Standard Template Library (STL)

The C++ STL

- In 1990, Alex Stepanov and Meng Lee of Hewlett Packard Laboratories extended C++ with a library of class and function templates which has come to be known as the STL.
- In 1994, STL was adopted as part of ANSI/ISO Standard C++.

Components of the STL

- Program's main objective is to manipulate data and generate results
 - Requires ability to **store** data, **access** data, and **manipulate** data
- STL has three basic components:
 - (1) Containers: generic class templates for storing collection of data (contain other objects).
 - (2) Iterators: generalized 'smart' pointers that provides operations for indirect access and facilitate use of containers. They provide an interface that is needed for STL algorithms to operate on STL containers.
 - (3) Algorithms: generic function templates for operating on containers.

Why use STL?

- STL offers an assortment of containers
- STL publicizes the time and storage complexity of its containers
- STL containers grow and shrink in size automatically
- STL provides built-in algorithms for processing containers
- STL provides iterators that make the containers and algorithms flexible and efficient.
- STL is extendable which means that users can add new containers and new algorithms.
- Memory management: no memory leaks or serious memoryaccess violations. (e.g., pointers)
- Reduce testing and debugging time.

Sequence Containers

- Every object has a specific position
- Predefined sequence containers
 - vector, deque, list
- Sequence container vector
 - Logically: same as arrays
- All containers
 - Use same names for common operations
 - Have specific operations

Sequence Container: vector

- Vector container
 - Stores, manages objects in a dynamic array
 - Elements accessed randomly
 - Time-consuming item insertion: beginning and middle
 - Fast item insertion: end
- Class implementing vector container
 - vector
- Header file containing the class vector
 - vector
- Using a vector container in a program requires the following statement:
 - #include <vector>

Declaring vector objects

Various ways to declare and initialize a vector container

Statement	Effect
<pre>vector<elementtype> vecList;</elementtype></pre>	Creates an empty vector, vecList, without any elements. (The default constructor is invoked.)
<pre>vector<elementtype> vecList(otherVecList);</elementtype></pre>	Creates a vector, vecList, and initializes vecList to the elements of the vector otherVecList. vecList and otherVecList are of the same type.
<pre>vector<elementtype> vecList(size);</elementtype></pre>	Creates a vector, vecList, of size size. vecList is initialized using the default constructor.
<pre>vector<elementtype> vecList(n, elem);</elementtype></pre>	Creates a vector, vecList, of size n. vecList is initialized using n copies of the element elem.
<pre>vector<elementtype> vecList(begin, end);</elementtype></pre>	Creates a vector, vecList. vecList is initialized to the elements in the range [begin, end), that is, all elements in the range beginend-1.

- Examples:

- vector<int> intlist;
- vector<string> stringList;

Operations to access the elements of a vector container

Expression	Effect
<pre>vecList.at(index)</pre>	Returns the element at the position specified by index.
vecList[index]	Returns the element at the position specified by index.
<pre>vecList.front()</pre>	Returns the first element. (Does not check whether the container is empty.)
vecList.back()	Returns the last element. (Does not check whether the container is empty.)

```
#include <iostream>
                                myvector contains: 0 1 2 3 4 5 6 7 8 9
#include <vector>
int main()
std::vector<int> myvector(10); // 10 zero-initialized ints
  // assign some values:
for (unsigned i = 0; i<myvector.size(); i++)</pre>
myvector.at(i) = i;
std::cout << "myvector contains:";</pre>
for (unsigned i = 0; i<myvector.size(); i++)</pre>
std::cout << ' ' << myvector.at(i);</pre>
std::cout << '\n';</pre>
return 0;}
```

Declaring an Iterator to a Vector Container

- Process vector container like an array
 - Using array subscripting operator
- Process vector container elements
 - Using an iterator
- class vector: function insert
 - Insert element at a specific vector container position
 - Uses an iterator
- class vector: function erase
 - Remove element
 - Uses an iterator

- class vector **contains** typedef iterator
 - Declared as a public member
 - Vector container iterator
 - Example

```
vector<int>::iterator intVecIter;
```

- Requirements for using typedef iterator
 - Container name (vector)
 - Container element type (<int>)
 - 3. Scope resolution operator (::)
- ++intVecIter
 - Advances iterator intVecIter to next element into the container
- *intVecIter
 - Dereferencing
 - Returns element at current iterator position

