The Delta-Method applied to Sobol' indices

Michaël Baudin

February 5, 2019

Abstract

We explore the use of the Delta-method in order to estimate the Sobol' indices.

Contents

Convergence in distribution 1
Convergence in probability 2
Delta method 3
References 4

1 Convergence in distribution

Definition 1. (Convergence in distribution) Assume that $X_1, X_2, ...$ is a sequence of real-valued random variables with cumulative distribution functions $\{F_n\}_{n\geq 0}$. Assume that X is a real-valued random variable with cumulative distribution function $\{F\}_{n\geq 0}$. The sequence X_n converges in distribution to X if:

$$\lim_{n \to \infty} F_n(X_n) = F(x).$$

for any $x \in \mathbb{R}$ at which F is continuous. In this case, we write:

$$X_n \xrightarrow{D} X$$
.

The following theorem gives an example of such convergence.

Theorem 1. (Maximum of uniform random numbers) Assume that $X_1, X_2, ...$ are independent random numbers such that $X_n \sim U(0,1)$. Let Y_n be the maximum:

$$Y_n = \max_{1 \le i \le n} X_i.$$

Therefore the sequence $n(1-Y_n)$ converges in distribution to an exponential random variable, i.e.:

$$n(1-Y_n) \xrightarrow{D} \mathcal{E}(1).$$

Proof. By definition, the exponential distribution with rate λ has the cumulative distribution function:

$$F(y) = 1 - \exp(-\lambda y),$$

for any real $y \ge 0$. With $\lambda = 1$ we must prove that:

$$F(y) = 1 - \exp(-y),$$

for any real $y \ge 0$. Let F_n be the cumulative distribution function of the random variable $n(1-Y_n)$. By definition of the cumulative distribution function,

$$F_n(z) = P(n(1 - Y_n) \le z)$$

$$= P(1 - Y_n \le z/n)$$

$$= P(1 - z/n \le Y_n)$$

$$= 1 - P(Y_n \le 1 - z/n),$$

for any $z \in \mathbb{R}$. However, the cumulative distribution function of the maximum is:

$$\begin{split} P(Y_n \leq y) &= P(X_1 \leq y, X_2 \leq y, ..., X_n \leq y) \\ &= P(X_1 \leq y) P(X_2 \leq y) \cdots P(X_n \leq y) \text{ (by independence)} \\ &= yy \cdots y \text{ (by definition of the C.D.F. of a uniform random variable)} \\ &= y^n, \end{split}$$

for any $y \in [0, 1]$. Therefore,

$$F_n(z) = 1 - (1 - z/n)^n$$

for any $z \in \mathbb{R}$. But

$$\lim_{n \to \infty} (1 + z/n)^n = \exp(z)$$

for any $z \in \mathbb{R}$. Therefore,

$$\lim_{n \to \infty} F_n(z) = 1 - \exp(-z)$$

for any $z \in \mathbb{R}$ which concludes the proof.

2 Convergence in probability

Definition 2. (Convergence in probability) Assume that $X_1, X_2, ...$ is a sequence of real-valued random variables. The sequence X_n converges in probability to X if, for any $\epsilon > 0$:

$$\lim_{n \to \infty} P(|X_n - X| > \epsilon) = 0.$$

In this case, we write:

$$X_n \xrightarrow{P} X$$
.

Theorem 2. Assume that X and Y are random variables. Let $y \in \mathbb{R}$ and let $\epsilon > 0$. Therefore

$$P(Y \le y) \le P(X \le y + \epsilon) + P(|Y - X| > \epsilon)$$

Proof.

$$P(Y \le y) = P(Y \le y, X \le y + \epsilon) + P(Y \le y, X > y + \epsilon).$$

But $P(Y \le y, X \le y + \epsilon) \le P(X \le y + \epsilon)$, which implies :

$$\begin{split} P(Y \leq y) & \leq P(X \leq y + \epsilon) + P(Y \leq y, X > y + \epsilon) \\ & \leq P(X \leq y + \epsilon) + P(Y - X \leq y - X, y + \epsilon < X) \\ & \leq P(X \leq y + \epsilon) + P(Y - X \leq y - X, y - X < -\epsilon). \end{split}$$

Moreover, we have $P(Y - X \le y - X, y - X < -\epsilon) \le P(Y - X < -\epsilon)$ which implies :

$$P(Y \le y) \le P(X \le y + \epsilon) + P(Y - X < -\epsilon).$$

By definition of a probability, we have $P(Y - X > \epsilon) \ge 0$. Therefore,

$$P(Y \le y) \le P(X \le y + \epsilon) + P(Y - X < -\epsilon) + P(Y - X > \epsilon)$$

$$\le P(X \le y + \epsilon) + P(|Y - X| < \epsilon)$$

which concludes the proof.

Theorem 3. (Convergence in probability implies convergence in distribution) Assume that $X_1, X_2, ...$ is a sequence of real-valued random variables. If

$$X_n \xrightarrow{P} X$$

then

$$X_n \xrightarrow{D} X$$
.

Proof. TODO

3 Delta method

Theorem 4. (Slutky's theorem) Let X_n and Y_n be two sequences of real random variables such that:

$$X_n \xrightarrow{D} X$$
 and $Y_n \xrightarrow{D} c$,

where c is a non-random constant. Therefore,

$$X_n Y_n \xrightarrow{D} cX$$
.

Proof. TODO

Theorem 5. (Delta-method) Assume that $X_1, X_2, ...$ is a sequence of real-valued random variables so that

$$\sqrt{n}(X_n - \theta) \xrightarrow{D} \mathcal{N}(0, \sigma^2).$$
 (1)

Assume that g is a real function. Let $\theta \in \mathbb{R}$. Suppose that $g \in C^1(\mathbb{R})$ and that $g'(\theta) \neq 0$. Therefore,

$$\sqrt{n}(g(X_n) - g(\theta)) \xrightarrow{D} \mathcal{N}(0, \sigma^2 g'(\theta)^2).$$

Proof. The Taylor expansion of g at the point θ implies that there exists a $\tilde{\theta}$ between X_n and θ such that:

$$g(X_n) = g(\theta) + g'(\tilde{\theta})(X_n - \theta) + O((X_n - \theta)^2), \quad X_n \to \theta.$$

This implies:

$$\sqrt{n}(g(X_n) - g(\theta)) = g'(\theta)\sqrt{n}(X_n - \theta) + O((X_n - \theta)^2), \quad X_n \to \theta.$$

Let Y_n and Z_n be the sequences of random variables defined by the equations:

$$Y_n = g'(\theta)\sqrt{n}(X_n - \theta)$$
 and $Z_n = O((X_n - \theta)^2)$.

The properties of the gaussian distribution and the equation 1 imply:

$$Y_n = g'(\theta)\sqrt{n}(X_n - \theta) \xrightarrow{D} \mathcal{N}(0, \sigma^2 g'(\theta)^2).$$

Furthermore,

$$Z_n = O((X_n - \theta)^2) \xrightarrow{D} 0.$$

In order to conclude the proof, we apply Slutky's theorem to Y_n and Z_n .

4 References

Most of the results in this document can be found in [1].

References

 $[1]\,$ A. W. van der Vaart. Asymptotic Statistics. Cambridge Series in Statistical and Probabilistic Mathematics, 2000.