TP Analyse de données - Apprentissage non supervisé

Introduction

Nous allons utiliser le logiciel R (documentation ; possibilité d'utiliser Rstudio). Dans un dossier AnalyseDeDonnees créer deux sous dossiers :

- Code dans lequel vous placerez vos fichiers de code
- Data dans lequel vous placerez les fichiers du répertoire "Data" (à télécharger via Moodle)

Les 3 TP Analyse de données présentent différentes méthodes d'analyse de données : le but n'est pas de finir les TP le plus vite possible mais d'analyser les résultats! Un rapport de 1 page **maximum** vous est demandé pour chacun des 3 TP : ne choisir que les résultats les plus intéressants et les **commenter**.

Ne pas hésiter à utiliser l'aide de R grâce à la commande :

```
help(...)
```

Analyse en composantes principales

- 0. Télécharger le cours sur l'Analyse en Composantes Principales.
- 1. Créer un fichier ACP.R dans le dossier Code. Charger les packages d'intérêt en ajoutant dans le fichier :

```
# Adresse du dossier où vous travaillez
setwd("/Users/.../AnalyseDonnees/TP/TP/Code")
# Packages utilisés dans la suite
library("FactoMineR")
library(PCAmixdata)
```

2. Charger les données et les afficher :

```
# Chargement des données
load("../Data/eaux.RData")
# Affichage des données
print(data,digits=4)
```

3. Calculer la moyenne et l'écart type de chacune des variables :

```
# Calcul de la moyenne et de l'écart type des variables
mean <- apply(data,2,mean)
std <- apply(data,2,sd) #standard deviation
stat <- rbind(mean,std)
# Affichage
print(stat,digits=4)</pre>
```

4. Afficher les données centrées-réduites :

```
# Création des données centrées ...
datanorm <- sweep(data,2,mean,"-")
# ... et réduites
datanorm <- sweep(datanorm,2,std,"/")
# Affichage des données centrées - réduites
print(datanorm,digits=4)
```

5. Visualiser la description bivariée des 5 premières variables :

```
# Visualisation des données en description bivariée
pairs(data[,1:5])
# Afficher la matrice de corrélation
ggcorr(data[,1:5])
# Aller encore plus loin avec ggpairs
ggpairs(data[,1:5])
```

6. Afficher la matrice des distances entre les individus et les corrélations entre les variables :

```
# Matrice des distances entre les individus
dist(data)
# Corrélation entre les variables
cor(data[,1:5])
```

7. Faire l'Analyse en Composantes Principales sur les données d'origine :

```
# Analyse en composantes principales sur les données d'origine
# (scale.unit=FALSE)
res <- PCA(data,graph=FALSE,scale.unit=FALSE)
# Figure individus
plot(res,choix="ind",cex=1.5,title="")
# Figure variables
plot(res,choix="var",cex=1.5,title="")</pre>
```

8. Faire l'Analyse en Composantes Principales sur les données centrées-réduites :

```
# Analyse en composantes principales sur les données centrées-réduites
# (par défaut: scale.unit=TRUE)

resnorm <- PCA(data,graph=FALSE)

# Figure individus

plot(resnorm,choix="ind",cex=1.5,title="")

# Figure variables

plot(resnorm,choix="var",cex=1.5,title="")
```

9. Interprétation des résultats : combien de composantes peut-on retenir ? Utiliser les règles de Kaiser et du coude.

```
# Inertie (variance) des composantes principales
resnorm$eig
barplot(resnorm$eig[,1])
```

10. Interprétation des résultats : qualité de la projection des individus (angle entre l'individu et les composantes principales)

```
# Projection des individus
resnorm$ind$cos2
# Somme avec les 2 premières
resnorm$ind$cos2[,1]+resnorm$ind$cos2[,2]
# Et les 3 premières ?
resnorm$ind$cos2[,1]+resnorm$ind$cos2[,2]+resnorm$ind$cos2[,3]
```

11. Interprétation des résultats : contribution des individus (à regarder en même temps que le graphe de projection)

```
# Contribution des individus
resnorm$ind$contrib
```

