2016-2017 CORRIGE et Bareme CHIMIE 1 – IE3 sur 40 points Remarque : TOR = Tout Ou Rien EXERCICE I : Rayons X et structures cristallines

	I.A - Production des rayons X		
Question	Réponse	Points	Total
I.A.1	$\lambda_0 = \frac{hc}{eU} = 1,0390A$		
	La limite du fond continu est indépendante de l'anticathode et dépend seulement de la tension appliquée.		
I.A.2	Transitions permises K-L ₂ , K-L ₃ et K-M _{2,3} avec $\lambda_{K-L_2} > \lambda_{K-L_3} > \lambda_{K-M_{2,3}}$ $\Delta E_3 = \frac{12400}{\lambda_3} = 8617eV = \left E_K - E_{L_2} \right \text{ donc } \lambda_3 = \lambda_{K-L_2}$		
	$\Delta E_2 = \frac{12400}{\lambda_2} = 8639eV = E_K - E_{L_3} \text{ donc } \lambda_2 = \lambda_{K - L_3}$ $\Delta E_1 = \frac{12400}{\lambda_1} = 9572eV = E_K - E_{M_{2,3}} \text{ donc } \lambda_1 = \lambda_{K - M_{2,3}}$		
I.A.3	Spectre de rayons X avec limite du fond continu et 3 raies identifiées $\begin{array}{c c} \lambda_{L3} & \lambda_{L2} \\ \lambda_{M2,3} & \lambda_{L2} \\ \hline \end{array}$ Proportion intensités respectée		
I.A.4	Relation de Moseley appliquée pour $\sqrt{E_K}$ fonction affine de Z seule donnée pour metal \mathbf{M} $Z_{Fe} - Z_M = \frac{\sqrt{Ek(Fe)} - \sqrt{Ek(M)}}{\sqrt{Ek(Fe)} - \sqrt{Ek(Zn)}} (Z_{Fe} - Z_{Zn})$ $Z_M = 26 + 4 \frac{\sqrt{7112} - \sqrt{8978.9}}{\sqrt{7112} - \sqrt{9658.6}} = 29$ M correspond au cuivre		
I.A.5	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ¹ 3d ¹⁰ 4ème période, Groupe 11, bloc d		
I.A.6	$E_K(Fe) < \Delta E_{K-L_3}(Zn) = \Delta E_2 = 8639eV < E_K(M)$ Donc peut provoquer la fluorescence X du Fe mais pas de M		
I.A.7	$\lambda_{K-M_{2,3}} = \lambda_1 < \lambda_K(M) = 1,3810 = \frac{12400}{8978,9} < \lambda_{K-L_3} = \lambda_2 < \lambda_{K-L_2} = \lambda_3$		

	Ou $\Delta E_1 = \frac{12400}{\lambda_1} = 9572eV > E_K(M) $	
	Donc un écran en métal M est capable de filtrer la raie N°1 sans absorber les raies 2 et 3	
I.A.8	$I_1 = I_1^0 \exp(-\mu x) = 0.01 \ avec \ \mu = 2319.2 \text{cm}^{-1}$	
	$x = \frac{1}{\mu} \ln(0,01) = 19,86 \mu m$	
I.A.9	$I_2 = I_0 \exp(-\mu_2 x') \ avec \ \mu_2 = 356.8 \ cm^{-1} \ et \ x'=25 \mu m$	
	$I_3 = 0.5I_0 \exp(-\mu_x x')$ avec $\mu_z = 374.6 \text{ cm}^{-1} \text{ et x'} = 25 \mu \text{m}$	
	soit $I_2 = 2,1 I_3$	
	TOTAL EXERCICE I	

	I.B – Etude de la structure cristalline du zirconium		
Question	Réponse	Points	Total
I.B.1	$Zr Z=40 1s^{2}2s^{2}2p^{6}3s^{2}3p^{6}4s^{2}3d^{10}4p^{6}5s^{2}4d^{2}$		
	Zr (II) et Zr (IV) degrés d'oxydation les plus stables		
I.B.2	hP		
	Motif = 2 atomes de Zr		
I.B.3	$a = \frac{c}{2}\sqrt{\frac{3}{2}} = 3,152 \text{ Å}$		
I.B.4	Schémas (0 si pas de référentiel)		
	{001} et{100} sont des familles de plans réticulaires		
	$d_{100} = \sqrt{a^2 - (\frac{a}{2})^2} = \frac{\sqrt{3}}{2}a = a \sin(60^\circ) = 2,730A$		
	$d_{001} = c = 5,148A$		
I.B.5	Atomes tangents suivant l'arête du losange R=a/2=1,576 Å		
	I	1	

