Семинары 1-2. Определители и их свойства

Определителем называется некоторая числовая характеристика квадратной матрицы. Рассмотрим нахождение определителей для матриц 2×2 (с 4 элементами) и 3×3 (с 9 элементами)

3.2. Вычислить определитель.

$$\begin{vmatrix} a+b & a-b \\ a-b & a+b \end{vmatrix} = (a+b)^2 - (a-b)^2 = (a+b+a-b)(a+b-a+b) = 2a \cdot 2b = 4ab.$$

3.8. Решить уравнение
$$\begin{vmatrix} x & x+1 \\ -4 & x+1 \end{vmatrix} = 0.$$
 $\triangleleft \begin{vmatrix} x & x+1 \\ -4 & x+1 \end{vmatrix} = x(x+1) + 4(x+1) = (x+4)(x+1). Ответ: $\{-4\} \cup \{-1\}. \triangleright$$

3.12. Вычислить определитель
$$\begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{vmatrix}$$
.

$$\begin{vmatrix} 7 & 8 & 9 \\ 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{vmatrix} = 1 \cdot 5 \cdot 9 + 2 \cdot 6 \cdot 7 + 3 \cdot 4 \cdot 8 - 3 \cdot 5 \cdot 7 - 2 \cdot 4 \cdot 9 - 1 \cdot 6 \cdot 8 = 45 + 84 + 96 - 105 - 72 - 48 = 0.$$

3.13. Вычислить определитель
$$\begin{vmatrix} 3 & 4 & -5 \\ 8 & 7 & -2 \\ 2 & -1 & 8 \end{vmatrix}$$
.

$$\begin{vmatrix} 3 & 4 & -5 \\ 8 & 7 & -2 \\ 2 & -1 & 8 \end{vmatrix} = 3 \cdot 7 \cdot 8 + 8 \cdot 1 \cdot 5 - 2 \cdot 4 \cdot 2 + 5 \cdot 7 \cdot 2 - 3 \cdot 2 \cdot 1 - 8 \cdot 4 \cdot 8 = 168 + 40 - 16 + 70 - 6 - 256 = 0.$$

3.19. Решить уравнение
$$\begin{vmatrix} 3 & x & -x \\ 2 & -1 & 3 \\ x+10 & 1 & 1 \end{vmatrix} = 0.$$

$$\begin{vmatrix} 3 & x & -x \\ 2 & -1 & 3 \\ x+10 & 1 & 1 \end{vmatrix} = -3 + 3x(x+10) - 2x - x(x+10) - 9 - 2x = 2x^2 + 16x - 12;$$

$$2x^2 + 16x - 12 = 0 \Rightarrow x^2 + 8x - 6 = 0 \Rightarrow x_{1,2} = \frac{-8 \pm \sqrt{64 + 24}}{2} = -4 \pm \sqrt{22}.$$

3.22. Решить неравенство
$$\begin{vmatrix} 2 & x+2 & -1 \\ 1 & 1 & -2 \\ 5 & -3 & x \end{vmatrix} > 0.$$

$$\begin{vmatrix} 2 & x+2 & -1 \\ 1 & 1 & -2 \\ 5 & -3 & x \end{vmatrix} = 2x - 10(x+2) + 3 + 5 - 12 - x(x+2) = -x^2 - 10x - 24;$$
$$-x^2 - 10x - 24 > 0 \Rightarrow x^2 + 10x + 24 < 0 \Rightarrow x \in (-6; -4). \triangleright$$

Свойства определителей.

- 1. Определитель не меняется при транспонировании.
- 2. При перестановке двух строк (столбцов) определитель меняет знак на противоположный.

$$\begin{vmatrix} a_{11} & \dots & a'_{1j} + a''_{1j} & \dots & a_{1n} \\ a_{21} & \dots & a'_{2j} + a''_{2j} & \dots & a_{2n} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{n1} & \dots & a'_{nj} + a''_{nj} & \dots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & \dots & a'_{1j} & \dots & a_{1n} \\ a_{21} & \dots & a'_{2j} & \dots & a_{2n} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{n1} & \dots & a'_{nj} & \dots & a_{nn} \end{vmatrix} + \begin{vmatrix} a_{11} & \dots & a''_{1j} & \dots & a_{1n} \\ a_{21} & \dots & a''_{2j} & \dots & a_{2n} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{n1} & \dots & a''_{nj} & \dots & a_{nn} \end{vmatrix}.$$

