brms: Bayesian Multilevel Models using Stan

Paul Bürkner 2018-04-09

Why using Multilevel Models?

Example: Effects of Sleep Deprivation on Reaction Times

```
data("sleepstudy", package = "lme4")
head(sleepstudy, 10)
```

Reaction	Days	Subject
249.5600	0	308
258.7047	1	308
250.8006	2	308
321.4398	3	308
356.8519	4	308
414.6901	5	308
382.2038	6	308
290.1486	7	308
430.5853	8	308
466.3535	9	308

Linear Regression vs. Multilevel Regression

Regression Lines for Specific Subjects

Why going Bayesian?

The Posterior Distribution

Why using Stan?

Multilevel Models in Classical Statistics with Ime4

Multilevel Models in Bayesian Statistics with brms

Post-Processing

```
methods(class = "brmsfit")
```

```
[1] add ic
                                 add loo
                                                         add waic
                                                                                  as.array
    [5] as.data.frame
                                 as matrix
                                                         as mcmc
                                                                                  coef
    [9] control_params
                                 expose_functions
                                                         family
                                                                                  fitted
## [13] fixef
                                 formula
                                                         hypothesis
                                                                                  kfold
## [17] launch shinv
                                log_lik
                                                         log posterior
                                                                                  logLik
## [21] 100
                                 1.00
                                                         loo_linpred
                                                                                  loo_predict
## [25] loo predictive interval marginal effects
                                                         marginal_smooths
                                                                                  model.frame
## [29] neff ratio
                                ngrps
                                                         nobs
                                                                                  nsamples
## [33] nuts_params
                                pairs
                                                         parnames
                                                                                  plot
## [37] posterior_predict
                                posterior_samples
                                                         pp_check
                                                                                  pp_mixture
## [41] predict
                                predictive_error
                                                         print
                                                                                  prior_samples
## [45] prior summary
                                 ranef
                                                         reloo
                                                                                  residuals
## [49] rhat
                                                                                  stanplot
                                 stancode
                                                         standata
## [53] summarv
                                update
                                                         VarCorr
                                                                                  VCOV
## [57] waic
                                 WATC
## see '?methods' for accessing help and source code
```

The idea of **brms**: Fitting all kinds of regression models within one framework

Example: Censored Recurrance Times of Kidney Infections

```
marginal_effects(fitk, "age:sex")
```


Example: Complex Non-Linear Relationships

→ Latent mean function → Realized data

Modeling Non-Linear Relationships with Gaussian Processes

```
fitgp <- brm(y ~ gp(x), bdata)</pre>
```

marginal_effects(fitgp, nsamples = 100, spaghetti = TRUE)

15

Modeling Non-Linear Relationships with Splines

```
fits <- brm(y ~ s(x), bdata)
```

marginal_effects(fits, nsamples = 100, spaghetti = TRUE)

16

Example: Number of Fish Caught at a Camping Place

Modeling Zero-Inflation

```
form <- bf(nfish ~ persons + child + camper, zi ~ child)</pre>
fit_zinb <- brm(form, zinb, zero_inflated_poisson())</pre>
marginal effects(fit zinb, effects = "child")
                           child
```

18

Learn More about brms and Stan

- Help within R: help("brms")
- Overview of vignettes: vignette(package = "brms")
- List of all methods: methods(class = "brmsfit")
- Website of brms: https://github.com/paul-buerkner/brms
- Website of Stan: http://mc-stan.org/
- Contact me: paul.buerkner@gmail.com
- Twitter: @paulbuerkner