1. Given the five pairs of (x, y) values,

x:0 1 6 3 5 y:4 3 0 2 1

(a) Find the least squares estimates of slope and intercept, determine the best fitting straight line (use R program).

(b) Test H0: $\beta 1 = 0$ versus H1: $\beta 1 \neq 0$ with $\alpha = 0.05$.

(c) Obtain a 95% confidence interval for the fitted value given x=1.

(d) Calculate R-squared.

2. This is the R output of a linear regression model:

Call:

 $Im(formula = y \sim x)$

Residuals:

Min 1Q Median 3Q Max -2.7252 -1.2076 -0.3564 1.2183 2.8928

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 23.6409 16.4171 1.440 0.1754
x 0.6527 0.2416 2.702 0.0192 *

Signif. codes: 0 "***" 0.001 "**" 0.01 "*" 0.05 "." 0.1 " " 1

Residual standard error: 1.779 on 12 degrees of freedom Multiple R-squared: 0.3782, Adjusted R-squared: 0.3264

F-statistic: 7.3 on 1 and 12 DF, p-value: 0.01924

(a) What are the estimates of β_0 and β_1 ?

(b) Using $\alpha = 0.05$ to test on H₀: $\beta_1 = 0$ vs H₁: $\beta_1 \neq 0$. What is the conclusion?

(c) Compute the sum of squares error and sum of squares total for this model.

confidence level.					