Machine Learning 1

1 Linear Regression

- Supervised Learning (regression, classification)
- Unsupervised Learning (clustering, dimensionality reduction)
- Matrix: single samples are rows
- Derivative of vector input function is column vector
- $\bullet \ \, \boldsymbol{\nabla}_{\boldsymbol{x}}\boldsymbol{A}\boldsymbol{x} = \boldsymbol{A}^{\top}, \, \boldsymbol{\nabla}_{\boldsymbol{x}}\boldsymbol{x}^{\top}\boldsymbol{x} = 2\boldsymbol{x}, \, \boldsymbol{\nabla}_{\boldsymbol{x}}\boldsymbol{x}^{\top}\boldsymbol{A}\boldsymbol{x} = 2\boldsymbol{A}\boldsymbol{x}$
- Linear Regression: fit line $y = f(x) + \varepsilon = w_0 + w_1 x + \varepsilon$ (Guassian noise $\varepsilon \sim N(0, 1)$)
- Minimize summed/mean squared error SSE = $\sum_{i=1}^{N} (y_i f(\mathbf{x}_i))^2$ (differentiable, easy to optimize, estimates mean of target function)
- Multiple inputs: $SSE = (\boldsymbol{y} \boldsymbol{X} \boldsymbol{w})^{\top} (\boldsymbol{y} \boldsymbol{X} \boldsymbol{w})$ with $\boldsymbol{X} = \begin{bmatrix} 1 & \boldsymbol{x}_1^{\top} \\ \vdots & \vdots \\ 1 & \boldsymbol{x}_n^{\top} \end{bmatrix}$
- Least squares solution ($\nabla_{\boldsymbol{w}} SSE = 0$): $\boldsymbol{w}^* = (\boldsymbol{X}^\top \boldsymbol{X})^{-1} \boldsymbol{X}^\top \boldsymbol{y}$ closed form because SSE convex for linear $f(\boldsymbol{x})$ (one minimum) and quadratic in w (easy to obtain)
- $R^2 = 1 \frac{\sum (\hat{y}_n y_n)^2}{\sum (y_n \overline{y})^2}$ (quality: how much variation in y explained by variation in x)
- Generalized: $f(\boldsymbol{x}) = \tilde{\boldsymbol{x}}^{\top} \boldsymbol{w} \to f(\boldsymbol{x}) = \phi(\boldsymbol{x})^{\top} \boldsymbol{w}$, still linear in w (ϕ_i : basis functions)
- $\boldsymbol{w^*} = (\boldsymbol{\Phi}^{\top} \boldsymbol{\Phi})^{-1} \boldsymbol{\Phi}^{\top} \boldsymbol{y}$ with $\boldsymbol{\Phi} = \begin{bmatrix} \phi_1^{\top} \\ \vdots \\ \phi_n^{\top} \end{bmatrix}$ (learn any function with suitable ϕ_i)
- Overfitting: model too complex, fits noise / Underfitting: model too simple for data
- Regularization (limit model): Regularization term in cost function with factor λ
- $L_{\text{ridge}} = (\boldsymbol{y} \boldsymbol{\Phi} \boldsymbol{w})^{\top} (\boldsymbol{y} \boldsymbol{\Phi} \boldsymbol{w}) + \lambda \boldsymbol{w}^{\top} \boldsymbol{w}$ (weight decay / ridge regression)
- $\boldsymbol{w}^*_{\text{ridge}} = (\boldsymbol{\Phi}^{\top} \boldsymbol{\Phi} + \lambda \boldsymbol{I})^{-1} \boldsymbol{\Phi}^{\top} \boldsymbol{y}$ (easier to invert due to full rank)

2 Linear Classification

- Expectation of function wrt a distribution: $\mathbb{E}_p[f(x)] = \int p(x)f(x)dx$
- Conditional expectation: $\mathbb{E}_p[f(x)|Y=y] = \int p(x|y)f(x)dx$
- Chain rule: $\mathbb{E}_p[f(x)] = \int p(y)\mathbb{E}_p[f(x)|Y=y]dx$
- Monte-carlo: estimate expectation by samples
- Covariance: $\Sigma = \mathbb{E}_p[(x \mu)(x \mu)^{\top}]$, diagonal: variability, other: correlation
- Bernoulli distribution: $p(x) = \mu^x (1 \mu)^{(1-x)}$ (coin toss)
- Multinomial / Categorical Distribution: $p(c) = \prod \mu_k^{\boldsymbol{h}_{c,k}}$ with 1-hot-encoding (die)
- Gaussian Distribution: $p(x) = N(x|\mu, \sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\{-\frac{(x-\mu)^2}{2\sigma^2}\}$
- Multivariate: $p(\boldsymbol{x}) = N(\boldsymbol{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{\sqrt{|2\pi\boldsymbol{\Sigma}|}} \exp\{-\frac{(\boldsymbol{x}-\boldsymbol{\mu})^{\top}\boldsymbol{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{\mu})}{2}\}$
- Maximum Likelihood Estimation: $\theta_{\text{ML}} = \operatorname{argmax}_{\theta} \operatorname{loglik}(\theta, D)$
- Linear Gaussian model $p_{\theta}(y|\mathbf{x}) = N(y|\mathbf{w}^{\top}\tilde{\mathbf{x}}, \sigma^2) \to \text{MLE}$ solution equvialent to least squares, but variance can also be obtained
- Generative model: Assume form of p(c), p(x|c), learn them, predict: compute $p(c|x) \to \text{learn full joint distribution of data (hard), gaussian assumption <math>\to \text{error}$
- Discriminative Model: Assume form of p(c|x) and estimate parameters directly from data (simpler than generative modelling, only considers points on border)
- Linear classifier: $f(x) = w^{T}x + b$ (w normal to line, b is bias)
- Counting number of misclassifications as loss is very difficult to optimize (NP-hard)
- Regression loss is not robust to outliers (labels restricted to 0, 1)
- Solution: squash output with sigmoid (bounded between 0 and 1)
- Probabilistic View: $p(c|\mathbf{x}) = \sigma(\mathbf{w}^{\top}\mathbf{x} + b)^{c}(1 \sigma(\mathbf{w}^{\top}\mathbf{x} + b))^{1-c} \to \text{optimize loglike-lihood (logistic regression): cross-entropy loss: } -\sum_{i} c_{i} \log f(\mathbf{x}_{i}) + (1 c_{i}) \log(1 f(\mathbf{x}_{i})) \to \text{convex but no closed form } \to \text{gradient descent}$
- Generalized: Use basis functions to make data linear seperable in feature space
- L2 regularization loss: penalty($\tilde{\boldsymbol{w}}$) = $||\tilde{\boldsymbol{w}}||^2$
- General optimization form: $\operatorname{argmin}_{\theta} \sum l(\boldsymbol{x}_i, \boldsymbol{\theta}) + \lambda \operatorname{penalty}(\boldsymbol{\theta})$
- Gradient descent: $x_{t+1} = x_t \eta \nabla f(x_t)$ with learning rate η

- Terminate: change small, gradient small, change in value small, or after fixed time
- Stochastic: use one sample for step (good far away, struggle to find exact optimum)
- Stochastic approximation theory: SGD converges to optimum for strictly convex functions if $\sum \eta_t = \infty$ and $\sum \eta_t^2 < \infty$ (for example $\eta_t = \frac{1}{t}$)
- Stochastic gradients often better than batch since data-set contains redundancy
- Mini-Batches: intermediate between stochastic and batch, preferable for GPU
- Softmax: $p(c = i | \boldsymbol{x}) = \frac{\exp(\boldsymbol{w}_i^\top \boldsymbol{\phi}(\boldsymbol{x}))}{\sum \exp(\boldsymbol{w}_k^\top \boldsymbol{\phi}(\boldsymbol{x}))}$ (each class gets a weight vector)
- Multiclass Classification: $p(c|\mathbf{x}) = \Pi \ p(c = k|\mathbf{x})^{\mathbf{h}_{c,k}}$ (use softmax) \rightarrow can be optimized by gradient descent

3 Model Selection

- Model complexity (linear regression: features, λ ; decision tree: depth, number of leaves; NNs: layers, neurons; SVMs: features, regularization; Gaussian Processes: kernel bandwith) \rightarrow model selection problem
- True risk (unknown) vs. emperical risk (can be evaluated)
- Overfitting (small emperical/high true risk)/Underfitting (high emperical/true risk)
- Expected loss for model and data set size n: $R(\hat{f}_{D_n}) = \mathbb{E}_{D_n}[\mathbb{E}_{x,y}[(\hat{f}_{D_n}(\boldsymbol{x}) y)^2)]]$ $= \mathbb{E}_{D_n}[\mathbb{E}_x[(\hat{f}_{D_n}(\boldsymbol{x}) - \hat{f}_*(\boldsymbol{x}))^2]] + \mathbb{E}_x[(\hat{f}_*(\boldsymbol{x}) - f(\boldsymbol{x}))^2] + \sigma^2$ $= \text{Variance} + \text{Bias}^2 + \text{Noise (bias (structure error) due to restriction of model, variance due to randomness of data set, <math>\hat{f}_{D_n}$: estimate of f from data f_n , $f_*(\boldsymbol{x}) = \mathbb{E}_{D_n}[\hat{f}_{D_n}(\boldsymbol{x})]$: best model possible, $f_n(\boldsymbol{x}) = f(\boldsymbol{x}) + \varepsilon$
- Underfitting: low variance / high bias; Overfitting: high variance / low bias
- Hold-out method: Judge generalization error with validation data set to pick model (needs more data, unlucky splits can give misleading results)
- Cross validation: Split dataset into k folds, use each as validation once
- Leave-One-Out: k = n / Random sub-sampling: Random points used in each fold
- Avoid overfitting: low complexity, regularize, early stopping, noise, augmentation
- Regularization: penalty_{L2}(θ) = $||\theta||_2$ (optimizing easy)/penalty_{L1}(θ) = $||\theta||_1$ (hard, leads to sparse solutions)
- Early stopping: similar effects to L2, efficient (only store best and current weights), simple, no hyper parameter (but needs validation data)
- Linear regression: input noise (leads to more robust solutions) is the same as L2

4 Nearest Neighbours, Trees and Forests

- Non-parametric methods: use training data directly for prediction (complexity adapts to training data, very fast training, slow predictions, hard for high dimensions)
- KNN: needs lots of training data and less than 20 attributes, can learn complex functions, regression works similar
- Increasing k reduces variance, increases bias
- Euclidean distance when each variable has same unit, otherwise normalize data
- Cosine Distance (documents, images), Hamming Distance (string data/categorical features), Manhatten Distance (coordinate-wise), Mahalanobis Distance (unaffected by coordinate transformations)
- Performance of KNN degrades with irrelevant dimensions/high dimensions (most points far away) → dimensionality reduction, feature selection
- KD-Tree to find neighbours; Build: choose dimension by longest hyperrectangle side, median as pivot; Traverse: move down tree, find region containing \boldsymbol{x} , find closest \boldsymbol{x}^* , move up for regions intersecting hypersphere, update \boldsymbol{x}^*
- Regression/Classification Tree: split data into two at each node using criterion
- Splitting criterion regression: Minimum residual sum of squares: RSS = $\sum_{\text{left}} (y_i \overline{y}_L)^2 + \sum_{\text{right}} (y_i \overline{y}_R)^2$, \overline{y} : average label subtree (variance in subtrees minimized)
- Criterion classification: Minimum entropy: score = $N_L H(p_L) + N_R H(p_R)$, $H(p_i) = -\sum_k p_i(k) \log p_i(k)$: subtree entropy, $p_i(k)$: proportion of class k in subtree i
- Stop: Minimum number of samples per node / maximum depth (tree complexity)
- Trees: easy to compute, no distributional assumption, non-linear, automatic variable selection, easy to interpret, lower accuracy, sensitive to data change
- Random Forests: use multiple trees to improve accuracy
- Bagging: Fit trees to bootstrap samples from data (combine by voting/averaging)
- Ideal: linear variance reduction (trees correlated → reduction still significant)
- Bagging: less variance, bias unaffected → use strong trees (high variance/low bias)
- Random Forests: Also randomize considered variables at each splitting criterion, grow to maximum depth (loss of interpretability, good accuracy, less unstable)

5 Dimensionality Reduction and Clustering

- Motivation: Invert $X^{\top}X$ for linear regression: $d \times d \to O(d^3) \to \text{find } d_{\text{new}} \ll d$
- Find (linear) mapping $x_i \to z_i$ to lower dimension with $z_i = Wx_i$
- Orthonormal basis system: $\boldsymbol{x} = \sum_{i}^{D} z_{i} \boldsymbol{u}_{i} \rightarrow z_{i} = \boldsymbol{u}_{i}^{\top} \boldsymbol{x} \rightarrow \text{only use subset for dimensionality reduction (minimize squared reproduction error <math>\sum ||\boldsymbol{x}_{i} \tilde{\boldsymbol{x}}_{i}||^{2}$)
- Minimizing error \Leftrightarrow maximizing variance of projection (with zero mean data)
- Principle component analysis: find principal directions u_i and their variance λ_i
- $u_1 = \operatorname{argmax}_u \frac{1}{N} \sum (u^\top (x_i \mu))^2$ s.t. $u^\top u = 1$, u_2 maximizes variance in orthogonal complement of u_1
- Objective can be written in terms of sample covariance: $E(u) = u^{\top} \Sigma u$
- Constraint Optimization: Lagrangian Multipliers $(L = \text{objective} \text{multiplier} \cdot \text{constraint})$: $\min_x x^2$ s.t. $x \ge b \to \min_x \max_\alpha L(x, \alpha) = x^2 \alpha(x b)$ s.t. $\alpha \ge 0$ (Min forces max to behave such that constraints are satisfied)
- Dual formulation: $\lambda^* = \operatorname{argmax} g(\lambda), \ g(\lambda) = \min_x L(x, \lambda) \text{ s.t. } \lambda_i \geq 0, x^* = \operatorname{argmin}_x L(x, \lambda^*) \text{ (swap min/max)}$
- Slaters condition: convex objective/constraints ⇒ dual ⇔ primal (original)
- PCA: $\mathbf{u}_1 = \operatorname{argmax}_{\mathbf{u}} \mathbf{u}^{\top} \mathbf{\Sigma} \mathbf{u} \text{ s.t. } \mathbf{u}^{\top} \mathbf{u} = 1 \Rightarrow L(\mathbf{u}, \lambda) = \mathbf{u}^{\top} \mathbf{\Sigma} \mathbf{u} + \lambda (\mathbf{u}^{\top} \mathbf{u} 1) \Rightarrow \mathbf{\Sigma} \mathbf{u} = \lambda \mathbf{u} \text{ (eigenvalue problem, largest value: maximum variance, vector: direction)}$
- Representation has minimum MSE of all linear representations of same dimension
- PCA: Subtract mean, (normalize variance of each dimension), choose first M largest eigenvalues/their vectors of Σ , $z_i = B^{\top}(x_i \mu)$, reprojection: $\tilde{x}_i = \mu + Bz_i$
- Choose M: based on application performance/based on captured variance
- Applications: face detection, morphing, natural image patches, ...
- Clustering Group data using similarity measure $(D(A, B) = D(B, A), D(A, B) = 0 \Leftrightarrow A = B, D(A, B) \leq D(A, C) + D(B, C))$
- Hierarchical Clustering: Dendrogram (similarity: height of lowest shared node)
- Outlier: single isolated branch
- Heurestic search of all possible trees: Bottom-up / Top-down (find best division)
- Bottom-up: each sample in own cluster, merge closest two clusters, until single cluster left (requires distance measure for samples and clusters)

- Cluster similarity: single linkage (minimum distance between two points) / complete linkage (maximum distance) / average linkage / centroid linkage
- Hierarchical: any number of clusters, $O(n^2)$, local optima, subjective interpretation
- Flat Clustering: K-Means: minimize quantization error (sum of squared distances) $SSD(C, D) = \sum d(\mathbf{x}_i, c(\mathbf{x}_i))^2$
- Iteration: 1. pick K random centroids c_i , 2. assign each point to closest c_i , 3. move centroids to mean of assigned points, 4. go to step 2 until no change
- SSD = $\sum_i \sum_k \delta_{ik} d(\boldsymbol{x}_i, \boldsymbol{c}_k)^2 \to \text{assignment minimizes w.r.t. } \delta_{ik}$, adjustment w.r.t. \boldsymbol{c}_k
- K-Means locally minimizes SSD (depends on intialization, global NP-hard)
- K-Means++: first centroid random, each following centroid furthest from all others
- Choose K: objective function decrease on holdout set or Knee-finding method
- Knee-finding: plot SSD for K, pick point where decrease is no longer steep
- K-Means: converges quickly, local optima, not applicable to categorical data/noisy data/outliers, clusters must be convex

6 Density Estimation and Expectation Maximization

- Non-parametric models (don't know form of class-conditional density) → estimate directly from data (histograms, kernel density, KNN)
- Histograms: general, need exponential data (curse of dimensionality), fixed region size, $p(x) \approx \frac{K}{NV}$ (K points in region R, N: total points, V: volume of R)
- Center R on x: Kernel density: fix V, determine K, KNN: fix K, determine V
- Kernel Density Estimation: $k(\boldsymbol{x}, \boldsymbol{y})$: non-negative, distance-dependent: $k(\boldsymbol{x}, \boldsymbol{y}) = g(\boldsymbol{x} \boldsymbol{y}), \ V = \int g(\boldsymbol{u}) d\boldsymbol{u}, \ K(\boldsymbol{x}_*) = \sum g(\boldsymbol{x}_* \boldsymbol{x}_i) \rightarrow p(\boldsymbol{x}_*) \approx \frac{K(\boldsymbol{x}_*)}{NV}$
- Parzen Window (hypercubes): $g(\mathbf{u}) = 1$ if $|u_j| \leq \frac{h}{2}, j = 1 \dots d$, else $0 \Rightarrow p(\mathbf{x}_*) \approx \frac{K(\mathbf{x}_*)}{Nh^d}$, h: bandwidth, d: dimensionality (easy to compute, not very smooth)
- Gaussian Kernel: $g(\boldsymbol{u}) = \exp(-\frac{||\boldsymbol{u}||^2}{2h}) \to p(\boldsymbol{x}_*) \approx \frac{1}{N\sqrt{(2\pi h)^d}} \sum \exp(-\frac{||\boldsymbol{x}_* \boldsymbol{x}_i||^2}{2h})$ (smooth, infinite support, computationally intensive, bigger $h \to \text{smoother curve}$)
- Cross-validation for bin size/bandwidth/neighbours (highest likelihood on test-set)
- Mixture Models generality of non-parametric models and efficiency of parametric models → create complex distribution by combining simple ones (e.g. Gaussians)
- Mixture coefficient · component: $p(x) = \sum p(k)p(x|k) \sim \text{any smooth density}$

