A Sample Document for the Usages of lstEventB Package

Thai Son Hoang
ECS, University of Southampton
<T dot S dot Hoang at ecs dot soton dot ac dot uk>

March 28, 2021

For convenient, we define macro \EventB for Event-B.

We start first with some inline Event-B code by embedding them using a pair of |, for example |@grd1: SNSR = FALSE| gives @grd1: SNSR = FALSE. Any Event-B formulae including Unicode symbols will be typeset using the bsymb package accordingly.

ASCII	Symbols	Explanation
!:	€	Set membership
/ :	∉	Set non-membership
<:	\subseteq	Subset
/<: <<:	⊈	Not a subset
<<:		Proper subset
/<<:	⊄	Not a proper subset
!finite	finite	Finite
!partition	partition	Partition

Table 1: Set predicates

ASCII	Symbols	Explanation
!BOOL	BOOL	BOOL set
! TRUE	TRUE	TRUE
!FALSE	FALSE	FALSE
!bool	bool	bool predicate

Table 2: BOOL and bool

More complete piece of code (including the Unicode symbols) can be typeset using the EventBcode environment. Below is the typesetting of an Event-B machine.

ASCII	Symbols	Explanation
!INT	\mathbb{Z}	Set of integer numbers
!NAT	N	Set of natural numbers
!NAT1	\mathbb{N}_1	Set of positive natural numbers
!min	min	Mininum
!max	max	Maximum
_	_	Difference
*	*	Product
!/	÷	Quotient
!mod	mod	Remainder
		Interval

Table 3: Numbers

ASCII	Symbols	Explanation
>	>	Greater
<	<	Less
>=	\geq	Greater or equal
<=	\leq	Less or equal

Table 4: Number predicates

ASCII	Symbols	Explanation
<->	\leftrightarrow	Relations
!dom	dom	Domain
!ran	ran	Range
<<->	≪→	Total relations
<->>	≪→	Surjective relations
<<->>	~~>	Total surjective relations
!circ	0	Backward composition
!id	id	Identity
<	⊲	Domain restriction
<<	\triangleleft	Domain subtraction
>	\triangleright	Range restriction
>>	⊳	Range subtraction
~	~	Inverse
<+	\triangleleft	Overriding
><	\otimes	Direct product
11		Parallel product
!prj1	prj_1	First projection
!prj2	prj_2	Second projection

Table 5: Relations

ASCII	Symbols	Explanation
+->	+>	Partial functions
>	\rightarrow	Total functions
>+>	→→	Partial injections
>->	\longrightarrow	Total injections
+>>		Partial surjections
->>	<i>→</i> >	Total surjections
>->>	→→	Bijections
%	λ	Lambda abstraction

Table 6: Functions

ASCII	Symbols	Explanation
:=	:=	Becomes equal to
::	:∈	Choice from a set
:1	:	Choice by predicate

Table 7: Functions

```
1 machine Sensor_m0_SNSR
 2 variables
 з SNSR
 4 invariants
 5 theorem @thm0_1: SNSR ∈ BOOL
   INITIALISATION
   begin
    @act1: SNSR := FALSE
10
11
12
   SNSR_on
13
   when
14
    @grd1: SNSR = FALSE
15
    @act1: SNSR := TRUE
17
18
19
   SNSR_off
20
   when
^{21}
    @grd1: SNSR = TRUE
22
23
    @act1: SNSR := FALSE
^{24}
25
26
27 end
```

One can change the different colour options. For example, $\texttt{VEventBSetKeywordColour\{blue!50!black\}}$ will change the keyword colour to dark blue. (This has effects only when

¹ machine Sensor_m0_SNSR

² variables

```
3 SNSR
```

- 4 invariants
- 5 **theorem** @thm0_1: SNSR ∈ BOOL

One can includes external file containing Event-B code using the \EventBinputlisting command. For example the following is the result of including the code in the file Sensor_m1_DEP.bumx using \EventBinputlisting{Sensor_m1_DEP.bumx}.

```
1 machine Sensor_m1_DEP
2 refines Sensor_m0_SNSR
3 variables
4 SNSR
5 DEP
6 invariants
7 @inv0_1: DEP \in \mathbb{N}
   INITIALISATION extended
10
11 begin
    Qact2: DEP := 0
^{12}
13
14
15 SNSR_on extends SNSR_on
16
^{17}
   SNSR_off extends SNSR_off
18
19
   Qact2: DEP := DEP + 1
20
22
23 end
```

More specifically, one can specify more details on the inclusion, e.g., the ranges, as the following example

\EventBinputlisting[firstline=16,lastline=20]{Sensor_m2_snsr.bumx} gives

```
1 @inv1_1: Snsr_01 = TRUE ⇒ SNSR = TRUE

2 3 @inv1_2: Snsr_10 = TRUE ⇒ SNSR = FALSE

4 5 @inv1_3: Snsr_01 = FALSE ∨ Snsr_10 = FALSE
```

```
machine Sensor_m3_Ctrl
refines
Sensor_m2_Snsr
variables
```

```
SNSR
10
11
    DEP
12
13 Snsr_01
14
15 Snsr_10
16
17 ctrl_snsr
18
    ctrl_dep
19
20
21 ctrl_snsr_01
22
     ctrl_snsr_10
23
24
25 invariants
26
27
     \mathsf{Snsr\_01} = \mathsf{FALSE} \land \mathsf{Snsr\_10} = \mathsf{FALSE} \land \mathsf{ctrl\_snsr\_01} = \mathsf{FALSE} \land \mathsf{ctrl\_snsr\_10} = \mathsf{FALSE} \Rightarrow
          ctrl\_snsr = SNSR
29
     @inv2\_2: ctrl\_dep \in \mathbb{N}
30
31
     @inv2\_3: Snsr\_10 = FALSE \land ctrl\_snsr\_10 = FALSE \Rightarrow ctrl\_dep = DEP
32
33
     @inv2\_4: Snsr\_10 = TRUE \lor ctrl\_snsr\_10 = TRUE \Rightarrow ctrl\_dep = DEP - 1
34
35
     @inv2_5: ctrl\_snsr\_01 = TRUE \Rightarrow SNSR = TRUE
36
37
     @inv2_6: ctrl\_snsr_10 = TRUE \Rightarrow SNSR = FALSE
38
     @inv2_7: ctrl\_snsr\_01 = TRUE \Rightarrow Snsr\_01 = FALSE
40
41
     @inv2_8: ctrl\_snsr_10 = TRUE \Rightarrow Snsr_10 = FALSE
42
43
44
45
     INITIALISATION extends INITIALISATION
46
47 begin
48
      @act5: ctrl_snsr := FALSE
      \texttt{@act6: ctrl\_dep := 0}
      @act7: ctrl_snsr_01 := FALSE
50
51
      @act8: ctrl\_snsr\_10 := FALSE
52 end
53
_{54}\quad SNSR\_on\, \hbox{\footnotesize extends}\, SNSR\_on
55
      Qgrd3: ctrl_snsr_10 = FALSE
    end
57
58
59 SNSR_off extends SNSR_off
60
     @grd3: ctrl\_snsr\_01 = FALSE
61
62 end
```

```
63
   ctrl_Senses_Snsr_01 extends ctrl_Senses_Snsr_01
   begin
65
66
    @act2: ctrl_snsr_01 := TRUE
67 end
68
   ctrl_Senses_Snsr_10 extends ctrl_Senses_Snsr_10
69
   begin
70
    @act2: ctrl_snsr_10 := TRUE
71
72 end
73
   ctrl_on
74
75
   @grd1: ctrl_snsr_01 = TRUE
77 then
    @act1: ctrl_snsr_01 := FALSE
78
    @act2: ctrl\_snsr := TRUE
79
80
81
82 ctrl_off
83
85 then
   @act1: ctrl_snsr_10 := FALSE
87
    @act2: ctrl_snsr := FALSE
    \texttt{@act3: ctrl\_dep} := \mathsf{ctrl\_dep} + 1
89 end
90
91 end
```