

# National University of Computer & Emerging Sciences MT-2005 Probability and Statistics



#### The Mean of Random Variable

# **The Mean or Expected Value:**

Let X be a random variable with probability distribution f(x). The **mean**, or **expected value**, of X is

$$\mu = E(X) = \sum_{x} x f(x)$$

if X is discrete, and

$$\mu = E(X) = \int_{-\infty}^{\infty} x f(x) \ dx$$

if X is continuous.

Let X be a random variable with probability distribution f(x). The expected value of the random variable g(X) is

$$\mu_{g(X)} = E[g(X)] = \sum_{x} g(x)f(x)$$

if X is discrete, and

$$\mu_{g(X)} = E[g(X)] = \int_{-\infty}^{\infty} g(x)f(x) \ dx$$

if X is continuous.

### Example 4.1:

A lot containing 7 components is sampled by a quality inspector; the lot contains 4 good components and 3 defective components. A sample of 3 is taken by the inspector. Find the expected value of the number of good components in this sample.

#### **Solution:**

Let X represent the number of good components in the sample. The probability distribution of X is

$$f(x) = \frac{\binom{4}{x}\binom{3}{3-x}}{\binom{7}{3}}, \qquad x = 0, 1, 2, 3.$$

Simple calculations yield f(0) = 1/35, f(1) = 12/35, f(2) = 18/35, and f(3) = 4/35. Therefore,

$$\mu = E(X) = (0)\left(\frac{1}{35}\right) + (1)\left(\frac{12}{35}\right) + (2)\left(\frac{18}{35}\right) + (3)\left(\frac{4}{35}\right) = \frac{12}{7} = 1.7.$$

Thus, if a sample of size 3 is selected at random over and over again from a lot of 4 good components and 3 defective components, it will contain, on average, 1.7 good components.

### Example 4.2:

A salesperson for a medical device company has two appointments on a given day. At the first appointment, he believes that he has a 70% chance to make the deal, from which he can earn \$1000 commission if successful. On the other hand, he thinks he only has a 40% chance to make the deal at the second appointment, from which, if successful, he can make \$1500. What is his expected commission based on his own probability belief? Assume that the appointment results are independent of each other.

#### **Solution:**

First, we know that the salesperson, for the two appointments, can have 4 possible commission totals: \$0, \$1000, \$1500, and \$2500. We then need to calculate their associated probabilities. By independence, we obtain

$$f(\$0) = (1 - 0.7)(1 - 0.4) = 0.18, \quad f(\$2500) = (0.7)(0.4) = 0.28,$$
 
$$f(\$1000) = (0.7)(1 - 0.4) = 0.42, \text{ and } f(\$1500) = (1 - 0.7)(0.4) = 0.12.$$

Therefore, the expected commission for the salesperson is

$$E(X) = (\$0)(0.18) + (\$1000)(0.42) + (\$1500)(0.12) + (\$2500)(0.28)$$
  
= \$1300.

### Example 4.3:

Let X be the random variable that denotes the life in hours of a certain electronic device. The probability density function is

$$f(x) = \begin{cases} \frac{20,000}{x^3}, & x > 100, \\ 0, & \text{elsewhere.} \end{cases}$$

Find the expected life of this type of device.

#### **Solution:**

$$\mu = E(X) = \int_{100}^{\infty} x \frac{20,000}{x^3} dx = \int_{100}^{\infty} \frac{20,000}{x^2} dx = 200.$$

Therefore, we can expect this type of device to last, on average, 200 hours.

## Example 4.4:

Suppose that the number of cars X that pass through a car wash between 4:00 p.m. and 5:00 p.m. on any sunny Friday has the following probability distribution:

Let g(X) = 2X - 1 represent the amount of money, in dollars, paid to the attendant by the manager. Find the attendant's expected earnings for this particular time period.

#### **Solution:**

$$E[g(X)] = E(2X - 1) = \sum_{x=4}^{9} (2x - 1)f(x)$$

$$= (7) \left(\frac{1}{12}\right) + (9) \left(\frac{1}{12}\right) + (11) \left(\frac{1}{4}\right) + (13) \left(\frac{1}{4}\right)$$

$$+ (15) \left(\frac{1}{6}\right) + (17) \left(\frac{1}{6}\right) = \$12.67.$$

### Example 4.5:

Let X be a random variable with density function

$$f(x) = \begin{cases} \frac{x^2}{3}, & -1 < x < 2, \\ 0, & \text{elsewhere.} \end{cases}$$

Find the expected value of g(X) = 4X + 3.

