Pure functional epidemics

An Agent-Based Approach

Jonathan Thaler
Thorsten Altenkirch
Peer-Olaf Siebers
jonathan.thaler@nottingham.ac.uk
thorsten.altenkirch@nottingham.ac.uk
peer-olaf.siebers@nottingham.ac.uk
University of Nottingham
Nottingham, United Kingdom

Abstract

Agent-Based Simulation (ABS) is a methodology in which a system is simulated in a bottom-up approach by modelling the micro interactions of its constituting parts, called agents, out of which the global system behaviour emerges.

So far mainly object-oriented techniques and languages have been used in ABS. Using the SIR model of epidemiology, which allows to simulate the spreading of an infectious disease through a population, we show how to use Functional Reactive Programming to implement ABS. With our approach we can guarantee the reproducibility of the simulation already at compile time, which is not possible with traditional object-oriented languages. Also, we claim that this representation is conceptually very clean and opens the way to formally reason about ABS. Further we verify the correctness of our implementation through property-testing using QuickCheck and white-box code verification through informal reasoning. Unfortunately the performance of our approach is far behind traditional OO approaches but this is not the main focus of our research and we outline alternatives to alleviate this problem in further research.

Keywords Functional Reactive Programming, Monadic Stream Functions, Agent-Based Simulation

ACM Reference Format:

1 Introduction

The traditional approach to Agent-Based Simulation (ABS) has so far always been object-oriented techniques, due to the influence of the seminal work of Epstein et al [7] in which the authors claim "[..] object-oriented programming to be a particularly natural development environment for Sugarscape specifically and artificial societies generally [..]"

(p. 179). This work established the metaphor in the ABS community, that *agents map naturally to objects* [17] which still holds up today.

In this paper we fundamentally challenge this metaphor and explore ways of approaching ABS in a pure functional way using Haskell. By doing this we expect to leverage the benefits of pure functional programming [9]: higher expressivity through declarative code, being polymorph and explicit about side-effects through monads, more robust and less susceptible for bugs due to explicit data flow and lack of implicit side-effects.

As use case we introduce the simple SIR model of epidemiology with which one can simulate epidemics, that is the spreading of an infectious disease through a population, in a realistic way.

Over the course of four steps, we derive all necessary concepts required for a full agent-based implementation. We start from a very simple solution running in the Random Monad which has all general concepts already there and then refine it in various ways, making the transition to Functional Reactive Programming (FRP) [30] and to Monadic Stream Functions (MSF) [20].

The aim of this paper is to show how ABS can be done in *pure* Haskell and what the benefits and drawbacks are. By doing this we give the reader a good understanding of what ABS is, what the challenges are when implementing it and how we solve these in our approach.

The contributions of this paper are:

- To the best of our knowledge, we are the first to *systematically* introduce the concepts of ABS to the *pure* functional programming paradigm in a step-by-step approach. It is also the first paper to show how to apply Arrowized FRP to ABS on a technical level, presenting a new field of application to FRP.
- Our approach shows how robustness can be achieved through purity which guarantees reproducibility at compile time, something not possible with traditional object-oriented approaches.

HS18, 2018, 09

2018. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM...\$15.00

https://doi.org/10.1145/nnnnnnnnnnnnn

- The result of using Arrowized FRP is a conceptually clean approach to ABS. It allows expressing continuous time-semantics in very clean, compositional and declarative way, without having to deal with low-level details related to the progress of time.
- Using property-testing with QuickCheck in combination with white-box verification (informal reasoning about the code) we can ensure the correctness of our implementation to a very high degree.

Section 7 discusses related work. In section 2 we introduce functional reactive programming, arrowized programming and monadic stream functions, because our approach builds heavily on these concepts. Section 3 defines agent-based simulation. In section 4 we introduce the SIR model of epidemiology as an example model to explain the concepts of ABS. The heart of the paper is section 5 in which we derive the concepts of a pure functional approach to ABS in four steps, using the SIR model. Finally, we draw conclusions and discuss issues in section 8 and point to further research in section 9.

2 Background

2.1 Functional Reactive Programming

Functional Reactive Programming (FRP) is a way to implement systems with continuous and discrete time-semantics in pure functional languages. There are many different approaches and implementations but in our approach we use *Arrowized* FRP [10], [11] as implemented in the library Yampa [8], [5], [16].

The central concept in arrowized FRP is the Signal Function (SF) which can be understood as a *process over time* which maps an input- to an output-signal. A signal can be understood as a value which varies over time. Thus, signal functions have an awareness of the passing of time by having access to Δt which are positive time-steps with which the system is sampled.

$$Signal \ \alpha \approx Time \rightarrow \alpha$$
$$SF \ \alpha \ \beta \approx Signal \ \alpha \rightarrow Signal \ \beta$$

Yampa provides a number of combinators for expressing time-semantics, events and state-changes of the system. They allow to change system behaviour in case of events, run signal functions and generate stochastic events and random-number streams. We shortly discuss the relevant combinators and concepts we use throughout the paper. For a more indepth discussion we refer to [8], [5], [16].

