□ Sources of non-renewable energy are limited. So, world is mainly focusing toward renewable sources of energy.

- □ Sources of non-renewable energy are limited. So, world is mainly focusing toward renewable sources of energy.
 - ☐ Among renewable sources of energy, wind energy is one of the most promising source of energy.

Ш	Sources of non-renewable energy are limited. So, world is mainly
	focusing toward renewable sources of energy.
	Among renewable sources of energy, wind energy is one of the
	most promising source of energy.

☐ The major challenge in wind energy production is the cost reduction.

Sources of non-renewable energy are limited. So, world is mainly focusing toward renewable sources of energy.
Among renewable sources of energy, ${\bf wind\ energy}$ is one of the most promising source of energy.
The major challenge in wind energy production is the cost reduction.
The cost of wind energy depends on various factors like:

Ш	focusing toward renewable sources of energy.
	Among renewable sources of energy, ${\bf wind\ energy}$ is one of the most promising source of energy.
	The major challenge in wind energy production is the cost reduction.
	The cost of wind energy depends on various factors like:
	\square location selection

Ш	Sources of non-renewable energy are limited. So, world is mainly focusing toward renewable sources of energy.
	Among renewable sources of energy, ${\bf wind\ energy}$ is one of the most promising source of energy.
	The major challenge in wind energy production is the cost reduction.
	The cost of wind energy depends on various factors like:
	\square location selection
	\Box farm layout design, predictive maintenance etc.

Sources of non-renewable energy are limited. So, world is mainly focusing toward renewable sources of energy.
Among renewable sources of energy, wind energy is one of the most promising source of energy.
The major challenge in wind energy production is the cost reduction.
The cost of wind energy depends on various factors like:
\square location selection
\Box farm layout design, predictive maintenance etc.
Among these factors farm layout design is import because an inadequate layout design leads to lower power capture than the expected and leads to increased maintenance cost or so on.

☐ Problem Statement

The task to find the location of wind turbines in wind farm such that the total output energy is **maximum**. This task is called wind farm layout optimization problem (WFLOP).

☐ Problem Statement

The task to find the location of wind turbines in wind farm such that the total output energy is **maximum**. This task is called wind farm layout optimization problem (WFLOP).

 \square Assumption to solve WFLOP

☐ Problem Statement

The task to find the location of wind turbines in wind farm such that the total output energy is **maximum**. This task is called wind farm layout optimization problem (WFLOP).

☐ Assumption to solve WFLOP

1) The number of wind turbines M is know before construction and is fixed.

☐ Problem Statement

The task to find the location of wind turbines in wind farm such that the total output energy is **maximum**. This task is called wind farm layout optimization problem (WFLOP).

☐ Assumption to solve WFLOP

- 1) The number of wind turbines M is know before construction and is fixed.
- 2) Each wind turbine location is represented as two dimensional vector (x_i, y_i) , i = 1, 2, ..., M where M is number of turbines.

☐ Problem Statement

The task to find the location of wind turbines in wind farm such that the total output energy is **maximum**. This task is called wind farm layout optimization problem (WFLOP).

\square Assumption to solve WFLOP

- 1) The number of wind turbines M is know before construction and is fixed.
- 2) Each wind turbine location is represented as two dimensional vector (x_i, y_i) , i = 1, 2, ..., M where M is number of turbines.
- 3) Turbines in the farm are considered to be homogeneous .i.e. have similar design, brand, model, power curve, capacity etc.

4) At a given location and height wind speed μ follows the Weibull Distribution

$$p_{\mu}(\mu, \kappa, c) = \frac{\kappa}{c} \left(\frac{\mu}{c}\right)^{(\kappa-1)} e^{-\left(\frac{\mu}{c}\right)^{\kappa}}$$

where, p_{μ} is probability density function, c is scalar parameter and κ is shape parameter.

4) At a given location and height wind speed μ follows the Weibull Distribution

$$p_{\mu}(\mu, \kappa, c) = \frac{\kappa}{c} \left(\frac{\mu}{c}\right)^{(\kappa-1)} e^{-\left(\frac{\mu}{c}\right)^{\kappa}}$$

where, p_{μ} is probability density function, c is scalar parameter and κ is shape parameter.

5) Proper spacing between turbines reduces the wind turbulence effect. Thus, spacing between the turbines should be proper. So, turbines locations should satisfy the inequality

$$(x_i - x_j)^2 + (y_i - y_j)^2 \ge 64R^2, \quad i \ne j$$

where, R is rotor radius.

4) At a given location and height wind speed μ follows the Weibull Distribution

$$p_{\mu}(\mu, \kappa, c) = \frac{\kappa}{c} \left(\frac{\mu}{c}\right)^{(\kappa-1)} e^{-\left(\frac{\mu}{c}\right)^{\kappa}}$$

where, p_{μ} is probability density function, c is scalar parameter and κ is shape parameter.

