

Zadanie P Binarny Algorytm Euklidesa

Jaś przyszedł dziś ze szkoły w wyśmienitym humorze. W ramach pracy domowej z informatyki ma on do napisania algorytm Euklidesa wyznaczania największego wspólnego dzielnika dwóch liczb. "Przecież to proste, zajmie mi to tylko parę minut. I całe popołudnie będę jeździł na rowerze!" - pomyślał Jaś.

Już zabrał się on do pisania gdy ku swojej rozpaczy zobaczył, że jego klawiatura jest uszkodzona. Nie jest w stanie używać klawiszy '*', '/', '%' . "Jakoś sobie poradzę" - pomyślał Jaś i postanowił napisać algorytm Euklidesa, który zamiast operacji modulo używa operacji odejmowania. Okazało się jednak, że tak napisany program działa zbyt wolno... Zrozpaczony Jaś zwrócił się do Ciebie o pomoc.

Pomóż Jasiowi napisać właściwy program.

W zadaniu należy zastosować binarną wersję algorytmu Euklidesa.

Wejście

Zestaw składa się z jednej linii zawierającej dwie liczby naturalne $a, b \ (1 \le a, b \le 10^9)$.

Wejście

Dla każdej wczytanej pary liczb, w jednej linii wypisz ich największy wspólny dzielnik.

Wersja P1 - algorytm zaimplementuj iteracyjnie, 0.5 pkt Wersja P2 - algorytm zaimplementuj rekurencyjnie, 0.5 pkt

Dostępna pamięć: 2MB

Wymagany język: C lub C++

Przykład

Dla danych wejściowych:	Poprawną odpowiedzią jest:
7	2
2 8	3
6 33	4
8 28	5
30 25	21
21 21	64
64 64	32
32 96	