Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського» Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 3 з дисципліни «Алгоритми та структури даних-1. Основи алгоритмізації»

«Дослідження ітераційних циклічних алгоритмів»

Варіант 5

Виконав студент	пт-тэ, буяло дмитро Олександрович
	(шифр, прізвище, ім'я, по батькові)
Перевірив	
1 1	(прізвище, ім'я, по батькові)

Лабораторна робота 3

Дослідження алгоритмів розгалудження

Мета – дослідити подання операторів повторення дій та набути практичних навичок їх використання під час складання циклічних програмних специфікацій.

Індивідуальне завдання

Варіант 5

Завдання

Обчислити відрізок ряду:

$$S = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n} + 1}{2^n + 1} \qquad \text{для } x = 0,56$$

Обчислення завершити, якщо

$$\left| \frac{x^{2n} + 1}{2^n + 1} \right| \le 10^{-4}$$

1. Постановка задачі

1) Термінологія в формуванні задачі повністю зрозуміла та не потребує пояснень. 2) Маємо нескінченний ряд, значення х та умову, при якій маємо завершити роботу. 3) Необхідно обчислити суму заданого ряду при х=0,56, використовуючи вхідні дані та обмеження. 4)Як загальну властивість можна виділити те, що через раз у виразі буде змінюватися знак. 5) Існує багато розв'язків даної задачі, будемо використовувати, на мою думку, найпростіший, найефективніший та найшвидший з них. 6) Даних цілком достатньо та всі потрібні. 7) Зробимо пропущення, що п — множина натуральних чисел.

2. Побудова математичної моделі

Складемо таблицю імен змінних

Змінна	Tun	Ім'я	Призначення
Змінна х	Дійсне	X	Вхідне дане
Натуральні числа	Ціле	n	Вхідне дане
Змінна к	Дійсне	k	Проміжні дані
Елемент ряду	Дійсне	s1	Проміжні дані
Сума	Дійсне	S	Результат

Змінна х нам задана за умовою. Щоб знайти суму S, нам потрібно створити цикл, який буде працювати, поки не виконається умова $\left|\frac{x^{2n}+1}{2^n+1}\right| \leq 10^{-4}$, що ми замінили на $k \leq 10^{-4}$, також ця умова зазначає, що цикл не нескінченний. Для реалізації введемо змінну s1, яка буде оновлюватися при кожному збільшенні n, і буде рівна наступному елементу ряду суми. Тобто, щоб знайти суму S, ми маємо скласти всі отримані s1.

У роботі потрібно використовувати модуль та піднесення до степеня. Для позначення модуля у псевдокоді будемо використовувати функцію Abs(), а для блоксхеми позначення «| |», щоб економити місце. Abs/|| повертає модуль (абсолютну величину, Abs) числа. Абсолютна величина числа - це число без знака. Для позначення степеня у псевдокоді будемо використовувати функцію Pow(), а для блок-схеми позначення «^», щоб економити місце. Pow/^ повертає значення числа, піднесеного до степеня. Також зазначимо, що оператор += - це оператор складання з привласненням, додає значення правого операнда до змінної і привласнює змінній результат.

Розв'язання

Програмні специфікації запишемо у псевдокоді та графічній формі у вигляді блок-схеми.

Крок 1. Визначимо основні дії

Крок 2. Деталізуємо дію знаходження суми S.

3. Псевдокод алгоритму

Крок 1 Крок 2

Початок Початок

Задання х,п Задання х,п

Обчислення S k = Abs((Pow(x,2)+1)/3)

Повторити

Поки k >Pow(10,-4)

s1 = Pow(-1,n)*(Pow(x,2*n)+1)/(Pow(2,n)+1)

S+=s1

n=n+1

k = Abs((Pow(x,2*n)+1)/(Pow(2,n)+1))

Все повторити

Кінець Кінець

4. Блок-схема алгоритму

5. Випробування алгоритму

Наведемо приклад виконання алгоритму.

Блок	Дія
	Початок
1	Задання x=0.56, n=1, k=0.437867
2	k>0.0001
	s1=-0.437867
	S=-0.437867
	n=1+1
	k=0.219668992
3	k>0.0001
	s1=0.219668992
	S=-0.21819767467
	n=2+1
	k=0.11453788660622223
4-13	
14	k>0.0001
	s1=-1.2205544778703576E-4
	S=-0.29354140930145156
	k = 6.103143661729241E-5
	k<0.0001
	Кінець

Випробування алгоритм пройшов відмінно, видавши правильний кінцевий результат.

6. Висновки

Ми дослідили подання операторів повторення дій та набути практичних навичок їх використання під час складання циклічних програмних специфікацій. В результаті виконання лабораторної роботи ми отримали алгоритм для знаходження суми S за заданою формулою. Дискретували задачу на 2 кроки: визначили основні дії, потім деталізували визначення суми S. Алгоритм є ефективним та результативним, бо забезпечує розв'язок за мінімальний час із мінімальними витратами ресурсів та отримує чіткий кінцевий результат.