Instrumental Variables

UNDERSTANDING IV

Roadmap

Where do (Good) Instruments Come From?

True Lotteries

Natural Experiments

Panel Data

2SLS Mechanics
.lust-Identified

Overidentification

Weak and Many Instruments

Weak IV

Many IVs

 To apply IV, we need to make a good case for instrument validity (note we can always check relevance!)

- To apply IV, we need to make a good case for instrument validity (note we can always check relevance!)
- Consider our simple causal model, $Y_i = \alpha + \beta D_i + \varepsilon_i$. Validity $Cov(Z_i, \varepsilon_i) = 0$ intuitively requires two distinct assumptions:

- To apply IV, we need to make a good case for instrument validity (note we can always check relevance!)
- Consider our simple causal model, $Y_i = \alpha + \beta D_i + \varepsilon_i$. Validity $Cov(Z_i, \varepsilon_i) = 0$ intuitively requires two distinct assumptions:
 - ightarrow As-good-as-random assignment: individuals with higher/lower potential earnings face the same distribution of Z_i
 - \rightarrow Exclusion: the "assignment" of Z_i only affects Y_i through D_i

- To apply IV, we need to make a good case for instrument validity (note we can always check relevance!)
- Consider our simple causal model, $Y_i = \alpha + \beta D_i + \varepsilon_i$. Validity $Cov(Z_i, \varepsilon_i) = 0$ intuitively requires two distinct assumptions:
 - ightarrow As-good-as-random assignment: individuals with higher/lower potential earnings face the same distribution of Z_i
 - ightarrow Exclusion: the "assignment" of Z_i only affects Y_i through D_i
- Confusingly, old-school econometrics texts sometimes refer to $Cov(Z_i, \varepsilon_i) = 0$ as the "exclusion restriction"

- To apply IV, we need to make a good case for instrument validity (note we can always check relevance!)
- Consider our simple causal model, $Y_i = \alpha + \beta D_i + \varepsilon_i$. Validity $Cov(Z_i, \varepsilon_i) = 0$ intuitively requires two distinct assumptions:
 - ightarrow As-good-as-random assignment: individuals with higher/lower potential earnings face the same distribution of Z_i
 - ightarrow Exclusion: the "assignment" of Z_i only affects Y_i through D_i
- Confusingly, old-school econometrics texts sometimes refer to $Cov(Z_i, \varepsilon_i) = 0$ as the "exclusion restriction"
 - → More modern IV texts take care to distinguish between these two conceptually distinct requirements...

A Valid Instrument

A Violation of As-Good-As-Random Assignment

A Violation of Exclusion

• One sure-fire way to ensure that a Z_i is as-good-as-randomly assigned is...

• One sure-fire way to ensure that a Z_i is as-good-as-randomly assigned is... to randomly assign it!

- One sure-fire way to ensure that a Z_i is as-good-as-randomly assigned is... to randomly assign it!
 - ightarrow Some of the best IVs come from lotteries, either run by the researcher (e.g. an RCT) or so-called "natural experiments"
 - → We still need to worry about violations of the exclusion restriction
 - \rightarrow Relevance holds when Z_i has some effect on X_i

- One sure-fire way to ensure that a Z_i is as-good-as-randomly assigned is... to randomly assign it!
 - ightarrow Some of the best IVs come from lotteries, either run by the researcher (e.g. an RCT) or so-called "natural experiments"
 - → We still need to worry about violations of the exclusion restriction
 - \rightarrow Relevance holds when Z_i has some effect on X_i
- "Gold standard" IV: a randomized offer to participate in a program, with X_i recording program participation
 - \rightarrow Exclusion restriction likely to hold for any Y_i , by construction
 - → Relevance almost guaranteed (provided people want the program!)

Example: Charter School Lotteries

- Abdulkadiroglu et al. (2016) are interested in whether going to a "charter" middle school increases standardized test scores
 - ightarrow Charter students tend to score better, but we worry about selection
 - → History of doubting educational inputs, since Coleman (1966)

Example: Charter School Lotteries

- Abdulkadiroglu et al. (2016) are interested in whether going to a "charter" middle school increases standardized test scores
 - → Charter students tend to score better, but we worry about selection
 - → History of doubting educational inputs, since Coleman (1966)
- We leverage an institutional feature of charters: admission lotteries
 - \to When more kids want to enroll than there are seats, admission offers $Z_i \in \{0,1\}$ are effectively drawn from a hat
 - ightarrow Offers plausibly only affect later test scores Y_i by changing charter enrollment $D_i \in \{0,1\}$, so are plausibly valid instruments
 - ightarrow We need to control for lottery fixed effects ("risk sets") to make Z_i as-good-as-randomly assigned more on this soon

