Hasta ahora hemos investigado sobre la convergencia de algunas series, escribiendo la enésima suma parcial S_n y luego calculando $\lim_{n\to\infty} S_n$. Pero, en muy pocos casos se puede hallar una fórmula para S_n ; en la mayoría de las series, la convergencia o divergencia se determina utilizando distintos criterios de convergencia.

Criterio básico de comparación

Sean $\sum a_n$ y $\sum b_n$ dos series de términos positivos, tal que $a_n \le b_n$ $\forall n$ (puede ser a partir de un cierto valor n_0) entonces:

a) Si
$$\sum b_n$$
 converge $\Rightarrow \sum a_n$ también converge

b) Si
$$\sum a_n$$
 diverge \Rightarrow $\sum b_n$ también diverge

Este criterio indica cómo usar una serie convergente para demostrar que otra serie también converge; o, cómo usar una serie divergente para demostrar que otra serie diverge. Lo que haremos es comparar una serie dada, con términos análogos, pero más complicados, a otra más sencilla cuya convergencia o divergencia conocemos.

Para aplicar el criterio de comparación, tenemos que elegir con qué serie vamos a comparar.

Este criterio de comparación es útil si tenemos algunas series conocidas para comparar, por ejemplo las más usadas son las series geométricas y también otras series que son las series p o series hiperarmónicas.

Series p

Estas series son de la forma $\sum_{n=1}^{\infty} \frac{1}{n^p} = 1 + \frac{1}{2^p} + \frac{1}{3^p} + ... + \frac{1}{n^p} + ...$ con p > 0

Ejemplos de series p

1)
$$\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} + \dots$$
 $(p=1)$

2)
$$\sum_{n=1}^{\infty} \frac{1}{n^2} = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2} + \dots$$
 $(p=2)$

3)
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} = 1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{n}} + \dots$$
 $(\rho = 1/2)$

En el siguiente teorema se establece cuándo converge una serie p.

Teorema: Convergencia de series p

Sea la siguiente serie:

$$\sum_{n=1}^{\infty} \frac{1}{n^{p}} \text{ con } p > 0 \Rightarrow \begin{cases} \text{si } p \le 1 \\ \text{si } p > 1 \end{cases} \text{ la serie diverge}$$

Hay algunos principios básicos a tener en cuenta, para determinar cómo se elige la serie que nos va a servir para comparar con la serie dada.

Uno de estos principios, establece que si en la expresión general de a_n , figuran constantes ya sea sumando o restando, la supresión de las mismas no altera la convergencia o divergencia de la serie.

Eiemplo 1

Predecir y comprobar la convergencia o divergencia de las series:

a)
$$\sum_{n=1}^{\infty} \frac{1}{3^n + 1}$$
 b) $\sum_{n=5}^{\infty} \frac{1}{\sqrt{n} - 2}$

b)
$$\sum_{n=5}^{\infty} \frac{1}{\sqrt{n}-2}$$

Solución

Si se suprime la constante 1, se puede predecir que: a)

$$\sum_{n=1}^{\infty} \frac{1}{3^n + 1}$$
 se comporta como
$$\sum_{n=1}^{\infty} \frac{1}{3^n}$$

La serie $\sum_{n=1}^{\infty} \frac{1}{3^n}$, es una serie geométrica convergente, de modo que es probable que la serie dada converja.

Para comprobar que realmente la serie dada $\sum_{n=1}^{\infty} \frac{1}{3^n + 1}$ converge, utilizamos el criterio de comparación.

