Grupos e Corpos

Prof. Lucas Calixto

Aula 11 - Teoria de Galois

Problema: dado um poli p(x), queremos achar uma formula para as raízes de p(x) que envolva somente seus coeficientes (soma, multiplicação, divisão, extrair raízes). Quando isso é possível, dizemos que p(x) é solúvel por radicais

Exemplo: Se $gr(p(x)) \le 4 \Rightarrow p(x)$ é solúvel por radicais

- $p(x) = ax + b \Rightarrow b/a$
- $p(x) = ax^2 + bx + c \Rightarrow \frac{-b \pm \sqrt{b^2 4ac}}{2a}$
- \bullet matemáticos italianos resolveram para $\operatorname{gr}(p(x))=3,4$
- \bullet Se gr $(p(x)) \geq 5$, Abel e Ruffini acharam exemplos que não são solúveis por radicais
- E. Galoi foi quem determinou critérios para se responder essa pergunta. Para isso ele desenvolveu e conectou teoria de grupos com teoria de corpos

Corpo de automorfismos

Lembrem: o grupo de automorfismos de \mathbb{F} é $\operatorname{Aut}(\mathbb{F}) = \{\sigma : \mathbb{F} \to \mathbb{F} \mid \sigma \text{ é iso}\}$

Proposição: $(Aut(\mathbb{F}), \circ = composição)$ é um grupo (exercício)

Proposição: Se $\mathbb{F} \subset \mathbb{E}$, então $\{\sigma \in \operatorname{Aut}(\mathbb{E}) \mid \sigma(\alpha) = \alpha \ \forall \alpha \in \mathbb{F}\}$ é subgrupo de $\operatorname{Aut}(\mathbb{E})$ (exercício)

O grupo de Galois de \mathbb{E} sobre \mathbb{F} é

$$G(\mathbb{E}/\mathbb{F}) = \{ \sigma \in \operatorname{Aut}(\mathbb{E}) \mid \sigma(\alpha) = \alpha \ \forall \alpha \in \mathbb{F} \}$$

Se $f(x) \in \mathbb{F}[x]$ e \mathbb{E} é o corpo de fatoração de f(x) sobre \mathbb{F} , definimos o grupo de Galois de f(x) como sendo $G(\mathbb{E}/\mathbb{F})$

Exemplo: $\sigma: \mathbb{C} \to \mathbb{C}$, $\sigma(a+bi) = a-bi$ é elemento de $\operatorname{Aut}(\mathbb{C}/\mathbb{R})$

Exemplo: Considere $\mathbb{Q} \subset \mathbb{Q}(\sqrt{5}) \subset \mathbb{Q}(\sqrt{3}, \sqrt{5})$. Note que

$$\sigma: \mathbb{Q}(\sqrt{5}) \to \mathbb{Q}(\sqrt{5}), \quad \sigma(a+b\sqrt{5}) = a - b\sqrt{5}$$

é elemento de $\operatorname{Aut}(\mathbb{Q}(\sqrt{5})/\mathbb{Q})$

Similarmente,

$$\tau: \mathbb{Q}(\sqrt{3}, \sqrt{5}) \to \mathbb{Q}(\sqrt{3}, \sqrt{5}), \quad \tau(a+b\sqrt{3}) = a - b\sqrt{3}$$

é elemento de $\operatorname{Aut}(\mathbb{Q}(\sqrt{3},\sqrt{5})/\mathbb{Q}(\sqrt{5}))$

Note: $\mu = \sigma \tau$ mexe com ambos $\sqrt{3}$ e $\sqrt{5}$, mas ainda fixa elementos de \mathbb{Q} . Veremos que $\{\mathrm{id}, \sigma, \tau, \mu\} = G(\mathbb{Q}(\sqrt{3}, \sqrt{5})/\mathbb{Q})$

