Eq. ID	Formula		Symbols	SI Derived Unit	SI Unit	Prop Original	erties Ours	Original	Distributions Ours
		F	Force of friction	N	$kg \cdot m \cdot s^{-2}$	V, F, P	V, F, P	N/A	N/A
.12.1	$F = \mu N_{\rm n}$	$\mu N_{ m n}$	Coefficient of friction Normal force	$1 \\ N$	$1\\kg\cdot m\cdot s^{-2}$	V, F, P V, F, P	V, F, P V, F, P	$\mathcal{U}(1,5)$ $\mathcal{U}(1,5)$	$\mathcal{U}_{\mathrm{log}}(10^{-2},10^{0})\ \mathcal{U}_{\mathrm{log}}(10^{-2},10^{0})$
		E	Magnitude of electric field Electric charge	V/m	$kg \cdot m \cdot s^{-3} \cdot A^{-1}$ $s \cdot A$	V, F, P V, F, P	V, F V, F	N/A U(1, 5)	$N/A \ \mathcal{U}_{\mathrm{log}}(10^{-1},10^{1})$
I.12.4	$E = \frac{q_1}{4\pi\epsilon r^2}$	r	Distance	m	m	V, F, P	V, F, P	$\mathcal{U}(1,5)$	$\mathcal{U}_{\log}(10^{-1}, 10^1)$
		ϵ F	Vacuum permittivity Force	$\frac{F/m}{N}$	$\frac{kg^{-1} \cdot m^{-3} \cdot s^4 \cdot A^2}{kg \cdot m \cdot s^{-2}}$	V, F, P V, F, P	C, F, P V, F	$\frac{\mathcal{U}(1,5)}{N/A}$	8.854×10^{-12} N/A
I.12.5	$F = q_2 E$	q_2 E	Electric charge Electric field	$C \ V/m$	$s \cdot A \\ kg \cdot m \cdot s^{-3} \cdot A^{-1}$	V, F, P	V, F V, F	$\mathcal{U}(1,5)$ $\mathcal{U}(1,5)$	$\mathcal{U}_{\log}(10^{-1}, 10^1) \ \mathcal{U}_{\log}(10^{-1}, 10^1)$
		U	Potential energy	J	$kg \cdot m^2 \cdot s^{-2}$	V, F, P V, F, P	V, F	N/A	N/A
[.14.3	U=mgz	$rac{m}{g}$	Mass Gravitational acceleration	$\frac{kg}{m/s^2}$	$kg \ m \cdot s^{-2}$	V, F, P V, F, P	V, F, P C, F, P	$\mathcal{U}(1,5)$ $\mathcal{U}(1,5)$	$\mathcal{U}_{\log}(10^{-2}, 10^0) \\ 9.807 \times 10^0$
		$\frac{z}{U}$	Height Elastic energy	$\frac{m}{J}$	$\frac{m}{kg \cdot m^2 \cdot s^{-2}}$	V, F, P V, F, P	V, F V, F, P	$\frac{\mathcal{U}(1,5)}{\mathrm{N/A}}$	$\frac{\mathcal{U}_{\log}(10^{-2}, 10^0)}{{ m N/A}}$
I.14.4	$U = \frac{k_{\text{spring}} x^2}{2}$	$k_{ m spring} \ x$	Spring constant Position	N/m m	$kg \cdot s^{-2}$	V, F, P V, F, P	V, F, P V, F	$\mathcal{U}(1,5)$ $\mathcal{U}(1,5)$	$\mathcal{U}_{ ext{log}}(10^2, 10^4) \ \mathcal{U}_{ ext{log}}(10^{-2}, 10^0)$
		τ	Torque	$N \cdot m$	$\frac{m}{kg \cdot m^2 \cdot s^{-2}}$	V, F	V, F	N/A	N/A
I.18.12	$\tau = rF\sin\theta$	F	Distance Force	$m \ N$	$m \ kg \cdot m \cdot s^{-2}$	V, F, P V, F, P	V, F, P V, F, P	$\mathcal{U}(1,5)$ $\mathcal{U}(1,5)$	$\mathcal{U}_{\mathrm{log}}(10^{-1}, 10^{1}) \ \mathcal{U}_{\mathrm{log}}(10^{-1}, 10^{1})$
