

Lecture 6

Mutual coupling in antenna arrays II:

Solving "million +" Method-of-Moments problem on a personal computer

Lecturer: **Dr Quentin Gueuning** (qdg20)

Computational Electromagnetics (CEM)

S. Sharma, AIMx: An Extended Adaptive Integral Method for the Fast Electromagnetic Modeling of Complex Structures, 2020

R. Maaskant, Large Antenna Arrays simulations, https://www.astron.nl/, 2007

D. Gonzalez, Gaussian Ring Basis Functions for the Analysis of Modulated Metasurface Antennas, 2015.

D.B. Davidson, Current capabilities for the full-wave electromagnetic modelling of dishes for SKA, 2013

CEM – Hydrogen Intensity and Real-time AMBRIDGE Analysis experiment (HIRAX)

6m = 16 wavelengths at 800 MHz

Single antenna mesh with ~100.000 unknowns

- electrically large antenna
- soil underneath
- 256 to 1024 antennas
- Densely packed (0.5m min. spacing)
- Regular, hexagonal or pseudo random layouts
- 1MHz sampling (400MHz band)
- 3-4 digits accuracy on the impulse response

SKA-low simulations in Cambridge

Sub-wavelength

SKALA4.1, 10.000 basis functions, 0.2 wavelength footprint at 50 MHz

Intermediate size

1 station, 256 irregular-spaced antennas

Unit-gain beam, model 1, vogel, pol Y, freq = 110MHz

Electrically-large

23 stations, 5888 irregular-spaced antennas

Finite ground plane

and infinite soil

Speed-ups

Intra-station MC

COMPUTATIONAL TIME OBTAINING EMBEDDED ELEMENT PATTERNS OF A SKA1-LOW STATION AT 110 MHz

	CST	WIPL-D	HARP
Simulation Time	96 hours	97 hours	0.5 min.

commercial softs in-house code

10.000 times faster

Inter-station MC

in-house code 1 in-house code 2

Solver	HARP			FDS		
Nb. of stations	1	7	1	7	23	
Peak mem (GB)	4.4	585	0.8	27	160	
Facto./Fill time (mins)	0.6	201	0.5	6.4	53	
Solve time (mins)	0.4	33	0.03	3.6	51	
Total time (mins)	1	234	0.53	10	104	

+20 times faster and less mem.

Finite ground plane and soil

Step	Required Time
Computation of poles, residues for (22)	15 sec / MBF
Tabulation of the field radiated	
by every MBF on large rectangular	
grids using (12) and (22)	30 sec/MBF
Pre-computation of the Fourier transform	
of the currents on one angular sector	
of the ground plane for (29)	90 sec
Ground plane meshing and calculation	
of Z_{gg}	50 min_
Direct and reflected radiation light	

How do we solve problems faster?

Top ten algorithms of the (past) century

Top Ten algorithms of the Century

Provenant de diverses sources sur le Web

Integer relation Detection

Fast Fourier transform	~	Quicksort Algorithm For Sorting	~	Simplex method for linear program	~
Krylov subspace iteration methods	~	Metropolis algorithm for Monte Car	~	The decompositional approach to	~
The Fortran optimizing compiler	~	QR algorithm for computing eigenv	~	Fast multipole method	~

Structure

- 1. Green's function, potential vector and fields
- 2. Method-of-Moments
- 3. Macro-Basis functions
- 4. Multipole and Interpolatory methods

Green's function

In the frequency domain, the Helmholtz equation for the vector potential **A** assuming a "point" source current **J** is written as

$$\nabla^2 \mathbf{A}(\mathbf{r}) + k^2 \mathbf{A}(\mathbf{r}) = \mathbf{J}(\mathbf{r}) \qquad \mathbf{J}(\mathbf{r}) = \delta(\mathbf{x})\delta(\mathbf{y})\delta(\mathbf{z})\hat{\mathbf{z}}$$

The solution is the 3D free-space Green's function,

with the distance $R = \sqrt{x^2 + y^2 + z^2}$ and free-space wavenumber k

Fields and Currents

The potential vector \mathbf{A} is obtained from a **convolution product** between the electric current density \mathbf{J} (in A/m³) and the Green's function \mathbf{G} ,

$$\mathbf{A}(\mathbf{r}) = \iiint \mathbf{J}(\mathbf{r}') \, \mathbf{G}(\mathbf{k}, \mathbf{R}) \, \mathrm{dV}'$$

with

$$R = \sqrt{(x'-x)^2 + (y'-y)^2 + (z'-z)^2}$$

Fields and Currents

In free-space, the scattered magnetic and electric fields are given from spatial derivatives of the vector potential,

$$\mathbf{H}(\mathbf{r}) = \nabla \times \mathbf{A}(\mathbf{r}) \qquad \qquad \mathbf{E}(\mathbf{r}) = -\mathrm{jk}\eta \left(\mathbf{A}(\mathbf{r}) - \frac{1}{\mathrm{k}^2} \nabla \nabla \cdot \mathbf{A}(\mathbf{r}) \right)$$

