Practical - 1

Practical: Introduction to image processing techniques using Python.

Topics: Loading and displaying images using Python. Implementing basic image operations like resizing, cropping, and rotating images. Applying image enhancement techniques such as histogram equalization and contrast stretching. Implementing filtering techniques like blurring, sharpening, and edge detection.

Code:

Import the necessary libraries

import cv2 import numpy as np import matplotlib.pyplot as plt from PIL import Image, ImageOps

Load the image

image_path = 'bp.jpg'
image = cv2.imread(image_path)

Check if the image is loaded properly

if image is None:

raise ValueError("Image not found. Please check the path.")

Convert BGR image to RGB

image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)

Define the scale factors

scale_factor_zoom = 3.0 # Increase the size by 3 times scale_factor_shrink = 1/3.0 # Decrease the size by 3 times

Get the original image dimensions

height, width = image_rgb.shape[:2]

Calculate the new dimensions for zoomed image

new_height_zoom = int(height * scale_factor_zoom)
new_width_zoom = int(width * scale_factor_zoom)

Resize the image (zoom)

 interpolation=cv2.INTER_CUBIC)

Calculate the new dimensions for scaled (shrunk) image

new_height_shrink = int(height * scale_factor_shrink)
new_width_shrink = int(width * scale_factor_shrink)

Resize the image (shrink)

Crop the image

x, y, w, h = 50, 50, 200, 200 # Define the crop box cropped_image = image_rgb[y:y+h, x:x+w]

Rotate the image

center = (width // 2, height // 2)
angle = 45 # Rotation angle
M = cv2.getRotationMatrix2D(center, angle, 1.0)
rotated_image = cv2.warpAffine(image_rgb, M, (width, height))

Histogram equalization

image_gray = cv2.cvtColor(image_rgb, cv2.COLOR_RGB2GRAY)
equalized_image = cv2.equalizeHist(image_gray)

Contrast stretching

```
min_val = np.min(image_rgb)
max_val = np.max(image_rgb)
stretched_image = (image_rgb - min_val) * (255 / (max_val - min_val))
stretched_image = np.uint8(stretched_image)
```

Blurring

blurred_image = cv2.GaussianBlur(image_rgb, (5, 5), 0)

Sharpening

Edge Detection

edges_image = cv2.Canny(image_rgb, 100, 200)

Create subplots

fig, axs = plt.subplots(3, 3, figsize=(15, 15))

Plot the edge detected image

Basic image operations (resizing, cropping, rotating) # Plot the original image axs[0, 0].imshow(image_rgb) axs[0, 0].set_title('Original Image\nShape: {}'.format(image_rgb.shape)) # Plot the zoomed image axs[0, 1].imshow(zoomed_image) axs[0, 1].set_title('Zoomed Image\nShape: {}'.format(zoomed_image.shape)) # Plot the scaled image axs[0, 2].imshow(scaled_image) axs[0, 2].set_title('Scaled Image\nShape: {}'.format(scaled_image.shape)) # Plot the cropped image axs[1, 0].imshow(cropped_image) axs[1, 0].set_title('Cropped Image\nShape: {}'.format(cropped_image.shape)) # Plot the rotated image axs[1, 1].imshow(rotated_image) axs[1, 1].set_title('Rotated Image\nShape: {}'.format(rotated_image.shape)) # Image enhancement techniques (histogram equalization, contrast stretching) # Plot the histogram equalized image axs[1, 2].imshow(equalized_image, cmap='gray') axs[1, 2].set_title('Histogram Equalization') # Plot the contrast stretched image axs[2, 0].imshow(stretched_image) axs[2, 0].set_title('Contrast Stretched Image\nShape: {}'.format(stretched_image.shape)) # Filtering techniques (blurring, sharpening, edge detection) # Plot the blurred image axs[2, 1].imshow(blurred_image) axs[2, 1].set_title('Blurred Image') # Plot the sharpened image axs[2, 2].imshow(sharpened_image) axs[2, 2].set_title('Sharpened Image')

axs[2, 2].imshow(edges_image, cmap='gray')
axs[2, 2].set_title('Edge Detection')

Remove ticks from the subplots

for ax in axs.flat:
 ax.set_xticks([])
 ax.set_yticks([])

Display the subplots

plt.tight_layout()
plt.show()

Output:

