Ryan Coatney

University of Arizona

18 June 2020

OVERVIEW

•000000

Clustering and Classification

000000

CLUSTERING AND CLASSIFICATION

Clustering

000000

CLUSTERING AND CLASSIFICATION

CLASSIFICATION

References

CLASSIFICATION

K-MEANS ALGORITHM

Start with data $\mathcal{X} = \{x^1, \dots, x^N\}$ and K starting 'means', $\{m_1, \ldots, m_K\}.$

Assignment: For each data point, x^n , set

 $\hat{k}_n = \arg\min_k d(\mathbf{x}^n, \mathbf{m}_k)$. Set $\rho_i^n = \delta_i^{\hat{k}_n}$ (Hard responsibility).

Update: Let $N_k = \sum_{n=1}^N \rho_k^n$ and

$$oldsymbol{m}_k^{new} = rac{\sum_{n=1}^N
ho_k^n oldsymbol{x}^{(n)}}{N_k}.$$

K-means Algorithm

CLUSTERING AND CLASSIFICATION

0000000

Start with data $\mathcal{X} = \{x^1, \dots, x^N\}$ and K starting 'means', $\{m_1, \dots, m_K\}$.

Assignment: For each data point, x^n , set

 $\hat{k}_n = \arg\min_k d(\boldsymbol{x}^n, \boldsymbol{m}_k)$. Set $\rho_i^n = \delta_i^{\hat{k}_n}$ (Hard responsibility).

Update: Let $N_k = \sum_{n=1}^N \rho_k^n$ and

$$oldsymbol{m}_k^{new} = rac{\sum_{n=1}^N
ho_k^n oldsymbol{x}^{(n)}}{N_k}.$$

CLUSTERING AND CLASSIFICATION

0000000

Start with data $\mathcal{X} = \{x^1, \dots, x^N\}$ and K starting 'means', $\{m_1, \ldots, m_K\}.$

Assignment: For each data point, x^n , set

 $\hat{k}_n = \arg\min_k d(x^n, m_k)$. Set $\rho_i^n = \delta_i^{\hat{k}_n}$ (Hard responsibility).

Update: Let $N_k = \sum_{n=1}^N \rho_k^n$ and

$$oldsymbol{m}_k^{new} = rac{\sum_{n=1}^N
ho_k^n oldsymbol{x}^{(n)}}{N_k}.$$

CLUSTERING AND CLASSIFICATION

0000000

K-MEANS ALGORITHM

Start with data $\mathcal{X} = \{x^1, \dots, x^N\}$ and K starting 'means', $\{m_1, \ldots, m_K\}.$

Assignment: For each data point, x^n , set

 $\hat{k}_n = \arg\min_k d(\mathbf{x}^n, \mathbf{m}_k)$. Set $\rho_i^n = \delta_i^{\hat{k}_n}$ (Hard responsibility).

Update: Let $N_k = \sum_{n=1}^N \rho_k^n$ and

$$oldsymbol{m}_k^{new} = rac{\sum_{n=1}^N
ho_k^n oldsymbol{x}^{(n)}}{N_k}.$$

K-MEANS ALGORITHM

Start with data $\mathcal{X} = \{x^1, \dots, x^N\}$ and K starting 'means', $\{m_1, \ldots, m_K\}.$

Assignment: For each data point, x^n , set

 $\hat{k}_n = \arg\min_k d(\mathbf{x}^n, \mathbf{m}_k)$. Set $\rho_i^n = \delta_i^{\hat{k}_n}$ (Hard responsibility).

