

#### **Pattern Evaluation**

- ☐ Limitation of the Support-Confidence Framework
- $\square$  Interestingness Measures: Lift and  $\chi^2$

Null-Invariant Measures

Comparison of Interestingness Measures



#### How to Judge if a Rule/Pattern Is Interesting?

- □ Pattern-mining will generate a large set of patterns/rules
  - Not all the generated patterns/rules are interesting
- ☐ Interestingness measures: Objective vs. subjective
  - Objective interestingness measures
    - Support, confidence, correlation, ...
  - Subjective interestingness measures:
    - □ Different users may judge interestingness differently
    - ☐ Let a user specify
      - Query-based: Relevant to a user's particular request
    - ☐ Judge against one's knowledge-base
      - unexpected, freshness, timeliness

# Limitation of the Support-Confidence Framework

- $\square$  Are s and c interesting in association rules: "A  $\Rightarrow$  B" [s, c]? Be careful!
- Example: Suppose one school may have the following statistics on # of students who may play basketball and/or eat cereal:

|                | play-basketball | not play-basketball | sum (row) |                       |
|----------------|-----------------|---------------------|-----------|-----------------------|
| eat-cereal     | 400             | 350                 | 750 2-    | Way Conti             |
| not eat-cereal | 200             | 50                  | 250       | way contingency table |
| sum(col.)      | 600             | 400                 | 1000      | 376                   |

- Association rule mining may generate the following:
  - $\square$  play-basketball  $\Rightarrow$  eat-cereal [40%, 66.7%] (higher s & c)
- But this strong association rule is misleading: The overall % of students eating cereal is 75% > 66.7%, a more telling rule:
  - $\neg$  play-basketball  $\Rightarrow$  eat-cereal [35%, 87.5%] (high s & c)



## Interestingness Measure: Lift

■ Measure of dependent/correlated events: lift

$$lift(B,C) = \frac{c(B \rightarrow C)}{s(C)} = \frac{s(B \cup C)}{s(B) \times s(C)}$$

- □ Lift(B, C) may tell how B and C are correlated
  - $\Box$  Lift(B, C) = 1: B and C are independent
  - □ > 1: positively correlated
  - □ < 1: negatively correlated

| For our example. | lift(R C) =                      | 400 / 1000                 | = 0.89 |
|------------------|----------------------------------|----------------------------|--------|
|                  | $iiji(\mathbf{B}, \mathbf{C})$ — | $600/1000 \times 750/1000$ | - 0.02 |
| 1                | dift(R - C) -                    | 200 / 1000                 | =1.33  |
| ı                | iji(B, C) =                      | $600/1000 \times 250/1000$ | -1.55  |

- □ Thus, B and C are negatively correlated since lift(B, C) < 1;
  - $\square$  B and  $\neg$ C are positively correlated since lift(B,  $\neg$ C) > 1

Lift is more telling than s & c

|                 | В   | ¬В  | $\Sigma_{row}$ |
|-----------------|-----|-----|----------------|
| С               | 400 | 350 | 750            |
| ΓC              | 200 | 50  | 250            |
| $\Sigma_{col.}$ | 600 | 400 | 1000           |

# Interestingness Measure: $\chi^2$

 $\square$  Another measure to test correlated events:  $\chi^2$ 

$$\chi^{2} = \sum \frac{(Observed - Expected)^{2}}{Expected}$$

For the table on the right,

| $C^2$ – | $(400 - 450)^2$ | $(350 - 300)^2$ | $(200 - 150)^2$ | $+\frac{(50-100)^2}{}=55$ | 56  |
|---------|-----------------|-----------------|-----------------|---------------------------|-----|
| C –     | 450             | 300             | 150             | $\frac{100}{100}$         | .50 |

|                |     | В        | $\Sigma_{row}$ |      |
|----------------|-----|----------|----------------|------|
| С              | 740 | 00 (450) | 350 (300)      | 750  |
| ¬C             | 20  | ر (150)  | 50 (100)       | 250  |
| $\Sigma_{col}$ |     | 600      | 400            | 1000 |

**Expected value** 

Observed value

- By consulting a table of critical values of the  $χ^2$  distribution, one can conclude that the chance for B and C to be independent is very low (< 0.01)
- χ²-test shows B and C are negatively correlated since the expected value is 450 but the observed is only 400
- $\Box$  Thus,  $\chi^2$  is also more telling than the support-confidence framework

