分组密码作业

- 1. 验证 DES 中 S 盒的非线性性质。即证明 $S_1(x_1) \cdot S_1(x_2) \neq S_1(x_1 \oplus x_2)$;
 - (1) $x_1 = 000000$, $x_2 = 000001$
 - (2) $x_1 = 1111111$, $x_2 = 100000$
 - (3) $x_1 = 101010$, $x_2 = 010101$

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
0	14	4	13	1	2	15	11	8	3	10	6	12	5	9	0	7	
1	0	15	7	4	14	2	13	1	10	6	12	11	9	5	3	8	C
2	4	1	14	8	13	6	2	11	15	12	9	7	3	10	5	0	31
3	15	12	8	2	4	9	1	7	5	11	3	14	10	0	6	13	

解: $(1) S_1(x_1) = 14 = (1110)_2$, $S_1(x_2) = 0 = (0000)_2$, 所以, $S_1(x_1) \oplus S_1(x_2) = (1110)_2$;

- $x_1 \oplus x_2 = (000001)$,所以, $S_1(x_1 \oplus x_2) = 0 = (0000)_2$;因此, $S_1(x_1) \cdot S_1(x_2) \neq S_1(x_1 \oplus x_2)$ 。
- (2) $S_1(x_1) = 13 = (1101)_2$, $S_1(x_2) = 4 = (0100)_2$, 所以, $S_1(x_1) \oplus S_1(x_2) = (1001)_2$;
- $x_1 \oplus x_2 = (011111)$, 所以, $S_1(x_1 \oplus x_2) = 8 = (1000)_2$; 因此, $S_1(x_1) \cdot S_1(x_2) \neq S_1(x_1 \oplus x_2)$ 。
- (3) $S_1(x_1) = 6 = (1110)_2$, $S_1(x_2) = 12 = (1100)_2$,所以, $S_1(x_1) \oplus S_1(x_2) = (1010)_2$;
- $x_1 \oplus x_2 = (111111)$, 所以, $S_1(x_1 \oplus x_2) = 13 = (1101)_2$; 因此, $S_1(x_1) \oplus S_1(x_2) \neq S_1(x_1 \oplus x_2)_{\circ}$
- 2. 给定不可约多项式 $P(x) = x^4 + x + 1$ 。在 $GF(2^4)$ 上计算 $A(x) + B(x) \mod P(x)$ 。
 - (1) $A(x) = x^2 + 1$, $B(x) = x^3 + x^2 + 1$.
 - (2) $A(x) = x^2 + 1$, B(x) = x + 1.

解:

- (1) $A(x)+B(x) = x^3+2x^2+2 = x^3 \mod P(x)$.
- (2) $A(x)+B(x) = x^2+x+2 = x^2+x \mod P(x)$
- 3. 给定不可约多项式 $P(x) = x^4 + x + 1$ 。在 $GF(2^4)$ 上计算 $A(x) \cdot B(x) \mod P(x)$ 。
 - (1) $A(x) = x^2 + 1$, $B(x) = x^3 + x^2 + 1$
 - (2) $A(x) = x^2 + 1$, B(x) = x + 1

解:

- (1) $A(x) \cdot B(x) = (x^2 + 1) \cdot (x^3 + x^2 + 1) = x^5 + x^4 + x^3 + 2x^2 + 1$ = $x^5 + x^4 + x^3 + 2x^2 + 1$ = $x^3 + x^2 \mod P(x)$.
- (2) $A(x) \cdot B(x) = (x^2 + 1) \cdot (x + 1)$ = $x^3 + x^2 + x + 1 \mod P(x)$.

解:

根据 DES 算法的流程进行推导:

输入为 $M = (000000000000000000)_{16}$,密钥为 $Kev = (00000000000000000)_{16}$ 。

- (1)经过 IP 置换得到: L_0 =(0000 0000)₁₆, R_0 =(0000 0000)₁₆;
- (2)第一轮密钥 K1 生成:
 - a. Key 经过 PC-1 得到 C0=D0=(0000 000)₁₆;
 - b. 左移位得到: C0=D0=(0000 000)16;
 - c. 经过 PC-2 得到 K₁=(0000 0000 0000)₁₆
- $(3)L_1=R_0=(0000\ 0000)_{16}$;
- $(4)R_0$ 经过 E 盒扩展置换得到 $R'_0 = (0000\ 0000\ 0000)_{16}$;
- $(5)R_0$ 与 K_1 异或得到 R'_0 = $(0000\ 0000\ 0000)_{16}$
- (6)经过 S 盒代替得到 R'₀ = (EFA7 2C4D)₁₆
- (7)经过 P 盒置换得到 R'0 =(D8D8 DBBC)16

因此, L_1 =(0000 0000)₁₆, R_1 =(D8D8 DBBC)₁₆。

解:

根据 DES 算法的流程进行推导:

输入为 $M = (1111\ 1111\ 1111\ 1111)_{16}$,密钥为 $Key = (1111\ 1111\ 1111\ 1111)_{16}$ 。

- (1)经过 IP 置换得到: $L_0=(00FF\ 00FF)_{16}$, $R_0=(0000\ 0000)_{16}$;
- (2)第一轮密钥 K1 生成:
 - a. Key 经过 PC-1 得到 C0=D0=(0000 00F)₁₆;
 - b. 左移位得到: C0=D0=(0000 01E)_{16:}
 - c. 经过 PC-2 得到 K₁=(1000 8844 0040)₁₆
- $(3)L_1=R_0=(0000\ 0000)_{16};$
- $(4)R_0$ 经过 E 盒扩展置换得到 $R'_0 = (0000\ 0000\ 0000)_{16}$:
- $(5)R_0$ 与 K_1 异或得到 R'_0 = $(1000~8844~0040)_{16}$;
- (6)经过S盒代替得到 $R'_0 = (DF00 5CDD)_{16}$;
- (7)经过 P 盒置换得到 $R_1 = R'_0 = (7A63 C8C4)_{16}$;
- 因此, L_1 =(00FF 00FF)₁₆, R_1 =(7A63 C8C4)₁₆。

 $W_0 = (0x2B7E1516);$ $W_1 = (0x28AED2A6);$ $W_2 = (0xABF71588);$

 $W_3 = (0 \times 09 \text{CF4F3C});$ $W_4 = (0 \times A0 \text{FAFE17});$ $W_5 = (0 \times 88542 \text{CB1});$

 $W_6 = (0x23A33939);$ $W_7 = (0x2A6C7605);$

(1) 输入为 W, 子密钥为 W_0 , ..., W_7 。 计算 AES 的第一轮输出结果;

- (2) 输入和子密钥均为全 0 的情况下, 计算 AES 的第一轮输出结果;
- (3) 只考虑一轮的情况下, 在输出中有多少比特位发生了变化?

解: (1)

① 输入为
$$\begin{pmatrix} 01 & 00 & 00 & 00 \\ 00 & 00 & 00 & 00 \\ 00 & 00 & 00 & 00 \\ 00 & 00 & 00 & 00 \end{pmatrix}$$

②轮密钥加:
$$\begin{pmatrix} 01 & 00 & 00 & 00 \\ 00 & 00 & 00 & 00 \\ 00 & 00 & 00 & 00 \\ 00 & 00 & 00 & 00 \end{pmatrix} \oplus \begin{pmatrix} 2B & 28 & AB & 09 \\ 7E & AE & F7 & CF \\ 15 & D2 & 15 & 4F \\ 16 & A6 & 88 & 3C \end{pmatrix} = \begin{pmatrix} 2A & 28 & AB & 09 \\ 7E & AE & F7 & CF \\ 15 & D2 & 15 & 4F \\ 16 & A6 & 88 & 3C \end{pmatrix}$$

④行移位
$$\begin{pmatrix} E5 & 34 & 62 & 01 \\ E4 & 68 & 8A & F3 \\ 59 & 84 & 59 & B5 \\ EB & 47 & 24 & C4 \end{pmatrix}$$

⑤列混淆
$$\begin{pmatrix} 02 & 03 & 01 & 01 \\ 01 & 02 & 03 & 01 \\ 01 & 01 & 02 & 03 \\ 03 & 01 & 01 & 02 \end{pmatrix}$$
 \oplus $\begin{pmatrix} E5 & 34 & 62 & 01 \\ E4 & 68 & 8A & F3 \\ 59 & 84 & 59 & B5 \\ EB & 47 & 24 & C4 \end{pmatrix} = \begin{pmatrix} 54 & 13 & 3C & 7D \\ 36 & 34 & A2 & FC \\ 95 & 86 & 36 & D4 \\ 44 & 3E & 3D & D6 \end{pmatrix}$

⑥轮密钥加
$$\begin{pmatrix} 54 & 13 & 3C & 7D \\ 36 & 34 & A2 & FC \\ 95 & 86 & 36 & D4 \\ 44 & 3E & 3D & D6 \end{pmatrix}$$
 \oplus $\begin{pmatrix} A0 & 88 & 23 & 2A \\ FA & 54 & A3 & 6C \\ FE & 2C & 39 & 76 \\ 17 & B1 & 39 & 05 \end{pmatrix} = \begin{pmatrix} F4 & 9B & 1F & 57 \\ CC & 60 & 01 & 90 \\ 6B & AA & 0F & A2 \\ 53 & 8F & 04 & D3 \end{pmatrix}$

因此,结果为(F4CC 6B53 9660 AA8F 1F01 0F04 5790 02D3)₁₆。

(2)

(3)

显然,当输入为 W,子密钥为 W_0 ,…, W_7 时,AES 第一轮的输出结果与输入相比改变了 61 位。 当输入和子密钥全为 0 的情况下,AES 第一轮的输出结果与输入相比改变了 64 位。

7. 如果在 OFB 模式下执行加密操作, 加密不同数据时使用相同的 IV, 那么可以如何进行攻击?

解:利用已知明文攻击。若明文m的明文块 x_i 对应的密文是 y_i ,那么,将 x_i 与对应的 y_i 进行异或可得到IV经过加密得到的结果 E_{IV} 。若m的其它明文块 x_j 使用相同IV进行加密得到的密文为 y_i ,那么,明文 x_i 可由 E_{IV} 和 y_i 异或得到。

下图为 OFB 模式流程图。

OFB模式的加密

