Word Sense Disambiguation - I

Pawan Goyal

CSE, IIT Kharagpur

Week 8, Lecture 3

Word Sense Disambiguation (WSD)

Sense ambiguity

- Many words have several meanings or senses
- The meaning of bass depends on the context
- Are we talking about music, or fish?
 - An electric guitar and **bass** player stand off to one side, not really part of the scene, just as a sort of nod to gringo expectations perhaps.
 - And it all started when fishermen decided the striped bass in Lake Mead were too skinny.

Word Sense Disambiguation (WSD)

Sense ambiguity

- Many words have several meanings or senses
- The meaning of bass depends on the context
- Are we talking about music, or fish?
 - An electric guitar and **bass** player stand off to one side, not really part of the scene, just as a sort of nod to gringo expectations perhaps.
 - And it all started when fishermen decided the striped **bass** in Lake Mead were too skinny.

Disambiguation

 The task of disambiguation is to determine which of the senses of an ambiguous word is invoked in a particular use of the word.

Word Sense Disambiguation (WSD)

Sense ambiguity

- Many words have several meanings or senses
- The meaning of bass depends on the context
- Are we talking about music, or fish?
 - An electric guitar and **bass** player stand off to one side, not really part of the scene, just as a sort of nod to gringo expectations perhaps.
 - And it all started when fishermen decided the striped bass in Lake Mead were too skinny.

Disambiguation

- The task of disambiguation is to determine which of the senses of an ambiguous word is invoked in a particular use of the word.
- This is done by looking at the context of the word's use.

Algorithms

- Knowledge Based Approaches
 - Overlap Based Approaches
- Machine Learning Based Approaches
 - Supervised Approaches
 - Semi-supervised Algorithms
 - Unsupervised Algorithms
- Hybrid Approaches

Knowledge Based Approaches

Overlap Based Approaches

- Require a Machine Readable Dictionary (MRD).
- Find the overlap between the features of different senses of an ambiguous word (sense bag) and the features of the words in its context (context bag).
- The features could be sense definitions, example sentences, hypernyms etc.
- The features could also be given weights.
- The sense which has the maximum overlap is selected as the contextually appropriate sense.

Sense Bag: contains the words in the definition of a candidate sense of the ambiguous word.

Sense Bag: contains the words in the definition of a candidate sense of the ambiguous word.

Context Bag: contains the words in the definition of each sense of each context word.

Sense Bag: contains the words in the definition of a candidate sense of the ambiguous word.

Context Bag: contains the words in the definition of each sense of each context word.

On burning **coal** we get ash.

Sense Bag: contains the words in the definition of a candidate sense of the ambiguous word.

Context Bag: contains the words in the definition of each sense of each context word.

On burning **coal** we get ash.

Ash Coal Sense 1 Sense 1 A piece of glowing carbon or burnt wood. Trees of the olive family with pinnate leaves, thin furrowed bark and gray Sense 2 branches. charcoal. Sense 2 Sense 3 The solid residue left when combustible A black solid combustible substance material is thoroughly burned or oxidized formed by the partial decomposition of Sense 3 vegetable matter without free access to air and under the influence of moisture and To convert into ash often increased pressure and temperature that is widely used as a fuel for burning In this case Sense 2 of ash would be the winner sense.

A Thesaurus Based approach

- A Thesaurus Based approach
- Step 1: For each sense of the target word find the thesaurus category to which that sense belongs

- A Thesaurus Based approach
- Step 1: For each sense of the target word find the thesaurus category to which that sense belongs
- **Step 2:** Calculate the score for each sense by using the context words.

- A Thesaurus Based approach
- Step 1: For each sense of the target word find the thesaurus category to which that sense belongs
- **Step 2:** Calculate the score for each sense by using the context words. A context word will add 1 to the score of the sense if the thesaurus category of the word matches that of the sense.

