COMP20007 Design of Algorithms Semester 1 2016

Secret Sharing

Suppose you want to hide a secret s

- ▶ It might be a number or a string of bits
- Can you give *a*,*b* to two other people so that
 - Neither person alone has any information about s
 - ▶ *a or b* alone reveals nothing
 - But both people working together can find s
 - ▶ Some computation on *a*, *b* recovers s
 - Ans: give one person rand r.
 - Give the other person r XOR s (bitwise).
 - Recover s by computing r XOR (r XOR s)
 - Think of s as a number in range [0,n-1].
 - ▶ Give one person r in the range *** and n
 - Give the other person s + r mod n *** and n
 - Recover s by computing (s+r) r mod n

Can you generalize?

- ▶ Can you give a_1, a_2, \ldots, a_n to n other people so that
 - ▶ *n*-1 people have no information about s
 - But all *n* people working together can find s
 - ▶ Some computation on $a_1, a_2, ..., a_n$ recovers s
 - **?**

A different generalization?

- ▶ Can you give a_1, a_2, \ldots, a_n to n other people so that
 - One person alone has no information about s
 - But any 2 people working together can find s
 - Some computation on any pair (a_i, a_j) recovers s
 - ?

(Shamir or Blakeley) Secret sharing

- ▶ Give each person a point (*i*, *ai*+s) for fixed *a*
 - $i=1,\ldots,n$
 - One person alone has no information about x
 - But any 2 people working together can find x
 - ▶ Some computation on any pair (a_i, a_j) recovers x

