DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution and Fully Connected CRFs

Zhipeng Yan, Moyuan Huang, Hao Jiang

5/1/2017

Outline

Background

semantic segmentation

Objective, Dataset, Basic Idea

Predecessor: Fully Convolutional network

Fully Convolution, Deconvolution, Skip path

DeepLab

Atrous Convolution

ASPP

Fully Connected CRFs

Background: semantic segmentation

Semantic Segmentation

One of the most popular topics in Computer Vision

Like image classification, object detection...

The objective

Partition the image into segments according to different semantic groups

Semantic Segmentation

Example

Split the image according to object boundaries

Colors each object according to its semantic meanings

Semantic Segmentation - Idea

Problems:

- Not end-to-end
- Fixed size input & output
- Small/restricted Field of View
- Low performance
- Time consuming

Solved at once by Fully Convolutional Network (J. Long, E. Shelhamer, T. Darrell

Fully Convolutional Networks

Jonathan Long et al. CVPR 2015 & PAMI 2016

Previous CNN

Previous CNN downsized the output layer-by-layer in order to reduce parameter.

Very harmful for dense classification tasks like image segmentation: Lot of information

Can design a network specifically for the Segmentation task?

Fully Convolutional Networks

Input size can be arbitrary.

Remove fully connected layer Practical use

30% relative improvement on previous state-of-the-art

Avoid fully connected layers in traditional CNNs which cause the loss of spatial information

5x efficiency

Reduced parameters End-to-end training

Fully Convolutional Networks

3 Major innovations on network architecture

Removal of fully connected layers

Deconvolution

Skip path

Fully Convolutional Networks

Removal of fully connected layers

Dense output with relative size to the input

Replace with 1 x 1 convolutions to transform feature maps to class-wise predictions

Respons map with "tabby cat" kernel

Fully Convolutional Networks

Deconvolution

Used for retrieving information, can be regarded as a reverse of convolution

Stride size so as to avoid overlap: though NNs can adjust the corresponding weight to avoid them, it's really a struggle to avoid it completely.

Fully Convolutional Networks

Skip path

Concatenate low level features with high level features to handle multiscale objects

Provide options for different output sizes

Skip layer visualization

Skip Layer

The skip layer technique is widely used in many popular deep networks such as ResNet, Inside-Outside Net, HED. The advantage as well as motivation is that it allows more lower level information to reach top level.

With skip layer, we can get a rather finer pixel output, instead of a small coarse one.

Upsampling is used to resolve the size incompatible problem between different layer. Combining is done by simple sum operation.

Some Visualization

- FCN architecture visualization with Caffe
- A distill dynamic paper

Part II:

DeepLab - Semantic Image Segmentation with DCNN, ASPP and Fully Connected FRFs

DeepLab

Unresolved challenges:

Reduced feature resolution

8 - 32 times downsample

Poor prediction on multi-scale objects

High uncertainty near object boundaries

Trucks sometimes can have size of half the image

Intrinsic problem of CNN

DeepLab: resolution

Why feature resolution reduced?

Figure 1. Fully convolutional networks can efficiently learn to make dense predictions for per-pixel tasks like semantic segmentation.

DeepLab: Challenge 1

How to solve reduced resolution?

Do not downsample

Convolution on large images \Rightarrow Small FOV

Enlarge kernel size

Use Atrous Convolution.

 $O(n^2)$ more parameters \Rightarrow getting close to fully connected layer, slow training, overfitting...

- a.k.a Dilated convolution
- Large FOV with little parameters ⇒ Kill two birds with one stone!

DeepLab: Challenge 2

Multi-scale object problem?

Objects of the same type can be hugely different in size

Previous CNN (AlexNet, VGGnet, FCN) models yield bad result How to get features with different scale?

Multi scale training, or

Spatial Pyramid Pooling

Combined with Atrous Convolution, we have Atrous Spatial Pyramid Pooling

DeepLab: Challenge 2

Atrous Spatial Pyramid Pooling

Motivated by the spatial pyramid pooling

Filter maps with multiple scales controlled by **dilation rate**

DeepLab: Challenge 3

Poor performance near object boundaries

- Intrinsic CNN problem
- Convolution gives smooth outputs in small neighborhoods

How Buting power trestal tearies reputity at 12 oundaries

- Conditional Random Fields

DeepLab: Challenge 3

Conditional Random Field (CRF) is a graphical model where nodes are locally connected. It calculates the output probabilities at each node given neighborhood information w.r.t. some predefined energy function

$$p(extbf{\emph{Y}}_v| extbf{\emph{X}}, extbf{\emph{Y}}_w,w
eq v)=p(extbf{\emph{Y}}_v| extbf{\emph{X}}, extbf{\emph{Y}}_w,w\sim v)$$

Local approximation - only information at adjacent nodes is taken into consideration

DCNN's outputs probability vectors at each pixel, then CRF refines the output

[~] means that u and v are connected in G.

