

4 ème Maths Les nombres complexes

Tous droits réservés

©www.takiacademy.com 73 832 000

Prof: Lahbib Ghaleb

18 août 2023

- Cours : Les nombres complexes
 - Définition
 - Vocabulaire
 - Conséquences
 - Propriétés
- Opérations sur les complexes
 - Calculs
- Conjugué
 - Définition
 - Conséquences
 - Propriétés
- Représentation géométrique
 - Définition
 - Remarques
 - Propriétés

- Colinéarité-Orthogonalité
- Module
 - Définition
 - Conséquences
 - Propriétés
- Forme trigonométrique
 - Argument d'un nombre complexe
 - Propriétés
 - Forme trigonométrique
 - Opérations
- Forme exponentielle
 - Définition
 - Conséquences
 - Propriétés
 - Formules d'Euler
 - Formule de Moivre

I) Les nombres complexes

Définition

Définition

Il existe un ensemble, noté \mathbb{C} , d'éléments appelés nombres complexes tels que :

- $\mathbb C$ contient l'ensemble $\mathbb R$ des réels ;
- \mathbb{C} contient un élément *i* tel que $i^2 = -1$;
- $\mathbb C$ est muni d'une addition et d'une multiplication qui suivent des règles de calcul analogues à celles dans l'ensemble $\mathbb R$;
- tout nombre complexe z s'écrit de manière unique sous la forme z = a + ib où a et b sont deux réels.
 Cette écriture est appelée la forme algébrique de z.

Vocabulaire

- On dit que le réel a est la partie réelle de z et on la note $a = \mathcal{R}e(z)$.
- On dit que b est la partie imaginaire de z et on la note $b = \mathcal{I}m(z)$.
- Tout nombre complexe de la forme z = bi
 (b réel) est appelé imaginaire pur.

Conséquences

- Dire que le nombre complexe z est réel équivaut à dire que $\mathcal{I}m(z)=0$.
- Dire que le nombre complexe z est imaginaire pur équivaut à dire que $\Re e(z) = 0$.

Propriétés

- a, b, a' et b' étant des réels.
 - Deux nombres complexes sont égaux si et seulement si ils ont même partie réelle et même partie imaginaire :

$$a + bi = a' + b'i \iff a = a' \text{ et } b = b'$$

En particulier :

$$a + bi = 0 \iff a = 0 \text{ et } b = 0$$

II) Opérations sur les complexes

Calculs

Grâce aux propriétés de l'ensemble \mathbb{C} , on calcule dans \mathbb{C} comme dans \mathbb{R} , en tenant compte de $i^2 = -1$.

Ainsi, en notant z = a + bi et z' = a' + b'i avec a, b, a' et b' sont des réels , on a :

somme :

$$z + z' = (a + bi) + (a' + b'i) = (a + a') + (b + b')i.$$

• produit:

$$zz' = (a + bi)(a' + b'i) = (aa' - bb') + (ab' + a'b)i.$$

 \bullet identités remarquables : elles restent valables dans $\mathbb{C},$ en particulier :

$$(a+bi)(a-bi)=a^2+b^2$$

• inverse : si $z \neq 0$, $\frac{1}{z} = \frac{1}{a + bi} = \frac{a - bi}{a^2 + b^2}$

- 1 Calculer: i^0 , i^1 , i^2 , i^3 et i^4 .
- 2 a) En déduire i^{4n} , i^{4n+1} , i^{4n+2} et i^{4n+3} pour $n \in \mathbb{N}$.
 - b) Calculer alors $i^{2020} + i^{2021} + i^{2022} + i^{2023}$.

Activité 2

1 Déterminer la forme algébrique de chacun des nombres complexes suivants :

$$z_1 = (3+2i)(1-5i)$$
. $z_2 = (1-i)^{10}$. $z_3 = \frac{5}{3+4i}$.

f 2 Résoudre dans $\Bbb C$, les équations :

a)
$$3z - 4i = 4iz + 3$$
.

b)
$$(z+2)^2+1=0$$
.

