1h. 1105

LA-8265-MS

Informal Report

MASTER

Compilation of Elemental Concentration Data for United States Geological Survey's Eight New Rock Standards

University of California

DISTRIBUTED AND AND A COURT IS UNLIMITED

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

An Affirmative Action/Equal Opportunity Employer

This work was not edited by the Technical Information staff.

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Department of Energy, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights.

UNITED STATES
DEPARTMENT OF ENERGY
CONTRACT W-7408-ENG. 36

LA-8265-MS **Informal Report**

UC-11

Issued: March 1980

Compilation of Elemental Concentration Data for United States Geological Survey's **Eight New Rock Standards**

Ernest S. Gladney

_ DISCLAIMER _

This book was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or userfulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade arme, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

CONTENTS

LIST OF TABL	ES	V
ABSTRACT		1
INTRODUCTION		1
DATA COMPILA	TION	2
ACKNOWLEDGEM	ENTS	6
APPENDIX TAB	LE NOTE	6
REFERENCES		9
APPENDIX A:	Elemental Concentrations in BHVO-l Reported by Individual Investigators	15
APPENDIX B:	Elemental Concentrations in MAG-1 Reported by Individual Investigators	21
APPENDIX C:	Elemental Concentrations in QLO-1 Reported by Individual Investigators	26
APPENDIX D:	Elemental Concentrations in RGM-l Reported by Individual Investigators	31
APPENDIX E:	Elemental Concentrations in SCo-l Reported by Individual Investigators	36
APPENDIX F:	Elemental Concentrations in SDC-1 Reported by Individual Investigators	41
APPENDIX G:	Elemental Concentrations in SGR-l Reported by Individual Investigators	46
APPENDIX H:	Elemental Concentrations in STM-1 Reported by Individual Investigators	51

LIST OF TABLES

Table No.

I.	Eight New USGS Rock Standards	3
II.	Archival Journals Surveyed	3
III.	Elemental Concentrations in Eight New USGS Standard Rocks	4
IV.	Whole Rock Summations as Oxides	7
٧.	Usable Values by Abbey	8

٧

COMPILATION OF ELEMENTAL CONCENTRATION DATA FOR UNITED STATES GEOLOGICAL SURVEY'S EIGHT NEW ROCK STANDARDS

by

Ernest S. Gladney
Environmental Surveillance Group
Health Research Division

ABSTRACT

Elemental composition data on BHVO-1, MAG-1, QLO-1, RGM-1, SCO-1, SDC-1, SGR-1, and STM-1, have been collected from 62 journal papers and reports. All individual data, their uncertainties, and analytical technique used are reported for 68 elements. These data are summarized into mean values with standard deviation.

INTRODUCTION

Since the inception of the natural silicate rock standards program at the USGS in the early 1950's, these materials have provided an invaluable mechanism for quality assurance, analytical methods development, and interlaboratory comparison. Most of the earlier materials are either completely depleted or in such short supply as to compromise their value for widespread intercomparisons.

Two new sets of natural silicate standards have been prepared by the USGS. Six "Geochemical Exploration Reference Samples" (GXR) are being distributed through the Denver, CO, office, while eight "Rock Standards" are being made available through the Reston, VA, office. The detailed characterization of the GXR materials (1) and a review of their elemental composition (2) have been published. An excellent description of the latter "Rock Standards" is available (3); however, no complete summary of available analytical data on these materials has been developed.

The Environmental Surveillance Group uses standard reference materials from the National Bureau of Standards, the Environmental Protection Agency, and the Canadian Centre for Mineral and Energy Technology (CANMET), in

addition to those from the USGS as an integral part of our quality assurance program for elemental measurements. High quality "certified" and "recommended" values are available for a number of constituents in these matrices. However, many elements are not reported by the issuing agencies. If enough reliable data from other investigators can be accumulated and summarized, we can use these mean values to extend the range of our quality assurance program within the standard materials already available. Since no compiled data are available on the eight new USGS rock standards, this effort was undertaken in order that they may become part of our analytical quality assurance program.

DATA COMPILATION

The standard rock designations, names, descriptions, and sources are shown in Table I. The seventeen major journals in analytical chemistry and geochemistry shown in Table II have been exhaustively surveyed in an effort to find original analytical data on these eight new USGS rock standards. Sixty-two independent articles containing original data were located. Since the available data are not nearly so extensive as those for the older USGS standard rocks, only limited statistical techniques can be employed to evaluate the newer data. Some subjective judgemental criteria, as discussed by Abbey (4), were used to eliminate some data that were outside the limits of acceptability. In a limited data set such as this, these points cannot normally be eliminated by purely statistical criteria such as lying outside two or three standard deviations from the mean. Using these judgmental eliminations (less than 0.5% of the total data), a mean and standard deviation was computed among all the remaining data for a given element in each rock standard. All data points now outside two standard deviations from the mean were dropped and the mean and standard deviation were recomputed. In no case could any additional data point be eliminated using the 2 σ criterion. These final means + one standard deviation are reported in Table III. The numbers in parentheses following each entry indicate the number of values reported in the literature. The individual data, their uncertainties (where provided), and the exact reference are given in Appendices A-H (4-66). The data points eliminated as described above are also indicated by asterisks.

TABLE I: EIGHT NEW USGS ROCK STANDARDS

Standard Rock Designation	Description: Source
BHVO-1	Basalt: Kilausea Crater
MAG-1	Marine Mud: Gulf of Maine
QL0-1	Quartz Latite: Southeastern, OR
RGM-1	Rhyolite: Glass Mountain, CA
SCo-1	Cody Shale, Natrona County, WY
SDC-1	Mica Schist: Rock Creek Park, Washington, D.C.
SGR-1	Green River Shale: WY
STM-1	Nepheline Syenite: Table Mountain, OR

TABLE II: ARCHIVAL JOURNALS SURVEYED

<u>Journal</u>	Volume Numbers Examined
Analyst	97-104
Analytical Chemistry	43-51
Analytical Chimica Acta	53-106
Analytical Letters	5-12
Atomic Absorption Newsletter	11-18
Chemical Geology	13-25
Environmental Science & Technology	6-13
Geochimica et Cosmochimica Acta	31-43
Geostandards Newsletter	1-3
International Journal of Applied Radiation and Isotopes	23-30
Journal of the Association of Office Analytical Chemists	cial 55-62
Journal of Radioanalytical Chemist	ry 11-49
Microchemical Journal	17-24
Nuclear Instruments and Methods	114-155
Radiochemical and Radioanalytical Letters	9-39
Talanta	19-26
X-Ray Spectrometry	7

TABLE III : ELEMENTAL CONCENTRATIONS IN EIGHT NEW USGS STANDARD ROCKS (ppm unless otherwise indicated)

						•		
Ele	BHV0-1	MAG-1	QL0-1	RGM-1	SCo -1	SDC-1	SGR-1	STM-1
Ag (ppb)	5.7-332 (3)	6.4-112 (2)	4.5-170 (2)	10.3-99 (3)	19,<100 (2)	9.0-300 (4)	19.2,<100 (2)	8.0-395 (3)
A1 (%)	7.35±0.18 (8)	8.65±0.15 (6)	8.60±0.08 (7)	7.24±0.16 (7)	7.21±0.20 (7)	8.51±0.20 (7)	3.53±0.23 (5)	9.79±0.12 (5)
As	1.5,<5 (2)	<5-9 (2)	<5 (1)	2.9,<5 (2)	11-54 (2)	<5 (1)	70±6 (2)	<5 (1)
Au (ppb)	1.53±0.31 (3)	2.51 (2)	1.3 (2)	0.33 (2)	2.4 (2)	1.5 (2)	9.8 (2)	0.40 (2)
В	2.3, <10(2)	138±15 (3)	38±4 (3)	29±2 (3)	69±4 (4))	10-30 (3)	30-59 (3)	<10 (2)
Ba	143±20 (8)	500±60 (8)	1380±40 (7)	800±60 (7)	530±130 (9)	620±70 (7)	320±25 (7)	600±90 (70)
Ве	0.95 (2)	3.03±0.38 (4)	1.9±0.2 (4)	2.5±0.4 (4)	1.6±0.4 (4)	3.0±0.6 (4)	0.89±0.04 (3)	9.7±1.5 (4)
Bi (ppb)	15±4 (4)	360±40 (3)	64±2 (3)	260±40 (4)	389 (2)	277±1 (3)	1030 (2)	110-250 (3)
C	120±60 (5)	1000-24,600 (4)) 29±2 (4)	39±10 (5)	8500±1500 (4)	270±120 (3)	30,200-270,000(2)	64±35 (3)
Ca(%)	8.18±0.13 (7)	1.04±0.03 (5)	2.27±0.06 (6)	0.81±0.07 (8)	1.87±0.14 (6)	1.02±0.03 (6)	6.12±0.23 (4)	0.79±0.06 (6)
Cd (ppb)	120 (1)	-	-	60 (1)	150 (1)	110 (1)	1030 (1)	-
Се	40±4 (5)	93±8 (4)	61±10 (4)	53±7 (4)	62±7 (6)	104±14 (5)	42±12 (4)	290±50 (6)
Cl	92±4 (3)	31500±200 (4)	210±16 (4)	480±40 (4)	47±17 (4)	26±11 (3)	21-44 (3)	450±35(4)
Co	45±2 (6)	20±2 (6)	7.1±0.4 (5)	2.0±0.2 (6)	10±1 (7)	18±2 (5)	12±2 (5)	0.3-7.5 (5)
Cr	290±30 (6)	104±13 (5)	2-10 (3)	2.6±0.4 (5)	67±6 (5)	69±7 (4)	29±6 (4)	2.3±0.8 (6)
Cs	0.08-1.7 (3)	8.2±0.6 (3)	1.8±0.2 (3)	10.0±0.4 (3)	7.5±0.6 (3)	3.84±0.02 (3)	5.1±0.4 (3)	1.53±0.10 (3)
Cu	130±13 (6)	30±3 (8)	29±3 (7)	12±2 (9)	30±2 (8)	30±2 (7)	66±4 (7)	3.7±1.9 (9)
Dy	4.8 (2)	<3.2 (1)	<3.2 (1)	4.3 (1)	3.8 (2)	<3.2 (1)	<3.2 (1)	7.8 (1)
Er	2.1 (2)	<2.2 (1)	<2.2 (1)	<2.2 (1)	2.5 (1)	<2.2 (1)	<2.2 (1)	4.4 (1)
Eu	2.1±0.4 (6)	1.5±0.2 (4)	1.4±0.2 (4)	0.75±0.14 (4)	1.2±0.2 (6)	1.8±0.2 (4)	0.59±0.11 (4)	3.6±0.4 (5)
F	-	1200 (1)	280 (2)	370 (2)	780-1500 (2)	620 (1)	-	950 (2)
Fe (%)	8.51 ±0.19 (11)	4.81±0.29 (8)	3.04±0.07 (9)	1.32±0.05(11)	3.54±0.12 (8)	4.91±0.13 (9)	2.07±0.14 (7)	3.64±0.14 (9)
Ga	22±3 (3)	21.4±0.4 (3)	18±1 (3)	14±2 (3)	13±3 (4)	25±5 (3)	8.8±3.4 (3)	37±1 (4)
Gd	5.35±0.46 (5)	4.8-9.0 (3)	3.6-6.0 (3)	3.1 (1)	4.0±0.2 (4)	5.4-9.8 (2)	1.7 (1)	11 (2)
Ge	1.6 (2)	-	1.4 (2)	1.2 (2)	-	1.6 (2)	-	1.4 (2)
H	190 (1)	7820 (1)	540 (1)	840 (1)	4460 (1)	2060 (1)	30100 (1)	-
Hf	4.1±0.3 (6)	3.5±0.6 (4)	4.4±0.2 (3)	6.0±0.5 (4)	4.4±0.2 (4)	7.9±0.5 (4)	1.36±0.04 (4)	26.8±1.7 (4)
Ho	0.93 (2)	<1.0 (1)	<1.0 (1)	<1.0 (1)	0.93 (1)	<1.0 (1)	<1.0 (1)	1.7 (1)
In	-	-	-	•	-	-	• · ·	0.087 (1)
Ir(ppb)	0.44 (1)	-	-	-	-	-	-	•
K (%)	0.46±0.07 (11)	3.02±0.19 (7)	3.03±0.16 (9)	3.64±0.18 (11)	2.28±0.08 (8)	2.72±0.08 (9)	1.43±0.13 (6)	3.57±0.06 (8)
La	16.7±0.8 (4)	46 (2)	31 (2)	25 (2)	31±3 (4)	48±9 (3)	18.8-31.7 (2)	170±30 (4)
Li	4 (2)	76±4 (3)	24 (2)	51±9 (4)	42 (2)	34 (2)	130 (2)	29±7 (4)
Lu	0.32 (2)	0.40 (1)	0.42 (1)	0.42 (1)	0.37 (2)	0.49 (1)	0.20 (1)	0.66 (2)
Mg (%)	4.28±0.12 (8)	1.81±0.09 (6)	0.61±0.04 (7)	0.168±0.012 (9)	1.61±0.14 (7)		2.69±0.08 (5)	0.055±0.010 (7)

