Physician Behaviors and Hospital Influence

Haizhen Lin & **Ian McCarthy** & Michael Richards George Washington University

November 8, 2018

Background

Physician with decision-making authority for treatment

- Information asymmetry
- Regulatory restrictions

Differential financial incentives between physician and hospital

- More procedures = more revenue, but location of procedure may matter to hospital
- Hospital wants less cost with fixed payment, but physician dictates resource use

Differential financial incentives between physician and hospital

- More procedures = more revenue, but location of procedure may matter to hospital
- Hospital wants less cost with fixed payment, but physician dictates resource use
- \longrightarrow Incentives for hospitals to influence physicians

Differential financial incentives between physician and hospital

- More procedures = more revenue, but location of procedure may matter to hospital
- Hospital wants less cost with fixed payment, but physician dictates resource use

 \longrightarrow Incentives for hospitals to influence physicians

Most direct way (arguably) is to purchase physician practice

Changing Physician Relationships

Richards et al., Medical Care, 2016

Changing Physician Relationships

Baker, Bundorf, and Kessler, Health Affairs, 2014

What do we expect from integration?

- Hospitals claim efficiency gains, reduced fragmentation, increased coordination, etc.
- Financial incentives for cost increases and decreases
 - Lower costs with fixed payment
 - Substituting locations of care more efficiently
 - Spillovers from private insurance
 - More resources due to pay-for-performance

In context

- Physician agency (Clemens & Gottlieb 2014, AER;
 Afendulis & Kessler 2007, AER; Gruber & Owings 1996,
 RAND; Iizuka 2012, AER)
- Vertical integration (Cuellar & Gertler 2006, JHE; Ciliberto & Dranove 2006, JHE; Baker et al. 2016, JHE; Koch et al. 2017, JHE)

Theoretical Framework

Observed care at time t is

$$y_{ijk} = \arg\max_{y} \theta_{u} \tilde{u}\left(y; \Gamma_{j}, \kappa_{i}\right) + \theta_{\pi} \pi\left(y; \Gamma_{k}, \Gamma_{j}\right).$$

Observed care at time t is

$$y_{ijk} = \arg\max_{y} \theta_{u} \tilde{u}\left(y; \Gamma_{j}, \kappa_{i}\right) + \theta_{\pi} \pi\left(y; \Gamma_{k}, \Gamma_{j}\right).$$

With linearity and separability assumptions in patient preferences:

$$y_{ijk} = \alpha_i + x_i \beta + \Gamma_{jk} + \epsilon_{ijk}$$

Observed care at time t is

$$y_{ijk} = \arg\max_{y} \theta_{u} \tilde{u}\left(y; \Gamma_{j}, \kappa_{i}\right) + \theta_{\pi} \pi\left(y; \Gamma_{k}, \Gamma_{j}\right).$$

With linearity and separability assumptions in patient preferences:

$$y_{ijk} = \boxed{lpha_i + x_ieta} + \boxed{\Gamma_{jk}} + \epsilon_{ijk}$$
 Patient Preferences

Observed care at time t is

$$y_{ijk} = \arg\max_{y} \theta_{u} \tilde{u}\left(y; \Gamma_{j}, \kappa_{i}\right) + \theta_{\pi} \pi\left(y; \Gamma_{k}, \Gamma_{j}\right).$$

With linearity and separability assumptions in patient preferences:

Suggests two-step estimation strategy:

Suggests two-step estimation strategy:

1. Estimate $y_{ijk}=\alpha_i+x_i\beta+\Gamma_{jk}+\epsilon_{ijk}$ at patient level (separately by year)

Suggests two-step estimation strategy:

- 1. Estimate $y_{ijk}=\alpha_i+x_i\beta+\Gamma_{jk}+\epsilon_{ijk}$ at patient level (separately by year)
- 2. Estimate $\hat{\Gamma}_{jkt}=\gamma_j+\gamma_k+\tau_t+z_{jkt}\delta+\eta_{jkt}$ with physician-hospital panel

