ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ) ФАКУЛЬТЕТ ОБЩЕЙ И ПРИКЛАДНОЙ ФИЗИКИ

Лабораторная работа № 3.3.4 Эффект Холла в полупроводниках

> Гусаров Николай Группа Б02-005

Цель работы: измерение подвижности и концентрации носителей заряда в полупроводниках.

В работе используются: электромагнит с источником питания, миллиамперметр, милливебметр, реостат, цифровой вольтметр, источник питания, образец легированного германия.

1 Рассчетные формулы

Эффект Холла - явление возникновения поперечной разности потенциалов при помещении проводника с постоянным током в магнитное поле.

• ЭДС Холла:

$$\mathscr{E}_{\mathbf{x}} = U_{34} - U_0; \tag{1}$$

• Постоянная Холла:

$$R_{\mathbf{x}} = -\frac{\mathscr{E}_{\mathbf{x}}}{B} \cdot \frac{a}{I};\tag{2}$$

• Концентрация носителей тока в образце:

$$n = \frac{1}{R_{\rm x}e} \tag{3}$$

• Удельная проводимость материала образца:

$$\sigma = \frac{IL_{35}}{U_{35}al} \tag{4}$$

• Подвижность носителей тока:

$$b = \frac{\sigma}{en} \tag{5}$$

2 Экспериментальная установка

Электрическая установка для измерения ЭДС Холла представлена на (1).

Рис. 1: Схема установки для исследования эффекта Холла в полупроводниках.

3 Экспериментальные данные

Таблица 1: Параметры установки и исследуемого образца.

Расстояние между контактами 3 и 5 L_{35} , мм	Толщина образца a , мм	Ширина образца $l, \text{мм}$	Постоянная катушки SN , см 2 · вит.
3	2,2	2,5	72

Таблица 2: Некоторые измеряемые величины и их погрешности.

Величина	Ф, мВб	I_M , A	U_{34} , мкВ	I, мА
Δ	0,1	0,01	0,001	0,01

Таблица 3: Калибровка электромагнита. $\Phi/(SN) = B$

Ф, мВб	I_M , A	В, Тл
4,10	0,73	0,57
1,30	0,21	0,18
2,70	0,47	0,38
5,30	0,96	0,74
6,00	1,14	0,83
6,90	1,39	0,96
7,40	1,61	1,03
8,00	1,87	1,11
8,30	2,12	1,15

Таблица 4: Зависимость U_{34} от I_M при фиксированном I.

U_0 , мВ	0,014	0,019	0,023	0,027	0,031	0,035	0,040	0,044	0,036		
I, мА	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1,0	1,0		
I_M , A		$U_{34},{ m MB}$									
0,3	0,026	0,036	0,044	0,051	0,058	0,066	0,075	0,083	-0,002		
0,6	0,040	0,051	0,063	0,075	0,087	0,100	0,111	0,123	-0,042		
0,9	0,051	0,067	0,082	0,098	0,113	0,130	0,145	0,160	-0,079		
1,2	0,061	0,081	0,099	0,118	0,137	0,155	0,175	0,194	-0,113		
1,5	0,069	0,090	0,111	0,132	0,154	0,176	0,197	0,218	-0,138		
1,8	0,074	0,097	0,119	0,142	0,165	0,188	0,211	0,234	-0,153		
2,1	0,078	0,100	0,123	0,146	0,170	0,194	0,218	0,242	-0,161		

Дополнительно при силе тока в I = 1 мA, протекающем через образец, измерим $U_{35}=1,766~\mathrm{mB}.$

4 Обработка результатов

Для калибровки электромагнита необходимо экстраполировать график зависимости $B=f(I_M)$ (рис. 2). С большой точностью теоретическая зависимость является линейной в данном диапазоне токов. С меньшей достоверностью зависимость можно описать многочленом третей степени. Но именно на него хорошо ложатся экспериментальные точки. Однако в связи прецизионностью источника питания нам достаточно знать конечный набор значений магнитного поля B и проводить измерения U_{34} только на них.

