

CONTRACTOR CONTRACTOR

AD

MEMORANDUM REPORT ARCCB-MR-88015

A NON-CONTACT THREE-DIMENSIONAL MEASURING SYSTEM

DAVID CONCORDIA

MARCH 1988

AD-A195

US ARMY ARMAMENT RESEARCH,
DEVELOPMENT AND ENGINEERING CENTER
CLOSE COMBAT ARMAMENTS CENTER
BENÉT LABORATORIES
WATERVLIET, N.Y. 12189-4050

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

ر ر

DISCLAIMER

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

The use of trade name(s) and/or manufacturer(s) does not constitute an official indorsement or approval.

DESTRUCTION NOTICE

For classified documents, follow the procedures in DoD 5200.22-M, Industrial Security Manual, Section II-19 or DoD 5200.1-R, Information Security Program Regulation, Chapter IX.

For unclassified, limited documents, destroy by any method that will prevent disclosure of contents or reconstruction of the document.

For unclassified, unlimited documents, destroy when the report is no longer needed. Do not return it to the originator.

REPORT DOCUMENTATION	BEFORE COMPLETING FORM	
1. REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
ARCCB-MR-88015		
4. TITLE (and Subtitle)	<u> </u>	5. TYPE OF REPORT & PERIOD COVERED
A NON-CONTACT THREE-DIMENSIONAL ME		
A MON-COMINCE THREE-BINEROTORNE THE	ASSICTION STOTEM	Final
	,	6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(a)		8. CONTRACT OR GRANT NUMBER(*)
		S. SON MACTON SIMME MOMERALS
David Concordia		
9. PERFORMING ORGANIZATION NAME AND ADDRESS		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
US Army ARDEC		AMCMS No. 6126.23.1BL0.0
Benet Laboratories, SMCAR-CCB-TL		PRON No. 1A52GX3E1A1A
Watervliet, NY 12189-4050		
11. CONTROLLING OFFICE NAME AND ADDRESS US Army ARDEC		12. REPORT DATE
Close Combat Armaments Center		March 1988
Picatinny Arsenal, NJ 07806-5000		35
14. MONITORING AGENCY NAME & ADDRESS(If differen	t from Controlling Office)	15. SECURITY CLASS. (of this report)
		UNCLASSIFIED
		154. DECLASSIFICATION/DOWNGRADING
16. DISTRIBUTION STATEMENT (of this Report)	· · · · · · · · · · · · · · · · · · ·	<u></u>
Approved for public release; distr	ibution unlimite	d.
17. DISTRIBUTION STATEMENT (of the abetract entered	in Block 20, if different fro	at Report)
18. SUPPLEMENTARY NOTES		
TO SOFF E EMBRITANT NOTES		
19. KEY WORDS (Continue on reverse side if necessary an	d identify by block number)	
°Non⊋Contact Measurement		
Video Inspection		
Three-Dimensional Measurement		
•		
20. ABSTRACT (Continue as reverse side if necessary and		
A non-contact video inspection sys		
inspection of small parts (smaller		
The system uses a computer which p		
determined through an algorithm wh Parts are located on a movable tab		
user-friendly menu. Once a progra		
program can be rerun any number of		
been reduced from hours to minutes		

DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

KERKIN PEREEZH BELIKKIN BORKHIN BORKHI BORKHI BOKKING BOKKHIN BER

TABLE OF CONTENTS

	Page
STATEMENT OF THE OBJECTIVE	1
BACKGROUND AND INTRODUCTION	1
APPROACH TO THE OBJECTIVE	1
RESULTS	2
CONCLUSION	6
APPENDIX A - VIDICOM QUALIFIER 1210 PERFORMANCE SPECIFICATION	
APPENDIX B - FIRING PIN PROGRAM	
APPENDIX C - FIRING PIN MEASUREMENTS	
TABLES	
I COMPARISON OF MEASUREMENTS FOR THE FIRING PIN	7
II CALIBRATION REPORT	8
LIST OF ILLUSTRATIONS	
1 Firing Pin	11
2 Case	12
3 Extractor	13
4 Adjustor	14
A.1 Vidicom Oualifion 1210 Inspection System	10

i

STATEMENT OF THE OBJECTIVE

The second secon

This project was initiated to provide Watervliet Arsenal with a system capable of measuring, in three dimensions, parts as large as 12"x10"x6", without contacting the part. Advanced Engineering Section, Engineering Support Branch, Benet Laboratories, was required to investigate available equipment, prepare a specification for purchase of a system, procure the system, and then develop programming for application to several small parts used at Watervliet. Also, during the development phase, by working with personnel from various Arsenal inspection groups, the area in which the system would ultimately be used was to be established.

BACKGROUND AND INTRODUCTION

Methods of improving the quality and reducing the time required to inspect parts is an ongoing effort. In recent years, because of developments in computer software and hardware, systems have become available that are capable of measuring dimensions of objects without contacting the part. The chief advantage of such a system is the speed with which it can make a measurement. When this project was initiated, it had become apparent to this section that this new technology could be successfully applied to the dimensional inspection of numerous small weapon components at Watervliet Arsenal.

APPROACH TO THE OBJECTIVE

Visits were made to three companies that manufacture non-contact measuring systems. All three systems were similar and were capable of measuring dimensions on sample parts manufactured at Watervliet. The inspection system consists essentially of four subsystems.

The first subsystem is the video camera which is mounted above the surface on which the part rests. The second subsystem consists of a movable surface that allows the part to be moved relative to the camera. The system which we eventually procured uses compressed air to provide movement of the table on a layer of air. Z-axis movement is accomplished by movement of the camera up and down. The third subsystem is the printer which prints results of the measurements. The fourth subsystem is the computer which controls operation of the total system. The computer incorporates software which allows for programming the system via a menu. The menu provides user-friendly instructions to the operator for programming the table and camera movements. Once the program is established it can be stored on the computer disc for repeated inspection of like parts. Location of edges on the part is accomplished by an algorithm within the computer software which determines the point of maximum contrast appearing through the video camera. The system is capable of making up to 100 measurements at 3 seconds per measurement.

RESULTS

Contract award for the system was made to Optical Gaging Products of Rochester, New York. This system explained in Appendix A and shown in Figure A-1, was installed within Benet in May 1986 for initial testing. The project officer received training for programming the system in June 1986. The contract included training for up to three individuals.

KKKKI KKUUN UUNKU BAKKI BKKKKI KKKKKI KKKKKI KKKKKI KUUNU KKKKKI KKKKKI KKKKKI KKKKKI KKKKK

Following the training, efforts began to prepare programs for two parts that are examined by Arsenal incoming inspection. A program was successfully written and applied to one of the parts, a firing pin, shown in Figure 1. The

other part, shown in Figure 2, could not be programmed. Because this part contained areas recessed below the surface and had a black coating on its surface, the video camera did not receive enough light to discern an edge. The time required to program the inspection of the firing pin was about 3 weeks because it was a learning process for the programmer. An experienced programmer would be able to program this particular part in about 3 days. The part inspection requires measurement of about 30 dimensions and takes about 3 minutes compared to an inspection time of about 1 hour by conventional methods. Appendices B and C give a listing of the program for the firing pin and an example of output from the printer. Table I gives the range in values obtained for 10 consecutive runs versus measurements made by inspection personnel using conventional methods.

As indicated in Table I, some of the measurements were made at high magnification. The reason for using high magnification is to increase the accuracy of the measurement. The increased accuracy is not necessary on measurements where the tolerance is one one-hundredth (0.01) of an inch or larger since the system is accurate to the third decimal place at low magnification. It is desirable to use low magnification, when possible, since it provides a larger field of view than high magnification, thereby decreasing the chances of the system "missing" an edge during the inspection run. The field of view is 0.56 inch with a magnification of 23X at low magnification and 0.070 inch with a magnification of 185X at high magnification.

