Capítulo I. Sistemas de Informação

"A complex system that works is invariably found

to have evolved from a simple system that worked."

John Gall

Sistemas de Informação

Dados, Informação, Conhecimento

SI e a Organização

ERP

Custo Total de Propriedade

Sistemas de Informação são utilizados em organizações para planejamento, monitoração, comunicação e controle das suas atividades, por meio da manipulação e guarda de informações.

Segundo o Dicionário Aurélio, a palavra sistema significa, entre outras coisas, um "Conjunto particular de instrumentos e convenções adotados com o fim de dar uma informação". Os instrumentos são as ferramentas, os mecanismos, concretos ou abstratos, que utilizamos para fazer funcionar os sistemas, tais como: programas de computador, relatórios, formulários, etc. As convenções são as suas regras de utilização.

Um exemplo típico de sistema de informação é um sistema de aluguel para uma vídeo-locadora. Entre suas várias finalidades, a principal é certamente controlar o aluguel das fitas, informando <u>quem</u> está com <u>qual</u> fita em um determinado momento (<u>quando</u>), e <u>quanto</u> deve pagar por isso. Além disso, o sistema permite outras atividades, como a gerência do estoque de fitas (<u>quais</u> fitas existem), a monitoração das fitas mais e menos alugadas (quantas vezes cada fita foi alugada), etc.

Ao longo deste livro usaremos a palavra organização para representar empresas, órgãos públicos, entidades beneficentes, associações e qualquer outra forma de instituição com objetivos definidos e que pode obter algum benefício com o uso de sistemas de informação. Nisso incluímos um enorme espectro de interesses e tamanhos, tanto um consultório dentário quanto uma multinacional de bebidas.

Apesar de estarmos preocupados com o desenvolvimento de sistemas de informação automatizados, implementados na forma de programas de computador, isso não é uma necessidade. Durante séculos as organizações usaram sistemas de informação apenas com o uso de pessoas, papel e tinta. Apenas bem mais tarde, aparecem máquinas como máquinas de escrever e de somar. Não seria exagerado dizer que a escrita e os números foram criados para suportar os primeiros sistemas de informação, que tratavam, por exemplo, de colheitas e comércio. Muitas das técnicas deste livro podem, e devem, ser aplicadas para entender sistemas de informação manuais.

Este capítulo apresenta uma breve descrição de como funciona, para que servem e quem usa os sistemas de informação dentro de uma organização.

Figura 1. Uma tela de um sistema de informações real.

I.1 Dados, Informação, Conhecimento

Antes de entender o que é um Sistema de Informação, é preciso entender melhor o que significa a palavra **Informação**.

Novamente, vamos recorrer a dicionários para ter uma definição inicial. Segundo o *American Heritage*, informação é o dado quando processado, guardado ou transmitido. Já no dicionário Aurélio, informação, entre outros significados, pode ser "Conhecimento amplo e bem fundamentado, resultante da análise e combinação de vários informes", "Coleção de fatos ou de outros dados fornecidos à máquina, a fim de se objetivar um processamento" ou ainda "Segundo a teoria da informação, medida da redução da incerteza, sobre um determinado estado de coisas, por intermédio de uma mensagem". Apesar de não estarmos diretamente envolvidos com a teoria da informação, não podemos de deixar de notar a importância da definição que diz que a informação reduz a incerteza por meio de uma mensagem.

Estamos interessados em criar uma diferenciação entre dados, informação e conhecimento, mesmo que as palavras possam ser consideradas sinônimas em muitos contextos. Apesar de serem normalmente confundidas ou utilizadas de forma intercambiável, elas podem ser mais bem entendidas e utilizadas se analisadas como representando conceitos diferentes.

Dados são apenas os símbolos que usamos para representar a informação, o registro de diferentes aspectos de um fato ou fenômeno. Os números que guardamos em um banco de dados são, como diz o nome, "dados". Dados não são interpretados, eles existem, são adquiridos de alguma forma, via coleta, pesquisa ou criação, guardados de outra forma e, possivelmente, apresentados em uma terceira. O computador é uma máquina que manipula dados.

Por outro lado, **informação** é o dado com significado, normalmente processado de forma a ser útil. Uma informação deve permitir responder perguntas como "quando", "quanto", "quem", "qual" e "onde" sobre alguma coisa.

Informação = Dado + Significado

É necessário fazer um mapeamento entre dados e informação. Esse mapeamento pode ser simples ou complexo, dependendo de várias variáveis envolvidas, que vão desde decisões arbitrárias tomadas pelo desenvolvedor até padrões internacionais. Por exemplo, em muitos sistemas é preciso ter a informação do sexo de uma pessoa (masculino ou feminino). Para isso, guardados um número (1 ou 0) ou uma letra (M ou F) que é o dado que faz a indicação da informação.

