

basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE

GRADE 12

MATHEMATICS P1

NOVEMBER 2010

MEMORANDUM

MARKS: 150

This memorandum consists of 27 pages.

Copyright reserved Please turn over

DBE/November 2010

NOTE:

- If a candidate answers a question TWICE, only mark the FIRST attempt.
- If a candidate has crossed out an attempt of a question and not redone the question, mark the crossed out version.
- Consistent Accuracy applies in all aspects of the marking memorandum.

QUESTION 1

1.1.1	(3-x)(5-x)=3		
1.1.1	$(3-x)(5-x) = 3$ $15-8x+x^{2} = 3$ $x^{2}-8x+12 = 0$ $(x-6)(x-2) = 0$ $x = 6 \text{ or } x = 2$ \mathbf{OR} $(3-x)(5-x) = 3$ $15-8x+x^{2} = 3$	Note: If answer only: Full Marks If the candidate makes it a linear equation, no marks For only 1 answer: 1/3	✓ expansion ✓ factors ✓ answers (3)
	$x^{2}-8x+12=0$ $(x-4)^{2} = 4$ $x-4=2 \text{ or } x-4=-2$ $x=6 \text{ or } x=2$		✓ expansion ✓ completed square form ✓ answers (3)
1.1.2	$3x^{2} = 2(x+2)$ $3x^{2} - 2x - 4 = 0$ $x = \frac{-(-2) \pm \sqrt{(-2)^{2} - 4(3)(-4)}}{2(3)}$ $= \frac{2 \pm \sqrt{52}}{6}$ $x = 1,54 \text{ or } -0,87$ \mathbf{OR} $3x^{2} = 2(x+2)$ $3x^{2} - 2x - 4 = 0$ $x^{2} - \frac{2}{3}x = \frac{4}{3}$	Note: No penalty for incorrect rounding off of answers. Substitution into incorrect formula, no marks	✓ standard form ✓✓ substitution ✓ answers (4)
	$x - \frac{1}{3}x - \frac{1}{3}$ $\left(x - \frac{1}{3}\right)^2 = \frac{4}{3} + \frac{1}{9}$ $\left(x - \frac{1}{3}\right)^2 = \frac{13}{9}$ $x - \frac{1}{3} = \pm \frac{\sqrt{13}}{3}$ $x = \frac{1 \pm \sqrt{13}}{3}$ $x = 1,54 \text{ or } -0,87$		✓ completed square $\checkmark \pm \frac{\sqrt{13}}{3}$ ✓ answers (4)

Mathematics/P1	3	DBE/November 2010
	NSC – Memorandum	

1.1.3	$4 + 5x > 6x^2 \qquad -6x^2 + 5x + 4 > 0$	
	$0 > 6x^2 - 5x - 4$ OR $6x^2 - 5x - 4 < 0$	✓ correct
	$0 > (3x-4)(2x+1) \qquad (3x-4)(2x+1) < 0$	inequality
	critical values: $x = \frac{5 \pm \sqrt{121}}{12}$	✓ factors ✓ critical values
	$x = -\frac{1}{2} \text{ or } \frac{4}{3}$	$-\frac{1}{2} \text{ and } \frac{4}{3}$
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	$-\frac{1}{2} < x < \frac{4}{3}$ OR $x \in \left(-\frac{1}{2}; \frac{4}{3}\right)$ OR $-\frac{1}{2} < x$ and $x < \frac{4}{3}$	✓ answer
	OR	(4)
	$-6x^2 + 5x + 4 > 0$	✓ correct
	(-3x+4)(2x+1) > 0	inequality
	critical values: $-\frac{1}{2}$ and $\frac{4}{3}$	✓ factors
	2 3	✓ critical values
	_ 0 + 0 _	$-\frac{1}{2}$ and $\frac{4}{3}$
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2 3
	$-\frac{1}{2} < x < \frac{4}{3}$ OR $x \in \left(-\frac{1}{2}; \frac{4}{3}\right)$ OR $-\frac{1}{2} < x$ and $x < \frac{4}{3}$	✓ answer (4)
1.2	3y = 2x	
	$y = \frac{2x}{3}$	$\checkmark y = \frac{2x}{3}$
	$x^{2} - \left(\frac{2x}{3}\right)^{2} + 2x - \left(\frac{2x}{3}\right) = 1$ OR $x^{2} - \left(\frac{2x}{3}\right)^{2} + 2x - \left(\frac{2x}{3}\right) = 1$	$\sqrt{y} = \frac{1}{3}$ substitution
	$x^{2} - \frac{4x^{2}}{9} + 2x - \frac{2x}{3} = 1$ $\frac{5x^{2}}{9} + \frac{4x}{3} - 1 = 0$	✓ simplification ✓ standard forms
	$9x^{2} - 4x^{2} + 18x - 6x = 9$ $x = \frac{-\frac{4}{3} \pm \sqrt{\left(\frac{4}{3}\right)^{2} - 4\left(\frac{5}{9}\right)(-1)}}{2\left(\frac{5}{9}\right)}$	✓ factors or substitution
	$5x^{2} + 12x - 9 = 0$ $(5x - 3)(x + 3) = 0$ $= \frac{-\frac{4}{3} \pm \sqrt{\frac{16}{9} + \frac{20}{9}}}{\frac{10}{9}}$	into correct formula
	$x = \frac{3}{5}$ or $x = -3$ $x = 0.6$ or $x = -3$	✓ x-answers
		/ on gyvorg

