Data Structures and Algorithms

Dr. Odelu Vanga
Department of Computer Science and Engineering
Indian Institute of Information Technology Sri City

Binary Trees & Tree Traversal

BFS and DFS

Spanning Trees

What is a tree?

- Represent hierarchical relationship
- Consists of nodes and edges
- Node represents an object
- Edge represents relationship

Some applications of Trees

Organization Chart

Non academics CSE ECE

Expression Tree

Terminology I

- For any two nodes u and v, if there is an edge pointing from u to v, u is called the parent of v while v is called the child of u.
- Such edge is denoted as (u, v).
- Node without parent, which is called the root.
- The nodes without children are called leaves.

Terminology II

- Nodes without children are called leaves.
- Otherwise, they are called internal nodes.

Terminology III

- If two nodes have the same parent, they are siblings.
- A node u is an ancestor of v if u is parent of v or parent of parent of v or ...
- A node v is a descendent of u if v is child of v or child of child of v or ...

v and w are siblingsu and v are ancestors of xv and x are descendents of u

Terminology IV

 A subtree is any node together with all its descendants.

A subtree of T

Terminology V

- Level of a node n: number of nodes on the path from root to node n
- Height of a tree: maximum level among all of its node

Binary Tree

- Binary Tree: Every node has at most 2 children
- Left child of u: the child on the left of u
- Right child of u: the child on the right of u

x: left child of u

y: right child of u

w: right child of v

z: left child of w

Full and Complete Binary Tree

- T is called a full binary tree, if each node has exactly zero or two children.
- If T is empty, T is a full binary tree of height 0.
- A complete binary tree is a binary tree, which is completely filled, with the possible exception of the bottom level, which is filled from left to right.

Full vs Complete Binary Tree

Property of binary tree

A binary tree of height h has almost 2^h-1 nodes

No. of nodes =
$$2^0 + 2^1 + ... + 2^{(h-1)}$$

= $2^h - 1$

Property of binary tree

 The minimum height of a binary tree with n nodes is log(n+1)

```
By property, n \le 2^h-1
Thus, 2^h \ge n+1
That is, h \ge \log_2(n+1)
```

Binary Tree ADT

Representation of a Binary Tree

An array-based representation

A reference-based representation

An array-based representation

-1: empty tree

nodeNum	item	leftChild	rightChild
0	d	1	2
1	b	3	4
2	f	5	-1
3	а	-1	-1
4	С	-1	-1
5	е	-1	-1
6	?	?	?
7	?	?	?
8	?	?	?
9	?	?	?

root

free

Reference Based Representation

left

NULL: empty tree

You can code this with a class of three fields:

Object element;

BinaryNode left;

BinaryNode right;

element

right

Tree Traversal

- Given a binary tree, we may like to do some operations on all nodes in a binary tree.
- For example, we may want to double the value in every node in a binary tree.
- To do this, we need a traversal algorithm which visits every node in the binary tree.

Ways to traverse a tree

- Pre-order:

- (1) visit node
- (2) recursively visit left subtree
- (3) recursively visit right subtree

– In-order:

- (1) recursively visit left subtree
- (2) visit node
- (3) recursively visit right subtree

– Post-order:

- (1) recursively visit left subtree
- (2) recursively visit right subtree
- (3) visit node

Level-Order

Traverse the nodes level by level (Left to Right)

LevelOrder: 8, 5, 4, 9, 7, 11,

1, 12, 3, 2

Examples for expression tree

- By pre-order, (prefix)+ * 2 3 / 8 4
- By in-order, (infix)
 2 * 3 + 8 / 4
- By post-order, (postfix)
 23*84/+
- By level-order,
 + * / 2 3 8 4
- Note 1: Infix is what we read!
- Note 2: Postfix expression can be computed efficiently using stack

Pre-order

Algorithm pre-order(BTree x) If (x is not empty) { print x.getItem(); // you can do other things! pre-order(x.getLeftChild()); pre-order(x.getRightChild()); }

Pre-order

a b d c

Pre-order Example

Pre-Order: 8, 5, 9, 7, 1, 12, 2, 4, 11, 3

Time complexity of Pre-order Traversal

- For every node x, we will call
 pre-order(x) one time, which performs
 O(1) operations.
- Thus, the total time = O(n).

