

Universidad Tecnológica de la Mixteca

Clave DGP 509394

Ingeniería en Diseño

PROGRAMA DE ESTUDIOS

NOMBRE DE LA ASIGNATURA		
NOPIBRE DE LA ASIGNATURA		
Análisis y Diseño de Estructuras		

CICLO	CLAVE DE LA ASIGNATURA	TOTAL DE HORAS
Sexto Semestre	035062	85

OBJETIVO(S) GENERAL(ES) DE LA ASIGNATURA

El alumno desarrollará habilidades para el cálculo de las acciones-respuestas a las que se somete la estructura de una edificación, así como la determinación de las dimensiones y características de los elementos que la conforman, tomando en cuenta lo establecido en normas y reglamentos de carácter nacional e internacional, con un grado de seguridad aceptable y condiciones de servicio satisfactorio.

TEMAS Y SUBTEMAS

1. Conceptos básicos de la teoría de estructuras

- 1.1 Introducción
- 1.2 Seguridad estructural y criterios de diseño
- 1.3 Aspectos fundamentales del análisis estructural
- 1.4 Estructuración de edificios
- 1.5 Memoria de cálculo estructural

2. Materiales de construcción

- 2.1 Aspectos fundamentales del concreto y del mortero
 - 2.1.1 Tipos de aglutinantes (cemento, calhidra)
 - 2.1.2 Agregados (finos y gruesos)
 - 2.1.3 Mezclas y resistencias
- 2.2 Acero estructural
 - 2.2.1 Tipos de acero
 - 2.2.2 Perfiles de acero formados en caliente y en frio
 - 2.2.3 Propiedades geométricas y mecánicas
- 2.3 Madera estructural
 - 2.3.1 Tipos de madera disponibles en México
 - 2.3.2 Propiedades mecánicas de la madera
- 2.4 Adobe
 - 2.4.1 Tipos de suelos (según el Sistema Unificado de Clasificación de Suelos)
 - 2.4.2 Método de clasificación de suelos en campo (empírico)
 - 2.4.3 Capacidad portante de los suelos
 - 2.4.4 Suelos usados para hacer adobes
 - 2.4.5 Propiedades mecánicas de los adobes

3. Análisis de cargas (acciones) en un edificio

- 3.1 Pesos volumétricos de materiales de construcción
- 3.2 Estudio de cargas en losas de azotea y entrepiso
 - 3.2.1 Cargas vivas y muertas
 - 3.2.2 Criterios para determinar la carga de diseño (Teoría elástica o última)
 - 3.2.3 Áreas tributarias en losas
- 3.3 Cargas de diseño para vigas, columnas y cimentación

4. Diseño de vigas (elementos a flexión)

- 4.1 Tipos de vigas
- 4.2 Criterios de diseño (Teoría elástica o teoría última)
- 4.3 Diseño de vigas simples
 - 4.3.1 De concreto reforzado
 - 4.3.2 De acero
 - 4.3.3 De madera

5. Diseño de cimentaciones

- 5.1 Tipos de cimentaciones
- 5.2 Criterios de diseño (Teoría elástica o teoría última)
- 5.3 Mampostería de piedra braza
- 5.4 Concreto ciclópeo
- 5.5 Zapatas corridas y aisladas de concreto reforzado

- 5.6 Contratrabes y trabes de liga de concreto reforzado
- 5.7 Cimiento mixto (zapata corrida con rodapié de piedra braza)
- 5.8 Losa de cimentación de concreto reforzado

6. Diseño de muros

- 6.1 Tipos de muros
- 6.2 Criterios de diseño (Teoría elástica o teoría última)
- 6.3 Muros divisorios de mampostería
- 6.4 Muros de carga confinados de mampostería
- 6.5 Muros de cortante de concreto reforzado

7. Diseño de columnas

- 7.1 Tipos de columnas
- 7.2 Criterios de diseño (Teoría elástica o teoría última)
- 7.3 Columnas de concreto reforzado
- 7.4 Columnas de acero estructural
- 7.5 Columnas de madera

