Alomic Staucture

specific change

1-7588 x 10" C/Kg

Pasticle Mass charge charge electron $9.1 \times 10^{-31} \text{ kg}$ $-1.6 \times 10^{-19} \text{ C}$ Paston $1.673 \times 10^{-37} \text{ kg}$ $1.6 \times 10^{-19} \text{ C}$ Newlson $(200)1.675 \times 10^{-27} \text{ kg}$ 0 $\approx \text{ posticle}$ $2 \times 1.6 \times 10^{-19} \text{ C}$

Paopeaties of change

*Force acting blu 2 charges q_1, q_2 $q_1 = q_2$ At distance $q_1, F = K \frac{q_1 q_2}{g_2}$ K = 1 in SCGS
System *Potential $E, U = K \frac{q_1 q_2}{g}$ $K = q \times 10^9$ in SP

* 1 eV = 1.6 × 10 - 19 J.

characterestics of cathode & Anode gays

* cathode aays nature & specific charge = independs on nature of gay

* Ration = 10^{-10} m, Rnuclew = 10^{-15} m (aange)

* R Nucleus = $R_0(A)^{\frac{1}{3}}$ = $R_0 = \frac{4}{3} \times 10^{-15} \text{m}$ A = 0.036 00

Distance of closest appaoach

Oppaoach KE=0

PE=0 KE=V2mv²

Distance ob closest (relosest)

appaoach KE=0

PE= K9192

relosest

$$V_2 m v^2 = \frac{K q_1 q_2}{g_{close}}$$

$$\left[K = \frac{1}{4\pi} c_{00} \right]$$

Repassentation ob atom

$$no.ob N = A-Z$$

ditteaent no ot

<u>Paopeatres</u> of wave

$$T = \frac{1}{V}$$

Electromagnetic spectaum 1sing 1 4 Vising U

(cosmic)	Vaa	Xaa	UV	visible	IR	Micao wave	Radio) wave
Cosmic	95	03	VIBGYOR			Tolky and	

380 - 760nm

* EM waves contain Electrical tield & Magnetic freld which are perpendicular to each other & Lea to the direction of motion,

Black Body Radiation

Intensity

Planck's quantum theory

Ephoton = $hU = \frac{hC}{\lambda}$ $h = 6.626 \times 10^{34} \text{ Jg}$

total E = no ot x Ephoton photon

* one photon can exuite. one & will bacak only one bond.

$$* \frac{E_1}{E_2} = \frac{U_1}{U_2} = \frac{\lambda_2}{\lambda_1}$$

* Ephoton =
$$\frac{hc}{\lambda} = \frac{1242}{\lambda innm}$$
 eV

* 1 e V/atom = 96.4 KJ/mol

Ephoton =
$$\frac{1240}{\lambda innm}$$
 eV

Ephoton = $\frac{2 \times 10^{-16}}{\lambda innm}$

Boha's Model of atom

* As distance incaeque E of oabit 1809

$$E_1 \langle E_2 \langle E_3 \rangle \cdots \text{ at } \infty, E = 0$$

* Angular momentum is quantized.

$$m \vee \alpha = \frac{nh}{a\pi}$$
 $n = 1,2,3$

* $\frac{a}{\omega \Lambda_3} = \frac{a_3}{K Z e_3}$ * Gaound State: lowest en gy state (n=1)

centainetal F Electaostatic F * Eabsorbed/ acleased [na] ransition $\Delta E = E_{02} - E_{01} = \frac{hc}{\lambda}$

* Excited State: All other State (ES) 18t ES => 0=2

20d ES => n=3 outh ES => n= x+1

in the toam of photon. * Eacleased & absoabed

Hydrogen spectar & Rydberg equation

$$\overline{U} = \frac{1}{\lambda} = R_{H} Z^{2} \left[\frac{1}{\Omega_{1}^{2}} - \frac{1}{\Omega_{2}^{2}} \right] \quad \text{where} \quad \Omega_{1} < \Omega_{2}$$

$$\frac{R_{H} \simeq 1.1 \times 10^{7} \, \text{m}^{-1}}{\frac{1}{R_{H}}} = 912 \, \text{A}^{\circ}$$

Segies

(UV)

* minimum à [taansition

$$y_{wio} = \frac{k^{H} Z_{5}}{v_{15}}$$

$$\infty \rightarrow v_{1}$$

10 general
$$\lambda = \frac{n_1^2 n_2^2}{R_H Z^2 (n_2^2 - n_1^2)}$$

* no of visible lines in

Balmea = 4

* Hydaogen spectaa 1's emission spectaa.

