TD 02

Cellule d'assemblage pour avion Falcon

D'après concours E3A - PSI 2015.

Savoirs et compétences :

Mise en situation

Sélectionner les fixations – Exigence 1.1

Critères à respecter pour l'exigence 1.2

Choix d'une architecture de la chaine de transmission

Question 1 Proposer sous la forme d'un schéma une autre solution permettant le déplacement du chariot. La conversion de l'énergie électrique en énergie mécanique par un moteur doit être conservée.

Correction

Détermination de l'inertie équivalente

Question 2 À partir des grandeurs définies déterminer l'expression littérale de l'inertie équivalente Jea de l'en $semble \Sigma = \{moteur + r\'educteur + poulies + chariot\} ramen\'ee$ sur l'arbre moteur. Cette inertie équivalente est définie par $E_c(\Sigma) = 1/2 J_{eq} \omega_m^2$.

Correction

Question 3 Déterminer la valeur numérique de l'expression précédente.

Correction

Modèle de connaissance du moteur à courant continu

Objectif L'objectif de cette partie est d'établir un modèle de la motorisation de l'axe afin de simuler un déplacement.

Question 4 À partir des équations du moteur à courant continu, réaliser le schéma bloc du moteur à courant continu.

Correction

Question 5 En considérant que $C_R(p) = 0$, déterminer la fonction de transfert $H_M(p) = \frac{\Omega_m(p)}{U(p)}$ sous sa forme canonique.

Correction

6 Montrer que la fonction de trans-**Question** fert $H_M(p)$ peut se mettre sous la forme $H_M(p) =$ $\frac{1}{K_C K_e + R J_{eq} p + L J_{eq} p^2}$. Justifier la réponse. Pour cette question, la valeur numérique de J_{eq} considérée sera J_{eq} = $7 \times 10^{-3} \text{kg}\,\text{m}^2$ indépendamment du résultat numérique calculé précédemment.

Correction

Question 7 Montrer qu'avec l'expression, $H_M(p)$ peut s'écrire sous la forme $H_M(p) = \frac{1}{(1+T_Ep)(1+T_Mp)}$ $T_E < T_M$.

Correction

Étude de l'asservissement en position de l'axe

Modélisation de l'asservissement en position

Question 8 *Quelle doit être la valeur de K_G pour assurer* un asservissement correct (c'est-à-dire l'écart ε doit être nul si la position de l'axe est identique à la consigne)?

Correction

Question 9 Donner le schéma bloc de l'asservissement.

Correction

Étude du modèle simplifié

Question 10 Donner l'expression de Y(p).

Correction

Question 11 On souhaite déterminer l'erreur en position du système. Calculer l'écart statique pour $C(p) = K_p$ puis

$$C(p) = \frac{K_i}{p}.$$

Correction

Question 12 On souhaite que lorsque le système se déplace à vitesse constante, l'erreur sur la vitesse atteinte par le système soit nulle. Quelle sollicitation doit-on utiliser. Calculer l'écart statique pour $C(p) = K_p$ puis $C(p) = \frac{K_i}{n}$.

Correction

Question 13 Conclure.

Correction

Question 14 Conclure sur la conformité au cahier des charges du système ainsi réglé.

Correction

Question 15 Tracer de diagramme de Bode.

Correction

Question 16 Tracer le diagramme de Bode de la fonction de transfert en boucle ouverte pour C(p) = 1. Déterminer les marges de phase et les marges de gain.

Correction

Question 17 Tracer le diagramme de Bode de la fonction de transfert en boucle ouverte pour $C(p) = \frac{1}{p}$. Déterminer les marges de phase et les marges de gain.

Correction

Vérification des performances de l'axe du magasin de rivets

Question 18 À partir des relevés ci-dessous, conclure sur le respect des exigences fonctionnelles de l'axe du magasin de stockage des rivets (Exigence 1.1).

Correction