Event An event in FRP is an occurrence at a specific point in time which has no duration e.g. the the recovery of an infected agent. Yampa represents events through the *Event* type which is programmatically equivalent to the *Maybe* type.

Dynamic behaviour To change the behaviour of a signal function at an occurrence of an event during run-time, the combinator *switch* :: SF a (b, Event c) -> (c -> SF a b) -> SF a b is provided. It takes a signal function which is run until it generates an event. When this event occurs, the function in the second argument is evaluated, which receives the data of the event and has to return the new signal function which will then replace the previous one.

Randomness In ABS one often needs to generate stochastic events which occur based on e.g. an exponential distribution. Yampa provides the combinator *occasionally* :: Random-Gen $g \Rightarrow g \rightarrow Time \rightarrow b \rightarrow SF$ a (Event b) for this. It takes a random-number generator, a rate and a value the stochastic event will carry. It generates events on average with the given rate. Note that at most one event will be generated and no 'backlog' is kept. This means that when this function is not sampled with a sufficiently high frequency, depending on the rate, it will loose events.

Yampa also provides the combinator *noise* :: (RandomGen g, Random b) => g -> SF a b which generates a stream of noise by returning a random number in the default range for the type b.

Running signal functions To *purely* run a signal function Yampa provides the function *embed* :: $SFab \rightarrow (a, [(DTime, Maybe a)]) \rightarrow [b]$ which allows to run a SF for a given number of steps where in each step one provides the Δt and an input a. The function then returns the output of the signal function for each step. Note that the input is optional, indicated by Maybe. In the first step at t = 0, the initial a is applied and whenever the input is Nothing in subsequent steps, the last a which was not Nothing is re-used.

2.2 Arrowized programming

Yampa's signal functions are arrows, requiring us to program with arrows. Arrows are a generalisation of monads which, in addition to the already familiar parameterisation over the output type, allow parameterisation over their input type as well [10], [11].

In general, arrows can be understood to be computations that represent processes, which have an input of a specific type, process it and output a new type. This is the reason why Yampa is using arrows to represent their signal functions: the concept of processes, which signal functions are, maps naturally to arrows.

There exists a number of arrow combinators which allow arrowized programing in a point-free style but due to lack of space we will not discuss them here. Instead we make use of Paterson's do-notation for arrows [18] which makes code more readable as it allows us to program with points.

To show how arrowized programming works, we implement a simple signal function, which calculates the acceleration of a falling mass on its vertical axis as an example [21].

Pure functional epidemics HS18, 2018, 09

```
fallingMass :: Double -> Double -> SF () Double
fallingMass p0 v0 = proc _ -> do
 v <- arr (+v0) <<< integral -< (-9.8)
 p <- arr (+p0) <<< integral -< v
 returnA -< p
```

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

To create an arrow, the *proc* keyword is used, which binds a variable after which then the do of Patersons do-notation [18] follows. Using the signal function integral :: SF v v of Yampa which integrates the input value over time using the rectangle rule, we calculate the current velocity and the position based on the initial position p0 and velocity v0. The <<< is one of the arrow combinators which composes two arrow computations and arr simply lifts a pure function into an arrow. To pass an input to an arrow, -< is used and <- to bind the result of an arrow computation to a variable. Finally to return a value from an arrow, returnA is used.

Defining Agent-Based Simulation

Agent-Based Simulation (ABS) is a methodology to model and simulate a system where the global behaviour may be unknown but the behaviour and interactions of the parts making up the system is known. Those parts, called agents, are modelled and simulated, out of which then the aggregate global behaviour of the whole system emerges.

So, the central aspect of ABS is the concept of an agent which can be understood as a metaphor for a pro-active unit, situated in an environment, able to spawn new agents and interacting with other agents in some neighbourhood by exchange of messages.

We informally assume the following about our agents [24], [31], [15]:

- They are uniquely addressable entities with some internal state over which they have full, exclusive control.
- They are pro-active which means they can initiate actions on their own e.g. change their internal state, send messages, create new agents, terminate themselves.
- They are situated in an environment and can interact
- They can interact with other agents situated in the same environment by means of messaging.

The SIR Model

To explain the concepts of ABS and of our pure functional approach to it, we introduce the SIR model as a motivating example and use-case for our implementation. It is a very well studied and understood compartment model from epidemiology [13] which allows to simulate the dynamics of an infectious disease like influenza, tuberculosis, chicken pox, rubella and measles spreading through a population.

