# Lecture 2: ML Basics + Spam Filtering

Siddharth Garg sg175@nyu.edu

## Classification

#### Task (T):

• Emails  $x \in \text{all possible emails and } y \in \{spam, non\_spam\}$  find







#### **Experience (E):**

 A "training dataset" a emails marked as "spam" or "non\_spam"

#### Performance (P):

Spam detection accuracy

"Supervised Learning (Classification)"

## Binary Classification

#### **Binary Classification Task (T):**

• Simplest example where  $x \in \Re$  and



Dataset of ICLR'18 review scores vs. accept/reject decisions

| Hyperedge2vec<br>Distributed                             |    | _   | eview_1 | review   | decision | conf_3 | conf_2 | conf_1 | authors                                                 | authorids                                         | abstract                                                | _bibtex                                            | TL;DR                                                |
|----------------------------------------------------------|----|-----|---------|----------|----------|--------|--------|--------|---------------------------------------------------------|---------------------------------------------------|---------------------------------------------------------|----------------------------------------------------|------------------------------------------------------|
| 5.0 Representations for                                  | 5. | 5.0 | 5.0     | 5.000000 | Reject   | 4.0    | 3.0    | 3.0    | [Ankit Sharma,<br>Shafiq Joty,<br>Himanshu<br>Kharkwal, | [sharm170@umn.edu,<br>srjoty@ntu.edu.sg, himanshu | Data structured in form of overlapping or non           | @article{\nsharma2018hyperedge2vec:,\ntitle= {H    | None                                                 |
| Exploring the<br>7.0 Space of Black-box<br>Attacks on De | 7. | 6.0 | 5.0     | 6.000000 | Reject   | 4.0    | 3.0    | 4.0    | [Arjun Nitin<br>Bhagoji, Warren<br>He, Bo Li, Dawn<br>S | [abhagoji@princeton.edu,<br>_w@eecs.berkeley.edu, | Existing black-box<br>attacks on deep<br>neural netw    | @article{\nnitin2018exploring,\ntitle={Explori     | Query-based black-box<br>attacks on deep neural<br>n |
| Learning Weighted<br>7.0 Representations<br>for Generali | 7. | 8.0 | 5.0     | 6.666667 | Reject   | 4.0    | 3.0    | 3.0    | [Fredrik D.<br>Johansson,<br>Nathan Kallus,<br>Uri Shal | [fredrikj@mit.edu, kallus@cornell.edu,<br>urish22 | Predictive models<br>that generalize<br>well under d    | @article{\nd.2018learning,\ntitle={Learning<br>We  | A theory and algorithmic framework for predict       |
| Understanding<br>Deep Learning<br>Generalization by      | 6. | 3.0 | 2.0     | 3.666667 | Reject   | 2.0    | 3.0    | 3.0    | [Guanhua<br>Zheng, Jitao<br>Sang,<br>Changsheng<br>Xu]  | [zhenggh@mail.ustc.edu.cn,<br>jtsang@bjtu.edu.cn, | Deep learning<br>achieves<br>remarkable<br>generalizati | @article{\nzheng2018understanding,\ntitle=<br>{Und | We prove that DNN is a recursively approximate       |

## Logistic Regression

#### **Binary Classification Task (T):**

Pr{Decision=Accept|Score}

• Instead, let's compute and plot  $p = Pr\{y = 1 \mid x\}$ 





 Idea: Linear regression to fit p as a function of x

$$p = \beta_1 x + \beta_0$$

- Is this a good idea?
  - Probability p is always bounded between [0,1]

# Logistic Regression

**Binary Classification Task (T):** 

"Logits" Function

• Consider the following function  $g = \log(g)$ 



• What is the range of *g*?

$$g \in [-\infty, \infty]$$

 Logistic Regression: fit logits function using a linear model!

$$g = \log(\frac{p}{1-p}) = \beta_1 x + \beta_0$$

X

Note: the linear fit is illustrative only. How to determine the best linear fit will be discussed next!

## Logistic Regression

Pr{Decision=Accept|Score}

$$g = \log(\frac{p}{1-p}) = \beta_1 x + \beta_0$$

$$g = \log(\frac{p}{1-p}) = \beta_1 x + \beta_0$$

$$p = \frac{1}{1+e^{-(\beta_1 x + \beta_0)}}$$

What is Pr{Decision=Reject | Score}

$$1 - p = \frac{e^{-(\beta_1 x + \beta_0)}}{1 + e^{-(\beta_1 x + \beta_0)}}$$

How do we find the model parameters  $\beta_1$  and  $\beta_0$ ?

