

Problem 6: Maximum Likelihood

<u>Course</u> > <u>Final exam</u> > <u>Final Exam</u> > Estimation of Phase Noise

Problem 6: Maximum Likelihood Estimation of Phase Noise

Phase Noise Estimation under Gaussian Noise: Setup

This problem is motivated by estimation in communication systems (Wi-Fi, cellphones, etc). The solution obtained in this problem is implemented real-time in many communication systems. For example, your laptop Wi-Fi adapter, which is downloading and uploading all the content that you are consuming in this course, is performing this estimation (albeit in a more complicated statistical model) tens of hundreds of times every second.

Let

$$\mathbf{x} = egin{bmatrix} \cos{(heta)} \ \sin{(heta)} \end{bmatrix}$$

be a known vector, i.e. **we assume that we know** $oldsymbol{ heta}$. Let $heta \in [0,\pi/2]$.

Let $\mathbf{Y}_1, \dots, \mathbf{Y}_n$ be defined as follows:

$$\mathbf{Y}_i = egin{bmatrix} Y_i^{(1)} \ Y_i^{(2)} \end{bmatrix} = egin{bmatrix} \cos{(heta + \phi)} \ \sin{(heta + \phi)} \end{bmatrix} + \mathbf{Z}_i, \;\; i = 1, \dots, n,$$

where $\mathbf{Z}_i \sim \mathcal{N}\left(0,\sigma^2\mathbf{I}_2
ight)$ for a known σ^2 and ϕ is an unknown constant. Assume that $\mathbf{Z}_i, i=1,\dots,n$ are independent.

Objective: Upon observing $\mathbf{Y}_i, i=1,\ldots,n$ we wish to produce an estimate $\widehat{\phi}$ of $\phi\in[-\pi,\pi]$.

(a) True or False

1/1 point (graded)

Select whether the following statement is ${f true}\ {f or}\ {f false}$: " ${f Y}_i$ are iid.""

False

Solution:

The statement is true. The multivariate Gaussian vectors \mathbf{Z}_i are iid. Therefore, \mathbf{Y}_i , which are deterministic functions of the \mathbf{Z}_i 's, respectively for $i=1,\ldots,n$, are iid.

Submit

You have used 1 of 3 attempts

Answers are displayed within the problem

(b) The Underlying Problem

1/1 point (graded)

Referring to the **objective** in the problem setup given above, select from the following the statements that are correct. (Choose all that apply.)

- \blacksquare We are trying to estimate the **magnitude** by which \mathbf{x} is scaled (in the presence of vector Gaussian noise).
 - lacktriangle We are trying to estimate the **phase rotation** undergone by ${f x}$ (in the presence of vector Gaussian noise). lacktriangle
 - \square We are trying to estimate the **magnitude and phase changes** undergone by \mathbf{x} (in the presence of vector Gaussian noise).

~

Grading Note: Partial credit is given.

Solution:

The objective of the problem states that we wish to produce an estimate of ϕ , which is the phase rotation undergone by \mathbf{x} under an additive Gaussian noise.

Submit

You have used 1 of 3 attempts

Answers are displayed within the problem

(c) Observation Under Zero Noise

1.0/1 point (graded)

For a moment, assume that there is **no Gaussian noise in the problem**. That is, let $\mathbf{Y}_i = [\cos{(\theta+\phi)} \ \sin{(\theta+\phi)}]^T \triangleq \begin{pmatrix} Y^{(1)} \\ Y^{(2)} \end{pmatrix}$, for all i, in this sub-problem.

For simplicity, assume that $heta \in [0,\pi/2]$, $heta + \phi \in [0,\pi/2]$.

What is ϕ ?

(Express your answer in terms of $Y^{(1)}$, $Y^{(2)}$, θ , and the $\arctan(x)$ function. Use **Y_1** for $Y^{(1)}$ and **Y_2** for $Y^{(2)}$. Type $\arctan(x)$ for $\arctan(x)$ (where x can be any expression). **Do not use** any trigonometric function other than \arctan .)