		$\frac{ heta}{L}$	Angle Angular momentum	$\frac{rad}{kg \cdot m^2/s}$	$\frac{1}{kg \cdot m^2 \cdot s^{-1}}$	V, F, NN V, F	V, F, NN V, F	$\frac{\mathcal{U}(0,5)}{\mathrm{N/A}}$	$\mathcal{U}(0,2\pi)$ N/A
.18.16	$L = mrv \sin \theta$	r	Mass Distance	$kg \ m$	$kg \ m$	V, F, P V, F, P	V, F, P V, F, P	$\mathcal{U}(1,5)$ $\mathcal{U}(1,5)$	$\mathcal{U}_{\log}(10^{-1},10^1)\ \mathcal{U}_{\log}(10^{-1},10^1)$
	$L = mr v \sin v$	v	Velocity	m/s	$m \cdot s^{-1}$	V, F, P	V, F, P	$\mathcal{U}(1,5)$	$\mathcal{U}_{\log}(10^{-1}, 10^1)$
		$\frac{\theta}{V}$	Angle Voltage	$\frac{rad}{V}$	$\frac{1}{kg \cdot m^2 \cdot s^{-3} \cdot A^{-1}}$	V, F, P V, F, P	V, F, NN V, F	$\frac{\mathcal{U}(1,5)}{N/A}$	$rac{\mathcal{U}(0,2\pi)}{ ext{N/A}}$
I.25.13	$V = \frac{q}{C}$	$rac{q}{C}$	Electric charge Electrostatic Capacitance	$rac{C}{F}$	$s \cdot A \\ kg^{-1} \cdot m^{-2} \cdot s^4 \cdot A^2$	V, F, P V, F, P	V, F V, F, P	$\mathcal{U}(1,5)$ $\mathcal{U}(1,5)$	$\mathcal{U}_{\log}(10^{-5}, 10^{-3}) \ \mathcal{U}_{\log}(10^{-5}, 10^{-3})$
1.06.0	$\sin heta_1$	n	Relative refractive index	1	1	V, F, NN	V, F, P	$\mathcal{U}(0,1)$	N/A
I.26.2	$n = \frac{\sin \theta_1}{\sin \theta_2}$	$egin{array}{c} heta_1 \ heta_2 \end{array}$	Refraction angle 1 Refraction angle 2	$rad \\ rad$	1 1	V, F V, F, P	V, F, NN V, F, NN		$egin{aligned} \mathcal{U}(0,rac{\pi}{2})\ \mathcal{U}(0,rac{\pi}{2}) \end{aligned}$
	$f = \frac{1}{1}$	f d_1	Focal length Distance	$m \\ m$	$m \ m$	V, F, P V, F, P	V, F, P V, F, P	N/A $\mathcal{U}(1,5)$	$N/A \ \mathcal{U}_{\log}(10^{-3}, 10^{-1})$
I.27.6	$f = \frac{1}{\frac{1}{d_1} + \frac{n}{d_2}}$	$n \\ d_2$	Refractive index Distance	$\frac{n}{1}$	$1 \\ m$	V, F, P V, F, P	V, F, P, V, F, P	$\mathcal{U}(1,5)$ $\mathcal{U}(1,5)$	$\mathcal{U}_{\log}(10^{-1}, 10^{1})$ $\mathcal{U}_{\log}(10^{-3}, 10^{-1})$
		d	Interplanar distance	m	m	V, F, P	V, F, P	$\mathcal{U}(2,5)$	N/A
I.30.5	$d = \frac{\lambda}{n \sin \theta}$	n = n	Wavelength of X-ray Number of phase difference	m 1	m 1	V, F, P V, F, P	V, F, P V, I, P	$\mathcal{U}(1,2)$ $\mathcal{U}(1,5)$	$\mathcal{U}_{ ext{log}}(10^{-11}, 10^{-9}) \ \mathcal{U}_{ ext{log}}(10^{0}, 10^{2})$
		$\frac{\theta}{v}$	Incidence/Reflection angle Velocity	m/s	$\frac{1}{m \cdot s^{-1}}$		V, F, NN V, F		$\mathcal{U}(0, \frac{\pi}{2})$ N/A
I 49 16	V	μ	Ionic conductivity	s/kg	$kg^{-1} \cdot s$	V, F, P	V, F	$\mathcal{U}(1,5)$	$\mathcal{U}_{\log}(10^{-6}, 10^{-4}) \ \mathcal{U}_{\log}(10^{-11}, 10^{-9})$
I.43.16	$v = \mu q \frac{V}{d}$	V = V	Electric charge of ions Voltage	$rac{C}{V}$	$kg \cdot m^2 \cdot s^{-3} \cdot A^{-1}$	V, F, P V, F, P	V, F V, F	$\mathcal{U}(1,5)$ $\mathcal{U}(1,5)$	$\mathcal{U}_{\log}(10^{-1}, 10^1)$
		$\frac{d}{c}$	Distance Velocity of sound	$m \over m/s$	$\frac{m}{m \cdot s^{-1}}$	V, F, P V, F, P	V, F, P V, F, P	$\frac{\mathcal{U}(1,5)}{\mathrm{N/A}}$	$\frac{\mathcal{U}_{\log}(10^{-3}, 10^{-1})}{\text{N/A}}$
1.47.23	$c = \sqrt{\frac{\gamma P}{\rho}}$	$\gamma \ P$	Heat capacity ratio Atmospheric pressure	$\stackrel{'}{1}Pa$	$kg \cdot m^{-1} \cdot s^{-2}$	V, F, P V, F, P	V, F, P V, F, P	$\mathcal{U}(1,5)$	$\mathcal{U}(1,2)$ $\mathcal{U}(0.5 \times 10^{-5}, 1.5 \times 10^{-5})$
	, ,	ρ	Density of air	$kg \cdot m^{-3}$	$kg \cdot m^{-3}$	V, F, P	V, F, P	$\mathcal{U}(1,5)$	$\mathcal{U}(1,2)$
II.2.42		J κ	Rate of heat flow Thermal conductivity	$W = W/(m \cdot K)$	$kg \cdot m^2 \cdot s^{-3}$ $kg \cdot m \cdot s^{-3} \cdot K^{-1}$	V, F V, F, P	V, F V, F, P	${{ m N/A}} \ {\cal U}(1,5)$	$\begin{matrix} \mathrm{N/A} \\ \mathcal{U}_{\mathrm{log}}(10^{-1}, 10^{1}) \end{matrix}$
	$J = \kappa (T_2 - T_1) \frac{A}{d}$	T_2 T_1	Temperature Temperature	$K \\ K$	$K \ K$	V, F, P V, F, P	V, F, P V, F, P	$\mathcal{U}(1,5)$ $\mathcal{U}(1,5)$	$\mathcal{U}_{ ext{log}}(10^1, 10^3) \ \mathcal{U}_{ ext{log}}(10^1, 10^3)$
		A d	Area	m^2	m^2	V, F, P	V, F, P	$\mathcal{U}(1,5)$	$\mathcal{U}_{\mathrm{log}}(10^{-4}, 10^{-2}) \ \mathcal{U}_{\mathrm{log}}(10^{-2}, 10^{0})$
	. W	h	Length Heat flux	$\frac{m}{J/m^2}$	$\frac{m}{kg \cdot s^{-2}}$	V, F, P V, F, P	V, F, P V, F	$\frac{\mathcal{U}(1,5)}{\mathrm{N/A}}$	N/A
I.3.24	$h = \frac{W}{4\pi r^2}$	V r	Work Distance	$J \\ m$	$kg \cdot m^2 \cdot s^{-2}$ m	V, F, P V, F, P	V, F V, F, P	$\mathcal{U}(1,5)$ $\mathcal{U}(1,5)$	$\mathcal{U}_{ ext{log}}(10^0, 10^2) \ \mathcal{U}_{ ext{log}}(10^{-2}, 10^0)$
II 4 02		q	Electric potential Electric charge	V C	$kg \cdot m^2 \cdot s^{-3} \cdot A^{-1}$ $s \cdot A$	V, F, P V, F, P	V, F V, F	N/A $\mathcal{U}(1,5)$	$N/A \ {\cal U}_{ m log}(10^{-3},10^{-1})$
