

Tarea 4

8 de mayo de 2024

1º semestre 2024 - Profesores P. Bahamondes - S. Bugedo - N. Alvarado

Requisitos

- La tarea es individual. Los casos de copia serán sancionados con la reprobación del curso con nota 1,1.
- Entrega: Hasta las 23:59 del 15 de mayo a través del buzón habilitado en el sitio del curso (Canvas).
 - Esta tarea debe ser hecha completamente en L^AT_EX. Tareas hechas a mano o en otro procesador de texto **no serán corregidas**.
 - Debe usar el template LATEX publicado en la página del curso.
 - Cada solución de cada problema debe comenzar en una nueva hoja. *Hint:* Utilice \newpage
 - Los archivos que debe entregar son el archivo PDF correspondiente a su solución con nombre numalumno.pdf, junto con un zip con nombre numalumno.zip, conteniendo el archivo numalumno.tex que compila su tarea. Si su código hace referencia a otros archivos, debe incluirlos también.
- El no cumplimiento de alguna de las reglas se penalizará con un descuento de 0.5 en la nota final (acumulables).
- No se aceptarán tareas atrasadas.
- Si tiene alguna duda, el foro de Github (issues) es el lugar oficial para realizarla.

Problemas

Problema 1

- (a) Sean \sim_1 y \sim_2 relaciones de equivalencia sobre un conjunto A. Encuentre la relación de equivalencia más pequeña definida en A que contenga a \sim_1 y a \sim_2 . Demuestre que tal relación cumple lo pedido.
- (b) Sean \sim_1 y \sim_2 relaciones de equivalencia sobre un conjunto A tales que $A/\sim_1 = A/\sim_2$. ¿Es cierto que $\sim_1 = \sim_2$? Demuestre su respuesta.
- (c) Sea A un conjunto. Demuestre que existen relaciones de equivalencia \sim_1 y \sim_2 sobre A tales que para toda relación de equivalencia \sim sobre A, se tiene que $\sim_1 \subseteq \sim \subseteq \sim_2$ (vale decir, para todo $(a,b) \in A \times A$, si $a \sim_1 b$, entonces $a \sim b$, y si $a \sim b$, entonces $a \sim_2 b$).

Solución

(a) Sean \sim_1 y \sim_2 relaciones de equivalencia sobre un conjunto A. Definimos la relación

$$R := \sim_1 \cup \sim_2 \cup \{(a,c) \in A^2 \mid \text{ existen } b_1, \dots, b_n \in A \text{ tales que}$$

$$(a,b_1), \dots, (b_n,c) \in \sim_1 \cup \sim_2 \}$$

Es claro que R cumple que $\sim_1 \subseteq R$ y $\sim_2 \subseteq R$. Primero demostraremos que es relación de equivalencia.

- Reflexividad: como $I_A \subseteq \sim_1 \subseteq R$, entonces R es refleja.
- Simetría: sea $(a, c) \in R$.
 - Si $(a,c) \in \sim_1$, por simetría de \sim_1 , $(c,a) \in \sim_1$ y por definición de R también se tiene $(c,a) \in R$. El caso \sim_2 es análogo.
 - Si (a,c) no es parte de \sim_1 ni \sim_2 , entonces existen $b_1,\ldots,b_n\in A$ tales que

$$(a, b_1), \ldots, (b_n, c) \in \sim_1 \cup \sim_2$$

Por simetría de ambas relaciones, se cumple que

$$(c, b_n), \ldots, (b_1, a) \in \sim_1 \cup \sim_2$$

y por definición de R, $(c, a) \in R$.

- Transitividad: sean $(a, b), (b, c) \in R$.
 - Si ambas tuplas están en \sim_1 o ambas en \sim_2 , por transitividad de dichas relaciones se tiene que (a, c) está en su unión y por lo tanto en R.
 - Sin pérdida de generalidad, supongamos que ninguna de las tuplas (a, b), (b, c) está en la unión $\sim_1 \cup \sim_2$. Luego, existen secuencias de aristas tales que

$$(a, b_1), (b_1, b_2), \dots, (b_n, b), (b, d_1), \dots, (d_m, c) \in \sim_1 \cup \sim_2$$

Luego, existe una secuencia de a hasta c y por definición de R, la arista $(a,c) \in R$.

Ahora demostraremos que es la relación más pequeña que cumple lo pedido. Es decir, consideraremos una relación de equivalencia R^* que contiene a $\sim_1 \cup \sim_2$ y que además $R^* \subseteq R$. Demostraremos que $R \subseteq R^*$ para concluir que son la misma relación. Sea $(a,b) \in R$.