Example: Charter School Lotteries

- Abdulkadiroglu et al. (2016) are interested in whether going to a "charter" middle school increases standardized test scores
 - → Charter students tend to score better, but we worry about selection
 - → History of doubting educational inputs, since Coleman (1966)
- We leverage an institutional feature of charters: admission lotteries
 - ightarrow When more kids want to enroll than there are seats, admission offers $Z_i \in \{0,1\}$ are effectively drawn from a hat
 - ightarrow Offers plausibly only affect later test scores Y_i by changing charter enrollment $D_i \in \{0,1\}$, so are plausibly valid instruments
 - ightarrow We need to control for lottery fixed effects ("risk sets") to make Z_i as-good-as-randomly assigned more on this soon
- We study a particular charter (UP Academy), which is "takeover"
 - → Two offer IVs: "immediate" (on lottery night) and from a waitlist

Lottery IV Estimates of UP Test Score Effects

TABLE 8—LOTTERY IV ESTIMATES OF UP EFFECTS

				2SLS			
				First stage			
		Comparison group mean (1)	OLS (2)	Immediate offer (3)	Waitlist offer (4)	Enrollment effect (5)	
Panel A. All grades (Sixth through eighth)	Math (N = 2,202)	0.059	0.301 (0.022)	0.760 (0.063)	0.562 (0.067)	0.270 (0.056)	
	ELA $(N = 2,205)$	0.103	0.148 (0.020)	0.759 (0.063)	0.562 (0.067)	0.118 (0.051)	

Where do IVs Come From? 2) Natural Experiments

- Without appealing to literal randomization, we may credibly argue Z_i is as-good-as-randomly assigned conditional on some \mathbf{W}_i
 - \rightarrow Such "natural experiments" rely on a selection-on-observables argument (for Z_i , instead D_i)
 - \rightarrow Still worry about exclusion: Z_i cannot affect Y_i except through D_i

Where do IVs Come From? 2) Natural Experiments

- Without appealing to literal randomization, we may credibly argue Z_i is as-good-as-randomly assigned conditional on some \mathbf{W}_i
 - \rightarrow Such "natural experiments" rely on a selection-on-observables argument (for Z_i , instead D_i)
 - \rightarrow Still worry about exclusion: Z_i cannot affect Y_i except through D_i
- Angrist and Krueger (1991) famously estimate labor market returns to schooling with a creative IV: student quarter-of-birth
 - → Compulsory schooling requirements prevent students from dropping before the day they turn 16 (used to be more binding)
 - → Fixed school start dates mean students who drop out at 16 get more or less schooling depending on their birth date

Where do IVs Come From? 2) Natural Experiments

- Without appealing to literal randomization, we may credibly argue Z_i is as-good-as-randomly assigned conditional on some \mathbf{W}_i
 - \rightarrow Such "natural experiments" rely on a selection-on-observables argument (for Z_i , instead D_i)
 - ightarrow Still worry about exclusion: Z_i cannot affect Y_i except through D_i
- Angrist and Krueger (1991) famously estimate labor market returns to schooling with a creative IV: student quarter-of-birth
 - → Compulsory schooling requirements prevent students from dropping before the day they turn 16 (used to be more binding)
 - ightarrow Fixed school start dates mean students who drop out at 16 get more or less schooling depending on their birth date
 - \rightarrow Quarter-of-birth seems quasi-randomly assigned is it excludable? See Buckles and Hungerman (2013)...

The Quarter-of-Birth Natural Experiment: Visualized

A. Average Education by Quarter of Birth (first stage)

B. Average Weekly Wage by Quarter of Birth (reduced form)

Quarter-of-Birth IV Estimates of Returns to Schooling

Table 4.1.1: 2SLS estimates of the economic returns to schooling

	OLS				2SLS		
	(1)	(2)	(3)	(4)	(5)	(6)	
Years of education	0.075 (0.0004)	0.072 (0.0004)	0.103 (0.024)	0.112 (0.021)	0.106 (0.026)	0.108 (0.019)	
Covariates:							
9 year of birth dummies 50 state of birth dummies		√			√	√	
Instruments:			dummy for QOB=1	dummy for QOB=1 or QOB=2	dummy for QOB=1	full set of QOB dummies	

