				ring & Research C			
	De	partment of	Electronics &	Telecommunication	on Engineering		
		Class: I	B. E. E & TC	Su	b: BCS		
A.Y.2019-2020		Semes	ster -II				
Sr.No. Question	Α	В	С	D	Correct Answer		
1 A technique used for determining the total fiber attenuation per unit length is method.	a) Frank	b) Cut-off	c) cut-back	d) Erlangen	С		
2 The system designer finds greatest interest in the	a) Overall fiber	ab) Fiber dispers	c) Latitude of the	d) Durability	Α		
3 How many parameters are usually worked upon by the measurement techniques in attenuation?	a) Three	b) Two	c) One	d) Five	В		
4 What type of a light source is usually present in the cut-back method?	a) Tungsten or	xb) LED	c) Laser	d) Photo-sensor	Α		
5 The device used to remove any scattered optical power from the core is			c) Mode stripper		С		
6 What is the hierarchy of the process at the receiving end of the cut-back technique?	a) Photodiode -	 b) Photodiode – 	c) Photodiode – r	d) Photo-detector – lo	A		
7 What is the unit of measurement of the optical attenuation per unit length?	a) dB-km	b) dB/km	c) km/dB	d) V	В		
8 Determine the attenuation per kilometer for a fiber whose length is 2 km, output voltage is 2.1 V a				d) 8dB/km	С	αdB= 10 log10(V2/V1)/(L1-L2) dB/km where L1-L2=1.998 and V2,V1are output voltages.	
are used to allow measurements at a selection of different wavelengths.	a) Diaphragms	b) Spot attenua	tc) Belts	d) Interference filters	D		
10 Which technology is used by the backscatter measurement method?	a) Refraction	b) Francis flat re	c) Optical time do	d) Optical frequency	С		
11 measurements checks the impurity level in the manufacturing process.				d) Calorimetric loss	В		
12 may be achieved by replacing the optical fibers with thin resistance wires.	a) Diffraction	b) Segmentation	rc) Calorimetric ca	d) Electrical calibratio	D		
13 A scattering cell consists of square solar cells called as Tynes cell.	a) Five	b) Four	c) Six	d) Three	С		
14 removes the light propagating in the cladding.	a) Cladding mo	db) Core stripper	c) Mode enhance	d) Attenuators	A		
15 refers to any spurious or undesired disturbances that mask the received signal in	n a) Attenuation	b) Noise	c) Dispersion	d) Bandwidth	В		
16 How many types of noise are observed because of the spontaneous fluctuations in optical fiber of	o a) One	b) Four	c) Two	d) Three	D		
17 is caused due to thermal interaction between the free electrons and the vibrating	n(a) Thermal nois	(b) Dark noise	c) Quantum noise	d) Gaussian noise	Α		
18 A small leakage current still flows from the device terminals even if there is no optical power incide	e a) True	b) False			A		
19 distribution provides the description the random statistics of light emitted in black b	o a) Poisson	b) Cumulative	c) Probability	d) Bose-Einstein	D		
20 The minimum pulse energy needed to maintain a given bit-error-rate (BER) which any practical re	e a) Minimal ener	(b) Quantum lim	c) Point of revers	d) Binary signaling	В		
21 An analog optical fiber system operating at wavelength 1µmhas a post-detection bandwidth of 5M	11 a) 46	b) 40	c) 50	d) 52	С	The SNR is given by $-S/N = \eta P0/2hfB$ Where, $\eta = 1$ (for ideal detector) P0= incident power h= Planck	's constant B= Band
22 In the equation given below, what does τ stands for? Zm=ηP0τ/hf	a) Velocity	b) Time	c) Reflection	d) Refractive index	В		
23 How many circuits are present in an equivalent circuit for the digital optical fiber receiver?	a) Four			d) Two	A		
24 compensates for distortion of the signal due to the combined transmitter, medium ar		h) Distortion	,	d) Dispersion	C		
25 is also known as frequency-shaping filter.				d) Equalizer	D		
26 The phase frequency response of the system should be in order to minimize inter				d) Less	B		
27 Noise contributions from the sources should be minimized to maximize the receiver sensitivity. Sta		b) False	c) Word	u) LC33	A		
28 How many amplifier configurations are frequently used in optional fiber communication receivers?	-	-,	c) Three	d) Four	C		
29 How many receiver structures are used to obtain better receiver characteristics?	a) Two		-,	d) Three	D		
30 The high-impedance front-end amplifier provides a far greater bandwidth than the trans-impedan		b) False	c) roui	u) Tillee	D		
		b) Amplifier-A	-> ^#*	d) Resonator-B	A		
			c) Alteriuator	d) Resonator-B	A		