- Si $(a,b) \in \sim_1 \cup \sim_2$, entonces claramente $(a,b) \in R^*$ por construcción.
- Si no, existen $b_1, \ldots, b_n \in A$ tales que

$$(a,b_1),\ldots,(b_n,c)\in \sim_1 \cup \sim_2$$

Cada una de estas tuplas está en R^* . Como es relación de equivalencia, $a, b_1, \ldots, b_n, b \in [a]_{R^*}$ con los cual $(a, b) \in R^*$.

Concluimos que $R = R^*$.

(b) Sean \sim_1 y \sim_2 relaciones de equivalencia sobre un conjunto A tales que $A/\sim_1 = A/\sim_2$. Demostraremos lo pedido mostrando que si $(a,b) \in \sim_1$, entonces $(a,b) \in \sim_2$ para todo par $a,b \in A$.

Si $(a, b \in \sim_1)$, entonces $a, b \in [a]_{\sim_1}$. Como los conjuntos cuociente son iguales, cada clase de equivalencia en A/\sim_1 es también elemento de A/\sim_2 . Luego, existe $d \in A$ tal que $a \in [d]_{\sim_2}$. Como $[a]_{\sim_1} = [d]_{\sim_2}$, sus elementos son iguales. Concluimos que $a, b \in [d]_{\sim_2}$ y con ello, $(a, b) \in \sim_2$. Análogamente se demuestra que $\sim_2 \subseteq \sim_1$, concluyendo que $\sim_1 = \sim_2$.

(c) Sea A un conjunto. Dada $\sim \subseteq A^2$ de equivalencia, basta tomar las relaciones

$$\begin{array}{rcl}
\sim_1 & = & \{(a,a) \mid a \in A\} \\
\sim_2 & = & A \times A
\end{array}$$

Ambas relaciones contienen toda tupla de la forma (a, a) para $a \in A$, por lo que son reflejas. Si $(a, b) \in \sim_1$, a = b y $(b, a) \in \sim_1$, por lo que es simétrica. Además, si $(a, b), (b, c) \in \sim_1$, a = b y b = c. Concluimos que a = c y $(a, c) \in \sim_1$, por lo que es transitiva. La relación \sim_2 contiene todas las tuplas posibles, de manera que las definiciones de simetría y transitividad se cumplen trivialmente.

Finalmente, dado que toda relación de equivalencia \sim contiene las tuplas de la forma $(a,a), \sim_1 \subseteq \sim$. Además, toda relación \sim cumple que $\sim \subseteq \sim_2$, cuando \sim_2 es la relación completa.

Pauta (6 pts. + 1 pt. de bonus)

- (a) 0.5 por propuesta de unión y agregar tuplas necesarias para cumplir la transitividad.
 - 1.0 por demostrar que es relación de equivalencia.

- 0.5 por demostrar que es la más pequeña.
- (b) 0.5 por doble contención (basta con una dirección).
 - 1.0 por igualdad de clases de equivalencia.
 - 0.5 por concluir que los elementos arbitrarios son equivalentes en la segunda relación.
- (c) 0.5 por definir las dos relaciones.
 - 0.5 por demostrar que la identidad es de equivalencia.
 - 0.5 por demostrar que la completa también lo es.
 - 0.5 por argumentar que son cotas por ambos lados.

Puntajes parciales y soluciones alternativas a criterio del corrector.

Problema 2

- (a) Sea \prec una relación sobre $\mathbb{N} \times \mathbb{N}$ definida de la siguiente forma. Para cada (a,b), $(c,d) \in \mathbb{N} \times \mathbb{N}$, se tiene que $(a,b) \prec (c,d)$ si y solo si a < c y b < d, donde < es la relación de orden usual sobre los naturales. Demuestre que \prec es un orden parcial pero no un orden total sobre $\mathbb{N} \times \mathbb{N}$.
- (b) Sea \leq una relación sobre $\mathbb{N} \times \mathbb{N}$ definida de la siguiente forma. Para cada $(a, b), (c, d) \in \mathbb{N} \times \mathbb{N}$, se tiene que $(a, b) \leq (c, d)$ si y solo si (a < c) o $(a = c \text{ y } b \leq d)$, donde < es la relación de orden usual sobre los naturales. Demuestre que \leq es un orden total sobre $\mathbb{N} \times \mathbb{N}$.
- (c) Generalice la definición de la relación \leq definida en (b) para el caso \mathbb{N}^k , con $k \geq 3$. Demuestre que la relación resultante es un orden total sobre \mathbb{N}^k .

