# **Exome Analysis**

The exome analysis project was conducted by selecting a sample through the 1000 genomes phase 3 project based on the technology exome to obtain sequence data, the sample which I chose was a British Male in England and Scotland. I uploaded the reference genome (hg38) as well as the forward and reverse reads of the selected sample onto galaxy and followed the method



Detailed information for each of these steps have been tabulated and summarized below:

| Cell Line source/ Biosample ID/ SRR<br>ID | HG00152 at coriell/SAME124593/<br>SRR769545 |
|-------------------------------------------|---------------------------------------------|
| Gender                                    | Male                                        |
| Population                                | British in England and Scotland             |
| Super population                          | European                                    |

Table 1: General information about the sequence considered:

The sample described above was subjected to various steps mentioned in the methodology to obtain a variant calling file(vcf).

| Type of Variant               | Count |
|-------------------------------|-------|
| Total variants                | 34605 |
| Total synonymous variants     | 14831 |
| Total non-synonymous variants | 18963 |
| Protein truncating variants   | 521   |

Table 2: General information on the variants obtained

Since the total number of non-synonymous variants are 18,963, I have applied some filters to narrow down my search and study those variants which are most significant. The filters used to narrow down the search included:

- The first filter that I used was on the exonic function column to narrow down only the non-synonymous variants
- The second filter that I used was on the Clinvar\_SIG column to filter the pathogenic or most likely pathogenic variants

• The third filter I applied was on the CADD\_phred score column to filter all values >= 25

A screenshot of the genes obtained upon adding these filters is pasted below:

| A     | В         | C       |       | D | 1     | E  | F           | G          | Н          | 1           | 3           | K       | L       |      | M      | N       |       | 0          | P       |      | Q          | R        | S        | T          | U        |
|-------|-----------|---------|-------|---|-------|----|-------------|------------|------------|-------------|-------------|---------|---------|------|--------|---------|-------|------------|---------|------|------------|----------|----------|------------|----------|
| Chr   | ▼ Start ▼ | End     | ₩ Ref | f | ▼ Alt | ×. | Func.knov = | Gene.kno ▼ | GeneDeta ▼ | ExonicFur * | AAChange =  | 1000G_A | 1000G_A | w 10 | 000G_A | 1000G_E | 1 = 1 | 1000G_E( * | 1000G_S | 14   | ExAC_Fre-1 | EXAC_AFE | xAC_AM * | ExAC_EAS = | ExAC_FIN |
| chr5  | 137637323 | 137637  | 323 C |   | T     |    | exonic      | KLHL3      |            | nonsynonym  | KLHL3:uc003 |         |         |      |        |         |       |            |         |      | 4.95E-05   | 0        | 0        | 0          | 0.00     |
| chr12 | 31089147  | 31089   | 147 G |   | A     |    | exonic      | DDX11      |            | nonsynonym  | DDX11:uc058 |         |         |      |        |         |       |            |         |      | 0.0046     | 0.0076   | 0.0029   | 0.0023     | 0.00     |
| chr6  | 49612534  | 4 49612 | 534 C |   | T     |    | exonic      | RHAG       |            | nonsynonym  | RHAG:uc003  | 0.07    | 0.0     | 81   | 0.036  | 0.0     | 066   | 0.019      |         | 0.14 | 0.0435     | 0.0712   | 0.0522   | 0.0607     | 0.0      |
| chr10 | 52771482  | 52771   | 482 G |   | A     |    | exonic      | MBL2       |            | nonsynonym  | MBL2:uc001  | 0.027   | 0.00    | 15   | 0.033  | 0.0     | 001   | 0.06       | 0.      | 051  | 0.0569     | 0.011    | 0.0264   | 0.0002     | 0.05     |
| chr1  | 210919966 | 210919  | 966 A |   | G     |    | exonic      | KCNH1      |            | nonsynonym  | KCNH1:uc00  | 1.      |         |      |        |         |       |            |         |      |            |          |          |            |          |
| chr17 | 19663486  | 19663   | 486 C |   | T     |    | exonic      | ALDH3A2    |            | nonsynonym  | ALDH3A2:uc  |         |         | - 2  |        | 40      |       |            |         |      |            |          |          |            |          |
|       |           |         |       |   |       |    |             |            |            |             |             |         |         |      |        |         |       |            |         |      |            |          |          |            |          |
|       |           |         |       |   |       |    |             |            |            |             |             |         |         |      |        |         |       |            |         |      |            |          |          |            |          |

• When I added in the fourth filter of ExAC\_Freq <= 0.01, I obtained one significant gene – namely KLHL3 which I would be focusing my further analysis on.

