NATIONAL UNIVERSITY OF SINGAPORE DEPARTMENT OF MATHEMATICS

SEMESTER 1 EXAMINATION 2015-2016

MA1101R Linear Algebra I

November 2015 — Time allowed: 2 hours

INSTRUCTIONS TO CANDIDATES

- 1. This examination paper consists of **Six (6)** questions and comprises **FOUR (4)** printed pages.
- 2. Answer ALL questions.
- **3.** This is a **closed book** examination but each candidate is allowed to bring in **TWO** (2) double-sided A4-sized handwritten helpsheets.
- **4.** Calculators can be used. However, various steps in the calculations should be laid out systematically.
- **5.** Write down your matriculation/registration number on the cover page of each answer book used.

Question 1 [12 Marks]

Let
$$\mathbf{A} = \begin{pmatrix} 0 & 0 & 1 & 1 & 1 & 0 \\ -1 & 1 & 0 & 0 & 0 & 0 \\ -1 & 1 & 1 & 2 & 3 & 0 \\ 0 & 0 & 1 & 3 & 5 & 0 \end{pmatrix}$$
.

- (i) Use the Gauss-Jordan Elimination to reduce \boldsymbol{A} to the reduced row-echelon form. (Indicate the elementary row operations used in each step.)
- (ii) Let $T: \mathbb{R}^6 \to \mathbb{R}^4$ be a linear transformation such that A is the standard matrix for T. Write down a basis for the kernel of T and a basis for the range of T.

Question 2 [12 Marks]

Let $S = \{u_1, u_2, u_3\}$ and $T = \{v_1, v_2, v_3\}$ be two bases for \mathbb{R}^3 .

Suppose $\mathbf{P} = \begin{pmatrix} 1 & 3 & 1 \\ 0 & 1 & 1 \\ -1 & 0 & 1 \end{pmatrix}$ is the transition matrix from S to T.

- (i) Find the transition matrix from T to S.
- (ii) Suppose $u_1 = (1, 1, 1)$, $u_2 = (0, 1, 1)$ and $u_3 = (0, 0, 1)$. Find v_1 , v_2 and v_3 .

Question 3 [21 Marks]

Let
$$\mathbf{A} = \begin{pmatrix} 2 & 0 & 1 \\ 1 & 1 & a \\ 0 & 0 & 1 \end{pmatrix}$$
 where a is a constant.

- (i) Find all the eigenvalues of \boldsymbol{A} .
- (ii) For each of the eigenvalues λ of \boldsymbol{A} , find a basis for the eigenspace associated with λ .
- (iii) Determine the value of a so that \boldsymbol{A} is diagonalizable.
- (iv) When \boldsymbol{A} is a diagonalizable, find an invertible matrix \boldsymbol{P} and a diagonal matrix \boldsymbol{D} such that $\boldsymbol{D} = \boldsymbol{P}^{-1} \boldsymbol{A} \boldsymbol{P}$.

PAGE 3 MA1101R

Question 4 [21 Marks]

(a) Let $V = \text{span}\{\boldsymbol{u_1},\,\boldsymbol{u_2},\,\boldsymbol{u_3}\}$ where

$$u_1 = (1, 1, 0, 0), \quad u_2 = (0, 2, 1, 1) \text{ and } u_3 = (1, 1, 3, 1).$$

- (i) Use the Gram-Schmidt Process to transform $\{u_1, u_2, u_3\}$ to an orthonormal basis for V.
- (ii) Find the projection of $\mathbf{w} = (1, 0, 0, 1)$ onto V.
- (b) Let W be a subspace of \mathbb{R}^n and $W^{\perp} = \{ \boldsymbol{w} \in \mathbb{R}^n \mid \boldsymbol{w} \text{ is orthogonal to } W \}$. Prove that $\dim(W) + \dim(W^{\perp}) = n$.

Question 5 [17 Marks]

(All vectors in this question are written as column vectors.)

Let A be an $n \times n$ matrix such that $A^n = \mathbf{0}$. Suppose there exists a nonzero vector $\mathbf{v} \in \mathbb{R}^n$ such that $A^{n-1}\mathbf{v} \neq \mathbf{0}$.

- (a) Give an example of a 2×2 matrix \boldsymbol{A} such that $\boldsymbol{A} \neq \boldsymbol{0}$ but $\boldsymbol{A}^2 = \boldsymbol{0}$.
- (b) Prove that $\{\boldsymbol{v},\,\boldsymbol{A}\boldsymbol{v},\,\ldots,\,\boldsymbol{A}^{n-1}\boldsymbol{v}\}$ is a basis for \mathbb{R}^n .
- (c) Let $\mathbf{P} = \begin{pmatrix} \mathbf{A}^{n-1}\mathbf{v} & \cdots & \mathbf{A}\mathbf{v} & \mathbf{v} \end{pmatrix}$ which is an invertible matrix of order n. Show that

$$\boldsymbol{P}^{-1}\boldsymbol{A}\boldsymbol{P} = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & 0 \\ \vdots & \vdots & & \ddots & 1 \\ 0 & 0 & \cdots & \cdots & 0 \end{pmatrix}.$$

PAGE 4 MA1101R

Question 6 [17 Marks]

(All vectors in this question are written as column vectors.)

Let A be an invertible matrix of order n such that for any nonzero vectors $u, v \in \mathbb{R}^n$, the angle between u and v is always equal to the angle between Au and Av.

- (a) Let $\mathbf{A} = \begin{pmatrix} \mathbf{a_1} & \mathbf{a_2} & \cdots & \mathbf{a_n} \end{pmatrix}$ where $\mathbf{a_i}$ is the ith column of \mathbf{A} . Show that $\{\mathbf{a_1}, \mathbf{a_2}, \dots, \mathbf{a_n}\}$ is an orthogonal basis for \mathbb{R}^n . (Hint: Use the standard basis $E = \{\mathbf{e_1}, \mathbf{e_2}, \dots, \mathbf{e_n}\}$ and consider vectors $\mathbf{Ae_i}$ for $i = 1, 2, \dots, n$.)
- (b) Prove that $\mathbf{A} = c\mathbf{P}$ for some scalar c and orthogonal matrix \mathbf{P} .

[END OF PAPER]

NATIONAL UNIVERSITY OF SINGAPORE DEPARTMENT OF MATHEMATICS

SEMESTER 1 EXAMINATION 2016-2017

MA1101R Linear Algebra I

November 2016 — Time allowed: 2 hours

INSTRUCTIONS TO CANDIDATES

- 1. This examination paper consists of **Six (6)** questions and comprises **FOUR (4)** printed pages.
- 2. Answer ALL questions.
- **3.** This is a **closed book** examination but each candidate is allowed to bring in **TWO** (2) double-sided A4-sized handwritten helpsheets.
- **4.** Calculators can be used. However, various steps in the calculations should be laid out systematically.
- **5.** Write down your matriculation/registration number on the cover page of each answer book used.

Question 1 [14 Marks]

Let
$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 1 & -1 \\ 0 & k & 1 & k \\ k & k & 2 & 0 \\ k & 0 & k & 0 \end{pmatrix}$$
 where k is a constant.

- (a) Use Gauss-Jordan Elimination to reduce \boldsymbol{A} to the reduced row-echelon form. (Write down the elementary row operations clearly.)
- (b) Find a basis for the nullspace space of A.

(Warning: The value of k will affect your answers.)

Question 2 [12 Marks]

Let
$$V = \{ (a+b-2c, 2b-c, 3c+d, a+3b+d) \mid a, b, c, d \in \mathbb{R} \}.$$

- (a) Show that V is a subspace of \mathbb{R}^4 .
- (b) Find a basis for V and determine the dimension of V.
- (c) Let $W = \{ (1 + a + b 2c, 2b c, 3c + d, 1 + a + 3b + d) \mid a, b, c, d \in \mathbb{R} \}.$
 - (i) Is the zero vector contained in W? Justify your answer.
 - (ii) Is W a subspace of \mathbb{R}^4 ?

Question 3 [18 Marks]

Let
$$\mathbf{B} = \begin{pmatrix} 4 & 0 & 2 & -2 \\ 0 & 4 & -2 & 2 \\ 0 & 0 & 2 & 2 \\ 0 & 0 & 2 & 2 \end{pmatrix}$$
.

- (a) Find an invertible matrix P and a diagonal matrix D so that $P^{-1}BP = D$.
- (b) Write down a matrix C such that $C^2 = B$. (You can express your answer in the form PXP^{-1} where X is a 4×4 matrix and P is the invertible matrix obtained in (a).)

PAGE 3 MA1101R

Question 4 [22 Marks]

(All vectors in this question are written as column vectors.)

Let
$$\mathbf{u_1} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
, $\mathbf{u_2} = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$, $\mathbf{u_3} = \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}$, and $\mathbf{e_1} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, $\mathbf{e_2} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$, $\mathbf{e_3} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$.

