ALGORITMICA GRAFURILOR **Săptămâna 10**

C. Croitoru

croitoru@info.uaic.ro FII

December 4, 2013

OUTLINE

1 Fluxuri (ag 13-14 allinone.pdf pag. 239 $\longrightarrow \dots$)

2 Problemele pentru seminarul 10

Algoritmi de tip preflux

Se numește **preflux** în rețeaua R, o funcție $x : E \rightarrow R$ astfel încît

$$(i) 0 \le x_{ij} \le c_{ij} \quad \forall ij \in E$$

(ii)
$$\forall i \neq s \ e_i = \sum_{j:j:j\in E} x_{ji} - \sum_{j:ij\in E} x_{ij} \geq 0.$$

Numărul e_i $i \in V - \{s,t\}$ se numește **excesul** din vîrful i. Dacă $i \in V - \{s,t\}$ și $e_i > 0$ atunci i se numește **nod activ**. Dacă $ij \in E$ x_{ij} va fi numit **fluxul pe arcul** ij.

Dacă în rețeaua R nu există noduri active, atunci **prefluxul** x **este flux** de la s la t în R de valoare e_t . Ideea algoritmulor de tip preflux: se pornește cu **un preflux** în R și **se transformă** prin modificări ale fluxului pe arce într-un flux care nu admite drumuri de creștere.

Reprezentarea digrafului G cu ajutorul listelor de adiacență. Totuși, vom considera că dacă $ij \in E$ atunci și $ji \in E$ (altminteri, adăugăm arcul ji cu capacitate 0).

Algoritmi de tip preflux

x preflux în R, $ij \in E$. Capacitatea reziduală a arcului ij este $r_{ij} = c_{ij} - x_{ij} + x_{ji}$

(reprezentînd fluxul adițional ce poate fi "trimis" de la nodul i la nodul j utilizînd arcele ij și ji).

A "trimite" flux de la i la j înseamnă să creștem fluxul pe arcul ij sau să micșorăm fluxul pe arcul ji.

Se numește **C-drum** în R relativ la prefluxul x, un drum al lui G ale cărui arce au capacitatea reziduală pozitivă.

Se numește funcție de distanță în R relativ la prefluxul x, o funcție $d:V\to \mathbf{Z}_+$ care satisface

$$(D1) d(t) = 0$$

(D2)
$$\forall ij \in E, r_{ii} > 0 \Rightarrow d(i) \leq d(j) + 1$$

P C-drum relativ la prefluxul x în R de la i la $t\Rightarrow d(i)\leq \lg(P)$ (arcele lui P au capacitate reziduală pozitivă și se aplică (D2)).

Rezultă că $d(i) \le \tau_i$ (lungimea minimă a unui C-drum de la i la t).

Algoritmi de tip preflux

Fie x un preflux în R și d o funcție de distanță relativ la x. Un arc $ij \in E$ se numește **admisibil** dacă

$$r_{ij} > 0$$
 \wedge $d(i) = d(j) + 1$.

Dacă R este o rețea, considerăm *inițializare* procedura care construiește în O(m) un preflux x și o funcție de distanță d corespunzătoare acestuia: **procedure** *inițializare*;

```
for \forall ij \in E do

if i = s then x_{sj} \leftarrow c_{sj} else x_{ij} \leftarrow 0;

d[s] \leftarrow n; d[t] \leftarrow 0;

for \forall i \in V - \{s, t\} do d[i] \leftarrow 1
```

Alegerea lui d(s) = n are interpretarea:"**nu există C-drum de la** s **la** t **în** R **relativ la** x" (altfel, ar trebui ca lungimea acestuia să fie $\geq n$).

Dacă, în algoritmii de tip preflux vom păstra acest invariant, atunci cînd x va deveni flux, va rezulta că nu admite drumuri de creștere și deci x va fi de valoare maximă.


```
Algoritmi de tip preflux
```

selectează un nod activ i; **if** \exists arce admisibile în A(i) **then** pompează(i)**else** reetichetare(i) }

```
procedure pompează (i);
       // i este un vârf diferit de s, t
    alege ij \in A(i) ij admisibil;
   "trimite" \delta = \min(e_i, r_{ii}) unități de flux de la i la j
Dacă \delta = r_{ii} avem o pompare saturată, altfel pomparea e nesaturată.
procedure reetichetare (i);
       // i este un vârf diferit de s, t
   d(i) \leftarrow \min\{d(j) + 1 \mid ij \in A(i) \land r_{ii} > 0\}
Schema generală a unui algoritm de tip preflux este:
    inițializare;
    while \exists noduri active în R do
```

Algoritmi de tip preflux

Lemă Algoritmul de tip preflux, de mai sus, are ca invariant "d este funcție de distanță relativ la prefluxul x". La fiecare apel al lui reetichetare(i), d(i) crește strict.

Lemă Dacă pe parcursul algoritmului, i_0 este un nod activ, atunci există un C-drum de la i_0 la s, în R, relativ la prefluxul curent x.

Corolar 1. $\forall i \in V \quad d(i) < 2n$.

Corolar 2. Numărul total de apeluri ale procedurii reetichetare este mai mic decît $2n^2$.

Corolar 3. Nr. total de pompări saturate este $\leq nm$.

Lemă (Goldberg și Tarjan 1986) *Numărul pompărilor nesaturate este cel* $mult 2n^2m$.

