

SPORTON International Inc.

No. 52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C. Ph: 886-3-327-3456 / FAX: 886-3-327-0973 / www.sporton.com.tw

FCC RADIO TEST REPORT

Applicant's company	Hitron Technologies Inc.
Applicant Address	No.1-8, Li-Hsin 1st Rd. Hsinchu Science Park, Hsinchu 300, Taiwan
FCC ID	U4P-CGNM2252
Manufacturer's company	Hitron Technologies Inc.
Manufacturer Address	No.1-8, Li-Hsin 1st Rd. Hsinchu Science Park, Hsinchu 300, Taiwan

Product Name	Wireless Cable Gateway
Brand Name	hitron
Model No.	CGNM-2252 & CGNM-3552
Test Rule	47 CFR FCC Part 15 Subpart C § 15.247
Test Freq. Range	2400 ~ 2483.5MHz
Received Date	Mar. 23, 2016
Final Test Date	May 19, 2016
Submission Type	Original Equipment

Statement

Test result included in this report is for the IEEE 802.11n and IEEE 802.11b/g of the product.

The test result in this report refers exclusively to the presented test model / sample.

Without written approval of SPORTON International Inc., the test report shall not be reproduced except in full.

The measurements and test results shown in this test report were made in accordance with the procedures and found in compliance with the limit given in ANSI C63.10-2013, 47 CFR FCC Part 15 Subpart C, KDB558074 D01 v03r05 and KDB 662911 D01 v02r01.

The test equipment used to perform the test is calibrated and traceable to NML/ROC.

Table of Contents

1. V	ERIF	FICATION OF COMPLIANCE	1
2. S	UMN	MARY OF THE TEST RESULT	2
3. G	ENE	ERAL INFORMATION	3
	3.1.	Product Details	
3	3.2.	Accessories	4
3	3.3.	Table for Filed Antenna	5
3	3.4.	Table for Carrier Frequencies	6
3	3.5.	Table for Test Modes	7
3	3.6.	Table for Multiple Listing	8
3	3.7.	Table for Testing Locations	8
3	8.8.	Table for Supporting Units	8
3	3.9.	Table for Parameters of Test Software Setting	9
3	3.10.	EUT Operation during Test	9
3	3.11.	Duty Cycle	9
3	3.12.	Test Configurations	10
4. T	est r	RESULT	12
4	l.1.	AC Power Line Conducted Emissions Measurement	12
4	l.2.	Maximum Conducted Output Power Measurement	16
4	l.3.	Power Spectral Density Measurement	18
4	1.4.	6dB Spectrum Bandwidth Measurement	27
4	l.5.	Radiated Emissions Measurement	34
4	l.6.	Emissions Measurement	52
4	1.7.	Antenna Requirements	70
5. L	IST C	OF MEASURING EQUIPMENTS	71
6. N	/IEAS	SUREMENT UNCERTAINTY	72
ΔΡΡ	END	NY A TEST PHOTOS	Δ1 ~ Δ <i>Δ</i>

History of This Test Report

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FR642211AA	Rev. 01	Initial issue of report	Jun. 14, 2016

Issued Date

Project No: CB10505308

1. VERIFICATION OF COMPLIANCE

Product Name : Wireless Cable Gateway

Brand Name: hitron

Model No. : CGNM-2252 & CGNM-3552

Applicant: Hitron Technologies Inc.

Test Rule Part(s): 47 CFR FCC Part 15 Subpart C § 15.247

Sporton International as requested by the applicant to evaluate the EMC performance of the product sample received on Mar. 23, 2016 would like to declare that the tested sample has been evaluated and found to be in compliance with the tested rule parts. The data recorded as well as the test configuration specified is true and accurate for showing the sample's EMC nature.

Sam Chen

SPORTON INTERNATIONAL INC.

Page No. : 1 of 72

Issued Date : Jun. 14, 2016

Page No.

: 2 of 72

Issued Date : Jun. 14, 2016

2. SUMMARY OF THE TEST RESULT

	Applied Standard: 47 CFR FCC Part 15 Subpart C					
Part	Part Rule Section Description of Test					
4.1	15.207	AC Power Line Conducted Emissions	Complies			
4.2	15.247(b)(3)	Maximum Conducted Output Power	Complies			
4.3	15.247(e)	Power Spectral Density	Complies			
4.4	15.247(a)(2)	6dB Spectrum Bandwidth	Complies			
4.5	15.247(d)	Radiated Emissions	Complies			
4.6	15.247(d)	Band Edge Emissions	Complies			
4.7	15.203	Antenna Requirements	Complies			

3. GENERAL INFORMATION

3.1. Product Details

Items	Description		
Product Type	WLAN (3TX, 3RX)		
Radio Type	Intentional Transceiver		
Power Type	From power adapter		
Modulation	IEEE 802.11b: DSSS		
	IEEE 802.11g: OFDM		
	IEEE 802.11n: see the below table		
Data Modulation	IEEE 802.11b: DSSS (BPSK / QPSK / CCK)		
	IEEE 802.11g/n: OFDM (BPSK / QPSK / 16QAM / 64QAM)		
Data Rate (Mbps)	IEEE 802.11b: DSSS (1/ 2/ 5.5/11)		
	IEEE 802.11g: OFDM (6/9/12/18/24/36/48/54)		
	IEEE 802.11n: see the below table		
Frequency Range	2400 ~ 2483.5MHz		
Channel Number	11 for 20MHz bandwidth ; 7 for 40MHz bandwidth		
Channel Band Width (99%)	IEEE 802.11b: 14.41 MHz		
	IEEE 802.11g: 17.11 MHz		
	IEEE 802.11n MCS0 (HT20): 19.10 MHz		
	IEEE 802.11n MCS0 (HT40): 39.22 MHz		
Maximum Conducted Output	IEEE 802.11b: 28.45 dBm		
Power	IEEE 802.11g: 24.50 dBm		
	IEEE 802.11n MCS0 (HT20): 27.35 dBm		
	IEEE 802.11n MCS0 (HT40): 23.64 dBm		
Carrier Frequencies	Please refer to section 3.4		
Antenna	Please refer to section 3.3		

Items	Description		
Beamforming Function	☐ With beamforming	Without beamforming	

Report Format Version: Rev. 01 Page No. : 3 of 72
FCC ID: U4P-CGNM2252 Issued Date : Jun. 14, 2016

Antenna and Band width

Antenna	Three (TX)			
Band width Mode	20 MHz 40 MHz			
IEEE 802.11b	V	Х		
IEEE 802.11g	V	Х		
IEEE 802.11n	V	V		

IEEE 11n Spec.

Protocol	Number of Transmit Chains (NTX)	Data Rate / MCS
802.11n (HT20)	3	MCS 0-23
802.11n (HT40)	3	MCS 0-23

Note 1: IEEE Std. 802.11n modulation consists of HT20 and HT40 (HT: High Throughput). Then EUT supports HT20 and HT40.

Note 2: Modulation modes consist of below configuration: HT20/HT40: IEEE 802.11n

3.2. Accessories

Power	Brand	Model	Rating
A damta :	Ato ab OFN	ADC0204 WI 20250	Input: 100-240V ~ 50-60Hz 1.0A
Adapter	AtechOEM	ADS0306-W120250	Output: 12V, 2.5A
		Other	
Pedestal*1			

Report Format Version: Rev. 01 FCC ID: U4P-CGNM2252

Page No. : 4 of 72 Issued Date : Jun. 14, 2016

3.3. Table for Filed Antenna

	Brand M			Connector	Gain (dBi)		
Ant.		Model Name	Antenna Type		2.4GHz	5GHz	
						Band 1	Band 4
1	Airgain	N2420GS-T-PK1-G65U	PIFA Antenna	I-PEX	6.25	-	-
2	Airgain	N2420GS-T-PK1-G100U	PIFA Antenna	I-PEX	3.45	-	-
3	Airgain	N2420GS-T-PK1-G160UR2	PIFA Antenna	I-PEX	4.93	-	-
4	Airgain	N5x20BS-T-PK1-G150U	PIFA Antenna	I-PEX	-	3.09	3.09
5	Airgain	N5x20B-T-PK1-B85U	PIFA Antenna	I-PEX	-	4.21	4.21
6	Airgain	N5x20BS-T-PK1-G40U	PIFA Antenna	I-PEX	-	3.80	3.80

Note: The EUT has six antennas.

For 2.4GHz function:

For IEEE 802.11b/g/n mode:

Chain 1, Chain 2 and Chain 3 can be used as transmitting/receiving antenna.

Chain 1, Chain 2 and Chain 3 could transmit/receive simultaneously.

For 5GHz function:

For IEEE 802.11a/n/ac mode:

Chain 4, Chain 5 and Chain 6 can be used as transmitting/receiving antenna.

Chain 4, Chain 5 and Chain 6 could transmit/receive simultaneously.

Page No. : 5 of 72 Issued Date : Jun. 14, 2016

3.4. Table for Carrier Frequencies

There are two bandwidth systems.

For 20MHz bandwidth systems, use Channel 1~Channel 11.

For 40MHz bandwidth systems, use Channel $3\sim$ Channel 9.

Frequency Band	Channel No.	Frequency	Channel No.	Frequency
	1	2412 MHz	7	2442 MHz
	2	2417 MHz	8	2447 MHz
2400 2492 5MU-	3	2422 MHz	9	2452 MHz
2400~2483.5MHz	4	2427 MHz	10	2457 MHz
	5	2432 MHz	11	2462 MHz
	6	2437 MHz	-	-

Page No. : 6 of 72

Issued Date : Jun. 14, 2016

3.5. Table for Test Modes

Preliminary tests were performed in different data rate to find the worst radiated emission. The data rate shown in the table below is the worst-case rate with respect to the specific test item. Investigation has been done on all the possible configurations for searching the worst cases. The following table is a list of the test modes shown in this test report.