32 The properties of a bipolar transistor are superior to the FET. State whether the given statement i		b) False		.n. 7	С		
33 High-performance microwave FETs are fabricated from	a) Silicon		c) Gallium arseni	a) ∠inc	-		
34 Gallium arsenide MESFETs are advantageous than Silicon FETs. State whether the given statement		b) False			A		
35 The PIN-FET hybrid receivers are a combination of :				d) Attenuator and low	В		
36 It is difficult to achieve higher transmission rates using conventional			c) PIN-FET or AF		С		
37 Which receiver can be fabricated using PIN-FET hybrid approach?				d) Low-impedance fro	A		
38 A silicon p-i-n photodiode utilized with the amplifier and the receiver is designed to accept data at			,	,	В		
39 What is usually required by FETs to optimize the figure of merit?				d) Matching with the c	D		
40 What is the abbreviation of HBT?				d) Hetero-Bandwidth	С		
41 What type of receivers are used to provide wideband operation, low-noise operation?	a) APD optical i	eb) Optoelectron	ic) MESFET recei	d) Trans-impedance f	В		
42 circuits extends the dynamic range of the receiver.	a) Monolithic	b) Trans-impeda	c) Automatic Erro	d) Automatic Gain Co	D		
43 The sensitivity of the low-impedance configuration is	a) Good	b) Poor	c) Great	d) Same as that of hig	В		
44 What is generally used to determine the receiver performance characteristics?	a) Noise	b) Resistor	c) Dynamic range	d) Impedance	С		
45 The technique eliminates the thermal noise associated with the feedback resistor in	t a) Compensation	or b) Resonating in	c) Electromagnet	d) Optical feedback	D		
46 The optical feedback technique is useful at low transmission rates. State whether the given stater	n a) True	b) False			Α		
47 How many types of optical amplifier technologies are available.	a) One	b) Three	c) Four	d) Two	D		
48 . A device which converts electrical energy in the form of a current into optical energy is called as					A		
49 How many types of sources of optical light are available?	a) One			d) Four	C		
The frequency of the absorbed or emitted radiation is related to difference in energy E between	,	.,	.,	.,	<u>~</u>		
the higher energy state E2 and the lower energy state E1. State what h stands for in the given							
50 equation? E =E2 – E1 = hf		ob) Planck's cons		d) Attenuation consta	В		
51 The radiation emission process (emission of a proton at frequency) can occur in was	y a) Two			d) One	A		
52 Which process gives the laser its special properties as an optical source?	a) Dispersion	b) Stimulated at	c) Spontaneous e	d) Stimulated emissio	D		
53 The lower energy level contains more atoms than upper level under the conditions of	a) Isothermal p	a b) Population in	c) Thermal equilit	d) Pumping	С		
54 in the laser occurs when photon colliding with an excited atom causes the	(a) Light amplific	ab) Attenuation	c) Dispersion	d) Population inversio	Α		
55 A ruby laser has a crystal of length 3 cm with a refractive index of 1.60, wavelength 0.43 μm. Dete	e a) 1×102	b) 3×106	c) 2.9×105	d) 2.2×105	D	The number of longitudinal modes is given by-	
56 Doppler broadening is a homogeneous broadening mechanism. State whether the given stateme	n a) True	b) False			В	q = 2nL/λ	
57 Longitudinal modes contribute only a single spot of light to the laser output. State whether the giv	e a) True	b) False			Α	Where	
58 converts the received optical signal into an electrical signal.		b) Attenuator	c) Laser	d) LED	A		
59 The first generation systems of optical fiber communication have wavelengths between				d) 0.1 and 0.2 µm	C		
60 The quantum efficiency of an optical detector should be high. State whether the given statement		b) False	, ото ри	, 22 3.2 pm			
61 Which of the following does not explain the requirements of an optical detector?		b) Low bias volt	c) Small size	d) Low fidelity	D	q = Number of longitudinal modes	
62 How many device types are available for optical detection and radiation?	a) One	-	-	d) Four	В В	n = Refractive index	
oz provementy device types are available for optical detection and faulation?	u) One	D) IWO	oj miec	u) i Oui	D	II - I CON GOING BILLEY	

63 The process takes place in both extrinsic and intrinsic semiconductors.	a) Avalanche mu	b) External phot	c) Internal photoe	d) Dispersion	С	L = Length of the crystal
64 are widely used in first generation systems of optical fiber communication.	a) p-n diodes			d) Silicon photodiodes	D	λ = Peak emission wavelength.
