CERTIFICATE OF EXPRESS MAIL Express Mailing No. <u>EL 839286487 US</u>

Date of Deposit: May 14, 2001

PATENT

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Application of:
THOMAS SPIES AND
VERONIKA SPIES

Serial No.: Unknown

Filed: May 14, 2001

For: CELL STRESS REGULATED HUMAN

MHC CLASS 1 GENE

Group Art Unit: 1644

Examiner: DIBRINO. M

Atty. Dkt. No.: FHCC:003USC1

REQUEST FOR TRANSFER OF SEQUENCE LISTING UNDER 37 C.F.R. § 1.821(e)

BOX SEQUENCE

Commissioner for Patents Washington, D.C. 20231

Commissioner:

Pursuant to 37 C.F.R. § 1.821(e), Applicants respectfully request that the sequence information previously submitted in parent application ("parent application"), U.S. Serial No. 09/303,161 filed April 29, 1999, be transferred to and used in the above-referenced patent application ("instant application"). Only one computer readable sequence listing was submitted to the U.S. Patent and Trademark Office in the parent application. The sequence information in the instant application is identical to the sequence information contained in the previously-filed computer readable sequence listing in the parent application. It is understood that the U.S. Patent and Trademark Office will make the necessary change in application number and filing date of

the computer readable form that will be used for the instant application. A paper copy of the sequence listing is included in the originally-filed specification of the instant application.

Applicants request the transfer of the previously-filed computer readable sequence listing from the parent application to the instant application is in lieu of filing a duplicate computer readable sequence listing.

No fee is believed to be due in connection with the filing of this document; however, should any fees under 37 C.F.R. §§ 1.16 to 1.21 be deemed necessary for any reason relating to this document, the Commissioner is hereby authorized to deduct said fee from Fulbright & Jaworski Account No.: 50-1212/10008888/SLH.

Respectfully submitted,

Steven V. Highlander Reg. No. 37,642

Attorney for Applicants

FULBRIGHT & JAWORSKI L.L.P. 600 Congress Avenue, Suite 2400 Austin, Texas 78701 (512) 536-3184

Date:

May 14, 2001

SEQUENCE LISTING

(1) GENERAL INFORMATION:

ı	(3)	۸ ۱	ppr	τ.	ת תיי	יחי	
1	ıı	ĮΑ	PPI	, , ,	CAL	1.1.	٠

- (A) NAME: Fred Hutchinson Cancer Research Center, Inc.
- (B) STREET: 1100 Fairview Avenue North, Mailstop c2M-027
- (C) CITY: Seattle
- (D) STATE: Washington
- (E) COUNTRY: USA
- (F) POSTAL CODE (ZIP): 98109
- (A) NAME: Thomas Spies
- (B) STREET: 2429 E. Aloha
- (C) CITY: Seattle
- (D) STATE: Washington
- (E) COUNTRY: USA
- (F) POSTAL CODE (ZIP): 98112
- (A) NAME: Veronika Spies
- (B) STREET: 2429 E. Aloha
- (C) CITY: Seattle
- (D) STATE: Washington
- (E) COUNTRY: USA
- (F) POSTAL CODE (ZIP): 98112
- (ii) TITLE OF INVENTION: CELL STRESS REGULATED HUMAN MHC CLASS I GENE
- (iii) NUMBER OF SEQUENCES: 16
- (iv) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.30 (EPO)
- (vi) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: US 60/029,044
 - (B) FILING DATE: 29-OCT-1996
- (2) INFORMATION FOR SEQ ID NO: 1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 11722 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:

CACTGCTTGA	GCCGCTGAGA	GGGTGGCGAC	GTCGGGGCCA	TGGGGCTGGG	CCCGGTCTTC	60
CTGCTTCTGG	CTGGCATCTT	CCCTTTTGCA	CCTCCGGGAG	CTGCTGCTGG	TGAGTGGCGT	120
TCCTGGCGGT	CCTCGGCGGA	GCGGGAGCAG	TGGGACGTTT	CCGGGGGTCG	GGTGGGTAGC	180
GGCGAGCGCT	GTGCGGTCAG	GGCGGGGCTC	CTGTGCCCTG	TCGGTGGCGC	AGGGAGCTGG	240

300	Greeneered	ICACITICA	IGCIICCCG	ACTICAGCCC	TTACCGCCAC	ACGCGGCCCG
360	CGCGTCTCCT	TTTCTCTCCT	CCTCCTGCTC	TTTCTGGTCT	TCACCTGCAC	GGATCGCGCA
420	TCCCGGGCTG	GCCCATGGGT	TCCTTCTGAG	GACAAACCAG	TCACTTTTCG	CCGCTTCCTC
480	CACTGAAGCA	CCAGCGCGGC	GAGTGCCCTT	AATGGCATTC	TGCTCCTGTG	CCTCCGGGGC
540	CTCTCCCGGA	AAGTCCTGTC	CAGGTCCCTG	GGGCGGCTCT	CCGGTGCTCG	GCCACAACCC
600	CTTTCTCGGG	AGGGGCCCTC	CTCCTGGAGT	TGGGCCGCAG	TCTCAGCTCC	GCCGACGTGT
660	TCTCAAGCTG	GGGTCCTGAC	GGACTGTGGG	GCTGCTGTGG	GGTGCTTCCT	ACCCGGAGCT
720	CTCATCCCCA	TGCGACTTCT	GGATTCTTCC	TCCGGGCAGA	GTCTGCAGGC	AGGGGTTGGA
780	CCCACCCCTA	TCTCTCTCAT	GGTCCTCTCC	TGGCTCCGAG	CCCTCGCCTC	GCTCATTCTC
840	CCCATCTCAG	CTCCTCCCTG	TCCCTCTCAC	GACACCAGAT	GTGATCTAAG	CTAATGACCA
900	TGCTGTTCTC	CCTTCCTGTG	CCCTGCTACC	CCTCCCAGCT	GTCCTTTTGC	GGCCCGCTGA
960	AAGTCCCTCC	CCCGCCACCG	ATCCCCTGTC	CTCTGCCCTC	CTAGGGTGTC	TGATCCATTT
1020	CTATGCCTCC	AGTGCTGCCC	GCCTTCACCC	CCTACAAGCA	ATGGGCCTTT	TGCACCCCTT
1080	GGGGGGTCTT	CTTTTATCCG	CTGGTGCTGC	CTCTAACTTT	ATGTCCCTGA	CCGTTCCCAA
1140	GGCAGTTGGG	TGATGCTAAT	AGGGGAACCC	CAGACCCCCA	CACTCCCCTC	CCCTCCATCC
1200	ATGCCTGTTC	TCCAGTGCAG	CCCCCTCCCC	AGCGCAGATG	GGCGCAGGGC	CCTTAGGCAG
1260	ACCCTCTTGA	CCTCAGCCTC	ACTCCTTCAT	CCCCTTCCCC	CTCATTGTGG	TGGACCCTGC
1320	CCGCCCTCT	CCTGGTCCCT	ACCATCCCTC	CAGGTGCTGG	CTCCAGCCCA	GGACCCCACC
1380	CCTCAGCACG	TGCCTTGGGC	CTTGCCCAGC	GCTCCTATCT	ACCTTGTGCT	CCACCTTGGG
1440	GAGCATCTTT	TGACAGTGCT	CTGGAGCATA	AGTGGGAGTG	TCAGTGGGAA	TTCTCATCTT
1500	CCCCAAGTTC	CCTCACCCTA	CCCCTCCTGT	AGAGCACCCT	ACCCTCCCC	CCCAAGCCCC
1560	TGCCCATCTC	GTTCTTGCTC	CCGCCCTCCA	CATGCTCATG	ACTCCTGCCC	FCCCACAGTC
1620	CCTTCCTTCT	TGTTCCTTGA	TTGGGCCAAC	AAACAGGCTG	CCCAGACCTA	CCCTCCCCAA
1680	ТСТААААТСТ	ACACCGCATA	CTCACTCCCC	CCAGTGGGCT	TTCCTTGACC	TTTCTTTTGG
1740	TTGGCAGGTC	ATTACTCCTT	CCCCTCCAGC	GCCACTGCTC	CTCTTGGGGT	GTTTTGCCTG
1800	CAGCACCCCC	TCTCTCTGGC	CTTGGTTTTC	CCCCCTCTAC	CTGAGAATCT	CTTCCTCAGG
1860	TATATATGTA	ACGTAGTAGA	TTGTTTGGGT	TTTTTAACTT	TTGTTTTTAA	ACTCCTTGCT
1920	TAATCACATC	CAATATGTAA	CACAGGCCTA	GATATTTTGA	GGGTACATGG	TATATTTATG
1980	AAACAATCCC	TTTGTGCTAC	TTATCCTTTC	CAACAAGCAT	GGTTATATCA	AGGGTAAATG

ATTATGCTCT	TTCAGTTATT	TTTAAATGTA	CAATAAATTA	TTGTTGACTG	TACTCACCCT	2040
GCTGTGCTAT	CTACTAGATC	TTATTCATTC	TAATTATATT	TTTGTACCCA	TTATTAACCA	2100
TCCCTGCTCC	CCCACTCCCC	ACTACCCTTC	TCAGCCTCTG	GTAATCATCA	TTCTATTGTC	2160
TCTCCCCATG	AGGTCCATTG	TTTTAAATTT	TGGCTGCCAC	AAATAAGTGA	GAACATGCAA	2220
AGTTTGTCTG	TCTGGGCCTG	GGGCTTATTT	CACTTCACAG	GATGACCTCC	AGTTCTTTGC	2280
AAATGACACG	ATGGCTGAAT	AGTTCTCCAC	ATACACATGT	ACACCACATT	TTCTTTATCC	2340
ATGCGTCTGT	TGATGGACAC	TTAGATTGCT	TGCAGATCTT	GGCTACTTTG	AATAGTGCTG	2400
CAATAAACAT	GGAAAAGTAG	ATAGCTCTTT	AATATACCGA	TTTCCTTTCT	TTGGAGTATA	2460
TGCCTAACAG	TGGGAGTGCT	GGAGCATATG	ACAGCTCTAT	TGTATTTTTA	GTTTTTGGAA	2520
GAACCTCCAC	ATTGTTTCCC	ATAGTGGTTG	TACTAGTTTA	CGTTCCCACC	AACAGTGTAC	2580
ATCCTCACCA	GCATTCCTTA	TTTCTACATC	CTCGCCAGCA	TTCCTTATTG	CCTGTCTTCT	2640
GGATAAAAGC	CAGTTTATCT	GGGGTGGGAT	GTTATCTCGT	AGGAGTTTTG	ATTTGCCTTC	2700
ATCTGTTGAC	GAATGATGTT	GAGCACCTTT	TCATATACCT	GTTTGCCATT	TATATGTCTT	2760
CTTTTGAGAA	ATGACTATTC	AGATCTTTTC	TCATTTTTAA	ATTGGATTAT	TATATTTTTT	2820
TTCCTATAGT	TGTTCGAGCT	CCTTATATGT	TTCAGTTACT	GATCCTTTGT	CAGATGAATA	2880
GTTTGAAAAT	ATTTTCTCCC	ATTCTTGGAT	GGTCTCTTCA	TTTTGTTTAT	TGTTTCCTTT	2940
GCTGTGCAGA	AGCCTTTTTA	CTTGATATGA	TCCCATTTAT	GCAATTTTAC	TTTGGTTACC	3000
TGTGCTTGTG	GGGTATTACT	TTAAAAATCT	TTGCCCAGTC	CAATATCCTA	GAGAGTTTCC	3060
CCAATGTTTT	CTTGTATAGT	TTCATAGTTT	GAGGTCATAG	ATTTACATCT	TTAATCCACT	3120
TTGATTTGAT	TTTTGTATAT	GGTGAAAGAC	AGGGTCTAGT	TTCATTCTTC	TGCATAAGGA	3180
TATCTAGTTT	CCCCAGCACC	ATTTTTGAAG	AGACTCTCCT	TTGCCAATGT	GTGTTCTTGG	3240
TACCTTTGTT	GGAAATGAGT	TTACTGTAGA	TGTATGGAAT	TGTTTCTGGG	TTCTCTATTC	3300
TGTTTCATTG	GTCTGTGTGT	CTGTTTTTAT	GCCAGTATCA	TGCTGTTTTG	GTTACTGTAG	3360
CTCTGTAGTA	TAATTTGAAG	TCAGATAATG	TGATTCCTCT	AGTTTTGTTC	ATTTTGCTCA	3420
GGATAGCTTT	ATCTATTCTG	GTTTTTTTGT	GGTTCCATAT	GCATTTTAGG	ATTTTTTA	3480
TTATTTCTGT	GAAGAATGTC	ATTAGTGTTT	TGATAGGGAT	TGCATTGAAT	CTGTAGATTA	3540
CTTTGGGTAG	TATGGATATT	TCAACAAAAC	TGATTCTTCC	AATCCATGAA	CGTGGACTAT	3600
CTTTTCCATT	TTTTGTGTCC	TTCAATTTTT	TGCATCAGTG	TTTTTTGTTT	TTGGTTTTTG	3660
AGATGGAGTT	TCACTCTTGT	TGCCCAGGCT	AGAATGCAAG	GGTGTGATCT	TGGCTCACCG	3720