Sabiendo que una fracción disminuye si su denominador aumenta, podemos asegurar que:

$$\frac{1}{3^n+1} \le \frac{1}{3^n}$$

Por lo tanto, de acuerdo al criterio de comparación, la serie $\sum_{n=1}^{\infty} \frac{1}{3^n+1}$ converge, porque si la serie "grande" $\sum_{n=1}^{\infty} \frac{1}{3^n}$ converge, entonces la serie "pequeña" $\sum_{n=1}^{\infty} \frac{1}{3^n+1}$, también converge.

b) Si se suprime la constante -2, se puede predecir que:

$$\sum_{n=5}^{\infty} \frac{1}{\sqrt{n}-2} \text{ se comporta como } \sum_{n=5}^{\infty} \frac{1}{\sqrt{n}}$$

La serie $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$, es parte de una serie p, divergente (p=1/2), de modo que es probable que la serie dada diverja.

Para comprobar que realmente la serie dada $\sum_{n=5}^{\infty} \frac{1}{\sqrt{n}-2}$ diverge, utilizamos el criterio de comparación.

Sabiendo que una fracción aumenta si su denominador disminuye, podemos asegurar que:

$$\frac{1}{\sqrt{n}-2} \ge \frac{1}{\sqrt{n}}$$

Por lo tanto, de acuerdo al criterio de comparación, la serie $\sum_{n=0}^{\infty} \frac{1}{\sqrt{n}-2}$ diverge, porque si la

serie "pequeña" $\sum_{n=5}^{\infty} \frac{1}{\sqrt{n}}$ diverge, entonces la serie "grande" $\sum_{n=5}^{\infty} \frac{1}{\sqrt{n}-2}$ también diverge.

Ejemplo 2

Predecir y comprobar la convergencia o divergencia de las series:

a)
$$\sum_{n=1}^{\infty} \frac{n-1}{n^4 + 5}$$
 b) $\sum_{n=1}^{\infty} \frac{4n^2 + 1}{2n^3 - 1}$

b)
$$\sum_{n=1}^{\infty} \frac{4n^2 + 1}{2n^3 - 1}$$

Solución

Sabemos que cuando $n o \infty$, los términos de potencia más altos en el numerador y denominador son los que "dominan"; por eso, en estos casos, comparamos con la serie que resulta de suprimir todas las potencias de los polinomios del numerador y denominador, salvo la mayor (esto no afecta la convergencia o divergencia de la serie dada). Podemos asegurar que:

a)
$$\sum_{n=1}^{\infty} \frac{n-1}{n^4+5}$$
 se comporta como $\sum_{n=1}^{\infty} \frac{n}{n^4} = \sum_{n=1}^{\infty} \frac{1}{n^3}$, cuando $n \to \infty$

Como $\sum_{n=1}^{\infty} \frac{1}{n^3}$ converge, porque es una serie p, con p=3; suponemos que $\sum_{n=1}^{\infty} \frac{n-1}{n^4+5}$

Para confirmar esto, utilizamos la prueba de comparación. Podemos asegurar que $\forall n \geq 1$

$$\frac{n-1}{n^4+5} \le \frac{1}{n^3}$$

por lo tanto la serie $\sum_{n=1}^{\infty} \frac{n-1}{n^4+5}$ converge.

b)
$$\sum_{n=1}^{\infty} \frac{4n^2 + 1}{2n^3 - 1}$$
 se comporta como
$$\sum_{n=1}^{\infty} \frac{4n^2}{2n^3} = \sum_{n=1}^{\infty} \frac{2}{n}$$
 cuando $n \to \infty$

Como $\sum_{n=1}^{\infty} \frac{1}{n}$ diverge (serie armónica), también lo hace $\sum_{n=1}^{\infty} \frac{2}{n}$, y suponemos que

$$\sum_{n=1}^{\infty} \frac{4n^2 + 1}{2n^3 - 1}$$
 también diverge.

Para confirmarlo, utilizamos el criterio de comparación. Podemos asegurar que $\forall n \ge 1$:

$$\frac{4n^2+1}{2n^3-1} \ge \frac{3}{n}$$

Por los tanto la serie $\sum_{i=1}^{\infty} \frac{4n^2+1}{2n^3-1}$ diverge.

