UNIT 3: Structured populations

1 Introduction

- Up until now we've tracked populations with a single state variable (population size or population density)
- What assumption are we making?
 - Answer: All individuals can be counted the same. At least at census time
- What are some organisms for which this seems like a good approximation?
 - Answer: Dandelions, bacteria, insects
- What are some organisms that don't work so well?
 - **Answer**: Trees, people, codfish

Structured populations

- If we think age or size is important to understanding a population, we might model it as an **structured** population
- Instead of just keeping track of the total number of individuals in our population . . .
 - Keeping track of how many individuals of each age
 - * or size
 - * or developmental stage

1.1 Example: biennial dandelions

- Imagine a population of dandelions
 - Adults produce 80 seeds each year
 - 1% of seeds survive to become adults

- 50\% of first-year adults survive to reproduce again
- Second-year adults never survive
- Will this population increase or decrease through time?

How to study this population

- Choose a census time
 - Before reproduction or after
 - Since we have complete cycle information, either one should work
- Figure out how to predict the population at the next census

Census choices

- Before reproduction
 - All individuals are adults
 - We want to know how many adults we will see next year
- After reproduction
 - Seeds, one-year-olds and two-year-olds
 - Two-year-olds have already produced their seeds; once these seeds are counted, the two-year-olds can be ignored, since they will not reproduce or survive again

What determines λ ?

- If we have 20 adults before reproduction, how many do we expect to see next time?
- $\lambda = p + f$ is the total number of individuals per individual after one time step
- What is f in this example?
 - **Answer:** 0.8
- What is p in this example?
 - Answer: 0.5 for 1-year-olds and 0 for 2-year-olds.
 - Answer: We can't take an average, because we don't know the population structure

What determines \mathcal{R} ?

- \mathcal{R} is the average total number of offspring produced by an individual over their lifespan
- Can start at any stage, but need to close the loop
- What is the reproductive number?
- Answer: If you become an adult you produce (on average)
 - **Answer:** 0.8 adults your first year
 - Answer: 0.4 adults your second year
- Answer: $\mathcal{R} = 1.2$

What does \mathcal{R} tell us about λ

- <u>Answer</u>: Population increases when $\mathcal{R} > 1$, so $\lambda > 1$ exactly when $\mathcal{R} > 1$
- If $\mathcal{R} = 1.2$, then λ
 - Answer: > 1 the population is increasing
 - <u>Answer:</u> < 1.2 the life cycle takes more than 1 year, so it should take more than one year for the population to increase 1.2 times

1.2 Modeling approach

- In this unit, we will construct *simple* models of structured populations
 - To explore how structure might affect population dynamics
 - To investigate how to interpret structured data

Regulation

- Simple population models with regulation can have very complicated dynamics
- Structured population models with regulation can have insanely complicated dynamics
- Here we will focus on understanding structured population models without regulation:
 - **Answer:** Individuals behave independently, or (equivalently)
 - Answer: Average per capita rates do not depend on population size

Age-structured models

- The most common approach to structured models is to structure by age
- In age-structured models we model how many individuals there are in each "age class"
 - Typically, we use age classes of one year
 - Example: salmon live in the ocean for roughly a fixed number of years; if we know how old a salmon is, that strongly affects how likely it is to reproduce

Stage-structured models

- In stage-structured models, we model how many individuals there are in different stages
 - Ie., newborns, juveniles, adults
 - More flexible than an age-structured model
 - Example: forest trees may survive on very little light for a long time before they have the opportunity to recruit to the sapling stage

Discrete vs. continuous time

- Structured models can be done in either discrete or continuous time
- Continuous-time models are structurally simpler (and smoother)
- Discrete-time models are easier to use with age structure
- Choice may also depend on the population:
 - Answer: Populations with continuous reproduction may be better suited to continuous-time models
 - Answer: Populations with synchronous reproduction may be better suited to discrete-time models
- In this unit, we will focus on discrete time

2 Constructing a model

- This section will focus on linear, discrete-time, age-structured models
- State variables: how many individuals of each age at any given time
- Parameters: p and f for each age that we are modeling

