Digital Signal Processing (Lecture Note 4)

Jin Ho Chang
Professor
Dept. of Electrical Engineering and Computer Science

EE401

Discrete Time Fourier Transform (DTFT)

EE401

Discrete Time Fourier Transform

- Similar to continuous time signals, discrete time sequences can also be periodic or non-periodic, resulting in discrete-time Fourier series or discrete – time Fourier transform, respectively.
 - Most signals in engineering applications are non-periodic → focusing on discrete-time Fourier transform (DTFT).
- Facts
 - The sum of x[n], weighted with continuous exponentials, is continuous \rightarrow the DTFT $X(\omega)$ is continuous (non-discrete)
 - Since $X(\omega)$ is continuous, x[n] is obtained as a continuous integral of $X(\omega)$.
 - X[n] is obtained as an integral of X(ω), where the integral is over an interval of 2π . \rightarrow This is the first clue that DTFT is periodic with 2π in frequency domain.

- Let x[n] be a discrete-time signal whose values can be real or complex.
- Definition

$$X(\theta) = F(x(n)) = \sum_{n = -\infty}^{\infty} x(n)e^{-j\theta n} \quad (\theta: \text{ Digital angular frequency})$$

$$X(\omega) = \int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt$$

if
$$t \to nT$$
 and $\theta = \omega T = \frac{\omega}{f_s}$, $X(\theta) = \sum_{n = -\infty}^{\infty} x(nT)e^{-jn\omega T} = \sum_{n = -\infty}^{\infty} x(n)e^{-jn\theta}$

- $-\theta$ is unitless
- $-X(\theta) = X(\theta + 2\pi)$: Periodic function with a period of 2π

DG/ST 대구경북과학기술원 Daegu Gyeongbuk Institute of Science & Technology • Implications of the periodicity property

$$X(\Theta) = X(\Theta + 2\pi)$$

What if the spectrum is also in discrete form?

• Inverse DT (Discrete-Time) Fourier transform

$$\begin{split} x(n) &= \frac{1}{2\pi} \int_{2\pi} X(\Theta) e^{j\Theta n} d\Theta \\ &\int_{\Theta_0}^{\Theta_0 + 2\pi} X(\Theta) e^{j\Theta m} d\Theta = \int_{\Theta_0}^{\Theta_0 + 2\pi} \sum_{n = -\infty}^{\infty} x(n) e^{-j\Theta(n - m)} d\Theta \\ &\Rightarrow \sum_{n = -\infty}^{\infty} x(n) \int_{\Theta_0}^{\Theta_0 + 2\pi} e^{-j\Theta(n - m)} d\Theta = \int_{\Theta_0}^{\Theta_0 + 2\pi} X(\Theta) e^{j\Theta m} d\Theta \\ &\left[\int_{\Theta_0}^{\Theta_0 + 2\pi} e^{-j\Theta(n - m)} d\Theta = \left\{ \begin{array}{ll} 2\pi, & n = m \\ 0, & n \neq m \end{array} \right] \right. \\ x(m) &= \frac{1}{2\pi} \int_{2\pi} X(\Theta) e^{j\Theta m} d\Theta \end{split}$$

Note:

$$\delta(n) \leftrightarrow 1 \Leftrightarrow x(n) = \frac{1}{2\pi} \int_{2\pi} e^{j\Theta n} d\Theta = \delta(n)$$

• DTFT Example 1: Sinc function

$$X(\theta) = \begin{cases} 1, & |\theta| \leq \theta_{c} \\ 0, & \theta_{c} < |\theta| \leq \pi \end{cases}$$

$$if \ \theta_{C} n = k\pi, x(n) = 0.$$

$$\therefore n = \frac{k\pi}{\theta_{C}}, k = 1,2,3 \dots$$

$$X(\theta) = \begin{cases} 1, & |\theta| \leq \theta_{c} \\ 0, & \theta_{c} < |\theta| \leq \pi \end{cases}$$

