Math assignment									Name: Jiyu Yan ID: 1851015											
	2018年					-11:42				917 N	laths a	nd St	ats As	signmen	it					
[.(0	a)	(d .	-) (٧٧)	V (٦a-	→ b	v 7d												
(b)	a	b	C							CVJ	700)	, V7d	5							
	0	0	O	0	0	[1			/		ſ							
	0	O	D		0	l	0	0	1		C)	l							
	0	0		0	0	1		J			/		1							
	0	0	l			l	Ú	0	(Ċ)	١							
	O	1	0	Ú	0	1	l	l	J		/		1							
	0	1	0	1	0	l	0	1	1		1									
	0	[(J	0	l	1	l			1		1							
	Û	(1		(l	0		(1		(
		V	0	Ú	Ū	U)			(
	(U	J		J	U	0	0	C)	l		1							
	(จ		Ú	0	U	l	1	()	l		1							
	(0	[-	1	0	J	0	(l		1							
	- ([0	D	0	U -	-	1	(0	l		1							
	1	1	J		0	0	0	1	ľ)	l		1							
		(0	0	0		l	(1							
											(J							
(c)	(a -	cnd) V (700	hv 7d) (E)		za V	(cAd		[a V	(bv	nd)	6)						
]						v9) ^ [\	SV7J/	7				
							/ V '	CANA	V					/	- '-					
)		l .) ,	\ J.	. / /	. 1					ΙΫ́						
2.	(W)	α.		χァl	p (x)) =)	7)	X ; { {	X X	=2/2.f	, ≮€.	N } /	\	\ \ \ €	N	/				
		Ь	l ,	(() (2 P(X) } =	AX:	XX X=	2KH,	KEN,	}/\ {x	123	16 N	, ~ ~ (N }					
		C		X	1 10			\	1	X= 3	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	kes	. 2	SEPE	.)}					
					,) 1				'n is	the num	ber of	eleme	its in S						
	(b)	(),	ſ	£4.	€ 1/K	not i	odd,						2 which		Crtrac	lict	to		
		Princ	nurb	er (AL	Prime	numbe	ers c	ant	be d	Wided	by	ony	Whole	numbe	r ex	cept			
	,	itsel	L ar	J to	he no	n mber		50	£	hís	States	rent	1,3	true.			ı			
				,																

	C: F. 11. is prime number. Can't find any subset of Phone, by
	C: F. 11. is prime number. Can't find any subset of P here, by adding all elements wild get 11. So it's false.
3.	(a) Nogative & is not a set. So it's not a power set of any set.
	(b) \a}
	(L) regative.
	(1) Negative
	(e) Negative
4.	Transitue means Rp. A. if ta.b. c (Aitaphabpe) = ape.
	So the R#:Xex, it is transitive only if x#y, y# 2 and x# 2.
	Through the existence of x thy and y th x we can't deduce it's transitive.
	2 must be different from X.
5.	(a) partial order to example, X={a,b}, {= {a,c}} Either X & Tor Y C X is not right so it doesn't have totality. So it is partial order.
	(b) (x) is least (sole minimal), no greatest or maximal.
h.	(a) Ron A is re-lexive => (x,x) ER, YXEA. This means we must
	include all n diagonal pairs in all relation. Other pairs are optional.
	So we have 2n-h reflexive relations.
	15 HEXIVE VERTIONS.
	(b) A each pair (a, b) EA must be the same state with (b, 9) EB.
	B. Apart from diagonal elements, we have nin free elements.
	So the total free elements are n-n +n - n-n
	So there are 2 Symmetric elements.
	(c) for each poir (a, b), atb, there are 3 possibilities, only (a, b), only (b, a), or
	none of them. Apart from diagonal there are non free elements.

