

Das c-mix Verfahren

Merlin Koglin, Maik Graaf

Agenda

- 1. Motivation
- 2. c-mix Verfahren
- 3. Sicherheit
- 4. Performance
- 5. PrivaTegrity

Ansatz der Chaumische Mixe

- Gewährleistung der Anonymität
 - Mixe werden durchlaufen um die Beziehung zwischen Sender und Empfänger zu verschleiern
 - Im Mixnetz findet eine "Zwiebelschalen" artige Entschlüsselung statt
 - Mithilfe der Rückadresse wird der Empfänger einer Nachricht bestimmt

Probleme bisheriger Mix Verfahren

- In Echtzeitsystemen
 - Lange Wartezeiten beim sammeln der Nachrichten
 - Der Sammelschritt wird deshalb kurz gehalten oder sogar weggelassen
 - Das Verfahren wird somit angreifbarer
 - Für mobile Geräte ungeeignet aufgrund des großen Zeitund Energieaufwands

Idee von David Chaum

- Vermeidung von Schlüsselberechnungen in Echtzeit
 - Steigerung der Effizienz von Mix-Netzen
 - Energieaufwand verringern
 - Schlüsselberechnung vor der Kommunikation
 - Schlüsselaustausch zwischen Sender und Mixknoten

Kommunkationsübersicht

Übersicht der zwei Phasen

- Vorbereitung
- Precomputation Phase
 - Hier werden aufwändige Public-Key Verschlüsselungen vorberechnet
 - 3 Schritte, Preprocessing, Mixing, Postprocessing
- Realtime Phase
 - In dieser Phase findet die Kommunikation zwischen Sender und Empfänger statt
 - 3 Schritte, Preprocessing, Mixing, Postprocessing

Vorbereitung

Vorbedingungen an die User und Nodes

- Symmetrischer Schlüssel $K_{i,j}$ zwischen jedem User U_j user jedem Node N_i
- Austausch des Schlüssels z.B. mit Diffie-Hellman
- K_{i,j} wird später als Eingabe für Pseudozufallszahlengenerators verwendet

Precomputation - Step 1

- Knoten N₁, ... N_n erzeugt einen Vektor r_i aus zufälligen Werten für jede Nachricht
- Verschlüsselung mittes ElGamal $\rightarrow E(r_i^{-1})$
 - Diese Verschlüsselung muss dann in der Echzeitphase nicht mehr durchgeführt werden
- ElGamal
 - asymmetrisches Verschlüsselungsverfahren
 - jeder Knoten hält einen Teil des privaten Schlüssels
- NH fasst diese zusammen $E(r_i) \rightarrow E(R_n^{-1})$

Precomputation - Step 2

- Mixing
 - 1. Nodes legen Permutation P(X) fest.
 - Nodes erzeugen weiteren zufälligen Vektor si
 - 3. $E(R_n^{-1})$ wird von jedem Knoten nacheinander mit der jeweils festgelegten Permutation permutiert (Mixing) und gleichzeit der erzeugte s_i^{-1} hineinmultipliziert
 - 4. *s_i* wird später für eine Nachrichtenantwort verwendet
- Der letzte Knoten erzeugt damit $E(P_n(R_n^{-1}) \times S_n^{-1})$

Precomputation - Step 3

- Entschüsselungsanteil
 - 1. Jeder Knoten berechnet nun aus $E(P_n(R_n^{-1}) \times S_n^{-1})$ seinen Entschlüsselungsanteil.
 - Das jeder Knoten einen eigenen Entschlüsselungsanteil berechnen kann, liegt an der ElGamal Verschlüsselung, die diese Möglichkeit bietet.
- $E(P_n(R_n^{-1}) \times S_n^{-1})$ kann nur mit allen Anteilen entschlüsselt werden

Precomputation - Return Path

- Step 1
 - 1. Nodes erzeugen zufällige Vektoren $E(s_i^{\prime -1})$ (ElGamal verschlüsselt).
 - 2. Permutation rückwärts, der letzte Knoten beginnt, gleichzeitig werden s'^{-1} hinzugefügt
 - 3. Der erste Knoten erhält $E(S_1^{-1})$
- Step 2
 - 1. Wie vorher werden wieder Entschüsselungsanteile D_i' für $E(S_1'^{-1})$ von allen Knoten berechnet

Precomputation - Resultat

- Hinweg
 - 1. $E(P_n(R_n^{-1}) \times S_n^{-1})$, Entschlüsselungsanteil D_i
- Rückweg
 - 1. $E(S_1^{\prime -1})$, Entschlüsselungsanteil D_i^{\prime}

- Generierung mit gleichem Seed
 - 1. User U_j generiert für jeden Knoten mittels Pseudozufallszahlengenerator einen neuen Schlüssel und fasst diese zusammen Ka_i^{-1}
 - Startwert: der anfangs ausgetauschte symmetrische Schlüssel
 - 3. Verschlüsselung einer Nachricht mit $M_j \times Ka_j^{-1}$
 - 4. Network Handler führt alle zusammen $M \times Ka^{-1}$
 - 5. Knoten N_i generiert für jeden User wie oben Schlüssel und sendet $ka_i \times r_i$ an den NH.

