Assefa Jonathan Dereje

30-3, Hwasan-ro, Suwon-si, Gyeonggi-do, Korea, 16417. jonadereje@skku.edu , jonathandereje@live.com | +82-10-2053-1339

Research Highlights

- Expertise on seismic retrofit of existing RC structures including experimental testing, numerical modeling, nonlinear seismic performance evaluation.
- Implementation of optimization algorithms for determining optimal design parameters in seismic retrofit, considering uncertainties and robustness.
- **Development of a ground motion selection algorithm** for site-specific ground motion records in nonlinear time history analysis.
- Innovative hybrid damper design combining metallic yielding and viscoelastic dampers to enhance seismic performance.

Education

Sungkyunkwan University, Suwon, South Korea

Combined M.s Ph.D. in Civil, Architectural and Environmental System Engineering, expected Feb, 2014.

Dissertation: "Machine learning-assisted seismic retrofit design and optimization framework"

Advisor: Professor Jinkoo Kim (President of Earthquake Engineering Society of Korea Mar, 2019- Feb, 2021)

Addis Ababa University, Addis Ababa, Ethiopia

B.SC in Civil Engineering, Jul, 2015

Thesis: "Software Development for the Structural Design of Structural Elements to the Ethiopian Building Code Standards" Advisor: Melakou Seyoum

Professional Experiences

Structural Engineer

FasilGiorghisconsult Architects and Engineers

Dec, 2015 - Feb, 2018

Structural Analysis and Design

- · Conducted structural analysis and design using software tools such as SAP2000. ETABS and SAFE
- **Designed reinforced concrete structural elements** including beams, columns, slabs and foundations for residential, commercial and industrial projects.
- Optimized steel roof system designs to achieve efficient structural performance, considering factors such as span, loadings and deflection criteria, and architectural requirements.
- · Performing structural peer reviews and providing technical guidance to design teams
- · Collaborating with contractors to resolve constructability issues and provide field engineering support.

Department of Civil, Architectural and Environmental System Engineering, Sungkyunkwan University

Ph.D Student Mar, 2018– Feb, 2014

Seismic retrofit methods

- **Proposed seismic retrofit methods** such as self-centering post-tensioned precast concrete frames with friction dampers (SC-PC-FD) and hybrid dampers that combines a metallic yielding damper and a high-damping viscoelastic damper.
- Conducted comprehensive experimental tests to evaluate the effectiveness and performance of the retrofit methods.
- · Proposed and validated analytical models of proposed seismic retrofit methods using the experimental results
- Developed curve fitting algorithms to calibrate analytical model parameters

Optimization applications

- · Applied optimization algorithms to determine optimal design parameters for seismic retrofit projects
- · Developed customized optimization frameworks considering various constraints and multiple objectives
- · Incorporated robustness and uncertainties in the design process to improve the reliability of retrofit solutions
- · Utilized parallel processing to reduce computational time in the optimization framework

Seismic response evaluation

- Developed analytical models that accurately capture the dynamic response and performance of retrofitted structures.
- · Utilized advanced analytical methods, such as nonlinear time history analysis.
- · Investigated the seismic performance of retrofitted structures using IDA, and fragility analysis.
- **Proposed a ground motion selection algorithm** incorporating a multi-objective optimization scheme enabling efficient selection of site-specific ground motion records for nonlinear time history analysis.

