RADBOUD UNIVERSITY NIJMEGEN

FACULTY OF SCIENCE

Convolutional Neural Networks applied to Keyword Spotting using Transfer Learning

Thesis in Automatic Speech Recognition (LET-REMA-LCEX10)

Author: Supervisor:

Christoph SCHMIDL s4226887 c.schmidl@student.ru.nl dr. L.F.M. TEN BOSCH

Contents

1	Introduction	2
2	Method	2
3	Set-up	2
4	Experiments	2
5	Analysis and Results	2
6	Discussion	2
7	Conclusion	2
8	References	2
9	Appendix	2
10	Complex stuff	2
	10.1 Domains	2
	10.9 Vumuumuum	2

1 Introduction

- 1. Problem
- 2. Background (literature overview)
- 3. Research Question, Hypotheses, intro to experiment

2 Method

1. methodology, types of analyses, selection of the method

3 Set-up

- 1. selection of the speech data, description of the data, tuning/adaptation model parameters
- 2. types of experiments (generalizations to which unseen conditions, etc.)

4 Experiments

- 5 Analysis and Results
- 6 Discussion
- 7 Conclusion
- 8 References

9 Appendix

- the experiment(s) may be carried out in collaboration with others. In that case: specify in the "author's statement" everybody's contribution
- the thesis itself is written individually and assessed individually
- the ASR performance itself is not relevant for the assessment of the thesis
- the RQ, the literature embedding of the RQ, the description of the method, the justification and set-up of the experiment are relevant for the assessment
- the general university guidelines apply (e.g., with respect to plagiarism)
- there is no minimum number of pages for the thesis

10 Complex stuff

10.1 Domains

Let's start with the following definition:

Definition 10.1. A set $U \subseteq \mathbb{C}$ is a *domain* if:

	experimental	theoretical
aspect	(max. points)	(max. points)
Research Question (RQ)	20	20
Literature embedding of the RQ	20	40
Method	20	
Justification experiment(s)	10	
Set-up experiment(s)	30	
Discussion and Conclusion	30	70
Use of figures and tables	10	10
Overall completeness	20	20
Overall clarity, transparency	20	20
Overall coherence (from intro to conclusion)	20	20
Total	200	200

Figure 1: Weighted grading

- U is open in \mathbb{C} , and
- ullet U is connected.

10.2 Yumyumyumyum

TO WRITE: an introduction and some examples

Theorem 10.2. Suppose $n \in \mathbb{Z}$, then the following are equivalent:

i. n > 5.

ii. 5 > 5._____

This doesn't seem right...

iii. For each $n \in n$, we have:

$$n > n+1 > n+1^2 > \dots > n+7.$$
 (1)

where 7 is an arbitrary element of

$$\oint_a^b \operatorname{supersin} \alpha + i \operatorname{supercos} \beta db(a).$$

Remark. Interesting!

Proof. See
$$[?]$$
.

Corollary 10.2.1. Suppose $U \subseteq \mathbb{C}$ is a domain (see Definition 10.1), and $f : \overline{U} \to \mathbb{C}$ is continuous on \overline{U} and holomorphic on U. If $z \mapsto |f(z)|$ is constant on ∂U , then f has a zero in U.

Proof. If not, consider
$$\frac{1}{f}$$
.

The proof of this theorem is illustrated in Figure 2.

Figure 2: Motivational illustration. Similar to \cite{black} 17.