

Chapter 4

Further development and analysis of the classical linear regression model

Generalising the Simple Model to **Multiple Linear Regression**

Before, we have used the model

$$y_t = \alpha + \beta x_t + u_t, \ t = 1, 2, ..., T$$

But what if our dependent variable (y) depends on more than one independent variable?

For example the **number of cars sold** might plausibly depend on

- 1. the price of cars 2. the price of public transport
- 3. the price of petrol 4. the extent of the public's concern about global warming
- Similarly, stock returns might depend on several factors: inflation, the difference in returns on short and long dated bonds, industrial production, default risks.
- Having just one independent variable is no good in this case we want to have more than one x variable. It is very easy to generalise the simple model to the one with k regressors.

Multiple Regression and the Constant Term

Now we write

$$y_t = \beta_1 + \beta_2 x_{2t} + \beta_3 x_{3t} + ... + \beta_k x_{kt} + u_t$$
, $t=1,2,...,T$

• Where is x_1 ? By convention it is the constant column of length T:

$$x_1 = \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix}$$

• k: the number of regressors (including x_1), which is the number of parameters β_i

Different Ways of Expressing the Multiple Linear Regression Model

• We could write out a separate equation for every value of t:

$$y_{1} = \beta_{1} + \beta_{2}x_{21} + \beta_{3}x_{31} + \dots + \beta_{k}x_{k1} + u_{1}$$

$$y_{2} = \beta_{1} + \beta_{2}x_{22} + \beta_{3}x_{32} + \dots + \beta_{k}x_{k2} + u_{2}$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$y_{T} = \beta_{1} + \beta_{2}x_{2T} + \beta_{3}x_{3T} + \dots + \beta_{k}x_{kT} + u_{T}$$

We can write this in matrix form

$$y = X\beta + u$$

where
$$y \text{ is } T \times 1$$

 $X \text{ is } T \times k$
 $\beta \text{ is } k \times 1$
 $u \text{ is } T \times 1$

Inside the Matrices of the Multiple Linear Regression Model

• Example: if k is 2, we have 2 regressors, one of which is a column of ones:

$$\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_T \end{bmatrix} = \begin{bmatrix} 1 & x_{21} \\ 1 & x_{22} \\ \vdots & \vdots \\ 1 & x_{2T} \end{bmatrix} \begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix} + \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_T \end{bmatrix}$$

$$T \times 1 \qquad T \times 2 \qquad 2 \times 1 \qquad T \times 1$$

• Notice that the matrices written this way are comfortable, x_{it} is the element in the t^{th} row and i^{th} column

How Do We Calculate the Parameters (the β) in this Generalised Case?

- Previously, we took the residual sum of squares, and minimised it w.r.t. α and β .
- Similarly, with the matrix notation, we have

$$\hat{u} = \begin{bmatrix} \hat{u}_1 \\ \hat{u}_2 \\ \vdots \\ \hat{u}_T \end{bmatrix}$$

• The **Residual Sum Square** (**RSS**) would be given by

$$\hat{u}'\hat{u} = [\hat{u}_1 \quad \hat{u}_2 \quad \dots \quad \hat{u}_T] \begin{bmatrix} \hat{u}_1 \\ \hat{u}_2 \\ \hat{u}_T \end{bmatrix} = \hat{u}_1^2 + \hat{u}_2^2 + \dots + \hat{u}_T^2 = \sum \hat{u}_t^2$$

The OLS Estimator for the Multiple Regression Model

- In order to obtain the parameter estimates, β_1 , β_2 ,..., β_k , we would minimise the RSS with respect to all the β .
- It can be shown that

$$\hat{\beta} = \begin{bmatrix} \hat{\beta}_1 \\ \hat{\beta}_2 \\ \vdots \\ \hat{\beta}_k \end{bmatrix} = (X'X)^{-1}X'y$$

Calculating the **Standard Errors** for the Multiple Regression Model

- Check the dimensions: $\hat{\beta}$ is $k \times 1$ as required.
- But how do we calculate the standard errors of the coefficient estimates?
- Previously, to estimate the variance of the errors, σ^2 , we use $s^2 = \frac{\hat{u}' \hat{u}}{T k}$
 - where k = number of parameters.
- Parameter Variance-Covariance matrix: $Var(\hat{\beta}) \approx s^2 (XX)^{-1}$
- Then $SE(\hat{\beta})$ is obtained by taking square root of the leading diagonal of the Parameter Variance-Covariance matrix

Calculating Parameter and Standard Error Estimates for Multiple Regression Models: An Example

• Example: The following model with k=3 is estimated over 15 observations:

$$y = \beta_1 + \beta_2 x_2 + \beta_3 x_3 + u$$
 and the following data have been calculated from the original *X*'s.

$$(X'X)^{-1} = \begin{bmatrix} 2.0 & 3.5 & -1.0 \\ 3.5 & 1.0 & 6.5 \\ -1.0 & 6.5 & 4.3 \end{bmatrix}, (X'y) = \begin{bmatrix} -3.0 \\ 2.2 \\ 0.6 \end{bmatrix}, \hat{u}'\hat{u} = 10.96$$

Calculate the coefficient estimates and their standard errors.

