В קורס

גלעד מואב

2020 בספטמבר 27

חלק I

חלק א'

1 גבול של סדרה

נגדיר גבול של סדרה באינסוף

$$\lim_{n \to \infty} a_n = L \iff \forall \epsilon > 0. \exists N. \forall n > N. |a_n - L| < \epsilon$$

2 גבול של פונקציה

2.1 גבול הפונקציה באינסוף

בדומה לגבול של סדרה, גבול הפונקציה יהיה

$$\lim_{x_{0}\to\infty} f(x_{0}) = L \iff \forall \epsilon > 0. \exists N. \forall x > N. |f(x) - L| < \epsilon$$

2.2 גבול הפונקציה בנקודה כלשהי

$$\lim_{x \to x_0} f(x) = L \iff \forall \epsilon > 0. \exists \delta > 0. \forall x. (0 < |x - x_0| < \delta) \to |f(x) - L| < \epsilon$$

3 רציפות הפונקציה ומשפט ערך הביניים

3.1 רציפות פונקציה

אמ"מ אמ"ה בנקודה x_0 רציפה כיf נגיד כי f גניד פונקציה תהא

$$\lim_{x \to x_0} f(x) = f(x_0)$$

. נגיד כי פונקציה f רציפה בקטע אמ"מ אמ"מ בקטע רציפה בקטע רציפה לגיד כי פונקציה ו

דרך קלה להראות שפונקציה f אינה רציפה בנקודה x_0 היא להוכיח כי הגבולות החד צדדיים שונים, קרי

$$\lim_{x \to x_0^-} f\left(x\right) \neq \lim_{x \to x_0^+} f\left(x\right)$$

משפט ערך הביניים 3.2

תהא [f(a),f(b)] קיים אומר כי לכל ערך הביניים משפט תוב I=[a,b] קיים מקור פונקציה רציפה פונקציה היים משפט ערך משפט ערך משפט אומר ביניים מקור

$$\forall x \in [f(a), f(b)] \to \exists c \in I. f(c) = x$$

4 נגזרת

4.1 הגדרת הנגזרת

. נגיד כי f גזירה בקטע אם מ"מ הגבול הגבול f אם הגבול f קיים. נגיד כי וווח הגבול הגבול אם אמ אמ הגבול f אם כל נקודה בקטע אזירה בקטע f היא רציפה בקטע.

 $t \to 0$ נשים לב כי אם t גזירה בקטע t היא רציפה בקטע. $t \to 0$ נשים לב כי אם $t \to 0$ היא רציפה בקטע. $t \to 0$ היא רציפה בקטע $t \to 0$ היא $t \to 0$ נגדיר את הנגזרת בנקודה $t \to 0$ להיות $t \to 0$ נגדיר את הנגזרת בנקודה $t \to 0$ להיות בנקודה $t \to 0$ נגדיר את הנגזרת בנקודה $t \to 0$

e קבוע אוילר 5

 $.{(e^x)}'=e^x$ קנוסף $.e=\lim\limits_{x\to\infty}\left(1+\frac{1}{x}\right)^x\approx 2.718$ הגבול בתור אוילר אוילר אוילר אוילר הגבול

6 שימושי הנגזרת

בעזרת הנגזרת לפונקציה בנקודה x_0 נוכל למצוא את המשיק לפונקציה בנקודה או ונוכל למצוא קירוב מסדר ראשון לפונקציה בעזרת הנגזרת לפונקציה בנקודה x_0

בנוסף נוכל להעזר בנגזרת בשביל למצוא גבולות מסוימים עם כלל לופיטל.

