第一次作业参考答案

1. 在一元线性回归方程中,在假设一到假设五成立的情况下,请推导 OLS 估计量 $\hat{\beta}_0$ 的方差

$$Var\left(\widehat{\beta}_{0}\middle|x\right) = \frac{\left(\sigma^{2}/n\right)\sum_{i=1}^{n}x_{i}^{2}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}$$

证明. 除了假设一到假设五, 我们还需要利用

$$\widehat{\beta}_0 = \bar{y} - \widehat{\beta}_1 \bar{x},$$

$$\operatorname{Var}\left(\widehat{\beta}_1 \middle| x\right) = \frac{\sigma^2}{\sum_{i=1}^n (x_i - \bar{x})^2}.$$

首先,注意到

$$\widehat{\beta}_1 = \sum_{i=1}^n w_i (y_i - \bar{y}) = \sum_{i=1}^n w_i y_i,$$

其中, $w_i = (x_i - \bar{x}) / \sum_{j=1}^n (x_j - \bar{x})^2$ 。这是因为

$$\sum_{i=1}^{n} w_i \bar{y} = \bar{y} \sum_{i=1}^{n} w_i = 0.$$

那么,

$$\operatorname{Cov}\left(\bar{u}, \widehat{\beta}_{1} \middle| x\right) = \frac{1}{n} \sum_{k=1}^{n} \sum_{i=1}^{n} w_{i} \operatorname{Cov}\left(u_{k}, y_{i} \middle| x\right) = \frac{1}{n} \sum_{k=1}^{n} w_{k} \sigma^{2} = \frac{\sigma^{2}}{n} \underbrace{\sum_{k=1}^{n} w_{k}}_{=0} = 0,$$

其中, $Cov(u_k, y_i|x) = \sigma^2 \mathbf{1}\{k = i\}$, $\mathbf{1}\{\cdot\}$ 是指示函数 (indicator function),所以有

$$\sum_{i=1}^{n} w_i \operatorname{Cov}(u_k, y_i | x) = w_k \sigma^2.$$

因此,

$$\operatorname{Var}\left(\widehat{\beta}_{0} \middle| x\right) = \operatorname{Var}\left(\bar{y} - \widehat{\beta}_{1}\bar{x} \middle| x\right)$$

$$= \operatorname{Var}\left(\beta_{0} + \beta_{1}\bar{x} + \bar{u} - \widehat{\beta}_{1}\bar{x} \middle| x\right)$$

$$= \operatorname{Var}\left(\bar{u} - \widehat{\beta}_{1}\bar{x} \middle| x\right)$$

$$= \operatorname{Var}\left(\bar{u} \middle| x\right) + \bar{x}^{2}\operatorname{Var}\left(\widehat{\beta}_{1} \middle| x\right) - 2\bar{x}\operatorname{Cov}\left(\bar{u}, \widehat{\beta}_{1} \middle| x\right)$$

$$= \frac{\sigma^{2}}{n} + \frac{\sigma^{2}\bar{x}^{2}}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}$$

$$= \frac{(\sigma^{2}/n)\sum_{i=1}^{n} (x_{i} - \bar{x})^{2} + (\sigma^{2}/n)n\bar{x}^{2}}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}$$

$$= \frac{(\sigma^{2}/n)\sum_{i=1}^{n} x_{i}^{2}}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}$$

2. 在给定二元线性回归方程 $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + u$,以 β_1 为例,第一种估计系数的办法是用最小二乘法直接估计:第二种办法分成两步进行。第一步先拿 x_1 对 x_2 做回归,得到残差,第二步拿 y 对第一步中得到的残差做回归。请从数学上证明两种办法得到的 β_1 的估计量 β_1 是等价的。

证明. 在第一种方法中,

$$\min_{\widehat{\beta}_0,\widehat{\beta}_1,\widehat{\beta}_2} \sum_{i=1}^n \left[y_i - \left(\widehat{\beta}_0 + \widehat{\beta}_1 x_{1i} + \widehat{\beta}_2 x_{2i} \right) \right]^2$$

一阶条件:

$$\sum_{i=1}^{n} \left(y_i - \widehat{\beta}_0 - \widehat{\beta}_1 x_{1i} - \widehat{\beta}_2 x_{2i} \right) = 0 \tag{1}$$

$$\sum_{i=1}^{n} \left(y_i - \widehat{\beta}_0 - \widehat{\beta}_1 x_{1i} - \widehat{\beta}_2 x_{2i} \right) x_{1i} = 0 \tag{2}$$

$$\sum_{i=1}^{n} \left(y_i - \widehat{\beta}_0 - \widehat{\beta}_1 x_{1i} - \widehat{\beta}_2 x_{2i} \right) x_{2i} = 0$$
 (3)

由(1)我们有

$$\widehat{\beta}_0 = \bar{y} - \widehat{\beta}_1 \bar{x}_1 - \widehat{\beta}_2 \bar{x}_2$$

把上式代入(2)和(3)有

$$\sum_{i=1}^{n} \left[(y_i - \bar{y}) - \widehat{\beta}_1 (x_{1i} - \bar{x}_1) - \widehat{\beta}_2 (x_{2i} - \bar{x}_2) \right] x_{1i} = 0$$

$$\sum_{i=1}^{n} \left[(y_i - \bar{y}) - \widehat{\beta}_1 (x_{1i} - \bar{x}_1) - \widehat{\beta}_2 (x_{2i} - \bar{x}_2) \right] x_{2i} = 0$$

因此有

$$\sum_{i=1}^{n} \left[(y_i - \bar{y}) - \widehat{\beta}_1 (x_{1i} - \bar{x}_1) - \widehat{\beta}_2 (x_{2i} - \bar{x}_2) \right] (x_{1i} - \bar{x}_1) = 0$$
 (4)

$$\sum_{i=1}^{n} \left[(y_i - \bar{y}) - \hat{\beta}_1 (x_{1i} - \bar{x}_1) - \hat{\beta}_2 (x_{2i} - \bar{x}_2) \right] (x_{2i} - \bar{x}_2) = 0$$
 (5)

定义 $Dy_i \equiv y_i - \bar{y}$, $Dx_{1i} \equiv x_{1i} - \bar{x}_1$, $Dx_{2i} \equiv x_{2i} - \bar{x}_2$, 式 (4) 和 (5) 可以改写为

$$\sum_{i=1}^{n} \left[Dy_i - \hat{\beta}_1 Dx_{1i} - \hat{\beta}_2 Dx_{2i} \right] Dx_{1i} = 0$$
 (6)

$$\sum_{i=1}^{n} \left[Dy_i - \hat{\beta}_1 Dx_{1i} - \hat{\beta}_2 Dx_{2i} \right] Dx_{2i} = 0$$
 (7)

(6) 和(7) 构成了包含两个未知数、两个方程的线性方程组,因此

$$\widehat{\beta}_1 = \frac{\sum_{i=1}^n Dy_i Dx_{1i} \sum_{i=1}^n (Dx_{2i})^2 - \sum_{i=1}^n Dy_i Dx_{2i} \sum_{i=1}^n Dx_{1i} Dx_{2i}}{\sum_{i=1}^n (Dx_{1i})^2 \sum_{i=1}^n (Dx_{2i})^2 - (\sum_{i=1}^n Dx_{1i} Dx_{2i})^2}$$

在第二种方法中,我们在第一步考虑

$$x_1 = \alpha_0 + \alpha_1 x_2 + v$$

所以有

$$\widehat{\alpha}_1 = \frac{\sum_{i=1}^n (x_{2i} - \bar{x}_2)(x_{1i} - \bar{x}_1)}{\sum_{i=1}^n (x_{2i} - \bar{x}_2)^2} = \frac{\sum_{i=1}^n Dx_{2i}Dx_{1i}}{\sum_{i=1}^n (Dx_{2i})^2}$$
(8)

$$\widehat{\alpha}_0 = \bar{x}_1 - \widehat{\alpha}_1 \bar{x}_2 \tag{9}$$

将(9)代入残差 $\hat{v}_i \equiv x_{1i} - \hat{\alpha}_0 - \hat{\alpha}_1 x_{2i}$,那么 $\hat{v}_i = Dx_{1i} - \hat{\alpha}_1 Dx_{2i}$ (10)

注意到 $\bar{v}=0$, 因此在第二步中我们有

$$\widetilde{\beta}_{1} = \frac{\sum_{i=1}^{n} \widehat{v}_{i}(y_{i} - \bar{y})}{\sum_{i=1}^{n} \widehat{v}_{i}^{2}} = \frac{\sum_{i=1}^{n} \widehat{v}_{i} D y_{i}}{\sum_{i=1}^{n} \widehat{v}_{i}^{2}}$$
(11)

