

SIG-Node: Intro and Deep Dive

Dawn, Mrunal, Sergey

Agenda

- Introduction
- What's new
 - KEPs
 - o Other improvements
- Deep Dive: Pod-level resources
- Future directions
- How to get involved

Introduction

Kubernetes Components

Components on a Node

- **Kubelet**: The foreman on the node
- Container Runtime: The Engine Room
- **Resource Management**: The Key to Efficient Workloads
- Device plugins / DRA: Assigning the hardware
- Node Problem Detector: The Watchdog
- Storage and Network Components: CSI, CNI

Together, a Symphony of functionality

- Run containerized workloads efficiently
- Manage pod lifecycles
- Optimize the use of specialized hardware resource
- Preserve node health, enabling self-heal
- Facilitate smooth communication and integration with storage resources

SIG Node

- A virtual but critical team which is responsible for ensuring smooth pod execution on worker machines
 - Primary slack channel #sig-node member count: 4.5k
 - Primary mailing list member count: 1k
 - Primary meeting attendee avg participation: 30
- 11 subprojects, 5 working groups
- KEPs from last year:
 - 1.32 (not quite yet) with 36 tracked and 15 merged (not quite sure yet)
 - 1.31 (aug 2024) with 22 tracked and 16 merged
 - 1.30 (apr 2024) with 20 tracked and 13 merged
- More numbers:
 - Avg # of bugs to triage weekly: ~12
 - Avg # of PRs opened to review weekly: ~20
 - Avg # of active PRs at any given moment: 250+

What's new

1.32 Feature Updates

		()		(2.2.1.)	
1	⊙ Introducing Sleep Action for PreStop Hook #3960	Tracked	~	3 - Stable	~
2	Support to size memory backed volumes #1967	Tracked	~	3 - Stable	~
3	⊙ In-Place Update of Pod Resources #1287	Tracked	~	2 - Beta	w
4	 Add support for a drop-in kubelet configuration directory #3983 	Tracked	~	2 - Beta	₩.
5	O DRA: Prioritized Alternatives in Device Requests #4816	Tracked	~	1 - Alpha	~
6	O DRA: Add support for partitionable devices #4815	Tracked	¥	1 - Alpha	~
7	 Add Resource Health Status to the Pod Status for Device Plugin and DRA #4680 	Tracked	~	1 - Alpha	~
8	○ KEP-4603: Tune CrashLoopBackoff #4603	Tracked	¥	1 - Alpha	~
9	O Pod level resources #2837	Tracked	w	1 - Alpha	*
10	Windows CPU and Memory Affinity #4885	Tracked	w	1 - Alpha	~
11	 Split stdout and stderr log stream of container #3288 	Tracked	¥	1 - Alpha	*
12	⊙ Support PSI based on cgroupv2 #4205	Tracked	~	1 - Alpha	~
13	⊙ Ensure secret pulled images #2535	Tracked	~	1 - Alpha	~
14	Restarting sidecar containers during Pod termination #4438	Tracked	¥	1 - Alpha	~

- Evolution of Device Management: DRA provides a standardized framework for managing specialized hardware resources like GPUs, TPUs, and network devices.
- Performance Boost: Experience up to 16x faster scheduling with the new structured parameters.

Enhanced Functionality:

- Driver-owned resource claim status enables advanced multi-networking use cases.
- Seamless integration with the cluster autoscaler for dynamic scaling.

Growing Ecosystem:

- Example driver and NVIDIA GPU driver are production-ready.
- CNI and Google TPU drivers are in progress.

• Future Roadmap:

 Prioritized alternatives, partitionable device support, and resource health status are coming soon.

- Merged in 1.32
 - Structured parameters (DRA MVP) graduated to Beta
 - Faster scheduling (up to 16x)
 - Removal of classic DRA
 - <u>Driver-owned resource claim status</u> (for multi-networking use cases, primarily)
 - Significant progress on autoscaler integration
- Drivers for 1.32 (out-of-tree)
 - <u>Example driver</u> (ready)
 - NVIDIA DRA Driver for GPUs (ready)
 - o CNI DRA Driver (in progress)
 - Google TPU Driver (in progress)
- Missed but on track for alpha in 1.33:
 - Prioritized alternatives in device requests
 - Support for partitionable devices
 - o DRA resource health status in Pod Status
- Many more to coming ...

