Fields in the vertex	Variational derivative of Lagrangian by fields
A_{μ} A_{ν}	$-\frac{1}{4}\frac{1}{M_{\rho^2}}(4M_{\rho^2}\cdot p_1^{\rho}p_1^{\rho}g^{\mu\nu} - 4M_{\rho^2}\cdot p_1^{\mu}p_1^{\nu} + e^2\cdot a^2\cdot vv^2\cdot p_1^{\rho}p_1^{\rho}g^{\mu\nu} - e^2\cdot a^2\cdot vv^2\cdot p_1^{\mu}p_1^{\nu})$
A_{μ} $Z_{ u}$	$-\frac{1}{4} \frac{c_w \cdot e^2 \cdot a^2 \cdot vv^2}{M_\rho^2 \cdot s_w} (p_1^\rho p_1^\rho g^{\mu\nu} - p_1^\mu p_1^\nu)$
\bar{b}_{ap} b_{bq}	$-\delta_{pq}(p_1^{\mu}\gamma_{ab}^{\mu} + M_b \cdot \delta_{ab})$
\bar{c}_{ap} c_{bq}	$-\delta_{pq}(p_1^{\mu}\gamma_{ab}^{\mu} + M_c \cdot \delta_{ab})$
$ig ar{d}_{ap} d_{bq}$	$-\delta_{pq}(p_1^{\mu}\gamma_{ab}^{\mu} + Md \cdot \delta_{ab})$
\bar{e}_a e_b	$-p_1^\mu \gamma_{ac}^\mu \delta_{cb}$
$ar{\mu}_a$ μ_b	$-(p_1^\mu \gamma_{ab}^\mu + M_\mu \cdot \delta_{ab})$
$\bar{ au}_a$ $ au_b$	$-(p_1^{\mu}\gamma_{ab}^{\mu} + Mtau \cdot \delta_{ab})$
$G_{\mu p}$ $G_{\nu q}$	$-p_1^{ ho}p_1^{ ho}g^{\mu u}\delta_{pq}$
H H	$-(M_H{}^2 - p_1^\mu p_1^\mu)$
$\bar{\nu}^e{}_a$ $\nu^e{}_b$	$-p_1^\mu \gamma_{ac}^\mu rac{(1-\gamma^5)_{cb}}{2}$
$\bar{ u}^{\mu}{}_{a}$ $\nu^{\mu}{}_{b}$	$-p_1^{\mu}\gamma_{ac}^{\mu} \frac{(1-\gamma^5)_{cb}}{2}$
$\bar{ u}^{ au}{}_{a}$ $\nu^{ au}{}_{b}$	$-p_1^{\mu} \gamma_{ac}^{\mu} rac{(1-\gamma^5)_{cb}}{2}$
ρ^+_{μ} ρ^{ν}	$-\frac{1}{16} \frac{1}{M_{\rho}^{2} \cdot s_{w}^{4}} (4e^{2} \cdot s_{w}^{2} \cdot a^{2} \cdot vv^{2} \cdot p_{1}^{\rho} p_{1}^{\rho} g^{\mu\nu} - 4e^{2} \cdot s_{w}^{2} \cdot a^{2} \cdot vv^{2} \cdot p_{1}^{\mu} p_{1}^{\nu}$
	$-e^4 \cdot a^4 \cdot vv^4 \cdot g^{\mu\nu} - 8e^2 \cdot M_{\rho}^2 \cdot s_w^2 \cdot a^2 \cdot vv^2 \cdot g^{\mu\nu} + 16M_{\rho}^2 \cdot p_1^{\rho} p_1^{\rho} g^{\mu\nu}$
	$-32c_w^2 \cdot M_\rho^2 \cdot p_1^\rho p_1^\rho g^{\mu\nu} + 16c_w^4 \cdot M_\rho^2 \cdot p_1^\rho p_1^\rho g^{\mu\nu} - 16M_\rho^2 \cdot p_1^\mu p_1^\nu + 32c_w^2 \cdot M_\rho^2 \cdot p_1^\mu p_1^\nu$
	$-16c_w^4 \cdot M_\rho^2 \cdot p_1^\mu p_1^\nu - 16M_\rho^4 \cdot g^{\mu\nu} + 32c_w^2 \cdot M_\rho^4 \cdot g^{\mu\nu} - 16c_w^4 \cdot M_\rho^4 \cdot g^{\mu\nu}$
	$-4e^2 \cdot M_W^2 \cdot s_w^2 \cdot a^2 \cdot vv^2 \cdot g^{\mu\nu})$
$\rho^+_{\mu} W^{\nu}$	$-rac{1}{2}rac{e\cdot M_W{}^2\cdot a\cdot vv}{M_0\cdot s_w}\cdot g^{\mu u}$
$\rho^{\mu} W^+_{\nu}$	$-rac{1}{2}rac{e\cdot M_W^2\cdot a\cdot vv}{M_o\cdot s_w}\cdot g^{\mu u}$
ρ^0_{μ} ρ^0_{ν}	$-\frac{1}{16} \frac{1}{M_{\rho}^2 \cdot s_w^4} (4e^2 \cdot s_w^2 \cdot a^2 \cdot vv^2 \cdot p_1^{\rho} p_1^{\rho} g^{\mu\nu} - 4e^2 \cdot s_w^2 \cdot a^2 \cdot vv^2 \cdot p_1^{\mu} p_1^{\nu}$
	$-e^4 \cdot a^4 \cdot vv^4 \cdot g^{\mu\nu} - 8e^2 \cdot M_{\rho}^2 \cdot s_w^2 \cdot a^2 \cdot vv^2 \cdot g^{\mu\nu} + 16M_{\rho}^2 \cdot p_1^{\rho} p_1^{\rho} g^{\mu\nu}$
	$-32c_w^2 \cdot M_\rho^2 \cdot p_1^\rho p_1^\rho g^{\mu\nu} + 16c_w^4 \cdot M_\rho^2 \cdot p_1^\rho p_1^\rho g^{\mu\nu} - 16M_\rho^2 \cdot p_1^\mu p_1^\nu + 32c_w^2 \cdot M_\rho^2 \cdot p_1^\mu p_1^\nu$
	$-16c_w^4 \cdot M_\rho^2 \cdot p_1^\mu p_1^\nu - 16M_\rho^4 \cdot g^{\mu\nu} + 32c_w^2 \cdot M_\rho^4 \cdot g^{\mu\nu} - 16c_w^4 \cdot M_\rho^4 \cdot g^{\mu\nu}$
	$-4e^2 \cdot M_W^2 \cdot s_w^2 \cdot a^2 \cdot vv^2 \cdot g^{\mu\nu})$

Fields in the vertex	Variational derivative of Lagrangian by fields
$\rho^0_{\ \mu} Z_{\nu}$	$-\frac{1}{2} \frac{e \cdot M_W^2 \cdot a \cdot vv}{c_w \cdot M_\rho \cdot s_w} \cdot g^{\mu\nu}$
$ar{ar{s}}_{ap}$ s_{bq}	$-\delta_{pq}(p_1^{\mu}\gamma_{ab}^{\mu}+M_s\cdot\delta_{ab})$
$ar{t}_{ap}$ t_{bq}	$-\delta_{pq}(p_1^{\mu}\gamma_{ab}^{\mu} + M_t \cdot \delta_{ab})$
\bar{u}_{ap} u_{bq}	$-\delta_{pq}(p_1^{\mu}\gamma_{ab}^{\mu} + Mu \cdot \delta_{ab})$
$W^+_{\mu} W^{\nu}$	$-\frac{1}{4} \frac{1}{M_{\rho^2 \cdot s_w}^2} (4M_{\rho^2} \cdot s_w^2 \cdot p_1^{\rho} p_1^{\rho} g^{\mu\nu} - 4M_{\rho^2} \cdot s_w^2 \cdot p_1^{\mu} p_1^{\nu} + e^2 \cdot a^2 \cdot vv^2 \cdot p_1^{\rho} p_1^{\rho} g^{\mu\nu}$
	$-e^2 \cdot a^2 \cdot vv^2 \cdot p_1^{\mu} p_1^{\nu} - 4M_{\rho}^2 \cdot M_W^2 \cdot s_w^2 \cdot g^{\mu\nu})$
Z_{μ} $Z_{ u}$	$-\frac{1}{4} \frac{1}{s_w^2 \cdot c_w^2 \cdot M_{\rho^2}} (4c_w^2 \cdot M_{\rho^2} \cdot p_1^{\rho} p_1^{\rho} g^{\mu\nu} - 4c_w^4 \cdot M_{\rho^2} \cdot p_1^{\rho} p_1^{\rho} g^{\mu\nu} - 4c_w^2 \cdot M_{\rho^2} \cdot p_1^{\mu} p_1^{\nu}$
	$+4c_w^4 \cdot M_{\rho}^2 \cdot p_1^{\mu} p_1^{\nu} + c_w^4 \cdot e^2 \cdot a^2 \cdot vv^2 \cdot p_1^{\rho} p_1^{\rho} g^{\mu\nu} - c_w^4 \cdot e^2 \cdot a^2 \cdot vv^2 \cdot p_1^{\mu} p_1^{\nu}$
	$-4M_{\rho}^2 \cdot M_W^2 \cdot s_w^2 \cdot g^{\mu\nu})$
\widetilde{h}^+ \widetilde{h}^-	$\frac{1}{e^2}(e^2 \cdot p_1^{\mu} p_1^{\mu} + e^2 m d2 - 2M_W^2 s_w^2 \lambda_3)$
$ \widetilde{h}_1 \widetilde{h}_1 $	$\frac{1}{e^2}(e^2 \cdot p_1^{\mu} p_1^{\mu} + e^2 m d2 - 2M_W^2 s_w^2 \lambda_3 - 2M_W^2 s_w^2 \lambda_4 - 2M_W^2 s_w^2 \lambda_5)$
$egin{array}{ccc} \widetilde{h}_2 & \widetilde{h}_2 \end{array}$	$\frac{1}{e^2}(e^2 \cdot p_1^{\mu} p_1^{\mu} + e^2 m d2 - 2M_W^2 s_w^2 \lambda_3 - 2M_W^2 s_w^2 \lambda_4 + 2M_W^2 s_w^2 \lambda_5)$
A_{μ} ρ^{+}_{ν} ρ^{-}_{ρ}	
	$ + e^2 \cdot a^2 \cdot vv^2 \cdot p_3^{\mu} g^{\nu\rho} + e^2 \cdot a^2 \cdot vv^2 \cdot p_1^{\nu} g^{\mu\rho} - e^2 \cdot a^2 \cdot vv^2 \cdot p_1^{\rho} g^{\mu\nu} + 4M_{\rho}^{\ 2} \cdot s_w^{\ 2} \cdot p_2^{\rho} g^{\mu\nu} $
	$-4M_{\rho}^{2} \cdot s_{w}^{2} \cdot p_{2}^{\mu} g^{\nu\rho} - 4M_{\rho}^{2} \cdot s_{w}^{2} \cdot p_{3}^{\nu} g^{\mu\rho} + 4M_{\rho}^{2} \cdot s_{w}^{2} \cdot p_{3}^{\mu} g^{\nu\rho} + 4M_{\rho}^{2} \cdot s_{w}^{2} \cdot p_{1}^{\nu} g^{\mu\rho}$
