Leaky Integrate-and-Fire (LIF)

Part I: Overview

Computational Neuroscience University of Bristol

M Rule

Learning outcomes:

- ► Mathematically analyze spiking dynamics of the LIF model
- ► The *f-I* curve (rate model) for LIF

$$C_m \dot{v} = g_{\ell}(E_{\ell} - v)$$
$$\tau_m \dot{v} = E_{\ell} - v$$

$$C_m = 100 \times 10^{-12} \, {\rm Farads}$$
 (100 picofarads) cell membrane capacitance $E_\ell = -70 \times 10^{-3} \, {\rm Volts}$ (-70 millivolts) resting potential $g_\ell = 10 \times 10^{-9} \, {\rm Siemens}$ (10 nanosiemens) leak conductance $R_m = 1/g_\ell = 100 \times 10^6 \, {\rm Ohms}$ (100 megaohms) membrane resistance $\tau_m = r_m C_m = 10 \times 10^{-3} \, {\rm seconds}$ (10 milliseconds) membrane time constant

Modelling Scales

... Quantum Chemistry, Molecular dynamics

Physiological, Quantitative

Biological Realism, Data needed to identify parameters

Molecules

Concentrations

Mass-Action Kinetics

Conductance Models

Hodgkin-Huxley

Spiking Models

Leaky Integrate and Fire

Rate Neurons

Neural Mass/Field Models

Poisson Neurons

Generalized Linear Models

Binary Neurons

McCulloch-Pitts, Hopfield, Perceptron

Cognitive Neuroscience, Psychology ...

Computational Efficiency, Mathematical Tractability

Phenomenological, Oualitative

where are we now?

Conductance Model Point Neuron e.g. Hodgkin-Huxley

Nonlinear, action potential costly to simulate
Study role of ion channels, conductances, dendritic morphology (shape), etc.

Leaky Integrate-and-Fire (LIF)

Departs from physiology, but sufficient to build intuition

Easy to integrate

Leaky Integrate-and-Fire (LIF)

$$C\dot{v} = \frac{1}{R}(v_{\mathrm{r}} - v) + I$$
 if $v(t^{-}) > v_{\vartheta}$ then

Emit a spike

$$v(t') \leftarrow v_{\rm r}$$

 $v(t^+) \leftarrow v_r$

v(t): membrane voltage

 v_{ϑ} : Threshold (spike when $v(t) > v_{\vartheta}$)

 v_r : Reset voltage $(v(t) \leftarrow v_r \text{ after spike})$

R: Membrane resistance

C: Membrane capacitance

(if refracotry) $v(t) = v_r$ for $t \in [t^+]t$ Current through the membrane