III) Conjugué

Définition

Définition

Le conjugué d'un nombre complexe z=a+bi ($a\in\mathbb{R}$ et $a\in\mathbb{R}$) est le nombre complexe a-bi. On le note \overline{z} .

Exemples:

Si
$$z = 2 + 6i$$
, alors $\overline{z} = 2 - 6i$;
si $z = 4$ alors $\overline{z} = 4$;
si $z = -2i$ alors $\overline{z} = 2i$.

Conséquences

Conséquence

Soit z=a+bi ($a\in\mathbb{R}$ et $b\in\mathbb{R}$) , alors :

$$z+\overline{z}=2a=2\mathcal{R}e(z)$$
 et $z-\overline{z}=2ib=2i\mathcal{I}m(z)$

Il en résulte que :

- " z est réel" équivaut à " $z = \overline{z}$ ".
- " z est imaginaire pur" équivaut à " $z = -\overline{z}$ ".

Propriétés

Propriétés

$$\overline{Z+Z'}=\overline{Z}+\overline{Z'}$$
.

$$\overline{ZZ'} = \overline{Z} \times \overline{Z'}$$
.

$$\overline{z^n} = \overline{z}^n$$
, pour tout naturel n .

$$\text{si } z' \neq 0 : \overline{\left(\frac{1}{z'}\right)} = \frac{1}{\overline{z'}} \ \text{ et } \overline{\left(\frac{z}{z'}\right)} = \frac{\overline{z}}{\overline{z'}}.$$

$$\overline{\overline{Z}} = Z$$

Soit $a \in \mathbb{C}$. On pose $Z = a^{2024} + (\overline{a})^{2024}$ et $Z' = \frac{a^{2024} - (\overline{a})^{2024}}{1 + a \cdot \overline{a}}$. Montrer que Z est réel et que Z' est imaginaire pur.

Activité 4

Soit
$$j = -\frac{1}{2} + \frac{\sqrt{3}}{2}i$$

- 1 Vérifier que $j^2 = \bar{j}$ puis calculer j^3 .
- 2 Soit $k \in \mathbb{N}$, calculer j^k selon les valeurs de k.
- 3 Vérifier que : $1 + j + j^2 = 0$.
- 4 Calculer la somme : $1 + j + j^2 + ... + j^{2024}$

Activité 5

Pour tout $z \in \mathbb{C}$, on pose $f(z) = z^2 - z + 2$.

Déterminer tous les nombres complexes z tels que $f(z) \in \mathbb{R}$

IV) Représentation géométrique d'un nombre complexe

Définition

Dans le plan muni d'un repère orthonormé direct $(O; \overrightarrow{u}, \overrightarrow{v})$:

- à tout complexe z = a + bi avec a et b réels, on associe le point M(a; b) et le vecteur $\overrightarrow{w} \begin{pmatrix} a \\ b \end{pmatrix}$ appelés point image et vecteur image de z.
- à tout point M(a; b) et à tout vecteur \vec{w} (a; b) on associe le nombre complexe z = a + bi, appelé affixe de M et affixe de \vec{w} .

Le plan est alors appelé plan complexe.

Remarques

- Le point image d'un réel appartient à l'axe des abscisses. Dans le plan complexe, l'axe des abscisses est appelé axe des réels.
- Le point image d'un imaginaire pur appartient à l'axe des ordonnées. Dans le plan complexe, l'axe des ordonnées est appelé axe des imaginaires.

3) Propriétés

Le plan complexe est muni d'un repère orthonormé direct $(O; \overrightarrow{u}, \overrightarrow{v})$. On considère les vecteurs \overrightarrow{w} et $\overrightarrow{w'}$ d'affixes respectives z et z', et le réel λ .

- $\overrightarrow{w} + \overrightarrow{w'}$ a pour affixe z + z'.
- $\lambda \stackrel{\rightarrow}{w}$ a pour affixe λz .

