1.22 Let G be a disconnected graph. By Theorem 1.11, \overline{G} is connected. Prove that if u and v are any two vertices of \overline{G} , then $\operatorname{diam}(\overline{G}) \leq 2$.

Proof. Let G be a disconnected graph with vertex set V and let \overline{G} be its complement. We show that for any $u, v \in V$ the distance $d_{\overline{G}}(u, v) \leq 2$, whence $\operatorname{diam}(\overline{G}) \leq 2$.

If u = v then $d_{\overline{G}}(u, v) = 0 \le 2$, so assume $u \ne v$.

There are two cases.

Case 1: u and v lie in different connected components of G. Then u and v are not adjacent in G, so the edge uv belongs to \overline{G} . Hence $d_{\overline{G}}(u,v) = 1 \le 2$.

Case 2: u and v lie in the same connected component of G. Since G is disconnected, there exists a vertex $w \in V$ that lies in a component different from the component containing u (and thus different from the component containing v). Therefore neither uw nor vw is an edge of G, so both uw and vw are edges of \overline{G} . Thus there is a path u-w-v of length 2 in \overline{G} , so $d_{\overline{G}}(u,v) \leq 2$.

In every possible case we have $d_{\overline{G}}(u,v) \leq 2$. Since u and v were arbitrary vertices of \overline{G} , it follows that $\operatorname{diam}(\overline{G}) \leq 2$.

1.24 Determine whether the graphs G_1 and G_2 are bipartite. If a graph is bipartite, then redraw it indicating the partite sets; if not, then give an explanation as to why the graph is not bipartite.

2. G_2 is not bipartite because it contains at least one odd cycle of order 5.

1.33 A diagraph D has vertex set -3, 3, 6, 12 and $i, j \in D$ if $i \neq j$ and j is a multiple of i.

2.4 Give an example of a Graph G of order 6 and size 10 such that $\partial(G)=3$ and $\Delta(G)=4$.

2.6 Prove that if a graph of order $3n \ (n \ge 1)$ has n vertices of each of the degrees

n-1, n, and n+1, then n is even.

Proof. Let G be a graph of order 3n with n vertices of each of the degrees n-1, n, and n+1. By Theorem 2.1, the sum of degrees of a graph is 2m, where m is the size of G. 2m is even, so $3n^2$ must be even. Since 3 is odd, n^2 must be even, and thus n is even.