In this model, people in a population of size N can be in either one of three states Susceptible, Infected or Recovered at a particular time, where it is assumed that initially there is at least one infected person in the population. People interact on average with a given rate of β other people per time-unit and

276

277

278

279

281

282

283

285

287

289

291

292

293

294

295

296

297

298

299

300

302

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

321

322

323

324

325

326

327

328

329

330

Figure 1. States and transitions in the SIR compartment model.

become infected with a given probability γ when interacting with an infected person. When infected, a person recovers on average after δ time-units and is then immune to further infections. An interaction between infected persons does not lead to re-infection, thus these interactions are ignored in this model. This definition gives rise to three compartments with the transitions seen in Figure 1.

Before looking into how one can simulate this model in an agent-based approach we first explain how to formalize it using System Dynamics (SD) [22]. In SD one models a system through differential equations, allowing to conveniently express continuous systems which change over time. The advantage of an SD solution is that one has an analytically tractable solution against which e.g. agent-based solutions can be validated. The problem is that, the more complex a system, the more difficult it is to derive differential equations describing the global system, to a point where it simply becomes impossible. This is the strength of an agent-based approach over SD, which allows to model a system when only the constituting parts and their interactions are known but not the macro behaviour of the whole system. As will be shown later, the agent-based approach exhibits further benefits over SD.

The dynamics of the SIR model can be formalized in SD with the following equations:

$$\frac{dS}{dt} = -infectionRate$$
 (1)
$$\frac{dI}{dt} = infectionRate - recoveryRate$$
 (2)
$$dR$$

$$\frac{\mathrm{d}I}{\mathrm{d}t} = infectionRate - recoveryRate \tag{2}$$

$$\frac{\mathrm{d}R}{\mathrm{d}t} = recoveryRate \tag{3}$$

$$infectionRate = \frac{I\beta S\gamma}{N}$$
 (4
$$recoveryRate = \frac{I}{\delta}$$
 (5

$$recoveryRate = \frac{I}{s}$$
 (5)

Solving these equations is done by numerically integrating over time which results in the dynamics as shown in Figure 2 with the given variables.

An Agent-Based approach

The SD approach is inherently top-down because the behaviour of the system is formalized in differential equations. This requires that the macro behaviour of the system is known a priori which may not always be the case. In the case of the SIR model we already have a top-down description

Figure 2. Dynamics of the SIR compartment model using the System Dynamics approach. Population Size N=1,000, contact rate $\beta=\frac{1}{5}$, infection probability $\gamma=0.05$, illness duration $\delta=15$ with initially 1 infected agent. Simulation run for 150 time-steps.

of the system in the form of the differential equations from SD. We want now to derive an agent-based approach which exhibits the same dynamics as shown in Figure 2.

The question is whether such top-down dynamics can be achieved using ABS as well and whether there are fundamental drawbacks or benefits when doing so. Such questions were asked before and modelling the SIR model using an agent-based approach is indeed possible [14].

The fundamental difference is that SD is operating on averages, treating the population completely continuous which results in non-discrete values of stocks e.g. 3.1415 infected persons. The approach of mapping the SIR model to an ABS is to discretize the population and model each person in the population as an individual agent. The transitions between the states are no longer happening according to continuous differential equations but due to discrete events caused both by interactions amongst the agents and time-outs. Besides the already mentioned differences, the true advantage of ABS becomes now apparent: with it we can incorporate spatiality as shown in section ?? and simulate heterogenity of population e.g. different sex, age,... Note that the latter is theoretically possible in SD as well but with increasing number of population properties, it quickly becomes intractable.

According to the model, every agent makes on average contact with β random other agents per time unit. In ABS we can only contact discrete agents thus we model this by generating a random event on average every $\frac{1}{\beta}$ time units. We need to sample from an exponential distribution because the rate is proportional to the size of the population [3]. Note that an agent does not know the other agents' state when making contact with it, thus we need a mechanism in which agents reveal their state in which they are in at the moment of making contact. This mechanism is an implementation detail which we will derive in our implementation steps. For

now we only assume that agents can make contact with each other somehow.

This results in the following agent behaviour:

Susceptible: A susceptible agent makes contact on average with β other random agents. For every infected agent it gets into contact with, it becomes infected with a probability of γ. If an infection happens, it makes the transition to the *Infected* state.

- Infected: An infected agent recovers on average after δ time units. This is implemented by drawing the duration from an exponential distribution [3] with $\lambda = \frac{1}{\delta}$ and making the transition to the Recovered state after this duration.
- Recovered: These agents do nothing because this state
 is a terminating state from which there is no escape:
 recovered agents stay immune and can not get infected
 again in this model.

5 Deriving a pure functional approach

We presented a high-level agent-based approach to the SIR model in the previous section, which focused only on the states and the transitions, but we haven't talked about technical implementation.

