Resumos MNUM

MIEIC

8 de fevereiro de 2021

Conteúdo

1	Inti	rodução	2		
2	Err	os	2		
3	Zeros				
	3.1	Método da Bisseção	2		
	3.2	Método da Corda ou Falsa Posição	3		
	3.3	Método da Tangente ou Newton	3		
	3.4	Método de Picard-Peano	3		
4	Sistemas de Equações Lineares $(A.x = b)$				
	4.1	Método da Eliminação Gaussiana	4		
	4.2	Método de Khaletsky	5		
	4.3	Método de Gauss-Jacobi	5		
	4.4	Método de Gauss-Seidel	5		
5	Quadratura e Cubatura 5				
	5.1	Regra dos Trapézios - $2^{\underline{a}}$ ordem	5		
	5.2	Controlo do erro	5		
	5.3	Regra de Simpson - $4^{\underline{a}}$ ordem	6		
6	Equações Diferenciais Ordinárias				
	6.1	Método de Euler - $1^{\underline{a}}$ ordem	6		
	6.2	Método de Euler Melhorado	6		
	6.3	Runge-Kutta $2^{\underline{a}}$ ordem	7		
	6.4	Runge-Kutta $4^{\underline{a}}$ ordem	7		
7	Otimização 7				
	7.1	Método dos terços	7		
	7.2	Regra Áurea	7		
	7.3	Método do Gradiente	8		
	7.4	Método da Quádrica	8		
	7.5	Método de Levenberg-Marquardt	8		

8	Maxima: Comandos Úteis				
	8.1	Método de Gauss	8		
	8.2	Runge-Kutta 4	6		
	8.3	Khaletsky	6		
	8.4	Hessiana	Ç		

1 Introdução

Este documento contém resumos dos conteúdos lecionados em MNUM no ano letivo 2018/2019. Este documento contém apenas os passos de execução de cada método e não substitui o estudo mais aprofundado dos conteúdos da unidade curricular. Implementações dos métodos presentes neste documento em C++ podem ser vistas **neste repositório**.

2 Erros

 $\begin{tabular}{ll} \bf Virgula\ flutuante: & mantissa*base^{expoente} \end{tabular}$

```
• \frac{1}{base} \le |mantissa| < 1
```

• $\pm 1.f * 2^e$ - Dois tipos: precisão simples (32 bits) e dupla (64 bits)

- f: parte fracionária da mantissa

-e = expoente * vies

Erro Absoluto: $x_{exato} - x_{aproximado}$

Erro Relativo: $\frac{x_{exato} - x_{aproximado}}{x_{exato}}$

3 Zeros

C++:

}

3.1 Método da Bisseção

A partir de um intervalo, calcula-se o seu ponto médio. Se $f(\frac{x_1+x_2}{2})$ for nulo, encountrou-se a raíz; se não, reduz-se o intervalo.

```
\begin{array}{lll} & \text{for}\,(\,\text{int}\  \, \text{m} = \,0\,;\  \, \text{n} \,<\, \dots;\  \, \text{n} \,+\,)\,\,\{\\ & \text{m} \,=\, (\,a\, +\, b\,)\,\,/\,\,2\,;\\ & \text{if}\,(\,f\,(\,a\,)\, *\, f\,(m)\, <\, 0\,)\\ & b \,=\, m\,;\\ & \text{else}\quad \text{if}\,(\,f\,(\,a\,)\, *\, f\,(m)\, >\, 0\,)\\ & a \,=\, m\,;\\ & \text{else}\\ & \text{break}\,; \end{array}
```

Critérios de Paragem:

- 1. $|x_1 x_2| \le \epsilon$ critério de precisão absoluta
- 2. $\frac{|x_1-x_2|}{x_1} \leq \epsilon$ ou $\frac{|x_1-x_2|}{x_2} \leq \epsilon$ critério de precisão relativa
- 3. $|f(x_1) f(x_2)| \leq \epsilon$ critério de anulação da função
- 4. n=N critério do número de iterações
 - $n \leq (nmerodebitsdamantissa) + \log_2(b-a)$ -> a e b são os extremos do intervalo
 - ou $n \leq 3.3 * (nmerodedgitosdamantissa) + \log_{10}(b-a)$