- Draws from "match values" in labor literature (Abowd et al., 2002; Card et al., 2013, QJE)
- Exploits variation across inpatient stays and splits the separation of match value into two steps
- Identifies effects on match value from within-physician variation across hospitals (e.g., patient movers in Finkelstein et al., 2016, QJE)

Traditional "match value" approach:

$$y_{ijk} = \alpha_i + x_i \beta + \boxed{\Gamma_j} + \boxed{\Gamma_k} + \boxed{\Gamma_{jk}} + \epsilon_{ijk}$$

Traditional "match value" approach:

Traditional "match value" approach:

Traditional "match value" approach:

Our approach:

$$y_{ijk} = \alpha_i + x_i \beta + \underbrace{\Gamma_{jk}^t}_{\Gamma_j} + \epsilon_{ijk}$$

$$\Gamma_j + \Gamma_k + \underbrace{z_{jkt} \delta}$$

Our approach:

Our approach:

Our approach:

Our approach:

Data

Data Sources

- CMS: 100% inpatient and institutional outpatient Medicare claims data (2008-2015)
- SK&A: Hospital ownership of physician practices
- AHA, HCRIS, POS: Hospital characteristics
- Annual IPPS Impact Files: Hospital cost-to-charge ratios (CCR)
- ACS: County-level demographics, education, income, and employment

 Planned inpatient stays (elective admissions initiated by a physician, clinic, or HMO referral) and outpatient procedures with observed NPI for the operating physician

- Planned inpatient stays (elective admissions initiated by a physician, clinic, or HMO referral) and outpatient procedures with observed NPI for the operating physician
- Drop physicians operating in hospitals more than 120 miles from primary office or outside of contiguous U.S.

- Planned inpatient stays (elective admissions initiated by a physician, clinic, or HMO referral) and outpatient procedures with observed NPI for the operating physician
- Drop physicians operating in hospitals more than 120 miles from primary office or outside of contiguous U.S.
- Drop physicians with NPIs not matched in the SK&A data

- Planned inpatient stays (elective admissions initiated by a physician, clinic, or HMO referral) and outpatient procedures with observed NPI for the operating physician
- Drop physicians operating in hospitals more than 120 miles from primary office or outside of contiguous U.S.
- Drop physicians with NPIs not matched in the SK&A data
- Drop lowest/highest 1% of charges and patients < 65 years old

- Planned inpatient stays (elective admissions initiated by a physician, clinic, or HMO referral) and outpatient procedures with observed NPI for the operating physician
- Drop physicians operating in hospitals more than 120 miles from primary office or outside of contiguous U.S.
- Drop physicians with NPIs not matched in the SK&A data
- Drop lowest/highest 1% of charges and patients < 65 years old
- ---> 518,398 unique observations at the physician/hospital/year
- \longrightarrow 7.5mm inpatient stays (47% of total) and 24mm outpatient procedures

Estimation of Match Values

Specification

Two-step estimation strategy:

- 1. Estimate $y_{ijk}=\alpha_i+x_i\beta+\Gamma_{jk}+\epsilon_{ijk}$ at patient level (separately by year)
- 2. Estimate $\hat{\Gamma}_{jkt}=\gamma_j+\gamma_k+\tau_t+z_{jkt}\delta+\eta_{jkt}$ with physician-hospital panel

Specification

$$y_{ijk} = \alpha_i + x_i \beta + \Gamma_{jk} + \epsilon_{ijk},$$

Outcomes

$$\mathbf{y_{ijk}} = \alpha_i + x_i \beta + \Gamma_{jk} + \epsilon_{ijk},$$

- Total inpatient and outpatient Medicare payments
- Total inpatient and outpatient hospital costs (from cost-to-charge ratios)
- Inpatient hospital costs
- Inpatient length of stay
- Outpatient hospital costs

$$y_{ijk} = \frac{\alpha_i}{\epsilon} + x_i \beta + \Gamma_{jk} + \epsilon_{ijk},$$

