UI 设计基础 Introduction to UI Design Course

REPORT ON 3D Game Kit Project Using Unity

Supervisor

Dr. Gao Zhan Professor

School of Artificial Intelligence and Computer Science Nantong University

Submitted By

Vaskar Chakma 2130130204

2024年12月02日

1. Introduction

This report outlines the creation of a 3D game object using the Unity game engine, specifically utilizing the Unity 3D Game Kit. The goal of the project was to design a 3D game environment, incorporating various game objects, interactions, and mechanics. Unity's powerful tools were leveraged to create an immersive environment and intuitive gameplay features.

2. Project Overview

The project focused on building a 3D game scene using assets from the Unity 3D Game Kit, a collection of pre-built objects, environments, and scripts designed to simplify the development process. The game involved interactive 3D models, realistic environments, and game mechanics that contribute to the overall player experience.

3. Tools and Technologies Used

- Unity 3D Game Engine: The primary platform used for the game development, providing tools for physics, rendering, and scripting.
- Unity 3D Game Kit: A set of pre-built assets and scripts that streamlined the creation of game environments and interactions.
- **C# Programming**: Scripts were written in C# to control the game mechanics, including player movements, object interactions, and other custom features.

4. Setting Up the Development Environment

1. Installing Unity Editor:

Download the Unity Editor via Unity Hub and include modules for targeted platforms like Windows or Mac.

2. Creating a New Project:

Choose the 3D (Core) template, assign a project name, and save it in a preferred location.

3. Importing the 3D Game Kit:

Access the Asset Store or Unity Package Manager, download the 3D Game Kit, and import it into your project.

5. Game Creation Process

1. Scene Setup:

- o Begin with an empty scene and save it in the appropriate folder.
- o Add environmental elements (e.g., ground tiles, cliffs) from the Prefabs folder, and position them as needed.

2. Adding Gameplay Elements:

- o **Player Character**: Place the "Ellen" prefab as the main character at a starting point.
- Enemies: Position enemy prefabs such as "Chomper" and define patrol paths with Waypoints.
- o **Interactive Items**: Integrate pickups, triggers, and checkpoints for player interaction.

3. Building the World:

- o Customize landscapes with the Terrain Editor, using textures and vegetation.
- Add challenging obstacles like spikes or breakable objects, and configure their properties.

4. Polishing the Game:

- o **Lighting & Visual Effects**: Enhance the scene with directional lights and post-processing effects like depth of field.
- o **Sound & Music**: Use audio components for background music and attach sound effects to specific actions.
- o **UI Elements**: Customize UI prefabs, such as health bars and objective panels, to align with the game theme.

5. Testing the Game:

o Enter Play Mode in Unity Editor to identify bugs and refine gameplay based on feedback.

6. Finalizing and Exporting the Game

- 1. **Build Settings**: Select the desired platform and export the game.
- 2. **Playtesting and Deployment**: Verify functionality on the target platform and share the game either as an executable file or through distribution platforms.

7. Conclusion

The 3D game object project using Unity and the Unity 3D Game Kit successfully demonstrated the process of creating a dynamic and interactive game environment. By leveraging Unity's tools and C# scripting, the project incorporated player interactions, realistic environments, and engaging game mechanics. Despite the challenges, the project was a valuable learning experience, helping refine skills in game development, 3D modeling, and interactive design. Future improvements could include expanding the gameplay features, adding AI-controlled enemies, and enhancing the user interface to further improve the gaming experience.