Question	Réponse	Points
I.C.1 et 2	$d_{003} = \frac{c}{3} = 5,9223A$ soit c= 17,767A	
	$d_{201} = \frac{1}{\sqrt{\frac{4}{a^2} + \frac{1}{c^2}}} \text{ soit a} = \frac{2}{\sqrt{\frac{1}{d_{201}^2} - \frac{1}{c^2}}} = 5,021(4)A$	
	$d_{110} = \frac{1}{\sqrt{\frac{1}{a^2} + \frac{1}{b^2}}} \text{ soit b} = \frac{1}{\sqrt{\frac{1}{d_{110}}^2 - \frac{1}{a^2}}} = 9,886(2)A$	
	Système orthorhombique	
I.C.3	$\rho = \frac{m}{V} = \frac{4M}{N_A} \frac{1}{abc} = 1,393 \text{ g.cm}^{-3}$	
I.C.4	oP, oI, oF, oS	
	oI : absence des plans dont la somme h+k+l est impaire	
	oF : absence des plans dont la parité des indices est mixte	

	oS (base centrée des vecteurs a, b : absence des plans h+k est
	impaire ; base centrée des vecteurs a, c : absence des plans h+l est
	impaire ; base centrée des vecteurs b, c: absence des plans k+l est
	impaire)
	Le mode de réseau est primitif
I.C.5	3 axes A ₂ passant par le centre de 2 faces opposées
I.C.6	Schémas avec plans 111 et 201
	111 201
	TOTAL EXERCICE I.C

Exercice II Structure et réactivité de la 3-oxo-butanoyl homosérine lactone II.A Structure de la 3-oxo-butanoyl homosérine lactone.

Question	Réponse	Points	Total
II.A.1	O:		
II.A.2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
II.A.3	$1: sp^2 / 2: sp^3 / 3: sp^2 / 4: sp^2 / 5: sp^3 / 6: sp^2$		
II.A.4	1 : Hybridation sp ² angle d'environ 120°		
	7 : Hybridation sp3 angle d'environ 109°		
II.A.5	Liaison simple a de type σ entre 2 C : sp^3 - sp^3		
	Liaison double b entre C et O : σ : sp^2 - sp^2 et π p-p		
	TOTAL EXERCICE II.A	•	

Question	Réponse	Points	
II.B.1	Réponse Réponse $ \begin{array}{cccccccccccccccccccccccccccccccccc$		

	H—O—H n.o (O) = -II / AX ₃ E pyramide trigonale α <109, 7°	
II.B.2	a) $Cr_2O_7^{2-}/Cr^{3+}$ et 3-oxoHSL/3-hydroxyHSL avec justif par n.o.	
	$Cr_2O_7^{2-} + 14H_3O^+ + 6e^-f 2Cr^{3+} + 21H_2O$ b) $3-oxoHSL + 2xH_3O^+ + 2e^-f 3-hydroxyHSL + 2H_2O$ $3(3-hydroxyHSL) + Cr_2O_7^{2-} + 8H_3O^+f 2Cr^{3+} + 15H_2O + 3(3-oxoHSL)$	
II.B.3a	stabilisation de la base conjuguée par mésomérie pKa le plus élevé, amine secondaire effet mésomère > effet inductif	
II.B.3b	A pH = 7 la pipéridine est sous forme acide, protonée : le doublet de l'azote n'est plus disponible pour l'ouverture de la lactone.	
	TOTAL EVED CICE II D	

TOTAL EXERCICE II.B

	Exercice III Etude du spectre d'émission d'un hydrogé	<u>noïde</u>	
Question	Réponse	Points	Total
III.1	$E_{i} = E_{1} - E_{\infty} = hcR_{H}Z^{2}(\frac{1}{1^{2}} - 0) = -E_{1}$		
	$Z = \sqrt{\frac{E_i(eV)e}{hcR_H}} = 4$ (-0,5 si non justifié)		
	$_{4}\mathrm{Be}^{3+}$		
III.2	De même $\Delta E_{n\to\infty} = E_n - E_{\infty} = hcR_H Z^2 (\frac{1}{n^2} - 0) = -\frac{E_1}{n^2} = -E_n$		
	$E_1 = -217,60 \text{ eV}$; $E_2 = -54,40 \text{ eV}$; $E_3 = -24,18 \text{ eV}$; $E_4 = -13,60$		
	$eV ; E_5 = -8,70 eV ; E_6 = -6,04 eV$		
III.3	$211.6 = \Delta E_{1\to 6} > \Delta E > \Delta E_{1\to 4} = 204.0$		
	et $\Delta E_{1\rightarrow 5}$ =208.9 eV compris		
	dans la bande 206.8 eV - 210.9 eV		
	Il y a excitation de n=1 vers n=5		
III.4	Il y a 10 raies dans le spectre d'émission (4+3+2+1)		
III.5	$\Delta E = \frac{12400}{\lambda} = 4,913eV = \Delta E_{5\rightarrow 4} \text{ (transition 5 vers 4)}$		
	Domaine UV		
III.6	Diagramme de Grotrian complet (axes, référentiel, 6 niveaux,		
	excitation 1→5, 10 raies d'émission dont 5→4 distinguée)		
	TOTAL EXERCICE III	1	