Rank-74248 over GF(8)

January 15, 2021

The equation

The equation of the surface is:

$$X_0^3 + X_2^3 + X_1^2 X_3 + X_0 X_3^2 + X_0 X_1 X_2 = 0$$

(1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0) The point rank of the equation over ${\rm GF}(8)$ is 1361351310

General information

Number of lines	3
Number of points	65
Number of singular points	1
Number of Eckardt points	0
Number of double points	3
Number of single points	21
Number of points off lines	41
Number of Hesse planes	0
Number of axes	0
Type of points on lines	9^{3}
Type of lines on points	$2^3, 1^{21}, 0^{41}$

Singular Points

The surface has 1 singular points:

$$0: P_{75} = \mathbf{P}(1,0,0,1) = \mathbf{P}(1,0,0,1)$$

The 3 Lines

The lines and their Pluecker coordinates are:

$$\ell_0 = \begin{bmatrix} 1 & 0 & \gamma^4 & \gamma^4 \\ 0 & 1 & \gamma^3 & \gamma^2 \end{bmatrix}_{4636} = \begin{bmatrix} 1 & 0 & 7 & 7 \\ 0 & 1 & 5 & 4 \end{bmatrix}_{4636} = \mathbf{Pl}(1, 1, 1, 1, 3, 1)_{2435}$$

$$\ell_1 = \begin{bmatrix} 1 & 0 & \gamma & \gamma \\ 0 & 1 & \gamma^6 & \gamma^4 \end{bmatrix}_{1376} = \begin{bmatrix} 1 & 0 & 2 & 2 \\ 0 & 1 & 6 & 7 \end{bmatrix}_{1376} = \mathbf{Pl}(1, 1, 1, 1, 5, 1)_{3457}$$

$$\ell_2 = \begin{bmatrix} 1 & 0 & \gamma^2 & \gamma^2 \\ 0 & 1 & \gamma^5 & \gamma \end{bmatrix}_{2647} = \begin{bmatrix} 1 & 0 & 4 & 4 \\ 0 & 1 & 3 & 2 \end{bmatrix}_{2647} = \mathbf{Pl}(1, 1, 1, 1, 6, 1)_{3982}$$

Rank of lines: (4636, 1376, 2647)

Rank of points on Klein quadric: (2435, 3457, 3982)

Eckardt Points

The surface has 0 Eckardt points:

Double Points

The surface has 3 Double points: The double points on the surface are:

$$P_{571} = (2, 6, 7, 1) = \ell_0 \cap \ell_1$$

$$P_{376} = (7, 5, 4, 1) = \ell_0 \cap \ell_2$$

 $P_{229} = (4, 3, 2, 1) = \ell_1 \cap \ell_2$

Single Points

The surface has 21 single points: The single points on the surface are:

$0: P_{22} = (3, 1, 1, 0)$ lies on line ℓ_0	
1: $P_{24} = (5, 1, 1, 0)$ lies on line ℓ_1	
$2: P_{25} = (6, 1, 1, 0)$ lies on line ℓ_2	
$3: P_{85} = (3,1,0,1)$ lies on line ℓ_1	
4: $P_{87} = (5, 1, 0, 1)$ lies on line ℓ_2	
$5: P_{88} = (6, 1, 0, 1)$ lies on line ℓ_0	
6: $P_{141} = (3,0,1,1)$ lies on line ℓ_2	
7: $P_{143} = (5,0,1,1)$ lies on line ℓ_0	
8: $P_{144} = (6,0,1,1)$ lies on line ℓ_1	
9: $P_{225} = (0, 3, 2, 1)$ lies on line ℓ_0	
10: $P_{282} = (1, 2, 3, 1)$ lies on line ℓ_1	

11: $P_{283} = (2, 2, 3, 1)$ lies on line ℓ_2 12: $P_{284} = (3, 2, 3, 1)$ lies on line ℓ_0 13: $P_{369} = (0, 5, 4, 1)$ lies on line ℓ_1 14: $P_{426} = (1, 4, 5, 1)$ lies on line ℓ_2 15: $P_{429} = (4, 4, 5, 1)$ lies on line ℓ_0

16: $P_{430} = (5, 4, 5, 1)$ lies on line ℓ_1 17: $P_{514} = (1, 7, 6, 1)$ lies on line ℓ_0 18: $P_{519} = (6, 7, 6, 1)$ lies on line ℓ_2

19: $P_{520} = (7,7,6,1)$ lies on line ℓ_1 20: $P_{569} = (0,6,7,1)$ lies on line ℓ_2

The single points on the surface are:

Points on surface but on no line

The surface has 41 points not on any line: The points on the surface but not on lines are:

 $\begin{array}{lll} 0: \ P_1 = (0,1,0,0) & 5: \ P_{74} = (7,7,1,0) \\ 1: \ P_3 = (0,0,0,1) & 6: \ P_{75} = (1,0,0,1) \\ 2: \ P_{12} = (1,0,1,0) & 7: \ P_{97} = (7,2,0,1) \\ 3: \ P_{29} = (2,2,1,0) & 8: \ P_{108} = (2,4,0,1) \\ 4: \ P_{47} = (4,4,1,0) & 9: \ P_{134} = (4,7,0,1) \end{array}$

