Konvergenzkriterien

Absolute & Bedingte Konvergenz

1. Absolut Konvergent: $\sum_{k=0}^{\infty} |a_k|$ konv.

2. Bedingt Konvergent: $\sum_{k=0}^{\infty} |a_k|$ konv. und $\sum_{k=0}^{\infty} a_k$ div.

3. Absolut konv. \implies konv.

Notwendiges Kriterium

Ist
$$\sum_{k=1}^{\infty} a_k$$
 konv. $\rightarrow \lim_{4 \to \infty} a_k = 0$

Majorantenkriterium

$$0 \leq a_k \leq b_k, \sum_{k=1}^{\infty} b_k \text{ konv.} \to \sum_{k=1}^{\infty} a_k \text{ konv.}$$

Minorantenkriterium

$$0 \leq c_k \leq a_k, \sum_{k=1}^{\infty} c_k \text{ div.}, \rightarrow \sum_{k=1}^{\infty} a_k \text{ div.}$$

Quotientenkriterium

$$\sum_{k=0}^{\infty} a_k \text{ mit } a_k > 0 \text{ konv.} \iff \exists q: 0 < q < 1: \forall k \geq k_0: \frac{a_{k+1}}{a_k} \leq q$$

Wurzelkriterium

$$\sum_{k=0}^{\infty} a_k \text{ mit } a_k > 0 \text{ konv.} \iff \exists q: 0 < q < 1: \forall k \geq k_0: \sqrt[k]{a_k} \leq q$$

Leibniz-Kriterium

$$\sum_{k=1}^{\infty} (-1)^{k+1} b_k \text{ konv.} \iff (b_k) \text{ monoton fallend}, b_k > 0, \lim_{k \to \infty} b_k = 0$$

Satz von L'Hôpital

Sei $\lim \frac{f(x)}{g(x)}$ eine unbestimmte Form, so gilt:

$$\lim \frac{f(x)}{g(x)} = \lim \frac{f'(x)}{g'(x)}$$

Partialsumme

 $s_n = \sum_{k=0}^n a_k$ ist eine Partialsumme für die Reihe $\sum_{k=0}^\infty a_k$. Wenn die

Partialsumme der Reihe konvergiert, konvergiert die Reihe gegen den selben Wert

Wichtige Reihen

Name	Def.	Konv.	Wert
Geometrische Reihe	$\sum_{k=0}^{\infty} q^k$	$ q < 1 \Longrightarrow_{\text{konv, ansonsten}}$ div.	Falls konv.: $\frac{A}{1-q}$ mit $A = \text{Anfangswert der Reihe}$
	$\sum_{k=0}^{\infty} \frac{1}{k(k+1)}$	konv.	$\lim_{n \to \infty} 1 - \frac{1}{n+1} \to 1$
Harmonische Reihe (für a=1)	$\sum_{k=0}^{\infty} \frac{1}{k^a}$	$a > 1 \Longrightarrow$ konv., ansonsten div.	
	$\sum_{k=0}^{\infty} \frac{1}{k!}$	konv.	
) <u>-01</u>	konv.	
Alternierende Harmonische Reihe	$\sum_{k=0}^{\infty} \frac{\binom{2k}{k}}{k}$ $\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k}$	konv.	

Ableitungsregeln

Faktorregel

$$(a \cdot f)' = a \cdot f'$$

Summenregel

$$(f+g)' = f' + g'$$

Potenzregel

$$(f^a)' = a \cdot f^{a-1}$$

Produktregel

$$(f \cdot g)' = f' \cdot g + f \cdot g'$$

Quotientenregel

$$\left(\frac{f}{g}\right)' = \frac{f' \cdot g - f \cdot g'}{f^2}$$

Kettenregel

$$(f(g))' = f'(g) \cdot g'$$

Ableitung der Umkehrfunktion

$$f'(x_0) \neq 0$$
 und g Umkehrfunktion von f $\implies g'(f(x_0)) = \frac{1}{f'(x_0)}$

Integrieren

Partielle Integration

$$\int_a^b f'(x) \cdot g(x) dx = [f(x) \cdot g(x)]_a^b - \int_a^b f(x) \cdot g'(x) dx$$

