11. Спряжений простір

Ввести топологію в лінійному просторі можна не лише за допомогою норми.

- **Озн. 11.1.** Упорядкована четвірка $(L, +, \times, \tau)$ називається лінійним топологічним простором, якщо
 - 1) $(L,+,\times)$ дійсний лінійний простір;
 - 2) (L, τ) топологічний простір;
- 3) операція додавання і множення на числа в L ϵ неперервними, тобто
- а) якщо $z_0 = x_0 + y_0$, то для кожного околу U точки z_0 можна указати такі околи V і W точок x_0 і y_0 відповідно, що $\forall x \in V$, $y \in W$ $x + y \in U$;
- б) якщо $\alpha_0 x_0 = y_0$, то для кожного околу U точки y_0 існує окіл V точки x_0 і таке число $\varepsilon > 0$, що $\forall \alpha \in R^1: |\alpha \alpha_0| < \varepsilon$ і $\forall x \in V$ $\alpha x \in U$.

Зауваження 11.1. Оскільки будь-який окіл будь-якої точки x в лінійному топологічному просторі можна отримати зсувом околу нуля U шляхом операції U+x, топологія в лінійному топологічному просторі повністю визначається локальною базою нуля.

Спочатку доведемо деякі допоміжні факти щодо лінійних функціоналів, заданих на лінійному топологічному просторі L.

Приклад 11.1. Всі нормовані простори ϵ лінійними топологічними просторами.

Озн. 11.2. Функціонал, визначений на лінійному топологічному просторі L, називається **неперервним**, якщо для будь-якого $x_0 \in L$ і будь-якого $\varepsilon > 0$ існує такий окіл U елемента x_0 , що

$$|f(x)-f(x_0)| < \varepsilon \text{ npu } x \in U.$$

Лема 11.1. Якщо лінійний функціонал $f \in \text{неперервним } B$ якійсь одній точці x_0 лінійного топологічного простору L, то він ϵ неперервним на усьому просторі L.

Доведення. Дійсно, нехай y — довільна точка простору L і $\varepsilon > 0$. Необхідно знайти такий окіл V точки y , щоб

$$\forall z \in V |f(z) - f(y)| < \varepsilon$$
.

Виберемо окіл U точки x_0 так, щоб

$$\forall x \in U |f(x) - f(x_0)| < \varepsilon$$
.

Побудуємо окіл точки y шляхом зсуву околу U на елемент $y-x_0$:

$$V = U + (y - x_0) = \{z \in L : z = u + y - x_0, u \in U\}$$

Із того, що $z \in V$, випливає, що $z - y + x_0 \in U$, отже,

$$|f(z)-f(y)| = |f(z-y)| =$$

= $|f(z-y+x_0-x_0)| = |f(z-y+x_0)-f(x_0)| < \varepsilon.$

Що і треба було довести. ■

Зауваження 11.2. Для того щоб перевірити неперервність лінійного функціонала в просторі, достатньо перевірити його неперервність в одній точці, наприклад, в точці 0.

Зауваження 11.3. У скінчено-вимірному лінійному топологічному просторі будь-який лінійний функціонал ϵ неперервним.

Теорема 11.1. Для того щоб лінійний функціонал f був неперервним на лінійному топологічному просторі L, необхідно і достатньо, щоб існував такий окіл нуля в L, на якому значення функціонала f ϵ обмеженими в сукупності.

Доведення. Необхідність. З того що функціонал $f \in$ неперервним в точці 0, випливає що

$$\forall \varepsilon > 0 \exists U(0) : |f(x)| < \varepsilon \ \forall x \in U(0).$$

Отже, його значення ϵ обмеженими в сукупності на U(0).

Достатність. Нехай U(0) — такий окіл нуля, що

$$|f(x)| < C \quad \forall x \in U(0).$$

Крім того, нехай $\varepsilon > 0$. Тоді в околі нуля $\frac{\varepsilon}{C}U\left(0\right) = \left\{x \in L : x = \frac{\varepsilon}{C} \, y, \, y \in U\left(0\right)\right\}$ виконується нерівність $\left|f\left(x\right)\right| < \varepsilon \, .$

Це означає, що функціонал f є неперервним в околі нуля, а значить в усьому просторі L.

Нехай E — нормований простір. Нагадаємо, що спряженим простором E^* називається сукупність усіх лінійних неперервних функціоналів, заданих на просторі E із нормою

$$||f|| = \sup_{x \in E, x \neq 0} \frac{|f(x)|}{||x||} = \sup_{x \in E, ||x|| \le 1} |f(x)|.$$

Теорема 11.2. Для того щоб лінійний функціонал f був неперервним на нормованому просторі E, необхідно і достатньо, щоб значення функціонала f були обмеженими в сукупності на одиничній кулі.

Доведення. Необхідність. Нормований простір E є лінійним топологічним простором. За теоремою 11.1 будь-

яке значення неперервного лінійного функціонала f в деякому околі нуля ϵ обмеженими в сукупності.

$$\forall C > 0 \,\exists U(0) : |f(x)| < C \ \forall x \in U(0).$$

В нормованому просторі будь-який окіл нуля містить кулю.

$$\exists S(0,r)\subset U(0)$$
.

Отже, значення функціонала f ϵ обмеженими в сукупності в деякій кулі. Оскільки f — лінійний функціонал, це еквівалентно тому, що значення функціонала f ϵ обмеженими в сукупності в одиничній кулі, оскільки

$$\forall x \in S(0,r): |f(x)| < C \Rightarrow \forall y = \frac{1}{r} x \in S(0,1): |f(y)| < \frac{C}{r}.$$

Достатність. Оскільки значення функціонала f є обмеженими в сукупності в одиничній кулі, а одинична куля є околом точки 0, то за теоремою 11.1 він є неперервним в точці 0. Отже, лінійний функціонал f є неперервним в нормованому просторі E.

На спряженому просторі можна ввести різні топології. Найважливішими з них ϵ сильна і слабка топології.

Озн. 11.3. Сильною топологією в просторі E^* називається топологія, визначена нормою в просторі E^* , тобто локальною базою нуля

$$\{f \in E^* : ||f|| < \varepsilon\},$$

де функціонали ƒ задовольняють умову

$$|f(x)| < \varepsilon \quad \forall x \in E : ||x|| \le 1.$$

 $a \ \epsilon - \partial o \delta i$ льне $\partial o \partial \delta a m$ не число.

Теорема 11.3. Спряжений простір E^* є повним..

Доведення. Нехай $\left\{f_n\right\}_{n=1}^{\infty}$ — фундаментальна послідовність лінійних неперервних функціоналів, тобто

$$\forall \varepsilon > 0 \,\exists N \in \mathbb{N} : \forall n, m \geq N \, || f_n - f_m || < \varepsilon.$$

Отже,

$$\forall x \in E \ \left| f_n(x) - f_m(x) \right| \le \|f_n - f_m\| \|x\| < \varepsilon \|x\|. \tag{1}$$

Покладемо $\forall x \in E$

$$f(x) = \lim_{n \to \infty} f_n(x).$$

Покажемо, що f — лінійний неперервний функціонал.

$$f(\alpha x + \beta y) = \lim_{n \to \infty} f_n(\alpha x + \beta y) =$$

$$= \lim_{n \to \infty} \left[\alpha f_n(x) + \beta f_n(y) \right] = \alpha f(x) + \beta f(y).$$

Крім того, з нерівності (1) випливає, що

$$\forall x \in E \lim_{m \to \infty} \left| f_n(x) - f_m(x) \right| = \left| f(x) - f_n(x) \right| < \varepsilon ||x||.$$
 (2)

Це означає, що функціонал $f-f_n$ є обмеженим. Оскільки він є лінійним і обмеженим, значить він є неперервним. Таким чином, функціонал $f=f_n+\big(f-f_n\big)$ також є неперервним. Крім того, $\|f-f_n\| \le \epsilon \ \forall n \ge N$, тобто $f_n \to f$ при $n \to \infty$ за нормою простору E^* .

Зауваження 11.4. Зверніть увагу на те, що простір E^* повний незалежно від того, чи є повним простір E.

Приклад 11.2.
$$(c_0)^* = l_1$$
.

Приклад 11.3.
$$(l_1)^* = m$$
.

Приклад 11.4.
$$\left(l_{p}\right)^{*} = l_{q}$$
 , де $\frac{1}{p} + \frac{1}{q} = 1$, $p > 1$.

Озн. 11.4. Другим спряженим простором E^{**} називається сукупність усіх лінійних неперервних функціоналів, заданих на просторі E^* .

Лема 11.2. Будь-який елемент $x_0 \in E$ визначає певний лінійний неперервний функціонал, заданий на E^* .

Доведення. Введемо відображення

$$\pi: E \to E^{**} \tag{3}$$

поклавши

$$\varphi_{x_0}(f) = f(x_0), \tag{4}$$

де x_0 — фіксований елемент із E, а f — довільний лінійний неперервний функціонал із E^* . Оскільки рівність (4) ставить у відповідність кожному функціоналу f із E^* дійсне число $\phi_{x_0}(f)$, вона визначає функціонал на просторі E^* . Покажемо, що ϕ_{x_0} — лінійний неперервний функціонал, тобто він належить E^{**} .

