

数据库原理

王兴梅 计算机科学与技术学院

Email:wangxingmei@hrbeu.edu.cn

第二章 关系数据库

- 2.1 关系模型概述
- 2.2 关系数据结构
- 2.3 关系操作
- 2.4 关系的完整性
- 2.5 关系代数
- 2.6 小结

2.5 关系代数

- 概述
- 传统的集合运算
- 专门的关系运算

- 1. 关系代数
- 2. 运算的三要素
- 3. 关系代数运算的三个要素
- 4. 关系代数运算的分类
- 5. 表示记号

- 1.关系代数
 - 一种抽象的查询语言

用对关系的运算来表达查询

2. 关系代数运算的三个要素

运算对象: 关系

运算结果: 关系

运算符: 四类

- 集合运算符
 - > 将关系看成元组的集合
 - ▶运算是从关系的"水平"方向即行的角度来进行
- 专门的关系运算符
 - > 不仅涉及行而且涉及列
- 算术比较符
 - ▶ 辅助专门的关系运算符进行操作
- 逻辑运算符
 - ▶ 辅助专门的关系运算符进行操作

表2.4 关系代数运算符

运第	百符	含义	运第	工 符	含义
集合	J	并	比於	. V	大于
	-	差交	较运	∠	大于等于 小干
运算	×	广义笛	算符	<u> </u>	小于等于
符		卡尔积	11	=	等于
				≠	不等于

表2.4 关系代数运算符(续)

运算符	含义		运算符	含义	
专门的 关系	σπ	选择投影	逻辑运 算符		非与
运算符	₩ ÷	连接除		V	或
	·				

4. 关系代数运算的分类 传统的集合运算 并、差、交、广义笛卡尔积 专门的关系运算 选择、投影、连接、除

2.4 关系代数

- 概述
- 传统的集合运算
- 专门的关系运算

2.4.1 传统的集合运算

- 并
- 差
- 交
- 广义笛卡尔积

1. 并(Union)

- R和S
 - \triangleright 具有相同的目n(即两个关系都有n个属性)
 - ▶相应的属性取自同一个域

- RUS
 - ▶ 仍为n目关系,由属于R或属于S的元组组成 $R \cup S = \{ t | t \in R \lor t \in S \}$

计算机科学与技术学院

并

R

Α	В	С
a1	b1	c1
a1	b2	<i>c</i> 2
a2	b2	c1

S

Α	В	С
a1	<i>b</i> 2	<i>c</i> 2
a1	<i>b</i> 3	<i>c</i> 2
a2	b2	c1

 $R \cup S$

A	В	С
a1	b1	c1
a1	<i>b</i> 2	c 2
a2	<i>b</i> 2	c 1
a1	b3	<i>c</i> 2

2. 差 (Difference)

- R和S
 - \triangleright 具有相同的目n
 - ▶相应的属性取自同一个域

- R S
 - ▶仍为n目关系,由属于R且不属于S的所有元组组成

$$R - S = \{ t | t \in R \land t \notin S \}$$

计算机科学与技术学院

差

R

A	В	С
a1	<i>b</i> 1	c1
a1	<i>b</i> 2	<i>c</i> 2
a2	<i>b</i> 2	c1

R-S

A	В	С
a1	<i>b</i> 1	c1

S

Α	В	С
a1	<i>b</i> 2	c2
a1	<i>b</i> 3	<i>c</i> 2
a2	<i>b</i> 2	c1

3. 交(Intersection)

- R和S
 - \triangleright 具有相同的目n
 - ▶相应的属性取自同一个域

- $\blacksquare R \cap S$
 - ightharpoonup 仍为n目关系,由既属于R又属于S的元组组成

$$R \cap S = \{ t | t \in R \land t \in S \}$$
$$R \cap S = R - (R - S)$$

计算机科学与技术学院

交

R

Α	В	С
a1	<i>b</i> 1	c1
a1	<i>b</i> 2	c2
a2	<i>b</i> 2	c 1

 $R \cap S$

A	В	С
a1	b2	<i>c</i> 2
a2	<i>b</i> 2	c1

S

Α	В	С
a1	<i>b</i> 2	c2
a1	<i>b</i> 3	<i>c</i> 2
a2	<i>b</i> 2	c1

4. 广义笛卡尔积(Extended Cartesian Product)

