

CS229

Syllabus and Course Schedule

Time and Location: Monday, Wednesday 4:30-5:50pm, Bishop Auditorium

Class Videos: Current quarter's class videos are available here for SCPD students and here for non-SCPD students.

* We may update the course materiels. Please check for the latest version before lectures.

Event	Date	Description	Materials and Assignments	
Lecture 1	4/1	Introduction and Basic Concepts	Class Notes: Introduction [pdf]	
A0	4/3	Problem Set 0 [pdf] [solution]. Out 4/1. Due 4/10. Submission instructions.		
Lecture 2	4/3	Supervised Learning Setup. Linear Regression.	Class Notes • Supervised Learning, Discriminative Algorithms [pdf] • Dataset Loading and Visualization [pdf] [ipynb] • Gradient Descent Visualization [pdf] [ipynb]	
Section	4/5	Discussion Section: Linear Algebra [Notes]		
Lecture 3	4/8	Weighted Least Squares. Logistic Regression. Netwon's Method	Class Notes • Perceptron [ipynb] • Maximum Entropy and	
Lecture 4	4/10	Perceptron. Exponential Family. Generalized Linear Models.	Exponential Families [pdf]	
A1	4/10	Problem Set 1 [zip]. Out 4/10. Due 4/24. Submission instructions.		
Section	4/12	Discussion Section: Probability [Notes][Slides]		

Event	Date	Description	Materials and Assignments
Lecture 5	4/15	Gaussian Discriminant Analysis	Class NotesGenerative Algorithms [pdf]Kernel Methods and SVM [pdf]
Lecture 6	4/17	Naive Bayes. Laplace Smoothing. Kernel Methods.	
Section	4/19	Discussion Section: Python [slides]	
Lecture 7	4/22	SVM. Kernels.	Class Notes
Lecture 8	4/24	Neural Network.	Class Notes • Deep learning [pdf] • Backpropagation [pdf]
A2	4/24	Problem Set 2 [zip]. Out 4/24. Due 5/8. Submission instructions.	
Section	4/26	Discussion Section: Learning Theory [pdf]	
Project	4/26	Project proposal due at 11:59pm .	
Lecture 9	4/29	Neural Network.	Class Notes
Lecture 10	5/1	Bias/ Variance. Regularization. Feature/ Model selection.	 Class Notes Bias/variance tradeoff and error analysis [pdf] Additional notes on bias/variance [pdf] Regularization and Model Selection [ps] [pdf]
Section	5/3	Discussion Section: Evaluation Metrics [Slides]	
Lecture 11	5/6	Practical Advice for ML projects	Class Notes • Advice on applying machine learning [pdf]

Event	Date	Description	Materials and Assignments
Lecture 12	5/8	K-means. Mixture of Gaussians. Expectation Maximization.	 Class Notes Unsupervised Learning, k-means clustering [pdf] Mixture of Gaussians [pdf] EM and VAE [pdf] Reading: K-means++ [pdf]
A3	5/8	Problem Set 3 [zip]. Out 5/8. Due 5/22. Submission instructions.	
Section	5/10	Discussion Section: Midterm Review [pdf]	
Lecture 13	5/13	GMM(EM). Variational Autoencoders.	Class Notes • EM and VAE [pdf]
Lecture 14	5/15	Principal Component Analysis. Independent Component Analysis.	Class Notes • Principal Components Analysis [pdf] • Independent Components Analysis [pdf]
Midterm	5/15	We will have an in-class midterm from 7pm to 10pm. Logistics. SCPD Logistics. Practice Midterm.	
Lecture 15	5/20	MDPs. Bellman Equations. Value iteration and policy iteration	Class Notes • Reinforcement Learning [pdf]
Lecture 16	5/22	Value function approximation.	Class Notes
A4	5/22	Problem Set 4 [zip]. Out 5/22. Due 6/5. Submission instructions.	
Section	5/24	Discussion Section: Convolutional Neural Nets [pdf]	
Project	5/24	Project milestones due 5/24 at 11:59pm .	

Event	Date	Description	Materials and Assignments
Lecture 18	5/29	Policy search. REINFORCE.	Class Notes • Policy Gradient [pdf]
Section	5/31	Discussion Section: Gaussian Processes [pdf]	
Lecture 19	6/3	Other settings of RL, Imitation learning, Adversarial machine learning	 Class Notes Adversarial Machine Learning [pdf] [ppt] Other settings of RL, Imitation Learning [pdf] [ppt]
Lecture 20	6/5	Course Review and Wrap up	Class Notes
Project	6/11	Project poster PDF and project recording (remote SCPD only) due at 11:59 pm Submission instructions.	
Project	6/12	Poster presentations from 3:30-6:30pm. Venue and details to be announced.	
Project	6/12	Final writeup due at 6:30pm (no late days).	

Section Notes

- 1. Linear Algebra Review and Reference [pdf]
- 2. Probability Theory Review [pdf]
- 3. Convex Optimization Overview, Part I [ps] [pdf]
- 4. Convex Optimization Overview, Part II [ps] [pdf]
- 5. Hidden Markov Models [ps] [pdf]
- 6. The Multivariate Gaussian Distribution [pdf]
- 7. More on Gaussian Distribution [pdf]
- 8. Gaussian Processes [pdf]

Event Da	Date	Description	Materials and Assignments	
----------	------	-------------	---------------------------	--

Other Resources

- 1. Advice on applying machine learning: Slides from Andrew's lecture on getting machine learning algorithms to work in practice can be found here.
- 2. Previous projects: A list of last year's final projects can be found here.
- 3. Data: Here is the UCI Machine learning repository, which contains a large collection of standard datasets for testing learning algorithms. If you want to see examples of recent work in machine learning, start by taking a look at the conferences NeurIPS (all old NeurIPS papers are online) and ICML. Some other related conferences include UAI, AAAI, IJCAI.
- 4. Viewing PostScript and PDF files: Depending on the computer you are using, you may be able to download a PostScript viewer or PDF viewer for it if you don't already have one.
- 5. Machine learning study guides tailored to CS 229 by Afshine Amidi and Shervine Amidi.

Supplementary Notes

- 1. Binary classification with +/-1 labels [pdf]
- 2. Boosting algorithms and weak learning [pdf]
- 3. Functional after implementing stump booster.m in PS2. [here]
- 4. The representer theorem [pdf]
- 5. Hoeffding's inequality [pdf]