

191

AD-A188

(2)

USAFOEHL REPORT - 87-144EQ0086LEF

STACK EMISSION TESTING FOR BERYLLIUM, HILL AFB UT

MARY M. DALY, Capt, USAF, BSC

November 1987

DTIC ELECTE DEC 1 7 1987

Final Report

Distribution is unlimited; approved for public release

USAF Occupational and Environmental Health Laboratory
Human Systems Division (AFSC)
Brooks Air Force Base, Texas 78235-5501

NOTICES

When Government drawings, specifications, or other data are used for any purpose other than a definitely related Government procurement operation. the Government thereby incurs no responsibility nor any obligation whatsoever. The fact that the Government may have formulated, or in any way supplied the said drawing, specifications, or other data, is not to be regarded by implication, or other-wise, as in any manner licensing the holder or any other person or corporation; or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

The mention of trade names or commercial products in this publication is for illustration purposes and does not constitute endorsement or recommendation for use by the United States Air Force.

Do not return this copy. Retain or destroy.

Air Force installations may direct requests for copies of this report to: USAF Occupational and Environmental Health Laboratory (USAFOEHL) Library, Brooks AFB TX 78235-5501.

Other Government agencies and their contractors registered with the DTIC should direct requests for copies of this report to: Defense Technical Information Center (DTIC), Cameron Station, Alexandria VA 22314.

Non-Government agencies may purchase copies of this report from: National Technical Information Service (NTIS), 5285 Port Royal Road, Springfield VA 22161

The Public Affairs Office has reviewed this report, and it is releasable to the National Technical Information Service, where it will be available to the general public, including foreign nations.

This report has been reviewed and is approved for publication.

JOHN J. COUGHLIN, Colonel, USAF,

Commander

Prepared By:

MARY M. JALY, Capt, USAF BSC Consultant, Air Quality Engineer

Reviewed By:

SAMES A. GARRISON, Major, USAF, BSC Chief, Air Quality Function

SHELTON R. BIRCH, Colonel, USAF, BSC

Reviewed By: \

Chief, Consultant Services Division

MARLIN L. SWEIGART, Lt Col, USAF, BSC

Chief, Environmental Quality Branch

LNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE

		R	EPORT D	OCUMENTATIO	N PAGE			Form Approved OMB No. 0204-0188
la. REPORT SECUL Unclassified		IFICATIO	ON		16. RESTRICTIVE	MARKINGS 4	SX	791
2a. SECURITY CLA		N AUTH	ORITY		3. DISTRIBUTION	AVAILABILITY OF	REPORT	
N/A			,			ion is unlim		
2b. DECLASSIFICA	TION / DOW	NGRAD	ING SCHEDU	LE	approved	for public r	elease	•
4. PERFORMING O	RGANIZAT	ion rep	ORT NUMBE	R(S)	5. MONITORING	ORGANIZATION RE	PORT NU	MBER(S)
USAFOEHL Re	port 87	-144 E	Q0086LEF					
60. NAME OF PER				66. OFFICE SYMBOL	7a. NAME OF M	ONITORING ORGAN	NIZATION	
USAF Occupat				(If applicable)	i			
mental Healt				ECQ	75 ADDRESS (C)	n. Conn. and 7/8/	'artal	
6c ADDRESS (City	, State, and	g ZIP CO	(10)		/B. ADDRESS (C	ty, State, and ZIP C	.004)	
Brooks AFB	TX 782	35-55	01					
BE NAME OF FUN		NSORIN	G	86. OFFICE SYMBOL	9. PROCUREMEN	T INSTRUMENT IDE	NTIFICATI	ON NUMBER
ORGANIZATIO	N.	•		(If applicable)				
Same as 6a		710.0	4-3					
EC ADDRESS (City,	, State, and	ZIP COO	(4)		PROGRAM	FUNDING NUMBERS	TASK	WORK UNIT
					ELEMENT NO.	NO.	NO.	ACCESSION NO.
Same as 6c						1		j
11. TITLE (Include	Security C	assificat	ion)					
Stack Emissi	ion Test	ting :	for Bery	llium, Hill AFB	UT			
12. PERSONAL AU Capt Mary Da	THOR(S)					·		
13a. TYPE OF REP	ORT		FROM I	OVERED 3 TO 17 Jul	14. DATE OF REPO	RT (Year, Month, E r 1987	(ay) 15.	PAGE COUNT
16. SUPPLEMENTA	RY NOTAT	ION						
, · · · , - · · · · · · ·								
17.	COSATI	ODES		18. SUBJECT TERMS (C	ontinue on revers	e if necessary and	identify b	y block number)
FIELD	GROUP	SU8-	-GROUP	Stack samm	oling Hil	1 C-5		
				Stack emis	ssion(s)	Beryllium	brake	shop
12 x 1			•	and identify by block nu	•			
At the r	request	of H	Q AFLC/S	GB, personnel fr	om the USAF	OEHL conduct	ed an a	air emission
survey of th	ne exhau	ust fi	rom a C-	5 brake recondit	ioning oper	ation at Hil	1 AFB t	JT from 13 July
borniling p	198/. 7	rnese	brakes (contain beryllic	m disks and	during the	recond	itioning process,
which vent t	ro india	s are	generati 1 etarke	ed. The recondi . The emissions	tioning ope	ration consi	SIS OF	two processes
standard for	this k	cind-	of operat	tion/	TOT DOCK S	racks were w	err be	LOW LITE EFA
20. DISTRIBUTION	/ AVAILARI	LITY OF	ABSTRACT		21 ARSTRACT CE	CURITY CLASSIFICA	TION	
■ UNCLASSIFIE				PT DTIC USERS		ssified		
228. NAME OF RE						Include Area Code)	22c OFF	FICE SYMBOL
Capt Mary Da	ly				(512) 536-2		<u> </u>	ECO

CONTENTS

			Page
	DD Form 1473 Illustrations		i iv
ı.	INTRODUCTION		1
II.	DISCUSSION	•	1
III.	CONCLUSIONS	•	2
	Appendix		
	A	Test Participants	7
	В .	Survey Raw Data - East Stack	11
	С	Survey Raw Data - West Stack	21
	D	Quality Assurance - Calibration Data	33
	E	Calculations	39
	Distribution	List	. 47

Acceum	on For	• •
EFFIC	o med []	
by Defend	area /	-
^	ruth lightly (15765	••
Uist	double to the for special	
A-1		

Escolorassos (accidistances) (accidistances and propositional propositions) (accidistances) (accidistances) (accidistances)

ILLUSTRATIONS

		Page
Table 1	Survey Emission Results	2
Figure 1	Sampling Site on the Roof	3
Figure 2	Sampling Equipment and Personnel	4
Figure 3	Method 5 Sampling Train	5

I. INTRODUCTION

On 13-17 July 1987, stack emission sampling of the exhaust from the C-5 brake reconditioning operation in Bldg 507 was accomplished at Hill AFB UT. These brakes contain beryllium disks and during the reconditioning process, beryllium particles are generated. The survey was requested by HQ AFLC/SGB to determine the amount of beryllium being exhausted from the facility. Testing was conducted by the Air Quality Function of the USAF Occupational and Environmental Health Laboratory (USAFOEHL). Sampling team members are listed in Appendix A.

II. DISCUSSION

A. Background

The brake shop conducts a two-part reconditioning operation on C-5 beryllium brake discs. This operation consists of an active wet grinding process and a wet dipping process. The reconditioning process is a cyclic operation for six hours per day and the shop operates only one shift per day. Each process is exhausted through its own stack and has no air pollution control equipment.

Session and Session Session

B. Applicable Standards

The national Environmental Protection Agency (EPA) emission standard for beryllium applicable to stationary sources is found in Chapter 40, Code of Federal Regulations, Part 61.30 (40 CFR 61.30). This standard limits beryllium emissions to not more than 10 grams over a 24-hour period. The State of Utah defers to the standard established by the EPA.

C. Site Description

The process for reconditioning the beryllium disks of the C-5 brake assembly is: (1) dipping in a sodium hydroxide solution, (2) glass bead blasting, and (3) re-dipping in the solution. Both the blasting and the dipping processes occur in closed rooms with restricted access. The dipping tanks are exhausted directly to the atmosphere through a stack on the roof (referred to in this report as the east stack). The blasting is done in a sealed cabinet with attached gloves (glove box or hood) to manipulate the brake disks. The exhaust is passed through a stainless steel filter with a water spray, primarily to recover the glass beads, and then exhausted through a second stack on the roof (referred to as the west stack). Both exhaust stacks on the roof were sampled. Both stacks are similar with a diameter of 15.75 inches and an example of one is shown in Figure 1.

