

Boosting

Machine Learning: Jordan Boyd-Graber University of Maryland

Content Questions

Administrivia Questions

Boosting Example

Hypothesis 1

• Find the best weak learner weighted by D₁

Hypothesis 1

- Find the best weak learner weighted by D₁
- Return 1.0 if x_1 is less than 2.0, -1.0 otherwise

• Error:
$$\epsilon_1 = \sum_{i=1}^m D_1(i) \mathbb{1} [y_i \neq h_1(x_i)]$$

• Error:
$$\epsilon_1 = \sum_{i=1}^m D_1(i) \mathbb{1} [y_i \neq h_1(x_i)]$$

$$\epsilon_1 = 0.10_5 = 0.10 \tag{1}$$

• Error:
$$\epsilon_1 = \sum_{i=1}^m D_1(i) \mathbb{1} [y_i \neq h_1(x_i)]$$

$$\epsilon_1 = 0.10_5 = 0.10 \tag{1}$$

$$a_1 = \frac{1}{2} \ln \left(\frac{1 - \epsilon_1}{\epsilon_1} \right)$$

• Error:
$$\epsilon_1 = \sum_{i=1}^m D_1(i) \mathbb{1} [y_i \neq h_1(x_i)]$$

$$\epsilon_1 = 0.10_5 = 0.10 \tag{1}$$

- $\bullet \ \alpha_1 = \frac{1}{2} \ln \left(\frac{1 \epsilon_1}{\epsilon_1} \right) = 1.10$
- Update distribution: $D_2(i) \propto D_1(i) \exp(-\alpha_1 y_i h_1(x_i))$

• Error:
$$\epsilon_1 = \sum_{i=1}^m D_1(i) \mathbb{1} [y_i \neq h_1(x_i)]$$

$$\epsilon_1 = 0.10_5 = 0.10 \tag{1}$$

$$\bullet \ \alpha_1 = \frac{1}{2} \ln \left(\frac{1 - \epsilon_1}{\epsilon_1} \right) = 1.10$$

■ Update distribution:
$$D_2(i) \propto D_1(i) \exp(-\alpha_1 y_i h_1(x_i))$$

Speake distribution: $D_2(I) = D_1(I) \exp(-\alpha_1 y_I I_1(x_I))$										
0	1	2	3	4	5	6	7	8	9	
0.06	0.06	0.06	0.06	0.06	0.50	0.06	0.06	0.06	0.06	

Distribution 2

Hypothesis 2

- Find the best learner weighted by D_2
- Return 1.0 if x_0 is greater than -2.0, -1.0 otherwise

• Error:
$$\epsilon_2 = \sum_{i=1}^m D_2(i) \mathbb{1} [y_i \neq h_2(x_i)]$$

• Error:
$$\epsilon_2 = \sum_{i=1}^m D_2(i) \mathbb{1} [y_i \neq h_2(x_i)]$$

$$\epsilon_2 = 0.06_1 + 0.06_2 + 0.06_9 = 0.17 \tag{2}$$

• Error:
$$\epsilon_2 = \sum_{i=1}^m D_2(i) \mathbb{1} \left[y_i \neq h_2(x_i) \right]$$

$$\epsilon_2 = 0.06_1 + 0.06_2 + 0.06_9 = 0.17 \tag{2}$$

$$a_2 = \frac{1}{2} \ln \left(\frac{1 - \epsilon_2}{\epsilon_2} \right)$$

■ Error:
$$\epsilon_2 = \sum_{i=1}^m D_2(i) \mathbb{1} \left[y_i \neq h_2(x_i) \right]$$

$$\epsilon_2 = 0.06_1 + 0.06_2 + 0.06_9 = 0.17 \tag{2}$$

- $\alpha_2 = \frac{1}{2} \ln \left(\frac{1 \epsilon_2}{\epsilon_2} \right) = 0.80$
- Update distribution: $D_3(i) \propto D_2(i) \exp(-\alpha_2 y_i h_2(x_i))$

