Exam 2A

Course ID: MAC 2312

Course Title: Calculus II

Date of Exam: July 17th 2013

Duration of Exam: 90 minutes

Instructions

A. Sign your scantron sheet in the white area on the back in ink.

B. Write <u>and code</u> in the spaces indicated:

- 1) Name (last name, first name, middle initial)
- 2) UF ID number
- 3) Section number

C. Under "special code" code the test ID numbers 2 (1st row), 1 (2nd row).

- 1 3 4 5 6 7 8 9 0
- 2 3 4 5 6 7 8 9 0

D. Under "form code" code in A.

- B C D E
- **E.** While taking the test, please <u>keep your answer sheet covered</u> or turned over <u>at all times</u>.
- **F.** This test consists of 14 multiple choice questions and 4 free response questions. No calculators are allowed.

G. When you are finished:

- 1) Before turning in your test check for <u>transcribing errors</u>. No changes may be made after submitting your <u>scantron</u>.
- 2) You must turn in your scantron and tear off sheets to your instructor. Be prepared to show your picture ID with a legible signature.
- 3) The answers will be posted within one day after the exam.

1. Find the radius and interval of convergence for

$$\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)2^{2n+1}} x^{2n+1}.$$

A.
$$R = 2, I = (-2, 2]$$

B.
$$R = 2, I = [-2, 2]$$

C.
$$R = 2, I = [-2, 2)$$

D.
$$R = 2, I = (-2, 2)$$

- E. R = 0, The sum only converges at x = 2.
- 2. Which of the following is true about $\sum_{n=1}^{\infty} \frac{\sin\left(\frac{n\pi}{2}\right)}{\left(\frac{n\pi}{2}\right)}?$
 - A. Divergent by test for divergence.
 - B. Convergent by limit comparison test.
 - C. Convergent by direct comparison test with a p-series.
 - D. Convergent by alternating series test.
 - E. Convergent by integral test.

3. Find the sum if possible.

$$\sum_{n=1}^{\infty} 4 \cdot \frac{3^{n+1}}{5^n}$$

- A. 10
- B. 30
- C. 18
- D. 5/2
- E. The series is divergent.

4. Find the sum of the series.

$$\sum_{n=0}^{\infty} \frac{(-1)^n \pi^{2n+1}}{6^{2n+1} (2n+1)!}$$

- A. $\frac{\sqrt{3}}{2}$
- B. $\frac{1}{2}$
- C. 1
- D. 0
- E. $\frac{6\pi}{36 \pi^2}$

5. Evaluate as a power series.

$$\int \frac{1}{4+x^4} \ dx$$

A.
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{(4n+1)4^n} x^{4n+1} + C$$

B.
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{(4n+1)4^{n+1}} x^{4n} + C$$

C.
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{(4n)4^{n+1}} x^{4n+1} + C$$

D.
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{(4n+1)4^{n+1}} x^{4n+1} + C$$

E.
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{(4n+2)4^{n+1}} x^{4n+1} + C$$

6. According to the alternating series estimation theorem, which one of the following choices gives the upper bound on the error by using the 10-th partial sum s_{10} to approximate the actual value of the sum of the following series?

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2 + 3^n}$$

A.
$$\frac{1}{11^2 + 3^{11}}$$

B.
$$\frac{1}{10^2 + 3^{10}}$$

A.
$$\frac{1}{11^2 + 3^{11}}$$
 B. $\frac{1}{10^2 + 3^{10}}$ C. $\frac{-1}{11^2 + 3^{11}}$ D. $\frac{1}{9^2 + 3^9}$ E. $\frac{-1}{9^2 + 3^9}$

