2	Bu	ildin	Blo	ock l	Hua	the si	$is: \mathcal{I}$	escrib	و م	Pro!	blem	Me	e H	ત્ર (BB	Нd	0وح
	not	. hold	3		۵۱					U							

A: Generally speaking, BBH breaks down in environments with very sparse reward (fitness) settings. This is due to the fact that then (almost) every sub-optimal solution has a fitness of O. Thus, we don't know which are 'better' and the GA turns into random search.

Specific examples

Meedle-in-Haystack:

$$f(x_1, ..., x_n) = \begin{cases} 1 & \text{if } (x_1, ..., x_n) = (0, ..., 0) \\ 0 & \text{otherwise} \end{cases}$$

- Guess - 42:

Pseudo-Boolean AND:

=> In all 3 cases, the fitness of every sub-optimal solution is O. Hence, the GA mechanisms break down and he end up with random secret