Informed Search

- Uninformed search is systematic but inefficient.
- Would like to use additional knowledge such that better nodes are considered for expansion and exploration first.
 - In terms of pseudo-code, we want to order the open queue.
- We will introduce an evaluation function f(n) that indicates the desirability of considering node n next for exploration and expansion.
 - Nodes with a better f(n) are always considered first.
- How should we compute f(n) ????

Recall Uniform Cost Search

- \square UCS orders the open queue according to the path cost g(n).
 - Path cost is distance from root to state n.
- \square So, UCS uses an evaluation function f(n) = g(n).
- \square The path cost g(n) only accounts for cost to reach n.
 - UCS is NOT goal directed/oriented.
- Would also like to consider the cost from state n to the goal.

Being Goal Oriented

- \square Would like f(n) to include a measure of the cost to goal.
- \square Use what's called a heuristic function h(n).
 - an estimate of the cost from the current state to goal.

Two ideas/approaches; always try to expand nodes that are:

- Estimated to be closest to goal.
 - \blacksquare f(n) = h(n) (Greedy Best First Search)
- □ On least cost path from root, through current state, to the goal.
 - $f(n) = g(n) + h(n) \quad (A* Search)$
- \square Heuristic function h(n) is:
 - \blacksquare Only an estimate (whereas path cost g(n) is exact).
 - Equal to zero when at the goal.

Greedy Best First Search

- ☐ Always explores and expands the node judged to be closest to goal.
- \square So, uses f(n) = h(n) and ignores the path cost g(n) entirely.

Consider it to be the complement of UCS.

Illustration of Greedy Best First Search

6	5	4	3	4	5	6	7	8	9
5	4	3	2	3	4	5	6	7	8
4	3	2	1	2	3	4	5	6	7
3	2	1	0	1			4	5	6
4	3					4	5	6	7
5	4		2	3	4	5	6	7	8
6	5		3	4				8	9
7	6		4	5				9	10
8	7	6	5	6	7	8	9	10	11
9	8	7	6	7	8	9	10	11	12

Distances to goal h(n)

- \square Consider wanting to find a path from (6,1) to (3,6), but we have obstacles.
- Let the estimate of distance to goal be the manhattan distance between the current position (x,y) and the goal (dstx,dsty); i.e., h(n) = |x-dstx|+|y-dsty|.
- □ NOTE: our heuristic does not look at obstacles (problem relaxation, more Friday)

Illustration of Greedy Best First Search

-	-	-	-	-	-	-	-	-
-	-		18	17	16	15	14	-
•	•	18	17	16	15	14	13	14
•	•	ı	18	17			12	13
•	•					10	11	12
•	•		6	7	8	9	10	-
•	•		5	6				•
•	•		4	3				•
•	•	4	3	2	1	0	1	-
1	-	•	4	3	2	1	-	-

					1			
-	-	-	-	-	-	-	-	-
-	ı	ı	ı	ı	ı	ı	ı	ı
-	ı	ı	19	18	17	16	15	ı
-	ı	ı	20	ı			14	•
-	•					12	13	·
-	ı		6	7	9	11	ı	•
-	•		5	8				-
-	-		4	10				•
-	-	-	3	2	1	0	-	•
-	-	-	-	-	-	-	-	-

- Left figure shows nodes expanded and explored and those nodes on the fringe of the search.
- □ Right figure shows the order (time) at which a square was explored.
- ☐ Final path returned is:
 - (6,1)->(5,1)->(4,1)->(3,1)->(3,2)->(3,3)->(3,4)->(4,4)->(5,4)->(6,4)->(6,5)->(7,5)->(7,6)->(7,7)->(6,7)->(5,7)->(4,7)->(3,7)->(3,6)
 - Which is not optimal.
 - NOTE: Only one path was followed until the goal was found. (similar to DFS)

Queue Contents

- Can illustrate the contents of the open and closed queue. Note that:
 - Goal appears at the head of the open queue just prior to termination.
 - Open queue contains the fringe nodes upon termination.