Where do IVs Come From? 3) Panel Data

- We might also combine IV + difference-in-difference identification
 - \rightarrow E.g. instrument with $Z_i \times Post_t$, controlling for Z_i and $Post_t$ FEs
 - ightarrow This requires two parallel trends assumptions, for the RF and FS
 - → Still need to worry about the exclusion restriction, as always

Where do IVs Come From? 3) Panel Data

- We might also combine IV + difference-in-difference identification
 - \rightarrow E.g. instrument with $Z_i \times Post_t$, controlling for Z_i and $Post_t$ FEs
 - ightarrow This requires two parallel trends assumptions, for the RF and FS
 - ightarrow Still need to worry about the exclusion restriction, as always
- Abdulkadiroglu et al. (2016) complement their lottery analysis of takeover charters with an instrumented diff-in-diff analysis
 - → Students enrolled in the "legacy" public school were eligible for being "grandfathered" into UP, without having to apply to the charter
 - → We compare their trends in test scores & enrollment to a matched comparison group of observably-similar students at other schools

Grandfathering IV: Visualized

Grandfathering IV Estimates of UP Test Score Effects

TABLE 7—GRANDFATHERING IV ESTIMATES OF UP EFFECTS

				2SLS		
		Comparison group mean (1)	OLS (2)	First stage (3)	Enrollment effect (4)	
Panel A. All grades						
(Seventh through eighth)	Math $(N = 1,543)$	-0.233	0.400 (0.032)	1.051 (0.040)	0.321 (0.039)	
	ELA $(N = 1,539)$	-0.214	0.296 (0.035)	1.040 (0.041)	0.394 (0.044)	

Roadmap

Where do (Good) Instruments Come From?
True Lotteries
Natural Experiments
Panel Data

2SLS Mechanics
Just-Identified IV
Overidentification

Weak and Many Instruments Weak IV Many IVs

- As you likely know, the general ivregress command (or its equivalent in R) allows for controls and multiple treatments / instruments
 - → When # treatment = # instruments, we say the IV is "just-identified":

- As you likely know, the general ivregress command (or its equivalent in R) allows for controls and multiple treatments / instruments
 - ightarrow When # treatment = # instruments, we say the IV is "just-identified":

$$Y_i = \beta D_i + \mathbf{W}'_i \boldsymbol{\gamma} + \varepsilon_i$$
 (second stage)
 $X_i = \pi Z_i + \mathbf{W}'_i \boldsymbol{\mu} + \eta_i$ (first stage)

where \mathbf{W}_i includes a constant.

- As you likely know, the general ivregress command (or its equivalent in R) allows for controls and multiple treatments / instruments
 - \rightarrow When # treatment = # instruments, we say the IV is "just-identified":

$$Y_i = \beta D_i + \mathbf{W}'_i \boldsymbol{\gamma} + \varepsilon_i$$
 (second stage)
 $X_i = \pi Z_i + \mathbf{W}'_i \boldsymbol{\mu} + \eta_i$ (first stage)

- As you likely know, the general ivregress command (or its equivalent in R) allows for controls and multiple treatments / instruments
 - \rightarrow When # treatment = # instruments, we say the IV is "just-identified":

$$Y_i = \beta D_i + \mathbf{W}'_i \boldsymbol{\gamma} + \varepsilon_i$$
 (second stage)
 $X_i = \pi Z_i + \mathbf{W}'_i \boldsymbol{\mu} + \eta_i$ (first stage)

- Same identification logic as before:
 - \rightarrow Validity: $Cov(Z_i, \varepsilon_i) = 0$, allowing $Cov(Z_i, \mathbf{W}_i) \neq 0$

- As you likely know, the general ivregress command (or its equivalent in R) allows for controls and multiple treatments / instruments
 - ightarrow When # treatment = # instruments, we say the IV is "just-identified":

$$Y_i = \beta D_i + \mathbf{W}_i' \boldsymbol{\gamma} + \varepsilon_i$$
 (second stage)
 $X_i = \pi Z_i + \mathbf{W}_i' \boldsymbol{\mu} + \eta_i$ (first stage)

- Same identification logic as before:
 - ightarrow Validity: $Cov(Z_i, \varepsilon_i) = 0$, allowing $Cov(Z_i, \mathbf{W}_i) \neq 0$
 - ightarrow Relevance: $\pi
 eq 0$, so Z_i and D_i are correlated controlling for \mathbf{W}_i