12. Interprétation des résultats : qualité de la projection et contribution des variables

```
# Projection des variables
resnorm$var$cos2
# Somme avec les 2 premières
resnorm$var$cos2[,1]+resnorm$var$cos2[,2]
# Et les 3 ?
resnorm$var$cos2[,1]+resnorm$var$cos2[,2]+resnorm$var$cos2[,3]
# Contribution des variables
resnorm$var$contrib
```

En plus - Quand vous faites de l'ACP il y a deux erreurs à éviter :

- Attention aux données très asymétriques : par exemple beaucoup de très petites valeurs et quelques très grandes (dans ce cas là une transformation des données peut être utile ...).
- Attention à l'effet *taille* (toutes les variables ont des contributions positives sur un axe) quand les données sont corrélées entre elles.

0. Télécharger le cours sur le partitionnement.

Partitionnement kmeans

1. Créer un fichier partitionnement.R dans le dossier Code. Charger les packages d'intérêt en ajoutant dans le fichier :

```
# Adresse du dossier où vous travaillez
setwd("/Users/.../AnalyseDonnees/TP/TP/Code")
# Packages utilisés dans la suite
library("FactoMineR")
```

2. Charger les données et les afficher :

```
# Données sur les fromages
X<-read.table("../Data/fromage.txt",sep="",header=TRUE,row.names=1)
print(X)</pre>
```

3. Calculer la moyenne et l'écart type de chacune des variables :

```
# Calcul de la moyenne et de l'écart type des variables
mean <- apply(X,2,mean)
std <- apply(X,2,sd) #standard deviation
stat <- rbind(mean,std)
# Affichage
print(stat,digits=4)</pre>
```

4. Créer et afficher les données centrées-réduites :

```
# Création des données centrées ...

Xnorm <- sweep(X,2,mean,"-")

# ... et réduites

Xnorm <- sweep(Xnorm,2,std,"/")

# Affichage des données centrées - réduites

print(Xnorm,digits=4)
```

5. Fixer le nombre de clusters souhaité (faire varier ce paramètre à la fin de l'exercice!)

```
# Nombre de clusters souhaité
numcluster <- 5
```

6. Appliquer l'algorithme des kmeans sur les données brutes ... puis sur les données centrées réduites. étudier les résultats obtenus :

```
## KMEANS

## KMEANS

# Algorithme des kmeans (avec affichage)

km <- kmeans(X,numcluster,nstart=50)

print(km)

# Algorithme des kmeans sur données centrées-réduites (avec affichage)

kmnorm <- kmeans(Xnorm,numcluster,nstart=50)

print(kmnorm)
```

7. Comme il y a plus de 2 variables dans cet exemple nous ne pouvons pas visualiser facilement les résultats ... L'ACP peut nous y aider : on va afficher les clusters sur les premières directions principales. Tout d'abord concaténer aux données le résultat obtenu par l'algorithme des kmeans pour les 2 cas considérées :

```
# Concatenation des données avec leur résultat de cluster
cluster <- as.factor(km$cluster)
clusternorm <- as.factor(kmnorm$cluster)
XplusCluster <- data.frame(X,cluster=cluster)
XnormplusCluster <- data.frame(Xnorm,cluster=clusternorm)
colclust <- length(X)+1
print(XplusCluster)
print(XnormplusCluster)
```

8. Mettre en place l'ACP sur les données brutes et afficher les résultats. Les couleurs correspondent aux différents clusters. Interpréter les résultats.

```
# ACP sur les données brutes

rPCA <- PCA(XplusCluster,scale.unit=FALSE,graph=FALSE,quali.sup=colclust)

# Nuage des individus et des variables dans le premier plan factoriel

par(mfrow=c(1,2))

plot.PCA(rPCA,axes=c(1,2),choix="ind",habillage=colclust,invisible="quali")

plot.PCA(rPCA,axes=c(1,2),choix="var")

# Nuage des individus et des variables dans le deuxième plan factoriel

par(mfrow=c(1,2))

plot.PCA(rPCA,axes=c(1,3),choix="ind",habillage=colclust,invisible="quali")

plot.PCA(rPCA,axes=c(1,3),choix="var")
```

