⑩日本国特許庁(JP) ⑪特許出願公告

許 公 報(B2)

平5-15201

®Int. Cl. ⁵

識別記号

庁内勢理番号

**2020公告 平成5年(1993)3月1日** 

G 01 B 11/06

Z 7625-2F

発明の数 1 (全7頁)

60発明の名称 赤外線厚さ計の検出信号処理方法 ❸公 開 昭63-277910 **郊特 顧 昭62-111691** @昭63(1988)11月15日 顧 昭62(1987)5月9日 会出 静岡県沼津市大岡2068の3 東芝機械株式会社沼津事業所 # 0 の発 明 静岡県沼津市大岡2068の3 東芝機械株式会社沼津事業所 给 @発 明 静岡県沼津市大岡2068の3 東芝機械株式会社沼津事業所 岩田 伊発 明 東京都中央区銀座4丁目2番11号 東芝機械株式会社 の出 願 人 弁理士 浜田 冶雄 砂代 理 人 田部 元 史 審査官

# の特許請求の範囲

1 被測定物の吸光係数に基づく、透過光量検出 **信号の被測定物厚さに関する減少率を透過光量検** 出信号の大きさに関する関数として設定し、この 関数を演算処理することにより検量線を設定して 5 なる赤外線厚さ計の検出信号処理方法において、

前記関数は、次式(1)

$$dx/dt = -\alpha x^n$$

ここで、x=lnI

I=透過光量検出信号値

t=被測定物厚さ

α=パラメータ

n=ベキ数

であり、式(1)における透過光量検出信号値 1 は、 次式(2)

 $I = I_0(1-r) e^{-at}$ 

ここで、lo=被測定物厚さtが0である場合、 すなわち光路がオープンである

場合の光量検出信号値

r=被測定物の反射率

μ=被測定物の吸光係数

で規定し、

さらに演算処理は、厚さta, tb, …既知のサン

2

プルTa, Tb, …を用いて、前記式(1)を積分して 得られる次式(3)

$$t = -\frac{1}{(1-n)\alpha} \{x^{(1-n)} - x_0^{(1-n)}\}$$
 ...(3)

ここで、xo=被測定物厚さtが0である場合、 すなわち光路がオープンである 場合の光量検出信号の対数値

但し、n ≠ I

と、n=1である場合に適用する次式(4)

$$t = -\frac{1}{a} (\ln x - \ln x_0) \qquad \cdots (4)$$

とに基づいて前記各サンプルの計算厚さta', tb', …を計測し、逐次最小二乗法演算によつて、計算 厚さと真の厚さとの相関係数mの値が最大となる 15 ベキ数ヵの値を選定することを特徴とする赤外線 厚さ計の検出信号処理方法。

# 発明の詳細な説明

〔産業上の利用分野〕

本発明は、赤外線厚さ計において被測定物の種 20 類に応じて予め行なわれる計器の校正方法に係 り、殊にこの場合における検出信号の処理方法に 関する。

〔従来の技術〕

---{1}

---(2)

3

一般に、赤外線厚さ計は、光源と光検出器との 間に被測定物を配置し、光顔からの光が被測定物 を透過する時に吸収・散乱によつて減衰し、この 減衰量が被測定物の厚さの関数であることを利用 して、被測定物の厚さを測定するものである。

この場合、前述の透過光の減衰量は被測定物の 特性によって変動するので、測定に先立つて計器 の校正が行なわれる。この校正は、被測定物の特 性によって定まる基準線すなわち検量線を設定す ることによつて行なわれる。この検量線し(第3 10 の計測値 図参照)は、後で詳しく説明するが、既知の厚さ ta, thを有する被測定物のサンプルTa, Tbの透 過光量la, Ibを測定することにより設定され、セ ミ対数グラフ、すなわち横軸に厚さtをとり縦軸 示すグラフ)上においては直線で表示される。そ して、この検量線上が設定されると、被測定物 Tiの透過光量liを測定することにより、被測定物 Tiの厚さtiが自動的に計測される。この厚さ ゼ'は、通常、厚さ計に備えられるCRTに表示さ 20 式 れるか、プリンタから配録出力される。

ところで、前述の透過光量の減衰量と被測定物 の厚さに関する関数すなわち物理則としては、従 来は下記の(5)式

 $l = l_0 e^{-at}$ 

ここで、【=被測定物の透過光量検出信号値 Ia=光路がオープンである場合の光量 検出信号値

μ=被測定物の吸光係数

t=被測定物の厚さ

が用いられていた。すなわち、透過光量の減衰量 は被測定物の吸光係数μによってのみ定められて いた。

しかるに、前配式(5)に基づく計測方法では、例 に光を相当に反射するものに対しては、被測定物 の計測厚さに誤差が発生していた。そこで、本願 人らは、前述の物理則として前記式(5)に替えて下 記の式(2)

 $1 = [0(1-r)e^{-\mu t}]$ 

を採用し〔なお、この式は特許請求の範囲2項に 示される式(2)と同一である人 これに基づいて被 測定物の厚さを測定する計測方法(以後第1の計 測方法と称する)を開発し、特許出願を行つた

(特開昭58-176508号公報)。これによれば、従来 誤差を発生させていた反射光の影響が除去される ので、反射率が大きい被測定物に対しても正確な 計測を行なうことができる。

ここで、この第1の計測方法における計器校正 方法に関連して、前述の検量線しの設定について 説明する。検量線Lは、2つのサンプルTa, Tb を計測すること、すなわち前配物理則式(2)を演算 算定することによつて設定される。すなわち、そ

 $la = l_0(1 - r) e^{-rta}$ 

 $Ib=I_0(1-r)e^{-rtb}$ 

において、検出信号Ia, Ib, Ioはそれぞれ計測に よつて得られる値であり、厚さta,tbは既知の値 に検出信号 I の対数値をとつたグラフ(第3図に 15 であり、したがつて未知の値は吸光係数μおよび 反射率 r の 2 つであることから、前記 2 つの計測 値から吸光係数μと反射率rが演算算定される。 すなわち、検量線上が設定される。そして、この 検量線しは、前記(2)式を対数変換して得られる下

 $\log_a I = \log_a I_0 (1-r)^{-at}$ 

において、吸光係数μおよび反射率rが、従来 は、一定とされていたことから、厚さも以外は定 数であり、したがつて検出信号Iの対数値と厚さ ···(5) 25 tとは一次式となり、グラフ·(第3図)上におい て直線で表示される。そして、このような検量線 Lを介して測定される被測定物Tiの測定厚さ ti'は、検量線Lに反射率rのフアクタが含まれて いるので、反射光に基づく従来の計測誤差が除去 30 される。

しかるに更に、第1の計測方法においても、殊 に被測定物の計測厚さレンジが大きい場合に、被 測定物の計測厚さに誤差が発生していた。そこ で、本出願人らは、鋭意研究の結果、この誤差 えばプラスチツクシートあるいはフイルムのよう 35 は、舷測定物の吸光係数が被測定物の厚さに関し て一定でないことによることを突止めた。そし て、このことに基づく測定誤差を、検量線を複数 本に設定することにより解消できるようにした計 測方法(以後第2の計測方法と称する)を開発 …(2) 40 し、特許出顧を行つた (特顧昭62-65766号)。

> 次に、この第2の計測方法につき以下簡単に脱 明する。なお、本計測方法における物理則は、第 1の計測方法と同様に、式(2)で規定される物理則 が用いられる。

本計測方法においては、計器校正時すなわち検 量線の設定時に被測定物の厚さレンジに応じて適 当数の厚さ既知のサンブルTa, TbおよびTc~ Tgが選定される。そして、これらサンプルをそ れぞれ厚さ計により計測、演算算定したうえで、 5 と増大される。 第4図に示すように、厚さ計に備えられたCRT 上にグラフイツク表示する。この場合、サンプル の厚さレンジが大きいと、一般に、サンプルTc ~Tgは検量線L上に位置せず、これらは検量線 Lに対して下向き凸状の曲線Mを画定する。な 10 【問題点を解決するための手段】 お、このことは、物理則式(2)において反射率 r は 変動することがないので、吸光係数μが厚さもに 関して変動し、この変動は厚さもの増加に従つて 漸減することを意味しているものである。そこ えてそれぞれサンブルTa, Td; Te, Tf; Tg, Tbを通る複数本の線分Na, Nb, Ncに設定す る。この検量線Na, Nb, Ncの設定に際しては、 グラフィック表示を観察して曲線Mに近似するよ うに各検量線Na, Nb, Ncを画定するサンプル 20

