# Effective Multi-Modal Retrieval based on Stacked Auto-Encoders

Author: Wei Wang, etc. NUS

Speaker: Luo Zhiyi

jessieluo1991@gmail.com

Oct 15<sup>th</sup>, 2014

#### Problem

 Large-scale information retrieval from multiple modalities (text, image, video)



Give me Hobbit trailers

#### Outline

ΑE Auto-encoder Stacked Auto-encoder SAE MSAE Multi-modal Stacked Auto-Encoders Training Algorithm Single SAE Training Stage Multi-Modal Training Stage Experiment Demo

#### Auto-encoder



#### Auto-encoder

Learning parameters •

W, b

Loss function •

Reconstruction error and L2 regularization

$$\mathcal{L}(x_0, x_2) = \mathcal{L}_r(x_0, x_2) + 0.5\xi(||W_1||_2^2 + ||W_2||_2^2)$$

#### Stacked Auto-Encoder

SAE Stacked version of auto-encoder Training Pre-training Fine-tuning





## MSAE

#### Definitions

Latent Space Mapping

Given an image feature vector  $x \in \mathbb{D}_I$  and a text feature vector  $y \in \mathbb{D}_T$ , find two mapping functions  $f_I : \mathbb{D}_I \to \mathbb{Z}$  and  $f_T : \mathbb{D}_T \to \mathbb{Z}$  such that if x and y are semantically relevant, the distance between  $f_I(x)$  and  $f_T(y)$ , denoted by  $dist(f_I(x), f_T(y))$ , is small in the common latent space  $\mathbb{Z}$ .

Multi-Modal Search

Given a query object  $Q \in \mathbb{D}_q$   $(q \in \{I,T\})$  and a target domain  $\mathbb{D}_t \subset \mathbb{D}$   $(t \in \{I,T\})$ , find a set  $O \subset \mathbb{D}_t$  with k objects such that  $\forall o \in O$  and  $o' \in \mathbb{D}_t/O$ ,  $dist(f_q(Q), f_t(o')) \geq dist(f_q(Q), f_t(o))$ .

#### MSAE Training

Intuition

Intra-modal semantics can be preserved or even enhanced through inter-modal relationships with other modalities whose features are of high quality.

Training Algorithm

Single SAE Training

Multi-Modal Training

Experiment

#### Single SAE Training

- One SAE is trained for each modality
- Capture the intra-modal semantics

## Algorithm

```
Algorithm 1 trainSAE(h, X^0, d)
Input: h, height of SAE
Input: X^0, training data, one example per row
Input: d, a sequence of dimensions for each layer
Output: \theta = \{\theta^i\}_{i=1}^h, parameters of SAE
 1. for i = 1 to h do
      random init \theta^i \leftarrow d_{i-1}, d_i
     (\theta^i, X^i)=trainNN(1, X^{i-1}, \theta^i)
 4. \theta \leftarrow \text{trainNN}(h, X^0, \theta)
trainNN(h, X, \theta)
 1. repeat
        for batch B^0 in X do
       Z, B=\mathbf{fProp}(2h, B^0, \theta)
         \delta^{2h} = \frac{\partial \mathcal{L}(B^0)}{\partial Z^{2h}}
           bProp(2h, \delta^{2h}, B, Z, \theta) //(see Appendix)
 6. until converge
 7. return fProp(h, X, \theta)
```

#### Multi-Modal Training

others)

Intuition

Enhance the latent features even when original feature is bad

Objective function

$$L(X^{0}, Y^{0}) = \alpha L_{r}^{I}(X^{0}, X^{2h}) + \beta L_{r}^{T}(Y^{0}, Y^{2h}) + L_{d}(X^{h}, Y^{h}) + \xi(\theta)$$

Step

Iterate over all SAEs
Adjusting the parameters in one SAE at a time(fixed

Goal

Capture both intra-modal semantics and inter-modal semantics.

#### Algorithm

#### **Algorithm 2 trainMSAE** $(h, X^0, Y^0, \theta)$

**Input:** h, height of MSAE

**Input:**  $X^0, Y^0$ , image and text input data

**Input:**  $\theta = (\theta_X, \theta_Y)$ , parameters of MSAE, initialized by **trainSAE** 

**Output:**  $\theta$ , updated parameters

- 1. repeat
- 2. **trainMNN** $(h, X^0, Y^0, \theta_X, \theta_Y)$ //train image SAE
- 3. **trainMNN** $(h, Y^0, X^0, \theta_Y, \theta_X)$ //train text SAE
- 4. until converge

#### trainMNN $(h, X, Y, \theta_X, \theta_Y)$

**Input:** X, input data for the modality whose SAE is to be updated

**Input:** Y, input data for the modality whose SAE is fixed

**Input:**  $\theta_X, \theta_Y$ , parameters for the two SAEs.

- 1. repeat
- 2. **for** batch  $(B_X^0, B_Y^0)$  in (X, Y) **do**
- 3.  $B_X, Z_X = \mathbf{fProp}(2h, B_X^0, \theta_X)$
- 4.  $B_Y, Z_Y = \mathbf{fProp}(h, B_Y^0, \theta_Y)$
- 5.  $\delta^{2h} = \frac{\partial \mathcal{L}(B_X^0, B_Y^0)}{\partial Z_X^{2h}}$
- 6.  $\delta^h = \mathbf{bProp}(h, \delta^{2h}, \{B_X^i\}_{i=h}^{2h}, \{Z_X^i\}_{i=h}^{2h}, \{\theta_X^i\}_{i=h}^{2h})$
- 7.  $\delta^h + = \frac{\partial \mathcal{L}_d(B_X^h, B_Y^h)}{\partial Z_Y^h}$
- 8. **bProp** $(h, \delta^h, \{B_X^i\}_{i=0}^h, \{Z_X^i\}_{i=1}^h, \{\theta_X^i\}_{i=1}^h)$
- 9. until converge