TABLE III : ELEMENTAL CONCENTRATIONS IN EIGHT NEW USGS STANDARD ROCKS (contd)

Ele	BHV0-1	MAG-1	QL0-1	RGM-1	SCo-1	SDC-1	SGR-1	STM-1
Mn	1280±30 (8)	760±120 (5)	720±70 (7)	280±20 (9)	420±50 (7)	890±70 (6)	280±40 (6)	1720±140 (7)
Мо	0.96±0.04 (4)	2.8 (1)	2.9±0.7 (5)	2.4±0.7 (4)	1.4-2.8 (2)	1.9 (1)	36 (2)	5.7±1.4 (5)
Na (%)	1.64±0.06 (9)	2.77±0.19 (6)	3.09±0.10 (8)	3.00±0.10 (10)	0.67±0.09 (7)	1.52±0.09 (8)	2.18±0.24 (5)	6.61±0.14(7)
Nb	19±2 (8)	9.4±1.7 (3)	11±4 (5)	10±4 (5)	10±3 (4)	18±3 (5)	4.5±1.3 (3)	250±50 (4)
Nd	25±3 (6)	43±3 (4)	31±5 (4)	17±2 (4)	26±2 (5)	39±6 (5)	20±12 (4)	74±13 (4)
Ni	120±16 (8)	55±9 (7)	1.0-9.2 (6)	1.9-14(6)	28±4 (8)	42±11 (7)	32±6 (7)	0.5-8 (7)
0(%)	-	46.5 (1)	48.0 (1)	49.4 (1)	50.8 (1)	-	-	· -
P (%)	0.12±0.01 (5)	0.076±0.007 (4)	0.12±0.02 (5)	0.020±0.001 (4)	0.10±0.02 (5)	0.077±0.018(5)	0.14±0.02 (4)	0.071±0.002 (6)
Pb	3.3-6.2 (2)	24 (2)	21 (2)	21 (2)	15-30 (3)	24 (1)	37 (2)	17 (2)
Pd (ppb)	3.5 (1)	-	-	-	-	30 (1)	-	-
Pr	5.6 (2)	7.7 (1)	6.1 (1)	4.1 (1)	5.4 (1)	8.7 (1)	6.9 (1)	19.4 (1)
Pt	40.01 (1)	-	-	-	-	-	-	-
Rb	0.1-11 (5)	158±16 (6)	78±10 (5)	157±4 (5)	120±10 (5)	129±8 (5)	86±7 (5)	123±8 (5)
S (%)	0.010 (2)	0.46±0.06 (3)	0.0013 (2)	0.001 (2)	0.06 (2)	0.058 (2)	1.75 (2)	0.0022 (1)
Sb	0.17±0.01 (4)	0.88±0.08 (4)	2.2±0.4 (5)	1.3±0.2 (5)	2.50±0.07 (5)	0.49±0.09 (4)	3.4±0.4 (5)	1.69±0.11 (5)
Sc	30±2 (7)	17±2 (6)	9.7±1.4 (6)	5.0±0.9 (6)	10±1 (6)	17±2 (6)	4.2±0.8 (5)	0.68±0.01 (4)
Se	-	-	-	-	-	-	3.0 (1)	0.010 (1)
S1 (%)	23.2±0.5 (7)	23.4±0.5 (5)	30.5±0.5 (5)	34.0±0.6 (6)	29.2±0.4 (4)	30.5±0.6 (5)	13.4±0.6 (4)	27.8±0.4 (4)
Sm	6.2±0.7 (6)	7.7±1.1 (3)	4.8±0.6 (4)	4.3±0.5 (4)	5.2±0.4 (4)	8.5±1.0 (4)	2.7±0.3 (4)	15±3 (4)
Sn	2.2 (1)	3.5-6.4 (2)	2.4 (1)	3.9 (2)	4.1 (2)	3 (2)	1.6 (1)	10±3 (3)
Sr	440±70 (8)	160±20 (9)	360±40 (8)	110±10 (8)	180±20 (10)	200±20 (8)	420±70 (8)	730±70 (8)
Ta	1.08±0.18 (5)	1.0±0.2 (5)	0.76±0.12 (4)	0.95±0.10 (5)	0.89±0.08 (4)	1.1±0.2 (4)	0.54 (2)	18±2 (5)
Tb	1.0±0.3 (5)	1.01±0.06 (3)	0.84±0.09 (3)	0.74 (1)	0.75±0.04 (3)	1.3 (2)	0.37±0.05 (3)	1.7±0.4 (3)
Te (ppb)	6.3 (1)	-	ক (1)	-5 (1)	-	5.5 (1)	-	<5 (1)
Th	1.0±0.2 (8)	12.8±Q.6 (5)	4.1±0.9 (6)	16±2 (5)	10.2±0.8 (5)	12±1 (5)	4.89±0.03 (5)	33±5
Ti	16300±1000 (6)	4300±300 (4)	3700±200 (6)	1600±200 (6)	3700±500 (6)	6000±300 (5)	1700±300 (5)	910±50 (4)
Tm	0.30±0.04(3)	0.44 (1)	0.39 (1)	0.37 (1)	0.35 (1)	0.72 (1)	0.18 (1)	-
U	0.40±0.06 (5)	2.82 (2)	1.9±0.2 (3)	5.84 (2)	3.0 (2)	3.0 (2)	5.68 (2)	9.12 (2)
٧	310±10 (7)	140±5 (6)	60±5 (5)	13±2 (5)	118±13 (7)	110±30 (5)	128±9 (5)	2.0 (1)
Y	28±2 (4)	25-57 (2)	28 (2)	27 (2)	26 (2)	44-70 (2)	13 (1)	52 (2)
Yb	2.1±0.5 (6)	3.0±0.3 (4)	2.8±0.8 (4)	2.6±0.4 (4)	2.5±0.4 (5)	5.2±1.6 (4)	0.8-2.4 (3)	4.3±0.3 (4)
Zn	102±8 (9)	130±15 (10)	59±7 (9)	32±7 (11)	106±9 (9)	102±8 (9)	80±9 (9)	241±20 (12)
Zr	177±26 (5)	130±9 (4)	175±15 (4)	214±14 (4)	165±23 (5)	270±30 (4)	58±6 (4)	1260±80 (4)

Mean values in Table III that are based upon less than three reports do not include standard deviations. In a few cases, the data reported spanned too wide a range to make the mean value significant, and have been reported as ranges only (e.g., Ag in BHVO-1). There are also some instances where only upper limit data are available and these are given as limit values in Table III (e.g., As in SDC-1).

The major element data have been converted to oxide form for summation of the major constituents and are shown in Table IV. All Fe has been converted to Fe_2O_3 , which will introduce small errors into the comparison against 100%. The oxide of carbon used will also influence the results, especially for MAG-1, SCo-1, and SGR-1. Within these limitations, the mean values for the major elements from Table III provide reasonably good summation percentages for three of the standards. Some small improvements are needed in the data for STM-1, while significant improvements are needed for RGM-1, and SCo-1. The spread in C data for MAG-1 and SGR-1 is so wide that no conclusions can be drawn from the summation.

Abbey (4) has proposed a set of "usable values" for several CANMET standards as well as for a number of elements in these eight new USGS rock standards. His criteria for usable values are carefully defined and his data are collected in Table V for comparison to our mean values in Tables III and IV. Abbey has provided nearly complete coverage for 15 elements and incomplete data for 20 more. There are no significant differences between the mean values of this compilation and Abbey's usable values.

ACKNOWLEDGEMENT

I thank Mary Lou Keigher and Verna V. Halloran for their assistance in the production of this document.

APPENDIX TABLE NOTE

These tables are designed to be read from left to right. Under each element the mean value appears as the top entry with its associated lo standard deviation immediately underneath and with the reference number(s) immediately below the standard deviation. An asterisk(*) following a mean value indicates that this data point was dropped using criteria discussed in the text. A dash (-) for a standard deviation means either that no value was provided by the investigator or that none could be calculated from the original raw data.

TABLE IV: WHOLE ROCK SUMMATIONS AS OXIDES (%)

Oxide or Element	BHV0-1	MAG-1	QLO-1	RGM-1	SCo-1	SDC-1	SGR-1	STM-1
A1 ₂ 0 ₃	13.89	16.35	16.26	13.69	13.63	16.09	6.67	18.51
SiO ₂	49. 68	50.11	65.31	72,81	62.53	65.31	28.69	59.53
Fe ₂ 0 ₃ (T)	2.17	6.88	4.35	1.89	5.06	7.02	2.96	5.21
Mg0	7.10	3.00	1.01	0.28	2.67	1.66	4.46	0.09
CaO	11.44	1.45	3.17	1.13	2.62	1.43	8.56	1.10
Na ₂ 0	2.21	3.73	4.16	4.04	0.90	2.05	2.94	8.91
K ₂ 0	0.55	3.64	3.65	4.39	2.75	3.28	1.72	4.30
co ₂	0.04	0.4+9.0	0.01	0.01	3.11	0.10	11.1+98.9	0.02
TiO ₂	2.72	0.72	0.62	0.27	0.62	1.00	0.28	0.15
P ₂ 0 ₅	0.28	0.17	0.28	0.05	0.23	0.18	0.32	0.16
F	-	0.12	0.03	0.04	0.11	0.06	-	0.10
S	0.01	0.46	<0.01	<0.01	0.06	0.06	1.75	<0.01
Mn0	0.17	0.10	0.09	0.04	0.05	0.11	0.04	0.22
c1	<0.01	3.15	0.02	0.05	<0.01	<0.01	<0.01	0.04
Summation	100.26	90.3→98.9	98.96	98.69	94.34	98.35	69. 5 →157	98.34

TABLE V: USABLE VALUES BY ABBEY (4)

USGS ROCK DESIGNATION

Oxide/Element	BHV0-1	MAG-1	QL.0-1	RGM-1	SCo-1	SDC-1	SGR-1	STM-1
SiO ₂ (%)	50.2	50.9	65.6	73.4	62.9	66.1	28.3	59.5
A1 ₂ 0 ₃ (%)	13.8	16.5	16.3	13.8	13.6	16.0	-	18.6
Fe ₂ 0 ₃ (%)	12.0	6.8	4.3	1.87	5.06	6.9	3.2	5.19
MgO(%)	7.1	2.99	1.00	0.28	2.67	1.70	4.42	0.10
CaO(%)	11.4	1.36	3.19	1.12	2.61	1.4	-	1.09
Na ₂ 0(%)	2.21	3.8	4.20	4.08	0.91	2.07	2.9	8.94
κ ₂ 0(%)	0.52	3.6	3.63	4.36	2.8	3.27	1.65	4.30
TiO ₂ (%)	2.69	0.75	0.62	0.27	0.64	1.02	0.29	0.13
P ₂ 0 ₅ (%)	0.28	-	0.26	0.05	-	0.17	-	0.16
F(%)	-	-	0.03	0.04	0.08	-	-	0.10
S(%)	-	-	-	-	0.08	-	-	-
MnO(%)	0.17	0.10	0.09	0.04	0.05	0.12	0.04	0.22
Ba(ppm)	130	480	1350	750	550	590	320	550
Be(ppm)	-	-	-	-	-	-	-	10
Cl(ppm)	-	31000	-	-	-	-	-	500
Co(ppm)	45	18	7	-	10	20	10	-
Cr(ppm)	320	105	-	-	65	6 8	32	-
Cu(ppm)	-	33	29	11	30	30	68	3
Eu(ppm)	1.7	-	-	-	-	-	-	4
Hf(ppm)	4	-	-	-	-	-	-	-
La(ppm)	-	-	-	-	-	-	-	155
Li(ppm)	4	-	-	46	44	32	-	27
Mo(ppm)	-		-	-	-	-	-	6
Nb(ppm)	19	-	-	-	-	-	-	-
Ni(ppm)	140	54	7	-	29	50	29	3
Pb(ppm)	-	-	21	20	-	-	-	-
Rb(ppm)	10	-	-	170	-	-	-	-
Sc(ppm)	30	18	10	5	-	19	-	-
Sr(ppm)	400	159	350	110	180	190	420	720
U(ppm)	0.4	-	-	-	-	-	-	-
V(ppm)	-	-	55	15	110	-	-	-
Y(ppm)	27	-	-	-	-	-	-	50
Yb(ppm) Zn(ppm)	100	- 140	- 60	- 32	110	- 105	- 80	5 240
Zr(ppm)	160	130	170	210	160	300	-	1200

