

#### **General information**

### Designation

Polyamideimide (Unfilled)

#### **Tradenames**

Duratron, Quadrant, Tecator, Torlon

### Typical uses

Valves; bearings; electrical connectors; gears; parts for jet engines and internal combustion engines; printed circuit boards

### **Composition overview**

### **Compositional summary**

| (-N-[CO2]-C6H3-CO-NH-R)n |                                    |
|--------------------------|------------------------------------|
| Material family          | Plastic (thermoplastic, amorphous) |
| Base material            | PAI (Polyamide-imide)              |
| Polymer code             | PAI                                |

## **Composition detail (polymers and natural materials)**

| Polymer | 100 | % |
|---------|-----|---|
|         |     |   |

### **Price**

| Price                 | * 20.6  | - | 21.9   | USD/lb   |
|-----------------------|---------|---|--------|----------|
| Price per unit volume | * 1.8e3 | - | 1.98e3 | USD/ft^3 |

## **Physical properties**

| Density | 0.0506 | - | 0.0524 | lb/in^3 |  |  |
|---------|--------|---|--------|---------|--|--|
|---------|--------|---|--------|---------|--|--|

### **Mechanical properties**

| moonamour proportion                   |         |   |       |          |
|----------------------------------------|---------|---|-------|----------|
| Young's modulus                        | 0.693   | - | 0.728 | 10^6 psi |
| Yield strength (elastic limit)         | 5.51    | - | 6.09  | ksi      |
| Tensile strength                       | 26.4    | - | 29.3  | ksi      |
| Elongation                             | 13.9    | - | 16.1  | % strain |
| Compressive modulus                    | 0.566   | - | 0.595 | 10^6 psi |
| Compressive strength                   | * 30.5  | - | 33.4  | ksi      |
| Flexural modulus                       | 0.708   | - | 0.743 | 10^6 psi |
| Flexural strength (modulus of rupture) | 33.1    | - | 36.5  | ksi      |
| Shear modulus                          | * 0.239 | - | 0.251 | 10^6 psi |
| Shear strength                         | 17.7    | - | 19.4  | ksi      |
| Poisson's ratio                        | 0.44    | - | 0.46  |          |
| Shape factor                           | 9.42    |   |       |          |
| Hardness - Vickers                     | 11      | - | 13    | HV       |
|                                        |         |   |       |          |



| 105  * 120  * 10.6  * 0.008  3.35  0.0081  0.0556  507  * 532  482  392  * -319  0.144  0.237  16.6     |                              | 115<br>130<br>11.7<br>0.00832<br>4.08<br>0.00899<br>0.0673<br>547<br>644<br>583<br>428 | ksi.in^0.5 BTU/in^2 BTU/in^2 F F        |
|---------------------------------------------------------------------------------------------------------|------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------|
| * 10.6<br>* 0.008<br>3.35<br>0.0081<br>0.0556<br>507<br>* 532<br>482<br>392<br>* -319<br>0.144<br>0.237 | -<br>3 -<br>-<br>-<br>-<br>- | 11.7<br>0.00832<br>4.08<br>0.00899<br>0.0673<br>547<br>644<br>583                      | ksi.in^0.5 BTU/in^2 BTU/in^2 F          |
| * 0.008  3.35 0.0081 0.0556  507 * 532 482 392 * -319 0.144 0.237                                       | -<br>3 -<br>-<br>-<br>-      | 0.00832<br>4.08<br>0.00899<br>0.0673<br>547<br>644<br>583                              | ksi.in^0.5 BTU/in^2 BTU/in^2 F          |
| 3.35<br>0.0081<br>0.0556<br>507<br>* 532<br>482<br>392<br>* -319<br>0.144<br>0.237                      | -<br>3 -<br>-<br>-<br>-<br>- | 4.08<br>0.00899<br>0.0673<br>547<br>644<br>583                                         | BTU/in^2 BTU/in^2  F                    |
| 0.0081<br>0.0556<br>507<br>* 532<br>482<br>392<br>* -319<br>0.144<br>0.237                              | 3 -<br>-<br>-<br>-<br>-      | 0.00899<br>0.0673<br>547<br>644<br>583                                                 | BTU/in^2 BTU/in^2  F                    |
| 0.0081<br>0.0556<br>507<br>* 532<br>482<br>392<br>* -319<br>0.144<br>0.237                              | 3 -<br>-<br>-<br>-<br>-      | 0.00899<br>0.0673<br>547<br>644<br>583                                                 | BTU/in^2 BTU/in^2  F                    |
| 507 * 532 482 392 * -319 0.144 0.237                                                                    | -<br>-<br>-                  | 0.0673<br>547<br>644<br>583                                                            | BTU/in^2  F F                           |
| 507 * 532 482 392 * -319 0.144 0.237                                                                    |                              | 547<br>644<br>583                                                                      | F<br>F                                  |
| * 532<br>482<br>392<br>* -319<br>0.144<br>0.237                                                         | -<br>-<br>-                  | 644<br>583                                                                             | F                                       |
| * 532<br>482<br>392<br>* -319<br>0.144<br>0.237                                                         | -<br>-<br>-                  | 644<br>583                                                                             | F                                       |
| 482<br>392<br>* -319<br>0.144<br>0.237                                                                  | -<br>-<br>-                  | 583                                                                                    |                                         |
| 392<br>* -319<br>0.144<br>0.237                                                                         | -                            |                                                                                        | F                                       |
| * -319<br>0.144<br>0.237                                                                                | -                            | 428                                                                                    |                                         |
| 0.144<br>0.237                                                                                          |                              |                                                                                        | F                                       |
| 0.237                                                                                                   | _                            | -301                                                                                   | F                                       |
|                                                                                                         |                              | 0.156                                                                                  | BTU.ft/hr.ft^2.F                        |
| 16.6                                                                                                    | -                            | 0.247                                                                                  | BTU/lb.℉                                |
|                                                                                                         | -                            | 17.4                                                                                   | µstrain/℉                               |
|                                                                                                         |                              |                                                                                        |                                         |
| 7.87e2                                                                                                  | 1 -                          | 7.87e23                                                                                | μohm.in                                 |
| 3.8                                                                                                     | -                            | 4.3                                                                                    |                                         |
| 0.026                                                                                                   | -                            | 0.031                                                                                  |                                         |
| 579                                                                                                     | -                            | 630                                                                                    | V/mil                                   |
| 100                                                                                                     | -                            | 250                                                                                    | V                                       |
|                                                                                                         |                              |                                                                                        |                                         |
| Non-m                                                                                                   | agneti                       | С                                                                                      |                                         |
|                                                                                                         | 3.8<br>0.026<br>579<br>100   | 3.8 -<br>0.026 -<br>579 -<br>100 -                                                     | 3.8 - 4.3<br>0.026 - 0.031<br>579 - 630 |