DeepLab: Challenge 3

Training of CRF:

Energy definition (Identical to [Krahenbuhl et al])

$$\theta_{ij}(x_i, x_j) = \mu(x_i, x_j) \left[w_1 \exp\left(-\frac{||p_i - p_j||^2}{2\sigma_{\alpha}^2} - \frac{||I_i - I_j||^2}{2\sigma_{\beta}^2}\right) + w_2 \exp\left(-\frac{||p_i - p_j||^2}{2\sigma_{\gamma}^2}\right) \right]$$
(3)

Minimization through iterative compatibility transform

DeepLab: Challenge 3

Able to capture edge details and iteratively refine the prediction

Efficient CRF [Krahenbuhl et al] achieves 0.5 sec/image on PASCAL VOC.

Fig. 5: Score map (input before softmax function) and belief map (output of softmax function) for Aeroplane. We show the score (1st row) and belief (2nd row) maps after each mean field iteration. The output of last DCNN layer is used as input to the mean field inference.

DeepLab: Effectiveness of ASPP and CRF

Experiments with

Different kernel sizes

Before / After CRF

Results

Larger dilation ⇒ higher performance, less parameters

Kernel	Rate	FOV	Params	Speed	bef/aft CRF
7×7	4	224	134.3M	1.44	64.38 / 67.64
4×4	4	128	65.1M	2.90	59.80 / 63.74
4×4	8	224	65.1M	2.90	63.41 / 67.14
3×3	12	224	20.5M	4.84	62.25 / 67.64

DeepLab Experiment Detail 1

"poly" learning rate policy

More effective way to change the learning rate

 $(1 - \frac{iter}{max_iter})^{power}$

Yields better result

Learning policy	Batch size	Iteration	mean IOU	
step	30	6K	62.25	
poly	30	6K	63.42	
poly	30	10K	64.90	
poly poly poly	10	10K	64.71	
poly	10	20K	65.88	

DeepLab Experiment Detail 2

Various training tricks

MSC	COCO	Aug	LargeFOV	ASPP	CRF	mIOU
						68.72
\						71.27
√	✓					73.28
1	✓	✓				74.87
1	V	1	✓			75.54
1	✓	✓		✓		76.35
√	1	1		✓	1	77.69

TABLE 4: Employing ResNet-101 for DeepLab on PASCAL VOC 2012 *val* set. **MSC**: Employing mutli-scale inputs with max fusion. **COCO**: Models pretrained on MS-COCO. **Aug**: Data augmentation by randomly rescaling inputs.

DeepLab: Results on PASCAL VOC 2012

Atrous Spatial Pyramid Pooling

Method	before CRF	after CRF		
LargeFOV	65.76	69.84		
ASPP-S	66.98	69.73		
ASPP-L	68.96	71.57		

TABLE 3: Effect of ASPP on PASCAL VOC 2012 val set performance (mean IOU) for VGG-16 based DeepLab model. **LargeFOV**: single branch, r = 12. **ASPP-S**: four branches, $r = \{2, 4, 8, 12\}$. **ASPP-L**: four branches, $r = \{6, 12, 18, 24\}$.

DeepLab: Results on PASCAL VOC 2012

Fig. 8: Qualitative segmentation results with ASPP compared to the baseline LargeFOV model. The **ASPP-L** model, employing multiple *large* FOVs can successfully capture objects as well as image context at multiple scales.

Performance on PASCAL VOC 2012 - Quantitative

Method	mIOU
DeepLab-CRF-LargeFOV-COCO [58]	72.7
MERL DEEP GCRF [89]	73.2
CRF-RNN [59]	74.7
POSTECH_DeconvNet_CRF_VOC [61]	74.8
BoxSup [60]	75.2
Context + CRF-RNN [76]	75.3
QO_4^{mres} [66]	75.5
DeepLab-CRF-Attention [17]	75.7
CentraleSuperBoundaries++ [18]	76.0
DeepLab-CRF-Attention-DT [63]	76.3
H-ReNet + DenseCRF [90]	76.8
LRR_4x_COCO [91]	76.8
DPN [62]	77.5
Adelaide_Context [40]	77.8
Oxford_TVG_HO_CRF [88]	77.9
Context CRF + Guidance CRF [92]	78.1
Adelaide_VeryDeep_FCN_VOC [93]	79.1
DeepLab-CRF (ResNet-101)	79.7

TABLE 5: Performance on PASCAL VOC 2012 *test* set. We have added some results from recent arXiv papers on top of the official leadearboard results.

