

Vorlesung Grundlagen adaptiver Wissenssysteme

Prof. Dr. Thomas Gabel Frankfurt University of Applied Sciences Faculty of Computer Science and Engineering tgabel@fb2.fra-uas.de

Vorlesungseinheit 7

Zeitliche Differenz-Methoden

Lernziele

- Ersetzung des Modells
- Kennenlernen von Verfahren, die ohne Modell zurechtkommen

Überblick

1. Motivation

- 1. Motivation
- 2. Real-Time Dynamic Programming

- 1. Motivation
- 2. Real-Time Dynamic Programming
- 3. Die Monte-Carlo-Methode (MC)

- 1. Motivation
- 2. Real-Time Dynamic Programming
- 3. Die Monte-Carlo-Methode (MC)
- 4. Zeitliche-Differenzmethoden (TD) Ansatz I

- 1. Motivation
- 2. Real-Time Dynamic Programming
- 3. Die Monte-Carlo-Methode (MC)
- 4. Zeitliche-Differenzmethoden (TD) Ansatz I
- 5. Zeitliche-Differenzmethoden (TD) Ansatz II

- 1. Motivation
- 2. Real-Time Dynamic Programming
- 3. Die Monte-Carlo-Methode (MC)
- 4. Zeitliche-Differenzmethoden (TD) Ansatz I
- 5. Zeitliche-Differenzmethoden (TD) Ansatz II
- 6. Die Familie der $TD(\lambda)$ -Verfahren

- 1. Motivation
- 2. Real-Time Dynamic Programming
- 3. Die Monte-Carlo-Methode (MC)
- 4. Zeitliche-Differenzmethoden (TD) Ansatz I
- 5. Zeitliche-Differenzmethoden (TD) Ansatz II
- 6. Die Familie der $TD(\lambda)$ -Verfahren
- 7. Konvergenzaussagen zu $TD(\lambda)$

- 1. Motivation
- Real-Time Dynamic Programming
- Die Monte-Carlo-Methode (MC)
- 4. Zeitliche-Differenzmethoden (TD) Ansatz I
- 5. Zeitliche-Differenzmethoden (TD) Ansatz II
- 6. Die Familie der $TD(\lambda)$ -Verfahren
- 7. Konvergenzaussagen zu $\mathsf{TD}(\lambda)$

Reinforcement Learning

Reinforcement Learning repräsentiert den Aufgabentyp Merkmale sind:

- eine a priori unbekannte Umgebung
- ein bewertendes Trainingssignal (Reward, Belohnung/Kosten)
 - z.B. "gut" / "schlecht"
- zeitliche Verzögerungen im Erhalt der Rückmeldung sind der Normalfall
 - Trainingssignal erst nach einer Folge von Entscheidungen

Reinforcement Learning

Reinforcement Learning repräsentiert den Aufgabentyp Merkmale sind:

- eine a priori unbekannte Umgebung
- ein bewertendes Trainingssignal (Reward, Belohnung/Kosten)
 - z.B. "gut" / "schlecht"
- zeitliche Verzögerungen im Erhalt der Rückmeldung sind der Normalfall
 - Trainingssignal erst nach einer Folge von Entscheidungen

Kennengelernte Lösungsansätze

- Lernproblem als Markov'sches Entscheidungsproblem formulieren
- Lösung finden mit dynamischem Programmieren

"Klassische" Lösungsverfahren

- Wertiterationsverfahren (Value Iteration): für alle $i: V_{k+1}(i) := \min_{a} \mathbb{E}_{w} \{ c(i, a) + V_{k}(f(i, a, w))) \}$
- Strategieiterationsverfahren (Policy Evaluation / Iteration): für alle $i: V_{k+1}(i) = \mathbb{E}_{w}\{c(i, \pi(i)) + V_{k}(f(i, \pi(i), w)))\}$

"Klassische" Lösungsverfahren

- Wertiterationsverfahren (Value Iteration): für alle $i: V_{k+1}(i) := \min_a \mathbb{E}_w \{ c(i, a) + V_k(f(i, a, w)) \}$
- Strategieiterationsverfahren (Policy Evaluation / Iteration): für alle $i: V_{k+1}(i) = \mathbb{E}_w\{c(i, \pi(i)) + V_k(f(i, \pi(i), w)))\}$
- ⇒ Anwendbar bei relativ wenigen Zuständen (für alle i)
- \Rightarrow Außerdem: Ein Modell f(i, a, w) bzw. $p_{ij}(a)$ wird zur Berechnung benötigt.

