MACM 201 Homework 7 (Quiz Oct. 30)

1. Define the generating functions $B(x) = \sum_{n=0}^{\infty} 2^n x^n$ and $F(x) = \sum_{n=0}^{\infty} f_n x^n$ where f_n is the Fibonacci sequence determined by the recurrence relation

$$f_0 = 0 \qquad \text{and} \qquad f_1 = 1$$

$$f_n = f_{n-1} + f_{n-2} \quad \text{for } n \ge 2$$

Find the coefficients of the first four terms (constant up to x^3) of each GF

- (a) F(x) + B(x)
- (b) $F(x) \times B(x)$
- (c) $F(x) \times F(x) \times F(x)$

2. For each infinite sequence, express the associated GF in rational form.

- (a) $0, 0, 1, 1, 1, 1, \dots$
- (b) $1, -1, 1, -1, 1, -1, \dots$
- (c) $0, 0, 0, a, -a, a, -a, a, \dots$
- (d) $a, 0, a, 0, a, 0, \dots$
- (e) $1, -2, 3, -4, 5, -6, \dots$
- (f) $0, 0, 0, 1, 2, 3, 4, \dots$
- (g) $0, 0, 0, 3, -6, 9, -12, 15, -18, \dots$
- (h) $0, 3, 2, 5, 4, 7, \ldots$ (Hint: this is $1 1, 2 + 1, 3 1, 4 + 1, 5 1, 6 + 1, \ldots$)

3. For each generating function below, find a formula for the coefficient of x^n .

- (a) $(1+2x)^3$
- (b) $\frac{3x^2}{1-x}$
- (c) $\frac{2x}{1-x} + \frac{3x^2}{(1-x)^2}$
- (d) $\frac{x^3+1}{2-2x}$
- (e) $\frac{2x}{(3+6x)^2} + 7$

- 4. Apply partial fractions to each GF
 - (a) $A(x) = \frac{1}{(x-1)(x-2)(x-3)}$
 - (b) $B(x) = \frac{1}{(x-3)^2(x-5)}$
- 5. For each GF in the previous exercise, find a formula for the coefficient of x^n .
- 6. In each problem below you are given an infinite sequence b_0, b_1, b_2, \ldots determined by a recurrence relation. Use this recurrence relation to express the GF for this sequence, $B(x) = \sum_{n=0}^{\infty} b_n x^n$, as a rational function.
 - (a) $b_0 = 2$, $b_1 = 3$, $b_n 3b_{n-1} + 7b_{n-2} = 0$ for $n \ge 2$
 - (b) $b_0 = 1$, $b_1 = 2$, $b_n 5b_{n-1} + 3b_{n-2} = 1$ for $n \ge 2$
 - (c) $b_0 = 1$, $b_1 = 0$, $b_2 = 3$, $b_n 2b_{n-1} + b_{n-3} = n$ for n > 3
- 7. In this problem we explore when a generating function has an inverse. (Recall that an inverse to a generating function A(x) is another generating function B(x) with the property that $A(x) \times B(x) = 1$.)
 - (a) Let $A(x) = a_0 + a_1x + a_2x^2 + \dots$ Assuming $a_0 = 0$, show that A(x) has no inverse.
 - (b) Suppose that A(x) and B(x) are inverse generating functions where

$$A(x) = 2 + 4x - 4x^{2} + a_{3}x^{3} + a_{4}x^{4} + a_{5}x^{5} + \dots$$

$$B(x) = b_{0} + b_{1}x + b_{2}x^{2} + b_{3}x^{3} \dots$$

(so the first three coefficients of A(x) are specified, but all other coefficients are unknown constants). Determine the value of b_0 . Then find b_1 and b_2 .

(c) Let $A(x) = a_0 + a_1x + a_2x^2 + \dots$ and assume $a_0 \neq 0$. Explain why there is an inverse of A(x).