Algoritmos y Estructuras de Datos II

Trabajo Práctico 1

Departamento de Computación Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires

Pacalgo2

Los inertes

Integrante	LU	Correo electrónico
Valentina Madelaine Saravia Ruiz	257/18	valentina.saraviaruiz@gmail.com
Bruno Robbio	480/09	brobbio@hotmail.com
Nicolas Andres Kinaschuk	248/15	nicolaskinaschuk@gmail.com
Pedro Joel Burgos	804/18	${\tt facultadburgospedrojoel@hotmail.com}$

Reservado para la cátedra

Instancia	Docente	Nota
Primera entrega		
Segunda entrega		

1. Desarrollo

1.1. Parte 1

```
TAD CASILLERO
```

```
Tupla(int, int)
extiende
usa
                 Int
géneros
                 casillero
exporta
                 casillero, +, -, aDistanciaMenosDeN
otras operaciones
  ullet + ullet : casillero 	imes casillero \longrightarrow casillero
  ullet - ullet : casillero 	imes casillero 	imes casillero
  a
Distancia<br/>Menos
DeN : casillero \times nat \longrightarrow conj(casillero)
axiomas
  \pi_1(c1 + c2)
                                       \equiv \pi_1(c_1) + \pi_1(c_2)
  \pi_2(c1+c2)
                                       \equiv \pi_2(c_1) + \pi_2(c_2)
  \pi_1(c1 - c2)
                                       \equiv if \pi_1(c_2) > \pi_1(c_1) then 0 else \pi_1(c_1) - \pi_1(c_2) fi
  \pi_2(c1 - c2)
                                       \equiv if \pi_2(c_2) > \pi_2(c_1) then 0 else \pi_2(c_1) - \pi_2(c_2) fi
  a
Distancia<br/>Menos
DeN(c, n) \equiv if n = 0? then
                                               \{c\}
                                           else
                                               (aDistanciaMenosDeN(c + \langle 1,0 \rangle, n-1) \cup
                                               aDistanciaMenosDeN(c - \langle 1,0 \rangle, n-1) \cup
                                               aDistancia
Menos<br/>DeN(c + \langle 0,1 \rangle, n-1) \cup
                                               aDistanciaMenosDeN(c - \langle 0,1 \rangle, n-1) \cup
                                               aDistanciaMenosDeN(c, n-1))
                                           fi
```

```
TAD MAPA
```

```
usa Casillero, Conjunto, Bool
```

géneros mapa

exporta mapa, observadores, generadores, casillerosLibres

igualdad observacional

$$(\forall m_1, m_2 : \text{mapa}) \left(m_1 =_{\text{obs}} m_2 \iff \begin{pmatrix} \text{conjFantasmas}(m_1) =_{\text{obs}} \text{conjFantasmas}(m_2) \land \\ \text{conjParedes}(m_1) =_{\text{obs}} \text{conjParedes}(m_2) \land \\ \text{dimensiones}(m_1) =_{\text{obs}} \text{dimensiones}(m_2) \land \\ \text{casilleroInicial}(m_1) =_{\text{obs}} \text{casilleroInicial}(m_2) \land \\ \text{vertice}(m_1) =_{\text{obs}} \text{vertice}(m_2) \land \\ \text{casilleroDeLlegada}(m_1) =_{\text{obs}} \text{casilleroDeLlegada}(m_2) \end{pmatrix} \right)$$

observadores básicos

```
conj<br/>Fantasmas : mapa \longrightarrow conj(casillero)<br/>
conj<br/>Paredes : mapa \longrightarrow conj(casillero)<br/>
dimensiones : mapa \longrightarrow tupla(nat,nat)<br/>
vertice : mapa \longrightarrow casillero<br/>
casillero<br/>Inicial : mapa \longrightarrow casillero<br/>
casillero<br/>De<br/>Llegada : mapa \longrightarrow casillero
```

generadores

```
 \begin{aligned} &\text{nuevoMapa: tupla(nat, nat) } \ dimensi\'on \times \text{casillero } \ vertice \times \text{casillero } \ inicio \times \text{casillero } \ fin \times \\ &\text{conj(casillero) } \ fantasmas \times \text{conj(casillero) } \ paredes \longrightarrow \text{mapa} \\ &\left\{ \begin{array}{l} \emptyset?(fantasmas \cap paredes) \wedge \emptyset?(\text{aDistanciaMenosDeN}(inicio, 3) \cap fs) \wedge (inicio \neq fin) \wedge \\ &dentroDeLasDimensiones(dimensi\'on, vertice, inicio) \wedge \\ &dentroDeLasDimensiones(dimensi\'on, vertice, fin) \wedge \\ &(\forall f \in fantasmas)(dentroDeLasDimensiones(dimensi\'on, vertice, f)) \wedge \\ &(\forall p \in paredes)(dentroDeLasDimensiones(dimensi\'on, vertice, p)) \end{array} \right\} \end{aligned}
```

