AMTH140 ASSIGNMENT 2

MARK VILLAR

(1) 3 comparisons are needed to to find the letter H using binary search.

$$Middlemost: 5 = \left| \frac{1+9}{2} \right|$$

New sublist:

$$Middlemost: 7 = \left\lfloor \frac{6+9}{2} \right\rfloor$$

Newer sublist:

$$\begin{array}{c|c} i & 6 \\ \hline I(i) & H \end{array}$$

(2) (a) Since the last two columns of the following truth table are exactly the same, then $p \to q \lor r \equiv p \land (\sim r) \to q$.

p	q	r	$\sim r$	$q \lor r$	$p \wedge (\sim r)$	$p \to (q \vee r)$	$p \wedge (\sim r) \to q$
T	T	T	F	T	F	T	T
T	T	F	T	T	T	T	T
T	F	T	F	T	F	T	T
T	F	F	T	F	T	F	F
F	T	T	F	T	F	T	T
F	T	F	T	T	F	T	T
F	F	T	F	T	F	T	T
F	F	F	T	F	F	T	T

(b) Since the last column is always true, then $p \to p \lor q$ is a tautology.

p	q	$p \lor q$	$p \to p \vee q$
T	T	T	T
T	F	T	T
F	T	T	T
F	F	F	T

(3) $p \wedge q \rightarrow \sim r$, $p \vee (\sim q)$, $\sim q \rightarrow p$, $\therefore \sim r$ is invalid since the argument form fails at 1 critical row (Row 3), where the premises are all true but the conclusion is false.

p	q	r	$\sim q$	$p \wedge q$	$\sim r$	$p \land q \to \sim r$	$p \lor (\sim q)$	$\sim q \rightarrow p$
T	T	T	F	T	F	F	T	T
T	T	F	F	T	T	T	T	T
T	F	T	T	F	F	T	T	T
T	F	F	T	F	T	T	T	T
F	T	T	F	F	$\mid F \mid$	T	F	T
F	T	F	F	F	$\mid T \mid$	T	F	T
F	F	T	T	F	$\mid F \mid$	T	T	F
F	F	F	T	F	$\mid T \mid$	T	T	F

$$(4) \, \sim r \rightarrow p, \ (\sim p) \vee q, \ \sim s \rightarrow (\sim p) \wedge (\sim r), \ (\sim p) \wedge r \rightarrow (\sim s) \vee t, \ \sim q, \ \therefore t$$

$$\begin{array}{ll} 1. \ (\sim p) \lor q & \text{premise} \\ \sim q & \text{premise} \\ \therefore \sim p & \text{disjunctive syllogism} \end{array}$$

$$\begin{array}{ccc} 2. & \sim r \rightarrow p & & \text{premise} \\ & \sim p & & \text{from 1} \end{array}$$

$$\therefore r$$
 modus tollens

$$\begin{array}{ccc} 3. & \sim p & & \text{from 1} \\ & r & & \text{from 2} \end{array}$$

$$\therefore \sim p \wedge r \qquad \qquad \text{conjunctive addition}$$

4.
$$(\sim p) \land r \rightarrow (\sim s) \lor t$$
 premise $\sim p \land r$ from 3

$$\therefore \ (\sim s) \lor t \qquad \text{modus ponens}$$
 5. $(\sim p) \land (\sim r) \equiv \sim (p \lor r)$ De Morgan's law

6.
$$\sim s \rightarrow \sim (p \lor r)$$
 premise given 5
 $\therefore (p \lor r) \rightarrow s$ contrapositive equivalence
7. r from 2
 $\therefore r \lor p \equiv p \lor r$ disjunctive addition
8. $p \lor r \rightarrow s$ from 6
 $p \lor r$ from 7
 $\therefore s$ modus ponens
9. $(\sim s) \lor t$ from 4
 s from 9
 $\therefore t$ disjunctive syllogism

- (5) (a) For any natural number n, there exists a natural number m, such that n is equal to one greater the square of m.
 - (b) (i) Since $p \to q \equiv \sim p \lor q$ for any statements p and q, the negation of $\forall x \in \mathbb{R}, (x^2 > 1) \to (x < -1)$ can be written as

$$\sim (\forall x \in \mathbb{R}, \ (x^2 > 1) \to (x < -1)) \equiv \sim (\forall x \in \mathbb{R}, \sim (x^2 > 1) \lor (x < -1))$$
$$\equiv \exists x \in \mathbb{R}, \sim (\sim (x^2 > 1) \lor (x < -1))$$
$$\equiv \exists x \in \mathbb{R}, (x^2 > 1) \land \sim (x < -1)$$
$$\equiv \exists x \in \mathbb{R}, (x^2 > 1) \land (x \ge -1)$$

(ii) Its contrapositive can be written as $\forall x \in \mathbb{R}, (x \ge -1) \to (x^2 \le 1)$.