I.2 Características dos Sistemas de Informação

É importante entender que sistemas de informação são sistemas interativos e reativos.

Interativo significa que o sistema troca informações com o ambiente, em especial com os agentes externos que fazem parte desse ambiente, pessoas e outros sistemas de computador. O sistema só faz sentido se é capaz dessa interação.

Reativo significa que o sistema funciona reagindo a mudanças no ambiente, e em especial, a mudanças provocadas pelos agentes externos.

Nossos sistemas também são sistemas de **respostas planejadas**. Isso significa que nossas respostas são determinadas e determinísticas, que podemos criar um programa que as produza. Também significa que todas as perguntas que podem ser feitas ao sistema podem, e são, identificadas previamente.

Escolhendo essas regras de modelagem, escolhemos um caminho para decidir quando o sistema vai funcionar: em vez de deixar isso incerto, como em muitos métodos, nós determinamos que o sistema só funciona para responder um evento no ambiente, causado por um agente externo, e que possua uma resposta planejada.

A metodologia de desenvolvimento apresentada neste livro é feita sob medida para sistemas interativos e reativos, de respostas planejadas. Nesse caso, somos ao mesmo tempo restritivos, pois se o sistema não pode ser modelado dessa forma não serve para nossa metodologia, como ampliativos, pois a grande maioria dos sistemas pode ser modelada de forma natural com esses princípios.

I.3 Sistemas de Informação Típicos e a Organização

Atualmente já consideremos que vários sistemas de informações típicos de uma empresa são necessidades básicas que podem ser atendidas de uma só vez. Esses sistemas constroem o que é comumente chamado de ERPs — de Enterprise Resource Planning — ou Sistemas de Gestão Empresarial em português — mas que na prática não são sistemas de planejamento (ou de recursos), mas sim de controle e administração de uma empresa.

Entre as características encontradas em ERPs podemos citar a integração das atividades da empresa e o uso de um banco de dados único. O líder mundial do mercado é a SAP AG, com o produto SAP R/3. O custo de implantação de um ERP de grande porte pode chegar até 300 milhões de dólares. No Brasil, existem produtos menos ambiciosos e mais baratos.

Os sistemas de ERP atuais contêm módulos representando os mais típicos sistemas de informações necessários em uma empresa, tais como: Contabilidade Fiscal, Contabilidade Gerencial, Orçamento e Execução Orçamentária, Ativo Fixo, Caixa e bancos, Fluxo de Caixa, Aplicações e Empréstimos, Contas a Receber, Contas a Pagar, Controle de Viagens, Controle de Inadimplência, Administração dos preços de venda, Compras, Controle de fretes, Controle de contratos, Controle de Cotações Estoque, Exportação, investimentos. de vendas. Faturamento. Gerenciamento de armazéns, Importação, Obrigações fiscais, Pedidos, Previsão de vendas, Recebimento, Gestão de informação de RH, Pagadoria, Treinamento, RH scorecard, Planejamento de RH, Planejamento de produção, Planejamento da capacidade, Custos industriais, Controle de chão de fábrica, Controle da produção, Configurador de produtos, Planejamento de Manutenção, Acompanhamento de Manutenção e ainda muitos outros...

I.4 Tipos de Projetos de Sistemas de Informação

Existem três tipos de projeto de sistemas de informação: manual, manual para automático e re-automação [B4]. Os processos de re-automação ainda podem se dividir em recodificação, re-projeto e re-desenvolvimento, melhoria ou manutenção.

Todos esses tipos de projeto apresentam ao analista de sistemas o mesmo desafio: descobrir o que deve ser feito. Porém, cada tipo apresenta certas particularidades que facilitam ou dificultam esse trabalho de análise.

O trabalho do analista em sistemas manuais é mais relacionado à formalização, por meio de documentação e padrões, de processos já adotados, a criação de novos processos e a transformação de processos existentes tendo em vista otimizá-los ou possibilitar que atendam novas necessidades da organização. Esses processos podem ser bastante complexos e convolutos em alguns casos, o que exige do analista uma boa capacidade de compreensão e modelagem. Porém, como não serão transformados em programas de computador, o analista pode trabalhar com ferramentais mais informais e mais próximas ao dia a dia do usuário.

Os projetos que apresentam maior dificuldade são os de passagem do processo manual para o automático. Isso acontece porque normalmente esses projetos exigem todo o trabalho feito no tipo anterior, e, de forma adicional, a criação de um modelo computacional e com certo grau de formalidade, que possa ser usado pelos desenvolvedores. Não há, a princípio, uma guia que indique a adequação da automação ou que novos resultados podem ser obtidos. O usuário, por não ter acesso a sistemas de informação que executem a mesma atividade, tem pouco conhecimento sobre o que é possível fazer, ou não tem idéia de qual o custo de produzir certos resultados.

