	课程名称: 考			014年								
	题 号		=	Ξ	四	Ħ	六	七	八	九	+	总分
	评卷得分	1. F									1.0	
33	评卷签名					24,5						
	复核得分											
	复核签名			10					a party report	en Sitt	4.2	wair
ħ	高斯定理的 (A) 闭 (B) 闭 (C) 闭 (D) 闭	合面内合面内合面内合面内	的电荷的电荷	時代数和 時代数和 時代数和 场强均 点电荷,	中 为 零 的 不 为 零 的 不 为 零 的 不 为 零 的 不 为 零 的 不 为 零 的	时,闭零时,闭	合面_ 闭合面_ 合面内- 分布	上各点: 面上各点: 上各点: 一定处: E相同:	场强一 点场强不 场强不电 华径的	定为零 一定 一定 一一荷。 周	; : :处不ジ	为零; 等; 人
ħ	(A) 闭(B) 闭(C) 闭(D) 闭(D) 闭(D) 闭(D) 闭(D) 闭(D) 闭(D) 闭(D	合合合合 显示并 面面面面 均规重	的电布和 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的	時代数系 時代数系 時代数 時代 場 時 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一	中 中 中 中 中 中 中 中 中 中 中 中 中 中 中 中 中 中 中	时零时, 种均与 所,闭 方匀点F	合面 分布 分布 分布 分元	上各点 上各上 上名定 相较与 一 上名 上 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日	场点场处 华两势 强强不电 的情	定一一荷 圆况等处处 周下)	; : :处不ジ) 为零; 条;
ħ	(A) 闭(B) 闭(C) 闭(D) 闭(D) 闭(D) 闭(D) 闭(D) 闭(D) 闭(D) 风(A) 场(D)	合合合合 显无并强 的人人人	的电电机 的的电点 为q的分别 一里, 也是	市代代码 电,面相等的,一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个	中的 中	时零时, 种均(B) (B) (B)	合面 分布 分布 分布 分元	上各点 上各上 上名定 相较与 一 上名 上 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日	场点场处 华两势 强强不电 的情	定一一荷 圆况等处处 周下)	; : :处不ジ) 为零; 字;
ħ	(A) 闭(B) 闭(C) 闭(D) 闭(D) 闭(D) 闭(D) 闭(D) 闭(D) 闭(D) 闭(D	合合合合 显无并强 强内内内 为规重等 量	的的的各点的 的分别 的现在分词 的现在分词 的现在分词 的分别 电电阻 电电阻 电电阻 电电阻 电电阻 电电阻 电电阻 电电阻 电电阻 电电	市市市场 气布平均 计代代代强 电,面相,由,有另一个,有另一个,是一个,是一个,是一个,是一个,是一个,是一个,是一个,是一个,是一个,是	中的 以一轴 相等的 医神经神经	时零时, 种均(B)	合面 分布 分布 分布 分元	上各点 上各上 上名定 相较与 一 上名 上 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日	场点场处 华两势 强强不电 的情	定一一荷 圆况等处处 周下)	; : :处不ジ	为零; 等; AZ
· · · · · · · · · · · · · · · · · · ·	(A) 闭闭(B) 闭闭(C) 闭闭(D) 闭闭(D) 闭闭(D) 闭闭(D) 闭口(A) 场面(C) 场面(D) 场面(D) 场面(D) 场面(D) 有种电影	合合合合 显无并强 强 强 电 化内内内 划规直等 量 量 容电	的的的名 如此于, 压 路 路场电电电点 的分圆电 相 相 经阻 格爾	市市市场 点布严办 等 等 与代代代强 电,面相 , 电电 , 电电 , 电电 源, 和 , 更 要 , 更 要 , 更 , 更 要 。	中国的 以一轴 相 不 接 和 零 为 零 时 两 是 任 等 等 , 和	时零时,种均是(B),若极的,对,对于为为人。	合闭合面 分布的强 终场电电机 经场	上各上年 医比妥氏 医比妥氏 医比妥氏 医比妥氏 医比妥氏 医比妥氏 医皮肤	场点场处 华两界内 容发生 经外债 等 网络人名 经种位 不 器发生	定一一荷 圆况 : 极如为定定。 周下) 板下	,	Z P
· · · · · · · · · · · · · · · · · · ·	(A) 闭闭(B) 闭闭(C) 闭闭(D) 闭闭(D) 闭闭(D) 闭闭(D) 闭口(A) 场面(C) 场面(D) 场面(D) 场面(D) 场面(D) 有种电影	合合合合 鬼无并强 强 强 电Q 望 量为A 的面面面面 垃圾重相 分 分 容电大大 向的大大时间 多量 容电大大 向的	的的的各 如此了, 医 医 器场, , 的的的各 , 如此了, 医 起 始强 医 医 电电电点 的分侧电 相 相 终 度增减一子,	市市市场 气布平台 手,与的大小代代代强 电,面相 , 电大 , 沿数数数均 荷男 20 等 基 蓼 源小 1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/	印印印为 以一轴 相子 连足增增 示为不为零 以种上 等等 接和大大 方等为零时	时零时,种均三的,若板入的,时,闭合一式分点场用间(()并	合用合面 分布的强 绝电 B D)能穿过	上面上一 医杜勒克 两量不减 十二各上各定 相较与 将 必变小 一定, 中心, , 宽,	场点场处 半两势势 容界 医 医变强场强无 径种(不 器发不减 为一强不电 的情 等 两生变小 0.	定一一荷 圆况 ; 极如,, 磁为定定。 周下) 板下少均, 磁变均减	,	Z P

广东工业大学试卷用纸, 共 4 页, 第 1 页

$Z/L;$ $Z = \frac{dB}{dt}$ $Z = \frac{1}{2} \frac{B}{2}$
率 dB/dt?
(X
(X
$\underbrace{\frac{Q}{1}}_{2} \times B$
$\underbrace{\xrightarrow{1}}_{2}^{B}$
2 ×/
^ + a/ 3
今有 S' 系
的面积为
State of the
来的:
,

- (C) n=1, l=2, $m_l=1$, $m_s=\frac{1}{2}$ (D) n=1, l=0, $m_l=1$, $m_s=-\frac{1}{2}$
- 二、填空题 (共10小题,每小题3分,共30分)

把正确答案按题号顺序填在答题纸上,并在答案下面画一下画线,注明题号

11. 如图, A 点有电荷+q, B 点有电荷-q, AB=2R, OCD 是以 B

为中心,R 为半径的半圆,将试验电荷 q_0 从 O 点沿 OCD 移到 D 点,电 场力做的功为

$$W_{OD} =$$

12. 如图,两面积均为S的导体板A、B平行放置,A 板带电量为+Q, B 板不带电。如果使 B 板接地,则 AB 间的电势差

$$U_{AB} = \underline{\hspace{1cm}}$$

广东工业大学试卷用纸, 共 4 页, 第 2 页

13. A 、 B 两个导体球,半径分别为 R_A 和 R_B ,相距甚远,可看成是名	各自孤立的。其中 A 球原
带电, B球不带电, 现用一根细长导线将两球连接, 则电荷在两球	上重新分配后的比值
$q_A:q_B=$	
14. 半径为 R 的圆柱体上载有电流 I,电流在其横截面上均匀分布,一回路 L 通过圆柱内部将圆柱体横截面分为两部分,其面积大小分别为和 Sz,如图所示,则	S_1 S_2 S_1
$\oint_{\vec{L}} \vec{H} \cdot d\vec{l} = \underline{\qquad}$	A STATE OF THE STA
15. 真空中一半径为 R 的 1/4 圆弧形导线 ab,通以稳恒电流 I,导线	<i>b</i>
按图示方式置于均匀外磁场 $ar{B}$ 中,该载流导线所受的安培力大小为	R I
F=	ORa
该平行板电容器中的位移电流为 $I_d=$	
17. 静电场环路定理的数学表达式为	,其物理意义是:
	•
8. 在康普顿散射实验中,若散射光的波长是入射光波长的 1.2 倍,贝	
冲电子动能 E_k 的比值为 $\frac{\varepsilon}{E_k} =$	Little Barbara
$\overline{E_k}$	
. 若不考虑相对论效应,为了使电子的德布罗意波长为 0.1nm,需要	要的加速电压为
<i>U</i> ₁₂ =	
(电子质量 $m_e = 9.11 \times 10^{-31}$ kg, 基本电荷 $e = 1.60 \times 10^{-19}$ C; 普朗克	常数 h=6.63×10 ⁻³⁴ J.s)

广东工业大学试卷用纸, 共 4 页, 第 3 页

三、计算题(共4大题,每题10分,共40分)

要求在答题纸上写出解答过程,解题用图请作在答题纸上,注明题号。

- 21. 半径为 a 的导体球带电量 q, 球外有一内外半径分别为 b 和 c 的同心导体球壳, 球壳带电量 Q。 求:
 - (1) 内球及球壳的电势 U₁和 U₂;
 - (2) 用导线把球和球壳连在一起后, U₁和 U₂分别为多少?
 - (3) 球和球壳未连之前,若把内球接地,则内球带电量q'=?

(设无限远处及大地的电势均为零)

- 22. 真空中有一边长为 1、电阻均匀的正三角形导线框架。另有两条与三角形底边平行的长直导线 1 和 2 分别接在三角形的 a、b 两点,如图所示,设导线中的电流为 1. O 点为三角形中心。求:
- (1) 直线段 1 在 O 点产生的磁感应强度 $B_i = ?$
- (2) 直线段 2 在 O 点产生的磁感应强度 $B_2 = ?$
- (3) 三角形框在 O 点产生的磁感应强度 $B_3 = ?$
- (4) 三角形中心 O 点合成磁感应强度 \bar{B}_o =? (大小和方向)。
- 23. 一无限长载有电流 I 的直导线旁边有一与之共面的单匝矩形线圈,线圈的边长分别为 l 和 b,线圈以速度 v 垂直离开直导线,如图所示。求直导线与矩形线圈的互感系数 $M=\frac{\mu_0 I}{2\pi}$ 时 ,
- (1) 线圈的位置(即线圈的左边离直导线的距离 d=?);
- (2) 此时线圈内的感应电动势 ε ,的大小。

- 24. (本题两小题,每小题5分)
 - (1) 波长为 λ 的单色光,每一个光子的能量 E、动量 p 和质量 m 各等于多少? 若光沿 X 轴 正向传播,写出表示此光子的坐标和动量的不确定量关系式。
 - (2) 已知 μ 子的静止能量为 105.7MeV,平均寿命为 2.2×10^{-8} s,试求动能为 150MeV 的 μ 子的速度 v 是多少?平均寿命 τ 是多少?

广东工业大学试卷用纸, 共 4 页, 第 4 页