1-7 Functions

Determine whether each relation is a function. Explain.

25.

Determine whether each relation is a function.

29.
$$y = -8$$

30.
$$x = 15$$

If f(x) = -2x - 3 and $g(x) = x^2 + 5x$, find each value.

$$38.f(0) - 7$$

1-7 Functions

54. **ERROR ANALYSIS** Corazon thinks f(x) and g(x) are representations of the same function. Maggie disagrees. Who is correct? Explain your reasoning.

Х	g(x)
-1	1
0	-1
1	-3
2	-5
3	-7

The equation for f(x) is: f(x) = -2x + 1.

For the table, we can see that as x increases by 1, g(x) decreases by 2, which means the slope of g(x) is -2. But the y-intercept for g(x) is (0, -1), giving g(x) = -2x - 1.

The graph and table are representative of different functions.

1-7 Functions

58. For the function y = 15x - 4, assume the domain is only values of x from 0 to 5. What is the range of the function?

F All values from 15 to 20.

G All values from $\frac{4}{15}$ to $\frac{3}{15}$.

H All values from –4 to 71.

J Two values from –4 to 71.

59. Which statement best describes how to determine when a graph represents a function?

60. Which of the following best describes the relation shown in the graph?

F Domain: $0 \le x \le 6$; Range: $-1 \le y \le 6$; the relation is a function

G Domain: $0 \le x \le 6$; Range: $-1 \le y \le 6$; the relation is a not function

H Domain: $-1 \le x \le 6$; Range: $0 \le y \le 6$; the relation is a function

J Domain: $-1 \le x \le 6$; Range: $0 \le y \le 6$; the relation is a function