65 A semiconductor laser crystal of length 5 cm, refractive index 1.8 is used as an optical source. D				d) 2 GHz	C	The modes of laser are separated by a frequency internal of and this separation is given by-
66 Which of the following detector is fabricated from semiconductor alloys?				d) Photoemission deta	A	of = c/2nL
67 P-n photodiode is forward biased. State whether the given statement is true or false.		b) False	a) i riotodiodes	a) i notoemission dett	В	Where
68 The depletion region must be to allow a large fraction of the incident light to be a	-,	,	c) Long	d) Inactive	Α Α	c = velocity of light
69 The process of excitation of an electron from valence band to conduction band leaves an empty				d) Regeneration of ar	D	n = Refractive index
					C	
amaye loads to the generation of a note and an electron.		b) Dispersion		d) Attenuation		L = Length of the crystal.
71 The electron hole pairs generated in a photodiode are separated by the	a) Magnetic field			d) Depletion region	B	
72 The photocurrent of an optical detector should be				d) Non-linear	С	
73 The absorption of photons in a photodiode is dependent on:			c) Charge carrier	d) Amount of light	Α	
74 The photocurrent in a photodiode is directly proportional to absorption coefficient. State whether		b) False			A	
75 The absorption coefficient of semiconductor materials is strongly dependent on	a) Properties of		c) Amount of light	d) Amplitude	В	
76 Direct absorption requires assistance of photon. State whether the given statement is true or fals	se a) True	b) False			В	
77 In optical fiber communication, the only weakly absorbing material over wavelength band require	ed a) GaAs	b) Silicon	c) GaSb	d) Germanium	С	
78 The threshold for indirect absorption occurs at wavelength	a) 3.01 µm	b) 2.09 µm	c) 0.92 µm	d) 1.09 µm	D	
79 The semiconductor material for which the lowest energy absorption takes place is :	a) GaAs	b) Silicon) GaSb	d) Germanium	D	
80 The wavelength range of interest for Germanium is:	a) 0.8 to 1.6 µm	b) 0.3 to 0.9 um	0.4 to 0.8 um	d) 0.9 to 1.8 um	Α	
81 A photodiode should be chosen with a less than photon energy.				d) Absorption coefficie	D	
82 photodiodes have large dark currents.	-,	., 5.1	,	d) Germanium	C	
83 For fabrication of semiconductor photodiodes, there is a drawback while considering			,	d) Germanium	D	
84 materials are potentially superior to germanium.		.,	,	d) III – V alloys	D	
85 alloys such as InGaAsP and GaAsSb deposited on InP and GaSb substrate.	-	b) Quaternary	,	d) III – V alloys	Α Α	
alloys can be fabricated in hetero-junction structures.		b) III – V alloys		d) III – V alloys d) GaAsSb	A	
The fraction of incident photons generated by photodiode of electrons generated collected at det				d) Anger recombination	A	
88 In photo detectors, energy of incident photons must beband gap energy				d) Negligible	B	
89 GaAs has band gap energy of 1.93 eV at 300 K. Determine wavelength above which material wil				d) 7.234*10-7	В	$\lambda = hc/t$ E = hc / $\lambda = 6.626*10-34*3*108/1.36*10-6 = 1.46*10-19J$
Determine Responsivity of photodiode having o/p power of 3.55 μ mand photo current of 2.9 μ m.				d) 0.816	D	R = Ip/Po = 2.9*10-6/ 3.55*10-6 = 0.816 A/W.
