12. Obliczanie całek $\iint_D f(x,y) \, dx \, dy$, gdzie $D = [a,b] \times [c,d]$ złożoną kwadratururą Simpsona ze względu na zmienną x oraz złożoną kwadraturą prostokątów (z punktem środkowym) ze względu na zmienną y

Sebastian Szarafin 313460

2 stycznia 2022

1 Wstep

Kwadratury Newtona-Cotesa są prostymi za równo w zrozumieniu jak i w implementacji metodami przybliżającymi całkę funkcji ciągłej na zadanym przedziale. Niemniej jednak, przy odpowiednim doborze parametrów mogą być one całkiem dokładne.

W raporcie została zbadana metoda obliczania całek podwójnych funkcji f(x,y) opierająca się na połączeniu 2 złożonych kwadratur Newtona-Cotesa: kwadratury Simpsona względem zmiennej x oraz kwadratury prostokątów (z węzłem środkowym) względem zmiennej y, na prostokącie $D = [a,b] \times [c,d]$. Jak się okazało, nawet przy względnie skomplikowanych funkcjach, wyniki odbiegały bardzo nieznacznie od wyników teoretycznych.

2 Opis użytych metod

Kwadratury na których bazuje omawiana metoda przybliżają całkę funkcji f(x) na przedziale [a,b] podzielonym na podprzedziały $[x_{k-1},x_k]$ (k=1,...,N), o długosci $H=\frac{b-a}{N}$.

2.1 Kwadratura Simpsona

Prosty wzór Simpsona, zwany również wzorem parabol jest oparty na węzłach: a, b i $\frac{a+b}{2}$. Polega na przybliżeniu funkcji f wielomianem stopnia 2 i wyraża się wzorem:

$$S(f) = \frac{b-a}{6} \left(f(a) + 4f(\frac{a+b}{2}) + f(b) \right).$$

Złożony wzór Simpsona ma postać:

$$S(f) = \frac{H}{6} \left(f(a) + f(b) + 2 \sum_{k=1}^{N-1} f(a+kH) + 4 \sum_{k=0}^{N-1} f(a+kH + \frac{H}{2}) \right),$$

a jego bład jest równy:

$$E(f) = -\frac{1}{180 \cdot 2^4} H^4(b-a) f^{(4)}(\mu_2).$$

Kwadratura Simpsona jest dokładna dla wszystkich wielomianów stopnia nie przekraczającego 3.

2.2 Kwadratura prostokątów

Prosty wzór prostokątów oparty jest na 1 węźle $x_0 \in [a, b]$. Polega na przybliżeniu funkcji f wielomianem stopnia 0 i wyraża się wzorem:

$$S(f) = (b - a)f(x_0).$$

Złożony wzór prostokątów (oparty na węźle środkowym) ma postać:

$$S(f) = \sum_{k=1}^{N} (x_k - x_{k-1}) f(\frac{x_k + x_{k-1}}{2}),$$

a jego bład jest równy:

$$E(f) = \frac{1}{24}H^2(b-a)f''(\mu_3).$$

Kwadratura prostokątów jest dokładna dla wszystkich wielomianów stopnia nie przekraczającego 1.

3 Eksperymenty

Metoda została przetestowana na kilku bardziej i mniej skomplikowanych funkcjach o różnorodnych przebiegach na zadanym przedziale.

3.1 Przykład 1

Przykład 1 przedstawia przybliżenie całki $\int_{-10}^{10} \int_{-15}^{15} x + y \, dx \, dy$. Wykres przybliżanej funkcji przedstawia Rysunek 1.

Rysunek 1: Przedstawia wykres funkcji f(x,y) = x + y.

Funkcja jest nieparzysta na zadanym przedziale, wobec tego jej całka jest równa 0.

Wyniki przybliżania przedstawiono w Tablicy 1.

Tablica 1: Wyniki - Przykład 1

$\mid N$	M	wynik uzyskany	wynik teoretyczny	błąd
1	1	0	0	0
10	10	0	0	0
100	100	1.8189e - 14	0	1.8189e - 14
100	1000	0	0	0
1000	0 10000	-1.1641e - 16	0	$-1.1641e\!-\!16$

Widać, że funkcja została bardzo dokładnie przybliżona, całka w 3 przypadkach jest równa dokładnie 0, a w 2 przypadkach jest bardzo bliska 0.