When to count

- We will choose a census time that is appropriate for our study
 - Before reproduction, to have the fewest number of individuals
 - After reproduction, to have the most information about the population processes
 - Some other time, for convenience in counting
 - * Answer: A time when individuals gather together (although this is often for mating)
 - * Answer: A time when they are easy to find (insect pupae)

The conceptual model

- Once we choose a census time, we imagine we know the population for each age x after time step T.
 - We call these values $N_x(T)$
- Now we want to calculate the expected number of individuals in each age class at the next time step
 - We call these values $N_x(T+1)$
- What do we need to know?
 - Answer: The survival probability of each age group: p_x
 - Answer: The average fecundity of each age group: f_x

Closing the loop

- f_x and p_x must close the loop back to the census time, so we can use them to simulate our model:
 - $-f_x$ has units [new indiv (at census time)]/[age x indiv (at census time)]
 - $-p_x$ has units [age x+1 indiv (at census time)]/[age x indiv (at census time)]

2.1 Model dynamics

Short-term dynamics

- This model's short-term dynamics will depend on parameters . . .
 - It is more likely to go up if fecundities and survival probabilities are high
- ...and starting conditions
 - If we start with mostly very old or very young individuals, it might go down; with lots of reproductively healthy adults it might go up

Long-term dynamics

- If a population follows a model like this, it will tend to reach
 - a stable age distribution:
 - * the proportion of individuals in each age class is constant
 - a stable value of λ
 - * if the proportions are constant, then we can average over f_x and p_x , and the system will behave like our simple model
- What are the long-term dynamics of such a system?
 - **Answer:** Exponential growth or exponential decline

Exception

- Populations with independent cohorts do not tend to reach a stable age distribution
 - A **cohort** is a group that enters the population at the same time
 - We say my cohort and your cohort interact if my children might be in the same cohort as your children
 - or my grandchildren might be in the same cohort as your great-grandchlidren
 - **–** ...
- As long as all cohorts interact (none are independent), then the unregulated model leads to a stable age distribution (SAD)

Independent cohorts

- Some populations might have independent cohorts:
 - If salmon reproduce *exactly* every four years, then:
 - * the 2015 cohort would have offspring in 2019, 2023, 2027, $2031, \ldots$
 - * the 2016 cohort would have offspring in 2020, 2024, 2028, $2032, \ldots$
 - * in theory, they could remain independent distribution would not converge
- Examples could include 17-year locusts, century plants, ...

3 Life tables

- People often study structured models using life tables
- A life table is made from the perspective of a particular census time
- It contains the information necessary to project to the next census:
 - How many survivors do we expect at the next census for each individual we see at this census? $(p_x \text{ in our model})$
 - How many offspring do we expect at the next census for each individual we see at this census? $(f_x \text{ in our model})$

Cumulative survivorship

- The first key to understanding how much each organism will contribute to the population is **survivorship**
- In the field, we estimate the probability of survival from age x to age x + 1: p_x
 - This is the probability you will be *counted* at age x+1, given that you were *counted* at age x.
- To understand how individuals contribute to the population, we are also interested in the overall probability that individuals survive to age x: ℓ_x .
 - Answer: $\ell_x = p_1 \times \dots p_{x-1}$
 - <u>Answer:</u> ℓ_x measures the probability that an individual survives to be counted at age x, given that it is ever counted at all (ie., it survives to its first census)

Calculating \mathcal{R}

- We calculate \mathcal{R} by figuring out the estimated contribution at each age group, per individual who was ever counted
 - We figure out expected contribution given you were ever counted by multiplying:
 - Answer: $f_x \times \ell_x$

3.1 Dandelion example

Dandelion life table

\boldsymbol{x}	f_x	p_x	$\mid \ell_x \mid$	$\ell_x f_x$
1				
2				
R				

Extra slide: Dandelion life table

\boldsymbol{x}	f_x	p_x	ℓ_x	$\ell_x f_x$
1	0.8	0.5	1.000	0.800
2	0.8	0	0.500	0.400
R				1.200

