

Claims:

1. A photoinitiator of formula I or II

wherein

R₁, R₂, R₃ and R₄ are each independently of the others C₁-C₈alkyl; C₁-C₄alkyl substituted by OH, C₁-C₄alkoxy, -CN, -COO(C₁-C₈alkyl), (C₁-C₄alkyl)-COO-, benzyl, phenyl or by -N(R₁₃)(R₁₄); C₃-C₆alkenyl, benzyl, -CH₂-C₆H₄-(C₁-C₄alkyl) or phenyl; or

R₁ and R₂ together and / or R₃ and R₄ together are unbranched or branched C₂-C₉alkylene or C₃-C₆-oxa- or -aza-alkylene;

R₅ is hydrogen, C₁-C₈alkyl, C₃-C₆alkenyl, benzyl, -CH₂-C₆H₄-(C₁-C₄alkyl) or phenyl;

A is Cl, Br, -O-R₇, -NR₈R₉ or -S-R₁₆;

A' is -O-, -NH- or -NR₈;

X and Y are each independently of the other -O-R₁₀ or -N(R₁₁)(R₁₂);

n is an integer from 1 to 10, preferably an integer from 1 to 4, especially 1, 2 or 3;

R₆ is an n-valent radical of linear or branched C₂-C₂₀alkyl the carbon chain of which may be interrupted by cyclohexanediyI, phenylene, -CH(OH)-, -C(C₂H₅)(CH₂-CH₂-OH)-, -C(CH₃)(CH₂-CH₂-OH)-, -C(CH₂-CH₂-OH)₂-, -N(CH₃)-, -N(C₂H₅)-, -N(CH₂-CH₂-OH)-, -CO-O-, -O-CO-, -O-CO-NH, NH-CO-O-, -P(CH₂-CH₂-OH)-, -P(O)(CH₂-CH₂-OH)-, -O-P(O-CH₂-CH₂-OH)-O-, -O-P(O)(O-CH₂-CH₂-OH)-O-, -O-cyclohexanediyI-C(CH₃)₂-cyclohexanediyI-O-,

-O-phenylene-C(CH₃)₂-phenylene-O-, -O-phenylene-CH₂-phenylene-O-, -Si(CH₃)₂-O-, -O-Si(CH₃)₂O-, -O-Si(CH₃)(O-CH₃)-O-, -Si(CH₃)(R₁₇)-O-Si(CH₃)(R₁₈)-, 5-(2-hydroxyethyl)-[1,3,5]triazinane-2,4,6-trione-1,3-diyI and/or by from one to nine oxygen atoms, or

R₆ is an n-valent radical of linear or branched -CO-NH-(C₂-C₁₆alkylene)-(NH-CO)_{n-1}- or linear or branched -CO-NH-(C₀-C₉alkylene)-(NH-CO)_{n-1}- which may be interrupted by

- 114 -

one or two phenylene, methylphenylene, phenylene-O-phenylene, cyclohexanediyl, methylcyclohexanediyl, trimethylcyclohexanediyl, norbornanediyl, [1-3]diazetidine-2,4-dione-1,3-diyl, 3-(6-isocyanatohexyl)-biuret-1,5-diyl or 5-(6-isocyanatohexyl)-[1,3,5]triazinane-2,4,6-trione-1,3-diyl radical(s), or