Works In Progress

- · Developing machine learning models to predict hysteretic response of viscoelastic dampers
- Utilizing machine learning models to predict analytical model parameters of viscoelastic dampers
- Utilizing explainable AI to understand and interpret predictions of the developed machine learning models hysteretic response of viscoelastic dampers predictions

Publications

Google scholar profile: https://scholar.google.com/citations?user=sdTi7CsAAAAJ&hl

- [1] **Dereje**, **A.J**, MM Javidan, Ahn, T.S. and Kim, J. Experimental and analytical study of a hybrid seismic damper made of butterfly-shaped steel plates and viscoelastic pads. *Journal of building engineering* (**Submitted**)
- [2] **Dereje**, **A.J**. and Kim, J., 2023. An enhanced ground motion selection algorithm for seismic safety assessment of structures. *Soil Dynamics and Earthquake Engineering*, 165, p.107709.
- [3] **Dereje**, **A.J.** and Kim, J., 2023. Robust seismic retrofit design framework for asymmetric soft-first story structures considering uncertainties. *Structural Engineering and Mechanics*, 86(2), pp.249-260.
- [4] **Dereje**, **A.J.** and Kim, J., 2022. Optimal seismic retrofit design method for asymmetric soft first-story structures. *Structural Engineering and Mechanics*, 81(6), p.677.
- [5] **Dereje, J.A.**, Eldin, M.N. and Kim, J., 2021. Seismic retrofit of a soft first story structure using an optimally designed post–tensioned PC frame. *Earthquakes and Structures*, 20(6), p.627.
- [6] Eldin, M.N., **Dereje, A.J.** and Kim, J., 2020. Seismic retrofit of framed buildings using self-centering PC frames. *Journal of Structural Engineering*, 146(10), p.04020208.
- [7] Eldin, M.N., **Dereje, A.J.** and Kim, J., 2020. Seismic retrofit of RC buildings using self-centering PC frames with friction-dampers. *Engineering Structures*, 208, p.109925.

Software patents

[1] J. Kim **Assefa Jonathan Dereje**, developers; Optimization tool for seismic retrofit using viscoelastic dampers (OTVED) (점탄성 댐퍼를 이용한 내진보강 최적설계 툴)". C-2022-031994 Aug 16, 2022.

https://www.cros.or.kr/

[2] J. Kim, **Assefa Jonathan Dereje**, developers; OSRAS: Optimization tool for Seismic Retrofit of Asymmetric Structures (비정형 구조물 내진보강 최적설계 툴)". C-2022-004491 Jan,11,2022.

https://www.cros.or.kr/

[3] J. Kim, **Assefa Jonathan Dereje**, developers: Piloti Structure Retrofit Optimization Tool (PSROT) (최적화기법을 이용한 필로티 구조물 내진보강 해석 툴)". C-2020-035792 Oct 16, 2020.

 $\underline{https://www.cros.or.kr/}$

Presentations

- [1] **Dereje Jonathan**, Jun, Seungho, Kim, Jinkoo," Optimum quantity and locations of seismic retrofit devices based on multi-purpose optimization" *Proceedings of EESK Conference 2021*, South Korea, 2020.
- [2] **Dereje Jonathan**, Jun, Seungho, Kim, Jinkoo "Seismic retrofit of Piloti-type structure using PC frame" *Proceedings of EESK Conference 2020*, South Korea, 2020.

Certifications and licenses

- [1] Mathematics for Machine learning Specialization. Completed October1,2021. Coursera.org by Imperial College. https://coursera.org/share/804cba7004fcf97f297cdc885fae0fe5
- [2] Object-Oriented Design. Completed February 20,2021 at Coursera.org by University of ALBERTA. https://coursera.org/share/d66e7de3da9cc1973e9f416a31dc8a06
- [3] Introduction to Computer Science. Completed January 21,2015 at edx.org by Harvardx. https://verify.edx.org/cert/6023cac046db4e39a1bc50f2477fb709
- [4] Mechanical Behavior of Materials. Completed December 19,2014 at edx.org by MITx. https://verify.edx.org/cert/9450a0eb3f784f10bcf94cb74de5ae77

Skills

- · Programming Languages: Python, MATLAB, C++, JAVA
- · FEM software: OpenSees, SAP2000, ETABS, SAFE, ABAQUS
- · CAD & BIM software: SketchUp, AutoCad, Fusion360
- · Graphics software: Adobe Illustrator
- · Language: English (Professional Proficiency), Amharic (Native Proficiency)