The Impact of Early Childhood Development Interventions on Children's Growth outcomes in Developing Countries: A Systematic Review

Ryan McWay Pallavi Prabhakar[†] Ayo Ellis

[†]Norwegian School of Economics

FAIR Breakfast March 21st 2022

MOTIVATION

- ► SDG goals for child health targeted globally by 2030 (United Nations, 2021)
 - ► SDG 2: Food security (stunting and wasting for children under 5 years of age)
 - ► SDG 3: Promote healthy lives
 - ► SDG 6: Sustainable water and sanitation
- ► Statistics: 22% of children below 5 are stunted and 7% wasted
- ► COVID-19: +9.3 million wasted children, 2.6 million stunted children, 168,000 additional child deaths, \$29.7 billion USD in future productivity losses
- ► Causes: Poverty, food insecurity, unhygienic conditions, inadequate parental care etc.

MOTIVATION

- ► Treatments: Nutritional supplementation, awareness and education, asset/cash, sanitation, deworming etc.
- ► Existing evidence on LMICs: evaluation of sole intervention types- daycare, nutritional supplements etc. (Aboud and Yousafzai, 2015),(Miller et al., 2015))

RESEARCH QUESTIONS

- 1. Which ECD interventions have an impact improving child growth outcomes?
- 2. What are the gaps in the literature?
- 3. What are the policy implications that can be made to achieve the SDG goals by 2030?

RESEARCH QUESTIONS

- 1. Which ECD interventions have an impact improving child growth outcomes?
- 2. What are the gaps in the literature?
- 3. What are the policy implications that can be made to achieve the SDG goals by 2030?

RESEARCH QUESTIONS

- 1. Which ECD interventions have an impact improving child growth outcomes?
- 2. What are the gaps in the literature?
- 3. What are the policy implications that can be made to achieve the SDG goals by 2030?

SEARCH STRATEGY

- ► Follow a standard PRISMA systematic review and meta-analysis method (Page and Moher, 2017)
- ► Board search of both published manuscripts and grey literature
- ▶ Pulled articles from 20 search engines

00	Overview	O ● 000	0	000000	0000000	Rejerences
SEARC	`H STRA'	TEGY				

- ► Search Terms: "early childhood development", "early development", "early child care", "ecd", "health", "nutr*", and "food".
- ▶ Primary Outcomes: Anthropometric Measures (Upper
- ► Secondary Outcomes: Height (cms), Height for Age.
- Exclusion Criteria: (1) not a developing country as of 1999 4 □ > 4 □ > 4 □ > 4 □ > □

SEARCH STRATEGY

- ▶ Search Terms: "early childhood development", "early development", "early child care", "ecd", "health", "nutr*", and "food".
- ▶ Primary Outcomes: Anthropometric Measures (Upper Arm Circumference, Underweight, Stunting, Wasting), Worms Infection, Anemia
- ► Secondary Outcomes: Height (cms), Height for Age, Weight(kgs), Weight for Age, Worms Infection, Head
- Exclusion Criteria: (1) not a developing country as of 1999 (United Nations, 2020), (2) subjects older than 8 years old, (3) publication or intervention prior to the year 2000, (4) another literature review or meta-analysis, (5) not written in English, (6) not an ECD intervention, (7) doesn't measure selected outcome measures, and (8) does not use the RCT method.

SEARCH STRATEGY

- ▶ Search Terms: "early childhood development", "early development", "early child care", "ecd", "health", "nutr*", and "food".
- ► Primary Outcomes: Anthropometric Measures (Upper Arm Circumference, Underweight, Stunting, Wasting), Worms Infection, Anemia
- ► Secondary Outcomes: Height (cms), Height for Age, Weight(kgs), Weight for Age, Worms Infection, Head Circumference
- (United Nations, 2020), (2) subjects older than 8 years old, (3) publication or intervention prior to the year 2000, (4) another literature review or meta-analysis, (5) not written in English, (6) not an ECD intervention, (7) doesn't measure selected outcome measures, and (8) does not use the RCT method.

