Hypothesis Testing

Chaklam Silpasuwanchai

Asian Institute of Technology chaklam@ait.asia

Overview

- 1 Big Picture Why test?
- 2 Examples: Parametric tests
 One-way with 2 levels with no sig
 One-way with 2 levels with sig
 One-way with 4 levels
 Between-subjects
 Two-way
- Sassumption check Normality check Homogeneity of variances
- 4 Examples: Non-parametric tests

Sources

- Mackenzie, Chapter 6, Hypothesis Testing, Human Computer Interaction: An Empirical Research Perspective, 1st ed. (2013)
- Yatani, Advanced Topics in Human-Computer Interaction, http://yatani.jp/teaching/doku.php?id=2016hci:start

1 Big Picture Why test?

- Examples: Parametric tests
 One-way with 2 levels with no sig
 One-way with 2 levels with sig
 One-way with 4 levels
 Between-subjects
 Two-way
- Assumption check Normality check Homogeneity of variances
- 4 Examples: Non-parametric tests

Why test?

Terminologies

Let's take a oversimplistic case study to understand these terminologies: IV: Mouse vs. Gestures and Sitting vs. Standing, DV: Speed

- Null hypothesis vs. alternative hypothesis
- p-value
- alpha
- main effect
- interaction effect
- effect size
- degree of freedom
- sum of squares (within and between)
- mean squares

Main effect and Interaction effect

Figure: Source: Yatani's post-hoc tests

Which test to use?

- Number of levels
- Between subject vs. within-subject
- Parametric vs. Non-parametric

Long and wide format

There is a difference in how to format your data between within-subject and between subject

In between subject, we use _____ format.

In within-subject, we use _____ format

Wide format

Α		В
	5.3	5.7
	3.6	4.8
	5.2	5.1
	3.6	4.5
	4.6	6
	4.1	6.8
	4	6
	4.8	4.6
	5.2	5.5
	5.1	5.6

Figure: Wide format structure: Cols depicting possible combinations

Long format

A 3.6 A 5.2 A 3.6 A 4.6 A 4.1 A 4.8 A 5.2 A 5.1 B 5.7 B 4.8 B 5.7 B 6.8 B 6.8 B 6.8 B 6.8 B 6.8		
A 5.2 A 3.6 A 4.6 A 4.1 A 4.1 A 4.8 A 5.2 A 5.1 B 5.7 B 4.8 B 5.7 B 6.8 B 6.8 B 6.8 B 6.8 B 6.8	Α	5.3
A 3.6 A 4.6 A 4.1 A 4.1 A 4.8 A 5.2 A 5.1 B 5.7 B 4.8 B 5.1 B 6.8 B 6.8 B 6.8 B 6.8	Α	3.6
A 4.6 A 4.1 A 4.8 A 5.2 A 5.1 B 5.7 B 4.8 B 5.7 B 6.8 B 6.8 B 6.8 B 6.8	Α	5.2
A 4.1 A 4.8 A 4.8 A 5.2 A 5.1 B 5.7 B 4.8 B 5.1 B 6.8 B 6.8 B 6.8 B 6.8 B 6.8	Α	3.6
A 4 4.8 A 5.2 A 5.1 B 5.7 B 4.8 B 6.8 B 6.8 B 6.8 B 4.6 B 5.5	Α	4.6
A 4.8 A 5.2 A 5.1 B 5.7 B 4.8 B 5.1 B 4.5 B 6.8 B 6.8 B 6.8 B 6.8 B 5.5	Α	4.1
A 5.2 A 5.1 B 5.7 B 4.8 B 5.1 B 4.5 B 6.8 B 6.8 B 6.8 B 6.8 B 5.5	Α	4
A 5.1 B 5.7 B 4.8 B 5.1 B 4.5 B 6.8 B 6.8 B 6.8 B 6.8	Α	4.8
B 5.7 B 4.8 B 5.1 B 4.5 B 6 B 6.8 B 6.8 B 4.6 B 5.5	Α	5.2
B 4.8 B 5.1 B 4.5 B 68 B 6.8 B 6.8 B 4.6 B 5.5	Α	5.1
B 5.1 B 4.5 B 6 B 6.8 B 6.8 B 4.6 B 5.5	В	5.7
B 4.5 B 68 B 6.8 B 6.8 B 4.6 B 5.5	В	4.8
B 68 B 68 B 68 B 4.6 B 5.5	В	5.1
B 6.8 B 6 B 4.6 B 5.5	В	4.5
B 66 B 4.6 B 5.5	В	6
B 4.6 B 5.5	В	6.8
B 5.5	В	6
	В	4.6
D 5.6	В	5.5
5.0	В	5.6

Figure: Long format structure: one col for each factor

Reporting format (APA)

- If **significant**, use threshold set .05, .01, .005, .001, .0005, .0001. p is cited as p < .05 instead of p = .0121.
- If not significant though, say "n.s." instead
- If very close to significant, report exact value.
- Plot with standard error bars
- Report mean and std (same unit)
- Common nowadays to report effect size
 - Effect size measures how "strong" is the significance. SPSS reports Partial Eta Squared (η_p^2) .02 means that the factor X by itself accounted for only 2% of the overall (effect + error) variance. Usually around > 0.09 is considered moderate, while > 0.25 is large.

