Handreichungen zum Lehrplan Chemie

Die vorliegenden Handreichungen geben die im Lehrplan für jede Jahrgangsstufe angegebenen Themen wieder. Ebenso ist die tabellarische Anordnung der verbindlichen Unterrichtsinhalte/Aufgaben, aus dem Lehrplan entnommen. Für die abiturrelevanten Kurse (Q1 bis Q3) ist auf der rechten Seite die Spalte "Präzisierung im Hinblick auf das Landesabitur" hinzugefügt. Allgemeine Prinzipien der Chemie können an unterschiedlichen Inhalten festgemacht werden. Der Lehrplan lässt hinsichtlich der in Klammern gesetzten Beispiele Wahlmöglichkeiten offen. An diesen Stellen präzisiert der Hinweis "hierzu in jedem Fall" diejenigen Inhalte, die in Form von reproduzierbarem Wissen zur Verfügung stehen müssen, so dass in den Aufgaben für das Landesabitur die Anforderungsbereiche I bis III für alle Prüflinge vergleichbar sind.

Demgegenüber ist die Anmerkung "freigestellt" dahingehend zu interpretieren, dass die hier angegebenen konkreten Inhalte nicht Gegenstand einer Prüfungsaufgabe im Anforderungsbereich I sein können. An derartigen Inhalten können lediglich die in anderem Zusammenhang gelernten spezifischen Denkweisen und Techniken des Faches Anwendung finden. Solche Aufgabenstellungen enthalten alle erforderlichen Materialien.

Es wird ausdrücklich darauf hingewiesen, dass die für die landesweit einheitlichen Prüfungsaufgaben relevanten verbindlichen Unterrichtsinhalte nicht durch die hier formulierten Präzisierungen beschränkt werden. Vielmehr sind die Präzisierungen immer im Kontext des Lehrplans zu verstehen. Die Inhalte der Sekundarstufe I sowie der Einführungsphase dienen als Grundlagenwissen.

Q1 GK	Chemie der Kohlenwasserstoffverbindungen I: Kohlenwasserstoffverbindungen und funktionelle Gruppen	
Verbindliche Unterrichtsinhalte/Aufgaben		Präzisierung im Hinblick auf das Landesabitur
1. Eigenschaften und Reaktionen von Kohlenstoff- Wasserstoff- Verbindungen		
Alkane, Alkene, Alkine, Halogenkohlenwasser- stoffe	Auf der Grundlage der Unterrichtsinhalte von E2: (Nomenklatur, homologe Reihen, Isomerie, Struktur-Eigenschafts- Beziehungen)	
	Reaktionstyp und Reaktionsmechanismus der radikalischen Substitution	
	Reaktionstyp und Reaktionsmechanismus der Addition von Molekülen des Typs X ₂ an C-C- Mehrfachbindung (Nachweis der C- C-Doppelbindung mit Brom)	
2. Alkanole	Auf der Grundlage der Unterrichtsinhalte von E2: (Nomenklatur, Homologe Reihen, Isomerie, Struktur-Eigenschafts- Beziehungen)	
	Reaktionen der Alkanole; Reaktionstyp der Substitution; Redox-Reaktionen primärer und sekundärer Alkanole; Unterschied zu tert. Alkanolen, Anwendung von Oxidationszahlen Mehrwertige Alkanole (Glycol, Glycerin): Verwendung, Eigenschaften und Reaktionen	Zu chemischen Reaktionen auch: Verbrennung und unvollständige Oxidation Anwendung von Oxidationszahlen; als Oxidationsmittel in jedem Fall: Kupfer-(II)-oxid, Dichromat- Ionen
3. Carbonyl- verbindungen	Strukturmerkmal der Aldehydgruppe Eigenschaften und Verwendung von Methanal und Ethanal	
	Nachweis der reduzierenden Wirkung der Aldehydgruppe	hierzu in jedem Fall: Fehlingsche Probe
	Ketone	

Verbindliche Unterrichtsinhalte/Aufgaben		Präzisierung im Hinblick auf das Landesabitur
4. Alkansäuren und ihre Derivate	Homologe Reihe und ausgewählte Eigenschaften von Monocarbonsäuren; Salze	bei der Acidität in jedem Fall auch: positiver und negativer induktiver Effekt
	Ester und ihre Bedeutung (Fruchtessenzen und Lösungsmittel)	
	Reaktionstyp und Reaktionsmechanismus der Esterbildung und Esterspaltung	bei der Esterspaltung in jedem Fall: alkalische Hydrolyse (nach Schul- Lehrbuch)
	Derivate der Monocarbonsäuren (Hydroxy- und Aminosäuren)	struktureller Aufbau
5. Aromatische Kohlenwasserstoff- verbindungen	Benzen: Eigenschaften und aromatische Struktur; Mesomerie	Mesomeriemodell (kein Orbital-modell)
	Geschichte der Strukturaufklärung des Benzens	freigestellt
	Homologe und Derivate des Benzens	

