BI476: Biostatistics - Case Studies

Exercise 03 - Designing Clinical Trials

Spring, 2018

1 Answer the following questions

- (1) Can we draw a conclusion of equivalence based on the insignificance result of superiority trial? If not, then outline the statistical testing on how to prove that a treatment T is equivalent to B in a parallel trial?
- (2) Which test requires a larger sample size for the same δ_0 , α , power, equivalence trial or non-inferiority trial?
- (3) How to deal with the non-compliance of the participants in a clinical trial?
- (4) When aren't the double-blind feasible in a clinical trial?
- (5) As we have talked about selection bias in the observational study, it is a more severe issue in a randomized controlled trial. Can you use some example to illustrate the types of selection biases in an RCT.
- (6) Illustrate how block randomization could be used to randomly allocate treatments to 30 patients with an allocation ratio of 1:2 using a block size of 6.

2 Data analysis of continuous outcome

An RCT was conducted to compare two therapies for pain relief after the wisdom tooth extraction surgery. A dual-therapy (Acetaminophen+lbuprofen) was compared

Table 1: The follow-up pain data after wisdom-tooth extraction surgery

	lbu	ıprofen		Acetamino	Acetaminophen+lbuprofen			
Time (min)	Mean (mm)	S.D. (mm) N		Mean (mm)	S.D. (mm)	N		
15	27.9	14.8	24	18.2	13.1	24		
30	32.6	24.4	25	25.3	20.9	25		
45	35.5	23.2	22	28.7	23.3	20		
60	31.3	18.9	19	25.1	22.8	23		
75	29.9	18.8	24	14.9	13.8	24		
90	23.8	17.9	22	15	14.2	24		
105	22.7	16.4	21	13.7	12.8	19		
120	20.9	17.2	24	15.2	14.4	23		

againt a mono-therapy (lbuprofen only). The primary outcome is the post-surgery pain measure at an interval of 15 minutes within a follow-up of 120 minutes. The pain was measured in a scal of 0 (no pain) to 100 (worst pain).

- (1) Conduct a *t*-test to compare the treatment effects of the two therapies at each time point. Give also the 95% confidence interval.
- (2) What kind of assumptions should we make when we conduct a *t*-test? So, is it plausible to use *t*-test here? Should we use a nonparametic approach, instead?
- (3) We can also calcualte the weighted average of the pain scores across the time points for every patient: Can you conduct the *t*-test only on the weighted mean

	lbuprofen				Acetaminophen+lbuprofen			
	Mean (mm)	s.D. (mm)			Mean (mm)	S.D. (mm)	N	
summary	27.9	13.6	25		19.5	12.3	26	

to compare the treatment effect.

- (4) You can count the number of the tests for all the time points with p-value less than 0.05, and then arrive at the final conclusion.
- (5) The other approach is to only use the weighted average to reach the conclusion. Which one do you prefer? Why?
- (6) If the pain reduction $\delta = -8$ is clinically significant, can the sample size in this trial achieve a power of 0.90 to detect such reduction? (Hint: $\alpha = 0.05$)

Table 2: Number of patients for each characteristic

		Treatment			
Character	CBT	EX			
Gender	Male	18	15		
Gender	Female	15	17		
Severity	1 0111111110	22	21		
Severity	Severe	11	11		

- (7) Can you find some flaws for the above study design? Comment.
- (8) Try to figure out a method to give the best estimate of the effect of Acetaminophen in pain relief following the wisdom-tooth extraction?

3 Clinical trial design

An RCT was comparing the psychological treatment (**CBT**) with the exercise program (**EX**) for patient suffering from moderate to severe anxiety. Patients are randomized to treatment using **deterministic minimization** controlling for gender and severity. After 65 patients have entered the trial. The number of patients with each characteristic is summarized in the following table:

- (1) How many patients have been allocated to each treatment?
- (2) If the 66th is a male and moderately severe patient, which treatment would he be allocated?
- (3) The 67th is a female and moderately severe patient, which treatment would she be allocated?

4 Case study

Read this article, and answer the following questions.

Petter Quist-Paulsen. Randomised controlledtrial of smoking cessation intervention after admission for coronary heart disease. BMJ 2003;327:1254.

- (1) Using a *z*-test of proportions, check the analysis for Table 2 of the paper to compare the smoking cessation rates in intervention group and control group at 12 months. Report also the 95% confidence interval of the treatment effect.
- (2) Summarize the results of the above analysis in your own words.
- (3) How does the author deal with the missing data? Since we have talked about intention-to-treat analysis, how does it deal with the missing data? Compare the results with the article.
- (4) Comparing the lost-to-follow-up rates between the intervention and control group, what conclusion can you draw from this analysis?

5 Case study

A randomized controlled equivalence trial is conducted to test whether a new **generic drug** is of equal efficacy to the current **standard drug**. Here is the partial result:

							-		Interval]
Standard Generic	 	42 41	35.2 34.1	2.79 2.79	289 551	18.1 17.9	30.49	991 278	39.90009 38.80722	

The investigators suggest that a difference of 5 is clinically significant. Using the above data, tell whether the new generic drug is equivalent to the current standard drug under the significance level of $\alpha=0.05$.