D. Testing Methodology

All sampling and analysis for beryllium were done according to the procedures contained in 40 CFR 60-61, Methods 1-5, and 104. Sampling ports were located 2.5 feet downstream and 2 feet upstream from air flow disturbances in accordance with EPA Method 1. Figure 2 shows a photograph of the sampling equipment and personnel at the site with a detailed schematic of

the Method 5 sampling train shown in Figure 3. A performance test on each stack consisted of the average of three two-hour sample runs with the sampling probe positioned at 25, 50 and 75 percent of the duct diameter.

Prior to sampling, preliminary velocity, stack temperature, and cyclonic flow checks of the flue gas were determined according to EPA Methods 1 and 2. These data are included in Appendixes B and C. The data from the preliminary evaluations were used to determine the sampling nozzle size necessary to satisfy isokinetic conditions.

Quality assurance testing was accomplished by calibration of: (1) nozzle diameter; (2) triple beam balance (to measure within 0.5 g); (3) meter box; (4) post test meter box; and (5) pitot tube (coefficient assigned, Cp 0.84). These data are included in Appendix D.

E. Results

Table 1 presents the results obtained during stack testing of the brake reconditioning operation. Results indicate that the beryllium emission rate from the east stack (exhausts dipping operation) was less than 0.028 grams per day (g/d) based on a detection limit of 1.25 micrograms. The emission rate from the west stack (exhausts blasting operation) was 1.78 g/d. Again, a day represents six hours of operation over a 24-hour period.

III. CONCLUSION

Based on the results of this survey, the beryllium emissions from the brake reconditioning operation are well below the EPA standards established in 40 CFR 61.30 of 10 g/d.

TABLE 1: SURVEY EMISSION RESULTS

Sampl Site		Sam; <u>Dat</u>		Probe Location (%) (% Duct Diameter)	% of iso- kinetic Sampling	Emission Rate (g/d)	Avg Emission Rate (g/d)
East							
Run	1	17	Jul	25	99.9	<0.027	
	2	17	Jul	50	93.8	<0.029	
	3	17	Jul	<i>7</i> 5	93.1	<0.029	
							<0.028
West							
Run	1	15	Jul	25	96.3	0.76	
	2	16	Jul	75	107.0	1.25	
	3	16	Jul	50	93.1	3.28	
					_	-	1 78

FIGURE 1: Sampling Site on the Roof

FIGURE 2: Sampling Equipment and Personnel

FIGURE 3: Method 5 Sampling Train

OS SESSENDOS CONOCIONAS SESSES ES ES ESPECIAS A CONTRACTOR ES

Appendix A

CONTROLL DE PROPERTIE DE COLOCIA (LA SESENTIA COLOCIA COLO DE RESERVA COLOCIA (LA SESENTIA SESENTIA SESENTIA DE SE

TEST PARTICIPANTS

TEST PARTICIPANTS

1. USAFOEHL/ECQ Sampling Team Brooks AFB TX 78235-5501 (512) 536-2891

> Maj James Garrison Capt Guy Fagin Capt Mary Daly A1C Donald Johnson

2. Personnel Contacted

Lt Col Phillip Brown, USAF Hosp Hill/SGPB Mr Willert Farrell, USAF Hosp Hill/SGPB Mr Dick Stiefkin, USAF Hosp Hill/SGPB Mr Robert Berger, OO-ALC/MANPGW

Appendix B

SURVEY RAW DATA - East Stack

		EY DATA SHEET NO. 2	
BOILER NUMBER EAST	(Volcety Cit 2	17 July	
	15.75		Inches
STACK STATIC PHESSURE	+0.07		in Hg
SAMPLING TEAM TRAVERSE POINT NUMBER	VELOGITY HEAD V. IN HZ	Vo Port B	STACK TEMPERATURE (PP)
/	0.11	0.015	
2	0.11	0.045	
3	0.10	a. 055	
4	0.095	0.065	
5	0.08 10.0	75 0.385	
Ġ	0.085	0.11	
7	0.185	0.20	
8	6.205	6.22	
9	0,205	0, 235	
10	.195	0.225	
	,175	0.215	
12	1/75	0.215	
このだ	0.13	0.16	
C=1.15 To = 80			
To = 80	63 ω		
-1.19 2. 26	369/3:9/3	68	
HELLP , U	,372		
16/6p .07	3 AVERAGE		

				PARTICULATE SAMPLING DATA SHEET	E SAMPL	ING DATA	SHEET					
AUN NUMBER		TSCHEMA		CROSS SECTION		EGUATIONS				ABBIENT TEMP	PYENP	
<i>1</i> -	- (5)	<u> </u>	(a) 25%	Stack Stack	\	097 1 do = do						qo
DATE	10. A) -		}	-	} • L				STATION PRESS	N PRESS	
PLANT	L	081 T	120 50			H = 5130	5130-F4-Cp-A	Tm. Vp		HEATER	HEATER BOX TEMP	in Hg
t So	+ Be					J	-	}				A O
	7	3	ah he	/ex						PROBE	probe Heater Setting	0
SAMPLE BOX N	- E -		اري الارق)	/ mar						PROBE LENGTH	LENGTH	
1	1	T								2 2 2 2 2	(4) 4364	ui.
Ì	ナノンイン・								<u>.</u> .		0.50	sq ft
0m/\0m	<u> </u>	を <u>タ</u>	Wal Day	197	__					ප		
3		S	+ 43.	416						DRY GA	DRY GAS FRACTION (Pd)	ਓ
	377.		1	_	-	ORIFICE	GAS	GAS	GAS METER TE	TEMP	SAMPLE	IMPINGER
POINT	TIME	PRESSURE/	(ae)	(Ve)		DIFF. PRESS.	SAMPLE	E	AY.	PUO	BOX	OUTLET
,				+	+	€1,	(on ft)	() ()			(P)	(J)
, ,		1777	 	20,7	1	1.7			12/2	11/2	n	4/1
اور	100	7	10%	000	7	8:1	1.67	X 5	100	1	639	27
*	5:41	h	70		75	1.7	22 6	69	27	6.5	240	7.0
بر	OF32	7	11	70.0	رم	1.7	0'75	77	589	90	346	77
\)	コンジュー	И	1	107	2	17	59.4	73	20	67	248	70
1	0520	7	12	0.0	5	1.4	62.9	75	17.77		250	70
	7000	7	23	6,0	124	77	٦,	カバ	7,00		963	
		2 7	74	200	177	1,	4.47	1	1,7,7,0	3	500	36
	410	4	7/4	0.0	7.	1.5		15		7	40	70
,		h	1,6	0.0	75	1.7	SO OX	19	1.,,,,	73	261	ŽΩ
	1120	7	// //	0.0		7	85.7		16:5	73	5,11/3	ر وز
		1	1	90		*	0000		17,77	27	1116	20
	986	1	16	0.0	7.5	1:	43.8	83	1.86	75	34.5	75
	(2) 10	7	75	0.0	ורו	ا. ً	47.2	82	78.5	75	24.3	00
	11170	7	75	(0.0		1.7	00.6	83	73.57	Q.	24.3	<u>ير</u>
`	()	7		0.0	75		124	77		7	944	70
	- \	-	17-7	10,0	27.7	7	107.3	; ; ;		THE PROPERTY OF THE PROPERTY O	247	ن ر
	1,700	1	7 6	0.0		1	2:2:	10	木まれ	#	7.70	30%
\$	16.15	<i>4</i>) \ \frac{\sqrt{\sqrt{\sqrt{\chi}}}{\sqrt{\chi}}	0.37	3	<u> </u>	117 4		た。次		1/1/2	20
OEML FORM	18 1616,	17	17	0.07	15	1.7	121.3	9.8	82.C	79	1418	20
		•					•		`	•		•

