Optimality Conditions for Linearly Constrained Optimization

Yinyu Ye

Department of Management Science and Engineering
Stanford University
Stanford, CA 94305, U.S.A.

http://www.stanford.edu/~yyye

(LY Chapters 7.1-7.2 and 11.1-11.3)

General Optimization Problems

Let the problem have the general mathematical programming (MP) form:

$$\begin{array}{ccc} & & \text{minimize} & f(\mathbf{x}) \\ \text{(P)} & & & \\ & & \text{subject to} & \mathbf{x} \in \mathcal{F}. \end{array}$$

In all forms of MP, a feasible solution of a given problem is a vector that satisfies the constraints of the problem, that is, in \mathcal{F} .

Question: how does one recognize or certify an optimal solution to a generally constrained and objectived optimization problem?

Answer: Optimality Condition Theory again.

Descent Direction

Let f be a differentiable function on \mathbb{R}^n . Given a point $\bar{\mathbf{x}} \in \mathbb{R}^n$, if there is a vector \mathbf{d} such that

$$\nabla f(\bar{\mathbf{x}})\mathbf{d} < 0,$$

then there exists a scalar $\bar{\tau} > 0$ such that

$$f(\bar{\mathbf{x}} + \tau \mathbf{d}) < f(\bar{\mathbf{x}}) \text{ for all } \tau \in (0, \bar{\tau}).$$

The vector ${\bf d}$ is called a descent direction at $\bar{\bf x}$. If $\nabla f(\bar{\bf x}) \neq 0$, then $\nabla f(\bar{\bf x})$ is the direction of steepest ascent and $-\nabla f(\bar{\bf x})$ is the direction of steepest descent at $\bar{\bf x}$.

Let's denote the set of descent directions at $ar{\mathbf{x}}$ by $\mathcal{D}^d_{ar{\mathbf{x}}}$, i.e.,

$$\mathcal{D}_{\bar{\mathbf{x}}}^d := \{ \mathbf{d} \in R^n : \nabla f(\bar{\mathbf{x}}) \mathbf{d} < 0 \}.$$

Feasible Direction

At feasible point \bar{x} , the set of feasible directions is given by

$$\mathcal{D}_{\bar{\mathbf{x}}}^f := \{ \mathbf{d} \in \mathbb{R}^n : \mathbf{d} \neq \mathbf{0}, \ \bar{\mathbf{x}} + \lambda \mathbf{d} \in \mathcal{F} \text{ for all small } \lambda > 0 \}.$$

Examples:

$$\mathcal{F} = \mathbb{R}^n \Rightarrow \mathcal{D}^f = \mathbb{R}^n.$$

$$\mathcal{F} = {\mathbf{x} : A\mathbf{x} = \mathbf{b}} \Rightarrow \mathcal{D}^f = {\mathbf{d} : A\mathbf{d} = 0}.$$

$$\mathcal{F} = {\mathbf{x} : A\mathbf{x} \ge \mathbf{b}} \Rightarrow \mathcal{D}^f = {\mathbf{d} : A_i \mathbf{d} \ge 0, \forall i \in \mathcal{A}(\bar{\mathbf{x}})},$$

where the active or binding constraint set $A(\bar{\mathbf{x}}) := \{i : A_i \bar{\mathbf{x}} = b_i\}.$

Optimality Conditions

Optimality Conditions: given a feasible solution or point $\bar{\mathbf{x}}$, what are the necessary conditions for $\bar{\mathbf{x}}$ to be a local optimizer?

A general answer would be: there exists no direction at \bar{x} that is both descent and feasible. Or the intersection of $\mathcal{D}_{\bar{\mathbf{x}}}^d$ and $\mathcal{D}_{\bar{\mathbf{x}}}^f$ must be empty.

Unconstrained Problems

Consider the following unconstrained problem where f is differentiable on \mathbb{R}^n :

$$\begin{array}{ll} & \text{minimize} & f(\mathbf{x}) \\ & \text{(UP)} & \\ & \text{subject to} & \mathbf{x} \in R^n. \end{array}$$

$$\mathcal{D}_{\bar{\mathbf{x}}}^f = R^n$$
, so that $\mathcal{D}_{\bar{\mathbf{x}}}^d = \{\mathbf{d} \in R^n : \nabla f(\bar{\mathbf{x}})\mathbf{d} < 0\} = \varnothing$.