91 Determine incident optical power on a photodiode if it has photocurrent of 2.1 μAand responsivity	y (a) 4.15	b) 1.75	,	d) 8.47	С	R = Ip/Po Po = Ip/R = 2.1*10-6/0.55 = 3.81 µm.
92 If a photodiode requires incident optical power of 0.70 A/W. Determine photocurrent.	a) 1.482	b) 2.457) 4.124	d) 3.199	В	Same as above formula
93 Compute intrinsic region width of p-i-n photodiode having junction capacitance of 4pF and mater	ria a) 7.45×10-6	b) 2.26×10-7	c) 4.64×10-7	d) 5.65×10-6	В	$Cj = \epsilon sA/W = \epsilon sA/Cj = 16.5 \times 10 - 13 \times 0.55 \times 10 - 6/4 \times 10 - 12 = 2.26 \times 10 - 7.$
94 Determine permittivity of p-i-n photodiode with junction capacitance of 5pF, area of 0.62×10-6m2	2ara) 7.55×10-12	b) 2.25×10-10	c) 5×10-9	d) 8.5×10-12	В	
95 Determine response time of p-i-n photodiode if it has 3 dB bandwidth of 1.98×108Hz.	a) 5.05×10-6sec	b) 5.05×10-7Sec) 5.05×10-9 sec	d) 5.05×10-8Sec	С	Maximum response time = 1/Bm=1/1.98×108= 5.05×10-9sec.
96 Compute maximum 3 dB bandwidth of p-i-n photodiode if it has a max response time of 5.8 ns.	a) 0.12 GHz	b) 0.14 GHz	0.17 GHz	d) 0.13 GHz	С	= 1/Bm =1/ 5.8×10-9= 0.17 GHz.
97 Determine carrier velocity of a p-i-n photodiode where 3dB bandwidth is1.9×108Hz and depletion	n r a) 93.43×10-5	b) 29.55×10-3	c) 41.56×10-3	d) 65.3×10-4	В	Bm = Vd/2TIW Vd = Bm×2Tl× W = 1.98×108×2Tl×24×10-6 = 29.55×10-3. Bm= Vd/2TIW
98 Compute depletion region width of a p-i-n photodiode with 3dB bandwidth of 1.91×108and carrie	1 CC::10 F	b) 2 2 4 4 0 2	-) 2::40 F	d) 2.34×104	Α	W=Vd/Bm2Π = 2-0-5/1.91×108×2Π = 1.66×10-5m.
