Universitatea Babeş-Bolyai Facultatea de Matematică și Informatică Ecuații cu derivate parțiale

Probleme. LISTA 5 - Integrarea funcțiilor de mai multe variabile. Formulele lui Green

In acest paragraf considerăm $n \geq 2$, $\Omega \subset \mathbb{R}^n$ un domeniu mărginit de clasă C^1 și $\nu = (\nu_1, \dots, \nu_n) \colon \partial\Omega \to \mathbb{R}^n$ astfel încât $\nu(y)$ este normala exterioară la Ω în $y \in \partial\Omega$. Se va folosi următorul rezultat fundamental.

Teorema 1 Pentru $u \in C^1(\overline{\Omega})$ avem pentru fiecare $i = \overline{1, n}$

$$\int_{\Omega} \frac{\partial u}{\partial x_i} dx = \int_{\partial \Omega} u \, \nu_i \, d\sigma.$$

1. Să se arate că, pentru $u, v \in C^1(\overline{\Omega})$ avem pentru fiecare $i = \overline{1, n}$

$$\int_{\Omega} \frac{\partial u}{\partial x_i} v \ dx = \int_{\partial \Omega} u \, v \, \nu_i \ d\sigma - \int_{\Omega} u \, \frac{\partial v}{\partial x_i} \ dx.$$

Aceasta se numește formula integrării prin părți.

2. Să se arate că, pentru $w \in C^1(\overline{\Omega}, \mathbb{R}^n)$ avem

$$\int_{\Omega} \operatorname{div} w \ dx = \int_{\partial \Omega} w \cdot \nu \ d\sigma.$$

Aici "." notează produsul scalar din \mathbb{R}^n . Aceasta se numește formula divergenței.

3. Fie $u \in C^2(\overline{\Omega})$. Să se arate că

$$\operatorname{div}(\nabla u) = \Delta u \quad \text{si} \quad \int_{\Omega} \Delta u \ dx = \int_{\partial \Omega} \frac{\partial u}{\partial \nu} \ d\sigma.$$

4. Fie $u,v\in C^2(\overline{\Omega})$. Să se arate că

$$\operatorname{div}(v \nabla u) = v \Delta u + \nabla v \cdot \nabla u.$$

De asemenea, să se arate că

$$\int_{\Omega} v \, \Delta u \, dx = \int_{\partial \Omega} v \, \frac{\partial u}{\partial \nu} \, d\sigma - \int_{\Omega} \nabla v \cdot \nabla u \, dx$$

$$\int_{\Omega} v \, \Delta u \, dx = \int_{\partial \Omega} \left(v \, \frac{\partial u}{\partial \nu} - u \, \frac{\partial v}{\partial \nu} \right) \, d\sigma + \int_{\Omega} u \, \Delta v \, dx.$$

Aceste formule se numesc *prima*, respectiv *a doua*, *formulă a lui Green*. Le vom nota (G1), respectiv (G2).

5. Fie $u \in C^2(\overline{\Omega})$ armonică în Ω . Să se arate că

$$\int_{\partial\Omega} \frac{\partial u}{\partial \nu} \ d\sigma = 0.$$

6. Arătați că nu există nicio soluție $u \in C^2(\overline{\Omega})$ pentru problema Neumann

$$\Delta u = 1$$
 în Ω , $\frac{\partial u}{\partial \nu} = 0$ pe $\partial \Omega$.

Găsiți o condiție necesară pentru $f \in C(\Omega)$ și $g \in C(\partial \Omega)$ astfel încât problema Neumann

$$\Delta u = f$$
 în Ω , $\frac{\partial u}{\partial \nu} = g$ pe $\partial \Omega$

să aibă cel puţin o soluţie $u \in C^2(\overline{\Omega})$.

Să se observe că, dacă această problemă Neumann are o soluție u^* , atunci are o infinitate, $u^* + c$, $c \in \mathbb{R}$.