- R₆ is an n-valent radical of linear or branched $-\text{CO}-(\text{C}_0\text{-C}_{12}\text{alkylene})-(\text{CO})_{n-1}-$ and the alkylene may be interrupted by oxygen, phenylene, cyclohexanediyl or by norbornanediyl; , or
- R₆ is an n-valent radical of linear or branched $-\text{C}_2\text{-C}_{50}\text{alkylene}$ the carbon chain of which is interrupted by one to 15 oxygen, and may be substituted by OH or NH₂;
- R₇ is hydrogen, $-\text{Si}(\text{C}_1\text{-C}_6\text{alkyl})_3$, C₁-C₁₂alkyl, R₂₁, C₂-C₁₈acyl, $-\text{CO-NH-C}_1\text{-C}_{12}\text{alkyl}$, C₂-C₂₀hydroxyalkyl, C₂-C₂₀methoxyalkyl, 3-(C₁-C₁₈alkoxy)-2-hydroxy-propyl, 3-[1,3,3,3-tetramethyl-1-[(trimethylsilyl)oxy]disiloxanyl]-propyl, 2,3-dihydroxy-propyl or linear or branched C₂-C₂₁hydroxyalkyl or (C₁-C₄alkoxy)-C₂-C₂₁alkyl the carbon chain of which is interrupted by from one to nine oxygen atoms;
- R₈ and R₉ are each independently of the other hydrogen, C₁-C₁₂alkyl,; C₂-C₄alkyl substituted by one or more of the groups OH, C₁-C₄alkoxy, -CN, -COO(C₁-C₄alkyl); C₃-C₅alkenyl, cyclohexyl or C₇-C₉phenylalkyl, or
when R₉ = H or methyl, R₈ is also C₂-C₅₀alkyl substituted by one or more of the groups methyl, ethyl, OH, NH₂, and is interrupted by one or more oxygen, -NH-, cyclohexanediyl, norbornanediyl or phenylene, or
- R₈ and R₉ together are unbranched or branched C₃-C₉alkylene which may be interrupted by -O- or by -N(R₁₅)-;
- R₁₀ is hydrogen, $-\text{Si}(\text{C}_1\text{-C}_6\text{alkyl})_3$, C₁-C₈alkyl, C₃-C₆alkenyl or benzyl,
- R₁₁ and R₁₂ are each independently of the other C₁-C₁₂alkyl; C₂-C₄alkyl substituted by one or more of the groups OH, C₁-C₄alkoxy, -CN, -COO(C₁-C₄alkyl); C₃-C₅alkenyl, cyclohexyl or C₇-C₉phenylalkyl, or
- R₁₁ and R₁₂ together are unbranched or branched C₃-C₉alkylene which may be interrupted by -O- or by -N(R₁₅)-;
- R₁₃ and R₁₄ are each independently of the other hydrogen, C₁-C₁₂alkyl; C₂-C₄alkyl substituted by one or more of the groups OH, C₁-C₄alkoxy, -CN, -COO(C₁-C₄alkyl); C₃-C₅alkenyl, cyclohexyl or C₇-C₉phenylalkyl, or
- R₁₃ and R₁₄ together are unbranched or branched C₃-C₉alkylene which may be interrupted by -O- or by -N(R₁₅)-;

- 115 -

- R_{15} is hydrogen, $C_1\text{-}C_4$ alkyl, allyl, benzyl, $C_1\text{-}C_4$ hydroxyalkyl, $-\text{CH}_2\text{CH}_2\text{-COO}(C_1\text{-}C_4\text{alkyl})$ or $-\text{CH}_2\text{CH}_2\text{CN}$;
- R_{16} is $C_1\text{-}C_{18}$ alkyl, hydroxyethyl, 2,3-dihydroxypropyl, cyclohexyl, benzyl, phenyl, $C_1\text{-}C_{12}$ alkylphenyl, $-\text{CH}_2\text{-COO}(C_1\text{-}C_{18}\text{alkyl})$, $-\text{CH}_2\text{CH}_2\text{-COO}(C_1\text{-}C_{18}\text{alkyl})$ or $-\text{CH}(\text{CH}_3)\text{-COO}(C_1\text{-}C_{18}\text{alkyl})$;
- R_{17} and R_{18} are each independently of the other a monovalent radical methyl, $-\text{O-Si(CH}_3)_3$, $-\text{O-Si(CH}_3)_2\text{-O-Si(CH}_3)_3$, $-\text{O-Si(CH}_3)[-(\text{CH}_2)_p\text{-OH}]\text{-O-Si(CH}_3)$ or a bivalent radical $-\text{O-Si(CH}_3)_2\text{-}$, $-\text{O-Si(CH}_3)[-(\text{CH}_2)_p\text{-OH}]\text{-}$, $-\text{O-Si(CH}_3)(R_{19})\text{-}$, $-\text{O-Si(CH}_3)(R_{20})\text{-}$ and form chains;
- R_{19} and R_{20} are each independently of the other a monovalent radical methyl, $-\text{O-Si(CH}_3)_3$, $-\text{O-Si(CH}_3)_2\text{-O-Si(CH}_3)_3$, $-\text{O-Si(CH}_3)[-(\text{CH}_2)_p\text{-OH}]\text{-O-Si(CH}_3)$ or a bivalent radical $-\text{O-Si(CH}_3)_2\text{-}$, $-\text{O-Si(CH}_3)[-(\text{CH}_2)_p\text{-OH}]\text{-}$, $-\text{O-Si(CH}_3)(R_{19})\text{-}$, $-\text{O-Si(CH}_3)(R_{20})\text{-}$ and extend chains and, when R_{19} and R_{20} are linked into a ring, $-(R_{19})\text{-(R}_{20})\text{-}$ is the bridge $-\text{O-}$;
- R_{21} is, independently of formula I, a radical