Data Methodology Results 00000

SEARCH STRATEGY

- ► Search Terms: "early childhood development", "early development", "early child care", "ecd", "health", "nutr*", and "food".
- ▶ Primary Outcomes: Anthropometric Measures (Upper Arm Circumference, Underweight, Stunting, Wasting), Worms Infection, Anemia
- ► Secondary Outcomes: Height (cms), Height for Age, Weight(kgs), Weight for Age, Worms Infection, Head Circumference
- ► Exclusion Criteria: (1) not a developing country as of 1999 (United Nations, 2020), (2) subjects older than 8 years old, (3) publication or intervention prior to the year 2000, (4) another literature review or meta-analysis, (5) not written in English, (6) not an ECD intervention, (7) doesn't measure selected outcome measures, and (8) does not use the RCT method. 4 □ > 4 □ > 4 □ > 4 □ > □

SEARCH PROCESS

ARTICLE SELECTION

- ▶ 41 articles included
- ▶ 22 countries represented
- ▶ Interventions identified: (1) childcare, caregiver or parental education, (2) cash transfers, (3) nutritional supplements,
 - (4) deworming, (5) psycho-social stimulation programs, and
 - (6) water and improved sanitation.

SELECTED ARTICLES

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)
ID	Article	Search Source	Country	Age Range	Program	Interventions	Outcomes	Sample Size	GRADE	Risk of Bias
1	(Behrman and Hoddinott, 2001)*	AgEcon Search	Mexico	1 – 3	PROGRESA	CT	н	693	Moderate	Low
2	(Attanasio et al., 2018)*	EconLit	Colombia	0 - 1	FAMI	CC	HA, S	1,456	Moderate	Low
3	(Levere et al., 2016)*	EconPapers	Nepal	0-2	Attencion a Crisis	NS, CT	HA, WA, UW, S, WT	1,953	High	Unclear
4	(Pickering et al., 2019)	IPA	Kenya	2-2	Integrated WASH and Child Parasite Infections Study	NS, WS	WI	9,077	High	Low
5	(Null et al., 2018)	IPA	Kenya	0-2	Kenya WASH Benefits Study	NS, WS	HC, WA, UW, S, WT	6,583	Moderate	Low
6	(Fink et al., 2017)	IPA	Zambia	0-2	National Food and Nutrition Strategic Plan for Zambia	CC, NS	HA, WA, UW, S	497	Moderate	Low
7	(Ozier, 2018)	IPA	Kenya	8-8	Primary School Deworming Project	DW	H, HA, S	15,158	Moderate	Low
8	(Berry et al., 2017)*	J-PAL	India	3-5	The Mid-day Meal Program & Weekly Iron Folic Acid Program	NS	H, W, WA, UC	1,947	High	Medium
9	(Attanasio et al., 2014)	ProQuest	Colombia	1-2	Independent RCT	NS, PS	H, W	1,231	High	Low
10	(Martinez et al., 2018)	Scopus	Bolivia	1 – 1	Community Child Nutrition Project	CC	A, HC, HA, WA, S	1,513	Moderate	Low
11	(Muhoozi et al., 2017)	Web of Science	Uganda	0.5 - 2	Independent RCT	CC	HC, UC, HA, WA	511	High	Low
12	(Rockers et al., 2016)	Web of Science	Zambia	0.5 - 1	Independent RCT	NS	HA, WA	540	Moderate	Low
13	(Yousafzai et al., 2014)	Snowball	Pakistan	1-2	Lady Health Worker Programme	NS, PS	HA, WA	1,489	High	Low
