NCTU Pattern Recognition, Homework 4

Deadline: June 9, 23:59

Part. 1, Coding (80%):

In this coding assignment, you need to implement the cross-validation and grid search by using only NumPy, then train the <u>SVM model from scikit-learn</u> on the provided dataset and test the performance with testing data. Find the sample code and data on the GitHub page https://github.com/NCTU-VRDL/CS ILE5065/tree/main/HW4

Please note that only <u>NumPy</u> can be used to implement cross-validation and grid search. You will get no points by simply calling <u>sklearn.model_selection.GridSearchCV</u>.

1. (10%) K-fold data partition: Implement the K-fold cross-validation function. Your function should take K as an argument and return a list of lists (*len(list) should equal to K*), which contains K elements. Each element is a list contains two parts, the first part contains the index of all training folds (index_x_train, index_y_train), e.g. Fold 2 to Fold 5 in split 1. The second part contains the index of validation fold, e.g. Fold 1 in split 1 (index x val, index y val)

Note: You need to handle if the sample size is not divisible by K. Using the strategy from sklearn. The first n_samples % n_splits folds have size n_samples // n_splits + 1, other folds have size n_samples // n_splits, where n_samples is the number of samples, n_splits is K, % stands for modulus, // stands for integer division. See this post for more details

Note: Each of the samples should be used **exactly once** as the validation data Note: Please shuffle your data before partition

	All Data					
	Training data					Test data
	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5)
Split 1	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Finding Parameters
Split 2	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	
Split 3	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	
Split 4	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	
Split 5	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5)
	Final evaluation					Test data

2. (30%) Grid Search & Cross-validation: using <u>sklearn.svm.SVC</u> to train a classifier on the provided train set and conduct the grid search of "C" and "gamma", "kernel'='rbf'

to find the best hyperparameters by cross-validation. Print the best hyperparameters you found.

Note: We suggest use K=5

3. (10%) Plot the grid search results of your SVM. The x, y represent the hyperparameters of "gamma" and "C", respectively. And the color represents the average score of validation folds.

Note: This image is for reference, not the answer

Note: <u>matplotlib</u> is allowed to use

- 4. (15%) Train your SVM model by the best hyperparameters you found from question 2 on the whole training set and evaluate the performance on the test set.

 Note: Your accuracy scores should be higher than 0.85
- 5. (15%) Consider the dataset used in HW1 for regression. Please redo the above questions 2 ~ 4 with the dataset replaced by that used in HW1, while the task is changed from classification to regression. You should use the SVM regression model RBF kernel with grid search for hyperparameters and K-fold cross-validation (you can use any K for cross-validation). Then compare the linear regression model you have implemented in HW1 with SVM by showing the Mean Square Errors of both models on the test set.

Part. 2, Questions (20%):

1. Given a valid kernel $k_1(x, x)$, prove that 1) $k(x, x) = ck_1(x, x)$ and 2) $k(x, x) = f(x) k_1(x, x) f(x)$ are valid kernels, where c > 0 is a positive constant and $f(\cdot)$ is any real-valued function.