# Lift and $\chi^2$ : Are They Always Good Measures?

Null transactions: Transactions that contain neither B nor C



- Let's examine the new dataset D
  - BC (100) is much rarer than B¬C (1000) and ¬BC (1000), but there are many ¬B¬C (100000)
  - Unlikely B & C will happen together!
- But, Lift(B, C) = 8.44 >> 1 (Lift shows B and C are strongly positively correlated!)
- $\square$   $\chi^2$  = 670: Observed(BC) >> expected value (11.85)
- Too many null transactions may "spoil the soup"!

|                        | В      | ¬B     | $\Sigma_{row}$ |
|------------------------|--------|--------|----------------|
| С                      | 100    | 1000   | 1100           |
| ¬C                     | 1000   | 100000 | 101000         |
| $\Sigma_{\text{col.}}$ | 1100 ( | 101000 | 102100         |

null transactions

#### Contingency table with expected values added

|                        | В             | ¬В     | $\Sigma_{row}$ |
|------------------------|---------------|--------|----------------|
| С                      | 100 (11.85)   | 1000   | 1100           |
| ¬С                     | 1000 (988.15) | 100000 | 101000         |
| $\Sigma_{\text{col.}}$ | 1100          | 101000 | 102100         |



#### Interestingness Measures & Null-Invariance

- □ *Null invariance:* Value does not change with the # of null-transactions
- ☐ A few interestingness measures: Some are null invariant

| Measure                 | Definition                                                                       | Range         | Null-Invariant? |
|-------------------------|----------------------------------------------------------------------------------|---------------|-----------------|
| $\chi^2(A,B)$           | $\sum_{i,j} \frac{(e(a_i,b_j)-o(a_i,b_j))^2}{e(a_i,b_j)}$                        | $[0, \infty]$ | No              |
| Lift(A, B)              | $\frac{s(A \cup B)}{s(A) \times s(B)}$                                           | $[0, \infty]$ | No              |
| Allconf(A, B)           | $\frac{s(A \cup B)}{max\{s(A), s(B)\}}$                                          | [0, 1]        | Yes             |
| Jaccard(A, B)           | $\frac{s(A \cup B)}{s(A) + s(B) - s(A \cup B)}$                                  | [0, 1]        | Yes             |
| Cosine(A, B)            | $\frac{s(A \cup B)}{\sqrt{s(A) \times s(B)}}$                                    | [0, 1]        | Yes             |
| Kulczynski(A, B)        | $\frac{1}{2} \left( \frac{s(A \cup B)}{s(A)} + \frac{s(A \cup B)}{s(B)} \right)$ | [0, 1]        | Yes             |
| $\mathit{MaxConf}(A,B)$ | $max\{\frac{s(A\cup B)}{s(A)}, \frac{s(A\cup B)}{s(B)}\}$                        | [0, 1]        | Yes             |

X<sup>2</sup> and lift are not null-invariant

Jaccard, Cosine,
AllConf, MaxConf,
and Kulczynski
are null-invariant
measures

## **Null Invariance: An Important Property**

- Why is null invariance crucial for the analysis of massive transaction data?
  - Many transactions may contain neither milk nor coffee!

#### milk vs. coffee contingency table

|                | milk       | $\neg milk$     | $\Sigma_{row}$ |
|----------------|------------|-----------------|----------------|
| coffee         | mc         | $\neg mc$       | c              |
| $\neg coffee$  | $m \neg c$ | $\neg m \neg c$ | $\neg c$       |
| $\Sigma_{col}$ | m          | $\neg m$        | Σ              |

- Lift and  $\chi^2$  are not null-invariant: not good to evaluate data that contain too many or too few null transactions!
- Many measures are not null-invariant!

Null-transactions w.r.t. m and c

| Data set | mc     | $\neg mc$ | $m \neg c$ | $m \neg c$ | $\chi^2$ | Lift  |
|----------|--------|-----------|------------|------------|----------|-------|
| $D_1$    | 10,000 | 1,000     | 1,000      | 100,000    | 90557    | 9.26  |
| $D_2$    | 10,000 | 1,000     | 1,000      | 100        | 0        | 1     |
| $D_3$    | 100    | 1,000     | 1,000      | 100,000    | 670      | 8.44  |
| $D_4$    | 1,000  | 1,000     | 1,000      | 100,000    | 24740    | 25.75 |
| $D_5$    | 1,000  | 100       | 10,000     | 100,000    | 8173     | 9.18  |
| $D_6$    | 1,000  | 10        | 100,000    | 100,000    | 965      | 1.97  |