1	open[(6,1,8.0)]
	closed
2	open [(5,1,7.0)][(6,0,9.0)][(7,1,9.0)]
	closed [(6,1,8.0)]
3	open[[(4,1,6.0)][(5,0,8.0)][(6,0,9.0)][(7,1,9.0)]
	closed [(6,1,8.0)][(5,1,7.0)]
4	open [(3,1,5.0)][(4,2,5.0)][(4,0,7.0)][(5,0,8.0)][(6,0,9.0)][(7,1,9.0)]
	closed [(6,1,8.0)][(5,1,7.0)][(4,1,6.0)]
5	open[[(3,2,4.0)][(4,2,5.0)][(2,1,6.0)][(3,0,6.0)][(4,0,7.0)][(5,0,8.0)][(6,0,9.0)][(7,1,9.0)]
	closed[[(6,1,8.0)][(5,1,7.0)][(4,1,6.0)][(3,1,5.0)]
6	
	closed[[(6,1,8.0)][(5,1,7.0)][(4,1,6.0)][(3,1,5.0)][(3,2,4.0)]
7	open[[(3,4,2.0)][(4,3,4.0)][(4,2,5.0)][(2,1,6.0)][(3,0,6.0)][(4,0,7.0)][(5,0,8.0)][(6,0,9.0)][(7,1,9.0)]
	closed[[(6,1,8.0)][(5,1,7.0)][(4,1,6.0)][(3,1,5.0)][(3,2,4.0)][(3,3,3.0)]
8	open[[(4,4,3.0)][(4,3,4.0)][(4,2,5.0)][(2,1,6.0)][(3,0,6.0)][(4,0,7.0)][(5,0,8.0)][(6,0,9.0)][(7,1,9.0)]
	closed[[(6,1,8.0)][(5,1,7.0)][(4,1,6.0)][(3,1,5.0)][(3,2,4.0)][(3,3,3.0)][(3,4,2.0)]
9	
	closed [(6,1,8.0)][(5,1,7.0)][(4,1,6.0)][(3,1,5.0)][(3,2,4.0)][(3,3,3.0)][(3,4,2.0)][(4,4,3.0)]
10	open [(5,4,4.0)][(4,2,5.0)][(2,1,6.0)][(3,0,6.0)][(4,0,7.0)][(5,0,8.0)][(6,0,9.0)][(7,1,9.0)]
	closed [(6,1,8.0)][(5,1,7.0)][(4,1,6.0)][(3,1,5.0)][(3,2,4.0)][(3,3,3.0)][(3,4,2.0)][(4,4,3.0)][(4,3,4.0)]
11	open [(4,2,5.0)][(6,4,5.0)][(2,1,6.0)][(3,0,6.0)][(4,0,7.0)][(5,0,8.0)][(6,0,9.0)][(7,1,9.0)]
	closed[[(6,1,8.0)][(5,1,7.0)][(4,1,6.0)][(3,1,5.0)][(3,2,4.0)][(3,3,3.0)][(3,4,2.0)][(4,4,3.0)][(4,3,4.0)][(5,4,4.0)]

