《概率论与数理统计》期末试卷

	2013/2014	学年第一学期	男 班级		
学号 <u> </u>	 姓名		考i	考试成绩	
— . (10	分) 某工厂	有三条流水线	生产同一种产品	L, 该三条流水线的	内产
量分别占总	产量的 20%	、30%和50%,	又这三条流水约	美的不合格品率依 涉	欠为
0.05, 0.02,	0.04。现从出	厂产品中任取-	一件, 求恰好抽	到不合格品的概率	0

二. (15 分) 设随机变量 x_1, x_2, \cdots, x_n 相互独立, 均服从 U(0,1). 求 $\min(x_1, x_2, \cdots, x_n)$ 的密度函数。

三. (10分) 试写出切比雪夫不等式。

四. $(15\ \mathcal{H})$ 设总体 X 服从正态分布 N(0,4),而 X_1,X_2,\cdots,X_{15} 为来自总体 X 的简单随机样本。求随机变量 $Y=\frac{X_1^2+X_2^2+\cdots+X_{10}^2}{2(X_{11}^2+X_{12}^2+\cdots+X_{15}^2)}$ 的分布。

五. (20分) 设总体 X 具有密度函数

$$f(x,\theta) = \begin{cases} 2e^{-2(x-\theta)} & x \ge \theta; \\ 0 & x < \theta. \end{cases}$$

且 X_1, \cdots, X_n 为来自 X 的简单随机样本, 求参数 θ 的矩估计和极大似然估计。

六. $(15 \, \mathcal{H})$ 设 X_1, X_2, X_3 为来自两点分布 $b(1, \theta)$ 的样本, 考虑假设检验问题 $H_0: \theta = \frac{1}{2} \longleftrightarrow H_1: \theta = \frac{3}{4}$ 。现作一检验, 其拒绝域为 $\{X_1 + X_2 + X_3 \geq 1\}$ 。 求该检验的第一类错误与第二类错误的大小。

七. $(15 \, \beta)$ 设某厂生产的灯泡寿命服从正态分布,从中抽取 $16 \,$ 个灯泡,测得样本均值为 $946 \,$ 小时,样本标准差为 $120 \,$ 小时。试在显著性水平 $\alpha = 0.05 \,$ 下检验整批灯泡的寿命是否为 $1000 \,$ 小时? $(t_{0.025}(15)=2.13)$