Importing libraries & Loading the datasets

```
In [1]: # Import Libraries
    import pandas as pd
    import numpy as np
    import seaborn as sns
    import sklearn

# Load CSVs
    admissions = pd.read_csv('admissions.csv')
    fatalities = pd.read_csv('fatalities.csv')
    metrics = pd.read_csv('metrics.csv')
    prescriptions = pd.read_csv('prescriptions.csv')
    smokers = pd.read_csv('smokers.csv')
```

data exploration

Display basic info from each dataset

In [2]:	ad	missions.	head()					
Out[2]:		Year	ICD10 Code	ICD10 Diagnosis	Diagnosis Type	Metric	Sex	Value
	0	2014/15	All codes	All admissions	All admissions	Number of admissions	NaN	11011882
	1	2014/15	C33-C34 & C00-C14 & C15 & C32 & C53 & C67 & C6	All diseases which can be caused by smoking	All diseases which can be caused by smoking	Number of admissions	NaN	1713330
	2	2014/15	C00-D48	All cancers	All cancers	Number of admissions	NaN	1691035
	3	2014/15	J00-J99	All respiratory diseases	All respiratory diseases	Number of admissions	NaN	611002
	4	2014/15	100-199	All circulatory diseases	All circulatory diseases	Number of admissions	NaN	907157
In [3]:	ad	missions.	info()					

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2079 entries, 0 to 2078
Data columns (total 7 columns):

#	Column	Non-Null Count	Dtype
0	Year	2079 non-null	object
1	ICD10 Code	2079 non-null	object
2	ICD10 Diagnosis	2079 non-null	object
3	Diagnosis Type	2079 non-null	object
4	Metric	2079 non-null	object
5	Sex	1386 non-null	object
6	Value	2078 non-null	object

dtypes: object(7)
memory usage: 113.8+ KB

In [4]: fatalities.head()

Out[4]:

	Year	ICD10 Code	ICD10 Diagnosis	Diagnosis Type	Metric	Sex	Value
0	2014	All codes	All deaths	All deaths	Number of observed deaths	NaN	459087
1	2014	C33-C34 & C00-C14 & C15 & C32 & C53 & C67 & C6	All deaths which can be caused by smoking	All deaths which can be caused by smoking	Number of observed deaths	NaN	235820
2	2014	C00-D48	All cancers	All cancers	Number of observed deaths	NaN	136312
3	2014	J00-J99	All respiratory diseases	All respiratory diseases	Number of observed deaths	NaN	61744
4	2014	100-199	All circulatory diseases	All circulatory diseases	Number of observed deaths	NaN	126101

In [5]: fatalities.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1749 entries, 0 to 1748
Data columns (total 7 columns):

#	Column	Non-Null Count	Dtype
0	Year	1749 non-null	int64
1	ICD10 Code	1749 non-null	object
2	ICD10 Diagnosis	1749 non-null	object
3	Diagnosis Type	1749 non-null	object
4	Metric	1749 non-null	object
5	Sex	1166 non-null	object
6	Value	1749 non-null	object

dtypes: int64(1), object(6)
memory usage: 95.8+ KB

In [6]: metrics.head()

Out[6]:	Year	Tobacco Price\nIndex	Retail Prices\nIndex	Tobacco Price Index Relative to Retail Price Index	Real Households' Disposable Income	Affordability of Tobacco Index	Household Expenditure on Tobacco
C	2015	1294.3	386.7	334.7	196.4	58.7	19252.0
1	2014	1226.0	383.0	320.1	190.0	59.4	19411.0
2	2013	1139.3	374.2	304.5	190.3	62.5	18683.0
3	2012	1057.8	363.1	291.3	192.9	66.2	18702.0
4	2011	974.9	351.9	277.1	189.3	68.3	18217.0
							•
In [7]: m	etrics.	info()					
Rai	ngeInde ta colu Colu Year	x: 36 entries mns (total 9 mn 		' >		Non-Null (36 non-nu	
Ind 2	dex Reta	il Prices		36	non-null	float64	
Ind 3 64	dex Toba	cco Price Ind	ex Relative to		non-null Price Index	float64 36 non-nui	ll float
4 64 5			Disposable Ind Tobacco Index	come		36 non-nui	
64 6 64	Hous	ehold Expendi	ture on Tobaco	0		31 non-nu	ll float
7 64	Hous	ehold Expendi	ture Total			31 non-nu	ll float
8 64 dty	/pes: f	nditure on To loat64(8), in age: 2.7 KB	bacco as a Per	rcentage	of Expenditur	re 31 non-nu.	ll float
In [8]: p	rescrip	otions.head()					