	$-4M_{\rho}^{2}\cdot s_{w}^{2}\cdot p_{1}^{\rho}g^{\mu\nu})$
$A_{\mu} W^{+}_{\nu} W^{-}_{\rho}$	$ -\frac{1}{4} \frac{e}{M_{\rho^2 \cdot s_w}^2} (4M_{\rho^2} \cdot s_w^2 \cdot p_2^{\rho} g^{\mu\nu} - 4M_{\rho^2} \cdot s_w^2 \cdot p_2^{\mu} g^{\nu\rho} - 4M_{\rho^2} \cdot s_w^2 \cdot p_3^{\nu} g^{\mu\rho} $
	$\left +4M_{\rho}^{2} \cdot s_{w}^{2} \cdot p_{3}^{\mu} g^{\nu\rho} + 4M_{\rho}^{2} \cdot s_{w}^{2} \cdot p_{1}^{\nu} g^{\mu\rho} - 4M_{\rho}^{2} \cdot s_{w}^{2} \cdot p_{1}^{\rho} g^{\mu\nu} + e^{2} \cdot a^{2} \cdot vv^{2} \cdot p_{2}^{\rho} g^{\mu\nu} \right $
	$ \left \; -e^2 \cdot a^2 \cdot vv^2 \cdot p_2^{\mu} g^{\nu\rho} - e^2 \cdot a^2 \cdot vv^2 \cdot p_3^{\nu} g^{\mu\rho} + e^2 \cdot a^2 \cdot vv^2 \cdot p_3^{\mu} g^{\nu\rho} + e^2 \cdot a^2 \cdot vv^2 \cdot p_1^{\nu} g^{\mu\rho} \; \right $
	$-e^2 \cdot a^2 \cdot vv^2 \cdot p_1^{\rho} g^{\mu\nu})$
A_{μ} \tilde{h}^{+} \tilde{h}^{-}	$e(p_3^{\mu} - p_2^{\mu})$
$ar{b}_{ap}$ b_{bq} A_{μ}	$\frac{1}{3}e\delta_{pq}\gamma^{\mu}_{ac}\cdot\delta_{cb}$
\bar{b}_{ap} b_{bq} $G_{\mu r}$	$g_s \cdot \lambda_{pq}^r \gamma_{ab}^\mu$
	$-rac{1}{2}rac{e\cdot M_b}{M_W\cdot s_w}\delta_{pq}\cdot\delta_{ab}$
\bar{b}_{ap} b_{bq} ρ^0_{μ}	$-\frac{1}{4} \frac{e^2 \cdot a \cdot vv}{M_{\rho} \cdot sw^2} \cdot \delta_{pq} \gamma_{ac}^{\mu} \frac{(1-\gamma^5)_{cb}}{2}$

Fields in the vertex	Variational derivative of Lagrangian by fields
\bar{b}_{ap} b_{bq} Z_{μ}	$\frac{1}{6} \frac{e}{c_w \cdot s_w} \delta_{pq} \gamma_{ac}^{\mu} \left(\frac{(1-\gamma^5)_{cb}}{2} + 2c_w^2 \cdot \frac{(1-\gamma^5)_{cb}}{2} - 2s_w^2 \cdot \frac{(1+\gamma^5)_{cb}}{2} \right)$
$ar{b}_{ap}$ t_{bq} $ ho^{\ \mu}$	$\frac{1}{4} \frac{e^2 \cdot \sqrt{2} \cdot a \cdot vv}{M_\rho \cdot s_w^2} \cdot \delta_{pq} \gamma_{ac}^\mu \frac{(1 - \gamma^5)_{cb}}{2}$
\bar{b}_{ap} t_{bq} W^{μ}	$-rac{1}{2}rac{e\cdot\sqrt{2}}{s_w}\cdot\delta_{pq}\gamma_{ac}^{\mu}rac{(1-\gamma^5)_{cb}}{2}$
\bar{c}_{ap} c_{bq} A_{μ}	$-\frac{2}{3}e\delta_{pq}\gamma^{\mu}_{ac}\cdot\delta_{cb}$
\bar{c}_{ap} c_{bq} $G_{\mu r}$	$g_s \cdot \lambda_{pq}^r \gamma_{ab}^\mu$
\bar{c}_{ap} c_{bq} H	$-rac{1}{2}rac{e\cdot M_c}{M_W\cdot s_w}\delta_{pq}\cdot\delta_{ab}$
\bar{c}_{ap} c_{bq} $\rho^0_{\ \mu}$	$\frac{1}{4} \frac{e^2 \cdot a \cdot vv}{M_{\rho} \cdot s_w^2} \cdot \delta_{pq} \gamma_{ac}^{\mu} \frac{(1 - \gamma^5)_{cb}}{2}$
\bar{c}_{ap} c_{bq} Z_{μ}	$\left \frac{1}{6} \frac{e}{c_w \cdot s_w} \delta_{pq} \gamma_{ac}^{\mu} \left(\frac{(1-\gamma^5)_{cb}}{2} - 4c_w^2 \cdot \frac{(1-\gamma^5)_{cb}}{2} + 4s_w^2 \cdot \frac{(1+\gamma^5)_{cb}}{2} \right) \right $
\bar{c}_{ap} s_{bq} ρ^+_{μ}	$\frac{1}{4} \frac{e^2 \cdot \sqrt{2 \cdot a \cdot vv}}{M_\rho \cdot s_w^2} \cdot \delta_{pq} \gamma_{ac}^{\mu} \frac{(1 - \gamma^5)_{cb}}{2}$
\bar{c}_{ap} s_{bq} W^+_{μ}	$-rac{1}{2}rac{e\cdot\sqrt{2}}{s_w}\cdot\delta_{pq}\gamma^{\mu}_{ac}rac{(1-\gamma^5)_{cb}}{2}$
$ar{d}_{ap}$ d_{bq} A_{μ}	$\frac{1}{3}e\delta_{pq}\gamma^{\mu}_{ac}\cdot\delta_{cb}$
$ar{d}_{ap}$ d_{bq} $G_{\mu r}$	$g_s \cdot \lambda_{pq}^r \gamma_{ab}^{\mu}$
$ar{d}_{ap}$ d_{bq} H	$-rac{1}{2}rac{e\cdot Md}{M_W\cdot s_w}\delta_{pq}\cdot\delta_{ab}$
\bar{d}_{ap} d_{bq} ρ^0_{μ}	$-\frac{1}{4} \frac{e^2 \cdot a \cdot vv}{M_{\rho} \cdot s_w^2} \cdot \delta_{pq} \gamma_{ac}^{\mu} \frac{(1-\gamma^5)_{cb}}{2}$
$egin{array}{cccccccccccccccccccccccccccccccccccc$	$\left \frac{1}{6} \frac{e}{c_w \cdot s_w} \delta_{pq} \gamma_{ac}^{\mu} \left(\frac{(1-\gamma^5)_{cb}}{2} + 2c_w^2 \cdot \frac{(1-\gamma^5)_{cb}}{2} - 2s_w^2 \cdot \frac{(1+\gamma^5)_{cb}}{2} \right) \right $
\bar{d}_{ap} u_{bq} ρ^{μ}	$\frac{1}{4} \frac{e^2 \cdot \sqrt{2} \cdot a \cdot vv}{M_\rho \cdot s_w^2} \cdot \delta_{pq} \gamma_{ac}^\mu \frac{(1 - \gamma^5)_{cb}}{2}$
\bar{d}_{ap} u_{bq} W^{-}_{μ}	$-rac{1}{2}rac{e\cdot\sqrt{2}}{s_w}\cdot\delta_{pq}\gamma^{\mu}_{ac}rac{(1-\gamma^5)_{cb}}{2}$
$\bar{e}_a e_b A_\mu$	$e\gamma^{\mu}_{ac}\cdot\delta_{cb}$
$\bar{e}_a e_b {\rho^0}_\mu$	$-\frac{1}{4} \frac{e^2 \cdot a \cdot vv}{M_{\rho} \cdot s_w^2} \cdot \gamma_{ac}^{\mu} \frac{(1-\gamma^5)_{cb}}{2}$
\bar{e}_a e_b Z_μ	$ -\frac{1}{2} \frac{e}{c_w \cdot s_w} \gamma_{ac}^{\mu} \left(\frac{(1-\gamma^5)_{cb}}{2} - 2c_w^2 \cdot \frac{(1-\gamma^5)_{cb}}{2} + 2s_w^2 \cdot \frac{(1+\gamma^5)_{cb}}{2} \right) $
$\bar{e}_a \nu^e_{\ b} \rho^{\ \mu}$	$\frac{1}{4} \frac{e^2 \cdot \sqrt{2} \cdot a \cdot vv}{M_\rho \cdot s_w^2} \cdot \gamma_{ac}^{\mu} \frac{(1 - \gamma^5)_{cb}}{2}$
$\bar{e}_a \nu^e_b W^{\ \mu}$	$-\frac{1}{2}\frac{e\cdot\sqrt{2}}{s_w}\cdot\gamma_{ac}^{\mu}\frac{(1-\gamma^5)_{cb}}{2}$
$\bar{\mu}_a$ μ_b A_μ	$e\gamma^{\mu}_{ac}\cdot\delta_{cb}$
$\bar{\mu}_a$ μ_b H	$-rac{1}{2}rac{e\cdot M_{\mu}}{M_W\cdot s_w}\cdot \delta_{ab}$
$ \bar{\mu}_a \mu_b H $ $ \bar{\mu}_a \mu_b \rho^0_{\ \mu} $	$-\frac{1}{4} \frac{e^2 \cdot a \cdot vv}{M_\rho \cdot sw^2} \cdot \gamma^{\mu}_{ac} \frac{(1-\gamma^5)_{cb}}{2}$

Fields in the vertex	Variational derivative of Lagrangian by fields
$\bar{\mu}_a$ μ_b Z_{μ}	$-\frac{1}{2} \frac{e}{c_w \cdot s_w} \gamma_{ac}^{\mu} \left(\frac{(1-\gamma^5)_{cb}}{2} - 2c_w^2 \cdot \frac{(1-\gamma^5)_{cb}}{2} + 2s_w^2 \cdot \frac{(1+\gamma^5)_{cb}}{2} \right)$
$\bar{\mu}_a \nu^{\mu}_{\ b} \rho^{-}_{\ \mu}$	$\frac{1}{4} \frac{e^2 \cdot \sqrt{2} \cdot a \cdot vv}{M_\rho \cdot s_w^2} \cdot \gamma_{ac}^{\mu} \frac{(1 - \gamma^5)_{cb}}{2}$
$\bar{\mu}_a \nu^{\mu}_{\ b} W^{-}_{\ \mu}$	$-\frac{1}{2}\frac{e\cdot\sqrt{2}}{s_w}\cdot\gamma_{ac}^{\mu}\frac{(1-\gamma^5)_{cb}}{2}$
$\bar{\tau}_a$ τ_b A_μ	$e\gamma^{\mu}_{ac}\cdot\delta_{cb}$