"Klassische" Lösungsverfahren

- Wertiterationsverfahren (Value Iteration): für alle $i: V_{k+1}(i) := \min_a \mathbb{E}_w \{ c(i, a) + V_k(f(i, a, w)) \}$
- Strategieiterationsverfahren (Policy Evaluation / Iteration): für alle $i: V_{k+1}(i) = \mathbb{E}_w\{c(i, \pi(i)) + V_k(f(i, \pi(i), w)))\}$
- ⇒ Anwendbar bei relativ wenigen Zuständen (für alle i)
- \Rightarrow Außerdem: Ein Modell f(i, a, w) bzw. $p_{ij}(a)$ wird zur Berechnung benötigt.

Was aber ist mit der Anwendung bei ...

- Schach, Backgammon (10²⁰ Zustände), unbekannter Gegner
- autonomen Robotern in unbekannter Umgebung
- Regelungstechnik (kontinuierliche Zustände)

Zwei große Herausforderungen beim optimierenden Lernen

Problemstellungen / Herausforderungen:

- Modell unbekannt
- sehr viele / unendlich viele Zustände
 - Berechnungsvorgang sehr aufwendig / terminiert nach unendlich vielen Iterationen
 - Repräsentation der Pfadkosten speicherintensiv / unmöglich

Zwei große Herausforderungen beim optimierenden Lernen

Problemstellungen / Herausforderungen:

- Modell unbekannt
- sehr viele / unendlich viele Zustände
 - Berechnungsvorgang sehr aufwendig / terminiert nach unendlich vielen Iterationen
 - Repräsentation der Pfadkosten speicherintensiv / unmöglich

Lösungswege:

- Lernen durch direkte Interaktion am Prozess (oder Simulation)
- Verwenden von Approximationsmodellen

Weiteres Vorgehen ("Fahrplan")

- Methoden zum Schätzen der Kosten einer Strategie ohne Modell (VE 7)
- Bestimmung einer gierigen Strategie auch ohne Modell (VE 8)
- Erlernen der optimalen Wertfunktion ohne Modell (VE 9)
- Repräsentation der Pfadkosten / Wertfunktion (ab VE 10)

Weiteres Vorgehen ("Fahrplan")

- Methoden zum Schätzen der Kosten einer Strategie ohne Modell (VE 7)
- Bestimmung einer gierigen Strategie auch ohne Modell (VE 8)
- Erlernen der optimalen Wertfunktion ohne Modell (VE 9)
- Repräsentation der Pfadkosten / Wertfunktion (ab VE 10)

- Zunächst (also in der aktuellen Vorlesungseinheit) versuchen wir, die Kosten V^{π} für eine fixe Strategie π zu schätzen.
- Der Übersichtlichkeit halber lassen wir im Folgenden den Diskontierungsfaktor weg (γ = 1), betrachten also SKP-Probleme.

- 1. Motivation
- 2. Real-Time Dynamic Programming
- 3. Die Monte-Carlo-Methode (MC)
- 4. Zeitliche-Differenzmethoden (TD) Ansatz I
- 5. Zeitliche-Differenzmethoden (TD) Ansatz II
- 6. Die Familie der $TD(\lambda)$ -Verfahren
- 7. Konvergenzaussagen zu TD (λ)

Lernen am Prozess

Kernideen:

- Durchlaufen von Trajektorien (sogenannter Rollouts) gemäss der aktuellen Strategie π
- Jede einzelne Trajektorie (auch als Sequenz bezeichnet) liefert den Wert der erhaltenen Pfadkosten.

Lernen am Prozess

Kernideen:

- Durchlaufen von Trajektorien (sogenannter Rollouts) gemäss der aktuellen Strategie π
- Jede einzelne Trajektorie (auch als Sequenz bezeichnet) liefert den Wert der erhaltenen Pfadkosten.
- Diese Werte werden verwendet, um die erwarteten Kosten zu schätzen.
- Zweck: Iterative Verbesserung der Strategie (z.B. im Rahmen von Policy Iteration)

Verfahren: Real Time Dynamic Programming

Barto, Sutton, Watkins, 1989

Lernen am Prozess

Kernideen:

- Durchlaufen von Trajektorien (sogenannter Rollouts) gemäss der aktuellen Strategie π
- Jede einzelne Trajektorie (auch als Sequenz bezeichnet) liefert den Wert der erhaltenen Pfadkosten.
- Diese Werte werden verwendet, um die erwarteten Kosten zu schätzen.
- Zweck: Iterative Verbesserung der Strategie (z.B. im Rahmen von Policy Iteration)

Verfahren: Real Time Dynamic Programming

- Barto, Sutton, Watkins, 1989
- ⇒ "Online"-Lernen, Lernen durch Interaktion
- ⇒ Lernen auf "interessanten" Teilmengen des Zustandsraums

Lernen in Interaktion mit der Umgebung

Beispielalgorithmus

- Init Prozess mit Anfangszustand s₀
- While nicht in Terminalzustand
 - Aktionswahl

$$a_t := \pi(s_t)$$

- Exploration
- Anwendung auf Prozess

$$s_{t+1} = f(s_t, a_t, w_t)$$

- EndWhile
- ⇒ "Sammeln von Erfahrungen" Anpassung der Werte der Wertfunktion nach oder während der Trajektorie

Zwischenzusammenfassung

- Ziel ist das Lernen entlang von tatsächlich ausgeführten Regeltrajektorien
- Erfahrungen werden in der Umwelt gesammelt, ohne dass dabei ein Modell benötigt wird

Zwischenzusammenfassung

- Ziel ist das Lernen entlang von tatsächlich ausgeführten Regeltrajektorien
- Erfahrungen werden in der Umwelt gesammelt, ohne dass dabei ein Modell benötigt wird
- Ziel ist außerdem die inkrementelle Verbesserung der Schätzung der Pfadkosten (Wertfunktion) anhand von beobachteten Zustandsübergängen
 - Dies bezeichnet man auch als "Sampling" bzw. Monte-Carlo-Methoden (MC)

- Motivation
- 2. Real-Time Dynamic Programming
- 3. Die Monte-Carlo-Methode (MC)
- 4. Zeitliche-Differenzmethoden (TD) Ansatz I
- Zeitliche-Differenzmethoden (TD) Ansatz II
- 6. Die Familie der TD(λ)-Verfahren
- 7. Konvergenzaussagen zu TD (λ)

Schätzung des Erwartungswerts

Allgemeines Problem

gegeben: Zufallsvariable v mit unbekanntem Erwartungswert \bar{v} .

Seien v_1, v_2, \ldots beispielhaft gezogene Werte (Samples) dieser

Zufallsvariable.

Ziel: Schätzung des Mittelwerts \bar{v} .

Schätzung des Erwartungswerts

Allgemeines Problem

gegeben: Zufallsvariable v mit unbekanntem Erwartungswert \bar{v} .

Seien v_1, v_2, \ldots beispielhaft gezogene Werte (Samples) dieser

Zufallsvariable.

Ziel: Schätzung des Mittelwerts $\bar{\nu}$.

Definition (Monte-Carlo-Schätzung eines Erwartungswerts)

Die Bildung des Mittelwerts eines Stichprobe vom Umfang N ist

definiert als

$$\bar{v}_N = \frac{1}{N} \sum_{k=1}^N v_k$$

Schätzung des Erwartungswerts

Allgemeines Problem

gegeben: Zufallsvariable v mit unbekanntem Erwartungswert \bar{v} .

Seien v_1, v_2, \ldots beispielhaft gezogene Werte (Samples) dieser

Zufallsvariable.

Ziel: Schätzung des Mittelwerts \bar{v} .

Definition (Monte-Carlo-Schätzung eines Erwartungswerts)

Die Bildung des Mittelwerts eines Stichprobe vom Umfang *N* ist definiert als

 $\bar{v}_N = \frac{1}{N} \sum_{k=1}^N v_k$

Eine rekursive Schätzung des Erwartungswerts ist gegeben durch

$$\bar{\boldsymbol{v}}_{N+1} = \bar{\boldsymbol{v}}_N + \alpha_{N+1} \left(\boldsymbol{v}_{N+1} - \bar{\boldsymbol{v}}_N \right)$$

mit Lernrate α .

