Part 6:

1. What are the key components of the Transformer architecture?

- Multi-head self-attention
- Positional encoding
- Feed-forward networks
- Layer normalization
- Residual connections

2. Why is positional encoding used in Transformers?

- Transformers do not have inherent sequential processing like RNNs.
- Positional encoding provides information about the relative positions of tokens.
- Helps the model understand the order of words in a sequence.

3. What is the role of the multi-head attention mechanism?

- Allows the model to focus on different parts of the input sequence simultaneously.
- Captures multiple relationships between tokens at different levels.
- Provides more expressive power by combining attention scores from multiple heads.

4. How do residual connections improve the Transformer architecture?

- Helps mitigate the vanishing gradient problem.
- Speeds up convergence by allowing gradients to flow more easily through the network.
- Adds the input back to the output, facilitating better learning.

5. What is the difference between scaled dot-product attention and traditional attention?

- Scaled dot-product attention divides the dot product by the square root of the dimension of the key vectors (√d_k).
- This scaling ensures more stable gradients and prevents large values from destabilizing the softmax function.
- Traditional attention does not use this scaling factor, which can lead to gradient issues.

6. How is the feed-forward layer in Transformers implemented?

- It is a two-layer fully connected neural network.
- Each token in the sequence is processed independently.
- Typically uses ReLU or GELU activation functions between the layers.

7. What is the function of layer normalization in Transformers?

- Normalizes the output of each layer to maintain consistent mean and variance.
- Stabilizes training and accelerates convergence.
- Reduces the risk of exploding or vanishing gradients during training.

8. What are the roles of the encoder and decoder in a Transformer?

- **Encoder:** Encodes input sequences into context-rich representations.
- Decoder: Generates output sequences by attending to encoder outputs and previously generated tokens.
- **Encoder-decoder attention:** Enables the decoder to focus on relevant parts of the input sequence during generation.

9. How does self-attention differ between the encoder and decoder in Transformers?

- **Encoder self-attention:** Attends to all tokens in the input sequence.
- **Decoder self-attention:** Attends to tokens generated so far and masks future tokens to prevent data leakage.
- **Encoder-decoder attention:** In the decoder, attends to encoder outputs while generating tokens.

10. Why is scaling (dividing by √d_k) used in attention mechanisms?

- Prevents large dot-product values from distorting the softmax function.
- Ensures more stable gradients during backpropagation.
- Helps avoid issues with exploding gradients, especially with large input dimensions.

1. How does learning rate scheduling optimize the training process of generative models over time?

- Dynamic Adjustment: Learning rate scheduling adjusts the learning rate during training to improve convergence and prevent overshooting the optimal solution.
- **Warmup:** A gradual increase in the learning rate during initial epochs helps stabilize training and prevent divergence.
- Decay Strategies: Common techniques like exponential decay or cosine annealing reduce the learning rate over time, ensuring finer updates as the model approaches convergence.
- **Prevention of Overfitting:** By lowering the learning rate in later stages, the model avoids oscillations and overfitting.

2. Explain transfer learning in the context of natural language processing (NLP). How do pre-trained language models contribute to various NLP tasks?

- **Definition:** Transfer learning in NLP involves leveraging pre-trained models (e.g., BERT, GPT) trained on large text corpora for specific downstream tasks.
- **Feature Extraction:** Pre-trained models provide contextual embeddings that capture syntax and semantics.
- **Fine-Tuning:** Models are fine-tuned on task-specific datasets (e.g., sentiment analysis, question answering) for improved performance.
- **Advantages:** Saves computational resources, reduces the need for large labeled datasets, and achieves state-of-the-art results on various NLP tasks.

3. Compare and contrast GPT and BERT.

Feature	GPT	BERT
Architecture	Decoder-only Transformer	Encoder-only Transformer
Training	Autoregressive (predict next token)	Masked Language Model (predict masked tokens)
Context	Unidirectional (left-to-right)	Bidirectional (both directions)
Usage	Text generation	Text understanding tasks

• **Conclusion:** GPT excels at generative tasks, while BERT is optimized for understanding-based tasks like classification and NER.

4. What issues in RNNs are addressed by transformer models?

- **Sequential Processing:** RNNs process data sequentially, causing inefficiency; transformers process input in parallel.
- Vanishing Gradient: Long-term dependencies in RNNs are hard to learn due to vanishing gradients; transformers use attention mechanisms to capture dependencies effectively.
- **Fixed Context Length:** RNNs struggle with long sequences; transformers handle long-term dependencies better with global attention.

5. What distinguishes transformers from RNNs and LSTMs?

- **Parallelism:** Transformers process sequences in parallel, unlike the sequential nature of RNNs/LSTMs.
- Attention Mechanism: Transformers use self-attention to model dependencies, while RNNs rely on recurrent connections.
- **Scalability:** Transformers scale better with large datasets due to parallel processing and are more computationally efficient for long sequences.

6. How does BERT work, and what makes it unique compared to traditional NLP models?

- Bidirectional Context: BERT learns from both left and right context, unlike traditional unidirectional models.
- **Pre-training Tasks:** Includes Masked Language Modeling (MLM) and Next Sentence Prediction (NSP).
- **Transfer Learning:** Fine-tunes pre-trained representations for downstream tasks, achieving state-of-the-art performance.
- Transformer Encoder: Relies on transformer encoders for deep contextual understanding.

7. Why is incorporating relative positional information critical in transformer models?

- **Importance:** Positional encoding allows the model to understand the order of tokens in sequences, critical for context.
- Relative Encoding: Captures relationships between tokens irrespective of their absolute position, beneficial for tasks like music generation or time-series prediction.
- **Example:** In machine translation, understanding word order impacts grammar and meaning.

8. What challenges arise from the fixed attention span in the vanilla Transformer model?

- **Limited Context:** Fixed-length input restricts the model's ability to process long documents or sequences.
- **Dependency Loss:** Important information outside the attention window may be ignored, reducing accuracy for long-term dependencies.

9. Why isn't simply increasing context length a viable solution for handling longer contexts in transformers?

- Computational Complexity: Self-attention scales quadratically with input length (O(n2)), making it memory-intensive.
 O(n2)O(n^2)
- Hardware Limitations: Larger context sizes require extensive GPU/TPU resources.
- **Solution:** Techniques like sparse attention, Reformer, or Longformer mitigate these issues.

10. Can you explain how self-attention works in transformer models?

- **Key, Query, Value (KQV):** Each token generates these vectors.
- Attention Score: Compute similarity between query and keys using dot product, followed by softmax.
- Weighted Summation: Multiply attention scores with value vectors to form the output.
- **Parallel Computation:** Enables relationships between tokens across the sequence to be modeled efficiently.

11. What pre-training mechanisms are typically used in Large Language Models (LLMs)?

 Masked Language Modeling (MLM): BERT-like models predict randomly masked tokens in a sentence.

- Autoregressive Modeling: GPT-like models predict the next token in a sequence.
- **Seq2Seq Modeling:** Models like T5 combine encoder-decoder architecture for both generation and understanding tasks.

12. Why is multi-head attention essential in transformer models?

- **Diversity in Representation:** Captures different types of relationships between tokens (e.g., syntax and semantics).
- **Efficiency:** Enables the model to focus on various parts of the sequence simultaneously.
- **Improved Learning:** Aggregates insights from multiple subspaces, enhancing overall context understanding.