REFERENCES

- 1. G. H. Allcott, H. W. Lakin, "The Homogeneity of Six Geochemical Exploration Reference Samples," in <u>Geochemical Exploration 1974</u>, I. L. Elliott and W. K. Fletcher (eds), Elsevier, Amsterdam, 1975, pp. 659-681.
- E. S. Gladney, D. R. Perrin, J. W. Owens, D. Knab, "Elemental Concentrations in the United States Geological Survey's Geochemical Exploration Reference Samples - A Review," Anal. Chem. <u>51</u>: 1557-1569 (1979).
- F. J. Flanagan (ed.), "Descriptions and Analyses of Eight New USGS Rock Standards," U. S. Geological Survey Professional Paper 840, Washington, D.C. U. S. Government Printing Office, 1976, 192 pp.
- 4. S. Abbey, "Studies in Standard Samples for Use in General Analysis of Silicate Rocks and Minerals Part 5: 1977 Edition of Usable Values," X-Ray Spectrometry 7: 99-121 (1978).
- 5. P. D. Snavely, Jr., N. S. MacLeod, F. J. Flanagan, Sol Berman, H. G. Neiman, and Harry Bastron, "Nepheline syenite, STM-1, from Table Mountain, Oregon," USGS Professional Paper 840, F. J. Flanagan (ed), 1976, pp. 7-10.
- 6. D. B. Tatlock, F. J. Flanagan, Harry Bastron, Sol Berman, and A. L. Sutton, Jr., "Rhyolite, RGM-1, from Glass Mountain, California," Ibid., pp. 11-14.
- G. W. Walker, F. J. Flanagan, A. L. Sutton, Jr., Harry Bastron, Sol Berman,
 J. I. Dinnin, and L. B. Jenkins, "Quartz latite (dellenite), QLO-1, from southeastern Oregon," <u>Ibid.</u>, pp. 15-20.
- 8. L. G. Schultz, H. A. Touretelot, and F.J. Flanagan, "Cody Shale, SCo-1, from Natrona County, Wyoming," <u>Ibid.</u>, pp. 21-24.
- 9. F. T. Manheim, J. C. Hathaway, F. J. Flanagan, and J. D. Fletcher, "Marine mud, MAG-1, from the Gulf of Maine," Ibid., pp. 25-28.
- 10. F. J. Flanagan and G. V. Carroll, "Mica Schist, SDC-1, from Rock Creek Park, Washington, D.C.," Ibid., pp. 29-32.
- 11. Amitai Katz and Lawrence Grossman, "Intercalibration of 17 standard silicates for 14 elements by instrumental neutron activation analysis,"

 <u>Ibid.</u>, pp. 49-58.
- 12. F. J. Flanagan, T. L. Wright, S. R. Taylor, C. S. Annell, R. C. Christian, and J. I. Dinnin, "Basalt, BHVO-1 from Kilauea Crater, Hawaii," <u>Ibid.</u>, pp. 33-40.

- 13. H. T. Millard, Jr., "Determination of Uranium and Thorium in USGS Standard Rocks by the Delayed Neutron Technique," Ibid., pp. 61-66.
- 14. L. J. Schwarz and J. J. Rowe, "The Determination of Antimony, Hafnium, and Tantalum in the New USGS Standard Rocks," <u>Ibid</u>., pp. 67-70.
- 15. L. J. Schwarz and J. L. Barker, "Gold Content of USGS Standard Rocks," Ibid., pp. 71-72.
- 16. V. Machacek, I. Rubeska, V. Sixta, and Z. Sulcek, "The Beryllium, Fluorine, Lithium, Copper, Zinc, and Strontium Contents of USGS Standard Rock Samples STM-1, RGM-1, QLO-1, SCo-1, MAG-1, SDC-1, and SGR-1." <u>Ibid.</u>, pp. 73-78.
- 17. P. W. Weigand, K. Thoresen, W. L. Griffin, and K. S. Heier, "Instrumental Analyses of Major and Minor Oxides in USGS Standard Rocks BHVO-1, QLO-1, SDC-1, and RGM-1," Ibid., pp. 79-82.
- 18. A. C. S. Smith and J. N. Walsh, "The Determination of Selected Elements in the USGS Standard Pocks STM-1 and RGM-1," Ibid., pp. 83-86.
- 19. E. Y. Campbell and L. P. Greenland, "Homogeneity of Niobium Content of Eight USGS Standard Rocks," Ibid., pp. 87-88.
- 20. B. P. Fabbi and L. F. Espos, "X-ray Fluorescence Analysis of 21 Selected Major, Minor, and Trace Elements in Eight New USGS Standard Rocks," <u>Ibid.</u>, pp. 89-96.
- 21. Isaac B. Brenner and A. Harel, "Titanium and Trace Element Data in USGS Standard Rocks SCo-1 and SGR-1, Ibid., pp. 97-98.
- 22. F. G. Walthall, A. F. Dorrzapf, Jr., and F. J. Flanagan, "Computerized Spectrographic Data for USGS Standards," Ibid., pp. 99-116.
- 23. J. A. Thomas, Wayne Mountjoy, and Claude Huffman, Jr., "Copper, Lithium, Manganese, Strontium, Zinc, Sodium, Potassium, and Magnesium contents of Eight New USGS Standard Rock Samples," <u>Ibid.</u>, pp. 119-122.
- 24. F. J. Flanagan, J. C. Chandler, I. A. Breger, C. B. Moore, and C. F. Lewis, "The carbon Contents of USGS Volcanic Rock Standards," <u>Ibid.</u>, pp. 123-126.
- 25. G. N. Anoshim and G. A. Perezhogin, "Determination of Gold, Silver, and Tantalum in the New USGS Standards by Neutron Activation Analysis," Ibid., pp. 185-188.

- 26. R. O. Allen, E. Steinnes, "Determination of Niobium in Geological Materials by Activation Analysis with Pre-Irradiation Separation," Anal. Chem. 50: 903-905 (1978).
- 27. S. T. Kosiewicz, P. J. Schomberg, L. A. Haskin, "Rare Earth Analysis of USGS Rocks SCo-1 and STM-1", J. Radional. Chem. 20: 619-626 (1974).
- 28. E. N. Gilbert, G. V. Veriovkin, V. A. Mikhailov, "Simultaneous Neutron Activation Determination of Palladium, Gold, Platinum, and Iridium in some Natural Materials," J. Radioanal Chem. 31: 365-375 (1976).
- 29. P. A. Baedecker, J. J. Rowe, E. Steinnes, "Application of Epithermal Neutron Activation in Multielement Analysis of Silicate Rocks Employing Both Coaxial Ge(Li) and Low Energy Photon Detector Systems," J. Radio-anal. Chem. 40: 115-146 (1977).
- 30. D. C. Bankston, S. E. Humphris, G. Thompson, "Major and Minor Oxide and Trace Element Determination in Silicate Rocks by Direct Current Plasma Optical Emission Echelle Spectrometry," Anal. Chem. 51: 1218-1225 (1979).
- 31. A Chattopadhyay, S. A. Katz, "Determination of 22 Elements in Geological Samples by Instrumental Neutron Activation Analysis," J. Radioanal. Chem. 46: 321-332 (1978).
- 32. E. G. Lillie, L. P. Greenland, "Spectrophotometric Determination of Molybdenium in Rocks with Thiocyanate," Anal. Chim. Acta 69: 313-320 (1974).
- 33. E. G. Lillie, "Determination of Silver in Rocks by a Stoichiometric Radioreagent Radioisotope Dilution Technique," Anal. Chim. Acta $\overline{75}$: 21-30 (1975).
- 34. E. Kiss, "Selective Spectrophotometric Determination of Vanadium in Silicates With a New Pyridylazophenol in the Presence of Hydrogen Peroxide," Anal. Chim. Acta 77: 205-221 (1975).
- 35. L. P. Greenland, E. Y. Campbell, "Rapid Determination of Nanogram Amounts of Tellurium in Silicate Rocks," Anal. Chim. Acta 87: 323-328 (1976).
- 36. E. Kiss, "Rapid Potentiometric Determinations of the Iron Oxidation State in Silicates," Anal. Chim. Acta 89: 303-314 (1977).
- 37. R. O. Allen, E. Steinnes, "The Determination of Vanadium in Geological Materials by Activation Analysis with Pre-Irradiation Separation,"
 Anal. Chim. Acta 100: 95-100 (1978).

- 38. C. Y. Chan, P. N. Vijan, "Semi-Automated Determination of Antimony in Rocks," Anal. Chim. Acta 101: 33-43 (1978).
- 39. J. S. Kane, "Determination of Nanogram Amounts of Bismuth in Rocks by Atomic Absorption Spectrometry with Electrothermal Atomization," Anal. Chim. Acta 106: 325-331 (1979).
- 40. E. Steinnes, "Determination of Tin in Standard Rocks by Neutron Activation Analysis," Radiochem. Radioanal. Lett.33: 205-210 (1978).
- 41. E. Y. Campbell, F. O. Simon, "Atomic Absorption Determination of Berylluim in Geological Materials by use of Electrothermal Atomization," Talanta 25: 251-255 (1978).
- 42. O. Johansen, E. Steinnes, "Determination of Indium in Standard Rocks by Neutron Activation Analysis," Talanta 13: 1177-1181 (1966).
- 43. S. R. Taylor, M. P. Gorton, "Geochemical Applications of Spark Source Mass Spectrography-III: Element Sensitivity, Precision, and Accuracy," Geochim. Cosmochim. Acta 41: 1375-1380 (1977).
- 44. F. O. Simon, C. L. Rollinson, "Chromium in Rocks and Minerals from the Southern California Botholith," Chem. Geol. 17: 73-88 (1976).
- 45. A. Volborth, G. E. Miller, C. K. Garner, "Oxygen Stoichiometry in the Geochemical Standards of the U.S. Geological Survey: A Blind Study," Chem. Geol. <u>20</u>: 85-91 (1977).
- 46. J. P. Quisefit, R. Dejean DeLaBatie, J. Faucherre, G. Malingre, R. Vie Le Sage, "Dosage par Spectrometrie de Fluoresence X du Nickel, du Zinc, du Rubidium, du Strontium, du Zircomium et du Niobium dans Trenti Standards Geochimiques," Geostandards Newsletter 3: 181-184 (1979).
- 47. H. A. van der Sloot, J. Zonderhuts, "Instrumental Neutron Activation Analysis of 37 Geochemical Reference Samples," Geostandards Newsletter 3: 185-193 (1979).
- 48. S. Terashima, "Determination of Total Carbon and Sulfur in 42 Reference Samples by Combustion and Infrared Spectrometry," Geostandards Newsletter 3: 195-198 (1979).
- 49. S. Terashima, unpublished data, 1979 given in ref. 48.
- O. Johansen, E. Steinnes, "Phosphorus and Chlorine Content of Eight New USGS Standard Rocks," Geostandards Newsletter 3: 47-49 (1979).
- 51. R. O. Allen, E. Steinnes, "Determination of Niobium in 15 USGS Standard Rocks by Neutron Activation Analysis," Geostandards Newsletter 3: 57-60 (1979).

- 52. M. M. Schnepfe, "Germanium Content of USGS Standard Rocks by Flameless Atomic Absorption," Geostandards Newsletter 3: 93-96 (1979).
- 53. R. T. T. Rantala, D. H. Loring, "Atomic Absorption Analysis of USGS Reference Sample Marine Mud MAG-1 for Selected Trace Elements," Geostandards Newsletter 2: 125-127 (1978).
- 54. C. V. Clemency, D. M. Borden, "The Precision of Rapid Rock Analysis and the Homogenity of New USGS Standard Rock Samples," Geostandards Newsletter $\underline{2}$: 147-156 (1978).
- 55. M. Quintin, A. Martin, A. M. de Kersabiec, "Analyse de 47 Echantillons Geochimques de Reference par Fluoresence -X (Cu, Ga, Ni, Zn) et par Absorption Atomique (Cu, Ni, Zn)", Geostandards Newsletter 2: 199-209 (1978).
- 56. J. R. de Laeter, K. J. R. Rosman, "Trace Element Data on Geostandards by Mass Spectrometric Isotope Dilution Technique," Geostandards Newsletter $\underline{1}$: 35-38 (1977).
- 57. A. O. Brunfelt, E. Steinnes, "Determination of Chromium in Rocks by Neutron Activation and Anion Exchange," Anal. Chem. 39: 833-834 (1967).
- 58. A. O. Brumfelt, E. Steinnes, "The Determination of Phosphorus in Rocks by Neutron Activation," Anal. Chim. Acta 41: 155-158 (1968).
- 59. A. O. Brunfelt, O. Johansen, E. Steinnes, "Determination of Copper, Gallium, and Zinc in Standard Rocks by Neutron Activation, "Anal. Chim. Acta 31: 172-178 (1967).
- 60. A. O. Brumfelt, E. Steinnes, "Determination of Selenium in Standard Rocks by Neutron Activation Analysis," Geochim. Cosmochim. Acta $\underline{31}$: 283-285 (1967).
- 61. O. Johansen, E. Steinnes, "Determination of Chlorine in USGS Standard Rocks by Neutron Activation Analysis," Geochim. Cosmochim. Acta 31: 1107-1109 (1967).
- 62. G. E. Gordon, W. B. Watters, W. H. Zoller, D. L. Anderson, M. P. Failey, "Non-destructive Determination of Trace Element Concentrations,"

 Technical Report ORO-5173-008, Dept. of Chemistry, University of Maryland, College Park, MD, 1979; M. P. Failey, "Neutron-Capture Prompt Gamma-Ray Activation Analysis: A Versitile Nondestructive Technique for Multi-element Analysis of Complex Matrices," PhD Thesis, University of Maryland, 1979.

