Astro 507; Problem Set 3

Tom Wagg

February 22, 2022

1. FIRAS

2a. Entropy

Let's derive the entropy for an ideal, non-relativistic Fermi gas (in terms of V, z and T). For this I will follow Lecture 10. The entropy is defined as

$$S = \frac{U + PV - N\mu}{T},\tag{1}$$

so we just need to use definitions of U, P, N and μ . The definitions of μ is trivial when using the fugacity

$$\mu = k_B T \ln z \tag{2}$$

For the others, I refer to lecture 10 where we can find the definition of n on slide 5

$$N = nV = \frac{2(2s+1)}{\pi^{1/2}\lambda^3} V F_{1/2}(z)$$
(3)

and the definition of P on slide 7

$$P = \frac{4(2s+1)}{3\pi^{1/2}} k_B T \lambda^{-3} F_{3/2}(z) \tag{4}$$

For the total energy, we don't have it from the slides but we can derive it in the same way using Fermi-Dirac integrals. It starts in the same way as n but with an extra factor of ϵ in the numerator, then we use the substitution $w = \epsilon/k_B T$

$$U = (2s+1)\frac{V}{h^3} \int \frac{\epsilon}{e^{\frac{\epsilon-\mu}{k_B T}} + 1} d\vec{\mathbf{p}}$$
 (5)

$$U = \frac{4\pi(2s+1)}{2h^3} (2mk_BT)^{3/2} k_B T \int_0^\infty dw \, \frac{w^{3/2}}{e^w z^{-1} + 1}$$
 (6)

$$U = \frac{2(2s+1)}{\pi^{1/2}\lambda^3} V k_B T F_{3/2}(z)$$
 (7)

Now it's simply a matter of plugging all of these into the entropy expression.

$$S = \frac{U + PV - N\mu}{T} \tag{8}$$

$$= \frac{1}{T} \left[\frac{2(2s+1)}{\pi^{1/2} \lambda^3} V k_B T F_{3/2}(z) + \frac{4(2s+1)}{3\pi^{1/2}} V k_B T \lambda^{-3} F_{3/2}(z) + \frac{2(2s+1)}{\pi^{1/2} \lambda^3} V k_B T \ln z F_{1/2}(z) \right]$$
(9)

$$= \frac{2(2s+1)Vk_BT}{\pi^{1/2}\lambda^3} \left[F_{3/2}(z) + \frac{2}{3}F_{3/2}(z) + \ln zF_{1/2}(z) \right]$$
 (10)

$$S = \frac{2(2s+1)Vk_BT}{\pi^{1/2}\lambda^3} \left[\frac{5}{3} F_{3/2}(z) + F_{1/2}(z) \ln z \right]$$
(11)

2b. Expanding pressure

$$\frac{P}{nk_BT} = \frac{4(2s+1)}{3\pi^{1/2}} k_B T \lambda^{-3} F_{3/2}(z) \left[\frac{2(2s+1)}{\pi^{1/2} \lambda^3} k_B T F_{1/2}(z) \right]^{-1}$$

$$= \frac{2F_{3/2}(z)}{3F_{1/2}(z)}$$
(12)

TODO: come back to this on Thursday

3. Brown Dwarf