Since the part would probably not be placed in alignment with the axis of the table, the initial steps of the program are used to establish a reference axis and origin for future measurements.

The 0.13-0.002 inch dimension represents a diameter. The measurement was made using back lighting of the part, which produces a silhouette. The system is then programmed to move to a nominal point location on both edges of the silhouette where the 0.13-inch nominal diameter is located. The distance traveled by the table, from point to point, when corrected to the reference axis, represents the diameter measurement. When the table moves to a programmed nominal location, it searches for a point of maximum contrast and will search a distance up to four times the tolerance. This allows the system to locate the "true" edge of the part. The measurements show close agreement to the forth decimal place for the 0.13-inch diameter.

Measurement of the $45^{\circ}\pm$ 1° angle required experimenting with a variety of techniques in order to achieve satisfactory repeatability. The problems encountered with the measurement resulted from the small tolerance (\pm 1°) over a short distance (a nominal distance of 0.028 inch). The technique which ultimately produced the best repeatability was to locate 40 points on the edge formed by the angle, and use the angle formed by the line of best fit for these points, as the measured angle. Similar difficulty in measuring this angle using conventional methods is apparent from the relatively wide variation in readings (i.e., $44^{\circ}20'$ to $45^{\circ}43'$).

One measurement, the concentricity requirement of ± 0.001 inch for the 0.872 diameter, was measured within the same programming step used to measure the 0.872 diameter. This was possible because the system software contains an algorithm which calculates the center point for diameter measurements. This feature eliminates the need for an additional programming step to check the concentricity.

The remaining dimensional measurements showed satisfactory agreement between values obtained using the measuring system versus conventional methods. All variations in values obtained, using the two methods, occurred at least one decimal place to the right of the tolerance position.

The second of th

66-555

150 Sec. 150

Two additional parts manufactured at Watervliet were programmed to verify that the system was capable of inspecting parts typical of those manufactured or used at Watervliet, shown in Figures 3 and 4. The inspection programs for these parts proved to be satisfactory, so at that point it was felt that the usefulness of the system had been successfully demonstrated. Initially, consideration was given to using the system for incoming inspection, since this installation is required to inspect large volumes of incoming parts. However, there was concern over scratching the glass surface (the part support structure has glass, on which the part rests) and concern over use of the system in an area that did not have temperature control and air filtration. Because of these concerns, the system will be used by Quality Assurance Directorate since they have laboratory-type facilities in which to house the system. As a result, the system has been moved to their building, and their personnel will receive assistance from the project officer in learning to use the equipment. In addition, two of their personnel will attend training in parts programming at the contractor's facility.

Verification of the system accuracy is accomplished by comparing measurements made by the system on a glass reticle versus measurements by a calibration laboratory. Table II shows the laboratory measurements, as well as the measurements made by the system. System specifications call for an accuracy of ± 0.00035 inch.

CONCLUSION

The three-dimensional, non-contact measuring system has proven to be capable of inspecting a variety of parts manufactured and used at Watervliet Arsenal. The speed at which the system can operate will significantly reduce inspection time for a large number of parts. There are a number of parts, such as those with a black finish and those that have small enclosed areas, for which the system cannot be used because of insufficient reflection of light from the part surface. However, the number of parts for which the system can be used should more than justify its use as an inspection tool.

TABLE I

COMPARISON OF MEASUREMENTS FOR THE FIRING PIN (Units are inches, except for angle measurements)

Required Dimension	Measuring System Range (10 Runs)	Conventional Methods
* .13002	.1281112855	.12811284
5/32 <u>+</u> 1/64	.15891613	.155
.50 + .01	.50665070	.5049
* .853 + .002	.8535 - .8539	.8530
.02 + .01	.02410255	.0256
* 45° <u>+</u> 1°	45.0589°-45.4239°	44°20'-45°-43'
* .872002	.8709487166	.8715
* 0 <u>+</u> .001	.0000000084	.0007
*1.275005	1.2725 - 1.2731	1.2730
.08501	.08050815	.0807
.132 <u>+</u> .01	.31363139	.3144
1/32 <u>+</u> 1/64	.03040378	.03080370
.5001	.49574969	.49754976

^{*} High Magnification Measurements

TABLE II

CALIBRATION REPORT

O.G.P. VIDICOM INSPECTION RETICLE P/N 424658

S/N:_	193		DATE:_	7/23/85
-------	-----	--	--------	---------

The nine calibrated reference circles are located with respect to a coordinate system whose zero is point No. 1 and whose X-axis is parallel to the line joining points 4 and 6.

POINT NUMBER	X - DIMENSION	Y - DIMENSION
1	0	0
2	3.75034	00201
3	7.49962	00050
4	7,49954_	-2.75116
5	3.75021	-2.75152
6	.00133	-2.75116
7	.00006	-5.50265
8	3.75010	-5.50136
9	7.50116	-5.50147
The two reference square	ares have center widths .02549	of: .02541
.250 square	.25047	.25026

The values reported are considered to be in error by no more than 0.00010 inch, with 99% confidence. Measurements are traceable to N.B.S. via lead screw calibrations made with a frequency stabilized He-Ne laser accurate to 1 part per million as well as a glass master scale that has been checked by both N.B.S. (Cal. Report S0024 N/0024R) and N.R.C., Ottawa (APOP -202).

R. McMahon, Inspector

Robert M. Welson

E. Loewen, Program Manager

TABLE II (CONT'D)

*********		1 AU	BLE II (CONT	·u)			
		GRAM NAME	*********		 RUN # 1	DATE I	TIME
HRGRID_193			:	; ; ;	**************************************		******
Blk Function	n Label Sym	Nom.Val.	Act.Val.	U. Tol.	L. Tol.	Dev>Nom	Tol Ex
POSITION REI 1 DIAMETE		.00133 -2.75116	.01482 .00133 -2.75116 0.00000				
ANGLE REFEP! 2 DIAMETE!		.01500 7.49954	.01500 7.49952 -2.75116 0.00000				
3 NOM LOCI	AT X Y Z	0.0000 0.0000 0.0000	0.0000 0.0000 0.0000				
4 DIAMETER	R DIA NOM LOC X Y Z RESET X Y	.01500 0.00000 0.00000 0.00000 -0.00000 00007	.01467 -0.00000 00007 0.00000 0.00000				
5 NOM LOCA	AT X Y Z	0.0000 0.0000 0.0000	0.0000 0.0000 0.0000				
6 DIAMETER	R #1 DIA NOM LOC X Y Z	.01500 0.00000 0.00000 0.00000	.01469 .00001 .00002 0.00000	.00035 .00035	.00035	.00001	+ +
7 NOM LOCA	АТ X Y Z	3.7503 0020 0.0000	3.7503 0020 0.0000				
8 DIAMETER	R #2 DIA NOM LOC X Y Z	.01500 3.75034 00201 0.00000	.01469 3.75034 00187 0.00000	.00035	.00035	-0.00000 00014	
9 NOM LOCA	AT X Y Z	7.4996 0005 0.0000	7.4996 0005 0.0000				
			9				

