Laboratorio 1 de Analisis de Señales y Sistemas

lunayabarrena

4 de Julio del 2021

Sea f(t) = u(t) - u(t-3) la señal pulso rectangular , $g(t) = e^{-2t}u(t)$, $0 \le t \le 5$ la amortiguacion exponencial y sea h(t) la señal pulso triangular definida asi :

$$h(t) = \begin{cases} 0 & si & t \le 0 \\ t & si & 0 < t < 1 \\ 2 - t & si & 1 < t < 2 \\ 0 & si & t < 2 \end{cases}$$

Usando el MATLAB grafique las señales en tiempo continuo f(t), g(t), h(t)

Encuentre en terminos de de t
 y de la señal escalon unitario las siguientes convoluciones:
 f(t)*g(t),f(t)*h(t),g(t)*h(t)

Usando el matlab y el comando conv grafique las convoluciones f(t)*f(t), f(t)*g(t), g(t)*g(t), g(t)*h(t), h(t)*h(t).

funcion f(t)=u(t)-u(t-3)=rectpuls(t-1.5)

Figure 1: grafica de la funcion f(t)

funcion $g(t) = e^{-2t}u(t)$

Figure 2: grafica de la funcion g(t)

funcion
$$h(t) = tripuls(t-1) = u_1(t) - 2u_1(t-1) + u_1(t-2)$$

Figure 3: grafica de la funcion g(t)

Ahora hallaremos las convoluciones de $\ f(t)*g(t), f(t)*h(t), g(t)*h(t)$

$$\underline{f(t) * g(t) = \int_{-\infty}^{\infty} g(\tau) f(t - \tau) d\tau}$$

 $Para \ t < 0$

Figure 4: para valores de $t\ < 0$

Vemos que las graficas no se interceptan , por lo tanto $\int_{-\infty}^{\infty}g(\tau)f(t-\tau)d\tau=0$

Para 0 < t < 3

Figure 5: grafica en 0 < t < 3

$$\int_{-\infty}^{\infty} g(\tau)f(t-\tau)d\tau = \int_{0}^{t} e^{-2t}.1d\tau = \frac{1}{2} - \frac{e^{-2t}}{2}$$

Figure 6: grafica en 3 < t < 5

$$\int_{-\infty}^{\infty} g(\tau) f(t-\tau) d\tau = \int_{-3+t}^{t} e^{-2t} . 1 d\tau = \frac{e^{-2t+6}}{2} - \frac{e^{-2t}}{2}$$

Para 5 < t < 8

Figure 7: grafica en 5 < t < 8

$$\int_{-\infty}^{\infty} g(\tau) f(t-\tau) d\tau = \int_{-3+t}^{5} e^{-2t} . 1 d\tau = \frac{e^{-2t+6}}{2} - \frac{e^{-10}}{2}$$

Figure 8: grafica en 5 < t < 8

$$\int_{-\infty}^{\infty}g(\tau)f(t-\tau)d\tau=\int_{8}^{\infty}~e^{-2t}.1d\tau=0$$

la grafica de f(t) * g(t) es

Figure 9: convolucion de $f(t) \ast g(t)$

$$f(t) * h(t) = \int_{-\infty}^{\infty} h(\tau) f(t - \tau) d\tau$$

sabemos que:

$$u_n(t) * u_m(t) = u_{n+m+1}(t)$$

 $u_n(t-a) * u_m(t-b) = u_{n+m+1}(t-a-b)$

$$f(t) = rectpuls(t-1.5) = u_0(t) - u_0(t-3)$$

 $h(t) = tripuls(t-1) = u_1(t) - 2u_1(t-1) + u_1(t-2)$

$$f(t) * h(t) = (u_0(t) - u_0(t-3)) * (u_1(t) - 2u_1(t-1) + u_1(t-2))$$

$$f(t) * h(t) = u_2(t) - 2u_2(t-1) + u_2(t-2) - u_2(t-3) + 2u_2(t-4) - u_2(t-5)$$

la grafica de f(t) * h(t)es

Figure 10: convolucion de f(t) * h(t)

Figure 11: convolucion de f(t) * h(t)

Ahora usando **matlab** y el comando conv hallaremos las convoluciones de f(t)*f(t), f(t)*g(t), g(t)*g(t), g(t)*h(t), h(t)*h(t)

$$f(t) * f(t)$$

Figure 12: convolucion de h(t) * h(t)

Figure 13: convolucion de $f(t) \ast h(t)$

Figure 14: convolucion de g(t) * g(t)

Figure 15: convolucion de $g(t) \ast g(t)$

Figure 16: convolucion de $h(t) \ast g(t)$