14	(Fernald et al., 2009)	Snowball	Mexico	8-8	Oportunidades	CT	HA	1,710	Moderate	Low
15	(Attanasio et al., 2015)	Snowball	Colombia	1 – 7	Familias en Accion	CT	UW, S, WT	3,591	High	Low
16	(Powell et al., 2004)	Snowball	Jamaica	0.75 - 2.5	Independent RCT	CC	H, W	139	High	Low
17	(Clasen et al., 2014)	Snowball	India	0 - 4	Total Sanitation Campaign Offshoot	WS	HA, WA	2,952	High	Low
18	(Lin et al., 2018)	Snowball	Bangladesh	2-3	WASH Benefits Bangladesh	NS, WS	WI	5,551	High	Low
19	(Patil et al., 2014)	Snowball	India	1.75 - 5	Total Sanitation Campaign	WS	UC, H, HA, W, WA, S	5,209	Moderate	Low
20	(Pickering et al., 2015)	Snowball	India	0-5	Community-led Total Sanitation	WS	HA, WA, UW, S	2,365	Moderate	Low
21	(Christian et al., 2015)	Snowball	Bangladesh	0.5 - 1.5	JiVitA Project	NS	H, HA, W, WA	5,319	High	Low
22	(lannotti et al., 2013)	Snowball	Haiti	0.5 - 1	Lipid-based Nutrient Supplements Program	NS	HA, WA	589	Moderate	Low
23	(Maleta et al., 2015)	Snowball	Malawi	0.5 - 0.5	Independent RCT	NS	H, HA, W, WA, UW, S, WT	1,932	Moderate	Low
24	(Hess et al., 2015)	Snowball	Burkina Faso	0.75 - 1.5	iLiNS Project	NS	A, H, HA, W, WA, UW, S, WT	3,220	High	Low
25	(Hammer and Spears, 2013)*	Snowball	India	0-5	Total Sanitation Campaign	WS	HA	3,432	High	Low
26	(Kirwan et al., 2010)	Snowball	Nigeria	1-5	Independent RCT	NS	WI	1,228	High	Low
27	(Kandpal et al., 2016)	Snowball	The Philippines	0.5 - 5	Pantawid Program	CT	HA, WA, UW, S	485	High	Low
28	(Gertler, 2004)	Snowball	Mexico	2-4	PROGRESA	CT	A, H, S	2,010	High	Low
29	(Vermeersch and Kremer, 2004)*	Snowball	Kenya	4-6	The Meals Program	NS	HA, WA	1,184	High	Low
30	(Bhandari et al., 2004)	Snowball	India	0-2	The Integrated Child Development Services Scheme	NS	H, W, UW, S	1,025	High	Low
31	(Vazir et al., 2013)	Snowball	India	0.75 - 1.25	The Integrated Child Development Services Programme	CC. NS	W. H	511	High	Low
32	(Penny et al., 2005)	Snowball	Peru	0.5 - 1.5	Growth and Development Monitoring Programme	NS	H, W, S	187	Moderate	Low
33	(Olney et al., 2006)	Snowball	Tanzania	0 - 1	International Nutritio	NS	HA, WA	354	High	Low
34	(Faber et al., 2005)	Snowball	South Africa	0.5 - 1	The Valley Trust	NS	H, HA, W, WA	361	High	Low
35	(Gardner et al., 2005)	Snowball	Jamaica	0.75 - 2.5	Independent RCT	NS	H, HA, W, WA	114	High	Low
36	(Hamadani et al., 2002)	Snowball	Bangladesh	0.5 - 1	Independent RCT	NS	HA, WA	168	High	Medium
37	(Blimpo et al., 2018)*	Snowball	The Gambia	1-2	Baby Friendly Community Initiative	NS	HA, WA	1,228	High	Low
38	(Rahman et al., 2008)	Snowball	Pakistan	0.5 - 1	Thinking Healthy Program	PS	HA. WA	903	High	Law
39	(Bouquen et al., 2013)*	Snowball	Cambodia	3-5	Education Fast Track Initiative Catalytic Fund	CC	HA, WA	1.541	High	Medium

