In this case, the loss for making error is As, Q1: a. and the 1045 of rejection is Ir. So the optimal discriminant function will base on the Bayes classifier g: (x) = - R(a: |x) When i= 1, ..., C, $-R(\alpha_i|x) = -\left[\sum_{j=1}^{C} \lambda(\alpha_i|w_j) P(w_j|x)\right], \text{ Since loss of making}$ error is λs . $R(\alpha; |x) = \sum_{j=1}^{c} \lambda s P(\omega_j | x) - \lambda s P(\omega_j | x)$ - R(a: |x) = -[\lambdas - \lambdas P(w; |x)] = \lambdas P(w; |x) - \lambdas $-R(d_{c+1}|X) = -\left[\sum_{j=1}^{c} \lambda_r P(w_j|X)\right] = -\lambda_r$ ASSAYANINA To compare g:(1) and g;(x), there are two situation: o. The state of the classes, g: (x)>g:(x)>g:(x) means: As PCW: |x) - As > As PCW; |x) - As P(w; |x) > P(w; |x) > P(x/wi) P(wi) > P(x/wj) P(vi), devide i otherwise,

Q. i = c+1 and j in classes, gi(x) > gj(x) means: - hr > hs P(w; |x) - hs => ls-lr > ls P(wj 1x) => PARTITION OF THE PARTY $\Rightarrow \frac{\lambda s - \lambda r}{\lambda s} > \frac{P(x|w_j)P(w_j)}{P(x)}$ => ds-dr = pcx wys pcwis > pcx wis) pcwis For discriminant Function, we will try to make decision base on a given x. So in this question, it is not only consider the comparison between classes. According to result in Problem 13, decide w: if P(w; |x) >, P(w; |x) for all classes and P(w; |x)>, 1- \frac{\lambda_{5}}{\lambda_{5}} rejection otherwise. And P(wi|x) = P(x|wi)P(wi). So the used P(x|wi)P(wi) forming: (x) when i=1,..., c and \(\frac{\lambda_{s-1}r}{\lambda_{s}} \) p(\(\mu_{j}\)) p(\(\mu_{j}\)) when i= ct1.

Q1. C

As λr/λs is increased from 0 to 1, the decision region of rejection (in this case is R3) decreases from infinite to zero, and the decision region for classes will expand. In a two-classes category, it will show following:

When $\lambda r/\lambda s$ is equal to 0, the decision region of R3 is from $-\infty$ to ∞ , and the decision for other choices (in this case is R1 and R2) do not exist.

When $0 < \lambda r/\lambda s < \frac{1}{2}$, R3 exists and decreases,

and the decision for other choices (in this case is R1 and R2) will appear and expand.

When $\frac{1}{2} \le \lambda r/\lambda s < 1$, R3 do not exist, and the decision for other choices (in this case is R1 and R2) will continuously expand.

When $\lambda r/\lambda s = 1$, the discriminant function of rejection is equal to 0.

Q2. a For minimum-error-rate case, the discriminant function gi(X) = P(wilx) In this case, $g_1 = P(w_1|x)$ $g_2 = P(w_2|x)$ To find decision rule and decide w, , who we should find g(x) = g(x) - g2(x) >0 Which means, PCW, (x)-PCW2 (x) > 0 p(x/w,) p(w,) - p(x/w) p(w) >0 , x &[0,1] $\frac{2}{5} - 2x \cdot \frac{3}{5}$ 70 So the decision rule is: $7 < \frac{1}{3}$ Decide W, if $X \in [0, \frac{1}{3})$; Otherwise decide Wz The decision $R_1 = [0, \frac{1}{3}]$, $R_2 = [\frac{1}{3}, 1]$

AND STATE OF THE PARTY OF THE P
Qz.b. To find error rate in (a), we will decide we in
R1 and decide W2 in R2.
0.5
The error rate will be:
$\int R(\alpha_1 x) p(x) dx + \int R(\alpha_2 x) p(x) dx$
R. Kr
= [\lambda_1 Pew, >pexlw,) + \lambda_1 Pew, >pexlw,)] dx
+
R2
= P(wx)P(xlwx) dx + P(w,) P(xlw,) dx
2,
$= \int_{0}^{3} 2x \cdot \frac{3}{5} dx + \frac{1}{3} \frac{5}{5} dx = \frac{1}{3}$
The error rate is 3

Q3.		
10 3	find decision rule, we sh	hould find decide
ω_{i}	when $g_{1}(x) > g_{2}(x)$. And	dg(x) = -R(x x)
	at means: $R(\alpha_1 x) < R(\alpha_2)$	
	Anpewix) <	λ21 p(w, (x) +)22 p(w2/x)
And		6 5
	DIE P(X/WE) P(WZ) <)	Dr. p(x/w,) p(w,)
- ak 4 ak 1	$\frac{2\lambda_{12}}{\lambda_{21}} < \frac{p(x w_{1})}{p(x w_{2})}$	
	$\frac{2\lambda_{12}}{\lambda_{21}} < Exp \left[-\frac{(x-\mu_1)^2 - (x-\mu_2)^2}{28^2} \right]$	
/11(2)) + /n(liz) - /n(lz1) < 2×(ll	
	x(/1-/12)>== [282(,	/n(2)+/n(l/2)-/n(l/21))+/12-/12
IJAB	WARDANA So the decision	on boundary they is
X	6= 2(M, -M2) [282(/n(2. \lambda_{12})))+M2-M2]

If $(M, -M_2) > 0$ If $M, > M_2$, then $R_1 = (X_0, \infty)$ decide $W, \text{ if } X \in R_1$, otherwise decide W_2 If $M < M_2$, then $R_1 = (-\infty, X_1)$ decide $W_1 \text{ if } X \in R_0$, otherwise decide W_2

```
Q4. A
     P(W_0|X_1) = P(X_1, y_1, \xi_3, W_0)
      Σ Σ ρ(X,, y;, Z;, Wo)
         = P(x, yo, Zo, Wo) + P(x, yo, Z, , Wo)
        + P(x,, y, 80, Wo) + P(x,, y, , 21, Wo)
      In Bayes network, since there are conditional independent
      in vouricibles,
    Σ Σ ρ(X,, y;, ξ;, w<sub>0</sub>)
         = É Épix, ) p(y; |x,) p(z; |yi) p(w, |z;)
    = p(x,) p(y, 1x,) p(2. 1y,) p(w, 12.) + p(x,)p(y, 1x,) p(2, 1y) p(w, 12.)
    + p(x,) p(y, 1x,) p(z, 1y,) p(w, 1z,) + p(x,) p(y, 1x,) p(z, 1y,) p(w, 12,)
    =0.6( |P(y,1x,)=1-p(y,1x,)=0.6
            7 pcz.ly0)=1- pcz4/ya = 014
              .... Awarding to the provided conditional probability,
   5 5 P(X,, y;, &;, W.) = 0.3786.
     P(W. |x1) = 0.3786 = 0.631
```

$$Q_4 \cdot b$$

$$p(x_0 | W_1) = \frac{p(w_1 | x_0) p(x_0)}{\sum_{i=0}^{n} p(w_i | x_i) p(x_i)}$$

$$p(x_0) p(w_1 | x_0) = \frac{1}{\sum_{i=0}^{n} p(x_0)} p(y_i | x_0) p(x_0 | y_i) p(w_1 | x_0)$$

$$= \sum_{i=0}^{n} \sum_{j=0}^{n} p(x_0) p(y_i | x_0) p(x_0 | y_i) p(w_1 | x_0)$$

$$= 0.4497$$

$$p(x_0) p(w_1 | x_0) = \sum_{j=0}^{n} \sum_{i=0}^{n} \frac{p(x_0, y_0 | x_0)}{p(x_0, y_0 | x_0)} p(w_1 | x_0)$$

$$= \sum_{j=0}^{n} \sum_{i=0}^{n} p(x_0) p(y_i | x_0) p(x_0 | y_0) p(w_1 | x_0)$$

$$= 0.2214$$

$$p(x_0 | w_0) = \frac{0.4497}{0.4497 + 0.204} = 0.403$$

Q5.

The answer to this question is False.

The decision boundary for a two-class classification which class conditionals are Gaussian density will have multiple situations based on their covariance matrix.

When the covariance matrixes for both Gaussian densities are equal, their decision boundary is linear (hyperplanes). Especially, when the covariance matrix is diagonal, this hyperplane is orthogonal to the line linking the means.

When the covariance matrixes for Gaussian densities are not equal, the decision boundary is hyperquadratics. It can be a surface other than linear (hyperplanes). So the answer is False.

Q6.A

To find the minimum probability of error in a two-category problem means finding the error of decision we in region Rz and the error of decision We in decision region R1. In this problem, the decision boundary is: P(X(W1) P(W1) = P(X/W2) P(W2) p(x|w1)p(w1) - p(x|w2) p(w2) =0 Nonto EXP[-(x-11)]: - - | EXP[-(x-16)]: = 0, since they Since they has the soune variance and some piror grobability, decision boundary is (x-ll,)2- (x-lle) = 0 calculate the minimum probability of error: there will have two situation: D. M. > Mr $Pe = \int_{\infty}^{2} p(x|w_{1}) p(w_{1}) dx + \int_{w_{1}+w_{1}}^{\infty} p(x|w_{2}) p(w_{3}) dx$ Lett side of will be Rz, otherwise is R. $Pe = \frac{1}{2} \int_{-\infty}^{\infty} \frac{dx + dx}{dx} = \sum_{x = 1}^{\infty} \frac{1}{2\delta^2} \int_{-\infty}^{\infty} \frac{dx + \int_{-\infty}^{\infty} \frac{1}{2\delta^2} \int_{-\infty}^{\infty} \frac{1}{2\delta^2} \int_{-\infty}^{\infty} \frac{dx}{dx} + \int_{-\infty}^{\infty} \frac{1}{2\delta^2} \int$

Q6.B