Test Items	Mode	Data Rate	Channel	Chain
AC Power Line Conducted Emissions	CTX	-	-	-
Maximum Conducted Output Power	11b/CCK	1 Mbps	1/6/11	1+2+3
	11g/BPSK	6 Mbps	1/6/11	1+2+3
	11n HT20	MC\$0	1/6/11	1+2+3
	11n HT40	MCS0	3/6/9	1+2+3
Power Spectral Density	11b/CCK	1 Mbps	1/6/11	1+2+3
	11g/BPSK	6 Mbps	1/6/11	1+2+3
	11n HT20	MC\$0	1/6/11	1+2+3
	11n HT40	MC\$0	3/6/9	1+2+3
6dB Spectrum Bandwidth	11b/CCK	1 Mbps	1/6/11	1+2+3
	11g/BPSK	6 Mbps	1/6/11	1+2+3
	11n HT20	MC\$0	1/6/11	1+2+3
	11n HT40	MC\$0	3/6/9	1+2+3
Radiated Emissions 9kHz~1GHz	CTX	-	-	-
Radiated Emissions 1GHz~10 th	11b/CCK	1 Mbps	1/6/11	1+2+3
Harmonic	11g/BPSK	6 Mbps	1/6/11	1+2+3
	11n HT20	MCS0	1/6/11	1+2+3
	11n HT40	MCS0	3/6/9	1+2+3
Band Edge Emissions	11b/CCK	1 Mbps	1/6/11	1+2+3
	11g/BPSK	6 Mbps	1/6/11	1+2+3
	11n HT20	MCS0	1/6/11	1+2+3
	11n HT40	MCS0	3/6/9	1+2+3

Note: The EUT can only use Y axis position.

The following test modes were performed for all tests:

For Conducted Emission and Radiated Emission (Below 1GHz) test:

Test Mode 1: CTX - 2.4GHz Test Mode 2: CTX - 5GHz

Mode 1 is the worst case, so it was selected to record in this test report.

 Report Format Version: Rev. 01
 Page No. : 7 of 72

 FCC ID: U4P-CGNM2252
 Issued Date : Jun. 14, 2016

For Co-location MPE:

The EUT could be applied with 2.4GHz WLAN function and 5GHz WLAN function; therefore Co-location Maximum Permissible Exposure (Please refer to FA642211) test is added for simultaneously transmit between 2.4GHz WLAN function and 5GHz WLAN function.

3.6. Table for Multiple Listing

Model Name	Description
CGNM-2252 & CGNM-3552	All the models are identical; the different model
CGINIVI-2232 & CGINIVI-3332	names served as marketing strategy.

3.7. Table for Testing Locations

Test Site Location					
Address:	No.8, L	ane 724, Bo-ai St., Jh	ubei City, Hsinchu C	County 302, Taiwan, R.	O.C.
TEL:	886-3-	656-9065			
FAX:	X: 886-3-656-9085				
Test Site	No.	o. Site Category Location FCC Designation No. IC File No.			
03CH01	-CB	CB SAC Hsin Chu TW0006 IC 4086D			
CO01-	СВ	Conduction Hsin Chu TW0006 IC 4086D			
TH01-0	СВ	OVEN Room	Hsin Chu	-	-

Open Area Test Site (OATS); Semi Anechoic Chamber (SAC).

3.8. Table for Supporting Units

For Test Site No: 03CH01-CB and TH01-CB

Support Unit	Brand	Model	FCC ID
NB	DELL	E4300	DoC

For Test Site No: CO01-CB

Support Unit	Brand	Model	FCC ID
NB	DELL	E6430	DoC
Flash Disk3.0*2	Transcend	JetFlash-700	DoC

Report Format Version: Rev. 01 Page No. : 8 of 72 FCC ID: U4P-CGNM2252 Issued Date : Jun. 14, 2016

3.9. Table for Parameters of Test Software Setting

During testing, Channel and Power Controlling Software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product.

Test Software Version	ART2-GUI					
			Test Freque	ency (MHz)		
Mode	NCB: 20MHz NCB: 40MHz					
	2412 MHz	2437 MHz	2462 MHz	2422 MHz	2437 MHz	2452 MHz
802.11b	23	24	23.5	-	-	-
802.11g	19	22.5	18.5	-	-	-
802.11n MCS0 HT20	17.5	22.5	17	-	-	-
802.11n MCS0 HT40	-	-	-	17	18	16.5

3.10. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

3.11. Duty Cycle

Mode	On Time (ms)	On+Off Time (ms)	Duty Cycle (%)	Duty Factor (dB)	1/T Minimum VBW (kHz)
802.11b	1.000	1.000	100.00%	0.00	0.01
802.11g	1.360	1.410	96.45%	0.16	0.74
802.11n MCS0 HT20	1.270	1.330	95.49%	0.20	0.79
802.11n MCS0 HT40	0.605	0.675	89.63%	0.48	1.65

Report Format Version: Rev. 01 Page No. : 9 of 72
FCC ID: U4P-CGNM2252 Issued Date : Jun. 14, 2016

3.12. Test Configurations

3.12.1. AC Power Line Conduction Emissions Test Configuration

Item	Connection	Shielded	Length
1	Power cable	No	1.5m
2	RJ-45 cable	No	10m
3	RJ-45 cable*3	No	1.5m
4	Coaxial cable	Yes	1.5m

Issued Date : Jun. 14, 2016

3.12.2. Radiation Emissions Test Configuration

Item	Connection	Shielded	Length
1	Power cable	No	1.5 m
2	RJ-45 cable	No	10 m

Issued Date : Jun. 14, 2016

4. TEST RESULT

4.1. AC Power Line Conducted Emissions Measurement

4.1.1. Limit

For this product which is designed to be connected to the AC power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed below limits table.

Frequency (MHz)	QP Limit (dBuV)	AV Limit (dBuV)
0.15~0.5	66~56	56~46
0.5~5	56	46
5~30	60	50

4.1.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the receiver.

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz

4.1.3. Test Procedures

- Configure the EUT according to ANSI C63.10. The EUT or host of EUT has to be placed 0.4 meter far
 from the conducting wall of the shielding room and at least 80 centimeters from any other
 grounded conducting surface.
- 2. Connect EUT or host of EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connected to the other LISNs. The LISN should provide 50uH/50ohms coupling impedance.
- 4. The frequency range from 150 kHz to 30 MHz was searched.
- 5. Set the test-receiver system to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- 6. The measurement has to be done between each power line and ground at the power terminal.

Report Format Version: Rev. 01 Page No. : 12 of 72 FCC ID: U4P-CGNM2252 Issued Date : Jun. 14, 2016

4.1.4. Test Setup Layout

LEGEND:

- (1) Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- (2) I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- (3) EUT connected to one LISN. Unused LISN measuring port connectors shall be terminated in 50 Ω . LISN can be placed on top of, or immediately beneath, reference ground plane.
- (3.1) All other equipment powered from additional LISN(s).
- (3.2) Multiple outlet strip can be used for multiple power cords of non-EUT equipment.
- (3.3) LISN at least 80 cm from nearest part of EUT chassis.
- (4) Cables of hand-operated devices, such as keyboards, mice, etc., shall be placed as for normal use.
- (5) Non-EUT components of EUT system being tested.
- (6) Rear of EUT, including peripherals, shall all be aligned and flush with rear of tabletop.
- (7) Rear of tabletop shall be 40 cm removed from a vertical conducting plane that is bonded to the ground plane.

4.1.5. Test Deviation

There is no deviation with the original standard.

4.1.6. EUT Operation during Test

The EUT was placed on the test table and programmed in normal function.

 Report Format Version: Rev. 01
 Page No.
 : 13 of 72

 FCC ID: U4P-CGNM2252
 Issued Date
 : Jun. 14, 2016

4.1.7. Results of AC Power Line Conducted Emissions Measurement

Temperature	25℃	Humidity	59%
Test Engineer	Da Deng	Phase	Line
Configuration	CTX / Mode 1		