## Model Estimation

- We will use an approach referred to as Maximum Likelihood Estimation (MLE)
  - Let's assume that the model(i.e.,  $\beta_1$  and  $\beta_0$ ) is magically known. Consider the training dataset below. What is the likelihood that the dataset came from our model?

| # | X         | Y         | $Likelihood = \frac{e^{-(\beta_1 x_1 + \beta_0)}}{(\beta_1 x_1 + \beta_0)} * \frac{1}{(\beta_1 x_1 + \beta_0)} * \dots \frac{1}{(\beta_1 x_1 + \beta_0)}$ |
|---|-----------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 | $x_1 = 3$ | $y_1 = 0$ | $1_{1} = (p_1 x_1 + p_0) + 1_{1} = (p_1 x_2 + p_0) + 1_{1} = (p_1 x_M + p_0)$                                                                             |
| 2 | $x_2 = 8$ | $y_2 = 1$ |                                                                                                                                                           |
|   |           |           |                                                                                                                                                           |
|   |           |           |                                                                                                                                                           |
| N | $x_N = 6$ | $y_N = 1$ |                                                                                                                                                           |

## Model Estimation

- We will use an approach referred to as Maximum Likelihood Estimation (MLE)
  - Let's assume that the model(i.e.,  $\beta_1$  and  $\beta_0$ ) is magically known. Consider the training dataset below. What is the likelihood that the dataset came from our model?

| # | X         | Y                      | $Likelihood = \frac{e^{-(3\beta_1 + \beta_0)}}{(3\beta_1 + \beta_0)} * \frac{1}{(3\beta_1 + \beta_0)} * \dots \frac{1}{(3\beta_1 + \beta_0)}$ |
|---|-----------|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| 1 | $x_1 = 3$ | $y_1 = 0_{\downarrow}$ | 1 . $-(3D_1+D_0)$ 1 . $-(8D_1+D_0)$ 1 . $-(9D_1+D_0)$                                                                                         |
| 2 | $x_2 = 8$ | $y_2 = 1$              |                                                                                                                                               |
|   |           |                        |                                                                                                                                               |
|   |           |                        |                                                                                                                                               |
| N | $x_N = 6$ | $y_N = 1$              |                                                                                                                                               |

#### Model Estimation

• We will use an approach referred to as Maximum Likelihood Estimation (MLE)

• Let's assume that the model(i.e.,  $\beta_1$  and  $\beta_0$ ) is magically known. Consider the training dataset below. What is the likelihood that the dataset came from

our model?

| # | X         | Υ         |
|---|-----------|-----------|
| 1 | $x_1 = 3$ | $y_1 = 0$ |
| 2 | $x_2 = 8$ | $y_2 = 1$ |
|   |           |           |
|   |           |           |
| N | $x_N = 6$ | $y_N = 1$ |

$$Log - Likelihood = \log(\frac{e^{-(3\beta_1 + \beta_0)}}{1 + e^{-(3\beta_1 + \beta_0)}}) + \log(\frac{1}{1 + e^{-(8\beta_1 + \beta_0)}}) + ...\log(\frac{1}{1 + e^{-(6\beta_1 + \beta_0)}})$$

 $g(eta_1,eta_0)$  Function of model parameters only

Find  $eta_1$  and  $eta_0$  that maximize g (or minimize the "loss" –g)

$$Loss(\beta_1, \beta_0) = -g(\beta_1, \beta_0)$$

## We Won't Worry About How



```
from sklearn import linear_model

#Instantiate an LR object
logreg = sklearn.linear_model.LogisticRegression(C=1e5);

#Recall: your training data must have a column of ones for the constant term
xd = np.ones((numPapers,2));
xd[:,0] = np.append(rscores,ascores)

yd = np.append(rlabels,alabels);

logreg.fit(xd,yd);

#Plot Pr{Accept|Score}
rv = np.ones((len(revRange),2));
rv[:,0] = revRange;
prpredict=logreg.predict_proba(rv)
```

From regression to classification: if probability of Accept > 0.5, then output Accept.

