МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №3

по дисциплине «Операционные системы»

Тема: Исследование организации управления основной памятью

Студентка гр. 7381

Преподаватель

Кревчик А.Б.

Ефремов М.А.

Санкт-Петербург

2019

Цель работы.

Исследование интерфейса управляющей программы и загрузочных модулей. Этот интерфейс состоит в передаче запускаемой программе управляющего блока, содержащего адреса и системный данные. Так загрузчик строит префикс сегмента программы (PSP) и помещает его адрес в сегментный регистр. Исследование префикса сегмента программы (PSP) и среды, передаваемой программе.

Основные теоретические положения.

Учет занятой и свободной памяти ведется при помощи списка блоков управления памятью МСВ. МСВ занимает 16 байт и располагается всегда с адреса кратного 16 и находится в адресном пространстве непосредственно перед тем участком памяти, которым он управляет.

МСВ имеет следующую структуру:

Смещен ие	Длина поля (байт)	Содержание поля		
00h	1	тип MCB: 5Ah, если последний в списке, 4Dh, если не последний		
01h	2	последнии Сегментный адрес PSP владельца участка памяти, либо 0000h — свободный участок 0006h — участок принадлежит драйверу OS XMS UMB 0007h — участок является исключительной верхней памятью драйверов 0008h — участок принадлежит MS DOS FFFAh — участок занят управляющим блоком 386MAX UMB FFFDh — участок заблокирован 386MAX		
03h	2	FFFEh – участок принадлежит 386MAX UMB Размер участка в параграфах		
05h	3	Зарезервирован		
08h	8	"SC" – если участок принадлежит MS DOS, то в нем системный код "SD" – если участок принадлежит MS DOS, то в нем системные данные		

По сегментному адресу и размеру участка памяти, контролируемого этим MCB можно определить местоположение следующего MCB в списке.

Адрес первого МСВ хранится во внутренней структуре MS DOS, называемой "List of Lists". Доступ к указателю на эту структуру можно получить, используя функцию 52h "Get Lists of Lists" int 21h. В результате выполнения этой функции ES:ВХ будет указывать на список списков. Слово по адресу ES:[ВХ-2] и есть адрес самого первого МСВ.

Размер расширенной памяти находится в ячейках Размер расширенной памяти находится в ячейках 30h, 31h CMOS. CMOS это энергонезависимая память, в которой хранится информация о конфигурации ПЭВМ. Объем памяти составляет 64 байта. Размер расширенной памяти в Кбайтах можно определить, обращаясь к ячейкам CMOS следующим образом:

```
mov al, 30h; запись адреса ячейки CMOS out 70h, al in al, 71; чтение младшего байта mov bl, al; размера расширенной памяти mov al, 31h; запись адреса ячейки CMOS out 70h, al in al, 71h; чтение старшего байта ;размера расширенной памяти
```

Порядок выполнения работы

Были написаны и отлажены программные модули, для всех 4 вариантов программы. На рис. 1-4 представлены результаты запуска программы.

Amount of available memory: 648912 b				
Extended memory size: 15360 kB				
MSB Adress 016F	MSB Type 4D	PSP Address 0008	Size 16	SC/SD
0171	4D	0000	64	DPMILOAD
0176 0187	4D 4D	0040 0192	256 144	
0191	5A	0192	648912	LR3_1

Рисунок 1 – Шаг 1

Amount of available memory: 648912 b				
Extended memory size: 15360 kB				
MSB Adress 016F	MSB Type 4D	PSP Address 0008	Size 16	SC/SD
0171	4D	0000	64	DPMILOAD
0176 0187	4D 4D	0040 0192	256 144	
0191	4D	0192	13600	LR3_2
04E4	5A	0000	635296	

Рисунок 2 – Шаг 2

Amount of available memory: 648912 b					
Extended men	Extended memory size: 15360 kB				
MSB Adress	MSB Type	PSP Address	Size	SC/SD	
016F	4D	0008	16		
0171	4D	0000	64	DPMILOAD	
0176	4D	0040	256		
0187	4D	0192	144		
0191	4D	0192	13712	LR3_3	
04EB	4D	0192	65536	LR3_3	
14EC	5A	0000	569632	_	

Рисунок 3 – Шаг 3

Amount of available memory: 648912 b				
Extended memory size: 15360 kB				
Memory error!				
MSB Adress	MSB Type	PSP Address	Size	SC/SD
016F	4D	0008	16	
0171	4D	0000	64	DPMILOAD
0176	4D	0040	256	
0187	4D	0192	144	
0191	4D	0192	14176	LR3_4
0508	5A	0000	634720	

Рисунок 4 – Шаг 4

Вывод

В ходе данной лабораторной работы были исследованы структуры данных и работа функций управления памятью ядра операционной системы.

Ответы на контрольные вопросы

1. Что означает «доступный объём памяти?»

Доступный объём памяти - часть оперативной памяти, выделенная программе для работы.

2. Где МСВ блок вашей программы в списке?

В первом случае 2 МСВ блока: предпоследний (адрес 187h) — блок памяти переменных среды, и последний (адрес 191h) — программный блок.

Во втором случае блоки МСВ располагаются по эти же адресам.

В третьем случае добавляется еще один блок МСВ – дополнительный. Он находится по адресу 04ЕВВ.

В четвёртом случае программа запрашивает память до того, как освобождает неиспользуемую — и при обработке завершения функций ядра возникает ошибка.

3. Какой размер памяти занимает программа в каждом случае?

В первом случае всю свободную память (648 912 б).

Во втором случае только необходимый программе объём памяти (648 912-635 $296 - 16 = 13\,6006$).

В третьем случае 648 912-569 632-65 536-32 = 13 7126.

В четвертом случае 648912-634720-16 = 14 176б.