Ejemplo 3

Predecir la convergencia o divergencia de la serie:

$$\sum_{n=1}^{\infty} \frac{3n^5 + 2n^4 + 1}{n^6 + n^2 - 4n}$$

Solución

Por lo dicho anteriormente, sabemos que:

$$\sum_{n=1}^{\infty} \frac{3n^5 + 2n^4 + 1}{n^6 + n^2 - 4n}$$
 se comporta como $\sum_{n=1}^{\infty} \frac{3}{n}$, cuando $n \to \infty$

Como la serie $\sum_{n=1}^{\infty} \frac{3}{n}$ diverge, suponemos que $\sum_{n=1}^{\infty} \frac{3n^5 + 2n^4 + 1}{n^6 + n^2 - 4n}$ también diverge.

Para comprobar la divergencia, deberíamos comprobar que se cumple la desigualdad:

$$\frac{3n^5 + 2n^4 + 1}{n^6 + n^2 - 4n} \ge \frac{3}{n}$$

Para evitar tener que probar esta desigualdad, se puede utilizar otra prueba:

Criterio de comparación en el límite

Dadas dos series $\sum a_n$ y $\sum b_n$ de términos positivos.

i) Si $\lim_{n\to\infty} \frac{a_n}{b_n} = L$ con L finito y positivo (L > 0), entonces ambas series convergen o ambas divergen.

ii) Si
$$\lim_{n\to\infty}\frac{a_n}{b_n}=0$$
 y $\sum b_n$ converge, entonces $\sum a_n$ también converge

iii) Si
$$\lim_{n\to\infty} \frac{a_n}{b_n} = \infty$$
 y $\sum b_n$ diverge, entonces $\sum a_n$ también diverge

Utilizando este criterio, comprobemos que $\sum_{n=1}^{\infty} \frac{3n^5 + 2n^4 + 1}{n^6 + n^2 - 4n}$ diverge, para lo cual hallamos:

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{\frac{3n^5 + 2n^4 + 1}{n^6 + n^2 - 4n}}{\frac{3}{n}} = \lim_{n \to \infty} \left(\frac{3n^5 + 2n^4 + 1}{n^6 + n^2 - 4n} \right) \cdot \left(\frac{n}{3} \right) = \lim_{n \to \infty} \frac{3n^6 + 2n^5 + n}{3n^6 + 3n^2 - 12n} = 1$$

Como el límite es mayor que 0, entonces, de acuerdo al inciso i) del criterio, la serie $\sum_{n=1}^{\infty} \frac{3n^5 + 2n^4 + 1}{n^6 + n^2 - 4n}$ diverge.

Ejemplo 4

Usar el criterio de comparación en el límite para analizar la convergencia de las series

a)
$$\sum_{n=1}^{\infty} \frac{3\sqrt{n} - 2}{n^2 + 4\sqrt{n}}$$
 c) $\sum_{n=1}^{\infty} \frac{\ln n}{n}$

Solución

a) Comparamos la serie dada $\sum_{n=1}^{\infty} \frac{3\sqrt{n}-2}{n^2+4\sqrt{n}}$ con la serie $\sum_{n=1}^{\infty} \frac{3\sqrt{n}}{n^2} = \sum_{n=1}^{\infty} \frac{3}{n^{3/2}}$, que es un múltiplo de una serie p, con p=3/2, convergente pues p>1. Calculamos el límite:

$$\lim_{n \to \infty} \frac{3\sqrt{n} - 2}{\frac{3}{n^{3/2}}} = \lim_{n \to \infty} \left(\frac{3\sqrt{n} - 2}{n^2 + 4\sqrt{n}} \right) \cdot \left(\frac{n^{3/2}}{3} \right) = \lim_{n \to \infty} \frac{3n^2 - 2n^{3/2}}{3n^2 + 12n^{1/2}} = 1$$

