	Interior panel					
	end support*	Exterior negative	Positive moments	Interior negative	Negative moments	Positive moments			
-		moments		moments					
Column	a	25	30	50	45	25			
strip	b	20	30						
Field	a	5	20	20	15	15			
strip	Ъ	10	20			13			

^{*} Types of end support

b- Beams with total depth equal or greater than three times slab thickness t.

$$q_{cup,uncracked} = \begin{cases} 0.316 \sqrt{\frac{f_{cu}}{\gamma_c}} \\ 0.316 \left(0.5 + \frac{b}{t}\right) \sqrt{\frac{f_{cu}}{\gamma_c}} \\ 0.8 \left(\frac{\alpha d}{b_o} + 0.2\right) \sqrt{\frac{f_{cu}}{\gamma_c}} \end{cases} \qquad q_{up} = \frac{Q_{up} \beta}{b_o d}$$

$$1.7 \ N/mm^2$$

 α = 4 for interior column = 1.15 (interior column) α = 3 for exterior column =1.30 (exterior column) α = 2 for corner column =1.50 (corner column)

$$\gamma_{q} = 1 - \gamma_{f}$$

$$\gamma_{f} = \frac{1}{1 + \left(\frac{2}{3}\right)\sqrt{\frac{c_{1} + d}{c_{2} + d}}}$$

$$M_{Fq} = \gamma_{q} M_{F}$$

$$M_{FF} = \gamma_{f} M_{F}$$

$$M = \frac{w_{u}L_{2}}{8} \left(L_{1} - \frac{2D}{3}\right)^{2}$$

$$q_{cup}(cracked) = 0.12 \sqrt{\frac{f_{cu}}{\gamma_c}}$$
 $q_{up} \le 0.45 \sqrt{\frac{f_{cu}}{\gamma_c}}$

 $q_{sup} = q_{up} - q_{cup}(cracked)$

$$q_{sup} = \frac{A_{st} \left(\frac{f_y}{\gamma_s} \right)}{b_o \ s} \qquad f_y \le 350 \ N/mm^2$$

a- No beams.