SEISMIC IMAGE CLASSIFICATION USING CONVOLUTIONAL NEURAL NETWORKS

ALEX HOWELL

VISTAS IN ADVANCED COMPUTING

DEEP MACHINE LEARNING

- Imitates how the human brain works by using neural networks
- Multiple nodes used in each layer throughout the process
- Each neuron has a weight associated with it which is a number that is changed while learning
- Has the ability to predict based of previous data

HIERARCHICAL REPRESENTATIONS

"Deep learning methods aim at **learning feature hierarchies** with features from higher levels of the hierarchy formed by the composition of lower level features.

Automatically learning features at multiple levels of abstraction allows a system to learn complex functions mapping the input to the output directly from data, without depending completely on human-crafted features."

Yoshua Bengio

[Bengio, "On the expressive power of deep architectures", Talk at ALT, 2011]

[Bengio, Learning Deep Architectures for AI, 2009]

DEEP LEARNING - NEURAL NETWORK

How to capture representation of objects in computational/mathematical model?

Objects: a category [position or segmentation]

Let machine learn the model from samples

Inspiration from biological (human/primate) visual system

Key element: a hierarchy

- Biological plausibility
- Part sharing between objects/categories
 - → Efficient representation
- Object/part as a composition of other parts
 - → Compositional interpretation

IMPORTANCE OF SEISMIC ANALYSIS

- Detects underground features and distinguishes them from each other
- Faults and other features are important to find before working on the ground
- For example, finding the area where oil, gas or certain types of rocks are
- The algorithms can highlight faults for trying to locate petroleum in a reservoir
- The work would be conducted on a specific spot because of the data extracted

Convolutional Neural Networks

A CNN is a neural network with some convolutional layers (and some other layers). A convolutional layer has a number of filters that does convolutional operation.

CONVOLUTION OPERATION IN CNN

- Input: an image (2-D array) x
- Convolution kernel/operator(2-D array of learnable parameters): w

$$s[i,j] = (x * w)[i,j] = \sum_{m=-M}^{M} \sum_{n=-N}^{N} x[i+m,j+n] w[m,n]$$

DATA USED

- Total: 2000 pictures
 - 150x300 pixels
- Class1 no-fault: 1000 images
- Class2 fault: 1000 images
- Training: 980 images for Class1, and 980 images for Class2
- Testing: 20 images for Class1, and 20 images for Class2
- Dataset: Large North-Sea Dataset of Migrated Aggregated Seismic Structures (Landmass)
- Available at: http://cegp.ece.gatech.edu/codedata/landmass/

IMPORTS

```
import numpy as np
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation, Flatten
from keras.layers import Conv2D, MaxPooling2D, Lambda
from keras.layers import Dense
from keras.utils import np_utils
from keras.preprocessing.image import ImageDataGenerator
from sklearn.preprocessing import LabelEncoder
from sklearn.cross_validation import train_test_split
import cv2
import scipy
import os
%matplotlib inline
import matplotlib.pyplot as pet
```

Keras – Neural Network API used for processing pictures Sklearn – Used mainly for classification in this project os, scipy, cv2 – Used for imported pictures into usable object

GETTING PICTURES INTO THE PROGRAM

```
from keras.preprocessing import image
def get_data(folder):
    Load the data and labels from the given folder.
   X = []
   y = []
   for seismic type in os.listdir(folder):
        if not seismic type.startswith('.'):
            if seismic type in ['Class1']:
                label = '0'
            else:
                label = '1'
            for image filename in os.listdir(folder + seismic type):
                img file = cv2.imread(folder + seismic type + '/' + image filename)
                if img file is not None:
                    # Downsample the image to 120, 160, 3
                    #img file = scipy.misc.imresize(arr=img file, size=(120, 160, 3))
                    img arr = np.asarray(img file)
                    X.append(img arr)
                    y.append(label)
   X = np.asarray(X)
   y = np.asarray(y)
    return X,y
```

- "folder" is the directory
- Separates the pictures into two classes
- X holds the pictures
- y holds labels corresponding to X

