Лабораторна робота №1

Тема: Обчислювальні програми

Мета: навчитись створювати лінійні програми обчислювального характеру з введенням даних з клавіатури і виведенням результату на екран

Завдання

- 1. Обчислити значення виразу, ввівши необхідні дані з клавіатури та використавши допоміжні змінні. Результат вивести на екран у вказаному форматі.
- 2. Обчислити площу заштрихованої фігури. Необхідні параметри ввести самостійно.
- 3. Написати та відлагодити програму за умовою (завдання 3)

Скласти звіт.

	завдання 1			завдання 2
варіант	Вираз	тприна	точніст	фігура
1	$\frac{a \cdot \cos b - \sqrt{b}}{1 + a^2 b^4} - \frac{ x + y + 3}{1 + x - y }, de b = 2.1$	10	4	
2	$\frac{\sin b^{2} - a}{4 + x \cdot b } - \frac{\cos a + \sqrt{y}}{2 \cdot y + 5}, de y = 3.75$	8	3	
3	$\frac{1+2\cdot\sin^2 y}{x^2+3} - \frac{\sqrt{ x\cdot b - y^6 }}{\cos a^3 + 4}, \partial e y = 0.94$	9	5	
4	$\frac{1+2\cdot xa-3\cdot a^{4}y^{2}b}{\sqrt{\sin x+1}} - \frac{\cos y-5\cdot y^{6}}{ 2+\sin y }, \partial e x=0.31$	8	4	
5	$\frac{\sin(2x-b^2)-7ay^2}{x^4+1} - \frac{\sqrt{\cos y - 5y^6}}{6-\cos y}, \partial e y = 0.02$	12	2	
6	$\frac{\sqrt{x \cdot a + 3 a^4 x^2}}{\cos ay + \sin x + 7} - \frac{x \cdot y \cdot b}{ 1 + b^2 }, \ \partial e \ a = 1.71, \ x = -1.1$	10	5	
7	$\frac{\sin(b-1)^2 - a}{16 + y \cdot a } - \frac{\sqrt{x^2 + \cos b}}{23 + x - 8y }, \text{ de } y = 2.44$	12	5	
8	$\frac{a \cdot \sin b - b \cdot \cos a}{17 + y^4} + \frac{ b + a \cdot y - 6}{\cos^3 x^3 y^2 + 1}, \partial e y = 1.18$	9	2	
9	$\frac{-2ba^2 - 3a + xy}{\sqrt{2\cos x + 7}} - \frac{15y + ay - 5b^6}{ -2 + 0.5\sin y }, _{\partial eb=1.04}$	12	4	
10	$\frac{1+2\sin^2 y}{\cos^2 a - 3} + \frac{\sqrt{ b+14xb+xy }}{b^6 a^3 + 0.8}$	11	5	
11	$\frac{2-ayb+x}{x^4+a^2} - \frac{\sqrt{\sin b+5}+y^2}{6- y-x }, \text{ de } y=6, x=1.13$	14	6	