II.4.23	$\phi = \frac{q}{4\pi\epsilon r}$	ϵr	Vacuum permittivity Distance	F/m m	$kg^{-1}\cdot m^{-3}\cdot s^4\cdot A^2$	V, F, P V, F, P	C, F, P V, F, P	$\mathcal{U}(1,5)$ $\mathcal{U}(1,5)$	8.854×10^{-12} $\mathcal{U}_{\log}(10^{-2}, 10^{0})$
	-2	u	Energy	J	$\frac{m}{kg \cdot m^2 \cdot s^{-2}}$	V, F, P	V, F, P	N/A	N/A
I.8.31	$u = \frac{\epsilon E^2}{2}$	$rac{\epsilon}{E}$	Vacuum permittivity Magnitude of electric field	$F/m \ V/m$	$kg^{-1} \cdot m^{-3} \cdot s^4 \cdot A^2$ $kg \cdot m \cdot s^{-3} \cdot A^{-1}$	V, F, P V, F, P	C, F, P V, F, P	$\mathcal{U}(1,5) \ \mathcal{U}(1,5)$	8.854×10^{-12} $\mathcal{U}_{\log}(10^1, 10^3)$
II.10.9	- Gr	E σ_{free}	Electric field Surface charge	V/m C/m^2	$kg \cdot m \cdot s^{-3} \cdot A^{-1}$ $m \cdot^{-2} \cdot s \cdot A$	V, F, P V, F, P	V, F V, F	N/A $\mathcal{U}(1,5)$	$N/A \ {\cal U}_{ m log}(10^{-3},10^{-1})$
	$E = \frac{\sigma_{\text{free}}}{\epsilon} \frac{1}{1+\chi}$	ϵ	Vacuum permittivity Electric susceptibility	F/m 1	$kg^{-1} \cdot m^{-3} \cdot s^4 \cdot A^2$		C, F, P V, F, P	$\mathcal{U}(1,5)$ $\mathcal{U}(1,5)$	8.854×10^{-12} $\mathcal{U}_{\log}(10^0, 10^2)$
		$\frac{\chi}{B}$	Magnitude of the magnetic field	T	$kg \cdot s^{-2} \cdot A^{-1}$	V, F, P	V, F	N/A	N/A
II.13.17	$B = \frac{1}{4\pi\epsilon c^2} \frac{2I}{r}$	$\epsilon \ c$	Vacuum permittivity Speed of light	$F/m \ m/s$	$kg^{-1} \cdot m^{-3} \cdot s^4 \cdot A^2$ $m \cdot s^{-1}$	V, F, P V, F, P	C, F, P C, F, P	$\mathcal{U}(1,5)$ $\mathcal{U}(1,5)$	$8.854 \times 10^{-12} $ 2.998×10^{8}
	47.00	$rac{I}{r}$	Electric current Radius	$A \\ m$	$A \ m$	V, F, P V, F, P	V, F V, F, P	$\mathcal{U}(1,5)$ $\mathcal{U}(1,5)$	$\mathcal{U}_{\log}(10^{-3}, 10^{-1}) \ \mathcal{U}_{\log}(10^{-3}, 10^{-1})$
		U	Energy from magnetic field	J	$kg \cdot m^2 \cdot s^{-2}$ $m^2 \cdot A$	V, F	V, F	N/A	N/A
II.15.4	$U = -\mu B \cos \theta$	B	Magnetic dipole moment Magnetic field strength	J/T T	$m^- \cdot A$ $kg \cdot s^{-2} \cdot A^{-1}$	V, F, P V, F, P	$egin{array}{c} V,\ F \ V,\ F \end{array}$	$\mathcal{U}(1,5) \ \mathcal{U}(1,5)$	$\mathcal{U}_{\log}(10^{-25}, 10^{-23})$ $\mathcal{U}_{\log}(10^{-3}, 10^{-1})$
		$\frac{\theta}{U}$	Angle Energy	$\frac{rad}{J}$	$\frac{1}{kg \cdot m^2 \cdot s^{-2}}$	V, F, P V, F	V, F, NN V, F	$\frac{\mathcal{U}(1,5)}{\mathrm{N/A}}$	$\mathcal{U}(0,2\pi)$ N/A