Sabemos também que $\mathbb{Q}(\sqrt{3}, \sqrt{5})$ é \mathbb{Q} -esp. vet. com base $\{1, \sqrt{3}, \sqrt{5}, \sqrt{15}\}$, e portanto

$$[\mathbb{Q}(\sqrt{3},\sqrt{5}):\mathbb{Q}]=4=|G(\mathbb{Q}(\sqrt{3},\sqrt{5})/\mathbb{Q})|\quad \text{(n\~ao\'e coincidencia!)}$$

Proposição: Seja $\mathbb{F} \subset \mathbb{E}$, $f(x) \in \mathbb{F}[x]$, e $R \subset \mathbb{E}$ o conjunto das raízes de f(x) que vivem em \mathbb{E} . Se $\sigma \in G(\mathbb{E}/\mathbb{F})$, então $\sigma \in S_R =$ grupo das permutações de R

Prova: Segue do simples fato que $\sigma(f(\alpha)) = f(\sigma(\alpha)), \forall \alpha \in \mathbb{E}$

Seja $\mathbb{F} \subset \mathbb{E}$ extensão algébrica. Dizemos que $\alpha, \beta \in \mathbb{E}$ são conjugados sobre \mathbb{F} se $m_{\alpha}(x) = m_{\beta}(x) \in \mathbb{F}[x]$.

Na outra direção da proposição anterior, temos

Proposição: Seja $\mathbb{F} \subset \mathbb{E}$. Se $\alpha, \beta \in \mathbb{E}$ são conjugados, então existe único isomorfismo $\sigma : \mathbb{F}(\alpha) \to \mathbb{F}(\beta)$ tal que $\sigma|_{\mathbb{F}} = \mathrm{id}_{\mathbb{F}}$

Prova: Segue da aula passada (ou lema 21.32 do livro tomando $\phi = \mathrm{id}_{\mathbb{F}}$)

Exemplo: $\sqrt{2}, -\sqrt{2} \in \mathbb{Q}(\sqrt{2})$ são conjugados sobre \mathbb{Q}

O exemplo do slide anterior não era coincidência

Proposição: Seja $f(x) \in \mathbb{F}[x]$ e $\mathbb{E} \supset \mathbb{F}$ o corpo de fatoração de f(x). Se f(x) é separável, então

$$|G(\mathbb{E}/\mathbb{F})| = [\mathbb{E}:\mathbb{F}]$$

Prova: Indução sobre $[\mathbb{E} : \mathbb{F}]$

$$[\mathbb{E}:\mathbb{F}]=1\Rightarrow\mathbb{E}=\mathbb{F}\Rightarrow G(\mathbb{E}/\mathbb{F})=\{\mathrm{id}\}$$

Suponha $[\mathbb{E} : \mathbb{F}] > 1$. Escreva f(x) = p(x)q(x) em $\mathbb{F}[x]$, com p(x) irredutível (monico) e gr(p(x)) = d > 1 (se todo irredutível tivesse grau 1, f seria fatorável em $\mathbb{F}[x]$)

Fixe $\alpha \in \mathbb{E}$ raiz de p(x)

$$p(x)$$
 separável $\Rightarrow p(x)$ tem d raízes distintas $R = \{\beta_1, \dots, \beta_d\}$

ultimo slide \Rightarrow cada $\phi \in G(\mathbb{E}/\mathbb{F})$ nos dá um homomorfismo injetor $\phi : \mathbb{F}(\alpha) \to \mathbb{E}$ que fixa \mathbb{F} , e este deve nos dar um isomorfismo $\phi : \mathbb{F}(\alpha) \to \mathbb{F}(\beta)$, onde $\beta = \phi(\alpha)$

ultimo slide \Rightarrow para cada β_i , temos um isomorfismo $\phi : \mathbb{F}(\alpha) \to \mathbb{F}(\beta_i)$ que fixa \mathbb{F}

Logo, temos exatamente d homomorfismos injetores $\phi : \mathbb{F}(\alpha) \to \mathbb{E}$ que fixam \mathbb{F}

p(x) irredutível $\Rightarrow p(x) = m_{\alpha}(x)$. Daí

$$[\mathbb{F}(\alpha):\mathbb{F}] = d \in [\mathbb{E}:\mathbb{F}] = [\mathbb{E}:\mathbb{F}(\alpha)][\mathbb{F}(\alpha):\mathbb{F}] \Rightarrow [\mathbb{E}:\mathbb{F}(\alpha)] = [\mathbb{E}:\mathbb{F}]/d$$

