PATENT ABSTRACTS OF JAPAN

(11)Publication number:

09-068566

(43)Date of publication of application: 11.03.1997

(51)Int.CI.

G01S 5/02 G01C 21/00 G08G 1/0969 H04Q 7/34

(21)Application number: 07-222421

(71)Applicant : SHARP CORP

(22)Date of filing:

30.08.1995

(72)Inventor: YONEMARU MASASHI

(54) POSITION INFORMATION SERVICE SYSTEM

(57)Abstract:

PROBLEM TO BE SOLVED: To utilize the position information by the base station selecting function of a moving communication body and particularly dispense with the carrying of the other navigation equipment so that the portability is never lost.

that the portability is never lost. SOLUTION: Each of base stations 12a, 12b, 12c is connected to a network 15. Either one of the base stations 12a, 12b, 12c is connected to, for example, a moving communication body 11a by radiocommunication, and the position relation information is calculated from the ID code of the base station 12a transmitted from the moving communication body 11a and each position information corresponding to the telephone number of an object to be retrieved. An information service device 16 for transmitting this position relation information to the moving communication body 11a is connected to the network 15.

LEGAL STATUS

[Date of request for examination]

16.07.1999

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

BEST AVAILABLE COPY

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平9-68566

(43)公開日 平成9年(1997)3月11日

(51) Int.Cl. ⁶	酸別配号 庁内整理番号	FΙ	技術表示箇所
G01S 5/02		G01S 5/02	Z
G01C 21/00		G 0 1 C 21/00	Z
G08G 1/096	69	G 0 8 G 1/0969	
H04Q 7/34		H 0 4 B 7/26	1 0 6 Z
		審查請求 未請求	請求項の数4 OL (全 9 頁)
(21)出願番号	特願平7 <i>-22</i> 2421	(71)出願人 0000050	49
		シャーフ	7株式会社
(22)出顧日 平成7年(1995)8月30日		大阪府	大阪市阿倍野区長池町22番22号
		(72)発明者 米丸 耳	女司
			大阪市阿倍野区長池町22番22号 シ
		, , ,	朱式会社内
		(74)代理人 弁理士	山本 秀策
•		`	
	·		

(54)【発明の名称】 位置情報サービスシステム

(57)【要約】

【課題】移動通信体の基地局選択機能による位置情報を利用し、特に他のナビゲーション用機器を携帯しないため、その携帯性を損なわない。

【解決手段】回線網15に各基地局12a、12b、12cが接続されており、これら各基地局12a、12b、12cのうち少なくともいずれかの基地局と例えば移助通信体11aが無線通信で接続されており、この移助通信体11aから送信されてくる基地局12aのIDコードと検索目標物の電話番号に対応した各位置情報から位置関係情報を演算し、この位置関係情報を移助通信体11aに送信する情報サービス装置16を回線網15に接続して設けている。

1

【特許請求の範囲】

【請求項1】 回線網に各基地局が接続されており、該各基地局のうち少なくともいずれかの基地局と移動通信体が無線通信可能な位置情報サービスシステムであって、

命令情報、基地局のIDコードおよび検索目標物の電話番号のうち少なくともいずれかの情報が該移動通信体から送信され、これを受信する受信手段と、該基地局のIDコードと検索目標物の電話番号のそれぞれに対応した各位置情報、地図情報および交通情報などの各種情報を10記憶している記憶手段と、該受信手段で受信したIDコードに対応した位置情報、電話番号に対応した位置情報、該地図情報および交通情報などの各種情報のうち該命令情報に応じた情報を該記憶手段から得る制御手段と、該制御手段で得た情報を該移動通信体に対して送信する送信手段とを有する情報提供手段を該回線網に接続して設けた位置情報サービスシステム。

【請求項2】 回線網に各基地局が接続されており、該各基地局のうち少なくともいずれかの基地局と移動通信体が無線通信可能な位置情報サービスシステムであって、

該移動通信体から送信されてくる基地局のIDコードと 検索目標物の電話番号に対応した各位置情報から位置関 係情報を演算し、該位置関係情報を該移動通信体に対し て送信する情報提供手段を該回線網に接続して設けた位 置情報サービスシステム。