STANDARD NOTATION

Solution:

If there is no noise, the value of ϕ is $\arctan\left(rac{Y^{(2)}}{Y^{(1)}}
ight)- heta$, where we assume that $heta\in[0,\pi/2]$, $heta+\phi\in[0,\pi/2]$ for simplicity.

Submit

You have used 1 of 3 attempts

- Answers are displayed within the problem
- (d) Maximum Likelihood Estimator of the Phase Noise Log Likelihood

1.0/1 point (graded)

Now, let us return to the original setup. What is the log-likelihood ℓ_n ($\mathbf{Y}_1,\ldots,\mathbf{Y}_n;\phi$)?

For the answer box below, ignore the term $\ln\left(\frac{1}{(\sqrt{2\pi\sigma^2})^{2n}}\right)$ in the log-likelihood and input the rest of the log-likelihood expression.

(Use **Sigma_i(X_i)** for $\sum_{i=1}^{n} (X_i)$ (where X_i can be any quantity in a series indexed by i), **Y_1** for $Y_i^{(1)}$, and **Y_2** for $Y_i^{(2)}$. Enter **sin(x)** for $\sin(x)$, **cos(x)** for $\cos(x)$.)

- $(Sigma_i((Y_1 - cos(theta+phi))^2 + (Y_2 - sin(theta+phi))^2))/(2*sigma^2)$

Answer: $-(1/(2*sigma^2))*Sigma_i((Y_1 - cos(theta + phi))^2 + (Y_2 - sin(theta + phi))^2)$

STANDARD NOTATION

Solution:

Submit

You have used 1 of 3 attempts

$$egin{aligned} \ell_n\left(\mathbf{Y}_1,\ldots,\mathbf{Y}_n;\phi
ight) &= \log L_n\left(\mathbf{Y}_1,\ldots,\mathbf{Y}_n;\phi
ight) = \log\left(\prod_{i=1}^n rac{\exp\left(-rac{1}{2}\left[rac{\left(Y_i^{(1)}-\cos\left(heta+\phi
ight)
ight)^2}{\sigma^2} + rac{\left(Y_i^{(2)}-\sin\left(heta+\phi
ight)
ight)^2}{\sigma^2}
ight]
ight)} \ &= \log\left(rac{1}{\left(2\pi\sigma^2
ight)^n}
ight) - rac{1}{2\sigma^2}\sum_{i=1}^n \left[\left(Y_i^{(1)}-\cos\left(heta+\phi
ight)
ight)^2 + \left(Y_i^{(2)}-\sin\left(heta+\phi
ight)
ight)^2
ight] \end{aligned}$$

Note: My notes showed I also calculated the expression passed to the exp () function in detail, but I am too tired to type that up in LaTex now.

1 Answers are displayed within the problem

(e) Maximum Likelihood Estimator of the Phase Noise

1.0/1 point (graded)

Let
$$\widehat{\mu}_1=\sum_{i=1}^nrac{Y_i^{(1)}}{n}$$
 and $\widehat{\mu}_2=\sum_{i=1}^nrac{Y_i^{(2)}}{n}$.

Compute the maximum likelihood estimator $\widehat{\phi}_{n, ext{MLE}}$ of ϕ upon observing $\mathbf{Y}_i, i=1,\dots,n$

Note: Again for simplicity, assume while entering the expression in the following box that $heta\in[0,\pi/2]$, $\widehat{\mu}_1>0$, and $\widehat{\mu}_2>0$.