• To calculate the coefficients, just multiply the matrix by the vector to obtain

$$\hat{\beta} = (X'X)^{-1}X'y$$

• To calculate the standard errors, we need an estimate of σ^2 .

$$s^2 = \frac{RSS}{T - k} = \frac{10.96}{15 - 3} = 0.91$$

Calculating Parameter and Standard Error Estimates for Multiple Regression Models: An Example (cont'd)

• The variance-covariance matrix of $\hat{\beta}$ is given by

$$s^{2}(X'X)^{-1} = 0.91(X'X)^{-1} = \begin{bmatrix} 1.83 & 3.20 & -0.91 \\ 3.20 & 0.91 & 5.94 \\ -0.91 & 5.94 & 3.93 \end{bmatrix}$$

The variances are on the leading diagonal:

$$Var(\hat{\beta}_1) = 1.83$$
 $SE(\hat{\beta}_1) = 1.35$
 $Var(\hat{\beta}_2) = 0.91 \Leftrightarrow SE(\hat{\beta}_2) = 0.96$
 $Var(\hat{\beta}_3) = 3.93$ $SE(\hat{\beta}_3) = 1.98$

• We write: $\hat{y} = 1.10 - 4.40x_{2t} + 19.88x_{3t}$ (1.35) (0.96) (1.98)

Testing Multiple Hypotheses: The *F***-test**

- We used the *t*-test to test single hypotheses, i.e. hypotheses involving only one coefficient. But what if we want to test more than one coefficient simultaneously?
- We do this using the *F*-test. The *F*-test involves estimating 2 regressions.
- The <u>unrestricted regression</u> is the one in which the coefficients are freely determined by the data, as we have done before, with residual sum of squares **URSS**
- The <u>restricted regression</u> is the one in which the coefficients are restricted, i.e. the restrictions are imposed on some β s, with residual sum of squares **RRSS**

The *F*-test: Restricted and Unrestricted Regressions

• Example:

The general regression is

$$y_t = \beta_1 + \beta_2 x_{2t} + \beta_3 x_{3t} + \beta_4 x_{4t} + u_t \tag{1}$$

• We want to test the restriction that $\beta_3 + \beta_4 = 1$ (we have some hypothesis from theory which suggests that this would be an interesting hypothesis to study). The **unrestricted regression is (1) above**, but what is the restricted regression?

$$y_t = \beta_1 + \beta_2 x_{2t} + \beta_3 x_{3t} + \beta_4 x_{4t} + u_t$$
 s.t. $\beta_3 + \beta_4 = 1$

• We substitute the restriction $(\beta_3 + \beta_4 = 1)$ into the regression so that it is automatically imposed on the data.

$$\beta_3 + \beta_4 = 1 \Rightarrow \beta_4 = 1 - \beta_3$$

The *F*-test: Forming the Restricted Regression

$$y_{t} = \beta_{1} + \beta_{2}x_{2t} + \beta_{3}x_{3t} + (1-\beta_{3})x_{4t} + u_{t}$$

$$y_{t} = \beta_{1} + \beta_{2}x_{2t} + \beta_{3}x_{3t} + x_{4t} - \beta_{3}x_{4t} + u_{t}$$

• Gather terms in β 's together and rearrange

$$(y_t - x_{4t}) = \beta_1 + \beta_2 x_{2t} + \beta_3 (x_{3t} - x_{4t}) + u_t$$

• This is the restricted regression. We actually estimate it by creating two new variables, call them, say, P_t and Q_t .

$$P_t = y_t - x_{4t}$$

$$Q_t = x_{3t} - x_{4t}$$

SO

 $P_t = \beta_1 + \beta_2 x_{2t} + \beta_3 Q_t + u_t$ is the restricted regression we actually estimate.

Calculating the F-Test Statistic

• The **test statistic** is given by

$$test \ statistic = \frac{RRSS - URSS}{URSS} \times \frac{T - k}{m}$$

where URSS = RSS from unrestricted regression

RRSS = RSS from restricted regression

m =number of restrictions

T = number of observations

k = number of regressors in unrestricted regression including the constant (or the total number of parameters to be estimated).