Update: Let $N_k = \sum_{n=1}^N \rho_k^n$ and

$$oldsymbol{m}_k^{new} = rac{\sum_{n=1}^N
ho_k^n oldsymbol{x}^{(n)}}{N_k}.$$

CLUSTERING AND CLASSIFICATION

CLUSTERING AND CLASSIFICATION

CLUSTERING AND CLASSIFICATION

CLUSTERING AND CLASSIFICATION

CLUSTERING AND CLASSIFICATION

0000000

RESPONSIBLE SOFTMAX

CLUSTERING AND CLASSIFICATION

K-means Example

CLUSTERING AND CLASSIFICATION

CLUSTERING AND CLASSIFICATION

CLUSTERING AND CLASSIFICATION

CLUSTERING AND CLASSIFICATION

EM Algorithm on Gaussian Mixture

EM Algorithm on Gaussian Mixture

References

EM Algorithm on Non-Gaussian Data

EM Algorithm on Non-Gaussian Data

EM ALGORITHM ON NON-GAUSSIAN DATA

OVERVIEW

Clustering and Classification

Dynamic Responsibility

Responsible Softmax

Basic Experiments

Necessary items

CLUSTERING AND CLASSIFICATION

- ▶ Data $\{X, T\} = (x^n, t^n) \ n = 1, ..., N$
- ▶ Distributions $f_k(x, \theta_k)$ k = 1, ..., K
- Parameter matrix $F = (f_i(\boldsymbol{x}^j, \boldsymbol{\theta}_i))_i^j = (F_i^j)$
- \blacktriangleright Mixture probabilities $\pi_0 = (\pi_1, \dots, \pi_K) \in S_K$

$$S_K := \left\{ \{\pi_k\}_{k=1}^K : 0 \le \pi_k \le 1; \sum_{k=1}^K \pi_k = 1 \right\}.$$

RESPONSIBILITY REQUIREMENTS

Necessary items

CLUSTERING AND CLASSIFICATION

- ▶ Data $\{X, T\} = (x^n, t^n) \ n = 1, ..., N$
- ▶ Distributions $f_k(x, \theta_k)$ k = 1, ..., K
- Parameter matrix $F = (f_i(\boldsymbol{x}^j, \boldsymbol{\theta}_i))^j_{i} = (F_i^j)$
- ▶ Mixture probabilities $\pi_0 = (\pi_1, ..., \pi_K) \in S_K$

Definition (Probability Simplex)

$$S_K := \left\{ \{\pi_k\}_{k=1}^K : 0 \le \pi_k \le 1; \sum_{k=1}^K \pi_k = 1 \right\}.$$

CLUSTERING AND CLASSIFICATION

RESPONSIBLE SOFTMAX

$$P(t^{n} = k | \boldsymbol{x}^{n}, \boldsymbol{\Theta}) = \frac{P(\boldsymbol{x}^{n} | t^{n} = k, \boldsymbol{\Theta}) P(t^{n} = k | \boldsymbol{\Theta})}{P(\boldsymbol{x}^{n} | \boldsymbol{\Theta})}$$
$$= \frac{f_{k}(\boldsymbol{x}^{n}, \boldsymbol{\theta}_{k}) \pi_{k}}{\sum_{i} \pi_{i} f_{i}(\boldsymbol{x}^{n}, \boldsymbol{\theta}_{i})}$$

CLUSTERING AND CLASSIFICATION

Start with rational maps

$$r_i(\boldsymbol{\pi}) = \frac{1}{N} \sum_{n} \frac{\pi_i f_i(\boldsymbol{x}^n, \boldsymbol{\theta}_k)}{\sum_{k} \pi_k f_k(\boldsymbol{x}^n, \boldsymbol{\theta}_k)} \quad i = 1, \dots, K$$

$$R: S_K \to S_K: R(\pi_1, \pi_2, \dots, \pi_K) = (r_1(\pi), r_2(\pi), \dots, r_K(\pi)).$$
(2.1)

Start with rational maps

$$r_i(\boldsymbol{\pi}) = \frac{1}{N} \sum_{k} \frac{\pi_i f_i(\boldsymbol{x}^n, \boldsymbol{\theta}_k)}{\sum_{k} \pi_k f_k(\boldsymbol{x}^n, \boldsymbol{\theta}_k)} \ i = 1, \dots, K$$

Definition (Responsibility Map)

$$R: S_K \to S_K: R(\pi_1, \pi_2, \dots, \pi_K) = (r_1(\boldsymbol{\pi}), r_2(\boldsymbol{\pi}), \dots, r_K(\boldsymbol{\pi})).$$
 (2.1)

When necessary, write $R_F(\pi)$ to emphasize dependence on $K \times N$ parameter matrix F.

