

WHAT IS CLAIMED IS:

1 1. A compound having the formula:

2
3 or a pharmaceutically acceptable salt, ester, or prodrug thereof,
4 wherein

5 A, at each occurrence, independently is carbon, carbonyl, or nitrogen, provided at least
6 one A is carbon;

7 Z is carbon, nitrogen, oxygen, or sulfur;

8 B is selected from the group consisting of O, NR², S(O)_r, C=O, C=S, and C=NOR³,

9 p is 0 or 1;

10 q, at each occurrence, independently is 0 or 1;

11 r is 0, 1, or 2;

12 R², at each occurrence, independently is selected from the group consisting of:

13 a) hydrogen, b) S(O)_rR⁴, c) formyl, d) C₁₋₈ alkyl, e) C₂₋₈ alkenyl, f) C₂₋₈ alkynyl,
14 g) C₁₋₈ alkoxy, h) C₁₋₈ alkylthio, i) C₁₋₈ acyl, j) saturated, unsaturated, or aromatic
15 C₃₋₈ carbocycle, and k) saturated, unsaturated, or aromatic 5-10 membered
16 heterocycle containing one or more heteroatoms selected from the group
17 consisting of nitrogen, oxygen, and sulfur,

18 wherein any of d) – k) optionally is substituted with one or more moieties
19 selected from the group consisting of carbonyl, aryl, substituted aryl,
20 heteroaryl, substituted heteroaryl, F, Cl, Br, I, CN, NO₂, -NR³R³, -OR³,
21 -S(O)_rR⁴, -S(O)_rNR³R³, -C(O)R³, -C(O)OR³, -OC(O)R³, -C(O)NR³R³, and
22 -OC(O)NR³R³;

23 alternatively, two R² groups, taken together with the atom to which they are bonded, form

24 i) 5-8 membered saturated or unsaturated carbocycle, or ii) 5-8 membered saturated or
25 unsaturated heterocycle containing one or more atoms selected from the group consisting of
26 nitrogen, oxygen, and sulfur,

27 wherein i) – ii) optionally is substituted with one or more moieties selected from
28 the group consisting of carbonyl, F, Cl, Br, I, CN, NO₂, -NR³R³, -OR³, -S(O)_rR⁴,

29 -S(O)_rNR³R³, -C(O)R³, -C(O)OR³, -OC(O)R³, -C(O)NR³R³, -OC(O)NR³R³,
30 C₁₋₆ acyl, aryl, substituted aryl, heteroaryl, and substituted heteroaryl;
31 R³, at each occurrence, independently is selected from the group consisting of:
32 a) hydrogen, b) C₁₋₈ alkyl, c) C₂₋₈ alkenyl, d) C₂₋₈ alkynyl, e) C₁₋₈ acyl,
33 f) saturated, unsaturated, or aromatic C₃₋₈ carbocycle, and g) saturated,
34 unsaturated, or aromatic 5-10 membered heterocycle containing one or more
35 heteroatoms selected from the group consisting of nitrogen, oxygen, and sulfur,
36 wherein any of b) – h) optionally is substituted with one or more moieties
37 selected from the group consisting of carbonyl, F, Cl, Br, I, CN, NO₂,
38 -NR⁶R⁶, -OR⁶, -S(O)_rR⁶, -S(O)_rNR⁶R⁶, -C(O)R⁶, -C(O)OR⁶, -OC(O)R⁶,
39 -C(O)NR⁶R⁶, -OC(O)NR⁶R⁶, C₁₋₆ acyl, aryl, substituted aryl, heteroaryl,
40 and substituted heteroaryl;
41 alternatively, two R³ groups, taken together with the atom to which they are bonded, form
42 i) a 5-7 membered saturated or unsaturated carbocycle, or ii) a 5-7 membered saturated or
43 unsaturated heterocyclocl containing one or more atoms selected from the group consisting of
44 nitrogen, oxygen, and sulfur,
45 wherein i) - ii) optionally is substituted with one or more moieties selected from
46 the group consisting of carbonyl, F, Cl, Br, I, CN, NO₂, -NR⁶R⁶, -OR⁶, -S(O)_rR⁶,
47 -S(O)_rNR⁶R⁶, -C(O)R⁶, -C(O)OR⁶, -OC(O)R⁶, -C(O)NR⁶R⁶, -OC(O)NR⁶R⁶,
48 C₁₋₆ acyl, aryl, substituted aryl, heteroaryl, and substituted heteroaryl;
49 R⁴ is selected from the group consisting of:
50 a) hydrogen, b) -NR³R³, c) -NR³OR³, d) -NR³NR³R³ e) -NHC(O)R³,
51 f) -C(O)NR³R³, g) -N₃, h) C₁₋₈ alkyl, i) C₂₋₈ alkenyl, j) C₂₋₈ alkynyl, k) saturated,
52 unsaturated, or aromatic C₃₋₈ carbocycle, and l) saturated, unsaturated, or aromatic
53 5-10 membered heterocycle containing one or more heteroatoms selected from the
54 group consisting of nitrogen, oxygen, and sulfur,
55 wherein any of h) – l) optionally is substituted with one or more moieties
56 selected from the group consisting of carbonyl, F, Cl, Br, I, CN, NO₂,
57 -NR³R³, -OR³, -SR³, -S(O)_rR⁵, -S(O)_rNR³R³, -C(O)R³, -C(O)OR³,
58 -OC(O)R³, -C(O)NR³R³, -OC(O)NR³R³, C₁₋₆ alkyl, C₁₋₆ alkenyl,

59 C₁₋₆ alkynyl, C₁₋₆ acyl, aryl, substituted aryl, heteroaryl, and substituted
60 heteroaryl;

61 R⁵ is selected from the group consisting of:

62 a) hydrogen, b) -NR³R³, c) -NR³OR³, d) -NR³NR³R³ e) -NHC(O)R³,
63 f) -C(O)NR³R³, g) -N₃, h) C₁₋₈ alkyl, i) C₂₋₈ alkenyl, j) C₂₋₈ alkynyl, k) saturated,
64 unsaturated, or aromatic C₃₋₈ carbocycle, and l) saturated, unsaturated, or aromatic
65 5-10 membered heterocycle containing one or more heteroatoms selected from the
66 group consisting of nitrogen, oxygen, and sulfur,

67 wherein any of h) – l) optionally is substituted with one or more moieties
68 selected from the group consisting of F, Cl, Br, I, CN, NO₂, -NR³R³, -OR³,
69 -SR³-C(O)R³, -C(O)OR³, -OC(O)R³, -C(O)NR³R³, -OC(O)NR³R³,
70 C₁₋₆ alkyl, C₁₋₆ alkenyl, C₁₋₆ alkynyl, C₁₋₆ acyl, aryl, substituted aryl,
71 heteroaryl, and substituted heteroaryl;

72 R⁶, at each occurrence, independently is selected from the group consisting of:

73 hydrogen, C₁₋₆ alkyl, C₁₋₆ alkenyl, C₁₋₆ alkynyl, C₁₋₆ acyl, aryl, substituted aryl,
74 heteroaryl, substituted heteroaryl;

75 alternatively, two R⁶ groups taken together are -(CH₂)_s-,
76 wherein s is 1, 2, 3, 4, or 5;

77 D-E is selected from the group consisting of:

80 E is selected from the group consisting of:

81 a)

84

85

c)

86

87 d) 5-10 membered saturated, unsaturated, or aromatic heterocycle containing one or
88 more heteroatoms selected from the group consisting of nitrogen, oxygen, and sulfur, and
89 optionally substituted with one or more R¹³ groups;

90 e) C₅₋₁₀ saturated, unsaturated, or aromatic carbocycle, optionally substituted with
91 one or more R¹³ groups;

92 f) C₁₋₈ alkyl,

93 g) C₂₋₈ alkenyl,

94 h) C₃₋₈ alkynyl,

95 i) C₁₋₈ alkoxy,

96 j) C₁₋₈ alkylthio,

97 k) C₁₋₈ acyl,

98 l) S(O)_rR⁵; and

99 m) hydrogen,

100 wherein any of f) – k) optionally is substituted with

101 i) one or more R¹³ groups;

