OPI NATE 17/08/92

APPLN. T 91137 / 91

ANJP NATE 17/09/92

PCT NUMBER PCT/IIS91/09437

INTERNATIONAL AFFLICATION TOBLISHED

.ON TREATY (PCT)

(51) International Patent Classification 5:

A1

(11) International Publication Number:

WO 92/1224!

C12N 15/60, 15/82, 9/88 A01H 5/00

(43) International Publication Date:

23 July 1992 (23.07.92

(21) International Application Number:

PCT/US91/09437

(22) International Filing Date:

17 December 1991 (17.12.91)

(30) Priority data:

632,440

26 December 1990 (26.12.90) US

(71) Applicant: MONSANTO COMPANY [US/US]; 800 North Lindbergh Boulevard, St. Louis, MO 63167 (US).

(72) Inventors: KLEE, Harry, John; 802 Rotherham Drive, Ballwin, MO 63011 (US). KISHORE, Ganesh, Murthy; 15354 Grantley Drive, Chesterfield, MO 63017 (US).

(74) Agent: BOLDING, James, Clifton; Monsanto Company, 800 North Lindbergh Boulevard, St. Louis, MO 63167 (US).

(81) Designated States: AT (European patent), AU, BB, BI (European patent), BG, BR, CA, CH (European patent), CS, DE (European patent), DK (European patent), ES (European patent), FI, FR (European patent), GB (European patent), GR (European patent), HU, IT (European patent), JP, KR, LU (European patent), MC (European patent) pean patent), NL (European patent), NO, PL, RO, SE (European patent), SU.

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: CONTROL OF FRUIT RIPENING AND SENESCENCE IN PLANTS

(57) Abstract

1

A method for controlling the ripening of fruits and vegetables as well as a method for controlling senescence of plant tissue escribed. The method generally embraces the expression of an ACC metabolizing enzyme in the fruit or other desired plant tissue to inhibit the production of ethylene in the fruit or plant tissue. The use of the ACC metabolizing enzyme ACC deaminase is described in detail. The ripening or senescence process in the fruit or plant tissue is inhibited by the expression of the ACC deaminase gene such that the shelf-life and marketability of the fruit or plant is enhanced. The ACC metabolizing enzyme may be used in combination with other methods for reducing ethylene production in transformed plants to further reduce the production of ethylene in the fruit or plant. DNA constructs containing the ACC deaminase gene are also described.

WO 92/12249

5

15

20

25

30

ķ....

(----)

CONTROL OF FRUIT RIPENING AND SENESCENCE IN PLANTS

This is a continuation-in-part of our copending application having U.S. Serial No. 07/632,440 filed on December 26, 1990 entitled "Control of Fruit Ripening and Senescence in Plants."

10 Field of the Invention

This invention relates in general to plant molecular biology and more particularly to a method for controlling the ripening of fruit and vegetables as well as controlling the effects of senescence in plants and recombinant DNA molecules capable of affecting the desired control.

Background of the Invention

One of the major problems facing the fruit, vegetable and cut flower industry is the loss of a considerable amount of goods due to spoilage. It is estimated that 12 to 20 percent of the fruit and vegetable products become spoiled from the time they leave the farm until they get to the retail or processing outlets. In the cut flower industry, senescence (the wilting or dying) of the flower before it can be effectively marketed is a significant problem. The spoiling or senescence process observed in fruits, vegetables and cut flowers results in a number of undesirable problems. Chief among these problems is the short harvesting season for the goods and the short shelf life of the goods following the harvest. Furthermore, these spoilage losses ultimately result in a higher cost of the goods to the consumer.

PCT/US91/09437

5

10

15

20

25

30

(HATT

A primary cause of the spoilage of fruits and vegetables is the natural ripening process of the fruit or vegetable. As the fruit or vegetable becomes more ripe it becomes softer and mor easily bruised and susceptible to disease or other spoilage causing It is known that ethylene production in the plant stimulates the fruit ripening process and is the key component in the ripening of fruits and vegetables. Others have attempted to control the ripening of fruits and vegetables in an attempt to extend the shelf life and/or harvesting season of the goods. Many of these attempts have been topical applications of chemicals to the fruit or vegetable itself. These chemical solutions have involved direct applications to the plant in the field or post-harvest applications to the fruit or vegetable itself. Several of these methods are discussed in United States Patent No. 4.957.757 or United States Patent No. 4.851.035. Due to the increasing importance of reducing additional stresses on the environment, a non-chemical means for controlling ripening would be advantageous and beneficial to the industry.

More recently, researchers have used a molecular biology approach to block ethylene synthesis in plants in n attempt to control the ripening of tomatoes. This approach involved transforming a tomato plant with an antisense gene that inhibited the synthesis of ethylene. The antisense gene produces (-) strand RNA that lowers the steady state levels of the (+) strand mRNA encoding a polypeptide involved in the conversion of 1-aminocyclopropane-1-carboxylic acid (ACC) to ethylene by the ethylene forming enzyme ACC oxidase. (Hamilton et al. 1990) While this method exhibits some degree of utility, it would be neither easy nor efficient to apply this technology to other plants, because the antisense gene would probably be species and gene

specific which would entail obtaining a different antisense gene for each species of plant desired to be transformed.

Thus a need exists in the fruit, vegetable and cut flower industries for a non-chemical method of controlling fruit ripening and senescence in plants that can easily and efficiently be utilized across a wide variety of plant species.

Summary of the Invention

5

10

15

20

25

(-----

(----

A method for controlling the ripening of fruits and vegetables as well as a method for controlling senescence in cut flowers is presented. In general, the method involves expressing an ACC metabolizing enzyme in the desired plant tissue which lowers the level of ACC in the tissue which thereby reduces the level of ethylene in the desired plant tissue. More particularly, the method comprises transforming plant cells with a chimeric gene comprising a promoter that functions in plant cells to caus the production of an RNA sequence, a structural DNA sequence that causes the production of an RNA sequence that encodes an ACC deaminase enzyme and a 3' non-translated region that functions in plant cells to cause the addition of a stretch of polyadenyl nucleotides to the 3' end of the RNA sequence, with the promoter being heterologous with respect to the structural coding sequence, and then growing the plant to maturity. The expression of the ACC deaminase in the fruit delays the ripening process which provides an extended harvesting season and an extended shelf life for the goods. Likewise, expression of an ACC metabolizing enzyme in floral species suitable for use in the cut flower industry delays senescence of the flowers, thus extending the shelf life and marketability of th flowers.

10

15

20

25

1 ...

In another aspect of the present invention, a recombinant, double stranded DNA molecule comprising a promoter that functions in plant cells to cause the production f an RNA sequence, a structural DNA sequence that encodes an ACC deaminase enzyme and a 3' non-translated region that functions in plant cells to cause the addition of a stretch f polyadenyl nucleotides to the 3' end of the RNA sequence, where the promoter is heterologous with respect to the structural DNA sequence, is also provided that enables one to obtain plants capabl of expressing ACC deaminase in order to control ripening and senescence. The expression of the ACC deaminase in the plant cells extends the harvesting season and the shelf life of the goods by reducing the production of ethylene in the plants.

Among the many aims and objects of the present invention, one primary object is to provide a method of controlling ripening and senescence in plants utilizing a molecular biology technique that is efficiently and broadly applicable to many plant species.

Another object of the present invention is to provide a method for extending the harvesting season and shelf life of fruits, vegetables and flowers by controlling the production of ethylene in the plant by lowering the steady state levels of ACC using an ACC metabolizing enzyme, such as ACC deaminase or ACC malonyl transferase, expressed in the plant.

It is a further object of the present invention to reduce the synthesis of ethylene in plants by expressing the enzyme ACC deaminase in the plant.

It is still another object of the present invention to extend the market life of cut flowers by expressing the enzyme ACC

(----

deaminase in the flower thereby reducing the senescence effects of ethylene synthesis in the flower.

It is a still further object of the present invention to provide transformed plants expressing an enzyme, ACC deaminase, in the plant so as to delay ripening of the fruit of the plant whether the fruit is allowed to ripen on the vine or if picked at an unripe stage of development to be ripened at a later time.

It is also a primary aim of the present invention to provide a fruit-bearing plant capable of expressing ACC deaminase specifically in the fruit of the plant.

Other and further objectives and aims of the invention will be made clear or become apparent from the following description and claims when read in light of the accompanying drawings.

15

20

25

10

Brief Description of the Drawings

Figure 1 illustrates the contents of the bacterial collection used to screen for ACC deaminase.

Figure 2 shows the nucleotide sequence of the ACC deaminase gene from *Pseudomonas chloroaphis* (isolate 6G5) (SEQ ID NO:1).

Figure 3 illustrates a plasmid map of pMON977.

Figure 4 illustrates a plasmid map of pMON10028.

Figure 5 illustrates a plasmid map of pMON10037.

Figure 6 illustrates a plasmid map of pMON10054.

Figure 7 illustrates a plasmid map of pMON11027.

Figure 8 illustrates a plasmid map of pMON7258.

Figure 9 illustrates a plasmid map of pMON11014.

Figure 10 illustrates a plasmid map of pMON981.

Figure 11 illustrates a plasmid map of pMON11016.

10

15

20

25

Figure 12 illustrates a plasmid map of pMON11032.

Figure 13 illustrates a plasmid map of pMON10086.

Figure 14 illustrates the nucleotide sequence of the fruit specific promoter E8 with the 5' HindIII and 3'BglII restriction sites underlined (SEQ ID NO:10).

Figure 15 illustrates the nucleotide sequence of the Sadenosyl methionine (SAM) decarboxylase gene (SEQ ID NO:9).

Figure 16 illustrates the nucleotide sequence of the ACC synthase gene (SEQ ID NO:8).

Figure 17 illustrates the nucleotide sequence of the ACC deaminase gene isolated from isolate 3F2. (SEQ ID NO:15)

Figure 18 illustrates graphically the relationship between the level of ethylene in control tomato fruit and transgenic tomato fruit expressing ACC deaminase.

Figure 19 illustrates a plasmid map of pMON11030.

Figure 20 illustrates the DNA sequence of the chloroplast transit peptide CTP2. (SEQ ID NO:13)

Figure 21 illustrates the DNA sequence of the CP4 synthetic 5-enolpyruvyl-3-shikimate phosphate synthase (EPSPS) gene. (SEQ ID NO:14)

Figure 22 illustrates the DNA sequence of a full-length transcript promoter from figwort mosaic virus (SEQ ID NO:17).

Detailed Description of the Preferred Embodiments

The metabolic pathway for the production of ethylene in plants is as follows:

10

15

20

25

-7-

methionine

↓ SAM synthetase

S-adenosyl methionine

↓ ACC synthase

ACC

1 ACC oxidase

Ethylene.

(

(----

In order to inhibit the biosynthesis of ethylene in plant tissues, one possible method would be to metabolize 1aminocyclopropane-1-carboxylic acid (hereinafter ACC) and remove it from the metabolic pool. While it was unknown whether any ACC metabolizing enzyme would be capable of reducing the level of ACC sufficient to inhibit ethylene biosynthesis, this approach was investigated. A number of enzymes are capable of metabolizing ACC. Examples of ACC metabolizing enzymes are ACC deaminase and ACC malonyl transferase. The ACC deaminase enzyme metabolizes ACC by converting it to a-ketobutyrate and ammonia. Thus, if the enzyme ACC deaminase, or another ACC metabolizing enzyme, having sufficient kinetic capabilities can be expressed at sufficient levels in the plant, the synthesis of ethylene would be inhibited by the removal of ACC from the metabolic pool in the tissues where the ACC metabolizing enzyme is being expressed. A significant aspect of the present invention is to provide a mechanism for delaying the ripening of fruit or senescence in plants by reducing the steady state levels of ACC in the plant tissues which reduces the level of ethylene in the plant tissues. It is preferred that the steady state concentrations of ethylene or ACC in the plant be

10

15

20

25

30

نین)

reduced by at least about 70% from normal levels in a non-modified cultivar. Preferably, the ethylene or ACC concentrations are reduced by at least about 90% from normal levels. It is believed that the reduction of the steady state levels of ACC or ethylene in a plant or the fruit of a plant can be achieved by various methods, all of which are considered within the scope of the instant invention.

Regarding the delaying of ripening of fruit, it is preferred that the fruit be delayed from ripening on the vine by 1 to 30 days. This delay is to be measured from the onset of ripening and, specifically with respect to tomato, from when the fruit reaches the breaker stage of ripening. Likewise, the fruit is preferably delayed in ripening from 1 to 90 days following detachment from the vine and more preferably between 5 and 30 days. With respect to tomato, this delay in ripening is measured from the time of detachment of the fruit from the vine when the fruit is removed at the mature green or breaker stage of ripening. It is to be understood that the delay in ripening after detachment from the vine can be extended beyond the terms described by cold storage or other methods known in the art.

The enzyme ACC deaminase was chosen for further experimentation. ACC deaminase is not known in the art to be produced or expressed naturally in plants. Therefore, in order to pursue a method of inhibiting ethylene synthesis in plants by degrading ACC, an ACC deaminase encoding gene must be identified and then be made capable of being expressed in plants.

ACC deaminase is known to be expressed in certain microorganisms (Honma, M. and Shimomura, T. 1978). In order to isolate an ACC deaminase enzyme, a bacterial screen to isolate bacteria expressing the enzyme can be designed to identify such a

10

15

20

25

("---")

bacteria or microorganism. Other methods for identifying an ACC deaminase enzyme, such as screening strains of yeast or fungi, would be equally applicable and routine to one of skill in the art. The following is a description of a bacterial screen that identified bacteria expressing an ACC deaminase enzyme.

A collection of bacterial strains (Drahos, D. 1988) was screened for organisms that are capable of degrading ACC. This bacterial collection was composed of 597 microorganisms. The majority of the organisms were fluorescent Pseudomonas speci s with the remaining being microbes typically found in the soil. A description of the bacterial collection is found in Figure 1. The screen was designed to select for microorganisms that would grow in a minimal medium containing ACC at 3.0 mM as the sole source of nitrogen. A sample of each bacteria in the bacterial collection was grown individually in 96-well microliter dishes at 30°C for four days. Each well contained 0.2 ml of DF medium supplemented with ACC. DF medium was made by combining in 1 liter of autoclaved water, 1ml each of Reagent A, Reagent B, Reagent C and 5mg of thiamine HCl. Reagent A is made up of 1mg H₃BO₃, 1mg MnSO₄·7H₂O, 12.5mg ZnSO₄·7H₂O, 8mg CuSO₄·5H₂O and 1.7mg NaMoO₃·3H₂O in 100mls of autoclayed water. Reagent B is made up of 0.1g FeSO₄·7H₂O in 100mls of autoclaved water. Reagent C contains 20g of MgSO₄·7H₂O in 100mls of autoclaved water. To the combined solution, carbon sources glucose, gluconate and citrate are added to final concentrations of 0.1% (w/v) each, inorganic phosphate is added to a final concentration of 1.0mM (w/v) and ACC is added as the sole nitrogen source to a 3.0mM (w/v) final concentration. Finally,

WO 92/12249 PCT/US91/09437

5

10

15

20

25

30

(

Yeast Extract (DIFCO) is added to a final concentration of 0.01% (w/v).

Based on this screen, three organisms were identified as being capable of growing on ACC-containing medium. ability to grow on ACC-containing minimal medium was confirmed by regrowth in 300 ml liquid cultures of the same medium. The two isolates that grew best on ACC were chosen for further characterization. These two isolates were designated 3F2 and 6G5. Both of these organisms were determined to be Pseudomonads as was the organism not chosen for further characterization. Both of the selected organisms were screened for ACC deaminase enzyme activity by an in vitro assay described below. The 6G5 isolate was chosen for further experimentation. The 6G5 bacterium was identified as a Pseudomonas chloroaphis strain by gas chromatography analysis of fatty acid methyl esters as described in Miller (1982). From the above screen results, it is apparent that other bacterial strains could be identified which degrade ACC by performing more extensive screens. Thus, other ACC deaminases and those identified in the screen but not utilized for further experimentation are considered to be within the scope of the present invention.

A number of novel organisms capable of degrading ACC have also been isolated from diverse soil samples. These organisms were isolated on the basis of being able to grow on minimal medium with ACC as the sole nitrogen source. Soil samples were collected from St. Charles (Missouri, USA), Sarawak (Malaysia), Iquitos (Peru), San Juan (Puerto Rico) and Mujindi (Tanzania). One gram of each soil sample was suspended into 99 ml of a Dilution buffer bottl (Fisher), shaken well and the soil suspension was diluted 1:100 before plating.

10

15

20

25

(- ---

(---

Final dilution of the soil samples was 10-4. One hundred (100) microliters of the diluted sample was spread on the isolation media in petri-plates (100X15 mm) with a hockey-stick glass rod. The isolation media contains a minimal salt base with K2HPO4 (10 g/L), MgSO4.7H2O (5 g/L), and trace metals: FeSO4 (1 mg/L), MnCl2 (1 mg/L), CUSO4 (1 mg/L), ZnSO4 (1 mg/L), CaCl2 (1 mg/L). The pH of the base was adjusted to 7.0, before autoclaving, with 1N HCl. Noble agar (Difco) was used as the solidifying agent (1.5%). Any of the following three media may be used for isolation of ACC degrading microorganisms; (1) base + glucose (5 g/L) + ACC (0.1 to 1.0 g/L); (2) base + NH4NO3 (5 g/L) + ACC (1 g/L); (3) base + ACC (0.1 to 1.0 g/L). ACC, glucose, NH4NO3 were dissolved in distilled water, filter-sterilized and added into the autoclaved base media cooling at 50°C. Plates were incubated at 30°C for 1 week.

ACC was added to some of the soil samples obtained from St. Charles to enrich for ACC degrading bacteria in the soil. In these experiments, ACC (250 mg) was added into 50 ml of dilution buffer containing 0.5 g of St. Charles soil in a 250 ml Erlenmeyer flask. The flask was incubated on a rotary shaker (250 rpm, 30°C) for 3 days. The ACC enriched sample was then plated as previously described for non-enriched samples. Bacterial colonies capable of growth in the presence of ACC on plates were then isolated into pure cultures and grown in test tubes (20X150 mm) containing 5 ml of the following medium: KH₂PO₄ (4 g/L), K₂HPO₄ (6.5 g/L), MgSO₄•7H₂O (1 g/L), trace metals (same as isolation media), and ACC (0.3 g/L). Glucose (2 g/L) may be added to assist the growth of the bacteria. Bacterial strains which grew in the minimal salt medium with ACC as the sole carbon and nitrogen sources are listed in Table I.

PCT/US91/09437

15

20

25

30

(E337

(= 9

TABLE I

	Strain	Line #	Source
5	388	B27444	St. Charles (ACC enriched)
U	391	B27447	Malaysia
	392	B27448	Peru
	393	B27449	St. Charles
	401	B27457	St. Charles (ACC enriched)
10	T44	B27817	Tanzania
10	PR-1	B27813	Puerto Rico

All of these organisms were shown to express ACC deaminase by two criteria. The first was that extracts from all of the organisms were capable of converting ACC to α-ketobutyric acid and the second was that all contained a protein of approximately 37,000 daltons that strongly cross-reacted with an antibody raised against the 6G5 ACC deaminase protein. To further demonstrate the equivalence of these organisms, kinetic parameters were determined for each of the isolated ACC deaminase enzymes.

