Задача 1. Докажите, что у броуновского движения почти наверное бесконечная полная вариация.

 $3a\partial a$ ча 2. Пусть B_t – броуновское движение. Вычислить:

$$Z_t = \int_0^t 2B_t dB_t$$

Задача 3. Доказать формулу Ито для процесса Ито.

 $3a\partial a$ ча 4. При каком α процесс $X_t = e^{\alpha t + \sigma B_t}$ является мартингалом?

Задача 5. Пусть

$$X_t = \mu t + \sigma B_t$$

Пусть a, b > 0. Пусть $\tau = \inf_{t \geq 0} \{t : X_t = a \vee X_t = -b\}$. Найти $\mathbb{P}(X_\tau = a), \mathbb{E}\tau$.

 $3a\partial aua$ 6. Пусть X_t удовлетворяет СДУ:

$$dX_t = \alpha(\theta - X_t)dt + \sigma dB_t$$

где $\alpha, \theta \in \mathbb{R}, \sigma \in \mathbb{R}^+$.

Найти $\mathbb{E}X_t$, $Var(X_t)$.

 $3a\partial a$ ча 7. Пусть $X_t = B_t^4 + f(t)B_t^2 + g(t)$, где B_t – броуновское движение, f(t), g(t) – детерминированные функции.

При каких f, g процесс X_t является мартингалом?

Задача 8. Пусть

$$\begin{cases} dX_t = X_t(\mu_x dt + \sigma_x dB_t), \\ dY_t = Y_t(\mu_y dt + \sigma_y dZ_t), \end{cases}$$

где $dB_t \cdot dZ_t = \rho dt$ – броуновские движения с корреляций ρ .

Выписать уравнения для процессов $X_t^{\alpha}, X_t \cdot Y_t, \frac{X_t}{Y_t}$

Задача 9. Пусть

$$\begin{cases} dX_t = \alpha X_t dt - Y_t dB_t, \\ dY_t = \alpha Y_t dt + X_t dB_t, \end{cases},$$

 $X_0 = x_0, Y_0 = y_0$, где x_0, y_0 – константы.

Найти $R_t = X_t^2 + Y_t^2$. Вычислить $\mathbb{E} X_t$.

 $3a\partial a$ ча 10 (Variance swap). Пусть $dX_t = X_t \sigma_t dB_t$ – процесс Ито, σ_t – согласованный процесс.

Покажите, что:

$$\int_{0}^{T} \sigma_{t}^{2} dt = -2 \ln \frac{X_{T}}{X_{0}} + \int_{0}^{T} \frac{2}{X_{t}} dX_{t}$$

 $\it 3a\partial a$ ча 11. Пусть процесс X_t удовлетворяет следующуему СДУ:

$$dX_t = \alpha X_t dt + \sigma_t dB_t$$

для некоторого процесса σ_t и $\alpha \in \mathbb{R}$.

Найти $\mu(t) = \mathbb{E}X_t$.

 $\it Задача \ 12 \ (Броуновский мост). Пусть <math>\it X_t$ удовлетворяет СДУ:

$$dX_t = a(t)X_t + dB_t$$

где a(t) – детерменированная функция, B_t – броуновское движение. Найдите a(t) такое, что процесс X_t , определённый по формуле выше, является броуновским мостом. Броуновский мост это гауссовский процесс X_t : $\mathbb{E}X_t=0$, $\operatorname{cov}(X_t,X_s)=s\cdot(1-t),\ s\leq t$ $3a\partial aua$ 13 (Уравнение Орнштейна-Уленбека). Решить стохастическое дифференциальное уравнение на X_t :

$$dX_t = \alpha(\theta - X_t)dt + \sigma dB_t$$

где $\alpha, \theta \in \mathbb{R}, \sigma \in \mathbb{R}^+$.

При каком распределении X_0 процесс X_t стационарен?