Содержание

1	Биология.	2
	1.1 Свойства живого	
	1.2 Уровни организации живой материи	2
2	Клетка.	3
	2.1 Клеточная теория	3
	2.2 Молекулярный уровень	
	2.3 Вещества клетки.	3
	2.3.1 Вода	3
3	Минеральные вещества.	4
4	Органические вещества.	4
5	Липилы или жиры.	5

1 Биология.

Направление	OX	Ученный
Классическое.	Изучает многообразие живой природы. Наблюдает и анализирует все в живой природе.	Гиппократ, Аристотель, Теофраст.
Эволюционное.	Изучает эволюцию живых организмов. Объяснение органического разнообразия природы.	Дарвин, Шлей- ден, Опарин, Ламарк.
Физико- химическое.	Изучение с использованием новых физико-химических методов и знаний.	Мечников, Па- стер, Кох, Гар- вей.

Метод	OX	Ученый
Описание.	Наблюдение и фиксирование фактического материала. Самый древний. Основной метод примерно до 18 века.	Гиппократ, Аристотель, Теофраст.
Сравнение.	Сходства и различия организмов. Данные для систематизации.	Аристотель, Ламарк, Бэр.
Исторический.	Осмысление факторов по предыдущем результатам.	Дарвин, Ла- марк.
Экспериментальный.	Изучение при помощи опытов. Дополнительные вспомогательные инструменты.	Гарвей, Мен- дель, Матье Бал, Кох.

1.1 Свойства живого.

- Обмен веществ (дыхание, пищеварение).
- Раздражимости (реакция на окружающую среду).
- Рост (количественное) и развитие (качественное).
- Размножение.
- Единство химического состава (основные -C, O, H, N).
- Структурная организация.
- Открытость.
- Наследственность и изменчивость.
- Саморегуляция.

1.2 Уровни организации живой материи.

Молекулярный уровень — вирусы. Клеточный — бактерии. Организменный — одно- и многоклеточные. Популяционно-видовой. Экосистемный. Биосферный.

2 Клетка.

- Наименьшая структурная единица.
- Наименьшая функциональная единица.

2.1 Клеточная теория.

Личность 2.1. Роберт Гук. Первый микроскоп. Ввел понятие "клетка".

Личность 2.2. Антони ван Левенгук, XVI век. Первый микроскоп с увеличением в 300 раз.

Личность 2.3. Шлейден и Шванн, XIX век. Положения клеточной теории. Ошибка в том, что не было объяснено откуда появляются клетки (считали, что появились из неклеточного вещества).

Личность 2.4. Мечников, конец XIX века. Фагоцитоз (процесс, когда клетки захватывают и переваривают твердые частицы).

2.2 Молекулярный уровень.

Химические элементы:

- Макро; до $\frac{1}{100}$; основные C, O, H, N.
- Микро; от $\frac{1}{1000}$ до $\frac{1}{1000000}$.
- Ульра-микро.

2.3 Вещества клетки.

- Органические (большая часть органики белки).
- Неорганические (преобладают из-за воды).

2.3.1 Вода.

Свойство	OX	Пример
Растворитель.	Легко растворяет ионные соединения (соли, кислоты, основания); некоторые не ионные, но полярные соединения. Вещества, хорошо растворимые в воде — гидрофильные, плохо — гидрофобные. Благодаря полярности и водородных связях.	Кислород, углекислый газ.
Теплоемкость.	Способность поглощать тепловую энергию при минимальном повышении собственной температуры.	Защищает ткани от быстрого и сильного повышения температуры. Охлаждение с помощью выделения воды.

	Обеспечение равномерного распределения температуры.	Высокая удельная теплоемкость и вы-
		сокая теплопроводность делают воду
Теплопроводность.		идеальной жидкостью для поддержа-
		ния теплового равновесия клетки и
		организма.
	Практически не сжимается. Создает	Гидростатический скелет поддержи-
Сжимаемость.	тургорное давление, определяя объем	вает форму у круглых червей, медуз
	и упругость клеток и тканей.	и других.
	Возникает благодаря образованию во-	Капилярный кровоток, восходящий и
Поверхностное на-	дородных связей между молекулами	нисходящий токи растворов в расте-
тяжение.	воды и молекулами других веществ.	ниях.

3 Минеральные вещества.

Свойство	Химический элемент	OX
Кристаллические включения.	Слаборастворимые соли кальция и фосфора.	Образование опорных структур клетки, например вещества костных ткани у моллюсков.
Проводимость.	Катионы и Анионы минеральных веществ.	Разность потенциалов из-за различной концентрации.
Кислотность.	Ионы H^+ .	Нейтральные, кислотные, основные. Определяют кислотную среду.
Буферные системы.	$ HPO_4^{2-}, H_2PO_4^{-}, H_2CO_3, HCO_4^{-}.$	Поддерживает постоянство pH в клетках.
Синтез.	Соединения азота, фосфора, кальция и другие неорганические вещества.	Синтез белков, аминокислот, нуклеиновых кислот.

4 Органические вещества.

Углеводы $(C_n(H_2O)_m)$:

- Моносахариды
- Олигосахариды
- Полисахариды

Сахариды так как большинство хорошо растворимы в воде; сладкие.

С увеличением количества мономеров растворимость полисахаридов уменьшается и исчезает сладкий вкус.

Углеводы являются первичным продуктом фотосинтеза.

Углеводы есть во всех клетках.

Группа	Пример	Особенность

		Имеют сладкий вкус, бесцвет-
Моновородин	Рибоза, глюкоза, фруктоза,	ные, кристаллические, раство-
Моносахариды.	дезоксирибоза, галактоза.	римые, во всех клетках, явля-
		ются мономерами.
		Образованы двумя или более
Олигосахариды.		моносахаридами. Также рас-
	Сахароза, мальтоза, лактоза	творимы в воде и имеют слад-
		коватый вкус. Связаны кова-
		лентно друг с дургом.
		Полимеры. Состоят из неопре-
Полисахариды.	Хитин, крахмал, гликоген, цел-	деленного большого числа
	люлоза.	остатков молекул моносахари-
		дов.

Функция	Пример углевода	Характеристика
Энергетическая.	Моносахариды (глюкоза).	При ферментативном расщеплении и окислении молекул углеводов выделяется энергия, которая обеспечивает жизнедеятельность организма. При полном расщеплении 1г углеводов высвобождает 17.6кДж энергии.
Запасающая.	Полисахариды (крахмал и гли- коген).	При избытке они накапливаются в клетке в качетсве запасающих веществ и при необходимости используется организмом как источник энергии.
Структурная/строительная.	Целлюлоза, хитин.	Строительный материал. В среднем 20–40% материала клеточных стенок составляет целлюлоза.
Защитная.	Камеди → производный моно- сахаридов.	Препятствуют проникновению в раны болезнетворных микроорганизмов. Твердые клеточные стенки одноклеточных и хитиновые покровы членистоногих.

5 Липиды или жиры.

Молекул жира состоит из глицерина и трех остатков жирной кислоты. Иногда вместо остатка жирной кислоты могут быть белки, углеводы или остатки фосфорной кислоты. Более 600 жиров. 180 — животных, 420 — растительных.

- Жиры бывают:
 Протоплазменный.
 - Резервный.

Функция	Пример	Характеристика
Энергетическая	Триглицериды (жиры и масла)	Основная функция. При окислении 1 г жира выделяется около 38,9 кДж (9,3 ккал) энергии, что более чем в два раза превышает энергетическую ценность углеводов или белков. Жиры служат основным запасом энергии в организме.
Структурная (строительная)	Фосфолипиды, холестерин	Образование клеточных мембран. Фосфолипиды формируют липидный бислой всех клеточных мембран, обеспечивая их текучесть и избирательную проницаемость. Холестестрол стабилизирует мембрану, придавая ей жесткость.
Запасающая	Триглицериды (в жировой тка- ни)	Создание резервов энергии. Жиры запасаются в подкожной клетчатке, сальнике и вокруг внутренних органов. Жировые запасы также обеспечивают механическую защиту (амортизация) и термоизоляцию.
Регуляторная (гормональная)	Стероидные гормоны (половые гормоны, кортикостероиды), эйкозаноиды (простагландины)	Липиды выступают в роли гормонов и сигнальных молекул. Стероиды регулируют обмен веществ, репродуктивную функцию, стрессовые реакции. Эйкозаноиды регулируют воспаление, боль, температуру тела, артериальное давление.
Защитная и теплоизоляцион- ная	Триглицериды (подкожный жир)	Защита от механических повреждений и потерь тепла. Жировая прослойка смягчает удары и защищает внутренние органы. Благодаря низкой теплопроводности жир помогает сохранять тепло организма (особенно важно у морских млекопитающих).

Источник метаболической во- ды	Триглицериды	При окислении жиров образуется вода. Из 100 г жира получается около 107 мл воды. Это особенно важно для животных пустыни (верблюды, тушканчики) и впадающих в спячку (сурки, медведи).
Каталитическая (фермента- тивная)	Жирорастворимые витамины (A, D, E, K)	Витамины-липиды являются коферментами или предшественниками коферментов. Например, витамин А входит в состав зрительного пигмента родопсина; витамин К необходим для синтеза факторов свертывания крови.
Улучшение вкуса пищи и насыщения	Триглицериды	Жиры улучшают вкусовые качества пищи и продлевают чувство сытости, так как они медленно перевариваются и подавляют секрецию желудочного сока.