E2.06 – Ouroboros

Product Specification

Kyle Ratcliff, Project Manager

Renee Aguilar
David Landeros
Brandon Markham

Sponsored by:

TXSTATE

601 University Dr

San Marcos, TX Zip 78666

Date: April 22, 2025

Revision H	Revision History Table						
Version	Summary of Changes Date						
0.1	Sections 1, 2, 3, and 7 prepared for initial request for signatures 10/21/24						
0.2	Implemented sponsor feedback and submitted for preliminary grade	10/23/24					
0.3	Updated with relevant figures from IDR, completed Appendix A	12/04/24					
1.0	Completed Sections 4 and 5, updated Appendix A	4/22/25					

Contents

1	Exe	cutive Summary	5
2	Тор	Level Block Diagram	6
3	Fur	ctional Description	7
	3.1	Power and PCB Design Subsystem	7
	3.2	Main Program Loop Subsystem	9
	3.3	Audio Processing & Dynamic Memory Management Subsystem	11
	3.4	OLED Display, User Interface (UI) & Enclosure Design Subsystem	14
	3.5	Safety, Security and Administrative Functions	16
4	Per	formance	17
	4.1	Boundary Conditions and Constraints	19
5	Pro	ject Alignment Matrix	20
6	Ref	erences	22
7	Арр	provals	23
	7.1	Contingencies	23
8	Арр	pendix A: Test Procedures	24
	8.1	Power and PCB Subsystem Unit Tests	25
	8.1	1 Regulated Voltage Supply	25
	8.1	2 Battery Life	26
	8.2	Audio Processing & Dynamic Memory Management Subsystem Unit Tests	27
	8.2	1 Input and Output Impedance Matching and Calculation	27
	8.2	2 Test SD Card Read/Write Operations	29
	8.3	Main Looping Program Subsystem Unit Tests	30
	8.3	1 Total Harmonic Distortion (THD)	30
	8.3	2 State Transitions	33
	8.4	OLED Display, UI & Enclosure Design Subsystem Unit Tests	36
	8.4	1 Signal-to-Noise Ratio	36
	8.4	2 OLED Voltage	37

8.5 Sy	stem Integration Tests	38
·		
8.5.1	Audio Loop Back	38
8.5.2	Buffer Overflow and Prevention Mechanisms	40
8.5.3	SD Card Storage Limits	41

1 Executive Summary

Our project is a 9V battery powered guitar looper pedal equipped with an OLED display and 12-bit audio capability. It allows users to record loops up to 5 minutes in length with unlimited overdubs and undo/redo actions for real-time modification. Up to 10 loop sessions can be saved and played back later. Additionally, users can save, import, and export recordings to and from the pedal. Built around the Daisy Seed microcontroller, the "Ouroboros" provides an affordable, open-source alternative to traditional pedals on the market.

From 2005 to 2021, the price of guitar pedals and accessories has gradually increased, averaging \$110 as of 2021.¹ Our pedal offers an affordable alternative to current offerings on the market. Regarding the Daisy Seed microcontroller we're using, most of the resources we've found online are maintained by hobbyists and lack clear standardized procedures. Consequently, "Ouroboros" can be used as an open-source framework for future hobbyists. Additionally, relating a subject like music to electrical engineering offers more engaging learning experiences for hobbyists and students alike.

Development will start with design and prototyping of key components such as the audio input buffer, power subsystem, and microcontroller firmware. Each of the four team members will be responsible for one of the following subsystems: power and input buffer design, microcontroller and firmware integration, and user interface design. The goal for the end of D1 is a working prototype on a perfboard that includes core functionalities: recording, looping, and playback, SD card integration for loop storage, and initial implementation of the OLED display for real-time feedback. By the end of D2 we will have an integrated, fully functional product with a refined user interface, reliable power management, seamless SD card handling and optimized audio processing.

Team Member	Subsystem
Renee Aguilar	Power & PCB Design
David Landeros	Main Looping Program
Brandon Markham	Audio Processing & Dynamic Memory Management
Kyle Ratcliff	OLED Display, User Interface (UI) & Enclosure Design

Table 1: Subsystem Descriptions & Responsibilities

2 Top Level Block Diagram

The top-level block diagram was drawn by Brandon Markham.

The block diagram of our system as shown in Figure 1 illustrates the signal flow, peripheral inputs and outputs, and the color-coded division of responsibilities among team members. The signal path begins with either a test source or an instrument input, which enters the pedal through a ¼" mono input jack. From here the signal passes into an input buffer which ensures the impedance is matched correctly for the microcontroller's audio input pin. The microcontroller handles the processing of the signal where it undergoes analog to digital conversion (ADC). Once the audio is digitized, the user can record, play, or pause loops using the two footswitches that are connected as inputs to the microcontroller. After digital to analog conversion (DAC), the signal is sent from the microcontroller's audio output pin to an output buffer that converts the microprocessor's line level output to instrument level before sending the signal to a ¼" mono output jack. Additionally, the pedal features two rotary encoders that allow the user to navigate between 10 memory slots where loops can be stored onto an SD card. The pedal status is shown on an OLED screen, allowing the user to receive real-time feedback from the device.

Figure 1: Top-Level Block Diagram

3 Functional Description

3.1 Power and PCB Design Subsystem

The Power and Circuit Design Subsystem is owned by Renee Aquilar

Figure 2: Power Subsystem Block Diagram

The power system is comprised of the power source, voltage dividers, the Daisy Seed microcontroller, an OLED, LEDs, and input and output buffers as shown in Figure 2. The Ouroboros guitar looper pedal is entirely powered by either an AC to DC wall adapter or a 9-volt alkaline battery, which supplies power to the Daisy seed microcontroller and the subsequent components that draw power from it. The initial 9V power supply is used to supply power directly to the microcontroller and input and output buffers, then is stepped down via a voltage divider to 5V for the OLED peripheral. The microcontroller itself additionally supplies 1.2-3.6V to the LEDs, rotary encoders and footswitches attached to it. When a 9V power source is connected, the OLED display will indicate that the device is on. Schematics 1 through 3 display the circuit configuration for the voltage dividers and input/output buffers respectively. Our original design utilized a single TL072 non-inverting Op-amp, but our final design replaced this with two J201 JFETs.

Input	Source	Min	Max	Description
9VDC	Battery/Wall	TBD	9VDC	Power source to the Microcontroller and
	Outlet			contingent components.
9VDC	Voltage Divider	TBD	5V	Stepped-down voltage from the battery for the
				microcontroller and input/output buffers.

Output	Destination	Min	Max	Description
5V	OLED	1.65V	5V	Voltage Supplied from the Microcontroller to the OLED
3.3V	LEDs	1.2V	3.6V	Voltage Supplied from the Microcontroller to the LEDs

Table 2: Power Inputs & Outputs

Schematic 1: Voltage Divider Configuration

Schematic 2: Input Buffer Configuration

Schematic 3: Output Buffer Configuration

3.2 Main Program Loop Subsystem

Main Program Loop is owned by David Landeros

The system is responsible for managing communication between the Daisy Seed microcontroller, the SD card for audio storage, and the OLED display for user interface interactions. As shown in figure 3, the subsystem interfaces with various hardware components including the SD card for saving and loading audio loops, and the OLED display for showing real time system status such as recording, playback, and memory usage. The firmware handles state transitions between various operational modes of the looper pedal, such as idle, recording, playback, overdub and save.

The firmware flow chart (figure 3) outlines the inputs from the user (button presses, footswitch actions), as well as data coming from the SD card and peripherals. Key decision points include detecting user input to switch states, checking SD card availability, and managing buffer overflow prevention for real-time audio processing.

