Esercitazione 6

April 5 , 2017

Alessio Susco Nicola Bomba Fabrizio Ursini Alessandra Di Martino Diego Guzman

Università degli Studi di L'Aquila Facoltà di Ingegneria corso di **Automazione industrial a fluido**

Obiettivo:

realizzare un circuito di comando via PLC di un sistema elettropneumatico formato da 2 o 3 cilindri pneumatici, utilizzando le funzioni di conteggio e temporizzazione. Nella stesura della relazione si includano:

- 1) Diagramma movimento-fasi
- 2) Grafcet
- 3) Programma in rete ladder

Si allega al testo:

- 1) Materiale per il comando con PLC OMRON:
 - Descrizione SYSWIN: SW di programmazione Ladder del PLC OMRON
 - Descrizione comandi di conteggio e temporizzazione: TIMER e COUNTER
- 2) Materiale per il comando con PLC SIEMENS:
 - Descrizione STEP 7: SW di programmazione Ladder del PLC SIEMENS
 - Descrizione comandi di conteggio e temporizzazione: TEMP e COUNT

Contents

1	Introduzione Generale	4
2	Strumenti Utilizzati 2.1 Prova con SIEMENS	4 4 5
3	Osservazione Preliminare 3.1 Prova con SIEMENS	5 5 5 6 6 6
4	Schema Circuito 4.1 Schema Esercizio 1	6 6
5	Calcoli	6
6	Grafici Esercizio 1 6.1 Diagramma movimento-fasi 6.2 Grafcet Contratto 6.3 Programmazione Strutturata in Rete Ladder 6.3.1 Inizializzazione 6.3.2 Gestione Ciclo Automatico 6.3.3 Esecuzione Azioni 6.3.4 Gestione Allarmi	7 7 7 7 7 8 8
7	Grafici Esercizio 2 7.1 Diagramma movimento-fasi 7.2 Grafcet Contratto 7.3 Programmazione Strutturata in Rete Ladder 7.3.1 Inizializzazione 7.3.2 Gestione Ciclo Automatico 7.3.3 Esecuzione Azioni 7.3.4 Gestione Allarmi	9 9 9 9 9 9
8	8.1 Descrizione Esercizio 1	10 10 10
9	9.1 Conclusioni Esercizio 1	10 10

1 Introduzione Generale

L'obiettivo della prova è quello di realizzare un circuito di comando di un sistema elettropneumatico che coinvolga 2 o 3 cilindri pneumatici utilizzando le funzioni di temporizzazione e conteggio. Includiamo poi nella relazione:

- Il diagramma movimento-fasi;
- Il grafcet;
- Il programma in rete ladder. Si devono utilizzare due diversi PLC: OMRON e SIEMENS.

2 Strumenti Utilizzati

2.1 Prova con SIEMENS

Banco degli attuatori, che comprende:

- Cilindri pneumatici a doppio effetto x3;
- Valvole bistabili a comando elettropneumatico x3;
- Valvole monostabili di fine corsa a comando elettropneumatico x6;
- Tubi in poliuretano;
- Cavi elettrici;
- Alimentazione (aria compressa);
- Alimentazione elettrica 24V.

Banco del PLC, che comprende:

- Valvola monostabile a pulsante;
- Valvola bistabile a leva;
- Valvola monostabile a pulsante di emergenza;
- Lampadine elettriche x2;
- Lampadine pneumatiche x2;
- $\bullet\,$ Valvola monostabile a comando elettrop
neumatico;
- Valvola bistabile a comando elettropneumatico;
- Switch di accensione/spegnimento;
- PLC SIEMENS.

E' stato infine utilizzato un Computer con il Software STEP 7 per la programmazione Ladder del PLC SIEMENS.