The K_m for the ACC deaminases isolated from the various soil sources was determined using crude, desalted extracts. Individual strains of bacteria were grown in liquid media containing 4g KH₂PO₄, 6.5g K₂HPO₄, 1g MgSO₄•7H₂O, 2g glucose, 1mg FeSO₄, 1mg MnCl₂, 1mg ZnSO₄, 1mg CuSO₄, 1mg CaCl₂, and 300mg ACC, all in 1 liter H₂O. Cells were grown for 2 to 3 days at 30°C. Cells were pelleted by centrifugation and resuspended in extraction buffer containing 0.1 M phosphate, pH 7.5, 1 mM EDTA, 0.1% β-mercaptoethanol. The cells were broken with a French Press, 1000 psi, and the cell debris was pelleted by centrifugation. The supernatants were desalted on Sephadex G-

10

15

20

25

(.../

(:::::

25 columns pre-equilibrated with extraction buffer, which resulted in a crude, desalted extract. Glycerol was added to the extract (20% v/v) and enzyme solutions were stored at -20°C. ACC deaminase enzyme assays were conducted as described in the Examples to follow. The assay mixture contained 100 μl of 0.2 M Tris buffer, pH 8.0, 30 μl of 500mM ACC solution, and enzyme solution to make a final volume of 200 μl. Reactions were run for 10 minutes at 30°C. The reaction was stopped with 1.8 ml of 2 N HCl. After adding 300 μl 0.1% 2,4-dinitrophenylhydrazin, the mixture was incubated for 15 minutes at 30°C. The solution was then made basic by adding 2 ml of 2 N NaOH. The optical density of the resulting brownish-red solution was determined at 540 nm with a spectrophotometer.

The kinetic value, Km, for ACC deaminase was determined against ACC as the enzyme substrate for each of the ACC deaminases isolated. ACC deaminase activity was shown to be linear with respect to enzyme concentration using saturating levels of ACC (50 mM). An estimated K_m was determined for each extracted enzyme with ACC at sub-saturating concentrations. Activity was shown to be linear over time with respect to ACC concentration for the concentrations used to determine the actual Km values. Actual Km values were then determined for each extract using ACC concentrations between 0.2X and 2X of the estimated K_m, or ACC concentrations between 1 and 10 mM ACC. K_m values were calculated from double reciprocal plots, plotting the reciprocal of the substrate concentration on the x-axis and the reciprocal of the velocity (a-ketobutyrate formed) n the y-axis. The x-intercept (at y equals 0) is equal to $-1/K_m$. The K_m values for th ACC deaminases extracted from nine different strains were

20

25

30

4-

(127)

determined and were generally within 3-fold of one another (from ~ 4 to ~ 12 mM). The K_m data demonstrates that essentially all ACC deaminases are functionally equivalent and can be used in the present invention. The K_m values for ACC deaminases from numerous isolates are listed in Table II.

TABLE II

Kinetic Values for Different Bacterial Isolates

	Strain	Km [mM ACC]
10	6G5	9.0
	3F2	5.8
	388	8.6
	391	17.4
	392	7.1
15	393	5.9
	401	7.8
	T44	11.8
	PR-1	4.1

Once an isolate capable of degrading ACC is selected for further study, the gene encoding the ACC deaminase must be isolated. A general strategy for isolation and purification of the ACC deaminase gene from the selected *Pseudomonas* strain 6G5 is as follows. Isolate 6G5 is an exemplary embodiment for further illustrative embodiments, but other isolates would be useful as well. A cosmid bank of the *Pseudomonas* strain 6G5 is constructed, cloned and introduced into *E. coli*. The clone carrying the ACC deaminase gene is identified by selection on minimal media containing ACC as the sole nitrogen source. The coding region of the ACC deaminase gene is then identified and

WO 92/12249 PCT/US91/09437

5

10

15

20

25

30

(

sequenced. Cloning and genetic techniques, unless otherwis indicated, are generally those described by Sambrook et al. (1989). While this strategy was utilized to obtain the ACC deaminase gene from the 6G5 strain, other strategies could be employed with similar success and are considered to be within the scope of the invention. The detailed procedure for isolating the ACC deaminase gene from the 6G5 strain is set forth below.

The cell pellet from a 200 ml L-Broth (Miller 1972) late log phase culture of strain 6G5 was resuspended in 10 ml of Solution I (Birnboim and Doly 1979) in order to obtain chromosomal DNA. Sodium dodecylsulfate (SDS) is added to a final concentration of 1% and the suspension subjected to three freeze-thaw cycles, each consisting of immersion in dry ice for 15 minutes and in water at 70°C for 10 minutes. The lysate is then extracted four times with equal volumes of phenol:chloroform (1:1: phenol saturated with TE buffer at pH8.0) (TE = 10mM Tris: 1.0mM EDTA) and the phases separated by centrifugation (15000g; 10 minutes). The ethanol-precipitable material is pelleted from the supernatant by brief centrifugation (8000g: 5 minutes) following addition of two volumes of ethanol. The pellet is resuspended in 5 mls of TE buffer and dialyzed for 16 hours at 4°C against 2 liters of TE buffer. This preparation yields a 5 ml DNA solution of about 552 µg/ml.

Three 50 µg fractions of the *Pseudomonas* 6G5 DNA are then partially digested with EcoRI to generate fragments greater than 20 Kb. The three 50 µg fractions are digested with 0.125 units, 0.062 units, and 0.032 units, respectively, of EcoRI per µg DNA in a total volume of 1.25 ml each and incubated at 37°C for 30 minutes. The fractions are pooled and extracted once with an equal volume of 1:1 phenol:chloroform saturated with TE buffer at

WO 92/12249 PCT/US91/09437

5

10

15

20

25

30

(----

(----

pH 7.6 to remove the enzyme. The DNA is precipitated with two volumes of ethanol and pelleted by centrifugation (12000 g. 5 minutes). The dried DNA pellet is resuspended in 500 µl TE buffer, and layered on top of a sucrose gradient. The 10%-40% sucrose gradient is prepared in seven 5.5 ml layers using 5% sucrose increments in 50 Mm Tris pH8.0, 5 mM EDTA, 0.5 mM NaCl. The gradients are centrifuged at 26,000 rpm for 18 hours in a Beckmann SW28 rotor. The tube is punctured on the bottom and 1 ml fractions are collected. From each fraction. 20 ul aliquots are run on a 1% agarose gel along with lambda DNA HindIII digested size standards. The fractions which contain DNA fragments greater than 20 Kb are combined. In the instant description, seven fractions were combined. The pooled sample is desalted and concentrated over Amicon Centricon-10® columns. The 0.5 ml concentrated sample is rinsed with 2 ml TE buffer, and again concentrated to 0.5 ml. The DNA sample is precipitated with 1 ml ethanol and the dry pellet resuspended in 50 µl TE buffer. To estimate the DNA yield, 2 ul of the sample is run on a 1% agarose gel along with 0.8 ug lambda DNA cut with BstEII as a standard. From the gel, the concentration is estimated at 35 ng/ul of the Pseudomonas 6G5 DNA partial EcoRI fragments. which are greater than 20 Kb.

A cosmid bank is constructed using the vector pMON17016. This vector is a derivative of the phage lambda cosplasmid pHC79 (Hohn and Collins 1980). The pMON17016 plasmid is constructed by introducing the HindIII-BglII fragment from pT7-7 (Tabor and Richardson 1985) containing the gen 10 promoter region from phage T7 into the HindIII-BamHI cut pHC79. The clone interrupts and inactivates the tetracycline resistance gene of pHC79 leaving the ampicillin resistance gene

10

15

20

25

(----

6

intact. The introduced T7 promoter is not required for the function of the cosmid clone. The pMON17016 vector is cut with EcoRI and treated with calf alkaline phosphatase (CAP) in preparation for cloning. The vector and target sequences are ligated as follows. 1.25 µg (25 µl of 50 ng/µl) of the pMON17016 vector DNA (EcoRI/CAP) is combined with 0.63 µg (18 µl of 35 ng/µl) of size fractionated 6G5 EcoRI fragments, and precipitated with two volumes of ethanol. The sample is centrifuged and the dry DNA pellet resuspended in 6 µl H₂O. To this solution, 1 µl of the 10X ligation buffer (250 mM Tris-HCl pH 8.0, 100 mM MgCl₂, 100 mM Dithiothreitol, 2 mM Spermidine), 2 µl of 100 mM ATP (Adenosine 5'-triphosphate) solution, and 1 µl of 400 unit/µl T4 DNA ligase (New England Biolabs) is added. The ligation mix is incubated at room temperature (RT) for 6 hours.

From the 10 µl of pMON17016/6G5 ligated DNA sample, 3 µl is packaged into lambda phage particles (Stratagene; Gigapack Plus) using the manufacturer's procedure. establish the cosmid titer, serial dilutions are made and used to infect the host bacteria. A culture of the host MM294 (Talmadge and Gilbert 1980) E. coli is grown at 30°C in L-Broth containing 0.2% maltose. A 100 µl sample of MM294 is diluted with 100 µl SM buffer (SM = 50 mM Tris pH7.5, 100 mM NaCl, 8 mM MgSO₄, 0.01% gelatin) and infected with 10 µl fractions of the packaged cosmid. The sample is incubated at RT for 15 minutes. One ml of L-Broth is added to the sample and incubated at 37°C for 30 minutes. The infected bacteria are then concentrated by centrifugation (4000rpm, 4 minutes.) and plated on L-Broth agar plates containing 100 µg/ml carbenicillin. The plates are incubated at 37°C ov rnight. The cosmid titer typically observed is

10

15

20

25

(. . . .

estimated at -8.5×10^5 clones total from the 3 μ l ligated pMON17016/6G5 DNA, or 2.8×10^6 clones per μ g 6G5 EcoRI DNA.

To select the cosmid clones which contain the ACC deaminase gene, the 6G5 library is then plated on media containing ACC as a sole nitrogen source. The plates contain 1.5% nitrogen free agar, 2 mM MgSO₄, 0.2% glucose, 0.1 mM CaCl₂, 1X M9 salts (M9 salts = 6 g Na₂HPO₄·7H₂O, 3 g KH₂PO₄, 1.5 g NaCl, per liter), 1 mM Thiamine-HCl, 100 μg/ml carbenicillin, and 3 mM ACC. The MM294 cells are infected with 35 μl (~5.6 x 10⁴ clones) packaged cosmid as described above, washed two times with 1X M9 salts, and plated on five plates. Growth was evident after a 3 day incubation at 37°C. After a 6 day incubation, approximately 300 cosmids (1 per 200) grew on the minimal media plates containing ACC as a sole nitrogen source. There is no growth evident after 6 days on the control plate which did not contain ACC as a supplemental source of nitrogen.

Several colonies that grew on the minimal media containing ACC are then screened. All the samples in the instant description had different size cosmid inserts and most contained several common EcoRI fragments. The three smallest clones are screened by restriction deletions and subcloning of the common fragments. The activity of the ACC deaminase gene is monitored by plating the clones on minimal media containing ACC as described above. The screens identified a clone containing a ~10.6 Kb insert which retained activity. The insert is then subcloned on a BamHI-XbaI fragment into the pUC118 plasmid (Viera and Messing 1987). Subsequent HindIII and SmaI deletions narrowed down the ACC deaminase activity to the 2.4 Kb insert which allowed the clone to grow on minimal media with ACC as the sole

10

15

20

25

(--)

nitrogen source. The pUC118 plasmid containing the 2.4 Kb insert is designated pMON10027.

Both strands of the 2.4 Kb insert of pMON10027 were then sequenced using the USB Sequenase® DNA sequencing kit following the manufacturer's directions. A 1017 base pair (bp) open reading frame was identified as the coding sequence of the ACC deaminase gene (Figure 2). This sequence is identified as SEQ ID NO:1.

To further demonstrate the equivalence of the ACC deaminase genes from different organisms, the DNA sequence of a second gene was determined. The *Pseudomonas* 3F2 isolate was identified in the initial screen as an organism capable of growth on medium containing ACC as sole nitrogen source as previously described. Conversion of ACC to α-ketobutyric acid *in vitro* (as described for the 6G5 organism) demonstrated that this organism also contained an ACC deaminase enzyme. The polymerase chain reaction (PCR) was used to clone the 3F2 ACC deaminase. Oligodeoxynucleotides for priming off of 3F2 DNA based on the known 6G5 sequence were designed. The sequences of the 5' and 3' oligonucleotides are as follows:

5' oligonucleotide:

CCCGGATCCATGAATCTTTT

(SEQ ID NO:11)

3' oligonucleotide:

CCCGGATCCGCCGTTACGAAACAGGAA

(SEQ ID NO:12)

The sequence of the sequence o

10

15

20

25

30

(....)

subsequent cloning. Each is identical to either the 6G5 sequence over the first 18 (5') or last 18 (3') nucleotides, which are underlined. The 3F2 DNA was prepared as previously described for 6G5. The PCR reaction was carried out under conditions that would permit annealing of the oligonucleotides to 3F2 DNA even if some mismatch between the 3F2 and 6G5 sequences existed. The PCR reaction was run for 30 cycles with 15 second extensions for each subsequent cycle. Each cycle consisted of:

94°C 1 minute

40°C 2 minutes

72°C 3 minutes plus 15 second extensions

The PCR-amplified 3F2 DNA contains the first 18 (5') and last 18 (3') nucleotides of isolate 6G5's ACC deaminase nucleotide sequence incorporated into the oligonucleotides and thus may not correspond to the actual 3F2 gene in the areas of the first and last 18 nucleotides. Therefore, the actual identity of the first and last six amino acids of the 3F2 ACC deaminase may not be the same as the enzyme in the original 3F2 organism. Because a high degree of homology between the 3F2 DNA and the oligonucleotide primers is essential for successful DNA amplification, the 3F2 and 6G5 sequences must be quite similar.

The product of the PCR amplification was cloned into BamHI-cut pBSSK+ (Stratagene) and subjected to dideoxy DNA sequencing as previously described. The sequence of the gene was determined using a series of oligonucleotide primers derived from internal DNA sequences. The sequence of the 3F2 gene and the derived amino acid sequence of the ACC deaminase is shown in Figure 17. The nucleotide sequence is identified as SEQ ID NO:15 and the amino acid sequence is identified as SEQ ID NO:16. A comparison f the derived amino acid sequences of the 6G5 and

10

15

20

25

30

 $\bigcup_{i=1}^{n-1} x_i^{i+1} = x_i$

3F2 enzymes indicates that they are highly homologous, having 96% identity and 99% similarity when conservative amin acid substitutions are considered. The sequence conservation, taken together with the kinetic data obtained on these two enzymes clearly indicates the conserved nature of the ACC deaminase in nature.

Once an ACC deaminase gene has been identified and isolated, it must be engineered for plant expression. To introduce the ACC deaminase gene into a plant, a suitable chimeric gene and transformation vector must be constructed. chimeric gene for transformation into a plant will include a promoter region, a heterologous structural DNA coding sequence and a 3' non-translated polyadenylation site. A heterologous structural DNA coding sequence means a structural coding sequence that is not native to the plant being transformed or a structural coding sequence that has been engineered for improved characteristics of its protein product. Heterologous with respect to the promoter means that the coding sequence does not exist in nature in the same gene with the promoter to which it is now attached. Chimeric means a novel non-naturally occurring gene which is comprised of parts of different genes. In preparing the transformation vector, the various DNA fragments may be manipulated as necessary to create the desired vector. This includes using linkers or adaptors as necessary to form suitable restriction sites or to eliminate unwanted restriction sites or other like manipulations which are known to those of ordinary skill in the art.

Promoters which are known or found to cause transcription of the ACC deaminase gene in plant cells can be used in the present invention. Such promoters may be obtained

10

15

20

25

30

(*****

from plants, plant pathogenic bacteria or plant viruses and include, but are not necessarily limited to, the 35S and 19S promoters of cauliflower mosaic virus (CaMV35S and CaMV19S), the full-length transcript promoter from the figwort mosaic virus (FMV35S) and promoters isolated from plant genes such as EPSP synthase, ssRUBISCO genes and promoters obtained from T-DNA genes of Agrobacterium tumefaciens such as nopaline and mannopine synthases. The particular promoter selected should be capable of causing sufficient expression to result in the production of an effective amount of ACC deaminase to substantially inhibit the production of ethylene. Those skilled in the art will recognize that the amount of ACC deaminase needed to inhibit ethylene production may vary with the type of plant and the tissues within the plant of interest.

Particularly useful promoters for use in the present invention are fruit specific promoters which are expressed during ethylene production in the fruit and the full-length transcript promoter from the figwort mosaic virus (FMV35S). The FMV35S promoter is particularly useful because of its ability to cause uniform and high levels of expression of ACC deaminase in plant tissues. The DNA sequence of a FMV35S promoter is presented in Figure 22 and is identified as SEQ ID NO:17. Examples of fruit specific promoters include the E8, E4, E17 and J49 promoters from tomato (Lincoln, J.E., and Fischer, R.L. 1988), as well as the 2A11 promoter as described in U. S. Patent No. 4,943,674.

The promoters used for expressing the ACC deaminase gene of this invention may be further modified if desired to alter their expression characteristics. For example, the CaMV35S promoter may be ligated to the portion of the saRUBISCO gene which represses the expression of saRUBISCO in the absence of

10

15

20

25

(----

(

light, to create a promoter which is active in leaves but not in roots. The resulting chimeric promoter may be used as described herein. As used herein, the phrase "CaMV35S" or "FMV35S" promoter includes variations of these promoters, e.g. promoters derived by means of ligation with operator regions, random r controlled mutagenesis, addition or duplication of enhancer sequences, etc.

The 3' non-translated region contains a polyadenylation signal which functions in plants to cause the addition of polyadenylated nucleotides to the 3' end of the RNA sequence. Examples of suitable 3' regions are the 3' transcribed, non-translated regions containing the polyadenylation signal of the tumor-inducing (Ti) plasmid genes of Agrobacterium, such as the nopaline synthase (NOS) gene, and plant genes like the 7s soybean storage protein genes and the pea E9 small subunit of th RuBP carboxylase gene (ssRUBISCO).

The RNA produced by a DNA construct of the present invention also preferably contains a 5' non-translated leader sequence. This sequence can be derived from the promoter selected to express the gene, and can be specifically modified so as to increase translation of the mRNA. The 5' non-translated regions can also be obtained from viral RNA's, from suitable eukaryotic genes, or from a synthetic gene sequence. The present invention is not limited to constructs, as presented in the following examples, wherein the non-translated region is derived from the 5' non-translated sequence that accompanies the promoter sequence. Rather, the non-translated leader sequences can be part of the 5' end of the non-translated region of the native coding sequence for the heterologous coding sequence, or part of

WO 92/12249 PCT/US91/09437

5

10

15

20

25

30

(...:

the promoter sequence, or can be derived from an unrelated promoter or coding sequence as discussed above.