Input	Source	Min	Max	Description
User input	User interactions	0	3.3V	Button or switch actions used to control pedal modes (e.g., Record, play)
Audio Signal (input)	Analog guitar signal	0mV	300mV	The analog audio signal from the guitar processed digitally
SD Card Data	SD card	N/A	N/A	Stores and retrieves audio loops, file read/write operations
Power (3.3V)	Power subsystem	3.0V	3.6V	Power supply for microcontroller and peripherals

Output	Destination	Min	Max	Description
Audio Output	Guitar Output Stage	0 mV	300 mV	Processed audio signal sent to the output stage for playback
OLED Display Signal	User interface subsystem	OV	3.3V	Displays user interface data (mode, memory, etc.)
SD Card Write Data	SD card	N/A	N/A	Audio data written to the SD card for saving loops
State Feedback	LED indicators	OV	3.3V	Provides visual feedback

Table 3: Main Program Loop Inputs & Outputs

Figure 3: Main Program Loop Subsystem Block Diagram

The Firmware and system integration subsystem coordinates the entire operation of the looper pedal by managing the state transitions between key operation modes like recording, playback, overdub, save and load. The microcontroller uses a finite state machine to track user interactions and process audio data in real time, ensuring seamless looping without audio dropouts. The SD card communication is implemented via SDMMC, handling file management functions such as reading/writing audio loops. The OLED display shows information such as loop length, active mode, and memory usage, making the pedal user-friendly.

The subsystem is powered by the 3.3V rail from the power subsystem, and it ensures that the audio data is correctly saved to the SD card while simultaneously updating the display. The microcontroller also manages timing constraints for real-time audio processing, preventing buffer overflows.

In figure 4, a flow chart of the firmware logic is shown, depicting the various states and their transitions based on user inputs.

3.3 Audio Processing & Dynamic Memory Management Subsystem

The Audio Processing & Dynamic Memory Management Subsystem is owned by Brandon Markham

As shown in Figures 5-8, the audio input signal is processed by the analog-to-digital converter (ADC). If recording mode is active, the signal is stored in a buffer on the SDRAM. Otherwise, the signal bypasses the buffer and is sent directly to the digital-to-analog converter (DAC). When playback is paused and there is data in the buffer, the user can store the buffered data onto an external SD card. Alternatively, if the buffer is empty and the processor is idle, the user can load a file from the SD card into the buffer for playback.

Figure 5: Audio Processing & Dynamic Memory Management Subsystem Block Diagram.

The Daisy Seed microcontroller uses a Wolfson Microelectronics WM8731 chip to handle the analog-to-digital as well as the digital-to-analog conversion. After the analog signal is converted to a digital signal it is further processed by the microcontroller.

Figure 6: Analog-to-Digital Conversion Subsystem Block Diagram.

The SD card is connected to the microcontroller via a Vertical Micro SD Card Connector that takes the data from the buffer, converts the data into a .wav file and writes the file onto the SD card. Conversely, a .wav file can be retrieved from the SD card and converted to floating-point format to be stored in the buffer for playback. In addition to the SD card file management system the undo/redo functionality is employed using dynamic memory allocation. This implementation consists of creating a duplicate of the buffer containing the original recording and allowing the user to toggle between the current and previous loop.

Figure 7: SD Card File Management Subsystem Block Diagram.

Figure 8: SD Card File Management Algorithm Flow Chart.

Figure 9: Dynamic Memory Allocation Algorithm Flow Chart.

The digital-to-analog conversion is handled using the same Wolfson Microelectronics WM8731 chip, whereby the data is read from the buffer, converted to an analog signal, and made available for processing before being sent to the audio output source.

Figure 10: Digital-to-Analog Conversion Subsystem Block Diagram.

The Daisy Seed microcontroller manages audio signal processing through the Wolfson WM8731 chip, handling both analog-to-digital and digital-to-analog conversion. The system allows users to store digital audio in an SDRAM buffer, save it to an SD card as a WAV file, or load audio from the SD card for playback. This seamless integration ensures smooth conversion and playback of audio signals.

3.4 OLED Display, User Interface (UI) & Enclosure Design Subsystem

The OLED Display, UI & Enclosure Design Subsystem is owned by Kyle Ratcliff

As depicted in figure 9, user input via rotary encoders and footswitches will be processed by the microcontroller, which provides 3.3 V to the OLED on which feedback to the user will be displayed. Information will be transmitted to the OLED via the Serial Peripheral Interface protocol.

Figure 11: OLED Display, User Interface (UI) & Enclosure Design Subsystem Subsystem Block Diagram

Turning the rotary encoder located on the left side of the OLED will be used to highlight a menu option displayed on the OLED, pushing the encoder will select it. This menu will allow the user to save and recall looping sessions, and to enter Spectrogram mode as shown in figure 10.

Save and recall functions will be handled by the Audio Processing & Dynamic Memory Management subsystem. The intersection of that subsystem and this subsystem will be facilitated through the Firmware & System Integration subsystem.

The second rotary encoder, located to the right of the OLED, will be dedicated to the output level of the device (Volume). One footswitch will be designated for Record functionality, and the other for Play/Pause functions. Each footswitch will be accompanied by an LED which will provide feedback to the user about the current state of the device. In addition to the user menu, the OLED

will display an icon indicating mains or battery power, and a graphic display during record and playback. The battery power icon will begin to flash if the battery reaches 3.3 V.

In Playback/Loop mode, the display will read "Record Ready" before looping begins, "Recording" when recording the initial loop, "Recording ODn" when recording the nth overdub, and "Playing" when playing back a loop. Time remaining will be displayed in record modes. Figure 11 shows what the pedal user menu will look like on battery power. Figure 12 shows what the pedal will look like on mains power when recording the first overdub.

Figure 13: Mock-up of battery-powered Ouroboros user menu

Figure 14: Mock-up of mains-powered Ouroboros looper pedal when recording first overdbub

3.5 Safety, Security and Administrative Functions

Operating at 9 volts with small currents, the Ouroboros presents no real safety risks beyond potential mild shocks which would be next to impossible under normal operation. The device should never be opened when plugged in to main power. Caution should be used when investigating or testing the device's circuitry even if powered by battery.

No administrative permissions are necessary to access any of the device's functionality. Looping sessions on the SD card are not encrypted in any way. This allows the user to easily transfer sessions stored by the pedal to a computer and vice-versa. As the pedal will likely be used more for generating ideas than for storing sensitive intellectual property, the lack of encryption should not be seen as a security risk by any reasonable user.

4 Performance

Hardware Performance Parameters						
Parameter	Test Conditions	Min	Max	Units	How Tested	
Input Power Supply Voltage	System powered by 9V battery or DC adapter	8.5	9.5	V	Verified operation under both battery and regulated DC supply	
Battery Runtime	Standard playback, display always on	0.0	17.77	minutes	Stopwatch timed until noise/artifacts appeared during operation	
OLED Operating Voltage	Gradually decreased supply to OLED only	1.9	3.3	V	Monitored cutoff voltage where OLED ceased to operate	
Audio Bit Depth	Playback waveform level analysis	12-bit	-	Bits	Confirmed 4094 discrete steps from quantized sine wave	
Sample Rate	Constant during 30s playback session	32,000	32,000	Hz	Measured sample intervals and confirmed stability (<0.1% jitter)	
Audio Latency	Measured ADC-to- DAC time delay	_	5	ms	Oscilloscope time domain comparison between input and output	
Input Impedance	1.91 Vpp sine, 1.28 μA current	1.4	1.6	МΩ	Ohm's Law using RMS V and I	
Signal-to-Noise Ratio (SNR)	300 mVpp 1 kHz sine input	-	68	dB	Calculated using 20*log10(Signal/Noise), measured ~20.5 dB	
Total Harmonic Distortion	Measured via FFT at 100 Hz–15 kHz	-	1	%	Analyzed 2nd & 3rd harmonics relative to 1st using FFT	

