Lecture 3: The dot product (§12.3)

Goals:

- 1. Compute the dot product of two vectors.
- 2. Compute the angle between two vectors in terms of the dot product.
- 3. Algebraically determine when two given vectors are orthogonal, and geometrically explain what this means.
- 4. Perform elementary vector algebra using properties of vector addition, scalar multiplication, and the dot product.
- 5. Algebraically compute (and geometrically explain) the vector projection of a given vector onto a given nonzero vector.
- 6. Solve elementary problems involving effective force and work using vector projection.

In this lecture we focus on the following operation:

Definition. The **dot product** $\overrightarrow{u} \cdot \overrightarrow{v}$ of vectors $\overrightarrow{u} = \langle u_1, u_2, u_3 \rangle$ and $\overrightarrow{v} = \langle v_1, v_2, v_3 \rangle$ is given by

$$\overrightarrow{u}\cdot\overrightarrow{v}:=u_1v_1+u_2v_2+u_3v_3.$$

The dot product can be interpreted geometrically in terms of the angle between \overrightarrow{u} and \overrightarrow{v} :

Theorem 1. The angle $\theta \in [0, \pi]$ between two non-zero vectors $\overrightarrow{u} = \langle u_1, u_2, u_3 \rangle$ and $\overrightarrow{v} = \langle v_1, v_2, v_3 \rangle$ is given by

$$\theta = \arccos(\frac{\overrightarrow{u} \cdot \overrightarrow{v}}{|\overrightarrow{u}| \cdot |\overrightarrow{v}|}) \text{ so that } \cos(\theta) = \frac{\overrightarrow{u} \cdot \overrightarrow{v}}{|\overrightarrow{u}| \cdot |\overrightarrow{v}|}.$$

Remark. Note that while $c \cdot \overrightarrow{v}$ and $\overrightarrow{u} + \overrightarrow{v}$ are **vectors**, the output of a dot product $\overrightarrow{u} \cdot \overrightarrow{v}$ is a **scalar**.

Example.

1. Find the dot product of $\overrightarrow{v} = i - j + 2k$ and $\overrightarrow{u} = 2i + j + k$? Find the angle between \overrightarrow{u} and \overrightarrow{v} .

$$\vec{x} \cdot \vec{v} = \langle 2, 1, 1 \rangle \cdot \langle 1, -1, 2 \rangle = 2 \cdot 1 - 1 \cdot 1 + 1 \cdot 2 = 3$$

$$|\vec{x}| = \sqrt{2^2 + 1^2 + 1^2} = \sqrt{6} \qquad \qquad \vec{x} \cdot \vec{v} = \cos \theta$$

$$|\vec{v}| = \sqrt{1^2 + (1)^2 + 2^2} = \sqrt{6} \qquad \qquad \vec{x} \cdot \vec{v} = \cos \theta$$

$$|\vec{v}| = \sqrt{1^2 + (1)^2 + 2^2} = \sqrt{6} \qquad \qquad \vec{x} \cdot \vec{v} = \cos \theta$$

$$|\vec{v}| = \sqrt{1^2 + (1)^2 + 2^2} = \sqrt{6} \qquad \qquad \vec{x} \cdot \vec{v} = \cos \theta$$

2. Let \overrightarrow{v} , \overrightarrow{u} be vectors. Is it always true that $(\overrightarrow{v} \cdot \overrightarrow{u}) \cdot (\overrightarrow{v} \cdot \overrightarrow{u}) = (\overrightarrow{v} \cdot \overrightarrow{v}) \cdot (\overrightarrow{u} \cdot \overrightarrow{u})$? \nearrow \nearrow \nearrow \nearrow \nearrow

Example
$$\vec{u} = i = \langle 1, 0, 0 \rangle$$
 $\vec{u} \cdot \vec{u} = 1$ $\vec{v} = j = \langle 0, 1, 0 \rangle$ $\vec{v} \cdot \vec{v} = 1$ $\vec{v} \cdot \vec{u} = 0$ $(\vec{v} \cdot \vec{u}) \cdot (\vec{v} \cdot \vec{u}) = 0$ $(\vec{v} \cdot \vec{v}) \cdot (\vec{u} \cdot \vec{u}) = 1$

