

descript.

# Introduction To Data Mining

Isfahan University of Technology (IUT) Farvardin 1401



**Frequent Pattern Mining** 

Dr. Hamidreza Hakim hamid.hakim.u@gmail.com



# What Is Frequent Pattern Analysis?

- Frequent pattern: a pattern (a set of items, subsequences, substructures, etc.)
   that occurs frequently in a data set
- First proposed by Agrawal, Imielinski, and Swami [AIS93] in the context of frequent itemsets and association rule mining
- Motivation: Finding inherent regularities in data
  - What products were often purchased together?— Beer and diapers?!
  - What are the subsequent purchases after buying a PC?
  - What kinds of DNA are sensitive to this new drug?
  - Can we automatically classify web documents?

چه کالاهایی باهم تکرار شدند؟ یا توی یک گرافی میخاهیم نودها با ویژگی های خاصی رو شناسایی کنیم مثلا ترتیب و تکرار ژن های مختلف در افراد باعث ویژگی های متفاوتشون میشه

#### Applications

 Basket data analysis, cross-marketing, catalog design, sale campaign analysis, Web log (click stream) analysis, and DNA sequence analysis.



#### Why Is Freq. Pattern Mining Important?

- Freq. pattern: An intrinsic and important property of datasets
- Foundation for many essential data mining tasks
  - Association, correlation, and causality analysis
  - Sequential, structural (e.g., sub-graph) patterns
  - Pattern analysis in spatiotemporal, multimedia, timeseries, and stream data
  - Classification: discriminative, frequent pattern analysis
  - Cluster analysis: frequent pattern-based clustering
  - Data warehousing: iceberg cube and cube-gradient
  - Semantic data compression: fascicles
  - Broad applications

### **Basic Concepts: Frequent Patterns**

| Ti<br>d | Items bought                     |  |
|---------|----------------------------------|--|
| 10      | Beer, Nuts, Diaper               |  |
| 20      | Beer, Coffee, Diaper             |  |
| 30      | Beer, Diaper, Eggs               |  |
| 40      | Nuts, Eggs, Milk                 |  |
| 50      | Nuts, Coffee, Diaper, Eggs, Milk |  |



itemset: A set of one or more items

$$\mathsf{k} ext{-itemset}\;\mathsf{X}=\{\mathsf{x}_1,\,\ldots,\,\mathsf{x}_\mathsf{k}\}$$
نا عضو داره

(absolute) support, or, support count of X:

Frequency or occurrence of an itemset X

is the fraction of transactions that contains X (i.e., the probability that a transaction contains X)

An itemset X is frequent

کن که حداقل دوبار رخ دادن

if X's support is no less than a minsup threshold

مثلا خرید شیرو ماست به طور ۱۰درصد مواقع در خرید ها باهم خریده شدن که بهش ساپورت نسبی میگیم

مينيمم سايورت چقدره؟

# **Basic Concepts: Frequent Patterns**



| ∕ TID    | Transaction |
|----------|-------------|
| $T_{10}$ | A, C, D     |
| $T_{20}$ | B, C, E     |
| $T_{30}$ | A, B, C, E  |
| $T_{40}$ | B, E        |

#### 1-itemset

Support count ( $\{C\}$ ) = 3 Support ratio ( $\{C\}$ )= 3/4

#### 2-itemset

Support count ( $\{B, C\}$ ) = 2 Support ratio ( $\{B,C\}$ )= 2/4

#### 3-itemset

Support count ({B, C, E}) = 2 Support ratio({B,C,E}) = 2/4

If minsup = 0.7

{C} is a Frequent itemset

این مجموعه یک الگوی پرتکر ار است



# **Frequent Itemset Generation**



### **Frequent Itemset Generation**

- Brute-force approach:
- بررسی همه ی حالت ها
- Each itemset in the lattice is a candidate frequent itemset
- Count the support of each candidate by scanning the database



- Match each transaction against every candidate
- Complexity ~ O(NMw) => Expensive since M = 2<sup>d</sup> !!!

مایی میشه



| TID | Items                     |
|-----|---------------------------|
| 1   | Bread, Milk               |
| 2   | Beer, Bread, Diaper, Eggs |
| 3   | Beer, Coke, Diaper, Milk  |
| 4   | Beer, Bread, Diaper, Milk |
| 5   | Bread, Coke, Diaper, Milk |

| ايتم داريم | 6تا | کل | ر. |
|------------|-----|----|----|
|------------|-----|----|----|

چه ایتم هایی حذف

کمتر از ۳ باشه: تخم

#### Items (1-itemsets)

| Îtem   | Count |
|--------|-------|
| Bread  | 4     |
| Coke   | 2     |
| Milk   | 4     |
| Beer   | 3     |
| Diaper | 4     |
| Eggs   | 1     |