 $\triangleright \epsilon$ creates halt condition

 \triangleright at this point $\pi_{n-1} \approx \hat{\pi}$

RESPONSIBLE SOFTMAX

Dynamic Responsibility

Algorithm 1 Dynamic Responsibility Algorithm

```
Require: F a K \times N matrix
Require: \pi_0, \epsilon
  1: procedure Iteration(F, \pi_0, \epsilon)
  2:
            n \leftarrow 1, \boldsymbol{\pi}_n \leftarrow R_F(\boldsymbol{\pi}_0)
            orbit \leftarrow \{\pi_0, \pi_1\}
  3:
  4:
            while |\pi_n - \pi_{n-1}| > \epsilon |\pi_n| do
                   \boldsymbol{\pi}_{n+1} \leftarrow R_F(\boldsymbol{\pi}_n)
  5:
                  orbit \leftarrow \{\boldsymbol{\pi}_0, \dots, \boldsymbol{\pi}_{n+1}\}
  6:
  7:
                  n \leftarrow n + 1
            end while
  8:
            return orbit
  9:
10: end procedure
```

I YAPUNOV FUNCTION

For $\pi \in \mathbb{R}^K_+$ the positive orthant of \mathbb{R}^K , let

$$\ell_F(\boldsymbol{\pi}) = \frac{1}{N} \sum_{n=1}^{N} \log \left(\sum_{k=1}^{K} \pi_k F_k^n \right)$$

$$\ell_F(R_F(\boldsymbol{\pi})) \ge \ell_F(\boldsymbol{\pi})$$

I YAPUNOV FUNCTION

CLUSTERING AND CLASSIFICATION

For $\pi \in \mathbb{R}^K_+$ the positive orthant of \mathbb{R}^K , let

$$\ell_F(\boldsymbol{\pi}) = \frac{1}{N} \sum_{n=1}^{N} \log \left(\sum_{k=1}^{K} \pi_k F_k^n \right)$$

Lemma

 $-\ell_F(\pi)$ is a Lyapunov function for dynamic responsibility. In other words.

$$\ell_F(R_F(\boldsymbol{\pi})) \ge \ell_F(\boldsymbol{\pi})$$

With equality if and only if $R_F(\pi) = \pi$.

For $\pi \in \mathbb{R}^K_+$ the positive orthant of \mathbb{R}^K , let

$$\ell_F(\boldsymbol{\pi}) = \frac{1}{N} \sum_{n=1}^{N} \log \left(\sum_{k=1}^{K} \pi_k F_k^n \right)$$

RESPONSIBLE SOFTMAX

Lemma

 $-\ell_F(\pi)$ is a Lyapunov function for dynamic responsibility. In other words.

$$\ell_F(R_F(\boldsymbol{\pi})) \ge \ell_F(\boldsymbol{\pi})$$

With equality if and only if $R_F(\pi) = \pi$.

Note that if *F* has full rank, $-\ell_F$ is *strictly* convex.

Theorem (Convergence of dynamic responsibility)

If F has full rank, and $\pi_0 \in \operatorname{Int} S_K$ then the orbit $\pi^n = R_F^n(\pi_0)$ converges to $\hat{\pi}_F$, the unique maximizing fixed point of $\ell_F(\pi)$ on S_K . *Moreover,* $\hat{\pi}_F$ *depends differentiably on* F.

RESPONSIBLE SOFTMAX

If $F = (F_i^j)$ has linearly independent rows, the interior of S_K converges to one point.

In this case, convergence happens very quickly. (about 5 iterations)

RESPONSIBLE SOFTMAX

Clustering and Classification

Responsible Softmax

000000

CALCIII.ATE F

CLUSTERING AND CLASSIFICATION

If $F = e^{\mathbf{A}}$ for some $\mathbf{A} = (A_i^j)$ and $\mu_i = \ln(\pi_i)$, then

$$r_i(\pi) = \frac{1}{N} \sum_{n} \frac{\pi_i F_i^n}{\sum_{k} \pi_k F_k^n} = \frac{1}{N} \sum_{n} \frac{\exp(A_i^n + \mu_i)}{\sum_{k} \exp(A_k^n + \mu_k)}$$

$$\sigma_i(\mathbf{x}) = \frac{\exp(x_i)}{\sum_k \exp(x_k)}.$$

000000

CALCIII.ATE F

CLUSTERING AND CLASSIFICATION

If $F = e^{\mathbf{A}}$ for some $\mathbf{A} = (A_i^j)$ and $\mu_i = \ln(\pi_i)$, then

$$r_i(\pi) = \frac{1}{N} \sum_{n} \frac{\pi_i F_i^n}{\sum_{k} \pi_k F_k^n} = \frac{1}{N} \sum_{n} \frac{\exp(A_i^n + \mu_i)}{\sum_{k} \exp(A_k^n + \mu_k)}$$

