Chapter 11: Vector Spaces May 4, 2023

Contents

1	General approach			
	1.1	Struct	sure of a Vector Space	1
	1.2	Definti	ion	1
		1.2.1	Property	1
			Example	
	1.3	Vector	Subspaces (= linear subspaces) $\dots \dots \dots \dots \dots \dots$	2
			Definition	
			Propositions	

During this chapter, \mathbb{K} will be either \mathbb{R} or \mathbb{C} .

1 General approach

1.1 Structure of a Vector Space

Let E be a set, we define two operations:

• An internal operation:

$$\bigoplus: E \times E \xrightarrow{I} E$$

$$(u, v) \longmapsto u + v$$

• An external operation:

$$\odot : \quad \mathbb{K} \times E \xrightarrow{\Gamma} E$$

$$(\lambda, v) \longmapsto \lambda u$$

1.2 Defintion

We say that (E, \oplus, \odot) is a vector space if $\forall (u, v, w) \in E^3$ we have:

•
$$u + (v + w) = (u + v) + w \oplus associative$$

•
$$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$$
 (\oplus is commutative)

•
$$\exists 0_E \in E \text{ such that } u + 0_E = 0_E + u = u \text{ (Existence of a neutral element for } \oplus)$$

•
$$\exists -u \in E, u + (-u) = (-u) + u = 0_E$$
 (Existence of a symmetrical element for \oplus)

And $\forall (u, v) \in E^2$ and $\forall (\alpha, \beta) \in \mathbb{K}^2$ we have:

•
$$(\alpha + \beta) \cdot u = \alpha \cdot u + \beta \cdot u \ (\odot \text{ is distributive})$$

•
$$\alpha(u+v) = \alpha \cdot u + \alpha \cdot v$$
 (\odot is distributive)

•
$$(\alpha\beta)u = \alpha(\beta u)$$
 (\odot is associative)

•
$$1_{\mathbb{K}} \cdot u = u$$
 (Where $1_{\mathbb{K}}$ is the neutral element of multiplication of element of \mathbb{K})

Let (E, \oplus, \odot) be a \mathbb{K} -Vector Space,

Any element from E is called a vector and any element from \mathbb{K} is called a scalar. 0_E is called the zero vector.

1.2.1 Property

 $\forall u \in E \text{ and } \forall \alpha \in \mathbb{K} \text{ we have:}$

1.
$$\alpha \cdot 0_E = 0_E$$

2.
$$0_{\mathbb{K}} \cdot u = 0_{\mathbb{E}}$$

3.
$$\alpha \cdot u = 0_E \Leftrightarrow \alpha = 0_K \text{ or } u = 0_E$$

1.2.2 Example

...

1.3 Vector Subspaces (= linear subspaces)

1.3.1 Definition

Let E be a \mathbb{K} -Vector Space:

- $F \subset E$ (F is a subset of E)
- $F \neq \emptyset$ (F is non-empty, $0_E \in F$)
- $\forall (u,v) \in F^2, \forall \alpha \in \mathbb{K}, (\alpha \cdot u + v) \in F$ (F is closed under linear combination)

1.3.2 Propositions

1.3.2.1 Proposition 1

Let E be a \mathbb{K} -Vector Space:

$$F \subset E$$
 is a Vector SubSpace of $E \Longrightarrow 0_E \in F$
 \iff

1.3.2.2 Example

$$E = \mathbb{R}^{3}$$

$$F_{1} = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^{3}, x + y + z = 1 \right\} \text{ and } F'_{1} = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^{3}, x + y + z = 0 \right\}$$

$$0_{E} \notin F_{1} \Longrightarrow F_{1} \text{ is not a Vector SubSpace of } E$$

$$\forall (u,v) \in F'_1^2, \ \forall \alpha \in \mathbb{R}, \ u = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \text{ and } v = \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix}$$

 $\alpha u + v = \alpha(x, y, z) + (x', y', z') = 0_E \in F_1' \Longrightarrow F_1'$ is a Vector SubSpace of E TODO A MINIPAGE FOR THE EXAMPLE AND ADD THE OTHER EXAMPLES

1.3.2.3 Proposition 2

Let E be a Vector Space, F and G two Vector SubSpaces of E. Then:

- 1. $F \cap G \subset E$, $F \cap G$ is a Vector SubSpace of E
- 2. TO FINISH