جزوه ساختمان داده

مهدی صفریان ۱۱ آذر ۱۳۹۹

فهرست مطالب

١																															٠	شتى	بازگ	بع	توار	
١																							 						٠,	ريل	کتو	، فا	مثأل	_	١.١	
٢																							 					ت .	حاد	ضي	تو	١.	1.1			
																																	مجم	١	۲.۱	
٢				٠									٠										 										توان	١	۳.۱	
			٠			٠									٠	٠		٠		٠			 		٠	٠		ىيم	تقس	ت	سم	ج قد	خار	١	٤.١	
٣																							 	٠				ت .	حاد	ضي	تو	١.	4.1			
٣	٠	٠	٠	٠	٠	٠	٠	•			•		٠	٠		٠		٠	٠		٠	•	 		٠	٠	ď	نسيه	ه ت	ىاند	ی م	باق	تابع	Č	١ . ۵	
٣				٠									٠										 				·					ی	هانو	9	۶.۱	
۴		٠																					 					ت .	حاد	ضي	تو	١.	۶.۱			
۴																																	فيبو	١	۲.۱	

از انجایی که درس ساختمان داده هیچ ویدیویی ندارد و جزوه اصلی درس صرفا شامل تمارین مدرس است، فلذا توضیحات درون این جزوه فقط برداشت شخصی بنده است.

۱ توابع بازگشتی

تابع بازگشتی تابعی است که حداقل شامل یک دستور باشد و درون خود، خودش را صدا بزند؛ توابع بازگشتی به تعداد محدود اجرا میشوند و پس از رسیدن به نتیجه مطلوب متوقف میشوند.

۱.۱ مثال فاكتوريل

فاکتوریل حاصل ضرب اعداد n تا ۱ را حساب می کند. برای مثال فاکتوریل عدد ۳ برابر است با 1 * 2 * 3.

کد ۱: فاکتوریل

١٠١٠١ توضيحات

همانطور که گفته شد تابع فاکتوریل حاصلضرب اعداد n تا ۱ را به دست می آورد. ۱

- ابتدا به تابع مقداری را به عنوان ورودی میدهیم.
- سپس اگر عدد ورودی تابع برابر ۱ بود، تابع متوقف شود.
- در غیر این صورت اگر عددی غیر از ۱ بخش دوم تابع اجرا میشود.
 مثال: فاکتوریل عدد ۴ را محاسیه کنید.

$$fact(4) = 4 * 3 * 2 * 1 = 24$$

- fact(4) = 4 * fact(3) => 4 * 6 = 24
- fact(3) = 3 * fact(2) => 3 * 2 = 6
- fact(2) = 2 * fact(2) => 2 * 1 = 2

۲۰۱ مجموع اعداد ۱ تا n

این تابع به سادگی همانطور که نامش مشخص است مجموع اعداد ۱ تا n را محاسبه می کند.

کد ۲: مجموع اعداد ۱ تا n

```
\begin{array}{lll} & \mbox{def sum(n):} \\ & \mbox{if n} = 1: & \mbox{\#sum function rules:} \\ & \mbox{return 1} & \mbox{\#sum(n)} = \begin{cases} 1, & n=1. \\ n+sum(n-1) & n>1. \end{cases} \\ & \mbox{else:} \\ & \mbox{print(n)} \\ & \mbox{return n} + \mbox{sum(n-1)} \\ & \mbox{print(sum(7))} \end{array}
```

مثال: مجموع اعداد ۱ تا ۳ را بیابید.

$$sum(3) = 3 + 2 + 1 = 6$$

- sum(3) = 3 + sum(2) = > 3 + 3 = 6
- sum(2) = 2 + sum(1) = 2 + 1 = 3

۳.۱ توان

تابع توان مقدار n^m را حساب می کند(ورودیها صحیح و مثبت هستند) به سادگی عمل توان رسانی را حساب می کند.

مثال: تابع توان را فراخوانی كنید و با مقدار دلخواه مثال بزنید.

$$power(3,4) => 3 * 3 * 3 * 3 = 81$$

- power(3,4) = 3 * power(3,3) = 3 * 3 * 3 * 3
- power(3,3) = 3 * power(3,2) = 3 * 3 * 3
- power(3, 2) = 3 * power(3, 1) = 3 * 3

۴.۱ خارج قسمت تقسیم

تابع خارج قسمت تقسیم مقدار خارج قسمت تقسیم صحیح a بر b را محاسبه می کند. تاکید می کنم که هدف ما تقسیم صحیح است.

```
\begin{array}{lll} & \text{def div}(\mathbf{a},\mathbf{b}):\\ \mathbf{r} & \text{if a}<\mathbf{b}: & \text{\#div function rules:}\\ \mathbf{r} & \text{return 0} & \text{\#div}(a,b) = \begin{cases} 0, & a < b.\\ div(a-b,b)+1, & a >= b. \end{cases}\\ & \text{if a} \geq \mathbf{b}:\\ & \text{return div}(\mathbf{a}-\mathbf{b},\mathbf{b})+1 \end{array}
```

1.۴.۱ توضیحات

- در مرحله اول بررسی میشود آیا عدد a بزرگتر از b است یا خیر.
- اگر کوچکتر باشد مقدار صفر برمی گردد چرا که ما مقدار تقسیم صحیح را میخواهیم.
- اگر بزرگتر یا مساوی باشد عدد a برابر میشود با a-b و در نهایت مقدار نهایی یه واحد به آن اضافه میشود.

مثال: با استفاده از تابع div مقادیر a = b و ۲۱ و m = b را بررسی کنید.

div(11,3) => 2+1=3

- div(11,3) = div(8,3) + 1 => 2 + 1 = 3
- div(8,3) = div(5,3) + 1 = 1 + 1 = 2
- div(5,3) = div(2,3) + 1 => 0 + 1 = 1

۵.۱ تابع باقی مانده تقسیم

```
def r(a,b):
 if a<b:
     return a
 else:
     return r(a-b,b)
 print(r(11,3))</pre>
```

۶.۱ هانوی

در مسئله برج هانوی ما میخواهیم تعداد n مهره را از میله A به C ببریم و میله B به عنوان میله کمکی استفاده کنیم.

```
def tower(n, A, B, C):
 if n=1:
     return A to C
 else:
     tower(n-1, A, B, C)
     A to C
     tower(n-1, B, A, C)
```

۱.۶.۱ توضیحات

- ابتدا n-۱ مهره را به میله B انتقال میدهیم و در نهایت بزرگترین مهره در A باقی میماند.
 - بعد مهره بزرگ را به میله C منتقل می کنیم.
 - و در آخر مانند مرحله اول مهرهها را از B به C انقال میدهیم.

یادتان باشد که برای انتقال مهرهها باید از میلههای کمکی استفاده کنیم.

۷.۱ فیبوناچی

تابع فیبوناچی جمله امn اعداد فیبوناچی را به دست میاورد.