Datacenter inrichting

D. Leeuw

16 april 2021 v.0.1.0

quis custodiet ipsos custodes (Wie bewaakt de bewakers)?

 $\overline{\it Juvenal}$

© 2021 Dennis Leeuw

Dit werk is uitgegeven onder de Creative Commons BY-NC-SA Licentie en laat anderen toe het werk te kopiëren, distribueren, vertonen, op te voeren, en om afgeleid materiaal te maken, zolang de auteurs en uitgever worden vermeld als maker van het werk, het werk niet commercieel gebruikt wordt en afgeleide werken onder identieke voorwaarden worden verspreid.

Over dit Document

Dit document behandeld de opslag van data op de verschillende opslagsystemen voor het middelbaar beroepsonderwijs in Nederland.

Versienummering

Het versienummer van elk document bestaat uit drie nummers gescheiden door een punt. Het eerste nummer is het major-versie nummer, het tweede nummer het minor-versienummer en de laatste is de nummering voor bugfixes.

Om met de laatste te beginnen als er in het document slechts verbeteringen zijn aangebracht die te maken hebben met type-fouten, websites die niet meer beschikbaar zijn, of kleine foutjes in de opdrachten dan zal dit nummer opgehoogd worden. Als docent of student hoef je je boek niet te vervangen. Het is wel handig om de wijzigingen bij te houden.

Als er flink is geschreven aan het document dan zal het minor-nummer opgehoogd worden, dit betekent dat er bijvoorbeeld plaatjes zijn vervangen of geplaatst/weggehaald, maar ook dat paragrafen zijn herschreven, verwijderd of toegevoegd, zonder dat de daadwerkelijk context is veranderd. Een nieuw cohort wordt aangeraden om met deze nieuwe versie te beginnen, bestaande cohorten kunnen doorwerken met het boek dat ze al hebben.

Als het major-nummer wijzigt dan betekent dat dat de inhoud van het boek substantieel is gewijzigd om bijvoorbeeld te voldoen aan een nieuw kwalificatiedossier voor het onderwijs. Een nieuw major-nummer betekent bijna altijd voor het onderwijs dat men in het nieuwe schooljaar met deze nieuwe versie aan de slag zou moeten gaan. Voorgaande versies van het document zullen nog tot het einde een schooljaar onderhouden worden, maar daarna niet meer.

Document ontwikkeling

Het doel is door middel van open documentatie een document aan te bieden aan zowel studenten als docenten, zonder dat hier hoge kosten aan verbonden zijn en met de gedachte dat we samen meer weten dan alleen. Door samen te werken kunnen we meer bereiken.

Bijdragen aan dit document worden dan ook met alle liefde ontvangen. Let u er wel op dat materiaal dat u bijdraagt onder de CC BY-NC-SA licentie vrijgegeven mag worden, dus alleen origineel materiaal of materiaal dat al vrijgegeven is onder deze licentie.

De eerste versie is geschreven voor het ROC Horizon College.

Versienummer	Auteurs	Verspreiding	Wijzigingen
0.1.0	Dennis Leeuw	Initieel document	

Tabel 1: Document wijzigingen

Inhoudsopgave

O	ver dit Document	i
1	Het datacenter en de serverruimte	1
	1.1 De inrichting van een datacenter	1
	1.2 DER, SER en MER	2
	1.3 De vloer	3
2	Netwerk voorzieningen	5
	2.1 Hierarchisch Netwerk Ontwerp	5
	2.2 Patch-panelen	6
	2.3 Top of Rack Switches	7
	2.4 Netwerk bekabeling	7
3	Een datacenter cabinet	9
	3.1 De kast	9
	3.2 De servers	10
4	Voeding	13
	4.1 Electriciteitsnet	13
	4.2 UPS	14
	4.2.1 Batterijen	14
	4.2.2 Vliegwiel	14
	4.3 MDB	15
	4.4 Generator	15
5	Koeling	17
6	Beveiliging	19
7	Onderhoud	21
8	TCO	23

