

Logistic Regression

Logistic Regression

- This algorithm is used for classification type problems
- Types of Logistic Regression:
 - Binary
 - Multinomial
 - Ordinal
- We are going to cover Binary Logistic Regression

Logistic Response Function

- Standard logistic function on 2dimensional plane is given by the following expression given on the right.
- From the graph, it is evident that the value of the f(x) ranges between 0 and 1.
- This function is also called sigmoid function and has a wide usage in various other algorithms such as neural network.

$$y = f(x) = \frac{1}{1 + e^{-x}}$$

Logistic Response Function

• The same function in the m-dimensional space can be written in the following way:

$$y = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_m x_m)}}$$

Where

 $\beta_0, \beta_1, \beta_2, ..., \beta_m$: Coefficients of the variables in m-dimensional space

- For any values of β_0 , β_1 , β_2 , ... β_m and x_1 , x_2 , ... x_m , the value of y always between 0 and 1.
- We can denote y by probability p.

Odds

$$p = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_m x_m)}}$$

$$1 - p = \frac{e^{-(\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_m x_m)}}{1 + e^{-(\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_m x_m)}}$$

$$\frac{p}{1 - p} = e^{(\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_m x_m)}$$

• The ratio $\frac{p}{1-p}$ is called odds. For any values of β_0 , β_1 , β_2 , ... β_m and $x_1, x_2, ... x_m$, odds always ranges from 0 to ∞ .

Interpreting Logistic Function

- In our binary classification, let us consider 0 and 1 as two possible outcomes, with 0 as non-occurrence of a particular event and 1 as occurrence of the particular event.
- p in our expression, is considered as probability of occurrence of the event and 1-p as non-occurrence of the event
- Hence, the ratio $\frac{p}{1-p}$ is ratio of probability of occurrence to the probability of non-occurrence of the event.

Logit Function

$$\frac{p}{1-p} = e^{(\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_m x_m)}$$

$$\log(odds) = \log\left(\frac{p}{1-p}\right) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_m x_m$$

• The ratio $\log\left(\frac{p}{1-p}\right)$ is called logit function. For any values of $\beta_0,\beta_1,\beta_2,\dots\beta_m$ and $x_1,x_2,\dots x_m$, $\log(\text{odds})$ always range from $-\infty$ to ∞ .

Parameter Calculation

- Parameters β_0 , β_1 , β_2 , ... β_m are calculated with the help of maximum likelihood method.
- In Python, we make use of the function LogisticRegression() from sklearn.linear_model

Questions?