Indução \Rightarrow $[\mathbb{E} : \mathbb{F}(\alpha)] = |G(\mathbb{E}/\mathbb{F}(\alpha))| = [\mathbb{E} : \mathbb{F}]/d$. Ou seja, temos $[\mathbb{E} : \mathbb{F}]/d$ automorfismos $\psi : \mathbb{E} \to \mathbb{E}$ que estendem $\mathrm{id}_{\mathbb{F}(\alpha)}$

 \Rightarrow para cada um dos d isomorfismos $\phi : \mathbb{F}(\alpha) \to \mathbb{F}(\beta_i)$ acima, temos $[\mathbb{E} : \mathbb{F}]/d$ automorfismos $\psi : \mathbb{E} \to \mathbb{E}$ que estendem ϕ (todos fixando elementos de \mathbb{F})

Logo, temos $[\mathbb{E}:\mathbb{F}]$ elementos de $G(\mathbb{E}/\mathbb{F})$ construidos como sendo a extensões dos ϕ

Por outro lado, cada $\psi \in G(\mathbb{E}/\mathbb{F})$ quando restrito a $\mathbb{F}(\alpha)$ coincide com algum dos ϕ , e portanto é construido como acima $\Rightarrow [\mathbb{E} : \mathbb{F}] = |G(\mathbb{E}/\mathbb{F})|$

Proposição: Seja $\mathbb F$ corpo finito e $\mathbb E\supset\mathbb F$ extensão finita. Se $[\mathbb E:\mathbb F]=k,$ então $G(\mathbb E/\mathbb F)$ é cíclico de ordem k

Prova: Sobre essas condições, temos car $\mathbb{E} = \operatorname{car} \mathbb{F} = p$ para algum p (pois $1_{\mathbb{E}} = 1_{\mathbb{F}}$). Além disso, $|\mathbb{E}| = p^m$ e $|\mathbb{F}| = p^n$ com m = kn pois

$$m = [\mathbb{E} : \mathbb{Z}_p] = [\mathbb{E} : \mathbb{F}][\mathbb{F} : \mathbb{Z}_p] = kn$$

ultima aula $\Rightarrow \mathbb{E}$ é o corpo de fatoração de $x^{p^m} - x$ sobre \mathbb{Z}_p (e sobre \mathbb{F})

Teorema anterior $\Rightarrow |G(\mathbb{E}/\mathbb{F})| = [\mathbb{E} : \mathbb{F}] = k$

Afirmamos que $\sigma : \mathbb{E} \to \mathbb{E}$ tal que $\sigma(\alpha) = \alpha^{p^n}$ é gerador de $G(\mathbb{E}/\mathbb{F})$

Use formula binomial $+ \mathbb{F}$ ser corpo de fatoração de $x^{p^n} - x$ sobre \mathbb{Z}_p para ver que $\sigma \in G(\mathbb{E}/\mathbb{F})$ (lembrem \mathbb{F} = conjunto das raízes desse poli)

Para ver que $|\sigma| = k$. Note que, para todo $\alpha \in \mathbb{E}$, temos $\sigma^k(\alpha) = (\alpha^{p^n})^k = \alpha^{p^m} = \alpha$, pois \mathbb{E} = conjunto das raízes de $x^{p^m} - x \Rightarrow \sigma^k = \mathrm{id}_{\mathbb{E}}$

Se $\sigma^r = \mathrm{id}_{\mathbb{E}}$ para r < k, então para todo $\alpha \in \mathbb{E}$, teríamos

$$\sigma^r(\alpha) = \alpha \Rightarrow \alpha^{p^{nr}} = \alpha$$

 $\Rightarrow x^{p^{rn}} - x$ teria p^m raízes, o que é uma contradição $(p^{rn} < p^m)$

