ELEC 344

Pre-Lab for Experiment: #4	
Section: L1E	
Bench #: 6	
Name	Student ID
Thomas Bement	24099822

Table of Contents:

Table of Contents:	1
1 - Winding Resistance Test	2
2 - No Load Test	2
3 - Blocked Rotor Test	2
4 - Torque Speed Characteristic	3
5 - Torque Speed Characteristic	4

1 - Winding Resistance Test

Measure:
$$V_{DC}$$
 and I_{DC}
$$R_1 = \frac{V_{DC}}{2I_{DC}}$$

2 - No Load Test

Measure: $V_{l-l,NL}$, I_{NL} and P_{NL}

$$\begin{split} \boldsymbol{P}_{loss} &= \boldsymbol{P}_{NL} - \boldsymbol{R}_{1} (\boldsymbol{I}_{NL})^{2} \\ \boldsymbol{V}_{1} &= \frac{\boldsymbol{V}_{l-l,NL}}{\sqrt{3}} \\ \boldsymbol{Q}_{NL} &= \sqrt{(3\boldsymbol{I}_{NL}\boldsymbol{V}_{1})^{2} - (\boldsymbol{P}_{NL})^{2}} \\ \boldsymbol{X}_{1} + \boldsymbol{X}_{m} &= \boldsymbol{X}_{NL} = \frac{\boldsymbol{Q}_{NL}}{3(\boldsymbol{I}_{NL})^{2}} \end{split}$$

Figure 1. Equivalent circuit diagram for a no load test

3 - Blocked Rotor Test

Measure: $V_{l-l,BR}$, I_{BR} and P_{BR}

$$R_{1} + R_{2}' = R_{BR} = \frac{P_{BR}}{3(I_{BR})^{2}}$$

$$V_{1} = \frac{V_{l-l,BR}}{\sqrt{3}}$$

$$X_{BR} = \sqrt{\left(\frac{V_{1}}{I_{BR}}\right)^{2} - \left(R_{BR}\right)^{2}}$$

$$X_{1} \approx X_{2}' = \frac{X_{BR}}{2}$$
 $X_{m} = X_{NL} - X_{1}$
 $R_{2}' = R_{BR} - R_{1}$

Figure 2. Equivalent circuit diagram for a blocked rotor test

4 - Torque Speed Characteristic

Figure 3. Thevenin equivalent circuit diagram

Figure 4. Approximate equivalent circuit diagram

Thevenin :	$\tau_e = \left(\frac{3 \cdot P \cdot (V_{1,th})^2}{2 \cdot \omega_e}\right) \left(\frac{R_2'/S}{(R_{1,th} + R_2'/S)^2 + (X_{1,th} + X_2')^2}\right) where \ \omega_e = 2\pi(60)$
Approximate :	$\tau_e = \left(\frac{3 \cdot P \cdot (V_1)^2}{2 \cdot \omega_e}\right) \left(\frac{R_2' / S}{(R_1 + R_2' / S)^2 + (X_1 + X_2')^2}\right) where \ \omega_e = 2\pi (60)$

5 - Torque Speed Characteristic

Figure 5. Single inductor circuit

$$\begin{split} &V_{1}=L\frac{di}{dt}\\ &V_{1}=\sqrt{2}V_{rms}cos(\omega t)\\ &\sqrt{2}V_{rms}\int cos(\omega t)dt=L\int\frac{di}{dt}dt\\ &\frac{\sqrt{2}V_{rms}}{\omega}sin(\omega t)+C_{1}=Li+C_{2}assume\ C_{1}=C_{2}=0\\ &\frac{\sqrt{2}V_{rms}}{\omega}sin(\omega t)=Li\\ &L=\frac{N\Phi}{i}\\ &\frac{\sqrt{2}V_{rms}}{\omega}sin(\omega t)=i\frac{N\Phi}{i}=N\Phi\\ &\Phi=\frac{\sqrt{2}V_{rms}}{N\omega}sin(\omega t)=\frac{\sqrt{2}V_{rms}}{2\pi Nf}sin(\omega t) \end{split}$$

As can be seen from the derivation above the flux through an inductive element is proportional to the voltage applied to it and inversely proportional to the frequency. As such to maintain a constant flux voltage and frequency should be adjusted together. As such if the voltage is increased, the frequency should also be increased.