

http://www.elsevier.com/locate/jiph

SHORT COMMUNICATION

Epidemiology of necrotizing infection caused by *Staphylococcus aureus* and *Streptococcus pyogenes* at an lowa hospital

Dipendra Thapaliya a,b,1, Ashley M. O'Brien a,b, Shylo E. Wardyn a,b, Tara C. Smith a,b,*,1

Received 2 February 2015; received in revised form 28 May 2015; accepted 12 June 2015

KEYWORDS

Staphylococcus aureus; Streptococcus pyogenes; Necrotizing fasciitis; Epidemiology; Infection

The present study was performed to characterize the epidemiology of necrotizing soft tissue infection caused by Streptococcus pyogenes (n = 14) and Staphylococcus aureus (n = 14) isolates collected at the University of Iowa Hospitals and Clinics. An additional 9 S. pyogenes isolates were collected from patients being treated for mild respiratory infections and served as a comparison sample in the analysis. Patient data corresponding to the isolates (n = 37) were also collected in order to identify risk factors or comorbid conditions possibly correlated with necrotizing fasciitis (NF). The prevalence of methicillin-resistant S. aureus among the study isolates was 35.7% (5/14), and the prevalence of the Panton-Valentine leukocidin (PVL) gene was 57% (8/14). The S. pyogenes NF (wound) isolates (n = 14) belonged to 10 different emm types, none of which appeared to be associated with more severe disease when compared to the milder infection (throat) samples (n=9). Comorbid conditions such as diabetes and cardiovascular disease were significantly associated with NF. The results indicate that there may be a high prevalence of the PVL virulence factor in NF infections and that spa type t008 may be responsible for the increasing incidence of S. aureus NF infections in Iowa.

 $\ \, {\odot}$ 2015 King Saud Bin Abdulaziz University for Health Sciences. Published by Elsevier Limited. All rights reserved.

^a Department of Epidemiology, University of Iowa College of Public Health, Iowa City, IA. USA

^b Center for Emerging Infectious Diseases, University of Iowa College of Public Health, Iowa City, IA, USA

^{*} Corresponding author at: 750 Hilltop Drive, Lowry Hall, Kent, OH 44242, USA. Tel.: +1 330 672 3946. E-mail address: tsmit176@kent.edu (T.C. Smith).

¹ Present address: Department of Biostatistics, Environmental Health Sciences, & Epidemiology, College of Public Health, Kent State University, Kent, OH, USA.

Introduction

In the United States, the incidence of necrotizing infections is approximately 0.04 cases per 1000 persons-years [1]; nevertheless, the disease is often characterized by its rapid progression and high mortality rate, which is estimated to range from 25% to 35% [1,2], though some studies have reported a mortality rate as high as 50% [3]. Most necrotizing infection cases are caused by *Streptococcus pyogenes*; however, the incidence of necrotizing fasciitis (NF) with *Staphylococcus aureus* identified as the primary pathogen is on the rise [4,5].

To date, little is known about the pathogenicity of necrotizing infections, primarily regarding molecular characterization and virulence factors, as well as host factors that may be correlated with severe necrotizing infections. Three notable virulence factors associated with *S. pyogenes* infection include *emm* type, mutations in the *covR/covS* system, and the presence of superantigens. Previous research has indicated that certain *emm* types may be responsible for necrotizing *S. pyogenes* infections, particularly *emm* types 1, 3, and 12 [6—8].

A key virulence factor of interest for *S. aureus* infections is the presence of the Panton—Valentine leukocidin (PVL) gene. Of particular interest, two previous studies performed molecular typing on subsets of methicillin-resistant *S. aureus* (MRSA) isolates causing NF and reported the presence of the PVL gene in 100% of the samples (5/5) [4,9].

Along with molecular characterization, numerous studies have investigated the association between certain host factors and an increased risk of NF. Studies examining patient medical histories have identified a multitude of factors, including prior trauma, surgery, nonsteroidal anti-inflammatory drug use, burns, chronic alcohol consumption, immunosuppressive drug use, cancer, diabetes, obesity, and renal disease, among others, that may be correlated with NF [10–12]. However, studies also have reported the occurrence of necrotizing infections in patients with no known risk factors or comorbid conditions [4,11].

