BioCro Equations

Canopy Radiation

$$\delta = -23.5 \cdot \cos\left(\frac{360(D_j + 10)}{365}\right) \tag{1}$$

$$\cos(\theta) = \sin(\Omega)\sin(\delta) + \cos(\Omega)\cos(\delta)\cos(15 \cdot (t - t_{sn}))$$
(2)

$$I_{dir} = I_s \alpha^{\frac{(P/P_o)}{\cos(\theta)}} \tag{3}$$

$$I_{diff} = 0.5 \cdot I_s \cdot (1 - \alpha^{(P/P_o)/\cos(\theta)})\cos(\theta) \tag{4}$$

$$\frac{1}{2}\cos((15 \cdot t_{len}) = -\tan(\lambda)\tan(\delta) \tag{5}$$

$$t_{\rm len} = \frac{2\cos^{-1}(-\tan(\Omega)\tan(\delta))}{15} \tag{6}$$

what is the relevance of equation 5? Steve H's thesis contains the original, below

 λ is defined as "specific heat of vaporization"; not sure what it is here. The original eqn. used Ω

Weather Downscaling

$$Mean = T_1 + T_2 \cdot \sin\left(2\pi \frac{D_j - D_{\text{start}}}{365}\right) \tag{7}$$

Range =
$$T_3 + (T_4 - T_3) \cdot \sin\left(2\pi \frac{D_j - D_{\text{start}}}{365}\right)$$
 (8)

Excursion =
$$\sin\left(2\pi\frac{h_r - 10}{24}\right)$$
 (9)

$$T_{air} = \text{Mean} + \text{Range} \cdot \text{Excursion}$$
 (10)

Canopy Radiation

combine or use clearly distinguished titles for different sections on canopy radiation; energy balance, etc

$$q = \frac{n_r}{n} \tag{11}$$

$$q = \frac{n_r}{n}$$

$$N_{\text{eff}} = \frac{\frac{(1-q)}{q}}{C_{ov}^2}$$

$$(11)$$

$$r^{\sim} = \frac{m_r}{n} \tag{13}$$

$$h = \frac{r^{\sim}}{q} \tag{14}$$

C4 Photosynthesis

$$V_{\text{max}} = V_{\text{max},o} \cdot Kt(E_{V_{\text{max}}}) \tag{15}$$

$$R_d = R_o \cdot Kt(E_{Rd}) \tag{16}$$

$$M = \min \frac{(V_{\text{max}} + \alpha_{\text{slope}} I_{\text{abs}}) \pm \sqrt{(V_{\text{max}} + \alpha_{\text{slope}} I_{\text{abs}})^2 - 4(V_{\text{max}} \alpha_{\text{slope}} I_{\text{abs}})\theta_{\text{curve}}}}{2\theta_{\text{curve}}}$$
(17)

$$M = \min \frac{(V_{\text{max}} + \alpha_{\text{slope}} I_{\text{abs}}) \pm \sqrt{(V_{\text{max}} + \alpha_{\text{slope}} I_{\text{abs}})^2 - 4(V_{\text{max}} \alpha_{\text{slope}} I_{\text{abs}})\theta_{\text{curve}}}}{2\theta_{\text{curve}}}$$

$$A_{\text{gross}} = \min \frac{\left(M + k_t \cdot \frac{c_i}{P}\right) \pm \sqrt{\left(M + k_t \cdot \frac{c_i}{P}\right)^2 - \left(4 \cdot M \cdot k_t \cdot \frac{c_i}{P} \cdot \beta\right)}}{2 \cdot \beta}$$

$$(18)$$

$$A_n = A_{\text{gross}} - R_d \tag{19}$$

what are k_t and K_t in equations 15

C3 Photosynthesis

From Appendix 2 in Bernacchi et al 2003 Plant, Cell and Environment 26, 14191430 doi: 10.1046/j.0016-8025.2003.01050.x

$$A = (1 - \Gamma^*/c_i) \tag{20}$$

$$w_c = \frac{V_{cmax}c_i}{c_i + K_c(1 + O_a/K_0)}$$
 (21)

$$w_j = \frac{Jc_i}{4.5c_i + 10.5\Gamma^*} \tag{22}$$

$$\Gamma^* = exp(19.02 - 37.83/(R(T_{\text{leaf}} + 273.15))) \tag{23}$$

$$K_c = exp(38.05 - 36.38/R(T_{leaf} + 273.15))$$
 (24)

$$K_0 = exp(20.30 - 36.38/R(T_{\text{leaf}} + 273.15))$$
 (25)

$$V_{c,\text{max}} = V_{c,\text{max}@25C} \cdot \exp(26.35 - 65.33/R(T_{\text{leaf}} + 273.15))$$
(26)

$$J = \frac{Q_2 + J_{\text{max},T} - \sqrt{(Q_2 + J_{\text{max},T})^2 - 4\Theta_{PSII}Q_2J_{\text{max},T}}}{2\Theta_{PSII}}$$
(27)

$$J_{\max,T} = J_{\max@25C} \exp(17.57 - 43.54/(R(T_{\text{leaf}} + 273.15)))$$
(28)

$$\Theta_{\text{PSII}} = 0.76 + 0.018T_{\text{leaf}} - 3.7 \cdot 10^{-4} T_{\text{leaf}}^2$$
(29)

$$Q_2 = Q \cdot k \cdot \Phi_{\text{PSILmax}} \cdot \beta_{\Phi} \tag{30}$$

$$\Phi_{\text{PSII,max}} = 0.352 + 0.022T_{\text{leaf}} - 3.4 \cdot 10^{-4} T_{\text{leaf}}^2$$
(31)

renamed β as to β_{Φ} ; is this an appropriate naming?

From Appendix 1, Equations 7-9 in Long 1991 Plant, Cell and Environment 14, 729-739. doi:10.1111/j.1365-3040.1991.tb01439.x

$$c_i = 0.7c_a \left(\frac{1.6740 - 6.1294 \cdot 10^{-2} T_{\text{leaf}} + 1.1688 \cdot 10^{-3} T_{\text{leaf}}^2 - 8.8741 \cdot 10^{-6} T_{\text{leaf}}^3}{0.73547} \right)$$
(32)

$$c_i = 0.7c_a @25^{\circ}C \tag{33}$$

$$O_i = 210 \left(\frac{4.7000 \cdot 10^{-2} - 1.3087 \cdot 10^{-3} T_{\text{leaf}} + 2.5603 \cdot 10^{-5} T_{\text{leaf}}^2 - 2.1441 \cdot 10^{-7} T_{\text{leaf}}^3}{2.6934 \cdot 10^{-2}} \right)$$
(34)

$$O_i = O_a @25^{\circ}C \tag{35}$$

$$\phi = \frac{A_{I=50} - A_{I=25}}{25f} \tag{36}$$

is there a reason not to divide by the denominator when it is constant?

Leaf Water Potential

$$h_s = \frac{e_l - \rho_{va}}{e_l} \cdot 100 \tag{37}$$

$$g_s = g_0 + g_1 \cdot A_{\text{gross}} \cdot \frac{h_s}{c_a} \tag{38}$$

$$A_{\text{net, water stress}} = A_{\text{net}} \cdot h_s$$
 (39)

$$A_{\text{net, water stress}} = A_n \cdot g_{ws}$$
 (40) g_{ws} is undefined

should there be only one equation for Anet(?) is either correct? The first seems strange in that it implies water limited Anet equals Anet times humidity

Canopy Light Transfer

$$J_{a} = 2 \cdot I_{abs} \cdot \left(\frac{1-r-\tau}{1-\tau}\right) \cdot \ell$$

$$L_{b} = (2.126 \cdot 10^{-5} + 1.48 \cdot 10^{-7} \cdot T_{air})/0.004 \cdot \sqrt{L_{w}/u_{layer}}$$

$$u_{a} = \frac{u \cdot 0.41}{log((u-d)/z_{o})}$$

$$g_{a} = \frac{(u_{a}^{2}/u_{layer}) \cdot L_{b}}{(u_{a}^{2}/u_{layer}) + L_{b}}$$

$$\phi'_{v} = 610.78 \cdot \exp\left(\left(17.269 \cdot \frac{T_{a}}{T_{a} + 237.3}\right)\right)$$

$$\Delta \rho_{va} = \rho'_{v} \cdot \left(1 - \frac{h_{s}}{100}\right)$$

$$\gamma = \frac{\rho \cdot c_{p}}{\lambda}$$

$$s = 18 \cdot (2501 - 2.373 \cdot T_{a}) \cdot \left(\frac{\rho'_{0}}{8.314 \cdot (T_{a} + 273)^{2}}\right)$$

$$\Phi_{N} = J_{a} - R_{lc}$$

$$\Delta T = T_{leaf} - T_{air} = \frac{\Phi_{n} \left(\frac{1}{g_{n}} + \frac{1}{g_{c}}\right)}{\lambda \left[s + \gamma \left(1 + \frac{g_{n}}{g_{c}}\right)\right]} - \frac{\lambda \Delta \rho_{va}}{\lambda \left[s + \gamma \left(1 + \frac{g_{n}}{g_{c}}\right)\right]}$$

$$E = \frac{s \cdot \Phi_{N} + \lambda \cdot g_{a} \cdot \Delta \rho_{va}}{\lambda \cdot \left[s + \lambda \cdot (1 + g_{a}/g_{c})\right]}$$

$$E_{c} = \sum_{layer N} (E_{sun} \cdot l_{sun}) + (E_{shade} \cdot l_{shade})$$

$$E_{tot} = \int_{0.365 \text{days}}^{365 \text{days}} \int_{0.24 \text{hours}}^{24 \text{hours}} E_{c}$$

$$(41)$$

$$(42)$$

$$(43)$$

$$(44)$$

$$(44)$$

$$(45)$$

$$(45)$$

$$(46)$$

$$(47)$$

$$(48)$$

$$(49)$$

$$(49)$$

$$(49)$$

$$(49)$$

$$(49)$$

$$(49)$$

$$(49)$$

$$(50)$$

$$(51)$$

$$(51)$$

$$(52)$$

$$(52)$$

$$(52)$$

$$(52)$$

$$(52)$$

$$(53)$$

Sun / Shade Canopy

$$k = \frac{\sqrt{\chi^2 + \tan^2(\theta)} \cdot \cos(\theta)}{\chi + 1.744 \cdot [\chi + 1.183]^{-0.733}}$$

$$F_{\text{sun}} = \frac{1 - e^{(-k \cdot F_{\text{canopy}} / \cos(\theta))} \cdot \cos(\theta)}{k}$$

$$F_{\text{shade}} = F_{\text{canopy}} - F_{\text{sun}}$$

$$F_{\text{canopy}} = F_{\text{sun}} + F_{\text{shade}}$$

$$I_{\text{sun}} = I_{dir} \cdot k / \cos(\theta) + I_{\text{shade}}$$

$$I_{\text{shade}} = I_{\text{diff}} \cdot e^{(-0.5 \cdot F_{\text{canopy}}^{0.7})} + I_{\text{scat}}$$

$$I_{\text{scat}} = 0.07 \cdot I_{\text{dir}} \cdot (1.1 - 0.1 \cdot f) \cdot \exp(-\cos(\theta))$$

$$(55)$$

absorbed by photosynthesis"?

is this the same f as Long

1991 "fraction of light not

(54) why use \int instead of \sum ?

 $I_{\text{total}} = I_{\text{dir}} + I_{\text{dif}}$

Total Canopy Assimilation

$$A_c = (A_{c.\text{sun}} \cdot F_{\text{sun}}) + (A_{c.\text{shade}} \cdot F_{\text{shade}})$$
(63)

$$F_{\text{sun}} = \sum_{\text{layer } N}^{\text{layer } 1} l_{\text{sun}}; \ l_{\text{sun}} = \frac{1 - e^{(-k \cdot F_{\text{sun}})}}{k}$$

$$(64)$$

$$F_{\text{shade}} = \sum_{\text{layer }N}^{\text{layer }1} \ell_{\text{shade}}; \ \ell_{\text{shade}} = F_{\text{sun}} - \ell_{\text{sun}}$$

$$\tag{65}$$

$$F_{\rm canopy} = F_{\rm sun} + F_{\rm shade} \tag{66}$$

$$I_d = I_{\text{diff}} \cdot e^{(-k \cdot F_{sun})} \tag{67}$$

$$I_{\ell,d} = k \cdot I_d \tag{68}$$

$$I_{\ell,s} = k \cdot I_{\text{dir}} + I_{\ell,d} \tag{69}$$

$$A_c = \sum_{\text{layer }N}^{layer 1} (A_{c,\text{sun}} \cdot F_{\text{sun}}) + (A_{c,\text{shade}} \cdot F_{\text{shade}})$$

$$(70)$$

$$A_{c,\text{tot}} = \int_0^{365 \text{days}} \int_0^{24 \text{hours}} A_c \tag{71}$$

$$g_c = \sum_{\text{layer1}}^{\text{layerN}} (g_{s,\text{sun}} \cdot l_{\text{sun}}) + (g_{s,\text{shade}} \cdot l_{\text{shade}})$$
(72)

$$g_{c,\text{tot}} = \int_0^{365 \text{days}} \int_0^{24 \text{hours}} g_c \tag{73}$$

is $\ell_{\rm sun} \equiv_{\rm sun}$? neither is defined

why use \int instead of \sum ?