$\bar{\tau}_a$ τ_b H	$-rac{1}{2}rac{e\cdot Mtau}{M_W\cdot s_w}\cdot \delta_{ab}$
$\bar{\tau}_a$ τ_b ρ^0_{μ}	$-\frac{1}{4}\frac{e^2 \cdot a \cdot vv}{M_{\rho} \cdot s_w^2} \cdot \gamma_{ac}^{\mu} \frac{(1-\gamma^5)_{cb}}{2}$
$\bar{ au}_a$ $ au_b$ Z_μ	$ -\frac{1}{2} \frac{e}{c_w \cdot s_w} \gamma_{ac}^{\mu} \left(\frac{(1-\gamma^5)_{cb}}{2} - 2c_w^2 \cdot \frac{(1-\gamma^5)_{cb}}{2} + 2s_w^2 \cdot \frac{(1+\gamma^5)_{cb}}{2} \right) $
$ar{ au}_a$ $ u^{ au}_b$ $ ho^{\mu}$	$\frac{1}{4} \frac{e^2 \cdot \sqrt{2} \cdot a \cdot vv}{M_\rho \cdot s_w^2} \cdot \gamma_{ac}^{\mu} \frac{(1 - \gamma^5)_{cb}}{2}$
$\bar{\tau}_a \nu^{\tau}_b W^{-}_{\mu}$	$-rac{1}{2}rac{e\cdot\sqrt{2}}{s_w}\cdot\gamma^{\mu}_{ac}rac{(1-\gamma^5)_{cb}}{2}$
$G_{\mu p}$ $G_{\nu q}$ $G_{\rho r}$	$g_s f_{pqr} (p_3^{\nu} g^{\mu\rho} - p_3^{\mu} g^{\nu\rho} + p_1^{\rho} g^{\mu\nu} - p_1^{\nu} g^{\mu\rho} - p_2^{\rho} g^{\mu\nu} + p_2^{\mu} g^{\nu\rho})$
$\bar{C}^G_{\ p}$ $C^G_{\ q}$ $G_{\mu r}$	$\int g_s \cdot p_2^\mu f_{pqr}$
H H H	$-\frac{3}{2}\frac{e \cdot M_H^2}{M_W \cdot s_w}$
$H \rho^+{}_\mu \rho^-{}_\nu$	$rac{1}{4} rac{e^3 \cdot M_W \cdot a^2 \cdot vv^2}{M_{ ho}^2 \cdot s_w{}^3} \cdot g^{\mu u}$
$H \rho^+_{\mu} W^{\nu}$	$-\frac{1}{2} \frac{e^2 \cdot M_W \cdot a \cdot vv}{M_\rho \cdot s_w^2} \cdot g^{\mu\nu}$
$H \rho^{\ \mu} W^+_{\ \nu}$	$-\frac{1}{2} \frac{e^2 \cdot M_W \cdot a \cdot vv}{M_\rho \cdot s_w^2} \cdot g^{\mu\nu}$
$H \rho^0_{\ \mu} \rho^0_{\ \nu}$	$\frac{1}{4} \frac{e^3 \cdot M_W \cdot a^2 \cdot vv^2}{M_\rho^2 \cdot s_w^3} \cdot g^{\mu\nu}$
$H \rho^0_{\mu} Z_{\nu}$	$-rac{1}{2}rac{e^2\cdot M_W\cdot a\cdot vv}{c_w\cdot M_ ho\cdot s_w{}^2}\cdot g^{\mu u}$
H W^+_{μ} W^{ν}	$rac{e \cdot M_W}{s_w} \cdot g^{\mu u}$
H Z_{μ} $Z_{ u}$	$rac{e \cdot M_W}{c_w^2 \cdot s_w} \cdot g^{\mu u}$
H \tilde{h}^+ \tilde{h}^-	$-2\frac{M_W \cdot \mathbf{s}_w \cdot \lambda_3}{e}$
$H \widetilde{h}_1 \widetilde{h}_1$	$-2\frac{M_W \cdot s_w}{e} (\lambda_3 + \lambda_4 + \lambda_5)$
$H = \widetilde{h}_2 = \widetilde{h}_2$	$-2\frac{M_W \cdot s_w}{e} (\lambda_3 + \lambda_4 - \lambda_5)$
$\bar{\nu}^e{}_a e_b {\rho^+}_{\mu}$	$\frac{1}{4} \frac{e^2 \cdot \sqrt{2} \cdot a \cdot vv}{M_\rho \cdot s_w^2} \cdot \gamma_{ac}^{\mu} \frac{(1 - \gamma^5)_{cb}}{2}$
$\bar{\nu}^e{}_a$ e_b $W^+{}_\mu$	$-\frac{1}{2}\frac{e\cdot\sqrt{2}}{s_w}\cdot\gamma^{\mu}_{ac}\frac{(1-\gamma^5)_{cb}}{2}$
$\bar{\nu}^e{}_a {\nu^e}_b {\rho^0}_\mu$	$\frac{1}{4} \frac{e^2 \cdot a \cdot vv}{M_\rho \cdot s_w^2} \cdot \gamma_{ac}^{\mu} \frac{(1 - \gamma^5)_{cb}}{2}$

Fields in the vertex	Variational derivative of Lagrangian by fields
$\bar{\nu}^e{}_a \nu^e{}_b Z_\mu$	$-\frac{1}{2}\frac{e}{c_w \cdot s_w} \cdot \gamma_{ac}^{\mu} \frac{(1-\gamma^5)_{cb}}{2}$
$\bar{\nu}^{\mu}{}_{a}$ μ_{b} $\rho^{+}{}_{\mu}$	$\frac{1}{4} \frac{e^2 \cdot \sqrt{2 \cdot a \cdot vv}}{M_\rho \cdot s_w^2} \cdot \gamma_{ac}^\mu \frac{(1 - \gamma^5)_{cb}}{2}$
$ \bar{\nu}^{\mu}{}_{a} \mu_{b} W^{+}{}_{\mu}$	$-rac{1}{2}rac{e\cdot\sqrt{2}}{s_w}\cdot\gamma_{ac}^{\mu}rac{(1-\gamma^5)_{cb}}{2}$
$\bar{\nu}^{\mu}{}_{a}$ $\nu^{\mu}{}_{b}$ $\rho^{0}{}_{\mu}$	$\frac{1}{4} \frac{e^2 \cdot a \cdot vv}{M_{\rho} \cdot s_w^2} \cdot \gamma_{ac}^{\mu} \frac{(1 - \gamma^5)_{cb}}{2}$
$\bar{\nu}^{\mu}{}_{a}$ $\nu^{\mu}{}_{b}$ Z_{μ}	$-\frac{1}{2}\frac{e}{c_w \cdot s_w} \cdot \gamma_{ac}^{\mu} \frac{(1-\gamma^5)_{cb}}{2}$
$\bar{ u}^{ au}{}_a$ $ au_b$ $\rho^+{}_\mu$	$\frac{1}{4} \frac{e^2 \cdot \sqrt{2 \cdot a \cdot vv}}{M_\rho \cdot s_w^2} \cdot \gamma_{ac}^\mu \frac{(1 - \gamma^5)_{cb}}{2}$
$\bar{\nu}^{\tau}{}_{a}$ τ_{b} $W^{+}{}_{\mu}$	$-rac{1}{2}rac{e\cdot\sqrt{2}}{s_w}\cdot\gamma^{\mu}_{ac}rac{(1-\gamma^5)_{cb}}{2}$
$\bar{ u}^{ au}{}_a$ ${ u}^{ au}{}_b$ ${ ho}^0{}_\mu$	$\frac{1}{4} \frac{e^2 \cdot a \cdot vv}{M_\rho \cdot s_w^2} \cdot \gamma_{ac}^{\mu} \frac{(1 - \gamma^5)_{cb}}{2}$
$\bar{\nu}^{\tau}{}_{a}$ $\nu^{\tau}{}_{b}$ Z_{μ}	$-\frac{1}{2}\frac{e}{c_w \cdot s_w} \cdot \gamma_{ac}^{\mu} \frac{(1-\gamma^5)_{cb}}{2}$
ρ^+_{μ} ρ^{ν} ρ^0_{ρ}	$\frac{1}{8} \frac{1}{M_{\rho^3 \cdot s_w}^4 \cdot a \cdot vv} (e^4 \cdot a^4 \cdot vv^4 \cdot p_1^{\nu} g^{\mu \rho} - e^4 \cdot a^4 \cdot vv^4 \cdot p_1^{\rho} g^{\mu \nu} - e^4 \cdot a^4 \cdot vv^4 \cdot p_2^{\mu} g^{\nu \rho}$
	$+e^4 \cdot a^4 \cdot vv^4 \cdot p_2^{\rho} g^{\mu\nu} + e^4 \cdot a^4 \cdot vv^4 \cdot p_3^{\mu} g^{\nu\rho} - e^4 \cdot a^4 \cdot vv^4 \cdot p_3^{\nu} g^{\mu\rho} - 16 M_{\rho}^{\ 4} \cdot p_1^{\nu} g^{\mu\rho}$
	$+32c_w^2 \cdot M_{\rho}^4 \cdot p_1^{\nu} g^{\mu\rho} - 16c_w^4 \cdot M_{\rho}^4 \cdot p_1^{\nu} g^{\mu\rho} + 16M_{\rho}^4 \cdot p_1^{\rho} g^{\mu\nu} - 32c_w^2 \cdot M_{\rho}^4 \cdot p_1^{\rho} g^{\mu\nu}$
	$+16c_w^4 \cdot M_\rho^4 \cdot p_1^\rho g^{\mu\nu} + 16M_\rho^4 \cdot p_2^\mu g^{\nu\rho} - 32c_w^2 \cdot M_\rho^4 \cdot p_2^\mu g^{\nu\rho} + 16c_w^4 \cdot M_\rho^4 \cdot p_2^\mu g^{\nu\rho}$
	$-16M_{\rho}{}^{4} \cdot p_{2}^{\rho}g^{\mu\nu} + 32c_{w}{}^{2} \cdot M_{\rho}{}^{4} \cdot p_{2}^{\rho}g^{\mu\nu} - 16c_{w}{}^{4} \cdot M_{\rho}{}^{4} \cdot p_{2}^{\rho}g^{\mu\nu} - 16M_{\rho}{}^{4} \cdot p_{3}^{\mu}g^{\nu\rho}$
	$+32c_w^2 \cdot M_{\rho}^4 \cdot p_3^{\mu} g^{\nu\rho} - 16c_w^4 \cdot M_{\rho}^4 \cdot p_3^{\mu} g^{\nu\rho} + 16M_{\rho}^4 \cdot p_3^{\nu} g^{\mu\rho} - 32c_w^2 \cdot M_{\rho}^4 \cdot p_3^{\nu} g^{\mu\rho}$
	$+16c_w^4 \cdot M_{\rho}^4 \cdot p_3^{\nu} g^{\mu\rho})$
ρ^+_{μ} ρ^{ν} Z_{ρ}	$-\frac{1}{4} \frac{c_w \cdot e}{M_\rho^2 \cdot s_w^3} (e^2 \cdot a^2 \cdot vv^2 \cdot p_1^\nu g^{\mu\rho} - e^2 \cdot a^2 \cdot vv^2 \cdot p_1^\rho g^{\mu\nu} - e^2 \cdot a^2 \cdot vv^2 \cdot p_2^\mu g^{\nu\rho}$