A DNA construct of the present invention can be inserted into the genome of a plant by any suitable method. Suitable plant transformation vectors include those derived from a Ti plasmid of Agrobacterium tumefaciens, such as those disclosed by Herrera-Estrella (1983), Bevan (1983), Klee (1985) and U.S. Patent No. 4,940,838. In addition to plant transformation vectors derived from the Ti or root-inducing (Ri) plasmids of Agrobacterium, alternative methods can be used to insert the DNA constructs of this invention into plant cells. Such methods may involve, for example, the use of liposomes, electroporation, chemicals that increase free DNA uptake, particle gun technology, and transformation using viruses. Methods for th introduction of vectors into maize, or other monocot cells would include, but are not limited to, the injection method of Neuhaus et al. (1987), the injection method of de la Pena et al. (1987) or the microprojectile methods of Klein et al. (1987) and McCabe t al. (1938)

The construction of vectors capable of being inserted into a plant genome via Agrobacterium tumefaciens mediated delivery is known to those of ordinary skill in the art. Typical plant cloning vectors comprise selectable and scoreable marker genes, T-DNA borders, cloning sites, appropriate bacterial genes to facilitate identification of transconjugates, broad host-range replication and mobilization functions and other elements as desired.

If Agrobacterium mediated delivery is chosen, once the vector has been introduced into the disarmed Agrobacterium strain, the desired plant can then be transformed. Any known

10

15

20

25

30

(24.4

method of transformation that will work with the desired plant can be utilized.

Plants particularly suitable for use in this invention are tomato, banana, kiwi fruit, avocado, melon, mango, papaya, apple, peach, and other climacteric fruit plants. The present invention should also be suitable for use in the following non-climacteric species: strawberry, lettuce, cabbage, cauliflower, onions, broccoli, cotton, canola and oilseed rape. Other plant species that are affected by the ethylene induced ripening process may also benefit from the teachings of the present invention especially those in which ethylene production is critical to the growth of the plant or the ripening or development of the fruit of the plant. In the flower industry, particularly desirable flower species would be carnations, roses and the like. This list should be interpreted as only illustrative and not limiting in any sense.

In order to obtain constitutive expression of the ACC deaminase gene in plants, the gene was cloned into the transformation vector pMON977. The ACC deaminase gene isolated from the 6G5 isolate was used in the transformation vectors prepared herein. The pMON977 plasmid (Figure 3) contains the following well characterized DNA segments. First, the 0.93 Kb fragment isolated from transposon Tn7 which encodes bacterial spectinomycin/streptomycin resistance (Spc/Str), and is a determinant for selection in *E. coli* and *Agrobacterium tumefaciens* (Fling et al. 1985). This is joined to the chimeric kanamycin resistance gene engineered for plant expression to allow selection of the transformed tissue. The chimeric gene consists of th 0.35 Kb cauliflower mosaic virus 35S promoter (P-35S) (Odell et al. 1985), the 0.83 Kb neomycin phosphotransferase type II gene (NPTII), and the 0.26 Kb 3'-nontranslated region of

WO 92/12249 PCT/US91/09437

5

10

15

20

25

30

(----

the nopaline synthase gene (NOS 3') (Fraley et al. 1983). The next segment is the 0.75 Kb origin of replication from the RK2 plasmid (ori-V) (Stalker et al. 1981). This is joined to the 3.1 Kb SalI to PvuI fragment from pBR322 which provides the origin of replication for maintenance in E. coli (ori-322), and the bom site for the conjugational transfer into the Agrobacterium tumefaciens cells. Next is the 0.36 Kb PvuI to BclI fragment from the pTiT37 plasmid, which contains the nopaline-type T-DNA right border region (Fraley et al. 1985). The last segment is the expression cassette consisting of the 0.65 Kb cauliflower mosaic virus (CaMV) 35S promoter enhanced by duplication of the promoter sequence (P-E35S) (Kay et al. 1987), a synthetic multilinker with several unique cloning sites, and the 0.7 Kb 3' nontranslated region of the pea rbcS-E9 gene (E9 3') (Coruzzi et al. 1984 and Morelli et al. 1985).

Two different size fragments both containing the ACC deaminase gene from pMON10027 were introduced between the E35S promoter and the E9 3' end of pMON977. First, the 1071 bp EcoRV-SacI fragment from pMON10027 was introduced into the StuI-SacI cut pMON977, generating the pMON10028 vector (Figure 4). Second, the 1145 bp EcoRV-EcoRV fragment from pMON10027 was introduced into the StuI cut pMON977, generating the pMON10037 vector (Figure 5).

In order to construct vectors capable of directing expression of ACC deaminase specifically to fruit, a tomato fruit specific transcriptional promoter needed to be isolated. The promoter that was chosen is known to be induced to express at high levels in the presence of ethylene and is also known to be limited to the tomato fruit (Lincoln, J. and Fischer, R. 1988). The DNA sequence of the promoter for this gene, E8, has been published (Deikman et al. 1988). The DNA sequence of the E8

promoter is designated SEQ ID NO:10 and is illustrated in Figure 14. While this promoter was chosen, other fruit specific promoters would also be useful and their identification and isolation routine to one of ordinary skill in the art. The promoter fragment E8 was isolated using standard polymerase chain reaction techniques. Oligonucleotides complementary to the E8 promoter were synthesized. The DNA sequences of the 5' and 3' oligonucleotides were as follows:

10

15

20

25

(---

5

5' oligonucleotide:

GAAGGAAGCT TCACGAAATC GGCCCTTATT C (SEQ ID NO:2)

3' oligonucleotide:

GGGGCTTTAG ATCTTCTTTT GCACTGTGAA TG (SEQ ID NO:3).

The 5' oligonucleotide introduced a HindIII site approximately 1040 nucleotides 5' to the start of transcription. The 3' oligonucleotide introduces a BglII site approximately 20 nucleotides beyond the start of transcription. The PCR product is an approximately 1060 nucleotide fragment that can be cloned as a HindIII to BglII fragment. This promoter fragment will confer tissue-specific expression upon any coding sequence placed adjacent to it in an appropriate orientation.

The PCR reaction was performed essentially as recommended by the manufacturer of the GeneAmp kit (Perkin Elmer-Cetus). The reaction mix consisted of the following:

(----

20

25

30

	water	58.5 µl
	10X buffer	10 μl
	dNTP mix	16 µl
	5' primer	75 pM in 3.0µl
5	3' primer	75 pM in 3.0 μl
	tomato DNA	1.24 μg in 2 μl
	Ampltaq DNA polymerase	0.5 µl

10 The PCR reaction was run using the following temperature/time combination for 28 cycles:

	94°C	1 minute
	60°C	2 minutes
15	72°C	3 minutes.

Following completion, a PCR product of the correct size was observed. The fragment was purified by extraction with an equal volume of 1:1 phenol:chloroform followed by ethanol precipitation. The PCR fragment was then cut with HindIII and BglII so that it could be ligated to pMON10037 DNA. The PCR fragment was then ligated to pMON10037 DNA that had been cut with the same enzymes to remove the CaMV35S promoter sequence. The resulting plasmid contains the E8 promoter in the same location as the CaMV35S promoter of pMON10037 and was named pMON10054 (Figure 6).

Both of the pMON10028 and pMON10037 vectors can be mobilized into the ABI Agrobacterium strain. The ABI strain is the A208 Agrobacterium tumefaciens carrying the disarmed pTiC58 plasmid pMP90RK (Koncz and Schell 1986). The Ti

plasmid does not carry the T-DNA phytohormone genes, and the strain is therefore unable to cause the crown gall disease. Mating of pMON vectors into ABI is done by the triparental conjugation system using the helper plasmid pRK2013 (Ditta et al. 1980). When the plant tissue is incubated with the ABI::pMON conjugate, the vector is transferred to the plant cells by the vir functions encoded by the disarmed pMP90RK Ti plasmid. The vector opens at the T-DNA right border region, and the entire pMON vector sequence is inserted into the host plant chromosome. The Ti plasmid does not transfer to the plant cell but remains in the Agrobacterium.

The following examples further demonstrate several preferred embodiments of this invention. Those skilled in the art will recognize numerous equivalents to the specific embodiments described herein. Such equivalents are intended to be within the scope of the claims.

Example 1

5

10

15

20

25

30

 (\cdot,\cdot)

Transformed tobacco plants have been generated using the ABI::pMON10028 and the ABI::pMON10037 vectors, to demonstrate the expression of the ACC deaminase gene in plants.

Tobacco cells were transformed using the tobacco leaf disc method. The tobacco leaf disc transformation protocol employed healthy leaf tissue about 1 month old. After a 15-20 minute surface sterilization with 10% Clorox plus a surfactant, the tobacco leaves were rinsed 3 times in sterile water. Using a sterile paper punch, leaf discs were punched and placed upside d wn on MS104 media (MS salts 4.3 g/l, sucrose 30 g/l, B5 vitamins 500X 2 ml/l, NAA 0.1 mg/l, and BA 1.0 mg/l) for a 1 day preculture.

10

15

20

25

(,,,,,,,,

(200

The discs were then inoculated with an overnight culture of disarmed Agrobacterium ABI containing the subject vector that had been diluted 1/5 (i.e. about 0.6 OD). The inoculation was done by placing the discs in centrifuge tubes with the culture. After 30 to 60 seconds, the liquid was drained off and the discs were blotted between sterile filter paper. The discs were then placed upside down on MS104 feeder plates with a filter disc to co-culture.

After 2-3 days of co-culture, the discs were transferred, still upside down, to selection plates with MS104 media. After 2-3 weeks, callus formed, and individual clumps were separated from the leaf discs. Shoots were cleanly cut from the callus when they were large enough to distinguish from stems. The shoots were placed on hormone-free rooting media (MSO: MS salts 4.3 g/l, sucrose 30 g/l, and B5 vitamins 500X 2 ml/l) with selection. Roots formed in 1-2 weeks. Any leaf callus assays were preferably done on rooted shoots while still sterile. Rooted shoots were placed in soil and were kept in a high humidity environment (i.e. plastic containers or bags). The shoots were hardened off by gradually exposing them to ambient humidity conditions.

In order to assay for ACC deaminase in the leaves, tobacco leaf samples were collected and frozen in liquid nitrogen. One gram of tissue was kept frozen under liquid nitrogen and ground to a fine powder. One ml of extraction buffer (100 mM Tris pH7.1, 10 mM EDTA, 35 mM KCl, 20% glycerol, 5 mM DTT, 5 mM L-ascorbate, 1 mM benzamidine, 1 mg/ml BSA) was added to the sample and ground for 45 seconds, then immediately centrifuged (12,000 g, 3 minutes) to remove the leaf debris. To remove small molecules, 250 µl of the extract was run over a 1 ml Sephadex G-

10

15

20

25

(---

50 spin column which was previously equilibrated with the above extraction buffer (less the BSA).

The extracts were assayed for the relative amount of the ACC deaminase enzyme activity in the transformed plant tissue. The ACC deaminase enzyme converts the ACC substrate into αketobutyrate and ammonia. The α-ketobutyrate was reacted with 2-4-dinitrophenyl-hydrazine hydrochloride to form a hydrazone derivative whose optical density was measured at 520nm following addition of NaOH. The optical density values are a measure of the amount of ACC deaminase in the plant extract. The assay reaction mix contained a 50 µl sample of the tobacco leaf extract. 100 mM Tris pH8.6, and 50 mM ACC in a final volume of 150 μ l. The reaction was incubated at 30°C for 1 minute, and terminated with 50 µl of 0.56 M HCl. A 0.6 ml aliquot of 0.1% 2.4dinitrophenyl-hydrazine in 2 N HCl was added. The sample was boiled for 2 minutes, cooled to room temperature, and 0.2 ml of 40% NaOH was added. A centrifugation (12,000 g. 5 minutes) removes the precipitate. The optical density of the supernatant was measured at 520nm, which indicated the relative amount of the ACC deaminase enzyme being produced in the plants. Nontransformed tobacco plants were used as negative controls.

Several tobacco leaf extracts were assayed and the ACC deaminase activity was found to range from 0.6 to 7.5mmoles product (a-ketobutyrate acid)/mg total protein/minute. These assay results demonstrated that the ACC deaminase was being expressed in the tobacco plant.

10

15

20

25

30

(agreement

Example 2

Transformed tomato plants have been generated using the ABI::pMON10028 and the ABI::pMON10037 vectors, and the expression of the ACC deaminase gene has been demonstrated in these plants.

Agrobacterium strains described above generally by the method as described in McCormick et al. (1986). In particular, cotyledons were obtained from 7-8 day old seedlings. The seeds were surface sterilized for 20 minutes in 30% Clorox bleach and were germinated in Plantcons boxes on Davis germination media. Davis germination media is comprised of 4.3g/l MS salts, 20g/l sucrose and 10 mls/l Nitsch vitamins, pH5.8. The Nitsch vitamin solution is comprised of 100mg/l myo-inositol, 5mg/l nicotinic acid, 0.5mg/l pyridoxine HCl, 0.5mg/l thiamine HCl, 0.05mg/l folic acid, 0.05mg/l biotin, 2mg/l glycine. The seeds were allowed to germinate for 7-8 days in the growth chamber at 25°C, 40% humidity under cool white lights with an intensity of 80 einsteins m-2s-1. The photoperiod was 16 hours of light and 8 hours of dark.

Once germination occurred, the cotyledons were explanted using a #15 feather blade by cutting away the apical meristem and the hypocotyl to create a rectangular explant. These cuts at the short ends of the germinating cotyledon increased the surface area for infection. The explants were bathed in sterile Davis regeneration liquid to prevent desiccation. Davis regeneration media is composed of 1X MS salts, 3% sucrose, 1X Nitsch vitamins, 2.0 mg/l zeatin, pH 5.8. This solution was autoclaved with 0.8% Noble Agar.

The cotyledons w re pre-cultured on "feeder plates" composed f media containing n antibiotics. Th media is

WO 92/12249 PCT/US91/09437

5

10

15

20

25

30

(---)

composed of 4.3g/l MS salts, 30g/l sucrose, 0.1g/l myo-inositol, 0.2g/l KH₂PO₄, 1.45mls/l of a 0.9mg/ml solution of thiamine HCl, 0.2mls of a 0.5mg/ml solution of kinetin and 0.1ml of a 0.2mg/ml solution of 2,4 D. This solution was adjusted to pH 6.0 with KOH. These plates were overlaid with 1.5-2.0 mls of tobacco suspension cells (TXD's) and a sterile Whitman filter which was soaked in 2COO5K media. 2COO5K media is composed of 4.3g/l Gibco MS salt mixture, 1ml B5 vitamins (1000X stock), 30g/l sucrose, 2mls/l PCPA from 2mg/ml stock, and 10µl/l kinetin from 0.5mg/ml stock. The cotyledons were cultured for 1 day in a growth chamber at 25°C under cool white lights with a light intensity of 40-50 einsteins m-2s-1 with a continuous light photoperiod.

Cotyledons were then inoculated with a log phase solution of Agrobacterium containing the desired transgenic gene. The concentration of the Agrobacterium was approximately 5x108 cells/ml. The cotyledons were allowed to soak in the bacterial solution for six minutes and were then blotted to remove excess solution on sterile Whatman filter disks and were subsequently replaced to the original feeder plate where they were allowed to co-culture for 2 days. After the two days, cotyledons were transferred to selection plates containing Davis regeneration media with 2mg/l zeatin riboside, 500µg/ml carbenicillin, and 100cg/ml kanamycin. After 2-3 weeks, cotyledons with callus and/or shoot formation were transferred to fresh Davis regeneration plates containing carbenicillin and kanamycin at the same levels. The experiment was scored for transformants at this time. The callus tissue was subcultured at regular 3 week intervals and any abnormal structures were trimmed so that the d veloping shoot buds would continue to regenerate. Shoots developed within 3-4 months.

10

15

20

25

Once shoots developed, they were excised cleanly from callus tissue and were planted on rooting selection plates. These plates contained 0.5X MSO containing 50µg/ml kanamycin and 500µg/ml carbenicillin. These shoots formed roots on th selection media within two weeks. If no roots appeared after 2 weeks, shoots were trimmed and replanted on the selection media. Shoot cultures were incubated in percivals at a temperature of 22°C. Shoots with roots were then potted when roots were about 2cm in length. The plants were hardened off in a growth chamber at 21°C with a photoperiod of 18 hours light and 6 hours dark for 2-3 weeks prior to transfer to a greenhouse. In the greenhouse, the plants were grown at a temperature of 26°C during the day and 21°C during the night. The photoperiod was 13 hours light and 11 hours dark and the plants were allowed to mature.

Green tomato fruit and leaf samples were collected and frozen in liquid nitrogen. The samples were extracted and assayed using the procedures described for tobacco. The tomato extraction buffer contained 100 mM Tris pH7.1, 1 mM EDTA, 10% glycerol, 5 mM DTT, 5 mM L-ascorbate, 1 mM benzamidine, 1 mg/ml BSA. The extracts were assayed and the ACC deaminase activity was found to range from 1.6 to 11.2 mmoles of product/mg total protein/minutes reaction for the leaf tissue, and from 3.0 to 25.1 mmoles of product/mg total protein/minutes reaction for the tomato fruit tissue. The results of these assays demonstrated that the ACC deaminase was being expressed constitutively in the tomato plant.

10

15

20

25

30

(·

Example 3

Tomato plants transformed with a chimeric gene encoding ACC deaminase have also been assayed to determine the effect of the expression of ACC deaminase on the ripening of fruit of the tomato plant.

Plasmids pMON10028 and pMON10037 were introduced into tomato (*Lycopersicon esculentum* cv. UC82B) as described in Example 2.

Plants containing the genes were initially identified by resistance to kanamycin. Kanamycin resistant plants were further analyzed by ACC deaminase enzyme assays (as described above) and by routine western blot analysis using antibody prepared against purified ACC deaminase protein. Plants that expressed the ACC deaminase protein were chosen for further analysis.

Tomato plants that were identified as expressing the ACC deaminase gene were examined for inhibition of fruit ripening. R1 progeny of the primary transformants from two lines, designated 5673 and 5854, as well as nontransformed UC82B plants were grown under identical conditions in a greenhouse. Progeny of the transgenic plants were screened for the presence of the NPTII gene, indicating inheritance of the T-DNA. All plants, including the UC82B controls, produced flowers and initiated fruit development simultaneously. Plants were then scored for the day at which fruit entered the breaker stage (the stage when the fruit begins to turn red), indicating initiation of ripening. Plants that had been scored as NPTII positive from both of the transgenic lines showed a significant delay in initiation of ripening. The delay in onset of ripening was approximately one week. Fruits from the transgenic plants as well as UC82B controls were then

10

15

20

25

30

Carre

(سننه

removed from the plants at the breaker stage. Fruits were stored individually in 200 ml beakers at room temperature and allowed to ripen. The fruits from transgenic plants exhibited delays of from two to six weeks in the time it took to reach a fully ripe state. Thus, tomato plants expressing the ACC deaminase gene exhibited delays in both the initiation of ripening and the time that it took to progress through the stages of ripening after the process had been initiated.