10: $P_{146} = (0, 1, 1, 1)$ $26: P_{407} = (6, 1, 5, 1)$ 11: $P_{164} = (3, 3, 1, 1)$ $27: P_{408} = (7, 1, 5, 1)$ $12: P_{182} = (5, 5, 1, 1)$ 28: $P_{409} = (0, 2, 5, 1)$ 13: $P_{191} = (6, 6, 1, 1)$ 29: $P_{414} = (5, 2, 5, 1)$ 14: $P_{253} = (4, 6, 2, 1)$ $30: P_{439} = (6, 5, 5, 1)$ $31: P_{453} = (4,7,5,1)$ 15: $P_{269} = (4, 0, 3, 1)$ 16: $P_{274} = (1, 1, 3, 1)$ $32: P_{459} = (2,0,6,1)$ 17: $P_{277} = (4, 1, 3, 1)$ $33: P_{466} = (1, 1, 6, 1)$ 18: $P_{278} = (5, 1, 3, 1)$ $34: P_{467} = (2, 1, 6, 1)$ $35: P_{468} = (3, 1, 6, 1)$ 19: $P_{294} = (5, 3, 3, 1)$ $20: P_{299} = (2,4,3,1)$ $36: P_{480} = (7, 2, 6, 1)$ $37: P_{489} = (0, 4, 6, 1)$ $21: P_{321} = (0,7,3,1)$ $22: P_{324} = (3,7,3,1)$ $38: P_{495} = (6, 4, 6, 1)$ $23: P_{360} = (7, 3, 4, 1)$ $39: P_{508} = (3, 6, 6, 1)$ $24: P_{400} = (7, 0, 5, 1)$ $40: P_{563} = (2, 5, 7, 1)$ $25: P_{402} = (1, 1, 5, 1)$

Line Intersection Graph

 $\begin{array}{c|c}
 & 0 & 1 & 2 \\
\hline
0 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
2 & 1 & 1 & 0
\end{array}$

Neighbor sets in the line intersection graph:

Line 0 intersects

Line	ℓ_1	ℓ_2
in point	P_{571}	P_{376}

Line 1 intersects

Line	ℓ_0	ℓ_2
in point	P_{571}	P_{229}

Line 2 intersects

Line	ℓ_0	ℓ_1
in point	P_{376}	P_{229}

The surface has 65 points:

The points on the surface are:

$0: P_1 = (0, 1, 0, 0)$	$16: P_{141} = (3, 0, 1, 1)$	$32: P_{284} = (3, 2, 3, 1)$
$1: P_3 = (0,0,0,1)$	$17: P_{143} = (5, 0, 1, 1)$	$33: P_{294} = (5,3,3,1)$
$2: P_{12} = (1, 0, 1, 0)$	18: $P_{144} = (6, 0, 1, 1)$	$34: P_{299} = (2,4,3,1)$
$3: P_{22} = (3, 1, 1, 0)$	$19: P_{146} = (0, 1, 1, 1)$	$35: P_{321} = (0,7,3,1)$
$4: P_{24} = (5, 1, 1, 0)$	$20: P_{164} = (3, 3, 1, 1)$	$36: P_{324} = (3,7,3,1)$
$5: P_{25} = (6, 1, 1, 0)$	$21: P_{182} = (5, 5, 1, 1)$	$37: P_{360} = (7, 3, 4, 1)$
$6: P_{29} = (2, 2, 1, 0)$	$22: P_{191} = (6, 6, 1, 1)$	$38: P_{369} = (0, 5, 4, 1)$
$7: P_{47} = (4, 4, 1, 0)$	$23: P_{225} = (0, 3, 2, 1)$	$39: P_{376} = (7, 5, 4, 1)$
$8: P_{74} = (7, 7, 1, 0)$	$24: P_{229} = (4,3,2,1)$	$40: P_{400} = (7, 0, 5, 1)$
$9: P_{75} = (1,0,0,1)$	$25: P_{253} = (4, 6, 2, 1)$	$41: P_{402} = (1, 1, 5, 1)$
$10: P_{85} = (3, 1, 0, 1)$	$26: P_{269} = (4,0,3,1)$	$42: P_{407} = (6, 1, 5, 1)$
$11: P_{87} = (5, 1, 0, 1)$	$27: P_{274} = (1, 1, 3, 1)$	$43: P_{408} = (7, 1, 5, 1)$
$12: P_{88} = (6, 1, 0, 1)$	$28: P_{277} = (4, 1, 3, 1)$	$44: P_{409} = (0, 2, 5, 1)$
$13: P_{97} = (7, 2, 0, 1)$	$29: P_{278} = (5, 1, 3, 1)$	$45: P_{414} = (5, 2, 5, 1)$
$14: P_{108} = (2, 4, 0, 1)$	$30: P_{282} = (1, 2, 3, 1)$	$46: P_{426} = (1, 4, 5, 1)$
$15: P_{134} = (4,7,0,1)$	$31: P_{283} = (2, 2, 3, 1)$	$47: P_{429} = (4, 4, 5, 1)$

$48: P_{430} = (5, 4, 5, 1)$	$54: P_{468} = (3, 1, 6, 1)$	$60: P_{519} = (6,7,6,1)$
$49: P_{439} = (6, 5, 5, 1)$	$55: P_{480} = (7, 2, 6, 1)$	$61: P_{520} = (7,7,6,1)$
$50: P_{453} = (4,7,5,1)$	$56: P_{489} = (0, 4, 6, 1)$	$62: P_{563} = (2, 5, 7, 1)$
$51: P_{459} = (2,0,6,1)$	$57: P_{495} = (6, 4, 6, 1)$	$63: P_{569} = (0, 6, 7, 1)$
$52: P_{466} = (1, 1, 6, 1)$	$58: P_{508} = (3, 6, 6, 1)$	$64: P_{571} = (2, 6, 7, 1)$
$53: P_{467} = (2, 1, 6, 1)$	$59: P_{514} = (1, 7, 6, 1)$	