Listado de fórmulas y conceptos de física II

Joaquín I. Corradi

Tercer semestre

Índice general

Campo electrico
Ley de Coulomb
Constante de Coulomb
Permitividad del vacío
Definición de campo eléctrico
Campo eléctrico de una carga puntual q
Campo eléctrico de un grupo de cargas
Campo eléctrico de una distribución de carga continua
Aceleración de una carga en un campo eléctrico 4
Ley de Gauss
Definición de flujo eléctrico
Flujo eléctrico para superficie sencilla 4
Ley de Gauss
Potencial eléctrico
Definición de potencial eléctrico
Diferencia de potencial entre $A y B \dots \dots$
Diferencia de potencial en un campo E uniforme
Potencial eléctrico y energía potencial debido a una carga puntual 5
Relación entre E y V
Potencial debido a una distribución de carga 5
Capacitancia y capacitores
Capacitancia
Capacitancia de una esfera cargada aislada de radio R 6
Capacitor de placas paralelas separadas por d y área de placas A 6
Capacitor cilíndrico
Capacitor esférico
Combinación de capacitores
Energía almacenada en un capacitor 6
Corriente y resistencia
Corriente eléctrica
Resistencia
Resistencia de un conductor uniforme
Variación de la resistividad con la temperatura
Conductividad
Densidad de corriente

Ley de Ohm	8
Potencia	8
Circuitos de corriente directa	8
Voltaje entre bornes de una batería	8
Combinación de resistencias	8

Campo eléctrico

Ley de Coulomb

La ley de Coulomb establece que la fuerza entre dos cargas eléctricas es directamente proporcional al producto de sus magnitudes y inversamente proporcional al cuadrado de la distancia entre ellas. Esta ley describe cómo se atraen o se repelen las cargas eléctricas.

$$F_{12} = k_e \frac{|q_1||q_2|}{r^2} [N]$$

Constante de Coulomb

$$k_e = 8,9876 \times 10^9 [N] = \frac{1}{4\pi\varepsilon_0}$$

Permitividad del vacío

$$\varepsilon_0 = 8,8542 \times 10^{-12} \left[\frac{C^2}{NM^2} \right]$$

Definición de campo eléctrico

El campo eléctrico es una propiedad del espacio que rodea una carga eléctrica q y puede ejercer una fuerza eléctrica sobre otra carga de prueba q_0 cercana. Se describe mediante vectores que indican la magnitud y dirección de la fuerza eléctrica experimentada por una carga de prueba.

$$\vec{E} = \frac{\vec{F_e}}{q_0} \left[\frac{N}{C} \right]$$

Campo eléctrico de una carga puntual q

$$E = k \frac{q}{r^2} \hat{r} \left[\frac{N}{C} \right]$$

Campo eléctrico de un grupo de cargas

$$E = k \sum_{i} \frac{q_i}{r_i^2} \hat{r}_i \left[\frac{N}{C} \right]$$

Campo eléctrico de una distribución de carga continua

$$E = k_e \int \frac{dq}{r^2} \hat{r} \left[\frac{N}{C} \right]$$

Aceleración de una carga en un campo eléctrico

$$a = \frac{qE}{m}$$

Ley de Gauss

Definición de flujo eléctrico

El flujo eléctrico es una medida de la cantidad de líneas de campo eléctrico que atraviesan una superficie dada. Se puede visualizar como la cantidad de líneas que salen o entran en una superficie

$$\Phi_E = \oint_s \vec{E} \cdot d\vec{A} = \left[\frac{NM^2}{C} \right]$$

Flujo eléctrico para superficie sencilla

$$\Phi_E = \vec{E} \cdot \vec{A} \left[\frac{NM^2}{C} \right] = EA \cos \theta \left[\frac{NM^2}{C} \right]$$

Siendo \vec{S} el vector perpendicular a la superficie y θ el ángulo conformado por los vectores \vec{E} y \vec{A} .