META ANALYSIS

$$\hat{\theta}_{k} = \theta_{k} + \beta D_{k} + \varepsilon_{k} + \zeta_{k} \tag{1}$$

- ► Random Effects Model
- $\blacktriangleright k = \text{Study (Unit of Obs.)}$
- $ightharpoonup heta_k$ = True effect size of study k
- \triangleright $\hat{\theta}_k$ = Observed effect size of study k
- \triangleright D = ECD Intervention
- \triangleright ε_k = Sampling error (study effect size vs true effect size)
- $\triangleright \zeta_k = \text{Covariate heterogeneity}$

ANEMIA

- ► (Gertler, 2004): PROGRESA- Immunization, nutrition intake, cash, health monitoring
- ► (Hess et al., 2015): Small quantity Lipid Based Nutrition supplementation

 Motivation
 Overview
 Data
 Methodology
 Results
 Conclusion
 References

 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○

STUNTING

Motivation References Methodology Results 000000

Underweight

WASTING

UPPER ARM CIRCUMFERENCE

WORMS INFECTIONS

SUMMARY OF FINDINGS

Outcomes	Interventions								
	CC	CT	VX	NS	PS	WS	Overall		
	Primary Outcomes								
Anemia	Ineffective	Effective	Untested	Effective	Untested	Ineffective	Inconclusive		
	(1)	(1)	(0)	(1)	(0)	(1)	(4)		
Stunting	Ineffective	Ineffective	Ineffective	Effective	Untested	Ineffective	Effective		
	(4)	(4)	(1)	(7)	(0)	(2)	(18)		
Underweight	Ineffective	Ineffective	Untested	Effective	Untested	Ineffective	Effective		
	(2)	(3)	(0)	(5)	(0)	(2)	(12)		
Wasting	Ineffective	Ineffective	Untested	Effective	Untested	Ineffective	Effective		
	(2)	(2)	(0)	(3)	(0)	(1)	(8)		
Mid-Upper Arm	Ineffective	Untested	Untested	Ineffective	Untested	Ineffective	Ineffective		
Circumference	(2)	(0)	(0)	(2)	(0)	(2)	(6)		
Worms Infections	Untested	Untested	Untested	Ineffective	Untested	Effective	Effective		
	(0)	(0)	(0)	(3)	(0)	(3)	(6)		
	Secondary Outcomes								
Height	Ineffective	Effective	Effective	Ineffective	Ineffective	Ineffective	Ineffective		
	(2)	(2)	(1)	(10)	(1)	(1)	(17)		
Height for Age	Ineffective	Ineffective	Ineffective	Ineffective	Effective	Ineffective	Effective		
	(6)	(3)	(1)	(14)	(2)	(4)	(30)		
Weight	Ineffective	Untested	Untested	Ineffective	Ineffective	Ineffective	Ineffective		
	(2)	(0)	(0)	(9)	(1)	(1)	(13)		
Weight for Age	Ineffective	Ineffective	Untested	Ineffective	Ineffective	Ineffective	Ineffective		
	(5)	(2)	(0)	(15)	(2)	(4)	(28)		
Head Circumference	Ineffective	Untested	Untested	Untested	Untested	Untested	Untested		
	(1)	(0)	(0)	(0)	(0)	(0)	(1)		
Overall	Ineffective	Inconclusive	Inconclusive	Effective	Inconclusive	Ineffective	Inconclusive		
	(27)	(17)	(3)	(69)	(6)	(21)	(143)		

CONCLUSION

- 1. What works for improving child growth outcomes?
 - ► +Direct Nutrition based supplementation
 - ► +Cash- Unconditional/conditional
- 2. Gaps in the literature
 - ► Long term impacts
 - ► Concentration in evidence within developing countries SSA, SA
 - ▶ Growth outcomes between children of 3-8 years of age
 - ▶ 50% studies report insignificant impacts
 - ► Longer intervention exposure periods
 - ► Heterogeneity (gender, socio-economic status, religion etc.)
 - ► Mechanisms
 - ▶ Only 5% studies conducted a Cost-effectiveness analysis

CONCLUSION

- 1. What works for improving child growth outcomes?
 - ► +Direct Nutrition based supplementation
 - ► +Cash- Unconditional/conditional
- 2. Gaps in the literature:
 - ► Long term impacts
 - ► Concentration in evidence within developing countries SSA, SA
 - ► Growth outcomes between children of 3-8 years of age
 - ► 50% studies report insignificant impacts
 - ► Longer intervention exposure periods
 - ► Heterogeneity (gender, socio-economic status, religion etc.)
 - ► Mechanisms
 - ▶ Only 5% studies conducted a Cost-effectiveness analysis

CONCLUSION

1. Future research work:

- ▶ Determinants of malnutrition which are unrelated to diets in population
- ► Long term impacts of interventions showing significant effects in the short run
- ► Cost-effective and more diverse evidence
- 2. Policymaker Takeaways:
 - ► Multifaceted interventions: Direct Nutrition/Cash + Information
 - ► Targeting to the most needy

CONCLUSION

1. Future research work:

- ▶ Determinants of malnutrition which are unrelated to diets in population
- ► Long term impacts of interventions showing significant effects in the short run
- ► Cost-effective and more diverse evidence

2. Policymaker Takeaways:

- ► Multifaceted interventions: Direct Nutrition/Cash + Information
- ► Targeting to the most needy

OTHER EVIDENCE

- ► Nurturing/stimulation: No effect on linear growth (Prado et al., 2019; Zhang et al., 2021; Jeong et al., 2021)
- ► No effect of daycare intervention on child growth ouctomes (Leroy et al., 2012)
- ► Nutrition works in child development (Grantham-McGregor et al., 2014)

LIMITATION

- ► Focus on Clustered RCTs only
- ▶ Pre-natal stage interventions
- ▶ Inconclusive pooled meta effects across all interventions
- ► Limited scope for subgroups based on gender, socio-economic status
- ► Sample size and number of studies