Out[8]:							
		Year	All Pharmacotherapy Prescriptions	Nicotine Replacement Therapy (NRT) Prescriptions	Bupropion (Zyban) Prescriptions	Varenicline (Champix) Prescriptions	Net Ingrec Cost o Pharmacothera
	0	2014/15	1348	766	21	561.0	3
	1	2013/14	1778	1059	22	697.0	4
	2	2012/13	2203	1318	26	859.0	5
	3	2011/12	2532	1545	30	957.0	6
	4	2010/11	2564	1541	36	987.0	6
	4						•
In [9]:	pr	escriptio	ons.info()				
	Rang	geIndex: a columns Column	as.core.frame.Dat 11 entries, 0 to (total 9 columns	10		No	on-Null Count
	0	Year				11	l non-null
	obje	All Pha	rmacotherapy Pres	scriptions		11	l non-null
	int(Nicotin	e Replacement The	erapy (NRT) Pr	escriptions	11	l non-null
	int(Bupropi	on (Zyban) Prescr	riptions		11	l non-null
	int(Varenio	line (Champix) Pr	rescriptions		9	non-null
	5	_	redient Cost of A	All Pharmacoth	erapies	1:	l non-null
	inte	Net Ing	redient Cost of N	licotine Repla	cement Therap	ies (NRT) 1	l non-null

int64

7 Net Ingredient Cost of Bupropion (Zyban) 11 non-null int64

8 Net Ingredient Cost of Varenicline (Champix) 9 non-null float64

dtypes: float64(2), int64(6), object(1)

memory usage: 924.0+ bytes

In [10]: smokers.head()

Out[10]:		Year	Method	Sex	16 and Over	16-24	25-34	35-49	50-59	60 and Over
Out[10]:	0	1974	Unweighted	NaN	46	44	51	52	50	33
	1	1976	Unweighted	NaN	42	42	45	48	48	30
Out[10]:	2	1978	Unweighted	NaN	40	39	45	45	45	30
Out[10]:	3	1980	Unweighted	NaN	39	37	46	44	45	29
	4	1982	Unweighted	NaN	35	35	38	39	41	27

```
In [11]: smokers.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 84 entries, 0 to 83
Data columns (total 9 columns):
# Column Non-Null Count Dtype
--- -----
                _____
0 Year 84 non-null int64
1 Method 84 non-null object
2 Sex 56 non-null object
3 16 and Over 84 non-null
                                int64
4 16-24 84 non-null
5 25-34 84 non-null
6 35-49 84 non-null
                                 int64
                                int64
                84 non-null int64
7 50-59 84 non-null
                                int64
8 60 and Over 84 non-null
                                int64
dtypes: int64(7), object(2)
memory usage: 6.0+ KB
```

data cleaning

```
In [12]: # Standardize 'Year' formats
def standardize_year(col):
    # Handles "2014/15" -> 2014, "2014" -> 2014
    # If the year is in "YYYY/YY" format, take the first 4 digits
    return col.astype(str).str[:4].astype(int)

admissions["Year"] = standardize_year(admissions["Year"])
fatalities["Year"] = standardize_year(fatalities["Year"])
prescriptions["Year"] = standardize_year(prescriptions["Year"])
smokers["Year"] = standardize_year(smokers["Year"])
# Metrics years are already int
```

