Математика для Data Science. Теория вероятностей. Шпаргалка

Содержание

Гретья неделя. Распределения, дисперсия и счётное пространство исходов	
Распределения случайных величин	
Независимые случайные величины	
Дисперсия	
Биномиальное распределение и стандартное отклонение	
Ряды	
Абсолютно сходящиеся ряды	
Счётное пространство исходов	

Третья неделя. Распределения, дисперсия и счётное пространство исходов

Распределения случайных величин

Функция $p_X: \mathbb{R} \to [0,1]$, заданная условием $p_X(a) := P(X=a)$ для любого $a \in R$, называется функцией вероятности случайной величины X.

Мы говорим, что функция вероятности случайной величины X задаёт $pacnpedenenue\ X$.

Две случайные величины с совпадающими функциями вероятности называются *одинаково распределёнными*.

Независимые случайные величины

Случайные величины X и Y nesaeucumu, если для любых $a \in \mathbb{R}, b \in \mathbb{R}$ события X = a и Y = b независимы. То есть:

$$\forall a, b \in \mathbb{R} : P(X = a \cap Y = b) = P(X = a) \cdot P(X = b).$$

Если случайные величины X и Y независимы, то $E[X \cdot Y] = E[X]E[Y]$.

Если случайные величины совместно независимы и одинаково распределены, то слово "совместно" часто опускают, и говорят просто "независимые и одинаково распределённые". В английском это звучит как "independent and identically distributed", что сокращают до i.i.d.

Пусть даны два вероятностных пространства с пространствами исходов Ω_1 и Ω_2 , и функциями вероятности P_1 и P_2 соответственно. Тогда их *произведение* это вероятностное пространство $\Omega_1 \times \Omega_2$, определённое так:

- исходы в этом вероятностном пространстве это всевозможные пары (ω_1, ω_2) с $\omega_1 \in \Omega_1, \omega_2 \in \Omega_2,$
- вероятности соответствующих исходов равны $P(\omega_1, \omega_2) := P_1(\omega_1) \cdot P_2(\omega_2)$

Аналогично можно построить произведение любого числа вероятностных пространств.

Дисперсия

Дисперсия случайной величины X это число $E[(X-E[X])^2]$, обозначаемое Var[X]. Эквивалентная формула дисперсии такая: $Var[X]=E[X^2]-E[X]^2$.

Свойства дисперсии

- 1. Для любой случайной величины X выполнено $Var[X] \geq 0$
- $2. \ Var[X] = 0$ если и только если X это постоянная случайная величина
- 3. Если X и Y это независимые случайные величины, то Var[X+Y] = Var[X] + Var[Y].
- 4. Если $c \in \mathbb{R}$ и X случайная величина, то $Var[cX] = c^2 Var[X]$.

Биномиальное распределение и стандартное отклонение

Cтандартным отклонением случайной величины X называется $\sqrt{Var[X]}$.

Пусть X=1 с вероятностью p и X=0 с вероятностью 1-p. Такое распределение случайной величины называется распределением Бернулли с вероятностью успеха p.

Пусть X_1, \ldots, X_n независимы и имеют распределение Бернулли с вероятностью успеха p. Тогда распределение случайной величины $S := X_1 + \cdots + X_n$ называется биномиальным распределением c n cmeneнями cвободы.

Биномиальное распределение обозначается Bin(n,p). Фразу "S имеет биномиальное распределение с n степенями свободы" записывают так: $S \sim Bin(n,p)$.

Ряды

Pядом называется выражение вида $a_1 + a_2 + a_3 + \dots$, где $\{a_n\}$ это последовательность вещественных чисел.

Также используется запись $\sum_{n=1}^{\infty} a_n := a_1 + a_2 + a_3 + \dots$

Числа a_n называются *членами* ряда.

Частичными суммами ряда называются такие выражения:

- $S_1 := a_1$
- $S_2 := a_1 + a_2$
- $S_3 := a_1 + a_2 + a_3$

• $S_n = a_1 + a_2 + a_3 + \dots + a_n$

Cуммой pядa называется предел частичных сумм, то есть $\lim_{n \to \infty} S_n$. Ряд называется cходящимся, если предел $\lim_{n \to \infty} S_n$ существует, и pасходящимся в противном случае.

Например, ряд $\sum_{n=1}^{\infty} \frac{1}{n}$ расходится. Этот ряд называют ϵ армоническим.

