

Machine Learning CSCE 5215

Support Vector Machines

Instructor: Zeenat Tariq

Main Idea

- Max Margin Classifier: Formalize notion of the best linear separator
- Lagrangian Multipliers: Way to convert a constrained optimization problem to one that is easier to solve
- Kernel: Projecting data into higher-dimensional space makes it linearly separable
- Complexity: Depends only on the number of training examples, not on dimensionality of the kernel space!

Perceptron Revisited: Linear Separators

• Binary classification can be viewed as the task of separating classes in feature space:

Linear Separators

• Which of the linear separators is optimal?

Classification Margin

- Distance from example \mathbf{x}_i to the separator is $r = \frac{\mathbf{w}^T \mathbf{x}_i + b}{\|\mathbf{w}\|}$
- Examples closest to the hyperplane are *support vectors*.
- $\textit{Margin } \rho$ of the separator is the distance between support vectors.

Maximum Margin Classification

- Maximizing the margin is good according to intuition and PAC theory.
- Implies that only support vectors matter; other training examples are ignorable.

Linear SVM Mathematically

• Let training set $\{(\mathbf{x}_i, y_i)\}_{i=1..n}$, $\mathbf{x}_i \in \mathbb{R}^d$, $y_i \in \{-1, 1\}$ be separated by a hyperplane with margin ρ . Then for each training example (\mathbf{x}_i, y_i) :

• For every support vector \mathbf{x}_s the above inequality is an equality. After rescaling \mathbf{w} and b by $\rho/2$ in the equality, we obtain that distance between each \mathbf{x}_s and the hyperplane is

$$r = \frac{\mathbf{y}_s(\mathbf{w}^T \mathbf{x}_s + b)}{\|\mathbf{w}\|} = \frac{1}{\|\mathbf{w}\|}$$

Then the margin can be expressed through (rescaled) w and b as:

$$\rho = 2r = \frac{2}{\|\mathbf{w}\|}$$

Linear SVMs Mathematically (cont.)

Then we can formulate the quadratic optimization problem:

```
Find \mathbf{w} and b such that \rho = \frac{2}{\|\mathbf{w}\|} \text{ is maximized} and for all (\mathbf{x}_i, y_i), i=1..n: y_i(\mathbf{w}^\mathsf{T}\mathbf{x}_i + b) \ge 1
```

Which can be reformulated as:

```
Find \mathbf{w} and b such that \mathbf{\Phi}(\mathbf{w}) = \|\mathbf{w}\|^2 = \mathbf{w}^T \mathbf{w} \text{ is minimized} and for all (\mathbf{x}_i, y_i), i = 1..n: y_i (\mathbf{w}^T \mathbf{x}_i + b) \ge 1
```

Solving the Optimization Problem

```
Find w and b such that \Phi(\mathbf{w}) = \mathbf{w}^T \mathbf{w} is minimized and for all (\mathbf{x}_i, y_i), i=1..n: y_i (\mathbf{w}^T \mathbf{x}_i + b) \ge 1
```

- Need to optimize a *quadratic* function subject to *linear* constraints.
- Quadratic optimization problems are a well-known class of mathematical programming problems for which several (non-trivial) algorithms exist.
- The solution involves constructing a *dual problem* where a *Lagrange* multiplier α_i is associated with every inequality constraint in the primal (original) problem:

```
Find \alpha_1...\alpha_n such that \mathbf{Q}(\alpha) = \Sigma \alpha_i - \mathcal{Y}_{\Sigma \Sigma} \alpha_i \alpha_j y_i y_j \mathbf{x}_i^\mathsf{T} \mathbf{x}_j is maximized and (1) \Sigma \alpha_i y_i = 0 (2) \alpha_i \ge 0 for all \alpha_i
```

The Optimization Problem Solution

• Given a solution $\alpha_1...\alpha_n$ to the dual problem, solution to the primal is:

$$\mathbf{w} = \Sigma \alpha_i y_i \mathbf{x}_i \qquad b = y_k - \Sigma \alpha_i y_i \mathbf{x}_i^{\mathsf{T}} \mathbf{x}_k \quad \text{for any } \alpha_k > 0$$

- Each non-zero α_i indicates that corresponding \mathbf{x}_i is a support vector.
- Then the classifying function is (note that we don't need w explicitly):

$$f(\mathbf{x}) = \Sigma \alpha_i y_i \mathbf{x}_i^\mathsf{T} \mathbf{x} + b$$

- Notice that it relies on an *inner product* between the test point \mathbf{x} and the support vectors \mathbf{x}_i
- Also keep in mind that solving the optimization problem involved computing the inner products $\mathbf{x}_i^\mathsf{T}\mathbf{x}_i$ between all training points.

Soft Margin Classification

- What if the training set is not linearly separable?
- Slack variables ξ_i can be added to allow misclassification of difficult or noisy examples, resulting margin called soft.

Soft Margin Classification Mathematically

• The old formulation:

```
Find w and b such that \Phi(\mathbf{w}) = \mathbf{w}^T \mathbf{w} is minimized and for all (\mathbf{x}_i, y_i), i=1..n: y_i (\mathbf{w}^T \mathbf{x}_i + b) \ge 1
```

• Modified formulation incorporates slack variables:

```
Find w and b such that \Phi(\mathbf{w}) = \mathbf{w}^T \mathbf{w} + C\Sigma \xi_i is minimized and for all (\mathbf{x}_i, y_i), i=1..n: y_i (\mathbf{w}^T \mathbf{x}_i + b) \ge 1 - \xi_{i,}, \xi_i \ge 0
```

• Parameter C can be viewed as a way to control overfitting: it "trades off" the relative importance of maximizing the margin and fitting the training data.

