

## Supremum Norm Complete

## 1 Why

We want a complete norm on the vector space of continuous functions.

## 2 Result

**Proposition 1.** The supremum norm is complete.

*Proof.* Let R denote the real numbers. Let  $\{f_n\}_n$  be an egoprox sequence in C[a, b]. Then  $\forall \epsilon > 0, \exists N$  so that

$$m, n > N \implies |f_n - f_m|_{\sup} < \epsilon.$$

Since  $|f_n - f_m|_{\sup} < \epsilon \implies |f_n(x) - f_m(x)| < \epsilon$  for all  $x \in [a, b]$ , the sequence of real numbers  $\{f_n(x)\}_n$  is egoprox for each  $x \in [a, b]$ . Since the metric space  $(R, |\cdot|)$  is complete, there is a limit  $l_x$  such that  $f_n(x) \longrightarrow l_x$  as  $n \longrightarrow \infty$ , for each  $x \in [a, b]$ . Define  $f: [a, b] \to R$  by  $f(x) = l_x$  for each  $x \in [a, b]$ .

First, we argue that f is continuous. Let  $x_0 \in [a, b]$  and let  $\epsilon > 0$ . For each n,  $f_n$  is a continuous function on a closed interval, and therefore is uniformly continuous:  $\forall \epsilon > 0, \exists \delta > 0$ 

so that  $\forall x, y \in [a, b]$ ,

$$|x - y| < \delta \implies |f(x) - f(y)| < \epsilon.$$

For  $\epsilon/3 > 0$ , there exists an  $n_1$  so that

$$n > n_1 \implies |f_n(x_0) - f(x_0)| < \epsilon/3.$$

For  $\epsilon/3 > 0$ , there exists an  $n_2$  so that

$$n > n_2 \implies |f_n(x_0) - f(x_0)| < \epsilon/3.$$

Let  $n_0 = \max\{n_1, n_2\}$ . The function  $f_{n_0}$  is continuous, so for  $\epsilon/3$ , there is a  $\delta > 0$  so that for all  $x \in [a, b]$ ,

$$|x_0 - x| < \delta \implies |f_{n_0}(x_0) - f_{n_0}(x_0)| < \epsilon/3.$$

By the triangle inequality,

$$|f(x_0) - f(x)| \le |f(x_0) - f_{n_0}(x_0)| + |f_{n_0}(x_0) - f(x)|$$

Since  $n_0 \ge n_1$ ,  $|f(x_0) - f_{n_0}(x_0)| < \epsilon/3$ . Using this fact, and the triangle inequality

$$|f(x_0) - f(x)| < \epsilon/3 + |f_{n_0}(x_0) - f(x)|$$

$$< \epsilon/3 + |f_{n_0}(x_0) - f_{n_0}(x)| + |f_{n_0}(x_0) - f(x)|$$

Since  $|x_0 - x| < \delta$ ,  $|f_{n_0}(x_0) - f_{n_0}(x)| < \epsilon/3$ . Since  $n_0 > n_2$ ,  $|f_{n_0}(x_0) - f(x)| < \epsilon/3$ . We conclude

$$|f(x_0) - f(x)| < \epsilon/3 + \epsilon/3 + \epsilon/3 = \epsilon.$$

for all  $|x_0 - x| < \delta$ . Since  $\epsilon$  was arbitrary, f is continuous at  $x_0$ . Since  $x_0$  was arbitrary, f is continuous everywhere.