

Data Science for Smart Cities CE88

Prof: Alexei Pozdnukhov

GSI: Madeleine Sheehan

115 McLaughlin Hall

<u>alexeip@berkeley.edu</u> <u>m.sheehan@berkeley.edu</u> CE88 in title

Today

9:10-9:50 Data exploration: clustering

9:50-10:30 Minilab 11

10:30-11:00 Towards the final project

Optimization

What is Cluster Analysis?

- Cluster: a collection of data objects
 - Similar to the objects in the same cluster (intraclass similarity)
 - Dissimilar to the objects in other clusters (interclass dissimilarity)
- Cluster analysis
 - Statistical/geometrical method for grouping a set of data objects into clusters
 - A good clustering method produces high quality clusters with high intraclass similarity and low interclass similarity
- Clustering is unsupervised classification
- Can be a stand-alone tool or as a preprocessing step for other algorithms

What is Cluster Analysis?

Requirements for Clustering

- Scalability
- Ability to deal with different types of attributes
- Discovery of clusters with arbitrary shape
- Minimal domain knowledge required to determine input parameters
- Ability to deal with noise and outliers
- Insensitivity to order of input records
- Robustness wrt high dimensionality
- Incorporation of user-specified constraints
- Interpretability and usability

Data representation

Data representation

Data representation

Similarity measures

Euclidean Distance

$$\vec{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_N \end{bmatrix} \qquad \vec{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_N \end{bmatrix}$$

$$d(\vec{x}, \vec{y}) = \sqrt{\sum_{n=1}^{N} (x_n - y_n)^2}$$

Similarity measures

Cosine similarity

$$\vec{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_N \end{bmatrix} \vec{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_N \end{bmatrix}$$

$$C_{\text{cosine}}(\vec{x}, \vec{y}) = \frac{\frac{1}{N} \sum_{i=1}^{N} x_i \times y_i}{\|\vec{x}\| \times \|\vec{y}\|}$$

$$\vec{x} = \vec{y}$$
 +1 \geq Cosine Correlation \geq -1 $\vec{x} = -\vec{y}$

Similarity measures

Pearson Correlation

$$\vec{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_N \end{bmatrix} \quad \vec{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_N \end{bmatrix}$$

$$C_{pearson}(\vec{x}, \vec{y}) = \frac{\sum_{i=1}^{N} (x_i - m_x)(y_i - m_y)}{\sqrt{\left[\sum_{i=1}^{N} (x_i - m_x)^2\right] \left[\sum_{i=1}^{N} (y_i - m_y)^2\right]}} \qquad m_x = \frac{1}{N} \sum_{n=1}^{N} x_n$$

$$m_y = \frac{1}{N} \sum_{n=1}^{N} y_n$$

$$m_x = \frac{1}{N} \sum_{n=1}^{N} x_n$$

$$m_y = \frac{1}{N} \sum_{n=1}^{N} y_n$$

+1 ≥ Pearson Correlation ≥ – 1

Hierarchical Clustering

K-Means clustering

- The meaning of 'K-means'
 - Why it is called 'K-means' clustering: K points are used to represent the clustering result; each point corresponds to the centre (geometric mean) of a cluster
- Each point is assigned to the cluster with the closest center point
- The number K must be specified
- Basic algorithm

K-Means clustering

- Given k, the k-means algorithm is implemented in 4 steps:
 - Partition objects into k non-empty subsets
 - Arbitrarily choose k points as initial centers (centroids)
 - Assign each object to the cluster with the nearest center
 - Calculate the mean of the cluster and update the center point
 - Go back to Step 3, stop when no more new assignment

K-Means clustering

Clustering

- Data exploration method
- Can be interpreted as a purely geometrical approach of grouping similar data samples together
- Requires data representation and the definition of similarity
- K-means (and other algorithms)
- Involves parameters choice (number of clusters, etc)

Implementation of clustering methods

Scikit-learn

Method name	Parameters	Scalability	Usecase	Geometry (metric used)
<u>K-Means</u>	number of clusters	Very large n_samples, medium n_clusters	General-purpose, even cluster size, flat geometry, not too many clusters	Distances between points
Spectral clustering	number of clusters	Medium n_samples, small n_clusters	Few clusters, even cluster size, non-flat geometry	Graph distance (e.g. nearest-neighbor graph)
Hierarchical clustering	number of clusters	Large n_samples and n_clusters	Many clusters, possibly connectivity constraints	Distances between points
<u>DBSCAN</u>	neighborhood size	Very large n_samples, medium n_clusters	Non-flat geometry, uneven cluster sizes	Distances between nearest points
Gaussian mixtures	many	Not scalable	Flat geometry, good for density estimation	Mahalanobis distances to centers

Minilab

How to choose parameters: "toy" problem

- Clustering EV owners charging patterns
- Interpretation of clustering results

