## **ENGR 305 – Homework 3 solutions**

## <u>4.46</u>

Eq. (4.8),  $V_Z = V_{Z0} + r_z I_Z$ , also applies to the test voltage and current. Thus,

$$V_{ZT} = \, V_{Z0} \, + \, r_Z \, I_{ZT}$$

We can use this equation to complete the table as follows.

| $V_{ZT}$ | $I_{ZT}$ | $r_z$ | $V_{Z0}$ | $V_Z$ @                       |
|----------|----------|-------|----------|-------------------------------|
|          |          |       |          | $V_{Z} @ \\ I_{Z} = \\ 10 mA$ |
| 3 V      | 2 mA     | 50 Ω  | 2.9 V    | 3.4 V                         |
| 5 V      | 5 mA     | 100Ω  | 4.5 V    | 5.5 V                         |
| 6 V      | 2 mA     | 150Ω  | 5.7 V    | 7.2 V                         |
| 9.1 V    | 1 mA     | 100Ω  | 9 V      | 10 V                          |

 $\frac{4.9}{\text{Suitable value for R so that the peak diode current does not exceed 40 mA:}$ 

$$R \ge \frac{120\sqrt{2}}{40 \ mA} = 4.2 \ k\Omega$$

The largest reverse voltage appearing across the diode is equal to the peak input voltage:

$$120\sqrt{2} = 169.7 V$$





From the small-signal model:  $\frac{\Delta v_o}{\Delta v_s} = \frac{10}{200+10} = \frac{10}{210}$ 

Now 
$$\Delta v_s = 1.0 V \Rightarrow \Delta v_o = \frac{10}{210} \Delta v_s$$

$$\Delta v_o = \frac{10}{210} \times 1.0 = 47.6 \ mV$$