Ti_4O_7 의 전자상래에 대한 제 1 원리적연구

리문혁, 김경일

이산화티탄(TiO₂)은 빛촉매, 빛전지, 전자공학을 비롯하여 여러 분야에서 널리 리용된다.[1] 가장 대표적인 응용은 물을 산소와 수소로 분해하는 반응에 대한 빛촉매작용이다.[2] 그러나 TiO₂에 대하여 실험적으로 측정한 금지띠값은 금홍석형에서는 3.0eV, 예추석형에서는 3.2eV로서 넓은 범위의 태양빛을 효과적으로 리용할수 없다.

보임빛대역에 대한 빛흡수률을 높이기 위하여 금지띠폭을 줄여야 한다. 산소결핍형 이산화티란(아산화티란 Ti_nO_{2n-x})을 리용하면 금지띠폭을 줄일수 있다. 여기서 n=2인 경우는 강옥형, n>2인 경우는 마그넬리형으로 구분한다. 이 물질들은 금지띠폭이 작은것으로 하여 보임빛대역의 빛을 잘 흡수하는 우점이 있는 반면에 재결합확률이 크고 가전자띠와 전도띠의 에네르기준위가 물의 산화환원전위와 잘 맞지 않는 결함을 가지고있다. 물분해효률을 높이기 위하여 아산화티란에 여러가지 혼입물을 첨가하는 방법들이 제기되고있는데 그중에서 질소혼입형아산화티란을 제일 많이 리용하고있다. 그 리유는 질소원자와 산소원자의 크기가 비슷하고 이온화에네르기가 작으며 안정화시키는 역할을 하기때문이다.

우리는 n=4인 경우 즉 Ti_4O_7 구조와 질소가 혼입된 $Ti_4O_5N_2$ 구조에 대하여 가전자띠로 부터 전도띠에로의 전자이행과정에 대하여 미시론적으로 밝혔다.

론문에서는 Quantum Espresso(version 6.1)[3]를 리용하여 모든 계산을 진행하였다. 계산에서는 교환-상관밀도범함수로서 GGA의 PBE를 리용하였다. Ti의 3d궤도에 대한 U값을 5.44eV(0.4Ry)로 설정하였으며 스핀분극을 고려하지 않았다.

우선 에네르기띠구조계산을 진행하였다. 여기서 비점유궤도수를 20개로, k점경로를 $G \rightarrow F \rightarrow O \rightarrow Z \rightarrow G$ 로 설정하였다.

그림 1에 Ti₄O₇결정과 Ti₄O₅N₂결정의 에네르기띠구조를 보여주었다.

그림 1. 에네르기띠구조 기) Ti₄O₇결정, L) Ti₄O₅N₂결정

그림 1에서 보는바와 같이 Ti_4O_7 결정에서는 금지띠폭이 0.839eV이며 $Ti_4O_5N_2$ 결정에서는 금지띠폭이 1.972eV이다. 이것은 TiO_2 과는 달리 질소를 첨가하는 경우에 금지띠폭이 더 넓어진다는것을 의미한다.

이것을 밝히기 위하여 Ti_4O_7 결정과 $Ti_4O_5N_2$ 결정의 부분상태밀도(PDOS)해석을 진행하였다.(그림 2)

그림 2. 부분상태밀도(PDOS)

ㄱ) Ti_4O_7 결정, ㄴ) $Ti_4O_5N_2$ 결정, 1-3은 각각 전체 상태밀도, p, d궤도에서의 상태밀도에 해당됨

그림 2에서 보는바와 같이 Ti_4O_7 결정에서 페르미준위의 량쪽에서는 Ti의 3d궤도가 기본을 이루며 $Ti_4O_5N_2$ 결정에서 페르미준위의 왼쪽에서는 N의 2p궤도가, 오른쪽에서는 Ti의 3d궤도가 기본을 이룬다. 이것은 전자이행이 Ti_4O_7 결정에서는 Ti의 3d궤도로부터 Ti의 3d궤도에로 일어나며 $Ti_4O_5N_2$ 결정에서는 N의 2p궤도로부터 Ti의 3d궤도에로 일어난다는것을 보여준다.

이것을 보다 구체적으로 리해하기 위하여 Ti_4O_7 결정과 $Ti_4O_5N_2$ 결정에서 가전자띠와 전도띠의 전자분포를 보기로 하자.

그림 3에 Ti₄O₇결정에서 가전자띠와 전도띠에서의 전자분포를 보여주었다.

가전자띠에서의 전자분포는 Ti(I)형에, 전도띠에서의 전자분포는 Ti(II)형에 집중되여있으며 따라서 전자이행은 Ti(I)→Ti(II)에서 일어난다고 볼수 있다.

그림 3. Ti₄O₇결정에서 가전자띠와 전도띠에서의 전자분포

그림 4에 Ti₄O₅N₂결정에서 가전자띠와 전도띠에서의 전자분포를 보여주었다.

그림 4. Ti₄O₅N₂결정에서 가전자띠와 전도띠에서의 전자분포

전도띠에서의 전자분포는 Ti_4O_7 에서와 같이 Ti(II)형에 집중되여있지만 가전자띠에서의 전자분포는 N원자들에 집중되여있다. 이것은 전자이행이 $N \rightarrow Ti(II)$ 에서 일어난다는것을 의미한다.

맺 는 말

- 1) TiO₂에서와는 달리 Ti₄O₇에서는 질소를 첨가하면 금지띠폭이 넓어진다.
- 2) Ti₄O₇에서 전자이행은 Ti의 3d궤도로부터 Ti의 3d궤도에로 일어난다.
- 3) $Ti_4O_5N_2$ 에서 전자이행은 N의 2p궤도로부터 Ti의 3d궤도에로 일어난다.

참고문 헌

- [1] K. Nakata et al.; Electrochim. Acta, 84, 103, 2012.
- [2] S. S. Mao et al.; Nature Photonics, 7, 944, 2013.
- [3] P. Giannozzi et al.; J. Phys: Condens. Matter, 21, 399502, 2009.

주체108(2019)년 6월 5일 원고접수

Ab Initio Study of the Electronic Structure of Ti₄O₇

Ri Mun Hyok, Kim Kyong Il

By using ab initio method, we obtained the band structure, PDOS(partial density of states) and the distribution of electrons in valence and conduction bands of Ti_4O_7 and $Ti_4O_5N_2$ structures, which shows that for Ti_4O_7 , electronic transition occurs between 3d orbitals of Ti atoms, and for $Ti_4O_5N_2$, between 2p orbital of N atom and 3d orbital of Ti atom.

Key words: Ti₄O₇, ab initio, band gap