- As you likely know, the general ivregress command (or its equivalent in R) allows for controls and multiple treatments / instruments
 - \rightarrow When # treatment = # instruments, we say the IV is "just-identified":

$$Y_i = \beta D_i + \mathbf{W}_i' \boldsymbol{\gamma} + \varepsilon_i$$
 (second stage)
 $X_i = \pi Z_i + \mathbf{W}_i' \boldsymbol{\mu} + \eta_i$ (first stage)

- Same identification logic as before:
 - ightarrow Validity: $Cov(Z_i, arepsilon_i) = 0$, allowing $Cov(Z_i, \mathbf{W}_i)
 eq 0$
 - ightarrow Relevance: $\pi
 eq 0$, so Z_i and D_i are correlated controlling for \mathbf{W}_i
- IV is still "reduced form over first stage": $(\beta = \rho/\pi)$

- As you likely know, the general ivregress command (or its equivalent in R) allows for controls and multiple treatments / instruments
 - ightarrow When # treatment = # instruments, we say the IV is "just-identified":

$$Y_i = \beta D_i + \mathbf{W}'_i \gamma + \varepsilon_i$$
 (second stage)
 $X_i = \pi Z_i + \mathbf{W}'_i \mu + \eta_i$ (first stage)

- Same identification logic as before:
 - \rightarrow Validity: $Cov(Z_i, \varepsilon_i) = 0$, allowing $Cov(Z_i, \mathbf{W}_i) \neq 0$
 - \rightarrow Relevance: $\pi \neq 0$, so Z_i and D_i are correlated controlling for \mathbf{W}_i
- IV is still "reduced form over first stage": $(\beta = \rho/\pi)$
 - \rightarrow Can use Frisch-Waugh-Lovell to "partial out" \mathbf{W}_i from Y_i, X_i, D_i , and so get back to an IV regression without controls

Overidentification

• Sometimes we have more than one instrument $Z_{i\ell}$, for $\ell=1,\ldots,L$

- Sometimes we have more than one instrument $Z_{i\ell}$, for $\ell=1,\ldots,L$
 - → This leads to an "overidentified" IV regression:

$$Y_i = \beta D_i + \mathbf{W}_i' \gamma + \varepsilon_i$$
 (second stage)
 $X_i = \mathbf{Z}_i' \pi + \mathbf{W}_i' \mu + \eta_i$ (first stage)

where $\mathbf{Z}_i = [Z_{i1}, \dots, Z_{iL}]'$. Reduced form: $Y_i = \mathbf{Z}_i' \boldsymbol{\rho} + \mathbf{W}_i' \boldsymbol{\kappa} + \nu_i$

- Sometimes we have more than one instrument $Z_{i\ell}$, for $\ell=1,\ldots,L$
 - ightarrow This leads to an "overidentified" IV regression:

$$Y_i = \beta D_i + \mathbf{W}_i' \boldsymbol{\gamma} + \varepsilon_i \text{ (second stage)}$$
$$X_i = \mathbf{Z}_i' \boldsymbol{\pi} + \mathbf{W}_i' \boldsymbol{\mu} + \eta_i \text{ (first stage)}$$

where
$$\mathbf{Z}_i = [Z_{i1}, \dots, Z_{iL}]'$$
. Reduced form: $Y_i = \mathbf{Z}_i' \boldsymbol{\rho} + \mathbf{W}_i' \boldsymbol{\kappa} + \nu_i$

- Validity: $Cov(Z_{i\ell}, \varepsilon_i) = 0$ for all ℓ
 - ightarrow "Overidentified" because we could use any $Z_{i\ell}$ to estimate $eta=oldsymbol{
 ho}_\ell/\pi_\ell$

- Sometimes we have more than one instrument $Z_{i\ell}$, for $\ell=1,\ldots,L$
 - → This leads to an "overidentified" IV regression:

$$Y_i = \beta D_i + \mathbf{W}_i' \boldsymbol{\gamma} + \varepsilon_i \text{ (second stage)}$$
$$X_i = \mathbf{Z}_i' \boldsymbol{\pi} + \mathbf{W}_i' \boldsymbol{\mu} + \eta_i \text{ (first stage)}$$

where
$$\mathbf{Z}_i = [Z_{i1}, \dots, Z_{iL}]'$$
. Reduced form: $Y_i = \mathbf{Z}_i' \boldsymbol{\rho} + \mathbf{W}_i' \boldsymbol{\kappa} + \nu_i$

