960

1/23

ATGGCAAATA	AAGCAGTAAA	TGACTTTATA	CTAGCTATGA	40
ATTACGATAA	AAAGAAACTC	TTGACCCATC	AGGGAGAAAG	80
TATTGAAAAT	CGTTTCATCA	AAGAGGGTAA	TCAGCTACCC	120
GATGAGTTTG	TTGTTATCGA	AAGAAAGAAG	CGGAGCTTGT	160
CGACAAATAC	AAGTGATATT	TCTGTAACAG	CTACCAACGA	200
CAGTCGCCTC	TATCCTGGAG	CACTTCTCGT	AGTGGATGAG	240
ACCTTGTTAG	AGAATAATCC	CACTCTTCTT	GCGGTCGATC	280
GTGCTCCGAT	GACTTATAGT	ATTGATTTGC	CTGGTTTGGC	320
AAGTAGCGAT	AGCTTTCTCC	AAGTGGAAGA	TCCCAGCAAT	360
TCAAGTGTTC	GCGGAGCGGT	AAACGATTTG	TTGGCTAAGT	400
GGCATCAAGA	TTATGGTCAG	GTCAATAATG	TCCCAGCTAG	440
AATGCAGTAT	GAAAAAATCA	CGGCTCACAG	CATGGAACAA	480
CTCAAGGTCA	AGTTTGGTTC	TGACTTTGAA	AAGACAGGGA	520
ATTCTCTTGA	TATTGATTTT	AACTCTGTCC	ATTCAGGCGA	560
AAAGCAGATT	CAGATTGTTA	ATTTTAAGCA	GATTTATTAT	600
ACAGTCAGCG	TAGACGCTGT	TAAAAATCCA	GGAGATGTGT	640
TTCAAGATAC	TGTAACGGTA	GAGGATTTAA	AACAGAGAGG	680
AATTTCTGCA	GAGCGTCCTT	TGGTCTATAT	TTCGAGTGTT	720
GCTTATGGGC	GCCAAGTCTA	TCTCAAGTTG	GAAACCACGA	760
GTAAGAGTGA	TGAAGTAGAG	GCTGCTTTTG	AAGCTTTGAT	800
AAAAGGAGTC	AAGGTAGCTC	CTCAGACAGA	GTGGAAGCAG	840
ATTTTGGACA	ATACAGAAGT	GAAGGCGGTT	ATTTTAGGGG	880
GCGACCCAAG	TTCGGGTGCC	CGAGTTGTAA	CAGGCAAGGT	920

GGATATGGTA GAGGACTTGA TTCAAGAAGG CAGTCGCTTT

ACAGCAGATC	ATCCAGGCTT	GCCGATTTCC	TATACAACTT	1000
CTTTTTTACG	TGACAATGTA	GTTGCGACCT	TTCAAAATAG	1040
TACAGACTAT	GTTGAGACTA	AGGTTACAGC	TTACAGAAAC	1080
GGAGATTTAC	TGCTGGATCA	TAGTGGTGCC	TATGTTGCCC	1120
AATATTATAT	TACTTGGAAT	GAATTATCCT	ATGATCATCA	1160
AGGTAAGGAA	GTCTTGACTC	CTAAGGCTTG	GGACAGAAAT	1200
GGGCAGGATT	TAACGGCTCA	CTTTACCACT	AGTATTCCTT	1240
TAAAAGGGAA	TGTTCGTAAT	CTCTCTGTCA	AAATTAGAGA	1280
GTGTACCGGG	CTTGCTTGGG	AATGGTGGCG	TACGGTTTAT	1320
GAAAAAACCG	ATTTGCCACT	AGTGCGTAAG	CGGACGATTT	1360
CTATTTGGGG	AACAACTCTC	TATCCGCAGG	TAGAAGATAA	1400
GGTAGAAAAT	GAC			1413

