MARISA BAPTISTELLA

O USO DE REDES NEURAIS E REGRESSÃO LINEAR MÚLTIPLA NA ENGENHARIA DE AVALIAÇÕES: DETERMINAÇÃO DOS VALORES VENAIS DE IMÓVEIS URBANOS

Dissertação de Mestrado apresentada como requisito parcial à obtenção do grau de Mestre em Ciências no Programa de Pós-Graduação em Métodos Numéricos em Engenharia, Área de Concentração em Programação Matemática dos setores de Ciências Exatas e de Tecnologia da Universidade Federal do Paraná.

Orientadora: Prof. a Dr. a Maria Teresinha Arns Steiner.

TERMO DE APROVAÇÃO

MARISA BAPTISTELLA

O USO DE REDES NEURAIS E REGRESSÃO LINEAR MÚLTIPLA NA ENGENHARIA DE AVALIAÇÕES: DETERMINAÇÃO DOS VALORES VENAIS

Dissertação aprovada como requisito parcial para a obtenção do grau de Mestre em Ciências no Programa de Pós-Graduação em Métodos Numéricos em Engenharia, na área de Concentração em Programação Matemática dos setores de Ciências Exatas e Tecnologia da Universidade Federal do Paraná, pela comissão examinada formada pelos professores:

Orientadora:	
	Prof. ^a Dr. ^a Maria Teresinha Arns Steiner PPGMNE/UFPR
	Prof.° Dr. Anselmo Chaves Neto PPGMNE/UFPR
	Prof.° Dr. Jair Mendes Marques PPGMNE/UFPR
	Prof.° Dr. Júlio César Nievola PUC/PR

Curitiba, 16 de Setembro de 2005

"Não, não tenho um caminho novo; o que tenho de novo é o jeito de caminhar." Thiago de Mello

AGRADECIMENTOS

Aos colegas do curso, dos quais sempre recebi apoio, força e incentivo para enfrentar este desafio.

Aos professores do programa, prof. D. Sc. Anselmo Chaves Neto, prof. D. Eng. Celso Carnieri, prof. D. Sc. Jair Mendes Marques, prof. D. Sc. Liliana Gramani Cumin, prof. D. Eng. Maria Teresinha Arns Steiner, prof. D. Eng. Neida Maria Patias Volpi e prof. D. Eng. Volmir Eugênio Wilhelm, pelos ensinamentos e disposição em auxiliar-nos.

As secretárias do CESEC e da UNICENTRO pela presteza e esforço.

A Prefeitura Municipal de Guarapuava, que gentilmente cedeu os dados para a realização deste trabalho.

Ao meu filho Bruno, aos meus pais, aos amigos, e a todos que torceram e vibraram comigo durante todo este tempo.

SUMÁRIO

LISTA DE FIGURAS	viii
LISTA DE QUADROS	ix
LISTA DE TABELAS	X
RESUMO	xi
ABSTRACT	xii
CAPITULO I	
1. INTRODUÇÃO	01
1.1 OBJETIVO DO TRABALHO	03
1.2 JUSTIFICATIVA DO TRABALHO	03
1.3 LIMITAÇÕES DO TRABALHO	04
1.4 ESTRUTURA DO TRABALHO	04
CAPITULO II	
2. DESCRIÇÃO DO PROBLEMA	05
2.1 INTRODUÇÃO AO PROBLEMA	05
2.2 OBTENÇÃO DOS DADOS	07
CAPITULO III	
3. REVISÃO DE LITERATURA – TRABALHOS RELACIONADOS	09
CAPITULO IV	
4. ENGENHARIA DE AVALIAÇÕES	14
4.1 MÉTODOS DE AVALIAÇÃO	15
4.1.1 Método Comparativo Direto de Dados do Mercado	16
4.1.2 Método Involutivo	17
4.1.3 Método Evolutivo	18
4.1.4 Método da Capitalização da Renda	19
4.2 O MERCADO IMOBILIÁRIO	21

4.3 AVALIAÇÃO IMOBILIÁRIA	22
4.4 PLANTA GENÉRICA DE VALORES	24
4.4.1 Considerações Sobre Elaboração da Planta de Valores	24
4.4.2 Avaliação Coletiva de Imóveis	26
CAPITULO V	
5. REFERENCIAL TEÓRICO	28
5.1 REDES NEURAIS	28
5.1.1 Histórico	28
5.1.2 O Neurônio	29
5.1.3 Topologia	32
5.1.4 Aprendizado	34
5.1.5 Redes Perceptron	35
5.1.6 O Algoritmo de Levenberg-Marquardt	37
5.2 REGRESSÃO LINEAR MÚLTIPLA	39
5.2.1 Pressupostos Teóricos do Modelo de Regressão Linear	40
5.2.1.1 Linearidade do Modelo de Regressão	40
5.2.1.2 Posto Completo	41
5.2.1.3 Valor Esperado do Erro	41
5.2.1.4 Distúrbios Esféricos	42
5.2.1.5 Regressores Não-Estocásticos	42
5.2.1.6 Normalidade (Gaussianidade)	42
5.2.2 Análise da Variância da Regressão	43
5.2.3 Poder de Explicação do Modelo	44
5.2.4 Relação entre as Variáveis	45
5.3 ANÁLISE DOS COMPONENTES PRINCIPAIS	47
5.3.1 Componentes Principais Populacionais	47
5.3.2 Componentes Principais da Amostra	49
5.3.3 Critérios para Definição do Número de Fatores Extraídos	50
5.4 ANÁLISE FATORIAL	51
5.4.1 Modelo Fatorial Ortogonal	51
5.4.2 Comunalidades	52
5 4 3 Matriz dos Resíduos	53

5.4.4 Rotação dos Fatores	53
5.4.5 Escores Fatoriais	54
CAPITULO VI	
6. IMPLEMENTAÇÃO DAS TÉCNICAS PARA RESOLUÇÃO DO	
PROBLEMA	55
6.1 MODELO UTILIZANDO REDES NEURAIS	60
6.1.1 Experimento I com Redes Neurais	62
6.1.2 Experimento II com Redes Neurais – Setor 9	66
6.1.3 Experimento III com Redes Neurais – Setor 10	69
6.2 MODELO UTILIZANDO ANÁLISE DE REGRESSÃO MÚLTIPLA	73
6.2.1 Experimento I com Regressão Linear Múltipla	73
6.2.2 Experimento II com Regressão Linear Múltipla – Setor 9	78
6.2.3 Experimento III com Regressão Linear Múltipla – Setor 10	81
CAPITULO VII	
7. CONSIDERAÇÕES FINAIS	86
7.1 CONCLUSÕES	86
7.2 SUGESTÕES PARA TRABALHOS FUTUROS	87
REFERÊNCIAS	88
APÊNDICES	92
ANEXOS	98

LISTA DE FIGURAS

Figura	2.1 – Mapa de Guarapuava	08
Figura	5.1 – Neurônio Biológico	30
Figura	5.2 – Modelo de um Neurônio Artificial	30
Figura	5.3 – Funções de Ativação dos Neurônios	31
Figura	5.4 – Modelo de uma RN com uma Única Camada	32
Figura	5.5 – Modelo de uma RN de Múltiplas Camadas	33
Figura	5.6 – Modelo de uma RN Recorrente	33
Figura	5.7 – Representação da Estrutura de Componentes Principais	48
Figura	5.8 – Esquema de Agrupamento de Variáveis em Fatores	51
Figura	6.1 – Fluxograma de Implementação das Técnicas – Experimento I	55
Figura	6.2 – Fluxograma Experimento II e III – Setor 9 e 10	56
Figura	6.3 – Fatores X Autovalores da Análise Realizada	58
Figura	6.4 – Treinamento Versus Capacidade de Generalização da RNA	64
Figura	6.5 – Fatores X Autovalores da Análise Realizada – Setor 9	67
Figura	6.6 – Fatores X Autovalores da Análise Realizada – Setor 10	71
Figura	6.7 – Valores Preditos X Valores Observados	75
Figura	6.8 – Resíduos X Valores Preditos	76
Figura	6.9 – Valores Preditos X Valores Observados – Setor 9	80
Figura	6.10 – Resíduos X Valores Preditos – Setor 9	80
Figura	6.11 – Valores Preditos X Valores Observados – Setor 10	83
Figura	6.12 – Resíduos X Valores Preditos – Setor 10	84

LISTA DE QUADROS

Quadro	5.1 – Análise de Variância	43
Quadro	6.1 – Resultado das Melhores Simulações	62
Quadro	6.2 – Ocorrência de Casos por Faixa de Erro do Conjunto Treinamento	65
Quadro	6.3 – Ocorrência de Casos por Faixa de Erro do Conjunto Teste	65
Quadro	6.4 – Resultados Melhores Simulações – Setor 9	66
Quadro	6.5 – Resultado das Melhores Simulações c/ Análise Multivariada – Setor $9\ \dots$	69
Quadro	6.6 – Resultado das Melhores Simulações – Setor 10	70
Quadro	6.7 – Resultado das Melhores Simulações c/ Análise Multivariada – Setor 10	72
Quadro	6.8 – Ocorrência de Casos por Faixa de Erro no Modelo de Regressão	77
Quadro	6.9 – Ocorrência de Casos por Faixa de Erro Modelo de Regressão – Setor 9	81
Quadro	6.10 - Ocorrência de Casos por Faixa de Erro Modelo de Regressão – Setor 10	84

LISTA DE TABELAS

Tabela 6.1 – Autovalores em Ordem Decrescente de Magnitude	57
Tabela 6.2 – Matriz Fatorial Antes da Rotação	58
Tabela 6.3 – Comunalidades	59
Tabela 6.4 – Matriz dos Pesos com Rotação Varimax	60
Tabela 6.5 – Autovalores em Ordem Decrescente de Magnitude – Setor 9	67
Tabela 6.6 – Matriz Fatorial depois da Rotação – Setor 9	68
Tabela 6.7 – Comunalidades – Setor 9	68
Tabela 6.8 – Autovalores em Ordem Decrescente de Magnitude – Setor 10	70
Tabela 6.9 – Matriz Fatorial Depois da Rotação – Setor 10	71
Tabela 6.10 – Comunalidades – Setor 10	72
Tabela 6.11 – Ajuste do Primeiro Modelo de Regressão	73
Tabela 6.12 – Ajuste do Modelo Final de Regressão	74
Tabela 6.13 – Resultado da Estatística	74
Tabela 6.14 – Análise da Variância do Ajuste do Modelo de Regressão	77
Tabela 6.15 – Ajuste do Primeiro Modelo de Regressão – Setor 9	78
Tabela 6.16 – Ajuste do Modelo Final de Regressão – Setor 9	78
Tabela 6.17 – Resultado da Estatística	79
Tabela 6.18 – Análise da Variância do Ajuste do Modelo de Regressão	79
Tabela 6.19 – Ajuste do Primeiro Modelo de Regressão – Setor 10	81
Tabela 6.20 – Ajuste do Modelo Final de Regressão – Setor 10	82
Tabela 6.21 – Resultado da Estatística	82
Tabela 6.22 – Análise da Variância do Ajuste do Modelo de Regressão	83

RESUMO

O presente trabalho tem por objetivo comparar as técnicas de Redes Neurais Artificiais e Regressão Linear Múltipla, na estimação dos valores venais de imóveis urbanos da cidade de Guarapuava/PR. Para tanto, utilizou-se os dados do Cadastro Imobiliário, fornecido pelo setor de Planejamento da Prefeitura Municipal de Guarapuava. O modelo inicial foi composto por treze variáveis do referido cadastro, sendo elas: bairro, setor, pavimentação, esgoto, iluminação pública, área do terreno, pedologia, topografia, situação, área edificada, tipo, estrutura e conservação. Utilizou-se a técnica de Análise de Componentes Principais para reduzir e transformar as variáveis originais para nove fatores. As Redes Neurais Artificiais desenvolvidas foram do tipo *feed-forward*, utilizando o algoritmo de treinamento "Levenberg Marquardt" com uma camada oculta, cujos resultados foram comparados com os resultados obtidos através da Regressão Linear Múltipla, para a predição dos valores venais. As duas técnicas se mostraram eficientes, sendo que, para o problema estudado, o desempenho das Redes Neurais Artificiais foi superior ao resultado apresentado pela outra técnica.

ABSTRACT

The present work has the objective of comparing the techniques of Artificial Neural Networks and Multiple Linear Regression, in the estimation of venal values of urban real properties of the city of Guarapuava. For this purpose, data from the real estate dossier were utilized, supplied by the sector of Planning of the City Hall of Guarapuava. The initial model was compounded of thirteen variables from the above mentioned dossier: quarter, sector, paving, drain, public illumination, land area, pedology, topography, situation, built area, type, structure and conservation. The technique of Principal Component Analysis was used to reduce and transform the original variables into nine factors. The Artificial Neural Networks developed were of the type feed-forward, using the training algorithm Levenberg Marquardt with one hidden layer, whose results were compared with the results obtained through the Multiple Linear Regression, for the prediction of venal values. Both techniques resulted efficient, and for this problem, the performance of Artificial Neural Networks was superior to the result showed by the other technique.

CAPITULO I

1. INTRODUÇÃO

A Engenharia de Avaliações vem evoluindo no Brasil, através de inúmeros profissionais e pesquisadores desta área que se dedicam ao estudo e à pesquisa bem como a divulgação das técnicas de avaliação de imóveis.

Segundo DANTAS (2003), a Engenharia de Avaliações é uma especialidade da engenharia que reúne um conjunto amplo de conhecimentos da área de engenharia e arquitetura, bem como de outras áreas das ciências sociais, exatas e da natureza, com o objetivo de determinar tecnicamente o valor de um bem, de seus direitos, frutos e custos de produção.

Entre os diversos serviços nos quais pode ser aplicada, a Engenharia de Avaliações pode subsidiar operações de garantia, transações de compra e venda, transações de locação, decisões judiciais, taxação de impostos, decisões sobre investimentos, reavaliação patrimonial, operações de seguros, separações ou cisões de empresas e desapropriações, entre outras.

O papel que a avaliação desempenha, varia conforme o objetivo e o tipo de ativo a ser avaliado. No caso da avaliação de imóveis, a NBR 5676/89 — Norma Brasileira para Avaliação de Imóveis Urbanos, atualizada pela NBR 14653-1/2001 e 14653-2/2004, apresenta quatro métodos de avaliação que serão discutidos posteriormente. Dos métodos existentes o mais utilizado é o Método Comparativo Direto de Dados do Mercado, pelo qual o valor do imóvel é obtido comparando-se as suas características com as de outros imóveis que foram negociados no mercado.

Devido às dificuldades para se encontrar elementos semelhantes ao elemento avaliando¹ no mercado, condição básica em qualquer teoria da amostragem, os avaliadores passaram a fazer homogeneizações utilizando elementos não muito semelhantes, constatando que os resultados obtidos, em alguns casos, distorciam os valores da realidade de mercado, tendo em vista aspectos subjetivos envolvidos nas homogeneizações. As fórmulas de

_

¹ Elemento avaliando – terminologia própria da área para se referir ao imóvel que está sendo avaliado.

homogeneização que haviam sido deduzidas para a cidade de São Paulo, $(\frac{\sqrt{p}}{\sqrt[4]{t}})$, por exemplo, onde p é a profundidade do terreno e t é a testada²), passaram a ser adotadas no país inteiro como se fossem "verdades determinísticas" (Instituto Brasileiro de Engenharia e Avaliações de São Paulo – IBAPE/SP).

A introdução da inferência estatística na engenharia de avaliações brasileira correspondeu à tentativa de solucionar esses casos, além de tentar diminuir a subjetividade envolvida nas homogeneizações.

Os métodos estatísticos são os critérios de modelagem matemática mais utilizados para a avaliação imobiliária. O modelo de Regressão Linear Múltipla é o preferido dos avaliadores, por ter se mostrado bastante eficiente, embora fatores tais como: a complexibilidade dos modelos, dificuldades de implementação, excesso de variáveis envolvidas e desconhecimento da relação entre estas variáveis, possam comprometer a análise.

Segundo BARBOSA FILHO *apud* TRIVELLONI e HOCHHEIM (1998), o valor de um bem, antes de tudo, é um fenômeno social, e pode ser associado a um vetor composto por um conjunto de variáveis que abrange todas as suas características físicas, o seu entorno, a sua utilidade e os fatores subjetivos que a própria coletividade cria no contexto em que está situado a cada instante.

A heterogeneidade do mercado imobiliário e as peculiaridades deste segmento, implicam em que nem sempre é possível desenvolver um modelo único que seja totalmente representativo da realidade do conjunto de imóveis, de forma linearizada.

A escolha de Redes Neurais Artificiais para a determinação do valor de um imóvel, apresenta como vantagem a não necessidade de linearidade entre as variáveis, devido a sua capacidade de absorver a não linearidade das mesmas, se for o caso.

As Redes Neurais Artificiais têm o seu funcionamento inspirado na estrutura biológica do cérebro humano e podem ser entendidas como conjuntos bem estruturados de unidades de processamento, interligadas por canais de comunicação, cada qual tendo um determinado peso correspondente a um valor numérico. Elas consistem de várias unidades de processamento (neurônios artificiais), interconectadas entre si, formando uma determinada

.

² testada: medida de frente de um imóvel.

disposição estrutural de camadas (entrada, intermediária e saída) e conexões entre as camadas, no caso das Redes Neurais Artificiais de Múltiplas Camadas.

1.1 OBJETIVO DO TRABALHO

O objetivo deste trabalho é utilizar a técnica de Redes Neurais Artificiais de Múltiplas Camadas, com diversas topografias específicas, como ferramenta auxiliar na determinação do valor venal de imóveis urbanos, para fins de tributação (IPTU – Imposto Predial e Territorial Urbano - e ITBI – Imposto sobre Transmissão de Bens Imóveis), comparando-a com a Análise de Regressão Múltipla e utilizando, basicamente, os dados do cadastro técnico imobiliário municipal. Desta forma se está buscando melhorar a precisão na determinação destes valores.

1.2 JUSTIFICATIVA DO TRABALHO

No Brasil, as publicações científicas sobre a determinação do valor venal de imóvel, ainda são escassas. A determinação do valor de um imóvel, seja para fins comerciais, de tributação ou outros, é feita através de inferência estatística ou de comparação de valor de mercado.

Grande parte dos municípios brasileiros avalia os imóveis através da planta de valores³, que muitas vezes não é elaborada de acordo com os métodos recomendados por especialistas e pela Norma Brasileira. Desta forma, os imóveis situados em um mesmo setor apresentam o mesmo valor por metro quadrado, independentemente de suas características individuais.

Pretende-se com este trabalho, comparar as técnicas de Redes Neurais Artificiais e Análise de Regressão Múltipla, analisando as suas eficiências na determinação dos valores venais de imóveis edificados.

_

³ planta de valores – instrumento (Lei) pelo qual os Municípios atribuem valores para o metro quadrado de imóvel e de edificação, através de tabelas com especificações gerais, baseada no Cadastro Técnico Imobiliário Municipal.

1.3 LIMITAÇÕES DO TRABALHO

Neste trabalho se limitou a uma amostra de uma determinada faixa de valores venais. Foram utilizados imóveis na faixa de valores venais ente R\$ 40.000,00 e R\$ 200.000,00 e foram levados em consideração somente os atributos (variáveis) constantes do cadastro técnico imobiliário do município de Guarapuava-PR. Sabe-se porém, que outras variáveis interferem no valor de mercado de um imóvel, bem como interferem no seu valor venal, como por exemplo, a acessibilidade e vista (entorno físico), mas no entanto, estas informações não foram levadas em consideração pela falta destas no Boletim de Cadastros de Imóveis do Município de Guarapuava.

1.4 ESTRUTURA DO TRABALHO

Este trabalho está estruturado em sete capítulos. Além deste primeiro capítulo, no capítulo II é descrito o problema e a forma de obtenção dos dados para a realização do trabalho. No capítulo III é feita uma revisão de literatura, onde são relacionados alguns trabalhos que foram realizados nesta área, com breves comentários. O capítulo IV apresenta uma introdução à Engenharia de Avaliações, mercado imobiliário e valor venal de um imóvel. As técnicas de Redes Neurais Artificiais são apresentadas no Capítulo V, abrangendo um pequeno histórico, definições e tipos de aprendizado. A ênfase será para as redes de múltiplas camadas com a utilização do algoritmo - Levenberg Marquardt (LM), que é comparado com a técnica de Regressão Linear Múltipla. O capítulo continua apresentando a Análise das Componentes Principais, que faz um estudo em relação aos atributos (características) dos imóveis utilizados neste trabalho. A implementação das técnicas para resolução do problema e análise dos resultados encontra-se no capítulo VI. No capítulo VII são apresentadas as conclusões e algumas sugestões para trabalhos futuros.

CAPITULO II

2. DESCRIÇÃO DO PROBLEMA

2.1 INTRODUÇÃO AO PROBLEMA

Procurou-se com este trabalho, apresentar uma alternativa para determinação dos valores venais dos imóveis de Guarapuava. A metodologia proposta consiste na obtenção dos valores através da utilização de Redes Neurais Artificiais e Análise de Regressão Múltipla. Para tanto, com base na amostra de dados coletada, são estimadas as possíveis arquiteturas de redes e é feita a comparação dos resultados com os valores obtidos utilizando Análise de Regressão Múltipla.

Sabe-se que não existe um padrão para calcular o valor de um imóvel, ficando a critério do avaliador e das imobiliárias a determinação do valor. A falta de informações e conhecimentos teóricos ocasiona distorções nesta avaliação.

A partir do estudo acerca da composição das variáveis que compõem a amostra de dados, identifica-se através do Boletim de Informações Cadastrais, bem como as informações contidas no cadastro da Prefeitura, que as edificações são avaliadas pelo método do custo de reprodução (simplificado), onde o valor unitário é obtido em função do tipo de edificação (casa, apartamento, galpão, etc.) e da modalidade que a mesma se enquadra em função de suas partes constitutivas. Há cinco categorias em que a avaliação dos terrenos pode se enquadrar, dependendo da soma de pontos que a mesma atinja, ou seja, depois de atribuídos os valores para cada categoria (área da frente, pedologia⁴ topografia⁵, nível⁶ e forma⁷), calcula-se um valor a partir da soma das respectivas pontuações e faz-se uma média aritmética. A pontuação é definida em função das características, neste momento a análise é somente do imóvel e não territorial. A tabela 1 (Anexo I) apresenta a pontuação das respectivas características, desta forma o valor será encontrado da seguinte forma:

$$V_{vt} = A_t \cdot V_t \cdot MP \tag{2.1}$$

⁴ pedologia: refere-se ao tipo de solo do imóvel (normal, rocha, turfoso, inundável, alagado).

⁵ topografia: topografia do imóvel (plana, aclive, declive, irregular).

⁶ nível: refere-se ao nível do terreno em relação à rua (em nível, mais alto, mais baixo).

⁷ forma: refere-se à forma do terreno (favorável, desfavorável).

onde:

 V_{vt} = valor venal do terreno

 A_t = área do terreno

 V_t = valor do metro quadrado de terreno

MP = média das pontuações das características de cada imóvel.

Como já evidenciado, as edificações são avaliadas pelo método do custo de reprodução, ou seja, o valor de cada imóvel é obtido em função do tipo arquitetônico e para cada tipo de edificação é relevante: material das paredes, revestimento externo, conservação e o padrão. Consideram-se primeiramente as pontuações das variáveis padrão e conservação do imóvel avaliado, partindo para o cálculo que é obtido a partir da multiplicação das respectivas pontuações das duas características. A tabela 2 (Anexo II) apresenta a pontuação das respectivas características, e da categoria que a mesma se enquadra em função de suas partes construtivas.

A partir das demonstrações contidas nas tabelas que enquadram as características utilizadas para analisar a composição do valor das edificações, deve-se ressaltar a influência e a importância de se saber a área total edificada do imóvel. Desta forma, depois de bem observadas as tabelas é de fácil compreensão o entendimento para se obter o valor venal do imóvel para efeito de tributação, pois todas as informações acerca desta base de cálculo foram obtidas a partir das informações no Boletim de Informações Cadastrais – BIC (Anexo III).

Primeiramente, é necessário saber quantos m² a edificação possui, e qual tipo e estrutura da edificação a ser avaliada e, por conseqüência, estabelece-se o valor do m² da tabela de valores de edificações; em seguida avalia-se o padrão da construção, bem como a conservação do mesmo. Feito isso, passa-se a calcular o respectivo valor da edificação, desta forma:

$$V_{ve} = A_e \cdot V_e \cdot V_{pd} \cdot V_{cs}$$
 (2.2)

onde:

V_{ve} = valor venal da edificação

 A_e = área edificada em m²

V_e = valor do metro quadrado de edificação

V_{pd} = padrão da construção

V_{cs} = conservação do imóvel.

Assim sendo, o valor estimado da avaliação do imóvel – que serve de base de cálculo para o IPTU, é feito de acordo com a realidade do mercado imobiliário, considerando a sua localização e características físicas. A avaliação do valor venal do imóvel é o resultado da somatória da avaliação do valor venal do terreno e da edificação, ou seja:

$$V_i = V_{vt} + V_{ve} \tag{2.3}$$

onde:

 V_i = valor venal do imóvel

 V_{vt} = valor venal do terreno

V_{ve} = valor venal da edificação

2.2 OBTENÇÃO DOS DADOS

Os dados referentes a esta pesquisa foram obtidos junto ao setor de planejamento da Prefeitura Municipal de Guarapuava (Anexo IV). Este setor é responsável pelo Geoprocessamento do Município, ou seja, por todas as informações cadastrais dos imóveis. Para a obtenção dos dados foi realizado um filtro no banco de dados, separando para a análise 300 imóveis residenciais (casas e apartamentos), com valores venais entre R\$ 40.000,00 a R\$ 200.000,00, de toda a área urbana. Desta forma, foram selecionados imóveis de onze bairros, destacados na figura 2.1 que apresenta o mapa da cidade de Guarapuava/PR. As variáveis escolhidas foram, basicamente, as constantes no Boletim de Informações Cadastrais, sendo elas: localização (bairro), setor, pavimentação, iluminação pública, esgoto, área do terreno, pedologia, topografia, situação, área edificada, tipo, estrutura, conservação e valor venal. As variáveis água e rede elétrica foram desconsideradas do modelo, pois todos os imóveis da amostra estão contemplados com estes itens.

A amostra foi reduzida de 300 para 256 unidades, pois eliminou-se os imóveis repetidos como, por exemplo, um prédio com vários apartamentos com as mesmas características, foi considerado apenas um apartamento.

Figura 2.1 – Mapa de Guarapuava, destacando os 11 bairros que contém os imóveis estudados

CAPÍTULO III

3. REVISÃO DE LITERATURA – TRABALHOS RELACIONADOS

Neste capítulo é apresentada uma revisão bibliográfica, com breves comentários de trabalhos desenvolvidos com a utilização das técnicas de Redes Neurais Artificiais na Engenharia de Avaliações e em outras áreas.

Redes Neurais Artificiais são sistemas de processamento de informação formados pela interconexão de unidades simples de processamento, denominadas neurônios artificiais. Os neurônios artificiais recebem essa denominação porque foram originados a partir de um modelo matemático de um neurônio biológico.

As técnicas de Redes Neurais Artificiais vêm sendo utilizadas para realizar as mais diversas tarefas, tais como: fazer o reconhecimento de imagens, aprender e memorizar associações e estão sendo aplicadas nos mais diversos campos e em grande parte dos casos estudados têm apresentado resultados favoráveis.

Entre os campos de aplicação, pode-se citar a medicina, a engenharia de trânsito, engenharia de transportes e civil, a pesquisa operacional, a educação, o planejamento e outras.

As Redes Neurais Artificiais têm um potencial de aplicação na área de transportes, em estudos de comportamento de motoristas, estimação de parâmetros em pesquisa de fluxo de tráfego, manutenção de pavimentos, classificação/detecção de veículos, análise de modelos de tráfego, operações de frete, previsão de tráfego, política e economia de transporte, transporte aéreo e marítimo, operações de metrôs e controle de tráfego.

As Redes Neurais Artificiais também têm encontrado bastante interesse na área financeira. Os tipos mais comuns de aplicação explorados, atualmente, são a previsão e a avaliação de riscos. Dentro deste tipo de aplicação encontram-se as avaliações de crédito, de riscos de inadimplência de empresas, de riscos de seguro, riscos de hipotecas, ou mesmo avaliação de riscos de papéis financeiros.

Na área de marketing existem aplicações potencialmente interessantes sobre comportamento do consumidor em face de novos produtos e simulação de vendas para um próximo período. Sua facilidade de utilização, sua capacidade em tratar problemas pouco ou

não estruturados, com dados incompletos ou com incorreções são características originais e interessantes.

A seguir destaca-se alguns trabalhos que serviram de referência para a elaboração deste estudo:

CECHIN et al. (1999), compararam a técnica de Regressão Linear e Redes Neurais Artificiais, para realizar a estimativa do custo de aluguel e de venda de imóveis em Porto Alegre-RS. Foram avaliados dois bancos de dados: (1) imóveis ofertados para venda, com 20 características (variáveis) e 1600 amostras; e (2) imóveis ofertados para aluguel, com 85 características (variáveis) e 500 amostras. Do total destas características, apenas 6 foram selecionadas para treinamento da rede neural nos dois bancos de dados, utilizando uma variante do *backpropagation*, o *BackPropMomentun* e RPProp. Neste trabalho, a Rede Neural foi capaz de produzir um erro aproximadamente três vezes menor do que os métodos lineares.

SCHIAVO e AZEVEDO (2003), apresentam um estudo comparativo entre Redes Neurais Artificiais e Análise de Regressão Múltipla na avaliação de bens utilizando 28 casos de avaliação patrimonial. O modelo de Rede Neural utilizado foi o do tipo multicamadas alimentadas adiante, usando o algoritmo "backpropagation" para treinamento da rede. A camada de entrada foi constituída pelos atributos correspondentes às variáveis independentes dos respectivos modelos de regressão. As Redes Neurais apresentaram diferenças inferiores a 10% em valores absolutos comparados com a outra técnica, em vinte dos casos estudados.

GUEDES (2001), apresenta duas ferramentas à disposição do engenheiro de avaliações – modelos lineares generalizados e redes neurais. Foram utilizados os dados de 50 lotes urbanos de três bairros da cidade de Recife-PE. Para a realização do trabalho foi utilizado o programa BrainMaker, que emprega um tipo específico de rede neural, chamada pelo autor de "rede de retro-propagação ou de encadeamento para trás" (*backpropagation*), tendo como variáveis de entrada a testada efetiva, a profundidade equivalente, o nível de urbanização, a natureza do evento (oferta ou transação), e localização. As redes neurais apresentaram um erro quadrático médio em torno de 10% do que aquele gerado pelo método linear generalizado e respondeu melhor do que o modelo de regressão em 29 vezes das 50 possíveis.

PELLI NETO e ZÁRATE (2003), fizeram um estudo comparativo do uso de Redes Neurais Artificiais e Análise de Regressão Múltipla para estimação do valor de mercado (venda) de imóveis, referente à oferta de 172 apartamentos de média e baixa renda no mercado imobiliário de Belo Horizonte-MG. Foi utilizado Redes Neurais de Múltiplas

Camadas com aprendizado supervisionado, baseado no sistema de "retropropagação do erro", tendo como dados de entrada: nível/elevador, setor, total de vagas (garagem), área coberta, número de dormitórios, número de sanitários, equipamentos, padrão de acabamento e conservação. O erro foi avaliado através da técnica do gradiente. O poder de predição das Redes Neurais foi superior ao da Regressão Linear Múltipla.

NGUYEN e CRIPPS (2001), comparam a performance preditiva de Redes Neurais Artificiais e Análise de Regressão Múltipla para venda de casas de família no Tennessee-USA. O estudo utilizou 3.906 observações coletadas durante 18 meses. Os atributos usados foram: área construída, número de quartos, número de banheiros, idade da casa, o quadrimestre em que a propriedade foi vendida e garagem. As Redes Neurais apresentaram melhor performance em relação ao modelo de Regressão Múltipla, nas 108 comparações feitas.

BRONDINO (1999), apresentou trabalho utilizando Redes Neurais Artificiais na determinação da influência da variável acessibilidade no valor de lotes urbanos, comparando-a com o modelo de Regressão Múltipla, em duas cidades do interior de São Paulo (São Carlos e Araçariguama). A utilização de redes neurais forneceu estimativas adequadas de valor verificando-se que a variável acessibilidade apresentou um peso superior a 34% no preço final do imóvel.

GONZALEZ e FORMOSO (2000), apresentaram um estudo de utilização de Redes Neurais Artificiais na elaboração da Planta de Valores dos imóveis, avaliando diversos trabalhos realizados na área e comparando-os com a técnica de Raciocínio Baseado em Casos. A conclusão da pesquisa é que a aplicação de redes neurais artificiais em avaliação de imóveis, embora com boas perspectivas, a princípio, indicaram conclusões conflitantes. Algumas pesquisas obtiveram excelentes resultados, enquanto que outras apontaram problemas e desempenhos sofríveis, como tempo de processamento excessivo, falta de desenvolvimento teórico, critérios de parada e outros detalhes.

MADALOZO (2003), apresentou trabalho onde foram desenvolvidos modelos através de Redes Neurais Artificiais, procurando prever a ocorrência de acidentes em curvas horizontais rodoviárias. Para o estudo foram utilizadas 438 redes neurais, 5 modelos de regressão linear e 5 modelos de Poisson, onde se concluiu que a técnica de redes neurais pode ser utilizada com relativo sucesso na previsão do número de acidentes. Os erros de treinamento e de teste de generalização das redes de melhor desempenho ficaram em patamares aceitáveis (menores que 10%) na grande maioria dos casos (acima de 80%), com a

utilização de redes de arquitetura simples, apresentando apenas uma camada oculta composta de no mínimo 2 e no máximo 8 neurônios. Os modelos estatísticos apresentaram erros um pouco superiores aos erros das redes, porém a freqüência de casos com menores erros foi inferior nos modelos estatísticos.

LEMOS (2003), apresentou trabalho comparando as técnicas de Redes Neurais Artificiais e Árvores de Decisão, para auxiliar na tomada de decisão sobre conceder ou não crédito bancário a um novo cliente, pessoa jurídica, utilizando como fonte 339 micro e pequenas empresas, sendo 266 adimplentes e 73 inadimplentes, clientes do Banco do Brasil de Guarapuava-PR. O algoritmo usado foi o *backpropagation*, com arquitetura de 24 nós na camada de entrada, uma camada escondida, e um neurônio da camada de saída. As Redes Neurais apresentaram um percentual menor de erros comparado com a técnica de árvore de decisão.