【請求項3】 前記移動通信体に、使用する基地局の IDコードを検出するIDコード検出手段と、該IDコードおよび検索目標物の電話番号を該基地局に送信する 移動局側送信手段とを設け、

該情報提供手段に、各基地局のIDコードとそれに対応した位置情報を記憶する基地局データ記憶手段と、検索目標物の電話番号とそれに対応した位置情報を記憶する電話番号データ記憶手段と、地図情報を記憶する地図データ記憶手段と、該移助通信体から送信されてくる該基地局のIDコードおよび検索目標物の電話番号を記憶する入力情報記憶手段と、該入力情報記憶手段のIDコードおよび電話番号に対応した位置情報を、基地局データ記憶手段および電話番号データ記憶手段から得、該位置情報から位置関係情報を演算する演算手段と、該位置関係情報および地図情報のうち少なくとも該位置関係情報を該移動通信体に対して送信する情報提供手段側送信手段とを設けた請求項2記載の位置情報サービスシステム。

【請求項4】 前記情報提供手段の各記憶手段のデータを読み出して表示する表示手段を前記移動通信体に設けた請求項1~3のうちいずれかに記載の位置情報サービスシステム。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、移動通信体(PHS: Personal Handy phone System)を用いた位置情報サービスシステムに関する。

[0002]

【従来の技術】従来の移動体におけるナビゲーションシステムとしてはGPS (Global Position System) 衛星を用いたシステムがある。その簡単な構成例を図4に示している。

【0003】図4において、人工衛星1は位置情報を送 10 信する。複数の人工衛星1から送信される信号を受信す るアンテナ2が接続される信号処理回路3は、その受信 信号から位置演算に必要なデータ信号を検出する。この 信号処理回路3が接続される中央演算処理装置(以下C PUという)4は表示装置5に接続されており、信号処 理回路3からのデータに基づいて現在位置を演算し、現 在の位置情報を地図情報とともに表示装置5に表示させ る。また、このCPU4はバス6を介して、地図情報を 記憶しているCDROM7、プログラムなどを記憶して いるROM8、および、データを記憶しておくRAM9 20 に接続されている。以上により、従来の移動体における ナビゲーションシステムが構成されている。

【0004】上記構成により、GPS用に打ち上げられた複数の人工衛星1から送信される信号をアンテナ2で受信し、信号処理回路3で、それらの受信信号から位置演算に必要なデータを検出する。さらに、CPU4はROM8に記憶してあるプログラムに従い、信号処理回路3で検出されたデータを受け取るとともに、RAM9に記憶してあったデータに基づいて現在位置を演算する。さらに、CPU4は、CDROM7に記憶してある地図1個を読み出して、地図情報中に現在位置を明示し、現在位置と地図情報を表示装置5に出力して位置情報を報知する。

【0005】次に、携帯電話器などの移動通信体を用いてナビゲーションシステムを構成する一例として、特開平5-297107号公報に示されている。この例では、位置情報を演算するのに、GPS衛星を用いるのではなく、携帯電話のために設置されている3つ以上の基地局からの電波を受信し、各々の電界強度から演算して現在位置を求めるものが提案されている。

[0006]

【発明が解決しようとする課題】しかしながら、このような従来のナビゲーションシステムにおいては、複数の人工衛星からの信号を受信し、その受信して検出したデータから現在位置を算出しており、携帯して使用するには装置が大きくなって携帯しにくくなってしまうとともに、高価になってしまうという問題を有していた。また、地図情報を見やすく表示するには、ある程度の大きさの表示装置が必要となり、小型携帯性の制約となっている。現在のシステムでは自動車などへの応用システムとしてはよいが、携帯して歩行する個人に対して、ナビ

20

ゲーション情報を供給するシステムとしては利便性が悪 いという問題を有していた。

[0007] 本発明は、上記従来の問題を解決するもの で、移動通信体 (PHS携帯電話器) を用いて、その基 地局選択機能による位置情報を利用し特に他のナビゲー ションのための機器を携帯することなく、個人に対して 携帯性を損なわない位置情報サービスシステムを提供す ることを目的とする。

[0008]

【課題を解決するための手段】本発明の位置情報サービ 10 スシステムは、回線網に各基地局が無線または/および 有線で接続されており、該各基地局のうち少なくともい ずれかの基地局と移動通信体が無線通信可能な位置情報 サービスシステムであって、命令情報、基地局のIDコ ードおよび検索目標物の電話番号のうち少なくともいず れかの情報が該移動通信体から送信され、これを受信す る受信手段と、該基地局のIDコードと検索目標物の電 話番号のそれぞれに対応した各位置情報、地図情報およ び交通情報などの各種情報を記憶している記憶手段と、 該受信手段で受信した I Dコードに対応した位置情報、 電話番号に対応した位置情報、該地図情報および交通機 関情報などの各種情報のうち該命令情報に応じた情報を 該記憶手段から得る制御手段と、該制御手段で得た情報 を該移動通信体に対して送信する送信手段とを有する情 報提供手段を該回線網に接続して設けたものであり、そ のことにより上記目的が達成される。

[0009]また、本発明の位置情報サービスシステム は、回線網に各基地局が接続されており、該各基地局の うち少なくともいずれかの基地局と移動通信体が無線通 信可能な位置情報サービスシステムであって、該移動通 信体から送信されてくる基地局のIDコードと検索目標 物の電話番号に対応した各位置情報から位置関係情報を 演算し、該位置関係情報を該移動通信体に対して送信す る情報提供手段を該回線網に接続して設けたものであ り、そのことにより上記目的が達成される。

【0010】さらに、好ましくは、本発明の位置情報サ ービスシステムは、移動通信体に、使用する基地局の I Dコードを検出する I Dコード検出手段と、該 I Dコー ドおよび検索目標物の電話番号を該基地局に送信する移 動局側送信手段とを設け、該情報提供手段に、各基地局 のIDコードとそれに対応した位置情報を記憶する基地 局データ記憶手段と、検索目標物の電話番号とそれに対 応した位置情報を記憶する電話番号データ記憶手段と、 地図情報を記憶する地図データ記憶手段と、該移動通信 体から送信されてくる該基地局のIDコードおよび検索 目標物の電話番号を記憶する入力情報記憶手段と、該入 力情報記憶手段のIDコードおよび電話番号に対応した 位置情報を、基地局データ記憶手段および電話番号デー タ記憶手段から得、該位置情報から位置関係情報を演算 する演算手段と、該位置関係情報および地図情報のうち 50 手段と、それらを処理するプログラムを記憶する手段の

少なくとも該位置関係情報を該移動通信体に対して送信 する情報提供手段側送信手段とを設ける。

【0011】さらに、好ましくは、本発明の位置情報サ ービスシステムは、情報提供手段の各記憶手段のデータ を読み出して表示する表示手段を移動通信体に設ける。 【0012】上記構成により、以下その作用を説明す る。

【0013】本発明の位置情報サービスシステムにおい ては、例えば、命令情報が「現在地を知りたい」という 内容であった場合、情報提供手段は、移動通信体が利用 する基地局のIDコードに対応した位置データを記憶手 段から取り出した後、その位置データを回線網を通して 移動通信体に送信して情報を提供する。また、例えば、 命令情報が「現在地および目的地の周辺の地図情報の要 求」であった場合には、情報提供手段は、それに対応す る地図データを記憶手段から取り出して移動通信体に送 信して情報を提供する。さらに、例えば、命令情報が 「目的地までの行き方」であった場合に、情報提供手段

は、基地局IDコードと目的地電話番号により、記憶手 段から各位置データをそれぞれ読み出すとともに、その 各位置データに対して最適な交通機関を検索し、その結 果を移動通信体に送信して情報を提供する。

【0014】また、例えば、命令情報が「現在地と目的 地との位置関係が知りたい」という内容であった場合、 情報提供手段は記憶手段から、基地局のIDコードに対 応した位置データを取り出すとともに、目的地の電話番 号に対応した位置データを取り出した後、2つの位置デ ータの距離とその方向などの位置関係データを演算し、 そのデータを回線網を通して移動通信体に送信して情報 を提供する。

