第六次习题课

王瑞

April 7, 2022

My thesis is simply this: probability does not exist. – Bruno de Finetti

1 正态分布

例 1.1 (正态分布的对称性) 如果随机变量 X 服从期望为 -1 正态分布, 已知 $P(X \le -2.96) = 0.025$, 求 $P(X \le 0.96)$.

例 1.2 (Stein 引理) 设 $X \sim N(\mu, \sigma^2)$, 另 g 是一个可微的函数, 而且满足 $E|g'(X)| \leq \infty$, 那么我们有

$$E[g(X)(X - \mu)] = \sigma^2 E g'(X). \tag{1}$$

例 1.3 (正态分布的高阶矩) 如果 $X \sim N(\mu, \sigma^2)$, 试求 EX^3

例 1.4 (正态分布的集中不等式) 如果 Z 服从标准正态分布, 那么

$$P(|Z| \ge t) \le \sqrt{\frac{2}{\pi}} \frac{e^{-t^2/2}}{t}$$
 (2)

对所有的 t>0. 请用该不等式估计 $P(|Z|\geq 2)$, 并与切比雪夫不等式的结果做比较.

例 1.5 (正态分布的矩母函数) 定义随机变量 X 的矩母函数为

$$M_X(t) = E[e^{tX}] (3)$$

试求当 $X \sim (\mu, \sigma^2)$ 时的矩母函数.

2 随机变量函数的分布

例 2.1 设 X 服从 [a,b] 上的均匀分布, 证明 $\alpha X + \beta(\alpha > 0)$ 服从 $[a\alpha + \beta, b\alpha + \beta]$ 上的均匀分布.

例 2.2 设 X 服从 [-1,1] 上的均匀分布, 求 X^2 的分布函数和密度函数.

例 2.3 设 X 服从参数为 1 的指数分布, 求 $Y = \alpha X + \beta(\alpha > 0)$ 的分布函数和密度函数.

例 2.4 设 X 服从参数为 $1/\theta$ 的指数分布, 证明 $Y = \frac{2}{\theta}X$ 服从参数为 1/2 的指数分布.

例 2.5 设 $X \sim N(0, \sigma^2)$, 求 $Y = X^2$ 的分布

例 2.6 设 X 服从标准正态分布, 试求一下 Y 的密度函数:

- 1. Y = 2X + 1
- 2. Y = |X|
- 3. $Y = 2X^2 + 1$

References

- [1] Casella, George, and Roger L. Berger. Statistical inference(2nd ed). Cengage Learning, 2002.
- [2] 李贤平. "基础概率论 (第三版)." (2010).
- [3] 茆诗松,程依明,濮晓龙."概率论与数理统计(第二版)."(2012).
- [4] Keener, Robert W. Theoretical statistics: Topics for a core course. New York: Springer, 2010.