(a) (i) Find the reduced row-echelon form of the following 3×6 matrix

$$\begin{pmatrix} u_1 & u_2 & u_3 & e_1 & e_2 & e_3 \end{pmatrix}$$
.

- (ii) Let $S = \{u_1, u_2, u_3\}$. You can assume that S is a basis for \mathbb{R}^3 . Write down the coordinate vectors $(e_1)_S$, $(e_2)_S$, $(e_3)_S$.
- (b) Define a linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ such that

$$T(x) = c_1 u_1 + c_2 u_2$$
 for $x = c_1 u_1 + c_2 u_2 + c_3 u_3 \in \mathbb{R}^3$.

- (i) Find the standard matrix for T.
- (ii) Determine the rank and nullity of T.
- (iii) Explain why $T(\mathbf{x})$ is the orthogonal projection of \mathbf{x} onto $V = \text{span}\{\mathbf{u_1}, \mathbf{u_2}\}$.

Question 5 [17 Marks]

(All vectors in this question are written as column vectors.)

Let \boldsymbol{A} be a square matrix of order n.

- (a) Let $E = \{e_1, e_2, ..., e_n\}$ be the standard basis for \mathbb{R}^n . Show that $Ae_j = \text{the } j\text{th column of } A$.
- (b) Suppose $\mathbf{A}^m = \mathbf{0}$ and $\mathbf{A}^{m-1} \neq \mathbf{0}$ for some integer $m \geq 2$.
 - (i) Show that there exists at least one vector $u \in \mathbb{R}^n$ such that $A^{m-1}u \neq 0$.
 - (ii) Show that $\{u, Au, ..., A^{m-1}u\}$ is linearly independent where u is the vector obtained in Part (i).
- (c) Prove that if $A^{n+1} = 0$, then $A^n = 0$.

PAGE 4 MA1101R

Question 6 [17 Marks]

(All vectors in this question are written as column vectors.)

- (a) Let \boldsymbol{B} be a 2×2 symmetric matrix and let \boldsymbol{u} , \boldsymbol{v} be two eigenvectors of \boldsymbol{B} associated with the eigenvalues λ and μ respectively.
 - (i) Show that if $\lambda \neq \mu$, then $\boldsymbol{u} \cdot \boldsymbol{v} = 0$.

(ii) Suppose
$$\boldsymbol{u} = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{pmatrix}$$
, $\boldsymbol{v} = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix}$, $\lambda = 1$ and $\mu = 3$.

Find **B**. (Hint: $\{u, v\}$ is an orthonormal basis for \mathbb{R}^2 .)

(b) Let C be a symmetric matrix of order n with a characteristic polynomial

$$(\lambda - \lambda_1)(\lambda - \lambda_2) \cdots (\lambda - \lambda_n)$$

where $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$.

Prove that for any nonzero vector $\boldsymbol{x} \in \mathbb{R}^n, \ \lambda_1 \leq \frac{\boldsymbol{x}^{\scriptscriptstyle \mathrm{T}} \boldsymbol{C} \boldsymbol{x}}{\boldsymbol{x}^{\scriptscriptstyle \mathrm{T}} \boldsymbol{x}} \leq \lambda_n.$

(Hint for (a)(i) and (b): For $\boldsymbol{u}, \boldsymbol{v} \in \mathbb{R}^n$, $\boldsymbol{u}^{\mathrm{T}} \boldsymbol{v} = \boldsymbol{u} \cdot \boldsymbol{v}$.)

[END OF PAPER]

National University of Singapore Department of Mathematics

${\bf Semester~1,~2017/18} \\ {\bf MA1101R~Linear~Algebra~I}$

November 2017 — Time allowed: 2 hours

O 1 1 3 7 1	
Student Number: _	

INSTRUCTIONS TO CANDIDATES

- 1. This examination paper consists of 6 questions, for a total of 80 points. Excluding the cover page, there are 12 printed pages.
- 2. Answer all 6 questions.
- 3. This is a closed book examination but you are allowed to bring in one A4-size and double-sided helpsheet.
- 4. You can use any kind of calculators (except devices which can be used for communication and/or web-surfing). However, various steps in the calculations should be laid out systematically.
- 5. Write down your student number on the cover page of this booklet.
- 6. Write your answers in the space below each question. This booklet will be collected at the end of the examination.
- 7. The left-hand pages can be used for rough work.

Question	Points	Score
$\begin{vmatrix} & 1 & & & & & & & & & & & & & & & & & $	11	
2	8	
3	9	
4	18	
5	17	
6	17	
Total:	80	

1. (11 points) Let
$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 \end{pmatrix}$$
.

