Linear Regression

Why?

Slope and Intercept

Simple

X-axis: Height (inches)

Residuals

$$S(\hat{\beta}_0, \hat{\beta}_1) = \sum_{i=1}^n (y_i - \hat{y}_i)^2$$
$$S(\hat{\beta}_0, \hat{\beta}_1) = \sum_{i=1}^n (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i)^2$$

Perceptron

Fig: Multiplying inputs with weights for 5 inputs

Not Simple

```
y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + ... + \beta_p x_{ip} + \epsilon

where, for i = n observations:

y_i = \text{dependent variable}

x_i = \text{expanatory variables}

\beta_0 = \text{y-intercept (constant term)}

\beta_p = \text{slope coefficients for each explanatory variable}

\epsilon = \text{the model's error term (also known as the residuals)}
```


Regression line

Loss

$$J = rac{1}{n} \sum_{i=1}^n (pred_i - y_i)^2$$

Workflow

Logistic Regression

Linear Regression	Logistic Regression
Target is an interval variable	Target is discrete (binary or ordinal) variable
Predicted values are the mean of the target variable at the given values of the input variable	Predicted values are the probability of the particular levels of the given values of the input variable
Solve regression problems	Solve classification problems
Example : What is the Temperature?	Example : Will it rain or not?
Graph is straight line	Graph is S-curve
Y 68HK 58HK 48HK 28HK 1Cr 2Cr 3Cr 4Cr 5Cr 6Cr X	20 0 20

Sigmoid

Sigmoid Function Graph

$$f(x) = \frac{1}{1 + e^{-(x)}}$$

