Il fibrato tangente e i campi di vettori Corso di Laurea in Matematica A.A. 2024-2025 Docente: Andrea Loi

- 1. Sia N una sottovarietà di una varietà differenziabile M. Dimostrare che TN è una sottovarietà di TM.
- 2. Una varietà differenziabile è detta orientabile se esiste un atlante di M rispetto al quale il determinante Jacobiano dei cambi di carte è positivo. Dimostrare che:
 - (a) $\mathbb{R}P^3$ è una varietà orientabile;
 - (b) il fibrato tangente TM di una varietà differenziabile M è orientabile.
- 3. Dimostrare che l'applicazione che associa ad ogni varietà differenziabile il suo fibrato tangente e ad ogni applicazione $F: N \to M$ tra varietà differenziabili l'applicazione $F_*: TN \to TM$ definita come $F_*((p,v)) = (F(p), F_{*p}(v))$ per ogni $(p,v) \in TN$ definisce un funtore covariante dalla categoria delle varietà differenziabili in se stessa.
- 4. Una derivazione di un'algebra di Lie $(V, [\cdot, \cdot])$ su un campo $\mathbb K$ è un'applicazione lineare $D: V \to V$ tale che

$$D([Y,Z]) = [DY,Z] + [Y,DZ], \ \forall Y,Z \in V.$$

Dimostrare che dato $X \in V$ l'applicazione

$$D_X: V \to V, Y \mapsto [X, Y]$$

è una derivazione.

5. Sia $F: N \to M$ un diffeomorfismo tra varietà differenziabili, $X \in \chi(N)$ e $f \in C^{\infty}(N)$. Dimostrare che

$$F_*(fX) = (f \circ F^{-1})F_*X.$$

- 6. Sia $M = \mathbb{R} \setminus \{0\}$ e $X = \frac{d}{dx} \in \chi(M)$. Trovare la curva integrale di X massimale che inizia in un generico punto $p \in \mathbb{R}$.
- 7. Trovare il flusso (locale) dei seguenti campi di vettori:

$$X = x \frac{\partial}{\partial x} - y \frac{\partial}{\partial y}, \ Y = x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y}, \ Z = \frac{\partial}{\partial x} + y \frac{\partial}{\partial y} \in \chi(\mathbb{R}^2).$$

Nel caso siano completi calcolare il loro gruppo di diffeomorfismi ad un parametro.

- 8. Dimostrare che il campo di vettori $X=\frac{\partial}{\partial x}\in\chi(\mathbb{R}^2\setminus(0,0))$ non è completo.
- 9. Sia M una varietà differenziabile e $X \in \chi(M)$ tale che $X_p = 0$ per ogni $p \in M$. Dimostrare che la curva integrale di X che inizia in p è la curva costante c(t) = p.
- 10. Sia M una varietà differenziabile e $X \in \chi(M)$ il campo di vettori nullo, X = 0. Descrivere il gruppo dei diffeomorfismi ad un parametro associato a X.

1

11. Sia Muna varietà differenziabile, $f,g\in C^{\infty}(M)$ e $X,Y\in\chi(M).$ Dimostrare che

$$[fX, gY] = fg[X, Y] + fX(g)Y - gY(f)X.$$

12. Sia M una varietà differenziabile di dimensione n e $X,Y\in\chi(M)$ e $(U,\varphi=(x^1,\ldots x^n))$ una carta locale. Se $X_{|U}=\sum_{i=1}^n a^i\frac{\partial}{\partial x^i}$ e $Y_{|U}=\sum_{i=1}^n b^i\frac{\partial}{\partial x^i}$, dimostrare che

$$[X,Y]|_U = \sum_{i,j=1}^n \left(a^i \frac{\partial b^j}{\partial x^i} - b^i \frac{\partial a^j}{\partial x^i} \right) \frac{\partial}{\partial x^j}.$$