Bernard Jacob Note: 9/20 (score total : 9/20)

Nom et prénom, lisibles :

+50/1/14+

Identifiant (de haut en bas):

QCM THLR 4

2/2	Q.1 Ne rien écrire sur les bords de la feuille, ni dans les éventuels cadres grisés « ② ». Noircir les cases plutôt que cocher. Renseigner les champs d'identité. Les questions marquées par « × » peuvent avoir plusieurs réponses justes. Toutes les autres n'en ont qu'une; si plusieurs réponses sont valides, sélectionner la plus restrictive (par exemple s'il est demandé si 0 est <i>nul, non nul, positif,</i> ou <i>négatif,</i> cocher <i>nul</i>). Il n'est pas possible de corriger une erreur, mais vous pouvez utiliser un crayon. Les réponses justes créditent; les incorrectes pénalisent; les blanches et réponses multiples valent 0. 2 J'ai lu les instructions et mon sujet est complet: les 2 entêtes sont +50/1/xx+···+50/2/xx+.
	Q.2 Le langage $\{ \boxtimes^n \mathbb{A}^n \mid \forall n \in \mathbb{N} \}$ est
1/2	🔲 fini 🚱 rationnel 🔲 vide 🗵 non reconnaissable par automate fini
	Q.3 Le langage $\{ \overset{\mathbf{Q}}{\underset{n}{\mathbb{Z}}} \overset{n}{\underset{n}{\mathbb{Z}}} \overset{n}{\underset{n}{\mathbb{Z}}} \mid \forall n \in \mathbb{N} \}$ est
2/2	☐ non reconnaissable par automate fini
	Q.4 Un automate fini qui a des transitions spontanées
2/2	lacksquare n'est pas déterministe $lacksquare$ accepte $arepsilon$ est déterministe $lacksquare$ n'accepte pas $arepsilon$
1/2	 Q.5 A propos du lemme de pompage ☑ Si un langage ne le vérifie pas, alors il n'est pas rationnel ☑ Si un langage ne le vérifie pas, alors il n'est pas forcement rationnel ☑ Si un langage le vérifie, alors il est rationnel Q.6 Si un automate de n états accepte aⁿ, alors il accepte
2/2	
	Q.7 Si $L_1 \subseteq L \subseteq L_2$, alors L est rationnel si:
1/2	L_2 est rationnel L_1, L_2 sont rationnels L_1 est rationnel L_1, L_2 sont rationnels et $L_2 \subseteq L_1$
	Q.8 Combien d'états au moins a un automate déterministe émondé qui accepte les mots sur $\Sigma = \{a, b, c, d\}$ dont la n -ième lettre avant la fin est un a (i.e., $(a+b+c+d)^*a(a+b+c+d)^{n-1}$):
)/2	
	$\mathbf{Q.9} \text{Déterminiser cet automate} : \underbrace{ }_{\mathbf{q.0}} \underbrace{ }_{\mathbf{q.0}} \underbrace{ }_{\mathbf{q.0}}$

 $\textbf{Q.10} \quad \text{Comment marche la minimisation de Brzozowski d'un automate } \mathscr{A} \,?$

Fin de l'épreuve.

2/2