ATGGCAAATA AAGCAGTAAA TGACTTTATA CTAGCTATGA	40
ATTACGATAN ₅₀ AAAN ₅₄ AAACTC TTGACCCATC AGGGAGAAAG	80
TATTGAAAAT CGTTTCAN98CA AAGAGGGTAA TCAGCTACCC	120
${\rm GN_{122}TGAGTTTG}$ ${\rm TTGN_{134}TAN_{137}CGA}$ AAGAAAGAAG CGGAGCTTGT	160
CGACAAATAC AAGTGATATT N ₁₈₁ CTGTAN ₁₈₇ CAG CTACCN ₁₉₆ ACGA	200
CAGTCGCCTC TATCCTGGAG CACTTCTCGT AGTGGATGAG	240
ACCTTGTN248AG AGAATAATCC CACTCTTCTT GCGGTN276GATC	280
GTGCTCCGAT GACTTATAGT AN302TGN305TTTGC CTGGTTTGGC	320
AAGTAGCGAT AGCTTTCTCC AAGTGGAAGA N ₃₅₁ CCCAGCAAT	360
TCAAGTGTTC GCGGAGCGGN380 AN382ACGATTTG TTGGCTAAGT	400
GGCATCAAGA TTATGGTCAG GTCAATAATG TCCCAGCTAG	440
AAN443GCAGTAT GAAAAAATN459A CGGCTCACAG CATGGAACAA	480
CTCAAGGTCA AGTTTGGTTC TGACTTTGAA AAGN514CAGGGA	520
ATTCTCTTGA TATTGATTTT AACTCTGTCC ATTCAGGN558GA	560
AAAGCN ₅₆₆ GATT CAGATTGTTA ATN ₅₈₃ TTAAGCA GATTTATTAT	600
ACAGTCAGCG TAGACGCTGT TAAAAATCCA GGAGATGTGT	640
TTCAAGATAC TGTAACGGTA GAGGATTTAA AACAGAGAGG	680
AATTTCTGCA GAGCGTCCTT TGGTCTATAT TTCGAGN717GTT	720
GCTTATGGGC GCCAAGTCTA TCTCAAGTTG GAAACCACGA	760
GTAN ₇₆₄ GAGTGN ₇₇₀ TGAAGTAGAG GCTGCTTTTG AAGCTTTGAT	800
AAAAGGAGTC AAGGTAGCTC CTCAGACAGA GTGGAAGCAG	840
ATTTTGGACA ATACAGAAGT GAAGGCGGTT ATTTTAGGGG	880
GCGACCCAAG TTCGGGTGCC CGAGTTGTAA CAGGCAAGGT	920
GGATATGGTA GAGGACTTGA TTCAAGAAGG CAGTCGCTTT	960
ACAGCAGATC ATCCAGGCTT GCCGATTTCC TATACAACTT	1000

FIG. 2

CTTTTTTACG '	TGACAATGTA GTTGCGACCT TTCAAAAN ₁₀₃₈ AG	1040
TACAGACTAT (GTTGAGACTA AGGTTACAGC TTACAGAAAC	1080
GGAGATTTAC '	TGCTGGATCA TAGTGGTGCC TATGTTGCCC	1120
AATATTATAA	TACTTGGN ₁₁₃₈ AT GAATTATCCT ATGATCATCA	1160
AGGTAAGGAA (GTCTTGACTC CTAAGGCTTG GGACAGAAAT	1200
GGGCAGGATT '	TN ₁₂₁₂ ACGGCTCA CTTTACCACT AGTATTCCTT	1240
TAAAAGGGAA '	TGTTCGTAAT CTCTCTGTCA AAATTAGAGA	1280
GTGTACCGGG (CTTGCN _{12%} TGGG AATGGTGGCG TACGGTTTAT	1320
GAAAAAACCG	ATTTGCCACT AGTGCGTAAG CGGACGATTT	1360
CTATTTGGGG	AACAACTCTC TATCCN ₁₃₈₆ CAGG TAGAN ₁₃₉₅ GATAA	1400
GGTAGAAAAT (GAC	1413

Met Ala Asn Lys Ala Val Asn Asp Phe Ile Leu Ala Met Asn Tyr Asp Lys Lys Leu Leu Thr His Gln 20 Gly Glu Ser Ile Glu Asn Arg Phe Ile Lys Glu Gly 30 Asn Gln Leu Pro Asp Glu Phe Val Val Ile Glu Arg 40 45 Lys Lys Arg Ser Leu Ser Thr Asn Thr Ser Asp Ile 55 Ser Val Thr Ala Thr Asn Asp Ser Arg Leu Tyr Pro 65 Gly Ala Leu Leu Val Val Asp Glu Thr Leu Leu Glu Asn Asn Pro Thr Leu Leu Ala Val Asp Arg Ala Pro Met Thr Tyr Ser Ile Asp Leu Pro Gly Leu Ala Ser 100 Ser Asp Ser Phe Leu Gln Val Glu Asp Pro Ser Asn 110 115 Ser Ser Val Arg Gly Ala Val Asn Asp Leu Leu Ala 125 Lys Trp His Gln Asp Tyr Gly Gln Val Asn Asn Val 140 Pro Ala Arg Met Gln Tyr Glu Lys Ile Thr Ala His 150 Ser Met Glu Gln Leu Lys Val Lys Phe Gly Ser Asp 160 165 Phe Glu Lys Thr Gly Asn Ser Leu Asp Ile Asp Phe 175 Asn Ser Val His Ser Gly Glu Lys Gln Ile Gln Ile 185 Val Asn Phe Lys Gln Ile Tyr Tyr Thr Val Ser Val 200 Asp Ala Val Lys Asn Pro Gly Asp Val Phe Gln Asp 210-215 Thr Val Thr Val Glu Asp Leu Lys Gln Arg Gly Ile 225 220 Ser Ala Glu Arg Pro Leu Val Tyr Ile Ser Ser Val 235 Ala Tyr Gly Arg Gln Val Tyr Leu Lys Leu Glu Thr 245 Thr Ser Lys Ser Asp Glu Val Glu Ala Ala Phe Glu 255 260 Ala Leu Ile Lys Gly Val Lys Val Ala Pro Gln Thr 270 Glu Trp Lys Gln Ile Leu Asp Asn Thr Glu Val Lys 280