## Comparison of Null-Invariant Measures

- Not all null-invariant measures are created equal
- Which one is better?
  - $\square$  D<sub>4</sub>—D<sub>6</sub> differentiate the null-invariant measures
  - Kulc (Kulczynski 1927) holds firm and is in balance of both directional implications

#### 2-variable contingency table

|                | milk       | $\neg milk$     | $\Sigma_{row}$ |
|----------------|------------|-----------------|----------------|
| coffee         | mc         | $\neg mc$       | c              |
| $\neg coffee$  | $m \neg c$ | $\neg m \neg c$ | $\neg c$       |
| $\Sigma_{col}$ | m          | $\neg m$        | Σ              |

All 5 are null-invariant

| Data set | mc     | $\neg mc$ | $m \neg c$ | $\neg m \neg c$ | AllConf | Jaccard | Cosine | Kulc | MaxConf |
|----------|--------|-----------|------------|-----------------|---------|---------|--------|------|---------|
| $D_1$    | 10,000 | 1,000     | 1,000      | 100,000         | 0.91    | 0.83    | 0.91   | 0.91 | 0.91    |
| $D_2$    | 10,000 | 1,000     | 1,000      | 100             | 0.91    | 0.83    | 0.91   | 0.91 | 0.91    |
| $D_3$    | 100    | 1,000     | 1,000      | 100,000         | 0.09    | 0.05    | 0.09   | 0.09 | 0.09    |
| $D_4$    | 1,000  | 1,000     | 1,000      | 100,000         | 0.5     | 0.33    | 0.5    | 0.5  | 0.5     |
| $D_5$    | 1,000  | 100       | 10,000     | 100,000         | 0.09    | 0.09    | 0.29   | 0.5  | 0.91    |
| $D_6$    | 1,000  | 10        | 100,000    | 100,000         | 0.01    | 0.01    | 0.10   | 0.5  | 0.99    |

Subtle: They disagree on those cases

#### **Analysis of DBLP Coauthor Relationships**

- □ DBLP: Computer science research publication bibliographic database
  - > 3.8 million entries on authors, paper, venue, year, and other information

| ID | Author $A$           | Author $B$           | $s(A \cup B)$      | s(A) | s(B) | Jaccard   | Cosine    | Kulc       |
|----|----------------------|----------------------|--------------------|------|------|-----------|-----------|------------|
| 1  | Hans-Peter Kriegel   | Martin Ester         | 28                 | 146  | 54   | 0.163(2)  | 0.315(7)  | 0.355(9)   |
| 2  | Michael Carey        | Miron Livny          | 26                 | 104  | 58   | 0.191 (1) | 0.335(4)  | 0.349 (10) |
| 3  | Hans-Peter Kriegel   | Joerg Sander         | 24                 | 146  | 36   | 0.152(3)  | 0.331(5)  | 0.416 (8)  |
| 4  | Christos Faloutsos   | Spiros Papadimitriou | 20                 | 162  | 26   | 0.119(7)  | 0.308(10) | 0.446(7)   |
| 5  | Hans-Peter Kriegel   | Martin Pfeifle       | <b>4</b> 8         | 146  | 18   | 0.123(6)  | 0.351(2)  | 0.562(2)   |
| 6  | Hector Garcia-Molina | Wilburt Labio        | 16                 | 144  | 18   | 0.110(9)  | 0.314(8)  | 0.500(4)   |
| 7  | Divyakant Agrawal    | Wang Hsiung          | 16                 | 120  | 16   | 0.133(5)  | 0.365(1)  | 0.567(1)   |
| 8  | Elke Rundensteiner   | Murali Mani          | 16                 | 104  | 20   | 0.148(4)  | 0.351(3)  | 0.477(6)   |
| 9  | Divyakant Agrawal    | Oliver Po            | $\triangleleft$ 12 | 120  | 12   | 0.100(10) | 0.316 (6) | 0.550(3)   |
| 10 | Gerhard Weikum       | Martin Theobald      | 12                 | 106  | 14   | 0.111 (8) | 0.312 (9) | 0.485(5)   |

Advisor-advisee relation: Kulc: high, Jaccard: low,

cosine: middle

- Which pairs of authors are strongly related?
  - Use Kulc to find Advisor-advisee, close collaborators