- 63. J. R. deLaeter, R. Date, and I. D. Abercrombie, "Mass Spectrometric Isotope Dilution Determinations of Barium," USGS Professional Paper 840, F. J. Flanagan (ed.), 1976, pp. 41-44.
- 64. L. P. Greenland, E. Y. Campbell, and F. J. Flanagan, "The bismuth content of six new USGS standard rocks," Ibid., pp. 45-46.
- 65. E. G. Lillie and L. P. Greenland, "Molybdenum in USGS standard rocks," Ibid., pp. 47-48.
- 66. P. M. Santoliquido and W. D. Ehmann, "Bismuth contents of USGS rock samples RGM-1 and BHVO-1, Ibid, pp. 59-60.

APPENDIX A

ELEMENTAL CONCENTRATIONS IN BHVO-1 REPORTED BY INDIVIDUAL INVESTIGATORS

	ELEMENTAL CONCENTRATIONS IN BHVO-1 REPORTED BY INDIVIDUAL INVESTIGATORS											
Ag (ppb)	x σ Ref	322 58 22	5.7 0.17 25	56 3 33								
A1 (%)	π σ Ref	7. 4 - 12	7.25 0.03 17	7.38 0.21 20	7.68 0.16 22	7.47 0.23 30						
	x o Ref	7.24 - 47	7.24 0.03 54	7.10 0.06 62								
As (ppm)	x o Ref	<5 - 20	1.5 - 47									
Au (ppb)	x σ Ref	1.58 0.11 15	1.82 0.04 25	1.2 0.4 28								
B (ppm)	x σ Ref	<10 - 22	2.3 0.2 62									
Ba (ppm)	x o Ref	131 10 12	170 20 12	132.5 0.9 56, 63	122 3 20	117 10 22						
	x o Ref	163 16 29	151 5 30	158 - 43								
Be (ppm)	π σ Ref	1.0	0.90 0.05 41									
Bi (ppb)	χ σ Ref	<1000	13.9 6 39	18.8 2.7 64	11.2 1.4 ,66							

C (ppm)	x σ Ref	<140 12	104.0 4.4 24	74.7 6.2 24	85 - 48	200 30 54
Ca (%)	x Ref x g Ref	8.1 - 12 8.30 0.02 54	8.34 0.08 17 7.98 0.15 62	8.20 0.04 20	7.45 [*] 0.66 22	8.15 0.08 30
Cd (ppb)	x σ Ref	120 20 62				
Ce (ppm)	x o Ref	33.3 2.8 12	39.0 3.9 11	43.2 3.9 29	41.8	43 - 47
Cl (ppm)	x σ Ref	92 10 20	96 - 50	87 9 62		
Co (ppm)	x Ref x o Ref	42.1 0.6 11 50* 20 62	45 4 12	47.4 4.5 22	45.1 2.0 29	44.9 - 47
Cr (ppm)	x Ref x g Ref	264 7 11 256 - 47	320 50 12	315 15 12	322 29 22	285 9 30
Cs (ppm)	x σ Ref	1.7 0.9 12	0.083 0.028 12	<0.2 - 29		

Cu (ppm)	x σ Ref	130 30 12	<46 - 22	143 1 23	111 2 30	144.0 - 55	Ge (ppm)	x g Ref	1.67 0.11 52	1.6 - 52			
	x g Ref	133.0 - 55					Н (ррт)	x σ Ref	190 60 62				
Dy (ppm)	π σ Ref	4.62 0.55 12	<3.16 - 22	5.02			Hf (ppm)	x σ Ref	3.77 0.66 11	3.72 0.52 12	4.43 0.21 14	4.38 0.21 29	4.28
Er (ppm)	π σ Ref	1.78 0.28 12	<2.15 - 22	2.40				π σ Ref	4.21 - 47				
Eu (ppm)	x σ Ref	2.36 0.08 11	1.65 0.17 12	1.59 0.18 22	2.74 0.60 29	2.00	Ho (ppm)	χ σ Ref	0.891 0.139 12	<1.0 - 22	0.97 - 43		
	x o Ref	2.06 - 47					Ir (ppb)	x σ Ref	0. 4 4 0.10 28				
Fe (%)	π σ Ref	8.48 0.09 11	8.4	8.68 0.05 17	8.33 0.3 20	9.56 [*] 0.30 22	K (%)	π σ Ref	0.52	0.437 0.003 12	0.394 0.015 17	0.378 0.034 17	0.43 0.02 20
	χ σ Ref	8.83 0.11 29	8.28 0.13 30	8.63 - 36	8.35 - 47	8.59 0.02 54		χ σ Ref	0.553 0.120 22	0.429 0.004 23	0.38 0.07 30	0.55 - 47	0.56 0.14 54
	π σ Ref	7.88** 0.16 62						χ σ Ref	0.41 0.05 62				
Ga (ppm)	π σ Ref	19 2 12	25.9 2.0 22	22.4 - 55			La (ppm)	x σ Ref	17.5 1.4 12	30.1* 5.6 22	16.7 - 43	16.0 - 47	
Gd (ppm)	χ σ Ref	5.48 0.88 12	7.1* 2.5 22	9.2 [*] 0.7 29	5.74	4.84 0.04 62	Li (ppm)	x σ Ref	4.1 0.3 12	5 - 23			

Lu (ppb)	x σ Ref	290 - 43	360 - 47				Ni (ppm)	x o Ref	114 15 12	122 3 20	140 15 22	92 11 29	138 22 30
Mg (%)	x σ Ref	4.3	4.22 0.07 17	4.18 0.04 20	7.25 [*] 0.40 22	4.21 0.02 23		χ σ Ref	106 - 46	117.5 - 55	130.0 - 55		
	x g Ref	4.44 0.09 30	4.45 0.01 54	4.16 0.14 62			P (ppm)	x o Ref	1400 - 12	1020 170 20	1200 300 30	1330 20 50	1200 100 54
Mn (ppm)	x o Ref	1250 110 12	1300 100 17	1250 10 20	1810 [*] 100 22	1290 6 23	Pb (ppm)	x σ Ref	6.2 2.1 12	3.38 0.16 22			
	x σ Ref	1330 30 30	1300 - 54	1270 30 62			Pd (ppb)	π σ Ref	3.5 0.5 28				
Mo (ppm)	x g Ref	5.58 [*] 1.05 22	1.0 - 29	0.95 0.02 32	0.92 0.13 65		Pr (ppm)	x g Ref	5.67 0.51 12	<14.7 - 22	5.57 - 43		
Na (%)	χ σ Ref	1.6	1.64 0.07 17	1.57 0.05 17	1.74 0.08 20	1.70 0.01 23	Pt (ppb)	x o Ref	<10 - 28				
	χ σ Ref	1.68 0.03 30	1.62 - 47	1.98 [*] 0.22 54	1.56 0.11 62		Rb (ppm)	x o Ref	0.147 0.008 11	8.0 0.7 12	8.7 1.9 20	10.9 0.3 29	2 - 46
Nb (ppm)	x g Ref -	21.7 1.8 12	16 2 12	18.9 2.0 12	21.0 1.1 19	15.2 2.9 22	S (ppm)	x σ Ref	<50 - 20	101 - 48	20	25	40
	x o Ref	16.3 0.9 26, 51	21.1	20 - 46		_	Sb (ppb)	Kef X o Ref	430 [*] 90 11	160 50 14	170 18 29	170 20 38	
Nd (ppm)	χ σ Ref	22.6 2.9 12	<14.7 - 22	25.9 6.6 29	27.8 - 43	44 [*] - 47	(660)	Ref	îĭ	14	29		
	кет х о Ref	15* 3 62	22	29	43	4/	Sc (ppm)	x σ Ref	32.0 0.4 11	31 1 12	28.0 0.6 20	> 68 [*] - 22	31.3 1.1 29

	x σ Ref	32.3 - 47					Th (ppm)	χ σ Ref	3.19 [*] 0.25 11	0.78 0.12 12	0.816 0.162 12	0.91 0.66 13	<22 - 22
Si (%)	x σ Ref	23.2	23.8 0.2 17	23.7 0.3 20	23.2 2.4 22	22.6 1.1 30		x o Ref	1.29 0.04 29	1.12	1.36 - 47		
	x σ Ref	23.3 0.1 54	22.3 0.8 62				Ti (%)	χ σ Ref	1.67 0.03 17	1.63 0.01 20	1.80 0.33 22	1.50 0.03 30	1.62 0.01 54
Sm (ppm)	x σ Ref	5.26 0.66 12	<4.6 - 22	6.84 0.29 29	6.34	6.78 - 47		χ σ Ref	1.56 0.03 62				
	x o Ref	5.51 0.10 62					Tm (ppb)	x o Ref	282 44 12	340 50 29	270 - 43		
Sn (ppm)	x σ Ref	<3.2 - 22	2.15 0.04 40				U (ppb)	π σ Ref	400 100 12	333 82 12	480 80 13	429 59 29	380 - 4 3
Sr (ppm)	χ σ Ref	330 60 12	374 7 20	473 38 22	438 4 23	486 38 29	V (ppm)	x σ Ref	300 30 12	316 9 20	27.2 [*] 3.3 22	328 18 30	320 - 34
	χ σ Ref	492 19 30	381 - 46	540 80 62				χ σ Ref	308 2 37	390 * 16 62			
Ta (ppm)	x σ Ref	0.86 0.17 11	1.10 0.05 14	0.96 0.03 25	1.34 0.05 29	1.12	Y (ppm)	χ σ Ref	30 1 12	25.8 3.5 12	27.2 3.3 22	30.0 - 43	
Tb (ppm)	x o Ref	1.41 0.22 11	0.729 0.115 12	1.02 0.07 29	0.80 - 43	1.08	Yb (ppm)	x o Ref	2.8 0.4 12	1.52 0.27 12	4.24* 0.64 22	2.46 0.23 29	1.90 - 43
Te (ppb)	x o Ref	6.3 0.7 35						x σ Ref	1.96 - 47				

Zn (ppm)	χ σ Ref	102 5 12	87 1 20	178 [*] 19 22	100 - 23	111 16 29
	x σ Ref	106 20 30	79 [*] - 46	100.4	107 - 55	
Zr (ppm)	x o Ref	145 11 12	156 4 20	203 22 22	199 - 43	180 - 46

APPENDIX B

ELEMENTAL CONCENTRATIONS IN MAG-1
REPORTED BY INDIVIDUAL INVESTIGATORS

	ŗ	ELEMENTAL C	ONCENTRATION				Ca (%)	x o Ref	1.07	1.01 0.02 20	1.32* 0.22 22	1.04 0.02 54	0.75 ** 0.08 62
Ag (ppb)	x σ Ref	112 21 22	6.4 0.4 25				Ce (ppm)	x o Ref	95.3 4.7 11	104 10 22	89.6 8.1 29	84 - 47	
A1 (%)	x o Ref	8.70 - 9	8.87 0.13 20	8.47 0.67 22	8.57 - 47	8.76 0.05 54	C1 (%)	x o Ref	2.86 - 9	3.12 0.05 20	3.15 - 50	3.17 0.03 62	
	χ σ Ref	8.54 0.09 62					Co (ppm)	x o Ref	18 2 9	18.8 0.1 11	21.6 3.8 22	22.9 1.6 29	18.3 - 47
As (ppm)	x o Ref	< 5-49 - 20	6.0 - 47					x o Ref	19.3 1.9 52				
Au (ppb)	χ σ Ref	2.58 0.54 15	2.43 0.11 25				Cr (ppm)	x o Ref	120 10 9	103 2 11	104 16 22	84 - 47	111.8 2.6 52
B (ppm)	x o Ref	130 10 9	155 11 22	128 2 62			Cs (ppm)	x o Ref	7.53 0.18 11	8.60 0.38 29	8.36 - 47		
Ba (ppm)	x o Ref	4 90 60 9	311* 78 11	513 8 20	426 49 22	527 50 29	Cu (ppm)	x o Ref	. 49 [*] . 2 9	27.9 0.8 16	32.0 1.0 16	<46 - 22	34.4 0.4 23
	π σ Ref	605 - 47	480 27 52	476 2 56,63				χ σ Ref	30.9 4.2 52	25.6 - 55	27.5 - 55		
Be (ppm)	x σ Ref	2.72 0.09 16	2.97 0.32 22	2.84 0.18 41	3.57 0.09 52		Dy (ppm)	x o Ref	<3.16 - 22				
Bi (ppb)	π x σ Ref	<1000 - 22	331 35 39	384 16 64			Er	X X	<2.15				
C (%)	χ σ Ref	0.14	2.31	2.46 - 49	0.100 9.008 54		(ppm)	σ Ref	22				