Substitionsregel

$$\int_{a}^{b} f(x)dx = \int_{g(a)}^{g(b)} f(g(y)) \cdot g'(y)dy$$

1. Grenzen berechnen:

$$a, b \to g(a), g(b)$$

2. Substitution ableiten & nach dx umformen:

$$(\frac{dx}{dy} = g'(y)) \to (dx = g'(y) \cdot dy)$$

3. Substitution einsetzen & ausrechnen:

$$\int_{g(a)}^{g(b)} f(g(y)) \cdot g'(y) dy$$

Rotationskörper

Rotation um X-Achse:

$$V = \pi \int_{a}^{b} f^{2}(x)dx$$

Rotation um Y-Achse:

$$V = 2\pi \int_{a}^{b} x \cdot f(x) dx$$

Bogenlänge

$$S = \int_{a}^{b} \sqrt{1 + (f'(x))^2} dx$$

Logarithmus

$$log_a(x) = \frac{ln(x)}{ln(a)}$$

$$ln(x) = log_a(x) \cdot ln(a)$$
(2)

$$ln(x) = log_a(x) \cdot ln(a) \tag{2}$$

$$log_a(x) + log_a(y) = log_a(x \cdot y)$$
(3)

$$log_a(x) - log_a(y) = log_a(\frac{x}{y})$$
(4)

$$log_a(x^y) = y \cdot log_a(x) \tag{5}$$

(6)

Elementare Ableitungen & Stammfunktionen

Stammfunktion	Funktion	Ableitung
$\frac{1}{a}e^{a\cdot x}$	$e^{a \cdot x}$	$a \cdot e^{a \cdot x}$
$x \cdot ln(x) - x$	ln(x)	$\frac{1}{x}$
ln(f(x))	$\frac{f'(x)}{f(x)}$	
$\frac{f(x)^2}{2}$	$f'(x) \cdot f(x)$	
$\sqrt{f(x)}$	$\frac{f'(x)}{2 \cdot \sqrt{f(x)}}$	

Winkelfunktionen

X	0	π/2	π	$3\pi/2$	nπ(n ganz)
sin x	0	1	0	- 1	0
cos x	1	0	- 1	0	(-1) ⁿ

Gradmaß	- 45°	90°	180°	360°	405°	720°
Bogenmaß	- π / 4	π/2	π	2 π	9π / 4	4 π

Name	Definition	Ableitung	Weiteres
sin	$\frac{GK}{H}$	cos	$sin^{2} = 1 - cos^{2},$ $sin(-x) = -sin(x),$ $sin(x + y) = sinx \cdot cosy +$ $cosx \cdot siny,$ $sin(x + \frac{\pi}{2}) = cos(x)$
cos	$\frac{AK}{H}$	-sin	$cos^{2} = 1 - sin^{2},$ $cos(x) = cos(-x),$ $cos(x + y) = cosx \cdot cosy - sinx \cdot siny$
tan	$\frac{sin}{cos}$	$\frac{1}{\cos^2} = 1 + \tan^2$	tan(-x) = -tan(x),
cot	$\frac{cos}{sin}$	$\frac{-1}{\sin^2} = -(1+\cot^2)$	cot(-x) = -cot(x),
arcsin		$\frac{1}{\sqrt{1-x^2}}$	$D(f) = [-1, 1], W(f) = [\frac{-\pi}{2}, \frac{\pi}{2}]$
arccos	•••	$\frac{-1}{\sqrt{1-x^2}}$	$D(f) = [-1, 1], W(f) = [0, \pi]$
arctan	•••	$\frac{1}{1+x^2}$	$D(f) = (-\infty, \infty), W(f) = (\frac{-\pi}{2}, \frac{\pi}{2})$
arcot	•••	$\frac{-1}{1+x^2}$	$D(f) = (-\infty, \infty), W(f) = (0, \pi)$
sinh	$\frac{1}{2}(e^x - e^{-x})$	cosh	
cosh	$\frac{1}{2}(e^x + e^{-x})$	sinh	
tanh	•••	$\frac{1}{\cosh^2} = 1 - \tanh^2$	
coth		$\frac{-1}{\sin^2} = 1 - \coth^2$	
arsinh		$\frac{1}{\sqrt{x^2+1}}$	
arcosh		$\frac{1}{\sqrt{x^2 - 1}}(x > 1)$	
artanh	•••	$\frac{\frac{1}{1-x^2}(x <1)}{\frac{1}{1-x^2}(x >1)}$	
arcoth		$\frac{1}{1-x^2}(x >1)$	

Table 1: Winkelfunktionen (GK = Gegenkathete, AK = Ankathete und H = Hypotenuse)