D.
$$\frac{1}{9^2 + 3^9}$$

E.
$$\frac{-1}{0^2 + 39}$$

- 7. Which of the following is true about $\sum_{n=2}^{\infty} \frac{\sqrt{n^4+2}}{n^4+n^2+1}$?
 - A. Converges by root test.
 - B. Converges by ratio test.
 - C. Diverges by integral test.
 - D. Diverges by test for divergence.
 - E. Converges by limit comparison test.
- 8. How many of the following are true?
 - I. If $\sum a_n$ is conditionally convergent, then $\sum |a_n|$ is divergent.
 - II. If $0 \le a_n \le b_n$ and $\sum b_n$ diverges, then so does $\sum a_n$.
 - III. If $a_n \to 0$ as $n \to \infty$, then $\sum a_n$ converges.
 - IV. The sequence $\left\{\frac{1+\sin n}{n^2}\right\}_{n=1}^{\infty}$ converges.
 - V. If a_n is an increasing sequence and bounded above, then a_n converges.
 - A. 1
- B. 2
- C. 3
- D. 4
- E. 5

9. Find the Taylor series centered at 1 for f given that

$$f^{(n)}(1) = \frac{(-1)^n n!}{3^n n^n}.$$

A.
$$\sum_{n=0}^{\infty} \frac{(-1)^n (x-1)^n}{3^n n^n}$$

B.
$$\sum_{n=0}^{\infty} \frac{(-1)^n x^n}{3^n n^n}$$

C.
$$\sum_{n=0}^{\infty} \frac{(-1)^n (x-1)^n}{n! 3^n n^n}$$

D.
$$\sum_{n=0}^{\infty} \frac{(-1)^n x^n}{n! 3^n n^n}$$

E.
$$\sum_{n=0}^{\infty} \frac{(-1)^n n! (x-1)^n}{3^n n^n}$$

- 10. How many of the following are true?
 - I. According to the integral test, $\sum_{n=1}^{\infty} \frac{1}{n^2} = \int_{1}^{\infty} \frac{1}{x^2} dx$.
 - II. According to the limit comparison test, $\sum_{n=1}^{\infty} \tan\left(\frac{1}{n}\right)$ converges.
 - III. According to the test for divergence, $\sum_{n=1}^{\infty} \frac{1}{n}$ is divergent.
 - IV. According to the alternating series test, $\sum_{n=1}^{\infty} \frac{(-1)^n}{n+1}$ converges.
 - A. 0
- B. 1
- C. 2
- D. 3
- E. 4

Bonus Questions.

The following questions are worth 2 points each.

11. If $\{a_n\}$ and $\{b_n\}$ are divergent sequences, then $\{a_n+b_n\}$ is divergent.

A. True

B. False.

12. If $-1 < \alpha < 1$, then $\lim_{n \to \infty} \alpha^n = 0$.

A. True

B. False.

13. The ratio test can be used to determine whether or not $\sum \frac{1}{n^3}$ converges.

A. True

B. False.

14. If $a_n > 0$ and $\sum a_n$ is convergent, then $\sum (-1)^n a_n$ converges.

A. True

B. False.

MAC2312

Name:_____

Exam 2A

Section:

Instructions: You must show all work to receive full credit.

1a. Find the power series representation of

$$f(x) = \frac{1}{(x+2)}.$$

1b. Use part a to find the power series for

$$f(x) = \frac{x^3}{(x+2)^2}.$$

2. Find the Taylor series for $f(x) = \frac{1}{x}$ centered at a = -4.

Consider the following series,

$$\sum_{n=2}^{\infty} \ln \left(\frac{n}{n+2} \right).$$

3a. Find the nth partial sum S_n .

3b. Determine whether the series converges or diverges.

4a. State the ratio test.

If $\sum a_n$ is a series, and $L = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$, then if,

- (1)
- (2)
- (3)
- 4b. Determine if the following series is absolutely convergent, conditionally convergent, or divergent.

$$\sum_{n=1}^{\infty} \frac{n^n}{(2n)!}$$

University of Florida Honor Code:

On my honor, I have neither given nor received unauthorized aid in doing this assignment.