

Par	1 Downer
	[2018/06/03] (2)
Stat	ic Scope ((bond)
ι.	names of variables don't matter (ie x-equilalence)
	rames of variables don't matter (ie x-equilables) substitution does not "capture" free variables.
Εx	Let x=5 in Let y=x in (Static binding) Let x=10 in y (good)
	Let y=x in (Static binding)
	Let y=x in (Static binding) Let x=10 in y (god)
	Let x=5
	in let X=10 in x (Dynamic binding)
	estitution (no good because names of variables matter)
27/	estitution & variables matter)
	e'[e/x] wout e' but whenever free x occurs in
	e'[e/x] woult e' but whenever free x occurs in e' replace it with e.
	e reproce 11 with e.
	Definition of substitution
	Base- Cases $x[e/x] = e$
	· y[e/x]=y
	[n]mcn][e/x]=Num[n]
	· Bool[b][e/x] = Bool[b]
	Inductive cases Plus (ejez) [e/x]
	= P(us(e, e/x), e(e/x))
	$e_{less}(e_1,e_2) = less(e_1[e/x],e_2[e/x])$
	· If (e, e, e,)[e/x] = If(e,[e/x], e,[e/x]; e,[e/x])
	> (et>

Paul Downen [2018/06/03]
(Lect1) But let x=1 inx = x let y=1 in y Let Y=e, in $e_z = \chi$ let y=e, in $e_z(y/\chi)$ $(y \notin FV(e_z))$ Properties of Substitution 1. For all e and e' : f BV(e') () FV(e) = 5 then e'[e/x]' is defined. 2. For all e, e', if x & FV(e), then e'[4x]=e) Proprerties of d-equivalence 1. For all e, e', $\exists e''$. (e = x e'' and e''[e'/x] is defined) (so, with x-equivalence, substitution becomes a total $\exists n$.) 2. If $e = \alpha e'$, then $e[e''/x] = \alpha e'[e'/x]$. tomework

1. Add more operations to this larguage.
(e.g. minis, eyed) 2. Prove some of the properties listed above (by structural induction)