

BACCALAUREAT GENERAL

Session 2024

Épreuve: Mathématiques

Durée de l'épreuve : 4 heures

Coefficient: 16

PROPOSITION DE CORRIGÉ

Exercice 1

• Affirmation 1: VRAIE

 $\lim_{x \to +\infty} f(x) = 0 \text{ car } f(x) = 5 \times \frac{x}{e^x} \text{ et par le théorème de croissances comparées } \lim_{x \to +\infty} \frac{x}{e^x} = 0$

Donc la droite d'équation y = 0 c'est-à-dire l'axe des abscisses est une asymptote horizontale à la courbe de f.

• Affirmation 2: VRAIE

 $f'(x) = 5 \times e^{-x} + 5x \times (-e^{-x})$ donc $f'(x) + f(x) = 5e^{-x}$ et f est solution de l'équation différentielle (E)

• Affirmation 3: FAUX

On choisit un contre-exemple. Si (u_n) est la suite constante égale à -1, (w_n) la suite constante égale à 1 et (v_n) la suite définie pour tout entier naturel par $v_n = cos(n)$. On a $u_n \le v_n \le w_n$ mais (v_n) n'a pas de limite.

• Affirmation 4: VRAIE

Si (u_n) est croissante pour tout $n \ge 0$ on a $u_0 \le u_n$ et si (w_n) est décroissante pour tout $n \ge 0$ on a $w_0 \ge w_n$ donc $u_0 \le u_n \le v_n \le w_0$

Exercice 2

- 1. 2. $P(I \cap S) = P(I) \times P_I(S) = 0.6 \times 0.75 = 0.45$
- 3. D'après la formule des probabilités totales $P(S) = P(I \cap S) + P(M \cap S) + P(G \cap S) = 0.45 + 0.3 \times 0.9 + 0.1 \times 0.8 = 0.8$
- **4.** $P_S(I) = \frac{P(S \cap I)}{P(S)} = \frac{0.45}{0.8} \approx 0.562$
- 5. a . On répète n = 30 la même épreuve de Bernoulli de façon identique et indépendante de paramètre p = 0,8. Donc X suit une loi binomiale de paramètres n = 30 et p = 0,8.
 b. P(X ≥ 25) = 1 P(X ≤ 24) ≈ 0,427 à l'aide de la calculatrice.
- **6.** On cherche à déterminer n tel que $P(Y \ge 1) = 1 P(Y = 0) \ge 0.99$ avec Y qui suit une loi binomiale de paramètres n et p = 0.2

$$1 - 0.8^n \ge 0.99 \iff 0.8^n \le 0.01 \iff n \ln(0.8) \le \ln(0.01) \iff n \ge \frac{\ln(0.01)}{\ln(0.8)}$$

L'échantillon doit être de taille d'au moins 21 clients.

7. **a.** $E(T) = E(T_1) + E(T_2) = 4 + 3 = 7$ par linéarité de l'espérance. $V(T) = V(T_1) + V(T_2) = 2 + 1 = 3$ car les variables T_1 et T_2 sont indépendantes. **b.** On cherche à déterminer $P(5 \le T \le 9) = P(|T - 7| \le 2)$

D'après l'inégalité de Bienaymé Tchebychev on a :

 $P(|T-7| \ge 3) \le \frac{3}{3^2}$ donc en passant à l'événement contraire

$$1 - P(|T - 7| \le 2) \le \frac{1}{3} \Leftrightarrow P(|T - 7| \le 2) \ge \frac{2}{3}$$

Exercice 3

1. a.
$$\overrightarrow{CA} \begin{pmatrix} 5 \\ 5 \\ -10 \end{pmatrix}$$
 et $\overrightarrow{CD} \begin{pmatrix} 0 \\ 0 \\ -\frac{25}{2} \end{pmatrix}$ sont deux vecteurs non colinéaires du plan. $\overrightarrow{n_1} \cdot \overrightarrow{CA} = 5 - 5 + 0 = 0$ et $\overrightarrow{n_1} \cdot \overrightarrow{CD} = 0 + 0 + 0 = 0$

 $\overrightarrow{n_1}$ est un vecteur orthogonal à deux vecteurs non colinéaires du plan (CAD) donc est un vecteur normal au plan.