The F-Distribution

- The test statistic follows the *F*-distribution, which has 2 d.f. parameters.
- The value of the **degrees of freedom parameters are** (*m*, *T-k*) respectively (the order of the d.f. parameters is important).
- The appropriate critical value will be in column m, row (T-k).
- The F-distribution has only positive values and is not symmetrical. We therefore only reject the null if the test statistic > critical F-value

Determining the Number of Restrictions m in an F-test

• Examples:

H₀: hypothesis
No. of restrictions,
$$m$$

$$\beta_1 + \beta_2 = 2$$

$$\beta_2 = 1 \text{ and } \beta_3 = -1$$

$$\beta_2 = 0, \beta_3 = 0 \text{ and } \beta_4 = 0$$
3

• If the model is $y_t = \beta_1 + \beta_2 x_{2t} + \beta_3 x_{3t} + \beta_4 x_{4t} + u_t$, then the null hypothesis

 $\mathbf{H_0}$: $\beta_2 = 0$, and $\beta_3 = 0$ and $\beta_4 = 0$ is tested by "THE regression *F*-statistic", or "junk regression". It tests the null hypothesis that all of the coefficients except the intercept coefficient are zero.

• Note the form of the alternative hypothesis for all tests when more than one restriction is involved: $\mathbf{H_1}$: $\beta_2 \neq 0$, or $\beta_3 \neq 0$ or $\beta_4 \neq 0$

What we Cannot Test with Either an F or a t-test

• We cannot test using this framework hypotheses which are not linear or which are multiplicative, e.g.

$$H_0$$
: $\beta_2 \beta_3 = 2$ or H_0 : $\beta_2^2 = 1$

cannot be tested.

The Relationship between the t and the F-**Distributions**

Any hypothesis which could be tested with a *t*-test could have been tested using an F-test, but not the other way around.

For example, consider the hypothesis

$$H_0$$
: $\beta_2 = 0.5$

$$H_1: \beta_2 \neq 0.5$$

We could have tested this using the usual *t*-test: $test \ stat = \frac{\hat{\beta}_2 - 0.5}{SE(\hat{\beta}_2)}$

or it could be tested in the framework above for the F-test.

- Note that the two tests always give the same result since the *t*distribution is just a special case of the F-distribution.
- If we have some random variable $Z \sim t(T-k)$ then $Z^2 \sim F(1,T-k)$

F-test Example

- Question: Suppose a researcher wants to test whether the returns on a company stock (y) show unit sensitivity to two factors (factor x_2 and factor x_3) among three considered. The regression is carried out on 144 monthly observations. The regression is $y_t = \beta_1 + \beta_2 x_{2t} + \beta_3 x_{3t} + \beta_4 x_{4t} + u_t$
 - What are the restricted and unrestricted regressions?
 - If the two RSS are 436.1 and 397.2 respectively, perform the test.

• Solution:

Unit sensitivity implies H_0 : β_2 =1 and β_3 =1. The unrestricted regression is the one in the question. The restricted regression is $(y_t-x_{2t}-x_{3t})=\beta_1+\beta_4x_{4t}+u_t$ or letting $z_t=y_t-x_{2t}-x_{3t}$, the restricted regression is $z_t=\beta_1+\beta_4x_{4t}+u_t$ In the *F*-test formula, T=144, k=4, m=2, RRSS=436.1, URSS=397.2 *F*-test statistic = 6.68. Critical value is an F(2,140)=3.07 (5%) and 4.79 (1%). Conclusion: Reject H_0 .

Goodness of Fit Statistics

- We would like some measure of how well our regression model actually fits the data.
- We have goodness of fit statistics to test this: i.e. how well the sample regression function (SRF) fits the data.
- The most common goodness of fit statistic is known as R^2 . One way to define R^2 is to say that it is the square of the correlation coefficient between y and \hat{y} .
- For another explanation, recall that what we are interested in doing is explaining the variability of y about its unconditional mean \overline{y} , i.e. the **total** sum of squares TSS:

$$TSS = \sum_{t} (y_t - \overline{y})^2$$

• We can split the *TSS* into two parts: the part explained by the model (explained sum of squares *ESS*), and the part not explained by the model (residual sum of squares *RSS*).

Defining R^2

• That is, TSS = ESS + RSS

$$\sum_{t} (y_{t} - \overline{y})^{2} = \sum_{t} (\hat{y}_{t} - \overline{y})^{2} + \sum_{t} \hat{u}_{t}^{2}$$

• Our **goodness of fit statistic** is

$$R^2 = \frac{ESS}{TSS}$$

• But since TSS = ESS + RSS, we can also write

$$R^{2} = \frac{ESS}{TSS} = \frac{TSS - RSS}{TSS} = 1 - \frac{RSS}{TSS}$$

• R^2 must always lie between zero and one. To understand this, consider two extremes

RSS = TSS i.e. ESS = 0 so $R^2 = ESS/TSS = 0$

ESS = TSS i.e. RSS = 0 so $R^2 = ESS/TSS = 1$

The Limit Cases: $R^2 = 0$ and $R^2 = 1$

Problems with R^2 as a Goodness of Fit Measure

- There are a number of them:
 - 1. R^2 is defined in terms of variation about the mean of y so that if a model is reparameterised (rearranged) and the dependent variable changes, R^2 will change.
 - 2. \mathbb{R}^2 never falls if more regressors are added to the regression, e.g. consider:

Regression 1:
$$y_t = \beta_1 + \beta_2 x_{2t} + \beta_3 x_{3t} + u_t$$

Regression 2:
$$y = \beta_1 + \beta_2 x_{2t} + \beta_3 x_{3t} + \beta_4 x_{4t} + u_t$$

 R^2 will always be at least as high for regression 2 relative to regression 1.