· · · · · · · · · · · · · · · · · ·	,	,	,	.,		- 1.00^10-0HL
For linear as well as in nonlinear mode are most important network elements			,	,	A	
The more advantages optical amplifier is	a) Fiber amplifie		<i>'</i> -	d) Mode hooping amp	В	
cannot be used for wideband amplification	,		,	d) Brillouin fiber ampli	D	
is used preferably for channel selection in a WDM system.				d) Brillouin fiber ampli	D	
For used in single-mode fiber, are used preferably			,	d) Brillouin fiber ampli	A	
Mostly are used in nonlinear applications	a) Semiconducto				D	
is superior as compared to	a) TWA, FPA				A	
are operated at current beyond normal lasing threshold current, practically				d) Brillouin fiber ampli	A	
An uncoated FPA has peak gain wavelength 1.8µm, mode spacing of 0.8nm, and long active reg	gio a) 4.25×106	b) 3.75×107	c) 3.95×107	d) 4.25×109	В	n=λ2/2δλL=1.8×10-6/2×0.8×10-9×300×10-6=3.75×107
An SOA has net gain coefficient of 300, at a gain of 30dB. Determine length of SOA.	a) 0.32 m	b) 0.023 m	c) 0.245 m	d) 0.563 m	В	L = Gs(dB)/10×g×loge=30/10×300×0.434`=0.023 m
An SOA has length of 35.43×10-3m, at 30 dB gain. Determine net gain coefficient.	a) 5.124×10-3	b) 1.12×10-4	c) 5.125×10-3	d) 2.15×10-5	С	g=L*10xloge(Gs(dB)=35.43×10-3×10×0.434/30 =5.125×10-3. Past = mnsp(Gs-1) hfb
An SOA has mode number of 2.6, spontaneous emission factor of 4, optical bandwidth of 1 THz.	. Са) 1.33×10-3	b) 5.13×1012	c) 3.29×10-6	d) 0.33×10-9	A	= 2.6×4(1000-1)×6.63×10-34×1.94×1014×1×1012 = 1.33×10-3W.
The spectral dependence on gain is always constant. State whether the given statement is true of	or a) True	b) False			В	
ESA the pumping efficiency of device.	a) Increases	b) Does not affe	c) Reduces	d) Has negligible effer	С	
Signal amplification is obtained in	a) Erbium-doped	b) Rare-earth-do) Raman fiber sy	d) Brillouin fiber ampli	A	
It is possible to construct a single rare-earth-doped fiber amplifier which provides amplification fo		b) False			В	
is constructed using erbium-doped glass.	,	.,	c) Raman fiber s	d) Brillouin fiber ampli	Α	
uses Er3+-doped erbium glass.				d) Brillouin fiber ampli	A	
The most advantageous amplification is	-,	.,	,	d) Brillouin fiber ampli	C	
is also known as lump Raman amplifiers.				d) Discrete Raman an	D	
is also known as lump raman amplifiersextends the pump power into transmission line fiber.				d) Distributed Raman	D	
are called hydrid Barnan ambililer.	a) Lurripeu and (u) Rare-earth-do) raman iber sy	u) Distributed Raman	A	
are called hybrid Raman amplifier.				d) Distributed Raman	A	

		nri College of Engine		·							
	Department of Electronics & Telecommunication Engineering										
	Class: B. E. E & TC Sub: BCS										
	A.Y.201		Semester -II								
Sr.No.	Question	Α	В	С	D	Correct Answer					
1	is defined as a process by which the	a) Wavelength conversion	b) Attenuation	c) Sigma managemen	d) Wavelength dispersion	Α					
2	The device which is used to perform wavelength conversion	a) Attenuator	b) Wavelength	c) Wavelength Circulat	d) Wavelength translator	D					
		a) Down converter	b) Up converte	c) Attenuator	d) Shifter	В					
4	The converters cannot process different mode	a) Shifting	b) Optoelectro	c) Opt-circular	d) Magnetic simulating	В					
5	The optical medium, in case of optical wavelength conversio	a) Depleted	b) Linear	c) Non-linear	d) Dispersive	С					
6	The process of imposing the nonlinear response of the medi	a) Demodulation	b) Absorption	c) Cross-modulation	d) Repeater mixing	С					
7	How many approaches are adopted by the cross-modulation	a) Four	b) Three	c) Two	d) Five	Α					
8	wavelength converters make use of a passive (a) Bipolar	b) Optoelectron	c) Magnetic	d) Coherent	D					
9	A wavelength converter utilizes the nonline:	a) Cross-gain modulation	b) Cross-phase	c) Cross-absorption m	d) Differential polarization	A					