3.2 Método da Corda ou Falsa Posição

Calcula-se a nova posição traçando-se uma corda entre os dois pontos.

$$\begin{split} m &= \frac{a * f(b) - b * f(a)}{f(b) - f(a)} \\ \text{C} + + : \\ &\text{for (int } n = 0; \ n < \dots; \ n + +) \ \{ \\ &\text{w} = (a * f(b) - b * f(a)) / (f(b) - f(a)); \\ &\text{if (f(a) * f(w) < 0)} \\ &\text{b} = w; \\ &\text{else if (f(a) * f(w) > 0)} \\ &\text{a} = w; \\ &\text{else} \\ &\text{break}; \end{split}$$

3.3 Método da Tangente ou Newton

}

Parte apenas de um valor plausível, substituindo este valor pelo zero da tangente neste ponto

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

• Implica conhecimento prévio da derivada e $f'(x_k) \neq 0$

3.4 Método de Picard-Peano

Transforma-se uma equação f(x)=0 em x=g(x), tal que g(x) não seja divergente. Através da equação $x_n=g(x_{n-1})$ calculam-se pontos sucessivos até se chegar perto do 0

- Condição de convergência: g'(x) < 1
- Para sistemas de equação: $\begin{cases} \mathbf{x} = \mathbf{g}_1(x,y) \\ \mathbf{y} = \mathbf{g}_2(x,y) \end{cases}$ Todas as derivadas parcias têm que convergir: $\frac{\delta g_1}{\delta x}$, $\frac{\delta g_1}{\delta y}$, $\frac{\delta g_2}{\delta x}$, $\frac{\delta g_2}{\delta y}$

4 Sistemas de Equações Lineares (A.x = b)

4.1 Método da Eliminação Gaussiana

Divide-se a $1^{\underline{a}}$ equação por a_{11} , para tornar unitário o $1^{\underline{o}}$ coeficiente. Multiplica-se esta equação por $-a_{22}$, e soma-se à primeira; resultado será a nova $2^{\underline{a}}$ equação; repete-se este processo para todas as linhas. Repete-se todos os passes utilizando os elementos da diagonal.

C++: (útil definir rowop como no Maxima

```
void rowop(vector<vector<double>>> &matrix, size_t i, size_t j, double value) {
    for(size_t k = 0; k < matrix[0].size(); k++) {
        matrix[i][k] -= value * matrix[j][k];
    }
}
...

for(size_t i = 0; i < matrix.size(); i++) {
    rowop(matrix, i, i, 1 - 1/matrix[i][i]);
    for(size_t j = 0; j < matrix.size(); j++) {
        if(i!= j)
            rowop(matrix, j, i, matrix[j][i]);
    }
}</pre>
```

O Erro no Método de Gauss:

- Estabilidade Externa (potenciais erros dos coeficientes e dos termos constantes): $A.\delta x = \delta b \delta A.x$
- Estabilidade Interna (erros de arredondamento no decorrer do cálculo): $A.\delta = b A.x_0 = \epsilon$ (ϵ = coluna dos resíduos)

Mínimização dos erros:

- Pivotagem Parcial (eliminar coluna com a equação com maior coeficiente nessa coluna)
- Pivotagem Total (eliminar com a equação não tratada com maior coeficiente)

- Escalagem de Linhas
- Escalagem de Colunas

4.2 Método de Khaletsky

Dado um sistema A.x = b, representa-se A por um produto L.U, A = L.U, e calcula-se x através dos sistems L.y = b e U.x = y

Coeficientes LU:

- $l_{i,1} = a_{i,1}$
- $l_{i,j} = a_{i,j} \sum_{k=1}^{j-1} l_{i,k} u_{k,j} (i \ge j)$
- $u_{1,i} = \frac{a_{1,i}}{l_{1,1}}$
- $u_{i,j} = \frac{a_{i,j} \sum_{k=1}^{j-1} l_{i,k} \cdot u_{k,j}}{l_{i,i}} (i < j)$

