SMART IRRIGATION

Project Guide: Sreerekha V. K.

Submitted by: THEERTHA T.

MCA S4

TVE20MCA-2055

CONTENTS

- Introduction
- Literature Review
- Existing System
- Proposed System
- Components
- Architecture
- Circuit Diagram
- Working
- References

INTRODUCTION

- Water irrigation system based on Internet of Things (IoT).
- Irrigate the farmland in an efficient manner with automated irrigation System based on soil moisture.
- Operates by monitoring the value on soil moisture sensor and based on the reading, motor is kept ON or OFF.
- Node MCU transports the data to the digital platform of the server for processing of the data. Then those data are sent to the mobile application of the user.
- User-friendly experience with the help of mobile application.

LITERATURE REVIEW

YEAR	NAME OF THE PAPER	AUTHOR	DESCRIPTION	LIMITATIONS
2019	Automatic Plant Watering System	M. Mayuree P. Aishwarya A. Bagubali	User will be notified to switch ON/OFF the motor	User should be alert every time to OFF the motor.
2020	Water irrigation using IoT	J. Karpagam I. I. Merlin P. Bavithra J. Kousalya	Pump get ON and OFF automatically	no customized settings, expensive
2021	IoT Enabled Smart Farming and Irrigation System	M. Rohith R. Sainivedhana N. Sabiyath Fatima	switch on the motor to water the plants automatically	user cannot interfere with the process

EXISTING SYSTEM

- In existing system, we require manual supervision and labour for proper irrigation.
- As per the paper "An IoT Based Smart Irrigation System," 2021, existing system consist of a motor that pumps water automatically based on the value of sensor.
- No user intervention
- Expensive
- No customized settings

PROPOSED SYSTEM

- In the proposed system, the watering process is automated which reduces manual work.
- Various parameters of the plant and soil such as temperature, humidity and moisture are sensed with the help of sensors and is displayed in the mobile application.
- When there is a decrease in any of these sensed values, it sends a signal to the user and the user can turn ON the motor by a simple click on mobile phone.

ARCHITECTURE

COMPONENTS

1. ESP32

2. Soil moisture sensor

3. Water pump

4. Jumper wire

CIRCUIT DIAGRAM

FLOW CHART

SCREENSHOT

WHEN SOIL IS DRY

WHEN SOIL IS WET

TIMELINE

- Till 12/05/2022, completed soil moisture sensing.
- Till 1/06/2022, completed working of motor.
- Till 7/06/2022, completed working of motor based on the value of sensor.
- Till **14/07/2022**, completed WiFi connection.

- By 20/07/2022, water plants based on the sensing value.
- By 25/07/2022, create android application for customizing settings.
- By 30/07/2022, working of motor based on android app.
- By 8/08/2022, completion of project.

CONCLUSION

□ Smart irrigation is a water irrigation system using IoT.
□ Here a sensor is placed on the soil to sense the moisture.
□ If the sensed value is lesser than the threshold value, alert is sent to the user.
□ And there by, User turns ON the motor.
□ When the sensed value is greater than the threshold value, motor gets OFF automatically.

REFERENCES

- M. Rohith, R. Sainivedhana and N. Sabiyath Fatima, "IoT Enabled Smart Farming and Irrigation System," 2021 5th International Conference on Intelligent Computing and Control Systems (ICICCS), 2021, pp. 434-439, doi: 10.1109/ICICCS51141.2021.9432085.
- M. Mayuree, P. Aishwarya and A. Bagubali, "Automatic Plant Watering System," 2019 International Conference on Vision Towards Emerging Trends in Communication and Networking (ViTECoN), 2019, pp. 1-3, doi: 10.1109/ViTECoN.2019.8899452.
- J. Karpagam, I. I. Merlin, P. Bavithra and J. Kousalya, "Smart Irrigation System Using IoT," 2020 6th International Conference on Advanced Computing and Communication Systems (ICACCS), 2020, pp. 1292-1295, doi: 10.1109/ICACCS48705.2020.9074201.

THANK YOU