

TECHNICAL DATA

PNP HIGH VOLTAGE SILICON TRANSISTOR

Qualified per MIL-PRF-19500/397

Devices

2N3743

2N4930

2N4931

Qualified Level

JAN, JANTX JANTXV

MAXIMUM RATINGS

Ratings		2N3743	2N4930	2N4931	Unit
Collector-Emitter Voltage	V_{CEO}	300	200	250	Vdc
Collector-Base Voltage	V_{CBO}	300	200	250	Vdc
Emitter-Base Voltage	$V_{\rm EBO}$	5.0		Vdc	
Collector Current	I_{C}	200		mAdc	
Total Power Dissipation $@T_A = +25^0C^1$	D	1.0			W
$@T_{C} = +25^{\circ}C^{2}$	P_{T}		5.0		W
Operating & Storage Junction Temperature Range		_	65 to +20	0	°C

THERMAL CHARACTERISTICS

Characteristics	Symbol	Max.	Unit
Thermal Resistance Junction-to-Case	$R_{ heta JC}$	35	⁰ C/W

- 1) Derate linearly 5.71 mW/ $^{\circ}$ C for T_A > +25 $^{\circ}$ C
- 2) Derate linearly 28.6 mW/ $^{\circ}$ C for $T_C > +25^{\circ}$ C

*See appendix A for package outline

ELECTRICAL CHARACTERISTICS (T_C = 25⁰C unless otherwise noted)

Character	istics	Symbol	Min.	Max.	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage					
$I_C = 1.0 \text{ mAdc}$	2N3743	7.7	300		Vdc
	2N4930	$V_{(BR)CEO}$	200		
	2N4931		250		
Collector-Emitter Breakdown Voltage					
$I_C = 100 \mu\text{Adc}$	2N3743	V	300		Vdc
·	2N4930	$V_{(BR)CBO}$	200		
	2N4931		250		
Emitter-Base Breakdown Voltage	ıkdown Voltage			5.0	Vdc
$I_E = 100 \mu\text{Adc}$		$V_{(BR)EBO}$		3.0	vac
Collector-Base Cutoff Current					
$V_{CB} = 250 \text{ Vdc}$	2N3743	т.		250	4.1.
$V_{CB} = 150 \text{ Vdc}$	2N4930	I_{CBO}		250	ηAdc
$V_{CB} = 200 \text{ Vdc}$	2N4931			250	

6 Lake Street, Lawrence, MA 01841

D

1-800-446-1158 / (978) 794-1666 / Fax: (978) 689-0803

Page 1 of 2

120101

2N3743, 2N4930, 2N4931, JAN SERIES

ELECTRICAL CHARACTERISTICS (con't)

Characteristics	Symbol	Min.	Max.	Unit
Emitter-Base Cutoff Current	Ţ		150	m A da
$V_{EB} = 4.0 \text{ Vdc}$	I_{EBO}		130	ηAdc
ON CHARACTERISTICS (3)				
Forward-Current Transfer Ratio				
$I_C = 0.1 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}$		30		
$I_C = 1.0 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}$	1.	40		
$I_C = 10 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}$	$ ho_{ m FE}$	40		
$I_C = 30 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}$		50	200	
$I_C = 50 \text{ mAdc}, V_{CE} = 20 \text{ Vdc}$		30		
Collector-Emitter Saturation Voltage				
$I_C = 30 \text{ mAdc}, I_B = 3.0 \text{ mAdc}$	V _{CE(sat)}		1.2	Vdc
$I_C = 10 \text{ mAdc}, I_B = 1.0 \text{ mAdc}$			1.0	
Base-Emitter Saturation Voltage				
$I_C = 10 \text{ mAdc}, I_B = 1.0 \text{ mAdc}$	V _{BE(sat)}		1.0	Vdc
$I_C = 30 \text{ mAdc}, I_B = 3.0 \text{ mAdc}$			1.2	
DYNAMIC CHARACTERISTICS				
Magnitude of Common Emitter Small-Signal Short-Circuit				
Forward Current Transfer Ratio	$ h_{fe} $	2.0	8.0	
$I_C = 10 \text{ mAdc}, V_{CE} = 20 \text{ Vdc}, f = 20 \text{ MHz}$				
Small-Signal Short-Circuit Forward Current Transfer Ratio	h	30	300	
$I_C = 10 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}, f = 1.0 \text{ kHz}$	h_{fe}	30	300	
Output Capacitance	C		15	pF
$V_{CB} = 20 \text{ Vdc}, I_E = 0, f \ge 0.1 \text{ MHz}$	C_{obo}		13	pr
Input Capacitance	C_{ibo}		400	pF
$V_{EB} = 1.0 \text{ Vdc}, I_C = 0, f \ge 0.1 \text{ MHz}$	Cibo		700	PΙ

SAFE OPERATING AREA

DC Tests		
$T_C = +25^{\circ}C$, 1 Cycle, $t \ge 1.0 \text{ s}$		
Test 1		
$V_{CE} = 20 \text{ Vdc}, I_C = 50 \text{ mAdc}$	All Types	
Test 2		
$V_{CE} = 100 \text{ Vdc}, I_C = 10 \text{ mAdc}$	All Types	
Test 3		
$V_{CE} = 300 \text{ Vdc}, I_C = 3.3 \text{ mAdc}$	2N3743	
$V_{CE} = 200 \text{ Vdc}, I_C = 5.0 \text{ mAdc}$	2N4930	
$V_{CE} = 250 \text{ Vdc}, I_C = 4.0 \text{ mAdc}$	2N4931	
(2) D. I. T. (D. I. W. 141 200 D. (

⁽³⁾ Pulse Test: Pulse Width = $300\mu s$, Duty Cycle $\leq 2.0\%$.