3. Let $\overrightarrow{u} = \langle u_1, u_2, u_3 \rangle$ and $\overrightarrow{v} = \langle v_1, v_2, v_3 \rangle$ be vectors. Compute $|\overrightarrow{v} - \overrightarrow{u}|$.

$$\begin{aligned} |\vec{u} - \vec{V}| &= |\langle u_1 - V_1, u_2 - V_2, u_3 - V_3 \rangle| = \sqrt{(u_1 - V_1)^2 + (u_1 - V_2)^2 + (u_3 - V_3)^2} \\ |\vec{U} - \vec{V}|^2 &= (u_1 - V_1)^2 + (u_2 - V_2)^2 + (u_3 - V_3)^2 = \\ &= u_1^2 + V_1^2 - 2u_1 V_1 + u_2^2 + V_2^2 - 2u_2 V_2 + u_3^2 + V_3^2 - 2u_3 V_3 = \\ &= (u_1^2 + u_2^2 + u_3^2) + (v_1^2 + v_2^2 + v_3^2) - 2(u_1 V_1 + u_2 V_2 + u_3 V_3) \\ &= |\vec{u}|^2 + |\vec{V}|^2 - 2 \vec{u} \cdot \vec{V} \end{aligned}$$

We can now prove Theorem 1:

Theorem. The angle $\theta \in [0, \pi]$ between two non-zero vectors $\overrightarrow{u} =$ $\langle u_1, u_2, u_3 \rangle$ and $\overrightarrow{v} = \langle v_1, v_2, v_3 \rangle$ is given by

$$\cos(\theta) = \frac{\overrightarrow{u} \cdot \overrightarrow{v}}{|\overrightarrow{u}| \cdot |\overrightarrow{v}|}.$$

We need to show that $\vec{u} \cdot \vec{v} = |\vec{u}| \cdot |\vec{v}| \cdot \cos$

FIGURE 12.21 The parallelogram law of addition of vectors gives $\mathbf{w} = \mathbf{u} - \mathbf{v}$.

Proof we will compute the length of w in two ways and compare.

1) By the cosine theorem 12/2 = 12/2+17/2-2121.171. cos 0

2) By the exercise above: comparing (1) $|\vec{u}|^2 = |\vec{u} - \vec{v}|^2 = |\vec{u}|^2 + |\vec{v}|^2 - 2\vec{u} \cdot \vec{v}$ $|\vec{u}|^2 + |\vec{u}|^2 + |\vec{v}|^2 - 2\vec{u} \cdot \vec{v}$

12.7 = 121.171 cos 0 QED

Orthogonal vectors

Definition. Two vectors \overrightarrow{u} and \overrightarrow{v} are **orthogonal**, if $\overrightarrow{u} \cdot \overrightarrow{v} = 0$. Equivalently, the angle between \overrightarrow{u} and \overrightarrow{v} is $\pi/2$ radians (90°).

Example. The vectors $\overrightarrow{u} = 3i-2j+k$ and $\overrightarrow{v} = 2j+4k$ are orthogonal.

$$\vec{u} \cdot \vec{v} = \langle 3, -2, 1 \rangle \cdot \langle 0, 2, 4 \rangle = 3 \cdot 0 - 2 \cdot 2 + 1 \cdot 4 = 0$$

Here are a few properties of dot product:

Let \overrightarrow{u} , \overrightarrow{v} , \overrightarrow{w} be vectors, and c be a scalar. Then:

$$3)(c\vec{u})\cdot\vec{v} = \vec{u}\cdot(c\vec{v}) = c\vec{u}\cdot\vec{v}$$

$$4) \vec{v} \cdot \vec{v} = |\vec{v}|^2$$

$$(4) \vec{\nabla} \cdot \vec{V} = |\vec{V}|^2$$

$$(4) \vec{\nabla} \cdot \vec{V} = |\vec{V}|^2$$

$$(5) \vec{\nabla} \cdot \vec{V} = 0$$

$$(7) \vec{\nabla} \cdot \vec{V} = 0$$

$$(7) \vec{\nabla} \cdot \vec{V} = 0$$

$$(7) \vec{\nabla} \cdot \vec{V} = 0$$

$$(8) \vec{$$

Orthogonal projection

Definition. The **orthogonal projection of** \overrightarrow{u} **onto another vector** \overrightarrow{v} , denoted $\operatorname{proj}_{\overrightarrow{v}}\overrightarrow{u}$, is the unique scalar multiple $\overrightarrow{w} = c\overrightarrow{v}$ such that $\overrightarrow{u} - \overrightarrow{w}$ is orthogonal to \overrightarrow{v} .