Queue Contents cont'd

12	open	[(6,4,5.0)][(2,1,6.0)][(3,0,6.0)][(4,0,7.0)][(5,0,8.0)][(6,0,9.0)][(7,1,9.0)]
	closed	[(6,1,8.0)][(5,1,7.0)][(4,1,6.0)][(3,1,5.0)][(3,2,4.0)][(3,3,3.0)][(3,4,2.0)][(4,4,3.0)][(4,3,4.0)][(5,4,4.0)]
		[(4,2,5.0)]
13	open	[(6,5,4.0)][(2,1,6.0)][(3,0,6.0)][(7,4,6.0)][(4,0,7.0)][(5,0,8.0)][(6,0,9.0)][(7,1,9.0)]
	closed	[(6,1,8.0)][(5,1,7.0)][(4,1,6.0)][(3,1,5.0)][(3,2,4.0)][(3,3,3.0)][(3,4,2.0)][(4,4,3.0)][(4,3,4.0)][(5,4,4.0)]
		[(4,2,5.0)][(6,4,5.0)]
14	open	$\overline{[(7,5,5.0)][(2,1,6.0)][(3,0,6.0)][(7,4,6.0)][(4,0,7.0)][(5,0,8.0)][(6,0,9.0)][(7,1,9.0)]}$
	closed	[(6,1,8.0)][(5,1,7.0)][(4,1,6.0)][(3,1,5.0)][(3,2,4.0)][(3,3,3.0)][(3,4,2.0)][(4,4,3.0)][(4,3,4.0)][(5,4,4.0)]
		[(4,2,5.0)][(6,4,5.0)][(6,5,4.0)]
15	open	$\overline{[(7,6,4.0)][(2,1,6.0)][(3,0,6.0)][(7,4,6.0)][(8,5,6.0)][(4,0,7.0)][(5,0,8.0)][(6,0,9.0)][(7,1,9.0)]}$
	closed	[(6,1,8.0)][(5,1,7.0)][(4,1,6.0)][(3,1,5.0)][(3,2,4.0)][(3,3,3.0)][(3,4,2.0)][(4,4,3.0)][(4,3,4.0)][(5,4,4.0)]
		[(4,2,5.0)][(6,4,5.0)][(6,5,4.0)][(7,5,5.0)]
16	open	[(7,7,5.0)][(8,6,5.0)][(2,1,6.0)][(3,0,6.0)][(7,4,6.0)][(8,5,6.0)][(4,0,7.0)][(5,0,8.0)][(6,0,9.0)][(7,1,9.0)]
	closed	[(6,1,8.0)][(5,1,7.0)][(4,1,6.0)][(3,1,5.0)][(3,2,4.0)][(3,3,3.0)][(3,4,2.0)][(4,4,3.0)][(4,3,4.0)][(5,4,4.0)]
		[(4,2,5.0)][(6,4,5.0)][(6,5,4.0)][(7,5,5.0)][(7,6,4.0)]
17	open	[(6,7,4.0)][(8,6,5.0)][(2,1,6.0)][(3,0,6.0)][(7,4,6.0)][(8,5,6.0)][(7,8,6.0)][(8,7,6.0)][(4,0,7.0)][(5,0,8.0)]
		[(6,0,9.0)][(7,1,9.0)]
	closed	[(6,1,8.0)][(5,1,7.0)][(4,1,6.0)][(3,1,5.0)][(3,2,4.0)][(3,3,3.0)][(3,4,2.0)][(4,4,3.0)][(4,3,4.0)][(5,4,4.0)]
		[(4,2,5.0)][(6,4,5.0)][(6,5,4.0)][(7,5,5.0)][(7,6,4.0)][(7,7,5.0)]
18	open	[(5,7,3.0)][(8,6,5.0)][(6,8,5.0)][(2,1,6.0)][(3,0,6.0)][(7,4,6.0)][(8,5,6.0)][(7,8,6.0)][(8,7,6.0)][(4,0,7.0)]
		[(5,0,8.0)][(6,0,9.0)][(7,1,9.0)]
	closed	[(6,1,8.0)][(5,1,7.0)][(4,1,6.0)][(3,1,5.0)][(3,2,4.0)][(3,3,3.0)][(3,4,2.0)][(4,4,3.0)][(4,3,4.0)][(5,4,4.0)]
		[(4,2,5.0)][(6,4,5.0)][(6,5,4.0)][(7,5,5.0)][(7,6,4.0)][(7,7,5.0)][(6,7,4.0)]
19	open	[(4,7,2.0)][(5,8,4.0)][(8,6,5.0)][(6,8,5.0)][(2,1,6.0)][(3,0,6.0)][(7,4,6.0)][(8,5,6.0)][(7,8,6.0)][(8,7,6.0)]
		[(4,0,7.0)][(5,0,8.0)][(6,0,9.0)][(7,1,9.0)]
	closed	[(6,1,8.0)][(5,1,7.0)][(4,1,6.0)][(3,1,5.0)][(3,2,4.0)][(3,3,3.0)][(3,4,2.0)][(4,4,3.0)][(4,3,4.0)][(5,4,4.0)]
		[(4,2,5.0)][(6,4,5.0)][(6,5,4.0)][(7,5,5.0)][(7,6,4.0)][(7,7,5.0)][(6,7,4.0)][(5,7,3.0)]
20	open	[(3,7,1.0)][(4,6,1.0)][(4,8,3.0)][(5,8,4.0)][(8,6,5.0)][(6,8,5.0)][(2,1,6.0)][(3,0,6.0)][(7,4,6.0)][(8,5,6.0)]
		[(7,8,6.0)][(8,7,6.0)][(4,0,7.0)][(5,0,8.0)][(6,0,9.0)][(7,1,9.0)]
	closed	[(6,1,8.0)][(5,1,7.0)][(4,1,6.0)][(3,1,5.0)][(3,2,4.0)][(3,3,3.0)][(3,4,2.0)][(4,4,3.0)][(4,3,4.0)][(5,4,4.0)]
		[(4,2,5.0)][(6,4,5.0)][(6,5,4.0)][(7,5,5.0)][(7,6,4.0)][(7,7,5.0)][(6,7,4.0)][(5,7,3.0)][(4,7,2.0)]
21	open	[(3,6,0.0)][(4,6,1.0)][(3,8,2.0)][(2,7,2.0)][(4,8,3.0)][(5,8,4.0)][(6,8,5.0)][(8,6,5.0)][(2,1,6.0)][(3,0,6.0)]
		[(7,4,6.0)][(8,5,6.0)][(7,8,6.0)][(8,7,6.0)][(4,0,7.0)][(5,0,8.0)][(6,0,9.0)][(7,1,9.0)]
		[(6,1,8.0)][(5,1,7.0)][(4,1,6.0)][(3,1,5.0)][(3,2,4.0)][(3,3,3.0)][(3,4,2.0)][(4,4,3.0)][(4,3,4.0)][(5,4,4.0)]
		[(4,2,5.0)][(6,4,5.0)][(6,5,4.0)][(7,5,5.0)][(7,6,4.0)][(7,7,5.0)][(6,7,4.0)][(5,7,3.0)][(4,7,2.0)][(3,7,1.0)]