- Validity: $Cov(Z_{i\ell}, \varepsilon_i) = 0$ for all ℓ
 - o "Overidentified" because we could use any $Z_{i\ell}$ to estimate $eta=oldsymbol{
 ho}_\ell/\pi_\ell$
 - \rightarrow Relevance: $\pi_{\ell} \neq 0$ for at least some ℓ

- Sometimes we have more than one instrument $Z_{i\ell}$, for $\ell=1,\ldots,L$
 - → This leads to an "overidentified" IV regression:

$$Y_i = \beta D_i + \mathbf{W}_i' \boldsymbol{\gamma} + \varepsilon_i$$
 (second stage)
 $X_i = \mathbf{Z}_i' \boldsymbol{\pi} + \mathbf{W}_i' \boldsymbol{\mu} + \eta_i$ (first stage)

where
$$\mathbf{Z}_i = [Z_{i1}, \dots, Z_{iL}]'$$
. Reduced form: $Y_i = \mathbf{Z}_i' \boldsymbol{\rho} + \mathbf{W}_i' \boldsymbol{\kappa} + \nu_i$

- Validity: $Cov(Z_{i\ell}, \varepsilon_i) = 0$ for all ℓ
 - ightarrow "Overidentified" because we could use any $Z_{i\ell}$ to estimate $eta=oldsymbol{
 ho}_\ell/oldsymbol{\pi}_\ell$
 - \rightarrow Relevance: $\pi_{\ell} \neq 0$ for at least some ℓ
- Overidentification can yield tests of IV validity
 - \rightarrow Intuitively, 2SLS checks whether all the $Z_{i\ell}$ yields the same IV estimate, which is sensible in a constant-effects model...

You'll notice I haven't actually defined 2SLS beyond the simple case

$$ightarrow$$
 Before we had $eta^{IV}=rac{Cov(Z_i,Y_i)}{Cov(Z_i,D_i)}$ leading to $\widehat{eta}^{IV}=rac{\widehat{Cov}(Z_i,Y_i)}{\widehat{Cov}(Z_i,D_i)}$

ightarrow General form follows similarly (sample analog), but is notation-heavy

- You'll notice I haven't actually defined 2SLS beyond the simple case
 - ightarrow Before we had $eta^{IV} = \frac{Cov(Z_i,Y_i)}{Cov(Z_i,D_i)}$ leading to $\widehat{eta}^{IV} = \frac{\widehat{Cov}(Z_i,Y_i)}{\widehat{Cov}(Z_i,D_i)}$ ightarrow General form follows similarly (sample analog), but is notation-heavy
- General form follows similarly (sample analog), but is notation nearly
- A more useful way to define 2SLS is by a two-step procedure:
 - \rightarrow First regress D_i on all $Z_{i\ell}$ and W_{ik}
 - ightarrow Then regress Y_i on the "fitted values" \widehat{D}_i and controls W_{ik}

- You'll notice I haven't actually defined 2SLS beyond the simple case
 - ightarrow Before we had $eta^{IV} = \frac{Cov(Z_i,Y_i)}{Cov(Z_i,D_i)}$ leading to $\widehat{eta}^{IV} = \frac{\widehat{Cov}(Z_i,Y_i)}{\widehat{Cov}(Z_i,D_i)}$
 - ightarrow General form follows similarly (sample analog), but is notation-heavy
- A more useful way to define 2SLS is by a two-step procedure:
 - \rightarrow First regress D_i on all $Z_{i\ell}$ and W_{ik}
 - ightarrow Then regress Y_i on the "fitted values" \widehat{D}_i and controls W_{ik}
- The proof of this follows from some (simple) linear algebra
 - ightarrow Intuitively, regressing Y_i on $\widehat{\pi}^{OLS}Z_i$ gives a scaled RF: $\widehat{eta}^{IV}=rac{\widehat{
 ho}^{OLS}}{\widehat{\pi}^{OLS}}$

- You'll notice I haven't actually defined 2SLS beyond the simple case
 - ightarrow Before we had $eta^{IV} = \frac{Cov(Z_i, Y_i)}{Cov(Z_i, D_i)}$ leading to $\widehat{eta}^{IV} = \frac{\widehat{Cov}(Z_i, Y_i)}{\widehat{Cov}(Z_i, D_i)}$
 - ightarrow General form follows similarly (sample analog), but is notation-heavy
- A more useful way to define 2SLS is by a two-step procedure:
 - \rightarrow First regress D_i on all $Z_{i\ell}$ and W_{ik}
 - ightarrow Then regress Y_i on the "fitted values" \widehat{D}_i and controls W_{ik}
- The proof of this follows from some (simple) linear algebra
 - o Intuitively, regressing Y_i on $\widehat{\pi}^{OLS}Z_i$ gives a scaled RF: $\widehat{eta}^{IV}=rac{\widehat{
 ho}^{OLS}}{\widehat{\pi}^{OLS}}$
- Although easy, you should never do such "manual 2SLS" yourself!
 - → Your point estimates will be right, but your SEs won't be!