If \vec{v} is a unit vector $|\vec{v}| = 1$

FIGURE 12.23 The vector projection of **u** onto **v**.

Then

Proj_v,
$$\vec{u} = (\vec{u} \cdot \vec{v}) \vec{v}$$

There is an explicit formula for $\operatorname{proj}_{\overrightarrow{v}} \overrightarrow{u}$:

the scalar component of win the direction

We have:

$$\operatorname{proj}_{\overrightarrow{v}}\overrightarrow{u} = \left(\frac{\overrightarrow{u} \cdot \overrightarrow{v}}{|\overrightarrow{v}|^2}\right) \overrightarrow{v} = \left(\frac{\overrightarrow{u} \cdot \overrightarrow{v}}{|\overrightarrow{v}|}\right) \frac{\overrightarrow{v}}{|\overrightarrow{v}|}.$$

The scalar component of \overrightarrow{u} in the direction of \overrightarrow{v} is defined

as

$$\frac{\overrightarrow{u} \cdot \overrightarrow{v}}{|\overrightarrow{v}|} = |\overrightarrow{u}| \cos \theta.$$

Remark If
$$\vec{V}_1, \vec{V}_2$$
 are on the same line $(\vec{V}_1 = C\vec{V}_4)$
then Project $\vec{V}_1 = \vec{V}_1 \vec{V}_2 \vec{V}_1$.

Exercise. Find the vector projection of $\overrightarrow{u} = \langle 6, 3, 2 \rangle$ onto $\overrightarrow{v} = \langle 1, -2, -2 \rangle$, and the scalar component of \overrightarrow{u} in the direction of \overrightarrow{v} .

Project =
$$\frac{\vec{u} \cdot \vec{v}}{|\vec{v}|} = \frac{-4}{3} \cdot \frac{1}{3} \cdot (1, -2, -2)$$

the scalar component = $-\frac{4}{3} \cdot (\frac{1}{3}, -\frac{2}{3}, -\frac{2}{3})$
 $\vec{v} \cdot \vec{v} = 6 - 6 - 4 = -4$
 $|\vec{v}|^2 = 1 + 4 + 4 = 9$, $|\vec{v}| = 3$

component component

Exercise. Show that $\overrightarrow{u} - \operatorname{proj}_{\overrightarrow{v}} \overrightarrow{u}$ is indeed orthogonal to \overrightarrow{v} .

Exercise Fine the replacement of
$$\overrightarrow{a}$$
 and the stier \overrightarrow{a}

Definition. The work done by a constant force \overrightarrow{F} acting through a displacement $\overrightarrow{D} = \overrightarrow{PQ}$ is

$$W = \overrightarrow{F} \cdot \overrightarrow{D}.$$

FIGURE 12.27 The work done by a constant force **F** during a displacement **D** is $(|\mathbf{F}|\cos\theta)|\mathbf{D}|$, which is the dot product $\mathbf{F} \cdot \mathbf{D}$.

Example. If
$$\left|\overrightarrow{F}\right|=40N$$
, and $\left|\overrightarrow{D}\right|=3$ m and $\theta=60^\circ$, then $W=$

Exercise. Find the angle θ in the triangle ABC determined by the vertices $A=(0,0),\,B=(3,5)$ and C=(5,2).

Exercise. Let \overrightarrow{u} , \overrightarrow{v}_1 , \overrightarrow{v}_2 be vectors. And assume that $\overrightarrow{u} \cdot \overrightarrow{v}_1 = \overrightarrow{u} \cdot \overrightarrow{v}_2$. Is it true that $\overrightarrow{v}_1 = \overrightarrow{v}_2$?