				PARTIC	ULATE SA	PARTICULATE SAMPLING DATA SMEET	\ SHEET					
RUN NUMBER		TSCHEEKA	TIC OF STACK C	ROSS SECTION	MON	PAND TIONS				T AMBIERY YEA	TA YELL	
	1	10	ot 504	10000	126							ů
DATE	7	{ 	3		1	- K = - K + 460	Q			STATIO	STATION PRESS	•
173	1.2, mm	12/	1100			5130	5130-F4 Co. A 3	e L		78	24.90	in Hg
PLANT	0 0	5	\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \		-		· ·) <u>-</u>		HEATER BOX	R BOX TEMP	
A SYS		1	no O year	<u></u>						PROBE	PROBE HEATER SETTING	70 51
SAMPLE BOX	WOUNDER		nero dea	3						PROBE	PROBE LENGTH	
		0						٠:				9
METER BOX NUMBER	UMBER				-					HOZZL	HOZZLE AREA (A)	
Qu/Qm			, ,	40		ر ت	· 			3		y be
3		Tory	Start 124.	9 56	<i>y</i>		0.00			DAY GA	DRY GAS FRACTION (Fd)	6
TRAVERSE	SMI IGHAS	24410	5	-	7.50	ORIFICE	348	GAS	GAS METER TEMP		2 10777	o a Children
POINT	T 188 E	PRESSURE	(OF)	Ê	HEAD	PRESS.	SAMPLE	E	¥\$6	DOUT	XOO L	OUTLET
	(mim)	1///		+	(d _A)	Æ	(a. ft)	(eF)	(SR)	(er)	(97)	(NO)
	0:01	0.07	7.7	+	105	23	134,956	178	22.5	11	222	70
4	(0.55)	9	12	1	,,,	2.5	7-6-7	0	78.5	7,8	752	70
m:	00//	4		+		2 5	/32 /	0	208	2	25	٤
±1,	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	9	23	+	,,,		7.96.7	<u> </u>	7.8	25	236	70
				+		1. 2	(54/		3,000	7,7	11	70
1	1,20	, -	, 00	+		7 6	7 7	à	78 2 X	7 6	2000	0 (
	1125		0		•	, , ,	7 25/	(6	73.7	02	25.6	5 (
ສ	C\$ 7/	7	90		11.	2 2	156	8	83.5	Se Co	30.15	7
2	1/35	9	Ø/		11.	5.5	160:5	स्र	8%5	18	552	22
	1	\J	90	1	17.7	4 2	164.4	ଓଳ	85	28	294	%
7	1,7,7	,	80	1	12/2/	۶ ر	168.7	89	્ર	θ 3	243	76
, <u>; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;</u>		1		7	.//5	9 6	172.7	5B	2	3	246	٥٢
7		9	6,2	7		9 2	176 7	90	1/29	42	242	70
\-\	۱۱۰	9		1		9	100	7,	2:2	Z	650	20
1	1,47,7		22.0		5 1	2	1:00:1	1/2	88.5		246	20
10		6		1	1	7.7	186.3	3	82	90	262	20
\	1,7,7	3	200	+	,	2.7	7.76/	45	86.5	98	243	7.0
	10,00	9	200	+		14	7 96,			00/	240	20
法	1557	8	7	+	,	2.	200.6	3	90	2	278	20
	1521	2	32			1.7	201.6		200	900	299	2/0
	19.00	2	AC.	+		د.	, o.y. C.	7	122		127	*
DEML FORM	1]		1/2/	,
AW	•	0	17		• •	. 7	2	#	>	<u>0</u>		2

PARTICULATE SAMPLING DATA SHEET	SCHEMATIC OF STACK CHOSS SECTION $ \begin{array}{cccccccccccccccccccccccccccccccccc$	11-13 leade 10" Ha alphur	Stop 360.591	1.043 HAP = 0.005	SAMPLING STATIC STACK TEMP VELOCITY ORIMCE GAS GAS METER TEM TIME PRESSURE (17) (TS) MEAD DIFF. SAMPLE (17) AYG (min) (un H20V/M) (OR) (VP) (P) (H5) (OR) (OR)	25 .07 8 84 .22/ 4.1 231.042 89 89 25 76 756 76	T 40 2 0/6 26 415 13.7 41.8 315.7 6/2 8	33 9 88 355 4.9 238.2 94 94.5 911 352	15 9 94 125 4.9 248.9 94 95 50 50 96.5	9 44 23 19 260.5 100 96.5 43 2510	105 10 16 24 5.0 272.0 69 90 93 261	115 (10) 61 5.0 288.7 100 97	The 18 3.16 101 3.98	(30 10 4) 245 5.2 301.7 103	27 29 90 100 301 \$ 102 3013	15,001 201 5 11 0 5 12 0 10 10 10 10 10 10 10 10 10 10 10 10 1	50 10 91 85 : 4 : 0 325. 104 101 98 248	101.5 98 24.5	05 10 93 1.245 1.5.2 3.42 9 105. 101.5 98 2	1" 10 W 10 95 1 57 5.0 248.9 1.15 1.01.5 48 246
	+		METER BOX NUMBER Qu/Qn Co		TRAVERSE SAMPLII POINT TIME NUMBER (BIR)	7	6	3	7.1	1~1~	1:4:		۔ اپ	- -	* 1	7. 1.1	Y 1	~L>	,5	14/ 64/

	AIR POLL	UTIO	N PARTICUL	ATE ANA	LYTICAL	DATA		
BASE	,	ATE			'	TUN NUMBER		
4111		/	7 July			エ		
BUILDING NUMBER			- 1	OURCE NUI				
East &	د			Eas 1	<u> </u>	<u>e</u>		
1.			PARTICUL FINAL WE		IMITI	AL WEIGHT	w	EIGHT PARTICLES
11	TEM .	_				(#		(# =)
FILTER NUMBER	mellepoil	5				·- <u>-</u>		
ACETONE WASHINGS Half Piller)	(Probo, Frant							
BACK HALF (If needs	0							
			Total Wol	ght of Portic	ulatea Colle	etod		-
11.			VATE				Γ	
17	rem -		FINAL WE	IGHT	INITI	AL WEIGHT		WEIGHT WATER
IMPINGER 1 (#20)		•	87	1		00		
IMPINGER 2 (H20)			106		10	90		6
IMPINGER 3 (Dry)			5)		5
IMPINGER 4 (Silice Ge	bl)		226 20	.17	200	0.55		25.62
-		•	Total Wei 424.1	ght of Water 7	Collected 400	.55	ب	23.62 36.62 -
100.	ANALYSIS	· · · ·	GASES ANALYSIS		_YSIS	ANALYSIS		
ITEM	1	ļ	2		3	4		AVERAGE
VOL % CO ₂								
VOL % 02								
VOL % CO								
∀0 L % N ₂								
		Vel 9	5 H ₂ = (100% - % (CO ₂ - % O ₂ .	% CO)			

	AIR POLLUT	ION PARTICUL	ATE ANA	LYTICAL	DATA	
BASE HIII	OAT	7 July	87	İ	RUN HUMBER Ru	nII
East	Be		SOURCE NU	MBER		
1.		PARTIC	JLATES			
ľ	TEM	FINAL W		IMITI	AL WEIGHT	WEIGHT PARTICLES
FILTER NUMBER	mill 6 W4/ 13					
ACETONE WASHINGS Hell Pilter)	(Probo, Front					
BACK HALF (If needs	•0					
		Total Wa	right of Partic	prietos Colic	seted	-
н,		WAT	ER			
r	TEM	FINAL W		INIT	AL WEIGHT	WEIGHT WATER (@m)
IMPINGER 1 (#29)	<i>:</i>	\ - \ \ \ - \ \ \ \ \ \ \ \ \ \ \ \ \ \	§3 7	1	00	0
IMPINGER 2 (#20)		10	8	10	0	\$ 8
IMPINGER 3 (Dey)		8	5			\$2
IMPINGER 4 (Silica Go		227.	92	20	2.35	
		420.9		Callected 402	2.35	18.57 35.57
110.	T	GASES				
ITEM	ANALYSIS	ANALYSIS 2	AHAI	LYSIS 3	ANALYSIS 4	AVERAGE
VOL % CO2						
۷0L % 0 ₂						
VOL % CO						
VOL % N ₂			733		671.	In 1 + S.9.
Marse =	Ht al v.	i % N ₂ = (100% - %			48.7	1114) + S.g.