Blk Function	Label Sym	Nom.Val.			L. Tol.		ol Exc
10 DIAMETER		.01500 7.49962 00050 0.00000	.01462 7.49958 00032 0.00000		.00035	00004	
11 NOM LOCAT	X Y Z		7.4995 -2.7512 0.0000				
12 DIAMETER	#4 DIA NOM LOC X Y Z	-2.75116	.01503 7.49955 -2.75104 0.00000	.00035 .00035	.00035 .00035		• .
13 NOM LOCAT	X Y Z	3.7502 -2.7515 0.0000	3.7502 -2.7515 0.0000				
14 DIAMETER	#5 DIA NOM LOC X Y Z	3.75021 -2.75152	.02768 3.75022 -2.75155 0.00000	.00035 .00035	.00035 .00035	.00001 .00003	÷
15 NOM LOCAT	X Y Z	.0013 -2.7512 0.0000	.0013 -2.7512 0.0000				
16 DIAMETER		.00133 -2.75116	.01484 .00137 -2.75112 0.00000	.00035 .00035	.00035 .00035		<u>.</u>
17 NOM LOCAT	X Y Z	.0001 -5.5027 0.0000	.0001 -5.5027 0.0000				
18 DIAMETER	#7 DIA NOM LOC X Y Z	.01500 .00006 -5.50265 0.00000	.01478 .00017 -5.50266 0.00000	.00035 .00035	.00035 .00035	.00011	* +
19 NOM LOCAT	× Y Z	3.7501 -5.5014 0.0000	3.7501 -5.5014 0.0000				
20 DIAMETER	#8 DIA NOM LOC X Y Z	.01500 3.75010 -5.50136 0.00000	.01473 3.75017 -5.50150 0.00000	.00035 .00035	.00035	.00007 .00014	+ ++
21 NOM LOCAT	X Y Z	7.5012 -5.5015 0.0000	7.5012 -5.5015 0.0000				

SCHOOL SECTION DESCRIPTION OF THE SECTION OF THE SE

FIGURE 1 - FIRING PIN
(8 in, 155-mm, 175-mm Block Assembly)

FIGURE 3 - EXTRACTOR
(105-mm M68 Extractor Assembly)

FIGURE 4 - ADJUSTOR

(105-mm M68 Breech Mechanism)

APPENDIX A

VIDICOM QUALIFIER 1210 PERFORMANCE SPECIFICATION

.EFFECTIVE JANUARY, 1984

PART NUMBER 530100 (VQ-1210-26)

1.0 INTRODUCTION: The purpose of this specification is to define systems configurations and performance criteria for the Vidicom Qualifier 1210 automatic non-contact video inspection center. The standard system includes a Hewlett Packard HP9826 calculator.

2.0 SYSTEMS CAPABILITIES

2.1 SIZE OF PARTS (format):

The stage of the VQ-1210 has 12" X-Axis, 10" Y-Axis motion and 6" Z-Axis motion. Any part fitting within this volume can be fully illuminated and viewed.

The horizontal worktable is 13" x 19 1/2", it contains a glass workstage integral to the worktable. A variety of staging slots and tapped holes are provided to accommodate standard contour projector fixtures as described in current Contour Projector Accessory Catalogs.

The worktable assembly is removable and interchangeable to accommodate quick changeover fixturing.

2.2 VIDEO VIEWING AREA

The camera assembly is a General Electric Model TN-2500 solid state camera. This sensor is a CID type, having 248 x 244 picture elements.

The optical system produces a field of view of .56" at "LOW" magnification. At "HIGH" magnification the field is .070". The approximate magnification of an object is 23% low, and 185% high, as seen on the video screen. The maximum video resolution is 1 part in 5000 of the field of view.

During automatic operation an object or feature is located within the field of view automatically by the system. A horizontal/vertical cross hair is placed at the proper location on the viewing screen to identify the found feature. Magnification change is instantaneous and automatic.

2.3 SOFTWARE CAPABILITY

The User Software (VIDICOMP II) will run on any Hewlett-Packard Series 200 Computer configured properly. Standard software will support a large range of external devices (Printer, Mass Storage) through the built-in HPIB Interface.

All inspection programs are generated by pressing labeled control buttons to select options from a "menu". Refer to VIDICOMP II Software Specification, Part No. 520165.

3.0 GENERAL MACHINE SPECIFICATIONS

3.1

Size: Length 79"(2007mm), width 48"(1219mm), Height 73"(1854mm) max.

Weight: 1250 lbs. approximately, 1450 lbs. crated.

Table Height from floor: 44 1/2" (1130mm)

Stage Throat Clearance: 10" (254mm) maximum, 4"(102mm) minimum

OPTICAL 3.2

Focal Clearance: 4" (102mm)

Distortion (Optical): .05% maximum

Resolution: Electro Optical: .0002" (.005mm) low mag.

.00002" (.0005mm) high mag.

Field of view (diagonal): .560" (14mm) low mag.

.070" (1.75mm) high mag.

Depth of Field: .100" (2.54mm) low mag.

.005" (.127mm) high mag.

3.3 ELECTRICAL

Power: 115 VAC +10%, 6.0 Amps, 50/60Hz (2.4 Amps-9826)

Service: 3-wire power cord. U.S. plug

Power, Stop, Hi-Mag, Move CL, Zero X-Y-Z Controls:

Motion Direction Buttons (6), Illumination. Joy Stick for Stage and Centerline Control.

Illumination: Profile, Surface, Adjustable or Fresnel Quadrature

Displays: Position and image - 12" C.R.T., with text generator display

Machine Status - Status Panel

Video Controls: Edge, Angle, Circle

3.4 MECHANICAL

Stage Travel: X-12"(305mm), Y-10" (254mm), Z-6" (152mm)

Stage Type: X-Y Hydrostatic Air-Bearing, Z Ballslide

Position Transducer: Incremental Linear Glass Scale (X, Y, Z)
Position Resolution: X,Y .00004"(.001mm), Z-Axis .0001 (.002mm)

Maximum Table Load: 200 lbs.

Drives: DC Servo Motors - X & Y. Stepping Motors - Z Pneumatic Shop Compressed Air: 75 PSIG, 4 SCFM Maximum

3.5 HEWLETT-PACKARD MODEL 9826

Program Space Required: 306 K Bytes

Maximum Programs per Disc: 6 Maximum Memory: 2.5 M Bytes

Maximum Blocks/Program: 200 (without links see Software Specification

#520165 Section 4.2)

Program Name Size: up to 50 characters (first 10 must be unique)

Display: 7" Diagonal C.R.T.

Display Buffering: 2 K Byte - Alpha, 16 K Byte Graphics

Keyboard: Typewriter Keyboard with Numeric Keypad, Special

Functions Key, Full ASCII Character Set.

Tone Generator Variable: Frequency and Duration.

Built-In HP-IB (IEEE-488) for interfacing with microprocessor and

peripherals

4.0 SYSTEM PERFORMANCE

- 4.1 MEASURING ACCURACY AND SPEED
 - 4.1.1 X-Y Stage overall accuracy for X-Y Motion: + .0002" (.005mm)

 Maximum deviation within one (1) inch: +.00010" (.0025mm)

 Position repeatability: +.00005" (.0013mm)
 - 4.1.2 Z-Axis digital resolution: .0001" (.002mm)
 Positioning Accuracy: +.0002" (.004mm)
 Squareness to X-Y axis within .0001" (.0025mm) per inch of Z travel.
 - 4.1.3 VIDEO ACCURACY X-Y FIELD

 Edge location resolution (horizontal and vertical) is .0002" (.005mm), low magnification, .00002" (.0005mm) high magnification.