CAACCTCCGC CTCCCAGGTT CAAGCTATTC TTCTGCCTCA GCCTCCCAAG TAGCTGGGAT 3780 TACAGGCATG TGCCACTGTG CCTGGCTAAT TTTCTATTTT TATTAGAGAT GGGGTTTCTC 3840 TATGTTGGCC AGGCTAGTCT TGAACTCCTG ACCTCAGGTG ATCCACCTGC CTCGGCCTCC 3900 CAAAGTGCTG GGATTACAGG CATGAGCCAC CACGCCCAGC CACATCACTG TTTTATAGTT 3960 4020 TGTAGCTATT GTAAATGGGA TTCGTTTCTT GATTTCTTTT TCAGATTATT TGCTGTTAGC 4080 ACTGATTTTT GCATGTTGAT TTTGTATCCT GCAACTTTAC TGAATTTGTT CTTCAGTTCT 4140 AATGGTTTTT TGGTGGAGTC TTTAGGTTTT TCCAAATATC AGACCACATG ATCTGCAAAC 4200 AAGGATAATT TGACTTCTTC TTTTCCAGTT TTAATGCCCT TTCTTTCTTT CTCCTGTCTG 4260 ATTGCTCTAG TTAGGATCTG CAGTACTGTG TTGCATAACT GTGGTAAAAT TAGTCATCCT 4320 TGTCTTATTC CAGATCTTAG AGAAAAGGCT TTCAGTTTTC CCCCATTCAG TATGTTACTA 4380 GCTGTGAGTT TGTCATATAT GGCTTTTATT ATATTGAGGT CTGTTCCTTG TATACTTAGT 4440 TTTTTGAGAG TTTTTATCAT GAAGGGATGT TGAATTTATC AAATGCTTTT TCAGTATCAA 4500 TTGAATGATA CTGGCTTTTG TCCTTTATTC TGTTGATATG ACGTATTACA TTGATTGATT 4560 TGTGTATGTT AAATCATCCT TGCATACCTG GAATACATTC CACTTGCTCA TAAAGAATGA 4620 TCTTTTTAA TGTATTGTTG AATGTGGTTT GCTAGTATTT CCTTGACGAT TTTTGCATCG 4680 GTGTTCATCA GGGATATAGG CCTGTAGTTT TCTTTTTAT GATGTGTCTT TGCCTGGTTT 4740 TTGTATCAGG ATATTCCTGG CTTTGTAAAA TGAGTTTGGA AGTATTCCCT CCTCCTCTAT 4800 TTTTCAGAAC AGTTTGAATA GGACTGACAT ATGTTGTTCT TTAAAAGTTT AATTGTGGTA 4860 AATTATACAT TACATAAATT TTACTGTTTT AACCACTTTT AAGTGTATAC TCGGTGGCAT 4920 TAGATACATT CACATTTTTG TGCAACCCAA AACTCTGTGC CCATTAATCG GTAACTCCCC 4980 ATTCCTCCCT ACCTCTGGCC CCTGGTAACC ACCATTCTAC TTTTTGTTTC TATGAATTTG 5040 ACCACTCTAG GTACCTCATT TAAGCAGAAT CATGTAATGT TTGTCTTTTT GTTTCTGGCT 5100 TATTTCACTT ATAATATTT TGAGGTTCGG TGGGCACAGT GGCTCACGCC TGGATTTCCA 5160 GCACTTTGGG AGGCTGAAGC AGGTGGATCA CCTGAGTTTC GGAGTTCGAA ACCAGCCTGG 5220 CCAACATGGT GAAACCCCAT CTCTACTAAA AATAATAAAA GTTAGCCGGG CGTGATGGCG 5280 GGTGCCTGTA ATCCCAACTA CTTGGGAGGC TGAGGCAGGA GAATCGCTTG AATCCGGGAA 5340 GTGGAGGTTG CAGTGAGCTG AGATCAGGCC ACTGCACTCC AGCCTGGGCA ACAAGAGTGA 5400 AATTCCATCT CCAAAAAAA AAAATAAAAC AATAATAATA ATAATATTT TGAGGTTCAT 5460