したがつて、本計測方法によれば、被測定物 Tiの透過光量Iiを測定することにより検量線Ma を介して計測される被測定物Tiの厚さti"は、曲 線Mを介して計測されるべき真の厚さもに対し 25 であり、式(I)における透過光量検出信号値 I は、 て、誤差を生じても、その誤差∆ti"は微小に抑制 される。この誤差Δti"は、同じく第4図に示す第 1の計測方法によつて発生される誤差Δti′に比較 して格段に改良される。なお、反射光に基づく誤 差が除去されていることは勿論である。このよう 30 に、本計制方法によれば、厚さレンジが大きい被 測定物であつても、精度よくその厚さを計測する ことができる。

# [発明が解決しようとする問題点]

厚さレンジの大きい被測定物でも精度よく計測す ることができる。しかしながら、このような計測 方法においては、計器の校正に比較的繁雑な手間 と判断を必要とする難点があつた。

すなわち、検量線Na, Nb, Ncの設定にあた 40 つては、多数のサンプルをそれぞれ計測、演算算 定したうえでグラフィック表示し、このグラフを 観察して所要の本数の検量線を設定し、更にこれ ら検量線の各境界値を決定するなどの作業を必要

とするものである。更に、各検量線の設定には判 断を要し、例えば第4図に示すように、検量線 Naに替えてサンプルTa, Tcで定まる検量収 Na'を設定すれば、測定誤差がΔti"からΔti"へ

そこで、本発明の目的は、殊に厚さレンジが大 きい被測定物に対して、その計器校正を簡単容易 に且つ精度良く行なうことができる赤外線厚さ計 の検出信号処理方法を提供することにある。

先の目的を達成するために、本発明の赤外線原 さ計の検出信号処理方法は、被測定物の吸光係数 に基づく、透過光量検出個号の被測定物厚さに関 する減少率を透過光量検出信号の大きさに関する で、本計測方法においては、検量線を線分Lに替 *15* 関数として設定し、この関数を**演算処理すること** により検量線を設定してなる赤外線厚さ計の検出 信号処理方法において、

前記関数は、次式(1)

 $dx/dt = -\alpha x^n$ 

---(1)

ここで、x=lnl

I =透過光量検出信号値

t=被測定物厚さ

a=パラメータ

n=ベキ数

次式(2)

 $I = I_0(1 - r) e^{-rt}$ 

ここで、1。=被測定物厚さ t が 0 である場合、 すなわち光路がオープンである

場合の光量検出信号値

r=被測定物の反射率

μ=被測定物の吸光係数

さらに演算処理は、厚さta, tb, …既知のサン このように、前述の第2の計測方法によれば、35 プルTa, Tb, …を用いて、前記式(1)を積分して 得られる次式(3)

$$t = \frac{1}{(1-n)\alpha} \{x^{(t-n)} - x_0^{(t-n)}\} \qquad \cdots (3)$$

ここで、xo=被測定物厚さtが0である場合、 すなわち光路がオープンである 場合の光量検出信号の対数値

但し、n≠1

と、n=1である場合に適用する次式(4)

$$t = -\frac{1}{a} (\ln x - \ln x_0) \qquad \cdots 4$$

とに基づいて前記各サンプルの計算厚さta', tb', …を計測し、逐次最小二乗法演算によつて、計算 厚さと真の厚さとの相関係数mの値が最大となる 5 ペキ数nの値を選定することを特徴とする。

# 〔作用〕

計器校正における検量線の設定は、所定の関数 をコンピュータによつて逐次演算処理することに なわれる。しかも、前起関数には、吸光係数の被 測定物厚さに関する変動ならびに反射率のそれぞ れのフアクタが含まれているので、厚さレンジが 大きくまた反射率が大きい被測定物に対しても、 正確な計測が行なわれる。