$$X(\theta) = \frac{k\pi}{\theta_{C}} = \frac{k\pi}{$$

$$x(n) = \frac{1}{2\pi} \int_{\theta_c}^{\theta_c} e^{j\Theta n} d\theta$$

$$= \frac{(e^{j2\theta_c n} - e^{-j2\theta_c n})}{2\pi j n}$$

$$= \frac{\sin \theta_c n}{n\pi}$$

: not absolute summable

$$if x(n) = 0,$$

$$\frac{\frac{d}{dn}(\sin(\theta_C n))}{\frac{d}{dn}(n\pi)} = \frac{\theta_C \cos(\theta_C n)}{\pi} \Big|_{n=0}$$

$$= \frac{\theta_C}{\pi}$$

- DTFT Example 2: Truncation
 - Gibbs phenomenon due to truncation.

$$X_{N}(\Theta) = \sum_{n=-N}^{N} \frac{\sin\Theta_{c}n}{\pi n} e^{-j\Theta n}$$

– FT of a sinc function exists, but the infinite series does not converge uniformly for all $\boldsymbol{\theta}$

DG/ST 대구경북과학기술원 Daegu Gyeongbuk Institute of Science & Technology

Properties of DTFT

- Bandwidth of DT signals
 - A DT signal is said to be band-limited if

$$X(\omega) = 0$$
 for all $|\omega| \ge \omega_c < \pi$

- Periodic, repeated spectrum
- Low-Pass signal.
 - √ Symmetric signal -> Real signal
- Multiplication by
 - a complex exponential
 - √ Shifted spectrum Unsymmetric spectrum
 - ✓ Complex signal
- Modulation

Figure 4.35 Illustration of the frequency-shifting property of the Fourier trans-

- Frequency Response of DT systems
 - LTI system and convolution sum

$$L[e^{j\Theta n}] = H(\Theta)e^{j\Theta n}$$

$$L[\delta(n)] = L\left\{\frac{1}{2\pi} \int_{-\infty}^{\infty} e^{j\Theta n} d\Theta\right\}$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} L[e^{j\Theta n}] d\Theta = \frac{1}{2\pi} \int_{-\infty}^{\infty} H(\Theta)e^{j\Theta n} d\Theta = h(n)$$

$$L[x(n)] = L\left[\sum_{k=-\infty}^{\infty} x(k)\delta(n-k)\right] = \sum_{k=-\infty}^{\infty} x(k)L[\delta(n-k)]$$

$$= \sum_{k=-\infty}^{\infty} x(k)h(n-k) : convolution sum$$

$$Y(\Theta) = H(\Theta)X(\Theta) \quad S_{yy}(\Theta) = |Y(\Theta)|^2 = |H(\Theta)|^2 S_{xx}(\Theta) = |H(\Theta)|^2 |X(\Theta)|^2$$

Sampling Theory (Chap. 4)

EE 401

Sampling of Continuous Signals

• In sampling, identical discrete-time signals may result from the sampling of more than one distinct continuous-time function. In fact, there exists an infinite number of continuous-time signals, which when sampled lead to the same discrete-time signal.

DG/S7 대구경북과학기술원
Dagu Gyeongbuk
Institute of Science & Technology

Shannon's Sampling Theorem

- A continuous time signal x(t) with frequencies no higher than $\omega_{\text{max}} = 2\pi f_{\text{max}}$ can be reconstructed exactly, precisely and uniquely from its samples x[n]=x(nT_s), if the samples are taken at a sampling rate (frequency) of fs=1/Ts or $(\omega_{\text{max}} = 2\pi/\text{Ts})$ that is greater than $2f_{\text{max}}$.
- The frequency $\omega_s/2$ (or f_s/x or f_{max}) is called the Nyquist frequency (or folding frequency), as it determines the minimum sampling frequency required.
- The minimum required sampling frequency is called the Nyquist rate.
- In other words, if a continuous time signal is sampled at a rate that is at least twice as high (or higher) as the highest frequency in the signal, then it can be uniquely reconstructed from its samples
- Aliasing can be avoided if a signal is sampled at or above the Nyquist rate.