CCAAGTTGTA GTATGGGTCA GAATTTCATT CCTTTTAAGG ATGGATAATA CTCATTATAT 5520 GTATGTACCA CATCTTGGTT ATCCATCCCT CAGACAATGG ACACTTGGGT TACTTCTACC 5580 TTTTGGATAT TGGCAAATAT TTCATTTCCT TTGGGTATAT ATTTATTTCC TTTGGGTATT 5640 TCTTTTGGGT ATATATCCAG AAATAGAAGC AGTACACAGG GGCTTCATTT TCTCTGTCTC 5700 TTTGCCAACC TTGCTCTGTG TGTGTGTGTA TGTGTGTGTG TAGGTGTGTG ATAACAGCCA 5760 TCCTGATTGG TTTCAGGTGG CATCTCATTG TGGTTTGGAT TTGCATTTTC CTAATGAGTG 5820 CTGATATTGA GCATCTTTTC ATGTGTTTGT TGATCATTTG TAATTTTCTT TGAAGAATTG 5880 GCCATTTAAG TCTTTTGCCC ATTTTTTCCC CCACATAGCT TCTCTTATCA GATATATGAC 5940 TTGCAATATT TATTTCATTT CGGGGTTGAT TGCTTTTTCA CTCTGATTGT GCCCTTTGAT 6000 GCATAGATGT TTTGAATTTT CATCAGTCTA CTTTGTCAGT TCTTTCTATT CTATCTGTGC 6060 TTTGGTGTCA TATCCATGAA AGCACTGTCA AATCCTATGT CATGAACATT ATCCCCAATG 6120 TTTGCTTCTA AGAAATTTTT AGGTTTTAGT TCTTGAGTGT AGAGTTTAGG TCTTTGATTC 6180 ATTTTGAGTT AATTTTTGTA TATAGTGCAA ATTAAGGGTC CAATTTTATT TTAACACCCC 6240 CTGCCCCAG AACTATTTGC TGAAAAGATC AACTGACTCT TTGTCACCTG CTCACCCCAG 6300 TGGACACTAG CTGTTCCATC CAATTGCTGT CCTGGGGCCT TGTCATGCTA CTCTTCCACT 6360 TTGAACCCAA GCCCACACCG TTCGTTGCTC CCCTCTGGGA TACTGACCCC ACTATAAACT 6420 TCTCTGGGGC TACAACCTTC CTACCCTTTG TGCCTCATGA CCACCCCCTC CCTTGTCCCC 6480 GCCATGCCCA TGATGAGTCT CTTCTCGAGG CAGCTCCCCT TGCCTCCATC TCACCCTCAG 6540 CCTATGCACC ACAGCCACAC TGGACATGGG TCCCTCTGAG CCTGAGTCCC TTCCCATTCC 6600 CACCATCTCC TCTGGCAAGA CCTTCCTTCC ACCACCTTCA TGCTCCTCCC TTGCCCCTGC 6660 AGGGCAGCCT CTCCCCTTGG CCCCTATTCC CTTAGGGGGC TTGTGGCCAC CCAGTCCTTG 6720 CACCTGGCCT ACAAGTTTGC CATCTTCATT CCCCCTTCTT CTGTTCATCA GCCCCCTCCT 6780 CTATCCTCCC ACCCTCACAG TTTTCTTTGT ATATGAAATC CTCGTTCTTG TCCCTTTGCC 6840 CGTGTGCATT TCCTGCCCCA GGAAGGTTGG GACAGCAGAC CTGTGTGTTA AACATCAATG 6900 TGAAGTTACT TCCAGGAAGA AGTTTCACCT GTGATTTCCT CTTCCCCAGA GCCCCACAGT 6960 CTTCGTTATA ACCTCACGGT GCTGTCCTGG GATGGATCTG TGCAGTCAGG GTTTCTTGCT 7020 GAGGTACATC TGGATGGTCA GCCCTTCCTG CGCTATGACA GGCAGAAATG CAGGGCAAAG 7080 CCCCAGGGAC AGTGGGCAGA AGATGTCCTG GGAAATAAGA CATGGGACAG AGAGACCAGG 7140 GACTTGACAG GGAACGGAAA GGACCTCAGG ATGACCCTGG CTCATATCAA GGACCAGAAA 7200

GAAGGTGAGA GTCGGCAGGG GCAAGAGTGA CTGGAGAGGC CTTTTCCAGA AAAGTTAGGG 7260 GCAGAGAGCA GGGACCTGTC TCTTCCCACT GGATCTGGCT CAGGCTGGGG GTGAGGAATG 7320 GGGGTCAGTG GAACTCAGCA GGGAGGTGAG CCGGCACTCA GCCCACACAG GGAGGCATGG 7380 GGGAGGGCCA GGGAGGCGTA CCCCCTGGGC TGAGTTCCTC ACTTGGGTGG AAAGGTGATG 7440 GGTTCGGGAA TGGAGAAGTC ACTGCTGGGT GGGGGCAGGC TTGCATTCCC TCCAGGAGAT 7500 TAGGGTCTGT GAGATCCATG AAGACAACAG CACCAGGAGC TCCCAGCATT TCTACTACGA 7560 TGGGGAGCTC TTCCTCTCCC AAAACGTGGA GACTGAGGAA TGGACAGTGC CCCAGTCCTC 7620 CAGAGCTCAG ACCTTGGCCA TGAACGTCAG GAATTTCTTG AAGGAAGATG CCATGAAGAC 7680 CAAGACACAC TATCACGCTA TGCATGCAGA CTGCCTGCAG GAACTACGGC GATATCTAGA 7740 ATCCAGCGTA GTCCTGAGGA GAAGAGGTAC GGACGCTGGC CAGGGGCTCT CCTCTCCCTC 7800 CAATTCTGCT AGAGTTGCCT CACCTCCAAG ATGTGTCCAG GGAAACCCTC CCTGTGCTAT 7860 GGATGAAGGC ATTTCCTGTT GGCACATCGT GTCCTGATTT TCCTCTATTG TTAGAGCCAC 7920 TGGATAAAGA CAGTGGGTCA GGGACTGGAC CATCCAGTGT TGTAATCAGG GCAAGTAGAG 7980 GACCCTCCGA CAGAATCCTG AGCCTGTGGT GGGTGTCAGG CAGGAGAGGA AGCCTTCAGG 8040 GCCAGGGCTG CCCCCTCTGC CTCCCAGCCT GCCCATCCTG GAGAGTTCCC TCCTGGCCCC 8100 ACAACCCAGG AGTCCACCCC TGACATCCCC CTCCTCAGCA TCAATGTGGG GATCCCAGAG 8160 CCTGAGGCCA CAGTCCCAAG GCCCATCCTC CTGCCAGCCT GGAAGAACTG GGCCCCAGAG 8220 8280 TGAGGACAGA CTTGCAGGTC AGGGGTCCCG GAGGGCTTCA GCCAGAGTGA GAACAGTGAA GAGAAACAGC CCTGTTCCTC TCCCCTCCTT AGAGGGGAGC AGGGCTTCAC TGGCTCTGCC 8340 CTTTCTTCTC CAGTGCCCCC CATGGTGAAT GTCACCCGCA GCGAGGCCTC AGAGGGCAAC 8400 ATCACCGTGA CATGCAGGGC TTCCAGCTTC TATCCCCGGA ATATCACACT GACCTGGCGT 8460 CAGGATGGGG TATCTTTGAG CCACGACACC CAGCAGTGGG GGGATGTCCT GCCTGATGGG 8520 AATGGAACCT ACCAGACCTG GGTGGCCACC AGGATTTGCC AAGGAGAGGA GCAGAGGTTC 8580 ACCTGCTACA TGGAACACAG CGGGAATCAC AGCACTCACC CTGTGCCCTC TGGTGAGCCT 8640 AGGGTGACCC TGGAGAGGGT CAGGCCAGGG TAGGGACAGC AGGGATGGCT GTGGCTCTCT 8700 GCCCAGTGTA TAACAAGTCC CTTTTTTCA GGGAAAGTGC TGGTGCTTCA GAGTCATTGG 8760 CAGACATTCC ATGTTTCTGC TGTTGCTGCT GCTGCTGCTG CTATTTTTGT TATTATTATT 8820 TTCTATGTCC GTTGTTGTAA GAAGAAAACA TCAGCTGCAG AGGGTCCAGG TGAGAAAAGC 8880 GGGCAGTTTC TGGAGATGGT AAGGCCCCTG TCTGGGCAGT AGGGTCCCCT CATTGCTCCT 8940

