1 记号说明

定理 1 (代数基本定理). 记多项式 $f(x) \in \mathbb{C}[x]$ 的次数为 $\deg f$, 则对任意 $c \in \mathbb{C}[x]$, 方程 f(x) = c 有 $\deg f$ 个根 (含重数).

约定 1. 取多项式 $f(x) \in \mathbb{C}[x]$, 记 $\deg f(x) = n$, 称 f(x) = 0 解集为 n 个 (含重数) 使得 f 取值为 0 的点的无交并.

例 1. 例如 $f(x) = (x-1)^2(x-2)$ 的零点集为无交并 $\{2\} \sqcup \{1\} \sqcup \{1\}$, 简写作 $\{1,1,2\}$.

定理 2. 取系数含参 α 的多项式 $f_{\alpha}(x) \in \mathbb{C}(\alpha)[x]$, 其中

$$f_{\alpha}(x) = \sum_{0 \le k \le n} c_k(\alpha) x^k,$$

 $c_k(\alpha)$ 均为含 α -有理函数. 则存在曲线 $\{\gamma_i(\alpha)\}_{1 \leq i \leq n}$ 使得 $\{\gamma_i(\alpha_0)\}_{1 \leq i \leq n}$ 恰为 $f_{\alpha_0}(x) = 0$ 的所有根, 且曲线 $\{\gamma_i(\alpha)\}_{1 \leq i \leq n}$ 在 $\alpha \in \mathbb{R} \setminus c_n^{-1}(0)$ 上连续, 并在除去有限个点的 \mathbb{R} 的子区间中内闭一致连续.

定义 1. 定义 \mathbb{C} 的单点紧化为球 $\overline{\mathbb{C}}$:= $\mathbb{C} \cup \{\infty\}$, 赤 道面为 $\mathbb{R} \cup \{\infty\}$. 如下图所示

约定 2. 取 $g \in \mathbb{C}[x]$, $n = \deg g$. 兹有约定: 对于任意 m > n, g 作为 m 次多项式有 m - n 重根 ∞ .

例 2. 记 $f_{\alpha}(x) := x(\alpha x - 1)$, 则 f 作为二次多项式, 其根集为 $\{\alpha^{-1}, 0\}$. 此处 $0^{-1} = \infty$.

约定 3 (相邻序). 对有限集合 (元素两两不等) $S \subseteq \mathbb{R}$, 记 $\{\frac{-1}{n}\}_{n\geq 1}$ 的收敛方向为赤道正向. 对任意相邻的 $x,y\in S$, 称 $x\leq y$ 若且仅若 y 位于 x 的正向.

例 3. 例如 $S = \{1, -2, 4, \infty, 0\}$,则 $\infty \le -2 \le 0 \le 1 \le 4 \le \infty.$

如下图所示

定义 2 (开区间). $\forall x, y \in \overline{\mathbb{R}}, x \neq y,$ 定义开区间 $(x,y) := \{ \alpha \in \overline{\mathbb{R}} \mid x \leq \alpha \leq y \}.$

同理定义闭区间与半开闭区间.

定理 3.取系数含参 α 的 n 次多项式 $f_{\alpha}(x) \in \mathbb{C}(\alpha)[x]$, 其中

$$f_{\alpha}(x) = \sum_{0 \le k \le n} c_k(\alpha) x^k,$$

 $c_k(\alpha)$ 均为含 α -有理函数. 则存在曲线 $\{\gamma_i(\alpha)\}_{1 \leq i \leq n}$ 使得 $\{\gamma_i(\alpha_0)\}_{1 \leq i \leq n}$ 恰为 $f_{\alpha_0}(x) = 0$ 的所有根, 且在通常球面度量的意义下, 曲线 $\{\gamma_i(\alpha)\}_{1 \leq i \leq n}$ 在通常球面度量的意义下, 曲线 $\{\gamma_i(\alpha)\}_{1 \leq i \leq n}$ 在 $\alpha \in \mathbb{R}$ 时均为连续的闭曲线, 并在某一除去有限个点的 \mathbb{R} 的子区间中内闭一致连续.

2 交错根定理

定理 4 (交错根定理). 若 f 与 g 均为 n 次实多项式, 其根均为实数. 记 f 的根为

$$r_1 \leq r_2 \leq \cdots \leq r_n \leq r_1$$
,

记 g 的根为

$$s_1 \leq s_2 \leq \cdots \leq s_n \leq s_1$$
.

若满足交错根条件,即

$$r_1 \leq s_1 \leq r_2 \leq s_2 \leq \cdots \leq r_n \leq s_n \leq r_1$$

则对任意 $\alpha \in \mathbb{R}$, $f + \alpha g$ 作为 n 次多项式在 \mathbb{R} 上有 n 个相异的根.