On considère les points A, B et C d'affixes respectives z_A, z_B et z_C . Alors :

- Le vecteur \overrightarrow{AB} a pour affixe $z_B z_A$.
- Le milieu / du segment [AB] a pour affixe :

$$z_I = \frac{z_A + z_B}{2}$$

• Le centre de gravité *G* du triangle *ABC* a pour affixe :

$$z_G = \frac{z_A + z_B + z_C}{3}$$

V) Colinéarité-Orthogonalité

Théorème

Soit \vec{w} et \vec{w}_1 deux vecteurs tels que \vec{w}_1 est non nul.

- Les vecteurs \vec{w} et \vec{w}_1 sont colinéaires, si et seulement si, $\frac{Z_{\vec{w}}}{Z_{\vec{w}_1}}$ est réel.
- Les vecteurs \vec{w} et \vec{w}_1 sont orthogonaux, si et seulement si, $\frac{Z_{\vec{w}}}{Z_{\vec{w}_1}}$ est imaginaire pur.

Pour tout point M d'affixe $z \neq -1 + 2i$ on associe le point

M' d'affixe (z') avec :
$$z' = \frac{z - 2 + i}{z + 1 - 2i}$$
.

- 1 Déterminer alors l'ensemble (E) des points M(z) lorsque z' est réel.
- 2 Déterminer alors l'ensemble (F) des points M(z) lorsque z' est imaginaire.

Le plan est muni d'un repère orthonormé direct $(O, \overrightarrow{u}, \overrightarrow{v})$.

On désigne par A et B les points d'affixes respectives -3i et 5-i.

Soit $\alpha \in \mathbb{R}$ et M le point d'affixe $z_M = 5\alpha + (2\alpha - 3)i$.

- 1 Montrer que pour tout réel α , les points A, B et M sont alignés.
- 2 Montrer que M est le milieu du segment [AB] si et seulement si $\alpha = \frac{1}{2}$.
- 3 Dans cette question on suppose que M est le milieu du segment [AB]. Montrer que les droites (OM) et (A'B') sont perpendiculaires.

Le plan est muni d'un repère orthonormé direct $(O, \overrightarrow{u}, \overrightarrow{v})$.

On désigne par A, B, C et D les points d'affixes respectives 6 + 2i, 2 - 2i et -2 - 6i et -8.

- 1 Montrer que les points A, B et C sont alignés.
- 2 Montrer que le triangle ACD est rectangle.
- 3 Déterminer l'affixe du point *E* pour que AEDC soit un rectangle.

Le plan est muni d'un repère orthonormé direct $(O, \overrightarrow{u}, \overrightarrow{v})$.

on considère les points A et B d'affixes respectives $a=5-i\sqrt{3}$ et $b=4+2i\sqrt{3}$. On note Q le milieu de [OB].

- 1 Déterminer l'affixe z_K du point K tel que ABQK soit un parallélogramme.
- Démontrer que $\frac{z_K a}{z_K}$ est un imaginaire pur. Que peut-on en déduire pour le triangle *OKA*?
 - Préciser la nature du quadrilatère OQAK
- 3 Soit C le point d'affixe $c = \frac{2a}{3}$.
 - Calculer $\frac{z_K b}{z_K c}$
 - Que peut-on en déduire pour les points B, C et K?

VI) Module d'un nombre complexe

Définition

Définition

Soit z = a + ib avec a et b sont deux réels.

On appelle module de z, le nombre réel positif, noté |z|, égal à $\sqrt{a^2+b^2}$.

Conséquences

Le plan complexe est muni d'un repère orthonormé direct $(O; \overrightarrow{u}, \overrightarrow{v})$.

Conséquences

• Soit *z* un nombre complexe et *M* son image dans le plan complexe.

Le **module** de z, est la distance OM : |z| = OM.

• Soit A et B deux points d'affixes respectives z_A et z_B .

La distance AB est $|z_B - z_A|$.

Propriétés

Propriétés

- Pour tout nombre complexe z, $z\overline{z} = a^2 + b^2 = |z|^2$
- Pour tout nombre complexe z, $|-z| = |\overline{z}| = |z|$

$$\bullet |zz'| = |z| |z'|$$

•
$$|z^n| = |z|^n$$

•
$$\left|\frac{1}{z}\right| = \frac{1}{|z|}; \ z \neq 0$$

$$\bullet \left| \frac{z}{z'} \right| = \frac{|z|}{|z'|}; \ z' \neq 0$$

Le plan est muni d'un repère orthonormé direct $(O, \overrightarrow{u}, \overrightarrow{v})$.

