ELABORATO 1 - PRODOTTO SCALARE

LO BRUTTO FABIO / MAIONE PAOLO

DEFINIZIONE DEL PROBLEMA

Si vuole progettare un algoritmo in MPI per risolvere il prodotto scalare tra due vettori di reali, di dimensione N, su p processori.

In particolare si utilizza l'infrastruttura S.C.o.P.E. per permettere l'esecuzione del software in un ambiente parallelo.

DESCRIZIONE DELL'ALGORITMO

In particolare le fasi dell'algoritmo, implementato nel file *elaborato 1.c*, sono:

- 1) Distribuzione dei due vettori in p processori: ognuno dei p processori eseguirà il prodotto scalare sulla porzione dei vettori ricevuti dal processo *root*, cioè quello con rank 0;
- 2) Elaborazione dei prodotti scalari parziali in parallelo;
- 3) Combinazione dei prodotti scalari parziali nel processo root che determinerà il risultato finale.

A tal proposito sono state utilizzate le primitive fornite da MPI (rispettivamente per la prima fase MPI_Scatterv() e per la terza MPI_Reduce()).

Inoltre l'algoritmo progettato comprende anche il caso in cui la dimensione dim dei vettori non sia multipla del numero di processori p a disposizione.

Si è scelto di misurare i tempi di esecuzione nel processo di rank 0 usando la primitiva MPI Wtime() tra la fase 2 e la fase 3 scegliendo il minimo tra 3 misurazioni ripetute.

Infine, si osservi che i controlli di robustezza del software sono stati interamente delegati al processo *root*.

INPUT, OUTPUT E CONDIZIONI DI ERRORE

- **Input**: i due vettori x e y di cui effettuare il prodotto scalare, la loro dimensione (dim) e il numero di processori (numero_processori) da utilizzare.
- Output: il prodotto scalare dei vettori x e y.
- Condizioni di errore: la dimensione dei vettori deve essere uguale per entrambi e deve essere un intero positivo non minore del numero di processori specificato in ingresso. In

particolare quest'ultimo deve coincidere con il corrispondente parametro nodes del file di configurazione *elaborato 1.pbs*.

ESEMPIO DI FUNZIONAMENTO

Nell'immagine seguente vi è un esempio di funzionamento.

```
%esempio di funzionamento
funzionamento
```