Theorem 1 Let \bar{x} be a (local) minimizer of (UP). If the functions f is continuously differentiable at \bar{x} , then

$$\nabla f(\bar{\mathbf{x}}) = \mathbf{0}.$$

Linear Equality-Constrained Problems

Consider the following linear equality-constrained problem where f is differentiable on \mathbb{R}^n :

$$\begin{array}{ll} & \text{minimize} & f(\mathbf{x}) \\ \text{(LEP)} & & \\ & \text{subject to} & A\mathbf{x} = \mathbf{b}. \end{array}$$

Theorem 2 (the Lagrange Theorem) Let \bar{x} be a (local) minimizer of LEP. If the functions f is continuously differentiable at \bar{x} , then

$$\nabla f(\bar{\mathbf{x}}) = \mathbf{y}^T A$$

for some $\mathbf{y} = (\bar{y}_1; \dots; \bar{y}_m) \in R^m$, which are called Lagrange or dual multipliers.

Geometric interpretation: the objective gradient vector is perpendicular to or the objective level set tangents the constraint hyperplanes.

Consider feasible direction space

$$\mathcal{F} = \{\mathbf{x} : A\mathbf{x} = \mathbf{b}\} \Rightarrow \mathcal{D}_{\bar{\mathbf{x}}}^f = \{\mathbf{d} : A\mathbf{d} = 0\}.$$

If $\bar{\mathbf{x}}$ is a local optimizer, then the intersection of the descent and feasible direction sets at \bar{x} must be empty or

$$A\mathbf{d} = \mathbf{0}, \ \nabla f(\bar{\mathbf{x}})\mathbf{d} \neq 0$$

has no feasible solution for d. By the Alternative System Theorem it must be true that its alternative system has a solution, that is, there is $y \in \mathbb{R}^n$ such that

$$\nabla f(\bar{\mathbf{x}}) = \mathbf{y}^T A = \sum_{i=1}^m \bar{y}_i A_i.$$

The Barrier Function Problem

Consider the problem

minimize
$$-\sum_{j=1}^n \log x_j$$
 subject to $A\mathbf{x} = \mathbf{b},$ $\mathbf{x} \geq \mathbf{0}$

The non-negativity constraint can be removed if the feasible region has an "interior". If a minimizer exists, then

$$-\mathbf{e}^T X^{-1} = \mathbf{y}^T A = \sum_{i=1}^m \bar{y}_i A_i.$$

Linear Inequality-Constrained Problems

Let us now consider the inequality-constrained problem

$$\begin{array}{ll} & \text{minimize} & f(\mathbf{x}) \\ \text{(LIP)} & & \\ & \text{subject to} & A\mathbf{x} \geq \mathbf{b}. \end{array}$$

Theorem 3 (the KKT Conditions) Let \bar{x} be a (local) minimizer of LIP). If the functions f is continuously differentiable at \bar{x} , then

$$\nabla f(\bar{\mathbf{x}}) = \mathbf{y}^T A, \ \mathbf{y} \ge \mathbf{0}$$

for some $\mathbf{y}=(\bar{y}_1;\ldots;\bar{y}_m)\in R^m$, which are called Lagrange or dual multipliers, and $\bar{y}_i=0$, if $i\not\in\mathcal{A}(\bar{\mathbf{x}})$.

Geometric interpretation: the objective gradient vector is in the cone generated by the normal directions of the active-constraint hyperplanes.

$$\mathcal{F} = \{\mathbf{x} : A\mathbf{x} \ge \mathbf{b}\} \Rightarrow \mathcal{D}_{\bar{\mathbf{x}}}^f = \{\mathbf{d} : A_i\mathbf{d} \ge 0, \ \forall i \in \mathcal{A}(\bar{\mathbf{x}})\},$$

or

$$\mathcal{D}_{\bar{\mathbf{x}}}^f = \{\mathbf{d} : \bar{A}\mathbf{d} \ge \mathbf{0}\},\$$

where \bar{A} corresponds to those active constraints. If $\bar{\mathbf{x}}$ is a local optimizer, then the intersection of the descent and feasible direction sets at \bar{x} must be empty or

$$\bar{A}\mathbf{d} \geq \mathbf{0}, \ \nabla f(\bar{x})\mathbf{d} < 0$$

has no feasible solution. By the Alternative System Theorem it must be true that its alternative system has a solution, that is, there is $\bar{y} \geq 0$ such that

$$\nabla f(\bar{\mathbf{x}}) = \bar{\mathbf{y}}^T \bar{A} = \sum_{i \in \mathcal{A}(\bar{\mathbf{x}})} \bar{y}_i A_i.$$

Let $\bar{y}_i = 0$ for all remaining inactive constraints. Then we prove the theorem.

