Rappel de cours

Definition 1. Un groupe (G, *) est un ensemble G auquel est associé une opération * (la loi de composition) vérifiant les 4 propriétés suivantes:

- $\forall x, y \in G, x * y \in G$. * est une loi de composition interne.
- $\forall x, y, z \in G, (x * y) * z = x * (y * z)$ la loi est associative
- $\exists e \in G, \forall x \in G, x * e = e * x = x.$ e est l'élément neutre
- $\forall x \in G, \exists x' \in G, x * x' = e. \ x'$ est l'inverse de x et est noté x^{-1} .

Exercice 1

Pour que \mathbb{R} , muni de la multiplication soit un groupe, il faut qu'il véfifie les 4 propriétés d'un groupe. La multiplication est une loi de composition interne pour \mathbb{R} . La multiplication est associative dans \mathbb{R} . 1 est l'élément neutre pour la multiplication dans \mathbb{R} . Vérifions si tout les él'éments de \mathbb{R} ont un inverse dans \mathbb{R} . 0, n'a pas d'inverse dans \mathbb{R} , donc $(\mathbb{R},*)$ n'est pas un groupe.

Exercice 2

On a $G = \{a, b, e\}$, (G, .) est un groupe et e lélément neutre du groupe (G, .). Donc $\forall x \in G, \exists x' \in G, x.x' = e$ et $\forall x, y, \in G, x.y \in G = \{a, b, e\}$.

Donc $a.b \in a, b, e$. Plusieurs cas possibles:

- b est l'inverse de a dans le groupe. Donc, a.b = e
- b n'est pas l'inverse de a dans le groupe. donc $a.b \in a, b$. Soit a.b = a, as possible car a.e = a et $b \neq e$, ou a.b = b pas possible car $(a.b).b \neq a.(b.b)$.

Donc a.b = e

Exercice 3

Non. a et b premiers entre eux donc gcd(a, b) = 1 et b et c premiers entre eux donc gcd(b, c) = 1. Prenons, a = 3, b = 5, c = 9, on a gcd(3, 5) = 1 et gcd(5, 9) = 1 mais gcd(3, 9) = 3. Donc a et c ne sont pas premiers entre eux.

Exercice 4

Preuve par récurence. Suppusons que $7|3^{2n+1} + 2^{n+2}$, montrons que $7|3^{2(n+1)+1} + 2^{(n+1)+2}$.

$$3^{2n+1} + 2^{n+2} = 3 \cdot 3^{2n} + 42^n = 3 \cdot 9^n + 4 \cdot 2^n$$

cqlculons

$$3.9^n + 4.2^n [7] = 3.2^n + 4.2^n [7] = 2^n (3+4)[7] = 7.2^n [7] = 0$$

donc $7|3^{2n+1} + 2^{n+2}$.

Exercice 5

Exercice 5.1

 $p^2 - 1 = (p+1)(p-1)$, comme p est un nombre premier supérieur à 5, p est impair. Donc $p^2 - 1 = (2k+1-1)(2k+1+1) = 2k(2k+2) = 4k(k+1)$.

Exercice 5.2

 $8|p^2 - 1 \text{ si } \exists n, p^2 - 1 = 8n.$

- k est pair donc k = 2k' et 4k(k+1) = 8k'(2k'+1) donc n = k'(2k'+1)
- k est impair donc k = 2k' + 1 et 4k(k+1) = 4(2k'+1)(2k'+1+1) = 4(2k'+1)(2k'+2) = 8(2k'+1)(k'+1) donc n = (2k'+1)(k'+1).

n existe, donc $8|p^2-1$.

 $16|p^4-1$ si $\exists n, p^4-1=16n$. $p^4-1=(p^2-1)(p^2+1)$ et $8|p^2-1$ mais p est impair donc p^2 est impair et p^2+1 est pair. Par conséquent $2|p^2+1$. Par conséquent, $(p^2-1)(p^2+1)=8n \cdot 2n'=16nn'$ donc $16|p^4-1$.

Exercice 5.3

 $3|p^2-1$ si $\exists n, p^2-1=3n$. Chaque entier n peut s'écrire 3k, 3k+1 ou 3k+2. Comme p est un nombre premier il ne peut pas être égal a 3n. Donc il reste 2 cas:

- p = 3n + 1, donc $p^2 1 = (3n + 1)^2 1 = 9n^2 + 6n + 1 1 = 3(3n^2 + 2n)$
- p = 3n + 2, donc $p^2 1 = (3n + 2)^2 1 = 9n^2 + 12n + 4 1 = 3(3n^2 + 6n + 1)$

Donc $3|p^2-1$ pour tout nombre premier p.