#### Minimum Support = 3

If every subset is considered,  ${}^6C_1 + {}^6C_2 + {}^6C_3$  6 + 15 + 20 = 41With support-based pruning,

6 + 6 + 4 = 16

انتخاب ۳ از ۴ از ۴

ساخت ایتم های یک تایی: انتخاب یک از  $\hat{7}:\hat{7}$  ساخت ایتم های دوتایی: انتخاب  $\hat{7}:\hat{7}:\hat{7}$  به همین ترتیب...

$$C(n,r) = \frac{n!}{r!(n-r)!}$$

| TID | Items                     |
|-----|---------------------------|
| 1   | Bread, Milk               |
| 2   | Beer, Bread, Diaper, Eggs |
| 3   | Beer, Coke, Diaper, Milk  |
| 4   | Beer, Bread, Diaper, Milk |
| 5   | Bread, Coke, Diaper, Milk |



#### Items (1-itemsets)

| Item   | Count |
|--------|-------|
| Bread  | 4     |
| Coke   | 2     |
| Milk   | 4     |
| Beer   | 3     |
| Diaper | 4     |
| Eggs   | 1     |

#### Minimum Support = 3

If every subset is considered,  ${}^6C_1 + {}^6C_2 + {}^6C_3$  6 + 15 + 20 = 41With support-based pruning, 6 + 6 + 4 = 16

| TID | Items                     |
|-----|---------------------------|
| 1   | Bread, Milk               |
| 2   | Beer, Bread, Diaper, Eggs |
| 3   | Beer, Coke, Diaper, Milk  |
| 4   | Beer, Bread, Diaper, Milk |
| 5   | Bread, Coke, Diaper, Milk |

| Item   | Count |
|--------|-------|
| Bread  | 4     |
| Coke   | 2     |
| Milk   | 4     |
| Beer   | 3     |
| Diaper | 4     |
| Eggs   | 1     |

#### Items (1-itemsets)



| Itemset        |
|----------------|
| {Bread,Milk}   |
| {Bread, Beer } |
| {Bread,Diaper} |
| {Beer, Milk}   |
| {Diaper, Milk} |
| {Beer,Diaper}  |

#### Pairs (2-itemsets)

(No need to generate candidates involving Coke or Eggs)

#### Minimum Support = 3

If every subset is considered,  

$${}^6C_1 + {}^6C_2 + {}^6C_3$$
  
 $6 + 15 + 20 = 41$   
With support-based pruning,  
 $6 + 6 + 4 = 16$ 

| TID | Items                     |
|-----|---------------------------|
| 1   | Bread, Milk               |
| 2   | Beer, Bread, Diaper, Eggs |
| 3   | Beer, Coke, Diaper, Milk  |
| 4   | Beer, Bread, Diaper, Milk |
| 5   | Bread, Coke, Diaper, Milk |

| Item   | Count |
|--------|-------|
| Bread  | 4     |
| Coke   | 2     |
| Milk   | 4     |
| Beer   | 3     |
| Diaper | 4     |
| Eggs   | 1     |

Items (1-itemsets)



| Itemset        | Count |
|----------------|-------|
| {Bread,Milk}   | 3     |
| {Beer, Bread}  | 2     |
| {Bread,Diaper} | 3     |
| {Beer,Milk}    | 2     |
| {Diaper,Milk}  | 3     |
| {Beer,Diaper}  | 3     |

#### Pairs (2-itemsets)

(No need to generate candidates involving Coke or Eggs)

#### Minimum Support = 3

If every subset is considered,  ${}^6C_1 + {}^6C_2 + {}^6C_3$  6 + 15 + 20 = 41With support-based pruning, 6 + 6 + 4 = 16

| TID | Items                     |
|-----|---------------------------|
| 1   | Bread, Milk               |
| 2   | Beer, Bread, Diaper, Eggs |
| 3   | Beer, Coke, Diaper, Milk  |
| 4   | Beer, Bread, Diaper, Milk |
| 5   | Bread, Coke, Diaper, Milk |

| Item   | Count |
|--------|-------|
| Bread  | 4     |
| Coke   | 2     |
| Milk   | 4     |
| Beer   | 3     |
| Diaper | 4     |
| Eggs   | 1     |

#### Items (1-itemsets)



| Itemset        | Count |
|----------------|-------|
| {Bread,Milk}   | 3     |
| {Bread,Beer}   | 2     |
| {Bread,Diaper} | 3     |
| {Milk,Beer}    | 2     |
| {Milk,Diaper}  | 3     |
| {Beer,Diaper}  | 3     |

#### Pairs (2-itemsets)

(No need to generate candidates involving Coke or Eggs)

