

MATH 3333 PRACTICE PROBLEM SET 2

Problem 1. Suppose A and B are two matrices of the same size and X is a column vector such that AX and BX are defined.

State whether following statements are true of false. If true, briefly justify the statement. If false, provide a counterexample.

- (a) If $A + B = \mathbf{0}$ then at least one of A and B should be $\mathbf{0}$.

 Solution: False. We can take A to be any non zero matrix and B to be -A. For an example if $A = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 0 & 0 \\ 0 & -1 \end{bmatrix}$ then A + B = 0 but neither A nor B is a zero matrix.
- (b) If $A = B^T$ then A and B are both square matrices.

Solution: False. There are many examples. Take $A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix}$. Then

 $A = B^T$ but neither are square.

(c) If A is symmetric and $A = 2B^T$ then B is also symmetric. Solution: True. We have $A = 2B^T$

$$\Rightarrow A^T = (2B^T)^T = 2(B^T)^T = 2B$$

Since A is symmetric, $A^T = A$. So from the last equation, we have A = 2B

Since it is given, $A = 2B^T$, this means $2B = 2B^T \Rightarrow B = B^T \Rightarrow B$ is symmetric.

- (d) If A and B are symmetric then so is 2A 5B. Solution: True. Since A and B are symmetric, we have $A^T = A$ and $B^T = B$. So $(2A 5B)^T = 2A^T 5B^T = 2A 5B$. Hence 2A 5B is symmetric.
- (e) If A and B are skew-symmetric then so is 2A 5B. Solution: True. Since A and B are symmetric, we have $A^T = -A$ and $B^T = -B$.

So $(2A - 5B)^T = 2A^T - 5B^T = 2(-A) - 5(-B) = -(2A - 5B)$. Hence 2A - 5B is skew-symmetric.

- (f) If A is a square matrix then $A+A^T$ is always symmetric. Solution: True. $(A+A^T)^T=A^T+(A^T)^T=A^T+A=A+A^T$
- (g) If A is a square matrix then $2A + 3A^T$ is always symmetric. **Solution:** False. To see this we can take the transpose of $2A + 3A^T$. $(2A + 3A^T)^T = 2A^T + 3(A^T)^T = 2A^T + 3A$ which is not equal to $2A + 3A^T$ in general.

As a counter example, take $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$. Then $2A + 3A^T = \begin{bmatrix} 0 & 2 \\ 3 & 0 \end{bmatrix}$ which is not symmetric.

Problem 2. Suppose A is a matrix and X is a column vector such that AX is defined. State whether following statements are true of false. If true, briefly justify the statement. If false, provide a counterexample.

- (a) If AX has a zero entry then A has a row of zeros. Solution: False. One counter example is $A = \begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix}$ and $X = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$
- (b) If A has a row of zero then AX should have a zero entry. **Solution:** True. If row i of A is all zero then the dot product between that row and X will be zero. Hence the entry i of the column vector AX will be 0.
- (c) If AX = 0 and $X \neq 0$ then A = 0. Solution: False. One counter example is $A = \begin{bmatrix} 2 & -1 \\ 0 & 0 \end{bmatrix}$ and $X = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$
- (d) If V = AX then V is in the range of T_A where T_A is the transformation induced by A. Solution: True. $T_A(X) = AX$. If V = AX then $T_A(X) = V$. Hence V is in the range of T_A .
- (e) If V = AX then V is in col(A). Solution: True. If $X = \begin{bmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{bmatrix}$

then $V = AX = x_1A_1 + x_2A_2 + \dots + x_nA_n$ where A_i means the column i of A (see class notes on Sep. 1 Hence V is a linear combination of the columns of A. Hence it's in col(A).

Problem 3. Let
$$A = \begin{bmatrix} 4 & 5 & 1 & -1 \\ 2 & 0 & 3 & 6 \\ 1 & -1 & 0 & 4 \end{bmatrix}, B = \begin{bmatrix} 1 & 1 & 0 \\ -4 & 0 & 2 \\ 1 & 5 & 0 \\ 2 & -1 & 5 \end{bmatrix}$$
 and $V = \begin{bmatrix} 1 & -2 & 2 \end{bmatrix}^T$

Compute the following whenever they are defined

(a) AV Solution: Undefined

(b)
$$A^TV$$
 Solution:
$$\begin{bmatrix} 2 \\ 3 \\ -5 \\ -5 \end{bmatrix}$$
(c) $A(A^TV)$ Solution:
$$\begin{bmatrix} 23 \\ -41 \\ -21 \end{bmatrix}$$

(c)
$$A(A^TV)$$
 Solution:
$$\begin{bmatrix} 23 \\ -41 \\ -21 \end{bmatrix}$$

(d) BV + 6A Solution: Undefined

(e)
$$-2A^TV + BV$$
 Solution: $-2\begin{bmatrix} 2\\3\\-5\\-5\end{bmatrix} + \begin{bmatrix} -1\\0\\-9\\14\end{bmatrix} = \begin{bmatrix} -5\\-6\\1\\24\end{bmatrix}$

Problem 4. In each case, determine all values of s and t such that the given matrix is symmetric.