b. L'équation cartésienne du plan (CAD) s'écrit x - y + d = 0. Les coordonnées de A vérifient cette équation cartésienne donc $5 - 5 + d = 0 \iff d = 0$

Ainsi (CAD) a pour équation cartésienne x - y = 0

2. a. Il s'agit de résoudre le système d'équations :
$$\begin{cases} x = \frac{5}{2}t \\ y = 5 - \frac{5}{2}t \\ z = 0 \\ x - y = 0 \end{cases}$$

$$\frac{5}{2}t - \left(5 - \frac{5}{2}t\right) = 0 \iff t = 1$$

Ainsi en reportant dans la représentation paramétrique de la droite on retrouve $H\left(\frac{5}{2}; \frac{5}{2}; 0\right)$ b.

$$\overrightarrow{BH}\begin{pmatrix} \frac{5}{2} \\ -\frac{5}{2} \\ 0 \end{pmatrix} \text{ on a } \overrightarrow{BH} = \frac{5}{2} \overrightarrow{n_1} \text{ donc } \overrightarrow{BH} \text{ est un vecteur normal au plan (CAD) et puisque H}$$

appartient au plan, H est le projeté orthogonal de B sur le plan.

3. a.
$$\overrightarrow{AH}\begin{pmatrix} -\frac{5}{2} \\ -\frac{5}{2} \\ 0 \end{pmatrix}$$
 et $\overrightarrow{AH} \cdot \overrightarrow{BH} = -\frac{25}{2} + \frac{25}{2} = 0$ les droites (AH) et (BH) sont orthogonales

donc le triangle AHB est rectangle en H.

b. Aire_{ABH} =
$$\frac{AH \times BH}{2}$$
 = $\frac{\frac{5\sqrt{2}}{2} \times \frac{5\sqrt{2}}{2}}{2}$ = $\frac{25}{4}$ car $AH = BH = \sqrt{2,5^2 + 2,5^2}$ = $\frac{5\sqrt{2}}{2}$

4. a. On peut montrer que
$$\overrightarrow{CO}\begin{pmatrix} 0\\0\\-10 \end{pmatrix}$$
 est un vecteur normal au plan (BHA).

On a
$$\overrightarrow{CO} \cdot \overrightarrow{AH} = \overrightarrow{CO} \cdot \overrightarrow{BH} = 0$$
. Donc (CO) est la hauteur du tétraèdre ABCH issue de C.
b. $V = \frac{1}{3} \times \frac{25}{4} \times \sqrt{(-10)^2} = \frac{125}{6}$

5. Nous pouvons écrire le volume du tétraèdre comme suit

$$V = \frac{1}{3} \times \text{Aire}_{ABC} \times h$$

Avec h la hauteur issue de H, cette hauteur est également la distance recherchée puisqu'elle est égale à la distance du point H à son projeté orthogonal sur le plan (ABC)

$$\frac{125}{6} = \frac{1}{3} \times \frac{AB \times BC}{2} \times h$$

$$AB = \sqrt{5^2 + 0^2 + 0^2} = 5 \text{ et } BC = \sqrt{0^2 + 5^2 + 10^2} = 5\sqrt{5}$$
Donc $h = \frac{125}{6} \times 3 \times \frac{2}{25\sqrt{5}} = \sqrt{5}$

Exercice 4

Partie A

- 1. a. $\lim_{x \to 0} x 2 = -2$ et $\lim_{x \to 0^+} \ln(x) = -\infty$ donc par somme $\lim_{x \to 0} f(x) = -\infty$ $\lim_{x \to +\infty} x 2 = +\infty$ et $\lim_{x \to +\infty} \ln(x) = +\infty$ donc par somme $\lim_{x \to +\infty} f(x) = +\infty$

