Experimental page: ratios of curve fit deaths to curve fit confirmed cases (CFR)

Demonstration of SIR model where R_e is linearly reduced to 0.80 at the end of the sequence:

Reducing the R $_{\it e}$ while keeping gamma constant is the same as reducing contact rate. Contact rate is reduced through isolation, lockdowns, and vaccinations. Seems to indicate timing of start of measures is a big factor. The orange data taken as without measures, but we know certain measures were taken. Hard to determine effect, without a basis of comparison.

Excess normalized to std dev

Baseline set at **Z** = 0

False Positives Demonstration

0.12

Use 0.18% from US est. incidence above as estimated daily incidence Prevalence estimated as avg. infected period of 2 weeks X incidence 99% accuracy of test 0.18% X 14 = 2.520%

	Positive	Negative	
test pos	2.495%	0.975%	3.47%
test neg	0.025%	96.505%	96.53%
	2.520%	97.480%	100.00%

2.495%/3.47%

0.975%/3.47%

	2.520%	9
False pos. is a 1/4 of total	positives.	

TRUE +

FALSE +

71.9% 28.1% 100.00%

Baseline set at Z = 0	2020	Excess normalized to std dev of 2017 - 2019 deaths.						
6								
2		Mark Andrew						
-2								
1 3 5 7 9 11 13 15 1	7 19 21 23 25 27 29 31 33 3	35 37 39 41 43 45 47 49 51						

Counter-act this tendency by increasing test sensitivity. However this may increase false negatives, the recipients of which may be positive, think they're negative, and go spread it around some more.

USA Excess Deaths (from CDC data):

Annualized on 52 weeks

		All Cause	All Cause, excl. CV19	CV19
3	yr average before 2020	859:100,000	859:100,000	-
	2020	1009:100,000	899:100,000	-
	Diff.	150:100,000	40:100.000	110:100.000

3 yr average 859:100,000

27% of All-Cause excess deaths are non-CV19

https://data.cdc.gov/NCHS/Excess-Deaths-Associated-with-COVID-19/xkkf-xrst/data

K = 0.318

gamma = 0.171 $R_o = \exp(K/\text{gamma}) = 6.42$ gamma = 0.286 $R > [1-1/R_0]/N = 3.04$ 84% <=Herd immunity

R is recovered variable.

Here are some demonstrations of SIR model, using Re, gamma, and beta

 $\underline{https://data.cdc.gov/NCHS/Weekly-Counts-of-Deaths-by-State-and-Select-Causes/muzy-jte6/data}$