Como el límite es mayor que 1, por el criterio de comparación en el límite, concluimos que

la serie
$$\sum_{n=1}^{\infty} \frac{3\sqrt{n}-2}{n^2+4\sqrt{n}}$$
 converge

b) Comparamos la serie dada $\sum_{n=1}^{\infty} \frac{\ln n}{n}$ con la serie $\sum_{n=1}^{\infty} \frac{1}{n}$ divergente. Hallamos el límite, con lo cual:

$$\lim_{n \to \infty} \frac{\frac{\ln n}{n}}{\frac{1}{n}} = \lim_{n \to \infty} \left(\frac{\ln n}{n}\right) n = \lim_{n \to \infty} \ln n = \infty$$

Entonces, según el inciso iii) de la prueba de comparación en el límite, la serie $\sum_{n=1}^{\infty} \frac{\ln n}{n}$ también diverge.

Criterio del cociente (o de D'Alembert)

Sea $\sum a_n$ una serie de términos positivos tal que:

$$\lim_{n\to\infty}\frac{a_n}{a_{n-1}}=L \Rightarrow \begin{cases} \text{Si} \quad L<1 & \text{la serie converge} \\ \text{Si} \quad L>1 & \text{la serie diverge} \\ \text{Si} \quad L=1 & \text{el criterio no decide} \end{cases}$$

Demostración (probaremos sólo el caso de que si L < 1, entonces $\sum a_n$ converge).

Por la definición de límite finito, sabemos que

$$\lim_{n\to\infty}\frac{a_n}{a_{n-1}}=L\Leftrightarrow\forall\,\varepsilon>0,\exists\,n_0\left(\varepsilon\right)/\,\forall\,n\geq n_0\Rightarrow\left|\frac{a_n}{a_{n-1}}-L\right|<\varepsilon$$

Por propiedades del valor absoluto, resulta

$$\left| \frac{a_n}{a_{n-1}} - L \right| < \varepsilon \Rightarrow -\varepsilon < \frac{a_n}{a_{n-1}} - L < \varepsilon \Rightarrow L - \varepsilon < \frac{a_n}{a_{n-1}} < L + \varepsilon$$

Tomamos un valor de q comprendido entre los valores $(L+\varepsilon)$ y 1, es decir, $L+\varepsilon < q < 1$. Esto siempre es posible ya que el límite es menor que uno y el valor de ε es tan pequeño como se quiera.

Por lo tanto por la definición de límite podemos asegurar

$$\frac{a_n}{a_{n-1}} < L + \varepsilon < q < 1$$
 a partir de cierto valor n_0

Entonces

$$\frac{a_n}{a_{n-1}} < q \qquad \text{con } |q| < 1 \qquad \text{y} \qquad \forall \, n \ge n_0$$

Entonces

$$\begin{aligned} \frac{a_{n_0}}{a_{n_0-1}} &< q \Rightarrow a_{n_0} < q.a_{n_0-1} \\ \frac{a_{n_0+1}}{a_{n_0}} &< q \Rightarrow a_{n_0+1} < q.a_{n_0} < q.q.a_{n_0-1} = q^2.a_{n_0-1} \\ \frac{a_{n_0+2}}{a_{n_0+1}} &< q \Rightarrow a_{n_0+2} < q.a_{n_0+1} < q.q^2.a_{n_0-1} = q^3.a_{n_0-1} \end{aligned}$$

Si desarrollamos la serie

$$\sum_{n=1}^{\infty} a_n = a_1 + a_2 + \dots + a_{n_0-1} + a_{n_0} + a_{n_0+1} + a_{n_0+2} + \dots < a_1 + a_2 + \dots + a_{n_0-1} + q \cdot a_{n_0-1} + q^2 \cdot a_{n_0-1} + q^3 \cdot a_{n_0-1} + \dots$$

Si eliminamos un número finito de términos de las series, la convergencia de las mismas no cambian, por lo tanto podemos eliminar hasta el término a_{n_0-1}

$$\sum_{n=n_0}^{\infty} a_n = a_{n_0} + a_{n_0+1} + a_{n_0+2} + \ldots < q a_{n_0-1} + q^2.a_{n_0-1} + q^3.a_{n_0-1} + \ldots = a_{n_0-1} \sum_{n=1}^{\infty} q^n$$

