

Modelos Discretos

Tarea 1

Victor Reyes Medina, Pedro González Meléndez

11 de junio de 2016

1. Lógica proposicional

1.1.

- $p:\triangle$ ABC Isósceles
- $q: \triangle$ ABC Equilátero
- $r: \triangle$ ABC Equiangular
 - 1. $p \rightarrow q$ Si el triángulo ABC es equilátero, entonces es isósceles.
 - 2. $\neg p \rightarrow \neg q$ Si el triángulo ABC no es isósceles, entonces no es equiangular.
 - 3. $q \iff r$ El triángulo ABC es equilatero si y sólo si el triángulo es equiangular.
 - 4. $p \land \neg q$ Un triángulo ABC es isósceles y no equilátero.
 - 5. $r \rightarrow p$ SI el triángulo ABC es quilátero, entonces es isósceles.

1.2.

1.

$$\neg(p \lor \neg q) \to \neg p$$

Por ley de Morgan:

$$(\neg p \land q) \to \neg p$$

p	q	$(\neg p \land q)$	$\neg p$	$(\neg p \land q) \to \neg p$
0	0	0	1	1
0	1	1	1	1
1	0	0	0	1
1	1	0	0	1

La expresión es una tautología.

2.

$$(p \to q) \to r$$

p	q	r	$(p \to q)$	r
1	1	1	1	1
1	1	0	1	0
1	0	1	0	1
1	0	0	0	1
0	1	1	1	1
0	1	0	1	0
0	0	1	1	1
0	0	0	1	0

La expresión es satisfacible.

3.

$$(p \to q) \to (q \to p)$$

p	q	$(p \to q)$	$(q \to p)$	$(p \to q) \to (q \to p)$
0	0	1	1	1
0	1	1	0	0
1	0	0	1	1
1	1	1	1	1

La expresión es satisfacible.

4.

$$((p \to q) \land (q \to r)) \to (p \to r)$$

p	q	r	$(p \to q)$	$(q \rightarrow r)$	$((p \to q) \land (q \to r))$	$(p \rightarrow r)$	$((p \to q) \land (q \to r)) \to (p \to r)$
1	1	1	1	1	1	1	1
1	1	0	1	0	0	0	1
1	0	1	0	1	0	1	1
0	1	1	1	1	1	1	1
1	0	0	0	1	0	0	1
0	1	0	1	0	0	1	1
0	0	1	1	1	1	1	1
0	0	0	1	1	1	1	1

La expresión es una tautología.

1.3.

2. Lógica de primer orden

2.1.

2.2.

2.3.