

CSCE 771: Computer Processing of Natural Language Lecture 7: Statistical Parsing, Quiz

PROF. BIPLAV SRIVASTAVA, AI INSTITUTE 10TH SEPTEMBER, 2024

Carolinian Creed: "I will practice personal and academic integrity."

Acknowledgement: Used materials by Jurafsky & Martin,

Organization of Lecture 7

- Opening Segment
 - Recap of Last Class
 - Announcements
- Main Lecture

- Concluding Segment
 - About Next Lecture Lecture 8

Main Section

- Statistical Parsing
- Quiz 1

Recap of Lecture 6

- We discussed parsers
 - Shallow parsers
 - Dependency parsers

Sep 24 (Tu)	Language Model – PyTorch,				
	BERT, {Resume data, two				
	tasks}				
	- Guest Lecture				
Sep 26 (Th)	Language Model –				
	Finetuning, Mamba - Guest				
	Lecture				
Oct 1 (Tu)	Language model –				
	comparing arch, finetuning -				
	Guest Lecture				
Oct 3 (Th)	Language model –				
	comparison of results,				
	discussion, ongoing trends-				
	Guest Lecture				

Announcements

GUEST LECTURES ON LANGUAGE MODELS

Main Lecture

Statistical Parsing

Given a sentence X, predict the most probable parse tree Y

Probabilistic CFG

- N a set of **non-terminal symbols** (or **variables**)
- Σ a set of **terminal symbols** (disjoint from N)
- R a set of **rules** or productions, each of the form $A \rightarrow \beta$ [p], where A is a non-terminal,
 - β is a string of symbols from the infinite set of strings $(\Sigma \cup N)*$, and p is a number between 0 and 1 expressing $P(\beta|A)$
- S a designated start symbol

P is the probability that non-terminalA will be expanded to the sequence β

$$\sum_{\beta} P(A \to \beta) = 1$$

A PCFG is said to be **consistent** if the sum of the probabilities of all sentences in the language equals 1

Probabilistic CFG Example

Grammar		Lexicon	
$S \rightarrow NP VP$	[.80]	$Det \rightarrow that [.10] \mid a [.30] \mid the [.60]$	
$S \rightarrow Aux NP VP$	[.15]	$Noun \rightarrow book [.10] \mid flight [.30]$	
$S \rightarrow VP$	[.05]	<i>meal</i> [.05] <i>money</i> [.05]	
$NP \rightarrow Pronoun$	[.35]	flight [.40] dinner [.10]	
$NP \rightarrow Proper-Noun$	[.30]	$Verb \rightarrow book [.30] \mid include [.30]$	Question: is the
$NP \rightarrow Det Nominal$	[.20]	<i>prefer</i> [.40]	PCFG in example
$NP \rightarrow Nominal$	[.15]	$Pronoun \rightarrow I[.40] \mid she[.05]$	consistent?
$Nominal \rightarrow Noun$	[.75]	<i>me</i> [.15] <i>you</i> [.40]	
$Nominal \rightarrow Nominal Noun$	[.20]	$Proper-Noun \rightarrow Houston [.60]$	
$Nominal \rightarrow Nominal PP$	[.05]	<i>NWA</i> [.40]	
$VP \rightarrow Verb$	[.35]	$Aux \rightarrow does [.60] \mid can [.40]$	
$VP \rightarrow Verb NP$	[.20]	$Preposition \rightarrow from [.30] \mid to [.30]$	
$VP \rightarrow Verb NP PP$	[.10]	on [.20] near [.15]	
$VP \rightarrow Verb PP$	[.15]	through [.05]	
$VP \rightarrow Verb NP NP$	[.05]		
$VP \rightarrow VP PP$	[.15]		
$PP \rightarrow Preposition NP$	[1.0]		From Jurafsky & Martin

Example

Interpretations of "Book the dinner flight"

-	R	ules	P		Rı	ıles	P
S	\rightarrow	VP	.05	S	\rightarrow	VP	.05
VP	\rightarrow	Verb NP	.20	VP	\rightarrow	Verb NP NP	.10
NP	\rightarrow	Det Nominal	.20	NP	\rightarrow	Det Nominal	.20
Nominal	\rightarrow	Nominal Noun	.20	NP	\rightarrow	Nominal	.15
Nominal	\rightarrow	Noun	.75	Nominal	\rightarrow	Noun	.75
				Nominal	\rightarrow	Noun	.75
Verb	\rightarrow	book	.30	Verb	\rightarrow	book	.30
Det	\rightarrow	the	.60	Det	\rightarrow	the	.60
Noun	\rightarrow	dinner	.10	Noun	\rightarrow	dinner	.10
Noun	\rightarrow	flight	.40	Noun	\rightarrow	flight	.40