## **Absorption & permeability**

| Water absorption @ 24 hrs | 0.31 | - | 0.35 | % |
|---------------------------|------|---|------|---|
| Water absorption @ sat    | 3.8  | - | 4.2  | % |
| Humidity absorption @ sat | 2.6  | - | 3    | % |



| <b>Process</b> | ına   | nrai  | AAPTIAC |
|----------------|-------|-------|---------|
| FIUCESS        | II IU | UI UI | verues. |
|                |       | P     |         |

| Polymer injection molding | Limited us | se |      |     |
|---------------------------|------------|----|------|-----|
| Polymer extrusion         | Limited us |    |      |     |
| Polymer thermoforming     | Unsuitable | Э  |      |     |
| Linear mold shrinkage     | * 0.025    | -  | 0.03 | %   |
| Melt temperature          | 581        | -  | 698  | F   |
| Mold temperature          | * 392      | -  | 419  | F   |
| Molding pressure range    | 5.8        | -  | 7.98 | ksi |

## **Durability**

| Water (fresh)           | Excellent          |
|-------------------------|--------------------|
| Water (salt)            | Excellent          |
| Weak acids              | Excellent          |
| Strong acids            | Limited use        |
| Weak alkalis            | Excellent          |
| Strong alkalis          | Limited use        |
| Organic solvents        | Excellent          |
| Oxidation at 500C       | Unacceptable       |
| UV radiation (sunlight) | Excellent          |
| Flammability            | Self-extinguishing |

## Primary production energy, CO2 and water

| Embodied energy, primary production | * 1.18e5 | - | 1.3e5  | BTU/lb  |
|-------------------------------------|----------|---|--------|---------|
| CO2 footprint, primary production   | * 15.2   | - | 16.8   | lb/lb   |
| Water usage                         | * 1.94e4 | - | 2.14e4 | in^3/lb |

# Processing energy, CO2 footprint & water

| Polymer extrusion energy                      | * 2.51e3 | - | 2.78e3 | BTU/lb  |
|-----------------------------------------------|----------|---|--------|---------|
| Polymer extrusion CO2                         | * 0.439  | - | 0.485  | lb/lb   |
| Polymer extrusion water                       | * 134    | - | 201    | in^3/lb |
| Polymer molding energy                        | * 8.36e3 | - | 9.23e3 | BTU/lb  |
| Polymer molding CO2                           | * 1.46   | - | 1.61   | lb/lb   |
| Polymer molding water                         | * 357    | - | 536    | in^3/lb |
| Coarse machining energy (per unit wt removed) | * 834    | - | 922    | BTU/lb  |
| Coarse machining CO2 (per unit wt removed)    | * 0.146  | - | 0.161  | lb/lb   |
| Fine machining energy (per unit wt removed)   | * 6.5e3  | - | 7.19e3 | BTU/lb  |
| Fine machining CO2 (per unit wt removed)      | * 1.13   | - | 1.25   | lb/lb   |
| Grinding energy (per unit wt removed)         | * 1.28e4 | - | 1.42e4 | BTU/lb  |
| Grinding CO2 (per unit wt removed)            | * 2.23   | - | 2.47   | lb/lb   |

## Recycling and end of life



| Recycle                            | ✓                        |
|------------------------------------|--------------------------|
| Embodied energy, recycling         | * 3.99e4 - 4.43e4 BTU/lb |
| CO2 footprint, recycling           | * 5.16 - 5.7 lb/lb       |
| Recycle fraction in current supply | 0.1 %                    |
| Downcycle                          | ✓                        |
| Combust for energy recovery        | ✓                        |
| Heat of combustion (net)           | * 1.08e4 - 1.13e4 BTU/lb |
| Combustion CO2                     | * 2.44 - 2.56 lb/lb      |
| Landfill                           | ✓                        |
| Biodegrade                         | ×                        |

### **Notes**

### Other notes

Torlon PAI grades must be cured by heat treatment after molding to achieve full mechanical properties.

## Links

| ProcessUniverse |  |
|-----------------|--|
| Producers       |  |
| Reference       |  |
| Shape           |  |