Nombre:

1. Considere el problema de optimización máx $3x_1+x_2$ sujeto a $(x_1,x_2)\in C$ donde C es el conjunto mostrado en la figura:

- a) Escriba este problema como un programa lineal en forma estándar.
- b) Si la SBF inicial está dada por las variables de holgura $(y_i = 1)$, liste la secuencia de SBFs visitadas por el método simplex en este problema.

¹Usted debe justificar todas sus respuestas. Una respuesta que aparezca de la nada no tiene ningún valor.

2. En el método simplex:

- a) Si $r_j > 0$ para cada j correspondiente a una variable x_j que no es básica, demuestre que la SBF correspondiente es la única solución óptima.
- b) Demuestre que una SBF degenerada puede ser óptima sin satisfacer $r_j \geq 0$ para todo j.

3. Es posible combinar las dos fases del método simplex de dos fases en un sólo procedimiento llamado el *método de la M grande*. Dado un programa lineal en forma estándar:

construimos el problema auxiliar:

$$\min_{\mathbf{x}} \quad \mathbf{c}^{T} \mathbf{x} + M \sum_{i=1}^{m} y_{i}$$
sujeto a $\mathbf{A} \mathbf{x} + \mathbf{y} = \mathbf{b}$ (2)
$$\mathbf{x}, \mathbf{y} \ge 0$$

En este problema $\mathbf{y} = (y_1, y_2, \dots, y_m)$ es un vector de variables artificiales y M es una constante grande. El término $M \sum_{i=1}^m y_i$ penaliza soluciones con $\mathbf{y} \neq \mathbf{0}$. Si este problema se resuelve usando el método simplex, demuestre lo siguiente:

- (a) Si se encuentra una solución óptima al problema (2) con $\mathbf{y} = \mathbf{0}$, entonces el \mathbf{x} resultante es una SBF óptima del problema original (1).
- (b) Suponga ahora que el problema (1) tiene un valor óptimo finito $V(\infty)$. Sea V(M) el valor óptimo del problema auxiliar. Demuestre que $V(M) \leq V(\infty)$.