(7)

$$y = \frac{2}{5}$$
 or $y = -2$

 $x^2 - y^2 + 2x - y = 1$

 $9v^2 - 4v^2 + 8v = 4$

 $5y^2 + 8y - 4 = 0$

(5y-2)(y+2)=0

 $y = \frac{2}{5}$ or y = -2

 $x = \frac{3}{5}$ or x = -3

 $4x^2 - 4y^2 + 8x - 4y = 4$

 $(2x)^2 - 4y^2 + 8x - 4y = 4$

 $(3y)^2 - 4y^2 + 4(3y) - 4y = 4$

 $(x; y) = \left(\frac{3}{5}; \frac{2}{5}\right) \text{ or } (-3; -2)$

$$y = 0.4$$
 or $y = -2$

$$(x;y) = \left(\frac{3}{5}; \frac{2}{5}\right) \text{ or } (-3; -2)$$

$$3y = 2x$$

If mathematical breakdown eg. if y = 2x - 3 is used, max 3 / 7

- ✓ simplification of original quadratic
- ✓ substitution 2x = 3y
- ✓ simplification
- ✓ standard form
- ✓ factors or substitution into correct formula
- ✓ y-answers
- ✓ *x*-answers

(7)

OR

$$3y = 2x$$

$$x = \frac{3y}{2}$$

$$\left(\frac{3y}{2}\right)^{2} - y^{2} + 2\left(\frac{3y}{2}\right) - y = 1$$

$$\frac{9y^{2}}{4} - y^{2} + 3y - y = 1$$

$$9y^{2} - 4y^{2} + 8y = 4$$

$$5y^{2} + 8y - 4 = 0$$

$$(5y - 2)(y + 2) = 0$$

$$y = \frac{2}{5} \text{ or } y = -2$$

$$x = \frac{3}{5} \text{ or } x = -3$$

$$(x; y) = \left(\frac{3}{5}; \frac{2}{5}\right) \text{ or } (-3; -2)$$

$$\checkmark x = \frac{3y}{2}$$

- ✓ substitution
- √ simplification
- ✓ standard forms
- ✓ factors or substitution into correct formula
- ✓ y-answers
- ✓ *x*-answers

(7)

Copyright Reserved Please turn over

 $5^{2007} + \overline{5^{2010}}$ $5^{2008} + 5^{2009}$ $=\frac{5^{2007}+5^{2007}.5^3}{5^{2008}+5^{2008}.5}$ $=\frac{5^{2007}(1+5^3)}{5^{2008}(1+5)}$ $=\frac{126}{5\times6}$ $=\frac{126}{30}$ $=\frac{21}{5}$ ≈ 4

Note: If the candidate leaves the answer as 4,2 max 2/3 marks

Answer only of 4,20/3marks

$$\checkmark \frac{5^{2007} + 5^{2007}.5^3}{5^{2008}.5 + 5^{2008}.5^2}$$

✓ simplification to $\frac{1+5^3}{5+5^2}$ or $\frac{126}{30}$ or

✓ answer = 4(3)

OR

1.3

$$\frac{5^{2007} + 5^{2010}}{5^{2008} + 5^{2009}} \quad \text{(divide each term by } 5^{2007}\text{)}$$

$$= \frac{5^{2007} + 5^{2007}.5^{3}}{5^{2007}.5 + 5^{2007}.5^{2}}$$

$$= \frac{1 + 5^{3}}{5 + 5^{2}}$$

$$= \frac{126}{30}$$

$$\approx 4$$

OR
$$let x = 2009 \qquad let x = 2007 \qquad let x = 2010$$

$$\frac{5^{x-2} + 5^{x+1}}{5^{x-1} + 5^{x}} \qquad \frac{5^{x} + 5^{x+3}}{5^{x+1} + 5^{x+2}} \qquad \frac{5^{x-3} + 5^{x}}{5^{x-2} + 5^{x-1}}$$

$$= \frac{5^{x}(5^{-2} + 5)}{5^{x}(5^{-1} + 1)} \qquad = \frac{5^{x}(1 + 5^{3})}{5^{x}(5 + 5^{2})} \qquad = \frac{5^{x}(5^{-3} + 1)}{5^{x}(5^{-2} + 5^{-1})}$$

$$= \frac{1}{25} + 5$$

$$= \frac{1 + 125}{5 + 25} \qquad \text{OR}$$

$$= \frac{1}{125} + 1$$

$$= \frac{1}{125} + 1$$

$$= \frac{1}{125} + 1$$

$$= \frac{1}{125} + 1$$

$$= \frac{25}{15} + 5$$

$$= \frac{25}{15} + 1$$

$$= \frac{126}{30}$$

$$= \frac{21}{5}$$

$$= 4\frac{1}{5}$$

$$\approx 4$$

$$= \frac{125}{125} + \frac{1}{5}$$

$$= \frac{126}{30}$$

$$= \frac{21}{5}$$

$$= 4\frac{1}{5}$$

$$\approx 4$$

$$\approx 4$$

 $\checkmark \frac{5^{2007} + 5^{2007}.5^3}{5^{2007}.5 + 5^{2007}.5^2}$

✓ simplification to $\frac{1+5^3}{5+5^2} \text{ or } \frac{126}{30} \text{ or }$ $\frac{21}{5}$ $\checkmark \text{ answer} = 4$

 $\checkmark \frac{5^{x-2} + 5^{x+1}}{5^{x-1} + 5^x}$ or $\frac{5^{x-3} + 5^x}{5^{x-2} + 5^{x-1}}$

✓ simplification to

$$\frac{\frac{1}{25} + 5}{\frac{1}{5} + 1} \text{ or }$$

$$\frac{1+125}{5+25} \text{ or }$$

$$\frac{\frac{1}{125} + 1}{\frac{1}{125} + 1}$$

(3) [21]

