Team 47

r11944039 鍾元皓, r11921102 曾峻麒, r11944051 黃彥豪 Abstract

這次期末專題題目為 Hahow 推薦課程系統,其中分為預測客戶接下來想購買的課程和有興趣的主題,所以主要會專注在應用適合推薦相關資訊的模型,這類型常見的模型,有 DSSM、YoutubeDNN、YoutubeDSSM、FacebookEBR、MIND 等等,而預測課程和主題所適用的 model 也有所不同。

預測課程方面,在實驗多種模型後,選擇使 DSSM 這款模型,較符合我們的資料集特性,而使用傳統的 DSSM 準確性表現太優異,則我們做了一些部分的修改。

預測主題方面,使用 DSSM 效果沒有達到預期的效果,所以我們使用自己 造的 model,根據每位使用者預測出對於不同課程的喜好機率。

Introduction

在試過眾多模型中,效果最好的是 DSSM (Deep Structured Semantic Model),而 DSSM 是由微軟於 CIKM 在 2013 年提出的模型,該模型主要用來解決 NLP 領域中,語義相似度問題。主要的原理是透過 deep learning 將我們要搜尋 query 和匹配的 document 映射到共同維度的空間,透過計算最大化 query 和 document 語義向量之間的 cosine similarity,從而訓練得到隱含語義模型,也就是 query 特徵的 embedding 和 document 特徵的 embedding,所以藉由此方

式就可以獲取語句的語義向量,預測兩句話的語義相似度。

再來有個特色就是這模型的訓練速度非常快,造就這模型其實在實際應用中 非常常見,是因為他在大量的數據進行初步的預測速度可以達到很快,雖然效 果沒有到非常好,但對於一般場景而言,效果也夠用了。

Figure 1: Illustration of the DSSM. It uses a DNN to map high-dimensional sparse text features into low-dimensional dense features in a semantic space. The first hidden layer, with 30k units, accomplishes word hashing. The word-hashed features are then projected through multiple layers of non-linear projections. The final layer's neural activities in this DNN form the feature in the semantic space.

首先先介紹傳統 DSSM 的基本架構,Figure 1 為 DSSM 的架構,從圖可以看出,該架構相較現今眾多語意模型相較簡單,是一個由幾層 DNN 組成的架構,第一層 Term Vector 為輸入的 embedding 向量,第二層 Word Hashing 為為了解決Term Vector 太大問題,對 bag of word 做降維,第三層 Multi-layer nonlinear projection 表示 Deep Learning Hidden Layer,第四層 Semantic feature 為最終的 embedding 向量,第五層 Relevance measured 為 Query 和 Document 之間的 cosine similarity,這個過程可以看作每一個 query 和 document 之間相似分數,最後一層為 softmax。

Related Work

關於推薦系統的模型,除了 DSSM 這個模型,我們也試過其他模型,像是Youtube DNN, Youtube SBC, MIND,從表現結果來看, DSSM 最為凸出,所以我們就打算把這次的焦點放在 DSSM 上。

Approach

Figure 2

而在這次的 Final Project 中,我們把主要的輸入設定為 User 和 Course,而 Figure 2 就是我們這次的架構。對於每個塔分別是一個 DNN 結構,由兩側把特徵輸入,利用 User 和 Course 的特徵進行訓練,最終得到 User Side 的 Embedding 和 Course Side 的 Embedding,然後計算兩者之間的 Cosine Similarity,因此對於 User 和 Item 兩側最終得到的 Embedding 維度需要保持一致,也就是最後一層全連接 hidden unit 個數相同。

這種架構造就 DSSM 在 Training 時速度很快,是因為模型結構簡單,且兩 側沒有特徵交叉,但這也帶來了問題,就是這種雙塔的結構無法考慮兩側特徵 之間的交互訊息,在一定程度上犧牲掉模型的部分準確率。

對於準確率的問題,我們有使用一些方法提升,根據 Sampling-Bias-Corrected Neural Modeling for Large Corpus Item Recommendations 這篇論文,這篇論文提到了兩種做法分別為 Normalization 和 Temperature,Normalization 為對 user side DNN 和 item side DNN 的 input embedding 進行 L2 normalization,Temperature 為在 Normalization 之後,除以一個固定的參數,而這個過程在論文中命名為 Temperature。