	AIR POLLI	JTION PARTICUL	ATE ANAI	LYTICAL	DATA	
BASE HIII	0	17 July			NUMBER 3	
East	Bo	7	SOURCE NUI	MBER		
l.		PARTIC	LATES			
17	TEM	FINAL W		(MIT)	AL WEIGHT	WEIGHT PARTICLES
FILTER NUMBER	M W4	1 14				
ACETONE WASHINGS (Half Piller)	(Probo, Frant		ļ			
BACK HALF (II needed	0					
			eight of Portic	ulates Colla	e tod	-
11.		WAT	ER			
17	rem	FINAL W		INITI	AL WEIGHT	WEIGHT WATER (dm)
'IMPINGER 1 (#20)		160	27	10	0	.0
IMPINGER 2 (H20)		10	0	100)	Ç
IMPINGER 3 (Dep)		6	, ,) 	6
IMPINGER 4 (Stilca Ge		233	.00	ao	2.29	32.71
				Collected	. (1	25.7/ -
101.	,	GASES				
ITEM	ANALYSIS	ANALYSIS 2		.YSIS 3	ANALYSIS	AVERAGE
VOL % CO2						
VOL % 02						
VOL % CO						
VOL % N2						
renoc &	1811L	Vol % N2 = (100% - %	co ₂ .%o ₂ .	% CO)		

Registration of the control of the c

Appendix C

SURVEY RAW DATA - West Stack

	PRE	LIMINARY SURVEY DATA (Stack Geometry)	
BASE // /	,		Le Sis
DATE 15 Q.C.	27 5	MPLING TEAM	rec organization
SOURCE TYPE AND MAK	(E		
SOURCE NUMBER	710	ISIDE STACK DIAMETER	15 75"
Stack RELATED CAPACITY		TYPE	5.75 laches
DISTANCE FROM OUTSIG	DE OF HIPPLE TO INSI	DE DIAMETER	
NUMBER OF TRAVERSE		UMBER OF POINTS/TRAVERSE	Inches
	LOC	ATION OF SAMPLING POINTS A	LONG TRAVERSE
POINT	PERCENT OF DIAMETER	DETANCE FROM WINDE MALL (Inches)	TOTAL DISTANCE FROM OUTSIDE OF HIPPLE TO SAMPLING POINT (Inches)
/	2.1		1"
2	6.7		/ //
3	11.8		1.9
<u> </u>	.17.7		2.8
<u> </u>	25.0		3.9 *
6	35,6		56
7	64.4		p
8	75.0		11.8 *
9	82.3		13.
19 11	28.2 13.3 97.9		13.9
	73.3		14.75 15 -> 14.75
12	97.9		15 → 14.75
	<u> </u>		
			<u> </u>
	50.0		79 *
			<u> </u>
		\	

dational expension inspension (included)

	PRELIMINARY SURVEY DATA SHEET NO. 2 (Velocity and Temperature Traverse)							
BASE HIII		5 July 8	ア					
BOILER HUMBER		7						
INSIDE STACK DIAMETER	'5.75"		Inches					
STATION PRESSURE			ln Hg					
STACK STATIC PRESSURE	0.04 Port / 0.	04 Port	In H20					
SAMPLING TEAM								
TRAVERSE POINT NUMBER	VELOGITY HEAD, V, IN H20	Port "B	STACK TEMPERATURE ([©] F)					
	0.02	0.035						
2	0.02	0.035						
3	0.025	0.045						
4	0.03	0.045						
<i>5</i> *	0.03	0.055						
6	0.04	0.070						
	0.10	0.125						
<i>d</i>	0.11	0.13						
9	0.10	0.13						
10	0.095	0.125						
	0.85	0, 125						
12	0.085	0.125						
	AHD = 2.13 Tm 84°F w- p = 0.03							
	7n 84°F							
	w = p = 0.03							
	C = 1.2							
	T= 80							
d	80/59							
	75 = 80 80/59 Neal name	0.475						
	AVERAGE NATION , LL	0.						

OEHL FORM 16

124 AP 0.024

		EY DATA SHEET NO. 2 Imperature Traverse)	1
BOILER NUMBER Wast	R	16 July	8/ (1200)
BOILER HUMBER	30	0	
INSIDE STACK DIAMETER			Inches
STATION PRESSURE		······································	
STACK STAYIC PRESSURE			in Hg
SAMPLING TEAM			I= H20
TRAYERSE POINT NUMBER	VELOCITY HEAD, Vp IM H2	√ v _p	STACK TEMPERATURE (PF)
/	0.025		
2.	0.025		
3 4	0.025		
4	0.030		
	0.035		
<i>(-</i> '	0.045		
7	0.075		
م	0.065		
<u> </u>	0.060		
	0.060		
	0.055		
	0.055		
- 2 M			
50%	0.065		
· · · · · · · · · · · · · · · · · · ·			
			
	-		
	AVERAGE		

				PARTI	PARTICULATE SA	SAMPLING DATA	SHEET		e^{γ}			
AUN NUMBER		SCHEEN	SCHEMATIC OF STACK CROSS SECTION	CR055 SE	CTION	EQUATIONS				AMBIENT YEAR	d Na A	
		<u> </u>				OR = OF + 460	•			SYAMO	STANG HONYARTS	40
5	July					W. 5130	5130-F4 Co. A 2	T = 5				in Hg
	Chick			•	(· `	 ರ	T		HEATE	HEATER BOX TEMP	Š
3578	אונים אינו	1	id the	3	0,00	Smin				PROBE	PROBE HEATER SETTING	5
SAUPLE BOX W	UNDER				,					PROBE	PROBE LENGTH	
METER BOX NUMBER	IMBER		July L		1 0,25%	<u> </u>				HOZZLE	E AREA (A)	C)
ω ∂/ •δ				15/2	כל האמוו) 3			•	, 0 0	864	a) bs
3		Sept 1	_	877.830	30					A S V M O	L'A	
}		Stari	177	\mathcal{C}	/0						.	
TRAVERSE	SAMPLING	STATIC A	A STACK TEMP	N.	VELOCITY	ORIFICE	SVD	CAS	GAS METER TEMP	•	SAMPLE	IMPINGER
NUMBER	TIME (min)	(In H 20)	(40) g	(S.C.)	HE AD (Vp)	PRESE.	SAMPLE VOLUME	N Talo	(#g)	DUT (MA)	TEMP TEMP	OUTLET TEMP
	1,200	0.04/15	16		a 035	3.65	777.000	1111	143.5	100	239	17.7.
26	1205	Ľ	6		2035	2.65	181.2	103	601	103	250	20
	0/6/	2	20		0.035	265	785.5	901	501	401	252	20
X	10/5	7	29	7	2.035	2.65	789.8	109	107	50	625	70
	2007	7	77	7	٦	2.45	7.86.7	113	201	8	223	200
1	10,01	1	470		2035	2,60	22.22	1/4/			0,77	26
, Q	435	1	75		20.00	2.65	80408	94/	77		257	52
6	124.1	7	24		0.035	2.65	811.5	1/1/5	1/5	111	256	20
,	1.42/	3	77		2.0.35	2.65	815.9	120	59//	//3	250	20
	1930	0	7%	7	20300	22.3/2.63	820.3	7	1/2	13	25.50	20
	()		1		25.00	2165	かかり	15.7	74		220	300
	1	9	73	ľ	030	2.7	233	152	0/		34%	20
15	310	U	128		330	2.5	820	(63)	19.5	16	245	20
, ,	1315	9	23	•	230	2.3	1.748	424	620.5	17	250	20
,	1330	6	22		0.00	2.3	845.2	15/59	15/	8//	250	20
	325	9	28		0.030	2.3	847.3	200	15/78	3	250	20
,	21	2	72		0.030	1	Y53.4	135	12/	3	77.70	20
	1.35	4	50)	1	030	6	857.45	425	175	7.9	245	70
, ,		9	107	+		6.7	261.5	19%	देश	178	456	70
		3/2	769		0.030	212	12.67.K	135	100 T	7	250	700
OEHT FORM	80	,	1/2/2		J	1	11 540	107	× 1.0	100	17/2	77
		e	14	•	5	0 %	101.	1 6	2	4	×7 /	7