In-place Pod Resizing Beta

- Dynamic Scaling: Scale pod resources (CPU, memory) up or down on-demand.
- Zero Disruption: Resize resources without restarting pods or interrupting applications.
- Benefits:
 - Elasticity: Adapt to fluctuating workloads seamlessly.
 - Efficiency: Optimize resource allocation and reduce waste.
 - Cost Savings: Avoid over-provisioning and pay only for what you use.
 - Resilience: Correct resource misconfigurations without downtime.

In-place Pod Resizing Beta (cont)

- FG:InPlacePodVerticalScaling] Implement version skew handling for in-place pod resize #117767
- FG:InPlacePodVerticalScaling] Handle pod CPU resize where caller requests CPU value of 1m #114123
- ✓ [FG:InPlacePodVerticalScaling] Resizing pod gets stuck if limit is not configured #126388
- ✓ [FG:InPlacePodVerticalScaling] ResourceQuota unresponsive to scale-down #127132
- [FG:InPlacePodVerticalScaling] Emit a events when resize status changes #127172 (remaining work is not betablocking)
- [FG:InPlacePodVerticalScaling] Disable in-place resize for guaranteed pods on nodes with a static topology policy #128068
- ✓ [FG:InPlacePodVerticalScaling] Container resize policy feature introduced in v1.27 doesn't interrupt CrashLoopBackOff #119838
- ✓ [FG:InPlacePodVerticalScaling] Disallow removing requsets & limits during resize #128677

NOTE: The following changes were originally in-scope for beta, but have been moved out:

- <u>[FG:InPlacePodVerticalScaling] Add UpdatePodSandboxResources CRI method #128069</u> This was always meant to be a best-effort call to inform the runtime of a resize, but the resize is still handled by the Kubelet. This should move to the GA scope, but we do not have a direct consumer or use case for it now.
- ① [FG:InPlacePodVerticalScaling] Add kubelet_resize_requests_total metric #128071 This metric is not sufficiently well defined. With the addition of the /resize subresource, we automatically get a metric for total number of resize requests. We will revisit this for GA.
- ① [FG:InPlacePodVerticalScaling] Implement resize for sidecar containers #128070 Unfortunately this isn't feasible in v1.32 due to a validation rollback issue (see https://github.com/kubernetes/kubernetes/pull/128367/files#r1834897969). We will make the validation changes in v1.32 to make this feasible in v1.33, but the actual implementation won't land until v1.33.

Pod Level Resources Alpha

- Dynamic Sharing: Containers within a pod dynamically share a pool of resources.
- Simplified Allocation: Define resource requests and limits for the pod as a whole.
- Benefits:
 - Ease of Use: Simplify resource allocation for complex applications.
 - Efficiency: Optimize resource utilization and reduce waste.
 - Cost Savings: Avoid over-provisioning and pay only for what you need.
 - Flexibility: Adapt to changing workload demands.

Node Swap Support

- Controlled Swap Utilization: Allow nodes to leverage swap memory in a controlled manner.
- Enhanced Stability: Improve node stability under memory pressure.
- Benefits:
 - Resilience: Handle memory spikes and resource fluctuations more effectively.
 - Flexibility: Utilize swap for specific workloads or node-level tuning.
 - Efficiency: Potentially improve resource utilization and reduce costs.
- Current Status:
 - Actively developing toward beta.
 - Undergoing stress tests and eviction manager integration.