All diagonal n elements have 2 possibilities. So there are 3^{n-1} antisymmetric roboticus. 7. $(g+)^{-1}(x) = y \Rightarrow x = (0+)y = g(+u) \Rightarrow g^{-1}(x) = f(y)$ $\Rightarrow f(g^{-1}(x)) = y \Rightarrow (g+)^{-1}(x) = f^{-1}g^{-1}(x)$ 8. $4 \times KN$: if prime $(x) = 1 \neq K$. The set of prime number is a subset of a countably infinite and a subject of a countably infinite set is either countably infinite. Set is either countably infinite or finite. Since the set of prime hunder is infinite, it is countably infinite. 7. Flush; $52-5=47$ remain $13-3=10$ $(\frac{5}{4})=\frac{10-9}{47-46}=0.0416$ Stright: $(\frac{9}{4},\frac{10}{4})=\frac{4}{47}$ $(\frac{4}{46})=0.044$ $(\frac{10}{4})=0.6$	
So there are $\frac{3}{1} \cdot 2^n$ antisymmetric relations. 7. $(gf)^{-1}(x) = y \Rightarrow x = (3f)y = g(f(y)) \Rightarrow g^{-1}(x) = f(y)$ $\Rightarrow f^{-1}g^{-1}(x) = y \Rightarrow x = (3f)y = g(f(y)) \Rightarrow g^{-1}(x) = f(y)$ 8. $(gx) \in N$: if Prime $(x) = T$ $\subseteq N$. The set of Prime number is a subset Of N : N is number infinite and a subjet of a countably infinite Set is either wantably infinite or finite. Since the set of Prime number is infinite, it is countably infinite. 9. Aush: $52-5=47$ remains $13-3=10$ (3) (3) (47)	
8. $\int \forall x \in \mathbb{N}$: is Prime $(x) = \int \int \int \mathbb{N}$. The set of Prime number is a subset Of \mathbb{N} . \mathbb{N} is nortally infinite and a subset of a countably infinite Set is either countably infinite. Since the set of Prime number is infinite, it is countably infinite. 9. Abush; $52-5=47$ remain $13-3=10$ \mathcal{N}	
8. $q \forall x \in N$: is prime $(x) = T$ $\subseteq N$. The set of prime number is a subset of N . N is number and a subset of a countably infinite set is either wantably infinite. Since the set of prime number is infinite, it is countably infinite. 9. Flush: $52-5=47$ remaining $13-3=10$ \mathcal{O} $(\frac{12}{47})=\frac{12.9}{47.46}=0.0416$ $(9,10)$ $\frac{4}{47}$ $\frac{4}{46}$ $\frac{4}{4}$	
of N. N is nuntally infinite and a subject of a countably infinite set is either warfally infinite or finite. Sine the set of pirime hurber is infinite, it is countably infinite. 9. Abush; $52-5=47$ remaining $13-3=10$ (2) (47) $(47$	
Set is either wartably in first or finite. Sine the set of prime number is infinite, it is countably infinite. 9. Flush; $52-5=47$ remain $13-3=10$ $(\frac{12}{2})$ $=\frac{12.9}{47.46}=0.0416$ Strught: $(\frac{9}{1}, \frac{10}{2})$ $=\frac{4}{47} \times \frac{4}{46} \times 2 \times 2 = 0.0296$ $(13, A)$	
number is infinte, it is countably infinite. 9. Flush; $52-5=47$ remain $13-3=10$ $(\frac{10}{2})=\frac{10.9}{47.46}=0.0416$ Sträight: $(9,10)=\frac{4}{47}\times\frac{4}{46}\times 2\times 2=0.0296$ $(10,A)$ 10. (a) $f(den)=0.001$ $f(head)=0.64$ $f(head)=0.64$	
number is infinte, it is countably infinite. 9. Flush; $52-5=47$ remain $13-3=10$ $(\frac{12}{2})=\frac{12\cdot9}{47\cdot46}=0.0416$ Straight: $(\frac{9}{10})=\frac{4}{47}\times\frac{4}{46}\times 2\times 2=0.0296$ $(10,A)$ 10. (a) $\frac{9}{10}$ $\frac{1}{10}$ $\frac{4}{10}$ $\frac{4}$	
Stright: $(9, 10)$ $\frac{4}{4\pi} \times \frac{4}{66} \times 2 \times 2 = 0.0296$ $(10, A)$ $(0) P(den) = 0.000$ P(head den) = 0.64 P(head den) = 0.6	
10. (a) P(den) = 2.20) P(head den) = 0.64 P(head den) = 0.6	
10. (a) P(den) = 2.200 P(head den) = 0.64 P(head den) = 0.6	
P(test den)=0.99 P(test den) = 0.04.	
how test for Barry was positive; also has headaches.	
p(test) = p (den). p(test den) + p (den). p(test den) = 0.000 x 0.99 + 0.9999 x 0.04 = 0.040095	
P (head) = P(den) . P (head (den) + P (den). P (head (den) = 0,000) x 0.64 + 0.2999 x a 6 = 0.60004	
P (test. hard den). P (Jan) 0.99 xo. 64 x 0.009 0. 0000 (33 8	
P(den(test-head) = P(test-head) P(Jan) = 0.99 xo. 64 x xxx = 2 xxx = 3 x = 5 x	
Based on J.002633), it's not enough evidence for doctor to conclude that parry has dengue.	
