CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Advanced Level

MARK SCHEME for the October/November 2012 series

9709 MATHEMATICS

9709/33 Paper 3, maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2012 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – October/November 2012	9709	33

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.

When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.

The symbol $^{\wedge}$ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.

Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.

For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10.

www.maxpapers.com

Page 3	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – October/November 2012	9709	33

The following abbreviations may be used in a mark scheme or used on the scripts:

Any Equivalent Form (of answer is equally acceptable)
Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
Correct Working Only – often written by a 'fortuitous' answer
Ignore Subsequent Working
Misread
Premature Approximation (resulting in basically correct work that is insufficiently accurate)
See Other Solution (the candidate makes a better attempt at the same question)
Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR −1 A penalty of MR −1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through \(\rightarrow\)" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR −2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

A1

[4]

L	Page 4		Mark Scheme	Syllabus	Paper	r
			GCE A LEVEL – October/November 2012	9709	33	
1	Sta	te or imp	ly lne=1		В1	
	Ap	ply at leas	st one logarithm law for product or quotient correctly		M1	
			ial equivalent)			
	Ob	tain $x+5$	$=$ ex or equivalent and hence $\frac{5}{e-1}$		A1	[3]
2	(i)	State or	imply $R=25$		B1	
		Use cor	rect trigonometric formula to find α		M1	
			16.26° with no errors seen		A 1	[3]
	(ii)	Evaluat	e of $\sin^{-1} \frac{17}{R}$ (= 42.84°)		M1	
		Obtain	answer 59.1°		A1	[2]
3	(i)	<u>Either</u>	Use correct quotient rule or equivalent to obtain			
			$\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{4(2t+3)-8t}{(2t+3)^2}$ or equivalent		B1	
			Obtain $\frac{dy}{dt} = \frac{4}{2t+3}$ or equivalent		B1	
			Use $\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}$ or equivalent		M1	
			Obtain $\frac{1}{3}(2t+3)$ or similarly simplified equivalent		A1	
		<u>Or</u>	Express t in terms of x or y e.g. $t = \frac{3x}{4-2x}$		B1	
			Obtain Cartesian equation e.g. $y = 2\ln\left(\frac{6}{2-x}\right)$		B1	
			Differentiate and obtain $\frac{dy}{dx} = \frac{2}{2-x}$		M1	

Obtain $\frac{1}{3}(2t+3)$ or similarly simplified equivalent

Substitute in expression for
$$\frac{dy}{dx}$$
 and obtain 2 B1 [2]

www.maxpapers.com

Syllabus

Paper

			GCE A LEVEL – October/November 2012 9709	33	
4	_		ables correctly and integrate one side or equivalent	M1 A1	
	Ob	tain = 31n	(x^2+4) or equivalent	A1	
			onstant or use $x = 0$, $y = 32$ as limits in a solution	M1	
			rms $a \ln y$ and $b \ln (x^2 + 4)$		
			$=3 \ln(x^2+4) + \ln 32 - 3 \ln 4$ or equivalent	A1	
	Ob	$tain y = \frac{1}{2}$	(x^2+4) or equivalent	A1	[6]
5	(i)	<u>Either</u>	Use correct product rule	M1	
	(-)	<u> </u>	Obtain $3e^{-2x} - 6xe^{-2x}$ or equivalent	A1	
			Substitute $-\frac{1}{2}$ and obtain 6e	A1	
		<u>Or</u>	Take In of both sides and use implicit differentiation correctly	M1	
			Obtain $\frac{dy}{dx} = y\left(\frac{1}{x} - 2\right)$ or equivalent	A1	
			Substitute $-\frac{1}{2}$ and obtain 6e	A1	[3]
	(ii)	Use inte	gration by parts to reach $kxe^{-2x} \pm \int ke^{-2x} dx$	M1	
		Obtain -	$-\frac{3}{2}xe^{-2x} + \int_{2}^{3}e^{-2x} dx \text{ or equivalent}$	A1	
		Obtain -	$-\frac{3}{2}xe^{-2x}-\frac{3}{4}e^{-2x}$ or equivalent	A1	
		Substitu	te correct limits correctly	DM1	
		Obtain -	$-\frac{3}{4}$ with no errors or inexact work seen	A1	[5]
6	(i)	Find y fo	or $x = -2$	M1	
		Obtain 0) and conclude that $\alpha = -2$	A1	[2]
	(ii)	<u>Either</u>	Find cubic factor by division or inspection or equivalent	M1	
			Obtain $x^3 + 2x - 8$	A1	
			Rearrange to confirm given equation $x = \sqrt[3]{8 - 2x}$	A1	
		<u>Or</u>	Derive cubic factor from given equation and form product with $(x - \alpha)$	M1	
			$(x+2)(x^3+2x-8)$	A1	
		0	Obtain quartic $x^4 + 2x^3 + 2x^2 - 4x - 16$ (= 0)	A1	
		<u>Or</u>	Derive cubic factor from given equation and divide the quartic by the cubic $(x^4 + 2x^3 + 2x^2 - 4x - 16) \div (x^3 + 2x - 8)$	M1 A1	
			Obtain correct quotient and zero remainder	A1	[3]
	(!!!\	TT d			
	(iii)		given iterative formula correctly at least once in iterative for iterative formula correctly at least once in iterative for iterative	M1 A1	
		Show su	ifficient iterations to at least 4 d.p. to justify answer 1.67 to 2 d.p. or show a change of sign in interval (1.665, 1.675)	A1	[3]
			5 6 ()		F- 7

