Knowledge Representation using Predicate Logic

Lecture 4

IT/T/414A

Winter Semester 2014

Instructor: Kartick Ch. MONDAL

Aim of this Lecture

- To show how logic can be used to form representations of the world
- How a process of inference can be used to derive new representations about the world
- How these can be used by an intelligent agent to deduce what to do.

Aim of this Lecture

• We require:

- A formal language to represent knowledge in a computer tractable form.
- Reasoning Processes to manipulate this knowledge to deduce non-obvious facts.

- Logic is a form of knowledge representation
- Sentences have to obey syntactic laws
- Truth is established with respect to a model of the world and an interpretation which maps symbols to world objects
- Propositional logic is a very simple form of logic
- The truth table method is a sound and complete inference method, which checks truth in all possible models.
- But the truth table method is very inefficient! 2ⁿ models for n
 literals
- Today: inference methods that use syntactic operations on sentences

- The main challenge is to design a language which allows one to represent all the necessary knowledge
- We need to be able to make statements about the world such as describing things - people, houses, theories etc; relations between things and properties of things.

- Logic is form of knowledge representation.
- Representing knowledge using logic is appealing because you can derive new knowledge from old mathematical deduction.
- In this formalism you can conclude that a new statement is true if by proving that it follows from the statement that are already known.
- It provides a way of deducing new statements from old ones.

- Compared to
 - Natural languages
 - expressive but context sensitive
 - Programming languages
 - good for concrete data structures but not expressive
- Logic combines the advantages of natural languages and formal languages.
- A Logic is:
 - concise
 - unambiguous
 - context insensitive
 - expressive
 - effective for inferences

- Many ways to translate between languages
 - A statement can be represented in different logics
 - And perhaps differently in same logic
- Expressiveness of a logic
 - How much can we say in this language?
- Not to be confused with logical reasoning
 - Logics are languages, reasoning is a process (may use logic)

Defining Logic

A logic is defined by:

Syntax

- Describes the possible configurations that constitute sentences.
- Rules for constructing legal sentences in the logic
- Which symbols we can use (English: letters, punctuation)
- How we are allowed to combine symbols

– Semantics

- Determines what facts in the world the sentences refer to i.e. the interpretation. Each sentence makes a claim about the world.
- How we interpret (read) sentences in the logic
- Assigns a meaning to each sentence

Defining Logic

- Proof theory set of rules for generating new sentences that are necessarily true given that the old sentences are true.
- The relationship between sentences is called **entailment**.
- The semantics link these sentences (representation) to facts of the world.
- The proof can be used to determine new facts which follow from the old.

Defining Logic

- Example: "All students stay in hostels"
 - A valid sentence (syntax)
 - And we can understand the meaning (semantics)
 - This sentence happens to be false (there is a counter example)
- We will consider two kinds of logic:
 - Propositional logic
 - First-order logic or first-order predicate calculus.
- Propositional logic is of limited expressiveness but is useful to introduce many of the concepts of logic's syntax, semantics and inference procedures.

- Syntax
 - Propositions, e.g. "it is raining"
 - Connectives: and, or, not, implies, iff (equivalent)

$$\wedge$$
 \vee \neg \longrightarrow \longleftrightarrow

- Brackets, T (true) and F (false)
- Semantics (Classical Boolean)
 - Define how connectives affect truth
 - "P and Q" is true if and only if P is true and Q is true
 - Use truth tables to work out the truth of statements

- We can represent real world facts as logical propositions written as well-formed formulas. E.g.,
 - It is raining : RAINING
 - It is sunny : SUNNY
 - It is windy: WINDY
 - It is raining then it is not sunny (This is logical conclusion)

RAINING \rightarrow – SUNNY (Propositional logic representation)

- Propositional logic is the simplest way of attempting representing knowledge in logic using symbols.
 - Symbols represent facts: P, Q, etc...
 - These are joined by logical connectives (and, or, implication) e.g., $P \land Q$; $Q \Rightarrow R$
 - Given some statements in the logic we can deduce new facts (e.g., from above deduce R)

 Propositional logic isn't powerful enough as a general knowledge representation language.

• Impossible to make general statements. E.g., "all students sit exams" or "if any student sits an exam they either pass or fail".

So we need predicate logic.

Predicate Logic

- Propositional logic assumes:
 - There are facts that either hold or do not in the world.
 - Each fact can be in one of two states: true or false.
 - Each fact requires a separate proposition.
- Propositional logic combines atoms
 - An atom contains no propositional connectives
 - Have no structure (today_is_wet, john_likes_apples)
- Predicates allow us to talk about
 - Objects: people, house
 - Properties: is_wet(today)
 - Relations: likes(john, apples)
 - True or false
- In predicate logic each atom is a predicate
 - e.g. first order logic, higher-order logic
 - More expressive logic than propositional

Predicate Logic: First order Logic

- First-order logic can also be used to make statements about all the objects in the universe, eg all men are mortal.
- Constants are objects: john, apples
- Predicates are properties and relations:
 - likes(john, apples)
- Functions transform objects:
 - likes(john, fruit_of(apple_tree))
- Variables represent any object: likes(X, apples)
- Quantifiers qualify values of variables
 - True for all objects (Universal): $\forall X$. likes(X, apples)
 - Exists at least one object (Existential): ∃X. likes(X, apples)

First-Order Logic (FOL)

- A key element of FOL are predicates, which are used to describe objects, properties, and relationships between objects E.g. On(x,y)
- A quantified statement is a statement that applies to a class of objects

E.g. $\forall x \ On(x, Table) \rightarrow Fruit(x)$

- This means that there is only fruit on the table
- The first element is called a quantifier, x is a variable and
 Table is a constant
- On is a predicate
- The use of quantifiers allows FOL to handle infinite domains, while propositional logic can only handle finite domains.

