Θέματα 400 εργαστηρίου

1. Από το προηγούμενο εργαστήριο...

Βεβαιωθείτε ότι από το προηγούμενο εργαστήριο έχετε έτοιμο το παρακάτω τμήμα και ότι λειτουργεί ορθά

s1	s0	0
0	0	A and B
0	1	A or B
1	0	A xor B
1	1	A+B (sub=0)
		A-B (sub=1)

Είσοδοι:

- **a, b:** τα 2 bit εισόδου, πάνω στα οποία εκτελούνται οι πράξεις.
- cin, sub: κρατούμενο εισόδου, επιλογή πρόσθεσης ή αφαίρεσης.
- s0, s1: επιλογή πράξης στην ΑΛΜ σύμφωνα με τον προηγούμενο πίνακα.

Έξοδοι:

- ο: το αποτέλεσμα της επιλεγμένης πράξης.
- cout: κρατούμενο εξόδου.

2. AAM των 8 bits.

Συνδυάστε 8 κυκλώματα της ΑΛΜ του 1 bit (alu1) για να σχεδιάσετε μια μονάδα των 8 bits. Από το μενού **Cell** επιλέξτε **New Cell**. Δώστε όνομα (name) **alu8** και επιλέξτε σχηματική απεικόνιση (view: schematic). Πιέστε ΟΚ.

Τα σήματα των bits δεδομένων θα πρέπει να είναι παράλληλα, ενώ τα σήματα ελέγχου θα είναι κοινά για όλες τις 1-bit ΑΛΜ. Ειδική περίπτωση, το σήμα κρατουμένου θα πρέπει να διαδίδεται από το carry-out της προηγούμενης μονάδας στο carry-in της επόμενης.

Το carry-in της πρώτης ΑΛΜ (bit 0) μπορείτε να το συνδέσετε στο σήμα sub, θεωρώντας ότι το τελευταίο επιλέγει αφαίρεση με 1 και πρόσθεση με 0.

Οι ζητούμενες είσοδοι και έξοδοι του νέου τμήματος, καθώς και η λειτουργία τους δίνονται στη συνέχεια:

Είσοδοι:

- **a**[7:0], **b**[7:0] : οι δύο αριθμοί των 8 bits που αποτελούν τα δεδομένα εισόδου.
- **sub, s1, s0** : σήματα επιλογής πράξης (ακριβώς όπως και στην alu1).

(E4)

Έξοδοι:

• **ο[7:0]** : ο αριθμός των 8 bits που παράγεται ως δεδομένο εξόδου.

Ξεκινήστε τη σχεδίαση **αγνοώντας αρχικά τα σήματα c, s, z, v** (θα τα υλοποιήσετε σε επόμενο εργαστήριο). Όπως πάντα ελέγξτε την ορθή λειτουργία του κυκλώματος μέσω εξομοίωσης.

Μην ξεχάσετε να αποθηκεύσετε τη βιβλιοθήκη (library) στο τέλος του εργαστηρίου!

(E4) 2