Wirtschaftswissenschaftliche Fakultät der Universität Zürich Professur für Mathematik der Wirtschaftswissenschaften Übungen zur Vorlesung Mathematik II

Serie 6 ab 25.03.2019 FS 2019

Es werden die Aufgaben 3,4(b),4(d),5,7 und 8 in den Tutorien besprochen.

Aufgabe 1 (LGS, simultane Lösung, parametrische Lösung)

Betrachten Sie das folgende lineare Gleichungssystem:

$$x_1 + x_2 + x_3 = b_1$$

 $2x_1 + 2x_2 + x_3 = b_2$
 $x_1 + x_2 - x_3 = b_3$

- (a) Wie viele Elemente hat die Lösungsmenge im Fall $b_1 = 3, b_2 = 4$ und $b_3 = 0$?
- (b) Wie viele Elemente hat die Lösungsmenge im Fall $b_1 = 1, b_2 = 2$ und $b_3 = 1$?
- (c) Welche Bedingung muss an eine beliebige rechte Seite

$$\mathbf{b}^3 = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$$

gestellt werden, damit das LGS lösbar ist?

Aufgabe 2 (Lösung eines LGS in Zeilenstufenform)

Betrachten Sie das folgende LGS:

$$\begin{array}{rcl}
 x_1 + 2x_2 + 3x_3 & = 1 \\
 -9x_2 + 8x_3 & = 1 \\
 7x_3 & = 1.
 \end{array}$$

- (a) Liegt das LGS in Zeilenstufenform vor?
- (b) Liegt das LGS in expliziter Form vor?
- (c) Wie kann man direkt x_3 bestimmen? Wie kann man daraus x_2 und dann x_1 bestimmen?

Aufgabe 3 (Basislösung eines LGS)

Wir haben ein lineares Gleichungssystem mit Hilfe des Eliminationsverfahren gelöst und erhalten

	$ x_1 $	x_2	x_3	x_4	b	
1	1	0	0	1	13	
2	0	1	0	-3	9 18	
3	0	0	1	8	18	

Seite 1 von 5

(a) Lesen Sie aus dem Endtableau eine Basislösung des LGS ab. Wie viele Komponenten dieser Basislösung sind von 0 verschieden?

- (b) Bestimmen Sie eine weitere Basislösung, in dem Sie $x_2 = 0$ setzen.
- (c) Bestimmen Sie alle weiteren Basislösungen.

Aufgabe 4 (Affine Lösungsmengen)

(a) Betrachten Sie

$$\mathbb{L} = \left\{ \begin{pmatrix} 6 \\ 4 \\ -2 \end{pmatrix} + t \begin{pmatrix} -3 \\ -2 \\ 1 \end{pmatrix} \middle| t \in \mathbb{R} \right\}.$$

- (i) Ist diese Menge ein linearer Raum? Ist diese Menge ein affiner Raum?
- (ii) Bestimmen Sie die Dimension der Menge.
- (b) Betrachten Sie die Lösungsmenge des inhomogenen LGS aus Aufgabe 10(a) in Serie 5:

$$\mathbb{L} = \left\{ \begin{pmatrix} -5 \\ -1 \\ 0 \end{pmatrix} + t \begin{pmatrix} -3 \\ -2 \\ 1 \end{pmatrix} \middle| t \in \mathbb{R} \right\}.$$

- (i) Ist diese Menge ein linearer Raum? Ist diese Menge ein affiner Raum?
- (ii) Bestimmen Sie die Dimension der Menge.
- (c) Betrachten Sie die Lösungsmenge des inhomogenen LGS aus 10(c) in Serie 5:

$$\mathbb{L} = \left\{ \begin{pmatrix} 5\\3\\0\\0 \end{pmatrix} + t \begin{pmatrix} \frac{23}{2}\\8\\-1\\1 \end{pmatrix} \middle| t \in \mathbb{R} \right\}.$$

- (i) Ist diese Lösungsmenge ein linearer Raum? Ist diese Lösungsmenge ein affiner Raum?
- (ii) Bestimmen Sie die Dimension der Lösungsmenge.
- (d) Betrachten Sie die Lösungsmenge des inhomogenen LGS aus 10(d) in Serie 5:

$$\mathbb{L} = \left\{ \begin{pmatrix} 2 \\ -5 \\ 0 \\ 0 \end{pmatrix} + t_1 \begin{pmatrix} -2 \\ 3 \\ 1 \\ 0 \end{pmatrix} + t_2 \begin{pmatrix} -1 \\ -2 \\ 0 \\ 1 \end{pmatrix} \middle| t_1, t_2 \in \mathbb{R} \right\}.$$

