Classifying Data Races with Portend

Baris Kasikci, Cristian Zamfir, and George Candea School of Computer & Communication Sciences

Accesses to shared memory location

- Accesses to shared memory location
 - By multiple threads

- Accesses to shared memory location
 - By multiple threads
 - At least one of the accesses is a write

- Accesses to shared memory location
 - By multiple threads
 - At least one of the accesses is a write
 - The accesses can happen simultaneously

Races are numerous in modern software

Data Races 1000 Races

Races are numerous in modern software

Fix harmful races first!

[1] S. Narayanasamy et. al., Automatically classifying benign and harmful data races using replay analysis. PLDI, 2007

Data Races **Potentially Potentially** harmful harmless 80% misclassified [1]

[2] P. Godefroid et al., Concurrency at Microsoft – An exploratory survey. CAV Workshop on Exploiting Concurrency Efficiently and Correctly, 2008

Data Races Potentially Potentially harmful harmless 80% misclassified [1]

Vague taxonomy and low accuracy

Data Races Potentially Potentially harmful harmless 80% misclassified [1]

Vague taxonomy and low accuracy

Data Races Output differs Harmful Harmless Not a race

Data Races Output Harmless Harmful Not a race differs

Developer can prioritize the inspection of races

- Classified 93 real-world data races
- With 99% accuracy

- Classified 93 real-world data races
- With 99% accuracy
- In less than 5 minutes/race
 - Manual verified in 240 hours (1 person-month)
 - Could have saved around 230 hours

- Classified 93 real-world data races
- With 99% accuracy
- In less than 5 minutes/race
 - Manual verified in 240 hours (1 person-month)
 - Could have saved around 230 hours

More precise taxonomy and higher accuracy

Contributions

- Finer grained, more precise taxonomy
- High precision data race classifier
 - Multi-path multi-schedule data race analysis
 - Symbolic output comparison

Contributions

- Finer grained, more precise taxonomy
- High precision data race classifier
 - Multi-path multi-schedule data race analysis
 - Symbolic output comparison

Single-path Analysis (prior work)

idx = 1

Single-path Analysis (prior work)

$$idx = 1$$


```
Time Thread 1

idx = 1
```

Thread 2

```
if(input)
idx = 2
idx = 1
```



```
Time Thread 1 Thread 2

idx = 1

if (input)

idx = 2

idx = 1

if (idx == 2)

crash
```


input = false

Thread 1

Thread 2

if(input)
idx = 2

input = false

Thread 1

Thread 2

if(input)
idx = 2

input = false

Thread 1

Thread 2

if(input)
idx = 2

input = false

Time

Thread 1

Thread 2

if(input)
idx = 2

idx = 1

idx = 1
if(idx == 2)

crash

Harmful

input = false

Time

Thread 1

Thread 2

if(input)
idx = 2

idx = 1

idx = 1
if(idx == 2)
crash

Analyze two schedules, compare memory and registers

Analyze two schedules, compare memory and registers

Analyze two schedules, compare memory and registers

Time Thread 1
idx = 1

Thread 2

if(input)

idx = 2

idx = 1

if(idx == 2)
crash

Time Thread 1

Thread 2

idx = 1

if(input)

idx = 2

Time Thread 1

Thread 2

idx = 1

if(input)

idx = 2

if(idx == 2)
crash

$$idx = 1$$

^{*} Assume a sequentially consistent memory model

^{*} Assume a sequentially consistent memory model

^{*} Assume a sequentially consistent memory model

Multi-path Multi-schedule Analysis (our approach)

^{*} Assume a sequentially consistent memory model

Multi-path Multi-schedule Analysis (our approach)

^{*} Assume a sequentially consistent memory model

Multi-path Multi-schedule Analysis (our approach)

```
input = true
Time
      Thread 1
                     Thread 2
      idx = 1
                     if(input)
                      idx = 2
                     idx = 1
      if(idx == 2)
       crash
      exit(0)
```


^{*} Assume a sequentially consistent memory model

--- schedules
--- paths

schedules paths

schedules paths

schedules
paths

schedules paths

schedulespaths

schedulespaths

Accuracy

Multi-path multi-schedule analysis increases classification accuracy

Contributions

- Finer grained taxonomy
- High precision data race classifier
 - Multi-path multi-schedule data race analysis
 - Symbolic output comparison

Contributions

- Finer grained taxonomy
- High precision data race classifier
 - Multi-path multi-schedule data race analysis
 - Symbolic output comparison

Portend

Portend

Cloud9 on top of KLEE

Multithreaded symbolic execution engine

Portend

Record/replay & classification engine

Cloud9 on top of KLEE

Multithreaded symbolic execution engine

Portend

Record/replay & classification engine

Cloud9 on top of KLEE

Multithreaded symbolic execution engine

Single-path

Conclusion

Conclusion

Finer grained taxonomy

Conclusion

Finer grained taxonomy

High precision data race classifier

- Multi-path multi-schedule data race analysis
- Symbolic output comparison

Conclusion

Finer grained taxonomy

High precision data race classifier

- Multi-path multi-schedule data race analysis
- Symbolic output comparison

99% classification accuracy on 93 data races in < 5 minutes/race

Conclusion

Finer grained taxonomy

High precision data race classifier

- Multi-path multi-schedule data race analysis
- Symbolic output comparison

99% classification accuracy on 93 data races in < 5 minutes/race

What Influences Classification Time?

Performance

Program	Concrete Interpretation Time (sec)	Portend Classification Time (sec)		
		Avg	Min	Max
SQLite	3.1	4.2	4.09	4.25
Ocean	19.64	60.02	19.9	207.14
Fmm	24.87	64.45	65.29	72.83
Memcached	73.87	645.99	619.32	730.37
Pbzip2	15.3	360.72	61.36	763.43
Ctrace	3.67	24.29	5.54	41.08
Bbuf	1.81	4.47	4.77	5.82

Avg. classification time per race < 5 min

K vs. Accuracy

Symbolic Output Comparison

```
i = getInput();
if(i >= 0)
  print(i);
```


Does the concrete output satisfy the constraints of the symbolic output?

Classification Accuracy						
	SpecViol	K-witness	OutDiff	SingleOrd		
Ground Truth	100%	100%	100%	100%		
Record/Replay Analyzer*	10%	95%	0% (not-classified)			
Portend	100%	99%	99%	100%		

^{*}Single-path analysis and state comparison

Portend Trace Format