The authors of [27] discuss two fundamental problems of implementing an agent-based simulation from a programming-language agnostic point of view. The first problem is how agents can be pro-active and the second how interactions and communication between agents can happen. For agents to be pro-active, they must be able to perceive the passing of time, which means there must be a concept of an agent-process which executes over time. Interactions between agents can be reduced to the problem of how an agent can expose information about its internal state which can be perceived by other agents.

In this section we will derive a pure functional approach for an agent-based simulation of the SIR model in which we will pose solutions to the previously mentioned problems. We will start out with a very naive approach and show its limitations which we overcome by adding FRP. Then in further steps we will add more concepts and generalisations, ending up at the final approach which utilises monadic stream functions (MSF), a generalisation of FRP ¹.

As shown in the first step, the need to handle Δt explicitly can be quite messy, is inelegant and a potential source of errors, also the explicit handling of the state of an agent and its behavioural function is not very modular. We can solve both these weaknesses by switching to the functional reactive programming paradigm (FRP), because it allows to express systems with discrete and continuous time-semantics.

¹The code of all steps can be accessed freely through the following URL: https://github.com/thalerjonathan/phd/tree/master/public/purefunctionalepidemics/code

Pure functional epidemics HS18, 2018, 09

In this step we are focusing on Arrowized FRP [10] using the library Yampa [8]. In it, time is handled implicit, meaning it cannot be messed with, which is achieved by building the whole system on the concept of signal functions (SF). An SF can be understood as a process over time and is technically a continuation which allows to capture state using closures. Both these fundamental features allow us to tackle the weaknesses of our first step and push our approach further towards a truly elegant functional approach.

5.0.1 Implementation

We start by defining an agent now as an SF which receives the states of all agents as input and outputs the state of the agent:

We start by modelling the states of the agents:

```
data SIRState = Susceptible | Infected | Recovered
```

Agents are ill for some duration, meaning we need to keep track when a potentially infected agent recovers. Also a simulation is stepped in discrete or continuous time-steps thus we introduce a notion of *time* and Δt by defining:

```
type Time = Double
type TimeDelta = Double
type SIRAgent = SF [SIRState] SIRState
```

Now we can define the behaviour of an agent to be the following:

```
sirAgent :: RandomGen g => g -> SIRState -> SIRAgent
sirAgent g Susceptible = susceptibleAgent g
sirAgent g Infected = infectedAgent g
sirAgent _ Recovered = recoveredAgent
```

Depending on the initial state we return the corresponding behaviour. Most notably is the difference that we are now passing a random-number generator instead of running in the Random Monad because signal functions as implemented in Yampa are not capable of being monadic. We see that the recovered agent ignores the random-number generator which is in accordance with the implementation in the previous step where it acts as a sink which returns constantly the same state:

```
recoveredAgent :: SIRAgent
recoveredAgent = arr (const Recovered)
```

When an event occurs we can change the behaviour of an agent using the Yampa combinator switch, which is much more elegant and expressive than the initial approach as it makes the change of behaviour at the occurrence of an event explicit. Thus a susceptible agent behaves as susceptible until it becomes infected. Upon infection an Event is returned which results in switching into the infectedAgent SF, which causes the agent to behave as an infected agent from that moment on. Instead of randomly drawing the number of contacts to make, we now follow a fundamentally different approach by using Yampas occasionally function. This requires us to carefully select the right Δt for sampling the system as will be shown in results.

```
susceptibleAgent :: RandomGen g => g -> SIRAgent
susceptibleAgent g =
    switch (susceptible g) (const (infectedAgent g))
    susceptible :: RandomGen g
      => g -> SF [SIRState] (SIRState, Event ())
    susceptible g = proc as -> do
      makeContact <- occasionally g (1 / contactRate) () -< ()</pre>
      if isEvent makeContact
        then (do
          a <- drawRandomElemSF g -< as
          case a of
            Infected -> do
              i <- randomBoolSF g infectivity -< ()</pre>
                 then returnA -< (Infected, Event ())</pre>
                 else returnA -< (Susceptible, NoEvent)</pre>
                      -> returnA -< (Susceptible, NoEvent))</pre>
        else returnA -< (Susceptible, NoEvent)</pre>
```

We deal with randomness different now and implement signal functions built on the *noiseR* function provided by Yampa. This is an example for the stream character and statefulness of a signal function as it needs to keep track of the changed random-number generator internally through the use of continuations and closures. Here we provide the implementation of *randomBoolSF*, *drawRandomElemSF* works similar but takes a list as input and returns a randomly chosen element from it:

```
randomBoolSF :: RandomGen g => g -> Double -> SF () Bool
randomBoolSF g p = proc _ -> do
    r <- noiseR ((0, 1) :: (Double, Double)) g -< ()
    returnA -< (r <= p)</pre>
```

The infected agent behaves as infected until it recovers on average after the illness duration after which it behaves as a recovered agent by switching into *recoveredAgent*. As in the case of the susceptible agent, we use the *occasionally* function to generate the event when the agent recovers. Note that the infected agent ignores the states of the other agents as its behaviour is completely independent of them.

```
infectedAgent :: RandomGen g => g -> SIRAgent
infectedAgent g = switch infected (const recoveredAgent)
where
  infected :: SF [SIRState] (SIRState, Event ())
  infected = proc _ -> do
    recEvt <- occasionally g illnessDuration () -< ()
  let a = event Infected (const Recovered) recEvt
  returnA -< (a, recEvt)</pre>
```

Running and stepping the simulation works now a bit differently, using Yampas function *embed*:

What we need to implement next is a closed feedbackloop. Fortunately, [16], [5] discusses implementing this in Yampa. The function *stepSimulation* is an implementation of such a closed feedback-loop. It takes the current signal functions and states of all agents, runs them all in parallel and returns the new agent states of this step. Yampa provides the dpSwitch combinator for running signal functions in parallel, which is quite involved and discussed more in-depth in section 2. It allows us to recursively switch back into the stepSimulation with the continuations and new states of all the agents after they were run in parallel. Note the use of *notYet* which is required because in Yampa switching occurs immediately at t = 0. Sometimes one needs to run a collection of signal functions in parallel and collect all of their outputs in a list. Yampa provides the combinator dpSwitch for it. It is quite involved and has the following type-signature:

```
dpSwitch :: Functor col
    -- routing function
    => (forall sf. a -> col sf -> col (b, sf))
    -- SF collection
    -> col (SF b c)
    -- SF generating switching event
    -> SF (a, col c) (Event d)
    -- continuation to invoke upon event
    -> (col (SF b c) -> d -> SF a (col c))
    -> SF a (col c)
```

Its first argument is the pairing-function which pairs up the input to the signal functions - it has to preserve the structure of the signal function collection. The second argument is the collection of signal functions to run. The third argument is a signal function generating the switching event. The last argument is a function which generates the continuation after the switching event has occurred. *dpSwitch* returns a new signal function which runs all the signal functions in parallel and switches into the continuation when the switching event occurs. The d in *dpSwitch* stands for decoupled which guarantees that it delays the switching until the next time-step: the function into which we switch is only applied in the next step, which prevents an infinite loop if we switch into a recursive continuation.

```
stepSimulation :: [SIRAgent] -> [SIRState] -> SF () [SIRState]
stepSimulation sfs as =
    dpSwitch
    -- feeding the agent states to each SF
        (\_ sfs' -> (map (\sf -> (as, sf)) sfs'))
    -- the signal functions
        sfs
    -- switching event, ignored at t = 0
        (switchingEvt >>> notYet)
    -- recursively switch back into stepSimulation
        stepSimulation
where
    switchingEvt :: SF ((), [SIRState]) (Event [SIRState])
    switchingEvt = arr (\ (_, newAs) -> Event newAs)
```


Figure 3. FRP simulation of agent-based SIR showing the influence of different Δt . Population size of 100 with contact rate $\beta = \frac{1}{5}$, infection probability $\gamma = 0.05$, illness duration $\delta = 15$ with initially 1 infected agent. Simulation run for 150 time-steps with respective Δt .

5.0.2 Results

The function which drives the dynamics of our simulation is occasionally, which randomly generates an event on average with a given rate following the exponential distribution. To arrive at the correct dynamics, this requires us to sample occasionally, and thus the whole system, with small enough Δt which matches the rate. If we choose a too large Δt , we loose events which will result in dynamics which do not approach the SD dynamics sufficiently enough, see Figure 3.

Clearly by keeping the population size constant and just increasing the Δt results in a closer approximation to the SD dynamics. To increasingly approximate the SD dynamics with ABS we still need a bigger population size and even smaller Δt . Unfortunately increasing both the number of agents and the sample rate results in severe performance and memory problems. A possible solution would be to implement super-sampling which would allow us to run the whole simulation with $\Delta t = 1.0$ and only sample the *occasionally* function with a much higher frequency.

5.0.3 Discussion

Reflecting on our first naive approach we can conclude that it already introduced most of the fundamental concepts of ABS

- Time the simulation occurs over virtual time which is modelled explicitly divided into *fixed* Δt where at each step all agents are executed.
- Agents we implement each agent as an individual, with the behaviour depending on its state.
- Feedback the output state of the agent in the current time-step t is the input state for the next time-step
- Environment as environment we implicitly assume a fully-connected network (complete graph) where every agent 'knows' every other agent, including itself and thus can make contact with all of them.

• Stochasticity - it is an inherently stochastic simulation, which is indicated by the Random Monad type and the usage of *randomBoolM* and *randomExpM*.

