

Muon alignment update: full procedure results

Jim Pivarski, Alexei Safonov

Texas A&M University

6 December, 2007

Overview

- ▶ The key issue in muon alignment: track fits are too flexible!
- ► New 9-pass alignment scheme
- How the parameters were tuned
- Alignment quality

Flexibility of track fits

- Tracks for alignment need to be somewhat independent of the hits; that's why we project from the tracker
- With small Alignment Parameter Errors (APEs), tracks follow the hits too closely, presumably by assuming scattering between each station
- ▶ With large APEs, extrapolation from the tracker is $\mathcal{O}(1 \text{ cm})$, presumably because the muons really do scatter

muon Small APEs

Potential solutions:

- ▶ large APEs, infinite statistics, and hope real scattering is symmetric
 - minimize extrapolations and optimize APEs

Method for minimizing extrapolations, using existing tools

Align one station at a time: e.g. for station 2,

- ightharpoonup Set APE =0 in tracker and station 1
- ► Set APE = medium in station 2
- ► Set APE = large in stations 3 onward
- ▶ Fit tracks through whole detector, only align station 2

Pro: track fit is dominated by extrapolation through only one layer of iron

Con: Very CPU intensive

Two parameters need to be optimized for most stations: "medium" and "large"

Optimizing APEs

Simplified to a 1-dimensional case

- ► All chambers start 1 cm from the correct position; they need to find their way back to zero
- ▶ If APE is too large, they will spread (large stdev (errorbar))
- ▶ If APE is too small, they will converge too slowly (large mean)

Optimizing APEs

Simplified to a 1-dimensional case

- ► All chambers start 1 cm from the correct position; they need to find their way back to zero
- ▶ If APE is too large, they will spread (large stdev (errorbar))
- ▶ If APE is too small, they will converge too slowly (large mean)

Optimized values

	"medium" (cm)	"large" (cm)	
	(APE of aligned)	(APE outside))
MB1	2	5	81 82 84 84 86 85 87 88 89 16 11 188 188 189 18
MB2	0.5	0.5 §	
MB3	0.5	0.5	(537)
MB4	0.7	60	ME 3/2
ME1/1	0.5	0.5	ME 2/2
ME1/2	5	5 💃	ME 1/2
ME1/3	0.5	0.5	ME 3/1 192
ME2/1	0.5	0.5	ME 1/1) 11/10/10/10/10/10/10/10/10/10/10/10/10/1
ME2/2	0.7	0.7	0 200 400 600 600 1000 1200 1400 Z (cm)
ME3/1	0.5	0.5	2 (cm)
ME3/2	0.7		
ME4/1	0.5		

Which degrees of freedom?

- With 6-dof misalignments, we want to align as many degrees of freedom as possible
- Constraints:
 - ▶ MB1–3 measures z and ϕ_x worst, unclear which
 - ▶ MB4 does not measure y or ϕ_x at all
 - lacktriangle ME measures $\phi_{
 m x}$ worst, then unclear between z and $\phi_{
 m y}$
- 8 parameter combinations to try in the barrel, 6 in the endcap
- Tested all combinations with TeV track resolution
- ▶ Marginal best case: let everything float (except MB4 y and ϕ_x)
- ▶ But ME z and ϕ_x distributions were not improved, so I chose to fix them, too

Full procedure

Each pass has 5 iterations

- 1. Align superstructures: wheels and disks
- 2. Pass 1: align MB1 and ME1/1 (large APEs: 2-5 cm)
- 3. Pass 2: align MB2 and ME1/2 (small APEs: 0.5-0.7 cm)
- 4. Pass 3: align MB3 and ME2/1
- 5. Pass 4: align MB4 and ME1/3
- 6. Pass 5: align ME2/2 and ME3/1
- 7. Pass 6: align ME3/2 and ME4/1
- 8. "Stage 3": re-align everything with 500 μ m APEs
- 9. "Stage 4": re-align everything but MB1, ME1/1, and ME1/2 (first step in the muon system) to improve relative alignments

Test for alignment quality

- ▶ Using 66000 muons from 10 pb $^{-1}$ of W decays (85% of the muons from W and Z combined)
- ▶ Starting with complete misalignment: ± 5 mm, ± 5 mrad at all levels (chamber and wheel/disk)
- ▶ Includes known layer misalignments in CSCs (which we won't improve with this procedure)
- Two cases:
 - Ideal tracker
 - ▶ 10 pb⁻¹ misaligned tracker
- ▶ Two methods to judge quality:
 - ▶ Dimuon resolution for 3.5 TeV Z' (where muon alignment matters most)
 - Stdev of local x (global $r\phi$) residual misalignment, for each station

Ideal tracker case

Dashed line: perfect muon system alignment (best-case goal) Grey line: official 10 pb^{-1} scenario (not a mean)

Reds: endcap stations, Blues: barrel stations

Misaligned tracker case

Dashed line: perfect muon system alignment (best-case goal) Grey line: official $10~{\rm pb}^{-1}$ scenario (not a mean)

Reds: endcap stations, Blues: barrel stations

Shown as a dimuon spectrum (ideal tracker case)

Red: before alignment (peaks at 1 TeV)

Darkening shades of gray: alignment passes, ending in blue

Dashed blue: official 10 pb⁻¹ scenario

Dashed black: perfect muon system alignment

14/17

Shown as a dimuon spectrum (misaligned tracker case)

Red: before alignment (peaks at 1 TeV)

Darkening shades of gray: alignment passes, ending in blue

Dashed blue: official 10 pb⁻¹ scenario

Dashed black: perfect muon system alignment

Inverted hierarchy?

- Wheels and disks are better aligned than the chambers
 - wheel/disk (after first pass): 1 mm in x and y, 0.3 mrad in ϕ_z (corresponds to 0.4–2.5 mm in $r\phi$)
 - chambers (after all passes): 0.7–3.2 mm in $r\phi$
- Official scenario has the opposite: 2–3 mm wheel/disks and 0.5 mm chambers
- Our method is particularly good at aligning large structures globally, we need to work on chambers within stations

Other tests in progress

- Robustness: same procedure with a statistical ensemble of 8 starting scenarios (are we looking at a lucky case?)
- ► Full scale: 100 pb⁻¹
- Simplification: replace pass1 pass6 with a single pass that aligns all stations at once (to see if those extra steps are helping at all)

Ideas for improving the algorithm

- ▶ If $10 \times$ statistics improves by $\sqrt{10}$, we will try as many QCD muons as possible
- Use CSC overlaps to align chambers locally? (requires modifications to the track-fitter)

Conclusions

- Post-bugfix, this is the first fully realistic test of the system
- ▶ We want to improve the performance
- ▶ But this is a demonstration that we can at least reach the standard set by the official scenarios