Generative AI and Symbolic Knowledge Representations LLMs, Knowledge and Reasoning 3

Damir Cavar & Billy Dickson ESSLLI 2024

July 2024

Continuation

- LLMs and NLP
- Code examples:
 - Vectorization and embeddings

LLMs and Tools

Dense Retrieval

(C) Cavar & Dickson - ESSLLI 2024 Course

Hands on Large Language Models - Alammar and Grootendorst (2024)

Reranking

Hands on Large Language Models - Alammar and Grootendorst (2024)

(C) Cavar & Dickson - ESSLLI 2024 Course

Hands on Large Language Models - Alammar and Grootendorst (2024)

Hands on Large Language Models - Alammar and Grootendorst (2024)

Knowledge

- Passive knowledge
 - Canned text
 - Question/Query + Response/Answer
 - Response:
 - Text
 - Code
 - Image
 - Indexing response for a given query?
 - Query: vector
 - Response index: vector
 - Match: vector similarity, approximate distance in semantic space, find K Nearest Neighbors...

Symbolic Knowledge Representations

- Knowledge Graphs
- Ontologies
- Reasoning

Goals

- Build the models, infrastructure, technologies to
 - engineer AI systems with advanced computational semantics and pragmatics capabilities
 - Description Logic
 - Temporal Logic
 - Event Semantics
 - Build data sets with semantic annotations (multi-modal: text, speech, image) for training and evaluation of ML models
- Application domains:
 - Discourse Models
 - Text forensics:
 - Fake news, propaganda, and deception detection
 - Domain specific:
 - Medical, Business, ...

Knowledge and Computing

- Model World Knowledge Linguistically Motivated Computational Processing
 - Meaning of words
 - Meaning of speech acts (including Presuppositions, Implicatures, Events, Temporal Logic)
 - Computational Models of World Knowledge / Common Sense in phenomena like Binding, Anaphora Resolution, Reasoning
 - "Take the knife, cut the lime in half, and put it down." it = knife
 - "Take the knife, cut the lime in half, and squeeze it." it = lime

Objectives

- Multi-Modality
 - Language, Speech, Vision, Sensory Information, ...
- Deep Semantic and Pragmatic Processing
 - High precision
 - Deep insights
- High Performance Computation for Big Data Analysis
 - Scalability (Speed, Memory)
 - Efficient Parallel Algorithms

Large Knowledge Graphs

10/2/2/4/24

(C) Cavar & Dickson - ESSLLI 2024 Course

Knowledge Graphs

Knowledge Representations

- Model (or Ontology) and Individuals (or Assertions of Facts)
- Model: Web Ontology Language (OWL) as a restrictive model/ontology specifying
 - Concepts (or entity types)
 - Relations (between entities, instances of concepts or entity types)
 - Properties of Concepts and Relations
- Individuals
 - Concrete instances of concepts and relations

Knowledge Graphs

Concepts and Relations

• Mostly unconstrained

• Domain specific or free

Attributes and Values

• encoding properties, time reference, ...

George

W. Bush

Focus

- Knowledge Representations
 - Description Logic
 - Probabilistic
 - Dynamic
 - Events
 - Temporal Logic
 - Event sequences and durations
 - Resource Logic
 - Transfer of resources
 - Intentionality

Knowledge Graphs

- Formally:
 - Sets of triples:
 - Subject Predicate → Object
 - Quad notation:
 - Sets of triples grouped by a 4th element
 - Graph ID
 - Temporal ID
 - Event ID
 - **–** ...

Knowledge Representations

Confidence Scores

Qualitative metric for source

- Quantitative metric for evidence

Scoring

Sources wrt. Reliability

Counts of entity property or

relation

Knowledge Graphs

- No computation or interpretation of logic equations (e.g., no access to universal or existential quantifiers)
- Direct mapping of knowledge from language input limited to Description Logic
- Description of Knowledge
 - Directed Graph: encoding concept, events, domain specific knowledge...
 - Attribute-Value encoded features like size and shape, but also event time references (start, end, duration), etc.
- Reasoning: OWL & Reasoner, Common Graph Algs.
- Prediction: Links, Class prediction, etc.
- Machine Learning of concepts and concept properties: node or edge embedding

Reasoning

- Validation of assertions
- Entailment computation
- Link prediction
- Entity classification
- Question Answering and Dialog
- Domains:
 - Medical, FinTech, Legal, Cybersecurity, ...

Resources

- General Knowledge Knowledge Graphs
 - DBpedia
 - YAGO
 - ConceptGraph
 - **—** ...
- Domain Specific Knowledge Graphs
 - Unified Medical Language System (UMLS)
 - USDA Food Database
 - CyGraph

– ...

Knowledge Graphs

- Static: Concept and Relation Properties
 - Even when dynamically growing or changing
- Problem to encode events or procedures
 - Mary gave John a book.
 - Event as a state change / transformation:
 - Mary owns a book, John does not → John owns a book, Mary does not
 - Peter was fetching his daughter from school.
 - Intermediate states:
 - Peter is at home, daughter at school → Peter is at school, daughter at school →
 Peter is at home, daughter at home

Events and Resources

John gave Mary a book.

- Events as sequences of graphs and graph transformations
 - Encoding of Intentionality

Temporal Relations

- Sequencing of events or sub-events
 - Wash the veggies, chop them, fry them.
 - Presentation and Temporal event sequence: 1 2 3
 - Before you fry the veggies, wash and chop them.
 - Presentation sequence: 3 1 2
 - Temporal event sequence: 1 2 3
- Duration of events
 - Clear reference: "for 30 minutes"
 - Common sense

Temporal Relations

- Duration of events
- Unfolding over time
 - Events relate to time
 - States are points in time
- Temporal sequencing relates to
 - Causal reasoning

Event Graphs

- Arrangement of sub-events along time axis
 - Approximation of duration

Graphlets of Events and States

Graphlets

- Sub-graphs using a point in time
- Temporal sequencing of events in time = graphlets

Technically

- Graphs and Graphlets use temporal timestamps as properties
 - Temporal reference
 - Event ID or variable

Temporal Scope

- Simple temporal relations
 - Past tense: Tim Cook bought Google.
 - Assumptions: factive, true event
 - Future tense: Tim Cook will buy Google.
 - Assumptions: non-factive, hypothetical
- Complex relations: temporal scope
 - Reuters reported that

Tim Cook bought Google

• Reuters will report that

Temporal Scope

- Sub-event triples:
 - Tim Cook buy → Google
 - Event-ID is \rightarrow 43829
- Dominating event triples:
 - Reuters report → eventX
 - eventX hasID→ 43829
 - eventTime ...
 - speakerTime ...
 - referenceTime ...

NLP Extensions

- Implicatures:
 - John to Peter: I bought the blue car.
 - John and Peter talked about cars earlier.
 - · There should be a set with at least one more car the John could have bought, but did not, and
 - None of the cars in the set is blue.
 - Clues: Definiteness of NP via the, and specificity of NP
- Presuppositions:
 - John fed his cat this morning.
 - Assumptions:
 - John owns/has a cat/pet.
 - John owned cat-food this morning.
 - Clues: Possessive pronoun as modifier of Direct Object.

Pragmatics and Implicatures

- Input: Mary is the sister of Tracy.
 - → Mary -> gender: female
 - → Mary hasSibling Tracy, Tracy hasSibling Mary

• • •

- Input: Donald Trump met Vladimir Putin.
 - → Vladimir Putin met Donald Trump
- Input: I regret that I drank a coffee.
 - → Claimed to be a fact / true: I drank coffee.
- Input: Tom parked his car in the Atwater garage.
 - → Tom knows how to operate a car.
 - → Tom was in possession of a car.

•••

- And many more...
- Knowledge of language (universal and particular) is necessary to generate these presuppositions and implicatures.

Pragmatics and World Knowledge

- Scenario in Medical
 - Medication Metformin found in pocket of unconscious person:
 - → Patient might have (Type-2) diabetes.
- Domain specific knowledge (Knowledge Graph) is necessary to resolve the drug name and reason about the diagnosis.

- Veridicality
 - Factive predicates: *know*, *regret*, *realize*, *notice*, ...
 - *I regret that* ... (X did something to Y)
 - Complements are assumed to be true
 - Non-factive predicates: believe, think, claim, ...
 - I believe that ... (X did something to Y)
 - Complements cannot be assumed to be true
 - Counter-factive predicates: pretend, ...
 - John pretends that he is ill.
 - Complement cannot be true: John is not ill
- Question:
 - Cross-linguistic similarity = universal properties related to factivity

- Predicative Properties
 - Functional
 - $X \rightarrow hasBirthMother \rightarrow Sue \& X \rightarrow hasBirthMother \rightarrow Susan$
 - Implies: Sue & Susan are identical entities
 - Inverse functional
 - Same as Functional, just for the inverse predicate: isBirthMotherOf
 - Transitive
 - X → hasAncestor → Y → hasAncestor Z
 - Implies: X → hasAncestor → Z
 - Symmetry
 - $X \rightarrow met \rightarrow Y$
 - Implies: $Y \rightarrow met \rightarrow X$
 - Asymmetry
 - $X \rightarrow isChildOf \rightarrow Y$
 - Reflexive
 - $X \rightarrow knows \rightarrow Y$
 - Implies: $X \rightarrow knows \rightarrow X$
 - Irreflexive
 - Any relation where X → relation → Y implies X cannot be Y

- Functional
 - X → hasBirthMother → Sue & X → hasBirthMother → Susan
 - Implies: Sue & Susan are identical entities
- Inverse functional
 - Same as Functional, just for the inverse predicate: isBirthMotherOf
- Transitive
 - X → hasAncestor → Y → hasAncestorZ
 - Implies: X → hasAncestor → Z
- Symmetry
 - $-X \rightarrow met \rightarrow Y$
 - Implies: Y \rightarrow met \rightarrow X

- Asymmetry
 - $-X \rightarrow isChildOf \rightarrow Y$
- Reflexive
 - $X \rightarrow knows \rightarrow Y$
 - Implies: X → knows → X
- Irreflexive
 - Any relation where X → relation → Y implies X cannot be Y
- Strong cross-linguistic similarity
 - Universal?

- Reflexive
 - $-X \rightarrow knows \rightarrow Y$
 - Implies: X → knows → X

- Symmetry or Reciprocity
 - $-X \rightarrow met \rightarrow Y$
 - Implies: Y \rightarrow met \rightarrow X

- Also:
 - Bernie and Joe hugged each other.

- Veridicality
 - Factive predicates: know, regret, realize, notice, ...
 - I regret that ... (X did something to Y)
 - Complements are assumed to be true
 - Non-factive predicates: believe, think, claim, ...
 - I believe that ... (X did something to Y)
 - Complements cannot be assumed to be true
 - Counter-factive predicates: pretend, ...
 - John pretends that he is ill.
 - Complement cannot be true: John is not ill
- Question:
 - Cross-linguistic similarity = universal properties related to factivity

Typing and Predicates

- Verb Frames and Predicate Properties
 - Type information for arguments
 - Differentiation between
 - Modifiers: for properties of entities and relations in DL graphs
 - Arguments: core entities and relation links in DL graphs

Semantic Mapping and Reasoning

- Type of Predicative Arguments: Typing
 - Named Entity Recognition
 - Closes possible Hypernym in a Taxonomy or Ontology of isA relations
- Identity of entity: Linking
 - Named Entity Recognition
 - Link to unique identifier of entity in some knowledge representation,
 Ontology, Wikipedia, Knowledge Graph
- Issues: Ambiguity

Graph Extraction and Linking

- Graph generation sample:
 - NLP pipelines
 - Graph extraction
 - Linking (conceptualization, language independent representation)
- Goal:
 - Extract predicate-argument tuples
 - Type the entities (e.g. NER, ontology lookup, Knowledge Graph linking)
 - Dynamically expand the knowledge graph and track weights (probabilities)

Linking Strategy

- 1 to *n* relation between entity and entities in Knowledge Graphs
- Disambiguation via Geometrical Similarity
 - Text representation as average vector of word embeddings (e.g. Numberbatch, Glove, Bert)
 - Graph as average vector of concept and edge embeddings
- Maximization of context word prediction for each linking candidate
- KGs:
 - YAGO, ConceptNet, MS Word Graph, etc.

Linguistic Bias

- Pragmatic effects in language use data (e.g. Sperber & Wilson's Relevance Theory, Grice's Maxims)
 - People communicate facts and information that is relevant, new, exciting
 - Observation:
 - Exciting information: purple carrots

Less exciting information: orange carrots

Solution

- Multi-modal information input to knowledge representation
 - Language input (speech and text)
 - Information in images
 - Haptic information
 - Secondary information: sound it makes, properties when shaking, tossing, etc.
- Graphs generated using:
 - General or common sense knowledge
 - Domain specific knowledge
 - Semantic restrictions over graphs: ontologies, taxonomies

Document Graphs

• Concept/Knowledge Graph Document Representation

Graph Neural Network Models

(C) Cavar & Dickson - ESSLLI 2024 Course

Graph Neural Network Models

$$\mathbf{h}_{v}^{(l+1)} = \sigma(\mathbf{W}_{l} \sum_{u \in \mathbf{N}(v)} \frac{\mathbf{h}_{u}^{(l)}}{|\mathbf{N}(v)|} + \mathbf{B}_{l} \mathbf{h}_{v}^{(l)})$$

References

- Semantic Communication Enhanced by Knowledge Graph Representation Learning
 - https://arxiv.org/abs/2407.19338

Protégé and OWL

- Download Protégé and
 - Define a simple OWL ontology
 - Reason over some asserted facts / individuals