											_
Ala		Ile	Leu	Gly	Gly		Pro	Ser	Ser	Gly	
	290					295					300
Arg	Val	Val	Thr	Gly	Lys	Vạl	Asp	Met	Val	Glu	Asp
_				305	_				310		
Leu	Ile	Gln	Glu	Gly	Ser	Arq	Phe	Thr	Ala	Asp	His
		315		•		_	320	•		. –	
Pro	Glv		Pro	Ile	Ser	Tvr	Thr	Thr	Ser	Phe	Leu
325	_,				330	4				335	•
Ara	Δsn	Agn	Va 1	Val	Ala	Thr	Phe	Gln	Asn		Thr
•9	11Dp		340					345	- -		,_
Nan	Tree	\ 10 ⊃ 1		ጥኮሎ	Lys	Va 1	Thr		Tvr	Ara	Asn
Map	350	vai	Giu	1111	פעם	355			-1-		360
~ 1	350	T	T	T 011	7		80~	C1.	7 l n	77.7	
GTA	Asp	пеп	Leu	Dea	Asp	uip	Ser	GIY	370	TÄT	VQI
	~-3	_	_	365	CT1	·	3	~ 3		0	m
Ala	GIn		туr	тте	Thr	Trp	Asn	GIU	ьeu	Ser	TAT
		375					380		_	_	
Asp	His	Gln	Gly	Lys	Glu	Val	Leu	Thr	Pro	Lys	Ala
385					390					395	
Trp	Asp	Arg	Asn	Gly	Gln	Asp	Leu	Thr	Ala	His	Phe
_	_		400					405	•		
Thr	Thr	Ser	Ile	Pro	Leu	Lys	Gly	Asn	Val	Arg	Asn
	410					415	•-	·			420
Leu	Ser	Val	Lvs	Ile	Arg	Glu	Cys	Thr	Gly	Leu	Ala
				425	_				430		
Tro	Glii	Tro	Tro		Thr	Val	Tvr	Glu	Lvs	Thr	Asp
		435		5		•	440		•		_
T.e.11	Pro		Val	Ara	Lys	Ara	Thr	Tle	Ser	Ile	Trp
445	110	LCu	• •		450	5				455	F
	Π'h~	Th~	LOW	ጥላታም	Pro	Gln	77= 7	G111	Agn		Va 1
GIA	1111	1111	460	TÄT	FIO	مبنى	va.	465	ras p	,-	14,1
C11	3	3	400					-£ 0.3			
GIU	Asn	Asp									
	470										

Met Ala Asn Lys Ala Val Asn Asp Phe Ile Leu Ala Met Asn Tyr Asp Xaa Xaa Lys Leu Leu Thr His Gln Gly Glu Ser Ile Glu Asn Arg Phe Xaa Lys Glu Gly 30 Asn Gln Leu Pro Xaa Glu Phe Val Xaa Xaa Glu Arg Lys Lys Arg Ser Leu Ser Thr Asn Thr Ser Asp Ile 55 Xaa Val Xaa Ala Thr Xaa Asp Ser Arg Leu Tyr Pro Gly Ala Leu Leu Val Val Asp Glu Thr Xaa Leu Glu Asn Asn Pro Thr Leu Leu Ala Val Asp Arg Ala Pro 90 Met Thr Tyr Ser Xaa Xaa Leu Pro Gly Leu Ala Ser Ser Asp Ser Phe Leu Gln Val Glu Asp Pro Ser Asn 105 115 Ser Ser Val Arg Gly Ala Xaa Xaa Asp Leu Leu Ala Lys Trp His Gln Asp Tyr Gly Gln Val Asn Asn Val Pro Ala Arg Xaa Gln Tyr Glu Lys Xaa Thr Ala His Ser Met Glu Gln Leu Lys Val Lys Phe Gly Ser Asp 150 Phe Glu Lys Xaa Gly Asn Ser Leu Asp Ile Asp Phe 175 Asn Ser Val His Ser Gly Glu Lys Xaa Ile Gln Ile 185 Val Asn Xaa Lys Gln Ile Tyr Tyr Thr Val Ser Val Asp Ala Val Lys Asn Pro Gly Asp Val Phe Gln Asp Thr Val Thr Val Glu Asp Leu Lys Gln Arg Gly Ile Ser Ala Glu Arg Pro Leu Val Tyr Ile Ser Xaa Val 235 Ala Tyr Xaa Arg Gln Val Tyr Leu Lys Leu Glu Thr 245 Thr Ser Xaa Ser Xaa Glu Val Glu Ala Ala Phe Glu Ala Leu Ile Lys Gly Val Lys Val Ala Pro Gln Thr 270 Glu Trp Lys Gln Ile Leu Asp Asn Thr Xaa Val Lys