【0015】このとき、各基地局が回路網を介して接続 されている情報提供手段側に、地図情報、基地局IDコ ードおよび電話番号に対する位置情報などの記憶手段、 現在位置および対象物位置、それらの位置関係などを演 算する演算手段、それを報知する報知手段が設けられ て、位置情報サービスを受けることができるので、この ナビゲーションサービスを受けたい使用者は、従来のよ ろに上記した記憶手段や演算手段などの装置を携帯する 必要がなく、携帯性に優れている。また、これらの記憶 手段や演算手段などの装置はサービスを受ける複数の移 助通信体で共有可能であり、個人が負担する設備が圧倒 的に少なくなって価格的にも非常に有効であって、より 多くの人々に対する使用が拡大する。さらに、移動通信 体自体ではそのシステムの必要上から近くの基地局を選 択認識する機能を有しており、位置認識のための基地局 のIDコードを検出するのに、特別な追加装置を必要と しない。

【0016】また、本発明の位置情報供給システムにお いては、情報提供手段から送られてくる情報を記憶する

みを追加するだけでよく、個人が携帯している移動通信 体が大きくなって携帯性を悪化させるようなことはな

【0017】さらに、移動通信体を用いる場合であって も、例えば特開平5-297107号公報のように3つ 以上の基地局からの電波の電界強度から現在地を算出す る方法があったが、PHS基地局の場合には、市街地、 地下街、ビル内などにおいて、半径100~300m程 度で配置され、使用される電波の空中線電力はかなり小 さいため、これらの基地局からの電波は周辺の環境から 10 の影響を受けやすく、複数の基地局からの電波の電界強 度から必ずしも現在地を正確に算出できるとは限らな い。また、この場合には、衛星からの電波を受信するほ どの装置は必要ないにしても、地図情報を記憶するIC カードや、それらを表示する表示手段が必要となってく る。

【0018】このように、本発明においては、地図上に 正確に現在地を表示してナビゲーションしようとするも のではなく、基地局が100~300mの非常に狭い範 囲で設置されているものであることから、移動通信体 (例えばPHS携帯電話器) が判断した基地局が現在地 に一番近いものとして判断し、地図上に表示するのでは なく対象物との距離、方向を報知していくことによって 移動通信体を携帯している使用者が、自分の現在位置や 目標とする位置までの位置関係を知り、行動するための ガイドとすることができるものである。このため、PH S携帯電話器には特に大きな表示装置や、記憶装置は必 要なくなり、携帯性を損なうことなく、消費電力も小さ くできて非常に有効である。また、基地局間隔の狭さか ら、この方式においてもかなり狭い範囲で位置を特定で きるため、主にPHS携帯電話器は歩行移動程度の移動 速度を対象にしており、基地局間隔も狭いことから、本 発明の方式により十分ナビゲーション情報を与えること が可能であり、その優位性は大きい。

[0019]

【発明の実施の形態】以下、本発明の実施形態について 説明する。

【0020】図1は本発明の一実施形態における位置情 報サービスシステムの構成を示すブロック図である。

動通信体としての移動局11a,11bがあり、これら 移動局11a,11bと無線通信可能な基地局12a, 12b、12cが設けれれているものとする。これらの 基地局12a, 12b, 12cのうち例えば基地局12 cが一方の無線中継局13aと接続されており、この無 線中継局13aと無線通信可能な他方の無線中継局13 bが設けられているものとする。これら基地局12a, 12 bおよび無線中継局13 bはそれぞれ、固定網接続 点14を介して回線網15、さらに情報提供手段として の情報サービス装置16に接続されている。さらに、例 50 報サービス装置16のモデム22を介して移動通信体

えば移動局1116には、FAX17、情報携帯端末18 およびパーソナルコンピュータ (PC) 19が接続され ているものとする。

【0022】このように、移動局11aと基地局12a との間で無線通信を行い、さらに、移動局11aは基地 局12aを介して、固定網接続点14で回線網15さら に情報サービス装置16に接続されている。また、場合 によっては、基地局12cは無線中継局13a,13b を通して回路網15さらに情報サービス装置16と接続 されている場合もある。以上により本発明の位置情報サ ーピスシステムが構成されている。