- $p(k) = \pi_k \ge 0, \sum \pi_k = 1, p(x|k) = N(x|\mu_k, \Sigma_k), \theta = \{\pi_1, \mu_1, \Sigma_1, \dots, \pi_K, \mu_K, \Sigma_K\}$
- Gradient descent on marginal log-likelihood? → possible, inefficient (depends on all components, no closed form, slow convergence, sum does not go well with log)
- Mixture models \rightarrow latent variable models (observed variables \boldsymbol{x} and latent variables \boldsymbol{z}): $p(\boldsymbol{x}, \boldsymbol{z}|\boldsymbol{\theta})$ (parametric model), $p(\boldsymbol{x}|\boldsymbol{\theta}) = \sum_{z} p(\boldsymbol{x}, z|\boldsymbol{\theta})$ (marginal distribution)
- Kullback-Leibler Divergence (similarity of distributions): $\mathrm{KL}(q||p) = \sum_{x} q(x) \log \frac{q(x)}{p(x)}$ (non-negative, zero for same distribution, non-symmetric \to no distance metric)
- Expectation-Maximization algorithm estimates latent variable models (iteratively increases lower bound of the marginal log-likelihood) → local optima
- $\log p(\boldsymbol{x}|\boldsymbol{\theta}) = \sum_{z} q(z) \log \frac{p(\boldsymbol{x},z|\boldsymbol{\theta})}{q(z)} + \sum_{z} q(z) \log \frac{q(z)}{p(z|\boldsymbol{x})} = L(q,\boldsymbol{\theta}) + \mathrm{KL}(q(z)||p(z|\boldsymbol{x}))$ (decomposition holds for any q(z), it makes optimization much simpler)
- $L(q, \theta) \leq \log p(x|\theta)$ contains joint distribution \rightarrow easier to optimize (often convex)
- Expectation step: Find q(z) to minimize $KL \to q(z) = p(z|\boldsymbol{x}, \boldsymbol{\theta}_{\text{old}}) = \frac{p(\boldsymbol{x}, z|\boldsymbol{\theta}_{\text{old}})}{\sum_{z} p(\boldsymbol{x}, z|\boldsymbol{\theta}_{\text{old}})}$ (closed form for discrete $z) \Rightarrow KL = 0 \Rightarrow$ lower bound $L(q, \boldsymbol{\theta}_{\text{old}})$ tight at $\boldsymbol{\theta}_{\text{old}}$
- Maximization step: Maximize $L(q, \theta)$: $\theta_{\text{new}} = \operatorname{argmax} \sum_{z} q(z) \log p(x, z | \theta) + \operatorname{const}$
- Full dataset: $L(q, \theta) = \sum_{i} (\sum_{k} q_{ik} \log p(\mathbf{x}_{i}, k | \theta) \sum_{k} q_{ik} \log q_{ik})$ with $q_{ik} = q_{i}(z = k)$ (one latent variable per data-point)
- Gaussian mixture models E-step: Compute "responsibilities" of components: $q_{ik} = \frac{\pi_k N(\boldsymbol{x}_i | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_j \pi_j N(\boldsymbol{x}_i | \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)} = p(z = k | \boldsymbol{x}_i)$
- M-step: Seperate updates for additive objectives: $\boldsymbol{\pi} = \operatorname{argmax} \sum_{i} \sum_{k} q_{ik} \log \pi_{k}$, $\boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k} = \operatorname{argmax} \sum_{i} q_{ik} \log N(\boldsymbol{x}_{i}|\boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}) \rightarrow \text{weighted ML estimation}$
- $\pi_k = \frac{\sum_i q_{ik}}{N}$, $\boldsymbol{\mu}_k = \frac{\sum_i q_{ik} \boldsymbol{x}_i}{\sum_i q_{ik}}$, $\boldsymbol{\Sigma}_k = \frac{\sum_i q_{ik} (\boldsymbol{x}_i \boldsymbol{\mu}_k) (\boldsymbol{x}_i \boldsymbol{\mu}_k)^\top}{\sum_i q_{ik}}$
- EM for GMMs: Initialize (K-Means for component means and fixed covariance), until convergence: E-step (responsibilities q_{ik}), M-step (update π , μ_k , Σ_k)
- EM very sensitive to intialization, K-Means special case of EM
- More components → better likelihood (beware of overfitting)
- EM for dimensionality reduction (probabilistic PCA): $\mathbf{x} = \mathbf{W}\mathbf{z} + \boldsymbol{\mu} + \boldsymbol{\varepsilon}$, (latent variable \mathbf{z} : low dimensional representation, $\boldsymbol{\mu}$: constant offset, $\boldsymbol{\varepsilon} \sim N(0, \sigma^2 \mathbf{I})$: noise)
- Continuous latent variable: p(z) = N(0, I), observation model $p(x|z, \theta) = N(Wz + \mu, \sigma^2 I)$ with parameters $\theta = \{W, \mu, \sigma^2\}$
- Generative process: sample $m{z} \sim N(\mathbf{0}, m{I})$, project: $m{y} = m{W} m{z} + m{\mu}$, add noise: $m{x} = m{y} + m{\varepsilon}$

- Maximize marginal loglike $(\theta) = \sum_i \log(\int_z N(\boldsymbol{x}|\boldsymbol{W}\boldsymbol{z} + \boldsymbol{\mu}, \sigma^2 \boldsymbol{I}) N(\boldsymbol{z}|\boldsymbol{0}, \boldsymbol{I}) d\boldsymbol{z}) \to \mathrm{EM}$
- E-step: Posterior $q_i(z) = p(z|x_i, \theta)$ with $\mu_{z|x_i} = (\boldsymbol{W}^\top \boldsymbol{W} + \sigma^2 \boldsymbol{I})^{-1} \boldsymbol{W}^\top (\boldsymbol{x}_i \boldsymbol{\mu}), \boldsymbol{\Sigma}_{z|x_i} = \sigma^2 (\boldsymbol{W}^\top \boldsymbol{W} + \sigma^2 \boldsymbol{I})^{-1}$ (only possible because \boldsymbol{x} is linear in \boldsymbol{z})
- M-step: $L(q, \boldsymbol{\theta}) = \sum_{i} \mathbb{E}_{q_{i}(z)}[\log p(\boldsymbol{x}_{i}|\boldsymbol{z}, \boldsymbol{\theta})] + \text{const} \approx \sum_{i} \log p(\boldsymbol{x}_{i}|\boldsymbol{z}_{i}, \boldsymbol{\theta}) \text{ with } \boldsymbol{z}_{i} \sim q_{i}(\boldsymbol{z}) \text{ (approximate with single sample per } \boldsymbol{x}_{i}) \rightarrow \text{solution: standard least squares:} \begin{bmatrix} \boldsymbol{\mu} \\ \boldsymbol{W} \end{bmatrix} = (\boldsymbol{Z}^{\top}\boldsymbol{Z})^{-1}\boldsymbol{Z}^{\top}\boldsymbol{X}, \sigma^{2} = \frac{1}{nd}\sum_{i}^{n}\sum_{k}^{d}(y_{ik} x_{ik})^{2}$
- ullet PCA with eigenvectors preferred (one step \to very fast), probabilistic PCA provides density, helps understand EM and more complex dimensionality reduction methods
- EM: assumes KL can be zero (posterior can be evaluated analytically), z must be discrete/linear gaussian \rightarrow Variational Bayes/Inference can work with KL > 0