Como $a_{n_0-1}\sum_{n=1}^{\infty}q^n$ es una serie geométrica de razón |q|<1 es convergente y por el primer criterio de comparación también lo será la serie $\sum a_n$

Ejemplo 5

Determinar, por el criterio del cociente, si las series convergen o divergen.

a)
$$\sum_{n=1}^{\infty} \frac{3^n}{n^2}$$
 b) $\sum_{n=0}^{\infty} \frac{2^n}{n!}$

Solución

a) Calculamos el límite $\lim_{n\to\infty} \frac{a_n}{a_{n-1}}$.

$$\lim_{n \to \infty} \frac{\frac{3^n}{n^2}}{\frac{3^{n-1}}{(n-1)^2}} = \lim_{n \to \infty} \frac{3^n}{n^2} \cdot \frac{(n-1)^2}{3^{n-1}} = \lim_{n \to \infty} \frac{3(n^2 - 2n + 1)}{n^2} = 3$$

Como el límite L=3, mayor que 1, entonces según el criterio del cociente, la serie $\sum_{n=1}^{\infty} \frac{3^n}{n^2}$ diverge.

a) Calculamos el límite $\lim_{n\to\infty} \frac{a_n}{a_{n-1}}$.

$$\lim_{n\to\infty} \frac{\frac{2^n}{n!}}{\frac{2^{n-1}}{(n-1)!}} = \lim_{n\to\infty} \frac{2^n}{n!} \cdot \frac{(n-1)!}{2^{n-1}} = \lim_{n\to\infty} \frac{2 \cdot (n-1)!}{n \cdot (n-1)!} = \lim_{n\to\infty} \frac{2}{n} = 0$$

Como el límite es L=0, menor que 1, entonces según el criterio del cociente, la serie $\sum_{n=0}^{\infty} \frac{2^n}{n!}$ converge

Veamos dos ejemplos en los cuales el criterio del cociente no es concluyente si el límite es 1.

Ejemplo 6

a) Si en la serie armónica $\sum_{n=1}^{\infty} \frac{1}{n}$ que sabemos que es *divergente*, aplicamos este criterio, obtenemos:

$$\lim_{n \to \infty} \frac{a_n}{a_{n-1}} = \lim_{n \to \infty} \frac{\frac{1}{n}}{\frac{1}{n-1}} = \lim_{n \to \infty} \frac{n-1}{n} = 1$$

b) Si en la serie $\sum_{n=1}^{\infty} \frac{1}{n^2}$ que sabemos que es *convergente* por ser de tipo p, con p>1, aplicamos este criterio, obtenemos:

$$\lim_{n \to \infty} \frac{a_n}{a_{n-1}} = \lim_{n \to \infty} \frac{\frac{1}{n^2}}{\frac{1}{(n-1)^2}} = \lim_{n \to \infty} \frac{n^2 - 2n + 1}{n^2} = 1$$

En los dos casos, el límite es 1, y sin embargo una serie converge y la otra diverge. Hemos comprobado con estos ejemplos que el criterio del cociente no decide si el límite es uno. Por lo tanto, cuando ocurre esto, hay que usar otro criterio.

Criterio de Cauchy (o de la raíz)

Sea $\sum a_n$ una serie de términos positivos tal que:

$$\lim_{n\to\infty} \sqrt[n]{a_n} = L \implies \begin{cases} \text{Si } L < 1 \text{ la serie converge} \\ \text{Si } L > 1 \text{ la serie diverge} \\ \text{Si } L = 1 \text{ el criterio no decide} \end{cases}$$

Ejemplo 7 Determinar, por el criterio de la raíz, si las series convergen o divergen.