(b) P (test 2 den) = 0.99 x 0.99 P (test 2 den) = 0.04 x 0.04	

```
P(test2) = P(den). P(test2 den) + P(den). P(test2 den) = 0.000 x 0.99x0.99 + 0.9999x 0.09x0.0x
   \frac{P\left(\text{den}\left[\text{test 1}\right] = \frac{P\left(\text{test 1}\left[\text{den}\right) \cdot P\left(\text{den}\right)}{P\left(\text{test 1}\right)} = \frac{0.000\left(\times 0.99 \times 0.99\right)}{0.000\left(\times 0.99 \times 0.99\right)} \approx 0.05773
0.05773 > 0.02415, \text{ but it's still very small. Cando't affect the belief}
           of diagnosis now.
      P(den | test n) > 0.5 = P(test n | den) · p(den) = P(test n | den) · P(den)

P(test n) P(den) · P(test n | den) · P(den) · P(den) · P(den) · P(test n | den)
                      \frac{|(0.99)^{n} + (0.99)^{n}}{|(0.99)^{n} + (0.99)^{9} + (0.04)^{n}}  when n=3, p(den test 3) = 0.603 > 0.5
       The minimum number is 3
11. This is my output after one running:
estimate pai is 3.156
95 % confidence interval in 5 estimates:[3.057, 3.183]
95 % confidence interval in 10 estimates:[3.096, 3.154]
95 % confidence interval in 100 estimates:[3.110, 3.179]
95 % confidence interval in 1000 estimates:[3.123, 3.160]
t=3.808 in 5 estimates
t=5.873 in 10 estimates
t=5.799 in 100 estimates
t=10.496 in 1000 estimates
From the output we could conclude that averagely the more number of estimates are, the more accuracy of the 95%
confidence interval is.
Although in 5 and 10 estimates, sometimes t is not big enough to conclude that there is a significant difference at the
p = 99% level. When the number of estimates is 100, 1000 or more, we could always conclude that there is a
significant difference at the p = 99% level.
```

My main methods are shown as below:

```
# Estimate pai by throwing 1000 darts uniformly
   def pred uniform():
       num_less = 0
       for i in range (1000):
           dart = throwUniformDart() # change here to:dart=throwNormalDart() is the function pred normal()
           if distanceToOrigin(dart) < 1:</pre>
               num less += 1
       pred = 4 * num_less / 1000
# print(pred)
       return pred
   # Compute the confident interval. n is the number of estimate.
   def confident(n):
       ans = mean sig(n)
       mean = ans[0]
       sig = ans[1]
16
       left = mean - 1.96 * sig/(n ** 0.5)
       right = mean + 1.96 * sig/(n ** 0.5)
       print("95 % confidence interval in {} estimates:[{:.3f}, {:.3f}]".format(n, left, right))
19
   # Compute the mean and standard deviation of uniformly thrown from n estimates.
```

```
def mean sig(n):
23
        all = []
24
        sum = 0
25
       for i in range(n):
26
          pred = pred_uniform() #normally thrown just change here to:pred = pred_normal()
            all.append(pred)
28
           sum += pred
29
      mean = sum / n
# print(mean)
       temp_sum = 0
       for \overline{i} in all:
          temp_sum += (i - mean) ** 2
34
       sig = (temp_sum / (n ** 0.5)) ** 0.5
35
       return mean, sig
36
37
^{37} # Compute t-test from n estimates ^{38} def diff(n):
39
        ans1 = mean_sig(n)
40
        ans2 = mean sig2(n) #change pred=pred normal() in line26, then mean sig becomes mean sig2()
41
       nom = abs(ans1[0] - ans2[0])
dnom = (ans1[1] **2 /n + ans2[1] **2/n) ** 0.5
42
43
       t = nom/dnom
       print("t={:.3f} in {} estimates".format(t, n))
45
        return t
   if __name__ == "__main__":
    pred = pred_uniform()
46
47
48
        print('estimate pai is {:.3f}'.format(pred))
49
       confident(5)
50
        confident(10)
51
       confident (100)
       confident (1000)
53
        diff(5)
54
       diff(10)
        diff(100)
56
        diff(1000)
```