Exercise 5

a)
$$f(x) = x^3 - 2x^2 - 5$$
 [1,4]
 $f'(x) = 3x^2 - 4x$
 $p_0 = 3$ $\varepsilon = 10^{-4}$
 $p_n = p_{n-1} - \frac{f(p_{n-1})}{f'(p_{n-1})}$

Found at 3 iteration

b)
$$f(x) = x^3 + 3x^2 - 1$$
 [-3,-2]
 $f'(x) = 3x^2 + 6x$
 $p_0 = -3$ $\varepsilon = 10^{-4}$
 $p_n = p_{n-1} - \frac{f(p_{n-1})}{f'(p_{n-1})}$
|iter| | p0 | | p1 | | p1-p0 | | f(p1) |
0 -3.000000 -2.888889 0.111111 -0.072702
1 -2.888889 -2.879452 0.009437 -0.000504
2 -2.879452 -2.879385 0.000066 -0.0000000
Found at 2 iteration

c)
$$f(x) = x - \cos(x)$$
 $[0, \frac{\pi}{2}]$
 $f'(x) = \sin(x) + 1$
 $p_0 = 0$ $\varepsilon = 10^{-4}$
 $p_n = p_{n-1} - \frac{f(p_{n-1})}{f'(p_{n-1})}$
|iter| | p0 | | p1 | | p1-p0 | | f(p1) |
0 0.000000 1.000000 1.000000 0.459698
1 1.000000 0.750364 0.249636 0.018923
2 0.750364 0.739113 0.011251 0.000046
3 0.739113 0.739085 0.000028 0.000000
Found at 3 iteration
d) $f(x) = x - 0.8 - 0.2 \sin(x)$ $[0, \frac{\pi}{2}]$
 $f'(x) = 1 - 0.2 \cos(x)$
 $p_0 = 0$ $\varepsilon = 10^{-4}$
 $p_n = p_{n-1} - \frac{f(p_{n-1})}{f'(p_{n-1})}$

Found at 3 iteration