• Error:
$$\epsilon_2 = \sum_{i=1}^m D_2(i) \mathbb{1} [y_i \neq h_2(x_i)]$$

$$\epsilon_2 = 0.06_1 + 0.06_2 + 0.06_9 = 0.17$$
 (2)

•
$$\alpha_2 = \frac{1}{2} \ln \left(\frac{1 - \epsilon_2}{\epsilon_2} \right) = 0.80$$

• Undate distribution:
$$D_{\alpha}(i) \propto D_{\alpha}(i) \exp(-\alpha_{\alpha} v_i h_{\alpha}(x_i))$$

opulate distribution: $D_3(I) \propto D_2(I) \exp(-\alpha_2 y_i n_2(x_i))$										
0	1	2	3	4	5	6	7	8	9	
0.03	0.17	0.17	0.03	0.03	0.30	0.03	0.03	0.03	0.17	

Distribution 3

Hypothesis 3

- Find the best learner weighted by D_3
- Return 1.0 if x_1 is less than -0.5, -1.0 otherwise

• Error:
$$\epsilon_3 = \sum_{i=1}^m D_3(i) \mathbb{1} [y_i \neq h_3(x_i)]$$

• Error:
$$\epsilon_3 = \sum_{i=1}^m D_3(i) \mathbb{1} \left[y_i \neq h_3(x_i) \right]$$

$$\epsilon_3 = 0.03_3 + 0.03_4 + 0.03_6 = 0.10 \tag{3}$$

■ Error:
$$\epsilon_3 = \sum_{i=1}^m D_3(i) \mathbb{1} [y_i \neq h_3(x_i)]$$

$$\epsilon_3 = 0.03_3 + 0.03_4 + 0.03_6 = 0.10$$
(3)

$$a_3 = \frac{1}{2} \ln \left(\frac{1 - \epsilon_3}{\epsilon_3} \right)$$

■ Error:
$$\epsilon_3 = \sum_{i=1}^m D_3(i) \mathbb{1} [y_i \neq h_3(x_i)]$$

$$\epsilon_3 = 0.03_3 + 0.03_4 + 0.03_6 = 0.10$$
(3)

- $a_3 = \frac{1}{2} \ln \left(\frac{1 \epsilon_3}{\epsilon_3} \right) = 1.10$
- Update distribution: $D_4(i) \propto D_3(i) \exp(-\alpha_3 y_i h_3(x_i))$

• Error:
$$\epsilon_3 = \sum_{i=1}^m D_3(i) \mathbb{1} [y_i \neq h_3(x_i)]$$

$$\epsilon_3 = 0.03_3 + 0.03_4 + 0.03_6 = 0.10$$
 (3)

$$\bullet \ \alpha_3 = \frac{1}{2} \ln \left(\frac{1 - \epsilon_3}{\epsilon_3} \right) = 1.10$$

• Update distribution:
$$D_4(i) \propto D_3(i) \exp(-\alpha_3 y_i h_3(x_i))$$

$D_4(1) = D_3(1) = D_3(1)$											
0	1	2	3	4	5	6	7	8	9		
0.02	0.09	0.09	0.17	0.17	0.17	0.17	0.02	0.02	0.09		

Classifier

$$H(x) = \operatorname{sign}\left(\sum_{t} \alpha_{t} h_{t}(x)\right) \tag{4}$$

• $H(x_0) =$

$$H(x) = \operatorname{sign}\left(\sum_{t} \alpha_{t} h_{t}(x)\right) \tag{4}$$

- $H(x_0) = \text{sign}(-1.10 + -0.80 + -1.10) = \text{sign}(-3.00) = -1.0$
- $H(x_1) =$

$$H(x) = \operatorname{sign}\left(\sum_{t} \alpha_{t} h_{t}(x)\right) \tag{4}$$

- $H(x_0) = \text{sign}(-1.10 + -0.80 + -1.10) = \text{sign}(-3.00) = -1.0$
- $H(x_1) = \text{sign}(-1.10 + 0.80 + -1.10) = \text{sign}(-1.39) = -1.0$
- $H(x_2) =$