Já os projetos de re-desenvolvimento apresentam a vantagem de possuir uma base que pode ser utilizado como referência do que deve ser feito (repetido), do que não deve ser mantido (eliminações) e das novas atividades necessárias. O usuário, acostumado e experiente com um sistema existente, pode fornecer informações mais adequadas sobre o que espera do novo sistema, ou da manutenção ou melhoria sendo feita.

I.5 Porque são feitos projetos de SI

Muitos são os motivos que influenciam o início de um projeto de desenvolvimento de um Sistemas de Informação. Em geral, usando um raciocínio econômico, podemos dizer que um projeto é iniciado quando **o benefício do retorno esperado** supera o **custo do projeto**¹. O problema é que não é fácil converter esses valores em números normalmente.

I.5.1 Benefícios do Sistema

Vários motivos podem ser analisados como benefícios esperados de um projeto. O principal benefício que um sistema de informação pode oferecer é melhorar significativamente o negócio do usuário, aumentando seu lucro. Porém, essa não é a única motivação possível.

Uma motivação comum é modernização de um sistema. Com o tempo a tecnologia de um sistema vai se tornando superada. Isso faz com que o risco e o custo de manter o sistema funcionando naquela tecnologia aumentem, aumentando gradativamente o interesse de se transportar o sistema para uma nova plataforma. Simultaneamente, novas tecnologias apresentam novas oportunidades, como desempenho superior ou facilidade de aprendizado, aumentando também com o tempo o interesse nessa atualização. Chega um momento então que passa a valer a pena o investimento em modernização.

Outro motivo importante é a mudança de premissas básicas do negócio, causada pela atuação da firma no mercado. Essas mudanças tanto podem de dentro da empresa quanto podem ser provocadas por mudanças na legislação ou por ação dos concorrentes. Por exemplo, há alguns anos atrás, no Brasil, foram feitas várias modificações nos sistemas financeiros das empresas para aceitar a mudança de moedas e o convívio com moedas diferentes simultaneamente. Em outro exemplo, com a invenção e grande aceitação dos sistemas de premiação por viagens ou por milhas, as companhias aéreas tiveram que desenvolver sistemas específicos, interagindo com seus sistemas de passagens, para tratar do assunto. Muito comum também é a mudança de uma atividade da empresa, seja por um processo contínuo, como o de qualidade total, quanto por processos radicais como os de reengenharia e downsizing.

Os sistemas de informação também são importantes por oferecerem as empresas uma capacidade maior de competição. Com a informação correta e com os processos corretos de tratamento da informação uma empresa pode ter um diferencial de qualidade no mercado. Por outro lado, se todo um mercado já adotou um tipo de sistema, ou se pelo menos um concorrente já o fez, a empresa que não tem um sistema equivalente fica prejudicada na competição. Esse tipo de efeito foi visto quando as companhias aéreas passaram a vender passagens via Internet. No início era mais uma propaganda, depois passou a ser um diferencial positivo. Atualmente todas as companhias aéreas possuem formas de vender passagens diretamente via Internet.

Hoje em dia um grande motivador de novos projetos e a busca por melhor tratamento da informação que já existe em sistemas de tipo operacional, como a criação de Sistemas de Suporte Executivo.

¹ Na verdade, a compreensão econômica é mais complicada, mas essa explicação nos serve como motivador adequado.

I.5.2 Custo Total de Propriedade

Quanto se analisa o custo de um sistema é normal falar de Custo Total de Propriedade, conhecido pela sigla em inglês TCO (*Total Cost of Ownership*). O TCO de um produto é o custo total que ele implica para uma organização. Por exemplo, se decidirmos trocar todo o parque computacional de uma empresa que usa Windows para Linux, mesmo que o custo do Linux seja zero, o TCO é bem alto, pois envolve o processo de troca, novos profissionais, treinamento, etc... Outro exemplo comum é o da compra de uma impressora. Seu TCO não envolve apenas o custo da impressora, mas também o custo do material consumível, quando uma certa produção é prevista. Por isso é que grandes empresas compram menos impressoras, porém impressoras maiores e mais caras, para baixar o TCO.

Para o software desenvolvido vale o mesmo conceito. Qual seu TCO? Envolve o preço pago pelo software mais tudo que vai ser pago para possibilitar a implantação e utilização do produto (instalação, cursos de treinamento, manutenção mensal, etc...).

I.6 O Poder está com o usuário

Um dos acontecimentos mais marcantes da computação é a transferência do poder daqueles que operavam as máquinas, os famosos e muitas vezes odiados CPDs – os Centros de Processamento de Dados – para o usuário final.

