EMBEDDED

Question: l and m are two parallel lines intersected by another pair of parallel lines p and $q(figure\ 1)$, show that $\triangle ABC \cong \triangle CDA$.

Figure:

Figure 1: Required parallelogram

Solution:

Symbol	Description	Value
В	Vertex at origin	0
a	Side of the parallelogram, $BC = DA$	6
b	Side of the parallelogram, $AB = CD$	$\sqrt{29}$
θ	Angle of the parallelogram, $\angle ABC$	$\sin^{-1}\left(\frac{5}{\sqrt{29}}\right)$

Table 1: Table of input parameters

Symbol	Description	Value
\mathbf{C}	Vertex of parallelogram	$a\mathbf{e_1}$
A	Vertex of parallelogram	$b\begin{pmatrix} \cos\theta\\ \sin\theta \end{pmatrix}$
D	Vertex of parallelogram	$\mathbf{C} + \mathbf{A}$

Table 2: Table of output parameters

From figure 1 between $\triangle ABC$ and $\triangle CDA$

$$\cos \angle BAC = \frac{17}{\sqrt{29}\sqrt{41}}$$

$$\cos \angle ACD = \frac{17}{\sqrt{29}\sqrt{41}}$$
(2)

$$\cos \angle ACD = \frac{17}{\sqrt{29}\sqrt{41}} \tag{2}$$

$$So, \angle BAC = \angle ACD.$$
 (3)

$$\cos \angle ACB = \frac{24}{6\sqrt{41}}$$

$$\cos \angle CAD = \frac{24}{6\sqrt{41}}$$
(5)

$$\cos \angle CAD = \frac{24}{6\sqrt{41}} \tag{5}$$

$$So, \angle ACB = \angle CAD.$$
 (6)

And CA is common side .

$$So, \triangle ABC \cong \triangle CDA. (byA - A - S) (proved)$$