Functions of Several Variables Ch.13

econMath.namun+2016sp@gmail.com

April 22, 2016

Table of Contents

1 Functions Between Euclidean Spaces

2 Geometric Representation of Functions

Special Kinds of Functions

Continuous Functions

Definitions

Definition (Function, Domain, Target, Image: General Definitions)

Examples: $f: \mathbb{R}^n \to \mathbb{R}$

$$f(\mathbf{x}) = \bar{\mathbf{a}} \bullet \mathbf{x}$$
 (Linear)
$$f(\mathbf{x}) = \bar{k} \prod_i x_i^{\bar{b}_i}$$
 (Cobb-Douglas)

$$f(\mathbf{x}) = \bar{k} \left(\sum_{i} \bar{c}_{i} x_{i}^{-\bar{a}} \right)^{-\bar{b}/\bar{a}} \tag{CES}$$

$\mathbf{f}: \mathbb{R}^k \to \mathbb{R}^m$

$\mathbf{f}: \mathbb{R}^k o \mathbb{R}^m$

Let $f_i: \mathbb{R}^n \to \mathbb{R}$. Then $\mathbf{f}: \mathbb{R}^k \to \mathbb{R}^m$ can be represented by f_i $(i = 1, 2, \cdots, m)$ $\mathbf{f}(\mathbf{x}) := (f_1(\mathbf{x}), \cdots, f_m(\mathbf{x}))$

Examples

- ullet Production function with k input factors and m products
- Utility mapping $\mathbf{u}: \mathbb{R}^{km} \to \mathbb{R}^m$
 - $u_i: \mathbb{R}^k \to \mathbb{R}$: Individual utility function of customer i
 - k: # of goods
 - m: # of consumers
 - x_i : consumption of customer i

$$\mathbf{u}(\mathbf{x_1},\cdots,\mathbf{x_m})=(u_1(\mathbf{x_1}),\cdots,u_m(\mathbf{x_m}))$$

$\mathbf{f}: \mathbb{R} \to \mathbb{R}^m$

 $\mathbf{f}(t)$

$$\mathbf{f}(t) := (f_1(t), \cdots, f_m(t))$$

Geometrically, $\mathbf{f}(t)$ is a parametric curve on \mathbb{R}^m space (cf. parametric line)

Level Curves

Level Curves

Let $f:\mathbb{R}^2 \to \mathbb{R}^1.$ Then <u>level curves</u> of f are curves on domain space with same $f(\mathbf{x}).$ *I.e.*,

$$\{\mathbf{x}|f(\mathbf{x})=\bar{c}\}$$

- Isoquant: level curve of production function
- Indifference curve: level curve of utility function
- Generally, when $f:\mathbb{R}^k \to \mathbb{R}$ it is called <u>level set</u> and this is k dimensioal nonlinear object

Linear Functions on \mathbb{R}^k

Definition (Linear Function from \mathbf{R}^k to \mathbf{R}^m)

f is a linear function when

- **2f**(r**x**) = r**f**(**x**)

Theorem (13.1,2)

- $ullet f: \mathbb{R}^k o \mathbb{R}$ is a linear function $\Rightarrow f(\mathbf{x}) = ar{\mathbf{a}} ullet \mathbf{x}, \ \mathbf{a} \in \mathbb{R}^k$
- $\mathbf{f}: \mathbb{R}^k \to \mathbb{R}^m$ is a linear function $\Rightarrow \mathbf{f}(\mathbf{x}) = \bar{A} \bullet \mathbf{x}$, $A: m \times k$ matrix

Quadaratic Forms

Definition (Quadratic Form on \mathbb{R}^k)

 $f: \mathbb{R}^k o \mathbb{R}$ is of the quadratic form if:

$$f(\mathbf{x}) = \sum_{i,j}^{k} \bar{a}_{ij} x_i x_j$$

more elegantly,

$$f(\mathbf{x}) = \mathbf{x}^T \bar{A} \mathbf{x}$$

In this case, A can be always symmetric.

Monomial

Definition (Monomial on R^k)

 $f: \mathbb{R}^k \to \mathbb{R}$ is monomial if:

$$f(\mathbf{x}) = \bar{c} \prod_{i}^{k} x_i^{\bar{a}_i},$$

 $a_i \in \mathbb{N} + \{0\}$

The <u>degree</u> of above monomial is $\sum_{i=1}^{k} a_i$

Continuous

Definition (Continuous Function on \mathbb{R}^k)

 $\mathbf{f} = (f_1, \cdots, f_m)$ is <u>continuous</u> at \mathbf{x} iff all f_i are continuous at \mathbf{x}