 Accuracy of video edge measurement is +.0003" (.0076mm) low magnification, +.000035" (.001mm) high magnification from center field.
 - 4.1.4 VIDEO FOCAL ACCURACY (Z)
 Z-axis positions can be determined to +.0005" (.013mm) accuracy.
 - 4.1.5 TABLE TRAVEL RATES
 X-Y axes: 4 inch/second maximum
 Z axes: 1 inch/second maximum
 Maximum time including settle time corner to corner: 6 seconds
 - 4.1.6 VIDEO MEASUREMENT RATE
 One X-Y point per second is measured, identified and analyzed.
 Z Axis measurements average approximately 3 seconds each.
- 4.2 CALCULATION AND PRINTING SPEED
 - 4.2.1 HP-9826 CALCULATOR WITH HP2671G PRINTER

 Speed of calculations will vary from a few hundred msecs. to up to 950 msecs. for advanced statistical routine per block of measurement. The 2671 Graphics Printer will print 120 characters/second (16.2 character/in @ 132 character/line) and has a 2K byte ASCII buffer so data is being gathered with little delay between blocks of measurement.
- 5.0 ENVIRONMENTAL

Temperature: Recommended operating temperature: 68°F + 2°

Maximum recommended operating temperature: 78° F

Maximum recommended temperature rate of change: 2°F/hour

STONE ASSESSED LEGISLAND SOLVERS DESCRIPTION SOCIETA DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION OF THE PERSONS THE PROPERTY DESCRIPTION OF THE PERSONS THE PE

