Rozkład zmiennej dyskretnej

Zmienna losowa przyjmuje wartości dyskretne
x₀, x₁, ..,x_i dla i= 0,..m

Prawdopodobieństwa uzyskania każdej z wartości sa określone przez

$$p_0, p_1, ..., p_i$$
 dla i= 0,..m

Warunek normalizacji

$$\sum_{i=0}^{m} p_i = 1$$

Momenty zwykłe rozkładu k-tego rzędu

$$= \overline{x^{k}} = \sum_{i=0}^{m} (x_{i}^{k} p_{i})$$

Dystrybuanta (prawdopodobieństwo, że x<xi również przyjmuje wartości dyskretne (jest ich o 1 więcej niż m)

$$D_0 = 0$$

$$D_i = \sum_{j=0}^i p_j$$

Przykład

$$\times i$$
 2 5 8 13 => 2 moromoline 40 $C = 0.2$ $C = 0.2$

Dystrybuanta dla tego przykładu

×	x < 2	2<×<5	5 < x < 8	8 < X<13	×>/13
Di	0		0,2+0,1	A	

Losowanie – met. odwróconej dystrybuanty

Losowanie metodą odwróconej dystrybuanty

Losujemy D z U(0,1) – równomiernego z przedziału <0,1> czyli D=rand()/RAND_MAX i przypisuje właściwe x_i

Dla naszego przykładu jeżeli

D należy do przedziału <0; 0.2> to x=2

D należy do przedziału (0.2; 0.3> to x=5

D należy do przedziału (0.3; 0.8> to x=8

D należy do przedziału (0.8; 1.0> to x=13

Losowanie metodą eliminacji

- 1. p_i ≥0 dla i=0,…m
- 2. Losujemy parę (j, r), gdzie
- j jest indeksem zmiennej x i jest losowany jako liczna naturalne z równomiernego przedziału <0,m>
- r jest liczbą pseudolosową z rozkładu równomiernego na przedziale <0,1> (czyli rand()/RAND_MAX) <0,1>
- 3. Sprawdzamy czy

r ≤p_j Jeśli tak to wylosowana zmienna to x_i

zadanie

- Stworzyć własny rozkład zmiennej dyskretnej (co najmniej 4 liczby) i wylosować 2000 liczb
- Policzyć wartośc średnia i odchylenie standartowe (teoretyczne i z wylosowanych liczb)

•

- Narysować w roocie histogram z wylosowanych liczb :)
- Poszukać w bibliotece random rozkładu dyskretnego

Pojedyncza próba Bernoulliego

- Zmienna losowa przyjmuje tylko dwie wartości (TAK lub NIE albo sukces i porażka albo 1,0)
- Określone jest tylko jedno prawdopodobieństwo (dla jednej z nich np 1 wynosi p, dla drugiej jest 1-p)
- Losowanie liczby np r z przedziału <0,1> (równomiernego)
- Jeśli r ≤p to wylosowana jest 1, w przeciwnym razie wylosowane jest 0

Losowanie liczby całkowitej z rozkładu równomiernego

- Pr-stwa wystąpienia wszyskich liczb z tego przedziału są takie same
- Chcę mieć liczbe z <a,b>
- rand()%(b-a+1)+a
- np. <1,7>
- rand()%7+1