Ley de Gauss

$$\begin{split} \Phi_E &= \frac{\sum q_{int}}{\varepsilon_0} \left[\frac{NM^2}{C} \right] \\ \oint_s \vec{E} \cdot d\vec{A} &= \frac{\sum q_{int}}{\varepsilon_0} \left[\frac{NM^2}{C} \right] \\ \Phi_E &= \oint_s \vec{E} \cdot d\vec{A} \left[\frac{NM^2}{C} \right] \end{split}$$

Potencial eléctrico

Definición de potencial eléctrico

Trabajo que debe realizar un campo eléctrico para mover una carga positiva desde dicho punto hasta el punto de referencia, dividido por unidad de carga de prueba.

 $dw = \vec{F} \cdot \vec{ds} = q_0 \vec{E} \cdot \vec{ds}[J]$

Diferencia de potencial entre A y B

$$V_B - V_A = \frac{U_B - U_A}{q_0} = -\int_A^B \vec{E} \cdot \vec{ds}$$
$$\Delta V = \frac{\Delta U}{q_0} \left[\frac{J}{C} = V \right] = -\int \vec{E} \cdot \vec{ds} \left[\frac{N}{C} m = V \right]$$

Diferencia de potencial en un campo E uniforme

$$\Delta V = -\vec{E} \cdot \vec{d} = -|E||d|\cos\theta$$

Potencial eléctrico y energía potencial debido a una carga puntual

$$V = k \frac{q}{r}$$

$$U = q_2 v_1 = k \frac{q_1 q_2}{r_{12}}$$

Relación entre E y V

$$E_x = -\frac{\partial V}{\partial x}$$

$$E_y = -\frac{\partial V}{\partial y}$$

$$E_z = -\frac{\partial V}{\partial z}$$

Potencial debido a una distribución de carga

$$V = k \int \frac{dq}{r}$$

Capacitancia y capacitores

Capacitancia

$$C = \frac{Q}{V} \left[\frac{C}{V} = Faradio \right]$$

Capacitancia de una esfera cargada aislada de radio ${\cal R}$

$$C = 4\pi\varepsilon_0 R$$

Capacitor de placas paralelas separadas por d y área de placas ${\cal A}$

$$C = \frac{\varepsilon_0 A}{d}$$

Capacitor cilíndrico

$$C = \frac{l}{2kln(\frac{b}{a})}$$

Capacitor esférico

$$C = \frac{ab}{k(b-a)}$$

Combinación de capacitores

En paralelo:

$$C_{eq} = C_1 + C_2$$

En serie:

$$\frac{1}{C_{eq}} = \frac{1}{C_1} + \frac{1}{C_2}$$

Energía almacenada en un capacitor

$$U = \frac{1}{2}\frac{Q^2}{C} = \frac{1}{2}QV = \frac{1}{2}CV^2[J]$$

Corriente y resistencia

Corriente eléctrica

$$I = \frac{dq}{dt} \left[\frac{C}{seg} = A \right]$$

Resistencia

$$R = \frac{V}{I} \left[\frac{V}{A} = \Omega \right]$$

Resistencia de un conductor uniforme

$$R = \rho \frac{l}{A} [\Omega]$$

Siendo ρ el coeficiente de resistividad, l la longitud que recorrería la corriente eléctrica aplicada una diferencia de potencial y A la sección perpendicular a la dirección de la corriente.

Variación de la resistividad con la temperatura

$$\rho = \rho_0 [1 + \alpha(\Delta T)]$$

Siendo ρ_0 la resistividad a una temperatura de 20° y α el coeficiente de temperatura.

$$R = R_0[1 + \alpha(\Delta T)]$$

Conductividad

$$\sigma = \frac{1}{\rho} [\Omega^{-1} m^{-1}]$$

Densidad de corriente

$$J = \frac{I}{A} \left[\frac{A}{m^2} \right]$$

Ley de Ohm

$$J=\sigma E$$

Potencia

$$P[W] = IV = I^2R = \frac{V^2}{R}$$

Circuitos de corriente directa

Voltaje entre bornes de una batería

$$V = \mathcal{E} - Ir$$

Combinación de resistencias

En paralelo:

$$\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2}$$

En serie:

$$R_{eq} = R_1 + R_2$$