13

Ideal Sampling

Ideal sampling signal: impulse train (an analog signal)

$$s(t) = \sum_{n=-\infty}^{\infty} \delta(t - nT)$$
, T: sampling period

Analog (continuous-time) signal: $X_c(t)$

Sampled (continuous-time) signal: $x_s(t)$

$$x_s(t) = x_c(t)s(t) = x_c(t) \sum_{n = -\infty}^{\infty} \delta(t - nT)$$
$$= \sum_{n = -\infty}^{\infty} x_c(t)\delta(t - nT) = \sum_{n = -\infty}^{\infty} x_c(nT)\delta(t - nT)$$

 $x_{c}(t)$ $x_{c}(t)$

(a)

지국 (CT 대구경북과학기술원 Daegu Gyeongbuk

14

- $x_s(t)$ is, formally, a continuous-time signal, since it is defined for all t.
 - It is clear that the information it conveys about x(t) is limited to the values x(nT), since $x_s(t)$ is identically zero at all other points.
- Two different ways to look at the sampled signal:
 - To consider it as a sequence of numbers x[n]=x(nT), or as a discrete-time signal.

 \checkmark x[n] is referred to as **point sampling** of x(t).

 \checkmark x_s(t) is referred to **as impulse sampling** of x(t).

Impulse sampling of x(t)

Point sampling of x(t)

Impulse sampling is convenient for mathematical derivations, since known results from continuous-time signal analysis can be used.

15

In the text book,

 $X(j\Omega) \equiv X(\omega)$

• Fourier Transform of Impulse Sampled Signal

$$X_p(\omega) = \int_{-\infty}^{\infty} x_p(t) e^{-j\omega t} dt$$

- 1st Relationship

$$X_{p}(\omega) = \int_{-\infty}^{\infty} x_{p}(t) e^{-j\omega t} dt = \int_{-\infty}^{\infty} \left[\sum_{n=-\infty}^{\infty} x(nT) \delta(t-nT) \right] e^{-j\omega t} dt$$
$$= \sum_{n=-\infty}^{\infty} x(nT) \int_{-\infty}^{\infty} \delta(t-nT) e^{-j\omega t} dt = \sum_{n=-\infty}^{\infty} x(nT) e^{-jn\omega T}$$

- 2nd Relationship

$$\begin{split} X_{p}(\omega) &= \frac{1}{2\pi} P_{T}(\omega) * X^{F}(\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X^{F}(\lambda) \left[\frac{2\pi}{T} \sum_{k=-\infty}^{\infty} \delta(\omega - \lambda - \frac{2\pi k}{T}) \right] d\lambda \\ &= \frac{1}{T} \sum_{k=-\infty}^{\infty} X^{F}(\omega - \frac{2\pi k}{T}) \end{split}$$

– From 1^{st} and 2^{nd} Relationships

$$X_{p}(\omega) = \int_{-\infty}^{\infty} x_{p}(t) e^{-j\omega t} dt = \sum_{n=-\infty}^{\infty} x(nT) e^{-jn\omega T} = \frac{1}{T} \sum_{n=-\infty}^{\infty} X(\omega - \frac{2\pi n}{T})$$

고당/ST 대구경북과학기술원 Daegu Gyeongbuk Institute of Science Affectanology

- Analog Frequency vs. Digital Frequency
 - $-\Theta = 2\pi f$ where $f = f/f_s$: normalized frequency
 - $\quad \Theta = n \cdot 2\pi \text{ means } 2\pi f/f_s = n \cdot 2\pi \Rightarrow \frac{f}{f_s} = n$

고 다 기술원 Daegu Gyeongbuk Institute of Science & Technology

 Condition under which the replicas (repeated spectra) do not overlap

17

• x(t) must be band limited, that is,

$$X(\omega) = 0$$
 for $|\omega| \ge \omega_m$
 $f_s \ge 2 \cdot f_m$ or ω_m/π

- Bandwidth of $\mathbf{x}(\mathbf{t})$: ω_m or f_m
- Nyquist rate (= twice the highest frequency) : $2f_m$
- Aliasing: The phenomenon that happens when

$$X(\Theta) = X(\omega T) = \frac{1}{T}X(\omega)$$
 not hold.

$$\frac{1}{T}X(\omega) = \frac{1}{T} \sum_{n=-\infty}^{\infty} X\left(\omega - \frac{2\pi n}{T}\right) \bigg|_{n=0}$$

The replicas overlap and $f_{\rm s} \geq 2 \cdot f_{\rm m}$ not hold either.

