

Computer Science 3B Practical Assignment 03 2017-08-17

Deadline - 2017-08-17 17h00

Marks: 90

This practical assignment must be uploaded to eve.uj.ac.za <u>before</u> 2017-08-17 17h00. Late or incorrect submissions <u>will not be accepted</u>, and will therefore not be marked. You are **not allowed to collaborate** with any other student.

Good coding practices include a proper coding convention and a good use of commenting. Marks will be deducted if these are not present. See the reminder page for more details.

Previously we created a dynamic size **perceptron**. Realistically the number of inputs of the network will not change over the lifetime. Instead we should to test a fixed-size perceptron.

$$s = b + \sum_{n=0}^{i} (x_n * w_n)$$
$$y = \begin{cases} 0, & \text{if } s < a \\ s, & \text{otherwise} \end{cases}$$

Write an 80x86 assembly program that will calculate the output of a single perceptron that has 5 inputs.

- 1. **Initialisation** The program will first ask the user to initialise the perceptron's weights (w_n) , bias(b) and activation value(a). The weights will be stored in an array.
- 2. **Testing** The program will ask the user for the required inputs (x_n) . The inputs will be stored in an array. All inputs for the perceptron must be captured **before** performing the required calculation.
- 3. **Calculation** Calculate and display the weighted sum(s) and output of the perceptron(y).
- 4. **Repeat** The program will ask the user if they wish to test another sequence. If the user responds positively then the program must repeat from the testing phase.

Note: Check the reminder page for submission details.

Test set1:

bias b-1 activation value a-100 expected output y-175

x_0	1	w_0	25
x_1	2	w_1	20
x_2	3	w_2	15
x_3	4	w_3	10
x_4	5	w_4	5

Test set2:

bias b - 45 activation value a - 200 expected output y - 485

x_0	1	w_0	8
x_1	1	w_1	13
x_2	2	w_2	21
x_3	3	w_3	34
x_4	5	w_4	55

Mark sheet

1.	Design	[10]
2.	Capture bias and activation value	[05]
3.	Capture weights into array	[10]
4.	Capture inputs into array	[10]
5.	Calculation using arrays	[15]
6.	Display result	[05]
7.	Repeat loop with exit condition	[05]
8.	Structure and layout (no temporary variables, correct data types)	[05]
9.	Commenting	[05]
10.	Correct execution.	[20]

NB

Submissions which do not assemble will be capped at 40%!

Execution marks are awarded for a correctly functioning application and not for having some related code.

Reminder

Your submission must follow the naming convention as set out in the general learning guide. **Example**

Surname	Berners-Lee	Initials	TJ
Student number	209912345	Module Code	CSC3B10
Current Year	2017	Practical number	P03

Berners-Lee_TJ_209912345_ CSC3B10_2017_P03

Your submission must include the following in a single zip (compressed) file:

- Source file (asm file) File containing your solution. Your details must be included at the top of the source code.
- *Program design* (pdf file) File containing your design. Your details must be included at the top of the design.