みんなのデータ構造 (Pat Morin) exercises

37zigen

2020年9月4日

1 スケープゴート木

1.1

 $\operatorname{size}(\operatorname{u}) \leq (2/3)\operatorname{size}(\operatorname{u.parent})$ ()より、根の高さ h と頂点数 n は $(3/2)^h \leq n$ の関係にあるから、 $h \leq \log_{3/2} n$ となる.木の高さが $O(\log n)$ だから add と remove は $O(\log n)$ で実行できる.

add または remove を実行後、 が満たされていない頂点 v を根とする部分 木を完全二分木に構成する計算量を解析する。 $\mathrm{size}(v.\mathrm{left}) > (2/3)\mathrm{size}(v)$ と 仮定しても一般性を失わない。

$$size(v.left) - size(v.right) = 2size(v.left) - size(v) + 1 > (1/3)size(v)$$

の直後 size(v.left) - size(v.right) ≤ 1 だからその後 (1/3)size(v) 回以上 add または remove が行われている. よって rebuild の計算量は均し $O(\log n)$.

2 整列アルゴリズム

2.1

要素 a と b (a < b) が比較される確率は 2/(b-a+1). d=b-a+1 毎に和を取ると $\sum_{d=2}^n (2/d)(n-d+1) = 2(n+1)H_n - 4n$.

要素 a がピボット a と比較される確率は $a \in \{0, n-1\}$ のとき 1/2, そうでないとき 2/3. 和は (2/3)n-1/3.

答えは n>2 のとき $2(n+1)H_n-4n+(2/3)n-1/3=2(n+1)H_n-(10/3)n-1/3$. n=1 のとき 0.