9. Mettre en place l'ACP sur les données centrées-réduites et afficher les résultats. Les couleurs correspondent aux différents clusters. Interpréter les résultats.

```
# ACP sur les données centrées-réduites
rPCAnorm <- PCA(XnormplusCluster,graph=FALSE,quali.sup=colclust)

# Nuage des individus et des variables dans le premier plan factoriel
par(mfrow=c(1,2))
plot.PCA(rPCAnorm,,axes=c(1,2),choix="ind",habillage=colclust,invisible="quali")
plot.PCA(rPCAnorm,axes=c(1,2),choix="var")

# Nuage des individus et des variables dans le deuxième plan factoriel
par(mfrow=c(1,2))
plot.PCA(rPCAnorm,axes=c(1,3),choix="ind",habillage=colclust,invisible="quali")
plot.PCA(rPCAnorm,axes=c(1,3),choix="ind",habillage=colclust,invisible="quali")
plot.PCA(rPCAnorm,axes=c(1,3),choix="var")
```

Partitionnement hiérarchique (distance de Ward)

10. Mettre en place la classification hiérarchique de Ward sur les données brutes ... :

```
#Classification hiérarchique de Ward sur données brutes
d <- dist(X)
tree <- hclust(d^2,method="ward.D2")
par(mfrow=c(1,1))
plot(tree)
```

11. ... ainsi que sur les données centrées-réduites :

```
#Classification hiérarchique de Ward sur données centrées-réduites
dnorm <- dist(Xnorm)
treenorm <- hclust(dnorm^2,method="ward.D2")
plot(treenorm)
```

12. Concaténer les données avec leurs résultats de cluster en vue de l'ACP :

```
# Concatenation des données avec leur résultat de cluster
clusterW <- as.factor(cutree(tree,numcluster))
XplusClusterW <- data.frame(X,cluster=clusterW)
print(XplusClusterW)
clusternormW <- as.factor(cutree(treenorm,numcluster))
XnormplusClustW <- data.frame(Xnorm,cluster=clusternormW)
print(XnormplusClustW)
```

13. Mise en place de l'ACP sur les données brutes :

```
# ACP sur les données brutes

rPCAW <- PCA(XplusClusterW,scale.unit=FALSE,graph=FALSE,quali.sup=colclust)

# Nuage des individus et des variables dans le premier plan factoriel

par(mfrow=c(1,2))

plot.PCA(rPCAW,axes=c(1,2),choix="ind",habillage=colclust,invisible="quali")

plot.PCA(rPCAW,axes=c(1,2),choix="var")

# Nuage des individus et des variables dans le deuxième plan factoriel

par(mfrow=c(1,2))

plot.PCA(rPCAW,axes=c(1,3),choix="ind",habillage=colclust,invisible="quali")

plot.PCA(rPCAW,axes=c(1,3),choix="ind",habillage=colclust,invisible="quali")

plot.PCA(rPCAW,axes=c(1,3),choix="var")
```

14. Mise en place de l'ACP sur les données centrées-réduites :

```
# ACP sur les données centrées-réduites

rPCAnormW <- PCA(XnormplusClustW,scale.unit=FALSE,graph=FALSE,quali.sup=colclust)

# Nuage des individus et des variables dans le premier plan factoriel

par(mfrow=c(1,2))

plot.PCA(rPCAnormW,axes=c(1,2),choix="ind",habillage=colclust,invisible="quali")

plot.PCA(rPCAnormW,axes=c(1,2),choix="var")

# Nuage des individus et des variables dans le deuxième plan factoriel

par(mfrow=c(1,2))

plot.PCA(rPCAnormW,axes=c(1,3),choix="ind",habillage=colclust,invisible="quali")

plot.PCA(rPCAnormW,axes=c(1,3),choix="var")
```