Impact of the Availability of Chat-GPT on Software Development

Alexander Quispe^{1,2} Rodrigo Grijalba¹

¹Pontificia Universidad Católica del Perú, Departamento de Economía

²Banco Mundial

December 1, 2023

Table of Contents

Introduction Hypothesis

Literature Review

Potential of ChatGPT in Software Development

Tests of ChatGPT's Capabilities

ChatGPT's Impact on Software Development

Data

Methodology

Results

Main Results

Estimmation Trends and Weights

Introduction

- Utility of LLMs in software development: models can be trained with sample text that contains code.
- LLMs then can generate responses to programming-related queries through patterns found in sample text.
- Most important example: Chat-GPT, which became the fastest application to reach 100 million users earlier this year.¹
- Research question: How important has Chat-GPT been for software development? In our case, specifically: what has been the impact of Chat-GPT availability on the number of pushes to GitHub?

¹Reuters, 2023

Hypothesis

- Chat-GPT can assist in the problem-solving and implementation of solutions for software development. This would make an individual developer faster/more productive at constructing the code for the project they're working on
- On the other hand, access to Chat-GPT was restricted in several countries.²
- Therefor, we would expect to see larger growth in pushes in countries that had access to Chat-GPT, compared to those who did not.

Potential of ChatGPT in Software Development

Abu Jaber, Beganovic & Abd Almisreb (2023):

- Potential applications of ChatGPT in software development: troubleshooting, bug repair, optimizing programs and numerical algorithms, inclusion as integrated controller in Generalized Intelligence.
- Creation of software solutions and architectures through evaluation of multiple responses and a dialogical process
- Importance of Prompt Engineering in using ChatGPT for software architectural design.

Potential of ChatGPT in Software Development (cont.)

Rahmaniar (2023)

- Potential productivity gains in SD through programming assistance, training, code review, and client interaction
- ChatGPT's natural language processing, generative capacity, dialogical interactivity, and Open Source contributions.
- Potential downsides: code incompleteness, security vulnerabilities, malware creation, ethical implications related to inherent biases.
- Possible future improvements: enhanced performance and real-time code optimization.

Tests of ChatGPT's Capabilities

Ahmad, Waseem, Liang, Fehmideh, Aktar & Mikkonen (2023)

- Test on human-bot collaboration for outlining software architecture, starting with an architecture story describing software conditions.
- A novice software architect engages in a dialogical process with the chatbot to analyze, synthesize, and evaluate potential architectural solutions.

Sobania, Hanna, Briesch & Petke (2023)

- Test of ChatGPT's code repair capabilities with QuickBugs database: ChatGPT's performance comparable to specialized LLMs and better than a standard, NN-based Automated Repair Program (about 50%).
- Dialogue queries for clarification increase success rate to 78%.
- Potential training sample bias may be a limitation (Zhang, et al.; 2023).

Tests of ChatGPT's Capabilities (cont.)

Zhang, Zhang, Zhai, Fang, Yu, Sun & Chen (2023)

- Assessment of ChatGPT's code repair capabilities using a new database, EvalGPTFix, created from programming contest problems on AtCode to address potential training sample biases.
- With simple prompt: 109 out of 151 programs repaired
- Total with modified prompts that target specifics about each problem: 143 out of 151 programs repaired

ChatGPT's Impact on Software Development

Gallea (2023)

- Contrasts the Stack Overflow pages for Python and R: Python is more popular and got more training material for ChatGPT, while ChatGPT showed less efficiency in answering R-related queries.
- Findings suggest a decrease in quantity, increase in quality (average score), and a decrease in the proportion of resolved questions for Python compared to R.

Saguu & Ante (2023)

- Study on returns of artificial intelligence-related crypto-assets using daily price data from Coingecko and CoinMarketCap; launch of ChatGPT marks the start of the post-treatment period.
- DiD and SDID methods: launch of ChatGPT positively impacted the return of Al-related assets, compared to non-Al related assets.

ChatGPT's Impact on Software Development (cont.)

Demirci, Hannane & Xinrong (2023)

- Study of the influence of ChatGPT on demand for freelance services by assigning an Al exposure index to each service type and using the Google Search Volume Index for adjustment.
- DiD method: negative impact of ChatGPT on service postings in areas with high AI exposure, as compared to low-exposure areas.

Del Rio-Chanona, Laurentsyeva & Wachs (2023)

- Impact evaluation of ChatGPT on question and answer platforms: Stack Overflow vs. math-focused Math Exchange and Stack Overflow's Russian and Chinese analogues, where ChatGPT access is restricted.
- DiD: decrease in the weekly number of posts, questions, and weekday posts on Stack Overflow compared to the other platforms.

ChatGPT's Impact on Software Development (cont.)

Kreitmeir & Raschky (2023)

- Analysis on the productivity impact in software development using daily frequency user-level data from GitHub, comparing Italy where ChatGPT is banned with France and Austria.
- Impact on usage of Tor browser; Tor sistem can be used to bypass bans.
- DiD: significant negative impact on the probability of Italian users releasing new software each day, suggesting lower productivity as a result of the ban. No overall impact on Tor usage

Data

- Quarterly panel data on GitHub pushes per country taken from GitHub's Innovation Graph Initiative repository.³. This data spans 178 countries and 13 quarters (2020-Q1 - 2023-Q1)
- Data on ChatGPT availability from OpenAl's documentation (see footnote 3).
- We define the target variable as the number of pushes per 100 000 inhabitants in each country. We consider the start of the treatment to be Q4 of 2022

³GitHub, 2023

Methodology

We are looking to ascertain the existence and magnitude of causal effects of ChatGPT availability on volume of pushes to GitHub, and the data provide us a control and a treatment group of aggregate (country)-level measurements. Therefor, we consider the following causal inference methods:

- Difference in Differences (DiD): Simple implementation and interpretation, although it relies on the Parallel Trends Assumption (PTA) for the data, which can be hard to argue in favor of.
- Synthetic Control (SC): Formalizes the argument for the PTA, which reduces bias in estimation.
- Synthetic Difference in Differences (SDID): Adds a difference in the intercept as well as weights for pre-treatment periods for a more robust estimation.

Main Results

	Coef.	s.e.	Z	Prob < z	95% C.I.
DID	849.9***	139.06	6.11	0.00	[577.34, 1122.45]
SC	405.92	501.68	0.81	0.42	[-578, 1390]
SDID	568.7***	138.69	4.1	0.00	[296.88, 840.52]

Note: * p < 0.1; ** p < 0.05; *** p < 0.01. Standard errors calculated through 100 bootstrap replications.

Table: Model results

Estimated Trends

Figure: Estimated Trends

Estimated Weights

Figure: Estimated Weights