Thank you!

pallavi.prabhakar@nhh.no

PUBLICATION BIAS: PRIMARY OUTCOMES

om Overview Data Methodology Results Conclusion **References**

REFERENCES I

- Aboud, F. E. and A. K. Yousafzai (2015). Global Health and Development in Early Childhood. *Annual Review of Psychology 66*, 433–457.
- Attanasio, O., H. Baker-Henningham, R. Bernal, C. Meghir, D. Pineda, and M. Rubio-Codina (2018). Early Stimulation and Nutrition: The Impacts of a Scalable Intervention. *NBER Working Paper*.
- Attanasio, O. P., C. Fernandez, E. O. A. Fitzsimons, S. M. Grantham-McGregor, C. M. D. A. Warner, and M. Rubio-Codina (2014). Using the Infrastructure of a Conditional Cash Transfer Program to Deliver a Scalable Integrated Early Child Development Program in Colombia: Cluster Randomized Controlled Trail. *British Medical Journal*.

Overview Data Methodology Results Conclusion References

REFERENCES II

- Attanasio, O. P., V. Oppedisano, and M. Vera-Hernandez (2015). Should Cash Transfers Be Conditional? Conditionality, Preventive Care, and Health Outcomes. *American Economic Journal: Applied Economics* 7, 35–52.
- Behrman, J. R. and J. Hoddinott (2001). An Evaluation of the Impact of PROGRESA on Preschool Child Height. *IFPRI Working Paper* (104).
- Berry, J., S. Mehta, P. Mukherjee, H. Ruebeck, and G. K. Shastry (2017). Inputs, Monitoring, and Crowd-Out in India's School-Based Health Interventions. *International Growth Centre Working Paper S-89206-INC-1*.

Overview Data Methodology Results Conclusion References

0 00000 0 000000

REFERENCES III

- Bhandari, N., S. Mazumder, R. Bahl, J. Martines, R. E. Black, and M. K. Bhan (2004). An Educational Intervention to Promote Appropriate Complementary Feeding Practices and Physical Growth in Infants and Young Children in Rural Haryana, India. *Journal of Nutrition* 134, 2342–2348.
- Blimpo, M., P. Carneiro, P. J. Ortiz, N. Lahire, and T. Pugatch (2018). Improving Parental Investments in Children: Experimental Evidence from The Gambia. *IZA Working Paper*.
- Bouguen, A., D. Filmer, K. Macours, and S. Naudeau (2013). Impact Evaluation of Three Types of Early Childhood Development Interventions in Cambodia. *World Bank Working Paper*.

Overview Data Methodology Results Conclusion References

0 00000 0 000000

REFERENCES IV

Christian, P., S. Shaikh, A. A. Shamim, S. Mehra, L. Wu, M. Mitra, H. Ali, R. D. Merrill, N. Choudhury, M. Parveen, R. D. Fuli, M. I. Hossain, M. M. Islam, R. Klemm, K. Schulze, A. Labrique, S. de Pee, T. Ahmed, and K. P. West (2015). Effect of Fortified Complementary Food Supplementation on Child Growth in Rural Bangladesh: A Cluster-randomized Trail. *International Journal of Epidemiology 44*, 1862–1876.

Clasen, T., S. Boisson, P. Routray, B. Torondel, M. Bell, O. Cumming, J. Ensink, M. Freeman, M. Jenkins, M. Odagiri, S. Ray, A. Sinha, M. Suar, and W. Schmidt (2014). Effectiveness of a Rural Sanitation Programme on Diarrhoea, Soil-transmitted Helminth Infection, and Child Malnutrition in Odisha, India: A Cluster-randomised Trail. *The Lancet Global Health 2*, 645–653.

Overview Data Methodology Results Conclusion References

REFERENCES V

- Faber, M., J. D. Kvalsvig, C. J. Lombard, and A. J. S. Benade (2005). Effect of a Fortified Maize-meal Porridge on Anemia, Micronutrient Status, and Motor Development of Infants. *American Journal of Clinical Nutrition 82*, 1032–1039.
- Fernald, L. C. H., P. J. Gertler, and L. M. Neufeld (2009). 10-year Effect of Oportunidades, Mexico's Conditional Cash Transfer Programme, on Child Growth, Cognition, Language, and Behaviour: A Longitudinal Follow-up Study. *The* Lancet 374, 1997–2005.
- Fink, G., R. Levenson, S. Tembo, and P. C. Rockers (2017). Home- and Community-based Growth Monitoring to Reduce Early Life Growth Faltering: An Open-label, Cluster-randomized Controlled Trail. *The American Journal of Clinical Nutrition 106*, 1070–1077.