Example 4

Nicotiana tabacum plants transformed with pMON10028 and pMON10077 as described above have also been assayed to determine the effect of the expression of ACC deaminase in the plant on the life of the tobacco flowers. Tobacco plants expressing the ACC deaminase gene were identified using the same enzyme assay as used for the tomato plants. Enzyme assays were performed on tobacco leaves and flowers. Plants expressing the gene were assayed for the length of time that flowers were retained. Flowers were tagged at the point of anthesis (flower opening) and the time it took to reach a senesced stage was measured. While flowers from control plants showed significant wilting two days after anthesis, flowers from the transgenic plants expressing ACC deaminase were delayed in wilting by a full day.

Example 5

The present invention may also be used in combination with other methods known to delay ripening in fruits. One such combination involves use of the ACC deaminase gene in combination with an antisense gene that inhibits ethylene

10

15

30

Ę.,

(---)

production. A plasmid containing ACC deaminase in combination with an antisense gene for the pTOM13 cDNA has been prepared for this purpose (Holdsworth et al. 1987). The gene designated pTOM13 has been previously shown to inhibit ethylene production when placed in an antisense orientation in plants (Hamilton et al. 1980). It has been postulated that this gene encodes an enzyme that converts ACC to ethylene (presumably the enzyme is ACC oxidase) and inhibition of the synthesis of this enzyme with an antisense RNA leads to accumulation of ACC in plant tissue. A cDNA clone corresponding to the pTOM13 gene was isolated from a cDNA library prepared from ripening tomato fruit on the basis of its ability to hybridize to synthetic oligonucleotides prepared from the published pTOM13 sequence.

A cDNA library was purchased from Stratagene (Cat. # 936004). This library was prepared from RNA isolated from ripening tomato fruit in the bacteriophage lambda cloning vector lambda-ZAP II. Oligonucleotide probes were prepared from segments of the pTOM13 published sequence as follows:

20 Oligonucleotide 1:

5' GGTGAACCAT GGAATTCCAC ATG 3' (SEQ ID NO:4)

Oligonucleotide 2:

5' GCAATTGGAT CCCTTTCCAT AGC 3' (SEQ ID 25 NO:5)

Twenty thousand phage were plated on agar-containing plates as recommended by the manufacturer. The *E. coli* strain XL1-Blue, supplied by the manufacturer, was used for phage preparation. Phage plaques were transferred to nitrocellulose

10

15

20

25

30

Carrier

filters and baked in an 80°C oven for 2 hours. Plates were prehybridized at 65°C for 2 hours in the following solution:

6X SSC, 5X Denhardt's solution, 100 μg/ml denatured salmon sperm DNA, 20mM Tris:HCl, pH 7.0, 0.1% SDS, 1.0 mM EDTA.

50X Denhardt's Solution = 1.0 % each of Ficoll, polyvinylpyrrolidone, bovine serum albumin (Fraction V; Sigma) in water.

20X SSC = 175 g sodium chloride and 88.2 g sodium citrate per liter of water. pH adjusted to 7.0 with NaOH.

After prehybridization, 32P-labelled oligonucleotides (Sambrook et al. 1989) were added to a final concentration of 500,000 cpm/ml hybridization solution for each oligonucleotide. Hybridization was performed at 50°C for 48 hours. Filters were washed twice in 6X SSC at room temperature for 15 minutes and once at 50°C for 15 minutes. They were then dried and exposed to X-ray film for 48 hours. Plaques corresponding to hybridizing phage were isolated and purified by repeating the above procedure at a density of phage where single plaques could easily be separated from adjacent, non-hybridizing plaques. The pTOM13 cDNA insert was rescued in the plasmid vector pBS SK- as described by the manufacturer (Stratagene). This plasmid was designated pMON11023.

A vector designed for expression of the pTOM13 cDNA insert in an antisense orientation was then prepared. The cDNA insert with adjacent polylinker was excised from pMON11023 by

cutting with the restriction endonucleases BamHI and ClaI. The cDNA-containing portion of the plasmid was then cloned into pMON999 which had been cut with BglII and ClaI and treated with calf intestinal alkaline phosphatase. The resulting plasmid, pMON11025, contains the cDNA insert in an antisense orientation with respect to the CaMV35S promoter and a nopaline synthase 3' transcriptional terminator/polyadenylation site. This gene cassette can be excised as a single 2.2 kb NotI fragment. This NotI fragment was excised from pMON11025 and placed into the unique NotI site of pMON10028 to create pMON11027 (Figure 7). This plasmid thus contains an antisense pTOM13 gene and a CaMV35S/ACC deaminase gene. This plasmid was introduced into Agrobacterium ABI using triparental mating as described above and used to transform tomato plants.

The resulting transformed plants should significantly inhibit the production of ethylene in the plant. It is expected that the action of the ACC deaminase gene in combination with the pTOM13 antisense gene will virtually eliminate ethylene synthesis and should further delay ripening of the fruit. It is expected that the combination of the ACC deaminase and the pTOM13 antisense gene will exhibit synergistic properties in the reduction of the formation of ethylene in the fruit or plant.

Example 6

5

10

15

20

25

30

(77

(---

An alternate approach to reducing the rate of ethylene production in plant tissue involves overexpression of the gene encoding S-adenosylmethionine (SAM) decarboxylase. This enzyme degrades SAM which is the immediate precursor of ACC. The decarboxylated SAM is then converted to spermidine, a common polyamine. Since polyamines hav themselves been

reported to have anti-senescence properties in plants, it is anticipated that SAM decarboxylase may prevent ripening in two ways 1) the production of spermidine and 2) degradation of a precursor to ethylene.

The gene encoding SAM decarboxylase (SEQ ID NO: 9), illustrated in Figure 15, has been cloned and its DNA sequence has been reported (Tabor and Tabor). The gene was cloned using PCR as described above in the protocol for isolation of the E8 promoter. E. coli DNA was purified as described above for the isolation of Pseudomonas 6G5 genomic DNA. Purified DNA was subjected to PCR as described above using the following oligonucleotides as primers:

5' oligonucleotide:

5

10

15

20

25

30

NO:7).

(---

(---)

GGAGAAGATA AGATCTATGA AAAAACTGAA

(SEQ ID NO:6)

3' oligonucleotide:
GCAGAAGTAA ATAGATCTGG CGGAGCC (SEQ ID

The two primers used each introduced a BglII restriction site into the amplified DNA sequence to facilitate subsequent cloning steps. Following amplification, the DNA was cut with BglII and ligated with BglII cut pMON7258 (Figure 8). The resultant plasmid, pMON11014 (Figure 9), contained the SAM decarboxylase gene. The gene was subsequently cloned into plant transformation vectors that would permit expression of the gene under the control of either a constitutive promoter such as the full

WO 92/12249 PCT/US91/09437

length transcript promoter from FMV or a fruit specific promoter such as the E8 promoter discussed above. The constitutive expression vector was constructed by cloning the pMON11014 BgIII fragment containing SAM decarboxylase into BgIII cut pMON981 (Figure 10). The resulting plasmid, pMON11016 (Figure 11), contained the gene in the correct orientation for expression in plants. The tissue specific expression vector, pMON11032 (Figure 12), was constructed by insertion of the same BgIII fragment from pMON11014 into BamHI cut pMON10086 (Figure 13). Both transformation vectors were then introduced into Agrobacterium ABI using triparental mating. The Agrobacterium strains containing either pMON11016 or pMON11032 were then used to transform tomato plants as described above.

It is expected that plants expressing the ACC deaminase gene in combination with the SAM decarboxylase gene "ill inhibit synthesis of ethylene in plants, in a synergistic manner, such that the ripening or senescence process in the resulting plant is controlled to enhance the shelf life of the goods derived from the plant.

Example 7

5

10

15

20

25

30

Ø----

(1411)

An ACC metabolizing enzyme such as ACC deaminase may also be used in combination with an antisense ACC synthase gene. The DNA sequence for ACC synthase is known (Van Der Straeten et al. 1990) (SEQ ID NO:8) and is presented in Figure 16. Through routine manipulations, one can isolate a cDNA of the ACC synthase gene from a suitable cDNA library and prepare a vector containing the ACC synthase gene in an antisense orientation. This vector would contain the ACC synthase gene in

PCT/US91/09437

5

10

15

20

25

(بشب)

an antisense direction and an ACC metabolizing enzyme such as ACC deaminase in addition with the other DNA fragments necessary for successful plant transformation. Preferably, both the antisense ACC synthase and the ACC deaminase are under the transcriptional control of a fruit specific promoter, such as E8.

The resulting transformed plants should significantly inhibit the production of ethylene in the fruit of the plant transformed. It is expected that the action of the ACC metabolizing enzyme in combination with the ACC synthase antisense gene will virtually eliminate ethylene synthesis and further delay ripening of the fruit. The fruit may be ripened at a desired time by exposure of the fruit to ambient ethylene.

Example 8

This experiment was performed to evaluate the effect of reduction in ethylene levels in a plant when an ACC deaminase is expressed at high levels in the plant. Plant lines 5673 and 5854, as described in Example 3, were examined for ethylene generation in the plants and for phenotypic effects of expression of the ACC deaminase gene in the plant. Ethylene generation assays were performed on young leaf tissue from the plants by enclosing whole leaves or fruit in sealed containers and withdrawing 1.0 ml gas samples after one hour. Ethylene was quentified on a gas chromatograph (Ward et al. 1978) equipped with an alumina column and flame ionization detector. The results of ethylene generation assays are shown in Table 3 below.

TABLE 3
Ethylene Synthesis (nl/g/h)

Plant	Leaf	Fruit
UC82B	5.15 <u>±</u> 0.69	11.73±0.86
UB82B-2	5.53 <u>+</u> 0.37	ND
5673	0.60 <u>±</u> 0.09	1.43±0.36
5673-2	$0.18 \pm .02$	ND
5854	1.14 ± 0.21	ND

(ND = not determined)

10

1

5

The ethylene level in plant line 5673 was reduced by 90% in one experiment utilizing young leaf tissue and by 97% in a second experiment. Plant line 5854 showed a reduction of approximately 78%. These data are consistent with the gene expression data in these plant lines. Line 5673 contained approximately 0.5% of the soluble protein as ACC deaminase while plant line 5854 contained approximately 0.05% of the soluble protein as ACC deaminase, as measured by protein gel blot analysis.

20

25

30

15

Protein gel blotting was performed by boiling protein samples for three minutes in the gel-loading buffer (50mM TrisCl, pH 7, 100mM dithiothreitol, 2% SDS, 10% glycerol, 0.1% bromophenol blue) and run on a 4-20% polyacrylamide MINI-PROTEAN II ready gels (BIO-RAD). The protein was transferred to nitrocellulose membrane using a MilliBlot-SDE electroblotting apparatus (Millipore, Bedford, MA) following the manufacturers directions. The membrane was incubated overnight at 4°C in 1% BSA, TBST (10 mM Tris, pH 8, 150 mM NaCl, 0.05% Tween-20). The incubations were performed at room temperature with gentle agitation to hybridize the membran. The primary ACC

WO 92/12249 PCT/US91/09437

44-

5

10

15

20

25

30

ا ينبسرو

(-)

deaminase antibody was bound by incubating the membrane in a 1:1000 dilution of the goat serum in TBST for one hour. This was followed by three 10 minute washes in TBST. The secondary reagent was bound by incubating the membrane with 5 μ C of ¹²⁵I-labelled protein G in 20 ml of TBST for 30 minutes. The membrane was washed four times for 10 minutes with 0.1% Triton X-100 and exposed to film. Antibodies were obtained to the ACC deaminase protein by injecting a goat with 1.5 mg of protein and isolating antibodies from the goat pursuant to standard techniques known to those skilled in the art.

Homozygous plants from plant line 5673 were also examined for phenotypic effects. Seed from the transgenic plants germinated normally, and plants were phenotypically indistinguishable from controls. The plants exhibited no delay in the onset of flowering or ripening. They did, however, show significant differences in the progression of ripening. The fruits of transgenic plants exhibited a peak of ethylene synthesis concomitant with control fruit, but at a level of only 10% that of controls. This is illustrated in Figure 18. Ethylene generation by transgenic plants is represented by - •- and ethylene generation by control plants (UC82B) is represented by -M-. The bars represent means + standard error at specific time points. The fruit was detached at the breaker stage and ethylene generation measured daily as previously described. The delay in ripening of fruits detached at the breaker stage was also significant. Control fruit passed from breaker to fully red in seven days and exhibited a marked degree of softening after only two weeks. Transgenic tomato fruit reached the fully red stage after 24 days and remained firm for an extended period from the breaker stage. Fruit from transgenic plants remained firm for longer than 40

PCT/US91/09437

days and did not abscise while the control fruit had abscised after 14 days. These data are presented in Table 4.

TABLE 4

	Ripening Stage											
<u>Plant</u>	3	4	<u>5</u>	<u>.6</u>								
Transgenic	2.8 ± 0.53	5.3±0.98	11.3±3.1	23.5±3.8								
Control	1.4+0.19	2.8±0.26	5.1±0.45	7.0+0.53								

The data in Table 4 are expressed as the number of days to reach a particular ripening stage after being detached, with a standard error. Ripening stages were defined as follows: Breaker, first sign of color change: 3, fully orange; 4, orange to red; 4, greater than 50% red; 6, fully red.

Example 9

WO 92/12249

5

10

15

20

25

30

استنا

(2.4.7)

This example illustrates the expression of the ACC deaminase protein in a flowering plant species. The ACC deaminase gene was transformed into petunia plants. The petunia plants were transformed with a transformation vector that allows for the direct selection of transformed plants on glyphosate. Petunia explants were generally prepared for preculture as described for the tobacco plants in Example 1. Leaves from a one month old petunia plant were surface sterilized for fifteen minutes in a solution of 10% Clorox plus surfactant and washed three times with distilled water. The explants were cut in 0.5 cm squares, removing the leaf edges, mid-rib, tip, and petiole end for uniform tissue type. The explants were then placed in a single layer, upside down, on MS104 plates containing 2 mL 4COO5K media to moisten the surface and pre-cultured for 1-2

10

15

20

25

30

(%

days. Explants were inoculated using an overnight culture of Agrobacterium containing the plant transformation vector that has been adjusted to a titer of 1.2 X 10° bacteria/mL with 4COO5K media. Explants were placed into a centrifuge tube, the Agrobacterium suspension was added and the mixture of bacteria and explants was "vortexed" on maximum setting for 25 seconds to insure even penetration of bacteria. The bacteria were poured off and the explants were blotted between layers of dry sterile filter paper to remove excess bacteria. The blotted explants were placed upside down on MS104 plates to which 2mL 4COO5K media and a filter disk have been placed on top of the agar and co-cultured for two to three days. The explants were transferred to MS104 plates containing carbenicillin 1000mg/l and cefotaxime at 100mg/l for 3 days. The explants were then transferred to a new MS104 media that contains glyphosate at 0.05mM, carbenicillin at 1000mg/l and cefotaxime at 100mg/l for the selection phase. At 4-6 weeks, shoots were cut from callus and placed on MSO and carbenicillin at 500mg/l rooting media. Roots formed in 3-5 days, at which time leaf pieces were taken from rooted plates to confirm glysophate tolerance and that the material was transformed.

The petunia plants were transformed with plant transformation vector pMON11030. A map of pMON11030 is presented in Figure 19. This plasmid is essentially composed of the previously described bacterial replicon system that enables this plasmid to replicate in *E. coli* and to be introduced into and to replicate in *Agrobacterium*. Referring to Figure 19, this plasmid additionally contains the bacterial spectinomycin-/streptomycin selectable marker gene (Spc/Str), and located between the T-DNA right border and left border is the CTP2-CP4 synthetic 5-enolpyruvyl-3-shikimate phosphate synthase (EPSPS) gene in the

10

15

20

farmi

FMV35S promoter-E9 3' cassette. The CTP2-CP4 synthetic gene permits for selection of transformed cells by their ability to grow in the presence of glyphosate. The CTP2 is a chloroplast transit peptide and its DNA sequence is presented in Figure 20 (SEQ ID NO:13). The DNA sequence of the CP4 EPSPS, a gene capable of conferring resistance to glyphosate, is presented in Figure 21 (SEQ ID NO:14). The ACC deaminase gene from isolate 6G5 was placed between the FMV promoter and a nopaline synthase 3' region as a 2.0 kb NotI fragment into the unique NotI site to create pMON11037.

The presence of the ACC deaminase protein in transformed petunia tissues has been confirmed by immunoblot analysis of leaf discs as described in Example 8. ACC deaminase protein has been detected in leaf tissues in five out of six regenerated petunia plants.

Ethylene levels of transgenic petunia plants transformed with pMON11030 have also been determined in petunia plants expressing ACC deaminase. The level of ethylene in the plant is reduced to about one-half of the ethylene level in a control plant that has not been transformed. The results of ethylene generation assays are presented in Table 5 below.

TABLE 5
ETHYLENE SYNTHESIS (nl/p/h)

Plant Line	Leaf Tissue
35861	0.58
35860	0.53
35861 35860 35862	0.62
Control	1.09

30

/ <

25

PCT/US91/09437

5

10

15

20

(----)

These data illustrate that transgenic plants expressing the ACC deaminase protein have reduced ethylene levels in leaf tissues. It is expected that such plants will show reduced senescence of flowers and leaves when compared to nontransformed plants.

All publications and patents mentioned in this specification are herein incorporated by reference as if each individual publication or patent was specifically and individually stated to be incorporated by reference.

From the foregoing, it will be seen that this invention is one well adapted to attain all the ends and objects hereinabove set forth together with advantages which are obvious and which are inherent to the invention.

It will be understood that certain features and subcombinations are of utility and may be employed without reference to other features and subcombinations. This is contemplated by and is within the scope of the claims.

Since many possible embodiments may be made of the invention without departing from the scope thereof, it is to be understood that all matter herein set forth or shown in the accompanying drawings is to be interpreted as illustrative and not in a limiting sense.

10

15

20

25

BIBLIOGRAPHY

Birnboim, H. C. and Doly, J. (1979) A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucl. Acids. Res. 7:1513-1525.

Coruzzi, G., Broglie, R., Edwards, C., and Chua, N.H. (1984). Tissue-specific and light-regulated expression of a pea nuclear gene encoding the small subunit of ribulose-1,5-bisphosphate carboxylase. EMBO J 3, 1671-1679.

Deikman, J. and Fischer, R. (1988). Interaction of a DNA binding factor with the 5'-flanking region of an ethylene-responsive fruit ripening gene from tomato. EMBO J. 7, 3315-3320.

de la Pena, A., Lorz, H. and Schell, J. (1987) Nature 325:274-276.

Ditta, G., Stanfield, S., Corbin, D., and Helinski, D.R. (1980). Broad host range DNA cloning system for Gram-Negative bacteria: construction of a gene bank of Rhizobium meliloti. Proc Natl Acad Sci USA 77, 7347-7351.

Drahos, D., Barry, G., Hemming, B., Brandt, F., Skipper, H., Kline, E., Kluepful, D., Hughes, T., and Gooden, D., in The Release of Genetically-Engineered Microorganisms. (1988). Sussman, M., Collins, C., Skinner, F. and Stewart-Tull, D. eds. Academic Press, New York.

