Lecture 15-16 Risk

stanley

SageArk

June 21, 2024

Table of Contents

- Risk
- 2 Modeling Approach to Risk
- 3 Astronomical Probabilities
- 4 Multivariable Risk Analysis
- **5** Coherent Risk Measures
- 6 Value At Risk
- Simulation Methods for VaR

Understanding Risk

What does risk encompass?

- Potential loss
- Market volatility
- Correlation with other assets
- The worst-case scenarios
- Sensitivity to various factors

Various measures of risk aim to provide insights into these aspects.

Return, Price, PnL, and Beyond

Risk analysis spans different asset classes.

• The principles apply to various types of assets.

Focus of Analysis:

- Price Relevant for bonds and options
- Return Key for equities, futures, and currencies

In some cases, analyzing **profit and loss (PnL)** is more pertinent.

Price and Return Analysis of iShares 7-10 Year Treasury Bond

Figure: Price Trends of iShares 7-10 Year Treasury Bond (2017-2023)

Price and Return Analysis of iShares 7-10 Year Treasury Bond

Figure: Daily Returns of iShares 7-10 Year Treasury Bond (2017-2023)

Tools for Risk Analysis

Tools Overview:

 Risk assessment for equities and other assets often employs more statistical methods and fewer mathematical models compared to fixed income and options pricing.

For Bonds and Options:

 Risk is often evaluated by examining the mathematical sensitivity of prices.

For Equities and Other Assets:

• We analyze the **statistical sensitivity** of returns, which can be thought of as scaled prices.

Modeling Approach to Risk

Key Aspects of the Modeling Approach:

- Stationarity:
 - Often necessary for meaningful analysis.
 - Drives the choice between prices, returns, or profits.
- Independence and Identical Distribution (iid):
 - Critical for statistical methods.
 - Achieving iid can be complex.
- Normal Distribution:
 - Not commonly required but useful for comparisons.
 - Sometimes used for simplification.

Risk Assessment versus Pricing

Distinct Approaches:

- Risk analysis does not rely on alternative **probability measures**.
- Volatility is understood as actual market variation, not derived from options pricing.
- Primarily uses **discrete-time** models, rather than continuous-time stochastic calculus.

Initial Considerations in Risk Analysis

Risk Analysis Question:

• Is a 10-year Treasury Note considered risky?

Focus of Risk Assessment:

- Primarily evaluates risk over a single period.
- Useful for practical risk management and forecasting.
- For example, metrics like Delta and Duration focus on short-term risk.

Extended Analysis:

• Sometimes necessary to consider multi-period risk and cumulative returns.

Moments and Data for Risk Analysis

Data Example:

- We use ETF data from various asset classes.
- Daily data spanning from 2017 to the present.

Advantages of Using ETF Data:

- Focuses on traded securities, avoiding issues with index data.
- Prevents problems related to rolling futures or FX carry trades.
- Be aware of potential differences due to fund expenses and tracking errors (e.g., in oil ETFs).

Data Example

longBusinessSummar	totalAssets	volume	shortName	quoteType	
					ticker
The Trust seeks to achieve its investment obje	4.227204e+11	3695818	SPDR S&P 500	ETF	SPY
The fund employs an indexing investment approa.	1.680537e+11	293687	Vanguard FTSE Developed Markets	ETF	VEA
The fund invests in financial instruments that.	2.758412e+09	433011	ProShares UltraPro S&P 500	ETF	UPRO
The Trust holds gold bars and from time to tim.	5.666016e+10	577948	SPDR Gold Trust	ETF	GLD
USO invests primarily in futures contracts for.	1.516177e+09	142872	United States Oil Fund	ETF	USO
Nal	NaN	88194	Crude Oil Sep 23	FUTURE	CL=F
Nal	2.520237e+08	1019	Invesco CurrencyShares Euro Cur	ETF	FXE
Nal	NaN	13960983552	Bitcoin USD	CRYPTOCURRENCY	BTC-USD
The underlying index is a rules-based index co.	1.456480e+10	1387739	iShares iBoxx \$ High Yield Corp	ETF	HYG
The underlying index measures the performance .	2.911525e+10	773587	iShares 7-10 Year Treasury Bond	ETF	IEF
The index tracks the performance of inflation	2.148979e+10	73739	iShares TIPS Bond ETF	ETF	TIP
The fund will invest at least 80% of its asset	2.004322e+10	315152	iShares Short Treasury Bond ETF	ETF	SHV

Figure: ETF Data Across Various Asset Classes

The Mean: First Moment of a Distribution

Definition:

• The mean (**first moment**) of an unspecified distribution is given by:

$$\mu=E[r]$$

Sample Estimator:

$$\hat{\mu} = \frac{1}{N} \sum_{t=1}^{N} r_t$$

Note: This is often denoted as \bar{r} , but we use $\hat{\mu}$ for consistency with other estimators.