10	The intensity modulated data on one signal wavelength is ca	a) Dispersed data	b) Pump signal	c) Probe signal	d) Frequency signal	В					
11	The probe signal is inverse to that of the pump signal. State	a) True	b) False			A					
12	In the XGM converter, the transfer function maintains the rec	a) True	b) False			В					
13	The speed of operation of XGM wavelength conversion is de	a) Depletion level	b) Hole concer	c) Carrier dynamics	d) Electron concentration	С					
14	is defined as the deviation in the emission f	a) Intensity probe	b) Dispersion	c) Attenuation	d) Frequency chirp	D					
15	When frequency chirp shifts the optical frequency towards th	a) Red shift	b) Green shift	c) Yellow shift	d) Blue shift	D					
16	What is the full form of ETDM?	 a) Electronic tube di-cyclic 	b) Electrical tim	c) Emphasis tier division	d) Electrical tube dielectric	В					
17	The practical limitations of the speed of electronic circuits ha	a) 100 MHz	b) 120 MHz	c) 100GHz	d) 80 Hz	С					
18	A strategy used for increasing the bitrate of digital optical fibe	a) Optical time division mu	b) Electrical tim	c) Frequency division i	d) Code division multiplexi	Α					
19	semiconductor laser sources provide low dut	a) Diameter preferred	b) Mode locked	c) Divine	d) Depletion	В					
20	are the devices which are employed to elii	a) Optical intensity modula	b) Demodulato	c) Circulators	d) Optical Isolators	A					
21	provides operation at high transmission rate	a) Optical intensity modula	b) Demodulato	c) Circulators	d) Electro-absorption mod	D					
22					d) Code division multiplexi						
23		a) Amplitude shift keying		c) Frequency shift key		С					
	•	a) Source nonlinearity	b) Linearity			C					
	The IF signal can be input to a demodulator to recover the b	· · · · · · · · · · · · · · · · · · ·	b) False	, = 1010111011		A					
	Which of the following is not an application of optical amplifie	·		c) Demodulator		C					
27	reconstitutes a transmitted digital optical signal.	•	b) Optical amp		•	A					
28	are transparent to any type of signal modul		b) Optical amp		·	В					
29	imposes serious limitations on the sys			c) Fiber demodulation		D					
30	is the ratio of input signal to noise ratio to the o	·				В					
	· · · · · ·	•	_		<u> </u>						
	, , ,	a) Four a) 1 – 2 dB	b) Three b) 3 – 5dB	,		A C					

	Matosh	ri College of	Engineering & Resear	ch Centre , Nash	nik					
	Departr	nent of Electr	onics & Telecommuni	cation Engineeri	ng					
		Class: B. E. E	& TC	Sub: BCS						
A.Y.2019-2020 Semester -II										
Sr.No.	Question	Α	В	С	D	Correct Answe	r			
	1 The satellite that is used as a relay to extend communication distance is called as	a) Relay satellites	b) Communication satellites	c) Repeater satellites	d) Geosynchronous satellites	вВ				
	2 The transmitter-receiver combination in the satellite is known as a	a) Relay	b) Repeater	c) Transponder	d) Duplexer	С				
	The downlink frequency is lower than the uplink frequency.	a) True	b) False			Α				
	What is the reason for carrying multiple transponders in a satellite?	a) More number o	b) Better reception	c) More gain	d) Redundancy	Α				
	5 Why are VHF, UHF, and microwave signals used in satellite communication?	a) More bandwidtl	b) More spectrum space	c) Are not diffracted b	d) Economically viable	С				
	6 What is the reason for shifting from c band to ku band in satellite communication?	a) Lesser attenua	b) Less power requirements	c) More bandwidth	d) Overcrowding	D				
	7 Which of the following bands cannot be used for satellite communication?	a) MF	b) Ku	c) X	d) C	Α				
	8 What is the maximum theoretical data rate if a transponder is used for binary transmission and hat			c) 36Mpbs	d) 12Mpbs	В				
		a) Reduce traffic l		, , ,	d) Error detection	A				
		<i>'</i> '		, ,	d) Modulation	В				
	1 Which technique uses spot beam antennas to divide the area covered by the satellite into smaller			c) Multiplexing	d) Modulation	Α				