Exemplo: Considere a extensão $\mathbb{Q} \subset \mathbb{Q}(\sqrt{3}, \sqrt{5})$. Já sabemos que $H = \{\mathrm{id}, \sigma, \tau, \mu\} \leq G(\mathbb{Q}(\sqrt{3}, \sqrt{5})/\mathbb{Q})$. A igualdade segue do fato que

$$|G(\mathbb{Q}(\sqrt{3},\sqrt{5})/\mathbb{Q})| = [\mathbb{Q}(\sqrt{3},\sqrt{5}):\mathbb{Q}] = 4 = |H|$$

Exemplo: Vamos calcular o grupo de Galois do poli ciclotômico

$$f(x) = x^4 + x^3 + x^2 + x + 1$$

sobre $\mathbb Q$. Para achar o corpo de fatoração de f(x), note que $(x-1)f(x)=x^5-1\Rightarrow$ as raízes de f(x) são $e^{\frac{ik2\pi}{5}}$ para k=1,2,3,4, ou seja, ω^k onde

$$\omega = e^{\frac{i2\pi}{5}} = \cos(\frac{2\pi}{5}) + i\sin(\frac{2\pi}{5})$$

Logo, o corpo de fatoração de f(x) é $\mathbb{Q}(\omega)$. Sabemos que para cada k=1,2,3,4, podemos definir $\sigma:\mathbb{Q}(\omega)\to\mathbb{Q}(\omega)$, que fixa \mathbb{Q} e tal que $\sigma(\omega)=\omega^k$. Como temos 4 desses, e

$$|G(\mathbb{Q}(\omega)/\mathbb{Q})| = [\mathbb{Q}(\omega) : \mathbb{Q}] = 4$$
 (pois $f(x)$ é irredutível)

conluímos que $G(\mathbb{Q}(\omega)/\mathbb{Q}) = \langle \sigma \rangle \cong \mathbb{Z}_4$

Extensões separáveis

Lembrem: $\mathbb{F}\subset\mathbb{E}$ é dita separável se todo elemento de \mathbb{E} é raíz de poli separável em $\mathbb{F}[x]$

Proposição: Seja $f(x) \in \mathbb{F}[x]$ irredutível. Se car $\mathbb{F} = 0$, então f(x) é separável. Se car $\mathbb{F} = p$ e $f(x) \neq g(x^p)$ para qualquer $g(x) \in \mathbb{F}[x]$, então f(x) também é separável

Prova: Sabemos que f(x) é separável se e só se mdc(f(x), f'(x)) = 1

Note que
$$\operatorname{gr}(f'(x)) < \operatorname{gr}(f(x))$$
. Logo, $\operatorname{mdc}(f(x),f'(x)) \neq 1 \Leftrightarrow f'(x) = 0$

Se car $\mathbb{F} = 0$, então f'(x) = 0 não é possível

Se car
$$\mathbb{F} = p$$
, então $f'(x) = 0 \Leftrightarrow f(x) = g(x^p)$ para algum $g(x) \in \mathbb{F}[x]$ (cheque)

Lembrem que uma extensão $\mathbb{F} \subset \mathbb{E}$ é simples se $\mathbb{E} = \mathbb{F}(\alpha)$ para algum $\alpha \in \mathbb{E}$. Nesse caso, chamamos α de primitivo

Vimos que podemos ter casos em que $\mathbb{F}(\alpha, \beta) = \mathbb{F}(\gamma)$

$$\mathbb{Q}(\sqrt{3}, \sqrt{5}) = \mathbb{Q}(\sqrt{3} + \sqrt{5}), \qquad \mathbb{Q}(\sqrt[3]{5}, i\sqrt{5}) = \mathbb{Q}(i\sqrt[6]{5})$$

Já sabemos também que qualquer extensão finita $\mathbb{F} \subset \mathbb{E}$ de um corpo finito \mathbb{F} deve ser simples, ou seja, deve existir elemento primitivo em \mathbb{E} (lembrem, nesse caso tal extensão é separável: precisamente, \mathbb{E} é corpo de fatoração do poli separável $x^{p^n}-x$)