Overview Data Methodology Results Conclusion References

REFERENCES VI

- Gardner, J. M. M., C. A. Powell, H. Baker-Henningham, S. P. Walker, T. J. Cole, and S. M. Grantham-McGregor (2005). Zinc Supplementation and Psychosocial Stimulation: Effects on the Development of Undernourished Jamaican Children. *American Journal of Clinical Nutrition 82*, 399–405.
- Gertler, P. (2004). Do Conditional Cash Transfers Improve Child Health? Evidence from PROGRESA's Control Randomized Experiment. *American Economic Review 94*, 336–341.
- Grantham-McGregor, S. M., L. C. H. Fernald, R. M. C. Kagawa, and S. Walker (2014). Effects of integrated child development and nutrition interventions on child development and nutritional status. *Annals of the New York Academy of Sciences* 1308(1), 11–32.

REFERENCES VII

- Hamadani, J. D., G. J. Fuchs, S. J. M. Osendarp, S. N. Huda, and S. M. Grantham-McGregor (2002). Zinc Supplementation During Pregnancy and Effects on Mental Development and Behaviour of Infants: A Follow-up Study. *The Lancet 360*, 290–294.
- Hammer, J. and D. Spears (2013). Village Sanitation and Children's Human Capital: Evidence from a Randomized Experiment by the Maharashtra Government. *World Bank Working Paper*.

Overview Data Methodology Results Conclusion References

REFERENCES VIII

- Hess, S. Y., S. Abbeddou, E. Y. Jimenez, J. W. Some, S. A.
 Vosti, Z. P. Ouedraogo, R. M. Guissou, J. Ouedraogo, and K. H. Brown (2015). Small-quantity Lipid-based Nutrient Supplements, Regardless of Their Zinc Content, Increase Growth and Reduce the Prevalence of Stunting and Wasting in Young Burkinabe Children: A Cluster-randomized Trail. *PLOS One 10*.
- Iannotti, L. L., S. J. L. Dulience, J. Green, S. Joseph,
 J. Francois, M. Antenor, C. Lesorogol, J. Mounce, and N. M.
 Nickerson (2013). Linear Growth Increased in Young
 Children in an Urban Slum of Haiti: A Randomized Controlled
 Trail of a Lipid-based Nutrient Supplement. *American Journal of Clinical Nutrition 99*, 198–208.

REFERENCES IX

Jeong, J., E. E. Franchett, C. V. R. de Oliveira, K. Rehmani, and A. K. Yousafazi (2021). Parenting Interventions to Promote Early Child Development in the First Three Years of Life: A Global Systematic Review and Meta-analysis. *Plos Medicine 18*.

Kandpal, E., H. Alderman, J. Friedman, D. Filmer, J. Onishi, and J. Avalos (2016). A Conditional Cash Transfer Program in the Philippines Reduces Severe Stunting. *Journal of Nutrition* 146, 1793–1800. tion Overview Data Methodology Results Conclusion References

O 00000 0 000000 0000000

REFERENCES X

- Kirwan, P., A. L. Jackson, S. O. Asaolu, S. F. Molloy, T. C. Abiona, M. C. Bruce, L. Ranford-Cartwright, S. M. O'Neill, and C. V. Holland (2010). Impact of Repeated Four-monthly Anthelmintic Treatment on Plasmodium Infection in Preschool Children: A Double-Blind Placebo-Controlled Randomized Trail. *BMC Infectious Diseases 10*.
- Leroy, J. L., P. Gadsden, and M. Gujarro (2012). The Impact of Daycare Programmes on Child Health, Nutrition and Development in Developing Countries: A Systematic Review. *Journal of Development Effectiveness* 4, 472–496.
- Levere, M., G. Archarya, and P. Bharadwaj (2016). The Role of Information and Cash Transfers on Early Childhood Development: Evidence from Nepal. *World Bank Working Paper*.

ation Overview Data Methodology Results Conclusion References

REFERENCES XI

Lin, A., A. Ercumen, J. Benjamin-Chung, B. F. Arnold, S. Das, R. Haque, S. Ashraf, S. M. Parvez, L. Unicomb, M. Rahman, A. E. Hubbard, C. P. Stewart, J. M. Collord, and S. P. Luby (2018). Effects of Water, Sanitation, Handwashing, and Nutritional Interventions on Child Enteric Protozoan Infections in Rural Bangladesh: A Cluster-randomized Controlled Trail. *Clinical Infectious Diseases 67*, 1515–1522.