Handling missing values

```
In [13]: # Count
    admissions.isnull().sum()
    fatalities.isnull().sum()
    metrics.isnull().sum()
    prescriptions.isnull().sum()
    smokers.isnull().sum()
```

```
Out[13]: Year
         Method
                         0
          Sex
                         28
          16 and Over 0
          16-24
          25-34
                         0
          35-49
          50-59
          60 and Over
          dtype: int64
In [14]: admissions.replace([".", ""], np.nan, inplace=True)
         fatalities.replace([".", ""], np.nan, inplace=True)
         prescriptions.replace([".", ""], np.nan, inplace=True)
         smokers.replace([".", ""], np.nan, inplace=True)
         metrics.replace([".", ""], np.nan, inplace=True)
         for df in [admissions, fatalities, prescriptions, smokers, metrics]:
             for col in df.columns:
                 df[col] = pd.to_numeric(df[col], errors="ignore")
        C:\Users\asus\AppData\Local\Temp\ipykernel_15692\2333883816.py:9: FutureWarning:
        errors='ignore' is deprecated and will raise in a future version. Use to_numeric
        without passing `errors` and catch exceptions explicitly instead
          df[col] = pd.to_numeric(df[col], errors="ignore")
In [15]: # Check for duplicates
         print("Admissions duplicates:", admissions.duplicated().sum())
         print("Fatalities duplicates:", fatalities.duplicated().sum())
         print("Metrics duplicates:", metrics.duplicated().sum())
         print("Prescriptions duplicates:", prescriptions.duplicated().sum())
         print("Smokers duplicates:", smokers.duplicated().sum())
        Admissions duplicates: 0
        Fatalities duplicates: 0
        Metrics duplicates: 0
        Prescriptions duplicates: 0
        Smokers duplicates: 0
In [16]: # Output cleaned dataframes
         admissions clean = admissions.copy()
         fatalities_clean = fatalities.copy()
         metrics clean = metrics.copy()
         prescriptions_clean = prescriptions.copy()
         smokers_clean = smokers.copy()
In [17]: # Save cleaned datasets
         admissions_clean.to_csv("admissions_clean.csv", index=False)
         fatalities_clean.to_csv("fatalities_clean.csv", index=False)
         metrics_clean.to_csv("metrics_clean.csv", index=False)
         prescriptions_clean.to_csv("prescriptions_clean.csv", index=False)
         smokers_clean.to_csv("smokers_clean.csv", index=False)
         print("Data loading and initial cleaning complete.")
```

Data loading and initial cleaning complete.

EDA on the datasets


```
In [19]: ## Admissions: Time trend for selected diagnosis
plt.figure(figsize=(10,6))
sns.lineplot(
    data=admissions_clean[(admissions_clean['ICD10 Diagnosis'] == "Trachea, Lung
    x='Year', y='Value', hue='Sex'
)
plt.title("Admissions: Trachea, Lung, Bronchus (Smoking-related Cancer) Over Tim
plt.show()
```



```
In [21]: ## Fatalities: Time trend for selected diagnosis
plt.figure(figsize=(10,6))
sns.lineplot(
    data=fatalities_clean[(fatalities_clean['ICD10 Diagnosis'] == "Trachea, Lung x='Year', y='Value', hue='Sex'
)
```

plt.title("Fatalities: Trachea, Lung, Bronchus (Smoking-related Cancer) Over Tim plt.show()


```
In [22]: ## Metrics
plt.figure(figsize=(10,6))
sns.lineplot(data=metrics_clean, x='Year', y='Tobacco Price\nIndex', label='Toba
sns.lineplot(data=metrics_clean, x='Year', y='Retail Prices\nIndex', label='Reta
plt.legend()
plt.title("Tobacco & Retail Price Indices Over Time")
plt.show()
```



```
In [23]: ## Prescriptions
  plt.figure(figsize=(10,6))
  sns.lineplot(data=prescriptions_clean, x='Year', y='All Pharmacotherapy Prescrip
```

```
plt.title("Pharmacotherapy Prescriptions Over Time")
plt.show()
```


