## 14 Problems: Properties of the Determinant

1. Let 
$$M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
. Show:

$$\det M = \frac{1}{2} (\operatorname{tr} M)^2 - \frac{1}{2} \operatorname{tr} (M^2)$$

Suppose M is a  $3 \times 3$  matrix. Find and verify a similar formula for det M in terms of  $tr(M^3)$ ,  $(tr M)(tr(M^2))$ , and  $(tr M)^3$ .

| 2. | Suppe | ose | <i>M</i> = | = <i>LU</i> | is an | LU d | .ecom; | position | . Exp | olain | how | you | would | d effic | eiently | com | pute | $\det M$ | in t | his c | ase. |
|----|-------|-----|------------|-------------|-------|------|--------|----------|-------|-------|-----|-----|-------|---------|---------|-----|------|----------|------|-------|------|
|    | 11    |     |            |             |       |      | -      |          | •     |       |     | v   |       |         | v       |     | •    |          |      |       |      |
|    |       |     |            |             |       |      |        |          |       |       |     |     |       |         |         |     |      |          |      |       |      |
|    |       |     |            |             |       |      |        |          |       |       |     |     |       |         |         |     |      |          |      |       |      |
|    |       |     |            |             |       |      |        |          |       |       |     |     |       |         |         |     |      |          |      |       |      |
|    |       |     |            |             |       |      |        |          |       |       |     |     |       |         |         |     |      |          |      |       |      |
|    |       |     |            |             |       |      |        |          |       |       |     |     |       |         |         |     |      |          |      |       |      |
|    |       |     |            |             |       |      |        |          |       |       |     |     |       |         |         |     |      |          |      |       |      |
|    |       |     |            |             |       |      |        |          |       |       |     |     |       |         |         |     |      |          |      |       |      |
|    |       |     |            |             |       |      |        |          |       |       |     |     |       |         |         |     |      |          |      |       |      |
|    |       |     |            |             |       |      |        |          |       |       |     |     |       |         |         |     |      |          |      |       |      |
|    |       |     |            |             |       |      |        |          |       |       |     |     |       |         |         |     |      |          |      |       |      |
|    |       |     |            |             |       |      |        |          |       |       |     |     |       |         |         |     |      |          |      |       |      |
|    |       |     |            |             |       |      |        |          |       |       |     |     |       |         |         |     |      |          |      |       |      |
|    |       |     |            |             |       |      |        |          |       |       |     |     |       |         |         |     |      |          |      |       |      |
|    |       |     |            |             |       |      |        |          |       |       |     |     |       |         |         |     |      |          |      |       |      |
|    |       |     |            |             |       |      |        |          |       |       |     |     |       |         |         |     |      |          |      |       |      |
|    |       |     |            |             |       |      |        |          |       |       |     |     |       |         |         |     |      |          |      |       |      |
|    |       |     |            |             |       |      |        |          |       |       |     |     |       |         |         |     |      |          |      |       |      |
|    |       |     |            |             |       |      |        |          |       |       |     |     |       |         |         |     |      |          |      |       |      |
|    |       |     |            |             |       |      |        |          |       |       |     |     |       |         |         |     |      |          |      |       |      |
|    |       |     |            |             |       |      |        |          |       |       |     |     |       |         |         |     |      |          |      |       |      |

- 3. In computer science, the *complexity* of an algorithm is computed (roughly) by counting the number of times a given operation is performed. Suppose adding or subtracting any two numbers takes a seconds, and multiplying two numbers takes m seconds. Then, for example, computing  $2 \cdot 6 5$  would take a + m seconds.
  - (a) How many additions and multiplications does it take to compute the determinant of a general  $2 \times 2$  matrix?
  - (b) Write a formula for the number of additions and multiplications it takes to compute the determinant of a general  $n \times n$  matrix using the definition of the determinant. Assume that finding and multiplying by the sign of a permutation is free.
  - (c) How many additions and multiplications does it take to compute the determinant of a general  $3 \times 3$  matrix using expansion by minors? Assuming m = 2a, is this faster than computing the determinant from the definition?



Problem 3 hint