	$+ e^2 \cdot a^2 \cdot vv^2 \cdot p_2^{\rho} g^{\mu\nu} + e^2 \cdot a^2 \cdot vv^2 \cdot p_3^{\mu} g^{\nu\rho} - e^2 \cdot a^2 \cdot vv^2 \cdot p_3^{\nu} g^{\mu\rho} + 4M_{\rho}^{\ 2} \cdot s_w^{\ 2} \cdot p_1^{\nu} g^{\mu\rho}$
	$-4M_{\rho}^{\ 2} \cdot s_{w}^{\ 2} \cdot p_{1}^{\rho} g^{\mu\nu} - 4M_{\rho}^{\ 2} \cdot s_{w}^{\ 2} \cdot p_{2}^{\mu} g^{\nu\rho} + 4M_{\rho}^{\ 2} \cdot s_{w}^{\ 2} \cdot p_{2}^{\rho} g^{\mu\nu} + 4M_{\rho}^{\ 2} \cdot s_{w}^{\ 2} \cdot p_{3}^{\mu} g^{\nu\rho}$
	$-4M_{\rho}^2 \cdot s_w^2 \cdot p_3^{\nu} g^{\mu\rho})$
$\rho^+_{\mu} \rho^0_{\nu} W^{\rho}$	$-\frac{1}{4} \frac{e}{M_{\rho^2 \cdot s_w^3}} (e^2 \cdot a^2 \cdot vv^2 \cdot p_1^{\rho} g^{\mu\nu} - e^2 \cdot a^2 \cdot vv^2 \cdot p_1^{\nu} g^{\mu\rho} - e^2 \cdot a^2 \cdot vv^2 \cdot p_3^{\mu} g^{\nu\rho}$
	$+e^{2} \cdot a^{2} \cdot vv^{2} \cdot p_{3}^{\nu} g^{\mu\rho} + e^{2} \cdot a^{2} \cdot vv^{2} \cdot p_{2}^{\mu} g^{\nu\rho} - e^{2} \cdot a^{2} \cdot vv^{2} \cdot p_{2}^{\rho} g^{\mu\nu} + 4M_{\rho}^{2} \cdot s_{w}^{2} \cdot p_{1}^{\rho} g^{\mu\nu}$
	$-4 M_{\rho}^{\ 2} \cdot s_{w}^{\ 2} \cdot p_{1}^{\nu} g^{\mu\rho} - 4 M_{\rho}^{\ 2} \cdot s_{w}^{\ 2} \cdot p_{3}^{\mu} g^{\nu\rho} + 4 M_{\rho}^{\ 2} \cdot s_{w}^{\ 2} \cdot p_{3}^{\nu} g^{\mu\rho} + 4 M_{\rho}^{\ 2} \cdot s_{w}^{\ 2} \cdot p_{2}^{\mu} g^{\nu\rho}$
	$-4M_{\rho}^{2}\cdot s_{w}^{2}\cdot p_{2}^{\rho}g^{\mu\nu})$
ρ^+_{μ} $\widetilde{h}^ \widetilde{h}_1$	$rac{i\cdot M_ ho}{a\cdot vv}(p_2^\mu-p_3^\mu)$

Fields in the vertex	Variational derivative of Lagrangian by fields
$\rho^+_{\ \mu}$ $\tilde{h}^ \tilde{h}_2$	$-\frac{M_{\rho}}{a \cdot vv}(p_2^{\mu} - p_3^{\mu})$
ρ^{μ} ρ^0_{ν} W^+_{ρ}	$ \left -\frac{1}{4} \frac{e}{M_{\rho^2 \cdot s_w}^3} (e^2 \cdot a^2 \cdot vv^2 \cdot p_3^{\mu} g^{\nu\rho} - e^2 \cdot a^2 \cdot vv^2 \cdot p_3^{\nu} g^{\mu\rho} - e^2 \cdot a^2 \cdot vv^2 \cdot p_1^{\rho} g^{\mu\nu} \right $
	$ + e^2 \cdot a^2 \cdot vv^2 \cdot p_1^{\nu} g^{\mu\rho} + e^2 \cdot a^2 \cdot vv^2 \cdot p_2^{\rho} g^{\mu\nu} - e^2 \cdot a^2 \cdot vv^2 \cdot p_2^{\mu} g^{\nu\rho} + 4M_{\rho}^{\ 2} \cdot s_w^{\ 2} \cdot p_3^{\mu} g^{\nu\rho} $
	$-4M_{\rho}^{2} \cdot s_{w}^{2} \cdot p_{3}^{\nu} g^{\mu\rho} - 4M_{\rho}^{2} \cdot s_{w}^{2} \cdot p_{1}^{\rho} g^{\mu\nu} + 4M_{\rho}^{2} \cdot s_{w}^{2} \cdot p_{1}^{\nu} g^{\mu\rho} + 4M_{\rho}^{2} \cdot s_{w}^{2} \cdot p_{2}^{\rho} g^{\mu\nu}$
	$-4M_{\rho}^{2} \cdot s_{w}^{2} \cdot p_{2}^{\mu} g^{\nu\rho}$
ρ^{μ} \widetilde{h}^+ \widetilde{h}_1	$\left \; -rac{i\cdot M_ ho}{a\cdot vv}(p_3^\mu-p_2^\mu) ight $
ρ^{μ} \widetilde{h}^+ \widetilde{h}_2	$\Big -rac{M_ ho}{a\cdot vv}(p_3^\mu-p_2^\mu)$
$\left \begin{array}{ccc} { ho^0}_{\mu} & \widetilde{h}^+ & \widetilde{h}^- \end{array} \right $	$\left rac{M_{ ho}}{a \cdot vv} (p_3^{\mu} - p_2^{\mu}) ight.$
ρ^0_{μ} \widetilde{h}_1 \widetilde{h}_2	$\left rac{i \cdot M_ ho}{a \cdot vv} (p_3^\mu - p_2^\mu) ight $
\bar{s}_{ap} c_{bq} ρ^{μ}	$\frac{1}{4} \frac{e^2 \cdot \sqrt{2} \cdot a \cdot vv}{M_\rho \cdot s_w^2} \cdot \delta_{pq} \gamma_{ac}^{\mu} \frac{(1 - \gamma^5)_{cb}}{2}$
\bar{s}_{ap} c_{bq} W^{μ}	$-rac{1}{2}rac{e\cdot\sqrt{2}}{s_w}\cdot\delta_{pq}\gamma_{ac}^{\mu}rac{(1-\gamma^5)_{cb}}{2}$
\bar{s}_{ap} s_{bq} A_{μ}	$\frac{1}{3}e\delta_{pq}\gamma^{\mu}_{ac}\cdot\delta_{cb}$
\bar{s}_{ap} s_{bq} $G_{\mu r}$	$g_s \cdot \lambda_{pq}^r \gamma_{ab}^\mu$
\bar{s}_{ap} s_{bq} H	$-rac{1}{2}rac{e\cdot M_s}{M_W\cdot s_w}\delta_{pq}\cdot\delta_{ab}$
\bar{s}_{ap} s_{bq} $\rho^0_{\ \mu}$	$-\frac{1}{4} \frac{e^2 \cdot a \cdot vv}{M_{\rho} \cdot s_w^2} \cdot \delta_{pq} \gamma_{ac}^{\mu} \frac{(1-\gamma^5)_{cb}}{2}$
\bar{s}_{ap} s_{bq} Z_{μ}	$\frac{1}{6} \frac{e}{c_w \cdot s_w} \delta_{pq} \gamma_{ac}^{\mu} \left(\frac{(1-\gamma^5)_{cb}}{2} + 2c_w^2 \cdot \frac{(1-\gamma^5)_{cb}}{2} - 2s_w^2 \cdot \frac{(1+\gamma^5)_{cb}}{2} \right)$
\bar{t}_{ap} b_{bq} ρ^+_{μ}	$\frac{1}{4} \frac{e^2 \cdot \sqrt{2} \cdot a \cdot vv}{M_\rho \cdot s_w^2} \cdot \delta_{pq} \gamma_{ac}^\mu \frac{(1 - \gamma^5)_{cb}}{2}$
\bar{t}_{ap} b_{bq} W^{+}_{μ}	$\left[egin{array}{c} -rac{1}{2}rac{e\cdot\sqrt{2}}{s_w}\cdot\delta_{pq}\gamma_{ac}^{\mu}rac{(1-\gamma^5)_{cb}}{2} \end{array} ight.$
\bar{t}_{ap} t_{bq} A_{μ}	$-rac{2}{3}e\delta_{pq}\gamma^{\mu}_{ac}\cdot\delta_{cb}$
$egin{array}{cccc} ar{t}_{ap} & t_{bq} & G_{\mu r} \end{array}$	$g_s \cdot \lambda_{pq}^r \gamma_{ab}^\mu$
$egin{array}{cccc} ar{t}_{ap} & t_{bq} & H \end{array}$	$-rac{1}{2}rac{e\cdot M_t}{M_W\cdot s_w}\delta_{pq}\cdot\delta_{ab}$
\bar{t}_{ap} t_{bq} $\rho^0_{\ \mu}$	$\frac{1}{4} \frac{e^2 \cdot a \cdot vv}{M_{\rho} \cdot s_w^2} \cdot \delta_{pq} \gamma_{ac}^{\mu} \frac{(1 - \gamma^5)_{cb}}{2}$
$egin{array}{cccc} ar{t}_{ap} & t_{bq} & Z_{\mu} \end{array}$	$\frac{1}{6} \frac{e}{c_w \cdot s_w} \delta_{pq} \gamma_{ac}^{\mu} \left(\frac{(1-\gamma^5)_{cb}}{2} - 4c_w^2 \cdot \frac{(1-\gamma^5)_{cb}}{2} + 4s_w^2 \cdot \frac{(1+\gamma^5)_{cb}}{2} \right)$
	$\frac{1}{4} \frac{e^2 \cdot \sqrt{2} \cdot a \cdot vv}{M_\rho \cdot s_w^2} \cdot \delta_{pq} \gamma_{ac}^{\mu} \frac{(1 - \gamma^5)_{cb}}{2}$
\bar{u}_{ap} d_{bq} W^{+}_{μ}	$-\frac{1}{2}\frac{e\cdot\sqrt{2}}{s_w}\cdot\delta_{pq}\gamma_{ac}^{\mu}\frac{(1-\gamma^5)_{cb}}{2}$

Fields in the vertex	Variational derivative of Lagrangian by fields
\bar{u}_{ap} u_{bq} A_{μ}	$-\frac{2}{3}e\delta_{pq}\gamma^{\mu}_{ac}\cdot\delta_{cb}$
\bar{u}_{ap} u_{bq} $G_{\mu r}$	$g_s \cdot \lambda_{pq}^r \gamma_{ab}^\mu$
$ \bar{u}_{ap} u_{bq} H$	$-rac{1}{2}rac{e\cdot Mu}{M_W\cdot s_w}\delta_{pq}\cdot\delta_{ab}$