- A Thesaurus Based approach
- Step 1: For each sense of the target word find the thesaurus category to which that sense belongs
- Step 2: Calculate the score for each sense by using the context words. A context word will add 1 to the score of the sense if the thesaurus category of the word matches that of the sense.
 - ► E.g. The money in this bank fetches an interest of 8% per annum

- A Thesaurus Based approach
- Step 1: For each sense of the target word find the thesaurus category to which that sense belongs
- Step 2: Calculate the score for each sense by using the context words. A context word will add 1 to the score of the sense if the thesaurus category of the word matches that of the sense.
 - ► E.g. The money in this bank fetches an interest of 8% per annum
 - Target word: bank
 - Clue words from the context: money, interest, annum, fetch

- A Thesaurus Based approach
- **Step 1:** For each sense of the target word find the thesaurus category to which that sense belongs
- Step 2: Calculate the score for each sense by using the context words. A context word will add 1 to the score of the sense if the thesaurus category of the word matches that of the sense.
 - ► E.g. The money in this bank fetches an interest of 8% per annum
 - ► Target word: bank
 - Clue words from the context: money, interest, annum, fetch

	Sense1: Finance	Sense2: Location	Context words
Money	+1	0	add 1 to the sense when the topic of the word matches that of the sense
Interest	+1	0	
Fetch	0	0	
Annum	+1	0	
Total	3	0	

The church bells no longer rung on Sundays.

church

- 1: one of the groups of Christians who have their own beliefs and forms of worship
- 2: a place for public (especially Christian) worship
- 3: a service conducted in a church

be11

- 1: a hollow device made of metal that makes a ringing sound when struck
- 2: a push button at an outer door that gives a ringing or buzzing signal when pushed
- 3: the sound of a bell

ring

- 1: make a ringing sound
- 2: ring or echo with sound
- 3: make (bells) ring, often for the purposes of musical edifica-

Sunday

1: first day of the week; observed as a day of rest and worship by most Christians

Step 1: Add a vertex for each possible sense of each word in the text

The church bells no longer rung on Sundays.

church

- one of the groups of Christians who have their own beliefs and forms of worship
- 2: a place for public (especially Christian) worship
- 3: a service conducted in a church

be11

- a hollow device made of metal that makes a ringing sound when struck
- a push button at an outer door that gives a ringing or buzzing signal when pushed
- 3: the sound of a bell

ring

- 1: make a ringing sound
- 2: ring or echo with sound
- make (bells) ring, often for the purposes of musical edification

Sunday

 first day of the week; observed as a day of rest and worship by most Christians

Bell ring church Sunday

Step 2: Add weighted edges using definition based semantic similarity (Lesk's method).

The church bells no longer rung on Sundays.

church

- one of the groups of Christians who have their own beliefs and forms of worship
- 2: a place for public (especially Christian) worship
- 3: a service conducted in a church

be11

- a hollow device made of metal that makes a ringing sound when struck
- a push button at an outer door that gives a ringing or buzzing signal when pushed
- 3: the sound of a bell

ring

- 1: make a ringing sound
- 2: ring or echo with sound
- make (bells) ring, often for the purposes of musical edification

Sunday

 first day of the week; observed as a day of rest and worship by most Christians

Bell ring church Sunday

Step 3: Apply graph based ranking algorithm to find score of each vertex (i.e. for each word sense).

Week 8. Lecture 3

The church bells no longer rung on Sundays.

church

- one of the groups of Christians who have their own beliefs and forms of worship
- 2: a place for public (especially Christian) worship
- 3: a service conducted in a church

be11

- a hollow device made of metal that makes a ringing sound when struck
- a push button at an outer door that gives a ringing or buzzing signal when pushed
- 3: the sound of a bell

ring

- 1: make a ringing sound
- 2: ring or echo with sound
- make (bells) ring, often for the purposes of musical edification

Sunday

 first day of the week; observed as a day of rest and worship by most Christians

Bell ring church Sunday

Step 4: Select the vertex (sense) which has the highest score.

Naïve Bayes for WSD

 A Naïve Bayes classifier chooses the most likely sense for a word given the features of the context:

$$\hat{s} = \argmax_{s \in S} P(s|f)$$

Naïve Bayes for WSD

 A Naïve Bayes classifier chooses the most likely sense for a word given the features of the context:

$$\hat{s} = \arg\max_{s \in S} P(s|f)$$

Using Bayes' law, this can be expressed as:

$$\hat{s} = \underset{s \in S}{\arg \max} \frac{P(s)P(f|s)}{P(f)}$$
$$= \underset{s \in S}{\arg \max} P(s)P(f|s)$$

