## Projeto de Controladores

V.C.Parro

Maio- 2020



#### Projeto 04



Figura 1: Malha de posição de um motor de corrente contínua.

### Desempenho desejado

- 1. Redução do erro estacionário a rampa unitária  $e(\infty) \le 0.02$ .
- 2. Margem de fase em malha fechada  $MF \approx 50^{\circ}$ .

## **Analisando** $G_{ma}(s)$



$$G_{ma}(j\omega) = K = 5$$



$$G_{ma}(j\omega) = \tfrac{1}{j\omega}$$

$$G_{ma}(j\omega) = \frac{1}{j\omega+1}$$

#### Detalhe para a parcela de primeira ordem





Figura 2: Módulo do ganho de uma parcela de  $G_{ma}(j\omega)$ .

#### Analisando a estabilidade

$$G_{ma}(j\omega) = \frac{5}{j\omega(j\omega+1)} \longleftarrow \frac{5}{s(s+1)}$$



Figura 3: Resposta em frequência - módulo.

#### O comportamento da fase



Figura 4: Fase -  $\angle G_{ma}(j\omega)$ 

# Controladores

### Controladores

$$G_{c_{av}}(s) = \mathbf{k_c} \frac{Ts+1}{aTs+1}$$
  $0 < a < 1$   $G_{c_{at}}(s) = \mathbf{k_c} \frac{Ts+1}{aTs+1}$   $a > 1$ 

### Avanço de fase



**Figura 5:** Resposta em frequência de um controlador avanço de fase.

#### Atraso de fase



Figura 6: Resposta em frequência de um controlador atraso de fase.



Figura 7: Resposta em frequência de um controlador PID.