We can never reconstruct $X(\omega)$ or x(t) from $X(\theta)$ or x(nT)

DGが 대구경북과학기술원 Daegu Gyeongbuk Institute of Science & Technology

- Sampling Theorem
 - A band limited CT signal, with highest frequency B Hz, can be uniquely recovered from its samples if the sampling rate satisfies

$$f_{\rm s} \geq f_{Nyquist} = 2B$$

- Frequency Aliasing

교명/ST 대구경북과학기술원 Daegu Gyeongbuk Petitura of Science & Technology

- Common sampling rule
 - Practical sampling rate to achieve a necessary bandgap.

$$f_{\rm s} \geq 2 \cdot f_{\rm m} + \delta$$
 where $\delta \geq 0$
 $\delta \geq 0.1 \cdot (2 \cdot f_{\rm m})$

- Anti-aliasing filter is commonly used in front of ADC.

고G/SF 대구경북과학기술원 Dagu Gyeongbuk

Example

$$x_c(t) = \cos(4000\pi t)$$
 Sampling period: $T = 1/6000$

We obtain
$$x[n] = x_c(nT) = \cos(4000\pi T n) = \cos(\omega_0 n)$$
. $\omega_0 = 4000\pi T = 2\pi/3$. $\Omega_s = 2\pi/T = 12000\pi$ The highest frequency of the signal: $\Omega_0 = 4000\pi$

The Fourier transform of $x_c(t)$ $X_c(j\Omega) = \pi \delta(\Omega - 4000\pi) + \pi \delta(\Omega + 4000\pi)$.

$$\Omega_0 = 4000\pi$$
 $\implies \omega_0 = 4000\pi T = 2\pi/3$

Shannon's Reconstruction Theorem

• A band-limited signal x(t) whose bandwidth is smaller than $\pm\pi/T$ can be exactly reconstructed from its samples $\{x(nT), -\infty < n < \infty\}$, using the formula

$$x(t) = \sum_{n=-\infty}^{\infty} x(nT) \sin c \left(\frac{t-nT}{T}\right)$$

- This equation has a great theoretical importance, but a limited practical utility, because it requires to interpolate an infinite number of samples, which means that the observation interval must be of infinite length.

Ideal Reconstruction

Ideal lowpass (bandpass) filter

 $|H_r(j\Omega)|$

Ideal low-pass reconstruction filter:

$$H_r(j\Omega) = \begin{cases} T & -\pi/T < \Omega \le \pi/T \\ 0 & otherwise \end{cases} \qquad h_r(t) = \frac{\sin(\pi t/T)}{(\pi t/T)}$$

$$h_r(t) = \frac{\sin(\pi t/T)}{(\pi t/T)}$$

$$x_c(t) \rightarrow sampling \rightarrow x_s(t) = \sum x(nT)\delta(t-nT) \rightarrow seq.-convr. \rightarrow x[n]$$

$$x[n] \rightarrow impulse - convr. \rightarrow x_s(t) = \sum x[n] \delta(t - nT) \rightarrow recon. \rightarrow x_r(t)$$

$$x_r(t) = x_s(t) * h_r(t) = \int_{-\infty}^{\infty} \left\{ \sum_{n=-\infty}^{\infty} x[n] \mathcal{S}(\lambda - nT) h_r(t - \lambda) \right\} d\lambda$$

$$=\sum_{n=-\infty}^{\infty}\left\{x[n]\int_{-\infty}^{\infty}\delta(\lambda-nT)h_r(t-\lambda)d\lambda\right\}=\sum_{n=-\infty}^{\infty}x[n]h_r(t-nT)$$

$$\begin{split} X_r(j\Omega) &= \sum_{n=-\infty}^{\infty} x[n] H_r(j\Omega) e^{-j\Omega T n} = H_r(j\Omega) \{ \sum_{n=-\infty}^{\infty} x[n] e^{-j\Omega T n} \} \\ &= H_r(j\Omega) X(e^{jw}) \Big|_{w=\Omega T} = H_r(j\Omega) X(e^{j\Omega T}) = H_r(j\Omega) X(j\Omega) \end{split}$$

Note that x_s (t) is an analog signal (impulses).

