本次课程提纲:图的着色

- 边(点)着色概念
- 边(点)色数
- 边(点)着色应用

边着色概念

- 对图 G 的边进行染色,若<mark>相邻边染不同颜色</mark>,则称对 G 进行正常边着色
- 如果能用k种颜色对G进行正常边着色,称G是k边可着色的
- k 的最小值, 称为 G 的边色数, 记为 $\chi'(G)$

边着色概念

- 对图 G 的边进行染色,若相邻边染不同颜色,则称对 G 进行正常边着色
- 如果能用k种颜色对G进行正常边着色,称G是k边可着色的
- k 的最小值, 称为 G 的边色数, 记为 $\chi'(G)$
- 若点 v 关联的边的着色没有用到色 i, 则称 v 缺 i 色
- 着相同颜色的边集称为该着色的一个色组
- 对图的边着色,本质上是对边集合的一种划分,因此对应实际问题中的划分问题或分类问题

偶图 $K_{n,m}$ 边色数

简单偶图 $K_{n,m}$ 的边色数定理

$$\chi'(K_{m,n})=\Delta$$

证明

- $i \exists X = \{x_0, \dots, x_{m-1}\}, Y = \{y_0, \dots, y_{n-1}\}, \text{ 假设 } n \geq m, \text{ 即 } \Delta = n$
- 记颜色集合为 $\{0,\cdots,n-1\}$,我们证明如下染色方案 π 是正常边着色

$$\forall x_i y_j \in E : \ \pi(x_i y_j) = i + j \bmod n$$

- 若不然,存在边 $x_i y_j$ 与 $x_i y_k$ 同色,即 $\pi(x_i y_j) = \pi(x_i y_k)$
- 即 $i + j = i + k \mod n$, $j = k \mod n$, 矛盾

一般偶图边色数

一般偶图的边色数定理

对偶图 G, $\chi'(G) = \Delta$

证明

- 对G的边数m作归纳,m=1时显然
- 设对小于 m 条边定理成立,考察 m 条边的情况
- 取边 w,考查 $G_1 = G w$,由归纳假设有 $\chi'(G_1) = \Delta(G_1) \leq \Delta(G)$
- 故 G_1 存在一种 $\Delta(G)$ 边着色方案 π ,因为 w 未着色,所以点 u 与 v 在 π 中均至少缺少一种色
- 如果 u,v 均缺同一种色 i, 则在 $G_1 + uv$ 中给 uv 着色 i, G_1 其它边按方案 π 着色,得到 G 的 Δ 着色方案,即 $\chi'(G) = \Delta$

一般偶图边色数

证明续

- 如果 u 缺 i 色, 但不缺 j 色; v 缺 j 色, 但不缺 i 色
- 设 H 为 G_1 中由 i 色边与 j 色边导出的子图,H 每个分支是 i 色边和 j 色 边交替出现的路或圈,并且 $d_H(v) = 1$,假设包含 v 的路为 P
- 以下证明 u ∉ P
 - 若 $u \in P$, 那么P必然是一条长度为偶数的路
 - P + uv 是 G 中的奇圈,这与 G 是偶图矛盾
- 我们交换 P 中边的着色,该操作不破坏 G_1 的正常边着色
- 交换着色后, *u* 与 *v* 均缺色 *i*, 变成情形 **1**

简单图边色数

引理

x 与 y_1 是简单图 G 中不相邻的两个顶点, π 是 G 的一个正常 k 边着色。若 对 π , x, y_1 以及与 x 相邻点均至少缺少一种颜色,则 $G+xy_1$ 是 k 边可着色的

Vizing 定理

Vizing 定理

对简单图 G, $\chi'(G) = \Delta$ 或 $\chi'(G) = \Delta + 1$

证明

因为 $\chi'(G) \ge \Delta$, 故只需证明 $\chi'(G) \le \Delta + 1$

- 对 G 的边数 m 作数学归纳
- m = 1 时, $\Delta = 1$, 显然成立, 设边数小于 m 时成立, 考察边数 m 的情况
- 设 $xy \in E$, 令 $G_1 = G xy$, 由归纳假设有 $\chi'(G_1) \le \Delta(G_1) + 1 \le \Delta(G) + 1$
- 故存在 G_1 的 $\Delta(G)$ + 1 正常边着色 π , G_1 每个顶点至少缺少一种颜色
- 根据引理知 $G_1 + xy$ 是 $\Delta(G) + 1$ 可着色的,即 $\chi'(G) \leq \Delta + 1$

判断 $\chi'(G) = \Delta$ 还是 $\chi'(G) = \Delta + 1$ 一般情况下是困难的

Vizing 定理的应用

定理

若简单图 G 中只有一个最大度点或恰有两个相邻的最大度点,则 $\chi'(G) = \Delta$

证明

分情况讨论

- G 恰有一个最大度点 u
 - 取 u 的一个邻点 v , 作 $G_1 = G uv$
 - $f(G_1) = \Delta(G) 1$, $f(G_1) \leq \Delta 1 + 1 = \Delta(G)$
 - 故 G_1 可 $\Delta(G)$ 正常边着色的
 - 因为 $\Delta(G_1) = \Delta(G) 1$, G_1 每个顶点都至少缺少一种颜色
 - 由引理, $G_1 + w = G \cup \Delta(G)$ 正常边着色

Vizing 定理的应用

证明续

- *G* 恰有 2 个邻接最大度点 *u*,*v*
 - $f(G_1) = G uv$, $f(\Delta(G_1)) = \Delta(G) 1$
 - 由 Vizing 定理, $\chi'(G_1) \leq \Delta 1 + 1 = \Delta(G)$
 - 故 G_1 可 $\Delta(G)$ 正常边着色的
 - 因为 $\Delta(G_1) = \Delta(G) 1$, G_1 每个顶点都至少缺少一种颜色
 - 由引理, $G_1 + uv = G \cup \Delta(G)$ 正常边着色

Vizing 定理的应用

定理

对 n = 2k + 1 阶简单图 G

- $\stackrel{\star}{=} m > k\Delta$, $\stackrel{\star}{\cup} \chi'(G) = \Delta + 1$
- 若 G 是正则图,则 $\chi'(G) = \Delta + 1$

证明

- 若不然,由 Vizing 定理 $\chi'(G) = \Delta$
- 设π是Δ正常边着色
- G 的每个色组包含的边数至多 (n-1)/2 = k
- 故 $m \le k\Delta$, 矛盾
- 因 G 是正则单图, $m = n\Delta/2 > k\Delta$

边着色的应用

问题

m 位老师 $\{X_i\}$ 要给 n 个班级 $\{Y_j\}$ 上课,老师 X_i 需要给班级 Y_j 上 p_{ij} 节课,如何制定课表使总课时最少

解答

- 作偶图 G = (X, Y), X_i 和 Y_j 间连 p_{ij} 条边
- 对 *G* 进行边着色

课后练习与思考题

- 给出一个偶图的边着色算法
- 求 Peterson 图的边色数, 并证明之

点着色概念

- 对图 G 的顶点进行染色,若相邻点染不同颜色,则称对 G 进行正常点着色
- 如果能用k种颜色对G进行正常点着色,称G是k点可着色的
- k 的最小值,称为 G 的点色数,记为 $\chi(G)$

点着色概念

- 对图 G 的顶点进行染色,若相邻点染不同颜色,则称对 G 进行正常点着色
- 如果能用k种颜色对G进行正常点着色,称G是k点可着色的
- k 的最小值, 称为 G 的点色数, 记为 $\chi(G)$
- 着相同颜色的点集称为该着色的一个色组
- 对图的点着色,本质上是对点集合的一种划分,因此对应实际问题中的划分问题或分类问题

点色数

点色数上界

对任意图 G, $\chi(G) \leq \Delta + 1$

证明

- 对G的顶点数n作归纳,n=1时显然
- 设对小于n个顶点定理成立,考察n个顶点的情况
- 取顶点v,考查 $G_1 = G v$,由归纳假设有 $\chi(G_1) \le \Delta(G_1) + 1 \le \Delta(G) + 1$
- 设 π 是 G_1 的一种 $\Delta(G)$ + 1 的点着色方案
- 由于v 的邻居最多用去 $\Delta(G)$ 种颜色,故给v 染上未用的颜色,就把 π 变成了 G 的一种 $\Delta(G)$ + 1 的点着色方案