In [24]: ## Smokers
plt.figure(figsize=(10,6))
sns.lineplot(data=smokers_clean[smokers_clean['Sex']=="Male"], x='Year', y='16 a
sns.lineplot(data=smokers_clean[smokers_clean['Sex']=="Female"], x='Year', y='16
plt.title("Smoking Prevalence (16 and Over) by Sex")
plt.legend()
plt.show()

merging the datasets

```
In [25]: # Loading cleaned data
         admissions = pd.read_csv("admissions_clean.csv")
         fatalities = pd.read_csv("fatalities_clean.csv")
         metrics = pd.read csv("metrics clean.csv")
         prescriptions = pd.read_csv("prescriptions_clean.csv")
         smokers = pd.read_csv("smokers_clean.csv")
In [26]: # 1. Aggregate admissions and fatalities to year/sex/diagnosis level
         admissions_agg = admissions.groupby(['Year', 'Sex', 'ICD10 Diagnosis', 'Diagnosi
         fatalities_agg = fatalities.groupby(['Year', 'Sex', 'ICD10 Diagnosis', 'Diagnosi
         # 2. Aggregate smokers to year/sex level (e.g., overall prevalence for '16 and 0
         smokers_agg = smokers.groupby(['Year', 'Sex'])['16 and Over'].mean().reset_index
         smokers_agg.rename(columns={'16 and Over': 'Smoking Prevalence'}, inplace=True)
         # 3. Metrics and prescriptions: only by year, so merge on year.
         # If you want sex-specific analysis, merge those values to all sex categories pe
         metrics_agg = metrics.copy()
         prescriptions_agg = prescriptions.copy()
In [27]: # 4. Merge all together (outer join to preserve all possible combinations)
         df = admissions_agg.merge(fatalities_agg, on=['Year', 'Sex', 'ICD10 Diagnosis',
         df = df.merge(smokers_agg, on=['Year', 'Sex'], how='left')
         df = df.merge(metrics_agg, on='Year', how='left')
         df = df.merge(prescriptions_agg, on='Year', how='left')
         df.head()
```

Out[27]:

		Year	Sex	ICD10 Diagnosis	Diagnosis Type	Value_adm	Value_fat	Smoking Prevalence	Tobacco Price\nIndex
	0	2004	Female	Age Related Cataract 45+	Other diseases which can be caused by smoking	87824.0	NaN	23.0	654.6
	1	2004	Female	All admissions	All admissions	4373273.0	NaN	23.0	654.6
	2	2004	Female	All cancers	All cancers	646853.0	74122.0	23.0	654.6
	3	2004	Female	All circulatory diseases	All circulatory diseases	403117.0	102726.0	23.0	654.6
	4	2004	Female	All deaths	All deaths	NaN	282255.0	23.0	654.6
	5 ro	ows × 2	23 colum	ns					
	4								•
In [28]:			_	ataset for led_dataset.	_	=False)			

EDA on the Merged dataset

```
In [29]: merged = pd.read_csv('merged_dataset.csv')
## Correlation heatmap
corr = merged.select_dtypes(include='number').corr()
plt.figure(figsize=(12,8))
sns.heatmap(corr, annot=True, fmt='.2f', cmap='coolwarm')
plt.title("Correlation Matrix: Merged Dataset")
plt.show()
```



```
In [31]: ## Time trend: Smoking prevalence over time
   plt.figure(figsize=(10,6))
   sns.lineplot(data=merged, x='Year', y='Smoking Prevalence', hue='Sex')
   plt.title("Smoking Prevalence Over Time by Sex")
   plt.show()
```



```
In [32]: ## Admissions vs. deaths attributable to smoking
  plt.figure(figsize=(10,6))
  sns.scatterplot(data=merged, x='Value_adm', y='Value_fat', hue='Sex')
  plt.title("Admissions vs. Fatalities Attributable to Smoking")
  plt.xlabel("Admissions Attributable to Smoking")
  plt.ylabel("Fatalities Attributable to Smoking")
  plt.show()
```



```
In [34]: ## Tobacco price vs. smoking prevalence
plt.figure(figsize=(10,6))
sns.scatterplot(data=merged, x='Tobacco Price\nIndex', y='Smoking Prevalence', h
plt.title("Tobacco Price Index vs. Smoking Prevalence")
plt.show()
```

