Problem 1

Consider the problem of minimizing

$$f(x) = 4x - \ln(x), \quad x > 0,$$

by using the Newton's method with the step-size $\gamma=1$.

- (a) What is the minimizer x^* of f?
- (b) Find an interval $I \in \mathbb{R}$ such that for any $x^0 \in I$, the Newton's method converges to x^* . Show that the order of convergence is at least quadratic.

Date: 03/07/2019

Problem 2

Consider a set of m+1, possibly nonconvex, functions $\{f_0(\boldsymbol{x}), f_1(\boldsymbol{x}), \dots, f_m(\boldsymbol{x})\}$ defined over the whole \mathbb{R}^n and the function $L: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}$ defined as

$$L(\boldsymbol{x}, \boldsymbol{\theta}) = f_0(\boldsymbol{x}) + \sum_{i=1}^m \theta_i f_i(\boldsymbol{x}).$$

Show that the following function over $oldsymbol{ heta} \in \mathbb{R}^m$ is always convex

$$g(\boldsymbol{\theta}) = \sup_{\boldsymbol{x} \in \mathbb{R}^n} \left\{ L(\boldsymbol{x}, \boldsymbol{\theta}) \right\}.$$

Hint: You may rely on the definition of convexity and/or the properties of convex functions.

Date: 03/07/2019

Problem 3

Consider the problem of minimizing the following function over \mathbb{R}^3

$$f(\boldsymbol{x}) = \frac{1}{2} \exp\left(\frac{1}{2} \boldsymbol{x}^\mathsf{T} \boldsymbol{Q} \boldsymbol{x} - \boldsymbol{c}^\mathsf{T} \boldsymbol{x} + d\right), \quad \text{where} \quad \boldsymbol{Q} = \begin{bmatrix} 2 & -1 & \theta \\ -1 & 2 & -1 \\ \theta & -1 & 2 \end{bmatrix}, \quad \boldsymbol{c} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \quad \text{and} \quad d = 5.$$

- (a) For what values of $\theta \in \mathbb{R}$ is the problem strictly convex?
- (b) Is g = c Qx a descent direction for f at any $x \in \mathbb{R}^3$?
- (c) What is the minimizer x^* of f for $\theta = 0$?

Date: 03/07/2019

Consider the problem of minimizing the following function over \mathbb{R}^n :

$$f(m{x}) = rac{1}{2} \|m{A}m{x} - m{b}\|^2$$
 where $m{A} \in \mathbb{R}^{m imes n}$ and $m{b} \in \mathbb{R}^m$.

- (a) Provide the expressions for the gradient and the Hessian of f. Is f a convex function?
- (b) Find the minimizer $x^* \in \mathbb{R}^n$ of f, when $A^T A$ is nonsingular.
- (c) Assume that A^TA is nonsingular. Find a matrix $M \in \mathbb{R}^{n \times n}$ such that for any $x^0 \in \mathbb{R}^n$ the following single iteration

$$\boldsymbol{x}^1 = \boldsymbol{x}^0 - \boldsymbol{M} \nabla f(\boldsymbol{x}^0),$$

converges to the minimizer $x^* \in \mathbb{R}^n$.

Hint: Note this result must be valid for any starting point $x^0 \in \mathbb{R}^n$.

Bonus Problem

Consider a function y = G(x) that takes in a vector $x \in \mathbb{R}^n$ and produces another vector $y \in \mathbb{R}^n$.

• We say that G is *Lipschitz continuous* with constant L > 0, when

$$\|\mathsf{G}(x_1) - \mathsf{G}(x_2)\| \le L\|x_1 - x_2\|, \quad \forall x_1, x_2 \in \mathbb{R}^n.$$

When L < 1, we say that G is *contractive*.

• We say that G is strongly monotone with constant M > 0, when

$$(\mathsf{G}(x_1) - \mathsf{G}(x_2))^{\mathsf{T}}(x_1 - x_2) \ge M \|x_1 - x_2\|^2, \quad \forall x_1, x_2 \in \mathbb{R}^n$$

(a) Show that for $f \in \mathcal{S}^1_{M,L}(\mathbb{R}^n)$, the gradient $\nabla f(x)$ is strongly monotone with constant M.

Hint: Use the definition of strong convexity at two different points $x_1 \in \mathbb{R}^n$ and $x_2 \in \mathbb{R}^n$.

(b) Show that for $f \in \mathcal{S}^1_{M,L}(\mathbb{R}^n)$ there exists $\gamma > 0$, such that the function $\mathsf{G}(\boldsymbol{x}) = \boldsymbol{x} - \gamma \nabla f(\boldsymbol{x})$ is contractive.

Hint: Use the fact that ∇f is both Lipschitz continuous and strongly monotone.

(c) Show that when $G(x) = x - \gamma \nabla f(x)$ is contractive with a Lipschitz constant 0 < c < 1, the iterates generated by the gradient method converge linearly to the minimizer $x^* \in \mathbb{R}^n$ as follows

$$\|x^t - x^*\| \le c^t \|x^0 - x^*\|, \quad \forall t \ge 1.$$