In-order and post-order

```
Algorithm in-order(BTree x)
If (x is not empty) {
    in-order(x.getLeftChild());
    print x.getItem(); // you can do other things!
    in-order(x.getRightChild());
Algorithm post-order(BTree x)
If (x is not empty) {
    post-order(x.getLeftChild());
    post-order(x.getRightChild());
    print x.getItem(); // you can do other things!
```

In-order

```
Algorithm in-order(BTree x)

If (x is not empty) {
    in-order(x.getLeftChild());
    print x.getItem(); // you can do other
    things!
    in-order(x.getRightChild());
}
```

28

```
In-order(a); In-order(b); In-order(d); In-order(null); Print d; In-order(null); In-order(null); Print c; In-order(null);
```

In-order Example

In-Order: 9, 5, 1, 7, 2, 12, 8, 4, 3, 11

Post-order

Post-order Example

Post-Order: 9, 1, 2, 12, 7, 5, 3, 11, 4, 8

Time complexity for In-order and Post-order

• Similar to pre-order traversal, the time complexity is O(n).

Binary Search Trees

- Each node contains one key (known as data)
- The keys in the left subtree are less then the key in its parent node, in short L < P;
- The keys in the right subtree are greater the key in its parent node, in short P < R;
- Duplicate keys are not allowed

Insertion

(Insert 7)

- 1. Searching element in LL
- 2. Complexity O(n)

- 1. Searching element in BST
- 2. Complexity O(log n)

Deletion

- is not in a tree?
- is a leaf?
- has only one child?
- has two children?

Delete the **node 3** in the following **BST**:

Resulting BST (After delete 3)

Delete root node

Binary Search Tree:

Root node has no subtrees

Binary Search Tree:

Empty BST!

Deletion node only has a left subtree

Delete the **node** 5 in the following **BST**:

Deletion node only has a left subtree

Resulting after Delete the node 5

Deletion node only has a right subtree

Delete the **node 18** in the following **BST**:

Special situation: the deletion node is the root node

Binary Search Tree:

Special situation: the deletion node is the root node

Binary Search Tree:

Deleting a node that has two subtrees

- First, we find the deletion node p (= the node that we want to delete)
- Find the successor node of p
- Replace the content of node p with the content of the successor node
- Delete the successor node

Finding the successor node

 Successor node is the node in the right subtree that has the minimum value

Binary Search Tree:

Min. Value in Right Subtree

Deleting a node with 2 subtrees

1. we must find the node with the value 9:

2. we find the successor node of the node

3. We copy the content of the successor node of the node into the deletion node (p):

4. Last step is deleting the successor node

Notice that the tree satisfies the **Binary Search Tree** property

Delete a node with 2 subtrees --- pseudo code

Step 1: Find the deletion node

```
p = findNode(x); // Find the node that contains the value x
// ===> p is the "deletion node"
```

Step 2: Find the successor node in the RIGHT subtree of p

```
succ = p.right; // Starting point: right subtree
while ( succ.left != null )
{
    succ = succ.left; // Always go left to find min. value
}
```

Step 3: replace content of p with successor node

```
p.value = succ.value;
```

Step 4: delete successor node

Given binary search tree for a sequence of numbers:

11, 6, 8, 19, 4, 10, 5, 17, 43, 49, 31

Pre-Order: 11, 6, 4, 5, 8, 10, 19, 17, 43, 31, 49

In-Order: 4, 5, 6, 8, 10, 11, 17, 19, 31, 43, 49 (sorted)

Post-Order: 5, 4, 10, 8, 6, 17, 31, 49, 43, 19, 11

54

THANK YOU

References:

http://www.mathcs.emory.edu/~cheung/Courses/171/S yllabus/9-BinTree/

https://www.cs.cmu.edu/~adamchik/15-121/lectures/Trees/trees.html