BALDIN (2002), apresentou trabalho utilizando Redes Neurais Artificiais na orientação profissional de jovens. Utilizando o perfil e informações de pessoas que estão satisfeitas com a sua profissão, as Redes Neurais têm como objetivo neste trabalho, auxiliar os aspirantes à vida profissional numa melhor escolha do curso universitário. Foram realizados três estudos, utilizando 3 topografias de redes diferentes, constatando-se que a medida que aumenta-se o número de neurônios na camada oculta, o treinamento necessita de um número menor de iterações para chegar ao resultado.

ALMEIDA (1995), explorou o uso de Redes Neurais Artificiais como instrumento de apoio à avaliação de risco de inadimplência. Foram avaliadas 180 empresas, para que a rede pudesse identificar o risco de que uma dada empresa venha a se tornar concordatária num futuro próximo (2 anos). Como dados de entrada, foram utilizados seis índices financeiros que representam a situação econômica, financeira e patrimonial da empresa.

MEDEIROS (1999), apresentou trabalho de um instrumento de apoio à gestão territorial, denominado Banco de Dados Geográficos – BDG, constituído de uma base de dados georreferenciados, de um sistema de gerenciamento de banco de dados, de um sistema de informação geográfica – SIG e de um simulador de redes neurais artificiais – SRNA. Foram realizados procedimentos de correção e refinamento dos dados do meio físico e sócioeconômicos, de interpretação de imagens de satélite e análises e combinações dos dados, que permitiram definir unidades básicas de informação do território, a partir das quais foram geradas as sínteses referentes à potencialidade social e econômica, à sustentabilidade do ambiente, aos subsídios para ordenação do território, incluindo orientações à gestão do

território na área de estudo localizada no sudoeste do estado de Rondônia. Os experimentos desenvolvidos a partir da tecnologia de Redes Neurais Artificiais (RNA's), utilizada como uma ferramenta de inferência geográfica, permitiram validar a hipótese de que uma RNA adequadamente treinada pode complementar ou, até mesmo, substituir outras técnicas de análise geográfica utilizadas nos SIG's, pelo menos, com relação ao modelo de avaliação da vulnerabilidade natural à erosão. Esta afirmação foi baseada nos resultados obtidos entre as comparações realizadas na porção inferior da área de estudo principal e nas áreas de estudo secundárias, onde as diferenças globais entre os cenários obtidos através da álgebra de mapas (LEGAL) e da RNA foram menores do que 10%, além de ignorar entradas erradas que não foram detectadas nem durante nem após os procedimentos realizados através da álgebra de mapas, por ser um procedimento linear. As redes neurais por serem procedimentos não lineares, ignorou estas entradas erradas e convergiu para uma saída mais adequada em função do treinamento a que foi submetida.

SANTOS (2001), apresentou trabalho utilizando Redes Neurais Artificiais para o diagnóstico e prognóstico de vazão em bacias urbanas da Região Metropolitana de São Paulo. Foi utilizado o algoritmo de treinamento *Linear Least Squares SIMplex* "LLSSIM", um algoritmo híbrido para treinamento de RNA's do tipo *feedforward* de três camadas. O LLSSIM é uma combinação dos Mínimos Quadrados Linear e da otimização do algoritmo "*Simplex*" com inicialização múltiplas, permitindo obter os mínimos globais ou próximo do global com poucas iterações. A rede neural demonstrou ser adequada ao requerer o conhecimento sobre os processos de transformação de chuva em vazão na bacia, sendo necessários apenas conhecimentos prévios (dados históricos). Os resultados da rede neural e dados de radar mostraram ser úteis até 90 minutos a frente na previsão de enchentes na região metropolitana de São Paulo-SP.

CALÔBA et al. (2002), publicaram artigo avaliando a complementação do uso de técnicas de previsão de vendas com Redes Neurais Artificiais, analisando a demanda industrial no setor de cerveja da Austrália. A rede utilizada foi a *feedforward* e o conjunto de dados foi a observação da produção de cerveja, em megalitros, em todo o território da Austrália, baseado em uma série de mais de quarenta anos. Os resultados encontrados foram importantes para a colocação de três proposições: redes neurais não são a melhor solução sempre; a não-linearidade é um problema que pode ser tratado convenientemente por redes neurais; e associar métodos clássicos lineares e redes neurais parece levar a bons resultados no tratamento de problemas (fracamente) não lineares.

CAPITULO IV

4. ENGENHARIA DE AVALIAÇÕES

De acordo com DANTAS (2003), a Engenharia de Avaliações no Brasil evoluiu bastante na última década, principalmente pela introdução da metodologia científica como ferramenta essencial a um trabalho avaliatório. A introdução da metodologia científica no trabalho avaliatório tem como objetivo orientar o avaliador, desde a escolha das informações de interesse, a forma como coletá-las, analisá-las e tratá-las, na busca de modelos que expliquem, de maneira satisfatória, a variabilidade observada nos preços e no mercado que se estuda. Neste sentido, estima-se que o Brasil está entre os países mais desenvolvidos do mundo na matéria.

A disciplina de Engenharia de Avaliações, hoje faz parte da grade curricular de muitos cursos de Engenharia Civil em várias universidades brasileiras. Também é fácil encontrar cursos de especialização em Engenharia de Avaliações, assim como cursos de curta duração, seminários e congressos na área.

Os primeiros trabalhos na área de engenharia de avaliações de que se tem conhecimento no Brasil foram publicados em revistas técnicas de engenharia, em São Paulo, entre 1918 e 1919.

A primeira Norma sobre avaliação de imóveis foi elaborada pelo departamento de Engenharia Civil da Caixa Econômica Federal em 1952.

O primeiro Instituto de Engenharia de Avaliações do Brasil foi fundado em 1953 no Rio de Janeiro. Em 1957 foi criado o Instituto Brasileiro de Avaliações e Perícias de Engenharia de São Paulo – IBAPE, órgão de grande importância e representatividade no setor.

O despertar da Engenharia de Avaliações, ocorreu a partir da década de 70, com a realização do I Congresso Brasileiro de Avaliações em 1974 em São Paulo e, também da publicação da primeira Norma Brasileira pela ABNT – NB-502/77 – Norma para Avaliação de Imóveis Urbanos, em 1977.

Em 1980 realizou-se em São Paulo o primeiro Congresso Mundial de Engenharia de Avaliações. Neste ano, também foi ofertado o primeiro curso de Engenharia de Avaliações ministrado na Escola Politécnica da Universidade de São Paulo - USP.

As avaliações devem ser realizadas com base em normas técnicas da ABNT, através da aplicação de metodologia apropriada, para tanto, deve-se seguir as seguintes fases:

- 1) conhecimento do objeto da pesquisa (o bem avaliando);
- 2) preparação da pesquisa (planejamento);
- 3) trabalho de campo (coleta de dados);
- 4) processamento e análise dos dados (análise exploratória);
- 5) interpretação e explicação dos resultados (o modelo);
- 6) redação do relatório da pesquisa (o laudo de avaliação).

Observa-se que a simples coleta dos dados não é uma pesquisa. A pesquisa abrange todo o processo avaliatório, para qualquer método empregado.

4.1 MÉTODOS DE AVALIAÇÃO

A ABNT é o Fórum Nacional de Normalização. As Normas Brasileiras, cujo conteúdo é de responsabilidade dos Comitês Brasileiros (ABNT/CB) e dos Organismos de Normalização Setorial (ABNT/ONS), são elaboradas por Comissões de Estudo (CE), formadas por representantes dos setores envolvidos, delas fazendo parte: produtores, consumidores e neutros (universidades, laboratórios e outros).

A NBR 14653-2:2004 visa detalhar os procedimentos gerais da norma de avaliação de bens da NBR 14653-1:2001 - no que diz respeito à avaliação de imóveis urbanos, inclusive glebas⁸ urbanizáveis, unidades padronizadas e servidões urbanas. Cancela e substitui as normas NBR 5676 - Avaliação de Imóveis Urbanos, NBR 8951 - Avaliação de Glebas Urbanizáveis, NBR 8976 - Avaliação de Unidades Padronizadas e NBR 13820 - Avaliação de Servidões, esta última no que diz respeito a imóveis urbanos.

Conforme a NBR 14653-1:2001 da ABNT, os principais métodos para identificar o valor de um bem, de seus frutos e direitos são:

 Método Comparativo Direto de Dados do Mercado – identifica o valor de mercado do bem por meio de tratamento técnico dos atributos dos elementos comparáveis, constituintes da amostra.

.

⁸ glebas: imóveis com áreas superiores a 3.000 m² (três mil metros quadrados), inseridas nos perímetros urbanos.

- Método Involutivo identifica o valor de mercado do bem, alicerçado no seu aproveitamento eficiente, baseado em modelo de estudo de viabilidade técnicoeconômica, mediante empreendimento hipotético compatível com as características do bem e com as condições do mercado no qual está inserido, considerando-se cenários viáveis para execução e comercialização do produto.
- Método Evolutivo identifica o valor do bem pelo somatório das parcelas componentes do mesmo. Caso a finalidade seja a identificação do valor de mercado, deve ser considerado o Fator de Comercialização, preferencialmente medido por comparação no mercado.
- Método da Capitalização da Renda identifica o valor do bem, com base na capitalização presente da sua renda líquida prevista, considerando-se cenários viáveis.

4.1.1 Método Comparativo Direto de Dados do Mercado

O método comparativo direto de dados do mercado consiste em obter uma amostra representativa de dados de mercado de imóveis com características, tanto quanto possível, semelhantes às do bem avaliando, usando-se toda a evidência possível (NBR 14653-2:2004). Para tanto, é fundamental a existência de imóveis para comparação, ou seja, uma amostra de dados do mercado imobiliário formada pelos chamados imóveis de referência.

Ao utilizar este método, deve-se fazer o tratamento estatístico dos dados pesquisados. São duas as modalidades de tratamento estatístico das amostras pesquisadas: a Metodologia Científica, que emprega a Estatística Inferencial que vem sendo mais utilizada por sua maior confiabilidade, e a Homogeneização de Valores, que emprega a Estatística Descritiva.

A amostragem é formada pelos imóveis de referência, que são imóveis semelhantes ao imóvel avaliado para os quais se conhece o valor, e é na maioria das vezes, tomada nas regiões circunvizinhas ao imóvel avaliado. Isso ocorre pela necessidade de se incluir no processo de avaliação a localização do imóvel, uma característica fundamental para o cálculo de seu valor. Logo, para a utilização do método comparativo dos dados de mercado, o avaliador deve ter conhecimento dos dados de mercado da região que o imóvel avaliado se encontra, o que pode vir a ser um problema para investidores e avaliadores provenientes de outras regiões.

De todos os métodos existentes, o método comparativo direto de dados de mercado é o mais utilizado para a avaliação de imóveis no Brasil, sejam eles residenciais ou comerciais. Apesar disso, há casos para os quais não existem imóveis de referência que possibilitem o emprego deste método como, por exemplo, o único *shopping center* em uma cidade de médio porte ou um único galpão de uma cidade de pequeno porte. Nestes casos, deve-se optar por outros métodos de avaliação, como os métodos econômico-financeiros.

Apesar de ser muito eficiente ao determinar o valor de venda ou aluguel de um imóvel conforme os preços praticados pelo mercado, o método comparativo de dados de mercado não é capaz de avaliar a viabilidade do investimento. Não há como determinar se a rentabilidade do investimento é superior à taxa mínima de atratividade do investidor, pois este método não leva em consideração a renda gerada pelo imóvel. Por ser muito confiável ao determinar o valor de um imóvel conforme o mercado, é o método mais utilizado pelos avaliadores em geral, mas não é a ferramenta correta para se avaliar se o investimento é rentável ou não.

4.1.2 Método Involutivo

Segundo a NBR 14653-2 (2004), o método involutivo é baseado em modelo de estudo de viabilidade técnico-econômica para apropriação do valor do terreno, alicerçado no seu aproveitamento eficiente, mediante hipotético empreendimento imobiliário compatível com as características do imóvel e com as características de mercado. Um aspecto que deve ser muito bem explorado ao se tratar do método involutivo, é o conceito de aproveitamento eficiente. Segundo a Norma, aproveitamento eficiente é aquele recomendável para o local, em uma certa época, observada a tendência de uso circunvizinho, entre os permitidos pela legislação pertinente. Isso significa que o valor do imóvel é determinado pelos recebimentos máximos que se pode obter naquele imóvel. Por exemplo, deseja-se avaliar um determinado imóvel residencial, uma casa. Pelo método comparativo direto de dados de mercado pode-se avaliá-la comparando-a com outras casas que vem sendo negociadas na região. Pelo método da renda, pode-se avaliá-la com base no valor do aluguel que pode ser obtido. Pelo método involutivo, pode-se avaliá-la com base nos possíveis recebimentos que esta casa possa gerar caso esta seja transformada em um imóvel comercial e alugada a um preço melhor, ou transformada em uma escola, em um mercado, ou qualquer outro comércio. O aproveitamento eficiente é preponderante em zonas de alta densidade urbana, e segundo a Norma, cabe ao

avaliador analisar a adequação das benfeitorias ressaltando o subaproveitamento ou superaproveitamento do terreno em que estas se encontram.

A aplicação do método involutivo considera a receita provável da comercialização das unidades hipotéticas com base em preços obtidos em pesquisas, todas as despesas inerentes à transformação do terreno/bem, a margem de lucro do empreendedor, as despesas de comercialização, os prazos viáveis ao projeto, à execução e à comercialização, mediante taxas financeiras operacionais reais (NBR 14653-2:2004). É importante observar que a receita provável da comercialização das unidades hipotéticas, quando houver, deve ser calculada com base em preços obtidos em pesquisas, o que significa que estes preços podem ser obtidos pelo método comparativo direto de dados de mercado.

Assim como no método da renda, a melhor maneira de se determinar a taxa de desconto apropriada é fazendo um estudo sobre os riscos do investimento, e comparando sua rentabilidade com a de imóveis similares, sempre que possível. É muito importante que o avaliador conheça o mercado ao qual pertence o imóvel que está sendo avaliado.

Obtém-se o valor do imóvel pelo método involutivo, utilizando-se o fluxo de caixa descontado no qual as entradas de caixa são os recebimentos esperados para o empreendimento, considerando-se o melhor aproveitamento do bem, ou seja, o aproveitamento eficiente. As saídas de caixa são todos os desembolsos de execução, transformação e comercialização, incluindo impostos. Para se determinar a taxa de desconto deve-se considerar não só a inflação como também a margem de lucro esperado pelo investidor e os riscos do investimento. Este método baseia-se principalmente nos recebimentos que podem vir a ser obtidos pelo imóvel.

4.1.3 Método Evolutivo

O método evolutivo é aquele onde, segundo FIKER (1997), o valor do imóvel é obtido de forma analítica a partir do valor do terreno, considerando-se todos os elementos que influenciam o custo de sua construção e o seu preço de venda. Isso significa que o valor de um determinado imóvel é obtido somando-se ao valor do terreno os custos de produção do imóvel, tais como, custo dos materiais e mão-de-obra para a construção, além de outros elementos que também influem no valor final do imóvel, tal como, lucro do incorporador. De modo bastante simplista, porém esclarecedor, pode-se dizer que enquanto no método

involutivo calcula-se o valor do imóvel a partir dos recebimentos que se espera obter com o tal, no método evolutivo calcula-se o valor do imóvel a partir dos custos para sua obtenção.

No método evolutivo, além do valor do terreno e do custo da construção das benfeitorias, considera-se outros elementos que também interferem no valor final do imóvel, tais como, o lucro do incorporador como já citado, os juros pela remuneração do capital investido, uma vez que este não é empregado instantaneamente e sim dentro de um prazo que geralmente é superior a um ano, a taxa de administração da construtora, os juros sobre todo o capital investido durante o período de comercialização, ou seja, a remuneração do capital desde o término da construção, quando então este foi investido integralmente, até a venda do imóvel, quando o capital foi finalmente recuperado a uma determinada rentabilidade obtendo-se então o lucro do incorporador, entre outros elementos.

4.1.4 Método da Capitalização da Renda

Segundo a NBR 14653-2:2004, o método da renda é aquele que apropria o valor do imóvel e de suas partes constitutivas, com base na capitalização presente da sua renda líquida, seja ela real ou prevista. Para a sua utilização, precisam ser determinados o período de capitalização e a taxa de desconto a ser aplicada nos fluxos de caixa, que devem ser devidamente fundamentados e expressamente justificados pelo avaliador, como exige a Norma. Este método é fundamentado no princípio de que o valor de uma determinada propriedade é uma função de sua capacidade de gerar renda, o que geralmente é o aluguel. A propriedade constitui o denominado "capital imóvel", que deve ser rentabilizado a uma taxa de desconto variável em função da localização, do tipo de imóvel e da conjuntura econômica do momento da avaliação. Logo, os dados necessários para a utilização deste método são os recebimentos esperados, os desembolsos, a taxa de desconto e o número de períodos do investimento. A taxa de desconto pode ser obtida através de vários processos, dos quais o mais utilizado é, sempre que possível, a comparação direta com as taxas aplicadas a imóveis similares, analisando os riscos do investimento.

Segundo MENDONÇA et al.(1998), devido à sua flexibilidade que permite a grande generalização do seu uso, nos casos de perícias judiciais, este método tem sido recomendado pela própria jurisprudência dos tribunais do poder judiciário, que consagra como justa a taxa de desconto de 12% ao ano para imóveis comerciais. Porém, os trabalhos que vem sendo realizados comprovam que não existe um taxa de desconto pré-definida que

indique com segurança a renda mensal esperada para um determinado imóvel, em virtude da constante instabilidade econômica do país. Não há, no Brasil, taxas de desconto fixadas para imóveis residenciais, comprovando-se que, geralmente, quanto maior e mais luxuoso é o imóvel residencial, menor será a taxa interna de retorno.

De qualquer forma, ao se utilizar o método da renda, a rentabilidade do imóvel é explícita, o que o torna comparável a investimentos em outros tipos imóveis e também em outros ativos, como ações, caderneta de poupança, etc. Este método é uma ferramenta adequada para se analisar a viabilidade do investimento.

Segundo FIKER (2004), na avaliação de terrenos loteados, não industriais, deverão ser levados em consideração os seguintes elementos: área, profundidade, frente, topografia e consistência do solo.

Ainda segundo FIKER (2004), para avaliação de benfeitorias, são necessários conhecimentos básicos de engenharia e arquitetura. Há necessidade de conhecimentos quantitativos e qualitativos para a aplicação de custos unitários e elaboração de orçamentos nos métodos de reprodução e reposição. É preciso saber reconhecer diferenças estruturais e de acabamento entre o modelo adotado e o imóvel avaliando.

Como benfeitorias entende-se as obras ou serviços que se realizam num bem com o intuito de aproveitá-lo, conservá-lo, melhorá-lo ou embelezá-lo nele incorporados permanentemente pelo homem, que não podem ser retirados sem destruição, fratura ou dano (definição constante no Glossário de Terminologia Básica Aplicável à Engenharia de Avaliações e Perícias do IBAPE/SP). São citadas às vezes como construção e podem ser classificadas em três tipos:

- necessárias: são indispensáveis para conservar o bem ou evitar a sua deterioração;
- úteis: são as que aumentam o valor do bem ou facilitam o seu uso, embora dispensáveis;
- voluptuárias: são as que têm exclusiva utilidade para quem as faz, com finalidade de mero recreio ou deleite, sem aumentar o uso normal do bem.

4.2 O MERCADO IMOBILIÁRIO

O mercado pode ser definido como o local onde são efetuadas transações comerciais envolvendo troca de bens, tangíveis ou intangíveis, ou direitos sobre os mesmos. Aqui o termo mercado refere-se àquele de concorrência perfeita, contendo em geral as seguintes características: todos os que participam o fazem voluntariamente, e têm conhecimento pleno das condições vigentes, nenhum participante sozinho, é capaz de alterar as condições estabelecidas, cada transação é feita de maneira independente das demais.

O mercado imobiliário é composto por algumas características que o diferencia de todos os outros tipos de mercados de bens, por diversos elementos específicos. Essas distinções decorrem das características especiais dos imóveis e do mercado imobiliário, pois existem inúmeras fontes de divergência e desigualdades entre os imóveis. Por sua localização fixa, qualquer alteração no ambiente provoca modificações nos valores dos imóveis. Como ambiente podemos entender o ambiente sócio-político-econômico, ambiente construído e meio ambiente.

Entre os fatores que diferenciam os imóveis, entre si, os mais importantes são a grande vida útil (elevada durabilidade), a fixação espacial (mercado geograficamente baseado), a singularidade (dificuldade de comparação em função da variedade de produtos), o elevado prazo de maturação (intervalo de tempo para a produção de novas unidades) e o alto custo das unidades. A combinação destes elementos permite explicar grande parcela das diferenças de valores entre os imóveis, em um dado momento.

Os imóveis apresentam-se como bens imperfeitos por natureza, diferenciando-se de todos os outros bens econômicos. GONZALEZ e FORMOSO (2000), afirmam que cada bem imobiliário é diferente dos outros e gera em torno de si um micro-mercado, mas mediante procedimentos estatísticos, pode-se determinar as tendências do macro-mercado, as quais explicariam os valores de uma amostra coletada. Mas, quando se trata do micro-mercado, a situação poderá ser diversa e o resultado obtido invalidado. Mediante essas influências, o avaliador deve restringir ao máximo o campo de amostragens em torno do bem avaliando, baseando suas conclusões nas chamadas evidências de valores observados dentro do micro-mercado.

Ocorre que por causa da imperfeição do mercado imobiliário, TRIVELLONI e HOCHHEIM (1998), postulam os imóveis como bens compostos, com múltiplos atributos relacionados com características peculiares. Uma dessas características é a sua durabilidade,

conferindo aos imóveis uma longa vida útil, e a outra é a imobilidade que confere a esse mercado outra característica: a grande influência da localização e da acessibilidade, características que dificultam muito a comparação direta das unidades. A espacialidade faz com que o mercado seja baseado geograficamente, causando variações de preços. A circunvizinhança diz respeito ao uso e ocupação do solo, condição social dos vizinhos, zonas de valorização mobiliária etc., e a acessibilidade corresponde ao tempo de viagem aos pólos de valorização, que é substituído pela distância, por ser de fácil obtenção.

O imóvel é também um bem imperfeito, diferente de todos os outros bens econômicos; mesmo que semelhantes, dois ou mais imóveis sempre trarão, pelo menos uma peculiaridade que os diferencia. Logo, o mercado imobiliário poderá ser concorrencial imperfeito sempre.

Utilizando a inferência estatística, os valores dos imóveis são estimados pelos coeficientes que multiplicam as variáveis, ou seja, quanto se paga em média para cada metro quadrado a mais de área, para se obter um imóvel um ano mais novo com garagem, ou situado em determinado bairro, por exemplo. Os coeficientes representam as médias de mercado para cada atributo considerado. Com a equação obtida, baseada em determinada quantidade de transações de mercado, podem ser calculados os valores para outros imóveis.

Verifica-se portanto que, existem inúmeras influências na determinação do valor de um imóvel. Parte dessas variações pode ser considerada aleatória, ou seja, pode-se pensar no preço final com base em um "valor mais provável" que é aumentado ou diminuído por uma parcela imprevisível, de acordo com as influências do mercado.

4.3 AVALIAÇÃO IMOBILIÁRIA

A precisão da avaliação do valor de um imóvel depende dos atributos considerados e suas precisões, da qualidade da técnica aplicada, da forma como os padrões (imóveis) estão distribuídos no espaço, dentre outros fatores.

São diversas as situações nas quais se deve fazer uma avaliação técnica de um imóvel. Entende-se por avaliação técnica de um imóvel àquela onde o Engenheiro de Avaliações ou Arquiteto habilitado deve utilizar um método dentre aqueles citados na Norma Brasileira de Avaliação de Imóveis Urbanos – NBR 14653-2:2004, Norma esta, que regulariza a avaliação de imóveis urbanos no país.

A avaliação técnica só é considerada legal quando expedida por um Engenheiro de Avaliações ou Arquiteto legalmente habilitado. A Lei Federal n.º 5194 de 24/12/66 relativa ao exercício das profissões de Engenheiro, Arquiteto e Engenheiro Agrônomo, garante a esses profissionais a exclusividade de avaliar um imóvel. Pela Resolução do Conselho Federal de Engenharia, Arquitetura e Agronomia (CONFEA) n.º 345, de 27/07/90, Segundo a Lei Federal n.º 6530 de 12/05/78, que regulamenta a profissão de Corretor de Imóveis, Art. 2º: "Compete ao Corretor de Imóveis exercer a intermediação na compra, venda, permuta e locação de imóveis e opinar quanto à comercialização imobiliária". Logo, o valor de imóvel opinado por um corretor de imóveis, apesar de muitas vezes vulgarmente chamado de "avaliação", não deve ser considerada uma.

MENDONÇA et al. (1998) citam as situações mais freqüentes em que a avaliação técnica se faz necessária, dividindo-as em três âmbitos. No âmbito particular, os autores citam o uso da avaliação de imóveis na compra e venda de imóveis em que os interessados desejem ter idéia precisa do bem em questão; na reavaliação de ativos de empresas para efeito de aumento de capital; pelas empresas para atendimento ao contido na Lei das Sociedades Anônimas; em divisões, heranças e meações, e nas discussões acerca de lançamentos de impostos. No âmbito público, é citado o uso da avaliação de imóveis para fins de compra e privatização e no cálculo de valores para lançamentos de impostos. Finalmente, no âmbito judicial é utilizada nas discussões entre pessoas físicas ou jurídicas que envolvam valores de imóveis, freqüentes em ações demarcatórias, possessórias, indenizatórias, etc., e nas discussões acerca de indenizações por desapropriações ou servidões de passagem.

Além das situações citadas anteriormente, pode-se destacar também os financiamentos. Geralmente, as instituições que financiam a compra de um imóvel costumam avaliá-lo como garantia de que o montante financiado será realmente empregado na compra do imóvel em questão.

No Brasil, seja qual for o objetivo e o método utilizado na avaliação, para se realizar um trabalho de qualidade, o avaliador profissional deve seguir corretamente as diretrizes estipuladas pela Norma.

As avaliações coletivas ou em massa buscam a determinação de valores que sirvam como base de cálculo para fixação de impostos ou contribuições. Para que a avaliação tenha valor legal, evitando contestações, deve ser observado o Código Tributário Municipal, que também deve estar em conformidade com o Código Tributário Nacional e Constituição Federal.

4.4 PLANTA GENÉRICA DE VALORES

A partir da aprovação da Lei de Responsabilidade Fiscal (Lei 101/2000) os municípios brasileiros sentiram uma necessidade ainda maior de arrecadar impostos, em especial o IPTU, o qual é calculado como um percentual do valor venal dos imóveis. A Planta Genérica de Valores - PGV ao possibilitar a avaliação em massa dos terrenos e edificações, permite obter uma base de cálculo atualizada para cobrança dos tributos imobiliários, mais especificamente o IPTU e o ITBI, de maneira a garantir a equidade fiscal e a prática da justiça tributária. O planejamento urbano também faz uso da PGV, permitindo a previsão de custos de indenizações nas obras públicas e na formação de critérios para cobrança da contribuição de melhoria.

Outro instrumento recente e auxiliar no planejamento e gestão urbana, é o Estatuto das Cidades (Lei Federal n.º 10257/2001), que exige para sua implementação, uma base cartográfica atualizada e uma PGV coerente com a realidade.

A Planta Genérica de Valores Imobiliários é o documento no qual estão indicados os valores do metro quadrado de terreno e de tipos de edificações constantes no Código Tributário Municipal ou decreto regulamentador.

4.4.1 Considerações sobre elaboração da planta de valores

O valor venal do imóvel pode até chegar ao valor real de mercado, desta forma valor do imóvel é fornecido pelo mercado local sujeito à lei da oferta e da procura. É no mercado local que se fará a pesquisa dos valores unitários imobiliários por metro quadrado, demarcando-os em plantas e em tabelas no caso de terrenos, e em tabelas no caso de edificações. Em um imóvel edificado, o valor do terreno representa um percentual entre 20 a 40% do valor do imóvel, enquanto 60 a 80% é representado pela construção, daí a importância da planta de valores para se ter um valor venal justo e coerente.

Na obtenção da Planta Genérica de Valores Imobiliários definitiva nem sempre são utilizados os valores pesquisados, e sim um percentual dos mesmos, servindo estes valores de mercado exclusivamente como referência. O valor venal dos imóveis nos municípios tem-se situado entre 50 a 60% do valor de mercado.

O Executivo ou Executivo juntamente com o Legislativo, dependendo do Código Tributário Municipal é quem deverá aprovar a nova planta, definindo assim um percentual do

valor de mercado para elaboração da Planta Genérica de Valores Imobiliários, embasado em questões econômicas, políticas e sociais dos seus munícipes.

Normalmente são utilizados métodos estatísticos para estimar os valores dos imóveis, através de modelos matemáticos obtidos por Regressão Múltipla. As fases de elaboração de uma Planta Genérica de Valores são:

- análise da base cadastral;
- definição da planta de referência cadastral;
- coleta de dados;
- definição de variáveis;
- aplicação dos modelos;
- cálculos e análises.

Na definição da equação de regressão para determinação do valor venal, são utilizadas as seguintes variáveis: valor de face, área do terreno, área da edificação, testada, equipamentos urbanos existentes, localização, tipo de solo, situação do imóvel, padrão, estrutura da edificação, estado de conservação, etc.

Para o desenvolvimento da planta genérica de valores utiliza-se como suporte, o cadastro imobiliário, cadastro de logradouros e cadastro de pesquisas imobiliárias, bem como toda a Legislação Tributária (Código Tributário Nacional, Código Tributário Municipal, Decretos, Emendas e Leis Ordinárias e Complementares que regulamentam artigos dos referidos Códigos).

Para a determinação do valor venal, utiliza-se também outro método de avaliação, que é o Método Comparativo de Dados de Mercado, onde o valor do imóvel ou de suas partes constitutivas é obtido através da comparação de dados de mercado relativos a outros de características similares.

O valor venal que serve de base de cálculo para o IPTU e ITBI, é o valor estimado de avaliação do imóvel para compra e venda à vista, de acordo com a realidade do mercado imobiliário, considerando a sua localização e características físicas. A avaliação do valor venal do imóvel (V_i) é o resultado da somatória da avaliação do valor venal do terreno (V_{vt}) e valor venal da edificação (V_{ve}) , ou seja:

$$\mathbf{V_i} = \mathbf{V_{vt}} + \mathbf{V_{ve}} \tag{4.1}$$

A apuração do valor venal do terreno, para fins de tributação é feita mediante avaliação técnica, levando-se em conta o tamanho do terreno, a sua localização, a infraestrutura existente no logradouro ou no trecho do logradouro onde o mesmo está situado e, a própria condição do solo. A combinação dessas variáveis resulta na Planta Genérica de Valores do município, onde são fixados os valores do metro linear de testada do terreno.

As edificações existentes em determinado terreno, também obedecem a critérios técnicos, baseados no padrão e estado de conservação do imóvel. A combinação dessas variáveis resulta na tabela de valor básico do metro quadrado da construção, isto é, o valor estimado que se gasta para construir um metro quadrado de imóvel de acordo com o padrão e o estado de conservação do mesmo.

Levando-se em consideração o exposto anteriormente, o tamanho do imóvel influencia o valor do imposto, pois tanto a área do terreno quanto à área construída são aplicadas sobre os valores constantes da PGV e da tabela de valor básico do metro quadrado da construção, respectivamente, para determinar o valor venal do imóvel, que será a base de cálculo do imposto.

Para AVERBECK at al. (2002), no caso da planta genérica de valores, observa-se uma tendência de repetir a metodologia avaliatória predominante no passado, com as edificações avaliadas através de seu custo de reprodução, incorrendo em erros de valores e iniquidade das avaliações. Custo de reprodução não significa valor venal de mercado.

4.4.2 Avaliação Coletiva de Imóveis

A avaliação coletiva de imóveis consiste na determinação de valores para todos os imóveis situados dentro de um determinado perímetro, pelo emprego de procedimentos avaliatórios, que devem ser respaldados legalmente. Essa determinação de valores deve ser fundamentada por uma metodologia que evite ao máximo o emprego do subjetivismo, tanto dos procedimentos quanto das informações ou dados a serem processados; e que procure adequar os mesmos à realidade do mercado imobiliário

A principal finalidade da avaliação em massa é a de se obter uma base de cálculo atualizada para cobrança dos tributos imobiliários, mais especificamente o IPTU e o ITBI, de maneira a garantir a equidade fiscal e a prática da justiça tributária. O seu emprego dá-se ainda no planejamento urbano, permitindo a previsão de custos de desapropriação nas obras

públicas e na formação de critérios para cobrança da contribuição de melhoria. Pode-se utilizá-la também para estudar o perfil do mercado imobiliário.

Na grande maioria dos Municípios Brasileiros o processo de avaliação coletiva de imóveis é fundamentado por uma Planta de Valores Genéricos, que consiste de uma listagem de valores unitários (metro quadrado) de terrenos por face de quadra, referidos a uma mesma data e homogeneizados quanto a seus diversos atributos (frente, profundidade, topografia, pedologia, situação na quadra e infra-estrutura disponível) em relação a um lote padrão.

Os valores dos imóveis são obtidos pelo emprego de modelos pré-determinados para os terrenos e o custo de reprodução para as edificações. ZANCAN (1996), afirma que a dificuldade dessa metodologia reside na inexistência de um mercado de edificações ou benfeitorias, dissociado dos terrenos sobre os quais estão assentados, além de que o custo normalmente não reflete as condições do mercado imobiliário.

A avaliação coletiva de imóveis deve acompanhar a dinâmica imobiliária em todos os seus aspectos, para que se possa tributar com justiça todos os contribuintes. Isto implica em se possuir uma qualificação completa e detalhada dos imóveis, a fim de evitar, por carência das mesmas, a atualização global dos valores dos imóveis por meio de coeficientes zonais. O que provocaria distorções notórias nos valores dos imóveis, com a conseqüente injustiça tributária.

O valor atribuído a um imóvel depende do maior e melhor uso que dele pode fazerse. Avaliá-los coletivamente, implica em prover-se de um grande volume de informações, variadas e detalhadas, dos fatores que podem ser utilizados como vetores explicativos do comportamento do mercado imobiliário.

De uma forma genérica pode-se resumir as etapas de elaboração da avaliação em massa dos imóveis em: coleta de dados, tratamento dos dados e atualização.

CAPITULO V

5. REFERENCIAL TEÓRICO

5.1 REDES NEURAIS

As Redes Neurais Artificiais (RNA's) são compostas de muitos elementos simples, inspirados pelo sistema nervoso biológico, que operam em paralelo. A função da rede é determinada pelas conexões entre os seus elementos (STEINER, 2003).

HAYKIN (2001), define RNA como sendo um processador maciço e paralelamente distribuído, constituído de unidades de processamento simples, que têm a propensão natural para armazenar conhecimento experimental, e aplicá-lo para resolver problemas.