2.1	$= \frac{1}{3} + 1 + 3 + \dots \text{ to } 20 \text{ terms}$ $= \frac{\frac{1}{3}(3^{20} - 1)}{3 - 1} ; r = 3; n = 20$ $= \frac{3^{20} - 1}{6}$	Note: The mark for $n = 20$ can be implied in the substitution to the formula	$\checkmark a = \frac{1}{3}$ $\checkmark r = 3$ $\checkmark n = 20$
	= 581130733,33 OR 581130733 $\frac{1}{3}$ OR 581130733,3 Note: If leave only as $\frac{1}{3} + 1 + 3 + 9 + 27 + 81 + 243 + 729 + 2187 + 6561 + 19683 + 59049 + 177147 + 531441 + 1594323 + 4782969 + 14348907 + 43046721 + 129140163 + 387420489 only, then 2 / 4 Note: The 20th term is 387 420 489 Answer only: 3 / 4 marks$		(4)
2.2.1	$r = \frac{x}{5}$ Note: If	f-1 < x < 1 1 mark f answer is $-5 \le x \le 5$ hen $2/3$	$\checkmark r = \frac{x}{5} \text{ or } \frac{x^2}{5x}$ $\checkmark -1 < r < 1$ $\checkmark \text{ answer}$ (3)
2.2.2	$r = \frac{2}{5}$ and $a = 10$ $S_{\infty} = \frac{10}{1 - \frac{2}{5}}$ $= \frac{50}{3}$ or 16,67		✓ $a = 10$ ✓ answer (2)

2.3.1
$$T_n = 20 + 3(n-1)$$
$$101 = 20 + (n-1)3$$
$$84 = 3n$$
$$n = 28$$

OR

$$T_n = 3n + 17$$

$$101 = 3n + 17$$

$$84 = 3n$$

$$n = 28$$

Note: If

$$n = -\frac{17}{3}$$
Then 1 / 2 marks

Answer only: Full marks

$$\sqrt{101} = 20 + 3(n-1)$$

or $101 = 3n + 17$

✓ answer

(2)

✓ substitution

(2)

2.3.2 23 + 29 + ... to 14 terms

$$= \frac{14}{2}[2(23) + (14 - 1)6] \quad OR \quad \frac{14}{2}[23 + 101]$$

= 868

Note: If "to 14 terms" is left out, do not penalise

Note: If incorrect value for n, max 4/6

Note: If incorrect formula, max 2 / 6 √ 23 + 29 + ...

✓
$$a = 23$$

$$✓ n = 14$$

✓
$$d = 6$$
 or $l = 101$

✓ substitution into correct formula

✓ answer

(6)

OR

Even numbers = 20; 26;...; 98

$$T_n = 6n + 14$$
 $T_n = 20 + (n-1)6$
 $98 = 6n + 14$ **OR** $98 = 20 + (n-1)6$
 $84 = 6n$ $84 = 6n$

$$98 = 20 + (n-1)6$$

$$84 = 6n$$

$$14 = n 14 = n$$

$$S_{remaining} = \frac{28}{2} [2(20) + (27)(3)] - \frac{14}{2} [2(20) + (13)(6)]$$

$$= 14(121) - 7(118)$$

$$= 1694 - 826$$

$$= 868$$
Note:

Note:

If the candidate only works out the even numbers i.e. 826, then 3 / 6 marks

If only 1694 max 1 / 6 marks

OR

$$\checkmark$$
 98 = 6n + 14 or
98 = 20 + (n − 1)
 \checkmark 14 = n

✓ substitution into correct formula **√**1694

√ 826

✓ answer

(6)

OR

Sequence is

20; 23; 26; 29; 32; 35; 38; 41; 44; 47; 50; 53; 56; 59; 62; 65; 68; 71; 74; 77; 80; 83; 86; 89; 92; 95; 98; 101 Sum of odd numbers

$$= 23 + 29 + 35 + 41 + 47 + 53 + 59 + 65 + 71 + 77 + 83 + 89 + 95 + 101$$

 $= 868$

Full marks

(6)

[17]

		OR	
	2a = 6		
	a = 3	$\mathbf{v} \ a = 3$	
	3a + b = 5	$\checkmark c = 5$	
OD	b = -4		
OK	a+b+c=4	✓ method	
	3-4+c=4	$\checkmark b = -4$	
	<i>c</i> = 5		(4
	$T_n = 3n^2 - 4n + 5$		
		$\checkmark a = 3$	
		/ a=5	
	a = 6(n-1)(n-2)) $\begin{vmatrix} \mathbf{v} & c - 3 \end{vmatrix}$	
	$I_n = 4 + (n-1)5 + \frac{1}{2}$	✓ method	
OR	$= 4 + 5n - 5 + 3n^2 - 9n + 6$		
	$=3n^2-4n+5$	b = -4	(4
			(-
			[7
	OR	$a = 3$ $3a + b = 5$ $b = -4$ $a + b + c = 4$ $3 - 4 + c = 4$ $c = 5$ $T_n = 3n^2 - 4n + 5$ $T_n = 4 + (n-1)5 + \frac{6(n-1)(n-2)}{2}$ $= 4 + 5n - 5 + 3n^2 - 9n + 6$	OR $ \begin{array}{c} 2a = 6 \\ a = 3 \\ 3a + b = 5 \\ b = -4 \\ a + b + c = 4 \\ c = 5 \\ T_n = 3n^2 - 4n + 5 \end{array} $ $ \begin{array}{c} \checkmark a = 3 \\ \checkmark c = 5 \\ \checkmark \text{ method} \end{aligned} $ $ \checkmark b = -4 $ $ \checkmark a = 3 \\ \checkmark b = -4 $ $ \checkmark b = -4 $ $ \checkmark a = 3 \\ \checkmark b = -4 $

Copyright Reserved Please turn over

4.1

y=3

x = 2

OR x-asymptote = 2 y-asymptote = 3

- ✓ answer
- ✓ answer

(2)

(3)

If x = p; y = q then 1 mark

Note: If the candidate just writes down the number 2 or 3 or just coordinates (2; 3), then no marks

