CS1571 Fall 2019 11/11 In-Class Worksheet

Name: Simran Gidwani

Where were you sitting in class today: Back Left

A. Pre-Reflection

On a scale of 1-5, with 5 being most confident, how well do you think you could execute these learning objectives:

- 18.3 Identify independence relationships within a Bayes Net
- 18.5 Explain the complexity of inference by enumeration using Bayes Nets
- 19.1 Describe optimizations to inference using Bayes Nets
- 19.2 Define expected value
- 19.3 Explain how decisions are made using expected value

B. Bayes Nets

1. Using a Bayes Net, how many products do you have to compute to get the probability that P(J=T).

Figure 14.2 A typical Bayesian network, showing both the topology and the conditional probability tables (CPTs). In the CPTs, the letters B, E, A, J, and M stand for Burglary, Earthquake, Alarm, JohnCalls, and MaryCalls, respectively.

$$P(J=T) = \sum_{\{b\}} \sum_{\{e\}} \sum_{\{a\}} \sum_{\{m\}} P(B=b, E=e, A=a, J=T, M=m) \\ P(J+T|A) *P(M|A) * P(A|B,E) * P(B) * P(E)$$

4 values and then each of the 4 variables can either be true or false, summing across all

$$4*2^4 = 64$$

C. Expected Value

2. Using expected value, compute the rational decision to make in this situation.

3. Using Expectimax, compute the rational decision to make in this situatino.

D. Post Reflection

On a scale of 1-5, with 5 being most	confident, ho	ow well do yo	u think you	could e	execute
these learning objectives:					

	\mathcal{C}^{-}	
•	18.3 Identify independence relationships within a Bayes Net	
•	18.5 Explain the complexity of inference by enumeration using Bayes Nets	
•	19.1 Describe optimizations to inference using Bayes Nets	
•	19.2 Define expected value	
•	19.3 Explain how decisions are made using expected value	