* (DE) man = then mind man us ū

* no of different photon / spectaal lines duaing emitted

$$\Omega_2 \rightarrow \Omega_1$$
Agansition = $(\Omega_2 - \Omega_1)(\Omega_2 - \Omega_1 + 1)$
 $\Omega_2 - \Omega_1 = \Delta \Omega$
= $\Delta \Omega (\Delta \Omega + 1)$

* when
$$n \rightarrow 1$$
 (Gis) tablesition =) $n(n-1)$

Boha's model

$$*V_0 = 2\pi K Z e^2$$
 $V_0 = 2.18 \times 10^6 \frac{Z}{D} m/g$

* TE = -KE =
$$\frac{PE}{2}$$
 = Joint energy $E_0 = -2\kappa^2 m \kappa^2 z^2 e^4$
 $E_0 = -2.18 \times 10^{-18} \frac{z^2}{\Omega^2} J$

*
$$\alpha_0 = \frac{\Omega^2 h^2}{4 \pi^2 m k z e^2}$$

7 adu'us of H, 1st oabit
$$= 0.529 \, A^0 = Q_0$$

$$= 0.529 \, A^0 = Q_0$$

$$\alpha_0 = 0.529 \frac{\Omega^2}{Z} A^6$$

$$\alpha_0 = \alpha_0 \Omega^2$$

Debagglie's Hypothesis [Dual nature of matter]

* Wave associated with matter (Particu) Kla matter wave [It is different boom EM waves]

Wavelength associated with matter Kla debaoglie

wavelength
$$\frac{\lambda_{B}}{dB} = \frac{h}{P}$$
 $KE = \frac{P^2}{R}$

$$\frac{dg}{dg} = \frac{h}{P}$$

$$KE = \frac{\sqrt{2m}}{\sqrt{2m}}$$

$$P = \sqrt{2m} \times E$$

$$\lambda = \frac{h}{\sqrt{2m} \times E} = \frac{h}{\sqrt{2m} 2 \times V}$$

Foa
$$\varepsilon$$
, $\lambda = \sqrt{\frac{150}{V}} A^{\circ} \rightarrow \lambda = \frac{12.25}{\sqrt{V}} A^{\circ}$

$$2\pi\alpha_0 = 0\lambda$$

5 fanding wave
$$2\pi \frac{a_0 n^2}{z} = n\lambda$$
 $\lambda = \frac{2\pi a_0 n}{z}$

$$\lambda = \frac{2\pi a_0 n}{Z}$$

Heisenbergis Uncertainity painciple

$$\Delta \alpha \cdot \Delta p \ge \frac{h}{4\pi}$$

$$\Delta \alpha \cdot \Delta v \ge \frac{h}{4\pi m}$$
% es

$$\frac{\Delta P}{P} = \frac{\Delta \lambda}{\lambda}$$
 $\lambda = \text{dibaoglie}$ wavelength.

% eggog in position = DR x100.

% eagon in momentum = $\frac{DP}{P}$ x 100

% eagoa in velouity = DV x100

Wave Mechanical Model of atom φ ⇒ wave t° [has no physical significance] 42 => Paobability density s = asbitasly assumed n, e, m =) degived toom quantum no. schaodinger equation Quantum numbers => 4 Quantum numbers [n,e,m45] Azimuthal quantum 20 (2) Paincipal Quantum number (n) => Repaesents on Subshell → Repaesents shell → Repaesent 3D shape of. =) Repassents Size, energy 4 subshell & oabital, oabital angula velouity of ē momentum. =) n vasies toom a 1 ->00 =) 2 vagies (gom : 0 to n-1 0=1234 Q = 0 1 2 3 KLMN 3 sub Psub d sub F sub shell shell shell shell =) no ot e in nth shell = 202 oabit Ang ulaa momentum=nh oabital angulas momentum = JQ(Q+1) h Magnetic quantum no (m) no ob e in subshell = 2(22+1) =) Repaesent cabital => Reparsent Spatial Ogientation of spin quantum no (5) oabital 5=+12 4-1/2 =) a can have values. - 2 to 0 tota =) no ob oabitals in subshell = 22+1 =) no ob ē in one oabital = 2 = no ot oabitals in nth

5 hell = 02