12	$\frac{a^4 + x^2 + 12}{\cos^3 y - 9} + \frac{x - y\sqrt{b^4 - b + 1}}{ 2 + \sin ax }, \partial e b = 3.5$	8	2	
13	$\frac{16-4\cos(a^3-1)}{3 y\cdot a +x^2} - \frac{\sqrt{x^2+1}+\sin b}{2+ y-8x }, \text{ de } a=4.7$	10	3	
14	$\frac{t^3 + tgc - 1}{(t^2 + 9)^2} - \frac{e^c - \sin k}{ 12 + \cos kc }, \partial e c = 2.4, t = 5.18$	9	3	
15	$\frac{e^{2b} - r}{ nb + r^3} - \frac{\sqrt{n^4 + tg^2 r}}{2 \cdot 4 - b + 15}, \partial e b = 1.96$	8	4	
16	$\frac{a^3 - c^3}{ a^2b + bc^2 + 1} \cdot \left(1 - \frac{c}{ a - c + 1} - \frac{1 + c}{c^2 + 1}\right), \ \partial e \ c = 0.7$	12	3	
17	$\frac{w^5 - tg^2 u}{\sqrt{ uw + 3}} - \frac{e^{c+2} + \cos 2u}{\ln 12 + \cos kc }, de = 2.71, w = 1.1$	14	2	
18	$(1+y)\frac{x+y/(x^2+4)}{e^{-x-2}+1/(x^2+4)}$, de x=-3.3	10	3	
19	$\frac{\sin^2 x}{x^2 - 4} + \frac{\cos y^2}{(x - 3)^{1/3} x - 5 }, \partial e x = 6.2$	11	4	
20	$e^{3} + \frac{m^{2} - n^{2}}{1 + \cos \alpha} \sqrt{\frac{4 \ln 3.5}{3} - \cos^{2} \alpha}$, $\partial e \alpha = 1.45$	9	2	
21	$\ln^2 7.1 - \pi \cdot s \cdot \sin \frac{\phi}{2} \sqrt{ 2 \cdot s \cdot tg \frac{\phi}{2} }$, $\partial e \varphi = 1.75$	10	4	
22	$\frac{x^2 - 2ax\sqrt{3} - \sqrt[3]{4} + 3b}{x^2y^4 + \sqrt{3}} - \frac{a^6}{\cos y + 1 + b }, \partial e a = 2$	8	2	
23	$\frac{\frac{x}{by^3} + \frac{1}{4y^2}}{x^2 + 2xy + 2y^2} - \frac{\frac{x}{by^3} - \frac{1}{4y^2}}{x^2 - 2xy + 2y^2}, \text{ de } y = 4, b = 1$	9	3	
24	$\frac{\sin^2 x}{x^2 + 4n^4} + \frac{\cos m^2}{(x^6 + 3)^{1/3} (m + 5)}, \partial e^{x = 1.5}$	12	4	
25	$\frac{a-c}{a^2 + \cos ac} \cdot \frac{a^3 - c^2}{a^2 + c^2} \cdot \left(1 - \frac{c}{\sin(a-c) + 2} - \frac{1+c}{k^2 + 1}\right)$	14	5	

Завдання 3

- **1.** Бабусею на депозит в банк було покладено 1000 грн. під 12% річних. Дідусь спочатку обміняв таку ж суму на \$ за курсом продажу 24.6 грн/\$ й поклав на валютний рахунок під 9% річних. По закінченню річного строку курс покупки \$ становив 28.25 грн./\$. Визначити в гривневому еквіваленті різницю між фінансовими станами бабусі та дідуся.
- **2.** Перше січня 2005 року було суботою. Визначити, яким за номером днем тижня був Nий день цього року.

- **3.** Тваринник на початку кожної зими підвищує відпускну ціну на молоко на p%, а кожного літа знижує на стільки ж відсотків. Чи зміниться ціна на молоко і якщо так, то яким чином і наскільки через n років?
- **4.** Обчислити значення функції $z=\sin^3 b+lgx^a-y$, якщо $y=a/\ln x$, $x=a-e^b$ та a=1,1, b=0,3.
- **5.** Для заданого **a** обчислити корінь рівняння $\ln(\text{ctg }x\text{-}1)\text{=}\text{a}$, що належить інтервалу $(\pi, 2\pi)$.
- 6. Обчислити дробову частину середнього геометричного трьох заданих додатних чисел.
- 7. Обчислити довжину кола, площу круга та об'єм кулі одного й того ж заданого радіуса.
- 8. Визначити тривалість руху тіла, що вільно падає із заданої висоти Н.
- **9.** За введеною швидкістю та кутом кидання визначити дальність польоту тіла, кинутого під кутом до горизонту.
- **10.** За введеною швидкістю та кутом кидання визначити висоту підйому тіла, кинутого під кутом до горизонту.
- **11.** За шкалою Реомюра температурі плавлення льоду відповідає 0° R, а температурі кипіння води -80° R. Записати програму переведення температури, що задана за шкалою:
- а) Реомюра у температуру за шкалою Цельсія;
- б) Цельсія у температуру за шкалою Реомюра.
- **12.** Визначити період коливань математичного маятника, довжина підвісу якого становить 156.8 см.
- **13.** Задати рівняння двох прямих на площині: $y=k_1x+b_1$ і $y=k_2x+b_2$, що перетинаються та

$$tg\,\phi = \frac{k_2 - k_1}{1 + k_1 k_2}$$

визначити кут (в градусах та мінутах) між ними. Використати формулу:

- **14.** Підрахуйте, скільки очок набрала команда «Сокіл» у першому колі чемпіонату з хокею, якщо відомо, що m зустрічей вона виграла, n зустрічей програла, k зустрічей закінчилися нічиїми, враховуючи, що за виграш команда отримує k очки, за нічию k очко, за програш k очко.
- 15. Дано координати вершин деякого трикутника. Обчисліть його периметр.