Anmerkungen zu "Topology, Geometry and Gauge fields, Naber" [1]

Jürgen Womser-Schütz, https://github.com/JW-Schuetz

Kapitel "Physical and Geometrical Motivation"

Elektrischer Monopol

Sein elektrisches und magnetisches Feld in Kugelkoordinaten mit den Einheitsvektoren \underline{e}_{ρ} , \underline{e}_{ϕ} und \underline{e}_{Θ} ist auf $\mathbb{R}^3 - \underline{0}$ durch

$$\underline{E} \left(\begin{array}{ccc} \rho, & \phi, & \Theta \end{array} \right) & = & \frac{q}{\rho^2} \underline{e}_{\rho} \\
\underline{B} \left(\begin{array}{ccc} \rho, & \phi, & \Theta \end{array} \right) & = & \underline{0} \\$$

gegeben und erfüllt dort die quellenfreien Maxwellgleichungen

$$\operatorname{div}(\underline{E}) = 0$$

$$\operatorname{div}(\underline{B}) = 0$$

$$\operatorname{rot}(\underline{E}) = \underline{0}$$

$$\operatorname{rot}(\underline{B}) = \underline{0}.$$
(1)

Potentiale des elektrischen Monopols

Weil $\mathbb{R}^3 - \underline{0}$ einfach zusammenhängend ist und dort rot $(\underline{E}) = \underline{0}$ gilt, existiert auf $\mathbb{R}^3 - \underline{0}$ für den elektrischen Monopol ein skalares Potential V mit $\underline{E} = \operatorname{grad}(V)$ und es gilt

$$V(\rho, \phi, \Theta) = -\frac{q}{\rho}.$$

Das Vektorpotential \underline{A} mit $\underline{B} = \text{rot}(\underline{A})$

Magnetischer Monopol

Ein magnetischer Monopol wurde bisher noch nicht beobachtet und ist deshalb hypothetisch. Sein magnetisches und elektrisches Feld in Kugelkoordinaten ist auf $\mathbb{R}^3 - \underline{0}$ analog zum elektrischen Monopol durch

$$\underline{B}(\rho, \phi, \Theta) = \frac{g}{\rho^2}\underline{e}_{\rho}$$

$$\underline{E}(\rho, \phi, \Theta) = \underline{0}$$

gegeben und erfüllt dort ebenfalls (1).

Potentiale des magnetischen Monopols

Weil $\mathbb{R}^3 - \underline{0}$ einfach zusammenhängend ist und dort rot $(\underline{B}) = \underline{0}$ gilt, existiert auf $\mathbb{R}^3 - \underline{0}$ für den magnetischen Monopol ein skalares Potential V mit $\underline{B} = \operatorname{grad}(V)$ und es gilt

$$V \left(\begin{array}{ccc} \rho, & \phi, & \Theta \end{array} \right) & = & -\frac{g}{\rho}.$$

Aus der Sicht der Quantenmechanik ist es aber sehr wünschenswert auch ein Vektorpotential zu haben.

Literatur

[1] Topology, Geometry and Gauge fields; Naber, Gregory; Springer Science+Business Media; 2011