Em geral, temos

Proposição: Se $\mathbb{F} \subset \mathbb{E}$ é finita e separável, então $\mathbb{E} = \mathbb{F}(\alpha)$ para algum $\alpha \in \mathbb{E}$

Prova: Podemos assumir que $\mathbb{F} = \infty$

Sabemos que $\mathbb{E} = \mathbb{F}(\alpha_1, \dots, \alpha_n)$ para alguns elementos $\alpha_i \in \mathbb{E}$

Assim, se provarmos que $\mathbb{F}(\alpha,\beta)=\mathbb{F}(\gamma)$ para algum $\gamma\in\mathbb{F}(\alpha,\beta)$, então o resultado segue por indução

Tome $f(x), g(x) \in \mathbb{F}[x]$ os polis minimais de α e β , respetivamente. Seja \mathbb{K} um corpo que contem todas as raízes de f(x) e g(x) (sejam elas $\{\alpha_1 = \alpha, \dots, \alpha_n\}$ e $\{\beta_1 = \beta, \dots, \beta_m\}$)

Como F é infinito, existe $a \in \mathbb{F}$ tal que

$$a \neq \frac{\alpha_i - \alpha}{\beta - \beta_j}, \quad \forall j \neq 1 \Rightarrow a(\beta - \beta_j) \neq \alpha_i - \alpha$$

Tome $\gamma = \alpha + a\beta$. Afirmamos que $\mathbb{F}(\alpha, \beta) = \mathbb{F}(\gamma)$. Por construção de γ , temos

$$\gamma \neq \alpha_i + a\beta_j, \quad \forall j \neq 1 \Rightarrow \gamma - a\beta_j \neq \alpha_i \quad \forall j \neq 1$$

Defina $h(x) \in \mathbb{F}(\gamma)[x]$ por $h(x) = f(\gamma - ax)$

Note: $h(\beta) = f(\alpha) = 0$, mas $h(\beta_j) = f(\gamma - a\beta_j) \neq 0$ pois $\gamma - a\beta_j \neq \alpha_i \Rightarrow x - \beta$ é o único fator comum de h(x) e g(x) em $\mathbb{K}[x] \Rightarrow mdc(h(x), g(x)) = x - \beta$ em $\mathbb{K}[x]$

Como o poli minimal de β sobre $\mathbb{F}(\gamma)$ divide ambos h(x) e g(x) e é obviamente um elemento de $\mathbb{K}[x]$, este deve ser igual a $x-\beta$

$$\Rightarrow x - \beta \in \mathbb{F}(\gamma)[x] \Rightarrow \beta \in \mathbb{F}(\gamma) \Rightarrow \alpha = \gamma - a\beta \in \mathbb{F}(\gamma) \Rightarrow \mathbb{F}(\alpha, \beta) = \mathbb{F}(\gamma)$$

Corpos intermediários

Para cada extensão $\mathbb{F}\subset\mathbb{E},$ associamos um subgrupo de Aut($\mathbb{E})$ (o grupo de Galois $G(\mathbb{E}/\mathbb{F}))$

Na outra direção, dado um subgrupo de $\operatorname{Aut}(\mathbb{E})$ vamos associar um subcorpo de \mathbb{E}

Proposição: Seja $A \subset \operatorname{Aut}(\mathbb{F})$. Então

$$\mathbb{F}_A = \{ a \in \mathbb{F} \mid \sigma(a) = a, \ \forall \sigma \in A \}$$

é subcorpo de $\mathbb F$

Prova: Exercício

Corolário: Se $G \leq \operatorname{Aut}(\mathbb{F})$, então

$$\mathbb{F}_G = \{ a \in \mathbb{F} \mid \sigma(a) = a, \ \forall \sigma \in G \}$$