Tobacco Price Index vs. Smoking Prevalence


```
In [35]: # Plot time trends for both variables on dual axes
         sexes = merged['Sex'].dropna().unique()
         # Assign colors explicitly to each sex for clarity
         sex_color_map = {'Male': 'tab:orange', 'Female': 'tab:red'}
         # Fallback if there are unexpected categories
         for s in sexes:
             if s not in sex_color_map:
                 sex_color_map[s] = 'tab:green'
         plt.figure(figsize=(12,7))
         sns.set_style("whitegrid")
         # Plot Tobacco Price Index (left y-axis)
         ax1 = plt.gca()
         sns.lineplot(
             data=merged, x='Year', y='Tobacco Price\nIndex',
             color='tab:blue', label='Tobacco Price Index', ax=ax1
         )
         ax1.set_ylabel('Tobacco Price Index', color='tab:blue')
         ax1.tick_params(axis='y', labelcolor='tab:blue')
         # Plot Smoking Prevalence by Sex (right y-axis)
         ax2 = ax1.twinx()
         for sex in sexes:
             subset = merged[merged['Sex'] == sex]
             sns.lineplot(
                 data=subset, x='Year', y='Smoking Prevalence',
                 ax=ax2, color=sex_color_map[sex], label=f"Smoking Prevalence ({sex})"
         ax2.set_ylabel('Smoking Prevalence (%)')
         ax2.tick_params(axis='y', labelcolor='tab:orange')
         # Combine Legends from both axes
         lines_labels = [ax.get_legend_handles_labels() for ax in [ax1, ax2]]
         lines, labels = [sum(lol, []) for lol in zip(*lines_labels)]
         plt.legend(lines, labels, loc='upper left')
```

```
plt.title('Time Trend: Tobacco Price Index vs. Smoking Prevalence by Sex')
plt.tight_layout()
plt.show()
```


Feature engineering

```
merged = pd.read csv("merged dataset.csv")
# 1. Year-over-year change in Smoking Prevalence
merged['Smoking_Prevalence_YoY'] = merged.groupby('Sex')['Smoking Prevalence'].d
# 2. Death Rate (per admission)
merged['Death_Rate'] = merged['Value_fat'] / (merged['Value_adm'] + 1e-6)
# 3. Interaction Term: Smoking Prevalence * Tobacco Price Index
merged['SmokingPrice_Interaction'] = merged['Smoking Prevalence'] * merged['Toba
# 4. Categorize years by policy era
merged['Policy Era'] = np.where(merged['Year'] < 2010, 'Pre-2010', 'Post-2010')</pre>
# 5. Fill missing values (simple imputation)
merged.fillna(method='ffill', inplace=True)
# 6. One-hot encode categorical variables
merged = pd.get dummies(merged, columns=['Sex', 'Policy Era'], drop first=True)
# Save engineered dataset
merged.to_csv("merged_featured.csv", index=False)
print("Feature engineering complete. Sample of new features:")
merged.head()
```

Feature engineering complete. Sample of new features:

C:\Users\asus\AppData\Local\Temp\ipykernel_15692\3620466036.py:16: FutureWarning:
DataFrame.fillna with 'method' is deprecated and will raise in a future version.
Use obj.ffill() or obj.bfill() instead.
 merged.fillna(method='ffill', inplace=True)

Out[36]:

	Year	ICD10 Diagnosis	Diagnosis Type	Value_adm	Value_fat	Smoking Prevalence	Tobacco Price\nIndex	Prices\
O	2004	Age Related Cataract 45+	Other diseases which can be caused by smoking	87824.0	NaN	23.0	654.6	
1	2004	All admissions	All admissions	4373273.0	NaN	23.0	654.6	
2	2004	All cancers	All cancers	646853.0	74122.0	23.0	654.6	
3	2004	All circulatory diseases	All circulatory diseases	403117.0	102726.0	23.0	654.6	
4	2004	All deaths	All deaths	403117.0	282255.0	23.0	654.6	
5	rows × 2	27 columns						
•								•

