TDK-dolgozat

Dénes Botond

Vízközeli hulladéklerakók megbízható detektálása multispektrális műholdfelvételek segítségével

EÖTVÖS LORÁND TUDOMÁNYEGYETEM

INFORMATIKAI KAR

Programozáselmélet és Szoftvertechnológiai Tanszék

Szerző:

Dénes Botond
programtervező informatikus MSc
2. évfolyam

Témavezető:

Cserép Máté egyetemi tanársegéd

Budapest, 2024

Tartalomjegyzék

1.	Bevezetés	2											
2.	2. Elemzés és tervezés												
3. Betanítás													
	3.0.1. Tanítóadatok	4											
	3.0.2. Tanítási paraméterek	5											
4. Megvalósítás és alkalmazás													
5.	5. Összefoglalás és eredmények												
Kä	Köszönetnyilvánítás												
A.	A. Szimulációs eredmények												
Iro	rodalomjegyzék												
Áb	Ábrajegyzék												
Tá	Γáblázatjegyzék												
Al	Algoritmusjegyzék												
Forráskódjegyzék													

Bevezetés

A hulladékszennyezés komoly problémát jelent a természet számára [1]. Emiatt számos szervezet mozdul abba az irányba, hogy tisztábbá tegye a bolygónkat. Egy ilyen szervezet a PET Kupa, akik elsősorban folyómenti hulladékgyűjtéssel foglalkoznak elsősorban Magyarországon, de figyelmük kiterjed a szomszédos országokra is. Az egyik nagy kihívás a szemétgyűjtésben ezeknek a területeknek megtalálása. Sok emberi és pénzügyi erőforrást igényel a hulladéklerakók megtalálása a folyók mentén, hiszen jármüvekkel valakinek végig kell haladnia egy hosszabb területen, csak azért, hogy felmérje, hogy hol van hulladék. Ehhez jelentős mennyiségű üzemanyagot kell elhasználni . Emiatt hatékonyabb eszközökre van szükségünk, hogy ezt a folyamatot felgyorsítsuk. Ennek fényében a PET Kupa felkereste az egyetemünket azzal a kéréssel, hogy olyan eszközöket fejlesszünk le, melyek automatikusan képesek lesznek hulladékot detektálni a folyók mentén.

Ide esetleg egy hivatkozás?

A dolgozatomban bemutatok egy Random Forest modell-t, mely a kutatólaborban már lefejlesztett modellre épül [2]. A bemutatott modell javít a korábbi modell problémáin, illetve nagyobb megbízhatósággal találja meg a hulladékot a folyókon és a folyók mentén. A modell eredményei integrálásra kerülnek a Tiszta Tisza webalkalmazásba, ahol több napon keresztül történő detektálás eredménye lesz összesítve és megjelenítve a felhasználók számára.

Hivatkozni a weboldalra

Elemzés és tervezés

A cél az, hogy a kutatás során szerzett modell megbízhatóan detektáljon hulladéklerakókat. Ehhez a false positive arányok minél kisebbek kell legyenek, míg a true positive arányok minél nagyobbak. Ugyanakkor nem jelent ugyanakkora problémát egy false negative, mint egy false positive, mivel a false positive eredmények fölöslegesen rossz irányba küldhetik a folyómentő csapatot. A kutatólabor 2023-as cikkjében bemutatott modell (továbbiakban meglevő modell) egyik problémája a nagy false positive arányok voltak. A modell a pusztazámori hulladéklerakóról, illetve a kiskörei víztárolóról szerzett adatokkal volt betanítva. Ezért érdemes egy nagyobb adathalmazzal betanítani a modellt.

Az új Random Forest modell a PlanetScope műholdakra lesz specializálva, azon belül is a legújabb PSB.SD szenzorokra. A modell számára elérhető lesz a Vörös, Kék, Zöld, és a közeli infravörös (NIR) sáv. A PlanetScope műholdak körülbelül 3 méter/pixel felbontással rendelkeznek [3, 4].