## Logistic Regression: Multi-Variate Case

#### **UCI Spam Dataset:**

https://archive.ics.uci.edu/ml/datasets/Spambase

#### Attribute Information:

The last column of 'spambase.data' denotes whether the e-mail was considered spam (1) or not (0), i.e. unsolicited commercial e-mail. Most of the attributes indicate whether a particular word or character was frequently occurring in the e-mail. The run-length attributes (55-57) measure the length of sequences of consecutive capital letters. For the statistical measures of each attribute, see the end of this file. Here are the definitions of the attributes:

48 continuous real [0,100] attributes of type word\_freq\_WORD

= percentage of words in the e-mail that match WORD, i.e. 100 \* (number of times the WORD appears in the e-mail) / total number of words in e-mail. A "word" in this case is any string of alphanumeric characters bounded by non-alphanumeric characters or end-of-string.

6 continuous real [0,100] attributes of type char freq CHAR]

- = percentage of characters in the e-mail that match CHAR, i.e. 100 \* (number of CHAR occurences) / total characters in e-mail
- 1 continuous real [1,...] attribute of type capital\_run\_length\_average
- = average length of uninterrupted sequences of capital letters
- 1 continuous integer [1,...] attribute of type capital run length longest
- = length of longest uninterrupted sequence of capital letters
- 1 continuous integer [1,...] attribute of type capital\_run\_length\_total
- = sum of length of uninterrupted sequences of capital letters
- = total number of capital letters in the e-mail
- 1 nominal {0,1} class attribute of type spam
- = denotes whether the e-mail was considered spam (1) or not (0), i.e. unsolicited commercial e-mail.

- 57 Real or integer valued features
- Binary output class

$$p_{spam} = \frac{1}{1 - (\sum_{i=1}^{M} \beta_i x_i + \beta_0)}$$

$$1 + e^{-(\sum_{i=1}^{M} \beta_i x_i + \beta_0)}$$

## LR on Spam Database: Results

90% of samples used for training, remaining 10% used for test

Prediction probabilities for all "SPAM" emails in the test set



```
#Instantiate an LR object
logreg = sklearn.linear_model.LogisticRegression(C=1e5);

#Recall: your training data must have a column of ones for the constant term
xd = np.ones((numPapers,2));
xd[:,0] = np.append(rscores,ascores)

yd = np.append(rlabels,alabels);

logreg.fit(xd,yd);

#Plot Pr{Accept|Score}
rv = np.ones((len(revRange),2));
rv[:,0] = revRange;
prpredict=logreg.predict_proba(rv)
```

Which emails are mis-predicted?

Accuracy on test set: ~92%

## Which Features Matter?

#### **Our Model:**

$$p_{spam} = \frac{1}{1 - (\sum_{i=1}^{M} \beta_i x_i + \beta_0)}$$

$$1 + e^{-(\sum_{i=1}^{M} \beta_i x_i + \beta_0)}$$

Reasonable hypothesis: features with larger absolute values of  $\beta$  matter more.

#### What does $\beta_i$ =0 imply about feature i?



#### Feature Selection

#### Retrain and predict using only the top-k features



Can we explicitly train the parameters so as to prioritize a "sparser" model?

Why?

Low model complexity prevents overfitting!

Recall that during training we were seeking to minimize:

$$\hat{\beta} = \min_{\beta} Loss(\beta)$$

How should this objective function change?

## Regularization

$$L_p$$
 Norm of a vector  $\mathbf{x}$   $\|\mathbf{x}\|_p = (\sum |\mathbf{x}_i|^p)^{1/p}$ 

| p        | L <sub>p</sub> Norm                        | Interpretation                |
|----------|--------------------------------------------|-------------------------------|
| 0        | $  x  _0 = (\sum  x_i ^0)^{1/0}$           | Number of Non-zero<br>Entries |
| 1        | $  x  _1 = (\sum  x_i )$                   | Sum of absolute values        |
| 2        | $  x  _2 = (\sum  x_i ^2)^{0.5}$           | Root mean square              |
| $\infty$ | $\ x\ _{\infty} = (\sum  x_i ^{\infty})^0$ | Max. value                    |

"Regularized" loss

$$\hat{\beta} = \min_{\beta} \{ Loss(\beta) + c \|\beta\|_{0} \}$$

c controls the relative importance of the regularization penalty

## Regularization In Practice

**LO Regularization** 

$$\hat{\beta} = \min_{\beta} \{ Loss(\beta) + c \|\beta\|_{0} \}$$

Hard "combinatorial" optimization problem!

