Report No. DRXTH-TE-CR-80086

MINWEST RESEARCH INSTITUTE

REPORT

IDENTIFICATION OR DEVELOPMENT OF CHEMICAL ANALYSIS METHODS FOR PLANTS AND ANIMAL TISSUES

DTIC ELECTE NOV 1 0 1981

H

FINAL REPORT January 1981

Contract No. DAAK11-79-C-0110 MRI Project No. 4849-A

DISTRIBUTION STATULENT A

Approved for public release;
Distribution Unlimited

U.S. Army Toxic and Hazardous Materials Agency
DRXTH-TE-A
Aberdeen Proving Ground (EA), Maryland 21010

For

MIDWEST RESEARCH INSTITUTE 425 VOLKER BOULEVARD, KANSAS CITY, MISSOURI 64110 . 816 753-7600

ni 11 10 051

The views, opinions, and/or findings contained in this report are those of the authors and should not be construed as an official Department of the Army position, policy or decision, unless so designated by other documentation.

MRI - NORTH STAR LABORATORIES 10701 Red Circle Drive, Minnetonka, Minnesota 55343 • 612 933-7880 MRI WASHINGTON, D.C. 20006 - Suite 250, 1750 K Street, N.W. • 202 293-3800

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered) READ INSTRUCTIONS 9 REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER 106 B46 DRXTH-TE CR-80086 TYPE OF REPORT & PERSON TITLE (and Subtitle) Final Report. 19 Aug 79-Identification or Development of Chemical Aug. 19, 1979 - Oct. 1989 Analysis Methods for Plants and Animal Tissues. 6. PERFORMING ORG. REPORT NOWER MRI Project No. 4849-A 8. CONTRACT OR GRANT NUMBER(#) 7. AUTHOR(e) DVB. Lakings 🕶 Ov Gan DAAK11-79-C-0110 S. PERFORMING ORGANIZATION NAME AND ADDRESS PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS Midwest Research Institute 425 Volker Boulevard Kansas City, Missouri 64110 11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE January 1981 U.S. Army Armament Research and Development 13. NUMBER OF PAGES Command, Aberdeen Proving Ground (Edgewood 311 Area) Maryland 21010
MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) 15. SECURITY CLASS. (of this report) U.S. Army Toxic and Hazardous Materials Agency Unclassified Aberdeen Proving Ground (Edgewood Area) 15a, DECLASSIFICATION/DOWNGRADING Maryland 21010 16. DISTRIBUTION STATEMENT (of this Report) Unlimited 17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if different from Repo 14. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Trinitrotoluene (TNT) Methods development Biological Matrices Pentaerythrite tetranitrate (PETN) Cyclotrimethylenetrinitramine (RDX) High performance liquid chromatography Dinitrotoluene (DNT) (HPLC 20. ABSTRACT (Continue on reverse side if necessary and identify by black mamber) HPLC-UV analytical methods have been defined for the quantitative determination of RDX, DNT, and TNT in animal plasma, kidney, muscle/fat, and liver; DNT and TNT in plants stems; and PETN in animal plasma. The HPLC separation and detection of RDX, DNT, and TNT was accomplished on a Spherisorb ODS, 5 μ , 250 x 4.6 mm ID column using 28-30% acetonitrile in water containing 1% acetic acid eluent operated at a flow rate of 1.5 ml/min with a 254 nm detector. Tetryl was also separated and DD 1 JAN 73 1473 EDITION OF THOY 68 IS OBSOLETE

230350

UNCLASSIFIED

DURITY CLASSIFICATION OF THIS PACE(THE Bote Between

19. Key Words (concluded)

Ultraviolet detection, 254 mm or 215 mm Animal tissues - plasma, kidney, muscle/fat, liver Plants - leaves, stems

20. Abstract (concluded)

quantified with this analytical system. PETN required a 215-nm detector for detection and was assayed by HPLC using a Spherisorb ODS column and an eluent of 40% acetonitrile in high-purity water. Each of the analytical systems was evaluated for linearity, precision, and sensitivity using SARM reference solutions of the five munitions. Linearity was obtained over a concentration range of 100 to 2,000 ng/ml for each munition, and the sensitivities of the techniques were 5 ng munition injected on column.

The analytical techniques were employed to evaluate sample preparation techniques for the isolation of the munitions from four animal tissues and two plant matrices. A defined sample preparation technique was validated by preparing and analyzing duplicate samples of the matrix spiked at five different levels with the munitions and matrix blanks on four separate days. The sensitivity of the developed method was to be 100 ng/g for each munition. The sample preparation procedures defined for RDX, DNT, and TNT in animal plasma, kidney, and liver samples were similar and consisted of extracting a weighed sample diluted with a 10% sodium chloride solution containing 1% acetic acid three times with toluene. The toluene extracts were dried, the residue dissolved in 1.0 ml HPLC eluent containing an internal standard, the sample filtered through a 0.45-µ Fluoropore filter, and an aliquot of the prepared sample injected onto the HPLC system. For the muscle/fat and plant stem matrices, a different extraction solvent was necessary to eliminate matrix component interferences in the HPLC determination of RDX, DMT, and TNT. Acetonitrile was employed for extraction of the muscle/fat matrix and 2% isopropanol in hexane was utilized to extract the munition from the plant stems. After extraction, a protocol similar to the one described above was followed to prepare the samples for HPLC injection. During these studies, tetryl was included in all samples; however, no HPLC peaks for tetryl were observed in any of the matrices studied using a variety of sample preparation techniques. Studies on tetryl indicated absorption of the munition to the protein or other macromolecules present in the matrices. Statistical evaluation of the data by the Hubaux and Vos detection limit program gave the following detection limits for RDX, DNT, and TNT in the various matrices: plasma RDX, 146 ng/ml, DNT, 246 ng/ml, TNT, 248 ng/ml; kidney - RDX, 95 ng/g, DNT, 179 ng/g, TNT, 211 ng/g; muscle/fat - RDX, 62 ng/g, DNT, 66 ng/g, TNT, 66 ng/g; liver - RDX, 58 ng/g, DNT, 50 ng/g, TNT, 50 ng/g; and plant stems, DNT, 65 ng/g, TNT, 90 ng/g. The 58 ng/g RDX detection limit in the liver matrix is questionable since the blank liver samples contained a component which co-eluted with RDX and represented 113 ± 18 ng/g RDX. A more realistic RDX detection limit in the liver matrix is 150 ng/g (blank liver value plus two standard deviations). No method was defined for RDX, DNT, TNT, and tetryl in the plant leaves matrix. The procedure defined for the extraction of PETM from animal plasma utilized hexane as the extracting solvent. The detection limit determined for PETN in plasma was 50 ng/ml. The other animal and two plant matrices could not be assayed for PETN using simple extraction techniques because many 215 nm adsorbing matrix components were extracted with each solvent evaluated, and the HPLC analytical system was not able to isolate the PETN from these interferences.

PREFACE

This report was prepared at Midwest Research Institute, 425 Volker Boulevard, Kansas City, Missouri 64110, under U.S. Department of the Army Contract No. DAAK11-79-C0110, MRI Project No. 4849-A, entitled "Identification or Development of Chemical Analysis Methods for Plants and Animal Tissues." The research effort was supported by the U.S. Army Toxic and Hazardous Materials Agency. Dr. Leslie Eng, DRXTH-TE-A, was the Project Officer for this program.

This work was conducted in the Analytical Chemistry Department, Dr. James L. Spigarelli, Director. The research effort was directed by Dr. Duane B. Lakings, Program Manager and Senior Bioanalytical Chemist, with assistance from Mr. Owen Gan, Assistant Chemist, and Ms. Mary Valla, Senior Technician. This report was prepared by Dr. Lakings and Mr. Gan.

MIDWEST RESEARCH INSTITUTE

Owen Gan

Assistant Chemist

Duane B. Lakings

Program Manager and Senior Bioanalytical Chemist

Approved:

James L. Speiga ell.

James L. Spigarelli, Director Analytical Chemistry Department

Accession For

NTIS GRA&I
DTIC TAB
Unannowned
Justification

By
Distribution/
Aveilability Codes

TABLE OF CONTENTS

																									Page
Summa	ry																								1
Concl	usions																								3
	wendat																								4
I.	Intro	ductio	. .																						5
	211010			• •	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
II.	Equip	ment a	ind H	ter	ial	s.	•	•	•	•	•	•	•	• •		•	•		•	•	•	•	•	•	5
	A.	Equip	ment																						5
	В.	Labor																							6
	С.	Chemi																							6
	D.	Anima	l Ti	BSUC	5 8	nd	P1	ant	. 5																6
	E.	Refer	rence	Sto	ck	Sol	ut	ion	s																7
	F.	Calcu																							7
III.	Analy	rtical	(Ins	trum	ent	al)	T	ech	ın i	.qu	es	١.				•	•				•				8
	Α.	RDX,	DNT	TNT		nd	Ta	t es	, 1	up	TC			•											10
	В.		HPLC																						15
			20			•		•	•	•	•	•	•	•	• •	•	•	٠	٠	•	•	•	•	•	.,
IV.	Sampl	le Prep	parat	ion	Pro	ced	lur	es				•		•		•	•	•	•	•	•	•	•	•	17
	A.	Anima	al Pl	a sma																					17
	В.	Anima	al Ki	dney	Sa	mp]	les																		29
	С.	Anima	al Mu	scle	/Fa	t S	Sam	ple	8																32
	D.	Anima	al Li	ver	Sam	ple	8.																		33
	E.	Plan	t Lea	ves.																					39
	F.		t Ste																						46
Apper	dices																								
A		Raw I	Data	and	Cal	cu]	lat	ior	าร	fo	r	Fi	na	1 1	Rep	or	t.								47
В			od Re																						59
С			od Re																						101
D		Meth	od Re	- port	. No	. 3	3.																		145
E		Meth	od Re	port	. No	. 4	٠.																		189
F			od Re																						233
G			od Re																						263
	•			-													-	-	-			-	_		

LIST OF FIGURES

Number	<u>Title</u>	Page
1	HPLC Separation for TNT, DNT, RDX and Internal Standard on the Spherisorb ODS Column	13
2	HPLC Determination of RDX, TNT, DNT, and Tetryl SARM Reference Solution Using HPLC System II	14
3	HPLC System I Analysis of Blank Plasma Sample for Method Development Using Acetonitrile Precipitation Technique	24
4	HPLC System II Determination of RDX, DNT, and TNT in Plasma Sample Prepared by Acetonitrile Precipitation Technique	25
5	HPLC-UV (215 nm) Method Development for PETN Determination in Kidney Samples	31
6	HPLC Method Development for RDX, DNT, and TNT Determination in Animal Liver	35
7	HPLC Chromatograms of RDX, DNT, and TNT Extracted from Liver with Various Solvents	37
8	HPLC Chromatograms of RDX, DNT, and TNT Extracted from Liver with Various Solvents	38
9	HPLC Chromatograms for PETN Method Development in Liver	40
10	HPLC Chromatogram of Blank Leaf Sample (5.0 g) Extracted with Toluene	42
11	HPLC Chromatogram of 5.0 g L-aves Containing 200 ng/g Each Munition Extracted with American Extracted with American Extracted with American Extracted with E	43
12	HPLC Chromatogram of Plant Leave. Containing Munitions and Extracted with Toluene Plus 2% IPA	44
13	HPLC-UV (215 nm) System IV Analysis of 2% IPA in Hexane Extracted Leaves for Method Development for PETN Determination	45

LIST OF TABLES

Humber	<u>Title</u>	Page
Summary Table	Linear Regression Equations and Detection Limits for the HPLC Determination of RDX, DNT, TNT, and PETN in Various Biological Matrices	2
1	HPLC Analytical System Investigated for Munition Compound Determination	9
2	HPLC Linearity of RDX, DNT, and TNT Interim SARM Reference Solution, HPLC System I	11
3	HPLC Precision and Linearity of RDX, DNT, TMT, and Tetryl SARM Reference Solutions, HPLC System II	16
4	Summary of Sample Preparation Procedure Evaluations for Munitions in Biclogical Matrices	18
5	Evaluation of Acetonitrile Precipitation Procedure for the Determination of DNT and TNT in Plasma	23
6	Tetryl Recovery from Plasma Using Two Sample Preparation Techniques	28
7	MPLC-UV Determination of RDX, DNT, and TNT is Liver Samples Initial Evaluation of Toluene Extraction Method	34

SUMMARY

The primary objective of this research program for the U.S. Army Toxic and Hazardous Materials Agency was to define simple, quantitative, sensitive analytical methods for the determination of cyclotrimethylenetrinitramine (RDX), dinitrotoluene (DNT), trinitrotoluene (TNT), 2,4,6-trinitrophenylmethylnitramine (tetryl) and pentaerythrite tetranitrate (PETN) in four animal tissues (plasma, kidney, muscle/fat, and liver) and two plant matrices (leaves and stems). High performance liquid chromatography (HPLC) was selected as the analytical technique for this research project because it had the necessary sensitivity, linearity, precision, accuracy, and separation characteristics for the detection and quantification of the munitions at low levels, i.e., 100 ng/g. An HPLC analytical system was defined which separated RDX, DNT, TNT, and tetryl in a single chromatographic analysis and with an ultraviolet (UV) detector at 254 nm, detected and quantitated a minimum of 5 ng of each munition injected on column. This analytical system consisted of a Spherisorb ODS, 5 μ , 250 x 4.6 mm ID column; a 28-30% acetonitrile in 1% acetic acid in water eluent; and a flow rate of 1.5 ml/min. The analytical technique was employed to evaluate sample preparation procedures to isolate the munitions from the various matrices. Simple liquidliquid or liquid-solid extraction techniques were defined for the determination of RDX, DNT, and TNT in each of the animal tissues and for DNT and TNT in the plant stem matrix. Tetryl could not be analyzed in any of the matrices because it apparently adsorbed to the protein or other macromolecules present in the matrix. Matrix components which interfered with HPLC elution positions of RDX and DNT prevented the definition of a simple extraction technique for these munitions in the plant leaves matrix. Each of the developed sample preparation techniques gave a linear response to the munition during validation of the method. The methods were validate! by preparing and analyzing duplicate samples of each matrix spiked at five different levels and matrix blanks on four separate days. The summary table presents the linear regression equations and correlation coefficients for each munition for the various matrices and gives the detection limit for the munition as determined by the Hubaux and Vos detection limit program.

PETN required a 215-nm UV detector for quantification and a slightly different HPLC eluent and could not be analyzed with the other munitions. The analytical system defined for PETN utilized the same HPLC column and 40% acetonitrile in high-purity water (the use of an acid modified with this system was not possible since the organic acid has absorbance at 215 nm). The system had the necessary sensitivity and linearity to provide quantitative data at the 100 ng/g level. Studies were conducted to define sample preparation procedures for PETN in the biological matrices. A simple liquid-liquid extraction technique was developed and validated for PETN in plasma. However, simple extraction of the other matrices was not sufficient for PETN determination as a number of components with 215 nm adsorption were also extracted and interfered with the HPLC determination of PETN. The summary table gives the linear regression, correlation coefficienc, and detection limit for PETN in plasma.

SUPPLARY TABLE

LINEAR REGRESSION EQUATIONS AND DETECTION LIMITS FOR THE RPLC DETERMINATION OF RDX, DNT, TNT, AND PETN IN VARIOUS BIOLOGICAL MATRICES

		Tinger Regression			Detec	ction al or	Detection Limits (ns/ml or ns/ml)	
	RDX	DNT	TAT	PETN	RDX	E	X DNT TNT PETN	[2]
Plasma	y = 0.825g + 14 0.990	$\mathbf{y} = 0.659\mathbf{x} + 6$ 0.982	y = 0.785x + 16 0.988	y = 0.594x - 0.8	146 ^d 2	₉ 957	146 ^d 256 ^d 248 ^d 50 ^e	•0
Kidney	y = 0.973x + 7.1 0.999	y = 0.707x - 3.5 0.991	y = 0.746x - 5.4 0.992		95 ^d 179 ^d 211 ^d	p641	211 ^d	
Muscle/Fat	y = 0.965x + 6.5 0.994	y = 0.781x + 3.7 0.990	y = 0.850x + 1.8 0.999		62° 66° 62°	999	62 ^e	
Liver	y = 0.904x + 107 0.998	y = 0.640x - 1.9 0.995	y = 0.521x - 6.2 0.989		58°,f 50° 50°	50 e	50e	
Plant Stem		y = 0.514x + 7.0 0.923	y = 0.449x + 9.8 0.957			65° 90°	906	

Linear regression - equation determined from the duplicate analysis of matrix samples spiked at five different levels plus matrix blanks on four separate days; 48 data points utilized for each equation. Detection limit - statistical evaluation of the data by the Hubaux and Vos detection limit program.

Detection limits determined from spiking level series of 0, 100, 500, 1,000, 1,500, and 2,000 ng/g Correlation coefficients obtained for each linear regression evaluation.

using the Hubaux and Vos detection limit program.

Detection limits determined from spiking level series of 0, 50, 100, 200, 500, and 1,000 ng/g using the Hubaux and Vos detection limit program.

A liver component co-eluted with RDX and represented 113 ± 18 ng/g RDX in the blank samples. Thus, a 150-ng/g detection limit for RDX in the liver matrix is realistic.

CONCLUSIONS

Quantitative HPLC analytical methods have been defined for the determination of RDX, DNT, and TNT in animal plasma, kidney, muscle/fat, and liver samples; DNT and TNT in plant stems; and PETN in plasma. A simple liquid-liquid or liquid-solid technique was employed to isolate the munitions from the biological matrix followed by reverse phase HPLC to separate the munitions from each other and matrix components; detection and quantification were by UV at 254 nm for RDX, DNT, and TNT and 215 nm for PETN. Each of the developed methods has the necessary linearity, precision, accuracy, and sensitivity to quantitate low levels, i.e., approximately 100 ng/g, of the munitions.

Methods were not defined for tetryl in any matrix due to apparent adsorption of the munition by macromolecules in the matrix. HPLC interferences from the matrix prevented method definition for RDX in plant stems; RDX, DNT, and TNT in plant leaves, and PETN in animal kidney, muscle/fat, and liver and plant leaves and stems. Additional studies are necessary using more elaborate sample preparation procedures such as adsorption or partition column chromatography to define those methods.

RECOMMENDATIONS

Additional studies using more elaborate sample clearup procedures should be conducted for the isolation of RDX, DNT, and TNT in the plant matrix and PETN in all matrices except plasma. The cleanup procedures recommended for future study include double liquid-liquid extraction using solvents with different polarity, adsorption column chromatography, and/or partition column chromatography. These techniques may provide sufficient cleanup of the biological samples so they can be analyzed by the defined MFLC analytical techniques.

The results and statistical evaluation of the data for the HPLC determination of RDX, DNT, and TNT in plasma and kidney matrices were obtained using a spiking series of 0, 100, 500, 1,000, 1,500, and 2,000 ng/g. For the other matrices, the spiking series was 0, 50, 100, 200, 500, and 1,000 ng/g. The plasma and kidney matrices should be reanalyzed using the second series so that the statistical evaluation of the data by the Hubaux and Vos detection limit program will provide detection limits closer to the walues observed during the assay of these samples. The Hubaux and Vos detection limit program uses the standard deviation at the various levels to determine the confidence of analysis at that level. As would be expected, the standard deviation at a level of 2,000 ng/g is substantially higher than at 100 ng/g. By using more low level spiked samples, as is done with the second series, the Landard deviation term is lower, giving a more accurate detection limit. Another means of calculating the detection limit is to replace the standard deviation term with a relative standard deviation term. Then, the percent variation at each level, which is usually relatively constant over a concentration range, is employed to define the detection limit.

I. INTRODUCTION

Under Contract No. DAAK11-79-C-0110, entitled "Identification or Development of Chemical Analysis Methods for Plants and Animal Tissues," atudies have been conducted to define quantitative analytical methods for the determination of various munition compounds in biological matrices. The munition compounds evaluated included cyclotrimethylenetrinitramine (RDX), dinitrotoluene (DNT), trinitrotoluene (TNT), pentaerythrite tetranitrate (PETN), and 2,4,5 trinitrophenylmethylnitramine (tetryl). The biological matrices selected for study were animal plasma, kidney, muscle/fat, and liver and plant leaves and stems.

The analytical methods were to be able to detect and quantitate the munition compounds at the 100 ng/g (parts per billion) level and were to be designed to utilize readily available analytical instrumentation, to be able to analyze a number of samples in a routine manner, and to be capable of providing the final results in a relatively short time. The developed methods may have application in assessing the environmental contamination of these munitions in the plants and animals at munition production facilities or in the immediate area.

This report describes the research effort to develop the analytical methods for munition compounds in biological matrices.

II. EQUIPMENT AND MATERIALS

A. Equipment

The Manager of the Ma

The instrumentation employed during the course of the research program consisted of:

- 1. Isocratic HPLC instrument consisting of a Waters Model 6000A pump, Waters Model U6K injector, Waters Model 440 UV detector (254 nm filter), and a Heath-Schlumberger Model SR-204 strip chart recorder.
- 2. Isocratic HPLC instrument consisting of a Waters Model 6000A pump, Waters Model U6K injector, Varian Model UV-50 variable wavelength detector (190 to 700 nm), and a Heath-Schlumberger Model SR-204 strip chart recorder.
- 3. General purpose centrifuge, Dynac, Clay Adams 0101, with 24-place and 8-place heads.
 - 4. A Waring multi-speed blender with a glass container.
 - 5. A Teflon-glass motor driven homogenizer.

B. Laboratory Glassware and Equipment

- 1. Culture tubes (Pyrex) with Teflon-lined screw caps.
- 2. Volumetric flasks (100 ml).
- 3. Volumetric syringes (0-100 μ 1, 0-500 μ 1, and 0-1,000 μ 1).
- 4. Automatic pipettor (0-5 ml).
- 5. Filtering apparatus including filter holders, 5-ml disposable syringes, and 0.45 μ Fluoropore filters.
 - 6. Inert gas (nitrogen) drying train with 12 ports.
 - 7. Inert gas (helium) apparatus for degassing HPLC eluents.

C. Chemicals

- 1. Toluene, hexane, ethyl acetate, isopropanol, and acetonitrile, "Distilled in Glass" grade from Burdick and Jackson. Note: Solvents of lesser quality should not be employed or interfering peaks may be observed on the HPLC chromatograms.
- 2. Acetic acid, sodium chloride, and ammonium dihydrogen phosphate, ACS grade.
 - 3. High purity water from a Milli-Q water purification system.
- 4. RDX, DNT, TNT, PETN, and tetryl SARMs from the U.S. Army Toxic and Hazardous Materials Agency.
- 5. Internal standards propiophenone, butyrophenone, and valerophenone, analytical grade.

D. Animal Tissues and Plants

The various animal tissues, plasma, kidney, muscle/fat, and liver, to be studied were obtained from cattle at the time of slaughter at a local (Kansas City, Missouri) slaughter house. The cattle blood was collected in 250 ml centrifuge tubes containing heparin (to prevent clotting), placed in ice, and transported to Midwest Research Institute (MRI). Upon arrival at MRI, the blood was centrifuged and the plasma transferred to culture tubes. The plasma was frozen and stored at -80°C until use in method development. The kidney, muscle/fat, and liver samples obtained at the same time as the blood were placed in freezer bags and transported to MRI in ice chests containing dry ice. Upon arrival at MRI, the tissues were cut into pieces (approximately 2-in. squares), placed in freezer bags, and stored at -80°C until use in method development.

Plant leaves and stems were obtained from a horse pasture. The leaves, including grass, and the stems were placed in freezer bags, transported to MRI in ice chests containing dry ice, and stored at -80°C until use in method development.

E. Reference Stock Solutions

Reference stock solutions of each munition compound and internal standard were prepared and stored at 4° C. The tetryl stock solutions were wrapped in foil to prevent degradation by UV light.

- 1. Munition Stock Solutions: Approximately 20 mg to the nearest 0.1 mg of munition compound SARM (RDX, DNT, TNT, PETN, and tetryl) were weighed into separate 100-ml volumetric flasks and the weight recorded. Each munition was dissolved in acetonitrile and volume adjusted to 100 ml. The concentration of each munition was 200 μ g/ml. A 20-ml aliquot from the RDX, DNT, TNT, and tetryl stocks was quantitatively pipetted into a 100-ml volumetric flask and the volume adjusted to 100 ml with high-purity water. The concentration of RDX, DNT, TNT, and tetryl in this stock solution was 40 μ g/ml. A 20-ml aliquot from the PETN stock was quantitatively pipetted into a 100-ml volumetric flask and diluted to volume with high-purity water (PETN concentration 40 μ g/ml). The PETN stock was prepared separately from the other munitions since the analytical technique for PETN was different from the method for RDX, DNT, TNT, and tetryl.
- 2. Internal Standard Stock Solutions: Approximately 10 mg to the nearest 0.1 mg of each internal standard (IS) (propiophenone, butyrophenone, and valerophenone) were weighed into separate 100-ml volumetric flasks, the weights recorded, and the sample diluted to volume with acetonitrile. The concentration of each IS was 100 $\mu g/ml$. A 10- $\mu g/ml$ stock of each IS was prepared by quantitatively pipetting 10 ml of the 100- $\mu g/ml$ stock into separate 100-ml volumetric flasks and diluting to volume with acetonitrile.

F. Calculation of Data

The data obtained during this program were calculated using the relative weight response (RWR) to an internal standard method. Reference solutions of the munition compounds were assayed and the RWR of each compound determined by Eq. 1.

RWR Cpd/IS =
$$\frac{\text{Peak Height Cpd}}{\text{Peak Height IS}} \times \frac{\text{ng/ml IS}}{\text{ng/ml Cpd}}$$
 (Eq. 1)

The RWR value of the reference solution was then employed to calculate the level of the munition in a prepared sample aliquot by:

$$\frac{\text{ng Cpd}}{\text{aliquot}} = \frac{\text{Peak Height Cpd}}{\text{Peak Height IS}} \times \frac{\text{ng/ml IS}}{\text{RWR Cpd/IS}}$$
(Eq. 2)

If the sample taken for analysis was 1.0 ml or 1.0 g, the ng Cpd/aliquot was equal to ng Cpd/ml or parts per billion (ppb) compound in the sample. If the sample taken was not 1.0 ml or 1.0 g, the ng Cpd/ml was calculated by dividing the ng Cpd/aliquot by the same volume or weight.

The data obtained for the analysis of duplicate samples at five levels on four separate days for each munition were subjected to statistical analysis. The average of the eight data points at each level, the standard deviation, coefficient of variation (relative standard deviation), and percent inaccuracy were determined by the following equations.

Average =
$$\sum x/n = \overline{x}$$
 (Eq. 3)

x = data point; n = number of data points

Standard Deviation =
$$\left(\frac{n\Sigma x^2 - (\Sigma x)^2}{n(n-1)}\right)^{\frac{1}{2}} = \sigma$$
 (Eq. 4)

Coefficient of Variation =
$$\sigma/\bar{x} \times 100$$
 (Eq. 5)

Percent Inaccuracy =
$$\frac{ng/g \ Cpd \ Found - ng/g \ Cpd \ Added}{ng/g \ Cpd \ Added} \times 100$$
 (Eq. 6)

The data were also subjected to linear regression analysis and the slope, y-intercept, and correlation coefficient determined for each munition in each matrix. The detection limits for the munitions in a matrix were determined by the Hubaux and Vos detection limit program and were generated at the U.S. Army Toxic and Hazardous Materials Agency.

III. ANALYTICAL (INSTRUMENTAL) TECHNIQUES

The first phase of the research program was to define and validate the analytical techniques to be employed for the determination of RDX, DNT, TNT, PETN, and tetryl in the various biological matrices. Each munition compound was scanned from 350 to 200 nm to determine the wavelength maxima and extinction coefficients. These data indicated that RDX, DNT, TNT, and tetryl had sufficient UV chromophores at 254 nm for detection and quantification by HPLC. However, PETN gave a minimum at 254 nm and a maximum at 215 nm and required a different detection system than the other munitions. Studies were conducted to determine the HPLC conditions necessary to separate RDX, DNT, TNT, and tetryl and to define an internal standard (IS) for calculation purposes. Also, the HPLC conditions necessary to analyze PETN were evaluated. The various HPLC systems evaluated during the project are summarized in Table 1. The development of each of these methods is presented in detail in the following paragraphs.

TABLE 1

HPLC ANALYTICAL SYSTEM INVESTIGATED FOR MUNITION COMPOUND DETERMINATION

Comments	Could not separate TNI and tetryl	High pump pressure and short column life prevented use for routine analyses	Utilized for method development for several biological matrices	Utilized for plasma method development
Munition Compounds	RDX, DNT, TNT	RDX, DNT, TNT, tetryl	RDX, DNT, TNT, tetryl	PETN
Eluent	40% CH ₃ CN in 1% acetic acid	20% CH ₃ CN in 0.035 M NH ₄ Ac, pH 7	28-30% CH ₃ CN in 1% acetic acid	40% CH ₃ CN in high-purity water
Analytical Column	Spherisorb ODS, 5 µ	Sp'ærisorb ODS, 5 μ	Spherisorb ODS, 5 µ	Spherisorb ODS, 5 µ
System	н	11	III	VI

A. RDX, DNT, TNT, and Tetryl HPLC Parameters

Previous studies on these munitions had shown that each could be analyzed on a reverse phase column (Waters µBondapak C-18). The separation of the four compounds in a single HPLC system had not been demonstrated. Two reverse phase HPLC columns, $\mu Bondapak$ C-18, 10 μ , and Spherisorb ODS, 5 μ, were evaluated using methanol or acetonitrile in 1% acetic acid eluents. The initial studies were conducted using interim SARMs of RDX, DNT, and TNT; no interim SARM for tetryl was available. The results indicated that baseline separation of RDX, DNT, and TNT was possible with either column or organic solvent. The elution position of TNT varied depending on the eluent; with methanol, TNT eluted prior to DNT and with acetonitrile, after DNT. The peak shape was superior with the Spherisorb column, and acetonitrile was expected to be employed in the sample preparation of biological matrices (see Section IV). The Spherisorb column with an acetonitrile eluent was selected (HPLC System I). Two possible IS's were identified, propiophenone (IS-1) and butyrophenone (IS-2). The retention volumes for the three munition compounds and the two IS's on the Spherisorb ODS, 5-µ column with a 40% acetonitrile in 1% acetic acid eluent were: RDX - 8.5 ml, propiophenone -13.5 ml, DNT - 16.5 ml, TNT - 18 ml, and butyrophenone - 21 ml. A short linearity study indicated that the three munitions gave a linear response from 25 to 10,000 ng/ml and that 3 ng injected on column could be detected and quantitated. The results of the linearity study are summarized in Table 2. The raw data and calculations are given in Tables A-1, A-2, and A-3 of Appendix A. Table 2 gives the relative weight response (RWR) for each munition to both IS's at the various concentration levels studied and presents the linear regression evaluation of the ratios of the peak heights of compound to IS to the ng/ml compound present. Figure 1 presents an HPLC chromatogram of a reference solution containing 50 ng/ml of each munition (2.5 ng of each compound injected on column) on the Spherisorb ODS column with the 40% acetonitrile in 1% acetic acid eluent.

The evaluations described above were conducted using interim SARMs of RDX, DNT, and TNT. After receiving the SARMs for each munition from the U.S. Army Toxic and Hazardous Materials Agency, reference stock solutions as described in Section II.E. were prepared. The HPLC system defined above did not separate TNT and tetryl, and additional studies were conducted to determine the necessary parameters for separation. Changes in both the organic phase concentration and the aqueous phase modifier were evaluated. Separation of the four munition compounds was possible with a 20% acetonitrile in 0.035 M ammonium acetate, pH 7 eluent (HPLC System II). Figure 2 presents a representative HPLC chromatogram for the separation of the four munitions with this system. Butyrophenone (IS-2) was not included with this system because it had a. elution time of over 40 min. The linearity of this HPLC system was evaluated for the four compounds by preparing and analyzing duplicate SARM reference solutions at 100, 500, 1,000, 1,500, and 2,000 ng/ml.

Doali, J. O., and Juhasz, J. Chromatog. Sci., 12, 51 (1974); Yinon, J., CRC Critical Reviews in Analytical Chemistry, December 1977; and personal communication from Dan Helton, MRI, on USAMBRDL contracts.

TABLE 2

HPLC LINEARITY OF RDX, DNT, AND THT INTERIM SARM REFERENCE SOLUTION HPLC SYSTEM I

	RWR IS-2	1.32	1.34	1.29	1.34	1.30	1.37	1.51	1.26	1.35 ± 0.10 7.5%
TNT	RWR ^b	0.788	0.783	0.744	0.779	0.760	0.725	0.751	0.730	0.763 ± 0.068 8.8%
	ng/ml	10,210	5,105 5,105	1,021	510 510	255 255	102	51 51	25	
	RWR ^C IS-2	1.94	1.99	1.92	1.94	1.90	1.87	1.92	1.95	1.95 ± 0.04 2.0%
DNT	RWR IS-1	1.15	1.17	1.11	1.13	1.11	0.99	0.96 0.98	1.13	1.10 ± 0.07 6.9%
•	ng/ml	10,050	5,025 5,025	1,005	502 502	251 251	100	50 50	25 25	
	RWR ^C IS-2	0.949	0.977	0.976	0.968	0.947	0.956	0.968	4	0.970 ± 0.035 3.6%
RDX	RWR ^b IS-1	0.565 0.578	0.572	. 0.565 0.552	0.562	0.552	0.507	0.482	44	0.546 ± 0.030 5.5%
	ng/ml	10,620 10,620	5,310 5,310	1,062	531	266 266	106	53	26 26	Average SD ^E RSD ^E
	Solution No.	1-1	2-1	3-1 3-2	4-1	5-1 5-2	6-1 6-2	7-1	8-1 8-2	Av SB RS

Linear Regression⁸ - IS-1

3x - 0.039 3x - 0.043	•
$y = 2.27 \times 10^{-3} \text{x}$ $y = 4.61 \times 10^{-3} \text{x}$	×
RDX: y DNT: y	

0.9999 1.000 1.000

Linear Regression8 - IS-2

$y = 1.95 \times 10_{-3}^{-3} \times + 0.0004$	$y = 3.97 \times 10^{-3}x + 0.007$	$y = 2.70 \times 10^{-3} \times + 0.017$
RDX:		

0.9598 0.9999 1.000

ng/ml - Nanograms munition per milliliter solution. RWR IS-1 - relative weight response of the munition to IS-1

- NWR IS-2 relative weigh response to IS-2. Average average NWR value for all levels.
- $n\Sigma x^2 (\Sigma x)^2 t_0^2$ U 7

SD - standard deviation *

- n(n-1)
- Linear regression peak height ratio of munition to IS versus ng/ml RSD - relative standard deviation = SD/Average x 100.
 - Interfering HPLC peak resulted in high peak height for RDX. munition present.

HPLC Parameters

Column - Spherisorb ODS, 5 µ
Eluent - 40% CH₃CN in water containing 1% acetic acid
Flow Rate - 1.5 ml/min
Chart Speed - 0.2 in/min
Detector - UV, 254 nm
Injection - 50 µl

Sample Characteristics

Compound	ng <u>Injected</u>
TNT	2.5
DNT	2.5
RDX	2.5
IS-1	12.5
IS-2	25 ·

Retention Indices

	Retention	Retention
	Volume	Time
Compound	(m1)	(min)
TNT	18.0	12.0
DNT	16.5	11.0
RDX	8.5	5.5
IS-1	13.5	9.0
IS-2	21.0	14.0

IS-1

IS-2

Figure 1 - HPLC Separation for TNT, DNT, RDX and Internal Standard on the Spherisorb ODS Column

HPLC Parameter's

Column: Spherisorb ODS, 5 µ, 250 x 4.6 mm ID Eluent: 20% acetonitrile in 0.035 M ammonium acetate,

pH 7.0

Flow Rate: 1.5 ml/min Chart Speed: 0.1 in./min

Detector: UV, 254 nm Injection: 50 ml

	To be a second
haracteristics	
Sample Char	

Retention Time (min)	11.2 26.2 29.0 32.5 35.0	
Retention Volume	17 39 43 48.5 52.5	
Concentration (ng/ml)	500 1,000 500 500 500	
Compound	RDX IS-1 INT DNT Tetryl	

Figure 2 - HPLC Determination of RDX, TNT, DNT, and Tetryl SARM Reference Solution Using HPLC System II

ij

The results are are summarized in Table 3. The raw data and calculations are given in Table A-4 of Appendix A. The constant RWR values over the concentration range indicate a linear response. The precision of the analytical technique is shown in the relative standard deviations from the average RWR value for each munition compound.

During the initial sample preparation procedure evaluations for the determination of RDX, DNT, TNT, and tetryl in the various biological matrices, both the HPLC System I and System II were employed. HPLC System I was used with interim SARMs until tetryl was available and found to coelute with TNT. Then, HPLC System II was defined and utilized for sample preparation procedure studies on plasma, liver, kidney, and muscle/fat tissues. During these evaluations, problems were encountered with the HPLC system. The analytical column appeared to deteriorate (i.e., poor resolution between the various munitions) after about 20 injections of biological matrix extracts, and an increased HPLC pump pressure occurred after a few injections. HPLC System II was not satisfactory for the routine determination of the munitions in biological matrices. Another study was conducted to evaluate the HPLC conditions necessary to resolve the munition compounds. A new Spherisorb ODS column was used and a 1% acetic acid aqueous phase with various acetonitrile levels was studied. Complete separation of the four munitions compounds was obtained with the new column and an eluent of 30% acetonitrile in 1% acetic acid (HPLC System III). The precision and linearity of this system was evaluated and these data are presented in Technical Reports 1, 2, 3, 4, and 6 in Appendices B through E and G for RDX, DNT, and TNT. Tetryl was not included in these data since the determination of tetryl in the biological matrices was not possible (see Section IV). HPLC System III proved to be stable and reproducible and was utilized for each of the methods developed for RDX, DNT, and TNT determination. Slight changes in the retention indices of the munitions occurred with fresh eluent or a change in the analytical column. A 1 to 2% adjustment in the acetonitrile content of the eluent was required to obtain the desired resolution.

B. PETN HPLC Parameters

As mentioned earlier, PETN required a 215-nm detector for detection and quantification. A system similar to the one defined for the other munitions but employing a 215-nm UV detector was desirable to allow the analysis of any of the munitions with only slight modifications. Acetic acid (and other organic acids) have characteristic UV absorption at 215 nm; thus, a system containing only acetonitrile and high-purity water was developed. A relatively long chromatographic time for PETN was necessary since many of the biological compounds that may be present in the prepared sample also absorb at 215 nm and a long retention volume may allow the isolation of PETN from interfering compounds. The HPLC parameters which met these criteria consisted of a Spherisorb ODS, 5-µ column and an eluent of 40% acetonitrile in high-purity water. An internal standard of valerophenone eluted prior to PETN but late enough in the chromatogram to isolate the IS from possible interfering peaks. Precision and linearity data for PETN for this system (HPLC System IV) are presented in Technical Report No. 5 in Appendix F.

TABLE 3

HPLC PRECISION AND LINEARITY OF RDX, DNT, TNT, AND TETRYL

SARM REFERENCE SOLUTIONS

HPLC SYSTEM II

SARM Reference Solution	ng/ml Each		Relative We	ight Response	:a
No.	Munition	RDX	TNT	DNT	Tetryl
1-A	100	1.08	1.00	1.17	0.58
1-B	100	0.98	0.89	1.07	0.63
2-A	500	0.97	0.85	1.05	0.62
2-B	500	0.95	0.86	1.02	0.62
3-A	1,000	0.91	0.85	1.06	0.50
3-B	1,000	0.90	0.88	1.08	0.49
4-A	1,500	0.98	0.89	1.05	0.59
4-B	1,500	0.91	0.91	1.04	0.59
5-A	2,000	0.98	0.90	1.06	0.56
5-B	2,000	0.91	0.87	1.03	0.57
	Average	0.96	0.89	1.06	. 0.58
	Average SD RSD ^C	± 0.06 5.8%	± 0.04 4.8%	± 0.04 3.8%	± 0.05 8.3%

a Relative Weight Response = $\frac{\text{Peak Height Cpd}}{\text{Peak Height IS}} \times \frac{\text{ng/ml IS}}{\text{ng/ml Cpd}}$

b SD = Standard deviation.

c RDS = Relative standard deviation.

IV. SAMPLE PREPARATION PROCEDURES

The analytical techniques for RDX, DNT, TNT, and tetryl and for PETN, defined in Section III, were employed to evaluate sample preparation procedures for the quantitative determination of the munitions in animal plasma, kidney, muscle/fat, and liver and in plant leaves and stems. The primary objective of the research program was to develop sample preparation procedures which provided quantitative data on the various munitions at the 100-ng/g level. These procedures were to be validated by analyzing duplicate matrix samples spiked at five levels and matrix blanks on four separate days.

Another objective of the program was to provide sample preparation procedures which were relatively simple and routine and had application for a variety of matrices. Plasma was selected as the first matrix to be evaluated. During the evaluations of procedures for plasma level determination of the five munitions, samples of the other matrices were also studied to determine the potential of the plasma technique for kidney, muscle/fat, liver, plant leaves, and plant stems sample preparation. A summary of the sample preparation techniques evaluated for the five munition compounds in the six biological matrices is given in Table 4. These studies are presented in detail in the following sections.

A. Animal Plasma

The assay of organic compounds with intermediate polarities in plasma samples can usually be accomplished by precipitating the plasma protein with an organic solvent such as acetonitrile or ethanol and injecting the supernatant onto a reverse phase HPLC column. The technique is successful because most of the plasma components are fairly polar and can be separated from the compounds of interest. Reverse phase HPLC has the capability of separating compounds with similar chemical and physical properties, i.e., DNT and TNT; the elution order of the technique is based on the polarity of the compounds, the more polar compounds being eluted first. The polar plasma components may be eluted early in the chromatographic analysis followed by the munition compounds.

1. RDX, DNT, TNT, and Tetryl in Plasma: Acetonitrile was selected as the organic solvent for plasma protein precipitation since it was utilized in the HPLC eluent. Initial studies with this technique were conducted using HPLC System I and interim SARMs of RDX, DNT, and TNT. These experiments with this simple technique for sample preparation of plasma were encouraging. Blank plasma samples had little interference at the elution position of the munitions; and acceptable recovery, i.e., greater than 75%, was obtained for plasma containing 10 μ g/ml of each munition. However, after the plasma sample had been precipitated with acetonitrile, the resulting solution did not contain a sufficient munition concentration to detect and quantitate the compounds at the 100-ng/ml level. By concentrating the acetonitrile-plasma supernatant and then diluting to a final volume of 1.0 ml, a munition concentration of 100 ng/ml was detectable. This procedure is outlined below.

TABLE 4

SUPPLARY OF SAMPLE PREPARATION PROCEDURE EVALUATIONS FOR MUNITIONS IN BIOLOGICAL MATRICES

Comments	RDX interference, good DNT and TNT recovery, no tetryl recovery	Partial RDX separation, good DNT and TNT recovery, no tetryl recovery	Recovery at high levels (200 µg/ml) but below 10 µg/ml no recovery	Good recovery of RDX, DNT, TNT; no tetryl. Problems with HPLC system including high pressure and short column life.	Method employed for validation, Appendix B	HPLC interference from plasma components	Polar solvent extracted interfering plasma components; hexane extraction employed for validation, Appendix F.	Interfering kidney components
Sample Preparation Procedure	CH ₃ CN precipitation	CH ₃ CN precipitation	Extraction with toluene EtOAc, 2% IPA in hexane	Toluene extraction of a salt-plasma solution	Toluene extraction of a salt-plasma solution	CH ₃ CN precipitation	Extraction with toluene EtOAc, CH ₂ Cl ₂ , hexane from a salt-plasma solution	CH ₃ CN precipitation
HPLC Analytical System	I	ïï	11	II	111	V		11
Munition Compounds Studied	RDX, DNT, TNT, tetryl		Tetryl	RDX, DNT, TNT, tetryl		PETN		RDX, DNT, TNT, tetryl
Hatrix	Animel Plasma							Animal Kidney

TABLE 4 (continued)

Comments	Interfering HPLC peaks with polar solvents, and poor recovery with nonpolar solvents. HPLC instrument high pressure.	Good RDX, DNT, TNT recovery, no tetryl; utilized for method validation, Appendix C.	Interfering matrix components	Polar solvents, toluene EtOAc, extracted interfering matrix components; hexane not capable of extracting PEIN; IPA in hexane promising; however, 2% IPA gave only 25% recovery.	Good recovery of RDX, DNT, TNT; no tetryl. High HPLC pressure due to matrix components adsorbed on the column.	Fat component solubilized in the organic solvent and prevented HPLC determination.	Stable HPLC system if washed with CH ₃ CN after each sample; employed for method validation, Appendix D.	Interfering matrix components	No PETN recovery; extraction residue not soluble in CH ₃ CN
Sample Preparation Procedure	Extraction from salt-kidney solution	Toluene extraction from salt-kidney solution	CH ₃ CN precipitation	Extraction with organic solvents	CH ₃ CN precipitation	Extraction of salt- muscle/fat solution with organic solvent	CH ₃ CN precipitation	CH ₃ CN precipitation	Hexane extraction
HPLC Analytical System	H	111	VI		II .	ı. H	Ш	IV	
Munition Compounds Studied			PETN		RDX, DNT, TNT, tetryl		5)	PETN	
Matrix					Animal Muscle/Fat				

TABLE 4 (continued)

Animal Liver

Matrix

Comments	Interfering matrix components	Interfering matrix components	Poor recovery of munitions	Good recovery of RDX, DNT, INT initially; no tetryl; varying recovery during validation for DNT and TNT	Acidic media optimal for extraction; poor chromatography with neutral or basic solutions	At least 10% required for optimal extraction	No improvement over toluene as extract- ing solvent	No loss during evaporation; wortexing and ultrasonication aid in dissolving aunitions from liver extract residue.	Improved DNT and TNT recovery indicating importance of complete emulsion formation for optimal extraction; used for method validation, Appendix E.
Sample Preparation Procedure	CH ₃ CN precipitation	EtOAc extraction from salt-liver solution	Hexane extraction from salt-liver solution	Toluene extraction from salt-liver solution	 pH effect on extraction 	2. Salt concentra- tion required for extraction	3. Other solvents possibilities	4. Toluene evaporation and residue reconstitution	5. Toluene emulsion formation
HPLC Analytical System	111								
Munition Compounds Studied	RDX, DNT, TNT, tetryl								

TABLE 4 (concluded)

Comments	Poor PETN recovery	Poor chromatography with PETN inter- ference from matrix components	Interfering matrix components	RDX, DNT interference; HPLC eluent changes were not able to isolate munitions from interferences	Matrix components interference for RDX and DNT; poor recovery.	PETN interference from matrix components with all solvents; hexane, IPA in hexane, CH ₂ Cl ₂ , toluene	Low, but consistent, DNT and TNT recovery; RDX interference from matrix; employed for method validation, Appendix G.	Poor chromatography with stems matrix interference
Sample Preparation Procedure	2% IPA in hexane extraction	Higher polarity solvents for extraction	Polar solvent ex- traction from salt solution-leaves mixture	Toluene extraction from salt solution- leaves mixture	Nonpolar solvent extraction from salt solution-leaves mixture	Nonpolar solvent extraction from salt solution-leaves mixture	2% IPA in hexane extraction from salt solution-stem mixture	Hexane or 2% IPA in hexane extraction from salt solutionstem
HPLC Analytical System	Ν		III			ΛΙ	III	Ν
Munition Compounds Studied	PETN		RDX, DNT, TNT, tetryl			PETN	RDX, DNT, TNT, tetryl	PETN
Matrix		,	Plant Leaves				Plant Stems	

Plasma Sample Preparation Using Acetonitrile

- 1. Pipette 1.0 ml plasma into a Teflon-lined screw cap vial.
- Add 2.0 ml acetonitrile. Note: When spiking the plasma with the munition compounds, add the proper level of munitions in a small volume of acetonitrile and mix thoroughly. Then, add acetonitrile to make the total acetonitrile volume 2.0 ml.
- 3. Hix thoroughly on a vortex mixer and allow to stand a minimum of 2 hr at 4°C to completely precipitate the protein.
- 4. Centrifuge at 1,000 rpm for 10 min.
- 5. Transfer the supernatant to a properly labeled culture tube.
- 6. Wash the precipitate with 2.0 ml acetonitrile.
- 7. Centrifuge and add the supernatant to the first supernatant.
- 8. Concentrate to about 100 μ l on a 40°C hot plate under a stream of nitrogen. Note: Do not allow the sample to evaporate to dryness or the munition compounds may be lost.
- 9. Add 500 μl acetonitrile containing the internal standards and mix thoroughly.
- 10. Add 400 µl 1% acetic acid in high-purity water and mix thoroughly. Note: Final volume is approximately 1.0 ml.
- 11. Filter the prepared sample through a 0.45-µ Fluoropore filter into a properly labeled culture tube.
- 12. Analyze an aliquot (50-70 µl) by HPLC using HPLC System I.

This technique was evaluated by preparing and analyzing duplicate plasma aliquots spiked with RDX, DNT, and TNT at the following levels: 0, 100, 200, 400, 750, 1,000, and 2,000 ng/ml. The results showed that a plasma component co-eluted with RDX preventing the quantification of this munition. Excellent recovery of DNT and TNT was obtained at each level; these data are summarized in Table 5; the average recovery and standard deviation of DNT and TNT for these plasma samples was 99 \pm 4 and 102 \pm 5, respectively. Figures 3 and 4 present representative HPLC chromatograms for a blank plasma and a plasma containing 200 ng/ml RDX, DNT, and TNT using this sample preparation procedure and HPLC System I.

TABLE 5

EVALUATION OF ACETONITRILE PRECIPITATION PROCEDURE FOR THE DETERMINATION OF DNT AND TNT IN PLASMA

Plasma Solution	m1	ng/ml ^a Munition	ng/m	l Found ^b	% Reco	
Number	Plasma	Added	DNT	THT	DNT	TNT
1-A 1-B	1.9 1.0	0	ND ND	ND	-	-
1-0	1.0		MU	ND.	_	_
2-A	1.0	100	94	95	94	95
2-B	1.0	100	94	96	94	96
3-A	1.0	200	194	196	97	98
3-B	1.0	200	195	198	98	99
4-A	1.0	400	386	392	96	98
4-B	1.0	400	401	405	100	101
5-A	1.0	750	717	742	96	99
5-B	1.0	750	728	777	97	104
6-A	1.0	1,000	1,003	1,074	100	107
6-B	1.0	1,000	1,022	1,087	102	109
7-A	1.0	2,000	2,118	2,200	106	110
7-B	1.0	2,000	2,059	2,156	103	108
			Avera		99	102
		Standar	d Deviati	.on	± 4	± 5

a ng/ml munition added - Nanograms of RDX, DNT, and TNT added to 1.0 ml plasma.