The previously described findings demonstrate the need for further research regarding the etiology of NF. The goals of our study were to determine the molecular characterization of NF caused by S. pyogenes and S. aureus, including emm type (S. pyogenes), spa type, and the presence of the PVL and mecA genes (S. aureus), and to identify whether specific host factors are correlated with severe necrotizing infections among patients at the University of Iowa Hospitals and Clinics.

Materials and methods

Study isolates (n=38) were collected and stored at the University of Iowa Hospitals and Clinics Pathology Department between January 2011 and September 2012. Fourteen S. aureus and 14 S. pyogenes samples were collected from cases of necrotizing infection; the remaining 10 S. pyogenes isolates were obtained from throat cultures collected from patients being treated for mild respiratory infections and served as a comparison in the analysis. Isolates were attained from the Pathology Department in October 2012 following IRB approval, and were analyzed at the Center for Emerging Infectious Diseases with molecular typing.

Genomic DNA extraction was performed using the Wizard Genomic DNA preparation kit (Promega, WI). Polymerase chain reaction (PCR) was performed to detect mecA and PVL genes (lukS, lukF) present in the S. aureus isolates [13,14]. The staphylococcus protein A (spa) gene was amplified using SpaF (5'-GAACAA-CGTAACGGCTTCATCC-3') and 1514R (5'-CAGCAGTAGTGCCGTTTGCCT-3'), as previously described [15,16]; emm typing was carried out for all S. pyogenes isolates [17], and 16s rRNA PCR was performed with all isolates to confirm the species [18]. Upon completion of 16s rRNA PCR, 1 isolate among the S. pyogenes throat samples was found to belong to the Streptococcus parasanguinis species, and was subsequently excluded from further analysis, leaving 9 throat infection isolates. Multilocus sequence typing was completed on all but 1 study isolate [19].

All S. aureus and 23 S. pyogenes isolates were tested for antibiotic susceptibility by using the VITEK 2 System (bioMérieux). We used the AST-GP71 and AST-ST01 cards of the VITEK 2 System for the antibiotic susceptibility testing of S. aureus and S. pyogenes, respectively. S. aureus isolates were tested for susceptibility to benzylpenicillin, oxacillin, tetracycline, erythromycin, ciprofloxacin, moxifloxacin, minocycline, clindamycin, trimethoprim—sulfamethoxazole. auinupristin/ dalfopristin, gentamicin, levofloxacin, daptomycin, zolid, vancomycin, rifampicin, minocycline, tigecycline, and nitrofurantoin. S. pyogenes isolates were tested for susceptibility to benzylpenicillin, ampicillin, cefotaxime, ceftriaxone, tetracycline, erythromycin, clindamycin, trimethoprim-sulfamethoxazole, levofloxacin, linezolid, and vancomycin. Isolates showing intermediate levels of susceptibility were classified as resistant. S. aureus isolates that were resistant to 3 or more classes of antimicrobials or that were

636 D. Thapaliya et al.

resistant to oxacillin were considered multidrug resistant [20].

We retrieved patient data from the medical records of the University of Iowa Hospitals and Clinics and linked patients' medical record numbers to the bacterial specimens for the purposes of investigating host factors that may be associated with necrotizing infection. Patients' demographics, clinical data, comorbid conditions, outcome variables, and specimen-specific data were extracted and entered into the database. Analysis of patient data was conducted using SAS statistical software (version 9.3, SAS Institute Inc., Cary, NC).

Results

Molecular typing revealed 9 different spa types among the S. aureus study isolates, with the only repeat type being t008 (43%; n = 6). The prevalence of MRSA in the study sample was 35.7% (5/14). All of the MRSA isolates were spa type t008. Fifty-seven percent (8/14) of the S. aureus isolates harbored the PVL gene, while all MRSA isolates harbored the PVL genes. Most of the S. aureus isolates (86%; 12/14) contained a functional agr.

A total of 7 different sequence types were detected among 14 necrotizing infection *S. aureus* isolates. Among *S. aureus* isolates, ST8 was the most common sequence type identified (46.1%; 6/13), followed by ST188 (15.4%; 2/13). No other sequence types (38.5%; 5/13) were found to be repeated (Table 1a).

Among the S. pyogenes isolates, there were 14 different emm types represented: 17.4% were emm12 (n=4), 13% were emm11 (n=3), 13% were emm89 (n=3), and 8.7% were emm77 (n=2) (Table 1b). A total of 15 different sequence types

were detected among the 14 necrotizing infection and 9 throat infection *S. pyogenes* isolates. ST36 was the most common sequence type identified (17%; 4/23), followed by ST678 (13%; 3/23), ST101 (13%; 3/23), and ST63 (9%; 2/23). No other sequence types (48%; 11/23) were found to be repeated.

Among 14 *S. aureus* isolates, oxacillin resistance was observed in 35.7% (5/14). Four isolates (28.6%) were resistant to ciprofloxacin; 7 (50%) were resistant to erythromycin; 2 (14.3%) were resistant to clindamycin; 3 (21.4%) were resistant to levofloxacin; and all 14 (100%) were resistant to benzylpenicillin. Eight isolates (57%) were multidrug resistant *S. aureus*. Among 23 *S. pyogenes* isolates, 7 isolates (30.4%) were resistant to erythromycin; 1 (4.3%) was resistant to ciprofloxacin; 8 (34.8%) were resistant to clindamycin; 1 (4.3%) was resistant to ceftriaxone; 7 (30.4%) were resistant to tetracycline; and 1 (4.3%) was resistant to cefotaxime.

Sixty-nine percent (9/13) and 31% (4/13) of the NF patients were male and female, respectively. Sixty-nine percent of the patients (9/13) were white, and 31% (4/13) were African American. The median age of the patients was 48 years (n=13); mean, 42.69; standard deviation, 12.65; range, 21-61) (Table 2).

The median length of hospitalization was 10 days (n = 13; mean, 12.4; standard deviation, 10.2; range, 1–38 days). The majority of patients (92%; 12/13) diagnosed with NF underwent surgery. The sites of NF included the extremity (left foot: 2; right foot: 1; left ankle: 1; left lower leg: 1; right lower leg: 2) in 7 patients (53.8%), trunk (left upper back and back trunk) in 2 patients (15.4%), perineum in 3 patients (23.1%), and both trunk and extremity in 1 patient (7.7%) (Table 2).

Table 1a	Molecular characteristics of	of S. aureu	s.				
Isolate ID	Source	mecA	PVL	spa	AST	MLST	agr phenotype
1	Necrotizing infection	_	_	t189	P, C, E, Cl	ST188	Functional
2	Necrotizing infection	_	_	t1109	P, O, C, L, E	ST97	Functional
3	Necrotizing infection	_	_	t701	P, E, Cl	ST6	Functional
4	Necrotizing infection	_	+	t008	P, E	ST8	Functional
5	Necrotizing infection	_	_	t088	Р	ST5	Functional
6	Necrotizing infection	_	_	t8870	Р	ST188	Functional
7	Necrotizing infection	+	+	t008	Р	ST8	Functional
8	Necrotizing infection	_	_	t5051	Р	ST45	Functional
9	Necrotizing infection	+	+	t008	P, T, TS	ST8	Functional
10	Necrotizing infection	+	+	t008	P, O	ST8	Functional
11	Necrotizing infection	+	+	t008	P, O, C, L, E	ST8	Functional
12	Necrotizing infection	_	+	t094	Р	ST15	Dysfunctional
13	Necrotizing infection	+	+	t008	P, O, C, L, E	ST8	Functional
14	Necrotizing infection	_	+	t10075	P, O, E	ST152	Dysfunctional