		0ver	Limit	Read	LISN	Cable		
Freq	Level	Limit	Line	Level	Factor	Loss	Pol/Phase	Remark
MHz	dBuV	dB	dBuV	dBuV	dB	dB		
0.1607	42.46	-12.97	55.43	32.42	10.02	0.02	LINE	Average
0.1607	52.24	-13.19	65.43	42.20	10.02	0.02	LINE	QP
0.1864	41.15	-13.05	54.20	31.21	9.92	0.02	LINE	Average
0.1864	50.34	-13.86	64.20	40.40	9.92	0.02	LINE	QP
0.5581	39.58	-6.42	46.00	29.61	9.93	0.04	LINE	Average
0.5581	44.21	-11.79	56.00	34.24	9.93	0.04	LINE	QP
1.9386	25.02	-20.98	46.00	15.00	9.96	0.06	LINE	Average
1.9386	32.31	-23.69	56.00	22.29	9.96	0.06	LINE	QP
15.8014	29.36	-20.64	50.00	18.86	10.24	0.26	LINE	Average
15.8014	36.50	-23.50	60.00	26.00	10.24	0.26	LINE	QP
21.7149	28.37	-21.63	50.00	17.76	10.35	0.26	LINE	Average
21.7149	35.45	-24.55	60.00	24.84	10.35	0.26	LINE	QP
	MHz 0.1607 0.1607 0.1864 0.1864 0.5581 0.5581 1.9386 1.9386 15.8014 15.8014 21.7149	MHz dBuV 0.1607 42.46 0.1607 52.24 0.1864 41.15 0.1864 50.34 0.5581 39.58 0.5581 44.21 1.9386 25.02 1.9386 32.31 15.8014 29.36 15.8014 36.50 21.7149 28.37	Freq Level Limit MHz dBuV dB 0.1607 42.46 -12.97 0.1607 52.24 -13.19 0.1864 41.15 -13.05 0.1864 50.34 -13.86 0.5581 39.58 -6.42 0.5581 44.21 -11.79 1.9386 25.02 -20.98 1.9386 32.31 -23.69 15.8014 29.36 -20.64 15.8014 36.50 -23.50 21.7149 28.37 -21.63	Freq Level Limit Line MHz dBuV dB dBuV 0.1607 42.46 -12.97 55.43 0.1607 52.24 -13.19 65.43 0.1864 41.15 -13.05 54.20 0.1864 50.34 -13.86 64.20 0.5581 39.58 -6.42 46.00 0.5581 44.21 -11.79 56.00 1.9386 25.02 -20.98 46.00 1.9386 32.31 -23.69 56.00 15.8014 29.36 -20.64 50.00 15.8014 36.50 -23.50 60.00 21.7149 28.37 -21.63 50.00	Freq Level Limit Line Level MHz dBuV dB dBuV dBuV 0.1607 42.46 -12.97 55.43 32.42 0.1607 52.24 -13.19 65.43 42.20 0.1864 41.15 -13.05 54.20 31.21 0.1864 50.34 -13.86 64.20 40.40 0.5581 39.58 -6.42 46.00 29.61 0.5581 44.21 -11.79 56.00 34.24 1.9386 25.02 -20.98 46.00 15.00 1.9386 32.31 -23.69 56.00 22.29 15.8014 29.36 -20.64 50.00 18.86 15.8014 36.50 -23.50 60.00 26.00 21.7149 28.37 -21.63 50.00 17.76	Freq Level Limit Line Level Factor MHz dBuV dB dBuV dBuV dB 0.1607 42.46 -12.97 55.43 32.42 10.02 0.1607 52.24 -13.19 65.43 42.20 10.02 0.1864 41.15 -13.05 54.20 31.21 9.92 0.1864 50.34 -13.86 64.20 40.40 9.92 0.5581 39.58 -6.42 46.00 29.61 9.93 0.5581 44.21 -11.79 56.00 34.24 9.93 1.9386 25.02 -20.98 46.00 15.00 9.96 1.9386 32.31 -23.69 56.00 22.29 9.96 15.8014 29.36 -20.64 50.00 18.86 10.24 15.8014 36.50 -23.50 60.00 26.00 10.24 21.7149 28.37 -21.63 50.00 17.76 10.35	Freq Level Limit Line Level Factor Loss MHz dBuV dB dBuV dBuV dB dB 0.1607 42.46 -12.97 55.43 32.42 10.02 0.02 0.1607 52.24 -13.19 65.43 42.20 10.02 0.02 0.1864 41.15 -13.05 54.20 31.21 9.92 0.02 0.1864 50.34 -13.86 64.20 40.40 9.92 0.02 0.5581 39.58 -6.42 46.00 29.61 9.93 0.04 0.5581 44.21 -11.79 56.00 34.24 9.93 0.04 1.9386 25.02 -20.98 46.00 15.00 9.96 0.06 1.9386 32.31 -23.69 56.00 22.29 9.96 0.06 15.8014 29.36 -20.64 50.00 18.86 10.24 0.26 15.8014 36.50 -23.50 </td <td>Freq Level Limit Line Level Factor Loss Pol/Phase MHz dBuV dB dBuV dB dB dB 0.1607 42.46 -12.97 55.43 32.42 10.02 0.02 LINE 0.1607 52.24 -13.19 65.43 42.20 10.02 0.02 LINE 0.1864 41.15 -13.05 54.20 31.21 9.92 0.02 LINE 0.1864 50.34 -13.86 64.20 40.40 9.92 0.02 LINE 0.5581 39.58 -6.42 46.00 29.61 9.93 0.04 LINE 0.5581 44.21 -11.79 56.00 34.24 9.93 0.04 LINE 1.9386 25.02 -20.98 46.00 15.00 9.96 0.06 LINE 1.9386 32.31 -23.69 56.00 22.29 9.96 0.06 LINE 15.8014 29.36 -20.64 50.00 18.86 10.24 0.26 LINE 15.</td>	Freq Level Limit Line Level Factor Loss Pol/Phase MHz dBuV dB dBuV dB dB dB 0.1607 42.46 -12.97 55.43 32.42 10.02 0.02 LINE 0.1607 52.24 -13.19 65.43 42.20 10.02 0.02 LINE 0.1864 41.15 -13.05 54.20 31.21 9.92 0.02 LINE 0.1864 50.34 -13.86 64.20 40.40 9.92 0.02 LINE 0.5581 39.58 -6.42 46.00 29.61 9.93 0.04 LINE 0.5581 44.21 -11.79 56.00 34.24 9.93 0.04 LINE 1.9386 25.02 -20.98 46.00 15.00 9.96 0.06 LINE 1.9386 32.31 -23.69 56.00 22.29 9.96 0.06 LINE 15.8014 29.36 -20.64 50.00 18.86 10.24 0.26 LINE 15.

Temperature	25 ℃	Humidity	59%
Test Engineer	Da Deng	Phase	Neutral
Configuration	CTX / Mode 1		

			0ver	Limit	Read	LISN	Cable		
	Freq	Level	Limit	Line	Level	Factor	Loss	Pol/Phase	Remark
	MHz	dBuV	dB	dBuV	dBuV	dB	dB		
1	0.1582	34.23	-21.33	55.56	24.19	10.02	0.02	NEUTRAL	Average
2	0.1582	44.02	-21.54	65.56	33.98	10.02	0.02	NEUTRAL	QP
3	0.1904	39.91	-14.11	54.02	29.97	9.92	0.02	NEUTRAL	Average
4	0.1904	51.16	-12.86	64.02	41.22	9.92	0.02	NEUTRAL	QP
5	0.2878	33.72	-16.87	50.59	23.76	9.92	0.04	NEUTRAL	Average
6	0.2878	42.66	-17.93	60.59	32.70	9.92	0.04	NEUTRAL	QP
7	0.4480	29.21	-17.70	46.91	19.25	9.92	0.04	NEUTRAL	Äverage
8	0.4480	37.77	-19.14	56.91	27.81	9.92	0.04	NEUTRAL	QP
9	0.5210	34.25	-11.75	46.00	24.29	9.92	0.04	NEUTRAL	Äverage
10	0.5210	41.91	-14.09	56.00	31.95	9.92	0.04	NEUTRAL	QP
11	16.1399	27.83	-22.17	50.00	17.32	10.25	0.26	NEUTRAL	Average
12	16.1399	34.98	-25.02	60.00	24.47	10.25	0.26	NEUTRAL	QP
									C.

Note:

 $\label{eq:Level} \text{Level} = \text{Read Level} + \text{LISN Factor} + \text{Cable Loss}.$

4.2. Maximum Conducted Output Power Measurement

4.2.1. Limit

The limit for output power is 30dBm.

4.2.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the power meter.

Power Meter Parameter	Setting
Bandwidth	50MHz bandwidth is greater than the EUT emission bandwidth
Detector	Average

4.2.3. Test Procedures

- 1. Test procedures refer KDB558074 D01 v03r05 section 9.2.3.2 Measurement using a power meter (PM).
- 2. Multiple antenna systems was performed in accordance with KDB 662911 D01 v02r01 Emissions Testing of Transmitters with Multiple Outputs in the Same Band.
- 3. This procedure provides an alternative for determining the RMS output power using a broadband RF average power meter with a thermocouple detector.

4.2.4. Test Setup Layout

4.2.5. Test Deviation

There is no deviation with the original standard.

4.2.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

Report Format Version: Rev. 01 Page No. : 16 of 72 FCC ID: U4P-CGNM2252 Issued Date : Jun. 14, 2016

4.2.7. Test Result of Maximum Conducted Output Power

Temperature	24°C	Humidity	60%
Test Engineer	Clemens Fang	Test Date	May 12, 2016 ~ May 13, 2016

Mode	Eroguepov	(Conducted	Max. Limit	Result		
Wode	Frequency	Chain 1	Chain 2	Chain 3	Total	(dBm)	Resuli
	2412 MHz	21.95	18.31	20.01	25.11	29.75	Complies
802.11b	2437 MHz	24.01	23.29	23.71	28.45	29.75	Complies
	2462 MHz	23.78	22.75	23.15	28.02	29.75	Complies
	2412 MHz	19.67	20.17	19.31	24.50	29.75	Complies
802.11g	2437 MHz	19.58	20.15	19.42	24.50	29.75	Complies
	2462 MHz	19.03	17.84	18.81	23.36	29.75	Complies
802.11n	2412 MHz	18.22	18.02	17.53	22.70	29.75	Complies
MCS0 HT20	2437 MHz	22.45	22.72	22.57	27.35	29.75	Complies
MCSU HIZU	2462 MHz	17.59	16.71	17.27	21.98	29.75	Complies
802.11n	2422 MHz	18.59	18.63	18.17	23.24	29.75	Complies
MCS0 HT40	2437 MHz	17.91	19.11	19.44	23.64	29.75	Complies
WIC30 H140	2452 MHz	18.30	17.31	16.51	22.21	29.75	Complies

Note: Antenna gain=6.25 dBi, so limit = 30-(6.25-6)=29.75 dBm.

Page No. : 17 of 72 Issued Date : Jun. 14, 2016

4.3. Power Spectral Density Measurement

4.3.1. Limit

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

4.3.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	Set the span to 1.5 times the DTS channel bandwidth.
RBW	3 kHz ≤ RBW ≤ 100kHz
VBW	≥ 3 x RBW
Detector	Peak
Trace	Max Hold
Sweep Time	Auto couple

4.3.3. Test Procedures

- Test was performed in accordance with KDB558074 D01 v03r05 for Performing Compliance
 Measurements on Digital Transmission Systems (DTS) section 10.2 Method PKPSD (peak PSD) and
 KDB 662911 D01 v02r01 section In-Band Power Spectral Density (PSD) Measurements option (b)
 Measure and sum spectral maximal across the outputs.
- Use this procedure when the maximum conducted output power in the fundamental emission is
 used to demonstrate compliance. The EUT must be configured to transmit continuously at full power
 over the measurement duration.
- 3. Ensure that the number of measurement points in the sweep ≥ 2 x span/RBW (use of a greater number of measurement points than this minimum requirement is recommended).
- 4. Use the peak marker function to determine the maximum level in any 3 kHz band segment within the fundamental EBW.
- 5. The resulting PSD level must be \leq 8 dBm.

4.3.4. Test Setup Layout

 Report Format Version: Rev. 01
 Page No. : 18 of 72

 FCC ID: U4P-CGNM2252
 Issued Date : Jun. 14, 2016

4.3.5. Test Deviation

There is no deviation with the original standard.

