EE115C – Winter 2017 Digital Electronic Circuits

Lecture 17:
Latches and Flip-Flops

Sequential Logic

2 storage mechanisms

- Positive feedback
- Charge based

Latch versus Flip-Flop

 Latch: level-sensitive clock is low – hold mode clock is high – transparent

 Flip-flop: edge-triggered stores data when clock rises

Naming Convention

- In this class:
 - Latch is level sensitive
 - Flip-flop is edge-triggered
- There are many different naming conventions

Latch-Based Design

N latch is transparent
 when Φ = 0

P latch is transparent
 when Φ = 1

Positive Feedback: Bi-Stability

Meta-Stability

Gain should be larger than 1 in the transition region

Writing into a Static Latch

Use the clock as a decoupling signal, that distinguishes between the transparent and opaque states

1 Converting into a MUX

Forcing the state (can implement as NMOS-only)

Cross-Coupled Pairs

NOR-based set-reset

The "Overpowering" Approach

Cross-Coupled NAND

Cross-coupled NANDs

This is not used in datapaths any more, but is a basic building memory cell

Pseudo-Static Latch

Mux-Based Latches

Negative latch (transparent when CLK= 0)

$$Q = Clk \cdot Q + \overline{Clk} \cdot In$$

Positive latch (transparent when CLK= 1)

$$Q = \overline{Clk} \cdot Q + Clk \cdot In$$

Mux-Based Latch

Mux-Based Latch

NMOS only

Non-overlapping clocks

Storage Mechanisms

Static

Dynamic

State node

Pseudo-Static Latch

Principal Ways to Build a Flip-Flop

Ways to design an edge-triggered sequential cell:

Pulse-Triggered

Master-Slave (Edge-Triggered) Flip-Flop

Two opposite latches trigger on edge Also called master-slave latch pair

Master-Slave Flip-Flop: Example

Multiplexer-based latch pair

Transmission-Gate Latches

Simplest implementation

Basic static latch

Complete implementation

 $Clk \qquad (c)$

- only 4 transistors
- Dynamic when S=1
- Susceptible to noise
- pull-up/pull-down keeper
- Conflict at node S whenever new data is written
- Feedback turned off when writing to the latch
- No conflict
- Larger clock load

Transmission-Gate Flip-Flop

21

Noise Considerations

Sources of noise affecting the latch state node (Partovi in Chandrakasan et al. 2001)

An Improved Version

Clocked CMOS (C²MOS) Latch

Transmission gate latch with gate isolation (dynamic)

C²MOS latch (dynamic)

C²MOS Flip-Flop

Keepers can be added to staticize

Static C²MOS Flip-Flop

(Suzuki et al. 1973)

Reduced Clock Load Master-Slave Flip-Flop

Issue: Clock Overlap

C²MOS Flip-Flop is Insensitive to Clock Overlap

Keepers can be added to staticize

Pulsed latch: Intel's explicit pulsed latch (Tschanz at al. 2001), Copyright © 2001 IEEE

AMD's Pulsed Latches

Hybrid Latch – Flip-flop (HLFF), AMD K-6 and K-7:

AMD's Hybrid Latch Flip-Flop (HLFF)

- Transparent to D only when Clk and Clk1 are both high
- Limited clock uncertainty absorption
- Small D→Q delay
- Small clock load

(Partovi et al. 1996), Copyright © 1996 IEEE