Other improvements

- KEP-4369: Allow special characters in environment variables
- KEP-3288: Split Stdout and Stderr Log Stream of Container
- KEP-3857: Recursive read-only (RRO) mounts
- KEP-4540: Add CPUManager policy option to restrict reservedSystemCPUs to system daemons and interrupt processing

Deep Dive: Pod Level Resources

Motivation

- Allow specifying resources at the Pod Level
- Containers can collaborate within the boundaries of the Pod Sandbox
- Container resource peaks may not occur at the same time

- Opt-in
- Support for Memory / CPU
- Cgroups v2 only

- No container limit can exceed the pod limit
- The pod limit must be less than equal to sum of container limit
- Pod requests must be greater than equal to sum of container resources


```
apiVersion: v1
kind: Pod
metadata:
  name: web-pod
spec:
  containers:
  - name: httpd
    image: httpd:2.4-alpine
    resources:
      requests:
        memory: "100Mi"
      limits:
        memory: "100Mi"
  - name: redis
    image: redis:7.4-alpine
    resources:
      requests:
        memory: "150Mi"
      limits:
        memory: "150Mi"
```



```
apiVersion: v1
kind: Pod
metadata:
  name: cool-app-pod
spec:
  resources:
    requests:
      memory: "250Mi"
    limits:
      memory: "250Mi"
  containers:
  - name: httpd
    image: httpd:2.4-alpine
  - name: redis
    image: redis:7.4-alpine
```


Future directions

SIG Node

Shifting SIG-Node focus, from infra-centric to workload-centric!

New workload types

Workload changes, SIG Node is changing with it.

KubeRay:

- "Node Pods" is a host for tasks
- K8s has no visibility inside Node Pods

LLM instance Gateway:

- Model server is a new node
- Adapter is a new Pod

From: Kubernetes LLM Instance Gateway PoC Design

From: Ray on Kubernetes docs

Trends

- Pods are not cattle, they are pets
 - Nodes and Pods are expensive to recreate
 - Long and reliable graceful termination
 - Pods are expensive to start
- Pods are dynamic
 - Pods are resizable
 - Flexible resources balancing between containers
 - Some DRA devices are Pod-scoped
- More scenarios for cross-node coordination and orchestration
 - Gang scheduling
 - Pod failure policies with in-place restart

How to get engaged

What is a contribution?

Code Contributions (ordered by priority):

- **Test coverage:** Write unit tests, integration tests, and end-to-end tests.
- Bug Fixing: Identify and address reported issues by submitting bug fixes.
- Feature Implementation: Contribute new functionalities (via KEPs).
- Code Reviews: Review and provide feedback on code changes.

Non-Coding Contributions:

- **Documentation:** Improve existing documentation, create new guides and tutorials.
- Community Engagement: Participate in discussions, questions, and help newcomers.
- User Experience (UX): Contribute to user experience and overall usability of the project.
- **Translation:** Translate existing documentation and resources into different languages.
- **Event Organization:** Help organize and participate in conferences, meetups, workshops.

Why SIG-Node?

- **Foundational and essential:** Contributing to the core components of Kubernetes builds a strong understanding of the entire ecosystem.
- **Diverse opportunities:** SIG-Node offers a wide range of contributions, from testing to feature development, allowing you to find your niche.
- Supportive community: Experienced members in SIG-Node are known for their friendly guidance, making it easier for newcomers to learn and contribute.
- **Direct impact:** By contributing to the foundation of Kubernetes, you directly influence the user experience of this critical technology.
- **Growth potential:** SIG-Node provides opportunities for both beginners and experienced individuals to contribute and grow their skills within the project.

Where to start?

- https://www.kubernetes.dev/
- Kubernetes Contributor Playground (<u>link</u>)
- SIG-Node main page (<u>link</u>)
- Community meetings
 - SIG-Node weekly meeting (<u>link</u>)
 - SIG-Node weekly CI/Triage meeting (<u>link</u>)
- Working groups
 - WG Batch (<u>link</u>)
 - WG Serving (<u>link</u>)
 - WG Policy (<u>link</u>)
 - WG Structured Logging (<u>link</u>)
 - o WG Sidecar (<u>link</u>)
- Mentoring (<u>link</u>)