Note: Detection of RDX was not possible due to an interfering plasma component.

b ng/ml found - Nanograms DNT and TNT found per milliliter plasma, RDX not included due to plasma component interference.

c % Recovery = $\frac{ng/ml}{ng/ml}$ Added x 100

HPLC Conditions

Column: Spherisorb ODS, 5 μ,

250 x 4.6 mm ID

Eluent: 40% acetonitrile in 1%

acetic acid in water
Flow Rate: 1.5 ml/min
Chart Speed: 0.2 in./min
Detector: UV, 254 nm

Sample Characteristics

1.0 ml Plasma precipitated with acetonitrile. Supernatant concentrated to about 100 µl, diluted with 500 µl IS stock, and 400 µl 1% acetic acid in water. Sample filtered and analyzed.

IS Concentration: 200 ng/ml IS-1

400 ng/ml IS-2

Injection Volume: 50 μ 1 Attenuation: 0.005 X

Figure 3 - HPLC System I Analysis of Blank Plasma Sample for Method Development Using Acetonitrile Precipitation Technique. "X" indicates plasma component eluting at the RDX elution position. Arrows show elution positions for RDX, DNT, and TNT.

HPLC Conditions

Column: Spherisorb ODS, 5 μ , 250 x 4.6 mm ID

Eluent: 40% acetonitrile in 1%

acetic acid in water
Flow Rate: 1.5 ml/min
Chart Speed: 0.2 in./min
Detector: UV, 254 nm

Sample Characteristics

1.0 ml Plasma containing 200 ng/ml RDX, DNT, and TNT precipitated with acetonitrile. Supernatant concentrated to about 100 μ l, diluted with 500 μ l IS stock and 400 μ l 1% acetic acid in water. Sample filtered and analyzed.

IS Concentration: 200 ng/ml IS-1 400 ng/ml IS-2

Injection Volume: 50 µ1 Attenuation: 0.005 X

Figure 4 - HPLC System I Determination of RDX, DNT, and TNT in Plasma Sample Prepared by Acetonitrile Precipitation Technique. "X" indicates plasms component co-eluting with RDX.

During these plasma sample evaluations, the SARM RDX, DNT, TNT, PETN, and tetryl were obtained from the U.S. Army Toxic and Hazardous Materials Agency. The UV characteristics of tetryl indicated that this munition had a sufficient UV chromophore for detection and quantification at 254 nm. PETN cannot be analyzed at 254 nm and required a different UV detector. Tetryl was combined with RDX, DNT, and TNT and method development on the four munitions in plasma conducted. Attempts to separate the four munition compounds using HPLC System I were unsuccessful. Another HPLC System (II) was defined which provided baseline separation of the four munitions. Evaluations with this system and the acetonitrile precipitation procedure were conducted on samples of plasma, kidney, liver, and muscle/fat. Only plasma and muscle/fat samples could be assayed for the munitions, and the plasma component which co-eluted with RDX in earlier studies was still not completely resolved from RDX. Also, during these evaluations, tetryl was not detected in any of the prepared samples even though its elution position was relatively free of interference. Method development studies were undertaken to define a sample preparation which provided a relatively clean chromatogram for each of the tissues being studied and gave a sufficient recovery for the munitions, including tetryl.

Tetryl recovery studies conducted included evaluations of the extraction solvent, addition of salt solutions to the matrix to aid in extraction, and the effects of sample handling during the preparation procedure. The solvents evaluated included acetonitrile, toluene, ethyl acetate, and 2% isopropanol in hexane. When high tetryl levels, i.e., 200 µg/ml, were added to plasma and the plasma protein precipitated with acetonitrile, about 60% of the tetryl was recovered. At levels below 10 µg/ml tetryl, no HPLC peak was observed. Similar data were obtained when the plasma was extracted with the organic solvents. To aid in the extraction, 1.0 ml of 20% sodium chloride was added to 1.0 ml plasma aliquots containing 50 µg/ml tetryl. The plasma aliquots were prepared by precipitation or extraction. However, tetryl recovery was not improved. Tetryl appeared to be binding to the plasma protein, co-precipitated with the protein, or enzymatically altered prior to extraction. To evaluate these possibilities, a number of experiments were conducted. When tetryl was added to a saturated albumin solution and the protein precipitated with acetonitrile, 100% tetryl recovery was obtained indicating the co-precipitation was not occurring. Plasma samples were denatured by heating to 100°C or by the addition of acid and tetryl added. After protein precipitation with acetonitrile or organic solvent extraction of the denatured plasma, no tetryl was detected indicating that denatured plasma protein was still capable of adsorbing tetryl and preventing analysis of the munition. The possibility that tetryl was being lost due to improper sample handling was studied by preparing and analyzing a series of tetryl solution from 2.0 to 200 $\mu g/ml$. In one series, 1.0 ml water was used as matrix and in another, 1.0 ml plasma was employed. The two series were handled in identical manner, and quantitative recovery was obtained from the water series while little or no tetryl was detected in the plasma series. Tetryl irreversibly binds to plasma protein and cannot be extracted from this matrix except at very high concentration levels, i.e., 200 µg/ml. Short evaluations with each of the other animal tissue matrices indicated that tetryl cannot be assayed in these matrices. A final experiment for tetryl recovery in plasma was conducted using the two sample preparation

techniques most likely to provide some tetryl recovery. These procedures were the acetonitrile precipitation procedure and a toluene extraction method from a 1.0-ml plasma containing 1.0 ml, 10% sodium chloride solution plus 1% acetic acid. Tetryl levels of 2, 10, 50, 100, and 200 $\mu \mathrm{g/ml}$ were evaluated and the results are presented in Table 6. The data show poor recovery at the high level and no recovery at the low levels for both techniques. These studies on tetryl were conducted using HPLC System II as the analytical technique.

During the above experiments to define tetryl recovery from plasma, studies were also conducted to determine a sample preparation technique for the other munitions in plasma. The acetonitrile precipitation procedure provided excellent data on DNT and TNT in plasma; however, RDX could not be determined with this technique. Liquid-liquid extraction was evaluated as an alternate sample preparation technique. A number of organic solvents were evaluated including toluene, ethyl acetate, methylene chloride, and hexane. The hexane did not extract the munitions and the methylene chloride was not efficiently separated from the aqueous phase. Both toluene and ethyl acetate provided positive results. However, ethyl acetate was too polar and extracted a number of plasma components including the compound which co-eluted with RDX. Toluene gave a relatively clean extract, but the recovery of TNT was low. By adding a sodium chloride solution to the plasma, the recovery of TNT was improved. Also, when the plasma was made slightly acidic, TNT recovery was improved. The organic solvent extracts required evaporation of the solvent prior to HPLC analysis using an aqueous mobile phase. To prevent loss of the munitions during this evaporation step, 0.5 ml of the HPLC aqueous phase was added to the extract and the solvent evaporated at room temperature under a stream of nitrogen. After the solvent had been completely removed, the IS in acetonitrile was added and the final volume adjusted to 1.0 ml. A sample preparation procedure for the toluene extraction of RDX, DNT, and TNT from plasma was defined (see 5. "Procedures for Plasma Sample Determination" in Appendix B). However, prior to evaluating this sample preparation procedure in the five duplicate levels on four separate day protocol, a problem with the HPLC System II occurred. During the evaluations of a method for plasma, studies were also being conducted on the other animal tissue matrices. The HPLC System II was providing the necessary resolution of the munition; but the back pressure on the system was high, i.e., 2,500 psi, and increased substantially after injecting a few samples due to buildup at uneluted matrix components on the column. The increased back pressure was alleviated by washing the column with 100% acetonitrile and removing and cleaning the column frits which had become clogged with column particulates. This caused the column life to be shortened and prevented the routine assay of the munitions in the animal matrices. Another HPLC System (III) was developed which resolved the munitions and provided a stabler chromatographic system (the HPLC Spherisorb column packing deteriorates above pH 8 and is stable between pH's 2 and 6.5; the 1% acetic acid aqueous phase gave an eluent with a 3.2 pH). The toluene extraction sample preparation technique and HPLC System III were employed to validate the method for the determination of RDX, DNT, and TNT in plasma. This method is presented in Appendix B, Technical Report No. 1, Method Development of RDX, DNT, and TNT in Plasma.

TABLE 6 TETRYL RECOVERY FROM PLASMA USING TWO SAMPLE PREPARATION TECHNIQUES

		===						
Sample No.	ml Plasma	Tetryl Added	Peak He	ights ^b <u>IS</u>	ug IS	µg Tetry	<u>1</u> °	% Recovery d
Acetonit	rile Preci	pitation '	Technique					
A-1	1.0	2	< 4	93.0	1	NDe		•
A-2	1.0	10	< 4	39.0	5	ND		-
. A-3	1.0	50	< 4	57.0	25	ND		-
A-4	1.0	100	10.0	99.0	50	6.5		6.5
A-5	1.0	200	48.0	72.0	100	85		43
Toluene	Extraction	Techniqu	e					
T-1	1.0	2	< 4	172.0	1	NTD		-
T-2	1.0	10	< 4	109.0	5	ND		-
T-3	1.0	50	< 4	214.0	25	ND		-
T-4	1.0	100	10.0	228.0	50	2.8		2.8
T-5	1.0	200	64.0	155.2	160	53		26
Reference	e Solution	18						
Standard	i µg/s	1.0	Peak Hei	ght				
No.	Tetr		<u>Tetryl</u>	IS	µg/■	1 IS	RWRI	
S-1	2	2	108.0	76.0		1	0.71	
S-2	10)	71.0	55.0		5	0.65	
S-3	50)	150.0	100.0	2	5	0.75	
S-4	100)	166.0	107.0	5	0	0.78	
S-5	200)	126.4	76.8	10	0	0.82	
						Average	e	0.78
						SD		± 0.07
						RSD		8.44

µg/ml Tetryl added - micrograms of tetryl added to 1.0 ml plasma

$$\mu$$
g/ml tetryl found = $\frac{\text{Peak Height tetryl}}{\text{Peak Height IS}} \times \frac{\mu$ g IS Avg. RWR

f RWR - relative weight response

relative weight response
$$RWR = \frac{\text{Peak Height tetryl std}}{\text{Peak Height IS}} \times \frac{\mu g \text{ IS}}{\mu g \text{ tetryl std.}}$$

SD - standard deviation; RSD - relative standard deviation

b Peak Heights - measured peak heights in millimeters of tetryl and IS.

c µg/ml Tetryl found - microgram tetryl detected in 1.0 ml plasma after sample preparation

d % Recovery - $\mu g/ml$ tetryl found/ $\mu g/ml$ tetryl added x 100.

e ND - not detectable, tetryl level below 0.1 µg/ml.

PETN in Plasma: The definition of sample preparation techniques for PETN was initiated after the analytical technique HPLC System IV (Section III.B.) had been defined and validated. Each of the sample preparation procedures studied for RDX, DNT, and TNT determination in plasma was evaluated for PETN in plasma. The acetonitrile precipitation procedure proved unsuccessful because many of the plasma components present after the protein precipitation adsorbed at 215 nm and interfered with PETN detection. The four organic solvents (toluene, ethyl acetate, methylene chloride, and hexane) evaluated earlier were studied for PETN extraction from plasma. Only hexane was able to extract PETN without also extracting PETN interfering plasma components. As with the toluene extraction of RDX, DNT, and TNT from plasma, the addition of an acidic (2% acetic acid) salt (20% solium chloride) solution was found to provide better recovery of PETN from plasma. The validation of the hexane extraction sample preparation procedure for the HPLC System IV determination of PETN in plasma using five duplicate levels on four separate days is presented in Appendix F, Technical Report No. 5, Method Development for PETN in Plasma.

B. Animal Kidney Samples

1. RDX, DNT, TNT, and Tetryl in Kidney: Earlier studies had shown that the acetonitrile precipitation procedure and the ethyl acetate extraction procedure gave HPLC chromatograms with many extraneous kidney matrix peaks which prevented the detection and quantitation of the munition compounds. The use of less polar organic solvent, i.e., hexane, was also unsuccessful due to low recovery of RDX and TNT. The toluene extraction of a kidney sample diluted 1/1 w/v (weight/volume) with a 10% sodium solution containing 2% acetic acid (the plasma sample preparation method) gave relatively clean chromatograms with acceptable recovery for RDX, DNT, and TNT. As with the plasma matrix, tetryl was not recovered from the kidney matrix at the concentration level required, i.e., 100 ng/g. Two additions to the plasma method for RDX, DNT, and TNT were required to determine these munitions in the kidney samples. The first addition was in the initial sample preparation. The kidney samples required liquefaction to disrupt the cells present. This liquefaction was accomplished by first grinding the kidney sample in a standard blender on "liquefy" speed and then using a Teflonglass, motor-driven tissue homogenizer to disrupt the cell walls and solubilize the intercellular materials. This technique is required to free the munitions that may be present within the kidney cells. The second addition to the plasma method was in the HPLC procedure. A column wash step with 100% acetonitrile was found to be necessary after each sample injection to elute the nonpolar matrix components. The wash eliminated the pressure build-up problem and also removed the matrix compounds still present in the analytical system.

In addition to these changes in the plasma method, the sample extract drying procedure used for the plasma sample was evaluated and modified. The addition of 0.5 ml water to the toluene extract followed by the room temperature evaporation of the toluene resulted in a large HPLC peak just after the elution position of TNT. The peak was attributed to the

incomplete evaporation of the toluene, and sometimes the component interfered with TNT determination. An evaluation of the drying procedure indicated that if no heat was applied to the samples, complete recovery of the munition compounds was possible even if the samples were taken to dryness. By evaporating all the toluene from the kidney sample extracts and adding a small amount of ethyl acetate to the residue and evaporating, the toluene was almost completely removed from the sample and did not cause problems with TNT determination.

The final sample preparation procedure and analysis technique for RDX, DNT, and TNT was validated by analyzing duplicate kidney samples spiked at five levels and matrix blanks on four separate days. These data and the statistical evaluation of the results are given in Appendix C, Technical Report No. 2, Method Development for the Determination of RDX, DNT, and TNT in Kidney.

2. PETN in Kidney: The earlier studies on PETN indicated that extracted kidney samples contained a substantial number of compounds which adsorbed at 215 nm and interfered with PETN. Also, the hexane extraction procedure employed for plasma did not have sufficient polarity to extract PETN from kidney. When more polar organic solvents i.e., toluene, ethyl acetate, were used, the extract contained many 215 nm adsorbing compounds, and PETN was not observed at 2,000 ng/g. By adding a small amount of isopropanol (IPA) to hexane, the polarity of the extracting solvent was slightly increased. An evaluation of 1, 2, 5, and 10% IPA in hexane as extracting solvent showed that 5 and 10% IPA were too polar and 1% IPA not polar enough. The 2% IPA in hexane showed some promise. The chromatography at the PETN and IS elution positions was relatively clean of interference and some PETN was recovered. However, the recovery was low, i.e., about 25%, and attempts to increase the recovery without affecting the chromatography were unsuccessful. Figure 5 presents representative HPLC-UV (215 nm) chromatograms for PETN extracted from 1.0 g kidney with 2% IPA in hexane. The sample preparation procedure consisted of placing a 1.0-g liquefied kidney sample in a Teflon-lined screw cap vial, adding 2.0 ml 10% sodium chloride solution containing 1% acetic acid, and extracting 3 x 5 ml with 2% IPA in hexane. The extracts were combined, evaporated to dryness at room temperature under a stream of nitrogen, and the residue dissolved in HPLC eluent. After filtering the prepared sample through a 0.45-µ Fluoropore filter, a 100-µl aliquot was injected onto HPLC System IV.

The low recovery of PETN from kidney using 2% IPA in hexane extraction and the poor chromatography obtained with other organic solvents for extraction prevented the development of an analytical method for PETN in kidney at the 100-ng/g level. Additional studies on this matrix are necessary to define a solvent that will quantitatively extract PETN from kidney and to evaluate additional clean-up steps such as adsorption chromatography to remove interfering kidney components from the extract. The time limitation on the present program prevented the necessary studies to determine these parameters.

Figure 5 - HPLC-UV (215 nm) Method Development for PETN Determination in Kidney Samples. Sample preparation and HPLC parameters are listed in text. Arrows indicate PETN elution position.

C. Animal Muscle/Fat Samples

1. RDX, DNT, TNT, and Tetryl in Muscle/Fat: Initial evaluation of the plasma method for application to muscle/fat samples indicated that toluene and other nonpolar solvents could not be employed for this matrix because they solubilize the fat component of the matrix. However, acetonitrile, because of its higher polarity, did not dissolve the fat and gave acceptable recovery and chromatography for the munition compounds. Similar to the plasma and kidney matrices, the muscle/fat matrix did not allow recovery of tetryl.

The final sample preparation procedure as outlined in Appendix E, Technical Report No. 3, Method Development for the Determination of RDX, DNT, and TNT in Muscle/Fat Samples was being validated using HPLC System III when the project officer requested that the munition spiking levels be changed from 100, 500, 1,000, 1,500, and 2,000 ng/g to 50, 100, 200, 500, and 1,000 ng/g. This change was requested to aid in the statistical determination of the lower detection limit of the munition by the Hubaux and Vos detection limit program. Since the HPLC system was already operating at close to the highest sensitivity limit, the 1.0-g matrix sample was increased to 2.0 g to provide a similar instrument sensitivity at the newly defined spiking levels. The total procedure, as presented in Appendix D, was validated by analyzing duplicate 2.0-g muscle/fat samples spiked with RDX, DNT, and TNT at 0, 50, 100, 200, 500, and 1,000 ng/g on four separate days.

2. PETN in Muscle/Fat: The evaluations of sample preparation procedures for RDX, DNT, and TNT in the muscle/fat matrix had shown that nonpolar organic solvents, i.e., hexane, could not be employed to extract the munition compound from this matrix. For PETN in muscle/fat, the acetonitrile procedure utilized for the other munitions was evaluated. This procedure proved unsatisfactory in that the HPLC-UV (215 nm) chromatogram contained many extraneous peaks and the recorder pen was off-scale for the first 50 min of the chromatographic run. When the attenuation was increased to provide on-scale peaks, the possible sensitivity for PETN determination was greater than 5 µg/g. Even though hexane solubilized the fat in the matrix, a study was conducted to evaluate this extraction technique. As expected, the dried hexane extract contained a substantial level of fat which was not solubilized when 0.5 ml acetonitrile containing the IS was added. The sample was diluted with water (0.5 ml) to provide a sample compatible with the HPLC eluent, filtered, and analyzed. No PETN was detected even though the matrix had been spiked at 2,000 ng/g; however, the elution position of PETN was relatively free of interfering muscle/fat components. The PETN was most likely still with the undissolved fat. Additional studies are necessary to define methodology to separate the PETN from the fat. Possible techniques for this separation include adsorption or gel permeation column chromatography or a liquid-liquid extraction of the hexane muscle/fat solution using a solvent that can extract the PETN without extracting the fat components present in the hexane solution. The time limitation on the present program prevented evaluation of these sample preparation techniques.

D. Animal Liver Samples

1. RDX, DNT, TNT, and Tetryl in Liver: The initial evaluations of sample preparation procedures for the determination of RDX, DNT, TNT, and tetryl in the animal liver matrix indicated that the toluene extraction technique employed for the plasma and kidney matrices was the most promising. The other techniques evaluated, including acetonitrile, ethyl acetate, and hexane extraction, either extracted too many liver components which interfered with the HPLC determination of the munitions or gave poor recoveries. Studies were initiated to validate the toluene extraction technique for the liver matrix using duplicate samples soiked at five levels on four separate days. Three separate days of liver sample sets were analyzed and the results summarized in Table 7 (the raw data and calculations are given in Appendix A, Tables 5-A, 6-A, and 7-A). At this time, the spiking levels being employed on the program were 0, 100, 500, 1,000, 1,500, and 2,000 ng/ml. The data for Day 1 showed acceptable recovery for RDX, DNT, and TNT (as with the other animal matrices, no tetryl was detected at any of the spiking levels) with good linearity of recovery over the concentration range. However, the Day 2 and Day 3 data for DNT and TNT varied considerably from Day 1 results and were not linear within a day set. Figure 6 presents HPLC chromatograms of 1.0-g liver samples spiked at the 1,000-ng/g level with the munitions from the Day 1 and Day 2 sets. A substantial decrease in the recovery of DNT and TNT in the Day 2 liver sample is apparent. Since the data from Day 1 was acceptable, a systematic error in the sample preparation procedure was considered to be the cause for the variation in the results. Evaluations of the sample preparation procedure were conducted to define the source of error and to eliminate the problem.

The first aspect of the sample preparation procedure evaluated was the effect of the pH of the aqueous phase on the extractability of the munitions from liver. The original protocol had a 1.0-ml 10% sodium chloride solution containing 1% acetic acid added to 1.0 g liver to aid in the extraction; the pH of the aqueous phase under these conditions was approximately 4. To determine if the pH was important, duplicate liver samples containing 1,000 ng/g each munition were prepared and buffered to pH's 2, 4, 6, and 8 with 1.0 ml, 10% sodium chloride plus 0.1 M sodium acetate at the appropriate pH. Each solution was extracted 3 x 3 ml with toluene and analyzed by HPLC as described earlier. The results showed consistent, but low for DNT and TNT, recovery of the munitions for the acidic solutions and very poor chromatography for the basic liver samples. An acidic solution was required for extraction; however, pH was not the apparent cause of the lower recoveries of DNT and TNT.

The rationale for using sodium chloride solutions during extraction was to "salt out" the compounds being extraced. This aspect of the sample preparation procedure was studied by preparing 1,000 ng/g each munition liver samples with the following salt solutions (all contained 1% acid): (1) 0% sodium chloride; (2) 10% sodium chloride (normal procedure, served as control for experiment); (3) 20% sodium chloride; (4) 10% ammonium acetate; (5) 10% sodium dihydrogen phosphate plus phosphoric acid; and (6) 10% sodium sulfate. The results of this study indicated that salt aided in the extraction of the munitions but the salt type or concentrations above 10% were

TABLE 7

HPLC-UV DETERMINATION OF RDX, DWT, AND THI IN LIVER SAMPLES INITIAL EVALUATION OF TOLUGNE EXTRACTION HETHOD

							201110	a i			
Sample	•	ng/g Munition	RDX	RDX ng/g Found ⁸	pu n	TMG	DMT ne/e Found	•	į	p	•
Lescription	Liver	Added	Day 1	Day 2	Day 3	Day 1	Day 2	Day 3	Day 1	1 Day 2 Da	Day 3
A- 0	1.0	0	105	110	106	MDP	ğ	æ	ē	Ş	ę
B-0	1.0	0	99	102	131	Ş	Ę	ę	ę	ę	<u> </u>
A-100	1.0	100	168	164	134	79	41		61	97	53
B-100	1.0	100	153	. 146	233	80	25	70	55	37	65
A-500	1.0	200	538	541	516	328	194	240	275	157	191
B-500	1.0	200	527	588	269	331	274	202	282	148	151
A-1000	1.0	1,000	1,024	1,031	1,020	662	420	249	643	265	386
B-1000	1.0	1,000	1,018	1,064	1,006	752	522	345	637	321	330
A-1500	1.0	1,500	1,540	1,420	1,496	1,021	106	669	991	532	507
B-1500	1.0	1,500	1,494	1,548	1,530	1,029	786	069	892	519	893
A-2000	1.0	2,000	1,901	1,971	1,927	1,322	1,065	930	1,316	799	629
B-2000	1.0	2,000	1,977	1,930	1,964	1,467	1,028	1,076	1,286	687	1,260

a ng/g Found - nanograms each munition found, determined using the relative weight response to an internal standard method.

b ND - Not detectable, less than 20 ng/g.

1

- 4

Day 1 Liver Sample

Sample Characteristics

250 x 4.6 mm ID

HPLC Conditions

acid, extracted with 3 x 3 ml sample containing 1,000 ng/g 1 ml 10% NaCl plus 1% acetic residue dissolved in 1.0 ml each munition, diluted with toluene. Toluene extracts Day 1 and Day 3 1.0 g liver evaporated to dryness and HPLC eluent.

1,000 ng/ml 70 μ1 Attenuation: 0.01 X IS Concentration: Injection Volume:

Figure 6 - HPLC Method Development for RDX, DNT, and TNT Determination in Animal Liver. Day 1 and Day 3 1.0 g liver samples containing 1,000 ng/g each munition prepared using the toluene extraction procedure (initial evaluation).

2 3

Inj.

not important. Very low recovery was observed for the 0% salt solution and consistent, but low, recovery was found for the other samples. The addition of 1.0 ml, 10% sodium chloride containing 1% acetic acid aided in the extraction of the munitions from liver; however, the salt solution was not the cause of the systematic error.

Toluene had been employed as the extraction solvent for plasma, kidney, and the Day 1 liver matrices with acceptable recovery of the munitions. The possibility that a slightly more polar solvent was required for uniform extraction of the munitions from liver was explored by evaluating a number of other solvents. The solvents evaluated included toluene (normal method, control); acetonitrile; 2% IPA in toluene; 2%, 3%, 4%, 5%, and 20% IPA in hexane, and 50:45:5 v/v/v toluene:hexane:IPA. Representative HPLC chromatograms for some of these solvent evaluations are shown in Figures 7 and 8. The results indicate that none of these solvents improved the recovery of DNT and TNT without affecting the chromatography. The data did show that a polar solvent, i.e., acetonitrile, ethyl acetate, gave better recovery; however, RDX determination was affected (see Figure 7). Another study was conducted to evaluate the possible use of a double extraction of the liver matrix, first with a polar solvent to obtain acceptable DNT and TNT recovery, and after drying the first extract, with a second less polar solvent such as toluene or 2% IPA in hexane to isolate RDX from the early eluting interference. The polar solvents evaluated were acetonitrile, ethyl acetate, and methanol and the second solvents evaluated were toluene and 2% IPA in hexane. The results showed relatively clean chromatograms for each solvent pair; however, the recoveries of the munition added to the liver were not improved and, in most cases, were lower than with the toluene extraction procedure. The experiments conducted had shown that the inconsistent results obtained for the recovery of DNT and TNT from the liver matrix were not due to the extraction solvent being employed.

The next aspect evaluated was the toluene evaporation and residue reconstitution steps. After drying the toluene from the liver extract, a substantial amount of liver components was present, and this residue was not completely solubilized with 0.5 ml acetonitrile. The poor recoveries of DNT and TNT may have been caused by adsorption of the munitions on these components. Experiments were designed to determine if all the munitions extracted with the toluene were solubilized. These studies utilized vortex mixing and ultrasonication for various times and liver samples spiked with the munitions prior to extraction and after extraction. The results showed quantitative recovery, i.e., greater than 90%, for the munitions from the toluene spiked after extraction while low DNT and TNT recoveries were observed for the livers spiked prior to extraction. While vortexing and ultrasonication aided in solubilizing the residues from the toluene liver extracts, the reconstitution procedure was not the cause of the inconsistent data for DNT and TNT from liver.

1.0 g liver plus 1,000 ng/g each munition extracted with acetonitrile

Figure 7 - HPLC Chromatograms of RDX, DNT, and TNT Extracted from Liver with Various Solvents. Difference in elution parameters for the munitions attributed to column change and fresh eluent. HPLC conditions as listed in Figure 6.

1.0 g liver plus 400 ng/g each munition extracted with 2% IPA in hexane

1.0 g liver plus 400 ng/g each munition extracted with 2% IPA in toluene

Figure 8 - HPLC Chromatograms of RDX, DNT, and TNT Extracted from Liver with Various Solvents. Differences in elution parameters for the munitions sttributed to column change and fresh eluent. HPLC conditions as listed in Figure 6.

Each of the various parameters of the sample preparation procedure had been evaluated without defining the systematic error which gave varying recoveries for DNT and TNT from liver. Careful review of the entire procedure indicated that the extraction efficiency of the tolucne for the liver matrix may not be as high as in the other animal tissues. The formation of extraction emulsions with biological tissues is common and usually undesirable. During the extraction procedure, care had been taken to minimize the emulsion, and this may have prevented optimal extraction of the munitions. When liver samples containing the munitions were mixed with toluene in a manner which guaranteed the formation of a complete emulsion and were then centrifuged to separate the phases, recoveries of DNT and TNT were similar to the Day 1 results presented in Table 5. The emulsion resulted in a longer centrifugation time, i.e., 40-50 min, to separate the phases; however, the extractability of the munitions required the close contact of the toluene and aqueous phases. During these evaluations, the spiking level for the munition in a matrix had been changed. Also, the analytical system had been modified from System II to System III. The final sample preparation procedure and HPLC System III were validated for RDX, DNT, and TNT in liver samples by analyzing duplicate samples spiked at 0, 50, 100, 200, 500, and 1,000 ng/g on four separate days. The method is presented in Appendix E, Technical Report No. 4, Method Development for the Determination of RDX, DNT, and TNT in Animal Liver Samples.

2. PETN in Liver: The results obtained from the earlier studies to define a sample preparation procedure for PETN in kidney samples had shown that 2% IPA in hexane provided some recovery and had acceptable chromatography in the elution region of the IS and PETN. Similar low recovery results, as shown in Figure 9, were obtained for PETN in liver using this extraction technique. When the polarity of the extracting solvent was increased, the chromatography deteriorated and interfering liver components prevented the detection of PETN (also shown in Figure 9). Additional studies are necessary to define a procedure to extract PETN from the liver samples followed by additional clean-up to isolate the PETN from co-extracted liver components.

E. Plant Leaves

gained during the sample preparation procedure evaluations for RDX, DNT, TNT, and tetryl in animal tissue matrices was applied to defining a protocol for plant leaves. The plant leaves matrix included grass and soft stem plant leaves. Since the availability of this matrix is greater, a larger sample size, i.e., 5 g, was chosen for evaluation. Initial evaluations indicated that polar solvents, i.e., acetonitrile, ethyl acetate, cannot be employed for this matrix as they extracted many plant components. Less polar solvents such as toluene, hexane, and 2% IPA in hexane showed promise and were evaluated further. The animal tissue matrices had utilized a salt solution containing 1% acid to aid in the extraction efficiency. Both the extracting solvent and the aqueous phase parameters were evaluated for plant leaves. Experiments with 0, 10, and 20% sodium chloride containing 1% acetic acid added to 5 g plant leaves both blank and spiked with 200 ng/g each munition and extracted with toluene, hexane, or 2% IPA in hexane were conducted.

and the second s

1.0 g liver containing 2,000 ng/g PETM oxtracted with 2% IPA in hexane

Pigure 9 - HPLC Chromatograms for PETN Method Development in Liver. HPLC conditions as described for Figure 5.

Figure 10 shows the HPLC chromatogram for 10% sodium chloride (5 ml) added to 5 g leaves and extracted with 20 ml toluene. A 10-ml aliquot of the toluene (2.5-g equivalents of plant leaves) was dried, dissolved in HPLC eluent, filtered, and analyzed. The elution positions of the various munitions are indicated by zrrows and RDX and DNT have co-eluting leaf compounds. Figure 11 presents an HPLC chromatogram for a 5.0-g leaf sample containing 200 ng/g each munition, diluted with 5 ml 20% sodium chloride plus 1% acetic acid, and extracted with 20 ml 2% IPA in hexane. A 10-ml aliquot of the hexane was taken for analysis. As with the toluene extract, interferences are present at the elution position of RDX and DNT; however, TNT is detected. No tetryl was observed in any plant leaf extracts. Similar chromatograms were obtained for the other conditions.

The plant leaves interferences present in the HPLC chromatograms from toluene and hexane extract prevented the use of HPLC System III for the assay of RDX, DNT, and TNT in this matrix. An HPLC eluent study wzs undertaken to determine if the munitions could be separated from the interferences. By lowering or raising the percentage of acetonitrile in the eluent, the retention indices of the munitions were changed. RDX was not separated from the large interfering peak with any HPLC eluent evaluated. By lowering the acetonitrile percentage from 30% to 25%, partial separation of DNT and the plant component (X-1 on Figure 11) was achieved. However, under these conditions, TNT and another plant component (X-2 on Figure 11) co-eluted. This HPLC separation is shown in Figure 12. Additional studies are necessary to define a sample preparation procedure to isolate the munitions from plant matrix components.

3. PETN in Plant Leaves: The possible use of a simple extraction technique for the HPLC-UV (215 nm) determination of PETN in plant leaves, was evaluated using a variety of organic solvents. The plant leaves were prepared by grinding in a Waring-type blender, weighing 5-g aliquots into a 50-ml centrifuge tube, and adding 5 ml 10% sodium chloride containing 1% acetic acid. The organic solvents selected for evaluation were hexane, 1% and 2% IPA in hexane, 1/1 (v/v) hexane methylene chloride, methylene chloride, and toluene. These solvents were chosen to provide a slight polarity increase with each solvent, to define a system which extracted PETN and only limited plant leaf material. Each solvent was evaluated by preparing duplicate 5-g leaf samples spiked with 0, 100, and 1,000 ng/g and extracting with 20 ml of solvent. A 10-ml aliquot of the extracting solvent (2.5 g leaves equivalent) was evaporated to dryness, reconstituted with 1.0 ml HPLC eluent containing the IS, and analyzed by HPLC System IV. Figure 13 shows chromatograms for a reference PETN solution and a 5-g leaf sample containing 1,000 ng/g PETN extracted with 2% IPA in hexane. The chromatograms obtained from the other solvents evaluated were similar or worse than that shown in Figure 13. Additional studies are necessary to define a sample preparation procedure to isolate PETN from plant leaves. A more detailed procedure than simple extraction will be required, and the time limitations on the present program prevented the complete evaluation of more elaborate techniques.

10

15

Inj.

20

30

HPLC Parameters

Column: Spherisorb ODS, 5 u.

250 x 4.6 mm ID

Eluent: 30% acetonitrile in water

containing 1% acetic acid

Flow Rate: 1.5 ml/min Chart Speed: 0.1 in./min

Detector: UV, 254 nm

Sample Characteristics

5.0 g Plant leaves plus 5.0 ml 10% sodium chloride solution plus 1% acetic acid extracted with 20 ml toluene. A 10-ml aliquot of toluene was evaporated to dryness, reconstituted with 1.0 ml HPLC eluent, and injected.

IS Concentration: 0
Injection Volume: 70 µl
Attenuation: 0.01 X

Figure 10 - HPLC Chromatogram of Blank Leaf Sample (5.0 g) Extracted with Toluene.

Arrows indicate the elution position of the munitions and IS.

30 min

45 ml

10

15

Inj.

20

30

HPLC Parameters

Column: Spherisorb ODS, 5 μ,
250 x 4.6 mm ID

Eluent: 30% acetonitrile in water
containing 1% acetic acid

Flow Rate: 1.5 ml/min

Chart Speed: 0.1 in./min

Detector: UV, 254 nm

Sample Characteristics

5.0 g Leaves containing 200 ng/g each munition plus 5.0 ml 20% sodium chloride solution containing 1% acetic acid extracted with 20 ml 2% IPA in hexane. A 10-ml aliquot of hexane was evaporated to dryness, reconstituted in 1.0 ml HPLC eluent containing the IS, and injected.

IS Concentration: 1,000 ng/ml Injection Volume: 70 µl Attenuation: 0.01 X

Figure 11 - HPLC Chromatogram of 5.0 g Leaves Containing 200 ng/g Each Munition Extracted with 2% Isopropanol in Hexane. Munition elution positions indicated by arrows. "X" denotes leaf components.

30 min

45 ml

HPLC Conditions

Column: Spherisorb ODS, 5 µ, 250 x 4.6 mm ID Eluent: 25% acetonitrile in water containing

1% acetic acid

Flow Rate: 1.5 ml/min

Chart Speed: 0.1 in./min

Detector: UV, 254 nm

Sample Characteristics

A 10-m1 aliquot of hexane was evaporated to dryness, reconstituted in 1.0 ml HPLC eluent containing the acetic acid extracted with 20 ml 2% IPA in hexane. 5.0 ml 20% sodium chloride solution containing 1% 5.0 g Leaves containing 200 ng/g each munition plus IS, and injected.

IS Concentration: 1,000 ng/ml

Attenuation: 0.01 X Injection Volume:

Figure 12 - HPLC Chromatogram of Plant Leaves Containing Munitions and Extracted with Toluene Plus 2% IPA.

;

Figure 13 - HPLC-UV (215 nm) System IV Analysis of 2% IPA in Hexane Extracted Leaves for Method Development for PETN Determination. Sample preparation as outlined in text.

F. Plant Stems

- 1. RDX, DNT, TNT, and Tetryl in Plant Stems: The results obtained during the sample preparation procedure evaluations for RDX, DNT, TNT, and tetryl in plant leaves was applied to studies for these munitions in the plant stems matrix. The plant stems matrix was defined to include plants with soft stems; no grass or hard stem plants, i.e., trees, were included. The plant leaves data had shown the 2% IPA in hexane and toluene were the optimal extracting solvents and these two solvents were evaluated. The leaves matrix component which interfered with DNT was not present in the stems matrix; however, RDX co-eluted with a large peak preventing its determination and no peak was detected at the tetryl elution position. The 2% IPA in hexane solvent gave clearer chromatograms than toluene and was selected for additional study. The nature of the plant stems matrix prevented efficient grinding of the matrix in the blender and an alternate procedure was required to prepare the matrix for extraction. The technique which provided the best grinding of the stems matrix consisted of freezing the stems and using dry ice to maintain a frozen matrix during grinding. The sample was then allowed to thaw and weighed. The single extraction technique described in Section E.2. was employed using 2% IPA in hexane, and DNT and TNT were recovered at about 50%. The sample preparation procedure and HPLC System III were validated for DNT and TNT in the plant stem matrix by analyzing duplicate 5.0-g samples spiked at 0, 50, 100, 200, 500, and 1,000 ng/g each munition on four separate days. This method is presented in Appendix G, Technical Report No. 6, Method Development for the Determination of DNT and TNT in Plant Stems.
- 2. PETN in Plant Stems: The possibility of determining PETN in the plant stems matrix was evaluated using the same techniques employed for the plant leaves matrix. Only hexane and 2% IPA in hexane were evaluated since the other solvents studied earlier had extracted many interfering compounds from the plant leaves. Unless more promising results were obtained with hexane and 2% IPA in hexane, these solvents were not considered as being able to extract the plant stems without the interferences also being present. The HPLC-UV (215 nm) chromatograms obtained from the hexane and 2% IPA in hexane extraction of PETN from plant stems were similar to the chromatogram presented in Figure 13. Additional studies are necessary to define a procedure to isolate PETN from the co-extracted plant stems components before HPLC-System IV can be utilized to determine PETN in this matrix.

APPENDIX A

RAW DATA AND CALCULATIONS FOR FINAL REPORT

HPLC LINEARITY OF RDX INTERIM STANDARD SOLUTION

18-2	0.949 U.981	0.977	0.976	0.968	0.947	0.956	0.968	
18-1	0.565	0.572	0.565	0.562	0.552	0.507	0.482	1 1
PH-/ Ratio IS-2	1.02	0.525	0.105	1.04	0.510	0.205	0.104	i i
PHC/ Ratio IS-1	1.19	0.603	0.119	1.18	0.582	0.213	0.101	1 1
Peak Height IS-2	2,940 3,120	2,780	2,860	148	153	156	154	172 177
ng a/ m1 15-2	9,880	9,880	9,880	494	464	464	464	767
Peak <u>b</u> / Height IS-1	2,520	2,420	2,520 2,580	130	134	150 153	158	152 156
ng 2/ ml IS-1	5,040	5,040	5,040	252	252	252	252	252
Peak b/ Height RDX	3,290	1,460	300	154	78 80	32 32	16 18	t i
ng a/ ml RDX	10,620	5,310	1,062	531	792	106	53	56
njection Ko.	7 7	7 7	2 1	1 2	7 7	7 7	7 7	- 7
# I								

ng/ml RUX, ng/ml IS-1, and ng/ml IS-2 - nanograms per milliliter of RDX, IS-1 (propiophenone) and IS-2 (butyrophenone) present in each solution.

RWR Peak Height RDX ng/ml IS
Peak Height IS x ng/ml RDX

Peak Height RDX, IS-1, and IS-2 - measured peak heights of RDX, IS-1, and IS-2 in millimeters at an attenuation of 0.005 O.D. اه

PH Ratio IS-1 and IS-2 - peak height ratio of RDX to the internal standards. RWR IS-1 and IS-2 - relative weight response of RDX to IS-1 and to IS-2.

HPLC LINEARITY OF DNT INTERIM STANDARD SOLUTION

KWR d/ 15-2	1.94	1.99	1.92	1.94	1.90	1.87	1.92	1.95
RUR 1S-1	1.15	1.17	1.11	1.13	1.11	0.99	0.96	1.13
PH ^C / Ratio IS-2	1.97	1.01	0.196	1.97	0.967	0.378	0.195	0.099
PH ^C / Ratio IS-1	2.30	1.17	0.222	2.25	1.10	0.393	0.190	0.112
Peak Height IS-2	2,940 3,120	2,780	2,860	148	153	156	154 155	172
ng a/ m1 1S-2	9,880	9,880	9,880	767	764	464	767	767
Peak b/ Height IS-1	2,520	2,420	2,520	130	134	150	158	152
ng a/ ml IS-1	5,040	5,040	5,040	252	252	252	252	252
Peak b/ Height DNT	5,800	2,820	940	292 308	148	59	30	17
ng a/ m1 DNT	10,050	5,023	1,005	502	251	100	20	25
Injection No.	-1 82	H 4	7 7		. 7	1 2	7 7	7 7
Solution No.	s 3 . ≠4	8	n	্ব		· ·		€0

ng/ml DNT, ng/ml IS-1, and ng/ml IS-2 - nanograms per milliliter of DNT, IS-1 (propiophenone) and IS-2 (butyrophenone) present 'n each solution.

ng/ml DNT

RWR - Peak Height DNT x ng/ml IS
Peak Height IS ng/ml DNT

Peak Height DNT, IS-1, and IS-2 - measured peak heights of DNT, IS-1, and IS-2 in millimeters at an attenuation of PH Ratio IS-1 and IS-2 - peak height ratio of DNF to the internal standards. 0.005 0.D. اھ

RWR IS-1 and IS-2 - relative weight response of DNT to IS-1 and to IS-2. ो हो

TABLE A-3

HPLC LINEARITY OF THE INTERIM STANDARD SOLUTION

KWR d/ 18-2	1.32	1.34	1.29	1.34	1.30	1.37	1.51	1.26
KWR d/ 15-2	0.788	0.783	0.744	0.779	0.760	0.725	0.751	0.730
PHC/ Ratio IS-2	1.37	0.691	0.133	1.39	0.673	0.282	0.156	0.064
PH ^C / Ratio IS-1	1.59	0.793	0.151	1.57	0.769	0.293	0.152	0.072
Peak— Height IS-2	2,940 3,120	2,780 2,980	2,860 2,960	148 153	153	156	154 155	172
ng "/ ml IS-2	9,880	9,880	9,880	494	767	464	464	\$6\$
Peak Height IS-1	2,520	2,420	2,520 2,580	130 135	134 138	150 153	158 160	152 156
ng a/ m1 IS-1		_	_					
	5,04(5,040	5,040	252	252	252	252	252
Peak n Height TNT				205 211 252				
Peak Height TNT	4,020	1,920	380	205	103	44	21,	111

ng/ml TNT, ng/ml IS-1, and ng/ml IS-2 - nanograms per milliliter of TNT, IS-1 (propiophenone) and IS-2 (butyrophenone) Peak Height TNT, IS-1, and IS-2 - measured peak heights of TNT, IS-1, and IS-2 in millimeters at an attenuation of present in each solution. 2

PH Ratio IS-1 and IS-2 - peak height ratio of TNT to the internal standards. 0.005 0.D. ी है।

RWR IS-1 and IS-2 - relative weight response of TNT to IS-1 and to IS-2.

RUR Peak Height TNT x ng/ml IS
Peak Height IS ng/ml TNT

50

TABLE A-4

HPLC LINEARITY OF RDX, TNT, DNT, AND TETRYL SARM REFERENCE SOLUTIONS
USING HPLC SYSTEM 2

Reference	ng/m]		Peak	Peak Height		ï	S			•	
Solution	Each		ٿ	(T			Peak	Rela	tive Wei	Relative Weight Response	onse.
No.	Munition	S S	TAT	TNO	Tetryl	n8/m1	Height	Ž	티	THO	Tetry
1-A	. 100	13.0	12.0	14.0	7.0	1,000	120.0	1.08	1.00	1.17	0.58
M	100	11.0	10.0	12.0	7.0	1,000	112.0	0.98	0.89	1.07	0.63
2-1	200	59.0	52.0	0.49	38.0	1,000	122.0	0.97	0.85	1.05	0.62
. 2-B	200	55.0	20.0	29.0	36.0	1,000	116.0	0.95	98.0	1.02	0.62
3-A	1,000	104.0	97.0	121.0	57.0	1,000	114.0	0.91	0.85	1.06	0.50
9-B	1,000	121.0	118.0	145.0	0.99	1,000	134.0	0.00	0.88	1.08	0.49
4-A	1,500	172.0	157.0	184.0	103.0	1,000	117.0	0.98	0.89	1.05	0.59
4-B	1,500	150.0	144.0	172.0	97.0	1,000	110.0	0.91	0.91	1.04	0.59
Y-5	2,000	228.0	208.0	246.0	130.0	1,000	116.0	0.98	0.90	1.06	0.59
2-B	2,000	210.0	202.0	240.0	132.0	1,000	116.0	0.91	0.87	1.03	0.57

a Relative Weight Response = Peak Height Cpd x ng/ml IS Peak Height IS ng/ml Cpd

TABLE A-5

DETERMINATION OF RDX, DNT, AND THT IN LIVER SAMPLES

Evaluation
Extraction
Toluene
Initial
-
Day

5	ns/s		ď	sak Esight		Internal	Standard		8/8u	
See		•		Î			Peak		Detected	
Number	Added	Liver	RDX	THO	TAT	ng/m1	Height	RDX	TEO .	E
									7	
0.11	•	-		,	6 2	1,000	145.0	105	9	윤
D-VI ARG	>	? :	17.0	7 /	J	200		075	77	7
Dev 1A-100	100	0.1	19.0	10.0	7.0	1,000	143.0	108	*	1
New 14-500		-	20.0	51.0	31.4	1,000	142.8	238	328	275
000-F4 (80		•					0 021	1 0.24	665	£79
Day 1A-1000	1,000	1:0	112.0	102.4	73.0	7,000	145.0	1001	3 3	
Day 14-1500	1,500	-	168.4	158.0	112.6	1.000	142.0	1,540	1,021	188
POCT UT SEA	2224	•)			0 0/1		1 - 222	1 216
Day 1A-2000	2,000	1.0	209.6	206.4	150.8	1,000	143.2	106.1	7764	21761
									•	ļ
207	•	•	œ	· ·	< >	1,000	152.6	99	足	ę
Deat to-0	>	2:4	?	1,) (6	V
Day 18-100	COL	1.0	18.0	12.0	6.5	1,000	148.8	CCT	2	5
Day 18-500	200	-	60.0	23.4	33.4	1.000	148.0	527	331	282
Operation of		•					150 6	1 018	75.2	637
Day 1B-1000	1,000	0.1	118.0	173.4	9.0	2000	0.001	7 6 7		
Day 18-1500	1,500	1.0	171.0	166.6	106.0	1,000	148.6	1,494	1,029	269
2000 41 114			7	7 166	14.0 2	000	166.8	1.977	1.467	1.286
Day 18-200	7,000	7.0	4.022	631.0	7.641	7,000				•

TABLE A-5 (concluded)

	at e	TAT.	0.80	0.80	0.79	0.81	0.82
	Relative Weight Response	DNT	1.08	1.08	1.06	1.06	1.15
	Rela	RDX	9.76	0.76	0.76	0.76	0.79
J	Standard	Height	142.0	139.2	142.0	139.0	138.8
	Internal Standard	ng/mj	1,000	1,000	1,000	1,000	. 1,000
OLUTIONS		TAT	228.0	166.6	224.0	56.0	14.0
EFERENCE SOLUTIONS	esk Height	DNT	306.0	224.8	302.0	74.0	16.0
د ا	д	ROX	216.0	158.4	214.8	53.0	11.0
	ng/m1	Added	2,000	1,500	2,000	200	100
	Reference	Number	Std-Day 1-5	Std-Day 1-4	Std-Day 1-5	Std-Day 1-2	Std-Day 1-1

ng/g compound added - nanograms of RUX, DNT, and TNT added per gram of liver sample.

0.80

1.09

0.77

Average

b Internal standard - compound (propiophenone) added to liver sample after sample preparation for calculation of data

ng/g detected - nanograms of RDX, DNT, and TNT detected in the 1.0 g liver sample.

ng compound/g = Peak Height compound x average RWR compound

MD - not detectable, less than 20 ng/g.