Performance of Greedy Best First Search

- ☐ Resembles DFS in that it follows a single path until it hits a dead end (and backs up ... false starts).
- Optimal? NO
 - Can get stuck going down an incorrect path.
- □ Complete? NO (in theory)
 - Can get stuck going down an infinite path.
- \Box Time Complexity? $O(b^m)$
 - Worst case: must expand all nodes for a tree of depth m.
- □ Space Complexity? O(b^m)
 - Worst case: must maintain all nodes for a tree of depth m (since it back-tracks and jumps around* in the search tree).
- \square However, like DFS, in the best case (with a good h(n)) it can be efficient.

A* Search

- \square Uniform cost search orders the queue according to the **path cost** g(n).
 - Optimal, complete, but inefficient in time and space.
- \Box Greedy best first search orders the queue using the **heuristic cost** h(n).
 - Not optimal, not complete (in theory) but efficient and directed (with good heuristic ... what makes a good heuristic?).
- Idea behind A^* is to combine the two strategies; Use an evaluation function f(n) = g(n) + h(n) to order the nodes to be explored.
 - f(n) measures the cheapest total estimated cost from the initial state to the goal state passing through the current state n.*
- The resulting search is both optimal and complete assuming certain conditions on the heuristic cost h(n).
 - Since we are goal oriented, we find that, in practice, the time and space complexity is reduced (but not necessarily).

Issues In Using f(n) = g(n)+h(n) [Case 1]

- When expanding a new node, we need to consider queue management.
- Case 1: new node, n, expanded is not currently in the open or closed queue.
 - This is the only/first path found to node n.
 - Compute g(n), h(n) and f(n) and insert node n into the open queue.

Issues In Using f(n) = g(n)+h(n) [Case 2]

- When expanding a new node, we need to consider queue management.
- CASE 2: expanded node already in open queue.
 - We must have found a new path to node n.
 - It might be possible that g(new_path) < g(old_path). Of course, h(n) is the same.</p>
 - This means we have a better overall path going through node n, so we replace the entry on the open queue with the new path if it is better.

Issues In Using f(n) = g(n)+h(n) [Case 3]

- When expanding a new node, we need to consider queue management.
- CASE 3: expanded node already in closed queue.
 - We must have found a new path to node n.
 - It might be possible that g(new_path) < g(old_path). Of course, h(n) is the same.</p>
 - If g(new_path) < g(old_path) need to reconsider node n by moving it from the closed queue to the open queue.
- Will also need to reconsider children of node n too but they will get reconsidered when node n is revisited.

Pseudo-code for A* Search

```
open queue.insert(init state); closed queue.clear();
   while (open queue.size() != 0) {
     curr state = open queue.remove front();
3.
     if (is goal(curr state)) { return success; } // and solution
5.
     closed queue.insert(curr state);
     child = expand(curr state);
6.
     for (i = 1; i <= child.size(); i++) {
7.
8.
       compute h(child[i]);
9.
       compute g(child[i]) = g(curr state) + action cost;
10.
       if (open queue.find(child[i])) {
11.
         if (g(child in open) > g(child[i])) {
12.
           replace child on open;
13. } else ; // discard new path.
14.
     } else if (closed queue.find(child[i])) {
         if (q(Child in closed) > g(child[i])) {
15.
16.
           closed queue.remove(child[i]);
17.
           open queue.enqueue(child[i]);
18.
         } else ; // discard new path.
19.
       } else { open queue.enqueue(Child[i]); } // first visit.
20.
     sort (open queue); // sort using f(n) = g(b) + h(n)
21.
22. }
23. return failure; // no solution found.
```

Illustration of A* Search

6	5	4	3	4	5	6	7	8	9
5	4	3	2	3	4	5	6	7	8
4	3	2	1	2	3	4	5	6	7
3	2	1	0	1			4	5	6
4	3					4	5	6	7
5	4		2	3	4	5	6	7	8
6	5		3	4				8	ഗ
7	6		4	5				9	10
8	7	6	5	6	7	8	တ	10	11
9	8	7	6	7	8	9	10	11	12
1									

Distances to goal h(n)

- \square Consider wanting to find a path from (6,1) to (3,6), but we have obstacles.
- \Box Let h(n) be the manhattan distance from current position (x,y) to the goal.
 - Clearly admissible, since it is the straight path w/o obstacles (more on admissibility later).
- Let g(n) be the distance traveled from initial position to (x,y).
- Solution returned by A^* is: (6,1)->(5,1)->(4,1)->(3,1)->(2,1)->(1,1)->(1,2)->(1,3)->(1,4)->(1,5)->(1,6)->(2,6)->(3,6) which is optimal!