5.1.1. Histórico

O primeiro modelo artificial de um neurônio biológico foi desenvolvido por Warren McCulloch e Walter Pitts (MCP), em 1943. O trabalho de McCulloch e Pitts se concentra muito mais em descrever um modelo artificial de um neurônio e apresentar suas capacidades computacionais do que em apresentar técnicas de aprendizado.

Em 1949, Donald Hebb mostrou como a plasticidade da aprendizagem de redes neurais é conseguida através da variação dos pesos de entrada dos nodos. Ele propôs uma teoria para explicar o aprendizado em nodos biológicos baseada no reforço das ligações sinápticas entre os nodos excitados. A regra de Hebb, como é conhecida a sua teoria na comunidade de RNA's, foi interpretada do ponto de vista matemático, e é hoje utilizada em vários algoritmos de aprendizado. Mais tarde, Widrow e Hoff sugeriram uma regra de aprendizado, conhecida como regra de *Widrow-Hoff*, ou *regra delta*, que é ainda hoje bastante utilizada. Esta por sua vez, é baseada no método do gradiente para minimização do erro na saída de um neurônio com resposta linear.

Em 1953, Frank Rosenblatt demonstrou, com o seu novo modelo, o *perceptron* que, se fossem acrescidas de sinapses, as RNA's com nodos desenvolvidos por Pitts e McCulloch, poderiam ser treinadas para classificar certos tipos de padrões.

Rosenblatt descreveu uma topologia de RNA, estruturas de ligação entre os nodos e, o mais importante, propôs um algoritmo para treinar a rede para executar determinados tipos de funções. Este tipo elementar de perceptron comporta-se como um classificador de padrões, dividindo o espaço de entrada em regiões distintas para cada uma das classes existentes. Inicialmente a saída da rede é aleatória, mas, pelo ajuste gradual dos pesos, o *perceptron* é treinado para fornecer saídas de acordo com os dados do conjunto de treinamento.

Nos anos 70, a abordagem conexionista ficou "adormecida", em grande parte à repercussão do trabalho de Misnky e Papert, o qual dizia que o *perceptron* era limitado a resolver problemas linearmente separáveis, ou seja, problemas cuja solução pode ser obtida dividindo-se o espaço de entrada em duas regiões através de uma reta (espaço R²). Alguns pesquisadores continuaram trabalhando na área, entre eles, podem ser citados Igor Aleksander (redes sem peso) na Inglaterra, Steven Grossberg (sistemas auto-adaptativos) nos EUA, Kunihiko Fukushima (*cognitron e neocognitron*) no Japão, e Teuvo Kohonen (memórias associativas e auto-organizáveis) na Finlândia.

Em 1982, John Hopfield publicou um artigo, mostrando a relação entre redes recorrentes auto-associativas e sistemas físicos, o que também abriu espaço para a utilização de teorias correntes da física para estudar tais modelos. Não obstante, a descrição do algoritmo de treinamento *backpropagation* alguns anos mais tarde, mostrou que a visão de Misnky e Papert sobre o *perceptron* era bastante pessimista. As RNA's de múltiplas camadas são capazes de resolver problemas não-lineares, ou "difíceis de aprender". A partir de meados da década de 80, houve nova explosão de interesse pelas RNA's na comunidade internacional (HAYKIN, 2001).

5.1.2 O neurônio

Como já foi comentado, uma rede neural busca inspiração na estrutura do cérebro. A unidade básica de nosso cérebro, o neurônio, apresenta uma região onde informações são processadas (corpo celular), algumas entradas (os dendritos) e uma saída (o axônio), conforme figura (5.1). Os impulsos elétricos recebidos nos dendritos são processados e o resultado deste processamento é colocado no axônio.

Figura 5.1 - Neurônio Biológico

O modelo de neurônio no qual se baseiam as redes neurais possui uma estrutura idêntica. A figura (5.2) mostra um modelo de um neurônio k, identificando os três elementos básicos para o projeto de redes neurais: um conjunto de sinapses, cada uma caracterizada por um peso ou força própria (w_{ki}); um somador para somar os sinais de entrada, ponderado pelas respectivas sinapses do neurônio, constituindo um combinado linear; e uma função de ativação (φ) para restringir o intervalo permissível de amplitude do sinal de saída do neurônio a um valor finito.

Entradas $X_1 \bullet W_{k1}$ $X_2 \bullet W_{k2}$ \vdots $Y_k \bullet Y_k$ Saída $X_k \circ Y_k \circ Y_k$ Função de ativação

pesos sinápticos

Figura 5.2 – Modelo de um Neurônio Artificial

Fonte: HAYKIN (2001)

Pode ser observado na figura (5.2), as entradas (x_i) do neurônio e o resultado do processamento neuronal, a saída (y_k) , bem como o sinal de bias (b_k) .

O neurônio pode ser representado matematicamente pelas seguintes expressões:

$$v_k = \sum_{j=1}^m w_{kj} x_{j+b_k}$$
 (5.1)

$$y_k = \varphi(v_k) \tag{5.2}$$

As funções de ativação de cada neurônio podem ser, dentre outros, do tipo degrau, linear ou sigmoidal, e suas representações gráficas podem ser observadas na Figura (5.3).

Figura 5.3 – Funções de Ativação dos Neurônios: (a) Degrau; (b) Linear; (c) Sigmoidal Fonte: HAYKIN (2001)

As equações (5.3), (5.4), (5.5) e (5.6), a seguir, são correspondentes aos diversos tipos de funções de ativação dos neurônios (HAYKIN, 2001):

a) Função "Degrau" ou *Threshold*:
$$\varphi(v) = \begin{cases} 1 & se \ v \ge 0 \\ 0 & se \ v < 0 \end{cases}$$
 (5.3)

b) Função Linear:
$$\varphi(v) = \begin{cases} 1 & \text{se } v \ge \frac{1}{2} \\ v, & \text{se } \frac{1}{2} > v > \frac{-1}{2} \\ 0 & \text{se } v \le \frac{-1}{2} \end{cases}$$
 (5.4)

c) Função Sigmoidal: pode assumir as seguintes formas:

c.1) função logística:
$$\varphi(v) = \frac{1}{1 + e^{-av}}$$
 (5.5)

onde a é o parâmetro de inclinação da função sigmóide. Varia de 0 e 1.

c.2) função tangente hiperbólica:
$$\varphi(v) = tanh(v)$$
 (5.6) pode assumir valores negativos.

5.1.3 Topologia

A maneira como os neurônios encontram-se arranjados em camadas e o conjunto de suas respectivas conexões definem a topologia ou arquitetura da RN. Segundo HAYKIN (2001), existem três arquiteturas de rede fundamentalmente diferentes:

a) redes alimentadas adiante com camada única (*feedforward*): a designação "camada única" se refere à camada de saída. A camada de nós de entrada não é considerada por não se realizar qualquer computação (figura 5.4);

Figura 5.4 – Modelo de uma RN com uma Única Camada

Fonte: HAYKIN (2001)

b) redes alimentadas adiante com múltiplas camadas (*feedforward*): estas se distinguem da primeira classe pela presença de uma ou mais camadas ocultas, cujos nós computacionais são chamados de neurônios ocultos ou unidades ocultas, os quais tem função de intervir entre a camada externa e a camada de saída da rede (figura 5.5);

Figura 5.5 – Modelo de uma RN de Múltiplas Camadas

c) redes recorrentes: distinguem-se das outras duas classes por ter pelo menos um laço de realimentação (figura 5.6).

Figura 5.6 – Modelo de uma RN Recorrente

Fonte: HAYKIN (2001)

É interessante observar que um único neurônio não é capaz de resolver nenhum problema prático. Porém, alguns neurônios adequadamente conectados e com os pesos das conexões devidamente ajustados são capazes de resolver complexos problemas não determinísticos. A topologia mais utilizada atualmente em problemas práticos é a *feedforward*, que pode ser implementada em processadores comuns e, comparando-se com outras topologias, não exige muita memória.

Uma rede neural deste tipo, depois de treinada, é capaz de associar uma série de valores que são colocados em suas entradas a uma determinada saída. Não se trata, porém, simplesmente de uma memória, pois tem a capacidade da generalização; ela pode encontrar respostas corretas mesmo quando os dados disponíveis para as entradas estão incompletos ou danificados ou mesmo quando a relação entre entrada e saída não é concreta (HAYKIN, 2001).

5.1.4 Aprendizado

As Redes Neurais Artificiais "aprendem" por experiência, através de dados históricos que contenham os atributos escolhidos para o problema. A partir dos dados históricos, define-se o conjunto de treinamento (em geral, contendo 2/3 dos dados) e o conjunto de teste (em geral com 1/3 dos dados), o qual é chamado de procedimento hold-out.

O aprendizado geralmente se constitui no ajuste do conjunto de pesos de modo que a rede consiga executar uma tarefa específica. O aprendizado pode ser realizado, basicamente, de duas formas distintas de acordo com HAYKIN (2001):

• Aprendizado supervisionado - é aquele que utiliza um conjunto de pares (entrada-saída), em que para cada padrão de entrada é especificado um padrão de saída desejado (resposta desejada). O aprendizado ocorre no momento em que a saída gerada pela rede, a partir dos cálculos efetuados com o padrão de entrada e os pesos correntes, for diferente da saída desejada e o algoritmo de treinamento, segundo alguns critérios, ajusta os pesos da rede de forma a reduzir o erro. Essa dinâmica é repetida para todo o conjunto de dados (entradas e saídas) inúmeras vezes, até que a taxa atinja uma faixa considerada satisfatória.

• Aprendizado não-supervisionado - este tipo de aprendizado também é conhecido como aprendizado auto-supervisionado, e classifica os padrões similares sem utilizar pares (entrada - saída), isto é, no treinamento da rede são usados apenas valores de entrada. A rede trabalha essas entradas e se organiza de modo a classificá-las mediante algum critério de semelhança. Esse tipo de rede utiliza os neurônios como classificadores, e os dados de entrada como elementos de classificação.

5.1.5 Redes *Perceptron*

- a. Limiar Um limiar pode ser de três tipos diferentes: linear, quadrático ou polinomial. As funções executadas por cada uma delas é basicamente a mesma: comparação da soma ponderada das entradas com um valor de limiar, ou também conhecido como *threshold*. Caso a soma exceda o limiar, a saída é ativada, permanecendo desativada em caso contrário. No entanto, estes modelos diferem entre si pela complexidade com que seus pesos são calculados. Quanto mais complexos os termos associados a cada um dos pesos, mais complexas as superfícies que podem ser formadas no espaço *n*-dimensional e maior flexibilidade possui sistema para o correto mapeamento.
- b. *Perceptron* O trabalho original do McCulloch e Pitts (MCP) enfoca a modelagem de um neurônio biológico e sua capacidade computacional com a apresentação de vários exemplos de topologia de rede com capacidade de execução de funções booleanas. Foi somente com o trabalho de Frank Rosenblatt, em 1958, que o conceito de *aprendizado* em RNA's foi introduzido. O modelo proposto por Rosenblatt, conhecido como *perceptron*, era composto por uma estrutura de rede, tendo como unidades básicas nodos MCP, e por uma regra de aprendizado. Alguns anos mais tarde, Rosenblatt demonstrou o teorema de convergência do *perceptron*, que mostra que um nodo MCP treinado com o algoritmo de aprendizado do *perceptron* sempre converge caso o problema em questão seja linearmente separável.

A topologia original descrita por Rosenblatt era composta por unidades de entrada, por um nível intermediário formado pelas unidades de associação e por um nível de saída formado pelas unidades de resposta. Embora esta

topologia original possua três níveis, ela é conhecida como *perceptron* de uma única camada, já que somente o nível de saída possui propriedades adaptativas. A entrada consiste em unidades sensoras, e as unidades intermediárias de associação, embora formados por nodos MCP, possuem pesos fixos, definidos antes do período de treinamento.

As duras críticas de Minsky e Papert ao *perceptron* e a sua capacidade computacional causaram grande impacto sobre as pesquisas em RNA's, levando a um grande desinteresse pela área durante os anos 70 e início dos anos 80. Esta visão pessimista da capacidade do *perceptron* e das RNA's de uma maneira geral mudou com as descrições da rede de Hopfield em 1982 e do algoritmo *backpropagation* em 1986.

Foi em consequência destes trabalhos que a área de RNA's ganhou novo impulso, ocorrendo, a partir do final dos anos 80, uma forte expansão no número de trabalhos de aplicação e teóricos envolvendo RNA's e técnicas correlatas.

- c. Algoritmo de aprendizado do *Peceptron* O algoritmo de aprendizagem do *perceptron* mais utilizado atualmente é o de *backpropagation*. Este algoritmo possui muita popularidade, pois é um método que apresenta pouca dificuldade para o seu desenvolvimento; apresenta um bom desempenho em máquinas pouco velozes; possui variações como o *quick-backpropagation e Levenberg-Marquardt* que apresentam um melhor aprendizado em menos tempo.
- O algoritmo pode ser descrito nos seguintes passos:
- 1) iniciar os pesos sinápticos com valores randômicos;
- 2) aplicar o padrão de entrada, com seu respectivo valor desejado de saída (*xj*), e verificar a saída da rede (*sj*);
- 3) calcular o erro na saída ej = xj sj;
- 4) se ej = 0, ou seja, o valor esperado foi igual ao valor apresentado pela rede como resposta, volta ao passo 2; se $ej \neq 0$, ou seja, o valor esperado é diferente do valor apresentado pela rede como resposta, atualizar os pesos;
- 5) voltar ao passo 2.

Nota-se neste algoritmo, que a rede neural aprende apenas se errar, pois haverá correção nos seus pesos apenas se o valor apresentado como reposta pela rede neural for diferente do valor esperado para uma dada entrada do conjunto de treinamento.

5.1.6 O Algoritmo de Levenberg-Marquardt

Enquanto o algoritmo *backpropagation* padrão utiliza o método do gradiente decrescente como método de aproximação do mínimo da função erro, o algoritmo de Levenberg-Marquardt (LM) utiliza uma aproximação pelo método de Newton. Esta aproximação é obtida a partir da modificação do método de Gauss-Newton.

O método de Gauss-Newton é aplicável a uma função de custo que é expressa como a soma dos quadrados (e). Seja

$$\mathcal{E}(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^{n} e^{2}(i)$$
 (5.7)

Todos os termos contidos em (5.7) são calculados com base no vetor de pesos w que é fixo dentro de todo o intervalo de observação $1 \le i \le n$.

O sinal de erro e(i) é uma função do vetor de pesos ajustáveis w. Dado um ponto de operação w (n), lineariza-se a dependência de e(i) em relação a w escrevendo

$$e'(i,w) = e(i) + \left\lceil \frac{\partial e(i)}{\partial w} \right\rceil_{w=w(i)}^{T} \cdot (w - w(n)), \quad i = 1, 2, ..., n$$
 (5.8)

onde n fornece o número de iterações.

Equivalentemente, utilizando a notação matricial, podemos escrever

$$e'(n, w) = e(n) + J(n) (w - w(n))$$
(5.9)

onde e(n) é o vetor de erro

$$e(n) = [e(1), e(2),..., e(n)]^T$$

e J(n) é a matriz jacobiana n x m de e(n):

$$\mathbf{J}(n) = \begin{bmatrix} \frac{\partial e(1)}{\partial w_1} & \frac{\partial e(1)}{\partial w_2} & \cdots & \frac{\partial e(1)}{\partial w_m} \\ \frac{\partial e(2)}{\partial w_1} & \frac{\partial e(2)}{\partial w_2} & \cdots & \frac{\partial e(2)}{\partial w_m} \\ \vdots & \vdots & & \vdots \\ \frac{\partial e(n)}{\partial w_1} & \frac{\partial e(n)}{\partial w_2} & \cdots & \frac{\partial e(n)}{\partial w_m} \end{bmatrix}_{\mathbf{w} = \mathbf{w}(n)}$$
(5.10)

A jacobiana J(n) é a transposta da matriz de gradiente, $m \times n$, dado por ∇ e(n), onde:

$$\nabla$$
 e(n) = [∇ e(1), ∇ e(2), ..., ∇ e(n)]

o vetor de pesos atualizados w(n+1) é assim definido por

$$w(n+1) = \arg\min_{w} \left\{ \frac{1}{2} \left\| e'(n, w) \right\|^{2} \right\}$$
 (5.11)

Usando a equação (5.9) para calcular a norma euclidiana quadrática de e' (n, w), obtém-se:

$$\frac{1}{2} \| \mathbf{e}'(n, \mathbf{w}) \|^2 = \frac{1}{2} \| \mathbf{e}(n) \|^2 + \mathbf{e}^T(n) \mathbf{J}(n) (\mathbf{w} - \mathbf{w}(n)) + \frac{1}{2} (\mathbf{w} - \mathbf{w}(n))^T \mathbf{J}^T(n) \mathbf{J}(n) (\mathbf{w} - \mathbf{w}(n))$$

Assim, diferenciando-se esta expressão em relação a *w* e igualando o resultado a zero, obtém-se:

$$J^{T}(n)e(n) + J^{T}(n)J(n)(w - w(n)) = 0$$

Resolvendo esta equação para w, pode-se então escrever a partir da equação (5.11):

$$w(n+1) = w(n) - (J^{T}(n) J(n))^{-1} J^{T}(n)e(n)$$
(5.12)

que descreve a forma pura do método de Gauss-Newton.

Diferentemente do método de Newton, que requer o conhecimento da matriz hessiana da função custo $\varepsilon(n)$, o método de Gauss-Newton requer apenas a matriz jacobiana

do vetor de erro e(n). Entretanto, para que a iteração de Gauss-Newton seja computável, a matriz do produto $J^{T}(n)J(n)$ deve ser não singular.

Com relação a este último ponto, reconhece-se que $J^T(n)J(n)$ é sempre definida não negativamente. Para assegurar que ela seja não-singular, a jacobiana J(n) deve ter *posto n*, em relação às linhas; isto é, as n linhas de J(n) na equação (5.10) devem ser linearmente independentes. Infelizmente, não há garantia de que esta condição seja sempre satisfeita. Para que haja o resguardo contra a possibilidade de que J(n) seja deficiente em posto, a prática habitual é adicionar a matriz diagonal δI à matriz $J^T(n)J(n)$. O parâmetro δ é uma constante positiva pequena escolhida para assegurar que

$$J^{T}(n)J(n) + \delta I$$
 seja definida positivamente para todo *n*.

Baseado nisto, o método de Gauss-Newton é implementado na forma ligeiramente modificada:

$$w(n+1) = w(n) - (J^{T}(n) J(n) + \delta I)^{-1} J^{T}(n)e(n)$$
(5.13)

O efeito desta modificação é reduzido progressivamente a medida que o número de iterações, n, é aumentado. Nota-se também que a equação recursiva (5.12) é a solução da função de custo *modificada*:

$$\varepsilon(\mathbf{w}) = \frac{1}{2} \left\{ \delta \|\mathbf{w} - \mathbf{w}(0)\|^2 + \sum_{i=1}^n e^2(i) \right\}$$
(5.14)

onde w(0) é o valor inicial do vetor de peso w(i) (HAYKIN, 2001).

5.2 REGRESSÃO LINEAR MÚLTIPLA

A técnica estatística de Regressão Linear Múltipla é usada para estudar a relação entre uma variável dependente e várias variáveis independentes. Em Engenharia de Avaliações geralmente trabalha-se com modelos de regressão múltipla, tendo em vista a multiplicidade de fatores que interferem nos preços de um bem (DANTAS, 2003).

O modelo genérico é dado pela expressão (5.15), segundo LEVINE et al. (2005), quando aplicado a uma amostra de tamanho *n*,

$$y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + ... + \beta_k x_{ki} + \varepsilon_i, \quad i = 1, 2, ..., n$$
 (5.15)

onde:

 y_i = variável dependente ou explicada i = 1, 2, ..., n, também chamada de resposta;

 β_0 = intercepto ou termo independente de variável;

 β_I = inclinação de Y em relação à variável X_I , mantendo constantes as variáveis X_2 ,

 $X_3, ..., X_k$

 β_2 = inclinação de Y em relação à variável X_2 , mantendo constantes as variáveis X_1 ,

 $X_3, ..., X_k$

:

 β_k = inclinação de Y em relação à variável X_k , mantendo constantes as variáveis X_1 , X_2 , X_3 , ..., X_{k-1}

 \mathcal{E}_i = erro aleatório em Y, para a observação i, i= 1, 2, ..., n.

Na aplicação do modelo (5.15) é condição que $\varepsilon_i \sim N(0, \sigma^2)$, ou seja, são Gaussianas independentes com média zero e variância constante.

5.2.1 Pressupostos Teóricos do Modelo de Regressão Linear

O modelo de regressão linear clássico (5.15) depende de algumas suposições que descrevem as formas do modelo e também ditam os procedimentos adequados de estimação e inferência, conforme descritos a seguir.

5.2.1.1 Linearidade do Modelo de Regressão

A suposição de linearidade inclui o distúrbio estocástico aditivo e deve ser da forma descrita pela equação (5.15) ou na forma das variáveis originais ou para alguma transformação adequada destas. Portanto, no contexto da regressão, a linearidade se refere à forma pela qual os parâmetros e o distúrbio entram na equação e não necessariamente à

relação entre as variáveis envolvidas. Neste contexto, uma relação não linear da forma $y=Ax^{\beta}e^{\varepsilon}$ pode ser linearizada através do uso dos logaritmos de x e y: ln y = α + β ln x + ε (GREENE, 1997).

5.2.1.2 Posto Completo

Deve-se assumir que não existe relação linear perfeita entre as variáveis independentes. Para tanto, é necessário que a matriz X tenha posto completo, ou seja, que as colunas desta matriz sejam linearmente independentes e que haja pelo menos K observações.

5.2.1.3 Valor Esperado do Erro

Deve-se assumir que o valor esperado do vetor de erros seja zero para cada observação, ou seja, ε_i tem média zero para cada i. Na verdade a suposição é mais geral e costuma-se assumir que $\varepsilon_i \sim N(0, \sigma^2)$ é Gaussiana independente identicamente distribuída.

$$E[\varepsilon_i/X] = 0 \tag{5.16}$$

Assim, para o vetor de erros, a suposição pode ser escrita como:

$$E[\underline{\varepsilon}] = \begin{bmatrix} E(\varepsilon_1) \\ E(\varepsilon_2) \\ \vdots \\ E(\varepsilon_n) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix} = \underline{0}$$
(5.17)

Em muitos casos, esta suposição não é restritiva. Porém, se o modelo original não contém o termo constante, deve-se supor que $E[\varepsilon_i]$ =0 poderia não ser uma decisão correta. Por um lado, se $E[\varepsilon_i]$ puder ser expressa como uma função linear dos x_i , então uma transformação do modelo poderia produzir distúrbios com média zero. Por outro lado, uma média dos distúrbios diferente de zero poderia constituir uma parte significativa da estrutura do modelo. A menos que seja ditado pela teoria como pertinente, como regra geral, os modelos de regressão não devem ser especificados sem o termo constante. Se houver razões para especificar que a média do distúrbio seja diferente de zero, isto deve ser construído na parte sistemática da regressão, deixando no distúrbio somente a parte desconhecida de ε .

5.2.1.4 Distúrbios Esféricos

A variância constante é chamada homocedasticidade e a falta de correlação entre os distúrbios é chamada não-autocorrelação.

var
$$[\varepsilon_i | X] = \sigma^2$$
, para todo $i = 1, ..., n$ e

cov
$$[\varepsilon_i \varepsilon_j | X] = 0$$
, para todo $i \neq j$

Estas duas suposições implicam que:

$$E[\varepsilon\varepsilon'|X] = \begin{bmatrix} E[\varepsilon_{1}\varepsilon_{1}|X] & E[\varepsilon_{1}\varepsilon_{2}|X] & \cdots & E[\varepsilon_{1}\varepsilon_{n}|X] \\ E[\varepsilon_{2}\varepsilon_{1}|X] & E[\varepsilon_{2}\varepsilon_{2}|X] & \cdots & E[\varepsilon_{2}\varepsilon_{n}|X] \\ \vdots & \vdots & \vdots & \vdots \\ E[\varepsilon_{n}\varepsilon_{1}|X] & E[\varepsilon_{n}\varepsilon_{2}|X] & \cdots & E[\varepsilon_{n}\varepsilon_{n}|X] \end{bmatrix} = \begin{bmatrix} \sigma^{2} & 0 & \cdots & 0 \\ 0 & \sigma^{2} & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & \sigma^{2} \end{bmatrix}$$

$$(5.18)$$

que pode ser resumida na seguinte suposição: $E[\epsilon\epsilon'|X] = \sigma^2 I$, onde I é a matriz identidade de ordem $n \times n$.

Os distúrbios que encontram as suposições de homocedasticidade e não autocorrelação são chamados distúrbios esféricos.

5.2.1.5 Regressores não-estocásticos

Em geral, assume-se que x_i é não-estocástico, o que permite ao analista escolher os valores dos regressores e então observar os y_i , ao contrário do que ocorreria em uma situação experimental. Assim, a suposição consiste da especificação das variáveis independentes, onde X é uma matriz conhecida, com dimensão $n \times K$.

5.2.1.6 Normalidade (Gaussianidade)

É conveniente assumir que os distúrbios são normalmente distribuídos, com média zero e variância constante. Esta suposição, que é útil principalmente na construção de testes estatísticos, implica que as observações em ε_i são estatisticamente independentes, ou seja,

$$\varepsilon \mid X \sim N(0, \sigma^2 I) \tag{5.19}$$

5.2.2 Análise da Variância da Regressão

A Análise de Variância é uma técnica estatística usada para verificar se o ajuste de regressão existe. Para isto, constrói-se um quadro de análise de variância, que para um modelo geral na forma matricial é:

$$\underline{y} = X \underline{\beta} + \underline{\varepsilon}$$
 onde cada componente de \underline{y} é:

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + ... + \beta_{p-1} x_{p-1} + \varepsilon_i$$
 (5.20)

para p > 2 parâmetros, tem-se o quadro 5.1 a seguir:

Quadro 5.1 - Análise da Variância

Fonte de Variação	Soma de quadrados	Graus de Liberdade	Quadrado Médio	Estatística F
Regressão	$SQE = \sum_{j=1}^{p} n_{j} \left(\overline{X}_{j} - \overline{X} \right)^{2}$	<i>p</i> -1	$MQE = \frac{SQE}{p-1}$	E - MQE
Residual	$SQD = \sum_{j=1}^{p} \sum_{i=1}^{n_j} \left(X_{ij} - \overline{X}_{j} \right)^2$	n-p	$MQD = \frac{SQD}{n-p}$	$F = \frac{MQE}{MQD}$
Total	$STQ = \sum_{j=1}^{p} \sum_{i=1}^{n_j} \left(X_{ij} - \overline{X} \right)^2$	<i>n</i> -1	$MTQ = \frac{STQ}{n-1}$	

O teste de igualdade entre as médias aritméticas das populações, a variação total nas medidas é subdividida em duas partes: aquela devida às diferenças entre os grupos, e aquela devida à inerente variação dentro dos grupos. A variação total é representada através da soma total dos quadrados (*STQ*). Uma vez que as médias aritméticas da população dos *p* grupos são assumidas como sendo iguais no âmbito da hipótese nula, uma medida da variação total entre todas as observações foi obtida através da soma das diferenças ao quadrado entre

cada observação individual e a média geral ou grande média, \overline{X} , que é baseada em todas as observações em todos os grupos combinados.

A variação entre grupos, usualmente chamada de soma dos quadrados entre grupos (SQE), é medida através da soma das diferenças ao quadrado entre a média aritmética da amostra de cada grupo, \overline{X}_j , e a média geral ou grande média, \overline{X} , ponderada com base no tamanho da amostra, n_i , em cada grupo.

A variação dentro do grupo, usualmente conhecida como soma dos quadrados dentro dos grupos (*STQ*), mede a diferença entre cada observação e a média aritmética de seu próprio grupo, e a soma dos quadrados dessas diferenças ao longo de todos os grupos.

Uma vez que p níveis do fator estão sendo comparados, existem p-1 graus de liberdade associados à soma dos quadrados entre os grupos. Uma vez que cada um dos p níveis contribui com n_j -1 graus de liberdade, existem n-p graus de liberdade associados à soma dos quadrados dentro dos grupos. Além disso, existem n-1 graus de liberdade associados à soma total dos quadrados, uma vez que cada observação X_{ij} está sendo comparada com a média geral ou grande média, \overline{X} , baseada em todas as n observações.

Se cada uma dessas somas de quadrados for dividida pelos seus graus de liberdade associados, três variâncias, ou termos de quadrados da média – MQE (média dos quadrados entre grupos), MQD (média dos quadrados dentro dos grupos) e MTQ (média total dos quadrados) – são obtidas.

O teste feito com a estatística F (última coluna do quadro 5.1) é o da hipótese nula H_0 : $\beta_1 = \beta_2 = ... = \beta_{p-1} = 0$, ou seja, se existe regressão dos X's para Y, ou melhor, se existe relação linear entre a variável resposta Y e as variáveis X_i , i = 1, 2, ..., p-1.

5.2.3 Poder de Explicação do Modelo

Uma característica importante para verificação do ajuste do modelo, que está intimamente ligado à estatística F, é o coeficiente de determinação múltipla que, informa o poder de explicação do modelo em função das p variáveis independentes consideradas. Este coeficiente é obtido dividindo-se a variação explicada pela variação total do modelo, ou seja, a razão entre a parcela SQRegr e SQT, que resulta em:

$$R^{2} = \frac{\sum_{i=1}^{n} (\hat{Y}_{i} - \overline{Y})^{2}}{\sum_{i=1}^{n} (Y_{i} - \overline{Y})^{2}} \qquad 0 < R^{2} < 1$$
(5.21)

 R^2 é conhecido como coeficiente de correlação múltipla ao quadrado ou coeficiente de determinação. Quando o ajuste é bom o modelo explica boa parte da variação total e conseqüentemente o valor de R^2 é próximo de 1. O coeficiente de determinação é uma medida da qualidade do ajuste.

A desvantagem deste coeficiente é que para uma mesma amostra ele cresce na medida em que aumentam o número de variáveis independentes incluídas no modelo, não levando em conta o número de graus de liberdade perdidos a cada parâmetro estimado. Para corrigir esta deficiência é preferível utilizar o Coeficiente de Determinação Ajustado, que para um modelo com k variáveis independentes, ajustado a uma amostra de n elementos, é calculado através da seguinte expressão:

$$R_{aj}^{2} = 1 - \left[\left(1 - R^{2} \right) \frac{n - 1}{n - k - 1} \right]$$
 (5.22)

5.2.4 Relação entre as Variáveis

O grau de relação entre as variáveis, que expressa como as variáveis estão relacionadas entre si, é definido numericamente pelo Coeficiente de Correlação, representado por ρ . Com base em n observações do par (X, Y) este parâmetro é estimado pela estatística,

$$\hat{\rho} = r = \frac{\sum_{i=1}^{n} (X_i - \overline{X})(Y_i - \overline{Y})}{\sqrt{(X_i - \overline{X})^2 (Y_i - \overline{Y})^2}} = \frac{\hat{\sigma}_{xy}}{\hat{\sigma}_x \hat{\sigma}_y}$$
(5.23)

onde:

 \overline{X} é a média da variável independente X;

 \overline{Y} é a média da variável dependente Y;

 $\hat{\sigma}_{xy}$ é a covariância amostral entre X e Y;

- $\hat{\sigma}_x$ é o desvio padrão amostral de *X*;
- $\hat{\sigma}_{v}$ é o desvio padrão amostral de Y.

O coeficiente de correlação varia entre os limites -1 e 1 podendo, portanto, ser positivo ou negativo ($-1 \le \rho \le 1$). Quando o coeficiente de correlação é nulo ($\rho = 0$), significa que não existe nenhum relacionamento entre as variáveis. E quando o coeficiente de correlação é igual a unidade, -1 ou +1, tem-se um relacionamento perfeito entre elas. O sinal (+) ou (-) das variáveis indica a relação direta ou indireta existente entre as variáveis. O grau de relacionamento entre as variáveis, definido numericamente pelo valor $\hat{\rho}$, pode ser assim interpretado:

Coeficiente	Correlação			
$ \hat{\rho} _{=0}$	 relação nula			
$0< \hat{\rho} _{\leq 0,30}$	 relação fraca			
$0.30 < \hat{\rho} \le 0.70$	 relação média			
$0.70 < \hat{\rho} \le 0.90$	 relação forte			
$0.90 < \hat{\rho} \le 0.99$	 relação fortíssima			
$ \hat{\rho} _{=1}$	 relação perfeita			

É importante observar que, nem sempre uma elevada correlação entre duas variáveis representa a existência de relação de causa e efeito entre as mesmas. A expressão (5.23) é conhecida como coeficiente de correlação linear de Pearson e é uma medida usada no estudo da relação linear existente entre duas variáveis *X* e *Y*.

Atualmente, utilizam-se várias técnicas para estudar o relacionamento entre um conjunto de variáveis, como: coeficientes de correlação de Pearson, de Spearman, Análise Fatorial e a Análise de Componentes Principais.

5.3 ANÁLISE DAS COMPONENTES PRINCIPAIS

A Análise das Componentes Principais é uma das técnicas da Análise Estatística Multivariada, e é utilizada para investigar as relações em um conjunto de dados de *p* variáveis correlacionadas. Para tanto, transforma-se o conjunto de variáveis originais em um novo conjunto de variáveis não-correlacionadas chamadas de Componentes Principais, tendo propriedades especiais em termos de variâncias.

É importante lembrar que a Análise das Componentes Principais não depende da suposição inicial de Gaussianidade e é muito útil como método auxiliar em Regressão, Análise Fatorial e Análise de Agrupamentos (*Clusters*).

A Análise das Componentes Principais explica a estrutura da variância e covariância de um vetor aleatório através de poucas combinações lineares das variáveis originais. O objetivo geral consiste tanto em reduzir os dados como em facilitar a interpretação, pois consiste numa transformação, de eixos, tornando as novas variáveis (combinações lineares) não correlacionadas (JOHNSON e WICHERN, 2002).

A reprodução da variabilidade total do sistema requer as p variáveis, porém, freqüentemente a maior parte dessas variabilidade pode ser explicada por um número pequeno k < p, de componentes principais. Neste caso existe praticamente a mesma quantidade de informações nas k componentes principais do que nas p variáveis originais.