;

- p is an integer from 2 to 12, preferably 3, 5 or 6, it being possible for the carbon chain of the alkylene to be interrupted by from one to three oxygen atoms.

2. A photoinitiator according to claim 1 of formula III or IV

wherein

- R_1 , R_2 , R_3 and R_4 are each independently of the others $C_1\text{-}C_8$ alkyl, $C_3\text{-}C_6$ alkenyl, benzyl, $-\text{CH}_2\text{C}_6\text{H}_4\text{-(C}_1\text{-}C_4\text{alkyl)}$ or phenyl, or

- R₁ and R₂ together and / or R₃ and R₄ together are unbranched or branched C₂-C₉alkylene;
- R₅ is hydrogen, C₁-C₈alkyl, C₃-C₆alkenyl, benzyl, -CH₂-C₆H₄-(C₁-C₄alkyl) or phenyl;
- n is an integer from 1 to 10, preferably an integer from 1 to 4, especially 1, 2 or 3; and
- R₆ is an n-valent radical of linear or branched C₂-C₂₀alkyl the carbon chain of which may be interrupted by cyclohexanediyI, phenylene, -CH(OH)-, -C(C₂H₅)(CH₂-CH₂-OH)-, -C(CH₃)(CH₂-CH₂-OH)-, -C(CH₂-CH₂-OH)₂-, -N(CH₃)-, -N(C₂H₅)-, -N(CH₂-CH₂-OH)-, -CO-O-, -O-CO-, -P(CH₂-CH₂-OH)-, -P(O)(CH₂-CH₂-OH)-, -O-P(O-CH₂-CH₂-OH)-O-, -O-P(O)(O-CH₂-CH₂-OH)-O-, -O-cyclohexanediyI-C(CH₃)₂-cyclohexanediyI-O-, -O-phenylene-C(CH₃)₂-phenylene-O-, -O-phenylene-CH₂-phenylene-O-, -Si(CH₃)₂-O-, -O-Si(CH₃)(O-CH₃)-O-, -Si(CH₃)(R₁₇)-O-Si(CH₃)(R₁₈)-, 5-(2-hydroxyethyl)-[1,3,5]triazinane-2,4,6-trione-1,3-diyl and/or by from one to nine oxygen atoms, or
- R₆ is an n-valent radical of linear or branched -CO-NH-(C₂-C₉alkylene)-(NH-CO)_{n-1}- or linear or branched -CO-NH-(C₀-C₉alkylene)-(NH-CO)_{n-1}- which may be interrupted by one or two phenylene, methylphenylene, phenylene-O-phenylene, cyclohexanediyI, methylcyclohexanediyI, trimethylcyclohexanediyI, norbornanediyI, [1-3]diazetidine-2,4-dione-1,3-diyl, 5-(6-isocyanatohexyl)-[1,3,5]triazinane-2,4,6-trione-1,3-diyl or 3-(6-isocyanatohexyl)-biuret-1,5-diyl radical(s), or
- R₆ is an n-valent radical of linear or branched -CO-(C₀-C₁₂alkylene)-(CO)_{n-1}- and the alkylene may be interrupted by oxygen, phenylene, cyclohexanediyI or by norbornane-diyl;
- R₇ is hydrogen, -Si(C₁-C₆alkyl)₃, C₁-C₁₂alkyl, R₂₁, C₂-C₁₈acyl, -CO-NH-C₁-C₁₂alkyl, C₂-C₂₀hydroxyalkyl, C₂-C₂₀methoxyalkyl, 3-(C₁-C₁₈alkoxy)-2-hydroxy-propyl, 3-[1,3,3,3-tetramethyl-1-[(trimethylsilyl)oxy]disiloxanyl]-propyl, 2,3-dihydroxypropyl or linear or branched C₂-C₂₁hydroxyalkyl or (C₁-C₄alkoxy)-C₂-C₂₁alkyl the carbon chain of which is interrupted by from one to nine oxygen atoms;
- R₁₀ is hydrogen, -Si(C₁-C₆alkyl)(CH₃)₂, C₁-C₈alkyl, C₃-C₆alkenyl or benzyl;
- R₁₇ and R₁₈ are each independently of the other a monovalent radical methyl, -O-Si(CH₃)₃, -O-Si(CH₃)₂-O-Si(CH₃)₃, -O-Si(CH₃)[-(CH₂)_p-OH]-O-Si(CH₃) or a bivalent radical -O-Si(CH₃)₂- , -O-Si(CH₃)[-(CH₂)_p-OH]-, -O-Si(CH₃)(R₁₉)-, -O-Si(CH₃)(R₂₀)- and form chains;
- R₁₉ and R₂₀ are each independently of the other a monovalent radical methyl, -O-Si(CH₃)₃, -O-Si(CH₃)₂-O-Si(CH₃)₃, -O-Si(CH₃)[-(CH₂)_p-OH]-O-Si(CH₃) or a bivalent radical