Déterminer les ensembles suivants :

$$(E_1) = \{M(z) \in P/|z - 3i| = |6i - 8|\}$$

 $(E_2) = \{M(z) \in P/|z - 3i| = |\bar{z} + 1 + i|\}$
 $(E_3) = \{M(z) \in P/|z - 3i| = |iz + 1|\}.$

Le plan est muni d'un repère orthonormé direct $(O, \overrightarrow{u}, \overrightarrow{v})$.

On considère les points A, B et C d'affixes respectives $z_A=2$, $z_B=1+i\sqrt{3}$ et $z_C=\overline{z_B}$.

- 1 Montrer que le quadrilatère OBAC est un losange.
- 2 Déterminer l'ensemble \mathcal{D} des points M d'affixe z tels que : |z| = |z 2|.
- 3 A tout point M(z) tel que $z \neq 2$, on associe le point M'(z') défini par $z' = \frac{-4}{z-2}$.
 - a) Prouver que pour tout $z \neq 2$, on a : $|z'-2| = \frac{2|z|}{|z-2|}$.
 - b) En déduire que si $M \in \mathcal{D}$ alors M' appartient à un cercle \mathcal{C} dont on précisera le centre et le rayon.

VII) Forme trigonométrique d'un nombre complexe

Argument d'un nombre complexe

Définition

Le plan complexe est muni d'un repère orthonormé direct $(O; \overrightarrow{u}, \overrightarrow{v})$.

Soit z un nombre complexe non nul et M son image dans le plan complexe.

On appelle **argument** de z, noté arg(z), toute mesure de l'angle orienté $(\stackrel{\rightarrow}{u}; \stackrel{\rightarrow}{OM})$:

$$arg(z) \equiv \left(\widehat{\overrightarrow{u}}; \widehat{OM}\right) [2\pi]$$

$$z=a+ib$$
 $r=|z|=\sqrt{a^2+b^2}$ $\operatorname{arg}(z)\equiv heta[2\pi]$ $a=r\cos heta$ $b=r\sin heta$

Exemples

$$arg(1+i)\equiv \frac{\pi}{4}[2\pi].$$

$$\arg(1-i)\equiv -\frac{\pi}{4}[2\pi].$$

$$arg(i) \equiv \frac{\pi}{2}[2\pi].$$

$$arg(-i) \equiv -\frac{\pi}{2}[2\pi].$$

$$arg(1) \equiv 0[2\pi].$$

$$arg(-1) \equiv \pi[2\pi].$$

Propriétés

Propriétés

Pour tout nombre complexe non nul z:

- ullet $\operatorname{arg}(-z) \equiv \operatorname{arg}(z) + \pi \quad [2\pi] ullet \operatorname{arg}(\overline{z}) \equiv -\operatorname{arg}(z) \quad (2\pi)$
- z est un réel, si et seulement si $arg(z) \equiv 0[\pi]$.
- z est un imaginaire pur, si et seulement si $arg(z) \equiv \frac{\pi}{2} [\pi]$.

Forme trigonométrique

Forme trigonométrique

 Tout nombre complexe non nul s'écrit sous la forme suivante, dite forme trigonométrique :

$$z = r(\cos \theta + i \sin \theta)$$
 avec $r = |z|$ et $\theta \equiv \arg(z)$ [2 π]

• Si la forme algébrique de z est z = a + bi, avec $z \neq 0$, alors sa forme trigonométrique est : $z = r(\cos \theta + i \sin \theta)$ avec $r = \sqrt{a^2 + b^2}$, et θ tel que

$$\cos \theta = \frac{a}{r} = \frac{a}{\sqrt{a^2 + b^2}}$$
 et $\sin \theta = \frac{b}{r} = \frac{b}{\sqrt{a^2 + b^2}}$.

Si la forme trigonométrique de z est

$$z = r(\cos \theta + i \sin \theta)$$
, alors sa forme algébrique est :

$$z = a + bi$$
 avec $a = r \cos \theta$ et $b = r \sin \theta$.