4.3.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

 Report Format Version: Rev. 01
 Page No.
 : 19 of 72

 FCC ID: U4P-CGNM2252
 Issued Date
 : Jun. 14, 2016

4.3.7. Test Result of Power Spectral Density

Temperature	24°C	Humidity	60%
Test Engineer	Clemens Fang		

Mode	Eroguenov	Power Density (dBm/3kHz)				Power Density Limit	Result
Wode Treque	Frequency	Chain 1	Chain 2	Chain 3	Total	(dBm/3kHz)	Resuli
	2412 MHz	-11.01	-10.38	-10.95	-6.00	4.28	Complies
802.11b	2437 MHz	-11.88	-11.97	-11.94	-7.16	4.28	Complies
	2462 MHz	-12.39	-12.39	-11.35	-7.24	4.28	Complies
	2412 MHz	-8.04	-7.13	-6.42	-2.38	4.28	Complies
802.11g	2437 MHz	-2.84	-4.30	-3.91	1.13	4.28	Complies
	2462 MHz	-8.28	-7.67	-8.00	-3.20	4.28	Complies
802.11n	2412 MHz	-10.02	-9.28	-9.06	-4.66	4.28	Complies
MCS0 HT20	2437 MHz	-2.75	-4.43	-4.83	0.86	4.28	Complies
IVICSU HIZU	2462 MHz	-10.28	-11.17	-10.56	-5.88	4.28	Complies
802.11n	2422 MHz	-13.07	-11.15	-12.00	-7.23	4.28	Complies
MCS0 HT40	2437 MHz	-10.02	-10.43	-10.59	-5.57	4.28	Complies
IVICSU H14U	2452 MHz	-11.77	-12.80	-13.79	-7.94	4.28	Complies

Note:
$$Directional Gain = 10 \cdot \log \left[\frac{\sum_{j=1}^{N_{SS}} \left\{ \sum_{k=1}^{N_{ANT}} g_{j,k} \right\}^2}{N_{ANT}} \right] = 9.72 dBi$$
, so $limit = 8 - (9.72 - 6) = 4.28 dBm/3kHz$.

Note: All the test values were listed in the report.

For plots, only the channel with worse result was shown.

Report Format Version: Rev. 01 Page No. : 20 of 72 FCC ID: U4P-CGNM2252 Issued Date : Jun. 14, 2016

Power Density Plot on Configuration IEEE 802.11b / 2412 MHz / Chain 1

Date: 12.MAY.2016 20:31:45

Power Density Plot on Configuration IEEE 802.11b / 2412 MHz / Chain 2

Date: 12.MAY.2016 20:32:30

Issued Date : Jun. 14, 2016

Page No.

Power Density Plot on Configuration IEEE 802.11b / 2412 MHz / Chain 3

Date: 12.MAY.2016 20:32:48

Power Density Plot on Configuration IEEE 802.11g / 2437 MHz / Chain 1

Date: 12.MAY.2016 20:43:08

Power Density Plot on Configuration IEEE 802.11g / 2437 MHz / Chain 2

Date: 12.MAY.2016 20:42:47

Power Density Plot on Configuration IEEE 802.11g / 2437 MHz / Chain 3

Date: 12.MAY.2016 20:42:29

Page No. : 23 of 72 Issued Date : Jun. 14, 2016

Power Density Plot on Configuration IEEE 802.11n MCS0 HT20 / 2437 MHz / Chain 1

Date: 12.MAY.2016 20:48:03

Power Density Plot on Configuration IEEE 802.11n MCS0 HT20 / 2437 MHz / Chain 2

Date: 12.MAY.2016 20:48:17

Power Density Plot on Configuration IEEE 802.11n MCS0 HT20 / 2437 MHz / Chain 3

Date: 12.MAY.2016 20:48:29

Power Density Plot on Configuration IEEE 802.11n MCS0 HT40 / 2437 MHz / Chain 1

Date: 12.MAY.2016 20:54:00

Power Density Plot on Configuration IEEE 802.11n MCS0 HT40 / 2437 MHz / Chain 2

Date: 12.MAY.2016 20:53:41

Power Density Plot on Configuration IEEE 802.11n MCS0 HT40 / 2437 MHz / Chain 3

Date: 12.MAY.2016 20:53:22

4.4. 6dB Spectrum Bandwidth Measurement

4.4.1. Limit

For digital modulation systems, the minimum 6 dB bandwidth shall be at least 500 kHz.

4.4.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the Spectrum Analyzer.

	6dB Spectrum Bandwidth	
Spectrum Parameters	Setting	
Attenuation	Auto	
Span Frequency	> 6dB Bandwidth	
RBW	100kHz	
VBW	≥ 3 x RBW	
Detector Peak		
Trace	Max Hold	
Sweep Time	Auto	
	99% Occupied Bandwidth	
Spectrum Parameters	Setting	
Span	1.5 times to 5.0 times the OBW	
RBW	1 % to 5 % of the OBW	
VBW	≥ 3 x RBW	
Detector	Peak	
Trace	Max Hold	

4.4.3. Test Procedures

For Radiated 6dB Bandwidth Measurement:

- 1. The transmitter was radiated to the spectrum analyzer in peak hold mode.
- 2. Test was performed in accordance with KDB558074 D01 v03r05 for Performing Compliance Measurements on Digital Transmission Systems (DTS) section 8.0 DTS bandwidth=> 8.1 Option 1.
- 3. Multiple antenna system was performed in accordance with KDB 662911 D01 v02r01 Emissions Testing of Transmitters with Multiple Outputs in the Same Band.
- 4. Measured the spectrum width with power higher than 6dB below carrier.

4.4.4. Test Setup Layout

For Radiated 6dB Bandwidth Measurement:

This test setup layout is the same as that shown in section 4.5.4.

 Report Format Version: Rev. 01
 Page No. : 27 of 72

 FCC ID: U4P-CGNM2252
 Issued Date : Jun. 14, 2016

4.4.5. Test Deviation

There is no deviation with the original standard.

4.4.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

 Report Format Version: Rev. 01
 Page No.
 : 28 of 72

 FCC ID: U4P-CGNM2252
 Issued Date
 : Jun. 14, 2016

4.4.7. Test Result of 6dB Spectrum Bandwidth

Temperature	24°C	Humidity	60%
Test Engineer	Clemens Fang		

Mode	Frequency	6dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)	Min. Limit (kHz)	Test Result
	2412 MHz	11.54	14.41	500	Complies
802.11b	2437 MHz	5.57	14.07	500	Complies
	2462 MHz	5.57	11.11	500	Complies
	2412 MHz	11.83	16.93	500	Complies
802.11g	2437 MHz	11.30	17.11	500	Complies
	2462 MHz	15.42	16.85	500	Complies
802.11n	2412 MHz	17.57	17.45	500	Complies
	2437 MHz	17.80	19.10	500	Complies
MCS0 HT20	2462 MHz	13.57	18.58	500	Complies
900 lln	2422 MHz	33.74	39.22	500	Complies
802.11n	2437 MHz	36.52	36.03	500	Complies
MCS0 HT40	2452 MHz	36.64	36.61	500	Complies

Note: All the test values were listed in the report.

For plots, only the channel with worse result was shown.

Report Format Version: Rev. 01 FCC ID: U4P-CGNM2252

Page No. : 29 of 72 Issued Date : Jun. 14, 2016

6 dB Bandwidth Plot on Configuration IEEE 802.11b / 2437 MHz / Chain 1 + Chain 2 + Chain 3

Date: 12.MAY.2016 21:01:38

99% Occupied Bandwidth Plot on Configuration IEEE 802.11b / 2412 MHz / Chain 1 + Chain 2 + Chain 3

Date: 12.MAY.2016 21:12:03

Issued Date : Jun. 14, 2016

Page No.

6 dB Bandwidth Plot on Configuration IEEE 802.11g / 2437 MHz / Chain 1 + Chain 2 + Chain 3

Date: 12.MAY.2016 21:04:06

99% Occupied Bandwidth Plot on Configuration IEEE 802.11g / 2462 MHz / Chain 1 + Chain 2 + Chain 3

Date: 12.MAY.2016 21:15:29

Page No. : 31 of 72 Issued Date : Jun. 14, 2016

6 dB Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT20 / 2462 MHz / Chain 1 + Chain 2 + Chain 3

Date: 12.MAY.2016 21:07:25

99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT20 / 2412 MHz / Chain 1 + Chain 2 + Chain 3

Date: 12.MAY.2016 21:16:02

Page No. : 32 of 72 Issued Date : Jun. 14, 2016

6 dB Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT40 / 2422 MHz / Chain 1 + Chain 2 + Chain 3

Date: 12.MAY.2016 21:08:06

99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS0 HT40 / 2437 MHz / Chain 1 + Chain 2 + Chain 3

Date: 12.MAY.2016 21:19:14

Page No. : 33 of 72 Issued Date : Jun. 14, 2016

4.5. Radiated Emissions Measurement

4.5.1. Limit

30dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequencies	Field Strength	Measurement Distance			
(MHz)	(micorvolts/meter)	(meters)			
0.009~0.490	2400/F(kHz)	300			
0.490~1.705	24000/F(kHz)	30			
1.705~30.0	30	30			
30~88	100	3			
88~216	150	3			
216~960	200	3			
Above 960	500	3			

4.5.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of spectrum analyzer and receiver.

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RBW / VBW (Emission in restricted band)	1 MHz / 3MHz for Peak,
	1MHz / 1/T for Average
RBW / VBW (Emission in non-restricted band)	100kHz / 300kHz for peak

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RBW 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RBW 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RBW 120kHz for QP

Report Format Version: Rev. 01 Page No. : 34 of 72 FCC ID: U4P-CGNM2252 Issued Date : Jun. 14, 2016

4.5.3. Test Procedures

Configure the EUT according to ANSI C63.10. The EUT was placed on the top of the turntable 1.5
meter above ground. The phase center of the receiving antenna mounted on the top of a
height-variable antenna tower was placed 1m & 3m far away from the turntable.

- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emissions, the antenna tower was scan (from 1 m to 4 m) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. For emissions above 1GHz, use 1MHz VBW and 3MHz RBW for peak reading. Then 1MHz RBW and 1/T VBW for average reading in spectrum analyzer.
- 7. If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz.
- 8. For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- 9. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High Low scan is not required in this case.

4.5.4. Test Setup Layout

For Radiated Emissions: 9kHz ~30MHz

For Radiated Emissions: 30MHz~1GHz

For Radiated Emissions: Above 1GHz

4.5.5. Test Deviation

There is no deviation with the original standard.

4.5.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

 Report Format Version: Rev. 01
 Page No.
 : 36 of 72

 FCC ID: U4P-CGNM2252
 Issued Date
 : Jun. 14, 2016

4.5.7. Results of Radiated Emissions (9kHz~30MHz)

Temperature	22°C	Humidity	54%
Test Engineer	Gino Huang	Configurations	CTX / Mode 1
Test Date	May 18, 2016		

Freq.	Level	Over Limit	Limit Line	Remark
(MHz)	(dBuV)	(dB)	(dBuV)	
-	-	-	-	See Note

Note:

The amplitude of spurious emissions which are attenuated by more than 20 dB below the permissible value has no need to be reported.

Distance extrapolation factor = 40 log (specific distance / test distance) (dB);

 $\label{eq:limits} \mbox{Limit line} = \mbox{specific limits (dBuV)} + \mbox{distance extrapolation factor}.$

Report Format Version: Rev. 01 FCC ID: U4P-CGNM2252

Page No. : 37 of 72 Issued Date : Jun. 14, 2016

4.5.8. Results of Radiated Emissions (30MHz~1GHz)

Temperature	22°C	Humidity	54%
Test Engineer	Gino Huang	Configurations	CTX / Mode 1

Horizontal

	Freq	Level	Limit Line					Preamp Factor		T/Pos	Remark	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg		
1	38.73	30.69	40.00	-9.31	42.49	0.62	20.21	32.63	100	0	Peak	HORIZONTAL
2	84.32	31.20	40.00	-8.80	48.99	0.92	13.87	32.58	150	128	Peak	HORIZONTAL
3	137.67	34.49	43.50	-9.01	48.20	1.15	17.70	32.56	150	128	Peak	HORIZONTAL
4	375.32	36.47	46.00	-9.53	45.48	1.90	21.63	32.54	100	253	Peak	HORIZONTAL
5	625.58	39.86	46.00	-6.14	45.03	2.44	25.06	32.67	100	286	Peak	HORIZONTAL
6	875 84	36 73	46 00	-9 27	38 53	2 89	27 30	31 99	200	293	Peak	HORTZONTAL

Vertical

	Freq	Level		Over Limit							Remark	Pol/Phase
-	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	Cm	deg		
1	34.85	36.81	40.00	-3.19	46.28	0.60	22.57	32.64	125	174	Peak	VERTICAL
2	88.20	37.65	43.50	-5.85	54.75	0.94	14.54	32.58	100	2	Peak	VERTICAL
3	375.32	35.15	46.00	-10.85	44.16	1.90	21.63	32.54	150	4	Peak	VERTICAL
4	625.58	41.55	46.00	-4.45	46.72	2.44	25.06	32.67	100	270	Peak	VERTICAL
5	750.71	35.97	46.00	-10.03	39.67	2.69	26.10	32.49	100	296	Peak	VERTICAL
6	875.84	37.34	46.00	-8.66	39.14	2.89	27.30	31.99	100	272	Peak	VERTICAL

Note:

The amplitude of spurious emissions which are attenuated by more than 20 dB below the permissible value has no need to be reported.

Emission level (dBuV/m) = $20 \log Emission$ level (uV/m).

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

Page No. : 39 of 72

Issued Date : Jun. 14, 2016

4.5.9. Results for Radiated Emissions (1GHz \sim 10th Harmonic)

Temperature	22°C	Humidity	54%						
Test Engineer	Cina Huana	Configurations	IEEE 802.11b CH 1 /						
lesi Erigineei	Gino Huang	Cornigulations	Chain 1 + Chain 2 + Chain 3						
Test Date	Mar. 24, 2016 ~ May 18, 2016								

Horizontal

	Freq	Level		Over Limit				Preamp Factor	A/Pos	T/Pos	Remark	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg		
1	4823.98	52.92	74.00	-21.08	46.64	8.19	31.12	33.03	181	345	Peak	HORIZONTAL
2	4824.00	48.67	54.00	-5.33	42.39	8.19	31.12	33.03	181	345	Average	HORIZONTAL
3	12058.80	50.84	54.00	-3.16	33.93	13.14	38.96	35.19	138	327	Average	HORIZONTAL
4	12061.72	60.67	74.00	-13.33	43.76	13.14	38.96	35.19	138	327	Peak	HORIZONTAL

Vertical

	Freq	Level		Over Limit				Preamp Factor	A/Pos	T/Pos	Remark	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg		
1	4823.89	49.25	74.00	-24.75	42.97	8.19	31.12	33.03	173	273	Peak	VERTICAL
2	4824.03	41.48	54.00	-12.52	35.20	8.19	31.12	33.03	173	273	Average	VERTICAL
3	12058.36	59.51	74.00	-14.49	42.60	13.14	38.96	35.19	185	180	Peak	VERTICAL
4	12058.68	50.42	54.00	-3.58	33.51	13.14	38.96	35.19	185	180	Average	VERTICAL

Page No. : 40 of 72 Issued Date : Jun. 14, 2016

Temperature	22 °C	Humidity	54%					
Test Engineer	Cina Huana	Configurations	IEEE 802.11b CH 6 /					
	Gino Huang	Configurations	Chain 1 + Chain 2 + Chain 3					
Test Date	Mar. 24, 2016 ~ May 18, 2016							

	Freq	Level		Over Limit				Preamp Factor	A/Pos	T/Pos	Remark	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg		
1	4873.94	48.49	54.00	-5.51	41.94	8.35	31.21	33.01	163	344	Average	HORIZONTAL
2	4874.15	53.36	74.00	-20.64	46.81	8.35	31.21	33.01	163	344	Peak	HORIZONTAL
3	7310.24	53.86	54.00	-0.14	41.35	10.70	35.99	34.18	162	336	Average	HORIZONTAL
4	7312.48	60.66	74.00	-13.34	48.15	10.70	35.99	34.18	162	336	Peak	HORIZONTAL
5	12186.72	53.02	54.00	-0.98	36.17	13.20	38.82	35.17	151	327	Average	HORIZONTAL
6	12187.30	62.94	74.00	-11.06	46.09	13.20	38.82	35.17	151	327	Peak	HORIZONTAL

Vertical

	Freq	Level	Limit Line	over Limit				Preamp Factor	A/Pos	T/Pos	Remark	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg		
1	4873.78	52.21	74.00	-21.79	45.66	8.35	31.21	33.01	165	308	Peak	VERTICAL
2	4873.94	43.33	54.00	-10.67	36.78	8.35	31.21	33.01	165	308	Average	VERTICAL
3	7310.24	53.75	54.00	-0.25	41.24	10.70	35.99	34.18	150	292	Average	VERTICAL
4	7311.96	61.04	74.00	-12.96	48.53	10.70	35.99	34.18	150	292	Peak	VERTICAL
5	12185.80	62.95	74.00	-11.05	46.10	13.20	38.82	35.17	144	184	Peak	VERTICAL
6	12186.76	53.80	54.00	-0.20	36.95	13.20	38.82	35.17	144	184	Average	VERTICAL

Page No. : 41 of 72 Issued Date : Jun. 14, 2016

Temperature	22°C	Humidity	54%					
Toot Engineer	Cina Hugna	Configurations	IEEE 802.11b CH 11 /					
Test Engineer	Gino Huang	Configurations	Chain 1 + Chain 2 + Chain 3					
Test Date	Mar. 24, 2016 ~ May 18, 2016							

	Freq	Level		Over Limit				Preamp Factor	A/Pos	T/Pos	Remark	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg		
1	4924.05	49.00	54.00	-5.00	42.20	8.50	31.29	32.99	205	353	Average	HORIZONTAL
2	4924.14	53.31	74.00	-20.69	46.51	8.50	31.29	32.99	205	353	Peak	HORIZONTAL
3	12310.52	61.17	74.00	-12.83	44.38	13.26	38.68	35.15	205	353	Peak	HORIZONTAL
4	12310.80	52.21	54.00	-1.79	35.42	13.26	38.68	35.15	205	353	Average	HORIZONTAL

	Freq	Level		Over Limit				•	A/Pos	T/Pos	Remark	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	Cm	deg		
1	4923.92	49.90	74.00	-24.10	43.10	8.50	31.29	32.99	194	312	Peak	VERTICAL
2	4924.02	40.54	54.00	-13.46	33.74	8.50	31.29	32.99	194	312	Average	VERTICAL
3	12310.84	51.90	54.00	-2.10	35.11	13.26	38.68	35.15	202	167	Average	VERTICAL
4	12310.88	61.54	74.00	-12.46	44.75	13.26	38.68	35.15	202	167	Peak	VERTICAL

Temperature	22°C	Humidity	54%					
Test Engineer	Cino Huana	Configurations	IEEE 802.11g CH 1 /					
Test Engineer	Gino Huang	Configurations	Chain 1 + Chain 2 + Chain 3					
Test Date	Mar. 24, 2016 ~ May 18, 2016							

	Freq	Level		Over Limit					A/Pos	T/Pos	Remark	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg		
1	4821.44	34.79	54.00	-19.21	28.51	8.19	31.12	33.03	209	259	Average	HORIZONTAL
2	4821.48	34.30	54.00	-19.70	28.02	8.19	31.12	33.03	209	259	Average	HORIZONTAL
3	4823.40	48.18	74.00	-25.82	41.90	8.19	31.12	33.03	209	259	Peak	HORIZONTAL
4	4833.36	47.89	74.00	-26.11	41.54	8.23	31.14	33.02	209	259	Peak	HORIZONTAL

