Álgebra Universal e Categorias

Carla Mendes

2019/2020

Departamento de Matemática

Os reticulados podem ser definidos de duas formas equivalentes: como conjuntos parcialmente ordenados e como estruturas algébricas.

No sentido de se definir reticulados enquanto conjuntos parcialmente ordenados, relembram-se algumas noções básicas relacionadas com o conceito de ordem parcial.

Relações de ordem

Definição

Sejam A e B dois conjuntos. Chamamos **relação binária de** A **em** B a qualquer subconjunto ρ do produto cartesiano $A \times B$. Quando A = B, dizemos que ρ é uma **relação binária em** A.

Se $(a, b) \in \rho$, então dizemos que a **está relacionado com** b **por** ρ e escrevemos a ρ b. Se $(a, b) \notin \rho$, escrevemos a ρ b e dizemos que a **não está relacionado com** b **por** ρ .

Uma vez que as relações binárias são conjuntos, faz sentido aplicar a estas relações as operações de união, interseção e complementação.

Além destas operações, existem outros processos que permitem a construção de novas relações binárias a partir de relações binárias dadas.

Definição

Sejam A, B conjuntos e ρ uma relação binária de A em B. Chama-se **relação inversa de** ρ , e representa-se por ρ^{-1} , a relação de B em A definida por

$$\rho^{-1} = \{(b, a) \in B \times A \mid (a, b) \in \rho\}.$$

Definição

Sejam A, B, C, D conjuntos, ρ uma relação binária de A em B e ϱ uma relação binária de C em D. Chama-se **relação composta de** ϱ **com** ρ , e representa-se por $\varrho \circ \rho$, a relação binária de A em D definida por

$$\varrho \circ \rho = \{(x,y) \in A \times D \mid \exists_{z \in B \cap C} \ ((x,z) \in \rho \land (z,y) \in \varrho)\}.$$

Definição

Sejam P um conjunto e ρ uma relação binária em P. Diz-se que ρ é uma relação de **ordem parcial** em P se são satisfeitas as seguintes condições:

- (i) para todo $a \in P$, $(a, a) \in \rho$.
- (ii) para quaisquer $a, b \in P$, $(a, b) \in \rho$ $e(b, a) \in \rho \Rightarrow a = b$.
- (iii) para quaisquer $a, b, c \in P$, $(a, b) \in \rho$ $e(b, c) \in \rho \Rightarrow (a, c) \in \rho$.

Se adicionalmente, para quaisquer $a, b \in P$,

(iv) $(a, b) \in \rho$ ou $(b, a) \in \rho$,

a relação ρ diz-se uma relação de **ordem total**. Se P é um conjunto não vazio e ρ é uma relação de ordem parcial em P, ao par (P, ρ) dá-se a designação de **conjunto parcialmente ordenado** (c.p.o.); se ρ é uma relação de ordem total em P, o par (P, ρ) designa-se por **conjunto totalmente ordenado** ou por **cadeia**.

Exemplo

- 1) Sendo A um dos conjuntos \mathbb{N} , \mathbb{Z} , \mathbb{Q} ou \mathbb{R} $e \leq a$ relação "menor ou igual" usual em A, o par (A, \leq) é um c.p.o..
- 2) Sendo | a relação divide em \mathbb{N} , $(\mathbb{N}, |)$ é um c.p.o..
- 3) Dado um conjunto A, $(\mathcal{P}(A), \subseteq)$ é um c.p.o..
- 4) Os c.p.o.s (\mathbb{N}, \leq) , (\mathbb{Z}, \leq) , (\mathbb{Q}, \leq) e (\mathbb{R}, \leq) são cadeias.

Em geral, representamos uma ordem parcial definida num conjunto P por \leq e o respetivo c.p.o. por (P, \leq) .

Dado um c.p.o. (P, \leq) e dados elementos $a, b \in P$, escrevemos:

- $a \le b$, e lemos " $a \in menor ou igual a b$ ", para representar $(a, b) \in \le$;
- a ≤ b, e lemos "a não é menor ou igual a b", para representar
 (a, b) ∉ ≤;
- a < b, e lemos "a **é** menor do que b", se $a \le b$ e $a \ne b$;
- $a \prec b$, e lemos "b é sucessor de a" (ou b cobre a ou a é coberto por b), se a < b e $\neg (\exists c \in P, a \le c \le b)$.

Dados $a, b \in P$, diz-se que a e b são **comparáveis** se $a \le b$ ou $b \le a$; caso contrário, ou seja, se $a \not\le b$ e $b \not\le a$, diz-se que a e b são **incomparáveis** e escreve-se $a \mid b$.

Um subconjunto A de P diz-se:

- uma cadeia em (P, \leq) ou um conjunto totalmente ordenado em (P, \leq) se, para quaisquer $a, b \in A$, $a \in b$ são comparáveis;
- uma **anticadeia em** (P, \leq) se, para quaisquer $a, b \in A$ tais que $a \neq b$, $a \parallel b$.

O intervalo fechado [a, b] representa o conjunto

$$\{c \in P \mid a \le c \le b\}$$

e o *intervalo aberto* (a, b) representa o conjunto

$${c \in P \mid a < c < b}.$$

Os intervalos (a, b] e [a, b) representam, respetivamente, os conjuntos

$${c \in P \mid a < c \le b} \in {c \in P \mid a \le c < b}.$$

Dado um subconjunto A de P, diz-se que A é um **subconjunto convexo de** P se, para quaisquer $a, b \in A$ e $c \in P$,

$$a \le c \le b \Rightarrow c \in A$$
.

