Problem 1: SPAM, SPAM, HAM

```
In [27]: import numpy as np
          import pandas as pd
          import matplotlib.pyplot as plt
          import cvxopt
In [28]: spam_train = np.loadtxt('spam_train.data', delimiter=',')
          spam_validation = np.loadtxt('spam_validation.data', delimiter=',')
          spam test = np.loadtxt('spam test.data', delimiter=',')
In [29]: | def preprocess(data):
              m, n = data.shape
              # X,y split
              X = data[:, :n-1]
              y = data[:, n-1:]
              # Set y = -1
              y = np.apply_along_axis(lambda x: -1 if x == 0 else 1, 1, y).reshape(-1, 1)
              return X,y
In [30]: |X_train, y_train = preprocess(spam_train)
         X validate, y validate = preprocess(spam validation)
         X test, y test = preprocess(spam test)
In [31]: def get_accuracy(X, y, w, b, \lambda =None, y_ = None, X_= None, \sigma2=None):
              def gaussian_kernel(x, y, σ2):
                  return np.exp(-np.linalg.norm(x-y)**2 / (2 * \sigma 2))
              m, n = X.shape
              if w is not None:
                  z = np.dot(X,w) + b
                  f = (y * z) > 0
              else:
                  print(f"Computing accuracy for \sigma 2 = {\sigma 2}")
                  y predict = np.zeros(m)
                  for i in range(m):
                      wx = 0
                      for \lambda, sl, sv in zip(\lambda_, y_, X_):
                           wx += \lambda * sl * gaussian_kernel(X[i], sv, \sigma2)
                      y predict[i] = wx
                  y predict + b
                  f = (y_predict * y.ravel()) > 0
              return np.sum(f.astype('float32')) * 100/m
```

```
In [32]: # Primal problem
         def SVM_primal(X, Y, c):
             print(f"Computing c = {c}")
             m, n = X.shape
             P = np.zeros((m+n+1, m+n+1))
             P[:n,:n] = np.eye(n,n)
             P = cvxopt.matrix(P)
             q = np.zeros((m+n+1, 1))
             q[n:m+n,0] = c
             q = cvxopt.matrix(q)
             G = np.zeros((2*m, m+n+1))
             for i in range(m):
                 for j in range(n):
                     G[i][j] = -1 * Y[i] * X[i][j]
                 G[i][n+i] = -1
                 G[i][m+n] = -1 * Y[i]
                 G[m+i][n+i] = -1
             G = cvxopt.matrix(G)
             h = np.zeros((2*m, 1))
             h[:m,0] = -1
             h = cvxopt.matrix(h)
             # CVXOPT Solver
             solution = cvxopt.solvers.qp(P, q, G, h)
             sol = np.array(solution['x'])
             w = sol[:n]
             b = sol[m+n]
             return w, b
         # Dual problem
         def SVM_dual(X, Y, c, σ2):
             print(f"Computing c = \{c\} and variance = \{\sigma 2\}")
             m, n = X.shape
             # Create Gram matrix
             K = np.zeros((m, m))
             # Use gaussian kernel
             X_sq = -2 * np.dot(X, X.T)
             X_sq += (X ** 2).sum(axis=1)
             K = X_sq / (-2 * \sigma 2)
             np.exp(K, K)
             # P = Combination of Yi Yj Xi Xj
             P = cvxopt.matrix(np.outer(Y,Y) * K)
             q = cvxopt.matrix(np.ones(m) * -1)
             # Constraints \lambda Y = 0
             A = cvxopt.matrix(Y, (1,m), 'd')
             b = cvxopt.matrix(0.0)
```

```
# \(\lambda\) >= \(\theta\)
lhs = np.diag(np.ones(m) * -1)
lhs2 = np.identity(m)
G = cvxopt.matrix(np.vstack((lhs, lhs2)))
rhs = np.zeros(m)
rhs2 = np.ones(m) * c
h = cvxopt.matrix(np.hstack((rhs, rhs2)))
# CVXOPT Solver
solution = cvxopt.solvers.qp(P, q, G, h, A, b)
# Solver produces \lambda
\lambda = np.ravel(solution['x'])
n_{\lambda} = len(\lambda)
sv = \lambda > 1e-5
idx = np.arange(n_\lambda)[sv]
1 = \lambda[sv]
support_labels = Y[sv]
support_vectors = X[sv]
b = 0.0
for n in range(len(1)):
    b += support_labels[n]
    b -= np.sum(1 * support_labels * K[idx[n],sv])
b \neq len(1)
return b, 1, support_labels, support_vectors
```

```
In [33]: def run svm(c list, \sigma2 list = [None], primal = True):
              data = {
                   'c': [],
                   'variance': [],
                   'Training Data Accuracy': [],
                   'Validation Data Accuracy': []
              }
              best c, best \sigma^2, best validation acc, best train acc = c list[0], \sigma^2 list[0],
              best w, best b = [], 0
              for c in c_list:
                   for \sigma 2 in \sigma 2 list:
                       data['c'].append(c)
                       data['variance'].append(σ2)
                       w, b, \lambda, support labels, sv = None, None, None, None
                       if primal:
                           w, b = SVM_primal(X_train, y_train, c)
                           train_acc = get_accuracy(X_train, y_train, w, b)
                           validation_acc = get_accuracy(X_validate, y_validate, w, b)
                       else:
                           w = None
                           b, λ, support_labels, sv = SVM_dual(X_train, y_train ,c,σ2)
                           train_acc = get_accuracy(X_train, y_train, None, b, \lambda_ = \lambda, y_ =
                           validation acc = get accuracy(X validate, y validate, None, b, \lambda
                       data['Training Data Accuracy'].append(train_acc)
                       data['Validation Data Accuracy'].append(validation_acc)
                       if validation acc > best validation acc or (validation acc == best validation)
                           best validation acc = validation acc
                           best_train_acc = train_acc
                           best c = c
                           best \sigma 2 = \sigma 2
                           best_w = w
                           best b = b
                           best \lambda = \lambda
                           best sv = sv
                           best_sv_y = support_labels
              df = pd.DataFrame.from dict(data)
              if primal:
                   test_acc = get_accuracy(X_test, y_test, best_w, best_b)
              else:
                   test_acc = get_accuracy(X_train, y_train, None, best_b, \lambda = best_\lambda, y_ =
              df['Testing Data Accuracy'] = df.apply(lambda row: test_acc if row['c'] == be
              if best \sigma 2 is None:
                   df.drop(columns=['variance'], inplace=True)
              return df
```

1. Primal SVMs

- Using gradient descent or quadratic programming, apply the SVM with slack formulation to train a classifier for each choice of $c \in 1, 10, 10^2, 10^3, 10^4, 10^5, 10^6, 10^7, 10^8$ without using any feature maps.
- What is the accuracy of the learned classifier on the training set for each value of c?
- Use the validation set to select the best value of c. What is the accuracy on the validation set for each value of c?

· Report the accuracy on the test set for the selected classifier.

```
In [34]:
         c list = [1,10,10**2,10**3,10**4,10**5,10**6,10**7,10**8]
          df_primal = run_svm(c_list, primal=True)
          Computing c = 1
                           dcost
                                                       dres
               pcost
                                        gap
                                                pres
           0: -1.8124e+03 1.0398e+04
                                        8e+04
                                               6e+00
                                                       4e+04
               5.6137e+03 -7.3332e+03
                                        2e+04
                                               1e+00
                                                       7e+03
               3.7452e+03 -2.4540e+03 7e+03
                                               4e-01
                                                       2e+03
           3:
               2.3041e+03 -9.9333e+02 4e+03
                                               2e-01
                                                       1e+03
           4:
               1.6237e+03 -3.8918e+02 2e+03
                                               1e-01
                                                       6e+02
           5: 1.3035e+03 -9.5546e+01 2e+03
                                               6e-02
                                                       4e+02
           6:
               1.1640e+03
                           1.5815e+01
                                        1e+03
                                               4e-02
                                                       3e+02
           7:
               1.1113e+03 8.9810e+01 1e+03
                                               3e-02
                                                       2e+02
           8:
               1.0293e+03 1.6990e+02 9e+02
                                               2e-02
                                                       1e+02
                                                       6e+01
           9:
               8.2001e+02 2.9315e+02 5e+02
                                               1e-02
          10: 7.1530e+02 3.5051e+02 4e+02
                                               6e-03
                                                       4e+01
               6.2597e+02 3.9397e+02
                                        2e+02
                                               3e-03
          11:
                                                       2e+01
          12:
               5.6753e+02 4.2284e+02 1e+02
                                               2e-03
                                                       1e+01
          13:
               5.3370e+02 4.3939e+02 1e+02
                                               1e-03
                                                       6e+00
          14:
               5.1168e+02 4.5038e+02 6e+01
                                               5e-04
                                                       3e+00
          15:
               4.8730e+02 4.6134e+02
                                               3e-05
                                        3e+01
                                                       2e-01
          16:
               4.7777e+02
                           4.6801e+02
                                        1e+01
                                               7e-06
                                                       4e-02
In [35]: df_primal.style.apply(lambda x: ['background: lightgreen' if not np.isnan(x['Test
Out[35]:
                      Training Data Accuracy Validation Data Accuracy Testing Data Accuracy
          0
                    1
                                  94.466667
                                                       93.500000
                                                                               nan
          1
                    10
                                  94.733333
                                                       93.875000
                                                                               nan
                   100
                                  94.866667
                                                       93.875000
                                                                          62.172285
          3
                  1000
                                  94.833333
                                                       93.750000
                                                                               nan
                 10000
                                  94.833333
           4
                                                       93.750000
                                                                               nan
                100000
                                  94.833333
                                                       93.750000
          5
                                                                               nan
          6
               1000000
                                  94.833333
                                                       93.750000
                                                                               nan
              10000000
                                  94.833333
                                                       93.750000
                                                                               nan
             100000000
                                  94.833333
                                                       93.750000
                                                                               nan
```