#### **Solution:**

$$E(4X+3) = \int_{-1}^{2} \frac{(4x+3)x^2}{3} dx = \frac{1}{3} \int_{-1}^{2} (4x^3 + 3x^2) dx = 8.$$

### Example 4.6:

Let X and Y be the random variables with joint probability distribution indicated in Table 3.1 on page 96. Find the expected value of g(X,Y) = XY. The table is reprinted here for convenience.

|               |        |                                     | $\boldsymbol{x}$          |                | Row                           |
|---------------|--------|-------------------------------------|---------------------------|----------------|-------------------------------|
|               | f(x,y) | 0                                   | 1                         | 2              | Totals                        |
|               | 0      | $\frac{3}{28}$                      | $\frac{9}{28}$            | $\frac{3}{28}$ | $\frac{15}{28}$               |
| y             | 1      | $\frac{\frac{3}{28}}{\frac{3}{14}}$ | $\frac{\overline{28}}{3}$ | 0              | $\frac{15}{28}$ $\frac{3}{7}$ |
|               | 2      | $\frac{1}{28}$                      | 0                         | 0              | $\frac{1}{28}$                |
| Column Totals |        | $\frac{5}{14}$                      | $\frac{15}{28}$           | $\frac{3}{28}$ | 1                             |

#### **Solution:**

$$E(XY) = \sum_{x=0}^{2} \sum_{y=0}^{2} xyf(x,y)$$

$$= (0)(0)f(0,0) + (0)(1)f(0,1)$$

$$+ (1)(0)f(1,0) + (1)(1)f(1,1) + (2)(0)f(2,0)$$

$$= f(1,1) = \frac{3}{14}.$$

# Example 4.7:

Find E(Y/X) for the density function

$$f(x,y) = \begin{cases} \frac{x(1+3y^2)}{4}, & 0 < x < 2, \ 0 < y < 1, \\ 0, & \text{elsewhere.} \end{cases}$$

# **Solution:**

We have

$$E\left(\frac{Y}{X}\right) = \int_0^1 \int_0^2 \frac{y(1+3y^2)}{4} \ dxdy = \int_0^1 \frac{y+3y^3}{2} \ dy = \frac{5}{8}.$$

#### **Practice Problems from Book**

**4.1** The probability distribution of X, the number of imperfections per 10 meters of a synthetic fabric in continuous rolls of uniform width, is given in Exercise 3.13 on page 92 as

Find the average number of imperfections per 10 meters of this fabric.

**4.2** The probability distribution of the discrete random variable X is

$$f(x) = {3 \choose x} \left(\frac{1}{4}\right)^x \left(\frac{3}{4}\right)^{3-x}, \quad x = 0, 1, 2, 3.$$

Find the mean of X.

**4.3** Find the mean of the random variable T representing the total of the three coins in Exercise 3.25 on page 93.

**3.25** From a box containing 4 dimes and 2 nickels, 3 coins are selected at random without replacement. Find the probability distribution for the total T of the 3 coins. Express the probability distribution graphically as a probability histogram.

- **4.4** A coin is biased such that a head is three times as likely to occur as a tail. Find the expected number of tails when this coin is tossed twice.
- **4.6** An attendant at a car wash is paid according to the number of cars that pass through. Suppose the probabilities are 1/12, 1/12, 1/4, 1/4, 1/6, and 1/6, respectively, that the attendant receives \$7, \$9, \$11, \$13, \$15, or \$17 between 4:00 P.M. and 5:00 P.M. on any sunny Friday. Find the attendant's expected earnings for this particular period.

**4.10** Two tire-quality experts examine stacks of tires and assign a quality rating to each tire on a 3-point scale. Let X denote the rating given by expert A and Y denote the rating given by B. The following table gives the joint distribution for X and Y.

|                  |   |      | $\boldsymbol{y}$ |      |
|------------------|---|------|------------------|------|
| f(x,y)           |   | 1    | 2                | 3    |
|                  | 1 | 0.10 | 0.05             | 0.02 |
| $\boldsymbol{x}$ | 2 | 0.10 | 0.35             | 0.05 |
|                  | 3 | 0.03 | 0.10             | 0.20 |

Find  $\mu_X$  and  $\mu_Y$ .

**4.11** The density function of coded measurements of the pitch diameter of threads of a fitting is

$$f(x) = \begin{cases} \frac{4}{\pi(1+x^2)}, & 0 < x < 1, \\ 0, & \text{elsewhere.} \end{cases}$$

Find the expected value of X.

**4.12** If a dealer's profit, in units of \$5000, on a new automobile can be looked upon as a random variable X having the density function

$$f(x) = \begin{cases} 2(1-x), & 0 < x < 1, \\ 0, & \text{elsewhere,} \end{cases}$$

find the average profit per automobile.

**4.13** The density function of the continuous random variable X, the total number of hours, in units of 100 hours, that a family runs a vacuum cleaner over a period of one year, is given in Exercise 3.7 on page 92 as

$$f(x) = \begin{cases} x, & 0 < x < 1, \\ 2 - x, & 1 \le x < 2, \\ 0, & \text{elsewhere.} \end{cases}$$

Find the average number of hours per year that families run their vacuum cleaners. **4.14** Find the proportion X of individuals who can be expected to respond to a certain mail-order solicitation if X has the density function

$$f(x) = \begin{cases} \frac{2(x+2)}{5}, & 0 < x < 1, \\ 0, & \text{elsewhere.} \end{cases}$$

**4.32** In Exercise 3.13 on page 92, the distribution of the number of imperfections per 10 meters of synthetic fabric is given by

| $\boldsymbol{x}$ | 0    | 1    | 2    | 3    | 4    |   |
|------------------|------|------|------|------|------|---|
| f(x)             | 0.41 | 0.37 | 0.16 | 0.05 | 0.01 | _ |

- (a) Plot the probability function.
- (b) Find the expected number of imperfections,  $E(X) = \mu$ .
- (c) Find  $E(X^2)$ .