Dạng 3: Bất phương trình bậc hai và cách giải bài tập

1. Lý thuyết

- Bất phương trình bậc hai ẩn x là bất phương trình dạng $ax^2 + bx + c < 0$ (hoặc $ax^2 + bx + c > 0$; $ax^2 + bx + c \le 0$; $ax^2 + bx + c \ge 0$), trong đó a, b, c là những số thực đã cho, $a \ne 0$.
- Giải bất phương trình bậc hai $ax^2 + bx + c < 0$ thực chất là tìm các khoảng mà trong đó $f(x) = ax^2 + bx + c$ cùng dấu với hệ số a (trường hợp a < 0) hay trái dấu với hệ số a (trường hợp a > 0).

2. Các dạng toán

Dạng 3.1: Dấu của tam thức bậc hai

a. Phương pháp giải:

- Tam thức bậc hai (đối với x) là biểu thức dạng $ax^2 + bx + c$. Trong đó a, b, c là nhứng số cho trước với $a \ne 0$.
- Định lý về dấu của tam thức bậc hai:

Cho
$$f(x) = ax^2 + bx + c \ (a \ne 0), \ \Delta = b^2 - 4ac$$
.

Nếu $\Delta < 0$ thì f(x) luôn cùng dấu với hệ số a với mọi $x \in \mathbb{R}$.

Nếu $\Delta = 0$ thì f(x) luôn cùng dấu với hệ số a trừ khi $x = -\frac{b}{2a}$.

Nếu $\Delta > 0$ thì f(x) cùng dấu với hệ số a khi $x < x_1$ hoặc $x > x_2$, trái dấu với hệ số a khi $x_1 < x < x_2$ trong đó $x_1, x_2(x_1 < x_2)$ là hai nghiệm của f(x).

Lưu ý: Có thể thay biệt thức $\Delta = b^2 - 4ac$ bằng biệt thức thu gọn $\Delta' = (b')^2 - ac$.

Ta có bảng xét dấu của tam thức bậc hai $f(x) = ax^2 + bx + c \ (a \neq 0)$ trong các trường hợp như sau:

Δ < 0:

X	$-\infty$	+∞

f(x) Cùng dấu với a	
---------------------	--

$\Delta = 0$:

X	$-\infty$	$-\frac{b}{2a}$	+∞
f(x)	Cùng dấu với a	0	Cùng dấu với a

$\Delta > 0$:

X	-∞ X	1	\mathbf{X}_2	$+\infty$
f(x)	Cùng dấu với a 0	Trái dấu với a	0 Cùng dấu vớ	i a

Minh họa bằng đồ thị

	Δ < 0	$\Delta = 0$	$\Delta > 0$		
<i>a</i> > 0	O X	$-\frac{b}{2a}$	$\begin{array}{c c} & & & & \\ + & & & \\ + & & & \\ \hline O & - & - & X \end{array}$		
	$\Delta < 0$	$\Delta = 0$	$\Delta > 0$		
a < 0	<i>y O O O O O O O O O O</i>	$ \begin{array}{c c} y \\ \hline O \\ \hline -\frac{b}{2a} \end{array} $	$O \xrightarrow{+} \xrightarrow{+} \xrightarrow{+} C$		

b. Ví dụ minh họa:

Ví dụ 1: Xét dấu tam thức $f(x) = -x^2 - 4x + 5$

Hướng dẫn:

Ta có f(x) có hai nghiệm phân biệt x = 1, x = -5 và hệ số a = -1 < 0 nên: f(x) > 0 khi $x \in (-5;1)$; f(x) < 0 khi $x \in (-\infty;-5) \cup (1;+\infty)$.

Ví dụ 2: Xét dấu biểu thức $f(x) = (3x^2 - 10x + 3)(4x - 5)$.

Hướng dẫn:

Ta có:
$$3x^2 - 10x + 3 = 0 \Leftrightarrow \begin{bmatrix} x = 3 \\ x = \frac{1}{3} \end{bmatrix}$$
 và $4x - 5 = 0 \Leftrightarrow x = \frac{5}{4}$.