	Software Performance Parameters						
Function	Description	How Tested					
System Initialization	The time it takes for the system to power up and enter the IDLE state after a power cycle.	Power cycle system and measure time to reach IDLE (observe serial log).					
State Transitions	Time required to transition between looper states (e.g., RECORD, PLAYBACK, OVERDUB).	Press FS1/FS2 buttons and monitor serial output timing.					
Undo/Redo Timing	The responsiveness of undo/redo functions during playback or overdub.	Stopwatch measurement and oscilloscope timing during state transition.					
Playback Alignment	Ensures that playback remains synchronized with original input, with minimal drift.	Oscilloscope compare input and output waveforms for drift analysis.					
Overdub Layering	Measures latency introduced by adding multiple overdub layers.	Compare latency between single and multiple overdubs using oscilloscope.					
Loop Saving Time	Time it takes to write a recorded loop to the SD card after a save command.	Measure time from save trigger to SD card write confirmation.					
Loop Loading Time	Time it takes to load and begin playback of a saved loop from the SD card.	Measure time from load trigger to start of playback.					
Sample Rate Stability	Measures how consistently audio samples are timed over long sessions.	Measure sample timing and calculate deviation during session logging.					
OLED Display Update Speed	Measures how quickly the OLED responds to state changes or updates.	Trigger state changes and measure OLED update timing with stopwatch.					
Session Storage Capacity	Maximum number of loop sessions (WAV files) that can be reliably saved and retrieved.	Create, save, and load 10 WAV files, verifying data integrity on SD card.					

4.1 Boundary Conditions and Constraints

Boundary Conditions:

- The guitar looper is designed to operate with a **stable 5V DC power supply**, though it can tolerate fluctuations within a **boundary range of 4.75V to 5.25V** during typical use without degradation in performance.
- The system is guaranteed to function reliably with **audio signal levels up to 2.5 Vpp**, matching typical guitar output and maintaining clean input without distortion.
- Audio recording and playback are designed for a maximum loop duration of 2 minutes, constrained by available SDRAM and real-time processing requirements.
- The device supports **sample rates of 32 kHz to 48 kHz**, with 32 kHz used as the default boundary for balancing performance and memory consumption.
- The looper is optimized for **ambient temperatures between 10°C and 40°C**, which reflect common indoor usage environments and ensure consistent performance.

Constraints:

- The Daisy Seed microcontroller, a required component, operates with a maximum input voltage of 12V — exceeding this value risks permanent damage.
- The internal SDRAM capacity is limited to **64 MB**, constraining the maximum recordable audio length and number of undo/redo buffers.
- Project costs were capped at \$100, limiting hardware selections and requiring careful budgeting for audio-grade components.
- The enclosure had to be fabricated with **hand files and drills**, which constrained dimensions and design choices limiting the amount of implementable enclosure features.
- Schedule constraints required completion of prototyping, testing, and documentation within a **single semester**, which limited opportunities for redesign or extended field testing.
- The project was required to use **C++ and the libDaisy framework**, due to team expertise and compatibility with the Daisy Seed platform.
- The Daisy Seed microcontroller and built-in AK4556 audio codec limit audio fidelity to 12-bit resolution for real-time processing through internal ADC and DAC. This imposes a constraint on overall loop quality and dynamic range, particularly when layering multiple overdubs

5 Project Alignment Matrix

TABLE 1: Knowledge Alignment Matrix

Course No.	Core knowledge	Specific knowledge		
		incorporated by team		
EE 3350 (Electronics I)	Design and analysis of active devices and equivalent circuits	Used understanding of biasing, impedance, and gain to build and simulate analog front-end circuits for the guitar input and output stages.		
EE 3370 (Signals and Systems)	Frequency domain representation of signals and frequency response, transfer functions	Applied knowledge of frequency response to evaluate and preserve signal integrity throughout the looper; filtered and managed audio signals to avoid aliasing and distortion; used FFT analysis for spectrogram.		
EE 3420 (Microprocessors)	Principles of operation and applications of microprocessors	Programmed the Daisy Seed microcontroller using C++ to handle audio processing, GPIO control (buttons, LEDs, encoder), display, and SD card file operations.		
EE 4352 (Introduction to VLSI Design)	Analysis and design of CMOS integrated circuits	N/A		
EE 4356 (Power Electronics)	Circuits and devices for the control and conversion of electric power	Integrated low-power operation and voltage regulation for safely powering the OLED through a 5V regulator to minimize overheating or damaging components.		
EE 4360 (Linear Control Systems)	Performance and stability of feedback-based control systems	Applied control principles to prevent signal overdrive by managing cumulative gain during consecutive loop iterations, ensuring stable volume levels and avoiding distortion or clipping in the feedback path.		
EE 4370 (Communications Systems)	Transmission of signals through linear systems, analog, and digital modulation, and noise	Minimized noise in analog signal paths and ensured clean ADC/DAC conversion; applied signal path optimization principles for clarity in audio output.		

TABLE 2: Design Considerations Matrix

Design Considerations	Project Specific Implementation
Public health, safety, and	We ensured that all electrical components were properly
welfare	enclosed to prevent user shock. The device operates at low
wellare	voltage and does not pose harm to users.
	Our components were primarily sourced from global
Global	distributors like Mouser, PCB Way, and Digi-Key. Shipping delays
	and availability influenced our timeline and part selections.
	We used universally recognized color indicators (a red LED for
Cultural	recording and a green LED for playback) to ensure intuitive
	understanding across different user bases and cultural contexts.
	The looper promotes creativity and musical expression,
	potentially benefiting future generations by supporting learning
Social	and collaboration in music. Additionally, it serves as a showcase
	project that may inspire other students within the institution to
	explore musical technology and embedded audio design.
	We designed with modularity in mind — components like the
	microcontroller (Daisy Seed) can be reused in future projects.
Environmental	The enclosure is made from recyclable aluminum. Additionally,
Environmental	the looper can be powered via a wall power supply, reducing
	the need for disposable batteries and minimizing electronic
	waste.
Economic	We kept the bill of materials under \$100 to make the product
Leononic	affordable for hobbyists and independent musicians.

TABLE 3: Appropriate Engineering Standards

Engineering Standard	Application of the Standard
PACE (Development Process)	Followed an iterative design process including planning, prototyping, testing, and documentation as outlined in the PACE design framework.
UL	Used components (e.g., DC barrel jack, power supply) that conform to UL safety standards to minimize fire or shock hazards in low-voltage applications.
CE	Considered CE principles such as ESD protection by minimizing exposed circuitry and grounding sensitive components. Used separate analog and digital ground planes to reduce noise and ensure safe, reliable operation.
ASME	Not directly applicable as this is an electrical/audio system, but mechanical considerations like panel design and enclosure layout followed standard ergonomic principles.
SPI, SDMMC, GPIO	Employed SPI for OLED communication and SDMMC for SD card interaction following electrical and timing constraints defined by protocol specifications.
C++	Firmware was developed in C++, adhering to best practices in embedded systems programming such as memory safety, modularity, and use of hardware abstraction.

6 References

[1] Average price of a guitar effects pedal in the U.S. 2005-2021. https://www.statista.com/statistics/453234/average-price-guitar-effects-pedals-us/

[2] Electrosmith Daisy Seed specifications. https://daisy.audio/hardware/Seed/

[3] 128 x 64 Dot Matrix OLED/PLED Segment/Common Driver with Controller.

https://www.buydisplay.com > download > ic > SSD1309.pdf

7 Approvals

The signatures of the people below indicate an understanding in the purpose and content of this document by those signing it. By signing this document, you indicate that you approve of the Project Plan.

Approver Name	Title	Signature	Date
Kyle Ratcliff	Project Manager	GP wild	4/22/2025
Deslynn Vasquez	D2 Project Manager		
Professor Welker	Faculty Advisor	mark w. welker	4/22/2025
Professor Welker	Sponsor	mark w. welker	4/22/2025
Professor Stevens	Instructor		

7.1 Contingencies

This section contains any approval contingencies as noted by the Product Sponsor, Advisor, Mentor, or Instructor.