	GCAAAGATAG	GCATGTTGGT	GACAAGGCTT	CTGTAACAGG	GGATGAAAGT	TGGGGAATTT	9000
	GGGAAGGGAA	TGGGGGCAGC	ATCTCCATCT	ACACCCATAA	GTGCTGCCCA	AGCGAGGGTC	9060
	AAACGCCCAG	CTGTGGCATC	TTCCTGCTGC	AGGTGAGGAG	TGGGCAGCAG	GGAGGGCTGC	9120
	GGCGCCTGCT	CTGTCCCCAT	CCCGGTCTCT	GTGTCTCTTG	GACTCACTAG	GGCGCATCCA	9180
	GGTGGGGTGA	GCTGGGAATC	ACGTGCTGAA	TGCTGAGGGC	CTGGATGATC	ACGGCCTCAG	9240
	AGGGAGCAAA	TAGTAAAGGC	AGCTGTGATC	TGGGGAGGGC	CAGAAACTGG	AGAGGAATCT	9300
	GAGGAGAGGC	GGTGCCCCTA	TTCCCTTCCT	CTCTGCATCC	CCCTCCCCTG	TTTCTCCAGC	9360
	CATCGGGGCG	GACACCGAGA	AAAAGACCTA	TGAGGCCCAG	CCTGGGGGCC	CTGCCTGTGT	9420
	AGCCCTTTGG	AGACCCCTAG	TAACAGGGAG	GGTCCTGAGC	ACACATGGCC	ATCTCTGTCC	9480
	ACTGTGCAGC	TCCCCATGCA	CCTCCTCCAG	GAGCTTTCTT	GGGGTTGTCG	TGTCCTCTGC	9540
	ACCATTCGAG	GCCCTACTCT	TTCCAGGTTC	CCACGGCCTG	GCCTCCCTGA	GTTTCTTGCA	9600
	GATGACATGG	ATGAGTAGAT	AAGCAGATGT	CCCTGGGCCA	TTTGAGGAGT	GGGGCCCAGC	9660
	CCCTCATCAG	GGCAGCTGTG	GTCCCTGTTT	TCATCCTACC	TCCGAGTGTT	TTCTTCTCCA	9720
	GTCCCTGAGG	GACACAGTCC	TCAGGGCCCA	TGTTTTTGGG	GATTTAATCT	GTGCTCTGTG	9780
	GCCTCACCTT	GCCTTCCCTG	AGCCAATTTC	CCTTTCTAAA	GGTGGTCACT	GCCTGGTAAG	9840
	TTTGGAGTAA	GGGACGGTCA	GAATCATTTC	CCCTACAGTC	AGGTTGTTTG	ATGGGGGATG	9900
	AAAAGAGACA	GCAGGAAGTT	TTGTGTTTCT	GCAAAGACAG	AAGCAGTTCA	GGCGACAGTA	9960
	AGAGGCTGGG	GTGTCCAGGA	GGGTGTGTCT	GGCAGTAGGG	TCGCTGGTTT	CTCATCCTTG	10020
	AACCTAATTG	CACTGTCAGT	CGGCCCCTCA	GGCCTGAGCA	GATGGGAAGG	TTTGTCCCCT	10080
	GCCCTGCAGC	AAGAGGGCCC	TGTCCAGGAG	GCACCCACAA	CAGAGGCAGT	GCAGGTCTGT	10140
4	GGTCACTCCT	ACTCTCACCT	GTGGCGTCTC	CCGTAGAGGG	ATTGTCAGTT	CTGGTTCCCT	10200
4	GTGGGCAGGA	ATGGTTTCCT	CATAGGTCAC	TGGAGTTTTG	GCCAGGAAAA	GAGTATGAAG	10260
. •	TTCATGTGGC	AGTTTCTCAA	AATTCCTGCT	TTCAATGTTG	ATGTCCAGTA	AAGATATTCG	10320
,	TAATTTCAGC	TCTATAATCT	TAATAGGATT	TCCTCTAATA	TTGTGAAGCA	TATTATATGA	10380
	AACAGGAACA	CAAATTTCTC	AAAATTCCTG	CGATGTCCAA	TAAAGATTTT	CATAATTTCA	10440
(GCTCTGCAAT	CTTAATAGGA	TTTCCTAATA	CTGTAAAGCA	TATTAAATGA	AACAGGAACT	10500
(CAAATTTGGA	GCCCCCTCTC	CAGGAGGTTC	TGTGTGGAGA	TGGTGGCTGT	GGCAGTGGCA	10560
(GTTCCCAGGT	GCAGAGGGTG	GGCAGAGGCA	GCCTCAGGCT	AAGGGGTCTC	CCCTACTCCA	10620
(CATGGAGAAA	ATCCCTTGTA	GGTTGCAAGG	GCAGTGGCCG	GGTGGAATCC	CTGCTAGGGA	10680

