Využití multiobjektové optimalizace k návrhu vysokofrekvenčních obvodů (úvodní přehled)

Josef Dobeš a Jan Míchal České vysoké učení technické v Praze Fakulta elektrotechnická Katedra radioelektroniky

3. října 2021

Architektura rádiových přijímačů a vysílačů

1 Osnova

- Úvod do multiobjektové optimalizace
- Popis použité (a námi upravené) metody
 - Skalarizace problému
 - Referenční soubor pro asymptoticky rovnoměrné pokrytí Paretovy plochy
- Příklady
 - Dvojdimenzionální úloha: Nízkošumový zesilovač
 - Účelové funkce (cíle návrhu)
 - Dvojdimenzionální Paretova plocha (tedy v tomto případě křivka)
 - Kmitočtové charakteristiky pro vybraných pět bodů Paretovy křivky
 - Trojdimenzionální úloha: Výkonový zesilovač
 - Účelové funkce (cíle návrhu)
 - Trojdimenzionální Paretova plocha (tedy v tomto případě skutečně plocha v geometrickém významu)
 - Časové odezvy pro vybraných pět bodů Paretovy plochy
 - Čtyřdimenzionální úloha: Video zesilovač
 - Účelové funkce (cíle návrhu)
 - Způsob zobrazení čtyřdimenzionální Paretovy plochy (tedy v tomto případě vlastně trojdimenzionálního prostoru)

2 Multiobjektová optimalizace: základní vztahy

Úlohou multiobjektové optimalizace rozumíme minimalizaci k-tice účelových funkcí:

minimize
$$\{f_1(\mathbf{x}), f_2(\mathbf{x}), \dots, f_k(\mathbf{x})\},\$$

kde *S* je množina hodnot účelových funkcí splňujících omezující podmínky (*feasible region*). Optimalizací pak rozumíme hledání *nepodřadných (noninferior) řešení* lokalizovaných na *Paretově ploše*.

Ilustrace problému pro k = 2 (dvojdimenzionální případ):

3 Skalarizace problému

Algoritmus je variantou metody GAM¹ (Goal Attainment Method, vztah níže je originální modifikace):

$$\underset{\boldsymbol{x} \in S}{\text{minimize}} \quad \max_{i=1,\dots,k} \frac{f_i(\boldsymbol{x}) - \bar{z}_i}{z_i^{\text{nad}} - z_i^*},$$

kde z_i^* jsou složky *ideálního* vektoru

$$z^* = \left[\min_{\boldsymbol{x} \in S} f_1(\boldsymbol{x}), \min_{\boldsymbol{x} \in S} f_2(\boldsymbol{x}), \dots, \min_{\boldsymbol{x} \in S} f_k(\boldsymbol{x})\right],$$

a z_i^{nad} jsou složky *nadir* vektoru (tj. vektoru, který je protipólem optima, jde o vektor nejhorších (nezávisle na sobě zjištěných) hodnot)

$$z^{\text{nad}} = \left[\max_{i} (z_i^*)_1, \dots, \max_{i} (z_i^*)_k \right].$$

 \bar{z}_i jsou složky *referenčního* bodu vybrané z určitého konvexní *referenční* množiny s vrcholy $z_{0,l}$, kde každý vrchol je příslušný vektor účelové funkce z_l^* získaný nezávislou minimalizací l-té účelové funkce.

Algoritmus GAM je např. standardně implementován v MATLAB, není třeba tedy většinou programovat matematické procedury. (Neposkytuje ovšem asymptoticky rovnoměrné pokrytí Paretovy plochy.)

¹Kaisa Miettinen, Nonlinear Multiobjective Optimization. Kluwer Academic Publishers, Boston, 4th ed., 2004.