# Imbalance Ratio with Kulczynski Measure

□ IR (Imbalance Ratio): measure the imbalance of two itemsets A and B in rule implications: |s(A) - s(B)|

$$IR(A,B) = \frac{|s(A)-s(B)|}{s(A)+s(B)-s(A\cup B)}$$

- □ Kulczynski and Imbalance Ratio (IR) together present a clear picture for all the three datasets D<sub>4</sub> through D<sub>6</sub>
  - $\square$  D<sub>4</sub> is neutral & balanced; D<sub>5</sub> is neutral but imbalanced
  - D<sub>6</sub> is neutral but very imbalanced

| Data set | mc     | $\neg mc$ | $m \neg c$ | $\neg m \neg c$ | Jaccard | Cosine | Kulc           | IR   |
|----------|--------|-----------|------------|-----------------|---------|--------|----------------|------|
| $D_1$    | 10,000 | 1,000     | 1,000      | 100,000         | 0.83    | 0.91   | 0.91           | 0    |
| $D_2$    | 10,000 | 1,000     | 1,000      | 100             | 0.83    | 0.91   | 0.91           | 0    |
| $D_3$    | 100    | 1,000     | 1,000      | 100,000         | 0.05    | 0.09   | 0.09           | 0    |
| $D_4$    | 1,000  | 1,000     | 1,000      | 100,000         | 0.33    | 0.5    | $\bigcirc 0.5$ | 0    |
| $D_5$    | 1,000  | 100       | 10,000     | 100,000         | 0.09    | 0.29   | $\bigcirc 0.5$ | 0.89 |
| $D_6$    | 1,000  | 10        | 100,000    | 100,000         | 0.01    | 0.10   | $\bigcirc 0.5$ | 0.99 |



#### What Measures to Choose for Effective Pattern Evaluation?

- Null value cases are predominant in many large datasets
  - Neither milk nor coffee is in most of the baskets; neither Mike nor Jim is an author in most of the papers; ......
- □ *Null-invariance* is an important property
- $\Box$  Lift,  $\chi^2$  and cosine are good measures if null transactions are not predominant
  - Otherwise, Kulczynski + Imbalance Ratio should be used to judge the interestingness of a pattern
- ☐ Exercise: Mining research collaborations from research bibliographic data
  - ☐ Find a group of frequent collaborators from research bibliographic data (e.g., DBLP)
  - Can you find the likely advisor-advisee relationship and during which years such a relationship happened?
  - □ Ref.: C. Wang, J. Han, Y. Jia, J. Tang, D. Zhang, Y. Yu, and J. Guo, "Mining Advisor-Advisee Relationships from Research Publication Networks", KDD'10

# **Summary: Pattern Evaluation**

Interestingness Measures in Pattern Mining

 $\square$  Interestingness Measures: Lift and  $\chi^2$ 

Null-Invariant Measures

Comparison of Interestingness Measures

#### Recommended Readings

- C. C. Aggarwal and P. S. Yu. A New Framework for Itemset Generation. PODS'98
- S. Brin, R. Motwani, and C. Silverstein. Beyond market basket: Generalizing association rules to correlations. SIGMOD'97
- M. Klemettinen, H. Mannila, P. Ronkainen, H. Toivonen, and A. I. Verkamo. Finding interesting rules from large sets of discovered association rules. CIKM'94
- E. Omiecinski. Alternative Interest Measures for Mining Associations. TKDE'03
- P.-N. Tan, V. Kumar, and J. Srivastava. Selecting the Right Interestingness Measure for Association Patterns. KDD'02
- T. Wu, Y. Chen and J. Han, Re-Examination of Interestingness Measures in Pattern Mining: A Unified Framework, Data Mining and Knowledge Discovery, 21(3):371-397, 2010



# Mining Diverse Patterns

- Mining Multiple-Level Associations
- Mining Multi-Dimensional Associations
- Mining Quantitative Associations
- Mining Negative Correlations
- Mining Compressed and Redundancy-Aware Patterns



## Mining Multiple-Level Frequent Patterns

- Items often form hierarchies
  - Ex.: Dairyland 2% milk;Wonder wheat bread
- How to set min-support thresholds?

