

Probabilidad y Estadística (Finanzas Cuantitativas)

2022

MFIN — Universidad Torcuato Di Tella Prof. Sebastián Auguste

sauguste@utdt.edu

Capítulo 5. Simulación de Monte Carlo

Índice

- 1. Intro. ¿En qué consiste?
- 2. Usos y ejemplos

• Lectura: Damodaran

I. INTRO

I. INTRO ¿EN QUE CONSISTE?

- Simple: se define una distribución de probabilidades para una variable, se la calibra, y luego se generan al azar muchas "realizaciones" de esa distribución.
- Es como tirar la moneda muchas veces.
- Luego se trabaja sobre los datos simulados como si fueran datos reales haciendo estadísticas descriptivas
- Se ha extendido su uso a medida que las computadoras han ganado potencia

¿CÓMO SURGIÓ?

- Ya existía el concepto de "statistical sampling". En 1945 nace la primera computadora electrónica, ENIAC -Electronic Numerical Integrator and Computer- en la Universidad de Pennsylvania (Upenn). Un grupo liderado por el físico John Mauchly y el ingeniero Presper Eckert encuentran que a través de circuitos electrónicos se podía contar y resolver problemas matemáticos.
- No muy lejos de ahí Stanislaw Ulam (polaco) y John von Neumann (húngaro), trabajaban para los Los Alamos National Laboratory en temas de armas y se les ocurrió usar ENIAC para resolver problemas a través del método de statistical sampling usando computadoras.
- El método que surge es nuevo y muy pontente, y no sabiendo que nombre ponerle uno de los investigadore propone Monte Carlo por el casino, ya que el tipo de Stanslaw vivía pidiendo plata prestada para ir allí a jugar, y que los primeros cómputos que hicieron fueron para juegos

Introduction to Monte Carlo Methods

In this tutorial, the reader will learn the Monte Carlo methodology and its applications in data science, like integral approximation, and parameter estimation.

Introduction

Two major classes of numerical problems that arise in data analysis procedures are optimization and integration problems. It is not always possible to analytically compute the estimators associated with a given model, and we are often led to consider numerical solutions. One way to avoid that problem is to use simulation. Monte Carlo estimation refers to simulating hypothetical draws from a probability distribution, in order to calculate significant quantities of that distribution.

If we have a continuous function $g(\theta)$ and we want to integrated in the interval (a,b), we can rewrite our integral as an expected value of an uniform distribution $U \sim U[a,b]$, that is:

$$I=\int_a^b g(heta)d heta=\int_a^b [g(heta)(b-a)]rac{1}{(b-a)}d heta=E_U[(b-a)g(heta)]$$

Using the method of moments estimator our integral approximation is:

$$I = \int_a^b g(heta) d heta pprox rac{1}{n} \sum_{k=1}^n (b-a) g(heta_k)$$

Where the

$$\theta_1, \theta_2, \theta_3, \theta_4, \dots, \theta_n$$

2. USOS Y EJEMPLOS

USOS

- Resolver problemas de Optimización (y optimización numérica)
- 2. Resolver Integrales y Ecuaciones Diferenciales
- 3. En negocios: análisis de escenarios y riesgos

EJEMPLO I ALGORITMO DE MARKOWITZ CON SIMULACIÓN

- Algoritmo de Markowitz se usa en inversiones para obtener portafolios eficientes.
- Resuelve: min Var(Rp) sujeto a E(Rp)=algún valor
- Si tengo 2 acciones:

$$R_p = w_1 R_1 + w_2 R_2$$

donde
$$w_1 + w_2 = 1$$

$$varR_p = w_1^2 varR_1 + w_2^2 varR_2 + 2w_1 w_2 cov(R_1, R_2)$$

Ver Excel para 3 activos...

- Paso I: genero una variable al azar con distribución uniforme entre 0 y I. Este va a ser el peso w_1
- Paso 2: genero w_2 como $1 w_1$
- Paso 3: genero retornos y varianzas para el portafolio usando cada uno de esos pesos
- Paso 4: gráfico en dos dimensiones la frontera de Markowtz
- Lo mismo lo puedo hacer con más activos, con los que quiera, y luego ver la frontera. En el Excel del campus está con 3 activos.

