Глава 1. ГАРМОНИЧЕСКИЙ АНАЛИЗ ПЕРИОДИЧЕСКИХ СИГНАЛОВ

1.1. Основные определения

Периодические сигналы описываются функцией:

$$\Phi(t) = \Phi(t + nt), \tag{1.1}$$

где $T = 2\pi/\omega$ – период колебаний; n – любое положительное или отрицательное целое число; о - круговая частота.

Из (1.1) следует, что периодичность функции распространяется на интервал времени $-\infty \le t \le \infty$. Такая периодическая функция может быть представлена в виде суммы ряда других функций. Наиболее часто для этой цели используется ряд Фурье, составленный из тригонометрических функций и имеющий следующий вид в вещественной форме:

$$\Phi(\omega t) = a_0 + \sum_{k=1}^{n} (a_k \cos(k\omega t) + b_k \sin(k\omega t)), \qquad (1.2)$$

$$\text{rge}_{0} a_{0} = \frac{1}{2\pi} \int_{0}^{2\pi} \Phi\left(\omega t\right) d\omega t ,$$

$$a_k = \frac{1}{\pi} \int_0^{2\pi} \Phi(\omega t) \cos(k\omega t) d\omega t,$$

$$b_k = \frac{1}{\pi} \int_{0}^{2\pi} \Phi(\omega t) \sin(k\omega t) d\omega t,$$

 $\omega = 2\pi/T$ – круговая частота.

Функция $\Phi(\omega t)$, разлагаемая в ряд Фурье, должна быть ограниченной, кусочно-непрерывной и имеющей на протяжении периода конечное число экстремумов. Практически эти условия всегда выполняются.

Поскольку $u(\omega t) = a\cos(\omega t) + b\sin(\omega t) = C\cos(\omega t - \phi)$, где C = $=\sqrt{a^2+b^2}$, $\phi = arctg(b/a)$, то ряд (1.2) можно также представить в виде:

$$\Phi(\omega t) = a_0 + \sum_{k=1}^{n} C_k \cos(k\omega t - \varphi_k), \qquad (1.3)$$

где $C_k = \sqrt{a_k^2 + b_k^2} - \text{амплитуда}; \ \phi_k = \text{arctg}(b_k/a_k) - \text{фаза}; \ \overset{*}{C}_k = C_k e^{-j\phi_k} - \frac{1}{2} e^{-j\phi_k}$ комплексная амплитуда.

Совокупность модулей С, образует амплитудно-частотный спектр периодической функции $\Phi(\omega t)$, а фаз ω_{ν} – фазочастотный. Амплитудный спектр является дискретным или линейчатым, в котором отдельные спектральные составляющие, определяемые значениям $\omega_{\rm t} = {\rm k}\omega$, следуют с интервалом, равным $\omega = 2\pi/{\rm T}$.

1.2. Периодическая последовательность прямоугольных импульсов

Периодическая функция состоит из импульсов прямоугольной формы амплитудой АМ, длительностью т и периодом повторения Т (рис. 1.1).

На участке $-\pi \le \omega t \le \pi$ данная функция

$$Z(\omega t) = AM \operatorname{пр} |\omega t| \le \pi,$$
 (1.4)

 $Z(\omega t) = 0$ при $\alpha \pi < |\omega t| \le \pi$,

где $\alpha = \tau/T < 1$.

$$\alpha := 0.1 \quad N := 20 \quad AM := 1$$

$$Z(x) := \begin{vmatrix} AM & \text{if } |x| \le \alpha \cdot \pi \\ 0 & \text{if } \alpha \cdot \pi < |x| \le \pi \end{vmatrix}$$

$$k := 0.. N$$

$$A_k := \frac{2}{\pi} \cdot \int_0^{\pi} Z(x) \cdot \cos(k \cdot x) dx$$

$$A_0 := \frac{1}{\pi} \cdot \int_0^{\pi} Z(x) dx$$

	AD_k	:= 20 ·	log	$\left(\left A_{k} \right \right)$)
				A ₁)

		0		71.9	0
	0	0.1		0	-5.877
	1	0.197		1	0
	2	0.187		2	-0.435
	3	0.172		3	-1.182
	4	0.151		4	-2.278
	5	0.127		5	-3.779
	6	0.109		6	-5.154
	7	0.074	AD =	7	-8.54
	8	0.047		8	-12.475
A =	9	0.022		9	-19.084
	10	1.768-10 -8		10	-140.926
	11	-0.018		11	-20.83
	12	-0.031		12	-16.006
	13	-0.039		13	-13.946
	14 15	-0.043		14	-13.161
		-0.042		15	-13.322
	16	-0.038		16	-14.315
	17	-0.03		17	-16.241
	18	-0.021		18	-19.516
	19	-0.01		19	-25.573
	20	-7.054·10 -8		20	-128.908

Рис. 1.2

Поскольку функция $Z(\omega t)$ четная, то синусные составляющие в разложении равны нулю. Программа на языке «Маthcad» по расчету постоянной составляющей A_0 и амплитуд гармоник A_k приведена на рис. 1.2. В программе: $x=\omega t$, N – число гармоник, $AD_k=20lg(A_k/A_1)$ – значение гармоники, выраженное в децибелах, относительно 1-й гармоники сигнала, Результаты расчета по программе при $\alpha=0,1$ и N=20 приведены на том же рис. 1.2. По программе можно рассчитать гармоники и при любых других значениях параметров N и $\alpha<1$.

