Analytic Geometry

George Ţurcaș

Maths & Comp. Sci., UBB Cluj-Napoca

October 25, 2021

Del capítulo anterior...

- If the vectors $\overline{u}, \overline{v}$ are not collinear, then if $\overrightarrow{OU} \in \overline{u}$ and $\overrightarrow{OV} \in \overline{v}$, then $||\overline{u} \times \overline{v}||$ is the area of the parallelogram formed by \overrightarrow{OU} and \overrightarrow{OV} .
- ullet The area of the triangle riangle OUV can be computed as

$$\mathrm{Area}_{\triangle \textit{OUV}} = \frac{||\overline{\textit{u}} \times \overline{\textit{v}}||}{2}.$$

Algebraically

If
$$\overline{u} = u_1\overline{i} + u_2\overline{j} + u_3\overline{k}$$
 and $\overline{v} = v_1\overline{i} + v_2\overline{j} + v_3\overline{k}$ are vectors in V_3 , then

$$\overline{u} \times \overline{v} = \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix}. \tag{1}$$

Some observations

The cross product shares a few similarities with the dot product. However, there are some differences which you have to remember:

- 1 The cross product is not commutative. In fact, it is anti-commutative.
- ② The cross product of two vectors is a vector, not a scalar (as it is the case for the result of a dot product). Therefore, it makes sense to consider products with multiple factors. One should be very careful with those, since the cross product is not associative either:)

A closer look at a high-school formula

In high-school, you probably learned how to compute the area of a triangle determined by $A(x_A, y_A)$, $B(x_B, y_B)$ and $C(x_C, y_C)$.

- Let see these in 3D and assume WLOG they line in the plane xOy.
- We therefore have $A(x_A, y_A, 0)$, $B(x_B, y_B, 0)$ and $C(x_C, y_C, 0)$. These points determine the vectors $\overline{AB}(x_B x_A, y_B y_A, 0)$ and $\overline{AC}(x_C x_A, y_C y_A, 0)$.
- Computing, we have

$$\overline{AB} \times \overline{AC} = \left| \begin{array}{ccc} \overline{i} & \overline{j} & \overline{k} \\ x_B - x_A & y_B - y_A & 0 \\ x_C - x_A & y_C - y_A & 0 \end{array} \right| = \overline{k} \left| \begin{array}{ccc} x_B - x_A & y_B - y_A \\ x_C - x_A & y_C - y_A \end{array} \right|,$$

$$\overline{AB} \times \overline{AC} = \overline{k} \left| \begin{array}{ccc} x_A & y_A & 1 \\ x_B & y_B & 1 \\ x_C & y_C & 1 \end{array} \right|.$$

It follows that

$$||\overline{AB} \times \overline{AC}|| = \pm \begin{vmatrix} x_A & y_A & 1 \\ x_B & y_B & 1 \\ x_C & y_C & 1 \end{vmatrix},$$

hence

$$Area_{\triangle ABC} = \pm \frac{1}{2} \begin{vmatrix} x_A & y_A & 1 \\ x_B & y_B & 1 \\ x_C & y_C & 1 \end{vmatrix}.$$

Double cross product

Let $\overline{u}, \overline{v}$ and \overline{w} be vectors in V_3 . The double cross product of these three vectors is, by definition, the vector $(\overline{u} \times \overline{v}) \times \overline{w}$. The following relation holds

$$(\overline{u} \times \overline{v}) \times \overline{w} = (\overline{u} \cdot \overline{w})\overline{v} - (\overline{v} \cdot \overline{w})\overline{u}.$$

On the other hand,

$$\overline{u} \times (\overline{v} \times \overline{w}) = -(\overline{v} \times \overline{w}) \times \overline{u} = (\overline{v} \cdot \overline{u})\overline{w} - (\overline{w} \cdot \overline{u})\overline{v}$$

Comparing $(\overline{u} \times \overline{v}) \times \overline{w}$ and $\overline{u} \times (\overline{v} \times \overline{w})$ we find that these are equal if

$$-(\overline{v}\cdot\overline{w})\overline{u}+2(\overline{u}\cdot\overline{w})\overline{v}-(\overline{u}\cdot\overline{v})\overline{w}=0.$$

We notice that $\overline{u}, \overline{v}$ and \overline{w} being coplanar is a necessary condition for associativity. However, this is not sufficient.

Using the equality

$$\overline{(\overline{u}\times\overline{v})\times\overline{w}=(\overline{u}\cdot\overline{w})\overline{v}-(\overline{v}\cdot\overline{w})\overline{u}},$$

one can easily show that the "Jacobi's identity"

$$(\overline{u} \times \overline{v}) \times \overline{w} + (\overline{v} \times \overline{w}) \times \overline{u} + (\overline{w} \times \overline{u}) \times \overline{v} = \overline{0}$$

holds for any $\overline{u}, \overline{v}, \overline{w} \in V_3$.

