Geometric Group Theory ES1 Solutions

- 1. Torus and Klein bottle respectively,
- 2. (a) It suffices to show that z commutes with the generators, but this is immediate.
 - (b) The centre of A_5 is trivial so z must be send to the identity (here we use surjectivity). It remains to find elements of order 2 and 3 in A_5 such that their product has order 5 and they generate the whole group. The permutations $(1\,2)(3\,4)$ and $(1\,3\,5)$ satisfy these conditions.
- 3. Define $\varphi(k) := ba^k b^{-1} a^{-2^k}$ for $k \ge 1$. Check by induction that

$$\varphi(k) = \prod_{r=0}^{k-1} a^{2^r} (bab^{-1}a^{-2})a^{-2^r}$$

in $F := F(\{a,b\})$. It follows that $\varphi(k)$ is trivial in BS(1,2) for all $k \ge 1$. Now define $\Phi(n,k) := b^{n-1}\varphi(k)b^{-(n-1)}$ for all $n,k \ge 1$. Obviously $\Phi(n,k)$ becomes trivial in BS(1,2). An induction on m shows that for all $1 \le m \le n$ we have the following identity in F

$$\prod_{r=0}^{m-1} \Phi(n-r, 2^r) = b^n a b^{-m} a^{-(2\uparrow\uparrow m)} b^{-(n-m)},$$

where $2 \uparrow \uparrow m$ refers to the number $2^{2^{2^{-}}}$ where 2 appears m times (this is Knuth's arrow notation). In particular, for m = n we have

$$\Psi(n) := \prod_{r=0}^{n-1} \Phi(n-r, 2^r) = b^n a b^{-n} a^{-(2\uparrow\uparrow n)}.$$

Hence

$$\begin{split} \Phi(n)a\Phi^{-1}(n)a^{-1} &= b^n a b^{-n} a^{-(2\uparrow\uparrow n)} a (a^{2\uparrow\uparrow n} b^n a^{-1} b^{-n}) a^{-1} \\ &= b^n a b^{-n} (a^{-(2\uparrow\uparrow n)} a a^{2\uparrow\uparrow n}) (b^n a^{-1} b^{-n}) a^{-1} \\ &= b^n a b^{-n} a b^n a^{-1} b^{-n} a^{-1} \\ &= w_n. \end{split}$$

We can then calculate an upper bound for the area of w_n . Clearly the area of $\phi(k)$ is at most k, and hence the same goes for $\Phi(n, k)$, independently of n. It then follows that $\Psi(n)$ has area at most

$$1+2+4+\ldots+2^{n-1}=2^n-1.$$

Thus the area of w_n is at most $(2^n - 1) + (2^n - 1) = 2^{n+1} - 2$.

- 4. Let X be the presentation complex of $\mathbb{Z}^2 \cong \langle a, b \mid [a, b] \rangle$. Let $D \hookrightarrow X$ be a van-Kampen diagram for w_n of minimal area. The covering map $\tilde{X} \to X$ induces a map $\tilde{X} \to D \ldots$
- 5. (a) Isometries are affine maps with determinant ± 1 . In \mathbb{R} , this means that all isometries are either translations or multiplication by -1 followed by translations. It immediately follows that B generates D_{∞} and since sr=t we get that A is also a generating set.
 - (b) Omitted
- 6. Suppose $\langle A \mid R \rangle$ has a solvable word problem. Given some n, it is easy to find an algorithm that will construct the closed ball of radius n around 1 of $\operatorname{Cay}_A(F(A))$; call this graph G_n . As G_n is finite, we can check, using the algorithm for the word problem, which vertices should be identified in G_n according to R. The result will be B_n .

Conversely, suppose we can construct B_n for any n. Given a word of length n, simply check whether the corresponding path in B_n ends at the identity or not.

7.