

Model Assumptions

Model Assumptions: Linear regression

- Nature of the model
 - the relation between predictor and outcome has to be linear

- Nature of the errors (i.e., residuals)
 - normal and independent of each other

Model Assumptions: Simple regression Im()

- Required(LINE):
 - Linearity of relationships
 - Independence of residuals
 - Normality of residuals
 - Equal variances for residuals
- Desirable:
 - uncorrelated predictors (no collinearity)
 - no outliers

Model Assumptions: Simple regression glm()

For binomial DVs, (logistic regression)

- Required:
 - LINEAR relationships between IVs and log-odds
 - Normality of residuals
 - homogeneity of variance
 - Independence of residuals
- Desirable:
 - uncorrelated predictors (no collinearity)
 - no "bad" (overly influential) observations
 - large samples (due to maximum likelihood fitting)

Model Assumptions: Mixed-effects Models

Similar to simple linear regressions model

- Error is random
- Residuals at multiple levels
 - Level1 residuals: mean = 0, variance constant (R code: residual())
 - Level2+ residuals: mean = 0, variance constant (R code: ranef())

Model Assumptions: Mixed Models – Imer()

plot_model(mMixed_reduced , type = "diag")

Model Assumptions: Mixed Models – glmer()

plot_model(m3_dataISD, type = "diag")

Exercise for Friday

The 'cheese data': Simulated data based on real psycholinguistic findings on structural priming.

- Two Predictors :
 - 2-level factor "Prime"
 - (a): Tom gave Spike some flowers.
 - (b): Tom gave some flowers to Spike.
 - 2-level factor "communication" (video- vs audio-call)
- Binary outcome: (a) or (b)?
 - (a) Gromit gave ... (Wallace some cheese)
 - (b) Gromit gave ... (some cheese to Wallace).