Fling, M.E., Kopf, J., and Richards, C. (1985). Nucleotide sequence of the transposon Tn7 gene encoding an aminoglycoside-

Carpe

المراجعة)

25

modifying enzyme, 3"(9)-O-nucleotidyltransferase. Nucleic Acids Research 13 no.19, 7095-7106.

- Fraley, R.T., Rogers, S.G., Horsch, R.B., Sanders, P.R., Flick, J.S., Adams, S.P., Bittner, M.L., Brand, L.A., Fink, C.L., Fry, J.S., Galluppi, G.R., Goldberg, S.B., Hoffmann, N.L., and Woo, S.C. (1983). Expression of bacterial genes in plant cells. Proc Natl Acad Sci USA 80, 4803-4807.
- Fraley, R.T., Rogers, S.G., Horsch, R.B., Eichholtz, D.A., Flick, J.S., Fink, C.L., Hoffmann, N.L., and Sanders, P.R. (1985). The SEV system: a new disarmed Ti plasmid vector system for plant transformation. Bio/Technology 3, 629-635.
- Hamilton, A., Lycett, G. and Grierson, D. (1990). Antisense gene that inhibits synthesis of the hormone ethylene in transgenic plants. Nature 346:284-287.
- Hohn, B. and Collins J. (1980) A small cosmid for efficient cloning of large DNA fragments. Gene 11: 291-298.

Holdsworth, M. Schuch, W. and Grierson, D. (1987). Nucleotide sequence of an ethylene-related gene from tomato. Nucleic Acids Res. 15:10600

Honma, M. and Shimomura, T. (1978). Metabolism of 1-Aminocyctopropane-1-carboxylic Acid. Agric, Biol. Chem. 42(10), pp 1825-1831.

Ç.

(::

Kay, R., Chan, A., Daly, M., and McPherson, J. (1987). Duplication of the CaMV 35S promoter sequence creates a strong enhancer for plants. Science 236, 1299-1302.

5 Klein, T.M., Wold, E.D., Wu, R. and Sanford, J.C. (1987) <u>Nature</u> 327:70-73.

Koncz, C., and Schell, J. (1986). The promoter of TL-DNA gene 5 controls the tissue-specific expression of chimeric genes carried by novel type of Agrobacterium binary vector. Mol Gen Genet 204, 383-396.

Lincoln, J. and Fischer, R. (1988). Diverse mechanisms for the regulation of ethylene-inducible gene expression. Mol Gen Genet 212, 71-75.

McCabe, D.E., et al. (1988) Bio/Technology 6:923.

Miller, J. H. (1972). Experiments in Molecular Genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.

Miller, L. T. (1982). Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J. Clinical Microbiology 16:584-586.

Morelli, G., Nagy, F., Fraley, R.T., Rogers, S.G., and Chua, N.H. (1985). A short conserved sequence is involved in the light-inducibility of a gene encoding ribulose 1,5-bisphosphate carboxylase small subunit of pea. Nature 315, 200-204.

25

10

20

25

Neuhaus, G. et al. (1987) Theor. Appl. Genet. 75:30.

Odell, J.T., Nagy, F., and Chua, N.H. (1985). Identification of DNA sequences required for activity of the cauliflower mosaic virus 35S promoter. Nature 313, 810-812.

Sambrook, J., Fritsch, E.F., and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual - second edition. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.

Stalker, D.M., Thomas, C.M., and Helinski, D.R. (1981). Nucleotide sequence of the region of the origin of replication of the broad host range plasmid RK2. Mol Gen Genet 181, 8-12.

Tabor, S., and Richardson, C.C. (1985). A bacteriophage T7 RNA polymerase/promoter system for controlled expression of specific genes. Proc. Natl. Acad. Sci. USA 82, 1074-1078.

Tabor, C. and Tabor H. 1987. The *speEspeD* operon of *E. coli*. J. Biol, Chem. 262:16037-16040.

Talmadge, K., and Gilbert, W., "Construction of plasmid vectors with unique PstI cloning sites in the signal sequence coding region" Gene, (12) 235-241 (1980).

Van Der Straeten, D., Van Wiemeersch, L., Goodman, H. and Van Montagu, M. (1990) Proc. Natl. Acad. Sci. USA 87:4859-4863.

Vieira, J. and Messing, J., Production of single-stranded plasmid 30 DNA. Methods. Enzymol. 153: 3 (1987).

4, -1

Ward, T., Wright, M., Roberts, J., Self, R., and Osborne, D. (1978) Analytical procedures for the assay and identification of ethylene. In Isolation of plant growth substances, J. Hillman, ed. (Cambridge: Cambridge University Press), pp. 135-151.

(-

-54-

SEQUENCE LISTING

- (1) GENERAL INFORMATION:
 - (i) APPLICANT: Klee, Harry J. Kishore, Ganesh M.
 - (ii) TITLE OF INVENTION: Control of Fruit Ripening and Senescence in Plants
 - (iii) NUMBER OF SEQUENCES: 17
 - (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: Monsanto Co. BB4F
 - (B) STREET: 700 Chesterfield Village Parkway
 - (C) CITY: St. Louis
 - (D) STATE: Hissouri
 - (E) COUNTRY: USA
 - (F) ZIP: 63198
 - (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/HS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.25
 - (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER:
 - (B) FILING DATE:
 - (C) CLASSIFICATION:
 - (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: US 07/632,440
 - (B) FILING DATE: 26-DEC-1990
 - (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: Hoerner Jr., Dennis R.
 - (B) REGISTRATION NUMBER: 30,914
 - (C) REFERENCE/DOCKET NUMBER: 38-21(10538)A
 - (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: (314)537-6099
 - (B) TELEFAX: (314)537-6047
- (2) INFORMATION FOR SEQ ID NO:1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1079 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)

WO 92/12249 PCT/US91/09437

-55-

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

(-73

(-:

(X2) 0080000000000000000000000000000000000																
GATATCCCAT ATCAAGGAGC AGAGTC ATG AAT CTG AAT CGT TTT GAA CGT TAT Het Asn Leu Asn Arg Phe Glu Arg Tyr 1 5														53		
	Leu													CTC Leu		101
														GAC Asp 40		149
														GAA Glu		197
														TCC Ser		245
		-												GCT Ala		293
														AAC Asn		341
														CGG Arg 120		389
														ej à ecc		437
				_		_				_				GGT Gly		485
														GJ y		533
														AAG Lys		581
														GGC Gly 200		629

															AAG	677
Thi	Glr	n Ala	Gly 205		Val	Val	Gly	Phe 210		Ala	yst	Gly	, Arg 215		Lys	
															GCA	725
Asn	Va]			Ile	ysb	Ala			Lys	Pro	Glu	Gln	Thr	Lys	Ala	
		220)				225	•				230)			
CAG	ATC	CTG	CGC	ATC	GCC	CGA	CAC	ACC	GCT	GAG	TTG	GTG	GAG	TTG	GGG	773
															Gly	,,,
	235	•				240		-			245				•	
CGC	GAG	ATT	ACG	GAA	GAG	GAC	GTG	GTG	CTC	GAT	ACG	ССТ	TTT	GCC	TAC	821
			Thr													021
250					255	_				260			•		265	
			GGC													869
710	GIU	131	Gly	270	Pro	ASh	Ģīu	GIA	275	reu	GIU	yra	He	_	Leu	
				2.0					273					280		
TGC	GGC	AGC	CTT	GAA	GGC	GTG	CTG	λCλ	GAC	CCG	GTA	TAT	GAA	GGT	λλλ	917
Сла	Gly	Ser	Leu	Glu	Gly	Val	Leu		λsp	Pro	Val	Tyr	Glu	Gly	Lys	
			285					290					295			
TCG	ATG	CAC	GGC	ATG	ATT	GAA	ATG	GTC	CGT	CGT	GGT	GAA	ттс	ccc	CAA	965
Ser	Met	His	Gly	Het	Ile	Glu	Ket	Val	Arg	Arg	Gly	Glu	Phe	Pro	Glu	303
		300					305		_		•.	310				
GGT	TCC		GTG	<u></u>	TAC	CCA	CAC	max.	CC#							
Glv	Ser	Lvs	Val	Leu	Tvr	Ala	His	Leu	COL	Glv	Ala	CCC	GCG	CTG	AAC	1013
	315	-,-			-2-	320			,	41	325	PIO	VIG	rea	ABR	
GCC	TAC	AGC	TTC	CTG	TTT	CGT	YYC	CCC	TAAG	CGTA	GA A	CTCC	TTTT	G		1060
330	Tyr	Ser	Phe	Leu	235	yrd	Asn	Gly								
					J JJ							•				
GAGI	CATO	TG 1	GGGA	GCTC	:											1079
																10/3

- (2) INFORMATION FOR SEQ ID NO:2:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 31 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (synthetic)
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

GAAGGAAGCT TCACGAAATC GGCCCTTATT C

(2) INFORMATION FOR SEQ ID NO: 3:

	(1)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 32 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii)	MOLECULE TYPE: DNA (synthetic)	
	(xt)	SEQUENCE DESCRIPTION: SEQ ID NO:3:	
GGG	GCTTT	AG ATCTTCTTTT GCACTGTGAA TG	32
(2)	INFO	RMATION FOR SEQ ID NO:4:	
	(1)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 23 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLCGY: linear	
	(ii)	MOLECULE TYPE: DNA (synthetic)	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:4:	
GGT	GAACC	AT GGAATTCCAC ATG	23
(2)	INFO	RMATION FOR SEQ ID NO:5:	
	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 23 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(II)	MOLECULE TYPE: DNI , Tynthetic)	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:5:	
GCA	ATTGG	AT CCCTTTCCAT AGC	23
{2}	INFO	RMATION FOR SEQ ID NO:6:	
	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 35 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii)	MOLECULE TYPE: DNA (synthetic)	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:6:	•

GGAGAAGATA AGATCTATGA AAAAACTGAA ACTGC	35
(2) INFORMATION FOR SEQ ID NO:7:	
(1) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 27 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA (synthetic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:	
GCAGAAGTAA ATAGATCTUG CGGAGCC	27
(2) INFORMATION FOR SEQ ID NO:8:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 1800 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: double	
(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA to mRNA	
(xi) SEQUENCE DESCRIPTION: SEQ 1D NO:8:	
CCAAACACAT AATACTTTTA ATACAATTAG TTATTTATTA GAAGTATTTA AAGTAAAGCA	60
CTTGTGAGTT GTGTACATTT TATTAATCTT CATCTTCTTA ATTCTCTTCA GTTTTTAATT	120
TCTTCACTTC TAAACTCATT TAGTAAAAAA AAA ATG GGA TTT GAG ATT GCA AAG	174
Met Gly Phe Glu Ile Ala Lys	
1 5	
ACC AAC TOA ATC TTA TOA AAA TTG GOT ACT AAT GAA GAG CAT GGC GAA	200
Thr Asn Ser Ile Leu Ser Lys Leu Ala Thr Asn Glu Glu His Gly Glu	222
· · · · · · · · · · · · · · · · · · ·	
10 15 20	
AAC TCG CCA TAT TTT GAT GGG TGG AAA GCA TAC GAT AGT GAT CCT TTC	270
Asn Ser Pro Tyr Phe Asp Gly Trp Lys Ala Tyr Asp Ser Asp Pro Phe	• • •
25 30 35	
CAC CCT CTA AAA AAC CCC AAC GGA GTT ATC CAA ATG GGT CTT GCT GAA	318
His Pro Leu Lys Asn Pro Asn Gly Val Ile Gln Met Gly Leu Ala Glu	
40 45 50 55	
AAT CAG CTT TGT TTA GAC TTG ATA GAA GAT TGG ATT AAG AGA AAC CCA	366
Ash Cac Cit ici ila cac ilo alla can cal ico all' add aca aca acc cca Ash Cln Leu Cys Leu Asp Leu Ile Glu Asp Trp Ile Lys Arg Ash Pro	366
60 65 70	
- · · · · · · · · · · · · · · · · · · ·	

6

	GGT Gly								Lys					Ile	GCC Ala	41	14
			Хsр												GCG Ala	46	2
															GAA Glu	51	0
	GTT Val														ATA 11e. 135	55	8
	тст Сув															60	6
	CCA Pro															65	4
	CCA Pro															70:	2
	GTA Val 185															750	0
Lys 200	GGT Gly	Leu	Ile	Leu	Thr 205	Asn	Pro	Ser	Asn	Pro 210	Leu	Gly	Thr	Thr	Leu 215	798	3
Asp	Lys	yab	Thr	Leu 220	Lys	Ser	Val	Leu	Ser 225	Phe	Thr	Asn	Gln	His 230	Asn	846	5
Ile	CAC	Leu	Val 235	Сув	Asp	Glu	Ile	Tyr 240	Ala	Ala	Thr	Val	Phe 245	yab	Thr	894	1
Pro	CAA Gln	Phe 250	Val	Ser	Ile	Ala	Glu 255	Ile	Leu	Asp	Glu	Gln 260	Glu	Met	Thr	942	!
Tyr	TGC Cys 265	Asn	Lys	Asp	Leu	Val 270	His	Ile	Val	Tyr	Ser 275	Leu	Ser	Lys	ysb	990)
ATG Met 280	GGG	TTA Leu	Pro	GGA Gly	TTT Phe 285	AGA Arg	GTC Val	GCA Gly	ATC Ile	ATA 11e 290	TAT Tyr	TCT Ser	TTT Phe	Asn	GAC Asp 295	1038	

					GCT Ala										Ser	1086
					TTT Phe											1134
					AGA Arg											1182
					GGA Gly											1230
					TTT Phe 365											1278
Glu	Ser	Thr	Phe	380 yab	AGC Ser	Glu	Неt	Ser	Leu 385	Trp	λrg	Val	Ile	11e 390	Asn	1326
Asp	Val	Lys	Leu 395	neÁ	GTC Val	Ser	Leu	Gly 400	Ser	Ser	Phe	Glu	Cys 405	Gln	Glu	1374
Pro	Gly	Trp 410	Phe	Arg	GTT Val	Сув	Phe 415	Ala	λsn	Het	Asp	Авр 420	Gly	Thr	Val	1422
GAT Asp	Ile 425	Ala	Leu	Ala	Arg	11e 430	Arg	Arg	Phe	Val	Gly 435	Val	Glu	Lys	Ser	1470
GGA Gly 440	Asp	Lys	Ser	Ser	Ser 445	Het	Glu	Lys	Lys	Gln 450	Gln	Trp	Lys	Lys	As n 455	1518
AAT Asn	Leu	Arg	Leu	Ser 460	Phe	Ser	Lys	Arg	Het 465	Tyr	Asp	Glu	Ser	GTT Val 470	TTG Leu	1566
TCA Ser	?ro	Leu	Ser 475	Ser	Pro	Ile	Pro	Pro 480	Ser	Pro	Leu	Val	Arg 485			1608
					•										AATTT	1668
															TTCAG	1728
				TATG	T AT	TGAC	aact	GGT	CTAT	GTA	CTTA	GACA	TC A	TAAT	TTGTC	1788
TTAG	CTAA	TT A	•													1800

PCT/US91/09437

-61-

(2) INFORMATION FOR SEQ ID NO:9:

(1) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 900 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(x1) SEQUENCE DESCRIPTION: SEQ ID NO:9:

ACAC	ccca	rcc 1	raago	EAGA	AG A	FAA Gi	ATCT		CTG Leu			53
									ATT Tie 20		 TGC Cys	101
									ATT		 	149
	_								CTG Leu		 	197
									CGC Arg			245
									GAA Glu	 	 	293
									CCA Pro 100			341
									GTA Val	 	 	389
									CGC Arg			437
									GCG Ala			485
									GAT Asp		 	533

WO 92/12249 PCT/US91/09437

-62-

															GAG Glu	581
															TAT Tyr 200	629
		GTG Val													AAG Lys	677
		CTT Leu														725
		GAC Asp 235														773
		GAA Glu														821.
TAAC	GGC1	CT G	cccc	AGCI	c cc	AGGC	TCCG	CCA	GATO	TAT	TTAC	TTCT	CC I	GCAC	GAAAT	881
TGCG	GTA	GC C	GCCA	CGAC	;											900

(2) INFORMATION FOR SEQ ID NO:10:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1138 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

CTAGAAGGAA GCTTCACGAA ATCGGCCCTT ATTCAAAAAT AACTTTTAAA TAATGAATTT 60
TAAATTTTAA GAAATAATAT CCAATGAATA AATGACATGT AGCATTTTAC CTAAATATTT 120
CAACTATTTT AATCCAATAT TAATTTGTTT TATTCCCAAC AATAGAAAGT CTTGTGCAGA 180
CATTTAATCT GACTTTTCCA GTACTAAATA TTAATTTTCT GAAGATTTTC GGGTTTAGTC 240
CACAAGTTTT AGTGAGAAGT TTTGCTCAAA ATTTTAGGTG AGAAGGTTTG ATATTTATCT 300
TTTGTTAAAT TAATTTATCT AGGTGACTAT TATTTATTTA AGTAGAAATT CATATCATTA 360
CTTTTGCCAA CTTGTAGTCA TAATAGGAGT AGGTGTATAT GATGAAGGAA TAAACAAGTT 420

(CAGTGAAGTG	ATTAAAATAA	AATATAATTT	AGGTGTACAT	CAAATAAAAA	CCTTAAAGTT	480
2	TAGAAAGGCA	CCGAATAATT	TTGCATAGAA	GATATTAGTA	AATTTATAAA	AATAAAAGAA	540
7	TGTAGTTGT	CAAGTTGTCT	TCTTTTTTT	GGATAAAAAT	AGCAGTTGGC	TTATGTCATT	600
C	CTTTTACAAC	CTCCATGCCA	CTTGTCCAAT	TGTTGACACT	TAACTAATTA	GTTTGATTCA	660
1	CTATGAATA	CTAAATAATT	TTTTAGGACT	GACTCAAATA	TTTTTATATT	ATCATAGTAA	720
7	ATTTATCTA	ATTTTTAGGA	CCACTTATTA	CTAAATAATA	AATTAACTAC	TACTATATTA	780
1	TGTTGTGAA	ACAACAACGT	TTTGGTTGTT	ATGATGAAAC	GTACACTATA	TCAGTATGAA	840
A	AATTCAAAA	CGATTAGTAT	AAATTATATT	GAAAATTTGA	TATTTTTCTA	TTCTTAATCA	900
G	ACGTATTGG	GTTTCATATT	TTAAAAAGGG	ACTAAACTTA	GAAGAGAAGT	TTGTTTGAAA	960
С	TACTTTTGT	CTCTTTCTTG	TTCCCATTTC	TCTCTTAGAT	TTCAAAAAGT	GAACTACTTT	1020
A	TCTCTTTCT	TTGTTCACAT	TTTATTTTAT	TCTATTATAA	ATATGGCATC	CTCATATTGA	1080
G	ATTTTTAGA	AATTATTCTA	ATCATTCACA	GTGCAAAAGA	AGATCTAAAG	CCCTAGAG	1138