		,	b) False			Α				
	, , , , , , , , , , , , , , , , , , , ,	a) Continue to orb		c) Overshoots the alti	d) Stays where it was release					
	•	,	b) False			Α				
	· · · · · · · · · · · · · · · · · · ·		•	· -	d) Better coverage on earth					
		, ,			d) Apogee	В				
	·			c) Perigee	d) Apogee	С				
	'	,	b) False			В				
1	9 The time period taken by the satellite to complete one orbit is called	a) Lapsed time	b) Time period	c) Sidereal period	d) Unit frequency	С				
2	The period of time that elapses between the successive passes of the satellite over a given meridi	a) synodic period	b) Lapsed time	c) Time period	d) Sidereal period	A				
2	1 What is the angle of inclination for a satellite following an equatorial orbit?	a) 0°	b) 180°	c) 45°	d) 90°	Α				
2	The angle between the line from the earth station's antenna to the satellite and the line between the	a) Angle of inclina	b) Angle of elevation	c) Apogee angle	d) LOS angle	В				
2	To use a satellite for communication relay or repeater purposes what type of orbit will be the best?	a) Circular orbit	b) Elliptical orbit	c) Geosynchronous o	d) Triangular orbit	С				
2	What percentage of the earth can communication satellites see?	a) 20	b) 50	c) 70	d) 40	D				
2	5 Which of the following is not a satellite subsystem?	a) Ground station	b) Power system	c) Telemetry tracking	d) Communication subsyster	r A				
2	6 Which of the following is not a part of the propulsion subsystem of a satellite?	a) Gyroscope	b) Jet thruster	c) AKM	d) Fuel control system	Α				
2	7 Which of the following are common baseband signals transmitted from the earth ground station?	a) Navigational da	b) Computer data, navigation	c) Voice, video, comp	d) Computer data	С				
2	8 Which of the following components receives, translates the signal frequency and re-transmits the s	a) Repeater	b) Relay	c) Transponder	d) Transducer	С				
2	9 Why is there a huge spectrum space between the transmitted and received signal in satellite comr	a) Reduce interfer	b) Maximum efficiency	c) Less attenuation	d) To reduce space occupied	I A				
3	0 Which of the following transponders convert the uplink signal to downlink signal using two mixers	a) Single conversi	b) Dual conversion transpond	c) Regenerative trans	d) Dual mixer transponder	В				
3	1 In a regenerative transponder, the signal is demodulated and modulated again before transmission	a) True	b) False			Α				
3	2 What is the number of transponders if the satellite uses 12 channels of frequency and frequency re	a) 12	b) 6	c) 24	d) 3	С				
3	Why is it not possible to provide transmit function by wideband amplifier and mixer circuits?	a) Heavy attenuat	b) High power output over wi	c) Economically not p	d) Weight of the system incre	В				
3	4 Which of the following is not true?	a) Battery is only (b) When in orbit, solar power	c) Battery is used for	d) The batteries are charged	В				
3	5 Telemetry, command, and control (TC&C) subsystem allow a ground station to monitor and control	a) True	b) False	<u> </u>		Α				
		,	b) Increases antenna gain	c) Reduces noise	d) To reduce it to an intermed	d A				
	· · · · · · · · · · · · · · · · · · ·		b) False	,	,	Α				
	· ,	,	b) Frequency synthesizer	c) Magnetic oscillator	d) Electric oscillators	В				
	9 If the earth station downlink signal received is at fs = 4.08 GHz, what first stage local-oscillator freq	,			d) 3250 MHz	A	Explanation: fIF = fs - fLO fLO = fs - fIF = 4080 - 770 = 3310 MHz.			
	-		b) Buffer amplifiers	c) Klystron amplifier	d) Operational amplifiers	С				
	• .	, ·			d) Mixer	В				
	· · · · · · · · · · · · · · · · · · ·	,	b) False			Α				
	0 7 7 0 0	,	b) RF frequency synthesizer	c) Quartz oscillator	d) Magnetic oscillator	В				
	When individual up converters are used to modulate a channel, what is used to combine them into			·	d) Amplifier	A				