

Teaching Plan

FAKULTI TEKNOLOGI MAKLUMAT & KOMUNIKASI UNIVERSITI TEKNIKAL MALAYSIA MELAKA

ARTIFICIAL INTELLIGENCE

BITI 1113 SEMESTER 2 SESSION 2022/2023

BITI 1113 ARTIFICIAL INTELLIGENCE (3, 2, 2)

TYPE OF COURSE: P

EDITION: 3

UPDATED: 25-2-2023

1.0 LEARNING OUTCOMES

Upon completion of this subject, the student should be able to:

CLO1: Explain the concept of Artificial Intelligence and its techniques. (C4, PLO1, LODC1)

CLO2: Classify the types of Artificial Intelligence techniques. (P1, PLO2, LODC3A)

CLO3: Choose the suitable Artificial Intelligence techniques in problem solving. (A3, PLO6, LODC3C)

2.0 SYNOPSIS

Students are exposed to the basic and branches of Artificial Intelligence such as the various search techniques, knowledge representation and reasoning, inference techniques, learning from experience and planning. Besides, some applications of AI including game playing, expert systems, and machine learning will be introduced.

3.0 PRE-REQUISITE

None

4.0 PRACTICAL

Tutorial/practical and some AI tools will be used in the practical sessions.

5.0 REFERENCES

- [1] Russel, S & Norvig, P. (2020). Artificial Intelligence: A Modern Approach, 4th Edition, Prentice Hall.
- [2] Luger, G. F. (2015). Artificial Intelligence: Structures and Strategies for Complex Problem Solving, 5th Edition, Pearson Education.
- [3] Negnevitsky, M., (2011), Artificial Intelligence: A Guide to Intelligent System, 3rd Edition, Addison Wesley.
- [4] Kopec, D, Shetty, S & Pileggi, C (2014), Artificial Intelligence Problems and Their Solutions (Computer Science), T Mercury Learning & Information.
- [5] https://software.intel.com/en-us/ai-academy/students/kits/ai-501

6.0 COURSE IMPLEMENTATION

- i. Lecture: 2 hours per week for 14 weeks (Total = 28 hours)
- ii. Lab: 2 hours per week for 14 weeks (Total = 28 hours)

7.0 COURSE EVALUATION

Assessment Method	CLO 1 (C4, PLO1, LODC1)	CLO 2 (P1, PLO2, LODC3A)	CLO 3 (A3, PLO6, LODC3C)	Scheme, Rubric / guideline
Tutorial Exercises (2): 10%		T1 (5%) T2 (5%)		T1_A.doc T2_A.doc
Lab Assessment (1): 10%		LA1 (10%)		LA1_R.doc
Assignment (1): 10%			A1 (10%)	A1_R.doc
Mid-term Test (1): 20%	MT1 (20%)			MT1_A.doc
Project (1): 20%			P1 (20%)	P1_G.doc P1_R.doc
Final Exam (1): 30%	F1 (30%)			F1_A.doc
Total:	50%	20%	30%	

8.0 STUDENT LEARNING TIME (SLT)

			Guided Le	arning Time	e				ndependa	nt Learnin	g				Assessm	ent Time		
Week	CLO	L	Т	P	0	L	Т	P	О	F	Т	Α	0	F	Т	Α	0	SLT
W1	1	2		2		2	0	1		0	0	0	0					7
W2	1	2		2		2	0	1		0	0	0	0					7
W3	3	2		2		2	0	1		0	0	0	0					7
W4	1	2		2		2	0	1		0	0	0	0					7
W5	3	2		2		2	0	1		0	0	0	1				0.25	8.25
W6	1	2		2		2	0	1		0	0	0	0					7
W7	2	2		2		2	0	1		0	0	0	2				0.5	9.5
W8	1	2		2		2	0	1		0	4	0	0		1			12
W 9	3	2		2		2	0	1		0	0	0	0					7
W10	2	2		2		2	0	1		0	0	0	1				0.25	8.25
W11	1	2		2		2	0	1		0	0	0	0					7
W12	2	2		2		2	0	1		0	0	0	0					7
W13	1	2		2		2	0	1		0	0	0	0					7
W14	3	2		2		2	0	1		0	0	0	2				0.5	9.5
>W14										8	0	0	0	2				10
Overall		28	0	28	0	28	0	14	0	8	4	0	6	2	1	0	1.5	120.5
SLT Credit Equivalent									valent	3.0125								