Maleta, K. M., J. Phuka, L. Alho, Y. B. Cheung, K. G. Dewey,
U. Ashorn, N. Phiri, T. E. Phiri, S. A. Vosti, M. Zeilani,
C. Kumwenda, J. Bendabenda, A. Pulakka, and P. Ashorn (2015). Provision of 10-40 g/d Lipid-based Nutrient
Supplements from 6 to 18 Months of Age Does Not Prevent Linear Growth Faltering in Malawi. *Journal of Nutrition 145*, 1909–1915.

Overview Data Methodology Results Conclusion References

O 00000 0 000000 0000000

REFERENCES XII

Martinez, S., J. Johannsen, G. Gertner, J. Franco, A. B. P.
Exposito, R. M. Bartolini, I. Condori, J. F. Ayllon, R. Llanque, N. Alvarado, C. Lunstedt, C. Ferrufino, T. Reinaga, M. Chumacero, C. Foronda, S. Albarracin, and A. M. Aguilar (2018). Effects of a Home-Based Participatory Play Intervention on Infant and Young Child Nutrition: A Randomized Evaluation Among Low-Income Households in El Alto, Bolivia. *British Medical Journal Global Health 3*.

Miller, A. C., M. B. Murray, D. R. Thomson, and M. C. Arbour (2015). How Consistent are Associations Between Stunting and Child Development? Evidence from a Meta-Analysis of Associations Between Stunting and Multidimensional Child Development in Fifteen Low- and Middle-Income Countries. *Public Health Nutrition* 19(8), 1339–1347.

tion Overview Data Methodology Results Conclusion **References**

REFERENCES XIII

Muhoozi, G. K. M., P. Atukunda, L. M. Diep, R. Mwadime, A. N. Kaaya, A. B. Skaare, T. Willumsen, A. C. Westerberg, and P. O. Iversen (2017). Nutrition, Hygiene, and Stimulation Education to Improve Growth, Cognitive, Language, and Motor Development Among Infants in Uganda: A Cluster-Randomized Trail. *Maternal & Child Nutrition 14*.

Null, C., C. P. Stewart, A. J. Pickering, H. N. Dentz, B. F. Arnold, C. D. Arnold, J. Benjamin-Chung, T. Clasen, K. G. Dewey, L. C. H. Fernald, A. E. Hubbard, P. Kariger, A. Lin, S. P. Luby, A. Mertens, S. M. Njenga, G. Nyambane, P. K. Ram, and J. M. Colford (2018). Effects of Water Quality, Sanitation, Handwashing, and Nutritional Interventions on Diarrhoea and Child Growth in Rural Kenya: A Cluster-Randomised Controlled Trail. Lancet Child Adolescent Health 2, 269–280.

on Overview Data Methodology Results Conclusion **References**0 00000 0 000000 0000000

REFERENCES XIV

- Olney, D. K., E. Pollitt, P. k Kariger, S. S. Khalfan, N. S. Ali, J. M. Tielsch, S. Sazawal, R. Black, L. H. Allen, and R. J. Stolzfus (2006). Combined Iron and Folic Acid Supplementation with or without Zinc Reduces Time to Walking Unassisted Among Zanzibari Infants 5- to 11-mo Old. *Journal of Nutrition 136*, 2427–2434.
- Ozier, O. (2018). Exploiting Externalities to Estimate the Long-Term Effects of Early Childhood Deworming. *American Economic Journal: Applied Economics* 10(3), 235–262.
- Page, M. J. and D. Moher (2017). Evaluations of the Uptake and Impact of the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) Statement and Extensions: A Scoping Review. *Systematic Reviews* 6(1), 1–14.

REFERENCES XV

Patil, S. R., B. F. Arnold, A. L. Salvatore, B. Briceno,
S. Ganguly, J. M. Colford, and P. J. Gertler (2014). The Effect of India's Total Sanitation Campaign on Defecation Behaviors and Child Health in Rural Madhya Pradesh: A Cluster Bandomized Controlled Trail. PLOS Medicine 11.