Lập bảng xét dấu:

X	$-\infty$		$\frac{1}{3}$		$\frac{5}{4}$		3		+∞
$3x^2 - 10x + 3$		+	0	_		_	0	+	
4x-5		_		_	0	+		+	
f(x)		_	0	+	0	_	0	+	

Dựa vào bảng xét dấu, ta thấy:

$$f(x) \le 0 \Leftrightarrow x \in \left(-\infty; \frac{1}{3}\right] \cup \left[\frac{5}{4}; 3\right]; \ f(x) \ge 0 \Leftrightarrow x \in \left[\frac{1}{3}; \frac{5}{4}\right] \cup \left[3; +\infty\right).$$

Dạng 3.2: Giải và biện luận bất phương trình bậc hai

a. Phương pháp giải:

Giải và biện luận bất phương trình bậc hai

Ta xét hai trường hợp:

- +) Trường hợp 1: a = 0 (nếu có).
- +) Trường hợp 2: $a \neq 0$, ta có:

Bước 1: Tính Δ (hoặc Δ ')

Bước 2: Dựa vào dấu của Δ (hoặc Δ ') và a, ta biện luận số nghiệm của bất phương trình

Bước 3: Kết luận.

b. Ví dụ minh họa:

Ví dụ 1: Giải và biện luận bất phương trình $x^2 + 2x + 6m > 0$.

Hướng dẫn:

$$\text{D} t f(x) = x^2 + 2x + 6m$$

Ta có $\Delta' = 1$ - 6m; a = 1. Xét ba trường hợp:

+) Trường hợp 1: Nếu
$$\Delta' < 0 \Leftrightarrow m > \frac{1}{6} \implies f(x) > 0 \ \forall x \in \mathbb{R}$$
.

Suy ra tập nghiệm của bất phương trình là $S = \mathbb{R}$.

+) Trường hợp 2: Nếu
$$\Delta' = 0 \Leftrightarrow m = \frac{1}{6} \Rightarrow f(x) > 0 \ \forall x \in \mathbb{R} \setminus \{-1\}.$$

Suy ra nghiệm của bất phương trình là $S = \mathbb{R} \setminus \{-1\}$.

+) Trường hợp 3: Nếu
$$\Delta' > 0 \Leftrightarrow m < \frac{1}{6}$$
.

Khi đó f(x) = 0 có hai nghiệm phân biệt $x_1 = -1 - \sqrt{1-6m}$; $x_2 = -1 + \sqrt{1-6m}$ (dễ thấy $x_1 < x_2$) \Longrightarrow f(x) > 0 khi x < x_1 hoặc x > x_2 . Suy ra nghiệm của bất phương trình là $S = \left(-\infty; x_1\right) \cup \left(x_2; +\infty\right)$.

Vậy:

Với
$$m > \frac{1}{6}$$
 tập nghiệm của bất phương trình là $S = \mathbb{R}$.

Với
$$m = \frac{1}{6}$$
 tập nghiệm của bất phương trình là $S = \mathbb{R} \setminus \{-1\}$.

Với m <
$$\frac{1}{6}$$
 tập nghiệm của bất phương trình là $S = (-\infty; x_1) \cup (x_2; +\infty)$ với $x_1 = -1 - \sqrt{1-6m}$, $x_2 = -1 + \sqrt{1-6m}$.

Ví dụ 2: Giải và biện luận bất phương trình $12x^2 + 2(m+3)x + m \le 0$.