证明. 考虑 $h_t = tf + (1 - t)g$ $(0 \le t \le 1)$, 则根据引理, h_t 的根为 n 条 $\overline{\mathbb{C}}$ 上一致连续 (采用球面通常度量) 的曲线之并, 记曲线为 $l_i := \gamma_i([0,1]), 1 \le i \le n$.

可以发现, 这些曲线有如下性质:

- 1. 不妨设 $\gamma_i(0) = s_i$,则存在置换 $\sigma \in S_n$ 使得 $\gamma_i(1) = r_{\sigma(i)}$.
- 2. 对任意 $t = t_0, \{\gamma_1(t_0), \dots, \gamma_n(t_0)\}$ 关于赤道对称.
- 3. 对任意 $t \in (0,1)$ 与 γ_i , $\gamma_i(t)$ 不为任一 f 或 g 的

根; 反之 f 与 g 有相同的根, 与题设矛盾.

根据定理 3 以及赤道对称性, 存在 $\varepsilon \in (0,1)$ 使得 $\bigcup_{1 \le i \le n} \gamma_i([0,\varepsilon])$ 为 n 条 \mathbb{R} 上弧线的无交并. 考查 所有符合上述条件的 ε , 存在上确界 $\varepsilon_0 \in (0,1]$.

兹有断言 $\varepsilon_0 = 1$. 若不然, 存在 i < j 使得 $\gamma_i([0, \varepsilon_0]) \cap \gamma_j([0, \varepsilon_0]) \neq \emptyset$. 根据连续性, $\gamma_i(t)$ 与 $\gamma_j(t)$ 在 $t \in [0, \varepsilon_0]$ 时均位于赤道, 而交错根条件表 明某一 $\gamma(t)$ 在 $t \in (0, 1)$ 时业已通过 f 的一根, 矛盾.

由上述可知 h_t 在 $t \in [0,1]$ 时恒有 n 个两两不 交的根, σ 为恒等映射或轮换 $\binom{12\cdots n}{23\cdots 1}$. 如下图所示.

Corollary 4.1. 记 $f + \alpha g$ ($\alpha \in \mathbb{R}$) 的解曲线为 $\{\gamma'_i(\alpha) \mid \alpha \in \mathbb{R}\}_{1 \leq i \leq n}$, 证明恰有

$$\left(\bigsqcup_{1 \le i \le n} \bigsqcup_{\alpha \in \mathbb{R}} \gamma_i'(\alpha)\right) \cup \{s_i\}_{1 \le i \le n} = \overline{\mathbb{R}}.$$

即, 每一 γ_i' 不走回头路, 且所有 $\gamma_i'(\mathbb{R})$ 的无交并恰为 $\overline{\mathbb{R}}$ 去掉 g 的解集.

Corollary 4.2. 令上式中 n 次多项式 g 的一根为 ∞ , 即视 g 为通常意义下 n-1 次多项式, 则有以下推论.

若对任意 $\alpha \in \mathbb{R}$, $f + \alpha g$ 均有 n 个两两不同的实根,则当且仅当以下两点同时成立.

- $\deg f = \deg g + 1$,
- $(x \infty) \cdot g$ 与 f 作为 n 次多项式有交错的根.

定义 3 (分岔区间). 取 $f,g \in \mathbb{R}[x]$ 为有 n 个不等实根的 n 次多项式,且 f 与 g 无重根. 若 f 与 g 的根在 \leq 关系下有且仅有两处不交错 (形如 $r_i \leq r_j$ 或 $s_i \leq s_j$),则称如上不交错的区间为分岔区间.

例 4 $((x^2-1)+\alpha(4-x^2)$ 的分岔现象). 取 f=

$$(x^2-1), g=(4-x^2),$$
 则有根

$$r_1 \le r_2 \le s_1 \le s_2.$$

并有

- $1.\frac{1}{4} \le \alpha \le 1$ 时, $f + \alpha g$ 有两个共轭复根,
- $2.1 \le \alpha \le \frac{1}{4}$ 时, $f + \alpha g$ 在 \mathbb{R} 上有两个不等的根.
- $3. \alpha \in \{\frac{1}{4}, 1\}$ 时, $f + \alpha g$ 有重根.

相应的 $\gamma_1(\alpha)$ 与 $\gamma_2(\alpha)$ 如下图所示, 其中 $\gamma_i(0) = r_i$.

图中 $\gamma_i(\frac{1}{4}) = \mathcal{F}_1$ 与 $\gamma_i(1) = \mathcal{F}_2$ 分别为分岔起起点与分岔终点.

定义 4 (分岔). 称区间 (x,y) 为一次分岔, 若存在 $i \neq j$ 使得

- 1. $\gamma_i(x) = \gamma_j(x), \ \gamma_i(y) = \gamma_j(y);$
- $2. \gamma_i(\alpha) = \overline{\gamma_i(\alpha)}, \forall \alpha \in (x, y).$

例 5. 取各根为实数的实系数多项式 $f = \prod_{k=1}^4 (x - r_k)$ 与 $g = \prod_{k=1}^4 (x - s_k)$. 若满足

 $r_1 \le r_2 \le r_3 \le r_4 \le s_1 \le s_2 \le s_3 \le s_4 \le r_1$, 我们断言存在 $a \le b \le c \le d$ 使得

- $a \le \alpha \le b$ 或 $c \le \alpha \le d$ 时, $f + \alpha g$ 有四个两两不同的实根,
- $b \le \alpha \le c$ 时, $f + \alpha g$ 有且仅有两个共轭复根与两个两两不同的实根.

