Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

Факультет программной инженерии и компьютерной техники Направление подготовки 09.03.04 «Программная инженерия» — Системное и прикладное программное обеспечение

Отчёт По лабораторной работе №7 «Синтез команд БЭВМ»

По дисциплине «Основы профессиональной деятельности» Вариант: 8756

Выполнил: Ясаков Артем Андреевич

Группа: Р3113

Преподаватель: Ермаков Михаил Константинович

Санкт-Петербург 2025 г.

Оглавление

Задание	3
Исходный код синтезируемой команды	
Грассировка микрокоманды	
Гестовая программа	
Описание тестовых программ	
Подготовка к проверке	
Методика проверки программы	
Вывод	

Задание

Синтезировать цикл исполнения для выданных преподавателем команд. Разработать тестовые программы, которые проверяют каждую из синтезированных команд. Загрузить в микропрограммную память БЭВМ циклы исполнения синтезированных команд, загрузить в основную память БЭВМ тестовые программы. Проверить и отладить разработанные тестовые программы и микропрограммы.

Введите номер варианта 8756

- 1. MADC M сложение с учетом переноса аккумулятора с ячейкой памяти с записью результата в ячейку памяти и без установки N/Z/V/C
- 2. Код операции 9...
- 3. Тестовая программа должна начинаться с адреса 00А416

Исходный код синтезируемой команды

Адрес ячейки	новый код МК	Комментарий							
E0	81E1104002	if CR(12) = 1 then GOTO RESERVED E1; Команда 9XXX теперь обрабатывается микрокомандой с адресом @E1							
Цикл исполнения команды MADC(E1—E5)									
E1	80E3011040	if PS(C) = 0 then GOTO E2 ; Если флаг С не выставлен, то перейти на Е3							
E2	0001009401	$DR + 1 \rightarrow DR$; Инкрементируем DR без установки флагов							
Е3	0001009011	$AC + DR \rightarrow DR$; Сложение чисел и запись результата в DR без установки флагов							
E4	020000000	DR → MEM(AR) ; Запись результата в ячейку памяти							
E5	80C4101040	GOTO INT @C4; Завершение цикла выполнения команды, переход к циклу прерываний							

Трассировка микрокоманды

МР до	Содержимое памяти и регистров процессора после выборки и исполнения команды									
выборки МК	MR	IP	CR	AR	DR	SP	BR	AC	NZVC	MP
E1	80E4011040	10A	9101	101	0135	7FE	0109	B345	1000	E4
E4	0001009011	10A	9101	101	B47A	7FE	0109	B345	1000	E5
E5	0200000000	10A	9101	101	B47A	7FE	0109	B345	1000	E6
E6	80C4101040	10A	9101	101	B47A	7FE	0109	B345	1000	C4

Тестовая программа

ORG 0x0

Т1: WORD 0x0; Тест 1 - Проверка корректного результата при C = 0 T2: WORD 0x0; Тест 2 - Проверка на отсутствие изменения NZVC T3: WORD 0x0; Тест 3 - Проверка на корректный результат при C=1

Т4: WORD 0x0; Тест 4 - Крайний случай

ORG 0x0A4

START: CALL \$TEST1; Вызов тестов

LD \$T1 NOP

CALL \$TEST2

LD \$T2 NOP

CALL \$TEST3

LD \$T3 NOP

CALL \$TEST4

LD \$T4 HLT

ORG 0x100

A1: WORD 0xB345 B1: WORD 0x0135

RES1: WORD? TEST1: CLA

CLC

LD A1 ADC B1 ST RES1

LDA1

WORD 0x9101; Выполнение команды MADC

LD B1

CMP RES1; Проверка результатов

BNE ERR1

LD #0x1 ST \$T1 RET

ERR1: LD #0x0

ST \$T1 RET

ORG 0x200

A2: WORD 0xB345 B2: WORD 0xFFFF

TEST2: CLA

CLC LD A2

WORD 0x9201; Выполнение команды MADC BHIS ERR2; CF выставляться не должен

LD #0x1 ST \$T2 RET

ERR2: LD #0x0

ST \$T2 RET

ORG 0x300

A3: WORD 0xB345 B3: WORD 0xFFFF

RES3: WORD?

TEST3: CLA

CLC CMC LD A3 ADC B3 ST \$RES3

LD A3

WORD 0x9301; Выполнение MADC с выставленным флагом С

LD B3

BLO ERR3 CMP RES3 BNE ERR3

LD #0x1 ST \$T3 RET

ERR3: LD #0x0

ST \$T3 RET

ORG 0x400

A4: WORD 0x0000 B4: WORD 0xFFFF

RES4: WORD?

TEST4: CLA

CLC CMC LD A4 ADC B4 ST \$RES4

LD A4

WORD 0x9401; Выполнение MADC с выставленным флагом С

LD B4 CMP RES4 BNE ERR4

LD #0x1 ST \$T4 RET

ERR4: LD #0x0

ST \$T4 RET

Описание тестовых программ

- 1. Проверка команды МАДС без СҒ.
- 2. Второй тест проверяет отсутствие выставления знаков NZVC.
- 3. Проверка результата сложения ADC двух чисел и CF=1 с результатом MADC (с выставленным CF), они должны совпадать. Также флаг C не должен сбрасываться.
- 4. Рассматриваем крайний случай, когда складываются 0xFFFF и 0x0000, CF = 1

Если какой-либо тест # работает правильно, то в переменную Т# записывается 1, иначе записывается 0. После выполнения теста результат выводится в АС, перед выполнением следующего теста.

Подготовка к проверке

- 1. Открыть БЭВМ в формате cli или dual "java –Dmode=dual –jar bcomp-ng.jar"
- 2. Ввести микрокоманды через консоль

ma

mw 81E1104002

mw 80E3011040

mw 0001009401

mw 0001009011

mw 0200000000

mw 80C4101040

- 3. Открыть режим ввода Assembler "asm"
- 4. Загрузить команды Assembler в БЭВМ
- 5. Заменить везде NOP на HLT.
- 6. Написать после кода Assembler END и нажать Enter
- 7. Удостоверится что после прогона всех тестов в аккумуляторе лежит 0х1

Методика проверки программы

- 1. Запустить программу в режиме "РАБОТА" (адрес начала программы 0х0А4).
- 2. Дождаться останова. Записать значение из АС в результат первого теста Т1.
- 3. Нажать кнопку "ПРОДОЛЖЕНИЕ".
- 4. Дождаться останова. Записать значение из АС в результат второго теста Т2.
- 5. Нажать кнопку "ПРОДОЛЖЕНИЕ".
- 6. Дождаться останова. Записать значение из АС в результат третьего теста Т3.
- 7. Нажать кнопку "ПРОДОЛЖЕНИЕ".
- 8. Дождаться останова. Записать значение из АС в результат третьего теста Т4.
- 9. Удостовериться, что все результаты тестов равны 0х1.

Вывод

В ходе данной лабораторной работы я познакомился с МПУ БЭВМ и синтезировал свою команду и изучил методику проверки сделанной программы