✓ subs in of asymptotes

- $f(x) = \frac{a}{x-2} + 3$
 - $0 = \frac{a}{1-2} + 3$
 - 0 = -a + 3
 - a = 3
 - $f(x) = \frac{3}{x-2} + 3$

- If the asymptotes are swopped in 4.1, then
- $f(x) = \frac{a}{x-3} + 2$
- $0 = \frac{a}{1-3} + 2$
- $f(x) = \frac{4}{x-3} + 2$

- \checkmark subs in (1;0)
- ✓ answer

OR

$$y = \frac{a}{x - 2} + 3$$

$$y - 3 = \frac{a}{x - 2}$$

$$(x-2)(y-3) = a$$

But (1;0) lies on the graph

$$\therefore (-1)(-3) = a = 3$$

$$\therefore (x-2)(y-3) = 3$$

- ✓ equation
- \checkmark subs in (1;0)
- ✓ answer
 - (3)

4.3 When x = 0, $y = \frac{3}{0-2} + 3$

$$=\frac{3}{2}$$

 $D\left(0;\frac{3}{2}\right)$

If asymptotes swopped:

$$y = \frac{4}{2} + \frac{4}{3}$$

$$y = \frac{2}{3}$$

$$D\left(0;\frac{2}{3}\right)$$

- $\checkmark x = 0$
- $\checkmark y = \frac{3}{2}$

(2)

4.4	$m_{AD} = \frac{3 - 1.5}{2 - 0}$
	$=\frac{3}{4}$
	$y = \frac{3}{4}x + \frac{3}{2}$

OR 4y = 3x + 6

OR $y = mx + \frac{3}{2}$ $3=m(2)+\frac{3}{2}$

 $m = \frac{3}{4}$ $y = \frac{3}{4}x + \frac{3}{2}$ If asymptotes swopped:

$$m_{AD} = \frac{3 - \frac{2}{3}}{2 - 0}$$

$$= \frac{7}{3} \times \frac{1}{2}$$

$$= \frac{7}{6}$$

$$y = \frac{7}{6}x + \frac{2}{3}$$

✓ substitution into gradient

(3)

(3)

✓ answer

✓ substitution of point (2; 3) and

✓ answer

4.5

$$\frac{p+0}{2} = 2$$

$$p = 4$$

$$\frac{q+\frac{3}{2}}{2} = 3$$

$$q = 4\frac{1}{2}$$

Other point of intersection is $\left(4; 4\frac{1}{2}\right)$

Answer only: Full Marks

 $\checkmark \frac{p+0}{2} = 2$

 $\checkmark \frac{q+\frac{3}{2}}{2} = 3$

 $\checkmark x = 4$ $\checkmark y = 4\frac{1}{2}$

(4)

OR

By symmetry the rule to calculate the point of intersection is

$$(x;y) \rightarrow \left(x+2;y+\frac{3}{2}\right)$$

Other point of intersection is

$$\left(2+2;3+\frac{3}{2}\right)$$
$$=\left(4;4\frac{1}{2}\right)$$

= $\left(4;4\frac{1}{2}\right)$

To help with applying CA the y-coordinate will be 3 + (3 - y)

✓ ✓ *x*-answer ✓ ✓ y-answer

(4)

ΩR

$$\frac{3}{4}x + \frac{3}{2} = \frac{3}{x-2} + 3$$

$$3x(x-2) + 6(x-2) = 12 + 12(x-2)$$

$$3x^2 - 6x + 6x - 12 = 12 + 12x - 24$$

$$3x^2 - 12x = 0$$

$$3x(x-4) = 0$$

$$x = 0 \text{ and } x = 4$$

Other point of intersection is $\left(4; 4\frac{1}{2}\right)$

Note:

If the candidate does not select the *x*-value greater than 2 i.e. a realistic answer, max 3 / 4 marks

✓ equating

✓ standard form

✓ *x*-values

✓ y-value

[14]

(4)

If asymptotes swopped:

$$\frac{7}{6}x + \frac{2}{3} = \frac{4}{x - 3} + 2$$

$$7x(x - 3) + 4(x - 3) = 4(6) + 2(6)(x - 3)$$

$$7x^{2} - 29x = 0$$

$$x(7x - 29) = 0$$

$$x = 0 \quad \text{or} \quad x = \frac{29}{7}$$
Other point of intersection is
$$\left(\frac{29}{7}; \frac{11}{2}\right)$$

QUESTION 5

5.1	$f(x) = 4^{-x} - 2$ y-intercept: $x = 0$; $y = 4^{0} - 2 = -1$; $(0; -1)$	✓ ✓ y-intercept
	x-intercept: $4^{-x} - 2 = 0$ $4^{-x} - 2 = 0$ $4^{-x} = 2$ $2^{-2x} = 2$ $-x = \frac{\log 2}{\log 4}$ $-2x = 1$ $x = -\frac{1}{2}$ OR x $-x = \frac{\log 2}{2 \log 2}$ $x = -\frac{1}{2}$	x-intercept (4) Note: No penalty if the answer is not left as a coordinate.
5.2	y = -2	✓ equation (1)

Copyright Reserved

Please turn over

Please turn over

5.3	-2 -1.5 -1 -0.5 0.5 1.5 2 2.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1	✓ asymptote ✓ y-intercept or x-intercept ✓ shape (decreasing) (3)
5.4	$g(x) = 4^{-x} - 2 + 2$	✓ equation (1)
	$g(x) = 4^{-x} \tag{1}^x$	
	$\mathbf{OR} \qquad g(x) = \left(\frac{1}{4}\right)^x$	
	OR $g(x) = 2^{-2x}$	
	$\mathbf{OR} g(x) = \left(\frac{1}{2}\right)^{2x}$	
5.5	$4^{-x} - 2 = 3$	$\checkmark A^{-x} - 5$
	$4^{-x} = 5$	$\checkmark 4^{-x} = 5$
	$-x\log 4 = \log 5$ $\log 5$	$\checkmark - x \log 4 = \log 5$
	$x = -\frac{\log 5}{\log 4}$ OR $x = -\log_4 5$ OR $x = \log_{\frac{1}{4}} 5$ OR $x = \log_{\frac{1}{5}} 5$	
	OR $x = -1,16$ OR $x = \frac{\log 5}{\log \frac{1}{4}}$ OR $x = \frac{\log \frac{1}{5}}{\log 4}$	✓ answer
	$\log \frac{1}{4}$ $\log 4$	(3) [12]
		[12]