$\Delta(G) + 1$ 的点着色算法

- 将顶点任意排序为 v₁, · · · , v_n, 将颜色任意排序
- 依次染 v_i , 每次用可能的最小颜色染 v_i

- 不能保证得到最佳染色方案
- Welsh—Powell 改进:按顶点度数由大到小的次序着色

色数改进界

Brooks 定理,1941 提出,1957 年证明

连通简单图 G,如果它既不是奇圈,又不是完全图, $\chi(G) \leq \Delta$

Brooks 定理的进一步改进

- 定义简单图 G 的次大度 $\Delta_2(G) \triangleq \max_{u \in V} \max_{v \in N(u), d(v) \leq d(u)} d(v)$
- 其中 N(u) 是 u 的邻居顶点集合
- 若记 $V_2(G) = \{v | \exists u \in N(v) : d(u) \ge d(v)\}$
- $\Delta_2(G) = \max\{d(v)|v \in V_2(G)\}$

色数改进界

- $V_2(G_1) = \{v_1, v_2, v_3, v_4\}, \ \Delta_2(G_1) = 1$
- $V_2(G_2) = \{v_1, v_2, v_3, v_5, v_8, v_6, v_9\}, \ \Delta_2(G_2) = 3$

定理

对简单图 G,则 $\chi(G) \leq \Delta_2(G) + 1$;若 G 中最大度点互不邻接, $\chi(G) \leq \Delta(G)$

五色定理

五色定理: Heawood, 1890

每个平面图都是5可着色的

证明

- n=1 时显然。设 n=k 时结论成立。考虑 n=k+1 的连通平面图 G
 - 由连通平面图性质, $\delta(G) \leq 5$, 设 $d(u) = \delta(G)$
 - 令 $G_1 = G u$, 由归纳假设, G_1 是 5 可着色的,设 π 是 G_1 的 5 着色方案
 - 若 d(u) < 5,容易将 π 扩充为 G 的 S 着色方案,只需证明 d(u) = 5 的情况

 - 只需考虑u的邻居在 π 中颜色均不同的情况

五色定理

证明续

- 不失一般性,设 $\pi(x_i) = i$,记 H(i,j) 为着 i 和 j 色点在 G_1 中导出子图
 - 若 x_1, x_3 属于 H(1,3) 的不同连通分支,交换含 x_1 分支中着色 1 与色 3 顶点颜色,可得到 G_1 的新着色方案,使 x_1, x_3 着同色,退化为已考虑的情形
 - 若 x_1 与 x_3 属于 H(1,3) 的相同连通分支,进一步考察 H(2,4)
 - x_2 与 x_4 必属于 H(2,4) 的不同分支,若不然,由于 G_1 是平面图,H(1,3) 与 H(2,4) 相交,矛盾。以下可以按照第一种情况处理 19/24

染色问题复杂性

• 2 着色: 等价于二分图判断

• 3 着色: NP 难,可以归结为 3SAT 问题

染色问题复杂性

- 2 着色: 等价于二分图判断
- 3 着色: NP 难,可以归结为 3SAT 问题
- **3SAT** 问题: 给定 n 个布尔变量 x_1, \dots, x_n , k 个布尔表达式 C_1, \dots, C_k , 每个包含 3 个变量,是否存在一种 x_i 的取值方案使 C_i 都为真: **NPC**
- 3SAT 等价于 3 着色问题

3SAT 与 3 着色

- 如果表达式为真,必然对应正常3着色
- 正常 3 着色对应 3SAT 的解

k 着色的 NP 完全性证明

- 从 3 着色到 k 着色
- 给定图 G,构造图 H 如下: 连接 K_{k-3} 和 G 中每一对顶点
- G 可 3 着色等价于 H 可 k 着色

点着色的应用

问题

某学期开设的课程为:图论 (GT)、统计学 (S)、线性代数 (LA)、高等微积分 (AC)、几何学 (G)、近世代数 (MA),有 10 名学生 A_i 需要选修这些课程,请确定开设这些课程所需要的最少时间段数,使得学生选课不会发生冲突。

A1: LA, S; A2: MA, LA, G; A3: MA, G, LA; A4: G, LA, AC; A5: AC, LA, S; A6: G, AC; A7: GT, MA, LA; A8: LA, GT, S; A9: AC, S, LA; A10: GT, S

解答

- 把课程看成图 G 的顶点,两顶点连线当有学生同时选了这两门课程
- 用同一颜色给同一时段的课程顶点染色, 问题转化为 G 的着色

课后练习与思考题

- 证明 $\chi(G+H) = \max\{\chi(G),\chi(H)\}$ 和 $\chi(G\vee H) = \chi(G) + \chi(H)$
- 求 Peterson 图的点色数,并证明之