Instead, the following regularization functions are commonly used:

L1 Regularization (LASSO)

$$\hat{\beta} = \min_{\beta} \{ Loss(\beta) + c \|\beta\|_{1} \}$$

We are penalizing "large" coefficients.

L2 Regularization (Ridge)

$$\hat{\beta} = \min_{\beta} \{ Loss(\beta) + c \|\beta\|_{2} \}$$

But why?

## LASSO and Ridge Regularization



## Regularization for Spam Classification

Logistic Regression (aka logit, MaxEnt) classifier.

In the multiclass case, the training algorithm uses the one-vs-rest (OvR) scheme if the 'multi\_class' option is set to 'ovr', and uses the cross- entropy loss if the 'multi\_class' option is set to 'multinomial'. (Currently the 'multinomial' option is supported only by the 'lbfgs', 'sag' and 'newton-cg' solvers.)

This class implements regularized logistic regression using the 'liblinear' library, 'newton-cg', 'sag' and 'lbfgs' solvers. It can handle both dense and sparse input. Use C-ordered arrays or CSR matrices containing 64-bit floats for optimal performance; any other input format will be converted (and copied).

The 'newton-cg', 'sag', and 'lbfgs' solvers support only L2 regularization with primal formulation. The 'liblinear' solver supports both L1 and L2 regularization, with a dual formulation only for the L2 penalty.

Read more in the User Guide.

Parameters: penalty: str, 'l1' or 'l2', default: 'l2'

Used to specify the norm used in the penalization. The 'newton-cg', 'sag' and 'lbfgs' solvers support only I2 penalties.

New in version 0.19: I1 penalty with SAGA solver (allowing 'multinomial' + L1)

C: float, default: 1.0

Inverse of regularization strength; must be a positive float. Like in support vector machines, smaller values specify stronger regularization.

Which regularization function to use?

How should we select *c*?

# Impact of C



## Errors in Binary Classification

- Two types of errors:
  - Type I error (False positive / false alarm): Decide  $\hat{y} = 1$  when y = 0
  - Type II error (False negative / missed detection): Decide  $\hat{y} = 0$  when y = 1
- Implication of these errors may be different
  - Think of breast cancer diagnosis
- Accuracy of classifier can be measured by:

• 
$$TPR = P(\hat{y} = 1 | y = 1)$$

• 
$$FPR = P(\hat{y} = 1 | y = 0)$$

| predicted→<br>real↓ | Class_pos | Class_neg |
|---------------------|-----------|-----------|
| Class_pos           | TP        | FN        |
| Class_neg           | FP        | TN        |

$$TPR (sensitivity) = \frac{TP}{TP + FN}$$

TPR (sensitivity) = 
$$\frac{TP}{TP + FN}$$
  
FPR (1-specificity) =  $\frac{FP}{TN + FP}$ 

#### Hard Decisions

- Logistic classifier outputs a soft label:  $P(y = 1|x) \in [0,1]$ 
  - $P(y = 1|x) \approx 1 \Rightarrow y = 1$  more likely
  - $P(y = 0 | x) \approx 1 \Rightarrow y = 0$  more likely
- Can obtain a hard label by thresholding:
  - Set  $\hat{y} = 1 \Leftrightarrow P(y = 1|x) > t$
  - t = Threshold
- How to set threshold?
  - Set  $t = \frac{1}{2} \Rightarrow$  Minimizes overall error rate
  - Increasing  $t \Rightarrow$  Decreases false positives
  - Decreasing  $t \Rightarrow$  Decreases missed detections

#### ROC Curve

```
from sklearn import metrics
yprob = logreg.predict_log_proba(Xtr)
fpr, tpr, thresholds = metrics.roc_curve(ytr,yprob[:,1])
plt.loglog(fpr,1-tpr)
plt.grid()
plt.xlabel('FPR')
plt.ylabel('TPR')
```

- Varying threshold obtains a set of classifier
- Trades off FPR and TPR
- Can visualize with ROC curve
  - Receiver operating curve
  - Term from digital communications



## Linear Classifiers

LR based spam detector that we discussed is an example of a <u>Linear</u>
 Classifier

#### **Recall that:**

$$p_{Class1} = \frac{1}{1 + e^{-(\sum_{i=1}^{M} \beta_i x_i + \beta_0)}}$$

$$x \in \text{Class 1} \text{ iff } p_{Class1} \ge 0.5$$

$$\Rightarrow e^{-(\sum_{i=1}^{M} \beta_i x_i + \beta_0)} \le 1$$

$$\Rightarrow (\sum_{i=1}^{M} \beta_i x_i + \beta_0) \ge 0$$



## Linear Separability



Is there a transformation of the features for which this data is linearly separable?