 - b. $f'(x) = 1 + \frac{1}{2} \times \frac{1}{x} = \frac{2x}{2x} + \frac{1}{2x} = \frac{2x+1}{2x}$ c. Pour tout x > 0, on a 2x > 0 et 2x + 1 > 0 donc f'(x) > 0 et f est strictement croissante sur $]0; +\infty[$
 - d. $f''(x) = \frac{2 \times 2x 2 \times (2x + 1)}{4x^2} = -\frac{2}{4x^2}$. On a f''(x) < 0 sur $]0; +\infty[$ donc f est concave sur cet intervalle
- 2. a. f est continue sur $]0, +\infty[$ car dérivable. f est strictement croissante et
 - $0 \in f(0; +\infty[)$ donc d'après le corollaire du théorème des valeurs intermédiaires,
 - f(x) = 0 admet une unique solution dans $]0, +\infty[$

$$f(1) = -1$$
 et $f(2) = \frac{1}{2}ln(2) \approx 0.35$ donc $f(1) < 0 < f(2)$ et $\alpha \in [1; 2]$

b. f s'annule en α et est strictement croissante sur $]0, +\infty[$ avec $\lim_{x\to 0} f(x) = -\infty$ et $\lim_{x \to +\infty} f(x) = +\infty$. On en déduit que :

f est strictement négative sur $]-\infty$, $\alpha[$ et est strictement positive sur $]\alpha;+\infty[$

c.
$$f(\alpha) = 0 \Leftrightarrow \alpha - 2 + \frac{1}{2}ln(\alpha) = 0 \Leftrightarrow ln(\alpha) = 2(2 - \alpha)$$

Partie B

1.
$$g'(x) = -\frac{7}{8} \times 2x + 1 - \frac{1}{4} \left(2x \ln(x) + x^2 \times \frac{1}{x} \right) = -2x + 1 - \frac{1}{2} x \ln(x)$$

 $xf\left(\frac{1}{x}\right) = x \times \left(\frac{1}{x} - 2 + \frac{1}{2} \ln\left(\frac{1}{x}\right)\right) = 1 - 2x - \frac{1}{2} x \ln(x) = g'(x)$

2. a. $0 < x < \frac{1}{\alpha} \Leftrightarrow \frac{1}{x} > \alpha$. On pose $\frac{1}{x} = X$, on sait d'après la question 2.b (Partie A) que

pour $X > \alpha$ on a f(X) > 0

b. $x \in]0; 1]$ donc $g'(x) = xf\left(\frac{1}{x}\right)$ est du signe de $f\left(\frac{1}{x}\right)$ sur]0; 1]

x	0		$\frac{1}{\alpha}$		1
$f\left(\frac{1}{x}\right)$		+	0	_	
x	0	+		+	
g'(x)		+	0	_	
g(x)					

Partie C

1. a.
$$g(x) - y = -\frac{7}{8}x^2 + x - \frac{1}{4}x^2 \ln(x) + \frac{7}{8}x^2 - x = -\frac{1}{4}x^2 \ln(x)$$

1. a. $g(x) - y = -\frac{7}{8}x^2 + x - \frac{1}{4}x^2 \ln(x) + \frac{7}{8}x^2 - x = -\frac{1}{4}x^2 \ln(x)$ Sur]0; 1] on a $\ln(x) \le 0$ donc $g(x) - y \ge 0$ et la courbe de g et au dessus de la parabole \mathcal{P} sur [0; 1].

b. On procède par intégration par parties en posant

$$u(x) = ln(x) \Rightarrow u'(x) = \frac{1}{x} \text{ et } v'(x) = x^2 \Rightarrow v(x) = \frac{x^3}{3}$$

$$I = \int_{\frac{1}{\alpha}}^{1} x^{2} \ln x \, dx = \left[\frac{x^{3}}{3} \ln(x) \right]_{\frac{1}{\alpha}}^{1} - \int_{\frac{1}{\alpha}}^{1} \frac{x^{2}}{3} \, dx$$

$$I = \frac{1}{3\alpha^{3}} \ln(\alpha) - \left[\frac{x^{3}}{9} \right]_{\frac{1}{\alpha}}^{1} = \frac{2(2-\alpha)}{3\alpha^{3}} - \frac{1}{9} + \frac{1}{9\alpha^{3}} = \frac{-\alpha^{3} - 6\alpha + 13}{9\alpha^{3}}$$

2. $\mathcal{A} = \int_{\frac{1}{x}}^{1} g(x) - y \, dx$ et par linéarité de l'intégrale et d'après la question 1. a (partie C) $\mathcal{A} = -\frac{1}{4} \times I$