	Freq	Level	Limit Line	Over Limit				Preamp Factor	A/Pos	T/Pos	Remark	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	Cm	deg		
1	4815.52	46.21	74.00	-27.79	39.93	8.19	31.12	33.03	180	44	Peak	VERTICAL
2	4820.16	34.19	54.00	-19.81	27.91	8.19	31.12	33.03	180	44	Average	VERTICAL
3	4825.28	34.75	54.00	-19.25	28.41	8.23	31.14	33.03	180	44	Average	VERTICAL
4	4826.04	47.81	74.00	-26.19	41.47	8.23	31.14	33.03	180	44	Peak	VERTICAL

Temperature	22°C	Humidity	54%					
Test Engineer	Gino Huang	Configurations	IEEE 802.11g CH 6 / Chain 1 + Chain 2 + Chain 3					
Test Date	Mar. 24, 2016 ~ May 18, 2016							

	Freq	Level		Over Limit						T/Pos	Remark	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg		
1	4874.30	35.56	54.00	-18.44	29.01	8.35	31.21	33.01	190	360	Average	HORIZONTAL
2	4881.00	48.50	74.00	-25.50	41.94	8.35	31.21	33.00	190	360	Peak	HORIZONTAL
3	7314.60	48.88	54.00	-5.12	36.37	10.70	35.99	34.18	214	333	Average	HORIZONTAL
4	7315.40	63.36	74.00	-10.64	50.85	10.70	35.99	34.18	214	333	Peak	HORIZONTAL

	Freq	Level		Over Limit				Preamp Factor	A/Pos	T/Pos	Remark	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg		
1	4875.90	34.08	54.00	-19.92	27.53	8.35	31.21	33.01	159	0	Average	VERTICAL
2	4878.22	47.16	74.00	-26.84	40.60	8.35	31.21	33.00	159	0	Peak	VERTICAL
3	7314.20	47.62	54.00	-6.38	35.11	10.70	35.99	34.18	167	286	Average	VERTICAL
4	7314.32	61.45	74.00	-12.55	48.94	10.70	35.99	34.18	167	286	Peak	VERTICAL

Temperature	22°C	Humidity	54%					
Test Engineer	Cina Hugna	Configurations	IEEE 802.11g CH 11 /					
Test Engineer	Gino Huang	Configurations	Chain 1 + Chain 2 + Chain 3					
Test Date	Mar. 24, 2016 ~ May 18, 2016							

Horizontal

	Freq	Level		Over Limit				Preamp Factor	A/Pos	T/Pos	Remark	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg		
1 2	4918.68 4931.48								188 188		Average Peak	HORIZONTAL HORIZONTAL

Vertical

	Freq	Level		Over Limit				Preamp Factor	A/Pos	T/Pos	Remark	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg	-	
1 2	4916.48 4919.56							32.99 32.99	203 203		Peak Average	VERTICAL VERTICAL

Page No. : 45 of 72 Issued Date : Jun. 14, 2016

Temperature	22°C	Humidity	54%					
Test Engineer	Gino Huang	Configurations	IEEE 802.11n MCS0 HT20 CH 1 /					
	Gino ridding	Cornigulations	Chain 1 + Chain 2 + Chain 3					
Test Date	Mar. 24, 2016 ~ May	2016 ~ May 18, 2016						

Horizontal

	Freq	Level		Over Limit				Preamp Factor	A/Pos	T/Pos	Remark	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg		
1 2	4822.28 4827.40							33.03 33.03	195 195		Average Peak	HORIZONTAL HORIZONTAL

	Freq	Level		Over Limit				Preamp Factor		T/Pos	Remark	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg		
1 2	4814.76 4817.52								175 175		Average Peak	VERTICAL VERTICAL

Temperature	22°C	Humidity	54%					
Test Engineer	Cina Hugna	Configurations	IEEE 802.11n MCS0 HT20 CH 6 /					
Test Engineer	Gino Huang	Configurations	Chain 1 + Chain 2 + Chain 3					
Test Date	Mar. 24, 2016 ~ May 18, 2016							

	Freq	Level		Over Limit						T/Pos	Remark	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg		
1	4876.08	49.01	74.00	-24.99	42.46	8.35	31.21	33.01	176	354	Peak	HORIZONTAL
2	4877.40	35.86	54.00	-18.14	29.30	8.35	31.21	33.00	176	354	Average	HORIZONTAL
3	7309.90	63.29	74.00	-10.71	50.78	10.70	35.99	34.18	180	336	Peak	HORIZONTAL
4	7310.10	46.72	54.00	-7.28	34.21	10.70	35.99	34.18	180	336	Average	HORIZONTAL

Vertical

	Freq	Level		Over Limit				Preamp Factor	A/Pos	T/Pos	Remark	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg		
1	4874.00	34.45	54.00	-19.55	27.90	8.35	31.21	33.01	197	331	Average	VERTICAL
2	4888.10	46.89	74.00	-27.11	40.27	8.39	31.23	33.00	197	331	Peak	VERTICAL
3	7312.50	60.52	74.00	-13.48	48.01	10.70	35.99	34.18	187	264	Peak	VERTICAL
4	7314.80	46.32	54.00	-7.68	33.81	10.70	35.99	34.18	187	264	Average	VERTICAL

Page No. : 47 of 72 Issued Date : Jun. 14, 2016

Temperature	22°C	Humidity	54%					
Test Engineer	Cina Huana	Configurations	IEEE 802.11n MCS0 HT20 CH 11 /					
Test Engineer	Gino Huang	Configurations	Chain 1 + Chain 2 + Chain 3					
Test Date	Mar. 24, 2016 ~ May 18, 2016							

	Freq	Level		Over Limit						T/Pos	Remark	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg		
1	4915.96	47.50	74.00	-26.50	40.76	8.46	31.27	32.99	195	317	Peak	HORIZONTAL
2	4916.68	34.41	54.00	-19.59	27.67	8.46	31.27	32.99	195	317	Average	HORIZONTAL
3	7393.40	41.41	54.00	-12.59	28.97	10.52	36.17	34.25	182	296	Average	HORIZONTAL
4	7393.60	54.80	74.00	-19.20	42.36	10.52	36.17	34.25	182	296	Peak	HORIZONTAL

	Freq	Level		Over Limit				Preamp Factor	A/Pos	T/Pos	Remark	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg		
1	4918.84	34.40	54.00	-19.60	27.66	8.46	31.27	32.99	194	112	Average	VERTICAL
2	4924.04	47.26	74.00	-26.74	40.46	8.50	31.29	32.99	194	112	Peak	VERTICAL
3	7392.00	54.71	74.00	-19.29	42.27	10.52	36.17	34.25	185	135	Peak	VERTICAL
4	7393.28	41.31	54.00	-12.69	28.87	10.52	36.17	34.25	185	135	Average	VERTICAL

Temperature	22°C	Humidity	54%					
Test Engineer	Cino Hugna	Configurations	IEEE 802.11n MCS0 HT40 CH 3 /					
Test Engineer	Gino Huang	Configurations	Chain 1 + Chain 2 + Chain 3					
Test Date	Mar. 24, 2016 ~ May 18, 2016							

	Freq	Level	Limit Line					Preamp Factor	A/Pos	T/Pos	Remark	Pol/Phase
	MHz	dBu√/m	dBu√/m	dB	dBu√	dB	dB/m	dB	cm	deg		
1 2	4821.40 4833.10								152 152		Average Peak	HORIZONTAL HORIZONTAL

	Freq	Level	Limi t Line	Over Limit				Preamp Factor	T/Pos	A/Pos	Remark	Pol/Phase
	MHz	dBuV/m	$\overline{dBuV/m}$	₫B	dBuV	₫B	dB/m	dВ	deg	Cm		
1 2	4845.48 4849.84								318 318		Peak Average	VERTICAL VERTICAL

Temperature	22°C	Humidity	54%		
Test Engineer	Gino Huang	Configurations	IEEE 802.11n MCS0 HT40 CH 6 /		
		9	Chain 1 + Chain 2 + Chain 3		
Test Date	Mar. 24, 2016 ~ May				

Horizontal

	Freq	Level		Over Limit				Preamp Factor	A/Pos	T/Pos	Remark	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg		
1 2	4866.84 4877.24							33.01 33.00			Peak Average	HORIZONTAL HORIZONTAL

	Freq	Level		Over Limit				Preamp Factor	A/Pos	T/Pos	Remark	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg		
1 2	4871.40 4881.68								191 191		Average Peak	VERTICAL VERTICAL

Temperature	22°C	Humidity	54%			
Test Engineer	Gino Huang	Configurations	IEEE 802.11n MCS0 HT40 CH 9 /			
lesi Engineei		Comigurations	Chain 1 + Chain 2 + Chain 3			
Test Date	Mar. 24, 2016 ~ May 18, 2016					

Horizontal

	Freq	Level		Over Limit				Preamp Factor	A/Pos	T/Pos	Remark	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg		
1 2	4896.72 4904.76								185 185		Peak Average	HORIZONTAL HORIZONTAL

Vertical

	Freq	Level		Over Limit				Preamp Factor	A/Pos	T/Pos	Remark	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg		
1 2	4903.44 4910.24								181 181		Average Peak	VERTICAL VERTICAL

Note:

The amplitude of spurious emissions that are attenuated by more than 20dB below the permissible value has no need to be reported.

Emission level (dBuV/m) = $20 \log Emission$ level (uV/m).

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

Page No. : 51 of 72 Issued Date : Jun. 14, 2016

4.6. Emissions Measurement

4.6.1. Limit

30dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Field Strength	Measurement Distance			
(micorvolts/meter)	(meters)			
2400/F(kHz)	300			
24000/F(kHz)	30			
30	30			
100	3			
150	3			
200	3			
500	3			
	(micorvolts/meter) 2400/F(kHz) 24000/F(kHz) 30 100 150 200			

4.6.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	100 MHz
RBW / VBW (Emission in restricted band)	1MHz / 3MHz for Peak,
	1MHz / 1/T for Average
RBW / VBW (30dBc in any 100 kHz bandwidth emission)	100 kHz / 300 kHz for Peak

4.6.3. Test Procedures

For Radiated band edges Measurement:

1. The test procedure is the same as section 4.5.3.

For Radiated Out of Band Emission Measurement:

 Test was performed in accordance with KDB558074 D01 v03r05 for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247 section 11.0 Unwanted Emissions into Non-Restricted Frequency Bands Measurement Procedure.