II.15.5 II.27.16	$U = -pE\cos\theta$	E	Electric dipole moment Magnitude of electric field	$C\cdot m \ V/m$	$m \cdot s \cdot A$ $kq \cdot m \cdot s^{-3} \cdot A^{-1}$	V, F, P V, F, P	V, F V, F	$\mathcal{U}(1,5)$ $\mathcal{U}(1,5)$	$\mathcal{U}_{\log}(10^{-22}, 10^{-20}) \ \mathcal{U}_{\log}(10^1, 10^3)$
		θ	Angle	rad	1	V, F, P	V, F, NN	$\mathcal{U}(1,5)$	$\mathcal{U}(0,2\pi)$
	$L = \epsilon c E^2$	$rac{L}{\epsilon}$	Radiance Vacuum permittivity	$\frac{W/(sr \cdot m^2)}{F/m}$	$kg \cdot s^{-3}$ $kg^{-1} \cdot m^{-3} \cdot s^4 \cdot A^2$		V, F C, F, P	${{ m N/A}} \ {\cal U}(1,5)$	$N/A \\ 8.854 \times 10^{-12}$
	$L = \epsilon c L$	E	Speed of light Magnitude of electric field	$m/s \ V/m$	$m \cdot s^{-1}$ $kg \cdot m \cdot s^{-3} \cdot A^{-1}$	V, F, P V, F, P	C, F, P V, F, P	$\mathcal{U}(1,5)$ $\mathcal{U}(1,5)$	2.998×10^8 $\mathcal{U}_{\log}(10^{-1}, 10^1)$
II.27.18	$\sim - \pi^2$	u	Energy density	J/m^3	$kg \cdot m^{-1} \cdot s^{-2}$ $kg^{-1} \cdot m^{-3} \cdot s^4 \cdot A^2$	V, F, P	V, F, P	N/A	$\frac{N/A}{8.854 \times 10^{-12}}$
1.27.10	$u = \epsilon E^2$	$\frac{\epsilon}{E}$	Vacuum permittivity Magnitude of electric field	F/m V/m	$kg \cdot m \cdot s^{-3} \cdot A^{-1}$	V, F, P	V, F, P	$\mathcal{U}(1,5)$	$\mathcal{U}_{\log}(10^{-1},10^1)$
II.34.11		$\frac{\omega}{g}$	Angular frequency g-factor	rad/s 1	$rad \cdot s^{-1}$ 1	V, F, P V, F, P	V, F, P V, F	$N/A \ \mathcal{U}(1,5)$	$N/A \ \mathcal{U}(-1,1)$
	$\omega = g \frac{qB}{2m}$	$q \\ B$	Electric charge Magnetic field strength	$rac{C}{T}$	$s \cdot A \\ kq \cdot s^{-2} \cdot A^{-1}$	V, F, P V, F, P	V, F V, F	$\mathcal{U}(1,5)$ $\mathcal{U}(1,5)$	$\mathcal{U}_{\log}(10^{-11}, 10^{-9}) \ \mathcal{U}_{\log}(10^{-9}, 10^{-7})$
		m	Mass	kg	$\frac{kg}{kg \cdot m^2 \cdot s^{-2}}$	V, F, P	V, F, P	$\mathcal{U}(1,5)$	$\mathcal{U}_{\log}(10^{-30}, 10^{-28})$
		U g	Energy g-factor	J 1	1	V, F, P V, F, P	V, F V, F	N/A $\mathcal{U}(1,5)$	N/A $\mathcal{U}(-1,1)$
II.34.29b	$U = 2\pi g \mu B \frac{J_z}{h}$	$rac{\mu}{B}$	Bohr magneton Magnetic field strength	$J/T \ T$	$m^2 \cdot A \\ kg \cdot s^{-2} \cdot A^{-1}$	V, F, P V, F, P	C, F, P V, F	$\mathcal{U}(1,5)$ $\mathcal{U}(1,5)$	$9.2740100783 \times 10^{-24}$ $\mathcal{U}_{\log}(10^{-3}, 10^{-1})$
