Small area estimation of cancer rates: A case study of lung cancer in Florida, 2000-2010

Lan Hu, Yongwan Chun, Daniel A. Griffith

Geospatial Information Sciences program
University of Texas at Dallas
Email: lan.hu@utdallas.edu

Introduction

- Small area estimation (SAE) furnishes a cost-effective method for obtaining reliable small area data
 - > SAE has been widely applied in many research areas (e.g., economics, demography, epidemiology)
 - ➤ One major problem of SAE is how to generate reliable estimates of interest for small areas with data only available at a coarser geographic resolution
- Lung cancer, the leading cause of death for both man and woman, has received substantial research attention
 - ➤ The literature notes that spatial autocorrelation frequently is detected in lung cancer incidence rate
 - > Spatial SAE models have been proposed to address spatial autocorrelation [e.g., Spatial Empirical Best Linear Unbiased Predictor (Spatial EBLUP)]

Research Objectives

- Estimate lung cancer incidence rates at the census tract resolution in Florida
 - A synthetic method, a Poisson regression method, and a Poisson eigenvector spatial filtering method
 - ➤ Estimates are compared with actual observed cancer rates
- Compare the estimated results of these methods
- Examine whether or not accounting for spatial autocorrelation can lead to a better estimation

Literature Review

- Small areas can be defined as geographic areas (e.g., census units such tracts, communities), or socio-demographic groups
- SAE is an important endeavor in global health, epidemiology
 - Reveal disparities of disease at local small areas (e.g., Krieger et al., 2002; Mobely et al., 2012)
 - ➤ Provide a fundamental basis for understanding the complex interaction between human and environmental systems (e.g., Langford et al., 2008)
 - ➤ Allow investigation into the factors responsible for geographic disparities in health (Ruther et al., 2017)
 - ➤ Identify priority areas for action, and optimize the use of limited resources (Zhang et al., 2013)

Literature Review (cont'd)

- SAE indirect estimator
 - > Synthetic estimator
 - Compute a designed unbiased estimator across all the areas, and then apply it for every small area (Pfeffermann 2013)
 - Assume homogeneity that may yield a large bias (e.g., Jia et al., 2004)
 - > Regression model (e.g., logistic or Poisson regression)
 - Incorporate areal level covariates to consider disparities at different geographic resolutions
 - Further extended to a mixed model, including random effects to improve model fits (e.g., Li et al., 2009; Zhang et al., 2014)
 - > SAE spatial model (e.g., spatial EBLUP)
 - Consider to incorporate spatial autocorrelation in an estimation model specification (e.g., Pratesi and Salvati 2008)

Our Dataset

- Lung cancer incident points in the State of Florida
 - > Florida Cancer Registry
 - ➤ An 11-year period from 2000 to 2010
 - ➤ A total of 172,460 cases after data cleaning
 - > Age, sex, race/ethnicity

Variables	Categories	
Age	< 20, 20-24, 25-29, 30-34, 35-39, 40-44, 45-49, 50-54, 55-59, 60-64, 65-69, 70-74, 75-79, 80-84, >85	
Sex	Male, Female	
Race/ethnicity	White, Black, Asian, Hispanic, Other	
County	67 counties	

Methodology

- Eigenvector Spatial Filtering (Griffith 2003)
 - Utilizes eigenvectors from a transformed spatial weights matrix

$$(\mathbf{I} - \mathbf{1}\mathbf{1}^T/\mathbf{n})\mathbf{C}(\mathbf{I} - \mathbf{1}\mathbf{1}^T/\mathbf{n})$$

- > n: the number of spatial units; C: a spatial weights matrix
- ➤ I: an identity matrix; 1: a vector of ones; T: matrix transpose operator
- An ESF model specification for a Poisson random variable (Griffith 2002)

$$E(\mathbf{Y}) = g^{-1}(\mathbf{X}\boldsymbol{\beta} + \mathbf{E}\boldsymbol{\gamma})$$

- \triangleright $g(\cdot)$ link function; $E(\cdot)$ expectation operator
- Y: response variable; X: covariates; E: a set of eigenvectors
- \triangleright β , γ : parameters to be estimated
- A stepwise approach to select eigenvectors from a candidate set based on a criterion of maximizing model fit