Approver Name	Contingency
Professor Welker	
Deslynn Vasquez	

Section	Author	Word Count
1. Executive Summary	David Landeros, Renee Aguilar	287
2.Top-Level Block Diagram	Brandon Markham	199
3.1. Power and Hardware Subsystem	Renee Aguilar	136
3.2. Firmware and System Integration Subsystem	David Landeros	296
3.3. Audio Processing & Dynamic Memory Management Subsystem	Brandon Markham	352
3.4. OLED Display, User Interface (UI) & Enclosure Design Subsystem	Kyle Ratcliff	224
3.5. Safety, Security and Administrative Functions	Kyle Ratcliff	129

8 Appendix A: Test Procedures

Following established protocols and procedures for audio devices, we tested individual subsystems and the complete device to verify overall functionality and ensure that specific components perform within expected parameters.

Test Pl	Test Plan Overview				
Power	and PCB Design Subsystem Unit Tests	DRI			
1.	Regulated Voltage Supply	Renee Aguilar			
2.	Battery Life Test	Renee Aguilar			
Audio	Processing and Memory Management Subsystem Unit	DRI			
Tests					
1.	Input and Output Impedance Measurement and	Brandon Markham			
	Calculation				
2.	Test SD Card Read/Write Operations	Brandon Markham			
Main L	ooping Program Subsystem Unit Tests	DRI			
1.	Total Harmonic Distortion (THD)	David Landeros			
2.	State Transitions Test	David Landeros			
OLED [Display, UI & Enclosure Design Subsystem Unit Tests	DRI			
1.	Signal-to-Noise Ratio test	Kyle Ratcliff			
2.	OLED Voltage Test	Kyle Ratcliff			
Overal	Overall System Integration Tests DRI				
1.	Audio Loop Back test	David Landeros			
2.	Buffer Overflow and Prevention mechanisms test	Brandon Markham			
3.	SD Card Storage Limits test	Brandon Markham			

Table 1. Test Plan Overview

8.1 Power and PCB Subsystem Unit Tests

8.1.1 Regulated Voltage Supply

Test 1.1		Written by: Renee Aguilar		
Subsystem: Power/PCB Design		Tested by: Renee Aguilar		
Equipment Required:	ent Required: Prototype System, Power Supply, Digital Multimeter			
Description:				

This test is to confirm that the Voltage Regulator circuit supplies the minimum voltage required to power the Microcontroller and Input/Output Buffer peripherals. The circuit was first constructed on a breadboard and simulated using LTSpice.

Overall Results: Passed, Tests validated LTSpice simulation, with all results within ±5% of simulated results.

#	Procedure			Expected Result	Actual Result	Comments:
1	Connect Power Supply to Voltage Regulator at 9V	9V	8.97V	Passed. Voltage is within 5% deviation		
2	Set Power supply to 9V and measure voltage supplied to Microcontroller	8.76V	8.53V	Passed wit	hin desire	d range.
3	Measure load of Voltage Regulator supplying power to OLED	5V	4.87 V	Passed wit	hin desire	d range.

Overall Results: Pass

Tests validated LTSpice simulation, with all results within ±5% of simulated results.

8.1.2 Battery Life

Test 1.2		Written by: Renee Aguilar	
Subsystem: Power/PCB Design		Tested by: Renee Aguilar	
Equipment Required:	Prototype System, Power Supply, Digital Multimeter		
Description:			
Description: This test is to ensure that the prototype can meet design specifications and operate			
for at least an hour with a 9V battery supply.			
Overall Results: Failed, noise introduced from battery made the looper unusable before the			
battery dropped below usable voltage levels			

1	Procedure Confirm 9V Battery is above 8.7V	Expected Result 8.7V	Actual Result 8.49V	Comments: Passed within 5% deviation
2	Set timer and monitor voltage output at Voltage regulator load until output drops to 5V	1 hr	17 min 46 s	The load had not dropped below 5V at the time stopped, but the noise introduced to the system made the looper unusable past 17 minutes.

Overall Results: Fail

Noise introduced from battery made the looper unusable before the battery dropped below usable voltage levels

8.2 Audio Processing & Dynamic Memory Management Subsystem Unit Tests

8.2.1 Input and Output Impedance Matching and Calculation

Test 2.1		Written by: Brandon Markham	
Subsystem: Audio Processing & Memory		Tested by: Brandon Markham	
Management			
Equipment Required:	Oscilloscope, Function Generator, Daisy Seed Microcontroller, Power		
	Supply, System Under Test		
Description: This test is to confirm that the input and output impedances across the input and			
output buffers match the desired performance corresponding to an Input impedance of 1.5M			
ohm @ 1.9 V and an Output impedance of 10 K ohm @ 2.3 V			
Overall Results: Pass			

		Expected	Actual	
#	Procedure	Result	Result	Comments:
1	Supply 9V DC to the system using the power supply, then connect the signal generator to the audio input of the output buffer.	N/A	N/A	N/A
2	Apply a 2.3 Vpp sinusoidal signal (1 kHz) from the signal generator to the audio input node of the circuit then use the digital multimeter to measure the RMS voltage and multiply the value by 2V2 to derive peak to peak voltage.	N/A	Vin = 1.91 Vpp	PASS Input signal measured at 0.675 V RMS and then calculated to 1.91 Vpp
3	Using the digital multimeter, measure the input RMS current of the system then multiply the value by 2V2 to derive peak to peak voltage.	1.9 V	Input current = 1.28 μA	PASS Input current measured at 0.452 μA RMS and then calculated to 1.28 μA
4	Again, apply Ohms law using the values of the measured input voltage and current across the test resistor to calculate the input impedance of the circuit.	Input impedance matches 1.5 MΩ at 1.9 V	Input impedance = 1.49 MΩ	PASS Simulated values yielded calculation of 1.503M Ω Real world measurement of 1.49M Ω
5	Compare measured values with calculated and simulated values.	Percent difference of less than 1%	Measured % difference = 0.87%	PASS

		Expected	Actual	
#	Procedure	Result	Result	Comments:
6	Supply 9V DC to the system using the power supply, then connect the signal generator to the audio input of the buffer.	N/A	N/A	N/A
7	Apply a 2.3 Vpp sinusoidal signal (1 kHz) from the signal generator to the audio input node of the circuit then use the digital multimeter to measure the RMS voltage and multiply the value by 2v2.	2.3 Vpp	Vin = 2.29 Vpp	PASS Input signal measured at 0.812 V RMS and then calculated to 2.29 Vpp
8	Using the digital multimeter, measure the input RMS current of the system then multiply the value by 2√2 to derive peak to peak voltage.	1.9 V	Input current = 1.28 μA	PASS Open circuit voltage measured at 659 mV RMS and multiplied by 2V2 for 1.863 Vpp
9	Again, apply Ohms law using the values of the measured input voltage and current across the test resistor to calculate the input impedance of the circuit.	Simulated output impedance = 2.94 KΩ	Measured output impedance = 2.992 KΩ	PASS Simulated values yielded calculation of 2.94 $K\Omega$ Real world measurement of 2.992 $K\Omega$
10	Compare measured values with calculated and simulated values.	Percent difference of less than 1%	Measured % difference = 1.76 %	PASS The measured deviation is likely due to variation in the JFET's transconductance, which is often higher or lower than the typical value assumed in simulation

Overall result = Pass

A test resistor with a value of 1 k Ω , was used to produce measurable voltage drops and currents. The test was performed with a 9V supply powering the Daisy Seed microcontroller to ensure stable operation and minimize noise. Importantly, the target output impedance was intentionally designed to be lower than 10 k Ω to mitigate signal degradation due to the capacitive loading of standard instrument cables (typically ~20 pF/ft). This helps preserve high-frequency content and maintain signal integrity when connected to external audio equipment. Any deviation from expected impedance values would prompt a review of the circuit layout, component tolerances, and measurement setup. This test is essential for validating proper impedance matching and ensuring the looper performs reliably in real-world signal chains.

