CS-470: Machine Learning

Week 3 — Polynomial Regression and Regularization

Instructor: Dr. Sajjad Hussain

Department of Electrical and Computer Engineering SEECS, NUST

September 25, 2025

Outline

- Recap
- Polynomial Regression
- 3 The Bias-Variance Tradeoff
- Regularized Linear Models
- Summary

Recap of Week-02

• Explored Linear Regression:

- Simple linear regression (one variable).
- Multiple linear regression with many features.
- Matrix notation for compact representation.

Learned about Cost Function:

- Mean Squared Error (MSE) as a measure of fit.
- Goal: minimize cost by finding best parameters.

• Discussed Gradient Descent:

- Update rule: move parameters in direction of steepest descent.
- Role of learning rate α : too small = slow, too large = unstable.
- Variants: Batch, Stochastic, and Mini-batch GD.

Polynomial Regression

- Real-world data is often more complex than a simple straight line.
- Surprisingly, we can still use a **linear model** to fit nonlinear data.
- Idea: Add powers of each feature as new features, then train a linear model on this extended dataset.
- This approach is called **Polynomial Regression**.

How Polynomial Regression Works

• Example with one feature *x*:

$$y \approx \theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \dots$$

- The model is still linear in parameters θ , but can capture nonlinear patterns.
- By adding higher-order terms, the model becomes more flexible.

Polynomial Regression with Multiple Features

- With multiple features, Polynomial Regression captures interactions between features.
- We can use **PolynomialFeatures** class from Scikit-Learn library to generates all combinations of features up to the chosen degree.
- Example: With features a and b, and degree = 3:
 - Individual powers: a^2, a^3, b^2, b^3
 - Combinations: ab, a^2b, ab^2
- This makes Polynomial Regression much richer than plain Linear Regression.

Linear vs Polynomial Regression

 As shown, the linear model underfits the quadratic dataset, while polynomial regression captures the curvature much better.

Learning Curves

- A learning curve plots the training error and validation error as the number of training examples increases.
- They provide insight into whether the model is:
 - Underfitting: both training and validation errors are high.
 - Overfitting: training error is low but validation error is high.
- By analyzing learning curves, we can decide whether to use a more complex model, gather more data, or adjust regularization.

Learning Curves: Underfitting vs Overfitting

- **Underfitting:** Model is too simple, both errors remain high and close to each other.
- Overfitting: Training error becomes very small, but validation error remains high with a large gap.

Bias, Variance, and Irreducible Error

- **Bias:** Error due to wrong assumptions about the data (e.g., assuming linear when it is quadratic).
 - \bullet High bias \rightarrow underfitting
- Variance: Error due to sensitivity to small variations in the training set.
 - High variance \rightarrow overfitting
- **Irreducible error:** Caused by inherent noise in the data.
 - Can only be reduced by improving data quality (fix sensors, remove outliers, etc.)

The Bias-Variance Tradeoff

- Increasing model complexity:
 - ↑ Variance, ↓ Bias
 - Risk of overfitting
- Reducing model complexity:
 - ↑ Bias, ↓ Variance
 - Risk of underfitting
- Tradeoff: Find the right balance of bias and variance to minimize generalization error.

Regularized Linear Models

- A good way to reduce overfitting is to regularize the model (i.e., to constrain it).
- ullet Fewer degrees of freedom o harder for the model to overfit.
- Example: In Polynomial Regression, reduce the polynomial degree.
- In Linear Models, regularization is achieved by constraining the weights.
- We will study:
 - Ridge Regression
 - Lasso Regression
 - Elastic Net

Ridge Regression

- Ridge Regression (a.k.a. Tikhonov regularization) is a regularized version of Linear Regression.
- It adds a **penalty term** to the cost function to keep weights small:

$$J(\theta) = \mathsf{MSE}(\theta) + \alpha \frac{1}{2} \sum_{i=1}^{n} \theta_i^2$$

- Only weights $\theta_1, \dots, \theta_n$ are regularized, not the bias θ_0 .
- **Effect:** The model must balance fitting the data and keeping weights small (reduces overfitting).
- Hyperparameter α :
 - $\alpha = 0 \Rightarrow$ Ordinary Linear Regression.
 - Large $\alpha \Rightarrow$ weights ≈ 0 , prediction \approx flat line at data mean.

Ridge Regression - Training Notes

- The cost function used in training may differ from the evaluation metric:
 - Training: add regularization term for optimization.
 - Testing: evaluate using standard performance measures (e.g., MSE).
- For Gradient Descent:

$$\nabla J(\theta) = \nabla \mathsf{MSE}(\theta) + \alpha w$$

where
$$w = (\theta_1, \dots, \theta_n)$$
.

 Important: Scale input features (e.g., StandardScaler) before applying Ridge Regression.

Ridge Regression – Effect of α

- ullet Ridge models with different lpha values:
 - Left: Ridge applied directly to linear data.
 - ullet Right: Polynomial features (degree = 10) + StandardScaler + Ridge.
- Increasing α makes predictions flatter and less extreme.
- Bias-variance tradeoff: larger α reduces variance but increases bias.

Lasso Regression

- Lasso Regression (Least Absolute Shrinkage and Selection Operator):
 - Adds an ℓ_1 penalty to the cost function.
 - Cost function:

$$J(\theta) = \mathsf{MSE}(\theta) + \alpha \sum_{i=1}^{n} |\theta_i|$$

- **Key property:** Lasso tends to set some weights exactly to zero.
 - Performs automatic feature selection.
 - Produces sparse models (few nonzero weights).
- Hyperparameter α :
 - $\alpha = 0$: plain Linear Regression.
 - Large α : stronger regularization \Rightarrow more weights forced to zero.

Elastic Net

- Elastic Net: Combines Ridge (ℓ_2) and Lasso (ℓ_1) penalties.
- Cost function:

$$J(\theta) = \mathsf{MSE}(\theta) + r\alpha \sum_{i=1}^{n} |\theta_i| + \frac{1-r}{2} \alpha \sum_{i=1}^{n} \theta_i^2$$

- Mixing ratio r:
 - $r = 0 \Rightarrow \text{Ridge Regression}$
 - $r = 1 \Rightarrow \mathsf{Lasso} \; \mathsf{Regression}$
- When to use:
 - Ridge: good default (all features contribute).
 - Lasso: if only a few features are useful.
 - Elastic Net: preferred over Lasso when
 - features > training instances, or
 - features are strongly correlated.
- In practice, always use some regularization (avoid plain Linear Regression).

Week-03 Summary

Underfitting vs. Overfitting:

- ullet Underfitting: model too simple o high bias.
- Overfitting: model too complex \rightarrow high variance.
- Best model balances bias and variance.

Learning Curves:

- Train vs. validation error on same graph.
- Diagnose underfitting (both errors high) and overfitting (gap between train and validation).

Regularized Linear Models:

- Ridge Regression: ℓ_2 penalty (shrinks weights).
- Lasso Regression: ℓ_1 penalty (performs feature selection).
- Elastic Net: combination of ℓ_1 and ℓ_2 .
- Key takeaway: Regularization reduces overfitting and improves generalization.