Package 'seqMC'

June 9, 2017

Title Sequential Monte Carlo

Version 0.0.1

tion is based on	the Gordon, Salmond and Smith (1993) Novel approach to nonlinear or non- an state estimation
Depends R (>= $3.4.0$)	
License Apache Licer	nse, Version 2.0
Encoding UTF-8	
LazyData true	
RoxygenNote 6.0.1	
R topics docun	nented:
seqMC	
Index	3
seqMC	Sequential Monte Carlo
Description	
Sequential Monte	Carlo
Usage	
<pre>seqMC(f, prob_)</pre>	y_given_x, x0, y)
Arguments	
f	function, when called with parameter k (time point) and x_k (state vector at time k), it would return x_k+1
prob_y_given_x	function, when called with parameter k (time point), y_k (observation vector at time k) and x_k (state vector at time k), it would return the conditional probability/density: $Prob(y_k \mid x_k)$
x0	matrix, sample of state vector at time 0, one sample vector per col.
У	matrix, observations, col 1 is observation at time 1, col 2 is observation at time 2, etc.
	1

2 seqMC

Value

sample from posterior distribution of state vectors, a 3D array, with dimension of d x N x K, where d is the length of a state vector, N is the number of samples, K is the number of time steps.

Examples

```
f <- function(k, x) {</pre>
 0.5 * x + 25 * x / (1 + x * x) + 8.0 * cos(1.2 * (k-1)) + rnorm(length(x), sd=sqrt(10.0))
prob_y_given_x \leftarrow function(k, y, x) {
 as.numeric(dnorm(y - x * x / 20.0))
### simulate true path ###
K = 50
x = rep(0.0, K+1)
for (k in 1:K) \{
x[k+1] = f(k, x[k])
}
x = x[-1]
y = x * x / 20 + rnorm(length(x))
### estimate the posterior of state vector ####
N = 4000
x0 = matrix(rnorm(N, sd=sqrt(2)), nrow=1, ncol=N)
xhat = seqMC(f, prob_y_given_x, x0, matrix(y, nrow=1))
xhat_mean = apply(xhat, 3, mean)
alpha = 0.05
xhat_ci_lower = apply(xhat, 3, quantile, probs=alpha/2)
xhat_ci_upper = apply(xhat, 3, quantile, probs=1-alpha/2)
plot(x[-1], ylim=c(-40, 40), pch='*')
lines(xhat_ci_lower, lty='dotted')
lines(xhat_mean)
lines(xhat_ci_upper, lty='dotted')
```

Index

seqMC, 1