Practice problems A

Problem 1

Suppose $\omega:[0,\infty)\to[0,\infty]$ any function such that $\omega(x)=0$ if and only if $x=0,\,\omega$ continuous at 0, and ω is nondecreasing. For $f:X\to Z$ define

$$[f]_{\omega} = \sup \left\{ \frac{d(f(x), f(y))}{\omega(d(x, y))} : x, y \in X, x \neq y \right\}$$

and the space

$$C^{0,\omega}(X;Z) = \{f: X \to Z \mid [f]_{\omega} < \infty\}.$$

- 1. Prove that $C^{0,\omega}(X;Z) \subset C^0(X;Z)$.
- 2. Suppose Z Banach. Show that $||f||_{C^{0,\omega}} = ||f||_{C^0} + [f]_{\omega}$ is a norm on $C_b^{0,\omega}(X;Z) = C_b^0(X;Z) \cap C^{0,\omega}(X;Z)$, and that $C_b^{0,\omega}(X;Z)$ is complete with respect to this norm.
- 3. Suppose that X is compact and $d \in \mathbb{N}$, show that $B_{C^{0,\omega}(X;\mathbb{R}^d)}[0,1] \subset C^0(X;\mathbb{R}^d)$ is compact.
- 4. Suppose X compact and infinte, and $d \in \mathbb{N}$. Show that $B_{C^{0,\omega}}[0,1] \subset C^{0,\omega}$ is not compact. Conclude that id: $(C^{0,\omega}, \|\cdot\|_{C^0}) \to (C^{0,\omega}, \|\cdot\|_{C^{0,\omega}})$ is not continuous. Also conclude that $(C^{0,\omega}, \|\cdot\|_{C^0})$ is not complete.
- 5. Another way to see this last fact is to first prove $C^{0,\omega}(X;\mathbb{R}^d)$ is a strict subset of $C^0(X;\mathbb{R}^d)$. It is helpful to study the sets $E_n = \{f \in C^0(X;\mathbb{R}^d) : [f]_\omega \leq n\}$. Show that $C^{0,\omega}(X;\mathbb{R})$ is dense in $C^0(X;\mathbb{R})$. Use this to show that $C^{0,\omega}(X;\mathbb{R}^d)$ is dense in $C^0(X;\mathbb{R})$, and conclude $(C^{0,\omega}(X;\mathbb{R}^d), \|\cdot\|_{C^0})$ is not complete.

Proof. 1. Let $x \in X$ and $\varepsilon > 0$. It follows that for any $x \neq y$ we have

$$d(f(x), f(y)) \le [f]_{\omega} \omega(d(x, y)).$$

Since $\omega(0)=0$, ω continuous at 0, and ω is nondecreasing, we can find $\delta>0$ such that $0 \le t < \delta$ implies $0 \le \omega(t) < \varepsilon$. Therefore, $d(x,y) < \delta$ implies $d(f(x),f(y)) < \varepsilon[f]_{\omega}$. Since $[f]_{\omega} < \infty$, f is continuous and $C^{0,\omega}(X;Z) \subset C^0(X;Z)$.

2. It is easy to show that $\|\cdot\|_{C^{0,\omega}}$ is indeed a norm on $C_b^{0,\omega}(X;Z)$. Now we show that $C_b^{0,\omega}(X;Z)$ is complete with respect to this norm. Suppose $\{f_n\}\subset C_b^{0,\omega}$ Cauchy. Then it is also Cauchy in C_b^0 . Therefore there is $f\in C_b^0$ such that $f_n\to f$ under C^0 norm. Remain to show $[f-f_n]_\omega\to 0$. Let $x,y\in X$ and $x\neq y$ and $m,n\geq N$ implies $[f_m-f_n]_\omega<\varepsilon$. Then,

$$\frac{\|f_m(x) - f_m(y) - f_n(x) + f_n(y)\|_Z}{\omega(d(x, y))} < \varepsilon.$$

Take $m \to \infty$ and take supremum of all $x, y \in X$ with $x \neq y$ completes the proof.