再來還有使用一個方法,就是我們有對要被訓練的資料做 Negative Sampling,主要的用意為避免非熱門的課程缺少關注,因為對於這一類的相似 度比較 model,樣本的選擇上會很大程度影響模型的結果。

```
lass MLP(torch.nn.Module):
      super(MLP, self).__init__()
self.feature = torch.nn.Sequential(
          torch.nn.Linear(5, 16)
          torch.nn.BatchNorm1d(16),
          torch.nn.ReLU(inplace = True),
           torch.nn.Dropout(0.2),
          torch.nn.Linear(16, 32),
          torch.nn.BatchNorm1d(32),
           torch.nn.ReLU(inplace = True),
          torch.nn.Dropout(0.2),
      self.classifier = torch.nn.Sequential(
          torch.nn.Linear(32, 16),
          torch.nn.BatchNorm1d(16),
           torch.nn.ReLU(inplace =
          torch.nn.Dropout(0.2),
          torch.nn.Linear(16, num_classes),
  def forward(self, x):
      x = self.classifier(x)
      x = F.\log softmax(x, dim=1)
      return x
```

Figure 3

在預測 Course 方面,使用上面方法效果還不錯,但將上面模型用來預測 Topic,效果沒有預期的好,所以我們最後對於 Topic 使用我們自己做的簡易模型, Figure 3 為我們使用的結構,能在最後輸出每堂 Course 對於 User 的機率。

Experiments

1. Benchmark

Table 1 分別是不同模型的 baseline — DSSM、MLP、YoutubeSBC。

Model	DSSM	MLP	YoutubeSBC
Loss function	BCELoss	CrossEntropyLoss	BCELoss
Optimizer	Adam	SGD	Adam
Learning rate	1e-4	1e-1	1e-4
Epochs	5	50	10
Batch Size	1024	4096	1024
Topk	50	50	50

Table 1:依序為 DSSM、MLP、YoutubeSBC

2. 不同 Model 比較

在 Seen Course 任務中,model 使用 DSSM 與 YoutubeSBC 的 Accuracy 比較。

Model	DSSM	YoutubeSBC
Accuracy	0.13358	0.03277

在 Seen Topic 任務中, model 使用 MLP 與 DSSM 的 Accuracy 比較。

Model	MLP	DSSM
Accuracy	0.22027	0.13577

3. Epoch 與 Metrics (Loss、Accuracy) 關係圖

底下是 Seen Course (Figure 4)、Unseen Course (Figure 5)、Seen Topic (Figure 6)、Unseen Topic (Figure 7)。在不同 epoch 下的 Loss 與 Accuracy。Seen Course 任務與 Unseen Course 任務皆使用 DSSM,而 Seen Topic 任務與 Unseen Topic 任務皆使用 MLP 進行實驗。

Figure 4 : Seen Course

Figure 5: Unseen Course

Figure 6 : Seen Topic

Figure 7: Unseen Topic

4. 不同 Learning Rate 比較

在 Seen Course 任務中,使用 DSSM 的 Learning rate 比較。

Learning Rate	1e-3	1e-4	1e-5
Accuracy	0.0731	0.13358	0.07568

在 Unseen Course 任務中,使用 DSSM 的 Learning rate 比較。

Learning Rate	1e-3	1e-4	1e-5
Accuracy	0.05175	0.09881	0.8435

5. 不同推薦數量(topK)比較

在 Seen Course 任務中,使用 DSSM 的 TopK 比較。

Topk	10	50	300
Accuracy	0.09689	0.13358	0.03397

Discussion

在 Course 任務中,我們發現兩點,第一,在 ml-1m 數據集中(我們有使用其他數據集測試,ml-1m 是一個電影觀看的數據集), YoutubeSBC 的準確率為 0.1783 而 DSSM 為 0.1474,但在 Hahow 數據集中,使用 DSSM 的準確率更高,可以推論出在不同數據集中,表現較好的模型不一定較好。第二,當 Loss 收斂時,Epoch 3 的 Accuracy 來到最高,可以觀察到 Epoch 的次數選擇可以根據 Loss 的收斂時間挑選。

在 Topic 任務中,我們發現兩點,第一,分類模型 MLP 準確率為 0.22027, 推薦模型 DSSM 則是 0.13577,準確率高出八成,可以推論 Topic 任務更適合使 用分類模型而非推薦模型。第二,不同 Epoch 比較,可以看出由 Loss 的收斂選 擇最合適的訓練次數。

Conclusion

根據實驗,我們整理出最好的配置,如下表所示。

	Seen Course	Unseen Course	Seen Topic	Unseen Topic
Model	DSSM	DSSM	MLP	MLP
Learning rate	1e-4	1e-4	1e-1	1e-1
Epochs	3	2	25	35
Batch Size	1024	1024	4096	4096
TopK	50	50	50	50

Kaggle:

- Seen User Course Prediction
 - **0.14474** (12/62)
- Unseen User Course Prediction
 - **0.10250 (18/61)**
- Seen User Topic Prediction
 - **0**.23485 (51/62)
- Unseen User Topic Prediction
 - **0.21987 (52/60)**

Work Distribution

Student ID	R11921102	R11944039	R11944051
	InferenceTuning	TrainingTuning	Data preprocessTuning
Contributions	parameters Write report	parameters Write report	parameters . Write Report
	• Oral Presentation	• Oral Presentation	1