Q2 GK	Chemie der Kohlenwasserstoffverbindungen II: Technisch und biologisch wichtige Kohlenwasserstoffverbindungen	
Verbindliche Unterrich	ntsinhalte/Aufgaben	Präzisierung im Hinblick auf das Landesabitur
1. Naturstoffe		
Fette	Bau, Eigenschaften, Reaktionen; Gewinnung und Verarbeitung; Bedeutung für die Ernährung	bei Bau und Eigenschaften in jedem Fall auch Unterscheidung von gesättigten und ungesättigten Fettsäureresten; bei Reaktionen in jedem Fall: alkalische Hydrolyse von Fetten; Bedeutung für die Ernährung freigestellt
Kohlenhydrate	Mono-, Di- und Polysaccharide: Vorkommen, Eigenschaften und Strukturen	hierzu in jedem Fall: Glucose, Fructose, Maltose, Saccharose, Stärke, Cellulose; Haworth/Fischer
	Optische Aktivität und Stereoisomerie	hierzu in jedem Fall: asymmetrisches C-Atom; D-/L- Konfiguration; Enantiomere; Racemat; Anomere
	Reaktionen/Nachweisreaktionen; Bedeutung und Verwendung	bei den Nachweisen in jedem Fall: Fehlingsche Probe, Iod-Stärke- Reaktion
Aminosäuren, Peptide, Polypeptide	Struktur und Eigenschaften natürlicher Aminosäuren Peptidbindung	hierzu in jedem Fall: Zwitterionenstruktur; isoelektrischer Punkt
	Strukturen und Strukturaufklärung von Eiweißen	Strukturaufklärung freigestellt
	Vorkommen und Bedeutung	
	Nachweisreaktionen für Aminosäuren und Eiweiße	freigestellt
	Hydrolyse von Peptiden	Mechanismus freigestellt

Verbindliche Unterrichtsinhalte/Aufgaben		Präzisierung im Hinblick auf das Landesabitur
2. Synthetische Makromoleküle	Klassifizierung von Kunststoffen	
	Aufbau von Makromolekülen	
	Modifizierte Naturstoffe	freigestellt
	Reaktionstypen zur Verknüpfung von Monomeren zu Makromolekülen (Polymerisation, Polykondensation, Polyaddition)	Synthesereaktionen von PE, PVC, Polystyrol, Polyester, Polyamide, PU (keine technische Darstellung) bei Polymerisation: In jedem Fall: Mechanismus der <i>radikalischen</i> Polymerisation
	Zusammenhänge zwischen Struktur und Eigenschaften	
	Vor- und Nachteile bei der Verarbeitung und Verwendung	freigestellt
	Umweltprobleme bei der Herstellung, Verarbeitung, Wie- derverwertung und Beseitigung; Pyrolyse und Recycling; Kunststoffabfälle	freigestellt