Allocation

should restrictions on values of k in equations 74 and 84 be moved to the parameter definitions?

would it make sense to subscript values of ω with t, t+1 when updating them to avoid confusion?

$$A_{\text{storage}} = |\omega_{\text{storage}} \cdot k_{\text{storage}}; k_{\text{storage}} < 0 \tag{74}$$

$$A_{\text{total}} = A_{\text{leaf}} + A_{\text{stem}} + A_{\text{root}} + A_{\text{storage}} \tag{75}$$

$$\omega_{\text{leaf}} = \omega_{\text{leaf}} + (A_{\text{total}} \cdot k_{\text{leaf}}) \tag{76}$$

$$\omega_{\text{stem}} = \omega_{\text{stem}} + (A_{\text{total}} \cdot k_{\text{stem}}) \tag{77}$$

$$\omega_{\text{stroot}} = \omega_{\text{storage}} + (A_{\text{total}} \cdot k_{\text{storage}}) \tag{78}$$

$$\omega_{\text{root}} = \omega_{\text{root}} + (A_{\text{total}} \cdot k_{\text{root}}) \tag{79}$$

$$\Psi_{\rm adl} < \Psi_{\rm pt}$$
 (80)

$$k_{\text{leaf}} = k_{\text{leaf}} \cdot k_{\text{mod}} \tag{81}$$

$$k_{\text{stem}} = k_{\text{stem}} \cdot k_{\text{mod}}$$
 (82)

$$k_{\text{storage}} = k_{\text{storage}} \cdot k_{\text{mod}}$$
 (83)

$$k_{\text{mod}} = (\Psi_{\text{adl}} - \Psi_{\text{pt}}) \cdot \Psi_g; 0 \le k_{\text{mod}} \le 1$$

$$E = \frac{\omega_{\text{leaf}}}{\omega_{\text{leaf}}}$$
(85)

$$\Delta F_{\rm canopy} = \frac{\omega_{\rm leaf}}{Sp_{\rm leaf}} \tag{85}$$

$$\Delta L_{\text{stem}} = \frac{\omega_{\text{stem}}}{Sp_{\text{stem}}} \tag{86}$$

$$\Delta L_{\text{sroot}} = \frac{\omega_{\text{sroot}}}{Sp_{\text{sroot}}} \tag{87}$$

$$Sp_{\text{leaf}}$$

$$\Delta L_{\text{stem}} = \frac{\omega_{\text{stem}}}{Sp_{\text{stem}}}$$

$$\Delta L_{\text{sroot}} = \frac{\omega_{\text{sroot}}}{Sp_{\text{sroot}}}$$

$$\Delta L_{\text{storage}} = \frac{\omega_{\text{storage}}}{Sp_{\text{storage}}}$$
(88)

$$Stem_{coppice} = 0.95 - \omega_{stem}$$
 (89)

Soil Evaporation

$$E_{\text{soil}} = \sum \frac{(\Psi_{\text{si}} - g \cdot z_i - \Psi_x)}{R_{\text{si}} + R_{\text{ri}}}$$

$$(90)$$

$$R_{\rm ri} = R_r \cdot \frac{\sum L_i}{L_i} \tag{91}$$

$$\Psi_x = \sum \frac{(\Psi_{\rm si} - q_w \cdot z_i)}{R_{\rm ci} + R_{\rm ri}} / \sum \frac{1}{R_{\rm ci} + R_{\rm ri}} \tag{92}$$

$$\Psi_L = \Psi_x - E \cdot R_L \tag{93}$$

$$E_{d} = \begin{cases} E_{p}, & \theta^{*} \geq \theta_{1} \\ E_{p} \left(\frac{\theta - \theta_{2}}{\theta_{1} - \theta_{2}} \right), & \theta_{2} < \theta^{*} < \theta_{1} \\ 0, & \theta^{*} \leq \theta_{2} \end{cases}$$

$$(94)$$

$$\theta_{i+1} = \theta_i - \frac{E_i \cdot \theta_i}{\rho_w \cdot d_s} \tag{95}$$

$$g_{a,\text{soil}} = \frac{(2.126 \cdot 10^{-5}) + (1.48 \cdot 10^{-7}) \cdot T_{\text{soil}}}{\left(0.004 \cdot \sqrt{\frac{S_{size}}{u_{\text{soil}}}}\right)}$$
(96)

$$R_{lc,\text{soil}} = ((4\sigma) \cdot (273 + T_{\text{soil}})^3 \cdot \Delta T) \tag{97}$$

$$J_{a,\text{soil}} = 2 \cdot I_{\text{soil}} \cdot \left(\frac{1 - S_r - S_\tau}{1 - S_\tau}\right) \tag{98}$$

$$\Phi_{N,soil} = J_{a,soil} - R_{lc,soil} \tag{99}$$

$$E_{\text{soil}} = \frac{s \cdot \Phi_{N,soil} + \lambda \cdot g_{a,soil} \cdot \Delta \rho_{va}}{\lambda \cdot [s + \gamma]}$$
(100) is "soil" subscript correct?