5.3.1 Componentes Principais Populacionais

De acordo com JOHNSON e WICHERN (2002), algebricamente as componentes principais são combinações lineares de p variáveis originais X_1 , X_2 , ..., X_P que compõem o vetor aleatório \underline{X} . Geometricamente, as combinações lineares representam a seleção de um novo sistema de coordenadas, obtido por rotação do sistema original, sendo que os novos eixos representam as direções com variabilidade máxima. A figura 5.7, mostra a representação da estrutura de componentes principais para p = 2:

 X_2 Y_1 X_1

Figura 5.7 - Representação da estrutura de Componentes Principais

Fonte: JOHNSON e WICHERN (2002)

onde:

 X_1 e X_2 são eixos originais

 Y_1 e Y_2 são novos eixos (eixos originais rotacionados: centrado na média amostral).

As componentes principais são obtidas a partir da matriz de covariância Σ ou da matriz de correlação ρ , que resumem a estrutura de relacionamento das p variáveis originais que compõem o vetor \underline{X} . Então, da matriz covariância Σ ou da matriz correlação ρ , obtém-se os autovalores $\lambda_1 \geq \lambda_2 \geq ... \geq \lambda_p$ e os respectivos autovetores $\underline{e_1}$, $\underline{e_2}$, ..., $\underline{e_P}$. E, com estes entes algébricos se constrói as combinações lineares que definem as componentes principais, ou seja:

$$Y_i = e'_i X$$
 $i = 1, 2, ..., p.$ (5.24)

As componentes principais são combinações lineares, Y_i i = 1, 2, ..., p, não correlacionadas, uma vez que a matriz dos autovetores P, abaixo, é ortogonal.

$$P = \begin{bmatrix} e_{11} & e_{12} & \cdots & e_{1p} \\ e_{21} & e_{22} & \cdots & e_{2p} \\ \vdots & \vdots & \cdots & \vdots \\ e_{p1} & e_{p2} & \cdots & e_{pp} \end{bmatrix}$$
(5.25)

A variância da Componente Principal $Y_i = \underline{e}_i X$ i = 1, 2, ..., p é dada por,

$$V(Y_i) = V(\underline{e'_i}\underline{X}) = \underline{e'}V(\underline{X})\underline{e'_i} = \underline{e'_i}\sum\underline{e'_i}$$
(5.26)

e a covariância é entre Y_j e Y_k é nula, ou melhor, cov $(Y_j, Y_k) = 0$.

Logo, pode-se afirmar:

- A primeira componente principal como a combinação linear $Y_1 = \underline{e'}_1 \underline{X}$ que maximiza a variância de Y_1 , sob a restrição $\underline{e'}_1 \underline{e}_1 = 1$.
- A segunda componente principal como a combinação linear $Y_2 = \underline{e'}_2 \underline{X}$ que maximiza $V = (\underline{e'}_2 \underline{X})$ sujeita a restrição $\underline{e'}_2 \underline{e}_2 = 1$ e cov $(\underline{e'}_1 \underline{X} \underline{e'}_2 \underline{X}) = 0$.
- A i-ésima componente principal como a combinação linear $Y_i = \underline{e'}_i \underline{X}$ que maximiza $V = (\underline{e'}_i \underline{X})$ sujeita a restrição $\underline{e'}_i \underline{e}_i = 1$ e cov $(\underline{e'}_i \underline{X} \underline{e'}_i \underline{X}) = 0$ para todo i < k.

5.3.2 Componentes Principais da Amostra

Geralmente os parâmetros da estrutura de covariância, Σ ou ρ , são desconhecidos, então a obtenção das componentes principais é feita a partir de seus estimadores, que são a matriz de covariância amostral S ou a matriz de correlação amostral R. Estas estatísticas são definidas por:

$$S = \frac{1}{n-1} \sum_{i=1}^{n} (\underline{x}_i - \overline{\underline{x}}) (\underline{x}_i - \overline{\underline{x}})^{i}$$
(5.27)

$$R = D^{-1}SD^{-1} (5.28)$$

onde D é a matriz desvio padrão amostral e $\overline{\underline{x}}$ é o vetor médio amostral, dados respectivamente por:

$$D = \begin{pmatrix} s_1 & 0 & \cdots & 0 \\ 0 & s_2 & \cdots & 0 \\ \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & \cdots & s_p \end{pmatrix}$$
 (5.29)

$$\underline{\overline{x}} = \begin{bmatrix} \overline{x}_1 \\ \overline{x}_2 \\ \vdots \\ \overline{x}_p \end{bmatrix}$$
(5.30)

Então, obtém-se as estimativas dos elementos da estrutura de covariância do vetor aleatório \underline{X} , ou seja, os autovalores $\hat{\lambda}_i$, i=1,2,...,p e os correspondentes autovetores $\underline{\hat{e}}_i$ e constrói-se as componentes principais amostrais $\hat{Y}_i = \hat{e}_i' \underline{X}_i$, i=1,2,...,p. As propriedades das componentes principais se mantêm e são obtidas com base em estimadores.

A obtenção das componentes principais com base nas informações da matriz de correlação é preferida, devido ao fato de se conseguir eliminar o efeito de escala nos valores das componentes do vetor de variáveis originais <u>X</u>. Como é bem conhecida, a matriz de correlação é uma matriz de covariância, mas de variáveis padronizadas. Assim, consegue-se eliminar a influência da escala na magnitude das variáveis (JOHNSON e WICHERN, 2002).

Os autovalores e os autovetores da matriz de correlação são a essência do método das componentes principais. Os autovetores definem as direções da máxima variabilidade e os autovalores especificam as variâncias. Se os primeiros autovalores são muito maiores que os demais significa que a maior parte da variância total pode ser explicada por um número menor do que as p dimensões do vetor X.

O método da máxima verossimilhança é também um método eficiente na extração dos fatores e está disponível em modernos programas computacionais, assim como o Método das Componentes Principais.

5.3.3 Critérios para Definição do Número de Fatores Extraídos

Segundo JOHNSON e WICHERN (2002), não existe uma resposta definitiva para a questão de quantos componentes reter; o que se pode considerar é a quantidade de variância total da amostragem explicada, os tamanhos relativos dos autovalores e as interpretações em questão de componentes. Uma componente associada com um autovalor próximo de zero, considerado não importante, pode indicar uma dependência linear não suspeita nos dados.

Um critério para a determinação do número de fatores a ser extraído foi sugerido por Kaiser em 1960, segundo JOHNSON e WICHERN (2002), que propõe escolher somente

os fatores correspondentes aos autovalores maiores que um. Outra maneira de se definir o número de fatores é através da porcentagem de variação explicada pelos fatores. O pesquisador, neste caso, deve julgar se *m* fatores explicam suficientemente o relacionamento. Geralmente, um bom grau de explicação é superior a 75% para um *m* pequeno.

Um procedimento que visualiza muito bem o Critério de Kaiser é grafar os autovalores contra o número de fatores na ordem de extração (*Screen Plot*). Fixando-se um nível de corte fica fácil decidir a definição de *m*.

5.4 ANÁLISE FATORIAL

A Análise Fatorial é uma técnica de Análise Multivariada que objetiva explicar as correlações existentes entre um conjunto grande de variáveis em termos de um conjunto de poucas variáveis aleatórias não observáveis, denominadas fatores. A Análise Fatorial pode ser melhor visualizada no esquema da figura 5.8 que se segue:

Figura 5.8 - Esquema de Agrupamento de Variáveis em Fatores (AF)

Fonte: JOHNSON e WICHERN (2002)

Quanto mais fortes forem as correlações entre algumas variáveis dentre o grupo inicial, mais nítida é a visualização do fator gerado. Variáveis agrupadas num mesmo fator possuem portanto alta correlação, enquanto que variáveis de fatores distintos possuem baixa correlação.

5.4.1 Modelo Fatorial Ortogonal

Considerando-se X o vetor das variáveis originais, com dimensão p, com média

 μ e matriz de Covariância Σ , não necessariamente com distribuição normal, tem-se que o modelo fatorial de \underline{X} é linearmente dependente sobre algumas variáveis aleatórias, não observadas $F_1, F_2...F_m$, (sendo $m \le p$, necessariamente caso contrário não haveria ganho com a AF), que são denominados fatores comuns, p fontes de variações aditivas e $\varepsilon_1, \varepsilon_2...\varepsilon_p$ são os erros, o modelo de Análise Fatorial pode ser representado com notação matricial como:

$$\underline{X} - \mu = L\underline{F} + \underline{\varepsilon} \tag{5.31}$$

onde:

 \underline{X} é o vetor das variáveis originais para cada indivíduo;

 $\frac{\mu}{}$ é o vetor das médias das i-ésimas variáveis;

L é a matriz dos pesos ou carregamento nas i-ésimas variáveis e nos j-ésimos fatores Fj;

 \underline{F} é o vetor dos fatores comuns;

 $\underline{\mathcal{E}}$ é o vetor dos erros ou fatores específicos assumindo ainda as seguintes hipóteses:

- 1) $E(\underline{F}) = \underline{0}$ e consequentemente $V(\underline{F}) = E(\underline{F}\underline{F}') = I$
- 2) $E(\underline{\varepsilon}) = \underline{0}$ e consequentemente $V(\underline{\varepsilon}) = E(\underline{\varepsilon}\underline{\varepsilon}') = \psi$
- 3) \underline{F} e $\underline{\varepsilon}$ são independentes, ou seja, $cov(\underline{\varepsilon}, \underline{F}) = 0$

5.4.2 Comunalidades

A variância de cada variável X_i é a soma das comunalidades (h_i^2) com suas respectivas especificidades ou variância específica (ψ_i) . Desta forma, tem-se as seguintes equações:

Equação da Variância da variável X_i

$$V(X_i) = l_{i2}^2 + l_{i2}^2 + \dots + l_{im}^2 + \psi_i$$
 (5.32)

Equação das comunalidades

$$h_i^2 = l_{i1}^2 + l_{i2}^2 + \dots l_{im}^2 (5.33)$$

Portanto as comunalidades são as maiores parcelas do total da variância de uma variável X_i . A segunda parcela é proveniente da variância específica de cada variável, representada por ψ_i .

Quanto mais a comunalidade se aproximar de 1, melhor será o modelo fatorial. Autores consideram boa comunalidade valores acima de 0,70.

5.4.3 Matriz dos Resíduos

A Análise Fatorial também permite o cálculo dos valores residuais ou matriz dos resíduos. Os resíduos podem ser calculados através da seguinte fórmula matricial:

$$MR = R - (\hat{L}\hat{L}' + \psi) \tag{5.34}$$

onde:

MR é a matriz dos resíduos;

R é a matriz de correlação;

 \hat{L} é matriz dos pesos estimados;

 \hat{L}' é a transposta da matriz dos pesos estimados;

 $\hat{\psi}$ é a matriz estimada dos erros.

A matriz dos resíduos é outra forma de se avaliar se o modelo fatorial está próximo da realidade, pois expressa a diferença entre as correlações e o produto dos pesos estimados e sua transposta, acrescidos dos erros. Valores próximos de zero indicam que o modelo Fatorial é adequado.

5.4.4 Rotação dos Fatores

Outra técnica muito interessante na análise fatorial é a Rotação dos Fatores. Tal técnica é empregada para otimizar os pesos fatoriais. Como o próprio nome diz, a rotação consiste em girar os eixos em um Ângulo θ , oferecendo uma nova estrutura para os pesos de tal forma que cada variável tenha peso alto em um único fator e pesos mais baixos ou médios

nos demais fatores. A rotação não produz uma estrutura visível quando *m*>2, ou seja o número de fatores é maior que dois e quando isso ocorre programas computacionais são utilizados para executar a rotação e proceder os cálculos dos fatores rotacionados, embora a visualização continue impossível.

A Rotação pode ser realizada no sentido horário(5.35) e anti-horário(5.36) e produzir a matriz T, que multiplicada pelos pesos estimados originais produzirá os novos pesos(5.37) conforme as equações matriciais que seguem:

$$T = \begin{bmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{bmatrix}$$
(rotação no sentido horário) (5.35)

$$T = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$$
(rotação no sentido anti-horário) (5.36)

$$\hat{L} = \hat{L}T \tag{5.37}$$

onde

 $\stackrel{\wedge}{L}$ é a matriz dos pesos estimados originais;

 $\stackrel{\wedge^*}{L}$ é a nova matriz dos pesos estimados já rotacionada e

T é a matriz da rotação.

A técnica de rotação mais utilizada foi proposta por Kaiser e recebeu o nome de Rotação Varimax ou Normal Varimax.

5.4.5 Escores Fatoriais

Os fatores são variáveis não observáveis, muito embora seus valores possam ser estimados. Os valores estimados dos fatores são denominados de escores. Dois métodos de estimação são propostos. Ambos tratam as cargas fatoriais e as variâncias específicas estimadas como se fossem os verdadeiros valores desconhecidos. Se ocorrer rotação, os escores são obtidos a partir das cargas fatoriais que sofreram rotação e não a partir das originais. Não obstante, as fórmulas não distinguirão entre as situações em que ocorreu rotação daquelas em que não ocorreu, uma vez que estas fórmulas não são alteradas pelas rotações.

CAPITULO VI

6. IMPLEMENTAÇÃO DAS TÉCNICAS PARA RESOLUÇÃO DO PROBLEMA

Após o levantamento dos dados, conforme descrito no capítulo II, implementou-se as técnicas propostas neste trabalho, conforme os fluxogramas 6.1 e 6.2 a seguir:

Figura 6.1 – Fluxograma de Implementação das Técnicas – Experimento I

Figura 6.2 - Fluxograma de Implementação das Técnicas - Experimentos II e III

Legenda:

RN – Redes Neurais

RLM – Regressão Linear Múltipla

ACP - Análise das Componentes Principais

AF – Análise Fatorial

RV - Rotação Varimax

EF – Escores Fatoriais

Para uma avaliação estatística das características dos dados, foi realizada uma Análise das Componentes Principais, que teve como propósito, avaliar a importância relativa das variáveis que compõem a amostra de dados. Este procedimento, pode ser adotado em situações onde o número de variáveis (entradas) do modelo é grande, e as mesmas são altamente correlacionadas. Esta análise possibilita a redução da dimensão dos vetores de entrada.

Para a realização da Análise das Componentes Principais, foi utilizado o *software Statística* 5.0. Aplicando-se a técnica da Análise das Componentes Principais no conjunto de dados originais composto de 13 variáveis (bairro, setor, pavimentação, esgoto, iluminação, área do terreno, pedologia, topografia, situação, área edificada, tipo, estrutura e conservação), percebeu-se que um modelo com apenas nove componentes principais seria suficiente para representar a estrutura de covariância inicial, com 18,69% de perda de informações. Aceitou-se autovalores maiores que 0,75. Porém, utilizando o critério de Kaiser (JOHNSON e WICHERN, 2002), o número de variáveis reduziria para seis, entretanto a perda de informações seria relativamente grande, em torno de 38%. Na tabela 6.1 observa-se a proporção da variância explicada pelos autovalores ordenados de forma decrescente.

Tabela 6.1 - Autovalores em Ordem Decrescente de Magnitude

		% total	Cumul.	Cumul.
	Autoval	Variância	Autoval	양
1	1,858557	14,29659	1,85856	14,29659
2	1,511854	11,62965	3,37041	25,92624
3	1,296738	9,97491	4,66715	35 , 90115
4	1,208301	9,29463	5,87545	45,19577
5	1,100844	8,46803	6,97629	53,66380
6	1,044903	8,03772	8,02120	61 , 70152
7	0,896430	6,89561	8,91763	68 , 59713
8	0,831275	6,39442	9,74890	74 , 99155
9	0,821521	6,31939	10,57042	81,31094
10	0,727890	5,59916	11,29831	86,91010
11	0,653833	5,02948	11,95215	91 , 93960
12	0,555787	4,27529	12,50793	96,21490
13	0,492067	3,78513	13,00000	100,00000

A Análise das Componentes Principais pode ser usada para julgar a importância das próprias variáveis originais escolhidas, ou seja, as variáveis originais com maior peso na combinação linear dos primeiros componentes principais são as mais importantes do ponto de vista estatístico e, como o objetivo é reduzir o número de variáveis de 13 para 9 neste trabalho, preservando o máximo possível de informação sobre as entradas, esta técnica oferece um procedimento de aprendizagem auto-organizada.

A figura 6.3, apresenta graficamente os autovalores obtidos na análise.

Figura 6.3 – Fatores x Autovalores da Análise Realizada

A partir da Análise de Componentes Principais aplicou-se a Análise Fatorial e, conseqüentemente, a Rotação Varimax.

O peso de cada um dos nove fatores selecionados em cada variável antes da Rotação Varimax, são mostrados na tabela 6.2. O fator 1 depende das variáveis tipo e área do terreno; o fator 2 depende da variável estrutura; o fator 3 tem carregamento na variável iluminação; o fator 4 tem carregamento baixo em todas as variáveis; o fator 5 depende da variável setor; os fatores 6, 7, 8 e 9 têm carregamento baixo em todas as variáveis.

Tabela 6.2 – Matriz Fatorial antes da Rotação

	Fator 1	Fator 2	Fator 3	Fator 4	Fator 5	Fator 6	Fator 7	Fator 8	Fator 9
BAIR	0,466858	0,409711	0,084754	0,385407	-0,003604	-0,199000	0,090383	-0 , 237999	0,244332
SETO	-0,042276	-0,369177	0,037384	0,005407	0,652339	-0,286816	0,281969	0,323187	0,243121
PAVI	0,069189	0,376797	-0,577177	-0,237399	-0,276693	0,080786	0,063214	-0,052038	0,173062
ESGO	-0,566355	-0,414491	-0,055958	-0,300086	0,060249	0,061801	-0,330062	-0,193115	0,029571
ILUM	-0,013633	-0,105862	0,679577	0,341808	-0,010937	0,076475	-0,078640	-0,361778	-0,110322
ATER	0,609648	0,138835	0,377661	-0,402458	-0,066649	0,035356	0,065406	0,238317	-0,017469
PEDO	-0,185625	0,353346	-0,016251	0,203157	-0,045347	-0,583410	-0,485504	0,332506	-0,300073
TOPO	-0,216697	0,049356	0,087314	0,498532	-0,151839	0,550324	-0,153179	0,496838	0,291941
SITU	-0,182422	-0,207000	0,303193	-0,166304	-0,525622	-0,452898	0,003824	0,041039	0,537050
AEDI	-0,370072	0,252511	0,425207	-0,365771	-0,214741	0,114274	0,319410	0,226546	-0,288889
TIPO	-0,684803	0,082716	-0,084939	0,252492	-0,164812	-0,099910	0,375927	-0,114320	-0,016712
ESTR	0,413569	-0,618886	-0,067657	-0,017624	-0,315293	0,072245	-0,220572	0,055781	-0,072026
CONS	-0,223094	0,489569	0,234591	-0 , 345258	0,341260	0,170279	-0 , 366287	-0,126114	0,326793

A soma dos quadrados das cargas fatoriais para cada variável resulta num valor estimado da comunalidade, que é a parte da variância total explicada pelos 9 fatores, como pode ser visto na tabela 6.3. Pode-se observar nesta tabela, que todas as variáveis são importantes na estrutura de covariância, pois as comunalidades são altas (acima de 65%).

Tabela 6.3 – Comunalidades

Variáveis	Comunalidades
BAIR	0,705666
SETO	0,890379
PAVI	0,655994
ESGO	0,740301
ILUM	0,745256
ATER	0,762617
PEDO	0,979588
TOPO	0,987005
SITU	0,967226
AEDI	0,811280
TIPO	0,738579
ESTR	0,720527
CONS	0,866003

Aplicou-se, em seguida a Rotação Varimax, modificando o peso dos fatores selecionados, conforme tabela 6.4. Desta forma, analisando os fatores com pesos contrastados pode-se interpretar os fatores. O fator 1 tem carregamento alto na variável bairro e esgoto, logo o identificamos como "localização"; o fator 2 depende mais fortemente da variável conservação; o fator 3 tem carregamento alto nas variáveis iluminação e pavimentação, que será identificado como "serviços urbanos"; o fator 4 tem carregamento alto nas variáveis tipo e área do terreno, identificado como "característica do imóvel"; o fator 5 depende fortemente da variável setor; o fator 6 depende da variável área edificada; o fator 7 depende da variável pedologia; o fator 8 depende da variável topografia e o fator 9 tem carregamento forte na variável situação.

Tabela 6.4 – Matriz dos Pesos com Rotação Varimax

	Fator 1	Fator 2	Fator 3	Fator 4	Fator 5	Fator 6	Fator 7	Fator 8	Fator 9
BAIR	-0,769878	0,118636	0,088964	-0,024202	0 , 097856	-0,268058	0,011785	0,067484	0,065238
SETO	0,050972	-0,002536	0,040935	0,008548	-0,935737	-0,080292	-0,046661	0,039636	0,015058
PAVI	-0,126354	0,093351	-0,714315	0,066778	0,321259	-0,050776	-0,090172	0,049206	0,016491
ESGO	0,794818	0,157260	0,080590	0,190432	0,016297	-0,117385	-0,043827	0,081426	0,135939
ILUM	-0,108389	0,050869	0,830505	0,043004	0,170622	0,015022	-0,083221	-0,015309	0,053253
ATER	-0,274650	0,017026	-0,001866	-0,750615	-0,010033	0,316163	-0,086787	0,094259	0,083614
PEDO	-0,044983	0,057990	-0,008796	0,067410	0,041361	0,008730	0,983214	0,006888	0,032191
TOPO	-0,010974	0,024510	0,052197	0,094515	0,037077	0,003995	-0,007034	-0,986434	-0,011558
SITU	0,051411	-0,035202	0,034461	0,031832	-0,014326	0,062095	0,032251	0,011690	0,977704
AEDI	0,112770	0,110913	0,062490	0,047113	0,087366	0,876510	0,009610	-0,007188	0,063956
TIPO	0,041138	-0,032906	-0,004067	0,809722	0,006085	0,252677	0,002514	-0,047450	0,118306
ESTR	0,235871	-0,579661	0,072696	-0,431292	0,130118	-0,295016	-0,113405	-0,044759	0,136962
CONS	0,107314	0,912569	0,001780	-0 , 124559	0 , 056250	0,028308	0,021534	-0,040724	0,009897

Finalmente, aplicando o método dos mínimos quadrados encontra-se a matriz dos escores fatoriais de ordem $n \times 9$. Esta matriz passa a representar os dados.

6.1 MODELO UTILIZANDO REDES NEURAIS

Para a realização deste trabalho, foi escolhido o *software* Matlab 6.5. Este *software* oferece pacotes prontos para utilização das RNA's em seu *toolbox*. A topologia empregada foi a MLP (*Multilayer Perceptron*) *feedforward* com uma camada de entrada, consistindo de 9 nós, conforme as variáveis obtidas na Análise das Componentes Principais, uma camada escondida, e uma camada de saída com um único neurônio que fornecerá o valor venal do imóvel.

A decisão de somente uma camada oculta na arquitetura da rede, é baseada no Teorema da Aproximação Universal (HAYKIN, 2001), que pode ser visto como um teorema existencial que fornece a justificativa matemática para a aproximação de uma função contínua arbitrária, em oposição à representação exata. Este teorema afirma que uma única camada oculta é suficiente para um *perceptron* de múltiplas camadas (MLP) computar uma aproximação uniforme para um dado conjunto de treinamento, representado pelo conjunto de entradas e a saída desejada (alvo). O número de neurônios na camada oculta variou de nenhum neurônio até 12 neurônios.

A função de ativação deve ser necessariamente contínua e diferenciável. Neste estudo, foi empregado na camada oculta e na camada de saída a função de ativação não-linear do tipo sigmoidal (*logsig*), que assume um intervalo contínuo de valores entre 0 e 1 e é definida como uma função estritamente crescente, que exibe um balanceamento adequado entre comportamento linear e não-linear.

Para o treinamento, foi utilizado o algoritmo de "Levenberg Marquardt" (LM), descrito no item 5.1.6, sendo as redes projetadas para calcular os pesos sinápticos do *perceptron* de múltiplas camadas, isto é, aprendizagem por retropropagação do erro. De acordo com HAYKIN (2001), um *perceptron* de múltiplas camadas treinado com o algoritmo de retropropagação pode ser visto como um veículo prático para realizar um mapeamento não-linear de entrada-saída de natureza geral.

Para a avaliação do desempenho da rede neural, utilizou-se o erro quadrático médio (MSE – mean squared error), que é a média do somatório dos quadrados dos erros de cada caso, tanto do conjunto de treinamento, quanto do conjunto de testes. É normal se adotar a raiz quadrada do erro quadrático médio (rmse) no cálculo do erro da rede. O cálculo do rmse pode ser determinado pela expressão (6.1).

$$rmse = \sqrt{\frac{\sum (y - \tilde{y})^2}{n}}$$
(6.1)

onde:

y = saídas reais normalizadas

 \tilde{y} = saídas normalizadas previstas pela rede;

n = número de casos

Na continuidade, a amostra foi divida em dois grupos. O primeiro grupo chamado de Treinamento (P) com 66% (170 imóveis) da amostra e o segundo com 34% (86 imóveis) foi separado para Teste (S), tomando-se o cuidado de manter a mesma proporção de valores dos imóveis nos dois conjuntos.

Foi escolhida uma nomenclatura para as redes de forma a representar, pela ordem, as seguintes características: número de parâmetros de entrada, número de neurônios na camada escondida e número de iterações do treinamento. Desta forma, a denominação das redes deste trabalho começa com um número correspondente à quantidade de variáveis de

entrada, seguido da letra E, seguida do número de neurônios na camada oculta e a letra N e número de neurônios na camada de saída seguido também pela letra N, e finalmente o número de iterações no treinamento.

Por exemplo, a rede 9E8N1N50 é uma rede com 9 entradas, 8 neurônios na camada oculta, 1 neurônio na camada de saída e foi treinada com 50 iterações.

Cada conjunto foi treinado aproximadamente 50 vezes e o critério de parada utilizado foi o número de iterações (épocas) para cada treinamento.

6.1.1 Experimento I com Redes Neurais

As simulações que apresentaram melhores resultados, são mostrados no quadro 6.1 a seguir.

Quadro 6.1 – Resultado das Melhores Simulações

	Erro Médio	Quadrático
Rede		e (%)
	Treinamento	Teste
9E1N50	14,89%	16,41%
9E1N1N50	12,32%	14,82%
9E2N1N50	11,39%	15,39%
9E3N1N50	7,61%	13,15%
9E4N1N50	6,96%	12,50%
9E5N1N50	6,28%	10,40%
9E6N1N50	5,62%	12,09%
9E7N1N50	3,91%	13,94%
9E8N1N50	4,96%	11,13%
9E9N1N50	3,91%	13,81%
9E10N1N50	4,64%	12,88%
9E11N1N50	3,14%	12,23%
9E12N1N50	2,81%	15,81%

O quadro 6.1 apresenta as redes consideradas de melhor desempenho, dentre várias testadas, por apresentarem os menores percentuais de erros, tanto de treinamento como de

teste. As redes apresentaram no treinamento *rmse's* no intervalo de 2,81% a 14,89% e os *rmse's* de teste ficaram no intervalo entre 10,40% e 16,41%, sendo que a rede com 11 neurônios na camada oculta apresentou o melhor resultado de treinamento, embora o melhor resultado do conjunto teste tenha ocorrido na rede com 5 neurônios na camada oculta, optouse por escolher a rede do conjunto treinamento.

Caso ocorra excesso de treinamento, as redes perdem a capacidade de generalização entre padrões de entrada-saída similares, e passam a apresentar um baixo erro para o conjunto de treinamento e erro elevado para o conjunto de testes, prejudicando o seu desempenho. Para resolver este problema pode-se utilizar um conjunto adicional de dados, chamado de Conjunto de Validação, que é diferente do conjunto de teste e de treinameto. Este método tende a identificar o início do excesso de treinamento

A Figura 6.4 mostra formas conceituais de duas curvas de aprendizagem, uma relativa às medidas sobre o conjunto de estimação (treinamento) e a outra relativa ao subconjunto de validação (teste). Tipicamente, o modelo não funciona tão bem sobre o subconjunto de validação do que sobre o conjunto de estimação (treinamento), sobre o qual o projeto foi baseado. A curva de aprendizagem de estimação decresce monotonamente para um número crescente de épocas, da maneira usual. Diferentemente, a curva de aprendizagem de validação decresce monotonamente para um mínimo e então começa a crescer conforme o treinamento continua.

Quando se observa a curva de aprendizagem de estimação pode parecer que poderíamos melhorar o desempenho indo além do ponto mínimo da curva de aprendizagem de validação. Na realidade, o que a rede aprende após este ponto é essencialmente o ruído contido nos dados de treinamento. Este procedimento sugere que o ponto mínimo na curva de aprendizagem de validação seja usado como critério sensato para encerrar a sessão de treinamento.

Erro médio quadrado

Ponto de mínimo

Amostra de Validação

Ponto de mínimo

Amostra de Treinamento

Número de iterações

Figura 6.4 - Treinamento versus capacidade de generalização da RNA

Fonte: HAYKIN (2001)

Os quadros 6.2 e 6.3 mostram a ocorrência de casos por faixa de erro, com base na análise do quadro 6.1, referente ao conjunto de treinamento e de teste. Nota-se que a maior ocorrência de erros nos dois conjuntos ficou abaixo de 10% do valor previsto. No conjunto de treinamento, por exemplo, 66% do total dos casos está na faixa de até 10% dos valores observados, no conjunto de teste, 52% dos casos apresentou erro na faixa de até 20%, o que pode ser considerado um bom resultado, significando que os valores preditos pela rede, não ficam tão distantes dos valores esperados.

A análise de casos por faixa de erro é relevante, uma vez que o valor venal é a base para calcular o IPTU do imóvel, no caso da cidade de Guarapuava, é aplicado o percentual de 0,55% sobre o valor venal, sendo este o valor a ser pago pelo contribuinte. Se o erro for muito alto acabará por onerar ou desonerar demasiado o contribuinte.

Quadro 6.2 - Ocorrência de Casos por Faixa de Erro do Conjunto Treinamento

Erro	n.º de casos	%
0 a 10%	113	66%
> 10% a 20%	29	17%
> 20% a 30%	12	7%
> 30% a 40%	9	5%
> 40% a 50%	1	1%
> 50% a 60%	4	2%
> 60%	2	1%
Total de casos	170	100%

Quadro 6.3 - Ocorrência de Casos por Faixa de Erro do Conjunto Teste

n.º de casos	%		
25	29%		
20	23%		
10	12%		
6	7%		
5	6%		
4	5%		
16	19%		
86	100%		
	25 20 10 6 5 4		

Objetivando melhorar o comportamento da rede, analisou-se dois grupos de dados extraídos da amostra original. O critério para separação foi por setores, uma vez que para determinação do valor venal de um imóvel, leva-se em consideração as suas características. Os setores são definidos pela comissão de elaboração da planta genérica observando alguns critérios como região, serviços públicos oferecidos dentre outros.

6.1.2 – Experimento II com Redes Neurais – Setor 9

Primeiramente, utilizou-se os dados originais, ou seja, antes da aplicação da técnica de Análise dos Componentes Principais. O primeiro grupo de dados foi denominado de Setor 9, que contém imóveis localizados em 3 bairros da cidade, composto por 52 amostras. O número de variáveis deste conjunto passou para 10, uma vez que todos os imóveis são do setor 9, desconsiderou-se esta variável e todos os imóveis localizados nesta área possuírem pavimentação e iluminação. Trabalhou-se as redes com as 10 variáveis do modelo inicial (bairro, esgoto, área do terreno, pedologia, topografia, situação, área edificada, tipo, estrutura e conservação). Dividiu-se então, o conjunto de dados do Setor 9, em dois conjuntos, sendo que 75% da amostra, ou seja, 39 observações foram separadas para o conjunto de treinamento da rede e, 25%, ou seja, 13 observações para o conjunto de teste. Os resultados são apresentados no quadro 6.4.

Quadro 6.4 – Resultado das melhores simulações – Setor 9

Rede	Erro Médio Quadrático de <i>rmse</i> (%)	
	Treinamento	Teste
10E2N1N50	1,85%	6,79%
10E4N1N50	1,98%	6,74%
10E6N1N50	1,82%	7,94%
10E8N1N50	1,79%	5,37%
10E10N1N50	1,92%	8,21%
10E12N1N50	2,0%	9,21%

Este quadro 6.4 apresenta as redes consideradas de melhor desempenho por mostrarem os menores percentuais de erros, tanto de treinamento como de teste. As redes apresentaram no treinamento valores para os *rmse's* no intervalo de 1,79% a 2% e no teste os *rmse's* ficaram no intervalo entre 5,37% e 9,21%, sendo que a rede com 8 neurônios na camada oculta apresentou o melhor resultado.

Realizou-se após, a Análise Multivariada apenas para os imóveis pertencentes ao Setor 9, com o intuito de reduzir o número de variáveis. A tabela 6.5 mostra o resultado da análise.

Tabela 6.5 - Autovalores em Ordem Decrescente de Magnitude - Setor 9

		% total	Cumul.	Cumul.
	Autova	l Variância	Autoval	%
1	1,842741	18,42741	1,842741	18,42741
2	1,705270	17,05270	3,548011	35,48011
3	1,541218	15,41218	5 , 089229	50,89229
4	1,129855	11,29855	6,219084	62,19084
5	1,022285	10,22285	7,241370	72,41370
6	0,859281	8,59281	8,100650	81,00650
7	0,607593	6,07593	8,708240	87,08240
8	0,541639	5,41639	9,249880	92,49880
9	0,441756	4,41756	9,691640	96,91640
10	0,308361	3,08361	10,000000	100,00000

A Análise mostrou que seis variáveis seriam suficientes para representar a estrutura de covariância inicial, com 19% de perda de informações. O critério de corte utilizado, foi autovalores acima de 0,75, conforme mostra a figura 6.5.

Figura 6.5 – Fatores x Autovalores da Análise Realizada – Setor 9

O peso de cada um dos seis fatores selecionados em cada variável, são mostrados na tabela 6.6. O fator 1 tem carregamento forte na variável esgoto; o fator 2 depende das

variáveis bairro e pedologia, que será identificado como localização; os fatores 3, 4 5 e 6 dependem das variáveis conservação, situação, tipo e topografia respectivamente.

Tabela 6.6 – Matriz Fatorial depois da Rotação – Setor 9

	Fator	Fator	Fator	Fator	Fator	Fator
	1	2	3	4	5	6
BAIR	0,034680	-0 , 802590	-0,040204	0,001530	-0,279145	-0,143320
ESGO	-0,909520	0,072095	0,124071	0,200767	-0,036567	-0,084857
ATER	0,646476	-0,044499	0,332647	0,222542	-0,395369	-0,306818
PEDO	0,002827	-0,813646	0,077127	0,007095	0,212580	0,057292
TOPO	-0,039224	0,069458	0,114657	0,161755	0,076139	0,924480
SITU	-0,063242	-0,036648	-0,019411	0,905187	0,049630	0,161635
AEDI	0,510671	0,328038	0,197137	0,380070	0,285237	-0 , 339572
TIPO	-0,017172	0,034800	0,014956	0,087494	0,904389	0,047813
ESTR	-0,033289	0,292424	-0,593937	0,316445	-0,408516	-0,084527
CONS	0,005360	0 , 060427	0,906089	0,079636	-0 , 070897	0,066729

A análise das comunalidades, apresentada na tabela 6.7, mostra que, todas as variáveis são importantes são importantes na estrutura de covariância , pois apresentam valores acima de 0,65.