otras operaciones

```
casillerosLibres : mapa \longrightarrow conj(casillero)
dentroDeLasDimensiones : tupla(int \times int) \times casillero \times casillero \longrightarrow bool
```

axiomas

```
conjFantasmas (nuevoMapa (dimensión, vertice, inicio, fin, fantasmas, paredes)) \equiv fantasmas conjParedes (nuevoMapa (dimensión, vertice, inicio, fin, fantasmas, paredes)) \equiv paredes dimensiones (nuevoMapa (dimensión, vertice, inicio, fin, fantasmas, paredes)) \equiv dimensión casilleroInicial (nuevoMapa (dimensión, vertice, inicio, fin, fantasmas, paredes)) \equiv inicio casilleroDeLlegada (nuevoMapa (dimensión, vertice, inicio, fin, fantasmas, paredes)) \equiv fin vertice (nuevoMapa (dimensión, vertice, inicio, fin, fantasmas, paredes)) \equiv vertice casillerosLibres (m) \equiv { (c:casillero) (\pi_1(c) \leq \pi_1(\text{dimensiones}(m)) \land \pi_2(c) \leq \pi_2(\text{dimensiones}(m)) } - (conjFantasmas(m) \cup conjParedes(m))
```

dentro DeLas
Dimensiones(dimensión, vertice, casilla) $\equiv 0 \leq \pi_1(casilla) - \pi_1(vertice) < \pi_1(dimensión) \land 0 \leq \pi_2(casilla) - \pi_2(vertice) < \pi_2(dimensión)$

TAD PACALGO2

usa Mapa géneros pacalgo2

exporta pacalgo2, observadores, generadores

igualdad observacional

$$(\forall p_1, p_2 : \text{pacalgo2}) \left(p_1 =_{\text{obs}} p_2 \iff \left(\begin{array}{c} \text{verMapa}(p_1) =_{\text{obs}} \text{verMapa}(p_2) \land \\ \text{trayectoria}(p_1) =_{\text{obs}} \text{trayectoria}(p_2) \end{array} \right) \right)$$

observadores básicos

verMapa : pacalgo2 \longrightarrow mapa trayectoria : pacalgo2 \longrightarrow sec(casillero)

generadores

inicializar Juego : mapa \longrightarrow pacalgo2 arriba : pacalgo2 $p \longrightarrow$ pacalgo2

 $\{(\operatorname{posici\'onActual}(p) + \langle 0, 1 \rangle) \in \operatorname{direccionesPosibles}(p) \wedge \neg \operatorname{gan\'o?}(p) \wedge \neg \operatorname{perdi\'o?}(p)\}$

abajo : pacalgo
2 $p{\longrightarrow}$ pacalgo 2

 $\{(\text{posiciónActual}(p) - \langle 0, 1 \rangle) \in \text{direccionesPosibles}(p) \land \neg \text{gan\'o}?(p) \land \neg \text{perdi\'o}?(p)\}$

derecha : pacalgo2 $p \longrightarrow$ pacalgo2

 $\{(\text{posiciónActual}(p) + \langle 1, 0 \rangle) \in \text{direccionesPosibles}(p) \land \neg \text{gan\'o?}(p) \land \neg \text{perd\'i\'o?}(p)\}$

izquierda : pacalgo2 $p \longrightarrow$ pacalgo2

 $\{(\text{posiciónActual}(p) - \langle 1, 0 \rangle) \in \text{direccionesPosibles}(p) \land \neg \text{gan\'o?}(p) \land \neg \text{perdi\'o?}(p)\}$

otras operaciones

directionesPosibles : pacalgo2 \longrightarrow conj(casillero)

perdió? : pacalgo2 \longrightarrow bool ganó? : pacalgo2 \longrightarrow bool posicionActual : pacalgo2 \longrightarrow casillero

axiomas

 $verMapa(inicializarJuego(m)) \equiv m$

 $\begin{array}{lll} \operatorname{verMapa}(\operatorname{arriba}(p)) & \equiv & \operatorname{verMapa}(p) \\ \operatorname{verMapa}(\operatorname{abajo}(p)) & \equiv & \operatorname{verMapa}(p) \\ \operatorname{verMapa}(\operatorname{izquierda}(p)) & \equiv & \operatorname{verMapa}(p) \\ \operatorname{verMapa}(\operatorname{derecha}(p)) & \equiv & \operatorname{verMapa}(p) \end{array}$

trayectoria(inicializar Juego m) \equiv casillero Inicial(m) $\bullet \langle \rangle$

trayectoria(arriba(p)) \equiv (posiciónActual(p) + $\langle 0, 1 \rangle$) • trayectoria(p) trayectoria(abajo(p)) \equiv (posiciónActual(p) - $\langle 0, 1 \rangle$) • trayectoria(p) trayectoria(izquierda(p)) \equiv (posiciónActual(p) - $\langle 1, 0 \rangle$) • trayectoria(p) trayectoria(derecha(p)) \equiv (posiciónActual(p) + $\langle 1, 0 \rangle$) • trayectoria(p)

 $\texttt{perdi\'o?}(p) \qquad \qquad \equiv \ \emptyset?(\texttt{conjFantasmas}(\texttt{verMapa}(p)) \cap \texttt{aDistanciaMenosDeN}(\texttt{posicionActual}(p), \texttt{aD$

3))

ganó?(p) $\equiv posiciónActual(p) = casilleroDeLlegada(verMapa(p))$

posiciónActual(p) $\equiv prim(trayectoria(p))$

direcciones Posibles
(p) = aDistancia Menos DeN(posiciónActual
(p),1) \cap casilleros Libres(verMapa
(p)) - posiciónActual(p)

1.2. Parte 2

```
TAD CASILLERO
```

```
Tupla(int, int)
extiende
usa
                 Int
                 casillero
géneros
                 casillero, +, -, aDistanciaMenosDeN
exporta
otras operaciones
  \bullet + \bullet: casillero \times casillero \longrightarrow casillero
  \bullet - \bullet : casillero \times casillero \longrightarrow casillero
  aDistanciaMenosDeN : casillero \times nat \longrightarrow conj(casillero)
axiomas
  \pi_1(c1+c2)
                                        \equiv \pi_1(c_1) + \pi_1(c_2)
  \pi_2(c1+c2)
                                        \equiv \pi_2(c_1) + \pi_2(c_2)
  \pi_1(c1 - c2)
                                        \equiv if \pi_1(c_2) > \pi_1(c_1) then 0 else \pi_1(c_1) - \pi_1(c_2) fi
                                        \equiv if \pi_2(c_2) > \pi_2(c_1) then 0 else \pi_2(c_1) - \pi_2(c_2) fi
  \pi_2(c1 - c2)
  a
Distancia
Menos
De<br/>N(c,\,n) \equiv \mbox{if } n{=}0? then
                                                 \{c\}
                                            else
                                                 (aDistanciaMenosDeN(c + \langle 1,0 \rangle, n-1) \cup
                                                 aDistanciaMenosDeN(c - \langle 1,0 \rangle, n-1) \cup
                                                 a
Distancia
Menos
De<br/>N(c + \langle 0,1 \rangle, n-1) \cup
                                                a
Distancia
Menos
De<br/>N(c - \langle 0,\!1\rangle,\,n-1) \cup
                                                 aDistanciaMenosDeN(c, n-1))
```

TAD MAPA

usa Casillero, Conjunto, Bool

géneros mapa

exporta mapa, observadores, generadores, casillerosLibres

igualdad observacional

$$(\forall m_1, m_2 : \text{mapa}) \begin{pmatrix} \text{conjFantasmas}(m_1) =_{\text{obs}} \text{conjFantasmas}(m_2) \land \\ \text{conjParedes}(m_1) =_{\text{obs}} \text{conjParedes}(m_2) \land \\ \text{conjChocolates}(m_1) =_{\text{obs}} \text{conjChocolates}(m_2) \land \\ \text{dimensiones}(m_1) =_{\text{obs}} \text{dimensiones}(m_2) \land \\ \text{casilleroInicial}(m_1) =_{\text{obs}} \text{casilleroInicial}(m_2) \land \\ \text{vertice}(m_1) =_{\text{obs}} \text{vertice}(m_2) \land \\ \text{casilleroDeLlegada}(m_1) =_{\text{obs}} \text{casilleroDeLlegada}(m_2) \end{pmatrix}$$

