<u>LEC-03</u>	FUNCTION SPACES
Ex	(i) X = C (2)
	$ f _{C^{0}(\Omega)} := \sup_{x \in \Omega} f(x) $
	$(i) X = C^{k}(\mathcal{Q})$
	= { DIF E C°(N), IXI & K}
	$f:\mathbb{R}^n \to \mathbb{R}$
	$\alpha = \langle \alpha_1, \alpha_2, \ldots, \alpha_n \rangle$
	$\mathcal{D}^{d} = \mathcal{D}^{d_{1}}_{X_{1}} \mathcal{D}^{d_{2}}_{X_{2}} \cdots \mathcal{D}^{d_{n}}_{X_{n}}$
	$ \alpha = \sum_{i=1}^{n} \alpha_i$
	$ f _{C^k(\Omega)} := \sum D^r f _{C^0(\Omega)}$
Ex:	Hölder spaces: Co, o re [0,1]
	$C^{0,\delta}(x) = \{f: x \rightarrow \mathbb{R}: f(y) - f(x) \leq C x - y ^{\delta},$
	Holder Subnorm: #xry \ 23
	$[f]_{C^{0,\delta}} = \sup_{x,y \in J_{L}} \frac{ f(y) - f(x) }{ x - y r}$
	~ + <i>y</i>
	f co,r = f co(r) + [f]co,r

```
In general,
        Ck, r(n) = ff: Dfeco, 141 < k3
       Holder Sub-norm:
       [f]_{C^{k,\delta}(VZ)} = \sum_{|\alpha| \in K} \sup_{x,y \in JZ} \frac{|D^{\alpha}f(y) - D^{\alpha}f(x)|}{|x-y|^{\delta}}
        ||f|| ck, r(2) = ||f|| ck(2) + [f] ck, r(2)
tad: C°(vr), C*(vr), C°(vr), C*(vr); Banach spaces.
 Ex: L-spaces (15P50)
     15P<00: 6P(E) = { f: E → R: Sifipay < 00}
      p=\infty: h^{\ell}(E) = \{f: E \rightarrow IR : ess sup | f | < \infty \}
         ess sup 17 = inf { k > 0 : 18 = k a.e.}
         f=g a.e. ⇒ [fd4 = ] gd4
             LP(E) = LP(E)/N 15P500
         f∈LP(E) >> F is class of functions
                         [17] du <0
```

one example:

$$T_q: L^p \rightarrow IR$$

$$\frac{1}{P} + \frac{1}{P'} = 1$$

1/m :

$$J: L^{p'} \rightarrow (L^p)^* \qquad 1 \leqslant p < \infty ;$$

$$\mathcal{I}(g) = \mathcal{I}_g$$

	Dual space (LP)*	Separable	Refferive
	۲ (LP) *	1	11-51EXIVE
LP, Kp<00	<u></u> ∠₽′	Yes	Yes
			_
L	L [∞]	Yes	40!
L^{∞}	Bigger than	NO	NOI
	ر1		•

Holder's Inequality:

$$f \in L^{2}(E)$$
, $g \in L^{2}(E)$, $f + f, = 1$, $f \in L^{2}(E)$

i) $f g \in L^{4}(E)$

ii) $ll f g | l_{L^{1}(E)} \leq \|fl|_{L^{p}(E)} \|gl|_{L^{p}(E)}$

iii) $ll f g | l_{L^{1}(E)} \leq \|fl|_{L^{p}(E)} \|gl|_{L^{p}(E)}$
 $e \in L^{p}$
 e

Def: Let $\emptyset \in C_c^{\infty}(\mathbb{R}^n)$ and $\int_{\mathbb{R}^n} \emptyset(x) dx = 4$ with support B(0,1) $\varphi_{\varepsilon}(x) = \frac{1}{\varepsilon^n} \varphi(\frac{x}{\varepsilon})$ $\Rightarrow S(i) \varphi(x) \in L'$ $\begin{cases} (ii) & \int_{\mathbb{R}^n} P_{\varepsilon}(x) dx = 1 \end{cases}$ B(0, E)

Eq. 3: Called a Bequence of mollifiers.

 $\beta(\kappa) \longrightarrow 0$ & $\xi \to 0$ a.e.

(*)