5) Proper spacing between turbines reduces the wind turbulence effect. Thus, spacing between the turbines should be proper.So, turbines locations should satisfy the inequality

$$(x_i - x_j)^2 + (y_i - y_j)^2 \ge 64R^2, \quad i \ne j$$

where, R is rotor radius.

6) All turbines must be situated within the farm. All the turbines must satisfy the constraint

Wake Effect Model

 \Box Wake loss is the major factor in the wind park layout design.

Wake Effect Model

- \square Wake loss is the major factor in the wind park layout design.
- □ A linear expanding wake appears behind the turbine, when a uniform wind encounters a wind turbine.

$$vel_def_{ij} = 1 - \frac{\mu_{down}}{\mu_{up}} = \frac{1 - \sqrt{1 - C_r}}{(1 + Kd_{ij}/R)^2}$$

Optimization Problem

 $\hfill\Box$ The mathematical model of wind farm layout optimization problem is:

$$\max \sum_{i=1}^{M} E(P_i)$$
s.t.
$$(x_i - x_j)^2 + (y_i - y_j)^2 \ge 64R^2 \quad i = 1, 2, \dots, M, i \ne j$$

$$x_i^2 + y_j^2 \le r^2$$

where, $E(P_i)$ is the power output of i^{th} turbine.

Optimization Problem

$$\begin{split} E(P_i) &= \alpha \sum_{j=1}^{M_{\mu}+1} \left(\frac{\mu_{j-1} + \mu_j}{2}\right) \sum_{t=1}^{M_{\phi}+1} \left[(\phi_t - \phi_{t-1}) \right. \\ &\left. \left\{ e^{-\left(\mu_{j-1}/c_i \left(\frac{\phi_t + \phi_{t-1}}{2}\right)\right)^{\kappa \left(\frac{\phi_t + \phi_{t-1}}{2}\right)} - e^{-\left(\mu_j/c_i \left(\frac{\phi_t + \phi_{t-1}}{2}\right)\right)^{\kappa \left(\frac{\phi_t + \phi_{t-1}}{2}\right)} \right\} \right] \\ &+ P_{rated} \sum_{t=1}^{M_{\phi}+1} \left(\phi_t - \phi_{t-1} \right) \omega_{t-1} e^{-\left(\mu_{rated}/c_i \left(\frac{\phi_t + \phi_{t-1}}{2}\right)\right)^{\kappa \left(\frac{\phi_t + \phi_{t-1}}{2}\right)} \\ &+ \beta \sum_{t=1}^{M_{\phi}+1} \left[\left(\phi_t - \phi_{t-1} \right) \omega_{t-1} \left\{ e^{-\left(\mu_{cut.in}/c_i \left(\frac{\phi_t + \phi_{t-1}}{2}\right)\right)^{\kappa \left(\frac{\phi_t + \phi_{t-1}}{2}\right)} - e^{-\left(\mu_{rated}/c_i \left(\frac{\phi_t + \phi_{t-1}}{2}\right)\right)^{\kappa \left(\frac{\phi_t + \phi_{t-1}}{2}\right)}} \right\} \right] \end{split}$$

☐ Genetic algorithm is based on Darwin's theory of evolution ("Survival of fittest") given by John Holland in 1960.

- ☐ Genetic algorithm is based on Darwin's theory of evolution ("Survival of fittest") given by John Holland in 1960.
- \square Genetic algorithm has mainly four components:

☐ Genetic algorithm is based on Darwin's theory of evolution ("Survival of fittest") given by John Holland in 1960.

 \Box Genetic algorithm has mainly four components:

 \square Selection

- ☐ Genetic algorithm is based on Darwin's theory of evolution ("Survival of fittest") given by John Holland in 1960.
- \Box Genetic algorithm has mainly four components:
 - □ Selection
 - \square Crossover

- ☐ Genetic algorithm is based on Darwin's theory of evolution ("Survival of fittest") given by John Holland in 1960.
- \square Genetic algorithm has mainly four components:
 - □ Selection
 - \square Crossover
 - \square Mutation

- ☐ Genetic algorithm is based on Darwin's theory of evolution ("Survival of fittest") given by John Holland in 1960.
- \square Genetic algorithm has mainly four components:
 - □ Selection
 - \square Crossover
 - ☐ Mutation
 - \square Elitism.

 \square In selection process the fittest chromosome/solutions are selected to participate in matting pool.