102 ii) 5-6 membered saturated, unsaturated, or aromatic heterocycle
103 containing one or more heteroatoms selected from the group consisting of
104 nitrogen, oxygen, and sulfur, and optionally substituted with one or more
105 R¹³ groups; or

106 iii) C₅₋₁₀ saturated, unsaturated, or aromatic carbocycle, optionally
107 substituted with one or more R¹³ groups;

108 R⁷ is selected from the group consisting of:

- 109 a) hydrogen, b) carbonyl, c) formyl, d) F, e) Cl, f) Br, g) I, h) CN, i) NO₂, j) OR³,
110 k) -S(O)_rR⁵, l) -S(O)_iN=R², m) -C(O)R², n) -C(O)OR³, o) -OC(O)R²,
111 p) -C(O)NR²R², q) -OC(O)NR²R², r) -C(=NR¹²)R², s) -C(R²)(R²)OR³,
112 t) -C(R²)(R²)OC(O)R², u) -C(R²)(OR³)(CH₂)_rNR²R², v) -NR²R², w) -NR²OR³,
113 x) -N(R²)C(O)R², y) -N(R²)C(O)OR³, z) -N(R²)C(O)NR²R², aa) -N(R²)S(O)_rR⁵,
114 bb) -C(OR⁶)(OR⁶)R², cc) -C(R²)(R³)NR²R², dd) -C(R²)(R³)NR²R¹², ee) =NR¹²,
115 ff) -C(S)NR²R², gg) -N(R²)C(S)R², hh) -OC(S)NR²R², ii) -N(R²)C(S)OR³,
116 jj) -N(R²)C(S)NR²R², kk) -SC(O)R², ll) C₁₋₈ alkyl, mm) C₂₋₈ alkenyl,
117 nn) C₂₋₈ alkynyl, oo) C₁₋₈ alkoxy, pp) C₁₋₈ alkylthio, qq) C₁₋₈ acyl, rr) saturated,
118 unsaturated, or aromatic C₅₋₁₀ carbocycle, and ss) saturated, unsaturated, or
119 aromatic 5-10 membered heterocycle containing one or more heteroatoms
120 selected from the group consisting of nitrogen, oxygen, and sulfur,

121 wherein any of ll) – ss) optionally is substituted with one or more moieties
122 selected from the group consisting of:

- 123 carbonyl; formyl; F; Cl; Br; I; CN; NO₂; OR³; -S(O)_rR⁵; -S(O)_iN=R²,
124 -C(O)R²; -C(O)OR³; -OC(O)R²; -C(O)NR²R²; -OC(O)NR²R²;
125 -C(=NR¹⁰)R²; -C(R²)(R²)OR³; -C(R²)(R²)OC(O)R²;
126 -C(R²)(OR³)(CH₂)_rNR²R²; -NR²R²; -NR²OR³; -NR²C(O)R²;
127 -NR²C(O)OR³; -NR²C(O)NR²R²; -NR²S(O)_rR⁵; -C(OR⁶)(OR⁶)R²;
128 -C(R²)(R³)NR²R²; -C(R²)(R³)NR²R¹²; =NR¹²; -C(S)NR²R²; -NR²C(S)R²;
129 -OC(S)NR²R²; -NR²C(S)OR³; -NR²C(S)NR²R²; -SC(O)R²; C₂₋₅ alkenyl;
130 C₂₋₅ alkynyl; C₁₋₈ alkoxy; C₁₋₈ alkylthio; C₁₋₈ acyl; saturated, unsaturated,
131 or aromatic C₅₋₁₀ carbocycle, optionally substituted with one or more R⁸
132 groups; and saturated, unsaturated, or aromatic 5-10 membered
133 heterocycle containing one or more heteroatoms selected from the group
134 consisting of nitrogen, oxygen, and sulfur, and optionally substituted with
135 one or more R⁸ groups;

