Posted Fri., 10/4/2019

Due: Fri., 10/11/2019, 2:00 PM

- 1. AML Problem 2.24 (page 75), except
 - >> Replace part (a) with:
 - (a.1) For a single given dataset, give an expression for $g^{(\mathcal{D})}(x)$ (AML notation).
 - (a.2) Find $\overline{g}(x)$ analytically; express your answer in simplest form.
 - >> For parts (b) and (c), obtain $E_{\mathcal{D}}\{E_{out}\}$ by direct numerical computation, not by adding bias and var.
- 2. AML Problem 4.4 (a)-(c), plus additional parts (i)-(iii) below.
 - >> For part (c), assume both $g_{10}(x)$ and f(x) are given as functions of x, and you can express your answer in terms of them; and define $E_{out}(g_{10}) = E_{x,y} \left\{ \left[g_{10}(x) y(x) \right]^2 \right\}$.
 - (i) In Fig. 4.3(a), set $\sigma^2 = 0.5$, and traverse the horizontal line from N \approx 60 to N \approx 130. Explain why \mathcal{H}_{10} transitions from overfit to good fit (relative to \mathcal{H}_2).
 - (ii) Also in Fig. 4.3(a), set N = 100, and traverse the vertical line from $\sigma^2 = 0$ to $\sigma^2 = 2$. Explain why \mathcal{H}_{10} transitions from good fit to overfit (relative to \mathcal{H}_2).
 - (iii) In Fig. 4.3(b), set N \approx 75, and traverse the vertical line from $Q_f = 0$ to $Q_f = 100$. Explain the behavior.

Reading

Regularization (AML perspective)

AML 4.2 (pp. 126-137).

Problems on reading

4. AML Exercise 4.5 (p. 131).