احتمال پیشرفته		
Rosenthal, J. S. Company.	(2006). A first look at rigorous probability theory. World Scientific Publishing	مرجع
صفحه 6	عبداله جلیلیان، گروه آمار دانشگاه رازی	مدرس

جلسەي چھارم

مجموعهی ${\mathcal J}$ از زیرمجموعههای Ω را یک شبهجبر (نیمجبر) گویند هرگاه

- $\emptyset, \Omega \in \mathcal{J}$ •

$$\emptyset, \Omega \in \mathcal{J}$$
 • $\bigcap_{i=1}^n A_i \in \mathcal{J}$ نسبت به اشتراک متناهی بسته است؛ یعنی اگر \mathcal{J} اگر $A_1,\dots,A_n \in \mathcal{J}$ نسبت به اشتراک متناهی بسته است؛ یعنی اگر $A^c = \bigcup_{i=1}^m A_i$ و $i \neq j$ ، $A_i \cap A_j = \emptyset$ و ماگر $A_i \cap A_j = \emptyset$ و اگر $A_i \cap A_j$

 Ω اگر $\Omega=[0,1]$ و Ω مجموعهی همهی بازههای درون Ω باشد، آنگاه $\mathcal J$ یـک شـبهجبر از زیرمجموعههـای Ω

مثال ۲: فرض کنید
$$\Omega=\{(r_1,r_2,r_3,\dots):r_i\in\{0,1\}\}$$
 و $\mathcal{J}=\{A_{a_1a_2\cdots a_n}:n\in\mathbb{N},a_1,\dots,a_n\in\{0,1\}\}\cup\{\emptyset,\Omega\}$ که در آن

$$A_{a_1 a_2 \cdots a_n} = \{ (r_1, r_2, r_3, \dots) \in \Omega : r_1 = a_1, \dots, r_n = a_n \}$$

 Ω استوانهای با قاعدهی $a_1,\dots,a_n\in\{0,1\}$ را تعریف میکند. در این صورت $a_1,\dots,a_n\in\{0,1\}$ است.

مثال ۳: اگر
$$\Omega = [0,1] imes [0,1]$$
 و

$$\mathcal{J} = \{[a,b] \times [c,d]: 0 \leq a \leq b \leq 1, 0 \leq c \leq d \leq 1\} \cup \emptyset$$

آنگاه $\mathcal I$ یک شبهچیر از زیرمجموعههای Ω است.

قضیه (قضیه توسیع): فرض کنید ${\mathcal J}$ یک شبهجبر از زیرمجموعههای Ω و [0,1] و $P:{\mathcal J} o [0,1]$ تــابع مجمــوعهای باشــد که $P(\emptyset)=0$ و به علاوه در دوشرط زیر صدق کند

برای هر
$$\mathcal{J}=\{a_i, a_i\in\mathcal{J} : A_i \cap A_j=\emptyset \$$
که که $\{A_1,\dots,A_n\in\mathcal{J} : i\neq j: A_i\cap A_j=\emptyset \}$ داشته باشیم •

$$P\left(\bigcup_{i=1}^{n}\right) \ge \sum_{i=1}^{n} P(A_i)$$

برای هر \mathcal{J} داشته باشیم $A\subset igcup_{i=1}^\infty A_i$ که $A,A_1,A_2,\ldots\in \mathcal{J}$ داشته باشیم •

$$P(A) \le \sum_{i=1}^{\infty} P(A_i)$$

احتمال پیشرفته			
Rosenthal, J. S. (2006). <i>A first look at rigorous probability theory</i> . World Scientific Publishing Company.		مرجع	
صفحه 7	عبداله جلیلیان، گروه آمار دانشگاه رازی	مدرس	

در این صـورت سـیگماجبر ${\mathcal M}$ از زیرمجموعههـای Ω و انـدازهی احتمـال P^* روی ${\mathcal M}$ موجــود هسـتند بهطـوری کــه $P^*(A)=P(A)$. ${\mathcal F}(A)=P(A)$ و به ازای هر ${\mathcal F}(A)=P(A)$.

P ایدهی قضیه: ساختن سهتایی احتمال (Ω,\mathcal{M},P^*) بر اساس شبهجبر $\mathcal J$ و تابع مجموعهای

قضیه: شرطهای تابع $\, \, \, \, \, \, \, \, \, \, \, \, \,$ در قضیهی توسیع را میتوان با شرط زیر جایگزین کرد.

برای هر
$$\bigcup_{i=1}^\infty A_i\in\mathcal{J}$$
 و $i
eq j$ ، $A_i\cap A_j=\emptyset$ داشته باشیم $P\left(igcup_{i=1}^\infty A_i\right)=\sum_{i=1}^\infty P(A_i)$

در مثال ۱، تابع مجموعهای P((a,b))=P([a,b])=P([a,b])=P([a,b])=0 در شرط بالا صدق و در مثال ۱، تابع مجموعهای P^* است. در این مثـال نتیجه بنابر قضیهی توسیع قابـل گسـترش بـه P^* (انـدازهی لبـگ) روی \mathcal{M} (سـیگماجبر لبـگ) اسـت. در این مثـال میتوان نشان داد که $\mathcal{M} \neq \mathcal{D}$ وجود دارد به طوری که $\mathcal{M} \notin \mathcal{M}$ ؛ یعنی $\mathcal{M} \neq \mathcal{D}$

در مثال ۲، تابع مجموعهای $P(A_{a_1a_2\cdots a_n})=1/2^n$ در شـرط بـالا صـدق و در نتیجـه بنـابر قضـیهی توسـیع قابـل گسترش به P^* روی \mathcal{P} است.

در مثال ۳، تابع مجموعهای P([a,b] imes [c,d]) = (b-a)(d-c) در شـرط بـالا صــدق و در نتیجــه بنــابر قضــیهی توسیع قابل گسترش به \mathcal{P}^* روی \mathcal{P} است.