Roadmap

Where do (Good) Instruments Come From?
True Lotteries
Natural Experiments
Panel Data

2SLS Mechanics Just-Identified IV Overidentification

Weak and Many Instruments Weak IV Many IVs

Weak Instruments

- When running just-identified IV, you should always worry about the "strength" of your instrument
 - ightarrow Specifically the first stage "F-statistic," which tests $\pi^{OLS}=0$

Weak Instruments

- When running just-identified IV, you should always worry about the "strength" of your instrument
 - ightarrow Specifically the first stage "F-statistic," which tests $\pi^{OLS}=0$
- If π^{OLS} is small relative to its standard error, the IV is "weak"
 - ightarrow Typically use the rule-of-thumb of F < 10 (Staiger and Stock 1997)
 - → In this case the second-stage SEs will be large and the 2SLS estimate will tend to be biased towards the corresponding OLS estimate

Weak Instruments

- When running just-identified IV, you should always worry about the "strength" of your instrument
 - ightarrow Specifically the first stage "F-statistic," which tests $\pi^{OLS}=0$
- If π^{OLS} is small relative to its standard error, the IV is "weak"
 - ightarrow Typically use the rule-of-thumb of F < 10 (Staiger and Stock 1997)
 - $\to\,$ In this case the second-stage SEs will be large and the 2SLS estimate will tend to be biased towards the corresponding OLS estimate
- Much made of this over the years, but Angrist and Kolesár (2022) argue recently that we shouldn't worry too much
 - ightarrow The SE increase tends to be large enough to "cover up" the bias
 - ightarrow Just-id. 2SLS is "approximately median-unbiased" (as it is LIML)

Weak Instruments: Visualized

Monte Carlo: $Y_i = \varepsilon_i$, $D_i = \Pi Z_i + \eta_i$: $\Pi = Var(\varepsilon_i) = Var(\eta_i) = 1$

Weak Instruments: Visualized

Monte Carlo: $Y_i = \varepsilon_i$, $D_i = \Pi Z_i + \eta_i$: $\Pi = 0.1$ (Weaker)

Weak Instruments: Visualized

Monte Carlo: $Y_i = \varepsilon_i$, $D_i = \Pi Z_i + \eta_i$: $\Pi = 0.01$ (Very Weak)

Many IVs

- A more pernicious problem is many-instrument bias, when overid
 - → Also tends to manifest in low first-stage F's, so also good to check

Many IVs

- A more pernicious problem is many-instrument bias, when overid
 - → Also tends to manifest in low first-stage F's, so also good to check
- Many-IV bias is also towards OLS, but unlike before SEs go down
 - \rightarrow Intuitively, a more flexible FS tends to fit D_i better \rightarrow more power
 - ightarrow But we can have overfitting with lots of $Z_i
 ightarrow$ essentially recreate D_i

Many IVs

- A more pernicious problem is many-instrument bias, when overid
 - → Also tends to manifest in low first-stage F's, so also good to check
- Many-IV bias is also towards OLS, but unlike before SEs go down
 - \rightarrow Intuitively, a more flexible FS tends to fit D_i better \rightarrow more power
 - ightarrow But we can have overfitting with lots of $Z_i
 ightarrow$ essentially recreate D_i
- As we'll see, this bias is especially relevant in judge IV designs
 - → Potentially many judge assignment indicators as the instrument
 - → Leave-out corrections (e.g. Angrist et al. 1999) have been adapted to this setting in recent years (e.g. Kolesár 2013)

Weak and Many Instruments VIII

Monte Carlo: $Y_i = \varepsilon_i$, $X_i = \Pi Z_{i1} + \eta_i$: IV with one Z_{i1}

Weak and Many Instruments IX

Monte Carlo: $Y_i = \varepsilon_i$, $X_i = \Pi Z_{i1} + \eta_i$: IV with ten Z_{ij}

Weak and Many Instruments X

Monte Carlo: $Y_i = \varepsilon_i$, $X_i = \Pi Z_{i1} + \eta_i$: IV with 100 Z_{ij}

