WHAT IS CLAIMED IS:

- 1 1. A beam control processor for use with a transceiver employing an inertial sensor and
- 2 capable of transmitting a laser beam to an other transceiver, comprising:
- a line-of-sight estimation subsystem configured to provide a line-of-sight pointing vector
- 4 of said laser beam based on acceleration inertial motion data provided by said inertial sensor; and
- 5 a line-of-sight control subsystem configured to generate beam steering commands for
- 6 said transceiver as a function of said line-of-sight pointing vector.
- 1 2. The beam control processor as recited in Claim 1 wherein said line-of-sight estimation
- 2 subsystem is configured to provide said line-of-sight pointing vector of said laser beam based on
- 3 receiver orientation feedback data and transmit position feedback data associated with said
- 4 transceiver.
- 1 3. The beam control processor as recited in Claim 1 further comprising a coordinate
- 2 transform subsystem configured to provide line-of-sight data about said other transceiver based
- 3 on outer control loop data including a line-of-sight pointing data and an inertial motion of said
- 4 other transceiver.
- 1 4. The beam control processor as recited in Claim 3 further comprising a relative line-of-
- 2 sight estimation subsystem configured to provide line-of-sight commands based on said line-of-
- 3 sight data about said other transceiver and said line-of-sight pointing vector associated with said
- 4 transceiver.

- 1 5. The beam control processor as recited in Claim 4 wherein said line-of-sight control
- 2 subsystem is configured to provide said beam steering commands based on said line-of-sight
- 3 commands and a beam center error associated with said other transceiver.
- 1 6. The beam control processor as recited in Claim 1 further comprising a residual beam
- 2 centering error subsystem configured to provide outer control loop data based on line-of-sight
- 3 data and a beam centering error of said transceiver.
- 1 7. The beam control processor as recited in Claim 1 wherein said line-of-sight control
- 2 subsystem is configured to provide receiver orientation commands as a function of said line-of-
- 3 sight pointing vector.

- 1 8. A method of providing beam steering commands for use with a transceiver employing an
- 2 inertial sensor and capable of transmitting a laser beam to an other transceiver, comprising:
- providing a line-of-sight pointing vector of said laser beam based on acceleration inertial
- 4 motion data provided by said inertial sensor; and
- 5 generating beam steering commands for said transceiver as a function of said line-of-
- 6 sight pointing vector.
- 1 9. The method as recited in Claim 8 wherein said providing said line-of-sight pointing
- 2 vector of said laser beam is based on receiver orientation feedback data and transmit position
- 3 feedback data associated with said transceiver.
- 1 10. The method as recited in Claim 8 further comprising providing line-of-sight data about
- 2 said other transceiver based on outer control loop data including a line-of-sight pointing data and
- 3 an inertial motion of said other transceiver.
- 1 11. The method as recited in Claim 10 further comprising providing line-of-sight commands
- 2 based on said line-of-sight data about said other transceiver and said line-of-sight pointing vector
- 3 associated with said transceiver.
- 1 12. The method as recited in Claim 11 wherein said generating said beam steering commands
- 2 is based on said line-of-sight commands and a beam center error associated with said other
- 3 transceiver.
- 1 13. The method as recited in Claim 8 further comprising providing outer control loop data
- 2 based on line-of-sight data and a beam centering error of said transceiver.

1 14. The method as recited in Claim 8 further comprising generating receiver orientation

2 commands as a function of said line-of-sight pointing vector.

1	15. A	transceiver, comprising:
2	a h	ousing that provides a foundation for said transceiver;
3	an	inertial sensor, coupled to said housing, configured to provide acceleration inertial
4	motion da	ta associated with said transceiver;
5	a t	ransmitter element configured to transmit a transmitted laser beam to an other
6	transceive	er;
7	a ı	receiver element configured to receive a received laser beam from an other transceiver;
8	and	
9	a	control processor, coupled to said transmitter and receiver elements, configured to
10	provide b	eam steering control for said transmitter element and orientation control for said
11	receiver element, including:	
12		a beam control processor, including:
13		a line-of-sight estimation subsystem configured to provide a line-of-sight pointing
14	vector of	said transmitted laser beam based on acceleration inertial motion data provided by said
15	inertial se	ensor, and
16		a line-of-sight control subsystem configured to generate beam steering commands
17	for said t	ransmitter element as a function of said line-of-sight pointing vector.
		u
1	16. T	he transceiver as recited in Claim 15 wherein said line-of-sight estimation subsystem is
2	configur	ed to provide said line-of-sight pointing vector of said transmitted laser beam based on
3	receiver	orientation feedback data and transmit position feedback data associated with said
4	transceiv	ver.

- 1 17. The transceiver as recited in Claim 15 wherein said beam control processor further
- 2 comprises a coordinate transform subsystem configured to provide line-of-sight data about said
- 3 other transceiver based on outer control loop data including a line-of-sight pointing data and an
- 4 inertial motion of said other transceiver.
- 1 18. The transceiver as recited in Claim 17 wherein said beam control processor further
- 2 comprises a relative line-of-sight estimation subsystem configured to provide line-of-sight
- 3 commands based on said line-of-sight data about said other transceiver and said line-of-sight
- 4 pointing vector associated with said transceiver.
- 1 19. The transceiver as recited in Claim 18 wherein said line-of-sight control subsystem is
- 2 configured to provide said beam steering commands based on said line-of-sight commands and a
- 3 beam center error associated with said other transceiver.
- 1 20. The transceiver as recited in Claim 15 wherein said beam control processor further
- 2 comprises a residual beam centering error subsystem configured to provide outer control loop
- data based on line-of-sight data and a beam centering error of said transceiver.
- 1 21. The transceiver as recited in Claim 15 wherein said line-of-sight control subsystem is
- 2 configured to provide receiver orientation commands as a function of said line-of-sight pointing
- 3 vector.