Diskrete Strukturen (WS 2024-25) - Halbserie 10

10.1

Gegeben sei der folgende **Verband** (P_4, \preceq_4) , dargestellt als Hasse-Diagramm:

- 1. Geben Sie die Menge aller Komplemente
 - (a) von 1,
 - (b) von 4,
 - (c) von 7 an.
- 2. Ist (P_4, \preceq_4) eine **Boolesche Algebra**? Begründen Sie Ihre Antwort.

Solution.

- 1. (a) $\{7,9\}$
 - (b) Ø
 - $(c) \{1\}$
- 2. (P_4, \preceq_4) ist keine Boolesche Algebra, da bspw
. 4 kein Komplement hat.

 $10.2 ag{3}$

Gegeben seien die folgenden Verbände, dargestellt als Hasse-Diagramm:

Zeigen Sie mit Hilfe von Theorem 9.3.3, dass sie nicht distributiv sind. Geben Sie dafür jeweils eine Unterstruktur an, die zu M_3 oder N_5 isomorph ist.

Solution.

Solution.

 (P_1, \preceq_1) : Zum Beispiel $(\{0, 2, 1, 5, 6\}, \land, \lor)$ ist eine zu N_5 isomorphe Unterstruktur.

 (P_2, \leq_2) : Zum Beispiel $(\{0,3,4,5,7\}, \land, \lor)$ ist eine zu M_3 isomorphe Unterstruktur.

 $(P_3, \preceq_3)\colon$ Zum Beispiel $(\{2,5,9,7,8\}, \land, \lor)$ ist eine zu N_5 isomorphe Unterstruktur.

Wir definieren für jedes $n \in \mathbb{N}$ die Menge der natürlichen Teiler von n

$$T_n = \{t \in \mathbb{N} : t \mid n\}.$$

Geben Sie für die Menge $M = \{1, 2, 3\}$ einen **Isomorphismus** φ von $(T_{2023}, |)$ nach $(\mathcal{P}(M) \setminus \{\{3\}, \{1, 3\}\}, \subseteq)$ an.

Solution. Wir definieren $\varphi: \mathcal{P}(\{1,2,3\}) \setminus \{\{3\},\{2,3\}\} \rightarrow \{1,7,17,119,289,2023\}$ durch

$$\varphi(1) = \emptyset, \qquad \qquad \varphi(119) = \{1, 2\},
\varphi(7) = \{1\}, \qquad \qquad \varphi(289) = \{1, 3\},
\varphi(17) = \{2\}, \qquad \qquad \varphi(2023) = \{1, 2, 3\}.$$

10.4 Gegeben seien die folgenden Ordnungsrelationen, dargestellt als Hasse-Diagramm:

Sind die entsprechenden teilweise geordneten Mengen $(M_5, R_5), (M_6, R_6), (M_7, R_7)$ und (M_8, R_8) Boolesche Algebren? Begründen Sie Ihre Antwort.

- In (M_5, R_5) ist kein Verband (und damit natürlich auch keine Boolesche Algebra), da inf $\{a, b\}$ nicht existiert.
- (M_6, R_6) ist eine Boolesche Algebra: ist komplementierbar (d: a, b: c, c: b, a: d), ist distributiv (denn weder M_3 noch N_5 können Unterstrukturen von M_6 sein, und es gibt kleinstes und größtes Element a und d. Andere Begründung: isomorph zu $(\mathcal{P}(\{1,2\}),\subseteq)$, welcher laut Beispiel in Skript Boolesche Algebra ist.
- (M_7, R_7) ist keine Boolesche Algebra, da b kein Komplement hat. Wir zeigen z.B. das Gesetz $(x \vee y)^c = x^c \wedge y^c$.
- (M_8, R_8) ist nicht distributiv, denn $d \wedge (c \vee b) = d \neq b = (d \wedge c) \vee (d \wedge b)$, und ist damit keine Boolesche Algebra.

10.5 Sei (M, \preceq) eine **Boolesche Algebra** und $x, y \in M$. Beweisen Sie:

Wenn
$$x \leq y$$
, dann $y^c \leq x^c$.

Solution. Sei $x \leq y$. Dann gilt $x \wedge y = x$. Es folgt $x^c = (x \wedge y)^c \stackrel{\text{De Morgan}}{=} x^c \vee y^c$. Wir schließen also $y^c \leq x^c$.

10.6 Sei (M, \preceq) eine Boolesche Algebra und $x, y \in M$. Zeigen Sie dass es gilt $(x \wedge y)^c = x^c \vee y^c$.