This yields,

$$\mathbf{E}_{sc}(\mathbf{r}) = -jk\eta \iiint \mathbf{J}(\mathbf{r}') \cdot \underline{\mathbf{G}}_{e}(k, R) dV'$$

$$\mathbf{H}_{sc}(\mathbf{r}) = \iiint \mathbf{J}(\mathbf{r}') \cdot \underline{\mathbf{G}}_{h}(k, R) dV'$$

The 3x3 matrices $\underline{\underline{G}}_e$, $\underline{\underline{G}}_h$ are called dyadic Green's functions

The Electric Field Integral Equation (EFIE)

Tangential components of the total electric field \mathbf{E}_{t} (incident + scattered) must cancel out on the surface of a perfectly electric conductor (PEC)

$$\hat{\mathbf{n}} \times \mathbf{E}_{\text{tot}} = \hat{\mathbf{n}} \times (\mathbf{E}_{\text{inc}} + \mathbf{E}_{\text{sc}}) = 0$$

Expressing \mathbf{E}_{sc} as function of \mathbf{J} leads to the EFIE

$$-\widehat{\mathbf{n}} \times \mathbf{E}_{\text{inc}}(\mathbf{r}) = \widehat{\mathbf{n}} \times -jk\eta \iint \mathbf{J}(\mathbf{r}') \cdot \underline{\underline{\mathbf{G}}}_{e}(\mathbf{k}, \mathbf{R}) dS'$$

The Method-of-Moments (MoM)

The surface current is expanded into **elementary** basis functions

Rao-Wilton-Glisson (RWG)

$$\mathbf{J}(\mathbf{r}) \approx \sum_{n=1}^{N_b} \mathbf{i_n} \, \mathbf{B_n}(\mathbf{r})$$

Inserting this expansion into the EFIE and using a Galerkin testing leads to the MoM equations,

$$-\iint \mathbf{B}_{m}(\mathbf{r}) \cdot \mathbf{E}_{\text{inc}}(\mathbf{r}) \, dS_{t} = -jk\eta \sum_{n=1}^{N_{b}} \mathbf{i}_{n} \iint \mathbf{B}_{m}(\mathbf{r}) \cdot \iint \underline{\underline{\mathbf{G}}}_{e}(\mathbf{k}, \mathbf{R}) \cdot \mathbf{B}_{n} (\mathbf{r}') \, dS_{b} dS_{t}$$

Incident field

Unknown coefficient

Testing function

Basis function

The Method-of-Moments (MoM)

UNIVERSITY OF CAMBRIDGE

MoM, scaling

~8000 unknowns per antenna

altair FEKO

For 2 antennas, per frequency,

120 CPUs Matrix filling time: 1 min

2TB RAM Solve time : 12 secs

machine Matrix size: 1 GB

For 256 antennas, per frequency

Matrix filling time: 11 days

Estimated Solve time: 291 days

Matrix size: 65 TB

How do we speed things up?

1. Reduce the number of unknowns

the current on each antenna in the array can be decomposed into a (small) set of vectors of the solution space, called MBF or « Macro Basis Functions », precomputed beforehand.

Macro-Basis Functions (MBFs)

The current distribution **J** on each antenna is expanded into a small number of modes defined over the surface of an antenna,

$$\mathbf{J}(\mathbf{r}) \approx \sum_{n=1}^{N_{\text{mbf}}} \mathbf{x}_n \, \mathbf{J}_n(\mathbf{r})$$

with each MBF J_n expressed in terms of elementary BF B_n

$$\mathbf{J}_{\mathrm{m}}(\mathbf{r}) = \sum_{n=1}^{N_{\mathrm{b}}} \mathbf{q}_{\mathrm{mn}} \, \mathbf{B}_{\mathrm{n}}(\mathbf{r})$$

Reduced system of equations

By stacking the MBF coefficients into a $N_b \times N_m$ matrix \mathbf{Q} , we can compress the interactions between antenna "a" and "b" using

$$\mathbf{Z}_{r,ab} = \mathbf{Q}^{H} \mathbf{Z}_{ab} \mathbf{Q}$$

 $\mathbf{v}_{r,a} = \mathbf{Q}^{H} \mathbf{v}_{a}$

From there, we can obtain the elem. BF coefficients for each antenna using

$$\mathbf{i}_a = \mathbf{Q} \mathbf{x}_a$$

$$\begin{array}{c|c}
 & N_{a} \times N_{mbf} \\
 & \downarrow \\
 & Z \\
 & Z
\end{array}$$

$$\begin{array}{c|c}
 & \mathbf{Z}_{r,11} & \cdots & \mathbf{Z}_{r,1N_{a}} \\
 & \vdots & \ddots & \vdots \\
 & \mathbf{Z}_{r,N_{a}1} & \cdots & \mathbf{Z}_{r,N_{a}N_{a}}
\end{array}$$

$$\begin{bmatrix}
 & \mathbf{X}_{1} \\
 & \vdots \\
 & \mathbf{X}_{N_{a}}
\end{bmatrix} = \begin{bmatrix}
 & \mathbf{v}_{r,a} \\
 & \vdots \\
 & \mathbf{v}_{r,a}
\end{bmatrix}$$

For SKALA4.1, per antenna, we have $N_b = 8000$ and $N_m = 50-100$

Generation of MBFs

MBFs are generated by solving a much smaller EM problem

first-order bounces

How do we speed things up?

2. Accelerate the computation of the MoM interactions

Evaluate the interactions in a group-by-group manner, instead of computing interactions between all the basis functions.

A simple planar geometry

The radiation integral is purely a 2D convolution,

$$\mathbf{A}(\mathbf{x}_{o}, \mathbf{y}_{o}) = \iint \mathbf{J}(\mathbf{x}_{s}, \mathbf{y}_{s}) G(\mathbf{k}, \mathbf{x}_{o} - \mathbf{x}_{s}, \mathbf{y}_{o} - \mathbf{y}_{s}) d\mathbf{x}_{s} d\mathbf{y}_{s}$$

We can simply use the convolution theorem,

Spectral-domain

The integral reaction in the spatial domain is expressed by

$$Z_{mn} = -jk\eta \iint \mathbf{B}_{m}(\mathbf{r}_{t}) \cdot \iint \underline{\underline{\mathbf{G}}}_{e}(k,R) \cdot \mathbf{B}_{n}(\mathbf{r}_{b}) dS_{b}dS_{t}$$

In the spectral domain, i.e. $\mathbf{k} = \mathbf{k_x} \, \hat{\mathbf{x}} + \mathbf{k_y} \, \hat{\mathbf{y}} + \mathbf{k_z} \, \hat{\mathbf{z}}$ with $\mathbf{k_z} = \left(k^2 - k_x^2 - k_y^2\right)^{1/2}$ by

$$Z_{mn} = \frac{-jk\eta}{(2\pi)^2} \iint_{-\infty}^{\infty} \widetilde{\mathbf{B}}_{m}(\mathbf{k}) \cdot \widetilde{\mathbf{B}}_{n} (-\mathbf{k}) G(k_z) dk_x dk_y$$

Complex pattern of BF "m"

$$\widetilde{\mathbf{B}}_{\mathrm{m}}(\mathbf{k}) = \iint (\mathbf{B}_{\mathrm{m}}(\mathbf{r}) - (\mathbf{k} \cdot \mathbf{B}_{\mathrm{m}}(\mathbf{r})) \mathbf{k}) e^{j\mathbf{k}\cdot\mathbf{r}} dS$$

Spectral Green's function

$$G(k, k_{\rho}) = \frac{e^{-jk_{z}z_{o}}}{2jk_{z}}$$

Multipoles expansion

The multipole expansion of the free-space Green's function,

$$\frac{e^{-jkR}}{4\pi R} = \frac{-jk}{(4\pi)^2} \int_0^{2\pi} \int_0^{\pi} e^{j\mathbf{k}\cdot\mathbf{r}_m} \mathbf{T}(\mathbf{r}_{mn}, \mathbf{k}) e^{-j\mathbf{k}\cdot\mathbf{r}_n} \sin\theta \, d\theta d\phi$$

relative distance between two groups

3D multipoles translation function

$$\mathbf{T}(\mathbf{r}_{mn}, \mathbf{k}) = \sum_{l=0}^{L} (2l+1)j^{-l}h_l^{(2)}(k\mathbf{r}_{mn})P_l(\hat{\mathbf{k}}.\hat{\mathbf{r}}_{mn})$$

 $\hat{\mathbf{k}} = \sin\theta\cos\phi\,\hat{\mathbf{x}} + \sin\theta\sin\phi\,\hat{\mathbf{y}} + \cos\theta\,\hat{\mathbf{z}}$

Multipoles expansion

Multipoles decomposition of a **far** interaction between two Macro Basis Functions:

$$Z_{mn} = c \int_{0}^{2\pi} \int_{0}^{\pi} \widetilde{\mathbf{B}}_{m}(-\mathbf{k}) \cdot \widetilde{\mathbf{B}}_{n}(\mathbf{k}) \, \mathrm{T}(\mathbf{r}_{mn}, \mathbf{k}) \sin \theta d\theta d\phi$$

Radiation pattern of testing function

Radiation pattern of source function

multipoles translation function

Multipoles expansion

$$L \cong 2kr_B + 1.8d_0^{\frac{2}{3}}(2kr_B)^{\frac{1}{3}}$$

Trying to express near-field from far-field information -> ill-conditioned !

Over-exponential behaviour as function of order I -> Low-order terms of the translation lost in numerical noise of high order terms

Interpolatory method

This technique interpolates the MBF interactions in the "baselines" domain $\mathbf{r} = r\cos\alpha \hat{x} + r\sin\alpha \hat{y}$ by means of an empirical model which is harmonic in α and polynomial in $(kr)^{-1}$

$$Z_{mn}(r,\alpha) = e^{-jkr} \sum_{p=-P}^{P} e^{jp\alpha} \sum_{q=0}^{Q} c_{pq} \left(\frac{1}{kr}\right)^q$$
 phase Harmonic Polynomial factor

Interpolatory method

Interpolatory method

Thank you

qdg20@cam.ac.uk