一元二次方程在实数域上的求解

作者姓名: 唐浩

作者专业学号: 信息与计算科学 3200102118

2022年7月3日

1 简介

一元二次方程,字面意思来看,便是只有一个未知数 (元),且未知数最高次数为 2 的一个整式方程。其一般形式为 $ax^2 + bx = 0 (a \neq 0)$,称 ax^2 为二次项,a 为二次项次数; bx 为一次项,b 为一次项系数; c 为常数项。

求解一元二次方程的解,便是求使得一元二次方程左右两边相等的未知数 x 的值,该解也叫做一元二次方程的根 (root)。

2 求解

求一元二次方程的根的过程便称作求解一元二次方程,其解法众多,接下来我们介绍其中一种解法———判别式法: 称式子 b^2-4ac 为 $ax^2+bx+c=0$ 根的判别式,记做 Δ 。 Δ 有三种情形: 1) < 0, 2) = 0, 3) > 0。下面我们就这三种情况分别进行讨论。哦对了,在此之前将方程进行配方,得

$$(x + b/2a)^2 = (b^2 - 4ac)/(4a^2)$$

2.1 $\triangleq \Delta < 0$

若 $\Delta < 0$, 则 $(x+b/2a)^2 < 0$, 显然, x 在实数域上取值时,这个解不存在,即方程无实数根。

2.2 $\stackrel{\mathbf{4}}{=} \Delta = 0$

若 $\Delta = 0$,则 $(x + b/2a)^2 = 0$,显然,此时的 $x = \frac{-b}{2a}$ 。

3 总结 2

2.3 $\triangleq \Delta > 0$

若 $\Delta > 0$,则 $(x + b/2a)^2 > 0$,显然,此时方程有两个不同的根,分别为:

$$x_1 = \frac{-b + \sqrt{\Delta}}{2a} \quad x_2 = \frac{-b - \sqrt{\Delta}}{2a}$$

具体的算法流程图如下:

3 总结

综上所述, 当 $\Delta > 0$ 时, 方程有两个不等的实数根;

当 $\Delta = 0$ 时,方程有两个相等的实数根;

当 $\Delta < 0$ 时,方程无实数根。

当 $\Delta \geq 0$ 时,方程的实数根可写为 $x = \frac{-b \pm \sqrt{\Delta}}{2a}$ 的形式,这个式子叫做一元二次方程的求根公式。

以下给出一个简单的图例:

3 总结 3

Figure 1: The picture of the answer