Objective - Classify the people who survived after breast cancer surgery.

```
In [118]: import numpy as np
  import pandas as pd
  import matplotlib.pyplot as plt
  import seaborn as sns
```

```
In [119]: #import the dataset
dt = pd.read_csv("habermans-survival-data-set\haberman.csv")
dt.columns = ["AGE","OP_YEAR","AXIL_NODES","SURVIVAL_STATUS"]
dt.head()
```

Out[119]:

		AGE	OP_YEAR	AXIL_NODES	SURVIVAL_STATUS
()	30	62	3	1
•		30	65	0	1
2	2	31	59	2	1
(3	31	65	4	1
4	1	33	58	10	1

Observation:

- 1. The dataset contains 305 records and 4 columns.
- 2. Out of 4 columns, 3 columns(AGE,OP_YEAR and AXIL_NODES) are input variables and 1 (SURVIVAL STATUS) class variable.
- 3. The dataset contains 224 data points which belongs to Class 1 and 81 data points belongs to Class 2.
- The dataset is an imbalance dataset.

In [122]: dt.describe()

Out[122]:

	AGE	OP_YEAR	AXIL_NODES	SURVIVAL_STATUS
count	305.000000	305.000000	305.000000	305.000000
mean	52.531148	62.849180	4.036066	1.265574
std	10.744024	3.254078	7.199370	0.442364
min	30.000000	58.000000	0.000000	1.000000
25%	44.000000	60.000000	0.000000	1.000000
50%	52.000000	63.000000	1.000000	1.000000
75%	61.000000	66.000000	4.000000	2.000000
max	83.000000	69.000000	52.000000	2.000000

Observation

- 1. The dataset doesn't contains any NULL value.
- 2. We are getting the mean, standard deviation and quantiles for all the input variables.
- 3. Age of patient ranges from 30 to 83.
- 4. Positive axillary nodes ranges from 0 to 52.
- 5. 25% of patients are having 0 positive axillary nodes. Even though maximum no. of positive axillary is 52 but 75% of patients are having less than equal to 4 axillary nodes.

Univariate Analysis

1. AGE

```
In [124]: f, (ax_box,ax_hist) = plt.subplots(2)
    sns.set_style("whitegrid")
    sns.set(rc={'figure.figsize':(15,8.27)})
    sns.boxplot(dt["AGE"],ax = ax_box)
    sns.distplot(dt["AGE"],ax = ax_hist)
    plt.show()
```

C:\ProgramData\Anaconda3\lib\site-packages\matplotlib\axes_axes.py:6462: Use rWarning: The 'normed' kwarg is deprecated, and has been replaced by the 'den sity' kwarg.

warnings.warn("The 'normed' kwarg is deprecated, and has been "

Observation:

- 1. The AGE column data is normally distributed.
- 2. There are no outliers in the AGE column.
- 3.Mean is equal to Median for AGE column.

2. OP_YEAR

```
In [125]: f, (ax_box,ax_hist) = plt.subplots(2)
    sns.set_style("whitegrid")
    sns.set(rc={'figure.figsize':(15,8.27)})
    sns.boxplot(dt["OP_YEAR"],ax = ax_box)
    sns.distplot(dt["OP_YEAR"],ax = ax_hist)
    plt.show()
```

C:\ProgramData\Anaconda3\lib\site-packages\matplotlib\axes_axes.py:6462: Use rWarning: The 'normed' kwarg is deprecated, and has been replaced by the 'den sity' kwarg.

warnings.warn("The 'normed' kwarg is deprecated, and has been "

Observations:

- 1. Mean is almost equal to median.
- 2. No outliers in OP_YEAR column.
- 3. Data is normally distributed.

3. AXIL_NODES

```
In [126]: f, (ax_box,ax_hist) = plt.subplots(2)
    sns.set_style("whitegrid")
    sns.set(rc={'figure.figsize':(15,8.27)})
    sns.boxplot(dt["AXIL_NODES"],ax = ax_box)
    sns.distplot(dt["AXIL_NODES"],ax = ax_hist,bins = 10)
    plt.show()
```

C:\ProgramData\Anaconda3\lib\site-packages\matplotlib\axes_axes.py:6462: Use rWarning: The 'normed' kwarg is deprecated, and has been replaced by the 'den sity' kwarg.

warnings.warn("The 'normed' kwarg is deprecated, and has been "

Observations:

- 1. The column AXIL_NODES data is right skewed.
- 2. Outliers are present in AXIL_NODES columns

Bivariate Analysis

Plotting pair plot.

Out[127]: <seaborn.axisgrid.PairGrid at 0x14c2d5077f0>

Observation:

Here we can clearly see that two classes are linearly inseperable.