Eu (ppm)	x o Ref	1.64 0.05 11	1.30 0.17 22	1.73 0.37 29	1.35		La (ppm)	x o Ref	49.7 7.6 22	42.9			
F (ppm)	x o Ref	1200 - 9					Li (ppm)	х о Re f	72.0 3.5 16	77.6 0.4 23	78.6 0.5 52		
Fe (%)	ж σ Ref	4.6 8	4.52 0.04 11	4.96 0.02 20	5.24 0.30 22	5.09 0.25 29	Lu (ppb)	x σ Ref	400 - 47				
	x o Ref	4.65 - 47	4.90 0.06 54	4.41 0.05 62			Mg (%)	π σ Ref	1.80	1.71 0.01 20	2.66 [*] 0.19 22	1.81 0.01 23	1.93 0.01 54
Ga (ppm)	x o Ref	21 2 9	21.8 1.5 22	21.3 - 55				χ σ Ref	2.03** 0.17 62				
Gd (ppm)	x o Ref	<3.2 - 22	9.0 0.7 29	4.75 0.16 62			Mn (ppm)	π σ Ref	880 3 20	1020 [*] 40 22	713 7 23	850 - 54	610 20 62
H (ppm)	x o Ref	7820 40 62					Mo (ppm)	π σ Ref	2.80 0.40 22				
Hf (ppm)	x σ Ref	3.15 0.13 11	3.52 0.05 14	4.36 0.20 29	2.86 - 4 7		Na (%)	π σ Ref	2.9	2.55 0.03 20	2.81 0.02 23	2.84 - 47	2.99 0.06 54
Ho (ppm)	x o Ref	<1.0 - 22						χ σ Ref	2.54 0.12 62				
K (%)	x o Ref	3.0	2.96 0.02 20	>1.0* - 22	2.93 0.01 23	3.35 - 47	Nb (ppm)	π σ Ref	7.60 1.34 22	9.6 26,51	11 - 46		
	π σ Ref	3.09 0.05 54	2.78 0.09 62				Nd (ppm)	x o Ref	26.8** 3.2 22	40.7 6.9 29	46 - 47	43 5 62	

Ni (ppm)	π σ Ref	51 4 9	53.8 0.71 20	70.2 6.6 22	50 - 29	45 - 46	Sc(Cont.) (ppm)	π σ Ref	14.7 47				
	χ σ Ref	4 8.3 - 5 5	60 - 55				Si (%)	x o Ref	23.2	23.8 0.3 20	23.0 1.4 22	24.0 0.1 54	22.8 0.5 6 2
0 (%)	π σ Ref	46.54 - 45					Sm (ppm)	χ σ Ref	8.21 0.17 29	8.45 - 47	6.49 0.09 62		
P (ppm)	χ σ Ref	1400 [*] - 9	750 110 20	830 10 50	700 - 54		Sn (ppm)	x o Ref	6.43 0.51 22	3.54 0.33 40			
Pb (ppm)	π σ Ref	20.4 1.3 22	27.7 5.3 52				Sr (ppm)	x o Ref	160 20 9	150 4 16	128 2 16	168 3 20	185 4 22
Pr (ppm)	x o Ref	7.72 0.70 22						x o Ref	173 1 23	166 13 29	136 - 46	133 3 52	
Rb (ppm)	x o Ref	84.3 [*] 4.7 11	186 4 20	155 4 29	147 - 46	151 - 47	Ta (ppm)	x o Ref	0.74 0.07 11	1.00 0.08 14	0.88 0.19 25	1.30 0.07 29	1.10
	π σ Ref	151.8 1.6 52					Tb (ppm)	x o Ref	0.95 0.09 11	1.06 0.04 29	1.02		
S (ppm)	x o Ref	5200 - 9	4600 100 20	3943 - 48			Th (ppm)	x o Ref	13.0 0.2 11	12.2 0.8 13	<22 - 22	12.6 0.4 29	13.6 - 47
Sb (ppm)	χ σ Ref	0.83 0.29 11	0.88 0.05 14	1.00 0.11 29	0.82 0.07 38		Ti (ppm)	x o Ref	4500	2480 [◆] 640 22	4500 - 54	4000 80 62	
Sc (ppm)	π σ Ref	18 1 9	16.3 0.2 11	20.2 1.5 20	17.0 5.3 22	17.2 0.6 29	Tm (ppb)	x o Ref	440 60 29		•		

U (ppm)	x o Ref	2.82 0.10 13	2.83 0.08 29			
V (ppm)	χ σ Ref	130 10 9	142 2 20	143 7 22	138 1 37	145.0 4.3 52
	π σ Ref	140 15 62				
(ppm)	x o Ref	57 3 9	25.0 4.1 22			
Yb (ppm)	x σ Ref	3.2 0.4 9	2.68 0.30 22	2.78 0.26 29	3.34 - 47	
Zn (ppm)	π σ Ref	122 4 16	153 1 16	148 3 20	102 6 22	124 1 23
	π σ Ref	123 18 29	95 [*] - 46	138.8 2.9 52	130.4 - 55	134 - 55
Zr (ppm)	π σ Ref	130 10 9	130 3 20	142 14 22	119 - 46	

APPENDIX C ELEMENTAL CONCENTRATIONS IN QLO-1 REPORTED BY INDIVIDUAL INVESTIGATORS

		Reported by I		IS IN QLO-1 evestigators			C (ppm)	χ σ Ref	30 - 7	68.5 [*] 5.0 24	26 - 48	30 - 54	
Ag (ppb)	x σ Ref	<100-170 - 22	4.5 0.2 25				Ca (%)	x o Ref	2.28	2.32 0.02 17	2.27 0.01 20	3.00 [*] 0.40 22	2.32 0.02 54
A1 (%)	x σ Ref	8.64 - 7	8.70 0.10 17	8.53 0.15 20	10.2 [*] 1.2 22	8.54 - 47		χ σ Ref	2.17 0.07 62				-
	χ σ Ref	8.67 0.04 54	8.52 0.13 62				Ce (ppm)	π σ Ref	59.8 3.8 11	75.5 8.7 22	56.0 5.0 29	53 - 47	
As (ppm)	x σ Ref	<5 - 20					Cl (ppm)	χ σ Ref	200 - 7	192 4 20	225 - 50	220 20 62	
Au (ppb)	x o Ref	0.96 0.20 15	1.66 0.32 25				Co (ppm)	x g Ref	7 1 7	6.9 0.1 11	7.31 0.37 22	7.75 0.26 29	6.76 - 47
В (ррт)	χ σ Ref	40 10 7	41.0 4.1 22	33.3 0.5 62			Cr (ppm)	x o Ref	2 1 7	9.98 1.38 11	4.4 - 47		
Ba (ppm)	x o Ref	1300 200 7	1360 131 11	1390 20 20	1170 [*] 40 22	1427 50 29	Cs (ppm)	x o Ref	1.76 0.22 11	1.61 0.07 29	2.08 - 47		
	x o Ref	1390 - 47	1401 3 56,63				Cu (ppm)	x o Ref	31 2 7	26.6 0.8 16	29.0 0.6 16	<46 - 22	33.5 0.9 23
Be (ppm)	x g Ref	2 - 7	1.65 0.07 16	2.14 0.12 22	1.83 0.26 41			x σ Ref	2 7.3 - 55	26.6 - 55			
Bi (ppb)	x g Ref	<1000 - 22	63.3 1.4 39	66.3 3.0 64			Dy (ppm)	x σ Ref	<3.16 - 22				

Er (ppm)	x g Ref	<2.15 - 22					K (%)	x o Ref	2.99 - 7	3.00 0.04 17	3.02 0.10 17	2.90 0.06 20	3.80 [*] 0.05 22
Eu (ppm)	x σ Ref	1.53 0.05 11	1.15 0.18 22	1.63 0.07 29	1.39 - 47			x o Ref	2.96 0.01 23	3.35 - 47	3.15 0.02 54	2.84 0.13 62	
F (ppm)	x o Ref	300 - 7	256 22 16				La (ppm)	x σ Ref	35.9 2.1 22	26.1 - 47			
Fe (%)	Ref x g Ref	3.0	3.04 0.04 11	3.13 0.10 17	3.09 0.08 20	4.08 [*] 0.50 22	Li (ppm)	x σ Ref	23.0 0.6 16	24.6 0.6 23			
	Ref x o Ref	7 3.10 0.08 29	11 2.95 - 47	17 2.98 0.01 54	20 2.86 0.07 62	22	Lu (ppb)	π σ Ref	420 - 47				
Ga (ppm)	x σ Ref	16 4 7	18.8 1.7 22	18.0 - 55			Mg (pp#n)	x σ Ref	6000 - 7	6500 100 17	5700 300 20	9570 [*] 940 22	5810 70 23
Gd (ppm)	π σ Ref	<3.2 - 22	6.0 0.5 29	3.57 0.05 62				x σ Ref	6390 60 54	9700** 1200 62			
Ge (ppm)	x σ	1.40 0.10 52	1.3 - 52	62			Mn (ppm)	x σ Ref	640 80 7	800 - 17	760 10 20	1080 [*] 60 22	672 4 23
H (ppm)	Ref	52 540 50 62	52					x σ Ref	800 80 54	650 20 62			
	Ref		4.68	4.20			Mo (ppm)	x σ Ref	4 1 7	3.40 0.59 22	2.6 - 29	2.41 0.08 32	2.3 0.2 65
Hf (ppm)	a Ref	4.47 0.30 11 /	0.10 14	4.20 0.20 29			Na (%)	x σ Ref	3.13	3.06 0.04 17	3.15 0.10 17	3.02 0.07 20	3.11 0.01 23
Ho (ppm)	χ σ Ref	<1.0 - 22						x g Ref	2.93	3.24 0.05 54	2.73 ** 0.12 62		

Nb (ppm)	x o Ref	16 6 7	11.7 0.5 19	6.10 1.12 22	9.3 0.5 26, 51	13 - 46	Sc (ppm)	χ σ Ref χ σ	10 1 7 7.98	8.96 0.08 11	11.3 1.5 20	11.4 0.7 22	8.79 0.30 29
Nd (ppm)	x o Ref	35.3 3.8 22	25.4 2.8 29	33 - 47	17 * 2 62			Ref	47				
Ni (ppm)	x σ Ref	2 1 7	9.2 4.2 20	1.99 0.22 22	<50 - 29	1.0	Si (%)	x o Ref	30.8 - 7	30.5 0.2 17	30.4 0.2 20	30.9 0.1 54	29.7 0.5 62
	x σ Ref	3.5 - 55					Sm (ppm)	χ σ Ref	<4.6 - 22	5.24 0.12 29	5.11 - 47	4.19 0.08 62	
0 (%)	x σ Ref	47.97 - 45					Sn (ppm)	χ σ Ref	2.35 0.12 40				
P (ppm)	x o Ref	1100	1000 100 20	1440 140 22	1190 20 50	1100 100 54	Sr (ppm)	x o Ref	360 4 0 7	354 24 16	326 2 16	329 18 20	436 52 22
Pb (ppm)	x o Ref	20 7 7	21.6 4.0 22				Ta	π σ Ref	382 1 23	352 28 29	332 - 46 0.63	0 91	
Pr (ppm)	x σ Ref	6.06 0.76 22					Ta (ppm)	x o Ref	0.70 0.04 11	0.81 0.06 14	0.63 0.08 25	0.91 0.06 29	
Rb (ppm)	χ σ Ref	34.7 [*] 5.7	68 2 20	74.3 2.2 29	77 - 46	92 - 47	Tb (ppb)	χ σ Ref	920 100 11	750 50 29	- 47		
S (ppm)	x x g Ref	11 <50 -	20 13 -	29	46	47	Te (ppb)	χ̄ σ Ref	< 5 - 35				
	Ref	20	48	1 76	1 00	2 5	Th (ppm)	x o Ref	3.4 0.7 7	620 [*] 0.07 11	3.24 0.78 13	< 22 - 22	4.86 0.15 29
Sb (ppm)	χ σ R e f	2.84 1.20 11	2.03 0.52 14	1.76 0.19 29	1.99 0.05 38	2.5 - 47		χ σ Ref	4.8 - 47				