(a)
$$\begin{bmatrix} s & t \\ st & 1 \end{bmatrix}$$

Solution: If this matrix is symmetric, then st = t. This implies either t = 0 or if not s=1. So the matrix is symmetric in the following cases.

• t = 0 and s can be anything.

•
$$t \neq 0$$
 and $s = 1$

(b)
$$\begin{bmatrix} s & 2s & st \\ t & -1 & s \\ t & s^2 & s \end{bmatrix}$$

Solution: We have the following equations. 2s = t, st = t and $s = s^2$ $s = s^2 \Rightarrow s = 0$ or s = 1. Case 1: s=0 In this case, the first equation becomes t = 0.

s = 0, t = 0 satisfies the second equation.

Case 2: s=1. In this case, the second equation becomes 2 = t. Then s = 1, t = 2 satisfies the second equation.

Hence the matrix is symmetric for following values of s and t.

•
$$s = 0, t = 0$$

•
$$s = 1, t = 2$$

Problem 5.

(a) Consider the function $f: \mathbb{R}^4 \to \mathbb{R}^2$ given by

$$f(\mathbf{X}) = \begin{bmatrix} 2x_1 - x_3 \\ x_2 + 3x_3 + x_4 \end{bmatrix} \quad \text{where } \mathbf{X} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$$

Find a matrix
$$A$$
 such that $f = T_A$
Solution: $A = \begin{bmatrix} 2 & 0 & -1 & 0 \\ 0 & 1 & 3 & 1 \end{bmatrix}$

(b) Consider the function $g: \mathbb{R}^2 \to \mathbb{R}^3$ given by

$$g(\mathbf{X}) = \begin{bmatrix} x_1 \\ x_2 \\ 0 \end{bmatrix}$$
 where $\mathbf{X} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$

Find a matrix B such that $g = T_B$

Solution:
$$B = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$$

(c) Suppose $h: \mathbb{R}^4 \to \mathbb{R}^3$ is given by $h = g \circ f$. Compute h(X) where $\mathbf{X} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ and then find

a matrix
$$C$$
 such that $h = T_C$.

Solution: Take $X = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$.

Then
$$h(X) = g(f(X)) = g\left(\begin{bmatrix} 2x_1 - x_3 \\ x_2 + 3x_3 + x_4 \end{bmatrix}\right) = \begin{bmatrix} 2x_1 - x_3 \\ x_2 + 3x_3 + x_4 \end{bmatrix}$$

Hence
$$C = \begin{bmatrix} 2 & 0 & -1 & 0 \\ 0 & 1 & 3 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

(d) How is C related to A and B? Solution: C = BA

Problem 6. Suppose
$$f: \mathbb{R}^2 \to \mathbb{R}^4$$
 is given by $f\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} x_1 - x_2 \\ -x_1 + 7x_2 \\ 0 \\ x_2 \end{bmatrix}$.

(a) Find two column vectors v_1 and v_2 in \mathbb{R}^4 such that range of f is the span $\{v_1, v_2\}$.

Solution:
$$f\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} x_1 - x_2 \\ -x_1 + 7x_2 \\ 0 \\ x_2 \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ -1 \\ 0 \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} -1 \\ 7 \\ 0 \\ 1 \end{bmatrix}.$$
Hence we can take $v_1 = \begin{bmatrix} 1 \\ -1 \\ 0 \\ 0 \end{bmatrix}$ and $v_2 = \begin{bmatrix} -1 \\ 7 \\ 0 \\ 1 \end{bmatrix}$

(b) If $V = 7v_1 + 11v_2$ then find a column vector $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ in \mathbb{R}^2 such that $f\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = V$ Solution: $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 7 \\ 11 \end{bmatrix}$

Problem 7. Let A be an $m \times n$ matrix and T_A be the transform it induces. That is the function $T_A : \mathbb{R}^n \to \mathbb{R}^m$ is given by $T_A(X) = AX$. Prove the following statements.

(a) T_A is an injective function if and only if the linear system AX = b has a unique solution for any $m \times 1$ column vector b in col(A).

Solution: Take any b in col(A). We proved in the class, range of T_A (set of outputs of T_A) is the col(A). So b is an output of T_A .

 T_A is injective

- ⇔ There is only one input maps to any output.
- \Leftrightarrow For any b in col(A) there is only one X such that $T_A(X) = b$
- \Leftrightarrow For any b in col(A) there is only one X such that AX = b
- \Leftrightarrow For any b in col(A) the linear system AX = b has a unique solution.
- (b) T_A is a surjective function if and only if any $m \times 1$ column vector b is in the column space of A. Solution: If you have not seen the term "surjective" before: A map is surjective if the range of the map (the set of outputs) is equal to the target space (co-domain).

