Experimental Design on a Budget for Sparse Linear Models and Applications

Sathya N. Ravi * Vamsi K. Ithapu * Sterling C. Johnson ‡ Vikas Singh †,*

* Computer Sciences † Biostatistics and Medical Informatics † William S Middleton Memorial VA Hospital

University of Wisconsin Madison

June 20, 2016

Observe: (x, s_t)

Observe: (x, s_t) (x, s_{t+1})

Observe:
$$(x, s_t)$$

$$(x, s_{t+1})$$

$$\bullet \ y = s_{t+1} - s_t$$

Observe:
$$(x, s_t)$$

$$(x, s_{t+1})$$

•
$$y = s_{t+1} - s_t$$

• Assume $f: x \to y$.

Observe:
$$(x, s_t)$$

$$(x,s_{t+1})$$

- $y = s_{t+1} s_t$
- Assume $f: x \to y$. Specific examples of x, y?

Examples of Covariates x:

Imaging

Examples of Covariates x:

Imaging

Genetics

Examples of Covariates x:

Genetics

Metabolomics

Examples of Covariates x:

Imaging

Genetics

Metabolomics

Examples of Covariates x:

Examples of Response y : Clinical Dementia Rating (CDR), Alzheimer's

Examples of Response **y** : Clinical Dementia Rating (CDR), Alzheimer's Disease Assessment Score (ADAS) etc..

Financial implications

Financial implications

500 patients with cost $$150/\text{visit} = $150 \times 500 = 75000 .

Financial implications

300 patients with cost $$150/\text{visit} = $150 \times 300 = 45000 .

Savings=\$30000.

• Active Learning approaches

NOT allowed to get y_i 's on a cost to know basis.

• Active Learning approaches

- Active Learning approaches
- Variational approaches

Active Learning approaches
 Variational approaches

Compute integrals, not scalable to high dimensions/large data setting.

- Active Learning approaches
- Variational approaches
- Sensing Matrix

- Active Learning approaches
- Variational approaches
- Sensing Matrix

Covariate data agnostic, not applicable here.

- Active Learning approaches
- Variational approaches
- Sensing Matrix
- Experimental Design

Active Learning approaches
 Variational approaches
 Sensing Matrix
 Experimental Design

Well studied when f is linear. Often solved using Convex Optimization.

Example in 2–D: Choose 4 points

Example in 2-D: Choose 4 points

Origin is not useful.

Example in 2-D: Choose 4 points

Example in 2-D: Choose 4 points

D–Optimal Design

$$\min_{S \subseteq N} \log \det \left(\sum_{i \in S} x_i x_i^T \right)^{-1} \quad \text{s.t.} \quad |S| \le B$$

D–Optimal Design

D-Optimal Design

D–Optimal Design

D-Optimal Design

• A—Optimal: Replace log det by trace and so on. log det is just a placeholder.

4日 → 4日 → 4 目 → 4 目 → 9 Q ○

MINLO Formulation

$$\min_{\mu_i \in \{0,1\}} \log \det \left(\sum_{i \in S} \mu_i x_i x_i^T \right)^{-1} \quad \text{s.t.} \quad \mathbf{1}^T \mu \leq B$$

Convex Formulation

$$\min_{\mu_i \in [0,1]} \log \det \left(\sum_{i \in \mathcal{S}} \mu_i x_i x_i^T \right)^{-1} \quad \text{s.t.} \quad \mathbf{1}^T \mu \leq B$$

Convex Formulation

Convex Formulation

$$\min_{\mu_i \in [0,1]} \log \det \left(\sum_{i \in \mathcal{S}} \mu_i x_i x_i^T \right)^{-1} \quad \text{s.t.} \quad c^T \mu \leq B$$