4. Общий множитель строки (столбца) можно вынести за знак определителя:

$$\begin{vmatrix} a_{11} & \dots & a_{1j} & \dots & a_{1n} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ \lambda a_{i1} & \dots & \lambda a_{ij} & \dots & \lambda a_{in} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nj} & \dots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & \dots & \lambda a_{1j} & \dots & a_{1n} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{n1} & \dots & \lambda a_{nj} & \dots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & \dots & \lambda a_{1j} & \dots & a_{1n} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{n1} & \dots & \lambda a_{nj} & \dots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & \dots & a_{1j} & \dots & a_{1n} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nj} & \dots & a_{nn} \end{vmatrix}.$$

5. Определитель не изменится, если к любой строке(столбцу) прибавить линейную комбинацию других строк(столбцов):

$$\begin{vmatrix} a_{11} + \sum_{k=1}^{n} \lambda_k a_{1k} & a_{12} & \dots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i1} + \sum_{k=1}^{n} \lambda_k a_{2k} & a_{i2} & \dots & a_{in} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} + \sum_{k=1}^{n} \lambda_k a_{nk} & a_{n2} & \dots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i1} & a_{i2} & \dots & a_{in} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix}.$$

- 6. Определитель равен нулю, если он имеет:
 - (а) нулевую строку (столбец);
 - (b) две одинаковые строки (столбца);
 - (с) строку (столбец), являющуюся линейной комбинацией других строк (столбцов).
- 3.25. Показать, используя свойства определителей, что

$$\begin{vmatrix} a_1 + b_1 x & a_1 x + b_1 & c_1 \\ a_2 + b_2 x & a_2 x + b_2 & c_2 \\ a_3 + b_3 x & a_3 x + b_3 & c_3 \end{vmatrix} = (1 - x^2) \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}.$$

$$\begin{vmatrix} a_1 + b_1x & a_1x + b_1 & c_1 \\ a_2 + b_2x & a_2x + b_2 & c_2 \\ a_3 + b_3x & a_3x + b_3 & c_3 \end{vmatrix} = \begin{vmatrix} a_1 & a_1x + b_1 & c_1 \\ a_2 & a_2x + b_2 & c_2 \\ a_3 & a_3x + b_3 & c_3 \end{vmatrix} + \begin{vmatrix} b_1x & a_1x + b_1 & c_1 \\ b_2x & a_2x + b_2 & c_2 \\ b_3x & a_3x + b_3 & c_3 \end{vmatrix} =$$

$$\begin{vmatrix} a_1 & a_1x & c_1 \\ a_2 & a_2x & c_2 \\ a_3 & a_3x & c_3 \end{vmatrix} + \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} + \begin{vmatrix} b_1x & a_1x & c_1 \\ b_2x & a_2x & c_2 \\ b_3x & a_3x & c_3 \end{vmatrix} + \begin{vmatrix} b_1x & b_1 & c_1 \\ b_2x & a_2x & c_2 \\ b_3x & a_3x & c_3 \end{vmatrix} + \begin{vmatrix} b_1x & b_1 & c_1 \\ b_2x & b_2 & c_2 \\ b_3x & a_3x & c_3 \end{vmatrix} =$$

$$\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} + x^2 \begin{vmatrix} b_1 & a_1 & c_1 \\ b_2 & a_2 & c_2 \\ b_3 & a_3 & c_3 \end{vmatrix} = (1 - x^2) \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}.$$

3.27. Вычислить, используя свойства определителей, $\begin{vmatrix} x+y & z & 1 \\ y+z & x & 1 \\ z+x & y & 1 \end{vmatrix}$.

$$\begin{vmatrix} z+x & y & 1 \\ y+z & x & 1 \\ z+x & y & 1 \end{vmatrix} = \begin{vmatrix} x & z & 1 \\ y & x & 1 \\ z+x & y & 1 \end{vmatrix} = (меняем местами два столбца 2-го опр-ля) = \begin{vmatrix} x & z & 1 \\ y & x & 1 \\ z & y & 1 \end{vmatrix} - \begin{vmatrix} z & y & 1 \\ x & z & 1 \\ y & x & 1 \end{vmatrix} = (меняем местами первые две строки) = \begin{vmatrix} x & z & 1 \\ y & x & 1 \\ z & y & 1 \end{vmatrix} + \begin{vmatrix} x & z & 1 \\ z & y & 1 \\ z & y & 1 \end{vmatrix} = (меняем местами две последние строки) = \begin{vmatrix} x & z & 1 \\ y & x & 1 \\ z & y & 1 \end{vmatrix} - \begin{vmatrix} x & z & 1 \\ y & x & 1 \\ z & y & 1 \end{vmatrix} = (меняем местами две последние строки) = \begin{vmatrix} x & z & 1 \\ y & x & 1 \\ z & y & 1 \end{vmatrix} - \begin{vmatrix} x & z & 1 \\ z & y & 1 \end{vmatrix} = (меняем местами две последние строки) = \begin{vmatrix} x & z & 1 \\ z & y & 1 \\ z & y & 1 \end{vmatrix} - \begin{vmatrix} x & z & 1 \\ z & y & 1 \end{vmatrix} = (меняем местами две последние строки) = \begin{vmatrix} x & z & 1 \\ z & y & 1 \end{vmatrix} - \begin{vmatrix} x & z & 1 \\ z & y & 1 \end{vmatrix} = (меняем местами две последние строки) = \begin{pmatrix} x & z & 1 \\ z & y & 1 \end{vmatrix} - \begin{pmatrix} x & z & 1 \\ z & y & 1 \end{pmatrix} = (mensem местами две последние строки) = (mensem местами две последн$$

0.

Другой вариант решения: прибавить к первому столбцу второй и получить определитель, в котором первый и третий столбцы пропорциональны. ⊳

Основные методы вычисления определителей п-го порядка.

Рассмотрим сначала метод понижения порядка (метод алгебраических дополнений).

Таким образом, алгебраическое дополнение элемента a_{ij} — это определитель, получаемый вычеркиванием i-той строки и j-того столбца (с точностью до множителя $(-1)^{i+j}$).

Тогда можно определитель представить в виде разложения по столбцу или по строке:

Roseco Incobicco	o passional	cupicocierene
(i, k)	eoist:	(k,j)
dctA = Sidik A	no j-roue	y encesizes
Thereep Pack	rocies onpodence	
au au au = a	A (2,1) + Q22 A (2,2)	+ Q2 A (2,3) =
a34 a33 a33		
= - 924 910 913 + 9	22 Que Que 1	Q1. Q1.
32 433	1934 433	**34 M321

3.55. Вычислить определитель, используя разложение по строке или столбцу: $\begin{bmatrix} 2 & -1 & 1 & 0 \\ 0 & 1 & 2 & -1 \\ 3 & -1 & 2 & 3 \\ 3 & 1 & 6 & 1 \end{bmatrix}.$

⊲ Раскладываем определитель по первой строке:

$$\begin{vmatrix} 2 & -1 & 1 & 0 \\ 0 & 1 & 2 & -1 \\ 3 & -1 & 2 & 3 \\ 3 & 1 & 6 & 1 \end{vmatrix} = 2 \cdot \begin{vmatrix} 1 & 2 & -1 \\ -1 & 2 & 3 \\ 1 & 6 & 1 \end{vmatrix} - (-1) \cdot \begin{vmatrix} 0 & 2 & -1 \\ 3 & 2 & 3 \\ 3 & 6 & 1 \end{vmatrix} + \begin{vmatrix} 0 & 1 & -1 \\ 3 & -1 & 3 \\ 3 & 1 & 1 \end{vmatrix} - 0 =$$

$$= 2 \cdot 0 + 1 \cdot 0 + 0 = 0. \Rightarrow$$

3.59. Вычислить определитель, используя разложение по строке или столбцу: $\begin{vmatrix} 0 & -a & -b & -d \\ a & 0 & -c & -e \\ b & c & 0 & 0 \\ d & e & 0 & 0 \end{vmatrix}.$

⊲ По первой строке:

$$\begin{vmatrix} 0 & -a & -b & -d \\ a & 0 & -c & -e \\ b & c & 0 & 0 \\ d & e & 0 & 0 \end{vmatrix} = 0 - (-a) \cdot \begin{vmatrix} a & -c & -e \\ b & 0 & 0 \\ d & 0 & 0 \end{vmatrix} + (-b) \cdot \begin{vmatrix} a & 0 & -e \\ b & c & 0 \\ d & e & 0 \end{vmatrix} - (-d) \cdot \begin{vmatrix} a & 0 & -c \\ b & c & 0 \\ d & e & 0 \end{vmatrix} = 0$$

$$= 0 + 0 + be(be - cd) - cd(be - cd) = (be - cd)^{2}. \triangleright$$

3.62. Вычислить определитель, используя разложение по строке или столбцу:

Теперь рассмотрим метод элементарных преобразований. Он основан на двух фактах:

- 1) Определитель не изменится, если к любой строке(столбцу) прибавить линейную комбинацию других строк(столбцов),
- 2) Определитель верхне-треугольной (или нижнетреугольной) матрицы равен произведению диагональных элементов.

3.61. Вычислить определитель, используя метод элементарных преобразований:

Теперь будем считать определители произвольного порядка n.

) Bo	ruc	ulle	266	uncoes	ureus	поряб	ico h:
	13	2	2	22			
	1 2	2 3	2	22			
		2 2	2	3 2			
	111	2 2	1	2 2			
_	0	x a	recec:	42		1	

1	3	2	2				22	1	-(h)		1	1	0	0		0	-			1		
	2	3	2				2 %	2	-(n)		0	1	0.		0	-	1			_	
-	1	1	0				0 0		10	+	1	0	0	1 -		0	-	1			_	
1	2	2	2		*	2	3	3	+ (n)	+	+	0	0,2	0	1	1	-	5	-2	·I		-2-(n-1)
				Ì						Ţ								1			-	n-1
=	-	1	-	2	,	-	0		1	1	+	+	-	-		a	nn		3.	-2	1-	1) = 1) = 2n+
+		0	1	1	-	-	-			1	3	2	n	1				- 5	2	+2	(n	-1) = 2N+
		0	()		_		(-1	1				- ek								
		0	()		_		0	2n+	11		-	-								_	

Для решения квадратных СЛАУ используется метод Крамера.

	ell	en	10	0	K	he	en	ee	po	e	-	he	ece	ea	и	ul	2	K	60	ic	he	u	2
AC	trx		C	11	14	:					,												
	ny	er	16		30	có	ou	110	2	(1	A.	1:		,						-		
	d.	1	1	+	2	2	94	+		+		n		=	6,		_				-	-	
14	92	1	×1	+	92	2	X2	+		. 4	9	h	XH	2	6,	_	_			-		-	-
11		-		-			10		-	-	_		-	-	-	-	-	-	-	-	-	-	
	an	1	KI	+	(4)	12	Ka	+					X,			n	-	V	-	D	-	-	
100	lee												вел		N	2+	1	A	0	0.	ne		
VI	ha	OLI	111	1	1	L	eu						n		ne	1	7	7	1	-	710		
1	20		(-	0	na	Số	0,1	ee	500	16	1	no	de	cep	40	u	u	07.1	5	ti	13	٨
25	eill	01	10	5			_	1	20		-		Oi	_	127	-	A	10		e	ni	Pul	de
06	000	00	u	071	4	_	_	_	ia	-					4								

Решить следующие системы:

$$\Delta_{y} = \begin{vmatrix} 3 & 13 \\ 2 & 81 \end{vmatrix} = 243 - 26 = 217. \text{ Othet: } x = \Delta_{x}/\Delta = 16, \quad y = \Delta_{y}/\Delta = 7. \text{ P}$$

$$3.189. \begin{cases} 2ax - 3by &= 0 \\ 3ax - 6by &= ab \end{cases}.$$

$$\Rightarrow \Delta = \begin{vmatrix} 2a & -3b \\ 3a & -6b \end{vmatrix} = ab \begin{vmatrix} 2a & -3b \\ 3a & -6b \end{vmatrix} = -3ab; \qquad \Delta_{x} = \begin{vmatrix} 0 & -3b \\ ab & -6b \end{vmatrix} = 3ab^{2};$$

$$\Delta_{y} = \begin{vmatrix} 2a & 0 \\ 3a & ab \end{vmatrix} = 2a^{2}b. \text{ Othet: } x = \Delta_{x}/\Delta = -b, \quad y = \Delta_{y}/\Delta = -\frac{2}{3}a. \text{ P}$$