换言之, \mathbb{R} 上有一段孤立的开区间使得 $f + \alpha g$ 有且仅有两个不同的实根, 且 $f + \alpha g$ 在该区间端点外的某段邻域内有四个实根.

证明.考虑如下分岔图

注意到区间 (r_{i-1}, r_i) 与 (r_i, r_{i+1}) 中分岔点一者为起点, 另一者为终点. 从而 \mathcal{F}_0 与 \mathcal{F}'_0 构成一个分岔区间, 不妨记作 (b, c). 而 \mathcal{F}_1 与 \mathcal{F}_2 (或相应地, \mathcal{F}_3), \mathcal{F}_4 与 \mathcal{F}_3 (或相应地, \mathcal{F}_2) 构成另外两个分岔区间. 上图中

$$(b,c)\subseteq (0,\infty)=:(a,d)$$

即为所求.

定理 5 (交错根定理). 取有 n 个不等实根的实系数 多项式 $f = \prod_{k=1}^{n} (x - r_k)$ 与 $g = \prod_{k=1}^{n} (x - s_k)$,若 f 与 g 的根在 \leq 关系下出现了 n_m 个形如

$$s_j \leq r_i \leq r_{i+1} \leq \cdots \leq r_{i+m} \leq s_l$$

的式子,则 $f + \alpha g$ 至少有

$$\max \left\{ 0, n - \sum_{m \ge 1} n_m \left\lfloor \frac{m+1}{2} \right\rfloor \right\}$$

个实根.

特别地, 记 $r_1 \le r_2 \le \cdots \le r_n$, 记 $(\{s_i, r_i\}, \le)$ 关系下 (r_t, r_{t+1}) 之间的 \le 数为 N_t (约定 $r_i = r_{i+n}$), 则 $f + \alpha g$ 至少有

$$\frac{1}{2} \max \left\{ 0, n - \left| \sum_{t=1}^{n} (-1)^{t+N_1 + \dots + N_t} \right| \right\}$$

个实根.

例 6.实际上, 例 5 中的 \mathcal{F}_1 只能与 \mathcal{F}_2 构成分岔区间. 若 \mathcal{F}_1 与 \mathcal{F}_3 构成分岔区间, 则下图中红线与绿线交叉.

从而存在 $\alpha_1 \neq \alpha_2$ 使得 $f + \alpha_1 g$ 与 $f + \alpha_2 g$ 有重根. 此时 f 与 g 有重根, 矛盾.

定理 6 (单参数根曲线). 根据 6 中的结论, 不难发现 $\{\gamma_i\}_{1\leq i\leq n}$ 将 $\overline{\mathbb{C}}$ 划分为 N 个定向单连通开区间. 特别地, $\{\gamma_i\}_{1\leq i\leq n}$ 在 $\overline{\mathbb{C}}$ 上生成的定向图可按照 $\frac{\mathrm{d}(\gamma_i(\alpha))}{\mathrm{d}\alpha}$ 的方向一笔画, 称之单参数根曲线, 记作 r_0 .

例 7. 以下图为例.

 $\{\gamma_i\}_{1\leq i\leq 4}$ 划分出四个对连通区间, 按边缘定向列出如下

•
$$\mathcal{F}_1 \rightarrow r_1 \rightarrow s_4 \rightarrow \mathcal{F}_2 \rightarrow \mathcal{F}_1$$
,

•
$$\mathcal{F}_1 \to r_2 \to \mathcal{F}_0 \to \mathcal{F}_0' \to s_3 \to \mathcal{F}_2 \to \mathcal{F}_1$$
,

•
$$\mathcal{F}_0 \to \mathcal{F}'_0 \to s_2 \to \mathcal{F}_3 \to \mathcal{F}_4 \to r_3 \to \mathcal{F}_0$$
,

•
$$\mathcal{F}_4 \to r_4 \to s_1 \to \mathcal{F}_3 \to \mathcal{F}_4$$
.

可选择单参数根曲线, 使得依次经过

$$\mathcal{F}_2 \to \mathcal{F}_1 \to \mathcal{F}_2 \to \mathcal{F}_1 \to \mathcal{F}_0 \to \mathcal{F}'_0 \to \mathcal{F}_3$$
$$\to \mathcal{F}_4 \to \mathcal{F}_3 \to \mathcal{F}_4 \to \mathcal{F}_0 \to \mathcal{F}'_0 \to \mathcal{F}_2.$$