

UNIVERSIDADE LUTERANA DO BRASIL

Pró-Reitoria de Graduação Direção Geral de Ensino

CURSO: SISTEMAS DE INFORMAÇÃO	ANO/SEMESTRE 2014/2
DISCIPLINA: Engenharia de Software I CODIGO: 204604 PROFESSOR: Márcio Daniel Puntel	CRÉDITOS: 04 C/H TOTAL: 68

PLANO DE ENSINO-APRENDIZAGEM

1. EMENTA

A disciplina capacita o aluno para a análise e o projeto de software através dos métodos estruturado e orientado a objetos, abordando princípios e processos, ciclos de desenvolvimento, análise de requisitos, modelagem e teste de software, com o uso de ferramentas CASE (Computer-Aided Software Engineering) e da linguagem UML (Unified Modeling Language).

2. OBJETIVOS DA DISCIPLINA

2.1 GERAL:

Ao final da disciplina o aluno deve conhecer os conceitos da Engenharia de Software e os processos de desenvolvimento de software na abordagem estruturada. Como também, o aluno estará apto a implementar os procedimentos de levantamento de dados, análise e modelagem de requisitos, elaborar projetos de software e planejar testes de software.

ESPECÍFICO (S)

- Apresentar os conceitos de Engenharia de Software
- Entender os conceitos do ciclo de vida do desenvolvimento de software
- Modelagem de requisitos
- Modelar uma aplicação utilizando todos os diagramas
- Apresentar métodos atuais de desenvolvimento de software (metodologias ágeis)

3. CONTEÚDO PROGRAMATICO

- Introdução e Princípios da Engenharia de Software
- Processos da Engenharia de Software
- Ciclos de Vida do Desenvolvimento de Software
- Análise e Projeto de Software Estruturado
- Diagrama de Fluxo de Dados
- Verificação e Validação Testes de Software
- Metodologias ágeis

4. METODOLOGIA

As atividades de aprendizagem consistem em leituras, reflexões e discussões sobre elas, exercícios teóricos e práticos, estudos de casos, trabalhos de grupo, e avaliação G1 e G2.

a- Leituras: as leituras indicadas na disciplina deverão ser cumpridas no prazo estabelecido a fim de facilitar a aprendizagem do grupo e as discussões sobre os temas

que requerem a participação de cada um dos alunos.

- *b- Exercícios teóricos e práticos:* Exercícios planejados para complementar, ampliar e organizar a aprendizagem. Serão disponibilizados ao longo do semestre acompanhados de data de entrega. Estes exercícios poderão ser individuais ou em grupo conforme a orientação determinada.
- *c- Estudos de caso:* Narrativas de situações que deverão ser exploradas criticamente. Objetivam a interpretação e aplicação prática das discussões teóricas da disciplina.
- d- Trabalhos em grupo: Formação de grupos para participação de discussões, execução da tarefas e envolvimento em atividades de grupo e simulações. A formação da equipe e as diretrizes para a formação dos grupos será dada no momento apropriado.

5. PROCESSOS AVALIATIVOS

A avaliação será realizada mediante prova individual e trabalhos desenvolvidos em aula e atividades extraclasse.

- **G1:** Prova individual (60%), Trabalhos (30%) e Quiz (10%).
- G2: Prova individual (50%), Trabalhos (40%) e Quiz (10%).

Trabalho G1-01: Elencar requisitos funcionais e não funcionais.

Trabalho G1-02: Criar e especificar requisitos de um sistema de software.

<u>Trabalho G2-01:</u> Pesquisar sobre abordagens de Testes (sorteadas pelo professor) e apresentar em aula.

<u>Trabalho G2-02:</u> Apresentar de forma prática o exemplo do uso de uma metodologia ágil de desenvolvimento de software.

- APROVAÇÃO: para aprovação na disciplina o aluno deve ter nota final mínima de 6,0 (seis) ao final do semestre.
- **PLÁGIO:** em caso de identificação de plágio nos trabalhos, o respectivo trabalho receberá nota 0 (zero).
- <u>- Freqüência:</u> a presença do aluno em aula é obrigatória, faltas acima de 25% (vinte e cinco por cento) das aulas implicam em falta de frequência (reprovação), independentemente dos demais conceitos.

6. BILIOGRAFIA BÁSICA

- AMBLER, Scott W. Modelagem Ágil.Porto Alegre: Bookman, 2004.
- PRESSMAN, Roger S.. Engenharia de Software. São Paulo: Pearson, 2006.
- SOMMERVILLE, lan. Engenharia de Software. São Paulo: Pearson, 2007.

7. BIBLIOGRÁFIA COMPLEMENTAR

- BOOCH, G.. UML: guia do usuário. Rio de Janeiro: Elsevier, 2005.
- DEMARCO, T.. Análise Estruturada e Especificação de Sistema. Rio de Janeiro: Elsevier, 2005.
- LARMAN, C.. Utilizando UML e Padrões: uma introdução à análise e a projetos orientados a objetos. Porto Alegre: Bookman, 2006.
- PAULA FILHO, Wilson de Pádua. Engenharia de Software: fundamentos, métodos e padrões. Rio de Janeiro: LTC, 2003.
- SOMMERVILLE, Ian. Engenharia de Software. São Paulo: Pearson, 2007.

4. CRONOGRAMA

AULA	DESENVOLVIMENTO
1ª aula 31/07	Apresentação da disciplina (plano de ensino, bibliografia e formas de avaliação). Introdução a Engenharia de Software
2ª aula 07/08	Engenharia de Requisitos

	T	
3ª aula	Engenharia de Requisitos	
14/08	Trabalho G1-01 – Criar requisitos funcionais e não funcionais	
4ª aula	Correção/validação dos requisitos elaborados e enviados.	
21/08	Processos de Produção de Software	
	Ciclos de Vida de Software	
5ª aula	Especificação de Sistema	
28/08	(Trabalho G1-02)	
6ª aula	Atividade não presencial – Pesquisar ferramentas CASE de apoio a	
30/08 7 ^a aula	engenharia de software.	
04/09	Análise Estruturada - Diagrama de Fluxo de Dados	
	Exercícios de fixação sobre Diagrama de Fluxo de Dados	
8ª aula 11/09	Revisão – Questões sobre os temas abordados em G1	
9ª aula 18/09	Avaliação de Grau (G1) – Prova	
10 ^a aula	Correção da prova	
25/09	Conceitos de UML	
11 ^a aula	UML vs. Estrutural	
02/10	Diagramas da UML	
12ª aula	Estratégias de Testes	
09/10	Metodologias de testes (manuais, automatizados, guiando o	
	desenvolvimento).	
13ª aula 16/10	Trabalho G2-01	
14^a aula 23/10	Engenharia reversa	
15 ^a aula	Apresentação do conceito do desenvolvimento ágil (pilares, manifesto,	
30/10	quebra de paradigmas, contratos de escopo aberto vs. Contratos de escopo fechado).	
16ª aula 06/11	Metodologias Ágeis para Desenvolvimento de Sistemas	
17ª aula 13/11	Modelagem ágil	
18ª aula 20/11	Trabalho G2-02	
19ª aula 27/11	Quiz G1 e G2	
20^a aula 04/12	Avaliação de Grau (G2) – Prova	
21ª aula 11/12	Revisão	
22ª aula 18/12	Substituição de Grau (SG)	
Feriados:		
1		