					PARI	PARTICULATE SAMPLING DATA SHEET	MPLING DATA	SHEET				
	RUN NUMBER	,	SCHEM	ATIC OF STA	CR CROSS'S	ECTION	EGUATIONS					
	DATE	4	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	•	17.82	200		•		1	TION PRESS	40
	\ <i>9</i> /	Ju Car 25		,	ब्र			F. Co. A 3	Ta			In Hg
1818 1818	=	1 Ro			-		_	ვ		V DH	TER BOX TEMP	ú
THEOREM AND MARK MULTIN TO THE TOTAL WATER TOWN TO THE TOTAL WATER TOWN THE	3 3							رم)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	O B B	DE HEATER SETTI	
CAP A 3 9	SAMPLE BOX	`[0.00	1/20	47		¥	· •	0	DE LENGTH	
CAPTON C	METER BOX NI	UMBER	15.	3	· /)		- 1/2	رد نج	#0#	ZLE AREA (A)	UI
Color Colo	110	たらん				_		1		9	300	ıj be
Compared	Qw/Qm		7	15	7	392				ථ	i	
Thankers sampling practice strain with course the constitution of the course than the course thankers thankers the course thankers thankers the course thankers the course thankers the course thankers the course thankers thankers the course thanke	3		1: 6	ξ ,	4	150				P	GAS FRACTION (F	6
Colonia	TRAVERSE	SAMPLING	STATIC	STACK	TEMP	VELOCITY	ORIFICE	GAS	GAS M] =}	SAMPLE	IMPINGER
7 0730 .04 3 72 .04 0.1 77,00, 74 73 72 23 72 23 73 73 73 73 73 73 73 73 73 73 73 73 73	RUMBER	THE (UI)	(A H 20)	- \	(M.)	KE VD (Vp)	Paese	VOLUME VOLUME			7 T E	TEMP
7 074. 3 89 0.05 5 89 5 10 25. 7 2		1	100			.04	0.4	124.041	H	}_	232	70
7 077. 3 80 .055. 89.6 .75 74 74 250 .248 .250 .250 .250 .250 .250 .250 .250 .250		2735	٤`	42		V	, 95	879.8	F.L	73 23	275	02-
1		0741	E /	28		.05	5.5	9.183	12	5 2 FC	250	77)
100 100	,4	77	3	7		1000	.45	883.5	22	77 75	248	20
1		4750	2	_]		2.03	6.3	\$85.35		78.51 74	25/	20
3 62	`3	()/	8	202		300	30.	136.0	ζ,	77 0	253	20
3 60 0.05 35 893 P9 65: 5 244 3 60 0.05 35 896.4 90 865 83 347 3 60 0.055 45 806.4 90 865 85 344 3 88 0.055 45 902.0 95 96 347 3 88 0.045 45 903.5 90 347 3 88 0.045 45 903.5 90 347 3 88 0.045 45 903.5 90 348 3 88 0.045 45 903.5 97 948 3 88 0.045 45 903.5 97 948 3 88 0.045 45 903.5 97 948 3 89 0.045 45 903.5 97 948 3 91 0.045 45 910.9 99 96.5 94 348 3 91 0.045 45 910.9 99 96.5 94 348		1	7	00		70,	7	09/2/16	72	88	277	20
3 470	,	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	46	11:00		20,	5	\$92	62	ストが	11/10	20
3 89 35/8 999. 4 95 885 35 247 3 89 35/8 999. 9 97.5 87 247 3 89 35/8 999. 9 97.5 87 247 3 89 35 909. 2 97 97 349 3 89 945 45 909. 2 97 97 349 3 89 945 45 909. 2 97 97 97 349 3 89 945 45 909. 2 97 97 349 3 89 945 47. 948 97 345 3 89 945 475 99 97. 99 246 3 99 35 910. 9 9 97 246 3 99 35 910. 9 9 97 246			r	29		0.05	, ,	14.40	506	5.512.3	246	20
3 88		3000	*	770		-035	. 1.	8% 4	Z.	20.51.45	24%	270
3 88	· ji		7	26		105340	مبرخ الم	6 600	1	2000	2,7	10/
3 88	Ż			82		20	15	902.0	36	92 39	147	0'
3 88 035 36 907 98 92 92 343 348 36 37 3 348 348 37 3 348 348 37 3 348 348 37 3 348 348 37 3 348 37 3 348 37 3 348 37 3 348 37 3 348 37 3 348 37 3 348 37 3 348 37 3 348 37 3 348 37 3 348 37 3 348 37 3 348 37 3 348 37 3 348 37 3 348 37 3 348 37 3 348 37 37 3 348 37 348 37 3		/		~		.45	76	503.7	76	93 50	141	70
2 89 00.2 45 409.2 48 45 43.3 250 27 2 89 00.5 45 94.0 45 45.0 00.5 24.8 2 89 00.5 45 94.8 60 00.5 24.8 3 99 00.5 45 94.8 60 00.5 24.8 3 99 00.5 35 94.8 60 00.5 24.8	,		et.	1		.045	. 45	205. 6	25	25 / 20	47.7	70
3 25 10 045 115 912, 9 45 73 250 377 3 29 1045 145 919, 9 99 015 95 250 3 91 1045 145 916, 7 90 915 95 250			7	+		935	127	70	22	45 68	240	100
277 3 88 .045 .45 912,4 99 12,5 94 248 250 00,5 95 350 .045 .45 916,7 100 07 96 246 .035 .35 .416,6 100 08 96 246		\	M	+		1000	1/1/		90	がよから	350	72
3 89 10 1045 145 946, 8 160 01.5 35 346 100 01.5 35 350 100 01.5 35 350 100 01.5 35 350 100 01.5 35 350 100 01.5 35 350 100 01.5 35 350 100 01.5 35 350 100 01.5 35 350 100 01.5 35 350 100 01.5 35 350 100 01.5 350		0	1.00	-		.045	517	912.9	66	7.5 95	246	70
. 39/ 1045 .45 416.		27.7	7	\dashv		1045	54:	8.HB	001	175 25	255	70
3187 1 ,025 ,1 ,35 ,1 7/8		· .	7	16		1045	.45	116.7	100	16 18	246	20
			,	4		1035	.35.	7116	00	28 86	244	10