Claramente, para quaisquer $a, b \in P$, o intervalo [a, b] é um subconjunto convexo de P.

Dados um c.p.o. (P, \leq) e A um suconjunto de P, podem existir elementos com propriedades especiais relativamente a A.

Dados um subconjunto A de P e $m \in P$, diz-se que m é:

- um **maximal** de A se $m \in A$ e $\neg(\exists a \in A, m < a)$;
- um **minimal** de A se $m \in A$ e $\neg(\exists a \in A, a < m)$;
- um majorante de A se, para todo $a \in A$, $a \le m$;
- um **minorante** de A se, para todo $a \in A$, $m \le a$;
- um **supremo** de A se m é um majorante de A e $m \le m'$, para qualquer majorante m' de A;
- um *infimo* de A se m é um minorante de A e m' ≤ m, para qualquer minorante m' de A;
- um $m\acute{a}ximo$ de A se m é um majorante de A e $m \in A$;
- um minimo de A se m é um minorante de A e $m \in A$.

O conjunto dos majorantes de A e o conjunto dos minorantes de A são representados por Maj(A) e Min(A), respetivamente.

Caso exista, o supremo (ínfimo, máximo, mínimo) de um subconjunto A de P é único e representa-se por supA ou $\bigvee A$ (respetivamente, infA ou $\bigwedge A$, max A, min A).

Se $A = \{a, b\}$ é usual escrever $a \lor b$ e $a \land b$ para representar $\bigvee A \in \bigwedge A$, respetivamente.

Caso exista, o elemento máximo (mínimo) de P é usualmente representado por 1 (respetivamente, 0).

Um c.p.o. (P, \leq) tal que P tem elemento máximo e elemento mínimo diz-se um **conjunto parcialmente ordenado limitado**.

Proposição

Num c.p.o. (P, \leq) são equivalentes as seguintes afirmações, para quaisquer a, $b \in P$:

- (i) $a \leq b$;
- (ii) $\sup\{a, b\} = b$;
- (iii) $\inf\{a, b\} = a$.

Teorema

Seja (P, \leq) um conjunto parcialmente ordenado e sejam a, b, c, d elementos de P tais que a \leq b e c \leq d. Então:

- (1) Se existem $\inf\{a, c\} \in \inf\{b, d\}$, então $\inf\{a, c\} \leq \inf\{b, d\}$.
- $(2) \ \textit{Se existem} \ \sup\{\textit{a},\textit{c}\} \ \textit{e} \ \sup\{\textit{b},\textit{d}\}, \ \textit{ent\~ao} \ \sup\{\textit{a},\textit{c}\} \leq \sup\{\textit{b},\textit{d}\}.$

Diagramas de Hasse

Os conjuntos parcialmente ordenados finitos podem ser representados por meio de diagramas, designados por *diagramas de Hasse*.

Dado um conjunto parcialmente ordenado finito P, cada elemento de P é representado por um ponto do plano. Se a e b são elementos de P tais que $a \prec b$, o ponto associado ao elemento b é representado acima do ponto associado ao elemento a e unem-se os dois pontos por meio de um segmento de reta.

Construção de conjuntos parcialmente ordenados

Dado um c.p.o. (P, \leq) , definem-se a partir da relação \leq outras relações de ordem parcial.

Se (P, \leq) é um c.p.o. e A é um suconjunto não vazio de P, a relação $\leq_{|_A}$ definida, para quaisquer $a,b\in A$, por

$$a \leq_{|A} b$$
 se e só se $a \leq b$

é uma relação de ordem parcial em A. A relação $\leq_{|A}$ designa-se por **ordem parcial induzida por** \leq em A.

Sendo (P, \leq) um c.p.o., define-se a partir da relação \leq uma outra relação de ordem parcial em P. A relação \leq_d definida em P por

$$a \leq_d b$$
 se e só se $b \leq a$

é também uma relação de ordem parcial em P. A relação \leq_d designa-se por **relação de ordem dual de** \leq e o c.p.o. (P, \leq_d) designa-se por **c.p.o. dual de** (P, \leq) .

É simples perceber que $(\leq_d)_d = \leq$ e que o c.p.o. dual de (P, \leq_d) é (P, \leq) . Os c.p.o.s (P, \leq) e (P, \leq_d) dizem-se *c.p.o.s duals*.

Se Φ é uma afirmação sobre conjuntos parcialmente ordenados, a afirmação Φ_d , obtida de Φ substituindo toda a ocorrência de \leq por \leq_d , designa-se por **afirmação dual de** Φ . Note-se que se Φ é uma afirmação verdadeira em (P, \leq) , então Φ_d é verdadeira em (P, \leq) , pelo que é válido o seguinte princípio.

Princípio de dualidade para c.p.o.s Uma afirmação é verdadeira em qualquer c.p.o. sse o mesmo acontece com a respetiva afirmação dual.

Observe-se que os conceitos de majorante, supremo, elemento máximo, elemento maximal são, respetivamente, duais dos conceitos de minorante, ínfimo, elemento mínimo, elemento minimal.

