Intro to Point Sampling

FOR 372 March 30, 2023 Elliot Shannon

Point Sampling Basics:

- similar to plot sampling
- a rule for selecting measurement trees around a sampling location
- commonly used in timber cruises due to ease of use (match level of effort with inference)
- unlike plot sampling, there is no physical plot boundary
- instead, each tree has its own inclusion zone based on some measurement (e.g. DBH or height)

Why we use point sampling:

- we are usually interested in stand value, which is typically concentrated in large trees
- large trees are measured more often than small trees
- in horizontal point sampling, selection probability is based on a tree's basal area

How it works:

- forester stands at sampling location and projects a known and fixed angle θ towards each tree's bole at breast height

θ > tree bole	not measured
θ = tree bole	borderline tree
θ < tree bole	measured

- "measure" can mean tally, take DBH, etc.

Angle Guage Relascope Wedge Prism

- R₁ R₂ and R₃ are referred to as limiting distances

- Borderline trees have limiting distance equal to the distance to the sampling location
- If we can't tell if a tree should be measured, we must take additional measurements and calculate limiting distance by hand (otherwise we could introduce bias)
- If borderline tree was smaller or farther away, it would not be measured

- For fixed angle θ , the ratio between a trees DBH and its inclusion zone radius R is:

$$constant k = \frac{DBH (in)}{12 R (ft)}$$

constant
$$k = \frac{DBH \text{ (cm)}}{100 R \text{ (m)}}$$

- regardless of system, $k=2\sin(\frac{\theta}{2})$

So limiting distance
$$R = \frac{DBH \text{ (in)}}{12 k \text{ (ft)}}$$

limiting distance
$$R = \frac{DBH \text{ (cm)}}{100 k \text{ (m)}}$$

- Since the inclusion zone for every tree is based on its size (e.g. DBH), each tree has its own expansion factor
- Recall that $TF = \frac{\text{target unit area}}{\text{inclusion zone area}}$ (b)
- For horizontal point sampling inclusion zone area $= \pi R^2$

limiting distance
$$R = \frac{DBH (in)}{12k(ft)} = \frac{DBH (cm)}{100k(m)}$$

- So for a target unit area of 1 acre, we have $k=2\sin(\frac{\theta}{2})$

Measurement tree

Sampling location

Non-measurement tree

O Borderline tree

$$= \frac{\text{target unit area}}{\text{inclusion zone area}} = \frac{43560 \,\text{sq. ft}}{\pi \left(DBH/12k\right)^2} = \dots = \frac{10890}{BA}$$

- And in metric, we have:

$$TF = \frac{\text{target unit area}}{\text{inclusion zone area}} = \frac{10000 \,\text{sq. m}}{\pi \left(\frac{DBH}{100 \,k}\right)^2} = \dots = \frac{2500 \,k}{BA}$$

- And as before, we can use this expansion factor for a single tree to give us an expanded measurement, where

expanded measurement = individual measurement $\times TF$

Now you try, we are interested in measurements per acre, and we are using an angle guage with $\theta = 0.35$ radians (20°):

What is the TF for a tree with a 10 inch DBH a 40 inch DBH a 95 inch DBH

$$TF = \frac{\text{target unit area}}{\text{inclusion zone area}} = \frac{43560 \,\text{sq. ft}}{\pi \left(\frac{DBH}{(12\,k)}\right)^2} = \dots = \frac{10890\,k^2}{BA} \qquad k = 2\sin\left(\frac{\theta}{2}\right)$$

$$BA = 0.005454 \times DBH^2$$

$$TF = \frac{\text{target unit area}}{\text{inclusion zone area}} = \frac{10000 \,\text{sq. m}}{\pi \left(\frac{DBH}{100 \,k}\right)^2} = \dots = \frac{2500 \,k^2}{BA}$$

Now you try, we are interested in measurements per acre, and we are using an angle guage with $\theta = 0.35$ radians (20°):

$$TF = \frac{\text{target unit area}}{\text{inclusion zone area}} = \frac{43560 \,\text{sq. ft}}{\pi \left(\frac{DBH}{(12\,k)}\right)^2} = \dots = \frac{10890\,k^2}{BA} \qquad k = 2\sin\left(\frac{\theta}{2}\right)$$

$$BA = 0.005454 \times DBH^2$$

$$TF = \frac{\text{target unit area}}{\text{inclusion zone area}} = \frac{10000 \,\text{sq. m}}{\pi \left(\frac{DBH}{100 \,k}\right)^2} = \dots = \frac{2500 \,k^2}{BA}$$