IN	IE	Ю	U	DS	SO	P	GA	T	71	H

Index	25
-------	----

iv

Hoofdstuk 1

Het datacenter en de serverruimte

Datacentra kunnen de omvang hebben van een bezemkast of enkele voetbalvelden beslaan. Wat ze gemeen hebben is dat het een concentratie is van data verwerkende systemen. Bij de wat kleinere bedrijven worden ze ook vaak aangeduid als serverruimte omdat het de plek is waar de servers staan, de machines die diensten aanbieden aan de gebruikers. Het feit dat wij spreken over datacentra heeft te maken met het feit dat er zich veel meer in een serverruimte bevindt dan alleen servers, er staan bijvoorbeeld ook switches, routers en stroom- en koelvoorzieningen.

Datacentra beginnen bij bedrijven meestal klein en groeien met de organisatie mee. Internet Service Providers beginnen meestal meteen met een grote ruimte en bedrijven als Google hebben hun datacentra modulair opgebouwd. Zij hebben containers die volledig zelfstandig kunnen werken en zetten er waar nodig containers bij om meer servers te hebben.

Voor al deze vormen van centralisatie van rekencapaciteit zijn een aantal zaken hetzelfde en er zijn ook een aantal verschillen. Dit document geeft je meer inzicht in de technieken die binnen een datacentrum spelen en waar je rekening mee dient te houden.

1.1 De inrichting van een datacenter

Een datacenter is erop ingericht om zoveel mogelijk rekencapaciteit (servers) kwijt te kunnen op een zo efficient mogelijke manier. De meest efficiente manier van inrichten is door standaardisatie. Desktops, laptops, mini- en midi-towers door elkaar heen levert geen efficiente inrichting op. De keuze is gemaakt om servers te maken met een breedte van 19ën een hoogte die moet voldoen aan 1U (1,75 inch, 44,45 mm) of een veelvoud daarvan.

Deze servers hangen in kasten die we racks of cabinetten noemen. De

breedte van de kasten is gestandaardiseerd op de breedte van de servers en deze worden dan ook 19-kasten, 19-racks of 19-cabinets genoemd.

In de kasten zit een voorziening voor het aansluiten van de servers op de spanning. Deze aansluitingen noemen we de power-strips. Om te zorgen dat dipjes en pieken gefilterd worden en een kortstondige uitval van de spanning opgevangen wordt zijn datacenters uitgerust met UPS-systemen. UPS staat voor Uninterruptable Power Supply en is een voorziening die ervoor zorgt dat bij uitval van de hoofd elektriciteitsvoorziening het datacenter toch van spanning en stroom voorzien blijft.

Binnen een datacenter vinden we naast de servers natuurlijk ook voorzieningen voor netwerkaansluitingen zoals patchpanelen, switches en routers en hele bossen aan netwerkkabels die op een gestructureerde manier weggewerkt moeten worden.

Omdat datacenters afgesloten ruimtes zijn met vaak beperkte toegang voor een paar bevoegden en zo ingericht zijn dat er zoveel mogelijk servers in passen is de warmte die door die server gecreëerd wordt een probleem. Koeling is dan ook een van meest cruciale onderdelen in het ontwerp van een datacentrum.

1.2 DER, SER en MER

Een datacenter kan een ruimte zijn bij een ISP, bij een hosting-organistatie of bij Amazon of Google, maar het kunnen ook de ruimtes binnen een organistatie zijn waar de servers hangen. Om een beeld te schetsen hoe een netwerk binnen een organisatie eruit zou kunnen zien moeten we een paar nieuwe termen introduceren. Het gaat dan om termen die gebruikt worden om de verschillende ruimtes binnen een gebouw aan te geven.

