

planetmath.org

Math for the people, by the people.

multiplication ring

Canonical name MultiplicationRing
Date of creation 2013-03-22 14:27:02
Last modified on 2013-03-22 14:27:02
Owner PrimeFan (13766)
Last modified by PrimeFan (13766)

Numerical id 17

Author PrimeFan (13766)

Entry type Definition
Classification msc 13A15
Related topic PruferRing

Related topic DedekindDomain Related topic DivisibilityInRings Let R be a commutative ring with non-zero unity. If \mathfrak{a} and \mathfrak{b} are two http://planetmath.org/FractionalIdealOfCommutativeRingfractionalidealofCommutativeRinginveRin

Definition. Let R be a commutative ring with non-zero unity and let \mathfrak{a} and \mathfrak{b} be ideals of R. The ring R is a multiplication ring if $\mathfrak{a} \subseteq \mathfrak{b}$ always implies that there exists a \mathfrak{c} of R such that $\mathfrak{a} = \mathfrak{bc}$.

Theorem. Every Dedekind domain is a multiplication ring. If a multiplication ring has no zero divisors, it is a Dedekind domain.

References

[1] M. LARSEN & P. MCCARTHY: Multiplicative theory of ideals. Academic Press. New York (1971).