(101)

Respiration

$$R_{\text{total}} = (a \cdot A_n) + (b_{\text{stem}} \cdot \omega_{\text{stem}}) + (b_{\text{root}} \cdot \omega_{\text{root}})$$
(102)

Energy Balance

$$HS_{\text{soil}} = HO_{\text{soil}} \cdot exp \left[\frac{h_{\text{soil}}}{46.97 \cdot (T_s + 273.16)} \right]$$

$$(103)$$

$$HO_{\text{soil}} = 1.323 \cdot exp \left[\frac{17.27 \cdot T_s}{273.3 + T_s} \right] / T_s + 273.16$$
 (104)

$$G_{\text{soil}} = -\lambda_{\text{soil}} \frac{\delta T}{\delta x} \tag{105}$$

$$G_{\text{soil}} = -\lambda_{\text{soil}} \cdot \left[\frac{T_2 - T_s}{\Delta z} \right] + (T_s - T_l) \cdot C \cdot \frac{\Delta z}{(2 \cdot \Delta t)}$$
(106)

 \overline{C} in from equation 106 is undefined - is this the specific heat of soil?

Definition of Terms

Term	Units	Definition	Value	
$A_{ m gross}$	$\mu mol mol^{-1}$	Gross rate of CO ₂ uptake per unit leaf area		
$4_{ m net}$	$\mu mol mol^{-1}$	Net rate of CO ₂ uptake per unit leaf area	_	
$A_{net, \text{water stress}}$	$\mu mol mol^{-1}$	A_{net} under water stress		
A_c	$\mu mol mol^{-1}$	Net canopy rate of CO ₂ uptake per unit ground area	-	
$A_{c, ext{tot}}$	$g m^{-2} yr^{-1}$	A_c integrated over the course of a year	_	
$A_{c,\mathrm{sun}}$	$mol \ mol^{-1}$	Net rate of CO ₂ uptake per unit area sunlit leaves	_	
$A_{c,\mathrm{shade}}$	$mol m^{-2} s^{-1}$	Net rate of CO ₂ uptake per unit area shaded leaves	_	
A	$\mu mol mol^{-1}$	Predicted rate of CO ₂ uptake	_	
c_a	$\mu mol mol^{-1}$	Atmospheric CO ₂ concentration	378	
a	Dimensionless	Coefficient for growth respiration	0.2	
c_i	$\mu mol mol^{-1}$	Intercellular concentration of O_2 in air corrected for	0.2	
\mathcal{O}_l	μπισι πισι	solubility relative to 25°C		
$b_{ m leaf}$	Dimensionless	Coefficient for maintenance respiration for leaf	0.03	
$b_{ m stem}$	Dimensionless	Coefficient for maintenance respiration for stem	0.015	
$b_{ m root}$	Dimensionless	Coefficient for maintenance respiration for root	0.015	
	$J kg^{-1} K-1$	Specific heat capacity of dry air	1010	
C_p C_{ov}	Dimensionless	Coefficient of Variation for probability of rain in each	-	
C_{ov}	Dimensionless	month	-	
D.	d	day of year		
D_j	d d	Day of year on which the sinusoidal temperature func-	- 45	
$D_{ m start}$	u	Day of year on which the sinusoidal temperature func- tion is assumed to start	40	
d	dimensionless	Zero plane displacement	0.77	
			0.77	is "seturated VDD" on
e _l	$^{ m kPa}_{Jmol^{-1}}$	Saturated water VPD in the leaf	- D	is "saturated VPD" an
E	J mol -	Activation energy	$R_d =$	oxymoron?
			66405	
			$V_{\text{max}} =$	
			6800	1.6. 1.6
E_d				undefined from equation 94
E_i	2 -1			undefined from equation 95
E_c	$mmol m^{-2} s^{-1}$	Instantaneous canopy evapo/transpiration rate	-	
E_d	$g m^{-2} s^{-1}$	Potential soil evaporation	-	
E_l	$mmol m^{-2} s^{-1}$	Evapo/transpiration rate at sunlit/shaded leaves in a	-	
	0 1	canopy layer		
E_p	$g m^{-2} s^{-1}$	Actual soil evaporation	-	
E_{R_d}	$\mathrm{J} \; \mathrm{mol}^{-1}$	Activation energy of R_d	-	
$E_{ m tot}$	$mmol m^{-2} yr^{-1}$	E_c integrated over the course of a year	-	
$E_{V_{\max}}$	$\mathrm{J} \ \mathrm{mol}^{-1}$	Activation energy of V_{cmax}	-	
f	2 2	fraction of light not absorbed by photosynthesis	0.23	
F_{canopy}	$m^2 m^{-2}$	Canopy leaf area index	9	
$F_{ m shade}$	$m^2 m^{-2}$	Canopy shaded leaf area index	-	
$F_{ m sun}$	$m^2 m^{-2}$	Canopy sunlit leaf area index	-	
$F_{ m sum}$	$m^2 m^{-2}$	Summed leaf area index from top of canopy to layer	-	
		considered in calculation		
$G_{ m soil}$	$W m^{-2}$	Soil heat flux	-	
g_a	$mmol m^{-2} s^{-1}$	Leaf boundary layer conductance	-	
g_c	$mmol m^{-2} s^{-1}$	Canopy conductance of CO ₂	-	
g_s	$mmolm^{-2}s^{-1}$	Leaf stomatal conductance	-	
$g_{ m ws}$				undefined, modifies Anet during
g_0	dimensionless	Stomatal slope factor	3	water stress
g_1	dimensionless	Stomatal intercept factor	0.08	
$g_{s,\mathrm{sun}}$	$mmol m^{-2} s^{-1}$	The sum of stomatal conductance of sunlit leaves	-	
$g_{s,\mathrm{shade}}$	$mmolm^{-2}s^{-1}$	The sum of stomatal conductance of shaded leaves	_	
$g_{ m ws}$	dimensionless	Species-specific water stress sensitivity factor		
$g_{ m wmod}$		water stress stomatal conductance factor		distinct from g_{ws} ?
Γ^*	$\mu \text{mol mol}^{-1}$	CO_2 compensation point in the absence of dark respi-		· J.···
	,	ration		
h_r	h	Hour of day	_	
h_s	%	Relative humidity	_	
$h_{ m canopy}$	m	Height of canopy	5	
		Wind speed measurement height	2	
h_{ms}	m	w ma speed measurement neight	4	