Ti (ppm)	x g Ref	3600 600 7	3910 170 17	3800 100 20	3780 390 22	3700 60 54
	χ σ Ref	3430 15 62				
Tm (ppb)	χ σ Ref	390 50 29				
U (ppm)	π σ Ref	1.6 0.1 7	2.01 0.10 13	1.97 0.11 29		
V (ppm)	x σ Ref	61 16 7	52.5 4. 6 20	61.9 7.5 22	63 3 37	30 [*] 15 62
Y (ppm)	x σ Ref	30 10 7	25.4 2.9 22			
Yb (ppm)	π σ Ref	2 1 7	3.29 0.40 22	3.62 0.33 29	2.22 - 47	
Zn (ppm)	x o Ref	64.6 1.3 16	67.5 1.2 16	44.5 1.0 20	61.2 4.7 22	57 - 23
	χ σ Ref	57 8 29	32 [*] - 46	57.5 - 55	65.5 - 55	
Zr (ppm)	π σ Ref	160 30 7	175 9 20	219 [*] 19 22	190 - 46	

APPENDIX D ELEMENTAL CONCENTRATIONS IN RGM-1 REPORTED BY INDIVIDUAL INVESTIGATORS

			CONCENTRATION Individual I		<u> </u>		C (ppm)	x o Ref	30 - 6	54 11 24	43.0 7.9 24	37 - 48	30 6 54
Ag (ppb)	π σ Ref	<100 - 22	10.3 1.7 25	99 10 33			Ca (ppm)	π σ Ref	8300 - 6	8600 200 17	7400 200 18	7400 600 18	8900 200 20
A1 (%)	π σ Ref	7.28 - 6	7.36 0.17 17	7.34 0.05 20	6.94 0.40 22	7.12		χ σ Ref	12800 [*] 2400 22	8650 70 54	7500 600 62		
	π σ Ref	7.33 0.01 54	7.33 0.05 62				Cd (ppb)	χ σ Ref	60 20 62				
As (ppm)	x σ Ref	<5 - 20	2.9 - 47				Ce (ppm)	x σ Ref	46.3 1.9 11	60.4 7.8 22	56.0 5.0 29	_48 _ 47	
Au (ppb)	x o Ref	0.386 0.083 15	0.28 0.08 25				C1 (ppm)	x o Ref	500 - 6	440 30 20	440 - 50	525 30 62	
B (ppm)	χ σ Re f	30 4 6	30.0 2.7 22	26.5 0.4 62			Co (ppm)	x σ Ref	2 1 6	1.88 0.18 11	7.2 [*] 1.4 18	1.76 0.15 22	2.36 0.21 29
Ba (ppm)	x σ Ref	700 50 6	807 50 11	827 12 20	752 118 22	879 82 29		χ σ Ref	1.91 - 47				
	x σ Ref	809 - 47	822 2 56,63				Cr (ppm)	π σ Ref	3 1 6	39.5* 3.0 11	2.55 0.96 22	2.2 0.5 44	5.1 [*] 47
Be (ppm)	x o Ref	3 1 6	2.16 0.06 16	2.56 0.27 22	2.21 0.14 41		Cs (ppm)	χ σ Ref	10.3 0.1 11	9.56 0.42 29	10.1		
Bi (ppb)	x σ Ref	<1000 - 22	279 31 39	283 20 64	217 26 66		Cu (ppm)	π σ Ref	10 2 6	11.6 0.8 16	11.0 0.6 16	10.8 1.2 18	16.5 0.9 18

	χ̄ σ Ref	<46 - 22	13.4 0.6 23	10.3 - 55	10.5 - 55		H (ppm)	x ø Ref	840 40 62				
Dy (ppm)	x g Ref	4.34 0.61 22					Hf (ppm)	x σ Ref	5.97 0.28 11	5.93 0.13 14	6.58 0.31 29	5.30 - 47	
Er (ppm)	x o Ref	<2.15 - 22					Ho (ppm)	x σ Ref	<1.0 22				
Eu (ppb)	x g Ref	725 38 11	<1000 - 22	890 130 29	620 - 47		(%)	x o Ref	3.60	3.61 0.05 17	3.65 0.09 17	3.62 0.02 18	3.63 0.02 18
F (ppm)	χ σ Ref	4 00 - 6	342 15 16					χ σ Ref χ σ	3.49 0.11 20 3.45 0.11 62	4.82* 0.29 22	3.54 0.02 23	4.10 - 47	3.71 0.05 54
Fe (%)	x o Ref	1.31	1.32 0.03 11	1.31 0.05 17	1.29 0.01 18	1.24 0.03 18	La (ppm)	Ref x o	27.0 3.3 22	23.1			
	x σ Ref x σ	1.36 0.01 20 1.32	1.44 0.14 22	1.34 0.05 29	1.27	1.29 0.02 54	Li (ppm)	Ref x σ Ref	56.3 2.9 16	47 45.8 1.4 18	41.0	61 - 23	
Ga (ppm)	Ref x o Ref	0.07 62 13 3 6	13.5 2.4 22	16.5 - 55			Lu (ppb)	χ σ Ref	420 - 47	10	10	23	
Gd (ppm)	Ref x o Ref	<3.2 22	3.06 0.06 62	55			Mg (ppm)	χ σ Ref	1800 - 6	1660 80 17	1600 100 18	1600 100 18	2400 [*] 400 20
Ge (ppm)	χ σ Ref	1.28 0.08 52	1.2					x o Ref	1900 170 22	1600 10 23	1600 100 54	7900 [*] 1100 62	

Mn (ppm)	x σ Ref	290 40 6	300 17	285 17 18	256 8 18	290 10 20	Pb (ppm)	x g Ref	21 7 6	20.9 2.1 22			
	χ σ Ref	400 [*] 30 22	264 12 23	300 80 54	270 15 6 2		Pr (ppm)	x σ Ref	4.06 0.41 22				
Mo (ppm)	χ σ Ref	3 1 6	2.87 0.40 22	1.5 - 29	2.44 0.08 32		Rb (ppm)	x o Ref	193 [*] 13 11	154 8 20	154 4 29	158 - 46	162 - 47
Na (%)	x g Ref	3.11 6 2.91	3.00 0.06 17	2.97 0.04 17 2.92	3.03 0.01 18 3.19	3.03 0.02 18	S (ppm)	x o Ref	<100 - 6	50 - 20	100 - 48		
MIL	χ σ Ref	0.06 20	2.97 0.02 23	47	0.13 54	2.82 0.11 62	Sb (ppm)	χ σ Ref	1.52 0.16 11	1.30 0.09 14	1.18 0.13 29	1.26 0.05 38	2.2 [*] - 47
Nb (ppm)	χ σ Ref	1 6	0,3 19	5.44 0.13 22	8.0 - 26,51	46	Sc (ppm)	x o Ref	6 1 6	4.75 0.11 11	6.3 1.2 20	4.60 0.89 22	4.42 0.15 29
Nd (ppm)	x o Ref	18.8 4.3 22	17.3 2.0 29	14 - 47	18 2 62			π σ Ref	4.14 - 47				
Ni (ppm)	x o Ref x o Ref	6.0 3.9 18 3 - 55	14.0 7.5 20	1.99 0.20 22	< 50 - 29	1.9 - 55	Si (%)	x o Ref x o Ref	34.6 -6 33.1 0.7 62	33.6 0.3 17	34.2 0.1 20	> 34 - 22	34.7 0.3 54
0 (%)	x o Ref	49.44 45					Sm (ppm)	Ref x o Ref	< 4.6 - 22	4.34 0.12 29	4.77	3.72 0.05 62	
P (ppm)	π σ Ref	200 - 6	210 40 20	210 10 50	200 100 54		Sn (ppm)	x o Ref	3.73 0.40 22	4.11 0.23 40			

Sr (ppm)	x o Ref x o	110 20 6 100	112 5 16	96.3 2.5 16	116 5 20	132 7 22
	Ref	23	10 29	- 46		
Ta (ppb)	χ σ Ref	870 50 11	900 40 14	540 [*] 30 25	1090 90 29	920 - 47
Tb (ppb)	χ σ Ref	740 60 29				
Te (ppb)	χ σ Ref	<5 - 35				
Th (ppm)	χ σ Ref	18.6 0.5 11	13.1 1.5 13	< 22 - 22	15.2 0.5 29	16.6 - 47
Ti (ppm)	χ σ Ref	1600 200 6	1810 170 17	1700 100 20	1340 250 22	1600 - 54
	χ σ Ref	1460 20 62				
Tm (ppb)	x g Ref	370 50 29				
U (ppm)	x σ Ref	5.85 0.10 13	5.82 0.30 29			
(ppm)	χ σ Ref	13 5 6	14.7 4.6 20	14.9 1.0 22	10.4 0.7 37	13 6 62

Y (ppm)	x g Ref	30 10 6	23.8 2.4 22			
Yb (ppm)	x σ Ref	2 1 6	2.83 0.60 22	3.04 0.28 29	2.66 - 47	
Zn (ppm)	π σ Ref	38.9 1.0 16	38.8 1.2 16	31.8 0.7 18	37.8 0.4 18	21.8 6.2 20
	χ σ Ref	21.5 1.5 22	33 - 23	28 4 29	15 [*] - 46	29.2 - 55
	χ σ Ref					
Zr (ppm)	χ σ Ref	200 20 6	212 11 20	304 [*] 38 22	229 - 46	

APPENDIX E ELEMENTAL CONCENTRATIONS IN SCO-1 REPORTED BY INDIVIDUAL INVESTIGATORS

		ELEMENTAL	CONCENTRATI	ONS IN SCo-1			Ca	x	1.92	1.83	2.02	1.88	1.93
		Reported by	Individual	Investigator	s		Ca (%)	σ Ref	-8	0.01 20	0.15 22	31	54
Ag (ppb)	χ σ Ref	<100 - 22	19 1.3 25					x o Ref	1.62 0.08 62				
A1 (%)	χ σ Ref	7.09 - 8	7.30 0.07 20	7.30 0.60 22	6.91 - 31	7.06 - 47	Cd (ppb)	π σ Ref	150 30 62				
	x g Ref	7.29 0.04 54	7.51 0.06 62				Ce (ppm)	x g Ref	100 [*]	62.1 4.7 11	71.0 6.4 22	54.4 4.1 27	64.8 5.8 29
As (ppm)	χ σ Ref	11 3 20	54.3 - 47					π σ Ref	56 - 47				
Au (ppb)	χ σ Ref	2.11 0.22 15	2.72 0.34 25				Cl (ppm)	x g Ref	1600 [*] - 8	67 8 20	41.3	34 8 62	
B (ppm)	x σ Ref	70 - 8	64.4 8.8 21	93.2 [*] 3.2 22	72.1 0.5 62		Co (ppm)	x o Ref	10 - 8	9.66 0.20 11	11.3 3.2 21	9.30 0.86 22	11.7 0.4 29
Ba (ppm)	π σ Ref	300 - 8	474 82 11	622 19 20	744 55 21	416 45 22		π σ Ref	10.6 - 47	9 3 62			
	χ σ Ref	594 18 29	544 - 31	500 - 47	570 1 56,63		Cr (ppm)	x σ Ref	70 - 8	75.3 4.4 11	65.2 8.1 21	59.0 4.5 22	67 - 47
Ве (ppm)	π σ Ref	1 - 8	1.58 0.04 16	1.90 0.13 22	1.74 0.06 41		Cs (ppm)	x σ Ref	6.82 0.68 11	7.57 0.33 29	8.10 - 47		
Bi (ppb)	x o Ref	<1000 - 22	389 49 39				Cu (ppm)	π σ Ref	30 - 8	28.0 0.5 16	33.7 1.0 16	30.6 4.1 21	<46 - 22
C (ppm)	x o Ref	6960 - 8	9727 - 4 8	9900 - 49	7510 80 54			x o Ref	30.1 0.4 23	26.7 - 55	29.0 - 55		