Goal: Extend to f sparse linear

Sparse *f*: Feature Selection

Look at constrained formulations

Look at constrained formulations

$$\min_{\mu \in [0,1]^n} \log \det \left(\sum_{i=1}^n \mu_i x_i x_i^T \right)^{-1} + \lambda R_{\Gamma}(\Gamma_{\mu}) \quad \text{s.t.} \quad c^T \mu \leq B$$

11 / 22

11 / 22

$$\min_{\mu \in [0,1]^n} \log \det \left(\sum_{i=1}^n \mu_i x_i x_i^T \right)^{-1} + \lambda R_{\Gamma}(\Gamma_{\mu}) \quad \text{s.t.} \quad c^T \mu \leq B$$

- Γ denotes the set of eigenvectors of the full set.
- *R* measures the distance between the eigenvectors of the full and the selected subset.
- Explicitly...

$$\min_{\mu \in [0,1]^n} \log \det \left(\sum_{i=1}^n \mu_i x_i x_i^T \right)^{-1} + \lambda R_{\Gamma}(\Gamma_{\mu}) \quad \text{s.t.} \quad c^T \mu \leq B$$

- Γ denotes the set of eigenvectors of the full set.
- *R* measures the distance between the eigenvectors of the full and the selected subset.
- Explicitly...

$$\min_{\mu \in [0,1]^n} \log \det \left(\sum_{i=1}^n \mu_i x_i x_i^T \right)^{-1} + \lambda R_{\Gamma}(\Gamma_{\mu}) \quad \text{s.t.} \quad c^T \mu \leq B$$

- Γ denotes the set of eigenvectors of the full set.
- *R* measures the distance between the eigenvectors of the full and the selected subset.
- Explicitly...

ED–Spectral (ED–S) with the top eigenvector γ

$$\min_{\mu, u} \log \det \left(\sum_{i=1}^{n} \mu_{i} x_{i} x_{i}^{T} \right)^{-1} + \lambda ||\gamma - u||_{2}^{2} + u^{T} \left(\sum_{i=1}^{n} \mu_{i} x_{i} x_{i}^{T} \right)^{-1} u$$
s.t. $0 < \mu < 1$, $c^{T} \mu < B$, $||u||_{2}^{2} = 1$

ED–Spectral (ED–S) with the top eigenvector γ

Quadratic over linear

$$\min_{\mu,u} \log \det \left(\sum_{i=1}^n \mu_i x_i x_i^T \right)^{-1} + \lambda ||\gamma - u||_2^2 + u^T \left(\sum_{i=1}^n \mu_i x_i x_i^T \right)^{-1} u$$

s.t.
$$0 \le \mu \le 1$$
, $c^T \mu \le B$, $||u||_2^2 = 1$

ED–Spectral (ED–S) with the top eigenvector γ

ED-S More generally

$$\min_{\mu,U} \log \det \left(\sum_{i=1}^{n} \mu_i x_i x_i^T \right)^{-1} + \sum_{j=1}^{k} \lambda_j ||\gamma_j - u_j||_2^2 + \operatorname{tr} \left(U^T \left(\sum_{i=1}^{n} \mu_i x_i x_i^T \right)^{-1} U \right)$$
s.t. $0 \le \mu \le 1$, $c^T \mu \le B$, $U^T U = I$

ED-S More generally

Convex Optimization with Orthogonality Constraints

$$\min_{\mu,U} \log \det \left(\sum_{i=1}^{n} \mu_i x_i x_i^T \right)^{-1} + \sum_{j=1}^{k} \lambda_j ||\gamma_j - u_j||_2^2 + \operatorname{tr} \left(U^T \left(\sum_{i=1}^{n} \mu_i x_i x_i^T \right)^{-1} U \right)$$

ED-S Algorithm

Alternating Minimization or Batch Coordinate Descent Algorithm

$$\min_{\mu,U} \log \det \left(\sum_{i=1}^{n} \mu_i x_i x_i^T \right)^{-1} + \sum_{j=1}^{k} \lambda_j ||\gamma_j - u_j||_2^2 + \operatorname{tr} \left(U^T \left(\sum_{i=1}^{n} \mu_i x_i x_i^T \right)^{-1} U \right)$$
s.t. $0 \le \mu \le 1$, $c^T \mu \le B$, $U^T U = I$

- (i) Fix U, update μ
- (ii) Fix μ , update U

◆□▶◆□▶◆壹▶◆壹▶ 壹 り<</p>

June 20, 2016

13 / 22

Synopsis

Practical implications

• Formulated geometric intuition into a well studied optimization problem.