Optimization with Mixed Constraints

We now consider optimality conditions for problems having both inequality and equality constraints. That is,

minimize
$$f(\mathbf{x})$$
 (P) subject to $A\mathbf{x} = \mathbf{b}$ $\mathbf{x} \geq \mathbf{0}$

For any feasible point \bar{x} of (P) we have the sets

$$\mathcal{A}(\bar{\mathbf{x}}) = \{j : \bar{x}_j = 0\}$$

$$\mathcal{D}_{\bar{\mathbf{x}}}^d = \{\mathbf{d} : \nabla f(\bar{\mathbf{x}})\mathbf{d} < 0\}.$$

The KKT Conditions again

Theorem 4 Let $\bar{\mathbf{x}}$ be a local minimizer for (P). Then there exist multipliers \mathbf{y} and \mathbf{s} such that

$$\begin{cases} \nabla f(\bar{\mathbf{x}}) &= \mathbf{y}^T A + \mathbf{s}^T \\ \mathbf{s} &\geq \mathbf{0} \\ s_j &= 0 \quad \text{if } j \notin \mathcal{A}(\bar{\mathbf{x}}). \end{cases}$$

Optimality and Complementarity Conditions

$$\begin{cases} x_j(\nabla f(\mathbf{x}) - \mathbf{y}^T A)_j &= 0, \quad \forall j = 1, \dots, n \\ A\mathbf{x} &= \mathbf{b} \\ \nabla f(\mathbf{x}) - \mathbf{y}^T A &\geq \mathbf{0} \\ \mathbf{x} &\geq \mathbf{0}. \end{cases}$$

$$\begin{cases} x_j s_j &= 0, \quad \forall j = 1, \dots, n \\ A \mathbf{x} &= \mathbf{b} \\ \nabla f(\mathbf{x}) - \mathbf{y}^T A - \mathbf{s}^T &= \mathbf{0} \\ \mathbf{x}, \mathbf{s} &\geq \mathbf{0} \end{cases}$$

Sufficient Optimality Conditions

Theorem 5 If f is a differentiable convex function in the feasible region and the feasible region is a convex set, then the (first-order) KKT optimality conditions are sufficient for the global optimality of a feasible solution.

Corollary 1 If f is differentiable convex function in the feasible region, then the (first-order) KKT optimality conditions are sufficient for the global optimality of a feasible solution for linearly constrained optimization.

How to check convexity, say $f(x) = x^3$?

- Hessian matrix is PSD in the feasible region.
- Epigraph is a convex set.

LCCP Examples: Linear Optimization

$$(LP)$$
 minimize $\mathbf{c}^T\mathbf{x}$ subject to $A\mathbf{x}=\mathbf{b},\ \mathbf{x}\geq\mathbf{0}.$

For any feasible x of LP, it's optimal if for some y, s

$$x_j s_j = 0, \forall j = 1, \dots, n$$

$$A\mathbf{x} = \mathbf{b}$$

$$\nabla(\mathbf{c}^T \mathbf{x}) = \mathbf{c}^T = \mathbf{y}^T A + \mathbf{s}^T$$

$$\mathbf{x}, \mathbf{s} \geq \mathbf{0}.$$

Here, y are Lagrange multipliers of equality constraints, and s (reduced cost or dual slack vector in LP) are Lagrange multipliers for $x \ge 0$.

LCCP Examples: Barrier Optimization

$$f(\mathbf{x}) = \mathbf{c}^T \mathbf{x} - \mu \sum_{j=1}^n \log(x_j),$$

for some fixed $\mu > 0$. Assume that interior of the feasible region is not empty:

$$\begin{cases}
A\mathbf{x} &= \mathbf{b} \\
c_j - \frac{\mu}{x_j} - (\mathbf{y}^T A)_j &= 0, \quad \forall j = 1, \dots, n \\
\mathbf{x} &> \mathbf{0}.
\end{cases}$$

$$\begin{cases} x_j s_j &= \mu, \quad \forall j = 1, \dots, n, \\ A \mathbf{x} &= \mathbf{b}, \\ A^T \mathbf{y} + \mathbf{s} &= \mathbf{c}, \\ (\mathbf{x}, \mathbf{s}) &> \mathbf{0}. \end{cases}$$