EJEMPLO 2 USO DE MONTE CARLO PARA INTEGRALES

- X~N(4,100)
- Compute la probabilidad P(X>5.25) usando el comando Norm.dist
- Ahora compute lo mismo usando simulación de Monte Carlo

EJEMPLO 3 MINICASO: CENTRE HOSPITALIER PRINCESSE-GRACE USO PARA ESTIMAR MOMENTOS DE DISTRIBUCIONES DESCONOCIDAS

- En una guardia de una afamada clínica de Monte Carlo se espera por hora 5 pacientes.
- Cada paciente genera un ticket que en promedio es de USD 30, pero lo que le queda a la clínica depende mucho de la patología y otros factores de cada caso. Hay un parámetro α que es el porcentaje que la clínica se lleva de esa facturación horaria que se sabe sigue una distribución uniforme entre 0.2 y 0.8, ya que el 20% es lo que se lleva el personal como honorarios, y tiene un piso de ganancia mínima. Además, la empresa enfrenta costos por paciente que sigue una distribución Normal con media USD 10 y desvío estándar 2.
- ¿Cuál es la función de ganancia? ¿Qué distribución tiene?
- Utilice Simulación de Monte Carlo para analizar la ganancia de la guardia

RESOLUCIÓN

Ganancia por paciente i:

$$G_i = \alpha \times 30 \times N_i - zN_i$$

- G: Ganancia para la clínica en un día i
- α: porcentaje de los 30 dólares por paciente que se lleva la clínica.
- N: cantidad de pacientes en una hora
- z: costos

RESOLUCIÓN (CONT.)

- Tenemos 3 variables aleatoria identificadas:
- N~P(λ=5)
- $\alpha \sim U(0.2, 0.8)$
- z~N(10, 4)
- Si son independientes entre sí, simulo cada una y armo los distintos escenarios de lo que puede pasar en una hora dada de esta clínica.

UN EJEMPLO SIMPLE

- Pepe Inversor tiene 100 acciones de EEM y USD 30.000 en un estructurado que paga el retorno de SPY si este está entre 0% y 5% mensual.
- ¿Cuál es el retorno esperado de su cartera?
- ¿Qué distribución tiene?
- ¿Cuál es el VaR de mensual de su cartera?
- ¿Cómo lo interpreta?

MINICASO. RISK ANALYSIS DE ESTRUCTURADOS PARA WEST BANK

MINICASO. EL PROBLEMA DEL DIARIERO RELOADED

Truco para hacer Monte Carlo en Excel con dos variables Normales correlacionadas.

Sea rho el coeficiente de correlación entre X e Y, y sabemos la media de X e Y,

Paso I: generamos al azar dos variables aleatorias Normal Estándar ZI y Z2 (independientes).

Paso 2: computamos X e Y como:

$$X = MeanX + StDevX*ZI$$

$$Y = MeanY + StDevY*(ZI*rho + Z2*(I-rho^2)^0.5)$$

Esto nos da dos normales que cumplen con los parámetros deseados.

SIMULACIÓN DE N VARIABLES NORMALES CORRELACIONADAS

• Si $X=(X_1,\ldots,X_n)$ son n variables aleatorias Normales con medias dadas por el vector $\mu=(\mu_1,\ldots,\mu_n)$ y matriz de varianzas y covarianzas:

- I. Genere un vector Z de variables estándares Normales no correlacionadas
- 2. Encuentre la matriz C que cumpla $CC^T = \Sigma$
- 3. Genere el vector X como:

$$X = \mu + CZ$$

EJEMPLO 4. USO DE MONTE CARLO PARA ESCENARIOS

Forecasting Model

i orecasting wode	/ 1	_	
	\$	<u>Variables</u>	<u>Formulae</u>
Sales price	12	V1	
Volume of sales	100	V2	
Cash inflow	1,200		F1 = V1 × V2
Materials	300		F2 = V2 × V4
Wages	400		F3 = V2 × V5
Expenses	200	V3	
Cash outflow	900		F4 = F2 + F3 + V3
Net Cash Flow	300		F5 = F1 – F4
Relevant assumptions			
Material cost per unit	3.00	V4	
Wages per unit	4.00	V5	

Simulation model

CONCLUSIONES

- Simulación de Monte Carlo tiene muchos usos, pero el más extendido en negocio es en análisis de riesgo.
- Cuando la gente estima algo, te da un punto, pero no te dice cuánto te podés alejar de ese punto.
- Con simulación de Monte Carlo puede generar eso

FIN