- Practical approach: With a real DAC
 - Note that $x_j(t) = \sum_{n=-\infty}^{\infty} x(t)\delta(t-nT)$ can't exist in reality. Zero-order Hold (ZOH) using DAC (Digital-to-Analog Converter)

$$h_{\mathit{opt}}(\mathit{t}) = \mathit{rect}(\frac{-t - T/2}{T}) \longleftrightarrow H_{\mathit{zoh}}(\omega) = T \cdot \sin c(\frac{-\omega T}{2\pi}) e^{-\mathit{j} 0.5\omega T}$$

Note: Can you exactly describe the frequency spectrum of the DAC output?

- Practical approach: With a real DAC
 - Amplitude equalizer

Changing Sampling Rate

■ Discrete-time signal x[n] is obtained by extracting the information from a continuous-time signal $x_c(t)$ every T seconds:

Figure 4.1 Block diagram representation of an ideal continuous-to-discrete-time (C/D) converter.

■ Often necessary to change the sampling rate of a discrete-time signal, such that

$$x'[n] = x_c(nT')$$
 where $T \neq T'$

- Approach 1:
 - Reconstruct x_c(t) from x[n], then resample x_c(t) with period T' to obtain x[n]
 Problems in practice due to non-ideal analog reconstruction filters, ADC and DAC
- Approach 2:
 - Changing the sampling rate using only discrete-time operations

지 대구경북과학기술원 Daegu Gyeongbuk

27

Sampling Rate Reduction (Decimation)

Graphical Interpretation

Examples

Each of the following parts lists an input signal x[n] and the upsampling and downsampling rates L and M for the system in Figure 4.28. Determine the corresponding output $\tilde{x}_d[n]$.

a)
$$x[n] = \sin(2\pi n/3)/\pi n$$
, $L = 4$, $M = 3$

In the frequency domain,

$$X(e^{j\omega}) = \begin{cases} 1, & |\omega| < 2\pi/3 \\ 0, & 2\pi/3 < |\omega| < \pi \end{cases}$$

After the sampling rate change,

which leads to

$$x[n] = \frac{4}{3} \frac{\sin(\pi n/2)}{\pi n}$$

b)
$$x[n] = \sin(3\pi n/4), L = 3, M = 5$$

Ans) Upsampling by 3 and low-pass filtering $x[n]=\sin(3\pi n/4)$ results in $\sin(\pi n/4)$. Downsampling by 5 gives us $\widetilde{x_d}[n]=\sin(5\pi n/4)$

35

Multirate Signal Processing

· Interchange of Filtering and Downsampling

$$\begin{array}{c|c}
\hline
x[n] & \downarrow M \\
\hline
x_a[n] & H(z) \\
\hline
y[n] \\
\hline
(a)
\end{array}$$

$$\begin{array}{c|c}
\hline
x[n] & H(z^M) \\
\hline
x_b[n] & \downarrow M \\
\hline
y[n] \\
(b)
\end{array}$$

$$H(e^{j(\omega-2\pi i)}) = H(e^{j\omega}).$$

 $X_b(e^{j\omega}) = H(e^{j\omega M})X(e^{j\omega}),$

$$Y(e^{j\omega}) = \frac{1}{M} \sum_{i=0}^{M-1} X_b(e^{j(\omega/M - 2\pi i/M)}).$$

$$Y(e^{j\omega}) = \frac{1}{M} \sum_{i=0}^{M-1} X(e^{j(\omega/M - 2\pi i/M)}) H(e^{j(\omega - 2\pi i)}).$$

$$Y(e^{j\omega}) = H(e^{j\omega}) \frac{1}{M} \sum_{i=0}^{M-1} X(e^{j(\omega/M - 2\pi i/M)})$$

= $H(e^{j\omega}) X_a(e^{j\omega})$.