$$H(x) = \operatorname{sign}\left(\sum_{t} \alpha_{t} h_{t}(x)\right) \tag{4}$$

- $H(x_0) = \text{sign}(-1.10 + -0.80 + -1.10) = \text{sign}(-3.00) = -1.0$
- $H(x_1) = sign(-1.10 + 0.80 + -1.10) = sign(-1.39) = -1.0$
- $H(x_2) = sign(-1.10 + 0.80 + -1.10) = sign(-1.39) = -1.0$
- \blacksquare $H(x_2) =$

$$H(x) = \operatorname{sign}\left(\sum_{t} \alpha_{t} h_{t}(x)\right) \tag{4}$$

- $H(x_0) = \text{sign}(-1.10 + -0.80 + -1.10) = \text{sign}(-3.00) = -1.0$
- $H(x_1) = sign(-1.10 + 0.80 + -1.10) = sign(-1.39) = -1.0$
- $H(x_2) = \text{sign}(-1.10 + 0.80 + -1.10) = \text{sign}(-1.39) = -1.0$
- $H(x_3) = \text{sign}(1.10 + 0.80 + -1.10) = \text{sign}(0.80) = 1.0$
- \blacksquare $H(x_4) =$

$$H(x) = \operatorname{sign}\left(\sum_{t} \alpha_{t} h_{t}(x)\right) \tag{4}$$

- $H(x_0) = \text{sign}(-1.10 + -0.80 + -1.10) = \text{sign}(-3.00) = -1.0$
- $H(x_1) = sign(-1.10 + 0.80 + -1.10) = sign(-1.39) = -1.0$
- $H(x_2) = \text{sign}(-1.10 + 0.80 + -1.10) = \text{sign}(-1.39) = -1.0$
- $H(x_3) = \text{sign}(1.10 + 0.80 + -1.10) = \text{sign}(0.80) = 1.0$
- $H(x_4) = \text{sign}(1.10 + 0.80 + -1.10) = \text{sign}(0.80) = 1.0$
- $H(x_5) =$

$$H(x) = \operatorname{sign}\left(\sum_{t} \alpha_{t} h_{t}(x)\right) \tag{4}$$

- $H(x_0) = \text{sign}(-1.10 + -0.80 + -1.10) = \text{sign}(-3.00) = -1.0$
- $H(x_1) = sign(-1.10 + 0.80 + -1.10) = sign(-1.39) = -1.0$
- $H(x_2) = \text{sign}(-1.10 + 0.80 + -1.10) = \text{sign}(-1.39) = -1.0$
- $H(x_3) = \text{sign}(1.10 + 0.80 + -1.10) = \text{sign}(0.80) = 1.0$
- $H(x_4) = \text{sign}(1.10 + 0.80 + -1.10) = \text{sign}(0.80) = 1.0$
- $H(x_5) = \text{sign}(1.10 + -0.80 + -1.10) = \text{sign}(-0.80) = -1.0$
- $= H(x_e) =$

$$H(x) = \operatorname{sign}\left(\sum_{t} \alpha_{t} h_{t}(x)\right) \tag{4}$$

- $H(x_0) = \text{sign}(-1.10 + -0.80 + -1.10) = \text{sign}(-3.00) = -1.0$
- $H(x_1) = sign(-1.10 + 0.80 + -1.10) = sign(-1.39) = -1.0$
- $H(x_2) = \text{sign}(-1.10 + 0.80 + -1.10) = \text{sign}(-1.39) = -1.0$
- $H(x_3) = \text{sign}(1.10 + 0.80 + -1.10) = \text{sign}(0.80) = 1.0$
- $H(x_4) = \text{sign}(1.10 + 0.80 + -1.10) = \text{sign}(0.80) = 1.0$
- $H(x_5) = \text{sign}(1.10 + -0.80 + -1.10) = \text{sign}(-0.80) = -1.0$
- $H(x_6) = \text{sign}(1.10 + 0.80 + -1.10) = \text{sign}(0.80) = 1.0$
- $H(x_7) =$

