

Combining Dynamic and Static Attack Information for Attack Tracing and Event Correlation

Adel Alshamrani, Ankur Chowdhary, Oussama Mjihil, Sowmya Myneni, Dijiang Huang.

Arizona State University

GLOBECOM18

Outline

- Background on APT
- Problem Statement
- Contribution
- Conclusion

What is APT?

- Definition by NIST:*
 - Advanced: attackers are usually well-funded with access to advanced tools and methods.
 - Persistent: attackers are highly determined and persistent and they do not give up.
 - Threats: The threat is usually sensitive data loss or impediment of critical components.

What is APT?

- APT Attack Chain:
 - 1. Reconnaissance
 - Social Engineering
 - 2. Foothold Establishment
 - Malware, Command & Control (C&C)
 - 3. Lateral Movement
 - Penetration, scanning, etc
 - 4. Data Exfiltration
 - Moving data to remote location
 - 5. Cover up
 - Delete traces

- Major limitations can be summarized into:
 - A. APT related issues
 - B. Risk assessment related issues

A. APT related issues

- Parts of APT threats are considered
 - Focus on detecting specific stage
 - » i.e., C&C connections
- Drawback: lacking the *panoramic view* required to understand the whole attack trace.

Limitation in Current State of the Art

- B. Risk assessment related issues
 - 1) Risk assessment on known vulnerabilities
 - 2) Attack graph based limitation

- Monitoring Known Vulnerability Exploitation: Tracking known vulnerabilities and any of their exploitations.
- Early Detection: Understanding the attack intentions and prevent future damage.

Contribution

- To Detect & Mitigate APT attacks, we design a framework that involves three phases:
 - 1. Information Gathering and Coordination
 - 2. Security Risk Assessment
 - 3. Countermeasure Selection

Objective

- Collect evidence from available and valuable data
 - Multiple sources of information
 - Static VS Dynamic
 - Network level VS System level
- Obtain attack evidence and suspicious activities.
- Correlate suspicious activities.
- Draw a conclusion and generate APT-Attack Path.

Static vs Dynamic

• Static data:

- Reveal information about the system.
- Configuration, vulnerabilities, security policies, and so on.
- NOT attack related data.
- Periodically generated, or on ad hoc.

Real-time data (dynamic data):

- Reveal information about security incidents (attack events).
- Vulnerability exploitation, privileges escalation, and so on.
- Attack related data
- Continuously monitored.

Approach Process Flow

Algorithm 1 Real-time APT Tracking

Input: Attack graph Info, Attack events **Output: APT attack scenarios**

Require:

```
1: APTPaths[]
                                     > The maximum value of the Path
2: MaxValPath[]
                                      3: ValPath[]
4: function Maximum Attack Path Value
      for eachPath: APTPaths do
5:
         for each e : Path do
                                         ▷ e : Event or Vulnerability
6:
7:
             MaxValPath_i = MaxValPath_i + e.BS
8:
         end for
9:
      end for
10: end function
11: function REALTIMEATTACKPATHVALUE
12:
       for each event : logFile do
13:
          For all paths containing the event
14:
          ValPath_i = ValPath_i + element.BS
15:
      end for
      Attack - Progress[Path_i] = \frac{ValPath_i}{MaxValPath_i}
16:
17:
      if AttackProgress[Path_i] < threshold then
18:
          RealTimeAttackPathValue <>
19:
      else
20:
          Countermeasure Application < Path_i >
21:
       end if
22: end function
23: function BENEFIT_FUNCTION(vul)
24:
      Distance \leftarrow NbrHop * Complexity
      return Degree*BS
25:
26: end function
27: function CountermeasureApplication(Path)
28:
      for all vul : Path do
29:
          Benefit = benefit\_function < vul >
          ROI = \frac{Bene_I}{CC + CDC}
30:
31:
          \lambda = \max(vul)
32:
      end for
33: end function
```


Base Score

ID	Events	Base
		Score(BS)
1	login from known host using public key authentication	5
2	download malware from remote host	7.9
3	local buffer overflow	6.3
4	remote user shell login	8.3
5	port scanning	5.3
6	ftp_connect	7.1
7	write to ftp home directory	7.9
8	remote user shell login	8.3
9	local buffer overflow	6.3
10	data exfiltration	10

Countermeasure Selection

- **Definition 1: Countermeasure Cost (CC)** is evaluated by the defender based on the countermeasure application and its consequences.
- This involves the cost of the resources:
 - training, skills, personnel, network resources,
- With the aforementioned factors, we consider the cost to range from greater than 0 to 10 (CC \in (0, 10]).

Optimal Countermeasure Selection

- Definition 2: Countermeasure Deployment Complexity (CDC) is the effort required from the defender to apply the countermeasure which depends on the amount of components that are involved in the application of a specific countermeasure.
- With the aforementioned factors, we consider the cost to range from greater than 0 to 10 (CDC \in (0, 10]).

Optimal Countermeasure Selection

No.	Countermeasure	CC	CDC
1	Traffic redirection	6	7
2	Traffic isolation	3	2
3	Block port	4	1
4	Software patch	7	6
5	Network reconfiguration	7	9
6	Service migration	6	8

Conclusion & Future Work

- We proposed three phases:
 - Advanced Persistent Threats.
 - 1. Information Gathering and Coordination
 - 2. Security Risk Assessment
 - 3. Optimal Countermeasure Selection
- In the future work, we plan to collect more system data over long time and perform multiple scenarios of APTs.