### (寒旅例)

次に、本発明に係る赤外線厚さ計の輸出信号処 理方法の実施例につき添付図面を参照しながら以 下詳細に説明する。

先ず初めに、処理方法の説明に先立ち、本発明 20 に係る赤外線厚さ計の構成を簡単に説明する。第 2 図において、赤外線厚さ計は、測定部 1 0 とオ ペレータコンソール12とからなり、測定部10 には赤外線光源14と被測定物あるいはその厚さ 変換素子を有する透過光検出器20が備えられ、 オペレータコンソール12にはA/D変換器2 2、CPU 2 4、内部配修装置 2 6、操作キーボ ード28、CRT30、プリンタ32および外部 レータコンソール12とは変換増幅回路38を介 して接続されると共にCPU24には遠隔操作器 22が備えられている。そして、被測定物の計測 に際しては、赤外線光源14から投射光Laが投 透過光検出器20で検出されて検出信号[に変換 される。次いで、この検出信号 I は、変換増幅回 路38で検出信号Vに対数変換され、得られた検 出信号VはA/D変換器22により被測定物16 0に表示されあるいはプリンタ32から記憶出力 される。この場合、厚さ計の操作は、キーポード 28を介して行なうか、操作器38を介して遠隔 操作される。

次に、本発明に係る赤外線厚さ計の校正方法に つき第1図を参照しながら説明する。校正に際し ては、先ず、光路をオープンにし、ステップS1 において検出信号にを検出し、これを内部記憶装 置26に入力記憶させる。次いで、光路にサンプ ルTa, Tb, …を順次セットし、ステップS2にお いてそれぞれ検出信号liを検出し、これらを内部 記憶装置26に入力記憶させる。次いで、ステッ プS3においてCRT30上に前記記憶データを用 よつて達成されるので、簡単容易に且つ迅速に行 10 いて第4図に示すような検量線をグラフイツク表 示する。この場合、検量線が線分しに近似してい れば、破線で示されているように直ちにステップ S8に進行し、線分しから外れていれば、矯正す なわちリニヤライズ工程へ進行する。

R

リニヤライズ工程においては、前述の式(3)と 15

$$t = -\frac{1}{(1-n)\alpha} (x^{(1-n)} - x_0^{(1-n)})$$
 …(3)  
 $n = 1$  である場合に適用する式(4)

$$t = -\frac{1}{\alpha} (\ln x - \ln x_0) \qquad \cdots (4)$$

に基づいて演算処理が進行されるが、ベキ数n は、この演算実行過程で厚さの計算値ta', tb', …と真の厚さta, tb, …との相関係数mが最大と なる値に選定される。そして、このリニヤライズ 既知のサンプル16を保持するホルダ18と光電 25 工程は、ベキ蚊nの逐次計算をn=0,1,2, …のように0から順次整数値を投入して前記mが 最大となるn'の値を選定する第1の工程と、選定 された前記値n'に対して0.1きざみで±0.5の範囲 の数値を投入して前記mが更に最大値となるn'土 記憶装置 34が備えられ、更に測定部 10とオペ 30  $\Delta n'$ の値を選定する第2の工程とに分たれる。す なわち、リニヤライズの第1工程においては、ス テップS4において順次nの値0, 1, 2, …が 投入されこれらに対応するmの値が計算且つ比較 される。 第1 表は、 あるサンプルについてのこの 射され、被測定物16を透過した透過光Lcが、35 ステップにおける計算結果を示し、n = 4におい てmが最大値0.99992となることを示している。 次いで、リニヤライズの第2工程におけるステツ プS6において順次n'の値3.6, 3.7, …が投入され、 これらに対応するmの値が計算且つ比較される。 の厚さを示す信号Wに変換されて、適宜CRT3 40 第2表は、その計算結果を示し、n=4.2におい てmが最大値0.99997となることを示している。 なお、相関係数mの値は、その性質上1を超すこ とはない。なおまた、これらリニヤライズ工程 は、コンピュータによつて自動的に行なわれ、通