Importance of Mean in Risk Analysis

Relevance to Risk:

- For risk assessment, we primarily use **de-meaned** data to understand deviations from the mean.
- Accurate models of the mean are crucial for forecasting returns in directional investing.

Key Considerations:

- An incorrect mean can distort risk analysis.
- Short-term risk evaluation is less affected by the mean, focusing more on volatility.

Mean Data for ETFs

Analyzing Mean Data:

• Examining mean values for both **price** and **return** helps in understanding the baseline performance of different assets.

Price and Return Data for Various ETFs:

\mathbf{ETF}	Price	Return
SPY	318.28	13.92%
VEA	39.63	7.94%
UPRO	33.03	36.52%
GLD	148.31	8.24%
USO	73.73	2.87%
CL1	63.34	-40.90%
HYG	70.86	3.06%
IEF	102.58	0.65%
TIP	104.04	2.31%
SHV	105.01	1.31%

Table: Mean Prices and Returns for Various ETFs

Variance and Volatility

Definition of Variance:

• The variance is the **second centered moment** of a distribution:

$$\sigma^2 = E\left[(r - \mu)^2 \right]$$

Sample Estimator:

$$\hat{\sigma}^2 = \frac{1}{N-1} \sum_{t=1}^{N} (r_t - \hat{\mu})^2$$

Why N-1?

• This adjustment accounts for the degrees of freedom lost by estimating the mean.

Standard Deviation and Volatility

Definition:

- The standard deviation is the **square root** of the variance.
- Often referred to as volatility, indicating the variation in asset returns.

Technical Points:

- Non-negativity: Standard deviation is always non-negative, ensuring realistic modeling.
- Centering: Variance is the second centered moment, subtracting the mean before squaring.
- Alternative view:

$$\sigma^2 = E\left[r^2\right] - \left(E[r]\right)^2$$

Volatility and Variance for ETFs

ETF Volatility and Variance Data:

\mathbf{ETF}	Volatility	Variance
SPY	19.51%	3.81%
VEA	18.20%	3.31%
UPRO	58.89%	34.68%
GLD	13.79%	1.90%
USO	40.96%	16.78%
CL1	139.29%	194.03%
FXE	7.38%	0.54%
BTC	74.95%	56.17%
HYG	9.38%	0.88%
IEF	6.75%	0.46%
TIP	6.22%	0.39%
SHV	0.26%	0.00%

Table: Volatility and Variance for Various ETFs

Higher Moments: Skewness and Kurtosis

Skewness:

• Skewness is the **third moment** (centered and scaled).

$$\varsigma = \frac{1}{\sigma^3} E\left[(r - \mu)^3 \right]$$

• Sample estimator:

$$\hat{\varsigma} = \frac{1}{\hat{\sigma}^3} \frac{1}{N-1} \sum_{t=1}^{N} (r_t - \hat{\mu})^3$$

- Can be positive or negative and is not typically a percentage.
- Negative skewness indicates a distribution with a long left tail.

Kurtosis

Kurtosis:

• Kurtosis is the **fourth moment** (centered and scaled).

$$\kappa = \frac{1}{\sigma^4} E\left[(r - \mu)^4 \right]$$

• Sample estimator:

$$\hat{\kappa} = \frac{1}{\hat{\sigma}^4} \frac{1}{N-1} \sum_{t=1}^{N} (r_t - \hat{\mu})^4$$

- Non-negative and typically expressed as excess kurtosis, $\kappa-3$.
- This compares to the normal distribution, which has a kurtosis of 3.

Higher Moments Data for ETFs

Higher Moments:

\mathbf{ETF}	Mean	Volatility	Skewness	$\mathbf{Kurtosis}$
SPY	13.92%	19.51%	-0.57	12.55
VEA	7.94%	18.20%	-1.04	16.41
UPRO	36.52%	58.89%	-0.56	14.21
GLD	8.24%	13.79%	-0.22	3.39
USO	2.87%	40.96%	-1.36	16.50
CL1	-40.90%	139.29%	-27.75	931.85
FXE	0.27%	7.38%	0.06	1.03
BTC	80.42%	74.95%	-0.03	5.69
HYG	3.06%	9.38%	0.12	24.73
IEF	0.65%	6.75%	0.25	4.38
TIP	2.31%	6.22%	0.44	16.76
SHV	1.31%	0.26%	0.76	5.18

Table: Mean, Volatility, Skewness, and Kurtosis for Various ETFs

Annualizing Moments

Annualizing:

• Use frequency of data per year, τ , to annualize.

Moment	Annualize	\mathbf{Sign}	\mathbf{Quote}
Mean	au	+ / -	%
Volatility	$\sqrt{ au}$	+	%
Skewness	1	+ / -	Number
Kurtosis	1	+	Number

Table: Annualizing Moments

For example:

- Daily data: $\tau = 252$ (trading days per year).
- Monthly data: $\tau = 12$.

