(Autumn 2023)

Due: 11:59pm September 10

Name

- 1. Given two frames {B} and {C} that are initially coincident with each other. First, we rotate {C} about  $\hat{Z}_C$  by  $\theta_1$  degrees. Then, we rotate the resulting frame {C} about the new  $\hat{Y}_C$  by  $\theta_2$ .
  - (a) Determine the  $3 \times 3$  rotation matrix,  ${}^B_C R$ , that will change the description of a vector P in frame  $\{C\}$ ,  ${}^C P$ , to frame  $\{B\}$ ,  ${}^B P$ .

(b) What is the value of  ${}^B_CR$ , if  $\theta_1=45^\circ,\ \theta_2=60^\circ$ ?

(c) We then define a new frame A which translates from the frame B along the vector of  ${}^B\mathbf{q} = [q_1,q_2,q_3]^T$ . Write down the homogeneous transformation  ${}^A_CT$  from frame C to frame A.

2. Consider the following manipulator with two revolute joint and one prismatic joint.



(a) Draw the frames of this manipulator. Define  $l_1$  to the length connecting points g and a, and  $l_2$  to be the length connecting points a and b. Note that frame 3 has been done for you, and your solution needs to be consistent with the given frame 3.

Hint: Frame 0 is not located at point g

(b) Find the Denavit-Hartenberg parameters for this manipulator and fill in the entries of the following table

| ſ | i | $a_{i-1}$ | $\alpha_{i-1}$ | $d_i$ | $\theta_i$ |
|---|---|-----------|----------------|-------|------------|
| ſ | 1 |           |                |       |            |
| Ī | 2 |           |                |       |            |
| Ī | 3 |           |                |       |            |

(c) Given  $\theta_1 = 225^{\circ}$ ,  $\theta_2 = 45^{\circ}$ ,  $l_1 = 0.5$ ,  $l_2 = 0.4$ , and  $d_3 = 0.25$ , find the matrix  ${}_3^0T$  at the configuration from part (a). You may write down the answer as a product of matrices.

3. Let us consider the RPR manipulator with 3 links represented in the schematic below. The schematic is drawn in the configuration  $\theta_1 = 0, \theta_3 = 90^{\circ}$ 



Luckily, you do not need to compute the forward kinematics, because they are given to you here (note that  $c_{13} = \cos(\theta_1 + \theta_3)$ ):

$${}^{0}_{1}T = \begin{bmatrix} c_{1} & -s_{1} & 0 & 0 \\ s_{1} & c_{1} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, {}^{0}_{2}T = \begin{bmatrix} c_{1} & 0 & -s_{1} & -d_{2}s_{1} \\ s_{1} & 0 & c_{1} & d_{2}c_{1} \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, {}^{0}_{3}T = \begin{bmatrix} c_{13} & -s_{13} & 0 & -d_{2}s_{1} \\ s_{13} & c_{13} & 0 & d_{2}c_{1} \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 
$${}^{0}_{2}T = \begin{bmatrix} c_{13} & -s_{13} & 0 & 2c_{13} - d_{2}s_{1} \\ s_{13} & c_{13} & 0 & 2s_{13} + d_{2}c_{1} \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

(a) Find the linear velocity and angular velocity of the end-effector in frame  $\{0\}$  as a function of the joint variables. Obtain the linear velocity by differentiation.

(c) If the robot is stationary (i.e.  $\dot{\mathbf{q}} = \mathbf{0}$  and  $\ddot{\mathbf{q}} = \mathbf{0}$ ), and we apply a force (measured in frame  $\{0\}$ ) of  ${}^0F = [F_x \ F_y \ F_z]^T$  on the end-effector, what are the resulting joint torques?

4. You are presented with the RRR manipulator below.  $L_1$ ,  $L_2$ , and  $L_3$  are strictly positive.



(a) Find the Denavit-Hartenberg parameters for this manipulator. Assign the frames such that all your  $a_i$  are positive.

|   | i | $a_{i-1}$ | $\alpha_{i-1}$ | $d_i$ | $\theta_i$ |
|---|---|-----------|----------------|-------|------------|
| ľ | 1 |           |                |       |            |
| ľ | 2 |           |                |       |            |
| ľ | 3 |           |                |       |            |
| ĺ | 4 |           |                |       |            |

(b) The position of the end-effector is:

$${}^{0}P_{4} = \begin{bmatrix} L_{1}c_{1} + L_{2}c_{12} + L_{3}c_{12}c_{3} \\ L_{1}s_{1} + L_{2}s_{12} + L_{3}s_{12}c_{3} \\ -L_{3}s_{3} \end{bmatrix},$$

where  $c_{12} = cos(\theta_1 + \theta_2)$ .

Derive the linear Jacobian  ${}^0J_v$ .

(c) Find the singular configurations of this manipulator. For each singularity, draw the robot configuration and clearly state how the movement is restricted (in terms of frame axes).

*Hint:* The linear Jacobian in frame {2} is given to you here:

$${}^{2}J_{v} = \begin{bmatrix} -L_{1}s_{2} & 0 & -L_{3}s_{3} \\ L_{1}c_{2} + L_{2} + L_{3}c_{3} & L_{2} + L_{3}c_{3} & 0 \\ 0 & 0 & -L_{3}c_{3} \end{bmatrix}$$

5. Let us consider the manipulator RPRP shown below, find the linear jacobian  ${}^0J_v$  and the angular jacobian  ${}^0J_\omega$  for the end effector point (origin of frame  $\{4\}$ ), expressed in frame  $\{0\}$ .