$ \bar{u}_{ap} u_{bq} {\rho^0}_{\mu}$	$\frac{1}{4} \frac{e^2 \cdot a \cdot vv}{M_{\rho} \cdot s_w^2} \cdot \delta_{pq} \gamma_{ac}^{\mu} \frac{(1 - \gamma^5)_{cb}}{2}$
\bar{u}_{ap} u_{bq} Z_{μ}	$\frac{1}{6} \frac{e}{c_w \cdot s_w} \delta_{pq} \gamma_{ac}^{\mu} \left(\frac{(1-\gamma^5)_{cb}}{2} - 4c_w^2 \cdot \frac{(1-\gamma^5)_{cb}}{2} + 4s_w^2 \cdot \frac{(1+\gamma^5)_{cb}}{2} \right)$
$W^+_{\mu} W^{\nu} Z_{\rho}$	$-\frac{1}{4} \frac{c_w \cdot e}{s_w^3 \cdot M_{\rho^2}} (4M_{\rho}^2 \cdot s_w^2 \cdot p_1^{\nu} g^{\mu\rho} - 4M_{\rho}^2 \cdot s_w^2 \cdot p_1^{\rho} g^{\mu\nu} - 4M_{\rho}^2 \cdot s_w^2 \cdot p_2^{\mu} g^{\nu\rho}$
	$+4M_{\rho}^{2} \cdot s_{w}^{2} \cdot p_{2}^{\rho}g^{\mu\nu} + 4M_{\rho}^{2} \cdot s_{w}^{2} \cdot p_{3}^{\mu}g^{\nu\rho} - 4M_{\rho}^{2} \cdot s_{w}^{2} \cdot p_{3}^{\nu}g^{\mu\rho} + e^{2} \cdot a^{2} \cdot vv^{2} \cdot p_{1}^{\nu}g^{\mu\rho}$
	$-e^2 \cdot a^2 \cdot vv^2 \cdot p_3^{\nu} g^{\mu\rho})$
W^+_{μ} $\widetilde{h}^ \widetilde{h}_1$	$\left \frac{1}{2} \frac{i \cdot e}{s_w} (p_2^\mu - p_3^\mu) \right $
$W^+_{\mu} \tilde{h}^- \tilde{h}_2$	$-rac{1}{2}rac{e}{s_w}(p_2^\mu-p_3^\mu)$
W^{μ} \widetilde{h}^+ \widetilde{h}_1	$-rac{1}{2}rac{i\cdot e}{s_w}(p_3^\mu-p_2^\mu)$
$W^{\mu} \tilde{h}^+ \tilde{h}_2$	$-rac{1}{2}rac{e}{s_w}(p_3^\mu-p_2^\mu)$
Z_{μ} \widetilde{h}^{+} \widetilde{h}^{-}	$-\frac{1}{2}\frac{e}{c_w \cdot s_w} (p_3^{\mu} - 2c_w^2 \cdot p_3^{\mu} - p_2^{\mu} + 2c_w^2 \cdot p_2^{\mu})$
$igg Z_{\mu} \widetilde{h}_1 \widetilde{h}_2$	$-\frac{1}{2}\frac{i\cdot e}{c_w\cdot s_w}(p_2^\mu - p_3^\mu)$
$A_{\mu} A_{\nu} \rho^{+}{}_{\rho} \rho^{-}{}_{\sigma}$	$ -\frac{1}{4} \frac{e^2}{M_{\rho^2 \cdot s_w^2}} (2e^2 \cdot a^2 \cdot vv^2 \cdot g^{\mu\nu} g^{\rho\sigma} - e^2 \cdot a^2 \cdot vv^2 \cdot g^{\mu\rho} g^{\nu\sigma} - e^2 \cdot a^2 \cdot vv^2 \cdot g^{\mu\sigma} g^{\nu\rho} $
	$+8M_{\rho}^{2} \cdot s_{w}^{2} \cdot g^{\mu\nu}g^{\rho\sigma} - 4M_{\rho}^{2} \cdot s_{w}^{2} \cdot g^{\mu\rho}g^{\nu\sigma} - 4M_{\rho}^{2} \cdot s_{w}^{2} \cdot g^{\mu\sigma}g^{\nu\rho})$
$A_{\mu} A_{\nu} W^{+}{}_{\rho} W^{-}{}_{\sigma}$	$ -\frac{1}{4} \frac{e^2}{M_{\rho^2 \cdot s_w}^2} (8M_{\rho^2} \cdot s_w^2 \cdot g^{\mu\nu} g^{\rho\sigma} - 4M_{\rho^2} \cdot s_w^2 \cdot g^{\mu\rho} g^{\nu\sigma} - 4M_{\rho^2} \cdot s_w^2 \cdot g^{\mu\sigma} g^{\nu\rho} $
	$+2e^2 \cdot a^2 \cdot vv^2 \cdot g^{\mu\nu}g^{\rho\sigma} - e^2 \cdot a^2 \cdot vv^2 \cdot g^{\mu\rho}g^{\nu\sigma} - e^2 \cdot a^2 \cdot vv^2 \cdot g^{\mu\sigma}g^{\nu\rho})$
A_{μ} A_{ν} \tilde{h}^{+} \tilde{h}^{-}	$2e^2 \cdot g^{\mu\nu}$
$A_{\mu} \rho^{+}_{\ \nu} \rho^{-}_{\ \rho} \rho^{0}_{\ \sigma}$	$\frac{1}{8} \frac{e}{M_{\rho^3 \cdot s_w^4 \cdot a \cdot vv}} (2e^4 \cdot a^4 \cdot vv^4 \cdot g^{\mu\sigma} g^{\nu\rho} - e^4 \cdot a^4 \cdot vv^4 \cdot g^{\mu\rho} g^{\nu\sigma} - e^4 \cdot a^4 \cdot vv^4 \cdot g^{\mu\nu} g^{\rho\sigma})$
	$-32M_{\rho}^{4} \cdot g^{\mu\sigma}g^{\nu\rho} + 64c_{w}^{2} \cdot M_{\rho}^{4} \cdot g^{\mu\sigma}g^{\nu\rho} - 32c_{w}^{4} \cdot M_{\rho}^{4} \cdot g^{\mu\sigma}g^{\nu\rho}$
	$+16M_{\rho}^{4} \cdot g^{\mu\rho}g^{\nu\sigma} - 32c_{w}^{2} \cdot M_{\rho}^{4} \cdot g^{\mu\rho}g^{\nu\sigma} + 16c_{w}^{4} \cdot M_{\rho}^{4} \cdot g^{\mu\rho}g^{\nu\sigma}$
	$+16M_{\rho}^{\ 4} \cdot g^{\mu\nu}g^{\rho\sigma} - 32c_{w}^{\ 2} \cdot M_{\rho}^{\ 4} \cdot g^{\mu\nu}g^{\rho\sigma} + 16c_{w}^{\ 4} \cdot M_{\rho}^{\ 4} \cdot g^{\mu\nu}g^{\rho\sigma})$
$A_{\mu} \rho^{+}_{\ \nu} \rho^{-}_{\ \rho} Z_{\sigma}$	$ -\frac{1}{4} \frac{c_w \cdot e^2}{M_{\rho^2} \cdot s_w^3} (2e^2 \cdot a^2 \cdot vv^2 \cdot g^{\mu\sigma} g^{\nu\rho} - e^2 \cdot a^2 \cdot vv^2 \cdot g^{\mu\rho} g^{\nu\sigma} - e^2 \cdot a^2 \cdot vv^2 \cdot g^{\mu\nu} g^{\rho\sigma}) $

Fields in the vertex	Variational derivative of Lagrangian by fields
	$+8M_{\rho}^{2} \cdot s_{w}^{2} \cdot g^{\mu\sigma}g^{\nu\rho} - 4M_{\rho}^{2} \cdot s_{w}^{2} \cdot g^{\mu\rho}g^{\nu\sigma} - 4M_{\rho}^{2} \cdot s_{w}^{2} \cdot g^{\mu\nu}g^{\rho\sigma})$
$A_{\mu} \rho^{+}_{\ \nu} \rho^{0}_{\ \rho} W^{-}_{\ \sigma}$	$ -\frac{1}{4} \frac{e^2}{M_{\rho^2} \cdot s_w^3} (2e^2 \cdot a^2 \cdot vv^2 \cdot g^{\mu\rho} g^{\nu\sigma} - e^2 \cdot a^2 \cdot vv^2 \cdot g^{\mu\sigma} g^{\nu\rho} - e^2 \cdot a^2 \cdot vv^2 \cdot g^{\mu\nu} g^{\rho\sigma}) $
	$+8M_{\rho}^{2} \cdot s_{w}^{2} \cdot g^{\mu\rho}g^{\nu\sigma} - 4M_{\rho}^{2} \cdot s_{w}^{2} \cdot g^{\mu\sigma}g^{\nu\rho} - 4M_{\rho}^{2} \cdot s_{w}^{2} \cdot g^{\mu\nu}g^{\rho\sigma})$
$A_{\mu} \rho^{+}_{\nu} \widetilde{h}^{-} \widetilde{h}_{1}$	$\left rac{i \cdot e \cdot M_{ ho}}{a \cdot vv} \cdot g^{\mu u} ight $
$A_{\mu} \rho^{+}_{\nu} \widetilde{h}^{-} \widetilde{h}_{2}$	$\left - rac{e \cdot M_ ho}{a \cdot vv} \cdot g^{\mu u} ight.$
$A_{\mu} \rho^{-}_{\ \nu} \rho^{0}_{\ \rho} W^{+}_{\ \sigma}$	$ -\frac{1}{4} \frac{e^2}{M_{\rho^2 \cdot s_w}^3} (2e^2 \cdot a^2 \cdot vv^2 \cdot g^{\mu\rho} g^{\nu\sigma} - e^2 \cdot a^2 \cdot vv^2 \cdot g^{\mu\nu} g^{\rho\sigma} - e^2 \cdot a^2 \cdot vv^2 \cdot g^{\mu\sigma} g^{\nu\rho} $
	$+8M_{\rho}^{2} \cdot s_{w}^{2} \cdot g^{\mu\rho}g^{\nu\sigma} - 4M_{\rho}^{2} \cdot s_{w}^{2} \cdot g^{\mu\nu}g^{\rho\sigma} - 4M_{\rho}^{2} \cdot s_{w}^{2} \cdot g^{\mu\sigma}g^{\nu\rho})$
$A_{\mu} \rho^{-}_{\nu} \widetilde{h}^{+} \widetilde{h}_{1}$	$-rac{i\cdot e\cdot M_ ho}{a\cdot vv}\cdot g^{\mu u}$
$A_{\mu} \rho^{-}_{\nu} \widetilde{h}^{+} \widetilde{h}_{2}$	$\left \; -rac{e\cdot M_ ho}{a\cdot vv}\cdot g^{\mu u} ight $
$A_{\mu} \rho^{0}_{\nu} \tilde{h}^{+} \tilde{h}^{-}$	$2rac{e\cdot M_{ ho}}{a\cdot vv}\cdot g^{\mu u}$