						PAR	ARTICULATE SAMPLING DATA SHEET	MPLING DATA	SHEET					
	RUN NUMBER		٢	CHEMA	re of tra	CE CROSS	L	EQUATIONS				AMBIE	NA AENIE	
		\mathcal{U}		a	50%	3	_	_	9					elo.
1305 - 1400 1 1 1 1 1 1 1 1 1	DATE	4 0 4	L	-	د	-		_	Г			STATE	N PRESS	
Color Colo	\exists	0 1.3.77	T			- - -5) _					HEATE	R BOX TEMP	In H
Continuent	TYSE .		T	101	00			1	1			PROBE	HEATER SETT	
Color Colo	\Rightarrow	. `L	1	3	<i>fe</i>	C	in mm					PROBE	LENGTH	
Start O 4 7 8 1 0 0 0 0 0 0 0 0 0) 		·)		Vac								5
Stop 041,718 W. P. P. P. P. P. P. P.	AETER BOX M	CHBER		2))					7	٠	E AREA (A)	
Start O.41.718	74/Qm										ל			ij be
ESS. SAMPLING STATE WELCHTY WELCHART WELCH				Tak	0/ 0	1//	8//		,					
### SAMPLING STATE STACK TEMP VELOCITY ONLY SAMPLE IN THE SAMPLE	9		رب	tal	7 F	23.1	//3	K/ t. p				9 2 0	AS FRACTION (2	6
Table	TRAVERSE	SAMPLING	1418	7 21	STACK	TEMP	VELOCITY	DAIFICE	GAS	GAS	METER T	ENP	SAMPLE	IMPINGER
1210 10 84 10 84 10 10 10 10 10 10 10 1	POINT	TIME (min)	PACSS	SO // OC	Ι,	(T.e.)	HEAD (Vp)	PRESS.	SAMPLE	2 (a)	%£.6	0UT	BOX TEMP	OUTLET TEMP
316	/	200	7.1				2000	1	12.6	100	74.5	66	5/1/2	20
12/5	u,	1310	-		8.5		0.475	3.3		101	1201	99	243	20
1330 6 83 6.035 3.6 946.6 115 100 344 1033 10	e	12/5		3	86	4	15	5.3	274.7	103	121	1.00	246	20
13.10 9 8.4 0.06.5 4.7 14.9.4 10.0 0.44.5 1.7 12.40.0 0.44.5 1.7 12.40.0 0.44.5 1.7 12.40.0 0.44.5 1.7 12.40.0 0.44.5 1.7 12.40.0 0.44.5 1.7 12.40.0 0.44.5 1.7 12.40.0 0.44.5 1.7 12.40.0 0.44.5 1.7 12.40.0 0.44.5 1.7 12.40.0 0.44.5 1.7 12.40.0 0.44.5 1.7 12.40.0 0.44.5 1.7 12.40.0 0.45.5 1.7 12.40.0 0.45.5 1.7 12.40.0 0.45.5 1.7 12.40.0 0.45.5 1.7 12.40.0 0.45.5 1.7 12.40.0 0.45.5 1.7 12.40.0 0.45.5 1.7 12.40.0 0.45.5 1.7 12.40.0 0.45.5 1.7 12.40.0 0.45.5 1.7 12.40.0 0.45.5 1.7		1590	-	_	22		g,	. I	24/2 6	28/		70%	244	7%
1335 9 83		12 27	$\frac{1}{1}$	de	770		36	ין.	2000		(70)	200	27.6	2 5
1340 9 85 0.065 47 266.7 12 102 03 247 1345 1546 1550 16 89 16	1;	1225	-	6	100		90	4.7	6-11-0	100	10/	2007	247	100
1345 9 83 0.065 47 946.4 12 128 103 348 12 125 105 104 347 125		1240	-	6	85		0.06.5	47	7.0%		101	/03	247	70
1250	,	1245		6	્રે ફેર્ડ		0.065	47	9.56. \$	11/2	16.25	103	248	20
555 5				9	89		0.035	2.6	922.0	112	608	104	247	70
1305 1 84		1000	<u> </u>	٦.	2		2500	270	7.6. 4	16.7	106	10%	8418	70
3 4 4 5 6.05 3.6 990.7 10 353 355	, , ,	-4 `		1	200		3	7	160.7		011	300	$\nabla \mathbf{N}$	70
55.5	7	1/	+	4	25		1/2		4000	12/2		100	127	2/2
13.2		15.6		4	83		5.05	2.6	905	0/2	1	100/	2553	70
33. 6 87 2.035 3.6 1005,5 117 113 255 33. 7 47 0.055 4.0 10/4.8 114 110 245 134. 4 4 10.055 4.7 1020,0 1/8 1145 111 245 134. 4 10.055 4.7 1025,9 114 1145 111 245 134. 4 10.055 4.7 1025,9 114 114 245		0731		9	83		0.035	2.6	1.00/	2	2	100	255	70
134 9 97 0.055 4.0 10/4.8 1/4 1/10 245 134 9 97 0.065 4.0 10/4.8 1/8 1/4.5 1/10 245 134 9 1/5 1/5 4.7 10.25.9 1/8 1/4.5 1/1 245 1025.9 1/9 1/4 1/1 245		3.5		9	87		2015	·	2.5001	117	113.	1110	253	20
13t 9 47 0.055 4:0 1026.0 1/8 1/4.5 1/10 245 13t 4 17 0.065 4.7 1025.9 1/8 1/4.5 1/12 24.5		- 1		7	62		١,	40	1009.5	118	114	110	245	170
134 14 14 1 2000 118 1145 11 247 135 1 1030 118 1145 11 247		~-1		99	97		0.055	0.76	8-1-101	11/8	11.3	1110	245	0/
1 1 1 1 2 24.5 1 1036.6 119 114 114 24.5 100 100 115 119 114 24.5 100 115 115 115 115 115 115 115 115 11		134'	-	6	, ,		0065	4.7	1020.0	18	7.4.5	///	241	70
1036 11 11 11 11 1 1 1 1 1 1 1 1 1 1 1 1 1			-	2/			2	47	1025.9	110	15/	1/2	247	23
FORM 10				7.	大水		S	36	ルードの	1 × 1	1	1/4	24.5	70
	1	•		1	1		500	3 6	10.36 . 6	1	1		× × ×	20

	AIR POLL	UTION PARTICUL	ATE ANA	LYTICAL			
HIII		15 July	,		AUN NUMBER	west Stack	
West			Be.	MBER			
l		PARTICL				·	
11	rem	PINAL W	· · · · · · · · · · · · · · · · · · ·		IAL WEIGHT	WEIGHT PARTICLES	
FILTER NUMBER	7	.27	75	0.0	2715		
ACETONE WASHINGS Half Pilter)	(Probo, Frant						
SACK HALF (II Reads)	0						
		Total We	light of Partic	wiotos Coll	octod	•	
и.		WAT	ER	,		,	
19	rem	FINAL W		INIT	IAL WEIGHT	WEIGHT WATER	
IMPINGER 1 (920)		91		/	00	-9	
IMPINGER 2 (M20)		106	·	/	00	6	
IMPINGER 3 (Dry)		ی	0		0	5	
IMPINGER 4 (Silice Gel)		228.	228.48 201.73		1.72	26.76	
			Total Weight of Water Collected 430.48 — 401.72		28.76 -		
111.			GASES (Dry)		T	s	
ITEM ANALYSIS		ANALYSIS 2	ANA	1 YS15	ANALYSIS	AVERAGE	
VOL % CO2							
VOL 1 02		· 					
VOL % CO							
VOL 1 N2							
Janua Hal	121 ml	7 Vol % N2 ≈ (100% - %	CO2 - % O2 -	% CO)			

A DODODON ON TREE CONTROLL SECTION OF THE SECTION O

AIR POLLUTION PARTICULATE ANALYTICAL DATA									
WASE		DATE	· - /		1	TUN NUMBER			
#1//		16	They						
West				BE					
i			PARTICU						
	ITEM		FINAL WE		IMITI	AL WEIGHT	_	EIGHT PARTICLES	
FILTER NUMBER		20	. 282	4	.27	30	_		
ACETONE WASHINGS Hell Pilitor)									
BACK HALF (H seed)	•4)				-				
			Total Wei	ght of Portla	wletos Colic	end		-	
и.			WATE				1		
1	ITEM		FINAL WE	IGHT	INITI	AL WEIGHT		WEIGHT WATER	
IMPINGER 1 (#20)			101	0	10	0		6	
1MP1NGER 2 (220)			10	4	100			4	
IMPINGER 3 (Dry)		١		ø		1			
IMPINGER 4 (Silien Gel)			212.	212.05 201.36		1.36	10.69		
-			`				1.69-		
111.	ANALYSIS		GASES ANALYSIS		_YSI\$	ANALYSIS			
ITEM	1		2		1	4		AVERAGE	
VOL % COZ									
VOL % 0 ₂							_		
VOL % CO									
VOL % N ₂					···				
olamo i	141	Vel 9	i N ₂ = (100% - % (CO ₂ - % O ₂ .	% CO)				

OEHL FORM 20

AIR POLLUTION PARTICULATE ANALYTICAL DATA									
HIII	/	DATE	6 July			3			
West	Be			SOURCE NUI	MBER				
h			PARTICUI FINAL WE		IMITI	AL WEIGHT	WE	IGHT PARTICLES	
 	TEM	-0	(4)	•		((**)		((m)	
FILTER HUMBER	millipor	<u> </u>	4 . 27	58	٠ ك	743		:	
ACETONE WASHINGS Hall Piller)	(Probo, Frant								
BACK HALF (If needs	≈ 0					•			
			Total Wel	ght of Portic	uletes Colle	erod			
n.			WATE	R			·		
ı	TEM		PINAL WE	IGHT	IMITI	AL WEIGHT	l !	WEIGHT WATER (#M)	
IMPINGER 1 (H20)	IMPINGER 1 (H20)		8	7	10	D		0	
IMPINGER 2 (#20)		108		10	0		8		
IMPINGER 3 (Dry)			108		Ø			6	
IMPINGER 4 (Silice Gel)			231.85		205.02			26.83	
e de la companya de l			432,85 405.02 Total Weight of Weter Collected)`	27.83 40.83 =		
111.		1	GASES						
ITEM	ANALYSIS		ANALYSIS 2		.YSIS 3	ANALYSIS 4		AVERAGE	
VOL % CO2									
VOL 1 02									
VOL % CO									
VOL 3 N2									
Consider of	(5)	Vel 9	i N ₂ = (100% - %	CO ₂ . % O ₂ .	% CO)				

