The Algebraic Relative Difference

D. Michael Parrish

2020-03-27

Given two numbers $x, y \in \{Q, \infty\}$ of the same sign, the algebraic relative difference, $\bar{\Delta}$ is computed according to the table

where

$$n = (x^2 - y^2)^2, \qquad d = (x^2 + y^2)^2,$$

and * represent impossible situations.

Properties

The $\bar{\Delta}$ is undefined for $x=\infty,\ y=\infty$. The values x and y are treated symmetrically; neither is considered to be the "true" value. For rational x,y, there is a one-to-one mapping between either x/y or y/x and $\bar{\Delta}$. The $\bar{\Delta}$ is insensitive to very small differences between x and y, sensitive in the neighborhood of $\max(x,y)=2\min(x,y)$, and less and less sensitive with greater and greater differences.

Copyright

This article is Copyright the author. It is licensed under CC BY-SA 4.0 (https://creativecommons.org/licenses/by-sa/4.0/).