

Problema ksiruri – descrierea soluției

autor prof. Dan Pracsiu

Deoarece fiecare șir s_i conține cel mult 10 cifre distincte, atunci se poate asocia șirului un număr în baza 2 format din 10 biți, deci dacă de exemplu s_i =0,2,4,5, atunci numărul în baza 2 este 1010110000. Rezultă că fiecărui șir i se asociază un număr în baza 10 corespunzător secvenței de 10 biți, iar acest lucru înseamnă că numerele asociate pot avea valori cuprinse între 0 și 1023.

Cum putem efectua rapid operația definită de scădere? Se pot utiliza operațiile pe biți. Operația de scădere înseamnă să rămână biții de 1 care sunt în s_i și nu sunt în s_j , adică $s_i^{\ }(s_i \& s_j)$, unde ^ este operatorul XOR pe biți, iar & este AND pe biți. Valoarea $s_i \& s_j$ conține doar biții de 1 comuni, iar apoi XOR va elimina din rezultat biții de 1 care sunt și în s_i , și în s_j .

Am asociat (cum am arătat mai sus) șirurilor s_1, s_2, \ldots, s_n un șir de numere $a=a_1, a_2, \ldots, a_n$. Pentru rezolvarea problemei vom utiliza programarea dinamică. Construim vectorul d de lungime 1024 în care, la fiecare pas al algoritmului, d[i] va memora numărul subșirurilor $s_{i1}, s_{i2}, \ldots, s_{ip}$ pentru care $s_{i1}-s_{i2}-\ldots-s_{ip}=i$, pentru orice i=0...1023.

Parcurgem șirul a descrescător de la n la 1. Inițial, d[a[n]]=1.

Pentru fiecare i=n-1..1, considerăm a_i ca fiind capătul stâng al tuturor subșirurilor de forma a_i , x_1 , x_2 , ... x_p , deci trebuie să calculăm a_i -X, unde X este rezultatul aplicării scăderii în restul subșirului (nu uităm că operația de scădere se aplică de la dreapta la stânga!). Deci vom efectua practic operația a_i -X pentru toare valorile X în care d[X] este nenul.

După parcurgerea celor n pași, soluția se află adunând toate acele valori d[i], cu i=0..1023 și pentru care i are cel puțin K biți în reprezentarea în baza 2.

Numărul de operații efectuate de algoritm este 1024·n.