Table S3. Model Description

Equations:

$$d(ERG)/dt = \frac{k15}{1 + (DRG/J15)^2} - k16 * ERG$$
 (1)

$$d(DRG)/dt = k17p * ERG + \frac{k17*(DRG/J17)^2}{1+(DRG/J17)^2} - K18 * DRG$$
 (2)

$$d(ppRB)/dt = v29 + v30 + v43 - v44 \tag{3}$$

$$\frac{d(E2F)/dt}{dt} = v29 + v45 + v47 - v46 - v48 + ke2f * E2F * mass - kde2fcdc20 * E2F * Cdc20A - kde2fcdh1 * E2F * Cdh1$$
(4)

$$d(pE2F)/dt = v30 + v49 + v46 - v47 - v50 - kde2fcdc20 * pE2F * Cdc20A - kde2fcdh1 * pE2F * Cdh1$$
 (5)

$$\frac{d(Rb)}{dt} = v44 + v45 + v49 - v48 - v50 - v43 \tag{6}$$

$$d(E2FRB)/dt = v51 + v48 - v52 - v29 - v45 \tag{7}$$

$$d(pE2FRB)/dt = v52 + v50 - v51 - v30 - v49$$
(8)

$$d(actCycD)/dt = k9 * DRG + Vdi * TriD + k24r * TriD - k24 * actCycD * freeCKI - k10 * actCycD$$
 (9)

$$d(TriD)/dt = k24 * actCycD * freeCKI - k24r * TriD - Vdi * TriD - k10 * TriD$$
(10)

$$d(actCycACdk1)/dt = a1frac * ((ksap + ksapp * E2F + ksappp * TFAB) * mass * 2 + (Vdi + kdia) * TriA)$$

$$-(Vda + kasa * freeCKI) * actCycACdk1$$
(11)

$$d(actCycACdk2)/dt = (1 - a1frac) * ((ksap + ksapp * E2F + ksappp * TFAB) * mass * 2 + (Vdi + kdia) * TriA)$$

$$-(Vda + kasa * freeCKI) * actCycACdk2$$

$$(12)$$

$$\frac{d(actCycB)}{dt} = Vsb * mass * 2 + V25 * (cycB - actCycB) - (Vdb + Vwee) * actCycB$$
(13)

$$\frac{d(actCycE)}{dt} = (ksep + ksepp * E2F) * mass * 2 + (Vdi + kdie) * TriE - (Vde + kase * freeCKI) * actCycE$$
 (14)

$$d(cycA)/dt = (ksap + ksapp * E2F + ksappp * TFAB) * mass * 2 - Vda * cycA$$
(15)

$$d(cycB)/dt = Vsb * mass * 2 - Vdb * cycB$$
(16)

$$d(cycE)/dt = (ksep + ksepp * E2F) * mass * 2 - Vde * cycE$$
(17)

$$d(CKI)/dt = Vsi - Vdi * CKI$$
 (18)

$$\frac{d(Cdh1)/dt}{\int_{ah1+1-Cdh1}^{(kih1pp*(actCycACdk1+actCycACdk2)+kih1ppp*actCycB)*Cdh1}}{\int_{ah1+1-Cdh1}^{(kih1pp*(actCycACdk1+actCycACdk2)+kih1ppp*actCycB)*Cdh1}} (19)$$

$$d(preMPF)/dt = Vwee * (cycB - preMPF) - (V25 + Vdb) * preMPF$$
(21)

$$d(TriA)/dt = kasa * (cycA - TriA) * freeCKI - (kdia + Vda + Vdi) * TriA$$
(22)

$$d(APCP)/dt = \frac{kaAPC*actCycB*(1-APCP)}{IaAPC+1-APCP} - \frac{kiAPC*APCP}{IiAPC+APCP}$$
(23)

$$d(Cdc20A)/dt = \frac{ka20*APCP*(Cdc20T-Cdc20A)}{Ja20+Cdc20T-Cdc20A} - (\frac{ki20}{Ji20+Cdc20A} + kd20) * Cdc20A$$
 (24)

$$d(Cdc20T)/dt = (ks20pp * actCycB)/(J20 + actCycB) - kd20 * Cdc20T$$
(25)

$$d(mass)/dt = u * mass$$
 (26)

