

Boosting

statinfer.com

Contents

- What is boosting
- Boosting algorithm
- Building models using boosting

Boosting

- Boosting is one more famous ensemble method
- Boosting uses a slightly different techniques to that of bagging.
- Boosting is a well proven theory that works really well on many of the machine learning problems like speech recognition
- •If bagging is wisdom of crowds then boosting is wisdom of crowds where each individual is given some weight based on their expertise

Boosting

- Boosting in general decreases the bias error and builds strong predictive models.
- •Boosting is an iterative technique. We adjust the weight of the observation based on the previous classification.
- •If an observation was classified incorrectly, it tries to increase the weight of this observation and vice versa.

Gradient Boosting

Gradient Boosting Algorithm - illustration

Gradient Boosting Algorithm - illustration

X Y		X	Υ	$\hat{\mathcal{Y}}_i$	$e1_i$	
28 310		28	310	300	10	
32 360	Model1	32	360	400	-40	Model2
15 170		15	170	200	-30	
35 400	y = F(x) + e1	35	400	350	50	$y = F(x) + h(x) + e^{x}$
26 286		26	286	300	-14	
28 350		28	350	380	-30	
33 370		33	370	350	20	

X	$e1_i$	$\widehat{e1}_i$	$e2_i$	
28	10	12	-2	
32	-40	-45	5	Model3
15	-30	-32	2	
35	50	45	5	
26	-14	-10	-4	
28	-30	-34	4	
33	20	18	2	

statinfer.com

iterations

- •How many iterations shall we run?
- Too many iterations Overfitting
- Too few iterations Underfitting
- Iterations is a hyperparameter need to be optimal

Gradient Boosting Algorithm - Theory

- Step1: Build model1 on original dataset
 - Data points are $(x_1, y_1), (x_2, y_2), (x_3, y_3) \dots (x_N, y_N)$ and the model for this data is y = F(x).
 - Predicted values by the model are $\hat{y}_i = F(x_i)$
- Step2: Calculate the errors (residuals)
 - Calculate errors for the model
 - $e1_i = y_i \hat{y}_i$; $(y_i = \hat{y}_i + e1_i)$; (y = F(x) + e1)
- Step3: Build a model for errors
 - $(x_1, e1_1), (x_2, e1_2), (x_3, e1_3) \dots (x_N, e1_N)$ and build a model on these residuals. Let this model be h(x)
 - e1 = h(x) + e2.
- Step4: Update final prediction and errors repeat step 2 and 3
 - $\bullet y = F(x) + h(x) + e2$
 - $y = F(x) + \rho * h(x) + e2$ (multiply the predictions from new model with ρ)
 - ullet ρ is Shrinkage or learning rate

Shrinkage / Learning rate (ρ)

$$\bullet y = F(x) + h(x) + e2$$

$$\cdot y = F(x) + \rho * h(x) + e2$$

- • ρ –usually between [0.0001 -0.1]
- Helps us in prolonging the algorithm
- •Why prolonging is important?

With ρ =1

$$y = F(x) + h(x) + e2$$

Model2

X	Y	
28	310	
32	360	Model1
15	170	
35	400	y = F(x) + e1
26	286	
28	350	
33	370	

X	Υ	$\hat{\mathcal{Y}}_i$	$e1_i$	
28	310	300	10	
32	360	400	-40	
15	170	200	-30	
35	400	350	50	
26	286	300	-14	
28	350	380	-30	
33	370	350	20	

X	$e1_i$	$\widehat{e1}_i$	$e2_i$	
28	10	12	-2	
32	-40	-45	5	Model3
15	-30	-32	2	
35	50	45	5	
26	-14	-10	-4	
28	-30	-34	4	
33	20	18	2	

With ρ =0.1

$$y = F(x) + 0.1 * h(x) + e2$$

X	Υ		X	Υ	\hat{y}_i	$e1_i$		X	$e1_i$	$\widehat{e1}_i$	$e2_i$	
28	310		28	310	300	10		28	10	1.2	8.8	
32	360	Model1	32	360	400	-40	Model2	32	-40	-4.5	-35.5	Model3
15	170		15	170	200	-30		15	-30	-3.2	26.8	
35	400	y = F(x) + e1	35	400	350	50		35	50	4.5	45.5	
26	286		26	286	300	-14		26	-14	-1.0	-13	
28	350		28	350	380	-30		28	-30	-3.4	-26.6	
33	370		33	370	350	20		33	20	1.8	18.2	

The need of "Learning -rate"

Iterations	Train Accuracy	Test Accuracy
1	10%	9%
2	15%	15%
3	30%	29%
4	45%	45%
5	65%	64%
6	78 %	77%
7	84%	84%
8	95%	75 %
9	100%	60%

How to stop at 90% train and test accuracy?

With ρ =0.1

Iterations	Train Accuracy	Test Accuracy
10	10%	9 %
20	15%	15%
30	30%	29%
40	45%	45%
50	65%	64%
60	78 %	77%
70	84%	84%
80	95%	75%
90	100%	60%

XGBoost - XGB

XGBoost - XGB

- 1. Extreme Gradient Boosting XGBoost Faster version of GBM
- 2. Both XGBoost and gbm follows the principle of gradient boosting.
- 3. There are however, the difference in modelling & performance details.
- 4. XGBoost used a more regularized model formalization to control over-fitting, which gives it better performance.
- 5. Improved convergence techniques, vector and matrix type data structures for faster results
- 6. Unlike GBM, XGBoost package is available in C++, Python, R, Java, Scala, Julia with same parameters for tuning

XGBoost Advantages

- 1. Developers of XGBoost have made a number of important performance enhancements.
- 2. XGBoost and GBM have big difference in speed and memory utilization
- 3. Code modified for better processor cache utilization which makes it faster.
- Better support for multicore processing which reduces overall training time - You can use GPU

Important Parameters and Tips

- Learning rate
 - Also known as eta and shrinkage
 - Keep it between [0.1-0.001]
- Number of trees
 - Also known as number of estimators or iterations or boosting rounds.
 - Keep it optimal [50-200] depending on the data and learning rate
 - If learning rate is low then number of trees should be high
- Tree depth
 - Max_depth. Keep it low- Try [4-5]

Products Sorting in E-commerce Warehouse

LAB: Boosting

- Otto Group Product Classification Challenge
 https://www.kaggle.com/c/otto-group-product-classification-challenge/overview
- •Ecom products classification. Rightly categorizing the items based on their detailed feature specifications. More than 100 specifications have been collected.
- Data: Ecom_Products_Menu/train.csv
- Build a decision tree model and check the training and testing accuracy
- Build a boosted decision tree.
- Is there any improvement from the earlier decision tree

DT vs GBM vs XGB

- DT Accuracy
- GBM Accuracy
- •GBM Execution time
- XGB Model Accuracy
- XGB Execution time

Thank You

statinfer.com