Analisi di Immagini e Video (Computer Vision)

Giuseppe Manco

Outline

- Image Processing avanzato
 - Edge detection
 - Fourier Transform

Crediti

- Slides adattate da vari corsi
 - Analisi di Immagini (F. Angiulli) Unical
 - Intro to Computer Vision (J. Tompkin) CS Brown Edu
 - Computer Vision (I. Gkioulekas), CS CMU Edu

Analisi di Fourier

Trasformata di Fourier

$$A\sin(\omega x + \phi)$$

Ogni segnale periodico è una combinazione di queste componenti

Trasformata di Fourier

$$A\sum_{k=1}^{\infty} \frac{1}{k} \sin(2\pi kx)$$

$$A\sum_{k=1}^{\infty} \frac{1}{k} \sin(2\pi kx)$$

Dominio spaziale

Dominio frequenze

?

 k_y

Dominio spaziale

Dominio frequenze

 k_x

Qual è il corrispondente di questa immagine?

Trasformata di Fourier

Diretta

Inversa

$$F(k) = \int_{-\infty}^{\infty} f(x)e^{-j2\pi kx}dx \qquad f(x) = \int_{-\infty}^{\infty} F(k)e^{j2\pi kx}dx$$

$$f(x) = \int_{-\infty}^{\infty} F(k)e^{j2\pi kx} dx$$

$$F(k) = \sum_{k=0}^{N-1} f(x)e^{-j2\pi \frac{k}{N}x}$$

$$f(x) = \frac{1}{N} \sum_{k=0}^{N-1} F(k) e^{j2\pi \frac{k}{N}x}$$

$$x = 0, 1, 2, ..., N-1$$

Trasformata di Fourier

Diretta

Inversa

$$\bigcap_{k=0,1,2,...,N-1} F(k) = \sum_{k=0}^{N-1} f(x)e^{-j2\pi \frac{k}{N}x} \qquad f(x) = \frac{1}{N} \sum_{k=0}^{N-1} F(k)e^{j2\pi \frac{k}{N}x}$$

$$\bigcap_{h=0,1,2,\dots,N-1,k=0,1,2,\dots,M-1}^{N-1} F(x,y)e^{-j2\pi\left(\frac{xh}{N}+\frac{yk}{M}\right)} \qquad f(x,y) = \frac{1}{NM} \sum_{h=0}^{N-1} \sum_{k=0}^{M-1} F(h,k)e^{j2\pi\left(\frac{xh}{N}+\frac{yk}{M}\right)}$$

$$\underset{x=0,1,2,\dots,N-1,y=0,1,2,\dots,M-1}{\sum_{k=0,1,2,\dots,N-1,y=0,1,2,\dots,M-1}} F(h,k)e^{j2\pi\left(\frac{xh}{N}+\frac{yk}{M}\right)}$$

Trasformata di Fourier nel dominio reale

$$\mathfrak{F}(f(x,y)) = F(h,k) = |F(h,k)|e^{-j\phi(h,k)}$$

Ampiezza

$$|F(h,k)| = |R^2(h,k) + I^2(h,k)|$$

Fase

$$\phi(h,k) = \tan^{-1} \frac{I(h,k)}{R(h,k)}$$

La trasformata di immagini

Applicazioni della FT

- Frequency-Domain Filtering
 - Teorema di convoluzione

$$f(x,y) * h(x,y) = \mathfrak{F}(f(x,y)) \cdot \mathfrak{F}(h(x,y))$$

- Conseguenza
 - Filtraggio come moltiplicazione di matrici
 - Dominio spaziale -> FT->moltiplicazione ->IFT

Alcune trasformate utili

Name	Signal			Transform	
impulse		$\delta(x)$	\Leftrightarrow	1	
shifted impulse	Am Am om om om	$\delta(x-u)$	\Leftrightarrow	$e^{-j\omega u}$	
box filter		box(x/a)	\Leftrightarrow	$a\mathrm{sinc}(a\omega)$	
tent		tent(x/a)	\Leftrightarrow	$a\mathrm{sinc}^2(a\omega)$	
Gaussian		$G(x;\sigma)$	\Leftrightarrow	$\frac{\sqrt{2\pi}}{\sigma}G(\omega;\sigma^{-1})$	2 m
Laplacian of Gaussian		$(\frac{x^2}{\sigma^4} - \frac{1}{\sigma^2})G(x;\sigma)$	\Leftrightarrow	$-\frac{\sqrt{2\pi}}{\sigma}\omega^2 G(\omega;\sigma^{-1})$	
Gabor		$\cos(\omega_0 x)G(x;\sigma)$	\Leftrightarrow	$\frac{\sqrt{2\pi}}{\sigma}G(\omega\pm\omega_0;\sigma^{-1})$	
unsharp mask	10 10 10 10 10 10 10 10 10 10 10 10 10 1	$(1+\gamma)\delta(x) - \gamma G(x;\sigma)$	\Leftrightarrow	$\frac{(1+\gamma)-}{\frac{\sqrt{2\pi}\gamma}{\sigma}G(\omega;\sigma^{-1})}$	2 day
windowed sinc		$\frac{\operatorname{rcos}(x/(aW))}{\operatorname{sinc}(x/a)}$	\Leftrightarrow	(see Figure 3.29)	and the state of t