

HCL STS Python Training Module Assessment

01h:09m to test end

Vivek Kumar

☆ Choose a Flask

- Python
MCQ - Easy
-

2 - Python MCQ -

Medium

4

5

- Python MCQ -Hard -

6

8

9

MCQ -

11 - Unix MCQ

- Easy -

13

- Python Programmir - Easy -

- Python
Programmir

- Python Programmin

- Hard -

- Unix MCQ - Medium -

18

18

An olive oil seller needs to measure oil for customers using only one type of flask. There are many flasks available, each with markings at various levels. Each customer must receive a flask filled to a mark that is at least equal to the amount ordered. Given a list of customer requirements and a list of flasks with their measurements, determine the single type of flask that will result in minimal loss to the merchant. Loss is the sum of *marking -requirement* for each order. Return the zero-based index of the flask type chosen. If there are multiple answers, return the minimum index. If no flask will satisfy the constraints, return -1.

For example, there are n = 4 orders for requirements = [4, 6, 6, 7] units of oil. There are m = 3 types of flasks available with markings = ["3 5 7", "6 8 9", "3 5 6"]. These markings are given as 2D array with total_marks rows and 2 columns, the first is the index of the flask and second the mark. To fill the orders using the flask at markings[0] = [3, 5, 7], the loss is calculated as marking - requirement for each order so, 5 - 4 = 1, 7 - 6 = 1, 7 - 6 = 1 and 7 - 7 = 0. The total loss then is 1 + 1 + 1 + 0 = 3. Choosing the flask at markings[1], the loss is 6 - 4 = 2, 6 - 6 = 0, 6 - 6 = 0, 8 - 7 = 1 -> 2 + 0 + 0 + 1 = 3. The third flask has a maximum mark at 6 which is smaller than the largest order, so it cannot be used. In this case, flask type 0 is chosen.

NOTE: The markings 2D array will be given in order of the flasks, i.e., the markings for the 0-index flask will be followed by markings of 1-index flask and so on. For each flask, the given markings will also be in the sorted order.

Function Description

Complete the function chooseFlask in the editor below. The function must return an integer, the index of the flask to choose or -1 if none will work.

chooseFlask has the following parameter(s):

requirements[requirements[0],...requirements[n-1]]: an array of integers that denote the requirements of the customers.

m: an integer, the number of flasks.

markings[markings[0],...markings[total_marks-1]]: a 2D array of integers with 2 columns, the first column signifies the index of the flask and second signifies one mark.

Constraints

- $1 \le n \le 10^5$
- $1 \le m \le 10^4$
- $1 \le total_marks \le 10^5$
- $1 \le requirements[i] \le 10^9$ (where $0 \le i < n$)
- 0 ≤ markings[i][0] < m (where 0 ≤ i < total_marks)
- $0 \le markings[i][1] \le 10^9$ (where $0 \le i < total_marks$)

Input Format For Custom Testing

The first line contains an integer, n, the number of elements in requirements.

Each line i of the n subsequent lines (where $0 \le i < n$) contains an integer that describes requirements[i].

The next line contains an integer, m, the number of flasks.

The next line contains an integer, total_marks, the number of rows in markings

The next line contains an integer, 2, the number of columns in markings

Each line j of the total marks subsequent lines (where $0 \le j < total marks$) contains two space separated integers that describe markings[j].

Sample Case 0

Sample Input For Custom Testing

Sample Output