- \Box In selection process the fittest chromosome/solutions are selected to participate in matting pool.
 - In tournament selection we randomly sample subsets of fixed cardinality from population and choose the best individual based on fitness

- In selection process the fittest chromosome/solutions are selected to participate in matting pool.
 In tournament selection we randomly sample subsets of fixed cardinality from population and choose the best individual based on fitness
- □ Crossover operator combines the information of two parent solution randomly taken form the matting pool and generates child solutions

- ☐ In selection process the fittest chromosome/solutions are selected to participate in matting pool.
- ☐ In tournament selection we randomly sample subsets of fixed cardinality from population and choose the best individual based on fitness
- □ Crossover operator combines the information of two parent solution randomly taken form the matting pool and generates child solutions □ Simulated binary anagyayar(SPX) [1]. Let P1 and P2 are two
- □ Simulated binary crossover(SBX) [1]: Let P1 and P2 are two parent solutions randomly selected from the matting pool:

$$C_1 = 0.5(P_1 + P_2) - 0.5\eta(P_2 - P_1)$$

$$C_2 = 0.5(P_1 + P_2) + 0.5\eta(P_2 - P_1)$$

where, $P_2 > P_1$ and

$$\eta = \begin{cases} (2u)^{\left(\frac{1}{N_c+1}\right)}, & \text{if } \gamma \leq 0.5 \\ \left(\frac{1}{2(1-u)}\right)^{\left(\frac{1}{N_c+1}\right)}, & \text{if } \gamma > 0.5 \end{cases}$$

Mutation and Elitism

☐ Mutation operator used to maintain genetic diversity from one generation of a population to the next generation.

Mutation and Elitism

- ☐ Mutation operator used to maintain genetic diversity from one generation of a population to the next generation.
- $\hfill\Box$ Polynomial mutation is defined as follow [1]:

$$C' = \begin{cases} C + \delta_1(C - \bar{X}^L), & \text{if } rand() \le 0.5 \\ C + \delta_2(\bar{X}^U - C), & \text{if } rand() > 0.5 \end{cases}$$

 $rand() \in U[0,1]$

$$\begin{cases} \delta_1 = (2u)^{\left(\frac{1}{N_m + 1}\right)} - 1, & \text{if } rand() \le 0.5 \\ \delta_2 = 1 - (2(1 - u))^{\left(\frac{1}{N_m + 1}\right)}, & \text{if } rand() > 0.5 \end{cases}$$

Mutation and Elitism

- ☐ Mutation operator used to maintain genetic diversity from one generation of a population to the next generation.
- $\hfill\Box$ Polynomial mutation is defined as follow [1]:

$$C' = \begin{cases} C + \delta_1(C - \bar{X}^L), & \text{if } rand() \le 0.5\\ C + \delta_2(\bar{X}^U - C), & \text{if } rand() > 0.5 \end{cases}$$

 $rand() \in U[0,1]$

$$\begin{cases} \delta_1 = (2u)^{\left(\frac{1}{N_m + 1}\right)} - 1, & \text{if } rand() \le 0.5\\ \delta_2 = 1 - (2(1 - u))^{\left(\frac{1}{N_m + 1}\right)}, & \text{if } rand() > 0.5 \end{cases}$$

□ Elitism is a process of keeping the some proportion of elite solutions (i.e. fittest solutions) of previous generation in the next generation.

Flow Chart of GA

Experimental Results:

Experimental Results:

t-1	ϕ_{t-1}	ϕ_t	K	c	ω_{t-1}
0	0	15	2	13	0
1	15	30	2	13	0.01
2	30	45	2	13	0.01
3	45	60	2	13	0.01
4	60	75	2	13	0.01
5	75	90	2	13	0.2
6	90	105	2	13	0.6
7	105	120	2	13	0.01
8	120	135	2	13	0.01
9	135	150	2	13	0.01
10	150	165	2	13	0.01
11	165	180	2	13	0.01
12	180	195	2	13	0.01
13	195	210	2	13	0.01
14	210	225	2	13	0.01
15	225	240	2	13	0.01
16	240	255	2	13	0.01
17	255	270	2	13	0.01
18	270	285	2	13	0.01
19	285	300	2	13	0.01
20	300	315	2	13	0.01
21	315	330	2	13	0.01
22	330	345	2	13	0.01
23	345	360	2	13	0

Experimental Results:

t-1	ϕ_{t-1}	ϕ_t	K	c	ω_{t-1}
0	0	15	2	13	0
1	15	30	2	13	0.01
2	30	45	2	13	0.01
3	45	60	2	13	0.01
4	60	75	2	13	0.01
5	75	90	2	13	0.2
6	90	105	2	13	0.6
7	105	120	2	13	0.01
8	120	135	2	13	0.01
9	135	150	2	13	0.01
10	150	165	2	13	0.01
11	165	180	2	13	0.01
12	180	195	2	13	0.01
13	195	210	2	13	0.01
14	210	225	2	13	0.01
15	225	240	2	13	0.01
16	240	255	2	13	0.01
17	255	270	2	13	0.01
18	270	285	2	13	0.01
19	285	300	2	13	0.01
20	300	315	2	13	0.01
21	315	330	2	13	0.01
22	330	345	2	13	0.01
23	345	360	2	13	0

