Primeira Prova de Fenomenos Eletromagneticos – BC0209 2012.2 – Prova B - Foina 1/4	
Nome Completo:	Nota:
Identificação de Usuário no TIDIA:	_

Questão 1 (25 pontos): Quatro partículas de carga $q_1=q_2=q_3=q_4=q$ estão separadas entre si por uma distância fixa, formando um quadrado de lado ℓ . Quer se introduzir uma quinta partícula ao conjunto de tal modo que todas as partículas sintam força resultante nula. Determine:

- a) a posição da nova partícula, explicando o porquê da escolha dessa posição;
- b) a carga q_5 da nova partícula.

Primeira Prova de Fenômenos Eletromagnéticos - BC0209 2012.2 - Prova B - Folha 2/4

Nome Completo:	Nota:
Identificação de Usuário no TIDIA:	

Questão 2 (25 pontos): Considere uma placa condutora retangular plana muito grande, de espessura desprezível, com uma densidade superficial de carga σ positiva e uniforme, como na figura abaixo.

- a) Desenhe os vetores do campo elétrico em ambos os lados da placa (vista de perfil na figura) e construa uma superfície gaussiana apropriada.
- b) Calcule o fluxo do campo elétrico através de cada uma das superfícies que compõe a superfície gaussiana e determine a magnitude do campo elétrico através da lei de Gauss.

Uma segunda placa, idêntica a primeira, porém com uma densidade superficial de carga $-\sigma$ negativa, é disposta paralelamente à primeira, a uma pequena distância d, como na figura ao lado.

c) Sabendo que o campo elétrico é uniforme na região entre as placas, determine o campo elétrico e a diferença de potencial entre as duas placas.

Primeira Prova de Fenomenos Eletromagneticos – BC0209 2012.2 – Prova B - Foina 3/4		
Nome Completo:	Nota:	
Identificação de Usuário no TIDIA:		

Questão 3 (25 pontos): Uma célula solar produz uma diferença de potencial de 0,10 V quando um resistor de 500 Ω é ligado a seus terminais, e uma diferença de potencial de 0,15 V quando o valor do resistor é 1000 Ω .

- a) Determine a resistência interna e a força eletromotriz da célula solar;
- b) A área da célula é 5,0 cm^2 e a potência luminosa por unidade de área (intensidade) recebida é 2,0 mW/cm^2 . Qual é a eficiência da célula ao converter energia luminosa em energia térmica fornecida ao resistor de 1000 Ω ?

Primeira Prova de Fenômenos Eletromagnéticos – BC0209 2012.2 – Prova B - Folha 4/4		
Nome Completo:	Nota:	
Identificação de Usuário no TIDIA:		

Questão 4 (25 pontos): Considere um capacitor de placas paralelas, cujas dimensões são muito maiores que a distância d que as separa. Uma das placas do capacitor é ligada à terra e a outra conectada à cúpula de um gerador de Van der Graff. Ao ligarmos o gerador observamos faíscas entre as placas do capacitor para distâncias de separação inferiores a d_{max} . Para distâncias de separação acima de d_{max} não se observa faíscas entre as placas. Foram efetuadas várias medidas de d_{max} listadas na tabela abaixo.

- (a) Determine o valor médio de d_{max} , bem como sua incerteza.
- (b) Sabendo que a rigidez dielétrica do ar é de E_{max} = 30,00 KV/cm, determine o potencial da cúpula, bem como sua incerteza. Dica: Despreze a incerteza em E_{max} e considere $\sqrt{2} \approx 1,4$.

Medida	d _{max} (mm)
1	42,0
2	40,0
3	41,0
4	39,0
5	43,0