- Quartiles of total "other" Medicare payments and procedures
- Covers 2008 through 2015 period
- Beneficiary-specific measure of "utilization"

$$y_{ijk} = \alpha_i + \frac{\mathbf{x_i}}{\beta} + \Gamma_{jk} + \epsilon_{ijk},$$

- Age, gender, race
- Indicators for ICD9 diagnosis code groups (18 diagnosis groups per variable plus missing group)
- Indicators for primary DRGs (with at least 1000 observations in a given year)
- Minor differences between total, inpatient, and outpatient specifications

Summary of Match Values

1. Calculate Cost Differential

Apply minimum cost physician-hospital combination to all of physician *j*'s patients:

$$\begin{split} \Delta_k y_{ij} &= \hat{y}_{ijk} - \hat{y}_{ij\underline{\mathbf{k}}} \\ &= \hat{\alpha}_i + x_i \hat{\beta} + \hat{\Gamma}_{jk} - \hat{\alpha}_i - x_i \hat{\beta} - \min\left\{\Gamma_{j1}, ..., \Gamma_{jK}\right\} \\ &= \hat{\Gamma}_{jk} - \min\left\{\Gamma_{j1}, ..., \Gamma_{jK}\right\}. \end{split}$$

Summary of Match Values

2. Summarize

- Total cost differential for each physician
- Limit to pairs with 5 or more procedures
- Limit to physicians with 2 or more hospitals in a year
- Present interquartile range and mean

Within-physician Variation in Payments

Within-physician Variation in Payments

Within-hospital Variation in Costs

Estimation of Hospital Influence

Specification

Two-step estimation strategy:

- 1. Estimate $y_{ijk}=\alpha_i+x_i\beta+\Gamma_{jk}+\epsilon_{ijk}$ at patient level (separately by year)
- 2. Estimate $\hat{\Gamma}_{jkt}=\gamma_j+\gamma_k+\tau_t+z_{jkt}\delta+\eta_{jkt}$ with physician-hospital panel

Specification

$$\hat{\Gamma}_{jkt} = \gamma_j + \gamma_k + \tau_t + z_{jkt}\delta + \eta_{jkt},$$

$$\hat{\Gamma}_{jkt} = \gamma_j + \gamma_k + \tau_t + z_{jkt}\delta + \eta_{jkt},$$

	2008	2012	2013	2014	2015	Overall
Total Payments	7,152	8,171	8,501	8,941	9,169	8,094
	(7,595)	(8,472)	(8,290)	(8,724)	(8,755)	(8,228)

$$\hat{\Gamma}_{jkt} = \gamma_j + \gamma_k + \tau_t + z_{jkt}\delta + \eta_{jkt},$$

	2008	2012	2013	2014	2015	Overall
Total Payments	7,152	8,171	8,501	8,941	9,169	8,094
	(7,595)	(8,472)	(8,290)	(8,724)	(8,755)	(8,228)
Total Costs	9,387	11,323	11,756	12,237	12,736	10,965
	(9,632)	(10,954)	(10,906)	(11,549)	(11,728)	(10,626)

$$\hat{\Gamma}_{jkt} = \gamma_j + \gamma_k + \tau_t + z_{jkt}\delta + \eta_{jkt},$$

	2008	2012	2013	2014	2015	Overall
Total Payments	7,152	8,171	8,501	8,941	9,169	8,094
	(7,595)	(8,472)	(8,290)	(8,724)	(8,755)	(8,228)
Total Costs	9,387	11,323	11,756	12,237	12,736	10,965
	(9,632)	(10,954)	(10,906)	(11,549)	(11,728)	(10,626)
Inpatient Costs	13,655	16,958	17,711	18,367	19,081	16,294
	(7,752)	(9,407)	(9,612)	(9,997)	(10,184)	(9,256)

$$\hat{\Gamma}_{jkt} = \gamma_j + \gamma_k + \tau_t + z_{jkt}\delta + \eta_{jkt},$$

	2008	2012	2013	2014	2015	Overall
Total Payments	7,152	8,171	8,501	8,941	9,169	8,094
	(7,595)	(8,472)	(8,290)	(8,724)	(8,755)	(8,228)
Total Costs	9,387	11,323	11,756	12,237	12,736	10,965
	(9,632)	(10,954)	(10,906)	(11,549)	(11,728)	(10,626)
Inpatient Costs	13,655	16,958	17,711	18,367	19,081	16,294
	(7,752)	(9,407)	(9,612)	(9,997)	(10,184)	(9,256)
Inpatient LOS	5.984	6.021	6.002	6.062	6.029	5.960
	(2.427)	(2.493)	(2.494)	(2.513)	(2.492)	(2.436)

$$\hat{\Gamma}_{jkt} = \gamma_j + \gamma_k + \tau_t + z_{jkt}\delta + \eta_{jkt},$$

	2008	2012	2013	2014	2015	Overall
Total Payments	7,152	8,171	8,501	8,941	9,169	8,094
	(7,595)	(8,472)	(8,290)	(8,724)	(8,755)	(8,228)
Total Costs	9,387	11,323	11,756	12,237	12,736	10,965
	(9,632)	(10,954)	(10,906)	(11,549)	(11,728)	(10,626)
Inpatient Costs	13,655	16,958	17,711	18,367	19,081	16,294
	(7,752)	(9,407)	(9,612)	(9,997)	(10,184)	(9,256)
Inpatient LOS	5.984	6.021	6.002	6.062	6.029	5.960
	(2.427)	(2.493)	(2.494)	(2.513)	(2.492)	(2.436)
Outpatient Costs	3,007	3,806	4,014	4,190	4,361	3,693
	(2,135)	(2,782)	(2,925)	(3,096)	(3,195)	(2,749)

$$\hat{\Gamma}_{jkt} = \gamma_j + \gamma_k + \tau_t + \mathbf{z}_{jkt} \delta + \eta_{jkt},$$

	2008	2012	2013	2014	2015	Overall
Integrated	0.130	0.206	0.233	0.255	0.332	0.196
	(0.336)	(0.404)	(0.422)	(0.436)	(0.471)	(0.397)

$$\hat{\Gamma}_{jkt} = \gamma_j + \gamma_k + \tau_t + \mathbf{z}_{jkt}\delta + \eta_{jkt},$$

	2008	2012	2013	2014	2015	Overall
Integrated	0.130	0.206	0.233	0.255	0.332	0.196
	(0.336)	(0.404)	(0.422)	(0.436)	(0.471)	(0.397)
Physician FTE	24.23	28.59	31.14	31.74	33.13	28.43
	(99.28)	(109.8)	(120.5)	(120.0)	(119.5)	(110.9)

$$\hat{\Gamma}_{jkt} = \gamma_j + \gamma_k + \tau_t + \mathbf{z}_{jkt}\delta + \eta_{jkt},$$

	2008	2012	2013	2014	2015	Overall
Integrated	0.130	0.206	0.233	0.255	0.332	0.196
	(0.336)	(0.404)	(0.422)	(0.436)	(0.471)	(0.397)
Physician FTE	24.23	28.59	31.14	31.74	33.13	28.43
	(99.28)	(109.8)	(120.5)	(120.0)	(119.5)	(110.9)
Resident FTE	25.77	28.45	29.13	30.69	30.97	28.08
	(108.2)	(120.4)	(121.4)	(125.9)	(127.8)	(117.8)

$$\hat{\Gamma}_{jkt} = \gamma_j + \gamma_k + \tau_t + \mathbf{z}_{jkt}\delta + \eta_{jkt},$$

	2008	2012	2013	2014	2015	Overall
Integrated	0.130	0.206	0.233	0.255	0.332	0.196
	(0.336)	(0.404)	(0.422)	(0.436)	(0.471)	(0.397)
Physician FTE	24.23	28.59	31.14	31.74	33.13	28.43
	(99.28)	(109.8)	(120.5)	(120.0)	(119.5)	(110.9)
Resident FTE	25.77	28.45	29.13	30.69	30.97	28.08
	(108.2)	(120.4)	(121.4)	(125.9)	(127.8)	(117.8)
Nurse FTE	340.8	365.7	369.1	384.9	402.7	364.8
	(446.8)	(487.8)	(494.8)	(519.1)	(550.7)	(487.3)

$$\hat{\Gamma}_{jkt} = \gamma_j + \gamma_k + \tau_t + z_{jkt}\delta + \eta_{jkt},$$