נוסחאות נפוצות

לינאריות הנגזרת:

$$(\alpha \cdot f \pm \beta \cdot g)' = \alpha \cdot f' \pm \beta \cdot g'$$

כפל בנגזרת:

$$(f \cdot g)' = f' \cdot g + g' \cdot f$$

חלוקה בנגזרת:

$$\left(\frac{f}{g}\right)' = \frac{f' \cdot g - g' \cdot f}{g^2}$$

הרכבת הנגזרת:

$$(f \circ g)' = f'(g) \cdot g'$$

7 חקירת פונקציה

חקירת פונקציה מורכבת מהבאים:

- 1. דומיין
- 2. חיתוכים עם הצירים
 - 3. נקודות קיצון
- 4. תחומי עליה וירידה
- 5. תחומי קעירות וקמירות
- 6. אסימפטוטות משופעות ומאונכות

8 כלל לופיטל

יהיו מהבאים , f,g יהיו

$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = 0$$
 .1

$$\lim_{x \to x_0} f(x) = \pm \infty, \lim_{x \to x_0} g(x) \pm \infty .2$$

 $\lim_{x\to x_0}\frac{f(x)}{g(x)}=L$ קיים אז $\lim_{x\to x_0}\frac{f'(x)}{g'(x)}=L$ כלל לופיטל אומר כי אם הגבול

9 פיתוח טיילור והערכת שגיאה

9.1 פיתוח טיילור

 x_0 מביב הנקודה סביב f מגדיר שמתקרב לפונקציה בטילור סביב הנקודה x_0

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$

(גדיר את פולינום טיילור מהדרגה m סביב x_0 כסדרת הסכומים החלקיים מ0 עד של טור החזקות,

$$\sum_{n=0}^{m} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$

. נקרא לטור טיילור סביב 0 טור מקלורן.

פולינום טיילור נותן לנו קירוב טוב לפונקציה, את השגיאה נוכל לחשב בעזרת לגראנז.

9.2 הערכת שגיאה לפי לגראנז

 ${\bf ,}3$ מהדרגה e^x הפונקציה של מקלורן מקלונום נעזר נעזר געזר, פ $e^{0.1}$ את למצוא ורצינו נניח נניח

$$f(x) = 1 + (0.1) + \frac{1}{2!}(0.1)^2 + \frac{1}{3!}(0.1)^3 + R_3(0.1)$$

($R_3(0.1)=f(x)-1+(0.1)+rac{1}{2!}(0.1)^2+rac{1}{3!}(0.1)^3$ הוא השארית של הפולינום,(במקרה הזה $R_3(0.1)=f(x)-1+(0.1)+rac{1}{2!}(0.1)^2+rac{1}{3!}(0.1)^3$ כך של הפולינום, במקרה הזה כל בי לגראנז קיים $c\in(0,0.1)$ כך של כל לגראנז קיים לאראנז לאראנז קיים לאראנז לאראנז לאראנז קיים לאראנז לאראנז

 $R_n(x)$ כ עבור x_0 עבור מדרגה n סביב פאופן כללי נסמן את שארית פולינום טיילור מדרגה n+1 גזירה אם פונקציה לבי לגראנז אם פונקציה אורה n+1 גזירה ווער פעמים, קיים פונקציה אם פונקציה ביער היירה אורה מעמים, פעמים פונקציה אורה ביער מעמים, אורה מדיר מעמים ביער מעמים, אורה מעמים ביער מעמים אורה מעמים ביער מ

$$R_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!} (x - x_0)^{n+1}$$

נוכל לחסום את שארית הפולינום($R_n(x)$)באופן הבא

$$|R_n(x)| \le \frac{\max\{f^{(n+1)}(b)|b \in (x,x_0) \cup (x_0,x)\}}{(n+1)!} |x-x_0|^{n+1}$$

ניוטון ראפסון 10

בעזרת ניוטון ראפסון נוכל למצוא קירובים לשורשים של פונקציות תהא פונקציה f בעלת שורש יחיד בקטע I, ניקח נקודה $x_0\in I$ כלשהי

 x_1 מבצא את פולינום הטיילור מדרגה ראשונה סביב x_0 ומוצאים את החיתוך שלו עם ציר ה־x, נסמן נקודה זו ב

$$x_1 = x_0 + \frac{f(x_0)}{f'(x_0)}$$

חלק II

חלק ב'

11 פונקציה קדומה ואינטגרל לא מסוים

 $F^\prime = f$ אמ"מ לfאם קדומה קדומה פונקציה נקרא

f בהנתן פונקציה f נסמן את $\int\limits_{-\infty}^{\infty} f(x) dx$ כמשפחת הפונקציות הקדומות לf, נקרא לסימון זה f האינטגרל הלא מסוים של

12 שיטות אינטגרציה ואינטגרלים מוכרים

12.1 שיטות אינטגרציה מוכרות

1. שימוש בשברים חלקיים

$$\int \frac{1}{1-x^2} dx = \int \frac{1}{1-x} \cdot \frac{1}{1+x} dx = \int \left(\frac{A}{1-x} + \frac{B}{1+x}\right) dx \left[A = B = \frac{1}{2}\right] = \frac{\int \frac{1}{1-x} dx + \int \frac{1}{1+x} dx}{2}$$

2. שימוש בהצבה

$$\int \frac{x}{1-x^2} dx \left[\begin{array}{c} u = x^2 \\ dx = \frac{du}{2x} \end{array} \right] = \int \frac{x}{1-u} \cdot \frac{du}{2x} = \int \frac{1}{1-u} du$$

3. אינטגרציה בחלקים

$$\int f \cdot g' = f \cdot g - \int f' \cdot g$$

4. דרך נוספת - שימוש בחלוקת פולינומים

 $(x-3)\overline{x^3-x^2+0x-4}$ ניקח לדוגמא את השאלה ניקח לדוגמא את האיברים המובילים אחד בשני

$$(x-3)\overline{x^3 - x^2 + 0x - 4}$$

 $x^3 - x^2$ מ $(x - 3)x^2$ כעת נחסר את

$$\begin{array}{r} x - 3)\overline{x^3 - x^2 + 0x - 4} \\ \underline{x^3 - 3x^2 \downarrow} \\ \underline{2x^2 + 0x} \end{array}$$

וכן הלאה....

$$x-3)\overline{x^3-x^2+0x-4}$$

$$x-3)\overline{x^3-x^2+0x-4}$$

$$2x^2+0x$$

$$2x^2-3x$$

$$3x-4$$

$$3x-9$$

$$\overline{5}$$

$$\frac{x^3-x^2-4}{5}=x-3)\overline{x^3-x^2+0x-4}=x^2+2x+3+\frac{5}{x-3}$$

12.2 אינטגרלים מוכרים

$$\int x^{\alpha} dx = \frac{x^{\alpha+1}}{\alpha+1} + C, x > 0; \alpha \neq -1$$

$$\int \frac{1}{x} dx = \ln|x|$$

$$\int \sin x dx = -\cos x + C$$

$$\int \cos x dx = \sin x + C$$

$$\int \sinh x dx = \cosh x + C$$

$$\int \cosh x dx = \sinh x + C$$

$$\int \frac{1}{1+x^2} dx = \arctan x + C$$

$$\int e^x dx = e^x + C$$

$$\int \csc^2 x dx = \tan x + C$$

$$\int \sec^2 x dx = -\cot x + C$$

$$\int \operatorname{sec}^2 x dx = \tanh x + C$$

$$\int \operatorname{sech} x dx = -\cot x + C$$

$$\int \operatorname{sech} x dx = -\cot x + C$$

$$\int \operatorname{sech} x dx = -\cot x + C$$

$$\int \operatorname{sech} x dx = -\cot x + C$$

$$\int \operatorname{sech} x dx = -\cot x + C$$

$$\int \operatorname{sech} x dx = -\cot x + C$$

13 סכומי דרבו ואינטגרל מסוים

13.1 סכומי דרבו

 $a<\{a_i\}_{i=1}^n< b$ נסמן כך של הקטע הנ"ל הקטע הנ"ל נסמן ולוקה ונסמן ולוקה ולוקה ולוקה ולוקה ולומן יהיו ולוקה הנ"ל החלוקה הנ"ל יהיו סכומי דרבו העליונים על החלוקה הנ"ל יהיו ו

$$\sum_{i=0}^{n} (a_{n+1} - a_n) \cdot \max \{ f(x) | x \in [a_{n+1}, a_n] \}$$

והתחתונים

$$\sum_{i=0}^{n} (a_{n+1} - a_n) \cdot \min \{ f(x) | x \in [a_{n+1}, a_n] \}$$

נסמן $D^\pm_{I_{\langle a_1,...,a_n\rangle}}$ כסכומי דרבו התחתונים/עליונים $a_i=a_0+rac{b-a}{n}\cdot i$,i כך שלכל $\langle a_1,...,a_n
angle$ כ Π_n נסמן

