暑期数学建模培训讲座

LINGO软件的使用

2020年7月

优化模型和优化软件的重要意义

最优化: 在一定条件下, 寻求使目标最大(小)的决策

最优化是工程技术、 经济管理、科学研究、 社会生活中经常遇到的 问题, 如:

结构设计 资源分配

生产计划 运输方案

优化模型和优化软件的重要意义

解决优化问题的手段

- ·经验积累, 主观判断
- ・作试验,比优劣
- •建立数学模型,求解最优策略

数学建模赛题: 很多与优化有关, 需用软件求解

优化问题的一般形式

优化问题三要素: 决策变量; 目标函数; 约束条件

min f(x)s.t. $h_i(x) = 0, i = 1,..., m$ $g_j(x) \le 0, j = 1,..., l$

 $x \in D \subseteq \Re^n$

约束条件

目标函数

优化模型的简单分类

连续优化

优化

- 连 线性规划(LP) 目标和约束均为线性函数
 - •非线性规划(NLP)目标或约束中存在非线性函数 ✓二次规划(QP)目标为二次函数、约束为线性
 - 整数规划(IP) 决策变量(全部或部分)为整数 ✓ 整数线性规划(ILP),整数非线性规划(INLP)
 - ✓ 纯整数规划(PIP),混合整数规划(MIP)
 - ✓一般整数规划,0-1(整数)规划

常用优化软件

1. LINDO/LINGO软件

决策变量

- 2. MATLAB优化工具箱
- 3. EXCEL软件的优化功能
- 4. SAS(统计分析)软件的优化功能
- 5. 其他

LINDO 公司软件产品简要介绍

美国芝加哥(Chicago)大学的Linus Schrage教授于1980年前后开发,后来成立LINDO系统公司(LINDO Systems Inc.), 网址: http://www.lindo.com

LINDO: Linear INteractive and Discrete Optimizer (V6.1)

LINGO: Linear INteractive General Optimizer (V8.0)

LINDO API: LINDO Application Programming Interface (V2.0)

What's Best!: (SpreadSheet e.g. EXCEL) (V7.0)

演示(试用)版、学生版、高级版、超级版、工业版、扩展版... (求解问题规模和选件不同)

需要掌握的几个重要方面

1. LINDO:

正确阅读求解报告(尤其要掌握敏感性分析)

2, LINGO:

掌握集合(SETS)的应用;

正确阅读求解报告;

正确理解求解状态窗口;

学会设置基本的求解选项(OPTIONS);

掌握与外部文件的基本接口方法

例子: 奶制品加工的生产计划

1桶 12小时 3公斤A₁ → 获利24元/公斤 牛奶 或 4公斤A₂ → 获利16元/公斤

每天: 50桶牛奶 时间480小时 至多加工100公斤A₁

制订生产计划,使每天获利最大

- 35元可买到1桶牛奶,买吗?若买,每天最多买多少?
- •可聘用临时工人,付出的工资最多是每小时几元?
- ·A₁的获利增加到30元/公斤,应否改变生产计划?

1桶 牛奶 或 8小时 4公斤A₂ → 获利24元/公斤 8小时 4公斤A₂ → 获利16元/公斤 每天 50桶牛奶 时间480小时 至多加工100公斤A₁ 决策变量 x₁桶牛奶生产A₁ x₂桶牛奶生产A₂ 目标函数 获利 24×3x₁ 获利 16×4x₂ 每天获利 Max z=72x₁+64x₂

约束条件 劳动时间 加工能

劳动时间 $12x_1 + 8x_2 \le 480$ 加工能力 $3x_1 \le 100$

非负约束 $x_1, x_2 \ge 0$

模型

(LP)

LINDO程序

 $Max z = 72x_1 + 64x_2$

s.t. $x_1 + x_2 \le 50$ $12x_1 + 8x_2 \le 480$

 $3x_1 \le 100$

 $x_1, x_2 \ge 0$

max 72x1+64x2

st

2) x1+x2<50

3) 12x1+8x2<480

4) 3x1<100

end


```
结果解释
                                   最优解不变时目标
DO RANGE(SENSITIVITY) ANALYSIS? Yes
RANGES IN WHICH THE BASIS IS UNCHANGED: <mark>系数允许变化范围</mark>
         OBJ COEFFICIENT RANGES
                                   (约束条件不变)
VARIABLE CURRENT ALLOWABLE ALLOWABLE
          COEF INCREASE DECREASE
                            8.000000 x1系数范围(64,96)
        72,000000
                 24.000000
  X1
                  8.000000
                           16.000000 x,系数范围(48,72)
  X2
        64.000000
         RIGHTHAND SIDE RANGES
       CURRENT ALLOWABLE ALLOWABLE x<sub>1</sub>系数由24×3=
ROW
                           DECREASE
                INCREASE
         RHS
                                     72 增加为30×3=
        50.000000
                 10.000000
                            6.666667
  2
                                     90,在允许范
       480.000000
                 53.333332
                            80.000000
                                     围内
                 INFINITY
                            40.000000
·A,获利增加到30元/千克,应否改变生产计划 不变!
```


使用LINDO的一些注意事项

- 1. ">"(或 "<") 号与 ">="(或 "<=") 功能相同
- 2. 变量与系数间可有空格(甚至回车), 但无运算符
- 3. 变量名以字母开头,不能超过8个字符
- 4. 变量名不区分大小写(包括LINDO中的关键字)
- 5. 目标函数所在行是第一行,第二行起为约束条件
- 6. 行号(行名)自动产生或人为定义。行名以")"结束
- 7. 行中注有"!"符号的后面部分为注释。如:! It's Comment.
- 8. 在模型的任何地方都可以用 "TITLE" 对模型命名 (最多72个字符),如:

TITLE THE MALLE

使用LINDO的一些注意事项

- 9. 变量不能出现在一个约束条件的右端
- 10. 表达式中不接受括号 "()"和逗号 ","等任何符号, 例: 400(X1+X2)需写为400X1+400X2
- 11. 表达式应化简,如2X1+3X2-4X1应写成 -2X1+3X2
- 12. 缺省假定所有变量非负;可在模型的"END"语句 后用"FREE name"将变量name的非负假定取消
- 13. 可在 "END"后用 "SUB" 或 "SLB" 设定变量上下界

例如: "sub x1 10"的作用等价于"x1<=10" 但用"SUB"和"SLB"表示的上下界约束不计入模型的约束,也不能给出其松紧判断和敏感性分析。

- 14. "END"后对0-1变量说明: INT n 或 INT name
 - "END"后对整数变量说明。

LINGO软件简介

LINGO模型的优点

- ·包含了LINDO的全部功能
- •提供了灵活的编程语言(矩阵生成器)

LINGO模型的构成: 5个段

- •目标与约束段
- ·集合段 (SETS ENDSETS)
- ·数据段(DATA ENDDATA)
- •初始段 (INIT ENDINIT)
- •计算段(CALC ENDCALC)—LINGO9.0

LINGO与LINDO的区别

- •将目标函数的表示方式 从 "MAX"变成了 "MAX=":
- •"ST"(SubjectTo)在LINGO模型中不需要,被删除;
- •在系数与变量之间增加运算符 "*" (即乘号不能省略);
- •每行(目标、约束和说明语句)后面增加一个分号":";
- •约束的名字被放到 "[]"中,不放在右半括号")"前;
- •LINGO中模型以"MODEL: "开始,以"END"结
- 束。对简单的模型,这两个语句也可以省略。

建模实例: 钢管下料

客户需求 🗍

原料钢管:每根19米

4米50根

6米20根

8米15根

问题1. 如何下料最节省? 节省的标准是什么?

问题2. 客户增加需求:

5米10根

由于采用不同切割模式太多,会增加生产和管理成本, 规定切割模式不能超过3种。如何下料最节省?

有	对管下料	切割模式		
按照客户需要在一根原料钢管上安排切割的一种组合。				
1715 4 1111		o Me a III	A John a Ma	
4米1根	6米1根	8米1根	余料1米 	
4米1根	6米1根	6米1根	余 料3米	
		- Ma - Het		
8米	:1根	8米1根	余料3米	
合理切割模式的余料应小于客户需要钢管的最小尺寸				

模式	4米钢管根数	6米钢管根数	8米钢管根数	余料(米)	
1	4	0	0	3	
2	3	1	0	1	
3	2	0	1	3	
4	1	2	0	3	
5	1	1	1	1	
6	0	3	0	1	
7	0	0	2	3	

为满足客户需要,按照哪些种合理模式,每种模式 切割多少根原料钢管,最为节省?

两种

1. 原料钢管剩余总余量最小

标准

2. 所用原料钢管总根数最少

 x_i ~按第i 种模式切割的原料钢管根数(i=1,2,...7)

目标1 (总余量) $Min Z_1 = 3x_1 + x_2 + 3x_3 + 3x_4 + x_5 + x_6 + 3x_7$

模式	4米 根数	6米 根数	8米 根数	余料	约束
1	4	0	0	3	$4x_1 + 3x_2 -$
2	3	1	0	1	$x_2 + 2x_4 -$
3	2	0	1	3	$x_3 + x_5 +$
4	1	2	0	3	
5	1	1	1	1	整数约束
6	0	3	0	1	最优解:
7	0	0	2	3	-200741
需求	50	20	15		最优值:

 $+2x_3 + x_4 + x_5 \ge 50$ $+x_5 + 3x_6 \ge 20$ $2x_7 \ge 15$

東: x, 为整数

 $x_2=12, x_5=15,$ 其余为0;

按模式2切割12根,按模式5切割15根,余料27米

钢管下料问题1

目标2(总根数) $Min Z_2 = x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7$

约束条 $4x_1+3x_2+2x_3+x_4+x_5 \ge 50$ 最优解: $x_2=15$,

 $x_5=5, x_7=5,$

件不变 $x_2 + 2x_4 + x_5 + 3x_6 \ge 20$ $x_3 + x_5 + 2x_7 \ge 15$

其余为0; 最优值: 25。

x;为整数 按模式5切割5根,

按模式2切割15根, 与目标1的结果"共切割 27根,余料27米"相比

按模式7切割5根, 共25根,余料35米

虽余料增加8米,但减少了2根

当余料没有用处时,通常以总根数最少为目标

钢管下料问题2

增加一种需求:5米10根;切割模式不超过3种。 现有4种需求:4米50根,5米10根,6米20根,8米 15根,用枚举法确定合理切割模式,过于复杂。

对大规模问题,用模型的约束条件界定合理模式 决策变量

 x_i ~按第i 种模式切割的原料钢管根数 (i=1,2,3) $r_{1,p}$ $r_{2,p}$ $r_{3,p}$ r_{4i} ~ 第i 种切割模式下,每根原料钢管生产4米、5米、6米和8米长的钢管的数量

钢管下料问题2

目标函数 (总根数) $Min x_1 + x_2 + x_3$

约束 条件 満足需求 模式合理: 每根

 $r_{11}x_1 + r_{12}x_2 + r_{13}x_3 \ge 50$

余料不超过3米

 $r_{21}x_1 + r_{22}x_2 + r_{23}x_3 \ge 10$

 $16 \le 4r_{11} + 5r_{21} + 6r_{31} + 8r_{41} \le 19$ $16 \le 4r_{12} + 5r_{22} + 6r_{32} + 8r_{42} \le 19$

 $r_{31}x_1 + r_{32}x_2 + r_{33}x_3 \ge 20$

 $16 \le 4r_{13} + 5r_{23} + 6r_{33} + 8r_{43} \le 19$

 $r_{41}x_1 + r_{42}x_2 + r_{43}x_3 \ge 15$

整数约束: x_i, r_1, r_2, r_3, r_4 (i=1,2,3) 为整数

整数非线性规划模型

钢管下料问题2

增加约束,缩小可行域,便于求解

需求: 4米50根,5米10根,

每根原料钢管长19米

6米20根,8米15根 原料钢管总根数下界:

 $\left[\frac{4 \times 50 + 5 \times 10 + 6 \times 20 + 8 \times 15}{19}\right] = 26$

特殊生产计划:对每根原料钢管

模式1: 切割成4根4米钢管,需13根;

模式2: 切割成1根5米和2根6米钢管,需10根;

模式3: 切割成2根8米钢管,需8根。

原料钢管总根数上界: 31

 $26 \le x_1 + x_2 + x_3 \le 31$

模式排列顺序可任定

 $x_1 \ge x_2 \ge x_3$

LINGO程序1

model:

Title 钢管下料 - 最小化钢管根数的LINGO模型;

min=x1+x2+x3;

 $\begin{array}{lll} x1*r11+x2*r12+x3*r13>=50; & x1+x2+x3>=26; \\ x1*r21+x2*r22+x3*r23>=10; & x1+x2+x3<=31; \\ x1*r31+x2*r32+x3*r33>=20; & x1>=x2; \\ x1*r41+x2*r42+x3*r43>=15; & x2>=x3; \end{array}$

4*r11+5*r21+6*r31+8*r41<=19; 4*r12+5*r22+6*r32+8*r42<=19; 4*r13+5*r23+6*r33+8*r43<=19; 4*r11+5*r21+6*r31+8*r41>=16; 4*r12+5*r22+6*r32+8*r42>=16;

4*r13+5*r23+6*r33+8*r43>=16;

@gin(x1); @gin(x2); @gin(x3); @gin(r11);@gin(r12);@gin(r13); @gin(r21);@gin(r22);@gin(r23); @gin(r31);@gin(r32);@gin(r33); @gin(r41);@gin(r42);@gin(r43);

end

LINGO程序2

model:

Title 钢管下料 - 最小化钢管根数的LINGO模型;

SETS:

NEEDS/1..4/:LENGTH,NUM;

! 定义基本集合NEEDS及其属性LENGTH, NUM;

CUTS/1..3/:X;

! 定义基本集合CUTS及其属性x;

PATTERNS (NEEDS, CUTS):R;

! 定义派生集合PATTERNS (这是一个稠密集合)及其属性R;

ENDSETS DATA:

LENGTH=4 5 6 8;

NUM=50 10 20 15;

CAPACITY=19;

ENDDATA

LINGO程序2

min=@SUM(CUTS(I): X(I));

!目标函数:

@FOR (NEEDS (I): @SUM (CUTS (J): X (J) *R (I, J)) >NUM (I));

! 满足需求约束;

@FOR(CUTS(J): @SUM(NEEDS(I): LENGTH(I)*R(I,J)) <CAPACITY);
! 合理切割模式約束;
@FOR(CUTS(J): @SUM(NEEDS(I): LENGTH(I)*R(I,J)) >CAPACITY

-@MIN (NEEDS (I):LENGTH (I)));

! 合理切割模式约束;

 $@ \mbox{SUM} (\mbox{CUTS}(\mbox{I}): \mbox{$X(\mbox{I})$}) \mbox{$>$26$}; \mbox{$@$\mbox{SUM}(\mbox{CUTS}(\mbox{I}): $X(\mbox{I})$}) \mbox{$<$31$};$

!人为增加约束;

@ FOR (CUTS(I)|I#LT#@SIZE(CUTS):X(I)>X(I+1));

!人为增加约束;

@FOR(CUTS(J): @GIN(X(J))) ;
@FOR(PATTERNS(I,J): @GIN(R(I,J)));

end

LINGO求解整数非线性规划模型

Local optimal solution found at			
iteration: 12211			
Objecti	ve value:	28.00000	
Variable	Value	Reduced Cost	
X1	10.00000	0.000000	
X2	10.00000	2.000000	
X3	8.000000	1.000000	
R11	3.000000	0.000000	
R12	2.000000	0.000000	
R13	0.000000	0.000000	
R21	0.000000	0.000000	
R22	1.000000	0.000000	
R23	0.000000	0.000000	
R31	1.000000	0.000000	
R32	1.000000	0.000000	
R33	0.000000	0.000000	
R41	0.000000	0.000000	
R42	0.000000	0.000000	
R43	2.000000	0.000000	

模式1: 每根原料钢管切割成 3根4米和1根6米钢管, 共10 根:

模式2: 每根原料钢管切割成 2根4米、1根5米和1根6米钢 管,共10根;

模式3: 每根原料钢管切割成 2根8米钢管,共8根。

原料钢管总根数为28根。

参考文献

谢金星, 薛毅编著,<mark>优化建模与LINDO/LINGO软件</mark>, 清华大学出版社,2005年7月第1版.

袁新生等主编,LINGO和Excel在数学建模中的应用, 科学出版社,2007年1月第1版.