- (i) Ist diese Lösungsmenge ein linearer Raum? Ist diese Lösungsmenge ein affiner Raum?
- (ii) Bestimmen Sie die Dimension der Lösungsmenge.
- (e) Betrachten Sie die Lösungsmenge des inhomogenen LGS aus 10(e) in Serie 5:

$$\mathbb{L} = \left\{ \begin{pmatrix} 2 \\ 0 \\ 1 \\ 0 \end{pmatrix} + t_1 \begin{pmatrix} -2 \\ 1 \\ 0 \\ 0 \end{pmatrix} + t_2 \begin{pmatrix} 5 \\ 0 \\ -3 \\ 1 \end{pmatrix} \middle| t_1, t_2 \in \mathbb{R} \right\}.$$

- (i) Ist diese Lösungsmenge ein linearer Raum? Ist diese Lösungsmenge ein affiner Raum?
- (ii) Bestimmen Sie die Dimension der Lösungsmenge.

Aufgabe 5 (Gleichheit affiner Lösungsmengen)

Studentin A hat die Lösungsmenge eines LGS als Menge

$$\mathbb{L}_{A} = \left\{ \begin{pmatrix} -3\\1\\1\\1 \end{pmatrix} + t_{1} \begin{pmatrix} -5\\-3\\1\\3 \end{pmatrix} + t_{2} \begin{pmatrix} 0\\-2\\1\\0 \end{pmatrix} \middle| t_{1}, t_{2} \in \mathbb{R} \right\}$$

bestimmt. Student B hat die Lösungsmenge eines LGS als Menge

$$\mathbb{L}_{B} = \left\{ \begin{pmatrix} 0 \\ -2 \\ 1 \\ 0 \end{pmatrix} + t_{1} \begin{pmatrix} -5 \\ -3 \\ 1 \\ 3 \end{pmatrix} + t_{2} \begin{pmatrix} -3 \\ 1 \\ 1 \\ 1 \end{pmatrix} \middle| t_{1}, t_{2} \in \mathbb{R} \right\}$$

bestimmt. In der Musterlösung wird behauptet, die Lösungsmenge sei

$$\mathbb{L} = \left\{ \begin{pmatrix} 2 \\ -5 \\ 0 \\ 0 \end{pmatrix} + t_1 \begin{pmatrix} -2 \\ 3 \\ 1 \\ 0 \end{pmatrix} + t_2 \begin{pmatrix} -1 \\ -2 \\ 0 \\ 1 \end{pmatrix} \middle| t_1, t_2 \in \mathbb{R} \right\}.$$

Welcher der Studenten hat die gleiche Lösungsmenge erhalten wie in der Musterlösung beschrieben ist?

Aufgabe 6 (Zeilenbild und Spaltenbild)

Betrachten Sie das lineare Gleichungssystem $A\mathbf{x} = \mathbf{b}$ mit $A = \begin{pmatrix} 2 & -3 \\ 2 & 2 \end{pmatrix}$ und $\mathbf{b} = \begin{pmatrix} 9 \\ 4 \end{pmatrix}$.

- (a) Stellen Sie jede Zeile bzw. Gleichung des LGS als Hyperebene des \mathbb{R}^2 dar und bestimmen Sie die Lösungsmenge des LGS als Schnittmenge dieser Hyperebenen.
- (b) Stellen Sie jede Spalte der Koeffizientenmatrix sowie die rechte Seite als Vektor im \mathbb{R}^2 dar. Bestimmen Sie dann die Lösungsmenge des LGS als Gewichte der Linearkombination der Spaltenvektoren von A, welche den Vektor \mathbf{b} ergibt.

Aufgabe 7 (Rang einer Matrix und lineare Unabhängigkeit)

Bestimmen Sie den Rang der folgenden Matrizen. Was können Sie daraus über die lineare Abhängigkeit der Zeilenvektoren und Spaltenvektoren folgern?

(a)
$$A = \begin{pmatrix} 1 & 2 & 2 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 2 & -1 & -1 \\ -1 & 2 & 2 & 0 \end{pmatrix}$$

(b)
$$B = \begin{pmatrix} 1 & 1 & 0 & 3 \\ 0 & 1 & 1 & 5 \\ 1 & 1 & 0 & -2 \\ 7 & 4 & -3 & -4 \end{pmatrix}$$

(c)
$$C = \begin{pmatrix} 1 & 0 & 1 & -1 \\ 1 & 1 & 0 & 1 \\ 2 & 3 & -1 & 4 \end{pmatrix}$$

Aufgabe 8 (Rang einer Matrix und Lösungsmenge des zugehörigen LGS)

Wir betrachten die Matrix

$$A = \left(\begin{array}{ccccc} 1 & 0 & 0 & -1 & 1 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 2 & -2 \\ 1 & 1 & 1 & 2 & 0 \end{array}\right)$$

und das daraus gebildete homogene LGS

$$A\mathbf{x} = \mathbf{0}$$
,

mit dem Vektor $\mathbf{x} = (x_1, x_2, x_3, x_4, x_5)^T \in \mathbb{R}^5$. Welche der folgenden Aussagen sind wahr und welche sind falsch?

(a)			
(a)	(1) A liegt in Zeilenstufenform vor.	\square wahr	□ falsch
(b)	(2) Das LGS ist nicht lösbar.	\square wahr	☐ falsch
	(3) Die Lösungsmenge ist ein affiner Raum.	\square wahr	□ falsch
	(4) Die Lösungsmenge ist ein linearer Raum.	\square wahr	□ falsch
	$(1) \operatorname{rang}(A) = 4.$	\square wahr	□ falsch
	(2) Die Matrix A hat vollen Rang.	\square wahr	□ falsch
	$(3) \operatorname{rang}(A^T) = 4.$	\square wahr	□ falsch
	(4) Die Dimension der Lösungsmenge ist 2.	□ wahr	□ falsch

Aufgabe 9 (Rang einer Matrix und Lösbarkeit des LGS)

Sei A die Koeffizientenmatrix und b die rechte Seite des LGS

- (a) Bestimmen Sie rang(A), rang(A|**b**) und die Dimension der Lösungsmenge \mathbb{L} .
- (b) Bestimmen Sie die Lösungsmenge \mathbb{L}_0 für $\mathbf{b} = \mathbf{0}$, die Dimension der Lösungsmenge \mathbb{L}_0 und geben Sie eine Basis für \mathbb{L}_0 an.
- (c) Geben Sie eine neue rechte Seite **b** an, so dass $rang(A) < rang(A|\mathbf{b})$ und somit das Gleichungssystem unlösbar wird.

Aufgabe 10 (Rechenregeln für Matrizen)

(a) Vereinfachen Sie den folgenden Ausdruck soweit wie möglich:

$$\begin{pmatrix} 27 & 6 \\ 123 & 12 \\ 24 & 9 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 0 \end{pmatrix} + \begin{pmatrix} 54 & 12 \\ 246 & 24 \\ 48 & 18 \end{pmatrix} \cdot \begin{pmatrix} 2 & 1 & 1 \\ 0 & 2 & 2 \end{pmatrix}.$$

(b) Gegeben sind folgende Matrizen:

$$A_1 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 0 \\ -1 & 0 & 1 \end{pmatrix} \quad A_2 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ -1 & 0 & -1 \end{pmatrix} \quad A_3 = \begin{pmatrix} -1 & 2 & -2 \\ 2 & 2 & 2 \\ -2 & 0 & 1 \end{pmatrix}$$

$$B_1 = \begin{pmatrix} 2 & -1 & 0 \\ 1 & -2 & 0 \end{pmatrix}$$
 $B_2 = \begin{pmatrix} -1 & 1 \\ 2 & -3 \\ 1 & 0 \end{pmatrix}$ $B_3 = \begin{pmatrix} -4 & 5 \\ -5 & 7 \end{pmatrix}$

$$C_1 = \begin{pmatrix} 1 & 2 \\ 3 & 2 \\ 0 & 1 \end{pmatrix} \qquad C_2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & \frac{1}{2} \end{pmatrix} \qquad C_3 = \begin{pmatrix} 2 & 3 \\ 4 & 3 \\ 1 & 2 \end{pmatrix}$$

$$I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

Zudem ist X eine unbekannte 3×3 -Matrix, Y eine unbekannte 2×2 -Matrix und Z eine unbekannte 3×2 -Matrix. Lösen Sie – falls möglich – die folgenden Matrizengleichungen nach X, Y bzw. Z auf:

- (i) $A_1 \cdot A_2 + X = A_3$,
- (ii) $B_1 \cdot B_2 2 \cdot I \cdot Y = B_3$,
- (iii) $C_1 + C_2 \cdot Z = C_3$.