Exchange Economy with Externalities and Complex Utility Functions

Consider a pure exchange economy with two agents and two goods. Let x_{ij} be the consumption of good i by agent j

The agents' utility functions are:

$$u_1(x_{11}, x_{21}) = \min\{x_{11} + 3x_{21}, 4x_{11} + x_{21}\}$$

 $u_2(x_{12}, x_{22}) = 3x_{12} + x_{21}$

The initial endowments are:

$$\omega_1 = (0, \beta)$$
 and $\omega_2 = (1, 0)$

- (a) Find the set of Pareto-optimal allocations in terms of β
- (b) Solve the utility maximization problem for both agents to determine their demands as functions of prices and β

Solution

(a) Pareto Optimal Allocations

First, observe that the total endowments are

$$x_{11} + x_{12} = 1$$
 and $x_{21} + x_{22} = \beta$

so any feasible allocation must satisfy those equations and non-negativity of consumptions

Agent 1's utility:

$$u_1(x_{11}, x_{21}) = \min\{x_{11} + 3x_{21}, 4x_{11} + x_{21}\}$$

Agent 2's utility:

 $u_2(x_{12}, x_{22}) = 3x_{12} + x_{21}$ (note that x_{21} is Agent 1's consumption of good 2 according to the problem statement)

Checking Pareto improvements from the initial endowment

The initial endowment is

$$\omega_1 = (0, \beta), \quad \omega_2 = (1, 0)$$

which implies the allocation

$$(x_{11}, x_{21}) = (0, \beta), \quad (x_{12}, x_{22}) = (1, 0)$$

Under this allocation

$$u_1(0,\beta) = \min\{0 + 3\beta, 4 \cdot 0 + \beta\} = \min\{3\beta,\beta\} = \beta \text{ (assuming } \beta > 0)$$

$$u_2(1,0) = 3 \cdot 1 + (Agent 1 consumes \beta of good 2) = 3 + \beta$$

Hence, at the initial endowment,

$$u_1 = \beta$$
 and $u_2 = 3 + \beta$

A direct examination shows that any attempt to reallocate goods in a way that increases one agent's utility strictly ends up decreasing the other's utility. For example:

- Giving good 1 from Agent 2 to Agent 1 reduces x_{12} and thus reduces $3x_{12}$ in u_2
- Giving good 2 from Agent 1 to Agent 2 reduces x_{21} , which directly appears as $+x_{21}$ in u_2 , so that also hurts Agent 2
- Interior reallocations end up lowering either u_1 or u_2 below their initial values

Therefore, the initial endowment itself is already Pareto optimal

Generalizing to all possible reallocations

To see the full range of Pareto-optimal allocations, consider a general allocation $(x_{11}, x_{21}; x_{12}, x_{22})$ subject to

$$x_{11} + x_{12} = 1$$
 $x_{21} + x_{22} = \beta$ $x_{ij} \ge 0$

We have

$$u_1(x_{11}, x_{21}) = \min\{x_{11} + 3x_{21}, 4x_{11} + x_{21}\}$$
 and $u_2(x_{12}, x_{21}) = 3x_{12} + x_{21}$

(i) All of good 2 goes to Agent 1. In $u_2 = 3 x_{12} + x_{21}$, the partial derivative with respect to x_{21} is +1, so Agent 2 strictly prefers that any amount of good 2 be in the hands of Agent 1 (since it appears positively in u_2). Meanwhile, Agent 1 is not harmed if x_{21} is larger, because x_{21} also enters positively in both expressions inside the min{} of u_1 . Consequently, any amount of good 2 given to Agent 2 can be reallocated to Agent 1 to strictly increase u_2 without lowering u_1 . Thus Pareto efficiency requires

$$x_{21} = \beta$$
 and $x_{22} = 0$

(ii) Splitting good 1. Since $x_{21} = \beta$ is fixed for Pareto efficiency, the only remaining choice is how to split the total of 1 unit of good 1 between the two agents. Let $t \in [0,1]$ be the fraction of good 1 that goes to Agent 1:

$$x_{11} = t$$
 $x_{12} = 1 - t$

so the allocation is

$$(x_{11}, x_{21}; x_{12}, x_{22}) = (t, \beta; 1 - t, 0)$$

Their utilities become

$$u_1(t,\beta) = \min\{t + 3\beta, 4t + \beta\}$$

 $u_2(1-t,\beta) = 3(1-t) + \beta = 3 + \beta - 3t$

No further reallocation of good 2 is beneficial because of the positive effect on both agents of having $x_{21} = \beta$. Thus the entire Pareto frontier is spanned by $t \in [0, 1]$.

Hence, for any $\beta > 0$, the full set of Pareto-optimal allocations is $\{(t, \beta; 1 - t, 0) : 0 \le t \le 1\}$, and the initial endowment corresponds to t = 0.