(2) INFORMATION FOR SEQ ID NO:11:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 27 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (synthetic)
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

CCCGGATCCA TGAATCTGAA TCGTTTT

27

- (2) INFORMATION FOR SEQ ID NO:12:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 27 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (synthetic)
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:

CCCGGATCCG CCGTTACGAA ACAGGAA

27

(2) INFORMATION FOR SEQ ID NO:13:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 318 base pairs

-64-

			QUEN												
AGA	TCTA	TCG	ATAA	GCTT	GA T	GTAA	TTGG	A GG	AAGA	TCAA	AAT	TTTC	AAT	CCCC	ATTCTT
CGA	TTGC	TTC	AATT	GAAG	TT T	CTCC	Me				l Se				C AAT s Asn
														AGT	
Gly 10		Gln	Asn	Pro	Ser 15	Leu	Ile	Ser	λsn	Leu 20	Ser	Lys	Ser	Ser	Gln 25
														CCA Pro	
ALG	Lys	261	PLO	30	261	VGI	361	Leu	35	1111	OI II	GIN	UIB	40	ved
														ATG	
AIA	Tyr	Pro	45	Ser	Ser	Ser	Trp	50	Leu	Lys	Lys	Ser	55 G1y	Het	Thr
														GTT	
Leu	116	60	ser	GIU	Leu	Arg	65	reu	rys	Val	Met	70	Ser	Val	Ser
	GCG			С											
1111	75	суз	net											•	
(2)	INFO	ORMA?	rion	FOR	SEQ	ID N	10:14	1:							
	(i)		QUENC										·		
		•	A) LE B) Ti					•	:=						
) ST				-	,le							
				~ ~\	, DE .	באח	/ ger	omic	٠,						

10

15

-65-

TCT Ser	GGT Gly	CTT Leu	TCT Ser	GGA Gly	ACC Thr	GTC Val	CGT Arg	ATT Ile	CCA Pro	GGT Gly	GAC Asp	AAG Lys	TCT Ser	ATC Ile	TCC Ser	95
				20					25					30		
CAC	AGG	TCC	TTC	ATG	TTT	GGA	GGT	CTC	GCT	AGC	GGT	GAA	ACT	CGT	ATC	143
His	Arg	Ser	Phe 35	Het	Phe	Gly	Gly	Leu 40	Ala	Ser	Gly	Glu	Thr 45	λrg	Ile	
ACC	GGT	CTT	TTG	GAA	GGT	GAA	GAT	GTT	ATC	AAC	ACT	GGT	AAG	GCT	ATG	191
Thr	Gly	Leu 50	Leu	Glu	Gly	Glu	Asp 55	Val	Ile	yau	Thr	Gly 60	Lys	Ala	Met	
CAA	GCT	ATG	GGT	GCC	λGλ	ATC	CGT	AAG	GAA	GGT	GAT	ACT	TGG	ATC	ATT	239
Gln	Ala 65	Het	Gly	Ala	yrg	70	Arg	Lys	Glu	Gly	λ s p 75	Thr	Trp	110	Ile	
GAT	GGT	GTT	GGT	AAC	GGT	GGA	CTC	CTT	GCT	CCT	GAG	GCT	CCT	CTC	GAT	287
									Ala							
TTC	GGT	AAC	GCT	GCA	ACT	GGT	TGC	CGT	TTG	ACT	ATG	GGT	CTT	GTT	GGT	335
									Leu 105							
GTT	TAC	GAT	TTC	GAT	AGC	ACT	TTC	ATT	GGT	GAC	GCT	TCT	CTC	ACT	AAG	383
Val	Tyr	Asp	Phe 115	Asp	Ser	Thr	Phe	11e 120	Gly	Asp	Ala	Ser	Leu 125	Thr	Lys	
CGT	CCA	ATG	GGT	CGT	GTG	TTG	AAC	CCA	CTT	CGC	GAA	ATG	GGT	GTG	CAG	431
Arg	Pro	Met 130	GΙΆ	Arg	Val	Leu) 135	Pro	Leu	Arg	Glu	Met 140	Gly	Val	Gln	
GTG	AAG	TCT	GAA	GAC	GGT	GAT	CGT	CTT	CCA	GTT	ACC	TTG	CGT	GGA	CCA	479
									Pro							
AAG	ACT	CCA	ACG	CCA	ATC	ACC	TAC	AGG	GTA	CCT	ATG	GCT	TCC	GCT	CAA	527
Lys	Thr	Pro	Thr	Pro	Ile	Thr	Tyr	Arg	Val		Met	Ala	Ser	Ala	Gln	
160					165					170					175	
GTG	AAG	TCC	GCT	GTT	CTG	CTT	GCT	GGT	CTC	AAC	ACC	CCA	GGT	ATC	ACC	575
Val	Lys	Ser	Ala	Val 180	Leu	Leu	Ala	Gly	Leu 185	Хsn	Thr	Pro	Gly	11e 190	Thr	
ACT	GTT	ATC	GAG	CCA	ATC	ATG	ACT	CGT	GAC	CAC	ACT	Gλλ	AAG	ATG	CTT	623
Thr	Val	Ile		Pro	Ile	Met	Thr	-	Asp	His	Thr	Glu	-	Met	Leu	
			195					200					205			
									GAG Glu							671
GIU	GIY	210	GIĀ	VIG		Leu	215	AGT	GIU	1111	vaħ	220	vab	ory	AEI	
									AAG							719
λrg	Thr 225		Хrg	Leu	Ģlu	Gly 230	λrg	Gly	Lys	Leu	Thr 235	Gly	Gln	Val	Ile	

ţ .

-66-

									•	•						
	Val										Pro				GCC Ala 255	767
				GGT Gly 260						Leu					λsn	815
		_		GGT Gly					Leu						GAC Asp	863
				AAC Asn												911
				TCT Ser												959
				ATG Met												1007
				GGT Gly 340												1055
				Asp GAC												1103
				TGC Cys												1151
Arg	Pro 385	ХSР	Gly	AAG Lys	Gly	L e u 390	Gly	Asn	Ala	Ser	Gly 395	λla	Ala	Val	Ala	1199
Thr 400	His	Leu	Asp		Arg 405	Ile	Ala	Het	Ser	Phe 410	Leu	Val,	Het	Gly	L e u 415	1247
GTT Val	TCT Ser	GAA Glu	AAC Asn	CCT Pro 420	GTT Val	ACT Thr	GTT Val	GAT Asp	GAT Asp 425	GCT Ala	ACT Thr	ATG Met	ATC Ile	GCT Ala 430	ACT Thr	1295
	Phe	Pro	Glu 435	Phe	Met	yab	Leu	Met 440	Ala	Gly	CTT Leu	Gly	GCT Ala 445	AAG Lys	ATC Ile	1343
GAA Glu								TGAT	GAGC	TC						1377

WO 92/12249 PCT/US91/09437

-67-

121	INFORMATION	FOR	SEO	ΙD	NO:	15:
1 Z 1	THEOWNITON	t Ov	354			

- (1) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1029 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)

(ix) FEATURE:

- (A) NAME/KEY: CDS
- (B) LOCATION: 7..1020

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:

GGA'	rcc				AAT											48
		net 1	Vau	Leu	Asn	5	FIIG	Lys	vra	IYL	10	reu	Ing	Pne	GIY	
															. eec	
	Ser	Pro	Ile	Thr			Lys	Arg	, Leu			His	Leu	Gly	Gly	
15			,		20	,				25	•				30	
AAG	GTC	GAC	cro	TAT	GCC	AAG	CGI	GAA	GAC	TGC	: אאכ	: AGI	. GGC	CTC	GCC	144
Lys	Val	Glu	ı Leu	Tyr	Ala	Lys	Arg	Glu	yab	Cys	уви	Ser	Gly	Leu) Ala	
				35	•		•		40)				45	•	
TTC	GGC	: GGG	. אאכ	: 222	ACG	CGC	AAG	CTC	GAA	TAT	TTG	ATI	ccc	GA)	GCG	192
Phe	Gly	Gly	/ Asn	Lys	Thr	Arg	Lys	Leu	Glu	Tyr	Leu	Ile	Pro	Glu	Ala	
			50)				55	•				60)		
СТС	GAG	CAA	GGC	TGC	GAT	ACC	TTG	GTI	TCC	ATC	GGC	GGC	: ATC	CAG	TCG	240
Leu	Glu	Gln	Gly	Cys	ysb	Thr	Leu	Val	Ser	Ile	Gly	Gly	Fle	Glr	Ser	
		65	•				70)				75	•			
															AAG	288
yau			Arg	Gln	Val			Val	λla	λla	His	Leu	Gly	Met	Lys	
	80)				85	1				90	,				
															TAT	336
Ser	Val	Leu	Val	Glu	Glu	Asn	Trp	Val	. Asn	Tyr	Ser	ysb	Ala	Val	Tyr	
95					100	1				105					110	
GAC	CGC	GT1	GGC	AAT	ATC	GAA	ATG	TCT	ccc	ATC	ATG	GGC	GCC	GAG	GTA	384
															Val	
				115					120					125		
CGA	CTG	GAC	GCC	GCC	GGG	TTC	GAT	ATC	GGC	ATT	CGG	ccc	AGO	TGG	GAG	432
															Glu	
			130					135					140	-	- -	

-68-

AAG Lys	GCC Ala	ATG Met 145	Aab	GAT Asp	GTG Val	GTG Val	GCG Ala 150	CGG Arg	GGT	GGC	AAG Lys	CCG Pro 155	TTC Phe	CCG Pro	ATA Ile	480
CCG Pro	GCG Ala 160	GGT Gly	TGT Cys	TCC Ser	GAA Glu	CAC His 165	CCC Pro	TAC Tyr	GJ Y GGC	GTA	CTT Leu 170	GIY	TTC Phe	GTC Val	GLY	528
					CGA Arg 180											576
GAC Asp	TAC Tyr	ATC Ile	GTG Val	GTC Val 195	TGC Cys	TCT Ser	GTG Val	ACC Thr	GGC Gly 200	AGT Ser	ACC Thr	CAG Gln	GCC Ala	GGC Gly 205	ATG Het	624
					GCC Ala											672
					CCG Pro											720
					GAG Glu											768
					GAT Asp 260											816
					CTG Leu								Ser		GAA Glu	864
					CCG Pro											912
			Val		CGT			Phe								960
		His			GGG		Pro					Tyr				1008
	Arg				TCCG	GG										1029

(2) INFORMATION FOR SEQ ID NO:16:

(i) SEQUENCE CHARACTERISTICS:

(.... -

(---

- (A) LENGTH: 338 amino acids
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:

Met Asn Leu Asn Arg Phe Lys Arg Tyr Pro Leu Thr Phe Gly Pro Ser 1 5 10 15

Pro 11e Thr Pro Leu Lys Arg Leu Ser Glu His Leu Gly Gly Lys Val 20 25 30

Glu Leu Tyr Ala Lys Arg Glu Asp Cys Asn Ser Gly Leu Ala Phe Gly
35 40 45

Gly Asn Lys Thr Arg Lys Leu Glu Tyr Leu Ile Pro Glu Ala Leu Glu
50 60

Gln Gly Cys Asp Thr Leu Val Ser Ile Gly Gly Ile Gln Ser Asn Gln 65 70 75 80

Thr Arg Gln Val Ala Ala Val Ala Ala His Leu Gly Met Lys Ser Val
85 90 95

Leu Val Glu Asn Trp Val Asn Tyr Ser Asp Ala Val Tyr Asp Arg
100 105 110

Val Gly Asn Ile Glu Met Ser Arg Ile Met Gly Ala Glu Val Arg Leu 115 120 125

Asp Ala Ala Gly Phe Asp Ile Gly Ile Arg Pro Ser Trp Glu Lys Ala 130 135 140

Het Asp Asp Val Val Ala Arg Gly Gly Lys Pro Phe Pro Ile Pro Ala 145 150 155 160

Gly Cys Ser Glu His Pro Tyr Gly Gly Leu Gly Phe Val Gly Phe Ala 165 170 175

Glu Glu Val Arg Glu Gln Glu Lys Gln Leu Gly Phe Thr Phe Asp Tyr 180 185 190

Ile Val Val Cys Ser Val Thr Gly Ser Thr Gln Ala Gly Met Val Val 195 200 205

Gly Phe Ala Ala Asp Gly Arg Ser Lys Asn Val Ile Gly Ile Asp Ala 210 215 220

Ser Ala Lys Pro Glu Gln Thr Lys Ala Gln Ile Leu Arg Ile Ala Arg 225 230 235 240

His Thr Ala Glu Leu Val Glu Leu Gly Arg Glu Ile Thr Glu Asp Asp 245 250 255

Val	Val	Leu	Asp	Thr	Arg	Phe	Ala	Tyr	Pro	Glu	Tyr	Gly	Leu	Pro	Asn
			260					265					270		

Glu Gly Thr Leu Glu Ala Ile Arg Leu Cys Gly Ser Leu Glu Gly Val 275 280 285

Leu Thr Asp Pro Val Tyr Glu Gly Lys Ser Met His Gly Met Ile Glu 290 295 300

Met Val Arg Arg Gly Glu Phe Pro Glu Gly Ser Lys Val Leu Tyr Ala 305 310 315 320

His Leu Gly Gly Ala Pro Ala Leu Asn Ala Tyr Ser Phe Leu Phe Arg 325 330 335

Asn Gly

 (\cdot,\cdot)

(2) INFORMATION FOR SEQ ID NO:17:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 597 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:

TCATCAAAAT ATTTAGCAGC ATTCCAGATT GGGTTCAATC AACAAGGTAC GAGCCATATC 60 ACTITATICA AATTGGTATC GCCAAAACCA AGAAGGAACT CCCATCCTCA AAGGTTTGTA 120 AGGAAGATT CTCAGTCCAA AGCCTCAACA AGGTCAGGGT ACAGAGCTCTC CAAACCATTA 180 GCCAAAAGCT ACAGGAGATC AATGAAGAAT CTTCAATCAA AGTAAACTAC TGTTCCAGCA 240 CATGCATCAT GGTCAGTAAG TTTCAGAAAA AGACATCCAC CGAAGACTTA AAGTTAGTGG 300 GCATCTTTGA AAGTAATCTT GTCAACATCG AGCAGCTGGC TTGTGGGGAC CAGACAAAA 360 AGGAATGGTG CAGAATTGTT AGGCGCACCT ACCAAAAGCA TCTTTGCCTT TATTGCAAAG 420 ATAAAGCAGA TTCCTCTAGT ACAAGTGGGG AACAAAATAA CGTGGAAAAG AGCTGTCCTG 480 ACAGCCCACT CACTAATGCG TATGACGAAC GCAGTGACGA CCACAAAAGA ATTCCCTCTA 540 TATAAGAAGG CATTCATTCC CATTTGAAGG ATCATCAGAT ACTAACCAAT ATTTCTC 597

CLAIMS

- 1. A recombinant, double stranded DNA molecule comprising in sequence:
- 5 a promoter that functions in plant cells to cause the production of an RNA sequence;

a structural DNA sequence that causes the production of an RNA sequence that encodes a 1-aminocyclopropane-1carboxylic acid deaminase enzyme; and

- a 3' non-translated region that functions in plant cells to cause the addition of polyadenylated nucleotides to the 3' end of the RNA sequence, said promoter being heterologous with respect to said structural DNA sequence.
- 2. The DNA molecule of claim 1 wherein said promoter is a plant DNA virus promoter.
- The DNA molecule of claim 2 wherein said promoter is selected from the group consisting of the CaMV35S promoter
 and the FMV35S promoter.
 - 4. The DNA molecule of claim 1 wherein said promoter is a fruit specific promoter.
- 5. The DNA molecule of claim 1 wherein said promoter is the E8 promoter from tomato.
 - 6. The DNA molecule of claim 1 wherein said structural DNA sequence is SEQ ID NO:1.

15

20

- 7. The DNA molecule of claim 1 wherein said structural DNA sequence is from a microorganism capable of sustaining growth in media containing ACC as the sole nitrogen source.
- 5 8. A method for controlling the ripening of the fruit of a fruit-bearing plant, said method comprising the steps of:

obtaining cells of said fruit-bearing plant;

transforming said cells of said fruit-bearing plant with a chimeric gene comprising a promoter that functions in plant cells to cause the production of an RNA sequence, a structural DNA sequence that causes the production of an RNA sequence that encodes a 1-aminocyclopropane-1-carboxylic acid deaminase enzyme, and a 3' non-translated region that functions in plant cells to cause the addition of polyadenylated nucleotides to th 3' end of the RNA sequence, said promoter being heterologous with respect to said structural DNA sequence, and wherein said chimeric gene becomes integrated into the genome of said plant cell; regenerating a plant from said transformed plant cell and growing said transformed fruit-bearing plant to produce fruit.

- 9. The DNA molecule of claim 8 wherein said promoter is a plant DNA virus promoter.
- 25 10. The DNA molecule of claim 9 wherein said promoter is selected from the group consisting of the CaMV35S promoter and the FMV35S promoter.
- 11. The DNA molecule of claim 8 wherein said promoter 30 is a fruit specific promoter.