Q3 GK	Das Chemische Gleichgewicht	
Verbindliche Unterrichtsinhalte/Aufgaben		Präzisierung im Hinblick auf das Landesabitur
1. Umkehrbare Reaktionen und chemisches Gleichgewicht	Nachweis des gleichzeitigen Vorliegens von Edukten und Produkten an ausgewählten Beispielen (Lösungsgleichgewichte, Gasgleichgewichte, Säure-Base-Gleichgewichte, Redox-Gleichgewichte)	als Beispiele hierzu in jedem Fall: Iod-Wasserstoff-Gleichgewicht, Ester-Gleichgewicht Stoffmengen- und Konzentrations- berechnungen (molare Masse, molares Volumen etc.)
	Analysemethoden zum Nachweis von Ionen und Molekülen (z. B. Fällungen, Fotometrie)	hierzu in jedem Fall: Nachweis für Halogenidionen und Kohlenstoffdioxid
	Definition des chemischen Gleichgewichts	
	Modellversuche zum chemischen Gleichgewicht und seiner Einstellung	
	Statische und dynamische Vorstellungen	
2. Massenwirkungs- gesetz	Experimentelle Erarbeitung (z. B. Bildung und saure Hydrolyse eines Esters)	hierzu in jedem Fall: Bildung und saure Hydrolyse eines Esters;
	Berechnung von Gleichgewichts- konstanten	Berechnungen zur Massenwirkungs- konstante aus gegebenen Gleichgewichtskonzentrationen
3. Prinzip vom Zwang	Beeinflussung der Lage von Gleichgewichten durch Druck, Temperatur und Konzentration	
	Anwendungen des Prinzips vom Zwang in Natur, Technik und Industrie; z.B. Haber-Bosch- Verfahren; Ostwald-Verfahren; Kontakt-Verfahren; Hochofen- prozess; Methanolherstellung	hierzu in jedem Fall: Haber-Bosch-Verfahren mit Ammoniakgleichgewicht
	Gleichgewichte an Membranen	freigestellt
4. Anwendungen des Massenwirkungs- gesetzes	Stärke von Säuren und Basen (p K_S - und p K_B -Werte); Ionenprodukt des Wassers	
	pH-Werte und ihre Berechnung	bei den Berechnungen: in jedem Fall Berechnung von pH-Werten starker Säuren/Basen sowie von pH-Werten schwacher Säuren mit Hilfe von pK_s -Werten
	Säure-Base-Indikatoren	allgemeines Prinzip

Q1 LK	Chemie der Kohlenwasserstoffverbindungen I: Kohlenwasserstoffverbindungen und funktionelle Gruppen	
Verbindliche Unterrichtsinhalte/Aufgaben		Präzisierung im Hinblick auf das Landesabitur
1. Eigenschaften und Reaktionen von Kohlenstoff- Wasserstoff- Verbindungen		
Alkane, Cycloalkane, Alkene, Alkine, Halogenkohlenwasser- stoffe	Auf der Grundlage der Unterrichtsinhalte von E2: (Nomenklatur, homologe Reihen, Isomerie, Struktur-Eigenschafts- Beziehungen)	
	Nomenklatur, räumliche Strukturen (Konstitution/Konfiguration), Isomerie (E/Z-Isomerie); induktive Effekte	
	Reaktionstyp und Reaktionsmechanismus der radikalischen Substitution	
	Reaktionstyp und Reaktionsmechanismus der elektrophilen Addition (X ₂ , HX) und der Eliminierung; Nachweis der C-C-Mehrfach- bindung (Addition von Brom)	hierzu in jedem Fall: Einfluss des positiven und des negativen induk- tiven Effektes auf die Addition; keine Differenzierung nach E ₁ und E ₂ .
2. Alkanole	Auf der Grundlage der Unterrichtsinhalte von E2: (Nomenklatur, Homologe Reihen, Isomerie/Konstitutionsisomerie, Struktur-Eigenschafts-Beziehungen)	zu chemischen Reaktionen auch: Verbrennung und unvollständige Oxidation Anwendung von Oxidationszahlen; als Oxidationsmittel in jedem Fall: Kupfer-(II)-oxid, Dichromat- Ionen
	Reaktionen der Alkanole; Reaktionstypen (Substitution, Alkanolatbildung)	
	Reaktionsmechanismus der nukleophilen Substitution (SN ₁ und SN ₂); induktive/sterische Effekte	
	Redox-Reaktionen primärer und sekundärer Alkanole; Unterschied zu tert. Alkanolen, Anwendung von Oxidationszahlen, Nachweis der organischen Reaktionsprodukte	

Verbindliche Unterric	htsinhalte/Aufgaben	Präzisierung im Hinblick auf das Landesabitur
	Mehrwertige Alkanole (Glycol, Glycerin): Verwendung, Eigenschaften und Reaktionen	
3. Carbonyl- verbindungen	Strukturmerkmal der Aldehydgruppe Eigenschaften und Verwendung von Methanal und Ethanal	
	Nachweis der reduzierenden Wirkung der Aldehydgruppe	hierzu in jedem Fall: Fehlingsche Probe
	Additionsreaktionen	hierzu in jedem Fall: Hydratisierung, Acetalbildung
	Ketone, Bindungsverhältnisse der Keto-Gruppe	
4. Alkansäuren und ihre Derivate	Homologe Reihe und ausgewählte Eigenschaften von Monocarbonsäuren; Salze	bei der Acidität in jedem Fall auch: positiver und negativer induktiver Effekt
	Ester und ihre Bedeutung (Fruchtessenzen und Lösungsmittel)	
	Reaktionstyp und Reaktionsmechanismus der Esterbildung und Esterspaltung	bei der Esterspaltung in jedem Fall: <i>alkalische</i> Hydrolyse (nach Schul-Lehrbuch)
	Derivate der Monocarbonsäuren (Hydroxy- und Aminosäuren, Halogenalkansäuren)	struktureller Aufbau
	Beispiele für Di-/Trisäuren	
Spiegelbildisomerie	Milchsäure, Weinsäure, asymmetrisches Kohlenstoffatom, Fischer-Projektion	

