1. Determine as condições de entrada necessárias para gerar uma saída x = 1 no circuito abaixo. Exiba a Tabela Verdade.

A	В	C	$S=(A \oplus B)$	$Q = \overline{(B \oplus C)}$	X = S.Q.C
0	0	0	0	1	0
0	0	1	0	0	0
0	1	0	1	0	0
0	1	1	1	1	1
1	0	0	1	1	0
1	0	1	1	0	0
1	1	0	0	0	0
1	1	1	0	1	0

- **2.** A porta NOR é universal, ou seja, é possível criar um circuito que represente qualquer lógica combinatória utilizando apenas esta porta. Assim, resolva os exercícios abaixo:
 - **a)** Crie um circuito que representa a operação XOR, apenas utilizando Portas NOR. Exiba a Tabela Verdade do circuito criado;

A	В	$S = \overline{(A + B)}$	$Q = \overline{(S+A)}$	$R = \overline{(S+B)}$	$T = \overline{(Q+R)}$	X
0	0	1	0	0	1	0
0	1	0	1	0	0	1
1	0	0	0	1	0	1
1	1	0	0	0	1	0

b) Crie um circuito que representa a operação XNOR, apenas utilizando Portas NOR. Exiba a Tabela Verdade do circuito criado.

A	В	$S = \overline{(A + A)}$	$Q = \overline{(B+B)}$	$R = \overline{(Q+A)}$	$T = \overline{(S+B)}$	X
0	0	1	1	0	0	1
0	1	1	0	1	0	0
1	0	0	1	0	1	0
1	1	0	0	0	0	1

3. Construa um circuito somente com portas NAND **a)** $S = \overline{AB}C + \overline{A}B\overline{C} + AB\overline{C}$

b) $S = \overline{AB} + A\overline{CD} + BC\overline{D}$

4. Construa um circuito somente com portas NOR **a)** $S = \overline{AB}C + \overline{A}B\overline{C} + AB\overline{C}$

b) $S = \overline{AB} + A \overline{CD} + BC \overline{D}$

5. Determine a expressão booleana e construa um circuito somente com portas NAND

$$x = \overline{(\overline{AB}).(\overline{B}C)}$$

6. Determine a expressão booleana e construa um circuito somente com portas NAND

$$y = (\overline{A}C) + (\overline{BC}) + (\overline{A}BC)$$