Hướng dẫn:

Đặt
$$f(x) = 12x^2 + 2(m+3)x + m$$
, ta có $a = 12$ và $\Delta' = (m-3)^2 \ge 0$

Khi đó, ta xét hai trường hợp:

- +) Trường hợp 1: Nếu $\Delta'=0 \Leftrightarrow m=3$, suy ra $f(x) \geq 0 \ \forall x \in \mathbb{R}$. Do đó, nghiệm của bất phương trình là $x=-\frac{b}{2a}=-\frac{1}{2}$.
- +) Trường hợp 2: Nếu $\Delta'>0 \Leftrightarrow m\neq 3$, suy ra f(x)=0 có hai nghiệm phân biệt $x_1=-\frac{1}{2}; x_2=-\frac{m}{6}$

Xét hai khả năng sau:

Khả năng 1: Nếu $x_1 < x_2 \Leftrightarrow m < 3$

Khi đó, theo định lý về dấu của tam thức bậc hai, tập nghiệm của bất phương trình là $S = \left[-\frac{1}{2}; -\frac{m}{6} \right]$

Khả năng 2: Nếu $x_1 > x_2 \Leftrightarrow m > 3$

Khi đó, theo định lý về dấu của tam thức bậc hai, tập nghiệm của bất phương trình là $S = \left[-\frac{m}{6}; -\frac{1}{2} \right]$

Vậy: Với m = 3 tập nghiệm của bất phương trình là $S = \left\{-\frac{1}{2}\right\}$.

Với m < 3 tập nghiệm của bất phương trình là $S = \left[-\frac{1}{2}; -\frac{m}{6} \right]$.

Với m > 3 tập nghiệm của bất phương trình là $S = \left[-\frac{m}{6}; -\frac{1}{2} \right]$.

Dạng 3.3: Bất phương trình chứa căn thức

a. Phương pháp giải:

Sử dụng các công thức:

+)
$$\sqrt{f(x)} \le g(x) \Leftrightarrow \begin{cases} f(x) \ge 0 \\ g(x) \ge 0 \\ f(x) \le g^2(x) \end{cases}$$

+)
$$\sqrt{f(x)} \ge g(x) \Leftrightarrow \begin{bmatrix} g(x) < 0 \\ f(x) \ge 0 \\ g(x) \ge 0 \\ f(x) \ge g^2(x) \end{bmatrix}$$

b. Ví dụ minh họa:

Ví dụ 1: Giải bất phương trình $\sqrt{x^2 + 2} \le x - 1$.

Hướng dẫn:

Ta có
$$\sqrt{x^2 + 2} \le x - 1 \Leftrightarrow$$

$$\begin{cases} x - 1 \ge 0 \\ x^2 + 2 \ge 0 \\ x^2 + 2 \le x^2 - 2x + 1 \end{cases}$$

$$\Leftrightarrow \begin{cases} x \ge 1 \\ 2x \le -1 \end{cases} \Leftrightarrow \begin{cases} x \ge 1 \\ x \le -\frac{1}{2} \end{cases} \text{ (vô lý)}.$$

Vậy bất phương trình vô nghiệm.

Ví dụ 2: Tìm tập nghiệm S của bất phương trình $\sqrt{x^2 - 2x - 15} > 2x + 5$.

Ta có:
$$\sqrt{x^2 - 2x - 15} > 2x + 5 \Leftrightarrow \begin{cases} \begin{cases} x^2 - 2x - 15 \ge 0 \\ 2x + 5 < 0 \end{cases} \\ \begin{cases} 2x + 5 \ge 0 \\ x^2 - 2x - 15 > (2x + 5)^2 \end{cases} \end{cases}$$

$$\Leftrightarrow \begin{cases}
\begin{cases}
x \le -3 \\
x < -\frac{5}{2}
\end{cases} & \Leftrightarrow \begin{cases}
x \le -3 \\
x \ge -\frac{5}{2}
\end{cases} & \Leftrightarrow x \le -3.
\end{cases}$$

$$\begin{cases}
x \ge -\frac{5}{2} \\
3x^2 + 22x + 40 < 0
\end{cases}$$

Vậy tập nghiệm của bất phương trình đã cho là: $S = (-\infty; -3]$.

3. Bài tập tự luyện

3.1 Tự luận

Câu 1: Tìm tất cả các nghiệm nguyên của bất phương trình $2x^2 - 3x - 15 \le 0$ **Hướng dẫn:**

Xét
$$f(x) = 2x^2 - 3x - 15$$
.

$$f(x) = 0 \Leftrightarrow x = \frac{3 \pm \sqrt{129}}{4}$$
.

Ta có bảng xét dấu:

x	$-\infty$	$\frac{3-\sqrt{129}}{4}$		$\frac{3+\sqrt{129}}{4}$	+∞
f(x)	+	0	_	0	+

Tập nghiệm của bất phương trình là
$$S = \left[\frac{3 - \sqrt{129}}{4}; \frac{3 + \sqrt{129}}{4} \right].$$

Do đó bất phương trình có 6 nghiệm nguyên là: -2; -1; 0; 1; 2; 3.

Câu 2: Xét dấu biểu thức: $f(x) = x^2 - 4$.

Hướng dẫn:

Ta có f(x) có hai nghiệm phân biệt x = -2, x = 2 và hệ số a = 1 > 0 nên:

$$f(x) < 0$$
 khi $x \in (-2,2)$; $f(x) > 0$ khi $x \in (-\infty,-2) \cup (2,+\infty)$.

Câu 3: Xét dấu biểu thức: $f(x) = x^2 - 4x + 4$.

Hướng dẫn:

 $x^2 - 4x + 4 = 0 \Leftrightarrow x = 2$. Ta có bảng xét dấu:

X	$-\infty$		2		+∞
$x^2 - 4x + 4$		+	0	+	

Vây f(x) > 0 với $\forall x \in \mathbb{R} \setminus \{2\}$.

Câu 4: Giải bất phương trình $x(x+5) \le 2(x^2+2)$.

Hướng dẫn:

Bất phương trình $x(x+5) \le 2(x^2+2) \Leftrightarrow x^2+5x \le 2x^2+4 \Leftrightarrow x^2-5x+4 \ge 0$

Xét phương trình
$$x^2 - 5x + 4 = 0 \Leftrightarrow (x - 1)(x - 4) = 0 \Leftrightarrow \begin{bmatrix} x = 1 \\ x = 4 \end{bmatrix}$$
.

Lập bảng xét dấu:

X	$-\infty$		1		4		$+\infty$
$x^2 - 5x + 4$		+	0	-	0	+	

Dựa vào bảng xét dấu, ta thấy $x^2 - 5x + 4 \ge 0 \Leftrightarrow x \in (-\infty; 1] \cup [4; +\infty)$.

Câu 5: Có bao nhiều giá trị nguyên dương của x thỏa mãn $\frac{x+3}{x^2-4} - \frac{1}{x+2} < \frac{2x}{2x-x^2}$?

Điều kiện:
$$\begin{cases} x^2 - 4 \neq 0 \\ x + 2 \neq 0 \end{cases} \Leftrightarrow \begin{cases} x \neq 0 \\ x \neq \pm 2 \end{cases}$$

Bất phương trình:

$$\frac{x+3}{x^2-4} - \frac{1}{x+2} < \frac{2x}{2x-x^2} \Leftrightarrow \frac{x+3}{x^2-4} - \frac{1}{x+2} + \frac{2x}{x^2-2x} < 0 \Leftrightarrow \frac{2x+9}{x^2-4} < 0.$$

Bảng xét dấu:

Dựa vào bảng xét dấu, ta thấy
$$\frac{2x+9}{x^2-4} < 0 \Leftrightarrow x \in \left(-\infty; -\frac{9}{2}\right) \cup \left(-2; 2\right)$$
.

Vậy chỉ có duy nhất một giá trị nguyên dương của x (x = 1) thỏa mãn yêu cầu.

Câu 6: Tìm các giá trị của m để biểu thức $f(x) = x^2 + (m+1)x + 2m + 7 > 0 \quad \forall x \in \mathbb{R}$.

Hướng dẫn:

Ta có:
$$f(x) > 0, \forall x \in \mathbb{R} \Leftrightarrow \begin{cases} a > 0 \\ \Delta < 0 \end{cases} \Leftrightarrow \begin{cases} 1 > 0 \\ (m+1)^2 - 4(2m+7) < 0 \end{cases}$$

$$\Leftrightarrow$$
 m² - 6m - 27 < 0 \Leftrightarrow -3 < m < 9.

Câu 7: Tìm tất cả các giá trị thực của tham số m để bất phương trình: $(m+1)x^2 - 2(m+1)x + 4 \ge 0$ (1) có tập nghiệm $S = \mathbb{R}$?

+) Trường hợp 1: $m+1=0 \Leftrightarrow m=-1$

Bất phương trình (1) trở thành $4 \ge 0 \ \forall x \in R$ (Luôn đúng) (*)

+) Trường hợp 2: $m+1 \neq 0 \Leftrightarrow m \neq -1$

Bất phương trình (1) có tập nghiệm $S = \mathbb{R}$

$$\Leftrightarrow \begin{cases} a > 0 \\ \Delta' \le 0 \end{cases} \Leftrightarrow \begin{cases} m+1 > 0 \\ \Delta' = m^2 - 2m - 3 \le 0 \end{cases} \Leftrightarrow -1 < m \le 3 (**)$$

Từ (*) và (**) ta suy ra với $-1 \le m \le 3$ thì bất phương trình có tập nghiệm $S = \mathbb{R}$.

Câu 8: Tìm tất cả các giá trị của tham số m để tam thức bậc hai f(x) sau đây thỏa mãn $f(x) = -x^2 + 2x + m - 2018 < 0$, $\forall x \in \mathbb{R}$.

Hướng dẫn:

Vì tam thức bậc hai f(x) có hệ số a = -1 < 0 nên f(x) < 0, $\forall x \in \mathbb{R}$ khi và chỉ khi $\Delta' < 0 \Leftrightarrow 1 - (-1)(m - 2018) < 0 \Leftrightarrow m - 2017 < 0 \Leftrightarrow m < 2017$.

Câu 9: Bất phương trình $\sqrt{2x-1} \le 2x-3$ có bao nhiều nghiệm nguyên thuộc khoảng (0; 7)?

Ta có:
$$\sqrt{2x-1} \le 2x-3 \Leftrightarrow$$

$$\begin{cases}
2x-1 \ge 0 \\
2x-3 \ge 0 \\
2x-1 \le (2x-3)^2
\end{cases}$$

$$\Leftrightarrow \begin{cases} x \ge \frac{1}{2} \\ x \ge \frac{3}{2} \\ 4x^2 - 14x + 10 \ge 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} x \ge \frac{3}{2} \\ x \le 1 \iff x \ge \frac{5}{2} \\ x \ge \frac{5}{2} \end{cases}$$

Kết hợp điều kiện: $\begin{cases} x \in (0;7) \\ x \in \mathbb{Z} \end{cases}$, suy ra $x \in \{3;4;5;6\}$.

Vậy bất phương trình có 4 nghiệm nguyên thuộc khoảng (0; 7).

Câu 10: Tìm tập nghiệm của bất phương trình $\sqrt{x^2 + 2017} \le \sqrt{2018}x$.

Hướng dẫn:

$$\sqrt{x^2 + 2017} \le \sqrt{2018}x \iff \begin{cases} x^2 + 2017 \ge 0 \\ x \ge 0 \\ x^2 + 2017 \le 2018x^2 \end{cases}$$

$$\Leftrightarrow \begin{cases} x \ge 0 \\ x^2 - 1 \ge 0 \end{cases} \Leftrightarrow \begin{cases} x \ge 0 \\ x \le -1 \iff x \ge 1 \\ x \ge 1 \end{cases}$$

Vậy tập nghiệm của bất phương trình đã cho là $T = [1; +\infty)$.

3.2 Trắc nghiệm

Câu 1: Cho tam thức $f(x) = ax^2 + bx + c(a \ne 0)$, $\Delta = b^2 - 4ac$. Ta có $f(x) \le 0$ với $\forall x \in \mathbb{R}$ khi và chỉ khi:

$$\mathbf{A.} \begin{cases} a < 0 \\ \Delta \le 0 \end{cases}$$

$$\mathbf{B.} \begin{cases} \mathbf{a} \leq 0 \\ \Delta < 0 \end{cases}$$

C.
$$\begin{cases} a < 0 \\ \Delta \ge 0 \end{cases}$$
.

$$\mathbf{D.} \begin{cases} a > 0 \\ \Delta \le 0 \end{cases}.$$

Hướng dẫn:

Chọn A.

Áp dụng định lý về dấu của tam thức bậc hai ta có: $f(x) \le 0$ với $\forall x \in \mathbb{R}$ khi và chỉ khi $\begin{cases} a < 0 \\ \Delta \le 0 \end{cases}$.

Câu 2: Cho hàm số $y = f(x) = ax^2 + bx + c$ có đồ thị như hình vẽ. Đặt $\Delta = b^2 - 4ac$, tìm dấu của a và Δ .

A.
$$a > 0$$
, $\Delta > 0$.

B.
$$a < 0, \Delta > 0$$
.

C.
$$a > 0$$
, $\Delta = 0$.

D. a < 0,
$$\Delta = 0$$
.

Hướng dẫn:

Chọn A.

Đồ thị hàm số là một parabol có bề lõm quay lên nên a > 0 và đồ thị hàm số cắt trục Ox tại hai điểm phân biệt nên $\Delta > 0$.

Câu 3: Cho tam thức bậc hai $f(x) = ax^2 + bx + c \ (a \neq 0)$. Mệnh đề nào sau đây đúng?

A. Nếu $\Delta > 0$ thì f(x) luôn cùng dấu với hệ số a, với mọi $x \in \mathbb{R}$.

B. Nếu $\Delta < 0$ thì f(x) luôn trái dấu với hệ số a, với mọi $x \in \mathbb{R}$.

C. Nếu $\Delta = 0$ thì f(x) luôn cùng dấu với hệ số a, với mọi $x \in \mathbb{R} \setminus \left\{ -\frac{b}{2a} \right\}$.

D. Nếu $\Delta < 0$ thì f(x) luôn cùng dấu với hệ số b, với mọi $x \in \mathbb{R}$.

Hướng dẫn:

Chọn C. Theo định lý về dấu tam thức bậc hai

Câu 4: Gọi S là tập nghiệm của bất phương trình $x^2 - 8x + 7 \ge 0$. Trong các tập hợp sau, tập nào không là tập con của S?

A. $(-\infty;0]$.

B. $[6;+\infty)$.

C. $[8; +\infty)$.

D. $(-\infty;-1]$.

Hướng dẫn:

Chọn B.

Ta có
$$x^2 - 8x + 7 \ge 0 \Leftrightarrow \begin{bmatrix} x \le 1 \\ x \ge 7 \end{bmatrix}$$
.

Suy ra tập nghiệm của bất phương trình là $S = (-\infty; 1] \cup [7; +\infty)$.

Do đó [6;+∞) ⊄ S.

Câu 5: Tìm tất cả các giá trị của tham số m để phương trình $x^2 + mx + 4 = 0$ có nghiêm

 $\mathbf{A.} - 4 \le \mathbf{m} \le 4$.

B. $m \le -4$ hoặc $m \ge 4$.

C. $m \le -2$ hoặc $m \ge 2$.

D. $-2 \le m \le 2$.

Hướng dẫn:

Chọn B.

Phương trình $x^2 + mx + 4 = 0$ có nghiệm $\Leftrightarrow \Delta \ge 0 \Leftrightarrow m^2 - 16 \ge 0 \Leftrightarrow m \le -4$ hoặc $m \ge 4$.

Câu 6: Tam thức $f(x) = x^2 + 2(m-1)x + m^2 - 3m + 4$ không âm với mọi giá trị của x khi

A. m < 3.

B. $m \ge 3$.

C. $m \le -3$.

D. $m \le 3$.

Hướng dẫn:

Chon D.

Yêu cầu bài toán \Leftrightarrow f $(x) \ge 0, \forall x \in \mathbb{R}$

$$\Leftrightarrow$$
 $x^2 + 2(m-1)x + m^2 - 3m + 4 \ge 0, \forall x \in \mathbb{R}$

$$\Leftrightarrow \Delta' = (m-1)^2 - (m^2 - 3m + 4) \le 0$$

$$\Leftrightarrow$$
 m - 3 \le 0 \Leftrightarrow m \le 3.

Vậy $m \le 3$ thỏa mãn yêu cầu bài toán.

Câu 7: Tìm tất cả các giá trị của tham số m để bất phương trình $x^2 - (m+2)x + 8m + 1 \le 0$ vô nghiệm.

A. $m \in [0;28]$.

B.
$$m \in (-\infty; 0) \cup (28; +\infty)$$
.

C. $m \in (-\infty; 0] \cup [28; +\infty)$.

D. $m \in (0;28)$.

Hướng dẫn:

Chon D.

Bất phương trình vô nghiệm khi và chỉ khi $\Delta = (m+2)^2 - 4(8m+1) < 0$ $\Leftrightarrow m^2 - 28m < 0 \Leftrightarrow 0 < m < 28$.

Câu 8: Bất phương trình $\sqrt{-x^2 + 6x - 5} > 8 - 2x$ có nghiệm là:

A. $-5 < x \le -3$.

B. $3 < x \le 5$.

C. $2 < x \le 3$.

D. $-3 \le x \le -2$.

Hướng dẫn:

Chon B.

Ta có:
$$\sqrt{-x^2 + 6x - 5} > 8 - 2x \Leftrightarrow$$

$$\begin{cases}
-x^2 + 6x - 5 \ge 0 \\
8 - 2x < 0 \\
8 - 2x \ge 0 \\
-x^2 + 6x - 5 > (8 - 2x)^2
\end{cases}$$

$$\begin{cases} 1 \le x \le 5 \\ x > 4 \end{cases}$$

$$\Leftrightarrow \begin{cases} x \le 4 \iff 3 < x \le 5. \\ 3 < x < \frac{23}{5} \end{cases}$$

Vậy nghiệm của bất phương trình là $3 < x \le 5$.

Câu 9: Số nghiệm nguyên của bất phương trình $\sqrt{2(x^2+1)} \le x+1$ là:

A. 3.

- **B.** 1.
- **C.** 4.
- **D.** 2.

Hướng dẫn:

Chon B.

Ta có:
$$\sqrt{2(x^2+1)} \le x+1 \Leftrightarrow \begin{cases} x+1 \ge 0 \\ 2(x^2+1) \ge 0 \\ 2(x^2+1) \le (x+1)^2 \end{cases}$$

$$\Leftrightarrow \begin{cases} x+1 \ge 0 \\ x^2 - 2x + 1 \le 0 \end{cases} \Leftrightarrow \begin{cases} x+1 \ge 0 \\ (x-1)^2 \le 0 \end{cases} \Leftrightarrow x = 1$$

Vậy bất phương trình đã cho có 1 nghiệm nguyên.

Câu 10: Nghiệm của bất phương trình $\frac{3x-1}{\sqrt{x+2}} \le 0$ (1) là:

- **A.** $x \le \frac{1}{3}$.
- **B.** $-2 < x < \frac{1}{3}$.

$$\mathbf{C.} \begin{cases} x \le \frac{1}{3} \\ x \ne -2 \end{cases}$$

D.
$$-2 < x \le \frac{1}{3}$$
.

Hướng dẫn:

Chọn D.

Điều kiện xác định: x > -2.

$$(1) \Leftrightarrow 3x - 1 \le 0 \Leftrightarrow x \le \frac{1}{3} \text{ (do } \sqrt{x+2} > 0 \text{ v\'oi mọi } x > -2)$$

Kết hợp điều kiện x > -2 suy ra nghiệm của bất phương trình là $-2 < x \le \frac{1}{3}$.