6.1	$f(x) = ax^2$ $-8 = a(-6)^2$	
	-8 = 36a	✓ substitution
	$a = -\frac{8}{36}$	
	OR	✓ answer
	$a=-\frac{2}{9}$	(2)
6.2	$f(x): y = -\frac{2}{9}x^2$	
	$x = -\frac{2}{9}y^2$	of gwon r and v
	$9x = -2y^{2}$ Note: If candidate does not	\checkmark swop x and y
	g_x substitute the value of a	$\int_{0}^{\infty} y^{2} dy dy$
		$y^2 = -\frac{9x}{2} \text{ or}$ $y = \pm \sqrt{\frac{-9x}{2}}$
	$y = \pm \sqrt{\frac{-9x}{2}}$, since $y \le 0$ $y = -\sqrt{\frac{x}{a}}$	$y = \pm \sqrt{\frac{-9x}{2}}$
	$y = -\sqrt{-\frac{9x}{2}} \text{ OR} y = -3\sqrt{\frac{-x}{2}}$ then 2/3 marks	
	V 2 V 2	$\checkmark y = -\sqrt{-\frac{9x}{2}}$
6.3	$y \le 0$	(3) ✓ answer
		(1)
	OR	
6.4	$y \in (-\infty; 0]$	
		✓ shape (third quadrant)
		(third quadrant) (concave upward)
		✓ Any point other than
		(0; 0) that lies on the graph
	-10 8 -6 -4 -2 10 2 4	Point
		corresponding
	(-8;-6)	from original graph will be
	(-8,10)	(-8;-6) (2)
i		İ

DBE/November 2010

6.5

$$y = -f^{-1}(x)$$
$$= \sqrt{\frac{-9x}{2}}$$

OR

$$y = -f^{-1}(x)$$
$$= 3\sqrt{\frac{-x}{2}}$$

OR

$$y = -\frac{2}{9}x^2$$

Reflection in y = x: $x = -\frac{2}{9}y^2$

$$-\frac{9}{2}x = y^2$$

$$y = -\sqrt{-\frac{9x}{2}}$$

Reflection about y-axis: $y = \sqrt{-}$

Note:

If candidate has $(x; y) \rightarrow (y; -x)$ then 2/3 marks

Note:

If candidate does not substitute the value of *a* the answer is

$$y = \sqrt{\frac{x}{a}}$$

then full marks

$$\checkmark \checkmark - f^{-1}(x)$$

✓ answer

$$\checkmark x = -\frac{2}{9}y^2$$

$$\checkmark y = -\sqrt{-\frac{9x}{2}}$$

$$\checkmark y = \sqrt{-\frac{9x}{2}}$$

(3) **[11]**

(3)

7.1	/ \n		
7.1	$A = P(1+i)^n$		
	$2P = P\left(1 + \frac{r}{4}\right)^{6\times 4}$		✓ 2P
	4)	Note:	$\checkmark \frac{r}{4}$ and 24
	$(1,r)^{24}$	Penalty 1 for incorrect	4
	$2 = \left(1 + \frac{r}{4}\right)^{24}$	rounding off.	
	$r = \frac{1}{r}$		1
	$1 + \frac{r}{4} = 2^{\frac{1}{24}}$		$\checkmark 1 + \frac{r}{4} = 2^{\frac{1}{24}}$
	$r = 4\left(2^{\frac{1}{24}} - 1\right)$		4
	$r = 4\left(2^{\frac{1}{24}}\right) - 4$		$\checkmark r = 4\left(2^{\frac{1}{24}}\right) - 4$
	r = 0.1172 rate = 11,72% p.a. compounded qu	artarly	
	rate – 11,72% p.a. compounded qu	arterry	✓ answer
	OR		(5)
	$A = P(1+i)^n$		
	$2P = P\left(1 + \frac{r}{400}\right)^{6\times4}$		\checkmark 2P $\checkmark \frac{r}{400}$ and 24
	$2 = \left(1 + \frac{r}{400}\right)^{24}$		
	$1 + \frac{r}{400} = 2^{\frac{1}{24}}$		$\checkmark 1 + \frac{r}{400} = 2^{\frac{1}{24}}$
	$r = 400 \left(2^{\frac{1}{24}} - 1 \right)$		
	$r = 400 \left(2^{\frac{1}{24}}\right) - 400$		$\checkmark r = 400 \left(2^{\frac{1}{24}}\right) - 400$
	r = 11,72% p.a.		✓ answer
			v answer (5)
7.2.1	(0.095) ⁵		✓ substitution in
	$A = 10000 \left(1 + \frac{0,095}{12} \right)^5$		correct formula
	= R 10 402,15		✓ answer
			(2)

DBE/November 2010

Note:

Incorrect Formula

7.2.2

$$10402,15 = \frac{450 \left[1 - \left(1 + \frac{0,095}{12}\right)^{-n}\right]}{\frac{0,095}{12}}$$

$$0,183000787 = 1 - \left(1 + \frac{0,095}{12}\right)^{-n}$$

$$\left(1 + \frac{0,095}{12}\right)^{-n} = 0.816999213$$

$$\log\left(1 + \frac{0,095}{12}\right)^{-n} = \log 0,816999213$$

$$-n\log\left(1+\frac{0.095}{12}\right) = \log 0.816999213...$$
$$n = 25.63151282....$$

n = 25,63 months n = 26

Accept: n = 31 (because of first 5 months)