Table 1 – continued from previous page

		e 1 – continued from previous page	
Term	Units	Definition	Value
h_{layer}	m	Height of canopy layer above ground	-
I	$\mu mol m^{-2} s^{-1}$	Photon flux	-
h	$mmday^{-1}$	The amount of water received on a given rainy day	-
$I_{ m abs}$	$\mu mol m^{-2} s^{-1}$	Photon flux absorbed by either sunlit or shaded leaves	-
		within a canopy layer	
$I_{ m dir}$	$\mu mol m^{-2} s^{-1}$	Photon flux in direct solar beam	_
$I_{ m diff}$	$\mu mol m^{-2} s^{-1}$	Photon flux in diffuse radiation	_
$I_{ m total}$	$\mu mol m^{-2} s^{-1}$	Total photon flux incident on canopy	_
I_s	$\mu mol m^{-2} s^{-1}$	Solar constant, photon flux in a plane perpedicular to	2600
	•	the solar beam above the atmosphere	
$I_{ m short}$	$\mu mol m^{-2} s^{-1}$	Short wave radiation component of incident light	_
$I_{ m soil}$	$\mu mol m^{-2} s^{-1}$	Solar radiation incident upon soil surface	_
$I_{ m sun}$	$\mu mol m^{-2} s^{-1}$	Mean I for leaves which receive direct solar radiation,	_
-sun	privot iii	i.e. are sunlit	
$I_{ m shade}$	$\mu molm^{-2}s^{-1}$	Mean I for leaves shaded from direct solar radiation	_
$I_{ m snade}$ $I_{ m scat}$	$\mu mol m^{-2} s^{-1}$	Direct beam radiation scattered by surfaces within the	_
1 scat	$\mu morms$		_
7	$\mu mol m^{-2} s^{-1}$	canopy Total solar radiation absorbed by either sunlit or	
J_a	$\mu morms$		-
1.	1:: 1	shaded leaves within a canopy layer	
k	dimensionless	Foliar absorption coefficient	-
K_c	$\mu mol mol^{-1}$	Michaelis constant for CO ₂	460
$K_{\mathrm{CO_2}}$	$mol m^{-2} s^{-1}$	Initial slope of photosynthetic CO ₂ response	0.7
K_o	$mmol\ mol^{-1}$	Michaelis constant for O_2	330
$k_{ m slope}$	Dimensionless	Initial slope of photosynthetic light response	0.04
LN	gm^{-2}	Leaf nitrogen concentration	-
k_{leaf}	Dimensionless	Partitioning coefficient for leaf	-
$k_{ m stem}$	Dimensionless	Partitioning coefficient for stem	-
$k_{ m sroot}$	Dimensionless	Partitioning coefficient for storage root	-
$k_{ m froot}$	Dimensionless	Partitioning coefficient for fine root	-
$k_{ m stroot}$	Dimensionless	Partitioning coefficient for structural root	-
ℓ			
$\ell_{ m sun}$			
$l_{ m sun}$			
L_w	m	Leaf width in the direction of the wind	0.04
M			17
m_r	${\rm mm\ month^{-1}}$	monthly precipitation rate	
$N_{ m eff}$	days/mo	effective length of rainy period	
n	day	The number of days in a month	29, 30,
	v	v	or 31
nr	day	The number of rainy days in a month	-
O_a	$mmol mol^{-1}$	Atmospheric O_2 concentration	210
O_i	$mmol m^{-2} s^{-1}$	Intercellular concentration of O_2 in air corrected for	-
$\bigcirc i$	nuncount c	solubility relative to 25°C	
(.h. a	gram	Leaf biomass	
ω_{leaf}	=	Stem biomass	_
$\omega_{ m stem}$	gram gram	Biomass of storage root	_
$\omega_{ m sroot}$	=	Biomass of fine root	-
ω_{froot}	gram		-
$\omega_{ m stroot}$	gram	Biomass of structural root	-
P	kPa	Atmospheric pressure	101 204
P_o	kPa	Standard atmospheric pressure at sea level	101.324
P_s	kPa	Leaf surface partial pressure of CO ₂	-
q	Dimensionless	The probability that there is no rainfall	-
Q_{10}	dimensionless	Is the proportional rise in a parameter for a 10°C in-	2
		crease in temperature	0.0
r	dimensionless	Leaf reflection coefficient for total solar radiation	0.2
r^{\sim}	$mm day^{-1}$	Mean daily rainfall in each month	-
R	$J k^{-1} mol^{-1}$	Real gas constant	8.314
R_o	$mol m^{-2} s^{-1}$	Dark respiration rate at $25^{\circ}C$	3
R_d	$mol m^{-2} s^{-1}$	Dark respiration at a given temperature	-
$R_{ m lc}$	$mol m^{-2} s^{-1}$	Longwave radiation	-
$R_{lc,\text{soil}}$	$mol m^{-2} s^{-1}$	Soil longwave radiation	-
$ ho_w$	kgm^{-3}	Density of water	1000