Esempio di funzionamento con 4 processori e dimensione dei vettori pari a 1000

```
b is running on node(s):
273.scope.unina.it
273.scope.unina.it
273.scope.unina.it
100
200
                                  os quadur la cultural un ar Scobernia scoperantia (18
8) executing queue is studenti
8: executing queue is studenti
8: executing directory is /homes/DIS/CALCPAR/2019/M63000769/elaborati/elaborato_1/prodotto_scalare
8: execution mode is PBS_BATCH
300
                                      : job identifier is 3917691.torque02.scope.unina.it
                                       job name is elaborato 1
node file is /var/spool/pbs/aux//3917691.torque02.scope.unina.it
400
                                  ina.tt/intel/composer xe 2013 spl.3.174/mpitt/bin/intel64:/opt/exp soft/unina.it/intel/composer xe 2013 spl.3.174/bin/intel64:/opt/exp soft/unina.it/intel/composer xe 2013 spl.3.174/bin/intel64:/opt/exp soft/unina.it/intel/composer xe 2013 spl.3.174/bin/intel64:/opt/e-cachen/bin:/opt/e-cachen/dcap/bin:/opt/edg/bin:/opt/edg/bin:/opt/edcachen/bin:/opt/exp soft/HADOOP/hadoop
500
600
                                  equo: /usr/lib64/openmpi/1.4-gcc/bin/mpicc -o /homes/DIS/CALCPAR/2019/M63000769/elaborati/elaborato_1/prodotto_scalare/elaborato_1 /homes/DIS/CARCPAR/2019/M63000769/elaborato_1/prodotto_scalare/elaborato_1.c
equo: /usr/lib64/openmpi/1.4-gcc/bin/mpiexec -machinefile /var/spool/pbs/aux//3917691.torque02.scope.unina.it -np 4 /homes/DIS/CALCPAR/2019/M6
0765/elaborati/elaborato_1/prodotto_scalare/elaborato_1
                                00769/elaborati/elaborato l/prodotto scalare/elaborato l
iao sono il processo 3 e mi chiamo muzzi.scope.unina.it
iao sono il processo 2 e mi chiamo muzzi.scope.unina.it
iao sono il processo 2 e mi chiamo muzzi.scope.unina.it
iao sono il processo 2 e mi chiamo muzzi.scope.unina.it
ino sono il processo 0. Il mio prodotto scalare parziale è: 78539.8163397394964704
ono il processo 1. Il mio prodotto scalare parziale è: 78539.8163397394964704
ono il processo 2. Il mio prodotto scalare parziale è: 78539.8163397394964704
ono il processo 3. Il mio prodotto scalare parziale è: 78539.8163397394964704
ono il processo 3. Il mio prodotto scalare parziale è: 78539.8163397394964704
ono il processo 3. Il mio prodotto scalare parziale è: 78539.8163397394964704
ono il processo 3. Il mio prodotto scalare parziale è: 78539.816339739588817.
ono il processo 3. Il mio prodotto scalare parziale di 0.0004549026489258 secondi.
M6300076969ui-studenti prodotto scalare§
700
800
900
                                                           200
                                                                                                     400
                                                                                                                                                  600
                                                                                                                                                                                             800 1000 1200 1400 1600
                                                                                                                                                                                                                                                                                                                                                                                                                     1800
```

ESEMPI DI ERRORE

Nelle successivi immagini, invece, sono mostrati i messaggi di errore al verificarsi delle condizioni sopra citate.

Errore: numero di processori diverso da quello specificato (in questo caso 4)

```
100 wn273.scope.unina.it
                                      BS: qsub is running on ui-studenti.scope.unina.it
 200 PBS: originating queue is studenti
 300
                                      BS: job name is elaborato 1
                                 PBS: node file is /var/spool/pbs/aux//3917684.torque02.scope.unina.it
PBS: current home directory is /homes/DIS/CALCPAR/2019/M63000769
400 PBS: PATH = /usr/lib64/openmpi/1.2.7-gcc/bin:/usr/kerberos/bin:/opt/exp soft/unina.it/intel/composer xe 2013 spl.3.174/bin/intel64:/opt/exp
                                    ost/funina.it/intel/composer xe_2013 spl.3.174/mpirt/bin/intel64:/opt/exp_soft/unina.it/intel/composer xe_2013 spl.3.174/min/intel64:/opt/exp_soft/unina.it/intel/composer xe_2013 spl.3.174/bin/intel64:/opt/exp_soft/unina.it/intel/composer xe_2013 spl.3.174/bin/intel64:/opt/exp_soft/unina.it/intel/composer xe_2013 spl.3.174/debugger/gui/intel64:
opt/d-cache/srm/bin:/opt/d-cache/dcap/bin:/opt/edg/bin:/opt/glite/bin:/opt/globus/bin:/opt/log/bin:/usr/local/bin:/bin:/usr/bin:/opt/exp_soft/unina.it/intel/composer xe_2013 spl.3.174/debugger/gui/intel64:
opt/d-cache/srm/bin:/opt/d-cache/dcap/bin:/opt/edg/bin:/opt/glite/bin:/opt/globus/bin:/opt/log/bin:/usr/local/bin:/bin:/usr/bin:/opt/exp_soft/unina.it/intel/composer xe_2013 spl.3.174/debugger/gui/intel64:
opt/d-cache/srm/bin:/opt/d-cache/dcap/bin:/opt/edg/bin:/opt/glite/bin:/opt/globus/bin:/opt/log/bin:/usr/local/bin:/bin:/usr/bin:/opt/exp_soft/unina.it/intel/composer xe_2013 spl.3.174/debugger/gui/intel64:
opt/d-cache/srm/bin:/opt/d-cache/dcap/bin:/opt/edg/bin:/opt/glite/bin:/opt/globus/bin:/opt/log/bin:/usr/local/bin:/bin:/usr/bin:/opt/exp_soft/unina.it/intel/composer xe_2013 spl.3.174/debugger/gui/intel64:
opt/d-cache/srm/bin:/opt/d-cache/dcap/bin:/opt/edg/bin:/opt/glite/bin:/opt/globus/bin:/opt/log/bin:/usr/local/bin:/bin:/usr/bin:/usr/bin:/opt/exp_soft/unina.it/intel/composer xe_2013 spl.3.174/debugger/gui/intel64:
opt/d-cache/srm/bin:/opt/d-cache/dcap/bin:/opt/edg/bin:/opt/glite/bin:/opt/glite/bin:/opt/log/bin:/opt/glite/bin:/opt/glite/bin:/opt/glite/bin:/opt/glite/bin:/opt/glite/bin/glite/bin/glite/bin/glite/bin/glite/bin/glite/bin/glite/bin/glite/bin/glite/bin/glite/bin/glite/bin/glite/bin/glite/bin/glite/bin/glite/bin/glite/bin/glite/bin/glite/bin/glite/bin/glite/bin/glite/bin/glite/bin/glite/bin/glite/bin/glite/bin/glite/bin/glite/bin/glite/bin/glite/bin/glite/bin/glite/bin/glite/bin/glite/bin/glite/bin/glite/bin/glite/bin/glite/bin/glite/bin/glite/bin/glite/bin/glite/bin/glite/bin/glite/bin/glite/bin/glite/bin/glite/bin/glite/bin/glite/bin/glite/bin/glite/b
                             /BADOOP/hadoop-1.0.3/bin:/opt/exp_soft/unina.it/intel/composerxe/bin/intel64/:/opt/exp_soft/unina.it/MFJExpress/mpj-v0_38/bin:/homes/DIS/CAL/PAR/2019/M63000769/bin
 500
600
 700
                                                                         200
                                                                                                                           400
                                                                                                                                                                                 600
                                                                                                                                                                                                                                      800
                                                                                                                                                                                                                                                                                         1000
                                                                                                                                                                                                                                                                                                                                              1200
                                                                                                                                                                                                                                                                                                                                                                                                   1400
                                                                                                                                                                                                                                                                                                                                                                                                                                                        1600
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              1800
```

Errore: la dimensione dei vettori non è positiva

```
ui-studenti prodotto_scalare]$ cat elaborato_1.out
100
200
                     MS: qsub is running on ui-studenti.scope.unina.it
300
                    BS: job identifier is 3917682.torque02.scope.unina.it
                    BS: node file is /var/spool/pbs/aux//3917682.torque02.scope.unina.it
BS: current home directory is /homes/DIS/CALCPAR/2019/M63000769
                    SS: PATH = /usr/lib64/openmpi/1.2.7-gcc/bin:/usr/kerberos/bin:/opt/exp_soft/unina.it/intel/composer xe_2013_spl.3.174/bin/intel64:/opt/exp_soft/unina.it/intel/composer xe_2013_spl.3.174/bin/intel64:/opt/exp_soft/unina.it/intel/composer xe_2013_spl.3.174/bin/intel64:/opt/exp_soft/unina.it/intel/composer xe_2013_spl.3.174/bin/intel64:/opt/exp_soft/unina.it/intel/composer xe_2013_spl.3.174/bin/intel64:/opt/d-cache,
rm/bin:/opt/d-cache/dcap/bin:/opt/edg/bin:/opt/glite/bin:/opt/glite/bin:/opt/glite/bin:/opt/glite/bin:/opt/glite/bin:/opt/glite/bin:/opt/glite/bin:/opt/glite/bin:/opt/glite/bin:/opt/exp_soft/unina.it/intel/cache/bin:/opt/glite/bin:/opt/exp_soft/unina.it/mpJExpress/mpj-v0_38/bin:/homes/DIS/CALCPRR/2019/M63000768/k
500
600
                    LCPAR/2019/M63000769/elaborati/elaborato 1/prodotto scalare/elaborato 1.c
seguo: /usr/lib64/openmpi/1.4-gcc/bin/mplexec -machinefile /var/spool/pbs/aux//3917602.torque02.scope.unina.it -mp 4 /homes/DIS/CALCPAR/2019/M6
700
                     rore! La dimensione dei vettori non è positiva.
                     63000769@ui-studenti prodotto_scalare]$
                                      200
                                                                  400
                                                                                               600
                                                                                                                             800
                                                                                                                                                       1000
                                                                                                                                                                                   1200
                                                                                                                                                                                                                 1400
                                                                                                                                                                                                                                                                          1800
                                                                                                                                                                                                                                             1600
```