 T_A is surjective

- \Leftrightarrow The range of T_A is the co-domain \mathbb{R}^m
- \Leftrightarrow Any $m \times 1$ column vector b is in the range of T_A
- \Leftrightarrow Any $m \times 1$ column vector b is in the column space of A

(c) If T_A is both injective and surjective, what can you say about the solutions to the linear system AX = b for any $m \times 1$ column vector b? Solution: Combining (a) and (b), we can say if T_A is both injective and surjective, then the linear system AX = b has a unique solution for any $m \times 1$ column vec

Problem 8. Find the inverse using elementary row operations.

$$(1) \begin{bmatrix} -1 & 1 & 2 \\ 0 & 2 & -1 \\ 0 & 1 & -1 \end{bmatrix}$$
Solution:
$$\begin{bmatrix} -1 & 1 & 2 \\ 0 & 2 & -1 \\ 0 & 1 & -1 \end{bmatrix} \qquad \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$R_1 \to -R_1 \begin{bmatrix} 1 & -1 & -2 \\ 0 & 2 & -1 \\ 0 & 1 & -1 \end{bmatrix} \qquad \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$R_2 \to R_2/2 \begin{bmatrix} 1 & -1 & -2 \\ 0 & 1 & -\frac{1}{2} \\ 0 & 1 & -1 \end{bmatrix} \qquad \begin{bmatrix} -1 & 0 & 0 \\ 0 & \frac{1}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$R_3 \to R_3 - R_2 \begin{bmatrix} 1 & -1 & -2 \\ 0 & 1 & -\frac{1}{2} \\ 0 & 0 & -\frac{1}{2} \end{bmatrix} \qquad \begin{bmatrix} -1 & 0 & 0 \\ 0 & \frac{1}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$R_1 \to R_1 + R_2 \begin{bmatrix} 1 & 0 & -\frac{5}{2} \\ 0 & 1 & -\frac{1}{2} \\ 0 & 0 & -\frac{1}{2} \end{bmatrix} \qquad \begin{bmatrix} -1 & \frac{1}{2} & 0 \\ 0 & \frac{1}{2} & 0 \\ 0 & -\frac{1}{2} & 1 \end{bmatrix}$$

$$R_2 \to R_2 - R_3 \begin{bmatrix} 1 & 0 & -\frac{5}{2} \\ 0 & 1 & 0 \\ 0 & 0 & -\frac{1}{2} \end{bmatrix} \qquad \begin{bmatrix} -1 & \frac{1}{2} & 0 \\ 0 & \frac{1}{2} & 0 \\ 0 & 1 & -1 \\ 0 & -\frac{1}{2} & 1 \end{bmatrix}$$

$$R_1 \to R_1 - 5R_3 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -\frac{1}{2} \end{bmatrix} \qquad \begin{bmatrix} -1 & 3 & -5 \\ 0 & 1 & -1 \\ 0 & -\frac{1}{2} & 1 \end{bmatrix}$$

$$R_3 \to -2R_3 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad \begin{bmatrix} -1 & 3 & -5 \\ 0 & 1 & -1 \\ 0 & -\frac{1}{2} & 1 \end{bmatrix}$$

Hence the inverse of the given matrix is $\begin{bmatrix} -1 & 3 & -5 \\ 0 & 1 & -1 \\ 0 & 1 & -2 \end{bmatrix}$

$$(2) \begin{bmatrix} 1 & 0 & 7 & 5 \\ 0 & 1 & 3 & 6 \\ 1 & -1 & 5 & 2 \\ 1 & -1 & 5 & 1 \end{bmatrix}$$

(2) $\begin{bmatrix} 1 & 0 & 7 & 5 \\ 0 & 1 & 3 & 6 \\ 1 & -1 & 5 & 2 \\ 1 & -1 & 5 & 1 \end{bmatrix}$ Solution: $\begin{bmatrix} 1 & 0 & 7 & 5 \\ 0 & 1 & 3 & 6 \\ 1 & -1 & 5 & 2 \\ 1 & -1 & 5 & 1 \end{bmatrix} \qquad \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} R_3 \to R_3 - R_1 \text{ and } R_4 \to R_4 - R_1 \\ 1 & 0 & 7 & 5 \\ 0 & 1 & 3 & 6 \\ 0 & -1 & -2 & -3 \\ 0 & -1 & -2 & -4 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ -1 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} R_3 \to R_3 + R_2 & \text{and} & R_4 \to R_4 + R_2 \\ 1 & 0 & 7 & 5 \\ 0 & 1 & 3 & 6 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 1 & 2 \end{bmatrix} \quad \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -1 & 1 & 1 & 0 \\ -1 & 1 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} R_1 \to R_1 - 7R_3, & R_2 \to R_2 - 3R_3 \text{ and } R_4 \to R_4 - R_3 \\ \begin{bmatrix} 1 & 0 & 0 & -16 \\ 0 & 1 & 0 & -3 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & -1 \end{bmatrix} & \begin{bmatrix} 8 & -7 & -7 & 0 \\ 3 & -2 & -3 & 0 \\ -1 & 1 & 1 & 0 \\ 0 & 0 & -1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} R_1 \to R_1 - 16R_4, & R_2 \to R_2 - 3R_4 \text{ and } R_3 \to R_3 + 3R_4 \\ \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix} & \begin{bmatrix} 8 & -7 & 9 & -16 \\ 3 & -2 & 0 & -3 \\ -1 & 1 & -2 & 3 \\ 0 & 0 & -1 & 1 \end{bmatrix}$$

Hence the inverse of the given matrix is $\begin{bmatrix} 8 & -7 & 9 & -16 \\ 3 & -2 & 0 & -3 \\ -1 & 1 & -2 & 3 \\ 0 & 0 & 1 & -1 \end{bmatrix}$

Problem 9. Solve the system of linear equations given below using your answers to the previous problem.

(1)
$$-x_1 + x_2 + 2x_3 = 1$$

 $2x_2 - x_3 = 0$
 $x_2 - x_3 = -1$

Solution: The linear system can be written as AX = b where $A = \begin{bmatrix} -1 & 1 & 2 \\ 0 & 2 & -1 \\ 0 & 1 & -1 \end{bmatrix}$,

$$X = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \text{ and } b = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$$

In problem 8(a), we saw A has an inverse.

Hence the solution for this system can be given as $X = A^{-1}b = \begin{bmatrix} -1 & 3 & -5 \\ 0 & 1 & -1 \\ 0 & 1 & -2 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} = \begin{bmatrix} 4 \\ 1 \\ 2 \end{bmatrix}$

(2)
$$x_1 + 7x_3 + 5x_4 = 0$$

 $x_2 + 3x_3 + 6x_4 = 1$
 $x_1 - x_2 + 5x_3 + 2x_4 = 2$
 $x_1 - x_2 + 5x_3 + x_4 = 1$

 $-x_2 + 5x_3 + x_4 = 1$ Solution: The linear system can be written as AX = b where $A = \begin{bmatrix} 1 & 0 & 7 & 5 \\ 0 & 1 & 3 & 6 \\ 1 & -1 & 5 & 2 \\ 1 & -1 & 5 & 1 \end{bmatrix}$,

$$X = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \text{ and } b = \begin{bmatrix} 0 \\ 1 \\ 2 \\ 1 \end{bmatrix}$$

In problem 8(b), we saw A has an inverse.

Hence the solution for this system can be given as

$$X = A^{-1}b = \begin{bmatrix} 8 & -7 & 9 & -16 \\ 3 & -2 & 0 & -3 \\ -1 & 1 & -2 & 3 \\ 0 & 0 & 1 & -1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 2 \\ 1 \end{bmatrix} = \begin{bmatrix} -5 \\ -5 \\ 0 \\ 1 \end{bmatrix}$$

Problem 10. Let A be a 4×4 matrix. The following elementary row operations are applied on A to obtain the matrix B.

First row operation: $R_2 \rightarrow R_2 - 3R_1$

Second row operation : $R_3 \leftrightarrow R_2$

(1) Find two elementary matrices E_1 and E_2 such that $E_2E_1A = B$ Solution: By performing the first row operation on 4×4 identity we obtain

$$E_1 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -3 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

and performing the second row operation on 4×4 identity yields $E_2 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$.

For E_1 and E_2 as above, we have $E_2E_1A=B$

(2) Find two elementary matrices E_3 and E_4 such that $E_4E_3B=A$ **Solution:** If $E_2E_1A=B$ then we multiply both sides from left, first by E_2^{-1} and then by E_1^{-1} . So we have $A=E_1^{-1}E_2^{-1}B$.

Inverse of an elementary matrix is also an elementary matrix. Hence we can take $E_3 = E_2^{-1}$ and $E_4 = E_1^{-1}$.

To compute what these inverses are, we need to perform 'inverse' row operations on I.

The 'inverse' of the second row operation is $R_3 \leftrightarrow R_2$. Hence $E_3 = E_2^{-1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$

The 'inverse' of the first row operation is $R_3 \to R_2 + 3R_1$. Hence $E_4 = E_1^{-1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 3 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$

(3) If B = I then compute A.

Solution: In part (2) we showed $A = E_4 E_3 B$.

If
$$B = I$$
 then $A = E_4 E_3 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 3 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 3 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$