SCMA104 Systems of Ordinary Differential Equations and Applications in Medical Science

Pairote Satiracoo

2024-08-21

Contents

1	หลักการและความสำคัญของแคลคูลัสและระบบสมการเชิงอนุพันธ์สามัญ	1
2	ลิมิต (Limits) 2.1 ความต่อเนื่อง (Continuity)	17 42
3	อนุพันธ์ (Derivatives) 3.1 อนุพันธ์ (Derivatives) 3.2 การคำนวณหาอนุพันธ์ 3.3 สูตรสำหรับหาอนุพันธ์ 3.4 อนุพันธ์อันดับสูง (High Order Derivatives)	55 55 64 69

	3.5	การตีความอนุพันธ์ (Interpretation of Derivatives)	71	
	3.6	กฎลูกโซ่ (The Chain Rule)	81	
	3.7	อนุพันธ์ของฟังก์ชันอินเวอร์ส (Derivatives of Inverse Functions)	91	
	3.8	Differentials, Implicit Differentiation and Related Rates	97	
	3.9	อนุพันธ์ของฟังก์ชันตรีโกณมิติและอินเวอร์สของฟังก์ชันตรีโกณมิติ	126	
4	การปร	ระยุกต์ของอนุพันธ์ (Applications of Differentiation)	143	
4	การปร 4.1	ระยุกต์ของอนุพันธ์ (Applications of Differentiation) Applications of derivatives related to students discipline	143 144	
4		· ·		
4	4.1	Applications of derivatives related to students discipline	144	
4	4.1 4.2	Applications of derivatives related to students discipline	144 151	

Chapter 2

ลิมิต (Limits)

อาจกล่าวได้ว่า วิชาแคลคูลัส ถือกำเนิดขึ้นมาจากความพยายามในการแก้ปัญหาทางเรขาคณิตบนระนาบ 2 ปัญหาหลักๆ คือ

• การหาเส้นตรงที่สัมผัสเส้นโค้งที่กำหนดให้

กำหนดฟังก์ชัน (function) f และกำหนดจุด $P(x_0,y_0)$ บนกราฟ y=f(x) จงหาสมการของ เส้นตรงที่สัมผัสกราฟ y=f(x) ที่จุด P

• การหาพื้นที่ของบริเวณที่กำหนดให้

กำหนด function f และช่วง [a,b] ในโดเมนของ f จงหาพื้นที่ที่ถูกปิดล้อมด้วยแกน X และกราฟ y=f(x) สำหรับ $x\in [a,b]$

แนวความคิดในการแก้ปัญหาทั้งสอง นำไปสู่การศึกษาเรื่อง ลิมิต (Limits) ซึ่งเป็นพื้นฐานของวิชาแคลคูลัส นั่นเอง

แต่ในปัจจุบันเราพบว่าวิชาแคลคูลัสมีประโยชน์ในการช่วยแก้ปัญหาในสาขาวิชาต่าง ๆ มากมาย เช่น เราจะ พบในการศึกษาวิชานี้ว่า แคลคูลัสมีบทบาทในการแก้ปัญหาต่อไปนี้

- โดยทั่วไป ยาชนิดฉีดจะต้องใช้เวลาระยะหนึ่งหลังจากฉีดเข้าสู่ร่างกาย ในการที่จะไหลเวียนในกระแส โลหิต จนกระทั่งมีความเข้มข้นสูงสุด สมมุติว่า ยาฉีดชนิดหนึ่งหลังจากฉีดเข้าสู่ร่างกายนาน t ชั่วโมง จะมีความเข้มข้นเป็น $C(t)=0.15(e^{-0.18t}-e^{-1.2t})$ มิลลิกรัมต่อมิลลิลิตร จงหาว่า นานเท่าใด หลังจากฉีดยา จึงจะมีความเข้มข้นของยา ในกระแสโลหิตสูงที่สุด
- เราอาจประมาณได้อย่างมีเหตุผลว่า artery มีรูปร่างที่เป็นผลมาจากการหมุนรอบแกน ของเส้นโค้งใน ระนาบ โดยในสภาวะนิ่ง รัศมีของ artery มีค่าคงที่เท่ากับ 1 หน่วย (รูปทรงกระบอก) แต่ในขณะ ที่หัวใจสูบฉีดโลหิตผ่าน artery artery จะพองตัวออก ทำให้รัศมีเปลี่ยนไปตามสมการ $R(x)=1+0.4x-0.04x^2$ หน่วย เมื่อ $0\leq x\leq 10$ เป็นตำแหน่งบนแนวยาวของ artery จงหาว่า