Tabela 6.7 – Comunalidades – Setor 9

VARIÁVEIS	COMUNALIDADES
BAIR	0,747658
ESGO	0,880101
ATER	0,833284
PEDO	0,729777
TOPO	0,922787
SITU	0,857885
AEDI	0,729685
TIPO	0,827844
ESTR	0,733453
CONS	0,838175

Assim sendo, foram treinadas redes com 6 variáveis na camada de entrada. Os melhores resultados das simulações estão demonstrados no quadro 6.5.

Quadro 6.5 – Resultado das melhores simulações – Setor 9

Rede	Erro Médio Quadrático Rede rmse (%)	
	Treinamento	Teste
6E2N1N50	0,46%	7,25%
6E4N1N50	0,31%	5,34%
6E6N1N50	0,29%	5,26%
6E8N1N50	0,29%	5,95%
6E10N1N50	0,31%	8,17%
6E12N1N50	0,28%	7,30%

O quadro 6.5 apresenta as redes consideradas de melhor desempenho por mostrarem os menores percentuais de erros, tanto de treinamento como de teste. As redes apresentaram no treinamento *rmse's* no intervalo de 0,28% a 0,46% e os *rmse's* de teste ficaram no intervalo entre 5,26% a 7,30%, sendo que a rede com 6 neurônios na camada oculta apresentou o melhor resultado.

6.1.3 Experimento III com Redes Neurais – Setor 10

O segundo grupo de dados foi denominado de setor 10, que contém imóveis localizados em 4 bairros da cidade, composto por 79 amostras. Neste grupo de dados, também aplicou-se a técnica de Redes Neurais Artificiais antes da aplicação da Análise Multivariada. O número de variáveis deste conjunto passou para 8, uma vez que todos os imóveis são do setor 10, desconsiderou-se esta variável e todos os imóveis localizados nesta área possuírem pavimentação, esgoto e iluminação e a variável pedologia ser a mesma para todos os imóveis da amostra. Trabalhou-se as redes com as 8 variáveis do modelo inicial (bairro, área do terreno, topografia, situação, área edificada, tipo, estrutura e conservação). Dividiu-se o conjunto de dados do Setor 10, em dois conjuntos, sendo que 75% da amostra, ou seja, 59 observações foram separadas para o conjunto de treinamento da rede e, 25%, ou seja, 20 observações para o conjunto de teste. Os resultados são apresentados no quadro 6.6.

Quadro 6.6 - Resultado das melhores simulações - Setor 10

Rede	Erro Médio Quadrático rmse (%)	
	Treinamento	Teste
8E2N1N50	6,86%	16,22%
8E4N1N50	5,98%	17,24%
8E6N1N50	3,31%	11,11%
8E8N1N50	4,62%	22,25%
8E10N1N50	1,83%	21,84%
8E12N1N50	3,21%	22,46%

O quadro 6.6 apresenta as redes consideradas de melhor desempenho por mostrarem os menores percentuais de erros, tanto de treinamento como de teste. As redes apresentaram no treinamento valores de *rmse's* no intervalo de 1,83% a 6,89% e no teste os valores de *rmse's* ficaram no intervalo entre 11,11% e 22,46%, sendo que a rede com 6 neurônios na camada oculta apresentou o melhor resultado.

Realizou-se na sequência, a Análise Multivariada, com o intuito de reduzir o número de variáveis. A tabela 6.8 mostra o resultado dessa análise, quanto a escolha dos fatores.

Tabela 6.8 – Autovalores em Ordem Decrescente de Magnitude – Setor 10

	Autoval	% total Variância	Cumul. Autoval	Cumul.
1	2 , 184209	27 , 30261	2 , 184209	27 , 3026
2	1,436104	17 , 95130	3,620313	45 , 2539
3	1,092079	13,65098	4,712392	58 , 9049
4	0,948262	11,85328	5,660654	70,7582
5	0,824562	10,30703	6,485216	81,0652
6	0,723396	9,04245	7,208612	90,1076
7	0,495078	6,18848	7,703690	96,2961
8	0,296310	3 , 70387	8,000000	100,0000

A Análise mostrou que seis variáveis seriam suficientes para representar a estrutura de covariância inicial, com 9,89% de perda de informações. O critério de corte utilizado, foi autovalores acima de 0,70, conforme mostra a figura 6.6.

Figura 6.6 – Fatores x Autovalores da Análise Realizada – Setor 10

O peso de cada um dos seis fatores selecionados em cada variável, são mostrados na tabela 6.9. O fator 1 é explicado pelas variáveis área do terreno e tipo, que será denominado de condições do terreno; o fator 2 é explicado pela variável área edificada; o fator 3 tem carregamento alto na variável topografia; o fator 4 tem forte carregamento na variável situação; o fator 5 tem explicação na variável bairro e o fator 6 é explicado pela variável conservação.

Tabela 6.9 – Matriz Fatorial depois da Rotação – Setor 10

	Fator	Fator	Fator	Fator	Fator	Fator
	1	2	3	4	5	6
BAIR	0,049344	0,058086	0,065737	0,015405	0,985861	0,055912
ATER	0,860536	0,089031	-0,058668	-0,047237	0,064649	0,013176
TOPO	0,049591	0,001590	0,984885	-0,001734	0,064481	0,084755
SITU	-0,111843	-0,004720	-0,003462	0,978259	0,017060	0,007911
AEDI	0,046350	0,972224	0,015809	0,011277	0,043231	0,039127
TIPO	-0,880503	-0,019204	-0,089099	0,170897	-0,054572	-0,052168
ESTR	0,614702	-0,405260	0,158684	0,247049	-0,205095	-0,283966
CONS	0,001019	0,053619	0,090126	0,010037	0,052876	0,981606

A análise das comunalidades, apresentada na tabela 6.10, mostra que todas as variáveis são importantes, pois possuem comunalidades acima de 0,65.

Tabela 6.10 – Comunalidades – Setor 10

VARIÁVEIS	COMUNALIDADES
BAIR	0,979309
ATER	0,755787
PEDO	0,896823
TOPO	0,863400
SITU	0,970133
AEDI	0,842854
TIPO	0,793985
ESTR	0,710238
CONS	0,754747

Realizou-se o treinamento da rede após a Análise Multivariada. Os melhores resultados das simulações estão apresentados no quadro 6.7, com somente seis variáveis na camada de entrada e número de neurônios variados na camada oculta.

Quadro 6.7 – Resultado das melhores simulações – Setor 10

Rede	Erro Médio Quadrático rmse (%)		
	Treinamento	Teste	
6E2N1N50	11,74%	13,90%	
6E4N1N50	4,30%	18,58%	
6E6N1N50	1,88%	18,85%	
6E8N1N50	1,78%	20,30%	
6E10N1N50	0,43%	22,24%	
6E12N1N50	0,31%	22,96%	

O quadro 6.7 apresenta as redes consideradas de melhor desempenho por mostrarem os menores percentuais de erros, tanto de treinamento como de teste. As redes apresentaram no treinamento valores do *rmse's* no intervalo de 0,31% a 11,74% e no teste os valores do *rmse's* ficaram no intervalo entre 13,90% e 22,96%, sendo que a rede com 6 neurônios na camada oculta apresentou o melhor resultado.

Os resultados obtidos pelas Redes Neurais Artificiais, quando da separação por setores, foram melhores em relação ao modelo geral, ou seja, quando setorizou-se a amostra, tanto os erros de treinamento quanto de testes, foram significativamente melhores. É possível observar também que, a análise das componentes principais melhorou os resultados de treinamento e de testes para a análise do setor 9. No setor 10 o erro de teste foi superior após a realização da análise das componentes principais.

6.2 MODELO UTILIZANDO ANÁLISE DE REGRESSÃO MÚLTIPLA

O *software* utilizado para a construção da tabela de dados e aplicação do Modelo de Análise de Regressão Múltipla foi o *Excel*, com validação dos resultados através do *software Statistica* v.5.

6.2.1 Experimento I com Regressão Linear Múltipla

Ajustou-se um modelo de Regressão Linear Múltipla para os dados observados, a partir da matriz obtida após a Análise das Componentes Principais, conforme figura 6.1, utilizando os dados contidos na matriz do Apêndice I (matriz dos escores das componentes principais com rotação varimax).

No ajuste do modelo $\underline{Y} = X \underline{\beta} + \underline{\varepsilon}$ verificou-se que as variáveis setor, pedologia e topografia, não são significativamente importantes devido aos seus valores-p serem maiores que 0,05, como mostra a tabela 6.11. Assim, estas variáveis também foram excluídas do modelo.

Tabela 6.11 - Ajuste do Primeiro Modelo de Regressão

Parâmetro	Coeficientes	Erro padrão l	Estatística t	valor-p
Interseção	90070,2	1805,73	49,8801	1E-130
Localização	7724,55	1809,27	4,26943	2,8E-05
Estrutura	15102,6	1809,27	8,34734	5,1E-15
Serviços Urbanos	4649,08	1809,27	2,56958	0,01077
Característica	-9013	1809,27	-4,9816	1,2E-06
Setor	919,268	1809,27	0,50809	0,61185
Área edificada	42448	1809,27	23,4614	1,1E-64
Pedologia	-356,79	1809,27	-0,1972	0,84383
Topografia	2010,1	1809,27	1,111	0,26765
Situação	5028,31	1809,27	2 , 77919	0,00587

A tabela 6.12 apresenta as variáveis utilizadas e os respectivos valores dos coeficientes.

Tabela 6.12 - Ajuste do Modelo Final de Regressão

Parâmetro	Coeficientes	Erro padrão	Estatística t	valor-p
Interseção	90070,2	1800,4016	50,027852	6,586E-132
Localização	7724,55	1803,9283	4,2820725	2,64519E-05
Estrutura	15102,6	1803,9283	8,3720638	4,13014E-15
Serviços Urbanos	4649,08	1803,9283	2,5771964	0,010536985
Característica	-9013	1803,9283	-4,996315	1,10135E-06
Área Edificada	42448	1803,9283	23,530889	3,11186E-65
Situação	5028,31	1803,9283	2,787424	0,005722526

O coeficiente de determinação múltipla (R²), que representa a proporção da variação em *Y* que é explicada através do conjunto de variáveis explanatórias selecionadas, apresentou um valor igual 0,7324, ou seja 73,24% da variação no valor venal pode ser explicado através da variação nas variáveis e, 26,76% dos valores dos imóveis são explicados por outras variáveis que não constam no modelo, conforme tabela 6.13

Tabela 6.13 – Resultado da Estatística

Coeficiente de Correlação	0,85581
R2 (coef. Correlação ao quadrado)	0,73240
R2 ajustado	0,72596
Erro padrão	28806,4
Observações	256

A equação de Regressão Linear Múltipla que descreve a relação entre o valor venal do imóvel e as cinco variáveis independentes é:

$$Valor Venal = 90070,2 + 7724,55X_1 + 15102,6X_2 + 4649,08X_3 - 9013X_4 + 42448X_5 + 5028,31X_6$$

onde:

X1 = 1.º fator – localização

X2 = 2.° fator – estrutura

 $X3 = 3.^{\circ}$ fator – serviços urbanos

X4 = 4.° fator – característica

 $X5 = 5.^{\circ}$ fator – área edificada

 $X6 = 6.^{\circ}$ fator – situação

A Análise de Variância, mostra que rejeita-se a hipótese de não haver regressão, isto é o modelo é significativo a um nível de significância de 0,05. O valor crítico na distribuição F, com 6 e 249 graus de liberdade, é aproximadamente 2,10. Uma vez que F = $113,58 > F_s \cong 2,10$, ou uma vez que o valor-p = 0,0000 < 0,05, rejeita-se H_0 e conclui-se que pelo menos uma das variáveis explanatórias está relacionada com valor venal, conforme tabela 6.14.

Tabela 6.14 - Análise da Variância do Ajuste do Modelo de Regressão

Fonte de Variação	Graus de Liberdade	Soma dos Quadrados	Quadrado Médio	Estatística F	Valor-p
Regressão	6	5,655E+11	9,425E+10	113,5841992	2,3E-68
Resíduo	249	2,066E+11	829810139		
Total	255	7,721E+11			

A figura 6.7 mostra que os valores preditos estão disposto em linha diagonal, indicando uma linearidade satisfatória, ou seja, as previsões se aproximam dos valores reais.

Figura 6.7 – Valores Peditos x Valores Observados

A figura 6.8 apresenta os pontos distribuídos aleatoriamente em torno da linha que passa pela origem, disposição esta, que indica que a suposição de variância constante está correta, ou a condição de homocedasticidade foi cumprida.

Figura 6.8 – Resíduos x Valores Preditos

A estatística de Durbin-Watson (DW) mede a correlação entre cada resíduo e o resíduo correspondente ao período imediatamente antecedente àquele de interesse e é definido pela equação 6.2 (LEVINE, 2005).

$$D = \frac{\sum_{i=2}^{n} (e_i - e_{i-1})^2}{\sum_{i=1}^{n} e_i^2}$$
(6.2)

onde:

 e_i é o resíduo para o período de tempo i.

Quando os resíduos sucessivos são positivamente autocorrelacionados, o valor de D irá se aproximar de zero. Se os resíduos não forem correlacionados, o valor D estará próximo de 2. O teste de Durbin-Watson (DW), apresentou valor D=1,4993 > 0,05, indicando não haver autocorrelação entre os resíduos.

Testou-se a *Gaussianidade* dos resíduos através do teste de *Kolmogorov* que forneceu valor de 0,06194 > que 0,05, indicando que a distribuição dos resíduos é Gaussiana. O princípio deste teste baseia-se na comparação da curva da freqüência cumulativa dos dados, com a função de distribuição teórica de hipótese. Quando as duas curvas se sobrepõem a estatística de teste é calculada através da diferença entre ambas. A magnitude da diferença estabelece-se probabilisticamente, segundo a lei de probabilidade dessa estatística, que se

encontra tabelada. Se os dados experimentais se afastam significativamente do que é esperado segundo a distribuição em hipótese, então as curvas obtidas devem encontrar-se igualmente afastadas, e por um raciocínio análogo, se o ajustamento ao modelo hipotético é admissível, as curvas têm um delineamento próximo.

O quadro 6.8 apresenta alguns valores preditos pela equação ajustada e os valores observados, e a porcentagem de erro da predição.

Quadro 6.8 - Ocorrência de casos por faixa de erro no Modelo de Regressão

Erro	n.º de casos	%
0 a 10%	63	25%
> 10% a 20%	58	23%
> 20% a 30%	41	16%
> 30% a 40%	29	11%
> 40% a 50%	17	7%
> 50% a 60%	21	8%
> 60%	27	11%
Total de Casos	256	100%

Este quadro 6.8 apresenta a classificação por faixa de erro do modelo. Observa-se que em 48% dos casos, os erros dos valores preditos ficaram na faixa de 0 a 20% para mais ou menos do valor observado e 52% dos casos o erro foi superior a 30% do valor observado. É importante observar que em 11% dos casos o erro é superior a 60%, o que pode ser prejudicial no caso de avaliação de valor venal de um imóvel. Este erro justifica-se por conter na amostra alguns imóveis com metragem de terreno relativamente pequena, porém com construções de metragem elevada (sobrados) e também, terrenos com grandes áreas e construções de metragem reduzida, sendo que na separação dos conjuntos de treinamento e teste, estes imóveis ficaram no conjunto de testes, explicando desta forma o erro elevado no conjunto de testes.

Aplicou-se a Análise de Regressão Múltipla para os dois grupos de dados extraídos da amostra original, onde foi aplicada a técnica de Redes Neurais Artificiais, com o objetivo de comparar os resultados obtidos.

6.2.2 Experimento II com Regressão Linear Múltipla

No ajuste do modelo de Regressão para os dados observados a partir da matriz obtida após a Análise Multivariada (tabela 6.6), verificou-se que a variável tipo não é significativamente importante devido seu valor-*p* ser maior que 0,05, como mostra a tabela 6.15. Assim, esta variável foi excluída do modelo.

Tabela 6.15 – Ajuste do Primeiro Modelo de Regressão – Setor 9

Parâmetro	Coeficientes	Erro padrão	Estatistica t	valor-p
Interseção	81388,2	2982 , 756	27,28623	0,000000
Esgoto	22379,7	3011,856	7,43053	0,000000
Localização	8802,6	3011,856	2,92266	0,005413
Conservação	23026	3011,856	7,64513	0,000000
Situação	18694,2	3011,856	6,20688	0,000000
Tipo	5023,8	3011,856	1,668	0,102261
Topografia	-17718,6	3011,856	-5,88294	0,000000

A tabela 6.16 apresenta as variáveis utilizadas e os respectivos valores dos coeficientes.

Tabela 6.16 – Ajuste do Modelo Final de Regressão – Setor 9

Parâmetro	Coeficientes	Erro padrão	Estatística t	Valor-p
Interseção	81388,2	3039,988	26,77253	0,000000
Esgoto	22379,7	3069,647	7,29064	0,000000
Localização	8802,6	3069,647	2,86764	0,006222
Conservação	23026	3069,647	7,50119	0,000000
Situação	18694,2	3069,647	6,09003	0,000000
Topografia	-17718,6	3069,6478	-5,77218	0,000001

O coeficiente de determinação múltipla (R^2) , que representa a proporção da variação em Y que é explicada através do conjunto de variáveis explanatórias selecionadas, apresentou um valor igual 0,8035, ou seja 80,35% da variação no valor venal pode ser explicado através da variação nas variáveis, conforme tabela 6.17.

Tabela 6.17 – Resultado da Estatística

Coeficiente de Correlação	0,896360		
R2 (coef. Correlação ao quadrado)	0,803462		
R2 ajustado	0,782098		
Erro padrão 21922,			
Observações	52		

A equação de Regressão Linear Múltipla que descreve a relação entre o valor venal do imóvel e as cinco variáveis independentes, para o Setor 9 é:

Valor Venal = $81388,2 + 22379,7X_1 + 8802,6X_2 + 23026X_3 + 18694,2X_4 - 17718,6X_5$

onde:

X1 = 1.° fator - esgoto

X2 = 2.º fator – localização

X3 = 3.º fator – conservação

 $X4 = 4.^{\circ}$ fator – situação

 $X5 = 5.^{\circ}$ fator – topografia

A Análise de Variância, mostra que rejeita-se a hipótese de não haver regressão, isto é o modelo é significativo a um nível de significância de 0,05. O valor crítico na distribuição F, com 5 e 46 graus de liberdade, é aproximadamente 2,25. Uma vez que $F = 37,61 > F_s \cong 2,25$, ou uma vez que o valor-p = 0,0000 < 0,05, rejeita-se H_0 e conclui-se que pelo menos uma das variáveis explanatórias está relacionada com valor venal, conforme tabela 6.18.

Tabela 6.18 - Análise da variância do Ajuste do Modelo de Regressão

Fonte de Variação	Graus de Liberdade	Soma dos Quadrados	Quadrado Médio	Estatística <i>F</i>	Valor-p
Regressão	5	903698E5	180740E5	37,61023	0,000000
Resíduo	46	221058E5	480560E3		
Total	51	112476E6			

A figura 6.9 mostra que os valores preditos estão disposto em linha diagonal, indicando uma boa linearidade, ou seja, as previsões se aproximam dos valores reais.

Figura 6.9 - Valores Preditos x Valores Observados - Setor 9

A figura 6.10 apresenta os pontos distribuídos aleatoriamente em torno da linha que passa pela origem, indicando que a suposição de variância constante está correta, ou houve o cumprimento da condição de homocedasticidade.

Figura 6.10 – Resíduos x Valores Preditos – Setor 9

O teste de Durbin-Watson (DW), apresentou valor D=1,189931 > 0,05, indicando não haver autocorrelação entre os resíduos.

A *Gaussianidade* dos resíduos forneceu um valor de 0,462684 > 0,05 através do teste de *Kolmogorov*, indicando que a distribuição dos resíduos é Gaussiana.

A ocorrência de casos por faixa de erro no modelo de regressão aplicado ao Setor 9, é apresentado no quadro 6.9.

Quadro 6.9 - Ocorrência de casos por faixa de erro no Modelo de Regressão - Setor 9

Erro	n.º de casos	%
0 a 10%	19	37%
> 10% a 20%	12	23%
> 20% a 30%	6	12%
> 30% a 40%	10	19%
> 40% a 50%	2	4%
> 50%	3	6%
Total de Casos	52	100%

Nota-se que em 60% dos casos o erro ficou abaixo de 20% e a faixa de erro acima de 50% do valor observado ficou em torno de 6%, que pode ser considerado muito bom, se comparado com a amostra contendo todos os imóveis (quadro 6.8).

6.2.3 Experimento III com Regressão Linear Múltipla

O mesmo procedimento foi realizado para o grupo de dados extraído da amostra original e identificado como Setor 10. No ajuste do modelo de regressão para os dados observados a partir da matriz obtida após a Análise Multivariada (tabela 6.9), verificou-se que as variáveis topografia, situação e bairro apresentam valores-p > 0,05, sendo excluídas do modelo, por não serem significativamente importantes, conforme se observa na tabela 6.19

Tabela 6.19 – Ajuste do primeiro modelo de regressão – Setor 10

Parâmetro	Coeficientes	Erro padrão	Estatistica t	valor-p
Interseção	106594,8	3524,733	30,24196	0,000000
Forma	18920,1	3547,255	5,33373	0,000001
Área edificada	46447,6	3547,255	13,09396	0,000000
Topografia	2964,2	3547,255	0,83562	0,406134
Situação	-4881,5	3547,255	-1,37614	0,173044
Bairro	-3006,9	3547,255	-0,84767	0,399430
Conservação	7832,8	3547,255	2,20813	0,030421

A tabela 6.20 apresenta as variáveis utilizadas e os respectivos valores dos coeficientes.

Tabela 6.20 - Ajuste do Modelo Final de Regressão - Setor 10

Parâmetro	Coeficientes	Erro padrão	Estatistica t	valor-p
Interseção	106594,8	3532,023	30,17954	0,000000
Forma	18920,1	3554 , 592	5 , 32272	0,000001
Área edificada	46447,6	3554 , 592	13,06694	0,000000
Conservação	7832,8	3554,592	2,20357	0,030624

O coeficiente de determinação múltipla (R^2) , que representa a proporção da variação em Y que é explicada através do conjunto de variáveis explanatórias selecionadas, apresentou um valor igual 0.73112, ou seja 73.11% da variação no valor venal pode ser explicado através da variação nas variáveis, conforme tabela 6.21.

Tabela 6.21 – Resultado da Estatística

Tubela 0.21 Resultato da Estatistica	
Coeficiente de Correlação	0,855054
R2 (coef. Correlação ao quadrado)	0,731117
R2 ajustado	0,720362
Erro padrão	31393,0
Observações	79

A equação de Regressão Linear Múltipla que descreve a relação entre o valor venal do imóvel e as três variáveis independentes, para o Setor 10 é:

Valor Venal = $106594.8 + 18920.1X_1 + 46447.6X_2 + 7832.8X_3$

onde:

 $X1 = 1.^{\circ} fator - forma$

 $X2 = 2.^{\circ}$ fator – área edificada

X3 = 3.º fator – conservação

A Análise de Variância, mostra que rejeita-se a hipótese de não haver regressão, isto é o modelo é significativo a um nível de significância de 0,05. O valor crítico na distribuição F, com 3 e 75 graus de liberdade, é aproximadamente 2,68. Uma vez que F =

 $67,977 > F_s \cong 2,68$, ou uma vez que o valor-p = 0,0000 < 0,05, rejeita-se H_0 e conclui-se que pelo menos uma das variáveis explanatórias está relacionada com valor venal, conforme tabela 6.22.

Tabela 6.22 - Análise da Variância do Ajuste do Modelo de Regressão

Fonte de Variação	Graus de Liberdade	Soma dos Quadrados	Quadrado Médio	Estatística <i>F</i>	Valor-p
Regressão	3	200982E6	669943E5	67 , 97729	0,000000
Resíduo	75	739154E5	985540E3		
Total	78	274899E6			

A figura 6.11 mostra que os valores preditos estão dispostos em linha diagonal, indicando uma boa linearidade, ou seja, as previsões se aproximam dos valores reais.

Figura 6.11 – Valores Preditos x Valores Observados – Setor 10

A figura 6.12 apresenta os pontos distribuídos aleatoriamente em torno da linha que passa pela origem, indicando que a suposição de variância constante está correta, ou houve o cumprimento da condição de homocedasticidade.

Figura 6.12 – Resíduos x Valores Preditos – Setor 10

O teste de Durbin-Watson (DW), apresentou valor D=1,181718>0,05, indicando não haver autocorrelação entre os resíduos.

A *Gaussianidade* dos resíduos forneceu um valor de 0,56920 > 0,05 através do teste de *Kolmogorov*, indicando que a distribuição dos resíduos é Gaussiana.

A ocorrência de casos por faixa de erro no modelo de regressão aplicado ao Setor 10, é apresentado no quadro 6.10.

Quadro 6.10 - Ocorrência de casos por faixa de erro no Modelo de Regressão - Setor 10

Erro	n.º de casos	%
0 a 10%	25	32%
> 10% a 20%	17	22%
> 20% a 30%	8	10%
> 30% a 40%	14	18%
> 40% a 50%	5	6%
> 50%	10	13%
Total de Casos	79	100%

No quadro 6.10 verifica-se que em 54% dos casos o erro ficou abaixo de 20% para mais ou para menos do valor observado. É importante ressaltar que a faixa de erro acima de

50% ficou maior do que o observado para o Setor 9, conforme quadro 6.9, devido a heterogeneidade dos imóveis constantes deste conjunto.

Os resultados obtidos na análise de regressão, para os Setores 9 e 10 separadamente apresentaram melhor desempenho quando comparados com a primeira análise (quadros 6.8, 6.9 e 6.10), justificando-se pelas condições específicas de cada setor. Nos ajustes dos modelos, é possível observar (tabelas 6.12, 6.16 e 6.20) que, para cada análise as variáveis modificaram-se, ou seja, no modelo geral identificou-se seis variáveis que explicaram o modelo, no Setor 9 estas variáveis deixaram de ter importância e outras variáveis mostraram-se mais relevantes. No modelo do Setor 10 outras variáveis foram identificadas. O mesmo pode ser observado na aplicação das redes neurais.

Analisando-se os resultados dos erros e as variáveis para cada modelo, surge a possibilidade de melhorar os resultados obtidos, incluindo novas variáveis que tenham maior relevância e expliquem melhor a formação do valor venal de um imóvel.

CAPITULO VI

7. CONSIDERAÇÕES FINAIS

7.1 CONCLUSÕES

Este trabalho teve como objetivo comparar as técnicas de Redes Neurais Artificiais e Regressão Linear Múltipla, para determinação de valor venal de imóveis na cidade de Guarapuava-PR.

Utilizando os dados do Cadastro Imobiliário Municipal, aplicou-se a técnica de Redes Neurais Artificiais, aplicando o algoritmo de "Levenberg Marquardt" com uma camada oculta. O modelo apresentou desempenho superior ao modelo estatístico, na predição do valor venal dos imóveis.

As Redes Neurais Artificiais e a Regressão Linear Múltipla, apresentaram melhores resultados, quando se realizou a separação dos Setores 9 e 10 da amostra principal, isto quer dizer que é importante para o modelo a construção de grupos homogêneos de itens para cada tipo de imóvel. Neste trabalho não foi utilizada nenhuma técnica específica para este fim, porém os métodos multivariados de agrupamentos poderiam ser muito úteis para este tipo de análise.

Na comparação das duas técnicas, embora tenham apresentado resultados semelhantes, as Redes Neurais Artificiais apresentaram desempenho superior, conforme análise ponto a ponto dos quadros 6.6 e 6.22. O algoritmo utilizado exige pouco tempo computacional, necessitando de um número relativamente pequeno de iterações (no trabalho utilizou-se 50 iterações), além do *software* (Matlab) que faz uso de Redes Neurais, apresentar uma forma mais acessível de interface com o usuário, o que facilita a aplicação. O uso da Regressão Linear Múltipla exige que o usuário tenha noções de álgebra, o que dificulta sua utilização e interpretação.

A Análise Multivariada, reduz o número de variáveis, sem perda significativa de informação, ou seja, não prejudica a compreensibilidade do modelo obtendo variáveis não correlacionadas. Neste estudo somente foram utilizadas as variáveis constantes no Cadastro Técnico Imobiliário do Município, que são relativamente poucas, para se avaliar corretamente

um imóvel, mesmo assim a aplicação da técnica mostrou que é possível reduzir o número de variáveis mantendo boa parte das informações. É importante observar, que outras variáveis poderiam melhorar o modelo de determinação de valores venais, uma vez que, fatores como acessibilidade, distância do centro comercial, acesso a escolas, hospitais, supermercados também são importantes na determinação da aquisição de um imóvel e também para a sua valorização, desta forma estas poderiam ser levadas em consideração no modelo.

7.2 SUGESTÕES PARA TRABALHOS FUTUROS

Diante dos resultados obtidos, sugere-se para o desenvolvimento de trabalhos futuros:

- inclusão de outras variáveis no modelo como as descritas anteriormente;
- utilização de técnicas de agrupamento com o objetivando diminuir o erro na predição, ou seja, melhorar os resultados após aplicação das técnicas de Redes Neurais Artificiais e Regressão Linear Múltipla;
- utilização de outros algoritmos de treinamento para as Redes Neurais Artificiais,
 como o quickpropagation e resilient backpropagation, com diferentes topologias e funções de ativação.

REFERÊNCIAS

ALMEIDA, F. C.. **Desvendando o Uso de Redes Neuronais em Problemas de Administração de Empresas.** Revista de Administração de Empresas EASP/FGV, vol. 35, n.1, p. 46-55, jan/fev 1995.

AVERBECK, C. E.; LOCH, C.; OLIVEIRA, R. Planta de Valores Genéricos: Necessidade de Compromisso com a Realidade do Mercado. COBRAC - Congresso Brasileiro de Cadastro Técnico Multifinalitário. UFSC: Florianópolis, 2002.

BALDIN, M. S. Z.. **Redes Neurais na Orientação Profissional.** Curitiba, 2002. Dissertação (Mestrado em Métodos Numéricos em Engenharia, Concentração Programação Matemática) – Setor de Tecnologia e Setor de Ciências Exatas, Universidade Federal do Paraná – UFPR.

BOND, M. T.; SEILER, V. L.; SEILER, M. J. Residential Real Estate Prices: A room with a view. The Journal of Real Estate Research; Jan-Apr 2002; 23, 1; ABI/INFORM Global pg. 129.

BRAULIO, S. N. **Proposta de uma Metodologia para a Avaliação de Imóveis Urbanos Baseado em Métodos Estatísticos Multivariados.** Curitiba, 2005. Dissertação (Mestrado em Métodos Numéricos em Engenharia, Concentração Programação Matemática) – Setor de Tecnologia e Setor de Ciências Exatas, Universidade Federal do Paraná – UFPR.

BRONDINO, N. C. M. Estudo da Influência da Acessibilidade no Valor de Lotes Urbanos Através do Uso de Redes Neurais. São Carlos/SP, 1999. Tese (Doutorado em Engenharia Civil – Transportes) Escola de Engenharia de São Carlos, Universidade de São Paulo.

CALÔBA, G. M.; CALÔBA, L. P.; SALIBY, E. Cooperação entre redes neurais artificiais e técnicas clássicas para previsão de demanda de uma série de vendas de cerveja na Austrália. Pesquisa Operacional vol. 22 n.º 3 Rio de Janeiro, July/Dec. 2002.

CECHIN, A. L.; SOUTO, A.; GONZÁLEZ, M. A.. Análise de Imóveis através de Redes Neurais Artificiais na Cidade de Porto Alegre. Scientia, São Leopoldo, v. 10, n. 2, p. 5-32, 1999.

DANTAS, R. A. Engenharia de Avaliações: uma introdução à metodologia científica. 1.ª Ed. São Paulo: Pini, 2003.

ELIAN, S. N. Análise de Regressão. São Paulo: IME, 1998.

FAUSETT, L., V., Fundamentals of Neural Network: Architectures, Algorithms, and Application. 1.ª Edição, New Jersey, Prentice Hall, 1994.

FIKER, J. Avaliação de Imóveis Urbanos. São Paulo: Pini, 1997.

FIKER, J. Manual de Avaliações e Perícias em Imóveis Urbanos. 1.ª Ed. São Paulo: Pini, 2004.

GONZAGA, L. M. R., Contribuição para o Aumento do Nível de Precisão das Avaliações imobiliárias através da Análise das Preferências do Consumidor. Dissertação, Programa de Pós- Graduação em Engenharia Civil da Universidade Federal do Rio Grande do Sul; Mestre em Engenharia civil. Porto Alegre: PPGEC/UFRGS, 2003.

GONZALEZ, M. A. S.; FORMOSO, C. T. Planta de Valores Utilizando Inteligência Artificial. COBRAC - Congresso Brasileiro de Cadastro Técnico Multifinalitário. UFSC: Florianópolis, 2000.

GREENE, W. H. Econometric Analysis. 3.ª Ed. Prentice Hall. New Jersey, 1997.

GUEDES, J. C. Duas Ferramentas Poderosas à Disposição do Engenheiro de Avaliações – Modelos Lineares Generalizados e Redes Neurais. XI COBREAP, Guarapari/ES, 2001

HAYKIN, S., **Redes Neurais: Princípios e Prática**. 2.ª edição, Porto Alegre: Bookman, 2001.

JOHNSON, R.A.; WICHERN, D.W. **Applied Multivariate Statistical Analysis**. 5. ded. Nova Jersey: Prentice Hall, Inc., 2002

LEMOS, E. P. Análise de Crédito Bancário com o Uso de Data Mining: Redes Neurais e Árvore de Decisão. Curitiba, 2003. Dissertação (Mestrado em Métodos Numéricos em Engenharia, Concentração Programação Matemática) – Setor de Tecnologia e Setor de Ciências Exatas, Universidade Federal do Paraná – UFPR.

LEVINE, D.M; BERENSON, M.L.; STEPHAN, D. Estatística: Teoria e Aplicações. Rio de Janeiro: LTC, 2005.

MACANHAN, V. B. de P. A avaliação de imóveis pelos métodos econômico-financeiros. Itajubá: UNIFEI, 2002. 99p. (Dissertação de mestrado apresentada ao Programa de Pós-Graduação em Engenharia de Produção da Universidade Federal de Itajubá).