13.2 פונקציה אינטגרבילית, אינטגרל רימן ואינטגרל מסוים

 $\lim_{n o \infty} D^-_{\Pi_n} = \lim_{n o \infty} D^+_{\Pi_n} = S$ אינטגרבילית רימן בקטע I אמ"מ I אמ"מ אם אמ"מ $f: I o \mathbb{R}$ או לחלופין $f: I o \mathbb{R}$ אינטגרבילית רימן בקטע $\int\limits_a^b f(x) dx = S$ במקרה זה נסמן $\int\limits_a^b f(x) dx = S$ נקרא לפעולה זו אינטגרל מסוים

כל פונקציה רציפה היא אינטגרבילית ובפרט הפונקציות האלמנטריות(בסיסיות)

14 המשפט היסודי של החדו"א ומשפט ניוטון־לייבניץ

14.1 המשפט היסודי של החדו"א

תהא אונטגרבילית בקטע בקטע גדיר את נגדיר (גדיר בקטע בקטע אינטגרבילית השטח ההא ווI=[a,b]

$$F(x) = \int_{a}^{x} f(t)dt$$

פונקציה רציפה F .1

 $F'(x_0)=f(x_0)$ וכן x_0 גזירה ב x_0 אז F אז f רציפה בקטע הנ F אז F קדומה לה בקטע הנ"ל

14.2 משפט ניוטון־לייבניץ

אם , f קדומה של F ונניח כי ונניח (f של הכך ולכן ולכן I=[a,b] אם אם רציפה בקטע

$$\int_{a}^{b} f(x)dx = F(b) - F(a)$$

15 שימושי האינטגרל

15.1 חישוב שטח מתחת לגרף

[a,b] בקטע לf בקטע מתחת השטח הוא הא $\int\limits_a^b f(x)dx$,I=[a,b] בקטע אינטגרבילית אינטגרבילית הא

15.2 חישוב אורך עקומה

ינראה פתגורס ונראה בין לל, נעזר העקומה אורך ונראה למצוא ונרצה ונראה ונראה ונראה ונראה ונראה ונראה ונראה ונראה ל

$$\int_{a}^{b} \sqrt{dx^{2} + dy^{2}} = \int_{a}^{b} \sqrt{1 + \frac{dy^{2}}{dx^{2}}} dx = \int_{a}^{b} \sqrt{1 + (f'(x))^{2}} dx$$

15.3 נפח גוף סיבוב

מפח גוף סיבוב סביב ציר ה־15.3.1

$$\pi \int_{a}^{b} f^{2}(x)dx$$

f,g פונקציות 2 מדובר במקרה של סיבוב של סיבוב של פונקציות מדובר במקרה בו

$$\pi \int_{a}^{b} \left| f^{2}(x) - g^{2}(x) \right| dx$$

yר ה־עיר מיבוב מביב ציר ה־15.3.2

$$2\pi \int_{a}^{b} x f(x) dx$$

חלק III

חלק ג'

16 הגדרות בסיסיות בתורת המספרים

16.1 יחס ה

יהיו באופן כללי היים אח $m\cdot i=k$ כך של היים אח m|k כי גניד (גניד מיים אח היי $m|k\longleftrightarrow\exists i\in\mathbb{Z}.m\cdot i=k$

mod **16.2**

 $b=m\cdot n+a$ נגיד כי $m\in\mathbb{Z}$ אמ"מ קיים $b\mod n=a$ כך עניד כי

$$b \mod n = a \longleftrightarrow \exists m \in \mathbb{Z}.b = m \cdot n + a$$

gcd **16.3**

bו a הוא המחלק המשותף הגדול פיותר של $\gcd\left(a,b\right)$

$$\gcd(a, b) = \max\{m \in \mathbb{Z} | m | a \land m | b\}$$

17 משפט אוקלידס לקיום אינסוף ראשוניים

משפט אוקלידס אומר כי קיימים אינסוף ראשוניים.

