ЗАДАНИЕ ПО ФИЗИКЕ ВАРИАНТ 27101 для 10-го класса

1. Некоторое количество одноатомного идеального газа совершает два различных процесса a и δ (см. рис.). Сравните теплоемкости газа в этих процессах в точке \boldsymbol{D} .

- 2. Два тела, массы которых равны m_1 и $m_2 = 2m_1$, начинают двигаться в поле силы тяжести. В начальный момент времени их скорости взаимно перпендикулярны и равны, соответственно, v_1 =3 м/с и v_2 =4 м/с. Через некоторый промежуток времени скорость первого тела стала равна нулю. Найдите скорость второго тела через тот же промежуток времени. Сила сопротивления движению отсутствует.
- 3. Анод и катод вакуумного диода представляют собой плоскопараллельные пластины, которые подключены к источнику постоянного напряжения через реостат. При изменении сопротивления реостата напряжение на диоде связано с силой тока в цепи выражением $U=C\sqrt[3]{I^2}$. Как изменится сила давления электронов на поверхность анода, если напряжение между пластинами увеличить в 3 раза? Начальной скоростью электронов пренебречь.
- 4. Оператор, контролирующий работу гидрогенераторов на ГЭС, зафиксировал изменение силы тока через один из генераторов, представленное в виде графика. Мощность, отдаваемая гидрогенератором в электрическую сеть, в начальный момент времени составляла $P_0 = 120$ МВт. Определите энергию, выработанную генератором за время, равное $3t_0$, где $t_0 = 1$ час. ЭДС генератора все время остается постоянной, внутреннее сопротивление генератора пренебрежимо мало по сравнению с сопротивлением внешней цепи.

5. В одном сосуде находится сухой воздух. В другом таком же сосуде находится влажный воздух с относительной влажностью $\varphi=50\%$. На сколько процентов отличаются плотности сухого и влажного воздуха в сосудах, если их температуры и давления одинаковы? Молярная масса воздуха $M_{\rm B}=29$ г/моль, молярная масса водяного пара $M_{\rm II}=18$ г/моль. Давление насыщенных паров при данной температуре определяется формулой $p_{\rm Hac}=0,2p$, где p-давление влажного воздуха. Постройте качественно график зависимости плотности воздуха от его относительной влажности $\rho(\varphi)$.