(This page left blank)

Appendix D

QUALITY ASSURANCE - CALIBRATION DATA

(This page left blank)

ANALYTICAL BALANCE CALIBRATION FORM

Balanc	ce name	<u>mettle</u>	er PC4	140 N	Tumber	
Class	ification	of standar	d weights _	SO	085	-
Date	0.500 g	1.0000 g	10.0000 g	50.0000 g	100.0000 g	Analyst
16 July	.50	1.00	10.00	50.00	100.00	no
16 July 17 July	.50	1.00	10.00	50.00	100.00	Fro .
•	·					
· .	11 12	·				
}			•			

Quality Assurance Handbook M5-5.2

METER BOX CALIBRATION DATA AND CALCULATION FORM

(English units)

	Date	Mer o	27 R = 2	8.941 in.	Hg C	eter box alibrate	numbe	r N	Jutean - 2	h Daly
	Orifice manometer	Gas V Wet test			emperati			 Time		
Vac pressia:	setting	(V,), .ft ³	(V _d), ft ³	(t _w), °F	(t _d), °F		(t _d), *F	(θ), min	Yi	ΔH@ in. H ₂ 0
2" Ha	0.5	4,654 4	1.583	68.9529.1	77 73	70	533	13.5	1.08	2.10
2"	1.0	4,65\$ 5	5.036 50.378	70.3529.7	32	7472	536.5	9.6	1.08	2,11
2"	1.5	7.376 6	254	70.7529.8	88 83	78 75	541 -	15.8	1.085	2.13 -
3	2.0	9.498 7	6.012	69. 4 528.6	93 P9	82 79	545.75	13.8	1.09	2.14
3"	3.0			70.3 529.3	98	85 33	550	//,3	1.09	2.14
5"	4.0	9-2181 /	03.753	68.5528.5	30. 75	70	534	9.75	1.08	2.18
 	,							Avg	1.084	2.13

ΔH, in. H ₂ O	<u>ΔΗ</u> 13.6	$Y_i = \frac{V_w P_b(t_d + 460)}{V_d(P_b + \frac{\Delta H}{13.6}) (t + 460)}$	$\Delta H\theta_{i} = \frac{0.0317 \ \Delta H}{P_{b} (t_{d} + 460)} \left[\frac{(t_{w} + 460) \ \theta}{V_{w}} \right]^{2}$
0.5	0.0368		·
1.0	0.0737		·
1.5	0.110		
2.0	0.147		
3.0	0.221		
4.0	0.294		

If there is only one thermometer on the dry gas meter, record the temperature under t_d .

Quality Assurance Handbook M4-2.3A (front side)

POSTTEST DRY GAS METER CALIBRATION DATA FORM (English units)

Plant All MFR Dry gas meter, number/1/1493/-780005 Pretest Y 1.084 Meter box number //// Date 6/10x87 Barometric pressure, P. = 37,377 in. Hg Test number

	- Q	١		,	•					
Orifice	Gas volume	lume	Te	Temperature	ure					X
manometer	Wet test	Dry gas	Wet test	Q	Dry gas meter	eter				4
setting,	meter .	meter		Inlet	Outlet	Inlet Outlet Average				V. P. (t. + 460)
· (语)	(2)	(C.)	•	(t,), (t	(t,),	(t,).	Time	Vacuum	×	
in. H,0	. E 3	, d3			60	, ,	(e)	setting,	-4	V. (P. + AII /(t. + 460)
7	11	11	4	oF.	J.	4	min	in. Hg		13.6/(")
6		180.667	0.667 68.21528,45 73	73	69	752.55	25 1.0 22		1,7	
01	10	121.37	68.7	79	72.	623.15	100 KI	15	1.017	
0.7	10	762 /176	9.825 6.89	62	7.5	21.05/21.15	03 61	3	1.075	
91	o.	480.189	647 5797	£3	76	150.08	12 01 1/2	7	アノフィ	
2:1	7.7	771.611	68.77		8,	1500113	Ind, LI	7	11/01	

If there is only one thermometer on the dry gas meter, record the temperature under $t_{\mathbf{d}}$

= Gas volume passing through the wet test meter, ft³.

 $d_{\rm d}=6$ as volume passing through the dry gas meter, ft.

= Temperature of the gas in the wet test meter, °F.

. = Temperature of the inlet gas of the dry gas meter, *F.

= Temperature of the outlet gas of the dry gas meter, °P.

= Average temperature of the gas in the dry gas meter, obtained by the average of t_{d_j} and t_{d_j} , °F.

 $\Delta H = Pressure differential across orifice, in. <math>H_20$.

= Ratio of accuracy of wet test meter to dry gas meter for each run.

= Average ratio of accuracy of wet test meter to dry gas meter for all three runs; tolerance = pretest $Y \pm 0.05 Y$.

, = Barometric pressure, in. Hg.

θ = Time of calibration run, min.

なるなる場合なるなどのは、こののものできななななななななななが、このことの、このことのできないとのできないというないできない。

NOZZLE CALIBRATION DATA FORM

Date 15, 16, 17 July Calibrated by 100								
Nozzle identification number	mm (in.)	D2,	meter ^a D ₃ , mm (in.)	ΔD, b mm (in.)	Davg			
0.375 (east) 0.500 (west) 0.300 (west) 0.500 (west)	0.498	0.369 0.497 0.301 0.500	0.368 018 0.300 0.500	0.00/ 0.00/ 0.002 0.00/	0.369 0.498 0.300 0.500			

where:

Quality Assurance Handbook M5-2.6

aD_{1,2,3} = three different nozzles diameters, mm (in.); each diameter must be within (0.025 mm) 0.001 in.

b $\Delta D = \text{maximum difference between any two diameters, mm (in.),}$ $\Delta D \leq (0.10 \text{ mm}) \ 0.004 \text{ in.}$

 $D_{avg} = average of D_1, D_2, and D_3.$

Appendix E
CALCULATIONS

(This page left blank)

CALCULATIONS

This formula was used to calculate the emission rate, R.

$$R = (K) \frac{W_t V_s A_s (86,400 \times 10^{-6}) P_s}{(V_m \text{ std} + V_w \text{ std}) T_s}$$

where: Wt = total weight of beryllium collected (micrograms, μg)

A = stack surface area (square feet, ft2)

V .= average stack gas velocity (feet per second, ft/s)

 $V_{\rm m}$ std = dry gas sample volume at standard conditions (29.92 in Hg; 77°F)

V_u std = water vapor volume at standard conditions (cubic feet, ft³

T_q = stack temperature (degrees Rankine, °R)

P = absolute stack gas pressure (inches of mercury, in Hg)

R = beryllium emission rate (grams per day, g/d)

 $K = 17.64 \, \text{°R/in Hg}$

86,400 = conversion factor (seconds per day)

 10^{-6} = conversion factor (g/µg)

OPERATING PARAMETERS

Sampl	.е	Wt (µg)	(ft ²)	V _s (ft/s)	V _m std (m³)	V. std (m³)	T _S	P _s (in Hg)
								**
East								
Run	1	<1.25	1.35	17.02	73.786	1.11	533.8	24.93
	2	<1.25	1.35	20.97	84.285	0.87	542.3	24.91
	3	<1.25	1.35	30.57	120.846	1.21	547.1	24.88
West								
Run	1	60.86	1.35	11.13	84.879	1.35	537.7	25.18
	2	40.455	1.35	13.03	38.818	1.02	546.2	25.05
	3	246.17	1.35	14.46	100.946	1.31	546.6	25.03

where: Wt = weight

A = stack cross-sectional area

V_s = stack velocity

 V_m std = meter volume at standard conditions (29.92 in Hg; 77°F)

