

TECHNISCHE UNIVERSITÄT MÜNCHEN

Zentrum Mathematik

Prof. Dr. Friedrich Roesler

Ralf Franken, PhD Max Lein Lineare Algebra 1

WS 2006/07 Blatt 13, Teil 2 29.01.2007

"Probeklausur"

Wir empfehlen, zunächst den Stoff zu wiederholen und dann zu versuchen, die Aufgaben ohne Hilfsmittel zu lösen (Arbeitszeit: 90 Minuten).

Aufgabe 1 (ca. 6 Punkte)

Sei $f_A: \mathbb{R}^3 \longrightarrow \mathbb{R}^4$ die \mathbb{R} -lineare Abbildung, die durch

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \longmapsto \begin{pmatrix} -2 & -2 & -6 \\ 5 & 4 & 5 \\ 1 & 1 & 3 \\ -7 & -4 & 9 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

definiert wird.

- (i) Geben Sie $\ker f_A$ an.
- (ii) Geben Sie $\operatorname{rg} f_A$ und eine Basis von $\operatorname{im} f_A$ an.
- (iii) Untersuchen Sie, ob die Abbildung injektiv oder surjektiv ist.

Aufgabe 2 (ca. 8 Punkte)

Sei $\mathbb{R}_4[X] := \{P \in \mathbb{R}[X] \mid \deg P \leq 4\}$ der Vektorraum der Polynome mit reellen Koeffizienten vom Grad kleiner gleich 4.

- (i) Welche Dimension hat $\mathbb{R}_4[X]$? Geben Sie überabzählbar viele Basen dieses Raumes an (ohne Beweis).
- (ii) Stellen Sie die \mathbb{R} -lineare Abbildung $H:\mathbb{R}_4[X]\longrightarrow\mathbb{R}_4[X]$, definiert durch

$$H := \left(\frac{\mathrm{d}}{\mathrm{d}X}\right)^2 + \lambda^2 \mathrm{id}_{\mathbb{R}_4[X]} \quad (\lambda \in \mathbb{R})$$

in der Standardbasis $\{X^k: k=0,\dots,4\}$ dar, wobei $\frac{\mathrm{d}}{\mathrm{d}X}$ die formale Ableitung auf dem Raum der Polynome bezeichnet.

(iii) Geben Sie Kern und Bild von H (in Abhängigkeit von λ) an.

Aufgabe 3 (ca. 6 Punkte)

Im \mathbb{R} -Vektorraum \mathbb{R}^2 seien eine Basis $a=(a_1,a_2)$ und Vektoren $b_1:=2a_1+a_2$ und $b_2:=3a_1+2a_2$ gegeben.

- (i) Begründen Sie, dass auch $b := (b_1, b_2)$ eine Basis des \mathbb{R}^2 ist.
- (ii) Es sei $f:\mathbb{R}^2 \to \mathbb{R}^2$ diejenige lineare Abbildung, die bgzl. der Basis b durch die Darstellungsmatrix

$$\left[\frac{f(b)}{b}\right] = \left(\begin{array}{cc} -3 & 6\\ 1 & -2 \end{array}\right)$$

beschrieben wird. Bestimmen Sie die Darstellungsmatrix $\left[\frac{f(a)}{a}\right]$ von f bzgl. der Basis a.

Aufgabe 4 (ca. 4 Punkte)

Es seien W und V zwei Vektorräume über einem Körper \mathbb{K} . Zeigen Sie (mit genauen Begründungen), dass für $f \in \mathcal{L}_{\mathbb{K}}(W,V)$ und $\lambda,\mu \in \mathbb{K}$ mit der üblichen punktweisen Addition und Skalarmultiplikation gilt:

$$(\lambda + \mu)f = \lambda f + \mu f.$$

Stimmt das auch, wenn f eine beliebige (nicht notwendig lineare) Abbildung von W nach V ist?

Aufgabe 5 (ca. 4 Punkte)

Lösen Sie folgendes Gleichungssystem in \mathbb{F}_7 :

$$\mu \cdot \bar{x}_1 + \bar{3} \cdot \bar{x}_2 = \bar{1} \tag{i}$$

$$\bar{2} \cdot \bar{x}_1 + \bar{7} \cdot \bar{x}_2 = \bar{5} \tag{ii}$$

Geben Sie die Lösungsmenge in Abhängigkeit des Parameters $\mu \in \mathbb{F}_7$ an und untersuchen Sie, ob die Gleichung für alle Werte von μ eine Lösung hat.

Aufgabe 6 (ca. 5 Punkte)

Sei $f: V \longrightarrow V$ ein Endomorphismus mit $f \circ f = f$.

- (i) Zeigen Sie: im $f \cap \ker f = \{0\}$.
- (ii) Zeigen Sie, dass sich jeder Vektor $v \in V$ zerlegen lässt in v = u + w mit $u \in \text{im } f, w \in \ker f$.

Aufgabe 7 (ca. 5 Punkte)

Kreuzen Sie an, ob die nachfolgenden Aussagen wahr oder falsch sind. Begründungen sind nicht verlangt. (Für jedes richtige Kreuz gibt es 1 Punkt, **für jedes falsche Kreuz 1 Punkt Abzug.** Wenn Sie bei einer Aussage nichts ankreuzen, gibt es dafür 0 Punkte. Bei mehr falschen als richtigen Antworten wird die Aufgabe insgesamt mit 0 Punkten bewertet.)

Es gibt genau eine lineare Abbildung $f:\mathbb{R}^2\to\mathbb{R}^3$ mit $f(1,0)=(4,-2,3),$ $f(1,1)=(1,0,2)$ und $f(2,3)=(-1,2,3).$	□ wahr	□ falsch
Für jede Abbildung $f:M\to N$ und Teilmengen $A,B\subseteq N$ gilt: $f^{-1}(A\cap B)=f^{-1}(A)\cap f^{-1}(B).$	□ wahr	□ falsch
Ist $f: W \to V$ eine lineare Abbildung, so gilt für alle $a_1, \ldots, a_k \in W$: $f(a_1), \ldots, f(a_k)$ linear unabhängig $\Rightarrow a_1, \ldots, a_k$ linear unabhängig.	□ wahr	□ falsch
Jeder Vektorraum über \mathbb{F}_2 hat mindestens zwei Elemente.	□ wahr	□ falsch
Im \mathbb{R}^9 kann der Durchschnitt zweier 6-dimensionaler Unterräume nicht die Dimension 2 haben.	□ wahr	□ falsch

Aufgabe 8 (ca. 3 Punkte)

Sei $\mathbb K$ ein Körper. Zeigen Sie: $\forall\, a,b\in\mathbb K:\ a^2=b^2 \Leftrightarrow a=-b\,\lor\, a=b\,.$

Die Probeklausur wird nicht korigiert. Die Lösungen werden am 5. Februar 2007 auf der Homepage veröffentlicht. Die Tutorübungen vom 7.-9. Februar sind zur Besprechung der Probeklausur, Wiederholung des Stoffes und Klärung offener Fragen gedacht.