Automotive Sales Prediction

21.11.2022 - Uğur Savcı

Table of Contents

- Understanding Data
- Data Cleaning & Manipulation
- Exploratory Data Analysis
- Model Building & Prediction

Data Cleaning & Manipulation

- Standardizasyon olması için bütün sütunlar küçük harf ve boşluklara '_' eklendi.
- Veri setindeki date sütununun formatını datetime oalrak değiştirildi
- Daha sonrasında index olarak atadık.

```
df.columns = df.columns.str.lower().str.replace(" ","_")

df = df.iloc[:149,:]

df['date'] = pd.to_datetime(df['date'], format='%Y/%m/%d')

df = df.set_index('date')

df = df.asfreq('MS')

df = df.sort_index()
```

Understanding Data

	otv_orani	faiz	eur/tl	kredi_stok	otomotiv_satis
Date					
2010-01-01	37.00	13.18	2.11	341,244.13	20,095.00
2010-02-01	37.00	13.27	2.07	351,940.95	31,172.00
2010-03-01	37.00	12.73	2.09	361,307.32	51,769.00
2010-04-01	37.00	12.01	2.01	373,575.34	54,946.00
2010-05-01	37.00	11.74	1.95	387,708.05	59,377.00

 Elimizdeki veri seti 2010 Ocak ayından başlayıp 2022 Mayıs ayına kadar devam etmektedir.

Understanding Data

- Herhangi bir eksik veri gözlemi veri setimizde Yok
- Veri tipleri hepsi için float.

Exploratory Data Analysis

- Otomotiv satışı 2018 'e kadar yatay olarak devam ederken 2018 yılından sonra düşüş gerçekleşti.
- Yılın son aylarında otomotiv satışlarında artış görülürken, Ocak ve şubat aylarında otomotiv satışları genellikle en düşük seviyedeler.

Feature Engineering

- Modelimizin daha iyi öğrenmesini sağlamak için verimize bazı değişkenler ekleyebiliriz.
- Bunlar;
- Tarih değişkenleri : Yıl, Ay, Hafta, Çeyrek Yılın Haftası, Seri, Mevsim vb
- **Gecikmeli (Lag) Değişkenler**: Genellikle hedef değişkenin t-1 bir önceki değeri t satırına yazılarak yeni bir değişken oluşturulur. (Period olarak 1 den farklı değerler seçebiliriz.
- **Window değişkenler**: Bu değişkenler hedef değişkenin bir önceki aylardaki aggregate değerleridir. Son 3 aylık ortalama standart sapması vs.

Feature Engineering

Date değişkenleri olarak eklenen yeni veriler.

Adding Date Features

```
df["month"] = df.index.month
df["year"] = df.index.year
df["quarter"] = df.index.quarter
df['series'] = np.arange(1,len(df)+1)
df["first_quarter"] = df.quarter.apply(lambda x : 1 if x== 1 else 0)
df["last_quarter"] = df.quarter.apply(lambda x: 1 if x== 4 else 0)
```

Son 3 ay ortalaması

Rolling Mean

```
df['rolling_mean_3'] = df['otomotiv_satis'].rolling(3).mean()
```