- Big Picture Why test?
- 2 Examples: Parametric tests
 One-way with 2 levels with no sig
 One-way with 2 levels with sig
 One-way with 4 levels
 Between-subjects
 Two-way
- Assumption check Normality check Homogeneity of variances
- 4 Examples: Non-parametric tests

Example: One-way with 2 levels with no sig

a)	Participant	Met	thod
	Participant	Α	В
	1	2.4	6.9
	2	2.7	7.2
	3	3.4	2.6
	4	6.1	1.8
	5	6.4	7.8
	6	5.4	9.2
	7	7.9	4.4
	8	1.2	6.6
	9	3.0	4.8
	10	6.6	3.1
	Mean	4.5	5.5
	SD	2.23	2.45

FIGURE 6.6

(a) Data for simulation in Figure 6.2b. (b) Bar chart with error bars showing ± 1 standard deviation.

Figure: Source: Fg. 6.6 (Mackenzie)

Example: One-way with 2 levels with no sig

ANOVA Table for Task Completion Time (s)

	DF	Sum of Squares	Mean Square	F-Value	P-Value	Lambda	Pow er
Subject	9	37.372	4.152				
Method	1	4.324	4.324	.626	.4491	.626	.107
Method * Subject	9	62.140	6.904				

FIGURE 6.7

Analysis of variance for data in Figure 6.3b.

Figure: Source: Fg. 6.7 (Mackenzie). F = 4.324/6.904 = .626. Given *p*-value of .4491, there is around 45% that the difference occurs by chance.

The mean task completion times were 4.5 s for Method A and 5.5 s for Method B. As there was substantial variation in the observations across participants, the difference was not statistically significant as revealed in an analysis of variances $(F_{1,9}=0.626, \, \mathrm{ns})$.

FIGURE 6.8

Reporting a non-significant ANOVA result.

Figure: Source: Fg. 6.8 (Mackenzie). It means that we have not enough evidence to reject null hypothesis

40 > 40 > 42 > 42 > 2 > 900

Example: One-way with 2 levels with sig

a)	Porticipant	Met	hod
	Participant	Α	В
	1	5.3	5.7
	2	3.6	4.8
	3	5.2	5.1
	4	3.6	4.5
	5	4.6	6.0
	6	4.1	6.8
	7	4.0	6.0
	8	4.8	4.6
	9	5.2	5.5
	10	5.1	5.6
	Mean	4.5	5.5
	SD	0.68	0.72

FIGURE 6.3

(a) Data for simulation in Figure 6.2a. (b) Bar chart with error bars showing ±1 standard deviation.

Figure: Source: Fg. 6.3 (Mackenzie)

Example: One-way with 2 levels with sig

ANOVA Table for Task Completion Time (s)

	DF	Sum of Squares	Mean Square	F-Value	P-Value	Lambda	Pow er
Subject	9	5.080	.564				
Method	1	4.232	4.232	9.796	.0121	9.796	.804
Method * Subject	9	3.888	.432				

FIGURE 6.4

Analysis of variance table for data in Figure 6.3a.

Figure: Source: Fg. 6.4 (Mackenzie): P-value of 0.0121 means that there is less than 2% that the difference occurs by chance. By convention requires less than 0.05 to reject null hypothesis

The mean task completion time for Method A was 4.5 s. This was 20.1% less than the mean of 5.5 s observed for Method B. The difference was statistically significant ($F_{1.9} = 9.80, p < .05$).

FIGURE 6.5

Example of how to report the results of an analysis of variance in a research paper.

Figure: Source: Fg. 6.5 (Mackenzie): F-value is calculated = between-group variances / within-group variances = 4.232 / .432

Example: One-way with 4 levels

Participant		Test C	ondition	
Participant	Α	В	С	D
1	11	11	21	16
2	18	11	22	15
3	17	10	18	13
4	19	15	21	20
5	13	17	23	10
6	10	15	15	20
7	14	14	15	13
8	13	14	19	18
9	19	18	16	12
10	10	17	21	18
11	10	19	22	13
12	16	14	18	20
13	10	20	17	19
14	10	13	21	18
15	20	17	14	18
16	18	17	17	14
Mean	14.25	15.13	18.75	16.06
SD	3.84	2.94	2.89	3.23

Figure: Source: Fg. 6.9a (Mackenzie)