We beginnen bij de kantoren waar de gebruikers zitten. Daarvandaan loopt er bekabeling naar de DER ofwel de Distribution Equipment Room. Een DER is vaak een kast, soms zonder koeling, waar de kabels uit de verschillende kantoren samen komen. Het zou bijvoorbeeld een ruimte per vleugel of per etage kunnen zijn. De ruimte bevat de access switches en patchpanelen die alle aangesloten apparatuur verbindt met het centrale netwerk.

Vanuit de DER lopen er kabels naar een SER (Satellite Equipment Room). Deze ruimte bevat de apparatuur die beschikbaar moet zijn voor een bepaalde afdeling of werkgroep.

De laatste ruimte is de MER of de Main Equipment Room. Dit is zoals de naam al aangeeft de hoofdcomputerruimte. Deze ruimte fungeert als de backbone van het netwerk.

1.3. DE VLOER 3

1.3 De vloer

Door de hoge dichtheid van servers per vierkante meter, de vaak grote en zware systemen voor koeling en UPS-systemen maken dat de vloerbelasting van een serverruimte vaak de standaard gebouwontwerp specificaties overstijgen. Als een standaard ruimte ingericht gaat worden als serverruimte moeten er vaak aanpassingen gedaan worden aan de constructie om de draagkracht te versterken. Het is handiger als bij de bouw al rekening is gehouden met de toekomstige inrichting. Bij de bouw van grote datacenters wordt dit dan ook gedaan.

Veel datacenters hebben verhoogde vloeren zodat een luchtstroom mogelijk is die gebruikt kan worden bij de koeling van de kasten. De ruimte onder de vloer kan ook gebruikt worden om kabels weg te werken. De verhoogde vloeren bestaan uit een geaarde staalconstructie die zorgt dat elektrostatische energie afgevoerd wordt. Het gebruik van anti-statische-polsbandjes is in serverruimtes dan ook meestal niet nodig.

Op de staalcontructie liggen roosters en tegels (60x60 cm). De dienen ter doorlating van de luchtstroom en de tegels blokkeren deze juist. Door roosters en tegels op strategische plaatsen te plaatsen kan er gezorgd worden voor een optimale luchtstroom in de ruimte.

Hoofdstuk 2

Netwerk voorzieningen

2.1 Hierarchisch Netwerk Ontwerp

Het Hierarchisch Netwerk Ontwerp is een oorspronkelijk door Cisco bedacht model. Dit netwerk model bestaat uit 3 lagen. De access laag, de distributie laag en de core laag zoals weergegeven in figuur 2.1.

Figuur 2.1: Blauw is de core, groen is de distributie laag en rood is de access laag met links de gebruikers en rechts der servers

Op de access laag worden over het algemeen access switches gebruikt

(OSI-layer 2), maar ook routers kunnen op deze laag voorkomen. Dit zijn "goedkope" switches die zorgen dat er voldoende poorten zijn voor alle gebruikers en alle servers in het netwerk. VLANs worden vaak op de access laag gebruikt om broadcast domains van elkaar te scheiden. De kosten per port is hier vaak de belangrijkste afweging. Het uitvallen van een access switch treft alleen de aangesloten gebruikers en heeft verder geen invloed op de rest van de organisatie. Dit is niet het geval als het een access switch in de serverruimte is waar meerdere servers aan hangen.

Op de distributie laag vinden we de meer intelligente devices die bijvoorbeeld afdelingen binnen een organisatie van elkaar scheiden door bijvoorbeeld firewalling, IP-routing en filtering. Ook QoS wordt op vaak op deze laag geregeld. Verbindingen naar andere kantoren van een organisatie behoren ook tot de distributie laag.

De core laag bevat vaak de duurste netwerk onderdelen omdat deze moeten zorgen dat er grote hoeveelheiden data op een snelle manier verdeeld worden over de verschillende distributie componenten. Vaak zijn de core componenten redundant uitgevoerd. De hoogste netwerksnelheden per port vinden we vaak in deze laag. Omdat snelheid hier de fundamentele factor is vind hier geen of nauwelijks filtering plaats. Op deze laag kunnen we switches of routes (Layer 2 of 3 technologie) tegen komen.

2.2 Patch-panelen

Patchpanelen zijn passieve componenten, dat betekent dat ze niet iets met het signaal doen. Patchpanelen worden veelal in serverkasten gebruikt om de servers met patchkabels te koppelen aan de bekabeling die naar de serverruimte switches lopen. De IEEE 802.3 ethernet standaard zegt dat de maximale lengte van een ethernet kabel 100 meter is waarbij er twee keer 5 meter patch kabel gebruikt mag worden en dat de overige 90 meter moet bestaan uit solide koper bekabeling. Deze solide koperbekabeling wordt dan ook vaak gebruikt als bekabeling tussen een patchpaneel en de switch waarbij binnen de kast gebruik gemaakt wordt patchkabels die bestaan uit stranded (getwijnde) bekabeling.

Patchpanelen kunnen bovenin of onderin de kast gemonteerd worden, of in het midden van de kast. Het voordeel van de montage in het midden van de kast is er minder verschillende kabellengtes nodig zijn om de servers aan te sluiten op de patchpanelen en dat de kabelbomen aan de zijkanten van de kast kleiner zullen zijn omdat de ene helft omhoog loopt en de andere helft maar beneden. Dit helpt in het overzichtelijk en netjes houden van de bekabeling in de kast.

Patchpanel montage: https://spl-play.learningcloud.me/admin/sprints/5e3b1e8e79a83f25dd79f792/

Patchbekabeling: https://spl-play.learningcloud.me/admin/sprints/5e3b1eea32eea20fcd021bb7/

2.3 Top of Rack Switches

De zogenaamde "top of rack-switches vervangen de patchpanelen in een kast. Een "top of rack-switch kan natuurlijk ook in het midden of onderin de kast hangen. Het voordeel van een switch inplaats van een patchpaneel is de verminderde hoeveelheid bekabeling van het rack naar de serverruimte switch. Het nadeel is dat de kabel van het rack naar de serverruimte switch alle data moet kunnen verwerken van alle servers in het rack.

2.4 Netwerk bekabeling

De bekabeling in een datacenter bestaat uit lange koperkabels, tot 90 meter, of fiber kabels die de verschillende componenten met elkaar verbinden. Deze zelfde kabeltypes worden ook gebruikt om verschillende datacentra onderling te koppelen. We spreken hier van de horizontale bekabeling door gebouwen, het zijn ook de kabels die lopen vanaf de switches naar de wall-oulets in de verschillende kantoren.

Naast deze horizontale bekabeling zijn er de patchkabels die switches of patchpanelen verbinden met servers of patchpanelen met de de poorten van switches. Het zijn de flexibele kabels die makkelijk verlegt kunnen worden.

De kabels in een datacentrum kunnen worden weggewerkt onder de vloer, boven een systeemplafond of in metale kabelgoten die aan het plafond hangen.

Hoofdstuk 3

Een datacenter cabinet

De servers in een serverruimte worden opgehangen in een 19-kast of 19-rack. Het verschil is dat een rack open is en een kast gesloten. Racks worden vaak in kleinere ruimtes gebruikt en zijn goedkoper dan kasten. In de grotere datacentra worden kasten gebruikt die afgesloten kunnen worden.

3.1 De kast

Een serverruimte kast kan bestaan uit een rack waarin de servers hangen met een voordeur en achterdeur en twee zijpanelen. Als er meerdere kasten naast elkaar staan kunnen de zijpanelen verwijderd worden zodat de kasten op elkaar aangesloten kunnen worden. Soms worden om de luchtstroom door een kast te bevorderen, zogenaamde schoorsteenwerking, de zijplaten niet verwijderd. Dit hangt erg van de manier van koelen af. De koeling kan van beneden naar boven door een kast lopen of van voor naar achter.

Kasten kunnen in hoogte verschillen. De meeste kasten zijn tussen de 32 en 54 U hoog. De U is een standaard eenheid van 1,75 inch. De breedte van de servers in de kasten is altijd 19 inch. De daadwerkelijk breedte van een kast hangt af van de extra ruimte die aanwezig is om bijvoorbeeld kabels netjes te kunnen wegwerken.

In de kast worden de servers en andere compenten met schroeven bevestigd aan flenzen die aan de zijkant van de kast zitten. Een PDU (Power Distribution Unit) of Power Strip zorgt voor de stroomvoorziening in de kast. PDUs kunnen 1 of meer Us innemen in de kast of ze kunnen aan de zijkant van de kast gemonteerd zijn.

Om te voorkomen dat de luchtstroom door de kast beperkt wordt zijn er verschillende kabelmanagement systemen verwerkt in een kast. Er zijn de horizontale kabelbegeleiders en er zijn vertikale kabelgeleiders. Kabels worden meestal met velcro-strips samen gebonden tot kabelbundels zodat de kast een net en verzorgt uiterlijk heeft.

https://www.youtube.com/watch?v=TCiZjB9ZXgI

3.2 De servers

De datacenters zijn uitgerust met 19"-kasten waarin 19"-servers hangen. De 19"-maat staat voor de breedte van de server. De hoogte van een serverkast wordt uitgedrukt in het aantal U. Een normale server, de zogenaamde pizzadoos, is 1U hoog. Harddisks liggen dan plat in de server. Zwaardere servers met meer harddisks hebben de harddisks vaak rechtop op hun zijkant staan die hot-swappable uit de voorkant van de server getrokken kunnen worden. Deze servers zijn 2U hoog.

Figuur 3.1: Foto van Jfreyre afkomstig van https://commons.wikimedia.org/wiki/File:Rack001.jpg

Om hogere dichtheden te bereiken wordt er gebruik gemaakt van blade servers. Bij blade servers zitten er meedere servers (blades) in één fysieke behuizing (19"-kast). De servers delen een backplane, de voeding(en) en de behuizing waardoor er effectief meer servers passen op dezelfde oppervlakte. Een nadeel van blades is dat de warmte ontwikkeling ook veel meer geconcentreerd wordt en dat kan leiden tot zogenaamde hotspots, wat slecht is voor de koeling.

Hoofdstuk 4

Voeding

Het aansluiten van een datacentrum op het elektriciteitsnet in Nederland gebeurd meestal met 10 kVac of 20 kVac aansluitingen. Transformatoren zetten de aangeleverde hoogspanning om in 400 Vac welke de binnenkomende spanning is voor het datacentrum. Dit is de ingangsspanning voor de Main Distribution Boards (MDBs). MDBs zijn panelen of kasten die de zekeringen, schakelaars en aardlekzekeringen bevatten. De MDBs distribueren de spanning naar de verschillende onderdelen zoals UPS (Uninterrupted Power Supply) systemen. Uiteindelijk wordt er dan 240 Vac naar de 19-kasten gestuurd.

Het starten van de generator(en) is meestal een taak van de MDBs, deze doen dat zodra ze het wegvallen van het elektriciteitsnet waarnemen.

4.1 Electriciteitsnet

Een redundant systeem heeft twee aanvoerleidingen vanuit het elektriciteitsnet, het liefst vanuit een verschillende richting of van verschillende leveranciers. Dit zorgt ervoor dat er spanning blijft ook als één aanvoerlijn uitvalt. Daarmee zijn we nog niet veilig want ook het totale elektriciteitsnet kan uitvallen en dan zit het datacentrum alsnog zonder spanning. Om dat op te kunnen vangen worden er vaak generatoren geplaatst bij een datacentrum. De generatoren werken op diesel of gas en wekken elektriciteit op dat voldoende is om een datacentrum voor bijvoorbeeld 24 of 48 uur van spanning te voorzien. Het opstarten van generatoren kost echter tijd, we laten ze niet dag en nacht draaien dat zou te veel energie (diesel of gas) kosten. De overbrugging tussen het uitvallen van het electriciteitsnet en het opstarten van de generator wordt opgevangen door een UPS.

4.2 UPS

De functie van de UPS is tweeledig. De eerste taak is het opvangen van kleine pieken en dalen in de elektriciteitsvoorziening. Computer apparatuur is over het algemeen gevoelig voor spanningswisselingen. Door de aanvoer eerst door een UPS systeem te laten gaan werken zorgen de batterijen van de UPS voor demping van pieken of opvulling van dalen waardoor er een veel gelijkmatigere aanvoer van vermogen is. De tweede functie van de UPS is het opvangen van de periode tussen het uitvallen van het elektriciteitsnet en het starten van de generator. Over het algemeen moet een UPS systeem het gehele datacentrum voor ongeveer 5 minuten van het volledige vermogen kunnen voorzien, zodat de generator de tijd heeft om meerdere keren te starten. Ook hier moet rekening gehouden worden met het feit dat de generator misschien niet meteen de eerste keer start.

UPS systemen zijn traditioneel gebouwd met batterijen, modernere varianten hebben een vliegwiel.

https://download.schneider-electric.com/files?p_File_Name=DBOY-77FNCT_R2_EN.pdf&p_Doc_Ref=SPD_DBOY-77FNCT_EN

4.2.1 Batterijen

Traditioneel gebruiken de meeste uninterruptable power supply systemen batterijen. Batterijen kunnen relatief makkelijk veel energie opslaan, het nadeel is dat ze veel onderhoud vergen en regelmatig gecontrolleerd moeten worden op hun functioneren.

Batterijen zijn DC (Direct Current) spanningscomponenten, de aanvoer is AC (Alternating Current) en ook de levering aan de cabinetten is een wisselspanning. Om als buffer te kunnen dienen moet eerst de aanvoer omgezet worden in DC en daar na moet de DC spanning weer omgevormd worden naar AC. De technieken voor een energiezuinige UPS halen een rendement van rond de 95% of iets meer. Er blijven dus verliezen optreden en dus ontstaat er ook warmte.

https://www.youtube.com/watch?v=UMtftcKACRA

4.2.2 Vliegwiel

Het vliegwiel is geen nieuwe techniek, maar wel als functie in het datacenter. Veel serverruimtes maken nog gebruik van batterijen om voor langere tijd energie op te slaan. Een vliegwiel maakt gebruik van de traagheid van massa. De inkomende energie van het elektriciteitsnet zorgt ervoor dat een

4.3. MDB

zware schijf rondgedraaid wordt, deze schijf is ook verbonden met een generator. Als de netspanning wegvalt zal het draaiende gewicht de generator laten doordraaien en zo kan ongeveer 15 seconden tot een minuut aan spanningsdip opgevangen worden. In die 15 seconden moet een dieselgenerator of gasturbine gestart worden die de wegvallende netspanning opvangt.

https://www.youtube.com/watch?v=kQirOFEygJQ

4.3 MDB

4.4 Generator

Hoofdstuk 5 Koeling

Hoofdstuk 6
Beveiliging

Hoofdstuk 7 Onderhoud

Hoofdstuk 8 TCO

Index

Blade servers, 11

Datacenter, 1 DER, 2

Distribution Equipment Room, 2

Internet Service Provider, 1 ISP, 1

Main Distribution Board, 13 Main Equipment Room, 2

MDB, 13 MER, 2 PDU, 9

Power Distribution Unit, 9

Power strip, 9

Satellite Equipment Room, 2

SER, 2

Serverruimte, 1

TCO, 23

Total Cost of Ownership, 23

Uninterruptable Power Supply, 13

UPS, 13