Distribution and Quantiles

Moments vs. Quantiles:

- Moments use the entire distribution, offering high statistical power.
- Quantiles estimate specific points on the distribution without assuming a specific distribution form.

Quantiles:

$$q_{\pi} = F^{-1}(\pi)$$

Sample Estimator:

- Sort sample data in ascending order: $\{r_{(1)}, \ldots, r_{(N)}\}.$
- Quantile estimate:

$$\hat{q}_{\pi} = r_{(\pi N)}$$

Median and Quantiles

Median:

• For $\pi = 0.5$, the quantile is the median:

$$\hat{q}_{0.5} = r_{\text{median}}$$

Technical Note:

• If πN is not an integer, interpolate linearly between the nearest points:

$$\hat{q}_{\pi} = \frac{r_{(\pi N -)} + r_{(\pi N +)}}{2}$$

Normal Distribution and Returns

Key Point:

- None of the risk measures discussed rely on the assumption of a normal distribution.
- Future estimates may depend on assuming normality and understanding how well it fits returns data.

Question:

• How well does a normal distribution approximate actual returns?

Returns vs Normal Distribution

Figure: Histogram of Returns Compared to a Normal Distribution

Considering Outliers

Initial Observation:

• The histogram suggests a reasonable fit for normality.

Outlier Impact:

- A normal distribution implies extreme outliers (5 or 10 standard deviations) are extremely rare.
- In reality, many returns exhibit these extreme outliers.

Outlier Analysis

Outlier Analysis:

\mathbf{ETF}	z Min	z Max		Normal Prob Max
SPY	-8.95	7.33	1.81×10^{-19}	1.18×10^{-13}
VEA	-9.78	7.73	6.83×10^{-23}	5.33×10^{-15}
UPRO	-9.46	7.50	1.55×10^{-21}	3.21×10^{-14}
GLD	-6.22	5.55	2.54×10^{-10}	1.45×10^{-8}
USO	-9.81	6.45	4.88×10^{-23}	5.44×10^{-11}
CL1	-34.85	4.31	2.08×10^{-266}	8.14×10^{-6}
FXE	-4.42	4.56	4.85×10^{-6}	2.51×10^{-6}
BTC	-7.94	5.28	1.01×10^{-15}	6.45×10^{-8}
HYG	-9.32	11.05	5.87×10^{-21}	0.00×10^{0}
IEF	-5.90	6.21	1.77×10^{-9}	2.68×10^{-10}
TIP	-7.33	11.34	1.11×10^{-13}	0.00×10^{0}
SHV	-5.23	6.79	8.41×10^{-8}	5.60×10^{-12}

Table: Outliers: Min and Max z-scores with Normal Distribution Probabilities

Astronomical Probabilities

Key Insight:

- The extremely low probabilities of outliers highlight that returns are not normally distributed.
- While a normal distribution can be a good rough approximation, it fails for the extreme events crucial in risk management.

Impact of Time Frequency on Normality

Normality and Data Frequency:

- The approximation of normality can vary with the time frequency of the data.
- Higher frequency data (daily or intra-daily) may show stronger deviations.
- Over longer intervals, such deviations might average out.

Monthly Returns Example

Monthly Returns Example:

\mathbf{ETF}	z Min	z Max	Normal Prob Min	Normal Prob Max
SPY	-2.80	2.38	2.54×10^{-3}	8.56×10^{-3}
VEA	-3.25	2.82	5.75×10^{-4}	2.37×10^{-3}
UPRO	-3.38	2.28	3.68×10^{-4}	1.12×10^{-2}
GLD	-2.06	2.69	1.99×10^{-2}	3.59×10^{-3}
USO	-4.49	2.80	3.58×10^{-6}	2.54×10^{-3}
CL1	-3.71	5.80	1.03×10^{-4}	3.33×10^{-9}
FXE	-2.36	2.65	9.21×10^{-3}	4.04×10^{-3}
BTC	-1.80	2.61	3.62×10^{-2}	4.58×10^{-3}
HYG	-4.19	2.63	1.38×10^{-5}	4.21×10^{-3}
IEF	-2.52	2.06	5.84×10^{-3}	1.99×10^{-2}
TIP	-4.38	2.62	6.00×10^{-6}	4.46×10^{-3}
SHV	-1.47	3.07	7.04×10^{-2}	1.08×10^{-3}

Table: Outliers in Monthly Returns with Normal Distribution Probabilities

Maximum Drawdown

Definition:

- The Maximum Drawdown (MDD) represents the largest cumulative loss from peak to trough during a given period.
- It's a critical metric for performance evaluation, indicating potential worst-case losses.

Technical Note:

- MDD is often used in backtesting to gauge the risk profile of a strategy.
- Unlike moment-based statistics, MDD is path-dependent and less precise for future forecasts.

Maximum Drawdown Example

Visual Example:

- Consider the price chart below.
- The MDD is the largest drop from a peak to the lowest point in the sample period.

Practical Insight:

• MDD provides a tangible measure of risk but may be difficult to discern directly from a price graph.

Figure: Example of Maximum Drawdown on BTC

Maximum Drawdown Analysis

Interpreting Maximum Drawdown (MDD):

- The MDD chart displays how far the strategy is below its historical maximum for any point in time.
- A value of 0 indicates the strategy is at a new peak.

Multivariable Risk Analysis

Overview:

- Previous risk measures were univariate, focusing on single return distributions.
- We will now explore **multivariable** measures necessary for portfolio risk analysis.

Notation:

- Returns on assets i and j are denoted as r_i and r_j respectively.
- Here, the superscripts are identifiers, not exponents.

Covariance: Understanding Asset Relationships

Definition:

$$\sigma_{i,j} = E\left[(r_{i,t} - \mu_i)(r_{j,t} - \mu_j) \right]$$

- Covariance measures how two assets move together.
- A variable's covariance with itself is its variance.

Sample Estimator:

$$\hat{\sigma}_{i,j} = \frac{1}{N} \sum_{t=1}^{N} (r_{i,t} - \hat{\mu}_i)(r_{j,t} - \hat{\mu}_j)$$

Covariance Matrix: A Multivariable Approach

Covariance Matrix:

 \bullet For K assets, the covariance is represented in a matrix form:

$$\Sigma_{i,j} = \mathbf{\Sigma} = E\left[(\mathbf{r} - \boldsymbol{\mu})(\mathbf{r} - \boldsymbol{\mu})' \right]$$

• The diagonal elements represent variances, and off-diagonal elements represent covariances.

Sample Estimator:

$$\hat{\Sigma} = (\mathbf{R} - \hat{\boldsymbol{\mu}})(\mathbf{R} - \hat{\boldsymbol{\mu}})'\left(\frac{1}{N - K}\right)$$

- $\hat{\mu}$ is the vector of sample means.
- \bullet R is the matrix of returns.

Technical Properties of the Covariance Matrix

Key Properties:

- The covariance matrix Σ is symmetric with K(K+1)/2 unique elements.
- It is also positive (semi-)definite:

$$w'\Sigma w \ge 0$$
 for any vector w

• This implies that any linear combination of assets will have a non-negative variance.

Correlation: Scaling Covariance

Definition:

• Correlation rescales covariance to lie between -1 and 1, facilitating easier interpretation:

$$\rho_{i,j} = \frac{\sigma_{i,j}}{\sigma_i \sigma_j}$$

• It retains the sign of the covariance and indicates the strength of the relationship.

Correlation Matrix:

• Similar to the covariance matrix, the correlation matrix is positive semi-definite.

Correlation Matrix Analysis

Correlation Matrix for Various Assets:

Figure: Correlation Matrix for Various Assets (2017-2023)

Understanding Beta: Linear Decomposition

Beta Definition:

- Beta measures the sensitivity of asset i to asset j.
- Linear regression model:

$$r_{i,t} = \alpha + \beta r_{j,t} + \epsilon_t$$

OLS Estimator:

$$\begin{bmatrix} \hat{\alpha} \\ \hat{\beta} \end{bmatrix} = (\mathbf{R}_j' \mathbf{R}_j)^{-1} \mathbf{R}_j' \mathbf{r}_i$$

• \mathbf{R}_j is an $N \times 2$ matrix with a vector of ones and sample returns of $r_{j,t}$.

Scaled Correlation and Beta

Beta as Scaled Correlation:

• Beta can also be defined through scaled correlation:

$$\beta = \frac{\sigma_i}{\sigma_j} \rho_{i,j}$$

• It uses the standard deviations and correlation of the assets.

Comparison:

 Covariance, correlation, and beta are three perspectives on asset relationships.

Data Comparison:

Data Comparison:

\mathbf{Asset}	Correlation with SPY	Covariance with SPY	\mathbf{Beta}
SPY	100.00%	3.81%	1.00
VEA	88.36%	3.14%	0.82
UPRO	99.92%	11.48%	3.02
GLD	7.69%	0.21%	0.05
USO	32.19%	2.57%	0.68
CL1	14.01%	3.81%	1.00
FXE	17.04%	0.25%	0.06
BTC	24.24%	3.54%	0.93
HYG	79.38%	1.45%	0.38
IEF	-18.82%	-0.25%	-0.07
TIP	3.14%	0.04%	0.01
SHV	-8.38%	-0.00%	-0.00

Table: Comparison of Correlation, Covariance, and Beta with SPY

Multivariate Beta

Multivariate Regression:

• Extends the single-variable beta to multiple variables:

$$r_{i,t} = \alpha + \beta_j r_{j,t} + \beta_k r_{k,t} + \epsilon_t$$

OLS Estimator:

$$\begin{bmatrix} \hat{\alpha} \\ \hat{\beta}_j \\ \hat{\beta}_k \end{bmatrix} = (\boldsymbol{R}'\boldsymbol{R})^{-1}\boldsymbol{R}'\boldsymbol{r}_i$$

• R is the matrix with columns of ones, $r_{j,t}$, and $r_{k,t}$.