Ilustrace pro k = 2 a k = 3:

Ilustrace pro k = 4 (čtyřstěn, tetrahedron):

4 Rovnoměrné pokrytí referenčního souboru

Startujeme s k-ticí vrcholů $z_{0,i}$ a k-1 náhodně generovanými koeficienty $r_j \in [0,1]$.

$$t_{1} = \sqrt[k-1]{r_{1}}$$

$$z_{1,1} = (1 - t_{1})z_{0,1} + t_{1}z_{0,2}$$

$$z_{1,2} = (1 - t_{1})z_{0,1} + t_{1}z_{0,3}$$

$$\vdots$$

$$z_{1,k-1} = (1 - t_{1})z_{0,1} + t_{1}z_{0,k}$$

$$t_{2} = \sqrt[k-2]{r_{2}}$$

$$z_{2,1} = (1 - t_{2})z_{1,1} + t_{2}z_{1,2}$$

$$z_{2,2} = (1 - t_{2})z_{1,1} + t_{2}z_{1,3}$$

$$\vdots$$

$$\vdots$$

$$z_{2,k-2} = (1 - t_{2})z_{1,1} + t_{2}z_{1,k-1}$$

$$\vdots$$

$$t_{k-1} = \sqrt[k]{r_{k-1}} = r_{k-1}$$

$$z_{k-1,1} = (1 - t_{k-1})z_{k-2,1} + t_{k-1}z_{k-2,2}$$

Tato rekurentní posloupnost v důsledku vede k asymptoticky rovnoměrnému pokrytí Paretovy plochy.

5 2-D opt.: Nízkošumový zesilovač

Pásmo 50 MHz to 500 MHz, na vstupu i výstupu 75 Ω , bipolární tranzistor BFR90

Účelové funkce: minimalizovat šumové číslo při současné maximalizaci zesílení

Omezující podmínky (constraints): maxima povolená tranzistorem, stabilita (např. Rollettovo kritérium)

Proměnné pro návrh: hodnoty pasivních prvků obvodu

Účelové funkce

				Optimum/	
No	Symbol	Тур	Směr	Limit	Jednotka
1	A_{pt}	obj.	max.	17.5	dB
2	NF	obj.	min.	1.10	dB
3	$I_{\rm c}$	constr.	≤	20	mA
4	$P_{ m diss}$	constr.	<u>≤</u>	150	mW
5	k_{Rs}	constr.	≥	1.1	_
6	Δ	constr.	≤	0.9	_

Prvotní výsledek: (Poměrně) rovnoměrně pokrytá Paretova křivka

Další krok: Výběr bodů na Paretově křivce (zde demonstrativní)

Vypočtené průběhy zesílení a šumového čísla pro pět vybraných bodů

6 3-D opt.: Výkonový zesilovač

Úzkopásmová modulace na 300 MHz, 50 Ω, 12 V, tranzistor MOS LP821 (Polyfet)

Účelové funkce: maximalizovat výstupní výkon první harmonické a výkonovou efektivnost, minimalizovat harmonické zkreslení

Omezující podmínky (constraints): maximální povolené hodnoty na tranzistoru

Proměnné pro návrh: hodnoty pasivních prvků, vstupní stejnosměrné (DC) předpětí (bias) a amplituda

Použitý model tranzistoru LDMOS (Lateral Diffusion)

Účelové funkce

				Optimum/	
No	Symbol	Тур	Směr	Limit	Jednotka
1	P_{out1}	obj.	max.	31.1	W
2	η	obj.	max.	83.0	%
3	THD	obj.	min.	0.0783	%
4	I_{davg}	constr.	<u>≤</u>	5	A
5	$P_{ m diss}$	constr.	<u>≤</u>	50	W

Proměnné pro návrh

		Liı	mit		Тур
Nº	Symbol	Dolní	Horní	Jednotka	pokrytí
1	$V_{ m gsmax}$	2	20	V	lin.
2	$V_{ m gsACm}$	0.4	12	V	lin.
3	L_1	3 n	30 n	Н	log.
4	C_1	10 p	300 p	F	log.
5	C_2	3 p	300 p	F	log.
6	L_2	3 n	100 n	Н	log.
7	C_3	3 p	100 p	F	log.

