STA 674

Regression Analysis And Design Of Experiments

Fitting Multiple Linear Regression Models – Lecture 5

Fitting Multiple Linear Regression Models

- Last time, we discovered the ANOVA table for multiple linear regression.
- This time, we look at some more examples and talk about some *derived values* used more and less in different fields.

Fitting Multiple Linear Regression Models

Example: Nuclear Reactor Data

Source	DF	Sum of Squares	Mean Square	F value	Prob > F
Model	2	374991	187495	7.38	0.0026
Error	29	736573	25399		
Total	31	1111564			

Root MSE

159.37083

R-Square 0.3374

Dependent Mean 825.37500

Adj R-Sq 0.2917

Coeff Var

19.30890

y bar = mean of all data points

Fitting Multiple Linear Regression Models

RMSE divided by y bar times 100

Fitting Multiple Linear Regression Models

ANOVA Tables – Derived Values I

• Root Mean Squared Error (RMSE)

$$s_e = \sqrt{\frac{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}{n - K - 1}} = \sqrt{\frac{SSE}{n - K - 1}} = \sqrt{MSE}$$

• RMSE is an estimate of σ_e

Fitting Multiple Linear Regression Models

ANOVA Tables – Derived Values II

• R-squared (R^2)

$$R^2 = \frac{SSR}{SST} = 1 - \frac{SSE}{SST}$$
 This always goes up as paramters are added

(model includes all predictors included in the model)

R-squared measures the proportion of variance in the data that is explained by the model.

• Adjusted R-squared (Adj R^2)

$$AdjR^2 = 1 - \frac{MSE}{MST} = 1 - \frac{SSE/(n-K-1)}{SST/(n-1)}$$

• The adjusted *R*-squared measures the proportion of variance in the data that is explained by the model discounted for the number of parameters. best to compare different models

Fitting Multiple Linear Regression Models

Example: Nuclear Reactor Data

Source	DF	Sum of Squares	Mean Square	F value	Prob > F
Model	2	374991	187495	7.38	0.0026
Error	29	736573	25399		
Total	31	1111564			

Root MSE 159.37083 R-Square 0.3374

Dependent Mean 825.37500 Adj R-Sq 0.2917

Coeff Var 19.30890

Fitting Multiple Linear Regression Models

Exercise: topic-starting example

The following tables present the ANOVA for the model of y as a function of x_1 and x_2 described in an earlier lecture. Use this information to summarize the model.

Source	DF	Sum of Squares	Mean Square	F value	Prob > F
Model	2	727.72772	363.86386	336.14	< 0.0001
Error	7	7.57728	1.08247		
Total	9	735.30500			

Root MSE 1.04042 R-Square 0.9897

Dependent Mean 16.15000 Adj R-Sq 0.9868

Coeff Var 6.44222

Fitting Multiple Linear Regression Models