a)
$$\sum_{n=1}^{\infty} \left(\frac{8n-3}{4n+2} \right)^n$$
 b) $\sum_{n=1}^{\infty} \frac{2^{4n+1}}{n^n}$

Solución

a) Hallamos el
$$\lim_{n\to\infty} \sqrt[n]{a_n}$$
, esto es: $\lim_{n\to\infty} \sqrt[n]{\left(\frac{8n-3}{4n+2}\right)^n} = \lim_{n\to\infty} \left(\frac{8n-3}{4n+2}\right) = 2$

Como el límite L=2, mayor que 1, entonces según el criterio de la raíz, la serie $\sum_{n=1}^{\infty} \left(\frac{8n-3}{4n+2}\right)^n$ diverge.

b)
$$\lim_{n \to \infty} \sqrt[n]{\frac{2^{4n+1}}{n^n}} = \lim_{n \to \infty} \left(\frac{2^{4n+1}}{n^n}\right)^{\frac{1}{n}} = \lim_{n \to \infty} \frac{\left(2^{4n}\right)^{1/n} \cdot 2^{1/n}}{\left(n^n\right)^{1/n}} = \lim_{n \to \infty} \frac{2^4 \cdot 2^{1/n}}{n} = 0 \qquad \left(\lim_{n \to \infty} 2^{1/n} = 1\right)$$

Como el límite L=0, menor que 1, entonces según el criterio de la raíz, la serie $\sum_{n=1}^{\infty} \frac{2^{4n+1}}{n^n}$ converge.

Series alternadas

Los criterios de convergencia vistos hasta ahora, se pueden aplicar solamente a series de términos positivos. Veamos, otro tipo de series que contienen términos positivos y negativos.

Una serie $\sum a_n$ se llama *alternada* si sus términos son alternativamente positivos y negativos, por ejemplo:

$$\sum_{n=1}^{\infty} \left(-1\right)^{n-1} \frac{1}{n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \dots$$

Una serie alternada puede expresarse en una de las formas:

$$a_1 - a_2 + a_3 - a_4 + \dots + (-1)^{n-1} a_n + \dots$$

O bien: $-a_1 + a_2 - a_3 + a_4 + ... + (-1)^n a_n + ...$ (con $a_k > 0$

Criterio de Leibniz para series alternadas

Sea la serie alternada $\sum_{n=1}^{\infty} \left(-1\right)^{n-1} a_n = a_1 - a_2 + a_3 - a_4 + a_5 - a_6 + \dots$, tal que la sucesión

 $\{a_n\}$ es decreciente, es decir que $a_k \ge a_{k+1} > 0$, entonces, si:

 $\begin{cases} \lim_{n\to\infty} a_n = 0 & \text{la serie es convergente} \\ \lim_{n\to\infty} a_n \neq 0 & \text{la serie es divergente} \end{cases}$

Ejemplo 8

Determinar si las siguientes series alternadas convergen o divergen.

a)
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{3n}{5n^2 + 3}$$
 b) $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{3n}{5n - 3}$

Solución

Para aplicar el criterio de las series alternadas, se debe cumplir que:

i) $a_k \ge a_{k+1} > 0$, para todo entero positivo k.

ii)
$$\lim_{n\to\infty} a_n = 0$$

a) i) Una forma de demostrar que $a_k \ge a_{k+1} > 0$, es probar que $f(x) = \frac{3x}{5x^2 + 3}$ es decreciente para todo entero positivo k. Para ello tenemos que probar que la derivada f'(x) < 0. Aplicando la regla del cociente, la derivada es:

$$f'(x) = \frac{-15x^2 + 9}{\left(5x^2 + 3\right)^2} < 0$$

De esta expresión se deduce que f(x) es decreciente, y por lo tanto $a_k \ge a_{k+1}$, para todo entero positivo k.

Otra forma es demostrar que $a_k \ge a_{k+1} > 0$, es probar que $a_k - a_{k+1} \ge 0$.