$$H(x) = \operatorname{sign}\left(\sum_{t} \alpha_{t} h_{t}(x)\right) \tag{4}$$

$$H(x_0) = sign(-1.10 + -0.80 + -1.10) = sign(-3.00) = -1.0$$

•
$$H(x_1) = \text{sign}(-1.10 + 0.80 + -1.10) = \text{sign}(-1.39) = -1.0$$

•
$$H(x_2) = \text{sign}(-1.10 + 0.80 + -1.10) = \text{sign}(-1.39) = -1.0$$

•
$$H(x_3) = \text{sign}(1.10 + 0.80 + -1.10) = \text{sign}(0.80) = 1.0$$

•
$$H(x_4) = \text{sign}(1.10 + 0.80 + -1.10) = \text{sign}(0.80) = 1.0$$

•
$$H(x_5) = \text{sign}(1.10 + -0.80 + -1.10) = \text{sign}(-0.80) = -1.0$$

•
$$H(x_6) = \text{sign}(1.10 + 0.80 + -1.10) = \text{sign}(0.80) = 1.0$$

•
$$H(x_7) = \text{sign}(1.10 + 0.80 + 1.10) = \text{sign}(3.00) = 1.0$$

•
$$H(x_8) =$$

$$H(x) = \operatorname{sign}\left(\sum_{t} \alpha_{t} h_{t}(x)\right) \tag{4}$$

- $H(x_0) = \text{sign}(-1.10 + -0.80 + -1.10) = \text{sign}(-3.00) = -1.0$
- $H(x_1) = sign(-1.10 + 0.80 + -1.10) = sign(-1.39) = -1.0$
- $H(x_2) = \text{sign}(-1.10 + 0.80 + -1.10) = \text{sign}(-1.39) = -1.0$
- $H(x_3) = \text{sign}(1.10 + 0.80 + -1.10) = \text{sign}(0.80) = 1.0$
- $H(x_4) = \text{sign}(1.10 + 0.80 + -1.10) = \text{sign}(0.80) = 1.0$
- $H(x_5) = \text{sign}(1.10 + -0.80 + -1.10) = \text{sign}(-0.80) = -1.0$
- $H(x_6) = \text{sign}(1.10 + 0.80 + -1.10) = \text{sign}(0.80) = 1.0$
- $H(x_7) = \text{sign}(1.10 + 0.80 + 1.10) = \text{sign}(3.00) = 1.0$
- $H(x_8) = \text{sign}(1.10 + 0.80 + 1.10) = \text{sign}(3.00) = 1.0$
- \blacksquare $H(x_0) =$

$$H(x) = \operatorname{sign}\left(\sum_{t} \alpha_{t} h_{t}(x)\right) \tag{4}$$

■
$$H(x_0) = \text{sign}(-1.10 + -0.80 + -1.10) = \text{sign}(-3.00) = -1.0$$

•
$$H(x_1) = \text{sign}(-1.10 + 0.80 + -1.10) = \text{sign}(-1.39) = -1.0$$

•
$$H(x_2) = \text{sign}(-1.10 + 0.80 + -1.10) = \text{sign}(-1.39) = -1.0$$

•
$$H(x_3) = \text{sign}(1.10 + 0.80 + -1.10) = \text{sign}(0.80) = 1.0$$

•
$$H(x_4) = \text{sign}(1.10 + 0.80 + -1.10) = \text{sign}(0.80) = 1.0$$

■
$$H(x_5) = \text{sign}(1.10 + -0.80 + -1.10) = \text{sign}(-0.80) = -1.0$$

•
$$H(x_6) = \text{sign}(1.10 + 0.80 + -1.10) = \text{sign}(0.80) = 1.0$$

•
$$H(x_7) = \text{sign}(1.10 + 0.80 + 1.10) = \text{sign}(3.00) = 1.0$$

•
$$H(x_8) = \text{sign}(1.10 + 0.80 + 1.10) = \text{sign}(3.00) = 1.0$$

•
$$H(x_9) = \text{sign}(1.10 + -0.80 + 1.10) = \text{sign}(1.39) = 1.0$$