17 septembre 2019

Quiz de Mathématiques

CIR 1 et CNB 1

Durée : 1 heure. Aucun document n'est autorisé. La calculatrice collège est tolérée.

Veuillez ne pas répondre sur le sujet, mais sur la feuille de réponse prévue à cet effet.

BON COURAGE!

1. La contraposée de l'implication $P\Rightarrow Q$ est la proposition ...

(1) \square $non(P)\Rightarrow non(Q)$ (2) \square $non(Q)\Rightarrow non(P)$ (3) \square $Q\Rightarrow P$ (4) \square $non(Q)\Rightarrow P$ (5) \square aucune des réponses précédentes n'est correcte.

2. L'application f suivante est ...

 $_{(1)}\square$ surjective $_{(2)}\square$ injective $_{(3)}\square$ bijective

 $_{(4)}\square$ n'est pas une application $_{(5)}\square$ aucune des réponses précédentes n'est correcte.

3. Soit f une application de E dans F. Si f est injective ...

 $(1) \square \quad \forall (x,x') \in E^2 \ f(x) \neq f(x') \Rightarrow \ x \neq x' \qquad (2) \square \quad \forall (x,x') \in E^2 \ f(x) = f(x') \Rightarrow \ x = x'$ $(3) \square \quad \forall y \in F \ \exists x \in E \ y = f(x) \qquad (4) \square \quad \forall y \in F \ \exists ! x \in E \ y = f(x)$ $(5) \square \quad \text{aucune des réponses précédentes n'est correcte.}$

4. Soit $f: \mathbb{R} \to \mathbb{R}$ une application telle que $f(x) = \frac{2x}{1+x^2}$. Que peut-on dire de f?

 $_{(1)}\square$ f n'est pas injective $_{(2)}\square$ f n'est pas surjective $_{(3)}\square$ f est bijective $_{(4)}\square$ f n'est pas une application $_{(5)}\square$ aucune des réponses précédentes n'est correcte.

1

5	Cochez les	affirmations	ani traduisent	la prop	osition "	f est l'identité	de ℝ"
J.	Cothez les	ammanons	qui traduisem	ia prop	OSITIOH	i esi i ideniile	ue = 1.

$$(1)$$
 \Box $\forall x \in \mathbb{R}, \ f(x) = x$ (2) \Box $\exists x \in \mathbb{R}, \ f(x) = x$ (3) \Box $\exists ! x \in \mathbb{R}, \ f(x) = x$ (4) \Box $\exists a \in \mathbb{R} \ \forall x \in \mathbb{R}, \ f(x) = a$ (5) aucune des réponses précédentes n'est correcte.

6. Soit $E = \{a, b, c\}$ un ensemble. Peut-on écrire :

$${}_{(1)}\square \quad a \in E \qquad {}_{(2)}\square \quad a \subset E \qquad {}_{(3)}\square \quad d \not\subset E \qquad {}_{(4)}\square \quad \{a\} \subset E \qquad {}_{(5)}\square \quad \varnothing \in E$$

7. Parmi les propositions suivantes lesquelles sont vraies pour tous ensembles A, B et C?

$$(1)\square \quad (A\cup B)\cup C = A\cup (B\cup C) \qquad (2)\square \quad A^c\cup B^c = (A\cup B)^c$$

$$(3)\square \quad Card(A\cup B) = Card(A) + Card(B) - Card(B\setminus A) \qquad (4)\square \quad A\setminus B = A\cap B^c$$

$$(5)\square \quad \text{aucune des réponses précédentes n'est correcte.}$$

8. Soit $E = \{1, 2, 3, 4\}$. On note f l'application de E dans E dont le graphe Γ est le suivant :

$$\Gamma = \{(1,2), (2,3), (3,3), (4,1)\}$$

Cochez les affirmations correctes.

- $f(\{2,3\})$ est un singleton.
- $f^{-1}(\{2,3\})$ est un singleton.
- $(3)\square$ 4 n'a pas d'antécédent pour f.
- $_{(4)}\square$ L'application f est surjective.
- $_{(5)}\square$ aucune des réponses précédentes n'est correcte.

9. On considère deux fonctions :

$$f: \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto \sqrt{2x+1} \end{cases}$$
 $g: \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto x^2 \end{cases}$

Cochez les affirmations correctes.

10. Soit $E = \{r, s, t, v, w\}$ un ensemble. Le nombre de sous-ensembles de E est :

$$_{(1)}\square$$
 le cardinal de l'ensemble $E.$ $_{(2)}\square$ un entier naturel. $_{(3)}\square$ 25 $_{(4)}\square$ 32 $_{(5)}\square$ aucune des réponses précédentes n'est correcte.

11. Soient $A = \{0, 1, 2, 3\}$, $B = \{1, 2, 3\}$ et $E = A \cup B$. Cochez les affirmations correctes.

$$(1)$$
 \square $A\cap B=B$ (2) \square $A\cap B=\{1,2,3,\varnothing\}$ (3) \square $(A\setminus B)^C=B$ (4) \square $B^C=A$ (5) \square aucune des réponses précédentes n'est correcte.

