

- 1 绕任意轴的旋转
 - 2 观察变换
 - 3 模型变换与观察变换

◆ 绕任意轴的三维旋转变换

假设已知空间有任意轴AB,A点的坐标为 $A(x_A,y_A,z_A)$,AB的方向数为(a,b,c)。 现有空间一点p(x,y,z),绕AB轴逆时针旋转 θ 角后成为p'(x',y',z'),若旋转变换矩阵为 T_{RAB} 。

则: $[x' \ y' \ z' \ 1] = [x \ y \ z \ 1] \cdot T_{RAB}$

问题:如何求出T_{RAB}。

◆ 绕任意轴的三维旋转变换

步骤:

(1)把A点移动到坐标原点

- (2)把AB轴绕到某个坐标轴上
- (3)旋转
- (4)求(1)(2)变换的逆变换, 回到AB原来的位置

$$T_A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -x_A & -y_A & -z_A & 1 \end{bmatrix}$$

◆ 绕任意轴的三维旋转变换

步骤:

- (1)把A点移动到坐标原点
- (2)把AB轴绕到某个坐标轴上
- (3)旋转
- (4)求(1)(2)变换的逆变换, 回到AB原来的位置

- ▶绕x轴正转α角,将O'B'转动到XOZ平面上
- ▶绕y轴反转β角,将O'B'转动到z轴上

▶绕x轴正转α角,将O'B'转动到XOZ平面上

B'为点B在平面y'o'z'上的投影,则平面O'BB'与z'轴的夹角为α。沿B'点分别对y'轴和z'轴作垂线,垂点为D和E,则:

$$\cos \alpha = \frac{O'E}{O'B'}, \sin \alpha = \frac{EB'}{O'B'}$$

考虑到O'B的方向数为(a,b,c),有 O'E = c, EB' = b, $O'B' = v = \sqrt{b^2 + c^2}$

$$\cos \alpha = \frac{c}{v}, \sin \alpha = \frac{b}{v}$$

将O'BB'绕x'轴逆时针旋转α角的旋转变换矩阵为:

$$T_{Rx} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \alpha & \sin \alpha & 0 \\ 0 & -\sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \frac{c}{v} & \frac{b}{v} & 0 \\ 0 & -\frac{b}{v} & \frac{c}{v} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

▶绕y轴反转β角,将O'B'转动到z轴上

O'B旋转到x'o'z'平面上后,O'B与z'的夹角为β

$$\cos \beta = \frac{O'B'}{O'B} = \frac{v}{\sqrt{a^2 + v^2}} = \frac{v}{\sqrt{a^2 + b^2 + c^2}}, \sin \beta = \frac{BB'}{O'B} = \frac{a}{\sqrt{a^2 + v^2}} = \frac{a}{\sqrt{a^2 + b^2 + c^2}}$$

此时,将O'B绕y'轴顺时针旋转β角,则O'B旋转到z'轴上。令

$$u = \sqrt{a^2 + b^2 + c^2}$$

则O'B绕y'轴顺时针旋转β角的变换矩阵为:

$$T_{Ry} = \begin{bmatrix} \cos(-\beta) & 0 & -\sin(-\beta) & 0 \\ 0 & 1 & 0 & 0 \\ \sin(-\beta) & 0 & \cos(-\beta) & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \cos\beta & 0 & \sin\beta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin\beta & 0 & \cos\beta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \frac{v}{u} & 0 & \frac{a}{u} & 0 \\ 0 & 1 & 0 & 0 \\ -\frac{a}{u} & 0 & \frac{v}{u} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

◆ 绕任意轴的三维旋转变换

步骤:

- (1)把A点移动到坐标原点
- (2)把AB轴绕到某个坐标轴上

(3)旋转

(4)求(1)(2)变换的逆变换 回到AB原来的位置

此时,AB轴与z'轴重合,此时绕 AB轴的旋转转换为绕z轴的旋转。 绕z轴旋转θ角的旋转变换矩阵为:

$$T_{Rz} = \begin{bmatrix} \cos \theta & \sin \theta & 0 & 0 \\ -\sin \theta & \cos \theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

绕任意轴的旋转

◆ 绕任意轴的三维旋转变换

步骤:

- (1)把A点移动到坐标原点
- (2)把AB轴绕到某个坐标轴上
- (3)旋转
- (4)求(1)(2)变换的逆变换,回到AB原来的位置

也就是求 T_{tA}, T_{Rx}, T_{Ry} 的逆变换

绕任意轴的旋转

◆ 绕任意轴的三维旋转变换

求
$$T_{tA}, T_{Rx}, T_{Ry}$$
 的逆变换

$$T_A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -x_A & -y_A & -z_A & 1 \end{bmatrix}$$

$$T_{tA}^{-1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ x_A & y_A & z_A & 1 \end{bmatrix}$$

绕任意轴的旋转

◆ 绕任意轴的三维旋转变换

求 T_{tA}, T_{Rx}, T_{Ry} 的逆变换

$$T_{Rx} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \alpha & \sin \alpha & 0 \\ 0 & -\sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \frac{c}{v} & \frac{b}{v} & 0 \\ 0 & -\frac{b}{v} & \frac{c}{v} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$T_{Rx}^{-1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos(-\alpha) & \sin(-\alpha) & 0 \\ 0 & -\sin(-\alpha) & \cos(-\alpha) & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \frac{c}{v} & -\frac{b}{v} & 0 \\ 0 & \frac{b}{v} & \frac{c}{v} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

绕任意轴的旋转

◆ 绕任意轴的三维旋转变换

求 T_{tA} , T_{Rx} , T_{Ry} 的逆变换

$$T_{Ry} = \begin{bmatrix} \cos(-\beta) & 0 & -\sin(-\beta) & 0 \\ 0 & 1 & 0 & 0 \\ \sin(-\beta) & 0 & \cos(-\beta) & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \cos\beta & 0 & \sin\beta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin\beta & 0 & \cos\beta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \frac{v}{u} & 0 & \frac{a}{u} & 0 \\ 0 & 1 & 0 & 0 \\ -\frac{a}{u} & 0 & \frac{v}{u} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$T_{Ry}^{-1} = \begin{bmatrix} \cos \beta & 0 & -\sin \beta & 0 \\ 0 & 1 & 0 & 0 \\ \sin \beta & 0 & \cos \beta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \frac{v}{u} & 0 & -\frac{a}{u} & 0 \\ 0 & 1 & 0 & 0 \\ \frac{a}{u} & 0 & \frac{v}{u} & 0 \\ \frac{a}{u} & 0 & 0 & 1 \end{bmatrix}$$

◆ 绕任意轴的三维旋转变换

假设已知空间有任意轴AB,A点的坐标为 $A(x_A, y_A, z_A)$,AB的方向数为(a,b,c)。 现有空间一点p(x, y, z),绕AB轴逆时针旋转 θ 角后成为p'(x', y', z') ,若旋转变换矩阵为 T_{RAB} 。

则:
$$[x' \ y' \ z' \ 1] = [x \ y \ z \ 1] \cdot T_{RAB}$$

问题:如何求出T_{RAB}。

步骤:

- (1)把A点移动到坐标原点
- (2)把AB轴绕到某个坐标轴上
- (3)旋转
- (4)求(1)(2)变换的逆变换,回到AB原来的位置

$$T_{RAB} = T_{tA} T_{Rx} T_{Ry} T_{Rz} T_{Ry}^{-1} T_{Rx}^{-1} T_{tA}^{-1}$$

观察变换的概念:

❖ 观察变换:从世界坐标系到观察坐标系的转换

观察坐标系的概念:

❖ 观察坐标系:

坐标原点:观察者所在的位置

z_v:视点和观察物体上焦点的连线

y_v:向上的方向

x_v:按照右手定则确定的方向

世界坐标系

观察坐标系的概念:

❖ 观察变换:世界坐标系到观察坐标系的变换

实际上求什么?

求世界坐标系中点Q(x,y,z)在观察坐标系中的坐标值。

观察变换的实现:

❖ 复合变换:

具体变换步骤:

(1) 平移观察参考点到用户坐标系原点

(a) 用户坐标系与观察坐标系

(b) 平移观察坐标系

观察变换的实现:

❖ 复合变换:

具体变换步骤:

(2) 进行旋转变换分别让x、、y、和z、轴对应到用户坐标系中的x、y和z轴。

(b) 平移观察坐标系

(c) 旋转观察坐标系

观察变换的实现:

❖ 复合变换:

具体怎么做?联想一下!

$$T_{RAB} = T_{tA} T_{Rx} T_{Ry} T_{Rz} T_{Ry}^{-1} T_{Rx}^{-1} T_{tA}^{-1}$$

观察变换

具体变换步骤:

(1) 平移观察参考点到用户坐标系原点

(a) 用户坐标系与观察坐标系

(b) 平移观察坐标系

具体变换步骤:

(2) 进行旋转变换分别让x_v、y_v和z_v轴对应到用户坐标系中的x、y和z轴。

观察坐标系的概念:

❖ 观察变换:世界坐标系到观察坐标系的变换

实际上求什么?

求世界坐标系中点Q(x,y,z)在观察坐标系中的坐标值。

实际上求什么?

求世界坐标系中点Q(x,y,z)在观察坐标系中的坐标值。

那么还需要 逆变换回去吗?

以二维为例:

实际上求什么Q(x,y)在观察坐标系中的坐标 (x_y,y_y)

模型变换与观察变换

观察变换的应用:

❖ 场景漫游:

模型变换与观察变换具有对偶性

模型变换与观察变换

观察变换的应用:

❖ 场景漫游:

但是由于场景中只有部分物体运动,所以效果不同

