FINAL PROJECT PRESENTATION

DATA ENGINEER BATCH 9
AGNES SEPTILIA

WORKFLOW

SCHEDULER

ETL SQL

Using Spark, extract data from CSV and Load to MySQL through JDBC

through JDBC

Tools:

- Spark
- Python (VS Code)

- Findspark
- PySpark

ETL SQL

Home Credit Default Risk Application Train

Home Credit Default Risk Application Test

ETL NoSQL

Data from MongoDB Atlas: Sample **Training Zips** and Companies

For **Zips**, flatten the **loc** fields into Latitude and Longitude

For **Companies**, take non-array fields and flatten first value of offices field

Tools:

- MongoDB
- Python (VS Code)

- PyMongo
- **Pandas**
- SQL Alchemy

ETL NoSQL

Sample Training Zips

Sample Training Companies

ETL Real Time

Extract the data from freeforexapi. com using Kafka Producer

Transform the data received in json → to information table

Load the data to Postgres data warehouse using Kafka Topic Consumer

Tools:

- Kafka
- Python (VS Code)

- Kafka
- json
- SQL Alchemy

ETL Real Time

Topic Currency

•	topi	c_currency 5 % Enter	a SQL expression to filter I	esults (use Ctr	l+Space)
Grid		ABC currency_id 🏋	ABC currency_name T:	123 rate \(\frac{1}{4}\)	asc timestamp
Text Gr	1	EURUSD	US Dollar	1.052255	2022-12-05 22:59:03
	2	EURGBP	Pound Sterling	0.861733	2022-12-05 22:59:03
	3	USDEUR	Euro	0.95034	2022-12-05 22:59:03
	4	EURUSD	US Dollar	1.052776	2022-12-05 23:01:03
12	5	EURGBP	Pound Sterling	0.861686	2022-12-05 23:01:03
	6	USDEUR	Euro	0.94987	2022-12-05 23:01:03
	7	EURUSD	US Dollar	1.05296	2022-12-05 23:02:03
	8	EURGBP	Pound Sterling	0.861827	2022-12-05 23:02:03

Dimension Currency Table				
id	currency_name	currency_code		

Tools:

- Postgres (SQL Script)

Data is taken from **topic_currency** table in Postgres Data Warehouse

Dim Country Table

Dim State Table

Dim City Table

Dim Currency Table

Query Facts Table

Tools:

Postgres (SQL Script)

Function:

Airflow macros for scheduler

Query Facts Table

Fact Total City and Office per State Table

Þ		pac state ₹1	ABC total_city TI	ABC total_office \\\	
□ Crid	1	AL	7	13	
-	2	AR	4	5	
×t	3	AZ	9	51	
o∏ Text	4	CA	204	1670	
\$	5	со	24	88	
	6	СТ	18	31	
	7	DC	7	39	
	8	DE	6	9	
	9	FL	66	156	
	10	GA	21	87	
	11	н	3	5	
	12	IA	7	13	
	13	ID	7	8	
	14	IL	32	122	

Query Facts Table

Fact Daily Average Currency Table

Fact Monthly Average Currency Table

Machine Learning

Extract csv
data from
kaggle:
Home Credit
Default Risk:
Train and
Test dataset

Data Cleaning: remove column with >60% null

For remained columns, impute null values

Fitting Model
Logistic
Regression,
check the
prediction
and
probability

 Python (Jupyter Notebook)

- Pandas
- Scikit-Learn
- Imblearn
- SQL Alchemy & Psycopg2

Machine Learning

Home Credit Default Risk Application Train Clean Table

Home Credit Default Risk Application Test Clean Table

Machine Learning

Home Credit Default Risk Application Machine Learning Result Table

P	123 SK_ID_CURR TI	123 prediction_target 📆	ABC probability	7:
1	306,030	0	{0.9486590082237689,0.05134	099177623112}
2	100,001	0	{0.9163565538072872,0.08364	344619271283}
Text	306,047	0	{0.9557436731528267,0.04425	632684717326}
	306,051	0	{0.9199971008724842,0.08000	28991275158}
\$ 5	306,063	0	{0.916849669313629,0.083150	33068637095}
6	100,005	0	{0.8891978888380373,0.11080	211116196272}
7	306,066	0	{0.9353502730477948,0.06464	97269522052}

DAG Spark

Unscheduled

DAG MongoDB

Unscheduled

DAG Machine Learning

Unscheduled

Dependency: DAG Spark

Unscheduled

Dependency: DAG Spark and DAG MongoDB

Daily Schedule

Dependency: DAG Dims
Table

DAG Fact Table Monthly

Monthly Schedule

Dependency: DAG Dims Table

Tools:

- Airflow
- Python (VS Code)

- Airflow
- Datetime

Dag: etl_spark

Dag: etl_mongodb

Dag: machine_learning

Dag: dim_tables

Dag: fact_daily_table

Dag: fact_monthly_table

GITHUB LINK

Code Source of the Final Project:

https://github.com/agnes-septilia/final_project_agnes_septilia.git

THANK YOU!