#### Minimum Support = 3





#### Triplets (3-itemsets)



| TID | Items                     |
|-----|---------------------------|
| 1   | Bread, Milk               |
| 2   | Beer, Bread, Diaper, Eggs |
| 3   | Beer, Coke, Diaper, Milk  |
| 4   | Beer, Bread, Diaper, Milk |
| 5   | Bread, Coke, Diaper, Milk |

| Item   | Count |
|--------|-------|
| Bread  | 4     |
| Coke   | 2     |
| Milk   | 4     |
| Beer   | 3     |
| Diaper | 4     |
| Eggs   | 1     |

Items (1-itemsets)



| Itemset        | Count |
|----------------|-------|
| {Bread,Milk}   | 3     |
| {Bread,Beer}   | 2     |
| {Bread,Diaper} | 3     |
| {Milk,Beer}    | 2     |
| {Milk,Diaper}  | 3     |
| {Beer,Diaper}  | 3     |

Pairs (2-itemsets)

(No need to generate candidates involving Coke or Eggs)

#### Minimum Support = 3



$$6 + 15 + 20 = 41$$

With support-based pruning,

$$6 + 6 + 4 = 16$$



Triplets (3-itemsets)

| Itemset               | Count |
|-----------------------|-------|
| { Beer, Diaper, Milk} | 2     |
| { Beer,Bread, Diaper} | 2     |
| {Bread, Diaper, Milk} | 2     |
| {Beer, Bread, Milk}   | 1     |

| TID | Items                     |
|-----|---------------------------|
| 1   | Bread, Milk               |
| 2   | Beer, Bread, Diaper, Eggs |
| 3   | Beer, Coke, Diaper, Milk  |
| 4   | Beer, Bread, Diaper, Milk |
| 5   | Bread, Coke, Diaper, Milk |

| Item   | Count |
|--------|-------|
| Bread  | 4     |
| Coke   | 2     |
| Milk   | 4     |
| Beer   | 3     |
| Diaper | 4     |
| Eggs   | 1     |

Items (1-itemsets)



| Itemset        | Count |
|----------------|-------|
| {Bread,Milk}   | 3     |
| {Bread,Beer}   | 2     |
| {Bread,Diaper} | 3     |
| {Milk,Beer}    | 2     |
| {Milk,Diaper}  | 3     |
| {Beer,Diaper}  | 3     |

Pairs (2-itemsets)

(No need to generate candidates involving Coke or Eggs)

#### Minimum Support = 3



$${}^{6}C_{1} + {}^{6}C_{2} + {}^{6}C_{3}$$
  
6 + 15 + 20 = 41

With support-based pruning,

$$6 + 6 + 4 = 16$$

$$6 + 6 + 1 = 13$$



Triplets (3-itemsets)

| Itemset               | Count |
|-----------------------|-------|
| { Beer, Diaper, Milk} | 2     |
| { Beer,Bread, Diaper} | 2     |
| {Bread, Diaper, Milk} | 2     |
| {Beer, Bread, Milk}   | 1     |

# **Apriori Algorithm**

- F<sub>k</sub>: frequent k-itemsets
- L<sub>k</sub>: candidate k-itemsets
- Algorithm
  - Let k=1
  - Generate  $F_1$  = {frequent 1-itemsets}
  - Repeat until F<sub>k</sub> is empty
    - 1. Candidate Generation: Generate  $L_{k+1}$  from  $F_k$
    - Candidate Pruning: Prune candidate itemsets in L<sub>k+1</sub> containing subsets of length k that are infrequent
    - Support Counting: Count the support of each candidate in L<sub>k+1</sub> by scanning the DB
    - 4. Candidate Elimination: Eliminate candidates in  $L_{k+1}$  that are infrequent, leaving only those that are frequent =>  $F_{k+1}$

#### Candidate Generation: 1-Brute-force method



**Figure 5.6.** A brute-force method for generating candidate 3-itemsets.

#### **Candidate Generation: 2-Merge Fk-1 and F1 itemsets**



**Figure 5.7.** Generating and pruning candidate k-itemsets by merging a frequent (k-1)-itemset with a frequent item. Note that some of the candidates are unnecessary because their subsets are infrequent.

### Candidate Generation: $3-F_{k-1} \times F_{k-1}$ Method

Merge two frequent (k-1)-itemsets
 if their first (k-2) items are identical

- F<sub>3</sub> = {ABC,ABD,ABE,ACD,BCD,BDE,CDE}
  - Merge( $\underline{AB}C$ ,  $\underline{AB}D$ ) =  $\underline{AB}CD$
  - Merge( $\underline{AB}C$ ,  $\underline{AB}E$ ) =  $\underline{AB}CE$
  - Merge( $\underline{AB}D$ ,  $\underline{AB}E$ ) =  $\underline{AB}DE$
  - Do not merge(<u>ABD</u>,<u>ACD</u>) because they share only prefix of length 1 instead of length 2

### **Candidate Pruning**

Let F<sub>3</sub> = {ABC,ABD,ABE,ACD,BCD,BDE,CDE} be the set of frequent 3-itemsets