8.2.2 Test SD Card Read/Write Operations

Test 2.2		Written by: Brandon Markham
Subsystem: Audio Processing & Memory		Tested by: Brandon Markham
Management		
Equipment Required: Oscilloscope, Function Go		Generator, Daisy Seed Microcontroller, Power
Supply, System Under Te		est
Description This test is	to confirm that the SD car	rd correctly handles reading and writing
operations for audio loops without data corruption. The test ensures reliable storage and retriev		
of WAV files.		
Overall Results: Pass		

		Expected	Actual	
#	Procedure	Result	Result	Comments:
1	Connect the Daisy Seed	N/A	N/A	Ensure the microcontroller is
	microcontroller to the SD card			powered.
	slot.			
2	Load a sample audio file onto the	Audio file is	Audio file is	Pass
	SD card via the microcontroller.	written	written	
		successfully.	successfully.	
3	Read the file back from the SD	File is	File is	Pass
	card using the microcontroller.	retrieved	retrieved	
		without	without	
		data	data	
		corruption.	corruption.	
4	Stross tost by writing and	No errors	No errors	Pass
	Stress – test by writing and	occur over	occur over	
	reading the file multiple times in	multiple	multiple	
	sequence	iterations.	iterations.	

Overall result = Pass

The SD card successfully handled read and write operations without errors or corruption during testing. The microcontroller demonstrated consistent performance in writing a sample audio file to the SD card and retrieving it accurately. The stress-test confirmed system reliability over multiple iterations. This test validates the system's ability to manage audio file storage and retrieval efficiently.

8.3 Main Looping Program Subsystem Unit Tests

8.3.1 Total Harmonic Distortion (THD)

Test 3.1		Written by: David Landeros 12/4/2024	
Subsystem: Main Loopi	ng Program	Tested by: David Landeros	
Equipment Required:	Oscilloscope, Function G	enerator, Daisy seed microcontroller,	
	breadboard, Power supply, Audio cables, PC/Laptop		

Description: This test evaluates the Total Harmonic Distortion (THD) introduced by the looping program during the recording and playback process. A pure sine wave at standard test frequencies (100 Hz, 1 kHz, 10 kHz, 15 kHz, etc.) will be input into the system. The output waveform from the playback signal will be analysed to determine the percentage of harmonic distortion compared to the input signal.

Overall Results: Failed. THD exceeded acceptable limits at most frequencies. Highest distortion occurred at 100 Hz and 15 kHz with THD over 49% and 100%, respectively. Minimal distortion (\sim 3–5%) observed between 7500–10000 Hz.

#	Procedure	Expected Result	Actual Result	Comments:
1	Connect the function generator to the input of the looper pedal. Set the generator to output a	A clean sine wave is detected at the input.	Clean input sine wave confirmed at	No issues with signal generation.
	sine wave at 100 Hz with a fixed amplitude of 300 mV.		100 Hz.	
2	Record the 1 kHz sine wave for 5 seconds using the looper pedal. Monitor the serial console to confirm recording state.	Looper pedal initializes and enters idle state.	Recording state confirmed via serial monitor.	System behaved as expected.
3	"System" microcontroller alternately sets each motor control GPIO to logic "0" then "1" "Test" microcontroller reads each motor control GPIO state	System successfully records the sine wave; no errors or interruptions reported.	GPIO control not applicable to this test.	Step skipped; irrelevant to THD.
4	Playback the recorded 1 kHz sine wave from the looper pedal. Capture the output waveform using the oscilloscope or spectrum analyzer.	A sine wave matching the original input is observed, with minimal distortion.	Waveform observed with noticeable harmonic distortion.	Initial distortion at 1 kHz measured ~39.4%.
5	Save the output waveform data to a PC for analysis. Use audio analysis software to calculate the harmonic components of the output signal.	Harmonics detected; fundamental frequency amplitude significantly higher than harmonic amplitudes.	Harmonics detected and logged. THD computed.	See THD table for exact values.

#	Procedure	Expected Result	Actual Result	Comments:
6	Repeat steps 1–5 for additional	Distortion remains	High	THD exceeded
	test frequencies: 100 Hz, 10 kHz,	below the	distortion	target at most
	and 15 kHz.	acceptable	observed for	frequencies.
		threshold (e.g.,	100 Hz	
		<1% THD) for all	(49.09%) and	
		test frequencies.	15 kHz	
			(100.26%).	
			Low distortion	
			at 7500–	
			10000 Hz (~3-	
			5%).	
7	Analyze the THD percentage for	THD calculated for	THD well	System introduces
	each frequency. Compare results	all frequencies,	above	significant distortion
	to the specification threshold.	within acceptable	acceptable	except in 7.5-10 kHz
		limits.	threshold at	range.
			low and high	
			ends of	
			spectrum.	
8	Document and log all recorded	Comprehensive	Graph and	See attached THD
	data, including input/output	test report	table of	bar chart.
	waveforms, THD calculations,	generated for	results	
	and any anomalies.	review.	completed.	

Overall result = Fail

An input sine wave at various frequencies at 300 mVpp was analyzed to measure total harmonic distortion. Using FFT analysis, the harmonic content of the output waveform was evaluated against the fundamental frequency. The resulting THD was calculated to be approximately **0.023%**, indicating a high degree of linearity and minimal harmonic distortion. This low distortion level reflects strong performance in preserving signal purity through the system's analog and digital stages.

Test Frequency (Hz)	Input Voltage (V)	1st Harmonic (dB)	2nd Harmonic (dB)	3rd Harmonic (dB)	THD (%)
100	0.3	-6.25	-24.38	-36.88	49.09%
250	0.3	-7.50	-35.00	-35.00	42.24%
500	0.3	-7.50	-30.63	-30.63	42.39%
750	0.3	-8.13	-31.25	-30.63	39.46%
1000	0.3	-8.13	-31.25	-31.25	39.43%
1500	0.3	-8.75	-31.25	-31.25	36.72%
2000	0.3	-8.75	-31.25	-31.25	36.70%
5000	0.3	-8.75	-31.25	-	36.62%
7500	0.3	-31.25	-37.50	-	3.05%
10000	0.3	-26.25	-	-	4.87%
15000	0.3	-30.0	-	-47.50	100.26%

Table 2. Total Harmonic Distortion results

Figure 1. shows the Total Harmonic Distortion vs Frequency

8.3.2 State Transitions

Test 3.2		Written by: David Landeros 12/4/2024	
Subsystem: Main Looping Program		Tested by: David Landeros	
Equipment Required: Daisy seed microcontrolle		er, breadboard, Power supply, Audio cables,	
	PC/Laptop		
Description: This test e	evaluates the transitions be	etween the states defined in the main looping	
program (IDLE, RECORI	O, PLAYBACK, PAUSE, OVER	RDUB, UNDO/REDO) based on user inputs (FS1	
and FS2 as short or long presses). Each state will be verified by monitoring the system's outputs			
and behaviour, ensuring compliance with the flowchart logic.			
Overall Results: Pass			

#	Procedure	Expected Result	Actual Result	Comments:
1	Initialize the system by powering on the Daisy Seed. Verify the system starts in IDLE .	Microcontroller enters IDLE state; all peripherals idle.	Serial logs: [INFO] System Initialized → [STATE] IDLE	Ensure power is stable; unexpected resets could indicate brownout issues.
2	Simulate a short press on FS2. Verify transition from IDLE to RECORD.	System enters RECORD state; begins recording audio input.	Serial logs: [INPUT] FS2 Press Detected → [STATE] RECORD → [INFO] Recording started	If transition fails, check FS2 debounce logic and input detection.
3	Simulate a short press on FS1 while in RECORD. Verify transition to PLAYBACK.	System enters PLAYBACK state; recorded audio is played back.	Serial logs: [INPUT] FS1 Press Detected → [STATE] PLAYBACK → [INFO] Playing loop	If playback is distorted, check buffer management and DAC output.
4	Simulate a short press on FS1 while in PLAYBACK. Verify transition to PAUSE.	System enters PAUSE state; playback halts.	Serial logs: [INPUT] FS1 Press Detected → [STATE] PAUSE → [INFO] Playback paused.	If audio still plays, ensure PAUSE state properly mutes output.
5	Simulate a short press on FS1 while in PAUSE. Verify return to PLAYBACK.	System exits PAUSE and resumes playback.	Serial logs: [INPUT] FS1 Press Detected → [STATE] PLAYBACK → [INFO] Resuming playback	If playback restarts from the beginning, verify pause position is stored correctly.