Relative Weight Response - RWR = Peak Height compound x ng/ml IS ng/ml Compound

TABLE A-6

DETERMINATION OF RDX, DNT, AND TNT IN LIVER SAMPLES

Day 2 - Initial Toluene Extraction Evaluation

	40/00		à	ak Meteht		Internal	Standard		1/10	
		•	•	ĵ.		l	Peak		Detected	
Number	Added	Liver	æ	DNT	TAT	ng/m1	Height		TKO	Ę
0.4.0	c	-	0.40	~ ~ ~	~	1,000	284.4	110		
Dey 24-100	•		35.6	12.4	10.4	1,000	282.0	164	41	9
Dey 2A-100	201	• • • • • • • • • • • • • • • • • • •	0.00	7			7 01.0	177	761	157
Day 2A-500	200	0.	116.0	58.4	33.0	7,000	4.017	100	707	376
Day 2A-1000	1.000	1.0	217.6	124.4	58.0	000	274.0	1,031	076	707
Day 2A-1500	1,500	1.0	308.4	274.4	120.0	1,000	282.0	1,420	106	232
Day 2A-2000	2,000	1.0	443.2	336.0	155.0	1,000	292.0	1,971	1,065	1. 86.
•						`			ş	Ş
Day 2B-0	0	1.0		~	7	000,1	0.6/7	701	3 5	7
Day 2B-100	100	1.0		16.0	8.4	1,000	285.0	140	70.0	27,
Day 2B-500	200	1.0		84.0	33.6	1,000	283.6	288	4/7	9 . 6
Day 2B-1000	1,000	1.0		162.4	74.0	1,000	288.0	1,064	275	341
Day 2B-1500	1,500	1.0	339.6	242.0	118.4	1,000	285.0	1,548	9 60	219
Day 2B-2000	2,000	1.0		315.2	156.0	1,000	284.0	1,930	1,028	/90

TABLE A-6 (concluded)

	hte	TAT	0.80	0.81	0.83	0.79	0.79	0.77	0.81	
	elative Weigh	Dir	1.09	1.08	1.10	1.07	1.07	1.06	1.09	
	Rel	RDX	0.77	0.78	0.79	9.76	0.76	0.77	0.77	
	nternal Standard	Height	276.0	276.0	277.0	278.4	282.0	280.0	280.0	
	Internal	ng/ml	1,000	1,000	1,000	1,000	1,000	1,000	1,000	
SOLUI IONS	٠.	TEL	222.0	73.0	2.05	103.0	7.746	322.4	0.022	
NEFERENCE SOLUTION	Peak Height (mm)	DNT	300.0	7 08	7 871	2.909	0.000	30%	* * * * * * * * * * * * * * * * * * * *	
		RDX	212.6	22.0	9.501	428.8	323 6	217.0		
٠				ŗ				. '	,	
	ng/ml ^a Compound	Added	1,000 500	100	200	2,000	1,500	1,000		
	Reference Solution	NUMBER	Std-Day 2-2	Std-Day 2-1	Std-Day 2-2	Std-Day 2-5	Std-Day 2-4	Std-Day 2-3		

a ng/g compound added - nanograms of RDX, DNT, and INT added per gram of liver sample.

0.80

1.08

0.77

Average

b Internal standard - compound (propiophenone) added to liver sample after sample preparation for calculation of data.

c ng/g detected - nanograms of RDX, DNT, and TNT detected in the 1.0 g liver sample.

ng compound/g = Peak Height compound x average RWR compound

ND - not detectable, less than 20 ng/g.

Relative Weight Response - RWR = Peak Height compound mg/ml IS
Peak Height IS mg/ml compound

TABLE A-7

DETERMINATION OF RDX, DNT, AND THT IN LIVER SAMPLES

Day 3 - Initial Toluene Extraction Evaluation

	DX/K		ă	esk Height		Internal	Standard		3/8a	
Semple	Compound	*		Î			Peak		Detected	
Number	Added	Liver	RDX	THO	TEL.	ng/ml	Height	RDX	THE	E
Dev 3A-0	0	1.0	24.0	~	< 2	1,000	289.0	106		
Dev 3A-100	100	1.0	30.4	16.4	12.4	1,000	291.0	134		23
Day 3A-500	200	1.0	115.6	74.4	44.4	1,000	287.0	516		191
Day 3A-1000	1,000	1.0	227.0	169.6	89.0	1,000	286.0	1,020		384
Day 3A-1500	1,500	1.0	339.6	219.6	119.6	1,000	291.0	1,496		207
Day 3A-2000	2,000	1.0	434.0	290.0	147.2	1,000	288.8	1,927		629
Day 3B-0	0	1.0	30.0	4 2	7	1,000	292.4	131	B	ğ
Day 38-100	100	1.0	53.6	22.4	14.0	1,000	294.4	233		29
Day 38-500	200	1.0	134.4	0.99	37.0	1,000	303.0	269		151
Day 3B-1000	1,000	1.0	227.6	108.0	78.0	1,000	290.0	1,006		332
Day 38-1500	1,500	1.0	342.4	214.0	207.6	1,000	287.0	1,530		8 93
Day 38-2000	2,000	1.0	447.2	339.2	298.0	1,000	292.0	2,964		1,260

!

2.2

TABLE A-7 (concluded)

REFERENCE SOLUTIONS

	ite Te	TMT	0.81	0.77	0.81	0.80	0.86	0.81	
	Relative Weight Response	TNC	1.09	1.06	1.05	1.07	1.10	1.08	
	Rela	RDX	0.83	9.76	0.78	0.76	0.79	0.78	
4	25	Height	278.0	284.0	287.6	288.8	300.0	Average	
	Internal	ng/mj	1,000	1,000	1,000	1,000	1,000		
		TAT	22.4	439.2	348.4	0.094	129.6		
	eak Height	DAT	30.4	603.2	452.4	619.2	165.0		
•	Ωı	RDX	23.0	428.8	336.0	438.0	118.0		
	ng/ml	Added	100	2.000	1,500	2,000	200		
-	Reference	Number	Std-Day 3-1	Std-Day 3-5	Std-Day 3-4	Std-Day 3-5	Std-Day 3-2		

ng/g compound added - nanograms of RDX, DNT, and TNT added per gram of liver sample.

b Internal standard - compound (propiophenone) added to liver sample after sample preparation for calculation of data. 57

c ng/g detected - nanograms of RDX, DNT, and TNT detected in the 1.0 g liver sample.

ng compound/g = Peak Height compound x average RWR compound

d ND - not detectable, less than 20 ng/g.

e Relative Weight Response - RWR = Peak Height Compound x ng/ml IS peak Height IS ng/ml compound

APPENDIX B

IDENTIFICATION OR DEVELOPMENT OF CHEMICAL ANALYSIS METHODS FOR PLANTS AND ANIMAL TISSUES

METHOD REPORT NO. 1

METHOD DEVELOPMENT FOR THE DETERMINATION OF CYCLOTRIMETHYLENE-TRINITRAMINE (RDX), DINITROTOLUENE (DNT), AND TRINITROTOLUENE (TNT) IN PLASMA

September 1980

Contract Nc. DAAK11-79-C-0110 MRI Project No. 4849-A

For

U.S. Army Toxic and Hazardous Materials Agency Dr. L. Eng, DRXTH-TE-D, Project Officer Aberdeen Proving Ground (EA), MD 21010 The view, opinions, and/or findings contained in this report are those of the authors and should not be construed as on official Department of the Army position, policy, or decision, unless so designated by other documentation.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS SEFORE COMPLETING FORM	
	3. RECIPIENT'S CATALOG NUMBER	
Technical Report No. 1		
4. TITLE (and SubHitle)	S. TYPE OF REPORT & PERIOD COVERED	
Method Development for the Determination of	Method Report, August 19,	
Cyclotrimethylenetrinitramine (RDX), Dinitro-	1979 to December 20, 1979 4. PERFORMING ONG. REPORT NUMBER	
toluene (DNT), and Trinitrotoluene (TNT) in Plasma	MRI Project No. 4849-A	
7. AUTHOR(a)	8. CONTRACT OR GRANT HUNGE (40)	
D. B. Lakings and O. Gan	DAAK11-79-C-0110	
5. PERFORMING ORGANIZATION NAME AND ADDRESS Midwest Research Institute	10. PROGRAM ELEMENT, PROJECT, TASK AREA & FORK UNIT NUMBERS	
425 Volker Boulevard		
Kansas City, MO 64110		
11. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE	
U.S. Army Armament Research and Development	September 1980	
Command, Aberdeen Proving Ground (Edgewood Area), MD 21020	13. NUMBER OF PAGES	
14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office)	18. SECURITY CLASS. (of this report)	
	Unclassified	
	154 DECLASSIFICATION/DOTHGRADING	
IS. DISTRIBUTION STATEMENT (of this Report)		
Unlimited		
17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if different from Report)		
16. SUPPLEMENTARY NOTES		
Cyclotrimethylenetrinitramine (RDX) High Performance Liquid Chromatography Dinitrotoluene (DNT) Trinitrotoluene (TNT) Plasma Determination		
A high performance liquid chromatographic (HPLC) method for the quantitative determination of cyclotrimethylenetrinitramine (RDX), dinitrotoluene (DNT), and trinitrotoluene (TNT) in plasme has been developed. The analytical system consists of an isocratic HPLC unit with a Spherisorb ODS 5µ, 250 x 4.6 mm ID column, an eluent of 30% acetonitrile in 1% acetic acid in water, and a flow rate of 1.5 ml/min. The compounds, including the internal standard (IS), pro-		

DD 1 JAN 73 1473 EOFTION OF THOY 68 IS DESOLETE

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (Then Data Entered)

piophenone, have the following rention characteristics: RDX - 15 ml, 10 min;

SECURITY CLASSIFICATION OF THIS PAGE THE DATE RESERVED

IS - 28.5 ml, 19 min; DNT - 37.5 ml, 25 min; and TNT - 42 ml, 28 min and are detected at 254 nm. Reference solutions of the compounds gave a linear response from 100 ng/ml to 2,000 ng/ml. The plasma samples were prepared by adding 1 ml 10% sodium chloride containing 2% acetic acid to 1 ml plasma and extracting the sample with 3 x 2 ml toluene. The toluene extracts were combined and 0.5 ml water added. The toluene was evaporated at room temperature under a stream of nitrogen gas. The aqueous phase was combined with 0.5 ml acetonitrile containing the IS (1,000 ng/sample), filtered through a 0.45-µ Fluoropore filter and injected onto the HPLC system. The analytical method was evaluated by preparing and analyzing duplicate samples containing 0, 100, 500, 1,000, 1,500, and 2,000 ng/ml of each compound on four succeeding days. Linear regression analysis of the data gave the following equations and correlation coefficients: RDX - y = 0.825x + 14, 0.990; DNT - y = 0.659x + 6, 0.982; and TNT - y = 0.785x + 16, 0.988. The average coefficient of variation and average percent inaccuracy for RDX, DNT, and TNT determination in plasma were 10%, - 12; 12% - 32; and 10% - 19, respectively. A statistical evaluation of the data by the Hubaux and Vos detection limit program gave detection limits of 146 ng/ml for RDX; 256 ng/ml for DNT, and 248 ng/ml for TNT for the HPLC determination of these compounds in plasma samples.

UNCLASSIFIED

PREFACE

The report was prepared at Midwest Research Institute, 425 Volker Boulevard, Kansas City, Missouri 64110 under U.S. Army Toxic and Hazardous Materials Agency, Contract No. DAAX11-79-C-0110, MRI Project No. 4849-A entitled "Identification or Development of Chemical Analysis Methods for Plants and Animal Tissues." Dr. Ieslie Eng, DRXTH-TE-D was the Project Officer for this research effort.

This work was conducted in the Analytical Chemistry Department Dr. James L. Spigarelli, Director. The research effort was directed by Dr. Duane B. Lakings, Program Manager and Senior Chemist, with assistance from Mr. Owen Gan, Assistant Chemist, and Ms. Mary Valla, Senior Technician. This report was prepared by Dr. Lakings and Mr. Gan.

MIDWEST RESEARCH INSTITUTE

Owen Gan

Assistant Chemist

Duane B. Lakings

Program Manager and Senior Chemist

Approved: .

Vames L. Spigarelli, Director

Analytical Chemistry Department

TABLE OF CONTENTS

		Page
•	Application	1
	Chemistry	. 1
١.	Apparatus	2
٠.	Standards	3
	Procedures for Plasma Sample Determination	4
.	Calculation	6
•	Statistical Evaluation of Data	6
ppe	endix - Raw Data and Calculation for Plasma Method Determination for RDX, DNT, and TNT	24

LIST OF FIGURES

Mumber	<u>Title</u>	Page
1	HPLC Separation of RDX, DNT, TNT and Tetryl SARMS and Propiophenone (IS)	7
2	Determination of RDX in Plasma	12
3	Determination of DNT in Plasma	13
4	Determination of TNT in Plasma	14
5	Standard Deviation for RDX, DNT, and TNT in Plasma	15
6	Coefficient of Variation for RDX, DNT, and TNT in Plasma .	16
7	Percent Inaccuracy for RDX, DNT, and TNT in Plasma	17
8	hPLC Analysis of Blank Plasma for RDX, DNT, and TNT Method Development	18
9	HPLC Analysis of Plasma Containing 100 ng/ml RDX, DNT, and TNT	19
10	HPLC Analysis of Plasma Containing 1,000 ng/ml RDX, DNT, and TNT	20

LIST OF TABLES

Number	<u>Title</u>	Page
1	Linearity and Precision of the HPLC-UV Determination of SARM Reference Solutions of RDX, DNT, and TNT	8
2	HPLC-UV Determination of RDX in Plasma	9
3	HPLC-UV Determination of DNT in Plasma	10
4	HPLC-UV Determination of TNT in Plasma	11
5	Statistical Evaluation of RDX in Plasma Data by the Hubaux and Vos Detection Limit Program	21
6	Statistical Evaluation of DNT in Plasma Data by the Hubaux and Vos Detection Limit Program	22
7	Statistical Evaluation of TNT in Plasma Data by the Hubaux and Vos Detection Limit Program	23
Appendix 8	Linearity and Precision of RDX, DNT, and TNT Determination by High Performance Liquid Chromatography	25
9	Determination of RDX, DNT, and TNT in Plasma Samples	27
10	Determination of RDX, DNT, and TNT in Plasma Samples	29
11	Determination of RDX, DNT, and TNT in Plasma Samples	31
12	Determination of RDX, DNT, and TNT in Plasma Samples	33

Midwest Research Institute Analytical Chemistry Department Kansas City, Missouri 64110

for

U.S. Army Armament Research and Development Command Aberdeen Proving Ground (Edgewood Area) Haryland 21020

Contract No. DAAK11-79-C-0110

Identification or Development of Chemical Analysis Methods for Plant and Animal Tissues

METHOD DEVELOPMENT FOR THE DETERMINATION OF CYCLOTRIMETHYLENE-TRINITROAMINE (RDX), DINITROTOLUENE (DNT), AND TRINITROTOLUENE (TNT) IN PLASMA

- 1. APPLICATION: The developed method is for the quantitative determination of RDX, DNT, and TNT in animal plasma using high performance liquid chromatography (HPLC) with ultraviolet (UV) detection at 254 nm.
- a. Evaluated Concentration Range: The concentration range of RDX, DNT, and TNT studied in reference solutions and in plasma samples was 100 to 2,000 parts per billion (ppb, ng/ml).
- b. Sensitivity: A signal-to-noise ratio of 6 to 1 for RDX (peak height (PH), 25 mm), 9 to 1 for DNT (PH, 30 mm), and 8 to 1 for TNT (PH, 30 mm) was obtained with an injection of 50 µl of a 100 ng/ml solution of each compound (ca. 5 ng each compound on column).
- c. Detection Limits: 146 ng/ml for RDX, 256 ng/ml for DHT, and 248 ng/ml for TNT based on the Hubaux and Vos detection limits program.
- d. <u>Interferences</u>: No interfering plasma components were found to elute with the same retention volumes as RDX, DNT, or TNT. However, an impurity in the extracting solvent (toluene) eluted 1.5 min prior to RDX.
- e. Analysis Rate: The chromatographic time per injection for the plasma determination of RDX, DNT, and TNT was 40 min. With two reference solutions analyzed first and two during the day (160 min total time), a total of eight samples (320 min total time) can be analyzed during an 8-hr day.
- 2. CHEMISTRY: RDX, DNT, and TNT are munition compounds manufactured at various installations. The possible environmental contamination of these compounds, particularly in plants and animals, is of concern. The determination of plasma levels of RDX, DNT, and TNT in animals may provide

information on the extent and level of contamination at the production facilities and surrounding area. Each of these munitions has a sufficient UV chromophore at 254 nm to allow UV detection and quantification. These munitions are of intermediate polarity and have a limited water solubility. Normally, biological matrices have a large number of components which will interfere with the detection and quantification of low levels of compounds. Reverse phase HPLC is capable of separating compounds with similar chemical and physical properties; the elution order of this technique is based on the polarity of the compounds with the more polar compounds being eluted first. Thus, by extracting the biological matrix, i.e., plasma, with an intermediate polarity solvent and analyzing the extract by HPLC, a simple sample preparation and analysis system may be defined for the determination of RDX, DNT, and TNT in plasma.

3. APPARATUS:

a. <u>Instrumentation</u>: A Waters isocratic liquid chromatographic system consisting of a Model 6000A pump, Model U6K injector, and Model 440 UV detector. A general purpose centrifuge (Dynac, Clay Adams 0101) with a 24-place head.

b. HPLC Parameters:

- 1. Column: Spherisorb ODS, 5 μ, 250 x 4.6 mm ID.
- 2. Eluent: 30% acetonitrile in 1% acetic acid in water.
- 3. Flow rate: 1.5 ml/min.
- 4. Detector: UV, 254 nm.
- 5. Internal standard: Propiophenone, 1,000 ng/ml
- 6. Injection volume: 50 to 100 µl.
- Retention volumes and times: RDX, 15 ml, 10 min; DNT, 37.3 ml, 25 min; TNT, 42 ml, 28 min; IS, 28.5 ml, 19 min. NOTE: Slight changes in the retention indices may occur with fresh eluent or a change in columns.

A representative HPLC chromatogram for a SARM reference solution of RDX, DNT, and TNT is shown in Figure 1. Also included on the chromatogram are peaks for an internal standard (propiophenone) and 2,4,6-trinitrophenylmethylnitramine (tetryl).

c. Laboratory Glassware and Equipment:

- 1. Culture tubes (Pyrex) with Teflon-lined screw caps.
- 2. Volumetric flasks (100 ml).
- 3. Volumetric syringes (0-100 μ 1, 0-500 μ 1, and 0-1,000 μ 1).
- 4. Automatic pipetter (0-5 ml).
- 5. Filtering apparatus including filter holders, 5-ml disposable syringes, and 0.45 μ Fluoropore filters.
- 6. Inert gas (nitrogen) drying train with 12 ports.

d. Chemicals:

- 1. Toluene and acetonitrile, "Distilled in Glass" grade.
- 2. Acetic acid and sodium chloride, ACS grade.
- 3. High purity water from a Milli-Q water purification system.
- 4. RDX, DNT, and TNT SARMs, obtained from the U.S. Army Toxic and Hazardous Materials Agency.
- 5. Propiophenone (internal standard), analytical grade.

4. STANDARDS:

- a. Stock: Weigh approximately 20 mg of RDX, DNT, TNT, and tetryl SARM or interim SARM into separate 100-ml volumetric flasks. Dissolve each compound in acetonitrile and dilute to volume. The concentration of each compound is 200 µg/ml. Quantitatively pipette 20 ml from each stock above into a 100-ml volumetric flask and dilute to volume with high-purity water. Concentration of each compound is 40 µg/ml.
- b. Working: Pipette 10 ml of the 40 µg/ml of each compound stock into a 100-ml volumetric flask and dilute to volume with high-purity water. Concentration of each compound is 4 µg/ml.

Reference solutions were prepared from this stock as follows:

µl Working Stock	µl IS <u>Stock</u> *	µl 10% Acetonitrile in Water	Concentration Each Compound (ng/ml)
500	500	0	2,000
375	500	125	1,500
250	500	250	1,000
125	500	375	500
25	500	475	100
0	500	500	0

^{*} Preparation of IS stock given in "c."

c. Internal Standard Stock: Weigh 10 mg propiophenone into a 100-ml volumetric flask and dilute to volume with acetonitrile (concentration, 100 μ g/ml). Quantitatively pipette 10 ml of the 100- μ g/ml stock into a 100-ml volumetric flask and dilute to volume with acetonitrile (concentration, 10 μ g/ml). A final working solution of 2.0 μ g/ml is prepared by pipetting 20 ml of the 10- μ g/ml stock into a 100-ml volumetric flask and diluting to volume with acetonitrile.

5. PROCEDURES FOR PLASMA SAMPLE DETERMINATION:

- a. Plasma Sample Preparation: The procedure employed to prepare plasma samples for the HPLC-UV determination of RDX, DNT, TNT, and tetryl consisted of:
 - 1. Quantitatively pipette 12 1.0-ml plasma aliquots into culture tubes with Teflon-lined screw caps.
 - 2. Spike two each of the plasma aliquots with the working stock (4 μg/ml) at the following levels: 2,000 ng (500 μl), 1,500 ng (375 μl), 1,000 ng (250 μl), 500 ng (125 μl), and 100 ng (25 μl). The remaining two plasma aliquots serve as plasma blanks. All samples were adjusted to a total volume of 1.5 ml with high-purity water containing 10% acetonitrile.
 - Add 1.0 ml of a 10% sodium chloride solution containing 2% acetic acid to each aliquot.

- 4. Mix thoroughly on a vortex mixer.
- 5. Extract the plasma samples with 2 ml toluene ("Distilled in Glass" grade) by vortexing for 30 sec followed by centrifugation at 1,000 rpm for 20 min.
- 6. Transfer the toluene extracts to properly labeled culture tubes with Teflon-lined screw caps.
- Repeat the toluene extraction (steps 5 and 6) twice more combining the toluene extracts in the appropriate tubes.
- 8. Quantitatively pipette 0.5 ml high-purity water into each toluene extract.
- 9. Evaporate the toluene at room temperature under a stream of nitrogen. NOTE: Continue evaporation until the toluene has been completely removed from culture tube. Do not heat the samples during the evaporation step or loss of RDX, DNT, and TNT may occur.
- Add 500 μl IS stock (1,000 ng) to each plasma extract and mix thoroughly. NOTE: Final volume of the prepared samples is 1.0 ml.
- Filter the solutions through 0.45 μ Fluoropore filters into culture tubes.
- 12. Analyze a 50- to 100-µl aliquot by HPLC.
- b. <u>Calibration</u>: The reference solutions described in Section 4.b were prepared and analyzed in quadruplicate. The relative weight response (RWR) (Eq. 1) of each compound was calculated and the average RWR utilized to determine the nanograms of each compound in every reference solution (Eq. 2). The nanograms found were plotted against the nanograms added and a linear regression evaluation of the data was conducted. The slope, intercept, and correlation coefficient for each compound were determined. The data are summarized in Table 1 which include the average value at each level for each compound, the standard deviation, coefficient of variation, and percent inaccuracy. The raw data and calculations are given in Table 8 of the Appendix.

$$RWR = \frac{Peak \text{ Height Cpd}}{Peak \text{ Height IS}} \times \frac{ng/ml \text{ IS}}{ng/ml \text{ Cpd}}$$
(Eq. 1)

$$\frac{ng}{ml} compound found = \frac{Peak Height Cpd}{Peak Height IS} \times \frac{ng/ml IS}{Avg. RWR}$$
(Eq. 2)

- c. Plasma Sample Analysis: The plasma samples prepared as outlined in Section 5.a were injected onto the HPLC system. The peak height of each compound was measured and recorded. Plasma samples were prepared and analyzed on four succeeding days.
- 6. CALCULATION: The level (nanograms per milliliter) of each compound found in the plasma samples was determined using the relative weight response to an internal standard method. The RWR values for reference solutions (Eq. 1) analyzed with a day set of plasma samples were calculated and the average RWR values for RDX, DNT, and TNT were determined. These values were employed to determine the plasma level of each compound by Eq. 2 where nanograms per milliliter compound represents the level found in the plasma sample. The results for the duplicate determinations of RDX, DNT, and TNT in plasma at five levels on four succeeding days are summarized in Tables 2, 3 and 4, and the average level found, the standard deviation, coefficient of variation, and percent inaccuracy are also included. A linear regression evaluation of the results was made; the slope, intercept, and correlation coefficient are given in the tables. The level of each compound in the plasma was plotted against the amount added and these data are shown in Figures 2 to 4.

Graphic presentations of the standard deviation, coefficient of variation, and the percent inaccuracy for RDX, DNT, and TNT determination in plasma are given in Figures 5, 6, and 7, respectively. Representative HPLC chromatograms are shown for a plasma blank (Figure 8), a 100-ng/ml plasma sample (Figure 9), and a 1,000-ng/ml plasma sample (Figure 10). The raw data and calculations for the plasma sample determinations are given in Tables 9 to 12 in the Appendix.

STATISTICAL EVALUATION OF DATA: A statistical evaluation of the data obtained for the determination of RDX, DNT, and TNT in plasma (Tables 2, 3 and 4) by the Hubaux and Vos detection limit program was made at the U.S. Army Toxic and Hazardous Materials Agency. The results of these evaluations are given in Table 5 for RDX, Table 6 for DNT, and Table 7 for TNT. When the 2000 and 1500 ng/ml data points were omitted, the detection limits for RDX, DNT, and TNT in plasma as determined by the program were 145, 256, and 248 ng/ml, respectively. The average nanograms per milliliter found at each level were determined from the linear regression equation for the 48 data points and the nanogram per milliliter added at that level. The standard deviation and percent imprecision (coefficient of variation) at each level were calculated based on this average nanograms per milliliter found. Thus, these values and the values given in Tables 2, 3, and 4 (based on the average of the eight assays at each level) are not comparable. The present inaccuracy term was calculated from the average of the eight data points at each level, and thus agrees with the values in Tables 2, 3 and 4.

Column: Spherisorb ODS, 5 μ ,

250 x 4.6 mm ID

Eluent: 30% acetonitrile in

1% acetic in water
Flow Rate: 1.5 ml/min
Chart Speed: 0.1 in./min
Detector: UV, 254 nm

Sample Characteristics

Concentrations: RDX, DNT, TNT,

and tetry1 - 500 ng/ml;

IS - 1,000 ng/ml

Injection volume: 70 µl Attenuation: 0.01 X

Retention Indices

	Retention Volume	Retention Time
Compound	<u>(m1)</u>	(min)
RDX	13.5	9
IS	22.5	15
DNT	31.5	21
TNT	34.5	23
tetryl	39	26

Figure 1 - HPLC Separation of RDX, DNT, TNT, and Tetryl SARMS and Propiophenone (IS)

LINEARITY AND PRECISION OF THE HPLC-UV DETERMINATION OF SARM REFERENCE SOLUTIONS OF RDX, DNT, AND THE

,	ng/ml		ng/ml	ng/ml Detected			Standard	Coefficient	Percent
Compound	Added	۷i	æı	ပ၊	QI	Average	Deviation	of Variation	Inaccuracy
RDX	0	NO.	Ø	QN QN	£	. 1	•	•	1
	100	109	114	105	103	108	6.7 +	4 4	- a
	200	517	509	667	067	705	+ +	, ,	• •
	1,000	096	950	923	985	955	+ 26		9 4
:	1,500	1,551	1.547	1.435	1.444	767	2 + +		7 *
•	2,000	2,031	2,069	1,906	1,924	1,983	# # BO	7:04	.0
TMO	0	£	R	QX	£	1	•		ı
:	100	113	109	109	100	108	¥ +		•
	200	667	760	475	687	287) · ·
	1,000	992	1.011	981	1 032	66	7.01 +	7.7	2.0
	1,500	1 500	1 670	1 761	1,000	100	77 7	7.7	* C +
			7 7 7	1011	1,404	1,405	CZ 1	1.7	- 2.1
	7,000	1,968	1,982	1,934	1,901	1,946	‡ 36	1.9	- 2.7
TNT	0	2	Q.	Ş	S	1	•	1	
	100	107	112	112	100	108	+ 5.7		1
	200	495	619	787	787	987	- « · · · ·) · -) o
	1,000	926	989	196	997	477	+ 10		9 6
	1,500	1,498	1,508	1,471	1,432	1.478	7E +	, c	6.5
	2.000	2,011	2,015	1,957	1 879	1 066	; ; ; +) (
	•	1			1001	20061	20 4	3.5) · T -

Correlation coefficient ~ 0.998 y = 0.988x + 0.6Linear Regression RDX:

Correlation coefficient - 0.999 y = 0.974x + 7.7y = 0.982x + 1.2DNT: TNT:

Correlation coefficient - 0.999

Average = $\sum x/n = x$ Standard deviation = $(\sum |x-x|^2/n-1)^{1/2} = \sigma$ Coefficient of variation = $\sigma/x \times 100$ Percent inaccuracy = x - ng added x 100 ND = Not detectable, less than 20 ng/ml

TABLE

HPLC-UV DETERMINATION OF RDX IN PLASMA

•	rcent 0/	ceuracy	1	-	-14	-15	-16	-17
ı	tc/ Pe	on Ine			•	i	,	•
	Coefficients/ Percenta/		ı	19	7	7	7	11
Standard b/	Deviation	Averagea/ (ng)	ı	1 19	+ 31	+ 62	+ 83	+ 188
		Average	•	101	431	851	1,252	1,658
	4	8	Æ	96	595	870	1,299	1,722
	Day 4	V	Ŋ	129	446	849	1,148 1,321	1,823
1)	, 3	æ	Q	11	385	775	1,148	1,337
Level Found (ng/ml)	Day 3	4	QN	83	410	814	1,259	1,581
evel Fou	Day 2	æ	QN	104	428	830	1,153 1,168	1,521
-	Day	~	QN Q	113	403	841	1,153	1,576
	1	æ	Q	95 117	456	839	1,345	1,760
	Day	V	ND ^e	95	478	987	1,324	2,000 1,927 1,760 1,576 1,521 1,581 1,337 1,823 1,722
Amount	Added	(ng/ml)	0	100	989	1,000	1,500	2,000

Note: Linear regression: y = 0.825 x +14 Correlation coefficient: 0.990 a/ Average = Ex/n = x

a/ Average = $\Sigma x/n$ = \overline{x} b/ Standard deviation = $(\Sigma |\overline{x}-x|^2/n-1)^{1/2}$ = σ c/ Coefficient of variation = $\sigma/\overline{x} \times 100$ d/ Percent inaccuracy = \overline{x} - \overline{ng} added $\sigma/\overline{x} \times 100$

/ ND = Not detectable, less than 20 ng/ml

TABLE 3

HPLC-UV DETERMINATION OF DRT IN PLASMA

	/parozad	Inaccuracy	i	-26	-32	-35	-32	-32	
	Coefficients/ Percentd/	of Variation	1	15	∞	14	v	16	
Stendardh/	Deviation	•	ı	+ 11	+ 26	+ 64	+ 65	+ 207	
		Averagea/	ı	74	342	650	1,024	1,308	
	4	m	B	7.5	361	587	1,082	1,366	
	Day 4	V.	Q.	83	302	209	926	1,123	
1)	3	[ę	54	321	505	1,019	1,041	
Level Found (ng/ml)	Day 3	V	8	79	351	700	1,052	1,456	
evel Fou	Day 2	æ	Ð	72	343	750	1,111	1,041	
1	Day	4	NDe	98.	333	699	915	1,533	•
	-	B	£	62	333	595	1,000	1,509 1,391	
	De	V	Q.	78	388	786	1,055	1,509	
Amount	Added	(ng/ml)	0	100	200	1,000	1,500	2,000	

Note: Linear regression: y = 0.659 x +6

Correlation coefficient: 0.982

Average = $\Sigma x/n = x$

Standard deviation = $(\Sigma |\bar{x}-x|^2/n-1)^{1/2} = \sigma$ Coefficient of variation = $\sigma/\bar{x} \times 100$ हों विकि

Percent inaccuracy = X - ng added x 100 ng added ND = Not detectable, less than 20 ng/ml

ام

TABLE 4

HPLC-UV DETERMINATION OF THT IN PLASMA

Percent d/	Inscented		ı	-12	-11	-22	-21	-21
/Parcent d	Coefficient : ::::::	10		13	\$	14	7	12
Standardb/	Deviation	(MR)	•	+ 12	+ 22	+ 110	+ 85	+ 185
	7	Average	•	88	413	778	1,178	1,583
	4	m	S.	78	415	710	1,250	1,507
	Day 4	V	Ş	93	371	707	1,223	1,355
(3	æ	GN.	9/	404	579	1,181	1,600 1,338 1,355 1,507
Level Found (ng/ml)	Day 3	V	8	70	419	793	980	
evel Fou	2	æ	ON ON	102	416	825	1,177	1,558
	Day	B A B	Ć.	95 97 96 102	412 416		1,238 1,202 1,173 1,17	1,687
	-	B	Ē	97	451 419	840	1,202	1,748
	Ì		NDe		451			.2,000 1,870 1,748 1,687 1,558
1	Junoav	(ng/m1)	0	100	200	1,000	1,500	.2,000

Standard deviation = $(\mathbb{E}\left|\overline{x}-x\right|^2/n-1)^{1/2} = \sigma$ Percent inaccuracy = $\frac{x - ng \text{ added } x \text{ 100}$ ND - Not detectable, less than 20 ng/ml Linear regression: $y = 0.785 \times +6$ Coefficient of variation = $\sigma/\pi \times 100$ Correlation coefficient: 0.988 Average = $\Sigma x/n = \overline{x}$ ng added Note: बोको जो हो **ø**|

with the control of the second of the second

Figure 2 - Determination of RDX in Plasma

Figure 4 - Determination of TNT in Plasma

Figure 5 - Standard Deviation for RDX, DNT, and TNT in Plasma

Figure 6 - Coefficient of Variation for RDX, DNT, and TNT in Plasma

Column: Spherisorb ODS, 5 µ,
250 x 4.6 mm ID

Eluent: 30% acetonitrile in
1% acetic acid in water

Flow rate: 1.5 ml/min

Chart speed: 0.1 in./min

Detector: UV, 254 nm

Sample Characteristics

1.0 ml plasma extracted 3 x 2 ml with toluene. Toluene evaporated and sample reconstituted to 1 ml IS concentration: 1,000 ng/ml Injection volume: 70 µl Attenuation: 0.01 X

Figure 8 - HPLC Analysis of Blank Plasma for RDX, DNT, and TNT Method Development. "X" indicates toluene contaminant. Arrows indicate elution position of RDX, DNT, and TNT.

Column: Spherisorb ODS, 5 μ,
250 x 4.6 mm ID
Eluent: 30% acetonitrile in
1% acetic acid in water
Flow rate: 1.5 ml/min
Chart speed: 0.1 in./min
Detector: UV, 254 nm

Sample Characteristics

1.0 ml plasma containing
100 ng/ml RDX, DNT and TNT
extracted 3 x 2 ml with toluene.
Toluene evaporated and sample
reconstituted to 1 ml
IS concentration: 1,000 ng/ml
Injection volume: 70 µl
Attenuation: 0.01 X

Figure 9 - HPLC Analysis of Plasma Containing 100 ng/ml RDX, DNT, and TNT.
"X" indicates toluene contaminant.

Column: Spherisorb ODS, 5 μ,
250 x 4.6 mm ID

Eluent: 30% acetonitrile in
1% acetic acid in water

Flow rate: 1.5 ml/min

Chart speed: 0.1 in./min

Detector: UV, 254 nm

Sample Characteristics

1.0 ml plasma containing 1,000 ng/ml RDX, DNT, TNT extracted 3 x 2 ml with toluene. Toluene evaporated and sample reconstituted to 1 ml.

IS concentration: 1,000 ng/ml Injection volume: 70 μ l Attenuation: 0.01 X

Figure 10 - HPLC Analysis of Plasma Containing 1,000 ng/ml RDX, DNT, and TNT. "X" indicates toluene contaminant.

TABLE 5

STATISTICAL EVALUATION OF RDX IN PLASMA DATA BY THE HUBAUX AND VOS DETECTION LIMIT PROGRAM

	••					c	
Number of Data Points	Linear Regression	ssion	Correlation Coefficient	Degrees of Freedom	4	y Intercept	Detection
48 32	y = 0.825x + 14.0 y = 0.844x + 8.2	14.0 8.2	0.990	30	1.679	161 70	355 145
ng/ml RDX Added	Average ng/ml Found	Standard f Deviation	f Percent ⁸		Percent Insccurscy		
100	97	+ 7.1		*	1.0		•
200	427	± 11.6		•	3.8		
1,000	839	± 23.3		•	14.9		
1,500	1.252	± 31.	5 2.5	•	6.5		
2,000	1,664	± 71.2		•	7.2		

Number of data points - data points used to calculate linear regression and detection limits; 48 - all data; 40 - 2,000 ng/ml samples omitted.

- 2 tail p level (usually 0.1, each confidence band is 0.05 so total p=0.1). y intercept - intercept on y-axis of upper confidence limit line.

Average ng/ml found - average at each level determined from linear regression Detection limit - x-intercept of y-intercept and lower confidence limit line.

Standard deviation - determined from average value (e above) and observed values. equation for 48 points.

Percent inaccuracy - determined from the average values of the eight observed Percent imprecision - standard deviation divided by average value times 100%. values at each level

% laaccuracy = Average observed values - level added x 100 level added

TABLE 6

STATISTICAL EVALUATION OF DNT IN PLASMA DATA BY THE HUBAUX AND VOS DETECTION LIMIT PROGRAM

				THE PROPERTY AND P			-
Number of Data Points	Linear Regression	ssion	Correlation Coefficient	Degrees of Freedom	لړم	y Intercept	Detection Limit
78 70 35	y = 0.659x + 6.3 y = 0.673x + 0.8 y = 0.648x + 7.2	r 6.3 r 0.8 r 7.2	0.982 0.991 0.984	34 6 38 0	1.679 1.686 1.697	168 91 90	489 267 256
ng/ml DNT Added	Average ng/ml Found	Standard Deviation	d Percent ⁸		Percent Inaccuracy		
100 500 1,000 1,500 2,000	72 336 665 995 1,324	# 4.3 # 9.9 # 35.3 # 24.7	3 3 3 5.4 7 7 6.0	1111	25.6 31.7 35.0 31.8 34.6		

Number of data points - data points used to calculate linear regression and detection limits; 48 - all data; 40 - 2,000 ng/ml samples omitted; 32 - 2,000 ng/ml and 1,500 ng/ml samples

" 2 tail p level (usually 0.1, each confidence band is 0.05 so total p = 0.1). intercept - intercept on y-axis of upper confidence limit line.

Detection limit - x-intercept of y-intercept and lower confidence limit line. Average ng/ml found - average at each level determined from linear regression

Standard deviation - determined from average value (e above) and observed values. Percent impreciation - standard deviation divided by average value times 100%. equation for 48 points.

Percent inaccuracy - determined from the average values of the eight observed values at each level

% Inaccuracy = Average observed values - level added x 100

STATISTICAL EVALUATION OF THE IN PLASMA DATA BY AND UNG DETECTION LIMIT PROGRAM

		THE HUBAUX	THE HUBAUX AND VOS DETECTION LIMIT FROMKEN	וושוד שמו	ROCKET		
Number ^a of Data Points	Linear Regression		Correlation	Degrees of Freedom	البه	y Intercept	Detection Limit
7 7 3 7 8 8 7 8	y = 0.785x + 6.4 y = 0.779x + 8.7 y = 0.777x + 9.2	+ 6.4 + 8.7 + 9.2	0.988 0.991 0.985	38 30 30	1.679 1.686 1.697	163 114 106	398 271 248
ng/ml TNT Added	Average ng/ml Found	Standard Deviation	Percent B Imprecision		Percent Inaccuracy		
00.	85	± 4.5	5.1	•	- 11.6		
200	399	# 8.3	2.0	•	- 17.3		
1,000	791	± 41.5	5.3	•	- 22.2		
1,500	1,184	± 32.1	2.7		- 21.5		
3,000	1,576	± 69.9	4.4	•	- 20.9		

Number of data points - data points used to calculate linear regression and detection limits; 48 - all data; 40 - 2,000 ng/ml samples

- 2 tail p level (usually 0.1, each confidence band is 0.05 so total p=0.1).

Detection limit - x-intercept of y-intercept and lower confidence limit line. intervept - intercept on y-axis of upper confidence limit line.

Average ng/ml found - average at each level determined from linear regression

equation for 48 points.

Standard deviation - determined from average value (e above) and observed values. Percent imprecision - standard deviation divided by average value times 100%.

Percent inaccuracy - determined from the average values of the eight observed values at each level

% Inaccuracy = Average observed values - level added x 100

level added

APPENDIX

RAW DATA AND CALCULATION FOR PLASMA METHOD DETERMINATION FOR RDX, DNT, AND TNT

TABLE 8

LINEARITY AND PRECISION OF RDX, DNT, AND THY DETERMINATION BY HIGH PERFORMANCE LIQUID CHROMATOGRAPHY

Compound (cm) Added (DN	(cm) DNT TNT < 2 < 2 14 11 63 52 121 97 183 152 240 204	ht		Stan 1,000 1,000 1,000 1,000 1,000	Internal Standard Of Peak mil Height ,000 122 ,000 116 ,000 114 ,000 114	Relate FEDX 1.03 0.98 0.98 0.96	Relative Weight Response DX DNT TN .03 1.21 098 1.07 098 1.07 096 1.05 0.	6.95 0.88 0.88 0.89 0.89	KDX ND 109 517 960 1,551 2,031	Calculated ng/ml DNT ND 113 499 992 11,968	MD 107 495 956 11,498 2,011
	2 5 13	× 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	7 21 2	1,000	118	1.08	1.17	1.00	114 509	109 109	112 479
	59 121 172 228	64 145 184 246	52 118 157 208	1,000	122 134 117 116	0.97 0.98 0.98	1.05	0.88 0.88 0.90	2,069	1,011 1,470 1,982	4/4 989 1,508 2,015
	52 12 55 107 150 210	62 14 172 172 240	\$0 105 144 202	1,000	120 120 116 122 110	1.00 0.95 0.88 0.91	1.17 1.02 1.05 1.04 1.03	1.00 0.86 0.87 0.87	ND 105 499 923 1,435 1,906	ND 109 475 981 1,461	ND 112 484 967 1,471 1,957
	<pre>< 2 11 14 54 116 116 1155</pre>	 2 12 60 137 174 236 	<pre></pre>	1,000	119 112 116 124 113	0.98 0.93 0.94 0.91	1.07	. 0 0.8 0.8 0.8 0.8 0.0 0.8 0.0 0.0 0.0 0.	ND 103 490 985 1,444 1,924	ND 100 483 1,032 1,439 1,901	ND 100 484 997 1,432 1,879

TABLE 8 (concluded)

Relative Weight Response

<i>;</i>	Average	Standard Deviation	Relative Standard Deviation
RDX	0.95	± 0.05	5.2%
DNT	1.07	± 0.05	4.9%
TNT	0.89	± 0.04	5.1%

DETERMINATION OF RDX, DNT, AND TNT IN PLASMA SAMPLES

						Inte	rnal		•	
	ne/ml ^a		P	eak Heig	tht	Star	derd		ng/ml	
Sample	Compound	1		1	•	Bu	Peak	C	etected	
Number	Added	Plasma	KOX	FA.	TNI		Height	XQX	THO I	E
Day 14-0	c	-	~ ~	< ×	< 2	1.000	238	P _Q	Ş	£
Den 18-100	9 6		, מר ג	21.0	17.8	1,000	235	95	84	95
Dey 18-500	201		. K	92.8	51.5	1,000	226	478	388	451
Day 1A-1000	200		191	136	177	1,000	236	987	786	940
Day 14-1500	1,500		285	293	260	1,000	263	1,324	1,055	1,238
Day 1A-2000	2,000	1.0	427	432	707	1,000	270	1,927	1,509	1,870
	c	0	~	< 2 < 2 < 2	< × 2	1.000	1.000 232	Ş	S	Ş
	001	0.1	22.3	15.3	18.0	1,000	232	117	62	97
	200	1.0	87.8	83.0	78.8	1,000	235	456	333	419
	1.000	1.0	174	160	170	1,000	253	839	595	840
	1,500	1.0	269	259	235	1,000	244	1,345	1,000	1,202
Day 1B-2000	2,000	1.0	366	374	355	1,000	254	1,760	1,391	1,748

TABLE 9 (concluded)

ng/ml Compound added - nanograms of RDX, DNT, and TNT added to 1.0 ml plasma. Internal standard - compound (propiophenone) added to plasma sample after sample preparation for م

ng/ml detected - nanograms of RDX, DNT, and TNT detected in the 1.0 ml plasma sample U

ng/ml IS ng compound/ml = Peak Height compound

average RWR compound Peak Height IS

ND - not detected, less than 20 ng/ml. Relative weight response - RWR

7

RWR = Peak Height compound x ng/ml IS

ng/ml compound Peak Height IS

TABLE 10

DETERHINATION OF RDX, DNT, AND THT IN PLASHA SAMPLES

		E		, E								Ø							
ر الراز	ng/=1 Detected	TRO										Æ							
		RDX										S							
Internal	Standard	Height		327	326	35.1	100	338	335	676	C#C	328	37.1	140	304	335	337	352	1
Inte	Sta	1		1.000	000		1,000	1,000	1,000		1,000	000		1,000	1,000	1,000	1,000	1,000	2
	ght	TWT		6	7 7 6	0.73	129	250	250		515	,	7 ,	31.0	135	246	353	00%	9 9
	Pesk Height	E PAC		,	4 6	0.40	143	276	376	\$ 10	642	`	7	30.0	152	306	457		†
	Ã	AUG		`	, 6	0.67	112	225	1	coc	427	`	7 >	28.0	123	220	311	1 6	403
	ı		r rasma	•	0.1	1.0	1.0	-	? .	o. .	1.0	•	1.0	1.0	1.0	1.0	· -) · [1.0
	ng/ml*	Combonnd	Added	•	0	100	200	•	7,000	1,500	2,000		0	100	200	1 000		1,300	2,000
		Sample	Number		Day 2A-0	Day 2A-100	Day 24-500	Day 26-300	Day 2A-1000	Day 2A-1500	Day 2A-2000	•							Day 2B-2000

TABLE 10 (concluded)

	8 ST				Inte	rnal ^b			
	12	Ã,	eak Heig	ght	Star	ldard		tive Wei	ghte
Reference Solution	Compound				, gu	Peak		Response	•
Number	Added	RDX DNT TN	DINT	TNT		ml Height	PE	TKO	THE
Day	200	122	188	135	1,000	314	0	1.20	0.86
Day	100	25.0	39.0	28.6	1,000	308	0	1.27	0.93
Std - Day 2-3	1,000	230	365	268	1,000	313	0	1.17	0.86
Day	1,500	359	575	420	1,000	325	0	1.18	0.86
Day	100	31.6	44.0	33.0	1,000	328	0	1.34	1.00
Day	2,000	430	692	967	1,000	302	0	1.14	0.32
						Average	0.79	1.22	1.22 0.89

ng/ml Compound added - nanograms of RDX, DNT, and TNT added to 1.0 ml plasma.

Internal standard - compound (propiophenone) added to plasma sample after sample preparation for calculation of data.

ng/ml detected - nanograms of RDX, DNT, and TNT detected in the 1.0 ml plasma sample

ng compound/ml = Peak Height compound x ng/ml IS

Peak Height IS average RWR compound

d ND - not detected, less than 20 ug/ml.

Relative weight response - RWR

RWR = Peak Height compound x ng/ml IS
Peak Height IS ng/ml compound

TABLE 11

DETERMINATION OF RDX, DNT, AND THT IN PLASMA SAMPLES

						Inte	rnal		•	
	08/81		ď	ak Heig	tht	Ştan	dard		ng/ml ^c	
Sample	Compound			1		gu	Pesk	0	etected	i
Number	Added	Plasma	XQ	TNO	TAL	넴	Height	KDX	TNO	TNT
	0		<2 <2 < ?	6	2	1,000	340		æ	Ş
	100		21.0	28.4	18.0	1,000	318		79	2
	200		106	128	110	1,000	323		351	419
	1,000		208	253	206	1,000	320		700	793
	1,500		322	392	262	1,000	330		1,052	980
Day 3A-2000	2,000		434	265	445	1,000	343	1,581	1,456	1,600
	0	1.0	~	~ 5	7	1,000	1,000 352		QX	GZ.
	100	1.0	20.0	21.6	21.6	1,000	352	11	24	9/
	200	1.0	104	122	110	1,000	336	385	321	707
	1,000	1.0	216	198	163	1,000	348	775	205	579
	1,500	1.0	332	416	346	1,000	362	1,148	1,019	1,181
Day 3B-2000	2,000	1.0	393	432	398	1,000	367	1,337	1,041	1,338

TABLE 11 (concluded)

	8 80				Inte	Internal ^b			(
	14	Ā	eak Heigh	ght	Stan	dard		Relative Weight	ghte
Reference Solution	Compound		1		Bu	Peak		Response	
Number	Added	RDX	TNO	TNT	1	ml Height	KDX	DMT	TNI
- Day	100	22.0	32.0	24.0	1,000	282	4	- 1.14	0.85
- Day	200	122	172	122	1,000	308	'	1.12	0.79
- Day	200	132	186	136	1,000	332		1.12	0.82
Std - Day 3-4	1,500	362	526	371	1,000	307		1.14	0.81
- Day	100	24.4	34.0	24.4	1,000	298		1.14	0.82
- Day	100	24.0	36.0	26.0	1,000	300		1.20	0.87
- Day	1,000	226	326	236	1,000	297		1.10	0.80
- Day	2,000	471	692	482	1,000	309		1.12	0.78
- Day	2,000	537	702	492	1,000	312	0.86	1.12	0.79
						Average	08.0	1.13	0.81

ng/ml Compound added - nanograms of RDX, DNT, and TNT added to 1.0 ml plasma. Internal standard - compound (propiophenone) added to plasma sample after sample preparation for calculation of data.

ng/ml detected - nanograms of RDX, DNT, and TNT detected in the 1.0 ml plasma sample ng/ml IS ng compound/ml = Peak Height compound x

average RWR compound

Peak Height IS

ND - not detected, less than 20 ng/ml. **.**

Relative weight response - RWR

ng/ml compound RWR = Peak Height compound x ng/ml IS Peak Height IS TABLE 12

DETERMINATION OF RDX, DNT, AND TNT IN PLASMA SAMPLES

ţ		RDX DNT TNT		83	302	607	926	1,123	ON ON	75	361	587	1,082	1,366
rnal	Deek	Height	377	364	376	387	366	333	379	378	358	376	370	383
Inte	Star	ml Height	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
	ght	TNT	7	27.0	112	219	358	107	4	23.6	119	214	370	462
	sak Hei	DNT	7	34.4	130	268	399	426	7	32.4	148	252	456	597
	ď	RDX	7	36.0	129	253	373	467	< 2	28.0	122	252	370	280
	7	Plasma	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
	ng/m]	Added	0	100	200	1,000	1,500	2,000	0	100	200	1,000	1,500	2,000
	S	Number	Day 48-0	Day 4A-100	Day 4A-500	Day 4A-1000	Day 4A-1500	Day 4A-2000	Day 48-0	Day 48-100	Day 4B-500	Day 48-1000	Day 48-1500	Day 4B-2000

TABLE 12 (concluded)

	e ed				Inte	$Internal^{b}$				
	E	д	Peak Height	ght	Star	Standard	Rela	Relative Weight ^e	phte	
Reference Solution	Compound		(m	,	80 0	Peak		Response		
Number	Added	XQI	DNT	TNT	립	Height	XQ X	TNO	E	
	100	25.0	37.0	25.6	1.000	312	08.0	1.19	0.87	
- Day	200	122	184	130	1,000	322	0.76	1.14	0.81	
Std - Day 4-3	1,000	249	373	262	1,000	332	0.75	1.13	0.79	
- Day	1,500	375	560	393	1,000	327	0.76	1.14	0.80	
- Day	2,000	492	722	200	1,000	323	0.76	1.12	0.77	
- Day	1,000	246	362	252	1,000	324	0.76	1.12	0.78	
- Day	1,000	259	374	264	1,000	329	0.79	1.14	0.80	
- Day	2,000	485	712	493	1,000	315	0.77	1.13	0.78	
- Day	1,000	. 260	384	274	1,000	340	0.77	1.13	0.81	
- Day	2,000	867	745	522	1,000	326	92.0	1.14	0.80	
						Average	0.77	1.14	08.0	

ng/ml Compound added - nanograms of RDX, DNT, and TNT added to 1.0 ml plasma. Internal standard - compound (propiophenone) added to plasma sample after sample preparation for calculation of data.

ng/ml detected - nanograms of RDX, DNT, and TNT detected in the 1.0 ml plasma sample

average RWR compound ng/ml IS ng compound/ml = Peak Height compound x Peak Height IS

MD - not detected, less than 20 ng/ml. Relative weight response - RWR **~** •

RWR = Peak Height compound x ng/ml IS

ng/ml compound Peak Height IS

.

