Algebra I - Matrični račun: 4. vaje

Geometrijski pomen vektorskega produkta. Mešani produkt. Premice.

- 1. Izračunajte ploščino trikotnika, z oglišči v točkah A(0,0,0), B(2,-1,5) in C(1,4,-2).
- 2. Za poljubno sodo naravno število n poenostavite izraz

$$((\dots((((\vec{a}\times\vec{b})\times\underbrace{\vec{a})\times\vec{a})\times\vec{a})\dots)\times\vec{a})\times\vec{a})$$

- 3. Imejmo vektorje $\vec{a} = (1, 2, -3), \ \vec{b} = (0, 3, 1) \ \text{in} \ \vec{c} = (-1, 0, -1).$ Izračunajte: $(\vec{a}, \vec{b}, \vec{c}), \ (\vec{b}, \vec{a}, \vec{c}), \ (\vec{a}, \vec{b}, \vec{b}).$
- 4. Izračunajte prostornino paralelepipeda, določenega z vektorji $\vec{a}=(1,2,-1),\,\vec{b}=(0,7,-4)$ in $\vec{c}=(-2,0,3)$.
- 5. Za katere vrednosti $t \in \mathbb{R}$ je prostornina paralelepipeda, določenega z vektorji $\vec{a} = (t, -1, 4), \ \vec{b} = (2, 0, -2)$ in $\vec{c} = (-2, t, 1)$ enaka 8?
- 6. V vseh treh oblikah zapišite enačbo premice, ki gre skozi točki A(3,1,-2) in B(0,2,-1).
- 7. Dani sta točki A(2,3,-1) in $B(4,-1,1) \in \mathbb{R}^3$. Za vsako od točk P(2,4,-1), Q(3,1,0), R(-2,11,-5) raziščite, ali leži na daljici AB in ali leži na premici skozi A in B.
- 8. Ali sta premici $p: 2-x=\frac{y}{2}=\frac{z+1}{3}$ in $q: \frac{x-1}{2}=\frac{2-y}{4}=\frac{2-z}{6}$ enaki?

Navodila.

1. Izračunajte ploščino trikotnika, z oglišči v točkah A(0,0,0), B(2,-1,5) in C(1,4,-2).

2. Za poljubno sodo naravno število n poenostavite izraz

$$((\dots((((\vec{a}\times\vec{b})\times\underline{\vec{a}})\times\vec{a})\times\vec{a})\dots)\times\vec{a})\times\underline{\vec{a}}.$$

Downera: 2a = 1 = 2k = k = N bo: $V_{11} = V_{2k} = (-n)^{k} |\vec{a}|^{2k} \vec{a} \times \vec{b}$ Dokaz = indukcyo: (po k) k = 1. $V_{2} = (-n)^{k} |\vec{a}|^{2k} \vec{a} \times \vec{b} = -|\vec{a}|^{2} \vec{a} \times \vec{b}$ k = 1. $V_{2} = (-n)^{k} |\vec{a}|^{2k} \vec{a} \times \vec{b} = -|\vec{a}|^{2} \vec{a} \times \vec{b}$ k = 1. $V_{2} = (-n)^{k} |\vec{a}|^{2k} \vec{a} \times \vec{b} = -|\vec{a}|^{2} \vec{a} \times \vec{b}$ k = 1. k = 1: k = 1

3. Imejmo vektorje $\vec{a} = (1, 2, -3), \vec{b} = (0, 3, 1)$ in $\vec{c} = (-1, 0, -1)$. Izračunajte: $(\vec{a}, \vec{b}, \vec{c}), (\vec{b}, \vec{a}, \vec{c}), (\vec{a}, \vec{b}, \vec{b})$.

3)
$$\vec{a} = (1, 2, -3)$$
 $(\vec{a}, \vec{b}, \vec{c}) = (\vec{a} \times \vec{b}) \vec{c} = (2+9, -(1), 3) \cdot (-1, 0, -1) =$
 $\vec{b} = (0, 3, 1)$ $= -11 + 0 - 3 = -14$
 $\vec{c} = (-1, 0, -1)$ $(\vec{b}, \vec{a}, \vec{c}) = ((\vec{b} \times \vec{a}) \cdot \vec{c}) = (-\vec{a} \times \vec{b}) \cdot \vec{c} = -(\vec{a} \times \vec{b}) \cdot \vec{c} = -11 + 0 + 3 = 14$

$$(\vec{a}, \vec{b}, \vec{b}) = (\vec{a} \times \vec{b}) \cdot \vec{b} = (11, -1, 3) \cdot (0, 3, 1) = 0 - 3 + 3 = 0$$

4. Izračunajte prostornino paralelepipeda, določenega z vektorji $\vec{a} = (1, 2, -1), \vec{b} = (0, 7, -4)$ in $\vec{c} = (-2, 0, 3)$.

	2 (43 1)	V= (a\$,0) =2	3	ait	5,2)	= (a)	2. (gx				
(A)	る=(1,2,-1) ち=(0,7,4)	8,5 0 = 6	7 -	=(-11	4,7	5-)-(-5	(5,0,3)=	2+	0+2	1=23
	= (-2,0,3)	des =					-			5 5	-1 1 12

5. Za katere vrednosti $t \in \mathbb{R}$ je prostornina paralelepipeda, določenega z vektorji $\vec{a} = (t, -1, 4), \vec{b} = (2, 0, -2)$ in $\vec{c} = (-2, t, 1)$ enaka 8?

5 V=8	V= (a,b,c) = 8	$(\vec{a}, \vec{b}, \vec{c}) = (\vec{a} \times \vec{b}) \vec{c} =$ = $(2, -(-2+-8), 2) \cdot (-2, +, 1) =$
$\alpha = (+, -1, 4)$ b = (z, 0, -2) c = (-2, +, 1)	2+2+8+-2=8 1:2	$= (2, 2+48, 2) \cdot (-2, +, \Lambda) =$ $= -4+2+2+8++2 =$ $= 2+3+8+=2$
+er? 2+2+8+-2=-8 1:2	(+-1)(++5)=0 +1=+5	20,0)
(++3)(++1)=0 +1=-1	12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	

6. V vseh treh oblikah zapišite enačbo premice, ki gre skozi točki A(3,1,-2) in B(0,2,-1).

7. Dani sta točki A(2,3,-1) in $B(4,-1,1) \in \mathbb{R}^3$. Za vsako od točk P(2,4,-1), Q(3,1,0), R(-2,11,-5) raziščite, ali leži na daljici AB in ali leži na premici skozi A in B.

8. Ali sta premici $p: 2-x=\frac{y}{2}=\frac{z+1}{3}$ in $q: \frac{x-1}{2}=\frac{2-y}{4}=\frac{2-z}{6}$ enaki?