 $p=1+\prod\limits_{i=1}^n p_i$ נגדיר מספר (גדיר מספר היים אינסוף ראשוניים, נניח בשלילה כי קיים מספר סופי p של ראשוניים, נסמן $p_1,p_2,...,p_n$ נגדיר מספר p לכן p לכן p לכן p לכן p לכן קיימים אינסוף ראשוניים

18 מחלק משותף מירבי

טם אנו ביותר של המשותף הגדול פני $\gcd(a,b)$ ימצא לנו את המחלק המשותף הגדול פני $\gcd(a,b)$ כפי שראינו לינארי", כלומר קיימים $\gcd(a,b)=c$ עבור

$$t \cdot a + s \cdot b = c$$

מספרים זרים

עבור a כך שa $\gcd(a,b)=1$ נגיד כי a,b עבור

משפט

 $t \cdot a + s \cdot b = 1$ עבור $s,t \in \mathbb{Z}$ קיימים קיימי אמ"מ ארים אם זרים אם אבור a,b

19 אלגוריתם אוקלידס

19.1 אלגוריתם אוקלידס

יהיו עיל ופשוט יעיל פיתרון אוקלידס וותן אלגוריתם אלגוריתם אלגוריתם את את נרצה למצוא יהיו יהיו אלגוריתם מעל $\gcd(a,b)=\gcd(a,b+m\cdot a)$ בעובדה שלגוריתם משתמש בעובדה א

$$a = m_1 \cdot b + n_1$$

$$b = m_2 \cdot n_1 + n_2$$

•

.

$$n_{i-3} = m_{i-1} \cdot n_{i-2} + c$$

$$n_{i-2} = m_i \cdot c + 0$$

$$gcd(a,b)=c$$
 לכן

 $\gcd(a,b)=\gcd(a\mod b,b)=...=\gcd(c,0)=c$ באופן פשוט יותר נוכל לעבוד באופן הבא

19.2 אלגוריתם אוקלידס המורחב

 $\gcd\left(a,b\right)=c$ האלגוריתם המורחב עוזר לנו למצוא ייצוג לינארי לשיוויון מהסוג המורחב עוזר לנו למצוא עובד כמו האלגורירתם הקודם, **רק אחורה**, כלומר נתחיל מהשלב האחרון ונראה כי

$$n_{i-3} - m_{i-1} \cdot n_{i-2} = c$$

השלב הבא יהיה הצבת הערכים מהשוויונים שראינו מהאלגוריתם הקודם

$$n_{i-3} - m_{i-1} \cdot (n_{i-4} - m_{i-2} \cdot n_{i-3}) = c$$

וכן הלאה

דוגמא

ואת הייצוג הלינארי שלו $\gcd(840,138)$ את למצוא לרצה למצוא

$$840 = 6 \cdot 138 + 12$$

$$138 = 11 \cdot 12 + 6$$

$$12 = 2 \cdot 6 + 0$$

 $\gcd\left(840,138\right)=6$ לכן כעת נמצא את הייצוג הלינארי שלהם

$$6 = 138 - 11 \cdot 12$$

$$6 = 138 - 11 \cdot (840 - 6 \cdot 138)$$

$$6 = 7 \cdot 138 - 11 \cdot 840$$

20 משפט על פריקות יחידה לראשוניים

לכל מספר שלם קיימת פריקות יחידה למספרים ראשוניים

21 משוואות דיאופנטיות לינאריות

 $a \cdot x + b \cdot y = c$ תהא משוואה דיאופנטית

21.1 קיום פתרון למשוואה

לא קיים פתרון למשוואה $\gcd\left(a,b\right)\not|c$ אם לחלופין פתרון פתרון פתרון $\gcd\left(a,b\right)|c$ אם כי גראה נראה להאוואה

21.2 מציאת פתרון פרטי

,($\gcd\left(a,b\right)|c$), בהנחה ולמשוואה קיים פתרון

 $e=rac{c}{d}$ נסמן ($d\cdot e=c$ ע קיים $d\mid c$ קיים מכיוון ש, $d=\gcd(a,b)$ נסמן , נסמן לינארי פונקב מכיוון ש, א קיים ייצוג לינארי ונקבל קיים קייצוג לינארי לינארי ונקבל את שני האגפים ב $d=\gcd(a,b)$ קיים ייצוג לינארי

$$e \cdot t \cdot a + e \cdot s \cdot b = e \cdot d \rightarrow (e \cdot t) \cdot a + (e \cdot s) \cdot b = \frac{c}{d} \cdot d = c$$

