1

dis = Lime wist hetween node i and i Dij = cost of computed minimum west path from node! to nodej

Three notations an used!

OKIBOR - Bellman ford

half 1 - path computations candidate paths. underson - Dijkstra's

d46 = 15 directly connected Modes 4 and 4 ax

-) with link ws d46 = 15

Modes 1 and 6 an hot directly connected dl62 00 (large Value).

nocles 2 to 6 the minimum last is actually = 2 with the path 4-3-6 (c) $D46^2$ 2

For Modes I and b D16 = 3 and d16 = 00 Bell man ford qualions to calculate Shorrest path from node 9 ho node i Die = 0 for all i Dij = min & Dik + dkj j for i #j - 2.

Minimum cust interms of number of hops h!

- (h) winimum wish path from Dij node i to node j when up to h no of hops are considered.

alemirm!

i and i in the returne Initialie for nodes $\frac{-(0)}{Dii} = 0 \qquad \text{for all } i$ $\frac{-(0)}{Dij} = \infty \qquad \text{for } i \neq j$ for h = 0 to N-1 do - (M1) =0 for all i $-\frac{Ch+1}{Dij} = \min_{k\neq j} \left\{ -\frac{Ch}{Dik} + dkj \right\} \quad \text{for } i \neq j \quad -3$

$$\frac{-(h+1)}{Dij} = \min_{k \neq j} \left\{ -\frac{(k)}{Dik} + dkj \right\}$$

hop count for

the path 1-4-6 is the only one herveen latch fro unk path. (†C) 1-4 fro unk path. (†C) 1-4=1 4-6=15=216.

App iterated cost is 16, (=2) 16) with h=2 par

$$h^{2} = \frac{2}{2}$$

$$h^{2} = \frac{2$$

 $D_{1b} = \overline{D}_{13} + d_{36} = 2+1 = 3$ $D_{15} = \overline{D}_{14} + d_{45} = 1+2 = 3$

L	- (h) D ₁₂ path	-Ch) D13 path	Dy path	Dis pan	-4) pan
0 1 2	∞ db - 1 1-2 1-2	2 14-3	1 1-4 1 1-4 1 1-4	20 - 20 - 3 1-4-5 3 1-4-5	au - 16 1-4-6 3 1-4-3-6
3 4 5	1 1-2	2 1-4-3	1 1-4	3 1-4-5 3 1-4-5	3 1-4-3-6 3 1-4-3-6
		actual patt	1-4-	3-6. = 2	3