# Research Proposal: Improving SHAP Scalability in Credit Scoring

#### **Group Members:**

Chan Jun Kit (1231302583)

Khan Shayan (1231301827)

Muhammad Ameer Rafiqi Bin Mohamad Shahizam (1211106255)

Marcus Chin Wei Hern (1211107284)

### Introduction

1 Al in Credit Scoring

Improved accuracy but "black box" models.

2 Explainable AI (XAI)

Essential for ensuring understandable and trustworthy credit-scoring decisions.

3 SHAP

Provides detailed, global and instance level explanations

## **Problem Statement**

1. Scalability

2. Time Complexity

3. Lack of Quantitative Data

# Research Questions, Hypotheses, and Objectives

#### **Research Questions**

- 1. How does the scalability of SHAP degrade as the volume of prediction instances increases in a tree-based ensemble machine learning model?
- 2. How can feature selection methods, the optimized version of SHAP (TreeSHAP), or both improve SHAP's scalability?

#### Hypotheses

SHAP's scalability degrades exponentially as the data volume increases, but using feature selection or TreeSHAP will significantly enhance its scalability.

#### **Objectives**

- 1. Quantify SHAP's degradation.
- Explore how feature selection and TreeSHAP can improve its efficiency.

# Research Methodology



TreeSHAP: Muschalik et al. (2024)

### **Timeline and Milestones**



# **Expected Results and Impact**

Filling in research gap

- 2 Identifying effective strategies to improve scalability
- 3 Offering solid, quantified data for future research

## Significance and Contribution

- 1 Moving research on scalable XAI forward
- **2** Lowering operational costs of XAI

Thank you