Table 1b	Molecular characteristics of S. pyogenes.			
Isolate ID	Source	EMM type	AST	MLST
15	Necrotizing infection	emm1.0	_	ST28
16	Necrotizing infection	emm6.4	_	ST382
17	Necrotizing infection	emm12.0	_	ST36
18	Necrotizing infection	emm87.0	_	ST62
19	Necrotizing infection	emm102.2	C, CT, E, Cl	ST60
20	Necrotizing infection	emm28.4	_	ST52
21	Necrotizing infection	emm92.0	E, Cl, T	ST82
22	Necrotizing infection	emm12.0	E, Cl	ST36
23	Necrotizing infection	emm103.0	CT, CX	ST327
24	Necrotizing infection	emm11.0	E, Cl, T	ST678
25	Necrotizing infection	emm2.0	_	ST55
26	Necrotizing infection	emm89.0	_	ST101
27	Necrotizing infection	st106M.5	Т	ST53
28	Necrotizing infection	emm89.0	_	ST101
29	Respiratory infection	emm3.1	Cl	ST15
30	Respiratory infection	emm89.0	_	ST101
31	Respiratory infection	emm12.0	_	ST36
32	Respiratory infection	emm77.0	Т	ST63
33	Respiratory infection	emm11.0	E, Cl, T	ST678
34	Respiratory infection	emm77.0	Т	ST63
35	Respiratory infection	emm4.0	-	ST39
36	Respiratory infection	emm12.0	E, Cl	ST36
37	Respiratory infection	emm11.0	E, Cl, T	ST678

P, benzylpenicillin; C, ciprofloxacin; E, erythromycin; Cl, clindamycin; O, oxacillin; T, tetracycline; TS, trimetho-prim/sulfamethoxazole; CT, ceftriaxone; CX, cefotaxime; —, susceptible to all antibiotics tested.

A majority of the patients (84.6%; 11/13) had at least 1 comorbid condition or risk factor; the most common comorbid condition was obesity (69.2%, 9/13), followed by cardiovascular disease (61.5%; 8/13), diabetes (61.5%; 8/13), pulmonary disease (30.8%; 4/13), neurological disorders (peripheral neuropathy, schizophrenia, anxiety, depression, panic attack, attention-deficit hyperactive disorder) (23%; 3/13), cancer (15.4%; 2/13), malnutrition (7.7%; 1/13), and illicit drug use (7.7%; 1/13). Two patients (15.4%; 2/13) had no serious comorbid conditions or risk factors (Table 2). There was a higher incidence of NF among men (69.2%; 9/13) compared to women (30.7%; 4/13). Similarly, white patients were more affected (69.2%; 9/13) than African-American patients (30.7%; 4/13). No other race or ethnicity was reported. Sixty-nine percent (9/13) and 31% (4/13) of the patients had monomicrobial and polymicrobial infections, respectively (Table 2).

Discussion

More than 100 distinct molecular types of *S. pyogenes* have been identified on the basis of M protein, which is encoded by the *emm* gene [21]. It is hypothesized that some *emm* types may be more

pathogenic than others [22]. In this study, only 2 *emm* types (*emm*1.0 and *emm*87.0) were found in NF cases. All other NF cases diagnosed in this study were caused by S. *aureus*.

In recent decades, the incidence of lifethreatening invasive infection of communityassociated MRSA (CA-MRSA) is increasing in many parts of the world [4]. MRSA has been identified as the most commonly isolated pathogen from patients with skin and soft tissue infections presenting in U.S. emergency departments [23]. In our study, 38.5% (5/13) of the NF infections were caused by CA-MRSA. The results of our study are consistent with a nationwide surveillance study that found a high prevalence of MRSA (51%; 2093/4131) in clinically significant S. aureus isolates [24]. In their study, USA300 was the most common strain (n = 1269; 61%), and two-thirds of USA300 isolates originated from wound and skin infections. Sixtyfour percent of the MRSA isolates harbored PVL genes [24]. This is in contrast to a study of S. aureus asymptomatic carriage conducted in the same area of lowa as the current study, in which only 5.2% of isolates collected were positive for PVL [25], suggesting that invasive infections are enriched for PVL-positive isolates. Another study conducted in Los Angeles, California, reported 29% (9/31) of cases of NF were caused by CA-MRSA [4].

