Tema 10: 4º de Morcera

1 - Yeone ma de Moreva

Teorema sea a = a° + Ø y f continua en a verificando

VACaboson Entonces federa

Flado dea REIR+ to DCa, R) CA, tomamos F. OCa, R) > C FCZ) = fcd z fcw) dw Sea a 6 DCa, R) y r = R-1a-2120 > D ca, x>CDCa, R) Vz CDCax) Aca, 2) CDCa, R) Ca con co que 0 = fcwazzz fcwadw = Tcas + fcwadw - Tczs Hemos demostrado que

Year = Year + Sea = few > dw => T print de f => F = HCOCORD) bego 7'6 HCOCa(R)) con 9'=f >> f deriv en a. Va € 2 >> f € HC 2)

2- Yeoriema de convergencia de Weierstrass

· Yeorema: ea a-a'co y the N for HCar Sup hfory to a conpacto de a fcer- focus Veca Entonces fe HCa> y VKe/N hfax) 4 mil fcx> en cada compacto > to aplicado en series

- 3. Integrales dependientes de un parametro
 - · dema 1: Continuidad: sea y camino, ACO, \$ 3 × A > C continua Intonces f.A > C fczs focuzodu VzeA es continua
 - · Jema 2: sean by 4 caminos y \$ 5* × 4* > C continua Intences: $\int_{\mathcal{C}} \left(\int_{\mathcal{C}} \Phi c \omega_{,} z_{,} d\omega \right) dz = \int_{\mathcal{C}} \left(\int_{\mathcal{C}} \Phi c \omega_{,} z_{,} dz \right) d\omega$
 - · Yeorema Holomorefia Sea & camino y a abjecto y \$ 8 = 2 a continua Sypangamas que, $\forall w \in \mathcal{F}^*$, la función $\Phi_w: \Omega \to 0$ definido por $\Phi_w \subset \mathbb{Z}$: $\Phi \subset \mathbb{Z}$ $\forall z \in \Omega$ es holomorfo en Ω Entonces definiendo

for fow, 2) dw tren fe HCa). Además, YKE/N, YZEQ, W→ \$ CZ) de Y a C es continua con face) = f & w ca) du VZEA VKG/N far cas = for comes du de a de MEIN