Comparison of Multivariate and Univariate Beta

Comparison Table:

\mathbf{Asset}	Multivariate (SPY, VEA)	Univariate
SPY	1.00	1.00
VEA	0.00	0.82
UPRO	3.02	3.02
GLD	-0.28	0.05
USO	0.17	0.68
CL1	0.56	1.00
FXE	-0.27	0.06
BTC	0.26	0.93
HYG	0.26	0.38
IEF	-0.07	-0.07
TIP	-0.06	0.01
SHV	-0.00	-0.00

Table: Comparison of Multivariate and Univariate Beta

Coherent Risk Measures

Defining Risk Measures:

• A risk measure ϱ estimates the potential dollar amount of losses, or capital required to protect against these losses.

Different Risk Measures:

- Examples include volatility, variance, and quantiles.
- Negative $\varrho(\Pi_j)$ implies capital can be withdrawn.

Risk Capital

Risk Capital:

- Refers to the capital needed to cover potential losses.
- Risk measures help allocate a capital budget for different portfolios.

Properties of a Coherent Risk Measure

Coherence Criteria:

• Translation Invariance:

$$\varrho(\alpha + \Pi_j) = \varrho(\Pi_j) - \alpha$$

• Positive Homogeneity:

$$\varrho(\lambda\Pi_j) = \lambda\varrho(\Pi_j) \quad \text{for } \lambda > 0$$

• Monotonicity:

If
$$\Pi_j > \Pi_k$$
, then $\varrho(\Pi_j) < \varrho(\Pi_k)$

Subadditivity:

$$\varrho(\Pi_j + \Pi_k) \le \varrho(\Pi_j) + \varrho(\Pi_k)$$

Convex Risk Measure

Convex Risk Measure:

• Combines subadditivity and positive homogeneity into one condition:

$$\varrho(\lambda\Pi_j + (1-\lambda)\Pi_k) \le \lambda\varrho(\Pi_j) + (1-\lambda)\varrho(\Pi_k)$$

 $\bullet \ \lambda \in [0,1]$

Coherence of Risk Measures

Which Measures Are Coherent?

- Standard deviation
- Variance
- 5th quantile of the loss distribution
- Maximum drawdown

Data for Evaluation:

Asset	Std Dev	Variance	Quantile 0.05	MDD
SPY	1.23%	0.02%	-1.85%	-33.72%
UPRO	3.71%	0.14%	-5.65%	-76.82%
Portfolio	4.94%	0.24%	-7.50%	-87.79%
Sum of Parts	4.94%	0.24%	-7.50%	-110.53%

Table: Comparison of Risk Measures

Dynamic Risk Measures

Static vs. Conditional Risk:

- Static measures assume iid returns.
- Conditional measures account for time-varying risk, such as volatility.

Conditional Risk Measures:

- Techniques include:
 - Rolling window
 - Stochastic volatility models (GARCH)
 - Simulation

Value at Risk (VaR)

Definition:

- Value-at-Risk (VaR) is a quantile of the distribution.
- For a τ -day period and q quantile, VaR of an asset or portfolio is defined as $\Pi^{\text{VaR}_{q,\tau}}$ where:

$$\Pr\left(\Pi_{t,t+\tau} \le \Pi_t^{\operatorname{VaR}_{q,\tau}}\right) = q$$

 \bullet II represents the dollar amount of the profit and loss:

$$\Pi = \Pi_{t+\tau} - \Pi_t$$

• Π is the value of the portfolio.

Interpretation:

- There is a probability of q that over τ days, the portfolio PnL will be less than $\Pi^{\text{VaR}_{q,\tau}}$.
- Alternatively:

$$\Pr\left(L_{t,t+\tau} > L^{\operatorname{VaR}_{q,\tau}}\right) = q$$

VaR for Returns

Definition:

• Discuss the VaR in terms of return $r^{\text{VaR}_{q,\tau}}$:

$$\Pr\left(r_{t,t+\tau} \le r_t^{\operatorname{VaR}_{q,\tau}}\right) = q$$

• Relationship between PnL and return VaR:

$$\Pi_t^{\mathrm{VaR}_{q,\tau}} = r_t^{\mathrm{VaR}_{q,\tau}} \cdot \Pi_t$$

Profits vs. Losses:

- $\Pi^{VaR_{q,\tau}}$ and $r^{VaR_{q,\tau}}$ are negative numbers for interesting cases.
- VaR can be defined in terms of the left tail of profit or the right tail of losses.
- Focus on returns and PnL; often use absolute values for clarity.

VaR Distribution

Distribution of PnL:

• If PnL has a cumulative density function (cdf) that is continuous and strictly increasing, then:

$$\Pi^{\mathrm{VaR}_{q,\tau}} = \Phi_{\Pi}^{-1}(q)$$

• Φ_{Π} denotes the cdf of returns, and Φ_{Π}^{-1} is its inverse.

For Returns:

$$r^{\operatorname{VaR}_{q,\tau}} = \Phi_r^{-1}(q)$$

Technical Note:

• If the returns' distribution lacks such a cdf, a general definition is required:

$$\Pi^{\operatorname{VaR}_{q,\tau}} = \sup \left\{ \Pi \mid \Phi_{\Pi}(\Pi) \le q \right\}$$

• Similarly for returns, $r^{VaR_{q,\tau}}$.

◆□▶ ◆□▶ ◆壹▶ ◆壹▶ □ めのの

Normal Distribution and VaR

Using Normal Distribution:

- VaR is often modeled using a normal distribution.
- Even if returns are not normally distributed, normal VaR formulas are common for quoting and comparing VaR.

Assumption:

• Assume returns are normally distributed:

$$r_{t,t+\tau} \sim \mathcal{N}\left(\mu_{\tau}, \sigma_{\tau}^{2}\right)$$

• Mean and variance depend on the return horizon τ .

Normal Formula for VaR

Formula:

• For normally distributed returns:

$$r^{\mathrm{VaR}_{q,\tau}} = \mu_{\tau} + \mathbf{z}_q \sigma_{\tau}$$

• \mathbf{z}_q is the z-score for the quantile q:

$$\Phi_{\mathbf{z}}(\mathbf{z}_q) = q$$

• Using:

$$\Pi_t^{\mathrm{VaR}_{q,\tau}} = r_t^{\mathrm{VaR}_{q,\tau}} \cdot \Pi_t$$

Lognormal Distribution and VaR

Lognormal Assumption:

- Assume prices are lognormal, making log returns normal with one-period mean μ and variance σ^2 .
- For τ -period horizon:

$$\mathbf{r}_{t,t+\tau} \sim \mathcal{N}\left(\tau\mu, \tau\sigma^2\right)$$

Under Assumptions:

• Assuming log returns are iid and $\mu = 0$:

$$\mathtt{r}^{\mathrm{VaR}_{q,\tau}} = \sqrt{\tau}\mathtt{r}^{\mathrm{VaR}_{q,1}}$$

Implication:

- VaR scales with the square root of the horizon.
- Commonly used as a convention despite real-world deviations.

VaR for Log Returns

Log Returns Formula:

• For log returns with normal distribution, the VaR for profits is:

$$\Pi^{\mathrm{VaR}_{q,\tau}} = \Pi_t \left[\exp \left\{ \tau \mu + \mathbf{z}_q \sqrt{\sigma^2} \right\} - 1 \right]$$

Technical Note:

• Different formula for log returns; PnL may no longer be normally distributed.

Conditional Value-at-Risk (CVaR)

Definition:

• Conditional VaR (CVaR) or Expected Shortfall (ES) is the expected value conditional on being less than the VaR threshold.

$$\Pi^{\text{CVaR}_{q,\tau}} = E \left[\Pi_{t,t+\tau} \, | \, \Pi_{t,t+\tau} < \Pi^{\text{VaR}_{q,\tau}} \right]$$

• Similarly for returns:

$$r^{\text{CVaR}_{q,\tau}} = E\left[r_{t,t+\tau} \mid r_{t,t+\tau} < r^{\text{VaR}_{q,\tau}}\right]$$

Relationship:

$$\Pi_t^{\text{CVaR}_{q,\tau}} = r_t^{\text{CVaR}_{q,\tau}} \cdot \Pi_t$$

Normal Distribution for CVaR

Normal Distribution:

 Assume returns are normally distributed, CVaR is the conditional expectation:

$$r_t^{\text{CVaR}_{q,\tau}} = \mu_{\tau,t} - \frac{\phi_{\mathbf{z}}(\mathbf{z}_q)}{q} \sigma_{\tau,t}$$

Technical Point:

- Derived from the truncated normal distribution, conditional expectation of a normal distribution.
- For any threshold a:

$$E[\mathbf{z} \mid \mathbf{z} < a] = -\frac{\phi_{\mathbf{z}}(a)}{\Phi_{\mathbf{z}}(a)}$$

Sufficient Statistics of a Normal Distribution

Key Insight:

• VaR and CVaR formulas for normal distribution:

$$r^{\mathrm{VaR}_{q,\tau}} = \mu_{\tau,t} + \mathbf{z}_q \sigma_{\tau,t}$$

• CVaR:

$$r^{\text{CVaR}_{q,\tau}} = \mu_{\tau,t} + \left(-\frac{\phi_{\mathbf{z}(\mathbf{z}_q)}}{q}\right) \sigma_{\tau,t}$$

Implication:

- Normal distribution characterized by mean and variance (sufficient statistics).
- Any statistic can be rewritten as a function of μ and σ .