Betanítás

3.0.1. Tanítóadatok

A betanításhoz 29 romániai hulladéklerakó és közvetlen környezete került a tanítóadatok közé, illetve a Kiskörei víztároló is. A romániai hulladéklerakókat egy helyi weboldalon lehet megtalálni, a hozzájuk tartozó koordinátákkal együtt [5]. Az ott bemutatott 46 hulladéklerakó közül 29 volt alkalmas tanításra: sok hulladéklerakó be lett tömve, vagy föld alatt működik. Minden hulladéklerakóhoz tartozik egy-egy nyári+tavaszi, téli és őszi multispektrális műholdkép, melyeket kézzel annotáltam. A nyári és tavaszi képeket azért vontam egybe, mivel ezek hulladékdetektálás szempontjából hasonló adatokat eredményeztek. A tanítóadatok pixelenként vannak előállítva, így a végső adathalmaz 27 millió tanítóadatból (pixelből) áll. Minden pixelhez hozzá van rendelve a vörös, kék, zöld, közeli infravörös sáv, illetve a "PI", "NDWI", "NDVI", "RNDVI", "SR" indexek. Ezen felül minden pixel címkézve van a 3.1 táblázatban leírtak szerint.

Címke	Címke neve	Címke magyarázat											
azonosító													
100	Hulladék	Azon területek, melyeken hulladékot találtunk.											
200	Víz	olyan területek, melyeken kizárólag vizet találtunk, általában											
		folyók.											
300	Legelők/Erdők	Zöld övezetből álló vad területek. Ezek lehetnek fák lombjai											
		vagy füves zónák.											
400	Mezők	Olyan földes területek, melyek meg vannak művelve,											
		illetve ahol mezőgazdasági növények találhatóak, például											
		gabonafélék.											
500	Ismeretlen	Olyan területek, melyek a korábbi kategóriákba nem											
		sorolhatók bele. Ilyenek az épületek, aszfaltozott utak,											
		háztetők, mezei utak.											

3.1. táblázat. A tanítóadatok címkéi

3.0.2. Tanítási paraméterek

A nagy adathalmaz miatt a Random Forest modell is nagyon nagy lesz (körülbelül 16GB), ami egy nehezen kezelhető méret, így érdemes módosítani a modell paraméterein, hogy ez kisebb méretű legyen. A legjobb eredményeket a Random Forest fák mélységének a limitálásával értünk el, ahol látható volt, hogy

Megvalósítás és alkalmazás

Összefoglalás és eredmények

Köszönetnyilvánítás

Amennyiben a TDK projekted pénzügyi támogatást kapott egy projektből vagy az egyetemtől, jellemzően kötelező feltüntetni a dolgozatban is. A dolgozat elkészítéséhez segítséget nyújtó oktatók, hallgatótársak, kollégák felé is nyilvánítható külön köszönet.

A. függelék

Szimulációs eredmények

Irodalomjegyzék

- [1] M.G. Kibria, N.I. Masuk és R. et al. Safayet. "Plastic Waste: Challenges and Opportunities to Mitigate Pollution and Effective Management". *International Journal of Environmental Research* 17.20 (2023. jan.). ISSN: 2008-2034. URL: https://doi.org/10.1007/s41742-023-00507-z.
- [2] Dávid Magyar és tsai. "Waste Detection and Change Analysis based on Multispectral Satellite Imagery". 2023. jan. DOI: 10.48550/arXiv.2303.14521.
- [3] Planet.com. URL: https://developers.planet.com/docs/apis/data/sensors/(elérés dátuma 2024.04.03.).
- [4] Planet.com. URL: https://developers.planet.com/docs/apis/data/sensors/(elérés dátuma 2024.04.03.).
- [5] InfoCons.ro. URL: https://fiiunexemplu.ro/in-romania-exista-46-depozite-de-deseuri-gropi-de-gunoi/(elérés dátuma 2024.04.02.).

Ábrák jegyzéke

Táblázatok jegyzéke

3.1.	A tanítóadatok címkéi			_	_			_	_													_		_			_		_	5
J.1.	11 tuilitoudutoit cillinei	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	\sim

Algoritmusjegyzék

Forráskódjegyzék