Дійсно, функціонал ϕ_{x_0} є лінійним, оскільки

$$\varphi_{x_0}(\alpha f_1 + \beta f_2) = \alpha f_1(x_0) + \beta f_2(x_0) = \alpha \varphi_{x_0}(f_1) + \beta \varphi_{x_0}(f_2).$$

Крім того, нехай $\varepsilon > 0$ і A — обмежена множина в E , що містить x_0 . Розглянемо в E^* окіл нуля $U(\varepsilon,A)$:

$$U(\varepsilon, A) = \left\{ f \in E^*, x_0 \in A : \left| f(x_0) \right| \le \varepsilon \right\},\,$$

тобто

$$U(\varepsilon, A) = \left\{ f \in E^*, x_0 \in A : \left| \varphi_{x_0}(f) \right| \le \varepsilon \right\}$$

3 цього випливає, що функціонал ϕ_{x_0} є неперервним в точці 0, а значить і на всьому просторі E^* .

Озн. 11.5. Відображення $\pi: E \to E^{**}$, побудоване в лемі 11.2, називається **природним відображенням простору** E в другий спряжений простір E^{**} .

Озн. 11.6. Якщо природне відображення $\pi: E \to E^{**}$ є бієкцією і $\pi(E) = E^{**}$, то простір E називається напіврефлексивним.

Озн. 11.7. Якщо простір E ϵ напіврефлексивним і відображення $\pi: E \to E^{**}$ ϵ неперервним, то простір E називається **рефлексивним**.

Зауваження 11.5. Якщо E — рефлексивний простір, то природне відображення $\pi \colon E \to E^{**}$ ϵ ізоморфізмом.

Теорема 11.4. Якщо E — нормований простір, то природне відображення $\pi: E \to E^{**}$ ϵ ізометрією.

Доведення. Нехай $x \in E$. Покажемо, що

$$||x||_E = ||\pi(x)||_{E^*}.$$

Нехай f — довільний ненульовий елемент простору E^* . Тоді

$$|f(x)| \le ||f|| ||x|| \implies ||x|| \ge \frac{|f(x)|}{||f||}.$$

Оскільки ліва частина нерівності не залежить від f , маємо

$$||x|| \ge \sup_{f \in E^*, f \ne 0} \frac{|f(x)|}{||f||} = ||\pi(x)||_{E^{**}}.$$

3 іншого боку, внаслідок теореми Хана-Банаха, якщо x — ненульовий елемент в нормованому просторі E, то існує такий неперервний лінійний функціонал f, визначений на E, що

$$||f|| = 1 \ i \ f(x) = ||x||$$

(визначаємо функціонал на одновимірному підпросторі формулою $f(\alpha x) = \alpha \|x\|$, а потім продовжуємо без збільшення норми на весь простір). Отже, для кожного $x \in E$ знайдеться такий ненульовий лінійний функціонал f, що

$$|f(x)| = ||f|| ||x||,$$

TOMY

$$\|\pi(x)\|_{E^{**}} = \sup_{f \in E^*, f \neq 0} \frac{|f(x)|}{\|f\|} \ge \|x\|.$$

Отже, $\|x\|_E = \|\pi(x)\|_{E^*}$.

Зауваження 11.6. Оскільки природне відображення нормованих просторів $\pi: E \to E^{**}$ є ізометричним, поняття напіврефлексивних і рефлексивних просторів для нормованих просторів є еквівалентними.

Зауваження 11.7. Оскільки простір, спряжений до нормованого, є повним (теорема 11.3), *будь-який рефлексивний нормований простір є повним*.

Зауваження 11.8. Обернене твердження є невірним.

Приклад 11.5. Простір c_0 є повним, але нерефлексивним, тому що спряженим до нього є простір l_1 , а спряженим до простору l_1 є простір m.

Приклад 11.6. Простір неперервних функцій C[a,b] є повним, але нерефлексивним (більше того, немає жодного нормованого простору, для якого простір C[a,b] був би спряженим).

Приклад 11.7. Приклад рефлексивного простору, що не збігається із своїм спряженим:

$$l_p^{**} = l_q^* = l_p, \ p > 1, \ p \neq 2, \frac{1}{p} + \frac{1}{q} = 1.$$

Приклад 11.8. Приклад рефлексивного простору, що збігається із своїм спряженим:

$$l_2^{**} = l_2^* = l_2 .$$

Література

- 1. Садовничий В,А. Теория операторов. М.: Изд-во Моск. ун-та, 1986. с. 112–123.
- 2. Колмогоров А.Н., Фомин С.В. Элементы теории функций и функционального анализа. (5-е изд.) М.: Наука, 1981. с. 175-178, 182-192.