 $L_4 = \{ABCD, ABCE, ABDE\}$  is the set of candidate 4-itemsets generated (from previous slide)

- Candidate pruning
  - Prune ABCE because ACE and BCE are infrequent
  - Prune ABDE because ADE is infrequent

After candidate pruning: L<sub>4</sub> = {ABCD}

#### Candidate Generation: 3-Fk-1 x Fk-1 Method



**Figure 5.8.** Generating and pruning candidate k-itemsets by merging pairs of frequent (k-1)-itemsets.

| Item   | Count |
|--------|-------|
| Bread  | 4     |
| Coke   | 2     |
| Milk   | 4     |
| Beer   | 3     |
| Diaper | 4     |
| Eggs   | 1     |

Items (1-itemsets)



| Itemset        | Count |
|----------------|-------|
| {Bread,Milk}   | 3     |
| {Bread,Beer}   | 2     |
| {Bread,Diaper} | 3     |
| {Milk,Beer}    | 2     |
| {Milk,Diaper}  | 3     |
| {Beer,Diaper}  | 3     |

Pairs (2-itemsets)

(No need to generate candidates involving Coke or Eggs)

#### Minimum Support = 3





Triplets (3-itemsets)



Use of  $F_{k-1}xF_{k-1}$  method for candidate generation results in only one 3-itemset. This is eliminated after the support counting step.

### Alternate $F_{k-1} \times F_{k-1}$ Method

 Merge two frequent (k-1)-itemsets if the last (k-2) items of the first one is identical to the first (k-2) items of the second.

- F<sub>3</sub> = {ABC,ABD,ABE,ACD,BCD,BDE,CDE}
  - Merge(ABC, BCD) = ABCD
  - Merge(ABD, BDE) = ABDE
  - Merge(ACD, CDE) = ACDE
  - Merge(BCD, CDE) = BCDE

#### Candidate Pruning for Alternate $F_{k-1} \times F_{k-1}$ Method

- Let F<sub>3</sub> = {ABC,ABD,ABE,ACD,BCD,BDE,CDE} be the set of frequent 3-itemsets
- L<sub>4</sub> = {ABCD,ABDE,ACDE,BCDE} is the set of candidate 4-itemsets generated (from previous slide)
- Candidate pruning
  - Prune ABDE because ADE is infrequent
  - Prune ACDE because ACE and ADE are infrequent
  - Prune BCDE because BCE
- After candidate pruning: L<sub>4</sub> = {ABCD}

#### **Support Counting of Candidate Itemsets**

- Scan the database of transactions to determine the support of each candidate itemset
  - Must match every candidate itemset against every transaction, which is an expensive operation

| TID | Items                     |
|-----|---------------------------|
| 1   | Bread, Milk               |
| 2   | Beer, Bread, Diaper, Eggs |
| 3   | Beer, Coke, Diaper, Milk  |
| 4   | Beer, Bread, Diaper, Milk |
| 5   | Bread, Coke, Diaper, Milk |

```
Itemset

{ Beer, Diaper, Milk}
 { Beer, Bread, Diaper}
 {Bread, Diaper, Milk}
 { Beer, Bread, Milk}
```

#### **Support Counting of Candidate Itemsets**

- To reduce number of comparisons, store the candidate itemsets in a hash structure
  - Instead of matching each transaction against every candidate, match it against candidates contained in the hashed buckets



### **Support Counting: An Example**

Suppose you have 15 candidate itemsets of length 3:

{1 4 5}, {1 2 4}, {4 5 7}, {1 2 5}, {4 5 8}, {1 5 9}, {1 3 6}, {2 3 4}, {5 6 7}, {3 4 5}, {3 5 6}, {3 5 7}, {6 8 9}, {3 6 7}, {3 6 8}

How many of these itemsets are supported by transaction (1,2,3,5,6)?



Suppose you have 15 candidate itemsets of length 3:

#### You need:

- Hash function
- Max leaf size: max number of itemsets stored in a leaf node (if number of candidate itemsets exceeds max leaf size, split the node)

















# **ASSOCIATION RULES**

# **Association Rule Mining**



Given a set of transactions, find rules that will predict the occurrence of an item based on the occurrences of other items in the transaction

### **Market-Basket transactions**

| TID | Items                     |
|-----|---------------------------|
| 1   | Bread, Milk               |
| 2   | Bread, Diaper, Beer, Eggs |
| 3   | Milk, Diaper, Beer, Coke  |
| 4   | Bread, Milk, Diaper, Beer |
| 5   | Bread, Milk, Diaper, Coke |

### **Example of Association Rules**

```
\{ \text{Diaper} \} \rightarrow \{ \text{Beer} \},
\{ \text{Milk, Bread} \} \rightarrow \{ \text{Eggs,Coke} \},
\{ \text{Beer, Bread} \} \rightarrow \{ \text{Milk} \},
```

Implication means co-occurrence, not causality!