8. Diseño de sistemas de piso

- 8.1 Tipos de sistemas de piso (cubiertas)
- 8.2 Criterios de diseño (Teoría elástica o teoría última)
- 8.3 Losas de concreto reforzado en una dirección
- 8.4 Losas de concreto reforzado en dos direcciones
- 8.5 Diseño de armaduras para techos
 - 8.5.1 De acero
 - 8.5.2 De madera

ACTIVIDADES DE APRENDIZAJE

Exposición oral y visual por parte del profesor, con apoyo de medios didácticos audiovisuales, proyector de acetatos y el pizarrón. De tal manera que el profesor desarrolle hábitos en los alumnos, tales como responsabilidad, entrega, limpieza, calidad, capacidad de análisis, síntesis y la habilidad de comunicación gráfica de lo aprendido en el curso.

Al alumno se le estimulará para realizar investigaciones de forma individual y por equipo, de diferentes temas relacionados con la materia, para confirmar los conocimientos y habilidades adquiridos.

CRITERIOS Y PROCEDIMIENTOS DE EVALUACIÓN Y ACREDITACIÓN

Al inicio del curso el profesor deberá indicar el procedimiento de evaluación que deberá comprender evaluaciones parciales que tendrán una equivalencia del 50 % de la calificación final y un examen ordinario que equivaldrá al restante 50 %.

Las evaluaciones podrán ser escritas v/o prácticas v cada una consta de un examen teórico-práctico, tareas v provectos. La parte práctica de cada evaluación deberá estar relacionada con la ejecución exitosa y la documentación de la solución de problemas sobre el tema del curso.

Pueden ser consideradas otras actividades como: el trabajo extra clase y la participación durante las sesiones del curso. El examen tendrá un valor mínimo de 50%; las tareas, proyectos y otras actividades un valor máximo de 50 %.

BIBLIOGRAFÍA (TIPO, TÍTULO, AUTOR, EDITORIAL Y AÑO)

- 1. PARKER, H. (1984). Ingeniería Simplificada para arquitectos y constructores. 5ª Reimpresión. LIMUSA. México.
- 2. GONZÁLEZ CUEVAS, O. M. Y ROBLES FERNÁNDEZ-VILLEGAS, F. (2005). Aspectos fundamentales del concreto reforzado. 4ª. Edición. LIMUSA. México.
- 3. MELI, R.(2002) "Diseño Estructural", 2ª edición, México. Editorial LIMUSA.
- 4. AMBROSE, J., "Análisis y Diseño de Estructuras", 2ª edición, México. Editorial LIMUSA, 1998.
- 5. HASSOUN, M. N., "Structural concrete. Theory and Design". Second Edition. Editorial Prentice Hall.

De consulta

- "Reglamento para las Construcciones de Concreto Estructural (ACI 318-02) y Comentarios (ACI 318R-02)". American Concrete Institute (2002). Instituto Mexicano del Cemento y del Concreto, IMCYC, (2004)
- 2. "Reglamento de Construcciones para el Distrito Federal". (2004), Colección Porrúa, México.
- 3. "Normas Técnicas Complementarias para el RCDF".(2004). Gaceta Oficial del Gobierno del Distrito Federal. México.
- "Manual of Steel Construction. Load and Resistance Factor Design", Third Edition, Estados Unidos. AISC 2001.
 McCORMAC, J. C., "Diseño de Estructuras de Acero. Método LRFD", 2ª Edición, México. Alfaomega, 2002.
- 6. SALMON, C. G. y JOHNSON, J. E., "Steel Structures. Design and Behavior", Fourth Edition, Estados Unidos. Prentice Hall, 1996.

PERFIL PROFESIONAL DEL DOCENTE

Deberá ser impartida por profesores que tengan conocimientos de Ingeniería Civil, en la especialidad de estructuras. Nivel de preparación: mínimo licenciatura en Ingeniería Civil, maestría o doctorado en Ingeniería Estructural

Vo.Bo. Autorizó

I.D. Eruvid Cortés Camacho Jefe de Carrera Dr. Agustín Santiago Alvarado Vice-Rector Académico