Курс «От хранения данных к управлению информацией» (ISM), версия 3. Модуль 11: «Сеть хранения данных FC over Ethernet (FCoE)»

Обзор модуля

Описание	Этот модуль знакомит слушателей с компонентами сети хранения данных FCoE, а также возможностью подключения, функциональностями конвергентной расширенной сети Ethernet и архитектурой FCoE.
Аудитория	Заказчики, партнеры, сотрудники ЕМС и отраслевые специалисты (включая студентов)
Цели	По окончании этого модуля вы должны уметь:

Урок 1. Обзор сети хранения данных FCoE

В этом уроке рассматриваются следующие темы:

- Компоненты сети хранения данных FCoE
- Возможность подключения к сети хранения данных FCoE
- VLAN и VSAN в FCоE
- Типы портов FCoE

Что такое сеть хранения данных FCoE?

- Сеть хранения данных, которая транспортирует данные FC в обычном трафике Ethernet с помощью конвергентной расширенной сети Ethernet (CEE)
- Использует протокол FCoE, который инкапсулирует пакеты FC в пакеты Ethernet
- Обеспечивает передачу трафика FC over Ethernet без потерь

Факторы, обуславливающие переход на сеть хранения данных FCoE

- Для передачи трафика между вычислительными системами и системой хранения Fibre Channel используются компоненты многофункциональной сети
 - Упрощает управление несколькими дискретными сетями
 - Уменьшает количество сетевых адаптеров, кабелей и коммутаторов, необходимых для центра обработки данных
 - Снижает потребление энергии и пространства в центре обработки данных

Компоненты сети хранения данных FCoE

- Сетевые адаптеры
 - Примеры: конвергентный сетевой адаптер (CNA) и программный адаптер FCoE
- Кабели
 - Примеры: медные и волоконнооптические кабеля
- Коммутатор FCoE

CNA и программный адаптер FCoE

CNA

- Физический адаптер, обеспечивающий функциональность сетевой карты и НВА-адаптера FC
- Инкапсулирует пакеты FC в пакеты Ethernet и перенаправляет их через каналы CEE
- Содержит отдельные модули для 10 GE, FC и микросхемы ASIC FCoE
- Программный адаптер FCoE
 - Размещаемое в ОС или на гипервизоре программное обеспечение, которое обрабатывает FCoE
 - Поддерживаемые сетевые карты передают трафик FCoE и постоянный трафик Ethernet

Коммутатор FCoE

- Предоставляет функциональность коммутаторов Ethernet и FC
- Состоит из FCF, моста Ethernet и портов для возможности подключения FC и Ethernet
 - Такие функции FCF, как мост связи между сетями CEE и FC
 - Обрабатывает запросы на вход FCoE, применяет разделение на зоны и предоставляет службы фабрики
 - Инкапсулирует и декапсулирует пакеты FC
- Перенаправляет пакеты на основе Ethertype

Возможность подключения сети хранения данных FCoE

FCoE с существующей сетью хранения данных Fibre Channel

- Коммутаторы FCoE взаимно подключают содержащую вычислительные системы сеть CEE и содержащую системы хранения сеть хранения данных Fibre Channel
 - Подходит для среды с существующей сетью хранения данных Fibre Channel

Возможность подключения сети хранения данных FCoE

Сквозной FCoE

- Коммутаторы FCoE соединяют вычислительные системы FCoE и системы хранения FCoE
 - Подходит для новых развертываний FCoE

VLAN и VSAN в FCoE

- VLAN и VSAN могут работать в FCoE с существующей средой SAN FC
- Коммутатор FCoE поддерживает установку соответствия между VSAN и VLAN
- Выделенная VLAN настраивается для каждой VSAN
- Сети VLAN, настроенные для сетей VSAN, не должны переносить постоянный трафик локальной сети

Типы портов в FCoE

Урок 1. Резюме

В этом уроке были рассмотрены следующие темы:

- Компоненты сети хранения данных FCoE
- Возможность подключения к сети хранения данных FCoE
- VLAN и VSAN в FCoE
- Типы портов FCoE

Урок 2. Конвергентная расширенная сеть Ethernet (CEE)

В этом уроке рассматриваются следующие темы:

- Контроль потока на базе приоритетов
- Enhanced Transmission Selection
- Уведомление о перегрузке
- Протокол Data Center Bridging Exchange Protocol

Основные сведения о СЕЕ

- CEE относится к ряду улучшений в отношении традиционной сети Ethernet, чтобы сделать ее устойчивой к потерям и для перемещения разных типов трафика
- СЕЕ обеспечивает передачу данных FC по сети Ethernet без потерь
 - Предотвращает сброс пакетов из-за перегруженности
- СЕЕ требуются следующие функциональности:
 - Контроль потока на основе приоритетов (PFC)
 - Enhanced Transmission Selection (ETS)
 - Уведомление о перегрузке (CN)
 - Протокол Data Center Bridging Exchange Protocol (DCBX)