7 Kernel Methods

- Kernel: represent $\{x_1, \ldots, x_n\}$ by $[K]_{ij} = k(x_i, x_j)$ $(k: X \times X \to \mathbb{R}$: comparison)
- \bullet Modularity between choice of k and algorithm, poor scalability
- \bullet Positive definite kernel function k: symmetric, K is always positive definite
- $k(x, x') = \langle \phi(x), \phi(x') \rangle$: positive definite kernel (arbitrary feature function ϕ)
- Theorem: positive definite (p.d.) kernel \Leftrightarrow associated feature space
- Kernel for polynomial features of degree d: $k(\boldsymbol{x}, \boldsymbol{x}') = \langle \boldsymbol{x}, \boldsymbol{x}' \rangle^d$
- Gaussian kernel: $k(x, y) = \exp(-\frac{||x-y||^2}{2\sigma^2})$ with bandwidth σ (most used kernel)
- Gaussian kernel is inner product of two infinite dimensional feature vectors \rightarrow p.d.
- Kernel trick: feature based algorithms can use infinite dimensional feature space if rewritten to contain inner products of feature vectors → better than linear features
- Kernel ridge regression: $\boldsymbol{w}^* = (\boldsymbol{\Phi}^{\top} \boldsymbol{\Phi} + \lambda \boldsymbol{I})^{-1} \boldsymbol{\Phi}^{\top} \boldsymbol{y} = \boldsymbol{\Phi}^{\top} (\boldsymbol{\Phi} \boldsymbol{\Phi}^{\top} + \lambda \boldsymbol{I})^{-1} \boldsymbol{y} \to d \times d$ matrix inversion (infinite) to $N \times N$ matrix inversion (\boldsymbol{K} , by using matrix identity)
- \boldsymbol{w}^* still d-dimensional, but can evaluate $f(\boldsymbol{x}) = \phi(\boldsymbol{x})^{\top} \boldsymbol{w}^* = \boldsymbol{k}(\boldsymbol{x})^{\top} (\boldsymbol{K} + \lambda \boldsymbol{I})^{-1} \boldsymbol{y} = \sum_i \alpha_i k(\boldsymbol{x}_i, \boldsymbol{x})$ with $\boldsymbol{\alpha} = (\boldsymbol{K} + \lambda \boldsymbol{I})^{-1} \boldsymbol{y}$
- Comparison to linear regression with gaussian features: kernel allows setting centers adaptively (fixed without kernel trick)
- Choose hyper-parameter bandwidth via cross-validation
- Kernel methods (ridge regression, gaussian processes, SVMs): must store all samples, high computation, flexible representation, good for small data, hard to scale

8 Support Vector Machines

- Classification: class labels 1 and -1 for SVMs $(f(x_i)y_i > 0)$
- Scalar projection of \boldsymbol{a} on \boldsymbol{b} : $a_b = \frac{\boldsymbol{a}^{\top} \boldsymbol{b}}{||\boldsymbol{b}||}$
- Support vectors: data points closest to decision boundary (other samples ignored), maximize margin ρ
- Maximum margin classifier has smaller complexity \Rightarrow generalizes better
- Distance between point x_i and line: $r = \frac{w^\top x_i + b}{||w||}$
- Choose scaling for \boldsymbol{w}, b so that $\boldsymbol{w}^{\top} \boldsymbol{x}_{+} + b = 1$ (positive support vector), $\boldsymbol{w}^{\top} \boldsymbol{x}_{-} + b = -1$ (negative support vector) $\rightarrow \rho = \frac{2}{||\boldsymbol{w}||}$
- Optimization problem: $\operatorname{argmax}_{w\frac{2}{||w||}} \text{ s.t. } w^{\top} x_i + b \ge 1 \text{ if } y_i = 1, \le -1 \text{ if } y_i = -1$ (one positive + negative point satisfy equality, otherwise weight could be reduced)
- Reformulation: $\operatorname{argmin}_{u}||\boldsymbol{w}||^2$, s.t. $y_i(\boldsymbol{w}^{\top}\boldsymbol{x}_i+b) > 1$ (convex, single optimum)
- Choose trade-off between margin and accuracy (for outliers) \rightarrow slack-variables $\xi_i \geq 0$ allow violation of margin: $y_i(\boldsymbol{w}^{\top}\boldsymbol{x}_i + b) \geq 1 \xi_i \Rightarrow \operatorname{argmin}_{w,\xi}||w||^2 + C\sum \xi_i$ (C: inverse regularization, small \rightarrow large ρ , large \rightarrow small ρ , infinite \rightarrow hard ρ)
- Reformulated as unconstrained optimization: $\operatorname{argmin}_{w} ||w||^{2} + C \sum_{i} \max(0, 1 y_{i}f(x_{i})) = \operatorname{regularization} + \operatorname{hinge loss} \to \operatorname{convex}$, one minimum, but not differentiable $\to \operatorname{similar}$ to logistic regression loss
- Hinge loss: $\max\{0, 1 y_i f(\boldsymbol{x}_i)\}$ / Logistic loss: $\log(1 + \exp(-y_i f(\boldsymbol{x}_i))) \rightarrow y_i f(\boldsymbol{x}_i)$ should be large for both / saturates if it gets too large
- Sub-gradient: Any g at point x so that $f(z) \ge f(x) + g^{\top}(z x)$, if f is differentiable at $x \Rightarrow g = \nabla f(x)$
- Let $f(x) = \max\{f_1(x), f_2(x)\}$. $f_1(x) = f_2(x) \Rightarrow g \in [\nabla f_1(x), \nabla f_2(x)]$
- Sub-gradient descent: $\boldsymbol{x}_{t+1} = \boldsymbol{x}_t + \eta \boldsymbol{g}$ (does not always decrease f, store best \boldsymbol{x}^*) SVMs: each iteration, pick random (\boldsymbol{x}_i, y_i) . $y_i f(\boldsymbol{x}_i) < 1$: $\boldsymbol{w}_{t+1} = \boldsymbol{w}_t \eta (2\boldsymbol{w}_t Cy_i \boldsymbol{x}_i)$, otherwise $\boldsymbol{w}_{t+1} = \boldsymbol{w}_t \eta 2\boldsymbol{w}_t$
- SVM: classification standard in 90s/00s (pedestrian detection, text categorization, character recognition, bioinformatics), extends to regression, outperformed by NNs
- Kernel SVM: Dual derivation: $\mathbf{w}^* = \sum_i \lambda_i y_i \phi(\mathbf{x}_i)$ (λ_i : constraint coefficient)
- $\frac{\partial L}{\partial b} = -\sum_i \lambda_i y_i \Rightarrow \sum_i \lambda_i y_i = 0$ no solution for b, but additional condition (b can be computed from \boldsymbol{w} : $b = y_i \boldsymbol{w}^{\top} \phi(\boldsymbol{x}_i)$ (for \boldsymbol{x}_i on margin))

- Kernel trick for SVMs: $g(\lambda) = \sum \lambda_i \frac{1}{2} \sum_i \sum_j \lambda_i \lambda_j y_i y_j k(x_i, x_j)$
- Dual optimization (slack variables): $\max_{\lambda} \sum \lambda_i \frac{1}{2} \sum_i \sum_j \lambda_i \lambda_j y_i y_j k(\boldsymbol{x}_i, \boldsymbol{x}_j)$ s.t. $C \ge \lambda_i \ge 0$, $\sum \lambda_i y_i = 0$ with $b = y_k \sum_i y_i \lambda_i k(\boldsymbol{x}_i, \boldsymbol{x}_k)$ where $C > \lambda_k > 0$ and $f(\boldsymbol{x}) = \sum_i y_i \lambda_i k(\boldsymbol{x}_i, \boldsymbol{x}) + b$ (upper bound C limits λ_i so misclassifications allowed)
- Control overfitting: set C (low $C \to \text{low complexity}$), choose kernel, vary bandwidth