- |

APPENDIX C

IDENTIFICATION OR DEVELOPMENT OF CHEMICAL ANALYSIS METHODS FOR PLANTS AND ANIMAL TISSUE

METHOD REPORT NO. 2

METHOD DEVELOPMENT FOR THE DETERMINATION OF CYCLOTRIHETHYLENETRINITRAMINE (RDX), DINITROTOLUENE (DNT), AND TRINITROTOLUENE (TNT) IN KIDNEY

September 1980

Contract No. DAAK11-79-C-0110 MRI Project No. 4849-A

For

U.S. Army Toxic and Hazardous Materials Agency Dr. L. Eng, DRXTH-TE-D, Project Officer Aberdeen Proving Ground (EA), Maryland 21010

Charles and the same of the same of the same of

The views, opinions, and/or findings contained in this report are those of the authors and should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other documentation.

SECURITY CLASSIFICATION OF THIS PAGE (Then Date Entered)

REPORT DOCUMENTATION P	AGE	READ INSTRUCTIONS BEFORE COMPLETING FORM				
	GOYT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER				
Technical Report No. 2						
4. TITLE (and Subtitle)		S. TYPE OF REPORT & PERIOD COVERED				
Method Development for the Determina	ition of	·				
Cyclotrimethylenetrinitramine (RDX),	Dinitro-					
toluene (DNT), and Trinitrotoluene ((TNT) in Kidney	6. PERFORMING ORG. REPORT NUMBER				
7. AUTHOR(4)		S. CONTRACT OR GRANT NUMBER(s)				
D. B. Lakings and O. Gan		DAAK11-79-C-0110				
9. PERFORMING ORGANIZATION NAME AND ADDRESS Nidwest Research Institute		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS				
425 Volker Boulevard						
Kinsas City, MO 64110						
11. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE				
U.S. Army Armament Research and Deve	,	September 1980				
Command, Aberdeen Proving Ground (Ed	lgewood	13. NUMBER OF PAGES				
14. MONITORING AGENCY NAME & ADDRESS(II different f	rem Centrelling Oilice)	IS. SECURITY CLASS. (or this report)				
	:	Unclassified				
		ISO. DECLASSIFICATION/DOWNGRADING				
IS. DISTRIBUTION STATEMENT (of this Report)						
17. DISTRIBUTION STATEMENT (of the abetract enforced in	Black 20, if different free	n Report)				
18. SUPPLEMENTARY NOTES						
19. KEY WORDS (Continue on reverse side if necessary and identity by block number) Cyclotrimethylenetrinitramine (RDX) High Performance Liquid Chromatography Dinitrotoluene (DNT) Trinitrotoluene (TNT) Kidney Level Determination						
A high performance liquid chromative determination of cyclotrimethyland trinitrotoluene (TNT) in kidney consists of an isocratic HPLC unit w column, an eluent of 30% acetonitril rate of 1.5 ml/min. The compounds, piophenone, have the following reten	atographic (HPL enetrinitramine has been develo ith a Spherisor e in 1% acetic including the i	(RDX), dinitrotoluene (DNT), ped. The analytical system b ODS 5 μ, 250 x 4.6 mm ID acid in water, and a flow nternal standard (IS), pro-				

DD 1 JAN 73 1473 EDITION OF T HOV SE IS DESOLETE

UNCLASSIFIED

piophenone, have the following retention characteristics: RDX, 15 ml, 10 min;

ECURITY CLASSIFICATION OF THIS PASSIFIED Date Discondi

IS, 28.5 ml, 19 min; DNT, 37.5 ml, 25 min; and TNT, 42 ml, 28 min; and are detected and quantified by an ultravioler detector at 254 nm. Reference solutions of the compounds have a linear response from 100 ng/ml to 2,000 ng/ml. The kidney samples were prepared by adding 1 ml 10% sodium chloride containing 2% acetic acid to 1 g kidney and extracting the sample with 3×2 ml toluene. The toluene was evaporated at room temperature under a stream of nitrogen gas. The residue was dissolved with 0.5 ml acetonitrile which contained 1,000 ng IS and the final volume was adjusted to 1 ml with high-purity water. The sample was filtered through a 0.45-µ Fluoropore filter and injected onto the HPLC sys-The analytical method was evaluated by preparing and analyzing duplicate samples containing 0, 100, 500, 1,000, 1,500, and 2,000 ng/g of each compound on four succeeding days. Linear regression analysis of the data gave the following equations and correlation coefficients: RDX, y = 0.973x + 7.1, 0.999; DNT, y = 0.707x - 3.5, 0.991; and TNT, y = 0.746x - 5.4, 0.992. The average coefficient of variation and average percent inaccuracy for RDX, DNT, and TNT determination in kidney were 7%, -0.6; 9%, -29; and 11%, -25, respectively. A small peak eluted just prior (approximately 1.5 ml) to RDX and may interfere with the quantitation of RDX at low levels. This peak represented less than 50 ng/g RDX in each of the blank kidney samples analyzed. A statistical evaluation of the data by the Hubaux and Vos detection limit program gave detection limits of 95 mg/g for RDX, 179 mg/g for DNT, and 211 mg/g for TNT for the HPLC determination of these compounds in kidney samples.

PREFACE

The report was prepared at Midwest Research Institute, 425 Volker Boulevard, Kansas City, Hissouri 64110, under U.S. Army Toxic and Hazardous Materials Agency Contract No. DAAK11-79-C-0110, MRI Project No. 4849-A, "Identification or Development of Chemical Analysis Methods for Plants and Animal Tissues." Dr. Leslie Eng, DRXTH-TE-D, was the Project Officer for this research effort.

This work was conducted in the Analytical Chemistry Department Dr. James L. Spigarelli, Director. The research effort was directed by Dr. Duane B. Lakings, Program Manager and Senior Chemist, with assistance from Mr. Owen Gan, Assistant Chemist, and Ms. Mary Valla, Senior Technician. This report was prepared by Dr. Lakings and Mr. Gan.

MIDWEST RESEARCH INSTITUTE

Owen Gan

Assistant Chemist

Duane B. Lakings

Program Manager and Senior Chemist

Approved:

James L. Spigarelli, Director

Analytical Chemistry Department

TABLE OF CONTENTS

[]

		Page
1.	Application	1
2.	Chemistry	1
3.	Apperatus	2
4.	Standards	3
5.	Procedures for Kidney Sample Determination	4
6.	Calculation	6
7.	Statistical Evaluation of Data	7
Apper	ndix - Method Development for the Determination of RDX, DNT, and TNT in Kidney Samples	25

LIST OF FIGURES

number	Title	Page
1	HPLC Separation of RDX, DNT, TNT, and Tetryl SARMS and Propiophenone (IS)	8
2	Determination of RDX in Kidney	13
3	Determination of DNT in Kidney	14
4	Determination of TNT in Kidney	15
5	Standard Deviation for RDX, DNT, and TNT in Kidney Samples	16
6	Coefficient of Variation for RDX, DNT, and TNT in Kidney Samples	17
7	Percent Inaccuracy for RDX, ENT, and TNT in Kidney Samples	18
8	HPLC Analysis of Blank Kidney Sample for RDX, DNT, and TNT Method Development	19
9	HPLC Analysis of Kidney Containing 100 ng/g RDX, DNT, and TNT	20
10	HPLC Analysis of Kidney Containing 1,000 ng/g RDX, DNT, and TNT	21

LIST OF TABLES

Number	<u>Title</u>	Page
1	Linearity and Precision of the HPLC-UV Determination of SARM Reference Solutions of RDX, DNT, and TNT	.9
2	HPLC-UV Determinations of RDX in Kidney Samples	10
3	HPLC-UV Determinations of DNT in Kidney Samples	11
4	HPLC-UV Determinations of TNT in Kidney Samples	12
5	Statistical Evaluation of RDX in Kidney Data by the Hubaux and Vos Detection Limit Program	22
6 .	Statistical Evaluation of DNT in Kidney Data by the Hubaux and Vos Detection Limit Program	23
7	Statistical Evaluation of TNT in Kidney Data by the Hubaux and Vos Detection Limit Program	24
Appendix 8	Linearity and Precision of RDX, DNT, and TNT Determination by High Performance Liquid Chromatography	26
9	Determination of RDX, DNT, and TNT in Kidney Samples	28
10	Determination of RDX, DNT, and TNT in Kidney Samples	30
11	Determination of RDX, DNT, and TNT in Kidney Samples	32
12	Determination of RDX. DNT. and TNT in Kidney Samples	34

Midwest Research Institute Analytical Chemistry Department Kansas City, Missouri 64110

for

U.S. Army Armament Research and Development Command Aberdeen Proving Ground (Edgewood Area) Maryland 21020

Contract No. DAAK11-79-C-0110

Identification or Development of Chemical Analysis Methods for Flant and Animal Tissues

METHOD DEVELOPMENT FOR THE DETERMINATION OF CYCLOTRIMETHYLENETRINITRAMINE (RDZ), DINITROTOLUENE (DNT), AND TRINITROTOLUENE (TNT) IN KIDNEY

- 1. <u>APPLICATION</u>: The developed method is for the quantitative determination of RDX, DNT, and TNT in animal kidney samples using high performance liquid chromatography (HPLC) with ultraviolet (UV) detection at 254 nm.
- a. Evaluated Concentration Range: The concentration range of RDX, DNT, and TNT studied in reference solutions and in kidney samples was 100 to 2,000 ng/g (parts per billion, ppb).
- b. Sensitivity: A signal-to-noise ratio of 6 to 1 for RDX (peak height (PH), $\overline{25}$ mm), 9 to 1 for DNT (PH, 40 mm), and 8 to 1 for TNT (PH, 30 mm) was obtained with an injection of 50 μ l of a 100 μ ml solution of each compound (ca. 5 μ ml compound on column).
- c. Detection Limits: 95 ng/g RDX, 179 ng/g DNT, and 211 ng/g TNT using the Hubaux and Vos detection limit program.
- d. <u>Interferences</u>: No interfering kidney components were found to elute with the same retention volume as DNT or TNT. A small peak eluted just prior to RDX and interfered with the quantification of RDX at low levels. This peak corresponded to less than 50 ng/g RDX.
- e. Analysis Rate: The chromatographic time per injection was 40 min. Two reference solutions were analyzed prior to injecting the prepared samples, and two were analyzed during the day (160 min total time). Thus, a total of eight prepared kidney samples (320 min total time) can be analyzed during an 8-hr day.
- 2. CHEMISTRY: RDX, DNT, and TNT are munition compounds manufactured at various installations. The possible environmental contamination of these compounds, particularly in plants and animals, is of concern.

The determination of the kidney levels of RDX, DNT, and TNT in animals may provide information on the extent and level of contamination at the production facilities and in the surrounding area. Each of these munitions has a sufficient UV chromophore at 254 nm to allow UV detection and quantification. These munitions are of intermediate polarity and have limited water solubility. Normally, biological matrices have a large number of components which will interfere with the detection and quantification of low levels of compounds. Reverse phase HPLC is capable of separating compounds with similar chemical and physical properties; the elution order of the technique is based on the polarity of the compounds, the more polar compounds being eluted first. Thus, by extracting the biological matrix, i.e., kidney, with an intermediate polarity solvent and analyzing the extract by HPLC, a simple sample preparation and analysis system may be defined for the determination of RDX, DNT, and TNT in kidney samples.

3. APPARATUS:

a. <u>Instrumentation</u>: A Waters isocratic liquid chromatographic system consisting of a Model 6000A pump, Model U6K injector, and Model 440 UV detector. A general purpose centrifuge (Dynac, Clay Adams 0101) with a 24-place head.

b. HPLC Parameters:

- 1. Column: Spherisorb ODS, 5 μ , 250 x 4.6 mm ID.
- 2. Eluent: 30% acetonitrile in 1% acetic acid in water.
- 3. Flow rate: 1.5 ml/min.
- 4. Detector: UV, 254 nm.
- 5. Internal standard: propiophenone, 1,000 ng/ml.
- 6. Injection volume: 50 to 100 μl.
- Retention volumes and times: RDX, 25 ml, 10 min; DNT, 37.5 ml, 25 min; TNT, 42 ml, 28 min; IS, 28.5 ml, 19 min. NOTE: Slight changes in the retention indices may occur with fresh eluent or a change in columns.

A representative HPLC chromatogram for RDX, DNT, and TNT is shown in Figure 1. Also included on the chromatogram are peaks for an internal standard (propiophenone) and 2,4,5-trinitrophenylmethylnitramiue (tetryl).

c. Laboratory Glassware and Equipment:

- 1. Culture tubes (Pyrex) with Teflon-lined screw caps.
- 2. Volumetric flasks (100 ml).
- Volumetric syringes (0-100 μl, 0-500 μl, and 0-1,000 μl).
- 4. Automatic pipetter (0-5 ml).
- 5. Six-speed Waring-type blender with glass container.
- 6. Teflon-glass, motor-driven tissue homogenizer.
- 7. Filtering apparatus including filter holders, 5-ml disposable syringes, and 0.45 μ Fluoropore filters.
- 8. Inert gas (nitrogen) drying train with 12 ports.

d. Chemicals:

- 1. Toluene and acetonitrile, "Distilled in Glass" grade.
- 2. Acetic acid and sodium chloride, ACS grade.
- High purity water from a Milli-Q water purification system.
- 4. RDX, DNT, and TNT SARMs, obtained from the U.S. Army Toxic and Hazardous Materials Agency.
- 5. Propiophenone (internal standard), analytical grade.

4. STANDARDS:

- a. Stock: Weigh approximately 20 mg of TNT, DNT, RDX and tetryl SARM or interim SARM into separte 100-ml volumetric flasks. Dissolve each compound in acetonitrile and dilute to volume. The concentration of each compound is 200 μ g/ml. Quantitatively pipette 20 ml from each stock above into a 100-ml volumetric flask and dilute to volume with distilled water. Concentration of each compound is 40 μ g/ml.
- b. Working: Pipette 10 ml of the 40 μ g/ml of each compound stock into a 100-ml volumetric flask and dilute to volume with high purity water. Concentration of each compound is 4 μ g/ml.

Reference solutions were prepared from this stock as follows:

µl Working Stock	µl IS Stock*	µl 10% Acetonitrile in Water	Concentration Each Compound (ng/ml)
500	500	0	2,000
375	500	125	1,500
250	500	250	1,000
125	500	375	500
25	500	475	100
0	500	500	. 0

^{*} Preparation of IS stock given in "c" below.

c. Internal Standard Stock: Weigh 10 mg propiophenone into a 100-ml volumetric flask and dilute to volume with acetonitrile (concentration, 100 μ g/ml). Quantitatively pipette 10 ml of the 100 μ g/ml stock into a 100-ml volumetric flask and dilute to volume with acetonitrile (concentration, 10 μ g/ml). A final working solution of 2.0 μ g/ml is prepared by pipetting 20 ml of the 10 μ g/ml stock into a 100-ml volumetric flask and diluting to volume with acetonitrile.

5. PROCEDURES FOR KIDNEY SAMPLE DETERMINATION:

- a. <u>Kidney Sample Preparation</u>: The procedure employed to prepare kidney samples for the HPLC-UV determination of RDX, DNT, and TNT consisted of:
- 1. Place approximately 50 g of kidney into a Waring-type blender and blend for 1 min on speed six (liquify). Note: To completely liquify the kidney sample, the sides of the glass container are scraped with a spatula.
- 2. Transfer approximately 10 g of the liquified kidney sample to a motor-driven Teflon-glass homogenizer.
- 3. Homogenize the sample for 30 sec to disrupt the cell walls of the kidney sample. Note: The homogenization step is necessary to solubilize the intercellular compounds prior to the extraction step.
- 4. Repeat steps 3 and 4 on the remaining liquified kidney samples and combine the homogenized samples.
- 5. Accurately weigh 12 1.0 g homogenized kidney aliquots into culture tubes with Teflon-lined screw caps.

- 6. Spike two each of the homogenized kidney aliquots with the working stock (4 μ g/ml each RDX, DNT, and TNT) at the following levels: 2,000 ng (500 μ l); 1,500 ng (375 μ l); 1,000 ng (250 μ l); 500 ng (125 μ l); and 100 ng (25 μ l). The remaining two kidney aliquots serve as kidney sample blanks. All samples are adjusted to a total volume of 1.5 ml with high purity water containing 10% acetonitrile.
- 7. Add 1.0 ml of a 10% sodium chloride solution containing 2% acetic acid to each aliquot.
 - 8. Mix thoroughly on a vortex mixer.
- 9. Extract the kidney samples with 2 ml toluene ("Distilled in Glass" grade) by vortexing for 30 sec followed by centrifugation at 1,000 rpm for 20 min. Note: The centrifugation step is required to break the emulsion formed during extraction.
- 10. Transfer the toluene extracts to properly labeled culture tubes with Teflon-lined screw caps.
- 11. Repeat the toluene extraction (steps 9 and 10) twice more, combining the toluene extracts in the appropriate tubes.
- 12. Evaporate the toluene at room temperature under a stream of nitrogen. NOTE: Do not heat the samples during the evaporation step, or loss of RDX, DNT, and TNT may occur. Continue evaporation until toluene has been completely removed from the culture tube.
- 13. Add about 1.0 ml ethyl acetate to the kidney sample residues and vortex mix for 30 sec.
- 14. Evaporate the ethyl acetate at room temperature under a stream of nitrogen. NOTE: The ethyl acetate aids in removing the last traces of toluene from the kidney samples.
- 15. Dissolve the residues in 500 μl acetonitrile containing 1,000 ng IS and mix tholoughly on a vortex mixer.
- 16. Add 500 µl high-purity water to each extracted kidney sample and mix thoroughly. NOTE: Final volume of the prepared samples is 1.0 ml.
- 17. Filter the solutions through 0.45- μ Fluoropore filters into culture tubes.
- 18. Analyze a 50- to 100- μ l aliquot of each prepared kidney sample by HPLC.
- 19. After the elution of the TNT heak, wash the column for 3 min with 100% acetonitrile at 1.5 ml/min to remove any late eluting compounds. NOTE: The acetonitrile wash step is required to prevent possible interference in the chromatographic analysis of the next sample.

20. After the 3-min wash, switch the system back to the eluent. Allow approximately 7 min for equilibration prior to the next injection.

b. Calibration: The reference solutions described in Section 4.b were prepared and analyzed in quadruplicate. The relative weight response (RWR) (Eq. 1) of each compound was calculated and the average RWR utilized to determine the nanograms of each compound in every reference solution (Eq. 2). The nanograms found were plotted against the nanograms added, and a linear regression evaluation of the data was conducted. The slope, intercept, and correlation coefficient for each compound were determined. The data are summarized in Table 1, which includes the average value at each level for each compound, the standard deviation, coefficient of variation (relative standard deviation), and the percent inaccuracy. The raw data and calculations are given in Table 8 of the Appendix.

$$RWR = \frac{\text{Peak Height Cpd}}{\text{Peak Height IS}} \times \frac{\text{ng/ml IS}}{\text{ng/ml Cpd}}$$
(Eq. 1)

$$ng/ml$$
 or ng/g compound = $\frac{Pexk \ Height \ Cpd}{Peak \ Height \ IS} \times \frac{ng/ml \ IS}{Avg. \ RWR}$ (Eq. 2)

- c. <u>Kidney Sample Analysis</u>: The kidney samples prepared as outlined in Section 5.a were injected onto the HPLC system. The peak height of each compound was measured and recorded. Kidney samples were prepared and analyzed on four succeeding days.
- 6. CALCULATION: The level (nanograms per gram) of each compound in the kidney samples was determined using the relative weight response to an internal standard method. The RWR values (Eq. 1) for the reference solutions analyzed with a day's set of kidney samples were calculated, and the average values for RDX, DNT, and TNT were determined. These RWR values were employed to calculate the kidney sample level of each compound by Equation 2, where nanograms per gram represents the level found in the kidney sample. The results for the duplicate determinations of RDX, DNT, and TNT in kidney samples at five different levels on four succeeding days are summarized in Tables 2, 3, and 4. The average level found, the standard deviation, coefficient of variation, and percent inaccuracy are also included. A linear regression evaluation of the results was made; the slope, intercept, and correlation coefficient are given in the tables. The level of each compound found in the kidney samples was plotted against the amount added, and these data are shown in Figures 2, 3, and 4. A graphic presentation of the standard deviation, coefficient of variation, and percent inaccuracy for the determination of RDX, DNT, and TNT in kidney samples is given in Figures 5, 6, and 7, respectively. Representative HPLC chromtograms are shown for a kidney sample blank (Figure 8), a 100 ng/g kidney sample (Figure 9), and a 1,000 ng/g kidney sample (Figure 10). The raw data and calculations for the kidney sample determinations are given in Tables 9 to 12 in the Appendix.

7. STATISTICAL EVALUATION OF DATA: A statistical evaluation of the data obtained for the determination of RDX, DNT, and TNT in kidney samples (Tables 2, 3, and 4) by the Hubaux and Vos detection limit program was made at the U.S. Army Toxic and Hazardous Materials Agency. The results of these evaluations are given in Table 5 for RDX, Table 6 for DNT, and Table 7 for TNT. When the 2,000- and 1,500-ng/g data points were omitted, the detection limits for RDX, DNT, and TNT in kidney as determined by the program were 95, 179, and 211 ng/g, respectively. The average nanograms per gram value found at each level was determined from the linear regression equation for the 48 data points and the nanograms per gram added at that level. The standard deviation and percent imprecision (coefficient of variation) at each level were calculated based on this average nanograms per gram value found. Thus, these values and the values given in Tables 2, 3, and 4 (based on the average of the eight assays at each level) are not comparable. The percent inaccuracy term was calculated from the average of the eight data points at each level, and thus agrees with the values in Tables 2, 3, and 4.

HPLC Conditions

Column: Spherisorb ODS, 5 μ ,

250 x 4.6 mm ID

Eluent: 30% acetonitrile in

1% acetic in water
Flow Race: 1.5 ml/min
Chart Speed: 0.1 in./min
Detector: UV, 254 nm

Sample Characteristics

Concentrations: RDX, DNT, TNT,

and tetryl - 500 ng/ml;

IS - 1,000 ng/ml

Injection volume: 70 µl Attenuation: 0.01 X

Retention Indices

Compound	Retention Volume (ml)	Retention Time (min)
RDX	13.5	9
IS	22.5	15
DNT	31.5	21
TNT	34.5	23
tetryl	39	26

Figure 1 - HPLC Separation of RDX, DNT, TNT, and Tetryl SARMS and Propiophenone (IS)

TABLE 1

LINEARITY AND PRECISION OF THE HPLC-UV DETERMINATION OF SARM REFERENCE SOLUTIONS OF RDX, DNT, AND THE

	ng/m1		ng/ml Detected	etected		•	Standard	Coefficient	Percent
Compound	Added	V I	æ1	ပ၊	ai	Average	Deviation	of Variation	Inaccuracy
RDX	0	Ę	Ş	Ş	£	•	•	•	•
!	100	109	114	105	103	108	± 4.9	4.5	+ 8.0
	200	517	509	667	067	504	± 11.8	2.3	+ 0.8
	1.000	096	950	923	985	955	± 26	2.7	- 4.5
	1.500	1,551	1.547	1,435	1.444	1,494	± 63	4.2	4.0 -
	2,000	2,031	2,069	1,906	1,924	1,983	± 80	4.0	- 0.8
DNT	0	ę	Š	Ş	Ę	•	,	•	•
)	100	113	109	109	100	108	± 5.5	5.1	+ 8.0
	200	667	067	475	483	487	± 10.2	2.1	- 2.6
	1.000	992	1,011	981	1,032	1,004	± 22	2.2	7.0 +
	1,500	1,500	1,470	1,461	1,439	1,468	± 25	1.7	- 2.1
	2,000	1,968	1,982	1,934	1,901	1,946	± 36	1.9	- 2.7
THE	0	Ş		Ę	£	•	•	•	•
	100	107		112	100	108	± 5.7	5.3	+ 8.0
	200	495		484	484	786	± 6.8	1.4	- 2.8
	1,000	926		196	997	716	± 19	2.0	- 2.3
	1,500	1,498		1,471	1,432	1,478	± 34	2.3	- 1.5
	2,000	2,011	2,015	1,957	1,879	1,966	± 63	3.2	- 1.7
Linear Regression	ression						a Average	Average = Xx/n = x	. 6/100 19/5

Linear Regression RDX: y = 0.988x +

X: y = 0.988x + 0.6
Correlation coefficient - 0.998

DNT: y = 0.974x + 7.7

Correlation coefficient - 0.999

TNT: v = 0.982x + 1.2

Correlation coefficient - 0.999

b Standard deviation = $(\Sigma|\bar{x}-x|^2(n-1)^{1/2} = \sigma$ c Coefficient of variation = $\sigma/x \times 100$ d Percent inaccuracy = $\frac{x - ng \text{ added}}{ng \text{ added}} \times 100$ e ND = Not detectable, less than 20 ng/ml

TABLE 2

HPLC-UV DETERMINATIONS OF RDX IN KIDNEY SAMPLES

	Amount				Level Fo	Level Found (ng/g)	(8)						
	Added	Day	Day 1	Α.	7 7	Day	. 3	Day	4		Standard	Standard Coefficient	Percent
	(8/8u)	V	A B	1 1	A B	A	B	A	В	Average	Deviation	of Variation	Inaccuracy
	0	ND C	ND ^e ND	8	CZ.	g	£	£	æ	•	•	•	•
	100	95	96	124	96	122	115	130	105	103	± 12	11	t,
	200	483	501	503	867	511	667	518	532	909	± 15	က	Ŧ
	1,000	957	1,027	1,031	006	965	923	963	1,017	973	± 48	ĸ	ë.
	1,500	1,462	1,525	1,458	1,468	1,471	1,460		1,530 1,496	1,481	± 32	7	7
10 .18	2,000	1,868	2,034	2,034 1,952 1,985 1,921 1,866 1,975 1,950	1,985	1,921	1,866	1,975	1,950	1,944	± 58	ო	£-

Note: Linear regression: y = 0.973x + 7.1 Correlation coefficient: 0.999

Average = $\sum x/n = x$

Standard deviation = $(\Sigma | \overline{x} - x |^2/n-1)^{\frac{1}{2}} = \sigma$

Coefficient of variation = $\sigma/x \times 100$

Percent inaccuracy = $\frac{x}{x} - \frac{ng}{ng} \frac{added}{added} \times 100$

ND - Not detectable, less than 20 ng/g; HPLC peak eluting 1.5 ml prior to RDX and interfering with the elution position of RDX disregarded in data reduction.

1

1

3

1 6 65

, comment

-Distance Sa

¥.

TABLE 3

4

HPLC-UV DETERMINATIONS OF DUT IN KIDNEY SAMPLES

Amount	ınt			Level Fo	Found (ng/g)	- 1				١		•
A44e		Day 1	l	4 2	Dav		Day	4	•	Standard	Coefficient	Percent
(8/8)	Ti	N B		A B	 		Q V	*	Average	Deviation	of Variation	Inscentacy
0		10°			8	Ş	ğ	Q	•	•	•	•
100		80 55		79 75	78	9	82	73	7.4	# 11	71	-27
8	500 387			362 301	362	332	365	321	344	± 29	6	-31
1,000	00 762	. 635		603	735	627	729	112	700	± 67	01	-30
1,300	00 1,143	3 1,005	196	890	1,138	1,127	1,043	1,038	1,044	∓ 90	31	-30
11 119			1,495		1,373 1,574 1,214 1,389	1,214	1,389	1,447	1,423	± 134	•	-29

Note: Linear regression: y = 0.707x - 3.5 Correlation coefficient: 0.991

a Average = Ex/n = x

b Standard deviation = $(\Sigma | x-x|^2/n-1)^{\frac{1}{2}} = 0$

c Coefficient of variation = $\sigma/\bar{x} \times 100$

Percent inaccuracy = x - ng added x 100

e ND - Not detectable, less than 20 ng/g.

TABLE 4

HPLC-UV DETERMINATIONS OF THT IN KIDNEY SAMPLES

	Percent	Inaccuracy	•	-20	-29	-27	-26	-25
	Coefficient	of Variation Inaccuracy	•	17	•	12	e 0	€0
,	Standard	Devistion	•	± 14	± 29	± 85	± 92	± 123
		Average	•	80	356	733	1,104	1,501
	4	В	Ð	86	359	883	1,161	1,615
	Dav	N B	£	88	387	794	1,134	1,534
		æ	Ş	89	353	634	1,260	1,283 1
Found (ng/g)	Day 3	٧	Ę	92	358	756	1,034	1,507
Level Fo	, 2	В	CN CN	81 87	338 393	739	1,159	1,621
	Day	A B	2		338	728	1,078	1,418 1,407 1,621
	1	A B	ND ND	51	356 300	619	896	1,418
	Day			88	356	708	1,041	
Amount	Added	(8/8 _u)	•	100	200	1,000	1,500	2,000
							3.3	•

Note: Linear regression: y = 0.746x - 5.4 Correlation coefficient: 0.992

a Average = 2x/n = x

Standard deviation = $(\Sigma | \overline{x} - x |^2/n-1)^{\frac{1}{2}} = \sigma$

Coefficient of variation = $\sigma/x \times 100$

d Percent inaccuracy = x ng added x 160

ND - Not detectable, less than 20 ng/g.

]

Figure 2 - Determination of RDX in Kidney

Figure 3 - Determination of DNT in Kidney

Figure 4 - Determination of TNT in Kidney

Figure 5 - Standard Deviation for RDX, DNT, and TNT in Kidney Samples

Start in

to determine the second second

Pigure 6 - Coefficient of Variation for RDX, DNT, and TNT in Kidney Samples

Figure 7 - Percent Inaccuracy for RDX, DNT, and TNT in Kidney Samples

11.0

HPLC Conditions:

Column: Spherisorb ODS, 5 µ, 25G x 4.6 mm ID

Eluent: 30% acetonitrile in 1% acetic acid in water

Flow Rate: 1.5 ml/min

Chart Speed: 0.1 in/min

Detector: UV, 254 nm

Sample Characteristics:

1.0 g kidney extract
3 x 2 ml with toluene.
Toluene evaporated and sample
reconstituted to 1.0 ml.

IS Concentration: 1,000 ng/ml Injection Volume: 70 µl Attenuation: 0.01 X

IS

Figure 8 - HPLC Analysis of Blank Kidney Sample for KDX, DNT, and TNT Method Development. "X" indicates toluene contaminant. Arrows indicate elution position of RDX, DNT, and TNT.

HPLC Conditions:

Column: Spherisorb ODS, 5 µ,
250 x 4.6 mm ID

Eluent: 30% acetenitrile in
1% acetic acid in water

Flow Rate: 1.5 ml/min

Chart Speed: 0.1 in/min

Detector: UV, 254 nm

Sample Characteristics:

1.0 g kidney containing 100 ng/g RDX, DNT, and TNT extracted 3 x 2 ml with toluene. Toluene evaporated and sample reconstituted to 1.0 ml.

IS Concentration: 1,000 ng/ml Injection Volume: 70 μl Attenuation: 0.01 X

Figure 9 - HPLC Analysis of Kidney Containing 100 ng/g RDX, DNT, and TNT. "X" indicates toluene contaminant.

HPLC Conditions:

Column: Spherisorb ODS, 5 µ,
250 x 4.6 mm ID

Eluent: 30% acetonitrile in
1% acetic scid in water

Flow Rate: 1.5 ml/min

Chart Speed: 0.1 in/min

Detector: UV, 254 nm

Sample Characteristics:

1.0 g kidney containing 1,000 ng/g RDX, DNT, and TNT extracted 3 x 2 ml with toluene. Toluene evaporated and sample reconstituted to 1 ml.

IS Concentration: 1,000 ng/ml Injection: 70 µl Attenuation: 0.01 X

Figure 10 - HPLC Analysis of Kidney Containing 1,000 ng/g RDX, DNT, and TNT

TABLE 5

STATISTICAL EVALUATION OF RDX IN KIDNEY DATA BY THE HUBAUX AND VOS DETECTION LIMIT PROGRAM

Number of Data Points	Linear Regression		Correlation De	Degrees of Freedom	t b	y Intercept	Detection Limit
78 70 70 70	y = 0.973x + y = 0.982x + y = 0.973x + y =	7.1 3.7 1.0	0.999 0.999 0.998	38 30	1.679 1.686 1.697	66 51 52	120 97 95
ng/g RDX Added	Average ng/g Found	Standard EDeviation	f Percent8	Percent ^h Inaccuracy	it b		
100 500 1,000 1,500 2,000	104 493 978 1,464 1,949	+ 4.5 + 5.6 + 18 + 12 + 21	4.3 1.9 0.8 1.1	+ 2.6 + 1.1 - 2.7 - 1.2 - 2.0	0 2 7 1 6		and the same

Number of data points - data points used to calculate linear regression and detection limits; 48 - all data; 40 - 2,000 ng/g samples omitted; 32 - 2,000 ng/g and 1,500 ng/g samples

- 2 tail p level (usually 0.1, each confidence band is 0.05 so total p=0.1).

y intercept - intercept on y-axis of upper confidence limit line.

Detection limit - x-intercept of y-intercept and lower confidence limit line. Average ng/g found - average at each level determined from linear regression

equation for 48 points.

Standard deviation - determined from average value (e above) and observed values. Percent imprecision - standard deviation divided by average value times 100%.

Percent inaccuracy - determined from the average values of the eight observed values at each level

% Inaccuracy = Average observed values - level added x 100 level added - 1

j

j

TABLE 6

STATISTICAL EVALUATION OF DNT IN KIDNEY DATA BY THE HUBAUX AND VOS DETECTION LIHIT PROGRAM

	Detection ^d Det	339 248 179		
•	y Intercept	117 88 63		
	الم	1.679 1.686 1.697	Perceat Inaccuracy	26 31 30 30 29
	Degrees of Freedom	79 38 30	• ••	1 1 1 1
	Correlation Coefficient	0.991 0.992 0.992	Percent ⁸ Imprecision	~
			Standard E Deviation	+ 4.0 + 11.1 + 25 + 34 + 51
•,	Linear Regression	y = 0.707x - 3.5 y = 0.696x + 0.8 y = 0.698x + 0.4	Average ng/g Found	67 350 704 1,057 1,410
	Number of Data Points	48 40 32	ng/g	100 500 1,000 2,000

Number of data points - data points used to calculate linear regression and detection limits; 48 - all data; 40 - 2,000 ng/g samples omitted; 32 - 2,000 ng/g and 1,500 ng/g samples

- 2 tail p level (usually 0.1, each confidence band is 0.05 so total p = 0.1). Detection limit - x-intercept of y-intercept and lower confidence limit line. intercept - intercept on y-axis of upper confidence limit line.

Average ng/g found - average at each level determined from linear regression equation for 48 points.

Standard deviation - determined from average value (e above) and observed values.

Percent inaccuracy - determined from the average values of the eight observed Percent imprecision - standard deviation divided by average value times 100%. values at each level

% Inaccuracy = Average observed values - level added level added

TABLE 7

STATISTICAL EVALUATION OF THE IN KIDNEY DATA BY
THE HUBAUX AND VOS DETECTION LIMIT PROGRAM

Number of Data Points	Linear Regression		Correlation Coefficient	Degrees of Freedom	t _p	y Interce	Detection Limit
89 07 7	y = 0.746x - 5.4 y = 0.734x - 0.8	4.0.8	0.992	98 98 98	1.679	116 96	323 262
35	y = 0.728x + 0.9	6. 6.	0.989	e	1.697	78	211
ng/g TNT Added	Average ng/g Found	Standard Deviation	F Percent Imprecision	Percent home Inscruracy	nt ^h rracy		
100	69	± 5.2	6.5	- 20			
200	368	± 10.9	3.1	- 29			
1,000	741	± 32	4.4	- 27			
1,500	1,114	± 35	3.2	- 26			
2,000	1,487	4 46	3.1	- 25	••		

Number of data points - data points used to calculate linear regression and detection limits; 48 - all data; 40 - 2,000 ng/g samples omitted; 32 - 2,000 ng/g and 1,500 ng/g samples omitted.

- 2 tail p level (usually 0.1, each confidence band is 0.05 so total p = 0.1).

c y intercept - intercept on y-axis of upper confidence limit line.

Detection limit - x-intercept of y-intercept and lower confidence limit line. Average ng/g found - average at each level determined from linear regression

equation for 48 points.

Standard deviation - determined from average value (e above) and observed values.

Percent inaccuracy - determined from the average values of the eight observed Percent imprecision - standard deviation divided by average value times 100%.

values at each level

% Inaccuracy = Average observed values - level added x 100

a Grand

1

]

APPENDIX

METHOD DEVELOPMENT FOR THE DETERMINATION OF RDX, DNT, AND TNT IN KIDNEY SAMPLES

RAW DATA AND CALCULATIONS

TAPLE 8

LINEARITY AND PRECISION OF RDX, DNT, AND TNT DETERMINATION BY HIGH PERFORMANCE LIQUID CHROMATOGRAPHY

Calculated	THI THE	Ş	113	667	992	1.500	1,968		109	490	1,011	1,470	1,982	S S	109	475	981	1,461		Ŕ	100	433	1,032	1,439 1,432	1,901
	RDX		109	517	96	1,551	2,031		114	503	950	1,547	2,069	IN	105	799	923	1,435	1,906	Z	103)67	98	1,444	1,92
ght	TAI.	ı	0.95	0.88	0.85	0.89	0.89	ı	1.00	0.85	0.88	0.89	0.90	ı	1.00	98.0	98.0	0.87	0.87	ı	0.89	98.0	0.89	0.85	0.84
Relative Weight Response	DNT	•	1.21	1.07	1.06	1.07	1.05	ı	1.17	1.05	1.08	1.05	1.06	•	1.17	1.02	1.05	1.04	1.03	•	1.07	1.03	1.10	1.03	1.02
	RDX		1.03	0.98	0.91	0.98	96.0		1.08	0.97	0.00	0.98	0.98	ı	1.00	0.95	0.88	0.91	0.91	•	0.98	0.93	0.94	0.91	0.91
Internal Standard	Height	. 122	116	118	114	114	114	118	.120	122	134	117	116	120	120	116	122	110	116	119	112	116	124	113	116
Int	9 EI	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
ght	TINT	7	11	25	76	152	204	7	12	25	118	157	208	7	12	20	105	144	202	6	10	20	110	144	194
Peak Height	NE I	< 2	14	63	121	183	240	7	14	9 9	145	184	246	~	14	59	128	172	240	>	12	9	137	174	236
Pe	RDX	< 2	12	28	104	168	220	7	13	29	121	172	228	~	12	55	107	150	210	7	11	54	116	155	212
ng/ml Compound	Added	0	100	200	1,000	1,500	2,000	0	100	200	1,000	1,500	2,000	0	100	200	1,000	1,500	2,000	0	100	200	1,000	1,500	2,000
Reference Solution	Number	A-1	A-2	A-3	A-4	A-5	A-6	B- 1	B-2	B- 3	B-4	B-5	B-6	<u>:</u>	Ç. 2	C-3	t-0	C-5	9 - 0	D-1	D-2	D-3	D-4	D-5	9 - 0

-

TABLE 8 (concluded)

Relative Weight Response

	Average	Standard Deviation	Relative Standard <u>Deviation</u>
RDX	0.95	± 0.05	5.2%
DNT	1.07	± 0.05	4.9%
TNT	0.89	± 0.04	5.1%

TABLE 9

DETERMINATION OF RDX, DNT, AND TNT IN KIDNEY SAMPLES

					•			•			
	Second	ng/8		μ.	eak Height		Internal	Standard		ng/g	
	Number	Added	Kidney	RDX	DAT	TNT	ng/ml	Height	RDX	TNG	TNT
	Day 1.4-0	0	1.0	7.0	7	7	1,000	145	36⁴	POM	2
ť	Day 1A-100	100	1.0	11.0	13.0	9.8	1,000	150	95	80	85
	Day 1A-500	200	1.0	55.8	62.8	41.2	1,000	150	483	387	356
	Day 1A-1000	1,000	1.0	112	125	82.8	1,000	152	957	762	708
	Day 1A-1500	1,500	1.0	170	186	121	1,000	151	1,462	1,143	1,041
	Day 1A-2000	2,000	1.0	218	262	. 681	1,000	152	1,868	1,603	1,619
	Day 1B-0	0	1.0	3.0	7	7	1,000	149	26 ^f	2	æ
	Day 1B-100	100	1.0	11.2	9.0	6.0	1,000	152	96	55	51
28	Day 1B-500	200	1.0	58.0	52.2	34.8	1,000	150	501	321	300
	Day 1B-1000	1,000	1.0	121	105	72.8	1,000	153	1,027	635	619
	Day 116-1500	1,500	1.0	179	166	114	1,000	153	1,525	1,005	896
	Day 1B-2000	2,000	1.0	238	212	166	1,000	152	2,034	1,289	1.418

TABLE 9 (concluded)

REFERENCE SOLUTIONS

•		-	Ocak Weight		Internal Standar	Standard	Rel	Relative Weight	ıte I
rence		•	(m)			Peak		Response	
Number	Added	RDX	DNT	FE	ng/ml	Height	XQX	TNO	IMI
1		306	910	230	1,000	148	0.77	1.08	0.78
Day 1-5	2,000	077	155	112	000	145	0.77	1.07	92.0
Day 1-3	1,000	111	133	776	000	148	0.77	1.08	0.76
Day 1-5	2,000	677	318	077		377	78	1.10	0.77
Day 1-4	1,500	170	240	108	1,000	57.6		10	0.79
Day 1-3	1,000	113	161	115	1,000	0 7 1		1 07	0.77
Day 1-2	200	59.5	82.8	59.2	1,000	154	:	<u>.</u>	
						Average	0.77	1.08	0.77

a ng/g compound added - nanograms of RDX, DNT, and TNT added to 1.0 g kidney. 29

b Internal standard - compound (propiophenone) added to kidney sample after sample preparation for calculation of data.

ng/g detected - nanograms of RDX, DNT, and TNT detected in the 1.0 g kidney sample.

ng compound/g = Peak Height compound x average RWR compound

d MD - not detectable, less than 20 ng/g.

Relative Weight Response - RWR = Peak Height IS ng/ml compound

f Not RDX, level calculated from HPLC peak eluting 1.5 ml prior to RDX and disregarded in further data evaluations.

TABLE 10

DETERMINATION OF RDX, DNT, AND TNT IN KIDNEY SAMPLES

								4			
	Sample	ng/g Compound	Ċ	124	Peak Height (mm)		Internal	Standard		ng/g Detected	
	Number	Added	Kidney	RDX	PHO	TNT		Height	RDX	DMT	THE
	Day 2A-0	•	1.0	5.0	7	7		152	43 [£]	PON	æ
	Day 2A-100	100	1.0		12.5	9.5		147	124	79	81
	Day 2A-500	200	1.0		57.8	0.07		148	503	362	338
•	Day 2A-1000	1,000	1.0		115	83.0		144	1,031	140	728
	Day 2A-1500	1,500	1.0		157	130		151	1,458	196	1,078
	Day 2A-2000	2,000	1.0		240	167		148	1,952	1,495	1,407
	Day 2B-0	0	1.0		7	7	1,000	149	44 [£]	æ	ę
	Day 2B-100	100	1.0		12.0	10.4		149	96	75	87
30	Day 2B-500	200	1.0		48.6	47.0		150	867	301	393
)	Day 2B-1000	1,000	1.0		96.8	87.8		149	900	603	739
	Day 2B-1500	1,500	1.0		147	142		153	1,448	890	1,159
	Day 2B-2000	2,000	1.0	227	220	192		148	1,985	1,373	1,621

TABLE 10 (concluded)

REFERENCE SOLUTIONS

Keference	ng/=1*		Peak Height		Internal Standar	Standard	98	Relative Veight	i e
Solution	Compound	·	I			Peak		Response) 1
Number	Added	RDX	TNO	TAL	ng/m1	Height	ROX	THO	TAT
Std-Day 2-5	2,000	216	304	226	1,000	146	0.74	1.04	0.78
Std-Day 2-2	200	55.2	76.8	57.8	1,000	144	0.77	1.07	0.80
Std-Day 2-3	1,000	111	158	118	1,000	147	0.76	1.08	0.80
Std-Day 2-5	2,000	222	311	230	1,000	145	0.77	1.07	0.79
Std-Day 2-2	1,000	111	153	115	1,000	145	0.77	1.06	0.80
Std-Day 2-1	100	12.0	16.8	12.0	1,000	148	0.81	1.14	0.81
						Average	0.77	1.08	08.0

ng/g compound added - nanograms of RDX, DNT, and TNT added to 1.0 g kidney.

b Internal standard - compound (propiophenone) added to kidney sample after sample preparation for calculation of data.

ng/g detected - nanograms of RDX, DNT, and TNT detected in the 1.0 g kidney sample. Ų

ng compound/g = Peak Height compound x average RWR compound

ND - not detectable, less than 20 ng/g.

7

Relative Weight Response - RWR = Peak Height compound x ng/ml IS Peak Height IS ng/ml compound

u

Not RDX, level calculated from HPLC peak eluting 1.5 ml prior to RDX, and disregarded in further data evaluations.

TABLE 11

DETERMINATION OF RDX, DNT, AND THT IN KIDNEY SAMPLES

	80/00			est Haicht		Internal	q Prakary		J#/56	
le	Combound	80	•	(mm)		711107	Peak		Detected	
Tumber	Added	Kidney	XQX	DNT	TNT	ng/ml	Height	XQX	TRO	ı
3A-0	0	1.0	4.0	6	7	1,000	150		PGN	
3A-100	100	1.0	14.0	13.5	11.0	1,000	151		84	
3A-500	200	1.0	58.5	58.0	42.5	1,000	150		362	
3A-1000	1,000	1.0	109	116	88.5	1,000	148		735	
3A-1500	1,500	1.0	161	174	117	1,000	143		1,138	
3 A- 2000	2,000	1.0	214	242	174	1,000	971		1,574	
Day 38-0	0	1.0	4.0	2 ×	< 2	1,000	156		£	8
3B-100	100	1.0	13.0	9.5	8.0	1,000	148		99	
3B-500	500	1.0	56.0	52.0	41.0	1,000	147		332	
3B-1000	1,000	1.0	105	100	75.0	1,000	150		627	
3B-1500	1,500	1.0	160	172	143	1,000	143		1,127	
3B-2000	2,000	1.0	209	190	149	1,000	147		1,214	

Section 1

TABLE 11 (concluded)

REFERENCE SOLUTIONS

<u>.</u>	0.79 0.78 0.80 0.77 0.79	0.79
Relative Weign Response	1.06 1.06 1.08 1.08 1.05	1.07
Rel	RDX 0.78 0.77 0.78 0.75 0.76	92.0
Standard	Peak Height 142 142 145 148 147	Average
Internal	ng/ml 1,000 1,000 1,000 1,000	
	223 111 58.0 229 173	
ak Height	DNT 302 150 78.0 311 233 16.0	
ď	220 109 56.0 222 166	i
	Compound Added 2,000 1,000 2,000 1,500	100
	Reference Solution Number Std-Day 3-5 Std-Day 3-2 Std-Day 3-2 Std-Day 3-5 Std-Day 3-5	Std-Day 3-1

internal standard - compound (propiophenone) added to kidney sample after sample preparation for calculation of data. ng/g compound added - nanograms of RDX, DNT, and TNT added to 1.0 g kidney. 33

ng/g detected - nanograms of RDX, DNT, and TNT detected in the 1.0 g kidney sample.

ng compound/s = Peak Height Compound x average RWR compound

MD - not detectable, less than 20 ng/8.

Relative Weight Response - RWR = Peak Height IS ng/ml compound

f Not RDX, level calculated from HPLC peak eluting 1.5 ml prior to RDX and disregarded in further data evaluations.

TABLE 12

DETERMINATION OF RDX, DNT, AND TNT IN KIDNEY SAMPLES

	n8/8 ⁿ		P.	esk Height		Internal	Stendard		ng/g	
Sample	Compound	₩		(1111)			Peak		Detected	
Number	Added	Kidney		DNT	TAL	ng/ml	Height	RDX	DNT	TAT.
Day 4A-0	0	1 0		7	7	1,000	151	34 [£]	POM	£
Day 4A-100	100	1.0		13.0	10.5	1,000	150	130	82	88
Day 4A-500	200	1.0		58.2	46.0	1,000	150	518	365	387
Day 4A-1000	1,000	1.0		115	93.2	1,000	148	963	729	194
Day 4A-1500	1,500	1.0		159	129	1,000	144	1.530	1.043	1,134
Day 4A-2000	2,000	1.0	218	211	174	1,000	143	1,975	1,389	1,534
Day 4B-0	0	1.0		~ 5	~ 5	1,000	153	25 ^f	£	æ
Day 4B-100	100	1.0	12.0	11.6	10.2	1,000	149	105	73	86
Day 4B-500	200	1.0		0.67	44.0	1,000	144	532	321	359
Day 4B-1000	1,000	1.0		122	104	1,000	149	1,017	772	883
Day 4B-1500	1,560	1.0		164	137	1,000	149	1,496	1,038	1,161
Day 4B-2000	2,000	1.0		232	194	1,000	151	1,950	1,447	1,615

TABLE 12 (concluded)

REFERENCE SOLUTIONS

Relative Weight Response	DNT TNT	1.07 0.80 1.06 0.78 1.07 0.80 1.06 0.77 1.06 0.79 1.06 0.62	1.06 0.79
Rela	ROX	0.75 0.76 0.80 0.76 0.80	0.77
Standard	Height	149 148 168 174 176	Average
Internal Standar	ng/m1	1,000 1,000 1,000 1,000 1,000	
	TXI	237 174 67.2 109 68.6	
esk Height	DNT	320 235 90.0 151 94.8	
Δ.	RDX	224 168 66.8 109 69.4	
ng/ml*	Compound	2,000 1,500 500 1,000 500	
Reference	Solution Number	Std-Day 4-5 Std-Day 4-4 Std-Day 4-2 Std-Day 4-3 Std-Day 4-2 Std-Day 4-2	•

ng/g campound added - nanograms of RUX, DNT, and TNT added to 1.0 g kidney.

Internal standard - compound (propiophenone) added to kidney sample after sample preparation for calculation of data.

ng/g detected - nanograms of RDX, DNT, and TNT detected in the 1.0 g kidney sample.

ng compound/g = Peak Height compound x average RWR compound

ND - not detectable, less thon 20 ng/g.

Relative Weight Response - RWR = Peak Height IS ng/ml compound SI lm/8u

Not RDX, level calculated from HPLC peak eluting 1.5 ml prior to RDX and disregarded in further data evaluations.

APPENDIX D

IDENTIFICATION OR DEVELOPMENT OF CHEMICAL ANALYSIS METHODS FOR PLANTS AND ANIMAL TISSUES

METHOD REPORT NO. 3

METHOD DEVELOPMENT FOR THE DETERMINATION OF CYCLOTRIMETHYLENE-TRINITRAMINE (RDX), DINITROTOLUENE (DNT) AND TRINITROTOLUENE (TNT) IN MUSCLE/FAT SAMPLES

October 1980

Contract No. DAAK11-79-C-0110 MRI Project No. 4849-A

For

U.S. Army Toxic ad Hazardous Materials Agency Dr. L. Eng, DRXTH-TE-D, Project Officer Aberdeen Proving Ground (EA), MD 21010

The views, opinions, and/or findings contained in this report are those of the authors and should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other documentation.

UNCLASSIFIED

BECURITY CLASSIFICATION OF THIS PAGE (Silver Date Entered)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM					
1. REPORT HUMBER 2. GOVT ACCESSION NO	J. RECIPIENT'S CATALOG NUMBER					
Technical Report No. 3						
a. TITLE (and Substitio) Method Development for the Deter-	S. TYPE OF REPORT & PERIOD COVERED					
mination of Cyclotrimethylenetrinitramine (RDX),	Method Report, August 1979 to December 1980					
Dinitrotoluene (DNT), and Trinitrotoluene (TNT)	6. PERFORMING ORG. REPORT NUMBER					
in Muscle/Fat Samples	T .					
7. AUTHOR(s)	MRI Project No. 4849-A					
D. B. Lakings and O. Gan	DAAK11-79-C-0110					
PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS					
Midwest Research Institute	AREA & WORK UNIT NUMBERS					
425 Volker Boulevard						
Kanses City, MO 64110						
U.S. Army Armament Research and Development	12. REPORT DATE					
Command, Aberdeen Proving Ground (Edgewood	October 1980					
	13. NUMBER OF PAGES					
ATER), MD 21010 14. MONITORING AGENCY NAME & ADDRESS(II dillerent from Controlling Office)	15. SECURITY CLASS. (of this report)					
	Unclassified					
	15a. DECLASSIFICATION/DOWNGRADING SCHEDULE					
Is. DISTRIBUTION STATEMENT (of this Report)						
17. DIATO SUTTON STATE (FINT (a) the shaked extend to Block 50. If Allowed to Broad)						
17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if different from Report)						
8. SUPPLEMENTARY NOTES						
KEY WORDS (Continue on reverse side if necessary and identify by block number) Cyclotrimethylenetrinitramine (RDX) High Perfor Dinitrotoluene (DNT) Trinitrotoluene (TNT)	mance Liquid Chromatography					
Muscle/Fat Determination						
D. ABSTRACT (Centimus on reverse side if necessary and identify by block mumber)						
A high performance liquid chromatographic (HP tive determination of cyclotrimethylenetrinitramin and trinitrotoluene (TNT) in muscle/fat samples was ystem consists of an isocratic HPLC unit with a S	e (RDX), dinitrotoluene (DNT s developed. The analytical pherisorb ODS, 5 μ, 250 x					
4.6 mm ID column, an eluent of 28% acetonitrile in a flow rate of 1.5 ml/min. The compounds, includi	ng the internal standard					

DD 1 1473 EDITION OF 1 NOV 63 IS OBSOLETE

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (Whom Date Entered)

COUNTY CLASSIFICATION OF THE PACTOR DOWN DISTRICT

(IS), propiophenone, have the following retention characteristics: RDX - 18 ml 12 min; IS - 33 ml, 22 min; DNT - 43.5 ml, 29 min; and TNT - 48 ml, 32 min and are detected at 254 nm. Reference solutions of the compounds gave a linear response from 100 ng/ml to 2,000 ng/ml. The muscle/fat samples were prepared by first homogenizing the matrix to form a uniform sample. A 2.0-g muscle/fat sample was weighed and the munition compounds extracted with first 6 ml and then 3 al acetonitrile. The acetonitrile extracts were combined and concentrated to about 250 µl under a stream of nitrogen. A 250-µl aliquot of acetonitrile containing 1,000 ng IS was added followed by 500 µl high purity water. The prepared sample was filtered through a 0.45-µ Flucropore filter and injected onto the HPLC system. The analytical method was evaluated by preparing and analyzing duplicate 2.0-g muscle/fat sample containing 0, 50, 100, 200, 500, and 1,000 ng/g of each sample on four succeeding days. Linear regression analysis of the data gave the following equations and correlation coefficients: RDX, y = 0.965x + 6.5, 0.994; DNT, y = 0.781x + 3.7, 0.990; and TNT, y = 0.850x+ 1.8, 0.999. The average coefficient of variation and average percent inaccuracy for RDX, DNT, and TNT determination in muscle/fat samples were 7.5%. +2.9; 8.3%, -19; and 5.9%, -13, respectively. A statistical evaluation of the data by the Hubaux and Vos detection limit program gave detection limits of 62 ng/g for RDX, 66 ng/g for DNT, and 62 ng/g for TNT for the HPLC determination of these compounds in muscle/fat samples.

UNCLASSIFIED

MICHAEL PAGE FICATION OF THIS PAGE From Data Entered

PREFACE

This report was prepared at Midwest Research Institute, 425 Volker Boulevard, Kansas City, Missouri 64110 under U.S. Army Toxic and Hazardous Materials Agency, Contract No. DAAK11-79C-0110, MRI Project No. 4849-A, "Identification or Development of Chemical Analysis Methods for Plants and Animal Tissues." Dr. Leslie Eng, DRMTH-TE-D was the project officer for this research effort.

This work was conducted in the Analytical Chemistry Department, Dr. James L. Spigarelli, Director. The research effort was directed by Dr. Duane B. Lakings, Program Manager and Senior Chemist, with assistance from Mr. Owen Gan, Assistant Chemist, and Ms. Mary Valla, Senior Technician. The report was prepared by Dr. Lakings and Mr. Gan.

MIDWEST RESEARCH INSTITUTE

Owen Gan

Assistant Chemist

Duane B. Lakings

Program Manager and Senior Chemist

Approved:

James L. Spigarelli, Director Analytical Chemistry Department

TABLE OF CONTENTS

		Pag
1.	Application	1
2.	Chemistry	1
3.	Apparatus	2
4.	Standards	3
5.	Procedure for Muscle/Fat Sample	4
6.	Calculation	6
7.	Statistical Evaluation of Data	6
	endix - Method Development for the Determination of RDX, DNT,	

LIST OF FIGURES

Number	<u>Title</u>	Page
1	HPLC Separation of RDX, DNT, TNT, and Tetryl SARMS and Propiophenone (IS)	8
2	Determination of RDX in Muscle/Fat Samples	13
3	Determination of DNT in Muscle/Fat Samples	14
4	Determination of TNT in Muscle/Fat Samples	15
5	Standard Deviation for RDX, DNT, and TNT in Muscle/Fat Samples	16
6	Coefficient of Variation for RDX, DNT, and TNT in Muscle/Fat Samples	17
7	Percent Inaccuracy for RDX, DNT, and TNT in Muscle/Fat Samples	18
8	HPLC Analysis of Blank Muscle/Fat Sample for RDX, DNT, and TNT Method Development	19
9	HPLC Analysis of Muscle/Fat Sample Containing 50 ng/g RDX, DNT, and TNT	20
10	HPLC Analysis of Muscle/Fat Sample Containing 500 ng/g RDX, DNT, and TNT	21

LIST OF TABLES

Number	Title	Page
1	Linearity and Precision of the HPLC-UV Determination of SARM Reference Solutions of RDX, DNT, and TNT	9
2	HPLC-UV Determination of RDX in Muscle/Fat Samples	10
3	HPLC-UV Determination of DNT in Muscle/Fat Samples	11
4	HPLC-UV Determination of TNT in Muscle/Fat Samples	12
5	Statistical Evaluation of RDX in Muscle/Fat Sample Data by the Hubaux and Vos Detection Limit Program	22
6	Statistical Evaluation of DNT in Muscle/Fat Sample Data by the Hubaux and Vos Detection Limit Program	23
7	Statistical Evaluation of TNT in Muscle/Fat Sample Data by the Hubaux and Vos Detection Limit Program	24
8	Linearity and Precision of RDX, DNT, and TNT Determination by High Performance Liquid Chromatography	26
9	Determination of RDX, DNT, and TNT in Muscle/Fat Samples .	28
10	Determination of RDX, DNT, and TNT in Muscle/Fat Samples .	30
11	Determination of RDX, DNT, and TNT in Muscle/Fat Samples .	32
12	Determination of RDX, DNT, and TNT in Muscle/Fat Samples .	34

Midwest Research Institute Analytical Chemistry Department Kansas City, Missouri 64110

for

U.S. Army Armament Research and Development Command
Aberdeen Proving Ground (Edgewood Area)
Maryland 21010

Contract No. DAAK11-79-C-0110

Identification or Development of Chemical Analysis Methods for Plants and Animal Tissues

METHOD DEVELOPMENT FOR THE DETERMINATION OF CYCLOTRIMETHYLENE-TRINITRAMINE (RDX), DINITROTOLUENE (DNT) AND TRINITROTOLUENE (TNT) IN MUSCLE/FAT SAMPLES

- 1. APPLICATION: The developed method is for quantitative determination of RDX, DNT, and TNT in animal muscle/fat tissue samples using high performance liquid chromatography (HPLC) with ultraviolet (UV) detection at 254 nm.
- a. Evaluated Concentration Range: The concentration range of RDX, DNT, and TNT studied in reference solutions was 100, 500, 1,000, 1,500, and 2,000 ng/ml and in muscle/fat samples was 50, 100, 200, 500, and 1,000 ng/g (parts per billion, ppb).
- b. Sensitivity: A signal-to-noise ratio of 6 to 1 for RDX (peak height (PH) 25 mm), 9 to 1 for DNT (PH 40 mm), and 8 to 1 for TNT (PH 30 mm) was obtained with an injection of 50 μ l of a 100 ng/ml solution of each compound (ca. 5 ng each compound on column).
- c. <u>Detection Limits</u>: The detection limits in the muscle/fat tissue were 62 ng/g for RDX, 66 ng/g for DNT, and 62 ng/g for TNT using the Hubaux and Vos detection limit program.
- d. <u>Interferences</u>: No interfering components from the muscle/fat sample were found to elute with the same retention volumes as RDX, DNT, or TNT. The RDX peak eluted as a shoulder on a large peak(s) and was measured by the tangent method.
- e. Analysis Rate: The chromatographic time per injection was 40 min. Two reference solutions were analyzed prior to injecting the prepared muscle/fat samples and two were analyzed during the day (160 min total time). Thus, a total of eight prepared muscle/fat samples (320 min total time) can be analyzed for RDX, DNT, and TNT levels during an 8-hr day.
- 2. CHEMISTRY: RDX, DNT, and TNT are munition compounds manufactured at various installations. The possible environmental contamination of these compounds, particularly in plants and animals, is of concern. The

determination of muscle/fat levels of RDX, DNT, and TNT in animals may provide information on the extent and level of contamination at the production facilities and in the surrounding area. Each of these munitions has a sufficient UV chromophore at 254 nm to allow UV detection and quantification. These munitions are of intermediate polarity and have limited water solubility. Normally, biological matrices have a large number of components which will interfere with the detection and quantification of low levels of compounds. Reverse phase HPLC is capable of separating compounds with similar chemical and physical properties; the elution order of the technique is based on the polarity of the compounds, the more polar compounds being eluted first. Thus, by extracting the biological matrix, i.e., muscle/fat, with an intermediate polarity solvent and analyzing the extract by HPLC, a simple sample preparation and analysis system may be defined for the determination of RDX, DNT, and TNT in muscle/fat samples.

3. APPARATUS:

a. <u>Instrumentation</u>: A Waters isocratic liquid chromatographic system consisting of a Model 6000A pump, Model U6K injector, and Model 440 UV detector. A general purpose centrifuge (Dynac, Clay Adams 0101) with a 24-place head.

b. HPLC Parameters:

- 1. Column: Spherisorb ODS, 5 μ , 250 x 4.0 mm ID.
- Eluent: 28% acetonitrile in 1% acetic acid in water. NOTE: 30% acetonitrile eluent was employed for precision and accuracy evaluations of reference solutions. The 28% acetonitrile eluent was required to obtain better resolution of RDX in the muscle/fat samples.
- 3. Flow rate: 1.5 ml/min.
- 4. Detector: UV, 254 nm.
- 5. Internal standard: Pripiophenone, 1,000 ng/ml.
- Injection volume: 50 to 100 μl.
- 7. Retention volumes and times: RDX, 18 ml, 12 min; DNT. 43.5 ml, 29 ain; TNT, 48 ml, 32 min; and IS, 33 ml, 22 min in the 28% acetonitrile eluent. NOTE: Slight changes in the retention indices may occur with fresh eluent or a change in column.

A representative HPLC chromatogram for RDX, DNT, and TNT is shown in Figure 1. Also included on the chromatogram are peaks for the internal standard (propiophenone) and 2,4,6-trinitrophenylmethylnitramine (tetryl).

c. Laboratory Glassware and Equipment:

- 1. Culture tubes (Pyrex) with Teflon-lined screw caps.
- 2. Volumetric flasks (100 ml).
- 3. Volumetric syringes (0-100 μ 1, 0-500 μ 1, and 0-1,000 μ 1).
- 4. Automatic pipetter (0-5 ml).
- 5. Six speed Waring-type blender with glass container.
- 6. Teflon-glass, motor-driven tissue homogenizer.
- 7. Filtering apparatus including filter holders, 5-ml disposable syringes, and 0.45 μ Fluoropore filters.
- 8. Inert gas (nitrogen) drying train with 12 ports.

d. Chemicals

- 1. RDX, DNT, and TNT SARMS, obtained from the U.S. Army Toxic and Hazardous Materials Agency.
- 2. Propiophenone (internal standard), analytical grade.
- 3. Acetonitrile, "Distilled in Glass" grade; and acetic acid, ACS grade.
- 4. High purity water from a Milli-Q water purification system.

4. STANDARDS:

- a. Stock: Weigh approximatley 20 mg of RDX, DNT, TNT, and tetryl SARM or interim SARM into separate 100-ml volumetric flask. Dissolve each compound in acetonitrile and dilute to volume. The concentration of each compound is 200 μ g/ml. Quantitatively pipette 20 ml from each stock above into a 100-ml volumetric flask and dilute to volume with distilled water. Concentration of each compound is 40 μ g/ml.
- b. Working: Pipette 10 ml of the 40 μ g/ml each compound stock into a 100-ml volumetric flask and dilute to volume with high purity water. Concentration of each compound is 4 μ g/ml. Reference solutions were prepared from this stock as follows:

µl Working Stock	µl IS Stock*	µl 10% Acetonitrile in Water	Concentration Each Compound (ng/ml)
500	250	250	2,000
375	250	375	1,500
250	250	500	1,000
125	250	625	500
25	250	725	100
0	250	750	0

^{*} Prepration of IS stock given in "c."

These reference solution concentrations were employed for precision and accuracy evaluations of the analytical technique. During the determination of RDX, DNT, and TNT in muscle/fat samples, reference solution-concentrations of 100, 200, 400, 1,000 and 2,000 ng/ml of each compound were used.

c. Internal Standard Stock: Weigh 10 mg propiophenone into a 100-ml volumetric flask and dilute to volume with acetonitrile (concentration, 100 μ g/ml). Quantitatively pipette 20 ml of the 100 μ g/ml stock into a 100-ml volumetric flask and dilute to volume with acetonitrile (concentration, 20 μ g/ml). A final working solution of 4.0 μ g/ml is prepared by pipetting 20 ml of the 20 μ g/ml stock into a 100-ml volumetric flask and diluting to volume with acetonitrile.

5. PROCEDURE FOR MUSCLE/FAT SAMPLE

- a. <u>Muscle/Fat Sample Preparation</u>: The procedure employed to prepare muscle/fat samples for the HPLC-UV determination of RDX, DNT, and TNT consisted of:
- 1. Place approximately 50 g of the muscle/fat composite tissue into a Waring-type blender and blend for 1 min on speed six (liquify). NOTE: To completely liquify the muscle/fat sample, the sides of the glass containers are scraped with a spatula.
- 2. Transfer approximately 10 g of the liquified muscle/fat sample to a motor-driven Teflon-glass homogenizer.
- 3. Homogenize the sample for 30 sec to disrupt the cell walls of the muscle/fat sample. NOTE: The homogenization step is necessary to solubilize the intercellular compounds prior to the extraction step.
- 4. Repeat steps 3 and 4 on the remaining liquidified muacle/fat sample and combine the homogenized samples.
- 5. Accurately weigh 12 2.0 g homogenized muscle/fat sample aliquots into culture tubes with Teflon-lined screw caps.

- 6. Spike two each of the homogenized muscle/fat aliquots with the working stock (4 μ g/ml each RDX, DNT, and TNT; at the following levels: 2,000 ng (500 μ l), 1,000 ng (250 μ l), 400 ng (100 μ l), 200 ng (50 μ l), and 100 ng (25 μ l). The remaining two muscle/fat aliquots served as blanks.
- 7. Adjust the sample volume to 2.5 ml with high purity water containing 10% acetonitrile assuming 2 g muscle/fat sample equals 2 ml
- 8. Add 6.0 ml acetonitrile to each aliquot and mix thoroughly on a vortex mixer for at least 2 min.
 - 9. Centrifuge at 1,000 rpm for 20 min.
- 10. Transfer the acetonitrile layers to properly labeled culture tubes with Teflon-lined screw cap.
- 11. Repeat the acetomitrile extraction using 3 ml acetomitrile and combine the extracts in the appropriate tubes.
- 12. Concentrate the acetonitrile to approximately 250 μ l at room temperature under a stream of nitrogen. NOTE: Do not heat the samples during the evaporation steps or loss of RDX, DNT, and TNT may occur.
- 13. Add 250 μl IS stock (1,000 ng) to each extracted muscle/fat sample and mix thoroughly.
- 14. Add 500 μ l high purity water to each sample. NOTE: Final volume of the prepared samples is 1.0 ml.
- 15. Filter the solutions through a 0.45 μ Fluoropore filter into culture tubes.
- 16. Analyze a 50- to 100-µl aliquot of each prepared muscle/fat sample by HPLC.
- b. Calibration: The reference solutions described in Section 4.b were prepared and analyzed in quadruplicate. The relative weight response (RWR) (Eq. 1) of each compound was calculated and the average RWR utilized to determine the nanograms of each compound in every reference solution (Eq. 2). The nanograms found were plotted against the nanograms added. The slope, intercept, and correlation coefficient for each compound were determined. The data are summarized in Table 1 and include the average value at each level for each compound, the standard deviation, coefficient of variation, and percent inaccuracy. The raw data and calculations are given in Table 8 of the Appendix.

 $RWR = \frac{\text{Peak Height Cpd}}{\text{Peak Height IS}} \times \frac{\text{ng/ml IS}}{\text{ng/ml Cpd}}$ (Eq. 1)

- c. <u>Muscle/Fat Sample Analysis</u>: The muscle/fat samples prepared as outlined in Section 5.a were injected onto the HPLC. The peak height of each compound was measured and recorded. Muscle/fat samples were prepared and analyzed on four succeeding days.
- CALCULATION: The level of each compound in the 2.0 g muscle/ fat samples was determined using the relative weight response to an internal standard method. The RWR values (Eq. 1) for the reference solutions analyzed with a day set of muscle/fat samples were calculated and the average values for RDX, DNT, and TNT determined. These RWR values were employed to calculate the level of RDX, DNT, and TNT in the muscle/fat samples (Eq. 2) where the nanograms per milliliter term represents the level found in the 2.0 g sample. The nanograms per gram of each compound were determined by dividing the level found by the sample weight. The results for the duplicate determinations of RDX, DNT, and TNT in muscle/fat samples at five different levels on four succeeding days are summarized in Tables 2, 3, and 4. The average level found, the standard deviation, coefficient of variation, and percent inaccuracy are also included. A linear regression evaluation of the results was made; and the slope, intercept, and correlation coefficient are given in the tables. The level of each compound found in the muscle/fat samples was plotted against the amount added and these data are shown in Figures 2 through 4. The range presented at each level is two standard deviations cr the average level found. A graphic presentation of the standard deviation, coefficient of variation, and percent inaccuracy for the determination of RDX, DNT, and TNT in muscle/fat samples is given in Figures 5 through 7, respectively. Representative HPLC chromatograms are shown for a muscle/fat sample blank (Figure 8), a 100 ng/2 g (Figure 9), and a 1,000 ng/2 g (Figure 10) each compound muscle/fat sample. The raw data and calcualtions for the muscle/fat sample determinations are given in Tables 9 through 12 in the Appendix.
- 7. STATISTICAL EVALUATION OF DATA: A statistical evaluation of the data obtained for the determination of RDX, DNT, and TNT in muscle/fat samples (Tables 2, 3, and 4) by the Hubaux and Vos detection limit program was made at the U.S. Army Toxic and Hazardous Materials Agency. The results of these evaluations are given in Table 5 for RDX, Table 6 for DNT, and Table 7 for TNT. The data obtained for the blank muscle/fat samples were not included in any of the calculations. Detection limits for RDX and DNT as determined by the program were 62 and 66 ng/g, respectively, when the 1,000 and 500 ng/g data points were omitted. For TNT, the detection limit was 62 ng/g when the 1,000 ng/g data points were omitted. Removal of the 500 ng/g data points from the TNT detection limit calculation resulted in a detection limit below the lowest target concentration, 50 ng/g. The average nanograms per gram value found at each level for each compound was determined from the linear regression for the 40 data points (blank samples omitted) and the nanograms per gram added at that level. The standard deviation and percent imprecision (coefficient of variation) at each level were calculated based on this average nanograms per gram value found. Thus, these values and the

values given in Tables 2, 3, and 4 for these terms (based on the average of the eight assays at each level) are not comparable. The percent inaccuracy term was calculated from the average of the eight data points at each level, and thus agrees closely with the values in Tables 2, 3, and 4.

HPLC Condicions

Column: Spherisorb ODS, 5 μ , 250 x 4.6 mm ID

11

Eluent: 30% acetonitrile in

1% acetic in water
Flow Rate: 1.5 ml/min
Chart Speed: 0.1 in./min
Detector: UV, 254 nm

Sample Characteristics

Concentrations: RDX, DNT, TNT,
and tetryl - 500 ng/ml;

IS - 1,000 ng/ml

Injection volume: 70 µl Attenuation: 0.01 X

Retention Indices

	Retention Volume	Retention Time
Compound	(m1)	(min)
RDX	13.5	9
IS	22.5	15
DNT	31.5	21
TNT	34.5	23
tetryl	39	26

Figure 1 - HPLC Separation of RDX, DNT, TNT, and Tetryl SARMS and Propiophenone (IS)

TABLE 1

LINEARITY AND PRECISION OF THE HPLC-UV DETERMINATION OF SARM REFERENCE SOLUTIONS OF RDX, DNT, AND THE

			ng/mi	ng/mi Detected			Standard	Coefficient	Percent
Compound		Ψ	æl	ပ၊	ā	Average	Deviation	of Variation	Inaccuracy
ROX		ND	S	Ş	æ	ı	1	t	١
	100	109		105	103	108	4.4.9	5.4	*
	200	517	209	667	490	204		2.3	* +
	1,000	960	950	923	985	955		2.7	
	1,500	1,551	1,547	1,435	1.444	1.494	£ 63	6.4	7
	2,000	2,031	2,069	1,906	1,924	1,983		4.0	8.0 -
TNO	0	Ş	8	2	£	•	ı	ſ	•
	100	113	109	109	100	108	41 41		4
	200	667	490	475	483	487	± 10.2	2.1	
	1,000	992	1,011	981	1,032	1,004		2.2	4.0
	1,500	1,500	1,470	1,461	1,439	1.468	+ 25	1.7	
	2,000	1,968	1,982	1,934	1,901	1,946	+ 36	1.9	- 2.7
TWI	0	S.	8	2	æ	•	ŧ	1	•
	100	107	112	112	100	108	+ 5.7	ر در	\ \ \ \ +
	200	495	619	484	484	486	•	1.6	
	1,000	926	686	196	166	977		2.0	
	1,500	1,498	1,508	1,471	1,432	1,478	+ 34	2.3	
	2,006	2,011	2,015	1,957	1,879	1,966	+ 63	3.2	- 1.7
Linear RDK:	Linear Regression RDX: w = 0 088× + 0 6	4					a Average	Average = \(\Sigma x \) = x	
DNT:		fici fici	ent - 0.998 ent - 0.999	8 6			b Standard c Coefficie d Percent	Standard deviation = $(2(x-x)^2/n-1)^{1/2}$ Coefficient of variation = $\sigma/x \times 100$ Percent inaccuracy = $\frac{x-ng}{ng} \frac{added}{added} \times 100$	(2 x-x ² /n-1) ^{1/z} = 10n = 0/x x 100 x - ng added x 100 ng added x 100
7 11 1		l.2 coefficien	ıt - 0.999	60			e ND = Not	ND = Not detectable, less	: than 20 ng/m]

TABLE 2

HPLC-UV DETERMINATION OF RDX IN MUSCLE/FAT SAMPLES

Added (ng/k) As a consist of bay 1 Day 2 Day 4 As a consist of designation of variation of varia	Amount				Level Fo	E I	(8				4		7
A B A B A verage* Deviation of Variation of Variation ND ND ND ND ND - - - - 58 55 54 56 56 ± 2.2 3.9 104 98 114 114 105 110 108 ± 5.6 5.2 209 208 210 206 204 209 198 ± 27 14 480 468 482 512 508 453 494 ± 27 5.5 958 961 1,014 1,024 1,076 798 969 ± 86 8.9		Day	-	Day	2		. 3		7	,	Standard	Coefficient	Percent
ND ND ND ND - <th></th> <th>V</th> <th>8</th> <th>V</th> <th>æ</th> <th>1</th> <th>æ</th> <th></th> <th>æ</th> <th>Average</th> <th>Deviation</th> <th>of Variation</th> <th>Inaccuracy</th>		V	8	V	æ	1	æ		æ	Average	Deviation	of Variation	Inaccuracy
58 55 56 56 56 52 3.9 + 1 104 98 114 116 105 110 108 ± 5.6 5.2 + 209 208 206 204 209 198 ± 27 14 - 480 468 468 453 494 ± 27 5.5 - 958 961 1,014 1,024 1,076 798 969 ± 86 8.9 -		XO.	Ş	£	G X		Ð	QN.	ex	•	•	•	ı
104 98 114 115 105 110 108 ± 5.6 5.2 + 209 208 210 206 204 209 198 ± 27 14 - 480 468 482 512 508 453 494 ± 27 5.5 - 958 961 1,014 1,024 1,076 798 969 ± 86 8.9 -		52	55	28	55		55	24	26	98	± 2.2	3.9	+ 12
209 208 210 206 204 209 198 ± 27 14 - 480 468 482 512 508 453 494 ± 27 5.5 - 958 961 1,014 1,024 1,076 798 969 ± 86 8.9 -		112	108	104	86			105	110	108	± 5.6	5.2	+ 8.0
524 526 480 468 482 512 508 453 494 ± 27 5.5 - 1,017 906 958 961 1,014 1,024 1,076 798 969 ± 86 8.9 -		206	130	209	208		206	204	209	198	± 27	14	- 1.0
1,017 906 958 961 1,014 1,024 1,076 798 969 ± 86 8.9 -		\$24	526	480	897	482	512	808	453	767	± 27	5.5	- 1.2
		1,017	906	928	961	1,014		1,076	798	696	÷ 86.	8.9	- 3.1

Note: Linear regression: y = 0.965x + 6.5 Correlation coefficient: 0.994

Average = $\sum x/n = x$

b Standard deviation = $(\Sigma | \overline{x} - x|^2/n-1)^{\frac{1}{2}} = \sigma$

c Coefficient of variation = $\sigma/\bar{x} \times 100$

d Percent inaccuracy = x - ng added x 100

e ND - Not detectable, less than 10 ng/g.

1

TABLE 3

HPLC-UV DETERMINATION OF DNT IN MUSCLE/FAT SAMPLES

Amount				evel For	Level Found (ng/g)	0				٩	0	Parcent
Added	Day	1 0	Day	2 2	Day 3	3 B	Day	Day 4	Average	Standard	Coefficient of Variation	Inaccuracy
(8/8u)	<	٩	اء								!	
c	2	Ð	£	Ø	足	£	£	Ŕ	•	ı	•	•
, ç	77	94	84	97	77	94	77	Ş	75	± 2.3	5.3	- 12
5	. 3	48	6	80	78	82	82	80	83	± 2.9	3.5	- 17
200	132	108	156	176	164	170	162	168	154	± 23	15	- 23
000	420	386	404	384	375	422	454	368	400	± 20	4.9	- 20
1,000	709 796 826 862	962	826	862	826	833	978	266	783	¥ 99	13	- 22

Linear regression: y = 0.781x + 3.7 Correlation coefficient: 0.990 Note:

a Average = $\sum x/n = x$

b Standard deviation = $(\Sigma | \overline{x} - x |^2/n-1)^{\frac{1}{2}} = \sigma$

c Coefficient of variation = $\sigma/x \times 10^{\circ}$

d Percent inaccuracy = x - ng added x 100

e ND - Not detectable, less than 10 ng/8.

TABLE 4

HPLC-UV DETERMINATION OF THE IN MUSCLE/FAT SAMPLES

•	Percent	Insccuracy	•	. 8.0	- 13	- 16	- 14	- 15
	Coefficient	of Variation	•	6.5	4.2	9.6	6.1	3.0
•	Standard	Deviation	•	± 3.0	1 3.7	± 16	± 26	± 25
	,	Average	•	94	87	169	432	850
	7	m	æ	77	88	172	414	873
	Day	Y B	£	3	8	160	428	881
		m	£	44	87	170	797	862
Found (ng/g)	Day 3	V	£	42	86	170	394	838
Level For	2	æ	£	87	96	178	437	832
	Day	V	Ę	20	96	199	420	872
	1	20	2	84	78	146	434	824
	Day	V	¥Q.	46 48 50 48	38	154	607	816
			0		100	200	200	1,000
					٠			12 164

Note: Linear regression: y = 0.850x + 1.8 Correlation coefficient: 0.999

a Average = $\sum n/n = \sum n$

b Standard deviation = $(\Sigma | \bar{x} - x |^2/n-1)^{\frac{1}{3}} = \sigma$

Coefficient of variation = $\sigma/\bar{x} \times 100$

d Percent inaccuracy = x ng added x 100

e. ND - Not detectable, less than 10 ng/g.

J

]

Figure 2 - Determination of RDX in Muscle/Fat Samples

Figure 3 - Determination of DNT in Muscle/Fat Samples

Figure 4 - Determination of TNT in Muscle/Fat Samples

Figure 6 - Coefficient of Variation for RDX, DNT, and TNT in Muscle/Fat Samples

HPLC Conditions:

Column: Spherisorb ODS, 5 μ,
250 x 4.6 mm ID

Eluent: 28% acetonitrile in
1% acetic acid in water

Flow Rate: 1.5 ml/min

Chart Speed: 0.1 in/min

Detector: UV, 254 nm

Sample Characteristics:

2.0 g muscle/fat extracted with 6 ml and then 3 ml acetonitrile. Acetonitrile concentrated to about 250 µl and then diluted to 1.0 ml with IS stock and water.

IS Concentration: 1,000 ng/ml Injection Volume: 70 µl Attenuation: 0.01 X

IS

Figure 8 - HPLC Analysis of Blank Muscle/Fat Sample for RDX, DNT, and TNT Method Development. "X" indicates eluent change to 100% acetonitrile. Arrows indicate elution position of RDX, DNT, and TNT.

HPLC Conditions:

Column: Spherisorb ODS, 5 µ,
250 x 4.6 mm ID

Eluent: 28% acetonitrile in
1% acetic acid in water

Flow Rate: 1.5 ml/min

Chart Speed: 0.1 in/min

Detector: UV, 254 nm

Sample Characteristics:

2.0 g muscle/fat containing 50 ng/g RDX, DNT, and TNT extracted with 6 ml and then 3 ml acetomitrile. Acetomitrile concentrated to about 250 µl and then diluted to 1.0 ml with IS stock and water.

IS Concentration: 1,000 ng/ml Injection Volume: 70 μ l Attenuation: 0.01 X

Figure 9 - HPLC Analysis of Muscle/Fat Sample Containing 50 ng/g RDX, DNT, and TNT.
"X" indicates eluent change to 100% acetomitrile.

HPLC Conditions:

Column: Spherisorb ODS, 5 μ,
250 x 4.6 mm ID

Eluent: 28% acetonitrile in
1% acetic acid in water

Flow Rate: 1.5 ml/min

Chart Speed: 0.1 in/min

Detector: UV, 254 nm

Sample Characteristics

2.0 g muscle/fat containing
500 ng/g RDX, DNT, and TNT
extracted with 6 ml and then
3 ml acetonitrile. Acetonitrile
concentrated to about 250 µl
and then diluted to 1.0 ml
with IS stock and water.

IS Concentration: 1,000 ng/ml Injection Volume: 70 µl Attenuation: 0.01 X

Figure 10 - HPLC Analysis of Muscle/Fat Sample Containing 500 ng/g RDX, DNT, and TNT.
"X" indicates eluent change to 100% acetonitrile.

TABLE 5

STATISTICAL EVALUATION OF RDX IN MUSCLE/FAT SAYPLE DATA BY THE HUBAUX AND VOS DETECTION LIMIT PROGRAM

Number of Data Points	Linear Regression		Correlation	Degrees of Freedom	مو	y Intercept	Detection Limit
40 32 24	y = 0.962x + 9.2 y = 0.971x + 7.6 y = 0.939x + 10.9	+ 9.2 + 7.6 + 10.9	0.993 0.994 0.967	38 30 22	1.686 1.697 1.717	80 41 41	146 7 69 62
ng/g RDX Added	Average ng/g Found	Standard Deviation	Percent ⁸ Imprecision	Percent non Inaccuracy	at h		
50 100 200 500 1,000	57 105 202 490 971	# # # # # # # # # # # # # # # # # # #	1.5 1.9 2.1 3.4	+ + + 1 1 8 12	12 8.1 1.1 1.2 3.1		

Number of data points - data points used to calculate linear regression and detection limits; the blank samples analyzed were not included in these calculations; 40 - all data;

32 - 1,000 ng/g samples omitted; 24 - 1,000 ng/g and 500 ng/g samples omitted. - 2 tail p level (usually 0.1, each confidence band is 0.05 so total p = 0.1).

y intercept - intercept on y-axis of upper confidence limit line.

Detection limit - x-intercept of y-intercept and lower confidence limit line. Average ng/g found - average at each level determined from linear regression

Standard deviation - determined from average value (e above) and observed value. Percent imprecision - standard deviation divided by average value times 100%. Percent inaccuracy - determined from the average values of the eight observed equation for 40 points.

Inaccuracy = Average observed values - level added x 100 level added

Values at each level

TABLE 6

STATISTICAL EVALUATION OF DNT IN MUSCLE/FAT SAMPLE DATA BY THE HUBAUX AND VOS DETECTION LIMIT PROGRAM

	Detection	197 67 66						
•	y Intercept	82 29 33						
	الم	1.686 1.697 1.717	Percent ^h Inaccuracy	11	17	23	20	22
	Degrees of Freedom	38 30 22		•	•	•	•	1
INE NUBRUA AND VOS DESECTION ESSES.	Correlation Coefficient	0.988 0.994 0.964	Percent ⁸ Imprecision	2.0	1.3	5.6	1.9	8.4
E HUBAUA AM			Standard Deviation	+ 0.9	+	+ 8.7	± 7.4	± 38
	Linear Regression	y = 0.781x + 4.3 y = 0.793x + 2.2 y = 0.731x + 8.8	Average ng/g Found	73	82	161	395	785
	Number of Data Points	40 24 24	ng/g DNT Added	20	100	200	200	1,000

Number of data points - data points used to calculate linear regression and detection limits; the blank samples analyzed were not included in these calculations; 40 - all data;

32 - 1,000 ng/g samples omitted; 24 - 1,000 ng/g and 500 ng/g samples omitted. - 2 tail p level (usually 0.1, each confidence band is 0.05 so total p = 0.1).

intercept - intercept on y-axis of upper confidence limit line.

Detection limit - x-intercept of y-intercept and lower confidence limit line. Average ng/g found - average at each level determined from linear regression

Standard deviation - determined from average value (e above) and observed value. equation for 40 points.

Percent inaccuracy - determined from the average values of the eight observed Percent imprecision - standard deviation divided by average value times 100%.

values at each level

% Inaccuracy = Average observed values - level added x 100

TABLE 7

7

STATISTICAL EVALUATION OF THE IN MUSCLE/FAT SAMPLE DATA BY
THE HUBAUX AND VOS DETECTION LIMIT PROGRAM

	Linear Regre	Regression	Correlation Coefficient	Degrees of Freedom	الم	y Intercept	Detection Limit
77 37 37 37	y = 0.849x + 2.5 y = 0.861x - 0.5 y = 0.820x + 4.9	+ 2.5 + 4.9	0.998 0.995 0.985	38 30 22	1.686 1.697 1.717	33 27 23	71 62 43
ng/g INT Added	Average ng/g Found	Standard Deviation	Percent ⁸ Imprecision	Percent no Inscuracy	nt h		
50 100 200 500 1,000	45 87 172 427 852	# # # # # 6.1 9.9	2.5 1.6 2.3 1.1	- 9.0 - 13 - 16 - 14	0.		

Number of data points - data points used to calculate linear regression and detection limits; the blank samples analyzed were not included in these calculations; 40 - all data; 32 - 1,000 ng/g samples omitted; 24 - 1,000 ng/g and 500 ng/g samples omitted. - 2 tail p level (usually 0.1, each confidence band is 0.05 so total p = 0.1). Standard deviation - determined from average value (e above) and observed value. Percent inaccuracy - determined from the average values of the eight observed Percent imprecision - standard deviation divided by average value times 100%. Detection limit - x-intercept of y-intercept and lower confidence limit line. Average ng/g found - average at each level determined from linear regression y intercept - intercept on y-axis of upper confidence limit line. equation for 40 points. values at each level

% Inaccuracy = Average observed values - level added x 100

APPENDIX

METHOD DEVELOPMENT FOR THE DETERMINATION OF RDX, DNT, AND TNT IN MUSCLE/FAT SAMPLES

RAW DATA AND CALCULATIONS

TABLE 8

LINEARITY AND PRECISION OF RDX, DNT, AND TNT DETERMINATION

BY HIGH PERFORMANCE LIQUID CHROMATOGRAPHY

rted Bl	TAT					•	58 2,011						32 2,015					_						_	
Calculate ng/ml	TNO						1,968						1,982							æ					
	RDX	8	109	517	096	1,551	2,031	æ	114	509	950	1,547	2,069	Q.X	105	667	923	1,435	1,906	. ES	103	067	985	1,444	1,924
eight	TAT	•	0.95	0.88	0.85	0.89	0.89	ı	1.00	0.85	0.88	0.89	0.90	1	1.00	0.86	0.86	0.87	0.87	,	0.89	98.0	0.89	0.85	0.84
Relative Weight Response	DNT	•	1.21	1.07	1.06	1.07	1.05		1.17	1.05	1.08	1.05	1.06		1.17	1.02	1.05	1.04	1.03	ı	1.07	1.03	1.10	1.03	1.02
Rela	RDX	•	1.03	0.98	0.91	0.98	96.0	1	1.08	0.97	0.90	0.98	0.93	•	1.00	0.95	0.88	0.91	0.91	٠	0.98	0.93	0.94	0.91	0.91
Internal Standard	Height	122	116	118	114	114	114	118	120	122	134	117	116	120	120	116	122	110	116	119	112	116	124	113	116
Sta	12	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
ght	TAL	~	11	52	16	152	204	%	12	52	118	157	208	۷ ۷	12	20	105	144	202	6	10	20	110	144	194
ak Height	E I	4	14	63	121	183	240	~	14	79	145	184	246	7	14	59	128	172	240	7	12	9	137	174	236
Pe	ž	~ 2	12	58	104	168	220	~	13	56	121	172	228	7	12	55	107	150	210	7	11	54	116	155	212
ng/ml Compound	Added	0	100	200	1,000	1,500	2,000	0	100	200	1,000	1,500	2,000	0	100	200	1,000	1,500	2,000	0	100	200	1.000	1,500	2,000
Reference Solution	Number	A-1	A-2	A-3	4-4	A-5	9-V	4	6-2	B- 3	B-4	B-5	B-6	<u>-</u> 5	C-2	C-3	7- 0	C-5	9-2	D-1	D-2	D-3	7-0	D-5	9-0

TABLE 8 (concluded)

Relative Weight Response

	Average	Standard Deviation	Relative Standard Deviation
RDX	0.95	± 0.05	5.2%
DNT	1.07	± 0.05	4.9%
TNT	0.89	± 0.04	5.1%

TABLE 9

DETERMINATION OF RDX, DNT, AND THT IN MUSCLE/FAT SAMPLES

DAY 1 SAMPLES

	•					Inte	rne 1 ^b			
Samo	18/8" Component	. •	A	eak Hei	ght	Star	iderd		n8/8°	
Number	Added	Muscle/Fat	S X	TAI	RDX DNT TNT	ng/ml	ng/ml Reight	RDX	DNT	E
Dey 1A-0	0	2.0	~	%	2	1.000	101	Pe	£	ę
Day 1A-100	20	2.0	11.0	10.2	7.8	1,000	116	52	42	97
Day 1A-200	100	. 2.0	24.0	20.4	15.0	1,000	116	112	78	e0 60
Day 1A-400	200	2.0	45.0	32.6	26.8	1,000	119	206	132	154
Day 1A-1000	200	2.0	109	99.0	9.19	1,000	113	524	524	607
Dey 1A-2000	1,000	2.0	234	184	149	1,000	125	1,017	709	816
Day 1B-0	0	2.0	< 2	2	< 2	1,000	114	S	Š	Ş
Day 1B-100	20	2.0	12.6	12.0	8.6	1,000	124	55	97	87
Day 1B-200	. 100	2.0	24.0	21.0	14.6	1,000	120	108	84	78
Day 1B-400	200	2.0	27.0	25.2	24.0	1,000	113	130	108	146
Day 1B-1000	200	2.0	116	96.4	76.0	1,000	120	526	386	787
Day 1B-2000	1,000	2.0	180	178	130	1,000	108	906	962	824

TABLE 9 (concluded)
REFERENCE SOLUTIONS

	lative Weight	RDX DNT TNT	1.03 0.71	1.04 0.76	1.03 0.70	1.05 0.74	1.05 0.73
	Re.	RDX	0.92	0.96	0.91	0.92	0.91
ernal	ndard	ng/ml Height	135	135	131	133	138
Int	Sta	ng/ml	1,000	1,000	1,000	1,000	1,000
	ght	RDX DNT TNT	0.96	10.2	182	19.8	0.04
	eak Hei (mm)	THO	139	14.0	269	28.0	58.0
	ച്	XOX X	124	13.0	237	24.6	20.0
G	ng/ml Compound	Added	1,000	160	2,000	200	700
	Reference Solution	Number	Std - Day 1-4	Std - Day I-1	Std - Day I-5	Std - Day 1-2	ord - nay 1-3

ng/g Compound added - nanograms of RDX, DNT, and TNT added per gram of muscle/fat sample. Internal standard - compound (propiophenone) added to muscle/fat sample after sample preparation for ng/g detected - nanograms of RDX, DNT, and TNT detected in the muscle/fat sample calculation of data.

0.73

1.04

.0.92

Average

ng combound/g = Peak Height Compound x average RWR compound x Sample Weight (g)

d ND - not detected, less than 10 ng/g. e Relative weight response - RWR

RWR = Peak Height compound x ng/ml IS Peak Height IS ng/ml compound

TABLE 10

DETERMINATION OF RDX, DNT, AND TNT IN MUSCLE/FAT SAMPLES

DAY 2 SAMPLES

						Inte	rnel		•	
	ng/g		~	esk Heig	tht	Star	ndard		28/8u	
Sample	Commonne	8		Î			Pcak	Ā	etected	
Number	Added	Muscle/Fat	RDX	E	RDX DNT TNT	ng/ml	ng/ml Height	KDX	THO	FE
Day 2A-0	0	2.0	< 2	< 2	2	1,000	130	Pax	£	
Day 2A-100	20	2.0	13.0	11.5	8.2	1,000	114	28	87	
Day 2A-200	100	2.0	24.2	22.2	15.8	1,000	119	104	83	
Day 2A-400	200	0.0	6.67	39.2	33.8	1,000	120	209	156	
Day 2A-1000	200	2.0	115	104	73.0	1,000	122	480	404	
Day 2A-2000	1,000	2.0	207	192	137	1,000	110	958	826	872
Day 2B-0	0	2.0	< 2	2	~	1,000	122	æ	Q.	
Day 28-100	20	2.0	14.8	12.5	8.8	1,000	131	58	97	48
Day 28-200	100	2.0	26.0	22.8	17.2	1,000	135	98	80	
Day 2B-400	200	2.0	44.0	40.0	27.2	1,000	108	208	176	
Day 2B-1000	200	2.0	133	117	90.0	1,000	145	468	384	
Day 2B-2000	1,000	2.0	226	217	159	1,000	120	961	862	

TABLE 10 (concluded)

REFERENCE SOLUTIONS

	ng/ml ³	ă.	eak Heig	ht	Inte	rnal b dard Peak	Rela	tive Weig Response	ghte	
Reference Solution Number	Compound	SOX N	RDX DNT TN	TNT	ng/ml	Height	XOX	i i	TAT	
Std - Day 2-4 Std - Day 2-2 Std - Day 2-5 Std - Day 2-2 Std - Day 2-1 Std - Day 2-1	1,000 200 2,000 200 100	120 25.8 254 26.6 14.0	138 30.8 300 30.0 15.0	96.0 21.0 208 19.0	1,000 1,000 1,000 1,000	1,000 134 1,000 144 1,000 146 · 1,000 145 1,000 142	0.90 0.90 0.88 0.92 0.99	.90 1.03 0. .90 1.07 0. .88 1.04 0. .92 1.04 0.	0.72 0.73 0.72 0.66 0.72	
•						Average	0.91	1.05	99.0	

ng/g Compound added - nanograms of RDX, DNT, and TNT added per gram of muscle/fat sample. Internal standard - compound (propiophenone) added to muscle/fat sample after sample preparation for

ng/g detected - nanograms of RDX, DNT, and TNT detected in the muscle/fat sample calculation of data.

ng compound/g = Peak Height Compound x average RWR compound x Sample Weight (g)

ND - not detected, less than 10 ng/g. Relative weight response - NWR

RWR = Peak Height compound x ng/ml IS RwR = Peak Height IS ng/ml compound

TABLE 11

DETERMINATION OF RDX, DNT, AND TNT IN MUSCIE/FAT SAMPLES

DAY 3 SAMPLES

			E		욧	42	86	170	394	838		웆	ŧ	87	170	462 862
	ng/g ^c	etected	TNO		£	42	,† ∞	164	375	826		2	97	82	0/1	8 33
			ZQX X	ָרָי י	QN	28	114	210	482	1,014	ļ	Q :	SS.	114	513	1,024
ernal ^b	Standard	reak	Height	0 70	30.7	661	132	124	129	174	711	120	120	126	130	121
Int	Sta	/	ng/m1	1,000	0001	000	1,000	1,000	1,000	1,000	1,000	1.000	1,000	1,000	1,000	1,000
•	reak Height (mm)	Į.		< 2	7.2	17.0	31.5	76.2	156)	< 7	8.6	16.8	32.0	0 06	157
	reak He (mm)	E		7	10.5	23.8	43.2	104	219		4 2	12.8	22.6	45.8	117	216
	İ	S X		~ 5	12.2	27.2	47.2	113	229		~ 5	13.0	27.0	47.0	121	. 077
	•6	Muscle/Fat		2.0	2.0	2.0	2.0	2.0	2.0	•	5.0	7.0	0.6	7.0	2.0	i
ng/g*	Compound	Vaded	•) V	5 5	200	200	200	7,000	•	° 5	8 5	200	200	1,000	
•	Number		Day 3A-0	Day 3A-100	Day 3A-200	Day 3A-400	Day 34-1000	Day 34-2000	000* 100 6-		Day 3B-100					

TABLE 11 (concluded)

REFERENCE SOLUTIONS

					Inte	rnal			•	
	ne/m]	P	ak Heig	ht	Stan	dard	Rela	tive Weig	ght	
Deference Solution	Compound					Peak		Response		
Number Number	Added	XOX	RDX DNT TNT	TEL	ng/ml	ng/ml Height	XOX	RDX DNT TNT		
	000	761	147	104	1,000	142	0.87	1.04	0.73	
Uay	000,1	51 2	61.5	73.2	1,000	142	0.00	1.08	97.0	
Day S	200	13.6	14.2	10.01	1,000	129	1.01	1.10	0.78	
C C	100	25.5	305	213	1,000	143	0.89	1.07	0.75	
Std - Day 3-3 Std - Day 3-3	7,00	53.0	64.4	45.2	1,000	149	0.89	1.08	0.76	
						Average	0.91	1.07	0.75	

ng/g Compound added - nanograms of RDX, DNT, and TNT added per gram of muscle/fat sample. Internal standard - compound (propiophenone) added to muscle/fat sample after sample preparation for calculation of data.

ng/g detected - nanograms of RDX, DNT, and TNT detected in the muscle/fat sample

ng compound/g = Peak Height Compound x average RWR compound x Sample Weight (g)

ND - not detected, less than 10 ng/g. Relative weight response - RWR 70 0

RWR = Peak Height Compound x ng/ml IS Peak Height IS ng/ml compound

TABLE 12

DETERMINATION OF RDX, DNT, ALD TNT IN MSUCIE/FAT SAMPLES

DAY 4 SAMPLES

	•					Inte	ernel ^b			
Some	ng/g	,	Ā	eak Hei	Peak Height	Star	Standard		2 8/8 0	
N. Phot	omodino.	*		3			Peak		etected	
	Added	Huscie/Fat	XOX		E	ng/ml	Height	RDX	T C	TH.
Day 4A-0		2.0	′ ′	0	,	,		Pui	Ē	!
200) ·	•	,	7	3	707	QN.	5	3
DEN 44-100		2.0	12.8	12.8	& v.	1.000	134	30,	75	77
Day 4A-200		2.0	25.5	24.0	16.5	1,000	138	105	X CX	, g
Day 4A-400	200	2.0	50.5	0.57	33.0	1,000	171	700	162	70,
Dow 44-1003							•	*0*	707	707
Day 44-1000	,	2.0	125	127	87.5	1,000	140	208	424	428
Day 4A-2000		2.0	234	224	159	1,000	124	1.076	978	883
						•)	
Day 43-0	0	2.0	< 2	< 2	< 2	1,000	134	Ş	Ę	ğ
Day 4B-100	20	2.0	14.0	12.8	بر «	000	171	2 2	3 (g ,
Day 60-200	001					200	7 4.7	2	7*	74
2 4 40 400	100	7.0	29.6	26.5	19.8	1,000	154	110	80	88
Day 48-400	200	2.0	48.2	47.2	33.0	1,000	131	209	168	172
Cay 48-1000	200	2.0	128	133	111	1,000	161	257	388	717
Day 48-2000	1,000	2.0	275	238	250	1,000	196	798	266	873
						•			,	,

TABLE 12 (concluded)

REFERENCE SOLUTIONS

					Inte	rnal			•	
	ne/ml	Pe	ak Heig	ht		dard	Rela	tive Weig	ght	
Reference Solution	Compound					Peak		Response		
Number	Added	RDX	DNT	X DNT TNT		ng/ml Height	RDX	DY DNT THI	INI	
į	•	150	306	210		144	0.87	1.06	0.73	
A C	700,7		800	62.0		146	0.88	1.04	0.72	
- Uay	007	7.10	36.0	17:0		146	0.92	1.15	0.75	
- Day	100	13.3	2 6	2000		143	× × ×	1.06	0.73	
- Day	2,000	707	302	203		7,7	90.0	90.1	7.5	
- Dav	1,000	125	155	109		140	0.00	7.00		
Std - Day 4-4	1,000	127	156	109		146	0.86	1.06	0.75	
						Average	0.88	1.07	0.73	

ng/g Compound added - nanograms of RDK, DNT, and TNT added per gram of muscle/fat sample. Internal standard - compound (propiophenone) added to muscle/fat sample after sample preparation for

ng/g detected - nanograms of RDX, DNT, and TNT detected in the muscle/fat sample calculation of data.

ng compound/g = Peak Height Compound x average RWR compound x Sample Weight (g) ng/ml IS

d ND - not detected, less than 10 ng/g.

Relative weight response - RWR

RWR = Peak Height compound x ng/ml IS reght IS ng/ml compound

When will fire the property of the section in

APPENDIX E

IDENTIFICATION OR DEVELOPMENT OF CHEMICAL ANALYSIS METHODS FOR PLANTS AND ANIMAL TISSUE

METHOD REPORT NO. 4

METHOD DEVELOPMENT FOR THE DETERMINATION OF CYCLOTRIMETHYLENETRINITRAMINE (RDX), DINITROTOLUENE (DNT), AND TRINITROTOLUENE (TNT) IN ANIMAL LIVER SAMPLES

October 1980

Contract No. DAAK11-79-C-0110 MRI Project No. 4849-A

For

U.S. Army Toxic and Hazardous Materials Agency Dr. L. Eng, DRXTH-TE-A, Project Officer Aberdeen Proving Ground (EA), Maryland 21010 The views, opinions, and/or findings contained in this report are those of the authors and should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other documentation.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT HUMBER 2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
Technical Report No. 4	
4. TITLE (and Manual) Method Development for the	S. TYPE OF REPORT & PERIOD COVERED
Determination of Cyclotrimethylenetrinitramine	Method Report
(RDX), Dinitrotoluene (DNT), and Trinitrotoluene	August 1979 to December 1980
(TNT) in Animal Liver Samples	6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(a)	MRI Project No. 4849-A
· · · · · · · · · · · · · · · · · · ·	a. Contract on Grant House (45)
D. B. Lakings and O. Gan	DAAK11-79-C-0110
PERFORMING ORGANIZATION NAME AND ADDRESS Midwest Research Institute	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
425 Volker Boulevard	October 1980
Kansas City, MO 64110	
11. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE
U.S. Army Armament Research and Development	October 1980
Command, Aberdeen Proving Ground (Edgewood	13. NUMBER OF PAGES
Area), MD 21010	44
14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office)	18. SECURITY CLASS. (of this report)
	Unclassified
	15a DECLASSIFICATION/DOWNGRADING
IS. DISTRIBUTION STATEMENT (of this Report)	
Unlimited	
17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, If different for	na Report)
18. SUPPLEMENTARY NOTES	
19. KEY WORDS (Continue on reverse side if necessary and identify by block number	
	rmance Liquid Chromatography
Dinitrotoluene (DNT)	majore ouromoodropiny
Trinitrotoluene (TNT)	
Liver Level Determination	
20. ASTRACT (Continue on reverse elde if necessary and identify by block number)	
A high performance liquid chromatographic (HF tive determination of cyclotrimethylenetrinitramin and trinitrotoluene (TNT) in animal liver samples	ne (RDX), dinitrotoluene (DNT)

A high performance liquid chromatographic (HPLC) method for the quantitative determination of cyclotrimethylenetrinitramine (RDX), dinitrotoluene (DNT) and trinitrotoluene (TNT) in animal liver samples has been developed. The analytical system consists of an isocratic HPLC unit with a Spherisorb ODS, 5 μ , 250 x 4.6 mm ID column, an eluent of 30% acetonitrile in 1% acetic acid in water, and a flow rate of 1.5 ml/min. The compounds, including the internal standard (IS), propiophenone, have the following retention characteristics:

DD 1 JAN 73 1473 EDITION OF 1 HOV 45 IS OBSOLETE

UNCLASSIFIED

🚰 in the contract of the cont

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

SECURITY CLASSIFICATION OF THIS PAGE (Class Date Descrit)

Abstract (concluded)

RDX, 15 ml, 10 min; IS - 28.5 ml, 19 min; DNT - 37.5 ml, 25 min; and TNT -39 ml, 26 min (slight changes in the retention indices occurs with a fresh eluent or a change of columns) and are detected at 254 nm. Reference solutions of the munition compounds from 100 to 2,00 ng/ml gave a linear response and an HPLC peak was detected and quantifiable when 3 ng of analyte were injected on column. The animal liver samples were prepared by first homogenizing the matrix to obtain a uniform sample. Then, a 1.0-g liver sample was weighed, mixed with 1.0 ml 10% sodium chloride containing 1% acetic acid, and extracted with 3 x 4 ml toluene. The toluene extract(s) were combined and evaporated to dryness at room temperature under a stream of nitrogen. The residue was dissolved in 500 µl acetonitrile containing the IS (1,000 ng/ml) and the final volume adjusted to 1.0 ml with high purity water. After filtering the prepared sample through a 0.45 \mu Fluoropore filter, an aliquot was analyzed by HPLC. The analytical method was evaluated by preparing and analyzing duplicate liver samples containing 0, 50, 100, 200, 500 and 1,000 ng/g of each munition compound on four separate days. Linear regression of the data gave the following equations and correlation coefficients: RDX, y = 0.904x + 107, 0.988; DNT, y = 0.640x - 1.9, 0.995; and TNT, y = 0.521x - 1.96.2, 0.989, respectively. The average coffficient of variation and average percent inaccuracy for RDX, DNT, and TNT in liver samples were 16% + 74; 11% - 36; and 15% - 51, respectively. A liver component(s) had the same retention indices as RDX and interfered with the quantification of RDX. This HPLC peak(s) represented an average of 113 ng/g RDX in the eight blank liver samples analyzed. No interference was observed at the elution positions of DNT and TNT. A statistical evaluation of the data by the Hubaux and Vox detection limits program gave detection limits of 58 ng/g for RDX, 50 ng/g for DNT, and 50 ng/g for TNT for the HPLC determination of these compounds in animal liver samples. However, the 58 ng/g detection limit for RDX is unrealistic because the blank liver samples contained a component at the RDX elution position which represented 113 ± 18 ng/g RDX. Thus, a more representative detection limit for RDX in the liver matrix is 150 mg/g.

PREFACE

The report was prepared at Midwest Research Institute, 425 Volker Boulevard, Kansas City, Missouri 64110, under U.S. Army Toxic and Hazardous Materials Agency Contract No. DAAK11-79-C-0110, MRI Project No. 4849-A, "Identification or Development of Chemical Analysis Methods for Plants and Animal Tissues." Dr. Leslie Eng, DRXTH-TE-A, was the Project Officer for this research effort.

This work was conducted in the Analytical Chemistry Department Dr. James L. Spigarelli, Director. The research effort was directed by Dr. Duane B. Lakings, Program Manager and Senior Chemist, with assistance from Mr. Owen Gan, Assistant Chemist, and Ms. Mary Valla, Senior Technician. This report was prepared by Dr. Lakings and Mr. Gan.

MIDWEST RESEARCH INSTITUTE

Owen Gan

Assistant Chemist

Duane B. Lakings

Program Manager and Senior Chemist

Approved:

Jumest Aprigarelli

James L. Spigarelli, Director Analytical Chemistry Department

TABLE OF CONTENTS

		Page
1.	Application	1
2.	Chemistry	2
3.	Apparetus	2
4.	Standards	3
5.	Procedures for Liver Sample Determination	4
6.	Calculation	6
7.	Statistical Evaluation of Data	6
	endix - Method Development for the Determination of RDX, DNT,	25

LIST OF FIGURES

Number	<u>Title</u>	Page
1	MPLC Separation of RDX, DNT, TNT, and Tetryl SARMS and Propiophenone (IS)	8
2	Determination of RDX in Animal Liver Samples	13
3	Determination of DNT in Animal Liver Samples	14
4	Determination of TNT in Animal Liver Samples	15
5	Standard Deviation for RDX, DNT, and TNT in Animal Liver Samples	16
6	Coefficient of Variation for RDX, DNT, and TNT in Animal Liver Samples	17
7	Percent Inaccuracy for RDX, DNT. and TNT in Animal Liver Samples	18
8	HPLC Analysis of Blank Liver Sample for RDX, DNT, and TNT Method Development	19
9	HPLC Analysis of Animal Liver Sample Containing 100 ng/g RDX, DNT, and TNT	20
10	HPLC Analysis of Animal Liver Sample Containing 500 ng/g RDX, DNT, and TNT	21

LIST OF TABLES

Number	<u>Title</u>	Page
1	Linearity and Precision of the HPLC-UV Determination of SARM Reference Solutions of RDX, DNT, and TNT	9
2	HPLC-UV Determinations of RDX in Liver Samples	10
3	HPLC-UV Determinations of DNT in Liver Samples	11
4	HPLC-UV Determinations of TNT in Liver Samples	12
5	Statistical Evaluation of RDX in Liver Sample Data by the Hubaux and Vos Detection Limit Program	22
6	Statistical Evaluation of DNT in Liver Sample Data by the Hubaux and Vos Detection Limit Program	23
7	Statistical Evaluation of TNT in Liver Sample Data by the Hubaux and Vos Detection Limit Program	24
Appendix 8	Linearity and Precision of RDX, DNT, and TNT Determination by High Performance Liquid Chromatography	26
9	Determination of RDX, DNT, and TNT in Liver Samples	28
10	Determination of RDX, DNT, and TNT in Liver Samples	30
11	Determination of RDX, DNT, and TNT in Liver Samples	32
12	Determination of RDX. DNT. and TNT in Liver Samples	34

Midwest Research Institute Analytical Chemistry Department Kansus City, Missouri 64110

for

U.S. Army Armament Research and Development Command AberJeen Proving Ground (Edgewood Area) Maryland 21010

Contract No. DAAK11-79-C-0110

Identification or Development of Chemical Analysis Methods for Plant and Animal Tissues

METHOD DEVELOPMENT FOR THE DETERMINATION OF CYCLOTRIMETHYLENETRINITRAMINE (RDX), DINITROTOLUENE (DNT), AND TRINITROTOLUENE (TNT) IN ANIMAL LIVER SAMPLES

- 1. APPLICATION: The developed method is for the quantitative determination of RDX, DNT, and TNT in animal liver samples using high performance liquid chromatography (HPLC) with ultraviolet (UV) detection at 254 nm.
- a. Evaluated Concentration Range: The concentration range of RDX, DNT, and TNT studied in reference solutions and in liver samples was 50 to 1,000 ng/g (parts per billion, ppb).
- b. Sensitivity: A signal-to-noise ratio of 6 to 1 for RDX (peak height (PH), 25 mm), 9 to 1 for DNT (PH, 40 mm), and 8 to 1 for TNT (PH, 30 mm) was obtained with an injection of 50 µl of a 100 ng/ml solution of each compound (ca. 5 ng each compound on column).
- c. Detection Limits: 58 ng/g RDX, 50 ng/g DNT, and 50 ng/g TNT using the Hubaux and Vos detection limit program. However, the blank liver samples had a component which co-eluted with RDX. For the eight blank liver samples analyzed, this component represented an average RDX concentration of 113 ng/g with a standard deviation of \pm 18 ng/g. Thus, a more representative detection limit for RDX in the liver matrix is 150 ng/g (the average blank value plus two standard deviations).
- d. <u>Interferences</u>: No interfering liver components were found to elute with the same retention volume as DNT or TNT. A peak eluted with RDX and interfered with the quantification of RDX at low levels. This peak corresponded to greater than 100 ng/g RDX.
- e. Apalysis Rate: The chromatographic time per injection was 40 min. Two reference solutions were analyzed prior to injecting the prepared samples, and two were analyzed during the day (160 min total time). Thus, a total of eight prepared liver samples (320 min total time) can be analyzed during an 8-hr day.

2. CHEMISTRY: RDX (CAS Reg. No. 121-82-4), DNT (CAS Reg. No. 121-14-2), and TNT (CAS Reg. No. 118-96-7) are of intermediate polarity and have limited water solubility. They have good solubility in polar (methanol, acetonitrile) and intermediate polarity (toluene, ethyl acetate) organic solvents. The UV spectrum of these munitions indicates that each has a sufficient UV chromophore at 254 nm to allow UV detection and quantitation.

3. APPARATUS:

a. <u>Instrumentation</u>: A Waters isocratic liquid chromatographic system consisting of a Model 6000A pump, Model U6K injector, and Model 440 UV detector. A general purpose centrifuge (Dynac, Clay Adams 0101) with a 24-place head.

b. HPLC Parameters:

- 1. Column: Spherisorb ODS, 5 μ , 250 x 4.6 mm ID.
- 2. Eluent: 28% acetonitrile in 1% acetic acid in water.
- 3. Flow rate: 1.5 ml/min.
- 4. Detector: UV, 254 nm.
- 5. Internal standard: propiophenone, 500 ng/ml.
- 6. Injection volume: 50 to 100 µl.
- Retention volumes and times: RDX, 15 ml, 10 min; DNT, 37.5 ml, 25 min; TNT, 42 ml, 28 min; IS, 28.5 ml, 19 min. NOTE: Slight charges in the retention indices may occur with fresh eluent or a change in columns.

A representative HPLC chromatogram for RDX, DNT, and TNT is shown in Figure 1. Also included on the chromatogram are peaks for an internal standard (propiophenone) and 2,4,5-trinitrophenylmethylnitramine (tetryl) (CAS Reg. No. 479-45-8).

c. Laboratory Glassware and Equipment:

- 1. Culture tubes (Pyrex) with Teflon-lined screw caps.
- 2. Volumetric flasks (100 ml).
- 3. Volumetric syringes (0-100 μ l, 0-500 μ l, and 0-1,000 μ l).
- 4. Automatic pipetter (0-5 ml).
- 5. Six-speed Waring-type blender with glass container.

- 6. Teflon-glass, motor-driven tissue homogenizer.
- 7. Filtering apparatus including filter holders, 5-ml disposable syringes, and 0.45 μ Fluoropore filters.
- 8. Inert gas (nitrogen) drying train with 12 ports.

d. Chemicals:

- 1. Toluene and acetonitrile, "Distilled in Glass" grade.
- 2. Acetic acid and sodium chloride, ACS grade.
- 3. High purity water from a Milli-Q water purification system.
- 4. RDX, DPT, and TNT SARMs, obtained from the U.S. Army Toxic and Hazardous Materials Agency.
- 5. Propiophenone (internal standard), analytical grade.

4. STANDARDS:

- a. Stock: Weigh approximately 20 mg of TNT, DNT, RDX and tetryl SARM or interim SARM into separate 100-ml volumetric flasks. Dissolve each compound in acetonitrile and dilute to volume. The concentration of each compound is 200 μ g/ml. Quantitatively pipette 20 ml from each stock above into a 100-ml volumetric flask and dilute to volume with distilled water. Concentration of each compound is 40 μ g/ml.
- b. <u>Working</u>: Pipette 10 ml of the 40 µg/ml of each compound stock into a 100-ml volumetric flask and dilute to volume with high purity water. Concentration of each compound is 4 µg/ml; this working stock was employed in the precision and accuracy evaluations of reference solutions. Another working stock of 2 µg/ml was prepared by diluting 5 ml of the 40 µg/ml each compound to 100 ml; this stock was utilized for adding the RDX, DNT, TNT, and tetryl to the liver samples.

Reference solutions were prepared from this stock as follows:

µl Working Stock	µl IS Stock*	μl 10% Acetonitrile in Water	Concentration Each Compound (ng/ml)
500	500	0	2,000
375	500	125	1,500
250	500	250	1,000
125	500	375	500
25	500	475	100
0	500	500	0

^{*} Preparation of IS stock given in "c" below.

c. Internal Standard Stock: Weigh 10 mg propiophenone into a 100-ml volumetric flask and dilute to volume with acetonitrile (concentration, 100 μ g/ml). Quantitatively pipette 10 ml of the 100 μ g/ml stock into a 100-ml volumetric flask and dilute to volume with acetonitrile (concentration, 10 μ g/ml). A final working solution of 2.0 μ g/ml is prepared by pipetting 20 ml of the 10 μ g/ml stock into a 100-ml volumetric flask and diluting to volume with acetonitrile.

1

5. PROCEDURES FOR LIVER SAMPLE DETERMINATION:

- a. Liver Sample Preparation: The procedure employed to prepare liver samples for the HPLC-UV determination of RDX, DNT, and TNT consisted of:
- 1. Place approximately 50 g of liver into a Waring-type blender and blend for 1 min on speed six (liquefy). Note: To completely liquefy the liver sample, the sides of the glass container are scraped with a spatula.
- 2. Transfer approximately 10 g of the liquefied liver sample to a motor-driven Teflon-glass homogenizer.
- 3. Homogenize the sample for 30 sec to disrupt the cell walls of the liver sample. Note: The homogenization step is necessary to solubilize the intercellular compounds prior to the extraction step.
- 4. Repeat steps 3 and 4 on the remaining liquefied liver samples and combine the homogenized samples.
- 5. Accurately weigh twelve 1.0 g homogenized liver aliquots into culture tubes with Teflon-lined screw caps.
- 6. Spike two each of the homogenized liver aliquots with the working stock (2 μ g/ml each RDX, DNT, and TNT) at the following levels: 1,000 ng (500 μ l); 500 ng (250 μ l); 200 ng (100 μ l); 100 ng (50 μ l); and 50 ng (25 μ l). The remaining two liver aliquots serve as liver sample blanks. All samples are adjusted to a total volume of 1.5 ml with high purity water containing 10% acetonitrile.
- 7. Add 1.0 ml of a 10% sodium chloride solution containing 1% acetic acid to each aliquot.
 - 8. Mix thoroughly on a vortex mixer.
- 9. Extract the liver samples with 4 ml toluene ("Distilled in Glass" grade) by vortexing for at least 2 min. Note: To obtain optimal extraction, the toluene and aqueous liver phase must be thoroughly mixed; if separation of the phases occurs after the 2-min vortexing, mixing has not been complete and additional vortexing is necessary.

- 10. Centrifuge the extraction mixture at 1,000 rpm for 20 min to break the emulsion. Note: If 20-min centrifugation does not produce two distinct layers, continue centrifuging for an additional 20 min or until two layers form.
- 11. Transfer the toluene extracts to properly laheled culture tubes with Teflon-lined screw caps.
- 12. Repeat the toluene extraction (steps 9, 10, and 11) twice more, combining the toluene extracts in the appropriate tubes.
- 13. Evaporate the toluene at room temperature under a stream of nitrogen. NOTE: Do not heat the samples during the evaporation step, or loss of RDX, DNT, and TNT may occur. Continue evaporation until toluene has been completely removed from the culture tube.
- \$14.\$ Add about 1.0 ml ethyl acetate to each liver sample residue and vortex mix for 30 sec.
- 15. Evaporate the ethyl acetate at room temperature under a stream of nitrogen. NOTE: The ethyl acetate aids in removing the last traces of toluene from the liver samples.
- 16. Dissolve the residues in 250 µl acetonitrile and mix thoroughly by vortexing and ultrasonication. Note: The residue must be completely suspended in the acetonitrile or the analytes will not solubilize. Ultrasonication aids in this process by breaking the residue into smaller particulates.
- 17. Add 250 μ l of the 2 μ g/ml IS stock (500 ng) to each extracted liver sample and mix thoroughly by vortexing and ultrasonication.
- 18. Add 500 μl high-purity water to each extracted liver sample and mix thoroughly. NOTE: Final volume of the prepared samples is 1.0 ml.
- 19. Filter the solutions through 0.45- μ Fluoropore filters into culture tubes. Note: If the filtrate is not clear, refilter through another 0.45- μ filter. The filtration step is necessary to remove particulate material from the sample and thus prolong the usefulness of the analytical column.
- $\,$ 20. Analyze a 50- to 100-µl aliquot of each prepared liver sample by HPLC.
- 21. After the elution of the TNT peak, wash the column for 3 min with 100% acetonitrile at 1.5 ml/min to remove any late eluting compounds. NOTE: The acetonitrile wash step is required to prevent possible interference in the chromatographic analysis of the next sample.
- 22. After the 3-min wash, switch the system back to the eluent. Allow approximately 7 min for equilibration prior to the next injection.

b. Calibration: The reference solutions described in Section 4.b were prepared and analyzed in quadruplicate. The relative weight response (RWR) (Eq. 1) of each compound was calculated and the average RWR utilized to determine the concentration (ng/ml) of each compound in every reference solution (Eq. 2). The concentrations found were plotted against the concentrations added, and a linear regression evaluation of the data was conducted. The slope, intercept, and correlation coefficient for each compound were determined. The data are summarized in Table 1, which includes the average value at each level for each compound, the standard deviation, coefficient of variation (relative standard deviation), and the percent inaccuracy. The raw data and calculations are given in Table 8 of the Appendix.

$$RWR = \frac{Peak \ Height \ Cpd}{Peak \ Height \ IS} \times \frac{ng/ml \ IS}{ng/ml \ Cpd}$$
 (Eq. 1)

$$ng/ml$$
 or ng/g compound = $\frac{Peak \ Height \ Cpd}{Peak \ Height \ IS} \times \frac{ng/ml \ IS}{Avg. \ RWR}$ (Eq. 2)

- c. <u>Liver Sample Analysis</u>: The liver samples prepared as outlined in Section 5.a were injected onto the HPLC system. The peak height of each compound was measured and recorded. Liver samples were prepared and analyzed on four separate days.
- 6. CALCULATION: The concentration (nanograms per gram) of each compound in the liver samples was determined using the relative weight response to an internal standard method. The RWR values (Eq. 1) for the reference solutions analyzed with a day's set of liver samples were calculated, and the average values for RDX, DNT, and TNT were determined. These RWR values were employed to calculate the liver sample level of each compound by Equation 2, where nanograms per gram represents the concentration found in the liver sample. The results for the duplicate determinations of RDX, DNT, and TNT in liver samples at five different levels on four succeeding days are summarized in Tables 2, 3, and 4. The average concentration found, the standard deviation, coefficient of variation, and percent inaccuracy are also included. A linear regression evaluation of the results was made; the slope, intercept, and correlation coefficient are given in the tables. The concentration of each compound found in the liver samples was plotted against the amount added, and these data are shown in Figures 2, 3, and 4. A graphic presentation of the standard deviation, coefficient of variation, and percent inaccuracy for the determination of RDX, DNT, and TNT in the liver samples is given in Figures 5, 6, and 7, respectively. Representative HPLC chromtograms are shown for a liver sample blank (Figure 8), a 100 ng/g liver sample (Figure 9), and a 500 ng/g liver sample (Figure 10). The raw data and calculations for the liver sample determinations are given in Tables 9 to 12 in the Appendix.
- 7. STATISTICAL EVALUATION OF DATA: A statistical evaluation of the data obtained for the determination of RDX, DNT, and TNT in liver samples (Tables 2, 3, and 4) by the Hubaux and Vos detection limit program was made at the U.S. Army Toxic and Hazardous Materials Agency. The results of these

evaluations are given in Table 5 for RDX, Table 6 for DNT, and Table 7 for TNT. The detection limits, as determined by the program, were 58 ng/g for RDX when the 1,000- and 500-ng/g data points were omitted, 50 ng/g for DNT using all the data points, and 50 ng/g for TNT when the 1,000-ng/g data points were omitted. The average nanograms per gram value found at each fortification level was determined from the linear regression equation for the 48 data points and the amount of analyte added at that level. The standard deviation and percent imprecision (coefficient of variation) at each level were calculated based on this average (nanograms per gram) value found. Thus, these values and the values given in Tables 2, 3, and 4 (based on the average of the eight assays at each level) are not comparable. The percent inaccuracy term was calculated from the average of the eight data points at each level, and thus agrees with the values in Tables 2, 3, and 4.

HPLC Conditions

Column: Spherisorb ODS, 5 μ,

250 x 4.6 mm ID

Eluent: 30% acetonitrile in

1% acetic in water
Flow Rate: 1.5 ml/min
Chart Speed: 0.1 in./min

Detector: UV, 254 nm

Sample Characteristics

Concentrations: RDX, DNT, TNT, and tetryl - 500 ng/ml; IS - 1,000 ng/ml Injection volume: 70 µl

Attenuation: 0.01 X

Retention Indices

Compound	Retention Volume (m1)	Retention Time (min)
RDX	13.5	9
IS	22.5	15
DNT	31.5	21
TNT	34.5	23
tetryl	39	26

THE WAR THE STATE OF THE PARTY
Figure 1 - HPLC Separation of RDX, DNT, TNT, and Tetryl SARMS and Propiophenone (IS)

LINEARITY AND PRECISION OF THE HPLC-UV DETERMINATION OF SARM REFERENCE SOLUTIONS OF RDX, DNT, AND THE

RDX 0 100 500 1,000 1,500 2,000	A ND 109 109 517 960	æ۱	2	٤	•			
			ÞI	٦I	Average	Deviation	of Variation	Insccuracy
100 500 1,000 1,500 2,000			Ş	£	•	•	•	•
500 1,000 1,500 2,000			105	103	108	± 4.9	4.5	+ 8.0
1,000 1,500 2,000			667	067	204	± 11.8	2.3	+ 0.8
1,500			923	985	955	± 26	2.7	- 4.5
2,000			1,435	1.444	1,494	± 63	4.2	7.0 -
		2,069	1,906	1,924	1,983	± 80	0.4	- 0.8
DNT 0	Ę	Š	QX	æ	1	•	•	•
100	113	109	109	100	108	± 5.5	5.1	+ 8.0
200	667	760	475	483	487	± 10.2	2.1	- 2.6
1,000		1,011	981	1,032	1,004	± 22	2.2	4.0.4
1,500		1,470	1,461	1,439	1,468	± 25	1.7	- 2.1
2,000	1,968	1,982	1,934	1,901	1,946	+ 36	1.9	- 2.7
TNT 0	B	S	Š	Š	•	•	•	•
100	107	112	112	100	108	± 5.7	5.3	+ 8.0
200	495	614	787	787	987	± 6.8	1.4	- 2.8
1,000		686	196	166	716	± 19	2.0	- 2.3
1,500		1,508	1,471	1,432	1,478	± 34	2.3	- 1.5
2,000	2,011	2,015	1,957	1,879	1,966	± 63	3.2	- 1.7
Linear Regression								
RDX: $y = 0.988x + 0.6$	+ 0.6					Average :	Average = \(\Sigma\) = x	
Correlation coefficient - 0.998	n coefficien	Tt - 0.99	8			Prepare q	-	$n\Sigma x^2 - (\Sigma x)^2$

- 0.999 Correlation coefficient Correlation coefficient y = 0.974x + 7.7y = 0.982x + 1.2DNT: TNT:

Correlation coefficient - 0.959

- 2 L

Percent inaccuracy = x - ng added x 100 ng added x 100

Coefficient of variation = 0×100

ND = Not detectable, less than 20 ng/ml

7 angul

HPLC-UV DETERMINATION OF RDX IN LIVER SAMPLES

		Percent	Inaccuracy	i	•	+ 214	,	102	67	?	_	7
			·			+		+	+	•	+	+
		Coefficient ^c	OI Variation	72	2	20	ć	77	16	\	cı	7
	•	Standard	TOTAL TOTAL	± 18		± 31	77 +	;	± 45	+	61 =	+ 69
		Average	9	113	15.7)	202	 	285	537	}	1,022
		y 4 B		108	186		273		348	601		1,072
		Day 4		132	203)	227		259	564		1,029
(8)	à	Day 3		104	136		150		233	367	ò	936
Level Found (ng/o)		A	1	22	109		172	,	734	967		710,1
Level F		B		171	181		232	3776	7	617	1 102	701.
	Day 2	V	13,4	***	148 181		198	77.6	•	265	1.073 1.00	
	Day 1	В			158	ì	14/ 214	304		269	1.042	
	Da	V	115	•	133	17.7	141	277		520	906	
Amount	Added	(ng/g)	0		20	100		200	ı	200	1,000	

Note: Linear regression: y = 0.904x + 107 Correlation coefficient: 0.988

a Average = $\sum x/n = x$

Standard deviation = $\left(\frac{n\Sigma x^2 - (\Sigma x)^2}{n(n-1)}\right)^{\frac{1}{2}} = 0$

c Coefficient of variation = $\sigma/\bar{x} \times 100$

d Percent inaccuracy = $\frac{x - ng \text{ added}}{ng \text{ added}} \times 100$

e Not detectable, less than 20 ng/g.

Total Control of the
TABLE 3

HPLC-UV DETERMINATION OF DNT IN LIVER SAMPLES

₹	Percent	Inaccuracy	•	- 30	- 36	07 -	- 38	- 36
,	Coefficient	of Variation	•	16	14	.	7	e 0
•	Standard	Deviation	•	ιΩ #I	6 +	± 13	± 22	± 53
		Average	•	35	79	120	312	641
	Day 4	æ	£	41	78	122	342	199
		Y	8	39	73	138	325	629
73	Day	В	æ	38	99	134	322	969
Level Found (ng/g)		V	ğ	37	89	121	333	707
Level For	7	æ	£	30	ŝ	100	772	571
	Day	V	ĕ	39	26	114	288	290
	-	8	Ę	27	24	125	302	685
	Day	V	MD.	29	54 54 56 59	105	308	592
Amount			0		100	200	200	1,000

/

Note: Linear regression: y = 0.640x - 1.9 Correlation coefficient: 0.995

a Average = Ex/n = x

Standard deviation = $\left(\frac{n\sum x^2 - (\sum x)^2}{n(n-1)}\right)^{\frac{k}{2}} = \sigma$

c Coefficient of variation = $\sigma/x \times 100$

d Percent inaccuracy = x - ng added x 100

e Not detectable, less than 20 ng/g.

HPLC-UV DETERMINATION OF THT IN LIVER SAMPLES

•	Percent	Inscentacy	•	- 48	- 53	- 55	- 52	87 -
·	Coefficient	of Variation Insccuracy	•	21	18	14	11	11
4	Standard	Deviation	•	+i 10	∞ +ı	± 13	± 27	± 59
	•	Average	•	26	47	96	241	523
	7	æ	g	35	62	92	281	442
	Day	A B	S S	30	55	113	273	571
(3	3	В	2	56	47	66	235	687
Level Found (ng/g)	Day	V.	æ	25	70	85	254	624
evel For	2	В	æ	22	87	75	199	487
_	Day	V	ND ND ND ND	31	47	83	219	667
		м	2	70.	39	95	227	568
1	Day	V	KD _e	21	37	11	241	204
Amount	Added	(ng/g)	o	20	100	. 200	200	1,000

Note: Linear regression: y = 0.521x - 6.2 Correlation coefficient: 0.989 12 208

a Average = $\sum x/n = x$

Standard deviation = $\left(\frac{n\Sigma x^2 - (\Sigma x)^2}{n(n-1)}\right)^{\frac{1}{2}}$

Coefficient of variation = $\sigma/\bar{x} \times 100$

d Percent inaccuracy = $\frac{x - ng \ added}{ng \ added} \times 100$

e Not detectable, less than 20 ng/g.

]

Figure 2 - Determination of RDX in Animal Liver Samples

Figure 3 - Determination of DNT in Animal Liver Samples

Figure 4 - Determination of TNT in Animal Liver Samples

Pigure 5 - Standard Deviation for RDX, DNT, and TNT in Animal Liver Samples

Figure 7 - Percent Inaccuracy for RDX, DNT, and TNT in Animal Liver Samples

\$ 1

1

1

HPLC Conditions:

Column: Spherisorb ODS, 5 µ,

250 x 4.6 mm ID

Eluent: 28% acetonitrile in

1% acetic acid Flow Rate: 1.5 ml/min Chart Speed: 0.1 in/min Detector: UV, 254 nm

Sample Characteristics:

1.0 g liver extracted 3 x 4 ml with toluene. Extract evaporated to dryness and residue reconstituted with 1.0 ml HPLC eluent.

IS Concentration: 500 ng/ml Injection Volume: 70 µl Attenuation: 0.005 X

Figure 8 - HPLC Analysis of Blank Liver Samples for RDX, DNT, and TNT Method Development. "X" indicates a toluene contaminant. Arrows indicate the elution position of RDX, DNT, and TNT.

HPLC Conditions:

Column: Spherisorb ODS, 5 μ ,

250 x 4.6 mm ID

Eluent: 28% acetonitrile in

1% acetic acid
Flow Rate: 1.5 ml/min
Chart Speed: 0.1 in/min
Detector: UV, 254 nm

Sample Characteristics:

1.0 g liver containing 100 ng/g RDX, DNT, and TNT extracted 3 x 4 ml with toluene. Extract evaporated to dryness and residue reconstituted in 1.0 ml HPLC eluent.

IS Concentration: 500 ng/ml Injection Volume: 70 µl Attenuation: 0.005 X

Figure 9 - HPLC Analysis of Animal Liver Sample Containing 100 ng/g RDX, DNT, and TNT. "X" indicates toluene contaminants. Arrows show HPLC peaks for RDX (and co-eluting compound), DNT, and TNT.

HPLC Conditions:

Column: Spherisorb ODS, 5 μ ,

250 x 4.6 mm ID

Eluent: 28% acetonitrile in

1% acetic acid Flow Rate: 1.5 ml/min Chart Speed: 0.1 in/min Detector: UV, 254 nm

Sample Characteristics:

1.0 g liver containing 500 ng/g RDX, DNT, and TNT extracted 3 x 4 ml with toluene. Extract evaporated to dryness and residue reconstituted with 1.0 ml HPLC eluent.

IS Concentration: 500 ng/ml Injection Volume: 70 µl Attenuation: 0.005 X

Figure 10 - HPLC Analysis of Animal Liver Sample Containing 500 ng/g RDX, DNT, and TNT. "X" indicates toluene contaminant. Arrows show HPLC peaks for RDX (and co-eluting compound), DNT, and TNT.

TABLE 5

STATISTICAL EVALUATION OF RDX IN LIVER SAMPLE DATA BY THE HUBAUX AND VOS DETECTION LIMIT PROGRAM

	75 74 58							
Åc	. 141 147 140							
۾	1.679 1.686 1.697	ıt. acy	,	4	2	ņ	7	. 7
Degrees of	46 38 30	Percent Inaccuracy		+ 214	+ 102	7 +	+	+
Correlation Coefficient		Percent ⁸ Imprecision	5.9	9.7	8.2	5.9	5.6	2.5
ear Regression		Standard Deviation	± 6.7	± 12	T 17	1 1	± 30	± 26
Linear Reg	y = 0.904x + 107 y = 0.847x + 115 y = 0.859x + 114	Average ng/g Found	107	152	197	007	559	1,011
Number ^a of Data Points	48 40 32	ng/g RDX Added	0 (0 00	200	0 0	000	1,000

Number of data points - data points used to calculate linear regression and detection limits; the blank samples analyzed included in these calculations; 48 all data; 40 - 1,000 ng/g samples omitted; 32-1,000 ng/g and 500 ng/g samples omitted.

- 2 tail p level (usually 0.1, each confidence band is 0.05 so total p=0.1).

Detection limit - x-intercept of y-intercept and lower confidence limit line. intercept - intercept on y-axis of upper confidence limit line.

Average ng/ml found - average at each level determined from linear regression equation for 48 points.

Standard deviation - determined from average value (e above) and observed values Percent imprecision - standard deviation divided by average value times 100%. Percent inaccuracy - determined from the average values of the eight observed

values at each level

II L

% Inaccuracy = Average observed values - level added level added

TABLE 6

STATISTICAL EVALUATION OF DNT IN LIVER SAMPLE DATA BY

		THE HUBAUX	NO VOS DETECTION	THE HUBAUX AND VOS DETECTION LIMIT PROGRAM	·	•
Number ^a of Data Points	Linear Regr	C. ar Regression C.	Correlation	Degrees of the Freedom t	Intercept	Detection
87	y = 0.640x - 1.9	- 1.9	0.995	46 1.679	91 62	80
ng/g DWT Added	Average ng/g Found	Standard Deviation	Percent ⁸ Imprecision	Percent Inaccuracy		
20	30	1 2.0	5.9	- 30		
100 200 500	62 126 318	H H H	2.7	98 - 1		
1,000	638	± 20	3.1	• 36		

Number of data points - data points used to calculate linear regression and detection limits; the blank samples analyzed included in these calculations.

t-2 tail p level (usually 0.1, each confidence band is 0.05 so total p=0.1). intercept - intercept on y-axis of upper confidence limit line.

Detection limit - x-intercept of y-intercept and lower confidence limit line. Average ng/ml found - average at each level determined from linear regression

equation for 48 points.

Standard deviation - determined from average value (e above) and observed values. Percent inaccuracy - determined from the average values of the eight observed Percent imprecision - standard deviation divided by average value times 100%.

% Inaccuracy = Average observed values - level added x 100 level added

values at each level

STATISTICAL EVALUATION OF THY LIVER SAMPLE DATA BY
THE HUBAUX AND VOS DETECTION LIMIT PROGRAM

Number of Data Points	Linear Regression		Correlation Coefficient	Degrees of Freedom	t t	y Intercept	Detection Limit
78 70 70	y = 0.521x - 6.2 y = 0.480x - 0.8	- 6.2	0,989 0.987	38	1.679	12 9	70
ng/g TNT Added	Average ng/g Found	Standard t Deviation	Percent ⁸ Imprecision	Percent Inaccuracy	nt h		
20	20	± 2.0		37 -			
100	94	+ 3.2		- 55	~		
200	86	± 4.8		- 55			
200	254	+ 10	4.3	- 52	~ 1		
1,000	515	± 22	4.3	37 -	~		

Number of data points - data points used to calculate linear regression and detection limits; the blank samples analyzed included in these calculations; 48 all data; 40 - 1,000 ng/g samples omitted. 85

- 2 tail p level (usually 0.1, each confidence band is 0.05 so total p = 0.1).

Detection limit - x-intercept of y-intercept and lower confidence limit line. y intercept - intercept on y-axis of upper confidence limit line.

Average ng/ml found - average at each level determined from linear regression

equation for 48 points.

Standard deviation - determined from average value (e above) and observed values. Percent imprecision - standard deviation divided by average value times 100%.

Percent inaccuracy - determined from the average values of the eight observed

values at each level

% Inaccuracy = Average observed values - level added x 100 level added

APPENDIX

METHOD DEVELOPMENT FOR THE DETERMINATION OF RDX, DNT, AND TNT IN LIVER SAMPLES

RAW DATA AND CALCULATIONS

TABLE 8

LINEARITY AND PRECISION OF RDX, DNT, AND TNT DETERMINATION BY HIGH PERFORMANCE LIQUID CHROMATOGRAPHY

į		
ľ		
ŀ	\sim	
ı	5	
ı	$\boldsymbol{\pi}$	
	-	
	•	
ĺ	œ	
	Ö	
ľ	ᄎ	
	\mathbf{y}	
	_	
ļ	⋖	
l	3	
ŀ	ㅈ	
i	\mathbf{z}	
	CHROMATOGRAPHY	
ŀ	z	
	O	
	_	
	_	
	H	
	5	
	≂	
ŀ	\sim	
Į	LIQUID	
ŀ	H	
i	r+3	
۱	⇁	
l	\succeq	
	z	
	⋖	
	~	
	≈	
ŀ	÷	
	9	
	PERFORMANCE	
ŀ	$\overline{\alpha}$	
	5	
	∽	
	-	
	ᆂ	
	落	
	HIGH	
	_	Į
	I	
		İ
	~	١

Reference	[#/ec	Ď		ţ	Inte	rnal		, on	44	ć	4040[0]		
Solution	Combound		•	Sm.c	ng ng	Peak		RELATION WEIGHT	, Ruc	3	caiculated ne/ml		
Number	Added	ă N	DNT	TAL	메립	ml Height	RDX	DNT	TNT	RDX	TNO	TAT	
A-1	0	< 2	< 2	< 2	1,000	122		•	•	Ð	Ø	Ş	
A-2	100	12	14	11	1,000	116	1.03	1.21	0.95	109	113	107	
A-3	200	28	63	52	1,000	118	0.98	1.07	0.88	517	667	495	
A-4	1,000	104	121	97	1,000	114	0.91	1.06	0.85	096	992	926	
A-5	1,500	168	183	152	1,000	114	0.98	1.07	0.89	1,551	1,500	1,498	
Y- 6	2,000	220	240	204	1,000	114	96.0	1.05	0.89	2,031	:,968	2,011	
B-1	0	< 2	< 2	2	1,000	118	ı	ı	•	g	Q.	R	
B-2	100	13	14	12	1,000	120	1.08	1.17	1.00	114	109	112	
B-3	200	29	79	25	1,000	122	0.97	1.05	0.85	509	490	619	
B-4	1,000	121	145	118	1,000	134	0.90	1.08	0.88	950	1,011	989	
B-5	1,500	172	184	157	1,000	117	0.98	1.05	0.89	1,547	1,470	1,508	
B-6	2,000	228	246	208	1,000	116	0.98	1.06	0.90	2,069	1,982	2,015	
C-1	0	< 7	7	2	1,000	120	ı	1	ı	Ø	S	g	
C-2	100	12	14	12	1,000	120	1.00	1.17	1.00	105	109	112	
C-3	200	55	59	20	1,000	116	0.95	1.02	0.86	667	475	787	
7-7	1,000	107	128	105	1,000	122	0.88	1.05	98.0	923	981	196	
C-5	1,500	150	172	144	1,000	110	0.91	1.04	0.87	1,435	1,461	1,471	
9- 2	2,000	210	240	202	1,000	116	0.91	1.03	0.87	1,900	1,934	1,957	
D-1		< 2	< 2	< 2	1,000	119	•	ı	•	S	S S	æ	
D-2	100	11	12	10	1,000	112	0.98	1.07	0.89	103	100	100	
D-3	200	24	9	20	1,000	116	0.93	1.03	98.0	067	483	787	
D-4	1,000	116	137	110	1,000	124	96.0	1.10	0.89	985	1,032	766	
D-5	1,500	155	174	144	1,000	113	0.91	1.03	0.85	1,444	1,439	1,432	
D6	2,000	212	236	194	1,000	116	0.91	1.02	0.84	1,924	1,901	1,879	

TABLE 8 (concluded)

Relative Weight Response

	Average	Standard Deviation	Relative Standard Deviation
RDX	0.95	± 0.05	5.2%
DNT	1.07	± 0.05	4.9%
TNT	0.89	± 0.04	5.1%

TABLE 9

DETERMINATION OF RDX, DNT, AND TNT IN LIVER SAMPLES

DAY 1

	TAT	Ð	21	37	77	241	204	£	20	139	95	227	268
ng/g ^C Detected	DNT	PON	53	54	105	308	592	Ð	27	24	125	302	685
h-4	ı							122					
Standard Peak	Height	9.741	146.8	151.0	148.4	146.6	157.2	140.0	143.4	147.0	143.0	146.6	144.0
Internal	ng/al	200	200	200	200	200	500	200	200	200	200	200	200
	TAL	7 ×	5.0	9.0	18.2	56.2	126.0	4 ^	4.6	9.5	21.6	53.0	130.0
eak Heigh (mm)	DNT	7 ×	9.5	17.2	33.2	0.96	198.0	7 ×	8.2	17.0	38.0	94.2	210.0
14	RDX	27.0	31.0	35.2	65.2	121.0	226.0	27.0	36.0	50.0	0.69	132.4	238.0
•	Liver	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
ng/g ^a Compound	Added	0	20	100	200	200	1,000	0	20	100	200	200	1,000
Sample	Number	Day 1A-0	Day 1A-50	Day IA-100	Day 1A-200	Day 1A-500	Day 1A-1000	Day 1P-0					

TABLE 9 (concluded)

REFERENCE SOLUTIONS

pte	E	0.782	0.818	0.799	0.779	0.795 ± 0.018
Relative Veight Response	DNT	1.042	1.069	1.086	1.059	1.064 ± 0.019
Re	RDX	0.778	0.818	0.788	0.790	a ± 0.017
nternal Standard Peak	Height	144.0	159.0	144.0	151.4	Average Deviation
Internal	ng/ml	200	200	200	200	Standard
	TMI	225.2	13.0	230.0	118.0	
Pesk Meight	TNO	300.0	17.0	312.8	160.4	
-	RDX	224.0	13.0	227.0	119.6	
ng/ml ^a Compound	Added	1,000	50	1.000	200	
Reference Solution	Number	Std-Day 1-5	Std-Day 1-1	Std-Day 1-5	Std-Day 1-4	

ng/g compound added - nanograms of RDX, DNT, and TNT added per gram of liver sample.

b Internal standard - compound (propiophenone) added to liver sample after sample preparation for calculation of data.

ng/g detected - nanograms of RDX, DNT, and TNT detected in the liver sample. **29** 225

ng compound/g = Peak Height compound x average NWR compound

d ND - not detectable, less than 20 ng/g.

e Relative Weight Response - RWR = Peak Height Compound x ng/ml IS Peak Height IS ng/ml compound

TABLE 10

DETERMINATION OF RDX, DNT, AND TNT IN LIVER SAMPLES

DAY 2

Sample Day 2A - Compound Day 2B - Compound															
ng/8" age of compound growth growth compound growth growth compound growth			TAT	Ę	3	74	£	219	665	Ş	22	87	75	199	487
ng/g ² Peak Height Internal Standard (nm) 2er Added Liver RDX DNT TNT Internal Standard Peak 2A-0 0 1.0 28.8 < 4	ng/g	Detected	DNT	Pan	5.0	, v	114	288	230	Ş	90	65	100	277	571
Rg/g² Rak Height Internal (mm) Internal (mm) 2A-50 Added Liver RDX DNT TNT Internal (mm) 2A-50 50 1.0 28.8 < 4															
Rg/g² Rak Height Internal (mm) Internal (mm) 2A-50 Added Liver RDX DNT TNT Internal (mm) 2A-50 50 1.0 28.8 < 4	Standard	Peak	Height	145.0	144.0	144.0	147.0	144.2	146.0	139.6	142.5	143.0	144.0	144.2	145.6
ng/8" Peak Height (mm) Ser Added Liver RDX (mm) 2A-50 50 1.0 28.8 < 4	Internal		ng/ml	200	200	200	200	200	200	200	200	200	200	200	200
ng/g" ng/g" ng/g" 2er Compound g 2A-0 0 1.0 28.8 2A-50 50 1.0 28.8 2A-100 100 1.0 45.6 2A-200 200 1.0 45.6 2A-200 200 1.0 45.6 2A-1000 1,000 1.0 25.0 2A-1000 1,000 1.0 27.0 2B-1000 100 1.0 27.0 2B-100 100 1.0 79.0 2B-200 500 1.0 79.0 2B-1000 1,000 1.0 256.0			TNT	4 ×	7.0	10.6	19.0	49.4	114.0	4 >	5.0	10.8	17.0	45.0	111.0
ng/g" g Ser Compound g 2A-0 0 1.0 2A-100 100 1.0 2A-200 200 1.0 2A-200 200 1.0 2A-500 500 1.0 2A-1000 1,000 1.0 2B-500 50 1.0 2B-100 1,000 1.0 2B-200 500 1.0 2B-1000 1,000 1.0 2B-1000 1,000 1.0	Peak Height	(aua)	DNT	7 ×	12.0	17.4	36.0	89.0	184.8	7 >	9.5	18.0	31.0	85.5	178.4
2A-50 50 200 200 200 200 28-50 50 28-50 50 28-50 28-50 28-50 500 28-50 500 28-50 500 28-500 28-500 28-500 28-500 28-1000 1,000	-		RDX	28.8	34.0	45.6	65.0	130.0	250.0	27.0	41.2	53.0	79.0	142.0	256.0
2A-50 2A-50 2A-50 2A-200 2A-1000 2A-1000 2B-50 2B-50 2B-50 2B-50 2B-500 2B-500		∞	Liver	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Sample Number Day 2A-0 Day 2A-100 Day 2A-200 Day 2A-200 Day 2A-100 Day 2A-100 Day 2A-100 Day 2A-1000 Day 2B-0 Day 2B-0 Day 2B-100 Day 2B-200 Day 2B-200 Day 2B-200 Day 2B-200 Day 2B-200	_8/8u	Combound	Added	0	20	100	200	200	1,000	0	20	100	200	200	1,000
30	,	Sample	Number	Day 2A-0	Day 2A-50	Day 2A-100	Day 2A-200	Day 2A-500	Day 2A-1000	Day 2B-0		Day	Day		

TABLE 10 (concluded)

REFERENCE SOLUTIONS

					1	•			
Reference	ng/ml		Peak Height		Internal	Standard	Re	Relative Weight ^e Remonse	ght e
Number	Added	RDX	DINT	TNT	ng/ml Height	Height	RDX	TNO	TM
Std-Day 2-5	1.000	228.0	306.0	222.0	200	144.0	0.792	1.063	0.771
Std-Day 2-4	200	121.0	162.2	119.6	200	154.0	0.876	1.053	0.777
Std-Day 2-3	200	0.97	7 09	44.4	200	144.2	0.798	1.047	0.770
Std-Day 2-5	50	13.0	18.0	13.0	200	158.0	0.822	1.138	0.822
Std-Day 2-4	200	124.0	165.8	121.5	200	158.2	0.794	1.062	0.773
					Standard	Average Deviation :	0.798 ± 0.014	1.072 ± 0.037	0.783 ± 0.022

ng/g compound added - nanograms of RDX, DNT, and TNT added per gram of liver sample.

Internal standard - compound (propiophenone) added to liver sample after sample preparation for calculation of data.

ng/g detected - nanograms of RDX, DNT, and TNT detected in the liver sample.

ng compound/g = Peak Height compound x average RWR compound

ND - not detectable, less than 20 ng/g.

Relative Weight Response - RWR = Peak Height IS ng/ml IS ng/ml compound ng/ml IS

TABLE 11

DETERMINATION OF RDX, DNT, AND TNT IN LIVER SAMPLES

DAY 3

,	ng/gu			Peak Height	.1	Internal Standar	Standardb		20/00	
Sample	Compound	∞		(mm)		1	Peak		Detected	
Number	Added	Liver	RDX	DNT TNT	TNT	ng/ml	Height	RDX	DNT	TNT
Day 3A-0	0	1.0	17.0	* *	``		•	į	7	
Day 3A-50	ď			* ;	\$ *		7.55	75		呈
Don 24-100	0 0	0.1	25.0	11.6	2.6		145.0	109	37	25
Day 34-100	001	1.0	39.0	21.2	9.0		144.0	172	8	9
Day 3A-200	200	1.0	53.0	37.6	19.0		7 671	756		1
Day 3A-500	200	-	113				140.4	+07	171	ŝ
Day 34-1000) ·	112.0	103.0	2/.0		143.0	967	333	254
DONT WE SEE	7,000	1.0	230.0	220.4	141.0		144.0	1,012	707	624
								•		}
Day 3B-0	0	1.0	24.0	7 ×	7 >		9 571	701	ş	Ę
Day 3B-50		C _	31 2	11 0				* :	2	2
Day 38-100			7:10	0.11	0.0		145.2	136	38	26
Day 35 100	001	0.1	35.0	20.8	11.0		147.8	150	99	77
Day 30-200	007	0.1	52.0	41.0	22.0		141.6	233	134	66
Day 35-300	000	1.0	88.0	106.0	56.0		152.0	367	322	235
Day 38-1000	1,000	1.0	208.0	212.0	108.0		140.8	936	969	687
								!))	,

TABLE 11 (concluded)

REFERENCE SOLUTIONS

Reference	ng/m1 ²	_	Peak Height		Internal	nternal Standard	Rel	Relative Weight	tht.	
Solution	Combound		Î			Peak		Response		
Number	Added	RDX	DNT	TAL	ng/ml	Height	RDX	TNO	FE	
Std-Day 3-5	1,000	223.0	305.6	219.0	200	144.4	0.772	1.058	0.758	
Std-Day 3-3	200	45.0	64.0	46.4	200	147.0	0.765	1.088	0.789	
Std-Day 3-4	200	113.0	154.2	113.0	200	142.2	0.795	1.084	0.795	
Std-Day 3-4	200	120.0	160.0	116.0	200	145.8	0.823	1.097	0.796	
						Average 0.789	0.789	1.082	0.784	
					Standard	Deviation :	£ 0.026	± 0.017	± 0.018	

ng/g compound added - nanograms of RDX, DNT, and TNT added per gram of liver sample.

b Internal standard - compound (propiophenone) added to liver sample after sample preparation for calculation of data. 33 229

ng/g detected - nanograms of RDX, DNT, and TNT detected in the liver sample.

ng compound/g = Peak Height compound x average RWR compound

d ND - not detectable, less than 20 ng/g.

Relative Weight Response - RWR = Peak Height compound x ng/ml IS ng/ml compound

TABLE 12

DETERMINATION OF RDX, DNT, AND TNT IN LIVER SAMPLES

DAY 4

ng/s Dotected	RDX DNT TNT	Pus	2 6	, ,	200	138	325	629		Q.	14	78	122	176	745
Internal Standard Peak															
• ••															
Peak Height (sm)	DNT	7 >	12.6	23.6	0 77		103.8	196.0	7 >	13.8	9.51	20.07	39.0	111.2	203 2
60	Liver RDX							1.0 230.0	1.0 27.0						
ng/g _a . Compound	Added	0	20	100	200	005		1,000	0	20	001		700	200	1,000
Sample	Number	Day 4A-0	Day 4A-50	Day 4A-100	Day 4A-200	Day 4A-500	Day 44-1000	747 48-1000	Day 4B-0	Day 4B-50	Day 4B-100	Day 48-200	007-01 680 4	Day 4B-500	Day 4B-1000

- C. (1)(1)

TABLE 12 (concluded)

REFERENCE SOLUTIONS

Reference	08/81		Peak Heicht		Internal	nternal Standard	ğ.	Relative Catabr	•
Solution	Compound		(1			Peak		Response	1
Number	Added	RDX	TNO	E	ng/el	Height	KOX	TNO	Ħ
Std-Day 4-5	1,000	224.0	308.0	222.0	200	141.2	0.793	1.091	0.786
Std-Day 4-3	200	46.2	68.0	0.67	200	143.8	0.803	1.182	0.852
Std-Day 4-5	1,000	230.0	316.0	230.0	200	146.8	0.783	1.076	0.783
Std-Day 4-2	100	23.4	31.8	22.8	200	144.0	0.813	1.104	0.792
						Average	0.798	1.113	0.803
					Standard	Deviation	£ 0.013	± 0.047	± 0.033

ng/g compound added - nanograms of RDX, DNT, and TNT added per gram of liver sample.

Internal standard - compound (propiophenone) added to liver sample after sample preparation for calculation of data. 35 231

ng/g detected - nanograms of RDX, DNT, and TNT detected in the liver sample.

ng compound/g = Peak Height compound x average NWR compound

d ND - not detectable, less than 20 ng/g.

e Relative Weight Response - RWR = Peak Height compound x ng/ml IS ng/ml compound

APPENDIX F

IDENTIFICATION OR DEVELOPMENT OF CHEMICAL ANALYSIS METHODS FOR PLANTS AND ANIMAL TISSUES

METHOD REPORT NO. 5

METHOD DEVELOPMENT FOR THE DETERMINATION OF PENTAERYTHRITOL TETRANITRATE (PETN) IN PLASMA

October 1980

Contract No. DAAK11-79-C-0110 MRI Project No. 4849-A

For

U S. Army Toxic ad Hazardous Materials Agency Dr. L. Eng, DRXTH-TE-A, Project Officer Aberdeen Proving Ground (EA), MD 21010

The views, opinions, and/or findings contained in this report are those of the authors and should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other documentation.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE	read instructions before completing form
Technical Report No. 5	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subdita) Method D. velopment for the Determination of Pentaerythritol Tetranitrate (PETN) in Plasma	8. Type of REPORT & PERIOD COVERED Method Report, August 1979 to December 1980
	6. PERFORMING CRG. REPORT NUMBER MRI Project No. 4849-A
7. AUTHORA	8. CONTRACT ON GRANY HUMBERYO)
D. B. Lakings and O. Gan	DAAK11-79-C-0110
P. PERFORMING ORGANIZATION NAME AND ADDRESS Midwest Research Institute	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
425 Volker Boulevard	
Kansas City, MO 64110	
11. CONTROLLING OFFICE NAME AND ADDRESS U.S. Army Armament Research and Development	12. REPORT DATE October 1980
Command, Aberdeen Proving Ground (Edgewood Area), MD 21010	13. NUMBER OF PAGES 30
14. MONITORING AGENCY NAME & ADDRESS(II dillerent trem Controlling Office)	18. SECURITY CLASS. (of this report)
	Unclassified
	154. DECLASSIFICATION/DOWNGRADING
16. DISTRIBUTION STATEMENT (of this Report)	
Unlimited	
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different fro	en Report)
	į
•	
18. SUPPLEMENTARY NOTES	
19. KEY WORDS (Continue on reverse side if necessary and identify by block number)	
Pentaerythritol Tetranitrate (PETN)	
Plasma Determination	
High Performance Liquid Chromatography (HPLC)	
UV, 215 nm Detection	
20. ABSTRACT (Continuo en reverse elde if necessary and identify by block number)	
A high performance liquid chromatographic (HP (UV) detection at 215 nm has been developed for the of pentaerythritol tetranitrate (PETN) in animal pecal system consists of an isocratic HPLC unit with 4.6 mm ID column, an eluent of 40% acetonitrile in flow rate of 1.5 ml/min. The PETN and internal stare detected and quantitated at 215 nm using a var	e quantitative determination lasma samples. The analyti- a Spherisorb ODS, 5 μ, 250 κ high purity water, and a andard (IS), valerophenone,
and depresented to see me mately a lar	ware a control of desertor.

DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS DESOLETE

UNCLASSIFIED

UNCLASSIFIED

MCURATY CLASSIFICATION OF THIS PACEFFROM Date Ender

20. (continued)

The compounds have the following retention indices: PETN, 42 ml, 28 min, and IS, 34.5 ml, 23 min. Reference solutions of PETN have a linear response from 50 ng/ml to 1,000 ng/ml; the linear regression equation and correlation coefficient for the reference solutions were $y \approx 0.986x + 2.3$, 0.9997. The plasma samples were prepared by adding 2 ml 20% sodium chloride containing 1% acetic acid to 2.0 ml plasma and extracting the mixture with 3 x 5 ml hexane. The hexane was evaporated at room temperature under a stream of nitrogen. The residue was dissolved in 500 µl acetonitrile containing 500 ng IS and the final volume adjusted to 1.0 ml with high purity water. After filtering the prepared sample through a 0.45 µ Fluoropore filter, a 100-µl aliquot was assayed by HPLC-UV (215 nm). The analytical method was evaluated by preparing and analyzing duplicate plasma samples containing 0, 50, 100, 200, 500, and 1,000 ng/ml PETN on four separate days. Linear regression analysis of the data gave the following equation and correlation coefficient: y = 0.594x -0.8, 0.986. The average coefficient of variation and average percent inaccuracy for PETN plasma determination at the five levels were 14% and -42, respectively. No plasma components were found which interfered with PETN determination. A statistical evaluation of the data by the Hubaux and Vos detection limit program gave a detection limit of 50 ng/ml for PETN determination in plasma samples.

UNCLASSIFIED

PREFACE

This report was prepared at Midwest Research Institute, 425 Volker Boulevard, Kansas City, Missouri 64110 under U.S. Army Toxic and Hazardous Materials Agency, Contract No. DAAK11-79C-0110, MRI Project No. 4849-A, "Identification or Development of Chemical Analysis Methods for Plants and Animal Tissues." Dr. Leslie Eng, DRXTH-TE-A was the project officer for this research effort.

This work was conducted in the Analytical Chemistry Department, Dr. James L. Spigarelli, Director. The research effort was directed by Dr. Duane B. Lakings, Program Manager and Senior Chemist, with assistance from Mr. Owen Gan, Assistant Chemist, and Ms. Mary Valla, Senior Technician. The report was prepared by Dr. Lakings and Mr. Gan.

MIDWEST RESEARCH INSTITUTE

Owen Gan

Assistant Chemist

Duane B. Lakings

Program Manager and Senior Chemist

Approved:

James L. Spigarelli, Director Analytical Chemistry Department

TABLE OF CONTENTS

																														Page
1.	Application	٠.	•	•	•	•	•		•	•	•	•	•	•	•	•		•		•	•	•	•	•	•				•	1
2.	Chemistry .		•	•	•	•	•		•	•	•	•	•		•	•		•		•	•	•	•	•	•				•	1
3.	Apparatus .		•				•	•	•	•	•				•	•	•	•		•	•	•	•	•	•	•		•	•	2
4.	Standards .	•	•	•	•		•	•	•	•	•				•	•	•	•	•	•	•	•	•		•	•		•	•	3
5.	Procedure i	or	P	las	8121	a S	as	mp.	le	D	et	en	nį:	na'	ti	on	8	•	•	•	•	٠.	•				•	•	•	4
6.	Calculation	ì.	•	•	•			•		-	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•		•	6
7.	Statistical	E	V8	lu	at:	ior	1 (of	D	a t	•	•	•	•		•	•	•	•	•		•		•		•		•	•	6
	ndix - Metho				-	-																								16

LIST OF FIGURES

Number	Title	Page
1	HPLC-UV (215 nm) Separation of PETN SARM and Valerophenone (IS)	. 7
2	Determination of PETN in Plasma	10
3	Standard Deviation, Coefficient of Variation, and Percent Inaccuracy for PETN in Plasma Samples	11
4	HPLC Analysis of Blank Plasma Sample for PETN Method Development	12
5	HPLC Analysis of Plasma Containing 100 ng/ml PETN	13
6	HPLC Analysis of Plasma Containing 500 ng/ml PETN	14

LIST OF TABLES

Number	<u>Title</u>	Page
1	Linearity and Precision of the HPLC-UV (215 nm) Determination of SARM Reference Solutions of PETN	. 8
2	HPLC-UV (215 nm) Determination of PETN in Plasma	. 9
3	Statistical Evaluation of PETN in Plasma Data by the Hubaux and Vos Detection Limit Program	. 15
Appendix 4	Linearity and Precision of PETN Determination by High Performance Liquid Chromatography	. 17
5	Determination of PETN in Plasma Samples - Day 1	. 18
6	Determination of PETN in Plasma Samples - Day 2	. 19
7	Determination of PETN in Plasma Samples - Day 3	. 20
8	Determination of PETN in Plasma Samples - Day 4.	. 21

Midwest Research Institute
Analytical Chemistry Department
Kansas City, Missouri 64110

for

U.S. Army Armament Research and Development Command
Aberdeen Proving Ground (Edgewood Area)
Maryland 21010

Contract No. DAAK11-79-C-0110

Identification or Development of Chemical Analysis Methods for Plant and Animal Tissues

METHOD DEVELOPMENT FOR THE DETERMINATION OF PENTAERYTHRITOL TETRANITRATE (PETN) IN PLASMA

- 1. APPLICATION: The developed method is for the quantitative determination of PETN in animal plasma samples using high performance liquid chromatography (HPLC) with ultraviolet (UV) detection at 215 nm.
- a. Evaluated Concentration Range: The concentration range of PETN studied in plasma samples and reference solutions corresponded to 50 to 1,000 ng/ml (parts per billion, ppb).
- b. Sensitivity: A signal-to-noise ratio of 3 to 1 for PETN was obtained with an injection of 100 µl of a 50 ng/ml reference solution (ca. 5 ng PETN on column). The 100-µl injection of a 50 ng/ml PETN solution gave a PETN peak height of 6 mm.
- c. <u>Detection Limits</u>: The detection limit for PETN in plasma was determined to be 50 ng/ml using the Hubaux and Vos detection limit program.
- d. <u>Interferences</u>: No interfering plasma components were found to elute with the same retention volumes as PETN or the IS.
- e. Analysis Rate: The chromatographic time per injection was 35 min. Two reference solutions were analyzed prior to injecting the prepared samples and two were analyzed during the day (140 min total time). Thus, a total of nine prepared plasma samples (315 min) can be analyzed during an 8-hr day.
- 2. CHEMISTRY: PETN (CAS. Reg. No. 4792-15-8) has limited solubility in water and polar organic solvents; however, it has good solubility in intermediate polarity (acetone, benzene) and nonpolar (hexane) solvents. The UV spectrum of PETN shows an absorption maximum at 215 nm with little absorbance at 254 nm.

3. APPARATUS:

a. <u>Instrumentation</u>: The isocratic HFLC instrument utilized during this study consisted of a Waters Model 6000A pump, Waters Model U6K injector, and a Varian Model Vista UV-50 variable wavelength detector. During extraction, samples were centrifuged in a general purpose centrifuge (Dynac, Clay Adams 0101) with a 24-place head.

b. HPLC Parameters:

- 1. Column: Spherisorb ODS, 5 μ , 250 x 4.6 mm ID.
- 2. Eluent: 40% acetonitrile in high purity water.
 Note: The eluent must be helium degassed since oxygen interferes at 215 nm; also, the use of acetic acid or other modifiers is not recommended since they absorb at 215 nm.
- 3. Flow rate: 1.5 ml/min.
- 4. Detector: UV, 215 nm.
- 5. Internal standard: Valerophenone, 500 ng/ml.
- 6. Injection volume: 100 µl.
- 7. Retention volumes and times: PETN, 42 ml and 28 min;

IS, 34.5 ml and 23 min. Note: Slight changes in the retention indices may occur with fresh eluent or a change in columns.

 Λ representative HPLC-UV (215 nm) chromatogram for PETN and the IS is shown in Figure 1.

c. Laboratory Glassware and Equipment:

- 1. Culture tubes (Pyrex) with Teflon-lined screw caps.
- 2. Volumetric flasks (100 ml).
- 3. Volumetric syringes (0-100 μ l, 0-500 μ l, and 0-1,000 μ l).
- 4. Automatic pipetter (0-5 ml).
- 5. Filtering apparatus including filter holder, 5-ml disposable syringes, and 0.45 μ Fluoropore filters.
- 6. Inert gas (nitrogen) drying train with 12 ports.
- 7. Inert gas (helium) degassing train.

d. Chemicals:

- Acetonitrile and hexane, "Distilled in Glass" grade.
 Note: Organic solvents of lesser grade should not be used; they may have trace contaminants which will interfere with PETN determination.
- 2. Acetic acid and sodium chloride, ACS grade.
- 3. High purity water from a Milli-Q water purification system. Note: Water of lesser quality may contain trace organic impurities which may interfere with PETN determination.
- 4. PETN SARM, obtained from the U.S. Army Toxic and Hazardous Materials Agency.
- 5. Valerophenone (internal standard), analytical grade.

4. STANDARDS:

a. Stock: Weigh approximately 20 mg PETN SARM or interim SARM into a 100-ml volumetric flask and record weight. Dissolve the PETN in acetonitrile and dilute to volume (concentration of PETN is 200 μ g/ml). Quantitatively pipette 20 ml of the 200 μ g/ml stock into a 100-ml volumetric flask and dilute to volume with high purity water (concentration of PETN is 40 μ g/ml).

b. Working: Pipette 10 ml of the 40 μ g/ml stock into a 100-ml volumetric flask and dilute to volume with 10% acetonitrile in high purity water. The concentration of PETN is 4 μ g/ml.

µl Working Stock	µl IS Stock*	µl 10% Acetonitrile in Water	Concentration PETN (ng/ml)
500	500	1,000	1,000
250 ·	500	1,250	500
100	500	1,400	200
50	500	1,450	100
25	500	1,475	50
0	500	1,500	0

^{*} Preparation of IS stock given in "c" below.

c. Internal Standard Stock: Weigh 10 mg valerophenone into a 100-ml volumetric flask and dilute to volume with acetonitrile (concentration, 100 μ g/ml). Quantitatively pipette 10 ml of the 100 μ g/ml stock into a 100-ml volumetric flask and dilute to volume with acetonitrile (concentration, 10 μ g/ml). A final working IS solution of 1,000 ng/ml is prepared by pipetting 10 ml of the 10 μ g/ml stock into a 100-ml volumetric flask and diluting to volume with acetonitrile.

5. PROCEDURE FOR PLASMA SAMPLE DETERMINATIONS:

- a. Plasma Sample Preparation: The procedure employed to prepare plasma samples for the HPLC-UV (215 nm) determination of PETN consisted of:
 - 1. Quantitatively pipette twelve (12) 2.0 ml plasma aliquots into culture tubes with Teflon-lined screw caps.
 - 2. Spike two each of the plasma aliquots with the PETN working stock (4 μg/ml) at the following levels: 2,000 ng (500 μl), 1,000 ng (250 μl), 400 ng (100 μl), 200 ng (50 μl), and 100 ng (25 μl). The remaining two plasma aliquots serve as plasma sample blanks. Adjust all samples to a final volume of 2.5 ml with high purity water containing 10% acetonitrile.
 - 3. Add 2 ml of a 20% sodium chloride solution containing 1% acetic acid to each aliquot.
 - 4. Mix thoroughly on a vortex mixer.
 - 5. Extract the plasma samples with 5 ml hexane ("Distilled in Glass" grade) by hand mixing about 15 times. Note: Extensive mixing or vortexing may result in an emulsion which is difficult to break.
 - 6. Centrifuge the samples at 1,000 rpm for 20 min.
 - 7. Transfer the hexane extracts to properly labeled culture tube with Teflon-lined screw caps.
 - Repeat the hexane extraction (steps 5 and 6) twice more, combining the hexane extracts in the appropriate tubes.
 - 9. Evaporate the hexane at room temperature under a stream of nitrogen. Note: Do not heat the extracts during the evaporation step or loss of PETN may occur. Continue evaporation until the hexane has been completely removed from the culture tube.

- 10. Dissolve the residue in 500 μl acetonitrile containing 500 ng IS (IS working stock solution) and mix thoroughly by vortexing.
- 11. Add 500 µl high purity water to each extracted plasma sample and mix thoroughly. Note: Final volume of the prepared samples is 1.0 ml.
- 12. Filter the prepared samples through 0.45 μ Fluoropore filters into culture tubes. Note: The filtration step removes undissolved particulate matter from the samples and thus prolongs the life of the HPLC analytical column.
- 13. Analyze a 100-µl aliquot of each prepared plasma sample by HPLC.
- 14. After the elution of the PETN, inject 200 µl acetonitrile onto the system to remove any late eluting compounds. Note: The acetonitrile wash step is required to prevent possible interference in the chromatographic analysis of the next sample.
- b. Calibration: The reference solutions described in Section 4.b were prepared and analyzed in quadruplicate. The relative weight response (Eq. 1) of PETN was calculated for each solution and the average RWR utilized to determine the nanograms per milliliter of PETN in every solution (Eq. 2). The nanograms per milliliter found were plotted against the nanograms per milliliter added, and a linear regression evaluation of the data was conducted. The slope, intercept, and correlation coefficient were determined. The data are summarized in Table 1, which also presents the average value at each PETN level, the standard deviation, coefficient of variation (relative standard deviation), and percent inaccuracy. The raw data and calculations are given in Table 4 of the Appendix.

$$RWR = \frac{Peak \text{ Height PETN}}{Peak \text{ Height IS}} \times \frac{ng/ml \text{ IS}}{ng/ml \text{ PETN}}$$
(Eq. 1)

$$ng/ml$$
 or $\frac{ng}{plasma\ aliquot} = \frac{Peak\ Height\ PETN}{Peak\ Height\ IS} \times \frac{ng/ml\ IS}{Avg.\ RWR}$ (Eq. 2)

c. <u>Plasma Sample Analysis</u>: The plasma samples prepared as outlined in Section 5.a were injected onto the HPLC system. The peak heights of PETN and the IS were measured and recorded. Plasma samples were prepared and analyzed on four separate days.

- 6. CALCULATION: The nanograms PETN per williliter of plasma in the prepared samples was determined using the relative weight response to an internal standard method. The RWR values (Eq. 1) for PETN reference solutions analyzed with a day's set of plasma samples were calculated and averaged. The nanograms PETN per plasma aliquot was determined by Equation 2 and the nanograms per milliliter PETN calculated by dividing the nanograms per aliquot by the plasma sample volume (2.0 ml). The results for the duplicate determinations of PETN in plasma samples at five different levels on four separate days are summarized in Table 2. The average level found, the standard deviation, coefficient of variation, and percent inaccuracy are also included. A linear regression evaluation of the data was made; the slope, intercept, and correlation coefficient are given in the table. Figure 2 presents the plot of the nanograms per milliliter PETN found against the nanograms per milliliter added; the range shown at each level represents two standard deviations from the average value at that level. A graphic presentation of the standard deviation, coefficient of variation, and percent inaccuracy for the determination of PETN in plasma is given in Figure 3. Representative HPLC-UV (215 nm) chromatograms are shown for a plasma sample blank (Figure 4), a 100 ng PETN/ml plasma sample (Figure 5), and a 500 ng PETN/ml plasma sample (Figure 6). The raw data and calculations for the plasma sample PETN determinations are given in Tables 5 to 8 in the Appendix.
- 7. STATISTICAL EVALUATION OF DATA: A statistical evaluation of the data obtained for the determination of PETN in plasma samples (Table 2) by the Hubaux and Vox detection limit program was made at the U.S. Army Toxic and Hazardous Materials Agency. The results of this evaluation are given in Table 3. The detection limit for PETN in plasma as determined by the program was 50 ng/ml. The linear regression equations presented in Table 3 were generated using all the plasma samples, the blank plasma samples and the plasma with PETN added. The average nanograms per milliliter value at each level was calculated from the 48-point linear regression equation and the nanograms per milliliter added at that level. The standard deviation and percent imprecision (coefficient of variation) at each level were calculated based on this average nanograms per milliliter value found. Thus, these values and the values given in Table 2 (based on the average of the eight assays at each level) are not comparable. The percent inaccuracy terms in Tables 2 and 3 were calculated from the average of the eight data points at each level and thus agree closely.

LACETANIA --

HPLC Conditions

Column: Spherisorb ODS, 5 μ , 250 x 4.6 mm ID

Eluent: 40% acetonitrile in

high purity water
Flow Rate: 1.5 ml/min
Detector: UV, 215 nm

Reference Solution Characteristics

Concentrations: PETN - 500 ng/ml;

IS - 500 ng/ml

Injection Volume: 100 µl Attenuation: 0.005X

Retention Indices

	Retention	Retention
	Volume	Time
Compound	(m1)	(min)
IS	34.5	23
PETN	42	28

Figure 1 - HPLC-UV (215 nm) Separation of PETN SARM and Valerophenone (IS). "X" indicates a contaminant in the PETN reference solution stock.

TABLE 1

LINEARITY AND PRECISION OF THE HPLC-UV (215 nm) DETERMINATION OF SARM REFERENCE SOLUTIONS OF PETN

Compound	ng/ml Added		ng/ml Detected B C	i	a	Average	Standard Deviation	Coefficient ^C of Variation	Percent d Inaccuracy
PETN	50 100 200 500 1,000	ND ^e 47 101 196 512	ND 49 104 200 502 997	ND 49 104 205 483 999	ND 51 104 194 512	- 49 103 502 985	+ 1.6 + 1.5 + 4.9 + 16	. 8.1.2 8.2.4 7.7.1	- 2.0 +3.0 +0.5 1.54

Linear Regression PETN y = 0.986x + 2.3

Correlation Coefficient - 0.9997

Average = $\sum x/n = x$

Standard deviation = $\left(\frac{n\Sigma x^2 - (\Sigma x)^2}{n(n-1)}\right)$

Coefficient of variation $= \sigma/\bar{x} \times 100$ Ų Percent inaccuracy = $\frac{x}{x} - \frac{ng}{ng} \frac{added}{added} \times 100$ Ð

ND = Not detectable, less than 25 ng/ml

I

TABLE 2

HPLC-UV (215 nm) DETERMINATION OF PETN IN PLASMA

Amount PETN Level Found (ng/ml)			Leve	il Four	/gu) pu	(E)		,		Standard	, (•
Added	Day	-	Day	, 2	Day	9	Day	4	•	Deviation	Coefficient	Percent
(ng/ml)	V	m	v	m	4	 	B A B	B	Average	(ng/m1)	of Variation	Insccuracy
0	NO.	£	2	2	£	£	£	Ę	1	ı	•	•
20	26	31	31	23	23	27	28	38	28	+ 5.0	18	7 7-
100	63	72	28	51	53	51	20	65	9	± 8.4	14	07-
200	102	134	120	76	105	118	124	121	115	± 13	11	-43
200	279	337	294	228	269	324	337	319	298	± 38	13	07-
1,000	524	919	523	516	531	625	623	730	593	± 82	14	-41
Linear Regression	eression											

Linear Regression y = 0.594x - 0.8

Correlation Coefficient - 0.986

a Average = $\sum x/n = x$

b Standard deviation = $\left(\frac{n\lambda x^2 - (\lambda x)^2}{n(n-1)}\right)^2 = \sigma$

c Coefficient of variation = $\sigma/\bar{x} \times 100$

d Percent inaccuracy = $\frac{x}{x}$ - $\frac{x}{ng}$ added x 100

e ND = Not detectable, less than 25 ng/ml

Figure 2 - Determination of PETN in Plasma

Figure 3 - Standard Deviation, Coefficient of Variation, and Percent Inaccuracy for PETN in Plasma Samples

Column: Spherisorb ODS, 5 μ ,

250 x 4.6 mm ID

Eluent: 40% acetonitrile in

high purity water

Flow Rate: 1.5 ml/min
Detector: UV, 215 nm

Sample Characteristics

2.0 ml plasma extracted with
3 x 5 ml hexane. Hexane evaporated
and sample reconstituted to 1.0 ml.

IS Concentration: 500 ng/ml Injection Volume: 100 µl Attenuation: 0.005X

Figure 4 - HPLC Analysis of Blank Plasma Sample for PETN Method Development. Arrow indicates PETN elution position.

HPLC Conditions

Column: Spherisorb ODS, 5 μ ,

250 x 4.6 mm ID

Eluent: 40% acetonitrile in

high purity water Flow Rate: 1.5 ml/min Detector: UV, 215 nm

Sample Characteristics

2.0 ml plasma containing 100 ng/ml PETN extracted 3 x 5 ml with hexane. Hexane evaporated and sample reconstituted to 1.0 ml.

IS Concentration: 500 ng/ml Injection Volume: 100 μ l Attenuation: 0.005X

Figure 5 - HPLC Analysis of Plasma Containing 100 ng/ml PETN

HPLC Conditions

Column: Spherisorb ODS, 5 μ ,

250 x 4.6 mm ID

Eluent: 40% acetonitrile in

high purity water Flow Rate: 1.5 ml/min Detector: UV, 215 nm

Sample Characteristics

2.0 ml plasma containing 500 ng/ml PETN extracted 3 x 5 ml with hexane. Hexane evaporated and sample reconstituted to 1.0 ml.

IS Concentration: 500 ng/ml Injection Volume: 100 µl Attenuation: 0.005X

Figure 6 - HPLC Analysis of Plasma Containing 500 ng/ml PETN

TABLE 3

STATISTICAL EVALUATION OF PETN IN PLASMA DATA BY THE HUBAUK AND VOS DETECTION LIMIT PROGRAM

y Detection Intercept Limit	19 23 80 12 42					
of the of	1.679	Percent ^h Inaccuracy	-43	07-	-43	
ion Degrees of	9 8	Percent ⁸ Imprecision	9.9	5.2	4.4	
Correlation Coefficient	7 0.986 6 0.987	Standard Deviation	+ 1.8	± 3.2	± 5.0	
Linear Regression	y = 0.594x - 0.77 y = 0.597x - 1.06	Average ng/ml Found	29	59	118	
Number of Data Points	07 87	ng/ml PETN Added	20	100	200	

Number of data points - data prints used to calculate linear regression and detection limits; 48 - all data; 40 - 1,000 ng/ml samples omitted.

- 2-tail p level (usually 0.1, each confidence band is 0.05, so total p = 0.1). intercept - intercept on y-axis of upper confidence limit line.

Detection limit - x-intercept of y-intercept and lower confidence limit line.

Average ng/ml found - average at each level determined from linear regression equation for 48 points.

Standard deviation - determined from average value ("e" above) and observed values.

Percent inaccuracy - determined from the average values of the eight observed values at each level. Percent imprecision - standard deviation divided by average value times 100%.

% Inaccuracy = Average observed values - level added x 100

APPENDIX

METHOD DEVELOPMENT FOR THE DETERMINATION OF PETN IN PLASMA SAMPLES

RAW DATA AND CALCULATIONS

TABLE 4

LINEARITY AND PRECISION OF PETN DETERMINATION BY HIGH PERFORMANCE
LIQUID CHROMATOGRAPHY

Reference Solution Number	ng ml PETN Added	Peak He	ight (mm) ^b	ng ml IS	Relative ^C Weight Response	Calculated d ng/ml PETN
A-1	0	< 3	89.0	500	-	ND [€]
A-2	50	6.0	93.6	500	0.641	47
A-3	100	12.0	88.0	500	0.682	101
A-4	200	23.0	87.0	500	9.661	196
A-5	500	58.8	85.0	500	0.692	512
A-6	1,000	89.0	116.0	500	0.652	964
B-1	0	< 3	90.0	500	•	ND
B-2	50	6.0	90.0	500	0.667	49
B-3	100	12.4	88.4	500	0.701	104
B-4	200	25.4	94.0	500	0.676	200
B-5	500	60.0	88.4	500	0.679	502
B-6	1,000	88.0	118.6	500	0.674	997
C-1	0	< 3	90.0	500	~	ND
C-2	50	6.0	90.0	500	0.667	49
C-3	100	12.6	90.0	500	0.700	104
C-4	200	25.0	90.0	500	0.694	205
C-5	500	56.4	86.4	500	0.653	483
C-6	1,000	118.0	87.4	500	0.675	999
D-1	0	< 3	89.0	500	-	ND
D-2	50	6.0	87.0	500	0.690	51
D-3	100	12.5	89.0	500	0.702	104
D-4	200	26.0	99.0	500	0.657	194
D-5	500	59.8	86.4	500	0.692	512
D-6	1,000	118.0	89.0	500	0.663	981

Average 0.676
Standard Deviation ±0.018
Relative Standard Deviation 2.7%

 $RWR = \frac{Peak \ Height \ PETN}{Peak \ Height \ IS} \times \frac{ng/ml \ IS}{ng/ml \ PETN}$

a ng/ml PETN and ng/ml IS - concentration of PETN and IS in nanograms per milliliter in each reference solution.

b Peak Height (mm) - peak height of PETN and IS measured in millimeters.

c Relative Weight Response (RWR)

d Calculated ng/ml PETN - level of PETN calculated to be in the reference solution using the average RWR value for all solutions analyzed.

e ND - not detectable, less than 25 ng/ml.

TABLE 5

DETERMINATION OF PETN IN PLASMA SAMPLES - DAY 1

	Sample Volume	ng [®] PETN	Peak He	eight ^b	ng ^C	ng/ml ^d PETN
Sample Number	(ml)	Added	PETN	IS	IS	<u>Detected</u>
Day-1 A-1	2.0	0	< 3	110.0	500	ND ^e
Day-1 A-50	2.0	100	8.0	116.0	500	26
Day-1 A-100	2.0	200	21.0	125.0	500	63
Day-1 A-200	2.0	400	35.4	130.6	500	102
Day-1 A-500	2.0	1,000	93.0	125.0	500	279
Day-1 A-1000	2.0	2,000	186.0	133.2	500	524
Day-1 B-0	2.0	0	′ 3	105.0	500	ND
Day-1 B-50	2.0	100	9.6	115.0	500	31
Day-1 B-100	2.0	200	20.0	105.0	500	72
Day-1 B-200	2.0	400	40.0	112.0	500	134
Day-1 B-500	2.0	1,000	98.6	109.8	500	337
Day-1 B-1000	2.0	2,000	187.2	104.2	500	674

Reference Solution	ng/ml ^a	Peak Hei	ght (mm) ^b	ng/ml ^C	Relative ^f Weight
Number	PETN	PETN	IS	<u>IS</u>	Response
Std-Day-1-5	1,000	118.8	85.6	500	0.694
Std-Day-1-2	100	13.0	91.0	500	0.714
Std-Day-1-4	500	60.0	90.0	500	0.667
Std-Day-1-3	200	26.4	100.0	500	0.660
Std-Day-1-1	50	5.2	87.4	500	0.595

Average 0.666 Standard Deviation ±0.045

$$ng/ml$$
 PETN = $\frac{Peak\ Height\ PETN}{Peak\ Height\ IS}$ x $\frac{ng\ IS}{Avg.\ RWR}$ x $\frac{1}{2.0\ ml\ plasma}$

$$RWR = \frac{Peak \ Height \ PETN \ Std}{Peak \ Height \ IS} \times \frac{ng/ml \ IS}{ng/ml \ PETN}$$

a ng or ng/ml PETN Added - nanograms of PETN added to 2.0 ml plasma or present in reference solution.

b Peak Height (mm) - peak height in millimeters of PETN and IS in plasma samples and reference solutions.

c ng IS - nanograms of the internal standard added to the samples and reference solutions for calculation.

d ng/ml PETN Detected - nanograms of PETN detected per milliliter of plasma.

e ND - not detectable, less than 15 ng PETN per milliliter plasma.

f Relative Weight Response (RWR)

TABLE 6

DETERMINATION OF PETN IN PLASMA SAMPLES - DAY 2

Sample Number	Sample Volume (ml)	ng ^a PETN <u>Added</u>	Peak Ho (m	eight ^b	ng ^c IS	ng/ml ^d PETN <u>Detected</u>
Day-2 A-0	2.0	0	< 3	124.0	500	\mathtt{ND}^{e}
Day-2 A-50	2.0	100	10.0	120.0	500	31
Day-2 A-100	2.0	200	18.0	115.4	500	58
Day-2 A-200	2.0	400	35.0	108.0	500	120
Day-2 A-500	2.0	1,000	96.0	121.2	500	294
Day-2 A-1000	2.0	2,000	176.0	125.0	500	523
Day-2 B-0	2.0	0	< 3	124.0	500	ND
Day-2 B-50	2.0	100	7.4	119.4	500	23
Day-2 B-100	2.0	200	17.0	122.8	500	51
Day-2 B-200	2.0	400	32.0	126.0	500	94
Day-2 B-500	2.0	1,000	76.0	124.0	500	228
Day-2 B-1000	2.0	2,000	170.0	122.4	500	516

Reference Solution	ng/ml ^a	Peak Hei	ght (mm) ^b	ng/ml ^c	Relative ^f Weight
Number	PETN	PETN	IS	<u>IS</u>	Response
Std-Day-2-4	500	55.8	84.8	500	0.658
Std-Day-2-5	1,000	116.0	83.2	500	0.697
Std-Day-2-3	200	24.2	88.0	500	0.683
Std-Day-2-3	200	22.8	88.6	500	0.643
Std-Day-2-5	1,000	116.0	85.0	500	0.682

Average 0.673 Standard Deviation ±0.022

$$ng/ml \ PETN = \frac{Peak \ Height \ PETN}{Peak \ Height \ IS} \times \frac{ng \ IS}{Avg. \ RWR} \times \frac{1}{2.0 \ ml \ plasma}$$

$$RWR = \frac{Peak \ Height \ PETN \ Std}{Peak \ Height \ IS} \times \frac{ng,ml \ IS}{ng/ml \ PETN}$$

a ng or ng/ml PETN Added - nanograms of PETN added to 2.0 ml plasma or present in reference solution.

b Peak Height (mm) - peak height in millimeters of PETN and IS in plasma samples and reference solutions.

c ng IS - nanograms of the internal standard added to the samples and reference solutions for calculation.

d ng/ml PETN Detected - nanograms of PETN detected per milliliter of plasma.

e ND - not detectable, less than 15 ng PETN per milliliter plasma.

f Relative Weight Response (RWR)

TABLE 7

DETERMINATION OF PETN IN PLASMA SAMPLES - DAY 3

	Sample Volume	ng ^a PETN	Peak He	<u>*) </u>	ng ^C	ng/ml ^d PETN
Sample Number	<u>(m1)</u>	Added	PETN	IS	IS	Detected
Day-3 A-0	2.0	0	< 3	122.0	500	NDe
Day-3 A-50	2.0	100	8.2	133.8	500	23
Day-3 A-100	2.0	200	17.0	122.6	500	53
Day-3 A-200	2.0	400	36.0	130.0	500	105
Day-3 A-500	2.0	1,000	86.8	123.0	500	269
Day-3 A-1000	2.0	2,000	182.8	131.0	500	531
-Day-3 A-0	2.0	0	< 3	116.0	500	ND
Day-3 B-50	2.0	100	8.0	114.8	500	27
Day-3 B-100	2.0	200	14.2	105.2	500	51
Day-3 B-200	2.0	400	36.0	116.0	500	118
Day-3 B-500	2.0	1,000	93.8	110.0	500	324
Day-3 B-1000	2.0	2,000	189.2	115.2	500	625

Reference Solution	ng/ml ^a	Peak Heig	tht (mm)	ng/ml ^C	Relative ^f Weight
Number	PETN	PETN	IS	<u>IS</u>	Response
Std-Day-3-5	1,000	113.0	85.0	500	0.6 65
Std-Day-3-4	500	60.5	88.8	500	0.681
Std-Day-3-3	200	22.0	82.5	500	0.667
Std-Day-3-4	500	51.2	83.5	500	0.613

Average 0.657 Standard Deviation ±0.030

$$ng/ml PETN = \frac{Peak Height PETN}{Peak Height IS} \times \frac{ng IS}{Avg. RWR} \times \frac{1}{2.0 ml plasma}$$

$$RWR = \frac{Peak \ Height \ PETN \ Std}{Peak \ Height \ IS} \times \frac{ng/ml \ IS}{ng/ml \ PETN}$$

a ng or ng/ml PETN Added - nanograms of PETN added to 2.0 ml plasma or present in reference solution.

b Peak Height (mm) - peak height in millimeters of PETN and IS in plasma samples and reference solutions.

c ng IS - nanograms of the internal standard added to the samples and reference solutions for calculation.

d ng/ml PETN Detected - nanograms of PETN detected per milliliter of plasma.

e ND - not detectable, less than 15 mg PETN per milliliter plasma.

f Relative Weight Response (RWR)

TABLE 8

DETERMINATION OF PETN IN PLASMA SAMPLES - DAY 4

	Sample Volume	ng ^a PETN	Peak H	eight ^b	ng ^C	ng/ml ^d PETN
Sample Number	<u>(ml)</u>	Added	PETN	IS	<u>IS</u>	Detected
Day-4 A-0	2.0	0	< 3	134.0	500	ND [€]
Day-4 A-50	2.0	100	8.8	131.0	500	28
Day-4 A-100	2.0	200	22.0	132.0	500	70
Day-4 A-200	2.0	400	39.5	134.0	500	124
Day-4 A-500	2.0	1,000	106.0	131.8	500	337
Day-4 A-1000	2.0	2,000	195.2	131.5	500	623
Day-4 B-0	2.0	0	< 3	130.0	500	ND
Day-4 B-50	2.0	100	11.0	123.0	500	38
Day-4 B-100	2.0	200	16.0	103.4	500	65
Day-4 B-200	2.0	400	38.8	134.0	500	121
Day-4 B-500	2.0	1,000	99.4	130.6	500	319
Day-4 B-1000	2.0	2,000	221.0	127.0	500	730

Reference Solution	ng/ml ^a	Peak Hei	ght (mm)b	ng/ml ^C	Relative ^f Weight
Number	PETN	PETN	IS	<u> </u>	Response
Std-Day-4-5	1,000	106.0	94.5	500	0.561
Std-Day-4-2	100	12.0	101.8	500	0.589
Std-Day-4-2	100	13.0	102.0	500	0.637

Average 0.596 Standard Deviation ±0.039

$$ng/ml PETN = \frac{Peak \ Height \ PETN}{Peak \ Height \ IS} \times \frac{ng \ IS}{Avg. \ RWR} \times \frac{1}{2.0 \ ml \ plasma}$$

$$RWR = \frac{Peak \ Height \ PETN \ Std}{Peak \ Height \ IS} \times \frac{ng/ml \ IS}{ng/ml \ PETN}$$

a ng or ng/ml PETN Added - nanograms of PETN added to 2.0 ml plasma or present in reference solution.

b Peak Height (mm) - peak height in millimeters of PETN and IS in plasma samples and reference solutions.

c ng IS - nanograms of the internal standard added to the samples and reference solutions for calculation.

d ng/ml PETN Detected - nanograms of PETN detected per milliliter of plasma.

e ND - not detectable, less than 15 ng PETN per milliliter plasma.

f Relative Weight Response (RWR)

APPENDIX G

IDENTIFICATION OR DEVELOPMENT OF CHEMICAL ANALYSIS METHODS FOR PLANTS AND ANIMAL TISSUES

METHOD REPORT NO. 6

METHOD DEVELOPMENT FOR THE DETERMINATION OF DINITROTOLUENE (DNT)

AND TRINITROTOLUENE (TNT) IN PLANT STEMS

November 1980

Contract No. DAAK11-79-C-0110 MRI Project No. 4849-A

For

U.S. Army Toxic and Hazardous Materials Agency Dr. L. Eng, DRXTH-TE-A, Project Officer Aberdeen Proving Ground (EA), MD 21010

The views, opinions, and/or findings contained in this report are those of the authors and should not be construed as an official Department of the Army position, policy or decision, unless so designated by other documentation.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (Mine Date Entered)

REPORT DOCUMENTATION I	PAGE	READ INSTRUCTIONS
		BEFORE COMPLETING FORM 3. RECIPIENT'S CATALOG NUMBER
Taskedaal Parent No. 6		
Technical Report No. 6		S. TYPE OF REPORT & PERIOD COVERED
Method Development for the Determi	nation of	Method Report, August 19,
Dinitrotoluene (DNT) and Trinitrot	coluene (TNT)	1979 to December 20, 1979
in Plant Stems		6. PERFORMING ORG. REPORT NUMBER
7. AUTHOREA		MRI Project No. 4849-A
}		
D. B. Lakings and O. Gon		20.000
		DAAK11-79-C-0110
9. PERFORMING ORGANIZATION HALE AND ADDRESS		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
Midwest Research Institute		
425 Volker Boulevard		
Kansas City, MO 64110		12. REPORT DATE
U.S. Army Armament Research and De	evelopment	November 1980
Command, Aberdeen Proving Ground	•	18. NUMBER OF PAGES
· · · · · · · · · · · · · · · · · · ·		41
Area) MD 21010 14 MONITORING AUGHCY HAME & ADDRESSIT ditional	trem Controlling Office)	18. SECURITY CLASS. (et thie report)
į		
		Unclassified
i		SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report)		
Unlimited		
VIIIIIICEG		
17. DISTRIBUTION STATEMENT (of the abstract unlered	in Block 20, if different fre	a Report)
1		
}		
18. SUPPLEMENTARY NOTES		
IL SUPPLEMENTARY NOTES		
1		
19. KEY WORDS (Continue on reverse side if necessary an	- ·	
High Performance Liquid Chromatog	raphy	
Dinitrotoluene (DNT)		
Trinitrotoluene (TNT)		
Plant Stem Determination		
26. AESTRACT (Craffiem as reverse side if accountry me	Lidentify by block number)	770
		PLC) method for the quantita-
tive datermination of dinitrotolu	ene (DNT) and tr	initrotoluene (TNT) in plant
stems has been developed. The and	alytical system	consists of an isocratic HPLC
unit with a Spherisorb ODS 5 μ, 2	50 x 4.6 mm ID c	olumn, an eluent of 30% aceto-
nitrile in 1% acetic acid in water	r, and a flow ra	te of 1.5 ml/min. The com-
pounds, including the internal sta	andard (IS), prop	piophenone, have the following
rention characteristics: IS - 24	ml, 16 min; DNT	- 31.5 ml, 21 min; and

TNT - 34.5 ml, 23 min and are detected at 254 mm. Reference solutions of the compounds gave a linear response from 100 ng/ml to 2,000 ng/ml. The plant stem matrix was prepared by adding 2-g sodium chloride to 5-g grounded stems in 10-ml water and extracting the sample with 20-ml hexane containing 2% isopropanol. The hexane extract (10 ml) was transferred to a culture tube and evaporated to dryness at room temperature under a stream of nitrogen gas. A 500-µ1 aliquot of acetonitrile containing 1,000 ng IS was added followed by 500-µ1 high-purity water. The prepared sample was filtered through a 0.45 µ Fluoropore filter and injected onto the HPLC system. The analytical method was evaluated by preparing and analyzing duplicate 5.0-g plant stems samples containing 0, 50, 100, 200, 500 and 1,000 ng/g of each munition on four succeeding days. Linear regression analysis of the data gave the following equations and correlation coefficients: DNT - y = 0.514x + 7, 0.923 and TNT - y = 0.449x + 10, 0.957. The average coefficient of variation and average percent inaccuracy for DNT and TNT determination in plant stems were 38%, -43 and 33%, -48, respectively. A statistical evaluation of the data by Hubbaux and Vos detection limit program gave detection limits of 65 ng/g for DNT and 90 ng/g for TNT for HPLC determination of these compounds in stem samples.

1

PREFACE

This report was prepared at Midwest Research Institute, 425 Volker Boulevard, Kansas City, Missouri 64110, under U.S. Army Toxic and Hazardous Materials Agency, Contract No. DAAK11-79-C-0110, MRI Project No. 4849-A, entitled "Identification or Development of Chemical Analysis Methods for Plants and Animal Tissues." Dr. Leslie Eng, DRXTH-TE-A, was the project officer for this research effort.

This work was conducted in the Analytical Chemistry Department, Dr. James L. Spigarelli, Director. The research effort was directed by Dr. Duane B. Lakings, Program Manager and Senior Chemist, with assistance from Mr. Owen Gan, Assistant Chemist, and Ms. Mary Valla, Senior Technician. This report was prepared by Dr. Lakings and Mr. Gan.

MIDWEST RESEARCH INSTITUTE

Owen Gan

Assistant Chemist

Duane B. Lakings

Program Manager and Senior Chemist

Approved:,

James L. Spigarelli, Director Analytical Chemistry Department

TABLE OF CONTENTS

		Page
1.	Application	1
2.	Chemistry	2
3.	Apparatus	2
4.	Standards	3
5.	Procedures for Plant Stems Sample Determination	4
6.	Calculation	6
7.	Statistical Evaluation of Data	6
Appe	and in Plant Stems	22

LIST OF FIGURES

Number	<u>Title</u>	Page
1	HPLC Separation of RDX, DNT, TNT, and Tetryl SARMS and Propiophenone (IS)	8
2	Determination of DNT in Plant Stems	12
3	Determination of TNT in Plant Stems	13
4	Standard Deviation for DNT and TNT in Plant Stem Samples .	14
5	Coefficient of Variation for DNT and TNT in Plant Stem Samples	15
6	Percent Inaccuracy for DNT and TNT in Plant Stem Samples .	16
7	HPLC Analysis of Blank Plant Stems	17
8	HPLC Analysis of Plant Stems Containing 50 ng/g of RDX, DNT and TNT	18
9	HPLC Analysis of Plant Stems Containing 500 ng/g RDX, DNT, TNT, and Tetryl	19

LIST OF TABLES

Number	<u>Title</u>	Page
1	Linearity and Precision of the HPLC-UV Determination of SARM Reference Solutions of RDX, DNT, and TNT	9
2	HPLC-UV Determination of DNT in Plant Stems Samples	10
3	HPLC-UV Determination of TNT in Plant Stems Samples	11
4	Statistical Evaluation of DNT in Plant Stems Data by the Hubaux and Vos Detection Limit Program	20
5 Appendix	Statistical Evaluation of TNT in Plant Stems Data by the Hubaux and Vos Detection Limit Program	21
6	Linearity and Precision of RDX, DNT, and TNT Determination by High Performance Liquid Chromatography	23
7	Determination of DNT and TNT in Plant Stems Samples, Day 1 Samples	25
8	Determination of DNT and TNT in Plant Stems Samples, Day 2 Samples	27
9	Determination of DNT and TNT in Plant Stems Samples, Day 3 Samples	29
10	Determination of DNT and TNT in Plant Stems Samples, Day 4 Samples	31

Midwest Research Institute Analytical Chemistry Department Kansas City, Missouri 64110

for

U.S. Army Armament Research and Development Command
Aberdeen Proving Ground (Edgewood Area)
Haryland 21010

Contract No. DAAK11-79-C-0110

Identification or Development of Chemical Analysis Methods for Plants and Animal Tissues

METHOD DEVELOPMENT FOR THE DETERMINATION OF DINITROTOLUENE (DNT) AND TRINITROTOLUENE (TNT) IN PLANT STEMS

- 1. <u>APPLICATION</u>: The developed method is for quantitative determination of DNT and TNT in plant stems samples using high performance liquid chromatography (HPLC) with ultraviolet (UV) detection at 254 nm.
- a. Evaluated Concentration Range: The concentration range of DNT and TNT studied in reference solutions was 100, 500, 1,000, 1,500, and 2,000 ng/ml and in plant stems samples was 50, 100, 200, 500, and 1,000 ng/mg (parts per billion, ppb).
- b. Sensitivity: A signal-to-noise ratio of 9 to 1 for DNT (PH 40 mm) and 8 to 1 for TNT (PH 30 mm) was obtained with an injection of 50 µl of a 100 ng/ml solution of each compound (ca. 5 ng each compound on column).
- c. Detection Limits: The detection limits in the plant stem matrix were 65 ng/g for DNT and 90 ng/g for TNT using the Hubaux and Vox detection limit program.
- d. <u>Interferences</u>: Small plant component peaks were observed at the elution position of DNT and TNT in the blank plant stems sample and represented about 5 ng/g each for DNT and TNT. Two other munitions, cyclotrimethylenetrinitramine (RDX), CAS Reg. No. 121-82-4, and 2,4,6-trinitrophenylmethylnitramine (tetryl), CAS Reg. No. 479-45-8, were also included in these evaluations. RDX co-eluted with a large plant stem component and thus could not be determined. The HPLC elution position of tetryl was relatively free from plant stem component interferences, and in some samples a peak at the elution position of tetryl was observed. However, the recovery of the peak (tetryl) was low and inconsistent from sample to sample, thus preventing the determination of tetryl.
- e. Analysis Rate: The chromatographic time per injection was 40 min. Two reference solutions were analyzed prior to injecting the prepared samples, and two were analyzed during the day (160 min total time). Thus, a total of eight prepared plant stems samples (320 min total time) can be analyzed during an 8-hr day.

2. CHEMISTRY: DNT (CAS Reg. No. 121-14-2) and TNT (CAS Reg. No. 118-96-7) have limited solubility in water and nonpolar organic solvents; however, they have good solubility in intermediate polarity and polar solvents. Each of these munitions has a sufficient UV chromophore at 254 nm to allow UV detection and quantification at the required levels.

3. APPARATUS:

a. <u>Instrumentation</u>: A Waters isocratic liquid chromatographic system consisting of a Model 6000A pump, Model U6K injector, and Model 440 UV detector. A general purpose centrifuge (Dynac, Clay Adams 0101) with a 24-place head.

b. HPLC Parameters:

- 1. Column: Spherisorb ODS, 5 μ , 250 x 4.6 mm ID.
- 2. Eluent: 30% acetonitrile in 1% acetic acid in water.
- 3. Flow rate: 1.5 ml/min.
- 4. Detector: UV, 254 nm.
- 5. Internal standard: Propiophenone, 1,000 ng/ml.
- Injection volume: 50 to 100 μl.
- 7. Retention volumes and times: DNT, 31.5 ml, 21 min; TNT, 34.5 ml, 23 min; and IS, 24 ml, 16 min in the 30% acetonitrile eluent. NOTE: Slight changes in the retention indices may occur with fresh eluent or a change in column.

A representative HPLC chromatogram for DNT and TNT is shown in Figure 1. Also included on the chromatogram are peaks for the internal standard (propiophenone), RDX, and tetryl.

c. Laboratory Glassware and Equipment:

- 1. Culture tubes (Pyrex) with Teflon-lined screw caps.
- Centrifuge tubes (Oak Ridge type, polypropylene, Nalgene 3119, capacity 50 ml) with screw caps.
- 3. Volumetric flasks (100 ml).
- Volumetric syringes (0-100 μl, 0-500 μl, and 0-1,000 μl).
- 5. Automatic pipetter (0-5 ml).

- 6. Six-speed Waring-type blender with glass container.
- 7. Teflon-glass, motor-driven tissue homogenizer.
- 8. Filtering apparatus including filter holders, 5-ml disposable syringes, and 0.45 μ Fluoropore filters.
- 9. Inert gas (nitrogen) drying train with 12 ports.
- 10. Ultrasonic cleaner (50/60 Hz type).

d. Chemicals:

- DNT and TNT SARMS, obtained from the U.S. Army Toxic and Hazardous Materials Agency.
- 2. Propiophenone (internal standard), analytical grade.
- 3. Acetonitrile, hexane, and isopropanol (IPA), "Distilled in Glass" grade. The extracting solvent was 2/98 v/v isopropanol:hexane.
- 4. Acetic acid and sodium chloride, ACS grade.
- High purity water from a Milli-Q water purification system.
- 6. Dry ice.

4. STANDARDS:

- a. Stock: Weigh approximately 20 mg of RDX, DNT, TNT, and tetryl SARM or interim SARM into separate 100-ml volumetric flasks. Dissolve each compound in acetonitrile and dilute to volume. The concentration of each compound is 200 μ g/ml. Quantitatively pipette 20 ml from each stock above into a 100-ml volumetric flask and dilute to volume with distilled water. Concentration of each compound is 40 μ g/ml.
- b. Working: Pipette 10 ml of the 40 µg/ml each compound stock into a 100-ml volumetric flask and dilute to volume with high purity water. Concentration of each compound is 4 µg/ml. Reference solutions were prepared from this stock as follows:

µl Working Stock	µl IS <u>Stock</u> *	µl 10% Acetonitrile in Water	Concentration Each Compound (ng/ml)
500	500	0	2,000
375	500	125	1,500
250	500	250	1,000

µl Working Stock	µl IS Stoc k *	µl 10% Acetonitrile in Water	Concentration Each Compound(ng/ml)
125	500	375	500
25	500	475	100
0	500	500	0

^{*} Preparation of IS stock given in "c."

c. Internal Standard Stock: Weigh 10 mg propiophenone into a 100-ml volumetric flask and dilute to volume with acetonitrile (concentration, 100 μ g/ml). Quantitatively pipette 10 ml of the 100 μ g/ml stock into a 100-ml volumetric flask and dilute to volume with acetonitrile (concentration, 10 μ g/ml). A final working solution of 2.0 μ g/ml is prepared by pipetting 20 ml of the 10 μ g/ml stock into a 100-ml volumetric flask and diluting to volume with acetonitrile.

5. PROCEDURES FOR PLANT STEMS SAMPLE DETERMINATION:

- a. Plant Stems Sample Preparation: The procedure employed to prepare stems samples for the HPLC-UV determination of DNT and TNT consisted of:
 - 1. Place approximately 50 g of green plant stems (precut into ½ in.) into a Waring-type blender and blend for 1 min on speed six (liquify). To prevent the pieces of stems from sticking to the side of the blender walls, place small chunks of dry ice into the blender prior to blending.

 NOTE: The side of the blender should be scraped with a spatula.
 - 2. Pipette duplicate aliquots of the working stock (4 μg/ml each RDX, DNT, TNT, and tetryl) into the polypropylene centrifuge tubes at the following levels: 5,000 ng (1.25 ml); 2,500 ng (0.625 ml); 1,000 ng (0.25 ml); 500 ng (0.125 ml); and 250 ng (0.0625 ml). Also, prepare two tubes to serve as plant stem blanks. All tubes are adjusted to a total volume of 10 ml with high purity water.
 - 3. Accurately weigh 5.0 g homogenized plant stems into each of the 12 polypropylene centrifuge tubes (with different levels of compound). Cap the tubes and mix thoroughly with hand shaking.

- 4. Weigh 2 g sodium chloride each into the tubes and again mix thoroughly with hand and vortex mixer.
- 5. Extract the stems with 20 ml hexane (2% IPA) ("distilled in glass" grade) by vortexing and hand mixing for 30 sec followed by centrifugation at 1,000 rpm for 10 min.
- Transfer 10 ml of the hexane (2% IPA) extracts to properly labeled culture tubes with Teflon-lined screw caps.
- 7. Evaporate the hexane (2% IPA) at room temperature under a stream of nitrogen. NOTE: Do not heat the samples during the evaporation step, or loss of DNT and TNT may occur. Continue evaporation until hexane-IPA has been completely removed from the culture tube.
- 8. Dissolve the residues in 500 µl acetonitrile containing 1,000 ng IS, i.e., internal standard working solution, mix thoroughly on a vortex mixer, and then place in ultrasonicator for approximately 5 min.
- Add 500 µl high purity water to each extracted stems sample and mix thoroughly on a vortex mixer.
 NOTE: Final volume of the prepared samples is 1.0 ml.
- 10. Filter the solutions through 0.45 μ Fluorepore filters into culture tubes.
- 11. Analyze a 50- to 100-µl aliquot of each prepared stem sample by HPLC.
- 12. After the elution of TNT peak, wash the column for 3 min with 100% acetonitrile at 1.5 ml/min to remove any late-eluting compounds. NOTE: The acetonitrile wash step is required to prevent possible interference in the chromatographic analysis of the next sample injection.
- 13. After the 3-min wash, switch the system back to the eluent. Allow approximately 7 min for equilibration prior to the next injection.
- b. Calibration: The reference solutions described in Section 4.b were prepared and analyzed in quadruplicate. The relative weight response (RWR) (Eq. 1) of each compound was calculated and the average RWR utilized to determine the nanograms of each compound in every reference solution (Eq. 2). The nanograms found were plotted against the nanograms added.

The slope, intercept, and correlation coefficient for each compound were determined. The data are summarized in Table 1 and include the average value at each level for each compound, the standard deviation, coefficient of variation, and percent inaccuracy. The raw data and calculations are given in Table 6 of the Appendix.

$$RWR = \frac{Peak \ Height \ Cpd}{Peak \ Height \ IS} \times \frac{ng/ml \ IS}{ng/ml \ Cpd}$$
(Eq. 1)

$$\frac{ng}{ml}$$
 or ng/5 g compound = $\frac{Peak \text{ Height Cpd}}{Peak \text{ Height IS}} \times \frac{ng/ml \text{ IS}}{Avg. \text{ RWR}}$ (Eq. 2)

- c. <u>Plant Stems Sample Analysis</u>: The plant stems samples prepared as outlined in Section 5.a were injected onto the HPLC. The peak height of each compound was measured and recorded. Plant stems samples were prepared and analyzed on four succeeding days.
- 6. CALCULATION: The level of each compound in the 5.0 g plant stems samples was determined using the relative weight response to an internal standard method. The RWR values (Eq. 1) for the reference solutions analyzed with a day set of plant stems samples were calculated and the average values for DNT and TNT determined. These RWR values were employed to calculate the level of DNT and TNT in the plant stems samples (Eq. 2) where the nanograms per milliliter term represents the level found in the 5.0 g sample. The nanograms per gram of each compound were determined by dividing the level found by the sample weight. The results for the duplicate determinations of DNT and TNT in plant stems samples at five different levels on four separate days are summarized in Tables 2 and 3. The average level found, the standard deviation, coefficient of variation, and percent inaccuracy are also included. A linear regression evaluation of the results was made; and the slope, intercept, and correlation coefficient are given in the tables. The level of each compound found in the plant stems samples was plotted against the amount added, and these data are shown in Figures 2 and 3. The range presented at each level is two standard deviations of the average level found. A graphic presentation of the standard deviation, coefficient of variation, and percent inaccuracy for the determination of DNT and TNT in plant stems samples is given in Figures 4 through 6, respectively. Representative HPLC chromatograms are shown for a plant stems sample blank (Figure 7), a 50 ng/g (Figure 8), and a 500 ng/g (Figure 9) each compound plant stems sample. The raw data and calculations for the plant stems sample determinations are given in Tables 7 and 10 in the Appendix.
- 7. STATISTICAL EVALUATION OF DATA: A statistical evaluation of the data obtained for the determination of DNT and TNT in plant stems samples (Tables 4 and 5) by the Hubaux and Vos detection limit program was made

at the U.S. Army Toxic and Hazardous Materials Agency. The results of these evaluations are given in Table 4 for DNT and Table 5 for TNT. When the 1,000and 500-ng/g data points were omitted, the detection limit for DNT in plant stems as determined by the program was 65 ng/g. For TNT, the detection limit was 90 ng/g when the 1,000-ng/g data points were omitted. Removal of the 500-ng/g data points from the TNT detection limit calculation resulted in a detection limit below the lowest target concentration, 50 ng/g. The average manograms per gram value found at each level for each compound was determined from the linear regression for the 48 data points and the nanograms per gram added at that level. The standard deviation and percent imprecision (coefficient of variation) at each level were calculated based on this average nanograms per gram value found. Thus, these values and the values given in Tables 2 and 3 for these terms (based on the average of the eight assays at each level) are not comparable. The percent inaccuracy term was calculated from the average of the eight data points at each level, and thus agrees closely with the values in Tables 2 and 3.

HPLC Conditions

Column: Spherisorb ODS, 5 µ, 250 x 4.6 mm ID

Eluent: 30% acetonitrile in 1% acetic in water

Flow Rate: 1.5 ml/min

Chart Speed: 0.1 in./min

Detector: UV, 254 nm

Sample Characteristics

Concentrations: RDX, DNT, TNT,

and tetry1 - 500 ng/ml;

IS - 1,000 ng/ml

Injection volume: $70 \mu 1$ Attenuation: 0.01 X

Retention Indices

Compound	Retention Volume (ml)	Retention Time (min)
RDX	13.5	9
IS	22.5	15
DNT	31.5	21
TNT	34.5	23
tetryl	39	26

IS

Figure 1 - HPLC Separation of RDX, DNT, TNT, and Tetryl SARMS and Propiophenone (IS)

TABLE 1

LINEARITY AND PRECISION OF THE HPLC-UV DETERMINATION OF SARM REFERENCE SOLUTIONS OF RDX, DNT, AND THE

MDe ND ND ND		ng/m1		ng/ml [g'ml Detected			Standard	Coefficient	Percent
NDE ND ND ND	Compoun		V I	æı	၁၊	QΙ	Average	Deviation	of Variation	Inscenracy
109 114 105 103 108 ± 4.9 4.5 + 8.0 517 509 949 504 ± 11.8 2.3 + 0.8 960 950 949 504 ± 11.8 2.7 - 4.5 0	RDX	0	MO.	æ	æ	£		•	•	•
Sign Sign		100	109	114	105	103	108	± 4.9	4.5	+ 8.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		200	517	509	667	7490	204		2.3	+ 0.8
1,551 1,547 1,435 1,444 1,494 \pm 63 4.2 - 0.4 2,031 2,069 1,906 1,924 1,983 \pm 80 4.0 - 0.8 113 109 109 100 108 \pm 5.5 5.1 + 8.0 499 490 475 483 487 \pm 10.2 2.1 - 2.6 1,500 1,470 1,461 1,932 1,004 \pm 22 2.1 $+$ 0.4 1,500 1,701 1,981 1,932 1,946 \pm 3.5 1.7 - 2.7 1,500 1,701 1,982 1,934 1,901 1,946 \pm 4.8 \pm 6.8 1.7 - 2.7 107 112 112 100 108 \pm 5.7 5.3 + 8.0 495 479 484 484 486 \pm 6.8 1.4 \pm 1.9 \pm 1.9 \pm 2.0 - 2.3 1,498 1,508 1,471 1,432 1,478 \pm 3.4 \pm 3.4 \pm 3.9 2,011 2,015 1,957 1,879 1,966 \pm 6.3 \pm 6.3 \pm 6.3 \pm 1.5 \pm 1.7 \pm 1.5 \pm 1.7 \pm 1.7 \pm 1.9 \pm 1		1,000	096	950	923	985	955		2.7	- 4.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1,500	1,551	1,547	1,435	1,444	1,494		4.2	7.0 -
ND ND ND ND		2,000	2,031	5,069	1,906	1,924	1,983		. 0.4	8.0 -
113 109 109 100 108 ± 5.5 5.1 $+ 8.0$ 487 ± 10.2 2.1 $- 2.6$ 992 1,011 981 1,032 1,004 ± 22 2.2 ± 0.4 1,506 1,470 1,461 1,439 1,468 ± 25 1.7 $- 2.1$ ND ND ND ND 10 108 ± 5.7 5.3 ± 8.0 484 484 486 ± 6.8 1.49 2.0 ± 1.9 1,498 1,508 1,471 1,432 1,478 ± 1.9 2.0 ± 1.5 1,996 1,508 1,471 1,432 1,966 ± 6.8 2.3 ± 1.9 2,011 2,015 1,957 1,879 1,966 ± 6.3 3.2 ± 1.7 ± 0.6 Nocefficient - 0.998 ± 7.7 ± 0.9 ± 0	THO	0	S	æ	S S	£	,	1	•	•
499 490 475 483 487 ± 10.2 2.1 -2.6 $+0.4$ ± 0.4 1,500 1,461 1,439 1,668 ± 25 1.7 -2.1 1.7 -2.1 1,500 1,470 1,461 1,439 1,946 ± 25 1.7 -2.1 1.9 $-2.$		100	113	109	109	100	108		5.1	+ 8.0
992 1,011 981 1,032 1,004 ± 22 2.2 + 0.4 1,500 1,470 1,461 1,439 1,468 ± 25 1.7 - 2.1 1,968 1,982 1,934 1,901 1,946 ± 36 1.9 - 2.7 ND ND ND ND 2.7 10 107 112 100 108 ± 5.7 5.3 + 8.0 1,498 1,508 1,471 1,432 1,478 ± 34 2.3 - 1.5 2,011 2,015 1,957 1,879 1,966 ± 63 3.2 - 1.7 A Average = \(\omega{\text{x}} \)/\(\omega{\text{m}} \) \(\		200	667	7490	475	483	487		2.1	- 2.6
1,500 1,470 1,461 1,439 1,468 ± 25 1.7 - 2.1 1,968 1,982 1,934 1,901 1,946 ± 36 1.9 - 2.7 ND ND ND ND 2.8 107 112 112 100 108 ± 5.7 5.3 + 8.0 1,498 1,508 1,471 1,432 1,478 ± 34 2.3 - 1.5 2,011 2,015 1,957 1,879 1,966 ± 63 3.2 - 1.7 A Average = \(\omega{\text{Ex/n}} = \omega{\text{x}} \) 1,498 1,508 1,471 1,432 1,478 ± 34 2.3 - 1.5 2,011 2,015 1,957 1,879 1,966 ± 63 3.2 - 1.7 A Percent inaccuracy = \(\omega{\text{x}} = \omega{\text{ng added}} \) 1,40.6 1,40.6 1,9		1,000	992	1,011	981	1,032	1,004		2.2	7.0 +
1,968 1,982 1,934 1,901 1,946 \pm 36 1.9 - 2.7 ND ND ND		1,500	1,500	1,470	1,461	1,439	1,468		1.7	- 2.1
ND ND ND ND 112 112 100 108 ± 5.7 5.3 + 8.0 495 479 484 486 ± 6.8 1.4 956 989 967 997 1,478 ± 19 2.0 1,498 1,508 1,471 1,432 1,478 ± 34 2.3 2,011 2,015 1,957 1,879 1,966 ± 63 3.2 2,011 2,015 1,957 1,879 1,966 ± 63 3.2 4 + 0.6		2,000	1,968	1,982	1,934	1,901	1,946		1.9	- 2.7
107 112 112 100 108 ± 5.7 5.3 + 8.0 495 479 484 486 ± 6.8 1.4 - 2.8 956 989 967 997 ± 19 2.0 - 2.3 1,498 1,508 1,471 1,432 1,478 ± 34 2.3 - 1.5 2,011 2,015 1,957 1,879 1,966 ± 63 3.2 - 1.7 a Average = ∑x/n = x	FEE	0	S	QX	S.	Ş	,	ı	ı	•
495 479 484 486 ± 6.8 1.4 - 2.8 956 989 967 997 ± 19 2.0 - 2.3 1,498 1,508 1,471 1,432 1,478 ± 34 2.3 - 1.5 2,011 2,015 1,957 1,879 1,966 ± 63 3.2 - 1.7 a Average = Σx/n = x / 2 (2 (x - x 2 (n - 1)) 1 / 2 (x - 1) 1 / 2		100	107	112	112	100	108	± 5.7	5.3	+ 8.0
956 989 967 997 ± 19 2.0 - 2.3 - 1.5 1,498 1,508 1,471 1,432 1,478 ± 34 2.3 - 1.5 2,011 2,015 1,957 1,879 1,966 ± 63 3.2 - 1.7 a Average = \(\int \infty \alpha \) = \(\int \infty \) = \(\int \int \infty \) = \(\int \infty \) = \(\int \infty \) = \(\int \infty \) = \(\int \infty \) = \(\int \infty \) = \(\int \int \infty \) = \(\int \int \infty \) = \(\int \int \int \int \int \int \int \int		200	495	614	787	787	987		1.4	- 2.8
1,498 1,508 1,471 1,432 1,478 ± 34 2.3 - 1.5 2,011 2,015 1,957 1,879 1,966 ± 63 3.2 - 1.7 a Average = \(\int \infty \mathrm{\tilde{x}} \) = \(\int \infty \mathrm{\tilde{x}} \) = \(\int \int \infty \mathrm{\tilde{x}} \) = \(\int \infty \mathrm{\tilde{x}} \) = \(\int \infty \mathrm{\tilde{x}} \) = \(\int \infty \mathrm{\tilde{x}} \) = \(\int \infty \mathrm{\tilde{x}} \) = \(\int \infty \mathrm{\tilde{x}} \) = \(\int \infty \mathrm{\tilde{x}} \) = \(\int \infty \mathrm{\tilde{x}} \) = \(\int \int \infty \mathrm{\tilde{x}} \) = \(\int \infty \mathrm{\tilde{x}} \) = \(\int \infty \mathrm{\tilde{x}} \) = \(\int \infty \mathrm{\tilde{x}} \) = \(\int \infty \mathrm{\tilde{x}} \) = \(\int \infty \mathrm{\tilde{x}} \) = \(\int \infty \mathrm{\tilde{x}} \) = \(\int \infty \mathrm{\tilde{x}} \) = \(\int \infty \mathrm{\tilde{x}} \) = \(\int \infty \mathrm{\tilde{x}} \) = \(\int \infty \mathrm{\tilde{x}} \) = \(\int \infty \mathrm{\tilde{x}} \) = \(\int \infty \mathrm{\tilde{x}} \) = \(\int \int \infty \mathrm{\tilde{x}} \) = \(\int \infty \mathrm{\tilde{x}} \) = \(\int \infty \mathrm{\tilde{x}} \) = \(\int \infty \mathrm{\tilde{x}} \) = \(\int \infty \mathrm{\tilde{x}} \) = \(\int \infty \mathrm{\tilde{x}} \) = \(\int \infty \mathrm{\tilde{x}} \) = \(\int \infty \mathrm{\tilde{x}} \) = \(\int \infty \mathrm{\tilde{x}} \) = \(\int \infty \mathrm{\tilde{x}} \) = \(\int \infty \mathrm{\tilde{x}} \) = \(\int \infty \mathrm{\tilde{x}} \) = \(\int \infty \mathrm{\tilde{x}} \) = \(\int \int \int \infty \mathrm{\tilde{x}} \) = \(\int \int \int \int \int \int \int \int		1,000	926	989	196	166	716		2.0	- 2.3
a Average = \(\int \int \) \(\i		1,500	1,498	•	1,471	1,432	1,478		2.3	- 1.5
a Average = $\Sigma x/n = \tilde{x}$ b Standard deviation = $(\Sigma \tilde{x} - x ^2/n - 1)^{1/2}$ b Standard deviation = $(\Sigma \tilde{x} - x ^2/n - 1)^{1/2}$ c Coefficient of variation = $\sigma/x \times 100$ on coefficient - 0.999 c + 1.2 e ND = Not detectable, less than 20 ng/m		2,000	2,011	•	1,957	1,879	1,966		3.2	- 1.7
y = 0.988x + 0.6 Correlation coefficient - 0.998 $y = 0.974x + 7.7$ Correlation coefficient - 0.999 $y = 0.98x + 1.2$	inear	Regression						A Average	: 5x/n = x (-	
y = $0.974x + 7.7$ y = $0.974x + 7.7$ Correlation coefficient - 0.999 y = $0.982x + 1.2$ Correlation coefficient - 0.999 correlation coefficient - 0.999	RDX:	y = 0.988x +	0.6	(a				$deviation = (\Sigma X)$	-x 2(n-1)1'2 = - (2/2 = 100
Correlation coefficient - 0.999 y = 0.982x + 1.2 Correlation coefficient - 0 999	DNT:	y = 0.974x +	7.7	•	<u> </u>				ne or veriation	ng added x 100
	TNT:	y = 0.982x + Correlation C	coerriciem 1.2 Soefficien	• •	<u>.</u> 0				detectable, less	added than 20 ng/ml

TABLE 2

HPLC-UV DETERMINATION OF DNT IN PLANT STEMS SAMPLES

	-	Percent Tacon Inaccuracy	•	-38	<i>c</i> 7-		; ·	67 -	
		Coefficient of Variation	67	37	37	. 07	: SE	32 2	
	C	Deviation	± 1.7	± 11	± 22	± 45	76 ∓	± 164	
		Average	3.4	31	. 88	114	270	518	
	7 0	A B	4	77	57	91	243	244	
	و	V	4	25	26	115	235	435	
(8	v 3	В	4	25	42	102	271	416	
Cound (ne/e)	Da	V	S	32	67	112	274	614	
Level Fo	y 2	æ	S	41	06	169	667	718	
•	Ω	V	S	67	91	186	367	707	
	y 1	æ	ND.	22	97	89	175	412	
	å	4	2.2	20	32	77	159	333	
Amount	Added	(ng/g)	0 2.2 ND ^e 5 5	20	100	200	200	000.	.(

Note: Linear regression: y = 0.514x + Correlation coefficient: 0.923

a Average = $\sum x/n = x$

b Standard deviation = $\left(\frac{n\Sigma x^2 - (\Sigma x)^2}{n(n-1)}\right)$

c Coefficient of variation = $\sigma/\bar{x} \times 100$

d Percent inaccuracy = $\frac{x - ng}{ng}$ added x 100

e ND - Not detectable, less than 2 ng/g.

TABLE 3

HPLC-UV DETERMINATION OF THE IN PLANT STEMS SAMPLES

Amount				Level For	1/8u) pun	(2						
Added	å	y 1	De	7.2	Day 3	4 3	Day 4	7 /	•	Standard	Coefficient	
(0 8/8)			 	æ	V	2	V	В	Average	Deviation	of Variation	Inaccurac
0	11	ND	9	7	က	9	m	e	6.4	± 3.4	69	•
20	77	28	32	31	77	32	81	21	29	œ +1	28	-43
001	37	41	62	63	75	87	19	42	24	‡ 1 ¢	26	97-
200 70 78 127 120 97	70	78	127	120	120	97	140	116	108	± 24	23	97-
200	136	154	301	322	244	240	242	253	237	± 64	27	-52
1,000	311	356		593	797	424	107	472	957	± 102	22	-54
1												

Note: Linear regression: y = 0.449x + 10 Correlation coefficient: 0.957

A Average = $\Sigma \cdot /n = \bar{x}$

b Standard deviation = $\left(\frac{n\Sigma x^2 - (\Sigma x)^2}{n(n-1)}\right)^{\frac{1}{2}} = \sigma$

c Coefficient of variation = $\sigma/x \times 100$

d Percent inaccuracy = $\frac{x}{x} - ng$ added x 100

e ND - Not detectable, less than 2 ng/g.

Figure 2 - Determination of DNT in Plant Stems

Figure 3 - Determination of TNT in Plant Stems

Figure 5 - Coefficient of Variation for DNT and TNT in Plant Stem Samples

Figure 6 - Percent Inaccuracy for DNT and TNT in Plant Stem Samples

Section &

Sales and

HPLC Conditions:

Column: Spherisorb ODS, 5 µ,
250 x 4.6 mm ID

Eluent: 30% acetonitrile in
1% acetic acid in water

Flow Rate: 1.5 ml/min

Chart Speed: 0.1 in./min

Detector: UV, 254 nm

Sample Characteristics:

5.0 g plant stem extracted with 20 ml hexane (2% IPA). Extract evaporated, and residue reconstituted with 500 µl acetonitrile and 500 µl water.

IS Concentration: 1,000 ng/ml Injection Volume: 70 µl Attenuation: 0.01 X

Figure 7 - HPLC Analysis of Blank Plant Stems. Sample for DNT and TNT Method Development. Arrows indicate elution positions for RDX, DNT, TNT, and tetryl.

HPLC Conditions:

Column: Spherisorb ODS, 5 μ,
250 x 4.6 mm ID

Eluent: 30% acetonitrile in
1% acetic acid in water

Flow Rate: 1.5 ml/min

Chart Speed: 0.1 in./min

Detector: UV, 254 nm

Sample Characteristics:

5.0 g plant stem containing 50 ng/g each munition extracted with 20 ml hexane (2% IPA). Extract evaporated, and residue reconstituted with 500 µl acetonitrile and 500 µl water.

IS Concentration: 1,000 ng/ml Injection Volume: 70 µl Attenuation: 0.01 X

Figure 8 - HPLC Analysis of Plant Stems Containing 50 ng/g of RDX, DNT and TNT. "X" denotes plant component. Munition elution positions indicated by arrows.

HELC Conditions:

Column: Spherisorb ODS, 5 μ ,

250 x 4.6 mm ID

Eluent: 30% acetonitrile in 1% acetic acid in water Flow Rate: 1.5 ml/min Chart Speed: 0.1 in./min

Detector: UV, 254 nm

Sample Characteristics:

5.0 g plant stem containing 500 ng/g each munition extracted with 20 ml hexane (2% IPA). Extract evaporated, and residue reconstituted with 500 µl acetonitrile and 500 µl water.

IS Concentration: 1,000 ng/ml Injection Volume: 70 µl

Attenuation: 0.01 X

Figure 9 - HPLC Analysis of Plant Stems Containing 500 ng/g RDX, DNT, TNT, and Tetryl. "X" indicates elution position plant component interfering with RDX.

TABLE 4

STATISTICAL EVALUATION OF DNT IN PLANT STEMS DATA BY THE HUBAUX AND VOS DETECTION LIMIT PROGRAM

Number ^a of Data points	Linear Regression	Correlation	Degrees of Freedom	t _b	y c Intercept	Detection Limit
48 40 32	y = 0.514 x +7.0 y = 0.534 x +4.5 y = 0.550 x +3.3	0.923 0.904 0.860	76 38 30	1.679 1.686 1.697	59 37 22	196 117 . 65
ng/g DNT Added	Average n/g/ Found	Standard ^f Deviation	Percent ⁸ Imprecision	Percent Inaccuracy		
0 50 100 200 500 1,000	. 33 58 110 264 521	+ 4.3 + 8.2 + 17 + 35 + 62	18 14 15 13	7 43 48 48 48 48 48 48 48 48 48 48 48 48 48		

48 - all data; 40 - 1,000 ng/g samples omitted; 32 - 1,000 ng/g and 500 ng/g samples omitted. t - 2 tail p level (usually 0.1, each confidence band is 0.05 so total <math>p = 0.1). Number of data points - data points used to calculate linear regression and detection limits;

Detection limit - x-intercept of y-intercept and lower confidence limit line. Average ng/g found - average at each level determined from linear regression y intercept - intercept on y-axis of upper confidence limit line.

equation for 48 points.

Standard deviation - determined from average value (e above) and observed values. Percent inaccuracy - determined from the average values of the eight observed Percent imprecision - standard deviation divided by average value times 100%.

values at each level

* Inaccuracy = Average observed values - level added x 100 level added I

Ţ

I

TABLE 5

STATISTICAL EVALUATION OF THY IN PLANT STERS DATA BY

7	Detection	144 90 40		
	y Intercept	43 29 14		
PROGRAM	ادم	1.679 1.686 1.697	Percent h Inaccuracy	1 1 1 1 1 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3
THE HUBAUX AND VOS DETECTION LIMIT PROGRAM	Degrees of Freedom	76 38 32	Percent ⁸ Imprecision	26 11 9.8 8.5 10 8.5
HE HUBAUX AND VO	Correlation Coefficient	0.957 0.940 0.941	Standard f Devistion	+ + + + + + + + + + + + + 39
	Linear Regression	y = 0.449 x +9.8 y = 6.464 x +7.8 y = 0.520 x +3.6	Average n/g/ Found	10 32 55 100 235 459
	Number [®] of Data points	78 70 35 37	ng/g TNI Added	0 50 100 200 500 1,000

48 - all data; 40 - 1,000 ng/g samples omitted; 32 - 1,000 ng/g and 500 ng/g samples omitted. Number of data points - data points used to calculate linear regression and detection limits; t - 2 tail p level (usually 0.1, each confidence band is 0.05 so total p = 0.1)

y intercept - intercept on y-axis of upper confidence limit line.

Average ng/g found - average at each level determined from linear regression Detection limit - x-intercept of y-intercept and lower confidence limit line

Standard deviation - determined from average value (e above) and observed values. equation for 48 points.

Percent inaccuracy - determined from the average values of the eight observed Percent imprecision - standard deviation divided by average value times 100%.

values at each level

% Inaccuracy = Average observed values - level added x 100

APPENDIX

METHOD DEVELOPMENT FOR THE DETERMINATION
OF DNT AND TNT IN PLANT STEMS

RAW DATA AND CALCULATIONS

TABIB A

LINEARITY AND PRECISION OF RDX, DNT, AND THI DETERMINATION BY HIGH PERFORMANCE LIQUID CHROMATOGRAPHY

					Inte	rnel						
Reference Solution	ng/ml Compound	Pe	Pesk Height (mm)	ght	Stan	Standard ng Peak		Relative Weight Response	ight	3	Calculated ng/ml	_
Number	Added	ğ	TNO	TA.	121	Height	RDX	E	E	XQ	TNO	E
A-1	0	· 7	7	7	1,000	122	•	•		Ş	S	Ş
A-2	100	12	14	11	1,000	116	1.03	1.21	0.95	109	113	107
A-3	Sca	28	63	25	1,000	118	0.98	1.07	0.88	517	667	495
4-4	1,000	104	121	46	1,000	114	0.91	1.06	0.85	096	992	926
Ą-5	1,500	168	163	152	1,000	114	0.98	1.07	0.89	1,551	1,500	1,498
A-6	2,000	220	240	204	1,000	114	96.0	1.05	0.89	2,031	1,968	2,011
B-1	0	~	7	< 2	1,000	118	1	•	•	Ş	Š	Ş
B- 2	100	13	14	12	1,000	120	1.08	1.17	1.00	114	109	112
B-3	200	59	79	. 52	1,000	122	0.97	1.05	0.85	209	490	614
, B-4	1,000	121	145	118	1,000	134	0.90	1.08	0.88	950	1,011	989
. B-5	1,500	172	184	157	1,000	117	0.98	1.05	0.89	1,547	1,470	1,508
B-6	2,000	228	546	208	1,000	116	0.98	1.06	0.00	2,069	1,982	2,015
C-1	0	7	2	7	1,000	120	•	•	•	Ş	Ş	Ş
C2	100	12	14	12	1,000	120	1.00	1.17	1.00	105	109	112
c-3	200	55	29	20	1,000	116	0.95	1.02	0.86	667	475	787
4-0	1,000	107	128	105	1,000	122	0.88	1.05	98.0	923	981	196
C-5	1,500	150	172	144	1,000	110	0.91	1.04	0.87	1,435	1,461	1,471
9-0	2,000	210	240	202	1,000	116	0.91	1.03	0.87	1,906	1,934	1,957
D-1	0	7	7	2 ×	1,000	119	,	•	•	æ	æ	Š
D-2	100	11	12	10	1,000	112	0.98	1.07	0.89	103	100	100
D- 3	200	24	9	20	1,000	116	0.93	1.03	0.86	067	483	787
D- 4	1,000	116	137	110	1,000	124	76.0	1.10	0.89	985	1,032	997
D-5	1,500	155	174	144	1,000	113	0.91	1.03	0.85	1,444	1,439	1,432
9-0	2,000	212	236	194	1,000	116	0.91	1.02	9.84	1,924	1,901	1,879

TABLE 6 (concluded)

Relative Weight Response

	Average	Standard Deviation	Relative Standard Deviation
RDX	0.95	± 0.05	5.2%
DNT	1.07	± 0.05	4.9%
TNT	0.89	± 0.04	5.1%

TABLE 7

DETERMINATION OF DNT AND TNT IN PLANT STEMS SAMPLES

DAY 1 SAMPLES

			DNT	2.2	20	32	77	159	333	CN pax	22	95	89	175	412
[nternal	standard	Peak	ng/ml Height	165.5	164.0	163.5	164.B	163.5) 162.8	3,990	165.8	166.0	0 163.0	159.8	163.2
	Peak Height	[DNT	1.0	80	14.5 12.	20.0 23.	71.5 46.	149.2 105.		6	20.8	39.8 26.	77.0 51.	184.8 120.
			Plant Stem												
	ng/g	Pariodelo	Added	c	· •	2 2	200	005	1,000	•	.	8 5	200	005	000
		Sample	Number	14-0	Day 14-250	Day 14-500	Day 14-1000	Day 14-2500	Day 1A-5000		Day 15-0	Day 18-230	Day 18-1000	Day 18-2500	Day 18-5000

TABLE 7 (concluded)

REFERENCE SOLUTIONS

	ng/ml ^a	Peak H	leight		dard	Relativ	e Weight
Keterence Solution	Combound		<u>-</u>		Peak	2	anonse.
Number	Added	DNT	DNT TNT		ng/ml Height D	DNT	TNT
Std - Day 1-2	200	32.0	24.0		150.5	1.06	0.80
Std - Day 1-1	100	16.2	12.0		151.8	1.07	0.79
Std = Day 1-4	200	82.5	64.5		148.5	1.11	0.87
ord - Day I-I	100	16.0	12.0		147.5	1.08	0.81
					Average		1.08 0.82
				Standard	1 Deviation		± 0.036

a ng/g compound added - nanograms of DNT and TNT added per gram of plant stems sample.

Internal standard - compound (propiophenone) added to plant stems sample after sample preparation for calculaton of data.

ng/g detected - nanograms of DNT and TNT detected in the plant stems sample. U

ND - not detected, less than 2 ng/g.

e Relative weight response - RWR.

1

]

I

1

. :

. .

]

: 1

TABLE 8

DETERMINATION OF DNT AND TNT IN PLANT STEMS SAMPLES

S
ŭ
_
윽
9
SAMPLES
~
٨X
•

					Inte	Internal		·
	ns/s		Peak Height	feight	Standard	dard	80	, 8/
Sample	Compound	a				Peak	Dete	Detected
Number	Added	Plant Stem	TNO	TAT	ng/ml		DXT	E
Day 14-0	o	5,0	2.0	2.0	1,000		ĸ	9
Day 1A-250	20	5.0	20.8	11.0	1,000		67	32
Day 1A-500	100	5.0	37.2	20.0	1,000		16	62
Day 1A-1000	200	5.0	74.0	39.8	1,000		186	127
Day 1A-2500	200	5.0	152.0	98.2	1,000		367	301
Day 1A-5000	1,000	5.0	295.6	196.0	1,000		707	297
Day 1B-0	0	5.0	2.9	2.0	1,000	143.0	2	7
	20	5.0	17.4	9.0	1,000		47	31
	100	ບຸ	43.0	23.6	1,000		90	63
	200	5.0	72.0	40.0	1,000		169	120
	200	5.0	176.0	101.6	1,000		430	322
Day 18-5000	1,000	5.0	340.4	194.8	1,000		814	593

TABLE 8 (concluded)

REFERENCE SOLUTIONS

re Weight ^e	DNT TNT	0.84	0.82	0.85	0.84 ± 0.014
Relativ	DNT	1.08	1.08	1.06	1.07 ± 0.010
Internal Standard	Height	128.2	144.4	137.0	Average Deviation
Int	ng/ml	1,000	1,000	1,000	Average Standard Deviation
Peak Height	TYT	69.2 · 53.8 27.8 21.2	311.0 240.0		
ng/ml* Compound	Added	500 200	2,000 200		
Reference Solution	Fumber St. J. D. S. S. S.	Std - Day 2-2	Std · · 2-2		

ng/g Compound added - nanograms of DNT and TNT added per gram of plant stems sample. I ernal standard - compound (propiophenone) added to plant stems sample after sample preparation for

ng/g detected - nanograms of DNT and TNT detected in the plant stems sample

ng compound/g = Peak Height Compound x average RWR compound x Sample Weight (g)

ND - not detected, less than 2 ng/g. Relative : ight response - RWK U

RWR = Peak Height compound x ng/ml IS
Peak Height IS ng/ml compound

-

]

]

]

U

TABLE 9

DETERMINATION OF DNT AND THT IN PLANT STEMS SAMPLES

DAY 3 SAMPLES

	•				Interna	rne 1 b		,
` ,	8/8u		Peak	Peak Height	Standard	dard	80	28/8u
Sample	Combound	•••	ت	(B		Peak)\ete	cted
Number	Added	Plant Stem	DNT	TNT	ng/m1	Height	TNO	TAT
	0	5.0	2.5	1.0	1,000	163.0	٧٦	m
	20	5.0	14.6	15.4	1,000	159.6	32	3
	100	5.0	22.0	26.0	1,000	159.0	67	75
	200	5.0	51.6	42.4	1,000	163.0	112	120
	200	5.0	124.0	85.0	1,000	160.0	274	244
Day 1A-5000	1,000	5.0	210.0	156.0	1,000	155.2	617	462
Day 1B-0	0	5.0	2.0	2.0	1,000	157.0	4	9
Day 1B-250	20	5.0	10.2	10.0	1,000	144.0	25	32
Day 1B-500	100	5.0	17.0	15.0	1,000	144.0	42	87
Day 1B-1000	200	5.0	78.0	35.0	1,000	166.0	102	97
Day 18-2500	200	5.0	124.8	85.0	1,000	162.8	271	240
Day 18-5000	1,000	5.0	187.6	157.6	1,000	159.6	416	454

TABLE 9 (concluded)

REFERENCE SOLUTIONS

e Veight ^e	Nesponse DNT TNT	0.86	0.91	0.84	98.0	0.87
Relativ	DNT	1.09	1.17	1.13	1.15	1.13
Internal b Standard	Height	0 134.0	0 142.0	152.0	152.0	Average Standard Deviation
						Stan
Peak Height	DNT	146.0 116.0	10.0 13.0	35.0 04.0	0.02 0.00	
ng/ml ^a Compound	Added	1,000	200	200		
Reference Solution	Number 1	Std - Day 3-1	td - Day 3-3	Std - Day 3-2	,	

ng/g Compound added - nanograms of DNT and TNT added per gram of plant stems sample. Internal standard - compound (propiophenone) added to plant stems sample after sample preparation for

ng/g detected - nanograms of DNT and TNT detected in the plant stems sample

Sample Weight (g) x ng/ml IS average RWR compound ng compound/g = Peak Height Compound
Peak Height IS

ND - not detected, lass than 2 ng/g. • 7

Relative weight response - RWR

]

I

U

TABLE 10

DETERMINATION OF DNT AND TNT IN PLANT STEMS SAMPLES

DAY 4 SAMPLES

ى • / • ر	Detected	. æ	67 140 245	213	116 253 472
c	DAT	4 25	56 115 235 435	24 24 57	91 243 544
Internal ^b Standard	Peak	166.4	169.4 160.4 161.6 168.0	158.0 161.0 181.4	162.4 167.8 168.8
Internal Standard	08/81	1,000	1,000 1,000 1,000	1,000	1,000 1,000 1,000
Peak Height	TNT	1.0 6.4 24.0	47.6 84.0 142.8	1.0 7.0 16.0	90.0 169.2
Peak	TNO	11.8 27.2	53.0 109.0 210.0	2.0 11.0 29.6 42.4	117.0
•0	Plant Stem	. o. o.	. v. v.	0.00.0 0.00.0	5.0
ng/g Compound	O O	50 100 200	1,000	50 100 200	1,000
Sample Number	Day 1A-0	Day 1A-1000	Day 1A-2500 Day 1A-5000 Day 1B-0	Day 18-250 Day 18-500 Day 18-1000 Day 18-2500	Day 18-5000

TABLE 10 (concluded)

RETERENCE SOLUTIONS

				Inte	ernal ^b			
Reference Solvtion	ng/m] Compound	Peak H	leight	Sta	ndard	Relativ	e Veight ^e	
Number	Added	TNO	TINI	ng/ml	Reight	DNT	TNT	
Std - Day 4-5 Std - Day 4-1	1,000	178.0 18.0	178.0 130.0 18.0 13.4	1,000	1,000 159.0 1,000 154.0	1.12	1.12 0.82 1.17 0.87	
Std - Day 4-3	200	35.6 94.2	26.0 70.0	1,000	151.4 165.4	1.18	0.86 0.85	
				Standa	Average Standard Deviation	1.15	0.85	

ng/g Compound added - nanograms of DNT and TNT added per gram of plant stems sample. Internal standard - compound (propiophenone) added to plant stems sample after sample preparation for

ng/g detected - nanograms of DNT and TNT detected in the plant stems sample

Sample Weight (g) ng compound/g = Peak Height Compound X Peak Height IS average RWR compound

ND - not detected, less than 2 ng/g. Relative weight response - RWR 7

RWR = Peak Height compound x ng/ml IS
Peak Height IS ng/ml compound

1

]

]

U

DISTRIBUTION LIST

Distribution	No. of Copies
DCASMA, Kansas City Room 201, Noland Plaza Office Building 3675 South Noland Road Independence, MO 64055	1
Defense Logistics Studies Information Exchange U.S. Army Logistics Management Center Fort Lee, VA 23801	2
Defense Technical Information Center Cameron Station Alexandria, VA 22314	12
Commander U.S. Army Toxic and Hazardous Materials Agency Attn: DRXTH-TE-A Attn: DRXTH-ES Aberdeen Proving Ground, MD 21010	4 2
Commander U.S. Army Environmental Hygiene Agency Attn: HSE-AA-L Aberdeen Proving Ground, MD 21010	1
Commander-Director Chemical Systems Laboratory Attn: DRDAR-CLB-R Aberdeen Proving Ground, MD 21010	1
Dr. David H. Rosenblat U.S. Army Medical Bioengineering Research and Development Laboratories Fort Detrick	1
Frederick, MD 21701 Cold Regions Research and Engineering Laboratories Box 282 Lyme Road Hanover, NH 03755	1