Development of an open-source calibration framework for superconducting qubits

Master degree in Physics

Candidate:

Elisa Stabilini 28326A

July 4th 2025

Università degli Studi di Milano - Department of Physics

Supervisor:

Prof. Dr. Stefano Carrazza

Co-supervisors:

Dr. Alessandro Candido

Dr. Andrea Pasquale

Dott. Edoardo Pedicillo

Table of contents

- 1. Superconducting qubits
- 2. Average Clifford gate fidelity optimization
- 3. Library additions
- 4. Conclusions & Outlooks

Qibo framework

Superconducting qubits

Artificial atoms

Qubit: two level system

Superconducting qubits: use Josephson Junctions to build anharmonic oscillators

Figure 1: DOI: 10.1109/MAP.2022.3176593

State readout

Qubit - resonator hamiltonian:

$$\hat{H} = \hbar \omega_r \hat{a} \hat{a}^\dagger - \frac{\hbar \omega_{01}}{2} \hat{\sigma}_z + \hbar g (\hat{\sigma}^+ \hat{a} + \hat{\sigma}^- \hat{a}^\dagger)$$

Dispersive regime $(g \ll \omega_q - \omega_r)$:

$$\hat{H}_{disp} = \hbar(\omega_r - \chi \hat{\sigma}_z) \hat{a}^{\dagger} \hat{a} - \frac{\hbar}{2} (\omega_{01} + \chi) \hat{\sigma}_z$$

dispersive shift: $\chi = \frac{g^2}{\Delta}$,

$$\Delta = \omega_q - \omega_r$$

Figure 2: DOI: 10.1109/MAP.2022.3176593

Calibration

- 1. Resonator characterization
- 2. Qubit characterization
- 3. Gate calibration
- 4. Gate set characterization

Metrics: Fidelity, T1, T2

Average Clifford gate fidelity

optimization

Randomized Benchmarking

Randomized benchmarking estimates average gate fidelity by applying random sequences of Clifford gates followed by an inverting gate.

Figure 3: DOI: 10.1007/s10773-024-05811-8

Randomized Benchmarking

Randomized benchmarking estimates average gate fidelity by applying random sequences of Clifford gates followed by an inverting gate.

RB optimization [Kelly et al. 2014]

Library additions

Native RX90

Qibolab native gates: RX, MZ

Flux pulse reconstruction [Rol et al. 2020]

Transmon flux dependence:

$$f_q(\Phi_q) pprox \left(\sqrt{8E_J E_C \left|\cos\left(\pi \frac{\Phi_q}{\Phi_0}\right)\right|}\right)$$

Detuning as function of the flux pulse:

$$\Delta \mathit{f}_{R} = rac{1}{\Delta au} \int_{ au}^{ au + \Delta au} \Delta \mathit{f}_{Q}(\Phi_{Q, au + \Delta au}(t))$$

Figure 4: DOI: 10.1039/D2TC01258H

Filter determination

- 1. Determine exponential correction
- 2. Obtain IIR filters from exponential correction
- 3. Determine FIR
- 4. Apply pre-distortion

Impact on chevron plots

Conclusions & Outlooks

Questions?

References

References

Rol, M. A. et al. (Feb. 2020). "Time-domain characterization and correction of on-chip distortion of control pulses in a quantum processor". en. In: Applied Physics Letters 116.5. arXiv:1907.04818 [quant-ph], p. 054001. ISSN: 0003-6951, 1077-3118. DOI: 10.1063/1.5133894. URL: http://arxiv.org/abs/1907.04818 (visited on 02/24/2025).

Backup slides

What is for?

• Simulation of quantum system:

"Nature isn't classical, dammit, and if you want to make a simulation of nature, you'd better make it quantum mechanical, and by golly it's a wonderful problem, because it doesn't look so easy"

- Optimization and modeling (chemistry, finance, traffic, weather...), eg. VQE, QAOA
- Quantum Algorithms
- Quantum Machine Learning

Qubit platforms

Standard Randomized Benchmarking protocol

RB protocol

- 1. Initialize the system in the ground state
- 2. For each sequence length *m* draw a sequence of Clifford group elements
- 3. Calculate the inverse gate
- 4. Measure sequence and inverse gate
- Repeat the process for multiple sequences of the same length while varying the length

RB features

- robust to SPAM errors
- faster than state tomography
- hardware-agnostic

Clifford gates

- Special subset of quantum gates that map Pauli operators to Pauli operators under conjugation
- Clifford gates group is generated by H, S, CNOT gates
- Quantum circuits that consist of only Clifford gates can be efficiently simulated with a classical computer (Gottesman–Knill theorem)

