

Important Notes

- This is a programming project for basic matrix operations.
- You need to write a computer program in C (no other languages are allowed).
- Keep in mind that your code will be examined using "VS2022 on Windows10" regardless of the platform you worked on.
- Code with compile error, segmentation fault, etc. will get zero score.
- We consider only real matrices, vectors and scalars. The numbers of columns and rows are all integer types.
- Take a look at the sample code uploaded (matOperations.c).
- Upload your report (containing the screenshot of the results of your code) and code at ecampus
- 1. (50 points) Write the following functions (choose the return/input types on your own decision):
 - (a) transposeMatrix(A, m, n): transpose the $m \times n$ matrix A and return the result
 - (b) normalizeVector(v, n): normalize the n-dimensional vector v and return the result
 - (c) calculateLength(v, n): calculate the length of the n-dimensional vector v and return the result
 - (d) scaleMatrix(A, m, n, c): scale the $m \times n$ matrix A with scalar c
 - (e) multiplyTwoMatrices(A, m, n, B, I, k): for $m \times n$ matrix A and $l \times k$ matrix B, calculate and return AB. Return null if multiplication is impossible.
 - (f) addTwoMatrices(A, m, n, B, I, k): for $m \times n$ matrix A and $l \times k$ matrix B, calculate and return A + B. Return null if addition is impossible.
- 2. (50 points) Write a computer program in C that performs the following:
 - (a) Test the correctness of each of the function you wrote in 1.
 - (b) For given $n \times n$ matrices A and \tilde{H} , normalize each column of \tilde{H} (let H be this normalized matrix). Then, calculate $B = H^T A H$, and then, $C = H B H^T$.

• For example, if
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
 and $\tilde{H} = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$, then $H = \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & -1/\sqrt{2} \end{bmatrix}$ and
$$B = H^T A H$$

$$= \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & -1/\sqrt{2} \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & -1/\sqrt{2} \end{bmatrix}$$

$$= \begin{bmatrix} 5 & -1 \\ -2 & 0 \end{bmatrix}$$

$$\begin{split} C &= HBH^T \\ &= \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & -1/\sqrt{2} \end{bmatrix} \begin{bmatrix} 5 & -1 \\ -2 & 0 \end{bmatrix} \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & -1/\sqrt{2} \end{bmatrix} \\ &= \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \end{split}$$