- **Uniform support Reduced support** Milk Level 1 Level 1 [support = 10%]  $min_sup = 5\%$ min sup = 5%2% Milk Skim Milk Level 2 Level 2 [support = 6%] [support = 2%] min sup = 1%min sup = 5%
- Uniform min-support across multiple levels (reasonable?)
- Level-reduced min-support: Items at the lower level are expected to have lower support
- Efficient mining: Shared multi-level mining
  - Use the lowest min-support to pass down the set of candidates

# Redundancy Filtering at Mining Multi-Level Associations

- Multi-level association mining may generate many redundant rules
- □ Redundancy filtering: Some rules may be redundant due to "ancestor" relationships between items
  - $\square$  milk  $\Rightarrow$  wheat bread [support = 8%, confidence = 70%] (1)
  - $\square$  2% milk  $\Rightarrow$  wheat bread [support = 2%, confidence = 72%] (2)
    - Suppose the 2% milk sold is about ¼ of milk sold in gallons
      - (2) should be able to be "derived" from (1)
- A rule is *redundant* if its support is close to the "expected" value, according to its "ancestor" rule, and it has a similar confidence as its "ancestor"
  - Rule (1) is an ancestor of rule (2), which one to prune?

# **Customized Min-Supports for Different Kinds of Items**

- We have used the same min-support threshold for all the items or item sets to be mined in each association mining
- ☐ In reality, some items (e.g., diamond, watch, ...) are valuable but less frequent
- It is necessary to have customized min-support settings for different kinds of items
- One Method: Use group-based "individualized" min-support
  - E.g., {diamond, watch}: 0.05%; {bread, milk}: 5%; ...
  - How to mine such rules efficiently?
    - Existing scalable mining algorithms can be easily extended to cover such cases



# Mining Multi-Dimensional Associations

- □ Single-dimensional rules (e.g., items are all in "product" dimension)
  - $\square$  buys(X, "milk")  $\Rightarrow$  buys(X, "bread")
- $\square$  Multi-dimensional rules (i.e., items in  $\ge 2$  dimensions or predicates)
  - Inter-dimension association rules (no repeated predicates)
    - $\square$  age(X, "18-25")  $\land$  occupation(X, "student")  $\Rightarrow$  buys(X, "coke")
  - Hybrid-dimension association rules (repeated predicates)
    - $\square$  age(X, "18-25")  $\land$  buys(X, "popcorn")  $\Rightarrow$  buys(X, "coke")
- Attributes can be categorical or numerical
  - Categorical Attributes (e.g., profession, product: no ordering among values): Data cube for inter-dimension association
  - Quantitative Attributes: Numeric, implicit ordering among values discretization, clustering, and gradient approaches



# Mining Quantitative Associations

- Mining associations with numerical attributes
  - Ex.: Numerical attributes: age and salary
- Methods
  - Static discretization based on predefined concept hierarchies
    - Discretization on each dimension with hierarchy
      - $\square$  age: {0-10, 10-20, ..., 90-100}  $\rightarrow$  {young, mid-aged, old}
  - Dynamic discretization based on data distribution
  - Clustering: Distance-based association
    - ☐ First one-dimensional clustering, then association
  - Deviation analysis:
    - □ Gender = female  $\Rightarrow$  Wage: mean=\$7/hr (overall mean = \$9)

# Mining Extraordinary Phenomena in Quantitative Association Mining

- Mining extraordinary (i.e., interesting) phenomena
  - $\Box$  Ex.: Gender = female  $\Rightarrow$  Wage: mean=\$7/hr (overall mean = \$9)
  - LHS: a subset of the population
  - RHS: an extraordinary behavior of this subset
- The rule is accepted only if a statistical test (e.g., Z-test) confirms the inference with high confidence
- Subrule: Highlights the extraordinary behavior of a subset of the population of the super rule
  - $\blacksquare$  Ex.: (Gender = female) ^ (South = yes)  $\Rightarrow$  mean wage = \$6.3/hr
- Rule condition can be categorical or numerical (quantitative rules)
  - $\blacksquare$  Ex.: Education in [14-18] (yrs)  $\Rightarrow$  mean wage = \$11.64/hr
- Efficient methods have been developed for mining such extraordinary rules (e.g., Aumann and Lindell@KDD'99)



#### Rare Patterns vs. Negative Patterns

- Rare patterns
  - Very low support but interesting (e.g., buying Rolex watches)
  - How to mine them? Setting individualized, group-based min-support thresholds for different groups of items
- Negative patterns
  - Negatively correlated: Unlikely to happen together
  - Ex.: Since it is unlikely that the same customer buys both a Ford Expedition (an SUV car) and a Ford Fusion (a hybrid car), buying a Ford Expedition and buying a Ford Fusion are likely negatively correlated patterns
  - How to define negative patterns?

#### **Defining Negative Correlated Patterns**

- A support-based definition
  - If itemsets A and B are both frequent but rarely occur together, i.e., sup(A U B) << sup (A) × sup(B)</p>
  - ☐ Then A and B are negatively correlated

Does this remind you the definition of lift?

