Rapport d'activités

Viet Anh QUACH

 $13~\mathrm{juin}~2025$

Table des matières

1	Inti	roducti	ion de la thèse	2		
2	Bibliographie					
	2.1					
	2.2					
	2.3		age MPMxDEM			
	2.4		ation			
	2.5		étences soutenues			
3	L'étude pratique					
	3.1	Simula	ation MPM			
		3.1.1	Étude sur le cas statique - Déformation d'une poutre console .			
		3.1.2	Étude sur le cas dynamique			
	3.2	2 Simulation DEM : Compression triaxiale				
		3.2.1	Le processus et les paramètres			
		3.2.2	Les caractéristiques mécaniques générales du sol			
		3.2.3	Recherche sur l'impact dynamique			
	3.3	Coupl	${ m age}$			
		3.3.1	How to add Tables			
		3.3.2	How to add Lists			
4	Cor	clusio	n			
	4.1	Comp	araison des équations utilisées			
	4.2		ogie $\mu(I)$ résiduel			
			Première méthode			
			Deuxième méthode			

Chapitre 1 Introduction de la thèse

Chapitre 2

Bibliographie

2.1 MPM

- Thèse : Application de la Méthode des Points Matériels aux phénomènes gravitaires Fabio GRACIA DANIES
- A multi-scale, MPMxDEM, numerical modelling approach for geotechnical structures under severe loading Sacha Duverger
- Material Point Method Vinh Phu NGUYEN, Alban de Vaucorbeil, Stephane Bordas

2.2 DEM

- **—** [1]
- Thèse : Modélisation multi-échelle des matériaux granulaires frottant-cohésifs : Trung Kien NGUYEN

2.3 Couplage MPMxDEM

- Thèse : Application de la Méthode des Points Matériels aux phénomènes gravitaires Fabio GRACIA DANIES
- [2]

2.4 Corrélation

2.5 Compétences soutenues

- C++
- Gnuplot
- LaTeX

Chapitre 3

L'étude pratique

0 1	a •	•		/
3.1	Simii	lation	N/PN	∕∎
ப. ட		lation		┸

3.1.1	Étude sur le cas statique - Déformation d'une poutre	ė
	console	

- 3.1.1.1 PIC
- 3.1.1.2 coefficient Poisson
- 3.1.1.3 Longueur encastrée
- 3.1.1.4 Discrétisation du maillage
- 3.1.1.5 Comparaison entre calcul théorique et numérique
- 3.1.2 Étude sur le cas dynamique

3.2 Simulation DEM: Compression triaxiale

- 3.2.1 Le processus et les paramètres
- 3.2.2 Les caractéristiques mécaniques générales du sol
- 3.2.2.1 La granulométrie et la fraction solide
- 3.2.2.2 La granulométrie et la fraction solide
- 3.2.2.3 Les caractéristiques des échantillons denses
- 3.2.2.4 Les caractéristiques des échantillons lâches
- 3.2.2.5 L'état critique
- 3.2.2.5.1 La force entre les grains
- 3.2.2.5.2 L'indice de vide
- 3.2.2.5.3 Le nombre de coordination

FIGURE 3.1 – Déplacement du poutre en Y-axis

FIGURE 3.2 – This frog was uploaded via the file-tree menu.

- 3.2.2.6 Cercle de Mohr
- 3.2.2.7 Histoire du chargement
- 3.2.3 Recherche sur l'impact dynamique
- 3.2.3.1 Augmentation du nombre d'inertie (Montée la vitesse imposée)

3.3 Couplage...

3.3.1 How to add Tables

Use the table and tabular environments for basic tables — see Table 3.1, for example. For more information, please see this help article on tables.

3.3.2 How to add Lists

You can make lists with automatic numbering ...

1. Like this,

Item	Quantity
Widgets	42
Gadgets	13

Table 3.1 – An example table.

2. and like this.

...or bullet points ...

- Like this,and like this.

Chapitre 4

Conclusion

Vitesse imposée est élevée \rightarrow Contrainte de confinement et l'indice de vide sont instables

J'ai choisi $\varepsilon_{yy} = 70\%$ pour réaliser des pré-études sur la rhéologie $\mu(I)$ (considéré comme l'état critique).

$$\varphi = 28.77^{\circ} \div 39.53^{\circ}$$

$$\varphi = 16.56^{\circ} \div 22.78^{\circ}$$

4.1 Comparaison des équations utilisées

Expérimental:

$$I = \frac{\dot{\varepsilon} \cdot \bar{a}}{\sqrt{\sigma_{33}/\rho_s}}; \quad \mu = \sin(\varphi)$$

Simulation:

$$I = \dot{\varepsilon} \times \sqrt{\frac{m}{\sigma_{33} \times \bar{a}}} = \dot{\varepsilon} \times \sqrt{\frac{\frac{4}{3}\pi \frac{\bar{a}^3}{8} \times \rho_s}{\sigma_{33} \times \bar{a}}} = \dot{\varepsilon} \times \sqrt{\frac{\pi}{6}} \sqrt{\frac{\bar{a}^2 \rho_s}{\sigma_{33}}} = \boxed{\sqrt{\frac{\pi}{6}}} \times \frac{\dot{\varepsilon} \cdot \bar{a}}{\sqrt{\sigma_{33}/\rho_s}}$$
$$\mu = \tan(\varphi)$$

4.2 Rhéologie $\mu(I)$ résiduel

4.2.1 Première méthode

La première méthode utilise les équations suivantes :

$$\mu(I) = \mu_s + \frac{\mu_2 - \mu_s}{1 + \frac{I_0}{I}}$$

$$\Phi(I) = \Phi^{\max} - bI$$

Les coefficients μ_s , μ_2 , I_0 , Φ_{max} , b sont déterminés empiriquement.

4.2.2 Deuxième méthode

La deuxième méthode, proposée dans l'article Scaling laws for quasi-statically deforming granular soil at critical state [2024] (Fei, Jianbo et al.), introduit un nombre d'inertie quasi-statique Q qui tient compte du degré de compaction Φ_0 :

FIGURE 4.1 – L'indice de vide

FIGURE 4.2 – Nombre de coordination

FIGURE 4.3 – Contrainte-Déformation

FIGURE 4.4 – Cercle transitore (pic)

FIGURE 4.5 – Cercle résiduel ($\varepsilon_{yy} = 70\%$)

Figure 4.6 – $\mu(I)$ ($\varepsilon_{yy}=70\%$)

Figure 4.7 – $\Phi(I)$ ($\varepsilon_{yy}=70\%$)

$$Q = \left[\Phi_0 \ln \left(I\right) + \alpha\right]$$

où $\alpha = 30$.

$$\mu = \xi Q + C$$

Les coefficients ξ , C, Φ_0 sont déterminés empiriquement ($\xi \approx 0.06$ et $C \approx 0.2$).

Figure 4.8 – $\mu(Q)$ avec $Q = f(\Phi_0, I)$

Bibliographie

- [1] Gaël Combe. DEM lecture. https://cloud.univ-grenoble-alpes.fr/s/Lbdg6qWwXNqFZQo, 2023. Diapositive.
- [2] V. Richefeu and G. Combe. MPM×DEM programme. https://github.com/richefeu/mpmxdem, 2025.