Concretamente, si $a_n = \frac{3n}{5n^2 + 3}$, entonces:

$$a_k - a_{k+1} = \frac{3k}{5k^2 + 3} - \frac{3(k+1)}{5(k+1)^2 + 3} = \frac{15k^2 + 15k - 9}{\left(5k^2 + 3\right)\left(5(k+1)^2 + 3\right)} \ge 0$$

Por lo tanto $a_k \ge a_{k+1}$.

Para demostrar que $a_k \ge a_{k+1}$, también podemos probar que: $\frac{a_{k+1}}{a_k} \le 1$.

$$\frac{\frac{3(k+1)}{5(k+1)^2+3}}{\frac{3k}{5k^2+3}} = \frac{3(k+1)}{5(k+1)^2+3} \cdot \frac{5k^2+3}{3k} = \frac{15k^3+15k^2+9k+9}{15k^3+30k^2+24k} \le 1$$

ii)Podemos asegurar que $\lim_{n\to\infty} \frac{3n}{5n^2+3} = 0$

Como se cumple i) , ii), la serie alternada $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{3n}{5n^2+3}$, es convergente.

- b) i) Probamos si $f(x) = \frac{3x}{5x-3}$ es decreciente, para lo cual verificamos si su derivada es menor que
 - 0. Efectivamente:

$$f'(x) = \frac{-9}{(5x-3)^2} < 0$$

ii)Calculamos el límite $\lim_{n\to\infty} \frac{3n}{5n-3}$.

$$\lim_{n\to\infty}\frac{3n}{5n-3}=\frac{3}{5}\neq0$$

De acuerdo al criterio de las series alternadas, la serie es divergente.

Series absolutamente convergentes:

Dada una serie alternada $\sum a_n$ de términos positivos y negativos en cualquier orden, podemos considerar la serie formada por los valores absolutos de la serie es decir $\sum |a_n|$. Si esta serie converge (lo probamos por cualquiera de los métodos para las series de términos positivos) diremos que la serie $\sum a_n$ es absolutamente convergente.

Propiedad

Toda serie absolutamente convergente, es convergente. Es decir

Si la serie
$$\sum |a_n|$$
 converge \Rightarrow la serie $\sum a_n$ converge

Demostración

Sea $b_n = a_n + |a_n|$ que por definición de valor absoluto resulta:

$$\begin{cases} b_n = 0 & \text{si} & a_n \le 0 \\ b_n = 2|a_n| & \text{si} & a_n > 0 \end{cases}$$

Es decir que $0 \le b_n \le 2|a_n|$ y como la $\sum |a_n|$ es convergente por hipótesis, entonces $\sum b_n$ es convergente por el primer criterio de comparación.

Pero como $a_n = b_n - |a_n|$ La serie $\sum a_n$ es la diferencia entre las series $\sum b_n$ y $\sum |a_n|$ que son ambas convergentes, entonces la serie $\sum a_n$ converge

Veremos que la recíproca no es válida, por medio de un ejemplo

Ejemplo 9

Sea la serie alternada
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n}$$

Probemos en primer lugar que la sucesión $\left\{\frac{1}{n}\right\}$ es decreciente

$$n+1>n \Rightarrow \frac{1}{n+1} < \frac{1}{n} \Rightarrow a_{n+1} < a_n$$
 la sucesión es decreciente

Calculamos el
$$\lim_{n\to\infty} a_n = \lim_{n\to\infty} \frac{1}{n} = 0$$

Por el criterio de Leibniz, sabemos que esta serie es convergente

Veamos si es absolutamente convergente

$$\sum_{n=1}^{\infty} \left| (-1)^{n+1} \frac{1}{n} \right| = \sum_{n=1}^{\infty} \frac{1}{n}$$
 que es la serie armónica que sabemos que es divergente

Hemos encontrado una serie alternada que es convergente, pero no absolutamente convergente. A estas series las llamamos condicionalmente convergentes.