VaR as a Coherent Risk Measure

Is VaR Coherent?

- VaR is not a coherent risk measure.
- It generally fails to meet the subadditivity criterion.

Examples of VaR

Payoff Outcomes:

• Consider the payoffs for Π_i and Π_j across 5 potential states of the world:

$$\Pi_{i} \in \begin{bmatrix} -2\\-1\\0\\1\\2 \end{bmatrix}, \quad \Pi_{j} \in \begin{bmatrix} -1\\-2\\0\\1\\2 \end{bmatrix}$$

- The states are ordered, such that in state s, both securities deliver the payoff in row s of their respective arrays.
- Portfolio payoff is the sum: $\Pi_p = \Pi_i + \Pi_j$.

VaR Calculation:

$$\Pi_i^{\mathrm{VaR}_{.2}}, \quad \Pi_j^{\mathrm{VaR}_{.2}}, \quad \Pi_i^{\mathrm{VaR}_{.2}} + \Pi_j^{\mathrm{VaR}_{.2}}, \quad \Pi_p^{\mathrm{VaR}_{.2}}$$

Example: Returns Not Subadditive

Example Setup:

- Consider 100 potential outcomes ("states").
- Two assets, r_i and r_j .
- In almost every state, the return is:

$$r_{s,i} = r_{s,j} = \frac{s - 50}{100}$$

• Exception:

$$r_{i,(5)} = -0.45, \quad r_{j,(5)} = -0.46$$

 $r_{i,(4)} = -0.46, \quad r_{j,(4)} = -0.45$

VaR Calculation:

• For individual returns:

$$r_i^{\text{VaR.05}} = -0.45 = r_i^{\text{VaR.05}}$$

• For the equal-weighted portfolio:

$$r_p^{\text{VaR}.05} = -0.455$$

Issue with VaR

Sensitivity to Ordering:

- VaR is sensitive to the ordering around the specified quantile.
- If two series do not share the timing of returns around the q threshold, discrepancies may occur.
- Example: Worst and second-worst dates swapped in two series can change VaR.

Data Example

Real-World Example:

- Similar issues observed with SPY and UPRO across 2017-2023.
- VaR differences highlight the sensitivity to the distribution of returns.

Normal VaR and Coherence

Normal VaR:

- Is **Normal VaR** coherent?
- It often fails the subadditivity property, hence not coherent.

CVaR Coherence:

- Is CVaR coherent?
- For a normal distribution?
- For the examples above?

Conditional Moments

Dynamic VaR:

- VaR should be dynamic across time, using information up to time t.
- Conditional VaR utilizes this dynamic modeling.

Importance of Conditional Measures:

• Conditional risk statistics provide a broader view than unconditional measures.

Ignoring the Mean

Why Ignore the Mean?

- Typically, calculations focus on the second moment, not the centered second moment.
- Ignoring the mean simplifies the estimation.

Model for the Mean:

- Including the mean is valid if necessary, adjusting for degrees of freedom.
- Consider residuals after demeaning in calculations.

Volatility Estimates

Notation:

• σ_t^2 is estimated using data up to t-1 to estimate next period's variance.

Expanding Volatility:

$$\sigma_t^2 = \frac{1}{t-1} \sum_{i=1}^{t-1} r_i^2$$

Rolling Volatility:

$$\sigma_t^2 = \frac{1}{m} \sum_{i=1}^m r_{t-i}^2$$

EWMA for Volatility

Exponential Weighted Moving Average (EWMA):

• EWMA assigns more weight to recent data with a decay parameter λ (typically $\lambda \in (.9, 1)$).

$$\sigma_t^2 = \sum_{i=1}^{N-1} \lambda^{(i-1)} r_{t-i}^2$$

IGARCH and GARCH

IGARCH:

• Integrated GARCH:

$$\sigma_t^2 = \lambda \sigma_{t-1}^2 + (1 - \lambda)r_{t-1}^2$$

• In the limit, similar to EWMA.

GARCH:

• Generalized Autoregressive Conditional Heteroskedasticity:

$$\sigma_t^2 = \alpha_0 + \gamma_1 \sigma_{t-1}^2 + \alpha_1 r_{t-1}^2$$

• Unlike EWMA, parameters do not need to sum to 1 and can include lags.