Mark Scheme

Page 5

www.maxpapers.com

A1

[5]

Page 6	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – October/November 2012	9709	33

7 (i) State or imply $du = 2\cos 2x \, dx$ or equivalent B1 Express integrand in terms of u and du M1

Obtain
$$\int \frac{1}{2} u^3 (1 - u^2) du$$
 or equivalent A1

Integration to obtain an integral of the form
$$k_1 u^4 + k_2 u^6$$
, k_1 , $k_2 \neq 0$ M1

Use limits 0 and 1 or (if reverting to x) 0 and
$$\frac{1}{4}\pi$$
 correctly

Obtain
$$\frac{1}{24}$$
, or equivalent A1 [6]

- (ii) Use 40 and upper limit from part (i) in appropriate calculation M1 Obtain k = 10 with no errors seen A1 [2]
- 8 (i) State or imply general point of either line has coordinates (5+s, 1-s, -4+3s) or (p+2t, 4+5t, -2-4t)Solve simultaneous equations and find s and t M1 Obtain s=2 and t=-1 or equivalent in terms of p A1 Substitute in third equation to find p=9 A1 State point of intersection is (7, -1, 2) A1 [5]
 - (ii) Either Use scalar product to obtain a relevant equation in a, b, ce.g. a b + 3c = 0 or 2a + 5b 4c = 0State two correct equations in a, b, cA1
 Solve simultaneous equations to obtain at least one ratio
 Obtain a:b:c=-11:10:7 or equivalent
 Obtain equation -11x + 10y + 7z = -73 or equivalent with integer coefficients
 A1
 - Or 1 Calculate vector product of $\begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix}$ and $\begin{pmatrix} 2 \\ 5 \\ -4 \end{pmatrix}$ M1

Obtain two correct components of the product

Obtain correct
$$\begin{pmatrix} -11\\10\\7 \end{pmatrix}$$
 or equivalent

A1

Substitute coordinates of a relevant point in $\mathbf{r} \cdot \mathbf{n} = d$ to find d DM1

Obtain equation -11x + 10y + 7z = -73 or equivalent with integer coefficients A1

Or 2 Using relevant vectors, form correctly a two-parameter equation for the plane M1

Obtain
$$\mathbf{r} = \begin{pmatrix} 5 \\ 1 \\ -4 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix} + \mu \begin{pmatrix} 2 \\ 5 \\ -4 \end{pmatrix}$$
 or equivalent A1

State three equations in x, y, z, λ, μ A1

Eliminate
$$\lambda$$
 and μ DM1

Obtain 11x - 10y - 7z = 73 or equivalent with integer coefficients

[5]

M1

Page 7	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – October/November 2012	9709	33

9 (i) State or imply form
$$\frac{A}{3-x} + \frac{Bx+C}{1+x^2}$$

Use relevant method to determine a constant M1
Obtain
$$A = 6$$
Obtain $B = -2$
A1

Obtain
$$C = 1$$

(ii) Either Use correct method to obtain first two terms of expansion

of
$$(3-x)^{-1}$$
 or $\left(1-\frac{1}{3}x\right)^{-1}$ or $\left(1+x^2\right)^{-1}$ M1

Obtain
$$\frac{A}{3} \left(1 + \frac{1}{3}x + \frac{1}{9}x^2 + \frac{1}{27}x^3 \right)$$

Obtain
$$(Bx + C)(1 - x^2)$$

Obtain sufficient terms of the product $(Bx + C)(1 - x^2)$, $B, C \ne 0$ and add the two expansions

Obtain final answer
$$3 - \frac{4}{3}x - \frac{7}{9}x^2 + \frac{56}{27}x^3$$

Or Use correct method to obtain first two terms of expansion

of
$$(3-x)^{-1}$$
 or $\left(1-\frac{1}{3}x\right)^{-1}$ or $\left(1+x^2\right)^{-1}$ M1

Obtain
$$\frac{1}{3} \left(1 + \frac{1}{3}x + \frac{1}{9}x^2 + \frac{1}{27}x^3 \right)$$

Obtain
$$(1-x^2)$$
 A1

Obtain final answer
$$3 - \frac{4}{3}x - \frac{7}{9}x^2 + \frac{56}{27}x^3$$
 A1 [5]

10 (a) Expand and simplify as far as $iw^2 = -8i$ or equivalent B1

Obtain first answer
$$i\sqrt{8}$$
, or equivalent B1

Obtain second answer
$$-i\sqrt{8}$$
, or equivalent and no others B1 [3]

(b) (i) Draw circle with centre in first quadrant
Draw correct circle with interior shaded or indicated

M1
A1 [2]

Obtain
$$p = 3.66$$
 and $q = 7.66$ A1
Show tangents from origin to circle M1

Evaluate
$$\sin^{-1}\left(\frac{1}{4}\sqrt{2}\right)$$
 M1

Obtain
$$\alpha = \frac{1}{4}\pi - \sin^{-1}\left(\frac{1}{4}\sqrt{2}\right)$$
 or equivalent and hence 0.424

Obtain
$$\beta = \frac{1}{4}\pi + \sin^{-1}\left(\frac{1}{4}\sqrt{2}\right)$$
 or equivalent and hence 1.15 A1 [6]