- Is this a good definition for large transaction datasets?
- Ex.: Suppose a store sold two needle packages A and B 100 times each, but only one transaction contained both A and B
  - When there are in total 200 transactions, we have
    - $\Box$  s(A U B) = 0.005, s(A) × s(B) = 0.25, s(A U B) << s(A) × s(B)
  - But when there are 10<sup>5</sup> transactions, we have
    - $\Box$  s(A U B) = 1/10<sup>5</sup>, s(A) × s(B) = 1/10<sup>3</sup> × 1/10<sup>3</sup>, s(A U B) > s(A) × s(B)
  - What is the problem?—Null transactions: The support-based definition is not null-invariant!

# Defining Negative Correlation: Need Null-Invariance in Definition

- A good definition on negative correlation should take care of the nullinvariance problem
  - Whether two itemsets A and B are negatively correlated should not be influenced by the number of null-transactions
- A Kulczynski measure-based definition
  - If itemsets A and B are frequent but

```
(s(A \cup B)/s(A) + s(A \cup B)/s(B))/2 < \epsilon
```

where  $\epsilon$  is a negative pattern threshold, then A and B are negatively correlated

- □ For the same needle package problem:
  - No matter there are in total 200 or 10<sup>5</sup> transactions
  - If  $\epsilon = 0.01$ , we have  $(s(A \cup B)/s(A) + s(A \cup B)/s(B))/2 = (0.01 + 0.01)/2 < \epsilon$



## **Mining Compressed Patterns**

| Pat-ID | Item-Sets           | Support |  |
|--------|---------------------|---------|--|
| P1     | {38,16,18,12}       | 205227  |  |
| P2     | {38,16,18,12,17}    | 205211  |  |
| Р3     | {39,38,16,18,12,17} | 101758  |  |
| P4     | {39,16,18,12,17}    | 161563  |  |
| P5     | {39,16,18,12}       | 161576  |  |

- Closed patterns
  - □ P1, P2, P3, P4, P5
  - Emphasizes too much on support
  - ☐ There is no compression
- Max-patterns
  - P3: information loss
- Desired output (a good balance):
  - □ P2, P3, P4

- Why mining compressed patterns?
  - Too many scattered patterns but not so meaningful
- Pattern distance measure

$$Dist(P_1, P_2) = 1 - \frac{|T(P_1) \cap T(P_2)|}{|T(P_1) \cup T(P_2)|}$$

- lacktriangle  $\delta$ -clustering: For each pattern P, find all patterns which can be expressed by P and whose distance to P is within  $\delta$  ( $\delta$ -cover)
- □ All patterns in the cluster can be represented by P
- Method for efficient, direct mining of compressed frequent patterns (e.g., D. Xin, J. Han, X. Yan, H. Cheng, "On Compressing Frequent Patterns", Knowledge and Data Engineering, 60:5-29, 2007)

## Redundancy-Aware Top-k Patterns

Desired patterns: high significance & low redundancy



(a) a set of patterns



(b) redundancy-aware top-k



(c) traditional top-k



(d) summarization

- Method: Use MMS (Maximal Marginal Significance) for measuring the combined significance of a pattern set
- Xin et al., Extracting Redundancy-Aware Top-K Patterns, KDD'06



# **Summary: Mining Diverse Patterns**

- Efficient methods have been developed for mining various kinds of patterns
  - Mining Multiple-Level Associations
  - Mining Multi-Dimensional Associations
  - Mining Quantitative Associations
  - Mining Negative Correlations
  - Mining Compressed and Redundancy-Aware Patterns

# Recommended Readings

- R. Srikant and R. Agrawal, "Mining generalized association rules", VLDB'95
- Y. Aumann and Y. Lindell, "A Statistical Theory for Quantitative Association Rules", KDD'99
- K. Wang, Y. He, J. Han, "Pushing Support Constraints Into Association Rules Mining", IEEE Trans. Knowledge and Data Eng. 15(3): 642-658, 2003
- □ D. Xin, J. Han, X. Yan and H. Cheng, "On Compressing Frequent Patterns", Knowledge and Data Engineering, 60(1): 5-29, 2007
- D. Xin, H. Cheng, X. Yan, and J. Han, "Extracting Redundancy-Aware Top-K Patterns", KDD'06
- □ J. Han, H. Cheng, D. Xin, and X. Yan, "Frequent Pattern Mining: Current Status and Future Directions", Data Mining and Knowledge Discovery, 15(1): 55-86, 2007