 Report Format Version: Rev. 01
 Page No. : 52 of 72

 FCC ID: U4P-CGNM2252
 Issued Date : Jun. 14, 2016

4.6.4. Test Setup Layout

For Radiated band edges Measurement:

This test setup layout is the same as that shown in section 4.5.4.

For Radiated Out of Band Emission Measurement:

This test setup layout is the same as that shown in section 4.5.4.

4.6.5. Test Deviation

There is no deviation with the original standard.

4.6.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

4.6.7. Test Result of Band Edge and Fundamental Emissions

Temperature	22°C	Humidity	54%				
Tost Engineer	Cina Hugana	Configurations	IEEE 802.11b CH 1, 6, 11 /				
Test Engineer	Gino Huang	Configurations	Chain 1 + Chain 2 + Chain 3				
Test Date	Mar. 24, 2016 ~ May 18, 2016						

Channel 1

	Freq	Level	Limit Line	Over Limit				Preamp Factor	A/Pos	T/Pos	Remark	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg		
1	2386.00	53.34	54.00	-0.66	21.06	5.23	27.05	0.00	256	298	Average	VERTICAL
2	2389.20	63.19	74.00	-10.81	30.91	5.23	27.05	0.00	256	298	Peak	VERTICAL
3	2410.40	113.14			80.78	5.26	27.10	0.00	256	298	Average	VERTICAL
4	2410.40	117.01			84.65	5.26	27.10	0.00	256	298	Peak	VERTICAL
5	2494.00	53.74	54.00	-0.26	21.12	5.34	27.28	0.00	256	298	Average	VERTICAL
6	2494.00	63.86	74.00	-10.14	31.24	5.34	27.28	0.00	256	298	Peak	VERTICAL

Item 3, 4 are the fundamental frequency at 2412 MHz.

Channel 6

	Freq	Level	Limit Line	Over Limit				Preamp Factor	A/Pos	T/Pos	Remark	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg		
1	2353.40	58.73	74.00	-15.27	26.56	5.20	26.97	0.00	176	74	Peak	HORIZONTAL
2	2358.60	49.29	54.00	-4.71	17.10	5.20	26.99	0.00	176	74	Average	HORIZONTAL
3	2438.20	114.83			82.39	5.28	27.16	0.00	176	74	Peak	HORIZONTAL
4	2438.60	110.90			78.46	5.28	27.16	0.00	176	74	Average	HORIZONTAL
5	2483.50	49.71	54.00	-4.29	17.11	5.33	27.27	0.00	176	74	Average	HORIZONTAL
6	2487.90	62.24	74.00	-11.76	29.64	5.33	27.27	0.00	176	74	Peak	HORIZONTAL

Item 3, 4 are the fundamental frequency at 2437 MHz.

Channel 11

	Freq	Level	Limit Line	Over Limit	Read Level			Preamp Factor	A/Pos	T/Pos	Remark	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg		
1	2379.20	60.84	74.00	-13.16	28.57	5.23	27.04	0.00	237	310	Peak	VERTICAL
2	2380.00	50.84	54.00	-3.16	18.57	5.23	27.04	0.00	237	310	Average	VERTICAL
3	2460.00	113.25			80.74	5.30	27.21	0.00	237	310	Average	VERTICAL
4	2460.40	116.95			84.44	5.30	27.21	0.00	237	310	Peak	VERTICAL
5	2483.50	53.60	54.00	-0.40	21.00	5.33	27.27	0.00	237	310	Average	VERTICAL
6	2486.00	63.62	74.00	-10.38	31.02	5.33	27.27	0.00	237	310	Peak	VERTICAL

Item 3, 4 are the fundamental frequency at 2462 MHz.

Temperature	22°C	Humidity	54%
Tost Engineer	Cina Hugna	Configurations	IEEE 802.11g CH 1, 6, 11 /
Test Engineer	Gino Huang	Configurations	Chain 1 + Chain 2 + Chain 3
Test Date	Mar. 24, 2016 ~ May 1	8, 2016	

Channel 1

	Freq	Level	Limit Line	Over Limit				Preamp Factor	A/Pos	T/Pos	Remark	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg		
1	2388.00	69.23	74.00	-4.77	36.95	5.23	27.05	0.00	183	70	Peak	HORIZONTAL
2	2390.00	53.84	54.00	-0.16	21.56	5.23	27.05	0.00	183	70	Average	HORIZONTAL
3	2416.00	103.44			71.07	5.26	27.11	0.00	183	70	Average	HORIZONTAL
4	2417.00	113.11			80.74	5.26	27.11	0.00	183	70	Peak	HORIZONTAL
5	2497.00	51.43	54.00	-2.57	18.78	5.35	27.30	0.00	183	70	Average	HORIZONTAL
6	2497.00	62.67	74.00	-11.33	30.02	5.35	27.30	0.00	183	70	Peak	HORIZONTAL

Item 3, 4 are the fundamental frequency at 2412 MHz.

Channel 6

	Freq	Level	Limit Line	Over Limit				Preamp Factor	A/Pos	T/Pos	Remark	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg		
1	2390.00	51.50	54.00	-2.50	19.22	5.23	27.05	0.00	218	287	Average	VERTICAL
2	2390.00	62.00	74.00	-12.00	29.72	5.23	27.05	0.00	218	287	Peak	VERTICAL
3	2438.00	118.13			85.69	5.28	27.16	0.00	218	287	Peak	VERTICAL
4	2439.00	108.50			76.06	5.28	27.16	0.00	218	287	Average	VERTICAL
5	2483.50	53.38	54.00	-0.62	20.78	5.33	27.27	0.00	218	287	Average	VERTICAL
6	2483.50	63.23	74.00	-10.77	30.63	5.33	27.27	0.00	218	287	Peak	VERTICAL

Item 3, 4 are the fundamental frequency at 2437 MHz.

Channel 11

	Freq	Level	Limit Line					Preamp Factor	A/Pos	T/Pos	Remark	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg		
1	2456.00 2457.00				82.74 73.01		27.21 27.21		239 239		Peak Average	VERTICAL VERTICAL
3	2483.50 2485.00	70.77			38.17	5.33	27.27 27.27	0.00	239 239	298	Peak Average	VERTICAL VERTICAL

Item 1, 2 are the fundamental frequency at 2462 MHz.

Temperature	22°C	Humidity	54%
Test Engineer	Cina Huana	Configurations	IEEE 802.11n MC\$0 HT20 CH 1, 6, 11 /
Test Engineer	Gino Huang	Configurations	Chain 1 + Chain 2 + Chain 3
Test Date	Mar. 24, 2016 ~ Ma	ıy 18, 2016	

Channel 1

	Freq	Level	Limit Line					Preamp Factor	A/Pos	T/Pos	Remark	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg		
1	2389.60	72.86	74.00	-1.14	40.58	5.23	27.05	0.00	244	298	Peak	VERTICAL
2	2390.00	53.48	54.00	-0.52	21.20	5.23	27.05	0.00	244	298	Average	VERTICAL
3	2410.00	104.29			71.93	5.26	27.10	0.00	244	298	Average	VERTICAL
4	2410.80	113.44			81.08	5.26	27.10	0.00	244	298	Peak	VERTICAL

Item 3, 4 are the fundamental frequency at 2412 MHz.

Channel 6

	Freq	Level	Limit Line	Over Limit				Preamp Factor	A/Pos	T/Pos	Remark	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg		
1	2388.60	52.24	54.00	-1.76	19.96	5.23	27.05	0.00	218	283	Average	VERTICAL
2	2388.60	68.98	74.00	-5.02	36.70	5.23	27.05	0.00	218	283	Peak	VERTICAL
3	2435.00	108.70			76.26	5.28	27.16	0.00	218	283	Average	VERTICAL
4	2435.40	118.12			85.68	5.28	27.16	0.00	218	283	Peak	VERTICAL
5	2483.50	53.88	54.00	-0.12	21.28	5.33	27.27	0.00	218	283	Average	VERTICAL
6	2483.80	66.43	74.00	-7.57	33.83	5.33	27.27	0.00	218	283	Peak	VERTICAL

Item 3, 4 are the fundamental frequency at 2437 MHz.

Channel 11

	Freq	Level	Limit Line					Preamp Factor		T/Pos	Remark	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg		
1	2465.60	113.48			80.95	5.31	27.22	0.00	241	297	Peak	VERTICAL
2	2466.00	104.03			71.50	5.31	27.22	0.00	241	297	Average	VERTICAL
3	2483.50	53.83	54.00	-0.17	21.23	5.33	27.27	0.00	241	297	Average	VERTICAL
4	2484.00	72.52	74.00	-1.48	39.92	5.33	27.27	0.00	241	297	Peak	VERTICAL

Item 1, 2 are the fundamental frequency at 2462 MHz.

Page No. : 56 of 72 Issued Date : Jun. 14, 2016

Temperature	22°C	Humidity	54%
Tost Engineer	Cina Huana	Configurations	IEEE 802.11n MCS0 HT40 CH 3, 6, 9 /
Test Engineer	Gino Huang	Configurations	Chain 1 + Chain 2 + Chain 3
Test Date	Mar. 24, 2016 ~ May	/ 18, 2016	

Channel 3

	Freq	Level	Limit Line	0ver Limit				Preamp Factor	A/Pos	T/Pos	Remark	Pol/Phase
	MHz	dBu∀/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB	cm	deg		
1 2 3 4	2387.20 2390.00 2436.00 2438.00	53.63 97.37			38.11 20.09 63.69 73.19	5.23 5.29	28.31 28.31 28.39 28.39	0.00 0.00	104 104 104 104	234 234	Peak Average Average Peak	HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL

Item 3, 4 are the fundamental frequency at 2422 MHz.