 $x_0 = e \cdot t, y_0 = e \cdot s$ יהיה $a \cdot x + b \cdot y = c$ לכן הפרטי למשוואה

21.3 מציאת כל הפתרונות

קבוצת כל הפתרונות היא

$$\left\{ \left\langle x_0 + \frac{b}{d} \cdot n, y_0 - \frac{a}{d} \cdot n \right\rangle | n \in \mathbb{N} \right\}$$

22 הפיכות מודולו, משפט פרמה הקטן ומשפט השארית הסיני

22.1 משפט פרמה הקטן

יתקיים $\gcd\left(a,p\right)=1$ כך שו $p\in\mathbb{P}$ יתקיים

$$a^{p-1} = 1 \mod p$$

22.2 הפיכות מודולו

$$\gcd(k,n) = 1 \longleftrightarrow \exists m \in \mathbb{Z}.m \cdot k \equiv 1 \mod n$$

משפט השאריות הסיני 22.3

22.3.1 דוגמא

נרצה לפתור את מערכת המשוואות הבאה

$$\begin{cases} x \equiv 7 \mod 19 \\ x \equiv 3 \mod 5 \end{cases}$$

באופן שקול נוכל לפתור את

$$\begin{cases} x = 19a + 7 \\ x = 5b + 3 \end{cases}$$

נחסר את המשוואות אחת מהשניה ונקבל

$$0 = 19a - 5b + 4 \rightarrow 4 = 5b - 19a$$

-12 למשל $\gcd(5, -19) = 1$ עראה מכיוון שפרון למשוואה מכיוון פתרון למשוואה אוואה

22.3.2 הכללה

באופן כללי כאשר נרצה לפתור מערכת משוואות מהצורה הבאה

$$\begin{cases} x \equiv a_1 \mod m_1 \\ x \equiv a_2 \mod m_2 \\ \cdot \\ \cdot \\ x \equiv a_n \mod m_n \end{cases}$$

לפי משפט השאריות הסיני, $m_1, m_2, ..., m_n$ זרים בזוגות שקול לקיום פתרון למערכת לפי

22.3.3 פתרון פרטי

 $s_i\cdot n_i+t_i\cdot m_i=1$ נסמן s_i,t_i נשים לב כי $m_i,n_i=1$ זרים ($\gcd(m_i,n_i)=1$), לכן קיימים (שים לב כי m_i,n_i ניסמן לב כי $m_i,n_i=1$ לכן $e_i\equiv 1\mod m_i$ לכן $e_i=-t_i\cdot m_i+1$ לכן $e_i+t_i\cdot m_i=1$ ונראה כי $e_i=s_i\cdot n_i$ שלכן באופן כללי אם נקח $i=s_i$ יתקיים $i=s_i$ אם מכיוון של $i=s_i$ לכן כתלות בי ולערכו של $i=s_i$ יתקיים $i=s_i$ יתקיים $i=s_i$ מכיוון של

$$\delta_{i,j} = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$

שכן $x_0 = \sum\limits_{k=1}^n \, a_k \cdot e_k$ הפתרון הפרטי של מערכת המשוואות הפרטי

$$x_0 \mod m_i = \left(\sum_{k=1}^n a_k \cdot e_k\right) \mod m_i = \sum_{k=1}^n \left(a_k \mod m_i\right) \cdot \left(e_k \mod m_i\right) = \sum_{k=1}^n \left(a_k \mod m_i\right) = \sum_{k=1}^$$

 $0 \cdot (a_1 \mod m_i) + \ldots + 1 \cdot (a_i \mod m_i) + \ldots = a_i \mod m_i$

22.3.4 פתרון כללי

קבוצת הפתרונות למערכת המשוואות הנ"ל תהיה

$$\{x_0 + m \cdot z | z \in \mathbb{Z}\}$$

חלק IV **חלק ד'**

- 23 השערת הרצף
- 24 השערת רימן
- 25 השערת הנאד
 - 26 סודרים