9 Bayesian Machine Learning

- Estimate θ^* uncertainty, infinite predictors (mean) \rightarrow give prediction uncertainty
- Compute posterior $p(\boldsymbol{\theta}|D) = \frac{p(D|\boldsymbol{\theta})p(\boldsymbol{\theta})}{p(D)}$, $p(D|\boldsymbol{\theta})$: data likelihood, $p(\boldsymbol{\theta})$: prior (subjective belief), p(D): evidence (normalization, later used for model comparison)
- Compute predictive distribution (marginal likelihood) $p(\mathbf{x}^*|D) = \int p(\mathbf{x}^*|\boldsymbol{\theta})p(\boldsymbol{\theta}|D)d\boldsymbol{\theta}$, $p(\mathbf{x}^*|\boldsymbol{\theta})$: likelihood (weighted ensemble method, often uses samples of $p(\boldsymbol{\theta}|D)$)
- Prior should express belief and domain knowledge $\xrightarrow{\mathrm{ML}}$ weights should be small $\rightarrow p(\theta) = N(\theta|\mathbf{0}, \lambda^{-1}\mathbf{I})$, λ : precision of the prior
- Completing the square: Bring exponent in canonical squared form: $\exp(-\frac{1}{2}a\mu^2 + b\mu + \text{const}) \to \text{for gaussian distributions: } \mu_N = a^{-1}b, \ \sigma_N^2 = a^{-1}$
- Posterior if prior/likelihood are gaussian: $\mu_N = \frac{N\sigma_0^2}{N\sigma_0^2 + \sigma^2} \mu_{\rm ML} + \frac{\sigma^2}{N\sigma_0^2 + \sigma^2} \mu_0$ and $\sigma_N^2 = \frac{\sigma^2\sigma_0^2}{N\sigma_0^2 + \sigma^2}$ with $\mu_{\rm ML} = \frac{\sum x_i}{N}$ and μ_0, σ_0 from prior (variance decreases with more training samples, posterior interpolates between prior mean/sample average)
- Gaussian Propagation: predictive distribution is gaussian with $\mu_{x^*} = \mu_N$ and $\sigma_{x^*}^2 = \sigma_N^2 + \sigma^2$
- Conjugate prior for likelihood function \Leftrightarrow posterior/prior: same distribution family
- Bayesian Learning: For large datasets: point estimate, advantage for small dataset
- Simplification: Maximum a-posteriori solution: $\theta_{\text{MAP}} = \operatorname{argmax} \log p(D|\theta) + \log p(\theta)$ maximizes posterior \rightarrow use for prediction: $p(\boldsymbol{x}^*|D) \approx p(\boldsymbol{x}^*|\theta_{\text{MAP}})$
- MAP regression: gaussian prior \leftrightarrow L2; gaussian likelihood \leftrightarrow squared loss \Leftrightarrow ridge regression ($\lambda_{\text{ridge}} = \lambda \sigma^2$, uncertainty only depends on estimated noise σ^2)
- Bayesian linear regression: likelihood: $p(\boldsymbol{y}|\boldsymbol{X}, \boldsymbol{w}) = N(\boldsymbol{y}|\boldsymbol{\Phi}\boldsymbol{w}, \sigma^2\boldsymbol{I})$ (multivariate distribution, σ^2 : noise variance), prior: $p(\boldsymbol{w}) = N(\boldsymbol{w}|\boldsymbol{0}, \lambda^{-1}\boldsymbol{I})$
- Gaussian Bayes Rule 1/2 for evaluating $p(\boldsymbol{x}|\boldsymbol{y})$ (different derivations of posterior distribution): rule 1 if $\dim(\boldsymbol{y}) < \dim(\boldsymbol{x})$ (infinite dimensional features), otherwise rule 2

- Gaussian Propagation to evaluate p(y)
- Posterior/predictive mean equivalent to MAP estimate, but we get uncertainty for parameters: $\Sigma_{w|X,y} = \sigma_y^2 (\mathbf{\Phi}^{\top} \mathbf{\Phi} + \sigma_y^2 \lambda \mathbf{I})^{-1}$ and variance $\sigma^2(\mathbf{x}^*)$ is input dependent
- Compute predictive distribution with gaussian propagation
- Gaussian Process: distribution over functions f(x) so that any set t of function values evaluated at x_1, \ldots, x_n is jointly gaussian distributed: $f(x) \sim GP(m(x), k(x, x'))$, $m(x) = \mathbb{E}[f(x)]$: mean (prior belief about function, zero for simplicity), $k(x, x') = \mathbb{E}[f(x)f(x')]$: positive definite correlation of function evaluations at x, x'
- $p(t|X) = N(t|0, K) \xrightarrow{\text{noise}} p(y|X) = N(y|0, K + \sigma_y^2 I) (y_i = f(x_i) + \varepsilon)$
- Predictive: $\mu(\boldsymbol{x}^*) = \boldsymbol{k}(\boldsymbol{x}^*)^{\top} (\boldsymbol{K} + \sigma_y^2 \boldsymbol{I})^{-1} \boldsymbol{y}$, $\sigma(\boldsymbol{x}^*) = k(\boldsymbol{x}^*, \boldsymbol{x}^*) + \sigma_y \boldsymbol{k}(\boldsymbol{x}^*)^{\top} (\boldsymbol{K} + \sigma_y^2 \boldsymbol{I})^{-1} \boldsymbol{k}(\boldsymbol{x}^*)$ (mean \leftrightarrow kernel ridge regression + input dependent variance estimate (small for high kernel activations)) \rightarrow kernel-version of bayesian linear regression
- Weight space view: Bayesian: subsume prior precision λ into kernel (vector/matrix): $\mathbf{K} = \lambda^{-1} \mathbf{\Phi}_X \mathbf{\Phi}_X^{\top}$
- Function view (from Gaussian process) vs. weight space view (from Bayesian Linear Regression with kernel trick)
- Posterior derived from Bayesian view (rule 1): $\mu_{w|X,y}$, $\Sigma_{w|X,y}$ (potentially infinite dimensions) \rightarrow can evaluate predictive distribution with kernel trick (same as GP)
- GP: computationally hard $(O(N^3))$, very principled approach to regression learning
- Kernel parameters: weight precision λ , observation noise σ_y , length scale l (can be different per dimension): Gaussian Kernel: $k(\boldsymbol{x}_i, \boldsymbol{x}_j) = \lambda^{-1} \exp(-\frac{||\boldsymbol{x}_i \boldsymbol{x}_j||}{2l^2}) + \delta_{ij}\sigma_y^2$
- Optimization: non-convex log-likelihood of data → gradient descent (overfitting)
- GP: non-parametric Bayesian approach, prediction equations in closed form (gaussian), hyperparameter optimization complex, outperforms NNs for small datasets