D. Thapaliya et al.

	Comorbid conditions	DM, CVD, OBS None	CVD, DM, PD, peripheral	neuropauny, obs CVD, DM, cancer, ORS	CVD, DM, PD, OBS	CVD, DM, PD, GID, peripheral	neuropatny CVD, DM, PD, OBS,	SCIIIZOPIII EIIIA	OBS	None	WO	CVD, DM, PD,	cancer, OBS, malnutrition,	panic accach	CVD, DM, OBS	Illicit drug use,	depression, anxiety, ADHD None
	Site of infection C	Left lower leg D Lower abdomen N	Left foot C	Right foot C	Perineal C	Right foot C	Left upper back C	Dight lower lea		le	پ	upper arm Right foot C		Right lower leg 0		Right forearm	d a Left breast N
	Surgery	Yes	Yes	Yes	o _N	Yes	Yes	200			. Yes	Yes		Yes		Yes	Yes
	Duration of hospitalization (days)	16 2	38	9	_	2	15	_	25	7	13	17		4	10	_	←
	Diagnosis	NF CL	۳ ا	q X X	F.	OST	Ľ Z	Ц	₹	NF NF	ΝF	¥ Z		본	본	CL	BA
	Microbial status	ΔV	۵	*	×	€	€	۵	. ≥	₹	≥	8		×	۵	∀	€
Characteristics of the patients.	Organisms in positive culture	SA SA	SA & SP	SA	SA	SA	SA	Š	SA (MRSA)		SA (MRSA)	SA		SA (MRSA)	SA (MRSA) ^a	SP	SP
	Race or ethnicity	White American	ındıan African American	White	White	White	African American	White	White	White	White	White		White	African	American White	White
ics of the	Sex	⊾ ≷	\$	€	≥	\$	ட		8	L	ட	≥		8	≥	€	ᄕ
racterist	Age	49 31	61	57	21	4	51	73	32	21	23	35		36	48	32	51
Table 2 Cha	Isolate ID	1 & 15 2	т	4	2	9	7	α	o 0	10	1	12		13	4	16	17

None	None	None	None	OBS	None	GID	GID, ADHD	CVD,	malnutrition, GID, PTSD,	depression None	GID
Perineal	Neck (pharyngi- tis)/extremities (impetigo)	Left hip	Neck & right lower leg	Left ankle	Perirectal	Back/left shoulder & arm	Left forearm	Left foot		Right hand	Left elbow
Yes	o Z	Yes	o N	o N	No	o N	Yes	Yes		N _O	No
2	-	2	-	m	_	-	2	_		_	-
Ł Z	AP & I	PRT	CRB & AP	J J	CL	SI	CF	PVD		LCR	CL
٤	₹	₹	٤	۵	×	€	۵	Д		8	¥
SP	SP	SP	S	SA (MRSA) & SP	SP	SP	SA & SP	SA & SP		SP	SP
African American	Hispanic/ multiracial	Non- Hispanic/ multiracial	Unknown	White	White	White	White	White		White	White
≷	L	₹	≷	₹	≤	₹	≤	≤		ഥ	ш
39	21	39	21	4	23	4	4	99		48	38
18	19	20	21	22	23	24	25	76		27	28

Abbreviations used: SP, Streptococcus pyogenes; SA, Staphylococcus aureus; MRSA, methicillin-resistant Staphylococcus aureus; M, mono-microbial; P, poly-microbial; NF, necrotizing fasciitis; CL, cellulitis; OST, osteomyelitis; BA, breast abscess; AP, acute pharyngitis; FVR, fever/fatigue; SI, skin infection; I, impetigo; LCR, hand laceration; PRT, peritonitis; DM, diabetes mellitus, CVD, cardiovascular disease; PD, pulmonary disease; GID, gastrointestinal disease; ADHD, attention deficit hyperactivity disorder; PTSD, post-traumatic stress disorder.

Alebsiella pneumonia was also isolated from wound.

^a Klebsiella pneumonia was also isolated from woun b Secondary to diabetic cellulitis.

