Formulaire

NICOLAS LE HIR

TABLE DES MATIÈRES

1	Decomposition binaire	1
2	Distances	1
	2.1 Distances in two dimensions	1
	2.2 Distances in three dimensions	2
3	Likelihood / Vraisemblance	2
4	Derivative / Dérivée	2
5	Expected value / Éspérance	3
	K-means / K moyennes	3
7	Entropy / Entropie	3
8	Complexity	4

1 DÉCOMPOSITION BINAIRE

```
Result: Entier n en binaire L \leftarrow liste vide []; r \leftarrow 0; while n > 0 do r \leftarrow n\%2; r \leftarrow 1/2; r \leftarrow 1/2; r \leftarrow 1/2; end r \leftarrow 1/2; return r \leftarrow 1/2;
```

Algorithm 1: Binary decomposition of integer n

2 DISTANCES

Here are some common distances in \mathbb{R}^2 and \mathbb{R}^3 .

2.1 Distances in two dimensions

We consider two points M_1 and M_2 in the 2D space \mathbb{R}^2 with coordinates (x_1,y_1) , and (x_2,y_2) , respectively.

L2

$$d(M_1,M_2) = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2} \tag{1}$$

L₁

$$d(M_1, M_2) = |x_1 - x_2| + |y_1 - y_2|$$
 (2)

 $L\infty$

$$d(M_1, M_2) = \max(|x_1 - x_2|, |y_1 - y_2|)$$
(3)

weighted L1:

let α_1 and α_2 be real numbers ($\in \mathbb{R}$).

$$d(M_1, M_2) = \alpha_1 |x_1 - x_2| + \alpha_2 |y_1 - y_2| \tag{4}$$

2.2 Distances in three dimensions

We consider two points M_1 and M_2 in the 3D space \mathbb{R}^3 with coordinates (x_1, y_1, z_1) , and (x_2, y_2, z_2) , respectively.

L2

$$d(M_1, M_2) = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2 + (z_1 - z_2)^2}$$
 (5)

L1

$$d(M_1, M_2) = |x_1 - x_2| + |y_1 - y_2| + |z_1 - z_2|$$
(6)

 $L\infty$

$$d(M_1, M_2) = \max(|x_1 - x_2|, |y_1 - y_2|, |z_1 - z_2|)$$
(7)

weighted L1:

let α_1 , α_2 and α_3 be real numbers ($\in \mathbb{R}$).

$$d(M_1, M_2) = \alpha_1 |x_1 - x_2| + \alpha_2 |y_1 - y_2| + \alpha_3 |z_1 - z_2|$$
(8)

3 LIKELIHOOD / VRAISEMBLANCE

- Observations : $(x_1, ..., x_n)$
- Model : p (for instance a normal law)
- Parameters : θ (for instance (μ, σ) , the mean and the standard deviation of the normal law)

The likelihood writes:

$$L(\theta) = p(x_1, \dots, x_n | \theta)$$
(9)

4 DERIVATIVE / DÉRIVÉE

Let $f:\mathbb{R}\to f(\mathbb{R})$ be a real function.

When it exists, the derivative of f in x is defined by:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
 (10)

Examples:

If $g: x \mapsto 3x$, then the derivative exists and $\forall x \in \mathbb{R}, x, g'(x) = 3$

If $h: x \mapsto x^2$, then the derivative exists and $\forall x \in \mathbb{R}, h'(x) = 2x$.

If $h: x \mapsto |x|$, then the derivative exists only if $x \neq 0$.

EXPECTED VALUE / ÉSPÉRANCE

Let X be a discrete random variable that takes the values x_i with probability p_i .

The **expected value** of X writes

$$E(X) = \sum_{i=1}^{n} p_i x_i \tag{11}$$

Example:

If X is a constant random variable : $X = \alpha$

$$\sum_{i=1}^{n} p_{i} x_{i} = \sum_{i=1}^{n} p_{i} \alpha = \alpha \sum_{i=1}^{n} p_{i}$$
 (12)

K-MEANS / K MOYENNES

- Datapoints $(x_1, ..., x_n)$
- Centroids (c_1, \ldots, c_n) (one centroid per point, however the number of different centroids is smaller than the number of datapoints)

The inertia I is given by:

$$I = \sum_{i=1}^{n} d(x_i, c_i)^2$$
 (13)

ENTROPY / ENTROPIE

The entropy of a discrete random variable X that takes the values x_i with probability p_i is given by:

$$H(X) = -\sum_{i=1}^{n} p_i \log(p_i)$$
(14)

Examples:

— Entropy of certain distribution.

$$H = 0 \tag{15}$$

— Entropy of uniform distribution with n values :

$$H = -\sum_{i=1}^{n} \frac{1}{n} \log \frac{1}{n}$$

$$= -n \times \frac{1}{n} \times \log \frac{1}{n}$$

$$= \log n$$
(16)

8 COMPLEXITY

Let $\mathfrak n$ be the size of the problem.

Polynomial complexity:

$$a_k n^k + a_{k-1} n^{k-1} + \dots + n \tag{17} \label{eq:17}$$

Exponential complexity:

with k > 1