- R
 - $\rightarrow n$ 目关系, k_1 个元组
- S
 - ▶ m目关系,k₂个元组
- $\blacksquare R \times S$
 - \triangleright 列: (n+m) 列的元组的集合
 - 元组的前n列是关系R的一个元组
 - 后*m*列是关系**S**的一个元组

 - ► 行: $k_1 \times k_2$ 个元组 $R \times S = \{t_r, t_s | t_r \in R \land t_s \in S\}$

广义笛卡尔积

	Α	В	С
R	a1	<i>b</i> 1	c1
	a1	<i>b</i> 2	<i>c</i> 2
	a2	<i>b</i> 2	c1

 $R \times S$

	Α	В	С
5	a1	<i>b</i> 2	<i>c</i> 2
	a1	b3	<i>c</i> 2
	a2	<i>b</i> 2	c1

RA	RB	RC	SA	SB	SC
a1	b1	c1	a1	b2	<i>c</i> 2
a1	b1	c1	a1	b3	<i>c</i> 2
a1	b1	c1	a2	b2	c1
a1	b2	<i>c</i> 2	a1	b2	<i>c</i> 2
a1	b2	<i>c</i> 2	a1	b3	<i>c</i> 2
a1	b2	<i>c</i> 2	a2	b2	c1
a2	b2	c1	a1	b2	<i>c</i> 2
a2	b2	c1	a1	b3	<i>c</i> 2
a2	b2	c1	a2	b2	c1

2.4 关系代数

- 概述
- 传统的集合运算
- 专门的关系运算

2.4.2 专门的关系运算

- 选择
- 投影
- 连接
- 除

1. 选择(Selection)

- 1) 选择又称为限制(Restriction)
- 2) 选择运算符的含义
 - ► 在关系R中选择满足给定条件的诸元组

$$\sigma_{\mathsf{F}}(R) = \{t | t \in R \land F(t) = '\bar{\mathbf{A}}'\}$$

- ▶ F: 选择条件,是一个逻辑表达式,基本形式为:
 - $[\neg(]X_1\theta Y_1[])[\varphi[\neg(]X_2\theta Y_2[])]...$
 - θ: 比较运算符(>,≥,<,≤,=或<>)
 - X₁, Y₁等:属性名、常量、简单函数;属性名也可以用它的序号来代替;
 - φ: 逻辑运算符(¬、∧或∨)
 - []: 表示任选项
 - ...: 表示上述格式可以重复下去

选择

■ 3) 选择运算是从关系R中选取使逻辑表达式F为真的元组,是从行的角度进行的运算。

■ 4) 举例

计算机科学与技术学院

有职工表S,试找出满足条件性别="女"的元组集。

职工编号	姓名	性别	所在部门
1001	张力	女	物资资源
1002	胡爱军	男	市场营销
1003	阿法	女	企划部
1004	曾玲	女	公关部
1005	刘逸飞	男	市场营销

选择条件为:性别='女',用选择表示为:

$$\sigma_{$$
性别='女'} (S)

计算机科学与技术学院

结果如下:

职工编号	姓名	性别	所在部门
1001	张力	女	物资资源
1003	阿法	女	企划部
1004	曾玲	女	公关部

选择

- ▶对元组进行操作,行变、列一定不变!
- ▶只作用于单一关系之上!

2. 投影(Projection)

- 1)投影运算符的含义
 - ► 从R中选择出若干属性列组成新的关系

$$\pi_{\mathcal{A}}(R) = \{ t[A] \mid t \in R \}$$

A: R中的属性列

2. 投影(Projection)

• 2) 投影操作主要是从列的角度进行运算

▶但投影之后不仅取消了原关系中的某些列,而 且还可能取消某些元组(避免重复行)

计算机科学与技术学院

• 3) 举例

学生表student,查询学生的姓名和所在系 即求Student关系上学生姓名和所在系两个属性上的投影

Student

学号	姓名	性别	年龄	所在系
Sno	Sname	Ssex	Sage	Sdept
200215121	李勇	男	20	CS
200215122	刘晨	女	19	IS
200215123	王敏	女	19	MA
200215125	张立	男	18	IS

投影表示为: π_{Sname, Sdept}(Student)

或 $\pi_{2,5}$ (Student)

结果如下:

Sname	Sdept
李勇	CS
刘晨	IS
王敏	MA
张立	IS

3. 连接(Join)