Se Φ é uma afirmação sobre c.p.o.s envolvendo algum destes conceitos, a afirmação Φ_d é obtida substituíndo cada um destes conceitos pelo conceito dual e substituíndo toda a ocorrência de \leq por \leq_d .

Dados dois conjuntos parcialmente ordenados (P, \leq_1) e (Q, \leq_2) , existem diferentes processos para construir novos c.p.o.s a partir dos c.p.o.s dados.

Por exemplo, a relação binária \leq definida em P imes Q por

$$(a_1, a_2) \le (b_1, b_2)$$
 se e só se $a_1 \le_1 b_1$ e $a_2 \le_2 b_2$

é uma relação de ordem parcial e, por conseguinte, $(P \times Q, \leq)$ é um conjunto parcialmente ordenado, designado por **produto de** (P, \leq_1) e (Q, \leq_2) e representado por $P \times Q$.

A construção anterior pode ser generalizada a um número finito de conjuntos parcialmente ordenados: se $(P_1, \leq_1), \ldots, (P_n, \leq_n)$, com $n \in \mathbb{N}$, são conjuntos parcialmente ordenados, então $(P_1 \times \cdots \times P_n, \leq)$, onde \leq é a relação definida em $P_1 \times \cdots \times P_n$ por

$$(a_1,\ldots,a_n)\leq (b_1,\ldots,b_n)$$
 se e só se $a_1\leq_1 b_1,\ldots,a_n\leq_n b_n$

é um conjunto parcialmente ordenado.

Se
$$P_1=P_2=\ldots=P_n=P$$
 e $\leq_1=\leq_2=\ldots=\leq_n$, representa-se o c.p.o. $(P_1\times\cdots\times P_n,\leq)$ por P^n .

Exemplo

Considerando as cadeias 2 e 3 a seguir representadas

o c.p.o. $(2 \times 3, \leq)$ pode ser representado pelo diagrama seguinte

Aplicações entre conjuntos parcialmente ordenados

No estudo de aplicações entre conjuntos parcialmente ordenados têm particular interesse aquelas que preservam a ordem.

Definição

Sejam (P_1, \leq_1) e (P_2, \leq_2) dois conjuntos parcialmente ordenados e $\alpha: P_1 \to P_2$ uma aplicação. Diz-se que:

- a aplicação α **preserva a ordem** ou que α é **isótona** se, para quaisquer a, $b \in P_1$,

$$a \leq_1 b \Rightarrow \alpha(a) \leq_2 \alpha(b)$$
.

- a aplicação α é **antítona** se, para quaisquer a, $b \in P_1$,

$$a \leq_1 b \Rightarrow \alpha(b) \leq_2 \alpha(a)$$
.

Definição

- α é um **mergulho de ordem** se, para quaisquer a, $b \in P_1$,

$$a \leq_1 b \Leftrightarrow \alpha(a) \leq_2 \alpha(b)$$
.

 α é um isomorfismo de c.p.o.s se α é um mergulho de ordem e é uma aplicação sobrejetiva.

Caso exista um isomorfismo de c.p.o.s de (P_1, \leq_1) em (P_2, \leq_2) , diz-se que o c.p.o. (P_1, \leq_1) é isomorfo ao c.p.o. (P_2, \leq_2) .

Um isomorfismo de c.p.o.s é uma aplicação bijetiva.

Se α é um isomorfismo de um c.p.o. (P_1, \leq_1) num c.p.o. (P_2, \leq_2) , então $\alpha^{-1}: P_2 \to P_1$ também é um isomorfismo de (P_2, \leq_2) em (P_1, \leq_1) .

Caso exista um isomorfismo entre os c.p.o.s (P_1, \leq_1) e (P_2, \leq_2) diz-se que os c.p.o.s são *isomorfos* e escreve-se $(P_1, \leq_1) \cong (P_2, \leq_2)$.

Note-se que, embora um isomorfismo de c.p.o.s seja uma aplicação isótona e bijetiva, uma aplicação bijetiva e isótona não é necessariamente um isomorfismo de c.p.o.s.

Por exemplo, sendo (P_1, \leq_1) e (P_2, \leq_2) os c.p.o.s com os diagramas de Hasse a seguir apresentados

Figura 1

a aplicação α definida de P_1 em P_2 por $\alpha(a)=1$, $\alpha(b)=3$, $\alpha(c)=2$ e $\alpha(d)=4$, é isótona e bijetiva, mas não é um isomorfismo de c.p.o.s.

Definição

Seja (P, \leq) um conjunto parcialmente ordenado. Uma aplicação $f: P \to P$ diz-se um **operador de fecho em** (P, \leq) se, para quaisquer $x, y \in P$, são satisfeitas as seguintes condições:

F1: $x \le f(x)$;

F2: $f^2(x) \leq f(x)$;

F3: $x \le y \Rightarrow f(x) \le f(y)$.

Dado um operador de fecho $f: P \to P$ e dado $p \in P$, designa-se o elemento f(p) por **fecho de** p. O elemento p diz-se **fechado para** f se p = f(p). O conjunto dos elementos de P fechados para f é representado por $Fc_f(P)$.

Dado um conjunto A, já observámos anteriormente que $(\mathcal{P}(A),\subseteq)$ é um conjunto parcialmente ordenado.

Um operador de fecho f em $(\mathcal{P}(A), \subseteq)$ é usualmente designado por **operador de fecho em** A.

Dados um subconjunto X de A que seja fechado para f e um subconjunto Y de A, diz-se que Y é um **conjunto gerador de** X se f(Y) = X; caso exista um conjunto gerador de X que seja finito, o conjunto X diz-se **finitamente gerado**.

Um operador de fecho f em $(\mathcal{P}(A), \subseteq)$ diz-se um **operador de fecho algébrico** se, para qualquer $X \subseteq A$,

F4:
$$f(X) = \bigcup \{f(Y) : Y \subseteq X \text{ e } Y \text{ \'e finito } \}.$$

Reticulados

Muitas das propriedades de um conjunto parcialmente ordenado (P, \leq) são expressas atendendo à existência de supremo e ínfimo de certos subconjuntos de P. Uma classe de conjuntos parcialmente ordenados expressos deste modo é a classe dos reticulados.

Duas definições de reticulados

Os reticulados podem ser definidos de duas formas equivalentes: como conjuntos parcialmente ordenados e como estruturas algébricas. Nesta secção apresentamos estas definições e verificamos a equivalência das duas.

Definição

Um conjunto parcialmente ordenado (R, \leq) diz-se um **reticulado** se, para quaisquer $a, b \in R$, existem $\inf\{a, b\}$ e $\sup\{a, b\}$.

Exemplo

- 1) Todas as cadeias são reticulados.
- 2) Dado um conjunto A, o c.p.o. $(\mathcal{P}(A),\subseteq)$ é um reticulado, tendo-se, para quaisquer $X,Y\subseteq A$,

$$\inf\{X,Y\} = X \cap Y \ \text{e sup}\{X,Y\} = X \cup Y.$$

Exemplo

3) Sendo $\operatorname{Subg}(G)$ o conjunto dos subgrupos de um grupo G e \subseteq a relação de inclusão usual, o par $(\operatorname{Subg}(G), \subseteq)$ é um reticulado, tendo-se, para quaisquer $G_1, G_2 \in \operatorname{Subg}(G)$,

$$\inf\{G_1,G_2\} = G_1 \cap G_2 \text{ e sup}\{G_1,G_2\} = < G_1 \cup G_2 > .$$

Se (R, \leq) é um reticulado, então o seu c.p.o. dual (R, \leq_d) é também um reticulado. Sendo assim, é válido o princípio seguinte.

Princípio de Dualidade para Reticulados Uma afirmação é verdadeira em qualquer reticulado se e só se o mesmo acontece com a respetiva afirmação dual.

Apresenta-se de seguida a definição de reticulado como estrutura algébrica.

Definição

Um triplo $\mathcal{R}=(R;\wedge,\vee)$, onde R é um conjunto não vazio e \wedge e \vee são operações binárias em R, diz-se um **reticulado** se, para quaisquer $x,y,z\in R$,

R1:
$$x \wedge y = y \wedge x$$
, $x \vee y = y \vee x$

(leis comutativas);

R2:
$$x \wedge (y \wedge z) = (x \wedge y) \wedge z$$
, $x \vee (y \vee z) = (x \vee y) \vee z$

(leis associativas);

R3:
$$x \land x = x$$
, $x \lor x = x$

(leis de idempotência);

R4:
$$x \land (x \lor y) = x$$
, $x \lor (x \land y) = x$

(leis de absorção).

Exemplo

- (1) Considerando que P representa o conjunto das proposições, que \land representa o conetivo conjunção e \lor representa o conetivo disjunção, $(P; \land, \lor)$ é um reticulado.
- (2) Sendo m.d.c. a operação máximo divisor comum em $\mathbb N$ e m.m.c. a operação mínimo múltiplo comum, $(\mathbb N, m.d.c., m.m.c.)$ é um reticulado.

Teorema

Se $\mathcal{R}=(R;\wedge,\vee)$ é um reticulado, então a relação \leq definida em R por

$$a \le b$$
 se $a = a \land b$

é uma relação de ordem parcial tal que, para quaisquer a, $b \in R$, existem $\inf\{a,b\}$ e $\sup\{a,b\}$ e

$$\inf\{a,b\} = a \land b \ e \sup\{a,b\} = a \lor b.$$

Se (R, \leq) é um conjunto parcialmente ordenado tal que, para quaisquer $a, b \in R$, existem $\inf\{a, b\}$ e $\sup\{a, b\}$, então $\mathcal{R} = (R; \land, \lor)$, onde

$$a \wedge b = \inf\{a, b\} \ e \ a \vee b = \sup\{a, b\},\$$

é um reticulado e, para quaisquer a, b ∈ R,

$$a \le b \Leftrightarrow a = a \land b \Leftrightarrow b = a \lor b$$
.

Do resultado anterior segue que os reticulados podem ser completamente caracterizados em termos das operações supremo e ínfimo.

Se Φ é uma afirmação sobre reticulados expressa em termos de \wedge e \vee , a afirmação dual de Φ é obtida trocando as ocorrências de \wedge e \vee , respetivamente, por \vee e \wedge .

Caso Φ seja uma afirmação verdadeira para todos os reticulados, então Φ_d também é verdadeira para todos os reticulados.

Se $(R; \land, \lor)$ é um reticulado, então o seu reticulado dual é $(R; \lor, \land)$.

Descrição de reticulados

Para ilustrar certos resultados ou para refutar conjeturas a respeito de reticulados pode ser conveniente descrever exemplos de reticulados.

Atendendo a que os reticulados são casos particulares de conjuntos parcialmente ordenados, a descrição de reticulados finitos pode ser feita por meio de diagramas de Hasse.

Alternativamente, considerando um reticulado como uma álgebra $(R; \land, \lor)$, um reticulado pode ser descrito recorrendo às tabelas das operações \land e \lor .

Exemplo

As duas tabelas seguintes

٨	0	а	b	1
0	0	0	0	0
а	0	a	0	a
b	0	0	b	b
1	0	а	b	1

V	0	а	b	1
0	0	а	b	1
а	a	a	1	1
b	b	1	b	1
1	1	1	1	1

descrevem o reticulado representado pelo diagrama de Hasse

<u>Subrreticulados</u>

Definição

Sejam $\mathcal{R}=(R;\wedge,\vee)$ um reticulado e R' um subconjunto não vazio de R. Diz-se que $\mathcal{R}'=(R';\wedge',\vee')$ é um **subrreticulado** de \mathcal{R} se \wedge' e \vee' são operações binárias em R' tais que, para quaisquer $a,b\in R'$,

$$a \wedge' b = a \wedge b$$
 e $a \vee' b = a \vee b$.

Note-se que se \leq é a relação de ordem parcial associada a um reticulado $\mathcal{R}=(R;\wedge,\vee)$ e R' é um subconjunto não vazio de R, não é suficiente que $(R',\leq_{|_{R'}})$ seja um reticulado para que seja um subrreticulado de (R,\leq) .

O exemplo seguinte ilustra este tipo de situação: considerando o reticulado ($\{a,b,c,d,e\},\leq$) a seguir representado e sendo $R'=\{a,c,d,e\}$, então ($R',\leq_{|R'}$) é um reticulado, mas não é subreticulado do reticulado indicado.

Dados um reticulado (R, \leq) e um subconjunto não vazio R' de R, um c.p.o. (R', \leq') é um subrreticulado de (R, \leq) se $\leq' = \leq_{|_{R'}}$, $(R', \leq_{|_{R'}})$ é um reticulado e, para quaisquer $a, b \in R'$, o supremo e o infímo de $\{a, b\}$ em $(R', \leq_{|_{R'}})$ coincidem o supremo e o infímo de $\{a, b\}$ em (R, \leq) .

Produtos

A partir de reticulados $\mathcal{R}_1 = (R_1; \wedge_{\mathcal{R}_1}, \vee_{\mathcal{R}_1})$ e $\mathcal{R}_2 = (R_2; \wedge_{\mathcal{R}_2}, \vee_{\mathcal{R}_2})$ define-se naturalmente um reticulado que tem como conjunto suporte o conjunto $R_1 \times R_2$.

Teorema

Sejam $\mathcal{R}_1=(R_1; \wedge_{\mathcal{R}_1}, \vee_{\mathcal{R}_1})$, $\mathcal{R}_2=(R_2; \wedge_{\mathcal{R}_2}, \vee_{\mathcal{R}_2})$ reticulados e sejam $\wedge_{\mathcal{R}_1\times\mathcal{R}_2}$ e $\vee_{\mathcal{R}_1\times\mathcal{R}_2}$ as operações binárias definidas em $R_1\times R_2$ por

$$(a_1, a_2) \wedge_{\mathcal{R}_1 \times \mathcal{R}_2} (b_1, b_2) = (a_1 \wedge_{\mathcal{R}_1} b_1, a_2 \wedge_{\mathcal{R}_2} b_2),$$

 $(a_1, a_2) \vee_{\mathcal{R}_1 \times \mathcal{R}_2} (b_1, b_2) = (a_1 \vee_{\mathcal{R}_1} b_1, a_2 \vee_{\mathcal{R}_2} b_2).$

Então $(R_1 \times R_2; \wedge_{\mathcal{R}_1 \times \mathcal{R}_2}, \vee_{\mathcal{R}_1 \times \mathcal{R}_2})$ é um reticulado.

Definição

Sejam $\mathcal{R}_1=(R_1; \wedge_{\mathcal{R}_1}, \vee_{\mathcal{R}_1}), \ \mathcal{R}_2=(R_2; \wedge_{\mathcal{R}_2}, \vee_{\mathcal{R}_2})$ reticulados e sejam $\wedge_{\mathcal{R}_1\times\mathcal{R}_2}$ e $\vee_{\mathcal{R}_1\times\mathcal{R}_2}$ as operações binárias definidas em $R_1\times R_2$ por

$$(a_1, a_2) \wedge_{\mathcal{R}_1 \times \mathcal{R}_2} (b_1, b_2) = (a_1 \wedge_{\mathcal{R}_1} b_1, a_2 \wedge_{\mathcal{R}_2} b_2),$$

 $(a_1, a_2) \vee_{\mathcal{R}_1 \times \mathcal{R}_2} (b_1, b_2) = (a_1 \vee_{\mathcal{R}_1} b_1, a_2 \vee_{\mathcal{R}_2} b_2).$

Designa-se por **reticulado produto de** \mathcal{R}_1 e \mathcal{R}_2 , e representa-se por $\mathcal{R}_1 \times \mathcal{R}_2$, o reticulado $(R_1 \times R_2; \wedge_{\mathcal{R}_1 \times \mathcal{R}_2}, \vee_{\mathcal{R}_1 \times \mathcal{R}_2})$.

Sejam $\mathcal{R}_1=(R_1; \wedge_{\mathcal{R}_1}, \vee_{\mathcal{R}_1})$ e $\mathcal{R}_2=(R_2; \wedge_{\mathcal{R}_2}, \vee_{\mathcal{R}_2})$ reticulados, \leq_1 e \leq_2 as relações de ordem associadas, respetivamente, a \mathcal{R}_1 e \mathcal{R}_2 e seja \leq a relação de ordem definida em $R_1\times R_2$ por

$$(a_1, a_2) \le (b_1, b_2)$$
 se e só se $a_1 \le_1 b_1$ e $a_2 \le_2 b_2$.

Então $(R_1 \times R_2, \leq)$ é um reticulado. Além disso,

$$(a_1, a_2) \wedge_{\mathcal{R}_1 \times \mathcal{R}_2} (b_1, b_2) = (a_1, a_2) \quad \Leftrightarrow \quad a_1 \wedge_{\mathcal{R}_1} b_1 = a_1 \in a_2 \wedge_{\mathcal{R}_2} b_2 = a_2$$

$$\Leftrightarrow \quad a_1 \leq_1 b_1 \in a_2 \leq_2 b_2$$

$$\Leftrightarrow \quad (a_1, a_2) \leq (b_1, b_2).$$

Por conseguinte, o reticulado produto

$$\mathcal{R}_1 \times \mathcal{R}_2 = (R_1 \times R_2; \wedge_{\mathcal{R}_1 \times \mathcal{R}_2}, \vee_{\mathcal{R}_1 \times \mathcal{R}_2})$$

coincide com o reticulado $(R_1 \times R_2, \leq)$.

Homomorfismos, isomorfismos

Definição

Sejam $\mathcal{R}_1 = (R_1; \wedge_{\mathcal{R}_1}, \vee_{\mathcal{R}_1})$ e $\mathcal{R}_2 = (R_2; \wedge_{\mathcal{R}_2}, \vee_{\mathcal{R}_2})$ reticulados e $\alpha : R_1 \to R_2$ uma aplicação. Diz-se que:

- α é um **homomorfismo de** \mathcal{R}_1 em \mathcal{R}_2 se, para quaisquer $a,b\in R_1$,

$$\alpha(a \wedge_{\mathcal{R}_1} b) = \alpha(a) \wedge_{\mathcal{R}_2} \alpha(b) \ e \ \alpha(a \vee_{\mathcal{R}_1} b) = \alpha(a) \vee_{\mathcal{R}_2} \alpha(b);$$

- α é um **isomorfismo de** \mathcal{R}_1 em \mathcal{R}_2 se α é bijetiva e é um homomorfismo.

Caso exista um isomorfismo de reticulados de \mathcal{R}_1 em \mathcal{R}_2 , o reticulado \mathcal{R}_1 diz-se **isomorfo** ao reticulado \mathcal{R}_2 .

Note-se que se α é um isomorfismo de um reticulado \mathcal{R}_1 para um reticulado \mathcal{R}_2 , então α^{-1} é um isomorfismo de \mathcal{R}_2 para \mathcal{R}_1 .

Assim, caso exista um isomorfismo de um reticulado noutro, diz-se somente que os reticulados são isomorfos.

A noção de isomorfismo entre reticulados pode ser estabelecida recorrendo às relações de ordem associadas aos mesmos reticulados.

Teorema

Sejam $\mathcal{R}_1 = (R_1; \wedge_{\mathcal{R}_1}, \vee_{\mathcal{R}_1})$ e $\mathcal{R}_2 = (R_2; \wedge_{\mathcal{R}_2}, \vee_{\mathcal{R}_2})$ reticulados e \leq_1 e \leq_2 as relações de ordem definidas, respetivamente, em R_1 e R_2 por

$$a \leq_1 b$$
 sse $a = a \wedge_{\mathcal{R}_1} b$, para quaisquer $a, b \in \mathcal{R}_1$,

$$a \leq_2 b$$
 sse $a = a \wedge_{\mathcal{R}_2} b$, para quaisquer $a, b \in \mathcal{R}_2$.

Então os reticulados $\mathcal{R}_1 = (R_1; \wedge_{\mathcal{R}_1}, \vee_{\mathcal{R}_1})$ e $\mathcal{R}_2 = (R_2; \wedge_{\mathcal{R}_2}, \vee_{\mathcal{R}_2})$ são isomorfos se e só se os c.p.o.s (R_1, \leq_1) e (R_2, \leq_2) são isomorfos.

Reticulados completos, reticulados algébricos

Apresentam-se seguidamente duas classes de reticulados que desempenham um papel relevante no estudo de álgebra universal.

Definição

Um reticulado (R, \leq) diz-se um **reticulado completo** se, para qualquer subconjunto S de R, existem $\bigwedge S$ e $\bigvee S$.

Exemplo

- 1) O reticulado (\mathbb{R}, \leq) não é completo.
- 2) O reticulado ($\mathbb{R} \cup \{-\infty, \infty\}, \leq$) é completo.
- 3) O reticulado ($\{x \in \mathbb{R} : |x| < 1\} \cup \{-2, 2\}, \leq$) é completo.
- 4) Dado um conjunto A, $(\mathcal{P}(A), \subseteq)$ é um reticulado completo.

Teorema

Seja (R, \leq) um reticulado tal que existe $\bigvee S$ para qualquer subconjunto S de R ou tal que existe $\bigwedge S$ para qualquer subconjunto S de R. Então (R, \leq) é um reticulado completo.

Observe-se que se (R, \leq) é um reticulado completo, então R tem elemento máximo 1 e elemento mínimo 0 e tem-se $\bigvee \emptyset = 0$ e $\bigwedge \emptyset = 1$.

Note-se também que o teorema anterior pode ser formulado de forma equivalente dos seguintes modos: (i) um reticulado (R, \leq) é completo se R tem elemento máximo e existe ínfimo de qualquer subconjunto não vazio de R; (ii) um reticulado (R, \leq) é completo se R tem elemento mínimo e existe supremo de qualquer subconjunto não vazio de R.

Um reticulado completo pode ter subrreticulados que não são completos; por exemplo, (\mathbb{R}, \leq) é um subrreticulado de $(\mathbb{R} \cup \{-\infty, \infty\}, \leq)$.

E também possível acontecer que o subrreticulado de um reticulado completo seja um reticulado completo e que os supremos e ínfimos de certos subconjuntos quando determinados no subrreticulado não coincidam com os supremos e os ínfimos no reticulado - é o caso de $(\{x\in\mathbb{R}:|x|<1\}\cup\{-2,2\},\leq) \text{ subrreticulado de } (\mathbb{R}\cup\{-\infty,\infty\},\leq).$

Definição

Um subrreticulado R' de um reticulado (R, \leq) diz-se um **subrreticulado completo de** R se, para qualquer subconjunto S de R', $\bigvee S$ e $\bigwedge S$, como definidos em R, pertencem a R'.

Definição

Seja (R, \leq) um reticulado. Um elemento $a \in R$ diz-se **compacto** se sempre que existe $\bigvee A$ e $a \leq \bigvee A$, para algum $A \subseteq R$, então $a \leq \bigvee B$, para algum conjunto finito $B \subseteq A$.

Um reticulado R diz-se **compactamente gerado** se, para todo $a \in R$, $a = \bigvee S$, onde S é um subconjunto de R formado por elementos compactos de R.

Um reticulado R diz-se um **reticulado algébrico** se é um reticulado completo e compactamente gerado.

Exemplo

- 1) Todos os elementos de um reticulado finito são compactos.
- 2) Dado um conjunto A, o reticulado $(\mathcal{P}(A), \subseteq)$ é algébrico; os elementos compactos deste reticulado são os subconjuntos finitos de A.
- 3) O reticulado (Subg(G), \subseteq), dos subgrupos de um grupo G, é algébrico; os elementos compactos deste reticulado são os subgrupos de G finitamente gerados.

Teorema

Sejam A um conjunto e f um operador de fecho em $(\mathcal{P}(A), \subseteq)$. Então $(\mathit{Fc_f}(\mathcal{P}(A)), \subseteq)$ é um reticulado completo, onde, para qualquer família não vazia $\{A_i\}_{i\in I}$ de subconjuntos de A,

$$\bigwedge_{i\in I} f(A_i) = \bigcap_{i\in I} f(A_i) \quad e \quad \bigvee_{i\in I} f(A_i) = f\left(\bigcup_{i\in I} A_i\right).$$

Reciprocamente prova-se que todo o reticulado completo pode ser visto como o reticulado dos subconjuntos fechados de algum conjunto com um operador de fecho.

Teorema

Seja (R, \leq) um reticulado completo. Então (R, \leq) é isomorfo ao reticulado dos subconjuntos fechados de algum conjunto A com um operador de fecho f .

Teorema

Seja A um conjunto. Se f é um operador de fecho algébrico em $(\mathcal{P}(A),\subseteq)$, então $(Fc_f(\mathcal{P}(A)),\subseteq)$ é um reticulado algébrico e os elementos compactos de $(Fc_f(\mathcal{P}(A)),\subseteq)$ são os conjuntos fechados f(X), onde X é um subconjunto finito de A.

Corolário

Seja f um operador de fecho algébrico em $(\mathcal{P}(A), \subseteq)$, para algum conjunto A. Então os subconjuntos de A finitamente gerados são precisamente os elementos compactos de $(Fc_f(\mathcal{P}(A)), \subseteq)$.

Teorema

Todo o reticulado algébrico é isomorfo ao reticulado dos subconjuntos fechados de algum conjunto A com um operador de fecho algébrico.

Reticulados distributivos e reticulados modulares

As classes de reticulados mais estudadas são as classes de reticulados distributivos e as classes de reticulados modulares.

Definição

Um reticulado $\mathcal{R} = (R; \wedge, \vee)$ diz-se um **reticulado distributivo** se satisfaz uma das seguintes condições:

D1:
$$x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z), \forall x, y, z \in R$$

D2:
$$x \lor (y \land z) = (x \lor y) \land (x \lor z), \forall x, y, z \in R$$
.

As condições D1 e D2 referidas na definição anterior, designadas por *leis distributivas*, são equivalentes.

Teorema

Seja $\mathcal{R} = (R; \wedge, \vee)$ um reticulado. Então \mathcal{R} satisfaz D1 se e só se \mathcal{R} satisfaz D2.

Demonstração.

Admitamos que D1 se verifica. Então

$$x \lor (y \land z) = (x \lor (x \land z)) \lor (y \land z) \qquad (por R4)$$

$$= x \lor ((x \land z) \lor (y \land z)) \qquad (por R2)$$

$$= x \lor ((z \land x) \lor (z \land y)) \qquad (por R1)$$

$$= x \lor (x \lor (x \lor y)) \qquad (por R1)$$

$$= x \lor ((x \lor y) \land z) \qquad (por R1)$$

$$= (x \land (x \lor y)) \lor ((x \lor y) \land z) \qquad (por R4)$$

$$= ((x \lor y) \land x) \lor ((x \lor y) \land z) \qquad (por R1)$$

$$= (x \lor y) \land (x \lor z) \qquad (por D1)$$

A prova de que D2 implica D1 é análoga.

Note-se que qualquer reticulado satisfaz as desigualdades

$$(x \wedge y) \vee (x \wedge z) \leq x \wedge (y \vee z) \in x \vee (y \wedge z) \leq (x \vee y) \wedge (x \vee z).$$

Assim, para mostrar que determinado reticulado é distributivo basta verificar uma das desigualdades

$$x \wedge (y \vee z) \leq (x \wedge y) \vee (x \wedge z)$$
 ou $(x \vee y) \wedge (x \vee z) \leq x \vee (y \wedge z)$.

Definição

Um reticulado $\mathcal{R}=(R;\wedge,\vee)$ diz-se um **reticulado modular** se, para quaisquer $x,y,z\in R$,

$$x \leq y \Rightarrow x \vee (y \wedge z) = y \wedge (x \vee z).$$

A condição da definição anterior, designada por *lei modular*, é equivalente a

$$(x \wedge y) \vee (y \wedge z) = y \wedge ((x \wedge y) \vee z),$$

uma vez que $x \le y$ se e só se $x = x \land y$. Também é simples verificar que todo o reticulado satisfaz a condição

$$x \le y \Rightarrow x \lor (y \land z) \le y \land (x \lor z),$$

pelo que, para mostrar que um reticulado é modular basta verificar que, para quaisquer x, y, $z \in R$,

$$x \leq y \Rightarrow y \land (x \lor z) \leq x \lor (y \land z).$$

Anteriormente vimos que pela formação de subrreticulados, produtos e imagens homomorfas podem ser construídos novos reticulados a partir de reticulados dados. A modularidade e a distributividade são preservadas por estas construções.

Teorema

Sejam R e S reticulados. Então:

- (1) Se \mathcal{R} é distributivo (modular), então qualquer subrreticulado de \mathcal{R} é distributivo (modular).
- (2) Se \mathcal{R} e \mathcal{S} são distributivos (modulares), então $\mathcal{R} \times \mathcal{S}$ é distributivo (modular).
- (3) Se \mathcal{R} é distributivo (modular) e \mathcal{S} é uma imagem homomorfa de \mathcal{R} , i.e., se $\mathcal{S} = \alpha(\mathcal{R})$ para algum homomorfismo $\alpha: \mathcal{R} \to \mathcal{S}$, então \mathcal{S} é distributivo (modular).

Os dois próximos teoremas dão-nos uma caracterização dos reticulados distributivos e dos reticulados modulares recorrendo aos reticulados M_5 e N_5 a seguir apresentados

Observe-se que nenhum dos reticulados anteriores é distributivo, pois em nenhum dos casos se tem $a \lor (b \land c) = (a \lor b) \land (a \lor c)$.

No que respeita à modularidade, o reticulado M_5 é modular, mas no reticulado N_5 tem-se $a \leq b$ e $a \vee (b \wedge c) \neq b \wedge (a \vee c)$, pelo que N_5 não é modular.

Teorema

Seja $\mathcal{R}=(R;\wedge,\vee)$ um reticulado. Então \mathcal{R} é modular se e só se não tem qualquer subrreticulado isomorfo a N_5 .

Demonstração.

Se \mathcal{R} tem um subrreticulado isomorfo a N_5 , então R não é modular.

Reciprocamente, se admitirmos que \mathcal{R} não é modular, então existem $a,b,c\in R$ tais que $a\leq b$ e $a\vee(b\wedge c)< b\wedge(a\vee c)$.

Sejam
$$a_1=a\lor (b\land c)$$
 e $b_1=b\land (a\lor c)$. Então

$$c \wedge b_1 = c \wedge (b \wedge (a \vee c))$$

$$= [c \wedge (c \vee a)] \wedge b \quad (por R1 e R2)$$

$$= c \wedge b \quad (por R4),$$

$$c \vee a_1 = c \vee (a \vee (b \wedge c))$$

$$= [c \vee (b \wedge c)] \vee a \quad (por R1 e R2)$$

$$= c \vee a \quad (por R4),$$

$$c \wedge b \leq c \wedge a_1 \leq c \wedge b_1 = c \wedge b,$$

$$c \wedge a_1 = c \wedge b_1 = c \wedge b.$$

De modo análogo, tem-se $c \lor b_1 = c \lor a_1 = c \lor a$.

Demonstração.

Os elementos $c \wedge b$, a_1 , c, b_1 , $c \vee a$ são distintos dois a dois.

Logo, o reticulado a seguir apresentado

é um subrreticulado de \mathcal{R} e é isomorfo a \mathcal{N}_5 .

Teorema

Seja $\mathcal{R}=(R;\wedge,\vee)$ um reticulado. Então \mathcal{R} é distributivo se e só se não tem qualquer subrreticulado isomorfo a N_5 ou a M_5 .