Vibration: Environmental vibration amplitudes should not exceed

200 micro-q's at frequencies below 10Hz

Humidity: 30 to 80% RH Non Condensing

FIGURE A-1
Vidicom Qualifier 1210 Inspection System

APPENDIX B Firing Pin Program

```
Block Number( 1) Label( ) Lights(P
Destination of Output Unit of Meas ([N])
Measured Vals ( P ) Out of Tol ( )
Position Reference (M)
Promot
(SET .245 INCHES LEFT OF .13 DIA. CENTER
Width ( .13000) # Points ( 3)
            (0.00000) Lower Tol (0.00000)
Upper Tol
Anale (+0.000) Length ( .15000)
Nominal Location
X ( -.24500) Y ( +0.00000) Z ( +0.00000)
No Locational Tolerance
Block Number( 2) Label( ) Lights(P
Destination of Output Unit of Meas ([N])
Measured Vals ( P ) Out of Tol ( P)
Anale Reference (A)
Width ( .13000) # Points ( 3)
            (0.00000) Lower Tol (0.00000)
Upper Tol
Angle ( +0.000) Length ( .15000)
Nominal Location
X ( -.09494) Y ( +0.00000) Z ( +0.00000)
No Locational Tolerance
Block Number( 3) Label( ) Lights(P
Destination of Output Unit of Meas (IN)
Measured Vals ( P ) Out of Tol ( P)
Set xyz (Reset)
\times (A)( +0.00000)
Nominal Location
X ( +0.00000) Y ( -.03250) Z ( +.05630)
No Locational Tolerance (Seek)
Magnification (H) Direction of Grab (X) (BI-DR)
Block Number( 4) Label( ) Lights(P
Destination of Output Unit of Meas (IN)
Measured Vals ( P ) Out of Tol ( P)
Width ( .13000) # Points ( 1)
            (0.00000) Lower Tol (.00200)
Upper Tol (0.00000) Lower Tol (.00200)
Angle (+0.000) Length (0.00000)
Nominal Location
X ( -.30000) Y ( +0.00000) Z ( +0.00000)
No Locational Tolerance
```

```
Block Number( 5) Label( ) Lights(P
Destination of Output Unit of Meas (IN) Measured Vals ( P ) Out of Tol ( P)
Width ( .13000) # Points ( 1) .
Upper Tol (0.00000) Lower Tol (.00200)
Angle (+0.000) Length (0.00000)
Nominal Location
X ( -.20000) Y (+0.00000) Z (+0.00000)
No Locational Tolerance
Block Number( 6) Label( ) Lights(P
Destination of Output Unit of Meas (IN)
Measured Vals ( P ) Out of Tol ( P)
Width ( .13000) # Points ( 1)
Upper Tol (0.00000) Lower Tol (.00200)
Angle (+0.000) Length (0.00000)
Nominal Location
X ( -.15000) Y ( +0.00000) Z ( +0.00000)
No Locational Tolerance
Block Number( 7) Label( ) Lights(P
Destination of Output Unit of Meas (IN:
Measured Vals ( P )
                              Out of Tol ( P)
Radius ( .15625)
Upper Tol ( .01563) Lower Tol ( .01563)
Start Degree (+160.000) End Degree (+100.000)
# of Points (20)
Nominal Location
X ( -.34375) Y ( -.22125) Z ( +0.00000)
No Locational Tolerance
Block Number( 8) Label( ) Lights(P
Destination of Output Unit of Meas (IN)
Measured Vals ( P )
                              Out of Tol ( P)
Radius ( .15625)
Upper Tol ( .01563) Lower Tol ( .15630)
Start Degree (+260.000) End Degree (+200.000)
# of Points (20)
Nominal Location
\times ( -.34375) Y ( +.22125) Z ( +0.00000)
No Locational Tolerance
```

```
Block Number( 9) Label( ) Lights(P
Destination of Outout Unit of Meas (IN Measured Vals ( P ) Out of Tol ( P)
                               Unit of Meas (IN)
Nominal Location
X ( -.50000) Y ( -.23840) Z ( +0.00000)
XYZ Locational Tolerance

    Xup ( .01000)
    Yup (0.00000)
    Zup (0.00000)

    X1\omega (0.00000)
    Y1\omega (0.00000)
    Z1\omega (0.00000)

*********
Block Number( 10) Label( ) Lights(P. Destination of Output ) Unit of M
                              Unit of Meas (IN)
Destination of Output Unit of Meas (IN: Measured Vals ( P ) Out of Tol ( P)
Nominal Location
X (=.50800) Y (=+.23840) Z (=+0.00080)
XYZ Locational Tolerance
Block Number( 11) Label( ) Lights(P
Destination of Output Unit of Meas (IN)
Measured Vals ( P ) Out of Tol ( P)
Width ( .50000) # Points ( 1)
Upper Tol (0.00000) Lower Tol (.01000)
Angle (+0.000) Length (0.00000)
Nominal Location
X ( -.80000) Y (+0.00000) Z (+0.00000)
No Locational Tolerance
Block Number( 12) Label( ) Lights(P
Destination of Output Unit of Meas (IN)
Measured Vals ( P ) Out of Tol ( P)
Width ( .50000) # Points ( 1)
Upper Tol
             (0.00000) Lower Tol ( .01000)
Anale (+0.000) Length (0.00000)
Nominal Location
X = -.67500 Y = +0.00000 Z = +0.00000
No Locational Tolerance
```

```
Block Number( 13) Label( ) Lights(P
Destination of Dutout
                          Unit of Meas (TN)
                           Out of Tol ( P)
Measured Uals ( P )
Width
       ( .50000)
                       # Points (1)
Upper Tol
          (0.00000)
                      Lower Tol ( .01000)
Angle (+0.000) Length (0.00000)
Nominal Location
X ( -.55000) Y ( +0.00000) Z ( +0.00000)
No Locational Tolerance
Block Number( 14) Label( ) Lights(P
Destination of Output
                          Unit of Meas (IN)
Measured Vals ( P )
                           Qut of Tol ( P)
Nominal Location
Y ( -.80000) Y ( +.25000) Z ( +0.000000
XYZ Locational Tolerance
Block Number(15) Label( ) Lights(P
Destination of Output
                          Unit of Meas ([N)
Measured Vals ( P )
                            Out of Tol ( P)
Nominal Location
X ( -.67500) Y ( +.25000) Z ( +0.00000)
XYZ Locational Tolerance
Xup (0.00000) Yup (0.00000) Zup (0.00000) X1w (0.00000) Y1w (.01000) Z1w (0.00000)
Block Number( 16) Label( ) Lights(P
Destination of Output
                          Unit of Meas (IN)
Measured Vals ( P )
                          Out of To: ( Pr
Nominal Location
X ( -.55000) Y ( +.25000) Z ( +0.00000)
XYZ Locational Tolerance
Xup(0.00000) = Yup(0.00000) = Zup(0.00000)
XIw (0.00000) YIw ( .01000) Ziw (0.00000)
```

```
Block Number(21) Label(
                            ) Liahts(P
Destination of Output
                              Unit of Meas ([N:
                              Dut of Tol ( P)
Measured Vals ( P )
Nominal Location
               Y ( +.33000) Z ( +.25300)
\times ( -.85300)
XYZ Locational Tolerance
               Yup (0.00000) Zup (0.00000)
Xup ( .00200)
X1w (0.00000)
                Y1w (0.00000)
                                -Z1w (0.00000)
Block Number( 22) Label(
                          ) Lights(P
Destination of Output
                              Unit of Meas (IN)
Measured Vals ( P )
                              Out of Tol ( P)
Pol Org (A)
First Angle ( +45.888) # of pts (10)
Start Point ( +.00500) End Point ( +.01500)
Second Angle (+180.000)
                          # of Pts (10)
Start Point ( +.05000) End Point ( +.20000)
                         Lower Tol ( 0.0000)
           ( 0.0000)
Upper Tol
Nominal Location
X ( -.82300) Y ( -.43600) Z ( +0.00000)
No Locational Tolerance
Secondary Feature
(XYZ to B) Blk# ( 20)
X (
    +.02000)
                 Y ( +.10600)
                                   Z (+.25300)
Xup( .01000)
                  Yub(0.00000)
                                    Z_{up}(0.00000)
\times 1 \omega (0.00000)
                  Y1w(0.00000)
                                    Z1w(0.00000)
(XYZ to B) Blk# ( 21)
× ( +.02000)
                 Y ( +.76600)
                                   Z ( +.25300)
Xup( .01000)
                  Yup(0.00000)
                                    Z_{00}(0.00000)
\times 1 \omega (0.00000)
                  Y1w(0.00000)
                                    Z1w(0.000000)
Block Number(23) Label( ) Lights(P R
                       Unit of Meas (IN)
Destination of Output
Measured Vals ( P )
                              Dut of Tol ( P)
                 ( +45.000)
Angle
                 ( 1.0000) TollLw (0.00000) Length
Tol Up
                                       ( 1,0000)
Straightness Tol (0.00000)
                                       -(-.02400)
# of Points
                 (40)
Nominal Location
R ( +.01600) A ( +45.000) Z ( +0.00000)
RAZ Locational Tolerance
Rup (0.00000) Aup (9.00000) Zup (0.00000) R1w (0.00000) Alw (9.00000) Z1w (0.00000)
```

```
Block Number( 12) Label(
                             Lights(P
 Destination of Output
                             Unit of Meas (IN)
 Measured Vals ( P )
                             Out of Tol ( P)
 Nominal Location
 X ( -.55000) Y ( -.25000) Z ( +0.00000)
 XYZ Locational Tolerance
 Block Number( 18) Label( ) Lights(P
 Destination of Output
                             Unit of Meas (IN)
 Measured Vals ( P )
                             Out of Tol ( Pr
 Nominal Location
              Y ( -.25000) Z ( +0.00000)
 \times ( -.67500)
 XYZ Locational Tolerance
 Xup (0.00000) Yup (0.00000) Zup (0.00000)
               Ylw ( .01000) Zlw (0.00000)
 \times 1 \omega = (0.000000)
 Block Number( 19) Label( ) Lights(P
 Destination of Dutout
                             Unit of Meas (IN)
 Measured Vals ( P )
                             Out of Tol ( P)
 Nominal Location
 X ( -.80000) Y ( -.25000) Z ( +0.00000)
 XYZ Locational Tolerance
 · Block Number( 20) Label( ) Lights(P
 Destination of Output
                             Unit of Meas (IN)
 Measured Vals ( P )
                             Out of Tol ( P)
 Nominal Location
 X ( -.85300) Y ( -.33000) Z ( +.25300)
 XYZ Locational Tolerance
΄ Χυρ ( .00200) - Υυρ (0.00000) - Ζυρ (0.00000)
· Χίω (0.00000) - Υίω (0.00000) - Ζίω (0.00000)
```

```
Block Number( 24) Label(
                          ) Lights(P
Destination of Output
                            Unit of Meas (IN)
Measured Vals ( P )
                            Out of Tal ( P)
Radius ( .03000)
           (0.00000) Lower Tol ( .01000)
Upper Tol
Start Degree (+160.000) End Degree (+110.000)
# of Points (20)
Nominal Location
X (-.82300) Y (-.28000) Z (+0.00000)
No Locational Tolerance
Block Number(25) Label( ) Lights(P
Destination of Output
                           Unit of Meas (IN)
Measured Vals ( P )
                             Out of Tol ( P)
Pol Ora (A)
First Angle (+180.000) # of pts (10)
Start Point ( +.05000) End Point ( +.20000)
Second Anale (+315,000) # of Pts (10)
Start Point ( +.00500) End Point ( +.01500)
Upper Tol ( 0.0000) Lower Tol ( 0.0000)
Nominal Location
X = -.87300 Y = +.43600 Z = +0.00000
No Locational Tolerance
Secondary Feature
(XYZ to 8) Blk# ( 20)
                              Z ( +.25300)
X ( +.02000) Y ( +.76600)
Xup( .01000)
                Yup(0.00000)
                                Zuc(0,00000)
×1w(0.00000)
               Y1w(0.00000)
                                 - Z1w(0.00000)
(XYZ to B) Blk# ( 21)
X ( +.02000) Y ( +.10600)
                                 Z ( +.25300)
Xup( .01000)
                                 Zup(0,00000)
                Yup(0.00000)
                 Y1w(0.00000)
\times 1 \omega (0.00000)
                                  21\omega(0.00000
Block Number( 26) Label( ) Lights(P R
Destination of Output
                           Unit of Meas (IN)
Measured Vals ( P )
                            Out of Tol ( P)
               (+135.000)
Angle
Tol Up ( 1.0000) Tol Lw ( 1.0000) Straightness Tol (0.00000) Length ( .02400
                                    ( ,02400)
# of Points
Nominal Location
P (+.01600) A (-45.000) Z (+0.00000)
RAZ Locational Tolerance
Rup (0.00000) Aub (9.00000) Zup (0.00000)
R1w (0.00000)
               Alw (9.00000)
                              Z1w (0.00000)
```

```
Block Number( 27) Label( ) Lights(P
Destination of Output
                            Unit of Meas (IN)
Measured Vals ( P )
                             Out of Tol ( P)
Radius ( .03000)
Upper Tol (0.00000) Lower Tol ( .01000)
Start Degree (+250.000) End Degree (+200.000)
非 of Points (20)
Nominal Location
X ( -.82300) Y ( +.28000) Z ( +0 60000)
No Locational Telerance
Block Number( 28) Label( ) Lights(P
Block Number 2.

Destination of Output Unit or ones.

Out of Tol ( P)
                             Unit of Meas (TN)
         ( .87200)
Width
                        # Paints (1)
           (0.00000)
Upper Tol
                       Lower Tol ( .00200)
           ( +0.000) Length (0.0000)
Anale
Nominal Location
\times ( -1.10000) \times ( +0.00000) \times ( +0.00000)
XYZ Locational Tolerance
Xup (0.00000) Yup ( .00100) Zup (0.00000)
XIω (0.00000) YIω ( .00100)
                             Z1w (0.00000)
Block Number( 29) Label( ) Lights(P
Destination of Output
                            Unit of Meas (IN)
                             Out of Tol ( P)
Measured Uals ( P )
Width
       ( .87200)
                        # Points (1)
           (0.00000)
Upper Tol
                       Lower Tol ( .00700)
Angle
           ( +0.000)
                        Length ( 0.00000)
Nominal Location
X (-1.00000) Y (+0.00000) Z (+0.00000)
XYZ Locational Tolerance
Xup (0.00000) Yup ( .00100) Zup (0.00000)
               Ylw ( .00100)
Xlw (0.00000)
                              Zlw (0.00000)
Block Number(30) Label( ) Lights(P
Destination of Output
                             Unit of Meas (IN)
Measured Vals ( P )
                             Out of Tol ( P)
Width ( .87200)
                        # Points (1)
Upper Tol
           (0.00000)
                        Lower Tol ( .00200)
                        Lenath (0.00000)
Anale
           ( +0.000)
Nominal Location
X ( -.90000) Y ( +0.00000) Z ( +0.00000)
XYZ Locational Tolerance
Χωρ (0.00000) Υωρ ( .00100) Ζωρ (0.00000)
XIW (0.00000) YIW ( .00100) ZIW (0.00000)
```

```
Block Number( 31) Label( ) Lights(P
Destination of Outout Unit of Meas (IN)
Measured Vals ( P ) Out of Tol ( P)
Nominal Location
X ( -1.27500) Y ( -.13000) Z ( +0.00000)
XYZ Locational Tolerance
Xup (0.00000) Yup (0.00000) Zup (0.00000) X1\omega (0.00500) Y1\omega (0.00000) Z1\omega (0.00000)
Block Number( 32) Label( ) Lights(P
Destination of Output
                                  Unit of Meas (IN)
                                   Out of Tol ( P)
Measured Vals ( P )
Nominal Location
X ( -1.27500) Y ( +.13000) Z ( +0.00000)
XYZ Locational Tolerance
Xup (0.00000) Yup (0.00000) Zup (0.00000)
                 Ylw (0.00000) Zlw (0.00000)
X1w ( .00500)
Block Number( 33) Label( ) Lights(P
                               Unit of Meas (IN)
Out of Tol ( P)
Destination of Output
Measured Vals ( P )
Nominal Location
X (-1.19000) Y (-.21800) Z (+.37757)
No Locational Tolerance (Seek)
Magnification (L) Direction of Grab (X) (BI-DR)
Secondary Feature
(XYZ to B) Blk# ( 31)
X ( +.08500) Y ( +.08800) Z ( +.37757)
X_{\text{Up}}(0.00000) Y_{\text{Up}}(0.00000) Z_{\text{Up}}(0.00000)^{\circ} X_{\text{Uw}}(0.01000) Y_{\text{Uw}}(0.00000) Z_{\text{Uw}}(0.00000)
(XYZ to B) B1k# ( 32)
X ( +.08500)  Y ( +.34800)  Z ( +.37757)  Xup(0.00000)  Yup(0.00000)  Zup(0.00000) 
                   Ylw(0.00000)
                                         21\omega(0.000000)
XIw( .01000)
Block Number(34) Label( ) Lights(P
                               Unit of Meas (IN)
Destination of Output
Measured Vals ( P )
Nominal Location
X (-1.19000) Y (+.21800) Z (+.37757)
No Locational Tolerance (Seek)
Magnification (L.) Direction of Grab (X) (BI-DR)
Secondary Feature
(XYZ to B) Blk# ( 31)
× ( +.08500)
                                         Z ( +.37757)
                    Y ( +.34800)
                     Y ( +.>---.
Yup(0.00000) Zup(0.00.
21w(0.0000)
Xup(0.00000) Yup(0.00000)
Xlω(.01000) Ylω(0.00000)
                                        Z_{\text{Up}}(0.00000)
(XYZ to 8) 81k# ( 32)
X ( +.08500)  Y ( +.08800)  Z ( +.37757)  X_{Up}(0.00000)  Y_{Up}(0.00000)  Z_{Up}(0.00000)  Z_{Up}(0.00000)  Z_{Up}(0.00000)
```

