Cerize Bananatag Jun 5 2020

Quantum Bits

what is a mug?

Large deep cup with straight sides and a handle, used for hot drinks

if a mug was a quantum object...

if I throw it in a wall I get multiple mini mugs that do not hold any liquid

if I pour liquid sometimes the liquid disappears, sometimes it ends up in the floor

A quantum bit as a mathematical object

0 1 classical

|0> |1> quantum

state superposition

$$|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$$

graphical representation 1

graphical representation 2

But when you try to measure...

$$|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$$

Always get 0 or 1

...with a probability α^2 and β^2 of getting 0 or 1.

If α is $(1/\sqrt{2})$, there is a 50% chance of getting 0 (and a 50% change of getting 1)

measurement

How do I determine alpha and beta??

$$|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$$

- Take infinite number of identical quantum bits
- Measure all
- Determine alpha and beta depending on the percentage of 0 and 1

Food for thought

- How does Nature do it?
- Does that suggest Nature has this hidden computing capabilities to know which state it should collapse to
- Does it mean if we want to study quantum systems, like molecules for designing new drugs, only a quantum computer will do? (there is only so much we can make with a classical computer)

What is the point?

0 1 1

Needs 3 states to define

States of the system

 2^n

Logical Gates

Gate name	# Qubits	Circuit Symbol	Unitary Matrix	Description
Hadamard	1	-H-	$\frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$	Transforms a basis state into an even superposition of the two basis states.
T	1	-T-	$\begin{bmatrix} 1 & 0 \\ 0 & e^{i\pi/4} \end{bmatrix}$	Adds a relative phase shift of $\pi/4$ between contributing basis states. Sometimes called a $\pi/8$ gate, because diagonal elements can be written as $e^{-i\pi/8}$ and $e^{i\pi/8}$.
CNOT	2	•	$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$	Controlled-not; reversible analogue to classical XOR gate. The input connected to the solid dot is passed through to make the operation reversible.
Toffoli (CCNOT)	3	+	$ \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0$	Controlled-controlled-not; a three-qubit gate that switches the third bit for states where the first two bits are 1 (that is, switches 110) to 111) and vice versa).
Pauli-Z	1	- Z -	$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$	Adds a relative phase shift of π between contributing basis states. Maps $ 0\rangle$ to itself and $ 1\rangle$ to $- 1\rangle$. Sometimes called a "phase flip."
Z-Rotation	1	$ R_z(\theta)$ $-$	$\begin{bmatrix} e^{-i\theta/2} & 0 \\ 0 & e^{i\theta/2} \end{bmatrix}$	Adds a relative phase shift of (or rotates state vector about z-axis by) θ .
NOT	1	-	$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$	Analogous to classical NOT gate; switches $ 0\rangle$ to $ 1\rangle$ and vice versa.

In real life

Which systems can be used?

- Nucleus spin
- Electron spin
- Polarization of photon

In the lab

A quantum computer

Drives control and measurement layer

Thanks!!!