- 117 -

-O-Si(CH₃)₂-¹, -O-Si(CH₃)[-CH₂)_p-OH]-¹, -O-Si(CH₃)(R₁₉)-¹, -O-Si(CH₃)(R₂₀)-¹ and extend chains and, when R₁₉ and R₂₀ are linked into a ring, -(R₁₉)-(R₂₀)- is the bridge -O-; R₂₁ is, independently of formula III, a radical

;

p is an integer from 2 to 12, preferably 3, 5 or 6, it being possible for the carbon chain of the alkylene to be interrupted by from one to three oxygen atoms.

3. A photoinitiator according to claim 1 of formula V

V

wherein

R₇ is hydrogen, -Si(CH₃)₃, C₁-C₈alkyl, bis[4-(2-hydroxy-2-methyl-propionyl)-phenyl]-methyl, C₂-C₁₈acyl, -CO-NH-C₁-C₈alkyl, C₂-C₂₀hydroxyalkyl, C₂-C₂₀methoxyalkyl or C₂-C₂₀hydroxyalkyl the carbon chain of which is interrupted by from one to nine oxygen atoms.

4. A photoinitiator according to claim 1 of the formula B

B

5. A photoinitiator according to claim 1 of formula

- 118 -

6. A photoinitiator according to claim 1 of formula VI, VII or VIII

wherein

n is an integer from 1 to 4, preferably an integer from 1 to 3, especially 2, and