Triple scalar product

Given three vectors \overline{a} , \overline{b} and \overline{c} from V_3 , one defines their triple scalar product to be the real number $(\overline{a}, \overline{b}, \overline{c}) = \overline{a} \cdot (\overline{b} \times \overline{c})$. If $\overline{a} = (a_1, a_2, a_3)$, $\overline{b} = (b_1, b_2, b_3)$ and $\overline{c} = (c_1, c_2, c_3)$, then the triple scalar product can be calculated as $(\overline{a}, \overline{b}, \overline{c}) = -(\overline{b}, \overline{a}, \overline{c})$ $(\overline{a}, \overline{b}, \overline{c}) = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}.$ (2)

Indeed,

$$(\overline{a}, \overline{b}, \overline{c}) = a_1(b_2c_3 - b_3c_2) + a_2(b_3c_1 - b_1c_3) + a_3(b_1c_2 - b_2c_1) =$$

$$= a_1 \begin{vmatrix} b_2 & b_3 \\ c_2 & c_3 \end{vmatrix} + a_2 \begin{vmatrix} b_3 & b_1 \\ c_3 & c_1 \end{vmatrix} + a_3 \begin{vmatrix} b_1 & b_2 \\ c_1 & c_2 \end{vmatrix} = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}.$$

Remark: It can be seen easily that the triple scalar product can be also seen as $(\overline{a}, \overline{b}, \overline{c}) = (\overline{a} \times \overline{b}) \cdot \overline{c}$.

Theorem

If \overline{a} , \overline{b} and \overline{c} are vectors in V_3 , then:

- a) $(\overline{a}, \overline{b}, \overline{c}) = (\overline{c}, \overline{a}, \overline{b}) = (\overline{b}, \overline{c}, \overline{a});$
- **b)** $(\overline{a}, \overline{b}, \overline{c}) = 0$ if and only if \overline{a} , \overline{b} and \overline{c} are linearly dependent (i.e. they have representatives situated on the same plane).

Def^m: Say that \bar{a} , \bar{b} , \bar{c} have the name orientation if $(\bar{a}, \bar{b}, \bar{c}) > 0$.

Vifferent orientation if $(\bar{a}, \bar{b}, \bar{c}) < 0$.

The triple scalar product has a geometric meaning. Suppose that the vectors \overline{a} , \overline{b} and \overline{c} are linearly independent and choose a representer for each, having the same original point. These form the adjacent sides of a parallelepiped, as below.

Suppose that the base of this parallelepiped is the parallelogram constructed on \overline{b} and \overline{c} . The height of the parallelepiped is the length of the orthogonal projection of the vector \overline{a} on the direction of the vector $\overline{b} \times \overline{c}$,

$$h = |\mathsf{pr}_{\overline{b} \times \overline{c}} \overline{a}| = \left| \frac{\overline{a} \cdot (\overline{b} \times \overline{c})}{|\overline{b} \times \overline{c}|} \right| = \frac{|(\overline{a}, \overline{b}, \overline{c})|}{|\overline{b} \times \overline{c}|}.$$

Then, the volume of the parallelepiped whose adjacent sides are the vectors \overline{a} , \overline{b} and \overline{c} is the absolute value of the triple scalar product $(\overline{a}, \overline{b}, \overline{c})$:

$$V = h \cdot \text{Area}(\overline{b}, \overline{c}) = \frac{|(\overline{a}, \overline{b}, \overline{c})|}{|\overline{b} \times \overline{c}|} |\overline{b} \times \overline{c}| = |(\overline{a}, \overline{b}, \overline{c})|. \tag{3}$$

The volume of a tethrahedron

Suppose we have a tetrahedron \overrightarrow{OABC} such that $\overrightarrow{OA} \in \overline{a}$, $\overrightarrow{OB} \in \overline{b}$ and $\overrightarrow{OC} \in \overline{c}$. Then, the volume of the tetrahedron can be computed as

$$Vol_{OABC} = \frac{1}{3}d(A, OBC) \cdot Area_{\triangle OBC}$$

$$\operatorname{Vol}_{\mathit{OABC}} = \frac{1}{6} | \operatorname{pr}_{\overline{b} \times \overline{c}}(\overline{a}) | \cdot | \overline{b} \times \overline{c} | = \frac{1}{6} \frac{|(\overline{a}, \overline{b}, \overline{c})|}{|\overline{b} \times \overline{c}|} | \overline{b} \times \overline{c} | = \frac{1}{6} |(\overline{a}, \overline{b}, \overline{c})|$$

An easy application

We are given a tetrahedron ABCD of volume 5 with three of its vertices A(2,1,-1), B(3,0,1) and C(2,-1,3). Its fourth vertex D is situated on somewhere on the Oy axis. Find the coordinates of the point D.

$$5 = \bigvee_{ABCB} = \frac{1}{6} | (\overline{AB}, \overline{AC}, \overline{AD})|$$
 $D(o,d,o)$ for some $d \in \mathbb{R}$

(since $D \in O_{Y}$).