10 Neural Networks

- Artificial neuron: $y = \phi(\boldsymbol{w}^{\top}\boldsymbol{x} + b)$ (like logistic regression)
- Feedforward network: directed acyclic graph (units grouped into layers)
- Fully connected layer (N inputs to M outputs): $y = \phi(\mathbf{W}\mathbf{x} + \mathbf{b}), \ \mathbf{W} \in \mathbb{R}^{M \times N}$
- Activations: σ (0 to 1, kills gradient, not zero-centered (important for initialization), exp computationally hard), tanh (-1 to 1, zero centered, kills gradient), ReLU (fast computation/convergence, not zero centered, x < 0: no gradient), leaky ReLU (fast), ELU ($\alpha(e^x 1)$ for x < 0, benefits of ReLU, closer to zero mean, exp hard)

- Each layer computes function: $\mathbf{y} = f^L \circ \cdots \circ f^1(\mathbf{x})$ (composite of functions)
- XOR: classic example why multiple layers are needed
- Linear layers

 one linear layer

 need non-linearities

 FF-NNs can approximate
 any function (theoretically with single layer, but exponential number of units)
- Deterministic regression: $f = \mathbf{W}^{(L)} \mathbf{h}^{(L-1)} + \mathbf{b}^{(L)}$, $l_i(\mathbf{x}_i, \boldsymbol{\theta}) = \text{squared loss / Probabilistic: } p(\mathbf{y}|\mathbf{x}) = N(\mathbf{y}|\mathbf{W}^{(L)}\mathbf{h}^{(L-1)} + \mathbf{b}^{(L)}, \boldsymbol{\Sigma})$, $l_i(\mathbf{x}_i, \boldsymbol{\theta}) = -\log N(\mathbf{y}_i|\boldsymbol{\mu}(\mathbf{x}_i), \boldsymbol{\Sigma}(\mathbf{x}_i))$
- Deterministic classification: $f = \mathbf{W}^{(L)} \mathbf{h}^{(L-1)} + b^{(L)}$, $l_i(\mathbf{x}_i, \boldsymbol{\theta}) = \text{hinge loss / Probabilistic:}$ $f = \sigma(\mathbf{W}^{(L)} \mathbf{h}^{(L-1)} + b^{(L)})$, $l_i(\mathbf{x}_i, \boldsymbol{\theta}) = -c_i \log f(\mathbf{x}_i) (1 c_i) \log(1 f(\mathbf{x}_i))$
- Deterministic multi-class: $\boldsymbol{f} = \boldsymbol{W}^{(L)} \boldsymbol{h}^{(L-1)} + \boldsymbol{b}^{(L)}$, loss not covered / Probabilistic: $\boldsymbol{f} = \operatorname{softmax}(\boldsymbol{W}^{(L)} \boldsymbol{h}^{(L-1)} + \boldsymbol{b}^{(L)}), \ l_i(\boldsymbol{x}_i, \boldsymbol{\theta}) = -\sum_k \boldsymbol{h}_{c_i, k} \log f_k(\boldsymbol{x}_i)$
- NNs learn features that can be seperated linearly by last layer
- Back-propagation learning algorithm: Compute $\frac{\partial L}{\partial \mathbf{W}^{(l)}}$, $\frac{\partial L}{\partial \mathbf{b}^{(l)}}$ recursively (chain rule)
- Computation graph: node: input, edge: node computed as function of other node
- Forward pass: compute loss / backward pass: compute derivatives
- Notation: $\overline{y} = \frac{\partial L}{\partial y}$ (error signals)
- Multivariate chain rule: $\frac{\partial}{\partial t} f(x(t), y(t)) = \frac{\partial f}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial t} = \overline{x} \frac{\partial x}{\partial t} + \overline{y} \frac{\partial y}{\partial t} = \overline{t} \rightarrow \text{in vector notation:}$ $\frac{\partial}{\partial t} f(x(t)) = \frac{\partial f}{\partial x}^{\top} \frac{\partial x}{\partial t}$
- Backpropagation (v_1, \ldots, v_N) in topological order): $\forall i$: Compute v_i as a function of $\operatorname{Pa}(v_i)$ (forward pass) $\to \overline{v_N} = 1 \to \forall i : \overline{v_i} = \sum_{j \in \operatorname{Ch}(v_i)} \overline{v_j} \frac{\partial v_j}{\partial v_i}$ (backward pass)
- Chain rule for matrix-vector products: $\nabla_W f = \frac{\partial f(z)}{\partial W} = \frac{\partial f(z)}{\partial z} \frac{\partial}{\partial W} (Wx + b) = \frac{\partial f(z)}{\partial z} x^{\top} (z = Wx + b)$
- Forward: one add-multiply operation per weight / backward: two times forward (cost linear in number layers, quadratic in units per layer)
- Backprop neurally implausible (biological alternatives much slower on computers)
- Problems with standard SGD: slow along shallow dimension, jitter along steep dimension; stuck in local minima; noisy loss function due to mini-batches
- Momentum term (running gradient average): $\boldsymbol{m}_{k+1} = \gamma_k \boldsymbol{m}_k + (1 \gamma_k) \nabla L / \text{Geometric Average: } \boldsymbol{m}_k = (1 \gamma) \sum_i \gamma^{k-i} \boldsymbol{g}_i$
- Gradient normalization (RMSProp): large steps in plateaus, small steps in steep areas: $\mathbf{g}_k = \nabla_{\theta} L(\mathbf{\theta}_k)$, $\mathbf{b}_{k+1,i} = \gamma \mathbf{v}_{k,i} + (1-\gamma) \mathbf{g}_{k,i}^2$, $\mathbf{\theta}_{k+1,i} = \mathbf{\theta}_{k,i} \frac{\eta}{\sqrt{\mathbf{v}_{k+1,i}+\varepsilon}} \mathbf{g}_{k,i}$ per dimension i, \mathbf{v}_k : average of gradient norms, ε : prevent division by zero