Exemples

•
$$z_1 = 1 - i$$
:
$$\begin{cases} |1 - i| = \sqrt{2} \\ \cos \theta = \frac{\sqrt{2}}{2} \\ \sin \theta = -\frac{\sqrt{2}}{2} \end{cases}$$

$$\Rightarrow r = \sqrt{2} \text{ et } \theta = -\frac{\pi}{4}$$

$$\Rightarrow 1 - i = \sqrt{2} \left[\cos \left(-\frac{\pi}{4} \right) + i \sin \left(-\frac{\pi}{4} \right) \right].$$
• $z_2 = \sqrt{3} + i$:
$$\begin{cases} \left| \sqrt{3} + i \right| = 2 \\ \cos \theta = \frac{\sqrt{3}}{2} \\ \sin \theta = \frac{1}{2} \end{cases}$$

$$\Rightarrow r = 2 \text{ et } \theta = \frac{\pi}{6}$$

$$\Rightarrow \sqrt{3} + i = 2 \left[\cos \left(\frac{\pi}{6} \right) + i \sin \left(\frac{\pi}{6} \right) \right].$$

Opérations

Opérations

On considère $z \neq 0$ et $z' \neq 0$.

Produit

Module :
$$|z \times z'| = |z| \times |z'|$$

Argument :
$$arg(zz') \equiv arg(z) + arg(z')$$
 (2 π)

Puissance

Module :
$$|z^n| = |z|^n$$
 Argument : $\arg(z^n) \equiv n \arg(z)$ (2 π)

Inverse

Module :
$$\left|\frac{1}{z}\right| = \frac{1}{|z|}$$
 Argument : $\arg(\frac{1}{z}) \equiv -\arg(z)$ (2 π)

Quotient

Module:
$$\left| \frac{z'}{z} \right| = \frac{|z'|}{|z|}$$

Argument:
$$\operatorname{arg}\left(\frac{Z'}{Z}\right) \equiv \operatorname{arg}(Z') - \operatorname{arg}(Z)$$
 (2 π)

Soit $z_1 = 1 - i$ et $z_2 = \sqrt{3} + i$.

Mettre sous forme trigonométrique : $z_1 \times z_2$; $z_1^4 \times z_2^3$ et $\frac{z_1}{z_2}$

Argument et angles orientés

Le plan complexe est muni d'un repère orthonormé direct $(O; \overrightarrow{u}, \overrightarrow{v})$.

• Soit A et B deux points distincts d'affixes respectives z_A et z_B .

$$\left(\overrightarrow{U},\overrightarrow{AB}\right)\equiv \arg\left(z_B-z_A\right)\left[2\pi\right]$$

• Soit A, B, C et D quatre points d'affixes respectives z_A , z_B , z_C et z_D tels que $A \neq B$ et $C \neq D$.

$$\left(\overrightarrow{AB},\overrightarrow{CD}\right) \equiv \arg\left(\frac{Z_D - Z_C}{Z_B - Z_A}\right) [2\pi]$$

Le plan complexe est muni d'un repère orthonormé direct $(O; \overrightarrow{u}, \overrightarrow{v})$.

- 1 Déterminer et construire l'ensemble des points M d'affixe z tels que $\arg(z-i)\equiv \frac{\pi}{3}[2\pi].$
- 2 Déterminer et construire l'ensemble des points M d'affixe z tels que $\arg\left(\frac{z-i}{z-1}\right)\equiv\frac{\pi}{2}[2\pi]$

Le plan complexe \mathcal{P} est muni d'un repère orthonormé direct $(O; \overrightarrow{u}, \overrightarrow{v})$. On considère les points A et B d'affixes respectives $a = \sqrt{3} + i$ et $b = -1 + i\sqrt{3}$.

