Tutorial 9

SC-220 Groups and linear algebra Autumn 2019 (Change of Basis, System of linear equations)

- (1) Show that the vectors $v_1 = (1, 1, 0, 0), v_2 = (0, 0, 1, 1), v_3 = (1, 0, 0, 4), v_4 = (0, 0, 0, 2)$ form a basis of \mathbb{R}^4 . Find the coordinates of the vector v = (1, 3, -1, 2) in this basis.
- (2) Let T be a linear operator defined on \mathbb{R}^3 defined by $T(x_1, x_2, x_3) = (3x_1 + x_3, -2x_1 + x_2, -x_1 + 2x_2 + 4x_3)$
 - a) What is matrix of T in the stadard basis of \mathbb{R}^3
 - b) What is matrix of T relative to the basis $(\alpha_1, \alpha_2, \alpha_3)$ where $\alpha_1 = (1, 0, 1), \alpha_2 = (-1, 2, 1), \alpha_3 = (2, 1, 1)$
 - c) Find matrix for T^{-1} in both these bases.
- (3) Let $\mathcal{B} = \{e_1, e_2\}$ where $e_1 = (1, 0)$ and $e_2 = (0, 1)$ be the standard basis in \mathbb{R}^2 . Find the matrix representation of the operator $P_{\theta} : \mathbb{R}^2 \to R^2$ in basis \mathcal{B} which is projection onto the line which is at an angle θ with respect to the x-axis. Do the same for $R_{\theta} : \mathbb{R}^2 \to R^2$ which is refection about this line. (You can assume that $0 < \theta < \frac{\pi}{2}$)
- (4) Check if the following system of equations has a solution. If yes find the solution(s)

$$2x_1 + 4x_2 + 6x_3 = 2$$

$$x_1 + 2x_2 + 3x_3 = 1$$

$$x_1 + x_3 = -3$$

$$2x_1 + 4x_2 = 8$$

(5) Check if the following system of equations has a solution. If yes find the solution(s)

$$x_1 + 2x_2 + 2x_3 + 3x_4 = 4$$

$$2x_1 + 4x_2 + x_3 + 3x_4 = 5$$

$$3x_1 + 6x_2 + x_3 + 4x_4 = 7$$

(6) Let T be a linear operator on \mathbb{R}^3 , the matrix of T in the standard basis is given by

$$\begin{pmatrix} 1 & 2 & 1 \\ 0 & 1 & 1 \\ -1 & 3 & 4 \end{pmatrix}$$

1

Find a basis for the range of T and the null space of T.