Definitions:

```
v29
             = E2FRB * (K20 * ((actCycD + TriD) * LD + LA * (actCycACdk1 + actCycACdk2))
                +LB * actcycB + LE * actCycE))
             = pE2FRB * (K20 * (LD * (actCycD + TriD) + LA * (actCycACDk1 + actCycACdk2))
v30
                +LB * actCycB + LE * actCycE)
             = RB * (K20 * (LD * (actCycD + TriD) + LA * (actCycACdk1 + actCycACdk2)
v43
                LB * actCycB + LE * actCycE)
v44
             = ppRB * (K19a * (PP1T - PP1A) + K19 * PP1A)
             = K26R * E2FRB
v45
             = E2F * (K23a * (actCycACdk1 + actCycACdk2) + K23b * actCycB)
v46
             = K22 * pE2F
v47
             = K26 * E2F * RB
v48
             = K26R * pE2FRB
v49
v50
             = K26 * RB * pE2F
v51
             = K22 * pE2FRB
             = E2FRB * (K23a * (actCycACdk1 + actCycACdk2) + K23b * actCycB
v52
Vatf
             = katfpp * (actCycACdk1 + actCycACdk2) + katfppp * actCycE + katfpppp * actCycD
             = kdep + kdepp * actCycE + kdeppp * (actCycACdk1 + actCycACdk2) + kdepppp * actCycB
Vde
Vda
             = kdap + kdapp * Cdc20A + kacdh1 * Cdh1
             = G(kafab * (actCycACdk1 + actCycACdk2), kifb, Jafb, Jifb)
TFAB
Vsi
             = ksip
             = ksbp + ksbpp * TFAB + ksbppp * actCycB + ksbppp * E2F
Vsb
Vdb
             = kdbp + kdbpp * Cdh1 + kdbppp * Cdc20A
             = G(kaweep, kiwee * (actCycACdk1 + actCycACdk2) + kiweeb * actCycB, Jawee, Jiwee)
Wee1
Vwee
             = kweep + kweepp * Wee1
             = G(ka25 * actCycB, ki25p, Ja25, Ji25)
Cdc25
             = k25p + k25pp * Cdc25
V25
Vdi
             = (kdip + kdipp * (actCycACdk1 + actCycACdk2) + kdippp * actCycB + kdipppp * actCycE)
TriE
             = cycE - actCycE
freeCKI
             = CKI - TriA - TriE - TriD
CdkCycBCKI = cycB - actCycB - preMPF
Cdk1PCycB
             = cycB - actCycB
             = PP1T / K21 * (FE * (actCycACdk1 + actCycACdk2 + actCycE) + FB * actCycB + 1)
PP1A
```

Where G(...) is the Goldbeter-Koshland Function:

$$B(A_1, A_2, A_3, A_4) = A_2 - A_1 + A_3 * A_2 - A_4 * A_1$$

$$G(A_1, A_2, A_3, A_4) = \frac{2 * A_4 * A_1}{B(A_1, A_2, A_3, A_4) + \sqrt{B(A_1, A_2, A_3, A_4) - 4 * (A_2 - A_1) * A_3 * A_1}}$$

Kinetic Rate Constants:

a1frac	=	0.081283	kah1p	=	155.8708	ksep	=	1.562461
FB	=	2	kah1pp	=	176350	ksepp	=	8.8175
FE	=	25	kasa	=	19733.57	ksip	=	390.9926
J15	=	0.1	kase	=	19733.57	kweep	=	234.8312
J17	=	0.3	katfpp	=	58.70692	kweepp	=	17635
J20	=	100	katfppp	=	97.80724	LA	=	30
Ja20	=	0.005	katfpppp	=	77.63932	LB	=	0.5
Ja25	=	0.005	kaweep	=	13.8188	LD	=	3.3
JaAPC	=	0.01	kd20	=	17.635	LE	=	10
Jafb	=	0.01	kdap	=	0.516094	PP1T	=	1
Jah1	=	0.15	kdapp	=	2645.25	u	=	0.693937
Jatf	=	0.01	kdbp	=	0.853181			
Jawee	=	0.05	kdbpp	=	176.35			
Jaweeb	=	0.05	kdbppp	=	387.97			
Ji20	=	0.005	kde2fcdc20	=	881.75			
Ji25	=	0.031623	kde2fcdh1	=	1.7635			
JiAPC	=	0.001	kdep	=	1.961012			
Jifb	=	0.001	kdepp	=	1.973357			
Jih1	=	0.01	kdeppp	=	176.35			
Jitf	=	0.01	kdepppp	=	3527			
Jiwee	=	0.05	kdia	=	196.0783			
k10	=	88.175	kdie	=	196.0783			
k15	=	5.2905	kdip	=	196.0783			
k16	=	44.0875	kdipp	=	978.0688			
k17	=	2645.25	kdippp	=	1960.837			
k17p	=	2.64525	kdipppp	=	978.0688			
k18	=	176.35	ke2f	=	4.2324			
K19	=	35.27	ki20	=	17.635			
K19a	=	440.875	ki25p	=	35.27			
K20	=	176.35	kiAPC	=	3.862259			
K21	=	1	kifb	=	9.827456			
K22	=	3.527	kih1pp	=	17635			
K23a	=	0.17635	kih1ppp	=	1763.5			
K23b	=	1.7635	kitfp	=	48.96181			
k24	=	1763.5	kitfpp	=	19.60836			
k24r	=	176.35	kitfppp	=	19.60836			
k25p	=	61.474	kiwee	=	0.145			
k25pp	=	30515.96	kiweeb	=	5			
K26	=	17635	ks20pp	=	105.81			
K26R	=	35.27	ksap	=	16.75325			
k9	=	45.851	ksapp	=	0.10581			
ka20	=	292.669	ksappp	=	20.28025			
ka25	=	8.85277	ksbp	=	6.7013			
kaAPC	=	2.33401	ksbpp	=	15.8715			
kacdh1	=	264.525	ksbppp	=	1.7635			
kafab	=	0.296268	ksbpppp	=	0.617225			
			1111					

1.562461 8.8175

0.693937