Containers and the Functions begin and end

- A sequence is defined by a pair of iterators defining a half-open range [begin:end)
 - Includes first element but excludes last element.
- begin
 - Returns an iterator to the first element in the container
- end
 - Returns an iterator to the element past the end. It does not point to any element. Never read from or write to *end.


```
#include <iostream>
#include <vector>
using namespace std;
                                                           2
                                                                4
                                                     6
int main()
                                                      4
                                                           2
                                                                7
{ vector<int> v1;
v1.push back(2);
v1.push_back(4);
v1.push_back(7);
vector<int> v2(v1);
vector<int> v3(3);
v3.at(0) = 4;
v3.at(1) = 6;
v3.at(2) = 4;
vector<int> v4(4, 2);
vector<int> v5(v2.begin(), v2.end());
for (unsigned i = 0; i < v1.size(); i++)</pre>
{cout << ' ' << v1.at(i) << "\t" << v2[i] << "\t" << v3.at(i) << "\t" <<
v4.at(i) << "\t"<< v5.at(i);
cout << '\n';}</pre>
return 0;}
```

```
#include <iostream>
#include <vector>
using namespace std;
int main()
vector<int> v1;
v1.push_back(3);
v1.push_back(4);
v1.push_back(6);
vector<int>::iterator it;
cout << v1.front() << v1.back() << "\n";</pre>
for (it = v1.begin(); it != v1.end(); it++)
cout << *it;</pre>
return 0;}
```

36

346

Various operations on a vector container

Expression	Effect
vecList.clear()	Deletes all elements from the container.
vecList.erase(position)	Deletes the element at the position specified by position.
vecList.erase(beg, end)	Deletes all elements starting at beg until end-1.
vecList.insert(position, elem)	A copy of elem is inserted at the position specified by position. The position of the new element is returned.
vecList.insert(position, n, elem)	n copies of elem are inserted at the position specified by position.
vecList.insert(position, beg, end)	A copy of the elements, starting at beg until end-1, is inserted into vecList at the position specified by position.

- position is an iterator
- **insert():** the vector is extended by inserting new elements before the element at the specified position, effectively increasing the container size by the number of elements inserted.
- Return value: an iterator that points to the first of the newly inserted elements.

Expression	Effect
vecList.push_back(elem)	A copy of elem is inserted into vecList at the end.
<pre>vecList.pop_back()</pre>	Deletes the last element.
vecList.resize(num)	Changes the number of elements to num. If size(), that is, the number of elements in the container increases, the default constructor creates the new elements.
vecList.resize(num, elem)	Changes the number of elements to num. If size() increases, the default constructor creates the new elements.

```
// erasing from vector
#include <iostream>
                                         myvector contains: 4 5 6 8 9 10
#include <vector>
int main()
{
std::vector<int> myvector;
// set some values (from 1 to 10)
for (int i = 1; i <= 10; i++) myvector.push_back(i);</pre>
// erase the 7th element
myvector.erase(myvector.begin() + 6);
// erase the first 3 elements:
myvector.erase(myvector.begin(), myvector.begin() + 3);
std::cout << "myvector contains:";</pre>
for (unsigned i = 0; i<myvector.size(); ++i)</pre>
 std::cout << ' ' << myvector[i];</pre>
std::cout << '\n';</pre>
return 0;
```

```
#include <iostream>
                                   myvector contains: 501 502 503 300 300
#include <vector>
                                   400 400 200 100 100 100
int main(){
std::vector<int> myvector(3, 100);
std::vector<int>::iterator it;
it = myvector.begin();
it = myvector.insert(it, 200);
myvector.insert(it, 2, 300);
// "it" no longer valid, get a new one:
it = myvector.begin();
std::vector<int> anothervector(2, 400);
myvector.insert(it + 2, anothervector.begin(), anothervector.end());
int myarray[] = \{501,502,503\};
myvector.insert(myvector.begin(), myarray, myarray + 3);
std::cout << "myvector contains:";</pre>
for (it = myvector.begin(); it<myvector.end(); it++)</pre>
std::cout << ' ' << *it; return 0;}
```

```
#include <iostream>
                             myvector contains: 1 2 3 4 5 100 100 100 0 0 0 0
#include <vector>
int main()
std::vector<int> myvector;
// set some initial content:
for (int i = 1; i<10; i++) myvector.push_back(i);</pre>
myvector.resize(5);
myvector.resize(8, 100);
myvector.resize(12);
std::cout << "myvector contains:";</pre>
for (int i = 0; i<myvector.size(); i++)</pre>
std::cout << ' ' << myvector[i];</pre>
std::cout << '\n';
return 0;}
```