Ejemplo 10

Probar la convergencia absoluta de la serie $\sum_{n=1}^{\infty} \left(-1\right)^n \frac{n^2+4}{2^n}$

Solución

Si usamos el criterio del cociente, tenemos:

$$\lim_{n\to\infty} \left| \frac{a_n}{a_{n-1}} \right| = \lim_{n\to\infty} \left| \frac{(-1)^n (n^2 + 4) 2^{n-1}}{(-1)^{n-1} 2^n \left((n-1)^2 + 4 \right)} \right| = \lim_{n\to\infty} \frac{n^2 + 4}{2(n^2 - 2n + 5)} = \frac{1}{2} < 1$$

Entonces se concluye que la serie $\sum_{n=1}^{\infty} \left(-1\right)^n \frac{n^2+4}{2^n}$ es absolutamente convergente, lo que implica la convergencia de dicha serie

Criterios de convergencia para las series

Criterio	Serie	Convergencia o divergencia	Comentarios
Término enésimo	$\sum a_n$	Si el $\lim_{n\to\infty} a_n \neq 0$ (o no existe), entonces la $\sum a_n$ diverge.	Si el $\lim_{n \to \infty} a_n = 0$, la serie $\sum_{n=1}^{\infty} a_n$ puede o no converger
Serie geométrica	$\sum_{n=1}^{\infty} aq^{n-1}$	i)Es convergente y su suma es $\frac{a}{1-q}$, si $ q < 1$. ii)Es divergente si $ q \ge 1$	Es útil para los criterios de comparación
Serie p	$\sum_{n=1}^{\infty} \frac{1}{n^p}$	i)Converge, si $p > 1$ ii)Diverge, si $p \le 1$	Es útil para los criterios de comparación
Comparación básico	$\sum a_n$, $\sum b_n$	Siendo $a_n \le b_n \Rightarrow$ si $\sum b_n$ converge, entonces $\sum a_n$ converge si $\sum a_n$ diverge, entonces $\sum b_n$ diverge.	Las series que se usan para comparar, generalmente son geométricas o series p

Comparación en el límite	$\sum a_n$, $\sum b_n$	$a_n > 0, b_n > 0$ i) Si $\lim_{n \to \infty} \frac{a_n}{b_n} = L$ con L finito y positivo (L > 0), entonces ambas series convergen o ambas divergen. ii) Si $\lim_{n \to \infty} \frac{a_n}{b_n} = 0$ y $\sum b_n$ converge, entonces $\sum a_n$ también converge iii) Si $\lim_{n \to \infty} \frac{a_n}{b_n} = \infty$ y $\sum b_n$ diverge, entonces $\sum a_n$ también diverge	Las series que se usan para comparar, generalmente son geométricas o series p
Del cociente	$\sum a_n$	Si $\lim_{n\to\infty} \frac{a_n}{a_{n-1}} = L$, entonces: i) $\sum a_n$ converge, cuando L<1 ii) $\sum a_n$ diverge, cuando L>1 No se llega a ninguna conclusión si L=1	Es útil cuando a_n tiene factoriales o potencias enésimas
De la raíz	$\sum a_n$	Si $\lim_{n\to\infty} \sqrt[n]{a_n} = L$, entonces: i) $\sum a_n$ converge, cuando L<1 ii) $\sum a_n$ diverge, cuando L>1 No se llega a ninguna conclusión si L=1	Es útil cuando a _n tiene factoriales o potencias enésimas
Para series alternadas	$\sum_{n=1}^{\infty} \left(-1\right)^{n-1} a_n$	La serie $\sum_{n=1}^{\infty} (-1)^{n-1} a_n$ converge, si: i) $a_k \ge a_{k+1} > 0$ (decreciente), y ii) $\lim_{n \to \infty} a_n = 0$	Sólo se aplica a series alternadas
Para series absolutamente convergentes	$\sum a_n $	Si $\sum a_n $ converge, entonces $\sum a_n$ también converge	Útil para series que tienen términos positivos y negativos