√ 10 402.15

✓ substitution into present value formula

✓ application of logs

✓ answer

(4)

OR

$$10402,15\left(1+\frac{0,095}{12}\right)^{n} = \frac{450\left[\left(1+\frac{0,095}{12}\right)^{n}-1\right]}{\frac{0,095}{12}}$$

 $10402,15\left(1+\frac{0,095}{12}\right)^{n} = 56842,10526\left[\left(1+\frac{0,095}{12}\right)^{n}-1\right]$

$$56842,10526 = 46439,95526 \left(1 + \frac{0,095}{12}\right)^n$$

$$\log 1,223991387 = n \log \left(1 + \frac{0,095}{12} \right)$$

$$n = \frac{\log 1,223991387}{\log \left(1 + \frac{0,095}{12}\right)}$$

n = 25.63 months

n = 26

Accept: n = 31 (because of first 5 months)

√ 10 402,15

✓ substitution into future value formula

✓ application of logs

✓ answer

(4)

Note: If the Present value of R 10 000 is used, then n = 25.53 months is obtained. Max 3 / 4 marks.

Copyright Reserved

Please turn over

7.2.3 Balance outstanding after 25 months

$$=10402,15\left(1+\frac{0,095}{12}\right)^{25}-\frac{450\left[\left(1+\frac{0,095}{12}\right)^{25}-1\right]}{\frac{0,095}{12}}$$

= R 282,36

$$\frac{450 \left[\left(1 + \frac{0,095}{12} \right)^{25} - 1 \right]}{\frac{0,095}{12}}$$

✓ answer

ans wei

OR

Balance Outstanding after 25 months

$$=10000\left(1+\frac{0{,}095}{12}\right)^{30}-\frac{450\left[\left(1+\frac{0{,}095}{12}\right)^{25}-1\right]}{\frac{0{,}095}{12}}$$

= R 282,36

✓ correct formula

$$\frac{450\left[\left(1+\frac{0,095}{12}\right)^{25}-1\right]}{0,095}$$

✓ answer

(3)

(3)

OR

$$n = 25,6315128204.... - 25$$

= 0,6315128204 ...

Balance Outstanding after 25 months

$$= \frac{450 \left[1 - \left(1 + \frac{0,095}{12}\right)^{-0,631512804}\right]}{\frac{0,095}{12}}$$

$$= R 282,36$$

Note: Accept

If a candidate uses -0.63, the final answer is R 281.68

✓ correct formula

✓ substitution into

$$\frac{450 \left[1 - \left(1 + \frac{0,095}{12}\right)^{-0,631512804}\right]}{\frac{0,095}{12}}$$

✓ answer

(3)

OR

Present value at beginning of 25 months

$$=10402,15 - \frac{450\left[1 - \left(1 + \frac{0,095}{12}\right)^{-25}\right]}{\frac{0,095}{12}}$$

= R 231,84

Balance Outstanding

$$= 231,84 \left(1 + \frac{0,095}{12}\right)^{22}$$
$$= R 282,36$$

✓ correct formula

✓ substitution into

$$\frac{450\left[1 - \left(1 + \frac{0,095}{12}\right)^{-25}\right]}{\frac{0,095}{12}}$$

✓ answer

(3) [**14**]

Copyright Reserved

Please turn over

8.1	$g(x) = x^{2} - 5$ $g'(x) = \lim_{h \to 0} \frac{g(x+h) - 1}{h}$ $= \lim_{h \to 0} \frac{(x+h)^{2} - 1}{h}$ $= \lim_{h \to 0} \frac{x^{2} + 2xh + 1}{h}$ $= \lim_{h \to 0} \frac{2xh + h^{2}}{h}$ $= \lim_{h \to 0} \frac{h(2x+h)}{h}$ $= \lim_{h \to 0} (2x+h)$ $= 2x$	$\frac{5-(x^2-5)}{h}$	Note: If the notation is incorrect, penalty 1 mark If candidate subtracts and gets $x^2 + 2xh + h^2 - 5 - x^2 - 5$ in the numerator and then candidate corrects themselves, max $2 / 5$ Answer only: $0 / 5$	✓ formula ✓ substitution ✓ expansion ✓ $2x + h$ ✓ answer	
	OR $g(x) = x^{2} - 5$ $g'(x) = \lim_{h \to 0} \frac{g(x+h) - 1}{h}$ $= \lim_{h \to 0} \frac{(x+h)^{2} - 1}{h}$ $= \lim_{h \to 0} \frac{(x+h)^{2} - 1}{h}$ $= \lim_{h \to 0} \frac{(x+h)^{2} - 1}{h}$ $= \lim_{h \to 0} \frac{(x+h+x)}{h}$ $= \lim_{h \to 0} \frac{h(2x+h)}{h}$ $= \lim_{h \to 0} (2x+h)$ $= 2x$	$\frac{5 - (x^2 - 5)}{h}$		✓ formula ✓ substitution ✓ expansion $\checkmark 2x + h$ ✓ answer	(5)
8.2	$y = \frac{x^{6}}{2} + 4\sqrt{x}$ $y = \frac{1}{2}x^{6} + 4x^{\frac{1}{2}}$ $\frac{dy}{dx} = 3x^{5} + 2x^{-\frac{1}{2}}$	differentiate from an	s evidence of how to	$\checkmark + 4x^{\frac{1}{2}}$ $\checkmark 3x^{5}$ $\checkmark 2x^{-\frac{1}{2}}$	(3)

