Math 101 Homework 1

Problem 1.

- (a) Prove that there is no rational number whose square is 2.
- (b) Let p be a prime number and n an integer greater than 1. Prove that there is no rational number whose nth power is p.

Problem 2. Let S be a dense subset of \mathbb{R} .

- (i) Suppose $f : \mathbb{R} \to \mathbb{R}$ is continuous and f(x) = 0 for all $x \in S$.
 - (A) Prove, using the *definition* of denseness, that f(x) = 0 for all $x \in \mathbb{R}$.
 - (B) Prove, using the fact that a subset of \mathbb{R} is dense if and only if it is *sequentially dense*, that f(x) = 0 for all $x \in \mathbb{R}$.
- (ii) Suppose f, $g : \mathbb{R} \to \mathbb{R}$ are continuous and f(x) = g(x) for all $x \in S$. Prove that f(x) = g(x) for all $x \in \mathbb{R}$.

Problem 3 (Ahlfors §4.2.3 #2, p. 123). Prove that a function which is analytic in the whole plane and satisfies an inequality $|f(z)| < |z|^n$ for some n and all sufficiently large |z| reduces to a polynomial.

Problem 4. Prove that there are infinitely many prime numbers.

Problem 5. Let p_n be the nth prime number. Prove that the series

$$\sum_{n=1}^{\infty} \frac{1}{p_n} \tag{5.1}$$

diverges.

Problem 6 (Atiyah-Macdonald 1.1). Let x be a nilpotent element of a ring A. Show that 1 + x is a unit of A. Deduce that the sum of a nilpotent element and a unit is a unit.