Illustration of A* Search

-	-	•	1	-	•	•	•	-	-
-	1	1	•	•	1	•	1	1	-
-	11	12	-	-	•	-	•	8	-
11	10	11	12	-			8	7	8
10	9					8	9	6	7
9	8		6	5	6	7	8	5	6
8	7		5	4				4	5
7	6		4	3				3	4
6	5	4	3	2	1	0	1	2	3
-	6	5	4	3	2	1	2	3	-

	1								
-	-	-	-	-	-	•	-	-	-
-	•	•	ı	ı	•	•	ı	ı	•
-	3	2	•	•	•	-	•	6	-
3	2	1	0	•			4	5	6
4	3					4	5	6	7
5	4		2	3	4	5	6	7	8
6	5		3	4				8	9
7	6		4	5				9	10
8	7	6	5	6	7	0	9	10	11
-	8	7	6	7	8	9	10	11	-

Distances from initial g(n)

Distances to goal h(n)

- \square Left figure shows g(n); Right figure shows h(n) (only for nodes expanded).
 - Can add values together to determine f(n).

Illustration of A* Search

-	-	-	•	-	-	-	-	-	-
-	•	•	-	•	•	•	-	•	•
-	11	12	-	•	•	•	-	8	•
11	10	11	12	•			8	7	8
10	9					8	9	6	7
9	8		6	5	6	7	8	5	6
8	7		5	4				4	5
7	6		4	3				3	4
6	5	4	3	2	1	0	1	2	3
-	6	5	4	3	2	1	2	3	-

-	-	•	•	•	ı	ı	ı	1	ı
-	-	•	ı	ı	•	•	•	ı	•
-	-	•	•	•	-	•	-	•	-
-	32	33	34	ı			•	31	•
-	30					24	•	29	1
-	28		9	8	16	21	-	27	-
-	26		7	6				25	-
-	23		5	4				22	1
-	19	14	3	2	1	0	11	18	•
-	-	20	15	13	12	10	17	-	-

- Left figure shows nodes expanded and explored and those nodes on the fringe of the search.
- Right figure shows the order (time) at which a square was explored.
- Searches more than greedy best first search, but is optimal.
 - At end of search: open queue has 20 nodes, closed queue has 34 nodes.
 - cf. Greedy search: 17 nodes in open queue, 20 in closed (faster, not optimal result!)

Illustration of A* Search (Compare to breadth first search)

- Can compare to breadth first search (also optimal).
 - Illustration of nodes expanded, explored and on fringe on left, time visited on right.
 - At end of search, open contains 7 nodes, closed contains 69 nodes.
- A* search: returns optimal solution, uses less memory and less time (in this example) compared to breadth first search.

-	13	-	-	-	•	12	11	10	11
13	12	13	•	•	12	11	10	9	10
12	11	12	13	12	11	10	9	8	9
11	10	11	12	•			8	7	8
10	9					8	7	6	7
9	8		6	5	6	7	6	5	6
8	7		5	4				4	5
7	6		4	3				3	4
6	5	4	3	2	1	0	1	2	3
7	6	5	4	3	2	1	2	3	4

-	1	ı	ı	1	-	ı	64	57	65
-	67	•	•	-	•	63	56	51	58
66	60	68	•	-	62	55	50	46	52
59	54	61	69	-			45	40	47
53	49					44	39	33	41
48	43		30	24	31	38	32	25	34
42	37		23	17				19	26
36	29		16	10				12	20
27	21	14	8	4	1	0	3	7	13
35	28	22	15	9	5	2	6	11	18

Illustration of A* Search (Compare to depth first search)

- Can compare to depth first search (not optimal).
 - Illustration of nodes expanded, explored and on fringe on left, time visited on right.
 - At end of search, open contains 29 nodes, closed contains 37 nodes.
 - Returned solution has length 35!
- A* search: returns optimal solution, uses less memory and less time (in this example) compared to depth first search.

-	-	-	-	-	-	14	13	12	11
-	-	-	-	-	-	15	14	11	10
•	35	36	•	-	•	16	15	10	9
35	34	35	36	ı			16	9	8
34	33					18	17	8	7
33	32		22	21	20	19	18	۲	6
32	31		23	22				6	5
31	30		24	23				თ	4
30	29	28	25	24	1	0	1	2	3
-	28	27	26	25	26	1	2	ო	4

-	-	-	-	-	-	-	13	12	11
-	•	•	-	-	•	-	14	•	10
-	•	•	-	-	•	-	15	•	9
-	35	36	37	ı			16	•	8
-	34					1	17	•	7
-	33		-	21	20	19	18	•	6
-	32		-	22				•	5
-	31		•	23				1	4
-	30	29	•	24	•	0	1	2	3
-	-	28	27	25	26	-	-	-	-

Optimality of A* Search - Heuristic Function Admissibility

- \square Optimality depends on h(n).
- □ The heuristic cost h(n) is said to be admissible if it never overestimates the actual cost from node n to the goal.
 - \blacksquare If h(n) never overestimates, then f(n) never overestimates true cost to goal through node n.