$A_{\mu} W^{+}_{\nu} W^{-}_{\rho} Z_{\sigma}$	$ -\frac{1}{4} \frac{c_w \cdot e^2}{s_w^3 \cdot M_{\rho}^2} (8M_{\rho}^2 \cdot s_w^2 \cdot g^{\mu\sigma} g^{\nu\rho} - 4M_{\rho}^2 \cdot s_w^2 \cdot g^{\mu\rho} g^{\nu\sigma} - 4M_{\rho}^2 \cdot s_w^2 \cdot g^{\mu\nu} g^{\rho\sigma} $
	$+2e^2 \cdot a^2 \cdot vv^2 \cdot g^{\mu\sigma}g^{\nu\rho} - e^2 \cdot a^2 \cdot vv^2 \cdot g^{\mu\rho}g^{\nu\sigma} - e^2 \cdot a^2 \cdot vv^2 \cdot g^{\mu\nu}g^{\rho\sigma})$
$A_{\mu} W^{+}_{\nu} \widetilde{h}^{-} \widetilde{h}_{1}$	$\left \; rac{1}{2} rac{i \cdot e^2}{s_w} \cdot g^{\mu u} ight.$
$A_{\mu} W^{+}_{\nu} \tilde{h}^{-} \tilde{h}_{2}$	$-rac{1}{2}rac{e^2}{s_w}\cdot g^{\mu u}$
$A_{\mu} W^{-}_{\nu} \widetilde{h}^{+} \widetilde{h}_{1}$	$-rac{1}{2}rac{i\cdot e^2}{s_w}\cdot g^{\mu u}$
$A_{\mu} W^{-}_{\nu} \tilde{h}^{+} \tilde{h}_{2}$	$-rac{1}{2}rac{e^2}{s_w}\cdot g^{\mu u}$
A_{μ} Z_{ν} \widetilde{h}^{+} \widetilde{h}^{-}	$-\frac{e^2}{c_w \cdot s_w} g^{\mu\nu} (1 - 2c_w^2)$
$G_{\mu p} G_{\nu q} G_{\rho r} G_{\sigma s}$	$g_s^2 (g^{\mu\rho}g^{\nu\sigma}f_{pqt}f_{rst} - g^{\mu\sigma}g^{\nu\rho}f_{pqt}f_{rst} + g^{\mu\nu}g^{\rho\sigma}f_{prt}f_{qst})$
	$-g^{\mu\sigma}g^{\nu\rho}f_{prt}f_{qst} + g^{\mu\nu}g^{\rho\sigma}f_{pst}f_{qrt} - g^{\mu\rho}g^{\nu\sigma}f_{pst}f_{qrt})$
H H H	$-rac{3}{4}rac{e^2\cdot M_H{}^2}{M_W{}^2\cdot s_w{}^2}$
$H H \rho^+_{\mu} \rho^{\nu}$	$\left[\begin{array}{cc} rac{1}{8}rac{e^4\cdot a^2\cdot vv^2}{M_ ho^2\cdot s_w^4}\cdot g^{\mu u} \end{array} ight]$
$H H \rho^+_{\mu} W^{\nu}$	$-\frac{1}{4} \frac{e^3 \cdot a \cdot vv}{M_{ ho} \cdot s_w^3} \cdot g^{\mu u}$
H H ρ^{μ} W^+_{ν}	$-\frac{1}{4} \frac{e^3 \cdot a \cdot vv}{M_{ ho} \cdot s_w^3} \cdot g^{\mu u}$
H H $\rho^0_{\ \mu}$ $\rho^0_{\ \nu}$	$\left[\begin{array}{cc} rac{1}{8}rac{e^4\cdot a^2\cdot vv^2}{M_ ho^2\cdot s_w{}^4}\cdot g^{\mu u} \end{array} ight.$
$H H \rho^0_{\mu} Z_{\nu}$	$-\frac{1}{4}\frac{e^3 \cdot a \cdot vv}{c_w \cdot M_\rho \cdot s_w^3} \cdot g^{\mu\nu}$

Fields in the vertex	Variational derivative of Lagrangian by fields
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\left[rac{1}{2} rac{e^2}{s_w{}^2} \cdot g^{\mu u} ight.$
H H Z_{μ} $Z_{ u}$	$\frac{1}{2} \frac{e^2}{c_w^2 \cdot s_w^2} \cdot g^{\mu u}$
$H H \widetilde{h}^+ \widetilde{h}^-$	$-\lambda_3$
H H \widetilde{h}_1 \widetilde{h}_1	$-(\lambda_3+\lambda_4+\lambda_5)$
H H \widetilde{h}_2 \widetilde{h}_2	$-(\lambda_3+\lambda_4-\lambda_5)$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{1}{16} \frac{1}{M_{\rho}^{4} \cdot s_{w}^{6} \cdot a^{2} \cdot vv^{2}} (2e^{6} \cdot a^{6} \cdot vv^{6} \cdot g^{\mu\nu}g^{\rho\sigma} - e^{6} \cdot a^{6} \cdot vv^{6} \cdot g^{\mu\sigma}g^{\nu\rho} + 128M_{\rho}^{6} \cdot g^{\mu\nu}g^{\rho\sigma})$
	$-384c_w^2 \cdot M_{\rho}^6 \cdot g^{\mu\nu}g^{\rho\sigma} + 384c_w^4 \cdot M_{\rho}^6 \cdot g^{\mu\nu}g^{\rho\sigma} - 128c_w^6 \cdot M_{\rho}^6 \cdot g^{\mu\nu}g^{\rho\sigma}$
	$-64M_{\rho}^{\ 6} \cdot g^{\mu\sigma}g^{\nu\rho} + 192c_{w}^{\ 2} \cdot M_{\rho}^{\ 6} \cdot g^{\mu\sigma}g^{\nu\rho} - 192c_{w}^{\ 4} \cdot M_{\rho}^{\ 6} \cdot g^{\mu\sigma}g^{\nu\rho}$
	$+64c_w^{\ 6} \cdot M_{\rho}^{\ 6} \cdot g^{\mu\sigma}g^{\nu\rho} - e^6 \cdot a^6 \cdot vv^6 \cdot g^{\mu\rho}g^{\nu\sigma} - 64M_{\rho}^{\ 6} \cdot g^{\mu\rho}g^{\nu\sigma}$
	$+192c_w^2 \cdot M_{\rho}^{\ 6} \cdot g^{\mu\rho}g^{\nu\sigma} - 192c_w^{\ 4} \cdot M_{\rho}^{\ 6} \cdot g^{\mu\rho}g^{\nu\sigma} + 64c_w^{\ 6} \cdot M_{\rho}^{\ 6} \cdot g^{\mu\rho}g^{\nu\sigma})$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ -\frac{1}{8} \frac{e}{M_{\rho^3 \cdot s_w^5 \cdot a \cdot vv}} (2e^4 \cdot a^4 \cdot vv^4 \cdot g^{\mu\nu} g^{\rho\sigma} - e^4 \cdot a^4 \cdot vv^4 \cdot g^{\mu\sigma} g^{\nu\rho} - e^4 \cdot a^4 \cdot vv^4 \cdot g^{\mu\rho} g^{\nu\sigma} $
	$-32M_{\rho}^{\ 4} \cdot g^{\mu\nu}g^{\rho\sigma} + 64c_{w}^{\ 2} \cdot M_{\rho}^{\ 4} \cdot g^{\mu\nu}g^{\rho\sigma} - 32c_{w}^{\ 4} \cdot M_{\rho}^{\ 4} \cdot g^{\mu\nu}g^{\rho\sigma}$
	$+16M_{\rho}^{\ 4} \cdot g^{\mu\sigma}g^{\nu\rho} - 32c_{w}^{\ 2} \cdot M_{\rho}^{\ 4} \cdot g^{\mu\sigma}g^{\nu\rho} + 16c_{w}^{\ 4} \cdot M_{\rho}^{\ 4} \cdot g^{\mu\sigma}g^{\nu\rho}$
	$+16M_{\rho}^{\ 4} \cdot g^{\mu\rho}g^{\nu\sigma} - 32c_{w}^{\ 2} \cdot M_{\rho}^{\ 4} \cdot g^{\mu\rho}g^{\nu\sigma} + 16c_{w}^{\ 4} \cdot M_{\rho}^{\ 4} \cdot g^{\mu\rho}g^{\nu\sigma})$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{1}{4} \frac{e^2}{M_{\rho^2 \cdot s_w}^4} (2e^2 \cdot a^2 \cdot vv^2 \cdot g^{\mu\nu} g^{\rho\sigma} - e^2 \cdot a^2 \cdot vv^2 \cdot g^{\mu\sigma} g^{\nu\rho} + 8M_{\rho}^2 \cdot s_w^2 \cdot g^{\mu\nu} g^{\rho\sigma})$
	$-4M_{\rho}^{2} \cdot s_{w}^{2} \cdot g^{\mu\sigma}g^{\nu\rho} - e^{2} \cdot a^{2} \cdot vv^{2} \cdot g^{\mu\rho}g^{\nu\sigma} - 4M_{\rho}^{2} \cdot s_{w}^{2} \cdot g^{\mu\rho}g^{\nu\sigma})$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ -\frac{1}{8} \frac{e}{M_{\rho}^{3} \cdot s_{w}^{5} \cdot a \cdot vv} (2e^{4} \cdot a^{4} \cdot vv^{4} \cdot g^{\mu\sigma}g^{\nu\rho} - e^{4} \cdot a^{4} \cdot vv^{4} \cdot g^{\mu\rho}g^{\nu\sigma} - e^{4} \cdot a^{4} \cdot vv^{4} \cdot g^{\mu\nu}g^{\rho\sigma} $
	$-32M_{\rho}^{4} \cdot g^{\mu\sigma}g^{\nu\rho} + 64c_{w}^{2} \cdot M_{\rho}^{4} \cdot g^{\mu\sigma}g^{\nu\rho} - 32c_{w}^{4} \cdot M_{\rho}^{4} \cdot g^{\mu\sigma}g^{\nu\rho}$
	$+16M_{\rho}^{4} \cdot g^{\mu\rho}g^{\nu\sigma} - 32c_{w}^{2} \cdot M_{\rho}^{4} \cdot g^{\mu\rho}g^{\nu\sigma} + 16c_{w}^{4} \cdot M_{\rho}^{4} \cdot g^{\mu\rho}g^{\nu\sigma}$
	$+16M_{\rho}^{\ 4} \cdot g^{\mu\nu}g^{\rho\sigma} - 32c_{w}^{\ 2} \cdot M_{\rho}^{\ 4} \cdot g^{\mu\nu}g^{\rho\sigma} + 16c_{w}^{\ 4} \cdot M_{\rho}^{\ 4} \cdot g^{\mu\nu}g^{\rho\sigma})$
$\rho^+_{\mu} \rho^{\nu} \rho^0_{\rho} \rho^0_{\sigma}$	$ -\frac{1}{16} \frac{1}{M_{\rho}^{4} \cdot s_{w}^{6} \cdot a^{2} \cdot vv^{2}} (2e^{6} \cdot a^{6} \cdot vv^{6} \cdot g^{\mu\nu}g^{\rho\sigma} - e^{6} \cdot a^{6} \cdot vv^{6} \cdot g^{\mu\rho}g^{\nu\sigma} - e^{6} \cdot a^{6} \cdot vv^{6} \cdot g^{\mu\sigma}g^{\nu\rho} $
	$+128M_{\rho}^{6} \cdot g^{\mu\nu}g^{\rho\sigma} - 384c_{w}^{2} \cdot M_{\rho}^{6} \cdot g^{\mu\nu}g^{\rho\sigma} + 384c_{w}^{4} \cdot M_{\rho}^{6} \cdot g^{\mu\nu}g^{\rho\sigma}$
	$-128c_w^{\ 6} \cdot M_{\rho}^{\ 6} \cdot g^{\mu\nu}g^{\rho\sigma} - 64M_{\rho}^{\ 6} \cdot g^{\mu\rho}g^{\nu\sigma} + 192c_w^{\ 2} \cdot M_{\rho}^{\ 6} \cdot g^{\mu\rho}g^{\nu\sigma}$
	$-192c_w^4 \cdot M_{\rho}^6 \cdot g^{\mu\rho}g^{\nu\sigma} + 64c_w^6 \cdot M_{\rho}^6 \cdot g^{\mu\rho}g^{\nu\sigma} - 64M_{\rho}^6 \cdot g^{\mu\sigma}g^{\nu\rho}$
	$+192c_w^2 \cdot M_{\rho}^{\ 6} \cdot g^{\mu\sigma}g^{\nu\rho} - 192c_w^4 \cdot M_{\rho}^{\ 6} \cdot g^{\mu\sigma}g^{\nu\rho} + 64c_w^{\ 6} \cdot M_{\rho}^{\ 6} \cdot g^{\mu\sigma}g^{\nu\rho})$

Fields in the vertex	Variational derivative of Lagrangian by fields
$\rho^+{}_{\mu} \rho^-{}_{\nu} \rho^0{}_{\rho} Z_{\sigma}$	$\frac{1}{8} \frac{c_w \cdot e}{M_{\rho^3 \cdot s_w \cdot 5 \cdot a \cdot vv}} (2e^4 \cdot a^4 \cdot vv^4 \cdot g^{\mu\nu} g^{\rho\sigma} - e^4 \cdot a^4 \cdot vv^4 \cdot g^{\mu\rho} g^{\nu\sigma} - e^4 \cdot a^4 \cdot vv^4 \cdot g^{\mu\sigma} g^{\nu\rho}$
	$-32M_{\rho}^{4} \cdot g^{\mu\nu}g^{\rho\sigma} + 64c_{w}^{2} \cdot M_{\rho}^{4} \cdot g^{\mu\nu}g^{\rho\sigma} - 32c_{w}^{4} \cdot M_{\rho}^{4} \cdot g^{\mu\nu}g^{\rho\sigma}$
	$+16M_{\rho}^{4} \cdot g^{\mu\rho}g^{\nu\sigma} - 32c_{w}^{2} \cdot M_{\rho}^{4} \cdot g^{\mu\rho}g^{\nu\sigma} + 16c_{w}^{4} \cdot M_{\rho}^{4} \cdot g^{\mu\rho}g^{\nu\sigma}$
	$+16M_{\rho}^{4} \cdot g^{\mu\sigma}g^{\nu\rho} - 32c_{w}^{2} \cdot M_{\rho}^{4} \cdot g^{\mu\sigma}g^{\nu\rho} + 16c_{w}^{4} \cdot M_{\rho}^{4} \cdot g^{\mu\sigma}g^{\nu\rho})$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{1}{4} \frac{e^2}{M_{\rho^2 \cdot s_w}^4} (2e^2 \cdot a^2 \cdot vv^2 \cdot g^{\mu\rho} g^{\nu\sigma} - e^2 \cdot a^2 \cdot vv^2 \cdot g^{\mu\sigma} g^{\nu\rho} - e^2 \cdot a^2 \cdot vv^2 \cdot g^{\mu\nu} g^{\rho\sigma})$
	$+8M_{\rho}^{2} \cdot s_{w}^{2} \cdot g^{\mu\rho}g^{\nu\sigma} - 4M_{\rho}^{2} \cdot s_{w}^{2} \cdot g^{\mu\sigma}g^{\nu\rho} - 4M_{\rho}^{2} \cdot s_{w}^{2} \cdot g^{\mu\nu}g^{\rho\sigma})$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ -\frac{1}{4} \frac{c_w^2 \cdot e^2}{M_{\rho^2} \cdot s_w^4} (2e^2 \cdot a^2 \cdot vv^2 \cdot g^{\mu\nu} g^{\rho\sigma} - e^2 \cdot a^2 \cdot vv^2 \cdot g^{\mu\rho} g^{\nu\sigma} - e^2 \cdot a^2 \cdot vv^2 \cdot g^{\mu\sigma} g^{\nu\rho} $
	$+8M_{\rho}^{2} \cdot s_{w}^{2} \cdot g^{\mu\nu}g^{\rho\sigma} - 4M_{\rho}^{2} \cdot s_{w}^{2} \cdot g^{\mu\rho}g^{\nu\sigma} - 4M_{\rho}^{2} \cdot s_{w}^{2} \cdot g^{\mu\sigma}g^{\nu\rho})$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$2rac{M_ ho^2}{a^2\cdot vv^2}\cdot g^{\mu u}$
$\rho^+_{\mu} \rho^{\nu} \widetilde{h}_1 \widetilde{h}_1$	$2rac{M_ ho^2}{a^2\cdot vv^2}\cdot g^{\mu u}$
ρ^+_{μ} ρ^{ν} \widetilde{h}_2 \widetilde{h}_2	$2rac{M_ ho^2}{a^2\cdot vv^2}\cdot g^{\mu u}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{1}{8} \frac{e}{M_{\rho^3 \cdot s_w}^5 \cdot a \cdot vv} (2e^4 \cdot a^4 \cdot vv^4 \cdot g^{\mu\sigma} g^{\nu\rho} - e^4 \cdot a^4 \cdot vv^4 \cdot g^{\mu\nu} g^{\rho\sigma} - e^4 \cdot a^4 \cdot vv^4 \cdot g^{\mu\rho} g^{\nu\sigma})$
	$-32M_{\rho}^{\ 4} \cdot g^{\mu\sigma}g^{\nu\rho} + 64c_{w}^{\ 2} \cdot M_{\rho}^{\ 4} \cdot g^{\mu\sigma}g^{\nu\rho} - 32c_{w}^{\ 4} \cdot M_{\rho}^{\ 4} \cdot g^{\mu\sigma}g^{\nu\rho}$
	$+16M_{\rho}^{4} \cdot g^{\mu\nu}g^{\rho\sigma} - 32c_{w}^{2} \cdot M_{\rho}^{4} \cdot g^{\mu\nu}g^{\rho\sigma} + 16c_{w}^{4} \cdot M_{\rho}^{4} \cdot g^{\mu\nu}g^{\rho\sigma}$
	$+16M_{\rho}^{4} \cdot g^{\mu\rho}g^{\nu\sigma} - 32c_{w}^{2} \cdot M_{\rho}^{4} \cdot g^{\mu\rho}g^{\nu\sigma} + 16c_{w}^{4} \cdot M_{\rho}^{4} \cdot g^{\mu\rho}g^{\nu\sigma})$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ -\frac{1}{4} \frac{c_w \cdot e^2}{M_{\rho^2} \cdot s_w^4} (2e^2 \cdot a^2 \cdot vv^2 \cdot g^{\mu\rho} g^{\nu\sigma} - e^2 \cdot a^2 \cdot vv^2 \cdot g^{\mu\nu} g^{\rho\sigma} - e^2 \cdot a^2 \cdot vv^2 \cdot g^{\mu\sigma} g^{\nu\rho} $
	$+8M_{\rho}^{2} \cdot s_{w}^{2} \cdot g^{\mu\rho}g^{\nu\sigma} - 4M_{\rho}^{2} \cdot s_{w}^{2} \cdot g^{\mu\nu}g^{\rho\sigma} - 4M_{\rho}^{2} \cdot s_{w}^{2} \cdot g^{\mu\sigma}g^{\nu\rho})$
$\rho^{+}_{\mu} W^{-}_{\nu} \tilde{h}^{+} \tilde{h}^{-}$	$\frac{e \cdot M_{ ho}}{s_w \cdot a \cdot vv} \cdot g^{\mu u}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$rac{e \cdot M_ ho}{s_w \cdot a \cdot vv} \cdot g^{\mu u}$
$\rho^{+}_{\mu} W^{-}_{\nu} \tilde{h}_{2} \tilde{h}_{2}$	$\frac{e \cdot M_{ ho}}{s_w \cdot a \cdot vv} \cdot g^{\mu u}$
$\rho^+_{\ \mu} Z_{ u} \widetilde{h}^- \widetilde{h}_1$	$-rac{i\cdot e\cdot M_{ ho}\cdot s_w}{c_w\cdot a\cdot vv}\cdot g^{\mu u}$
$\rho^{+}_{\mu} Z_{\nu} \widetilde{h}^{-} \widetilde{h}_{2}$	$rac{e \cdot M_ ho \cdot s_w}{c_w \cdot a \cdot vv} \cdot g^{\mu u}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{1}{4} \frac{e^2}{M_{\rho^2 \cdot s_w^4}} (2e^2 \cdot a^2 \cdot vv^2 \cdot g^{\mu\nu} g^{\rho\sigma} - e^2 \cdot a^2 \cdot vv^2 \cdot g^{\mu\sigma} g^{\nu\rho} + 8M_{\rho^2} \cdot s_w^2 \cdot g^{\mu\nu} g^{\rho\sigma})$