2. Dual SVMs with Gaussian Kernels

- Using quadratic programming, apply the dual of the SVM with slack formulation to train a classifier for each choice of c $c \in 1, 10, 10^2, 10^3, 10^4, 10^5, 10^6, 10^7, 10^8$ using a Gaussian kernel with $\sigma^2 \in .1, 1, 10, 100, 1000$.
- What is the accuracy of the learned classifier on the training set for each pair of c and σ?
- Use the validation set to select the best value of c and σ. What is the accuracy on the validation set for each pair of c and σ?
- Report the accuracy on the test set for the selected classifier.

```
In [10]: c_{\text{list}} = [1,10,10**2,10**3,10**4,10**5,10**6,10**7,10**8]
         \sigma 2  list = [.1,1,10,100,1000]
         df_dual = run_svm(c_list, σ2_list, primal=False)
         Computing c = 1 and variance = 0.1
              pcost
                         dcost
                                      gap
                                             pres
                                                   dres
          0: -1.1526e+03 -5.7019e+03 1e+04
                                            2e+00 4e-16
          1: -1.1153e+03 -3.2841e+03 2e+03 9e-13 2e-16
          2: -1.2019e+03 -1.4313e+03 2e+02 2e-12 1e-16
          3: -1.2565e+03 -1.2861e+03 3e+01 2e-12 1e-16
          4: -1.2645e+03 -1.2702e+03 6e+00 6e-12 6e-17
          5: -1.2662e+03 -1.2669e+03 8e-01 2e-12 6e-17
          6: -1.2663e+03 -1.2665e+03 2e-01 5e-12 5e-17
          7: -1.2663e+03 -1.2664e+03 4e-02 5e-13 5e-17
          8: -1.2663e+03 -1.2663e+03 1e-02 8e-12 6e-17
          9: -1.2663e+03 -1.2663e+03 5e-03 5e-12 7e-17
         10: -1.2663e+03 -1.2663e+03 8e-04 1e-12 5e-17
         Optimal solution found.
         Computing c = 1 and variance = 1
              pcost
                          dcost
                                             pres
                                                   dres
                                      gap
          0: -1.1106e+03 -5.6547e+03 1e+04 2e+00 6e-16
          1: -1.0753e+03 -3.2369e+03 2e+03 2e-13 3e-16
```

2: -1.1581e+03 -1.3869e+03 2e+02 8e-13 2e-16

In [11]: df_dual.style.apply(lambda x: ['background: lightgreen' if not np.isnan(x['Testir

Out[11]:

	С	variance	Training Data Accuracy	Validation Data Accuracy	Testing Data Accuracy
0	1	0.100000	99.974000	19.623000	nan
1	1	1.000000	99.932000	26.389000	nan
2	1	10.000000	98.133333	68.755000	nan
3	1	100.000000	90.100000	79.625000	nan
4	1	1000.000000	83.233333	79.375000	nan
5	10	0.100000	99.973333	19.755000	nan
6	10	1.000000	99.973333	26.125000	nan
7	10	10.000000	99.773333	69.125000	nan
8	10	100.000000	97.736667	83.125000	nan
9	10	1000.000000	93.800000	85.875000	nan
10	100	0.100000	99.973333	19.125000	nan
11	100	1.000000	99.433333	26.125000	nan
12	100	10.000000	99.733333	69.125000	nan
13	100	100.000000	99.066667	84.125000	nan
14	100	1000.000000	97.033333	90.875000	nan
15	1000	0.100000	99.433333	19.125000	nan
16	1000	1.000000	99.433333	26.125000	nan
17	1000	10.000000	99.900000	68.125000	nan
18	1000	100.000000	99.966667	84.125000	nan
19	1000	1000.000000	98.900000	91.375000	nan
20	10000	0.100000	99.433333	19.125000	nan
21	10000	1.000000	99.433333	26.125000	nan
22	10000	10.000000	99.900000	68.125000	nan
23	10000	100.000000	99.533333	84.125000	nan
24	10000	1000.000000	99.000000	92.125000	81.125000
25	100000	0.100000	99.433333	19.125000	nan
26	100000	1.000000	99.433333	26.125000	nan
27	100000	10.000000	99.900000	68.125000	nan
28	100000	100.000000	99.866667	84.250000	nan
29	100000	1000.000000	99.433333	91.125000	nan
30	1000000	0.100000	99.433333	19.125000	nan
31	1000000	1.000000	99.433333	26.125000	nan
32	1000000	10.000000	99.900000	67.125000	nan
33	1000000	100.000000	99.533333	73.000000	nan