(Use **hatmu_1** for $\widehat{\mu}_1$ and **hatmu_2** for $\widehat{\mu}_2$. Type **arctan(x)** for $\arctan(x)$ (where x can be any expression). **Do not use** any trigonometric function other than $\arctan(x)$

$$\widehat{\phi}_{n, ext{MLE}} = oxed{ ext{arctan(hatmu_2/hatmu_1) - theta}}$$

Answer: -theta + arctan(hatmu_2/hatmu_1)

 $= -\frac{1}{2\sigma^2} \sum_{i=1}^n (2\left(Y_i^{(1)} - \cos\left(\theta + \phi\right) \sin\left(\theta + \phi\right) - 2\left(Y_i^{(2)} - \sin\left(\theta + \phi\right)\right) \cos\left(\theta + \phi\right)) = -\frac{1}{\sigma^2} \sum_{i=1}^n \left(Y_i^{(1)} \sin\left(\theta + \phi\right) - Y_i^{(2)} \cos\left(\theta + \phi\right)\right)$

STANDARD NOTATION

Solution:

Submit

You have used 1 of 3 attempts

Setting
$$\dfrac{\partial \ell_n}{\partial \phi}=0$$
 and solving for ϕ , we have

$$\sin(\theta + \phi) \sum_{i=1}^{n} Y_i^{(1)} = \cos(\theta + \phi) \sum_{i=1}^{n} Y_i^{(2)}$$

$$\implies \frac{\sin\left(\theta+\phi\right)}{\cos\left(\theta+\phi\right)} = \tan\left(\theta+\phi\right) = \frac{\sum_{i=1}^{n} Y_{i}^{(2)}}{\sum_{i=1}^{n} Y_{i}^{(1)}} = \frac{\widehat{\mu}_{2}}{\widehat{\mu}_{1}}$$

Answers are displayed within the problem

$$\Rightarrow \ heta + \phi = \arctan{(rac{\widehat{\mu}_2}{\widehat{\mu}_1})}$$
 Note: This step assumes $heta + \phi \in [0,\pi/2]$. $\Rightarrow \ \phi = \arctan{(rac{\widehat{\mu}_2}{\widehat{\mu}_1})} - heta$

 $\frac{\partial \ell_n}{\partial \phi} = \frac{\partial}{\partial \phi} \left[-\frac{1}{2\sigma^2} \sum_{i=1}^{n} \left(\left(Y_i^{(1)} - \cos\left(\theta + \phi\right) \right)^2 + \left(Y_i^{(2)} - \sin\left(\theta + \phi\right) \right)^2 \right) \right]$

(f) Geometry of the MLE of Phase Noise

So
$$\widehat{\phi}_{n, ext{MLE}} = rctan(rac{\widehat{\mu}_2}{\widehat{\mu}_1}) - heta$$

0.5/1 point (graded)

Select from the following all statements that are true. (Choose all that apply.)

- ightharpoonup The MLE of ϕ does not change if we scaled ${f x}$ by r>0. ightharpoonup
- lacksquare The MLE of ϕ does not change if the covariance matrix of the multivariate Gaussian is scaled by s>0. \checkmark

*

ptresse

11 days ago - endorsed 10 days ago by **sudarsanvsr_mit** (Staff)

Here's a solution for part f (perhaps too wordy...):

"The MLE of ϕ does not change if we scale x by r>0."

Solution:

Submit

You have used 2 of 3 attempts

This is true: The factor of r will appear anywhere x does, and will not affect the location of the maximum of the log likelihood over ϕ because it will drop out when we set the derivative to zero. The derivative of the log likelihood becomes:

$$\ell'\left(Y_1,\ldots,Y_n;\phi
ight) = -rac{n}{\sigma^2}\hat{\mu}_1r\sin\left(\theta+\phi
ight) + rac{n}{\sigma^2}\hat{\mu}_2r\cos\left(\theta+\phi
ight)$$

The constant factor $\frac{nr}{\sigma^2}$ will cancel when we equate that to zero.

"The MLE of ϕ does not change if the covariance matrix of the multivariate Gaussian is scaled by s>0."

1 Answers are displayed within the problem

Grading Note: Partial credit is given.

This is true: σ^2 does not appear in the MLE. Multiplying σ^2 by s>0 is the same as changing σ^2 . Since σ^2 was arbitrary to begin with, we can just absorb the s into σ^2 , and the derivation of the MLE remains unchanged.

Error and Bug Reports/Technical Issues

Topic: Final exam: Final Exam / Problem 6: Maximum Likelihood Estimation of Phase Noise

Show Discussion