Reti combinatorie: moduli di base

Codificatore

- Realizza la funzione di **codifica binaria**, ossia associare ad ogni elemento di un insieme Γ composto da **m simboli**, una sequenza distinta di n bit
- Per ogni simbolo tale circuito genera il codice corrispondente $2^{n} \ge m$
- m linee di ingresso $x_0,...,x_{m-1}$, n linea di uscita $y_0,...,y_{n-1}$
 - La linea x_i è associata al simbolo i-simo
 - Quando $x_i=1$, e $x_j=0$ ($j\neq i$), in uscita è presente il codice corrispondente al simbolo i-simo

Esempio

· Codifica cifre decimali in BCD

\/	-\	/_\	1.	/_
7	3)	21	71.	7 U

0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001

Decodificatore

- Realizza la funzione inversa del codificatore, a partire da una parola di un codice in binario genera una uscita che identifica uno dei simboli dell'insieme Γ .
- Per ogni configurazione di ingresso, una sola uscita vale 1, le altre hanno valore 0

Esempio

· Decoder BCD-Cifre decimali (prima realizzazione)

$x_3x_2x_1x_0$	Y 9 Y 8 Y 7 Y 6 Y 6 Y 5 Y 4 Y 3 Y 2 Y 1 Y 0
0000	0000000001
0001	0000000010
0010	0000000100
0011	0000001000
0100	0000010000
0101	0000100000
0110	0001000000
0111	0010000000
1000	0100000000
1001	1000000000

Esempio

· Decoder BCD-Cifre decimali (seconda realizzazione)

$x_3x_2x_1x_0$	Y 9 Y 8 Y 7 Y 6 Y 6 Y 5 Y 4 Y 3 Y 2 Y 1 Y 0
----------------	--

0000	0000000001
0001	0000000010
0010	0000000100
0011	0000001000
0100	0000010000
0101	0000100000
0110	0001000000
0111	0010000000
1000	0100000000
1001	1000000000

Decodificatore con enable

- E' dotato di un ulteriore ingresso di abilitazione E (detto anche strobe)
- Il decodificatore è abilitato (ossia il processo di decodifica ha luogo) solo quando E=1

Realizzazione di funzioni tramite decoder

$x_2x_1x_0$	f
000	1
001	0
010	0
011	0
100	1
101	0
110	1
111	1

Realizzazione di funzioni tramite decoder (con Enable tree-state)

ROM (Read Only Memory)

 Insieme di locazioni di memoria che possono essere lette specificandone l'indirizzo

 Una ROM è un circuito combinatorio (dato un ingresso c'è una sola uscita)

Schema logico di una ROM

Funzioni di commutazioni realizzate come OR di mintermini

O fusibile

Implementazione ROM con C-MOS

ROM 4x4 (numero parole x dimensione parola)

Implementazione ROM (2)

• Esempio, indirizzo 01, uscita=0001

ROM temporizzazioni

- ta: tempo di propagazione dall'ingresso X all'uscita Z
- · tcs: tempo di propagazione dall'ingresso cs all'uscita Z
- · toe: tempo di propagazione dall'ingresso oe all'uscita Z
- t v: tempo di mantenimento dell'uscita da quando commuta X o cs o oe
- · ta: tempo di disabilitazione dell'uscita da quando commuta cs o oe

Multiplexer (MUX 2n:1)

- · Ingressi
 - m=2ⁿ ingressi dati
 - n ingressi di selezione (controllo)
- Uscita
 - Una fra le m, a seconda del controllo

S	y
0 1	$egin{array}{c} X_0 \ X_1 \end{array}$
 2 ⁿ -1	X_{2}^{n}

MUX 4-2

MUX - Generatore di funzioni

DEMUX 2-4

Half Adder - Semisommatore

· Ingresso 2 bit, uscita 2 bit

In	Out
A B	C S
0 0	0 0
0 1	0 1
10	0 1
1 1	10

C=AB

$$S=(not A)B + A(not B)=A \oplus B$$

Full Adder - Addizionatore completo

Cin+ A+

B=

Cout S

Cin		A	В	
	•	+		
	\		T	

Cout S

In	Out
A B Cin	Cout S
0 0 0	0 0
001	0 1
010	0 1
011	1 0
100	0 1
101	1 0
110	1 0
111	1 1

S vale 1 solo quando un numero dispari di bit di ingresso vale 1. Quindi, $S=A\oplus B\oplus C$

Ripple Carry Adder (RCA)

Il tempo per ottenere il risultato è pari ad nTc, dove Tc è il tempo di propagazione del riporto

Addizionatore/Sottrattore

ALU (bit slice)

op	У
0.0	a AND b
0 1	a OR b
10	(a+b+cin) mod 2
11	??

op seleziona il tipo di operazione (la configurazione 11 non è ammessa-prevista)

ALU a 32 bit (bit slice)

ALU (bit slice)

op	InvertiB	c _{in}	у
0.0	0	-	a AND b
0 0	1	-	A AND (NOT b)
0 1	0	-	a OR b
0 1	1	-	A OR (NOT b)
10	0	0	(a+b+cin) mod 2
10	1	1	(a-b)*

* = rappresentazioni in complemento a 2

ALU a 32 bit

op	Inverti B	у
0 0	-	A AND B
0 1	-	A OR B
10	0	A + B
10	1	A-B

Per stabilire se si verifica overflow È sufficiente confrontare se in corrispondenza del MSB, $c_{in} \neq c_{out}$

Supporto ALU per i salti

- Vogliamo ampliare la ALU in modo che sia in grado di rilevare la condizione a=b
- Tale condizione è utile per far eseguire istruzioni in modo condizionato (jump)
- Indichiamo con Zero la variabile binaria cosi definita:
 - Zero=1 se e solo se a=b
- Per calcolare Zero osserviamo che a=b <-> a-b=0
 - Pertanto Zero=1 se e solo se tutti i bit dell'operazione a-b sono nulli. Ossia, Zero coincide col mintermine m_0 definito sulgli n bit r_0 ... r_{n-1} che rappresentatno la differenza.
 - Zero= m_0 = (not r_0)(not r_1)...(not r_{n-1})= not ($r_0+r_1...+r_{n-1}$)

ALU a 32 bit

Progetto di un sommatore con operandi a due bit

$a_1b_1a_0b_0$	$r_{out}s_1\!s_0$
0000	0 0 0
0 0 0 1	0 0 1
0010	0 0 1
0011	010
0 1 0 0	010
0 1 0 1	011
0110	0 1 1
0111	100
1000	010
1 0 0 1	0 1 1
1010	011
1011	100
1 1 0 0	100
1 1 0 1	101
1110	101
1 1 1 1	1 1 0

Sintesi

Confronto con approccio iterativo

Commento sulle operazioni aritmetiche

- · <u>Sottrazione</u>: si può implementare come addizione con operandi rappresentati in complemento a due
- ·Moltiplicazione: si può implementare come somme successive
- ·Divisione: si può implementare come sottrazioni successive

Quindi tutte le operazioni si potrebbero implementare solo con il <u>circuito addizionatore</u>, anche se poi le moltiplicazioni e le divisioni si realizzano, per motivi di velocità, con circuiti sequenziali ad hoc.