## **Association Rule Mining Task**

- Given a set of transactions T, the goal of association rule mining is to find all rules having
  - support ≥ minsup threshold
  - confidence ≥ minconf threshold

سطح اطمينان اين قانون چقدره؟ چقدر اين قانون مطمئنه؟

## **Definition: Association Rule**

### Association Rule

- An implication expression of the form
   X → Y, where X and Y are itemsets
- Example:{Milk, Diaper} → {Beer}

| TID | Items                     |
|-----|---------------------------|
| 1   | Bread, Milk               |
| 2   | Bread, Diaper, Beer, Eggs |
| 3   | Milk, Diaper, Beer, Coke  |
| 4   | Bread, Milk, Diaper, Beer |
| 5   | Bread, Milk, Diaper, Coke |

### **Rule Evaluation Metrics**

- Support (s)
  - Fraction of transactions that contain both X and Y
- Confidence (c)
  - Measures how often items in Y appear in transactions that contain X

| TID | Items                     |
|-----|---------------------------|
| 1   | Bread, Milk               |
| 2   | Bread, Diaper, Beer, Eggs |
| 3   | Milk, Diaper, Beer, Coke  |
| 4   | Bread, Milk, Diaper, Beer |
| 5   | Bread, Milk, Diaper, Coke |





 $\{Milk, Diaper\} \Rightarrow \{Beer\}$ 

$$\mathbf{s} = \frac{\sigma(\text{Milk}, \text{Diaper}, \text{Beer})}{|\mathbf{T}|} = \frac{2}{5} = 0.4$$

$$c = \frac{\sigma(\text{Milk, Diaper, Beer})}{\sigma(\text{Milk, Diaper})} = \frac{2}{3} = 0.67$$



# Mining Association Rules (Example)

| TID | Items                     |
|-----|---------------------------|
| 1   | Bread, Milk               |
| 2   | Bread, Diaper, Beer, Eggs |
| 3   | Milk, Diaper, Beer, Coke  |
| 4   | Bread, Milk, Diaper, Beer |
| 5   | Bread, Milk, Diaper, Coke |

### Example of Rules:

```
{Milk, Diaper} \rightarrow {Beer} (s=0.4, c=0.67)
{Milk, Beer} \rightarrow {Diaper} (s=0.4, c=1.0)
{Diaper, Beer} \rightarrow {Milk} (s=0.4, c=0.67)
{Beer} \rightarrow {Milk, Diaper} (s=0.4, c=0.67)
{Diaper} \rightarrow {Milk, Beer} (s=0.4, c=0.5)
{Milk} \rightarrow {Diaper, Beer} (s=0.4, c=0.5)
```

### Observations:

- All the above rules are binary partitions of the same itemset: {Milk, Diaper, Beer}
- Rules originating from the same itemset have identical support but can have different confidence
- Thus, we may decouple the support and confidence requirements

## **Support Vs Confidence**

I. Support and confidence are both high. II. Support and confidence are both low.





## **Support Vs Confidence**

III. Confidence is high and support is low.



IV. Confidence is low and support is high.



## **Association Rule Mining**

- Brute-force approach:
  - List all possible association rules
  - Compute the support and confidence for each rule
  - Prune rules that fail the minsup and minconf thresholds
  - ⇒ Computationally prohibitive!

## **Computational Complexity**

- Given d unique items:
  - Total number of itemsets = 2<sup>d</sup>
  - Total number of possible association rules:



$$R = \sum_{k=1}^{d-1} \begin{bmatrix} d \\ k \end{bmatrix} \times \sum_{j=1}^{d-k} \begin{pmatrix} d-k \\ j \end{bmatrix}$$
$$= 3^{d} - 2^{d+1} + 1$$

If d=6, R=602 rules

### Mining Association Rules by Frequent Itemset

- Two-step approach:
  - 1. Frequent Itemset Generation
    - Generate all itemsets whose support ≥ minsup

### 2. Rule Generation

- Generate high confidence rules from each frequent itemset, where each rule is a binary partitioning of a frequent itemset
- Frequent itemset generation is still computationally expensive

### **Rule Generation**

- Given a frequent itemset L, find all non-empty subsets f ⊂ L such that f → L − f satisfies the minimum confidence requirement
  - If {A,B,C,D} is a frequent itemset, candidate rules:

ABC 
$$\rightarrow$$
D, ABD  $\rightarrow$ C, ACD  $\rightarrow$ B, BCD  $\rightarrow$ A, A  $\rightarrow$ BCD, B  $\rightarrow$ ACD, C  $\rightarrow$ ABD, D  $\rightarrow$ ABC AB  $\rightarrow$ CD, AC  $\rightarrow$  BD, AD  $\rightarrow$  BC, BC  $\rightarrow$ AD, BD  $\rightarrow$ AC, CD  $\rightarrow$ AB,

