Viet M. Bui

vietbui20@augustana.edu 2

Claim: Suppose A is a square matrix with eigenvectors v and w, and corresponding eigenvalues λ_v and λ_w . If $\lambda_v \neq \lambda_w$ then v and w are linearly independent.

By the definition of eigenvectors,

$$Aec{v}=\lambda_vec{v}$$

$$Aec{w}=\lambda_wec{w}$$

Proof by contrapositive

Assume: v and w are linearly dependent

means $\exists c \in \mathbb{R}: c\vec{v} = \vec{w}$ by thm ___ (in this theorem there is no mention of the coefficients having to be nonzero)

$$Aec{w}=\lambda_vec{w}$$

$$\Rightarrow A(c\vec{v}) = \lambda_w(c\vec{v})$$
 [substitutiton]

$$\Rightarrow c(A\vec{v}) = c\lambda_w \vec{v}$$
 [theorem 3.5.10.1]

$$\Rightarrow c(\lambda_v \vec{v}) = c\lambda_w \vec{v}$$
 [substitution]

$$\Rightarrow c\lambda_v \vec{v} - c\lambda_w \vec{v} = 0$$

$$\Rightarrow c(\lambda_v \vec{v} - \lambda_w \vec{v}) = 0$$

no, this is not the reason c=/=0

c
eq 0 because v and w are linearly dependent so $\lambda_w ec{v} - \lambda_v ec{v} = 0$

$$\Rightarrow \lambda_{v}\vec{v} - \lambda_{v}\vec{v} = 0$$

$$\Rightarrow \vec{v}(\lambda_w - \lambda_v) = 0$$
 put scalars on the left

by the definition of eigenvectors $ec{v}
eq 0$ good

$$\Rightarrow \lambda_w - \lambda_v = 0$$

$$\therefore \lambda_w = \lambda_v$$

because of proof by contrapositive

 \therefore If $\lambda_v
eq \lambda_w$ then v and w are linearly independent.