D. Thapaliya et al.

In contrast to the previous report of high prevalence of monomicrobial MRSA in wound cultures (86%; 12/14), only 3 cases of NF (23%; 3/13) in our study were caused by monomicrobial CA-MRSA [4]. However, consistent with a previous study in which all of the tested isolates (n = 5) were ST 8- and PVL-positive [4], ST8 (USA300/t008) was the most common sequence type in our study, and more than half of our S. aureus isolates and all MRSA isolates harbored the PVL gene. Although CA-MRSA USA300 has been well documented in many outbreaks of soft tissue infections, the findings of this study, those of another study that documented 16.7% of CA-MRSA NF cases were USA 300 [9], and those of a study by Miller et al. [4] demonstrate the rising incidence of NF caused by CA-MRSA in the United States. The typical mortality rate of NF is about 33% [4]. However, similar to a previous study [4], none of the NF patients in our study died; this may be due to differences in care, in study population, or in the bacteriology of the NF infections in this hospital. This finding also suggests the possibility that the strain of CA-MRSA causing NF in our study population may be less virulent than NF caused by other organisms.

Previous studies have documented several risk factors for necrotizing soft tissue infection, including diabetes mellitus, intravenous drug abuse, peripheral vascular disease, obesity, malnutrition, blunt or penetrating trauma, alcohol abuse, surgical incisions, chicken pox, vesicles, and immunosuppression [1,2]. The majority of the patients of this study had at least 1 comorbid condition or risk factor. The S. pyogenes study isolates belonged to 14 different emm types, with no specific emm type being over-represented among the necrotizing infection cases versus the mild respiratory infection controls; however, no broad conclusions can be drawn due to the small sample size of NF cases caused by S. pyogenes.

The results of this study indicate that several spa and emm types are responsible for NF cases presenting at the University of Iowa Hospitals and Clinics. All of the MRSA NF isolates in the study were spa type t008, suggesting this strain of S. aureus may be associated with increased disease severity in Iowa. Our study has several limitations. Though this study was prospective in design [11], not all microbial cultures were banked for later analysis. As such, our study included convenience samples of both S. aureus and S. pyogenes in 1 hospital, thus limiting the generalizability of results. However, this study provides insights into the molecular characteristics of S. aureus and S. pyogenes causing NF at University of Iowa Hospitals and Clinics. Future research should focus on analyzing samples from all NF cases within a facility, and analyzing molecular characteristics of all causative agents.

Funding

Center for Emerging Infectious Diseases, University of Iowa.

Conflict of interest

None declared.

Ethical approval

The University of Iowa IRB evaluated this project and determined that it did not qualify as human subjects research.

References

- [1] Sarani B, Strong M, Pascual J, Schwab CW. Necrotizing fasciitis: current concepts and review of the literature. J Am Coll Surg 2009;208:279—88.
- [2] Singh G, Chawla S. Aggressiveness—the key to a successful outcome in necrotizing soft tissue infection. Med J Forces India 2003;59:21—4.
- [3] Freischlag JA, Ajalat G, Busuttill RW. Treatment of necrotizing soft tissue infections: the need for a new approach. Am J Surg 1985;149:751—5.
- [4] Miller LG, Perdreau-Remington F, Rieg G, Mehdi S, Perlroth J, Bayer AS, et al. Necrotizing fasciitis caused by community-associated methicillin-resistant Staphylococcus aureus in Los Angeles. N Engl J Med 2005;352:1445—53.
- [5] Lee TC, Carrick MM, Scott BG, Hodges JC, Pham HQ. Incidence and clinical characteristics of methicillin-resistant Staphylococcus aureus necrotizing fasciitis in a large urban hospital. Am J Surg 2007;194:809—13.
- [6] Luca-Harari B, Ekelund K, van der Linden M, Staum-Kaltoft M, Hammerum AM, Jasir A. Clinical and epidemiological aspects of invasive *Streptococcus pyogenes* infections in Denmark during 2003 and 2004. J Clin Microbiol 2008:46:79–86.
- [7] Luca-Harari B, Darenberg J, Neal S, Siljander T, Strakova L, Tanna A, et al. Clinical and microbiological characteristics of severe *Streptococcus pyogenes* disease in Europe. J Clin Microbiol 2009;47:1155–65.
- [8] O'Loughlin RE, Roberson A, Cieslak PR, Lynfield R, Gershman K, Craig A, et al. The epidemiology of invasive group A streptococcal infection and potential vaccine implications: United States, 2000–2004. Clin Infect Dis 2007;45:853–62.
- [9] Young LM, Price CS. Community-acquired methicillinresistant Staphylococcus aureus emerging as an important cause of necrotizing fasciitis. Surg Infect 2008;9:469–74.
- [10] Childers BJ, Potyondy LD, Nachreiner R, Rogers FR, Childers ER, Oberg KC, et al. Necrotizing fasciitis: a fourteen-year retrospective study of 163 consecutive patients. Am Surgeon 2002;68:109—16.

- [11] Bernal NP, Latenser BA, Born JM, Liao J. Trends in 393 necrotizing acute soft tissue infection patients 2000—2008. Burns 2012;38:252—60.
- [12] Tunovic E, Gawaziuk J, Bzura T, Embil J, Esmail A, Logsetty S. Necrotizing fasciitis: a six-year experience. J Burn Care Res 2012;33:93—100.
- [13] Boşgelmez-Tınaz G, Ulusoy S, Arıdoğan B, Coşkun-Arı F. Evaluation of different methods to detect oxacillin resistance in *Staphylococcus aureus* and their clinical laboratory utility. Eur J Clin Microbiol Infect Dis 2006;25:410—2.
- [14] Lina G, Piémont Y, Godail-Gamot F, Bes M, Peter M-O, Gauduchon V, et al. Involvement of Panton—Valentine leukocidin—producing *Staphylococcus aureus* in primary skin infections and pneumonia. Clin Infect Dis 1999;29:1128—32.
- [15] Shopsin B, Gomez M, Montgomery SO, Smith DH, Waddington M, Dodge DE, et al. Evaluation of protein A gene polymorphic region DNA sequencing for typing of Staphylococcus aureus strains. J Clin Microbiol 1999;37: 3556–63.
- [16] Koreen L, Ramaswamy SV, Graviss EA, Naidich S, Musser JM, Kreiswirth BN. spa typing method for discriminating among Staphylococcus aureus isolates: implications for use of a single marker to detect genetic micro-and macrovariation. J Clin Microbiol 2004;42:792–9.
- [17] Centers for Disease Control and Prevention. Protocol for emm typing. Atlanta, GA: Centers for Disease Control and Prevention; 2008.
- [18] Bosshard P, Abels S, Zbinden R, Böttger E, Altwegg M. Ribosomal DNA sequencing for identification of aerobic

- gram-positive rods in the clinical laboratory (an 18-month evaluation). J Clin Microbiol 2003;41:4134—40.
- [19] Enright MC, Day NP, Davies CE, Peacock SJ, Spratt BG. Multilocus sequence typing for characterization of methicillin-resistant and methicillin-susceptible clones of Staphylococcus aureus. J Clin Microbiol 2000;38:1008—15.
- [20] Magiorakos AP, Srinivasan A, Carey R, Carmeli Y, Falagas M, Giske CG, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 2012;18:268–81.
- [21] Cunningham MW. Pathogenesis of group A streptococcal infections. Clin Microbiol Rev 2000;13:470—511.
- [22] Bessen DE, Izzo MW, Fiorentino TR, Caringal RM, Holling-shead SK, Beall B. Genetic linkage of exotoxin alleles and emm gene markers for tissue tropism in group A streptococci. J Infect Dis 1999;179:627–36.
- [23] Moran GJ, Krishnadasan A, Gorwitz RJ, Fosheim GE, McDougal LK, Carey RB, et al. Methicillin-resistant S. aureus infections among patients in the emergency department. N Engl J Med 2006;355:666-74.
- [24] Diekema DJ, Richter SS, Heilmann KP, Dohrn CL, Riahi F, Tendolkar S, et al. Continued emergence of USA300 methicillin-resistant Staphylococcus aureus in the United States: results from a nationwide surveillance study. Infect Control Hosp Epidemiol 2014;35:285–92.
- [25] Moritz ED, Hanson BM, Kates AE, Smith TC. Molecular characteristics of Staphylococcus aureus isolated from employees, children, and environmental surfaces in Iowa child daycare facilities. Am J Infect Control 2015;43:482–8.

Available online at www.sciencedirect.com

ScienceDirect