Synopsis

Practical implications

• Formulated geometric intuition into a well studied optimization problem.

• # Decision variables increased to pk + n

Synopsis

Practical implications

- Formulated geometric intuition into a well studied optimization problem.
- # Decision variables increased to pk + n
- Still nonconvex! Can we do better?

Restricted Isometry Property (RIP)

Definition

Let $X \in \mathbb{R}^{n \times p}$. For $s \geq 0$, the s-restricted isometry constant δ_s of X is the smallest nonnegative number δ such that

 $(1-\delta)||\beta||_2 \le ||X\beta||_2 \le (1+\delta)||\beta||_2$ for all s-sparse β , i.e., $||\beta||_0 \le s$. If $\delta_s < 1$, then X is a s-restricted isometry (s-RIP).

Restricted Isometry Property (RIP)

Definition

Let $X \in \mathbb{R}^{n \times p}$. For $s \ge 0$, the s-restricted isometry constant δ_s of X is the smallest nonnegative number δ such that

 $(1-\delta)||\beta||_2 \le ||X\beta||_2 \le (1+\delta)||\beta||_2$ for all s-sparse β , i.e., $||\beta||_0 \le s$. If $\delta_s < 1$, then X is a s-restricted isometry (s-RIP).

Theorem (Candes et al.)

Suppose X has 4s-RIP constant $\delta_{4s} \leq \frac{1}{4}$. Let $\beta_0 \in \arg\min_{\beta}\{||\beta||_0 : X\beta = y\}$ and $\beta_1 \in \arg\min_{\beta}\{||\beta||_1 : X\beta = y\}$. If $||\beta_0||_0 \leq s$, then $\beta_1 = \beta_0$.

Restricted Isometry Property (RIP)

Definition

Let $X \in \mathbb{R}^{n \times p}$. For $s \ge 0$, the s-restricted isometry constant δ_s of X is the smallest nonnegative number δ such that

 $(1-\delta)||\beta||_2 \le ||X\beta||_2 \le (1+\delta)||\beta||_2$ for all s-sparse β , i.e., $||\beta||_0 \le s$. If $\delta_s < 1$, then X is a s-restricted isometry (s-RIP).

Theorem (Candes et al.)

Checking RIP is NP Hard! (Bandeira et al.)

Suppose X has 4s RIP constant $\delta_{4s} \leq \frac{1}{4}$. Let $\beta_0 \in \arg\min_{\beta}\{||\beta||_0 : X\beta = y\}$ and $\beta_1 \in \arg\min_{\beta}\{||\beta||_1 : X\beta = y\}$. If $||\beta_0||_0 \leq s$, then $\beta_1 = \beta_0$.

Relax, RIP is only sufficient

"Certainly, the RIP is not the only property of a design (sensing) matrix X which allows to obtain good error bounds for ℓ_1 —recovery of sparse signals"—Nemirovski

Relax, RIP is only sufficient

"Certainly, the RIP is not the only property of a design (sensing) matrix X which allows to obtain good error bounds for ℓ_1 —recovery of sparse signals"—Nemirovski

Coherence:

$$\max_{i=1,\dots,n} \operatorname{diag}\left(X\left(X^{T}X\right)^{-1}X^{T}\right)$$