The softmax function is given by the Gibbs Distribution

$$\sigma_i(\boldsymbol{x}) = \frac{\exp(x_i)}{\sum_k \exp(x_k)}.$$

000000

CALCIII.ATE F

CLUSTERING AND CLASSIFICATION

If $F = e^{\mathbf{A}}$ for some $\mathbf{A} = (A_i^j)$ and $\mu_i = \ln(\pi_i)$, then

$$r_i(\pi) = \frac{1}{N} \sum_{n} \frac{\pi_i F_i^n}{\sum_{k} \pi_k F_k^n} = \frac{1}{N} \sum_{n} \frac{\exp(A_i^n + \mu_i)}{\sum_{k} \exp(A_k^n + \mu_k)}$$

The softmax function is given by the Gibbs Distribution

$$\sigma_i(\boldsymbol{x}) = \frac{\exp(x_i)}{\sum_k \exp(x_k)}.$$

000000

CALCIII.ATE F

CLUSTERING AND CLASSIFICATION

If $F = e^{\mathbf{A}}$ for some $\mathbf{A} = (A_i^j)$ and $\mu_i = \ln(\pi_i)$, then

$$r_i(\pi) = \frac{1}{N} \sum_{n} \frac{\pi_i F_i^n}{\sum_{k} \pi_k F_k^n} = \frac{1}{N} \sum_{n} \frac{\exp(A_i^n + \mu_i)}{\sum_{k} \exp(A_k^n + \mu_k)}$$

The softmax function is given by the Gibbs Distribution

$$\sigma_i(\boldsymbol{x}) = \frac{\exp(x_i)}{\sum_k \exp(x_k)}.$$

This establishes a connection with modern neural networks.

NEURAL NETWORK OUTPUT

CLUSTERING AND CLASSIFICATION

Neural networks take in data, and output guesses of cluster assignments.

$$F = (F_i^j); \quad \pi^n = R_F^n(\pi_0); \quad \pi^n \to \hat{\pi} \text{ as } n \to \infty$$

$$Y(F, \hat{\pi}) = \left(\frac{\hat{\pi}_i F_i^j}{\sum_{k=1}^K \hat{\pi}_k F_k^j}\right)_{i=1,\dots,K}^{j=1,\dots,K}$$

The entry Y_i^j represents the probability that x^j comes from cluster i.

000000

NEURAL NETWORK OUTPUT

CLUSTERING AND CLASSIFICATION

Neural networks take in data, and output guesses of cluster assignments.

$$F = (F_i^j); \quad \boldsymbol{\pi}^n = R_F^n(\boldsymbol{\pi}_0); \quad \boldsymbol{\pi}^n \to \hat{\boldsymbol{\pi}} \text{ as } n \to \infty$$
$$Y(F, \hat{\boldsymbol{\pi}}) = \left(\frac{\hat{\pi}_i F_i^j}{\sum_{k=1}^K \hat{\pi}_k F_k^j}\right)_{i=1,\dots,K}^{j=1,\dots,K}$$

The entry Y_i^j represents the probability that x^j comes from cluster i.

For some F, it may be that $\hat{\pi}_F \in \partial S_K$. To prevent this, stop at some finite $n = C < \infty$ and use $Y(F, \pi^C)$ as the output. See Neal and Hinton (1998) for inspiration.

BASIC EXPERIMENTS

CLUSTERING AND CLASSIFICATION

000000

CLUSTERING AND CLASSIFICATION

$$L(\boldsymbol{Y}, \boldsymbol{T}) = -\sum_n \sum_k T_k^n \log(Y_k^n)$$

BACKPROPAGATION

The goal is to use gradient descent to learn parameters of the network.