ปริมาณโลหิตที่อยู่ใน artery ขณะที่หัวใจสูบฉีดโลหิตผ่านเข้ามาเป็นกี่เท่าของความจุโลหิตในสภาวะนิ่ง

- ความก้าวหน้าในทางการแพทย์ และเทคโนโลยีปัจจุบัน ทำให้มีการประดิษฐ์อุปกรณ์ช่วยในการรักษา โรคเบาหวานชิ้นหนึ่งขึ้น อุปกรณ์นี้มีลักษณะเป็นแคปซูล ซึ่งเมื่อฝังอุปกรณ์นี้ภายในร่างกายแล้ว มันจะ หลั่งสารอินซูลินที่บรรจุอยู่ภายใน ออกสู่กระแสโลหิต โดยมีอัตราการหลั่งเป็น $f(t) = 0.5te^{-0.09t}$ ลูกบาศก์เซนติเมตรต่อวัน เมื่อ t คือ เวลาเป็นวัน นับจากอุปกรณ์เริ่มทำงาน จงหาว่า แพทย์จะต้อง สั่งให้บรรจุอินซูลินในแคปซูลเป็นปริมาณเท่าใด เพื่อให้อุปกรณ์นี้สามารถให้อินซูลินแก่ผู้ป่วยได้นาน 3 เดือน
- การหาเส้นตรงที่สัมผัสเส้นโค้ง y=f(x) ณ จุด $P_0(x_0,y_0)$

ขั้นตอนสรุปการหาเส้นตรงที่สัมผัสเส้นโค้ง 2.1

- 1. เลือกจุดอื่นบนกราฟ เรียกจุดนี้ว่า P(x,y)
- 2. ลากเส้นผ่าน PP_0
- 3. ทำซ้ำโดยเลือกจุด P ให้ใกล้ P_0 มากขึ้น
- 4. เส้น PP_0 ที่ได้จะ "เข้าใกล้" เส้นสัมผัสมากขึ้นทุกที

Figure 2.1: การหาเส้นตรงที่สัมผัสเส้นโค้ง

• การหาพื้นที่ "ใต้กราฟ" ระหว่าง x = a กับ x = b

Figure 2.2: การหาพื้นที่ใต้กราฟ

ขั้นตอนเบื้องต้นสำหรับการหาพื้นที่ใต้กราฟ

- 1. แบ่ง [a,b] เป็นช่วงเล็กๆ 2. หาพื้นที่รวมของสี่เหลี่ยมผืนผ้าทั้งหมด
- 3. ทำซ้ำๆ โดยแบ่งช่วงให้เล็กมากขึ้น

4. พื้นที่ที่ได้จะ "เข้าใกล้" พื้นที่ที่ต้องการมากขึ้นทุกที

ตัวอย่าง 2.1. จงหาสมการของเส้นสัมผัสกราฟ $y=-x^2+6x-2$ ณ จุด $P_0(2,6)$

วิธีทำ เลือกจุด P(x,y) โดยที่ $x \neq 2$ และลากเส้น PP_0 จะได้ว่า ความชั้นของ PP_0 เท่ากับ

$$\frac{y-6}{x-2} = \frac{1}{x}$$

$$= \frac{1}{x}$$

ถ้า P อยู่ใกล้ P_0 มากขึ้น ค่า x ย่อมเกือบเป็น 2 ดังนั้น ความชั้นของ PP_0 จึงเข้าใกล้ 4-2=2 มากขึ้นเรื่อย ๆ เส้นสัมผัสจึงควรมีความชั้นเป็น 2 และสมการเส้นสัมผัส คือ $y-6=2\,(x-2)$

จะเห็นว่า ในตัวอย่าง 2.1 นี้ เราสนใจพฤติกรรมของ function

 $\frac{-x^2+6x-8}{x-2}$ เมื่อ $x \neq 2$ แต่มีค่าใกล้ 2 มาก ๆ นี่คือ ที่มาของเรื่อง

นิยาม 2.1. ให้ $f:D_f \to R$ โดยที่ $D_f \subseteq R$ และให้ $a \in R$ โดยที่มีช่วง (a,b) บางช่วงที่ $(a,b) \subseteq D_f \, (b>a)$

Figure 2.3: การหาเส้นตรงที่สัมผัสเส้นโค้ง $y=-x^2+6x-2$

เรากล่าวว่า "ลิมิต (limit) ของ f(x) เมื่อ \times เข้าใกล้ a ทางขวา หาค่าได้และมีค่าเท่ากับจำนวนจริง L" ถ้า "ไม่ว่าเราจะกำหนดบริเวณรอบ ๆ L ไว้แคบเพียงใด เมื่อเราพิจารณาค่าของ f(x) สำหรับค่า x ที่มา กกว่า a โดยที่ให้ค่า ของ x ลดลงเรื่อย ๆ จนถึงจุดหนึ่ง ค่าของ f(x) จะอยู่ในบริเวณรอบ ๆ L ที่เรา กำหนดไว้นั้น และยังคงเป็นเช่นนี้สำหรับ x อื่น ๆ ที่น้อยกว่านั้น (แต่มากกว่า a) ทั้งหมดด้วย"

ในทำนองเดียวกัน ถ้าเราพิจารณาพฤติกรรมของ function สำหรับ x ที่น้อยกว่า a จะได้ limit ทาง ซ้าย ดังนี้ ให้ $f:D_f\to R$ โดยที่ $D_f\subseteq R$ และให้ $a\in R$ โดยที่มีช่วง (b,a) บางช่วงที่ $(b,a)\subseteq D_f$ (b< a)

เรากล่าวว่า "limit ของ f(x) เมื่อ x เข้าใกล้ a ทางซ้าย หาค่าได้ และมีค่าเท่ากับจำนวนจริง L" ถ้า "ไม่ว่าเราจะกำหนดบริเวณรอบ ๆ L ไว้แคบเพียงใด

เมื่อเราพิจารณาค่าของ f(x) สำหรับค่า x ที่น้อยกว่า a โดยที่ให้ค่า ของ x เพิ่มขึ้นเรื่อย ๆ จนถึงจุด หนึ่ง ค่าของ f(x) จะอยู่ในบริเวณรอบ ๆ L ที่เรากำหนดไว้นั้น และยังคงเป็นเช่นนี้สำหรับ x อื่น ๆ ที่มากกว่านั้น (แต่น้อยกว่า a) ทั้งหมดด้วย"

เราใช้สัญลักษณ์ $\lim_{x\to a^+} f(x)$ แทนข้อความ "limit ของ f(x) เมื่อ x เข้าใกล้ a ทางขวา" และใช้ สัญลักษณ์ $\lim_{x\to a^-} f(x)$ แทนข้อความ "limit ของ f(x) เมื่อ x เข้าใกล้ a ทางซ้าย

Figure 2.4: ลิมิตทางขวา

Figure 2.5: ลิมิตทางซ้าย

นิยาม 2.2. ในกรณีที่ทั้ง $\lim_{x \to a^+} f(x)$ และ $\lim_{x \to a^-} f(x)$ หาค่าได้ และมีค่าเท่ากัน

เรากล่าวว่า $\lim_{x \to a} f(x)$ หาค่าได้ และมีค่าเท่ากับค่านั้น

ตัวอย่าง 2.2. function f ที่ $\lim_{x \to a^+} f(x)$ หาค่าไม่ได้ ดังนั้น

 $\displaystyle \lim_{x o a} f(x)$ จึงหาค่าไม่ได้ด้วย

วิธีทำ จากรูปต่อไปนี้

Figure 2.6: กราฟของฟังก์ชันที่หาลิมิตไม่ได้

ในกรณีนี้ จะเห็นว่า ไม่ว่าจะเลือก L เป็นค่าใด ก็ไม่สามารถสรุปได้ว่า $\lim_{x o 0^+} f(x) = L$ เพราะไม่ใช่ทุกครั้ง

ที่เรากำหนดบริเวณรอบ ๆ L แล้ว function จะสอดคล้องตามนิยามเสมอไป จึงสรุปว่า $\lim_{x \to a} f(x) = L$ หาค่าไม่ได้ด้วย

ทฤษฎี 2.1.

- 1. $\lim_{x\to c} c = c$ ถ้า c เป็นจำนวนจริง
- $2. \lim_{x \to a} x = a$

ทฤษฎี 2.2. ถ้า $\lim_{x o a} f(x)$ และ $\lim_{x o a} g(x)$ หาค่าได้แล้ว จะได้

1.
$$\lim_{x \to a} (f+g)(x) = \lim_{x \to a} f(x) + \lim_{x \to a} g(x)$$

2.
$$\lim_{x \to a} (f - g)(x) = \lim_{x \to a} f(x) - \lim_{x \to a} g(x)$$

3.
$$\lim_{x \to a} (f \cdot g)(x) = \left(\lim_{x \to a} f(x) \right) \cdot \left(\lim_{x \to a} g(x) \right)$$

4.
$$\lim_{x \to a} \left(\frac{f}{g}\right)(x) = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} \text{ if } \lim_{x \to a} g(x) \neq 0$$

หมายเหตุ ทฤษฎีบททั้งสองนี้ยังคงเป็นจริงสำหรับ limit ทางซ้าย และ limit ทางขวาด้วย

ทฤษฎี 2.3. ถ้า $\lim_{x\to a} f(x)$ หาค่าได้ และ $\sqrt[n]{f(x)}$ หาค่าได้ สำหรับทุก ๆ x ในช่วงเปิดบางช่วงที่มี a อยู่ ด้วย แล้ว $\lim_{x\to a} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x\to a} f(x)}$

หมายเหตุ ทฤษฎีบทนี้เป็นจริงสำหรับ limit ทางซ้าย และ limit ทางขวาด้วย โดยเปลี่ยนเงื่อนไข "ทุก ๆ x" เป็น "ทุก ๆ x < a" และ "ทุก ๆ x > a" ตามลำดับ

ทฤษฎี 2.4. ถ้า f และ g เป็น function ซึ่ง f(x)=g(x) สำหรับทุก ๆ x ยกเว้นบาง x ซึ่งมีอยู่เพียง จำนวนจำกัด แล้ว $\lim_{x\to a} f(x)=\lim_{x\to a} g(x)$ ถ้า limit อันใดอันหนึ่งหาค่าได้

หมายเหตุ ทฤษฎีบทนี้ยังคงเป็นจริงสำหรับ limit ทางซ้าย และ limit ทางขวาด้วย

ตัวอย่าง 2.3. จงหาค่าของ $\lim_{x \to 2} \frac{-x^2 + 6x - 8}{x - 2}$

วิธีทำ

$$\lim_{x \to 2} \frac{-x^2 + 6x - 8}{x - 2} =$$
=
=
=
=
=
=
=
=
=
=

ตัวอย่าง 2.4. จงหาค่าของ $\lim_{x \to 3} \frac{\sqrt{x} - \sqrt{3}}{x - 3}$ วิธีทำ

$$\lim_{x \to 3} \frac{\sqrt{x} - \sqrt{3}}{x - 3} =$$

=

_

= (2.3)

=

=

=

ตัวอย่าง 2.5. จงหา limits ต่อไปนี้

1.
$$\lim_{x \to 0^+} \frac{\sqrt{x} - \sqrt{3}}{x - 3}$$

2.
$$\lim_{x\to 0^{-}} \frac{\sqrt{x}-\sqrt{3}}{x-3}$$

$$3. \lim_{x \to 0} \frac{\sqrt{x} - \sqrt{3}}{x - 3}$$

วิธีทำ

1.

2.

3.

ข้อสังเกต ในกรณีที่ function ที่มีค่ามากขึ้นโดยไม่มีขอบเขต เมื่อตัวแปรต้นเข้าใกล้ a (ทางซ้ายหรือขวา หรือทั้งสองทาง) บางตำรากล่าวว่า limit ของ function มีค่าเป็น $+\infty$ และถ้า function มีค่าลดลงโดย

ไม่มีขอบเขต จะกล่าวว่า limit ของ function มีค่าเป็น $-\infty$ ในวิชานี้เราจะถือตามนิยามที่ให้ไว้ ดังนั้น ในกรณีข้างต้น จะกล่าวว่า limit ดังกล่าวหาค่าไม่ได้ (เว้นแต่จะระบุให้พิจารณาค่า $\pm\infty$ ด้วย)

ตัวอย่าง 2.6. จงหา limit ของ function $f\left(x
ight)=rac{1}{x}$

- 1. เมื่อ x เข้าใกล้ 0 ทางซ้าย
- 2. เมื่อ x เข้าใกล้ 0 ทางขวา
- 3. เมื่อ x เข้าใกล้ 0

วิธีทำ

1.

2.

3.

ในบางครั้ง เราสนใจพฤติกรรมของ function f เมื่อค่าตัวแปรต้นมีค่ามากขึ้นโดยไม่มีขอบเขต หรือน้อยลง โดยไม่มีขอบเขต ในกรณีเช่นนี้ เราใช้สัญลักษณ์ $\lim_{x\to +\infty} f(x)$ และ $\lim_{x\to -\infty} f(x)$ ตามลำดับ แทนที่จะ ใช้ $\lim_{x\to \infty^-} f(x)$ และ $\lim_{x\to \infty^+} f(x)$ (โปรดอ่านนิยามในเอกสารอ้างอิง) ทฤษฎีบทเกี่ยวกับ limit ที่กล่าว มาข้างต้นทั้งหมด เป็นจริงในกรณีนี้ด้ย นอกจากนี้ เรายังมี ทฤษฎีบทต่อไปนี้

ทฤษฎี 2.5.

- $1. \lim_{x \to +\infty} x = +\infty$
- $2. \lim_{x \to -\infty} x = -\infty$
- 3. ถ้า $\lim_{x\to a}f(x)=\pm\infty$ แล้ว $\lim_{x\to a}f(x)=0$ ซึ่งเป็นจริงสำหรับ limit ทางซ้าย และ limit ทางขวา ด้วย ในที่นี้ $a\in R$ หรือ a เป็น $+\infty$ หรือ $-\infty$

ตัวอย่าง 2.7.
$$\lim_{x \to -\infty} \frac{x^2 + 12}{x^3 - 5} = ?$$

วิธีทำ

$$\lim_{x \to -\infty} \frac{x^2 + 12}{x^3 - 5} = \tag{2.4}$$

ตัวอย่าง 2.8.
$$\lim_{x\to +\infty} x^{-\frac{2}{3}} = ?$$

วิธีทำ

$$\lim_{x \to +\infty} x^{-\frac{2}{3}} = \tag{2.5}$$

ตัวอย่าง 2.9.
$$\lim_{x\to +\infty} \frac{x^{\frac{1}{3}}+3x^{\frac{1}{5}}+5x^{\frac{1}{7}}}{3x^{\frac{1}{3}}+5x^{\frac{1}{5}}+7x^{\frac{1}{7}}}=?$$

$$\lim_{x \to +\infty} \frac{x^{\frac{1}{3}} + 3x^{\frac{1}{5}} + 5x^{\frac{1}{7}}}{3x^{\frac{1}{3}} + 5x^{\frac{1}{5}} + 7x^{\frac{1}{7}}} =$$
(2.6)

ข้อสังเกต ตัวแปร x ในสัญลักษณ์ $\lim_{x\to a} f(x)$ เรียกว่า "ตัวแปรหุ่น" (dummy variable) เพราะไม่ได้ กล่าวถึงตัวแปร x แต่เราใช้มันเพื่อเขียนสัญลักษณ์แทนจำนวนจริงจำนวนหนึ่งที่ค่าของ function f ใกล้ เข้าไปหา ในยามที่ตัวแปรต้นของมันมีค่าใกล้ a เข้าไปทุกที เราอาจเขียน $\lim_{t\to a} f(t)$ แทนจำนวนจำนวนนี้ ก็ได้ เป็นต้น ตัวอย่างของ dummy variable อื่น ๆ เช่น ตัวแปร n ในสัญลักษณ์ $\sum_{n=1}^4 n^2$ ซึ่งอาจเขียน ใหม่เป็น $\sum_{k=1}^4 k^2$ ก็ได้ ทั้งสองสัญลักษณ์นี้แทนจำนวน $1^2+2^2+3^3+4^4$

ตัวอย่าง 2.10. จงหา $\lim_{x \to 3} f(x)$ เมื่อ $f(x) = x^2 - 5$ ถ้า $x \le 3 = \sqrt{x+13}$ ถ้า x > 3 วิธีทำ

$$\lim_{x \to 3^{-}} f(x) = \tag{2.7}$$

$$\lim_{x \to 3^+} f(x) = \tag{2.8}$$

เนื่องจาก $\lim_{x\to 3^-} f(x) = \lim_{x\to 3^+} f(x) = 4$ ดังนั้น $\lim_{x\to 3} f(x)$ หาค่าได้ และมีค่าเท่ากับ 4

ตัวอย่าง 2.11. จงหา $\lim_{x\to 0} f(x)$ เมื่อ

$$f(x) = \begin{cases} x^2 - 5 & \text{ in } x \le 3\\ \sqrt{x + 13} & \text{ in } x > 3 \end{cases}$$

วิธีทำ
$$\lim_{x \to 0} f(x) =$$

2.1 ความต่อเนื่อง (Continuity)

ในวิชาฟิสิกส์ เราสามารถเขียนตำแหน่งของวัตถุที่กำลังเคลื่อนที่ในรูป function ของเวลาได้ (วัตถุย่อมอยู่ ในที่ใดที่หนึ่งเพียงที่เดียว ณ เวลาหนึ่ง ๆ)

คำถาม : function ใด ๆ เป็น function ที่แสดงตำแหน่งของวัตถุใดวัตถุหนึ่งได้เสมอหรือไม่ ลองอธิบายการเคลื่อนที่ของวัตถุ ถ้า function ที่แสดงตำแหน่งของมัน คือ

$$1. \, s_1(t) = \begin{cases} 1 & \text{ ถ้า } t < 3 \\ 1 & \text{ ถ้า } t > 3 \end{cases}$$

$$2. \ s_2(t) = \begin{cases} 0 & \text{ ถ้า } t \leq 3 \\ 1 & \text{ ถ้า } t > 3 \end{cases}$$

3.
$$s_3(t)= \begin{cases} 1 & \text{ ถ้า } t \neq 3 \\ 0 & \text{ ถ้า } t=3 \end{cases}$$

กราฟของ s_1,s_2 และ s_3 เป็นดังนี้

ข้อสังเกต:

- 1. $s_1(3)$ หาค่าไม่ได้
- 2. $s_2(3)$ หาค่าได้ แต่ $\lim_{t \to 3} s_2(t)$ หาค่าไม่ได้
- 3. $s_3(3)$ หาค่าได้ $\lim_{t \to 3} s_3(t)$ หาค่าได้ แต่ $s_3(3) \neq \lim_{t \to 3} s_3(t)$

นิยาม 2.3. ให้ $f:D_f \to R$ โดยที่ $D_f \subseteq R$ และ $a \in R$ เรากล่าวว่า f ต่อเนื่อง (cotinuous) ที่ a ถ้า

1. f(a) หาค่าได้

Figure 2.7: กราฟของฟังก์ชัน s_1 , s_2 และ s_3

2.
$$\lim_{x \to a} f(x)$$
 หาค่าได้

3.
$$f(a) = \lim_{x \to a} f(x)$$

นิยาม 2.4. ให้ f เป็น function และ S เป็นเซต (set) เรากล่าวว่า f ต่อเนื่องบน S (continuous on S) ถ้า f ต่อเนื่องที่ทุก ๆ สมาชิกของ S เรียก function ที่ continuous on R ว่า "ฟังก์ชันต่อ เนื่อง (continuous function)"

ข้อสังเกต จะเห็นว่า function ที่แสดงตำแหน่งของวัตถุต้องเป็น continuous function บนช่วงที่สนใจ ทฤษฎี 2.6. ถ้า f และ g เป็น function ที่ต่อเนื่องที่ a แล้ว

1.
$$f+g$$
 ต่อเนื่องที่ a

- 2. f-g ต่อเนื่องที่ a
- 3. $f \cdot g$ ต่อเนื่องที่ a
- 4. $\frac{f}{g}$ ต่อเนื่องที่ a ถ้า $g\left(a\right) \neq 0$

ตัวอย่าง 2.12. function f ซึ่งนิยามโดย $f\left(x\right)=\left|x\right|$ เป็นฟังก์ชันต่อเนื่องหรือไม่ ว**ิธีทำ** ในที่นี้

$$f(x) = \begin{cases} x & \text{ ถ้า } x \ge 0 \\ -x & \text{ ถ้า } x > 0 \end{cases}$$

เราต้องพิจารณาว่า f ต่อเนื่องที่ทุก ๆ $a \in R$ หรือไม่

- ถ้า a>0
- ถ้า a < 0
- ถ้า a=0

ดังนั้น f ต่อเนื่องที่ทุก ๆ $a \in R$ จึงสรุปว่า f เป็น continuous function

ทฤษฎี 2.7. ฟังก์ชันตรรกยะ (rational function) เป็น function ที่ต่อเนื่องบน domain ของมัน

หมายเหตุ: rational function คือ function ที่เป็นเศษส่วนของพหุนาม (polynomial) domain ของ rational function ได้แก่เซตของจำนวนจริงซึ่งไม่ทำให้ส่วนของมันเป็นศูนย์

ทฤษฎี 2.8. ถ้า f และ g เป็น function และ $a\in R$ โดยที่ $\lim_{x\to a}g(x)=L$ และ f ต่อเนื่องที่ L แล้ว $\lim_{x\to a}f(g(x))=f(\lim_{x\to a}g(x))=f(L)$

ตัวอย่าง 2.13. $\lim_{x \to 1} \left| \frac{x^4 - x^2 + 1}{x^4 + x^2 + 1} \right| = ?$

วิธีทำ

$$\lim_{x \to 1} \left| \frac{x^4 - x^2 + 1}{x^4 + x^2 + 1} \right| =$$

$$= \tag{2.9}$$

ทฤษฎี 2.9. ถ้า f ต่อเนื่องที่ a และ g ต่อเนื่องที่ f(a) แล้ว $g\circ f$ ต่อเนื่องที่ a จงพิสูจน์ทฤษฎีบทข้างต้น

ตัวอย่าง 2.14. function f ซึ่งนิยามโดย $f\left(x
ight)=\left|rac{x^4-x^2+1}{x^4+x^2+1}
ight|$ เป็น continuous function หรือไม่

วิธีทำ f เป็น continuous function เพราะ $f=g\circ h$ โดยที่ $g\left(x\right)=|x|$ และ $h\left(x\right)=\frac{x^4-x^2+1}{x^4+x^2+1}$ ซึ่งเป็น continuous function ทั้งคู่

นิยาม 2.5. เรานิยาม "ภาวะต่อเนื่องทางซ้าย" และ "ภาวะต่อเนื่องทางขวา" ได้โดยแทนที่ $\lim_{x \to a}$ ใน เงื่อนไขของนิยาม ด้วย $\lim_{x \to a^-}$ และ $\lim_{x \to a^+}$ ตามลำดับ นั่นคือ

ให้ $f:D_f \to R$ โดยที่ $D_f \subseteq R$ และ $a \in R$ เรากล่าวว่า f "ต่อเนื่องทางซ้าย (left-continuous) ที่ a" ถ้า

- $1.\,f\left(a
 ight)$ หาค่าได้
- 2. $\lim_{x \to a^{-}} f(x)$ หาค่าได้
- 3. $f(a) = \lim_{x \to a^{-}} f(x)$

และกล่าวว่า f "ต่อเนื่องทางขวา (right-continuous) ที่ a" ถ้า

1. f(a) หาค่าได้

2. $\lim_{x \to a^+} f(x)$ หาค่าได้

 $3. \ \mathsf{f}(a) = \underset{x \to a^+}{\lim} f(x)$

นิยาม 2.6. ให้ f:[a,b] o R เรากล่าวว่า f ต่อเนื่องบน [a,b] (continuous on [a,b]) ถ้า

- 1. f ต่อเนื่องบน (a,b)
- 2. f ต่อเนื่องทางขวาที่ a
- 3. f ต่อเนื่องทางซ้ายที่ b

ตัวอย่าง 2.15. function f ที่นิยามโดย $f\left(x\right)=\sqrt{4-x^2}$ เป็น continuous function บน $\left[-2,2\right]$ หรือไม่

วิธีทำ เราตรวจสอบได้ว่า f เป็น continuous function บน [-2,2] เพราะ

2.

(2.10)

3.

(2.11)

ตัวอย่าง 2.16. พิจารณา function f ซึ่งมีกราฟดังต่อไปนี้

Figure 2.8: กราฟของฟังก์ชันในตัวอย่างrefexm:ex-cont-5

- $1.\ f$ มีความต่อเนื่องที่ -1,0,1,2,3,4,5 หรือไม่
- 2. f มีความต่อเนื่องบน [-1,0] , [0,1] , [1,2] , [2,3] , [3,4] , [4,5] หรือไม่ วิธีทำ ให้นักศึกษาทำเป็นแบบฝึกหัด

ทฤษฎี 2.10. ฟังก์ชันตรีโกณมิติ ฟังก์ชันตรีโกณมิติผกผัน ฟังก์ชันเลขชี้กำลัง และฟังก์ชันลอการิทึม เป็น ฟังก์ชันที่ต่อเนื่องบนโดเมนของมัน