Remy Robotics test task

- 1. You have to implement in C ++ the class Robot with methods for solving direct and inverse kinematics.
- 2. It is necessary to write a C ++ program that reads information about the required trajectory of the robot manipulator from a file and sends control signals over the connection and recieves a feedback.

DH parameters table

Link No	Twist (a)	Link length (a)	Link offset (d)	Joint angle (θ)
0	0	0	-	-
1	$\pi/2$	10	0	θ_1
2	0	5	0	θ_2
3	0	5	0	θ_3

Joints limits table

Joint No	Min limit	Max limit
1	-π	π
2	$-\pi/2$	$\pi/2$
3	-π	π

Connection.h and input.h files are avaliable [here] (https://drive.google.com/open?id=1xAEofo-9OM8gq9_0fScbL9h00NLjnkhy).

Assumptions:

- a) The points of the trajectory do not go beyond the limits of the working area, the format of the file with points is always correct.
- b) The response time of the robot (ping) and the execution time inside the Connection class should be considered zero
- c) the robot receives at the input the values of angles in the joints in radians. The frequency of sending commands to the robot should not exceed 50 Hz.
- d) Encoders in joints have 12 bit per revolution accuracy. In the initial position, all encoders are set to zero, θ -angles are also set to zero.
- e) The robot returns the current position in the form of three angles in radians relative to the initial position. A four-byte fractional value. Data could be read from vector with explicit pointer conversion.
- f) Global coordinate system.

The Z axis is the axis of rotation of the first joint. The X axis is directed along the first shoulder and intersects with the axis of rotation of the second joint. The Y axis complements the right hand vectors tripse XYZ.

- g) The Connection.h file with contains methods definitions. For the given robot the arguments should have dimension equals to 12. (data.size() == 12).
- h) The input in file represents an input trajectory. Each row contains x, y, z coordinates of a point delimited by space and execution time from the beginning (in seconds), when the robot end-effector should be at the given position.