【0023】 CCで、回線網15とはPSTN (公衆電 話回線網: Public Switched Telecommunication Networ k)、ISDN (総合デジタル通信網: Integrated Serv iceDigital Network) などで構成されている。

【0024】上記構成により、接続された回路網15を 通して、例えば移動局11aは基地局12aのIDコー ドや、検索目標物の電話番号などを情報サービス装置 1 6に通信し、情報サービス装置16はそれらのデータと 20 自らの記憶装置に記憶してある位置情報、地図情報など から演算を行って、その演算結果およびその記憶データ のうちいずれかを回路網 15を通して移動局 11a に通 信するものである。

【0025】とこで、この情報サービス装置16の構成 について詳細に説明する。

【0026】図2は、図1の情報サービス装置16の構 成を示すブロック図である。

【0027】図2において、CPU21は位置情報など を演算処理するものであり、モデム22を介して回線網 15と接続されている。また、CPU21と回線網15 の間には音声合成装置23が介装されており、移動通信 体としての例えば移動局11aなどに音声情報として通 信する。さらに、CPU21には記憶装置などとデータ をやり取りするバス24が接続されている。この記憶装 置としてバス24には、位置情報の検索や、距離方向な どの位置情報の演算などのプログラムを記憶しているR OM25、移動通信体から送信されてくる基地局 I Dコ ードや検索目標物電話番号などを記憶するためのRAM 26、基地局のIDコードとそれに対応する位置データ 【0021】図1において、PHS携帯電話器などの移 40 を記憶している記憶装置(以下、基地局データベースと いう) 27、検索目標物などの電話番号とそれに対応す る位置データを記憶している記憶装置(以下、電話番号 データベースという)28、地図情報を記憶している記 憶装置 (以下、地図データベースという) 29、さらに は、他のサービスに対応するためのデータを記憶する記 憶装置(以下、その他データベースという)30が接続 されている。以上により、情報サービス装置16が構成 されている。

【0028】上記構成により、まず、回路網15より情

30

(PHS携帯電話器)である例えば移動局11aから使 用する基地局12aのIDコードや目標対象物の電話番 号などと命令コードとを受信すると、RAM26に記憶

【0029】次に、情報サービス装置16のCPU21 は、ROM25に記憶してあるプログラムと、その移動 局11aから受け取った命令コードとに従って位置情報 などの演算処理を実行し、その結果を移動局 1 1 a へ回 線網15を介して報知する。例えば、命令コードの内容 が、「現在地を知りたい」という内容であった場合、C PU21は、例えば移動局11aが利用する基地局12 aのIDコードをRAM26より読み出し、基地局デー タベース27よりそのIDコードに対応した位置データ を取り出す。その後、CPU21は、Cの位置データ を、モデム22を介し回線網15を通して、その移動局 11aに送信するか、または、その位置データを音声合 成装置23により音声信号として移動局11aに送信し て、現在地情報(本実施形態の場合は使用基地局の位置 情報)を報知することもできる。

【0030】次に、他の例として、命令コードの内容が 「現在地と目的地との位置関係が知りたい」という内容 であった場合、CPU21は、例えば基地局12aのI Dコード、目的地の電話番号をRAM26より読み出 し、基地局データベース27より I Dコードに対応した 位置データを取り出すとともに、電話番号データベース 28より目的地の電話番号に対応した位置データを取り 出す。このように、CPU21は2つの位置データの距 離とその方向などの位置関係データを演算し、そのデー タを、モデム22を介し回線網15を通して、例えば移 動局11aに送信し、表示装置上に表示する。または、 その位置データを音声合成装置23により音声信号とし て例えば移動局11aに送信して報知することもでき る。

【0031】さらに、CPU21は同様にして現在地の 基地局データと目的地データを取り出し、地図データベ ース29よりそれらの位置の周辺の地図データを取り出 し、その範囲内の基地局データのIDコード、位置デー タを基地局データベース27から取り出す。さらに、目 的地とそれらの基地局との距離、方向などの位置関係デ ータを算出し、それらをモデム22を介し回線網15を 通して、例えば移動局11aに送信する。この移動通信 体としての移動局 1 1 a は、それらのデータをRAMに 記憶し、移動局11aが認識する基地局(現在は基地局 12a)が変わる毎に、その基地局から目的地までの位 置情報をRAMから読み出して表示することにより、移 動通信体の使用者にナビゲーション情報を与えるもので

