10.1 Définitions

10.1.1 Exercices

Calcul d'images et d'antécédents

Exercice 1 Soit la fonction f définie sur \mathbb{R} par

$$f(x) = -5x + 3$$

- 1) Calculer f(0), f(10), $f(-\frac{3}{7})$ et $f(\sqrt{2})$.
- 2) Résoudre l'équation f(x) = 0. Quel est l'antécédent de 0?
- 3) Donner le(s) antécédent(s) de 3.

Exercice 2 Soit la fonction g définie sur \mathbb{R} par

$$g(x) = (2x - 3)(5x + 2)$$

- 1) Développer simplifier et réduire g(x).
- 2) Calculer g(0), g(-2) et $g(\sqrt{2})$.
- 3) Résoudre l'équation g(x) = 0. Quels sont les antécédents de 0?
- 4) Retrouver le(s) antécédent(s) de -6.

Exercice 3 Soit la fonction h définie sur \mathbb{R} par

$$h(x) = (2x+1)^2$$

- 1) Développer simplifier et réduire h(x).
- 2) Calculer h(0), h(-1) et $h(\sqrt{2})$.
- 3) Résoudre l'équation h(x) = 0. Quels sont les antécédents de 0?
- 4) Retrouver le(s) antécédent(s) de 25.
- 5) Donner un nombre qui n'a pas d'antécédents par h.

Exercice 4 — \P . Soit la famille de fonction f_m définies pour tout $x \in \mathbb{R}$ par

$$f_m(x) = mx + 3m - 2$$

- 1) Pour m=2. Calculer $f_2(0)$ et $f_2(-5)$.
- 2) Calculer $f_0(10)$ et $f_5(3)$.
- 3) Trouver m tel que $f_m(2) = 0$.

Domaine de définition

Exercice 5

Dans chaque cas, préciser le domaine de définition de la fonction.

- 1) t est la fonction qui à l'heure x de la journée associe la température t(x) dans la salle de classe.
- 2) p est la fonction qui selon le numéro du jour x de l'année associe la précipitation p(x).
- 3) l est la fonction qui au temps écoulé depuis le départ x associe la distance parcourue l(x).
- 4) r est la fonction qui à la quantité de patates x vendue (en kg) associe la recette en \in .
- 5) e est la fonction qui au nombre de plis x associe l'épaisseur de la feuille pliée.

Exercice 6

- a) Drésser le tableau de signe de 2x-3 selon les valeurs de x.
- b) Soit f une fonction d'expression $f(x) = \frac{1}{2x-3}$. Proposer un domaine de définition de f le plus large possible.
- c) Même question pour la foncion g d'expression $g(x) = \sqrt{2x-3}$.

Exercice 7 — Ψ .

- 1) Drésser le tableau de signe de $4 x^2$ selon les valeurs de x.
- 2) Soit f une fonction d'expression $f(x) = \sqrt{4-x^2}$. Proposer un domaine de définition de f le plus large possible.
- 3) Même question pour la foncion g d'expression $g(x) = \frac{1}{4-x^2}.$

Exercice 8 — Ψ .

- 1) Drésser le tableau de signe de $2 + \frac{1}{x+3}$ selon les valeurs de x.
- 2) Soit f une fonction d'expression $f(x) = \sqrt{2 + \frac{1}{x+3}}$. Proposer un domaine de définition de f le plus large possible.

Représentations graphiques

■ Exemple 10.2 Complétez les pointillés

Domaine : $D = \dots$

Image de -1:

 $f(\ldots) = \ldots$

Image de 3:

 $f(\ldots) = \ldots$

Antécédent(s) de 3:

 $f(\ldots) = \ldots; f(\ldots) = \ldots$

Antécédent(s) de 2:

 $f(\ldots) = \ldots; f(\ldots) = \ldots$

Antécédent(s) de -1: f(...) = ...; f(...) = ...

 $f(\ldots) = \ldots$

Image de 0::

Antécédent(s) de 0 : $f(\ldots) = \ldots$; $f(\ldots) = \ldots$

Domaine : $D = \dots$

Image de -2:

 $f(\ldots) = \ldots$

Image de 1,5:

 $f(\ldots) = \ldots$

Antécédent(s) de 3: $f(\ldots) = \ldots; f(\ldots) = \ldots$

Antécédent(s) de 1:

 $f(\ldots) = \ldots; f(\ldots) = \ldots$

Antécédent(s) de -3: $f(\ldots) = \ldots$; $f(\ldots) = \ldots$

 $f(\ldots) = \ldots$

Image de 0::

Antécédent(s) de 0 :

Exercice 9

- 1) Parmi ces graphiques, lesquels correspondent à la représentation graphique d'une fonction?
- 2) Pour chaque fonction donnez leur domaine et l'image de 2.
- 3) Pour chaque fonction donnez le nombre d'antécédents de 1.

10.1 Définitions

5

Exercice 10

Exercice 11

Exercice 12

Pour la fonction f représentée ci-contre

	Vrai	Faux
1/ Domaine est [0; 3]		
2 / L'image de 0 est -3		
3/ f(3) = 0		
4/ f(-2) = f(2)		
5/ f(1+2) = 3		
6 / $f(1) \approx 2.75$		
7/ 2 admet deux antécédents		
8/3 admet deux antécédents		
9/-2 admet un antécédent		

Pour la fonction f représentée ci-contre

	Vrai	Faux
1/ Domaine est $[-3;3]$		
2/f(1.5)=2		
3/f(0)=0		
4/f(-2) = f(2)		
5/f(1+2)=2.5		
6/f(1) > 0		
7/ 1 admet deux antécédents		
8/-1 admet deux antécédents		
9/ L'image de l'image de -3 est		
-1		
10/f(f(2)) = 0		

Pour la fonction f représentée ci-contre

- 1) Donner le domaine de f.
- 2) Donner l'image de 2 (utiliser la notation f(...) = ldots).
- 3) Donner l'image de 0.
- 4) Donner les antécédents de -1.
- 5) Combien a 0 d'antécédents?
- 6) Quel est le nombre d'antécédents de -2?

	Vrai	Faux
1/f(-2) = -f(2)		
2/f(-1) = f(1)		
3/f(2) = 2f(1)		

Représente dans le repère ci-contre une fonction f tel que :

- Domaine de f est [-2; 3]
- L'image de -2 est 3
- A(-1,1) est un point de \mathscr{C}_f .
- f(0) < 0.
- Si $x \in [0; 1]$ alors f(x) > -1.
- B(2;1) est en dessous de \mathscr{C}_f .
- f(3) = -2.

Exercice 13 Soit une fonction définie sur \mathbb{R} et \mathscr{C}_f sa représentation graphique.

L'image de est L'antécédent de	Égalité	Image	Antécédent	courbe	Équation
	f(2) = 3		L'antécédent de est	$A(\ldots;\ldots)\in\mathscr{C}_f$	\dots est solution de l'équation $f(\dots) = \dots$

1 a pour image 0

3 est un antécédent de -4

$$A(-2;3) \in \mathscr{C}_f$$

4 est solution de l'équation f(x) = 5.

Inégalité	Courbe
f(2) < 3	Le point $A(\ldots;\ldots)$ est en (en dessous/au dessus) de \mathscr{C}_f
f(5) > 3	Le point $B(\ldots;\ldots)$ est en (en dessous/au dessus) de \mathscr{C}_f
$f(\ldots)\ldots$	Le point $C(4; -3)$ est en dessous ou appartient à \mathscr{C}_f
$f(5) \geqslant 3$	Le point $D(\ldots;\ldots)$ est
-2 < f(-5)	