observadores básicos

generadores

```
 \begin{aligned} &\text{nuevoMapa: tupla(nat, nat) } \ dimensi\'on \times \text{casillero } \ vertice \times \text{casillero } \ inicio \times \text{casillero } \ fin \times \\ &\text{conj(casillero) } \ fantasmas \times \text{conj(casillero) } \ paredes \times \text{conj(casillero) } \ chocolates \longrightarrow \text{mapa} \\ &\left\{ \begin{array}{l} \emptyset?(fantasmas \cap paredes) \wedge \emptyset?(fantasmas \cap chocolates) \wedge \emptyset?(paredes \cap chocolates) \wedge \\ \emptyset?(\text{aDistanciaMenosDeN}(inicio, 3) \cap fs) \wedge (inicio \neq fin) \wedge \\ &dentroDeLasDimensiones(dimensi\'on, vertice, inicio) \wedge \\ &dentroDeLasDimensiones(dimensi\'on, vertice, fin) \wedge \\ &(\forall f \in fantasmas)(dentroDeLasDimensiones(dimensi\'on, vertice, f)) \wedge \\ &(\forall c \in chocolates)(dentroDeLasDimensiones(dimensi\'on, vertice, c)) \wedge \\ &(\forall p \in paredes)(dentroDeLasDimensiones(dimensi\'on, vertice, p)) \end{array} \right\} \end{aligned}
```

otras operaciones

```
casilleros
Libres : mapa \longrightarrow conj(casillero)
dentro
De<br/>Las
Dimensiones : tupla(int \times int) \times casillero \times casillero \longrightarrow bool
```

axiomas

conjFantasmas(nuevoMapa(dimensión, vertice, inicio, fin, fantasmas, paredes)) \equiv fantasmas conjParedes(nuevoMapa(dimensión, vertice, inicio, fin, fantasmas, paredes, chocolates)) \equiv paredes conjChocolates(nuevoMapa(dimensión, vertice, inicio, fin, fantasmas, paredes, chocolates)) \equiv chocolates dimensiones(nuevoMapa(dimensión, vertice, inicio, fin, fantasmas, paredes, chocolates)) \equiv dimensión casilleroInicial(nuevoMapa(dimensión, vertice, inicio, fin, fantasmas, paredes, chocolates)) \equiv inicio

```
casilleroDeLlegada(nuevoMapa(dimensión, vertice, inicio, fin, fantasmas, paredes, chocolates)) \equiv fin vertices(nuevoMapa(dimensión, vertice, inicio, fin, fantasmas, paredes, chocolates)) \equiv vertice casillerosLibres(m) \equiv { (c:casillero) (\pi_1(c) \leq \pi_1(\text{dimensiones}(m)) \land \pi_2(c) \leq \pi_2(\text{dimensiones}(m))) } - (fantasmas(m) \cup conjParedes(m)) dentroDeLasDimensiones(dimensión, vertice, casilla) \equiv 0 \leq \pi_1(casilla) - \pi_1(vertice) < \pi_1(dimensión) \land 0 \leq \pi_2(casilla) - \pi_2(vertice) < \pi_2(dimensión)
```

TAD PACALGO2

usa Mapa

géneros pacalgo2

exporta pacalgo2, observadores, generadores

igualdad observacional

$$(\forall p_1, p_2 : \text{pacalgo2}) \left(p_1 =_{\text{obs}} p_2 \iff \begin{pmatrix} \text{verMapa}(p_1) =_{\text{obs}} \text{verMapa}(p_2) \land \\ \text{trayectoria}(p_1) =_{\text{obs}} \text{trayectoria}(p_2) \land \\ \text{chocolatesRestantes}(p_1) =_{\text{obs}} \text{chocolatesRestantes}(p_2) \end{pmatrix} \right)$$

observadores básicos

 $verMapa \hspace{1cm} : \hspace{1cm} pacalgo2 \hspace{1cm} \longrightarrow \hspace{1cm} mapa$

trayectoria : pacalgo2 \longrightarrow sec(casillero) chocolatesRestantes : pacalgo2 \longrightarrow conj(casillero)

generadores

inicializar Juego : mapa \longrightarrow pacalgo2

arriba : pacalgo
2 $p{\longrightarrow}$ pacalgo 2

 $\{(\text{posici\'onActual}(p) + \langle 0, 1 \rangle) \in \text{direccionesPosibles}(p) \land \neg \text{gan\'o?}(p) \land \neg \text{perdi\'o?}(p)\}$