If |L| = k, then there are 2<sup>k</sup> – 2 candidate
 association rules (ignoring L → Ø and Ø → L)

 $L_{\mathbf{1}}$ 

| Itemset | Sup.count |
|---------|-----------|
| I1      | 6         |
| I2      | 7         |
| I3      | 6         |
| I4      | 2         |
| I5      | 2         |

 $L_3$ 

| Itemset    | Sup. count |
|------------|------------|
| I1, I2, I3 | 2          |
| I1, I2, I5 | 2          |

| TID           | Items          |
|---------------|----------------|
| T1            | 11, 12, 15     |
| T2            | 12, 14         |
| Т3            | 12, 13         |
| T4            | 11, 12, 14     |
| T5            | 11, 13         |
| T6            | 12, 13         |
| T7            | 11, 13         |
| Т8            | 11, 12, 13, 15 |
| Т9            | 11, 12, 13     |
| Minsup = 2, n | ninconf = %70  |
|               |                |

 $L_2$ 

| _       |           |
|---------|-----------|
| Itemset | Sup.count |
| I1, I2  | 4         |
| I1, I3  | 4         |
| I1, I5  | 2         |
| I2, I3  | 4         |
| I2, I4  | 2         |
| I2, I5  | 2         |
|         |           |

| I1, I2 | I1 → I2 | $conf = \frac{4}{6} $ |
|--------|---------|-----------------------|
|        | I2 → I1 | 4                     |
| I1, I3 | I1 → I3 | $conf = \frac{4}{6} $ |
|        | I3 → I1 | $conf = \frac{4}{6} $ |
| I2, I5 | I2 → I5 | $conf = \frac{2}{7}$  |
|        | I5 → I2 | conf = 1 ♥            |

| $_{}$ L <sub>1</sub> |           |
|----------------------|-----------|
| Itemset              | Sup.count |
| I1                   | 6         |
| I2                   | 7         |
| I3                   | 6         |
| I4                   | 2         |
| I5                   | 2         |
|                      |           |

| $L_2$   |           |
|---------|-----------|
| Itemset | Sup.count |
| I1, I2  | 4         |
| I1, I3  | 4         |
| I1, I5  | 2         |
| I2, I3  | 4         |
| I2, I4  | 2         |
| I2, I5  | 2         |

| I1, I2, I3 | I1 → I2 I3 | $conf = \frac{2}{6}$ | 8        |
|------------|------------|----------------------|----------|
|            | I2 → I1 I3 | $conf = \frac{2}{7}$ | 8        |
|            | I3 → I1 I2 | $conf = \frac{2}{6}$ | 8        |
|            | I1 I2 → I3 | $conf = \frac{2}{4}$ | 8        |
|            | I1 I3 → I2 | $conf = \frac{2}{4}$ | 8        |
|            | I2 I3 → I1 | $conf = \frac{2}{4}$ | 8        |
| I1, I2, I5 | I5 → I1 I2 | conf = 1             | 0        |
|            | I1 I5 → I2 | conf = 1             | <b>②</b> |
|            | I2 I5 → I1 | conf = 1             | 0        |

| L <sub>1</sub> |           |
|----------------|-----------|
| Itemset        | Sup.count |
| I1             | 6         |
| I2             | 7         |
| I3             | 6         |
| <b>I</b> 4     | 2         |
| I5             | 2         |
|                |           |

| $L_2$   |           |
|---------|-----------|
| Itemset | Sup.count |
| I1, I2  | 4         |
| I1, I3  | 4         |
| I1, I5  | 2         |
| I2, I3  | 4         |
| I2, I4  | 2         |
| I2, I5  | 2         |

### **Rule Generation**

 In general, confidence does not have an antimonotone property

- But confidence of rules generated from the same itemset has an anti-monotone property
  - E.g., Suppose {A,B,C,D} is a frequent 4-itemset:

$$c(ABC \rightarrow D) \ge c(AB \rightarrow CD) \ge c(A \rightarrow BCD)$$

Confidence is anti-monotone w.r.t. number of items on the RHS of the rule

## Rule Generation for Apriori Algorithm



| ID | Basketball | Cereal consumption |
|----|------------|--------------------|
|    |            |                    |
|    |            |                    |

| СВ  | YES  | NO   |      |
|-----|------|------|------|
| YES | 2000 | 1750 | 3750 |
| NO  | 1000 | 250  | 1250 |
|     | 3000 | 2000 | 5000 |

| ID | Basketball | Cereal consumption |
|----|------------|--------------------|
|    |            |                    |
|    |            |                    |

| СВ  | YES  | NO   |      |
|-----|------|------|------|
| YES | 2000 | 1750 | 3750 |
| NO  | 1000 | 250  | 1250 |
|     | 3000 | 2000 | 5000 |