Verbindliche Unterrichtsinhalte/Aufgaben		Präzisierung im Hinblick auf das Landesabitur
5. Aromatische Kohlenwasserstoff- verbindungen	Benzen: Eigenschaften und aromatische Struktur; Mesomerie	
	Geschichte der Strukturaufklärung des Benzens	freigestellt
	Reaktionstyp und Reaktionsmechanismus der elektrophilen Substitution	hierzu in jedem Fall: Mechanismus der Halogenierung, Nitrierung; positive und negative mesomere Effekte
	Reaktionsmechanismus der elektrophilen Zweitsubstitution	hierzu in jedem Fall auch: dirigierende Wirkung des Erst- substituenten
	Homologe und Derivate des Benzens	hierzu in jedem Fall: Phenol, Anilin, Toluen
		hierzu in jedem Fall: <i>vereinfachtes</i> Orbitalmodell zu pi- und sigma- Bindung (<i>keine</i> HOMO-, LUMO- Zustände), Hybridisierung (sp, sp ² , sp ³) im Hinblick auf C- und O- Atome

Q2 LK	Chemie der Kohlenwasserstoffverbindungen II: Technisch und biologisch wichtige Kohlenwasserstoffverbindungen	
Verbindliche Unterrich	ntsinhalte/Aufgaben	Präzisierung im Hinblick auf das Landesabitur
1. Naturstoffe		
Fette	Bau, Eigenschaften, Reaktionen; Gewinnung und Verarbeitung	Gewinnung und Verarbeitung freigestellt; bei Bau und Eigenschaften in jedem Fall auch Unterscheidung von gesättigten und ungesättigten Fettsäureresten
	Fetthärtung (Margarineherstellung)	
	Untersuchung von Speisefett (z. B. Bestimmung der Iodzahl, Verseifungszahl; Gehalt an gesättigten und ungesättigten Fettsäuren)	freigestellt
	Bedeutung für die Ernährung; Kosmetika	freigestellt
Kohlenhydrate	Mono-, Di- und Polysaccharide: Vorkommen, Eigenschaften und Strukturen	hierzu in jedem Fall: Glucose, Fructose, Maltose, Saccharose, Lactose, Stärke, Cellulose; Haworth/Fischer
	Optische Aktivität und Stereoisomerie	hierzu in jedem Fall: asymmetrisches C-Atom; D-/L-Konfiguration; Enantiomere; Racemat; Diastereomere; Anomere
	Reaktionen/Nachweisreaktionen; Bedeutung und Verwendung	bei den Nachweisreaktionen in jedem Fall: Fehlingsche Probe, Jod-Stärke-Reaktion
Aminosäuren, Peptide, Polypeptide	Struktur und Eigenschaften natürlicher Aminosäuren	
	Peptidbindung	
	Strukturen und Strukturaufklärung von Eiweißen	Strukturaufklärung freigestellt
	Vorkommen und Bedeutung	
	Nachweisreaktionen für Aminosäuren und Eiweiße	freigestellt
	Hydrolyse von Peptiden	Mechanismus freigestellt
	Zwitter-Ion, isoelektrischer Punkt	

Verbindliche Unterrichtsinhalte/Aufgaben		Präzisierung im Hinblick auf das Landesabitur
2. Synthetische Makromoleküle	Klassifizierung von Kunststoffen	
	Aufbau von Makromolekülen	
	Modifizierte Naturstoffe	freigestellt
	Reaktionstypen zur Verknüpfung von Monomeren zu Makro- molekülen (Polymerisation, Polykondensation, Polyaddition)	Synthesereaktionen von PE, PVC, Polystyrol, Polyester, Polyamide, PU (keine technische Darstellung)
	Reaktionsmechanismen	bei der Polymerisation in jedem Fall: Radikalischer Mechanismus
	Zusammenhänge zwischen Struktur und Eigenschaften	
	Vor- und Nachteile bei der Verarbeitung und Verwendung	freigestellt
	Umweltprobleme bei der Herstellung, Verarbeitung, Wie- derverwertung und Beseitigung	freigestellt
	Pyrolyse und Recycling; Kunststoffabfälle	freigestellt