Solución

Parte (a)

Para demostrar que \prec es un orden parcial, verificamos las propiedades de reflexividad, antisimetría y transitividad:

- Reflexividad: Para cualquier $(a, b) \in \mathbb{N} \times \mathbb{N}$, se tiene que $a \leq a$ y $b \leq b$, por lo tanto, $(a, b) \prec (a, b)$.
- Antisimetría: Supongamos que $(a, b) \prec (c, d)$ y $(c, d) \prec (a, b)$. Entonces, $a \leq c$, $c \leq a$, $b \leq d$, y $d \leq b$. Esto implica a = c y b = d.
- Transitividad: Si $(a, b) \prec (c, d)$ y $(c, d) \prec (e, f)$, entonces $a \leq c \leq e$ y $b \leq d \leq f$, por lo que $(a, b) \prec (e, f)$.

Para demostrar que no es un orden total, consideramos (1,2) y (2,1). No se cumple ni $(1,2) \prec (2,1)$ ni $(2,1) \prec (1,2)$, mostrando que no todos los elementos son comparables.

Parte (b)

Para probar que \preceq es un orden total, necesitamos verificar la reflexividad, antisimetría, transitividad y totalidad:

- **Reflexividad:** Es directo.
- Antisimetría: Si $(a, b) \leq (c, d)$ y $(c, d) \leq (a, b)$, entonces a = c y b = d.
- Transitividad: Es directo de la transitividad de $< y \le$.
- Conexidad: Sean (a, b), $(c, d) \in \mathbb{N} \times \mathbb{N}$, por tricotomía de los números naturales, necesariamente o a < c, o c < a o a = c. Dado esto, se tiene que la relación es conexa.

Parte (c)

Definimos la relación \leq sobre \mathbb{N}^k por:

$$(a_1, a_2, \dots, a_k) \leq (b_1, b_2, \dots, b_k)$$

si existe un índice $j \leq k$ tal que $a_i = b_i$ para todo i < j y $a_j \leq b_j$. Analizamos las propiedades de esta relación:

- Reflexividad: Para cualquier $(a_1, a_2, ..., a_k) \in \mathbb{N}^k$, siempre es cierto que $a_i = a_i$ para todo i, y por lo tanto, $(a_1, a_2, ..., a_k) \leq (a_1, a_2, ..., a_k)$.
- Antisimetría: Supongamos que $(a_1, a_2, ..., a_k) \leq (b_1, b_2, ..., b_k)$ y $(b_1, b_2, ..., b_k) \leq (a_1, a_2, ..., a_k)$. Entonces debe existir un j tal que $a_i = b_i$ para todo i < j y $a_j \leq b_j$, y un j' tal que $b_i = a_i$ para todo i < j' y $b_{j'} \leq a_{j'}$. Como ambos son ciertos y se mantienen para todos los índices, esto implica que $a_i = b_i$ para todo i, demostrando la antisimetría.
- Transitividad: Si $(a_1, a_2, ..., a_k) \leq (b_1, b_2, ..., b_k)$ y $(b_1, b_2, ..., b_k) \leq (c_1, c_2, ..., c_k)$, entonces para algún j tenemos que $a_i = b_i$ para todo i < j y $a_j \leq b_j$, y para algún j' tenemos que $b_i = c_i$ para todo i < j' y $b_{j'} \leq c_{j'}$. La transitividad se mantiene porque se preservan las igualdades y las desigualdades correspondientes se propagan, lo que implica que $(a_1, a_2, ..., a_k) \leq (c_1, c_2, ..., c_k)$.
- Conexidad: Para cualquier par $(a_1, a_2, ..., a_k)$, $(b_1, b_2, ..., b_k)$ en \mathbb{N}^k , la relación garantiza que siempre es posible establecer una comparación. Si en algún punto $a_i \neq b_i$, el orden se decide en el primer índice donde difieren; si son iguales en todas las dimensiones, son iguales bajo \preceq .

Puntaje:

- 0.4 pto cada propiedad y 0.3 por la no conexidad.
- 0.5 pto por cada propiedad.
- 0.5 por la definición y 0.5 por cada propiedad.

Puntajes parciales y soluciones alternativas a criterio del corrector.