t-1	ϕ_{t-1}	ϕ_t	κ	c	ω_{t-1}
0	0	15	2	13	0
1	15	30	2	13	0.01
2	30	45	2	13	0.01
3	45	60	2	13	0.01
4	60	75	2	13	0.01
5	75	90	2	13	0.2
6	90	105	2	13	0.6
7	105	120	2	13	0.01
8	120	135	2	13	0.01
9	135	150	2	13	0.01
10	150	165	2	13	0.01
11	165	180	2	13	0.01
12	180	195	2	13	0.01
13	195	210	2	13	0.01
14	210	225	2	13	0.01
15	225	240	2	13	0.01
16	240	255	2	13	0.01
17	255	270	2	13	0.01
18	270	285	2	13	0.01
19	285	300	2	13	0.01
20	300	315	2	13	0.01
21	315	330	2	13	0.01
22	330	345	2	13	0.01
23	345	360	2	13	0

 $\Box\,$ Population size, N=60

t-1	ϕ_{t-1}	ϕ_t	κ	c	ω_{t-1}
0	0	15	2	13	0
1	15	30	2	13	0.01
2	30	45	2	13	0.01
3	45	60	2	13	0.01
4	60	75	2	13	0.01
5	75	90	2	13	0.2
6	90	105	2	13	0.6
7	105	120	2	13	0.01
8	120	135	2	13	0.01
9	135	150	2	13	0.01
10	150	165	2	13	0.01
11	165	180	2	13	0.01
12	180	195	2	13	0.01
13	195	210	2	13	0.01
14	210	225	2	13	0.01
15	225	240	2	13	0.01
16	240	255	2	13	0.01
17	255	270	2	13	0.01
18	270	285	2	13	0.01
19	285	300	2	13	0.01
20	300	315	2	13	0.01
21	315	330	2	13	0.01
22	330	345	2	13	0.01
23	345	360	2	13	0

 $\Box\,$ Population size, N=60

 \square Tournament size = 3

t-1	ϕ_{t-1}	ϕ_t	κ	c	ω_{t-1}
0	0	15	2	13	0
1	15	30	2	13	0.01
2	30	45	2	13	0.01
3	45	60	2	13	0.01
4	60	75	2	13	0.01
5	75	90	2	13	0.2
6	90	105	2	13	0.6
7	105	120	2	13	0.01
8	120	135	2	13	0.01
9	135	150	2	13	0.01
10	150	165	2	13	0.01
11	165	180	2	13	0.01
12	180	195	2	13	0.01
13	195	210	2	13	0.01
14	210	225	2	13	0.01
15	225	240	2	13	0.01
16	240	255	2	13	0.01
17	255	270	2	13	0.01
18	270	285	2	13	0.01
19	285	300	2	13	0.01
20	300	315	2	13	0.01
21	315	330	2	13	0.01
22	330	345	2	13	0.01
23	345	360	2	13	0

- $\Box\,$ Population size, N=60
 - \Box Tournament size = 3
- \square Crossover probability, $C_p = 0.8$

t-1	ϕ_{t-1}	ϕ_t	κ	c	ω_{t-1}
0	0	15	2	13	0
1	15	30	2	13	0.01
2	30	45	2	13	0.01
3	45	60	2	13	0.01
4	60	75	2	13	0.01
5	75	90	2	13	0.2
6	90	105	2	13	0.6
7	105	120	2	13	0.01
8	120	135	2	13	0.01
9	135	150	2	13	0.01
10	150	165	2	13	0.01
11	165	180	2	13	0.01
12	180	195	2	13	0.01
13	195	210	2	13	0.01
14	210	225	2	13	0.01
15	225	240	2	13	0.01
16	240	255	2	13	0.01
17	255	270	2	13	0.01
18	270	285	2	13	0.01
19	285	300	2	13	0.01
20	300	315	2	13	0.01
21	315	330	2	13	0.01
22	330	345	2	13	0.01
23	345	360	2	13	0

- \square Population size, N=60
 - \Box Tournament size = 3
- \square Crossover probability, $C_p = 0.8$
- \square Mutation probability, $M_p = 0.1$

t-1	ϕ_{t-1}	ϕ_t	κ	c	ω_{t-1}
0	0	15	2	13	0
1	15	30	2	13	0.01
2	30	45	2	13	0.01
3	45	60	2	13	0.01
4	60	75	2	13	0.01
5	75	90	2	13	0.2
6	90	105	2	13	0.6
7	105	120	2	13	0.01
8	120	135	2	13	0.01
9	135	150	2	13	0.01
10	150	165	2	13	0.01
11	165	180	2	13	0.01
12	180	195	2	13	0.01
13	195	210	2	13	0.01
14	210	225	2	13	0.01
15	225	240	2	13	0.01
16	240	255	2	13	0.01
17	255	270	2	13	0.01
18	270	285	2	13	0.01
19	285	300	2	13	0.01
20	300	315	2	13	0.01
21	315	330	2	13	0.01
22	330	345	2	13	0.01
23	345	360	2	13	0

