Série N°=1

USTHB: 02/19

EXERCICE 1: Soit la matrice
$$A \in M_4(R)$$
 suivante : $A = \begin{pmatrix} 1 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 1 \end{pmatrix}$.

Le vecteur v='(1, -1, -1, 1) est-il un vecteur propre de la matrice A?

EXERCICE 2: Soient X une matrice de données de type (n, p) et Y sa matrice de dispersion.

1) Donner l'expression de Y.

- 2) Parmi les expressions matricielles suivantes, mentionner celles qui ne sont pas correctes: 1) 'XXY, 2) ' XD_pY , 3) $D_p(X+'X)$, 4) XD_p , 5) D_pX . Où D_p représente la matrice des poids des données de la matrice X.
- 3) Calculer le centre de gravité de la matrice Y.

EXERCICE 3: Soit la matrice des de corrélation associée à 6 variables:

Variales	X ¹	X ²	X^3	X ⁴	X ⁵	X ⁶
\mathbf{X}^{1}		-0.007	0.576	0.858	0.212	0.816
X ²	-0.007	1	0.221	-0.152	-0.110	-0.144
X ³	0.576	0.221	1	0.488	0.025	0.441
X ⁴	0.858	-0.152	0.488	1	0.262	0.930
X ⁵	0.212	-0.110	0.025	0.262	1	0.342
X ⁶	0.816	-0.144	0.441	0.930	0.342	1

- 1) Quelles sont les propriétés de cette matrice.
- 2) En examinant la matrice de corrélation, déterminer les relations les plus significatives.
- 3) Peut-on représenter (schématiser) ces rélations. Si oui, donner ce schéma.

EXERCICE 4: On considère la matrice de données X de type (7, 2) suivante:

$$X = \begin{pmatrix} 0 & 1 & 1 & 2 & 3 & 3 & 4 \\ 1 & 2 & 4 & 3 & 2 & 4 & 5 \end{pmatrix}.$$

- 1) Calculer le centre de gravité du nuage donné.
- 2) Déterminer la matrice centrée X_0 .
- 3) Déterminer la matrice C des variances-covariances. En déduire l'inertie de ce nuage autour du centre de gravité.
- 4) Déterminer les valeurs propres de Cainsi que les axes principaux associés à ces valeurs propres.

EXERCICE 5: On reprend les hypothèses de l'exercice 4.

- 1) Calculer les valeurs propres de la matrice ${}^{\prime}X_0.X$.
- 2) Calculer les valeurs propres de la matrice $X.'X_0$.
- 3) Déterminer la droite de régression de X^2 prédite par X^1 .
- 4) Représenter graphiquement le résultat précédent.

EXERCICE 6: On considère la matrice de données suivante:

- 1) Donner le nuage des points.
- 2) Calculer le centre de gravité de ce nuage. Que peut-on déduire ?.
- Déterminer la matrice des variances-covariances
- 4) Posons. Montrer que possède une valeur propre nulle (sans faire de calculs).
- 5) Calculer les valeurs propres de et en déduire celles de
- 6) Déterminer le meilleur plan qui ajuste .(ACP non normée).

EXERCICE 7: On considère la matrice de données X de type (11, 3):

$$X = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\ 6 & 1 & 4 & 5 & 3 & 2 & 9 & 7 & 8 & 10 & 11 \\ 2 & 6 & 5 & 3 & 4 & 1 & 8 & 9 & 7 & 10 & 11 \end{pmatrix}$$

- 1) Déterminer la matrice des variances-covariances
- 2) Déterminer la matrice centrée réduite.
- 3) Soit la matrice des corrélations. Interpréter cette matrice.
- 4) La matrice R admet pour valeurs propres: Interpréter ces valeurs en termes d'inertie. En déduire le taux d'inertie projeté sur chaque axe.
- 5) Déterminer le meilleur plan ajustant le nuage des individus. Vérifier que ces axes sont orthogonaux.