Programação Linear - método simplex: situações particulares

Investigação Operacional

J.M. Valério de Carvalho vc@dps.uminho.pt

Departamento de Produção e Sistemas Escola de Engenharia, Universidade do Minho

11 de março de 2015

Prog. Linear - método simplex: situações particulares

antes

 O algoritmo Simplex foi aplicado para resolver um problema de programação linear.

Guião

- Há situações particulares em que é necessário detalhar as regras e estabelecer decisões e operações suplementares:
 - quando há várias bases diferentes que correspondem à mesma solução básica (degenerescência);
 - quando o domínio é ilimitado;
 - quando não existe um vértice inicial admissível.

depois

• Analisaremos a implementação do método simplex usando matrizes.

Situações particulares do método simplex:

- Selecção de um vértice admissível inicial
 - Se n\u00e3o existir, problema \u00e9 imposs\u00e9vel.
- Repetir
 - Selecção da coluna pivô:
 - Coeficiente mais negativo da linha da função objectivo
 - (em caso de empate, escolha arbitrária)
 - Se não existir coef.<0, solução óptima.
 - Selecção da linha pivô:
 - Menor razão (lado direito/coluna pivô) positiva (coef.col.>0)
 - (em caso de empate, há degenerescência)
 - Se não existir coef.col.>0, solução óptima é ilimitada.
 - Fazer eliminação de Gauss
- Enquanto (solução não for óptima)
- O que é um algoritmo?
- O algoritmo simplex converge?

Conteúdo

- Degenerescência
- Solução óptima ilimitada
- Obtenção de um vértice inicial admissível
 - Método das 2 fases
- Método simplex dual
- Apêndice
 - Referência ao método do Grande M

Degenerescência: o que é?

Vértice degenerado

- Normalmente, há (n-m) hiperplanos a suportar um vértice (ou seja, há (n-m) restrições activas).
- Quando o número de hiperplanos é maior, o vértice é degenerado.

Quadro simplex degenerado

- No quadro simplex, haverá variáveis básicas com valor 0.
- Há vários quadros simplex (bases) a corresponder ao mesmo vértice (solução básica).

Bases e soluções básicas:

- Uma base é um conjunto de variáveis básicas (de vectores linearmente independentes).
- Uma solução básica é a solução que resulta de resolver o sistema de equações em ordem às variáveis básicas de uma base.

Exemplo

Três bases diferentes, o mesmo vértice (solução básica)

	Z	X_1	<i>x</i> ₂	s_1	5 2	5 3	
s_1	0	0	2	1	0	-3	0
<i>s</i> ₂	0	0	2	0	1	-1	40
x_1	0	1	0	0	0	1	40
Z	1	0	-10	0	0	12	480
	z	<i>x</i> ₁	<i>x</i> ₂	s_1	<i>s</i> ₂	s 3	
	<i>z</i> 0	0 x ₁	<i>x</i> ₂	<i>s</i> ₁ 0.5	<i>s</i> ₂	<i>s</i> ₃ -1.5	0
							0 40
	0	0	1	0.5	0	-1.5	_
<i>s</i> ₂	0	0	1 0	0.5 -1	0	-1.5 2	40

	Z	<i>x</i> ₁	<i>x</i> ₂	s_1	<i>s</i> ₂	<i>5</i> 3	
s ₂	0	0	4/3	-1/3	1	0	40
s₂s₃x₁	0	0	-2/3	-1/3	0	1	0
x_1	0	1	2/3	-1/3 -1/3 1/3	0	0	40
Z	1	0	-2	4	0	0	480

Solução básica é sempre $(x_1, x_2, s_1, s_2, s_3)^t = (40,0,0,40,0)^t$.

Degenerescência: como escolher a linha pivô?

	Z	<i>x</i> ₁	<i>x</i> ₂	s_1	<i>s</i> ₂	<i>s</i> ₃		
s_1	0	3	2	1	0	0	120	120/3 = 40
<i>s</i> ₂	0	1	2	0	1	0	80	80/1 = 80
5 3	0	1	0	0	0	1	40	40/1 = 40
Z	1	-12	-10	0	0	0	0	•

• Há empate na menor razão positiva = 40 (linhas de s_1 e de s_3).

Desempate:

perturbar o lado direito, adicionando ϵ , e calcular novamente a menor razão positiva.