## Experiment

Datasets •

NUSWIDE Wiki Flickr1M

| Dataset             | NUS-WIDE | Wiki  | Flickr1M  |
|---------------------|----------|-------|-----------|
| Total size          | 190,421  | 2,866 | 1,000,000 |
| Training set        | 60,000   | 2,000 | 975,000   |
| Validation set      | 10,000   | 366   | 6,000     |
| Test set            | 120,421  | 500   | 6,000     |
| Average Text Length | 6        | 131   | 5         |

Evaluation Metric •

Mean Average Precision (MAP)

## Results

| Task         |    |       | $\mathbb{Q}_{I \to I}$ |       |       |       | $\mathbb{Q}_{T 	o T}$ |       |       | $\mathbb{Q}_{I \to T}$ |       |       |       | $\mathbb{Q}_{T \to I}$ |       |       |       |
|--------------|----|-------|------------------------|-------|-------|-------|-----------------------|-------|-------|------------------------|-------|-------|-------|------------------------|-------|-------|-------|
| Algorithm    |    | LCMH  | CMSSH                  | CVH   | MSAE  | LCMH  | CMSSH                 | CVH   | MSAE  | LCMH                   | CMSSH | CVH   | MSAE  | LCMH                   | CMSSH | CVH   | MSAE  |
| Dimension of | 16 | 0.353 | 0.355                  | 0.365 | 0.417 | 0.373 | 0.400                 | 0.374 | 0.498 | 0.328                  | 0.391 | 0.359 | 0.447 | 0.331                  | 0.337 | 0.368 | 0.432 |
| Latent Space | 24 | 0.343 | 0.356                  | 0.358 | 0.412 | 0.373 | 0.402                 | 0.364 | 0.480 | 0.333                  | 0.388 | 0.351 | 0.444 | 0.323                  | 0.336 | 0.360 | 0.427 |
| L            | 32 | 0.343 | 0.357                  | 0.354 | 0.413 | 0.374 | 0.403                 | 0.357 | 0.470 | 0.333                  | 0.382 | 0.345 | 0.402 | 0.324                  | 0.335 | 0.355 | 0.435 |

#### NUSWIDE

| Task         |    | $\mathbb{Q}_{I \to I}$ |       |       |       | $\mathbb{Q}_{T 	o T}$ |       |       | $\mathbb{Q}_{I \to T}$ |       |       |       | $\mathbb{Q}_{T \to I}$ |       |       |       |       |
|--------------|----|------------------------|-------|-------|-------|-----------------------|-------|-------|------------------------|-------|-------|-------|------------------------|-------|-------|-------|-------|
| Algorithm    |    | LCMH                   | CMSSH | CVH   | MSAE  | LCMH                  | CMSSH | CVH   | MSAE                   | LCMH  | CMSSH | CVH   | MSAE                   | LCMH  | CMSSH | CVH   | MSAE  |
| Dimension of | 16 | 0.146                  | 0.148 | 0.147 | 0.162 | 0.359                 | 0.318 | 0.153 | 0.462                  | 0.133 | 0.138 | 0.126 | 0.182                  | 0.117 | 0.140 | 0.122 | 0.179 |
| Latent Space | 24 | 0.149                  | 0.151 | 0.150 | 0.161 | 0.345                 | 0.320 | 0.151 | 0.437                  | 0.129 | 0.135 | 0.123 | 0.176                  | 0.124 | 0.138 | 0.123 | 0.168 |
| L            | 32 | 0.147                  | 0.149 | 0.148 | 0.162 | 0.333                 | 0.312 | 0.152 | 0.453                  | 0.137 | 0.133 | 0.128 | 0.187                  | 0.119 | 0.137 | 0.123 | 0.179 |

Wiki

| Task         |    | Q     | $I \rightarrow I$ | $\mathbb{Q}_{7}$ | $T \rightarrow T$ | $\mathbb{Q}_{I}$ | $\to T$ | $\mathbb{Q}_{7}$ | $\Gamma \rightarrow I$ |
|--------------|----|-------|-------------------|------------------|-------------------|------------------|---------|------------------|------------------------|
| Algorithm    |    | CVH   | MSAE              | CVH              | MSAE              | CVH              | MSAE    | CVH              | MSAE                   |
| Dimension of | 16 | 0.622 | 0.621             | 0.610            | 0.624             | 0.610            | 0.632   | 0.616            | 0.608                  |
| Latent Space | 24 | 0.616 | 0.619             | 0.604            | 0.629             | 0.605            | 0.628   | 0.612            | 0.612                  |
| L            | 32 | 0.603 | 0.622             | 0.587            | 0.630             | 0.588            | 0.632   | 0.598            | 0.614                  |

#### Conclusion

Propose MSAE mechanism • Multi-modal Stacked Auto-Encoders

An effective mapping mechanism for multi-modal retrieval

Design Learning Objective Function

Capture intra-modal semantics
Capture inter-modal semantics

#### Demo

- Visualization of Training Process
- <a href="http://www.comp.nus.edu.sg/~wangwei/code/msae/i">http://www.comp.nus.edu.sg/~wangwei/code/msae/i</a> ndex.html

## Thank you!