ED-Incoherent (ED-I)

$$\begin{aligned} \min_{\mu} \log \det \left(\sum_{i=1}^{n} \mu_{i} x_{i} x_{i}^{T} \right)^{-1} + \lambda \max_{i} \left(\mu_{i} e_{i}^{T} X \left(\sum_{i=1}^{n} \mu_{i} x_{i} x_{i}^{T} \right)^{-1} X^{T} e_{i} \right) \\ \text{s.t. } \mu \in \{0,1\}^{n}, \quad c^{T} \mu \leq B \end{aligned}$$

$$\min_{\mu} \log \det \left(\sum_{i=1}^{n} \mu_i x_i x_i^T \right)^{-1} + \lambda \max_{i} \left(\mu_i^2 e_i^T X \left(\sum_{i=1}^{n} \mu_i x_i x_i^T \right)^{-1} X^T e_i \right)$$
s.t. $\mu \in \{0, 1\}^n, \quad c^T \mu \leq B$

Set
$$\mu_i e_i^T X = z_i$$

$$\min_{\mu} \log \det \left(\sum_{i=1}^{n} \mu_{i} x_{i} x_{i}^{T} \right)^{-1} + \lambda \max_{i} \left(z_{i}^{T} \left(\sum_{i=1}^{n} \mu_{i} x_{i} x_{i}^{T} \right)^{-1} z_{i} \right)$$
s.t. $\mu \in \{0,1\}^{n}, \quad c^{T} \mu \leq B$

Quadratic over linear

$$\min_{\mu} \log \det \left(\sum_{i=1}^{n} \mu_{i} x_{i} x_{i}^{T} \right)^{-1} + \lambda \max_{i} \left(z_{i}^{T} \left(\sum_{i=1}^{n} \mu_{i} x_{i} x_{i}^{T} \right)^{-1} z_{i} \right)$$
s.t. $\mu \in [0, 1]^{n}, \quad c^{T} \mu \leq B, \quad \mu_{i} e_{i}^{T} X = z_{i} \ \forall \ i = 1, ..., n$

Relax

$$\begin{aligned} \min_{\mu} \log \det \left(\sum_{i=1}^{n} \mu_{i} x_{i} x_{i}^{T} \right)^{-1} + \lambda \max_{i} \left(\mu_{i}^{2} e_{i}^{T} X \left(\sum_{i=1}^{n} \mu_{i} x_{i} x_{i}^{T} \right)^{-1} X^{T} e_{i} \right) \\ \text{s.t. } \mu \in [0, 1]^{n}, \quad c^{T} \mu \leq B \end{aligned}$$

Convex Optimization Problem with no extra variables!

ED-I Coordinate Descent Algorithm

$$\begin{aligned} \min_{\mu} \log \det \left(\sum_{i=1}^{n} \mu_{i} x_{i} x_{i}^{T} \right)^{-1} + \lambda \max_{i} \left(\mu_{i}^{2} e_{i}^{T} X \left(\sum_{i=1}^{n} \mu_{i} x_{i} x_{i}^{T} \right)^{-1} X^{T} e_{i} \right) \\ \text{s.t. } \mu \in [0,1]^{n}, \quad c^{T} \mu \leq B \end{aligned}$$

```
for t=1,2,...,T do for k=1,2,...,n do Pick i\in\{0,...,n\}, \mu_i\leftarrow\mu_i-\eta\nabla_{\mu_i}f end for Project \mu end for Output: \mu^*
```

< ロト < 個 ト < 重 ト < 重 ト 三 重 ・ の Q ()

Is Pipage Rounding scheme applicable?

- For any feasible μ , need a vector ν , $\delta, \tau>0$ s.t. $\mu+\delta\nu$ or $\mu-\tau\nu$ is more integral.
- f must be convex in the direction ν .
- Need μ s.t. $f(\mu) \leq \kappa \cdot \text{opt}$

Is Pipage Rounding scheme applicable?