- Exemplo:
 - Linha de $s_1: (120+\epsilon)/3 = 40+\epsilon/3$
 - Linha de s_3 : $(40 + \epsilon)/1 = 40 + \epsilon$
- Linha pivô correcta: a de s_1 (menor razão positiva)

Exemplo: degenerescência, o que pode suceder?

Domínio ilimitado (aberto)

- O domínio é ilimitado quando se pode caminhar ao longo de um raio permanecendo no domínio admissível.
- raio:= conjunto de pontos $\{x : x = v + \theta.d, \theta \in \mathbb{R}_+\}$, sendo $v \in \mathbb{R}^n$ um vértice e $d \in \mathbb{R}^n$ uma direcção (um vector não-nulo).

Quadro simplex: como identificar um raio?

- Há uma variável não-básica com todos os coeficientes das linhas das restrições não-positivos (≤0);
- Exemplo:

	z	<i>x</i> ₁	<i>x</i> ₂	s_1	
s_1	0	-1	1	1	0
Z	1	-1	-1	0	0

Quando caminhamos ao longo de um raio,

- há uma única variável não-básica que aumenta de valor,
- todas as vars básicas aumentam (coef.<0) ou mantêm (coef.=0) o valor,
- pelo que todos os pontos do raio são pontos admissíveis.

Exemplo: raio $\{(0,0)^t + \theta(1,0)^t, \theta \ge 0\}$ (eixo de x_1)

Domínio ilimitado: solução óptima ilimitada

- O valor da solução óptima é ilimitado quando, ao caminhar ao longo de um raio, o valor da função objectivo aumenta.
- Para a solução óptima ser ilimitada, o domínio deve ser ilimitado (porquê?)

Quadro simplex: como identificar uma solução óptima ilimitada?

- há um raio e
- o respectivo coeficiente da linha da função objectivo é < 0.
- Quando o coeficiente da linha da função objectivo do raio for ≥ 0, o valor da solução óptima pode não ser ilimitado (porquê?).

Vértice admissível inicial

Há um vértice admissível inicial para o algoritmo simplex quando:

- as restrições são todas do tipo \leq (há uma matriz identidade $I_{m \times m}$),
- os coeficientes do lado direito são todos ≥ 0.
- Isso n\u00e3o acontece se houver uma restri\u00e7\u00e3o do tipo ≥ com o lado direito positivo.

Método das 2 Fases:

- Quando não há um vértice admissível inicial,
- na Fase I, resolve-se um problema auxiliar para tentar encontrar um vértice admissível inicial;
- se se conseguir encontrar, na Fase II, aplica-se o algoritmo simplex;
- caso contrário, o problema é impossível.

Um problema de minimização

 Vamos usar um problema de minimização com restrições do tipo ≥ para ilustrar o Método das 2 Fases:

$$\min z = cx$$
 $\min z = cx$
 $Ax \ge b \rightarrow Ax - u = b$
 $x \ge 0$ $x, u \ge 0$

sendo $u \in \mathbb{R}_+^{m \times 1}$ um vector de variáveis de folga da mesma dimensão que $b \in \mathbb{R}^{m \times 1}$.

e mostrar a forma de:

- transformar restrições do tipo ≥ em equações, e
- resolver um problema de minimização utilizando um algoritmo simplex de maximização.

Transformação Inequações → Equações

- Qualquer inequação do tipo ≥ pode ser transformada numa equação (equivalente), introduzindo uma variável adicional, designada por variável de folga, com valor não-negativo.
- Exemplo:

$$3x_1 + 2x_2 \ge 120,$$
 $x_1, x_2 \ge 0$
 $3x_1 + 2x_2 - 1u_1 = 120,$ $x_1, x_2, u_1 \ge 0$

- O número de unidades produzidas numa solução $(x_1, x_2)^t$ é igual ao valor da função linear: $3x_1 + 2x_2$.
- u_1 (variável de folga) é o número de unidades produzidas em excesso relativamente às necessárias (no exemplo, 120).
- há autores que designam estas variáveis por variáveis de excesso.