abajo : pacalgo2 $p \longrightarrow \text{pacalgo2}$

 $\{(\text{posiciónActual}(p) - \langle 0, 1 \rangle) \in \text{direccionesPosibles}(p) \land \neg \text{gan\'o?}(p) \land \neg \text{perdi\'o?}(p)\}$

derecha : pacalgo2 $p \longrightarrow \text{pacalgo2}$

 $\{(\operatorname{posici\'onActual}(p) + \langle 1, 0 \rangle) \in \operatorname{direccionesPosibles}(p) \land \neg \operatorname{gan\'o?}(p) \land \neg \operatorname{perdi\'o?}(p)\}$

izquierda : pacalgo2 $p \longrightarrow$ pacalgo2

 $\{(\operatorname{posici\'onActual}(p) - \langle 1, 0 \rangle) \in \operatorname{direccionesPosibles}(p) \wedge \neg \operatorname{gan\'o?}(p) \wedge \neg \operatorname{perdi\'o?}(p)\}$

otras operaciones

directionesPosibles: pacalgo2 \longrightarrow conj(casillero)

perdió? : pacalgo2 \longrightarrow bool ganó? : pacalgo2 \longrightarrow bool posicionActual : pacalgo2 \longrightarrow casillero puntaje : pacalgo2 \longrightarrow nat agarraElChocolate : pacalgo2 \longrightarrow pacalgo2 restarChocolate : pacalgo2 \longrightarrow pacalgo2

axiomas

 $verMapa(inicializarJuego(m)) \equiv m$

 $\operatorname{verMapa}(\operatorname{arriba}(p))$ $\equiv \operatorname{verMapa}(p)$ $\operatorname{verMapa}(\operatorname{abajo}(p))$ $\equiv \operatorname{verMapa}(p)$ $\operatorname{verMapa}(\operatorname{izquierda}(p))$ $\equiv \operatorname{verMapa}(p)$ $\operatorname{verMapa}(\operatorname{derecha}(p))$ $\equiv \operatorname{verMapa}(p)$

trayectoria(inicializar Juego m) \equiv casillero Inicial(m) $\bullet \langle \rangle$

 $\text{trayectoria}(\operatorname{arriba}(p)) \qquad \equiv (\operatorname{posici\acute{o}nActual}(p) + \langle 0, 1 \rangle) \bullet \operatorname{trayectoria}(p)$ $\text{trayectoria}(\operatorname{abajo}(p)) \qquad \equiv (\operatorname{posici\acute{o}nActual}(p) - \langle 0, 1 \rangle) \bullet \operatorname{trayectoria}(p)$ $\text{trayectoria}(\operatorname{izquierda}(p)) \qquad \equiv (\operatorname{posici\acute{o}nActual}(p) - \langle 1, 0 \rangle) \bullet \operatorname{trayectoria}(p)$

```
trayectoria(derecha(p))
                                                \equiv (posiciónActual(p) + \langle 1, 0 \rangle) • trayectoria(p)
        trayectoria(inicializar Juego m)
                                                \equiv casilleroInicial(m) \bullet \langle \rangle
        chocolatesRestantes(arriba(p))
                                                \equiv if posiciónActual(arriba(p)) \in chocolatesRestantes(p) then
                                                        \operatorname{agarraElChocolate}(\operatorname{arriba}(p)) \wedge \operatorname{restarChocolate}(\operatorname{arriba}(p))
                                                        chocolatesRestantes(p)
                                                    fi
        chocolatesRestantes(abajo(p))
                                                \equiv (posiciónActual(p) - \langle 0, 1 \rangle) • trayectoria(p)
        chocolatesRestantes(izquierda(p)) \equiv
(posiciónActual(p) - \langle 1, 0 \rangle) • trayectoria(p)
        chocolatesRestantes(derecha(p)) \equiv
(posiciónActual(p) + \langle 1, 0 \rangle) \bullet trayectoria(p)
        perdió?(p)
                                                \equiv \emptyset?(conjFantasmas(verMapa(p)) \cap aDistanciaMenosDeN(posicionActual(p),
        ganó?(p)
                                                \equiv posiciónActual(p)=casilleroDeLlegada(verMapa(p))
        posiciónActual(p)
                                                    prim(trayectoria(p))
        direccionesPosibles(p)
                                                \equiv aDistanciaMenosDeN(posiciónActual(p),1)\capcasillerosLibres(verMapa(p))
                                                    - posiciónActual(p)
```

Fin TAD

2. Conclusiones

Cosa