Admissibility guarantees optimality! Sketch of proof:

- Let f^* be optimal cost to reach the goal, and G2 be a discovered goal with $f(G2) > f^*$.
- Consider a fringe node n along the path to the optimal solution. If h(n) admissible, then $f(n) = g(n)+h(n) \leftarrow f^*$.
- \square Also, $f(n) \leftarrow f^* \leftarrow f(G2)$.
- \square A* expands lowest cost nodes first, so reaching G2 implies f(G2)<= f(n) and we have a contradiction.
- □ With h(n) admissible, we must expand any node n along the optimal path first, and this includes the optimal goal node itself.
- □ Even without admissibility, we might still get a good search, it just won't necessarily be optimal.

Completeness of A* Search

- \square A* expands nodes with $f(n) < f^*$, and possibly some nodes with $f(n)=f^*$ on the fringe before reaching the goal.
 - Therefore, we will eventually find the goal (complete).
- Two reasons for failure:
 - infinite branching factor,
 - path with finite path cost but infinitely long.

Monotonicity of Heuristic Functions

- Relates to queue management (from Wed.) and the need to re-consider nodes already in the open and closed queue when rediscovered.
- Monotonicity (or consistency) means that for every node n and each of its children, the estimated cost h(n) is never greater than the cost h(child(n)) plus the action of getting to child(n).

$$h(n) \le h(child(n)) + cost(n \rightarrow child(n))$$


```
f(n) = h(n) + g(n)

≤ h( child(n) ) + cost( n → child(n) ) + g(n)

= h( child(n) ) + g( child(n) )

= f( child(n) )
```

- \square So, f(n) never decreases as we approach the goal.
- Monotonicity guarantees that states are always visited by the cheapest path first; no need to check if subsequent paths are better than first.

Visualization of A* Search

- \square Uniform cost expands in "circular" cost contours (h(n) = 0).
- \square A* search elongates and rotates contours towards the goal. More narrow and elongated the better h(n) is.
 - More directed!

Informedness of Heuristic Functions

- One heuristic function might be better than another for a given problem!
- □ Informedness: For two <u>admissible</u> heuristic functions, h1 & h2:
 - if h2(n) >= h1(n), then h2(n) is more informed than h1(n). (alternatively say that h2(n) dominates h1(n)).
 - More informedness implies fewer expanded states (as in previous slide).

Informedness of Heuristic Functions

- A* will consider all nodes with $f(n) < f^*$, and possibly some on the contour of $f(n) = f^*$ before finding the goal state.
- Since h2(n) >= h1(n), nodes expanded by h2(n) will be expanded by h1(n). The opposite is not true
- \square => not all nodes expanded by h1(n) will be expanded by h2(n).*
- \square => h2(n) will expand fewer nodes!

Can also think of it as follows:

- \square Assume n expanded by h2(n) but not h1(n) ... implies that f2(n) < f1(n).
- □ But, f2(n) = h2(n)+g(n) and f1(n) = h1(n) + g(n) ... implies that $f2(n) \ge f1(n)$ since $h2(n) \ge h1(n)$.
 - → contradiction*
- Always best to pick h(n) large (but admissible).

Creation of Heuristic Functions

- □ How to choose a heuristic function for a problem?
 - Sometimes obvious, other times not due to constraints of the problem.

Can invent a heuristic function using a problem relaxation.

- □ Leave out constraints and get an easier problem.
- Solution to original problem solves relaxation, but not visa-versa.*
- □ Admissible heuristic function for relaxation is admissible for original.
 - Solution to original problem solves the relaxed problem.
 - => solution must be at least as expensive and the relaxed solution.*
 - => h(n) for relaxed problem is <= cost in original problem.</p>
- □ Can also have different heuristics and always choose the best one:

$$h(n) = \max\{h_1(n), h_2(n), \dots, h_m(n)\}\$$

Example of Heuristic Functions

- Consider the 8-puzzle and a verbal description of a move:
 - "Tile can move from location A to location B if A,B are adjacent and B is blank.

