3D- Riduzione Gerarchica di Modello con le basi istruite

Matteo Aletti & Andrea Bortolossi

Politecnico di Milano

16 Ottobre 2013

- Fondamenti teorici
 - Hierarchical Model Reduction in 3D
 - Basi istruite

- 2 Implementazione
 - Basis1DAbstract
 - ModalSpace

Teoria

Motivazione

esistenza di una direzione dominante

Vogliamo risolvere un certo tipo di problemi: quelli che presentano una direzione preferenziale

Impostazione geometrica

il dominio

- Fibra di supporto rettilinea Ω_{1D} dove avviene la dinamica dominante.
- Suddivisione del dominio in slices γ_x ortogonali alla fibra di supporto.

Idea

mapping e serie di Fourier

• mappare Ω in un dominio di riferimento $\widehat{\Omega}$ in modo che

$$\hat{\gamma}_{\hat{x}} = \hat{\gamma} \ \forall \hat{x} \in \widehat{\Omega}_{1D}$$

 espandere, in direzione trasversale, la soluzione rispetto alla base di Fourier generalizzata

$$\{\varphi_k(\hat{y},\hat{z})\}_{k\in\mathbb{N}}$$

Notazione: lavoreremo già sul riferimento, non useremo quindi i cappelli.

Spazi in direzione trasversale

$$V_{\gamma}^{\infty} = \left\{ v(y, z) = \sum_{k=1}^{\infty} v_k \varphi_k(y, z) \right\}$$
 $V_{\gamma}^m = \left\{ v(y, z) = \sum_{k=1}^{m} v_k \varphi_k(y, z) \right\}$

Usiamo uno spazio V_{1D} di tipo $H^1(\Omega_{1D})$ lungo la **direzione principale**. Possiamo ora definire gli spazi ridotti come **spazi prodotto**

Spazi ridotti

$$\begin{split} V^{\infty}(\Omega) &= V_{1D} \otimes V_{\gamma}^{\infty} := \left\{ v(x,y,z) = \sum_{k=1}^{\infty} v_k(x) \varphi_k(y,z), v_k \in V_{1D} \right\}. \\ V^{m}(\Omega) &= V_{1D} \otimes V_{\gamma}^{m} := \left\{ v(x,y,z) = \sum_{k=1}^{m} v_k(x) \varphi_k(y,z), v_k \in V_{1D} \right\}. \end{split}$$

 $\grave{\text{E}}$ lo spazio delle **combinazioni lineari a coefficienti in V**_{1D} delle funzioni di base della fibra trasversale.

II problema

Caso condizioni di Dirichlet

Il problema che vogliamo risolvere ...

$$\begin{cases} -\mu \Delta u + \beta \cdot \nabla u + \sigma u = f \text{ in } \Omega \\ u = 0 \text{ su } \partial \Omega \end{cases}$$

... e la sua formulazione debole

Trovare $u \in H_0^1(\Omega)$ tale che

$$\int_{\Omega} \mu \nabla u \nabla v + \beta \cdot \nabla u v + \sigma u v d\Omega = \int_{\Omega} f v d\Omega \qquad \forall v \in H_0^1(\Omega).$$

Modelli ridotti

Problemi 1D accoppiati

l coefficienti $r_{k,j}^{st}$ accoppiano i problemi 1D: comprimono le informazioni nella fibra trasversale tramite opportuni integrali su γ .

Trovare
$$\{u_k\}_{k=1}^m$$
 con $u_k \in V_{1D} \ \forall k=1 \dots m$ tale che

$$\sum_{k=1}^{m} \int_{\Omega_{1D}} \left[\underbrace{\hat{r}_{k,j}^{11} \frac{\partial u_k}{\partial x} \frac{\partial \theta_j}{\partial x}}_{\text{Diffusione}} + \underbrace{\hat{r}_{k,j}^{10} \frac{\partial u_k}{\partial x} \theta_j}_{\text{Trasporto}} + \underbrace{\hat{r}_{k,j}^{00} u_k \theta_j}_{\text{Reazione}} dx \right] = \int_{\Omega_{1D}} \underbrace{\theta_j f_k}_{\text{Forzante}} dx. \ \, \forall j = 1 \dots m \quad \theta_j \in V_{1D}$$

Struttura alegebrica

Pattern di sparsità

Per V_{1D} utilizziamo una discretizzazione elementi finiti P1 ottenendo il seguende **pattern di sparsità**.

