Final Report

Team Name: Keep Going Team Leader: 谢藩

Date: 2016.12.30

1 Prototype System Introduction

1.1 Functions

introduction、notice、for_help、information: These functions are designed for help users to use this program.

popup on_click: These function are designed for buttons.

 $ideal_gas$: This function is the main body of this program, which

generate all the data that we need to draw the pictures.

Final_Molecule_Velocity、Demon_Energy、show_systemenergy、Lab:

These functions are designed to show us the final results.

1.2 Running Environment

Windows 10

1.3 Developing Environment

PyCharm professional 2016.3.1

Python 3.4.3

2 Task Allocation

Xie Fan: user interface, system architecture, system implementation, system debugging, integration and system testing

3 System Architecture

3.1 Users Interface Component

root:

The left part of this interface is the variables that we want users to set for the simulation at first and there are also two buttons for users to get something more.

The right part of this interface is the graphs which are generated from the simulation.

menu:

This is an item which can help users to use this program.

win5:

It will confirm that whether the user choose a wrong N for the system or the user want to plot a new graph.

win:

Users can get data from this part.

3.2 Simulation Component

Simulation component consists of two parts. The first part is the <code>ideal_gas</code> function which simulate the collision in theory. The second part is the <code>Lab</code> function which generates an animation which can give users a direct experience of the collision.

3.3 Visualization Component

Visualization component is made of four graphs and one animation.

Four graphs: Final Particle Velocity Distribution、The Step Demon Energies Over Time、Demon Energy Histogram、N vs. Energy Animation: an animation of simulation of collision

4 Algorithm Description

4.1 Users Interface Component

4.2 Simulation Component

4.3 Visualization Component

5 Demo and Testing Result

5.1 Screenshots

This is an initial window:

This is the window when we finish a simulation:

This is the screenshot when we get the data of the final system:

This is a graph which is simulating the collision between particles:

This is the menu we can get by a click of our right mouse button:

This is the menu which is put on the upper left corner of the window:

There are something we can get from the menu:

This is the screenshot when you want to see the animation for the simulation but you don't choose N for the system:

This is the condition when you only choose N but don't choose the initial state at first:

This is the situation when you change the state of the system:

This is the situation when the N you' ve chosen is less or equal to the N you' ve chosen before:

5.2 Testing Procedure, Data and Result

Explanation, testing data and result table, and result analysis

Times	State	Total Energy	Steps	The Number of particles	System Energy
1	1	500	3000	50	478.2951561306531
2	1	500	3000	100	488.1632854230923
3	1	500	3000	150	493.2312361788872
4	1	500	3000	200	495.2472756846647
5	1	500	3000	250	495.81547766567377
6	1	500	3000	300	496.6825073549098
7	1	500	3000	350	497.1143914791213

8	1	500	3000	400	497.5663477863696
9	1	500	3000	450	497.73453400665846
10	1	500	3000	500	498.0602964429174
11	2	500	3000	50	460.24629739665704
12	2	500	3000	100	464.72447417668224
13	2	500	3000	150	472.7362027356492
14	2	500	3000	200	465.9784578422893
15	2	500	3000	250	473.78105320378836
16	2	500	3000	300	473.51741278159085
17	2	500	3000	350	472.71444820264423
18	2	500	3000	400	473.1553719707528
19	2	500	3000	450	473.7627368471023
20	2	500	3000	500	471.7786160554356

Because we obtained system energy by arranging random number to demon, the polyline may be not monotonic. But we can find that as the increase of the number of particles, the system energy approaches the total energy. Despite of the difference of the initial state, the system energy is not change much.

6 Conclusion

• My experience and lesson on this project is that sometimes we

- needn't consider a system too carefully, we can have a roughly thought. For example, in this project, we generate a number randomly, and arrange it to a particle randomly.
- In graph N versus Energy, the actual system energy is at most ten percent less than total energy.
- As the increase of N, the system energy has the trend which approaches the total energy.
- State 1 is more steep than state 2 and it is closer to total energy.
- In histogram Final_Particle_Velocity, We can see that if we give all
 the energy to system, the velocity will be more concentrated around
 0, and if we give all the energy to demon, the velocity will be
 distributed more dispersed, that is, there are more particles have
 larger velocity.
- There are velocities of 2/5 of particles roughly equal to sqrt(2*totalEnergy/N).
- In histogram *Demon_Energy*, when N is small, if over 5/6 of the demon energy in 3000 steps are close to 0, then the demon energy comes from the total energy; if less than 8/15 of the demon energy in 3000 steps are close to 0, then the demon energy comes from the collision.
- When the initial state is equal to 1, the points of the graph
 Demon_Energy_Time are more dispersed. When the initial state of is

equal to 2, the demon energy dcreased obviously from 500 to 80 when the number of step is less than 500.