3.191.
$$\begin{cases} 2x + y = 5 \\ x + 3z = 16 \\ 5y - z = 10 \end{cases}$$

$$\Rightarrow \Delta = \begin{vmatrix} 2 & 1 & 0 \\ 1 & 0 & 3 \\ 0 & 5 & -1 \end{vmatrix} = -30 + 1 = -29; \qquad \Delta_x = \begin{vmatrix} 5 & 1 & 0 \\ 16 & 0 & 3 \\ 10 & 5 & -1 \end{vmatrix} = 30 - 75 + 16 = -29;$$

$$\Delta_y = \begin{vmatrix} 2 & 5 & 0 \\ 1 & 16 & 3 \\ 0 & 10 & -1 \end{vmatrix} = -32 + 5 - 60 = -87; \qquad \Delta_z = \begin{vmatrix} 2 & 1 & 5 \\ 1 & 0 & 16 \\ 0 & 5 & 10 \end{vmatrix} = 25 - 10 - 160 = -145.$$
Other: $x = 1$, $y = 3$, $z = 5$, by

3.198.
$$\begin{cases} 5x_1 + 8x_2 + x_3 = 2 \\ 3x_1 - 2x_2 + 6x_3 = -7 \\ 2x_1 + x_2 - x_3 = -5 \end{cases}$$

$$\Rightarrow \Delta = \begin{vmatrix} 5 & 8 & 1 \\ 3 & -2 & 6 \\ 2 & 1 & -1 \end{vmatrix} = 10 + 96 + 3 + 4 - 30 + 24 = 107;$$

$$\Delta_x = \begin{vmatrix} 2 & 8 & 1 \\ -7 & -2 & 6 \\ -5 & 1 & -1 \end{vmatrix} = 4 - 240 - 7 - 10 - 12 - 56 = -321;$$

$$\Delta_y = \begin{vmatrix} 5 & 2 & 1 \\ 3 & -7 & 6 \\ 2 & -5 & -1 \\ 5 & 8 & 2 \\ 3 & -2 & -7 \\ 2 & 1 & -5 \end{vmatrix} = 35 + 24 - 15 + 14 + 150 + 6 = 214;$$

$$\Delta_z = \begin{vmatrix} 3 & -2 & 7 \\ 2 & 1 & -5 \end{vmatrix} = 50 - 112 + 6 + 8 + 35 + 120 = 107.$$
Other: $x_1 = -3$, $x_2 = 2$, $x_3 = 1$, \Rightarrow

3.196. Найти многочлен f(x) второй степени, удовлетворяющий условиям f(1) = -1, f(-1) = 9, f(2) = -3.

 $\triangleleft f(x) = ax^2 + bx + c$; из условий получаем систему

$$\begin{cases} 1^2 \cdot a + 1 \cdot b + c = -1 \\ (-1)^2 \cdot a - 1 \cdot b + c = 9 \\ 2^2 \cdot a + 2 \cdot b + c = -3 \end{cases}.$$

$$\Delta = \begin{vmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \\ 4 & 2 & 1 \end{vmatrix} = -1 + 4 + 2 + 4 - 2 - 1 = 6;$$

$$\Delta_{a} = \begin{vmatrix} -1 & 1 & 1 \\ 9 & -1 & 1 \\ -3 & 2 & 1 \end{vmatrix} = 1 - 3 + 18 - 3 + 2 - 9 = 6; \ a = 1.$$

$$\Delta_{b} = \begin{vmatrix} 1 & -1 & 1 \\ 1 & 9 & 1 \\ 4 & -3 & 1 \end{vmatrix} = 9 - 4 - 3 - 36 + 3 + 1 = -30; \ b = -5.$$

$$\Delta_{c} = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 9 & 1 \\ 4 & -3 & 1 \end{vmatrix} = 3 + 36 - 2 - 4 - 18 + 3 = 18; \ c = 3.$$
Other: $f(x) = x^{2} - 5x + 3$. \triangleright

(D/3)	3.3.6	14. 2	0, 21	24,	199.	52,6	0;
0		188;	190;	192;	199.		
	Borece	enert	one	coleile	treils	11-20	nop:
		10	02'				
		01	20				
-		6 2	10		-		
		20	01				