Backbone network: VGG-16 vs. ResNet-101

DeepLab based on ResNet-101 delivers better segmentation results

Fig. 9: DeepLab results based on VGG-16 net or ResNet-101 before and after CRF. The CRF is critical for accurate prediction along object boundaries with VGG-16, whereas ResNet-101 has acceptable performance even before CRF.

Fig. 10: (a) Trimap examples (top-left: image. top-right: ground-truth. bottom-left: trimap of 2 pixels. bottom-right: trimap of 10 pixels). (b) Pixel mean IOU as a function of the band width around the object boundaries when employing VGG-16 or ResNet-101 before and after CRF.

DeepLab Experiment Results

PASCAL-Context: Quantitative results

Evaluation Results:

ResNet-101 is better

ASPP is more efficient than large FOV

Using CRF improves the score

Method	MSC	coco	Aug	LargeFOV	ASPP	CRF	mIOU
VGG-16							
DeepLab [38]				✓			37.6
DeepLab [38]				✓		✓	39.6
ResNet-101							
DeepLab							39.6
DeepLab	1		1				41.4
DeepLab	1	✓	1				42.9
DeepLab	1	1	1	✓			43.5
DeepLab	1	1	1		1		44.7
DeepLab	1	1	1		✓	✓	45.7
O ₂ P [45]						· ·	18.1
CFM [51]							34.4
FCN-8s [14]							37.8
CRF-RNN [59]							39.3
ParseNet [86]							40.4
BoxSup [60]							40.5
HO_CRF [88]							41.3
Context [40]							43.3
VeryDeep [93]							44.5

TABLE 6: Comparison with other state-of-art methods on PASCAL-Context dataset.

Dataset: Cityscapes

Street views of 50 different cities

Large-scale dataset

Image size 1024 x 2048

Approx. 3000 training images and hundreds of validation images

20,000 augmented images with coarse label

Cityscapes Quantitative results

3rd place on the leaderboard

63.1% and 64.8% on pre-release

and official versions resp.

Method	mIOU
pre-release version of dataset	
Adelaide_Context [40]	66.4
FCN-8s [14]	65.3
DeepLab-CRF-LargeFOV-StrongWeak [58]	64.8
DeepLab-CRF-LargeFOV [38]	63.1
CRF-RNN [59]	62.5
DPN [62]	59.1
Segnet basic [100]	57.0
Segnet extended [100]	56.1
official version	
Adelaide_Context [40]	71.6
Dilation10 [76]	67.1
DPN [62]	66.8
Pixel-level Encoding [101]	64.3
DeepLab-CRF (ResNet-101)	70.4

TABLE 8: Test set results on the Cityscapes dataset, comparing our DeepLab system with other state-of-art methods.

Cityscapes val set result:

Full	Aug	LargeFOV	ASPP	CRF	mIOU
VGG-1	16				
		✓			62.97
		✓		✓	64.18
1		✓			64.89
✓		✓		✓	65.94
ResNe	-101				
1					66.6
1		✓			69.2
1			✓		70.4
1	✓		✓		71.0
1	✓		✓	✓	71.4

TABLE 9: Val set results on Cityscapes dataset. **Full**: model trained with full resolution images.

Summary

DeepLab's model significantly advances the state-of-art in several challenging datasets

Successful combine the ideas from the deep convolutional neural networks and fully-connected conditional random field to produce accurate predictions and detailed segmentation maps

Reference:

- L-C Chen, G. Papandreou, I. Kokkions, K. Murphy, and A.L. Yuille. Semantic Image Segmentation with Deep Convolutional Neural Networks. International Conference on Learning Representations. 2015.
- Jon Long, Evan Shelhamer, Trevor Darrell. Fully Convolutional Networks for Semantic Segmentation.
 Computer Vision and Pattern Recognition. 2015
- P Krähenbühl, V Koltun. Efficient Inference in Fully Connected CRFs with Gaussian Edge Potentials. Neural Information Processing Systems. 2011

Dataset: PASCAL-Person-Part

Contains detailed part annotations for each person, including eyes, nose.

Merge the annotations to be head, torso, upper/lower arms and upper. Lower legs

Resulting in 6 person part class and one background

Dataset: PASCAL-Person-Part

Method	MSC	COCO	Aug	LFOV	ASPP	CRF	mIOU
ResNet-101							
DeepLab							58.90
DeepLab	\		1				63.10
DeepLab	V	✓	1				64.40
DeepLab	✓	✓	✓			✓	64.94
DeepLab	√	√	√	√			62.18
DeepLab	✓	✓	1	11	✓		62.76
Attention [17]							56.39
HAZN [95]							57.54
LG-LSTM [96]							57.97
Graph LSTM [97]							60.16

TABLE 7: Comparison with other state-of-art methods on PASCAL-Person-Part dataset.