Exemplo

Adicionando variáveis de excesso:

$$\min z = 120y_3 + 80y_4 + 30y_5$$

$$-1y_1 + 3y_3 + 1y_4 + 1y_5 = 12$$

$$-1y_2 + 2y_3 + 2y_4 = 10$$

$$y_1, y_2, y_3, y_4, y_5 \ge 0$$

• Não há um vértice admissível inicial, porque o lado direito é positivo e não há uma matriz identidade no quadro :

	Z	<i>y</i> ₁	<i>y</i> 2	<i>y</i> 3	<i>y</i> 4	<i>y</i> ₅	
	0	-1	0	3	1	1	12 10
		0	-1	2	2	0	10

Outra questão: como resolver problemas de minimização?

• Em vez de recorrer a um algoritmo simplex de minimização, podemos usar o algoritmo simplex de maximização (apresentado antes) para maximizar $z^s = -cx$, a função simétrica da função objectivo z = cx:

$$\min z = cx \equiv \max z^s = -cx$$

- Solução óptima x* é a mesma.
- Valor da solução óptima $cx^* = \min cx = -\max -cx$.

Método das 2 fases: estratégia

Fase I: adicionar variáveis artificiais e minimizar a sua soma

• resolver problema auxiliar (1a é a soma das variáveis artificiais):

$$\min z_a = \mathbf{1}a$$

$$Ax - u + a = b$$

$$x, u, a \ge 0$$

sendo $a \in \mathbb{R}^{m \times 1}_+$, $\mathbf{1} = [1, 1, ..., 1]$ um vector linha com m elementos.

- Se $(\min z_a = 1 = 0) \Rightarrow a = 0$ (todas as variáveis artificiais = 0) \Rightarrow há um vértice admissível que obedece às restrições originais;
- caso contrário (min z_a > 0), não é possível obter uma solução que obedeça a todas as restrições originais ⇒ problema é impossível.

Fase II: optimizar problema original

- Existe um vértice admissível inicial para o algoritmo simplex;
- optimiza-se a função objectivo (original) do problema.

Fase I: adicionar vars artificiais a_1 e a_2 , e min z_a

- Função objectivo da Fase I:
- $\min z_a = 1a_1 + 1a_2$, que é equivalente a
- $\max z_a^s = -1a_1 1a_2$
- Equação da linha da função objectivo: $z_a^s + 1a_1 + 1a_2 = 0$

	z_a^s	<i>y</i> ₁	<i>y</i> ₂	<i>y</i> 3	<i>y</i> 4	<i>y</i> 5	a_1	a_2	
a_1	0	-1	0	3	1	1	1	0	12
a_2	0	0	-1	2	2	0	0	1	10
Z_a^s	1	0	0	0	0	0	1	1	0

• O quadro não é válido: os coeficientes da linha da função objectivo debaixo da matriz identidade devem ser nulos.

Fase I: construção do primeiro quadro válido

• Exprimir a função objectivo z_a^s em função das variáveis não-básicas y_1, y_2, y_3, y_4 e y_5 usando eliminação de Gauss: subtrair à linha de z_a^s as linhas de a_1 e a_2 .

	z_a^s	<i>y</i> 1	<i>y</i> 2	<i>y</i> 3	<i>y</i> 4	<i>y</i> 5	a_1	a_2	
$(+1)$ *linha de z_a^s									0
(-1) *linha de a_1	0	1	0	-3	-1	-1	-1	0	-12
(-1)*linha de <i>a</i> ₂	0	0	1	-2	-2	0	0	-1	-10
Z_a^s	1	1	1	-5	-3	-1	0	0	-22

• Primeiro quadro válido: vamos optimizar a função auxiliar z_a^s :

	z_a^s	<i>y</i> ₁	<i>y</i> ₂	<i>y</i> 3	<i>y</i> 4	<i>y</i> 5	a_1	a_2	
a_1	0	-1	0 -1	3	1	1	1	0	12
a_2	0	0	-1	2	2	0	0	1	10
Z_a^s	1	1	1	-5	-3	-1	0	0	-22