Example: One-way with 4 levels

Figure: Source: Fg. 6.9b (Mackenzie)

ANOVA Table for Dependent Variable (units)

	DF	Sum of Squares	Mean Square	F-Value	P-Value	Lambda	Pow er	
Subject	15	81.109	5.407					
Test Condition	3	182.172	60.724	4.954	.0047	14.862	.896	
Test Condition * Subject	45	551.578	12.257					

Figure: Source: Fg. 6.9c (Mackenzie)

Example: One-way with 4 levels

After ANOVA, to determine exactly which condition is different with which condition, a posthoc analysis is required - either Tukey's test or pairwise comparison with the Bonferroni correction

Scheffe for Dependent Variable (units)

Effect: Test Condition Significance Level: 5 %

	Mean Diff.	Crit. Diff.	P-Value	
A, B	875	3.302	.9003	
A, C	-4.500	3.302	.0032	s
A, D	-1.813	3.302	.4822	
B, C	-3.625	3.302	.0256	s
B, D	938	3.302	.8806	
C, D	2.688	3.302	.1520	

Figure: Source: Fg. 6.11 (Mackenzie)

Example: Between-subjects designs

To check whether handedness has a effect on task completion time.

Figure: Source: Fg. 6.12 (Mackenzie)

ANOVA Table for Task Completion Time (s)

	DF	Sum of Squares	Mean Square	F-V alue	P-Value	Lambda	Pow er	
Handedness	1	18.063	18.063	3.781	.0722	3.781	.429	
Residual	14	66.875	4.777					

Figure: Source: Fg. 6.13 (Mackenzie)

Two-way ANOVA

- Experiments with two IVs (factors) is called a two-way design
- Analysis of variance of two-way design will give us main effects of each factor and interaction effect
- Interaction effect indicates a relational effect between the IV on the DV

Example: 3 x 2 within-subjects design

Let's take both factors as within-subjects, the first factor is device with 3 levels - mouse, trackball, and stylus, and second factor is task with 2 levels - point-select and drag-select. We called this a 3 x 2 within-subjects design.

Figure: Source: Fg. 6.14 (Mackenzie)

Three effects were observed - the main effect of device and task, and the interaction effect between device and task.

ANOVA Table for Task Completion Time (s)

	DF	Sum of Squares	Mean Square	F-Value	P-Value	Lambda	Pow er
Subject	11	134.778	12.253				
Device	2	121.028	60.514	5.865	.0091	11.731	.831
Device * Subject	22	226.972	10.317				
Task	1	.889	.889	.076	.7875	.076	.057
Task * Subject	11	128.111	11.646				
Device * Task	2	121.028	60.514	5.435	.0121	10.869	.798
Device * Task * Subject	22	244.972	11.135				

Figure: Source: Fg. 6.15 (Mackenzie)

Example: 3 x 2 within-subjects design

Reporting:

The grand mean for task completion time was 15.4 seconds. Device 3 was the fastest at 13.8 seconds, while device 1 was the slowest at 17.0 seconds. The main effect of device on task completion time was statistically significant ($F_{2,22} = 5.865$, p <.01). The task effect was modest, however. Task completion time was 15.6 seconds for task 1. Task 2 was slightly faster at 15.3 seconds; however, the difference was not statistically significant $(F_{1,11} = 0.076, \text{ ns})$. The results by device and task are shown in Figure x. There was a significant Device × Task interaction effect $(F_{2.22} = 5.435, p < .05)$, which was due solely to the difference between device 1 task 2 and device 3 task 2, as determined by a Scheffé post hoc analysis.

Figure: Source: Fg. 6.16 (Mackenzie)

- Big Picture Why test?
- Examples: Parametric tests
 One-way with 2 levels with no sig
 One-way with 2 levels with sig
 One-way with 4 levels
 Between-subjects
 Two-way
- Sassumption check Normality check Homogeneity of variances
- 4 Examples: Non-parametric tests

Assumption check

 To decide whether we can use ANOVA (also called parametric tests), we check the assumption of normality and homogenity of variances.

Normality check

• First easy way is to use **histogram** to check skewness

Normality check

Another way is to use Q-Q plot.

Normality check

- Two common tests for normality is Shapiro Wilk and Kolmogorov-Smirnov test
- Shapiro-Wilk is more appropriate for small sample sizes (< 50)
- For example, the null hypothesis of Shapiro-Wilk is that samples are taken from a normal distribution. Here, the p-value is larger than .05, thus is safe to say it's normal. The null hypothesis is same for Kolmogorov-Smirnov

Tests of Normality

	Course	Kolmogorov-Smirnov ^a			Shapiro-Wilk			
		Statistic	df	Sig.	Statistic	df	Sig.	
Time	Beginner	.177	10	.200*	.964	10	.827	
1	Intermediate	.166	10	.200*	.969	10	.882	
	Advanced	.151	10	.200*	.965	10	.837	

- a. Lilliefors Significance Correction
- *. This is a lower bound of the true significance.