Q3 LK	Antrieb und Steuerung chemi	scher Reaktionen
Verbindliche Unterricht	tsinhalte/Aufgaben	Präzisierung im Hinblick auf das Landesabitur
1. Enthalpie, Entropie	Energieformen; Reaktionswärme bei konstantem Druck (Standardbildungs- und Reaktionsenthalpie); Messung einer Reaktionsenthalpie; spontan ablaufende endotherme Vorgänge; Unordnung; Entropie (Standard- und Reaktionsentropie); Energiediagramme; Berechnung von ΔH _R -Werten	
2. Geschwindigkeit chemischer Reaktionen	Reaktionszeit; Reaktionsgeschwindigkeit (Definition und experimentelle Ermittlung; c/t-Diagramme)	Berechnungen hier freigestellt
	Anwendung analytischer Verfahren zur Messung der Änderung des Reaktionsverlaufs (z.B. Fotometrie, Maßanalyse, Leitfähigkeits- messungen)	freigestellt
	Einfluss verschiedener Faktoren (z.B. Stoff, Konzentration, Temperatur, Zerteilungsgrad, Druck); Aktivierungsenergie und Katalyse/Katalysatoren	Berechnungen hier freigestellt
3. Umkehrbare Reaktionen und chemisches Gleichgewicht	Modellversuche zum chemischen Gleichgewicht und seiner Einstellung; statische und dynamische Gleichgewichte; Nachweis des gleichzeitigen Vorliegens von Edukten und Produkten an ausgewählten Beispielen (Lösungsgleichgewichte, Gasgleichgewichte, Protolysen als umkehrbare Reaktionen und Säure-Base-Gleichgewichte)	als Beispiele hierzu in jedem Fall: Iod-Wasserstoff-Gleichgewicht, Ester-Gleichgewicht Stoffmengen- und Konzentrationsberechnungen (molare Masse, molares Volumen etc.)
	Redox-Gleichgewichte und ihre quantitative Betrachtung (Nernst-Gleichung)	Berechnungen mit Hilfe der Nernst- Gleichung freigestellt
	Analysemethoden zum Nachweis von Ionen und Molekülen (z.B. Fällungen, Fotometrie)	hierzu in jedem Fall: Nachweis für Halogenidionen und Kohlenstoffdioxid
	Gleichgewichtszustände an Beispielen	

Handreichungen zum Lehrplan

Verbindliche Unterrichtsinhalte/Aufgaben		Präzisierung im Hinblick auf das Landesabitur
4. Massenwirkungs- gesetz	Experimente zum und Anwendung des Massenwirkungsgesetzes (z. B. Bildung oder saure Hydrolyse eines Esters)	hierzu in jedem Fall: Bildung und saure Hydrolyse eines Esters
	Berechnung von Gleichgewichts- konstanten	
5. Prinzip vom Zwang	Beeinflussung der Lage von Gleichgewichten durch Druck, Temperatur und Konzentration; Anwendung des Prinzips vom Zwang in der Natur, Technik und Industrie an Beispielen (Haber- Bosch-Verfahren; Ostwald-Verfahren; Kontakt-Verfahren; Hochofenprozess; Methanolher- stellung; Gleichgewichte an Membranen; Redox-Gleichgewichte; Methyl-tertbutylether- Synthese; Biotechnologische Herstellung von Zitronensäure etc.)	hierzu in jedem Fall: Haber-Bosch-Verfahren mit Ammoniakgleichgewicht
6. Anwendungen des Massenwirkungs- gesetzes	Autoprotolyse und Ionenprodukt des Wassers; auch mehrstufige Protolysen und Protolysen von Salz-Lösungen; pH-Werte und ihre Berechnung; Stärke von Säuren und Basen (p <i>K</i> _S - und p <i>K</i> _B -Werte)	Berechnungen bei starken und schwachen Säuren bzw. Basen (pH-Werte, p <i>K_S</i> - und p <i>K_B</i> -Werte)
	Säure-Basen-Indikatoren	hierzu in jedem Fall: Titration jeweils einer schwachen und einer starken einprotonigen Säure; Interpretation von Titrationskurven mit Berechnungen zu Ausgangs- konzentration und Äquivalenzpunkt

Stand: 20.06.2012