将(8)和(10)代入(11),我们有

$$\begin{split} \widetilde{\beta}_1 &= \frac{\sum_{i=1}^n (Dx_{1i} - \widehat{\alpha}_1 Dx_{2i}) Dy_i}{\sum_{i=1}^n (Dx_{1i} - \widehat{\alpha}_1 Dx_{2i})^2} \\ &= \frac{\sum_{i=1}^n Dx_{1i} Dy_i - \frac{\sum_{i=1}^n Dx_{2i} Dx_{1i}}{\sum_{i=1}^n (Dx_{2i})^2} \sum_{i=1}^n Dx_{2i} Dy_i}{\sum_{i=1}^n (Dx_{1i})^2 + \frac{\left(\sum_{i=1}^n Dx_{2i} Dx_{1i}\right)^2}{\left(\sum_{i=1}^n (Dx_{2i})^2\right)^2} \sum_{i=1}^n (Dx_{2i})^2 - 2\frac{\sum_{i=1}^n Dx_{2i} Dx_{1i}}{\sum_{i=1}^n (Dx_{2i})^2} \sum_{i=1}^n Dx_{1i} Dx_{2i}} \\ &= \frac{\sum_{i=1}^n Dy_i Dx_{1i} \sum_{i=1}^n (Dx_{2i})^2 - \sum_{i=1}^n Dy_i Dx_{2i} \sum_{i=1}^n Dx_{1i} Dx_{2i}}{\sum_{i=1}^n (Dx_{1i})^2 \sum_{i=1}^n (Dx_{2i})^2 - \left(\sum_{i=1}^n Dx_{1i} Dx_{2i}\right)^2} \end{split}$$
因此 $\widehat{\beta}_1$ 和 $\widetilde{\beta}_1$ 是等价的。

3. 子虚国政府委托乌有大学进行一个项目,主要目的是研究劳动力市场上决定劳动收入的因素。乌有大学通过问卷调查。得到一个数据集。数据集包括如下变量: (1) gender: 性别,其中1代表男性,2代表女性; (2) birthyear: 出生年份; (3) marriage: 婚姻状况,其中1代表处于婚姻状态,0代表处于非结婚状态(包括未婚,离异,丧偶等); (4) empjob_twage: 年总收入; (5) schooling_yr: 受教育年数;

在打开 Stata 后,首先使用 cd 把工作目录设定为存放有数据集的目录,再使用 use 打开数据集。例如,

cd "your_path" /* e.g. cd "/home/zhufeng/metrics" */
use "homework1_dataset.dta"

- (1) 创建两个新变量: (a) male: 1 代表男性, 0 代表女性; (b) female: 1 代表女性, 0 代表男性。
 - . * Question 3.1
 - . generate male = 1 if gender == 1
 (892 missing values generated)
 - . replace male = 0 if gender == 2
 (892 real changes made)
 - . generate female = 1 if gender == 2
 (1,948 missing values generated)
 - . replace female = 0 if gender == 1 (1,948 real changes made)

.

- (2) 给出以下变量的均值,标准差,最小值以及最大值: female, male, birthyear, marriage, empjob_twage, schooling_yr。
 - . * Question 3.2
 - . summarize female male birthyear marriage empjob_twage schooling_yr

Variable	Obs	Mean	Std. Dev.	Min	Max
female	2,840	.3140845	.464232	0	1
male	2,840	.6859155	.464232	0	1
birthyear	2,840	1974.865	11.2741	1914	1998
marriage	2,840	.6010563	.4897674	0	1
empjob_twage	2,840	4789.801	3361.39	176.1308	50725.66
schooling_yr	2,840	7.624296	2.9349	0	15

(3) 乌有大学的飘渺教授认为教育对于收入有着重要的影响,她建议估计下面这个回归方程式:

$$empjob_twage = \beta_0 + \beta_1 \times schooling_yr + u$$

请使用给定的数据集估计这个方程,给出回归结果。

- . * Question 3.3
- . regress empjob_twage schooling_yr

Source	SS	df	MS	Numbe	r of obs	=	2,840
				F(1,	2838)	=	66.25
Model	731763187	1	731763187	7 Prob	> F	=	0.0000
Residual	3.1346e+10	2,838	11045077.6	8 R-squ	ared	=	0.0228
				- Adj R	-squared	=	0.0225
Total	3.2078e+10	2,839	11298941	Root	MSE	=	3323.4
empjob_twage	Coef.	Std. Err.	t	P> t	[95% Cont	f.	Interval]
schooling_yr	172.9853 3470.91	21.25242 173.6213	8.14 19.99	0.000	131.3136 3130.473		214.6571 3811.347
_cons	3470.91	173.6213	19.99	0.000	3130.473		3011.347

- (4) 计算 $empjob_twage$, $empjob_twage$, 和 \hat{u} 的均值。他们之间有什么关系。
 - . * Question 3.4
 - . predict yhat

(option xb assumed; fitted values)

- . predict ehat, residuals
- . summarize empjob_twage yhat ehat

empjob_twage 2,840 4789.801 3361.39 176.1308 50725 yhat 2,840 4789.801 507.6947 3470.91 6065. ehat 2,840 .0000148 3322.828 -5300.15 45697	689

因此, $\overline{empjob_twage} = emp\widehat{job_twage} + \overline{\widehat{u}}$ 。