Consider several relaxations of this verbal description:

- "I'm confused"
 - \Rightarrow h1(n) = 0 (BFS)
- "Tile can move from location A to location B"
 - \Rightarrow h2(n) = number of tiles out of place.
- "Tile can move from location A to location B if A,B adjacent"
 - \Rightarrow h3(n) = sum of distance of tiles from goal locations.
- Note: h1(n) <= h2(n) <= h3(n) <= h*(n).
 - $h1(init_state) = 0.$
 - h2(init_state) = 1+1+1+1+1+1+1=8
 - h3(init state) = 2+3+3+2+3+1+1+1=16

Iterative Deepening A* Search

- \square A* Search can still generate a lot of nodes (won't consider exact complexity).
- ☐ Iterative Deepening A* (IDA*):
 - Use iterative deepening (each iteration is limited DFS), but use f(n) costs rather than depth to limit search.
 - Examines all nodes within a certain cost contour using DFS.
 - If no solution, increase cost cutoff to the next smallest f(n), where b is a node on the fringe.
- \square Complete and optimal like A^* , but memory requirements of DFS.
- Can perform poorly if small action costs (small steps each iteration).

Game playing

- One of the earliest AI problems tackled as games seemed to require intelligence.
 - At least 4 attempts at chess alone by 1950 (Zuse, Shannon, Wiener & Turing)
 - Computers better than humans at checkers, Othello.
- Games are (usually) well defined; e.g.,
 - Board games have well-defined board configurations.
 - Legal movements are well-defined.
- Games definitely require heuristics; usually too hard to solve such problems using an exhaustive approach

E.g., chess:

- □ Well defined: 8x8 board, pieces move in specific ways.
- ☐ Has an average branching factor of ~35,
- □ Average game lasts for ~50 moves per player,
- ☐ Implies a search tree with **35**¹⁰⁰ nodes!

Adversarial search

- Regular search heuristics are not appropriate for games due to involvement of an opponent (adversary).
 - We don't have control over all of the movements (e.g., in a two-player game, we only have control over half of the moves)
 - Can't really search for an "optimal solution"
- ☐ E.g. chess:
 - Goal is any state with checkmate
 - Don't know which of these states (if any) we will reach, since we don't know what moves the other player will make.
- Opponent introduces concept of uncertainty.
 - We need to make assumptions about behavior of opponent; better able to predict their movements and reach goal state.
 - Normally, assume "perfect play" behavior.

Types of games

- □ Will focus on games that can be solved with search concepts.
- Such games can be categorized:
 - Whether or not chance can affect the outcome of actions,
 - Whether or not all state information is available to all players.

	deterministic	chance		
perfect information	chess, checkers, go, othello	backgammon, monopoly		
imperfect information	battleship	poker, scabble		

Two player strategy games

- Will consider two player games in which players (i) make alternating sequences of discrete moves (turn based) and (ii) each player wants to win ("I win, you lose").
- □ Will consider games that are (i) deterministic (no chance involved), (ii) have perfect information (fully observable) and (iii) have well-defined rules and goals.
- □ Can decide upon a move by making a "game tree":
 - Root of tree is the current game configuration;
 - Other nodes are game configurations reached via a sequence of moves by each player;
 - Each level is associated with one of the two players.
- We will refer to each level of the tree as a "ply";
 - A "ply" corresponds to a "half-move" (move by one player),
 - For most two-player games with alternating moves, a "full move" corresponds to two plies (levels) in the game tree.

Game tree for tic-tac-toe

Minimax search

- Talked about game trees, but haven't talked about the searching of game trees and/or the selection of a move! Use minimax algorithm
- Call one player MAX and the other player MIN; MAX is the player making the current move (at the root of the tree).
- Use a **PAYOFF FUNCTION** (UTILITY FUNCTION) that assigns a numerical value to each leaf node in the game tree. The payoff function should be:
 - From the point of view of MAX.
 - Be larger for better game configurations for MAX.
 - ☐ I.e., MAX wants to maximize payoff, MIN wants to minimize payoff.
- □ Note that the payoff function might be simple (+1 win/0 draw/-1 lose), but could be more complex
 - ** goal states such as win/draw/lose might not appear at the leaves of the tree, depending on number of plies; only appear at terminal states.

Game tree for tic-tac-toe (players/payoffs labeled)

NOTE: leaves are not at the same level

Minimax search

- ☐ In deciding upon the move to make, we assume:
 - MAX wants the payoff function to be as large as possible,
 - MIN wants the payoff function to be as small as possible.
- □ We make the assumption that each player plays perfectly; i.e., in their own best interest at each step of the algorithm.
- Minimax algorithm:
 - Generate game tree to some number of plies,
 - Compute payoffs at leaf nodes,
 - Propagate payoffs up the tree toward the root (done differently at each level);
 - ☐ MAX nodes choose child with maximum value;
 - ☐ MIN nodes choose child with minimum value:
 - At root, MAX chooses a move to make.