14 elementi, 3 modi.

Nota: i blocchi si riferiscono alle frequenze, ogni blocco ha il pattern proprio degli elementi finiti

Scelta della base

Basi trigonometriche e polinomi di Legendre

In **letteratura** è stato considerato il problema di **Dirichlet** in **2D**. Le basi scelte sono state

- Funzioni trigonometriche: $sin(\pi kx)$ in (0,1)
- Polinomi di Legendre moltiplicati per un fattore $(1 x^2)$ + Gram-Schmidt

[Prof. Perotto]

 $[\mathsf{Prof.}\ \mathsf{Blanco},\ \mathsf{LNCC}]$

In questo progetto

abbiamo esteso l'approccio **trigonometrico** al **caso 3D** con condizioni al bordo omogenee di tipo piú **generale**.

Ipotesi geometriche

Dominio parallelepipedo

Ipotesi per le condizioni al bordo su Γ_{lat}

- omogenee
- di ogni tipo ma con coefficienti costanti

Sia V uno spazio di tipo H^1 . Sia $a(\cdot, \cdot)$ una **forma bilineare** in V, continua, **simmetrica** e debolmente coerciva $(a(u, u) \ge \alpha ||u||_V^2 + \lambda_0 ||u||_{L^2}^2)$. Allora:

- (a) L'insieme degli autovalori è numerabile ed è una successione $\{\lambda_m\}_{m\geq 1}$ tale che $\lambda_m\to +\infty$;
- (b) se u ,v sono autofunzioni corrispondenti ad autovalori differenti, allora

$$a(u, v) = 0 = (u, v)_{L^2}$$
.

Inoltre, L^2 ha una base ortonormale $\{u_m\}_{m\geq 1}$ di autofunzioni di a;

(c) la successione $\{u_m/\sqrt{\lambda_0+\lambda_m}\}_{m\geq 1}$ è anche una base ortonormale in V, rispetto al prodotto scalare

$$((u, v)) = a(u, v) + \lambda_0(u, v)_{L^2}.$$

Problema agli autovalori ausiliario

Due sottoproblemi agli autovalori

Problema agli autovalori su γ : un caso con condizioni al bordo miste Dirichlet e Robin

$$\begin{cases} -\Delta u = \lambda u & \text{in } \gamma \\ u = 0 & \text{su } 1, 3, 4 \\ \mu \frac{\partial u}{\partial y} + \chi u = 0 & \text{su } 2 \end{cases}$$

Ipotesi:
$$u(y,z) = Y(y)Z(z)$$

$$\begin{cases} -\frac{Y''}{Y} - \frac{Z''}{Z} = \lambda & \longrightarrow -Y'' = K_y Y, \ -Z'' = K_z Z, \ \lambda = K_z + K_y \\ u = 0 \text{ su } 1, 3 & \longrightarrow Y(y)Z(1) = 0, \ Y(y)Z(0) = 0 \ \forall y \in (0, L_y) \\ u = 0 \text{ su } 4 & \longrightarrow Y(0)Z(z) = 0 \ \forall z \in (0, L_z) \\ \mu \frac{\partial u}{\partial y} + \chi u = 0 \text{ su } 2 & \longrightarrow \mu \frac{\partial Y}{\partial y}(1)Z(z) + \chi Y(1)Z(z) = 0 \ \forall z \in (0, L_z) \end{cases}$$

Soluzione (semi-)analitica del problema agli autovalori

Soluzione dei due sottoproblemi e combinazione dei risultati

$$\begin{cases} -Y'' = K_y Y \text{ in } (0, L_y) \\ Y(0) = 0 \\ \mu Y'(L_y) + \chi Y(L_y) = 0 \end{cases} \begin{cases} -Z'' = K_z Z \text{ in } (0, L_z) \\ Z(0) = 0 \\ Z(L_z) = 0 \end{cases}$$

$$\Longrightarrow \{\varphi_{y,p}(y), K_{y,p}\}_{p=1}^{\infty} \qquad \Longrightarrow \{\varphi_{z,q}(z), K_{z,q}\}_{q=1}^{\infty}$$

Combinando queste successioni otteniamo le soluzioni del problema iniziale agli autovalori su γ

$$\{\varphi_k(y,z),\lambda_k\}=\{\varphi_{y,p}(y)\varphi_{z,q}(z),K_{y,p}+K_{z,q}\}$$

Due questioni da affrontare...