Если ряд состоит из неотрицательных чисел и при этом все частичные суммы меньше некоторого числа B, то ряд сходится.

Свойства сходящихся рядов

- 1. **Необходимое условие сходимости ряда.** Пусть $\sum_{n=1}^{\infty} a_n$ сходится. Тогда $\lim_{n\to\infty} a_n = 0$.
- 2. Пусть $\sum\limits_{n=1}^{\infty}a_n$ и $\sum\limits_{n=1}^{\infty}b_n$ два сходящихся ряда. Тогда
 - ряд $\sum_{n=0}^{\infty} (a_n + b_n)$ сходится
 - ряд $\sum_{n=0}^{\infty} (a_n b_n)$ сходится
 - ряд $\sum_{n=0}^{\infty} (ca_n)$ сходится для любого $c \in \mathbb{R}$
- 3. Если $0 \le a_n \le b_n$ для всех n, то говорят, что ряд $\sum_{n=1}^{\infty} b_n$ мажорирует ряд $\sum_{n=1}^{\infty} a_n$. Если, кроме того
 - $\sum_{n=1}^{\infty} b_n$ сходится, то $\sum_{n=1}^{\infty} a_n$ сходится
 - $\sum_{n=1}^{\infty} a_n$ расходится, то $\sum_{n=1}^{\infty} b_n$ расходится

Абсолютно сходящиеся ряды

Ряд $\sum_{n=1}^{\infty} a_n$ назвается абсолютно сходящимся, если сходится ряд $\sum_{n=1}^{\infty} |a_n|$.

Теорема. Любой абсолютно сходящийся ряд является сходящимся.

Ряд, который сходится, но не сходится абсолютно, называют условно сходящимся.

Теорема. Если ряд абсолютно сходится к сумме S, то любой ряд, полученный из него перестановкой слагаемых, тоже абсолютно сходится к той же сумме S.

Теорема Римана. Если ряд сходится условно, то его слагаемые можно переставить так, чтобы полученный ряд сходился к любому заранее заданному числу $c \in \mathbb{R}$.

Счётное пространство исходов

Множество A называется cчётным, если существует функция $f: \mathbb{N} \to A$, такая что для любого $a \in A$ найдётся ровно одно $n \in \mathbb{N}$, что f(n) = a.

Примеры счётных множеств: $\mathbb{N}, \mathbb{Z}, \mathbb{Q}$

Примеры несчётных множеств: \mathbb{R} , [0,1], \mathbb{R}^n , \mathbb{C}

Когда говорят "множество несчётно", имеют в виду, что множество не является счётным или конечным.

Пусть есть счётное пространство исходов $\Omega = \{\omega_1, \omega_2, \omega_3, \dots\}$. Как и в случае с конечным пространством исходов, будем называть событием любое подмножество Ω .

Пусть P_n — вероятность события, состоящего ровно из одного исхода ω_n . Потребуем, чтобы $P_n \geq 0$ и ряд $\sum_{n=1}^{\infty} P_n$ сходился к 1. Вероятность каждого события как сумму вероятностей исходов, из которых это событие состоит. Эта сумма может быть бесконечной, то есть суммой ряда. Как и в случае конечного числа исходов, случайная величина X это функция из пространства исходов в \mathbb{R} , то есть $X: \Omega \to \mathbb{R}$.

Пусть дано вероятностное пространство Ω , состоящее из счётного количества элементарных исходов, и случайная величина X. Обозначим через P_i вероятность i-ого исхода, и через x_i значение случайной величины X на i-ом исходе. Если ряд $\sum_{i=1}^{\infty} x_i P_i$ абсолютно сходится, его сумма называется математическим ожиданием случайной величины X и обозначается E[X]. Если ряд не сходится абсолютно, то математическое ожидание не определено.

Пусть дано вероятностное пространство Ω , состоящее из счётного количества элементарных исходов, и случайная величина X. Предположим, что E[X] определено. Тогда $\partial ucnepcue u$ называется математическое ожидание случайной величины $(X-E[X])^2$, если это математическое ожидание определено. Если E[X] или $E[(X-E[X])^2]$ не определено, то Var(X) не определена.

Вероятностные пространства с конечным или счётным количеством исходов называются *дискретными*. Аналогично, случайная величина, которая принимает конечное или счётное количество разных значений, называется *дискретной*.