9.0 DETAILED SYLLABUS AND TEACHING PLAN

Week	Sessions	Contents	References	Delivery Method
1 (20 Mar-26 Mar)	Lecture 1	INTRO TO AI What is Artificial Intelligence? Al History, Alan Turing and the 1950s Al Techniques, Fields & Applications	[1][3]	Lecture
	Lab 1	Tutorial on Intro to Al	Tutorial Materials	Tutorial
2 (27 Mar – 2 Apr)	Lecture 2	UNINFORMED SEARCH TECHNIQUES I Introduction State Space Concepts Search Performance Criteria Breadth-First Search Uniform-Cost Search	[1][3]	Lecture
	Lab 2	Tutorial on Uninformed Search I	Tutorial Materials	Tutorial
3 (3 Apr – 9 Apr)	Lecture 3	UNINFORMED SEARCH TECHNIQUES II Depth-First Search Depth-Limited Search Iterative Deepening Depth-First Search Bidirectional Search	[1]	Lecture
	Lab 3	Tutorial on Uninformed Search II	Tutorial Materials	Tutorial
4 (10 Apr – 16 Apr)	Lecture 4	INFORMED SEARCH TECHNIQUES I Using Heuristics for Search Greedy Best-First Search A* Search Beam and IDA* Search Tutorial on Informed Search I	[1] Tutorial Materials	Lecture Tutorial
5 (17 Apr – 23 Apr)	Lecture 5 Lab 5	INFORMED SEARCH TECHNIQUES II Local Search Concepts Hill Climbing Search Local Beam Search Identifying Optimal Paths Tutorial on Informed Search II	[1][3] Tutorial Materials	Lecture ASSESSED TUTORIAL 1 (individual)
6 (24 Apr -30 Apr)		MID-SEM BREAK		Tutorial
7 (1 May – 7 May)	Lecture 6	GAME PLAYING Adversarial Search Concepts Game Trees Minimax Alpha-Beta Pruning Sample Application	[1]	Lecture PROVIDE ASSIGNMENT Tutorial
	Lab 6	Tutorial on Minimax & Alpha-Beta pruning	Tutorial Materials	idoliai

		1		
8 (8 May – 14 May)		EXPERT SYSTEM LIFECYCLE I Overview of Expert System Lifecycle Knowledge Acquisition Phase Knowledge Representation Phase: Semantic Nets Rules Frames	[1][3]	Lecture MID-TERM TEST (W1-W5) Tutorial
	Lab 7	Tutorial on Rules Based Expert System 1	Tutorial Materials	ratorial
9 (15 May – 21 May)	Lecture 8	EXPERT SYSTEM LIFECYCLE II Knowledge Implementation Phase Rules for Knowledge Representation Rule Based Systems Rule Based Expert System Forward & Backward Chaining in Rule-Based Expert System Verification & Validation Phase	[1][3]	Lecture ASSIGNMENT SUBMISSION
	Lab 8	Tutorial on Rules Based Expert System II	Tutorial Materials	Tutorial
10 (22 May – 28 May)	Lecture 9	MACHINE LEARNING I Introduction Learning Concepts Supervised Learning & Unsupervised Learning	[1][2][3]	Lecture PROVIDE PROJECT
	Lab 9	Tutorial on Machine Learning	Tutorial Materials	Tutorial
11 (29 May – 4 Jun)	Lecture 10	MACHINE LEARNING II Decision Tree Induction	[1] [2]	Lecture LAB ASSESSMENT
	Lab 10	Tutorial on Decision Tree	Tutorial Materials	Tutorial Materials
12 (5 Jun – 11 Jun)	Lecture 11	MACHINE LEARNING III Biological Inspiration & Neurons Perceptron Multi-Layer Artificial Neural Network (ANN)	[1] [2] Tutorial Materials	Lecture Tutorial Materials
	Lab 11	Tutorial on Neural Network	Tutoriai Materiais	
13 (12 Jun – 18 Jun)	Lecture 12	MACHINE LEARNING IV Multi-Layer Artificial Neural Network (ANN)	[1] [2]	Lecture ASSESSED TUTORIAL 2 (individual)
	Lab 12	Tutorial on Neural Network	Tutorial Materials	Tutorial Materials

14 (19 Jun - 25 Jun) ONLINE	Lecture 13	INTELLIGENT AGENTS Introduction to Agents Properties of Agents Classification of Agents	[1][3]	Lecture
	Lab 13	Tutorial on Intelligent Agent	Tutorial Materials	Tutorial
15 (26 Jun – 30 Jun) ONLINE		Al APPLICATIONS Computer Games Expert Systems Social Media, Sentiment Analysis Robotics, etc. Issues and Challenges Project Presentation	[1][2][4] Project Guidelines	PROJECT SUBMISSION Presentation
16 (1/7/2023-9/7/2023)		REVISION WEEK		
	7-19 3-27/7/2023)	FINAL EXAM WEEK		

10.0 MATRIX OF LEARNING OUTCOMES

SUBJECT vs PROGRAM OUTCOME (PO)

20-0-0-10-10-0												
C1-:4	PROGRAM OUTCOME (PO) - DEGREE											
Subject	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9			
BITI 1113	X	X				X						

LEARNING OUTCOME (LO) vs PROGRAM OUTCOME (PO)

LO		PROGRAM OUTCOME (PO) - DEGREE						
LO1	X							
LO2		X						
LO3						X		

LEARNING OUTCOME (LO)

LO1	Explain the concept of Artificial Intelligence and its techniques. (C4, PLO1, LODC1)
LO2	Classify the types of Artificial Intelligence techniques. (P1, PLO2, LODC3A)
LO3	Choose the suitable Artificial Intelligence techniques in problem solving. (A3, PLO6, LODC3C)

TEACHING P	LAN APPROVAL
Prepared by:	Approved by:
Name:	Dean/Deputy Dean (Academic)/HOD
Stamp:	Stamp:
Date:	Date:
	I IMPLEMENTATION STER BREAK)
Comment:	
Checked by:	
Dean/Deputy Dean (Academic)/HOD	
Stamp:	Date:
	I IMPLEMENTATION EEK 16)
Comment:	
Checked by:	
Dean/Deputy Dean (Academic)/HOD	
Stamp:	Date: