Deep Learning with torch:: CHEAT SHEET

Intro torch is based on Pytorch, a framework popular among deep learning researchers.

torch's GPU acceleration allows to implement fast machine learning algorithms using its convenient interface, as well as a vast range of use cases, not only for deep learning, according to Its flexibility and its low level API.

It is part of an ecosystem of packages to interface with specific dataset like torchaudio for timeserieslike and torchvision for image-like data.

https://torch.mlverse.org/

https://mlverse.shinyapps.io/torch-tour/

INSTALLATION

The torch R package uses the C++ libtorch library. You can install the prerequisites directly from R.

https://torch.mlverse.org/docs/articles/installation.html

install.packages("torch") library(torch) See ?install_torch for install_torch() **GPU** instructions

Working with torch models

DEFINE A NN MODULE dense <- nn_module("no_biais_dense_layer", initialize = function(in_f, out_f) { self\$w <- nn parameter(torch randn(in f, out f)) forward = function(x) { torch_mm(x, self\$w) Create a nn module names no_biais_dense_layer

ASSEMBLE MODULES INTO NETWORK

Model <- dense(4, 3)

Instantiate a network with one single module

layer1 <- dense(4,3)layer2 <- dense(3,1)Model <- nn_sequential(layer1, nn_relu(), nn_dropout(0.4), layer2, nn_sigmoid()) Instantiate a sequential network with multiple

MODEL FIT

modelStrain()

Turns on gradient update

with_enable_grad({ v pred <- model(trainset)</pre> loss <- (y_pred - y)\$pow(2)\$mean() loss\$backward()

Detailed training loop step (alternative)

EVALUATE A MODEL

model\$eval()

with_no_grad({ model(validationset)

Perform some forward operation with no gradient update

OPTIMIZATION

optim_sgd()

Stochastic gradient descent optimiser

optim adam() ADAM optimiser

CLASSIFICATION LOSS FUNCTION

nn_cross_entropy_loss() nn bce loss() nn bce with logits loss() (Binary) cross-entropy losses nn nll loss() Negative log-likelihood loss nn_margin_ranking_loss() nn_hinge_embedding_loss() nn_multi_margin_loss() nn multilabel margin loss() (Multiclass) (multi label) hinge losses

REGRESSION LOSS FUNCTION

nn l1 loss() L1 loss

nn_mse_loss()

Poisson NLL loss

MSE loss nn ctc loss() Connectionist Temporal Classification loss nn_cosine_embedding_loss() Cosine embedding loss

nn_kl_div_loss() Kullback-Leibler divergence loss nn_poisson_nll_loss()

OTHER MODEL OPERATIONS

summary() Print a summary of a torch model

torch_save(); torch_load() Save/Load models to files

load_state_dict() Load a model saved in python

CORE LAYERS

nn linear()

Add a linear transformation NN laver to an input

The "Hello, World!" of

deep learning

nn_bilinear() to two inputs

nn sigmoid(), nn relu() Apply an activation function to an

output

nn_dropout() nn_dropout2d() nn dropout3d() Applies Dropout to the input

nn_batch_norm1d() nn batch norm2d() nn_batch_norm3d()

Applies batch normalisation to the weights

CONVOLUTIONAL LAYERS

nn_conv1d() 1D, e.g. temporal convolution

nn conv transpose2d() Transposed 2D (deconvolution)

nn_conv2d() 2D, e.g. spatial convolution over images

nn_conv_transpose3d()

Transposed 3D (deconvolution) nn_conv3d() 3D, e.g. spatial convolution over volumes

nnf_pad() Zero-padding layer

TRAINING AN IMAGE RECOGNIZER ON MNIST DATA

```
# input layer: use MNIST images
train ds <- torchvision::mnist dataset(
root = " ~/.cache",
download = TRUE,
transform = torchvision::transform_to_tensor
test_ds <- mnist_dataset(
root = " ~/.cache",
train = FALSE,
transform = torchvision::transform to tensor
train_dl <- dataloader(train_ds, batch_size = 32,
shuffle = TRUE)
test dl <- dataloader(test ds, batch size = 32)
# defining the model and layers
net <- nn_module(
 "Net",
 initialize = function() {
 self$fc1 <- nn_linear(784, 128)
 self$fc2 <- nn_linear(128, 10)
 forward = function(x) {
 x %>%
  torch_flatten(start_dim = 2) %>%
  self$fc1() %>% nnf relu() %>%
  self$fc2() %>% nnf_log_softmax(dim = 1)
model <- net()
# define loss and optimizer
optimizer <- optim_sgd(model$parameters, lr = 0.01)
# see next page for the training loop
```

More layers

ACTIVATION LAYERS

nn_leaky_relu()

Leaky version of a rectified linear unit

nn relu6()

rectified linear unit clamped by 6

nn rrelu()

Randomized leaky rectified linear unit

nn_elu(), nn_selu()

Exponential linear unit, Scaled Exp lineal unit

POOLING LAYERS

nn_max_pool1d() nn max pool2d() nn max pool3d()

Maximum pooling for 1D to 3D

nn_lp_pool1d() nn_lp_pool2d() nn_lp_pool3d()

Linear power pooling for 1D to 3D

nn_avg_pool1d() nn_avg_pool2d() nn_avg_pool3d()

Average pooling for 1D to 3D

nn adaptive max pool1d() nn adaptive max pool2d() nn adaptive max pool3d() Adaptive maximum pooling

nn_adaptive_avg_pool1d() nn_adaptive_avg_pool2d() nn_adaptive_avg_pool3d() Adaptive average pooling

RECURRENT LAYERS

nn rnn() Fully-connected RNN where the output is to be fed back to input

nn_gru() Gated recurrent unit - Cho et al

Long-Short Term Memory unit -Hochreiter 1997

Tensor manipulation

TENSOR CREATION

t <- torch_ones(4,3,2) torch ones like(a)

Create a tensor full of 1 with given shape, or with the same shape as 'a'. Also

torch_zeros, torch_full, torch_arange,...

t\$ndim t\$dtype t\$shape [1] 3 torch Float [1]432 t\$requires_grad t\$device torch_device(type='cpu') [1] FALSE Get 't' tensor shape and attributes

torch_tensor(a, dtype=torch_float(), device="cuda")

Copy the R array 'a' into a tensor of float on the GPU

TENSOR SLICING

t[1:2, -2:-1,] Slice a 3D tensor t[5:N, -2:-1, ..]

Slice a 3D or more tensor, N for last

t[1:2, -2:-1, 1:1] Slice a 3D and keep the unitary dim.

t[1:2, -2:-1, 1]

Slice by default remove unitary dim.

Boolean filtering (flattened result)

t\$unsqueeze(1) torch_unsqueeze(t,1)

Add a unitary dimension to tensor "t" as first dimension

t\$squeeze(1) torch_squeeze(t,1)

Remove first unitary dimension to

TENSOR SHAPE OPERATIONS

torch_reshape() \$view() Change the tensor shape

torch_flatten() Flattens an input

torch_transpose()

torch_movedim()

TENSOR VALUES OPERATIONS

Operations with two tensors

n

\$sum(dim=1), \$

\$pow(2), \$transpose Operations on a single tensor

Aggregation functions on a single tensor

torch_repeat_interleave() Repeats the input n times

TRAINING AN IMAGE RECOGNIZER ON MNIST DATA (CONT)

```
# train (fit)
for (epoch in 1:10) {
train losses <- c()
 test_losses <- c()
 for (b in enumerate(train_dl)) {
 optimizer$zero grad()
 output <- model(b[[1]]$to(device = device))
 loss <- nnf_nll_loss(output, b[[2]]$to(device = device))
 loss$backward()
 optimizer$step()
 train_losses <- c(train_losses, loss$item())
for (b in enumerate(test_dl)) {
 model$eval()
 output <- model(b[[1]]$to(device = device))</pre>
 loss <- nnf_nll_loss(output, b[[2]]$to(device = device))
 test_losses <- c(test_losses, loss$item())
 model$train()
```

Pre-trained models

Torch applications are deep learning models that are made available alongside pre-trained weights. These models can be used for prediction, feature extraction, and fine-tuning.

Callbacks

A callback is a set of functions to be applied at given stages of the training procedure. You can use callbacks to get a view on internal states and statistics of the model during training.