### Basketball → Cereal consumption

$$\sup = \frac{2000}{5000} = \% \ 40$$

$$\operatorname{conf} = \frac{2000}{3000} = \% \ 66$$

P (Cereal consumption) = 
$$\frac{3750}{5000}$$
 = % 75

### Basketball → Cereal consumption

$$\sup = \frac{1000}{5000} = \% \ 20$$
$$\operatorname{conf} = \frac{1000}{3000} = \% \ 33.3$$

### Is Symptom → Disease a valid rule?

| S D | D YES NO |    |     |
|-----|----------|----|-----|
| YES | 80       | 40 | 120 |
| NO  | 20       | 10 | 30  |
|     | 100      | 50 | 150 |

### Is Symptom → Disease a valid rule?

| S D | YES | NO |     |
|-----|-----|----|-----|
| YES | 80  | 40 | 120 |
| NO  | 20  | 10 | 30  |
|     | 100 | 50 | 150 |

$$S \to D$$

$$\sup = \frac{80}{15000} = \% 53$$

$$\operatorname{conf} = \frac{80}{120} = \% 66$$

But S and D are independent! 
$$P(D|S) = P(D) = 0.67$$

## **Lift Measure**

Strong Rules are not necessarily interesting. We need more measures to evaluate rules.

$$Lift(A \to B) = \frac{P(A, B)}{P(A)P(B)} = \frac{conf(A \to B)}{P(B)} = Lift(B \to A)$$

Lift < 1 P (B | A) < P (B)

**Negative Correlation** 

Lift = 1  $P(B \mid A) = P(B)$ 

Independent

Lift > 1

 $P(B \mid A) > P(B)$ 

**Positive Correlation** 

## **Lift Measure**

| СВ  | YES  | NO   |      |
|-----|------|------|------|
| YES | 2000 | 1750 | 3750 |
| NO  | 1000 | 250  | 1250 |
|     | 3000 | 2000 | 5000 |

### Basketball → Cereal consumption

Lift = 
$$\frac{\frac{2000}{5000}}{\frac{3000}{5000}} \times \frac{3750}{5000} = \frac{100}{3 \times 375} = 0.88$$

### $\mathsf{Basketball} \to \overline{\mathsf{Cereal\ consumption}}$

Lift = 
$$\frac{\frac{1000}{5000}}{\frac{3000}{5000}} \times \frac{1250}{5000} = \frac{500}{3 \times 125} = 1.33$$

## **Lift Measure**

#### Lift measure is not null-invariant

|   | В    | $\overline{\mathrm{B}}$ |      |
|---|------|-------------------------|------|
| С | 100  | 1000                    | 1100 |
| C | 1000 | null count              |      |
|   | 1100 |                         |      |

If null count = 100000

Lift (B,C) = 
$$\frac{P(B,C)}{P(B)P(C)} = \frac{\frac{100}{102100}}{\frac{1100}{102100} \times \frac{1100}{102100}} = 8.44 \gg 1$$

If null count = 100

Lift (B,C) = 
$$\frac{P(B,C)}{P(B)P(C)} = \frac{\frac{100}{2200}}{\frac{1100}{2200} \times \frac{1100}{2200}} = 0.18 \ll 1$$

## **All Confidence**

All-confidence(A,B) = 
$$\frac{P(A,B)}{\max(P(A),P(B))}$$
$$0 \le All-confidence \le 1$$