Option 1: Automatic differentiation

Option 2: Direct calculation

$$D\hat{\boldsymbol{\pi}}_F = D_{\boldsymbol{\pi}}R \cdot D\hat{\boldsymbol{\pi}}_F + D_F R$$

$$D\hat{\boldsymbol{\pi}}_F = (I - D_{\boldsymbol{\pi}}R)^{-1} \cdot D_F R$$
(3.1)

In practice, equation (3.1) is too much. An approximation may be used instead.

The goal is to use gradient descent to learn parameters of the network.

Option 1: Automatic differentiation

Option 2: Direct calculation

$$D\hat{\boldsymbol{\pi}}_F = D_{\boldsymbol{\pi}}R \cdot D\hat{\boldsymbol{\pi}}_F + D_F R$$

$$D\hat{\boldsymbol{\pi}}_F = (I - D_{\boldsymbol{\pi}}R)^{-1} \cdot D_F R$$
(3.1)

RESPONSIBLE SOFTMAX

000000

In practice, equation (3.1) is too much. An approximation may be used instead. $(I - D_{\pi}R)^{-1} \approx I + DR + DR^2 + ... + DR^C$

Setting the Hyperparameter C

Let
$$a_n = d(\pi_{n+1}, \pi_n)$$
.

Figure: Plot of $\log(a_n)$ for several F. Each curve represents a different parameter matrix F.

OVERVIEW

Clustering and Classification

Basic Experiments

EXPERIMENTS WITH GMM

Figure: A sample of data generated from a GMM to test the responsibility softmax layer.

EXPERIMENTS WITH GMM

CLUSTERING AND CLASSIFICATION

Net	Classification layer	
Net #1	Softmax	
Net #2	Responsibility Softmax; $C = 1$	
Net #3	Responsibility Softmax; $C = 4$	
Net #4	Fixed Weight Softmax	

EXPERIMENTS WITH GMM

Net	Classification layer
Net #1	Softmax
Net #2	Responsibility Softmax; $C = 1$
Net #3	Responsibility Softmax; $C = 4$
Net #4	Responsibility Softmax; $C = 8$
Net #5	Responsibility Softmax; $C = 16$
Net #6	Fixed Weight Softmax

Non-Gaussian Data Set

Recall the performance of the EM algorithm on Crescent data

Non-Gaussian Data Set

CLUSTERING AND CLASSIFICATION

Figure: Classification regions for neural nets trained on crescent data. Hyperparametes are as in GMM example.

References

Non-Gaussian Data Set

CLUSTERING AND CLASSIFICATION

Net	Classification layer
Net #1	Softmax
Net #2	Responsibility Softmax $C = 1$
Net #3	Responsibility Softmax $C = 4$
Net #4	Fixed Weight Softmax

EXPERIMENTS WITH MNIST

CLUSTERING AND CLASSIFICATION

Conclusions

CLUSTERING AND CLASSIFICATION

We have shown that:

- ▶ **Dynamic responsibility** has nice convergence properties; converges to a MLE.
- ► The **responsibility softmax** layer uses dynamic responsibility and gives cluster responsibilities.
- Using a responsibility softmax layer gives better results when working with imbalanced data. It also works when we do not have distributions for the mixture populations.

Future work:

- ► Use responsibility softmax with other neural nets, LSTM, VAE, Deductron etc.
- ► Use responsibility softmax with nonparametric models (*e.g.* Gaussian processes).
- ▶ Obtain constructive bounds on convergence rates.
- ▶ Explore the relationship between hessian of ℓ_F and Fisher Information matrix.

Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Information science and statistics. Springer, 1st ed. 2006. corr. 2nd printing edition.

- Deisenroth, M. P., Faisal, A. A., and Ong, C. S. (2020). Mathematics for Machine Learning. Cambridge University Press.
- MacKay, D. J. C. (2002). Information Theory, Inference & Learning Algorithms. Cambridge University Press, New York, NY, USA.
- Neal, R. M. and Hinton, G. E. (1998). A View of the EM Algorithm that Justifies Incremental, Sparse, and other Variants, pages 355–368. Springer Netherlands, Dordrecht.