7. Fie $\lambda_1 \in \mathbb{R}$ astfel încât există o soluție nenulă $v_1 \in C^2(\overline{\Omega})$ pentru problema

$$-\Delta v_1 = \lambda_1 v_1$$
 in Ω , $v_1 = 0$ pe $\partial \Omega$.

Să se arate că $\lambda_1 > 0$ arătând în prealabil că

$$\int_{\Omega} |\nabla v_1|^2 \, dx = \lambda_1 \int_{\Omega} v_1^2 \, dx.$$

Fie acum $v_2 \in C^2(\overline{\Omega})$ nenulă și $\lambda_2 \in \mathbb{R}$ cu $\lambda_1 \neq \lambda_2$ astfel încât

$$-\Delta v_2 = \lambda_2 v_2$$
 in Ω , $v_2 = 0$ pe $\partial \Omega$.

Să se arate că v_1 și v_2 sunt ortogonale în $L^2(\Omega)$ arătând în prealabil că

$$\int_{\Omega} \nabla v_1 \cdot \nabla v_2 \, dx = \lambda_1 \int_{\Omega} v_1 \, v_2 \, dx = \lambda_2 \int_{\Omega} v_1 \, v_2 \, dx.$$

8. Fie $f \in C(\Omega)$ și $g \in C(\partial \Omega)$. Folosind (G1) să se arate că problema Dirichlet

$$\Delta u = f$$
 în Ω , $u = g$ pe $\partial \Omega$

are cel mult o soluție $u \in C^2(\overline{\Omega})$.

9.

- (i) Fie $\Omega = \{x \in \mathbb{R}^2 : |x| > 1\}$. Să se arate că $u(x) = \ln |x|$ este o soluție a PD $\Delta u = 0$ în Ω , u = 0 pe $\partial \Omega$. Este Ω mărginită? Este u mărginită în Ω ?
- (ii) Fie $n \ge 3$ și $\Omega = \{x \in \mathbb{R}^n : |x| > 1\}$. Să se arate că $u(x) = |x|^{2-n} 1$ este o soluție a PD $\Delta u = 0$ în Ω , u = 0 pe $\partial \Omega$.
- (iii) Fie $\Omega=\{x\in\mathbb{R}^n:x_n>0\}$. Să se arate că $u(x)=x_n$ este o soluție a PD $\Delta u=0$ în $\Omega,\ u=0$ pe $\partial\Omega.$
- (iv) In fiecare dintre situațiile de mai sus, avem că Problema Dirichlet $\Delta u = 0$ în Ω , u = 0 pe $\partial \Omega$ are cel puțin două soluții (una dintre ele este funcția nulă). Se contrazice rezultatul de la 8?

In fiecare situație calculați $\lim_{|x|\to\infty} u(x)$.

10. Știind că există, este unică în $C^2(\overline{\Omega})$, și este o funcție radială, să se determine soluția problemei Dirichlet în exteriorul unei bile din \mathbb{R}^n cu $n \geq 3$

$$\Delta u = 0$$
 în Ω , $u = 1$ pe $\partial \Omega$, $\lim_{|x| \to \infty} u(x) = 0$.

Aici $\Omega = \{x \in \mathbb{R}^n : |x| > 1\}.$

11. Notăm mulțimea funcțiilor cu suport compact

$$C_c(\mathbb{R}^n) = \{ f : \mathbb{R}^n \to \mathbb{R} : \text{ există un compact } K \text{ astfel încât } f(y) = 0, \ y \in \mathbb{R}^n \setminus K \}.$$

Să se arate că formulele lui Green sunt valabile dacă se înlocuiește ipoteza

- (H) $\Omega \subset \mathbb{R}^n$ este un domeniu mărginit de clasă C^1 și $u \in C^2(\overline{\Omega})$. cu ipoteza
- (Hnou) $\Omega \subset \mathbb{R}^n$ este un domeniu de clasă C^1 astfel încât $\partial\Omega$ este mărginită şi $u \in C_c(\mathbb{R}^n) \cap C^2(\mathbb{R}^n)$.