undefined from Ja: equation 41 undefined from equation 69 undefined from equation 64 what is M? check units with equation 12 is this corected to 25C like O_i ?

Table 1 – continued from previous page

Term	Units	e 1 – continued from previous page Definition	Value	
	kPa	vapor pressure deficit in air	varue	is this distinct from $\Delta \rho_{\rm va}$?
ρ_a	кга	vapor pressure denote in an		undefined from equation 46
$ ho_a'$	$\mathrm{kPa}~\mathrm{K}^{-1}$	Clara of activisted water war an anagama change with		
s	кга к	Slope of saturated water vapor pressure change with	-	also defined by equation 48; is
	1	respect to temperature (look up table)		one correct?
s_p	dimensionless	Spectral imbalance	-	
$S_{\rm size}$	m	Average size of soil particles	0.04	
S_r	Dimensionless	Soil reflectance	0.2	
S_t	Dimensionless	Soil transmission	0.01	
Sp_{leaf}	${\rm gram}~{\rm m}^{-2}$	Specific leaf area	50	
Sp_{stem}	${\rm gram} {\rm \ m}^{-1}$	Specific stem elongation factor	60	
Sp_{froot}	${\rm gram}~{\rm m}^{-1}$	Specific fine root elongation factor	10	
$Sp_{ m stroot}$	${\rm gram~m^{-1}}$	Specific structural root elongation factor	60	
σ	${ m Wm^{-2}K^{-4}}$	Stefan-Boltzmann constant	5.67 ·	
0	VVIII 11	Storal Borozmani constant	10^{-8}	
t	h	Time of day	10	
			-	:- +1:+ 942
$t_{ m len}$	h	day length	-	is this a constant, 24?
$t_{\rm sn}$	h	Time of solar noon	12	
$T_{ m leaf}$	°C	Leaf temperature	-	
$T_{ m air}$	$^{\circ}\mathrm{C}$	Ambient air temperature	-	
$T_{\rm soil}$	$^{\circ}\mathrm{C}$	Soil surface temperature	-	
T_1	$^{\circ}\mathrm{C}$	Annual mean air temperature	18	
T_2	$^{\circ}\mathrm{C}$	Annual range in air temperature	2	
T_3	$^{\circ}\mathrm{C}$	Average daily range in air temperature	7	
T_4	$^{\circ}\mathrm{C}$	Maximum daily range in air temperature	7	
ΔT	$^{\circ}\mathrm{C}$	Temperature difference between (leaf or soil) and air		
τ	Dimensionless	Leaf transmittance coefficient		
	$\mathrm{m~s}^{-1}$	Measured wind speed at known height (2m)	2	
u	${ m m~s}$ ${ m m~s}^{-1}$		2	
u_{layer}		Wind speed in a given canopy layer	-	
$u_{ m soil}$	${\rm m\ s^{-1}}$	Wind speed at soil surface	-	
w_c	$mol m^{-2} s^{-1}$	RuBISCO limited rate of photosynthesis		units?
w_c	$mol m^{-2} s^{-1}$	RuBP limited rate of photosynthesis		units?
v		Saturated water vapour concentration	-	
$V_{ m max}$	$mol m^{-2} s^{-1}$	Maximum rubP saturated rate of carboxylation at a	-	
		given temperature		