Dandelion dynamics

Dandelion dynamics

3.2 Squirrel example

Gray squirrel population example

•				
\boldsymbol{x}	f_x	p_x	$\mid \ell_x$	$\ell_x f_x$
1	0	0.25		
2	1.28	0.46		
3	2.28	0.77		
4	2.28	0.65		
5	2.28	0.67		
6	2.28	0.64		
7	2.28	0.88		
8	2.28	0.0		
R				

Squirrel observations

- $\bullet\,$ Do you notice anything strange about the life table?
 - $\underline{\mathbf{Answer}} \boldsymbol{\cdot}$ Older age groups seem to be grouped for fecundity.
 - <u>Answer</u>: Strange pattern in survivorship; do we really believe nobody survives past the last year?
 - Answer: Might be better to use a model where they keep track of 1 year, 2 year, and "adult" – not much harder.

Extra slide: Gray squirrel population example

x	f_x	p_x	ℓ_x	$\ell_x f_x$
1	0	0.25	1.000	0.000
2	1.28	0.46	0.250	0.320
3	2.28	0.77	0.115	0.262
4	2.28	0.65	0.089	0.202
5	2.28	0.67	0.058	0.131
6	2.28	0.64	0.039	0.088
7	2.28	0.88	0.025	0.056
8	2.28	0.0	0.022	0.050
\overline{R}				1.109

Gray squirrel dynamics

Comment slide: The structured model

3.3 Salmon example

- What happens when a population has independent cohorts
 - Does not necessarily converge to a SAD

Salmon dynamics

3.4 Calculation details

 f_x vs. m_x

- Here we focus on f_x the number of offspring seen at the next census (next year) per organism of age x seen at this census
- An alternative perspective is m_x : the total number of offspring per reproducing individual of age x
- What is the relationship?
 - **Answer:** To get f_x we multiply m_x by one or more survival terms, depending on when the census is
 - Answer: Need to close the loop from one census to the next

Extra slide: Dandelion life table

\boldsymbol{x}	f_x	p_x	ℓ_x	$\ell_x f_x$
1	0.8	0.5	1.000	0.800
2	0.8	0	0.500	0.400
\overline{R}				1.200

Extra slide: Counting after reproduction

\boldsymbol{x}	f_x	p_x	ℓ_x	$\ell_x f_x$
1	0.8	0.01	1.000	0.800
2	40	0	0.010	0.400
\overline{R}				1.200

Calculating \mathcal{R}

- The reproductive number \mathcal{R} gives the average lifetime reproduction of an individual, and is a valuable summary of the information in the life table
 - $\mathcal{R} = \sum_{x} \ell_x f_x$
 - If $\mathbb{R} > 1$ in the long (or medium) term, the population will increase
 - If \mathcal{R} is persistently < 1, the population is in trouble
- We can ask (for example):
 - Which ages have a large *contribution* to \mathcal{R} ?
 - Which values of p_x and f_x is \mathcal{R} sensitive to?
 - * **Answer:** The ps for young individuals affect all the ℓ s.

The effect of old individuals

- Estimating the effects of old individuals on a population can be difficult, because both f and ℓ can be extreme
 - The contribution of an age class to \mathcal{R} is $\ell_x f_x$
 - How are these values extreme?
 - Answer: In most populations ℓ can be very small for large x
 - Answer: In many populations, f can be very large for large x
- Reproductive potential of old individuals may or may not be important
 - Answer: In tree populations, most trees don't survive to get huge, but the huge trees may have most of the total reproduction
 - **Answer:** In bird populations, old birds produce fairly well, but not nearly enough to outweigh the low probability of being old.

Comment slide: Old individuals

3.5 Measuring growth rates

• In a constant population, each age class replaces itself:

$$- \mathcal{R} = \sum_{x} \ell_x f_x = 1$$

- In an exponentially changing population, each year's **cohort** is a factor of λ bigger (or smaller) than the previous one
 - λ is the finite rate of increase, like before
- Looking back in time, the cohort x years ago is λ^{-x} as large as the current one
- The existing cohorts need to make the next one:

$$-\sum_{x} \ell_x f_x \lambda^{-x} = 1$$

The Euler equation

- If the life table doesn't change, then λ is given by $\sum_{x} \ell_{x} f_{x} \lambda^{-x} = 1$
- We basically ask, if the population has the structure we would expect from growing at rate λ , would it continue to grow at rate λ .
- ullet On the left-side each cohort started as λ times smaller than the one after it
 - Then got multiplied by ℓ_x .
- Under this assumption, is the next generation λ times bigger again?

