BONUS Week 3 Homework

(1) This is a preview of the published version of the quiz

Started: Jul 2 at 7:53am

Quiz Instructions

Question 1 1 pts

(Lesson 2.10: Conditional Expectation.) BONUS: Suppose that

f(x,y)=6x for $0\leq x\leq y\leq 1$. Hint (you may have seen this someplace): the marginal p.d.f. of X turns out to be

 $f_{X}\left(x
ight) =6x\left(1-x
ight)$ for $0\leq x\leq 1$. Find the conditional p.d.f. of Y given that $f(y|x) = \frac{f(x,y)}{f_{v}(x)}$

$$extstyle extstyle ext$$

$$\bigcirc$$
 c. $f(y|x)=rac{1}{1-y}, \ \ \ 0\leq y\leq 1$

$$\bigcirc$$
 d. $f(x|y)=rac{1}{1-x}, \quad 0 \leq x \leq y \leq 1$

Question 2 1 pts

(Lesson 2.10: Conditional Expectation.) BONUS: Again suppose that

f(x,y)=6x for $0\leq x\leq y\leq 1$. Hint (you may already have seen this someplace): the the marginal p.d.f. of X turns out to be $f_{X}\left(x
ight) =6x\left(1-x
ight)$ for $0 \le x \le 1$. Find $\mathsf{E}[Y|X=x]$.

$$0 \le x \le 1. \text{ Find } \mathbf{E}[Y|X = x].$$

$$= \begin{bmatrix} Y \mid X = x \end{bmatrix} = \int_{\mathbb{R}^{N}} y + (y \mid x) \, dy$$

$$= \int_{\mathbb{R}^{N}} y + (y \mid x) \, dy = \int_{\mathbb{R}^{N}} \frac{y}{1 - x} \, dy$$

$$= \int_{\mathbb{R}^{N}} \frac{y^{2}}{1 - x} \, dy = \int_{\mathbb{R}^{N}} \frac{y}{1 - x} \, dy$$

$$= \int_{\mathbb{R}^{N}} \frac{y^{2}}{1 - x} \, dy = \int_{\mathbb{R}^{N}} \frac{y}{1 - x} \, dy$$

Ø b.
$$E[Y|X = x] = \frac{1+x}{2}$$
, $0 \le x \le 1$ = $\frac{(-x^2)}{2(1-2)} = \frac{(1-x^2)((+x))}{7(1-x)}$

$$\bigcirc$$
 c. $\mathsf{E}[Y|X=x]=rac{1+y}{2},\quad 0\leq y\leq 1$

$$\bigcirc$$
 d. $\mathsf{E}[X|Y=y]=rac{1+y}{2}, \quad 0\leq y\leq 1$

Question 3 1 pts

(Lesson 2.10: Conditional Expectation.) BONUS: Yet again suppose that f(x,y)=6x for $0\leq x\leq y\leq 1$. Hint (you may already have seen this someplace): the the marginal p.d.f. of X turns out to be $f_X(x)=6x(1-x)$ for $0\leq x\leq 1$. Find $\mathsf{E}[\mathsf{E}[Y|X]]$.

$$0 \le x \le 1. \text{ Find } \mathbf{E}[\mathbf{E}[Y|X]].$$

$$(y) = \int_{\mathbb{R}} f(x,y) dx$$

$$= \int_{\mathbb{R}} f(x,y) dx$$

Question 4 1 pts

(Lesson 2.14: Estimation.) BONUS: Consider two estimators, T_1 and T_2 , for an unknown parameter θ . Suppose that the ${\sf Bias}(T_1)=0$, $Bias\,(T_2)=\theta$,

 $\mathsf{Var}(T_1) = 4\theta^2$, and $\mathsf{Var}(T_2) = \theta^2$. Which estimator might you decide to use and why? $\mathcal{MSE}(\top) = \bigvee_{\sigma r} (\top) + \left(\mathcal{E}_{f} \text{ as } (\top) \right)$

$$\bigcirc$$
 a. T_1 - it has lower expected value $MSE(T_1) = 4\theta^2 + 0^2$

O b.
$$T_1$$
- it has lower MSE
$$MSE(T_2) = \Theta^2 + \Theta^2 = 2 \Theta^2$$

 \bigcirc c. T_2 - it has lower variance

d.
$$T_2$$
 - it has lower MSE $MSE(T_2) \angle MSE(T_1)$

Question 5 1 pts

(Lesson 2.15: Maximum Likelihood Estimation.) BONUS: Suppose that

$$X_1, X_2, \ldots, X_n$$
 are i.i.d. $\operatorname{Pois}(\lambda)$. Find $\hat{\lambda}$, the MLE of λ . (Don't panic --- it's not that difficult.)
$$\lim_{L(\lambda) = \prod_{i=1}^n f(x_i)} \int_{\mathbb{R}^n} \frac{e^{\lambda} \lambda^{x_i}}{x_i!} = e^{-n\lambda} \lambda^{x_i}$$
$$\lim_{L(\lambda) = \mathbb{R}^n} \int_{\mathbb{R}^n} \frac{e^{\lambda} \lambda^{x_i}}{x_i!} = e^{-n\lambda} \lambda^{x_i}$$
$$\lim_{L(\lambda) = \mathbb{R}^n} \int_{\mathbb{R}^n} \frac{e^{\lambda} \lambda^{x_i}}{x_i!} = e^{-n\lambda} \lambda^{x_i}$$

$$\mathbb{Z} = \mathbb{Z} + \mathbb{Z} = \mathbb{Z} \times \mathbb{Z} \times$$

$$0 \text{ b. } 1/\bar{X}$$

$$= -\eta \lambda \ln \alpha + \int_{-\pi}^{\pi} \gamma \int_{-\pi}^{\pi} \ln \alpha - 0 \Lambda \int_{-\pi}^{\pi} (\gamma_{1}) d\gamma_{2} d\gamma_{3}$$

$$0 c. n/\sum_{i=1}^{n} X_{i} = -n \ln e + \left[\sum_{i=1}^{n} \chi_{i}\right] \ln n - \ln \prod_{i=1}^{n} (\chi_{i}!)$$

$$0 d. S^{2} \qquad \int_{\partial N} \ln [L(N)] = -n + \int_{\partial N} \sum_{i=1}^{n} \chi_{i} = 0 \Rightarrow \hat{\lambda} = \int_{\partial N} \sum_{i=1}^{n} \chi_{i} = 0$$

Question 6 1 pts

(Lesson 2.15: Maximum Likelihood Estimation.) BONUS: Suppose that we are looking at i.i.d. $Exp(\lambda)$ customer service times. We observe times of 2, 4, and 9

Question 7 1 pts

(Lesson 2.16: Confidence Intervals.) BONUS: Suppose we collect the following observations: 7, -2, 1, 6 (as in a previous question in this homework). Let's assume that these guys are i.i.d. from a normal distribution with unknown variance σ^2 . Give me a two-sided 95% confidence interval for the mear

two-sided 95% confidence interval for the mean
$$\mu$$
.

 $N = 4$

sample mean $\chi = \frac{7-2+1+b}{4} = 3$

sample variance $s^2 = \frac{54}{4-1} = 18$
 $\chi = 0.05$

Not saved

Submit Quiz