MASSACHUSETTS MATHEMATICS LEAGUE **CONTEST 3 - DECEMBER 2016 SOLUTION KEY**

Round 2

A) Simply build a table of *n*!-values.

omply build a table of m. values.						
	n	n!	Digitsum	n	n!	Digitsum
	2	2	2	7	5040	9
	3	6	6	8	40320	9
	4	24	6	9	362880	<u>27</u>
	5	120	3	10		
	6	720	9			

Thus, (P,Q) = (9,27)

B) Looking for a pattern:
$$7^{1} = 4 \cdot 1 + \boxed{3}, \ 7^{2} = 49 = 4 \cdot 12 + \boxed{1}, \ 7^{3} = 343 = 4 \cdot 85 + \boxed{3}, \\ 7^{4} = 2401 = 4 \cdot 600 + \boxed{1}, \ 7^{5} = 16807 = 4 \cdot 4201 + \boxed{3}, \dots$$

This suggests that the remainders alternate between 3 and 1 and that the required remainder is 3, since the exponent 355 is odd.

This can be summarized as $7^{\text{odd}} \equiv 3 \pmod{4}$ and $7^{\text{even}} \equiv 1 \pmod{4}$, where \pmod{n} denotes the remainder upon division by n and \equiv is read "is congruent to".

Does this alternating pattern really continue? Removing any doubt

Consider that $7^n = (4+3)^n$. Each term in the expansion will contain a factor of 4, except the last term 3^n , so we must examine powers of 3 to determine the remainder.

 $3^n = (2+1)^n$ and the last terms in the expansion will be 2n+1. If n is even, then this is 1 more than a multiple of 4 $(n = 2k \text{ (i.e., even}) \Rightarrow 2n+1=2(2k)+1=4k+\boxed{1})$; if n is odd, this is 3 more than a multiple of 4 $(n = 2k + 1 \text{ (i.e., odd)}) \Rightarrow 2n + 1 = 2(2k + 1) + 1 = 4k + \boxed{3}$. Thus, the alternating pattern really does continue!

C) If N and N' denote the two-digit numbers and a and b denote the digits, then

$$\begin{cases} N = 10a + b = 5k + 1 \\ N' = 10b + a = 5j + 3 \end{cases}$$
 Adding, $N + N' = 11(a + b) = 5(j + k) + 4$.

If j+k is even, then 5(j+k) is a multiple of 10 and a+b=4 or 14.

If j+k is odd, a+b=9. [19 is rejected, since the maximum digit sum is 9+9=18.]

$$a+b=4 \Rightarrow N=14$$
, 22, 31

$$a+b=9 \Rightarrow N=14, 24, 36, 34, 34, 34, 38, 34, 81$$

$$a+b=14 \Rightarrow N=\mathcal{H}, 86, \mathcal{H}$$

The sum of all the numbers satisfying the specified conditions is 234 which leaves a remainder of $\underline{\mathbf{0}}$ when divided by 9.