Observations:

The above plot shows that all the features are indpendent. There are no corelation between them.

```
In [129]: #Plotting CDF and PDF of the survivors
         Survival = dt[dt['SURVIVAL_STATUS']==1]
         plt.figure(figsize=(15,8))
         sns.set_style("whitegrid")
         for i,attr in enumerate(list(dt.columns)[:-1]):
             plt.subplot(1,3,i+1)
             print("-----",attr,"------
          ----\n")
             counts,bin_edges = np.histogram(Survival[attr],bins=10,density=True)
             print("Bin_Edges:- ",bin_edges)
             print('\n')
             pdf = counts/sum(counts)
             print("PDF:- ",pdf)
             print('\n')
             cdf = np.cumsum(pdf)
             print("CDF:- ",cdf)
             print('\n')
             plt.plot(bin_edges[1:],pdf)
             plt.plot(bin_edges[1:],cdf)
             plt.xlabel(attr)
```

AGE	
Bin_Edges:- [30. 34.7 39.4 44.1 48.8 53.5 58.2 62.9 67.6 72.3 77.]	
PDF:- [0.04910714 0.10714286 0.125 0.09375 0.16517857 0.16517857 0.09375 0.11160714 0.0625 0.02678571]	
CDF:- [0.04910714 0.15625 0.28125 0.375 0.54017857 0.70535714 0.79910714 0.91071429 0.97321429 1.]	
OP_YEAR	
Bin_Edges:- [58. 59.1 60.2 61.3 62.4 63.5 64.6 65.7 66.8 67.9 69.]	
PDF:- [0.1875	
CDF:- [0.1875	
AXIL_NODES	
Bin_Edges:- [0. 4.6 9.2 13.8 18.4 23. 27.6 32.2 36.8 41.4 46.]	
PDF:- [0.83482143 0.08035714 0.02232143 0.02678571 0.01785714 0.00446429 0.00892857 0. 0. 0.00446429]	
CDF:- [0.83482143 0.91517857 0.9375 0.96428571 0.98214286 0.98660714 0.99553571 0.99553571 1.]	

Observations:

Around 83% of the survivors have positive AXIL_NODES less than 5.

In [130]: #Plotting CDF and PDF of the survivors died = dt[dt['SURVIVAL_STATUS']==2] plt.figure(figsize=(15,8)) sns.set_style("whitegrid") for i,attr in enumerate(list(dt.columns)[:-1]): plt.subplot(1,3,i+1) print("-----",attr,"----------\n") counts,bin_edges = np.histogram(Survival[attr],bins=10,density=True) print("Bin_Edges:- ",bin_edges) print('\n') pdf = counts/sum(counts) print("PDF:- ",pdf) print('\n') cdf = np.cumsum(pdf) print("CDF:- ",cdf) print('\n') plt.plot(bin_edges[1:],pdf) plt.plot(bin_edges[1:],cdf) plt.xlabel(attr)

,,,,
AGE
Bin_Edges:- [30. 34.7 39.4 44.1 48.8 53.5 58.2 62.9 67.6 72.3 77.]
PDF:- [0.04910714 0.10714286 0.125 0.09375 0.16517857 0.16517857 0.09375 0.11160714 0.0625 0.02678571]
CDF:- [0.04910714 0.15625 0.28125 0.375 0.54017857 0.70535714 0.79910714 0.91071429 0.97321429 1.]
OP_YEAR
Bin_Edges:- [58. 59.1 60.2 61.3 62.4 63.5 64.6 65.7 66.8 67.9 69.]
PDF:- [0.1875
CDF:- [0.1875
AXIL_NODES
Bin_Edges:- [0. 4.6 9.2 13.8 18.4 23. 27.6 32.2 36.8 41.4 46.]
PDF:- [0.83482143 0.08035714 0.02232143 0.02678571 0.01785714 0.00446429 0.00892857 0. 0. 0.00446429]
CDF:- [0.83482143 0.91517857 0.9375 0.96428571 0.98214286 0.98660714 0.99553571 0.99553571 1.]

Observations:-

Around 97% of those who died were having AXIL NODES less than equal to 26.


```
In [132]: #Calculating 25th,50th and 75th percentile of the survivors and those who died
    w.r.t to axillary nodes
    print(np.percentile(Survival['AXIL_NODES'],(25,50,75)))
    print(np.percentile(died['AXIL_NODES'],(25,50,75)))
```

[0. 0. 3.] [1. 4. 11.]

Observations:

1. Person who survived having AGE between 40 to 43 && OP_YEAR between 65 to 66 and AXIL_NODES between 0 to 4.