Instance-Based Classifiers

Set of Stored Cases

Atr1	 AtrN	Class
		A
		В
		В
		С
		A
		С
		В

- Store the training records
- Use training records to predict the class label of unseen cases

Unseen Case

Atr1	 AtrN

Instance Based Classifiers

• Examples:

- Rote-learner
 - Memorizes entire training data and performs classification only if attributes of record match one of the training examples exactly

- Nearest neighbor
 - Uses k "closest" points (nearest neighbors) for performing classification

Nearest Neighbor Classifiers

- Basic idea:
 - If it walks like a duck, quacks like a duck, then it's probably a duck

Nearest-Neighbor Classifiers

- Requires three things
 - The set of stored records
 - Distance Metric to compute distance between records
 - The value of k, the number of nearest neighbors to retrieve
- To classify an unknown record:
 - Compute distance to other training records
 - Identify k nearest neighbors
 - Use class labels of nearest neighbors to determine the class label of unknown record (e.g., by taking majority vote)

Definition of Nearest Neighbor

K-nearest neighbors of a record x are data points that have the k smallest distance to x

1 nearest-neighbor

Voronoi Diagram

Nearest Neighbor Classification

- Compute distance between two points:
 - Euclidean distance

$$d(p,q) = \sqrt{\sum_{i} (p_{i} - q_{i})^{2}}$$

Manhatten distance

$$d(p,q) = \sum_{i} |p_i - q_i|$$

– q norm distance

$$d(p,q) = (\sum_{i} |p_i - q_i|^q)^{1/q}$$

- Determine the class from nearest neighbor list
 - take the majority vote of class labels among the k-nearest neighbors

$$y' = \underset{v}{\operatorname{argmax}} \sum_{(x_i, y_i) \in D_z} I(v = y_i)$$

where D₇ is the set of k closest training examples to z.

Weigh the vote according to distance

$$y' = \underset{v}{\operatorname{argmax}} \sum_{(x_i, y_i) \in D_Z} w_i \times I(v = y_i)$$

• weight factor, $w = 1/d^2$

The KNN classification algorithm

Let k be the number of nearest neighbors and D be the set of training examples.

- 1. for each test example z = (x',y') do
- 2. Compute $d(\mathbf{x}',\mathbf{x})$, the distance between z and every example, $(\mathbf{x},\mathbf{y}) \in D$
- 3. Select $D_z \subseteq D$, the set of k closest training examples to z.

4.
$$y' = \underset{v}{\operatorname{argmax}} \sum_{(x_i, y_i) \in D_z} I(v = y_i)$$

5. end for

KNN Classification

Nearest Neighbor Classification...

- Choosing the value of k:
 - If k is too small, sensitive to noise points
 - If k is too large, neighborhood may include points from other classes

Nearest Neighbor Classification...

Scaling issues

- Attributes may have to be scaled to prevent distance measures from being dominated by one of the attributes
- Example:
 - height of a person may vary from 1.5m to 1.8m
 - weight of a person may vary from 60 KG to 100KG
 - income of a person may vary from Rs10K to Rs 2 Lakh

Nearest Neighbor Classification...

- Problem with Euclidean measure:
 - High dimensional data
 - curse of dimensionality: all vectors are almost equidistant to the query vector
 - Can produce undesirable results

Solution: Normalize the vectors to unit length

Nearest neighbor Classification...

- k-NN classifiers are lazy learners
 - It does not build models explicitly
 - Unlike eager learners such as decision tree induction and rule-based systems
 - Classifying unknown records are relatively expensive