

Edit View Run Kernel Tabs Settings Help

Estimated time needed: 70 minutes

Falcon 9 first stage will land successfully

edadataviz.ipynb

▶► Markdown Y ♀

Assignment: Exploring and Preparing Data

In this lab, you will perform Exploratory Data Analysis and Feature Engineering.

SpaceX Falcon 9 First Stage Landing Prediction

providers cost upward of 165 million dollars each, much of the savings is due to the fact that SpaceX can reuse the first stage.

Skills

In this assignment, we will predict if the Falcon 9 first stage will land successfully. SpaceX advertises Falcon 9 rocket launches on its website with a cost of 62 million dollars; other

Network

Python (Pyodide) 🔾 🗏

By now, you should obtain some preliminary insights about how each important variable would affect the success rate, we will select the features that will be used in success

False False

False False

False False

False False

False

False

False

False

features_one_hot = pd.get_dummies(features, columns=['Orbit','LaunchSite','LandingPad','Serial','GridFins','Reused','Legs'])

False

False

False

0

Now that our features_one_hot dataframe only contains numbers, cast the entire dataframe to variable type float64

0 B0003

0 B0005

0 B0007

0 B1003

0 B1004

False

False

False

False

False

False

False

False

False

1.0

1.0

1.0

1.0

False

False

False

True ...

False ...

False ...

NaN

NaN

NaN

NaN

Class

0 2000 4000 6000 8000 Payload Mass(Kg)

With heavy payloads the successful landing or positive landing rate are more for Polar, LEO and ISS.

However, for GTO, it's difficult to distinguish between successful and unsuccessful landings as both outcomes are present.

TASK 5: Visualize the relationship between Payload Mass and Orbit type

sns.catplot(y="Orbit", x="PayloadMass", hue="Class", data=df, s=10,

. 6000000

TASK 6: Visualize the launch success yearly trend

alpha=0.5. linewidth=2. height=6. aspect=3)
#sns.catplot(y="Orbit", x="PayloadMass", hue="Class", data=df, aspect = 3)

sns.set(font_scale = 1.25)

plt.ylabel("Orbit", fontsize=20)

plt.show()

ISS

PO

GTO

ES-L1

SSO

HEO

MEO

+ 5 cells hidden

2

3

[18]:

2

3

Features Engineering

prediction in the future module.

plt.xlabel("Payload Mass(Kg)",fontsize=20)

Similarly, we can plot the Payload Mass vs. Orbit scatter point charts to reveal the relationship between Payload Mass and Orbit type

[17]: features = df[['FlightNumber', 'PayloadMass', 'Orbit', 'LaunchSite', 'Flights', 'GridFins', 'Reused', 'Legs', 'LandingPad', 'Block', 'ReusedCount', 'Serial
features.head()

**

FlightNumber PayloadMass Orbit LaunchSite Flights GridFins Reused Legs LandingPad Block ReusedCount Serial

PayloadMass Orbit LaunchSite Flights GridFins Reused Legs LandingPad Block ReusedCount Serial

PayloadMass Orbit LaunchSite Flights GridFins Reused Legs LandingPad Block ReusedCount Serial

PayloadMass Orbit LaunchSite Flights GridFins Reused Legs LandingPad Block ReusedCount Serial

PayloadMass Orbit LaunchSite Flights GridFins Reused Legs LandingPad Block ReusedCount Serial

PayloadMass Orbit LaunchSite Flights GridFins Reused Legs LandingPad Block ReusedCount Serial

PayloadMass Orbit LaunchSite Flights GridFins Reused Legs LandingPad Block ReusedCount Serial

PayloadMass Orbit LaunchSite Flights GridFins Reused Legs LandingPad Block ReusedCount Serial

PayloadMass Orbit LaunchSite Flights GridFins Reused Legs LandingPad Block ReusedCount Serial

PayloadMass Orbit LaunchSite Flights GridFins Reused Legs LandingPad Block ReusedCount Serial

PayloadMass Orbit LaunchSite Flights GridFins Reused Legs LandingPad Block ReusedCount Serial

PayloadMass Orbit LaunchSite Flights GridFins Reused Legs LandingPad Block ReusedCount Serial

PayloadMass Orbit LaunchSite Flights GridFins Reused Legs LandingPad Block ReusedCount Serial

PayloadMass Orbit LaunchSite Flights GridFins Reused Legs LandingPad Block ReusedCount Serial

PayloadMass Orbit LaunchSite Flights GridFins Reused Legs LandingPad Block ReusedCount Serial

PayloadMass Orbit LaunchSite Flights GridFins Reused Legs LandingPad Block ReusedCount Serial

PayloadMass Orbit LaunchSite Flights GridFins Reused Legs LandingPad Block ReusedCount Serial

PayloadMass Orbit LaunchSite Flights GridFins ReusedCount Serial

PayloadMass Orbit LaunchSite Flights GridFins ReusedCount Serial

**PayloadMass Orbit La

LEO CCAFS SLC 40

ISS CCAFS SLC 40

PO VAFB SLC 4E

GTO CCAFS SLC 40

1.0

1.0

TASK 7: Create dummy variables to categorical columns

Use the function <code>get_dummies</code> and <code>features</code> dataframe to apply OneHotEncoder to the column <code>Orbits</code>, <code>LaunchSite</code>, <code>LandingPad</code>, and <code>Serial</code>. Assign the value to the variable <code>features_one_hot</code>, display the results using the method head. Your result dataframe must include all features including the encoded ones.

[18]: # HINT: Use get_dummies() function on the categorical columns

677.000000

4 500.000000

5 3170.000000

features_one_hot.astype('float64').dtypes

float64

float64 float64

float64

float64

features_one_hot.to_csv('dataset_part_3.csv', index=False)

525.000000

677.000000

500.000000

5 3170.000000

features_one_hot.head()

[19]: # HINT: use astype function

[19]: FlightNumber

Flights Block

PayloadMass

Legs True

Authors

Pratiksha Verma

Length: 83, dtype: object

0 🕵 1 🏟 Python (Pyodide) | Idle

Simple O

:	FlightNumber	1	PayloadMass	Flights	Block	ReusedCount	Orbit_ES- L1	Orbit_GEO	Orbit_GTO	Orbit_HEO	Orbit_ISS	 Serial_B1058	Serial_B1059	Serial_B1060	Serial_l
0	1		6104.959412	1	1.0	0	False	False	False	False	False	 False	False	False	
1	2		525.000000	1	1.0	0	False	False	False	False	False	 False	False	False	

False

False

False

False

False

True

5 rows × 83 columns	
4	
TASK 8: Cast all numeric columns to float64	

ReusedCount float64
...
GridFins_True float64
Reused_False float64
Reused_True float64
Legs_False float64

We can now export it to a CSV for the next section, but to make the answers consistent, in the next lab we will provide data in a pre-selected date range.

IBM Corporation 2022. All rights reserved.