Fase I: iterações

	Z_a^s	<i>y</i> ₁	<i>y</i> ₂	<i>y</i> 3	<i>y</i> 4	<i>y</i> 5	a_1	a_2	
a_1	0	-1	0	3	1	1	1	0	12
<i>a</i> ₂	0	0	-1	2	2	0	0	1	10
Z_a^s	1	1	1	-5	-3	-1	0	0	-22
	Z_a^s	<i>y</i> 1	<i>y</i> 2	<i>y</i> 3	<i>y</i> 4	<i>y</i> 5	a_1	a_2	
<i>y</i> 3	0	-1/3	0	1	1/3	1/3	1/3	0	4
<i>a</i> ₂	0	2/3	-1	0	4/3	-2/3	-2/3	1	2
Z_a^s	1	-2/3	1	0	-4/3	2/3	5/3	0	-2
	Z_a^s	<i>y</i> 1	<i>y</i> 2	<i>y</i> 3	<i>y</i> 4	<i>y</i> 5	a_1	a_2	
<i>y</i> 3	0	-1/2	1/4	1	0	1/2	1/2	-1/4	7/2
<i>y</i> 4	0	1/2	-3/4	0	1	-1/2	-1/2	3/4	3/2
z_a^s	1	0	0	0	0	0	1	1	0

- Solução óptima: $\min z_a = 0$.
- Foi encontrado um vértice admissível.

Fase I: conclusão

- O vértice admissível é $(y_1, y_2, y_3, y_4, y_5)^t = (0, 0, 7/2, 3/2, 0)^t$.
- Variáveis artificiais (a_1, a_2) e função objectivo auxiliar (z_a) não são necessárias na Fase II, e podem ser eliminadas.

	У1	<i>y</i> 2	<i>y</i> 3	<i>y</i> 4	<i>y</i> 5	
<i>y</i> 3	-1/2 1/2	1/4	1	0	1/2 -1/2	7/2
<i>y</i> 4	1/2	-3/4	0	1	-1/2	3/2

• Na Fase II, iremos optimizar a função objectivo original (z), partindo do vértice admissível encontrado na Fase I.

Fase II: função objectivo original

- Função objectivo da Fase II:
- min $z = 120y_3 + 80y_4 + 30y_5$, que é equivalente a
- $max z^s = -120y_3 80y_4 30y_5$
- Equação da linha da função objectivo: $z^s + 120y_3 + 80y_4 + 30y_5 = 0$

	zs	<i>y</i> 1	<i>y</i> ₂	<i>y</i> 3	<i>y</i> 4	<i>y</i> 5	
<i>y</i> ₃	0	-1/2	1/4 -3/4	1	0	1/2	
<i>y</i> 4	0	1/2	-3/4	0	1	-1/2	3/2
z ^s	1	0	0	120	80	30	0

 O quadro não é válido: os coeficientes da linha da função objectivo debaixo da matriz identidade devem ser nulos.

Fase II: construção do primeiro quadro

• Exprimir a função objectivo z^s em função das variáveis não-básicas y_1, y_2 e y_5 usando eliminação de Gauss: subtrair à linha de z^s as linhas de y_3 e y_4 multiplicadas por constantes adequadas.

	z^s	<i>y</i> ₁	<i>y</i> 2	<i>y</i> 3	<i>y</i> 4	<i>y</i> 5	
$(+1)$ *linha de z^s	1	0	0	120	80	30	0
(-120)*linha de <i>y</i> 3	0	60	-30	-120	0	-60	420
(-80)*linha de <i>y</i> 4	0	-40	60	0	-80	40	120
z ^s	1	20	30	0	0	10	540

• Primeiro quadro válido: vamos optimizar a função original z:

	zs	<i>y</i> ₁	<i>y</i> ₂	<i>y</i> 3	<i>y</i> 4	<i>y</i> ₅	
<i>y</i> 3	0	-1/2	1/4 -3/4	1	0	1/2	
<i>y</i> 4	0	-1/2 1/2	-3/4	0	1	-1/2	3/2
zs	1	20	30	0	0	10	540

 Primeiro vértice admissível encontrado é a solução óptima. Nem sempre acontece.

Método simplex dual: estratégia

Para obter a matriz $I_{m \times m}$ no quadro simplex:

• dado um problema em que $c \ge \tilde{0}$:

$$min z = cx$$

$$Ax - u = b$$

$$x, u \ge 0$$

resolver:

$$min z = cx$$

$$-Ax + u = -b$$

$$x, u \ge 0$$

O quadro simplex irá apresentar:

- uma solução (primal) não-admissível, porque pode haver elementos do lado direito com valores < 0.
- uma solução dual admissível (vamos ver depois), porque todos os elementos da linha da função objectivo têm valor ≥ 0.

