POLITECHNIKA WROCLAWSKA

Projektowanie efektywnych algorytmów

Projekt 1

Autor: Wojciech Wójcik 235621

Prowadzacy: Dr inż. Jarosław Rudy

Spis treści

L	\mathbf{Wstep}	2
2	Specyfikacja techniczna	2
3	Analiza problemu	2
	Opis Algorytmów 4.1 Przegląd zupełny	2
	4.2 Programowanie dynamiczne	- '2

1 Wstęp

Celem projektu było wykonanie programu, wykorzystującego algorytmy programowania dynamicznego, podziału i ograniczeń oraz przeglądu zupełnego do rozwiązania problemu komiwojażera (ang. Travelling Salesman Problem).

2 Specyfikacja techniczna

- Program został wykonany obiektowo w języku c++
- Program akceptuje dane w postaci macierzy odległości
- Czas wykonania algorytmów mierzone był przy wykorzystaniu bibliotek systemowych

3 Analiza problemu

Problem komiwojażera należy do klasy problemów NP-trudnych. Jest to optymalizacyjny problem, rozwiązaniem którego jest znalezienie minimalnego cyklu Hamiltona (ścieżki prowadzącej przez wszystkie wierzchołki grafu, powracając na końcu do wierzchołka początkowego). W wersji asynchronicznej, odległości pomiędzy wierzchołkami mogą dodatkowo zależeć także od kierunku przejścia pomiędzy nimi. Główną trudnością w rozwiązaniu problemu jest znacząca liczba możliwych kombinacji.

4 Opis Algorytmów

4.1 Przegląd zupełny

Algorytm przeglądu zupełnego (ang. brute force) polega na przeanalizowaniu wszystkich możliwych przypadków, oraz wybraniu tego o najlepszej wartości. Zaletą tego algorytmu jest pewność, że otrzymany wynik jest najlepszym rozwiązaniem problemu. Poważną jego wadą jest jednak złożoność czasową wynoszącą O(n!), co w praktyce czyni ten algorytm bezużytecznym dla większych zbiorów danych.

4.2 Programowanie dynamiczne

Programowanie dynamiczne (ang. dynamic programming) jest metodą rozwiązywania złożonych problemów, poprzez rozbicie ich na zbiór podproblemów o mniejszej złożoności, przy założeniu, że każdy podproblem rozważany jest jedynie raz, a wynik jego analizy przechowywany jest do wykorzystania w późniejszych obliczeniach. Dla problemu komiwojażera, najlepszym algorytmem wykorzystującym tę metodę, jest algorytm Helda-Karpa, posiadający złożoność czasową O(n2*2n).

Algorytm wykorzystuje tablicę $2^{(n-1)}$ elementową indeksowaną od zera. Tablica jest wypełniana według algorytmu Helda-Karpa jak i również znajdujemy minimalny koszt przejścia instancji.

Indeks elementu jest również maską która mówi o miastach które się odwiedziło. Przykładowo dla 5 miast ostatnim indeksem jest 15, czyli 1111₂ - ta maska mówi o odwiedzeniu wszystkich miast poza ostatnim. W tym elemencie znajduje się lista elementów mówiących o koszcie przejścia tych wszystkich miast wraz ze wskazaniem na to który punkt był ostatnim. Wybierając najmniejszy element, na przykład 2 przechodzimy do maski 1011₂, gdzie powtarzamy algorytm, aż do całkowitego odtworzenia drogi(na samym początku należy pamiętać o dodaniu kosztu powrotu do ostatniego wierzchołka, by można było wybrać poprawny element).