При прямоугольных импульсах спектральные составляющие можно вычислить также по формуле, взяв интеграл для коэффициента a_{ν} в (1.2):

$$A_{k} = \frac{2}{\pi} \int_{0}^{\pi} \Phi(\omega t) \cos(k\omega t) d\omega t = \frac{2}{\pi} \int_{0}^{\pi} AM \cos(k\omega t) d\omega t =$$

$$= \frac{2AM}{\pi k} \sin(k\omega t) \Big|_{0}^{\pi} = \frac{2AM}{\pi k} \sin(\pi k \tau/T).$$
(1.5)

Согласно (1.5) при $k=n/\alpha$, где n- целое число, гармоники с круговой частотой

Спектры, рассчитанные по программе (см. рис. 1.2), являются линейчатыми: спектральные составляющие в них следуют с интервалом $\omega = 2\pi/T$ или F = 1/T. Такой спектр для прямоугольных импульсов (см. рис. 1.1) при $\alpha = 0,1$, рассчитанный по программе (см. рис. 1.2), построен на рис. 1.3.

Задание на выполнение лабораторной работы.

- 1. Рассчитать по программе (см. рис. 1.2) линейчатый спектр периодической последовательности прямоугольных импульсов при $\alpha = 0.05$; 0,2; 0,5 или других значениях α .
 - 2. По результатам расчета построить линейчатые спектры по типу рис. 1.3.
- 3. Рассчитать спектр при α = 0,5 по формуле (1.5) и сравнить полученный результат с результатами расчета по программе.

1.3. Периодическая последовательность косинусоидальных импульсов

Периодическая функция состоит из импульсов косинусоидальной формы (рис. 1.4).

На участке $-\pi \le \omega t \le \pi$ данная функция

$$\Phi(\omega t) = AM \frac{\cos(\omega t) - \cos\Theta}{1 - \cos\Theta} \text{ при } |\omega t| \le \Theta, \tag{1.6}$$

Φ(ωt) = 0 πρи Θ < |ωt| ≤ π.

Величина Θ называется нижним углом отсечки.

Поскольку функция $\Phi(\omega t)$ четная, то синусные составляющие в разложении равны нулю. Программа на языке «Mathcad» по расчету постоянной составляющей A_0 и амплитуд гармоник A_k приведена на рис. 1.5. В программе: $x = \omega t$, N – число гармоник, $AD_k = 20 lg(A_k/A_1)$ – значение гармоники, выраженное в децибелах, относительно 1-й гар-

Рис. 1.4

$$UG := 60$$
 $U := UG \cdot \frac{\pi}{180}$ $AM := 1$ $N := 20$

$$\Phi(x) := \begin{bmatrix} AM \cdot \left[\frac{(\cos(x) - \cos(U))}{1 - \cos(U)} \right] & \text{if } |x| \le U \\ 0 & \text{if } U < |x| \le \pi \end{bmatrix}$$

k := 0.. N

$$A_k := \frac{2}{\pi} \cdot \int_0^{\pi} \Phi(x) \cdot \cos(k \cdot x) dx$$

$$A_0 := \frac{1}{\pi} \cdot \int_0^{\pi} \Phi(x) \, \mathrm{d}x$$

$$AD_k := 20 \cdot log \left(\frac{|A_k|}{A_1} \right)$$

	0		296	0
0	0.218		0	-5.07
1	0.391		1	(
2	0.276		2	-3.036
3	0.138		3	-9.057
4	0.028		4	-23.036
5	-0.028		5	-23.036
6	-0.032		6	-21.876
7	-9.845·10 -3	AD =	7	-31.979
8	9.844-10 -3		8	-31.98
9	0.014	Part Car	9	-29.057
10	5.012-10 -3		10	-37.844
11	-5.011.10 -3	70 81 4	11:	-37.845
12	-7.711-10 -3		12	-34.102
13	-3.029-10 -3		13	-42.218
14	3.028-10 -3		14	-42.22
15	4.923-10 -3	Trans.	15	-38

Рис. 1.5

моники сигнала, $U = \Theta$ — нижний угол отсечки при размерности в радианах и UG — в градусах.

Результаты расчета по программе при $\Theta = UG = 60^\circ$ и N = 10 приведены на том же рис. 1.5. По программе можно рассчитать гармоники и при любых других значениях параметров N и $\Theta = UG$.

Задание на выполнение лабораторной работы.

- 1. Рассчитать по программе (см. рис. 1.5) линейчатый спектр периодической последовательности косинусодальных импульсов (см. рис. 1.4) при $\Theta = UG = 30^{\circ}$, 90°, 120° или других значениях $\Theta = UG$.
 - 2. По результатам расчета построить линейчатые спектры по типу рис. 1.3.