Дисциплина электроника

Лабораторный практикум №6

по теме: «Исследование и настройка усилительных и ключевых устройств на биполярных и полевых транзисторах»

Работу выполнил:

студент группы ИУ7-36

Жаворонкова Алина

Цель практикума

Получить навыки в использовании базовых возможностей программы Microcap и знания при исследовании и настройке усилительных и ключевых устройств на биполярных и полевых транзисторах.

Эксперимент 4

$$\begin{split} R_k &= 510 \text{ Om} \\ E_k &= 5 \text{ B} \\ U_{\text{Bx}} &= 5 \text{ B} \\ S &= 1 \\ \beta &= 157.621 \\ U_{\text{K9}} &= 0.2 \text{ B} \\ U_{\text{69}} &= 0.7 \text{ B} \end{split}$$

$$\begin{split} Ik_{\text{hac}} &= \left(E_k - U_{\text{\tiny K3}} \right) / \; R_k = 9.4 \; mA \\ I\delta_{\text{hac}} &= Ik_{\text{hac}} / \; \beta = 0.06 \; mA \\ R_\delta &= \left(U_{\text{\tiny BX}} - U_{\text{\tiny 63}} \right) / \left(I\delta_{\text{\tiny Hac}} * \; S \right) = 71667 \; Om \end{split}$$

Строим схему:

При степени насыщения 1, имеем:

Используя Stepping, изменяем значение сопротивления R2 (Rb) и получаем выходные импульсы для степеней насыщения 1, 2, 5, 20:

Определим длительность переднего и заднего фронтов, время рассасывания и напряжение на коллекторе в режиме насыщения.

S	t ₁₀ , HC	t ₀₁ , HC	t _p , нс	U _k , B
2	211	316	262	0,484
5	113	231	157	0,441
20	17	121	101	0,405

Включим в схему диод Шоттки:

И на графике увидим уменьшение времени рассасывания:

Эксперимент 5

Построим схему, подберем емкость форсирующего конденсатора:

Получился инвертор, близкий к идеальному:

Убираем конденсатор, заменяем транзистор PNP на 2N3905:

Выходной импульс при степенях насыщения 1, 2, 5, 20:

Расчет фронтов, времени рассасывания и напряжения на коллекторе в режиме насыщения в зависимости от тока базы для нового транзистора:

Rb	0.9	0.1	Передний	Задний	Время	Напряжение
	амплитуды	амплитуды	фронт, нс	фронт,	рассасывания,	на
				нс	нс	коллекторе
71667	-1.7293	-4.4197	670	320	52	0.230
35833	-0.6997	-4.3053	322	187	29	0.204
14333	-0.5413	-4.2877	183	284	17	0.189
3583	-0.3793	-4.2687	281	65	10	0.181

Эксперимент 6

Построим схему мультивибратора:

Получим осциллограммы напряжений в мультивибраторе:

По графику с помощью слайдеров получаем параметры импульсов транзистора: напряжение для открытого состояния: $U\kappa \sim 0.3 B$; для закрытого состояния: $U\kappa \sim 12 B$; время в открытом состоянии $\sim 533 \, \text{мкc}$, в закрытом $\sim 400 \, \text{мкc}$.

Длительность импульсов можно изменить путем изменения постоянной времени одной из цепочек R3C2 или R2C1. Увеличим R2 в 2 раза:

Уменьшим R2 в 2 раза:

Заменим транзистор на 2N3905:

Получим осциллограммы напряжений:

На графике видим изменение длительности импульсов по сравнению с транзистором 2N3307. Поэтому делаем вывод, что замена транзистора влияет на длительность колебания.

По графику с помощью слайдеров получаем параметры импульсов транзистора: напряжение для открытого состояния: $U\kappa \sim 0.168 B$; для закрытого состояния: $U\kappa \sim 12 B$; время в открытом состоянии $\sim 267 \text{ мкс}$, в закрытом $\sim 464 \text{ мкc}$.

- 1. Какие элементы имеют основное влияние на частоту мультивибратора? Транзисторы, цепочки ёмкостей и сопротивлений базы
- 2. <u>Как влияет замена транзистора на параметры колебания?</u> Меняется длительность импульса и напряжение на коллекторе в открытом состоянии.
- 3. Чем отличается работа математической модели мультивибратора от реального устройства?

Математическая модель мультивибратора, в отличие от реального устройства, нуждается во нарушении баланса в плечах, только тогда будет возможно получить колебания.