	2008	2012	2013	2014	2015	Overall
Integrated	0.130	0.206	0.233	0.255	0.332	0.196
	(0.336)	(0.404)	(0.422)	(0.436)	(0.471)	(0.397)
Physician FTE	24.23	28.59	31.14	31.74	33.13	28.43
	(99.28)	(109.8)	(120.5)	(120.0)	(119.5)	(110.9)
Resident FTE	25.77	28.45	29.13	30.69	30.97	28.08
	(108.2)	(120.4)	(121.4)	(125.9)	(127.8)	(117.8)
Nurse FTE	340.8	365.7	369.1	384.9	402.7	364.8
	(446.8)	(487.8)	(494.8)	(519.1)	(550.7)	(487.3)
Other FTE	749.9	763.0	761.8	776.4	806.0	762.8
	(975.5)	(1032.4)	(1076.2)	(1101.5)	(1157.2)	(1037.4)

$$\hat{\Gamma}_{jkt} = \gamma_j + \gamma_k + \tau_t + \mathbf{z}_{jkt} \delta + \eta_{jkt},$$

	2008	2012	2013	2014	2015	Overall
Integrated	0.130	0.206	0.233	0.255	0.332	0.196
	(0.336)	(0.404)	(0.422)	(0.436)	(0.471)	(0.397)
Physician FTE	24.23	28.59	31.14	31.74	33.13	28.43
	(99.28)	(109.8)	(120.5)	(120.0)	(119.5)	(110.9)
Resident FTE	25.77	28.45	29.13	30.69	30.97	28.08
	(108.2)	(120.4)	(121.4)	(125.9)	(127.8)	(117.8)
Nurse FTE	340.8	365.7	369.1	384.9	402.7	364.8
	(446.8)	(487.8)	(494.8)	(519.1)	(550.7)	(487.3)
Other FTE	749.9	763.0	761.8	776.4	806.0	762.8
	(975.5)	(1032.4)	(1076.2)	(1101.5)	(1157.2)	(1037.4)
Beds (100s)	1.980	1.967	1.958	1.982	2.009	1.976
	(2.160)	(2.142)	(2.137)	(2.172)	(2.235)	(2.154)

$$\hat{\Gamma}_{jkt} = \gamma_j + \gamma_k + \tau_t + \mathbf{z}_{jkt}\delta + \eta_{jkt},$$

	2008	2012	2013	2014	2015	Overall
Practice	13.73					
	(32.10)	(30.70)	(29.28)	(28.46)	(28.02)	(30.05)

$$\hat{\Gamma}_{jkt} = \gamma_j + \gamma_k + \tau_t + \mathbf{z}_{jkt}\delta + \eta_{jkt},$$

	2008	2012	2013	2014	2015	Overall
Practice Size	13.73		17.31			16.10
	(32.10)	(30.70)	(29.28)	(28.46)	(28.02)	(30.05)
Experience	22.55		23.94			23.17
	(6.496)	(6.703)	(6.950)	(6.902)	(6.989)	(6.746)

$$\hat{\Gamma}_{jkt} = \gamma_j + \gamma_k + \tau_t + \mathbf{z}_{jkt}\delta + \eta_{jkt},$$

	2008	2012	2013	2014	2015	Overall
Practice Size	13.73	17.31	17.31	17.82	18.41	16.10
	(32.10)	(30.70)	(29.28)	(28.46)	(28.02)	(30.05)
Experience	22.55	23.00	23.94	23.65	24.77	23.17
	(6.496)	(6.703)	(6.950)	(6.902)	(6.989)	(6.746)
% Multi-Specialty	0.249	0.248	0.266	0.284	0.344	0.264
% with Surgery	0.452	0.501	0.507	0.508	0.454	0.480