Soft Margin Classification – Solution

• Dual problem is identical to separable case (would *not* be identical if the penalty for slack variables $C\Sigma \xi_i^2$ was used in primal objective, we would need additional Lagrange multipliers for slack variables):

```
Find \alpha_1...\alpha_N such that \mathbf{Q}(\alpha) = \Sigma \alpha_i - \frac{1}{2} \Sigma \Sigma \alpha_i \alpha_j y_i y_j \mathbf{x}_i^\mathsf{T} \mathbf{x}_j is maximized and (1) \Sigma \alpha_i y_i = 0 (2) 0 \le \alpha_i \le C for all \alpha_i
```

- Again, \mathbf{x}_i with non-zero α_i will be support vectors.
- Solution to the dual problem is:

$$\mathbf{w} = \Sigma \alpha_i y_i \mathbf{x}_i$$

$$b = y_k (1 - \xi_k) - \Sigma \alpha_i y_i \mathbf{x}_i^\mathsf{T} \mathbf{x}_k \quad \text{for any } k \text{ s.t. } \alpha_k > 0$$

Again, we don't need to compute **w** explicitly for classification:

$$f(\mathbf{x}) = \Sigma \alpha_i y_i \mathbf{x}_i^\mathsf{T} \mathbf{x} + b$$

Linear SVMs: Overview

- The classifier is a *separating hyperplane*.
- Most "important" training points are support vectors; they define the hyperplane.
- Quadratic optimization algorithms can identify which training points \mathbf{x}_i are support vectors with non-zero Lagrangian multipliers α_i .

Non-linear SVMs

• Datasets that are linearly separable with some noise work out great:

• But what are we going to do if the dataset is just too hard?

• How about... mapping data to a higher-dimensional space:

Non-linear SVMs: Feature spaces

• General idea: the original feature space can always be mapped to some higher-dimensional feature space where the training set is separable:

What Functions are Kernels?

- For some functions $K(\mathbf{x}_i, \mathbf{x}_j)$ checking that $K(\mathbf{x}_i, \mathbf{x}_j) = \phi(\mathbf{x}_i)^{\mathsf{T}} \phi(\mathbf{x}_j)$ can be cumbersome.
- Mercer's theorem:

Every semi-positive definite symmetric function is a kernel

• Semi-positive definite symmetric functions correspond to a semi-positive definite symmetric Gram matrix:

	$K(\mathbf{x}_1,\mathbf{x}_1)$	$K(\mathbf{x}_1,\mathbf{x}_2)$	$K(\mathbf{x}_1,\mathbf{x}_3)$	•••	$K(\mathbf{x}_1,\mathbf{x}_n)$
K=	$K(\mathbf{x}_2,\mathbf{x}_1)$	$K(\mathbf{x}_2,\mathbf{x}_2)$	$K(\mathbf{x}_2,\mathbf{x}_3)$		$K(\mathbf{x}_2,\mathbf{x}_n)$
	•••	•••	•••	•••	•••
	$K(\mathbf{x}_n,\mathbf{x}_1)$	$K(\mathbf{x}_n,\mathbf{x}_2)$	$K(\mathbf{x}_n,\mathbf{x}_3)$	•••	$K(\mathbf{x}_n,\mathbf{x}_n)$

Examples of Kernel Functions

- Linear: $K(\mathbf{x}_i, \mathbf{x}_j) = \mathbf{x}_i^\mathsf{T} \mathbf{x}_j$
 - Mapping Φ : $\mathbf{x} \rightarrow \Phi(\mathbf{x})$, where $\Phi(\mathbf{x})$ is \mathbf{x} itself
- Polynomial of power $p: K(\mathbf{x}_i, \mathbf{x}_i) = (1 + \mathbf{x}_i^T \mathbf{x}_i)^p$
 - Mapping Φ : $\mathbf{x} \to \mathbf{\phi}(\mathbf{x})$, where $\mathbf{\phi}(\mathbf{x})$ has $\begin{pmatrix} d+p \\ p \end{pmatrix}$ dimensions
- Gaussian (radial-basis function): $K(\mathbf{x}_i, \mathbf{x}_j) = e^{-\frac{\|\mathbf{x}_i \mathbf{x}_j\|^2}{2\sigma^2}}$
 - Mapping Φ : $\mathbf{x} \to \mathbf{\phi}(\mathbf{x})$, where $\mathbf{\phi}(\mathbf{x})$ is *infinite-dimensional*: every point is mapped to *a function* (a Gaussian); combination of functions for support vectors is the separator.
- Higher-dimensional space still has *intrinsic* dimensionality *d* (the mapping is not *onto*), but linear separators in it correspond to *non-linear* separators in original space.

Non-linear SVMs Mathematically

• Dual problem formulation:

Find $\alpha_1...\alpha_n$ such that $\mathbf{Q}(\alpha) = \Sigma \alpha_i - \frac{1}{2} \Sigma \Sigma \alpha_i \alpha_j y_i y_j K(\mathbf{x}_i, \mathbf{x}_j)$ is maximized and (1) $\Sigma \alpha_i y_i = 0$ (2) $\alpha_i \ge 0$ for all α_i

• The solution is:

$$f(\mathbf{x}) = \Sigma \alpha_i y_i K(\mathbf{x}_i, \mathbf{x}_j) + b$$

• Optimization techniques for finding α_i 's remain the same!