	290					295	i				Ala 300
				305					210		Asp
		315					320		Ala	Asp	His
325					330					335	Leu
			340					345		Ser	Thr
	350					355					Asn 360
				365					370		Val
		Tyr 375					380				-
385		Gln			390					305	
		Arg	400					405		His	
	41U	Ser				415				_	420
		Val		425					430		Ala
		Trp 435					440		_		_
440		Leu			450					455	
Gly			Leu 460	Tyr	Pro-	Gln	Val	Glu 465	Asp	Lys	Val
Glu	Asn 470	Asp									

Fig. 5

C)
ű
ķŝ
T)
=====================================
#=
æ
CJ
£.,
N
ķ ≜
Ų.
Ōĵ

800 pp		#764:AAG-AGG #255:Lys-Gb		#717-AGT-AGA #239-Set-Arg	#770:GAT-GGT #257:Asp-Gly						
002 009		#583;TTT-ATT #195;Pho-lle				.G-0.GG r-Arg	#583TTT-GTT #195:Pbe-Val	#583:TTT-GTT #193-Phe-Val	#583-11T-A1T #195-Phe-lie		
2005	•	#514:ACA-GCA #172:Thr-Ala	#43:ATG-AAG #148:Met-Lys		•	#566.CAG-0G0 #189.Gin-Arg				#43:ATG-AAG #148:Mc+Lys	
400	6302-ATT-ACT 8101:36-Th		#3#DcGTA-GAA #127:Val-Gh #382-AAC-CAC #128:Asn-His			#305:GAT-GGT #102-Amp-Gly					
200 300	#181:TCT-CCT #61:Scr-Pro #196:AAC-TAC #66:Asn-Tly		#187.ACA-TCA #63:Thr-Scr	FARITA-TCA ABLARSe	8	Ħ		-	•		#181.71CT-OCT #61.5cn.Pm
001	\$\$0-AAA-AGA \$171.ys-Avg \$\$4:AAG-AAT \$181.ys-Asn	#122:GAT-GGT #41:Asp-Gly		#98:ATC-ACC #31:116-Thr	#137-ATC-ACC #44:16-Th	#134-G1T-GCT #45:Val-Ala					
o —	H Xin	1	27	ដ		1-56		J-103	1-207	- 12	1711

Fig. 7

FIG. 8

68

14

23

Polysaccharide Type

in Mice after 2 Injections: Pneumolysin versus Tetanus Toxoid Carriers Polysaccharide-Specific IgG for Tetravalent Pneumococcal Conjugates

PS - Pneumolysin ■ 0.5 µg PS - Tetanus Toxoid PS - Pneumolysin ■ 2.0 µg PS - Tetanus Toxoid 0.5 µg |

EXPRESS MAIL NO. E1086494813US

■ 0.5 μ g PS ■ 2.0 μ g PS

Polysaccharide (PS)-Specific Opsonophagocytic Activity Elicited by Tetravalent Pneumococcal PS-Pneumolysin and PS-Tetanus Toxoid Conjugate Vaccines in Mice after 2 Injections

Anti-Hemolytic Pneumolysin-Specific Activity Elicited by Monovalent & Tetravalent Pneumococcal Conjugates in Mice after 3 Injections

Titer

Fig 14

CD Spectra of Mutant Pneumolysin (Free Protein and Conjugate)

Tetravalent Pneumococcal Pneumolysoid Conjugate Vaccine in Mice: Polysaccharide-Specific IgG Response over Time

H±1 611

Tetravalent Pneumococcal TT Conjugate Vaccine (2nd) in Mice: Polysaccharide-Specific IgG Response over Time

F19 17B

Monovalent Pneumococcal Pneumolysoid Conjugate Vaccines in Mice: Polysaccharide-Specific IgG Response over Time

F19 17C