2.2 Prova con OMRON

Banco degli attuatori, che comprende:

- Cilindri pneumatici a doppio effetto x3;
- Valvole bistabili a comando elettropneumatico x3;
- Valvole monostabili di fine corsa a comando elettropneumatico x6;
- Tubi in poliuretano;
- Cavi elettrici:
- Alimentazione (aria compressa);
- Alimentazione elettrica 24V.

Banco del PLC, che comprende:

- Valvola monostabile a pulsante;
- Valvola bistabile a leva;
- Valvola monostabile a pulsante di emergenza;
- Lampadine elettriche x2;
- Lampadine pneumatiche x2;
- Valvola monostabile a comando elettropneumatico;
- Valvola bistabile a comando elettropneumatico;
- Switch di accensione/spegnimento;
- PLC OMRON.

E' stato infine utilizzato un Computer con il Software SYSWIN per la programmazione Ladder del PLC OMRON.

3 Osservazione Preliminare

3.1 Prova con SIEMENS

3.1.1 Prova 0: Esercitazione alla Lavagna

Come prova preliminare effettuiamo un semplice esercizio di uscita e rientro di un cilindro A. Nel programma riportiamo i comandi di input, output e i marker. Di seguito riportiamo gli schemi necessari.

3.1.2 Prova 1: Esercitazione 5.1

Riprendiamo lo schema del primo esercizio dell'esercitazione 5, in cui utilizziamo due cilindri A e B. Scriviamo grafcet, grafcet contratto, rete ladder, diagramma movimento-fasi e equazioni logiche, e successivamente riportiamo nel programma OMRON i comandi.

3.1.3 Prova 2: Esercitazione 5.2

In questo caso prendiamo lo schema del secondo esercizio dell'esercitazione 5, e ripetiamo gli step della prova precedente.

3.2 Prova con OMRON

3.2.1 Prova 0: Esercitazione alla Lavagna

Basandoci sulla prova 0 del PLC SIEMENS usiamo lo stesso schema ma aggiungiamo un temporizzatore nel momento in cui il cilindro è fuoriuscito. Per programmare il PLC SIEMENS usiamo un linguaggio diverso, in cui input, output e marker sono rappresentati con altre simbologie. Nella documentazione includiamo anche le reti ladder secondo il progetto strutturato di comando e di azionamento.

3.2.2 Prova 1: Esercitazione 5.1

Sempre con lo schema della prova 1 ora aggiungiamo un contatore dopo il rientro del cilindro A, che determinerà il numero di cicli da effettuare prima di interrompersi automaticamente. Inoltre includiamo tutta la documentazione elencata precedentemente.

4 Schema Circuito

4.1 Schema Esercizio 1

4.2 Schema Esercizio 2

5 Calcoli

. . .

6 Grafici Esercizio 1

6.1 Diagramma movimento-fasi

6.2 Grafcet Contratto

Grafcet relativo all'esercizio con Temporizzatore

6.3 Programmazione Strutturata in Rete Ladder

6.3.1 Inizializzazione

6.3.2 Gestione Ciclo Automatico

6.3.3 Esecuzione Azioni

6.3.4 Gestione Allarmi

Specificare nelle osservazioni che è stata ignorata la parte sulla gestione allarmi

7 Grafici Esercizio 2

7.1 Diagramma movimento-fasi

7.2 Grafcet Contratto

Grafcet relativo all'esercizio con Temporizzatore e Contatore

7.3 Programmazione Strutturata in Rete Ladder

7.3.1 Inizializzazione

7.3.2 Gestione Ciclo Automatico

7.3.3 Esecuzione Azioni

7.3.4 Gestione Allarmi

Specificare nelle osservazioni che è stata ignorata la parte sulla gestione allarmi

8	${\bf Descrizione} \ {\bf Approfondita} \ {\bf dell'Esercitazione}$
8.1	Descrizione Esercizio 1
•	•••
•••	
8.2	Descrizione Esercizio 2
• • •	
9	Conclusioni
9.1	Conclusioni Esercizio 1

9.2 Conclusioni Esercizio 2

. . .