Sex

```
library(data.table)
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:data.table':
##
##
       between, first, last
## The following objects are masked from 'package:stats':
##
##
       filter, lag
## The following objects are masked from 'package:base':
##
       intersect, setdiff, setequal, union
library(ggplot2)
library(reshape2)
##
## Attaching package: 'reshape2'
## The following objects are masked from 'package:data.table':
##
##
       dcast, melt
library(scales)
library(parallel)
library(stringr)
library(knitr)
Load metadata
dt.hip.stats = fread("annotations/hip_stats.txt") %>%
  filter(!is.na(sex)) %>%
  mutate(count_total = count, occurrences_total = diversity) %>%
  select(sample_id, sex, count_total, occurrences_total)
Load VDJdb annotations with 1 mismatch for HIP data (time consuming, ~ 2mln clonotypes)
dt.hip = rbindlist(mclapply(as.list(dt.hip.stats$sample_id),
                   function(x) fread(paste0("annotations/split_1mm/", x, ".annot.txt")) %>%
                     mutate(sample_id = x), mc.cores = 40)) %>%
  group_by(sample_id, cdr3) %>%
  summarise(count = sum(count), occurrences = n())
VDJdb data
dt.vdjdb = fread("rearr_model/VDJDB_fullP_rob_ageing.txt") %>%
  filter(gene == "TRB", mhc.class == "MHCI") %>%
  mutate(hla_spec = str_split_fixed(mhc.a, pattern = "[:,]", 2)[,1]) %>%
  select(cdr3, hla_spec, antigen.epitope, antigen.species) %>%
  group_by(antigen.epitope) %>%
  mutate(unique_cdrs = n()) %>%
```

```
filter(unique_cdrs > 30) %>%
      select(cdr3, antigen.epitope, antigen.species, unique_cdrs)
Merge
dt.hip.m = dt.hip %>%
      merge(dt.hip.stats) %>%
      merge(dt.vdjdb)
Summarise by sex
dt.hip.s = as.data.table(dt.hip.m) %>%
      group_by(sample_id, sex, antigen.epitope, antigen.species, unique_cdrs) %>%
      summarise(occurrences = sum(occurrences)) %>%
      group_by(sample_id) %>%
      mutate(occurrences_share = occurrences / sum(occurrences) / unique_cdrs)
dt.p = data.table(antigen.epitope = unique(dt.hip.s$antigen.epitope), p = 1, freq.ratio = 1) %>%
      merge(dt.hip.s %>% ungroup %>% select(antigen.species, antigen.epitope) %>% unique)
for (i in 1:nrow(dt.p)) {
      tmp = dt.hip.s %>% filter(antigen.epitope == dt.p$antigen.epitope[i])
      dt.p$freq.ratio[i] = with(tmp, mean(occurrences_share[which(sex=="male")]) / mean(occurrences_share[with(sex=="male")]) / mean(occurrences_share[with(sex=="
      dt.p$p[i] = t.test(occurrences_share ~ sex, tmp)$p.value
dt.p$p = p.adjust(dt.p$p, method = "BH")
dt.p$len = nchar(as.character(dt.p$antigen.epitope))
kable(dt.p %>% arrange(p))
```

antigen.epitope	p	freq.ratio	antigen.species	len
KAFSPEVIPMF	0.0003249	0.9633999	HIV-1	11
NLVPMVATV	0.0217787	0.9872201	CMV	9
RAKFKQLL	0.0614911	1.0185100	EBV	8
ATDALMTGY	0.0691821	1.0262347	HCV	9
KRWIILGLNK	0.1478753	1.0110325	HIV-1	10
TPQDLNTML	0.1478753	0.9827688	HIV-1	9
HSKKKCDEL	0.2400929	1.0502778	HCV	9
EIYKRWII	0.3729144	0.9770035	HIV-1	8
FPRPWLHGL	0.4941968	1.0188903	HIV-1	9
GILGFVFTL	0.4969108	1.0073121	InfluenzaA	9
HPKVSSEVHI	0.4969108	0.9822849	HIV-1	10
IPSINVHHY	0.4969108	0.9845237	CMV	9
YVLDHLIVV	0.4969108	0.9883074	EBV	9
CINGVCWTV	0.6009167	0.9858520	HCV	9
KRWIIMGLNK	0.6009167	1.0125451	HIV-1	10
LLWNGPMAV	0.6009167	1.0056339	YellowFeverVirus	9
LPRRSGAAGA	0.6220877	1.0048834	InfluenzaA	10
RPRGEVRFL	0.6220877	0.9822155	HSV-2	9
AMFWSVPTV	0.6506679	1.0081599	HomoSapiens	9
GLCTLVAML	0.6506679	1.0036908	EBV	9
SLYNTVATL	0.6648368	0.9871165	HIV-1	9
EPLPQGQLTAY	0.6868217	1.0329359	EBV	11
LPPIVAKEI	0.7270800	1.0076104	HIV-1	9

antigen.epitope	p	freq.ratio	antigen.species	len
KLVALGINAV	0.7700850	0.9959509	HCV	10
ISPRTLNAW	0.8539696	0.9942793	HIV-1	9
GPGHKARVL	0.8609838	0.9946194	HIV-1	9
IIKDYGKQM	0.8609838	0.9921577	HIV-1	9
TPRVTGGGAM	0.8609838	1.0050668	CMV	10
ELAGIGILTV	0.9125300	1.0004072	HomoSapiens	10
FLKEKGGL	0.9125300	0.9977665	HIV-1	8
TPGPGVRYPL	0.9125300	1.0021031	HIV-1	10
VTEHDTLLY	0.9125300	1.0009461	CMV	9
FLYNLLTRV	0.9877709	1.0001565	HomoSapiens	9
LLLGIGILV	0.9877709	0.9999372	HomoSapiens	9

```
good_epi = (dt.p %>% filter(p < 0.05))$antigen.epitope</pre>
dt.hip.s = dt.hip.s %>%
 mutate(antigen.epitope = ifelse(antigen.epitope %in% good_epi, paste(antigen.epitope, "(*)"),antigen.
dt.hip.s.s = dt.hip.s %>%
  #filter(ucb == T) %>%
  group_by(antigen.epitope) %>%
  summarise(freq = mean(occurrences_share[which(sex == "male")]))
dt.hip.s$antigen.epitope = factor(dt.hip.s$antigen.epitope,
                                    levels = dt.hip.s.s$antigen.epitope[order(dt.hip.s.s$freq)])
ggplot(dt.hip.s, aes(x = antigen.epitope, group = paste(antigen.epitope,sex),
                        fill = sex, color = sex,
                       y = occurrences_share)) +
  geom_boxplot(color = "black") +
  coord_flip() +
  scale_fill_brewer(palette = "Set1") +
  scale_color_brewer(palette = "Set1") +
  xlab("") + scale_y_continuous("Share of annotated rearrangements",
                                expand = c(0,0)) +
  theme_bw() +
  theme(aspect = 1.1,
        panel.grid.major = element_blank(), panel.grid.minor = element_blank())
```