é subcorpo de $\mathbb F$

Chamamos \mathbb{F}_G de subcorpo dos pontos fixos por G

Exemplo: Seja $\sigma: \mathbb{Q}(\sqrt{3}, \sqrt{5}) \to \mathbb{Q}(\sqrt{3}, \sqrt{5})$ tal que $\sigma(\sqrt{3}) = -\sqrt{3}$. Então $\mathbb{Q}(\sqrt{3}, \sqrt{5})_{\sigma} = \mathbb{Q}(\sqrt{5})$

Proposição: Seja $\mathbb E$ o corpo de fatoração de um poli separável sobre $\mathbb F$. Então $\mathbb E_{G(\mathbb E/\mathbb F)}=\mathbb F$

Prova: Seja $G = G(\mathbb{E}/\mathbb{F})$. Sabemos que $\mathbb{F} \subset \mathbb{E}_G \subset \mathbb{E}$

Pela definição de \mathbb{E}_G , segue que $G(\mathbb{E}/\mathbb{F}) = G(\mathbb{E}/\mathbb{E}_G)$. Logo,

$$|G| = [\mathbb{E} : \mathbb{E}_G] = [\mathbb{E} : \mathbb{F}] \text{ e } [\mathbb{E} : \mathbb{F}] = [\mathbb{E} : \mathbb{E}_G][\mathbb{E}_G : \mathbb{F}] \Rightarrow [\mathbb{E}_G : \mathbb{F}] = 1 \Rightarrow \mathbb{E}_G = \mathbb{F}$$

Proposição: Seja $G \leq \operatorname{Aut}(\mathbb{E})$ um grupo finito e $\mathbb{F} = \mathbb{E}_G$. Então, $[\mathbb{E} : \mathbb{F}] \leq |G|$

Prova: Seja $G = \{\sigma_1 = \mathrm{id}, \sigma_2, \ldots, \sigma_n\}$. Tome $e_1, \ldots, e_{n+1} \in \mathbb{E}$ quaisquer

Considere o sistema linear homogêneo

$$\begin{cases} \sigma_1(e_1)x_1 + \dots + \sigma_1(e_{n+1})x_{n+1} = 0 \\ \vdots \\ \sigma_m(e_1)x_1 + \dots + \sigma_m(e_{m+1})x_{n+1} = 0 \end{cases}$$

que tem mais variáveis do que equações e portanto admite solução não trivial $a_1,\ldots,a_{n+1}\Rightarrow a_1e_1+\cdots+a_{n+1}e_{n+1}=0$ (1º equação)

Afirmamos que todos os a_i são elementos de \mathbb{F} . Suponha o contrário

Dentre todas as soluções com algum $a_i \in \mathbb{E} \setminus \mathbb{F}$, escolha uma que possui mais a_i 's iguais a zero

Podemos assumir $a_1 \neq 0$ e portanto $a_1 = 1$, e também que $a_2 \in \mathbb{E} \setminus \mathbb{F}$ (basta multiplicar tal solução por a_1^{-1} e reordenar os e_i 's)

Tome $\sigma_i \in G$ tal que $\sigma_i(a_2) \neq a_2$ (tal σ_i existe pois $\mathbb{F} = \mathbb{E}_G$)

Aplicando σ_i no sistema de equações (com a_i no lugar de x_i) nos dá o mesmo sistema de equações, pois G é grupo

Portanto $b_1=\sigma_i(a_1)=1,\,b_2=\sigma(a_2)\neq a_2,\ldots,b_{n+1}=\sigma_i(a_{n+1})$ também é uma solução

Note que

$$(a_1,\ldots,a_{n+1})-(b_1,\ldots,b_{n+1})=(0,a_2-b_2\neq 0,\ldots,a_{n+1}-b_{n+1})\neq (0,\ldots,0)$$

é solução não trivial do sistema, e tem mais zeros do que (a_1, \ldots, a_{n+1}) $(a_i = 0 \Rightarrow b_i = 0, \text{ mas } a_1 \neq 0 \text{ e } b_1 = 0)$, contradizendo nossa hipótese

Logo, $a_i \in \mathbb{F}$ para todo i e portanto $\{e_1, \dots, e_{n+1}\}$ é LD $\Rightarrow [\mathbb{E} : \mathbb{F}] \leq |G|$