CSC589 Introduction to Computer Vision Lecture 4

More on Histogram Equalization, Border Effect, Image Derivatives

Bei Xiao

Last lecture

- Unsharp masking
- Gaussian Filter
- Image histograms
- Basic image tutorial with Python

Separability example

2D convolution (center location only)

The filter factors into a product of 1D filters:

1	2	1		1	Х	1	2	1
2	4	2	=	2				
1	2	1		1				

Perform convolution along rows:

Followed by convolution along the remaining column:

Matrix Multiplication

$$\mathbf{u}\otimes\mathbf{v}=\mathbf{u}\mathbf{v}^{\mathrm{T}}=egin{bmatrix} u_1\u_2\u_3\u_4\end{bmatrix}egin{bmatrix} v_1&v_2&v_3\u_3&v_1&u_3v_2&u_2v_3\u_4v_1&u_4v_2&u_4v_3 \end{bmatrix}.$$

Today's Lecture

- More on image histograms
- Border effect and padding
- Image Derivatives/gradients

Image Histogram Equalization

Notice the "shape" of the histogram is preserved!

Same number of pixels In each bin!

Questions

- 1. Why don't we do the equalization directly on the histograms? What will happen to the image if it has a perfectly flat histograms?
- 2. What is CDF? Why are there steps (zig-zags) on the CDF?
- 3. How to make sure the "shape" of the PDF is preserved in the transformation?

We start with a gray-scale jpeg image of 8 by 8

5 2	55	61	66	70	61	64	73
63	59	55	90	109	85	69	72
62	59	68	113	144	104	66	73
				154			
				126			
79	65	60	70	77	68	58	75
85	71	64	59	55	61	65	83
87	79	69	68	65	76	78	94

https://en.wikipedia.org/wiki/Histogram_equalization

The histograms for this image (8 by 8 pixels) is shown in the following table (intensity that has zero pixels are skipped:

Value	Count								
52	1	64	2	72	1	85	2	113	1
55	3	65	3	73	2	87	1	122	1
58	2	66	2	75	1	88	1	126	1
59	3	67	1	76	1	90	1	144	1
60	1	68	5	77	1	94	1	154	1
61	4	69	3	78	1	104	2		
62	1	70	4	79	2	106	1		
63	2	71	2	83	1	109	1		

The cumulative distribution function (CDF) is shown below

Value	cdf	scaled cdf	
52	1	0	This cdf shows that
55	4		the min value in the
58	6		subimage is 52 and max is 154. The cdf
59	9		of value 154
60	10		corresponding to the
61	14		total number of
62	15		pixels (64)
154	64	255	
	*	Number of pixels	

How do we compute the normalized CDF?

$$h(v) = \operatorname{round}\left(\frac{\operatorname{cdf}(v) - \operatorname{cdf}_{\min}}{(M \times N) - \operatorname{cdf}_{\min}} \times (L-1)\right)$$

Cdf(v): original cdf of pixel v

Cdfmin: minimum non-zero vale of the cdf

M×N: number of pixels, e.g. 64 (8x8)

L: 256

Quiz:

How do we compute normalized CDF of pixel 62?

Value	cdf	scaled cdf
52	1	0
55	4	
58	6	$h(v) = \text{round}\left(\frac{cdf(v) - cdf_{min}}{(M \times N) - cdf_{min}} \times (L - 1)\right)$
59	9	$(M \times N) - cdf_{min}$
60	10	
61	14	
62	15	?
•••	•••	
154	64	255

Quiz:

How do we compute normalized CDF of pixel 62?

Value	cdf	scaled cdf	
52	1	0	
55	4		
58	6		H(62) = round((15-1)/
59	9		63*255)
60	10		= 57
61	14		
62	15	?	
154	64	255	

The cumulative distribution function (CDF) is shown below

Value	cdf	scaled cdf
52	1	0
55	4	12
58	6	22
59	9	32
60	10	36
61	14	53
62	15	57
•••	•••	•••
154	64	255

Now we can directly map the scaled cdf back to pixel values using the look up table we derived above

5	2	55	61	66			
1	1	1	1				
0	12	53	93	146	53	73	166
65	32	12	215	235	202	130	158
57	32	117	239	251	227	93	166
65	20	154	243	255	231	146	130
97	53	117	227	247	210	117	146
190	85	36	146	178	117	20	170
202	154	73	32	12	53	85	194
206	190	130	117	85	174	182	219

Notice that the minimum value (52) is now 0 and the maximum value (154) is now 255.

Notice that the minimum value (52) is now 0 and the maximum value (154) is now 255.

Homework 2: histogram equalization

```
Hint:
#Compute cdf in Python:
np.histogram(im.flatten(),nbr_bins,normed=True)
cdf = imhist.cumsum()
# normalize
cdf = 255 * cdf / cdf[-1]
# Using linear interpretation of cdf to find new pixels.
im2 = np.interp(im.flatten(),bins[:-1],cdf)
```

Let's blur a flat gray image:

How should it look like?

Convolve with a box kernel

1/9	1/9	1/9		
1/9	1/9	1/9		
·	20	20	20	20
1/9	1 /9 20	1 /9 20	20	20
	20	20	20	20
	20	20	20	20

Border Handling

Depending on how you do the convolution, you could end up with 3 different images.

Zero padding:

Filled in borders with zeros, computed everywhere the kernel touches.

Numpy.convolve(a,v,mode ='full' or 'same')

This returns the convolution at each point of overlap, with an output shape of (N+M-1,). At the end-points of the convolution, the signals do not overlap completely, and boundary effects may be seen.

