

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIADO RIO GRANDE DO NORTE – IFRN

Disciplina: Arquitetura de redes de computadores

Professor: M. Sc. Rodrigo Ronner T. da Silva

E-mail: rodrigo.tertulino@ifrn.edu.br

Capítulo 3

Camada de transporte

© 2014 Pearson. Todos os direitos reservados.

Introdução e serviços de camada de transporte

KUROSE | ROSS

Redes de computadores e a internet

uma abordagem top-down

6ª edição

 A camada de transporte fornece comunicação lógica, e não física, entre processos de aplicações:

Propósito de camada de transporte

Permitir que aplicativos em dispostivos se comuniquem

Relação entre as camadas de transporte e de rede

- Um protocolo de camada de transporte fornece comunicação lógica entre *processos* que rodam em hospedeiros diferentes.
- Um protocolo de camada de rede fornece comunicação lógica entre *hospedeiros*.
- Uma rede de computadores pode disponibilizar vários protocolos de transporte.
- Os serviços que um protocolo de transporte pode fornecer são muitas vezes limitados pelo modelo de serviço do protocolo subjacente da camada de rede.

Visão geral da camada de transporte na Internet

- A responsabilidade fundamental do UDP e do TCP é ampliar o serviço de entrega IP entre dois sistemas finais para um serviço de entrega entre dois processos que rodam nos sistemas finais.
- A ampliação da entrega hospedeiro a hospedeiro para entrega processo a processo é denominada multiplexação/demultiplexação de camada de transporte.
- O UDP e o TCP também fornecem verificação de integridade ao incluir campos de detecção de erros nos cabeçalhos de seus segmentos.

Transporte de dados Multiplexação e demultiplexação

Segmentar os dados

- Habilita muitas comunicações diferentes, de vários usuários diferentes, que podem ser intercaladas (multiplexadas) na mesma rede, ao mesmo tempo.
- Fornece os meios para enviar e receber dados ao executar várias aplicações.
- O cabeçalho adicionado em cada segmento para identificá-lo.

Multiplexação e demultiplexação

- A tarefa de entregar os dados contidos em um segmento da camada de transporte ao socket correto é denominada demultiplexação.
- O trabalho de reunir, no hospedeiro de origem, partes de dados provenientes de diferentes sockets, encapsular cada parte de dados com informações de cabeçalho para criar segmentos, e passar esses segmentos para a camada de rede é denominada multiplexação.

Separando várias comunicações

Os números de porta são usados pelo TCP e pelo UDP diferenciar entre aplicativos.

Endereço de Porta

Os dados de diferentes aplicativos são direcionados para o aplicativo correto porque cada aplicativo tem um número de porta único.

Endereço de porta do TCP e UDP

Endereço de porta do TCP e UDP

Números de portas

Transporte não orientado para conexão: UDP

- O UDP, definido no [RFC 768], faz apenas quase tão pouco quanto um protocolo de transporte pode fazer.
- À parte sua função de multiplexação/demultiplexação e de alguma verificação de erros simples, ele nada adiciona ao IP.
- Se o desenvolvedor de aplicação escolher o UDP, em vez do TCP, a aplicação estará "falando" quase diretamente com o IP.
- O UDP é não orientado para conexão.

Transporte não orientado para conexão: UDP

• Aplicações populares da Internet e seus protocolos de transporte subjacentes:

Aplicação	Protocolo da camada de aplicação	Protocolo de transporte subjacente
Correio eletrônico	SMTP	TCP
Acesso a terminal remoto	Telnet	TCP
Web	HTTP	TCP
Transferência de arquivo	FTP	TCP
Servidor de arquivo remoto	NFS	Tipicamente UDP
Recepção de multimídia	Tipicamente proprietário	UDP ou TCP
Telefonia por Internet	Tipicamente proprietário	UDP ou TCP
Gerenciamento de rede	SNMP	Tipicamente UDP
Protocolo de roteamento	RIP	Tipicamente UDP
Tradução de nome	DNS	Tipicamente UDP

Estrutura do segmento UDP

• Aplicações populares da Internet e seus protocolos de transporte subjacentes:

32 bits

Número da porta de origem

Comprimento

Soma de verificação

Dados da aplicação (mensagem)

Transporte orientado a conexão TCP

- Uma conexão TCP provê um **serviço** *full-duplex*.
- A conexão TCP é sempre **ponto** a **ponto**.
- Uma vez estabelecida uma conexão TCP, dois processos de aplicação podem enviar dados um para o outro.
- O TCP combina cada porção de dados do cliente com um cabeçalho TCP, formando, assim, **segmentos TCP**.

Transferência confiável de dados

- O TCP cria um **serviço de transferência confiável de dados** sobre o serviço de melhor esforço do IP.
- O serviço de transferência garante que a cadeia de bytes é idêntica à cadeia de bytes enviada pelo sistema final que está do outro lado da conexão.
- Os procedimentos recomendados no [RFC 6298] para gerenciamento de temporizadores TCP utilizam apenas um único temporizador de retransmissão.

Controle de fluxo

- O TCP provê um **serviço de controle de fluxo** às suas aplicações, para eliminar a possibilidade de o remetente estourar o buffer do destinatário.
- Controle de fluxo é um serviço de compatibilização de velocidades.
- O TCP oferece serviço de controle de fluxo fazendo que o remetente mantenha uma variável denominada **janela de recepção**.

Estrutura do segmento TCP

Controle de fluxo

• A janela de recepção (rwnd) e o buffer de recepção (RcvBuffer)

Tamanho da janela e confirmações

Confirmação do segmento TCP e tamanho da janela

O tamanho da janela determina o número de bytes enviados antes que uma confirmação seja esperada.

O número de confirmação é o número de bytes esperados.

Conexão, estabelecimento e término do TCP

Handshake Triplo

- Estabelece que o dispositivo destino está presente na rede.
- Verifica se o dispositivo destino tem um serviço ativo e está aceitando solicitações no número de porta destino que o cliente iniciador pretende usar para a sessão.
- Informa o dispositivo destino que o cliente de origem pretende estabelecer uma sessão de comunicação nessa número de porta.

Estabelecimento de conexão TCP

CTL = Que controla os bits no cabeçalho TCP são definidos como 1 A envia resposta ACK para B.

Término da sessão de TCP

A envia resposta ACK para B.

Confiabilidade de TCP - entrega ordenada

Números de sequência usados para reagrupar segmentos na ordem original

Os segmentos TCP são reordenados no destino

Controle de fluxo de TCP - Prevenção de congestionamento

Congestionamento e controle de fluxo TCP

Se os segmentos são perdidos devido ao congestionamento, o recipiente reconhece o último segmento sequencial recebido e responde com um tamanho de janela reduzido.

Resumo Camada de Transporte

A camada de transporte fornece serviços relacionados aos transportes por:

- Divisão de dados recebidos de um aplicativo em segmentos;
- Adição de um cabeçalho para identificar e gerenciar cada segmento;
- Uso da informação do cabeçalho para reagrupar os segmentos de volta nos dados do aplicativo;
- Transmitir os dados agrupados para o aplicativo correto.