FIG. II

F16. 12

FIG.13

(-----

15/30

TTATGTCATT	AGCAGTTGGC	GGATAAAAAT	CAAGTTGTCT TCTTTTTTT GGATAAAAT AGCAGTTGGC TTATGTCATT	CAAGTTGTCT	551
ATGTAGTTGT	AATAAAAGAA	AATTTATAAA	TTGCATAGAA GATATTAGTA AATTTATAAA AATAAAAGAA ATGTAGTTGT	TTGCATAGAA	501
CCGAATAATT	TAGAAAGGCA CCGAATAATT	CCTTAAAGTT	AGGTGTACAT CAAATAAAA CCTTAAAGTT	AGGTGTACAT	451
AATATAATTT	ATTAAAATAA AATATAATTT	CAGTGAAGTG	GATGAAGGAA TAAACAAGTT	GATGAAGGAA	401
AGGTGTATAT	TAATAGGAGT	CTTGTAGTCA	CATATCATTA CTTTGCCAA CTTGTAGTCA TAATAGGAGT AGGTGTATAT	CATATCATTA	351
AGTAGAAATT	TATTTATTTA	AGGTGACTAT	TITGITAAAT TAATITATCT AGGIGACTAT TATITATITA AGTAGAAATT	TTTGTTAAAT	301
ATATTTATCT	AGAAGGTTTG	ATTTTAGGTG	TTTGCTCAAA ATTTTAGGTG AGAAGGTTTG ATATTTATCT	agtgagaagt	251
CACAAGTTTT	GGGTTTAGTC	GAAGATTTTC	GTACTAAATA TTAATTTTCT GAAGATTTTC GGGTTTAGTC CACAAGTTTT	GTACTAAATA	201
GACTTTTCCA	CATTTAATCT	CTTGTGCAGA CATTTAATCT GACTTTTCCA	TATTCCCAAC AATAGAAAGT	TATTCCCAAC	151
TAATTTGTTT	AATCCAATAT	CAACTATTT	AGCATTITAC CTAAATATTT CAACTATTTT AATCCAATAT TAATTTGTTT	AGCATTTTAC	101
AATGACATGT	CCAATGAATA AATGACATGT	GAAATAATAT	TAATGAATTT TAAATTTTAA GAAATAATAT	TAATGAATTT	51
AACTTTTAAA	ATTCAAAAAT	ATCGGCCCTT	CTAGAAGGAA GCTICACGAA ATCGGCCCTT ATTCAAAAAT AACTTTTAAA	CTAGAAGGAA	-

F16. 14

(**

("

16/30

	CCCTAGAG	AGATCTAAAG	ATCATTCACA GTGCAAAGA AGATCTAAAG CCCTAGAG	ATCATTCACA	1101
AATTATTCTA	GATTTTAGA AATTATTCTA	CTCATATTGA	TCTATTATAA ATATGGCATC	TCTATTATA	1051
TTTATTTAT	TTGTTCACAT	ATCTCTTTCT	TTCAAAAGT GAACTACTTT	TTCAAAAGT	1001
TCTCTTAGAT	TTCCCATTTC	CTCTTTCTTG	TTGTTTGAAA CTACTTTTGT	TTGTTTGAAA	951
GAAGAGAGT	TTAAAAAGGG ACTAAACTTA GAAGAGAAGT	TTAAAAAGGG	GACGTATTGG GTTTCATATT	GACGTATTGG	901
TTCTTAATCA	TATTTTTCTA	GAAAATTTGA	AAATTATATT	CGATTAGTAT	851
AAATTCAAAA	TCAGTATGAA	GTACACTATA	TTTGGTTGTT ATGATGAAAC GTACACTATA TCAGTATGAA AAATTCAAAA	TTTGGTTGTT	801
ACAACAACGT	TIGITGIGAA ACAACAACGI	TACTATATTA	CTAAATAATA AATTAACTAC	CTAAATAATA	751
CCACTTATTA	ATTTTTAGGA CCACTTATTA	TATTTATCTA	ATCATAGTAA TATTTATCTA	TTTTTATATT	701
GACTCAAATA	TTTTAGGACT	CTAAATAATT	GTTTGATTCA TGTATGAATA	GTTTGATTCA	651
TAACTAATTA	TGTTGACACT	CTTGTCCAAT	CTTTTACAAC CTCCATGCCA CTTGTCCAAT TGTTGACACT TAACTAATTA	CTTTTACAAC	601

F16. 14 cont.

9 ACAGCCGTCCTAAGGAGAGATAAGATCTATGAAAAACTGAAACTGCATGGCTTTAATA **MetLysLysLeuLysLeuHisGlyPheAsnA**

ATCTGACCAAAAGTCTGAGTTTTTGTATTTACGATATCTGCTACGCCAAAACTGCCGAAG 120

snLeuThrLysSerLeuSerPheCysIleTyrAspIleCysTyrAlaLysThrAlaGluG

AGCGCGACGGTTATATTGCTTATATCGATGAACTCTATAATGCCAACCGTCTGACCGAAA 180 luArgAspGlyTyrIleAlaTyrIleAspGluLeuTyrAsnAlaAsnArgLeuThrGluI leLeuSerGluThrCysSerIleIleGlyAlaAsnIleLeuAsnIleAlaArgGlnAspT yrGluProGlnGlyAlaSerValThrIleLeuValSerGluGluProValAspProLysL TCATCGACAAAACAGAACACCCCGGCCCACTGCCAGAACGGTCGTTGCCCATCTTGATA 360 euileAspLysThrGluHisProGlyProLeuProGluThrValValAlaHisLeuAspL F1G. 15 AAAGTCATATTTGCGTACATACCTACCCGGAAAGTCATCCTGAAGGCGGTTTATGTACCT 420 ysSerHisIleCysValHisThrTyrProGluSerHisProGluGlyGlyLeuCysThrP

The second of th

rccgcgccgatattgaagtctctacctgcggcgtgatttctccgctgaaggcgctgaatt

heArgAlaAspIleGluValSerThrCysGlyValIleSerProLeuLysAlaLeuAsnT

540

ACCTGATCCACCAGCTTGAGTCCGATATCGTAACCATTGATTATCGCGTGCGCGGTTTTA

yrLeuIleHisGlnLauGluSerAspIleValThrIleAspTyrArgValArgGlyPheT

CCCGCGACATTAACGGTATGAAGCACTTTATCGACCATGAGATTAATTCGATTCAGAACT 600

hrArgAspIleAsnGlyMetLysHisPheIleAspHisGluIleAsnSerIleGlnAsnP

18/30

720

999

F16. 15 cont.

AAATGCGCGAGATTTATTACGGGCGCAATATGCCAGCTGTTTAACGGCTCTGGCGGAGCT 840 luMetArgGluIleTyrTyrGlyArgAsnMetProAlaVal*

CCAAACCGGAAGACTTAACCGACAGCGAGGCGCCAGGAAATTACCGCTGCGCTGTGGAAAG 780

hrLysProGluAspLeuThrAspSerGluArgGlnGluIleThrAlaAlaLeuTrpLysG

ATATCTTCCATACCAAGATGTTGCTTAAAGAGTTCGACCTTAAGCACTACATGTTCCACA

snIlePheHisThrLysMetLeuLeuLysGluPheAspLeuLysHisTyrMetPheHisT

TTATGTCTGACGATATGAAGGCGCTGTATGACATGGTGGATGTGAACGTCTATCAGGAAA

heMetSerAspAspMetLysAlaLeuTyrAspMetValAspValAsnValTyrGlnGluA

CCCAGGCTCCGCCAGATCTATTTACTTCTGCTGCACGAAATTGCGGTAAGCCGCCACGAC. 900

CTTGTGAGTTGTGTGTTTTATTAATCTTCTTCTTAATTCTTCAGTTTTTAATT	120
TCTTCACTTCTAAACTCATTTAGTAAAAAAAAATGGGATTTGAGATTGCAAAGACCAAC	180
MetGlyPheGluIleAlaLysThrAsn	
TCAATCTTATCAAAATTGGCTACTAATGAAGAGCATGGCGAAAACTCGCCATATTTTGAT	240
SerIl LeuSerLysLeuAlaThrAsnGluGluHisGlyGluAsnSerProTyrPheAsp	
GGGTGGAAAGCATACGATAGTGATCCTTTCCACCCTCTAAAAAACCCCAACGGAGTTATC	300
GlyTrpLysAlaTyrAspSerAspProPheHisProLeuLysAsnProAsnGlyVallle	
CAAATGGGTCTTGCTGAAATCAGCTTTGTTTAGACTTGATAGAAGATTGGATTAAGAGA	360
GlnM tGlyLeuAlaGluAsnGlnLeuCysLeuAspLeuIleGluAspTrpIleLysArg	
AACCCAAAAGGTTCAATTTGTTCTGAAGGAATCAAATCA	42(
AsnProLysGlySerIleCysSerGluGlyIleLysSerPheLysAlaIleAlaAsnPhe	
CAAGATTATCATGGCTTGCCTGAATTCAGAAAAGCGATTGCGAAATTTATGGAGAAAACA	480
GlnAspTyrHisGlyLeuProGluPheArgLysAlaIleAlaLysPheMetGluLysThr	
AGAGGAGGAAGAGTTAGATCCAGAAAGAGTTGTTATGGCTGGTGGTGCCACTGGA	54(
ArgGlyGlyArgValArgPheAspProGluArgValValMetAlaGlyGlyAlaThrGly	

F16. 16A

102(GTTCACATCGTCTACAGTCTTTCAAAGACATGGGGTTACCAGGATTTAGAGTCGGAATC ValHisIleValTyrSerLeuSerLysAspMetGlyLeuProGlyPheArgValGlyIle
960	TTCGTCAGTATAGCTGAAATCCTCGATGAACAGGAAATGACTTACTGCAACAAAGATTTA PheValS IleAlaGluIleLeuAspGLUGlnGluMetThrTyrCysAsnLysAspLeu
006	CACAACATCCACCTTGTTGTGACGAAATCTACGCAGCCACTGTCTTTGACACGCCTCAA HisasilehisleuvalCysaspGluileTyralaalathrValPheAspThrProGln
840	CCATTGGGCACCACTTTGGACAAAGACACTGAAAAGTGTCTTGAGTTTTCACCAACCA
780	GAAAATGCACAAAAATCAACATCAAAGTAAAAGGTTTGATTTTGACCAATCCATCAAAT GluasnalaginiysSerasnileiysVallysGlyleuileleuthrasnProSerasn
720	ATTCACTGTGAGAGCTCCAATAATTTCAAAATTACTTCAÄAAGCAGTAAAAGAAGCATAT IlehisCysGluSerSerAsnAsnPheLysIleThrSerLysAlaValLysGluAlaTyr
099	CCATACTACCCAGCATTTAACAGAGATTTAAGATGGAGAACTGGAGTACAACTTATTCCA ProtyrtyrProalaPheasnargaspleuargTrpargthrGlyValGlnLeuIlePro
009	GCTAATGAGACAATTATATTTTGTTTTGGCTGATCCTGGCGATGCATTTTTAGTACCTTCA AlaAsnGluThrIleIlePheCysLeuAlaAspProGlyAspAlaPheLeuValProSer

F1G. 16B

(m. 17.3

21/30

	ATATATTCTTTTAACGACGATGTCGTTAATTGTGCTAGAAAATGTCGAGTTTCGGTTTA IleTyrSerPheAsnAspAspValValAsnCysAlaArgLysMetSerSerPheGlyLeu	1080	
	GTATCTACACAAAACGCAATATTTTTTAGCGGCAATGCCATCGGACGAAAAATTCGTCGAT ValSerThrGlnThrGlnTyrPheLeuAlaAlaMetProSerAspGluLysPheValAsp	1140	
	AATTTTCTAAGAAAGCGCGATGAGGTTAGGTAAAAGGCACAAACATTTTACTAATGGA AsnPheLeuArgGluSerAlaMetArgLeuGlyLysArgHisLysHisPheThrAsnGly	1200	
	CTTGAAGTAGTGGGAATTAAATGCTTGAAAATAATAGCGGGGCTTTTTTGTTGGATGGA	1260	
· ˈ <u>.</u>	TTGCGTCCACTTTTAAGGGAATCGACTTTCGATAGCGAAATGTCGTTATGGAGAGTTATT LeuargProleuleuargGluSerThrPheAspSerGluMetSerLeuTrpArgValIle	1320	
	ATAAACGATGTTAAGCTTAACGTCTCGCTTGGATCTTCGTTTGAATGTCAAGAGCCAGGGIleAsnAspValLysLeuAsnValSerLeuGlySerSerPheGluCysGlnGluProGly	1380	
1. J.	TGGTTCCGAGTTTGTTTTGCAAATATGGATGAACGGTTGATATTGCGCTCGCGAGG	1440	

F16.16

TrpPheArgValCysPheAlaAsnMetAspAspGlyThrValAspIleAlaLeuAlaArg

(-

22/30

1740 1800 1500 1560 1620 1680 **ATTCGGAGGTTCGTAGGTGTGAGAAAGTGGAGATAAATCGAGTTCGATGGAAAAGAAG** GTTTTGTCACCACTTTCGTCACCTATTCCTCCCTCACCATTAGTTCGTTAAGACTTAATT **TTATAATAGGAAAAGAAATAAGTATGTAGGATGAGGAGTATTTTCAGAAATAGTTGTTA** GCGTATGTATTGACAACTGGTCTATGTACTTAGACATCATAATTTGTCTTAGCTAATTAA CAACAATGGAAGAATAATTTGAGACTTAGTTTTCGAAAAGAATGTATGAAAGT IleArgArgPheValGlyValGluLysSerGlyAspLysSerSerSerMetGluLysLys GlnGlnTrpLysLysAsnAsnLeuArgLeuSerPheSerLysArgMetTyrAspGluSer ValL uSerProLeuSerSerProlleProProSerProLeuValArg* TGAATGCAAAAGTGAAGTT

F16. 16D

 \bigcirc

23/30

	GGATCC	ည်င	ATG	AAT	TTG	AAT	CGT	TTT	AAA A	CGT	TAT	၁			TTC	GGT	48
			Met	Asn	Leu	Asn	Arg	Phe	Lys	Arg	Tyr	Pro			Phe	Gly	•
	CC		ပ္ပ	ATC	ACG	ည	TIG	MAG	ပ္ပ	CIC	AGT	GAA			GGT	၁၅၅	96
	Pro		Pro	116	Thr	Pro	Lea	Lys	Arg	Leu	Ser	Glu			Gly	Gly	
	AAG		GAG	CTG	TAT	ပ္ပ	MAG	CGT	GAA	GAC	TGC	MAC			CTG	ညည	144
:	Lys	Val	Glu	Leu	Tyr	Ala	Lys	Arg	Glu	Asp	Cys	Asn	Ser	Gly	Leu	Ala	•
· .	TTC		999	MAC	Z	ACG	ပ္ပ	AAG	CIC	GAA	TAT	TTG			GAA	ඉදල	192
	Phe		Gly	Asn	Lys	Thr	Arg	Lys	Leu	Glu	Tyr	Leu			Glu	Ala	
	CIC		3	ပ္တစ္သ	1 60	GAT	ACC	TTG	GTT	TCC	ATC	ပ္ပပ္ပ			CAG	TCG	240
	Leu		Gln	Gly	Ç	Asp	Thr	Leu	Val	Ser	Ile	Gly			Gln	Ser	
	MAC		S CC	ပ္ပ	CAG	GTG	ပ္ပ	ပ္ပ	GTT	ပ္ပ	GCT	CAC			ATG	AAG	288
	Asn		Thr	Arg	Glu	Val	Ala	Ala	Val	Ala	Ala	His			Met	Lys	
	1 60		CTG	GTG	55	GAA	MAC	TGG	GTG	AAC	TAC	JCC			GTG	TAT	336
	S S		Leu	Val	Gln	Gla	Asn	Trp	Val	Asn	Tyr	Ser			Val	Tyr	
· ·	GAC		GTT	ပ္ပ	AAT	ATC	GZZ	ATG	TCT	ပ္ပ	ATC	ATG			GAG	GTA	384
	Asp		Val	Gly	Asn	Ile	Glu	Met	Ser	Arg	Ile	Met			Gla	Val	
•	6 90		GAC	ပ္ပ	ပ္ပ	999	TIC	GAT	ATC	ပ္ပ	ATT	၅၅၁			TGG	GAG	432
٠.	Arg		Asp	Ala	Ala	Gly	Phe	Asp	Ile	Gly	Ile	Arg			Trp	Glu	
•	AAG		ATG	GAC	GAT	GIG	GTG	ဗ္ဗ	SSS	GGT	ညည	AAG			ပ္ပ	ATA	480
	Lys		Met	Asp	Asp	Val	Val	Ala	Arg	Gly	Gly	Lys			Pro	Ile	
	ပ္ပ		GGT	TGT	1 00	GAA	CAC	ပ္ပ	TAC	ညည	ညည	CIT			GIC	၁၅၅	528
	Pro		Gly	Cys	Ser	Glu	His	Pro	Tyr	Gly	Gly	ren			Val	Gly	

F16. 17

(-)

24/30

576	624	672	720		168		816		864		912		096		1008		1029	
TTC	ATG	ATT	Ile	116	GAA	Glu	TTG	Leu	GA	Gla	ATG	Met	CTG	Len	CTG	Len		
ACG	66C 61v	ည္ဟ	61y cgr	Arg	ACC	Thr	GGT	Gly	CTG	Leu	ဗ္ဗ	Gly	GTG	Val	TIC	Phe		
TTC	900 818	ATC	11e CTG	Leu	ATC	Ile	TAC	Tyr	360	Ser	CAC	His	Z	Lys	200	Ser		
	CAG																	
CTG	ACC	MC	Asn	Gln	CGT	Arg	၅	Pro	760	Cys	TCC	Ser	၁၅၅	Gly	ပ္ပပ္ပ	Ala		
	AGT																	
AAA Lys	960	1 1 1 1	Ser	Lys	CTG	Len	ပ္ပ	Ala	CGT	Arg	ပ္ပမ္	Gly	ပ္ပ	Pro	CTG	Len		
GAA Glu	ACC	CGT	Arg	Thr	GNA	Glu	TTT	Phe	ATT	Ile	GAG	Glu	TIC	Phe	ည္ဟ	Ala		
CAG Gln	GTG	ည္ဟ	S S	Gln	GTG	Val	CGT	Arg	ပ္ပ	Ala	TAC	Tyr	GAG	Gla	Ç	Pro		
GAG Glu	TCT	GAC	asp gag	Gla	TIG	Leu	ACA	Thr	S. S.	Gla	GTG	Val	ပ္ပစ္ပ	Gly	ပ္ပ	Ala	છુ	
	767 8															Gly	TCCGG	
GTG	GTC	ည္ဟ	Ala AAG	Lys	8 0	Ala	CTC	Leu	ACG	Thr	GAT	Asp	ပ္ပ	Arg	GGT	Gly	GGA1	
GAA Glu	GTG Val	TTC	Phe GCC	Ala	ACC	Thr	GTG	Val	ပ္ပ	Gly	NCC NCC	Thr	GTC	Val	TTG	Leu	ည္ဟ	Gly
GAG Glu																		
GCC	TAC	GIC	Val GCC	Ala	990	Arg	GAC	Asp	S C	Asn	GTG	Val	GAA	Glu	929	Ala	CGT	Arg
TTT Phe	GAC	010 010	Val GAT	Asp	ပ္ပ	Ala	9	Asp	ပ္ပ	Pro	GGT	Gly	ATT	Ħ	TAT	Tyr	TIL	Phe
							:.		ë.						-			

F16. 17 cont.

