Module 1: Graded Quiz

Quiz, 4 questions

5/5 points (100.00%)

Module 1: Graded Quiz Theorem states that when a noise comes from a large number of 5/5 points (100.00%)

Quiz, 4 questions and distribution will tend towards a Gaussian distribution.

Least squares estimators are significantly affected by outliers.

Correct

Correct! Outliers are not well handled by least squares estimators, since these estimators minimize the sum of *squared* errors.

When measurements are drawn from a non-Gaussian distribution, a maximum likelihood estimator produces the same values as weighted least squares.

Un-selected is correct

1/1 point

3.

Given the above histogram of noisy measurements, it is appropriate to use a LS estimator?

5/5 points (100.00%)

Correct

Correct! The distribution of the measurements is clearly not Gaussian, which suggests that least squares will do a poor job.

1/1 point

4.

Looking at the histogram in the previous question, what could be the reason for such a distribution of measurements? Select any/all that apply:

The measured value might be changing.

Correct

Correct! If the measured value is changing (e.g., perhaps switching between two discrete values), the histogram will have multiple peaks.

There is an outside disturbance affecting the sensor.

Correct

Correct! Even if the measured value is static, a disturbance affecting the sensor (e.g., unmodeled vibrations or someone moving the sensor) might cause significantly different measurements to be produced.

The measurement is affected by zero mean Gaussian noise.

Un-selected is correct

Н

Module 1: Graded Quiz

Quiz, 4 questions

5/5 points (100.00%)