

Attested TLS in Contrast

March 11, 2025

Markus Rudy (@burgerdev)

CCC-Attestation SIG Meeting

Contrast

A distribution of Confidential Containers

What is Contrast?

Certificates

Certificate Chain

Roles

(Human) Operator	Coordinator	Initializer
In a secure environment	In a TEE	In a user workload TEE
 Verifier (for Coordinator) Verifier Owner Consumes CA certificates 	 Verifier (for Initializer) Attester (towards Operator) Certificate authority Key Management Service 	Attester (towards Coordinator)Certificate requesterKMS client

02

Attested TLS

The problem

We need to establish an encrypted channel to a server*.

- The server runs in a TEE and can produce evidence.
- The client has an appraisal policy for this evidence.
- The channel must be tied to appraised evidence.
- All server configuration is assumed to be public.

^{*:} the situation for an attesting client is mostly the same

The problem - cont'd

Additional constraints:

- Verify evidence before using the channel.
- Use standard protocols and algorithms.

The problem - cont'd

Not a problem (for us):

- Interoperability/Standardization
- Middle boxes*

High-level design

- Use TLS with self-signed, ephemeral keys.
- Find extension points to transmit attestation data.
- Include TLS channel state in evidence.
- Use hooks from the TLS library to produce evidence.

TLS extension points

- X.509 certificates support arbitrary extensions!
- But:
 - Server cert is sent immediately after ClientHello.
 - Evidence creation needs a nonce from the client.
 - ClientHello has extensions, but they are not accessible.
- Idea: reuse an existing extension!
 - Server Name Indication (SNI)

Attested TLS handshake

Verification goals

Verification goal	Achieved by	
Peer possesses private key for channel.	Successful TLS handshake	
Evidence was created for this channel.	Verifier-supplied nonce in evidence	
Evidence was created by this peer.	Peer's public key in evidence	
Peer created the key inside the TEE.	Appraisal of remaining evidence (workload integrity)	