Universal Quantification

- Syntax: ∀variables sentence
- E.g. Everyone taking Al is smart.
 ∀x Taking(x,AI) → Smart(x)
- Semantics: ∀x S is equivalent to the conjunction of instantiations of S:

```
Taking(John,AI) 
ightarrow Smart(John)

hightarrow Taking(Ann,AI) 
ightarrow Smart(Ann)
```

• Typically, \rightarrow is the main connective with \forall .

Universal Quantification: Example

What does this statement mean:

 $\forall x \ Taking(x,AI) \land Smart(x)$

Existential Quantification

- Syntax: ∃variables sentence
- Someone taking Al is smart:

```
\exists x \ Taking(x,AI) \land Smart(x)
```

 Semantics: ∃x S is equivalent to the disjunction of instantiations of S

```
(Taking(Ann,AI) ∧ Smart(Ann))
∨ (Taking(John,AI) ∧ Smart(John))
∨ ...
```

• Typically, \wedge is the main connective with \exists .

Example

What does this mean:

 $\exists x \ Taking(x,AI) \rightarrow Smart(x)$

Predicate Logic

- In predicate logic the basic unit is a predicate/ argument structure called an atomic sentence:
 - likes(alison, chocolate)
 - tall(fred)
- Arguments can be any of:
 - constant symbol, such as 'alison'
 - variable symbol, such as X
 - function expression, e.g., motherof(fred)
- So we can have:
 - likes(X, richard)
 - friends(motherof(joe), motherof(jim))

Predicate logic: Syntax

- These atomic sentences can be combined using logic connectives
 - likes(john, mary) ∧ tall(mary)
 - tall(john) \Rightarrow nice(john)
- Sentences can also be formed using quantifiers ∀
 (for all) and ∃ (there exists) to indicate how to
 treat variables:
 - $\forall X \text{ lovely}(X)$ Everything is lovely.
 - $-\exists X lovely(X) Something is lovely.$
 - \forall X in(X, garden) ⇒lovely(X) Everything in the garden is lovely.

Predicate Logic: Syntax

- Can have several quantifiers, e.g.,
 - $\forall X \exists Y loves(X, Y)$
 - $\forall X \text{ handsome}(X) \Rightarrow \exists Y \text{ loves}(Y, X)$
- So we can represent things like:
 - All men are mortal.
 - No one likes brussels sprouts.
 - Everyone taking AI will pass their exams.
 - Every race has a winner.
 - John likes everyone who is tall.
 - John doesn't like anyone who likes brussel sprouts.
 - There is something small and slimy on the table.

Predicate Logic: Semantics

 There is a precise meaning to expressions in predicate logic.

 Like in propositional logic, it is all about determining whether something is true or false.

 X P(X) means that P(X) must be true for every object X in the domain of interest

Predicate Logic: Semantics

• ∃ X P(X) means that P(X) must be true for at least one object X in the domain of interest.

 So if we have a domain of interest consisting of just two people, john and mary, and we know that tall(mary) and tall(john) are true, we can say that ∀ X tall(X) is true.

Proof and inference

- Again we can define inference rules allowing us to say that if certain things are true, certain other things are sure to be true, e.g.
- ∀ X P(X) ⇒ Q(X)
 P(something)
 ----- (so we can conclude)
 Q(something)
- This involves matching P(X) against P(something) and binding the variable X to the symbol something.

Proof and Inference

- What can we conclude from the following?
 - $\forall X \ tall(X) \Rightarrow strong(X)$
 - tall(john)
 - $\forall Y \text{ strong}(Y) \Rightarrow \text{loves}(\text{mary}, Y)$

Prolog and Logic

- The language which is based upon predicate logic is PROLOG.
- But it has slightly difference in syntax.
 - -a(X) := b(X), c(X). Equivalent to
 - $\forall X a(X) \Leftarrow b(X) \land c(X) Or equivalently$
 - $\forall X b(X) \land c(X) \Rightarrow a(X)$
- Prolog has a built in proof/inference procedure, that lets you determine what is true given some initial set of facts. Proof method called "RESOLUTION".

Other Logics

- Predicate logic not powerful enough to represent and reason on things like time, beliefs, possibility.
 - "He may do X"
 - He will do X.
 - I believe he should do X.
- Specialised logics exist to support reasoning on this kind of knowledge

Motivation

 The major motivation for choosing logic as representation tool is that we can reason with that knowledge.