Category Theory

Q: What is Category Theory?

A:

- 1. Understanding math objects via relations with each other, i.e. taking an external view, so you do not inspect the internal structure of the objects.
- 2. A whole independent field of study.

Q: What is a category?

A: objects + morphisms

Example:

- **Set** *objects*: sets; *morphisms*: functions
- Group objects: groups; morphisms: group homomorphisms
- Top *objects*: topological spaces; *morphisms*: continuous functions
- **Program Spec** *objects*: program specifications; *morphisms*: programs that trun any program metting one spec into a program meeting another spec
- **Prop** *objects*: propositions; *morphisms*: derivation/implication
- Type *objects*: types; *morphisms*: derivation/function
- **Type Theory** *objects*: type theories; *morphisms*: translations

Counterexample: what is the category of probablistics?

What if two kinds of notions of morphisms are all useful? **Double category!**

Example:

- **Set** *objects*: sets; *morphisms*: functions
- **Set** *objects*: sets; *morphisms*: relations

Definition

A category C is

- a collection of objects ob $\mathcal C$
- for every $X, Y \in \text{ob } \mathcal{C}$, a collection of morphisms $\text{hom}_{\mathcal{C}}(X, Y)$
- Id: for each $X \in$ ob \mathcal{C} , an id morphism $\mathrm{id}_X \in \mathrm{hom}_{\mathcal{C}}(X,X)$
- Comp: for each $f: X \to Y, g: Y \to Z$, a morphism $g \circ f: X \to Z$ in $\hom_{\mathcal{C}}(X, Z)$, such that
 - $f \circ \mathrm{id}_X = f = \mathrm{id}_Y \circ f$

NOTE Normally we don't differentiate left and right identity. There was one particular notion that did, but then they were shown to be equivalent.

• for any $f: X \to Y, g: Y \to Z, h: Z \to A, h \circ (g \circ f) = (h \circ g) \circ f$.

Commutative Diagrams

E.g.
$$f \circ \mathrm{id}_X = f$$

$$X \xrightarrow{\operatorname{id}_X} X$$

$$f \downarrow f \downarrow$$

$$Y$$

Notice how the two paths from *X* to *Y* yield the same morphism.

NOTE There are also *string diagrams*, which is very similar to *proof nets*.

Let's get back to a concrete example.

Prop Category

- ob Prop the collection of propositions
- $\hom_{\operatorname{Prop}(P,Q)} = \begin{cases} \{\top\} \text{ if } P \to Q \\ \emptyset & \text{otherwise} \end{cases}$
- Id: $id_P = T$ for all $P \in ob$ Prop, because $P \to P$ is always true.
- Comp: by modus ponens, $Q \to P$ and $P \to R$ implies $Q \to R$. Properties: trivial.

TODO this is cat but i don't see how it is useful. all morphisms are trivial.. maybe it serves as a gentle introduction to the concept of category that does not serve any real-world purpose?

Terminal Object

A **terminal object** (*) T in a category \mathcal{C} is an object such that for every object $Z \in \mathcal{C}$, there is a unique morphism $Z \stackrel{!}{\to} T$.

E.g.

- a singleton set $(\{\top\})$ in *Set*
- unit type (1) in Ty
- A in a category that contains exactly one object A.

Isomorphic

Two objects X,Y in a category $\mathcal C$ are **isomorphic** if there exists morphisms $f:X\to Y$ and $g:Y\to X$ such that $g\circ f=\operatorname{id}_X$ and $f\circ g=\operatorname{id}_Y$.

NOTE If $x \cong y$, we say

1. f is an isomorphism that $f: X \cong Y$, $f: X \xrightarrow{\sim} Y$ 2. g as f^{-1} , and $f^{-1}: Y \cong X$, $f^{-1}: Y \xrightarrow{\sim} X$

E.g.

- bijection in Set
- bi-implication in Prop

Lemma. If $f: X \cong Y$, then for any Z, we have

- $f_* : \text{hom}(Z, X) \cong_{Set} \text{hom}(Z, Y)$.
- $f^* : \text{hom}(Z, X) \cong_{Set} \text{hom}(Z, Y)$.

Proof. (f_*)

- \Rightarrow For any $g \in \text{hom}(Z, X)$, we have $g: Z \to X$. Also we know $X \stackrel{f}{\to} Y$. So, $f \circ g: Z \stackrel{g}{\to} X \stackrel{f}{\to} Y$.
- \Leftarrow For any $h \in \text{hom}(Z,Y)$, we have $h: Z \to Y$. Also we know $Y \stackrel{f^{-1}}{\to} X$. So, $f^{-1} \circ h: Z \stackrel{h}{\to} Y \stackrel{f^{-1}}{\to} X$.

Lemma. Terminal objects are unique up to isomorphism.

Proof. Let T, T' be two terminal objects in a category \mathcal{C} .

Since T is terminal, there exists a unique morphism $f: T' \stackrel{!'}{\to} T$. Similarly, there exists a unique morphism $g: T \stackrel{!}{\to} T'$.

Now $! \circ !' : T \xrightarrow{!'} T' \xrightarrow{!} T = \mathrm{id}_T$. Similarly, $!' \circ ! = \mathrm{id}_{T'}$.

NOTE We know $T \stackrel{!'}{\to} T' \stackrel{!}{\to} T$ is id_T because T is terminal, which means for every object Z there is a *unique* morphism $Z \stackrel{!}{\to} T$. In particular, for Z = T, there is a *unique* morphism $T \stackrel{!}{\to} T$. And we know $\mathrm{id}_T : T \to T$ is one of the morphisms, so that's it.

Generally, there could be multiple morphisms to oneself, but in this case it's the terminal part that makes it unique.

Duality

Given a category \mathcal{C} , we can define its **dual category** $\mathcal{C}^{\{op\}}$ by reversing the direction of all morphisms.

ob
$$\mathcal{C}^{\mathsf{op}} \coloneqq \mathsf{ob}\ \mathcal{C}, \mathsf{hom}^{\{\mathsf{op}\}}_{\mathcal{C}}(X,Y) \coloneqq \mathsf{hom}_{\mathcal{C}}(Y,X)$$

Lemma. \mathcal{C}^{op} is a category.

Lemma. If $X \cong Y$ in \mathcal{C} , then $X \cong Y$ in $\mathcal{C}^{\{op\}}$.

Initial Object

An **initial object** I in a category \mathcal{C} is the terminal object in \mathcal{C}^{op} .

or,

An **initial object** I in a category \mathcal{C} is an object such that for every object $Z \in \mathcal{C}$, there is a unique morphism $I \stackrel{1}{\to} Z$.

Lemma. Initial objects are unique up to isomorphism.

Proof. Follows dually from the uniqueness of terminal objects.

E.g.

- empty set (\emptyset) in *Set*
- empty type (0) in Ty
- false (\perp) in *Prop*

Product

A **product** of two objects A, B in a category \mathcal{C} contains

- 1. an object $A \times B \in \text{ob}(\mathcal{C})$
- 2. morphisms $A \times B \xrightarrow{\pi_A} A$, $A \times B \xrightarrow{\pi_B} B$,

s.t. for any $Z \in \text{ob}(\mathcal{C})$ and morphisms in the diagram, we have a **unique** morphism $U_Z : Z \xrightarrow{!} A \times B$ such that the diagram commutes.

$$A \xleftarrow{\eta_A} A \times B \xrightarrow{\eta_B} B$$

NOTE This **uniqueness** depends on the specific choice of π_A and π_B . One must realize that *product* is not just an object, but also the morphisms π_A, π_B .

NOTE Only *some* categories have products.

NOTE If U_Z does not need to be unique, it's called a weak product.

E.g.

- cartesian product in Set
- ∧ in *Prop*

Theorem The product $A \times B$ $(A \times B, \pi_1, \pi_2)$ of $A, B \in \text{ob}(\mathcal{C})$ is unique up to *unique isomorphism*. **Proof**.

1. Recall the very definition of product (an object, and two project morphisms). First we introduce $A\times B$ and $A\times' B$:

 $A \times B$ $\pi_A \qquad A \times' B \qquad \pi_B$ $A \qquad \pi'_A \qquad \pi'_B \qquad B$

2. Compare the previous diagram with the universal property of product. "Instantiate" the universal property of $A \times' B$ and we have a unique morphism $A \times B \xrightarrow{!f} A \times' B$:

WARN

One might attempt to do the following thing to close the proof:

This is not correct, because for $A \times B$ and $A \times' B$ to be isomorphic one also needs to show

$$!f' \circ !f = \mathrm{id}_{A \times B}$$

which is not depicted in the diagram.

3. For sake of reasoning, let's duplicate $A \times B$ below $A \times' B$ and exercise the universal property of $A \times B$ with "apex" $A \times' B$ to show $A \times' B \xrightarrow{!g} A \times B$:

4. We can also "instantiate" the universal property of the lower $A \times B$ with apex being the upper $A \times B$, to show there exists a unique morphism $A \times B \to A \times B$:

5. Note that $A \times B \overset{!g \circ !f}{\to} A \times B$, and also $A \times B \overset{\mathrm{id}_{A \times B}}{\to} A \times B$. By the previous reasoning, there exists only one morphism, so $!g \circ !f = \mathrm{id}_{A \times B}$. Similarly, $!f \circ !g = \mathrm{id}_{A \times 'B}$. By uniqueness of !f and !g, this isomorphism is unique.

WARN This *uniqueness* depends on a specific choice of π_A and π_B . In other words, if we only consider the product objects $A \times B$ and $A \times' B$, their isomorphism might not be unique because we have the freedom to choose different projection morphisms π_A, π_B and π'_A, π'_B , and they form their own unique isomorphism.

Alternative Definition 1 Define new category $\mathcal{C}_{A,B}$,

1. **Objects**: diagrams of the form

It can also be called a *span* from A to B.

2. **Morphisms**: f shown in the following diagram

Theorem. Product of A,B in \mathcal{C} is the terminal object in $\mathcal{C}_{A,B}$.

Alternative Definition. Consider $A, B \in \text{ob}(\mathcal{C})$, the product of A, B in an object $A \times B \in \text{ob}(\mathcal{C})$ with the property that

$$hom_{\mathcal{C}}(Z, A \times B) \cong hom_{\mathcal{C}}(Z, A) \times hom_{\mathcal{C}}(Z, B)$$

Theorem. This formation of product is equivalent to the previous two.

TODO This reminds me of *natural transformations*. Instead of producting objects (as in the first definition), we are producting morphisms now.

Def The terminal object of \mathcal{C} is an object T s.t.

$$\hom(Z,T)\cong\{\top\}$$

TODO i heard the word terminal?? pull out T?? what is a limit here???

Coproduct

A **coproduct** (A + B) of two objects A, B in a category \mathcal{C} is the *product* of A, B in \mathcal{C}^{op} .

$$A \xrightarrow{\eta_A} A + B \xleftarrow{\iota_B} B$$

Intuitively, one can make sense of this syntax by thinking of A + B as the disjoint union of A and B.

Syntactic Category of STLC

For a simply typed λ -calculus Π , define its **syntactic category** \mathcal{C}_{Π} as follows:

• Objects: types

• Morphisms: $x: S \vdash t: T$

One can see it satisfies:

• Id:

$$\frac{}{x:S \vdash x:S}x$$

• Comp:

$$\frac{x:S \vdash t:T \quad y:T \vdash u:U}{x:S \vdash u[t/y]:U}_{\text{SUBST}}$$

Now let's add product to our Π .

$$\frac{A \text{ type} \quad B \text{ type}}{A \times B \text{ type}} \times_F \qquad \frac{z : Z \vdash a : A \quad z : Z \vdash b : B}{z : Z \vdash (a,b) : A \times B} \times_I \qquad \frac{z : Z \vdash p : A \times B}{z : Z \vdash \pi_A p : A} \times_{E_A}$$

$$\frac{z : Z \vdash p : A \times B}{z : Z \vdash \pi_B p : B} \times_{E_B}$$

Thus, there's an interretation from Π to the category \mathcal{C}_{Π} . After that, one can construct morphisms from \mathcal{C}_{Π} to other categories to give various different semantics to Π .