- For any feasible μ , need a vector ν , $\delta, \tau>0$ s.t. $\mu+\delta\nu$ or $\mu-\tau\nu$ is more integral.
- f must be convex in the direction ν .
- Need μ s.t. $f(\mu) \leq \kappa \cdot \text{opt } \checkmark$

Is Pipage Rounding scheme applicable?

- For any feasible μ , need a vector ν , $\delta, \tau > 0$ s.t. $\mu + \delta \nu$ or $\mu \tau \nu$ is more integral.
- f must be convex in the direction ν .
- Need μ s.t. $f(\mu) \leq \kappa \cdot \text{opt } \checkmark$

Choose $e_{i_f} - e_{j_f}$

Is Pipage Rounding scheme applicable?

- For any feasible μ , need a vector ν , $\delta, \tau>0$ s.t. $\mu+\delta\nu$ or $\mu-\tau\nu$ is more integral. \checkmark
- f must be convex in the direction ν . \checkmark
- Need μ s.t. $f(\mu) \leq \kappa \cdot \text{opt } \checkmark$

Efficiently implementable/Derive approximation ratios. \checkmark

Experiments

Evaluations setup

- Evaluate the consistency of both the models: Do ED-I and ED-S agree?
- Sensitivity analysis with respect to the budget
- Error in feature selection with respect to the full dataset.

Experiments

Evaluations setup

- Evaluate the consistency of both the models: Do ED-I and ED-S agree?
- Sensitivity analysis with respect to the budget.
- Error in feature selection with respect to the full dataset.

Experiments

Evaluations setup

- Evaluate the consistency of both the models: Do ED-I and ED-S agree?
- Sensitivity analysis with respect to the budget.
- Error in feature selection with respect to the full dataset.

Experiments

Evaluations setup

- Evaluate the consistency of both the models: Do ED-I and ED-S agree?
- Sensitivity analysis with respect to the budget.
- Error in feature selection with respect to the full dataset.

Need f to be sparse linear

Experiments

Evaluations setup

- Evaluate the consistency of both the models: Do ED-I and ED-S agree?
- Sensitivity analysis with respect to the budget.
- Error in feature selection with respect to the full dataset.

Need f to be sparse linear – use standard datasets.

prostate

x: cancer volume, prostate weight, age, Gleason score etc.

y: prostate specific antigen

n:97

prostate

Sensitivity with Budgets

20 / 22

Sensitivity with Budgets

prostate

Sensitivity with Budgets

prostate

Sensitivity with Budgets

20 / 22

Similar results on lars dataset

prostate

Feature selection errors

20 / 22

But first...

- ullet Classical non-nested hypothesis testing (like F,χ^2) are not applicable. Have to use goodness of fit measures.
- Full dataset might not be the *ground truth*. Have to use change in goodness of fit measures.

But first...

- ullet Classical non-nested hypothesis testing (like F,χ^2) are not applicable. Have to use goodness of fit measures.
- Full dataset might not be the *ground truth*. Have to use change in goodness of fit measures.

But first...

- \bullet Classical non-nested hypothesis testing (like $F,\chi^2)$ are not applicable. Have to use goodness of fit measures.
- Full dataset might not be the *ground truth*. Have to use change in goodness of fit measures.

- Proposed algorithmically efficient formulations for Experimental Design for Sparse Linear Model which are effective practically as well.
- Future direction: Theory for adaptive statistical power calculations using this framework.

The end...

Thank you! Questions?

Code is publicly available at https://github.com/sravi-uwmadison/Exp_design_sparse. See you at the poster session (today 3 pm - 7 pm)!

We are supported by NIH R01 AG040396 (VS), NSF CAREER RI 1252725, NIH R01 AG027161 (SCJ), NSF CCF 1320755, UW ADRC (P50 AG033514) and UW CPCP (U54 AI117924).

←□▶◆□▶◆臺▶◆臺▶ 臺 ∽Q҈

June 20, 2016

22 / 22