Chapitre 4

Trigonométrie

I. Radian et cercle trigonométrique

1) Cercle trigonométrique

Définition:

Le plan est dit **orienté** lorsque l'on a choisi un sens positif de rotation.

Remarque:

Dans le plan, par convention, on définit le sens positif comme l'inverse de celui des aiguilles d'une montre. Il est appelé sens trigonométrique.

Définition:

Dans le plan muni d'un repère $(O; \vec{i}, \vec{j})$ et orienté, le **cercle trigonométrique** est le cercle de centre O et de rayon 1.

Propriété:

Sur le cercle trigonométrique, la longueur de l'arc \widehat{IM} (exprimé dans l'unité de longueur du repère) est **proportionnelle** à la mesure de l'angle \widehat{IOM} exprimée en degré.

Mesure de ÎOM en degré	360	180	90	270
Longueur de l'arc \widehat{IM}	2π	π	$\frac{\pi}{2}$	$\frac{\pi}{2}$

2) Repérage sur le cercle trigonométrique

Dans le plan muni d'un repère orthonormé $(O; \vec{i}, \vec{j})$, on considère le cercle trigonométrique \mathscr{C} .

Soit A le point tel que $\overrightarrow{OA} = \overrightarrow{i}$ et d la droite orientée, perpendiculaire à l'axe perpendiculaire à l'axe des abscisses, qui passe par A, munie du repère $(A; \overrightarrow{j})$.

En « enroulant » cette droite d autour du cercle \mathscr{C} , on obtient une correspondance entre un point N de la droite d et un unique point M du cercle \mathscr{C} .

Le point A_1 de d d'abscisse 2π das le repère $(A; \vec{j})$ se retrouve ainsi en A.

Sur la figure ci-contre, le point N d'abscisse 3 sur la droite orientée d, se retrouve, après « enroulement » de d sur \mathscr{C} , en M tel que la longueur de l'arc \widehat{AM} est égale à la longueur AN.

Propriétés:

- Pour tout nombre réel α , le point d'abscisse α sur d coïncide avec un unique point M du cercle trigonométrique \mathscr{C} .
 - M s'appelle le **point-image** de α sur le cercle trigonométrique.
- Tout point de $\mathscr C$ est l'image d'une infinité de réels.

Si α est l'un d'eux, les autres sont réels $\alpha + k \times 2\pi$, où k est un entier relatif $(k \in \mathbb{Z})$.

Démonstration :

Comme le cercle trigonométrique est de rayon 1, son périmètre est de longueur 2π .

Le point de d d'abscisse $\alpha + 2\pi$ se retrouve donc, après enroulement, au même endroit que le point de d d'abscisse α .

Il en est de même si on ajoute à α un multiple de 2π .

Remarque:

On dit que α et $\alpha + 2k\pi$ sont égaux à 2π près. Ou encore que α est égal $\alpha + 2k\pi$ modulo 2π . $\pi \equiv 3\pi [2\pi]$ ou $-\pi \equiv 5\pi [2\pi]$.

3) Le radian

Définition:

On considère le cercle trigonométrique \mathscr{C} .

On appelle radian la mesure d'un angle qui intercepte un arc dont la longueur est égale à 1.

Remarque:

Cette définition ne dépend pas du rayon R de l'arc.

Le rapport de la longueur de l'arc par le rayon correspondant est

constant:
$$\frac{L_1}{R_1} = \frac{L_2}{R_2}$$

3

Propriété :

La mesure en **radian** de l'angle \widehat{IOM}

- $\bullet \quad$ est égale à la longueur de l'arc de cercle IM mesurée dans le sens trigonométrique.
- est proportionnelle à la mesure, en degré de l'angle qui intercepte cet arc.

Mesure de Î	ΙΟΜ	en degré	0	30	45	60	90	180	360
Mesure de Î	ÎОМ	en radian	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π	2π

II. Cosinus et sinus d'un angle

1) Cosinus et sinus

Définitions:

Soit M l'image d'un réel α sur le cercle trigonométrique \mathscr{C} .

- Le **cosinus** de α , noté $\cos \alpha$, est l'abscisse de M.
- Le sinus de α , noté $\sin \alpha$, est l'ordonnée de M.

