Multiplexing

Multiplexing

Frequency Division Multiplexing

- FDM is a scheme in which numerous signals are combined for transmission on a single communications line or channel.
- It is analog multiplexing technique.
- Each signal is assigned a different frequency (sub channel) within the main channel. It requires channel synchronization.
- Applications of TDM: FM & AM radio broadcasting, television broadcasting, First generation cellular telephone.

Frequency Division Multiplexing

- FDM
- Useful bandwidth of medium exceeds required bandwidth of channel
- Each signal is modulated to a different carrier frequency
- Carrier frequencies separated so signals do not overlap (guard bands)
- e.g. broadcast radio
- Channel allocated even if no data

Frequency Division Multiplexing Diagram

FDM System

(a) Transmitter

(b) Spectrum of composite baseband modulating signal

(c) Receiver

- Time Division Multiplexing (TDM) is the time interleaving of samples from several sources so that the information from these sources can be transmitted serially over a single communication channel.
- Applications of TDM: Digital Telephony, Data communications, Satellite Access, Cellular radio

At the Transmitter

- Simultaneous transmission of several signals on a time-sharing basis.
- Each signal occupies its own distinct time slot, using all frequencies, for the duration of the transmission.
- Slots may be permanently assigned on demand.

At the Receiver

- Decommutator (sampler) has to be synchronized with the incoming waveform
 Frame Synchronization
- Inter Symbol Interference poor channel filtering
- Feed through of one channel's signal into another channel -- Crosstalk

TDM System

(a) Transmitter

(b) TDM Frames

(c) Receiver

FDM v/s TDM

Sr no.	FDM	TDM
1.	The signals which are to be multiplexed are added in the time domain . But they occupy different slots in the frequency domain .	The signals which are to be multiplexed can occupy the entire bandwidth in the time domain.
2.	FDM is usually preferred for the analog signals.	TDM is preferred for the digital signals.
3.	Synchronization is not required .	Synchronization is required .
4.	The FDM requires a complex circuitry at Tx and Rx .	TDM circuitry is not very complex .
5.	FDM suffers from the problem of crosstalk due to imperfect BPF .	In TDM the problem of crosstalk is not severe.
6.	Due to bandwidth fading in the Tx medium, all the FDM channels are affected.	Due to fading only a few TDM channels will be affected.

Statistical TDM

- In TDM many slots are wasted
- Statistical TDM allocates time slots dynamically based on demand
- Multiplexer scans input lines and collects data until frame full
- Data rate on line lower than aggregate rates of input lines

Statistical TDM

Sending Digital Devices

Receiving Digital Devices

Comparison

Advantages

FDM

- Simple
- Cheap
- Popular

TDM

- Digital signals
- Multiplexing hierarchy
 - · different data rates

STDM

- More efficient bandwidth use
- Frame can contain control information
- Packet can be of varying sizes

Disadvantages

FDM

- Susceptible to noise
- Wasted bandwidth
- Limited frequency range

TDM

Wasted bandwidth

STDM

More complex and expensive