Hands on RAMSES Computational MHD

Romain Teyssier
Oscar Agertz

Outline

- The compound wave problem in 1D
- The Orszag-Tang vortex problem in 2D

Solution in Fromang, Hennebelle & Teyssier, 2006, A&A, 457, 371

Computational Astrophysics 2009

Romain Teyssier

The compound wave problem

Box size = 3

Outflow boundary conditions and $\gamma = 5/3$

Left and right state $(\rho, u, v, w, P, A, B, C)$ with interface at x=1.5

Left state: (1, 0, 0, 0, 1, 1, 1, 0)

Right state: (0.2, 0, 0, 0, 0.2, 1, $\cos \alpha$, $\sin \alpha$)

Choose as final time *t*=0.4

Try first $\alpha = \pi$ with 256 grid points.

Identify the compound wave (Alfven + Slow)

Try then α = 3 with 256 grid points.

Do you still see the compound wave?

Use AMR for α = 3 up to I_{max} =20.

What do you see?

The Orszag-Tang vortex

Box size = [0, 1]x[0, 1]

Periodic boundary conditions and $\gamma = 5/3$

Uniform density and pressure $P_0 = 5/(12\pi)$ and $\rho_0 = \gamma P_0$

 $\mathbf{B} = (-B_0 \sin 2\pi x, B_0 \sin 4\pi y) \text{ with } B_0 = 1/\text{sqrt}(4\pi)$

 $\mathbf{v} = (-\sin 2\pi y, \sin 2\pi x)$

Final time t=0.5

Patch condinit.f90 to set up the initial conditions.

Make sure that div B = 0 initially (use the vector potential).

Use 128 grid points in each direction.

Compare various 1D and 2D Riemann solvers (LLF, HLL, HLLD, Roe)

Use AMR up to I_{max}=9 with various refinement strategy.