[붙임 3] 결과보고서

[캡스톤디자인 결과보고서]

■ 과제명

과 제 명	메타버스 인터페이스를 위한 장갑형 콘트롤러 개발	참여학기	2022 년 2 학기	
-------	----------------------------	------	-------------	--

■ 강좌정보

과 목 명	종합 설계	학수번호	EE49705
과제기간	2022년 9월 1일	학 점	2
	~ 2022년 12월 8일	4 6	5

■ 팀구성

팀 명	New Meta		팀구성 총인원	4 명
구 분	성 명	학 번	학부(과)	학 년
대표학생	김승채	2016103926	전자공학과	4
참여학생	고준성	2019110501	전자공학과	4
	신찬웅	2014103978	전자공학과	4
	임록희	2018104065	전자공학과	4

■ 지도교수 확인

지도고스	성	명	서덕영	직 급		전임교원	
	소	속	전자공학과	지도교수 확인	성명 :	서덕영	(인)

■ 붙임

[양식] 과제 요약보고서

[결과물] 최종결과물 (최종작품 사진/도면/발표자료 등)

본 팀은 과제를 성실히 이행하고 이에 따른 결과보고서를 제출합니다.

2022년 12월 8일

팀 대표 :	김승채	(인)
7 U.T.	Ti O /II	(;)

[캡스톤디자인 과제 요약보고서]

과 제 명

메타버스 인터페이스를 위한 장갑형 콘트롤러 개발

1. 과제 개요

가. 과제 설계 배경 및 필요성

- 시각적 피드백 뿐만 아니라 햅틱 역감적 피드백으로도 구분할 수 있는 더 발전된 햅틱 글러브 구현 나. 과제 주요내용
- 기존 햅틱 글러브처럼 단순한 정지에 그치지 않고 가상의 물체를 집었을 때 물체의 특성에 따라 달라지는 물체의 탄성력, 반발력을 사용자가 느끼게 한다.

다. 최종결과물의 목표

- 햅틱 글러브를 통해 가상의 물체를 만지고 그 물체와 상호작용하면서 사용자에게 더 나은 몰입감을 제공하고자 한다.

2. 과제 수행방법

- 손가락으로 가한 압력에 따라 물체의 형태가 변형되는 시뮬레이션을 구현
- 사용자의 근전도 변화를 측정하여 탄성력에 따른 압력 변화 정량적으로 측정
- Leap motion Hand tracking 기술을 통해 비용 및 무게 절감

3. 실습비 사용내역

- 총 399,370원
- 일반 360,170원, 회의비 39200원

(첨부 파일 별도 첨부)

4. 수행결과

가. 과제수행 결과

- 블루투스를 이용한 무선 구현 외 모두 완료(데이터 전송 속도 문제로 인해 무선 구현 실패) 나. 최종결과물 주요특징 및 설명
- 스탑 모션 뿐만 아니라 탄성력 및 반발력 구현, 비용 및 무게 절감

5. 기대효과 및 활용방안

가. 기대효과

- 물체의 특성과 집는 세기에 따라 다른 햅틱 피드백을 줌으로써 사용자가 더욱 사실적으로 느낄 수 있을 것으로 기대한다.

나. 활용방안

- 햅틱 기술을 활용한 게임 산업
- 의료 수술 및 항공 등 시뮬레이션

6. 결론 및 제언

저가 블루투스 칩을 사용했기 때문에 무선 웨어러블 햅틱 글러브를 구현하는 것에는 실패했지만 탄 성력 및 반발력을 구현하고 비용과 무게를 절감시켰으므로 이전 과제를 성공적으로 발전시켰다.

[참고자료]

자유도 자동손목관절을 가진 근전 전동의수 개발_Development of the Myoelectric Hand with a 2 DOF Auto Wrist Module 등

팀 대표 :	김승채	(인
Fi 511 III .		(1 '