- 1)连接也称为θ连接
- 2) 连接运算的含义
 - ▶从两个关系的笛卡尔积中选取属性间满足一定条件的元组

$$R \bowtie_{A \theta B} S = \{ \widehat{t_{\mathbf{r}} t_{\mathbf{s}}} | t_{\mathbf{r}} \in R \land t_{\mathbf{s}} \in S \land t_{\mathbf{r}}[A] \theta t_{\mathbf{s}}[B] \}$$

- A和B:分别为R和S上度数相等且可比的属性组
- ■θ: 比较运算符
- ➤ 连接运算从*R*和*S*的广义笛卡尔积*R*×*S*中 选取(*R*关系)在*A*属性组上的值与(*S*关 系)在*B*属性组上值满足比较关系的元组。

- 3) 两类常用连接运算
 - ▶等值连接(equijoin)
 - ■什么是等值连接
 - ▶θ为"="的连接运算称为等值连接
 - ■等值连接的含义
 - ▶从关系*R*与*S*的广义笛卡尔积中选取*A、B*属性值相等的那些元组,即等值连接为:

$$R \bowtie S = \{ \widehat{t_{\mathbf{r}} t_{\mathbf{s}}} \mid t_{\mathbf{r}} \in R \land t_{\mathbf{s}} \in S \land t_{\mathbf{r}}[A] = t_{\mathbf{s}}[B] \}$$

- 自然连接(Natural join)
 - ▶ 什么是自然连接
 - ■自然连接是一种特殊的等值连接
 - 两个关系中进行比较的分量必须是相同的属性组
 - 在结果中把重复的属性列去掉
 - > 自然连接的含义

R和S具有相同属性组B, U为R和S的全体属性集合。

$$R \bowtie S = \{ \widehat{t_r t_s} \text{ [U-B]} | t_r \in R \land t_s \in S \land t_r[B] = t_s[B] \}$$

■ 4) 一般的连接操作是从行的角度进行运算。

自然连接还需要取消重复列,所以是同时从行和列的角度进行运算。

• 5) 举例

A	В	C
a_1	b_1	5
a_1	b ₂	6
a_2	b ₃	8
a_2	b_4	12

В	E
b_1	3
b_2	7
b ₃	10
I	
b_3	2

R

 $R \underset{C \leq E}{\bowtie} S_{\Gamma}$

$oldsymbol{A}$	R.B	C	S.B	E
a_1	b_1	5	b_2	7
a_1	b_1	5	b_3	10
a_1	$\boldsymbol{b_2}$	6	b_2	7
a_1	$\boldsymbol{b_2}$	6	b_3	10
a_2	b_3	8	b_3	10

连接

等值连接 R 以 S R.B=S.B

A	R.B	<i>C</i>	S.B	E
a_1	b_1	5	b_1	3
a_1	b_2	6	b_2	7
a_2	b_3	8	b_3	10
a_2	b_3	8	b_3	2

连接

自然连接 $R \bowtie S$

A	В	C	E
a_1	\boldsymbol{b}_1	5	3
a_1	\boldsymbol{b}_2	6	7
a_2	b ₃	8	10
a_2	b ₃	8	2

4. 除(Division)

给定关系R (X, Y) 和S (Y, Z), 其中X, Y, Z为属性组。 R中的Y与S中的Y可以有不同的属性名,但必须出自相同的 域集。R与S的除运算得到一个新的关系P(X), P是R中满 足下列条件的元组在X属性列上的投影:元组在X上分量值 x的象集Y_x包含S在Y上投影的集合。

$$R \div S = \{t_r[X] \mid t_r \in R \land \pi_Y(S) \subseteq Y_X\}$$

 Y_x : x在R中的象集, $x = t_r[X]$

除

■ 2)除操作是同时从行和列角度进行运算

• 3) 举例

除

	\boldsymbol{A}	В	C
	a_1	b_1	c_2
	a_2	b_3	c_7
,	a_3	b_4	<i>c</i> ₆
•	a_1	b_2	c_3
	a_4	\boldsymbol{b}_6	<i>c</i> ₆
	a_2	b_2	c_3
	a_1	b_2	c_1

B	C	D
b_1	c_2	d_1
b_2	c_1	d_1
b_2	c_3	d_2

$R \div S$
\boldsymbol{A}
a_1

分析:

在关系R中,A可以取四个值 $\{a_1, a_2, a_3, a_4\}$ a_1 的象集为 $\{(b_1, c_2), (b_2, c_3), (b_2, c_1)\}$ a_2 的象集为 $\{(b_3, c_7), (b_2, c_3)\}$ a_3 的象集为 $\{(b_4, c_6)\}$ a_4 的象集为 $\{(b_6, c_6)\}$ S在(B, C)上的投影为 $\{(b_1, c_2), (b_2, c_1), (b_2, c_3)\}$