V_u std = water vapor volume at standard conditions

T_s = stack temperature

P_s = absolute stack gas pressure

EAST STACK CALCULATIONS RUN #1, 2, and 3

XROM METH 5		XROM METH 5	•	XROM METH 5	
Run Number East 1		Run Number East 2		Run Number East 3	
	Run		Run		Run
METER BOX Y?	Run	METER BOX Y?	Run	METER BOX Y? 1.0840	Run
DELTA H? 1.7000	Run	DELTA H? 2.5500	Run	DELTA H? 4.9400	Run
BAR PRESS ? 24.9200	Run	BAR PRESS ? 24.9000	Run	BAR PRESS ? 24.8700	Run
METER VOL ? 82.3810	Run	METER VOL ? 95.8400	Run	METER VOL ? 139.5490	Run
MTR TEMP F? 74.9000	Run	MTR TEMP F? 85.7000	Run	MTR TEMP F? 97.4000	Run
% OTHER GAS REMOVED BEFORE DRY GAS METER? 0.000	Run	% OTHER GAS REMOVED BEFORE DRY GAS METER? 0.000	Run	% OTHER CAS REMOVED BEFORE DRY CAS METER? 0.000	Run
STATIC HOH IN?	Run	STATIC HOH IN?	Run	STATIC HOH IN?	Run
STACK TEMP. 73.8000	Run	STACK TEMP. 82.3000	Run	STACK TEMP. 87.1000	Run
ML. WATER 23.6200	Run	ML. WATER 18.5700	Run	ML. WATER 25.7100	Run
IMP. % HOH = 1.5		IMP. % HOH = 1.0		IMP. % HOH = 1.0	
% HOH = 1.5		≴ HOH - 1.0		% HOH = 1.0	
% CO ₂	Run	% CO ₂	Run	5 CO ₂	Run
\$ OXYGEN 21.0000	Run	\$ OXYGEN 21.0000	Run	% OXYGEN 21.0000	Run
% CO? 0.0000	Run	5 CO?	Run	\$ CO?	Run

XROM METH 5

XROM METH 5

XROM METH 5

Run Number	Run Number	Run Number		
East 1	East 2	East 3		
Run	Run	Run		
MOL WT OTHER?	MOL WT OTHER?	MOL WT OTHER?		
79.0000 Run	79.0000 Run	79.0000 Run		
Mwd = 28.84	Mwd = 28.84	Mwd = 28.84		
MW WET = 28.68	MW WET = 28.73	MW WET = 28.73		
SQRT PSTS?	SQRT PSTS?	SQRT PSTS?		
6.3359 Run	7.8096 Run	11.3826 Run		
TIME MIN?	TIME MIN?	TIME MIN?		
120.0000 Run	120.0000 Run	120.0000 Run		
NOZZLE DIA?	NOZZLE DIA?	NOZZLE DIA?		
.3690 Run	.3690 Run	.3690 Run		
STK DIA INCH?	STK DIA INCH?	STK DIA INCH?		
15.7500 Run	15.7500 Rum	15.7500 Run		
* VOL MTR STD = 73.786 STK PRES ABS = 24.93 VOL HOH GAS = 1.11 MOISTURE = 1.48 MOL DRY GAS = 0.985 NITROGEN = 79.00 MOL WT DRY = 28.84 MOL WT WET = 28.68 VELOCITY FPS = 17.02 STACK AREA = 1.35 STACK ACFM = 1,381. * STACK DSCFM = 1,121 SISOKINETIC = 99.95	* VOL MTR STD = 84.285 STK PRES ABS = 24.91 VOL HOH GAS = 0.87 MOISTURE = 1.03 MOL DRY GAS = 0.990 NITROGEN = 79.00 MOL WT DRY = 28.84 MOL WT WET = 28.73 VELOCITY FPS = 20.97 STACK AREA = 1.35 STACK ACFM = 1,702. * STACK DSCFM = 1,365. ISOKINETIC = 93.78	MOL WT DRY = 28.84 MOL WT WET = 28.73 VELOCITY FPS = 30.57 STACK AREA = 1.35 STACK ACFM = 2,482.		

WEST STACK CALCULATIONS RUN #1, 2, 3

XROM METH	5	XROM METH 5		XROM METH 5	i
Run Number West 1		Run Number West 2		Run Number West 3	
	Run		Run	•	Run
METER BOX Y?	Run	METER BOX Y?	Run	METER BOX Y? 1.0840	Run
DELTA H? 2.4600	Run	DELTA H?	Run	DELTA H? 3.9200	Run
BAR PRESS? 25.1800	Run	BAR PRESS? 25.0500	Run	BAR PRESS? 25.0300	Run
METER VOL? 100.8200	Run	METER VOL? 44.3410	Run	METER VOL? 118.5750	Run
MTR TEMP F? 116.2500	Run	MTR TEMP F? 88.0600	Run	MTR TEMP F? 108.9000	Run
% OTHER CAS REMOVED BEFORE DRY GAS METER? 0.0000	Run	% OTHER GAS REMOVED BEFORE DRY GAS METER? 0.0000	Run	<pre>\$ OTHER GAS REMOVED BEFORE DRY GAS METER? 0.0000</pre>	Run
STATIC HOH IN?	Run	STATIC HOH IN?	Run	STATIC HOH IN?	Run
STACK TEMP. 77.7000	Run	STACK TEMP. 86.2000	Run	STACK TEMP. 86.6000	Run
ML. WATER? 28.7600	Run	ML. WATER? 21.6900	Run	ML. WATER? 27.8300	Run
IMP. \$ HOH = 1.6		IMP. \$ HOH = 2.6		IMP. \$ HOH = 1.3	
# HOH = 1.6		≴ HOH - 2.6		≸ HOH - 1.3	
\$ CO ₂ ?	Run	\$ CO ₂ ?	Run	\$ CO₂? 0.0000	Run
\$ OXYGEN? 21.0000	Run	\$ OXYGEN? 21.0000	Run	\$ OXYGEN? 21.0000	Run
5 co?	Run	\$ CO? 0.0090	Run	\$ CO? 0.0000	Run

Run Number

Run Number

Run Number

West 1	West 2	West 3
Run	Run	Run
MOL WT OTHER? 79.0000 Run	MOL WT OTHER? 79.0000 Run	MOL WT OTHER? 79.0000 Run
MWd = 28.84	MWd = 28.84	MWd = 28.84
MW WET = 28.67	MW WET = 28.56	MW WET = 28.70
SQRT PSTS? 4.1632 Run	SQRT PSTS? 4.8527 Run	SQRT PSTS? 5.3965 Run
TIME MIN? 120.0000 Run	TIME MIN? 120.0000 Run	TIME MIN? 115.00 Run
NOZZLE DIA? .4980 Run	NOZZLE DIA? .3000 Run	NOZZLE DIA? .5000 Run
STL DIA INCH? 15.7500 Run	STK DIA INCH? 15.7500 Run	STK DIA INCH? 15.7500 Run
STK PRESABS = 25.18 VOL HOH GAS = 1.35 MOISTURE = 1.57 MOL DRY GAS = 0.984 NITROGEN = 79.00 MOL WT DRY = 28.84 MOL WT WET = 28.67 VELOCITY FPS = 11.13 STACK AREA = 1.35	VOL HOH GAS = 1.02 MOISTURE = 2.56 MOL DRY GAS = 0.974 NITROGEN = 79.00 MOL WT DRY = 28.84 MOL WT WET = 28.56 VELOCITY FPS = 13.03 STACK AREA = 1.35 STACK ACFM = 1,058. * STACK DSCFM = 834.	STK PRES ABS = 25.03 VOL HOH GAS = 1.31 MOISTURE = 1.28 MOL DRY GAS = 0.987 NITROGEN = 79.00 MOL WT DRY = 28.84 MOL WT WET = 28.70 VELOCITY FPS = 14.46 STACK AREA = 1.35 STACK DSCFM = 936.

Distribution List

	Copies
HQ AFSC/SGPB Andrews AFB DC 20334-5000	1 .
HQ USAF/SCPA Bolling AFB DC 20332-6188	1
AAMRL/TH Wright-Patterson AFB OH 45433-6573	1
USAF Regional Medical Center Wiesbaden/SGB APO New York 09220-5300	1
OL AD, USAFOEHL APO San Francisco 96274-5000	1
USAFSAM/TSK/EDH Brooks AFB TX 78235-5301	¹ ea
Defense Technical Information Center (DTIC) Cameron Station Alexandria VA 22319	2
HQ USAF/LEEV Bolling AFB DC 20330-5000	1
HQ AFESC/RDV Tyndall AFB FL 32403-6001	1
HQ AFLC/DE Wright-Patterson AFB OH 45433-5000	1
USAF Hospital Hill/SGB Hill AFB UT 84056-5300	5
HSD/EV	1

EMED

MARCH, 1988

DTIC