- Austausch der Verschlüsselung
 - 1. Der NH kann damit die Ka^{-1} mit den zufälligen Vektoren r_i der Knoten austauschen
 - 2. $M \times Ka^{-1} \times \sum_{i=1}^{n} ka_i \times r_i = M \times R_n$

- Mixing
 - Jeder Knoten permutiert (Nachrichten werden getauscht) nacheinander $M \times R_n$ und fügt Vektor S_i aus Precomputation Phase ein
 - Der letzte Knoten erhält $P_n(M \times R_n) \times S_n$

- Sammeln der Entschlüsselungsanteile
 - Die Knoten senden Entschlüsselungsanteile an den NH
 → D(n, x)
- Entschlüsselung
 - Der NH Entschlüsselt $E(P_n(R_n^{-1}) \times S_n^{-1})$ mittels D(n,x)
 - $-P_n(M\times R_n)\times S_n\times P_n(R_n^{-1})\times S_n^{-1}=P_n(M)$
- Resultat
 - P_n(M) Ursprüngliche Nachrichten in vertauschter Reihenfolge
 - Keine direkte Verbindung zum Sender möglich

Echzeit Phase - Antwort

Schritt 1

- Antworten werden gesammelt (M')
- Die Mixknoten permutieren diese nun rückwärts und fügen E(s') hinzu
- Erste Knoten erzeugt dann $P'(M') \times E(S')$
- \bullet Alle Knoten erzeugen neuen Key mittels PZG Ka'_j und verknüpfen diesen mit Entschüsselungsanteil
- $E(S'^{-1})$ kann entschüsselt werden
- Resultat

$$-P'(M') \times S' \times E(S'^{-1}) \times D' \times Ka'$$

= $P'(M') \times S' \times S'^{-1} \times Ka'$

Echzeit Phase - Antwort

Schritt 2

- $P'(M') \times S' \times S'^{-1} \times Ka' = P'(M') \times Ka'$
- User *U_j* kann *Ka'_j* für seinen Nachrichtenslot erzeugen und Nachricht entschüsseln.

Anonymität

- Anhand eines Modells
 - Private Kommunikation der Mixknoten untereinander und eines vertraulichen dritten Punktes
 - Keine Kryptographischen Operationen, Sicherstellung durch den vertraulichen dritten Punkt
 - "Reale Simulation" des Modells mit Eigenschaften des cMix Protokolls zeigt Anonymität

Integrität

- Die Integrität ist gegeben wenn
 - Die Nachricht M unmodifiziert und an den Empfänger weitergeleitet wird oder...
 - Alle Mixknoten wissen, dass das cMix Protokoll nicht richtig durchgeführt wurde
 - Sicherstellung durch den Mechanismus "Randomized Partial Checking"

Vertraulichkeit

- Schutzziel Anonymität
 - Wird sichergestellt indem Nachrichten vom Sender verschlüsselt werden
 - z.B durch einen öffentlichen Schlüssel einer asymmetrischen Verschlüsselung
 - Diese Verschlüsselung vermeidet aufwändige Public-Key-Operationen

Prototyp

Performance Messung

- In Python implementiert
- Auf Instanzen des Amazon Web Service EC2 getestet
- Jeder Mixknoten hatte zwei Intel Xeon E5-2680 und 3,75
 GB Arbeitsspeicher zur Verfügung
- Bei einer 1024-bit ElGamal-Verschlüsselung
- Starke Verbesserung; Das re-encryption Mixnet ist bis zu 8 mal langsamer

Anzahl Nachricht	en Vorberechnung (Durchschnitt in Sekunden)	Echtzeit (Durchschnitt in Sekunden)
50	1.56	0.20
100	3.02	0.33
500	14.59	1.51
1000	28.87	3.09

Einbettung in PrivaTegrity

PrivaTegrity

- Sicherheitssystem basierend auf c-mix
- Nachrichten werden in 1-Sekunden Intervallen gesammelt und gesendet
- 10 Mixknoten in 10 verschiedenen Ländern
- Wenn alle Mixknoten Betreiber kooperieren, kann Anonymität aufgedeckt werden

Fazit

- Prototyp ist effizienter und schneller als bisherige Verfahren
- Anpassung für heutige Kommunikationsgeräte (Smartphone, Laptop)
- Anonymes Chatten, Fotosharing, Bezahlsysteme, Suche
- Möglichkeit zur gezielten Aufdeckung wird teilweise kritisch betrachtet