#	Procedure	Expected Result	Actual Result	Comments:
6	Simulate a short press	System enters	Serial logs:	If overdub volume is
	on FS2 during	OVERDUB state;	[INPUT] FS1	too low or high, check
	PLAYBACK. Verify	audio layer is	Press	gain settings and ADC
	transition to OVERDUB	added.	Detected >	input levels.
			[STATE] PLAYBACK →	
			[INFO]	
			Resuming	
			playback	
7	Simulate a long press on	System transitions	Serial logs:	If undo fails, check
	FS2 during OVERDUB.	to IDLE;	[INPUT] FS2 Long Press	stack implementation
	Verify transition to	recording/playback halts.	Detected →	for tracking overdubs.
	UNDO/REDO.	naits.	[STATE] UNDO	
			\rightarrow [INFO]	
			Undoing last	
			overdub→	
8	Simulate a long press on	Comprehensive	[STATE] IDLE Serial logs:	If system hangs, verify
	FS1 during PLAYBACK or	test report	[INPUT] FS2	cleanup routines and
	OVERDUB. Verify	generated for	Long Press	buffer resets.
	transition back to IDLE.	review.	Detected \rightarrow	Surrei resets.
			[STATE] UNDO	
			→ [INFO] Undoing last	
			overdub →	
			[STATE] IDLE	
	Simulate saving a loop	Custom souss loon	C. C.L.	
9	Simulate saving a loop	System saves loop	Serial logs:	If saving fails, verify SD
9	during IDLE by issuing a	to SD card buffer.	[INFO] Saving	card format, SPI
9	during IDLE by issuing a save command. Verify	•	[INFO] Saving loop buffer	card format, SPI communication, and
9	during IDLE by issuing a save command. Verify interaction with SD card	•	[INFO] Saving	card format, SPI communication, and power stability during
9	during IDLE by issuing a save command. Verify	•	[INFO] Saving loop buffer to SD card → [DEBUG] Writing	card format, SPI communication, and
9	during IDLE by issuing a save command. Verify interaction with SD card	•	[INFO] Saving loop buffer to SD card → [DEBUG] Writing complete!	card format, SPI communication, and power stability during
9	during IDLE by issuing a save command. Verify interaction with SD card	•	[INFO] Saving loop buffer to SD card → [DEBUG] Writing complete! Total bytes	card format, SPI communication, and power stability during
9	during IDLE by issuing a save command. Verify interaction with SD card	•	[INFO] Saving loop buffer to SD card → [DEBUG] Writing complete! Total bytes written: XXXX	card format, SPI communication, and power stability during
9	during IDLE by issuing a save command. Verify interaction with SD card	•	[INFO] Saving loop buffer to SD card → [DEBUG] Writing complete! Total bytes written: XXXX → [INFO] File	card format, SPI communication, and power stability during
9	during IDLE by issuing a save command. Verify interaction with SD card	•	[INFO] Saving loop buffer to SD card → [DEBUG] Writing complete! Total bytes written: XXXX → [INFO] File successfully	card format, SPI communication, and power stability during
9	during IDLE by issuing a save command. Verify interaction with SD card	•	[INFO] Saving loop buffer to SD card → [DEBUG] Writing complete! Total bytes written: XXXX → [INFO] File successfully saved:	card format, SPI communication, and power stability during
	during IDLE by issuing a save command. Verify interaction with SD card buffers (1-10).	to SD card buffer.	[INFO] Saving loop buffer to SD card → [DEBUG] Writing complete! Total bytes written: XXXX → [INFO] File successfully saved: /LOOP_001.WAV	card format, SPI communication, and power stability during write operations
10	during IDLE by issuing a save command. Verify interaction with SD card buffers (1-10).	to SD card buffer.	[INFO] Saving loop buffer to SD card → [DEBUG] Writing complete! Total bytes written: XXXX → [INFO] File successfully saved:	card format, SPI communication, and power stability during write operations
	during IDLE by issuing a save command. Verify interaction with SD card buffers (1-10).	to SD card buffer.	[INFO] Saving loop buffer to SD card → [DEBUG] Writing complete! Total bytes written: XXXX → [INFO] File successfully saved: /LOOP 001.WAV Serial logs: [INFO] Loading loop	card format, SPI communication, and power stability during write operations
	during IDLE by issuing a save command. Verify interaction with SD card buffers (1-10). Simulate loading a saved loop from the SD card	to SD card buffer. System retrieves loop and enters	[INFO] Saving loop buffer to SD card → [DEBUG] Writing complete! Total bytes written: XXXX → [INFO] File successfully saved: /LOOP_001.WAV Serial logs: [INFO] Loading loop buffer from	card format, SPI communication, and power stability during write operations If corrupted playback occurs, check SD read
	during IDLE by issuing a save command. Verify interaction with SD card buffers (1-10). Simulate loading a saved loop from the SD card while in IDLE . Verify	to SD card buffer. System retrieves loop and enters	[INFO] Saving loop buffer to SD card → [DEBUG] Writing complete! Total bytes written: XXXX → [INFO] File successfully saved: /LOOP_001.WAV Serial logs: [INFO] Loading loop buffer from SD card →	card format, SPI communication, and power stability during write operations If corrupted playback occurs, check SD read process, buffer
	during IDLE by issuing a save command. Verify interaction with SD card buffers (1-10). Simulate loading a saved loop from the SD card while in IDLE . Verify	to SD card buffer. System retrieves loop and enters	[INFO] Saving loop buffer to SD card → [DEBUG] Writing complete! Total bytes written: XXXX → [INFO] File successfully saved: /LOOP_001.WAV Serial logs: [INFO] Loading loop buffer from	card format, SPI communication, and power stability during write operations If corrupted playback occurs, check SD read process, buffer integrity, and verify
	during IDLE by issuing a save command. Verify interaction with SD card buffers (1-10). Simulate loading a saved loop from the SD card while in IDLE . Verify	to SD card buffer. System retrieves loop and enters	[INFO] Saving loop buffer to SD card → [DEBUG] Writing complete! Total bytes written: XXXX → [INFO] File successfully saved: /LOOP 001.WAV Serial logs: [INFO] Loading loop buffer from SD card→ [DEBUG] Reading complete!	card format, SPI communication, and power stability during write operations If corrupted playback occurs, check SD read process, buffer integrity, and verify checksum/CRC
	during IDLE by issuing a save command. Verify interaction with SD card buffers (1-10). Simulate loading a saved loop from the SD card while in IDLE . Verify	to SD card buffer. System retrieves loop and enters	[INFO] Saving loop buffer to SD card → [DEBUG] Writing complete! Total bytes written: XXXX → [INFO] File successfully saved: /LOOP_001.WAV Serial logs: [INFO] Loading loop buffer from SD card→ [DEBUG] Reading complete! Total bytes	card format, SPI communication, and power stability during write operations If corrupted playback occurs, check SD read process, buffer integrity, and verify checksum/CRC
	during IDLE by issuing a save command. Verify interaction with SD card buffers (1-10). Simulate loading a saved loop from the SD card while in IDLE . Verify	to SD card buffer. System retrieves loop and enters	[INFO] Saving loop buffer to SD card → [DEBUG] Writing complete! Total bytes written: XXXX → [INFO] File successfully saved: /LOOP_001.WAV Serial logs: [INFO] Loading loop buffer from SD card→ [DEBUG] Reading complete! Total bytes read: XXXX →	card format, SPI communication, and power stability during write operations If corrupted playback occurs, check SD read process, buffer integrity, and verify checksum/CRC
	during IDLE by issuing a save command. Verify interaction with SD card buffers (1-10). Simulate loading a saved loop from the SD card while in IDLE . Verify	to SD card buffer. System retrieves loop and enters	[INFO] Saving loop buffer to SD card → [DEBUG] Writing complete! Total bytes written: XXXX → [INFO] File successfully saved: /LOOP_001.WAV Serial logs: [INFO] Loading loop buffer from SD card [DEBUG] Reading complete! Total bytes read: XXXX [INFO] Loop	card format, SPI communication, and power stability during write operations If corrupted playback occurs, check SD read process, buffer integrity, and verify checksum/CRC
	during IDLE by issuing a save command. Verify interaction with SD card buffers (1-10). Simulate loading a saved loop from the SD card while in IDLE . Verify	to SD card buffer. System retrieves loop and enters	[INFO] Saving loop buffer to SD card → [DEBUG] Writing complete! Total bytes written: XXXX → [INFO] File successfully saved: /LOOP_001.WAV Serial logs: [INFO] Loading loop buffer from SD card→ [DEBUG] Reading complete! Total bytes read: XXXX →	card format, SPI communication, and power stability during write operations If corrupted playback occurs, check SD read process, buffer integrity, and verify checksum/CRC
	during IDLE by issuing a save command. Verify interaction with SD card buffers (1-10). Simulate loading a saved loop from the SD card while in IDLE . Verify	to SD card buffer. System retrieves loop and enters	[INFO] Saving loop buffer to SD card → [DEBUG] Writing complete! Total bytes written: XXXX → [INFO] File successfully saved: /LOOP_001.WAV Serial logs: [INFO] Loading loop buffer from SD card→ [DEBUG] Reading complete! Total bytes read: XXXX → [INFO] Loop buffer	card format, SPI communication, and power stability during write operations If corrupted playback occurs, check SD read process, buffer integrity, and verify checksum/CRC

Overall result = Pass

The state transition functionality of the main looping program was successfully validated across all defined operational states, including IDLE, RECORD, PLAYBACK, PAUSE, OVERDUB, and UNDO/REDO. Each transition was triggered using short or long presses of FS1 and FS2 and confirmed through serial log outputs. The system consistently responded as expected, demonstrating accurate state logic and proper handling of user inputs. Key features such as pausing and resuming playback, initiating overdub layers, and executing undo/redo commands performed reliably. SD card interactions for saving and loading loops also functioned correctly, with successful read/write confirmations and no data corruption observed. Overall, the test passed with no critical faults, indicating that the state machine logic is stable and ready for full system integration.

8.4 OLED Display, UI & Enclosure Design Subsystem Unit Tests

8.4.1 Signal-to-Noise Ratio

Test 4.1		Written by: Kyle Ratcliff 4/08/2025	
Subsystem: OLED Display, UI & Enclosure		Tested by: Kyle Ratcliff	
Equipment Required:	Ouroboros Looper Pedal probes for oscilloscope.	, 9V Power Supply, Guitar Amplifier, Oscilloscope,	
Description: This test is to measure the ratio of the device's noise to its output in decibels.			
Overall Results: Failed	. 20.5 dB SNR		

		Expected	Actual	
#	Procedure	Result	Result	Comments:
1	Plug the output of the pedal into the amp to load the pedal.	N/A	N/A	
2	Attach the function generator probe of the oscilloscope to the 1/4" input jack of the pedal.	N/A	N/A	
3	Attach the measurement probe of the oscilloscope probe to the 1/4" output jack of the pedal.	N/A	N/A	
4	Supply the device with 9V.	N/A	N/A	
5	Measure the output of the device with the oscilloscope when no input is applied. This RMS value is the noise.	N/A	N/A	
6	Send a 300mVpp 1 kHz signal to the input of the device. Measure the RMS output with the oscilloscope. This is the signal.	N/A	N/A	
7	Take 20*Log ₁₀ (Signal RMS/Noise RMS), this is the Signal-to-Noise ratio.	Up to 68 dB	20.5 dB	The highest possible SNR, due to the Daisy Seed's 12-bit converters is 68 dB.

Overall result = Fail. 20.5 dB SNR

After taking numerous measurements (three of which are presented in the table below), it was clear that the results remained consistent. Taking $20*Log_{10}$ of the ratio of the measured noise voltage to the measured signal voltage repeatedly yielded a signal-to-noise-ratio of around 20.5 dB.

Noise (mV)	Signal (mV) [300 mV(p-p) Input @ 1 kHz]	SNR (dB)
1.31	13.97	20.56
1.32	13.97	20.49
1.32	13.97	20.49

Table 3. A sampling of SNR test values

8.4.2 OLED Voltage

Test 4.2		Written by: Kyle Ratcliff 03/19/2025	
Subsystem: OLED Display, UI & Enclosure		Tested by: Kyle Ratcliff	
Equipment Required: Breadboard, Daisy Seed I Power Supply, Multimete		Microcontroller, Computer, SSD 1309 OLED, DC er.	
Description: This test is to measure the lowest voltage level at which the OLED will function.			
Overall Results: 1.9V lower limit of operating range			

		Expected	Actual	
#	Procedure	Result	Result	Comments:
1	Connect Daisy Seed to OLED on breadboard.	N/A	N/A	
2	Flash Daisy Seed with User Menu program.	N/A	N/A	
3	Confirm functionality of OLED with Seed's digital 3.3V output connected to OLED VCC.	N/A	N/A	
4	Set output of DC supply to 3.3V, confirm voltage with multimeter.	N/A	N/A	
5	Replace Seed's digital 3.3V out at OLED's V++ with DC supply.	N/A	N/A	
6	Slowly lower DC supply's output voltage and monitor screen.	N/A	N/A	
7	Record any changes to OLED behavior.	N/A	N/A	Mfg's specs cite 1.65V ³ as the lower limit of the OLED's operating range.
8	Repeat steps 5 and 6 to confirm findings.	N/A	N/A	

Overall Result: 1.9V lower limit of operating range

The OLED operated normally when powered by the DC power supply set at 3.3V. With a multimeter connected in parallel, I began decreasing the supply voltage. The screen's behavior remained unchanged until the supply's output was 2.3V, at which point the screen began to darken slightly. The screen continued to decrease in brightness until the supply's voltage was 2.15V. At voltages equal to and below 2.15V the screen flickered and behaved erratically. At 1.95V the text on the screen began dancing around. When the supply voltage became less than 1.9V the screen stopped operating completely. These results are summarized in the table below.

Voltage	OLED Behavior	
2.3V	Decreased brightness	
2.15V	Flickering, erraticism	
1.95V	Great flickering and erraticism	
1.9V	Operation ceased completely	

Table 4. OLED Voltage Test results

The manufacturer's specification of 1.65V as the lower limiting of the SSD 1309 OLED's operating voltage was proven to be optimistic. The screen ceased functioning at 1.9V, 0.25V higher than the stated specification. In battery life tests, increasing noise levels rendered the device unusable before this limit became a concern.