Decisions with PCFG

Probability of parse tree T, given sentence S, is

$$P(T,S) = \prod_{i=1}^{n} P(RHS_i|LHS_i)$$

Definition:

Yield of a parse tree = String of words allowed by parse tree

Of all parse trees with a yield of S, the disambiguation algorithm for parsing picks the parse tree that is most probable given S:

$$\hat{T}(S) = \underset{Ts.t.S=\text{yield}(T)}{\operatorname{argmax}} P(T|S)$$

 $\hat{T}(S) = \underset{Ts.t.S=\text{yield}(T)}{\operatorname{argmax}} P(T)$

choosing the parse with the highest probability

"Book the dinner flight"

Interpretations of

"Book a flight that serves dinner"

"Book a flight on behalf of 'the dinner'

Example

Interpretations of "Book the dinner flight"

S VP VP NP Verb NP Verb NP Book Det Nominal Book Det Nominal Nominal the Nominal Noun Noun the Noun Noun flight flight dinner "Book a flight on behalf dinner of 'the dinner'

"Book a flight that serves dinner"

$*.40 = 2.2 \times 10^{-6}$	✓	

\checkmark
$P(T_{left}) = .05 * .20 * .20 * .20 * .75 * .30 * .60 * .10 * .40 = 2.2 × 10-6$
$P(T_{right}) = .05 * .10 * .20 * .15 * .75 * .75 * .30 * .60 * .10 * .40 = 6.1 × 10-7$

-			ъ			_		
	R	ules	P			Rι	ıles	P
S	\rightarrow	VP	.05		S	\rightarrow	VP	.05
VP	\rightarrow	Verb NP	.20		VP	\rightarrow	Verb NP NP	.10
NP	\rightarrow	Det Nominal	.20		NP	\rightarrow	Det Nominal	.20
Nominal	\rightarrow	Nominal Noun	.20		NP	\rightarrow	Nominal	.15
Nominal	\rightarrow	Noun	.75		Nominal	\rightarrow	Noun	.75
					Nominal	\rightarrow	Noun	.75
Verb	\rightarrow	book	.30		Verb	\rightarrow	book	.30
Det	\rightarrow	the	.60		Det	\rightarrow	the	.60
Noun	\rightarrow	dinner	.10		Noun	\rightarrow	dinner	.10
Noun	\rightarrow	flight	.40	13	Noun	\rightarrow	flight	.40

Assumptions/Issues with PCFG - 1

Issue: CFG rules impose an independence assumption on probabilities that miss rule dependencies

- Example:
 - nouns can be subjects as well as objects
 - A pronoun is a noun, but also is a determiner noun. [Example: NP -> DT NN :28, NP -> PRP 0.25]
 - Subjects are more likely to be pronouns than objects. [91% subjects are pronouns, 34% objects are pronouns in Switchboard dataset]
- Same rule's application can be contextual based on where the rule is being applied. Example,
 NP -> PRP
- Not being able to differentiate can cause incorrect parsing

Assumptions/Issues with PCFG - 2

Issue: Lack of sensitivity to lexical dependencies

Example: worker dumped sacks into a bin

"into a bin" prepositional phrase can be attached to either the VP or NP leading to different meanings

- When attached to VP, sacks are in location "into a bin"
- When attached to NP, "sacks into a bin" are dumped
 - nonsensical

Improvement: Probabilistic Lexicalized CFGs

- Augment PCFG with a lexical head for each rule.
- The probability of a rule is conditional on the lexical head

VP -> VBD NP P is modified to

VP(dumped,VBD) -> VBD(dumped,VBD) NP(sacks,NNS) PP(into,P)

Calculating Probability from Treebank

$$P(\alpha \to \beta | \alpha) = \frac{\text{Count}(\alpha \to \beta)}{\sum_{\gamma} \text{Count}(\alpha \to \gamma)} = \frac{\text{Count}(\alpha \to \beta)}{\text{Count}(\alpha)}$$

Probability of each expansion of a non-terminal:

- counting the number of times an expansion occurs
- · normalizing for all expansions

Evaluating Parsers - PARSEVAL

Degree to which the constituents in the hypothesis parse tree look like the constituents in a hand-labeled, gold-reference parse like PENN TreeBank

Overall measure is by F1 score

$$F_1 = \frac{2PR}{P+R}$$

labeled recall: = $\frac{\text{# of correct constituents in hypothesis parse of } s}{\text{# of correct constituents in reference parse of } s}$

labeled precision: = $\frac{\text{# of correct constituents in hypothesis parse of } s}{\text{# of total constituents in hypothesis parse of } s}$

Output from a Popular Parser: Stanford Parser

Demonstrations in multiple languages

https://nlp.stanford.edu/software/lex-parser.shtml

Stanford Parser Example - 2

A natural language parser is a program that works out the grammatical structure of sentences, for instance, which group of words go together (as "phrases") and which words are the subject or object of a verb.