Methodology (cont'd)

- Synthetic method
 - Construct demographic strata by age/sex/race (150 strata)
 - Compute cancer rate for each strata $strata.rate_i = \frac{cancer\ count\ for\ each\ strata\ i}{Populaiton\ for\ each\ strata\ i}$
 - Compute cancer count for each census tract/block group $Count.bg_j = \sum_i pop_{ij} * strata.rate_i$
 - Adjust cancer count for each spatial unit (ensure the total count for each county equal to the observed count)

Methodology (cont'd)

- Poisson and Poisson ESF methods
 - Construct demographic-geographic strata age/sex/race/county (10,050 strata)
 - ➤ Model cancer counts for the strata with Poisson and Poisson ESF models (population per stratum as an offset variable)
 - Calculate a cancer rate for each stratum
 - ➤ Compute a cancer count for each census tract/block group
 - ➤ Adjust a cancer count for each spatial unit (ensure the total count for each county equal to the observed count)

	Poisson	Poisson ESF	
specifications	$E[ln(count)] = \beta_0 + \beta_1 Age + \beta_2 Sex + \beta_3 Race + \beta_4 Poverty$	$E[ln(count)] = \beta_0 + \beta_1 Age + \beta_2 Sex + \beta_3 Race + \beta_4 Poverty + \beta_5 ESF$	

	Poisson		Poisson ESF		
(Intercept)	-13.123	0.310***	-13.073	0.308 ***	
raceblack	0.791	0.060 ***	0.775	0.059***	
racehispanic	0.355	0.060 ***	0.348	0.059***	
raceother	-1.160	0.098 ***	-1.186	0.098 ***	
racewhite	1.213	0.058 ***	1.201	0.057 ***	
agea2024	1.271	0.430 ***	1.300	0.427 **	
agea2529	2.282	0.357 ***	2.290	0.355 ***	
agea3034	2.956	0.334 ***	2.936	0.332 ***	
agea3540	4.253	0.312 ***	4.194	0.310 ***	
agea4045	5.353	0.306 ***	5.268	0.304 ***	
agea4550	6.168	0.305 ***	6.052	0.303 ***	
agea5055	6.742	0.304 ***	6.641	0.303 ***	
agea5560	7.289	0.304 ***	7.236	0.302 ***	
agea6065	7.669	0.304 ***	7.621	0.302 ***	
agea6570	8.126	0.304 ***	8.083	0.302 ***	
agea7075	8.451	0.304 ***	8.421	0.302 ***	
agea7580	8.650	0.304 ***	8.583	0.302 ***	
agea8085	8.575	0.304 ***	8.467	0.302 ***	
agea85	8.286	0.304 ***	8.242	0.302 ***	
sexmale	0.340	0.008 ***	0.362	0.011 ***	
poverty	1.280	0.154 ***	1.280	0.153 ***	
AIC	38,014		37,681		
Moran's I (areal effects)		-0.04 (-0.61)			
selected eigenvector			5/48		

Results

Cor: 0.78

Cor: 0.81

Cor: 0.81

Summary and Discussions

- The estimation results are reasonably good
 - > The correlations between estimates and observed cancer rates are high
 - > age, race and sex are important factors to describe lung cancer rate
- Poisson models generate better estimates than synthetic method
 - ➤ The synthetic method assumes homogeneity while Poisson models consider local variations
 - ➤ However, the spatial model improves estimation marginally
- Estimates generated with the three methods capture the major spatial pattern of lung cancer rate (e.g., high/low cancer rate areas)
 - ➤ Over/under-estimations exist on all three maps
 - > Estimations need to be further improved to reveal local disparities

Future work

- A better spatial model specification is desired
 - ➤ The current method that accounts for spatial autocorrelation only marginally improved estimates
- Similar estimates will be extended for the census block group resolution
 - ➤ to evaluate if these SAE methods produce comparable results at different geographic resolutions
 - > to examine how good estimates are for finer level of spatial units