```
=== 선언부 ===
      Linclude SoftwareSerial (꼭 선언해야하는지 Test필요)
      L 초음파센서 핀 설정
      L State담을 전역변수 선언 (int 형? String형?, Serial을 통해 NodeMcu에서 넘어온 값)
=== Setup ===
      L 초음파 센서 pinMode설정
      L모터 바퀴 pinMode 설정
           ┗ 바퀴 두쪽
      L Serial.begin(9600);
=== Loop ===
      Lif(Serial.available() > 0) 일 경우! 값을 읽고있다가 (읽은값을 state에 저장해둔 상태)
           L switch(state)문으로 상태 제어 (
                 L case on:
                      powerOn();
                 L case off:
                      stop();
                 L case auto:
                      autoDrive();
                 L case manual:
                      manualDrive();
=== 함수부 ===
      L powerOn();
           L led를 켠다.(물리적으로 전기 공급을 중단할 수가 없음.대용으로 led사용)
      L stop();
           Lled를 끄고, 아두이노 움직임 정지
      L autoDrive();
           L 자동주행 시작
      L manualDrive();
           L 전(g), 후(b), 좌(l), 우(r) 로 동작하도록 구현
            (방향을 정의한 변수는 여기서만 사용)
     === 보류 ===
           L 간식급여, 멜로디재생, 압력센서, 투석기 만드는거 보류함
```

## 1. 초음파 센서 달기

a. 초음파 센서 연결하기

센서의 Trig핀이 아두이노의 8번으로 Echo핀이 9번핀으로 갔다.

-> Trig핀 12번, Echo핀이 13번으로 수정

b. 센서값 시리얼로 확인하기

갔다가 돌아오는 값을 기준으로 거리를 측정한다.

Serial을 보면 String형태로 distance가 변환되어 출력된다.

c. 이 값은 이후에 자동주행 부분에서 사용할 예정!!

```
거리 : 12.97cm
                        거리 : 12.87cm
                   onArduino
거리 : 12.73cm
                  1 int TrigPin = 8; //회색
|거리 : 12.61cm
                  2 int EchoPin = 9; //보라
거리 : 11.14cm
거리 : 11.78cm
거리 : 11.14cm
                  4 void setup(){
거리 : 11.48cm
                  5 pinMode(TrigPin, OUTPUT);
                  6 pinMode(EchoPin, INPUT);
거리 * 1 24cm
게임: 11.27cm
                  7 | Serial.begin(9600);
                  8
거리 : 11.17cm
                  9 }
거리 : 11.58cm
                 10
거리 : 11.59cm
거리 : 11.68cm∕
                 11 void loop(){
거리 11.24세
                 12 float distance, duration: //거리, 시간
                 13 digitalWrite(TrigPin, HIGH);
|거리 : 11.12cm
                 14 delayMicroseconds(10);
거리 : 11.12cm
거리 : 11.22cm
                 15 digitalWrite(TrigPin, LOW);
                 16 duration = pulseIn(EchoPin, HIGH); //갔다오는 시간을 구함
|거리 : 11.24cm
거리 : 10.68cm
                 17 //Serial.println("시간 : " + String(duration));
                 18
                     //delay(500);
거리 : 11.49cm
                 19
|거리 : 11.44cm|
                 20 //시간 = 거리/속도
거리 : 11.53cm
거리 : 11.44cm
                 21
                     //거리 = 속도+시간
                 22 //속도 = 거리/시간
|거리 : 11.44cm
거리 : 11.42cm
                 23
거리 : 11.54cm
                 24
                     -//공기가 1초에 340m를 가는데 아래에서 cm로 변환했으니까 거기다 100을 곱해
                 25 //34000이란 수치가 나온다.
|거리 : 11.54cm|
거리 : 11.44cm
                 26 //거기에 마이크로초(센서가 음파를 주고받는 속도의 단위)로 나눠주고,
거리 : 11.44cm
                 27
                     //왕복된 거리이기때문에 /2를 한다.
|거리 : 11.42cm
                 28 | distance = (duration * 34000)/1000000/2;
                 29 Serial.println("거리 : " + String(distance) + "cm");
거리 : 11.54cm
거리 : 11.42cm
                 30 delay(500);
                 31 }
거리 : 11.44cm
거리 : 11.44cm
거리 : 11.54cm
                 4
|거리 : 12.31cm
거리 : 11.22cm
                 업로드 완료.
거리 : 12.51cm
                 스케시는 프로그램 서양 공간 5018 마이트(18%)들 사용, 최대 32255 마이트,
                전역 변수는 동적 메모리 210바이트(10%)를 사용, 1838바이트의 지역변수가 남음.
거리 : 10.97cm
▼ 자동 스크롤 □ Ⅰ
                                                            Arduino/Genuino Uno on COM5
```

## 2. 1.에서 구한 distance값으로 자동주행

- a. 자동차 밑 판 만들기 ok
  - 추가로 구매해야 되는 나사

- HW95 고정용 나사 볼트 너트 총 8쌍
- 온습도계 고정용 볼트 너트 1쌍
- 앞 왼쪽 바퀴 나사 8개 (하나도 고정 안되있음)
- 앞 오른쪽 바퀴 나사 2개 (대각선으로 2쪽만 연결되있음)
- 볼트 너트는 구매하지 못함
  - >>> 철사를 사서 구매했다. 철물점을 3~4군데 다녀봤는데 이렇게 조그만건 팔지 않는다고 인터넷에 알아보려고 했지만 철사로 하면 될거같아서 구매해서 해보니 다행히 고정은 잘 됬다.
- b. 일단 Go(전진), Back(후진), Stop(정지) 함수부터 구현했다.



```
void loop(){
   if(Serial.available()){
        Mode = Serial.read();
        switch(Mode){
        case '1':
        Go();
        break;
        case '2':
        Back();
        break;
        case '3':
        Stop();
        break;
   }
}
```

--> 그리고 루프에서 1~3의 값을 입력해 제대로 작동되는지 Test한 결과 제대로 작동하였다. (제대로 작동하는지 확인OK)

## ※핀 설정 참고

```
1 #include <SoftwareSerial.h>
2 //왼쪽 바퀴
3 int Lin1 = 8;
4 int Lin2 = 7;
5 int LENA = 11;
6 //오른쪽 바퀴
int Rin1 = 6;
int Rin2 = 5;
int RENA = 3;
0
1 char Mode;
```

- c. 이제 초음파 센서로 구한 거리를 이용하여 자동주행을 구현해야 한다.
  - i. 일단 두개의 함수를 추가했다.
    - 1. AutoDrive()
    - 2. TurnLeft()

```
void AutoDrive(){
  driving = true;
  while(driving){
    if(driving = false){
      Stop();
   digitalWrite(TrigPin, HIGH);
   delayMicroseconds(10);
   digitalWrite(TrigPin, LOW);
   duration = pulseln(EchoPin, HIGH); //갔다오는 시간을 구함
    distance = (duration * 34000)/1000000/2;
    Serial.println("거리 : " + String(distance) + "cm");
   delay(500);
   if (distance >= 20) {
      Go();
   } else if (distance < 20) {
      Back();
      delay(3000);
     TurnLeft();
     delay(3000);
   }
 }
```

```
void TurnLeft(){
  driving = true;
  while(driving){
    if(driving = false){
      Stop();
    }
    //왼쪽바퀴는 정지한 상태에서 오른쪽바퀴만 돌면됨
    digitalWrite(8, 0);
    digitalWrite(7, 0);

    digitalWrite(5, 0);
    analogWrite(3, 255);
}
```

그리고 전역변수로 값을 계속 저장해 놓기 위해서 distance와 duration 을 선언해놓고 AutoDrive()는 Loop()안에서 계속 거리를 측정하며 자동주행을 시작한다.

