CS224n HW1

Xinyu Tan

July 4, 2017

1 Softmax

(a)

Take a look at any element i,

$$\operatorname{softmax}(\boldsymbol{x}+c)_i = \frac{e^{\boldsymbol{x}_i + c}}{\sum_j e^{\boldsymbol{x}_j + c}} = \frac{e^c \cdot e^{\boldsymbol{x}_i}}{e^c \cdot \sum_j e^{\boldsymbol{x}_j}} = \operatorname{softmax}(\boldsymbol{x})_i$$

Therefore, we have $\operatorname{softmax}(\boldsymbol{x}+c) = \operatorname{softmax}(\boldsymbol{x})$

(b)

Note the first case illustrate the broadcasting principle (dimension match) in numpy:

```
if len(x.shape) > 1:
    #matrix
    x = x - np.max(x, axis=1, keepdims=True)
    x = np.exp(x) / np.sum(np.exp(x), axis=1, keepdims=True)

else:
    # vector
    x = x - x.max() # normalize
    x = np.exp(x)/np.sum(np.exp(x))
```

2 Neural Network Basics

(a)

$$\frac{d\sigma(x)}{dx} = \frac{e^{-x}}{(1 - e^{-x})^2} = \sigma(x)(1 - \sigma(x))$$

(b)

First, we have

$$\hat{y}_i = \frac{e^{\theta_i}}{\sum_j e^{\theta_j}}$$

For one-hot encoding, only k-th element in y is one, so we have

$$CE(\boldsymbol{y}, \hat{\boldsymbol{y}}) = -\log \hat{y}_k = -\log \frac{e^{\theta_k}}{\sum_j e^{\theta_j}}$$
$$= -\theta_k + \log \sum_j e^{\theta_j}$$

Therefore,

$$\frac{\partial CE(\boldsymbol{y}, \hat{\boldsymbol{y}})}{\partial \theta_k} = -1 + \frac{e^{\theta_k}}{\sum_j e^{\theta_j}}$$
$$\frac{\partial CE(\boldsymbol{y}, \hat{\boldsymbol{y}})}{\partial \theta_i} = \frac{e^{\theta_i}}{\sum_j e^{\theta_j}}, \forall i \neq k$$

Put them altogether,

$$\frac{\partial CE(\boldsymbol{y}, \hat{\boldsymbol{y}})}{\partial \boldsymbol{\theta}} = -\boldsymbol{y} + \operatorname{softmax}(\boldsymbol{\theta}) = \hat{\boldsymbol{y}} - \boldsymbol{y}$$

(c)

We have

$$\hat{y} = \operatorname{softmax}(hW_2 + b_2)$$

= $\operatorname{softmax}(\operatorname{sigmoid}(xW_1 + b_1) + b_2)$

Denote $\boldsymbol{a}_2 = \boldsymbol{h}\boldsymbol{W}_2 + \boldsymbol{b}_2$ and $\boldsymbol{a}_1 = \boldsymbol{x}\boldsymbol{W}_1 + \boldsymbol{b}_1$, then

$$\frac{\partial CE(\boldsymbol{y}, \hat{\boldsymbol{y}})}{\partial \boldsymbol{x}} = \frac{\partial CE(\boldsymbol{y}, \hat{\boldsymbol{y}})}{\partial \boldsymbol{a}_2} \frac{\partial \boldsymbol{a}_2}{\partial \boldsymbol{x}}
= (\hat{\boldsymbol{y}} - \boldsymbol{y}) \frac{\partial \boldsymbol{a}_2}{\partial \boldsymbol{h}} \frac{\partial \boldsymbol{h}}{\partial \boldsymbol{x}}
= (\hat{\boldsymbol{y}} - \boldsymbol{y}) \boldsymbol{W}_2^T \sigma'(\boldsymbol{a}_1) \boldsymbol{W}_1^T$$

(d)

There are in total $D_xH + H + HD_y + Dy$ parameters.

(e)

There are in total $D_xH + H + HD_y + Dy$ parameters.