# Support Vector Machines (SVMs)

- Recall that LR attempts to minimize the log-likelihood of the training data under the LR model
  - LR has a probabilistic interpretation

- SVMs on the other hand have a geometric interpretation
  - Goal: maximize margin to closest training data sample

All 3 classifiers have 100% training accuracy



But which of the 3 classifiers would you pick?

## SVMs: Maximize Margin

- Assume data is linearly seperable
- Goal: maximize margin to closest training data sample
  - Let the closest points on either side lie on :

$$wx + b = \pm 1$$

• What is the value of the margin  $\gamma$ ?

$$\lambda = \frac{1}{\|w\|_2}$$
 Maximize



## SVMs: Optimization

Optimization problem

$$\max \frac{1}{\|w\|_2} \Rightarrow \min \|w\|_2$$

$$wx_i + b \ge 1 \qquad y_i = 1$$

$$wx_i + b \le -1 \qquad y_i = -1$$

Or equivalently

$$\min \|w\|_2$$

$$y_i(wx_i + b) \ge 1$$



## SVMs: Non-linearly Separable

• Make the constraints "soft" by introducing an "margin"  $\varepsilon_{\rm i}$ 

$$\begin{aligned} & \underset{i}{\min} \ \sum_{i} \varepsilon_{i} + \alpha \left\| w \right\|_{2} \\ & y_{i}(wx_{i} + b) \geq 1 - \varepsilon_{i} \\ & \varepsilon_{i} \geq 0 \end{aligned}$$

Points can be misclassified with "cost"  $\varepsilon_{\rm i}$ 

Note that in any solution to this problem

$$\varepsilon_i = \max\{0, 1 - y_i(wx_i + b)\}\$$



## SVMs: Putting it All Together

SVMs minimize the following objective

Regularization constant  $\alpha$ 

Increasing  $\alpha$  results in greater margins at the expense of misclassifications on training data

$$\max\{0,1-y_i(wx_i+b)\}+\alpha \|w\|_1$$

"Hinge Loss"
Seeks to minimize misclassfications

Tries to maximize margin (L<sub>2</sub> regularizer!)



## Relation to Logistic Regression

- LR and SVM differ only on the loss function they use
  - "Log-loss" versus "hinge-loss"

#### **Hinge Loss:**

 $\max\{0,1-y_i(wx_i+b)\} = \max\{0,1-q\}$ 

#### Log Loss:

$$-\log_2(\frac{1}{1+e^{-y_i(wx_i+b)}}) = \log_2(1+e^{-q})$$



## Illustrating Effect of C



- Fig. 9.7 of ISL
  - Note: C has opposite meaning in ISL than python
  - Here, we use python meaning
- Low *C* :
  - Many violations of margin.
  - Many more SVs
  - Reduces variance by using more samples

#### Transform Problem

- Transform problem: replace x with  $\phi(x)$ 
  - Enables more rich classifiers
  - Examples: polynomial classification  $\phi(x) = [1, x, x^2, ..., x^{d-1}]$
- Tries to find separation in a feature space

The SVM algorithm

Foature Space
Imput Space
Imput Space

From https://www.dtreg.com/solution/view/20

### Kernel Trick

• Classifier is:

• 
$$z = b + \mathbf{w}^T \mathbf{x} = b + \sum_{i=1}^{N} \alpha_i y_i K(\mathbf{x}_i, \mathbf{x}), \quad K(\mathbf{x}_i, \mathbf{x}) = \phi(\mathbf{x}_i)^T \phi(\mathbf{x})$$

• 
$$\hat{y} = \operatorname{sign}(z) = \begin{cases} 1 & \text{if } z > 0 \\ -1 & \text{if } z < 0 \end{cases}$$

- Do not need to explicitly compute  $\phi(x)$
- Can directly compute kernel  $K(x_i, x)$ 
  - Provided kernel corresponds to some  $\phi(x)$