CAGAGCAGGA	AGGCCTCGCA	GCCTCACCAA	GCAGCAGCCC	TGGGGTGGAG	CTGCGTTTCC	10740
AGGGTTAAGC	GGACCAGGCA	GGAGTAGCGG	TTACTCAAGA	GCAGGTCACA	GGCTTGGGTT	10800
GTGAGGGTCA	GGAGAGGCCA	GGCCTCCTCG	AGCAAGGTGG	GGGTCCCAGG	GTCAGGTCAG	10860
GTGCAGATCC	TGTGGCAGCC	ACGTCTTTCC	ATGCTGGGCC	TGCTGGGCCC	CCCAGGCTTC	10920
CTGATGGGGT	CCCCAGTTAG	GAGCTGCCTG	CTCAGGGCTG	GGAGGGGAGG	AGCACTGAGC	10980
TGCAGATAGA	GGGCAGAGCC	CACAGTGGGC	AGGGCCTGCC	CTGGTGTGTA	GGTGCCTCTG	11040
CAGGAGAGGA	GGGCCTGGGG	ACTGAGAGCA	AGGGTCAGGG	CCTCTCTTTG	GGGAGGCCTC	11100
TCACTGTAAC	AGGACTGGTC	AGGCCTGAGA	GGAGGGCACT	GGGTTCCCTC	TTGGGTCTTG	11160
TCCTTTAGTC	TTGGGGCCCT	TTCCCTCCCT	GCACGATGAG	TGGTGGGCAC	AGGGCACGGG	11220
CTGATGTTGA	TGGAGTGATG	GGAGGGAACT	GGCAGGGGCT	GGGAAAAGCA	AGGAGGGAGG	11280
AAGAAAAAAG	TGGGGGCCTC	ATCTTCCCTC	AGAGAAAGGG	CAAATCTGGT	TTTGGAGCAA	11340
CTGAAGAGAG	AAAAGTCCCC	AGGGAATAAA	CACAACACTG	CACCCAGTGG	AGCATTTACC	11400
CATTTCCCTC	TTTTCTCCAG	AGCTCGTGAG	CCTGCAGGTC	CTGGATCAAC	ACCCAGTTGG	11460
GACGAGTGAC	CACAGGGATG	CCACACAGCT	CGGATTTCAG	CCTCTGATGT	CAGCTCTTGG	11520
GTCCACTGGC	TCCACTGAGG	GCGCCTAGAC	TCTACAGCCA	GGCGGCTGGA	ATTGAATTCC	11580
CTGCCTGGAT	CTCACAAGCA	CTTTCCCTCT	TGGTGCCTCA	GTTTCCTGAC	CTATGAAACA	11640
GAGAAAATAA	AAGCACTTAT	TTATTGTTGT	TGGAGGCTGC	AAAATGTTAG	TAGATATGAG	11700
GCATTTGCAG	CTGTGCCATA	TT				11722

(2) INFORMATION FOR SEQ ID NO: 2:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 385 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:

Met Gly Leu Gly Pro Val Phe Leu Leu Leu Ala Gly Ile Phe Pro Phe 1 $$ 5 $$ 10 $$ 15

Ala Pro Pro Gly Ala Ala Ala Glu Pro His Ser Leu Arg Tyr Asn Leu 20 25 30

Thr Val Leu Ser Trp Asp Gly Ser Val Gln Ser Gly Phe Leu Ala Glu 35 40 45

- Val His Leu Asp Gly Gln Pro Phe Leu Arg Tyr Asp Arg Gln Lys Cys 50 55 60
- Arg Ala Lys Pro Gln Gly Gln Trp Ala Glu Asp Val Leu Gly Asn Lys 65 70 75 80
- Thr Trp Asp Arg Glu Thr Arg Asp Leu Thr Gly Asn Gly Lys Asp Leu 85 90 95
- Arg Met Thr Leu Ala His Ile Lys Asp Gln Lys Glu Gly Leu His Ser
- Leu Gln Glu Ile Arg Val Cys Glu Ile His Glu Asp Asn Ser Thr Arg
- Ser Ser Gln His Phe Tyr Tyr Asp Gly Glu Leu Phe Leu Ser Gln Asn 130 135 140
- Val Glu Thr Glu Glu Trp Thr Val Pro Gln Ser Ser Arg Ala Gln Thr 145 150 155 160
- Leu Ala Met Asn Val Arg Asn Phe Leu Lys Glu Asp Ala Met Lys Thr
 165 170 175
- Lys Thr His Tyr His Ala Met His Ala Asp Cys Leu Gln Glu Leu Arg 180 185 190
- Arg Tyr Leu Glu Ser Ser Val Val Leu Arg Arg Arg Val Pro Pro Met 195 200 205
- Val Asn Val Thr Arg Ser Glu Ala Ser Glu Gly Asn Ile Thr Val Thr 210 215 220
- Cys Arg Ala Ser Ser Phe Tyr Pro Arg Asn Ile Thr Leu Thr Trp Arg 225 230 235 240
- Gln Asp Gly Val Ser Leu Ser His Asp Thr Gln Gln Trp Gly Asp Val 245 250 255
- Leu Pro Asp Gly Asn Gly Thr Tyr Gln Thr Trp Val Ala Thr Arg Ile
 260 · 265 270
- Cys Gln Gly Glu Glu Gln Arg Phe Thr Cys Tyr Met Glu His Ser Gly 275 280 285
- Asn His Ser Thr His Pro Val Pro Ser Gly Lys Val Leu Val Leu Gln 290 295 300
- Ser His Trp Gln Thr Phe His Val Ser Ala Val Ala Ala Ala Ala Ala 305 310 315 320
- Ala Ile Phe Val Ile Ile Ile Phe Tyr Val Arg Cys Cys Lys Lys 325 330 335
- Thr Ser Ala Ala Glu Gly Pro Glu Leu Val Ser Leu Gln Val Leu Asp 340 345 350

Gln His Pro Val Gly Thr Ser Asp His Arg Asp Ala Thr Gln Leu Gly 355 360 365

Phe Gln Pro Leu Met Ser Ala Leu Gly Ser Thr Gly Ser Thr Glu Gly 370 375 380

Ala 385

(2) INFORMATION FOR SEQ ID NO: 3:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 2380 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:

GGGCCATGGG GCTGGGCCGG GTCCTGCTGT TTCTGGCCGT CGCCTTCCCT TTTGCACCCC 60 CGGCAGCCGC CGCTGAGCCC CACAGTCTTC GTTACAACCT CATGGTGCTG TCCCAGGATG 120 AATCTGTGCA GTCAGGGTTT CTCGCTGAGG GACATCTGGA TGGTCAGCCC TTCCTGCGCT 180 ATGACAGGCA GAAACGCAGG GCAAAGCCCC AGGGACAGTG GGCAGAAGAT GTCCTGGGAG 240 CTAAGACCTG GGACACAGAG ACCGAGGACT TGACAGAGAA TGGGCAAGAC CTCAGGAGGA 300 CCCTGACTCA TATCAAGGAC CAGAAAGGAG GCTTGCATTC CCTCCAGGAG ATTAGGGTCT 360 GTGAGATCCA TGAAGACAGC AGCACCAGGG GCTCCCGGCA TTTCTACTAC GATGGGGAGC 420 TCTTCCTCTC CCAAAACCTG GAGACTCAAG AATCGACAGT GCCCCAGTCC TCCAGAGCTC 480 AGACCTTGGC TATGAACGTC ACAAATTTCT GGAAGGAAGA TGCCATGAAG ACCAAGACAC 540 ACTATCGCGC TATGCAGGCA GACTGCCTGC AGAAACTACA GCGATATCTG AAATCCGGGG 600 TGGCCATCAG GAGAACAGTG CCCCCCATGG TGAATGTCAC CTGCAGCGAG GTCTCAGAGG 660 GCAACATCAC CGTGACATGC AGGGCTTCCA GCTTCTATCC CCGGAATATC ACACTGACCT 720 GGCGTCAGGA TGGGGTATCT TTGAGCCACA ACACCCAGCA GTGGGGGGAT GTCCTGCCTG 780 ATGGGAATGG AACCTACCAG ACCTGGGTGG CCACCAGGAT TCGCCAAGGA GAGGAGCAGA 840 GGTTCACCTG CTACATGGAA CACAGCGGGA ATCACGGCAC TCACCCTGTG CCCTCTGGGA 900 AGGTGCTGGT GCTTCAGAGT CAACGGACAG ACTTTCCATA TGTTTCTGCT GCTATGCCAT 960 GTTTTGTTAT TATTATTATT CTCTGTGTCC CTTGTTGCAA GAAGAAAACA TCAGCGGCAG 1020 AGGGTCCAGA GCTTGTGAGC CTGCAGGTCC TGGATCAACA CCCAGTTGGG ACAGGAGACC 1080 ACAGGGATGC AGCACAGCTG GGATTTCAGC CTCTGATGTC AGCTACTGGG TCCACTGGTT 1140

CCACTGAGGG	CGCCTAGACT	CTACAGCCAG	GCGGCCAGGA	TTCAACTCCC	TGCCTGGATC	1200
TCACCAGCAC	TTTCCCTCTG	TTTCCTGACC	TATGAAACAG	AAAATAACAT	CACTTATTTA	1260
TTGTTGTTGG	ATGCTGCAAA	GTGTTAGTAG	GTATGAGGTG	TTTGCTGCTC	TGCCACGTAG	1320
AGAGCCAGCA	AAGGGATCAT	GACCAACTCA	ACATTCCATT	GGAGGCTATA	TGATCAAACA	1380
GCAAATTGTT	TATCATGAAT	GCAGGATGTG	GGCAAACTCA	CGACTGCTCC	TGCCAACAGA	1440
AGGTTTGCTG	AGGGCATTCA	CTCCATGGTG	CTCATTGGAG	TTATCTACTG	GGTCATCTAG	1500
AGCCTATTGT	TTGAGGAATG	CAGTCTTACA	AGCCTACTCT	GGACCCAGCA	GCTGACTCCT	1560
TCTTCCACCC	CTCTTCTTGC	TATCTCCTAT	ACCAATAAAT	ACGAAGGGCT	GTGGAAGATC	1620
AGAGCCCTTG	TTCACGAGAA	GCAAGAAGCC	CCCTGACCCC	TTGTTCCAAA	TATACTCTTT	1680
TGTCTTTCTC	TTTATTCCCA	CGTTCGCCCT	TTGTTCAGTC	CAATACAGGG	TTGTGGGGCC	1740
CTTAACAGTG	CCATATTAAT	TGGTATCATT	ATTTCTGTTG	TTTTTGTTTT	TGTTTTTGTT	1800
TTTGTTTTTG	AGACAGAGTC	TCACTCGTCA	CCCAGGCTGC	AGTTCACTGG	TGTGATCTCA	1860
GCTCACTGCA	ACCTCTGCCT	CCCAGGTTCA	AGCACTTCTC	GTACCTCAGA	CTCCCGATAG	1920
CTGGGATTAC	AGACAGGCAC	CACCACACCC	AGCTAATTTT	TGTATTTTT	GTAGAGACGG	1980
GGTTTCGCCA	AGTTGACCAG	CCCAGTTTCA	AACTCCTGAC	CTCAGGTGAT	CTGCCTGCCT	2040
TGGCATCCCA	AAGTGCTGGG	ATTACAAGAA	TGAGCCACCG	TGCCTGGCCT	TATTATTTAT	2100
ATTGTAATAT	TATTATTAT	ATTAGCCACC	ATGCCTGTCC	TATTTTCTTA	TGTTTTAATA	2160
ATAATTTTAT	TATTACATGT	GCAGTAATTA	GATTATCATG	GGTGAACTTT	ATGAGTGAGT	2220
ATCTTGGTGA	TGACTCCTCC	TGACCAGCCC	AGGACCAGCT	TTCTTGTCAC	CTTGAGGTCC	2280
CCTCGCCCCG	TCACACCGTT	ATCGATTACT	CTGTGTCTAC	TATTATGTGT	GCATAATTTA	2340
TACCGTAAAT	GTTTACTCTT	AAAAAAAA	AAAAAAAAA			2380

(2) INFORMATION FOR SEQ ID NO: 4:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 383 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:

Met Gly Leu Gly Arg Val Leu Leu Phe Leu Ala Val Ala Phe Pro Phe 1 5 10 15

Ala Pro Pro Ala Ala Ala Ala Glu Pro His Ser Leu Arg Tyr Asn Leu 20 75 30

- Met Val Leu Ser Gl
n Asp Glu Ser Val Gl
n Ser Gly Phe Leu Ala Glu 35 40 45
- Gly His Leu Asp Gly Gln Pro Phe Leu Arg Tyr Asp Arg Gln Lys Arg 50 55 60
- Arg Ala Lys Pro Gln Gly Gln Trp Ala Glu Asp Val Leu Gly Ala Lys 65 70 75 80
- Thr Trp Asp Thr Glu Thr Glu Asp Leu Thr Glu Asn Gly Gln Asp Leu 85 90 95
- Arg Arg Thr Leu Thr His Ile Lys Asp Gln Lys Gly Gly Leu His Ser
- Leu Gln Glu Ile Arg Val Cys Glu Ile His Glu Asp Ser Ser Thr Arg 115 120 125
- Gly Ser Arg His Phe Tyr Tyr Asp Gly Glu Leu Phe Leu Ser Gln Asn 130 135 140
- Leu Glu Thr Gln Glu Ser Thr Val Pro Gln Ser Ser Arg Ala Gln Thr 145 150 155 160
- Leu Ala Met Asn Val Thr Asn Phe Trp Lys Glu Asp Ala Met Lys Thr 165 170 175
- Lys Thr His Tyr Arg Ala Met Gln Ala Asp Cys Leu Gln Lys Leu Gln 180 185 190
- Arg Tyr Leu Lys Ser Gly Val Ala Ile Arg Arg Thr Val Pro Pro Met 195 200 205
- Val Asn Val Thr Cys Ser Glu Val Ser Glu Gly Asn Ile Thr Val Thr 210 215 220
- Cys Arg Ala Ser Ser Phe Tyr Pro Arg Asn Ile Thr Leu Thr Trp Arg 225 230 235 240
- Gln Asp Gly Val Ser Leu Ser His Asn Thr Gln Gln Trp Gly Asp Val 245 250 255
- Leu Pro Asp Gly Asn Gly Thr Tyr Gln Thr Trp Val Ala Thr Arg Ile
 260 265 270
- Arg Gln Gly Glu Gln Arg Phe Thr Cys Tyr Met Glu His Ser Gly 275 280 285
- Asn His Gly Thr His Pro Val Pro Ser Gly Lys Val Leu Val Leu Gln 290 295 300
- Ser Gln Arg Thr Asp Phe Pro Tyr Val Ser Ala Ala Met Pro Cys Phe 305 310 315 320
- Val Ile Ile Ile Leu Cys Val Pro Cys Cys Lys Lys Lys Thr Ser 325 330 335

	AIA	Ala	Giu	340	PIO	GIU	Бец	vai	345	Leu	GIII	val	nea	350	GIII	111.5	
	Pro	Val	Gly 355	Thr	Gly	Asp	His	Arg 360	Asp	Ala	Ala	Gln	Leu 365	Gly	Phe	Gln	
	Pro	Leu 370	Met	Ser	Ala	Thr	Gly 375	Ser	Thr	Gly	Ser	Thr 380	Glu	Gly	Ala		
(2)	INFO	RMAT	ION I	FOR S	SEQ I	ID N	D: 5	:									
	(i)	(A) (B) (C)	LEN TYI	NGTH PE: 1 RANDI	ARACT : 25 nucle EDNES	base eic a SS: s	e pa: acid sing:	irs									
	(xi)	SEQU	JENCI	E DES	SCRIE	PTIO	4: SI	EQ II	ON	: 5:							
ACTO	GGGAI	AC AA	AGGTT	TAT	A TGA	AGA											25
(2)	INFO	RMATI	ON I	FOR S	SEQ I	ED N	D: 6:	:									
	(i)	(A) (B) (C)	LEN TYI	NGTH PE: 1 RANDI	ARACT : 24 nucle EDNES	base eic a SS: s	e pai acid singl	irs									
	(xi)	SEQU	JENCI	E DES	SCRII	OITS	1: SE	EQ II	ONO:	: 6:							
TGTO	CACCC	GT CI	TTCT <i>I</i>	ACAG	G ACC	CC											24
(2)	INFO	RMATI	сои н	FOR S	SEQ 1	[D N(): 7:	:									
	(i)	(A) (B) (C)	LEN TYI	IGTH PE: 1 RANDI	ARACT : 17 nucle EDNES	base eic a SS: s	e pai acid singl	irs									
	(xi)	SEQU	JENCE	E DES	SCRIE	OITS	1: SE	EQ II	NO:	7:							
GGGG	CCAT	GG GC	GCTGC	EG .													17
(2)	INFO	TAMS	EON I	FOR S	SEQ I	ID NO): 8:	:									
	(i)	(A) (B) (C)	LEN TYE STE	NGTH: PE: 1 RANDE	ARACT : 17 nucle EDNES	base eic a SS: s	e pai cid singl	.rs									
	(xi)	SEQU	JENCE	E DES	SCRIE	101T9	1. SF	EQ IE	NO:	8:							

17

117

(2)	INFORMATION FOR SEQ ID NO: 9:	
	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 25 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 9:	
CGT'	TCTTGTC CCTTTGCCCG TGTGC	25
(2)	INFORMATION FOR SEQ ID NO: 10:	
	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 25 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 10:	
AAC	CCTTCCC TTACCCCCGT CGTAG	25
(2)	INFORMATION FOR SEQ ID NO: 11:	
	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 45 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 11:	
TAT	GTAAAAC GACGGCCAGT TTCACCTGTG ATTTCCTCTT CCCCA	45
(2)	INFORMATION FOR SEQ ID NO: 12:	
	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 45 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 12:	
GGT	CTTTTCA ATCCCCGTCT CTCGTCCAGT ATCGACAAAG GACAT	45
(2)	INFORMATION FOR SEQ ID NO: 13:	

ATCTGAGATG TCGGTCC

(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 40 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 13:	
TATGTAAAAC GACGGCCAGT TTCGGGAATG GAGAAGTCAC	4 (
(2) INFORMATION FOR SEQ ID NO: 14:	
(') anathraga arrang aman taman	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 40 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(') anarrayan programmay and the No. 14.	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 14:	
CGAGAGGAGA GGGAGGTTAA CCAGTATCGA CAAAGGACAT	40
COMONGONOM GOGAGGIIAN CCAGINICON CAANGONCAI	-10
(2) INFORMATION FOR SEQ ID NO: 15:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 40 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 15:	
TATGTAAAAC GACGGCCAGT GTTCCTCTCC CCTCCTTAGA	4 (
(2) INFORMATION FOR SEQ ID NO: 16:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 41 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 16:	
AAAAAGTCCC TTTCACGACC ACCAGTATCG ACAAAGGACA T	43