

Partie 5 Timer

Timer

- Un Timer est un compteur programmable qui est incrémenté à chaque cycle d'une horloge interne au microcontrôleur
- Quelle est son utilité?
 - Générer des délais (à la place d'une boucle for)
 - Mesurer des temps
 - Générer des signaux en fonction des délais ou des temps mesurés

Timers et LPC2378

- Le LPC2378 possède plusieurs timers
 - 4 Timers 32 bits à usage général (T0, T1, T2, T3)
 - 4 entrées de Capture par timer
 - 4 registres de comparaison par timer

1 Générateur de signaux PWM (avec Timer 32 bits)

1 Watchdog Timer de 32 bits

- PCLK: Horloge périphérique
 - Différente de celle du processeur (CCLK)
 - La valeur de PCLK est proportionnelle à celle de CCLK
 - Par défaut, F(PCLK)= F(CCLK)/ 4
 - Modifiable à l'aide des registres PCLKSEL0 et PCLKSEL1

- Prescaler et Prescal Register
 - Précompteurs
 - Prescaler s'incrémente à chaque cycle de PCLK
 - Lorsque le Prescaler atteint la valeur du Prescaler Register, le Timer s'incrémente

- Prescaler et Prescal Register
 - Au Reset, Prescaler = Prescaler Register = 0
 - Par défaut, le Timer s'incrémente à chaque cycle de PCLK

Registres Correspondants

Timer Counter : TxTC (Lecture seule)

Prescaler : TxPC (Lecture seule)

Prescaler Register : TxPR

- x = 0,1,2 ou 3

Prescaler Reg

Timer Control

Registre de Commande

- Registre TxTCR (x=0,1,2 ou 3)
 - Bit 0: Démarrage/Arrêt du Compteur
 - Bit 1: Reset du Compteur

Table 430: Timer Control Register (TCR, TIMERn: TnTCR - addresses 0xE000 4004, 0xE000 8004, 0xE007 0004, 0xE007 4004) bit description

Bit	Symbol	Description	Reset Value
0	Counter Enable	When one, the Timer Counter and Prescale Counter are enabled for counting. When zero, the counters are disabled.	0
1	Counter Reset	When one, the Timer Counter and the Prescale Counter are synchronously reset on the next positive edge of PCLK. The counters remain reset until TCR[1] is returned to zero.	0

Match (Comparaison)

- Chaque Timer possède 4 Match Register
 - TxMR0, TxMR1, TxMR2, TxMR3

- A chaque incrémentation du Timer Tx, le contenu de TxTC est comparé aux Match Registers
 - Si les deux valeurs sont égales, une action peut alors être entreprise
- Intérêt: Permet de déterminer la durée d'une temporisation

Actions et Match Registers

- Les actions entreprises sont définies par le Match Control Register TxMCR
- Selon sa valeur il est possible de
 - Demander une interruption
 - D'arrêter le Timer
 - De remettre à 0 la valeur du Timer
- Ces 3 actions sont indépendantes et peuvent avoir lieu simultanément
- Tout ceci n'intervient que si TxTC = TxMRy

Registre TxMCR

- Registre 16 bits (12 bits utiles) 3 bits par Timer
 - Pour TxMR0
 - Bit 0: Demande d'interruption
 - Bit 1: Reset
 - Bit 2: Stop

Bit	Symbol	Value	Description	Reset Value
0	MR0I	1	Interrupt on MR0: an interrupt is generated when MR0 matches the value in the TC.	0
		0	This interrupt is disabled	
1	MR0R	1	Reset on MR0: the TC will be reset if MR0 matches it.	0
		0	Feature disabled.	
2	MR0S	1	Stop on MR0: the TC and PC will be stopped and TCR[0] will be set to 0 if MR0 matches the TC.	0
		0	Feature disabled.	

Même fonctionnement pour TxMR1 (Bits 3-5), TxMR2 (Bits 6-8) et TxMR3 (Bits 9-11)

Durée des Temporisations

 Comment calculer le temps qu'il faudra au compteur du Timer pour arriver à la valeur d'un Match Register (T0MR0 par exemple)

 De même, comment déterminer la valeur à écrire dans T0MR0 pour effectuer une temporisation d'une durée T

$$TOMR0 = T \times F(PCLK)$$

Registre d'Interruption du Timer

Registre 8 bits TxIR

- Chaque bit correspond à une source d'interruption
- Au niveau du contrôleur, ces 8 sources sont reliées au même numéro de canal (4 pour Timer 0)

Bit	Symbol	Description	Reset Value
0	MR0 Interrupt	Interrupt flag for match channel 0.	0
1	MR1 Interrupt	Interrupt flag for match channel 1.	0
2	MR2 Interrupt	Interrupt flag for match channel 2.	0
3	MR3 Interrupt	Interrupt flag for match channel 3.	0
4	CR0 Interrupt	Interrupt flag for capture channel 0 event.	0
5	CR1 Interrupt	Interrupt flag for capture channel 1 event.	0
6	CR2 Interrupt	Interrupt flag for capture channel 2 event.	0
7	CR3 Interrupt	Interrupt flag for capture channel 3 event.	0

- Si une source demande une interruption, son bit passe à 1
- Pour acquitter l'IRQ, il faut écrire un 1 sur le bit correspondant

Exemple

- Génération d'un signal périodique de période 2 ms et de rapport cyclique 50% sur la broche P2.0
 - Données: CCLK=48 MHz.

Procédure d'Initialisation

```
#include "LPC23xx.h"
void init_T0(void)
{
   FIO..DIR =
   VICVectAddr.. =
   VICIntEnable =
   TOMR.. =
   TOMCR =
   TOTCR =
  }
```

Sous Programme d'Interruption

```
void (void) _ _irq
{

T..IR =
   VICVectAddr =
```

Programme Principal

```
int main()
{
```