FIG. 18

27/30

31	TTTCCACGGCGTGCATGC	
30	GATGACGITAATTGGCTCTGAGCTTCGTCCTCTTAAGGTCATGTCTTCTG 30	·
25	CATCCACGAGCTTATCCGATTTCGTCGTGGGGATTGAAGAAGAGTGG 25	
20	AATCCAGTCAACGCAAATCTCCCTTATCGGTTTCTCTGAAGACGCAGCAG 20	
15	CAGAATCTGCAATGGTGTGCAGAACCCATCTCTTATCTCCAATCTCTCGA 15	· ••• ~,
10	CCCCATTCTTCGATTGCTTCAATTGAAGTTTCTCCGATGGCGCAAGTTAG 10	
လ	AGATCTATCGATAAGCTTGATGTAATTGGAGGAAGATCAAAATTTTCAAT 50	

F16. 20

(-)

-	700	GAGACTGATGCTGACGTGTGCGTACCATCCGTCTTGAAGGTCGTGGTAA	100
F	650	GTGACCACACTGAAAAGATGCTTCAAGGTTTTGGTGCTAACCTTACCGTT	
	009	TGGTCTCAACACCCCAGGTATCACCACTGTTATCGAGCCAATCATGACTC	
	550	TACAGGGTACCTATGGCTTCCGCTCAAGTGAAGTCCGCTGTTCTGCTTGC	
	200	ATCGTCTTCCAGTTACCTTGCGTGGACCAAAGACTCCAACGCCAATCACC	
	450	GTIGAACCCACTICGCGAAATGGGTGTGCAGGTGAAGTCTGAAGACGGTG	
	400	AGCACTTTCATTGGTGACGCTTCTCTCACTAAGCGTCCAATGGGTCGTGT	
	350	CAACTGGTTGCCGTTTGACTATGGGTCTTGTTGGTGTTTACGATTTCGAT	
	300	TAACGGTGGACTCCTTGCTCCTGAGGCTCCTCTCGATTTCGGTAACGCTG	
	250	GGTGCCAGAATCCGTAAGGAAGGTGATACTTGGATCATTGATGGTGTTGG	
	200	TTTTGGAAGGTGAAGATGTTATCAACACTGGTAAGGCTATGCAAGCTATG	
	150	GTCCTTCATGTTTGGAGGTCTCGCTAGCGGTGAAACTCGTATCACCGGTC	
	100	GGTCTTTCTGGAACCGTCCGTATTCCAGGTGACAAGTCTATCTCCCACAG	
	20	GCATGCTTCACGGTGCAAGCAGCCGTCCAGCAACTGCTCGTAAGTCCTCT	

F16.	1377	CCGACACTAAGGCTGCTTGATGAGCTC
	1350	CCCAGAGTTCATGGATTTGATGGCTGGTCTTGGAGCTAAGATCGAACTCT
	1300	TCTGAAAACCCTGTTACTGTTGATGCTACTATGATCGCTACTAGCTT
	1250	CCCACCTCGATCACCGTATGAGCTTCCTCGTTATGGGTCTCGTT
	1200	TCGTCCTGACGGTAAGGGTCTCGGTAACGCTTCTGGAGCAGCTGTCGCTA
	1150	CTCAACGGTGTTGATTGCGATGAAGGTGAGACTTCTCTCGTCGTGCGTG
٠	1100	TCCGTGTTAAGGAAAGCGACCGTCTTTCTGCTGTCGCAAACGGTCTCAAG
	1050	TGCAGCTGCATTCGCTGAAGGTGCTACCGTTATGAACGGTTTGGAAGAAC
	1000	CCAGAAGACCGTGCTCCTTCTATGATCGACGAGTATCCAATTCTCGCTGT
	950	ACGTGGCTGACTTGCGTTCTTCTACTTTGAAGGGTGTTACTGTT
	900	AATGGGTGCCGACATCGAAGTGATCAACCCACGTCTTGCTGGTGGAGAAG
	850	AACGTTTTGATGAACCCAACCCGTACTGGTCTCATCTTGACTCTGCAGGA
	800	TCCCATTGGTTGCTTGCTTCCAGGTTCCGACGTCACCATCCTT
	750	GCTCACCGGTCAAGTGATGATCTTCCAGGTGATCCATCCTCTACTGCTT

	596	CATTCATTCCCATTTGAAGGATCATCAGATACTAACCAATATTTCTC
LL	550	TATGACGAACGCAGACGACCACAAAAGAATTCCCTCTATATAAGAAGG
	200	AACAAAATAACGTGGAAAAGAGCTGTCCTGACAGCCCCACTCACT
	450	TCTTTGCCTTTATTGCAAAGATAAAGCAGATTCCTCTAGTACAAGTGGGG
	400	CAGACAAAAAGGAATGGTGCAGAATTGTTAGGCGCACCTACCAAAAGCA
	350	GCATCTTTGAAAGTAATCTTGTCAACATCGAGCAGCTGGCTTGTGGGGAC
	300	GGTCAGTAAGTTTCAGAAAAAGACATCCACCGAAGACTTAAAGTTAGTGG
	250	AATGAAGAATCTTCAATCAAAGTAAACTACTGTTCCAGCACATGCATCAT
	200	AGGTCAGGGTACAGAGTCTCCAAACCATTAGCCAAAAGCTACAGGAGATC
	150	CCCATCCTCAAAGGTTTGTAAGGAAGAATTCTCAGTCCAAAGCCTCAACA
	100	GAGCCATATCACTTTATTCAAATTGGTATCGCCAAAACCAAGAAGGAACT
	20	TCATCAAAATATTTAGCAGCATTCCAGATTGGGTTCAATCAA

INTERNATIONAL SEARCH REPORT

PCT/US 91/09437

		CT MATTER. Of several destification		e e a e e e e e e e e e e e e e e e e e
_	5 C12N15/60	Cassification (IPC) or to both National ; C12N15/82;	Classification and IPC C12N9/88;	A01H5/00
, PTELDS 51	ARCHED			and the second section of the second
		Minimum Docu	mentation Searchol?	and the second second
Chesia cution	System		Classification Symbols	- 17 (New Art 1977) (
nt.C1.	5	C12N; A01H	· .	
		Decumentation Searched oth to the Excest that such Decumen	or than Minimum Decumentation to are Included in the Fields Searched	
		•		
L DOCUM	NTS CONSIDERE	D TO BE RELEVANT		\$
Magary *		cument, 12 with Indication, where appro	prints, of the relevant passages 12	Relevant to Claim No.13
у, х	WO,A,9.1 see the	16 417 (CALGENE) 31 (whole document	October 1991	
P,X	USA. pages 11 KLEE, H. synthesi transger	IT CELL. no. 11, November 199: 187 - 1193; J., ET AL.: 'Contro' is by expression of a lic tomato plants' whole document	l of ethylene	1-3, 6-10, 13-16, 18-30
A	vol. 42, pages 18 HONMA, I 1-amino	BIOL. CHEM. , no. 10, 1978, B25 - 1831; I., ET AL.: 'Metabolicyclopropane-1-carbox' whole document		1,6,7, 13,14
			-/	
"A" document of the control of the c	r document but publicate nest which may thru- is clied to establish no or other special re ment referring to an instable	eral state of the art which is not olar reference label on or after the interactional or dealers on priority chain(s) or the publication date of another neen (as specified) oral disclosure, are, exhibition or to the interactional filling date but	casest be considered to involve document is combined with one	cick with the application we lie or theory underlying the connect be considered to on the children invention of the children invention of an invention of the children stop when the corners other such decay; solvings to a person stilled
IV. CERTIFE			and the second of the second	
Date of the Ar	zual Completion of	he International Search	Date of Malling of this Interne	denal Search Report
		NOTE 1002	20.05.52	李楼 (基本) 李元 [2] [3] [3] [4]
	23 A	PRIL 1992		
leteracional i	23 Al		Signature of Authorized Office	1

L DOCUS	CENTS CONSIDERED TO BE RELEVANT (CONTINUED FROM THE SECOND SHEET)				_
· Carlege	Circles of Decement, with Indication, where appropriets, of the relevant passages	· T	Lde	med to Clabs N	6
		-X		<i>i</i> 5.	
					: :
-	NATIOE	·	9_17		٠٠٠;
,	VALUES TO THE TOTAL LANGUAGE	٠.	8-17	•	
ĺ	NATURE. vol. 346, 19 July 1990, LONDON GB pages 284 - 287;	Ī	***	rigersy. Same artists	• 4
	HAMILTON, A. J., ET AL.: 'Antisense gene that inhibits synthesis of the plant hormone ethylene in transgenic plants' see the whole document				٠.
Í	inhibits synthesis of the plant hormone ethylene	- 1			7
ļ	in transgenic plants'	- 1			
Ī	see the whole document				
	*	1		٠	•
Ī		į			
	*·			-	
ĺ		•			
- 1		1			
ı		ĺ			
; l		j			
7					
		1			
1					
1	•				
1					
1					
J]			
j]			
}		- 1			
,]					
1					
1		1			
、 I	·	- 1			
")	•		•		
ŀ					
1		- 1			
				•	•
ł	•				
1					
ì					
ļ		- 1	• . •		
ı		1	,		
		1	•	. 1	ž
ı	<i>y</i>		.3		
				•	
·		. 7		* y* * *	
				ا در	
	The contract of the contract o	1			
				S. S. S. S. S. S.	٠.
٠	The state of the s		. ,		
					:
	The control of the co			100 m	

ANNEX TO THE INTERNATIONAL SEARCH REPORT ON INTERNATIONAL PATENT APPLICATION NO. US

9109437

This same: lists the patent family members relating to the potent documents cited in the above-mentioned international search report. The members are as contained in the European Patent Office EDP file on

The European Patent Office is in no way liable for these particulars which are murely given for the purpose of information, 23/04/92

		·		
Patent document cited in search report	Publication date		Patent family member(s)	Publication date
WO-A-9116417	31-10-91	None		
			•	
		÷		Å.
		-		
\	•.			
	. `			
•				
		· " .		

15

20

25

لمنتش

- 12. The DNA molecule of claim 8 wherein said promoter is the E8 promoter from tomato.
- 13. The DNA molecule of claim 8 wherein said structural DNA sequence is SEQ ID NO:1.
- 14. The DNA molecule of claim 8 wherein said structural DNA sequence is from a microorganism capable of sustaining growth in media containing ACC as the sole nitrogen source.
 - 15. A method for delaying the ripening of fruit of a plant comprising expressing 1-aminocyclopropane-1-carboxylic acid deaminase in said plant at a level sufficient to reduce the production of ethylene in said fruit.
 - 16. A method for extending the shelf life of a fruit from a fruit-bearing plant, said method comprising the steps of:

obtaining cells of said fruit-bearing plant;

transforming said cells with a chimeric gene comprising a promoter that functions in plant cells to cause the production of an RNA sequence, a structural DNA sequence that causes the production of an RNA sequence that encodes a 1-aminocyclopropane-1-carboxylic acid deaminase enzyme and a 3' non-translated region that functions in plant cells to cause the addition of polyadenylated nucleotides to the 3' end of the RNA sequence, said promoter being heterologous with respect to said

10

15

20

of:

Com

(.....)

structural DNA sequence and wherein said chimeric gene becomes integrated into the genome of said plant;

regenerating a plant from said transformed plant cell; growing said transformed plant until fruit begins to be produced; and

removing said fruit from said plant when said fruit reaches the breaker stage of development.

17. The method of claim 16 further comprising the step

exposing said fruit to ethylene to achieve the desired ripeness of said fruit.

18. A transformed plant comprising:

a promoter that functions in plant cells to cause the production of an RNA sequence, a structural DNA sequence that causes the production of an RNA sequence that encodes a 1-aminocyclopropane-1-carboxylic acid deaminase enzyme, and a 3' non-translated region that functions in plant cells to cause the addition of polyadenylated nucleotides to the 3' end of the RNA sequence, said promoter being heterologous with respect to said structural DNA sequence.

19. The transformed plant of claim 18 wherein said plant is selected from the group consisting of tomato, banana, kiwifruit, avocado, melon, strawberry, mango, papaya, apple, peach, cabbage, cauliflower, lettuce, onions, broccoli, cotton, canola, oilseed rape, carnations, and roses.

į., ...,

10

15

20

- 20. The transformed plant of claim 19 wherein said plant is tomato.
- 21. The transformed plant of claim 18 wherein said structural DNA sequence is SEQ ID NO:1.
 - 22. A tomato fruit comprising:

a promoter that functions in plant cells to cause the production of an RNA sequence;

a structural DNA sequence that causes the production of an RNA sequence that encodes a 1-aminocyclopropane-1-carboxylic acid deaminase enzyme; and

a 3' non-translated region that functions in plant cells to cause the addition of polyadenylated nucleotides to the 3' end of the RNA sequence,

said promoter being heterologous with respect to said structural DNA sequence.

- 23. The tomato fruit of claim 22 wherein said promoter is the full-length transcript (35S) promoter from figwort mosaic virus.
- 24. The tomato fruit of claim 23 wherein said structural 25 DNA sequence is SEQ ID NO:1.
 - 25. A method for reducing the level of ethylene produced in a plant which comprises expressing a 1-aminocyclopropane-1-carboxylic acid metabolizing enzyme in said plant at a sufficient

(----

(......)

15

20

level to reduce the steady- state 1-aminocyclopropane-1-carboxylic acid concentration by at least about 70%.

- 26. The method of claim 25 wherein said 1-5 aminocyclopropane-1-carboxylic acid metabolizing enzyme is 1aminocyclopropane-1-carboxylic acid deaminase.
- 27. A method of claim 25 in which the steady-state 1-aminocyclopropane-1-carboxylic acid concentration is reduced by at least about 90%.
 - 28. A method for reducing the level of ethylene produced in a plant which comprises expressing a 1-aminocyclopropane-1-carboxylic acid metabolizing enzyme in said plant at a sufficient level to reduce the steady- state ethylene concentration by at least about 70%.
 - 29. The method of claim 28 wherein said 1-aminocyclopropane-1-carboxylic acid metabolizing enzyme is 1-aminocyclopropane-1-carboxylic acid deaminase.
 - 30. A method of claim 28 in which the steady-state ethylene concentration is reduced by at least about 90%.

Strain Iso	Number of plates Tested
Pseudomonas putida biovar A	58
Pseudomonas putida biovar B	23
Pseudomonas chlororaphis	170
Pseudomonas tolaasii	41
Pseudomonas aureofaciens	28
Pseudomonas corrugata	13
Pseudomonas fragi	18
Pseudomonas marginalis	1
Pseudomonas syringae (multiple pathovara)	93
Pseudomonas fluorescens A	4
Pseudomonas fluorescens B	5
Pseudomonas fluorescens C (Inc.ATCC 10844)	12
Pseudomonas fluorescens G (Inc.ATCC 13524)	14
Pseudomonas coronafaciens	3
Pseudomonas aeruginosa (Inc.ATCC 15526)	9
fluorescent pseudomonads (incomplete identification)	
Pseudomonas mendocina	1
Pseudomonas stutzeri	1
Pseudomonas alcaligenes	
Pseudomonas testosteroni (Inc.ATCC 17409, 17510, 119	996) ¹
Pseudomonas cepacia ATCC 10856	
Pseudomonas delafieldii ATCC 17505	1 1 3 1 1 1 2 3
Pseudomonas diminuta ATCC 11568	. 1
Pseudomonas acidovorans	3
Pseudomonas cruciuriae ATCC 13262	1
Pseudomonas methanolica ATCC 21704	1
Pseudomonas pickettii ATCC 27511	1
Pseudomonas vesicularis ATCC 11426	1
Xanthomonas maltophilia ATCC 13637	2
Agrobacterium tumefaciens	3
Erwinia herbicola	1
Enterobacter cloacae ATCC 13047	1
Enterobacter aerogenes ATCC 13048	1 2
Hafnia alvei	2
non-fluorescent (incomplete identification)	11
Bacillus thuringiensis	1
Bacillus licheniformis	1
Corynebacterium fascians	A1

GATATCCCATATCAAGGAGCAGAGTCATGAATCTGAATCGTTTTGAACGTTATCCATTGACC **MetAsnLeuAsnArgPheGluArgTyrProLeuThr**

ķ.

- **PheGlyProSerProlleThrProLeuLysArgLeuSerGlnHisLeuGlyGlyLysValGl** TTCGGTCCTTCTCCCATCACGCCCTTGAAGCGCCTCAGTCAACATCTGGGGGGGCAAGGTCGA 63
- uLeuTyrAlaLysArgGluAspCysAsnSerGlyLeuAlaPheGlyGlyAsnLysThrArgL GCTGTATGCCAAACGTGAAGACTGCAACAGTGGCCTGGCCTTTGGTGGGAACAAGACGCGCA 125
- AGCTCGAATACCTCATTCCCGAAGCGATCGAGCAAGGCTGCGATACGCTGGTTTCCATCGGC ysLeuGluTyrLeuIleProGluAlaIleGluGlnGlyCysAspThrLeuValSerIleGly 187
- GGCATCCAGTCGAACCAGACCCGTCAGGTCGCTGCCGTCGCTGCCCACTTGGGCATGAAGTG GlyIleGlnSerAsnGlnThrArgGlnValAlaAlaValAlaAlaHisLeuGlyMetLysCy 249
- CGTGTTGGTGCAGGAAAACTGGGTGAACTATTCCGACGCGGTGTATGACCGCGTAGGCAACA sValLeuValGlnGluAsnTrpValAsnTyrSerAspAlaValTyrAspArgValGlyAsnI 311
- TCGAGATGTCGCGGATCATGGGCGCTGATGTGCGGCTTGACGCCGCTGGCTTCGATATTGGC leGluMetSerArgIleMetGlyAlaAspValArgLeuAspAlaAlaG.lyPheAspIleGly 373
- **ATTCGGCCAAGTTGGGAAAAGGCCATGAGCGATGTCGTGGAACAGGGTGGCAAACCGTTTCC** IleArgProSerTrpGluLysAlaMetSerAspValValGluGlnGlyGlyLysProPhePr 435
- GATICCAGCGGGTIGCICCGAGCAICCCIAIGCGGCCICGGIIICGICGGCIIIGCCGAAG olleProAlaGlyCysSerGluHisProTyrGlyGlyLeuGlyPheValGlyPheAlaGluG 497

559 AGGTGCGCCAGCAGGAAAAGGAACTGGGCTTCAAGTTTGACTACATCGTGGTCTGCTCGGTG luValArgGlnGlnLysGluLeuGlyPheLysPheAspTyrIleValValCysSerVal
L()

- ACCEGCAGTACGCAGGCGGCATGGTTGTTGGTTTCGCGGCTGACGGTCGTTCGAAGAATGT ThrGlySerThrGlnAlaGlyMetValValGlyPheAlaAlaAspGlyArgSerLysAsnVa 621
- GATTGGTATCGATGCTTCGGCCAAGCCGGAACAGACCAAGGCACAGATCCTGCGCATCGCCC llleGlyIleAspAlaSerAlaLysProGluGlnThrLysAlaGlnIleLeuArgIleAlaA 683
- rgHisThrAlaGluLeuValGluLeuGlyArgGluIleThrGluGluAspValValLeuAsp GACACACCGCTGAGTTGGTGGAGTTGGGGCGCGAGATTACGGAAGAGGACGTGGTGCTCGAT 745
- ThrArgPheAlaTyrProGluTyrGlyLeuProAsnGluGlyThrLeuGluAlaIleArgLe **ACGCGTTTTGCCTACCCGGAATATGGCTTGCCCAACGAAGGCACATTGGAAGCCATCCGACT** 807
- GTGCGGCAGCCTTGAAGGCGTGCTGACAGACCCGGTATATGAAGGTAAATCGATGCACGGCA uCysGlySerLeuGluGlyValLeuThrAspProValTyrGluGlyLysSerMetHisGlyM 869
- TGATTGAAATGGTCCGTCGTGGTGAATTCCCCGAAGGTTCCAAAGTGCTTTACGCACACTTG etIleGluMetValArgArgGlyGluPheProGluGlySerLysValLeuTyrAlaHisLeu 931
- GGTGGGCCCCGGCGCTGAACGCCTACAGCTTCCTGTTTCGTAACGGCTAAGCGTAGAACTG GlyGlyAlaProAlaLeuAsnAlaTyrSerPheLeuPheArgAsnGlyEnd 993
- CTTTTGGAGTCATCTGTGGGAGCTC

F16. 2 cont.

(454

F1G. 4

FIG.5

FIG. 6

F1G. 7

FIG. 8

F16. 9

F1G.10