Name: Farah Jasmin Khan ID: 19101739 Section: 06.

Given,
$$Aug(A) = \begin{pmatrix} 1 & 2 & 1 & | & 0 \\ 1 & -2 & 2 & | & 4 \end{pmatrix}$$

Here $m_{21} = \frac{\alpha_{21}}{\alpha_{11}} = 1$.
 $m_{31} = \frac{\alpha_{31}}{\alpha_{11}} = 2$.
 $f^{(1)} = \begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ -2 & 0 & 1 \end{pmatrix}$ (Ans).
Now $A^{(2)} = F^{(1)} \times A$.
 $= \begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ -2 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 1 \\ 2 & 12 & 2 \\ 2 & 12 & 2 \end{pmatrix} = \begin{pmatrix} 0 & 24 & 14 \\ 0 & 8 & 14 \end{pmatrix}$
Now in $A^{(2)}$, the multiplier $m_{32} = \frac{8}{4} = -2$.
Now in $A^{(2)}$, the multiplier $m_{32} = \frac{8}{4} = -2$.