 $\overline{AB}(1,-1,2)$, $\overline{AC}(0,-2,4)$ and

 $\overline{AB}(-2,d-1,1)$

Replacing in the volume formula, $5 = \frac{1}{6} \cdot \begin{vmatrix} 1 & -1 & 2 \\ 0 & -2 & 4 \\ -2 & d - 1 & 1 \end{vmatrix}$ (=) $30 = \left| -4d + 2 \right| =$ 15 = |-22 +1| 2d e 216, - 14), no d e 28, - 7). D & {(0, -7,0), (0,8,0)} George Turcas (UBB, Cluj-Napoca) Lecture 5 October 25, 2021

An application of the cross product

Consider a trapezoid ABCD with $AB \parallel CD$. Let P and Q be the midpoints of [BC] and [DA]. Prove that the triangles APD and CQB have the same area.

$$\overline{AP} = \frac{1}{2} (\overline{AB} + \overline{AC}) = \frac{1}{2} \cdot \overline{b} + \frac{1}{2} (\overline{AD} + \overline{bC})$$

$$= \frac{1}{2} \cdot \overline{b} + \frac{1}{2} \cdot (\overline{d} + t \cdot \overline{b})$$

$$= \frac{1}{2} \cdot \frac{$$

Now we can compute

$$\overline{AD} \times \overline{AD} = \left[\frac{1+\frac{1}{2}}{2} \cdot \overline{b} + \frac{1}{2} d \right] \times d$$

$$= \frac{1+\frac{1}{2}}{2} \left(\overline{b} \times \overline{d} \right) + \frac{1}{2} \left(\overline{d} \times \overline{d} \right)$$

$$= \frac{1}{2} \cdot (1+\frac{1}{2}) \cdot (\overline{b} \times \overline{d})$$

Area DAPD = 1 | AP x AD | = 1 | 1+1 . | [5 x d] (1)

$$\overline{CQ} = \overline{CD} + \overline{DQ} = -\overline{+} \overline{b} - \frac{1}{2} \cdot \overline{d}$$

$$\overline{CB} = \overline{CP} + \overline{AB} = -\overline{AC} + \overline{AB}$$

$$= -\overline{d} - \overline{t} \cdot \overline{b} + \overline{b}$$

$$= (1-\overline{t}) \cdot \overline{b} - \overline{d}$$

CB x CB = (-+. b - 1 d) x ((1-+).b - d) = $t \cdot (\overline{b} \times \overline{d}) - \frac{1}{2} (1 + t) \cdot (\overline{d} \times \overline{b})$ October 25, 2021

$$= \frac{1}{2} \left(1 + \frac{1}{2} \right) \left(\overline{b} \times \overline{d} \right)$$

Comparing (1) and (2), we get the conclusion.

3

The dot and triple scalar products in play...

The vectors $\overline{a}(8,4,1)$, $\overline{b}(2,2,1)$ and $\overline{c}(1,1,1)$ are given. Determine the vector \overline{d} such that:

- $\mathbf{Q} \quad \overline{d} \perp \overline{c}$:
- **3** $||\overline{d}|| = 1$;
- The triples $\{\overline{a}, \overline{b}, \overline{c}\}$ and $\{\overline{a}, \overline{b}, \overline{d}\}$ have the same orientation.

Look for d(d,d2,d3).

(=)
$$\frac{\overline{a}}{\|\overline{a}\|} \cdot \overline{d} = \frac{\overline{b}}{\|\overline{b}\|} \cdot \overline{d}$$

$$||\overline{a}|| = g \text{ and } ||\overline{b}|| = 3$$

(=) $\left(\frac{g}{g}, \frac{1}{g}, \frac{1}{g}\right) \cdot (d_1, d_2, d_3) = \frac{2}{3}, \frac{2}{3}, \frac{1}{3} \cdot (d_1, d_2, d_3)$

(=) $d_1 - d_2 + d_3 = 0$
(1)

(3)
$$d \perp c = 0$$
 $d \cdot c = 0$ (2)
 $d_1 + d_2 + d_3 = 0$ (2)
(3.) $||d||^2 = 1 = 1$ $d \cdot d = 1$.
 $d^2 + d^2 + d^2 = 0$ (3)
Solveing the system (1), (2), (3)

Solveing the system (1), (2), (3) we get 2 solutions. $\left(\frac{\sqrt{12}}{2},0,-\frac{\sqrt{2}}{2}\right) \text{ and } \left(-\frac{\sqrt{2}}{2},0,\frac{\sqrt{2}}{2}\right).$

(a,
$$\overline{b}$$
, \overline{c}) = $\operatorname{sgn}((\overline{a}, \overline{b}, \overline{d}))$ = $\operatorname{sgn}($

The problem set for this week will be posted soon. Ideally you would think about it before the seminar on Friday.

Thank you very much for your attention!