- \square Population size, N = 60
 - \Box Tournament size = 3
- \square Crossover probability, $C_p = 0.8$

Mutation probability, $M_p = 0.1$

 \Box Elitism size = 2

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
1 15 30 2 13 0.01 2 30 45 2 13 0.01 3 45 60 2 13 0.01 4 60 75 2 13 0.01 5 75 90 2 13 0.6 6 90 105 2 13 0.06 7 105 120 2 13 0.01 8 120 135 2 13 0.01 9 135 150 2 13 0.01 10 150 165 2 13 0.01 11 165 180 2 13 0.01 12 180 195 2 13 0.01 13 195 210 2 13 0.01 14 210 225 2 13 0.01 15 225 240	t-1	ϕ_{t-1}	ϕ_t	κ	c	ω_{t-1}
2 30 45 2 13 0.01 3 45 60 2 13 0.01 4 60 75 2 13 0.01 5 75 90 2 13 0.2 6 90 105 2 13 0.06 7 105 120 2 13 0.01 8 120 135 2 13 0.01 9 135 150 2 13 0.01 10 150 165 2 13 0.01 11 165 180 2 13 0.01 12 180 195 2 13 0.01 13 195 210 2 13 0.01 14 210 225 2 13 0.01 15 225 240 2 13 0.01 16 240 255	0	0	15	2	13	0
3 45 60 2 13 0.01 4 60 75 2 13 0.01 5 75 90 2 13 0.2 6 90 105 2 13 0.6 7 105 120 2 13 0.01 8 120 135 2 13 0.01 9 135 150 2 13 0.01 10 150 165 2 13 0.01 11 165 180 2 13 0.01 12 180 195 2 13 0.01 13 195 210 2 13 0.01 14 210 225 2 13 0.01 15 225 240 2 13 0.01 15 225 240 2 13 0.01 17 255 270	1	15	30	2	13	0.01
4 60 75 2 13 0.01 5 75 90 2 13 0.2 6 90 105 2 13 0.6 7 105 120 2 13 0.01 8 120 135 2 13 0.01 9 135 150 2 13 0.01 10 150 165 2 13 0.01 11 165 180 2 13 0.01 12 180 195 2 13 0.01 13 195 210 2 13 0.01 14 210 225 2 13 0.01 15 225 240 2 13 0.01 16 240 255 2 13 0.01 17 255 270 2 13 0.01 18 270 285 <td>2</td> <td>30</td> <td>45</td> <td>2</td> <td>13</td> <td>0.01</td>	2	30	45	2	13	0.01
5 75 90 2 13 0.2 6 90 105 2 13 0.6 7 105 120 2 13 0.01 8 120 135 2 13 0.01 9 135 150 2 13 0.01 10 150 165 2 13 0.01 11 165 180 2 13 0.01 12 180 195 2 13 0.01 13 195 210 2 13 0.01 14 210 225 2 13 0.01 15 225 240 2 13 0.01 16 240 255 2 13 0.01 17 255 270 2 13 0.01 18 270 285 2 13 0.01 19 285 300<	3	45	60	2	13	0.01
6 90 105 2 13 0.6 7 105 120 2 13 0.01 8 120 135 2 13 0.01 9 135 150 2 13 0.01 10 150 165 2 13 0.01 11 165 180 2 13 0.01 12 180 195 2 13 0.01 13 195 210 2 13 0.01 14 210 225 2 13 0.01 15 225 240 2 13 0.01 16 240 255 2 13 0.01 17 255 270 2 13 0.01 18 270 285 2 13 0.01 19 285 300 2 13 0.01 20 300	4	60	75	2	13	0.01
7 105 120 2 13 0.01 8 120 135 2 13 0.01 9 135 150 2 13 0.01 10 150 165 2 13 0.01 11 165 180 2 13 0.01 12 180 195 2 13 0.01 13 195 210 2 13 0.01 14 210 225 2 13 0.01 15 225 240 2 13 0.01 16 240 255 2 13 0.01 17 255 270 2 13 0.01 18 270 285 2 13 0.01 19 285 300 2 13 0.01 20 300 315 2 13 0.01 21 315 <	5	75	90	2	13	0.2
8 120 135 2 13 0.01 9 135 150 2 13 0.01 10 150 165 2 13 0.01 11 165 180 2 13 0.01 12 180 195 2 13 0.01 13 195 210 2 13 0.01 14 210 225 2 13 0.01 15 225 240 2 13 0.01 16 240 255 2 13 0.01 17 255 270 2 13 0.01 18 270 285 2 13 0.01 19 285 300 2 13 0.01 20 300 315 2 13 0.01 21 315 330 2 13 0.01 22 330	6	90	105	2	13	0.6
9 135 150 2 13 0.01 10 150 165 2 13 0.01 11 165 180 2 13 0.01 12 180 195 2 13 0.01 13 195 210 2 13 0.01 14 210 225 2 13 0.01 15 225 240 2 13 0.01 16 240 255 2 13 0.01 17 255 270 2 13 0.01 18 270 285 2 13 0.01 19 285 300 2 13 0.01 20 300 315 2 13 0.01 21 315 330 2 13 0.01 22 330 345 2 13 0.01	7	105	120	2	13	0.01
10 150 165 2 13 0.01 11 165 180 2 13 0.01 12 180 195 2 13 0.01 13 195 210 2 13 0.01 14 210 225 2 13 0.01 15 225 240 2 13 0.01 16 240 255 2 13 0.01 17 255 270 2 13 0.01 18 270 285 2 13 0.01 19 285 300 2 13 0.01 20 300 315 2 13 0.01 21 315 330 2 13 0.01 22 330 345 2 13 0.01	8	120	135	2	13	0.01
11 165 180 2 13 0.01 12 180 195 2 13 0.01 13 195 210 2 13 0.01 14 210 225 2 13 0.01 15 225 240 2 13 0.01 16 240 255 2 13 0.01 17 255 270 2 13 0.01 18 270 285 2 13 0.01 19 285 300 2 13 0.01 20 300 315 2 13 0.01 21 315 330 2 13 0.01 22 330 345 2 13 0.01	9	135	150	2	13	0.01
12 180 195 2 13 0.01 13 195 210 2 13 0.01 14 210 225 2 13 0.01 15 225 240 2 13 0.01 16 240 255 2 13 0.01 17 255 270 2 13 0.01 18 270 285 2 13 0.01 19 285 300 2 13 0.01 20 300 315 2 13 0.01 21 315 330 2 13 0.01 22 330 345 2 13 0.01	10	150	165	2	13	0.01
13 195 210 2 13 0.01 14 210 225 2 13 0.01 15 225 240 2 13 0.01 16 240 255 2 13 0.01 17 255 270 2 13 0.01 18 270 285 2 13 0.01 19 285 300 2 13 0.01 20 300 315 2 13 0.01 21 315 330 2 13 0.01 22 330 345 2 13 0.01	11	165	180	2	13	0.01
14 210 225 2 13 0.01 15 225 240 2 13 0.01 16 240 255 2 13 0.01 17 255 270 2 13 0.01 18 270 285 2 13 0.01 19 285 300 2 13 0.01 20 300 315 2 13 0.01 21 315 330 2 13 0.01 22 330 345 2 13 0.01	12	180	195	2	13	0.01
15 225 240 2 13 0.01 16 240 255 2 13 0.01 17 255 270 2 13 0.01 18 270 285 2 13 0.01 19 285 300 2 13 0.01 20 300 315 2 13 0.01 21 315 330 2 13 0.01 22 330 345 2 13 0.01	13	195	210	2	13	0.01
16 240 255 2 13 0.01 17 255 270 2 13 0.01 18 270 285 2 13 0.01 19 285 300 2 13 0.01 20 300 315 2 13 0.01 21 315 330 2 13 0.01 22 330 345 2 13 0.01	14	210	225	2	13	0.01
17 255 270 2 13 0.01 18 270 285 2 13 0.01 19 285 300 2 13 0.01 20 300 315 2 13 0.01 21 315 330 2 13 0.01 22 330 345 2 13 0.01	15	225	240	2	13	0.01
18 270 285 2 13 0.01 19 285 300 2 13 0.01 20 300 315 2 13 0.01 21 315 330 2 13 0.01 22 330 345 2 13 0.01	16	240	255	2	13	0.01
19 285 300 2 13 0.01 20 300 315 2 13 0.01 21 315 330 2 13 0.01 22 330 345 2 13 0.01	17	255	270	2	13	0.01
20 300 315 2 13 0.01 21 315 330 2 13 0.01 22 330 345 2 13 0.01	18	270	285	2	13	0.01
21 315 330 2 13 0.01 22 330 345 2 13 0.01	19	285	300	2	13	0.01
22 330 345 2 13 0.01	20	300	315	2	13	0.01
	21	315	330	2	13	0.01
23 345 360 2 13 0	22	330	345	2	13	0.01
	23	345	360	2	13	0

- \square Population size, N = 60
 - Tournament size = 3
- \square Crossover probability, $C_p = 0.8$
- \square Mutation probability, $M_p = 0.1$
- \square Elitism size = 2
- \square Maximum generations = 100

t-1	ϕ_{t-1}	ϕ_t	κ	c	ω_{t-1}
0	0	15	2	13	0
1	15	30	2	13	0.01
2	30	45	2	13	0.01
3	45	60	2	13	0.01
4	60	75	2	13	0.01
5	75	90	2	13	0.2
6	90	105	2	13	0.6
7	105	120	2	13	0.01
8	120	135	2	13	0.01
9	135	150	2	13	0.01
10	150	165	2	13	0.01
11	165	180	2	13	0.01
12	180	195	2	13	0.01
13	195	210	2	13	0.01
14	210	225	2	13	0.01
15	225	240	2	13	0.01
16	240	255	2	13	0.01
17	255	270	2	13	0.01
18	270	285	2	13	0.01
19	285	300	2	13	0.01
20	300	315	2	13	0.01
21	315	330	2	13	0.01
22	330	345	2	13	0.01
23	345	360	2	13	0

- \square Population size, N = 60
 - \Box Tournament size = 3
- □ Crossover probability, $C_p = 0.8$ □ Mutation probability, $M_p = 0.1$
- \square Elitism size = 2
- \square Maximum generations = 100
- \square Farm radius, r = 500m

t-1	ϕ_{t-1}	ϕ_t	K	c	ω_{t-1}
0	0	15	2	13	0
1	15	30	2	13	0.01
2	30	45	2	13	0.01
3	45	60	2	13	0.01
4	60	75	2	13	0.01
5	75	90	2	13	0.2
6	90	105	2	13	0.6
7	105	120	2	13	0.01
8	120	135	2	13	0.01
9	135	150	2	13	0.01
10	150	165	2	13	0.01
11	165	180	2	13	0.01
12	180	195	2	13	0.01
13	195	210	2	13	0.01
14	210	225	2	13	0.01
15	225	240	2	13	0.01
16	240	255	2	13	0.01
17	255	270	2	13	0.01
18	270	285	2	13	0.01
19	285	300	2	13	0.01
20	300	315	2	13	0.01
21	315	330	2	13	0.01
22	330	345	2	13	0.01
23	345	360	2	13	0

- \square Population size, N = 60
 - \Box Tournament size = 3
- □ Crossover probability, $C_p = 0.8$ □ Mutation probability, $M_p = 0.1$
- \square Elitism size = 2
- \square Maximum generations = 100
- \Box Farm radius, r = 500 m
- \square Rotor radius, R = 38.5(m)

t-1	ϕ_{t-1}	ϕ_t	κ	c	ω_{t-1}
0	0	15	2	13	0
1	15	30	2	13	0.01
2	30	45	2	13	0.01
3	45	60	2	13	0.01
4	60	75	2	13	0.01
5	75	90	2	13	0.2
6	90	105	2	13	0.6
7	105	120	2	13	0.01
8	120	135	2	13	0.01
9	135	150	2	13	0.01
10	150	165	2	13	0.01
11	165	180	2	13	0.01
12	180	195	2	13	0.01
13	195	210	2	13	0.01
14	210	225	2	13	0.01
15	225	240	2	13	0.01
16	240	255	2	13	0.01
17	255	270	2	13	0.01
18	270	285	2	13	0.01
19	285	300	2	13	0.01
20	300	315	2	13	0.01
21	315	330	2	13	0.01
22	330	345	2	13	0.01
23	345	360	2	13	0

- \square Population size, N = 60
 - \Box Tournament size = 3
- □ Crossover probability, $C_p = 0.8$ □ Mutation probability, $M_p = 0.1$
- \Box Elitism size = 2
- \square Maximum generations = 100
- \square Farm radius, r = 500 m
- \square Rotor radius, R = 38.5(m)
- □ Wind cut-in speed, $\mu_{cut_in} = 3.5 \ m/s$

t-1	ϕ_{t-1}	ϕ_t	К	c	ω_{t-1}
0	0	15	2	13	0
1	15	30	2	13	0.01
2	30	45	2	13	0.01
3	45	60	2	13	0.01
4	60	75	2	13	0.01
5	75	90	2	13	0.2
6	90	105	2	13	0.6
7	105	120	2	13	0.01
8	120	135	2	13	0.01
9	135	150	2	13	0.01
10	150	165	2	13	0.01
11	165	180	2	13	0.01
12	180	195	2	13	0.01
13	195	210	2	13	0.01
14	210	225	2	13	0.01
15	225	240	2	13	0.01
16	240	255	2	13	0.01
17	255	270	2	13	0.01
18	270	285	2	13	0.01
19	285	300	2	13	0.01
20	300	315	2	13	0.01
21	315	330	2	13	0.01
22	330	345	2	13	0.01
23	345	360	2	13	0

- \square Population size, N = 60
 - \Box Tournament size = 3
- □ Crossover probability, $C_p = 0.8$ □ Mutation probability, $M_p = 0.1$
- \Box Elitism size = 2
- \square Maximum generations = 100
- \Box Farm radius, r = 500m
- \square Rotor radius, R = 38.5(m)
- □ Wind cut-in speed, $\mu_{cut_in} = 3.5 \ m/s$
 - \square Wind rated speed, $\mu_{rated} = 14 \ m/s$

t-1	ϕ_{t-1}	ϕ_t	κ	c	ω_{t-1}
0	0	15	2	13	0
1	15	30	2	13	0.01
2	30	45	2	13	0.01
3	45	60	2	13	0.01
4	60	75	2	13	0.0
5	75	90	2	13	0.2
6	90	105	2	13	0.6
7	105	120	2	13	0.0
8	120	135	2	13	0.0
9	135	150	2	13	0.0
10	150	165	2	13	0.0
11	165	180	2	13	0.01
12	180	195	2	13	0.0
13	195	210	2	13	0.0
14	210	225	2	13	0.0
15	225	240	2	13	0.01
16	240	255	2	13	0.01
17	255	270	2	13	0.0
18	270	285	2	13	0.0
19	285	300	2	13	0.0
20	300	315	2	13	0.0
21	315	330	2	13	0.0
22	330	345	2	13	0.0
23	345	360	2	13	0

- \square Population size, N = 60
 - \Box Tournament size = 3
- □ Crossover probability, $C_p = 0.8$ □ Mutation probability, $M_p = 0.1$
- \Box Elitism size = 2
- \square Maximum generations = 100
- \Box Farm radius, r = 500 m
- \square Rotor radius, R = 38.5(m)
- □ Wind cut-in speed, $\mu_{cut_in} = 3.5 \ m/s$
- \square Wind rated speed, $\mu_{rated} = 14 \ m/s$
- \square Rated power for rated wind speed, $P_{rated} = 1500 \ kW$

	,	,			
t-1	ϕ_{t-1}	ϕ_t	κ	c	ω_{t-1}
0	0	15	2	13	0
1	15	30	2	13	0.01
2	30	45	2	13	0.01
3	45	60	2	13	0.01
4	60	75	2	13	0.01
5	75	90	2	13	0.2
6	90	105	2	13	0.6
7	105	120	2	13	0.01
8	120	135	2	13	0.01
9	135	150	2	13	0.01
10	150	165	2	13	0.01
11	165	180	2	13	0.01
12	180	195	2	13	0.01
13	195	210	2	13	0.01
14	210	225	2	13	0.01
15	225	240	2	13	0.01
16	240	255	2	13	0.01
17	255	270	2	13	0.01
18	270	285	2	13	0.01
19	285	300	2	13	0.01
20	300	315	2	13	0.01
21	315	330	2	13	0.01
22	330	345	2	13	0.01
23	345	360	2	13	0

 \square Population size, N = 60

 \Box Tournament size = 3

□ Crossover probability, $C_p = 0.8$ □ Mutation probability, $M_p = 0.1$

 \Box Elitism size = 2

 \square Maximum generations = 100

□ Farm radius, r = 500m□ Rotor radius, R = 38.5(m)

□ Wind cut-in speed, $\mu_{cut_in} = 3.5 \ m/s$

□ Wind rated speed, $\mu_{rated} = 14 \ m/s$ □ Rated power for rated wind speed, $P_{rated} = 1500 \ kW$

 $\alpha = 140.86, \beta = -500$

Number of turbines	Ideal Power	${\rm BBO(best)/Wake\ loss[2]}$	GA(best)/Wake loss
2	14631.37	28091.47/0.0	28091.47/0.0
3	21947.06	21947.06/0.0	21947.06/0.0
4	29262.75	29262.75/0.0	29262.75/0.0
5	36578.44	36578.44/0.0	36522.05/56.3867
6	43894.12	43894.12/0.0	43854.78/39.34

Number of turbines	Ideal Power	${ m BBO(best)/Wake\ loss[2]}$	GA(best)/Wake loss
2	14631.37	28091.47/0.0	28091.47/0.0
3	21947.06	21947.06/0.0	21947.06/0.0
4	29262.75	29262.75/0.0	29262.75/0.0
5	36578.44	36578.44/0.0	36522.05/56.3867
6	43894.12	43894.12/0.0	43854.78/39.34

Number of turbines	Ideal Power	${ m BBO(best)/Wake\ loss[2]}$	GA(best)/Wake loss
2	14631.37	28091.47/0.0	28091.47/0.0
3	21947.06	21947.06/0.0	21947.06/0.0
4	29262.75	29262.75/0.0	29262.75/0.0
5	36578.44	36578.44/0.0	36522.05/56.3867
6	43894.12	43894.12/0.0	43854.78/39.34

-400

400

References

Deb, Kalyanmoy, and Ram Bhushan Agrawal. "Simulated binary crossover for continuous search space." Complex systems (1995): 115-148.

References

Deb, Kalyanmoy, and Ram Bhushan Agrawal. "Simulated binary crossover for continuous search space." Complex systems (1995): 115-148.

Bansal, Jagdish Chand, and Pushpa Farswan. "Wind farm layout using biogeography based optimization." Renewable energy 107~(2017): 386-402.

Thank you