- ! 근데 자동주행은 되는데 가만히 보니 초음파 센서가 정면 가운데 있어서 앞쪽 양옆 모서리쪽의 정면은 감지를 잘 못하는거 같다. 일단 집에서 테스트했기 때문에 학원같은 넓은 환경에서는 어떻게 작동할지도 테스트 해봐야 할듯!

To-Do ▷ 기존에 작은 RC카와 달리 전면의 면적도 크기 때문에 초음파 센서하나로 그 면적을 모두 감지해서 자동주행을 하는건 불가능하다. 앞부분에 총 3개정도를 달게 된다면 구현이 가능할 같은데 이 부분을 작성하고있는 지금, 그 부분보다는 팀원들과 회의를 한 뒤 WebSocket부분을 구현하는것이 낫다고 생각이 들었다.

## 3. NodeMcu에 찍히는 씨리얼 읽기( 공유, Master(NodeMcu) - Slave(Arduino) ) 읽은후에는 아두이노도 동작해야됨!

-아두이노 우노 & NodeMcu Lua Master-Slave 연결하기 참고 영상 <u>https://www.youtube.com/watch?v=SiU-QZwik8w</u> 참고 영상

https://www.hackster.io/pawan-kumar3/serial-communication-between-nodemcu-and-arduino-640819

a. 일단 핀 설정

i.

| Arduino | NodeMcu |
|---------|---------|
| TX      | RX      |
| RX      | TX      |

찾아본 자료에서는 GND까지 서로 연결시켜줬지만 다른곳에서 나가서 그런지 GND를 연결하지 않았지만 제대로통신이 가능했다.

ii. Node에 찍힌 값이 아두이노에게 가는 것이기 때문에 다른 함수를 일단 주석처리하고 loop()에 값을 찍어봤다.

```
132 void loop() {
133 // receiveWiFiData();
134 //
135 // while(WiFi.status() == WL_CONNECTED){
136 // receiveMessageFromServer();
137 // checkTemp();
138 // }
139 Serial.println("node -> arduino Seiral Test");
140 delay(1000);
141 }
4
                                         node -> arduino Seiral Test
                                         node -> arduino Seiral Test
```

iii. 값은 잘 찍히고 아두이노쪽도 동일한 시리얼이 나오는지 체크해 보았다. (아두이노 홈페이지에서 제공하는 온라인 툴을 이용)

```
void loop(){
   if(Serial.available()){
      Mode = Serial.read();
      switch(Mode){
         Go();
          break;
        Back();
         break;
       case '3':
          Stop();
         break;
        case '4':
          AutoDrive();
          break;
// AutoDrive();
  if (Serial.available()) {
    Serial.write(Serial.read());
  }
```

```
ardutio settat
                                    ₽
node -> arduino Seiral Test
```

- iV. 일단 값을 동일하게 들어온다.
- V. nodeMcu측에서 와이파이가 연결된 상태라면 receiveMessageFromServer()에서 GET으로 0~4(mode)를 가지고 오는데 그값이 node쪽 serial엔 계속 출력된다.
- 그 값이 arduino에서도 계속 찍히게 된다면 arduino에선 그값을 읽고 그에 맞는 동작만 수행하면 됨.
- VI. 일단 노드에 찍힌 데이터(아두이노 상태값)은 노드에서 제대로 찍힌뒤 아두이노까지 Serial 통신으로 전달되어 아두이노 port의 serial에서도 동일한 값이 찍히는 것을 확인하였다. OK
- (1~4까지의 데이터는 초기에 char형으로 선언해 놓았고, 읽는 부분(Arduino)에서는 단순히 Serial.abaliavle()을 이용해서 그 값을 읽어들이고 switch(Mode)에서 그 값을가지고 작동하면 된다.
- -> 소스를 보면 알겠지만 정상적으로 해당 uri에서 값을 읽어와서 Mode라는 변수에 저장된다.
  - 그 값을 가지고 switch문을 돌리면 정상적으로 동작하는 것을 확인 할 수 있었다.