20 NSC – Memorandum

8.3	$g(x) = ax^{2} + \frac{b}{x}$ $g(x) = ax^{2} + bx^{-1}$ $g'(x) = 2ax - bx^{-2}$ $0 = 2a(4) - \frac{b}{(4)^{2}}$ $8a = \frac{b}{16}$ $b = 128a$ Note: In the equation $g'(x) = 0; = 0$ shown in the equation in the equation shown in the equation $g'(x) = 0$.	
	$96 = a(4)^{2} + \frac{b}{4}$ $96 = 16a + \frac{1}{4}(128a)$	✓ subs (4; 96)
	96 = 48a $a = 2$ $b = 256$ OR	$\checkmark a = 2$ $\checkmark b = 256$ (6)
	$g'(x) = 2ax - \frac{b}{x^2}$ $g'(4) = 8a - \frac{b}{16} = 0$	$\checkmark g'(x) = 2ax - \frac{b}{x^2}$ $\checkmark g'(4) = 8a - \frac{b}{16}$
	$g(4) = 16a + \frac{b}{4} = 96$ $32a - \frac{b}{4} = 0$ $48a = 96$	$\checkmark g'(x) = 0$ $\checkmark g(4) = 16a + \frac{b}{4} = 96$ $\checkmark a = 2$ $\checkmark b = 256$
	a = 2 $b = 256$	(6) [14]

9.1	The y-intercept of g is $E(0; -4)$	✓ answer
	OR	(1)
	x = 0 and $y = -4$	
9.2	y = a(x+2)(x-6)	✓ setting up of equation
	-4 = a(0+2)(0-6)	\checkmark subs $(0; -4)$
	-4 = -12a	
	$a=\frac{1}{3}$	1
	$a=\frac{1}{3}$	$\checkmark a = \frac{1}{3}$
	$y = \frac{1}{3}(x+2)(x-6)$	
		$\checkmark y = \frac{1}{3}x^2 - \frac{4}{3}x - 4$
	$y = \frac{1}{3}x^2 - \frac{4}{3}x - 4$	(4)
	3 3	
	OR	
	g'(0) = -4 = c	
	$g'(x) = ax^2 + bx - 4$	
	g'(-2) = 0	
	4a - 2b - 4 = 0	substitution $x = -2$ and $g'(x) = 0$
	b=2a-2	and $g(x) = 0$
	g''(2) = 0	
	2a(2) + b = 0	$\checkmark g''(2) = 0$
	b = -4a	
	2a-2=-4a	
	$a=\frac{1}{3}$	$\checkmark a = \frac{1}{2}$
	i i i i i i i i i i i i i i i i i i i	$\checkmark a = \frac{1}{3}$
	$b = -\frac{4}{3}$	1 . 4
	<i>J</i>	$\checkmark y = \frac{1}{3}x^2 - \frac{4}{3}x - 4$
	$y = \frac{1}{3}x^2 - \frac{4}{3}x - 4$	(4)

NSC - Memorandum

OR

$$c = -4$$

$$c = -4$$

$$4a - 2b - 4 = 0$$

$$36a + 6b - 4 = 0$$

$$48a - 16 = 0$$

$$a = \frac{1}{3}$$

$$b = -\frac{4}{3}$$

$$y = \frac{1}{3}x^2 - \frac{4}{3}x - 4$$

✓ setting up of equation

✓ simultaneous equation

$$\checkmark a = \frac{1}{3}$$

$$\checkmark a = \frac{1}{3}$$

$$\checkmark y = \frac{1}{3}x^2 - \frac{4}{3}x - 4$$

OR

$$y = a(x+2)(x-6)$$

$$=a(x^2-4x-12)$$

$$= ax^2 - 4ax - 12a$$

$$-12a = -4$$

$$a = \frac{1}{3}$$

$$y = \frac{1}{3}x^2 - \frac{4}{3}x - 4$$

✓ setting up of equation

$$\checkmark ax^2 - 4ax - 12a$$

$$a = \frac{1}{3}$$

$$\checkmark a = \frac{1}{3}$$

$$\checkmark y = \frac{1}{3}x^2 - \frac{4}{3}x - 4$$

OR

$$\frac{dy}{dx} = 2ax + b$$

$$0 = 2a(2) + b$$

$$b = -4a$$

EITHER

subs
$$(6:0)$$

$$0 = 36a + 6b - 4$$

$$4 = 36a + 6b$$

$$2 = 18a + 3b$$

$$2 = 18a + 3(-4a)$$

$$2 = 6a$$

$$a = \frac{1}{3}$$

$$b = -\frac{4}{3}$$

$$y = \frac{1}{3}x^2 - \frac{4}{3}x - 4$$

OR

$$0 = 4a - 2b - 4$$

$$0 = 4a - 2(-4a) - 4$$

$$12a = 4$$

$$a = \frac{1}{3}$$

$$b = -\frac{4}{3}$$

$$y = \frac{1}{3}x^2 - \frac{4}{3}x - 4$$

$$\checkmark b = -4a$$

✓ simultaneous equation

$$\checkmark a = \frac{1}{3}$$

$$\checkmark y = \frac{1}{3}x^2 - \frac{4}{3}x - 4$$

(4)

(2)

(2)

(2)

(2)

(2)

(3)