Exemplo

• Dado o quadro simplex sem uma matriz identidade $(I_{m \times m})$ e em que os elementos da linha da função objectivo são não-negativos:

	z_D	<i>y</i> ₁	<i>y</i> ₂	<i>y</i> 3	<i>y</i> 4	<i>y</i> ₅	
	0	-1	0	3 2	1	1	12
	0	0	-1	2	2	0	10
z_D	1	0	0	120	80	30	0

• obtém-se a $I_{m \times m}$ multiplicando as equações das restrições por (-1):

	z_D	<i>У</i> 1	<i>y</i> ₂	<i>y</i> 3	<i>y</i> 4	<i>y</i> 5	
<i>y</i> ₁	0	1	0		-1	-1	-12
<i>y</i> 2	0	0	1	-2			
z_D	1	0	0	120	80	30	0

A selecção do elemento pivô no método simplex dual destina-se a:

- Manter os elementos da linha da função objectivo com valor ≥ 0. (vamos ver depois que é manter a solução dual admissível).
- Procurar tornar os valores dos elementos do lado direito ≥ 0. Isto corresponde a obter uma solução (primal) admissível.

Algoritmo simplex dual:

- Vértice dual admissível inicial (todos os elementos da linha da função objectivo são não-negativos)
- Repetir
 - Selecção da linha pivô:
 - Coeficiente mais negativo do lado direito
 - (em caso de empate, escolha arbitrária)
 - Se não existir coef.<0, solução óptima.
 - Selecção da coluna pivô:
 - Menor valor absoluto de razão (f.objectivo/linha pivô) negativa (coef.linha<0)
 - ullet Se não existir coef.linha <0, problema é impossível.
 - Fazer eliminação de Gauss
- Enquanto (solução não for óptima)
- O elemento pivô tem sempre valor **negativo**.

Exemplo: primeira iteração do método simplex dual

			<i>y</i> ₂		<i>y</i> 4	<i>y</i> 5	
<i>y</i> ₁	0	1	0	-3 -2	-1	0	-12
<i>y</i> 1 <i>y</i> 2	0	0	1	-2	-2	0	-10
z_D	1	0	0	120	80	30	0

- Linha pivô: linha de y_1 (coeficiente mais negativo é -12).
- Coluna pivô: coluna de y_5 (menor valor absoluto das razões negativas é 30):
 - coluna de y_3 : | 120/-3 | = 40• coluna de y_4 : | 80/-1 | = 80
 - coluna de y_5 : | 30/-1 | = 30

	z_D	<i>y</i> ₁	<i>y</i> ₂	<i>y</i> 3	<i>y</i> 4	<i>y</i> 5	
<i>y</i> ₅	0	-1	0	3	1	1	12
<i>y</i> ₂	0	0	1	-2	-2	0	-10
z_D	1	30	0	30	50	0	-360

Exemplo: restantes iterações do método simplex dual

	z_D	<i>y</i> ₁	<i>y</i> 2	<i>y</i> 3	<i>y</i> 4	<i>y</i> 5	
<i>y</i> ₅	0	-1	0	3	1	1	12
<i>y</i> ₂	0	0	1	-2	-2	0	-10
z_D	1	30	0	30	50	0	-360
	z_D	<i>y</i> ₁	<i>y</i> 2	<i>y</i> 3	<i>y</i> 4	<i>y</i> 5	
<i>y</i> 5	0	-1	3/2	0	-2	1	-3
<i>y</i> 3	0	0	-1/2	1	$\overline{1}$	0	5
z_D	1	30	15	0	20	0	-510
	z_D	<i>y</i> ₁	<i>y</i> 2	<i>y</i> 3	<i>y</i> 4	<i>y</i> 5	
<i>y</i> ₄	0	1/2	-3/4	0	1	-1/2	3/2
<i>y</i> 3	0	-1/2	1/4	1	0	1/2	7/2
z_D	1	20	30	0	0	10	-540

Solução óptima.

