Rank-65612 over GF(4)

January 15, 2021

The equation

The equation of the surface is:

$$X_0^3 + X_3^3 + X_0^2 X_3 + X_0 X_1 X_2 = 0$$

(1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0) The point rank of the equation over $\mathrm{GF}(4)$ is 1431659930

General information

Number of lines	1
Number of points	17
Number of singular points	2
Number of Eckardt points	0
Number of double points	0
Number of single points	5
Number of points off lines	12
Number of Hesse planes	0
Number of axes	0
Type of points on lines	5
Type of lines on points	$1^5, 0^{12}$

Singular Points

The surface has 2 singular points:

$$0: P_1 = \mathbf{P}(0, 1, 0, 0) = \mathbf{P}(0, 1, 0, 0) 1: P_2 = \mathbf{P}(0, 0, 1, 0) = \mathbf{P}(0, 0, 1, 0)$$

The 1 Lines

The lines and their Pluecker coordinates are:

$$\ell_0 = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{336} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{336} = \mathbf{Pl}(0, 0, 0, 0, 0, 1)_{101}$$

Rank of lines: (336)

Rank of points on Klein quadric: (101)

Eckardt Points

The surface has 0 Eckardt points:

Double Points

The surface has 0 Double points:

The double points on the surface are:

Single Points

The surface has 5 single points:

The single points on the surface are:

 $0: P_1 = (0, 1, 0, 0)$ lies on line ℓ_0

1 : $P_2 = (0, 0, 1, 0)$ lies on line ℓ_0

2: $P_{11} = (0, 1, 1, 0)$ lies on line ℓ_0

The single points on the surface are:

3: $P_{15} = (0, 2, 1, 0)$ lies on line ℓ_0

 $4: P_{19} = (0, 3, 1, 0)$ lies on line ℓ_0

Points on surface but on no line

The surface has 12 points not on any line:

The points on the surface but not on lines are:

 $0: P_4 = (1, 1, 1, 1)$

 $1: P_{12} = (1, 1, 1, 0)$

 $2: P_{18} = (3, 2, 1, 0)$

 $3: P_{21} = (2, 3, 1, 0)$

 $4: P_{47} = (2, 2, 1, 1)$

 $5: P_{52} = (3, 3, 1, 1)$

 $6: P_{59} = (2, 1, 2, 1)$

7: $P_{64} = (3, 2, 2, 1)$

 $8: P_{66} = (1, 3, 2, 1)$

9: $P_{76} = (3, 1, 3, 1)$

10: $P_{78} = (1, 2, 3, 1)$

 $11: P_{83} = (2, 3, 3, 1)$

Line Intersection Graph

 $\begin{array}{c|c} 0 \\ \hline 0 & 0 \end{array}$

Neighbor sets in the line intersection graph: Line 0 intersects

Line in point

The surface has 17 points:

The points on the surface are:

$0: P_1 = (0, 1, 0, 0)$	$6: P_{18} = (3, 2, 1, 0)$	$12: P_{64} = (3, 2, 2, 1)$
$1: P_2 = (0, 0, 1, 0)$	$7: P_{19} = (0, 3, 1, 0)$	13: $P_{66} = (1, 3, 2, 1)$
$2: P_4 = (1, 1, 1, 1)$	$8: P_{21} = (2, 3, 1, 0)$	$14: P_{76} = (3, 1, 3, 1)$
$3: P_{11} = (0, 1, 1, 0)$	$9: P_{47} = (2, 2, 1, 1)$	15: $P_{78} = (1, 2, 3, 1)$
$4: P_{12} = (1, 1, 1, 0)$	$10: P_{52} = (3, 3, 1, 1)$	$16: P_{83} = (2, 3, 3, 1)$
$5: P_{15} = (0, 2, 1, 0)$	$11: P_{59} = (2, 1, 2, 1)$	