Dy (ppm)	π σ Ref	<3.16 - 22	4.21 0.20 27	3.5 - 31			Ho (ppm)	χ σ Ref	<1.0 - 22	0.93 0.09 27			
Er (ppm)	χ σ Ref	<2.15 - 22	2.5 0.2 27				. K (%)	π σ Ref	2.3	2.20 0.03 20	>1.0 - 22	2.22 0.01 23	1.49 [*] 31
Eu (ppm)	π σ Ref	1.24 0.06 11	<1.0 22	1.02 0.04 27	1.42 0.26 29	<1 - 31		π σ Ref	2.40 - 47	2.34 0.04 54	2.20 0.14 62		
	π σ Ref	1.10 - 47					La (ppm)	x g Ref	50 [*] -	34.2 4.4 22	29.2 1.0 27	28.4 - 47	
F (ppm)	π σ Ref	1500 - 8	779 16 16			,	Li (ppm)	x o Ref	41.6 1.7 16	44.2 0.5 23			
Fe (%)	x o Ref	3.57 - 8	3.36 0.11 11	1.62 [*] 0.04 20	4.46 [*] 0.73 22	3.73 0.08 29	Lu (ppb)	π σ Ref	370 10 27	370 - 47			
	χ σ Ref	3.53 47	3.59 0.03 54	3.48 0.10 62			Mg (%)	x o Ref	1.62 - 8	1.40 0.03 20	2.23 [*] 0.04 22	1.57 0.02 23	0.868 [*] - 31
Ga (ppm)	χ σ Ref	10 - 8	13.9 2.5 21	10.9 1.4 22	17.3 - 55			x σ Ref	1.72 0.02 54	1.75 0.15 62			
Gd (ppm)	π σ Ref	<3.2 22	4.2 0.4 27	6.2 [*] 0.5 29	3.92 0.05 62		Mn (ppm)	π σ Ref	460 10 20	411 40 21	554 [*] 45 22	398 5 23	381 1 31
H (ppm)	x σ Ref	4460 50 62						χ σ Ref	500 - 54	390 10 62			
Hf (ppm)	x o Ref	4.38 0.30 11	4.73 0.17 14	4.27 0.20 29	4.15 - 47		Мо (ррт)	χ σ Ref	2.79 0.24 22	1.4 - 29			
							Na (ppm)	π σ Ref	7200 - 8	5800 300 20	6810 60 23	6360 - 31	6200 - 47

	x o Ref	8380 1110 54	6200 1600 62				Sb (ppm)	χ σ Ref	2.40 0.22 11	2.51 0.13 14	2.52 0.27 29	2.49 0.09 38	2.6
Nb (ppm)	x σ Ref	15 - 8	7.3 1.8 22	8.6 - 26,51	10 - 46		Sc (ppm)	x σ Ref	10 - 8	11.4 0.4 11	19.3* 2.1 20	9.00 1.8 22	11.1 0.4 29
Nd (ppm)	x σ Ref	23.8 2.2 22	27.3 0.7 27	27.4 1.4 29	24 - 47	29 3 62		x o Ref	10.9 - 47				
Ni (ppm)	x σ Ref	30 - 8	28 1 20	29.8 2.7 21	28.1 3.2 22	<50 - 29	Si (%)	χ σ Ref	28.8 - 8	29.3 0.4 20	29.8 0.1 54	29.0 0.4 62	
	x o Ref	21 - 46	26.7 - 55	32 - 55			Sm (ppm)	χ σ Ref	<4.6 - 22	5.13 0.24 27	5.59 0.19 29	4.78 0.04 62	
0 (%)	χ σ Ref	50.79 - 45					Sn (ppm)	x o Ref	4.93 0.33 22	3.28 0.19 40			
P (ppm)	x o Ref	1900 [*] - 8	860 100 20	1280 220 22	1010 20 50	900 - 54	Sr (ppm)	χ σ Ref	200	179 6 16	156 2 16	193 2 20	224 20 21
Pb (ppm)	x o Ref	15 - 8	27.6 2.1 21	29.6 2.6 22				χ σ Ref	215 8 22	153 5 23	179 14 29	<200 31	162 - 46
Pr (ppm)	x σ Ref	5.43 0.35 22					Ta (ppb)	χ σ Ref	560* 30 11	820 110 14	980 70 29	860 - 47	
Rb (ppm)	χ σ Ref	68.9 [*] 15.9 11	122 1 20	114 3 29	109 - 46	133 - 47	Tb (ppb)	x o Ref	780 20 11	700 20 27	760 80 29		
S (ppm)	χ σ Ref	1200 - 8	600 - 20	608 - 4 8			Th (ppm)	π σ Ref	10.5 0.4 11	9.52 0.59 13	<22 - 22	9.64 0.30 29	11.1 - 47

Ti (ppm)	x o Ref	3600 100 20	4500 240 21	1680 [*] 210 22	3260 - 31	3600 60 54
	χ σ Ref	3540 30 62				
Tm (ppb)	x a Ref	350 50 29				
U (ppm)	x o Ref	3.15 0.09 13	2.89 0.20 29			
(ppm)	χ σ Ref	100	138 2 20	109 8 21	117 4 22	128 - 31
	x o Ref	118 2 37	150 ^{-#} 15 62			
Y (ppm)	χ σ Ref	30 - 8	21.1 1.9 22			
(ppm)	χ σ Ref	3 - 8	2.21 0.30 22	2.33 0.10 27	2.86 0.26 29	2.31 47
Zn (ppm)	x o Ref	107 4 16	122 2 16	116 2 20	98.8 5.1 22	95.4 0.8 23
	χ σ Ref	101 14 29	112 - 46	102.3 - 55	105.0 - 55	
Zr (ppm)	x o Ref	150 - 8	178 5 20	132 15 21	187 34 22	178 - 46

APPENDIX F ELEMENTAL CONCENTRATIONS IN SDC-1 REPORTED BY INDIVIDUAL INVESTIGATORS

		ELEMENTAL (Reported by 1	CONCENTRATION Individual In				Ca (%)	x o Ref	1.0	1.04 0.01 17	1.05 0.02 20	1.34 [*] 0.06 22	1.04 0.02 54
Ag (ppb)	x o Ref	300 10	155 7 22	9.0 1.9 25	47 1 33			x o Ref	0.99 0.08 62				
A1 (%)	χ σ Ref	8.6 - 10	8.47 0.06 17	3.82 0.13 20	9.88 [*] 0.84 22	8.56 - 4 7	Cd (ppb)	π σ Ref	110 20 62				
	x o Ref	8.28 0.01 54	8.30 0.03 62				Ce (ppm)	x σ Ref	200	106 4 11	124 6 22	95 8	92 - 47
As (ppm)	x o Ref	<5 - 20					C7 (ppm)	_ х	38 5	23.4	17 8	29	47
Au (ppb)	x σ Ref	1.89 0.96 15	1.1 0.2 25				Co (ppm)	Ref x o	20 20 -	50 16.6 0.8	62 20.3 1.7	17.5 0.8	17.5
B (ppm)	x σ Ref	30 10	10 - 22	11.2 0.2 62			Cr (ppm)	Ref x σ	10 70 -	77.4 2.7	22 67.4 2.9	29 61 -	47
Ba (ppm)	x o Ref	1000*	530 86 11	675 18 20	526 35 22	649 33 29	Cs (ppm)	Ref x a Ref	3.85 0.24 11	3.82 0.17 29	22 3.84 - 47	47	
	χ σ Ref	690 - 47	641 2 56, 63				Cu (ppm)	x σ Ref	30 - 10	29.0 1.1 16	28.0 1.0 16	<46 - 22	32.6 0.8 23
Be (ppm)	x o Ref	3 - 10	2.57 0.06 16	3.78 0.14 22	2.52 0.15 41			x o Ref	27.5 - 55	30.0 - 55			
Bi (ppb)	χ σ Ref	<1000 - 22	278 52 39	276 12 64			Dv (ppm)	x o Ref	<3.16 - 22				
C (ppm)	x g Ref	140 - 10	297 - 48	380 40 54			Er (ppm)	χ σ Ref	<2.15 - 22				

Eu (ppm)	x o Ref	1.86 0.04 11	1.68 0.10 22	2.10 0.28 29	1.66 47			x o Ref	2.66 0.01 23	3.10* - 47	2.85 0.02 54	2.76 0.14 62	
F (ppm)	x σ Ref	621 2 16					La (ppm)	x g Ref	150* - 10	54.7 5.4 22	42.2 - 47		
Fe (%)	x o Ref	4.9	4.80 0.12 11	5.14 0.08 17	5.03 0.07 20	5.97 [*] 0.22 22	Li (ppm)	x o Ref	32.3 1.3 16	36 - 23			
	x σ Ref	4.87 0.20 29	4.88 - 47	4.78 0.04 54	4.49** 0.14 62		Lu (ppb)	χ σ Ref	490 - 47				
Ga (ppm)	χ σ Ref	30 - 10	20.3 1.9 22	23.6 - 55			Mg (%)	x o Ref	0.96 - 10	1.02 0.02 17	0.95 0.03 20	1.74 [*] 0.09 22	0.994 0.007 23
Gd (ppm)	x o Ref	<3.2 - 22	1.69 0.04 62					χ σ Ref	1.06 0.02 54	1.33** 0.15 62			
Ge (ppm)	x g Ref	1.57 0.20 52	1.5 - 52				Mn (ppm)	x o Ref	940 30 17	930 10 20	1280 [*] 70 22	826 2 23	930 - 54
H (ppm)	x o Ref	2060 50 62						x o Ref	800 10 62				
Hf (ppm)	x o Ref	8.14 0.50 11	8.30 0.04 14	8.03 0.38	7.21 - 47		Mo (ppm)	χ σ Ref	1.90 0.56 22				
Ho (ppm)	x x g Ref	< 1.0 - 22	14	29	47		Na (%)	x o Ref	1.6 - 10	1.44 0.02 17	1.54 0.03 17	1.47 0.02 20	1.54 0.01 23
K (%)		2.6	2.72	2.72	2.71	>1.0		χ σ Ref	1.46 - 47	1.66 0.07 54	1.41 0.07 62		
(%)	χ σ Ref	10	2.72 0.03 17	0.04 17	0.10 20	22	Nb (ppm)	x σ Ref	15 - 10	21.1 1.3 19	14.4 2.6 22	16.0 0.1 26,51	21 - 46

Nd (ppm)	x o Ref	100 * - 10	33.8 4.4 22	46.9 2.7 29	35 - 47	42 5 62		χ σ Ref	14.4 - 47				
Ni (ppm)	χ σ Ref	50 - 10	40.7 0.6 20	56.3 4.7 22	< 50 - 29	28 - 4 6	Si (%)	x σ Ref	30.7 10	30.9 0.1 17	30.5 0.2 20	31.0 0.2 54	29.4 0.8 62
	x g Ref	32.5 - 5 5	47.0 - 55				Sm (ppm)	χ σ Ref	5.18 [*] 0.34 22	9.00 0.24 29	9.03 - 47	7.37 0.14 62	
P (ppm)	x σ Ref	800 10	650 60 20	1060 160 22	720 20 50	610 40 54	Sn (ppm)	χ σ Ref	3 - 10	<3.2 - 22	3.02 0.10 40		
Pb (ppm)	x σ Ref	24.5 1.5 22					Sr (ppm)	χ σ Ref	200 - 10	183 9 16	171 2 16	200 5 20	239 6 22
Pd (ppb)	x σ Ref	30 (?) - 10						x o Ref	188 6 23	224 18 29	186 - 46		
Pr (ppm)	x o Ref	8.73 1.18 22					Ta (ppm)	x Ref	0.90 0.13 11	1.15 0.06 14	1.41 0.10 29	0.94 - 47	
Rb (ppm)	χ σ Ref	67.9 [*] 5.2 11	129 4 20	125 4 29	122 - 46	140 - 47	Tb (ppm)	x o Ref	1.35 0.12 11	1.21 0.06 29			
S (ppm)	x o Ref	480 40 20	671 - 48				Te (ppb)	x o kef	5.5 2.7 35				
Sb (ppb)	χ σ Ref	360 160 11	530 100 14	540 60 29	540 20 38		Th (ppm)	x σ Ref	14.2 0.3 11	11.4 0.8 13	<22 - 22	12.0 0.4 29	12.4
Sc (ppm)	x o Ref	20 - 10	15.8 0.5 11	19.0 1.6 20	19.7 3.6 22	15.0 0.5 29	Ti (ppm)	x g Ref	6290 210 17	6200 100 20	4840 [*] 200 22	6000 60 54	5590 40 6 2
							1						

Tm (ppb)	χ σ Ref	720 100 29					
U (ppm)	χ σ Ref	3.13 0.08 13	2.89 0.15 29				
V (ppm)	x o Ref	70 - 10	106 4 20	128 4 22	94 2 37	155 15 62	
Y (ppm)	x o Ref	70 10	44.0 6.7 22				
Yb (ppm)	x o Ref	7 10	5.13 0.57 22	5.59 0.51 29	3.20 47		
Zn (ppm)	χ σ Ref	105 3 16	107 2 16	104 5 20	108 8 22	100 1 23	
	χ σ Ref	83 12 29	73 [*] - 46	103.4 55	106 55		
Zr (ppm)	x o Ref	500 [*]	299 8 20	2 4 5 28 22	264 - 46		
			,				
							•

