Results Section: Public Sequencing Metrics

```
library(staphopia)
library(ggplot2)
library(reshape2)
USE_DEV = TRUE
```

Aggregating Data For Public Samples

First we'll get all publicly available S. aureus samples.

```
ps <- get_public_samples()</pre>
```

We will also get information pertaining to submissions and ranks by year.

```
submissions <- get_submission_by_year()
ranks <- get_rank_by_year()</pre>
```

We now have 42949 samples to work with. Next we will acquire metadata, sequencing stats and assembly stats associated with each sample.

```
metrics <- merge(
    ps,
    merge(
        get_assembly_stats(ps$sample_id),
        merge(
            get_metadata(ps$sample_id),
            get_sequence_quality(ps$sample_id, stage='cleanup'),
            by='sample_id'
    ),
    by='sample_id'
),
    by='sample_id'
)</pre>
```

We are now going to add two columns rank_name and year.

```
metrics$year <- sapply(
    metrics$first_public,
    function(x) {
        strsplit(x, "-")[[1]][1]
    }
)

metrics$rank_name <- ifelse(
    metrics$rank.x == 3,
    'Gold',
    ifelse(
        metrics$rank.x == 2,
        'Silver',
        'Bronze'
    )
)</pre>
```

Visualizing Metrics

The following sections will be plots to visualize relationships in the data.

By Year Plots

Submissions Per Year

```
title <- substitute(paste("Per year total of publicly available sequenced ",</pre>
                          italic('S. aureus'), " samples (N = ", x,") between ", min_year, " and ", max_
                    list(x=format(max(submissions$overall), big.mark=',', scientific=FALSE),
                         min_year=min(submissions$year),
                         max_year=max(submissions$year)
p <- ggplot(data=submissions, aes(x=year, y=count)) +</pre>
    xlab("Year") +
    ylab("Total Submitted Samples Per Year") +
    ggtitle(title) +
    geom_bar(stat='identity') +
    geom_text(aes(label=count), vjust = -0.5) +
    scale_x_continuous(breaks = round(seq(min(submissions$year), max(submissions$year), by = 1),1)) +
    theme_bw() +
    theme(axis.text=element text(size=12),
          axis.title=element_text(size=14,face="bold"))
p
```

Per year total of publicly available sequenced S. aureus samples (N = 42,949) between 2010 and 2017.

Overall Submissions

Cumulative total of publicly available sequenced S. aureus samples (N = 42,949) between 2010 and 2017.

Submission Ranks

```
melted <- melt(ranks, id=c('year'),</pre>
               measure.vars = c('bronze', 'silver', 'gold'))
melted$title <- ifelse(melted$variable == 'gold', 'Gold',</pre>
                       ifelse(melted$variable == 'silver', 'Silver', 'Bronze'))
melted$rank <- ifelse(melted$variable == 'gold', 3,
                      ifelse(melted$variable == 'silver', 2, 1))
title <- substitute(paste("Sequencing ranks (Bronze = ", b, ", Silver = ", s,
                          ", Gold = ", g, ") of publicly available ",
                          italic('S. aureus')," samples between ", min_year,
                          " and ", max year, "."), list(
   b=format(max(ranks$overall_bronze), big.mark=',', scientific=FALSE),
    s=format(max(ranks$overall_silver), big.mark=',', scientific=FALSE),
    g=format(max(ranks$overall_gold), big.mark=',', scientific=FALSE),
    min_year=min(ranks$year),
   max_year=max(ranks$year)
))
p <- ggplot(data=melted, aes(x=year, y=value, fill=title, group=rank, label=title)) +
    xlab("Year") +
   ylab("Sequencing Rank Per Year") +
    ggtitle(title) +
    geom_bar(stat='identity', position='dodge') +
   geom_text(aes(label=value), vjust = -0.5, position = position_dodge(.9)) +
    scale_fill_manual(values=c("#CD7F32", "#D4AF37", "#COCOCO")) +
    scale_x_continuous(breaks = round(seq(min(ranks$year), max(ranks$year), by = 1),1)) +
    theme_bw() +
```


Assembly Size

```
p <- ggplot(metrics, aes(x = year, y = total_contig_length)) +
      geom_boxplot()
p</pre>
```


Total Contigs (smaller is better)

```
p <- ggplot(metrics, aes(x = year, y = total_contig)) +
    geom_boxplot()
p</pre>
```


N50

```
p <- ggplot(metrics, aes(x = year, y = n50_contig_length)) +
    geom_boxplot()
p</pre>
```


Mean Contig Length

```
p <- ggplot(metrics, aes(x = year, y = mean_contig_length)) +</pre>
      geom_boxplot()
р
   150000 -
   100000 -
mean_contig_length
   50000 -
      0 -
                                               2012
                                                                              2014
                                                                                             2015
                                                                                                             2016
                2010
                               2011
                                                                                                                            2017
                                                              2013
                                                                      year
```

Max Contig Length

```
p <- ggplot(metrics, aes(x = year, y = max_contig_length)) +
    geom_boxplot()
p</pre>
```


Mean Read Length

```
p <- ggplot(metrics, aes(x = year, y = read_mean)) +</pre>
     geom_boxplot()
р
  300 -
  200 -
read_mean
  100 -
             2010
                            2011
                                           2012
                                                                         2014
                                                                                        2015
                                                                                                        2016
                                                          2013
                                                                                                                       2017
                                                                  year
```

Mean Per-Read Quality Score

```
p <- ggplot(metrics, aes(x = year, y = qual_mean)) +</pre>
     geom_boxplot()
p
  40 -
  30 -
qual_mean
  20 -
  10 -
                           2011
                                          2012
                                                         2013
                                                                        2014
                                                                                       2015
                                                                                                      2016
                                                                                                                     2017
                                                                 year
```

Assembly Size Grouped By Rank

Total Contigs Grouped By Rank

N50 Grouped By Rank

Mean Contig Length Grouped By Rank

Max Contig Length Grouped By Rank

Mean Read Length Grouped By Rank

Mean Per-Read Quality Score Grouped By Rank

By Rank Plots

Assembly Size

```
p <- ggplot(metrics, aes(x = rank_name, y = total_contig_length)) +
    geom_boxplot()
p</pre>
```


Total Contigs (smaller is better)

```
p <- ggplot(metrics, aes(x = rank_name, y = total_contig)) +
    geom_boxplot()
p</pre>
```


N50

```
p <- ggplot(metrics, aes(x = rank_name, y = n50_contig_length)) +
    geom_boxplot()
p</pre>
```


Mean Contig Length

```
p <- ggplot(metrics, aes(x = rank_name, y = mean_contig_length)) +
geom_boxplot()

p

150000-
Bronze

Gold rank_name

Sher
```

Max Contig Length

Mean Read Length

```
p <- ggplot(metrics, aes(x = rank_name, y = read_mean)) +
geom_boxplot()
p

ageom_boxplot()

beautiful additional action of the second of
```

Mean Per-Read Quality Score

```
p <- ggplot(metrics, aes(x = rank_name, y = qual_mean)) +
    geom_boxplot()
p</pre>
```


${\bf Coverage}$

```
p <- ggplot(metrics, aes(x = rank_name, y = coverage)) +
geom_boxplot()

p

100

80

40

Bronze

Gold
Frank_name
```

Bronze Data

Coverage By Quality

Coverage By Read Length