- 1 Écrire a et b sous forme trigonométrique.
- 2 Montrer que OAB est un triangle rectangle et isocèle en O.
- 3 Soit *C* le point de \mathcal{P} d'affixe $c = (\sqrt{3} 1) + i(\sqrt{3} + 1)$.
 - a) Quelle est la nature du quadrilatère OACB? justifier .
 - b) Construire les points A, B et C dans le repère $(O, \overrightarrow{u}, \overrightarrow{v})$.
 - c) Vérifier que b = ia puis donner la forme trigonométrique de c.
 - d) En déduire la valeur exacte de sin $(\frac{5\pi}{12})$.

Le plan complexe \mathcal{P} est muni d'un repère orthonormé direct $(O; \overrightarrow{u}, \overrightarrow{v})$.

Soient
$$\alpha = 1 + i$$
 et $\beta = 1 - i$

- 1 Écrire chacun des nombres α et β sous forme trigonométrique.
- **2** Soit $n \in \mathbb{Z}$ et A et B les points d'affixes respectives β et α^n
 - a) Donner la forme trigonométrique de $u = \frac{\alpha^n}{\beta}$
 - b) En déduire les valeurs de *n* pour lesquelles les points O, *A* et B sont alignés.
 - c) Déterminer les valeurs de *n* pour lesquelles le triangle *OAB* soit rectangle en O .

VIII) Forme exponentielle

Définition

Définition

Le complexe de module 1 dont un argument est θ est noté $e^{i\theta}$ avec :

$$\mathbf{e}^{i\theta} = \cos\theta + i\sin\theta$$

Tout nombre complexe non nul de module r et d'argument θ s'écrit sous la forme suivante, dite notation exponentielle :

$$z = re^{i\theta}$$
 avec $r = |z|$ et $\theta = arg(z)$ (2π)

Conséquences

Conséquences

$$e^{i\pi} = -1$$
 ; $e^{i\frac{\pi}{2}} = i$; $e^{-i\frac{\pi}{2}} = -i$; $e^{i0} = 1$

Pour tout réel θ et pour tout entier k, $e^{i(\theta+2k\pi)}=e^{i\theta}$

Pour tout réel
$$heta, |e^{i heta}|=1$$
 ; $\overline{e^{i heta}}=-e^{i heta}$ et $e^{i(heta+\pi)}=-e^{i(heta)}$

Propriétés

Propriétés

Pour tout réels θ et θ' :

$$e^{-i\theta} = \cos\theta - i\sin\theta$$

$$e^{i\theta} \times e^{i\theta'} = e^{i(\theta+\theta')}$$
 $(e^{i\theta})^n = e^{in\theta}$

$$\mathbf{e}^{i heta} imes \mathbf{e}^{i heta'} = \mathbf{e}^{i(heta+ heta')} \qquad \qquad \left(\mathbf{e}^{i heta}
ight)^n = \mathbf{e}^{in heta} \ rac{\mathbf{e}^{i heta}}{\mathbf{e}^{i heta'}} = \mathbf{e}^{i(heta- heta')}$$

Mettre sous forme exponentielle :

$$-2e^{i\frac{\pi}{7}}$$
; $ie^{i\frac{\pi}{3}}$ et $(2\sqrt{3}-2i)e^{i\frac{\pi}{3}}$.

Formules d'Euler

Formules d'Euler

Formules d'Euler:

Pour tout réel
$$\theta$$
 on a :

Pour tout réel
$$\theta$$
 on a : $\cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2}$ et $\sin \theta = \frac{e^{i\theta} - e^{-i\theta}}{2i}$

$$\sin \theta = \frac{e^{i\theta} - e^{-i\theta}}{2i}$$

Application:

Mettre sous forme exponentielle :

$$1+e^{\frac{i2\pi}{5}}$$
 ; $-1+e^{i\frac{2\pi}{5}}$; $1+e^{i\frac{6\pi}{5}}$; $i+e^{i\frac{2\pi}{3}}$

2 Linéariser sin³ x

Formule de Moivre

Formule de Moivre

Formule de Moivre :

Soit $z = r(\cos \theta + i \sin \theta)$ et n un entier naturel. On a :

$$|z^n = r^n(\cos(n\theta) + i\sin(n\theta))|$$

Application:

Exprimer cos(3x) et sin(3x) en fonction de cos(x) et sin(x).