Zwiększenie ilości podprzedziałów nie do końca przełożyło się na poprawę dokładności obliczeń, aczkolwiek uzyskane błędy są bardzo niewielkie i właściwie pomijalne.

3.2 Przykład 2

Przykład 2 przedstawia przybliżenie całki $\int_{-3}^3 \int_{-3}^3 x^2 + y^2 dx dy$. Wykres przybliżanej funkcji przedstawia Rysunek 2.

Rysunek 2: Przedstawia wykres funkcji $f(x,y) = x^2 + y^2$.

Funkcja jest parzysta na zadanym przedziale oraz $\forall x,y\in Df(x,y)\geq 0$. Wyniki przybliżania przedstawiono w Tablicy 2.

U			F	•/	
	N	M	wynik uzyskany	wynik teoretyczny	błąd
	1	1	108	216	1.08e02
	10	10	214.92	216	1.08
	100	100	215.9892	216	1.08e - 02
	1000	1000	215.9998	216	1.0799e - 04
	10000	10000	215.9999	216	1.08e - 06

Pierwsze przybliżenie jest niezbyt zadowalające, ale nic w tym dziwnego gdyż użyty został jedynie 1 węzeł. Z każdym kolejnym przybliżeniem błąd jest

coraz mniejszy, a uzyskany wynik jest praktycznie zgodny z wynikiem teoretycznym.

3.3 Przykład 3

Przykład 3 przedstawia przybliżenie całki $\int_{-5}^{5} \int_{-5}^{5} e^{x+y} dx dy$. Wykres przybliżanej funkcji przedstawia Rysunek 3.

Rysunek 3: Przedstawia wykres funkcji $f(x,y) = e^{x+y}$.

Funkcja jest bardzo bliska 0 dla x + y < 0, a w momencie zmiany znaku wykładnika liczby e, gwałtownie wzrasta. Dla argumentów ujemnych:

$$\lim_{(x,y)\to-\infty} f(x,y) = 0,$$

natomiast dla argumentów dodatnich:

$$\lim_{(x,y)\to\infty} f(x,y) = \infty.$$

Wyniki przybliżania przedstawiono w Tablicy 3.

Tablica 3: Wyniki - Przykład 3

N	M	wynik uzyskany	wynik teoretyczny	błąd
1	1	2540.3316	22024.5	1.9484e04
10	10	21139.9826	22024.5	8.8451e02
100	100	22015.2924	22024.5	9.2075
1000	1000	22024.3740	22024.5	$1.2592e\!-\!01$
10000	10000	22024.4649	22024.5	3.5077e - 02

Podobnie jak w poprzednim przykładzie z każdym kolejnym przybliżeniem błąd jest coraz mniejszy, a uzyskany wynik coraz bliższy wynikowi teoretycznemu.

3.4 Przykład 4

Przykład 4 przedstawia przybliżenie bardziej skomplikowanej całki $\int_{-1}^{1} \int_{-1}^{1} \frac{\sin(10(x^2+y^2))}{10} dx dy$. Wykres przybliżanej funkcji przedstawia Rysunek 4.

Rysunek 4: Przedstawia wykres funkcji $f(x,y) = \frac{\sin(10(x^2+y^2))}{10}$

Funkcja wyglądem przypomina fale kapilarne powstające na powierzchni 2

cieczy.

Wyniki przybliżania przedstawiono w Tablicy 4.

Tablica 4: Wyniki - Przykład 4

N	M	wynik uzyskany	wynik teoretyczny	błąd
1	1	-0.0725	0.0334	$1.0594e\!-\!01$
10	10	0.0353	0.0334	1.9334e - 03
100	100	0.0334	0.0334	$1.9760e\!-\!06$
1000	1000	0.0334	0.0334	6.3975e - 08
10000	10000	0.0334	0.0334	4.5324e - 08

Mimo, iż wynik teoretyczny jest względnie mały to jako że przedział całkowania jest kwadratem o polu 1, już przy 10 podprzedziałach N i M uzyskane wyniki są porównywalne.

4 Podsumowanie

Przeprowadzone testy pokazują, że połączenie kwadratury Simpsona i prostokątów daje dokładne lub bardzo niewiele różniące się wyniki niezależnie od zróżnicowania całkowanej funkcji.

Metoda jest również efektywna czasowo. Zaimplementowana w Matlabie nie trwa dłużej niż 0.3s nawet przy ilości podprzedziałów rzędu 1.0e08.