Lecture 7: Concluding Comments

- We have completed parsing
- Probabilistic grammars
 - assign a probability to a sentence or string of words
 - In a probabilistic context-free grammar (PCFG), every rule is annotated with the probability of that rule being chosen assuming conditional independence.
 - The probability of a sentence is computed by multiplying the probabilities of each rule in the parse of the sentence.
- Probabilistic lexicalized CFGs:
 - PCFG model is augmented with a lexical head for each rule.

Concluding Segment

Discussion: Course Project

Theme: Analyze quality of official information available for elections in 2024 [in a state]

- Take information available from
 - Official site: State Election Commissions
 - Respected non-profits: League of Women Voters
- Analyze information
 - State-level: Analyze quality of questions, answers, answers-toquestions
 - Comparatively: above along all states (being done by students)
- Benchmark and report
 - Compare analysis with LLM
 - Prepare report

- Process and analyze using NLP
 - Extract entities
 - Assess quality metrics
 - Content Englishness
 - Content Domain -- election
 - ... other NLP tasks
 - Analyze and communicate overall

Major dates for project check

- Sep 10: written project outline
- Oct 8: in class
- Oct 31: in class // LLM
- Dec 5: in class // Comparative

Review current states chosen by others

Project Discussion

- 1. Go to Google spreadsheet against your name
- Enter the <u>state</u> you will focus on for course project
- Create a private Github repository called "CSCE771-Fall2024-<studentname>-Repo". Share with Instructor (biplav-s) and TA (vr25)
- Create Google folder called "CSCE771-Fall2024-<studentname>-SharedInfo". Share with Instructor (prof.biplav@gmail.com) and TA (rawtevipula25@gmail.com)
- 3. Create a Google doc in your Google repo called "Project Plan" and have the following by Friday (Aug 30, 2024)

Timeline

- 1. Title: Analyze quality of official information available for elections in 2024 in <state>
- 2. Data need:
 - 1. Official: state's election commission
 - 2. LWV:

https://www.vote411.org/

- 3. Methods:
- 4. Evaluation:
- 5. Milestones
 - Sep 10: written and feedback
 - Oct 8: in class
 - Oct 31: in class
 - Dec 5: in class

CSCE 771 - FALL 2024 22

Obtaining Election Data

Here are a few things to do:

- A) **Official data** backed by laws: state election commission
- a) Find the state's election commission
- b) Find the Q/As they provide. They may be as FAQs or on different web pages.
- c) Collect the Q/A programmatically
- B) Secondary data sources: non-profit
- a) Find Q/As from Vote 411 which is supported by the non-profit: LWV.

For reference, for SC,

- A) Official https://scvotes.gov/voters/voter-faq/
- B) Secondary https://www.vote411.org/south-carolina

For extraction, one or more approaches:

- Manually annotating
- BeautifulSoup,
- Tika
- or other open source libraries.

Discussion: Course Project

Expectations

- Apply methods learned in class or of interest to a problem of interest
- Be goal oriented: aim to finish, be proactive, be innovative
- Do top-class work: code, writeup, presentation

Typical pitfalls

- · Not detailing out the project, assuming data
- Not spending enough time

What will be awarded

- Results and efforts (balance)
- · Challenge level of problem

Review current states chosen by others

Course Project – Deadlines and Penalty Rubric

- Penalty
 - Missing milestones: [-10%]
 - Maximum: [-40%]
- Bonus possible
 - · if two or more states considered

•

Timeline

- 1. Title: Analyze quality of official information available for elections in 2024 in <state>
- 2. Data need:
 - 1. Official: state's election commission
 - 2. LWV:

https://www.vote411.org/

- 3. Methods:
- 4. Evaluation:
- 5. Milestones
 - Sep 10: written and feedback
 - Oct 8: in class
 - Oct 31: in class
 - Dec 5: in class

QUIZ

In class

About Next Lecture – Lecture 8

Lecture 8: Evaluation, Semantics

- Review quiz
- Introduce evaluation metrics in NLP context
- Discussion on semantics

4	Aug 29 (Th)	NLP Tasks, Case Study – Business Application	
5	Sep 3 (Tu)	Parsing, Paper 1 discussion; project topics review	Practice exercise
6	Sep 5 (Th)	Project topics review, statistic Parsing	
7	Sep 10 (Tu)	Statistical parsing, QUIZ	Quiz 1, Project Check
8	Sep 12 (Th)	Evaluation, Semantics	Coding running example
9	Sep 17 (Tu)	Semantics Machine Learning for NLP, Evaluation - Metrics	Code: scikit fl score package, Code: ConceptIO
10	Sep 19 (Th)	Towards Language Model: Vector embeddings, Embeddings, CNN/ RNN	Code: embedding, genism word vector, tf-idf