- Deterministic repeated runs with the same initial random-number generator result in same dynamics. This may not come as a surprise but in Haskell we can guarantee that property statically already at compile time because our simulation runs in the Random Monad and *not* in the IO Monad. This guarantees that no external, uncontrollable sources of randomness can interfere with the simulation.
- Dynamics with increasing number of agents the dynamics smooth out [14].

By moving on to FRP using Yampa we made a huge improvement in clarity, expressivity and robustness of our implementation. State is now implicitly encoded, depending on which signal function is active. Also by using explicit time-semantics with *occasionally* we can achieve extremely fine grained stochastics. Compared to drawing a random number of events we create only a single event or none at all. This requires to sample the system with a much smaller Δt : we are treating it as a continuous agent-based system, resulting in a hybrid SD/ABS approach.

So far we have an acceptable implementation of an agent-based SIR approach. What we are lacking at the moment is a general treatment of an environment. To conveniently introduce it we want to make use of monads which is not possible using Yampa. In the next step we make the transition to Monadic Stream Functions (MSF) as introduced in Dunai [20] which allows FRP within a monadic context.

6 Verification

6.1 Property-Testing

TODO: describe what i did using quickcheck TODO: implement quickcheck test for combining susceptible and infected

6.2 White-box Verification

TODO: describe reasoning about the code

7 Related Work

The amount of research on using pure functional programming with Haskell in the field of ABS has been moderate so far. Most of the papers are more related to the field of Multi Agent Systems and look into how agents can be specified using the belief-desire-intention paradigm [6], [26], [12].

A library for Discrete Event Simulation (DES) and System Dynamics (SD) in Haskell called *Aivika 3* is described in the technical report [25]. It is not pure, as it uses the IO Monad under the hood and comes only with very basic features for event-driven ABS, which allows to specify simple state-based agents with timed transitions.

The authors of [12] discuss using functional programming for DES and explicitly mention the paradigm of FRP to be very suitable to DES. The authors of [29] present a domain-specific language for developing functional reactive agent-based simulations. This language called FRABJOUS is human readable and easily understandable by domain-experts. It is not directly implemented in FRP/Haskell but is compiled to Yampa code which they claim is also readable. This supports that FRP is a suitable approach to implement ABS in Haskell. Unfortunately, the authors do not discuss their mapping of ABS to FRP on a technical level, which would be of most interest to functional programmers.

8 Conclusions

Our approach is radically different from traditional approaches in the ABS community. First it builds on the already quite powerful FRP paradigm. Second, due to our hybrid approach, it forces one to think properly of time-semantics of the model and how small Δt should be. Third it requires to think about agent interactions in a new way instead of being just method-calls.

Because no part of the simulation runs in the IO Monad and we do not use unsafePerformIO we can rule out a serious class of bugs caused by implicit data-dependencies and side-effects which can occur in traditional imperative implementations.

Also we can statically guarantee the reproducibility of the simulation. Within the agents there are no side effects possible which could result in differences between same runs. Every agent has access to its own random-number generator or the Random Monad, allowing randomness to occur in the simulation but the random-generator seed is fixed in the beginning and can never be changed within an agent. This means that after initialising the agents, which *could* run in the IO Monad, the simulation itself runs completely deterministic.

Determinism is also ensured by fixing the Δt and not making it dependent on the performance of e.g. a rendering-loop or other system-dependent sources of non-determinism as described by [21]. Also by using FRP we gain all the benefits from it and can use research on testing, debugging and exploring FRP systems [21], [19].

Issues

Unfortunately, the hybrid approach of SD/ABS amplifies the performance issues of agent-based approaches, which requires much more processing power compared to SD, because each agent is modelled individually in contrast to aggregates in SD [14]. With the need to sample the system with high frequency, this issue gets worse. We haven't investigated how to optimize the performance by using efficient functional data structures, hence in the moment our program

771 pe

performs much worse than an imperative implementation that exploits in-place updates.

Despite the strengths and benefits we get by leveraging on FRP, there are errors that are not raised at compile-time, e.g. we can still have infinite loops and run-time errors. This was for example investigated by [23] who use dependent types to avoid some runt-time errors in FRP. We suggest that one could go further and develop a domain specific type system for FRP that makes the FRP based ABS more predictable and that would support further mathematical analysis of its properties.

We can conclude that the main difficulty of a pure functional approach evolves around the communication and interaction between agents. This is straight-forward in object-oriented programming, where it is achieved using method-calls mutating the internal state of the agent, but that comes at the cost of a new class of bugs due to implicit data flow. In pure functional programming these data flows are explicit but our current approach of feeding back the states of all agents as inputs is not very general and we have added further mechanisms of agent interaction which we had to omit due to lack of space. We hypothesise that MSFs allow us to conveniently express agent communication but but leave this for further research.