SETTING UP FOR DEEP LEARNING

```
X_train, y_train = get_data(BASE_DIR + 'images/Train/')
X_test, y_test = get_data(BASE_DIR + 'images/Test/')
X_train = X_train*1./255.
X_test = X_test*1./255.
encoder = LabelEncoder()
encoder.fit(y_train)
y_train = encoder.transform(y_train)
y_test = encoder.transform(y_test)
Sets the classes as 0 and 1
```

ONE CONVOLUTION ALGORITHM

```
def get_model():
    model = Sequential()
    model.add(Conv2D(32, (3,3), input_shape=(150, 300, 3), activation='relu'))
    model.add(MaxPooling2D(pool_size=(2, 2)))
    model.add(Flatten())
    model.add(Dense(units=128,activation='relu'))
    model.add(Dropout(0.5))
    model.add(Dense(1))
    model.add(Activation('sigmoid'))
    model.compile(optimizer = 'rmsprop', loss = 'binary_crossentropy', metrics = ['accuracy'])
    return model
```

- Conv2D Number of output operations
- MaxPooling2D Clears the noise
- Flatten Changes the shape of the input
- Dropout Takes out a percentage of neurons to use
- Dense Creates a hidden layer of neurons
- Activation Applies an activation function
- Compile Puts all the layers together

The Whole CNN

A new image

Smaller than the original image

Can repeat many

times

The Whole CNN

Fully Connected Feedforward network

Convolution

Max Pooling

Convolution

Max Pooling

A new image

A new image

Flattened

THE WHOLE CNN

Fully Connected Feedforward network

Can repeat many times

Flattened

POOLING

- Common pooling operations:
 - Max pooling: reports the maximum output within a rectangular neighborhood.
 - Average pooling: reports the average output of a rectangular neighborhood (possibly weighted by the distance from the central pixel).

WHY POOLING

Subsampling pixels will not change the object

fault

Subsampling

fault

We can subsample the pixels to make image smaller

fewer parameters to characterize the image

MAX POOLING

Filter 2

Visual Representation of Model Layering

from ann_visualizer.visualize import ann_viz;
ann viz(model, title="One Convolution")

Input of 300x150 image

Conv2D Layer Kernel Size: 3x3

Filters: 32

Max Pooling
Pool Size: 2x2

Flattening

Dense 128 Neuron Network

Dropout

Dense 1 Neuron (Binary Classification)

THE LEARNING PART

model = get model()

```
# fits the model on batches
history = model.fit(X_train,y_train,validation_split=0.2,epochs=epochs,shuffle=True,batch_size=batch_size)
Train on 1488 samples, validate on 372 samples
Epoch 1/10
Epoch 2/10
Epoch 3/10
Epoch 4/10
12
Epoch 5/10
Epoch 6/10
Epoch 7/10
Epoch 8/10
Epoch 9/10
Epoch 10/10
```

- fit uses the model on the dataset to be used in the machine learning
- epoch iterations to
 learn the entire set
- validation_split sets
 aside part of training
 data to be checked for
 better accuracy

VISUALIZATION OF RESULTS

- Train train set data
- Test validation set data
- Loss Error in learning

PREDICTIONS ON ONE CONVOLUTION

```
from sklearn.metrics import accuracy_score

print('Predicting on test data')
y_pred = np.rint(model.predict(X_test))
print(accuracy_score(y_test,y_pred))

Predicting on test data
1.0
```

```
from sklearn.metrics import confusion_matrix
print(confusion_matrix(y_test, y_pred))
[[20 0]
[ 0 20]]
```

100% Accuracy

TWO CONVOLUTIONS ALGORITHM

```
def get_model():
    model = Sequential()
    model.add(Conv2D(32, (3, 3), input_shape=(150, 300, 3), activation='relu'))
    model.add(MaxPooling2D(pool_size=(2, 2)))
    model.add(Conv2D(32, (3, 3), activation='relu'))
    model.add(Activation('relu'))
    model.add(MaxPooling2D(pool_size=(2, 2)))
    model.add(Flatten())
    model.add(Dense(128, activation='relu'))
    model.add(Dense(128, activation='relu'))
    model.add(Dense(1))
    model.add(Activation('sigmoid'))
    model.add(Activation('sigmoid'))
    return model
```

