ФЕДЕРАЛЬНОЕ АГЕНТСТВО СВЯЗИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ТЕЛЕКОММУНИКАЦИЙ ИМ. ПРОФ. М.А. БОНЧ-БРУЕВИЧА» (СПбГУТ)

Лабораторная работа №4

Исследование свойств модели резисторного каскада с общей базой в частотной и временной областях на ПК

Выполнила бригада:

Группа ИКТЗ-83

Громов А.А., Миколаени М.С., Мазеин Д.С.

(Ф.И.О., № группы)

(подпись)

Цель работы: Изучить свойства усилительного каскада с общим коллектором (ОК) в режиме малого сигнала. Выполнить анализ в частотной и временной областях. Исследовать свойства каскада при изменении сопротивлений источника сигнала, нагрузки и элементов схемы. Определить входное и выходное сопротивления каскада.

Пункт 1:

Входное сопротивление с учетом и без учета резистора $R_{\mathfrak{p}}$

Таблица 1: Измерение входного сопротивления каскада с ОК

Измерение	Величина входного сопротивления, КОм		
с учётом сопротивления $R_{\mathfrak{p}}$	10,6 МОм		
без учёта сопротивления R_9	19,2 Ом		

Пункт 2:

Выходное сопротивление транзистора и каскада

Выходное сопротивление с учетом $R_{\scriptscriptstyle 9}$ 1,994 кОм Выходное сопротивление без учета $R_{\scriptscriptstyle 9}$ 740,15 кОм

Выводы по пункту 2:

• Входное сопротивление каскада с ОК примерно на 3 порядка больше, чем выходное.

Пункт 3:

АЧХ и ФЧХ каскада

Таблица 2: Измерение АЧХ каскада с ОБ

$K_{\text{скв}}$, Дб	$(K_{\text{скв}}$ - 3), Дб	fн, Гц	fв, МГц	$\Delta f=fв-fн, M\Gamma$ ц
1.84	-1.16	157.45	1,11	1.1098

Выводы по пункту 3:

- Схема с ОК не инвертирует входной сигнал.
- У схемы каскада с ОК рабочая полоса частот больше, чем у схемы с ОЭ.
- Схема каскада с ОК, в отличие от схемы касакада с ОЭ, ослабляет сигнал.

Пункт 4:

Таблица 3: Измерение ПХ каскада с ОК

Таолица 3: Измерение ПХ каскада с ОК							
Время импульса	$t_{\rm M}$ = 25 мкс						
Частота f, Гц	20000						
Осциллограмма импульса							
Измеренный спад вершины импульса Δ , % $\Delta = \frac{U_{\rm ycr} - U_{\rm Bblx}}{U_{\rm ycr}} \cdot 100\%$	2.35						
Рассчитанный спад вершины импульса Δ ,	2.47						
	ой области нарастания импульса						
Измеренное время нарастания импульса	312.8						
$t_{ m H} = t_2 - t_1$, нс Рассчитанное время нарастания импульса $t_{ m H},$ нс Время импульса	$t_{\text{\tiny H}} = 1.25 \; \text{Mc}$						
Частота f, Гц	400						
Осциллограмма импульса							
Измеренный спад вершины импульса Δ , % $\Delta = \frac{U_{\rm ycr} - U_{\rm Bbx}}{U_{\rm ycr}} \cdot 100\%$	71						
Рассчитанный спад вершины импульса Δ , $\%$	124						

Выводы по пункту 4:
• Измеренный спад вершины импульса практически совпадает с рассчитанным спадом вершины импульса;

ное временем	1	3		

Пункт 5

Таблица 4: Оценка влияния параметров схемы на ПХ и АЧХ

№	R_1	R_2	K_{ckb}	$f_{ m H}$	$f_{\mathtt{B}}$	Δ при $t_{\scriptscriptstyle \rm H}$ = 25 мкс	t_n при $t_{ exttt{ iny I}} = 1.25$ мс
п/п	кОм	кОм	дБ	Гц	МГц	%	нс
1	1	3,6	-2,7	41	18,6	27.9	19.12
2	1	10	-2,7	41	18,6	27.2	19.3
3	5	3,6	-8.8	13.8	11	15	46.44
4	5	10	-8,8	13,6	11,1	13.8	46.67

ПХ при $f = 400\Gamma$ ц, $R_2 = 3.6$ кОм

Выводы по пункту 5:

- Увеличение R_1 уменьшает измеренный спад вершины импульса и увеличивает $t_{\rm u}$, а увеличение R_2 практически не оказывает эффекта на эти параметры
- Увеличение R_1 уменьшает $K_{\rm ckb}$, а также сдвигает вниз по частоте $f_{\rm H}$ и $f_{\rm B}$ и уменьшает рабочий диапазон частот. Увеличение R_2 незначительно влияет на эти параметры.