We started with high hopes for the pure functional approach and hypothesized that it will be truly superior to existing traditional object-oriented approaches but we come to the conclusion that this is not so. The single real benefit is the lack of implicit side-effects and reproducibility guaranteed at compile time. Still, our research was not in vain as we see it as an intermediary step towards using dependent types. Moving to dependent types would pose a unique benefit over the object-oriented approach and should allow us to express and guarantee properties at compile time which is not possible with imperative approaches. We leave this for further research.

9 Further Research

We see this paper as an intermediary and necessary step towards dependent types for which we first needed to understand the potential and limitations of a non-dependently typed pure functional approach in Haskell. Dependent types are extremely promising in functional programming as they allow us to express stronger guarantees about the correctness of programs and go as far as allowing to formulate programs and types as constructive proofs which must be total by definition [28], [2], [1].

So far no research using dependent types in agent-based simulation exists at all and it is not clear whether dependent types make sense in this context. In our next paper we want to explore this for the first time and ask more specifically how we can add dependent types to our pure functional approach, which conceptual implications this has for ABS

and what we gain from doing so. We plan on using Idris [4] as the language of choice as it is very close to Haskell with focus on real-world application and running programs as opposed to other languages with dependent types e.g. Agda and Coq which serve primarily as proof assistants.

It would be of immense interest whether we could apply dependent types to the model meta-level or not - this boils down to the question if we can encode our model specification in a dependently typed way. This would allow the ABS community for the first time to reason about a model directly in code.

Acknowledgments

The authors would like to thank I. Perez, H. Nilsson, J. Greensmith, M. Baerenz, H. Vollbrecht, S. Venkatesan, J. Hey and the Haskell Symposium 2018 referees for constructive feedback, comments and valuable discussions.

References

- [1] Thorsten Altenkirch, Nils Anders Danielsson, Andres Loeh, and Nicolas Oury. 2010. Pi Sigma: Dependent Types Without the Sugar. In Proceedings of the 10th International Conference on Functional and Logic Programming (FLOPS'10). Springer-Verlag, Berlin, Heidelberg, 40–55. https://doi.org/10.1007/978-3-642-12251-4_5
- [2] Thorsten Altenkirch, Conor Mcbride, and James Mckinna. 2005. Why dependent types matter. In *In preparation, http://www.e-pig.org/downloads/ydtm.pdf*.
- [3] Andrei Borshchev and Alexei Filippov. 2004. From System Dynamics and Discrete Event to Practical Agent Based Modeling: Reasons, Techniques, Tools. Oxford.
- [4] Edwin Brady. 2013. Idris, a general-purpose dependently typed programming language: Design and implementation. *Journal of Functional Programming* 23, 05 (2013), 552–593. https://doi.org/10.1017/S095679681300018X
- [5] Antony Courtney, Henrik Nilsson, and John Peterson. 2003. The Yampa Arcade. In Proceedings of the 2003 ACM SIGPLAN Workshop on Haskell (Haskell '03). ACM, New York, NY, USA, 7–18. https://doi.org/10.1145/871895.871897
- [6] Tanja De Jong. 2014. Suitability of Haskell for Multi-Agent Systems. Technical Report. University of Twente.
- [7] Joshua M. Epstein and Robert Axtell. 1996. Growing Artificial Societies: Social Science from the Bottom Up. The Brookings Institution, Washington, DC, USA.
- [8] Paul Hudak, Antony Courtney, Henrik Nilsson, and John Peterson. 2003. Arrows, Robots, and Functional Reactive Programming. In Advanced Functional Programming, Johan Jeuring and Simon L. Peyton Jones (Eds.). Number 2638 in Lecture Notes in Computer Science. Springer Berlin Heidelberg, 159–187. https://doi.org/10.1007/ 978-3-540-44833-4_6
- [9] Paul Hudak, John Hughes, Simon Peyton Jones, and Philip Wadler. 2007. A History of Haskell: Being Lazy with Class. In Proceedings of the Third ACM SIGPLAN Conference on History of Programming Languages (HOPL III). ACM, New York, NY, USA, 12-1-12-55. https://doi.org/10.1145/1238844.1238856
- [10] John Hughes. 2000. Generalising Monads to Arrows. Sci. Comput. Program. 37, 1-3 (May 2000), 67–111. https://doi.org/10.1016/S0167-6423(99)00023-4
- [11] John Hughes. 2005. Programming with Arrows. In Proceedings of the 5th International Conference on Advanced Functional Programming (AFP'04). Springer-Verlag, Berlin, Heidelberg, 73–129. https://doi.org/

