CLASSICAL MACHINE LEARNING

TREVOR YU & CARTER DEMARS

TODAY'S AGENDA

- Introduce the scikit-learn API and common practices in the field of machine learning.
- Provide intuition for various classical machine learning techniques regarding their complexity, performance, and effectiveness in the context of different applications.
- Explore concepts such as model selection,
 hyperparameter tuning, performance metrics, and the bias/variance trade-off.
- Apply this knowledge to a real-world dataset in a competition-style activity.

WHY LEARN ABOUT CLASSICAL ML?

 Statistical learning allows you to solve a different class of problems than traditional computing.

- Traditional computing is concerned with obtaining results from a set of inputs and instructions.
- Broadly speaking, classical machine learning seeks to estimate a function that maps predictors (X) to response variables (y).

OK BUT WHY NOT DEEP LEARNING?

- Sometimes it's not that deep (pun intended)
- Deep learning requires lots of data
- Deep learning models are expensive to train and challenging to run in production
- Classical ML can still outperform Deep Learning for many tasks
 - Tree-based models like XGBoost routinely outperform deep learning models in machine learning competitions.
 - Why use deep learning when a simpler model will suffice?

COMMON MACHINE LEARNING TASKS

REGRESSION

 Prediction/inference for a quantitative (often continuous) response variable

CLASSIFICATION

 Prediction/inference for qualitative (often discrete) response variable

COMMON MACHINE LEARNING TASKS

CLUSTERING

 Grouping unlabeled data such that similar inputs fall into the same "cluster"

DIMENSIONALITY REDUCTION

 Transforming data from a high-dimensional space to a low-dimensional space while maintaining as much information (variation) as possible

TYPES OF MODELS

PARAMETRIC MODELS

- 1. Assume the shape of f(x)
- 2. Fit a model with parameters that best estimate the true function

Ex: linear regression, kernel regression

NON-PARAMETRIC MODELS

- T. Make no explicit assumptions about the shape of f(x)
- 2. Estimate f by fitting a function as close to the data points as possible without overfitting

Ex: k-nearest neighbours, support vector machines, certain tree-based models

MODEL SELECTION: HOW DO I CHOOSE?

Highly dependent on your task and your goals

Some things to consider when narrowing down your options:

- 1. What machine learning task am I trying to solve?
- 2. How much data do I have?
- 3. How is the data structured? How can the data be encoded?
- 4. Do I have intuition for the shape of the function I am trying to estimate? (parametric vs. nonparametric)
- 5. Are there other constraints on my model? Does it need to run inference in real-time?

MODEL SELECTION: TRAIN-TEST SPLIT

- To adequately compare models, you'll need to quantify each model's performance on unseen data
- Prior to training, the full dataset is split into a training set and a test set (and a validation set if used in production) through a process called train-test split

MODEL SELECTION: HYPERPARAMETERS

- Models can't always be compared directly, because there are many variable hyperparameters
- Hyperparameters are parameters whose value is generally set before model training
- Two models from the same model family could have wildly different accuracy based on the hyperparameters they are trained with
- Different classes of models will have unique hyperparameters

ASSESSING MODEL ACCURACY

- In regression, a commonly-used measure of accuracy is mean squared error (MSE)
- In a classification-setting, accuracy or error-rate is used

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{f}(x_i))^2,$$

$$\frac{1}{n} \sum_{i=1}^{n} I(y_i \neq \hat{y}_i).$$

where *n* is the number of data points, y_i are the true values, and $\hat{f}(x_i)$ are the estimated values.

Task	Metrics	Alternatives
Regression	Mean squared error	MAE, RMSE,
Binary classification	Accuracy	F1, precision, recall
Multiclass classification	Accuracy	Micro/macro F1, per-class precision and recall

MACHINE LEARNING THEORY – MATHEMATICS INCOMING!

OVERFITTING VS. UNDERFITTING

BIAS-VARIANCE TRADE-OFF

OVERFITTING

- When a given model yields a small error on the training data, but a large test error, we say that the model is overfit to the training data
- This happens when our model fits to patterns that are caused by noise/randomness in the data, rather than the properties of the true function

OVERFITTING

- Sometimes we can fix overfitting by adjusting model hyperparameters during training.
- Other times, it is due to poor model selection, and a different class of models might work better.

BIAS-VARIANCE TRADE-OFF

BIAS

- Bias is the error introduced by approximating a real-life problem with a simpler model
- The error due to bias is the difference between the average prediction of our model and the correct value which we are trying to predict

$$Err_{bias} = \frac{1}{m} \sum_{i=1}^{m} \left(E[\hat{f}(x_i)] - f(x_i) \right) = E_X[E[\hat{f}(x)] - f(x)]$$

VARIANCE

• Variance is the amount by which \hat{f} would change if it were estimated using a different training set. If a model has high variance, small changes to the training data result in large changes to the function \hat{f} .

$$Err_{var} = Var(\hat{f}(x)) = E[\hat{f}(x) - E[\hat{f}(x)]]^{2}$$

BIAS-VARIANCE TRADE-OFF – LET'S PROVE IT!

Our function y

$$y = \hat{f}(x) + \varepsilon$$

Mean Squared Error (MSE)

$$Err(x) = E\left[\left(y - \hat{f}(x)\right)^2\right]$$

Formula for variance

$$Var\left(\hat{f}(x)\right) = E\left[\left(\hat{f}(x) - E\left[\hat{f}(x)\right]\right)^{2}\right] = E\left[\hat{f}(x)^{2}\right] - E\left[\hat{f}(x)\right]^{2}$$

$$E[\hat{f}(x)^2] = E[\hat{f}(x)]^2 + E\left[\left(\hat{f}(x) - E[\hat{f}(x)]\right)^2\right]$$

dont worry about it if you don't understand

Isolate for $E[\hat{f}(x)^2]$ in variance formula

$$Err(x) = y^2 - 2yE[\hat{f}(x)] + E[\hat{f}(x)^2]$$

Expand MSE formula

$$Err(x) = y^2 - 2yE[\hat{f}(x)] + E[\hat{f}(x)]^2 + E[(\hat{f}(x) - E[\hat{f}(x)])^2]$$

Substitute into MSE formula

$$Err(x) = \left(E[\hat{f}(x)] - y\right)^2 + E\left[\left(\hat{f}(x) - E[\hat{f}(x)]\right)^2\right]$$

Complete the square

$$Err(x) = Bias^2 + Variance$$

Q.E.D.

BIAS-VARIANCE TRADE-OFF

The U-shaped total error curve is the result of two competing properties of machine learning models: bias and variance

To minimize the expected test error, we want select a machine learning technique and suitable hyperparameters that simultaneously achieve low bias and low variance

Statisticians Hate Him

Get low bias AND LOW VARIANCE with this one WEIRD trick

LEARN THE TRUTH NOW

BIAS-VARIANCE TRADE-OFF

Ideal case, rarely occurs

Potentially overfit

Potentially underfit

Complex model, awful accuracy, throw it away and try something else

Q&A SESSION – ASK US ANYTHING

SCIKIT LEARN DEMO

- Train-test split
- Training a logistic regression model
- Evaluating model performance

COMPETITION TIME

UPCOMING EDUCATION SESSIONS

- Neural Networks for Novices
- Dive into Deep Learning
- Discord:
- https://discord.gg/46KUMNGE8J
- Will post recordings, slides, etc.

EXIT SURVEY – ATTENDANCE!