Threshold signatures from different group actions

Giacomo Borin 2025.04.30 - SQIparty - Lleida SPAIN

- N-out-of-N case
- Active security
- T-out-of-N case
- Few words on open problems and DKG

(Threshold) Signatures

An (T,N)-threshold digital signature scheme is a protocol where any subset of at least T out of N key owners can sign an agreed message, but not one of less than T.

Cryptographic Group Actions

- Definitions

- Effective, i.e. we can efficiently:
 - compute, sample & canonically represent elements in G
 - compute the action of <u>all the elements</u> of G
- Cryptographic:
 - Vectorization: given x, y it is hard to find g s.t. $g \star x = y$
 - Parallelisation: given $x, y = g \star x, z = h \star x$ and w it is hard to say if $w = (gh) \star x$

Cryptographic Group Actions

- Instantiations

- Isomorphism problems from Tensors/Coding Theory (1)+ > Non-Abelian
- Class Group acting on Oriented Supersingular Elliptic Curves:
 - CSI-FiSh (2) > Cyclic > We can work with $\mathbb{Z}/\#G\mathbb{Z}$
 - PEGASIS (3) > Abelian

⁽¹⁾ Barenghi A, Biasse JF, Persichetti E, Santini P. LESS-FM: fine-tuning signatures from the code equivalence problem.

⁽²⁾ Beullens W, Kleinjung T, Vercauteren F. CSI-FiSh: efficient isogeny based signatures through class group computations.

⁽³⁾ Dartois P, Eriksen JK, Fouotsa TB, Le Merdy AH, Invernizzi R, Robert D, Rueger R, Vercauteren F, Wesolowski B. PEGASIS: Practical Effective Class Group Action using 4-Dimensional Isogenies.

-Repeat λ times;
-With FiatShamir transform you get a signature;
-Boneh et.al.
(2): you need to do that at least

 λ group actions.

- (1) De Feo L, Galbraith SD. SeaSign: compact isogeny signatures from class group actions
- (2) Boneh D, Guan J, Zhandry M. A lower bound on the length of signatures based on group actions and generic isogenies.

- the intermediate pks are in relation given by:

$$y_{i+1} = g_{i+1} \star y_i$$

- in the abelian case we can compress the response phase to one round
- the hard part is the sharing of the secret, not the commitment

How to make this secure against active attackers?

- (1) Cozzo D, Smart NP. Sashimi: cutting up CSI-FiSh secret keys to produce an actively secure distributed signing protocol.
- (2) Battagliola M, Borin G, Meneghetti A, Persichetti E. Cutting the grass: Threshold group action signature schemes.

- In an active scenario the last user can always perform a basic version of the ROS attack;
- Solution from (1):
 - Add a ZKPoK for every action performed in commitment generation;
 - Con: Very inefficient (memo: Boneh et.al. result);
 - Pro: Simple and imply adaptive security.
- Solution from (2):
 - use secure randomness + verify all intermediate signatures
 - Pro: Much more efficient;
 - Con: Requires to know all intermediate public keys.

	Passive, Non-Abelian	Passive, Abelian	Active, with ZKPs	Active, with Secure Randomness
# Rounds	N + N	N + 1	N + 1 + 1	N + N + 1
Complexity	Ο(Ν λ)	Ο(Ν λ)	O(N λ²)	Ο(Ν λ)
Share size	Ο(λ)	Ο(λ)	Ο(λ)	Ο(Ν λ)

How to make this for T-out-of-N ?
<u>Cyclic Case</u>

Shamir Secret Sharing

- Idea: each authorised subset of parties L can write the secret as a linear combination of their shares $s=\lambda_{S,1}s_1+\cdots+\lambda_{S,T}s_T$, then $y=[\lambda_{S,1}s_1]\cdots[\lambda_{S,T}s_T]$ x
- **Problem 1:** requires G to be a ring with division, but #G is composite,
 - ullet Remark: the denominator abs is bounded by N
 - Solution: modify the generator so that $N \leq$ all prime factors of #G;
- Problem 2: still requires T rounds.
- Problem 3: ZKPs becomes much more complicated (PVP)

Replicated Secret Sharing

- Idea: increase (<u>exponentially</u>) the number of secrets and assign the knowledge to multiple parties;
- Example: 2-out-of-3 users:

- (1) Desmedt Y, Di Crescenzo G, Burmester M. Multiplicative non-abelian sharing schemes and their application to threshold cryptography.
- (2) Battagliola M, Borin G, Di Crescenzo G, Meneghetti A, Persichetti E. Enhancing Threshold Group Action Signature Schemes: Adaptive Security and Scalability Improvements.

'Vandermonde' Secret Sharing

Recursive idea, use algorithmically the Vandermonde inequality:

$$\binom{N}{T} = \sum_{k=0}^{T} \binom{b}{k} \cdot \binom{N-b}{T-k}$$

- Recursive evaluation of T-out-of-N:
 - If T=1 or T=N share the secret in the 'obvious way'
 - If $T \le 0$ or T > N ignore the sharing
 - Otherwise:
 - divide in two groups of size $\approx N/2$
 - for each k do a k-out-of-N/2 and T-k-out-of-N/2 sharing

Replicated Secret Sharing

Less efficient, but simpler

'Vandermonde' Secret Sharing

More complicated, but efficient

How to make this for T-out-of-N ?

<u>Abelian Case</u> (open)

• Problem: no field like structure (since #G is unknown):

$$\lambda_{S,i} = \frac{\prod_{j \in S} j}{\prod_{j \in S} (j-i)}$$
 I need to make sense of this division!

- Note: this is the same problem they had with RSA.
- Solution 1a: work on $\mathbb Z$ and use LISS, not compatible with PVP.
- Solution 1b: multiply by N! so we are in \mathbb{Z} (compatible with PVP?)
- Solution 2: use previous Vandermonde Sharing:
 - Active security with ZKPs or with <u>Secure Randomness</u>

	Shamir	Replicated	Vandermonde	Vandermonde
	Cyclic	Non-Abelian	Non-Abelian	Abelian
# Rounds	2T + 1	$2\binom{N}{T-1}+1$	2T + 1	T + 2
Signing Complexity	O(N λ²)	$O\left(\binom{N}{T-1}\lambda\right)$	Ο(Τ λ)	Ο(Τ λ)
Share size	O(1)	$O\left(\binom{N}{T-1}\lambda\right)$	$O(NT^{\log N}\lambda)$	$O(NT^{\log N}\lambda)$

How to distribute the generation of the key? (open)

- (1) Atapoor S, Baghery K, Cozzo D, Pedersen R. CSI-SharK: CSI-FiSh with sharing-friendly keys.
- (2) Frixons P, Gilchrist V, Kutas P, Merz SP, Petit C. Another Look at the Quantum Security of the Vectorization Problem with Shifted Inputs.
- (3) Cozzo D, Smart NP. Sashimi: cutting up CSI-FiSh secret keys to produce an actively secure distributed signing protocol.
- Option 1: CSI-SharK (1) introduces PVP,
 - Requires an assumption that is quantumly broken (2).
- Option 2: Sashimi (3) approach in the KeyGen,
 - lacktriangleright Working, but the number of iterations is $inom{N}{T-1}$,
 - Assumption not secure for the non-abelian case,
 - **Option 2b:** Extractable ZKPoK with commitment at the start to the secret.
- Option 3 [OPEN]: can we have DKG for the Vandermonde Sharing?

Thanks