- 119 -

- R₆ is an n-valent radical of linear or branched C₂-C₁₆alkyl the carbon chain of which may be interrupted by cyclohexanediyl, phenylene, -CH(OH)-, -C(CH₂-CH₂-OH)₂-, -C(CH₃)(CH₂-CH₂-OH)-, -C(C₂H₅)(CH₂-CH₂-OH)-, -N(CH₃)-, -N(CH₂-CH₂-OH)-, -CO-O-, -O-CO-, -Si(CH₃)₂-, -Si(CH₃)(R₁₇)-O-Si(CH₃)(R₁₈)-, -O-Si(CH₃)₂-O-, -O-Si(CH₃)(O-CH₃)-O-, 5-(2-hydroxyethyl)-[1,3,5]triazinane-2,4,6-trione-1,3-diyl and / or by from one to six oxygen atoms, or
- R₆ is an n-valent radical of linear or branched -CO-NH-(C₂-C₁₆alkylene)-(NH-CO)_{n-1}- or linear or branched -CO-NH-(C₀-C₉alkylene)-(NH-CO)_{n-1}- which may be interrupted by one or two phenylene, methylphenylene, phenylene-O-phenylene, cyclohexanediyl, methylcyclohexanediyl, trimethylcyclohexanediyl, norbornanediyl, [1-3]diazetidine-2,4-dione-1,3-diyl, 5-(6-isocyanatohexyl)-[1,3,5]triazinane-2,4,6-trione-1,3-diyl or 3-(6-isocyanatohexyl)-biuret-1,5-diyl radical(s),
- R₁₇ and R₁₈ are each independently of the other a monovalent radical methyl, -O-Si(CH₃)₃, -O-Si(CH₃)₂-O-Si(CH₃)₃, -O-Si(CH₃)[- (CH₂)_p-OH]-O-Si(CH₃) or a bivalent radical -O-Si(CH₃)₂-, -O-Si(CH₃)[- (CH₂)_p-OH]-, -O-Si(CH₃)(R₁₉)-, -O-Si(CH₃)(R₂₀)- and form chains,
- R₁₉ and R₂₀ are each independently of the other a monovalent radical methyl, -O-Si(CH₃)₃, -O-Si(CH₃)₂-O-Si(CH₃)₃, -O-Si(CH₃)[- (CH₂)_p-OH]-O-Si(CH₃) or a bivalent radical -O-Si(CH₃)₂-, -O-Si(CH₃)[- (CH₂)_p-OH]-, -O-Si(CH₃)(R₁₉)-, -O-Si(CH₃)(R₂₀)- and extend chains and, when R₁₉ and R₂₀ are linked into a ring, -(R₁₉)-(R₂₀)- is the bridge -O-,
- p is an integer from 2 to 12, preferably 3, 5 or 6, it being possible for the carbon chain of the alkylene to be interrupted by from one to three oxygen atoms.

7. A photoinitiator according to claim 1 of formula IX

wherein

R₈ and R₉ are each independently of the other hydrogen, C₁-C₁₂alkyl,; C₂-C₄alkyl substituted by one or more of the groups OH, C₁-C₄alkoxy, -CN, -COO(C₁-C₄alkyl); C₃-C₅alkenyl, cyclohexyl or C₇-C₉phenylalkyl, or

- 120 -

when R_9 = H or methyl, R_8 is also C_2-C_{50} alkyl substituted by one or more of the groups methyl, ethyl, OH, NH₂, and is interrupted by one or more oxygen, -NH-, cyclohexanediyI, norbornanediyI or phenylene, or

R_8 and R_9 together are unbranched or branched C_3-C_9 alkylene which may be interrupted by -O- or by -N(R_{15})-;

