Cálculo Diferencial e Integral I

LEA, LEM, LEAN, MEAer, MEMec 2º Semestre de 2006/2007

4ª Aula Prática

1. (Exercício II.1 de [1], excepto a), g)) Indique quais são majoradas, minoradas, limitadas, de entre as sucessões definidas do modo seguinte:

a)
$$u_n = \frac{1}{\sqrt{n+1}}$$
.

b)
$$u_n = \frac{n + (-1)^n}{n}$$
.

c)
$$u_n = (-1)^n n^2$$
.

d)
$$u_n = n^{(-1)^n}$$
.

e)
$$u_n = 1 + \frac{1}{2} + \frac{1}{2^2} + \ldots + \frac{1}{2^n}$$
.

f)
$$u_1 = -1$$
, $u_{n+1} = -2u_n$.

g)
$$u_1 = 0$$
, $u_{n+1} = \frac{2u_n+1}{3}$.

- 2. Para as sucessões consideradas no exercício anterior, indique se são monótonas (crescentes ou decrescentes).
- 3. Baseando-se directamente na definição de limite mostre que:

a)
$$\frac{1}{\sqrt{n+1}} \to 0$$
.

b)
$$\frac{n^2}{n^2+1} \to 1$$
.

- c) A sucessão de termo geral $u_n = n^2$ é divergente.
- 4. (Exercício II.2 de [1]) A mesma questão que a anterior para:

a)
$$\frac{2n-1}{n+1} \to 2$$
.

b)
$$\frac{\sqrt{n^2-1}}{n} \to 1$$
.

5. Calcule o limite (em \mathbb{R}) ou justifique a sua não existência para cada uma das sucessões de termo geral

a)
$$\frac{(2n+1)^3+n}{n^3+1}$$
,

b)
$$\frac{(2n+1)^3+n^2}{(n+1)^2(n+2)}$$

c)
$$\frac{(n+1)^2+2n^4}{(n+1)^4+2n^2}$$
,

d)
$$\frac{\sqrt{n-1}}{\sqrt{n-1}}$$

- e) $\frac{1}{n} (2 + \frac{1}{n}),$
- f) $\frac{1}{n}(2n+\sqrt{n}),$
- g) $\frac{(-1)^n}{n!}$,
- $h) \frac{\sqrt{n}}{\sqrt[4]{4n^2+1}},$
- $\mathrm{i}) \ \ \tfrac{\sqrt[3]{n+1}}{\sqrt[3]{n+1}},$

- k) $\frac{1+(-1)^n}{\sqrt{n}}$, l) $\frac{2^{n+1}+3^{n+1}}{2^n+3^n}$,
- m) $\frac{\sqrt[n]{1000}+1000}{n}$, n) $\frac{n^n}{n^n+1}$,
- $o) \ \frac{\sqrt[n]{3}}{\sqrt[3]{n}},$
- p) $\frac{4^n}{1+4^{n^2}}$,
- q) $\frac{(a^n)^2}{a^{n^2}}$, com a > 1.
- 6. (Exercício 1.36 de [2]) Indique justificando abreviadamente a resposta, o conjunto dos valores reais de a para os quais a sucessão de termo geral $x_n = \frac{a^n}{2^{1+2n}}$ é
 - a) convergente;
 - b) divergente, mas limitada.
- 7. Dê exemplos de sucessões tais que:
 - a) (u_n) tem termos em $]-\infty,1[$ e é crescente.
 - b) (u_n) não é monótona e é convergente.
 - c) (u_n) é divergente e $(|u_n|)$ é convergente.
 - d) (u_n) é limitada e divergente.
 - e) (u_n) tem termos em $\{\frac{1}{n}: n \in \mathbb{N}_1\}$ e é divergente.
 - f) (u_n) tem termos em $\mathbb{R}\setminus\mathbb{Q}$ e converge para um elemento de \mathbb{Q} .
- 8. Sejam $A,\,B$ eCos subconjuntos de $\mathbb R$ considerados no Ex.4 Aula 3:

$$A = \{x \in \mathbb{R} : x^2 + 2|x| > 3\} =]-\infty, -1[\cup]1, +\infty[, \qquad B = \left]0, \sqrt{2}\right[,$$