		NSC – Memorandı
9.3	At turning point $a'(x) = 0$	

Mathema	atics/P1	23 NSC – Memorandum	DBE/November 2010
9.3	At turning point $g'(x) = 0$ x = -2 and $x = 6$	Answer only: Full marks If only 1 value given, max 1 / 2	$ \begin{array}{c c} \checkmark & g'(x) = 0 \\ \checkmark & x = 6 \text{ and } x = -2 \end{array} $ (2)
9.4	$x = \frac{-2+6}{2}$ $x = 2$ OR x-value of point of inflection $g''(x) = 0$	Note: Answer only Full marks of g is at A.	$\checkmark x = \frac{-2+6}{2}$ $\checkmark \text{ answer}$ (2)
	$\frac{2x}{3} - \frac{4}{3} = 0$ $2x - 4 = 0$ $2x = 4$ $x = 2$		$\checkmark 2x - 4 = 0$ $\checkmark \text{ answer}$ $\checkmark x = \frac{\frac{4}{3}}{2(\frac{1}{3})}$
	OR $x = -\frac{b}{2a}$ $x = \frac{\frac{4}{3}}{2(\frac{1}{3})}$ $x = 2$ OR	$g'(x) = \frac{1}{3}(x-2)^2 - \frac{16}{3}$ $x = 2$	$2\left(\frac{1}{3}\right)$ \(\sigma \text{ answer} \) $\frac{2\left(\frac{1}{3}\right)}{\sqrt{2}} = \frac{1}{3}(x-2)^2 - \frac{16}{3}$ \(\sigma \text{ answer} \) $\frac{1}{3}(x-2)^2 - \frac{16}{3}$ \(\sigma \text{ answer} \)
9.5	increasing followed by decrea	is decreasing for $x > -2$. x = -2 because the graph is	$\checkmark g'(x) > 0$ $\checkmark g$ is incr for $x < -2$ $\checkmark g$ is decr for $x > -2$ (3
	OR		

 \therefore g has a local maximum at x = -2

$$\begin{pmatrix} & & & & \\ & & & & \\ & -2 & & 6 \end{pmatrix}$$

$$\checkmark$$
 $g'(x) > 0$ for $x < -2$
 \checkmark $g'(x) < 0$ for $x > -2$
 \checkmark max at $x = -2$

$$\checkmark$$
 max at $x = -2$

(3)

OR

$$g'(x) > 0$$

$$g'(x) = 0$$

$$g'(x) < 0$$

$$g'(x) < 0$$

$$\checkmark g'(x) > 0 \text{ for } x < -2$$

$$\checkmark g'(x) < 0 \text{ for } x > -2$$

$$\checkmark$$
 max at $x = -2$

(3)

OR

$$g'(-2) = 0$$

g''(-2) < 0 so graph is concave down at x = -2, so g has a local maximum

$$\checkmark g'(-2) = 0$$

$$\checkmark g''(-2) < 0$$

$$\checkmark$$
 max at $x = -2$

(3) [**12**]

Copyright Reserved Please turn over

10.1	1 4	
	$V = \pi r^2 h + 2 \times \frac{1}{2} \times \frac{4}{3} \pi r^3$	✓ volume equation
	$V = \pi r^2 h + \frac{4}{3} \pi r^3$	\checkmark substitution of $\frac{\pi}{6}$
	$\frac{\pi}{6} = \pi r^2 h + \frac{4}{3} \pi r^3$	- 4-m ³
	$\pi r^2 h = \frac{\pi}{6} - \frac{4}{3} \pi r^3$	$\checkmark h = \frac{\pi}{6\pi r^2} - \frac{4\pi r^3}{\pi r^2}$
	$h = \frac{\pi}{6\pi r^2} - \frac{4\pi r^3}{3\pi r^2}$	(3)
	$h = \frac{1}{6r^2} - \frac{4r}{3}$	
10.2	$S = 2 \times 2\pi r^2 + 2\pi rh$	✓ surface area
	$S = 4\pi r^2 + 2\pi rh$	equation
	$S = 4\pi r^2 + 2\pi r \left(\frac{1}{6r^2} - \frac{4r}{3} \right)$	✓ substitution of h
	$S = 4\pi r^2 + \frac{\pi}{3r} - \frac{8\pi r^2}{3}$	✓ simplification
	$= \frac{4}{3}\pi r^2 + \frac{\pi}{3r}$ $S = \frac{4}{3}\pi r^2 + \frac{\pi}{3}r^{-1}$	(3)
10.3	$S = \frac{4}{3}\pi r^2 + \frac{\pi}{3}r^{-1}$	$\checkmark \frac{\pi}{3} r^{-1}$
	$\frac{dS}{dr} = \frac{8\pi r}{3} - \frac{\pi}{3r^2} = 0$	$\checkmark \frac{dS}{dr} = \frac{\pi}{3} \left(8r - \frac{1}{r^2} \right)$
	$8r = \frac{1}{r^2}$	$\begin{bmatrix} dr & 3 & r^2 \end{pmatrix}$
	$8r^3 = 1$	$\frac{dS}{dr} = \frac{\pi}{3} \left(8r - r^{-2} \right)$
	$r = \frac{1}{2}$	$\checkmark \frac{dS}{dr} = 0$
		dr
	Then $S = \frac{4}{3}\pi \left(\frac{1}{2}\right)^2 + \frac{\pi}{3}(2)$	$\checkmark 8r = \frac{1}{r^2}$ $\checkmark r = \frac{1}{2}$
	$S = \pi$ square metres	$\sqrt{r} = \frac{1}{r}$
	= 3,14 square metres	2
		$\checkmark S = \pi$
		(6)
		[12]

11.1	$x, y \in \mathbb{N}_0$	
	$x + 2y \le 28$ or $y \le -\frac{x}{2} + 14$ If inequality signs incorrect or equal signs used: max $3/4$ marks	First inequality ✓ ✓ Second inequality
11.2	24	
11.3.1	8	✓ answer (1)
11.3.2	14	✓ answer (1)
11.4	Maximise $x + y$ Use search line with gradient -1 4 Type A 12 Type B	✓ 4 Type A ✓ 12 Type B (2)

11.5	$x \ge y$ $y \le x$		$\checkmark y \le x$
	New Feasible region (triangle) in diagram Maximise $x + y$. Maximum at (6; 6) Answer: $6 + 6 = 12$ braai stands Machine Time = $x + 2y$ = $6 + 2 \times 6$ = $6 + 12$ = 18 hours	Note: Answer only of machine time 18 hours and braai stands 12 Full marks	✓ (6; 6) ✓ ✓ 12 ✓ 18
			hours (5) [16]

TOTAL: 150