Рис. 2: Зависимость $B = f(I_M)$.

Построим серию прямых $\mathscr{E}_{\mathbf{x}}=\mathscr{E}_{\mathbf{x}}(B)$ (рис. 3). Отметим, что $\Delta\mathscr{E}_{\mathbf{x}}=2\Delta U_{34}=2$ мкВ, а $\Delta B=\Delta\Phi/SN=14$ мТл.

Рис. 3: Серия зависимостей $\mathscr{E}_{\mathbf{x}}$ от B при различных I.

Таблица 5: $k = \Delta \mathcal{E}_{\mathbf{x}}/\Delta B$.

I, мА	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1,0	1,0
k, мкВ/Тл	57,1	72,7	89,5	107,5	126,5	143,8	161,4	179,93	179,6
Δk , мк B/T л	0,6	0,7	0,9	1,1	1,3	1,4	1,6	1,8	1,8

По полученным данным построим график зависимости k от I и проанализируем его.

Рис. 4: Зависимость k от I.

Методом наименьших квадратов определяем, что $k/I=(177,1\pm1,5)$ (погрешность найдена программой). $\frac{\text{мВт}}{\text{Тл·А}}$, откуда согласно формуле (2) $R_{\text{x}}=(389,6\pm3,1)$ см³/Кл ($\varepsilon_{R_{\text{x}}}=\varepsilon_{k/I}$).

Рассчитаем концентрацию носителей тока в образце по формуле (3): $n = (1606 \pm 12) \cdot 10^{19} \,\mathrm{m}^{-3}$ ($\varepsilon_{R_{\mathrm{x}}} = \varepsilon_{n}$), удельную проводимость по формуле (4):

$$\varepsilon_{\sigma} = \sqrt{(\frac{\Delta U}{I})^2 + (\frac{\Delta U}{U_{35}})^2} \approx 0.01$$

Тогда: $\sigma = (308, 8 \pm 3, 9) (O_{\text{M} \cdot \text{M}})^{-1}$.

Вычислим подвижность носителей тока в материале образца по формуле (5):

$$\varepsilon_b = \sqrt{(\frac{\Delta\sigma}{\sigma})^2 + (\frac{\Delta n}{n})^2} \approx 0,01$$

$$b = (1201 \pm 12) \frac{\text{cm}^2}{\text{B} \cdot \text{c}}$$

5 Обсуждение результатов и выводы

В ходе данной лабораторной работы мы исследовали эффект Холла в полупроводнике, а именно в Германии. Нам удалось определить постоянную Холла, которая в данных диапазонах токов и значений магнитной индукции магнитного поля оказалась постоянной и равной $R_{\rm x}=(389,6\pm3,1)~{\rm cm}^3/{\rm K}$ л. Так же вычислили концентрацию носителей тока в образце при том предположении, что количество носителей

одного типа намного больше другого типа: $n=(1606\pm12)\cdot10^{19}\,\mathrm{m}^3$. Зная направление тока в проводнике, полярность вольтметра, направление тока в катушках, можно определить тип проводимости. В нашей работе тип проводимости в Германии оказался электронным.

Более того, мы вычислили подвижность дырок в исследуемом Германии: $b = (1201 \pm 12) \frac{\text{см}^2}{\text{B·c}}$ с точностью в 1%. Но наш результат отличается от табличного для носителей в области собственной проводимости $b_0 = 1800 \frac{\text{см}^2}{\text{B·c}}$ (при температуре T = 293 K), по чему можно сделать вывод, что наш образец является не чистым, а с примесями. Хотелось бы отметить, что дополнительная ошибка измерений может быть связана с сильной зависимостью концентрации основных носителей токов от температуры. Действительно, для отрыва электрона от атома полупроводника и превращения его в электрон проводимости необходимо сообщить ему некоторое колличество энергии. Естественно, что такая энергия поставляется тепловыми колебаниями атомов решетки. В нашей работе температура температура образца была как минимум комнатной (T = 298 K) и как максимум могла повыситься вследствие протекающего через образец постоянного тока.