Outcome Estimate St. Error

^{*} p-value <0.1, ** p-value <0.05, *** p-value <0.01

Outcome	Estimate	St. Error
Total Medicare Payments	110.945**	(46.768)

^{*} p-value <0.1, ** p-value <0.05, *** p-value <0.01

Outcome	Estimate	St. Error
Total Medicare Payments	110.945**	(46.768)
Total Hospital Costs	255.126***	(64.621)

^{*} p-value <0.1, ** p-value <0.05, *** p-value <0.01

Outcome	Estimate	St. Error
Total Medicare Payments Total Hospital Costs Inpatient Hospital Costs	110.945** 255.126*** 209.579***	(46.768) (64.621) (53.671)

^{*} p-value <0.1, ** p-value <0.05, *** p-value <0.01

Outcome	Estimate	St. Error
Total Medicare Payments Total Hospital Costs Inpatient Hospital Costs Inpatient Length of Stay	110.945** 255.126*** 209.579*** -0.028	(46.768) (64.621) (53.671) (0.019)

^{*} p-value <0.1, ** p-value <0.05, *** p-value <0.01

Outcome	Estimate	St. Error
Total Medicare Payments	110.945**	(46.768)
Total Hospital Costs	255.126***	(64.621)
Inpatient Hospital Costs	209.579***	(53.671)
Inpatient Length of Stay	-0.028	(0.019)
Outpatient Hospital Costs	-58.581***	(20.320)

^{*} p-value <0.1, ** p-value <0.05, *** p-value <0.01

Threats to Identification and Interpretation

Estimator is effectively a two-way fixed effects DD with time varying treatment

Threats to Identification and Interpretation

Estimator is effectively a two-way fixed effects DD with time varying treatment

Potential Problems

- Vertical integration due to time-varying unobservables & outcomes (standard DD concern)
- 2. Weighted average of all 2×2 DD estimates, with some potentially negative weights

Event Study: Total Medicare Payments

Event Study: Total Hospital Costs

Event Study: Inpatient Hospital Costs

Takeaways

- Evidence of increase in payments and costs
- Evidence consistent with common trends assumption for total payments and costs
- Some concern about common trends for inpatient costs

Integration could be driven by:

- Unobserved, time-varying practice characteristics
- Existing costs and treatment patterns

1. Set of possible physician-hospital pairs

Form set of all hospitals where physician operates from 2008-2015

2. Estimate probability of integration

$$\Pr(I_{jk} = 1) = \frac{\exp(\lambda z_{jk})}{1 + \exp(\lambda z_{jk})}$$

- Hospital and practice characteristics
- Average differential distance (relative to nearest hospital in patient choice set)
- Differential distance interacted with hospital and practice characteristics

2. Estimate probability of integration

$$\hat{\Pr}\left(I_{jk}=1\right) = \frac{\exp\left(\hat{\lambda}z_{jk}\right)}{1 + \exp\left(\hat{\lambda}z_{jk}\right)}$$

Intuition: Physicians less likely to seek/allow acquisition if patients live further away

2. Estimate probability of integration

$$\hat{\Pr}\left(I_{jk}=1\right) = \frac{\exp\left(\hat{\lambda}z_{jk}\right)}{1 + \exp\left(\hat{\lambda}z_{jk}\right)}$$

Intuition: Physicians less likely to seek/allow acquisition if patients live further away

$$\begin{split} \hat{\Gamma}_{jkt} = \gamma_j + \gamma_k + \tau_t + \underbrace{I_{jkt}}_{\hat{I}_{jkt}} \delta_1 + \tilde{z}_{jkt} \delta_2 + \eta_{jkt}, \\ \hat{I}_{jkt} = \hat{\Pr}(I_{jkt} = 1) \end{split}$$