Контроль потока на базе приоритетов (PFC)

- Создает восемь виртуальных каналов на одном физическом канале
- Использует возможность PAUSE Ethernet для каждого виртуального канала
 - Виртуальный канал можно отдельно приостановить и перезапустить
 - Механизм PAUSE основан на пользовательских приоритетах или классах обслуживания

Enhanced Transmission Selection (ETS)

- Распределяет полосу пропускания в разные классы трафика (трафик локальной сети, сети хранения данных и межпроцессорной связи (IPC))
- Предоставляет доступную полосу пропускания для других классов трафика, если какой-то из классов трафика не использует выделенную полосу пропускания

Уведомление о перегрузке (CN)

- Предоставляет механизм для обнаружения перегруженности сети и уведомления источника
 - Активирует коммутатор для отправки сигнала другим портам, которые должны прекратить или замедлить передачу данных

Протокол Data Center Bridging Exchange Protocol (DCBX)

- Активирует устройства СЕЕ для передачи и настройки функций с другими устройствами СЕЕ в сети
 - Позволяет коммутатору распределять значения конфигурации по подключенным сетевым адаптерам
- Обеспечивает единообразную конфигурацию для всей сети

Урок 2. Резюме

В этом уроке были рассмотрены следующие темы:

- Контроль потока на базе приоритетов
- Enhanced Transmission Selection
- Уведомление о перегрузке
- Протокол Data Center Bridging Exchange Protocol

Урок 3. Архитектура FCoE

В этом уроке рассматриваются следующие темы:

- Структура пакетов FCoE
- Установка соответствия с пакетами FCoE
- Обработка FCoE
- Адресация FCoE
- Перенаправление пакетов FCoE

Структура пакетов FCoE

Установка соответствия с пакетами FCoE

Обработка FCoE

- Обработка FCoE включает в себя три ключевых этапа:
 - Этап обнаружения
 - FCF обнаруживают друг друга и формируют фабрику FCoE
 - Узлы FCoE находят доступные FCF для входа
 - Узлы FCoE и FCF обнаруживают потенциальные сопряжения портов VN_Port и VF_Port
 - Этап входа
 - Создаются виртуальные каналы FC порты VN_Port и VF_Port, порты VE_Port и VE_Port
 - Порт VN_Port выполняет вход в FC и получает адрес FC
 - Порт VN_Port получает уникальный MAC-адрес
 - Этап передачи данных
 - Порты VN Port передают обычные пакеты FC (инкапсулированные) через сеть CEE

Протокол FCoE Initialization Protocol (FIP)

- FIP используется для обнаружения FCF и установки виртуальных каналов связи между узлами FCoE и коммутаторами FCoE
- Пакеты FIP не транспортируют данные FC, но содержат параметры обнаружения и входа
- Обнаружение и вход используют следующие операции FIP
 - Узел FCoE выполняет групповую рассылку пакета Требования FIP, чтобы определить FCF, доступные для входа
 - Каждый FCF в ответ отправляет узлу FCoE одноадресный пакет Объявления FIP
 - Узел FCoE отправляет запрос FIP FLOGI соответствующему FCF
 - FCF отправляет Прием FIP FLOGI, содержащий адреса FC и MAC для порта VN_Port

Адресация FCoE

- Сеть хранения данных FCoE использует MAC-адрес для перенаправления пакетов
 - MAC-адреса привязаны к портам VN_Port, VF_Port и VE_Port
- Порты VF_Port и VE_Port получают MAC-адреса от коммутатора FCoE
- FCoE поддерживает два типа адресации для портов VN_Port:
 - МАС-адрес, полученный от сервера (SPMA) и МАС-адрес, полученный от фабрики (FPMA)

SPMA

- Вычислительные системы предоставляют MAC-адреса связанным портам VN_Port согласно стандартам Ethernet
- МАС-адреса могут быть встроенные или настраиваемые администраторами

FPMA

- Коммутаторы FCoE предоставляют MACадреса портам VN_Port динамически во время входа узла
- MAC-адрес имеет две части: 24-битный FC-MAP и 24-битный FC адрес

Перенаправление пакета FCoE

 Чтобы перенаправить пакет, узел должен знать МАС-адрес порта коммутатора FCoE и адрес FC порта узла назначения

Урок 3. Резюме

В этом уроке были рассмотрены следующие темы:

- Структура пакетов FCoE
- Установка соответствия с пакетами FCoE
- Обработка FCoE
- Адресация FCoE
- Перенаправление пакетов FCoE

Модуль 11. Резюме

В этом модуле были рассмотрены следующие ключевые вопросы:

- Компоненты сети хранения данных FCoE и возможность подключения
- Функциональности конвергентной расширенной сети Ethernet
- Архитектура FCoE

