Time of slace analysis 1.1 Introduction to crymplotic notations Asymptotic notation 1) Big (on) O Ansigner gener (g(n) \$ fn1= ocg(n) (n) f(1) = (g(r) 342 Gin 3112 E41 1122 g(n): no reporter least upper bound 2) Big omega -rz f(r) = 31+2 g(r)=n7 f(n) = (g(n), n=no f(n) f(n) = -2g(n) (20, no21 (gn) f(n) = (g(n) 31122 CM 3n+2 = 2(1) f(n) = 2(n) - Le prever tighent leverbond Jog Jodn)

f(r) = (g(n) n 2100 (20, no21 f(n)= 0 Gg(n)

$$3nt^2 \leq 4(n)$$

1021

$$f(n) = (,g(n))$$

3112 2 n , no 21

C1,(270

nzno

れ。21

313+12

-- O(n3 /

flighest power

Lieg y

_() best

cvegi cverage 1.2 Time complexity Analysis of iterative prayrams A() (i=1; 5=1; int i,j; While (BC=n) too (i=1 ton) - n fur (j=1tn) -> nxn 5 = Sti Pf ("700; "); Point (oui) U(n) - complexity According to while statement K(K+1) 2n KYK 2n for i=1, [==n]; i++ K= C(In Paint (" anvi"); 0 (Tn) i - 1 | 122 K - 100 | K= 2 ×100 | 1=3×100 int i ji K, n j for (i=1; i==n; i++) total time = 100 + 200 + 300x { for j = 1 ; i = = i ; j+t) 100 (1+2+3+ --{ fug([1=1; K==100; 14++) 100 (n(n+1)) -- o(n-) Pf (o-vi");


```
Meage ( A, P, 9, 7)
  ni= q-P+1
  12 = 8-9
  Let LC1 --- no174 R[Itonzol] be new array
 for (i=1 to ni)
      ((i) = A [P+i-4]
   fog j=1 to nz
     PCi) = A[q+i]
   L Cnit 1]= 0
  R (ALTI) = 0
   i=1 , j=/
  for (K=Pta)
   if (L(i) = R(j))
   A[K] = Lli
```

 $\overline{(n)} = 2 \tau (n_h) + \alpha(n)$ = O(nlogn)

Merge-sort (APr) 1(n) if per q= [(P+2)/2] Meage-sot (A,P12) -7(n/2) Megge-500x (+, 911, 2) 7(n/2) merge (A,P,2,0) v(n)

i - it1

cla AK= R[i]

j=j+1

Quick Sodt

```
Postition (A, D, h)
( fivot = A(1)
   i=l, j=h;
    Uhile (i = j)
       & Lhile (ACi ) = Vivot);
      do { i p - - ;
        5 while (Ali JoP, Not)
       i \mid (i \geq j)
           SU-p (Ali), Ail);
      50-p(Ale), Alj) 1
      retion j.
Quicksust ( A, l, h)
   it (Ich)
    { j = 1-01, tran(AU, h);
       avicks or (A, ), i);
       Quicksol (A, jrl, h))
```

Et ressen's Multiplidim 1 P -- (A, + A, 2) = (B, + B, 2) ~ (B, + B, R' = A11(B12-B22) V 5' = Azzz (Bz1 - B11) 5 7 = (A11 + A12) + B22 0 0 - (A21 - A11) x (B11 + B22) 5. Pt 5-7.+4 (,~ - R +T. CEI Lrv - Ptr-atu

> 1 3 (D) (G) 7 6 (S) 1 3 (D) (G) 7 6 (S) 1 2 3 4 8 47

3 Gineedy Algorithm

3 Introduction to greedy Algorithm

Optimization

min cost

mox profit

max reliability

min rist

Octob

O

Greedy 14nap Sack algorithm m=20 Uh3 ObL 061 n = 3 15 24 Poufit 25 Leight 10 18 15 20 units 15/1.5 1.6 P/6 25 = 1.4 Leight about Greedy poofit about Gready P W 063 15 10 06 1 18 25 24 (#) Ohz 24 (15) 10 ob 3 2

31

Greed about P/L $Ch^{2} \quad 15 \quad 2h$ $Ch^{3} \quad 5 \quad 15\left(\frac{5}{10}\right)$ 31.5

20

28.2

Greedy knopkack {

for
$$i=1$$
 to n ;

compute Pi/Li ;

Soot object in non increasing order $O(n/ogn)$

for $i=1$ to n

if $(m>0$ 44 $Li \leq m)$
 $M = M - Li$;

 $P = P + Pi$;

else breck;

 $O(n/ogn)$
 $P = P + Pi(\frac{m}{Li})$;

 $O(n/ogn)$

								,
object	1	2	3	4	5	6	7	
Paclit	0	ς	15	7	6	18	3	
weight.	2	3	S	7	1	4		
,	5	1.6	2	1	6	4.5	3	

Chi NV
$$(5, \frac{1}{3}, \frac{1}{3},$$

Aug con-O(nlogn)

0_	1	2		3	4 5	
	Jul	Jy	J ₃	J5	J,	L

wast case o(n2)

a	John	J,	11.	Jz	Jn	Is	*	
	Paofits	2	4	3	1	10		
	deding	3	3	3	4	7		

max padit - 2+ 3+ 4+10 = 0

Ce	J,	Tu	J ₃	Jn	Ts	Jo	J,	Jo	J ₉
p	15	(20)	30				23)	16	(15)
.0	7	2	5	3	4	5	2	9	3

$$\begin{bmatrix} J_2 & J_4 & J_5 & J_5 & J_3 & J_1 & J_8 \end{bmatrix}$$

Pactit - 30 + 15 + 25 + 10 + 10 + 10 + 10 + 1

3.3 Introduction	to spanning	tree	and 1	circhhaff	theorem
Groph					
simple		multi			
0 0 min = 0			muce ther	n odge b/U 2	node
Max edge: Max					
$= \frac{n(n-1)}{2}$ $= \frac{n^2-n}{2}$	E = 0(0)	-) 7 E)			
Weighted	UA	Loighteo	(
J. J. O.	7)	0		

no of spanning take
$$\left| \frac{k_n - n^{n-2}}{k_n - n^{n-2}} \right|$$
 for complete 93 -ph only $\left| \frac{k_3 - 3^{3-2}}{k_4 - 4^{3-2}} \right|$

Hirchof therem

(1) Disgrad 0's
$$\rightarrow$$
 degree of nock $\begin{vmatrix} 1 & 2 & 3 & 7 \\ 2 & 0 & -1 & -17 \end{vmatrix}$ (11) Note diagonal 1's \rightarrow "-1" $\begin{vmatrix} 2 & 1 & 0 & 1 \\ 2 & 0 & 2 & -1 & -17 \end{vmatrix}$

no of
$$ST = \{0\}$$
 follow of only elimint = $\{(2(9-1)-(-1)/-3-1)-1/(-+3)\}$
= $\{(3-1)-(-1)/-3-1\}$