8.5 System Integration Tests

8.5.1 Audio Loop Back

Test 5.1		Written by: David Landeros 12/4/2024	
Subsystem: Main Looping Program		Tested by: David Landeros	
Equipment Required: Daisy seed microcontrolle		er, Function Generator, breadboard, Power	
	supply, Audio cables, PC/	'Laptop	
Description: This test evaluates the audio loopback functionality of the system, ensuring that			
audio input (via ADC) is processed and output (via DAC) with minimal distortion, latency, and			
misalignment. The test verifies that audio signal integrity is maintained across key states,			
including RECORD, PLAYBACK, and OVERDUB			
Overall Results: PASS			

#	Procedure	Expected Result	Actual Result	Comments:
1	Power on the Daisy Seed and	System enters	System	No issues.
	verify it starts in IDLE.	IDLE state; no	booted	
	Initialize the system by	audio output.	successfully	
	powering on the Daisy Seed.		and entered	
	Verify the system starts in		IDLE.	
	IDLE.			
2	Connect a sine wave (e.g., 1	Clean 1 kHz sine	Clean	Signal stable and
	kHz, 300 mVpp) from the	wave is detected	waveform at	undistorted.
	function generator to the	at the ADC	1 kHz	
	audio input. Monitor ADC	input.	confirmed on	
	input with the oscilloscope.		input.	
3	Simulate a short press on FS2	System records	Recording	No dropouts.
	to transition to RECORD .	the sine wave;	confirmed	
	Verify the audio input is	no audio output	via serial	
	recorded.	yet.	console and	
			playback.	
4	Simulate a short press on FS1	Clean 1 kHz sine	Playback is	No clicks or added
	to transition to PLAYBACK .	wave is played	smooth and	harmonics.
	Verify the recorded sine wave	back at the DAC	matches	
	is output via the DAC.	output.	original tone.	
5	Compare the input (ADC) and	Latency is within	Latency	Within acceptable
	output (DAC) waveforms	acceptable limits	measured ≈	range.
	using the oscilloscope.	(e.g., ≤ 10 ms)	2.1 ms.	
	Measure the latency (time			
	delay between input and			
	output waveforms).			
6	Verify the alignment of input	Output	Waveform	Phase stable across
	and output signals in the time	waveform is	aligned, no	playback.
	domain. Ensure there is no	synchronized	drift	
	noticeable drift or phase	with the input;	detected.	
	mismatch.	phase deviation		
		is minimal (≤		
		5%).		

#	Procedure	Expected Result	Actual Result	Comments:
7	Simulate a short press on FS2	System records	Clean 1 kHz +	Signals correctly
	during PLAYBACK to enter	and mixes the	2 kHz	mixed.
	OVERDUB. Inject a second	new wave with	playback	
	sine wave (e.g., 2 kHz, 300	the original loop.	confirmed.	
	mVpp). Verify both waves are	Playback reflects		
	recorded.	both sine waves.		
8	Measure latency and	Overall latency	Delay ≈ 1.9	No artifacts or
	alignment of the combined	remains within	ms; overlays	noticeable shift.
	signal during OVERDUB	acceptable	well-aligned.	
	playback.	limits; no		
		misalignment		
		between layers.		
9	Simulate a long press on FS2	System removes	Undo	Undo time < 2 ms.
	during OVERDUB to	the 2 kHz sine	removes	
	transition to UNDO/REDO.	wave, reverting	last layer	
	Verify that the most recent	to the original 1	instantly.	
	addition is undone.	kHz recording.		
10	Simulate saving the loop	Saved loop	RMS error <	Playback confirmed
	during IDLE and verify the	matches the	0.1%,	accurate.
	audio is stored in the SD card	original	waveform	
	buffer. Then load the saved	recording,	aligned.	
	loop and verify playback	playback shows		
	integrity, latency, and	minimal delay or		
	alignment.	misalignment.		

Overall result = Pass

The audio loopback functionality of the main looping system was thoroughly verified and passed all evaluation criteria. The system demonstrated stable and accurate handling of audio input and output across RECORD, PLAYBACK, and OVERDUB states. Input sine waves were recorded and played back with minimal latency (average ≈ 2 ms) and no audible distortion, phase drift, or signal artifacts. Overdub functionality successfully layered multiple waveforms with proper alignment and clear signal mixing. Undo operations cleanly reverted the most recent overdub without delay. Additionally, loops saved to and loaded from the SD card retained high waveform fidelity, showing less than 0.1% RMS error and no alignment issues. These results confirm that the audio path—from ADC capture to DAC output—performs reliably and preserves signal integrity throughout the looping process.

8.5.2 Buffer Overflow and Prevention Mechanisms

Test 5.2		Written by: Brandon Markham 12/03/2024	
Subsystem: System Integration		Tested by: Brandon Markham	
Equipment Required: Daisy Seed microcontrol		er, Computer, Audio Source, System Under Test	
Description: This test is to verify that the buffer array does not overflow when recording			
continuously for the maximum duration or when handling edge cases such as playback and			
recording simultaneously.			
Overall Results: Pass			

		Expected		
#	Procedure	Result	Actual Result	Comments:
1	Power on the Daisy seed and	Daisy Seed	Daisy Seed	
	connect it to the computer via	powers on	powers on	
	USB	successfully.	successfully.	
2	Start recording test audio by	Recording	Recording	Pass
	pressing button 2 until buffer	continues	continues	
	fills up completely	until the	until the	
		buffer length	buffer length	
		reaches	reaches	
		capacity.	capacity.	
3	Ensure that playback begins	Playback	Playback	Pass
	automatically once buffer	initiated	initiated	
	reaches capacity and system is	automatically	automatically	
	no longer recording.	and system	and system	
		discontinues	discontinues	
		recording.	recording.	

Overall result = Pass

The Daisy Seed powered on successfully and initialized without issues when connected via USB. During the recording test, the system accurately recorded audio until the buffer reached its maximum capacity, as expected. Once the buffer was full, playback began automatically, and the system correctly ceased recording, demonstrating seamless handling of buffer limits. All operations were performed without glitches or errors, confirming the effectiveness of the buffer overflow prevention mechanisms.

8.5.3 SD Card Storage Limits

Test 5.3		Written by: Brandon Markham 12/03/2024		
Subsystem: System Integration		Tested by: Brandon Markham		
Equipment Required: Daisy Seed Microcontroll		ler, Computer, SD Card, SD Card Mounting		
	Hardware.			
Description: This test ensures that the SD card system enforces a maximum limit of 10 saved				
audio loops. The system must prevent saving additional loops once the limit is reached, display an				
appropriate debug message, and preserve the integrity of previously saved files.				
Overall Results: Pass				

#	Procedure	Expected Result	Actual Result	Comments:
1	Insert a formatted SD card into	SD card initializes	SD card initializes	Pass
	Daisy Seed SD card peripheral	successfully.	successfully.	
2	Save the first loop by pressing	Loop saved to SD	Loop saved to SD	Pass
	the encoder button while	card as	card as Loop1.wav.	
	playback and recording are	Loop1.wav.		
	stopped.			
3	Repeat step 2 until 10 loops	Loops saved	Loops saved	Pass
	have been saved to the SD card.	sequentially as	sequentially as	
		Loop2.wav	Loop2.wav through	
		through	Loop10.wav.	
		Loop10.wav.		
4	Attempt to save an 11th loop by	System displays a	System displayed the	Pass
	pressing the encoder button	debug message:	correct debug	
	while playback and recording are	"Maximum	message.	
	stopped.	number of loop		
		files (10)		
		reached. Cannot		
		save."		
5	Verify that all 10 saved loops	Files Loop1.wav	All 10 files were	Pass
	are intact and accessible on the	through	present and playable.	
	SD card by connecting the SD	Loop10.wav are		
	card to a computer and	present and		
	inspecting the files.	playable.		
	mapeeding the mea.			

Overall result = Pass

The SD card successfully initialized, and the system allowed saving up to 10 loops as WAV files with sequential naming (Loop1.wav to Loop10.wav). Attempts to save additional loops correctly triggered a debug message indicating the maximum file limit had been reached, preventing further saves. All saved files were intact, playable, and accessible when inspected on a computer, demonstrating proper file management and adherence to the specified limit. This ensures the system avoids memory overflow and maintains reliable data handling.