

Métodos Numéricos

 $C(\omega_{\rho}t)$

1.4

0.8

0.6

0.4

Interpolación polinomial de una función (parte 1)

Mg. Johnny R. Avendaño Q.
e-mail: javendanoq@unmsm.edu.pe
Departamento Académico de Ciencias de la Computación
Facultad de Ingeniería de Sistemas e Informática
Universidad Nacional Mayor de San Marcos

Contenido

- 1. Motivación.
- 2. Interpolación y extrapolación.
- 3. Polinomio interpolante de Lagrange
- 4. Error en la interpolación.
- 5. Tabla de diferencias divididas
- 6. Polinomio interpolante basado en diferencias divididas.

Motivación

En una determinada región se tienen 3 puntos de extracción de agua, ver la figura anexa que muestra un corte transversal sobre el relieve.

- 1. En el punto A (525 msnm), a una profundidad de 122 m
- 2. En el punto B (580 msnm), a una profundidad de 194 m
- 3. En el punto C (690 msnm), a una profundidad de 283 m

Estime cuanto debe perforarse en un punto P (entre B y C) a 580 msnm, con el fin de extraer agua.

Nota: Se sabe que las proyecciones de los puntos B, P y C sobre el nivel del mar son equidistantes.

ı

Polinomio de Lagrange

Datos

$$(x_i, y_i) \; ; \; i = 0, 1, \dots, n \; \text{tal que } y_i = f(x_i)$$

Buscamos un polinomio que satisfaga las siguientes condiciones

$$\begin{cases} p(x_i) = y_i = f(x_i) \\ \partial p(x) \le n \end{cases}$$

Polinomio de Lagrange

Definición. Para las n+1 coordenadas y los nodos x_i todos diferentes y ordenados, entonces definimos el polinomio de Lagrange (asociado a ellos) como

$$p(x) = \sum_{i=0}^{n} L_{n,i}(x)y_i$$

donde

$$L_{n,k}(x) = \prod_{\substack{i=0\\i\neq k}}^{n} \frac{(x-x_i)}{(x_k-x_i)}$$

Son denominadas de funciones ordinales de Lagrange.

Teorema. El polinomio de Lagrange es un polinomio interpolante.

Ejemplo. Aproxime el valor de f(0,1) si $f(x) = e^x$, empleando los nodos $\{0; 0,2; 0,5; 1\}$

$$\int (X) = C^{X}$$

$$X^{2} \qquad \qquad \int (X^{2})$$

$$X_{0} = 0 \qquad 1$$

$$X_{1} = 0,2 \qquad 1,2214$$

$$X_{2} = 0,5 \qquad 1,6487$$

$$X_{3} = 1 \qquad 2,7182$$

Error en la interpolación.

Teorema. Sea $f \in C^{n+1}[a;b]$ y $\{x_i\} \subset [a;b]$ nodos cualesquiera y ordenados, entonces para cada $x \in \langle a;b \rangle$ existe $\xi_x \in \langle a;b \rangle$ tal que

$$R(x) = f(x) - p(x) = \frac{f^{(n+1)}(\xi_x)}{(n+1)!} \prod_{i=0}^{n} (x - x_i)$$

Ejemplo. ¿Cual es el máximo error posible? si aproximamos el valor de f(0,1), donde $f(x) = e^x$, y empleamos los nodos $\{0; 0,2; 0,5; 1\}$

Teorema. Sean $(x_i; y_i)$, n+1 coordenadas tal que $y_i = f(x_i)$ para todo $i=0,1,\cdots,n$; entonces el polinomio interpolante es único.

