Diskretne strukture

Gašper Fijavž

Fakulteta za računalništvo in informatiko Univerza v Ljubljani

3. november 2023

Operacije z množicami

```
relacija pripadnosti ...x \in A
 x pripada A.
podajanje množic
```

- ightharpoonup z naštevanjem elementov $A=\{0,1,2\}$
- ▶ z neko izjavno formulo $A = \{x ; \varphi(x)\}$ Velja: $x \in A \Leftrightarrow \varphi(x)$

Zgledi množic

$$A = \{x : x \neq x\} = \emptyset$$
 prazna množica

$$B = \{x ; x = 0 \lor x = 1 \lor x = 2\} = \{0, 1, 2\}$$

$$C = \{x ; x^2 + 1 \ge 5\}$$

Enakost in vsebovanost

Množici A in B sta enaki,

$$A = B \iff \forall x (x \in A \Leftrightarrow x \in B)$$

Množica A je *podmnožica* množice B,

$$A \subseteq B \iff \forall x (x \in A \Rightarrow x \in B)$$

relacija inkluzije

Množica A je prava podmnožica množice B,

$$A \subset B \iff A \subseteq B \land A \neq B$$

relacija stroge inkluzije

Enakost in vsebovanost

Trditev

Za poljubne množice A, B in C velja

- \triangleright $\emptyset \subseteq A$
- $ightharpoonup A \subseteq A$
- ightharpoonup Če $A \subseteq B$ in $B \subseteq C$, potem $A \subseteq C$.

Operacije z množicami

- ▶ unija $A \cup B = \{x ; x \in A \lor x \in B\}$
- ▶ *presek* $A \cap B = \{x : x \in A \land x \in B\}$
- ▶ razlika $A \setminus B = \{x ; x \in A \land x \notin B\}$
- ▶ simetrična razlika $A + B = \{x ; x \in A \lor x \in B\}$

Lastnosti operacij

- $\blacktriangleright \ A = B \Longleftrightarrow A \subseteq B \land B \subseteq A$
- $\blacktriangleright \ A \subseteq B \Rightarrow A \cup C \subseteq B \cup C$
- $\blacktriangleright \ A \subseteq B \Rightarrow A \cap C \subseteq B \cap C$
- $\blacktriangleright \ A \cap B \subseteq A \subseteq A \cup B$

Pravimo, da sta množici A in B disjunktni, če je $A \cap B = \emptyset$.

Univerzalna množica in komplement

 $Univerzalna\ množica$, označimo jo z S, ustreza področju pogovora v predikatnem računu.

Vse obravnavane množice so vsebovane v univerzalni množici S.

Komplement množice A, označimo ga z A^c , definiramo kot

$$A^c = S \setminus A$$

Lastnosti komplementa

$$(A^c)^c = A$$

$$(A \cup B)^c = A^c \cap B^c$$

$$(A \cap B)^c = A^c \cup B^c$$

$$A \setminus B = A \cap B^c$$

$$A \subseteq B \Rightarrow B^c \subseteq A^c$$

$$A \cap B = \emptyset \Longleftrightarrow A \subseteq B^c \Longleftrightarrow B \subseteq A^c$$

Enakosti z množicami

Pokažimo, da velja

$$A \cup (A \cap B) = A$$

Potenčna množica

Potenčna množica množica A, $\mathcal{P}A$, je množica vseh podmnožic množice A.

$$\mathcal{P}A = \{B ; B \subseteq A\}$$

Tako \emptyset kot A pripadata potenčni množici $\mathcal{P}A$.

$$\mathcal{P}\{1,2,3\}$$

$$\mathcal{P}\emptyset = \{\emptyset\} \qquad \mathcal{P}\{\emptyset\} = \{\emptyset, \{\emptyset\}\}$$

Potenčna množica

Trditev

Če množica A vsebuje natanko n elementov in je n naravno število, potem $\mathcal{P}A$ vsebuje natanko 2^n elementov.

Trditev

 $\check{C}e\ A\subseteq B$, potem $\mathcal{P}A\subseteq \mathcal{P}B$.

Družine množic

Naj bo

$$\mathcal{A} = \{A_1, A_2, A_3, \ldots\} = \{A_i \text{ ; } i \in \mathcal{I}\}$$

družina množic. Z $\mathcal I$ označimo indeksno množico.

Unija družine ${\cal A}$ je množica

$$\bigcup \mathcal{A} = \bigcup_{i \in \mathcal{I}} A_i = \{x ; \exists i (i \in \mathcal{I} \land x \in A_i)\}$$

 $Presek družine \mathcal{A}$ je množica

$$\bigcap \mathcal{A} = \bigcap_{i \in \mathcal{I}} A_i = \{x ; \forall i (i \in \mathcal{I} \Rightarrow x \in A_i)\}$$

Pokritje in razbitje

Družina množic $\mathcal{A}=\{A_i\;;\;i\in\mathcal{I}\}$ je *pokritje* množice B, če je $B=\bigcup_{i\in\mathcal{I}}A_i$.

Družina množic $\mathcal{A} = \{A_i \; ; \; i \in \mathcal{I}\}$ je *razbitje* množice B, če je

- $ightharpoonup \mathcal{A}$ pokritje množice \mathcal{B}
- ightharpoonup elementi ${\cal A}$ so neprazni in
- ightharpoonup elementi $\mathcal A$ so paroma disjunktni .

Urejeni pari

Urejeni par s *prvo komponento (koordinato) a* in *drugo komponento (koordinato) b* označimo z (a, b) in definiramo kot

$$(a,b) = \{\{a\}, \{a,b\}\}$$

Trditev

(osnovna lastnost urejenih parov)

$$(a,b)=(c,d)\iff a=c \text{ in } b=d$$

Kartezični produkt

Kartezični produkt množic A in B je množica vseh urejenih parov

$$A \times B = \{(a, b) ; a \in A \land b \in B\}$$

Kartezični produkt

 (a_1, a_2, \ldots, a_n) je urejena *n*-terica.

Definicijo kartezičnega produkta lahko razširimo na več faktorjev.

Lastnosti kartezičnega produkta

- $A \times B = \emptyset \iff A = \emptyset \vee B = \emptyset$
- $\blacktriangleright \ A \subseteq C \land B \subseteq D \implies A \times B \subseteq C \times D$
- A končna z m elementi in B končna z n elementi \Longrightarrow $A \times B$ končna z $m \cdot n$ elementi.