Домашнее задание по исследованию жестких систем ОДУ. Вариант 13.5

Работу выполнела Кондрашина Анна, 7111

Постановка задачи:

Рассмотрим жесткую систему ОДУ, которая описывает изменение численность некоторой популяции двух видов и эволюцию некого генетического признака α (экогенетическая модель):

$$\dot{x} = x \cdot (1 - 0.5x - rac{2}{7lpha^2} \cdot y)$$

$$\dot{y} = y \cdot (2 \cdot \alpha - 3.5 \cdot \alpha^2 \cdot x - 0.5 \cdot y)$$

$$\dot{\alpha} = \epsilon(2 - 7 \cdot \alpha x)$$

Параметр $\epsilon \leq 0.01$, что означает, что генетический признак меняется незначительно. Начальные условия:

$$y(0) = 1.7$$

$$\alpha(0)=1$$

Конечное время интегрирования $T_k=3000$ Необходимо исследовать систему, получить численные решения.

Проанализируем систему:

Системы будет два положения равновесия: $(\frac{2}{5};\frac{10}{7};\frac{5}{7})$ и $(2;0;\frac{1}{7})$. Линеаризуем систему и найдем собственные числа. Для наглядности покажем, как будут располагаться собственные числа на комплексной плоскости.

Положение равновесия, задающееся координатами $(\frac{2}{5};\frac{10}{7};\frac{5}{7})$, будет иметь следующие собственные числа(см. ниже). Видно, что все они действительны, два из них отрицательны, а одно положительно. То есть это положение равновесия можно классифицировать как седлофокус(устойчивый).

In [667]:

```
im = Image.open('первоепр.png')
im
```

Out[667]:

Для второго положения равновесия $(2;0;\frac{1}{7})$ два собственных числа будут мнимыми, с положительной действительной частью, а третье - отрицательным, действительным. То есть можно классифицировать это положение равновесия, как седло-фокус(неустойчивый) Ниже можно увидеть, как собственные числа располагаются на комплексной плоскости.

In [668]:

```
im1 = Image.open('второепр.png')
im1
```

Out[668]:

методы, используемые для решения задачи

Чтобы посмотреть, как ведет себя система, построим решение следующими численными методами:

Одностадийные:

— CROS - одностадийный метод Розенборка с комплексными коэффициентами. Формула для построения численного решения будет иметь вид:

$$(\mathbf{E} - h \cdot rac{1+i}{2} \cdot \mathbf{Jac}(t_n, y_n) \cdot \omega = f(t_n + h, h * y_n) \ y_{n+1} = y_n + h \cdot Re(\omega)$$

Функция устойчивости этого метода будет иметь вид:

$$R(z) = rac{1}{1-z-z^2/2}$$

Построим функцию устойчивости этого метода. Область устойчивости будем изображать темнозеленым, область неустойчивости - светлозеленым.

In [687]:

Image.open('RCROS.png')

Out[687]:

Функция устойчивости этого метода содержит левую действительную полуплоскость, а значит метод является А-устойчивым. Кроме того, $|R(z)| \to 0$ при $z \to \infty$ как $\frac{1}{z^2}$, поэтому метод будет L2-устойчивым.

— Метод Рунге-Кутты второго порядка апроксимации с таблицей Бутчера(таблица 1):

$$A = egin{pmatrix} rac{1+\sqrt{2}}{2} & 0 \ -\sqrt{2} & rac{1+\sqrt{2}}{2} \end{pmatrix} \ b = egin{pmatrix} rac{1}{2} & rac{1}{2} \end{pmatrix} \ c = egin{pmatrix} rac{1+\sqrt{2}}{2} \ rac{1-\sqrt{2}}{2} \end{pmatrix}$$

Функция устойчивости этого метода будет вычислятся по формуле:

$$R(z) = rac{det(E-zA+zeb^T)}{det(E-zA)}$$

Построим ее. Область устойчивости будем изображать темно-зеленым, область неустойчивости - светлозеленым.