【0032】さらに、図1の移動局11bのように、F AX17、情報通信端末18およびパーソナルコンピュ ータ(PC)19などの画像データが表示出力できる装 50 【0039】上記構成により、まず、PHS携帯電話器

置が接続されており、命令コードの内容が「現在地、お よび目的地の周辺の地図情報の要求」であったときに は、情報サービス装置16のCPU21は地図データベ ース29よりそれに対応する地図データを取り出し、例 えば移動局11bなどに送信し、接続されている上記各 装置の表示部に表示する。

【0033】また、さらに別の構成例について説明す る。前述のその他データベース30に例えば交通機関デ ータを記憶させておき、例えば移動局 1 1 a から「目的 10 地までの行き方」であった場合に、CPU21は基地局 I Dコードと目的地電話番号により、それぞれの位置デ ータを読み出し、交通機関データベースにより、最適な 手段を検索し、その結果を音声データ、または文字デー タとしてその移動局11aに送信して情報を提供する。 【0034】このように、本実施形態によれば、PHS 携帯電話器などの例えば移動局11aが使用する基地局 12aのIDコードと目的地の電話番号により、情報サ ービス装置16は、その接続されている種々のデータベ ースを検索、演算することにより位置情報サービスを提 供することができる。また、CPU21に接続するデー タベースを追加していくことにより、他の情報サービス を付加していくことが可能となる。

【0035】図3は図1の移動局(PHS携帯電話器) 11a, 11bの構成を示すブロック図である。

【0036】図3において、マイク31およびレシーバ 32が接続される音声コーデック33は、マイク31か らの信号をディジタル信号に変換しデータ圧縮を行う か、または、圧縮されている信号を伸長し、音声信号に 変換してレシーバ32から出力する。この音声コーデッ ク33が接続されるTDMA信号処理部34は、入力信 号をTDMA処理する。このTDMA信号処理部34が 接続される変・復調部35はRF処理部36に接続さ れ、TDMA処理された信号を変調するか、または、R F処理部36からの信号を復調する。この変・復調部3 5が接続されるRF処理部36はアンテナ37に接続さ れ、中間周波信号から髙周波信号に変換してアンテナ3 7を介して送信するか、または、アンテナ37からの受 信信号を中間周波信号に変換する。

【0037】とのRF処理部36が接続される電界強度 検出部38はCPU39に接続され、このCPU39に は表示部40、キー操作部41、ROM42およびRA M43が接続されている。

【0038】とのように、PHS携帯電話器は携帯して 使用し、基地局を介しての携帯電話機能、携帯電話器間 の直接通話などのPHS電話器の機能の他に、基地局Ⅰ Dを情報サービス装置16へ通信する機能、情報サービ ス装置16から通信されたデータを記憶し表示する機能 を有している。以上によりPHS携帯電話器が構成され ている。

にマイク31から音声信号が入力されると、音声コーデ ック24でディジタル信号に変換しデータ圧縮を行う。 次にTDMA (Time Division Multiple Access) 信号 処理部34でコーデック24から入力されたデータ圧縮 信号をTDMA処理し、これを変・復調部35へ出力す る。ことで、TDMAとは、時分割多重により同一の周 波数を複数の無線局(携帯電話器)で共有する通信方式 である。変・復調部35ではTDMA処理された信号を 変調し、RF(Radio Frequency)処理部36で中間周 波信号から送信する髙周波信号に変換し、アンテナ37 10 となく現在地、目的地などの位置情報サービスを自動的 より外部に送信する。

【0040】また、受信動作のときは、アンテナ37で 受信した信号をRF処理部36で中間周波信号に変換 し、変・復調部35で復調し、TDMA信号処理部34 で時分割多重されている信号から必要な信号を取り出 し、音声コーデック33で圧縮されている信号を伸長 し、音声信号に変換してレシーバ32より音声として出 力する。

