Bayesian Optimization of a Wearable Assistive Device Using an Estimator Stopping Process

Charles Liu cliu02@g.harvard.edu

IACS, Harvard University

May 4, 2018

Soft Exosuit

Process Overview

Observations represent underlying process with some Gaussian

noise $y \sim f + \mathbb{N}(0, \sigma_n^2)$

$$f \sim \mathbb{G}(0, \kappa)$$

$$\kappa(x_i, x_j | \sigma_{\theta}^2, I) = \sigma_{\theta}^2 \exp(-\frac{1}{2} d^2(\frac{x_i}{I}, \frac{x_j}{I}))$$

Introduction

Given some training data, closed form posterior distribution at any point x

$$\bar{\mu}(x) = K(X, x)^{T} [K(X, X) + \sigma_{n}^{2} I]^{-1} Y$$

$$\bar{\sigma}^{2}(x) = \kappa(x, x | \theta) - K(X, x)^{T} [K(X, X) + \sigma_{n}^{2} I]^{-1} K(X, x)$$

$$K(X, x)_{i} = \kappa(x_{i}, x | \theta)$$

$$K(X, X)_{ij} = \kappa(x_{i}, x_{j} | \theta),$$

where $X = \{x_i\}_{i=1}^n$ and $Y = \{y_i\}_{i=1}^n$.

duction Parameter Selection Metabolic Estimation Stopping Models Results Conclusion

σ_{θ}^2 Effect

Hyperparameter Estimation

Introduction

$$EI(x|S) = \int_{\infty}^{\infty} max(0, y^* - y)p(y|x)dy$$
$$= z\bar{\sigma}(x)\Phi(z) + \bar{\sigma}(x)\phi(z)$$
$$z = \frac{y^* - \bar{\mu}(x) + \xi}{\bar{\sigma}(x)},$$

where y^* is the best value observed so far, $\Phi(z)$ and $\phi(z)$ are the standard normal CDF and PDF functions, and ξ is a scaling parameter to adjust the tradeoff between exploration-exploitation

Introduction

Bayesian Optimization

```
Objective Function F(x)
Acquisition Function g(\mu, \sigma^2)
Specify Exploration Points \mathbb{E} = \{e_1, e_2, ..., e_n\}
Training Samples \mathbb{S}
for i = 1 to n
     \mathbb{S} = \mathbb{S} \cup \{e_i, F(e_i)\}
end
while t < T
     Update GP Hyperparameters \theta
     Given f(x|\theta, \mathbb{S}) \sim \mathcal{N}(\mu_x, \sigma_x^2),
     x^* = \arg\max_{\mathbf{x} \in \mathbb{X}} g(\mu_{\mathbf{x}}, \sigma_{\mathbf{y}}^2)
     \mathbb{S} = \mathbb{S} \cup \{x^*, F(x^*)\}
end
```

Instantaneous Energetic Cost

Kalman Filter

Unscented Transform

UKF Model

Covariance Parameterization

Subject Trials

σ -Offset Model

Gittins Model

Hip-Only Trials

Acknowledgements: