

打地鼠困境

A Whac-A-Mole Dilemma

Shortcuts Come in Multiples Where Mitigating One 🖢 Amplifies Others 🚨

†Zhiheng Li² ‡Ivan Evtimov¹ Albert Gordo¹ Caner Hazirbas¹ Tal Hassner¹ Cristian Canton Ferrer¹ Chenliang Xu² ‡Mark Ibrahim¹

¹Meta AI ²University of Rochester

{ivanevtimov, agordo, hazirbas, thassner, ccanton, marksibrahim}@meta.com {zhiheng.li, chenliang.xu}@rochester.edu

Rui Hu 2023.1.11

背景

• 现有的去偏方法都基于一个脆弱的假设, 即数据中只存在single bias; 然而Realworld data会存在multi-bias, 现有方法在multi-bias设置下性能未知;

Target: the car's body type

Shortcut: background & co-occurring object

Target: object

Shortcut: texture & background & watermark

观察性实验

现有方法的性能如何?

现有方法面临打地鼠 困境:消除了一个 bias会放大另一个 bias;

	shortcut label			shortcut reliance			
	Train	Val	I.D. Acc	BG Gap↑	CoObj Gap↑	BG+CoObj Gap↑	
ERM	X	BG+CoObj	97.6	-15.3	-11.2	-69.2	
gDRO	BG+CoObj	BG+CoObj	91.6	-10.9	-3.6	-16.4	
DI	BG+CoObj	BG+CoObj	89.0	-2,2	-1.0	+0.4	
SUBG	BG+CoObj	BG+CoObj	71.1	-4.7	-0.3	-6.3	
DFR	BG+CoObj	BG+CoObj	89.7	-10.7	-6.9	-45.2	
ERM	Х	BG	97.8	-14.6	-11.3	-68.5	
gDRO	BG 🖺	BG	96.0	-4.2	-26.9 (×2.39 🖺)	-56.5	
DI	BG 🖺	BG	94.7	+2.2	-27.0 (×2.40 🖺)	-25.2	
SUBG	BG 🖺	BG	92.6	+1.3	-36.4 (×3.24 🖺)	-35.8	
DFR	BG 🖺	BG	97.4	-9.8	-13.6 (×1.21 🚇)	-58.9	
ERM	Х	CoObj	97.6	-15.4	-11.0	-68.8	
gDRO	CoObj 🖫	CoObj	95.7	-31.4 (×2.03 🖺)	-0.5	-54.9	
DI	CoObj 🖫	CoObj	94.2	-36.1 (×2.34 🖺)	+2.8	-35.8 (庫)	
SUBG	CoObj 🖫	CoObi	93.1	-60.2 (×3.90 🚇)	+2.5	-62.4	

97.4 -19.1 (×1.24 🕮) -8.6

DFR CoObj

CoObj

			shortcut reliance			
不使用		I.D. Acc	BG Gap↑	CoObj Gap↑	BG+CoObj Gap↑	
见标签	ERM	97.6	-15.3	-11.2	-69.2	
	Mixup	98.3	-12.6	-9.3	-61.8	
	CutMix	96.6	-45.0 (×2.94 🚇)	-4.8	-86.5	
	Cutout	97.8	-15.8 (×1.03 🚇)	-10.4	-71.4	
Ohi Con A	AugMix	98.2	-10.3	-12.1 (×1.08 🚇)	-70.2	
Obj Gap↑	SD	97.3	-15.0	-3.6	-36.1	
	CF+F Aug	96.8	-16.0 (×1.04 🚇)	+0.4	-19.4	
	LfF	97.2	-11.6	-18.4 (×1.64 🖺)	-63.2	
	JTT (E=1)	95.9	-8.1	-13.3 (×1.18 🚇)	-40.1	
	EIIL (E=1)	95.5	-4.2	-24.7 (×2.21 🗒)	-44.9	
	JTT (E=2)	94.6	-23.3 (×1.52 🚇)	-5.3	-52.1	
	EIIL (E=2)	95.5	-21.5 (×1.40 🚇)	-6.8	-49.6	
	DebiAN	98.0	-14.9	-10.5	-69.0	
	LLE (ours)	96.7	-2.1	-2.7	-5.9	

偏见标签

Left Color align conflict 0.6 0.7 0.8 Left Color align conflict 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.	Left Color align conflict Right Color align conflict
无监督去 (a)Vanilla	(b)Iff
偏方法 Left Color align conflict Right Color align conflict Step Step 30 40 50	Left Color align conflict Right Color
(c)Debian	(d)DisEnt

		shortcut reliance				
		Watermark		Texture		Background
	IN-1k	IN-W Gap↑	Carton Gap \downarrow	SIN Gap↑	IN-R Gap↑	IN-9 Gap↑
arch: RG-32gf						
ERM	80.88	-14.15	+32	-69.27	-52.43	-6.40
SEER (FT,IG-1B)	83.35	-6.50	+18	-73.04 (×1.05 🖺)	-50.42	-7.14 (×1.11 🖺)
arch: ViT-B/32						
ERM	75.92	-8.71	+34	-57.16	-49.45	-6.86
Uniform Soup (FT,WIT)	79.96	-7.90	+24	-59.67 (×1.04 🖺)	-27.51	-7.78 (×1.13 🖺)
Greedy Soup (FT,WIT)	81.01	-6.47	+16	-59.61 (×1.04 🖺)	-30.01	-7.21 (×1.05 🖺)
arch: ViT-B/16						
ERM	81.07	-6.69	+26	-62.60	-50.36	-5.36
SWAG (LP,IG-3.6B)	81.89	-7.76 (×1.16 🖺)	+18	-67.33 (×1.08 🖺)	-19.79	-10.39 (×1.94 🖺
SWAG (FT,IG-3.6B)	85.29	-5.43	+24	-66.99 (×1.07 🖺)	-29.55	-4.44
MoCov3 (LP)	76.65	-16.0 (×2.39 🖺)	+22	-63.36 (×1.01 🖺)	-56.86 (×1.12 🖺)	-7.80 (×1.45 🖺)
MAE (FT)	83.72	-4.60	+24	-65.20 (×1.04 🖺)	-47.10	-4.45
MAE+LLE (ours)	83.68	-2.48	+6	-58.78	-44.96	-3.70
arch: ViT-L/16 or 14						
ERM	79.65	-6.14	+34	-61.43	-53.17	-6.50
SWAG (LP,IG-3.6B)	85.13	-5.73	+6	-60.26	-10.17	-7.26 (×1.12 🖺)
SWAG (FT,IG-3.6B)	88.07	-3.16	+20	-63.45 (×1.03 🖺)	-12.29	-2.92
CLIP (zero-shot,WIT)	76.57	-4.47	+12	-61.27	-6.26	-3.68
CLIP (zero-shot,LAION)	72.77	-4.94	+12	-56.85	-8.43	-4.54 T
MAE (FT)	85.95	-4.36	+22	-62.48 (×1.02 🖺)	-36.46	-3.53
MAE+LLE (ours)	85.84	-1.74	+12	-56.32	-34.64	-2.77

-64.9

Method

- 面向的设置:偏见类型已知,偏见标签未知
- 方案: 针对性数据增强 + 分类器集成

Limitation

- 需要提前知道训练集中的 bias类型;
- 并非所有bias都可以被数 据增强.

引申想法

通用数据增强方法

数据增强方法应用广泛,但是不同方法在偏见问题上表现不同,例如CutMix可以缓解Co-obj偏见,而Cutout可以缓解BG偏见,原因是什么?能否博采众长,提出更好的数据增强方法;

无监督去偏见方法

• 对不同无监督去偏见方法在多偏见问题上的差异进行分析比较;

预训练方法避免ImageNet中的偏见

ImageNet数据集常常被用于视觉预训练任务, 比如Moco和MAE. 同时ImageNet被证明存在watermark/texture/background等偏见, 现有预训练训练模型或多或少地受到这些bias的影响, 能否提出一种面向ImageNet的改进的预训练方法;

面向视觉模型的通用测试和增强工具

- 大多数数据集(ImageNet, COCO等)都存在一些常见的data bias, 比如背景bias, 纹理bias, 水印bias, 一般的测试集无法评估视觉模型在这些OOD情况的性能;
- 我们提出数据增强工具,集成常见的bias数据增强,方便模型开发人员生成OOD测试集;
- 同时,在发现模型bias后,模型开发人员可以选择增强训练集,重新训练模型,改进模型效果.

谢 谢!