		J_z h	Element of angular momentum Planck constant	$J\cdot s \ J\cdot s$	$kg \cdot m^2 \cdot s^{-1}$ $kg \cdot m^2 \cdot s^{-1}$	V, F, P V, F, P	V, F C, F, P	$\mathcal{U}(1,5)$ $\mathcal{U}(1,5)$	$\mathcal{U}_{\log}(10^{-26}, 10^{-22})$ 6.626×10^{-34}
		F	Force	N	$kg \cdot m \cdot s^{-2}$	V, F, P	V, F	N/A	N/A
II.38.3	$F = YA\frac{\Delta l}{l}$	Y A	Young's modulus Area	$Pa \ m^2$	$kg \cdot m^{-1} \cdot s^{-2}$ m^2	V, F, P V, F, P	V, F, P V, F, P	$\mathcal{U}(1,5)$ $\mathcal{U}(1,5)$	$\mathcal{U}_{\log}(10^{-1}, 10^1)$ $\mathcal{U}_{\log}(10^{-4}, 10^{-2})$
		$\delta l \ l$	Displacement Length	$m \ m$	$m \ m$	V, F, P V, F, P	V, F V, F, P	$\mathcal{U}(1,5)$ $\mathcal{U}(1,5)$	$\mathcal{U}_{\log}(10^{-3}, 10^{-1}) \ \mathcal{U}_{\log}(10^{-2}, 10^{0})$
II.38.14	$\mu = \frac{Y}{2(1+\sigma)}$	μ Y	Rigidity modulus Young's modulus	Pa Pa	$kg \cdot m^{-1} \cdot s^{-2}$ $kg \cdot m^{-1} \cdot s^{-2}$	V, F, P V, F, P	V, F, P V, F, P	N/A $\mathcal{U}(1,5)$	$N/A \ \mathcal{U}_{\log}(10^{-1}, 10^1)$
	$\mu = \frac{1}{2(1+\sigma)}$	σ	Poisson coefficient	1	1	V, F, P	V, F, P	$\mathcal{U}(1,5)$	$U_{\log}(10^{-2}, 10^0)$
III 7 00	$4\pi \mu B$	ω μ	Precession frequency Magnetic moment	$rad \ J/T$	$m^2 \cdot A$	V, F, P V, F, P	V, F V, F	N/A $\mathcal{U}(1,5)$	$N/A \ \mathcal{U}_{ m log}(10^{-11}, 10^{-9})$
III.7.38 III.12.43	$\omega = \frac{4\pi\mu B}{h}$	B h	Magnetic flux density Planck constant	$T \ J \cdot s$	$kg \cdot s^{-2} \cdot A^{-1}$ $kg \cdot m^2 \cdot s^{-1}$	V, F, P V, F, P	V, F C, F, P	$\mathcal{U}(1,5)$ $\mathcal{U}(1,5)$	$\mathcal{U}_{\log}(10^{-3}, 10^{-1})$ 6.626×10^{-34}
	y t.	J	Spin magnetic moment	$J \cdot s$	$\frac{kg \cdot m \cdot s}{kg \cdot m^2 \cdot s^{-1}}$	V, F, P	V, F, P	N/A	N/A
	$J = \frac{mh}{2\pi}$	$m \ h$	Spin state Planck constant	$1 \\ J \cdot s$	$\frac{1}{kg \cdot m^2 \cdot s^{-1}}$	V, F, P V, F, P	V, I, NN C, F, P	$\mathcal{U}(1,5)$ $\mathcal{U}(1,5)$	$\mathcal{U}_{\log}(10^0, 10^2)$ 6.626×10^{-34}
	- 0	$k \\ s$	Wavenumber Parameter of state	m^{-1} 1	m^{-1} 1	V, F, P V, F, P	V, F V, I	N/A U(1, 5)	$\frac{\mathrm{N/A}}{\mathcal{U}_{\mathrm{log}}(10^0, 10^2)}$
II.15.27	$k = \frac{2\pi}{Nb}s$	N	Number of atoms	1	1	V, F, P	V, I, P	$\mathcal{U}(1,5)$	$\mathcal{U}_{\log}(10^{\circ}, 10^{\circ})$