V_{c,\max_o}	$mol m^{-2} s^{-1}$	Maximum rubP saturated rate of carboxylation at	39	
		$25^{\circ}C$		
VPD	kPa	Leaf-air water vapour pressure deficit	_	
z_o	m	Roughness length	0.234	
	dimensionless	The ratio of horizontal:vertical projected area of leaves	1	
χ	difficusionicss	in the canopy segment	1	
0.	dimensionless	Atmospheric transmittance	0.85	
α	$mol m^{-1}$			
slope		Initial slope of photosynthetic CO ₂ response	0.7	
Θ_{curve}	dimensionless	Curvature parameter	-	
δ	degrees	Solar declination	-	
Ω	degrees	Latitude	-	
Θ	degrees	Solar zenith angle	-	
curve	dimensionless	Curvature parameter	0.83	
λ	MJ/Kg	Latent heat of vapourisation	-	
γ	$Pa K^{-1}$	psychrometer constant	_	
$\alpha_{ m slope}$	mol mol^{-1}	The quantum yield of CO ₂ uptake determined by the	0.04	
ыоре		initial slope of the response of A versus I_{abs}		
β		C ₄ curvature parameter	0.93	
eta_{Φ}	%	Fraction of absorbed quanta reaching PSII	0.00	
Kt	70	C ₄ slope factor		
		C4 slope factor	-	1-C 1
$\Psi_{ m g}$	MD	T C		undefined
Ψ_l	MPa	Leaf water potential	-	
$\Psi_{ m L}$				undefined
Ψ_t	MPa	Threshold leaf water potential for decreasing gs	-	
$\Phi_{ m N}$	$\mathrm{W}~\mathrm{m}^{-2}$	Net radiation	-	
$\Phi_{N,soil}$	${ m W~m^{-2}}$	Net radiation at soil surface	-	
$\Psi_{ m adl}$	MPa	Average daily plant water potential	-	
$\Psi_{ m pt}$	MPa	Threshold water potential	-	
P		# *** * **		

Table 1 – continued from previous page

Term	Units	Definition	Value
$\Psi_{ m si}$	MPa	Soil water potential of the ith layer	-
Ψ_x	MPa	xylem water potential	-
q_w	${\rm kg~s^{-1}}$	Flux of water	-
$R_{ m si}$	$m^3kg^{-1}s^{-1}$	Soil resistance of the ith zone	-
$R_{\rm ri}$	$M^3kg^{-1}s^{-1}$	root resistance of the ith zone	-
L_i	$cm cm^{-3}$	Root density of ith zone	-
g	$m s^{-2}$	Gravitional constant	9.8
R_L	$m^3 kg^{-1} s^{-1}$	Leaf resistance	-
Θ^*	kgm^{-3}	Actual volumetric water content	-
Θ_1	kgm^{-3}	The volumetric water content for maximizing Evapo-	
		ration	
Θ_2	kgm^{-3}	The volumetric water content for wilting point	-
d_s	m	Soil depth	-
$I_{ m soil}$	$W m^{-2}$	Solar radiation on soil	-
Θ_i	kgm^{-3}	The volumetric water content of the ith day	-
$HO_{ m soil}$	kgm^{-3}	Saturated humidity of the air at the soil surface	-
$HS_{ m soil}$	Kgm^{-3}	Humidity of the air at the soil surface	-
$h_{ m soil}$	m	Water pressure head	-
$\lambda_{ m soil}$	$W/(m^{\circ}C)$	Thermal conductivity for the soil surface	-
Z	m	Thickness of a soil layer	_