Minimax example (full game tree)

- ☐ Game of NIM; 7 matches placed in a pile; each player divides a pile of matches into 2 non-empty piles with a different number of matches. Player who cannot make a move is the loser.
- □ Let payoff be +1 (MAX WIN) or -1 (MAX LOSE).
- □ Values at each node n represents the best value of the best terminal state the current player (MAX or MIN) can hope to achieve.
- Turns out here that all first moves for MAX are bad!

Minimax example (partial game tree)

- □ Tree not deep enough for leaves to indicate win/lose; only "goodness" of game configuration (for MAX).
- MAX would like to get to game configuration D, but MIN would not allow it.
- MAX will choose to go to game configuration B.
- Again, minimax assumes MIN plays perfectly using the same payoff function as MAX (i.e., plays optimally from the same point of view as MAX).

Problems with minimax

- ☐ Minimax effectively uses only depth limiting (e.g., a limited number of plies).
- Large branching factors will cause minimax to be very inefficient; can't search too deep in a given amount of time.
- □ Need to introduce the concept of pruning; Want a modified algorithm that
 - 1. Returns the exact same result as minimax (for given number of plies), but
 - 2. Does not need to search as much of the game tree (faster).
- ☐ I.e., we want the same decision, but with less work.
- The ability to search a tree with a given number of plies faster means we can actually go deeper!
- ☐ Modification of minimax to use pruning is called alpha-beta pruning.

Pruning illustrated

- Prune at F after exploring G; F has payoff >= 9 (MAX); there exists a MIN ancestor with payoff <= 8; hence, MIN would prevent us from ever getting to F.</p>
- Prune at H after exploring I; H has payoff <= 2 (MIN); there exists a MAX ancestor with payoff >= 8; hence, MAX would prevent us from ever getting to H.

Alpha-beta pruning

- \square The algorithm maintains two values α and β .
 - Both computed using payoffs propagated up the tree.
 - The α represents the <u>minimum score</u> that the <u>maximizing player</u> is assured of at any point during the search.
 - The β represents the <u>maximum score</u> that the <u>minimizing player</u> is assured of at any point during the search.
- lacktriangle As the search of the game tree progresses the "window" of values decreases.
 - Fewer possible values for α and β .
- □ Whenever β becomes less than or equal to α (β ≤ α)
 - Current game configuration cannot be the result of the best play by both players and does not need to be explored further.
 - More later ...

Alpha-beta pruning

Pseudo-code; called as evaluate (root, -infinity, +infinity)

```
evaluate (node, alpha, beta)
   if node is a LEAF
       return the PAYOFF value of node
   if node is a MIN node
       beta = +inf
       for each child of node
           beta = min (beta, evaluate (child, alpha, beta))
           if beta <= alpha break
       return beta
   if node is a MAX node
       alpha = -inf
       for each child of node
           alpha = max (alpha, evaluate (child, alpha, beta))
           if beta <= alpha break
       return alpha
```

Alpha-beta pruning

- ☐ For MAX nodes,
 - lacksquare eta passed down equals best decision \forall MIN node ancestors (fixed)
 - lacktriangleq lpha calculated represents the best choice at the current node (variable)
 - Prune if $\alpha \ge \beta$
 - ⇒ ∃ MIN node ancestor that would prevent reaching this MAX node (MIN has a better choice somewhere else).
- ☐ For MIN nodes,
 - lacktriangleq lpha passed down equals best decision \forall MAX node ancestors (fixed)
 - \blacksquare β calculated represents the best choice at the current node (variable)
 - Prune if $\beta \le \alpha$
 - ⇒ ∃ MAX node ancestor that would prevent reaching this MIN node (MAX can get a higher payoff somewhere else, so why would it choose this node?).

Pruning illustrated with (alpha,beta) values

Games of chance

- ☐ Game of chance is anything with a random factor; e.g., dice, cards, etc.
- Can extend the minimax method to handle games of chance.
 - This results in an expectiminimax tree.
- ☐ In an expectiminimax tree, levels of max and min nodes are **interleaved** with "chance" nodes.
- Rather than taking the max or min of the payoff values of their children, chance nodes take a weighted average (expected value) of their children.
 - Weights are the probability that the chance node is reached.
 - Each chance node gets an "expectiminimax value".

Game tree with chance nodes

- ☐ Assume max have several possible moves.
- Before min decides, there is some element of chance involved (e.g., dice rolled; each outcome with some probability).
 - Chance nodes are added and the outgoing edges labeled with the probabilities.
- Same applies to max nodes further down the tree; i.e.,
 - For each move for min, there are chance nodes added before decisions for max.
- Tree can become large very fast!

Example of expectiminimax values

- Example below shows calculation of weighted expected values at chance nodes.
- Demonstrates potential problem when payoff function values are skewed;
 - Resulting values at chance nodes are an average (mean);
 - Large skewing in payoff values can cause MAX to make the wrong decision.

