Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського" Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 4 з дисципліни «Алгоритми та структури даних-1. Основи алгоритмізації»

«Дослідження арифметичних циклічних алгоритмів»

Варіант 32

Виконав студент <u>ІП-14, Шляхтун Денис Михайлович</u> (шифр, прізвище, ім'я, по батькові)

Перевірив <u>доц. кафедри ІПІ Мартинова Оксана Петрівна</u> (прізвище, ім'я, по батькові)

Лабораторна робота 4

Дослідження арифметичних циклічних алгоритмів

Мета — дослідити особливості роботи арифметичних циклів та набути практичних навичок їх використання під час складання програмних специфікацій.

Задача.

32. Для заданого дійсного x і натурального n обчислити

$$y = \frac{1}{\sum_{i=1}^{n} \frac{1}{i^2} \cdot \sin x}$$
 для $x = 0,5$.

Постановка задачі. Результатом розв'язку ϵ обчислення за формулою, заданою в умові. Ввідними даними ϵ n, значення х задане в умові.

Побудова математичної моделі. Складемо таблицю імен змінних

Змінна	Tun	Ім'я	Призначення
Змінна	Дійсний	X	Початкове дане
Параметр	Цілий	n	Початкове дане
Сума	Дійсний	eps	Проміжне дане
Лічильник	Цілий	i	Проміжне дане
Результат	Дійсний	у	Результат

Варто зазначити, що за умовою параметр – натуральне число, тому крім того, що це ціле число, воно повинне бути більше нуля.

В алгоритмі використовуються наступні формули та позначення:

і^2 – піднесення числа до квадрату

sin(x) – синус від числа

y = 1 / (eps*sin(x)) - визначення результату

Програмні специфікації запишемо у псевдокоді та графічній формі у вигляді блок-схеми.

Крок 1. Визначимо основні дії.

Крок 2. Визначаємо проміжні дані.

```
Крок 3. Деталізуємо дію обчислення суми.
```

```
Крок 4. Деталізуємо дію визначення результату.
```

Псевдокод.

```
Крок 1.
```

початок

визначення проміжних змінних

обчислення суми eps

визначення результату

кінець

Крок 2.

початок

eps = 0

x = 0.5

обчислення суми ерѕ

визначення результату

кінець

Крок 3.

початок

eps = 0

x = 0.5

повторити

для і від 1 до п

$$eps = eps + 1/i^2$$

все повторити

визначення результату

кінець

Крок 4.

початок

$$eps = 0$$

$$x = 0.5$$

повторити

$$eps = eps + 1/i^2$$

все повторити

$$y = 1 / (eps*sin(x))$$

кінець

Блок-схема алгоритму

Випробування алгоритму. Перевіримо правильність алгоритму на довільному конкретному значенні початкових даних

Блок	Дія
	Початок
	Введення n = 4
I	eps = 0, x = 0.5
1 ітерація	$1 \le 4$, eps = $0 + 1/1^2 = 1$
2 ітерація	$2 \le 4$, eps = $1 + 1/2^2 = 1.25$
3 ітерація	$3 \le 4$, eps = $1.25 + 1/3^2 = 1.361$
4 ітерація	$4 \le 4$, eps = $1.3611 + 1/4^2 = 1.4236$
III	y = 1 / (1.4236*0.4794) = 1 / 0.6825 = 1.4652
	Вивід: 1.4652
	Кінець

Висновок.

При виконанні лабораторної роботи було використано арифметичний цикл, особливістю якого є циклічне виконання певної послідовності операцій із заздалегідь визначеною кількістю повторень. Перевірка умови завжди проходить перед початком циклу, тому цикл може жодного разу не виконатися. У даному випадку, п — натуральне число і не може бути менше за і, тому цикл виконається принаймні один раз.