只有 a_1 的象集包含了S在(B, C)属性组上的投影

所以 $R \div S = \{a_1\}$

$oldsymbol{A}$	В	<i>C</i>
a_1	\boldsymbol{b}_1	c_2
a_2	b ₃	<i>c</i> ₇
a_3	b_4	<i>c</i> ₆
a_1	b_2	c_3
a_4	b_6	<i>c</i> ₆
a_2	b_2	c_3
a_1	b_2	c_1

$oldsymbol{A}$	В	C
a_1	b_1	$c^{}_2$
a_1	b_2	c_3
<i>a</i> ₁	b_2	c_1
a_2	b_3	c_7
a_2	b_2	c_3
a_3	b_4	<i>c</i> ₆
a_4	b_6	<i>c</i> ₆

$oldsymbol{A}$	\boldsymbol{B}	<i>C</i>
a_1	b_1	c_2
<i>a</i> ₁	b_2	c_3
<i>a</i> ₁	b_2	c_1
a_2	b ₃	<i>c</i> ₇
a_2	b ₂	<i>c</i> ₃
a_3	b_4	<i>c</i> ₆
a_4	b_6	<i>c</i> ₆

В	C	D
b ₁	c_2	d_1
\boldsymbol{b}_2	c_1	d_1
\boldsymbol{b}_2	c_3	d_2

$$R \div S$$
 A a_1

小结

- 关系代数运算
 - 关系代数运算并、差、交、笛卡尔积、投影、选择、连接、除
 - ▶ 基本运算 并、差、笛卡尔积、投影、选择
 - 交、连接、除可以用5种基本运算来表达引进它们并不增加语言的能力,但可以简化表达

小结(续)

- 关系代数表达式
 - > 关系代数运算经有限次复合后形成的式子
- 典型关系代数语言
 - ➤ ISBL (Information System Base Language)
 - 由IBM United Kingdom研究中心研制
 - ■用于PRTV (Peterlee Relational Test Vehicle) 实验系统

■ 已知三个关系R1, R2, S, 如下图:

X	Υ	Z
X	5	k
X	6	у
У	5	k
Z	6	У

X	Υ	Z
X	3	С
У	5	k
Z	6	У
İ	5	f
j	6	f

Y	Z
5	k
6	у

试求: 1. R1×S=?

2. R1-R2=?

3. R1 \div S=? 4. $\sigma_{Y>5\lor Z\neq' f'}$ (R2)=?

5. $\pi_{Y,Z}(R2) = ?$

- 设有数据库 S(Sno,Sname,Sage,Ssex)
- C(Cno,Cname, Cpno)SC(Sno,Cno,Grade)
- 试用关系代数表达式表示一下查询要求:
- 1.查询选修了课程号为C2的学生号;
- π Sno (σ Cno='2' (SC))
- 2.查询选修数据库课程的女学生的学生号;
- πSno (σCname='DB'∧Ssex= '女' (S◯C◯SC))
- 3.查询至少选修C1和C3课程的学生号;
- π Sno, Cno (SC) ÷ π Cno (σ Cno='C1'∨Cno='C3'(C))
- 4.查询至少选修一门先行课号为C5的学生姓名;
- πSname(σCpno='C5'(C) SC πSno, Sname(S))

设有数据库

EMP(Eno,Ename,age,sex)职工表WORK(Eno,Cno,Salary)工作表

COMP(Cno,Cname,Caddr)公司表

试用关系代数表达式表示以下查询:

- 1.查询超过50岁的男性职工的工号和姓名;
- 2.假设每个职工只能在一个公司工作,查询工资超过1000元的男性职工的工号和姓名;
- 3.查询在"联华公司"工作的职工工号和姓名;
- 4.假设每个职工可在多个公司工作,查询在编号为C4和C8的公司兼职的职工工号和姓名;
- 5.查询在"联华公司"工作,工资超过1000元男性的职工工 号和姓名。

本章小结

基本内容:

关系数据库的基本概念,关系模型及其描述,关系数据库语言,关系代数。

重要知识点:

- 1.关系模型的三类完整性规则
- 2.关系代数的九个操作

本章题型:

选择,填空,简答题,应用题