31

Multirate Signal Processing

· Interchange of Filtering and Upsampling

ADC – Anti-Aliasing Filter Implementation Pre-filtering required before ADC to avoid aliasing Discrete-time system $H_{\rm aa}(j\Omega)$ $X_{\alpha}(j\Omega)$ Requires sharp-cutoff analog antialiasing filters. Such filters: Are difficult to implement Are expensive Typically have non-linear phase response $T = \pi/(M\Omega_N)$ Alternative approach: Use simple analog anti-aliasing filter Sample at higher rate than $2\Omega_N$ eg at $2M\Omega_N$ Implement sharp cutoff DT filter Decimate filtered signal by factor of M $T = \frac{1}{M} \left(\frac{\pi}{\Omega_N} \right)$

Quantization

- So far, we have mainly talked about discrete-time systems
 - the sampled signals are represented by real numbers
- In practice, we represent these samples as digital numbers
 - sequences of 0's and 1's
- Discrete-time to digital mapping performed via quantization and encoding

- Many-to-one mapping
- Linear quantization Fixed step size ∆
- Non-linear quantization Variable step size
- Encoder converts discrete voltages at quantizer output into binary representations

$$x_0(t) = h_0(t) * \sum_{n = -\infty} x_a(nT)\delta(t - nT)$$

$$h_0(t) = \begin{cases} 1, & 0 < t < T, \\ 0, & \text{otherwise.} \end{cases}$$

고당하다 대구경북과학기술원 Degu Gyeongbuk

39

- Uniform Quantization
 - Quantization levels are equally spaced.
 - Called uniform quantization or PCM (pulse code modulation)

Illustration of linear quantization

고당하다 대구경북과학기술원 Deept Verential Parties No. 1997년 199

Non-uniform Quantization

- Non-uniform Quantization
 - Companding: closer quantization levels for smaller signal value

Illustration of non-linear quantization

Quantization Error (revisitation)

41

- The number of bits used for conversion sets a lower limit on the resolution, and also determines the quantization error that can be thought of as a noise process added to the signal.
- 8-Bit vs. 12-Bit ADC
 - -12-Bit ADC has less quantization error than 8-Bit ADC

DG/ST 대구경북과학기술원 Dasgu Gwacowa

Quantization Considerations

- Sample size is the number of bits per sample. Selection of sample size determines:
 - Number of quantization levels
 - For sample size B, there are $L=2^B$ quantization levels
 - Signal-to-quantization-noise-ratio (SQNR)
- The more bits:
 - the more accurate the sample
 - the higher the SQNR
 - the more storage space required
- Typically examples
 - 8 bits for speech, image and video, 16 bits for audio signals
- Let x_{max} and $-x_{\text{max}}$ denote the max and min quantization levels respectively. The quantization step size is then

$$\Delta = \frac{2x_{\text{max}}}{L} = \frac{x_{\text{max}}}{2^{B-1}}$$

43

Signal-to-Quantization-Noise Ratio (SQNR)

- Quantization error is the difference between the actual analog value at a sample time and the selected quantization level
- Limited to the range between+ $\Delta/2$ and $\Delta/2$
- The SQNR is an important measure of the distortion induced by the quantization process
- When the input signal is sine wave, it is assumed that the quantization error uniformly distributed when ∆ is small, the SQNR is approximated as

$$SQNR \approx 6.02 B + 1.76 (dB)$$

B: sample size, typically 8 or 16 bits

- · Larger SQNR, better quality
- 16-bit quantization : SQNR = 98.1 dB
- 15-bit quantization: SQNR= 92.1 dB.
- Each additional bit reduces the quantization error by about 6 dB

直接が 대구경북과학기술원 Degy Gyeongbuk Institute of Science & Technology

44