第1章 機器學習之線性回歸

章節目標:在這一章節,我們介紹什麼是線性回歸,並用幾個例子說明線性回歸的應用, 先用Excel操作, 在用Python來實現,同時熟悉一下follow CRISP-DM (跨領域資料分析作業流程)方法論來建立ML 模型。

- 1. EXCEL 體驗線性迴歸
- 2. 線性迴歸的數學理論

本章學習內容摘要

- 3. 梯度下降法
- 4. COLAB 環境
- 5. PYTHON 實作簡單線性回歸

1. 線性迴歸EXCEL 體驗

2. 線性回歸的數學理論

3. 梯度下降法:

略

凸函數定義

Center (up =) = (dir formation = 3

6. 延伸參考

1. 台大李宏毅 線性回歸

http://speech.ee.ntu.edu.tw/~tlkagk/courses/ML_2017/Lecture/Regression.pdf

2. 白板推导系列 **P9(**系列三**)** 线性回归**1-**最小二乘法及 https://www.bilibili.com/video/BV1aE411o7qd?p=9

作業: 建議速度 30字↑/min

https://www.typing.com/student/typing-test/1-minute

函數網站

7. 實作

Colab (Google)

Text	Note		
# L3 Example 1 : Linear Regression	HTML語法:		
We will follow CRISP-DM design method	 插入圖片		
	可去看W3Cschool		
<img <="" src="https://www.symbolab.com/public/image" td=""/> <td></td>			
s/home_left.png" width="300" height="300">	import numpy as np		
	import matplotlib.pyplot as plt		
Step 1: Load data	import pandas as pd		
	data= pd.read_csv("你的csv檔名")		
	data.head()		
Step 2: Prepatre X, Y	X=data.x.values.reshape(-1,1)		
	Y=data.y.values.reshape(-1,1)		
	print(X.shape)		
Step 3: Build ML Model	# second choice		
	from sklearn import linear_model		
	model = linear_model.LinearRegression()		
	model.fit(X,Y)		
	a=model.coef_		
	b=model.intercept_		
	preY=model.predict(X)		

	data['preY']= preY data.head()
Step 4: Evaluate Model	from sklearn.metrics import r2_score from sklearn.metrics import mean_squared_error as MSE from sklearn.metrics import mean_absolute_error as MAE
	r2score=r2_score(Y, preY) mse=MSE(Y, preY) mae=MAE(Y, preY) print("R2score=",r2score) print("MSE=",mse)
	print("MAE=",mae)
Step 5: Export Model (Write out result, deploy model)	

1. Review 上次内容

- 線性回歸,我們介紹什麼是Excel操作並用幾個例子說明線性回歸的應用,感測器較正
- 在用Python 來實現=>google Coble
- ML 實作方法熟悉一下follow CRISP-DM (跨領域資料分析作業 流程) 方法論來建立ML 模型
 - Step 1: import library, load data
 - Step 2: prepare "feature"
 - All-in今天多元回歸 (multilinear regression) 會著重select feature 方法,
 - 還有包括一些前處理 (missing data=> imputation, normalization, data type 例如 categorical data onehot encoding, Label Encoding,

• 資料型別的 transformation) 各Library 之間的資料溝通都是透過 Numpy (np.ndarray)

- Step 3: Build model
- Step 4: Evaluate model
 - ♦ MSE, MAE, R2

```
from sklearn.metrics import r2_score as R2
from sklearn.metrics import mean_squared_error as MSE
yPre=model.predict(X)
print("MSE=",MSE(Y,yPre))
print("R2=",R2(Y,yPre))
```


◆ Performance Metrics MSE VS. R2

R2 square

https://byam.github.io/dlnd/2017/11/13/model-evaluation-and-validation.html

- 1. MACHINE LEARNING 開發工具
 - (1). Colab ⇒ online ML, DL, ...開發工具

 https://colab.research.google.com
 - (2). Anaconda ==>python, IDE
 https://www.anaconda.com/products/individual
 - (3). Visual Studio ⇒ general IDE visualstudio.microsoft.com

- (4). Sublime Text 3 (good editor)== 尤其是開發 frontend PHP, HTML web https://www.sublimetext.com/3
- (5). Eclipse (Sun) Java ⇒ general IDE
- (6). HeidiSQL ⇒ 編寫資料庫

https://www.heidisql.com/

HFS

https://www.facebook.com/freewarefans/posts/10152105749348487/

https://www.azofreeware.com/2006/03/hfs-20.html

本頁勿刪