λ and \mathcal{R}

- If the life table doesn't change, then λ is given by $\sum_x \ell_x f_x \lambda^{-x} = 1$
 - What's the relationship between λ and \mathcal{R} ?
- When $\lambda = 1$, the left hand side is just \mathcal{R} .
 - If $\mathcal{R} > 1$, the population more than replaces itself when $\lambda = 1$. We must make $\lambda > 1$ to decrease LHS and balance.
 - If $\mathcal{R} < 1$, the population fails to replace itself when $\lambda = 1$. We must make $\lambda < 1$ to increase LHS and balance.
- So \mathcal{R} and λ tell the same story about whether the population is increasing

Time scales

- λ gives the number of individuals per individual every year
- R gives the number of individuals per individual over a lifetime
- What relationship do we expect for an annual population (individuals die every year):
 - <u>Answer</u>: $\mathcal{R} = \lambda$; each organism observed reproduces \mathcal{R} offspring on average, all in one time step
- For a long-lived population

- Answer: The \mathcal{R} offspring are produced slowly, so population changes slowly
 - * Answer: λ should be closer to 1 than \mathcal{R} is.
 - * Answer: But on the same side (same answer about whether population is growing)

Studying population growth

- λ and \mathcal{R} give similar information about your population
- \bullet \mathcal{R} is easier to calculate, and more generally useful
- But λ gives the actual rate of growth
 - More useful in cases where we expect the life table to be constant with exponential growth or decline for a long time

Growth and decline

- If we think a particular period of growth or decline is important, we might want to study how factors affect λ
 - Complicated, but well-developed, theory
 - In a growing population, what happens early in life is more important to λ than to \mathcal{R} .
 - In a declining population, what happens late in life is more important to λ than to \mathcal{R} .
- A common error is to assume that periods of exponential *growth* are more important to ecology and evolution the periods of exponential *decline*. In the long term, these should balance.
 - Answer: Because otherwise the population would go to zero or infinity

4 Life-table patterns

4.1 Survivorship

Patterns of survivorship

- What sort of patterns do you expect to see in p_x ?
 - **Answer:** Younger individuals usually have lower survivorship
 - <u>Answer</u>: Older individuals often have lower survivorship
- What about ℓ_x ?
 - Answer: It goes down
 - **Answer:** But sometimes faster and sometimes slower
 - Answer: Best understood on a log scale

When do we start counting?

- Is the first age class called 0, or 1?
 - In this course, we will start from age class 1
 - If we count right *after* reproduction, this means we are calling newborns age class 1. Don't get confused.
- What is ℓ_1 when we count before reproduction?
 - **Answer**: 1
 - Answer: We don't count individuals that we don't count

Constant survivorship

"Types" of survivorship

- There is a history of defining survivorship as:
 - Type I, II or III depending on whether it increases, stays constant or decreases with age (don't memorize this, just be aware in case you encounter it later in life).
 - Real populations tend to be more complicated
- Most common pattern is: high mortality at high and low ages, with less mortality between

Changing survivorship

4.2 Fecundity

- Just as in our simple population growth models, we define fecundity as the expected number of offspring at the next census produced by an individual observed at this census
 - Parent must survive from counting to reproduction
 - Parent must give birth
 - Offspring must survive from birth to counting

- Remember to think clearly about gender when necessary
 - Are we tracking females, or everyone?

Fecundity patterns

- f_x is the average number of new individuals *counted* next census per individual in age class x counted this census
- Fecundity often goes up early in life and then remains constant
 - **Answer:** Birds, large mammals
- It may also go up and then come down
 - <u>Answer</u>: people
- It may also go up and up as organisms get older
 - Answer: Fish, trees

5 Age distributions

- http://www.gapminder.org/population/tool/
- https://en.wikipedia.org/

Learning from the model

- If a population has constant size (ie., the same number of individuals are born every year), what determines the proportion of individuals in each age class?
 - Answer: Distribution should be proportional to ℓ_x
- What if population is growing?
 - Answer: We expect proportionally more individuals in younger age classes
 - * **Answer:** Number of births in more recent cohorts is larger

Stable age distribution

- If a population has reached a SAD, and is increasing at rate λ (given by the Euler equation):
 - the x year old cohort, born x years ago originally had a size λ^{-x} relative to the current one
 - a proportion ℓ_x of this cohort has survived
 - thus, the relative size of cohort x is $\lambda^{-x}\ell_x$
 - SAD depends only on survival distribution ℓ_x and λ .

Patterns

- Populations tend to be bottom-heavy (more individuals at lower age classes)
 - Many individuals born, few survive to older age classes
- If population is growing, this increases the lower classes further
 - More individuals born more recently
- If population is *declining*, this shifts the age distribution in the opposite direction
 - Results can be complicated
 - Declining populations may be bottom-heavy, top-heavy or just jumbled

University cohorts

- McMaster accepts only first-year students. For any given stage (e.g., end of third year) the same proportion drop out each year
- What can you say about the relative size of the classes if:
 - The same number of students is admitted each year
 - * Answer: The lower classes are larger
 - More students are admitted each year
 - * **Answer:** The lower classes are larger (even more so)

- Fewer students are admitted each year
 - * **Answer:** Anything could happen (drop outs and size change are operating in different directions)

Age distributions

Age distributions

Age distributions

6 Other structured models

Forest example

- Forests have obvious population structure
- They also seem to remain stable for long periods of time
- Populations are presumably regulated at some time scale

Forest size classes

- When we go to an apparently stable forest ecosystem, it seems to be dominated by large trees, not small ones. What up?
- How is it possible that these systems are dominated by large trees?
 - <u>Answer</u>: Large trees are larger
 - **Answer:** Population may be declining
 - Answer: Trees may spend longer in some size classes than in others
 - Answer: Life table may not be constant (smaller trees may recruit at certain times and places)

6.1 Stage structure

- Stage structure works just like age structure, except that what stage you are in is not strictly predicted by how old you are
 - Age-structured models need fecundity, and survival probability
 - Answer: In stage-structured models survival is typically broken into:
 - * Answer: Survival into same stage
 - * Answer: Survival with recruitment (ie., to the next larger class of individuals)
 - More complicated models are also possible

Advantages

- Stage structured models don't need a maximum age
- Nor one box for every single age class

Unregulated growth

- What happens if you have a constant stage table (no regulation)?
 - Fecundity, and survival and recruitment probabilities are constant
- Similar to constant life table
 - Can calculate \mathcal{R} and λ (will be consistent with each other)
 - Can calculate a stable stage distribution
 - <u>Comment</u>: \mathcal{R} is about the same as in age structured model
- Unregulated growth cannot persist

Summary

- If the life table remains constant (no regulation or stochasticity):
 - Reach a stable age (or stage) distribution
 - Grow or decline with a constant λ
 - Factors behind age distribution can be understood

6.2 Regulated growth

- Our models up until now have assumed that individuals are independent
- In this case, we expect populations to grow (or decline) exponentially
- We do not expect that the long-term average value of \mathcal{R} or λ will be exactly 1.

The value of simple models

- There is a lot of mathematical study of unregulated, age-structured populations, but it should be taken with a grain of salt
 - **Answer**: We know that real populations are regulated
 - Answer: Populations can't increase or decrease exponentially for very long
- Understanding this behaviour is helpful:
 - interpreting age structures in real populations
 - beginning to understand more complicated systems

Regulation and structure

- We expect real populations to be regulated
- The long-term average value of λ under regulation could be exactly 1
- There is also likely to be substantial variation from year to year, due to changing conditions and other random-seeming forces

Dynamics

- We expect to see smooth behaviour in many cases
- Cycles and complex behaviour should arise for reasons similar to our unstructured models:
 - Delays in the system
 - Strong population response to density

- \bullet Age distribution will be determined by:
 - $-\ell_x$, and
 - whether the population has been growing or declining recently

^{©2010–2016,} Jonathan Dushoff and the 3SS teaching team. May be reproduced and distributed, with this notice, for non-commercial purposes only.