$$C = \left\{ \sqrt{2} - \frac{1}{n} : n \in \mathbb{N}_1 \right\}.$$

Dê um exemplo ou justifique a não existência de

- (i) uma sucessão de termos em A monótona e divergente;
- (ii) uma sucessão de termos no conjunto B crescente e divergente;
- (iii) uma sucessão de termos no conjunto B com limite em $\mathbb{R} \setminus B$;
- (iv) uma sucesão de termos no conjunto $\mathbb{R} \setminus B$ com limite em B;
- (v) uma sucessão de termos no conjunto $A \setminus B$ com limite em $A \cap B$;
- (vi) uma sucessão de termo geral u_n no conjunto C tal que $\lim u_n < \sqrt{2}$.
- 9. Considere as sucessões definidas da seguinte forma, com $a, r \in \mathbb{R}$:

$$\begin{cases} u_1 = a, \\ u_{n+1} = r + u_n, \end{cases}$$

$$\begin{cases} v_1 = a, \\ v_{n+1} = rv_n. \end{cases}$$

(A sucessão (u_n) é uma progressão aritmética de primeiro termo a e razão r e a sucessão (v_n) é uma progressão geométrica de primeiro termo a e razão r.)

- a) Mostre por indução matemática que $u_n = a + (n-1)r$ e $v_n = ar^{n-1}$, $n \in \mathbb{N}_1$.
- b) Dê exemplos de valores de r e de a tais que
 - (i) (u_n) seja monótona crescente;
 - (ii) (u_n) seja monótona decrescente;
 - (iii) (v_n) seja monótona crescente;
 - (iv) (v_n) não seja monótona.
- c) Mostre que (u_n) não é limitada, para quaisquer $a \in \mathbb{R}, r \neq 0$. Para que valores de r e a será (v_n) limitada? E convergente?
- 10. (Teste de 12-11-2005) Considere a sucessão real (u_n) dada por:

$$\begin{cases} u_1 = 1, \\ u_{n+1} = 1 + \frac{u_n}{2} \end{cases}.$$

- a) Mostre usando indução que $u_n \leq 2$ para qualquer $n \in \mathbb{N}_1$.
- b) Mostre que (u_n) é uma sucessão crescente.
- c) Mostre que (u_n) é convergente e indique $\lim u_n$.
- 11. Considere a sucessão real (u_n) dada por:

$$\begin{cases} u_1 = \frac{3}{2}, \\ u_{n+1} = \frac{u_n^2 + 2}{3} \end{cases}.$$

- a) Mostre usando indução que $1 < u_n < 2$ para qualquer $n \in \mathbb{N}_1$.
- b) Mostre que (u_n) é uma sucessão decrescente.
- c) Mostre que (u_n) é convergente e indique $\lim u_n$.
- 12. Seja $u_1 > 1$ e $u_{n+1} = 2 \frac{1}{u_n}$ para $n \in \mathbb{N}_1$. Mostre que u_n é convergente (sugestão: começe por provar por indução matemática que $1 < u_n < 2$, para todo o inteiro $n \ge 2$). Calcule $\lim u_n$.
- 13. (Exercício II.1g) de [1]) Seja (u_n) a sucessão definida por recorrência por $u_1 = 1$, $u_{n+1} = \sqrt{2 + u_n}$.
 - a) Prove por indução que $1 \le u_n < 2$, para todo o $n \in \mathbb{N}_1$.
 - b) Prove por indução que (u_n) é crescente. (Alternativamente, verifique que $u_{n+1}-u_n=\frac{(2-u_n)(u_n+1)}{u_n+\sqrt{2+u_n}}$.)
 - c) Justifique que (u_n) é convergente.
 - d) Aplicando limites a ambos os membros da expressão de recorrência, determine o limite de (u_n) .
- 14. (Exercício 1.45 de [2]) Justifique que, se as condições

$$u_n > 0 \quad e \quad \frac{u_{n+1}}{u_n} < 1$$

são verificadas qualquer que seja $n \in \mathbb{N}_1$, então u_n é convergente.

15. (Exercício 1.47 de [2]) Sendo x_n o termo geral de uma sucessão monótona, y_n o termo geral de uma sucessão limitada e supondo verificada a condição

$$\forall n \in \mathbb{N}_1 \quad |x_n - y_n| < \frac{1}{n}$$

prove que x_n é limitada e que as duas sucessões são convergentes para o mesmo limite.

<u>Outros exercícios</u>: 1.26, 1.29, 1.37, 1.44 de [2], II.5 a) – f) de [1].

- [1] J. Campos Ferreira. Introdução à Análise Matemática, Fundação Calouste Gulbenkian, $8^{\rm a}$ ed., 2005.
 - [2] Exercícios de Análise Matemática I e II, IST Press, 2003.