## Information on the gene obtained after filtering steps:

| Chromosome number | Chromosome start | Chromosome stop | Gene<br>Name | CADD_phred score | Allele<br>frequency in<br>population of<br>individual |
|-------------------|------------------|-----------------|--------------|------------------|-------------------------------------------------------|
| Chr 5             | 137637323        | 137637323       | KLHL3        | 35               | 6.01E-05                                              |

## **Information on gnome AD**

| Population            | Gnome AD |  |  |  |  |  |
|-----------------------|----------|--|--|--|--|--|
| African               | 6.53E-05 |  |  |  |  |  |
| American              | 2.98E-05 |  |  |  |  |  |
| Finnish               | 0.0002   |  |  |  |  |  |
| Non-Finnish Europeans | 3.58E-05 |  |  |  |  |  |

## Information on the damaging variant:

| Item         | Description          |
|--------------|----------------------|
| Gene Name    | KLHL3                |
| Protein Name | Kelch-like protein 3 |

| Variant ID                               | rs199469643                            |  |  |  |  |  |
|------------------------------------------|----------------------------------------|--|--|--|--|--|
| Variant DNA change                       | Reference – C and Alternate – T        |  |  |  |  |  |
| Variant protein change                   | Arginine to Glutamine                  |  |  |  |  |  |
| Variant frequency in overall human       | 4.95E-05                               |  |  |  |  |  |
| population                               |                                        |  |  |  |  |  |
| Highest frequency and the population     | 0.0003 is the highest allele frequency |  |  |  |  |  |
| that contains it                         | observed in Finnish population         |  |  |  |  |  |
| Other populations in which the allele is | 6.01E-05 is the allele frequency       |  |  |  |  |  |
| observed                                 | observed in non-Finnish population     |  |  |  |  |  |

The distribution of the damaging variant across populations globally from the aggregated study is illustrated below and is obtained from NCBI reference SNP report:

| Population       | Group  | Sample Size | Ref Allele | Alt Allele |
|------------------|--------|-------------|------------|------------|
| Total            | Global | 20924       | C=1.00000  | T=0.00000  |
| European         | Sub    | 15836       | C=1.00000  | T=0.00000  |
| African          | Sub    | 3324        | C=1.0000   | T=0.0000   |
| African Others   | Sub    | 114         | C=1.000    | T=0.000    |
| African American | Sub    | 3210        | C=1.0000   | T=0.0000   |
| Asian            | Sub    | 112         | C=1.000    | T=0.000    |
| East Asian       | Sub    | 86          | C=1.00     | T=0.00     |
| Other Asian      | Sub    | 26          | C=1.00     | T=0.00     |
| Latin American 1 | Sub    | 146         | C=1.000    | T=0.000    |
| Latin American 2 | Sub    | 610         | C=1.000    | T=0.000    |

The distribution of the damaging variant across populations globally from the gnomAD – Exomes study is illustrated below and is obtained from NCBI reference SNP report:

Study Population Group Samp.Size Ref Alt

| gnomAD - Exomes | Global           | Study-<br>wide | 251424 | C=0.999960 | T=0.000040 |
|-----------------|------------------|----------------|--------|------------|------------|
| gnomAD - Exomes | European         | Sub            | 135356 | C=0.999941 | T=0.000059 |
| gnomAD - Exomes | Asian            | Sub            | 49006  | C=1.00000  | T=0.00000  |
| gnomAD - Exomes | American         | Sub            | 34590  | C=0.99997  | T=0.00003  |
| gnomAD - Exomes | African          | Sub            | 16254  | C=0.99994  | T=0.00006  |
| gnomAD - Exomes | Ashkenazi Jewish | Sub            | 10080  | C=1.00000  | T=0.00000  |
| gnomAD - Exomes | Other            | Sub            | 6138   | C=1.0000   | T=0.0000   |
|                 |                  |                |        |            |            |

### **Damaging variant analysis**

Function of the normal gene: The Kelch-like protein 3(KLHL3) gene transcribes a protein which is known to be involved in the protein ubiquitination pathway. This pathway is generally employed for protein modification and breaking down of unwanted proteins. The KLHL3 is a part of the E3 ubiquitin ligase complex which is a part of the ubiquitin-proteasome system and helps tag damaged and excess proteins.

The proteins are tagged using molecules like ubiquitin which signal to proteasomes to help breakdown and degrade the tagged proteins. This system is important to regulate the proteins during cell division and cell growth.

Gene mutations in KLHL3 are found to cause pseudo hypoaldosteronism type2A(PHA2A), which causes high blood pressure and high potassium levels in the blood. [1,2]

While the mutation has been accounted for on ClinVar there is no assertion criterion or citation. The information about this variant has been submitted by Richard Lifton Laboratory, Yale University School of Medicine.

Additionally, over 10+ SNP data submissions to NCBI by different studies and databases including Illumina, AFFY, GNOMAD, and TOPMED between 2013 and 2019.

Other instances of damaging variants on the gene:

■ The KLHL3 rs7444370 variant has been studied to be a possible protective factor in the pathogenesis of females' essential hypertension in the Chinese Han population. The study of haplotype frequency distribution of rs7444370 in EH and control groups also highlighted that the CT haplotype could have a protective effect in women [3]

• Familial hyperkalemic hypertension (FHHt) is a form of arterial hypertension that is linked to mutations in WNK1 and WNK4. Using combined linkage analysis the KLHL3 has been studied as the thirs gene responsible for FHHt. The FHHt is known to be a complex signaling pathway that ensures ion homeostasis in the distal nephron and control blood pressure indirectly [4]

### **Protein visualization**

Protein visualization is performed by obtaining the FASTA sequence of the protein from UNIPROT. The FASTA sequence is employed by the Swiss-model tool to provide a 3-D structure of the protein in consideration and is depicted below.



Figure 1: Structural model of the natural variant of KLHL3: The protein has 587 amino acids and three different isoforms

To obtain the variant protein, we first obtained the FASTA sequence of the variant from the pathology and biotech section of UNIPROT. This was further visualized in Swiss-model for the missense mutation variant which has Arginine substituted by glutamine highlighted by a red band pointed by a yellow arrow is represented below:



Figure 2: Mutated variant of KLHL3: The protein has 587 amino acids and is mutated at the 431<sup>st</sup> position where arginine is replaced by glutamine



Figure 3: Table depicting quality estimate



Figure 4: Table depicting Ramachandran plot of the modelled protein

The QMEANDisCo Global score is 0.89 +/- 0.05. This score can be considered as the average per-residue QMEANDisCo score which has been IDDT score. [5] The QMEANDisCo score is measured between 0 and 1 with a higher number indicating a higher expected quality. Since the score in our case is around 0.89, we can say that this protein model has a high expected quality, and this score is calculated without coverage dependence.

The QMEAN z-score below -4 usually indicates that the model has a low quality, however for our model the z-score is -1.08 which is above the threshold declared for low quality models.

From the parameters described above along with the Ramachandran plot, it is safe to conclude that the model being depicted is reliable and the protein formed despite of the mutation at the 431<sup>st</sup> position is stable despite its deleterious nature

#### **References:**

- 1. Boyden LM, Choi M, Choate KA, et al. Mutations in kelch-like 3 and cullin 3 cause hypertension and electrolyte abnormalities. *Nature*. 2012;482(7383):98-102.
- 2. Mori Y, Wakabayashi M, Mori T, et al. Decrease of WNK4 ubiquitination by disease-causing mutations of KLHL3 through different molecular mechanisms. *Biochem Biophys Res Commun*. 2013;439(1):30-34.
- 3. Li J, Hu J, Xiang D, et al. KLHL3 single-nucleotide polymorphism is associated with essential hypertension in Chinese Han population. *Medicine* (*Baltimore*). 2019;98(20):e15766.
- 4. Louis-Dit-Picard, H., Barc, J., Trujillano, D. *et al. KLHL3* mutations cause familial hyperkalemic hypertension by impairing ion transport in the distal nephron. *Nat Genet* 2012; 44:456–460
- 5. Studer, G., Rempfer, C., Waterhouse, A.M., Gumienny, R., Haas, J., Schwede, T. QMEANDisCo distance constraints applied on model quality estimation. Bioinformatics 2020; 36:1765-1771.