MACIEL, J. Análise de um Sistema de Crédito Cooperativo através de Redes Neurais (MLP) com a Utilização do Algoritmo Levenberg Marquardt. Curitiba, 2005. Dissertação (Mestrado em Métodos Numéricos em Engenharia, Concentração Programação Matemática) – Setor de Tecnologia e Setor de Ciências Exatas, Universidade Federal do Paraná – UFPR

MADALOZO, H.C. Desenvolvimento de Ferramenta de Análise de Curvas Horizontais de Rodovias, para Melhoramento de Projeto e Operação, Utilizando Redes Neurais Artificiais. Curitiba, 2003. Dissertação (Mestrado em Métodos Numéricos em Engenharia, Concentração Programação Matemática) – Setor de Tecnologia e Setor de Ciências Exatas, Universidade Federal do Paraná – UFPR.

MARQUES, J. M. Notas de aula da disciplina Análise Multivariada Aplicada à Pesquisa (PPGMNE Guarapuava/PR), 2003.

MEDEIROS, J. S. Bancos de Dados Geográficos e Redes Neurais Artificiais: Tecnologias de apoio à gestão do território. São Paulo, 1999. Tese (Doutoramento em Geografia Física) - Faculdade de Filosofia, Letras e Ciências Humanas da Universidade de São Paulo.

MENDONÇA, M.C.; SOLLERO FILHO, M.; CURI, E; AGUIAR, J.B.; QUEIROGA, H.S.; MAIA, E.A.; AQUINO, R.; RESENDE, O.; CANÇADO, J.M.M. Fundamentos de Avaliações Patrimoniais e Perícias de Engenharia. São Paulo: Editora Pini, 1998.

NGUYEN, N., CRIPPS, A., **Predicting Houseing Value: A Comparison of Múltiple Regressión Análysis and Artificial Neural Networks.** The Journal of Real Estate Reserarch; nov/dec 2001; 22, 3: ABI/INFORM Global.

PELLI NETO, A., ZÁRATE, L. E., Avaliação de Imóveis Urbanos com Utilização de Redes Neurais Artificiais. IBAPE – XII COBREAP, Belo Horizonte/MG, 2003.

SANTOS, C. C. Modelagem de Bacias Urbanas com Redes Neurais Artificiais. São Paulo, 2001. Dissertação (Mestrado em Engenharia – Concentração Engenharia Hidráulica e Sanitária) – Departamento de Engenharia Hidráulica e Sanitária, Escola Politécnica da Universidade de São Paulo.

SCHIAVO, E. H. C., AZEVEDO, M. P., Estudo Comparativo entre Redes Neurais Artificiais e Análise de Regressão Múltipla na Avaliação de Bens, para Pequenas Amostragens. IBAPE – XII COBREAP, Belo Horizonte/MG, 2003.

SILVA, E. da; RAMOS, L.S.; LOCH, C. Considerações sobre a Elaboração de uma Planta Valores Genéricos. COBRAC - Congresso Brasileiro de Cadastro Técnico Multinalitário. UFSC: Florianópolis, 2002.

STEINER, M. T. A. Notas de aula da disciplina Aplicações da Pesquisa Operacional (PPGMNE Guarapuav/PR), 2003.

TRIVELLONI, C. A. P.; HOCHHEIM, N. Avaliação de Imóveis com Técnicas de Análise Multivariada. COBRAC - Congresso Brasileiro de Cadastro Técnico Multifinalitário. UFSC: Florianópolis, 1998.

ZANCAN, E. C., Avaliações de Imóveis em Massa para Efeitos de Tributos Municipais. Rocha Gráfica e Editora Ltda. Florianópolis, 1996.

APENDICE I

Factor Scores (matriz.sta)
Rotation: Varimax normalized
Extraction: Principal components

	Factor								
	1	2	3	4	5	6	7	8	9
1	1,251700633	-1,388546836	0,18174778	-1,188231422	0,1327559	-1,345391372	0,2463195	-0,974631307	1,577209476
2						-0,753054115			
3	0,400646595	1,207753204	0,385350539	-0,155600391	1,468217332	-1,090522974	0,232712055	2,411926234	-0,833290323
4	-0,740001729	0,371062181	0,298338988	-0,043870313	-0,087907624	-1,493507678	0,147791383	-0,441845563	-0,515243731
5	-0,79138899	0,278596821	0,301969904	0,407229287	-0,074906244	-1,267772234	0,087546109	-0,413815291	-0,472963646
6	0,080373811	-0,181625257	-0,007946844	1,684131617	-0,532052027	-0,64982328	0,012785928	-0,559592931	1,395237208
7	0,629186958	-0,380007028	-10,80972146	0,295836175	-2,457378876	-0,3147556	0,445089169	1,768234014	-0,235988254
8	-2,522008775	-1,792976233	1,278707479	-0,39244167	-3,563350834	0,653170913	0,652719577	-0,977276512	-1,193800599
9	0,214567484	-0,286096842	0,172055306	1,713591334	-0,376243289	-0,504949918	0,02018021	1,760581989	-0,704006046
10	1,235359015	-2,17536551	-0,02988862	-1,046442087	-0,256909695	-0,615028163	0,338723699	-0,860395128	1,269739498
11	1,252915067	-1,542874591	0,315493975	-0,74577776	1,891241776	-1,693247963	0,242683158	1,352458013	1,503439307
12	-0,701654027	0,345633073	0,312573164	0,02253602	-0,062776599	-1,23369371	0,151053221	-0,440877829	-0,538711036
13	0,252296511	0,992772993	0,013629189	1,350041372	-0,48013565	-0,762350583	-0,044211909	-0,647165848	1,502581343
14	-0,018875878	0,129537413	0,20728113	-0,707987266	1,224580708	-0,643118946	0,24235556	-0,505009777	-0,710781524
15	0,307289888	-4,393665405	0,015578233	-0,357746522	-0,5866955	-0,285361305	0,381633251	-0,611625702	1,225091397
16	0,176085186	-0,238620645	0,096060864	1,636828374	-0,444863412	-0,544172471	0,016116392	-0,497221674	-0,635658451
17	0,16943908	-0,258328714	0,076288001	1,670884012	1,197613249	-0,532129759	0,068431916	-0,515038873	1,304083432
18	1,13081327	-2,647194998	0,326902473	-1,076865065	-0,073011619	-1,105181036	0,287965699	2,179650761	-0,581472634
19	0,664144741	-1,416263726	-0,014425449	0,722014509	-0,835509389	0,226183141	0,22739382	0,206430891	-0,969607561
20	0,135025709	0,106517235	0,250033294	-0,080588072	1,302357597	-0,995400357	0,275951592	-0,509940337	-0,820075158
21	-0.808504359	0,412683072	0,195951177	0.077220301	-0.435735019	-1,329050494	0,138692952	-0.510550892	1,505161507
22						-0,864107714			
23						-1,351478739			
24	-1,129595461	-1,060834683	0,268122457	1,432094283	-0,135952072	-0,741928568	0,012887302	-0,269306809	-0,452634473
25						-0,752082467			
26						-0,979651302			
27						-0,948883726			
28	*	*	*	*	*	-0,02315288	*	-1,423852919	*
29						-0,631701294			
30						-0,833585589			
31						-0,578411298			
32						-1,231736134			
33						-0,881428516			
34						-0,376828641			
35		0,777033589				-0,717194438			
36	*	*				-0,659338072			
37						-0,56685917			
38						-0,056977011			
39		-0,241927592				-0,541959646		-0,497407907	
40						-0,730048949			
41						-1,406522822			
42						-1,400322022			
43	*	*	*	*	,	-0,029704544	*	,	,
									1,41090893
44 45									
45 46									-0,476044575
46									-0,695570473
47									-0,781502062
48						0,119100535			
49	*	*	,	*	,	-1,324651719	*	,	,
50						-0,379705395			
51						-0,113468084			
52									-0,666589746
53									1,395051823
54									-0,21277595
55	1,626214532	-1,595730607	0,280303994	-2,119502462	2,108972546	-0,693038587	0,309924825	-0,154861799	-0,531777076

	Factor 1	Factor 2	Factor 3	Factor 4	Factor 5	Factor 6	Factor 7	Factor 8	Factor 9
56	0,534946621	-1,237642946	0,139133069	0,075025761	0,661403178	-0,037866405	0,366504149	0,240283009	-1,07712672
57	-0,054364178	-2,32320097	0,393092671	-0,753523097	0,496378891	-1,419272147	0,19293828	0,032517938	1,752322008
58	0,082387733	0,104079228	0,229292011	-0,327770594	1,001076793	-0,560053885	0,253011132	-0,513827123	-0,774052122
59	0,632903852	0,11544326	-0,236994239	-0,905073244	-2,428322811	-0,576478874	0,217406376	-0,787276841	1,267000237
60	0,723105053	-0,068607799	0,204230808	-0,132685892	0,74704039	-0,541805526	0,316614054	1,655439684	-1,013415565
61	0,578765755	1,165209512	0,142655655	0,080507108	-0,104889469	-0,997726376	0,155877932	-0,660544719	-0,709239601
62	0,37041115	-0,211630711	0,01356092	1,021462859	0,591799078	-0,220116462	0,119700184	-0,580844712	1,254480822
63		-0,860375064							
64	-2,405158234	-0,890661512	1,53618563						
65	0,418972917	*	0,386314627				0,155374948		
66		-0,21915418							
67		-0,198499992							
68	,	1,502204951	,	,	*	,	*	*	,
69	0,824726254			-0,633857639					
70		0,004628195							
71		-0,233444937							
72		-3,103792041							
73		1,445277582 -2,012663729							
74 75	,	0,295930021	*	*	,	*	,	,	,
76		-0,322921322							
70 77		-1,369325097							
78	*	1,329912368	*	*	,	,	,	,	,
79		0,214673096							
80		-0,200317779							
81	,	-0,259262602	*	*	,	,	,	,	,
82		-0,419394608							
83	*	0,343276756	,	,	*	*	*	*	*
84	0.54549094			-0,459813359					
85	*	-0,614101905		-0,103089199					
86	-0,693668852	0,049250916	0,270641291	1,345106093	-0,340916205	-0,686215586	-0,019707005	-0,391438238	-0,440264764
87	0,555307211	-0,972846168	-0,116757987	0,05476306	-0,993359664	0,343511115	-6,065077634	-0,578731483	-1,011472459
88	-3,287928854	-1,585711925	0,103150215	-0,029897867	1,492877075	0,079047451	0,355315596	-0,706015921	-0,990473201
89	-0,466916977	1,69376364	-4,270534034	1,110872809	3,094906174	-1,443070288	-1,001537022	-0,379257468	0,064638928
90	0,084491306	-0,188182091	-0,005722565	1,673789548	-0,528236139	-0,554388163	0,012143408	-0,559062278	1,393449094
91	1,064116318	-0,941888592	0,231353263	-0,79586663	0,005249389	-1,112015422	0,256371999	-0,810722696	-0,595060078
92	0,593887271	-0,069094823	0,276842961	-0,048631617	1,36276478	-0,363537547	0,318827002	1,697381522	-1,012295188
93	0,361243598	-0,16870886	0,188078603	0,711933703	-0,362251708	0,019339464	0,134434339	1,709915329	-0,808084155
94	0,623091954			-0,460985802					
95	,	1,121061986		-0,961882633					
96	*	1,169038381	,	,	,	,	*	*	*
97	*	1,250434708	,	,	*	*	*	*	*
98	,	-0,917957668		-0,877312049					
99		0,088469489							
100		1,282449601 -0,286693729							
101 102	,	0,090343324	*	*	,	*	,	0,096826331	*
102		-0,160224182					0,2422090		
103		0,117375858							
105		-0,219818752							
106	,	0,108523933	,	,	*	,	*	*	*
107	*	0,143738519	,	,	*	*	*	*	*
108		0,369419427							1,48560534
109		-0,336937707							
110		-0,091554618							
111	-2,863561005			-0,463222891					
112		0,043758708	*	*	,	,	,	,	,
113		0,304888781					0,124397107		
114	-0,250193194	1,252291385	0,274443738	0,571626133	-0,023882674	-0,914508642	0,014349179	-0,52607251	-0,451224018
115	0,245589089	-1,369058026	0,001010022	0,539328245	0,5469502	1,020310632	0,216254533	-0,512673702	1,122458228
116	0,431616451	0,053555458	0,127429627	-0,247604266	-0,438775753	-0,525327734	0,251955431	0,148347263	-0,843181621
117	1,072650777	-2,644153765	0,290779618	-1,588401698	1,793764877	-0,990078342	0,326573133	-0,776637741	-0,520451021
118	-0,70978813	0,32708068	0,313909012	-0,100893172	-0,061113808	-0,866142934	0,144148593	-0,438412488	-0,529154645
119		-1,458361583							
120	0,403832593	-1,210363666	0,012419523	-0,218659812	0,554218844	0,758509497	0,344199408	-0,56851061	1,001936714

	Factor								
	1	2	3	4	5	6	7	8	9
121								-0,674428688	
122								-0,118362936	
123								0,125128234	
124								-0,68742411	
125								-0,51052689	
126								1,963502891	
127								-0,699994375	
128	0,816216027	-0,350779479	0,155615371	0,373704852	1,568104729	1,072506255	0,22308141	-0,543558431	-0,944896515
129	0,696589076	-1,205109081	-0,132977353	-0,189380907	-0,940325339	0,290105873	0,340933507	-0,661266885	0,980193271
130	0,049979357	-0,184709403	-0,015002331	1,525382581	-0,545183946	-0,445569564	0,004171267	-0,557768192	1,418280893
131	0,049979357	-0,184709403	-0,015002331	1,525382581	-0,545183946	-0,445569564	0,004171267	-0,557768192	1,418280893
132	1,17581454	-1,442134095	0,29185829	-1,911837805	-0,100977175	-0,930284951	0,204128841	1,343380409	-0,369895682
133	0,868608948	1,14320079	0,012081834	-1,048736982	1,148013893	-0,210953695	0,262069162	-0,758779429	1,194126238
134	-0,688646031	0,273355779	0,38669471	-0,135195892	0,001325538	-0,631156713	0,142133004	1,820932856	-0,583497342
135	0,962442674	1,177393101	-0,096260017	-1,038070529	-0,870014422	-0,348460208	0,217793172	-0,084910861	1,229721388
136	0,846710905	-0,075292693	-0,002114259	-0,853788118	-2,198235181	0,495549229	0,225051059	2,290101291	-0,890895592
137	0,499142607	-0,488539034	0,062876539	-1,23009683	-0,295154844	-0,704352963	-9,40428745	-0,02097998	-0,40151181
138	0,334873753	-0,047154541	0,109950038	-0,101308965	-0,178945116	0,139656133	0,184522228	-0,565231409	-0,756156994
139	0,879048137	1,249330574	-1,356455059	-0,399232286	1,973770701	-0,456315507	-0,072127795	-0,642816023	-0,703408893
140	-0,018641547	-1,442412712	0,074116348	1,728161958	-0,498723662	0,199570551	0,059625169	-0,405259625	-0,720535817
141	-0,460824855	0,249815482	0,29343854	0,015477196	-0,321155583	-0,395148336	0,161324661	-0,470793706	-0,610541178
142	-0,181743228	1,282747489	0,344082965	0,028979416	0,026091326	-0,738928011	0,069380706	1,706365218	-0,543249132
143	-0,618706019	1,549960291	0,236752187	-0,355777548	-0,087033943	-1,007344752	0,085434687	-0,588131619	1,599727237
144	-0,48247608	0,048953879	0,262244472	0,52307791	-0,082885367	-0,196693278	0,050482566	0,319129759	-0,524775713
145	0,429423844	0,062780466	0,105963495	-0,252712832	-0,454811571	-0,47432257	0,251622627	-0,604035963	-0,82699357
146	-1,034338992	0,099747431	0,272999809	0,670014274	-0,115396306	-0,232700062	-0,067406155	-0,351603799	-0,286011255
147	0,179122484	-0,280047351	0,104356265	1,462122204	-0,431362582	0,172053883	0,006149333	-0,492749529	-0,62998129
148	-3,797230938	-1,551071667	-0,011534489	-2,259014906	1,259953215	1,775012443	0,235522392	0,066394592	-0,637180461
149	-0,477631535	0,028063052	0,275252253	0,43625751	0,203143096	0,015301942	0,055082656	0,327946732	-0,531030651
150	0,434029368	-0,288938672	0,113220815	0,728656964	0,670103027	0,402249615	0,109509415	-0,514644555	-0,748822079
151	-0,797796882	0,112825924	0,387920928	0,848073569	0,017258241	-0,578941049	0,026333769	1,874582736	-0,498892197
152	0,523596575	1,018121501	0,224234509	0,425858438	-0,306054896	-0,46847186	0,080364013	2,372883372	-0,712379558
153	1,081560858	-2,872458581	0,283497315	-0,073283304	1,869972462	-0,09799613	0,232196261	-0,030397572	1,44464947
154	0,115767152	1,339908756	0,135320533	-0,798166275	0,944734257	-0,645404369	0,182821504	-0,662179294	1,394981692
155	0,251252907	-0,198607679	0,107928528	1,059406805	-0,431567151	0,038680987	0,068867168	-0,52056074	-0,685477279
156	-0,832853541	0,027262735	0,509089739	0,831311548	2,342787032	0,245729162	0,079005681	0,458841681	-0,558425032
157	0,5680287	1,243375063	0,117366948	-0,312818389	-0,67481514	-0,782655309	0,194031582	2,247767271	1,216207804
158	0,802332525	-0,002183571	-0,17314505	-0,635763717	-2,315747695	0,66454944	0,230449227	-0,78241284	1,164325146
159	0,380559454	-0,033453269	0,110911961	0,193187538	-0,439544879	-0,194509335	0,191048303	-0,575708334	-0,785856732
160	0,667673262	-0,231507553	0,019048243	0,468404469	1,160646304	0,260918327	0,213550632	-0,617024349	1,119791353
161	0,972915471	-0,090978484	0,022613006	-0,52203518	-0,506231493	-0,037738522	0,29958901	0,071657284	-0,972156612
162	-0,692085052	0,332495366	0,309365987	0,022578326	-0,332212628	-0,916117741	0,141330347	-0,446601973	-0,536597714
163	0,359547999	-3,861397013	0,016250713	1,196215645	-0,590737285	1,419257064	0,339585809	1,900054148	-1,234205529
164			0,399177226	-1,851277251	0,522638388	-0,513421802	0,142166866	-0,790838411	-0,158607983
165	0,627252752	,						-0,700063949	
166	0,252488396	-0,329635158						-0,450454694	
167	-2,842588267	-1,871679527	-0,05656808	0,930337313	-0,501967153	1,146767704	0,234074183	-0,778890424	-1,001547197
168	0,535877674	1,286728808	0,032464225	-0,429553542	-0,473946949	-0,710156686	0,197138108	-0,754623175	1,290328069
169	-0,671268255	0,313575495			-0,039385643			-0,438782959	
170	-0,696531221	0,30048764	0,34130643	-0,122428563	-0,034897491	-0,665132614	0,142820007	0,315368672	-0,550195632
171								2,454663805	
172	,	0,241781888	*	*	*	*	*	0,265847808	,
173	0,254334235	-0,077833926	0,079050011	0,522137758	-0,752828704	-0,315747008	0,115262766	-0,556117846	-0,690813486
174	-0,26230801	1,252230796	0,271418963	0,513687484	-0,029458196	-0,85372406	0,011218709	-0,525475535	-0,442262581
175								-0,51397801	1,421182037
176	,	,	*	*	-0,062729525	,	,	-0,436917251	
177	-0,837742627	0,247387387	0,284089201	0,397083513	-0,076559035	-0,668930531	0,080508723	1,785629544	1,489337655
178								-0,189606909	
179								-0,769079483	
180								-0,930778516	
181					1,250018733			-0,501729666	
182								2,339731684	
183		-0,294280265			-0,410831483			2,454700158	
184					-0,598810369			1,557515051	
185	U,261166237	-0,324621037	0,133021863	1,649087426	-0,380466664	υ,554394839	0,015678573	-0,491775509	-0,682068636

	Factor	Factor 2	Factor 3	Factor 4	Factor 5	Factor 6	Factor	Factor 8	Factor 9
100	•		_	-	-	_	-	-	•
186			0,153242099						
187			0,048980394					-0,547002049	
188	*	-0,358474283	*	1,380841332					1,349085687
189	*	1,413743235	*	-0,65566726					
190	0,393468387	*	*	-0,230763194					
191		1,071550198		-0,921048249					
192			0,104697074						
193			0,152545324						
194			0,048885714				,	-0,59230814	*
195			0,033619722						
196	1,008672916	*	0,039381491	*	*	*	,	,	-0,744401863
197	0,447434025	-,	0,124751445						
198	*	*	-0,052716828	,	,	,	*	*	*
199			0,138467907						
200			0,103375033						
201			-1,384448172						
202			0,207974778						
203	*	*	0,139059684	*	*	,	*	*	-0,720819507
204	*	*	0,157675662	,	*	0,347036283	,	,	*
205			0,139565608						
206			-1,356526115					2,514942966	
207			0,385282717				-0,022582145		-0,404036774
208			0,160366579						
209	,	,	0,034023226	*	,	0,622971236	,	,	*
210	*	-0,270365831	*	0,361028773	*	,		-0,535420477	
211			0,134273892						
212			0,143354726						
213	0,571530977	1,173943002	0,130872216	-0,613189454	-0,652920749	0,425584554	0,176918216	2,255340064	1,226896211
214	0,221841676	-0,379611856	0,063510856						
215	-0,233777678	1,33114678	0,284072533	-1,189174806	-0,046447608	0,728941062	0,087278334	0,185365539	-0,46803629
216			0,030927115						
217	*	0,959987011		-0,967568285					
218			0,251342663						
219			0,170666322						
220	*	1,179030256		-1,060859647					
221			-1,307383498						
222			0,117041276						
223			0,045671105						
224	*	*	0,157667966	,	,	,	*	*	,
225	*	*	0,204418525 0,194225971	,	,	,	*	*	,
226 227	*	1,556597731	0,194225971	,	-0,04553262	*	*	0,219572259	*
228	*	*	0,166283711	,	*	,			
229									-0,766547572
230			0,318625444						
231			0,106677434						
232			0,150709625						
233		-1,108029135		-0,369640419					-0,862476953
234			0,250770051					0,227321077	
235		-0,326805986		0,344587303				-0,498721366	
236			0,098311115	*	*			-0,667316285	
237			0,022203882						
238			-0,039861489			0,625607071			
239	1,259580133	0.98952114	0,120502579	-0,650677923				1,485165658	
240	0,436624866	-0,046761499		-0,562949476					
241	0.367998235	0.857501457	0.067224248						
242	-1,016935057	1,557725424	0,135549607	-2,215741454	-0,273157727	0,818508934	-0,014936425	-0,569596418	1,892435242
243	0,376565625	1,177569904	0,132875554	0,427880319	-0,12613051	1,803255532	-6,337239412	0,155481194	-0,672463344
244	0,398491133	0,014801181	0,03728017	-0,376422632	-0,48143534	0,953569915	0,23771176	-0,657855839	1,176118313
245			0,152054027						
246			-0,304311536						
247			0,160122619						
248									1,317967517
249	-0,527955317	-0,096129321	0,269257908	0,594707723	-0,25802765	3,151159639	0,014713981	-0,45919035	1,449559878
250	0,57709697	0,912614051	0,158182094	0,207228681	1,339930371	1,573585413	0,117233283	-0,644140209	1,264662649

	Factor	Factor	Factor	Factor	Factor	Factor	Factor	Factor	Factor
	1	2	3	4	5	6	7	8	9
251	1,087625828	0,91981859	0,184546648	-0,879123024	1,363686216	1,84018258	0,269073402	2,26130799	1,009710154
252	0,032173372	-0,192655106	0,030564983	-0,91836844	1,095616461	2,304516517	0,09626681	-0,546104798	1,419656099
253	0,491809601	-0,321391616	0,267803961	0,672994947	-0,245051491	1,867654014	0,130552867	2,472043514	-0,891678617
254	0,429013579	-0,39205346	0,18765483	1,022169129	-0,293002564	2,57687406	0,06438134	-0,507646944	-0,779810731
255	0,714902713	1,101573886	0,180657558	-0,665516863	-0,310865096	1,246898377	0,188638368	-0,682017844	-0,777611095
256	0,323515998	-0,269288779	0,131205945	-0,022803885	-0,664974713	2,722501883	0,08337755	-0,538136264	-0,705314662

ANEXO I

Tabela 01 – descrição das características referentes à avaliação territorial e suas respectivas pontuações.

Características	Modalidades	Pontuação
	1. Encravado	0,75
	2. Uma frente	0,85
Área da frente	3. Duas frentes	1,0
	4. Três frentes	1,0
	5. Mais de três	1,0

Características	Modalidades	Pontuação
	1. Normal	1,0
	2. Rocha	0,85
Pedologia	3. Turfoso	0,75
	4. Inundável	0,60
	5. Alagado	0,40

Características	Modalidades	Pontuação
	1. Plana	1,0
	2. Aclive	0,95
Topografia	3. Declive	0,85
	4. Irregular	0,80

Características	Modalidades	Pontuação
	1. Em nível	0,90
Nível	2. Mais alto	1,0
	3. Mais baixo	0,80

Características	Modalidades	Pontuação
	1. Favorável	1,0
Forma	2. Desfavorável	0,80

Fonte: Boletim Oficial do Município p. 96.

ANEXO II

Tabela 2 – descrição das características referentes a avaliação predial e suas respectivas pontuações

Características	Modalidades	Pontuação
	1. Sub-habitação	0,0
	2. Baixo	0,70
	3. Médio baixo	0,85
Padrão	4. Médio	1,0
	5. Médio alto	1,25
	6. Alto	1,60

Características	Modalidades	Pontuação
	1. Má	0,60
	2. Regular	0,80
Conservação	3. Boa	0,90
	4. Ótima	1,0

Características	Estrutura/Parede	Valor / m2				
	1. Alvenaria	280,50				
	2. Madeira	127,50				
Casa Isolada	3. Alvenaria/Madeira	170,00				
	4. Placas/Madeira	93,50				
Casa Geminada	5. Placas/Alvenaria	127,50				
	1. Alvenaria	255,00				
	2. Madeira	127,50				
Casa Geminada	3.Alvenaria/Madeira	170,00				
	4. Placas/Madeira	93,50				
	5. Placas/Alvenaria	127,50				
	1. Alvenaria	238,00				
	2. Madeira	110,50				
Sala/Loja	3. Alvenaria/Madeira	170,00				
	4. Placas/Madeira	93,50				
	5. Placas/Alvenaria	127,50				
	1. Alvenaria	170,00				
	2. Madeira	110,50				
Barração	3. Alvenaria/Madeira	153,00				
	4. Placas/Madeira	93,50				
	5. Placas/Alvenaria	127,50				

Características	Modalidades	Pontuação
	1. Não Possui	0
Água	2. Possui	1
	1. Não Possui	0
Iluminação Pública	2. Possui	1
	1. Não Possui	0
Esgoto	2. Possui	1
	1. Não Possui	0
Rede Elétrica	2. Possui	1

Características	Modalidades	Pontuação
	1. Não possui	0
	2. Asfalto	1
Pavimentação	3. Pedra irregular	2
	4. Revestimento	3
	5. Anti-pó	4

Fonte: Boletim Oficial do Município p. 95.

ANEXO III

Município de Guarapuava Secretaria Municipal de Habitação e Urbanismo

		NACHMEN WILLIAMS		A ĈĒ.		BI	C -	ВС	LE	TI	M	DE	I	NFC	R	MA	٩ÇĈ	ES	CA	\DA	\S	TR	AIS		
	CONTROL		L		T																24				
01	CONTROL	E			ZONEA 02	MENTO					O3	1	PERM	TIDA				ICE PGV			O5	EIMPOS	1-T 2-P	FRAÇÃO 06	O DO IMÓVEL
B - ID	ENTIFIC	AÇÃO				I SETOR	- REF. C	ARTOGR	ÁEICA		,	Loui	ADDA	REF. CAR	27001	DÁEICA		Lion	t per	CARTOO	DÁTICA		CUD LO	-	
07						08	1	Antoun	AFIOA			0	1000000	ner. Can	11001	HAFICA		1	0.00	CARTOG			SUB - LO	IE .	
12	MENTO															13	LOTEAME	NTO			14	- 1	AMENTO		
	IDEREÇ	DO IIV	IÓVEL												_										
15	ADOURO																					16	ERO PRED	IAL	
BAIRR 17										18	1000)		,										
PAVIM 19	ENTO	20	EDIFÍCIO	AP/SL/LJ	I/UN				Nº 1		AP/SL/	LJ/UN				2	5000000						№ DE PA	VIMENTO	OS EDIFÍCIO
			ONTRIBU	INTE																					
NOME 25	DO PROPE	RIETÁRIO																CNPJ 26	CPF - P	ROPRIET	ÁRIO				
OCUP/	NDO POR																9 %	CNPJ 28	CPF - O	CUPANT	E		7		
TIPO C	ORRESPO	NDÊNCIA 1- Do Imó 2- Outro	vel	DOURO D	A CORRE	SPONDÊ	NCIA								_			20			No I	PREDIA	L CORRES	SP.	
NOME	DO EDIFÍC	3- Não ter	n						-					AP/SL/LJ/	/UN					Nº AP/S		81 N			
32 ANDAF	CORRESP	. BLO	CO CORRES	P. TEL	EFONE									33					CEP C	34 CORRESE					
35	EMENTO E	36		3	7					010						,			38						
39	LEMENTO	IND. COHP	ESP.							4	DE CO	HHESP.								41	CORRE	SP.			
OCUPA			TERREN																						
42	GAO	1-Residen 2-Misto 3-Comérc 4-Prestaç	io 7	5-Industrial 5-Público 7-Religioso 3-Educacior		le orte/Laser	PATRIMI 43	ONIO	1 3-Pú	rticula blico blico blico		5-Relig 6-Asso Clube	ioso ciação/		CIDÊN 44	ICIA	1-Norr 2-Imur 3-Imur	nal ne IPTU ne IPTU-TS	SITU U 4	JAÇÃO 5		1-Meio 2-Uma 3-Duas	de Quadra Esquina Esquinas	4-Trê 5-Qu 6-End	is Esquinas arteirão cravado
FRENTE 46	TERRENO	1-Encrav 2-Uma fr 3-Duas f	ente 5	-Três Frent -Mais de tr		10000	OCLOGIA		1-Normal 2-Rocha 3-Turfoso	1	4-Inunda 5-Alaga	ável do	TOP0	OGRAFIA		1-Plan 2-Acliv 3-Decl 4-Irreg	/e live	49	RENO	1-Em n 2-Mais 3-Mais	ível alto baixo	FOR	MA TERRE	1-Fa	avorável esfavorável
		VIENSÕE	S (DESC				TERRE	NO OL	HA PA	RA	A RU	A)					you.				-	CO-CO-CO-CO			
СТU - F	RENTE			52	ADO DIREI	то			53	UNDO	os					54	DO ESQUI	ERDO			сти - А 55	REA TO	OTAL	•	
DOC - F	RENTE			57	ADO DIRE	ITO			DOC - F	UND	os					59	ADO ESQU	ERDO			DOC - /	ÁREA T	OTAL		
CA - FR	ENTE			CA - LAD	O DIREITO	0			CA - FU	NDOS	6				C		O ESQUE	RDO			CA - ÁR	IEA TOT	AL		
	CUMENT	TACÕES		02					- 03						Τ,	04					65				
TIPO DO		DATA DO				C	68	OC 1		DO 1	00C 1						LIVRO DO	OC 1					A DOC 1		
TIPO DO	DC 2	DATA DO	C 2			C	FÍCIO DO	OC 2	Ne	DO	00C 2						LIVRO D	OC 2				FOLH	A DOC 2		
72 CODIFIC	AÇÃO TIPO	73 DE DOCU	JMENTO	4.7			74			75							76					77	7		
66	72 TRAS IN		ula Cert. Negativi	5-C a 6-Tr	it. Conces. roqui Ofic ranscrição	ial 8-C	scritura ontrato di ompra e	e Venda							7.	9,									
PAVIME		0-Não ter	n 3-F	Revestim.	ÁGUA		ILUMIN	AÇÃO PL	JBLICA	ESC	зото		REDE	ELÉTRI	CA	LARGI	URA DO PA	ASSEIO (M	1)	Tir	VDICAÇ	ÃO AN	TERIOR		
78 TESTAD	A PRINCIPA	1-Astalto 2-Pedra is	regular 4-A	orimário Anti-pó	79 DEMAIS	TESTAD	80 AS			8	SOM	A TEST	82 ADAS	2		83		ÁREA TO	TAL TE		84				
85					86						87	1			i.	v	*	88	100						
OBSERV	AÇÕES																								
			EDIFICAÇ		R.Fetinger	а Гра	REDES E	XTERNA	s	,	(a) - 2 - 2 - 2 - 2		Icc	NSERVA	cão	1-Má	Teo	SICÃO			PADRA	ă O			
90	2-1 3-1	Apartament Barracão Casa gemin	4-Casa is 5-Sala / I 6-Sobrac ada 7-Sobrac		8-Edicula 9-Cobert o Garage 10-Kitine	tura / em te	91	1- 2- 3-	Alvenaria Metálica Madeira		ista (alv./ ista (pré- ista (pré- é-fabrica		d.) as	92		2-Regu 3-Boa 4-Ótim	ular na	93	2-F 3-F	Ninhada Recuada Fundos	94	1000	2-Sub 3-Baix 4-Méd	Habit.	5-Médio 6-Médio Alto 7-Alto Padrão
95	EDIFIC.	AREA 96	TOTAL UNID	DADE			97	ОМИМ Е	DIFICAD	A	ÁREA 98	1	DA(S) E	DIFICAÇ	ÃO(Õ		99	VARÁ DE	CONSTR	RUÇÃO	Nº ALV/	1	CONSTRI		
101	OLO HABIT	E-SE		№ HAB	T.				мês с	. 1	.USĂO	OBRA				04	CLUSÃO D	A OBRA			OT. CER	TIDÃO I	DEMOLIÇ <i>i</i>	Ю	
	OCESSO F	REVISÃO			OO CADAS	TRADOR			.00	1	-			DATA L	LEVAN		ITO DE CA	MPO			ATA IMI	PRESS	ÃO	7	