Método de Gauss-Jacobi 4.3

$$x_i^{(k)} = \frac{1}{a_{i,i}} \left[-\sum_{j=1, j \neq i}^{n} a_{i,j} x_j^{(k-1)} + b_i \right], (1 \le i \le n)$$

Método de Gauss-Seidel

$$x_i^{(k)} = \frac{1}{a_{i,i}} \left[-\sum_{j=1,j < i}^{n} a_{i,j} x_j^{(k)} - \sum_{j=1,j > i}^{n} a_{i,j} x_j^{(k-1)} + b_i \right], (1 \le i \le n)$$

Quadratura e Cubatura 5

Regra dos Trapézios - 2ª ordem

Substitui-se, em cada intervalo, o arco da curva pela sua corda, calculando, em seguida, a área sob a poligonal assim definida.

$$\int_{x_0}^{x_n} y.\delta x = \frac{h}{2}.[y_0 + 2y_1 + \dots + 2y_{n-1} + y_n]$$

5.2 Controlo do erro

Quociente de Convergência: $\frac{S'-S}{S''-S'}\approx 2^{ordemdomtodo}$ Erro: $\epsilon''=\frac{S''-S'}{2^{ordem}-1}$

Regra de Simpson - 4^a ordem 5.3

Em vez de substituir a curva por cordas, substitui-a pelas parábolas definidas por cada trio de pontos.

$$\int_{x_0}^{x_{2n}} y \cdot \delta x = \frac{h}{3} \cdot [y_0 + 4y_1 + 2y_2 + 4y_3 + \dots + 2y_{2n-2} + 4y_{2n-1} + y_{2n}]$$

Fórmula de Simpson - Cubatura:

$$h_x = \frac{A - a}{2}$$

$$h_y = \frac{B - b}{2}$$

$$\int \int f(x,y) \delta x \delta y = \frac{h_x \cdot h_y}{9} \cdot \left[\sum_0 +4 \sum_1 +16 \sum_2 \right]$$

 \sum_0 : Valores de f
 nos vértices \sum_1 : Valores de f
 nos pontos médios dos lados \sum_0 : Valores de f
 no centro

Equações Diferenciais Ordinárias

Método de Euler - 1^a ordem 6.1

Calcula-se $y'_n = f(x_n, y_n)$, que é a inclinação da curva no ponto (x_n, y_n) ; calculase o ponto seguinte, sendo h o passo :

$$\begin{cases} y_{n+1} = y_n + h * y'_n \\ x_{n+1} = x_n + h \end{cases}$$

6.2 Método de Euler Melhorado

A partir de 2 pontos (x_{n-1}, y_{n-1}) e (x_n, y_n) , calcula-se (x_{n+1}, y_{n+1}) do seguinte modo:

- Calcula-se um valor previsto $p_{n+1} = y_{n-1} + 2h.y'_n$
- Com este ponto, calcula-se $p_{n+1} = f(x_{n+1}, p_{n+1})$
- Calcula-se também o valor corrigido $y_{n+1} = y_n + \frac{p'_{n+1} + y'_n}{2}$
- Por fim, prepara-se o passo seguinte: $y'_{n+1} = f(x_{n+1}, y_{n+1})$

$$x_{i} + \frac{1}{2} = x_{i} + \frac{h}{2}$$

$$y_{i} + \frac{1}{2} = y_{i} + \frac{h}{2} \cdot f'(x_{i}, y_{i})$$

$$y_{i+1} = y_{i} + f'(x_{i} + \frac{1}{2}, y_{i} + \frac{1}{2}) \cdot h$$

$$x_{i+1} = x_{i} + h$$

Runge-Kutta 2^a ordem

$$y' = f(x_n, y_n)$$

$$\begin{cases} y_{n+1} = y_n + h \cdot f(x_n + \frac{h}{2}, y_n + \frac{h}{2} \cdot f(x_n, y_n)) \\ x_{n+1} = x_n + h \end{cases}$$