(b) Utility Maximization and Demands

Agent 2's problem

Agent 2 has the endowment (1,0), so their income is

$$I_2 = p_1 \cdot 1 + p_2 \cdot 0 = p_1$$

Agent 2 maximizes

$$u_2(x_{12}, x_{22}) = 3x_{12} + x_{21}$$

subject to

$$p_1 x_{12} + p_2 x_{22} \le p_1, \quad x_{12}, x_{22} \ge 0$$

Notice that x_{21} is not chosen by Agent 2; it is Agent 1's consumption of good 2. Therefore, for a standard Walrasian demand, only the term $3x_{12}$ is actually controlled by Agent 2. From Agent 2's perspective, x_{21} is a constant (an externality determined by Agent 1)

Focusing on the part they do control, Agent 2 solves

$$\max_{x_{12}, \, x_{22} \ge 0} 3 \, x_{12}$$

subject to

$$p_1 x_{12} + p_2 x_{22} \le p_1$$

This is a linear program in (x_{12}, x_{22}) . Since only x_{12} yields positive marginal utility (equal to 3), Agent 2 spends the entire budget on good 1. Hence

$$x_{12} = \frac{p_1}{p_1} = 1, \quad x_{22} = 0$$

Thus, the demand for Agent 2 is

Agent 2's Demand:
$$(x_{12}^*, x_{22}^*) = (1, 0)$$

Agent 1's problem

We want to solve the following utility maximization problem:

$$\max_{x_{11}, x_{21} \ge 0} \min\{x_{11} + 3x_{21}, 4x_{11} + x_{21}\} \text{ subject to } p_1 x_{11} + p_2 x_{21} \le p_2 \beta$$

Step 1: Check for an interior solution

For an interior solution that makes both expressions inside the $\min\{\cdot,\cdot\}$ equal, we set:

$$x_{11} + 3x_{21} = 4x_{11} + x_{21} \implies 3x_{21} - x_{21} = 4x_{11} - x_{11} \implies 2x_{21} = 3x_{11} \implies x_{21} = \frac{3}{2}x_{11}$$

Plug this relation into the budget constraint:

$$p_1 x_{11} + p_2 (\frac{3}{2} x_{11}) = x_{11} (p_1 + \frac{3}{2} p_2) \le p_2 \beta$$

At optimum (assuming an interior solution is indeed optimal), the budget is fully spent, so

$$x_{11} = \frac{p_2 \beta}{p_1 + \frac{3}{2}p_2}$$
 , $x_{21} = \frac{3}{2} \frac{p_2 \beta}{p_1 + \frac{3}{2}p_2}$

Step 2: Corner solutions

Because utility is the minimum of two linear expressions, we must also check corners where the consumer spends all income on a single good:

1. Corner 1: $x_{21} = 0$. Then

$$u_1 = \min\{x_{11}, 4x_{11}\} = x_{11}$$

and the budget constraint becomes $p_1 x_{11} \leq p_2 \beta$. Hence

$$x_{11} = \frac{p_2 \beta}{p_1}$$
 and $u_1 = \frac{p_2 \beta}{p_1}$

2. Corner 2: $x_{11} = 0$. Then

$$u_1 = \min\{3x_{21}, x_{21}\} = x_{21}$$

(because $x_{21} \leq 3x_{21}$ for $x_{21} \geq 0$), and the budget constraint is $p_2 x_{21} \leq p_2 \beta$. Thus

$$x_{21} = \beta$$
 and $u_1 = \beta$

Step 3: Compare utilities

Let

$$U_{\text{int}} = \min \left\{ x_{11} + 3x_{21}, \ 4x_{11} + x_{21} \right\} \text{ (under the interior solution)} = \frac{11}{2} x_{11} = \frac{11 p_2 \beta}{2 p_1 + 3 p_2}$$

$$U_{\text{corner1}} = \frac{p_2 \beta}{p_1}$$
 , $U_{\text{corner2}} = \beta$

By comparing U_{int} with U_{corner1} and U_{corner2} , we find the Marshallian demands are piecewise according to the ratio $\frac{p_1}{p_2}$:

If
$$\frac{p_1}{p_2} < \frac{1}{3}$$
, Corner 1 is better

If $\frac{1}{3} \le \frac{p_1}{p_2} \le 4$, Interior solution is better

If
$$\frac{p_1}{p_2} > 4$$
, Corner 2 is better

Step 4: Final Marshallian demand

$$x_{11}^*(p_1, p_2, \beta) = \begin{cases} \frac{p_2 \beta}{p_1} & \text{if } \frac{p_1}{p_2} < \frac{1}{3} \\ \frac{p_2 \beta}{p_1 + \frac{3}{2}p_2} & \text{if } \frac{1}{3} \le \frac{p_1}{p_2} \le 4 \\ 0 & \text{if } \frac{p_1}{p_2} > 4 \end{cases}$$

$$x_{21}^*(p_1, p_2, \beta) = \begin{cases} 0 & \text{if } \frac{p_1}{p_2} < \frac{1}{3} \\ \frac{3}{2} \frac{p_2 \beta}{p_1 + \frac{3}{2} p_2} & \text{if } \frac{1}{3} \le \frac{p_1}{p_2} \le 4 \\ \beta & \text{if } \frac{p_1}{p_2} > 4 \end{cases}$$

Therefore, the Marshallian demand for the agent with utility $\min\{x_{11} + 3x_{21}, 4x_{11} + x_{21}\}$ is given by the above piecewise functions