FalR overview

- F.a.I.R. ~ Finite Amplitude Impulse-Response model
- A simple, Python-based climate model which is idealized enough to run in a few seconds on your laptop but can also be used to explore interesting climate behaviour!
- General idea is, specify some input emissions, and the model gives you GHG concentrations, effective radiative forcing and temperature change. ©

- We're going to try and use this model to explore:
 - The different responses of climate to greenhouse gases and aerosols
 - ...and the role of feedbacks and uncertainty in the historical response.

FaIR schematic

Emissions

(CO2, methane, aerosols, CFCs etc)

Concentrations

- For some well-mixed GHGs, it's possible to relate their concentrations to radiative forcing using simple, semi-empirical relationships.
- For aerosols, it's much more complicated(*) and few closed analytical expressions exist.
 - *Question: Why could this be? What's different about aerosols?

$$\mathcal{F}_{SO_2}(t) = -\alpha \left[SO_2\right]_t - \beta \ln \left(\frac{\left[SO_2\right]_{ant}}{\left[SO_2\right]_{nat}} + 1\right)$$

Effective Radiative Forcing

$$\mathcal{F}_{\text{CO}_2}(t) = \frac{\mathcal{F}_{2\text{xCO}_2}}{\ln(2)} \ln\left(\frac{[\text{CO}_2]_t}{[\text{CO}_2]_{\text{PI}}}\right)$$

$$\mathcal{F}_{\mathrm{CH}_4}(t) \sim \sqrt{[\mathrm{CH}_4]_t - [\mathrm{CH}_4]_{\mathrm{PI}}}$$

$$\mathcal{F}_{\mathrm{N_2O}}(t) \sim \sqrt{[\mathrm{N_2O}]_t - [\mathrm{N_2O}]_{\mathrm{PI}}}$$

Radiative forcing of Aerosol Radiation Interactions

Radiative forcing of Aerosol Cloud Interactions

Cloud Albedo Effect (Twomey 1977, 1991)

Albedo susceptibility of clouds for range of albedos and cloud droplet numbers

Radiative forcing of Aerosol Cloud Interactions

(Stevens et al., J.Clim., 2015; note numerous strong assumptions)

From Radiative Forcing --> Temperature

• **FaIR** uses a *two-layer* "energy balance model" to represent the combined atmosphere-ocean system and its response to forcing.

(Geoffroy et al., J.Clim, 2013)

Aims:

- Next, we're going to fire up the FaIR model and use it to investigate
 - The response of climate to CO₂ emissions
 - How this differs when we instead consider anthropogenic aerosol.
 - How these two forcings, coupled with climate feedbacks, give us the historical temperature record we observe!