## Understanding the Kernel

- Kernel function  $K(x_i, x)$ :
  - measures "distance" between new sample x and training data  $x_i$
  - $K(x_i, x)$  large  $\Rightarrow x_i, x$  close
  - $K(x_i, x) \approx 0 \Rightarrow x_i, x \text{ far}$
- Linear discriminant  $z = b + \sum_{i=1}^{N} \alpha_i y_i K(\mathbf{x}_i, \mathbf{x})$ 
  - Weighs sample  $x_i$  that are close to x



#### Possible Kernels

• Radial basis function:

$$K(x, x') = \exp[-\gamma ||x - x'||^2]$$

- $1/\gamma$  indicates width of kernel
- Polynomial kernel:  $K(x, x') = |x^T x|^d$ 
  - Typically d=2



## Spam Detection: Features

- Recall features used in the UCI Spam database
  - 48 continuous real [0,100] attributes of type word\_freq\_WORD
- Even easier way to encode features:
  - $x_i = 1$  if term *i* appears in a document; 0 otherwise
  - Boolean features
- Assume M Boolean features,  $x = (x_1, x_2, ..., x_M)$ 
  - We want to map this M-dimensional Boolean input to a Boolean output y
  - Thoughts?
  - Instead of using LR or SVM we will start with an even simpler approach referred to as "Naiive Bayes"

    Pof: Moteic Managelis Jon Androutson and Goor

Ref: Metsis, Vangelis, Ion Androutsopoulos, and Georgios Paliouras. "Spam filtering with naive bayes-which naive bayes?." In *CEAS*, vol. 17, pp. 28-69. 2006.

- Assume M=1 Boolean feature,  $x = (x_{1}, x_{2}, ..., x_{M})$
- Each email is either {s=spam,l=legit}
- We begin by computing:

$$P\{spam \mid x\} = \frac{P\{x \mid spam\} * P\{spam\}}{P\{x\}}$$

Bayes Rule 
$$P\{A \cap B\} = P\{A \mid B\} * P\{B\}$$

Ref: Metsis, Vangelis, Ion Androutsopoulos, and Georgios Paliouras. "Spam filtering with naive bayes-which naive bayes?." In *CEAS*, vol. 17, pp. 28-69. 2006.

We begin by computing:

$$P\{spam \mid x\} = \frac{P\{x \mid spam\}^* P\{spam\}}{P\{x\}}$$

$$P\{x_1, x_2, ..., x_M \mid spam\} = P\{x_1 \mid spam\} * P\{x_2 \mid spam\} * ... * P\{x_M \mid spam\}$$

Assuming that term occurrences are independent (given class)!

Is this a reasonable assumption?

$$P\{x_1 | spam\}*P\{x_2 | spam\}*..*P\{x_M | spam\}$$

How do we estimate this from the training dataset?

$$P\{x_1 = 1 \mid spam\} = (\#Spam emails that contain term 1)/(\#spam emails)$$

What happens if term 1 never occurred in any spam email in the training dataset?

# Laplacian Smoothing

$$P\{x_1 = 1 \mid spam\} = \text{(\#Spam emails that contain term 1)/(\#spam emails)}$$

= (#Spam emails that contain term 1+1)/(#spam emails+2)

Equivalent to assuming two addition spam emails in the training dataset, of which on contains all terms and the other is empty

$$P\{x_1 = 0 \mid spam\} = 1 - P\{x_1 = 1 \mid spam\}$$

= (#Spam emails that don't contain term 1+1)/(#spam emails+2)

$$P{x} = P{spam}*P{x | spam} + P{legit}*P{x | legit}$$

$$P\{spam \mid x\} = \frac{P\{x \mid spam\} * P\{spam\}}{P\{x\}} \quad \text{Vs. } P\{legit \mid x\} = \frac{P\{x \mid legit\} * P\{legit\}}{P\{x\}}$$

Or:

$$P\{spam \mid x\} \ge threshold$$

### References

- Cormack, Gordon V. "Email Spam Filtering: A Systematic Review." *Foundations and Trends® in Information Retrieval* 1.4 (2008): 335-455. <a href="https://www.ccs.neu.edu/home/vip/teach/lRcourse/IR\_surveys/spam-filtering.pdf">https://www.ccs.neu.edu/home/vip/teach/lRcourse/IR\_surveys/spam-filtering.pdf</a>
- Metsis, Vangelis, Ion Androutsopoulos, and Georgios Paliouras. "Spam filtering with naive bayes-which naive bayes?." In *CEAS*, vol. 17, pp. 28-69. 2006.