. ESSESSE.

```
Block Number( 35) Label(
                        ) Lights(P
Destination of Output
                           Unit of Meas (IN)
                           Out of Tol ( P)
Measured Vals ( P )
         ( .31200)
                       # Points (1)
                      Lower Tol ( .01000)
Upper Tol
           ( .01000)
                       Length ( 0.00000)
Angle
           ( +0.000)
Nominal Location
X (-1.24800) Y (+0.00000) Z (+0.00000)
No Locational Tolerance
Block Number( 36) Label( ) Lights(P
Destination of Output
                          Unit of Meas (IN)
Measured Vals ( P )
                           Out of Tol ( P)
Nominal Location
X (-1.24800) Y (-1.16100) Z (+0.00000)
XYZ Locational Tolerance
Block Number( 37) Label( ) Lights(P
Destination of Dutput
                           Unit of Meas (IN)
Measured Vals ( P )
                          Out of Tol ( P)
Nominal Location
X ( -1.24800) Y ( +.16100) Z ( +0.00000)
XYZ Locational Tolerance
Xup (0.00000) Yup (0.00000) Zup (0.00000)
X1w (0.00000)
              Ylw ( .02000)
                            Z1w (0.00000)
Block Number( 38) Label(
                        ) Liahts(P
Destination of Output
                           Unit of Meas ([N)
Measured Vals ( P )
                           Out of Tol ( P)
Nominal Location
X (-1.20562) Y (+.12475) Z (+0.08000)
No Locational Tolerance (Seek)
Magnification (L) Direction of Grab (Y) (BI-DR)
Secondary Feature
(XYZ to B) Blk# ( 37)
X (+.04238) Y (+.03125)
                               Z ( +0.00000)
                Yup( .01563)
Xup(0.00000)
                                Z_{\text{up}}(0.00000)
\times 1 \omega (0.000000)
                Ylw( .01563)
                                Z1w(0.00000)
```

```
Block Number (39) Label (
                              Lights(P
                              Unit of Meas (1N)
Destination of Output
Measured Vals ( P )
                              Out of Tol ( P)
Nominal Location
X (-1.20562) Y (-1.12475) Z (+0.00000)
No Locational Tolerance (Seek)
Magnification (L) Direction of Grab (Y) (BI-DR)
Secondary Feature
(XYZ to B) Blk# ( 36)
\times ( +.04238)
                 Y ( +.03125)
                                  Z ( +0.00000)
Xup(0.00000)
                 Yuo( .01563)
                                   Z_{up}(0.000000)
\times 10(0.00000)
                 Y1w( .01563)
                                   Z1w(0.000000)
Block Number( 40) Label(
                          ) Lights(P
Destination of Output
                              Unit of Meas (IN)
                              Dut of Tol ( P)
Measured Vals ( P )
Nominal Location
X = -.24500 Y = (+0.00000) Z = (+0.00000)
No Locational Tolerance (Locate)
Block Number ( 41) Type (
                            PART) Offset ( CART)
First Block ( 1) Last Block ( 40) # Times ( 9)
X-off( +0.00000) Y-off( +0.00000) Z-off( +0.00000)
```

APPENDIX C

Firing Pin Measurements

1	PROG	RAM NAME		1	RUN # I	DATE 1	TIME
IFIFINGPIN					5 I		
Blk Function	Label Sym	Nom.Val.	Act.Val.	U. Tol.		Dev>Nom	
POSITION REFE	RENCE						
1 WIDTH		.13000	.12814				•
	MIN		.12804				
	MAX	0.500	.12826				
	NOM LOC X	24500 0.00000	0.00000				
	Ž	0.00000	0.00000				
ANGLE REFEREN	ICE (AUTO)						
2 JIDTH	WID	.13000	.12813				
	MIN		.12808				
	MAX	00.405	.12816				
	NOM LOC X	09495 0.00000	09493 0.00000				
	Ž	0.00000	0.00000				
3 NOM LOCAT		0.00000	.00067				
	Y		03243				
	Z	.05630	.05669				
	RESET X	.00067	0.00000				
4 WIDTH	MID	.13000	.12830	0.00000	.00200	00170	
	NOM LOC X	30000	30002				
	Y Z	0.00000 0.00000	.00011 0.00000				
5 WIDTH	WID	.13000	.12831	0.00000	.00200	00169	
	NOM LOC X	20000	20003				
	Y	0.00000	.00006				
	Z	0.00000	0.00000				
5 WIDTH	WID	.13000	.12934	0.00000	.00200	00166	
	NOM LOC X	15000	15009				
	Y Z	0.00000 0.00000	.00001 0.00000				
7 RADIUS	RAD	. 1563	.1607	.0156	.0156	.0044	••
/ NHO103	MIN	. 1767	.1600	.0170	.0150	. 0044	* *
	MAX		.1615		•		
	NOM LOC X	3438	3460				
	Y	2213	2241				
	Z	0.0000	0.0000				
8 RADIUS	RAD	.1563	.1599	.0156	. 1563	.0037	•

