Algebra — Blatt 14 — (Tutoriumsblatt)

Aufgabe 0 (Vorbereitung auf das Tutorium)

- (a) Sei L|K eine Galois-Erweiterung bestehend aus endlichen Körpern K und L. Was ist laut Vorlesung über die Galois-Gruppe Gal(L|K) bekannt?
- (b) Sei $\zeta_{12} \in \mathbb{C}^{\times}$ eine primitive 12-te Einheitswurzel. Geben Sie sämtliche Bilder von ζ_{12} unter beliebigen Elementen der Galois-Gruppe an.
- (c) Ist die Galois-Gruppe $\operatorname{Gal}(\mathbb{Q}(\zeta_{12})|\mathbb{Q}))$ zyklisch?
- (d) Wieviele der Zwischenkörper von $\mathbb{Q}(\zeta_{12})|\mathbb{Q}$ sind selbst Kreisteilungskörper?

Aufgabe 1

Sei $\mathbb{F}_2^{\text{alg}}$ ein algebraischer Abschluss von \mathbb{F}_2 und $\alpha \in \mathbb{F}_2^{\text{alg}}$ eine Nullstelle von $f = x^6 + x + \bar{1}$. Ohne Beweis darf verwendet werden, dass f in $\mathbb{F}_2[x]$ irreduzibel ist.

- (a) Bestimmen Sie die Ordnung des Elements α in der multiplikativen Gruppe von $\mathbb{F}_2^{\text{alg}}$.
- (b) Sei β ein Element in $\langle \alpha \rangle$. Beweisen Sie die Äquivalenzen $\beta^3 = \bar{1} \Leftrightarrow [\mathbb{F}_2(\beta) : \mathbb{F}_2] \in \{1,2\}$ und $\beta^7 = \bar{1} \Leftrightarrow [\mathbb{F}_2(\beta) : \mathbb{F}_2] \in \{1,3\}$.
- (c) Bestimmen Sie für jeden Zwischenkörper von $\mathbb{F}_2(\alpha)|\mathbb{F}_2$ ein erzeugendes Element.

Aufgabe 2

Sei $\zeta_5 \in \mathbb{C}^{\times}$ eine primitive 5-te Einheitswurzel und $G = \operatorname{Gal}(\mathbb{Q}(\zeta_5)|\mathbb{Q})$.

- (a) Bestimmen Sie die Bahn von ζ_5 unter der Operation von G auf $\mathbb{Q}(\zeta_5)$.
- (b) Begründen Sie, dass die Erweiterung $\mathbb{Q}(\zeta_5)|\mathbb{Q}$ genau einen echten Zwischenkörper besitzt.
- (c) Zeigen Sie, dass $\mathbb{Q}(\sqrt{5})$ dieser Zwischenkörper ist. Betrachten Sie dazu die Bahn von ζ_5 unter der Operation von $\langle \sigma^2 \rangle$, wobei σ ein erzeugendes Element von $\operatorname{Gal}(\mathbb{Q}(\zeta_5)|\mathbb{Q})$ bezeichnet.

Aufgabe 3

Sei $\zeta_{15} \in \mathbb{C}^{\times}$ eine primitive 15-te Einheitswurzel.

- (a) Geben Sie zyklische Gruppen an, so dass $Gal(\mathbb{Q}(\zeta_{15})|\mathbb{Q})$ isomorph zum äußeren direkten Produkt dieser Gruppen ist (mit Nachweis).
- (b) Begründen Sie mit Hilfe von Aufgabe 2 des aktuellen Blatts und mit dem Ergebnis der Aufgabe 2 vom Tutoriumsblatt 13, dass die Zwischenkörper K von $\mathbb{Q}(\zeta_{15})|\mathbb{Q}$ mit $[K:\mathbb{Q}]=2$ durch $\mathbb{Q}(\sqrt{-3})$, $\mathbb{Q}(\sqrt{5})$ und $\mathbb{Q}(\sqrt{-15})$ gegeben sind.

Aufgabe 4 (Zahlentheorie)

Sei K ein Körper mit char $(K) \neq 5$ und $f = x^4 + x^3 + x^2 + x + 1 \in K[x]$.

- (a) Zeigen Sie, dass f genau dann über K in Linearfaktoren zerfällt, wenn die multiplikative Gruppe K^{\times} ein Element der Ordnung 5 enthält.
- (b) Sei nun $K = \mathbb{F}_p$ für eine Primzahl p. Beweisen Sie die folgenden Äquivalenzen:
 - (i) $p \equiv 0$ oder $1 \, \mathrm{mod} \, 5 \, \Leftrightarrow f$ zerfällt über K in Linearfaktoren
 - (ii) $p \equiv 4 \, \mathrm{mod} \, 5 \, \Leftrightarrow f$ ist in K[x] Produkt zweier irreduzibler Faktoren vom Grad 2
 - (iii) $p \equiv 2 \text{ oder } 3 \mod 5 \Leftrightarrow f \text{ ist in } K[x] \text{ irreduzibel}$

 $\textit{Hinweis:} \quad \text{Betrachten Sie die Ordnungen der multiplikativen Gruppen } \mathbb{F}_p^{\times} \text{ und } \mathbb{F}_{p^2}^{\times}.$

Dieses Blatt wird vom 7. bis zum 10. Februar im Tutorium bearbeitet.