Tabla de diferencias divididas

Esta se define recursivamente como

Orden 0
$$f[x_i] = f(x_i)$$
 Orden 1
$$f[x_i; x_{i+1}] = \frac{f[x_{i+1}] - f[x_i]}{x_{i+1} - x_i}$$
 Orden 2
$$f[x_i; x_{i+1}; x_{i+2}] = \frac{f[x_{i+1}; x_{i+2}] - f[x_i; x_{i+1}]}{x_{i+2} - x_i}$$

Orden k
$$f[x_i; \dots; x_{i+k}] = \frac{f[x_{i+1}; \dots; x_{i+k}] - f[x_i; \dots; x_{i+k-1}]}{x_{i+k} - x_i}$$

x	f(x)	First divided differences	Second divided differences	Third divided differences
<i>x</i> ₀	$f[x_0]$	$f[x_0, x_1] = \frac{f[x_1] - f[x_0]}{x_1 - x_0}$		
<i>x</i> ₁	$f[x_1]$		$f[x_0, x_1, x_2] = \frac{f[x_1, x_2] - f[x_0, x_1]}{x_2 - x_0}$	f[x, x, y] = f[x, x, y]
x_2	$f[x_2]$	$f[x_1, x_2] = \frac{f[x_2] - f[x_1]}{x_2 - x_1}$	$f[x_1, x_2, x_3] = \frac{f[x_2, x_3] - f[x_1, x_2]}{x_3 - x_1}$	$f[x_0, x_1, x_2, x_3] = \frac{f[x_1, x_2, x_3] - f[x_0, x_1, x_2]}{x_3 - x_0}$
-	7 . 27	$f[x_2, x_3] = \frac{f[x_3] - f[x_2]}{x_3 - x_2}$		$f[x_1, x_2, x_3, x_4] = \frac{f[x_2, x_3, x_4] - f[x_1, x_2, x_3]}{x_4 - x_1}$
<i>x</i> ₃	$f[x_3]$	$f[x_3, x_4] = \frac{f[x_4] - f[x_3]}{x_4 - x_2}$	$f[x_2, x_3, x_4] = \frac{f[x_3, x_4] - f[x_2, x_3]}{x_4 - x_2}$	$f[x_2, x_3, x_4, x_5] = \frac{f[x_3, x_4, x_5] - f[x_2, x_3, x_4]}{x_5 - x_2}$
χ_4	$f[x_4]$	$x_4 - x_3$	$f[x_3, x_4, x_5] = \frac{f[x_4, x_5] - f[x_3, x_4]}{x_5 - x_3}$	$x_5 - x_2$
<i>X</i> ₅	$f[x_5]$	$f[x_4, x_5] = \frac{f[x_5] - f[x_4]}{x_5 - x_4}$		

Ejemplo. Complete la respectiva tabla de diferencias divididas

i	x_i	$f[x_i]$	
0	1	1	
1	2	1,08	
2	3	2,08	
3	4	1,91	
4	5	0,12	

Polinomio interpolante basado en diferencias divididas

Definimos el polinomio como

$$p(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_1) + a_3(x - x_0)(x - x_1)(x - x_2) + \cdots$$
$$\cdots + a_n(x - x_0)(x - x_1) \cdots (x - x_{n-1})$$

donde

$$a_i = f[x_0; x_1; \dots; x_i] ; \forall i = 0, 1, \dots, n$$

Dicho polinomio podemos escribirlo también

$$p(x) = f[x_0] + \sum_{i=1}^{n} f[x_0; x_1; \dots; x_i] \prod_{j=0}^{i-1} (x - x_j)$$

Ejemplo. A partir de las coordenadas indicadas, aproxime el valor de f(0.5)

i	x_i	$f[x_i]$				
0	1	1	0.00			
1	2	1,08	0,08	0,46		
2	3	2,08	1	-0,585	0,3483	-0,105825
3	4	1,91	-0,17	-0,81	-0,075	
4	5	0,12	-1,79			

$$p(x) = 1 + 0.08(x - 1) + 0.46(x - 1)(x - 2) + 0.3483(x - 1)(x - 2)(x - 3)$$
$$-0.105825(x - 1)(x - 2)(x - 3)(x - 4)$$

$$p(0,5) =$$

Bibliografía

- 1. Métodos Numéricos: Burden R. L. & Douglas J. F. Thompson Editores. 2013
- 2. Métodos Numéricos con Matlab: Mathews J. H. & Fink K. D. Prentice Hall Iberia S.R.L. 1999
- 3. Métodos Numéricos para Ingenieros. Chapra S. C. & Canales R. P. 1999