6.4 Runge-Kutta 4^a ordem

$$\delta y_1 = h.f(x_n, y_n)$$

$$\delta y_2 = h.f(x_n + \frac{h}{2}, y_n + \frac{\delta y_1}{2})$$

$$\delta y_3 = h.f(x_n + \frac{h}{2}, y_n + \frac{\delta y_2}{2})$$

$$\delta y_4 = h.f(x_n + h, y_n + \delta y_3)$$

$$\begin{cases} y_{n+1} = y_n + \frac{1}{6}.\delta y_1 + \frac{1}{3}.\delta y_2 + \frac{1}{3}.\delta y_3 + \frac{1}{6}.\delta y_4 \\ x_{n+1} = x_n + h \end{cases}$$

Otimização

Método dos terços

A partir de x_1 e x_2 , calculam-se x_3 e x_4 (pontos que dividem o intervalo $[x_1, x_2]$

Se
$$f(x_4) < f(x_3)$$
, então $x_1 = x_3$; senão se $f(x_4) > f(x_3)$, então $x_2 = x_4$.

7.2Regra Áurea

A partir de x_1 e x_2 , calculam-se $x_3 = x_1 + A.(x_2 - x_1)$ e $x_4 = x_1 + B.(x_2 - x_1)$, tais que $B=\frac{\sqrt{5}-1}{2}$ e $A=B^2$. Se $f(x_3)< f(x_4)$, então $x_2=x_4$; senão se $f(x_3)>f(x_4)$, então $x_1=x_3$.

Se
$$f(x_3) < \tilde{f}(x_4)$$
, então $x_2 = x_4$; senão se $f(x_3) > f(x_4)$, então $x_1 = x_3$.

7.3 Método do Gradiente

$$x_j^{(i+1)} = x_j^{(i)} - h. \frac{\delta f^{(i)}}{\delta x_j} (j = 1, 2, ..., n),$$

em que h é o passo.

Se $f(x^{(i+1)}) < f(x^{(i)})$, dá-se novo passo com h = 2 * h.

Se $f(x^{(i+1)}) > f(x^{(i)})$, não se efetua o passo e faz-se nova tentativa com $h = \frac{h}{2}$.

7.4 Método da Quádrica

Só é aplicável nas vizinhanças imediatas do mínimo (ou máximo).

$$x_i^{n+1} = x_n - H^{-1}x\nabla f(x_i^n),$$

sendo H^{-1} o inverso do determinante da matriz hessiana.

7.5 Método de Levenberg-Marquardt

O passo é a soma dos passos dos 2 método anteriores:

$$x_{n+1} = x_n - h_{L.M},$$

tal que $h_{L.M}=H^{-1}\nabla+\lambda\nabla,$ sendo λ o parâmetro a determinar mediante a evolução do método:

- Se $f(x_{n+1}) < f(x_n), \lambda = \frac{\lambda}{2}$
- Senão se $f(x_{n+1}) > f(x_n), h = h * 2$

8 Maxima: Comandos Úteis

8.1 Método de Gauss

Este método pressupõe que m[i][i] não é nulo.

8.2 Runge-Kutta 4

```
 \begin{array}{l} {\rm rk}\,(\,{\rm f}\,'\,,\ y\,,\ 1\,,\ [\,{\rm x}\,,\ 0\,,\ 4\,,\ 1\,]\,)\,;\\ \\ {\rm f}': \ {\rm derivada}\ {\rm da}\ {\rm função}\\ \\ {\rm y:\ variável}\\ \\ {\rm 1:\ valor\ inicial\ de\ y}\\ \\ {\rm [x},\,0,\,4,\,1]\!\colon\, [{\rm x},\,{\rm x\ inicial},\,{\rm x\ final},\,{\rm h}]\\ \\ {\rm Sistemas:}\\ \\ {\rm rk}\,(\,[\,{\rm x}\,'\,,\ y\,'\,]\,\,,\ [\,{\rm x}\,,\ y\,]\,\,,\ [\,-1.25\,,\ 0.75\,]\,\,,\ [\,{\rm t}\,,\ 0\,,\ 4\,,\ h\,]\,)\,;\\ \end{array}
```

8.3 Khaletsky

```
A: matrix([1, 2, 3], [4, 5, 6], [7, 8, 9]);
b: [10, 11, 12];
[P, L, U]: get_lu_factors(lu_factor(A));
Y: invert(L).b;
X: invert(U).Y;
```

8.4 Hessiana

hessian(função, [lista de variáveis]);