

Fall 2016

Lab 5: Advanced Design Problems

Prof. Chun-Yi Lee

Department of Computer Science
National Sting Hua University

Verilog Lab 5

- Three basic questions (50%)
 - Demonstration on 12/8/2016 (Thu), in class
 - Report due on 12/13/2016 (Tue)
- Lab 5 report (30%)
 - Circuit or block diagram, and FSM state transition diagram of your design, and explain how it works
 - Answer the questions listed in the handout (if any)
 - Contribution of each team member
 - What you have learned from Lab 5
- Two optional questions (20%)
 - Challenge it if you have extra time
 - Include in your Lab 5 report if you can make it
 - Describe your design and how it works

Verilog Lab 5 Rules

- You can use ANY modeling techniques
- Demonstrate your work by waveforms (Q1~Q3) and FPGA (OQ1~OQ2)
- Please follow the module names and I/O ports of the provided templates
 - Submit only one testbench file and one design file
 - Avoid commenting out modules in your submitted Verilog files
 - Please keep in mind that we will deduct points if the module names and I/O port mismatch with the template
- If not specifically mentioned, we assume the following SPEC
 - CLK is positive edge triggered
 - Reset the Flip-Flops when **RESET** == 1'b0

Verilog Lab 5 Submission

Demonstration and code submission due date & time:

5:30pm, 12/8/2016 (Thu) This is a HARD deadline

■ Report submission due date & time:

5:30pm, 12/13/2016 (Tue) This is a HARD deadline

- Please submit your report and Verilog codes to ILMS
 - Format: Lab5_Team1_Codes.v, Lab5_Team1_Tb.v, Lab5_Team1_Report.pdf
 - We will deduct points if the submitted files mismatch the requirements
 - Please don't uncomment the modules in the template file
- We will test your codes by our own testbench

Question 1

Mealy machine sequence detector

- 1-bit input In and 1-bit output Dec
- When the four bit sequence is either 1100 or 1111, Dec is set to 1
- Re-detect the sequence every four bits
- Please draw your state diagram in your report

Question 2

- Sliding Window sequence detector
 - **Dec1** == 1'b1 when input is **101 AND no 111** occurs before
 - **Dec2** == 1'b1 when input sequence is **0110**
- Continuous detection
 - Detect the sequences whenever they occur
 - Please draw a state transition diagram in your report

Question 3 Greatest Common Divisor (GCD)

- Calculate the greatest common divisor of two numbers A and B
- Block diagram and pseudo code are as follow
 - You shall not use while statements in your Verilog codes


```
Function gcd (a, b)
                                  GCD pseudo
begin
                                  code
     if (a == 0)
           return b;
     while (b != 0)
     // Do the following operation once per clock cycle
      begin
           if (a > b)
                   a = a - b;
           else
                   b = b - a:
     end
      return a;
end
```

Question 3 (Cont'd) Greatest Common Divisor (GCD)

- Three states are used: Wait, Calculate, and Finish
- Wait state
 - Wait for Start == 1'b1 (one cycle) to begin the operation
 - When Reset == 1'b0, reset the module to the **Wait state**
- Calculate state
 - Calculate the subtraction operations once per cycle
- Finish state
 - Output the GCD result for one cycle
 - Done == 1'b1 for **one cycle**

Optional Question 1 Vending Machine

- Four options available: Coffee, Coke, Oolong, and Milk Tea
 - Prices are: Coffee (NT\$ 40), Coke (NT\$ 15),
 Oolong (NT\$ 20), Milk Tea (NT\$ 30)
- The two rightmost 7-segment displays show the money inserted into the machine
 - When RESET == 1'b0, please display "00"
 - The maximum value is NT\$ 70
- Use three buttons to insert money
 - You can insert NT\$ 5, NT\$ 10, and NT\$ 50

BEVMAX COKE

Optional Question 1 (Con'd) Vending Machine

- Use four LEDs to indicate which drinks you can buy
 - LED[3:0] corresponds to Coffee, Coke, Oolong, and Milk Tea, respectively
- Use four Switches to buy a drink
 - SW[3:0] corresponds to Coffee, Coke, Oolong, and Milk Tea, respectively
 - You can only buy one drink at a time
- Use the two rightmost 7-segment display to show the change after buying a drink
 - E.g., if you inserted NT\$ 40 and bought a can of Coke (NT\$ 15), the 7-segment display will show NT\$ 25

Optional Question 1 (Con'd) Vending Machine

- Assume that the machine allows you to buy ONLY ONE DRINK at a time
- Decrement the 7-segment display by NT\$ 5 every second to mimic the process of returning changes
 - Return the changes until it becomes zero
- If the buyer does not want to buy a drink, he/she can use a cancel button to cancel it
 - The inserted money will be returned the same way (NT\$ 5 per second)

Optional Question 2 Calculator

- Please use your keyboard to implement a calculator
 - The calculator can perform +, -, and x
 - To simplify your design, please use the letter "x" for multiplication operation
 - Use your keyboard to provide inputs
- The flow of the calculator is as follows:

Optional Question 2 (Cont'd) Calculator

- Clear
 - Use the "C" key as clear
 - You can hit this clear anytime to reset the calculator to zero
- Overflow
 - If the result is larger than 999 or less than -999, simply show 999 and -999
- Cascade operations
 - You can cascade your results with more operations
 - E.g., You can continue with +, -, and x from the previous result 68 in the above example

