3 agazor 1		9
5. Mycmb A	Loonone -no ignament mepe te smake	geor enggy
na ogran u mou	te smake	
Torga A - Ville	· longyo na pog	nux Hadax
$p(A) = \overline{s^3}$	= 3.2.8 = 32	
p() = 1-p	$(\overline{A}) = \frac{11}{32}$	
Oneem: pA)	= 11	
privam.	32	3
	TELL SEAM	
3. Myeno A -	coormue 4 cpages	Gorspannex .
2000	of ecmo u acongre	nore a
12 sma grykma	2	
xopomne, A -	· coontre y bu m	res me gopgrande
ruso la uchop	rennore, moso Bce	xopoure
$m = C_{10}$	+ 000	cnocosos
gorname n		wing grypynool
5	non-la cnocosol	gocmamo name
70	C\$ + C\$	gpy nmo B
P(A) = = =	CS	12 0000
	70 C10 -	C 60 =
p(A) = 1 - p($\frac{4}{2} = \frac{7}{7} - \frac{5}{10}$	C570
$=1-\frac{10.63}{5!5!70}$	5! 55! 70!	0,55 Otem: 0,55

Задача 2

Задача 4

Расчёт точной вероятности $P(S_n \in \left[\frac{n}{2} - \sqrt{npq}, \frac{n}{2} + \sqrt{npq}\right])$ и максимальной вероятности $P(S_n = k)$ для $n \in \{100, 1000\}, p \in \{0.001, 0.01, 0.1, 0.25, 0.5\}$

```
# Нахождение к такого, что p(Sn = k) - максимальна

def findK(n, p):
    if (p * (n + 1)) % 1 != 0:
        return [math.floor(p * (n + 1) - 1) + 1]
    else:
        return [p * (n + 1) - 1, p * (n + 1) - 1]
```

```
n = 100  p = 0.001  P(Sn) = 9.596841476810663e-122
При k = 0 вероятность максимальна: P(Sn = k) = 0.9047921471137089

n = 100  p = 0.01  P(Sn) = 6.103987557172999e-72
При k = 1 вероятность максимальна: P(Sn = k) = 0.36972963764972644
При k = 100  p = 0.1  P(Sn) = 3.6123083280873955e-21
При k = 100  p = 0.1  P(Sn) = 3.6123083280873955e-21
При k = 100  p = 0.25  P(Sn) = 4.2504440254864535e-06
При k = 25 вероятность максимальна: P(Sn = k) = 0.09179969176683679
п = 100  p = 0.5  P(Sn) = 0.7287469759261653
При k = 50 вероятность максимальна: P(Sn = k) = 0.07958923738717877
п = 1000  p = 0.001  P(Sn) = 0.0
При k = 1 вероятность максимальна: P(Sn = k) = 0.3680634882592229
```

Расчёт точной вероятности $P(S_n \le 5)$ для $n \in \{100, 1000\}, p \in \{0.001, 0.01, 0.1, 0.25, 0.5\}$

```
def secondTaskFunc(numberOfTests, probabilities):
    bcs = []

for n in numberOfTests:
    for p in probabilities:
        print(f"n = {n} \tp = {p} ", end="\t")

        q = 1 - p
        exactProb = 0

for s in range(6):
        coef = Binc(bcs, n, s)
        exactProb += coef * (p ** s) * (q ** (n - s))

print(f"P(Sn <= 5) = {exactProb}")
        print()</pre>
```

```
Расчёт точной вероятности P(Sn <= 5):
         p = 0.001 P(Sn <= 5) = 0.9999999989001893
n = 100
n = 100 p = 0.01 P(Sn \le 5) = 0.9994654655360061
                     P(Sn <= 5) = 0.057576886487033956
                     P(Sn <= 5) = 1.1700149154089138e-07
          p = 0.25
                     P(Sn <= 5) = 6.26162256269268e-23
n = 1000 p = 0.001 P(Sn <= 5) = 0.9994119298982362
n = 1000 p = 0.01 P(Sn <= 5) = 0.0661395116072514
         p = 0.1 P(Sn <= 5) = 2.556545693060053e-38
n = 1000
                     P(Sn <= 5) = 3.9691404522735886e-115
n = 1000
n = 1000
           p = 0.5  P(Sn \le 5) = 7.738505306294352e-289
```

Расчёт приближённой вероятности $P(S_n \in \left[\frac{n}{2} - \sqrt{npq}, \frac{n}{2} + \sqrt{npq}\right])$ для $n \in \{100, 1000, 10000\}, p \in \{0.001, 0.01, 0.1, 0.25, 0.5\}$

```
Расчёт приближенной вероятности для Sn из промежутка:
n = 100
           p = 0.001
                       P(Sn) = 0.0
n = 100
           p = 0.01
                       P(Sn) = 0.0
                       P(Sn) = 0.0
                       P(Sn) = 6.180993840088078e-07
           p = 0.25
                       P(Sn) = 0.6826894921370859
n = 1000
           p = 0.001
                       P(Sn) = 0.0
n = 1000
           p = 0.01
                       P(Sn) = 0.0
                       P(Sn) = 0.0
           p = 0.25
                       P(Sn) = 0.0
                       P(Sn) = 0.6572182888520886
n = 10000 p = 0.001 P(Sn) = 0.0
```

```
n = 10000 p = 0.01 P(Sn) = 0.0 n = 10000 p = 0.1 P(Sn) = 0.0 n = 10000 p = 0.25 P(Sn) = 0.0 n = 10000 p = 0.5 P(Sn) = 0.6826894921370859
```

Для большинства значений вероятность рассчитана некорректно, поскольку интегральная теорема Муавра-Пуассона дает приближенные значения при р $^{\sim}$ 1/2 и n * р - порядка сотен.

Расчёт приближённой вероятности $P(S_n \le 5)$ для $n \in \{100, 1000, 10000\}, p \in \{0.001, 0.01, 0.1, 0.25, 0.5\}$

```
Расчёт приближенной вероятности P(Sn <= 5):
                       P(Sn) = 0.6241452284609645
n = 100
            p = 0.001
                        P(Sn) = 0.8425315989385818
n = 100
            p = 0.01
                        P(Sn) = 0.047361291939617856
            p = 0.25
                        P(Sn) = 1.9259262001858346e-06
n = 100
                       P(Sn) = 0.0
n = 100
            p = 0.5
n = 1000
           p = 0.001
                       P(Sn) = 0.841434387503702
                        P(Sn) = 0.05527748145542166
n = 1000
            p = 0.01
                        P(Sn) = 0.0
n = 1000
                        P(Sn) = 0.0
            p = 0.5
```

```
n = 10000 p = 0.001 P(Sn) = 0.05605431814512307

n = 10000 p = 0.01 P(Sn) = 0.0

n = 10000 p = 0.1 P(Sn) = 0.0

n = 10000 p = 0.25 P(Sn) = 0.0

n = 10000 p = 0.5 P(Sn) = 0.0
```

Некоторые значения сильно отличаются от точных вероятностей, потому что значение n * p B данных случаях значительно больше k – количества благополучных исходов.