Exercice 5.4

 $5|p^2-1$ si $\exists n, p^2-1=5n$. $p^4-1=(p^2-1)(p^2+1)$ Chaque entier n peut s'écrire 5k, 5k+1, 5k+2, 5k+3 ou 5k+4. Comme p est un nombre premier il ne peut pas être égal a 5n. Donc il reste 4 cas:

- p = 5n + 1, donc $p^4 1 = ((5n + 1)^2 1)((5n + 1)^2 + 1) = (25n^2 + 10n + 1 1)((5n + 1)^2 1) = 5(n^2 + 2n)((5n + 1)^2 1)$
- p = 5n + 2, donc $p^4 1 = ((5n + 2)^2 1)((5n + 2)^2 + 1) = ((5n + 2)^2 1)(25n^2 + 10n + 4 + 1) = 5((5n + 2)^2 1)(5n^2 + 2n + 1)$
- p = 5n + 3, donc $p^4 1 = ((5n + 3)^2 1)((5n + 3)^2 + 1) = ((5n + 2)^2 1)(25n^2 + 30n + 9 + 1) = 5((5n + 2)^2 1)(5n^2 + 6n + 2)$
- p = 5n + 4, donc $p^4 1 = ((5n + 4)^2 1)((5n + 4)^2 + 1) = (25n^2 + 40n + 16 1)((5n + 2)^2 + 1) = 5(5n^2 + 8n + 3)((5n + 2)^2 1)$

Donc $5|p^4-1$ pour tout nombre premier p.

Exercice 5.5

a|c donc $c=k_1a$ et b|c donc $c=k_2b$. il faut montrer que ab|c ou c=kab. En partant de l'identité de Bezout on a $\gcd(a,b)=ax+by$ donc ax+by=1, en multipliant par c on a cax+cby=c, cela fait $k_2bax+k_1aby=c$ et $ab(k_2x+k_1y)=c$. Donc ab|c.

Exercice 5.6

On a $16|p^4-1$ et $5|p^4-1$, et $\gcd(16,5)=1$ donc d'après la question 5 on a $80|p^4-1$. On a $p^4-1=(p^2-1)(p^2+1)$ et $3|p^2-1)$ donc $p^2-1=3n$ et $p^4-1=3n(p^2+1)$ donc $3|p^4-1$., $\gcd(3,80)=1$ donc d'après la question 5, on a $240|p^4-1$.

Exercice 6

Exercice 6.1

Non, car $N=4u_1u_2u_3\ldots u_n-1$ avec $\gcd(2,u_1,u_2,\ldots,u_n)=1$ (car tous u_n premiers et $u_1=3$.). Prenons un u_i , on a $N=u_i(4u_1u_2u_3\ldots u_n)-1$ avec $4u_1u_2u_3\ldots u_n$ non divisible par u_i . donc le reste de la division $\frac{N}{u_i}=u_i-1$ qui est différent de 0.

Exercice 6.2

Exercice 6.3

Exercice 7

Exercice 7.1

$$\gcd(171, 160), 171 = 160 * 1 + 11$$
$$\gcd(11, 160), 160 = 11 * 14 + 6$$

$$\gcd(11,6), 11 = 6 * 1 + 5$$
$$\gcd(5,6), 6 = 5 * 1 + 1$$
$$\gcd(5,1), 5 = 1 * 5 + 0$$
$$\gcd(0,1) = 1$$

Exercice 7.2

On a gcd(171, 160) = 1, donc $\exists x, y, 171x + 160y = 1$.

$$1 = 6 - 1*5 = 6 - (11 - 6*1) = 2*6 - 11 = 2*(160 - 11*14) - 11 = 2*160 - 29*11 = 2*160 - 29*(171 - 160) = 31*160 - 29*171$$
 Identité de Bezout: $31*160 - 29*171 = 1$.

Exercice 7.3

 $(x,y) = (x_0 + nb/d, y_0 - na/d)$ avec gcd(x,y) = d et a,b une solution de ax + by = d. Donc, $x_0 = -29$, $y_0 = 31$, a = 171, b = 160 et d = 1.

$$(x,y) = (-29 + 160n, 31 - 171n)$$

Exercice

Ex 1

Montrer que tout nombre impair peut se mettre sous la forme 4k + 1 ou 4k + 3.

Ex 2

Montrer que tout nombre impair peut se mettre sous la forme 4k + 1 ou 4k - 1.

Ex 3

Montrer que pour tout nombre impair p on a $p^2 \equiv 1 \pmod{8}$.

Preuve, un nombre impair p est de la forme p = 2x + 1, x est soit pair soit impair. cas x est pair donc p = 4l + 1, cas x est impair donc p = 4k + 3 = 4(k + 1) - 1.

QED