EM ALGORITHM FOR GMM

$$\mathcal{X} = \{\boldsymbol{x}^1, \boldsymbol{x}^2, \dots, \boldsymbol{x}^N\}$$

$$f_k(\boldsymbol{x}) \sim \mathcal{N}(\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k), \quad k = 1, \dots, K$$

$$p(t^n = k) = \pi_k, \quad \sum_{k} \pi_k = 1$$

EM ALGORITHM FOR GMM

1. Expectation step: Set

$$\rho_k^n = \frac{\pi_k f_k(\mathbf{x}^{(n)})}{\sum_{j=1}^K \pi_j f_j(\mathbf{x}^{(n)})}$$

2. **Maximization** step: Set

$$\begin{split} N_k &= \sum_{n=1}^N \rho_k^n, \quad \boldsymbol{\mu}_k^{new} = \frac{1}{N_k} \sum_{n=1}^N \rho_k^n \boldsymbol{x}^{(n)} \\ \pi_k^{new} &= \frac{N_k}{N}, \quad \boldsymbol{\Sigma}_k^{new} = \frac{1}{N_k} \sum_{n=1}^N \rho_k^n (\boldsymbol{x}^{(n)} - \boldsymbol{\mu}_k^{new}) (\boldsymbol{x}^{(n)} - \boldsymbol{\mu}_k^{new})^\intercal \end{split}$$

3. Repeat steps 1 and 2 until convergence. See Bishop (2006) for more details.

Lemma

The map $R_F(\pi)$ as defined in equation (2.1) satisfies

$$R_F(\boldsymbol{\pi}) = \left(\pi_i \cdot \frac{\partial \ell_F}{\partial \pi_i} \Big|_{\boldsymbol{\pi}}\right)_{1 \le i \le K}$$

$$\ell_F(R_F(\boldsymbol{\pi})) - \ell_F(\boldsymbol{\pi}) = \frac{1}{N} \sum_{n=1}^N \log \left\{ \frac{\sum_{i=1}^K \pi_i F_i^n \frac{\partial \ell}{\partial \pi_i}}{\sum_{k=1}^K \pi_k F_k^n} \right\}$$

$$\geq \sum_{n=1}^N \sum_{i=1}^K \frac{1}{N} \frac{\pi_i F_i^n}{\sum_{k=1}^K \pi_k f_{kn}} \log \left(\frac{\partial \ell}{\partial \pi_i} \right)$$

$$= \sum_{i=1}^K \sum_{n=1}^N \frac{1}{N} \frac{\pi_i F_i^n}{\sum_{k=1}^K \pi_k f_{kn}} \log \left(\frac{\partial \ell}{\partial \pi_i} \right)$$

$$= \sum_{i=1}^K r_i(\boldsymbol{\pi}) \log \left(\frac{r_i(\boldsymbol{\pi})}{\pi_i} \right) \geq 0$$

$$\ell_F(R_F(\pi)) - \ell_F(\pi) = \frac{1}{N} \sum_{n=1}^N \log \left\{ \frac{\sum_{i=1}^K \pi_i F_i^n \frac{\partial \ell}{\partial \pi_i}}{\sum_{k=1}^K \pi_k F_k^n} \right\}$$

$$\geq \sum_{n=1}^N \sum_{i=1}^K \frac{1}{N} \frac{\pi_i F_i^n}{\sum_{k=1}^K \pi_k f_{kn}} \log \left(\frac{\partial \ell}{\partial \pi_i} \right)$$

$$= \sum_{i=1}^K \sum_{n=1}^N \frac{1}{N} \frac{\pi_i F_i^n}{\sum_{k=1}^K \pi_k f_{kn}} \log \left(\frac{\partial \ell}{\partial \pi_i} \right)$$

$$= \sum_{i=1}^K r_i(\pi) \log \left(\frac{r_i(\pi)}{\pi_i} \right) \geq 0$$

PROOF OF LYAPUNOV LEMMA

$$\ell_F(R_F(\boldsymbol{\pi})) - \ell_F(\boldsymbol{\pi}) = \frac{1}{N} \sum_{n=1}^N \log \left\{ \frac{\sum_{i=1}^K \pi_i F_i^n \frac{\partial \ell}{\partial \pi_i}}{\sum_{k=1}^K \pi_k F_k^n} \right\}$$