	$-4M_{\rho}^{2} \cdot s_{w}^{2} \cdot g^{\mu\sigma}g^{\nu\rho} - e^{2} \cdot a^{2} \cdot vv^{2} \cdot g^{\mu\rho}g^{\nu\sigma} - 4M_{\rho}^{2} \cdot s_{w}^{2} \cdot g^{\mu\rho}g^{\nu\sigma})$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{1}{8} \frac{e}{M_{\rho^3 \cdot s_w^5 \cdot a \cdot vv}} (2e^4 \cdot a^4 \cdot vv^4 \cdot g^{\mu\sigma} g^{\nu\rho} - e^4 \cdot a^4 \cdot vv^4 \cdot g^{\mu\rho} g^{\nu\sigma} - e^4 \cdot a^4 \cdot vv^4 \cdot g^{\mu\nu} g^{\rho\sigma})$

Fields in the vertex	Variational derivative of Lagrangian by fields
	$-32M_{\rho}^{4} \cdot g^{\mu\sigma}g^{\nu\rho} + 64c_{w}^{2} \cdot M_{\rho}^{4} \cdot g^{\mu\sigma}g^{\nu\rho} - 32c_{w}^{4} \cdot M_{\rho}^{4} \cdot g^{\mu\sigma}g^{\nu\rho}$
	$+16M_{\rho}^{4} \cdot g^{\mu\rho}g^{\nu\sigma} - 32c_{w}^{2} \cdot M_{\rho}^{4} \cdot g^{\mu\rho}g^{\nu\sigma} + 16c_{w}^{4} \cdot M_{\rho}^{4} \cdot g^{\mu\rho}g^{\nu\sigma}$
	$+16M_{\rho}^{4} \cdot g^{\mu\nu}g^{\rho\sigma} - 32c_{w}^{2} \cdot M_{\rho}^{4} \cdot g^{\mu\nu}g^{\rho\sigma} + 16c_{w}^{4} \cdot M_{\rho}^{4} \cdot g^{\mu\nu}g^{\rho\sigma})$
$\left \begin{array}{ccc} \rho^-{}_{\mu} & \rho^0{}_{\nu} & W^+{}_{\rho} & Z_{\sigma} \end{array}\right.$	
	$+8M_{\rho}^{2} \cdot s_{w}^{2} \cdot g^{\mu\rho}g^{\nu\sigma} - 4M_{\rho}^{2} \cdot s_{w}^{2} \cdot g^{\mu\sigma}g^{\nu\rho} - 4M_{\rho}^{2} \cdot s_{w}^{2} \cdot g^{\mu\nu}g^{\rho\sigma})$
$\rho^{\ \mu} W^+_{\ \nu} \widetilde{h}^+ \widetilde{h}^-$	$\frac{e\cdot M_ ho}{s_w\cdot a\cdot vv}\cdot g^{\mu u}$
$\rho^{\mu} W^+_{\nu} \widetilde{h}_1 \widetilde{h}_1$	$rac{e \cdot M_{ ho}}{s_w \cdot a \cdot vv} \cdot g^{\mu u}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$rac{e\cdot M_ ho}{s_w\cdot a\cdot vv}\cdot g^{\mu u}$
$\rho^{\mu} Z_{\nu} \widetilde{h}^+ \widetilde{h}_1$	$rac{i\cdot e\cdot M_ ho\cdot s_w}{c_w\cdot a\cdot vv}\cdot g^{\mu u}$
$\rho^{\ \mu}$ $Z_{ u}$ \widetilde{h}^+ \widetilde{h}_2	$rac{e \cdot M_ ho \cdot s_w}{c_w \cdot a \cdot vv} \cdot g^{\mu u}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	$+8M_{\rho}^{2} \cdot s_{w}^{2} \cdot g^{\mu\nu}g^{\rho\sigma} - 4M_{\rho}^{2} \cdot s_{w}^{2} \cdot g^{\mu\rho}g^{\nu\sigma} - 4M_{\rho}^{2} \cdot s_{w}^{2} \cdot g^{\mu\sigma}g^{\nu\rho})$
$\rho^0_{\ \mu}$ $\rho^0_{\ \nu}$ \widetilde{h}^+ \widetilde{h}^-	$2\frac{M_{ ho}^2}{a^2 \cdot vv^2} \cdot g^{\mu\nu}$
ρ^0_{μ} ρ^0_{ν} \widetilde{h}_1 \widetilde{h}_1	$2\frac{M_{ ho}^2}{a^2 \cdot v v^2} \cdot g^{\mu u}$
ρ^0_{μ} ρ^0_{ν} \tilde{h}_2 \tilde{h}_2	$2\frac{M_{ ho}^2}{a^2 \cdot vv^2} \cdot g^{\mu\nu}$
$\rho^0_{\mu} Z_{\nu} \widetilde{h}^+ \widetilde{h}^-$	$-\frac{e \cdot M_{\rho}}{c_w \cdot s_w \cdot a \cdot vv} g^{\mu\nu} (1 - 2c_w^2)$
$\rho^0_{\mu} Z_{\nu} \widetilde{h}_1 \widetilde{h}_1$	$\frac{e \cdot M_{ ho}}{c_w \cdot s_w \cdot a \cdot vv} \cdot g^{\mu u}$
$\rho^0_{\mu} Z_{\nu} \widetilde{h}_2 \widetilde{h}_2$	$rac{e\cdot M_ ho}{c_w\cdot s_w\cdot a\cdot vv}\cdot g^{\mu u}$
$W^{+}_{\mu} W^{+}_{\nu} W^{-}_{\rho} W^{-}_{\sigma}$	$\frac{1}{4} \frac{e^2}{s_w^4 \cdot M_{\rho}^2} (8M_{\rho}^2 \cdot s_w^2 \cdot g^{\mu\nu} g^{\rho\sigma} - 4M_{\rho}^2 \cdot s_w^2 \cdot g^{\mu\sigma} g^{\nu\rho} + 2e^2 \cdot a^2 \cdot vv^2 \cdot g^{\mu\nu} g^{\rho\sigma}$
	$-e^2 \cdot a^2 \cdot vv^2 \cdot g^{\mu\sigma}g^{\nu\rho} - 4M_{\rho}^2 \cdot s_w^2 \cdot g^{\mu\rho}g^{\nu\sigma} - e^2 \cdot a^2 \cdot vv^2 \cdot g^{\mu\rho}g^{\nu\sigma})$
$W^+_{\mu} W^{\nu} Z_{\rho} Z_{\sigma}$	$-\frac{1}{4}\frac{c_w^2 \cdot e^2}{s_w^4 \cdot M_{\rho}^2} (8M_{\rho}^2 \cdot s_w^2 \cdot g^{\mu\nu}g^{\rho\sigma} - 4M_{\rho}^2 \cdot s_w^2 \cdot g^{\mu\rho}g^{\nu\sigma} - 4M_{\rho}^2 \cdot s_w^2 \cdot g^{\mu\sigma}g^{\nu\rho}$
	$+2e^2 \cdot a^2 \cdot vv^2 \cdot g^{\mu\nu}g^{\rho\sigma} - e^2 \cdot a^2 \cdot vv^2 \cdot g^{\mu\rho}g^{\nu\sigma} - e^2 \cdot a^2 \cdot vv^2 \cdot g^{\mu\sigma}g^{\nu\rho})$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$rac{1}{2}rac{e^2}{s_w{}^2}\cdot g^{\mu u}$
$W^{+}_{\mu} W^{-}_{\nu} \widetilde{h}_{1} \widetilde{h}_{1}$	$rac{1}{2}rac{e^2}{s_w{}^2}\cdot g^{\mu u}$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\left[rac{1}{2}rac{e^2}{s_w{}^2}\cdot g^{\mu u} ight]$

Fields in the vertex	Variational derivative of Lagrangian by fields
W^+_{μ} Z_{ν} $\widetilde{h}^ \widetilde{h}_1$	$-rac{1}{2}rac{i\cdot e^2}{c_w}\cdot g^{\mu u}$
$W^+_{\mu} Z_{\nu} \widetilde{h}^- \widetilde{h}_2$	$rac{1}{2}rac{e^2}{c_w}\cdot g^{\mu u}$
W^{-}_{μ} Z_{ν} \widetilde{h}^{+} \widetilde{h}_{1}	$rac{1}{2}rac{i\cdot e^2}{c_w}\cdot g^{\mu u}$
W^{-}_{μ} Z_{ν} \widetilde{h}^{+} \widetilde{h}_{2}	$rac{1}{2}rac{e^2}{c_w}\cdot g^{\mu u}$
Z_{μ} Z_{ν} \widetilde{h}^{+} \widetilde{h}^{-}	$\frac{1}{2} \frac{e^2}{c_w^2 \cdot s_w^2} g^{\mu\nu} (1 - 4c_w^2 + 4c_w^4)$
Z_{μ} $Z_{ u}$ \widetilde{h}_1 \widetilde{h}_1	$\frac{1}{2} \frac{e^2}{c_w^2 \cdot s_w^2} \cdot g^{\mu\nu}$
Z_{μ} $Z_{ u}$ \widetilde{h}_2 \widetilde{h}_2	$\frac{1}{2} \frac{e^2}{c_w^2 \cdot s_w^2} \cdot g^{\mu\nu}$
\widetilde{h}^+ \widetilde{h}^+ $\widetilde{h}^ \widetilde{h}^-$	$-4\lambda_D$
\widetilde{h}^+ $\widetilde{h}^ \widetilde{h}_1$ \widetilde{h}_1	$-2\lambda_D$
\widetilde{h}^+ $\widetilde{h}^ \widetilde{h}_2$ \widetilde{h}_2	$-2\lambda_D$
$ \widetilde{h}_1 \widetilde{h}_1 \widetilde{h}_1 \widetilde{h}_1$	$-6\lambda_D$
$\left \begin{array}{cccc} \widetilde{h}_1 & \widetilde{h}_1 & \widetilde{h}_2 & \widetilde{h}_2 \end{array} \right $	$-2\lambda_D$
\widetilde{h}_2 \widetilde{h}_2 \widetilde{h}_2 \widetilde{h}_2	$-6\lambda_D$