Identificação de um problema impossível

Um problema é impossível se existir:

- uma linha com coeficiente negativo do lado direito em que todos os coeficientes das variáveis não básicas sejam não-negativos (≥ 0).
- Exemplo:

	z_D	<i>y</i> 1	<i>y</i> 2	<i>У</i> 3	<i>y</i> 4	<i>y</i> 5	
<i>y</i> 1	0 0	1	0	3	1	1	-12
<i>y</i> 2	0	0	1	-2	-2	0	-10
z _D	1	0	0	120	80	30	0

- Na linha de y₁, os coeficientes das variáveis y₃,y₄ e y₅ são ≥ 0 (não há um elemento pivô negativo).
- Argumento: o problema é impossível, porque nenhum conjunto $y_1, y_2, y_3, y_4, y_5 \ge 0$ satisfaz a restrição: $y_1 + 3y_3 + y_4 + y_5 = -12$.
- O problema primal é impossível e o problema dual tem uma solução óptima ilimitada [veremos, em teoria da dualidade].

Conclusão

- Há outros algoritmos para resolver problemas de programação linear, como os métodos de pontos interiores.
- O algoritmo simplex permanece competitivo, embora tenham sido identificados problemas em que os métodos de pontos interiores têm melhor desempenho.

Resultados de aprendizagem

- Identificar e caracterizar soluções básicas degeneradas, e seleccionar a linha pivô numa vértice degenerado.
- Identificar e caracterizar domínios ilimitados no quadro simplex, e distinguir os problemas com soluções óptimas finitas e ilimitadas.
- Transformar um problema de minimização num problema de maximização, para utilizar o algoritmo simplex de maximização.
- Método das 2 fases
 - conhecer a estratégia do método;
 - aplicar o método para obter um vértice inicial admissível;
 - identificar problemas impossíveis.
- Método do simplex dual
 - conhecer a estratégia do método;
 - aplicar o método quando existe um vértice inicial admissível para o problema dual;
 - seleccionar a linha pivô e a coluna pivô;
 - identificar problemas impossíveis.

Apêndices

1. Método do Grande M: estratégia

associar uma penalidade muito grande às vars artificiais, para conduzi-las a um valor nulo

resolver problema auxiliar:

$$\min z_M = cx + \mathbf{M}a$$

$$Ax - u + a = b$$

$$x, u, a \ge 0$$

sendo $a \in \mathbb{R}^{m \times 1}_+$, $\mathbf{M} = [M, M, ..., M]$ um vector linha com m elementos.

- Se M for suficientemente grande, qualquer ponto admissível é melhor do que um ponto em que uma variável artificial seja positiva.
- Se $(a = \widetilde{0})$ (todas as variáveis artificiais = 0) \Rightarrow min $z_M = cx^*$ e x^* é o vértice admissível óptimo, que obedece às restrições originais.
- caso contrário (∃a_i > 0), não é possível obter uma solução que obedeça a todas as restrições originais ⇒ problema é impossível.

1. Método do Grande M: desvantagens

Se o valor de M for muito grande,

- pode haver perda de informação, resultante da representação dos números em computador.
- Os coeficientes de custo s\u00e3o representados por reais de dupla precis\u00e3o com um n\u00e1mero finito de casas decimais.
- Exemplo:

```
c_1 = 3,1415926535897932e + 00

M = 1,0000000000000000e + 40

M + c_1 = 1,0000000000000000e + 40
```

Se o valor de M for muito pequeno,

 pode não ser suficientemente grande para conduzir todas as variáveis artificiais a 0.

2. Degenerescência e restrições redundantes

- No exemplo anterior de degenerescência, havia uma restrição redundante (pode ser eliminada sem alterar o domínio).
- Isso n\u00e3o acontece na generalidade.
- Exemplo: as restrições $x_1 + x_2 \le 1, x_2 + x_3 \le 1, x_1, x_2, x_3 \ge 0$ são todas necessárias:

2. Degenerescência e finitude do algoritmo simplex

- Quando não há degenerescência, o algoritmo simplex termina num número finito de iterações:
- em cada iteração, a função objectivo melhora, e, se o óptimo for finito, o número de iterações não pode ser infinito.
- Quando há degenerescência, o algoritmo simplex pode entrar em ciclo.
- Há exemplos especialmente construídos em que a regra de seleccionar a coluna pivô com o coeficiente mais negativo pode levar a que o algoritmo entre em ciclo, percorrendo ciclicamente as diferentes bases correspondentes ao mesmo vértice.
- Para informação adicional, ver: Bland, R. "New finite pivoting rules for the simplex method". Mathematics of Operations Research 2 (2): 103 - 107, 1977. doi:10.1287/moor.2.2.103

Fim