In []:

Image.open('RRK2.png')

Область устойчивости этого метода содержит левую полуплоскость, а значит, он будет А-устойчив.

— Метод Рунге-Кутты второго порядка апроксимации с таблицей Бутчера(таблица 2):

$$A = egin{pmatrix} rac{1-\sqrt{2}}{2} & 0 \ \sqrt{2} & rac{1-\sqrt{2}}{2} \end{pmatrix} \ b = ig(rac{1}{2} & rac{1}{2}ig) \ c = ig(rac{1-\sqrt{2}}{2} \ rac{1+\sqrt{2}}{2} ig) \end{pmatrix}$$

Функция устойчивости этого метода также будт вычисляться по формуле:

$$R(z) = rac{det(E-zA+zeb^T)}{det(E-zA)}$$

Построим ее. Область устойчивости будем изображать темно-зеленым, область неустойчивости - светлозеленым.

In [693]:

Image.open('RRK21.png')

Out[693]:

Этот метод не обладает А-устойчивостью(в этом также можно убедится, построив функцию устойчивости), а значит, и не будет обладать L-устойчивостью

— Метод Рунге-Кутты третьего порядка апроксимации с таблицей Бутчера(таблица 3):

$$A=egin{pmatrix} rac{3+\sqrt{3}}{6} & 0 \ rac{-\sqrt{3}}{3} & rac{3+\sqrt{3}}{6} \end{pmatrix}$$
 $b=\left(rac{1}{2} & rac{1}{2}
ight)$ $c=egin{pmatrix} rac{3+\sqrt{3}}{6} \ rac{3-\sqrt{3}}{6} \end{pmatrix}$

По той же формуле построим функцию устойчивости этого метода

In [694]:

Image.open('RRK3.png')

Out[694]:

Область устойчивости включает в себя левую полуплоскость, то есть метод А-устойчив.

Многостадийные:

— Формула дифференциирования назад. Решение задается формулой:

$$rac{3}{2}y_{n+1}-2y_n+rac{1}{2}y_{n-1}=hf_{n+1}$$

Начальные условия вычислим методом рунге-кутты третьего порядка апроксимации. Функция устойчивости этого метода будет иметь вид: $z(R)=rac{rac{3}{2}R^2(z)-2R(z)+rac{1}{2}}{R^2(z)}$

In [695]:

Image.open('RFDN.png')

Out[695]:

— Формула дифференциирования назад в представлении Нордсика Этот метод является самостоятельно стартующим, то есть при старте можно положить начальный ветор Нордсика равным, например, $(z_0,0,0)$ или $(z_0,hf(z_0),0)$ и тд, что позволит начать вычисления. Стартуя как метод меньшего пордка апроксимации, после прохождения "разгонного" участка, метод стремится к максимально возможному для данной задачи порядку апроксимации.

Результаты расчетов

Построим графики полученных численных решений. Для одностадийных методов решения будут иметь следующий вид:

In [702]:

Image.open('Mono.png')

Out[702]:

Для многошаговых:

In [703]:

Image.open('Poly.png')

Out[703]:

Посчитаем невязки методов для полученных нами решений. Будем считать относительно метода Рунге-Кутты третьего порядка, так как у этого метода наивысший порядок апроксимациииз тех, что спользуются в задаче

In [733]:

Image.open('RFDN.png')

Out[733]:

Видно, что невязка первого метода становится больше со временем. Это происходит из-за неустойчивости метода.

Обсуждение результатов

В ходе работы была исследована экогенетическая модель некой популяции. Аналитически было показано, что данная система будет два положения равновесия: седло-узел(неустойчивый) и седлофокус(также неустойчивый). Решения, построенные численными методами, дали схожий результат: периодическое решение, переходящее от одного положенияравновасия к другому (релаксационные колебания)