 Convolve with a box kernel, suppose there are zeros outside the image matrix.

1/9	1/9	1/9		
1/9	1/9	1/9		
	20	20	20	20
1/9	1/9 20	1/9 20	20	20
	20	20		20
	20	20	20	20
	20	20	20	20

8.9	13.3	13.3	8.9
13.3	20.0	20.0	13.3
13.3	20.0	20.0	13.3
8.9	13.3	13.3	8.9

This is called "same" in MATLAB/Numpy

1/9	1/9	1/9			
1/9	1/9	1/9			\Longrightarrow
1/9	1/9	12/69	20	20	20
		20	20	20	20
		20	20	20	20
		20	20	20	20

2.2	4.4	6.6	6.6	4.4	2.2
4.4	8.9	13.3	13.3	8.9	4.4
6.6	13.3	20.0	20.0	13.3	6.7
6.6	13.3	20.0	20.0	13.3	6.7
4.4	8.9	13.3	13.3	8.9	4.4
2.2	4.4	6.6	6.6	4.4	2.2

This is called "full" in MATLAB/Numpy.

 Only compute at places where the kernel fits the image

	•		
1 /9 20	1/ 9 20	1 /9 20	20
1/9 20	1/9 20	1/9 20	20
1/9	1/20	1/90	20
20	20	20	20

20	20
20	20

This is called "valid" in MATLAB/Numpy.

To summarize

- Python:
 - Numpy.convolve(a,v,mode)
 - Scipy.signal.convole2d(a,v,mode, boundary, value)

There are other methods

- The first two methods that I described fill missing values in by substituting zero
- Can fill in values with different methods
 - Reflect image along border
 - Pull values from other side
- Read Chapter 3.2 "padding".

There are other methods

zero valid Nearest neighbor

Edge detection

- Convert a 2D image into a set of curves
 - Extracts salient features of the scene
 - More compact than pixels

Source: N. Snavely

Origin of Edges

- Edges are caused by a variety of factors
- It is still a very active research topic! We will learn more about it!

Image derivate and edges

An edge is a place of rapid change in image intensity function

Image derivatives

- How can we differentiate a digital image F[x,y]?
 - Option 1: reconstruct a continuous image, f, then compute the derivative
 - Option 2: take discrete derivative (finite difference) $\frac{\partial f}{\partial x}[x,y] \approx F[x+1,y] F[x,y]$

How would you implement this as a linear filter?

Image gradient

• The gradient of an image: $abla f = \left[rac{\partial f}{\partial x}, rac{\partial f}{\partial y}
ight]$

The gradient points in the direction of most rapid increase in intensity

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, 0 \end{bmatrix}$$

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \end{bmatrix}$$

$$\nabla f = \begin{bmatrix} 0, \frac{\partial f}{\partial y} \end{bmatrix}$$

The *edge strength* is given by the gradient magnitude:

$$\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

The gradient direction is given by:

$$\theta = \tan^{-1} \left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x} \right)$$

how does this relate to the direction of the edge?

Source: Steve Seitz

Image gradient

f

 $\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$

 $\frac{\partial f}{\partial x}$

 $\frac{\partial f}{\partial y}$

Gaussian Filter

Gaussian = normal distribution function

$$K(i,j) = \frac{1}{Z} \exp\left(-\frac{i^2 + j^2}{2\sigma^2}\right)$$

Derivative of Gaussian

Take the derivative of the filter with respect to i:

$$\frac{\partial K(i,j)}{\partial i} = \frac{-i}{\sigma^2 Z} \exp\left(-\frac{i^2 + j^2}{2\sigma^2}\right)$$

• Filter looks like:

Basically blur then take the derivative

Derivative of Gaussian

2D edge detection filters

Gaussian

$$h_{\sigma}(u,v) = \frac{1}{2\pi\sigma^2} e^{-\frac{u^2+v^2}{2\sigma^2}}$$

derivative of Gaussian (x)

$$\frac{\partial}{\partial x}h_{\sigma}(u,v)$$

Derivative of Gaussian filter

The Sobel operator

Common approximation of derivative of Gaussian

<u>1</u> 8	1	2	1
	0	0	0
	-1	-2	-1
•		$\overline{s_y}$	

- The standard defn. of the Sobel operator omits the 1/8 term
 - doesn't make a difference for edge detection
 - the 1/8 term is needed to get the right gradient value

Example of Sobel filtered image

Take-home exercise: Create image derivatives using Sobel filter

1. Generate an image of a rotated rectangle

import numpy as np from scipy import ndimage import matplotlib.pyplot as plt

```
im = np.zeros((256, 256))
im[64:-64, 64:-64] = 1
im = ndimage.rotate(im, 15, mode='constant')
```

2. Blur the image using a Gaussian filter im = ndimage.gaussian filter(im, 8)

3. Apply Sobel filter to both x and y direction.

```
sx = ndimage.sobel(im, axis=0, mode='constant')
```

4. Display the original image, x-derivatives, y-derivatives, and the gradient magnitude. You can use np.hypot to compute magnitude.

See here: http://docs.scipy.org/doc/numpy/reference/generated/numpy.hypot.html)

Next class

- Laplacian of Gaussian
- Steerable filter
- Fourier transform

- Reading: Chapter 3.1-3.3! Very important to keep up the reading.
- You should have read Chapter 1. Skip Chapter 2 since we haven't covered it.