Evaluating VaR

Hit Test:

- Common method to backtest VaR.
- Checks historical daily VaR against actual performance.

Consideration:

- Future market conditions may differ from past environments.
- Many VaR models appeared adequate before the 2007-2008 crisis.

Simulation Methods for VaR

Overview:

- Historical Simulation
- Monte Carlo Simulation
- Other Approaches

Historical Simulation

Empirical CDF:

- Historical simulation is widely used for calculating VaR.
- It does not assume normally distributed losses.
- This method is unconditional and assumes independent observations.
- The cdf is constructed from the histogram of past losses.
- VaR is calculated as the empirical quantile.

CVaR Calculation

Conditional Value-at-Risk (CVaR):

• CVaR is obtained using order statistics to build the cdf:

$$r^{\text{CVaR}_{q,1}} = \frac{1}{qN} \sum_{i=1}^{qN} r_{(i)}$$

• This represents the sample mean of the left tail of the empirical cdf.

Advantages of Historical Simulation

Key Advantages:

- Nonparametric estimation of cdf based on historical data.
- Flexibility in not assuming a predefined probability distribution.
- Easy implementation and adaptability to actual data shapes.

Disadvantages of Historical Simulation

Statistical Power:

- VaR estimation requires accurate tail distribution.
- Small sample sizes result in large standard errors for order statistics.
- For extreme conditions, large sample sizes are necessary to obtain precise estimates.

Dynamic Assumptions:

- Assumes returns are iid, which is often not true.
- Large samples may include irrelevant historical data, while small samples lack precision.

Monte Carlo Simulation

Overview:

- Generates data based on a statistical model.
- Each simulated observation is used to construct portfolio loss.
- An empirical cdf is built from these simulated losses to calculate VaR.

Applications:

- Historical approach skips data generation by using past observations.
- Useful for complex dynamics and nonlinear valuations where keeping cdf tractable is difficult.

Simulating Bonds and Options

Applications:

- Useful for portfolios with nonlinear value dependencies.
- Example: Simulate stock prices and use Black-Scholes for options to obtain losses.
- Simulate interest rates and calculate bond portfolio losses as a nonlinear function of these rates.

Other Approaches for VaR

Alternative Distributions:

- Student's t Distribution:
 - Provides fatter tails than normal distribution.
 - Less useful for quoting and more computationally intensive.
- Extreme Value Theory:
 - Focuses on modeling the tail of the distribution.
 - Uses mathematical results to estimate extreme values.
- Quantile Regression:
 - Estimates quantiles using conditioning information.
 - Offers a more direct approach to estimate extreme risks.

Historic Simulation: Empirical CDF

Introduction:

- Historical simulation is straightforward and commonly used for VaR.
- It relies on past data without assuming a specific distribution.
- Produces an empirical cdf from past losses to estimate VaR.

Calculating VaR:

 VaR is calculated as an empirical quantile of the historical loss distribution.

Calculating CVaR with Empirical CDF

Procedure:

• Use order statistics to determine the cdf:

$$r^{\text{CVaR}_{q,1}} = \frac{1}{qN} \sum_{i=1}^{qN} r_{(i)}$$

• Represents the sample mean of the left tail.

Advantages of Historical Simulation

Benefits:

- Estimates cdf nonparametrically, reflecting actual probabilities.
- Flexibility in estimating cdf shapes based on historical data.
- Simple implementation without pre-assumed distribution.

Disadvantages of Historical Simulation

Statistical Limitations:

- Requires accurate estimation of tail distribution.
- Small samples lead to high standard errors.
- For precise tail estimates, large samples are necessary.

Dynamic Issues:

- Assumes returns are iid, which is often incorrect.
- Large samples may include outdated data, while small samples lack precision.

Monte Carlo Simulation

Overview:

- Generates data based on statistical models.
- Constructs portfolio losses for each simulated observation.
- Builds an empirical cdf from simulated losses for VaR calculation.

Applications:

- Historical approach uses past data as simulated observations.
- Ideal for scenarios with complex dynamics and nonlinear valuations.

Monte Carlo for Bonds and Options

Use Cases:

- Applicable for portfolios with nonlinear valuation dependencies.
- Simulate stock prices and use models like Black-Scholes for options.
- Simulate interest rates to determine bond portfolio losses.

Alternative Distributions for VaR

Other Approaches:

- Student's t Distribution:
 - Offers fatter tails than a normal distribution.
 - Involves more computation, less useful for quoting.
- Extreme Value Theory:
 - Models the extreme values of the distribution.
 - Focuses on the tail rather than the entire distribution.
- Quantile Regression:
 - Estimates quantiles using conditioning information.
 - Provides a more direct estimation of extreme risks.

Thank You! Questions or Comments? Contact:

stanleyzzz@sageark.com