

2016-2017-1

《数字信号处理》课程报告

题 目	线性卷积计算方法总结			
学 院	通信与信息工程学院			
专 业				
班 级				
姓名学号				
任课老师				

2016年10月27日

定义序列, x[k] = [1,2,3], h[k] = [4,5], 求两者的线性卷积:

方法一:根据定义计算

利用公式

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k] = \sum_{k=-\infty}^{\infty} x[n-k]h[k]$$

代入数据,得到:

$$y[0] = x[0]h[0] + x[1]h[-1] + x[2]h[-2]$$

$$= 1*4+2*0+3*0$$

$$= 4$$

$$y[1] = x[0]h[1] + x[1]h[0] + x[2]h[-1]$$

$$= 1*5+2*4+3*0$$

$$= 13$$

$$y[3] = x[0]h[2] + x[1]h[1] + x[2]h[0]$$

$$= 1*0+2*5+3*4$$

$$= 22$$

$$y[4] = x[0]h[3] + x[1]h[2] + x[2]h[1]$$

$$= 1*0+2*0+3*5$$

$$= 15$$

$$y[n] = [4, 13, 22, 15]$$
 0 \le n \le 3

方法二:不进位乘法

利用公式:

x[0]	x[1]	x[2]	
h[0]	h[1]		
x[0]h[0]	x[1]h[0]	x[2]h[0]	
	x[0]h[1]	x[1]h[1]	x[2]h[1]
y[0]	y[1]	y[2]	y[3]

代入数据,得到:

1	2	3	
4	5		
4	8	12	
	5	10	15
4	13	22	15

$$y[n] = [4, 13, 22, 15]$$
 0 \le n \le 3

方法三:翻转平移法

公式如下:

x[n]		x[0]	x[1]	x[2]		
h[n]		h[0]	h[1]			
h[-n]	h[1]	h[0]				y[0]=x[0]h[0]
h[1-n]		h[1]	h[0]			y[1]=x[0]h[1]+x[1]h[0]
h[2-n]			h[1]	h[0]		y[2]=x[1]h[1]+x[2]h[0]
h[3-n]				h[1]	h[0]	y[3]=x[2]h[1]

则:

$$y[0]=x[0]h[0]=4$$
 $y[1]=x[0]h[1]+x[1]h[0]=13$
 $y[2]=x[1]h[1]+x[2]h[0]=22$
 $y[3]=x[2]h[1]=15$

$$y[n] = [4, 13, 22, 15]$$
 0 \le n \le 3

方法四:用 DFT 实现线性卷积

步骤:

- 1) 分别计算g[n]和h[n]的DTFTs,为 $G\left(e^{j\omega}\right)$ 和 $H\left(e^{j\omega}\right)$ 。
- 2) 利用公式 $Y\left(e^{j\omega}\right)=G\left(e^{j\omega}\right)*H\left(e^{j\omega}\right)$, 计算得到 $Y\left(e^{j\omega}\right)$ 。
- 3) 计算 $Y(e^{j\omega})$ 的IDTFT,得到y[n]。

编写 Matlab 代码:

得到结果:

a = 1 2 3 0 A =6.0000 + 0.0000i -2.0000 - 2.0000i 2.0000 + 0.0000i-2.0000 + 2.0000i b = 4 5 0 0 B =9.0000 + 0.0000i 4.0000 - 5.0000i -1.0000 + 0.0000i 4.0000 + 5.0000i Y =

54.0000 + 0.0000i -18.0000 + 2.0000i -2.0000 + 0.0000i -18.0000 - 2.0000i

y = 22 15 4 13

即:

$$y[n] = [4, 13, 22, 15]$$
 0 \le n \le 3

方法五:斜线切割法

	X[0]	X[1]	X[2]
h[0]	X[0]h[0]	X[1]h[0]	X[2]h[0]
h[1]	X[0]h[1]	X[1]h[1]	X[2]h[1]
y[0]	y[1]	y[2]	y[3]

则:

$$y[0]=x[0]h[0]=4$$

$$y[1]=x[0]h[1]+x[1]h[0]=13$$

$$y[2]=x[1]h[1]+x[2]h[0]=22$$

$$y[3]=x[2]h[1]=15$$

$$y[n] = [4, 13, 22, 15]$$
 0 \le n \le 3