Naïve Bayes for WSD

 A Naïve Bayes classifier chooses the most likely sense for a word given the features of the context:

$$\hat{s} = \arg\max_{s \in S} P(s|f)$$

Using Bayes' law, this can be expressed as:

$$\hat{s} = \underset{s \in S}{\operatorname{arg max}} \frac{P(s)P(f|s)}{P(f)}$$
$$= \underset{s \in S}{\operatorname{arg max}} P(s)P(f|s)$$

• The 'Naïve' assumption: all the features are conditionally independent, given the sense':

$$\hat{s} = \underset{s \in S}{\operatorname{arg\,max}} P(s) \prod_{j=1}^{n} P(f_j|s)$$

Training for Naïve Bayes

- 'f' is a feature vector consisting of:
 - ▶ POS of w
 - Semantic and Syntactic features of w
 - Collocation vector (set of words around it) → next word (+1), +2, -1, -2 and their POS's
 - Co-occurrence vector

Training for Naïve Bayes

- 'f' is a feature vector consisting of:
 - ▶ POS of w
 - Semantic and Syntactic features of w
 - Collocation vector (set of words around it) → next word (+1), +2, -1, -2 and their POS's
 - Co-occurrence vector
- Set parameters of Naïve Bayes using maximum likelihood estimation (MLE) from training data

$$P(s_i) = \frac{count(s_i, w_j)}{count(w_j)}$$

$$P(f_j|s_i) = \frac{count(f_j, s_i)}{count(s_i)}$$

- Based on 'One sense per collocation' property
 - Nearby words provide strong and consistent clues as to the sense of a target word
- Collect a large set of collocations for the ambiguous word
- Calculate word-sense probability distributions for all such collocations

- Based on 'One sense per collocation' property
 - Nearby words provide strong and consistent clues as to the sense of a target word
- Collect a large set of collocations for the ambiguous word
- Calculate word-sense probability distributions for all such collocations
- Calculate the log-likelihood ratio

$$log(\frac{P(Sense-A|Collocation_i)}{P(Sense-B|Collocation_i)})$$

Higher log-likelihood ⇒ more predictive evidence

- Based on 'One sense per collocation' property
 - Nearby words provide strong and consistent clues as to the sense of a target word
- Collect a large set of collocations for the ambiguous word
- Calculate word-sense probability distributions for all such collocations
- Calculate the log-likelihood ratio

$$log(\frac{P(Sense-A|Collocation_i)}{P(Sense-B|Collocation_i)})$$

- Higher log-likelihood ⇒ more predictive evidence
- Collocations are ordered in a decision list, with most predictive collocations ranked highest

Training Data

Resultant Decision List

Tresure Decision List				
Final decision list for plant (abbreviated)				
	Collocation	Sense		
10.12	plant growth	⇒ A		
9.68	car (within ±k words)	⇒ B		
9.64	plant height	⇒ A		
9.61	union (within ±k words)	⇒ B		
9.54	equipment (within $\pm k$ words)	⇒ B		
9.51	assembly plant	⇒ B		
9.50	nuclear plant	⇒ B		
9.31	flower (within ±k words)	→ A		
9.24	job (within ±k words)	⇒ B		
9.03	fruit (within ±k words)	⇒ A		
9.02	plant species	⇒ A		

Training Data

Resultant Decision List

Final decision list for plant (abbreviated)				
	Collocation	Sense		
10.12	plant growth	⇒ A		
9.68	car (within ±k words)	⇒ B		
9.64	plant height	⇒ A		
9.61	union (within $\pm k$ words)	\Rightarrow B		
9.54		⇒ B		
9.51	assembly plant	⇒ B		
9.50		⇒ B		
9.31	flower (within ±k words)	→ A		
9.24		⇒ B		
9.03	fruit (within ±k words)	⇒ A		
9.02	plant species	⇒ A		

Classification of a test sentence is based on the highest ranking collocation, found in the test sentences.

plucking flowers affects plant growth.

Decision List: Example

Example: discriminating between bass (fish) and bass (music):

Context	Sense
<i>fish</i> in $\pm k$ words	FISH
striped bass	FISH
<i>guitar</i> in $\pm k$ words	MUSIC
bass player	MUSIC
<i>piano</i> in $\pm k$ words	MUSIC
sea bass	FISH
play bass	MUSIC
<i>river</i> in $\pm k$ words	FISH
on bass	MUSIC
bass are	FISH