Remarque:

Les coordonnées du point M, situé sur le cercle trigonométrique, sont $(\cos\alpha;\sin\alpha)$.

Exemple:

Le nombre réel $\frac{\pi}{2}$ a pour image le point J de coordonnées (0 ; 1) donc :

$$\cos \frac{\pi}{2} = 0 \text{ et } \sin \frac{\pi}{2} = 1.$$

Propriétés:

Pour tout réel α et pour tout entier relatif k:

- $\cos^2 \alpha + \sin^2 \alpha = 1$
- $-1 \le \cos \alpha \le 1$
- $-1 \leq \sin \alpha \leq 1$
- $\cos(\alpha + k \times 2\pi) = \cos\alpha$
- $\sin(\alpha + k \times 2\pi) = \sin \alpha$

Démonstrations:

- Soit K le projeté orthogonal de M sur l'axe $(O; \vec{j})$. Le théorème de Pythagore donne $OK^2 + KM^2 = OM^2$ soit $\sin^2 \alpha + \cos^2 \alpha = 1$.
- Le cercle trigonométrique est de rayon 1 ; on a donc $-1 \le \cos \alpha \le 1$ et $-1 \le \sin \alpha \le 1$.

Exemple:

$$\cos^2 \frac{\pi}{7} + \sin^2 \frac{\pi}{7} = \left(\cos \frac{\pi}{7}\right)^2 + \left(\sin \frac{\pi}{7}\right)^2 = 1$$

Remarque:

En notant H, le projeté orthogonal de M sur l'axe $(O; \vec{i})$.

On a donc le triangle OHM rectangle en H.

Ainsi
$$\cos \widehat{IOM} = \frac{OH}{OM} = \frac{OH}{1} = OH = \cos \alpha$$

et
$$\sin \widehat{IOM} = \frac{HM}{OM} = \frac{HM}{1} = HM = \sin \alpha$$

2) <u>Valeurs remarquables</u>

α	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
cosα	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
$\sin \alpha$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1

3) Angles associés

Propriétés:

Pour tout nombre réel α,

- $\cos(-\alpha) = \cos\alpha$
- $\sin(-\alpha) = -\sin\alpha$

Démonstration:

Les angles de mesure α et - α sont symétriques par rapport à l'axe des abscisses.

Propriétés:

Pour tout nombre réel α,

- $\cos(\alpha + \pi) = -\cos\alpha$
- $\sin(\alpha + \pi) = -\sin \alpha$

<u>Démonstration</u>:

Les angles de mesure α et $\alpha+\pi$ sont symétriques par rapport à l'origine.

Propriétés:

Pour tout nombre réel α,

- $\cos(\pi \alpha) = -\cos\alpha$
- $\sin(\pi \alpha) = \sin \alpha$

Démonstration:

Les angles de mesure α et π - α sont symétriques par rapport à l'axe des ordonnées.

Propriétés:

Pour tout nombre réel α,

- $\cos\left(\frac{\pi}{2} \alpha\right) = \sin \alpha$ $\sin\left(\frac{\pi}{2} \alpha\right) = \cos \alpha$

8

<u>Démonstration:</u>

Les angles de mesure α et $\frac{\pi}{2} - \alpha$ sont symétriques par rapport à la première bissectrice.

Propriétés:

Pour tout nombre réel α,

- $\cos\left(\frac{\pi}{2} + \alpha\right) = -\sin\alpha$
- $\sin\left(\frac{\pi}{2} + \alpha\right) = \cos\alpha$

Démonstration:

Les angles de mesure $\frac{\pi}{2}$ + α et $\frac{\pi}{2}$ - α sont symétriques par rapport à l'axe des ordonnées.

En effet, on a
$$\frac{\pi}{2}$$
+ $\alpha = \pi - \left(\frac{\pi}{2} - \alpha\right)$.

Donc
$$\cos\left(\frac{\pi}{2} + \alpha\right) = \cos\left(\pi - \left(\frac{\pi}{2} - \alpha\right)\right) = -\cos\left(\frac{\pi}{2} - \alpha\right) = -\sin\alpha$$

et
$$\sin\left(\frac{\pi}{2} + \alpha\right) = \sin\left(\pi - \left(\frac{\pi}{2} - \alpha\right)\right) = \sin\left(\frac{\pi}{2} - \alpha\right) = \cos\alpha$$