# 常10秒程度で完了される。

宪

| n   | D         |
|-----|-----------|
| 0   | 0.98117   |
| 1   | 0,98893   |
| 2   | 0.99472   |
| 3   | 0, 99839  |
| (4) | 0, 99992  |
| 5   | 0, 99936  |
| 6   | (0.99687) |
| 7   | <b> </b>  |
| -   | _         |

| 2 |   |
|---|---|
|   | 2 |

| <del></del> |         |  |
|-------------|---------|--|
| n           | •       |  |
| 3.6         |         |  |
|             |         |  |
| 3.9         | 0,99986 |  |
| 4.0         | 0.99992 |  |
| 4.1         | 0,99996 |  |
| (4.2)       | 0.99997 |  |
| 4.3         | 0,99996 |  |
| 4.4         |         |  |
| 4,5         |         |  |

このようにして、リニヤライズ工程が完了する と、ステップS8において、前記演算結果に基づ めて計算し、ステップS9においてこれによつて 設定される検量線をグラフィック表示して確認 し、最後に、これらのデータをステップS10にお いて外部記憶装置34に登録する。なお、この登 録に際しては、前述の式(1)は

# $t = Ax^{(1-n)} + B$

の形に整理されるので、パラメータA, B, nと して登録すると好適である。

これによつて、計器の校正が完了し、すなわち 検量線の設定が完了し、被測定物Tiはその透過 40 フローチャート、第2図は本発明に係る赤外線厚 光量liを測定することによりその厚さti'が前配検 量線を介して自動的に計測され、その数値が CRTに表示されるか、プリンタから記録出力さ れる。このようにして計測された被測定物の厚さ

10

は、一例として前記リニヤライズ工程で用いられ たサンブルにおいては、そのばらつき(20)が 0.34%であつた。この数値は、同じサンブルに対 する従来の計測方法すなわちリニヤライズを行な 5 わない計測方法における場合のばらつき8.4%に 対して格段の改良が示されたことを示している。

このように、本発明に係る校正方法は、簡単容 易に且つ何ら判断作業を要することなく行なうこ とができ、しかも、その校正誤差を僅少に抑制す 10 ることができる。

以上、本発明の好適な実施例について説明した が、本発明はその精神を逸脱しない範囲内におい て種々の設計変更を行なうことができる。例え ば、ステップS8およびS9におけるグラフイック 15 表示すなわち検量線の旅認操作は省いても良い。 また、本発明は、赤外線厚さ計のみならず、紫外 線などを用いる他の光厚さ計に対しても適用でき ることは勿論である。

# (発明の効果)

以上説明したように、本発明に係る赤外線厚さ 計の検出信号処理方法は、被測定物の吸光係数の 変動に基づく、透過光量検出信号の被測定物厚さ に関する減少率を透過光量検出信号の大きさに関 する関数として設定し、この関数を演算処理する 25 ことにより検量線を設定できるように構成したの で、この演算処理をコンピュータによつて行なう ことにより、計器の校正を簡単容易に且つ何ら判 断作業を要することなく達成することができる。 しかも、その校正誤差を僅少に抑制することがで いて各サンプルTa, Tb, …の厚さta', tb'を改 30 きる。したがつて、厚さレンジが大きく吸光係數 が変動する被測定物に対しても、その厚さを、簡 便に且つ正確に計測することができる。更に、前 記関数には、被測定物の反射率に関するフアクタ が含まれているので、反射率が比較的大きい被測 35 定物であつてもその厚さを正確に計測することが できる。

# 図面の簡単な説明

第1図は本発明に係る赤外線原さ計の検出信号 処理方法における計器校正方法の一実施例を示す さ計の構成を示すプロック図、第3図は従来の赤 外線厚さ計の計器校正の際に設定される検量線を 説明するグラフ、第4図は本発明の基礎となる赤 外線厚さ計の計器校正の際に設定される検量線を

11

説明するグラフである。

10…測定部、12…オペレータコンソール、 14…赤外線光源、16…被測定物またはそのサ ンプル、18…ホルダ、20…透過光検出器、2 憶装置、28…操作キーポード、30…CRT、

32…プリンタ、34…外部配憶装置、38…変 換増幅回路、38…遠隔操作器、T…サンプルま たは被制定物、『···透過光量検出信号、 t···サン プルまたは被測定物の真の厚さ、Δt···計測誤差、 2 ··· A / D 変換器、 2 4 ··· CPU、 2 8 ··· 内部記 5 ť, ť ··· サンプルまたは被測定物の計算厚さまた は計測厚さ。

12

FIG. 1



FIG. 2





