

Emil Björnson

Outline

- Practical issues with point-to-point MIMO
- Introduction to multi-user MIMO
 - Uplink and downlink
 - Orthogonal access vs. spatial multiplexing
- Capacity region
 - Operating points

Recall: Point-to-Point MIMO Capacity

• Compute SVD of channel matrix:

$$G = U\Sigma V^H = \sum_{k=1}^{3} s_k u_k v_k^H$$

- Σ "diagonal" with $s_1, ... s_S$
- $\boldsymbol{U} = [\boldsymbol{u}_1 \dots \boldsymbol{u}_M]$
- $V = [v_1 \dots v_K]$

Decompose the channel into *S* parallel channels

Problems with point-to-point MIMO

- Multiplexing gain: S = rank(G)
 - Line-of-sight: $S \approx 1$
 - Non-line-of-sight: $S = \min(M, K)$

Mainly beamforming gain:

- High SNR: Likely to be in line-of-sight (LOS)
- Low SNR: Likely to be non-line-of-sight (NLOS)

Not scalable:

User devices are small, cannot fit many antennas

Multiuser MIMO Communication

- Uplink
 - From users to base station
 - Multipoint-to-point MIMO

- Downlink
 - From base station to users
 - Point-to-multipoint MIMO

Orthogonal multiple access

- Two users want to communicate with base station
 - Power per user: P
 - Bandwidth: B
 - Noise power spectral density: N_0

• Divide bandwidth: αB to user 1, $(1 - \alpha)B$ to user 2

$$R_1 = \alpha B \log_2 \left(1 + \frac{P\beta}{\alpha B N_0} \right)$$

$$R_2 = (1 - \alpha) B \log_2 \left(1 + \frac{P\beta}{(1 - \alpha) B N_0} \right)$$

Orthogonal multiple access: Rate region

• Rates depend on α :

$$R_1 = \alpha B \log_2 \left(1 + \frac{P\beta}{\alpha B N_0} \right)$$

$$R_2 = (1 - \alpha) B \log_2 \left(1 + \frac{P\beta}{(1 - \alpha) B N_0} \right)$$

What is the preferred operating point?

Non-orthogonal multiple access

• Let both users transmit simultaneously:

From user 1 Noise $x_1 \sim CN(0, P)$ (power BN_0) $y = x_1 + x_2 + n$ From user 2

 $x_2 \sim CN(0, P)$

Received signal

- Strategy:
 - 1. Decode signal from user 1, treat interference as noise

$$R_1 = \log_2\left(1 + \frac{P}{P + BN_0}\right)$$

2. Subtract x_1 : $y - x_1 = x_2 + n$. Decode signal from user 2: $R_2 = \log_2\left(1 + \frac{P}{BN_0}\right)$

$$R_2 = \log_2\left(1 + \frac{P}{BN_0}\right)$$

Called: Successive interference cancelation

We can change the user order

Non-orthogonal multiple access: Rate region

Four operating points (R_1, R_2) :

1.
$$\left(\log_2\left(1+\frac{P}{BN_0}\right),0\right)$$

$$2. \left(0, \log_2\left(1 + \frac{P}{BN_0}\right)\right)$$

3.
$$\left(\log_2\left(1+\frac{P}{P+BN_0}\right),\log_2\left(1+\frac{P}{BN_0}\right)\right)$$

4.
$$\left(\log_2\left(1+\frac{P}{BN_0}\right),\log_2\left(1+\frac{P}{P+BN_0}\right)\right)$$

Time sharing:

We can achieve all points in between

Uplink in Multiuser MIMO

- Notation:
 - *K* single-antenna users, *M* base station antennas
 - Channel response g_i^j from user i to antenna j
 - Data signals $x_1, ..., x_K$, received signals $y_1, ..., y_M$

Uplink Multiuser MIMO: System model

• Received signal:

$$y = \sqrt{\rho_{ul}}Gx + w$$

where

$$\mathbf{y} = \begin{pmatrix} y_1 \\ \vdots \\ y_M \end{pmatrix} \quad \mathbf{G} = \begin{pmatrix} g_1^1 & \cdots & g_K^1 \\ \vdots & \ddots & \vdots \\ g_1^M & \cdots & g_K^M \end{pmatrix} \quad \mathbf{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_K \end{pmatrix} \quad \mathbf{w} = \begin{pmatrix} w_1 \\ \vdots \\ w_M \end{pmatrix}$$

- Parameters are normalized: SNR is ρ_{ul}
- Each users signal is power-limited as $\mathbb{E}\{|x_k|^2\} \le 1$
- Normalized noise: $\mathbf{w} \sim CN(\mathbf{0}, \mathbf{I}_M)$

What is the difference from point-to-point MIMO?

- **Difference 1**: Users do not cooperate
 - $x_1, ..., x_K$ are independent signals
- **Difference 2**: Each user cares about its own performance
 - *K* user capacities instead of one capacity
- **Difference 3**: Each user has its own power budget
 - Power constraint: $E\{|x_k|^2\} \le 1$
- **Difference 4**: The channel matrix *G* is modeled differently
 - Each column can be modeled as a SIMO channel

Motivating example

Capacity region is the largest possible rate region

Beamforming gain for every user Smaller interference loss

Shape of capacity region

- One can pick two points and use them fractions of the time
 - Similar to time-sharing
 - Hence: Line between any two points are in the region
 - Conclusion: Region must be a *convex set*

Points in the capacity region

• Combinations (R_1, R_2) of rates that can be simultaneously achieved

Many choices!

Only rule:

Always pick something on the outer boundary (Pareto boundary)!

Sum Capacity of Uplink Multiuser MIMO

• Recall: Received signal:

$$y = \sqrt{\rho_{ul}}Gx + w$$

- Assume a deterministic *G*
 - Let all users transmit with full power: $x \sim CN(\mathbf{0}, I_K)$

Like a point-to-point MIMO channel

But with a "suboptimal" signal covariance matrix $oldsymbol{Q} = oldsymbol{I}_M$

• Sum rate: $R_1 + \cdots + R_K = \log_2(\det(\mathbf{I}_M + \rho_{ul}\mathbf{G}\mathbf{G}^H))$

This is the sum capacity!

Achieved by successive interference cancellation Decoding order determines who gets which share

Uplink Capacity Region with K=2

• Region contains all (R_1, R_2) satisfying:

$$R_{1} \leq \log_{2}(1 + \rho_{ul} \|\boldsymbol{g}_{1}\|^{2})$$

$$R_{2} \leq \log_{2}(1 + \rho_{ul} \|\boldsymbol{g}_{2}\|^{2})$$

$$R_{1} + R_{2} \leq \log_{2}(\det(\boldsymbol{I}_{M} + \rho_{ul}\boldsymbol{G}\boldsymbol{G}^{H}))$$

Summary

- Point-to-point MIMO channels
 - Large multiplexing gains are hard to achieve in practice
- Multi-user MIMO channels
 - Similar system model
 - Key differences: Independent users, different power, different performance
 - Capacity and rate regions
 - Orthogonal and non-orthogonal access

Emil Björnson