- Conv2D Number of output operations
- MaxPooling2D Clears the noise
- Flatten Changes the shape of the input
- Dropout Takes out a percentage of neurons to use
- Dense Creates a hidden layer of neurons
- Activation Applies an activation function
- Compile Puts all the layers together

TWO CONVOLUTION RESULTS

- Train train set data
- Test validation set data
- Loss Error in learning

PREDICTIONS ON TWO CONVOLUTIONS

```
from sklearn.metrics import accuracy_score

print('Predicting on test data')
y_pred = np.rint(model.predict(X_test))
print(accuracy_score(y_test,y_pred))

Predicting on test data
0.975
```

```
from sklearn.metrics import confusion_matrix
print(confusion_matrix(y_test, y_pred))
[[20 0]
[ 1 19]]
```

97.5% Accuracy

THREE CONVOLUTION ALGORITHM

```
def get model():
   model = Sequential()
   model.add(Conv2D(32, (3,3), input_shape=(150, 300, 3), activation='relu'))
   model.add(MaxPooling2D(pool size=(2, 2)))
   model.add(Conv2D(32, (3,3)))
   model.add(Activation('relu'))
   model.add(MaxPooling2D(pool size=(2, 2)))
   model.add(Conv2D(32, (3,3)))
   model.add(Activation('relu'))
   model.add(MaxPooling2D(pool size=(2, 2)))
   model.add(Flatten())
   model.add(Dense(units=128,activation='relu'))
   model.add(Dropout(0.2))
   model.add(Dense(1))
   model.add(Activation('sigmoid'))
   model.compile(optimizer = 'rmsprop', loss = 'binary crossentropy', metrics = ['accuracy'])
   return model
```

- Conv2D Number of output operations
- MaxPooling2D Clears the noise
- Flatten Changes the shape of the input
- Dropout Takes out a percentage of neurons to use
- Dense Creates a hidden layer of neurons
- Activation Applies an activation function
- Compile Puts all the layers together

THREE CONVOLUTION RESULTS

- Train train set data
- Test validation set data
- Loss Error in learning

PREDICTIONS ON THREE CONVOLUTIONS

```
from sklearn.metrics import accuracy_score

print('Predicting on test data')
y_pred = np.rint(model.predict(X_test))
print(accuracy_score(y_test,y_pred))

Predicting on test data
0.95
```

```
from sklearn.metrics import confusion_matrix
print(confusion_matrix(y_test, y_pred))
[[20 0]
[ 2 18]]
```

95% Accuracy

CONCLUSION

- The multilayered convolution algorithm is most likely better suited for more complicated data
- For the simpler faults, less convolutions show better results because there is less to analysis
- Having other seismic features would require a more complex algorithm than just one convolution

CITATIONS

Brownlee, J. (2018). *Display Deep Learning Model Training History in Keras*. [online] Machine Learning Mastery. Available at: https://machinelearningmastery.com/display-deep-learning-model-training-history-in-keras/ [Accessed 8 Aug. 2018].

Di, Haibin & Shafiq, Amir & Alregib, Ghassan. (2017). Seismic-fault detection based on multiattribute support vector machine analysis. 2039-2044. 10.1190/segam2017-17748277.1.

Gill, J. (2018). Automatic Log Analysis using Deep learning and AI forMicroservices. [online] Xenostack. Available at: https://www.xenonstack.com/blog/data-science/log-analytics-deep-machine-learning-ai/[Accessed 8 Aug. 2018].

Investopedia. (2018). Deep Learning. [online] Available at: https://www.investopedia.com/terms/d/deep-learning.asp [Accessed 8 Aug. 2018].

Keras.io. (2018). Keras Documentation. [online] Available at: https://keras.io/ [Accessed 8 Aug. 2018].

Shah, A. (2018). Visualizing Artificial Neural Networks (ANNs) with just One Line of Code. [online] Towards Data Science. Available at: https://towardsdatascience.com/visualizing-artificial-neural-networks-anns-with-just-one-line-of-code-b4233607209e [Accessed 8 Aug. 2018].

Scikit-learn.org. (2018). sklearn.preprocessing.LabelEncoder — scikit-learn 0.19.2 documentation. [online] Available at: http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.LabelEncoder.html [Accessed 9 Aug. 2018].