1 Demonstrating Improved Accuracy

We have gone to considerable trouble to develop our skew-normal approximation for the binomial; now comes the time to justify our efforts by demonstrating its improved accuracy over the regular normal one.

1.1 Visual Comparison

The first, and most obvious, way of judging accuracy is by visual inspection. Figures 1, 2, and 3 compare the binomial, normal, and skew-normal at small values of p for n = 25, n = 50, and n = 100, respectively. It is not hard to see that, especially at very small n and p, our skew-normal curve follows the shape of the binomial much more accurately.

1.2 Maximal Absolute Error

Another more numerical method would be to compare the maximal absolute errors of our two approximations, defined by Schader and Schmid (1989) as

MABS
$$(n, p) = \max_{k \in \{0, 1, \dots, n\}} \left| F_{B(n, p)}(k) - F_{\text{appr}(n, p)}(k + 0.5) \right|$$
 (1)

where $F_{B(n,p)}$ is the cdf of the binomial and $F_{appr(n,p)}$ is the cdf of either the normal or skew-normal approximation; the 0.5 is a continuity correction.

Figure 4 shows the MABS as a function of p, for n=25 and n=100. Figure 5, on the other hand, shows the MABS as a function of n, for p=0.05 and p=0.1. Again, the skew-normal outperforms the normal considerably in the extreme ranges, with the two approximations converging as $n\to\infty$ or $p\to0.5$.

References

Adelchi Azzalini. The skew-normal distribution and related multivariate families. *Scandinavian Journal of Statistics*, 32:159–188, 2005. Advanced properties of the skew-normal.

Ching-Hui Chang, Jyh-Jiuan Lin, Nabendu Pal, and Miao-Chen Chiang. A note on improved approximation of the binomial distribution by the skew-normal distribution. *American Statistical Association*, 62(2):167–170, May 2008. Main article.

Arthur Pewsey. Problems of inference for azzalini's skew-normal distribution. *Journal of Applied Statistics*, 27(7):859–870, 2000. Mean, variance, expected value of the skew normal.

Martin Schader and Friedrich Schmid. Two rules of thumb for the approximation of the binomial distribution by the normal distribution. *American Statistical Association*, 43(1):23–24, February 1989. MABS of the normal approximation.

Figure 1: Binomial, normal, and skew-normal, n=25

Figure 2: Binomial, normal, and skew-normal, n = 50

Figure 3: Binomial, normal, and skew-normal, n = 100

Figure 4: MABS as a function of p

Figure 5: MABS as a function of n