Channel 6

	Freq	Level	Limit Line	Over Limit				Preamp Factor	A/Pos	T/Pos	Remark	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg		
1	2386.00	67.97	74.00	-6.03	35.69	5.23	27.05	0.00	219	295	Peak	VERTICAL
2	2388.00	53.65	54.00	-0.35	21.37	5.23	27.05	0.00	219	295	Average	VERTICAL
3	2452.00	104.28			71.79	5.30	27.19	0.00	219	295	Average	VERTICAL
4	2452.00	113.49			81.00	5.30	27.19	0.00	219	295	Peak	VERTICAL
5	2483.50	73.12	74.00	-0.88	40.52	5.33	27.27	0.00	219	295	Peak	VERTICAL
6	2488.00	53.69	54.00	-0.31	21.09	5.33	27.27	0.00	219	295	Average	VERTICAL

Item 3, 4 are the fundamental frequency at 2437 MHz.

Channel 9

	Freq	Level	Limit Line	Over Limit				Preamp Factor	A/Pos	T/Pos	Remark	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg		
1	2444.00	101.58			69.11	5.29	27.18	0.00	217	294	Average	VERTICAL
2	2448.00	111.56			79.07	5.30	27.19	0.00	217	294	Peak	VERTICAL
3	2483.56	70.44	74.00	-3.56	37.84	5.33	27.27	0.00	217	294	Peak	VERTICAL
4	2487.00	53.77	54.00	-0.23	21.17	5.33	27.27	0.00	217	294	Average	VERTICAL

Item 1, 2 are the fundamental frequency at 2452 MHz.

Note:

Emission level (dBuV/m) = $20 \log Emission$ level (uV/m).

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

For Emission not in Restricted Band Plot on Configuration IEEE 802.11b / Reference Level

Date: 24.MAR.2016 10:44:46

Plot on Configuration IEEE 802.11b / CH 1 / 30MHz~2400MHz (down 30dBc)

Date: 24.MAR.2016 10:46:29

Page No. : 58 of 72 Issued Date : Jun. 14, 2016

Plot on Configuration IEEE 802.11b / CH 1 / 2483.5MHz~26500MHz (down 30dBc)

Date: 24.MAR.2016 10:47:27

Plot on Configuration IEEE 802.11b / CH 11 / 30MHz~2400MHz (down 30dBc)

Date: 24.MAR.2016 10:48:30

Plot on Configuration IEEE 802.11b / CH 11 / 2483.5MHz \sim 26500MHz (down 30dBc)

Date: 24.MAR.2016 10:49:08

Page No. : 60 of 72 Issued Date : Jun. 14, 2016

Plot on Configuration IEEE 802.11g / Reference Level

Date: 24.MAR.2016 10:51:30

Plot on Configuration IEEE 802.11g / CH 1 / 30MHz~2400MHz (down 30dBc)

Date: 24.MAR.2016 10:53:09

Plot on Configuration IEEE 802.11g / CH 1 / 2483.5MHz~26500MHz (down 30dBc)

Date: 24.MAR.2016 10:54:26

Plot on Configuration IEEE 802.11g / CH 11 / 30MHz~2400MHz (down 30dBc)

Date: 24.MAR.2016 10:56:09

Plot on Configuration IEEE 802.11g / CH 11 / 2483.5MHz \sim 26500MHz (down 30dBc)

Date: 24.MAR.2016 10:56:38

Page No. : 63 of 72 Issued Date : Jun. 14, 2016

Plot on Configuration IEEE 802.11n MCS0 HT20 / Reference Level

Date: 24.MAR.2016 10:58:08

Plot on Configuration IEEE 802.11n MCS0 HT20 / CH 1 / 30MHz~2400MHz (down 30dBc)

Date: 24.MAR.2016 10:59:24

Plot on Configuration IEEE 802.11n MCS0 HT20 / CH 1 / 2483.5MHz~26500MHz (down 30dBc)

Date: 24.MAR.2016 11:00:09

Plot on Configuration IEEE 802.11n MCS0 HT20 / CH 11 / 30MHz~2400MHz (down 30dBc)

Date: 24.MAR.2016 11:00:58

Plot on Configuration IEEE 802.11n MCS0 HT20 / CH 11 / 2483.5MHz~26500MHz (down 30dBc)

Date: 24.MAR.2016 11:01:25

Plot on Configuration IEEE 802.11n MCS0 HT40 / Reference Level

Date: 24.MAR.2016 12:44:52

Plot on Configuration IEEE 802.11n MCS0 HT40 / CH 3 / 30MHz~2400MHz (down 30dBc)

Report Format Version: Rev. 01
FCC ID: U4P-CGNM2252

Page No. : 67 of 72 Issued Date : Jun. 14, 2016

Plot on Configuration IEEE 802.11n MCS0 HT40 / CH 3 / 2483.5MHz~26500MHz (down 30dBc)

Date: 24.MAR.2016 12:48:52

Plot on Configuration IEEE 802.11n MCS0 HT40 / CH 9 / 30MHz~2400MHz (down 30dBc)

Date: 24.MAR.2016 12:50:16

Plot on Configuration IEEE 802.11n MCS0 HT40 / CH 9 / 2483.5MHz~26500MHz (down 30dBc)

Date: 24.MAR.2016 12:51:04

4.7. Antenna Requirements

4.7.1. Limit

Except for special regulations, the Low-power Radio-frequency Devices must not be equipped with any jacket for installing an antenna with extension cable. An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

4.7.2. Antenna Connector Construction

Please refer to section 3.3 in this test report; antenna connector complied with the requirements.

Report Format Version: Rev. 01
FCC ID: U4P-CGNM2252

: 70 of 72

Issued Date : Jun. 14, 2016

Page No.

5. LIST OF MEASURING EQUIPMENTS

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
EMI Receiver	EMI Receiver Agilent		My52260123	9kHz ~ 8.45GHz	Jan. 27, 0216	Conduction (CO01-CB)
LISN	LISN F.C.C.		04083	150kHz ~ 100MHz	Dec. 08, 2015	Conduction (CO01-CB)
LISN	Schwarzbeck	NSLK 8127	8127647	9kHz ~ 30MHz	Dec. 23, 2015	Conduction (CO01-CB)
COND Cable	Woken	Cable	01	150kHz ~ 30MHz	May 25, 2015	Conduction (CO01-CB)
Software	Audix	E3	6.120210n	-	N.C.R.	Conduction (CO01-CB)
BILOG ANTENNA	TESEQ	CBL6112D	37880	20MHz ~ 2GHz	Sep. 03, 2015	Radiation (03CH01-CB)
Loop Antenna	Teseq	HLA 6120	24155	9kHz - 30 MHz	Mar. 16, 2016*	Radiation (03CH01-CB)
Horn Antenna	EMCO	3115	00075790	750MHz ~ 18GHz	Oct. 22, 2015	Radiation (03CH01-CB)
Horn Antenna	Schwarzbeck	BBHA 9170	BBHA9170252	15GHz ~ 40GHz	Jul. 21, 2015	Radiation (03CH01-CB)
Pre-Amplifier	Agilent	8447D	2944A10991	0.1MHz ~ 1.3GHz	Mar. 15, 2016	Radiation (03CH01-CB)
Pre-Amplifier	Agilent	8449B	3008A02310	1GHz ~ 26.5GHz	Jan. 18, 2016	Radiation (03CH01-CB)
Pre-Amplifier	WM	TF-130N-R1	923365	26GHz ~ 40GHz	Nov. 13, 2015	Radiation (03CH01-CB)
Spectrum Analyzer	R&S	FSP40	100056	9kHz ~ 40GHz	Oct. 27, 2015	Radiation (03CH01-CB)
EMI Receiver	Agilent	N9038A	MY52260123	9kHz ~ 8.4GHz	Jan. 27, 2016	Radiation (03CH01-CB)
RF Cable-low	Woken	Low Cable-1	N/A	30 MHz ~ 1 GHz	Nov. 02, 2015	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-16	N/A	1 GHz ~ 18 GHz	Nov. 02, 2015	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-17	N/A	1 GHz ~ 18 GHz	Nov. 02, 2015	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-40G-1	N/A	18GHz ~ 40 GHz	Nov. 02, 2015	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-40G-2	N/A	18GHz ~ 40 GHz	Nov. 02, 2015	Radiation (03CH01-CB)
Test Software	Audix	E3	6.2009-10-7	N/A	N/A	Radiation (03CH01-CB)
Spectrum analyzer	R&S	FSV40	100979	9kHz~40GHz	Dec. 09, 2015	Conducted (TH01-CB)
RF Cable-high	Woken	RG402	High Cable-6	1 GHz – 26.5 GHz	Nov. 02, 2015	Conducted (TH01-CB)
RF Cable-high	Woken	RG402	High Cable-7	1 GHz – 26.5 GHz	Nov. 02, 2015	Conducted (TH01-CB)
RF Cable-high	Woken	RG402	High Cable-8	1 GHz – 26.5 GHz	Nov. 02, 2015	Conducted (TH01-CB)
RF Cable-high Woken		RG402	High Cable-9	1 GHz – 26.5 GHz	Nov. 02, 2015	Conducted (TH01-CB)
RF Cable-high Woken		RG402	High Cable-10	1 GHz – 26.5 GHz	Nov. 02, 2015	Conducted (TH01-CB)
Power Sensor Agilent		U2021XA	MY53410001	50MHz~18GHz	Nov. 02, 2015	Conducted (TH01-CB)

Note: Calibration Interval of instruments listed above is one year.

N.C.R. means Non-Calibration required.

Report Format Version: Rev. 01 FCC ID: U4P-CGNM2252

Page No. : 71 of 72 Issued Date : Jun. 14, 2016

[&]quot;*" Calibration Interval of instruments listed above is two years.

Page No.

: 72 of 72

Issued Date : Jun. 14, 2016

6. MEASUREMENT UNCERTAINTY

Test Items	Uncertainty	Remark
Conducted Emission (150kHz \sim 30MHz)	3.2 dB	Confidence levels of 95%
Radiated Emission (30MHz \sim 1,000MHz)	3.6 dB	Confidence levels of 95%
Radiated Emission (1GHz ~ 18GHz)	3.7 dB	Confidence levels of 95%
Radiated Emission (18GHz \sim 40GHz)	3.5 dB	Confidence levels of 95%
Conducted Emission	1.7 dB	Confidence levels of 95%