Lab Assessment -2

Design and Analysis of Algorithms:

Time: 60 Min

Write the program to execute the following scenarios:

- 1. There is a pizza with 3n slices of varying size, you and your friends will take slices of pizza as follows:
 - You will pick any pizza slice.
 - Your friend Alice will pick next slice in anti-clockwise direction of your pick.
 - Your friend Bob will pick next slice in clockwise direction of your pick.
 - Repeat until there are no more slices of pizzas.
 - Sizes of Pizza slices is represented by circular array slices in clockwise direction.
 - Return the maximum possible sum of slice sizes which you can have.

Example 1:

Input: slices = [1,2,3,4,5,6]

Output: 10

Explanation: Pick pizza slice of size 4, Alice and Bob will pick slices with size 3 and 5 respectively. Then Pick slices with size 6, finally Alice and Bob will pick slice of size 2 and 1 respectively. Total = 4 + 6.

(Note: Use Dynamic Programming Approach)

2. You are given with a bag of n balls indexed from 0 to n-1. A number is written on each ball represented by an array numbers. You are asked to pick up all the balls from the bag. If you take ith ball, you will get numbers[i-1] * numbers[i] * numbers[i+1] coins. If i-1 or i+1 goes out of bounds of the array treat it as if there is a ball with 1 written on it. Find the maximum coins you can collect by taking the balls wisely.

Example:

Input: nums = [3,1,5,8]

Output: 167

Explanation: nums = [3,1,5,8] --> [3,5,8] --> [3,8] --> [8] --> [9] coins = 3*1*5 + 3*5*8 + 1*3*8 + 1*8*1 = 167

(Note: Use Divide and Conquer Approach)