The sort Algorithm

- Sorts the elements in the range [first,last) into ascending order.
- void sort (Iterator first, Iterator last);
- #include <algorithm>

```
#include<iostream>
#include<vector>
#include<algorithm>
using namespace std;
int main() {
int input;
vector<int> ivec;
// input
while (cin >> input )
ivec.push back(input);
sort(ivec.begin(), ivec.end());
vector<int>::iterator it;
for ( it = ivec.begin(); it != ivec.end(); ++it )
cout << *it << " ";
```

return 0;

Write a program that can read any number of integers from the user, stores them in a vector, sorts them, and print the result.

Generate random number

int rand (void);

- Returns a pseudo-random integral number in the range between 0 and RAND_MAX, which is a constant defined in <cstdlib>.
- This number is generated by an algorithm that returns a sequence of apparently non-related numbers each time it is called.
- This algorithm uses a **seed** to generate the series, which should be initialized to some distinctive value using function **srand**.
- Notice though that this modulo operation does not generate uniformly distributed random numbers in the span
- A typical way to generate trivial pseudo-random numbers in a determined range using rand is to use the modulo of the returned value by the range span and add the initial value of the range:
 - v1 = rand() % 100; // v1 in the range 0 to 99
 - v2 = rand() % 100 + 1; // v2 in the range 1 to 100

- void srand (unsigned int seed);
 - Initialize random number generator
 - The pseudo-random number generator is initialized using the argument passed as seed.
 - For every different seed value used in a call to srand, the pseudorandom number generator can be expected to generate a different succession of results in the subsequent calls to rand.
 - Two different initializations with the same seed will generate the same succession of results in subsequent calls to rand.
 - If seed is set to 1, the generator is reinitialized to its initial value and produces the same values as before any call to rand or srand.
 - In order to generate random-like numbers, srand is usually initialized to some distinctive runtime value, like the value returned by function **time** (declared in header <ctime>). This is distinctive enough for most trivial randomization needs.

```
#include <iostream>
#include <cstdlib> /* srand, rand */
#include <ctime> /* time */
using namespace std;
int main()
cout << "First number: " << rand() << endl;</pre>
srand(time(NULL));
for (int i = 0; i <5; i++)
cout << "Random number: " << rand() << endl;</pre>
srand(1);
cout << "Again the first number: " << rand();</pre>
getchar();
return 0;
```

Passing arguments by reference

- When passing arguments by value, the only way to return a value back to the caller is via the function's return value.
- One way to allow functions to modify the value of argument is by using pass by reference.

```
void AddOne(int &y) // y is a reference variable
{y = y + 1;}
```

- When the function is called, y will become a reference to the argument.
 Since a reference to a variable is treated exactly the same as the variable itself, any changes made to the reference are passed through to the argument.
- More: http://www.learncpp.com/cpp-tutorial/73-passing-arguments-by-reference/

```
#include<iostream>
using namespace std;
void passByReference(int &y) // y is a reference
\{ y = 7; \}
void passByValue(int y) // y is a copy
\{ y = 6; \}
int main()
  int x = 5;
  passByValue(x);
  cout << "x = " << x << endl;
  passByReference(x);
  cout << "x = " << x << endl;</pre>
 getchar();
  return 0;
```

$$X = 5$$
$$X = 7$$

```
#include <iostream>
#include <vector>
#include <algorithm>
                                     created.
using namespace std;
void copy vector(vector<int> v2)
\{ v2.at(0) = 2; \}
void pass vector(vector<int> &v3)
\{ v3.at(0) = 3; \}
int main()
vector<int> v;
v.push back(5);v.push back(6); v.push back(7);
vector<int>::iterator it;
copy_vector(v);
for (it = v.begin(); it != v.end(); )
    cout << *it++ << " ";
cout << endl;</pre>
pass vector(v);
for (it = v.begin(); it != v.end(); )
cout << *it++ << " ";
return 0;}
```

When a vector is passed as a parameter to some function, a copy of vector is actually created.

Output: 5 6 7 3 6 7

setw

- setw (int n);
- Set field width
- Sets the field width to be used on output operations.