Lemă La terminarea algoritmului x este flux de valoare maximă.

Algoritmi de tip preflux

Algoritmul lui **Ahuja și Orlin** (1988) – cu o metodă de **scalare**, va mărgini numărul pompărilor nesaturate de la $O(n^2m)$ la $O(n^2 \log U)$.

Capacitățile sunt întregi, $\max_{ij \in E} (1 + c_{ij}) = U$. Fie $\lceil log_2 U \rceil = K$.

Ideia algoritmului:

Se vor executa K+1 etape. Pentru fiecare etapă p, cu p luînd succesiv valorile $K, K-1, \ldots, 1, 0$ vor fi îndeplinite următoarele condiții:

- (a) la începutul etapei p, $\forall i$ satisface $e_i \leq 2^p$
- **(b)** în timpul etapei p se utilizează procedurile *pompare-etichetare* în vederea eliminării nodurilor active cu $e_i \in (2^{p-1}, 2^p]$.

Din alegerea lui K, în etapa inițială (p=K) condiția (a) este satisfăcută și deci, dacă (b) va fi invariant al algoritmului, după K+1 etape, excesele nodurilor vor fi $\leq \frac{1}{2}$.

Dacă, toate transformările datelor vor păstra integritatea exceselor, va rezulta că excesul oricărui nod este 0, și, deci, dispunem de un flux de valoare maximă (datorită proprietăților funcției distanță d(i)).

Algoritmul Ahuja-Orlin

```
inițializare;
K \leftarrow \lceil \log_2(U) \rceil ; \Delta \leftarrow 2^{K+1};
for p = K, K - 1, ..., 0 do
    construiește L(p); \Delta \leftarrow \frac{\Delta}{2}
    while L(p) \neq \emptyset do
         fie i primul element din L(p); parcurge lista A(i) din locul curent
         pînă se determină un arc admisibil sau se depistează sfîrșitul ei;
         if ij este arcul admisibil găsit then
         \{ \delta \leftarrow \min(e_i, r_{ii}, \Delta - e_i); \}
              e_i \leftarrow e_i - \delta; e_i \leftarrow e_i + \delta:
              "trimite" \delta unități de flux de la i la j;
              if e_i \leq \frac{\Delta}{2} then sterge i din L(p);
              if e_i > \frac{\Delta}{2} then adaugă j ca prim nod în L(p)
         else // s-a depistat sfîrșitul listei
             șterge i din L(p); parcurge toată lista A(i) pentru calculul lui
              d(i) = \min\{d(j) + 1; ij \in A(i) \land r_{ii} > 0\}; \text{ introdu } i \text{ în } L(p);
              pune pointerul curent al listei A(i) la început }
```

Algoritmul Ahuja-Orlin

Lemă. Numărul pompărilor nesaturate este cel mult $8n^2$ în fiecare etapă a scalării, deci $O(n^2 \log U)$ în total.

Teoremă. (Ahuja-Orlin 1988) Algoritmul de tip preflux cu scalarea exceselor are complexitatea $O(nm + n^2 \log U)$.

Aplicații combinatorii

Aflarea cuplajului maxim și a stabilei maxime într-un graf bipartit.

Dacă $x=(x_{ij})$ este un flux cu componente întregi în R atunci se observă că mulțimea de arce $\{ij \mid i \in V_1, j \in V_2 \land x_{ij} = 1\}$ induce în graful G bipartit un cuplaj M(x). În plus, v(x) este cardinalul cuplajului M(x).

Reciproc, orice cuplaj din G induce o mulțime de arce neadiacente în G_1 ; dacă pe fiecare astfel de arc ij $(i \in V_1, j \in V_2)$ se consideră fluxul x_{ij} egal cu 1 și de asemenea $x_{si} = x_{jt} = 1$, și luînd fluxul x = 0 pe orice alt arc, atunci fluxul construit are valoarea |M|.

Rezolvînd problema fluxului maxim pe rețeaua R se determină (pornind de la fluxul nul) în $O(nm + n^2 \log n)$ un cuplaj de cardinal maxim în graful bipartit G.

Aplicații combinatorii

Aflarea cuplajului maxim și a stabilei maxime într-un graf bipartit.

Fie (S,T) secțiunea de capacitate minimă ce se obține în O(m), din fluxul maxim aflat. Avem, $c(S,T) = \nu(G)$ (max-flow min-cut).

Cum $\nu(G) < \infty$, rezultă că punîns $S_i = S \cap V_i$ și $T_i = T \cap V_i$ (i = 1, 2), avem: $|T_1| + |S_2| = \nu(G)$, iar $X = S_1 \cup T_2$ este **mulțime stabilă** în graful G (pentru a avea $c(S, T) < \infty$). În plus, $|X| = |V_1 - T_1| + |V_2 - S_2| = n - \nu(G)$.

Rezultă că X este stabilă de cardinal maxim, întrucît $n - \nu(G) = \alpha(G)$ (teorema lui König).

Problemele pentru seminarul 10

Se vor discuta (cel puțin) patru probleme dintre următoarele:

- Problemele 4,2 Setul 11
- Problemele 1,4 Setul 16
- Problema 2, Setul 15
- Problema 2 Setul 18
- Problema 1, Setul 19
- Problema 2 Setul 22