ANEXO IV

Bairro	Setor1	nome_lograd	Pavimentação	Esgoto	Iluminaçã o	Area_Terr eno	Pedologia	Topografi a	Situação	Area_Edif_Pri	Tipo	Estrutura	Conserv	vIVenalImovel
CENTRO	452191	SALDANHA, CEL., R.	Asfalto	Sim	Sim	238,75	Normal	Plana	Uma Esquina	194,86	Casa Isolada	Mista (Alv./Mad.)	Boa	R\$ 40.064,82
ALTO DA XV	454192	XV DE NOVEMBRO, R.	Asfalto	Sim	Sim	332,6	Normal	Aclive	Meio de Quadra	99,96	Casa Isolada	Alvenaria	Boa	R\$ 40.080,21
DOS ESTADOS	451191	PARAIBA, R.	Asfalto	Sim	Sim	264	Normal	Irregular	Meio de Quadra	153,34	Casa Isolada	Alvenaria	Ótima	R\$ 40.109,83
TRIANON	452190	ROCHA, CAP., R.	Asfalto	Sim	Sim	459,37	Normal	Plana	Meio de Quadra	89,24	Casa Isolada	Alvenaria	Boa	R\$ 40.123,35
TRIANON	452190	DEZESSETE DE JULHO, R.	Asfalto	Sim	Sim	392,4	Normal	Plana	Meio de Quadra	115,79	Casa Geminada	Alvenaria	Boa	R\$ 40.138,37
CENTRO	452191	GETULIO VARGAS, PRES., R.	Asfalto	Sim	Sim	56,06	Normal	Plana	Uma Esquina	108,37	Apartamento	Alvenaria	Boa	R\$ 40.170,29
CONRADINHO	452194	EUCALIPTOS, DOS, R.	Rev. Primario	Sim	Não	340	Normal	Irregular	Meio de Quadra	167,25	Sobrado Isolado	Alvenaria	Boa	R\$ 40.177,95
MORRO ALTO	454193	MATHIAS GALAM, R.	Nao Tem	Nao	Sim	622,5	Normal	Plana	Meio de Quadra	223,66	Casa Isolada	Alvenaria	Regular	R\$ 40.200,16
CENTRO	452191	VICENTE MACHADO, R.	Asfalto	Sim	Sim	122,09	Normal	Aclive	Meio de Quadra	114,49	Apartamento	Alvenaria	Boa	R\$ 40.231,70
ALTO DA XV	452191	PEDRO SIQUEIRA, R.	Asfalto	Sim	Sim	650	Normal	Plana	Uma Esquina	147,96	Casa Isolada	Madeira	Regular	R\$ 40.242,17
CENTRO	451191	VICENTE MACHADO, R.	Asfalto	Sim	Sim	317,65	Normal	Aclive	Uma Esquina	79,7	Casa Geminada	Mista (Alv./Mad.)	Boa	R\$ 40.247,63
TRIANON	452190	DALIAS, DAS, AV.	Asfalto	Sim	Sim	375,25	Normal	Plana	Meio de Quadra	150,8	Casa Isolada	Alvenaria	Boa	R\$ 40.288,28
CENTRO	452191	PINHEIRO MACHADO, SEN., R.	Asfalto	Sim	Sim	130	Normal	Plana	Uma Esquina	118	Apartamento	Alvenaria	Ótima	R\$ 40.291,15
DOS ESTADOS	451191	ARAGAO DE M. LEAO FILHO, DR, AV.	Asfalto	Sim	Sim	1000	Normal	Plana	Meio de Quadra	114,02	Casa Isolada	Alvenaria	Boa	R\$ 40.318,64
CENTRO	452192	BARAO DO RIO BRANCO, R.	Asfalto	Sim	Sim	587,37	Normal	Plana	Uma Esquina	192,67	Casa Isolada	Madeira	Má	R\$ 40.341,95
CENTRO	452191	GETULIO VARGAS, PRES., R.	Asfalto	Sim	Sim	99	Normal	Plana	Meio de Quadra	112,32	Apartamento	Alvenaria	Boa	R\$ 40.347,55
CENTRO	451191	LARANJEIRAS, DR., R.	Asfalto	Sim	Sim	67,64	Normal	Plana	Uma Esquina	122,2	Apartamento	Alvenaria	Boa	R\$ 40.356,00
CENTRO		CONEGO BRAGA, R.	Asfalto	Sim	Sim	543,37	Normal	Irregular	Meio de Quadra	150,03	Casa Isolada	Mista (Alv./Mad.)	Regular	R\$ 40.357,66
ALTO DA XV		AUGUSTO GOMES DE OLIVEIRA, R.	Asfalto	Sim	Sim	412,5	Normal	Declive	Meio de Quadra	185,2	Sobrado Isolado	Alvenaria	Regular	R\$ 40.362,58
DOS ESTADOS		TOCANTINS, TV.	Asfalto	Sim	Sim	329,19	Normal	Plana	Meio de Quadra	126,85	Casa Isolada	Alvenaria	Boa	R\$ 40.385,23
TRIANON		ROCHA, BRIG, R.	Asfalto	Sim	Sim	323,4	Normal	Plana	Uma Esquina	151,3	Casa Isolada	Alvenaria	Boa	R\$ 40.389,59
DOS ESTADOS		ROCHA, BRIG, R.	Asfalto	Sim	Sim	585,88	Normal	Aclive	Uma Esquina	131,46	Casa Isolada	Alvenaria	Boa	R\$ 40.395.27
TRIANON	452190	ANDRADE NEVES, R.	Asfalto	Sim	Sim	600	Normal	Aclive	Meio de Quadra	197,71	Casa Isolada	Mista (Alv./Mad.)	Regular	R\$ 40.408,37
TRIANON		FREI CANECA, R.	Asfalto	Sim	Sim	417,5	Normal	Plana	Meio de Quadra	123,15		Alvenaria	Regular	R\$ 40.416,51
BONSUCESSO	452193	SEBASTIAO DE C. RIBAS, VER., AV.	Asfalto	Sim	Sim	600	Normal	Plana	Meio de Quadra	99,75	Casa Isolada	Alvenaria	Boa	R\$ 40.422,85
SANTANA		MANOEL RIBAS, AV.	Asfalto	Sim	Sim	495	Normal	Plana	Meio de Quadra	129,15	Casa Isolada	Alvenaria	Regular	R\$ 40.428,23
SANTANA		ACACIAS, DAS, R.	Asfalto	Sim	Sim	603,45	Normal	Aclive	Meio de Quadra	165,38	Casa Isolada	Alvenaria	Boa	R\$ 40.451,39
BATEL		MANOEL MARCONDES, CEL., R.	Asfalto	Sim	Não	519,76	Normal	Plana	Meio de Quadra	133,32	Casa Isolada	Alvenaria	Boa	R\$ 40.455,27
ALTO DA XV		FREDERICO VIRMOND, CAP., R.	Asfalto	Sim	Sim		Normal	Declive	Duas Esquinas	81,34	Casa Isolada	Madeira	Regular	R\$ 40.473,61
CENTRO		FLORIANO PEIXOTO, MAL., R.	Asfalto	Sim	Sim	189,29	Normal	Plana	Meio de Quadra	83,98	Apartamento	Alvenaria	Boa	R\$ 40.484,74
CENTRO		ROCHA, CAP., R.	Asfalto	Sim	Sim	105,42	Normal	Plana	Meio de Quadra	95,35	Apartamento	Alvenaria	Ótima	R\$ 40.492,38
CENTRO		TIRADENTES. R.	Asfalto	Sim	Sim	770	Normal	Irregular	Uma Esquina	87.1	Casa Isolada	Alvenaria	Regular	R\$ 40.527,41
SANTA CRUZ		ANTONIO REBOUCAS, ENG., R.	Asfalto	Sim	Sim	487,5	Normal	Aclive	Meio de Quadra	99,7	Casa Isolada	Alvenaria	Boa	R\$ 40.531,13
CENTRO		SALDANHA, CEL., R.	Asfalto	Sim	Sim	368,6	Normal	Plana	Meio de Quadra	65,1	Sobrado Isolado	Alvenaria	Boa	R\$ 40.534,50
SANTANA		ALCEBIADES RODRIGUES, TV.	Asfalto	Nao	Sim	364	Normal	Declive	Duas Esquinas	165,34	Casa Isolada	Alvenaria	Boa	R\$ 40.536,56
VILA CARLI		VICENTE MACHADO, R.	Asfalto	Nao	Sim	360,12	Normal	Plana	Meio de Quadra	147,94	Casa Isolada	Alvenaria	Ótima	R\$ 40.545,18
BONSUCESSO		PARANA. R.	Asfalto	Sim	Sim	680	Normal	Aclive	Uma Esquina	117,11	Casa Isolada	Alvenaria	Boa	R\$ 40.554,49
BONSUCESSO		LUIS CAVALCANTI DA SILVA, R.	Asfalto	Sim	Sim	336	Normal	Plana	Meio de Quadra	160,71	Casa Isolada	Alvenaria	Boa	R\$ 40.569,03
ALTO DA XV		GUAIRA, R.	Asfalto	Sim	Sim	305,54	Normal	Plana	Meio de Quadra	158,1		Alvenaria	Boa	R\$ 40.570,73
CENTRO		XV DE NOVEMBRO, R.	Asfalto	Sim	Sim	56,1	Normal	Plana	Meio de Quadra	118,02	Apartamento	Alvenaria	Boa	R\$ 40.577,00
CENTRO		XV DE NOVEMBRO, R.	Asfalto	Sim	Sim	56,1	Normal	Plana	Meio de Quadra	118,02	Apartamento	Alvenaria	Boa	R\$ 40.577,00
CENTRO		GUAIRA. R.	Asfalto	Sim	Sim	110,79	Normal	Plana	Meio de Quadra	107,15	Apartamento	Alvenaria	Ótima	R\$ 40.602,77
CENTRO		GUAIRA, R.	Asfalto	Sim	Sim	110,79	Normal	Plana	Meio de Quadra	107,15	Apartamento	Alvenaria	Ótima	R\$ 40.602,77
OLIVINO	401191	GUAITIA, N.	Moiailu	JIIII	JIII	110,79	INUIIIIAI	i idild	ivicio de Quadra	107,10	πραιταιτιετιτο	Aivellalla	Otima	1 τφ 40.002,//

Bairro	Setor1	nome_lograd	Pavimentação	Esgoto	lluminaçã o	Area_Terr eno	Pedologia	Topografi a	Situação	Area_Edif_Pri	Tipo	Estrutura	Conserv	vIVenalImovel
TRIANON	452190	FLORIANO PEIXOTO, MAL., R.	Asfalto	Sim	Sim	481	Normal	Declive	Meio de Quadra	102,83	Casa Isolada	Alvenaria	Boa	R\$ 40.638,66
SANTANA	454191	SEBASTIAO LUSTOSA SIQUEIRA, R.	Asfalto	Sim	Sim	310	Normal	Plana	Uma Esquina	206,5	Casa Isolada	Alvenaria	Boa	R\$ 40.651,85
SANTANA	454191	CANDIDO XAVIER RIBAS, R.	Asfalto	Nao	Sim	400	Normal	Declive	Meio de Quadra	166,72	Sobrado Isolado	Alvenaria	Boa	R\$ 40.660,07
SANTA CRUZ	451190	NORBERTO, COM., R.	Asfalto	Sim	Sim	393,52	Normal	Plana	Uma Esquina	123,9	Casa Isolada	Alvenaria	Ótima	R\$ 40.666,72
SANTANA	454191	FAGUNDES DE SOUZA, R.	Asfalto	Sim	Sim	523,37	Normal	Plana	Meio de Quadra	158,1	Casa Isolada	Alvenaria	Boa	R\$ 40.668,17
SANTA CRUZ	451190	NORBERTO, COM., R.	Asfalto	Sim	Sim	547	Normal	Plana	Meio de Quadra	104,23	Casa Isolada	Alvenaria	Boa	R\$ 40.676,21
MORRO ALTO	454193	BERNARDINO R. DE LACERDA, R.	Asfalto	Nao	Sim	420	Normal	Plana	Meio de Quadra	185	Sobrado Isolado	Alvenaria	Boa	R\$ 40.685,60
ALTO DA XV	452192	MARIALVA, R.	Asfalto	Sim	Sim	832	Normal	Aclive	Meio de Quadra	163,16	Casa Isolada	Alvenaria	Regular	R\$ 40.724,92
TRIANON	452190	ROSAS, DAS, R.	Asfalto	Sim	Sim	367,5	Normal	Plana	Uma Esquina	145,43	Casa Isolada	Alvenaria	Boa	R\$ 40.736,30
CENTRO	452191	MANOEL RIBAS, AV.	Asfalto	Sim	Sim	103,34	Normal	Plana	Uma Esquina	155,84	Apartamento	Alvenaria	Boa	R\$ 40.749,65
CENTRO	452191	MANOEL RIBAS, AV.	Asfalto	Sim	Sim	103,34	Normal	Plana	Uma Esquina	155,84	Apartamento	Alvenaria	Boa	R\$ 40.749,65
BATEL	451191	LARANJEIRAS, DR., R.	Asfalto	Sim	Sim	57	Normal	Plana	Uma Esquina	171,09	Apartamento	Alvenaria	Boa	R\$ 40.790,83
CONRADINHO	451194	GUAICIARA, R.	Revest. Primario	Nao	Sim	584,64	Normal	Plana	Meio de Quadra	170,95	Casa Isolada	Alvenaria	Boa	R\$ 40.794,69
CENTRO	452191	MANOEL RIBAS, AV.	Asfalto	Sim	Sim	103,49	Normal	Plana	Uma Esquina	156,06	Apartamento	Alvenaria	Boa	R\$ 40.807,39
CENTRO	452191	MANOEL RIBAS, AV.	Asfalto	Sim	Sim	103,49	Normal	Plana	Uma Esquina	156,06	Apartamento	Alvenaria	Boa	R\$ 40.807,39
CENTRO	452191	MANOEL RIBAS, AV.	Asfalto	Sim	Sim	103,49	Normal	Plana	Uma Esquina	156,06	Apartamento	Alvenaria	Boa	R\$ 40.807,39
VILA CARLI	449193	TUPI, R.	Anti-Po	Nao	Sim	605,51	Normal	Plana	Meio de Quadra	195,31	Casa Isolada	Alvenaria	Boa	R\$ 40.822,05
BATEL	451190	LARANJEIRAS, DR., R.	Asfalto	Sim	Sim	1188,4	Normal	Declive	Meio de Quadra	150,2	Casa Isolada	Mista (Alv./Mad.)	Boa	R\$ 40.826,07
BONSUCESSO	451193	JOAO OTAVIO NETO, R.	Asfalto	Sim	Sim	336	Normal	Declive	Meio de Quadra	223,23	Casa Isolada	Alvenaria	Regular	R\$ 40.831,60
TRIANON	452190	ROCHA, CAP., R.	Asfalto	Sim	Sim	325	Normal	Declive	Uma Esquina	231,52	Casa Isolada	Mista (Alv./Mad.)	Regular	R\$ 40.845,54
DOS ESTADOS	451192	BAHIA, R.	Asfalto	Sim	Sim	580	Normal	Plana	Meio de Quadra	183,26	Casa Isolada	Alvenaria	Boa	R\$ 40.876,69
ALTO DA XV	454192	XV DE NOVEMBRO, R.	Asfalto	Sim	Sim	1024,42	Normal	Plana	Uma Esquina	64,25	Casa Isolada	Alvenaria	Boa	R\$ 40.893,08
DOS ESTADOS	451192	MOACIR J. SILVESTRI, PREF., AV.	Asfalto	Sim	Sim	695,55	Normal	Plana	Meio de Quadra	15,67	Casa Isolada	Mista (Pré-fab./Alv.)	Regular	R\$ 40.899,29
BONSUCESSO	451193	ABRAO MANOEL DA SILVA, R.	Asfalto	Sim	Sim	361,5	Normal	Aclive	Meio de Quadra	159,79	Casa Isolada	Alvenaria	Boa	R\$ 40.901,49
CENTRO	452190	FREDERICO VIRMOND, CAP., R.	Asfalto	Sim	Sim	216	Normal	Plana	Meio de Quadra	126,64	Casa Geminada	Alvenaria	Ótima	R\$ 40.902,79
BONSUCESSO	451193	BOSQUE, DO, R.	Asfalto	Sim	Sim	289,5	Normal	Plana	Uma Esquina	167,86	Sobrado Geminado	Alvenaria	Boa	R\$ 40.943,93
CENTRO	452191	VISCONDE DE GUARAPUAVA, R.	Asfalto	Sim	Sim	474,31	Normal	Plana	Uma Esquina	138,72	Casa Isolada	Madeira	Boa	R\$ 40.944,53
SANTA CRUZ	451190	GAUDENCIO FERLIN, R.	Nao Tem	Nao	Sim	248,82	Normal	Plana	Meio de Quadra	174,23	Sobrado Isolado	Alvenaria	Boa	R\$ 40.955,39
SANTA CRUZ	451190	GAUDENCIO FERLIN, R.	Nao Tem	Nao	Sim	248,82	Normal	Plana	Meio de Quadra	174,23	Sobrado Isolado	Alvenaria	Boa	R\$ 40.955,39
SANTA CRUZ	452189	AFONSO BOTELHO, R.	Asfalto	Sim	Sim	1057,35	Normal	Plana	Meio de Quadra	126,44	Casa Isolada	Mista (Alv./Mad.)	Boa	R\$ 40.959,65
CENTRO	452190	QUINTINO BOCAIUVA, R.	Asfalto	Sim	Sim	120,72	Normal	Declive	Uma Esquina	139,09	Apartamento	Alvenaria	Boa	R\$ 40.965,39
CENTRO	452191	MANOEL RIBAS, AV.	Asfalto	Sim	Sim	103,91	Normal	Plana	Uma Esquina	156,7	Apartamento	Alvenaria	Boa	R\$ 40.974,51
TRIANON	454190	ORQUIDEAS, DAS, R.	Asfalto	Sim	Sim	360	Normal	Plana	Meio de Quadra	146,04	Casa Geminada	Alvenaria	Ótima	R\$ 40.989,26
ALTO DA XV	454192	PINHEIRO MACHADO, SEN., R.	Asfalto	Sim	Sim	716,1	Normal	Plana	Meio de Quadra	123,78	Casa Isolada	Alvenaria	Boa	R\$ 41.004,47
CENTRO	451191	LARANJEIRAS, DR., R.	Asfalto	Sim	Sim	310,36	Normal	Plana	Meio de Quadra	147,77	Casa Isolada	Alvenaria	Boa	R\$ 41.006,49
CENTRO	452191	XV DE NOVEMBRO, R.	Asfalto	Sim	Sim	95,6	Normal	Plana	Meio de Quadra	98,31	Apartamento	Alvenaria	Boa	R\$ 41.007,41
SANTA CRUZ	452189	RUBEM SIQUEIRA RIBAS, VER., AV.	Asfalto	Nao	Sim	1884,43	Normal	Plana	Meio de Quadra	147,08	Casa Isolada	Mista (Alv./Mad.)	Regular	R\$ 41.029,27
SANTA CRUZ	452190	TIRADENTES, R.	Asfalto	Sim	Sim	362,38	Normal	Plana	Meio de Quadra	104,28	Casa Isolada	Alvenaria	Ótima	R\$ 41.030,28
BONSUCESSO	452193	ELIAS ZACALUSNY, R.	Asfalto	Sim	Sim	2772,41	Normal	Plana	Meio de Quadra	30	Casa Isolada	Madeira	Regular	R\$ 41.076,62
TRIANON	452190	DALIAS, DAS, AV.	Asfalto	Sim	Sim	371	Normal	Aclive	Meio de Quadra	156,92	Casa Isolada	Alvenaria	Boa	R\$ 41.077,70
CENTRO	451191	BARAO DO RIO BRANCO, R.	Asfalto	Sim	Sim	100,95	Normal	Plana	Meio de Quadra	145,66	Apartamento	Alvenaria	Boa	R\$ 41.101,06
CENTRO	452192	XAVIER DA SILVA, DR., R.	Asfalto	Sim	Sim	500	Normal	Declive	Uma Esquina	152,5	Casa Isolada	Mista (Alv./Mad.)	Boa	R\$ 41.108,75
SANTA CRUZ		CINCO DE OUTUBRO, R.	Asfalto	Sim	Sim	272	Normal	Plana	Uma Esquina	126,24	Sobrado Isolado	Alvenaria	Ótima	R\$ 41.125,04
DOS ESTADOS		VICENTE MACHADO, R.	Revest.	Sim	Sim	300	Normal	Declive	Meio de Quadra	189,5	Sobrado Geminado	Alvenaria	Boa	R\$ 41.134,97
			Primario											
DOS ESTADOS	451192	PARANA, R.	Asfalto	Sim	Sim	200,4	Normal	Aclive	Meio de Quadra	196,07	Sobrado Geminado	Alvenaria	Boa	R\$ 41.152,52
CENTRO	452191	PINHEIRO MACHADO, SEN., R.	Asfalto	Sim	Sim	91,85	Normal	Irregular	Uma Esquina	149,75	Apartamento	Alvenaria	Boa	R\$ 41.164,48
VILA CARLI	449193	XAVANTES, R.	Asfalto	Nao	Sim	391	Normal	Plana	Meio de Quadra	204,46	Casa Isolada	Alvenaria	Boa	R\$ 41.168,48

Bairro	Setor1	nome_lograd	Pavimentação	Esgoto	Iluminaçã o	Area_Terr eno	Pedologia	Topografi a	Situação	Area_Edif_Pri	Tipo	Estrutura	Conserv	vIVenalImovel
TRIANON	452190	SALDANHA MARINHO, R.	Asfalto	Sim	Sim	552	Normal	Plana	Meio de Quadra		Casa Isolada	Mista (Alv./Mad.)	Regular	R\$ 41.180,93
TRIANON	452190	DALIAS, DAS, AV.	Asfalto	Sim	Sim	371	Normal	Plana	Meio de Quadra	156,76	Casa Isolada	Alvenaria	Boa	R\$ 41.187,02
BONSUCESSO	452193	INACIO KARPINSKI, R.	Asfalto	Sim	Sim	600	Normal	Plana	Meio de Quadra	178,24	Casa Isolada	Alvenaria	Boa	R\$ 41.197,52
SANTA CRUZ	452190	NORBERTO, COM., R.	Asfalto	Sim	Sim	1200	Inundavel	Declive	Meio de Quadra	62,21	Casa Isolada	Alvenaria	Regular	R\$ 41.217,11
SANTANA	452191	FREI CANECA, R.	Asfalto	Sim	Sim	175,74	Normal	Plana	Meio de Quadra	188,53	Sobrado Geminado	Alvenaria	Boa	R\$ 41.241,57
ALTO DA XV	452192	PINHEIRO MACHADO, SEN., R.	Asfalto	Sim	Sim	680,99	Inundavel	Plana	Meio de Quadra	214	Casa Isolada	Alvenaria	Regular	R\$ 41.291,78
VILA CARLI	449193	PEDRO CARLI, PROF., AV.	Asfalto	Nao	Sim	600	Normal	Plana	Meio de Quadra	193,75	Casa Isolada	Alvenaria	Regular	R\$ 41.297,61
DOS ESTADOS	451192	VICENTE MACHADO, R.	Anti-Po	Sim	Sim	200	Normal	Plana	Meio de Quadra	135,74	Sobrado Isolado	Alvenaria	Ótima	R\$ 41.308,35
CENTRO	452191	GETULIO VARGAS, PRES., R.	Asfalto	Sim	Sim	63,16	Normal	Plana	Uma Esquina	126,32	Apartamento	Alvenaria	Boa	R\$ 41.315,76
CENTRO	452191	FLORIANO PEIXOTO, MAL., R.	Asfalto	Sim	Sim	209,85	Normal	Plana	Meio de Quadra	185,7	Casa Isolada	Madeira	Boa	R\$ 41.322,46
CENTRO	451191	ARLINDO RIBEIRO, R.	Asfalto	Sim	Sim	300	Normal	Aclive	Meio de Quadra	217,33	Casa Isolada	Alvenaria	Boa	R\$ 70.043,52
CENTRO	452191	LEONIDIA, PROFA., R.	Asfalto	Sim	Sim	321,75	Normal	Aclive	Meio de Quadra	245,76	Sobrado Isolado	Alvenaria	Boa	R\$ 70.129,94
CENTRO	452192	BARAO DO RIO BRANCO, R.	Asfalto	Sim	Sim	353,19	Normal	Plana	Meio de Quadra	218,77	Casa Isolada	Alvenaria	Ótima	R\$ 70.214,18
ALTO DA XV	452192	GUAIRA, R.	Asfalto	Sim	Sim	771,82	Normal	Plana	Meio de Quadra	189,3	Casa Isolada	Alvenaria	Ótima	R\$ 70.223,09
SANTA CRUZ	452190	MANOEL MARCONDES, CEL., R.	Asfalto	Sim	Sim	294,5	Normal	Plana	Meio de Quadra	190,45	Sobrado Geminado	Alvenaria	Ótima	R\$ 70.279,13
TRIANON	452190	GENEROSO DE PAULA BASTOS, R.	Asfalto	Sim	Sim	349,37	Normal	Plana	Meio de Quadra	226,63	Sobrado Geminado	Alvenaria	Ótima	R\$ 70.489,62
CENTRO	452191	PINHEIRO MACHADO, SEN., R.	Asfalto	Sim	Sim	308,88	Normal	Plana	Meio de Quadra	129,2	Casa Isolada	Madeira	Boa	R\$ 70.581,42
CENTRO	452192	GUAIRA, R.	Asfalto	Sim	Sim	657,67	Normal	Plana	Meio de Quadra	172,68	Casa Isolada	Alvenaria	Boa	R\$ 70.672,10
TRIANON	452191	ARGILIO FERREIRA, CAP., R.	Asfalto	Sim	Sim	442,25	Normal	Plana	Meio de Quadra	180,02	Sobrado Geminado	Alvenaria	Ótima	R\$ 70.682,42
ALTO DA XV	452191	ALCIONE BASTOS, R.	Asfalto	Sim	Sim	544,68	Normal	Aclive	Meio de Quadra	202,58	Sobrado Isolado	Alvenaria	Boa	R\$ 70.737,44
CENTRO	452190	QUINTINO BOCAIUVA, R.	Asfalto	Sim	Sim	706,22	Normal	Declive	Uma Esquina	216,34	Casa Isolada	Alvenaria	Boa	R\$ 70.782,92
DOS ESTADOS	451192	SALDANHA MARINHO, R.	Asfalto	Sim	Sim	840	Normal	Plana	Meio de Quadra	261,34	Sobrado Geminado	Alvenaria	Boa	R\$ 70.799,42
TRIANON	452190	VICENTE MACHADO, R.	Asfalto	Sim	Sim	264	Normal	Plana	Uma Esquina	256,96	Sobrado Geminado	Alvenaria	Boa	R\$ 71.026,08
BONSUCESSO	451193	JUVINO LARA GALVAO, R.	Asfalto	Sim	Sim	325	Normal	Plana	Meio de Quadra	256	Sobrado Isolado	Alvenaria	Boa	R\$ 71.182,32
TRIANON	452190	DEZESSETE DE JULHO, R.	Asfalto	Sim	Sim	212,55	Normal	Plana	Uma Esquina	276,79	Sobrado Geminado	Alvenaria	Boa	R\$ 71.249,12
CENTRO	452191	SALDANHA, CEL., R.	Asfalto	Sim	Sim	570,81	Normal	Plana	Uma Esquina	138,32	Casa Isolada	Alvenaria	Boa	R\$ 71.272,47
TRIANON	452190	FREI CANECA, R.	Asfalto	Sim	Sim	385	Normal	Plana	Uma Esquina	238,97	Casa Isolada	Alvenaria	Boa	R\$ 71.360,38
CENTRO	451191	MOACIR J. SILVESTRI, PREF., AV.	Asfalto	Sim	Sim	157,28	Normal	Plana	Meio de Quadra		Apartamento	Alvenaria	Boa	R\$ 71.398,27
CENTRO	451191	MOACIR J. SILVESTRI, PREF., AV.	Asfalto	Sim	Sim	157,28	Normal	Plana	Meio de Quadra	187	Apartamento	Alvenaria	Boa	R\$ 71.398,27
BONSUCESSO		INACIO KARPINSKI, R.	Asfalto	Sim	Sim	380	Normal	Declive	Meio de Quadra	,	Casa Isolada	Alvenaria	Boa	R\$ 71.497,75
VILA CARLI	449193	TUPINAMBA, R.	Asfalto	Nao	Sim	600	Normal	Aclive	Meio de Quadra	227,31	Casa Isolada	Alvenaria	Ótima	R\$ 71.570,90
SANTA CRUZ		ANTONIO REBOUCAS, ENG., R.	Asfalto	Sim	Sim	402	Normal	Plana	Meio de Quadra		Casa Geminada	Alvenaria	Boa	R\$ 71.584,87
TRIANON		DEZESSETE DE JULHO, R.	Asfalto	Sim	Sim	1000	Normal	Aclive	Meio de Quadra		Casa Isolada	Alvenaria	Boa	R\$ 71.812,73
SANTA CRUZ		BECKER, PROF., R.	Asfalto	Sim	Sim	261,8	Normal	Plana	Meio de Quadra		Sobrado Isolado	Alvenaria	Ótima	R\$ 71.873,31
BONSUCESSO		PARANA, AV.	Asfalto	Sim	Sim	622,2	Normal	Plana	Uma Esquina	,	Sobrado Isolado	Alvenaria	Regular	R\$ 72.205,42
CENTRO		FREDERICO VIRMOND, CAP., R.	Asfalto	Sim	Sim	450	Normal	Declive	Meio de Quadra	176,8	Casa Isolada	Alvenaria	Boa	R\$ 72.271,93
CENTRO		QUINTINO BOCAIUVA, R.	Asfalto	Sim	Sim	955,5	Normal	Plana	Meio de Quadra		Casa Isolada	Mista (Alv./Mad.)	Regular	R\$ 72.379,43
TRIANON		CINCO DE OUTUBRO, R.	Asfalto	Sim	Sim	494,05	Normal	Plana	Meio de Quadra		Casa Isolada	Alvenaria	Boa	R\$ 72.381,28
CENTRO		CHAGAS, PE., R.	Asfalto	Sim	Sim	514,8	Normal	Declive	Meio de Quadra		Casa Isolada	Mista (Alv./Mad.)	Boa	R\$ 72.417,12
BONSUCESSO		SEBASTIAO DE C. RIBAS, VER., AV.	Asfalto	Sim	Sim	590	Normal	Plana	Uma Esquina		Casa Isolada	Alvenaria	Regular	R\$ 72.419,38
BONSUCESSO		MAX BUCH, R.	Asfalto	Sim	Sim	1673,28	Normal	Plana	Meio de Quadra		Casa Isolada	Alvenaria	Ótima	R\$ 72.503,13
CENTRO		CHAGAS, PE., R.	Asfalto	Sim	Sim	607,76	Normal	Declive	Uma Esquina		Casa Isolada	Madeira	Boa	R\$ 72.527,29
CENTRO		LUSTOSA, CEL., R.	Asfalto	Sim	Sim	700	Normal	Declive	Uma Esquina		Casa Isolada	Alvenaria	Boa	R\$ 72.613,86
BONSUCESSO		PEDRO BARBIERI, R.	Asfalto	Sim	Sim	364	Normal	Plana	Meio de Quadra		Casa Isolada	Alvenaria	Ótima	R\$ 72.673,71
CENTRO		SALDANHA, CEL., R.	Asfalto	Sim	Sim	895,12	Normal	Plana	Meio de Quadra		Casa Isolada	Madeira	Má	R\$ 72.810,51
CENTRO		BECKER, PROF., R.	Asfalto	Sim	Sim	343,2	Normal	Plana	Uma Esquina	,	Sobrado Isolado	Alvenaria	Regular	R\$ 72.831,30
TRIANON		ANDRADE NEVES, R.	Asfalto	Sim	Sim	406	Normal	Aclive	Meio de Quadra	243,7	Sobrado Isolado	Alvenaria	Regular	R\$ 73.034,35
CENTRO	452192	ROCHA, BRIG, R.	Asfalto	Sim	Sim	415,65	Normal	Plana	Meio de Quadra	184,66	Casa Isolada	Alvenaria	Ótima	R\$ 73.043,83