136 R⁸ is selected from the group consisting of:

- 137 hydrogen; F; Cl; Br; I; CN; NO₂; OR⁶; aryl; substituted aryl; heteroaryl;
138 substituted heteroaryl; and C₁₋₆ alkyl, optionally substituted with one or more

139 moieties selected from the group consisting of aryl, substituted aryl, heteroaryl,
140 substituted heteroaryl, F, Cl, Br, I, CN, NO₂, and OR⁶;
141 alternatively, R⁷ and R⁸ taken together are -O(CH₂)_rO-;
142 R⁹, at each occurrence, independently is selected from the group consisting of:
143 hydrogen, F, Cl, Br, I, CN, OR³, NO₂, -NR²R², C₁₋₆ alkyl, C₁₋₆ acyl, and
144 C₁₋₆ alkoxy;
145 R¹⁰ is selected from the group consisting of:
146 a) saturated, unsaturated, or aromatic C₅₋₁₀ carbocycle, b) saturated, unsaturated,
147 or aromatic 5-10 membered heterocycle containing one or more heteroatoms
148 selected from the group consisting of nitrogen, oxygen, and sulfur,
149 c) -X-C₁₋₆ alkyl-saturated, unsaturated, or aromatic 5-10 membered heterocycle
150 containing one or more heteroatoms selected from the group consisting of
151 nitrogen, oxygen, and sulfur, d) saturated, unsaturated, or aromatic 10-membered
152 bicyclic ring system optionally containing one or more heteroatoms selected from
153 the group consisting of nitrogen, oxygen, and sulfur, e) saturated, unsaturated, or
154 aromatic 13-membered tricyclic ring system optionally containing one or more
155 heteroatoms selected from the group consisting of nitrogen, oxygen, and sulfur,
156 and f) R⁹,
157 wherein
158 any of a) - e) optionally is substituted with one or more R¹³ groups, and
159 X is O or NR³;
160 alternatively, R¹⁰ and one R⁹ group, taken together with the atoms to which they are
161 bonded, form a 5-7 membered saturated or unsaturated carbocycle, optionally substituted with
162 one or more R¹³ groups; or a 5-7 membered saturated or unsaturated heterocycle containing one
163 or more atoms selected from the group consisting of nitrogen, oxygen, and sulfur, and optionally
164 substituted with one or more R¹³ groups;
165 R¹¹ at each occurrence, independently is selected from the group consisting of:
166 hydrogen; an electron-withdrawing group; aryl; substituted aryl; heteroaryl;
167 substituted heteroaryl; and C₁₋₆ alkyl, optionally substituted with F, Cl, or Br;
168 alternatively, any R¹¹ and R⁸, taken together with the atoms to which they are bonded,
169 form a 5-7 membered saturated or unsaturated carbocycle, optionally substituted with one or

170 more R¹³ groups; or a 5-7 membered saturated or unsaturated heterocycle containing one or more
171 atoms selected from the group consisting of nitrogen, oxygen, and sulfur, and optionally
172 substituted with one or more R¹³ groups;

173 R¹² is selected from the group consisting of:

174 -NR²R², -OR³, -OC(O)R², -OC(O)OR³, -NR²C(O)R², -NR²C(O)NR²R²,
175 -NR²C(S)NR²R², and -NR²C(=NR²)NR²R²;