Penny, M. E., M. Creed-Kanashiro, R. C. Robert, M. R. Narro, L. E. Caulfield, and R. E. Black (2005). Effectiveness of an Educational Intervention Delivered Through the Health Services to Improve Nutrition in Young Children: A Cluster-randomised Controlled Trail. *The Lancet 365*, 1863–1872.

tivation Overview Data Methodology Results Conclusion References

REFERENCES XVI

Pickering, A. J., H. Djebbari, C. Lopez, M. Coulibaly, and M. L. Alzua (2015). Effect of a Community-led Sanitation Intervention on Child Diarrhoea and Child Growth in Rural Mali: A Cluster-randomised Controlled Trail. *The Lancet Global Health 3*, 701–711.

Pickering, A. J., S. M. Njenga, L. Steinbaum, J. Swarthout, A. Lin, B. F. Arnold, C. P. Stewart, H. N. Dentz, M. Mureithi, B. Chieng, M. Wolfe, R. Mahoney, J. Kihara, K. Byrd, G. Rao, T. Meerkerk, P. Cheruiyot, M. Papaiakovou, N. Pilotte, S. A. Williams, J. M. Colford, and C. Null (2019). Integrating Water, Sanitation, Handwashing, and Nutrition Interventions to Reduce Child Soil-Transmitted Helminth and Giardia Infections: A Cluster Randomized Controlled Trail in Rural Kenya. *PLOS Medicine 16*.

REFERENCES XVII

Powell, C., H. Baker-Henningham, S. Walker, J. Gernay, and S. Grantham-McGregor (2004). Feasibility of Integrating Early Stimulation into Primary Care for Undernourished Jamaican Children: Cluster Randomised Controlled Trail. *British Medical Journal* 329.

Prado, E. L., L. M. Larson, K. Cox, K. Bettencourt, J. N. Kubes, and A. H. Shankar (2019). Do Effects of Early Life Interventions on Linear Gorwth Correspond to Effects on Neurobehavioural Development? A Systematic Review and Meta-analysis. *The Lancet Global Health* 7, 1398–1413.

tion Overview Data Methodology Results Conclusion **References**

REFERENCES XVIII

- Rahman, A., A. Malik, S. Sikander, C. Roberts, and F. Creed (2008). Cognitive Behaviour Therapy-based Intervention by Community Health Workers for Mothers with Depression and Their Infants in Rural Pakistan: A Cluster-randomised Controlled Trail. *The Lancet 372*, 902–909.
- Rockers, P. C., G. Fink, A. Zanolini, B. Banda, G. Biemba, C. Sullivan, S. Mutembo, V. Silavwe, and D. H. Hamer (2016). Impact of a Community-based Package of Interventions on Child Development in Zambia: A Cluster-randomised Controlled Trail. *BMJ Global Health 1*.
- United Nations (2020). World Economic Situation and Prospects: Country Classifications. United Nations Secretariat.
- United Nations (2021). From MDGs to SDGs.

REFERENCES XIX

- Vazir, A., P. Engle, N. Balakrishna, P. L. Griffiths, S. L. Johnson, H. Creed-Kanashiro, S. F. Rao, M. R. Shroff, and M. E. Bentley (2013). Cluster-randomized Trail on Complementary and Responsive Feeding Education on Caregivers Found Improved Dietary Intake, Growth and Development Among Rural Indian Toddlers. *Maternal and Child Nutrition 9*, 99–117.
- Vermeersch, C. and M. Kremer (2004). School Meals, Educational Achievement and School Competition: Evidence from a Randomized Evaluation. *World Bank Working Paper*.

REFERENCES XX

- Yousafzai, A. K., M. A. Rasheed, A. Rizvi, R. Armstrong, and Z. A. Bhutta (2014). Effect of Integrated Responsive Stimulation and Nutrition Interventions in the Lady Health Worker Programme in Pakistan on Child Development, Growth, and Health Outcomes: A Cluster-randomised Factorial Effectiveness Trail. *The Lancet 384*, 1282–1293.
- Zhang, L., D. Ssewanyana, M. Martin, S. Lye, G. Moran, A. Abubakar, K. Marfo, J. Marangu, K. Proulx, and T. Malti (2021). Supporting Child Development Through Parenting Interventions in Low- to Middle-Income Countries: An Updated Systematic Review. *Frontiers in Public Health 9*.