8. A photoinitiator according to claim 1 of formula X

wherein

- n is an integer from 1 to 4, preferably an integer from 1 to 3, especially 2, and
- R_6 is an n-valent radical of linear or branched C_2-C_{16} alkyl the carbon chain of which may be interrupted by cyclohexanediyI, phenylene, -CH(OH)-, -C(CH₂-CH₂-OH)₂-, -C(CH₃)(CH₂-CH₂-OH)-, -C(C₂H₅)(CH₂-CH₂-OH)-, -N(CH₃)-, -N(CH₂-CH₂-OH)-, -CO-O-, -O-CO-, -O-CO-NH, NH-CO-O-, -Si(CH₃)₂-, -Si(CH₃)(R₁₇)-O-Si(CH₃)(R₁₈)-, -O-Si(CH₃)₂-O-, -O-Si(CH₃)(O-CH₃)-O-, 5-(2-hydroxyethyl)-[1,3,5]triazinane-2,4,6-trione-1,3-diyI and / or by from one to six oxygen atoms, or
- R_6 is an n-valent radical of linear or branched $-C_2-C_{50}$ alkylene the carbon chain of which is interrupted by one to 15 oxygen, and may be substituted by OH or NH₂;
- R_8 is hydrogen, C_1-C_4 alkyl, C_2-C_4 alkyl substituted by one or more of the groups OH, C_1-C_4 alkoxy, -CN, -COO(C₁-C₄alkyl); C_3-C_5 alkenyl, cyclohexyl or C_7-C_9 phenylalkyl;

9. A process for the preparation of compound I or II, comprising the following steps:

- 121 -

- a) reaction of diphenylmethane with an acid halide of formula $R_1R_2CH-COHal$ and, optionally, further reaction with an acid halide of formula $R_3R_4CH-COHal$ in the presence of a Friedel-Crafts catalyst, whereupon an isomeric mixture of formula A is obtained,

- b) halogenation of the isomeric mixture of formula A, followed by bromination and hydrolysis, whereupon an isomeric mixture of formula B is obtained,

- c) optionally, selective substitution of the benzylic hydroxy group in the resulting isomeric mixture of formula B by reaction
with an alcohol in the presence of an acid as catalyst for the preparation of an ether,
with a carboxylic acid for the preparation of an ester,
with an isocyanate for the preparation of a urethane,
with a diol, dicarboxylic acid or diisocyanate for the preparation of a bridged compound,
with a diisocyanate together with a diol or a diamine,
with a siloxane for the preparation of a silicone derivative,
d) optionally, reaction of the alpha-hydroxy group in the resulting isomeric mixture of formula B,
e) optionally, separation of the isomers.

10. A process for the preparation of compound I or II, comprising the following steps:

- a) reaction of diphenylmethane with an acid halide of formula $R_1R_2CH-COHal$ and, optionally, further reaction with an acid halide of formula $R_3R_4CH-COHal$ in the presence of a Friedel-Crafts catalyst, whereupon an isomeric mixture of formula A is obtained,

- 122 -

- b) halogenation of the isomeric mixture of formula A, followed by bromination, aminolysis of the benzylic bromide, and hydrolysis of the tertiary halides, whereupon an isomeric mixture of formula C is obtained,

- c) optionally, when R₈ or R₉ in the isomeric mixture of formula C possess a primary hydroxy group, selective substitution of the primary hydroxy group by reaction with a carboxylic acid for the preparation of an ester,
with an isocyanate for the preparation of a urethane,
with a dicarboxylic acid or diisocyanate for the preparation of a bridged compound,
with a siloxane for the preparation of a silicone derivative
- d) optionally, separation of the isomers.

11. A composition consisting of

- (A) at least one ethylenically unsaturated compound,
- (B) a photoinitiator of formula I, II, III, IV, V, VI, VII, VIII, IX or X according to claims 1-8
- (C) optionally, further additives,
- (D) optionally, further photoinitiators and coinitiators.

12. A composition according to claim 11, wherein the compound (A) is a resin containing free OH groups, free isocyanate groups or free carboxy groups and the photoinitiator (B) is bonded to the resin.

13. A process for the production of a scratch-resistant durable surface, wherein a composition according to either claim 11 or claim 12 is applied to a support; and curing of the formulation is carried out either solely by means of irradiation with electromagnetic radiation having a wavelength of from 200 nm into the IR range, or by irradiation with electromagnetic radiation and prior, simultaneous and/or subsequent application of heat.

- 123 -

14. Use of a composition according to claim 11 in the production of pigmented and non-pigmented surface coatings, overprint coatings, powder coatings, printing inks, inkjet inks, gel coats, composite materials or glass fibre coatings.
15. Use of a composition according to claim 12 as a surface coating for food packaging materials.