Name.	***************************************	B # - 41	~1	
TACTITIO.		PURINE	LIBSS.	

SYDNEY TECHNICAL HIGH SCHOOL

Year 12 Mathematics Extension 1

HSC Course

Assessment 3

June, 2015

Time allowed: 90 minutes

General Instructions:

- Marks for each question are indicated on the question.
- Approved calculators may be used
- All necessary working should be shown
- Full marks may not be awarded for careless work or illegible writing
- Begin each question on a new page
- Write using black or blue pen
- All answers are to be in the writing booklet provided
- A set of Standard Integrals is provided at the rear of this Question Booklet, and may be removed at any time.

Section 1 Multiple Choice Questions 1-5 5 Marks

Section II Questions 6-11 55 Marks

5 Marks

Use multiple choice answer sheet

١.

The inverse function of g(x), where $g(x) = \sqrt{2x-4}$ is

(A)
$$g^{-1}(x) = \frac{x^2 + 4}{2}$$

(B)
$$g^{-1}(x) = (2x-4)^2$$

(C)
$$g^{-1}(x) = \sqrt{\frac{x}{2} + 4}$$

(D)
$$g^{-1}(x) = \frac{x^2 - 4}{2}$$

2.

The graph below could have the equation

(A)
$$y = 2\cos\left(x + \frac{\pi}{6}\right) + 1$$

(B)
$$y = 2\cos 2\left(x + \frac{\pi}{6}\right) + 1$$
(C)
$$y = 2\cos 4\left(x - \frac{\pi}{6}\right) + 1$$

(C)
$$y = 2\cos 4\left(x - \frac{\pi}{6}\right) + 1$$

(D)
$$y = 2\cos 4\left(x + \frac{2\pi}{3}\right) + 1$$

3.

The domain and range of the function f(x), where $f(x) = 3\sin^{-1}(4x-1)$ are respectively.

(A)
$$0 \le x \le \frac{1}{2} \text{ and } -\frac{3\pi}{2} \le y \le \frac{3\pi}{2}$$

(A)
$$0 \le x \le \frac{1}{2} \text{ and } -\frac{3\pi}{2} \le y \le \frac{3\pi}{2}$$
 (B) $-\frac{1}{2} \le x \le 0 \text{ and } -\frac{\pi}{2} \le y \le \frac{5\pi}{2}$.

(C)
$$0 \le x \le \frac{1}{2} \text{ and } -\frac{\pi}{2} \le y \le \frac{5\pi}{2}$$

(C)
$$0 \le x \le \frac{1}{2} \text{ and } -\frac{\pi}{2} \le y \le \frac{5\pi}{2}$$
 (D) $-\frac{1}{2} \le x \le 0 \text{ and } -\frac{3\pi}{2} \le y \le \frac{3\pi}{2}$.

5.

If the substitution $u = x^2 - 1$ is used then the definite integral $\int_0^2 \frac{x}{\sqrt{x^2 - 1}} dx$ can be simplified to

- (A) $\frac{1}{2} \int_{-1}^{3} u^{-\frac{1}{2}} du$
- (B) $2\int_{-1}^{3} u^{-\frac{1}{2}} du$
- (C) $\frac{1}{2} \int_{0}^{2} u^{-\frac{1}{2}} du$
- $(D) \qquad 2\int_0^2 u^{-\frac{1}{2}} du$

To find the area of the shaded region in the diagram below, four different students proposed the following calculations.

Student 1: $\int_0^1 e^{2x} dx$

Student 3: \int_{1}^{ϵ}

Student 2: $e^2 - \int_{0}^{1} e^{2x} dx$

Student 4: $\int_{1}^{e^{2}} \frac{\log_{e} y}{2} \, dy$

Which of the following is correct?

(A) Student 2 only.

(B) Students 2 and 3 only.

(C) Students 2 and 4 only.

(D) Students 1 and 4 only.

SECTION II

Ques	tion 6	(9 Marks)	Mark	
a)	Differ	erentiate		
	i)	e^{sinx}	1	
	ii)	$\ln(\cos x)$	1	
	iii)	$\sin^{-1}\sqrt{x}$	2	
b)	Find tl	the <u>exact</u> values of		
	i)	$\cos^{-1}(-\frac{\sqrt{3}}{2})$	1	
	11)	$tan^{-1} \left(2\cos\frac{5\pi}{6}\right)$	2	
c)	Evalua	te $\int_0^1 \frac{1}{\sqrt{4-x^2}} \ dx$	2	

Question 7 (9 Marks) (Start a new page)

a)

3

The diagram shows portions of the graphs of

$$y = 2sinx$$
 and $y = sin2x$

Calculate the area of the region bounded by the arc OPA, the arc OQB and the interval AB.

b)

i)

2

$$\tan^{-1} x + \tan^{-1} y = \tan^{-1} \left[\frac{x+y}{1-xy} \right]$$

If $\tan^{-1} x = \infty$ and $\tan^{-1} y = \beta$ prove that

ii) Hence evaluate
$$\tan^{-1}(\frac{1}{2}) + \tan^{-1}(\frac{1}{2})$$

1

c) i) Prove that $\frac{d}{dx}(x^2 \tan^{-1} x)$ may be written as $2x \tan^{-1} x + 1 - \frac{1}{x^2 + 1}$ 2

ii) Hence find $\int_0^{\sqrt{3}} x \cdot \tan^{-1} x \, dx$ in exact form