$$\geq \sum_{n=1}^N \sum_{i=1}^K \frac{1}{N} \frac{\pi_i F_i^n}{\sum_{k=1}^K \pi_k f_{kn}} \log \left(\frac{\partial \ell}{\partial \pi_i} \right)$$

$$= \sum_{i=1}^K \sum_{n=1}^N \frac{1}{N} \frac{\pi_i F_i^n}{\sum_{k=1}^K \pi_k f_{kn}} \log \left(\frac{\partial \ell}{\partial \pi_i} \right)$$

$$= \sum_{i=1}^K r_i(\boldsymbol{\pi}) \log \left(\frac{r_i(\boldsymbol{\pi})}{\pi_i} \right) \geq 0$$

$$\ell_F(R_F(\pi)) - \ell_F(\pi) = \frac{1}{N} \sum_{n=1}^N \log \left\{ \frac{\sum_{i=1}^K \pi_i F_i^n \frac{\partial \ell}{\partial \pi_i}}{\sum_{k=1}^K \pi_k F_k^n} \right\}$$

$$\geq \sum_{n=1}^N \sum_{i=1}^K \frac{1}{N} \frac{\pi_i F_i^n}{\sum_{k=1}^K \pi_k f_{kn}} \log \left(\frac{\partial \ell}{\partial \pi_i} \right)$$

$$= \sum_{i=1}^K \sum_{n=1}^N \frac{1}{N} \frac{\pi_i F_i^n}{\sum_{k=1}^K \pi_k f_{kn}} \log \left(\frac{\partial \ell}{\partial \pi_i} \right)$$

$$= \sum_{i=1}^K r_i(\pi) \log \left(\frac{r_i(\pi)}{\pi_i} \right) \geq 0$$

30.253±.001	0.0	.027±.001	0.0	0.0
1.680±.000	0.0	0.0	0.0	0.0
.328±.004	0.0	32.206±.008	0.0	.706±.006
0.0	0.0	.033±.001	0.0	3.207±.001
0.0	0.0	.021±.001	0.0	31.539±.001

(a) Confusion table for GMM Net #1.

$30.165 \pm .004$.101±.004	.014±.001	0.0	0.0
1.616±.003	.063±.003	0.0	0.0	0.0
.398±.006	.114±.003	31.739±.010	.330±.008	.659 <u>±</u> .009
0.0	0.0	.031±.001	.333±.012	2.875±.012
0.0	0.0	.012 <u>±</u> .000	.082±.004	31.466±.004

(a) Confusion table for GMM Net #2.

29.897±.010	.374±.010	.009 <u>±</u> .001	.000±.001	0.0
1.273±.011	.406±.011	.001 <u>±</u> .001	0.0	0.0
.658±.016	.595 <u>±</u> .017	29.916±.036	1.329±.031	.743±.018
0.0	.000±.001	.013 <u>±</u> .001	1.221±.027	2.006±.027
0.0	0.0	0.0	.340±.009	31.220±.009

(a) Confusion table for GMM Net #3.

26.842±.035	3.438±.035	0.0	0.0	0.0
.044±.006	1.636±.006	0.0	0.0	0.0
.075±.003	1.841±.024	28.737±.037	2.540±.025	.047±.002
0.0	0.0	.027±.001	3.122±.004	.092±.004
0.0	0.0	0.0	2.463±.023	29.097±.023

(a) Confusion table for GMM Net #4.

GMM Net 1				
Class	Recall			
1	0.936	0.999		
2	0.000	0.000		
3	0.998	0.966		
4	0.000	0.000		
5	0.979	0.999		

(a) Precision and Recall table for GMM Net #1.

GMM Net 2				
Class	Recall			
1	0.935	0.997		
2	0.209	0.027		
3	0.998	0.953		
4	0.401	0.090		
5	0.898	0.997		

(a) Precision and Recall table for GMM Net #2.

GMM Net 3				
Class	Recall			
1	0.934	0.988		
2	0.279	0.194		
3	0.999	0.894		
4	0.385	0.364		
5	0.918	0.989		

(a) Precision and Recall table for GMM Net #3.

GMM Net 4				
Class Precision		Recall		
1	0.988	0.930		
2	0.289	0.882		
3	0.999	0.868		
4	0.380	0.969		
5	0.996	0.922		

(a) Precision and Recall table for GMM Net #4.