SVD: Example 1

For symmetric matrices, eigenvectors for distinct eigenvalues are orthogonal

All eigenvalues of a real symmetric matrix are real

All eigenvalues of a positive semi-definite matrix are non-negative

A positive semi-definite matrix is a symmetric matrix with non-negative eigenvalues.

$$S = \begin{array}{|c|c|c|c|}\hline 2 & 1 \\\hline 1 & 2 \\\hline \end{array}$$

Calculate Eigenvalues

$$\begin{array}{c|cccc} 2-\lambda & 1 & & \\ \hline 1 & 2-\lambda & = & 0 \end{array}$$

$$(2-\lambda)^*(2-\lambda)-1$$

$$\lambda$$
 = 0

$$\lambda = 3$$
 $\lambda = 0$

Plug in these eigenvalues values to find eigenvectors

$$(S - \lambda * I) V = 0$$

Eigenvector for
$$\lambda$$
 = 1

2	1			1	0		v1		0
1	2	-	1	0	1	*	v2	=	0

Eigenvector for $\lambda = 3$

2	1			1	0		v1		0
1	2	-	3	0	1	*	v2	=	0

The eigenvectors are orthogonal (and real):

Columns of U are eigenvectors of S; (Recall UU-1 =1)

$$U^{-1} = \begin{array}{c|c} 0.5 & -0.5 \\ \hline 0.5 & 0.5 \end{array}$$

Diagonal elements of Σ are eigenvalues of S

$$\Sigma = \begin{array}{|c|c|c|c|}\hline 1 & 0 \\\hline 0 & 3 \\\hline \end{array}$$

Reconstructed of S from U, $U^{\mbox{\tiny -1}}$ and Σ

$$S = U\Sigma U^{-1}$$

Reconstructed S