Minimal HW

Problem 1:

a.
$$q = 2, r = 5$$

b.
$$q = -11, r = -1$$

c.
$$a = 34, r = 7$$

d.
$$q = 77, r = 0$$

e.
$$q = 0, r = 0$$

f.
$$q = 0, r = 3$$

g.
$$q = -1, r = 2$$

h.
$$q = 4, r = 0$$

Problem 2:

Let k we want to find the smallest absolute value that is congruent to $a \mod m$ where m > 0.

 $k \equiv a \bmod m$ where the set of integers for k would be:

$$k=\{\,-m/2,...,-1,0,1,...,m/2\,\}$$
 depending on m (even or odd).

Problem 3:

a.
$$ac\cong bc\pmod m$$
 with $m\geq 2$ but $a\ncong b\pmod m$ if $a=0,b=2,c=2,m=4$ then $0\cong 4\pmod 4$ then $0\ncong 2\pmod 4$.

b.
$$a\cong b\pmod m$$
 and $c\cong d\pmod m$ but $a^c\ncong b^d\pmod m$ if $a=2,b=1,c=2,d=3,m=4$ then $2\cong 1\pmod 4$ and $2\cong 3\pmod 4$ but $2^2\ncong 1^3\pmod 4$

Problem 4:

$$a\cong b\pmod m$$
 then $a^k\cong b^k\pmod m$.

We know that $a \cdot a \cong b \cdot b \pmod{m}$ based on the theorem. Then $a^3 \cong b^3 \cong \pmod{m}$. Based on the induction k can be any integer that proves the statement.

Problem 5:

Based on the commutative law the table consist of values $a \leq b$:

0 + 0 = 0	1 + 1 = 2	2 + 3 = 0
0 + 1 = 1	1 + 2 = 3	2 + 4 = 1
0 + 2 = 2	1 + 3 = 4	3 + 3 = 1
0 + 3 = 3	1 + 4 = 0	3 + 4 = 2
0 + 4 = 4	2 + 2 = 4	4 + 4 = 3

0 * 0 = 0	1 * 1 = 1	2 * 3 = 1
0 * 1 = 0	1 * 2 = 2	2 * 4 = 3
0 * 2 = 0	1 * 3 = 3	3 * 3 = 4
0 * 3 = 0	1 * 4 = 4	3 * 4 = 2
0 * 4 = 0	2 * 2 = 4	4 * 4 = 1

Problem 6:

 $f(a) = a \div d$ and $g(a) = a \mod d$ where d is fixed.

For d=1 o f(a)=a and g(a)=0 then f(a) is one-to-one and onto, although g(a) is none of them.

For $d>1 \to f(kd)=k$ for any integer k then f(a) is not one-to-one but onto. Furthermore $g(kd)=kd \bmod d$ is not onto because $kd \bmod d$ ranges from 0 to d-1 inclusively. In addition to that g(a) is not one-to-one as well since g(0)=g(d)=d.

Problem 7:

a.
$$231 = 11100111_2$$

$$\mathsf{b.}\ 4532 = 1000110110100_2$$

$$\mathtt{c.}\ 97644 = 10111110101101100_2$$

Problem 8:

a.
$$11111_2 = 2^4 + 2^3 + 2^2 + 2 + 1 = 31$$

b.
$$100000001_2 = 2^9 + 2^0 = 513$$

c.
$$101010101_2 = 2^8 + 2^6 + 2^4 + 2^2 + 2^0 = 341$$

d.
$$110100100010000_2 = 2^{14} + 2^{13} + 2^{11} + 2^8 + 2^4$$

Problem 9:

a.
$$1000111_2 + 1110111_2 = 101111110_2$$

$$\mathsf{b.}\ 11101111_2 + 101111101_2 = 110101100$$

c.
$$1010101010 + 1111110000 = 10010011010$$

Problem 10:

1.
$$88 = 2^3 \cdot 11$$

2.
$$126 = 2 \cdot 3^2 \cdot 7$$

3.
$$729 = 3^6$$

4.
$$1001 = 7 \cdot 11 \cdot 13$$

5.
$$1111 = 11 \cdot 101$$

6.
$$90909 = 3^2 \cdot 7 \cdot 11 \cdot 13 \cdot 101$$

Problem 11:

The number of 0 at the end of 100! can be determined by how many times we divide this number by 10.

10 can be factorized as $2 \cdot 5$.

Let's find out the 5s since they are much less than 2s.

Since
$$100! = 100 \cdot 99 \cdot ... \cdot 50 \cdot ... \cdot 20 \cdot ... \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1$$

$$100/5 + 100/5^2 + 100/5^3 + ... = 20 + 4 + 0 + ... + 0 = 24.$$

Problem 12:

Euclidean algorithm is a=bq+r then $gcd(a,b)=gcd(b,r) o gcd(a,b)=gcd(b,a\ \mathrm{mod}\ b)$

a.
$$gcd(12,18) = gcd(12,6) = 6$$

b.
$$\gcd(111,201)=\gcd(111,90)=\gcd(90,21)=\gcd(21,6)=\gcd(6,3)=\gcd(3,0)=3$$

c.
$$\gcd(1001,1331) = \gcd(1001,330) = \gcd(330,11) = \gcd(11,0) = 11$$

d.
$$\gcd(12345,54321)=\gcd(12345,4941)=\gcd(4941,2463)=\gcd(2463,15)=\gcd(15,3)=\gcd(3,0)=3$$

- e. $\gcd(1000, 5040) = \gcd(1000, 40) = \gcd(40, 0) = 40$
- f. $\gcd(9888,6060)=\gcd(6060,3828)=\gcd(3828,2232)=\gcd(2232,1596)=\gcd(1596,636)=\gcd(636,324)=\gcd(324,312)=\gcd(312,12)=(12,0)=12$

Minimal HW