Blk	Function	Label Sym	Nom.Val.	Act.Val.	U. Tol.	L. Tol.	Dev>Nom	Tol Exc
		MIN MAX NOM LOC X Y Z	3438 .2213 0.0000	.1591 .1605 3462 .2239 0.0000				
9	NOM LOCAT	X Y Z	5000 2384 0.0000	5062 2389 0.0000	.0100	0.0000	.0062	***
10	NOM LOCAT	X Y Z	5000 .2384 0.0000	5061 .2388 0.0000	.0100	0.0000	.0061	+++
11	WIDTH	WID NOM LOC X Y Z	.5000 8000 0.0000 0.0000	.4969 8006 .0005 0.0000	0.0000	.0100	0031	
12	₩ІОТН	WID NOM LOC X Y Z	.5000 6750 0.0000 0.0000	.4963 6757 .0005 0.0000	0.0000	.0100	0037	
13	WIDTH	WID NOM LOC X Y Z	.5000 5500 0.0000 0.0000	.4965 5495 .0002 0.0000	0.0000	.0100	0035	
14	NOM LOCAT	x Y Z	8000 .2500 0.0000	8003 .2488 0.0000	0.0000	.0100	0012	-
15	NOM LOCAT	X Y Z	6750 .2500 0.0000	6754 .2486 0.0000	0.0000	.0100	0014	-
16	NOM LOCAT	X Y Z	5500 .2500 0.0000	5497 .2485 0.0000	0.0000	.0100	0015	-
17	NOM LOCAT	X Y Z	5500 2500 0.0000	5498 2477 0.0000	0.0000	.0100	0023	-
19	NOM LOCAT	X Y Z	6750 2500 0.0000	6747 2478 0.0000	0.0000	.0100	0022	-
19	NOM LOCAT	X Y Z	8000 2500 0.0000	8007 2475 0.0000	0.0000	.0100	0025	-
20	NOM LOCAT	r ×	8530	8546	.0020	0.0000	.0016	****
				31				

**********					******		
Blk Function	Label Sym	Nom.Val.	Act.Val.	U. Tol.	L. Tol.	Dev>Nom 1	Tol Ext

	Y	4000	4009				6
	Z	0.0000	0.0000				
	_						
21 NOM LOCAT	· ×	8530	8545	.0020	0.0000	.0015	+++
	Ÿ	.4000	.3996		• • • • • • • • • • • • • • • • • • • •		
	ž	0.0000	0.0000				
	_	0.000	0.000				
POLAR ORIGIN	at ACTUAL						
22 VERTEX	ANG	135.000	136.542				
	NOM LOC X	8730	8805				
	Y	4360	4345				
	ż	0.0000	0.0000				
	× to 20	.0200	.0259	.0100	0.0000	.0059	+++
	Y	.1060	.0336	.0100	0.0000	.0027	• • •
	Ž	.2530	0.0000				
	X to 21	.0200	.0261	.0100	0.0000	.0061	
	Y (0 21	.7660	.8341	.0100	0.0000	.0001	***
	Z	.2530	0.0000				
	2	. 2900	0.0000				
23 LINE	ANG	45.0000	44.9549	1.0000	1.0000	0451	
23 LINE	NOM LOC R	.01600	.01608	1.0000	1.0000	0471	-
				0 0000	9.0000	-5.6364	
	A Z	45.0000	39.3636	9.0000	7.0000	-7.0304	
	2	0.00000	0.00000				
27 848416	5.5	2722	2002	0 0000	0100	0010	
24 RADIUS	RAD	.0300	.0288	0.0000	.0100	0012	-
	MIN		.0282				
	MAX	2072	.0294				
	NOW LOC X	8230	8255				
	Y	2800	2774				
	Z	0.0000	0.0000				
001 40 0010111							
POLAR ORIGIN		175 000	17/ 71/				
25 VERTEX	ANG	135.000	136.314				
	NOM LOC X	8730	8796				
	Y	.4360	.4351				
	Z	0.0000	0.0000	0100	0 0000	00.40	
	X to 20	.0200	.0249	.0100	0.0000	.0049	++
	Y	.7660	.8360				
	Z	.2530	0.0000	0100	0 0000	0051	
	X to 21	.0200	.0251	.0100	0.0000	.0051	+++
•	Y	.1060	.0354				
	Z	.2530	0.0000		•		
97 1 155	4410	175 0000	135 /00/	1 0000	1 0000	/65 ·	
26 LINE	ANG	135.0000	135.6284	1.0000	1.0000	.6294	+++
	NOM LOC R	.01600	.01605	0 0000	0 00.00	5 400 (
	A	-45.0000	-39.8904	9.0000	9.0000	-5.1096	
	Z	0.00000	0.00000				
07 0401110	545	4744	200 1	0 0000	04.00	2221	
27 RADIUS	RAD	.0300	.0294	0.0000	.0100	0006	-
	MIN		.0291				
	MAX		.0298				
	NOM LOC X	8230	8252				•
	<u>Y</u>	.2800	.2790				
	· Z	0.0000	0.0000				

*********					*******	********	*=****
Blk Function	Label Sym	Nom.Val.	Act.Val.	U. Tol.	L. Tol.	Dev>Nom	Tol Exp
*****						*******	
28 WIDTH	WID NOM LOC X	.97200 -1.10000	.87133 -1.09992	0.00000	.00200	00067	
	Z	0.00000	.00040 0.00000	.00100	.00100	.00040	+ +
29 WIDTH	NOM LOC X	.87200 -1.00000	.87143 -1.00004	0.00000	.00200	00057	
	Y Z	0.00000	.00030 0.00000	.00100	.00100	.00030	* *
30 WIDTH	WID NOM LOC X	.87200 90000	.87130 89994	0.00000	.00200	00070	
	Y Z	0.00000 0.00000	.00025 0.00000	.00100	.00100	.00025	•
31 NOM LOCAT	× Y Z	-1.2750 1300 0.0000	-1.2725 1303 0.0000	0.0000	.0050	0025	
32 NOM LOCAT	X Y Z	-1.2750 .1300 0.0000	-1.2726 .1298 0.0000	0.0000	.0050	0024	
33 NOM LOCAT	X Y Z	-1.1900 -,4300 0.0000	-1.1909 4309 0.0000				
	X to 31 Y Z	.0850 .0880 .3776	.0816 .3007 0.0000	0.0000	.0190	0034	
	X to 32 Y Z	.0850 .3480 .3776	.0817 .5608 0.0000	0.0000	.0100	0033	
34 NOM LOCAT	X Y Z	-1.1900 .4300 0.0000	-1.1913 .4307				
	X to 31 Y Z	.0850 .3480	0.0000 .0812 .5610	0.0000	.0100	0038	
	X to 32 Y Z	.3776 .0850 .0880 .3776	0.0000 .0813 .3009 0.0000	0.0000	0100	0037	
35 WIDTH	NOM LOC X Y Z	.3120 -1.2480 0.0000 0.0000	.3141 -1.2476 .0007 0.0000	.0100	.0100	.0021	•
36 NOM LOCAT	X Y Z	-1.2480 1610 0.0000	-1.2480 1562 0.0000	0.0000	.0200	0048	-
37 NOM LOCAT	×	-1.2480	-1.2473				