- Come risolvere il singolo problema agli autovalori ?
- Siamo interessati ad ordinare le $\{\varphi_k(y,z)\}$ rispetto al valore di $\{\lambda_k\}$: come è possibile farlo a partire da $\{K_{y,p}\}$ e $\{K_{z,q}\}$?

Risoluzione sottoproblema agli autovalori

Ricerca degli zeri

Forma della soluzione generale

$$\phi_{y,k}(y) = A_k \sin(w_{y,k}y) + B_k \cos(w_{y,k}y), \quad w_{y,k}^2 = K_{y,k}$$

$$a$$
 incognite $A_k, B_k, w_{y,l}$ a condizioni di bordo a normalizzazione

- Note: 1. ortogonalità garantita dal teorema spettrale
 - 2. equazione spesso non lineare in $w_{y,k}$

а	b	С	d	Type	λ_k	Α	В
χ	μ	χ	μ	Rob-Rob	$\tan\left(\sqrt{\lambda_k}\right)\left(\chi-\frac{\mu^2\lambda_k}{2}\right)+2\mu\sqrt{\lambda_k}=0$	1	$\frac{\mu\sqrt{\lambda_k}}{\chi}$
1	0	χ	μ	Dir-Rob	$ an\left(\sqrt{\lambda_k} ight) + rac{\mu\sqrt{\lambda_k}}{\chi} = 0$ $\lambda_k = (k\pi)^2$	1	$- an(\sqrt{\lambda_k})$
1	0	1	0	Dir-Dir	$\lambda_k = (k\pi)^2$	1	0
0	1	0	1	Neu-Neu	$\lambda_k = (k\pi)^2$	0	1

Un problema di ordinamento

Esempio caso condizioni di Dirichlet

Esempio: condizioni di Dirichlet su Γ_{lat} con $L_y = \pi$ e $L_z = 3\pi/2$. Si ha che

$$K_{y,p} = p^2, K_{z,q} = (2/3q)^2.$$

Per il problema dell'ordinamento abbiamo sviluppato l'algoritmo implementato in **EigensProvider**.

Implementazione

Basis1DAbstract

Una classe astratta per risolvere i sottoproblemi agli autovalori

Il problema viene sempre rimappato nell'intervallo (0,1)

- Calcola gli autovalori
 - \rightarrow Next()
- Valuta le funzioni di base
 - ightarrow EvaluateBasis(...)

Ricerca degli zeri con condizioni di Robin

Polimorfismo su Basis1DAbstract...

... e su EducatedBasisFunctorAbstract

Per gestire le diverse classi figlie di Basis1DAbstract abbiamo utilizzato una **factory**.

ModalSpace

Una classe che gestisce la costruzione dell'intera base modale

- Gestisce le formule di quadratura sulla slice
- Istanzia i corretti generatori di base
 - \rightarrow AddSliceBC(...)
- Calcola gli autovalori del problema 2D
 - ightarrow EigensProvider(...)
- Valuta le funzioni di base e le loro derivate nei nodi di quadratura
 → ??
- Calcola i coefficient $r_{k,j}^{st}$
 - ightarrow Compute_(...)

AddSliceBC(...)

due metodi uno per ogni direzione

```
void ModalSpace::
AddSliceBCY (const string& left, const string& right, const
    Real& mu, const Real& chi)
   Creation of the correct basis generator
M_genbasisY = Basis1DFactory::istance().createObject(left+
    right);
// Setting of the parameters
M_genbasisY \rightarrow setL(M_Ly);
M_genbasisY \rightarrow setMu(mu);
M_genbasisY -> set Chi (chi);
return:
```

EigensProvider()

Ordinare correttamente gli autovalori non è facile

Una visualizzazione dell'algoritmo ad albero

