Stochastic Newton with Arbitrary Sampling

Igor Melnikov

MIPT

Goal

$$f_i(x) = \log \left(1 + \exp(-b_i a_i^{\top} x)\right) + \frac{\lambda}{2} ||x||$$

Conventional sampling: $p(i) = \frac{1}{n}$
Important sampling: $p(i) = \frac{L_i}{\sum\limits_{j=1}^{n} L_j}$

Improving NS algorithm by changing sample strategy.

Literature

Stochastic Newton and Cubic Newton Methods with Simple Local Linear-Quadratic Rates - Dmitry Kovalev, Konstantin Mishchenko, Peter Richtaric

An Incremental Quasi-Newton Method with Local Superlinear Convergence Rate - Aryan Mokhtari, Mark Eisen, Alejandro Ribeiro

Empirical Risk Minimization problem

Figure 1: Convergence rate NS algorithm ($\lambda = 0.001$)

$$\begin{split} f_i(x) &= \log \left(1 + \exp(-b_i a_i^\top x)\right) + \frac{\lambda}{2} \|x\| \\ \text{Conventional sampling: } p(i) &= \frac{1}{n} \\ \text{Important sampling: } p(i) &= \frac{L_i}{\sum\limits_{i=1}^n L_i} \end{split}$$

Empirical Risk Minimization problem

Figure 2: Speed up of NS algorithm

$$f_i(x) = \log\left(1 + \exp(-b_i a_i^\top x)\right) + \frac{\lambda}{2} \|x\|$$
 Conventional sampling: $p(i) = \frac{1}{n}$ Important sampling: $p(i) = \frac{L_i}{\sum\limits_{j=1}^n L_j}$

Batch size	1	2	4	8
Speed up	2.42	1.78	1.62	1.39