Module 3: Lesson 3

BCC (1997) model

Outline

► Bakshi, Cao, and Chen (1997) model

A general framework model

During this and the previous course, we have seen different option pricing models that combine desirable features to have:

- ► Stochastic Volatility → Heston (1993)
- ► Stochastic Interest Rates → Cox-Ingersoll-Ross (1985)
- ► Jump diffusion → Merton (1976)

Since these are all desirable features to have in a model that aims to capture all stylized facts of underlying assets, it would be very convenient to incorporate them in our general framework model.

 \Rightarrow This is precisely what the Bakshi, Cao, and Chen (1997) model does.

Bakshi, Gurdip, Charles Cao, and Zhiwu Chen. "Empirical Performance of Alternative Option Pricing Models." *The Journal of Finance*, vol. 52, no. 5, 1997, pp. 2003–2049.

BCC (1997) model

The Bakshi, Cao, and Chen (BCC) model of 1997 incorporates stochastic interest rates into a setting with stochastic volatility and jump diffusion. So, essentially, this is a Bates (1996) type model, with interests rates following a CIR (1985) type model.

 \Rightarrow These are the SDEs for underlying asset (S_t) , volatility (ν_t) and short rates (r_t) in BCC (1997):

$$dS_t = (r_t - r_J)S_t dt + \sqrt{\nu_t}S_t dZ_t^1 + J_t S_t dN_t$$

$$d\nu_t = \kappa_{\nu}(\theta_{\nu} - \nu_t)dt + \sigma_{\nu}\sqrt{\nu_t}dZ_t^2$$

$$dr_t = \kappa_r(\theta_r - r_t)dt + \sigma_r\sqrt{r_t}dZ_t^3$$

where Z_t^i are standard Brownian motions, and N_t follows a Poisson process.

- Now, we already know how these two models work separately, so it will be very easy to, given some parameters, simulate different price paths following the BCC (1997) model.
- ▶ This is what we will do in the Python notebook that accompanies this lesson.

Summary of Lesson 3

In Lesson 3, we have:

- ► Explored the BCC (1997) model
- ► Introduced Monte-Carlo simulation of BCC (1997)

⇒ References:

Bakshi, Gurdip, et al. "Empirical Performance of Alternative Option Pricing Models." *The Journal of Finance*, vol. 52, no. 5, 1997, pp. 2003–2049.

- \Rightarrow TO DO NEXT: In the notebook associated with this lesson, we will guide you step by step through the simulation, using Monte Carlo, of the BCC (1997) model.
- \Rightarrow In the next lesson, we will see how to fully calibrate this model.