Bairro	Setor1	nome_lograd	Pavimentação	Esgoto	lluminaçã o	Area_Terr eno	Pedologia	Topografi a	Situação	Area_Edif_Pri	Tipo	Estrutura	Conserv	vIVenallmovel
BATEL	451190	GUAIRA, R.	Asfalto	Sim	Sim	464	Normal	Plana	Meio de Quadra	394,47	Sobrado Isolado	Alvenaria	Boa	R\$ 73.094,11
ALTO DA XV	452192	PEDRO SIQUEIRA, R.	Asfalto	Sim	Sim	501,62	Normal	Plana	Uma Esquina	251,77	Casa Isolada	Alvenaria	Regular	R\$ 73.135,93
CENTRO	452191	GETULIO VARGAS, PRES., R.	Asfalto	Sim	Sim	220,71	Normal	Plana	Uma Esquina	128,45	Apartamento	Alvenaria	Boa	R\$ 73.148,15
CENTRO	452191	GETULIO VARGAS, PRES., R.	Asfalto	Sim	Sim	220,71	Normal	Plana	Uma Esquina	128,45	Apartamento	Alvenaria	Boa	R\$ 73.148,15
CENTRO	452192	AZEVEDO PORTUGAL, R.	Asfalto	Sim	Sim	1116,31	Normal	Aclive	Meio de Quadra	156,03	Casa Isolada	Mista (Alv./Mad.)	Boa	R\$ 73.190,74
BATEL	451191	LUSTOSA, CEL., R.	Asfalto	Sim	Sim	911,06	Normal	Plana	Uma Esquina	192,71	Casa Isolada	Alvenaria	Ótima	R\$ 73.196,53
TRIANON	452190	QUINTINO BOCAIUVA, R.	Asfalto	Sim	Sim	630	Normal	Aclive	Meio de Quadra	235,64	Casa Isolada	Alvenaria	Boa	R\$ 73.229,92
ALTO DA XV	452192	JOAO MARIA BATISTA, EXP., R.	Asfalto	Sim	Sim	901,5	Normal	Declive	Uma Esquina	157,65	Casa Isolada	Alvenaria	Ótima	R\$ 73.269,52
ALTO DA XV	454192	FREDERICO VIRMOND, CAP., R.	Asfalto	Sim	Sim	1061,9	Normal	Irregular	Meio de Quadra	255,81	Casa Isolada	Alvenaria	Boa	R\$ 73.317,59
CENTRO	452191	CHAGAS, PE., R.	Asfalto	Sim	Sim	1382,6	Alagado	Declive	Meio de Quadra	99,28	Casa Isolada	Madeira	Boa	R\$ 73.332,38
CENTRO	452190	QUINTINO BOCAIUVA, R.	Asfalto	Sim	Sim	661,2	Normal	Plana	Meio de Quadra	255,43	Casa Geminada	Alvenaria	Boa	R\$ 73.370,96
BATEL	451191	CONEGO BRAGA, R.	Pedra Irregular	Sim	Sim	400	Normal	Plana	Meio de Quadra	225,9	Casa Isolada	Alvenaria	Ótima	R\$ 73.525,59
CENTRO	452191	GUAIRA, R.	Asfalto	Sim	Sim	262,76	Normal	Plana	Meio de Quadra	198,01	Apartamento	Alvenaria	Regular	R\$ 73.817,59
SANTANA	452191	BECKER, PROF., R.	Asfalto	Sim	Sim	308	Normal	Plana	Meio de Quadra	308,26	Casa Isolada	Alvenaria	Boa	R\$ 73.826,43
SANTA CRUZ	452190	BECKER, PROF., R.	Asfalto	Sim	Sim	520	Normal	Aclive	Meio de Quadra	207,61	Casa Geminada	Alvenaria	Ótima	R\$ 73.883,24
TRIANON	452190	AFONSO BOTELHO, R.	Asfalto	Sim	Sim	486,75	Normal	Plana	Uma Esquina	234,27	Casa Isolada	Alvenaria	Ótima	R\$ 73.909,38
SANTA CRUZ	452190	BECKER, PROF., R.	Asfalto	Sim	Sim	616	Normal	Declive	Meio de Quadra	237,51	Sobrado Isolado	Alvenaria	Boa	R\$ 73.984,18
CENTRO	452191	FREDERICO VIRMOND, CAP., R.	Asfalto	Sim	Sim	417,07	Normal	Plana	Meio de Quadra	191,81	Casa Isolada	Alvenaria	Boa	R\$ 74.006,84
TRIANON	452190	DEZESSETE DE JULHO, R.	Asfalto	Sim	Sim	932,2	Normal	Plana	Meio de Quadra	201,32	Sobrado Geminado	Alvenaria	Boa	R\$ 74.036,01
CENTRO	452191	SALDANHA, CEL., R.	Asfalto	Sim	Sim	258,5	Normal	Plana	Meio de Quadra	234	Apartamento	Alvenaria	Boa	R\$ 74.038,67
CENTRO	452191	SALDANHA, CEL., R.	Asfalto	Sim	Sim	258,5	Normal	Plana	Meio de Quadra	234	Apartamento	Alvenaria	Boa	R\$ 74.038,67
CENTRO	452191	SALDANHA, CEL., R.	Asfalto	Sim	Sim	258,5	Normal	Plana	Meio de Quadra	234	Apartamento	Alvenaria	Boa	R\$ 74.038,67
CENTRO	452191	SALDANHA, CEL., R.	Asfalto	Sim	Sim	258,5	Normal	Plana	Meio de Quadra	234	Apartamento	Alvenaria	Boa	R\$ 74.038,67
VILA CARLI	449193	TUPINAMBA, R.	Asfalto	Nao	Sim	3000	Normal	Declive	Meio de Quadra	232,84	Casa Isolada	Alvenaria	Regular	R\$ 74.069,60
SANTA CRUZ	452189	AMALIO PINHEIRO, PROF., R.	Asfalto	Sim	Sim	702	Normal	Declive	Meio de Quadra	267,44	Sobrado Isolado	Alvenaria	Boa	R\$ 74.291,12
BONSUCESSO	451193	SEBASTIAO DE C. RIBAS, VER., AV.	Asfalto	Sim	Sim	578,2	Normal	Plana	Meio de Quadra	243,56	Sobrado Geminado	Alvenaria	Boa	R\$ 74.308,76
TRIANON	452190	BELMIRO DE MIRANDA, R.	Asfalto	Sim	Sim	425	Normal	Aclive	Meio de Quadra	218,72	Sobrado Isolado	Alvenaria	Boa	R\$ 74.422,59
CENTRO	452191	CHAGAS, PE., R.	Asfalto	Sim	Sim	396	Normal	Irregular	Meio de Quadra	180,43	Sobrado Isolado	Alvenaria	Ótima	R\$ 74.455,36
CENTRO	451191	CHAGAS, PE., R.	Asfalto	Sim	Sim	171,99	Normal	Declive	Uma Esquina	346,92	Sobrado Isolado	Mista (Alv./Mad.)	Regular	R\$ 74.456,65
DOS ESTADOS	451192	PARANA, R.	Asfalto	Sim	Sim	806	Normal	Plana	Uma Esquina	191,21	Casa Isolada	Alvenaria	Ótima	R\$ 74.534,63
CENTRO	452191	FREDERICO VIRMOND, CAP., R.	Asfalto	Sim	Sim	268,46	Normal	Plana	Meio de Quadra	232,66	Sobrado Geminado	Alvenaria	Boa	R\$ 74.538,95
VILA CARLI	449192	FRANCISCO BROCHADO DA ROCHA,	Asfalto	Sim	Sim	375	Normal	Declive	Meio de Quadra	396,19	Sobrado Isolado	Alvenaria	Boa	R\$ 74.592,30
_		R.								,				, ,,,,,
CENTRO	452192	BENJAMIN CONSTANT, R.	Asfalto	Sim	Sim	348,75	Normal	Irregular	Uma Esquina	189,58	Casa Isolada	Alvenaria	Ótima	R\$ 74.633,34
ALTO DA XV	454192	JOAO LACERDA CALDAS, R.	Asfalto	Sim	Sim	675	Normal	Plana	Uma Esquina	351,87	Casa Isolada	Alvenaria	Boa	R\$ 74.656,60
CENTRO		ROCHA, BRIG, R.	Asfalto	Sim	Sim	353,4	Normal	Plana	Meio de Quadra	228,62	Casa Geminada	Alvenaria	Boa	R\$ 74.673,12
BATEL	451191	ARLINDO RIBEIRO, R.	Asfalto	Sim	Sim	400	Normal	Plana	Uma Esquina	255,21	Sobrado Isolado	Alvenaria	Boa	R\$ 74.800,08
ALTO DA XV	452191	PINHEIRO MACHADO, SEN., R.	Asfalto	Sim	Sim	616	Normal	Declive	Meio de Quadra	200,12	Casa Isolada	Alvenaria	Boa	R\$ 74.817,79
TRIANON	452191	ARGILIO FERREIRA, CAP., R.	Asfalto	Sim	Sim	360,8	Normal	Plana	Meio de Quadra	216,53	Casa Isolada	Alvenaria	Boa	R\$ 74.877,04
ALTO DA XV	452191	BECKER, PROF., R.	Asfalto	Sim	Sim	507	Normal	Aclive	Meio de Quadra	323,96	Sobrado Isolado	Alvenaria	Má	R\$ 74.941,59
SANTA CRUZ	452190	ANDRADE NEVES, R.	Asfalto	Sim	Sim	1073,87	Normal	Plana	Meio de Quadra	313,49	Casa Isolada	Mista (Alv./Mad.)	Boa	R\$ 74.964,83
CENTRO	452192	XAVIER DA SILVA, DR., R.	Asfalto	Sim	Sim	321,9	Normal	Plana	Meio de Quadra	209,87	Casa Isolada	Alvenaria	Ótima	R\$ 74.987,23
CENTRO	451191	GETULIO VARGAS, PRES., R.	Asfalto	Sim	Sim	234,09	Normal	Plana	Meio de Quadra	173,12	Apartamento	Alvenaria	Boa	R\$ 75.016,37
SANTA CRUZ	452190	ANTONIO REBOUCAS, ENG., R.	Asfalto	Nao	Sim	260	Normal	Plana	Meio de Quadra	350,48	Sobrado Isolado	Alvenaria	Regular	R\$ 75.129,79
CENTRO	452191	CONEGO BRAGA, R.	Asfalto	Sim	Sim	328,57	Normal	Plana	Uma Esquina	208,67	Casa Isolada	Alvenaria	Ótima	R\$ 75.327,39
TRIANON	452190	BECKER, PROF., R.	Asfalto	Sim	Sim	358,8	Normal	Plana	Meio de Quadra	234,87	Casa Isolada	Alvenaria	Boa	R\$ 75.340,76
TRIANON	452190	VICENTE MACHADO, R.	Asfalto	Sim	Sim	545	Normal	Declive	Meio de Quadra	241,19	Casa Isolada	Alvenaria	Boa	R\$ 75.369,29
CENTRO	452191	LEONIDIA, PROFA., R.	Asfalto	Sim	Sim	128,81	Normal	Irregular	Uma Esquina	244,4	Apartamento	Alvenaria	Boa	R\$ 75.371,62
CENTRO	452191	LEONIDIA, PROFA., R.	Asfalto	Sim	Sim	128,81	Normal	Irregular	Uma Esquina	244,4	Apartamento	Alvenaria	Boa	R\$ 75.371,62

Bairro	Setor1	nome_lograd	Pavimentação	Esgoto	lluminaçã o	Area_Terr eno	Pedologia	Topografi a	Situação	Area_Edif_Pri	Tipo	Estrutura	Conserv	vIVenallmovel
SANTA CRUZ	452190	BECKER, PROF., R.	Asfalto	Sim	Sim	1091,4	Normal	Declive	Meio de Quadra	188,04	Casa Isolada	Alvenaria	Boa	R\$ 75.372,37
CENTRO	452192	AZEVEDO PORTUGAL, R.	Asfalto	Sim	Sim	435	Normal	Plana	Meio de Quadra	169,84	Sobrado Isolado	Alvenaria	Boa	R\$ 75.377,16
SANTA CRUZ	452190	AFONSO BOTELHO, R.	Asfalto	Sim	Sim	322,5	Normal	Plana	Meio de Quadra	185,75	Sobrado Isolado	Alvenaria	Ótima	R\$ 75.398,02
SANTA CRUZ	452189	ZACARIAS DE GOES, PRES., R.	Asfalto	Sim	Sim	465,89	Normal	Plana	Uma Esquina	351,93	Casa Geminada	Alvenaria	Boa	R\$ 75.494,43
TRIANON	452190	ROSAS, DAS, R.	Asfalto	Sim	Sim	580,12	Normal	Plana	Meio de Quadra	239,67	Casa Isolada	Alvenaria	Boa	R\$ 75.547,67
TRIANON	452190	VICENTE MACHADO, R.	Asfalto	Sim	Sim	490	Normal	Aclive	Uma Esquina	230,8	Casa Geminada	Alvenaria	Boa	R\$ 75.569,41
CENTRO	452190	SALDANHA MARINHO, R.	Asfalto	Sim	Sim	714	Inundavel	Declive	Uma Esquina	241,11	Casa Isolada	Mista (Alv./Mad.)	Boa	R\$ 75.612,96
ALTO DA XV	452191	PEDRO SIQUEIRA, R.	Asfalto	Sim	Sim	546,6	Normal	Plana	Meio de Quadra	228,04	Casa Isolada	Alvenaria	Ótima	R\$ 75.703,58
SANTANA	454190	PRINCESA IZABEL, R.	Asfalto	Nao	Sim	1020	Normal	Plana	Meio de Quadra	229,59	Casa Isolada	Alvenaria	Boa	R\$ 75.715,42
DOS ESTADOS	451191	RONDON, GAL., R.	Asfalto	Sim	Sim	1034	Normal	Plana	Meio de Quadra	227,91	Casa Isolada	Alvenaria	Boa	R\$ 75.717,95
CENTRO	452192	AZEVEDO PORTUGAL, R.	Asfalto	Sim	Sim	370	Normal	Irregular	Meio de Quadra	265,71	Casa Geminada	Alvenaria	Ótima	R\$ 75.733,89
CENTRO	452191	LEONIDIA, PROFA., R.	Asfalto	Sim	Sim	129,43	Normal	Irregular	Uma Esquina	245,59	Apartamento	Alvenaria	Boa	R\$ 75.738,05
CENTRO	452191	LEONIDIA, PROFA., R.	Asfalto	Sim	Sim	129,43	Normal	Irregular	Uma Esquina	245,59	Apartamento	Alvenaria	Boa	R\$ 75.738,05
CENTRO	452192	GUAIRA, R.	Asfalto	Sim	Sim	320,4	Normal	Aclive	Meio de Quadra	210,85	Casa Isolada	Alvenaria	Ótima	R\$ 75.768,96
CENTRO	452191	XAVIER DA SILVA, DR., R.	Asfalto	Sim	Sim	37,08	Normal	Plana	Meio de Quadra	336,57	Apartamento	Alvenaria	Boa	R\$ 147.106,95
CENTRO	452191	XAVIER DA SILVA, DR., R.	Asfalto	Sim	Sim	37,08	Normal	Plana	Meio de Quadra	336,57	Apartamento	Alvenaria	Boa	R\$ 147.106,95
CENTRO	452191	XAVIER DA SILVA, DR., R.	Asfalto	Sim	Sim	37,08	Normal	Plana	Meio de Quadra	336,57	Apartamento	Alvenaria	Boa	R\$ 147.106,95
CENTRO	452191	XAVIER DA SILVA, DR., R.	Asfalto	Sim	Sim	37,08	Normal	Plana	Meio de Quadra	336,57	Apartamento	Alvenaria	Boa	R\$ 147.106,95
CENTRO	452191	XAVIER DA SILVA, DR., R.	Asfalto	Sim	Sim	37,08	Normal	Plana	Meio de Quadra	336,57	Apartamento	Alvenaria	Boa	R\$ 147.106,95
CENTRO	452191	XAVIER DA SILVA, DR., R.	Asfalto	Sim	Sim	37,08	Normal	Plana	Meio de Quadra	336,57	Apartamento	Alvenaria	Boa	R\$ 147.106,95
CENTRO	452191	XAVIER DA SILVA, DR., R.	Asfalto	Sim	Sim	37,08	Normal	Plana	Meio de Quadra	336,57	Apartamento	Alvenaria	Boa	R\$ 147.106,95
CENTRO		XAVIER DA SILVA, DR., R.	Asfalto	Sim	Sim	37,08	Normal	Plana	Meio de Quadra	336,57	Apartamento	Alvenaria	Boa	R\$ 147.106,95
CENTRO	452191	XAVIER DA SILVA, DR., R.	Asfalto	Sim	Sim	37,08	Normal	Plana	Meio de Quadra	336,57	Apartamento	Alvenaria	Boa	R\$ 147.106,95
CENTRO	452191	XAVIER DA SILVA, DR., R.	Asfalto	Sim	Sim	37,08	Normal	Plana	Meio de Quadra	336,57	Apartamento	Alvenaria	Boa	R\$ 147.106,95
CENTRO		XAVIER DA SILVA, DR., R.	Asfalto	Sim	Sim	37,08	Normal	Plana	Meio de Quadra	336,57	Apartamento	Alvenaria	Boa	R\$ 147.106,95
CENTRO		XAVIER DA SILVA, DR., R.	Asfalto	Sim	Sim	37,08	Normal	Plana	Meio de Quadra	336,57	Apartamento	Alvenaria	Boa	R\$ 147.106,95
CENTRO		XAVIER DA SILVA, DR., R.	Asfalto	Sim	Sim	37,08	Normal	Plana	Meio de Quadra	336,57	Apartamento	Alvenaria	Boa	R\$ 147.106,95
CENTRO		XAVIER DA SILVA, DR., R.	Asfalto	Sim	Sim	37,08	Normal	Plana	Meio de Quadra	336,57	Apartamento	Alvenaria	Boa	R\$ 147.106,95
CENTRO		XAVIER DA SILVA, DR., R.	Asfalto	Sim	Sim	37,08	Normal	Plana	Meio de Quadra	336,57	Apartamento	Alvenaria	Boa	R\$ 147.106,95
CENTRO		XAVIER DA SILVA, DR., R.	Asfalto	Sim	Sim	37,08	Normal	Plana	Meio de Quadra	336,57	Apartamento	Alvenaria	Boa	R\$ 147.106,95
CENTRO		XAVIER DA SILVA, DR., R.	Asfalto	Sim	Sim	37,08	Normal	Plana	Meio de Quadra	336,57	Apartamento	Alvenaria	Boa	R\$ 147.106,95
CENTRO		XAVIER DA SILVA, DR., R.	Asfalto	Sim	Sim	37,08	Normal	Plana	Meio de Quadra	336,57	Apartamento	Alvenaria	Boa	R\$ 147.106,95
CENTRO		XAVIER DA SILVA, DR., R.	Asfalto	Sim	Sim	37,08	Normal	Plana	Meio de Quadra	336,57	Apartamento	Alvenaria	Boa	R\$ 147.106,95
CENTRO		XAVIER DA SILVA, DR., R.	Asfalto	Sim	Sim	37,08	Normal	Plana	Meio de Quadra	336,57	Apartamento	Alvenaria	Boa	R\$ 147.106,95
CENTRO		XAVIER DA SILVA, DR., R.	Asfalto	Sim	Sim	37,08	Normal	Plana	Meio de Quadra	336,57	Apartamento	Alvenaria	Boa	R\$ 147.106,95
CENTRO		XAVIER DA SILVA, DR., R.	Asfalto	Sim	Sim	37,08	Normal	Plana	Meio de Quadra	336,57	Apartamento	Alvenaria	Boa	R\$ 147.106,95
CENTRO		XAVIER DA SILVA, DR., R.	Asfalto	Sim	Sim	37,08	Normal	Plana	Meio de Quadra	336,57	Apartamento	Alvenaria	Boa	R\$ 147.106,95
CENTRO		XAVIER DA SILVA, DR., R.	Asfalto	Sim	Sim	37,08	Normal	Plana	Meio de Quadra	336,57	Apartamento	Alvenaria	Boa	R\$ 147.106,95
CENTRO		XAVIER DA SILVA, DR., R.	Asfalto	Sim	Sim	37,08	Normal	Plana	Meio de Quadra	336,57	Apartamento	Alvenaria	Boa	R\$ 147.106,95
CENTRO		XAVIER DA SILVA, DR., R.	Asfalto	Sim	Sim	37,08	Normal	Plana	Meio de Quadra	336,57	Apartamento	Alvenaria	Boa	R\$ 147.106,95
CENTRO		LUSTOSA, CEL., R.	Asfalto	Sim	Sim	367,65	Normal	Plana	Uma Esquina	539,87	Sobrado Isolado	Alvenaria	Ótima	R\$ 147.511,59
CENTRO		GUAIRA, R.	Asfalto	Sim	Sim	184,93	Normal	Plana	Uma Esquina	546,03	Apartamento	Alvenaria	Boa	R\$ 147.653,89
CENTRO		ARLINDO RIBEIRO, R.	Asfalto	Sim	Sim	309,72	Normal	Declive	Uma Esquina	586,91	Apartamento	Alvenaria	Boa	R\$ 148.597,53
		SAO PAULO, R.	Asfalto	Sim	Sim	8740,63	Normal	Irregular	Quarteirao	157,12	Casa Isolada	Madeira	Regular	R\$ 149.579,05
TRIANON		ARGILIO FERREIRA, CAP., R.	Asfalto	Sim	Sim	873	Normal	Aclive	Meio de Quadra	379,75	Casa Isolada	Alvenaria	Ótima	R\$ 150.689,49
		MANOEL RIBAS, AV.	Asfalto	Sim	Sim	1113	Normal	Plana	Uma Esquina	583,95	Sobrado Isolado	Alvenaria	Boa	R\$ 150.962,52
BONSUCESSO		BOSQUE, DO, R.	Asfalto	Sim	Sim	805	Normal	Declive	Meio de Quadra	370,98	Casa Isolada	Alvenaria	Ótima	R\$ 151.685,09
CENTRO	452191	SALDANHA, CEL., R.	Asfalto	Sim	Sim	323,4	Normal	Aclive	Uma Esquina	399,52	Sobrado Isolado	Alvenaria	Boa	R\$ 151.809,31

Bairro	Setor1	nome_lograd	Pavimentação	Esgoto	lluminaçã o	Area_Terr eno	Pedologia	Topografi a	Situação	Area_Edif_Pri	Tipo	Estrutura	Conserv	vIVenallmovel
CENTRO	452191	LEONIDIA, PROFA., R.	Asfalto	Sim	Sim	323,1	Normal	Plana	Meio de Quadra	360,45	Sobrado Isolado	Alvenaria	Ótima	R\$ 151.829,62
ALTO DA XV	452192	XV DE NOVEMBRO, R.	Asfalto	Sim	Sim	522	Normal	Plana	Meio de Quadra	694,62	Sobrado Geminado	Alvenaria	Boa	R\$ 152.125,15
CENTRO	452191	XAVIER DA SILVA, DR., R.	Asfalto	Sim	Sim	1560	Normal	Plana	Uma Esquina	121,72	Casa Isolada	Madeira	Boa	R\$ 155.251,86
ALTO DA XV	452192	GUAIRA, R.	Asfalto	Sim	Sim	800	Normal	Declive	Meio de Quadra	375,05	Sobrado Isolado	Alvenaria	Ótima	R\$ 156.180,39
CENTRO	452191	SALDANHA, CEL., R.	Asfalto	Sim	Sim	658,12	Normal	Plana	Meio de Quadra	417,94	Casa Isolada	Alvenaria	Boa	R\$ 157.341,43
TRIANON	452190	RUBEM SIQUEIRA RIBAS, VER., AV.	Asfalto	Nao	Sim	3550	Normal	Aclive	Meio de Quadra	375,05	Casa Isolada	Alvenaria	Ótima	R\$ 157.672,51
BONSUCESSO	451193	MAX BUCH, R.	Asfalto	Sim	Sim	1075	Normal	Plana	Meio de Quadra	363,27	Casa Isolada	Alvenaria	Ótima	R\$ 157.815,54
CENTRO	452192	CONEGO BRAGA, R.	Asfalto	Sim	Sim	600	Normal	Aclive	Uma Esquina	401,6	Casa Geminada	Alvenaria	Ótima	R\$ 158.993,04
BATEL	451191	PEDRO ALVES, R.	Asfalto	Sim	Sim	1519,37	Normal	Plana	Meio de Quadra	1519,37	Casa Isolada	Alvenaria	Ótima	R\$ 160.907,68
CENTRO	451191	LUSTOSA, CEL., R.	Pedra Irregular	Sim	Sim	725,62	Normal	Plana	Uma Esquina	837,36	Sobrado Isolado	Alvenaria	Regular	R\$ 161.660,25
TRIANON	452191	ARGILIO FERREIRA, CAP., R.	Asfalto	Sim	Sim	1200	Normal	Plana	Uma Esquina	426,67	Casa Isolada	Alvenaria	Ótima	R\$ 161.817,11
CENTRO	452191	FLORIANO PEIXOTO, MAL., R.	Asfalto	Sim	Sim	614,96	Normal	Plana	Meio de Quadra	330,28	Casa Isolada	Alvenaria	Ótima	R\$ 162.076,09
CENTRO	452191	XAVIER DA SILVA, DR., R.	Asfalto	Sim	Sim	37,08	Normal	Plana	Meio de Quadra	336,57	Apartamento	Alvenaria	Ótima	R\$ 163.127,68
CENTRO	452192	ROCHA, BRIG, R.	Asfalto	Sim	Sim	420	Normal	Plana	Meio de Quadra	405,97	Sobrado Isolado	Alvenaria	Ótima	R\$ 163.812,29
SANTANA	454190	ASSUNCAO, R.	Pedra Irregular	Sim	Sim	1602,1	Normal	Irregular	Duas Esquinas	294,66	Casa Isolada	Alvenaria	Boa	R\$ 164.744,77
TRIANON	452190	ANDRADE NEVES, R.	Asfalto	Sim	Sim	1368,64	Normal	Irregular	Meio de Quadra	415,59	Sobrado Isolado	Alvenaria	Boa	R\$ 164.854,74
CENTRO	452191	ROCHA, BRIG, R.	Asfalto	Sim	Sim	422,58	Normal	Plana	Meio de Quadra	395,08	Casa Isolada	Alvenaria	Ótima	R\$ 165.076,48
CENTRO	452192	XAVIER DA SILVA, DR., R.	Asfalto	Sim	Sim	420	Normal	Plana	Uma Esquina	409,32	Sobrado Isolado	Alvenaria	Ótima	R\$ 165.425,03
CENTRO	452191	MANOEL RIBAS, AV.	Asfalto	Sim	Sim	500,94	Normal	Plana	Meio de Quadra	654,8	Sobrado Isolado	Alvenaria	Boa	R\$ 165.592,49
BONSUCESSO	451193	MAX BUCH, R.	Asfalto	Sim	Sim	1100	Normal	Plana	Meio de Quadra	345,22	Casa Isolada	Alvenaria	Ótima	R\$ 166.843,88
CENTRO	452191	VICENTE MACHADO, R.	Asfalto	Sim	Sim	313,87	Normal	Plana	Meio de Quadra	461,13	Sobrado Isolado	Alvenaria	Boa	R\$ 167.469,51
CENTRO		BARAO DO RIO BRANCO, R.	Asfalto	Sim	Sim	624	Normal	Irregular	Uma Esquina	394,09	Casa Isolada	Alvenaria	Ótima	R\$ 168.772,78
CENTRO	452191	GUAIRA, R.	Asfalto	Sim	Sim	184,94	Normal	Plana	Uma Esquina	644,21	Apartamento	Alvenaria	Boa	R\$ 169.999,69
SANTA CRUZ		BECKER, PROF., R.	Asfalto	Sim	Sim	1278,8	Normal	Declive	Meio de Quadra	432	Casa Isolada	Alvenaria	Ótima	R\$ 170.555,07
CENTRO		VICENTE MACHADO, R.	Asfalto	Sim	Sim	440	Normal	Plana	Uma Esquina	469,86	Sobrado Isolado	Alvenaria	Boa	R\$ 170.761,59
BONSUCESSO		BOSQUE, DO, R.	Asfalto	Sim	Sim	1638	Normal	Plana	Uma Esquina	491,36	Sobrado Isolado	Alvenaria	Ótima	R\$ 171.552,57
CENTRO		SALDANHA MARINHO, R.	Asfalto	Sim	Sim	315,55	Normal	Plana	Meio de Quadra	660,95	Sobrado Geminado	Alvenaria	Boa	R\$ 172.713,97
CENTRO		CHAGAS, PE., R.	Asfalto	Sim	Sim	673,75	Normal	Aclive	Meio de Quadra	439,53	Sobrado Isolado	Alvenaria	Regular	R\$ 174.822,95
DOS ESTADOS		SALDANHA MARINHO, R.	Asfalto	Sim	Sim	1059	Normal	Declive	Meio de Quadra	444,67	Casa Isolada	Alvenaria	Ótima	R\$ 174.996,01
BATEL		CONEGO BRAGA, R.	Pedra Irregular	Sim	Sim	1140	Normal	Aclive	Meio de Quadra	400,31	Sobrado Isolado	Alvenaria	Ótima	R\$ 177.038,08
CENTRO		BENJAMIN CONSTANT, R.	Asfalto	Sim	Sim	880,68	Normal	Plana	Meio de Quadra	350	Sobrado Isolado	Alvenaria	Ótima	R\$ 178.053,64
ALTO DA XV		PINHEIRO MACHADO, SEN., R.	Asfalto	Sim	Sim	576,13	Normal	Plana	Meio de Quadra	346,53	Casa Isolada	Alvenaria	Ótima	R\$ 178.486,74
CENTRO		FREDERICO VIRMOND, CAP., R.	Asfalto	Sim	Sim	484	Normal	Plana	Meio de Quadra	402,12	Casa Isolada	Alvenaria	Ótima	R\$ 179.112,40
CENTRO		CHAGAS, PE., R.	Asfalto	Sim	Sim	2206,12	Normal	Plana	Uma Esquina	20	Casa Isolada	Madeira	Má	R\$ 179.804,31
BONSUCESSO		INACIO KARPINSKI, R.	Asfalto	Sim	Sim	825	Normal	Declive	Meio de Quadra	591,55	Sobrado Isolado	Alvenaria	Ótima	R\$ 180.400,12
CENTRO		BECKER, PROF., R.	Asfalto	Sim	Sim	297	Normal	Declive	Meio de Quadra	530,96	Sobrado Isolado	Alvenaria	Boa	R\$ 180.419,69
TRIANON		BELMIRO DE MIRANDA, R.	Asfalto	Sim	Sim	2245,31	Normal	Declive	Uma Esquina	301,56	Casa Isolada	Alvenaria	Ótima	R\$ 180.816,73
CENTRO		SALDANHA MARINHO, R.	Asfalto	Sim	Sim	850	Normal	Plana	Meio de Quadra	176,04	Casa Isolada	Madeira	Regular	R\$ 180.935,15
BATEL		PEDRO ALVES, R.	Asfalto	Sim	Sim	915,47	Normal	Plana	Meio de Quadra	431,46	Sobrado Isolado	Alvenaria	Ótima	R\$ 181.039,48
TRIANON		XAVIER DA SILVA, DR., R.	Asfalto	Sim	Sim	649,8	Normal	Plana	Meio de Quadra	457,16	Sobrado Isolado	Alvenaria	Boa	R\$ 181.426,43
CENTRO		FLORIANO PEIXOTO, MAL., R.	Asfalto	Sim	Sim	1133,65	Normal	Plana	Meio de Quadra	324,92	Casa Isolada	Alvenaria	Ötima	R\$ 182.284,61
TRIANON		GETULIO VARGAS, PRES., R.	Asfalto	Sim	Sim	1710	Normal	Plana	Uma Esquina	381,99	Sobrado Isolado	Alvenaria	Boa	R\$ 182.697,14
CENTRO		XV DE NOVEMBRO, R.	Asfalto	Sim	Sim	817,96	Normal	Plana	Meio de Quadra	206,89	Casa Isolada	Alvenaria	Regular	R\$ 184.776,39
TRIANON		ARGILIO FERREIRA, CAP., R.	Asfalto	Sim	Sim	900	Normal	Declive	Uma Esquina	384,58	Sobrado Isolado	Alvenaria	Ötima	R\$ 184.786,08
CENTRO		VICENTE MACHADO, R.	Asfalto	Sim	Sim	520,52	Normal	Plana	Meio de Quadra	647,15	Sobrado Isolado	Alvenaria	Boa	R\$ 184.794,41
ALTO DA XV		GUAIRA, R.	Asfalto	Sim	Sim	1000	Normal	Plana	Encravado	551,47	Sobrado Isolado	Alvenaria	Ótima	R\$ 184.872,04
ALTO DA XV		CHAGAS, PE., R.	Asfalto	Sim	Sim	850	Normal	Plana	Meio de Quadra	453,16	Sobrado Isolado	Alvenaria	Ótima	R\$ 185.955,95
CENTRO	452191	VICENTE MACHADO, R.	Asfalto	Sim	Sim	930,61	Normal	Plana	Uma Esquina	252,6	Apartamento	Alvenaria	Boa	R\$ 186.600,69

Bairro	Setor1	nome_lograd	Pavimentação	Esgoto	Iluminaçã	Area_Terr	Pedologia	Topografi	Situação	Area_Edif_Pri	Tipo	Estrutura	Conserv	vIVenalImovel
					0	eno		a		nc				
ALTO DA XV	452192	FREDERICO VIRMOND, CAP., R.	Asfalto	Sim	Sim	501,19	Normal	Aclive	Meio de Quadra	393,85	Casa Isolada	Alvenaria	Ótima	R\$ 186.973,98
CENTRO	451191	GETULIO VARGAS, PRES., R.	Asfalto	Sim	Sim	695,36	Normal	Plana	Uma Esquina	462,94	Casa Isolada	Alvenaria	Boa	R\$ 187.266,67
CENTRO	452191	SALDANHA, CEL., R.	Asfalto	Sim	Sim	123,03	Normal	Plana	Uma Esquina	477,25	Apartamento	Alvenaria	Ótima	R\$ 187.570,72
TRIANON	452190	GENEROSO DE PAULA BASTOS, R.	Asfalto	Sim	Sim	2440,9	Normal	Plana	Uma Esquina	354,59	Casa Isolada	Alvenaria	Ótima	R\$ 188.184,82
CENTRO	452190	SALDANHA MARINHO, R.	Asfalto	Sim	Sim	638,02	Inundavel	Declive	Meio de Quadra	585,48	Sobrado Isolado	Alvenaria	Ótima	R\$ 188.304,68
CENTRO	452191	SALDANHA, CEL., R.	Asfalto	Sim	Sim	493,5	Normal	Plana	Uma Esquina	475,65	Casa Isolada	Alvenaria	Boa	R\$ 189.774,31
CENTRO	451191	VICENTE MACHADO, R.	Asfalto	Sim	Sim	855,43	Normal	Aclive	Uma Esquina	319,19	Casa Isolada	Alvenaria	Boa	R\$ 189.851,89
SANTA CRUZ	452189	RUBEM SIQUEIRA RIBAS, VER., AV.	Asfalto	Nao	Sim	50000	Normal	Irregular	Uma Esquina	163,44	Casa Isolada	Alvenaria	Ótima	R\$ 190.746,15
CENTRO	452191	VICENTE MACHADO, R.	Asfalto	Sim	Sim	396,49	Normal	Plana	Meio de Quadra	608,42	Sobrado Isolado	Alvenaria	Boa	R\$ 192.165,12
SANTA CRUZ	451190	FREDERICO VIRMOND, CAP., R.	Asfalto	Sim	Sim	588	Normal	Aclive	Uma Esquina	552,9	Sobrado Isolado	Alvenaria	Boa	R\$ 193.783,43
SANTANA	452191	BECKER, PROF., R.	Asfalto	Sim	Sim	394,87	Normal	Plana	Uma Esquina	956,23	Sobrado Isolado	Alvenaria	Boa	R\$ 194.307,54
CENTRO	451191	QUINTINO BOCAIUVA, R.	Asfalto	Sim	Sim	406,37	Normal	Plana	Uma Esquina	589,18	Sobrado Isolado	Alvenaria	Ótima	R\$ 194.404,40
BATEL	451191	MANOEL MARCONDES, CEL., R.	Asfalto	Sim	Sim	780	Normal	Irregular	Uma Esquina	609,66	Casa Isolada	Alvenaria	Ótima	R\$ 195.847,33
CENTRO	451191	ARLINDO RIBEIRO, R.	Asfalto	Sim	Sim	1902	Normal	Plana	Uma Esquina	508,93	Sobrado Isolado	Alvenaria	Boa	R\$ 196.049,37
CENTRO	452191	FLORIANO PEIXOTO, MAL., R.	Asfalto	Sim	Sim	319	Normal	Irregular	Meio de Quadra	609,7	Sobrado Isolado	Alvenaria	Boa	R\$ 197.568,30
CENTRO	452191	SALDANHA MARINHO, R.	Asfalto	Sim	Sim	197,12	Normal	Plana	Meio de Quadra	741,98	Sobrado Geminado	Alvenaria	Boa	R\$ 197.632,68
CENTRO	452191	CHAGAS, PE., R.	Asfalto	Sim	Sim	496,15	Normal	Plana	Meio de Quadra	562,45	Casa Isolada	Alvenaria	Ótima	R\$ 197.657,29
CENTRO	452192	AZEVEDO PORTUGAL, R.	Asfalto	Sim	Sim	897	Normal	Plana	Meio de Quadra	712,34	Sobrado Isolado	Alvenaria	Boa	R\$ 197.771,72