Proof of Uniqueness

Solution pair of (\mathbf{x}, \mathbf{s}) of the barrier optimization problem is unique. Suppose there two different pair $(\mathbf{x}^1, \mathbf{s}^1)$ and $(\mathbf{x}^2, \mathbf{s}^2)$. Then we have

$$(\mathbf{s}^1 - \mathbf{s}^2)^T (\mathbf{x}^1 - \mathbf{x}^2) = 0.^{\mathsf{a}}$$

Thus, there is j such that

$$(s_j^1 - s_j^2)(x_j^1 - x_j^2) > 0.$$

If $x_j^1>x_j^2$, then $s_j^1< s_j^2$ since $x_j^1s_j^1=x_j^2s_j^2=\mu>0$, which leads to $(s_j^1-s_j^2)(x_j^1-x_j^2)<0$ which is a contradiction. Similarly, one cannot have $x_j^1< x_j^2$.

^aTo see this, the second condition gives $A\mathbf{x}_1 = \mathbf{b}_1$ and $A\mathbf{x}_2 = \mathbf{b}_3$ and the third condition gives $A^T\mathbf{y}_1 + \mathbf{s}_1 = \mathbf{c}$ and $A^T\mathbf{y}_2 + \mathbf{s}_2 = \mathbf{c}$. Which imply $A(\mathbf{x}_1 - \mathbf{x}_2) = 0$ and $A^T(\mathbf{y}_1 - \mathbf{y}_2) = \mathbf{s}_2 - \mathbf{s}_1$ and thus give $0 = (\mathbf{x}_1 - \mathbf{x}_2)^T A^T(\mathbf{y}_1 - \mathbf{y}_2) = (\mathbf{x}_1 - \mathbf{x}_2)^T (\mathbf{s}_2 - \mathbf{s}_1)$.

KKT Applications: Fisher's Equilibrium Price

Player $i \in B$'s optimization problem for given prices p_j , $j \in G$.

maximize
$$\begin{aligned} \mathbf{u}_i^T \mathbf{x}_i &:= \sum_{j \in G} u_{ij} x_{ij} \\ \text{subject to} \quad \mathbf{p}^T \mathbf{x}_i &:= \sum_{j \in G} p_j x_{ij} \leq w_i, \\ x_{ij} \geq 0, \quad \forall j, \end{aligned}$$

Assume that the amount of each good is s_j . The equilinitum price vector is the one that for all $j \in G$

$$\sum_{i \in B} x(\mathbf{p})_{ij} = s_j$$

Example of Fisher's equilibrium price

There two goods, x and y, each with 1 unit on the market. Buyer 1, 2's optimization problems for given prices p_x , p_y .

maximize
$$2x_1+y_1$$
 subject to
$$p_x\cdot x_1+p_y\cdot y_1\leq 5,$$

$$x_1,y_1\geq 0;$$
 maximize
$$3x_2+y_2$$
 subject to
$$p_x\cdot x_2+p_y\cdot y_2\leq 8,$$

$$x_2,y_2\geq 0.$$

Given $(p_x,p_y)=\left(\frac{26}{3},\frac{13}{3}\right)$, the optimal quantities are found to be

$$(x_1, y_1) = \left(\frac{1}{13}, 1\right), \quad (x_2, y_2) = \left(\frac{12}{13}, 0\right).$$

Equilibrium Price Conditions

Player $i \in B$'s dual problem for given prices p_j , $j \in G$.

minimize
$$w_i y_i$$
 subject to $\mathbf{p} y_i \geq \mathbf{u}_i, \ y_i \geq 0$

The necessary and sufficient conditions for an equilibrium point x_i , p are:

$$\begin{cases} \mathbf{p}^{T} \mathbf{x}_{i} \leq w_{i}, \ \mathbf{x}_{i} \geq \mathbf{0}, & \forall i, \\ p_{j} y_{i} \geq u_{ij}, \ y_{i} \geq 0, & \forall i, j, \\ \mathbf{u}_{i}^{T} \mathbf{x}_{i} = w_{i} y_{i}, & \forall i, \\ \sum_{i} x_{ij} = s_{j}, & \forall j. \end{cases}$$