Outcome Estimate St. Error

^{*} p-value <0.1, ** p-value <0.05, *** p-value <0.01

Outcome	Estimate	St. Error
Total Medicare Payments	1032.112**	(498.814)

^{*} p-value <0.1, ** p-value <0.05, *** p-value <0.01

Outcome	Estimate	St. Error
Total Medicare Payments Total Hospital Costs	1032.112** 3213.162***	(498.814) (696.032)

^{*} p-value <0.1, ** p-value <0.05, *** p-value <0.01

Outcome	Estimate	St. Error
Total Medicare Payments Total Hospital Costs Inpatient Hospital Costs	1032.112** 3213.162*** 3081.788***	(498.814) (696.032) (533.495)

^{*} p-value <0.1, ** p-value <0.05, *** p-value <0.01

Outcome	Estimate	St. Error
Total Medicare Payments Total Hospital Costs Inpatient Hospital Costs Inpatient Length of Stay	1032.112** 3213.162*** 3081.788*** 0.108	(498.814) (696.032) (533.495) (0.179)

^{*} p-value <0.1, ** p-value <0.05, *** p-value <0.01

Outcome	Estimate	St. Error
Total Medicare Payments	1032.112**	(498.814)
Total Hospital Costs	3213.162***	(696.032)
Inpatient Hospital Costs	3081.788***	(533.495)
Inpatient Length of Stay	0.108	(0.179)
Outpatient Hospital Costs	-337.977*	(204.733)

^{*} p-value <0.1, ** p-value <0.05, *** p-value <0.01

Allocation of Procedures and

Patients

Other Effects

Other ways integration posited to affect physician behavior:

- More procedures overall (not per patient)
- Reallocating procedures from other hospitals
- Reallocating procedures across inpatient and outpatient settings

Outcome Estimate St. Error

^{*} p-value <0.1, ** p-value <0.05, *** p-value <0.01

Outcome	Estimate	St. Error
Physician's inpatient share	0.065***	(0.003)

^{*} p-value <0.1, ** p-value <0.05, *** p-value <0.01

Outcome	Estimate	St. Error
Physician's inpatient share	0.065***	(0.003)
Physician's outpatient share	0.047***	(0.003)

^{*} p-value <0.1, ** p-value <0.05, *** p-value <0.01

Outcome	Estimate	St. Error
Physician's inpatient share	0.065***	(0.003)
Physician's outpatient share	0.047***	(0.003)
Total patients	6.892***	(0.527)

^{*} p-value <0.1, ** p-value <0.05, *** p-value <0.01

Outcome	Estimate	St. Error
Physician's inpatient share	0.065***	(0.003)
Physician's outpatient share	0.047***	(0.003)
Total patients	6.892***	(0.527)
Inpatient procedures	0.784***	(0.169)

^{*} p-value <0.1, ** p-value <0.05, *** p-value <0.01

Outcome	Estimate	St. Error
Physician's inpatient share	0.065***	(0.003)
Physician's outpatient share	0.047***	(0.003)
Total patients	6.892***	(0.527)
Inpatient procedures	0.784***	(0.169)
Outpatient procedures	9.929***	(1.087)

^{*} p-value <0.1, ** p-value <0.05, *** p-value <0.01

Effects per Patient

- Increase in Medicare payments (\$110 to \$300) and hospital costs (\$255-\$500)
- Extrapolates to between \$77 and \$210 million in added Medicare payments from vertical integration

Sensitivity

- Event study consistent with common trends for Medicare payments and total hospital costs
- Calculation of 2×2 DD weights suggests relatively small portion of negative weights (70% positive weights)
- As falsification test, no effects on payments or DRG weights per inpatient stay

Effects on Total Patients and Allocation of Procedures

- More procedures going to acquiring hospital
- New procedures predominantly coming from outpatient side (13 new outpatient procedures per inpatient procedure)

Interpreting Main Results

- Total within-physician variation in Medicare payments of around \$140,000 per physician per year
- Increases due to vertical integration of between \$110 and \$300 per patient per year
- 5-13% of within-physician variation explained by vertical integration

Thank You