Errore: la dimensione dei vettori è minore del numero di processori

	Eı	rrore: le	e dime	nsione	dei vet	tori soı	no dive	rse	
	[M63000769@ui-studenti	prodotto_scalar	e]\$ cat elabora	to_1.out					
100	This job is allocated Job is running on node(mn273.scope.unina.it wn273.scope.unina.it wn273.scope.unina.it wn273.scope.unina.it			-					
200	= PBS: qsub is running on PBS: originating queue	is studenti	ope.unina.it						
300	PBS: executing queue is PBS: working directory PBS: execution mode is PBS: job identifier is PBS: job name is elabor	is /homes/DIS/C PBS_BATCH 3917686.torque0			i/elaborato_1/pr	odotto_scalare			
400	PBS: node file is /var/ PBS: current home direc PBS: PATH = /usr/lib64/ oft/unina.it/intel/comp	spool/pbs/aux// tory is /homes/ openmpi/1.2.7-g	DIS/CALCPAR/201 cc/bin:/usr/ker	9/M63000769 beros/bin:/opt/	exp_soft/unina.i				
500	soft/unina.it/intel/com opt/d-cache/srm/bin:/op /HADOOP/hadoop-1.0.3/bi PAR/2019/M63000769/bin	poser_xe_2013_s t/d-cache/dcap/	p1.3.174/bin/in bin:/opt/edg/bi	tel64_mic:/opt/e n:/opt/glite/bi	exp_soft/unina.i n:/opt/globus/bi	t/intel/composer n:/opt/lcg/bin:/	xe 2013 spl.3. usr/local/bin:/	174/debugger/gu: bin:/usr/bin:/o	i/intel64:/ pt/exp_soft
600	Eseguo: /usr/lib64/open IS/CALCPAR/2019/M630007 Eseguo: /usr/lib64/open	69/elaborati/el mpi/1.4-gcc/bin	aborato_1/prodo /mpiexec -machi	tto_scalare/ela nefile /var/spo	oorato_1.c				
700	/M63000769/elaborati/el Errore! Le dimensioni d [M63000769@ui-sțudenti	lei due vettori	sono diverse	porato_1					
	200	400	600	800	1000	1200	1400	1600	1800

ANALISI DELLE PRESTAZIONI (T(p), S(p), E(p))

Di seguto per brevità si indicherà con p il numero di processori e con N la dimensione dei vettori x e y.

Tempo di esecuzione - T(p)

Si è scelto di misurare i tempi di esecuzione nel processo *root* usando la primitiva MPI_Wtime(). In particolare l'intervallo di tempo misurato è quello che comprende le fasi 2 e 3 dell'algoritmo prima citate.

Per ciascuna misurazione (al variare di N da 10k a 100M e al variare di p da 2 a 16) è stato considerato il minimo tra 3 esecuzioni ripetute, eseguite in momenti diversi.

Di seguito si riportano i risultati in forma di tabelle e grafici.

%esecuzione script per tabelle e grafici
tempi

Warning: Image is too big to fit on screen; displaying at 67%

	Tempi								
	×10000	×100000	×1000000	×10000000	×100000000				
2	1.130104064941000e-04	4.260540008545000e-04	3.340959548950200e-03	3.213310241699220e-02	3.191530704498290e-01				
4	1.859664916992000e-04	3.662109375000000e-04	1.817941665649400e-03	1.619505882263180e-02	1.555759906768790e-01				
8	5.548000335693000e-04	6.389617919922000e-04	1.295089721679700e-03	8.368968963623000e-03	7.789397239685060e-02				
16	2.277851104736300e-03	2.377033233642600e-03	2.490043640136700e-03	6.289005279541000e-03	4.117798805236820e-02				

L'ultimo grafico è quello che riassume i risultati ottenuti per tutti i possibili valori di N e p. Sono forniti due ulteriori grafici (i primi due) che mostrano gli andamenti più nel dettaglio.

Tali risultati verificano la legge di Amdahl: all'aumentare del numero di processori, fissata la dimensione del problema (N), i tempi peggiorano (cioè aumentano). Per esempio, si osservi il comportamento nel caso di $N=10^6$ nel grafico "Analisi dettagliata da 10k a 1M". Inoltre è verificata anche la legge di Gustafson in quanto all'aumentare sia di N che di p, il tempo di esecuzione migliora (cioè diminuisce) come è evidente nel grafico "Analisi complessiva".

Speed up ed Efficienza - S(p) ed E(p)

Si è calcolato, inoltre, il tempo di riferimento T(1) che corrisponde al tempo di esecuzione su un unico processore.

A partire dai tempi misurati nella sezione precedente e da T(1) è stato calcolato lo speed-up al variare di N e p.

%esecuzione script per tabelle e grafici
speedup

	Speed up								
		x10000	x100000	x10	00000	x1000000) x	100000000	
50	- 2	0.911	1.699	5	1.9093	1.93	35	1.9466	
100	_4	0.553	1.977	2	3.5089	3.83	64	3.9932	
150	8	0.185	1.133	2	4.9254	7.42	39	7.9756	
	16	0.045	0,304	5	2.5618	9.87	91	15.0869	
		100	200 300	400	500	600 700	80	0 900	

Infine si è calcolata l'efficienza rapportando lo speed-up S(p) al numero di processori p.

%esecuzione script per tabelle e grafici efficienza

	Efficienza									
		×10000	×100000	x1000000	x1000000	x100000000				
50	_2	0.4557	0.8497	0.9546	0.9668	0.9733				
100	-4	0.1385	0.4943	0.8772	0.9591	0.9983				
150	8	0.0232	0.1417	0.6157	0.9280	0.9969				
	16	0.0028	0,0190	0.1601	0.6174	0.9429				
		100 20	300	400 500	600 700	800 900				

Conclusioni

Dai grafici appena presentati si possono trarre alcune considerazioni.

Analizzando l'efficienza si nota come nel caso $N=10^4$ l'efficienza è bassa anche per 2 processori; ciò indica che è un problema che non conviene risolvere in parallelo, fissate queste dimensioni.

Tuttavia anche da $N=10^5$ fino a $N=10^7$ si osserva che l'efficienza migliore si ottiene in corrispondenza di soltanto 2 processori.

Si possono ripetere analoghe considerazioni come quelle fatte per i tempi, notando che, per N fissato, l'efficienza peggiora dopo un certo valore di p, e che, in generale, all'aumentare sia di N che di p, l'efficienza migliora.

Solo nel caso in cui N=108 l'efficienza ottima si ha con p=4 processori.

Analoghe considerazioni per lo speedup.

ANALISI DELL' ACCURATEZZA

Confrontando il risultato ottenuto sul cluster Scope e quello ottenuto su MATLAB si ottiene il seguente errore relativo, fissando a 8 il numero di processori con dimensione dei vettori pari a 10^5 .

%esecuzione script per i test di accuratezza accuratezza