Výsledky: Trojrozměrná Paretova plocha

Výsledky: Parametry pěti vybraných (demonstrativních) řešení

		Číslo řešení					
Nº	Symbol	1	2	3	4	5	Jednotka
1	$V_{ m gsmax}$	9.97	15.9	20.0	19.2	18.9	V
2	$V_{ m gsACm}$	4.03	8.05	10.7	9.24	12.0	V
3	L_1	7.86 n	11.3 n	4.23 n	3.97 n	5.03 n	Н
4	C_1	294 p	133 p	299 p	51.6 p	166 p	Н
5	C_2	22.6 p	5.09 p	27.0 p	300 p	3.41 p	Н
6	L_2	6.84 n	7.00 n	7.97 n	7.32 n	9.89 n	Н
7	C_3	20.1 p	2.35 p	18.4 p	22.6 p	17.0 p	Н
1	P _{out1}	15.3	18.8	22.8	28.4	11.2	W
2	η	49.7	63.7	72.9	58.4	81.7	%
3	THD	0.163	0.239	0.512	0.394	3.03	%
4	$I_{ m davg}$	2.56	2.44	2.59	4.01	1.15	A
5	$P_{ m diss}$	13.6	8.42	6.65	16.0	1.84	W

Výsledky: časové průběhy pro vybraných pět řešení

Výsledky: časové průběhy pro vybraných pět řešení (pokračování)

4-D opt.: Video zesilovač

Video zesilovač se vstupem přizpůsobeným impedanci zdroje 75 Ω s výstupem do zátěže 75 Ω a kapacitou výstupu 1 V_{pp} . Kmitočet f_m pro 3 dB pokles má být co největší, nízkofrekvenční napěťový zisk A_v by měl být kladný a co největší a celkový stejnosměrný napájecí proud I_{cc} by měl být co nejmenší. Jako proměnné pro návrh budou použity rezistory R_1 – R_5 . Má se i minimalizovat SWR (Standing Wave Ratio).

- maximalizovat $A_{\rm v}$, f_{m} ,
- vzhledem k podmínce $V_{\text{out}} \le 3.5 \,\text{V}$, přičemž toto omezení $V_{\rm out}$ zajišťuje požadovanou 1 V_{pp} kapacitu.

Křivky v prvním řádku grafů reprezentují *nepodřadné* body pro proudy I_{cc} 0.45, 0.75, 1.05, 1.35, a 1.65 mA.

Křivky v druhém řádku grafů reprezentují nepodřadné body pro kmitočty $f_{\rm m}$ 250, 325, 400, 475 a 550 MHz.

Křivky v <u>třetím</u> řádku grafů reprezentují *nepodřadné* body pro poměr stojatých vln SWR 1.1, 1.4, 1.7, 2.0 a 2.3.

Křivky v <u>čtvrtém</u> řádku grafů reprezentují *nepodřadné* body pro zesílení A_v 30, 32, 34, 36 a 38 dB.

8 Závěr

- Bylo demonstrováno technicky velmi užitečné použití semiautomatické a posteriori metody založené na asymptoticky rovnoměrném pokrytí referenčního souboru (vede na přibližně rovnoměrné pokrytí Paretovy plochy, což je z uživatelského technického hlediska velmi významné)
- (Formální důkaz rovnoměrnosti pokrytí byl proveden matematickou indukcí v našem článku v Solid-State Electronics².)
- Metoda spolehlivě pracuje v kmitočtové i časové doméně. (Nároky pro výpočty v časové doméně jsou ovšem výrazně větší, úlohy v tomto případě nemohou běžet v reálném čase...)

A to je k úvodu vše, děkuji za pozornost.

²J. Dobeš, J. Míchal, V. Paňko, and L. Pospíšil, "Reliable procedure for electrical characterization of MOS-based devices," Solid-State Electronics, vol. 54, no. 10, pp. 1173–1184, Oct. 2010.