Exploratory Data Analysis

						Correlatio	n Analys	is				
otv_orani	1	0.32	0.73	0.77	0.091	-0.075	0.74	-0.073	0.74	0.062	-0.03	0.14
faiz	0.32	1	0.69	0.69	-0.37	-0.031	0.7	-0.027	0.7	0.025	-0.027	-0.43
eur/tl	0.73	0.69	1	0.97	-0.17	-0.02	0.85	-0.02	0.85	0.021	0.0093	-0.24
kredi_stok	0.77	0.69	0.97	1	-0.13	0.0019	0.95	0.0017	0.95	-0.00029	0.017	-0.18
otomotiv_satis	0.091	-0.37	-0.17	-0.13	1	0.55	-0.16	0.47	-0.11	-0.39	0.47	0.64
month	-0.075	-0.031	-0.02	0.0019		1	-0.059	0.97	0.021	-0.75	0.75	0.19
year	0.74	0.7	0.85	0.95	-0.16	-0.059	1	-0.058	1	0.047	-0.034	-0.17
quarter	-0.073	-0.027	-0.02	0.0017	0.47	0.97	-0.058	1	0.02	-0.78	0.77	0.2
series	0.74	0.7	0.85	0.95	-0.11	0.021	1	0.02	1	-0.014	0.026	-0.15
first_quarter	0.062	0.025	0.021	-0.00029	-0.39	-0.75	0.047	-0.78	-0.014	1	-0.34	-0.12
last_quarter	-0.03	-0.027	0.0093	0.017	0.47	0.75	-0.034	0.77	0.026	-0.34	1	0.23
rolling_mean_3	0.14	-0.43	-0.24	-0.18	0.64	0.19	-0.17	0.2	-0.15	-0.12	0.23	1
	otv_orani	faiz	eur/tl	kredi_stok	notiv_satis	month	year	quarter	series	st_quarter	st_quarter	g_mean_3

- Kredi stok ve eur/tl arasında güçlü korelasyon vardır.
- Otomotiv satışı ilk çeyrek ile negatif korelasyona sahip iken last_quarter ile güçlü pozitif korelasyona sahiptir.

Train-Test Set

- Son 25 Ayı test olarak kullanırken diğer veriler ile modelimizi test edeceğiz.
- Değerlendirme metriği olarak MAPE'yi seçtik.

Lag değişkenlerle birlikte Baseline Model

- Baseline model sadece lag değişkenleri ve hedef değişkeninden oluşuyor.
- Modelimizi kurmak için skforecast kütüphanesini kullandık.
- Model recursive olarak bir sonraki periodu hesaplayacaktır.
- Modeli kurarken parametre olarak lag= 15 seçtik. 15 farklı gecikmeli değişken oluşturduk.
- Multicollinearity problemini çözmek adına Regresyon olarak Ridge seçtik.
- Bu şekilde verdiğimiz parametreye göre . Modelin overfit olmasını engellemiş olacağız.

Prediction

```
steps = 25
predictions = forecaster.predict(steps)
```

Test Error

print(f"Test error (mape):% {round((error_mape),3)*100}")

Output : **%20.9**

Prediction

```
steps = 25
predictions = forecaster.predict(steps)
```

Test Error

print(f"Test error (mape):% {round((error_mape),3)*100}")

Output : **%20.9**

Model with Features

Output: **%30.1**

Prediction

- Sadece lag olan modelimizin performansı daha iyi çıktı.
- Modele göre Haziran 2022 2023 dönemleri için tahminleri aldık.

	pred
2022-06-01	75334.973713
2022-07-01	52062.950842
2022-08-01	58188.335866
2022-09-01	63357.121213
2022-10-01	58267.150301
2022-11-01	67341.510781
2022-12-01	83157.501533
2023-01-01	40809.398093
2023-02-01	62600.433519
2023-03-01	69504.188992
2023-04-01	51513.808668
2023-05-01	68812.428978
2023-06-01	75696.384310

Postman API Testing

- Flask ile rest api kuruldu ve api test edildi.
- Kaç ay sonrasını tahmin etmek istiyor isek modele sadece sayı(period) olarak vermemiz yeterli oluyor.

Model Deployment

- Modeli deploy etmek için Dockerfile ve requirements.txt oluşturdum.
- Ancak aws ec2 instancetabir çok kez denememe rağmen private key hatası aldığım için maalesef deploy edemedim.
- Fakat deployment ile ilgili daha önce yaptığım çalışmanın linkini buraya bırakıyorum.
- https://churnpredictionapp1.herokuapp.com/

Anlayışınız için şimdiden teşekkür ederim.