Para aqueles que só chegaram ao mundo da informática agora, ou para aqueles que nasceram após a revolução causada pelos microcomputadores, é muitas vezes difícil de entender a complexidade e a mística que cercavam os grandes computadores. Resfriados a água, mantidos em salas seguras, gastando espaço e energia, esses computadores da década de 1970 tinham o poder computacional de um telefone celular do início do século XXI. Eram esses computadores, porém, que mantinham os dados fluindo, as contas e salários sendo pagos, à custa de uma vigilância permanente de seu funcionamento e do uso de recursos. Até hoje, muitos serviços críticos funcionam em versões modernizadas desses computadores, geralmente a custos altos, mas com alto risco de transferência para outras tecnologias².

Grande parte da transferência de poder aconteceu quando os microcomputadores chegaram em grande quantidade as empresas, permitindo que os usuários que não eram atendidos no prazo e na qualidade que esperavam tomassem a rédea do processo de software, desenvolvendo seus próprios aplicativas, usando planilhas eletrônicas e sistemas simples de banco de dados (como dBase II e Access) e, muitas vezes, passando por cima da estrutura da própria organização e contratando soluções terceirizadas, já que não precisavam do computador central para executa-las.

Isso alterou drasticamente a estrutura de poder das organizações, que eram fortemente dependentes dos dados processados de forma central, em grandes máquinas, com software de ciclo de desenvolvimento muito longo. O processo de mudança não poupou carreiras, sendo que algumas empresas simplesmente fecharam

² É importante perceber que computadores de grande porte ainda são bastante úteis em sistemas especiais, principalmente aqueles que exigem atender simultaneamente uma grande quantidade de usuários, devido a possuírem uma arquitetura planejada com esse objetivo, ao contrários dos PCs, que foram planejados para atender um único usuário.

seus CPDs, terceirizando suas atividades e despedindo ou transferindo todos seus funcionários.

Hoje em dia o próprio nome CPD é estigmatizado. Cabe agora ao setor de TI – tecnologia da informação –manter uma estrutura muito mais complexa que a anterior, unificando sistemas de várias gerações, em redes com grande quantidade de computadores executando sistemas operacionais diferentes e aplicações diferentes. Ainda existem conflitos em o pessoal de TI e as outras partes da empresa, mas o foco cada vez mais é melhorar o negócio e atender melhor os usuários.

I.7 Exercícios

- 1) Escolha um tipo de negócio de pequeno porte, como uma agência de viagens, e descubra (ou imagine) quais os principais sistemas de informação que ela necessita ou pode usar.
- 2) Classifique os sistemas anteriores quanto ao seu nível na organização.
- 3) Classifique os sistemas anteriores quanto ao seu tipo.
- 4) Imagine que esse negócio se torna um grande negócio, por exemplo, uma grande cadeia de agências de viagens, e descubra (ou imagine) que novos sistemas podem ser necessários.
- 5) Que sistemas de informação fazem parte de seu dia a dia? Que papel você assume ao utilizar esses sistemas?
- 6) Que sistemas de informação você pode se lembrar que contém informações importantes sobre sua vida pessoal ou profissional?
- 7) Imagine uma empresa de plano de saúde que possui um sistema de nível operacional que registra e permite a aprovação pela pessoa responsável de exames e consultas. Que sistemas de informação de outros níveis podem ser feitos para utilizar essa informação? Que outros sistemas de informação podem fornecer informação para o sistema de aprovação?
- 8) Defina, para um sistema de informação escolhido por você, as informações necessárias, que dados às descrevem e que conhecimento pode ser obtido a partir delas.
- 9) Muitas lojas no Rio de Janeiro ainda utilizam sistemas de informação feitos em MS-DOS. Faça uma análise dos custos e benefícios para mudar um sistema desse tipo para Windows ou de mantê-lo como está. Qual a melhor opção atualmente? Qual a melhor opção nos próximos 2, 5 e 10 anos?
- 10) Que tipos de sistemas podem interessar a Livraria ABC?
- 11) Que tipos de sistemas podem interessar a Empresa de Clipping ClipTudo?
- 12) Uma empresa precisa comprar uma impressora nova. Existem duas opções interessantes no mercado, como descritas na tabela abaixo. Qual impressora comprar se a empresa prevê fazer 30.000 impressões com a impressora. E se forem 100.000? E se forem 146.668? E se forem 500.000?

Característica	Impressora A	Impressora B
Preço da impressora (sem tinta)	R\$ 300,00	R\$ 5.000,00

Característica	Impressora A	Impressora B
Preço do cartucho de tinta	R\$ 80,00	R\$ 250,00
Número de cópias por cartucho	1.000	5.000
Vida útil da impressora	120.000	800.000