	$ \begin{array}{c} (1) \square \\ (2) \square \\ (3) \square \\ (4) \square \\ (5) \square \end{array} $	Quel que soit x élément de E , x n'est pas un élément de A . Il existe au plus un élément de E qui n'est pas un élément de A . $\forall x \in E \ x \notin A$ $\exists x \in E \ x \notin A$ aucune des réponses précédentes n'est correcte.					
13.	. ,	B deux éléments de $\mathcal{P}(E)$. Cochez les affirmations qui sont correctes.					
	$ \begin{array}{c c} (1) \\ (2) \\ (3) \\ (4) \\ (5) \end{array} $	$\forall x \in E, \ x \in A \cup B \Leftrightarrow x \in A \text{ et } x \in A$ $\forall x \in E, \ x \in A \setminus B \Leftrightarrow x \in B \text{ et } x \notin A$ $\forall x \in E, \ x \in ((A \cap B) \cup (B \setminus A)) \Leftrightarrow x \in B$ $\forall x \in E, \ x \in (A \cap (B \cup B \setminus A)) \Leftrightarrow x \in B$ aucune des réponses précédentes n'est correcte.					
14.	Chercher un contre-exemple à une assertion du type " $\forall x \in E$ l'assertion $P(x)$ est vraie" revier prouver l'assertion :						
	$ \begin{array}{c} (1) \square \\ (2) \square \\ (3) \square \\ (4) \square \\ (5) \square \end{array} $	$\exists ! x \in E \text{ l'assertion } P(E) \text{ est fausse.}$ $\exists x \in E \text{ l'assertion } P(E) \text{ est fausse.}$ $\forall x \notin E \text{ l'assertion } P(E) \text{ est fausse.}$ $\forall x \in E \text{ l'assertion } P(E) \text{ est fausse.}$ aucune des réponses précédentes n'est correcte.					
15.	Je veux montrer que $e^x > x$ pour tout x réel avec $x \ge 1$. L'initialisation est vraie pour $x = 1$, car $e^1 = 2,718 > 1$. Pour l'hérédité, je suppose $e^x > x$ et je calcule :						
	$e^{x+1} = e^x \cdot e > x \cdot e \geqslant x \cdot 2 \geqslant x+1$						
	Je conclus par le principe de récurrence. Cochez les affirmations correctes.						
	$(1) \square$ $(2) \square$ $(3) \square$ $(4) \square$ $(5) \square$	Cette preuve est valable. Cette preuve n'est pas valable car il faudrait commencer l'initialisation à $x=0$. Cette preuve n'est pas valable car l'inégalité $e^x>x$ est fausse pour $x\leqslant 0$. Cette preuve n'est pas valable car la suite d'inégalités est fausse. Cette preuve n'est pas valable car x est un réel.					
16.	er que l'assertion " $\forall n \in \mathbb{N} \ n^2 > 3n-1$ " est fausse, quels sont les arguments valables?						
	$(1) \square$ $(2) \square$ $(3) \square$ $(4) \square$ $(5) \square$	L'assertion est fausse, car pour $n=0$ l'inégalité est fausse. L'assertion est fausse, car pour $n=1$ l'inégalité est fausse. L'assertion est fausse, car pour $n=2$ l'inégalité est fausse. L'assertion est fausse, car pour $n=1$ et $n=2$ l'inégalité est fausse. aucune des réponses précédentes n'est correcte.					
17.	Je veux montrer que $\sqrt{13} \notin \mathbb{Q}$ par un raisonnement par l'absurde. Quel schéma de raisonneme adapté ?						
	$(1) \square$ $(2) \square$ $(3) \square$ $(4) \square$ $(5) \square$	Je suppose que $\sqrt{13}$ est rationnel et je cherche une contradiction. Je suppose que $\sqrt{13}$ est irrationnel et je cherche une contradiction. J'écris $13 = \frac{p}{q}$ (avec p,q entiers) et je cherche une contradiction. J'écris $\sqrt{13} = \frac{p}{q}$ (avec p,q entiers) et je cherche une contradiction. aucune des réponses précédentes n'est correcte.					
18.	3. Soit $A = [-1, 3]$ et $B = [0, 4]$. Cochez les réponses correctes.						
	(1) ^[]	$A\cap B=\varnothing \qquad {}_{(2)}\square A\cap B=[0,3] \qquad {}_{(3)}\square A\cup B=\varnothing \qquad {}_{(4)}\square A\cup B=[0,3]$					
		$_{(5)}\square$ aucune des réponses précédentes n'est correcte.					

12. Soit A une partie de E. Cochez les affirmations qui traduisent l'affirmation "A est la partie vide".

19. On considère l'application $f: \mathbb{R} \to \mathbb{R}$ définie par

$$\forall x \in \mathbb{R}, f(x) = x^2 + 1$$

Cochez les bonnes réponses.

$$f(\mathbb{R}) = \mathbb{R}$$
 $f(\mathbb{R}) = \mathbb{R}$ $f(\mathbb{R}) = [0, +\infty[$ $f(\mathbb{R}) =]1, +\infty[$ $f(\mathbb{R}) = [1, +\infty[$ aucune des réponses précédentes n'est correcte.

20. Soit $f(x) = \ln(x-1)$ et $g(x) = \sqrt{x+1}$. Cochez les affirmations correctes.