Homogeneity of variances

- t-test and ANOVA can handle differences in variances up to 4 times between smallest and largest (Howell, 2007)
- In a between-subject experiment, tests that can be use is Levene's test and Bartlett's test (p-value over 0.05 means that the variances are equal)
- In a repeated measures experiment, Sphericity test is used instead (p-value over .05 means that sphericity has not been violated). Note that in sphericity test, factors must have more than 2 levels.

- Big Picture Why test?
- Examples: Parametric tests
 One-way with 2 levels with no sig
 One-way with 2 levels with sig
 One-way with 4 levels
 Between-subjects
 Two-way
- Assumption check
 Normality check
 Homogeneity of variances
- 4 Examples: Non-parametric tests

Non-parametric tests for ordinal data

- Non-parametric tests make no assumptions for probability distribution
- Downsides of non-parametric tests are loss of information
- For example, 49, 81, 82 are transformed to 1, 2, 3
- In HCI, non-parametric tests are often used for **questionnaires data** (e.g., using Likert scale) since they are **ordinal** data.

Non-parametric tests for ordinal data

Four most common non-parametric procedures that work based on the number of conditions and design

Decign	Conditions		
Design	2	3 or more	
Between-subjects (independent samples)	Mann-Whitney U	Kruskal-Wallis	
Within-subjects (correlated samples)	Wilcoxon Signed-Rank	Friedman	

Figure: Source: Fg. 6.29 (Mackenzie)

Example: Mann-Whitney U

10 Mac users and 10 PC users are interviewed about their political views on a 10-point linear scale (1 = very left, 2 = very right). Turns out PC users are a little more "right-leaning"!

Mac Users	PC Users	
2	4	
3	6	
2	5	
4	4	
9	8	
2	3	
5	4	
3	2	
4	4	
3	5	

Figure: Source: Fg. 6.30 (Mackenzie)

Example: Mann-Whitney U

- Given 2 levels and between subject designs, Mann-Whitney U is suitable
- Here we found that p = .1418, thus we conclude that no differences were found.

(a)		
Mann-Whitney	U for Re	sponse
Grouping Vari	able: Cat	egory for Response
U	31.000	
U Prime	69.000	
Z-Value	-1.436	
P-Value	.1509	
Tied Z-Value	-1.469	
Tied P-Value	.1418	
# Ties	4	

Figure: Source: Fg. 6.31 (Mackenzie)

Example: Wilcoxon Signed-Rank

10 users rated the design of two media players on a 10-point linear scale (1 = not cool, 10 = really cool). Which test should we use?

Mac Users	PC Users	
2	4	
3	6	
2	5	
4	4	
9	8	
2	3	
5	4	
3	2	
4	4	
3	5	

Figure: Source: Fg. 6.32 (Mackenzie)

Example: Wilcoxon Signed-Rank

The Wilcoxon Signed-Rank test found that p = .0242, thus we conclude that no differences were found.

(a)

Wilcoxon Signed Rank Test for MPA, MPB

#0 Differences	2
# Ties	2
Z-Value	-2.240
P-Value	.0251
Tied Z-Value	-2.254
Tied P-Value	.0242

Figure: Source: Fg. 6.33 (Mackenzie)

Example: Kruskal-Wallis

Is it significant?

A20-29	A30-39	A40-49	
9	7	4	
9	3	5	
4	5	5	
9	3	2	
6	2	2	
3	1	1	
8	4	2	
9	7	2	

(a) Kru

Kruskal-Wallis Test for Acceptability
Grouping Variable: Category for Preference

DF 2
Groups 3
Ties 7
H 9.421
P-Value .0090
H corrected for ties 9.605
Tied P-Value .0082

Tied P-Value

Figure: Source: Fg. 6-35 (Mackenzie).

Figure: Source: Fg. 6-34 (Mackenzie).

Example: Kruskal-Wallis

Since there are three conditions, we can further run post-hoc tests to find out the differences in pair. Here, we found the difference between group 1 and 3.

Figure: Source: Fg. 6.36 (Mackenzie)

Example: Friedman Test

So, what's the conclusion?

Participant	Α	В	С	D
1	66	80	67	73
2	79	64	61	66
3	67	58	61	67
4	71	73	54	75
5	72	66	59	78
6	68	67	57	69
7	71	68	59	64
8	74	69	69	66

Tied P-Value

Figure: Source: Fg. 6-(37-39) (Mackenzie).

.0337

What's next

- Couple of workshops for ANOVA. Please take a look at the Tutorials folder before coming to the class. Make sure you have JASP installed.
- After we finish ANOVA, we gonna work on interaction and modeling, download GoFitts.jar from the Download folder and make sure you can run it (you need Java).

Questions