Pure functional epidemics HS18, 2018, 09

10.1007/11546382 2

- [12] Peter Jankovic and Ondrej Such. 2007. Functional Programming and Discrete Simulation. Technical Report.
 - [13] W. O. Kermack and A. G. McKendrick. 1927. A Contribution to the Mathematical Theory of Epidemics. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 115, 772 (Aug. 1927), 700–721. https://doi.org/10.1098/rspa.1927.0118
 - [14] Charles M. Macal. 2010. To Agent-based Simulation from System Dynamics. In *Proceedings of the Winter Simulation Conference (WSC '10)*. Winter Simulation Conference, Baltimore, Maryland, 371–382. http://dl.acm.org/citation.cfm?id=2433508.2433551
 - [15] C. M. Macal. 2016. Everything you need to know about agent-based modelling and simulation. *Journal of Simulation* 10, 2 (May 2016), 144–156. https://doi.org/10.1057/jos.2016.7
 - [16] Henrik Nilsson, Antony Courtney, and John Peterson. 2002. Functional Reactive Programming, Continued. In *Proceedings of the 2002 ACM SIGPLAN Workshop on Haskell (Haskell '02)*. ACM, New York, NY, USA, 51–64. https://doi.org/10.1145/581690.581695
 - [17] Michael J. North and Charles M. Macal. 2007. Managing Business Complexity: Discovering Strategic Solutions with Agent-Based Modeling and Simulation. Oxford University Press, USA. Google-Books-ID: gRATDAAAQBAJ.
- [18] Ross Paterson. 2001. A New Notation for Arrows. In Proceedings of the Sixth ACM SIGPLAN International Conference on Functional Programming (ICFP '01). ACM, New York, NY, USA, 229–240. https://doi.org/10.1145/507635.507664
- [19] Ivan Perez. 2017. Back to the Future: Time Travel in FRP. In Proceedings of the 10th ACM SIGPLAN International Symposium on Haskell (Haskell 2017). ACM, New York, NY, USA, 105–116. https://doi.org/10.1145/ 3122955.3122957
- [20] Ivan Perez, Manuel Baerenz, and Henrik Nilsson. 2016. Functional Reactive Programming, Refactored. In *Proceedings of the 9th Interna*tional Symposium on Haskell (Haskell 2016). ACM, New York, NY, USA, 33–44. https://doi.org/10.1145/2976002.2976010
- [21] Ivan Perez and Henrik Nilsson. 2017. Testing and Debugging Functional Reactive Programming. Proc. ACM Program. Lang. 1, ICFP (Aug. 2017), 2:1–2:27. https://doi.org/10.1145/3110246
- [22] Donald E. Porter. 1962. Industrial Dynamics. Jay Forrester. M.I.T. Press, Cambridge, Mass.; Wiley, New York, 1961. xv + 464 pp. Illus. \$18. Science 135, 3502 (Feb. 1962), 426–427. https://doi.org/10.1126/science.135.3502.426-a
- [23] Neil Sculthorpe and Henrik Nilsson. 2009. Safe Functional Reactive Programming Through Dependent Types. In Proceedings of the 14th ACM SIGPLAN International Conference on Functional Programming (ICFP '09). ACM, New York, NY, USA, 23–34. https://doi.org/10.1145/ 1596550.1596558
- [24] Peer-Olaf Siebers and Uwe Aickelin. 2008. Introduction to Multi-Agent Simulation. arXiv:0803.3905 [cs] (March 2008). http://arxiv.org/abs/ 0803.3905 arXiv: 0803.3905.
- [25] David Sorokin. 2015. Aivika 3: Creating a Simulation Library based on Functional Programming.
- [26] Martin Sulzmann and Edmund Lam. 2007. Specifying and Controlling Agents in Haskell. Technical Report.
- [27] Jonathan Thaler and Peer-Olaf Siebers. 2017. The Art Of Iterating: Update-Strategies in Agent-Based Simulation. Dublin.
- [28] Simon Thompson. 1991. Type Theory and Functional Programming. Addison Wesley Longman Publishing Co., Inc., Redwood City, CA, USA.
- [29] Ivan Vendrov, Christopher Dutchyn, and Nathaniel D. Osgood. 2014. Frabjous: A Declarative Domain-Specific Language for Agent-Based Modeling. In Social Computing, Behavioral-Cultural Modeling and Prediction, William G. Kennedy, Nitin Agarwal, and Shanchieh Jay Yang (Eds.). Number 8393 in Lecture Notes in Computer Science. Springer International Publishing, 385–392. https://doi.org/10.1007/

978-3-319-05579-4 47

[30] Zhanyong Wan and Paul Hudak. 2000. Functional Reactive Programming from First Principles. In Proceedings of the ACM SIG-PLAN 2000 Conference on Programming Language Design and Implementation (PLDI '00). ACM, New York, NY, USA, 242–252. https://doi.org/10.1145/349299.349331

[31] Michael Wooldridge. 2009. An Introduction to MultiAgent Systems (2nd ed.). Wiley Publishing.

Received March 2018