Model Training and Evaluation for Tobacco Use and Mortality Data

```
In [37]: from sklearn.model_selection import train_test_split
    from sklearn.linear_model import LinearRegression
    from sklearn.ensemble import RandomForestRegressor
    from sklearn.metrics import mean_squared_error, r2_score

In [51]: # Load engineered dataset
    data = pd.read_csv("merged_featured.csv")

    df = df.dropna(subset=["Value_fat"])

# Separate features and target
    X = df.drop(["Year", "Value_fat"], axis=1)
    y = df["Value_fat"]

In [52]: # One-hot encode categorical columns
    X = pd.get_dummies(X, drop_first=True)
```

```
# Train-test split
         X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_
In [53]: # Impute numeric NaNs
         imputer = SimpleImputer(strategy="mean")
         X_train_imputed = imputer.fit_transform(X_train)
         X_test_imputed = imputer.transform(X_test)
In [54]: # Fit Linear Regression
         lr = LinearRegression()
         lr.fit(X_train_imputed, y_train)
         y_pred_lr = lr.predict(X_test_imputed)
In [55]: # Fit Random Forest
         rf = RandomForestRegressor(n_estimators=100, random_state=42)
         rf.fit(X_train_imputed, y_train)
         y_pred_rf = rf.predict(X_test_imputed)
In [58]: # Evaluation
         from sklearn.metrics import mean_squared_error, r2_score
         import numpy as np
         lr_rmse = np.sqrt(mean_squared_error(y_test, y_pred_lr))
         rf_rmse = np.sqrt(mean_squared_error(y_test, y_pred_rf))
         lr_r2 = r2_score(y_test, y_pred_lr)
         rf_r2 = r2_score(y_test, y_pred_rf)
         print("Linear Regression RMSE:", lr rmse)
         print("Random Forest RMSE:", rf_rmse)
         print("Linear Regression R2:", lr_r2)
         print("Random Forest R2:", rf_r2)
        Linear Regression RMSE: 3967.648195334058
        Random Forest RMSE: 2466.6074507367907
        Linear Regression R<sup>2</sup>: 0.9971116808418315
        Random Forest R2: 0.9988837050889491
```

Random forest classifier

```
In [68]: from sklearn.ensemble import RandomForestClassifier
    from sklearn.impute import SimpleImputer
    from sklearn.preprocessing import LabelEncoder
    from sklearn.metrics import accuracy_score, confusion_matrix, roc_auc_score, cla

In [69]: data = pd.read_csv("merged_featured.csv")
    target = 'Value_fat'
    if pd.api.types.is_numeric_dtype(data[target]):
        median = data[target].median()
        data['target_bin'] = (data[target] > median).astype(int)
        target = 'target_bin'

features = [col for col in data.columns if col not in ['Year', 'Value_fat', 'tar
    X = data[features]
    y = data[target]

X_encoded = pd.get_dummies(X)
```

```
# Train/Test split
         X_train, X_test, y_train, y_test = train_test_split(X_encoded, y, test_size=0.2,
In [70]: # Impute missing
         imputer = SimpleImputer(strategy='mean')
         X_train_imputed = imputer.fit_transform(X_train)
         X_test_imputed = imputer.transform(X_test)
         # Train Random Forest Classifier
         rf_clf = RandomForestClassifier(n_estimators=100, random_state=42)
         rf_clf.fit(X_train_imputed, y_train)
         # Predict Labels + probabilities
         y_pred_rf = rf_clf.predict(X_test_imputed)
         y_prob_rf = rf_clf.predict_proba(X_test_imputed)
In [71]: # Accuracy
         acc_rf = accuracy_score(y_test, y_pred_rf)
         print("Random Forest Accuracy:", acc_rf)
         # Confusion Matrix
         print("Confusion Matrix:\n", confusion_matrix(y_test, y_pred_rf))
         # Classification Report
         print("Classification Report:\n", classification_report(y_test, y_pred_rf))
         # ROC AUC
         if len(rf_clf.classes_) > 2:
             roc_auc_rf = roc_auc_score(y_test, y_prob_rf, multi_class='ovr', labels=rf_c
         else:
             roc_auc_rf = roc_auc_score(y_test, y_prob_rf[:, 1])
         print(" ROC AUC:", roc_auc_rf)
        Random Forest Accuracy: 0.98
        Confusion Matrix:
         [[67 0]
         [ 3 80]]
        Classification Report:
                       precision recall f1-score support
                           0.96
                                    1.00
                                               0.98
                                                           67
                                     0.96
                   1
                           1.00
                                               0.98
                                                           83
            accuracy
                                               0.98
                                                          150
           macro avg
                           0.98
                                     0.98
                                               0.98
                                                          150
        weighted avg
                           0.98
                                     0.98
                                               0.98
                                                          150
         ROC AUC: 0.9992807049091891
In [75]: from sklearn.metrics import roc_curve, auc
         y prob rf = rf clf.predict proba(X test imputed)[:, 1]
         # Compute FPR, TPR
         fpr, tpr, thresholds = roc_curve(y_test, y_prob_rf)
         roc_auc = auc(fpr, tpr)
         # PLot ROC
         plt.figure(figsize=(8, 6))
         plt.plot(fpr, tpr, color='darkorange', lw=2,
                  label='ROC curve (AUC = %0.3f)' % roc_auc)
```

```
plt.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('ROC Curve - Random Forest Classifier')
plt.legend(loc="lower right")
plt.show()
```



```
In [72]: # Plot actual vs predicted for Random Forest
    plt.figure(figsize=(8,6))
    plt.scatter(y_test, y_pred_rf, alpha=0.7)
    plt.xlabel("Actual Fatalities")
    plt.ylabel("Predicted Fatalities")
    plt.title("Random Forest: Actual vs Predicted Fatalities")
    plt.plot([y_test.min(), y_test.max()], [y_test.min(), y_test.max()], 'r--')
    plt.show()
```