APPENDIX G ELEMENTAL CONCENTRATIONS IN SGR-1 REPORTED BY INDIVIDUAL INVESTIGATORS

			CONCENTRATION				Ca (%)	x	6.34	5.15 [*]	6.14	5.89	
		Reported by		Investigators			(%)	σ Ref	0.07 20	5.15 [*] 0.24 22	0.03 54	0.05 62	
Ag (ppb)	x o Ref	<100 - 22	19.2 1.2 25	,			Cd (ppm)	π σ Ref	1.03 0.04 62			-	
A1 (%)	x a Ref	3.83 0.14 20	3.57 0.20 22	3.30 - 47	3.32 0.02 54	3.65 0.10 62	Ce (ppm)	x σ Ref	31.2 2.1 11	58.9 5.3 22	41.6 3.7 29	38 - 47	
As (ppm)	χ σ Ref	74 1 20	66.2 47				C1 (ppm)	x o Ref	44 3 20	22.1	21 4 62		
Au (ppb)	x o Ref	8.9 0.3 15	10.8 1.8 25				Co (ppm)	x σ Ref	10.3 0.5 11	13.2 0.8 21	9.96 0.43 22	12.8 0.1 29	7.73 [*] - 47
B (ppm)	x g Ref	29.8 1.7 21	58.8 6.4 22	50.4 0.4 62			Cr (ppm)	x σ Ref	32.5 3.2 11	33.5 4.7 21	20.9 3.2 22	30 - 47	
Ва (ррт)	χ σ Ref χ	225* 120 11	328 8 20 286 3	322 12 21	361 46 22	333 29 29	Cs (ppm)	π σ Ref	4.61 0.36 11	5.33 0.23 29	5.32		
Se (ppm)	Ref x̄	- 47 0.91 0.01	56, 63 <1.0	0.86 0.08			Cu (ppm)	χ σ Ref	64.2 0.7 16	59.2 0.7 16	69.4 5.1 21	< 46 - 22	68.4 1.5 23
Bi	Kef	16	22 1.03	41				χ σ Ref	65.8 - 55	66.5 - 55			
(ppm)	σ Ref x	22	0.10 39				Dy (ppm)	π σ Ref	< 3. 16 - 22				
C (%)	χ σ Ref	27.03 - 4 8	3.020 ±0.036 54				Er (ppm)	x o Ref	< 2.15 - 22				

Eu (ppb)	x g Ref	520 74 11	<1000 - 22	720 160 29	530 - 47		Li (ppm)	x σ Ref	123 2 16	131 1 23			
Fe (%)	x g Ref	1.88 0.09 11	2.24 0.04 20	2.25 0.36 22	2.12 0.08 29	1.99 - 47	Lu (ppb)	x o Ref	200 - 47				
	x g Ref	2.04 0.02 54	2.00 0.12 62				Mg (%)	χ σ Ref	2.71 0.21 20	3.77 [*] 0.19 22	2.60 0.02 23	2.76 0.02 54	3.11 ^{**} 0.20 62
Ga (ppm)	x g Ref	12.2 2.7 21	5.52 0.33 22	8.6 - 55			Mn (ppm)	π σ Ref	330 10 20	297 7 21	302 31 22	250 1 23	300 - 54
Gd (ppm)	x o Ref	<3.2 - 22	1.69 0.04 62					x o Ref	230 10 62				34
H (%)	x σ Ref	3.01 0.02 62					Mo (ppm)	π σ Ref	36.1 3.3 22	35.7 - 29			
Hf (ppm)	x o Ref	1.31 0.26 11	1.41 0.05 14	1.34 0.06 29	1.37 - 47		Na (%)	x σ Ref	1.97 0.04 20	2.24 0.01 23	2.17 - 47	2.55 0.08 54	1.96 0.11 62
Ho (ppm)	x σ Ref	<1.0 - 22					Nb (ppm)	x σ Ref	5.31 0.91 22	5.3 - 26, 51	3 - 46		
K (%)	χ σ Ref	1.42 0.04 20	> 1.0 - 22	1.33 0.01 23	1.61 - 47	1.50 0.03 54	Nd (ppm)	x σ Ref	37.0 1.9 22	15.8 0.8 29	16 - 47	10 3 62	
	χ σ Ref	1.29 0.08 62					Ni (ppm)	х σ	39 2 20	31.4 1.8 21	32.3 1.2 22	34 4 29	21 - 46
La (ppm)	χ σ Ref	31.7 4.8 22	18.8 - 47					Ref x o Ref	27.9 - 55	35 - 55	22	29	46

558 38 22
4.9 - 47
1380 20 62
140 15 62

Z n (ppm)	x o Ref	81.6 1.5 16	85.3 1.0 16	96 10 20	66.4 4.0 22	72.1 0.4 23
	x o Ref	78 11 29	37* -46	82.2 - 55	81.0 - 55	
Zr (ppm)	x σ Ref	59 5 20	52.3 8.4 21	105 [*] 13 22	63 - 4 6	

APPENDIX H ELEMENTAL CONCENTRATIONS IN STM-3 REPORTED BY INDIVIDUAL INVESTIGATORS

			ONCENTRATIONS				Ca (%)	x	0.83	0.71	0.74 0.01	0.82 0.09	1.78 [*] 0.18 22
		Reported by 1	ndividual In	nvestigators			\ \"	g Ref	5	0.01 18	18	20	22
Ag (ppb)	χ σ Ref	395 26 2 2	8.0 1.8 25	78 5 33				χ σ Ref	0.829 0.007 54				
Al (%)	x o Ref	9.84 - 5	9.91 0.08 20	9.67 0.64 22	9.65 - 47	9.87 0.03 54	Ce (ppm)	χ σ Ref	530 [*] 180 5	73.1* 10.2 11	354 14 22	226 19 27	291 26 29
As (ppm)	x σ Ref	< 5 ~ 20						π σ Ref	273 - 47				
Au (ppb)	x σ Ref	0.43 0.12 15	0.36 0.07 25				Cl (ppm)	χ σ Ref	500 - 5	420 40 20	452 - 50	431 - 61	
B (ppm)	x o Ref	<10 - 22					Co (ppm)	χ σ Ref	0.325 0.056 11	7.5 1.7 18	11.2 2.4 18	<1.0 - 22	1.10 0.05 29
Ba (ppm)	x o	484 94 5	551 59	612 7 20	771 109 22	614 45 29		χ σ Ref	0.99 - 4 7				
	Ref X o Ref	620 - 47	11 584 1 56, 63	20	22	29	Cr (ppm)	π σ Ref	2 1 5	74.1 [*] 3.6 11	2.54 0.34 22	3.4 1.1 44	8.8* - 47
Be (ppm)	x o	9.0	9.02 0.12	11.85 0.50	8.75 0.34			x o Ref	1.4 0.1 57				
Bi (ppb)	Ref	3.6 5 <1000	16	0.50 22 250	0.34 41		Cs (ppm)	x σ Ref	1.47 0.11 11	1.48 0.07 29	1.64 - 47		
	Ref	22	29 39	62 64			Cu (ppm)	χ σ	3	4.78 0.91	3.3 0.6	5.8 0.4	<1+2.2 -
C (ppm)	x o Ref	30 - 5	61 - 48	100 10 54				Ref x o Ref	5 6 1 23	16 1.0 55	18 7* 55	18 2.0 0.1 59	22

Dy (ppm)	χ σ Ref	< 3.1	7.8 0.4 27				In (ppb)	x o Ref	87 - 42				
Er (ppm)	x o Ref	<2.15 - 22	4.4 0.2 27				K (%)	x σ Ref	3.54	3.57 0.01 18	3.60 0.03 18	3.54 0.01 20	5.19 [*] 0.30 22
Eu (ppm)	χ σ Ref	4.03 0.05 11	3.86 0.12 22	3.00 0.13 27	3.70 0.20 29	3.52 - 47		x o Ref	3.51 0.01 23	4.40 [*] - 47	3.68 0.08 54		
F (ppm)	x σ Ref	1000 - 5	900 14 16				La (ppm)	x o Ref	190 60 5	197 5 22	140 6 27	162 - 47	
Fe (%)	x σ Ref	3.63	3.38 0.07 11	3.59 0.07 18	3.59 0.02 18	3.75 0.01 20	Li (ppm)	x o Ref	32.3 1.7 16	27.2 0.9 18	20.0 0.6 18	36.1 0.4 23	
	χ σ Ref	3.88 0.38 22	3.75 0.09 29	3.57 - 47	3.61 0.02 54		Lu (ppb)	x σ Ref	650 30 27	660 47			
Ga (ppm)	x o Ref	36 7 5	64.3 [*] 4.3 22	37.0 - 55	38 - 59		Mg (ppm)	x σ Ref	600	400 100 18	500 100 18	2100 [*] 500 20	1030 [*] 50 22
Gd (ppm)	x o Ref	<3.2 - 22	8.4 1.6 27	13.8 1.1 29				χ σ Ref	595 11 23	660 60 54			
Ge (ppm)	x σ Ref	1.43 0.02 52	1.3				Mn (ppm)	x σ Ref	1600 200 5	1700 100 18	1700 100 18	1960 10 20	2460 [*] 40 22
Hf (ppm)	x σ Ref	26.4 0.5 11	28.9 1.6 14	27.2 1.3 29	24.8 47			π σ Ref	1570 5 23	1800 - 54			
Ho (ppm)	χ σ Ref	1.7 0.2 27					Mo (ppm)	x σ Ref	6 3 5	7.9 2.2 22	5.2 - 29	4.98 0.18 32	4.4 0.3 65

Na (%)	π σ Ref	6.68 - 5	6.64 0.03 18	6.39 0.06 18	6.62 0.10 20	6.48 0.01 23	Sb (ppm)	x o Ref	1.88 0.05 11	1.67 0.06 14	1.66 0.18 29	1.65 0.08 38	1.6 - 47
	x o Ref	6.81 - 47	6.68 0.19 54				Sc (ppb)	x . σ Ref	675 21 11	<5000 - 20	680 20 29	680 - 47	
Nb (ppm)	χ σ Ref	300 30 5	189 22 22	262 10 26, 51	255 - 46		Se (ppb)	x σ Ref	10 - 60	·			
Nd (ppm)	x g Ref	55.7 7.3 22	75.5 3.6 27	79.0 9.0 29	85 47		Si (%)	x σ Ref	27.8	28.1 0.1 20	27.3 2.4 22	28.0 0.1 54	
Ni (ppm)	χ σ Ref	2 1 5	<4+8 - 20 3	1.65 0.21 22	<50 - 29	0.5 - 46	Sm (ppm)	x σ Ref	15.8 0.7 22	11.6 0.3 27	14.2 0.5 29	19.3 - 47	
P (ppm)	x o Ref	1.7 - 55 700	- 55	730	74 0	700	Sn (ppm)	x σ Ref	12 1 5	11.2 0.7 22	6.9 1.0 40		
(ppm)	x o Ref x o Ref	700 -5 1820* -58	700 40 20	730 110 22	740 10 50	700 70 54	Sr (ppm)	x o Ref	770 260 5	717 11 16	673 2 16	711 7 20	843 41 22
Pb (ppm)	Ref x σ	58 16 7 5	17.7 0.93 22	,				x o Ref	609 16 23	735 58 29	765 - 46		
Pr (ppm)	Ref x g Ref	5 19.4 0.3 22	22				Ta (ppm)	π σ Ref	18.0 0.5 11	17.3 0.5 14	7.9 [*] 0.6 25	20.5 0.4 29	17.3 47
Rb (ppm)	Ref x g Ref	22 56.0 [*] 3.4 11	113 1 20	120 3 29	129 - 4 6	130 - 52	Tb (ppm)	π σ Ref	2.10 0.03 11	1.38 0.09 27	1.57 0.15 29		
S (ppm)	Ref x		< 50		46	52	Te (ppb)	π σ Ref	< 5 - 35				
(ppm)	Ref	<100 - 5	- 20	22 - 48			1						

Th (ppm)	x σ Ref	38.8 0.6 11	26.6 1.2 13	<22 - 22	31.0 1.0 29	35.5 47
Ti (ppm)	x o Ref	950 180 5	960 60 20	900 50 22	840 60 54	
U (ppm)	χ σ Ref	9.10 0.14 13	9.15 0.59 29			
V (ppm)	χ σ Ref	<10 - 20	2.0 0.2 37			
Y (ppm)	x σ Ref	57 11 5	48.4 4.2 22			
Yb (ppm)	χ σ Ref	4 1 5	6.67 [*] 0.35 22	4.26 0.23 27	4.59 0.42 29	
Zn (ppm)	x o Ref	245 2 16	242 1 16	212 2 18	277 13 18	260 8 20
	χ σ Ref	177 [*] 5 22	244 2 23	236 34 29	186 [*] - 46	238.9
	χ σ Ref	243.5	209 - 59			
Zr (ppm)	π σ Ref	1200 200 5	1230 10 20	> 680 - 22	1350 - 46	