Last name	
First name	
Group	

Grade

$egin{aligned} & ext{Algorithmics} \ & ext{Undergraduate} \ & 2^{nd} \ ext{year} - ext{S}3\# \ & ext{Midterm} \ \# 3 \ (ext{C}3) \ & 10 \ mars \ 2020 \ - \ 14h45 \ & ext{Answer Sheets} \end{aligned}$

1	
2	
3	
4	
5	

Answers 1 (Hashing -3 points)

- 1. Linear probing (d=3):
- 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10

Answers 2 (Draw to win -2 points)

1. Draw the digraph G:

2. indegree 1 2 3 4 5 6 7 8 9 10

Answers 3 (Equality - 5 points)

Specifications: The function same(T, B) tests whether T, a general tree in "classical" representation, and B, a general tree in first child - right sibling representation, are identical.

Answers 4 (B-tree measures – 4 points)

Specifications:

occupation(B) returns average number of keys per node of the B-tree B.

Answers 5 (B-trees: Minimum deletion - 6 points)

/_	-	
1.	Degree	=

2. Tree after deletion of 3:

2. Specifications:

The function $__delmin(B)$ deletes and returns the minimum value of the non empty B-tree B.