(a) Use the **Gauss-Jordan Elimination** to reduce **A** to its reduced row-echelon form. (Write down the steps of your computations.)

(b) Write down a basis for the row space of \boldsymbol{A} .

(c) Write down a basis for the column space of \boldsymbol{A} .

(d) Write down a basis for the null space of \boldsymbol{A} . 2. (8 points) Let $V = \text{span}\{u_1, u_2, u_3\}$ where $u_1 = (1, 1, 0, 0)$, $u_2 = (1, 1, -1, -1)$ and $u_3 = (1, a, 1, a)$ where a is an unknown constant.

Apply the Gram-Schmidt Process to $\{u_1, u_2, u_3\}$ to obtain an orthonormal basis for V.

(Warning: The value of a may affect your answer.)

3. (9 points) Let W be a vector space with a basis $S = \{ \mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3} \}$. Let $T = \{ \mathbf{w_1}, \mathbf{w_2}, \mathbf{w_3} \}$ where

$$w_1 = v_1 + 2v_2$$
, $w_2 = v_2 + 2v_3$ and $w_3 = v_3$.

(a) Show that T is a basis for W.

Question 3 continues...

(b) Find the transition matrix from S to T.

- 4. (18 points) Let $\mathbf{B} = \begin{pmatrix} -2 & 0 & -2 & 1 \\ -1 & -1 & -2 & 1 \\ 1 & 0 & 1 & -1 \\ 0 & 0 & 0 & -1 \end{pmatrix}$.
 - (a) Find the characteristic polynomial of \boldsymbol{B} and verify that the eigenvalues of \boldsymbol{B} are -1 and 0.

(b) Find a basis for the eigenspace E_{-1} of \boldsymbol{B} .

Onestion	4	continues.	
Question	4	commues.	•

(c) Find a basis for the eigenspace E_0 of \boldsymbol{B} .

(d) Write down an invertible matrix P and a diagonal matrix D such that $P^{-1}BP = D$.

Question 4 continues...

(e) Find B^{1101} .

- 5. (17 points) Let C be a square matrix.
 - (a) Show that the nullspace of C is a subset of the nullspace of C^2 .

(b) If $rank(\mathbf{C}^2) = rank(\mathbf{C})$, show that the nullspace of \mathbf{C}^2 is equal to the nullspace of \mathbf{C} .

(c) Give an example of a 2×2 matrix C with rank $(C^2) = \text{rank}(C)$.

(d) Give an example of a 2×2 matrix C with $rank(C^2) < rank(C)$.

(e) Can $rank(\mathbf{C}^2) > rank(\mathbf{C})$? Why?

6. (17 points) Let \boldsymbol{A} be an $n \times n$ matrix.

For each $\lambda \in \mathbb{R}$, we define a linear transformation $T_{\lambda} : \mathbb{R}^n \to \mathbb{R}^n$ such that

$$T_{\lambda}(\boldsymbol{u}) = \boldsymbol{A}\boldsymbol{u} - \lambda \boldsymbol{u} \text{ for } \boldsymbol{u} \in \mathbb{R}^{n}.$$

(a) Write down the standard matrix for T_{λ} .

(b) For any $\lambda, \mu \in \mathbb{R}$, show that

$$(\boldsymbol{A} - \lambda \boldsymbol{I})(\boldsymbol{A} - \mu \boldsymbol{I}) = (\boldsymbol{A} - \mu \boldsymbol{I})(\boldsymbol{A} - \lambda \boldsymbol{I}).$$

Question 6 continues...

- (c) Suppose \boldsymbol{A} is diagonalizable and the eigenvalues of \boldsymbol{A} are λ_1 , $\lambda_2, \ldots, \lambda_k$.
 - (i) If \boldsymbol{v} is an eigenvector of \boldsymbol{A} , say, $\boldsymbol{A}\boldsymbol{v}=\lambda_i\boldsymbol{v}$ for some i, show that $(\boldsymbol{A}-\lambda_1\boldsymbol{I})(\boldsymbol{A}-\lambda_2\boldsymbol{I})\cdots(\boldsymbol{A}-\lambda_k\boldsymbol{I})\boldsymbol{v}=\boldsymbol{0}$. (Hint: First, show that $(\boldsymbol{A}-\lambda_i\boldsymbol{I})\boldsymbol{v}=\boldsymbol{0}$ and then use the result in part (b).)

(ii) Define $S = T_{\lambda_1} \circ T_{\lambda_2} \circ \cdots \circ T_{\lambda_k}$. Prove that S is the zero transformation.

MA1101R Page 12 of 12 The End