0.4

False Positive Rate

0.6

0.0

0.0

0.2

ROC curve (AUC = 0.999)

1.0

0.8

model interpretation

```
In [76]:
         import pandas as pd
         import matplotlib.pyplot as plt
         # Get feature importances from your fitted RF classifier
         importances = rf_clf.feature_importances_
         # Put into DataFrame for readability
         feat_importances = pd.Series(importances, index=X_train.columns)
         feat_importances = feat_importances.sort_values(ascending=False)
         print("Top 10 Important Features:")
         print(feat_importances.head(10))
         # Plot
         plt.figure(figsize=(10, 6))
         feat_importances.head(10).plot(kind='barh')
         plt.gca().invert yaxis()
         plt.title('Top 10 Feature Importances (Random Forest)')
         plt.xlabel('Importance Score')
         plt.show()
```

Top 10 Important Features: Value_adm 97	0.3532
Death_Rate 62	0.1092
Diagnosis Type_Cancers which can be caused by smoking 78	0.0495
Diagnosis Type_Other diseases which can be caused by smoking 21	0.0339
<pre>ICD10 Diagnosis_Spontaneous Abortion 29</pre>	0.0291
<pre>ICD10 Diagnosis_Unspecified Site 33</pre>	0.0252
Diagnosis Type_All admissions 11	0.0231
<pre>ICD10 Diagnosis_All admissions 72</pre>	0.0198
<pre>ICD10 Diagnosis_Age Related Cataract 45+</pre>	0.0184
Diagnosis Type_Digestive diseases which can be caused caused by smoking 05	0.0171
dtype: float64	

In []:

Deeployment

```
import pandas as pd
import numpy as np
import joblib
from sklearn.ensemble import RandomForestRegressor, RandomForestClassifier
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler

df = pd.read_csv("merged_featured.csv")

df.columns = df.columns.str.replace(r'\s+', ' ', regex=True).str.strip()

df = df.dropna(subset=['Death_Rate']).copy()

df_class = df.dropna(subset=['Value_fat']).copy()

threshold = df_class['Value_fat'].median()
df_class['High_Fatality'] = np.where(df_class['Value_fat'] >= threshold, 1, 0)
```

```
# Now the features match:
features = [
   'Smoking Prevalence',
    'Tobacco Price Index',
    'Retail Prices Index',
    "Real Households' Disposable Income",
    'SmokingPrice_Interaction',
    'Sex_Male',
    'Policy_Era_Pre-2010',
    'ICD10 Diagnosis',
    'Diagnosis Type'
X_reg = df[features].copy()
y_reg = df['Death_Rate']
# --- REGRESSION ---
X_reg = df[features].copy()
y_reg = df['Death_Rate']
# --- CLASSIFICATION ---
X_clf = df_class[features].copy()
y_clf = df_class['High_Fatality']
# One-hot encode categorical columns
X_reg = pd.get_dummies(X_reg, columns=['ICD10 Diagnosis', 'Diagnosis Type'])
X_clf = pd.get_dummies(X_clf, columns=['ICD10 Diagnosis', 'Diagnosis Type'])
# Align columns
feature_order = X_reg.columns.tolist()
# Save feature order
joblib.dump(feature_order, 'feature_order.pkl')
# Scale
scaler = StandardScaler()
X_reg_scaled = scaler.fit_transform(X_reg)
X_clf_scaled = scaler.transform(X_clf)
joblib.dump(scaler, 'scaler.pkl')
# Train models
regressor = RandomForestRegressor(random_state=42)
regressor.fit(X_reg_scaled, y_reg)
classifier = RandomForestClassifier(random state=42)
classifier.fit(X clf scaled, y clf)
joblib.dump(regressor, 'regressor.pkl')
joblib.dump(classifier, 'classifier.pkl')
print(" Models trained and saved as regressor.pkl and classifier.pkl.")
```

Models trained and saved as regressor.pkl and classifier.pkl.

```
In [ ]:
```

PROJECT SUMMARY

Processes & Results

Data Preparation

- **Scope:** Tobacco use, economic factors, ICD10 diagnosis, mortality (Death_Rate and Value_fat) from **2004–2015**.
- Removed missing values for target variables.
- Cleaned hidden characters from column names (\r , \n).
- Encoded diagnosis fields, scaled numerical data.
- Engineered a binary High_Fatality flag for classification.

Exploratory Data Analysis (EDA)

- Confirmed trends:
 - Tobacco price index generally rose over time.
 - Smoking prevalence gradually decreased.
 - Household disposable income fluctuated slightly.
- Noted relationships:
 - Higher tobacco prices tend to align with lower smoking prevalence.
 - Specific diagnoses (cancers, circulatory diseases) showed higher Death_Rate.

Feature Engineering

- Added SmokingPrice_Interaction to combine smoking prevalence and price effect.
- Binarized Value_fat into High_Fatality class using median split.

Model Building

- Regression:
 - Linear Regression

RMSE: 3967.65
 R²: 0.9971

• Random Forest Regressor

RMSE: 2466.61
 R²: 0.9989

☑ Classification:

- Random Forest Classifier
 - Accuracy: 0.98
 - Confusion Matrix:

```
[[67 0]
[ 3 80]]
```

Classification Report:

```
| Metric | Class 0 | Class 1 | | ------ | ------ | | Precision | 0.96 | 1.00 | | Recall | 1.00 | 0.96 | | F1-Score | 0.98 | 0.98 |
```

ROC AUC: 0.9993

Deployment

- Built **Streamlit web app** for live prediction:Check here:
 - streamlit could not be deployed on jupyter notebook
 - Mode switch: Regression (Death_Rate) vs Classification (High_Fatality).
 - User inputs: policy, income, prices, diagnosis, smoking rates.
 - SHAP explanations show how each feature influences prediction.

Key Insights

- Strong prediction power for both tasks:
 - Very high R² and low RMSE → reliable mortality rate estimates.
 - Excellent classifier performance → clear separation of high vs low fatality risk.
- Tobacco pricing and smoking prevalence remain key policy levers to reduce mortality.
- Diagnosis type and interaction of price + prevalence have strong impact on outcomes.

Final Conclusion

The project successfully combines EDA, feature engineering, ML modeling, and deployment:

- Predicts Death_Rate with high accuracy.
- Classifies diagnoses by high vs low fatality risk with near-perfect ROC AUC.
- Provides a practical **Streamlit dashboard** for public health decision-makers and researchers.

• Demonstrates the power of **data-driven policy analysis** for tobacco-related mortality control.

Performance Summary Table

Model	RMSE	R ²	Accuracy	ROC AUC
Linear Regression	3967.65	0.9971	_	_
Random Forest Regression	2466.61	0.9989	_	_
Random Forest Classification	_	_	98%	0.9993

In []: