August Heimman

KIET Group of Institutions, Ghaziabad

Department of Computer Applications

(An ISO – 9001: 2015 Certified & 'A' Grade accredited Institution by NAAC)

Design and Analysis of Algorithm RCA 352: Session 2020-21 DAA Lab

Objective: Implement the **Randomized Quick sort** algorithm to sort the given list of N numbers and plot graph.

Scheduled Date:	Compiled Date:	Submitted Date:
01-9-2020	01-9-2020	06-9-2020

Algorithm:

QUICKSORT(A, p,r)

- 1. if p < r
- 2. then $q \leftarrow PARTITION(A, p,r)$
- 3. QUICKSORT(A, p, q 1)
- 4. QUICKSORT(A, q + 1,r)

RANDOMIZED-PARTITION(A, p, r)

- 1. $i \leftarrow \text{RANDOM}(p, r)$
- 2. exchange $A[r] \leftrightarrow A[i]$
- 3. **return** PARTITION(A, p, r)

RANDOMIZED-QUICKSORT(A, p, r)

- 1. **if** p < r
- 2. **then** $q \leftarrow \text{RANDOMIZED-PARTITION}(A, p, r)$
- 3. RANDOMIZED-QUICKSORT(A, p, q 1)
- 4. RANDOMIZED-QUICKSORT(A, q + 1, r)

Program:

```
#include<time.h>
#include<stdlib.h>
#include<stdio.h>
#include<conio.h>
#include<process.h>

int count=0;
int partition(int[10],int,int);
int myrandom(int,int);
```


Department of Computer Applications

(An ISO – 9001: 2015 Certified & 'A' Grade accredited Institution by NAAC)

Design and Analysis of Algorithm RCA 352: Session 2020-21

DAA Lab

```
void main()
     void getdata(int[10],int);
     void putdata(int[10],int);
     void quick sort(int[10],int,int);
     int i,a[100],n;
     clrscr();
     printf("Enter the Size of array=\n");
     scanf("%d",&n);
     getdata(a,n);
     printf("\nBefore soring=\n");
     putdata(a,n);
     quick sort(a, 0, n-1);
     printf("\nAfter sorting=\n");
     putdata(a,n);
     printf("\n For n = %d\n value of count is %d", n, count);
     getch();
}
void getdata(int a[10], int n)
     int k;
     printf("Enter the %d Element for sorting\n",n);
     for (k=0; k< n; k++)
      printf("[%d]=",k);
      scanf("%d", &a[k]);
     }
}
void putdata(int a[10], int n)
     int k;
     for (k=0; k< n; k++)
           printf("%d\t",a[k]);
      printf("\n");
void quick sort(int a[], int p, int r)
   int q;
      count++;
```


Department of Computer Applications

(An ISO – 9001: 2015 Certified & 'A' Grade accredited Institution by NAAC)

Design and Analysis of Algorithm RCA 352: Session 2020-21 DAA Lab

```
if(p < r)
        {
           count++;
           q=partition(a,p,r);
           count++;
           quick sort(a,p,q-1);
           count++;
           quick sort(a,q+1,r);
           count++;
        }
int myrandom(int lower, int upper)
{
int num;
count++;
srand(time(0));
count++;
num=(rand() % (upper - lower + 1)) + lower;
count++;
return num;
int partition(int a[],int p, int r)
  int y, x, i, j, temp;
  y=myrandom(p,r-1);
  temp=a[y];
  a[y]=a[r];
  a[r]=temp;
  x=a[r];
  i=p-1;
  count++;
  for (j=p; j <= r-1; j++)
   {
     count++;
     if(a[j] < x)
     {
           count++;
                i=i+1;
```


Department of Computer Applications

(An ISO – 9001: 2015 Certified & 'A' Grade accredited Institution by NAAC)

Design and Analysis of Algorithm RCA 352: Session 2020-21 DAA Lab

```
count++;
                temp=a[i];
          count++;
                a[i]=a[j];
          count++;
                a[j] = temp;
     }
     count++;
   count++;
     temp=a[i+1];
   count++;
     a[i+1]=a[r];
   count++;
     a[r] = temp;
   count++;
 return(i+1);
}
```

Output:

Inputs	Best Case	Average Case	Worst Case
5	49	69	69
10	153	169	181
15	281	289	291
20	379	405	483
25	527	593	595

Department of Computer Applications

(An ISO – 9001: 2015 Certified & 'A' Grade accredited Institution by NAAC)

Design and Analysis of Algorithm RCA 352: Session 2020-21 DAA Lab

Graph:

Conclusion:

Case	Running Time : Growth of	Running Time : Growth of
	Function mathematically	Function after observing
		graph
Best Case	O(n log n)	O(n log n)
Average Case	O(n log n)	O(n log n)
Worst Case	O(n log n)	O(n log n)