# Файловые системы

### Геометрия жёсткого диска

Жёсткий диск хранит информацию блоками фиксированного размера, которые называются *секторами*. *Сектор* (sector) является наименьшей порцией данных, имеющей уникальный адрес на жестком диске. Размер сектора является стандартным для всех жестких дисков и составляет 512 байт.

Для ускорения доступа к данным поверхность диска разделена на концентрические *дорожки* (track). Сектор является частью дорожки. Совокупность дорожек, одинаково удаленных от центра на всех рабочих поверхностях дисков, образует так называемый *цилиндр* (cylinder).



Кластер (cluster) — это минимальный участок памяти на диске, который может быть выделен файловой системой при создании файла. Физически кластер представляет собой несколько смежных секторов, число которых должно быть равно степени 2 (то есть кластер может включать 1, 2, 4, 8, 16, 32 или даже 64 сектора).

### Дорожка жёсткого диска





## Структура файловой системы

- только 4 первичных раздела
- три первичных раздела и один дополнительный раздел с возможностью создания до 128 логических дисков
- размер диска не более 2,2Тбайта
- одна копия таблицы разделов



## Структура файловой системы



GUID Partition Entry 1
GUID Partition Entry 2

GUID Partition Entry n

**GUID Partition Entry** 

128

Backup GUID

Partition Table Header

Backup

Partition

Entry Array

GUID

GPT – GUID Partition Table
GUID – Globally Unique IDentifier

- 128 первичных разделов
- размер диска до 9,4 Zбайт
- резервная копия таблицы разделов

## Виртуальная файловая система (VFS)



## Виртуальная файловая система (VFS)



## Суперблок

- ▶Суперблок содержит информацию, касающуюся смонтированной файловой системы
- ≻Представлен структурой super\_block в linux/fs.h
- ▶Все суперблоки объединены в циклический двунаправленный список
- ▶Операции суперблока описаны в структуре super operations

## Индексный дескриптор (inode)

- ▶Вся информация, необходимая файловой системе для работы с файлом, находится в структуре данных, называемой индексным дескриптором
- Индексный дескриптор уникален для каждого файла и остается неизменным, пока существует файл
- ≻Представлен структурой inode в linux/fs.h
- ➤ Каждый объект "индексный дескриптор" обязательно присутствует в одном из следующих циклических двунаправленных списков:
- ✓ список допустимых свободных индексных дескрипторов
- ✓ список допустимых свободных индексных дескрипторов
- ✓ список "грязных" индексных дескрипторов

#### Файловый объект

- Файловый объект описывает работу процесса с файлом, который он открыл
- ▶Этот объект создается в момент открытия файла и представлен структурой file в linux/fs.h
- ➤ Самой важной информацией, хранящейся в объекте, является файловый указатель, текущая позиция в файле, с которой начнется следующая операция чтения/записи
- Используемые файловые объекты собраны в нескольких списках, размещенных в суперблоках файловой системы

#### Элемент каталога

- ➤Каждый каталог рассматривается как файл, содержащий список файлов и других каталогов
- ▶После того как запись из каталога прочитана в память, VFS преобразует ее в объект "элемент каталога", основанный на структуре dentry из linux/dcache.h
- ➤ Элемент каталога может находиться в состоянии: «свободен», «не используется», «используется», «отрицательный»

#### Кэш элементов каталога

- > Содержит:
- ✓ набор объектов "элемент каталога", используемых, неиспользуемых или отрицательных
- ✓ хэш-таблица для быстрого нахождения объекта "элемент каталога", связанного с данным именем файла и данным каталогом
- Жэш элементов каталога также служит в качестве управляющего механизма для кэша индексных дескрипторов

# Специальные файловые системы

| Название | Точка<br>монтирования | Описание                                                                      |
|----------|-----------------------|-------------------------------------------------------------------------------|
| proc     | /proc                 | Общая точка доступа к структурам<br>данных ядра                               |
| rootfs   | Нет                   | Предоставляет пустой корневой каталог на этапе загрузки                       |
| shm      | Нет                   | Области памяти, совместно используемые при межпроцессорном взаимодействии     |
| sockfs   | Нет                   | Сокеты                                                                        |
| sysfs    | /sys                  | Общая точка доступа к системным данным                                        |
| tmpfs    | Любая                 | Временные файлы (хранятся в оперативной памяти, если не выполняется подкачка) |

## Регистрация типа файловой системы

- ➤VFS отслеживает все типы файловых систем, код которых включен в ядро
- >Каждая зарегистрированная файловая система представлена в виде объекта file\_system\_type
- ➤При инициализации системы функция register\_filesystem() вызывается для каждой файловой системы, указанной на этапе компиляции
- ➤Эта функция заносит соответствующий объект file system type в список типов файловых систем