- Adam: adaptive momentum + normalization: $\boldsymbol{\theta}_{k+1,i} = \boldsymbol{\theta}_{k,i} \frac{\eta c_2(k)}{\sqrt{c_1(k)\boldsymbol{v}_{k+1,i} + \varepsilon}} \boldsymbol{m}_{k+1,i}$ (no convergence guarantee, underestimation at start fixed by $c_i(k) = \frac{1}{1-\gamma_i^k}$
- Learning rate decay: Reduce at fixed points / Cosine: $\alpha_t = \frac{1}{2}\alpha_0(1 + \cos(\frac{t\pi}{T}))$ / Linear $\alpha_t = \alpha_0(1 \frac{t}{T})$ / Inverse root: $\alpha_t = \frac{\alpha_0}{\sqrt{t}}$ (T: total number of epochs)
- First order optimization: step in direction of minimum of linear approximation / second order optimization: step to minimum of quadratic approximation
- $\theta^* = \theta_0 \frac{1}{2}H^{-1}g$ with Hessian $H = \nabla^2_{\theta}L(\theta)$ (no hyperparameters, no learning rate, less iterations, inverse in $O(N^3)$, N is in the millions)
- Solutions: quasi-Newton methods (BFGS, approximate Hessian over time) / Limited memory BFGS (does not store full \mathbf{H}^{-1} , works well in full batch) \rightarrow in practice use Adam or L-BFGS (only on full batch with small noise)
- Regularization: model ensembles: train multiple models (or use snapshots of one during training), average their results
- Dropout: randomly (often 50%) set neurons to zero (in each forward pass) \rightarrow forces redundancy, can be interpreted as ensembles with shared parameters
- Testing dropout: average over multiple dropout masks (ensemble view) / multiply each weight by dropout rate (expectation view)
- Drop connect: drop neuron connections (training) / use all connections (testing)
- Data preprocessing: initialization optimized for zero-mean unit variance data / PCA / whitening of low-d data (covariance matrix is I)
- Classification loss less sensitive to small weight changes after normalization
- Weight initialization: constant \rightarrow all gradients equal, no distinct features can be learned \rightarrow random initialization needed
- Fixed variance → activations go to zero/saturate over deep layers (no gradients)
- Xavier intialization ($\sigma_W = \frac{1}{\sqrt{D_{\rm in}}}$): activations nicely scaled for all layers (for tanh) / For ReLU: $\sigma_W = \frac{2}{\sqrt{D_{\rm in}}}$
- Practice tips
 - 1. Check initial loss (without L2 should be $\log C$ for softmax with C classes)
 - 2. Overfit small sample (get 100% training accuracy, change architecture / η)
 - 3. Find η to strongly decrease loss in 100 iterations (full training data, small L2)
 - 4. Grid search around η / L2 from previous step (train each for 1 to 5 epochs)
 - 5. Train best models from step 4 for longer (10 to 20 epochs) without η decay

- 6. Loss curves: plateau end → η decay / plateau beginning → bad initialization / plateau after η step decay → decay later / validation accuracy going up → train longer / validation accuracy going down → regularize/more data / same training/validation accuracy → train longer/bigger model
- NNs work very well, even though we have more parameters than training samples

11 Convolutional and Recurrent Neural Networks

- \bullet Image inputs \to huge amount of weights with FC-layers
- Close pixels more correlated \rightarrow use convolutions (slide filter over image)
- Stack filters to obtain multi-channel output
- Stride S: step-size (> 1 \rightarrow down-sampling) / (zero)-padding P: fill image borders
- Convolutional Layer: $W_1 \times H_1 \times D_1 \to W_2 \times H_2 \times D_2$ with $W_2 = (W_1 F + 2P)/S + 1$, $H_2 = (H_1 F + 2P)/S + 1$ and $D_2 = K$: number of filters, F: kernel size
- (Max)-Pooling: smaller output dimension (applied to each channel with P=0)
- Convolutional network: Convolutional layers, activations, pooling, FC layers at end
- Optimize deep models: residual block computes $F(x) + x \to \text{new}$ layers do no harm with F(x) = 0 at beginning
- Transfer learning (for small datasets): Convolutional layers are generic → reuseable (only train last FC layer(s) and freeze rest)
- AlexNet (2012): first use of ReLU, 8 layers (first CNN winner of ImageNet) / VGG (2014): more smaller filters (more non-linearities, fewer parameters, 19 layers) / ResNet (2015): very deep using residual connections (152 layers)
- Recurrent NNs: one to many (image captioning) / many to one (sentiment) / many to many (translation, video classification) → use old state as input
- State $\boldsymbol{h}_t = f_W(\boldsymbol{h}_{t-1}, \boldsymbol{x}_t) = \tanh(\boldsymbol{W}_{hh}\boldsymbol{h}_{t-1} + \boldsymbol{W}_{xh}\boldsymbol{x}_t), \ \boldsymbol{y}_t = \boldsymbol{W}_{hy}\boldsymbol{h}_t$
- Computational graph: unroll time steps \rightarrow network depth T, reuse W each step
- Backpropagation through time (BPTT): forward/backward through entire sequence
- \bullet Truncated BPTT: keep $\boldsymbol{h},$ but only backpropagate for smaller number of steps
- Image Captioning: $h_t = \tanh(W_{hh}h_{t-1} + W_{xh}x_t + W_{ih}v)$ with x: previous word, v: last layer CNN
- ∇h depends on W: largest singular value > 1: exploding gradients \rightarrow scale gradient / largest singular value < 1: vanishing gradients \rightarrow different RNN architecture

- Long-term short-term memory (LSTM): gated contribution of state/input (forget (erase cell), input (write), g (how much to write), output (how much to reveal))
- LSTM: Backpropagation from c_t to c_{t-1} : only elementwise multiplication (uninterrupted gradient flow similar to ResNet)
- ullet Stack: layer 1 output sequence \to layer 2 input (only dropout non-recurrent edges)
- \bullet Gated Recurrent Units: no explicit f gate, less parameters, similar performance

12 Wrap-Up

Chapter	Classical Supervised Learning	Classical Unsupervised Learning	Kernel Methods	Bayesian Learning	Neural Networks
Algorithms	Regression: Linear, Ridge, KNN, Trees, Forests Classification: Logistic Regression, KNN, Trees, Forests	(p)PCA Clustering: Agglomerative, K-Means, EM for GMMs Density Estimation: KDE, KNN, Mixture Models	Kernel Regression, SVMs	Bayesian Linear Regression, Gaussian Processes	FF-NNs, Backprop, CNNs, LSTMs
Basics	Matrix and Vector Calculus, Probability Theory, MLE, Gradient Descent	Constraint Optimization, EM	Sub-gradients, Constraint Optimization	"Completing the square", Gaussian Conditioning	Most of the others
Representations	Features, Basis Functions, Instances, Trees	Instances, Linear Projections, Centroids, Mixture Models	Kernels	Features, Kernels	NNs
Optimization	Least-squares, Gradient Descent	Eigen-Value Decomposition, EM	Sub-gradients, Quadratic Solver	Computing the Posterior	Adam, 2nd Order Gradient, Sub-gradients (ReLU)
Loss	MSE/SSE, Gaussian Log-Likelihood, Binary Cross Entropy, Soft-Max Likelihood	Reproduction Error, SSD, Sum of Discrepancies, Marginal Log-Likelihood	Maximum Margin, Hinge Loss	MAP, Posterior Approximation	Most of the others