176 R¹³, at each occurrence, independently is selected from the group consisting of:

177 a) hydrogen, b) carbonyl, c) formyl d) F, e) Cl, f) Br, g) I, h) CN, i) NO₂, j) OR³,
178 k) -S(O)_rR⁵, l) -S(O)_rN=R³, m) -C(O)R², n) -C(O)OR³, o) -OC(O)R²,
179 p) -C(O)NR²R², q) -OC(O)NR²R², r) -C(=NR¹²)R², s) -C(R²)(R²)OR³,
180 t) -C(R²)(R²)OC(O)R², u) -C(R²)(OR³)(CH₂)NR²R², v) -NR²R², w) -NR²OR³,
181 x) -N(R²)C(O)R², y) -N(R²)C(O)OR³, z) -N(R²)C(O)NR²R², aa) -N(R²)S(O)_rR⁵,
182 bb) -C(OR⁶)(OR⁶)R², cc) -C(R²)(R³)NR²R², dd) -C(R²)(R³)NR²R¹², ee) =NR¹²,
183 ff) -C(S)NR²R², gg) -N(R²)C(S)R², hh) -OC(S)NR²R², ii) -N(R²)C(S)OR³,
184 jj) -N(R²)C(S)NR²R², kk) -SC(O)R², ll) C₁₋₈ alkyl, mm) C₂₋₈ alkenyl,
185 nn) C₂₋₈ alkynyl, oo) C₁₋₈ alkoxy, pp) C₁₋₈ alkylthio, qq) C₁₋₈ acyl, rr) saturated,
186 unsaturated, or aromatic C₅₋₁₀ carbocycle, ss) saturated, unsaturated, or aromatic
187 5-10 membered heterocycle containing one or more heteroatoms selected from the
188 group consisting of nitrogen, oxygen, and sulfur, tt) saturated, unsaturated, or
189 aromatic 10-membered bicyclic ring system optionally containing one or more
190 heteroatoms selected from the group consisting of nitrogen, oxygen, and sulfur,
191 and uu) saturated, unsaturated, or aromatic 13-membered tricyclic ring system
192 optionally containing one or more heteroatoms selected from the group consisting
193 of nitrogen, oxygen, and sulfur,

194 wherein any of ll) – uu) optionally is substituted with one or more
195 moieties selected from the group consisting of:

196 carbonyl; formyl; F; Cl; Br; I; CN; NO₂; OR³; -S(O)_rR⁵;
197 -S(O)_rN=R², -C(O)R²; -C(O)OR³; -OC(O)R²; -C(O)NR²R²;
198 -OC(O)NR²R²; -C(=NR¹²)R²; -C(R²)(R²)OR³;
199 -C(R²)(R²)OC(O)R²; -C(R²)(OR³)(CH₂)NR²R²; -NR²R²;
200 -NR²OR³; -NR²C(O)R²; -NR²C(O)OR³; -NR²C(O)NR²R²;

201 -NR²S(O)_tR⁵; -C(OR⁶)(OR⁶)R²; -C(R²)(R³)NR²R²;
 202 -C(R²)(R³)NR²R¹²; =NR¹²; -C(S)NR²R²; -NR²C(S)R²;
 203 -OC(S)NR²R²; -NR²C(S)OR³; -NR²C(S)NR²R²; -SC(O)R²;
 204 C₁₋₈ alkyl, C₂₋₈ alkenyl; C₂₋₈ alkynyl; C₁₋₈ alkoxy; C₁₋₈ alkylthio;
 205 C₁₋₈ acyl; saturated, unsaturated, or aromatic C₃₋₁₀ carbocycle
 206 optionally substituted with one or more R⁷ groups; and saturated,
 207 unsaturated, or aromatic 3-10 membered heterocycle containing
 208 one or more heteroatoms selected from the group consisting of
 209 nitrogen, oxygen, and sulfur, and substituted with one or more R⁷
 210 groups;

G is selected from the group consisting of:

- 212 a) C₁₋₄ alkyl, b) C₅₋₈ alkyl, c) C₂₋₈ alkenyl, d) C₂₋₈ alkynyl, e) C₁₋₈ alkoxy,
 213 f) C₁₋₈ alkylthio, g) C₁₋₈ acyl, h) saturated, unsaturated, or aromatic C₅₋₁₀
 214 carbocycle, i) saturated, unsaturated, or aromatic 5-10 membered heterocycle
 215 containing one or more heteroatoms selected from the group consisting of
 216 nitrogen, oxygen, and sulfur,
 217 j)

227

o)

228

229

p)

230

231 q) $-(\text{CH}_2)_t-\text{NR}^2-(\text{CH}_2)_t-\text{C}(\text{R}^3)(\text{R}^3)\text{OR}^3;$

232 wherein

233 i) a) is substituted with, and
234 ii) any of b) – i) optionally is substituted with one or more moieties
235 selected from the group consisting of:

236 carbonyl; formyl; F; Cl; Br; I; CN; NO₂; OR³; -S(O)_tR⁵;
237 -S(O)_tN=R², -C(O)R²; -C(O)OR³; -OC(O)R²; -C(O)NR²R²;
238 -OC(O)NR²R²; -C(=NR¹²)R²; -C(R²)(R²)OR³;
239 -C(R²)(R²)OC(O)R²; -C(R²)(OR³)(CH₂)_tNR²R²; -NR²R²;
240 -NR²OR³; -NR²C(O)R²; -NR²C(O)OR³; -NR²C(O)NR²R²;
241 -NR²S(O)_tR⁵; -C(OR⁶)(OR⁶)R²; -C(R²)(R³)NR²R²;
242 -C(R²)(R³)NR²R¹²; =NR¹²; -C(S)NR²R²; -NR²C(S)R²;
243 -OC(S)NR²R²; -NR²C(S)OR³; -NR²C(S)NR²R²; -SC(O)R²;
244 C₂₋₅ alkenyl; C₂₋₅ alkynyl; C₁₋₈ alkoxy; C₁₋₈ alkylthio; C₁₋₈ acyl;
245 saturated, unsaturated, or aromatic C₅₋₁₀ carbocycle, optionally
246 substituted with one or more R¹³ groups; and saturated,

247 unsaturated, or aromatic 5-10 membered heterocycle containing
248 one or more heteroatoms selected from the group consisting of
249 nitrogen, oxygen, and sulfur, and optionally substituted with one or
250 more R¹³ groups;

251 t, at each occurrence, independently is 0, 1, 2, or 3;

252 v is 0, 1, 2, 3, 4, 5, or 6;

253 R¹⁴ is selected from the group consisting of:

- 254 a) hydrogen, b) C₁₋₆-alkyl, c) C₂₋₆ alkenyl, d) C₂₋₆ alkynyl, e) -C(O)-R³,
255 f) -C(O)-C₁₋₆ alkyl-R³, g) -C(O)-C₂₋₆ alkenyl-R³, h) -C(O)-C₂₋₆ alkynyl-R³,
256 i) -C₁₋₆ alkyl-J-R³, j) -C₂₋₆ alkenyl-J-R³; and k) -C₂₋₆ alkynyl-J-R³;

257 wherein

- 258 (i) any of b) – d) optionally is substituted with one or more
259 substituents selected from the group consisting of:

260 F, Cl, Br, I, aryl, substituted aryl, heteroaryl, substituted heteroaryl,
261 -OR³, -O-C₁₋₆ alkyl-R², -O-C₂₋₆ alkenyl-R², -O-C₂₋₆ alkynyl-R²,
262 and-NR²R²; and

- 263 (ii) J is selected from the group consisting of:

264 -OC(O)-, -OC(O)O-, -OC(O)NR²-, -C(O)NR²-, -NR²C(O)-,
265 -NR²C(O)O-, -NR²C(O)NR²-, -NR²C(NH)NR²-, and S(O); and

266 R¹⁵ is selected from the group consisting of:

267 hydrogen; C₁₋₁₀ alkyl, optionally substituted with one or more R¹³ groups;

268 C₁₋₆ acyl, optionally substituted with one or more R¹³ groups; aryl; substituted
269 aryl; heteroaryl; substituted heteroaryl; arylalkyl; substituted arylalkyl; and a
270 macrolide.

1 2. The compound according to claim 1, having the formula:

wherein

4 A, at each occurrence, independently is carbon or nitrogen, provided at least one
5 A is carbon, and
6 p, q, B, D, E, and G are as defined in claim 1.

1 3. The compound according to claim 1, having the formula selected from the group
2 consisting of:

5 wherein

6 Y is oxygen or sulfur,

7 A, at each occurrence, independently is carbon or nitrogen, and

8 p, q, B, D, E, and G are as defined in claim 1.

1 4. The compound according to claim 1, having the formula:

4 wherein p, q, A, B, E, and G are as defined in claim 1.