【0041】さらに、電界強度検出部38は、RF処理 部36の出力信号から受信している電波の電界強度を検 20 出し、その値をCPU39に送る。CPU39は複数の 基地局からの電波の電界強度から一番良好な基地局を選 択する。選択された基地局のIDコードは、TDMA信 号処理部34において基地局より送信されてきた信号か らその基地局の I Dコードを取り出しCPU39に出力 する機能を有している。

【0042】ROM42にはPHS携帯電話器としての 機能を働かせるプログラム(例えば、上記の電界強度よ り基地局を選択する機能など)が記憶されており、さら に本発明に係る機能を実現するためのプログラムが記憶 30 されている。このプログラムには例えば以下に示すよう な機能を実現するプログラムが記憶されている。

【0043】即ち、まず始めに、検出したIDコードを 情報サービス装置16へ送信する機能がある。

【0044】次に、キー操作部41から入力された情報 サービス装置16より送信されてきた基地局 I D コード とこの基地局と目標物までの位置関係データをRAM4 3に記憶し、またそのデータをRAM43より読み出し て表示部に表示して報知するか、またその情報が音声デ ータとして送られて来たときには、音声コーデックを通 40 してレシーバから音声信号として報知する機能がある。 【0045】さらに、情報サービス装置16より送信さ れてきた現在地基地局IDコードおよび周辺の基地局I Dコードとそれらに対応した各々の基地局と目標物まで の位置関係データをRAM43に記憶し、とのPHS携 帯電話器の認識する基地局が変わったとき、その基地局 のIDコードに対応した位置関係データをRAMより読 み出し表示部40に表示して報知する機能などがある。 【0046】上述してきたように、PHS携帯電話器を 用いて、その利用者に現在地や、目的地に関する位置情 50 29

報を自動的に報知サービスすることが可能となる。ま た、記憶装置を追加してサービスするためのデータベー スを記憶させておくことによって、検出した位置情報を 基に、様々な情報サービスをすることが容易に可能とな

10

[0047]

【発明の効果】以上のように本発明によれば、移動通信 体としての例えばPHS携帯電話器などにナビゲーショ ンのための各装置を追加せずに、その携帯性を損ねると に得ることができる。

【0048】つまり、本発明の情報提供手段は、携帯し ている移動通信体に付属させて持ち歩くものではなく、 移動通信体が基地局を介し接続されている回線網に接続 されて、情報提供を受ける者が共有することができるた めに、サービスを受ける者は携帯電話器の他に特に特別 な装置を必要とせず、携帯性に優れている。

【0049】このように、基地局データ、目的物のデー タおよび地図データなどを個人で所有せずに、サービス を供給する装置側で持っており、各個人でそれらのデー タの更新などのメンテナンスをする必要もなく、それら のデータや、装置を共有することで非常に低価格で携帯 性良く実現することができる。また、サービス装置側の CPUプログラムや、情報サービスのためのデータベー スをサービス側で追加することにより、様々なサービス を追加することが可能であり、利用性をさらに容易に向 上させることができる。さらには、それらを個人で対応 する必要がないことが非常に有益な点である。

【図面の簡単な説明】

【図1】本発明の一実施形態における位置情報サービス システムの構成を示すブロック図である。

【図2】図1の情報サービス装置16の構成を示すプロ ック図である。

【図3】図1の移動局(PHS携帯電話器)11a, 1 lbの構成を示すブロック図である。

【図4】GPS衛星を用いた従来のナビゲーションシス テムの構成を示すブロック図である。

【符号の説明】

- 11a, 11b 移動局(移動通信体)
- 12a, 12b, 12c 基地局
 - 15 回線網
 - 16 情報サービス装置(情報提供手段)
 - 2 1 CPU
 - 22 モデム
 - 23 音声合成装置
 - 25 ROM
 - 26 RAM
 - 基地局データベース 27
 - 28 電話帳データベース
- 地図データベース

特開平9-68566

12

	11.			
3 0	その他データベース	>	k 37	アンテナ
3 1	マイク		38	電界強度検出部
3 2	レシーバ		3 9	CPU
3 3	音声コーデック部		4 0	表示部
3 4	TDMA信号処理部		4 1	キー操作部
3 5	変·復調部		4 2	ROM
3 6	RF処理部	*	4 3	RAM

【図2】

【図3】

(9)

特開平9-68566

【図4】