Blk Function	Label S	ym Nom.Val.	Act.Val.	U. Tol.	L. Tol.	Dev>Nom Tol Ex-

		Y .1610	. 1577	0.0000	.0200	0033 - °
		Z 0.0000	0.0000			
				•		
38 NOM LOCAT		X -1.2056	-1.2061			
		Y .1247	.1268			
		Z 0.0000	0.0000			
	X to 37	.0424	.0411			
	Y	.0313	.0309	.0156	.0156	0004 -
	Ž	0.0000	0.0000			
	_					
39 NOM LOCAT		× -1.2056	-1.2052			
		Y1247	1263			
		Z 0.0000	0.0000			
	X to 36	.0424	.0428			
	Y	.0313	.0299	.0156	.0156	0013 -
	ż	0.0000	0.0000	.0196	.0196	0012 -
	2	0.000	0.0000			
40 NOM LOCAT		× -1.2212	-1.2287			
44 HOLL ESCH!		Y .1400	.1404			
		Z 0.0000	0.0000			
	X to 33		.0379	.0156	.0156	.0066 ++
	Y	.3580	.5713	.0170	.0170	.0066 ++
	Z	.3776	0.0000			
	× to 34			015/	015/	22/1
			.0374	.0156	.0156	.0061 **
	Y Z	.0780	.2903			
	2	.3776	0.0000			
41 NOM LOCAT		× -1.2212	-1.2286			
41 NON LUCH!		Y1400	-1.2246			
		Z 0.0000				
	V		0.0000	015/	0457	2044
	X to 33		.0377	.0156	.0156	.0064 ++
	Y	.0780	.2900			
	Z	.3776	0.0000			22.2
	X to 34		.0373	.0156	.0156	.0060 ++
	Y	.3580	.5716			
	Z	.3776	0.0000			
42 NOM LOCAT		×2450	9/50			
42 NUM LUCHI			2450			
			0.0000.			
		Z 0.0000	0.0000			

TECHNICAL REPORT INTERNAL DISTRIBUTION LIST

	NO. OF COPIES
CHIEF, DEVELOPMENT ENGINEERING BRANCH	
ATTN: SMCAR-CCB-D	1
-DA	1
-DC	1
-DM	1
-DP	1
-DR	1
-DS (SYSTEMS)	1
CHIEF, ENGINEERING SUPPORT BRANCH	
ATTN: SMCAR-CCB-S	1
-SE	1
CHIEF, RESEARCH BRANCH	
ATTN: SMCAR-CCB-R	2
-R (ELLEN FOGARTY)	1
-RA	1
+RM	1
-RP -RT	1 1
-K1	1
TECHNICAL LIBRARY	5
ATTN: SMCAR-CCB-TL	
TECHNICAL PUBLICATIONS & EDITING UNIT	2
ATTN: SMCAR-CCB-TL	
DIRECTOR, OPERATIONS DIRECTORATE	1
ATTN: SMCWV-OD	
	_
DIRECTOR, PROCUREMENT DIRECTORATE	1
ATTN: SMCWV-PP	
DIRECTOR, PRODUCT ASSURANCE DIRECTORATE	1
ATTN: SMCWV-QA	

NOTE: PLEASE NOTIFY DIRECTOR, BENET LABORATORIES, ATTN: SMCAR-CCB-TL, OF ANY ADDRESS CHANGES.

TECHNICAL REPORT EXTERNAL DISTRIBUTION LIST

	NO. OF COPIES		NO. OF COPIES
ASST SEC OF THE ARMY RESEARCH AND DEVELOPMENT ATTN: DEPT FOR SCI AND TECH THE PENTAGON WASHINGTON, D.C. 20310-0103	1	COMMANDER ROCK ISLAND ARSENAL ATTN: SMCRI-ENM ROCK ISLAND, IL 61299-5000	1
ADMINISTRATOR DEFENSE TECHNICAL INFO CENTER ATTN: DTIC-FDAC CAMERON STATION	12		TV 1
ALEXANDRIA, VA 22304-6145 COMMANDER US ARMY ARDEC	•	COMMANDER US ARMY TANK-AUTMV R&D COMMAND ATTN: AMSTA-DDL (TECH LIB) WARREN, MI 48397-5000	1
ATTN: SMCAR-AEE SMCAR-AES, BLDG. 321 SMCAR-AET-O, BLDG. 351N SMCAR-CC SMCAR-CCP-A	1 1 1 1	COMMANDER US MILITARY ACADEMY ATTN: DEPARTMENT OF MECHANICS WEST POINT, NY 10996-1792	1
SMCAR-FSA SMCAR-FSM-E SMCAR-FSS-D, BLDG. 94 SMCAR-MSI (STINFO) PICATINNY ARSENAL, NJ 07806-5000		US ARMY MISSILE COMMAND REDSTONE SCIENTIFIC INFO CTR ATTN: DOCUMENTS SECT, BLDG. 4484 REDSTONE ARSENAL, AL 35898-5241	2
DIRECTOR US ARMY BALLISTIC RESEARCH LABORA ATTN: SLCBR-DD-T, BLDG. 305 ABERDEEN PROVING GROUND, MD 21005 DIRECTOR	1	COMMANDER US ARMY FGN SCIENCE AND TECH CTR ATTN: DRXST-SD 220 7TH STREET, N.E. CHARLOTTESVILLE, VA 22901	1
US ARMY MATERIEL SYSTEMS ANALYSIS ATTN: AMXSY-MP ABERDEEN PROVING GROUND, MD 21005 COMMANDER HQ, AMCCOM ATTN: AMSMC-IMP-L	1	COMMANDER US ARMY LABCOM MATERIALS TECHNOLOGY LAB ATTN: SLCMT-IML (TECH LIB) WATERTOWN, MA 02172-0001	2
ROCK ISLAND, IL 61299-6000	•		

NOTE: PLEASE NOTIFY COMMANDER, ARMAMENT RESEARCH, DEVELOPMENT, AND ENGINEERING CENTER, US ARMY AMCCOM, ATTN: BENET LABORATORIES, SMCAR-CCB-TL, WATERVLIET, NY 12189-4050, OF ANY ADDRESS CHANGES.

TECHNICAL REPORT EXTERNAL DISTRIBUTION LIST (CONT'D)

NO. OF COPIES		NO. OF COPIES
COMMANDER US ARMY LABCOM, ISA ATTN: SLCIS-IM-TL 1 2800 POWDER MILL ROAD ADELPHI, MD 20783-1145	COMMANDER AIR FORCE ARMAMENT LABORATORY ATTN: AFATL/MN EGLIN AFB, FL 32542-5434	1
COMMANDER US ARMY RESEARCH OFFICE ATTN: CHIEF, IPO 1 P.O. BOX 12211		1
RESEARCH TRIANGLE PARK, NC 27709-2211 DIRECTOR US NAVAL RESEARCH LAB ATTN: MATERIALS SCI & TECH DIVISION 1 CODE 26-27 (DOC LIB) 1 WASHINGTON, D.C. 20375	METALS AND CERAMICS INFO CTR BATTELLE COLUMBUS DIVISION 505 KING AVENUE COLUMBUS, OH 43201-2693	1

NOTE: PLEASE NOTIFY COMMANDER, ARMAMENT RESEARCH, DEVELOPMENT, AND ENGINEERING CENTER, US ARMY AMCCOM, ATTN: BENET LABORATORIES, SMCAR-CCB-TL, WATERVLIET, NY 12189-4050, OF ANY ADDRESS CHANGES.

HUD DATE FILMED 9- F8

DTIC