Adjusted R^2

• In order to get around these problems, a modification is often made which takes into account the loss of degrees of freedom associated with adding extra variables. This is known as \overline{R}^2 , or adjusted R^2 :

$$\overline{R}^{2} = 1 - \left[\frac{T-1}{T-k} (1 - R^{2}) \right]$$

- So if we add an extra regressor, k increases and unless R^2 increases by a more than offsetting amount, \overline{R}^2 will actually fall.
- Example: If adjusted R^2 is 0.65 then 65% of the total variability of the dependent variable about the mean is explained by the model.

A Regression Example: Hedonic House Pricing Models

- **Hedonic models** are used to value real assets, especially housing, and view the asset as representing a bundle of characteristics.
- Des Rosiers and Thérialt (1996) consider the effect of various amenities on rental values for buildings and apartments 5 sub-markets in the Quebec area of Canada.
- The **rental value** in Canadian Dollars per month (the dependent variable) **is a function of 9 to 14 variables** (depending on the area under consideration). The paper employs 1990 data, and for the Quebec City region, there are 13,378 observations, and the 12 explanatory variables are:

LnAGE - log of the apparent age of the property

NBROOMS - number of bedrooms

AREABYRM - area per room (in square metres)

ELEVATOR - a dummy variable = 1 if the building has an elevator; 0 otherwise

BASEMENT - a dummy variable = 1 if the unit is located in a basement; 0 otherwise

Hedonic House Pricing Models: Variable Definitions

OUTPARK - number of outdoor parking spaces

INDPARK - number of indoor parking spaces

NOLEASE - a dummy variable = 1 if the unit has no lease attached to it; 0

otherwise

LnDISTCBD - log of the distance in kilometres to the central business district

SINGLPAR - percentage of single parent families in the area where the building stands

DSHOPCNTR- distance in kilometres to the nearest shopping centre

VACDIFF1 - vacancy difference between the building and the census figure

- Examine the signs and sizes of the coefficients.
 - The coefficient estimates themselves show the Canadian dollar rental price per month of each feature of the dwelling.

Hedonic House Price Results Dependent Variable: Canadian Dollars per Month

Variable	Coefficient	<i>t</i> -ratio	A priori sign expected
Intercept	282.21	56.09	+
LnAGE	-53.10	-59.71	-
NBROOMS	48.47	104.81	+
AREABYRM	3.97	29.99	+
ELEVATOR	88.51	45.04	+
BASEMENT	-15.90	-11.32	-
OUTPARK	7.17	7.07	+
INDPARK	73.76	31.25	+
NOLEASE	-16.99	-7.62	-
LnDISTCBD	5.84	4.60	-
SINGLPAR	-4.27	-38.88	-
DSHOPCNTR	-10.04	-5.97	-
VACDIFF1	0.29	5.98	-

Notes: Adjusted $R^2 = 0.651$; regression F-statistic = 2082.27. Source: Des Rosiers and Thérialt

(1996). Reprinted with permission of the American Real Estate Society.

Tests of Non-nested Hypotheses

- All of the hypothesis tests concluded thus far have been in the context of "nested" models.
- But what if we wanted to compare between the following models?

Model 1:
$$y_t = \alpha_1 + \alpha_2 x_{2t} + u_t$$

Model 2:
$$y_t = \beta_1 + \beta_2 x_{3t} + v_t$$

- We could use R^2 or adjusted R^2 , but what if the number of explanatory variables were different across the 2 models?
- An alternative approach is an encompassing test, based on examination of the **hybrid model**: Model 3: $y_t = \gamma_1 + \gamma_2 x_{2t} + \gamma_3 x_{3t} + w_t$

Tests of Non-nested Hypotheses (cont'd)

- There are 4 possible outcomes when Model 3 is estimated:
 - γ_2 is significant but γ_3 is not
 - γ_3 is significant but γ_2 is not
 - $-\gamma_2$ and γ_3 are both statistically significant
 - Neither γ_2 nor γ_3 are significant
- Problems with encompassing approach
 - Hybrid model may be meaningless
 - Possible high correlation between x_2 and x_3 .