	С	variance	Training Data Accuracy	Validation Data Accuracy	Testing Data Accuracy
34	1000000	1000.000000	89.366667	72.125000	nan
35	10000000	0.100000	99.433333	19.125000	nan
36	10000000	1.000000	99.433333	26.125000	nan
37	10000000	10.000000	99.900000	68.125000	nan
38	10000000	100.000000	84.533333	69.000000	nan
39	10000000	1000.000000	87.200000	70.125000	nan
40	100000000	0.100000	99.433333	19.125000	nan
41	100000000	1.000000	99.433333	26.125000	nan
42	100000000	10.000000	99.900000	68.125000	nan
43	100000000	100.000000	99.533333	71.000000	nan
44	100000000	1000.000000	81.266667	53.125000	nan

3. k-Nearest Neighbors

• What is the accuracy of the k-nearest neighbor classifier for k = 1,5,11,15,21?

```
In [33]: from collections import defaultdict
         class kNN:
             def __init__(self, neighbors=1):
                 self.train_data = []
                 self.labels = []
                 self.m = 0
                 self.n = 0
                 self.k = neighbors
             def fit(self, X_train, y_train):
                  self.train_mean = X_train.mean(axis=0)
                  self.train std = X train.std(axis=0)
                  self.train data = X train
                 self.train_data_normed = (self.train_data - self.train_mean) / self.trair
                  self.m, self.n = self.train data.shape
                  self.labels = y_train
             def get distances(self, X test):
                 distances = -2 * self.train_data_normed.dot(X_test.T) + np.sum(X_test**2)
                 distances[distances < 0] = 0</pre>
                 return distances
             def predict(self, X_test):
                 X test normed = (X test - self.train mean) / self.train std
                 distances = self.get distances(X test normed)
                 idx = np.argsort(distances, axis=0)
                 idx = idx[0:self.k, :]
                 m, n = idx.shape
                 labels = self.labels.ravel()
                 y_pred = np.zeros((X_test.shape[0], 1))
                 for col in range(n):
                      classes = defaultdict(int)
                      for row in range(m):
                          label = labels[idx[row, col]]
                          classes[label] += 1
                      # Get the majority class
                      y pred[col] = max(classes, key=classes.get)
                  return y_pred
             @staticmethod
             def get_accuracy(y_pred, y_test):
                 return np.mean(y_pred.flatten() == y_test.flatten()) * 100
```

```
In [34]:

def run_kNN(k_list):
    data = {
        'k': [],
        'Validation Accuracy': [],
        'Test data Accuracy': []
}

for k in k_list:
        data['k'].append(k)
        classifier = kNN(k)
        classifier.fit(X_train, y_train)
        y_validate_pred = classifier.predict(X_validate)
        data['Validation Accuracy'].append(kNN.get_accuracy(y_validate_pred, y_vay_test_pred = classifier.predict(X_test)
        data['Test data Accuracy'].append(kNN.get_accuracy(y_test_pred, y_test))

return pd.DataFrame.from_dict(data)
```

```
In [35]: k_list = [1,5,11,15,21]
df = run_kNN(k_list)
display(df)
```

k Validation Accuracy Test data Accuracy

```
0
   1
                    88.500
                                    72.659176
    5
                    89.625
                                    70.786517
1
2
  11
                    88.500
                                    72.159800
  15
                    86.375
                                    71.535581
4 21
                    86.500
                                    70.911361
```

```
In [10]: m, n = X train.shape
         X = X_{train}
         c = 10
         Y = y train
         P = np.zeros((m+n+1, m+n+1))
         P[:n,:n] = np.eye(n,n)
         q = np.zeros((m+n+1, 1))
         q[n:m+n,0] = c
         G = np.zeros((2*m, m+n+1))
         for i in range(m):
             for j in range(n):
                 G[i][j] = -1 * Y[i] * X[i][j]
             G[i][n+i] = -1
             G[i][m+n] = -1 * Y[i]
             G[m+i][n+i] = -1
         h = np.zeros((2*m, 1))
         h[:m,0] = -1
```

```
In [26]: h2 = np.zeros((m*2, 1))
h2[:m,0] = -1
np.mean(h2.ravel() == h.ravel())
```

Out[26]: 1.0

4. Which of these approaches (if any) should be preferred for this classification task? Explain

SVM with gaussian kernel should be preferred for this classification task as it has higher test data accuracy of 90.38% compared to kNN model which has average test data accuracy ~70%. SVM performs better in Higher dimensions compared to kNN.