Equilibrium Price Conditions (cont'd)

These conditions can be represented by

$$\begin{cases} \sum_{j} s_{j} p_{j} \leq \sum_{i} w_{i}, \ \mathbf{x}_{i} \geq \mathbf{0}, & \forall i, \\ \frac{\mathbf{u}_{i}^{T} \mathbf{x}_{i}}{w_{i}} \cdot p_{j} \geq u_{ij}, & \forall i, j, \\ \sum_{i} x_{ij} = s_{j}, & \forall j. \end{cases}$$

since from the second inequality (after multiplying x_{ij} to both sides and take sum over j) we have

$$\mathbf{p}^T \mathbf{x}_i \ge w_i, \ \forall i.$$

Then, from the rest conditions

$$\sum_{i} w_i \ge \sum_{j} s_j p_j = \sum_{i} \mathbf{p}^T \mathbf{x}_i \ge \sum_{i} w_i.$$

Thus, these conditions imply $\mathbf{p}^T \mathbf{x}_i = w_i, \ \forall i.$

Equilibrium Price Property

If u_{ij} has at least one positive coefficient for every j, then we must have $p_j>0$ for every j at every equilibrium. Moreover, The second inequality can be rewritten as

$$\log(\mathbf{u}_i^T \mathbf{x}_i) + \log(p_j) \ge \log(w_i) + \log(u_{ij}), \ \forall i, j, \ u_{ij} > 0.$$

The function on the left is (strictly) concave in x_i and p_j . Thus,

Theorem 6 The equilibrium set of the Fisher Market is convex, and the equilibrium price vector is unique.

Aggregate Social Optimization

maximize
$$\sum_{i \in B} w_i \log(\mathbf{u}_i^T \mathbf{x}_i)$$
 subject to
$$\sum_{i \in B} x_{ij} \leq s_j, \quad \forall j \in G$$

$$x_{ij} \geq 0, \quad \forall i, j,$$

Theorem 7 (Eisenberg and Gale 1959) Optimal dual (Lagrange) multiplier vector of equality constraints is an equilibrium price vector.

Optimality Conditions of the Aggregated Problem

$$\begin{cases} w_i \frac{u_{ij}}{\mathbf{u}_i^T \mathbf{x}_i} & \leq p_j, \forall i, j \\ w_i \frac{u_{ij} x_{ij}}{\mathbf{u}_i^T \mathbf{x}_i} & = p_j x_{ij}, \forall i, j \\ \sum_i x_{ij} & \leq s_j, \forall j \\ p_j \sum_i x_{ij} & \leq p_j s_j, \forall j \\ \mathbf{x}_i, \mathbf{p} & \geq \mathbf{0}. \end{cases}$$

Let $y_i = \mathbf{u}_i^T \mathbf{x}_i / w_i$. Then, these conditions are identical to the equilibrium price conditions, since

$$y_i = \frac{\mathbf{u}_i^T \mathbf{x}_i}{w_i} \ge \frac{u_{ij}}{p_j}, \ \forall i, j.$$

Rewriting the Aggregate Social Optimization

$$\begin{array}{ll} \text{maximize} & \sum_{i \in B} w_i \log u_i \\ \\ \text{subject to} & \sum_{j \in G} u_{ij}^T x_{ij} - u_i = 0, \quad \forall i \in B \\ \\ & \sum_{i \in B} x_{ij} \leq s_j, \quad \forall j \in G \\ \\ & x_{ij} \geq 0, \ s_i \geq 0, \quad \forall i, j, \end{array}$$

This is called the weighted analytic center problem.

Question: Is the price vector \mathbf{p} unique when at least one $u_{ij}>0$ among $i\in B$ and $u_{ij}>0$ among $j\in G$.

Aggregate Example

maximize
$$5\log(2x_1+y_1)+8\log(3x_2+y_2)$$
 subject to
$$x_1+x_2=1,$$

$$y_1+y_2=1,$$

$$x_1,x_2,y_1,y_2\geq 0.$$

Or

maximize
$$5\log(u_1) + 8\log(u_2)$$
 subject to $2x_1 + y_1 - u_1 = 0,$ $3x_2 + y_2 - u_2 = 0,$ $x_1 + x_2 = 1,$ $y_1 + y_2 = 1,$ $x_1, x_2, y_1, y_2 \geq 0.$