## **Other Measure**

| symbol   | mooguno             | range      | formula                                                                                                                                                                                                           |
|----------|---------------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ·        | measure             |            | P(A,B)-P(A)P(B)                                                                                                                                                                                                   |
| $\phi$   | $\phi$ -coefficient | -11        | $\frac{1}{\sqrt{P(A)P(B)(1-P(A))(1-P(B))}}$                                                                                                                                                                       |
| Q        | Yule's Q            | -11        | $P(A,B)P(\overline{A},\overline{B})-P(A,\overline{B})P(\overline{A},B)$                                                                                                                                           |
| 9        | Tules Q             | -11        | $P(A,B)P(\overline{A},\overline{B})+P(A,\overline{B})P(\overline{A},B)$                                                                                                                                           |
| Y        | Yule's Y            | -11        | $\sqrt{P(A,B)P(\overline{A},\overline{B})} - \sqrt{P(A,\overline{B})P(\overline{A},B)}$                                                                                                                           |
|          |                     |            | $\sqrt{P(A,B)P(\overline{A},\overline{B})} + \sqrt{P(A,\overline{B})P(\overline{A},B)}$<br>$P(A,B) + P(\overline{A},\overline{B}) - P(A)P(B) - P(\overline{A})P(\overline{B})$                                    |
| k        | Cohen's             | -11        | $\frac{P(A,B)+P(A,B)-P(A)P(B)-P(A)P(B)}{1-P(A)P(B)-P(A)P(\overline{B})}$                                                                                                                                          |
| PS       | Piatetsky-Shapiro's | -0.25 0.25 | P(A,B) - P(A)P(B)                                                                                                                                                                                                 |
| F        | Certainty factor    | -11        | $\max\left(\frac{P(B A) - P(B)}{1 - P(B)}, \frac{P(A B) - P(A)}{1 - P(A)}\right)$                                                                                                                                 |
| AV       | added value         | -0.5 1     | $\max(P(B A) - P(B), P(A B) - P(A))$                                                                                                                                                                              |
| K        | Klosgen's Q         | -0.330.38  |                                                                                                                                                                                                                   |
| g        | Goodman-kruskal's   | 0 1        | $\frac{\sqrt{P(A,B)} \max(P(B A) - P(B), P(A B) - P(A))}{\sum_{j} \max_{k} P(A_{j},B_{k}) + \sum_{k} \max_{j} P(A_{j},B_{k}) - \max_{k} P(A_{j}) - \max_{k} P(B_{k})}{2 - \max_{j} P(A_{j}) - \max_{k} P(B_{k})}$ |
| 9        | Goodinan-kruskars   | 01         | $2-\max_{j} P(A_{j})-\max_{k} P(B_{k})$                                                                                                                                                                           |
| M        | Mutual Information  | 01         | $\Sigma_i \Sigma_j P(A_i, B_j) \log \frac{P(A_i, B_j)}{P(A_i)P(B_J)}$                                                                                                                                             |
| J        | J-Measure           | 01         | $\min(-\Sigma_i P(A_i) \log P(A_i) \log P(A_i), -\Sigma_i P(B_i) \log P(B_i) \log P(B_i))$                                                                                                                        |
| ,        | J-Measure           | 01         | $\max(P(A, B) \log(\frac{P(B A)}{P(B)}) + P(A\overline{B}) \log(\frac{P(\overline{B} A)}{P(\overline{B})}))$                                                                                                      |
|          |                     |            | $P(A, B) \log(\frac{P(A B)}{P(A)}) + P(\overline{A}B) \log(\frac{P(\overline{A} B)}{P(\overline{A})})$                                                                                                            |
| G        | Gini index          | 01         | $\max(P(A)[P(B A)^2 + P(\overline{B} A)^2] + P(\overline{A}[P(B \overline{A})^2 + P(\overline{B} \overline{A})^2] - P(B)^2 - P(\overline{B})^2,$                                                                  |
|          |                     |            | $P(B)[P(A B)^2 + P(\overline{A} B)^2] + P(\overline{B}[P(A \overline{B})^2 + P(\overline{A} \overline{B})^2] - P(A)^2 - P(\overline{A})^2)$                                                                       |
| s        | support             | 01         | P(A, B)                                                                                                                                                                                                           |
| c        | confidence          | 01         | max(P(B A), P(A B))                                                                                                                                                                                               |
| L        | Laplace             | 01         | $\max(\frac{NP(A,B)+1}{NP(A)+2}, \frac{NP(A,B)+1}{NP(B)+2})$                                                                                                                                                      |
| IS       | Cosine              | 01         | P(A,B)                                                                                                                                                                                                            |
| 1.0      |                     |            | $\sqrt{P(A)P(B)}$                                                                                                                                                                                                 |
| $\gamma$ | coherence(Jaccard)  | 01         | $\frac{P(A,B)}{P(A)+P(B)-P(A,B)}$                                                                                                                                                                                 |
| $\alpha$ | all_confidence      | 0 1        | $\frac{P(A,B)}{\max(P(A),P(B))}$                                                                                                                                                                                  |
| 0        | odds ratio          | 0∞         | $\frac{P(A,B)P(\overline{A},\overline{B})}{P(\overline{A},B)P(A,\overline{B})}$                                                                                                                                   |
| V        | Conviction          | 0.5 ∞      | $\max(\frac{P(A)P(\overline{B})}{P(A \overline{B})}, \frac{P(B)P(\overline{A})}{P(B \overline{A})})$                                                                                                              |
| λ        | lift                | 0 ∞        | P(A,B) $P(A)P(B)$                                                                                                                                                                                                 |
| S        | Collective strength | 0 ∞        | $\frac{P(A,B) + P(\overline{AB})}{P(A)P(B) + P(\overline{A})P(\overline{B})} \times \frac{1 - P(A)P(B) - P(\overline{A})P(\overline{B})}{1 - P(A,B) - P(\overline{AB})}$                                          |
| $\chi^2$ | $\chi^2$            | 0∞         | $\sum_{i} \frac{(P(A_{i}) - E_{i})^{2}}{E_{i}}$                                                                                                                                                                   |