EEL 4930 Stats – Lecture 19 RANDOM VARIABLES (RVs)

RANDOM VARIABLES (RVS)

What is a random variable?

numoric occurrence

RANDOM VARIABLES (RVS)

What is a random variable?

• We define a random variable is defined on a probability space (S, \mathcal{F}, P) as a function

RANDOM VARIABLES (RVS)

What is a random variable?

• We define a random variable is defined on a probability space (S, \mathcal{F}, P) as a function from S

RANDOM VARIABLES (RVS)

What is a random variable?

• We define a random variable is defined on a probability space (S, \mathcal{F}, P) as a function from S to

 \mathscr{R}

A 5

Create a binary RV from tossing a fair coin

$$\begin{cases} P(X(\Delta)) = P($$

L19-3

Create a binary RV from tossing a fair coin **EX** twice

EEL 4930

Create another RV from tossing a fair coin twice

DISCRETE RANDOM VARIABLES

A discrete random variable

DISCRETE RANDOM VARIABLES

A discrete random variable has nonzero probability at a countable number of values.

For a discrete RV, the *probability mass* function

For a discrete RV, the *probability mass* function (pmf)

For a discrete RV, the *probability mass* function (pmf) is

$$P(X = x) = P[X \le x] - P[X < x]$$

For a discrete RV, the *probability mass* function (pmf) is

$$P(X = x) = P[X \le x] - P[X < x]$$

EX: Roll a fair 6-sided die

$$P(X = x) =$$

$$P(X = x) = \begin{cases} 1/6, & x = 1, 2, \dots, 6 \end{cases}$$

$$P(X = x) = \begin{cases} 1/6, & x = 1, 2, ..., 6 \\ 0, & \text{o.w.} \end{cases}$$

X = # of flips

X = # of flips

$$P(X = x) =$$

X = # of flips

$$P(X = x) = \begin{cases} \left(\frac{1}{2}\right)^x, & x = 1, 2, \dots \\ 0, & \text{o.w.} \end{cases}$$

X = # of flips

$$P(X = x) = \begin{cases} \left(\frac{1}{2}\right)^x, & x = 1, 2, \dots \\ 0, & \text{o.w.} \end{cases}$$

If (S, \mathcal{F}, P) is a prob. space with $X(\omega)$ a real RV on S, the **cumulative distribution** function

If (S, \mathcal{F}, P) is a prob. space with $X(\omega)$ a real RV on S, the **cumulative distribution** function (cdf)

If (S, \mathcal{F}, P) is a prob. space with $X(\omega)$ a real RV on S, the **cumulative distribution** function (cdf), denoted $F_X(x)$

If (S, \mathcal{F}, P) is a prob. space with $X(\omega)$ a real RV on S, the **cumulative distribution** function (cdf), denoted $F_X(x)$ is

$$F_X(x) = P[\{\omega | X(\omega) \in (-\infty, x]\}\}$$

and $\omega \in S]$

If (S, \mathcal{F}, P) is a prob. space with $X(\omega)$ a real RV on S, the **cumulative distribution** function (cdf), denoted $F_X(x)$ is

$$F_X(x) = P[\{\omega | X(\omega) \in (-\infty, x]\}\}$$

and $\omega \in S]$
 $= P(X \le x).$

If (S, \mathcal{F}, P) is a prob. space with $X(\omega)$ a real RV on S, the **cumulative distribution** function (cdf), denoted $F_X(x)$ is

$$F_X(x) = P[\{\omega | X(\omega) \in (-\infty, x]\}\}$$

and $\omega \in S]$
 $= P(X \le x).$

• $F_X(x)$ is also sometimes called the *probability* distribution function (PDF), but I will avoid this terminology to avoid confusion with another function we will use, called the probability density function (pdf)

EEL 4930

• $F_X(x)$ is a prob. measure

- $F_X(x)$ is a prob. measure
 - Thus $F_X(x)$ inherits all the properties of a probability measure (axioms and corollaries still apply)

EEL 4930

Find and plot the cdfs for the previous two examples