1 5. The compound according to claim 4, having the formula:

wherein A, E, and G are as defined in claim 1.

1 6. The compound according to claim 4, having the formula:

wherein A, E, and G are as defined in claim 1.

1 7. The compound according to claim 1, having the formula:

wherein p, q, A, E, and G are as defined in claim 1.

1 8. The compound according to claim 7, having the formula:

wherein A, E, and G are as defined in claim 1.

1 9. The compound according to claim 1, wherein E has the formula:

wherein R⁹ and R¹⁰, at each occurrence, are as defined in claim 1.

1 10. The compound according to claim 1, wherein E has the formula:

wherein R¹⁰ is as defined in claim 1.

1 11. The compound according to claim 9, wherein R¹⁰ has the formula:

wherein

K is selected from the group consisting of O, NR², and S(O)_r, and

x is 0, 1, 2, or 3.

1 12. The compound according to claim 11, wherein K is oxygen.

1 13. The compound according to claim 11, wherein t is 1.

1 14. The compound according to claim 9, wherein R¹⁰ is -C(O)CH₃.

1 15. The compound according to claim 9, wherein R¹⁰ has the formula:

3 wherein R² and R⁷ are as defined in claim 1.

1 16. The compound according to claim 15, wherein R² is -C(O)-CH₂-OH.

1 17. The compound according to claim 15, wherein R⁷ is hydrogen.

1 18. The compound according to claim 1, wherein G has the formula:

3 and R¹⁵ is a macrolide.

1 19. The compound according to claim 1, wherein G has the formula:

3 and R¹⁵ is a macrolide.

1 20. The compound according to claim 1, wherein R¹⁵ is selected from the group consisting
2 of:

4 and pharmaceutically acceptable salts, esters and prodrugs thereof, wherein

5 R¹⁷ is selected from the group consisting of:

6 hydrogen, hydroxy protecting group, R³, and -V-W-R¹³,

7 wherein

8 V is -C(O), -C(O)O-, -C(O)NR²-, or absent, and

9 W is C₁₋₆ alkyl, or absent;

10 alternatively R¹⁷ and R¹⁴, taken together with the atoms to which they are bonded, form:

11 ;

12 Q is selected from the group consisting of:

13 -NR²CH₂-, -CH₂-NR²-, -C(O)-, -C(=NR²)-, -C(=NOR³)-, -C(=N-NR²R²)-,

14 -CH(OR³)-, and -CH(NR²R²)-;

15 R¹⁸ is selected from the group consisting of:

16 i) C₁₋₆ alkyl, ii) C₂₋₆ alkenyl, and iii) C₂₋₆ alkynyl;

17 wherein any of i) – iii) optionally is substituted with one or more moieties
18 selected from the group consisting of -OR³, aryl, substituted aryl,
19 heteroaryl, and substituted heteroaryl;

20 R¹⁹ is selected from the group consisting of:

21 a) -OR¹⁷, b) C₁₋₆ alkyl , c) C₂₋₆ alkenyl, d) C₂₋₆ alkynyl, e) -NR²R², f) -C(O)R³,
22 g) -C(O)-C₁₋₆ alkyl-R¹³, h) -C(O)-C₂₋₆ alkenyl-R¹³, and i) -C(O)-C₂₋₆ alkynyl-R¹³,
23 wherein any of b) - d) optionally is substituted with one or more R¹³
24 groups;

25 alternatively, R¹⁴ and R¹⁹, taken together with the atoms to which they are bonded, form:

26

27 wherein

28 L is CH or N, and

29 R²³ is -OR³, or R³;

30 R²⁰ is -OR¹⁷;
31 alternatively, R¹⁹ and R²⁰, taken together with the atoms to which they are bonded, form a
32 5-membered ring by attachment to each other through a linker selected from the group consisting
33 of:
34 -OC(R²)(R²)O-, -OC(O)O-, -OC(O)NR²-, -NR²C(O)O-, -OC(O)NOR³-,
35 -N(OR³)C(O)O-, -OC(O)N-NR²R²-, -N(NR²R²)C(O)O-, -OC(O)CHR²-, -CHR²C(O)O-,
36 -OC(S)O-, -OC(S)NR²-, -NR²C(S)O-, -OC(S)NOR³-, -N(OR³)C(S)O-,
37 -OC(S)N-NR²R²-, -N(NR²R²)C(S)O-, -OC(S)CHR²-, and -CHR²C(S)O-;
38 alternatively, Q, R¹⁹, and R²⁰, taken together with the atoms to which they are bonded,
39 form:

40
41 wherein
42 M is O or NR²;
43 R²¹ is selected from the group consisting of:
44 hydrogen, F, Cl, Br, and C₁₋₆ alkyl;
45 R²², at each occurrence, independently is selected from the group consisting of:
46 hydrogen, -OR³, -O-hydroxy protecting group, -O-C₁₋₆ alkyl-J-R¹³,
47 -O-C₂₋₆ alkenyl-J-R¹³, -O-C₁₋₆ alkynyl-J-R¹³, and -NR²R²;
48 alternatively, two R²² groups taken together are =O, =N-OR³, or =N-NR²R²; and
49 R², R³, R¹³, R¹⁴, and J are as described in claim 1.

1 21. The compound according to claim 1, wherein G has the formula selected from the group
2 consisting of:

13 , , and .

1 22. The compound according to claim 1, wherein G has the formula:

2
3 wherein n = 1, 2, 3, or 4.

1 23. The compound according to claim 1, wherein G has the formula:

2
3 wherein n = 1, 2, 3, or 4.

1 24. The compound according to claim 1, wherein G has the formula:

2

3 wherein n = 1, 2, 3, or 4.

1 25. The compound according to claim 1, wherein G has the formula:

2

3 wherein n = 1, 2, 3, or 4.

1 26. The compound according to claim 1, having the formula:

2

3 wherein G is as described in claim 1.

1 27. The compound according to claim 26, wherein G has the formula selected from the group
2 consisting of:

7 , , ,

8 , , ,

9 , , ,

10 , and .

1 28. A compound having the formula selected from the group consisting of:

8

9

, and

10 or a pharmaceutically acceptable salt, ester, or prodrug thereof.

1 29. A compound having the structure corresponding to any of the structures listed in Table 1,
2 or a pharmaceutically acceptable salt, ester, or prodrug thereof.

1 30. A compound having the structure corresponding to any of the structures listed in Table 2,
2 or a pharmaceutically acceptable salt, ester, or prodrug thereof.

1 31. A pharmaceutical composition comprising a compound according to any one of claims
2 1-30 and a pharmaceutically acceptable carrier.

1 32. A method of treating a microbial infection in a mammal comprising administering to the
2 mammal an effective amount of a compound according to any one of claims 1-30.

1 33. A method of treating a fungal infection in a mammal comprising administering to the
2 mammal an effective amount of a compound according to any one of claims 1-30.

- 1 34. A method of treating a parasitic disease in a mammal comprising administering to the
- 2 mammal an effective amount of a compound according to any one of claims 1-30.

- 1 35. A method of treating a proliferative disease in a mammal comprising administering to the
- 2 mammal an effective amount of a compound according to any one of claims 1-30.

- 1 36. A method of treating a viral infection in a mammal comprising administering to the
- 2 mammal an effective amount of a compound according to any one of claims 1-30.

- 1 37. A method of treating an inflammatory disease in a mammal comprising administering to
- 2 the mammal an effective amount of a compound according to any one of claims 1-30.

- 1 38. A method of treating a gastrointestinal motility disorder in a mammal comprising
- 2 administering to the mammal an effective amount of a compound according to any one of claims
- 3 1-30.

- 1 39. The method according to any one of claims 32-38 wherein the compound is administered
- 2 orally, parentally, or topically.

- 1 40. A method of synthesizing a compound according to any of claims 1-30.

- 1 41. A medical device containing a compound according to any one of claims 1-30.

- 1 42. The medical device according to claim 41, wherein the device is a stent.