Für die rekursive Schätzung gibt es zwei äquivalente Darstellungen:

$$\bar{v}_{N+1} = \bar{v}_N + \frac{\alpha_{N+1}}{\alpha_{N+1}} (v_{N+1} - \bar{v}_N)$$

Für die rekursive Schätzung gibt es zwei äquivalente Darstellungen:

$$\bar{v}_{N+1} = \bar{v}_N + \alpha_{N+1} (v_{N+1} - \bar{v}_N)
= (1 - \alpha_{N+1}) \bar{v}_N + \alpha_{N+1} v_{N+1}$$

Wahl der Lernrate: z.B. $\alpha_N := \frac{1}{N}$

Für die rekursive Schätzung gibt es zwei äquivalente Darstellungen:

$$\bar{v}_{N+1} = \bar{v}_N + \alpha_{N+1} (v_{N+1} - \bar{v}_N)
= (1 - \alpha_{N+1}) \bar{v}_N + \alpha_{N+1} v_{N+1}$$

Wahl der Lernrate: z.B. $\alpha_N := \frac{1}{N}$

Bemerkung: Diese Gleichung konvergiert gegen den Erwartungswert von ν auch für allgemeinere Wahl von α , solange gilt:

1.
$$\sum_{N}^{\infty} \alpha_{N} = \infty$$
 und

Für die rekursive Schätzung gibt es zwei äquivalente Darstellungen:

$$\bar{v}_{N+1} = \bar{v}_N + \alpha_{N+1} (v_{N+1} - \bar{v}_N)$$

$$= (1 - \alpha_{N+1}) \bar{v}_N + \alpha_{N+1} v_{N+1}$$

Wahl der Lernrate: z.B. $\alpha_N := \frac{1}{N}$

Bemerkung: Diese Gleichung konvergiert gegen den Erwartungswert von ν auch für allgemeinere Wahl von α , solange gilt:

- 1. $\sum_{N}^{\infty} \alpha_{N} = \infty$ und
- 2. $\sum_{N}^{\infty} \alpha_{N}^{2} < \infty$

Umgangssprachlich:

- α muss gegen null gehen, aber nicht zu schnell.
- ⇒ Diese Verfahren sind unter dem Namen STOCHASTISCHE

Approximation bekannt.

Strategiebewertung mit MC-Methoden (1)

Im Folgenden soll gelten:

- Betrachtet werden stochastische Kürzester-Pfad-Probleme.
- Es geht um eine fest vorgegebene, erfüllende (proper) Strategie π.
- **Ziel:** Schätze die erwarteten Pfadkosten V^{π}
 - Dies ist der Ausgangspunkt für Strategieiterationsverfahren.

Strategiebewertung mit MC-Methoden (1)

Im Folgenden soll gelten:

- Betrachtet werden stochastische Kürzester-Pfad-Probleme.
- Es geht um eine fest vorgegebene, erfüllende (proper) Strategie π.
- **Ziel:** Schätze die erwarteten Pfadkosten V^{π}
 - Dies ist der Ausgangspunkt für Strategieiterationsverfahren.
- Wir betrachten zwei mögliche Vorgehensweisen:
- 1. Generiere Trajektorien für jeden Startzustand *i* bis zum Erreichen des Terminalzustands.
 - ⇒ trajektorienbasierter Ansatz / Monte-Carlo-Methode
- Benutze auch Informationen entlang der Trajektorien, um so auch noch die Bewertungen von Zwischenzuständen anzupassen.
 - ⇒ Zeitliche Differenzmethode (Temporal Difference)

Strategiebewertung mit MC-Methoden (2)

Vereinfachungen und Annahmen

- Da die Strategie fix ist, betrachten wir im folgenden nur aktionsunabhängige Übergangswahrscheinlichkeiten p_{ij} und -kosten c(i).
 - Frage: Warum ist das ok?

Strategiebewertung mit MC-Methoden (2)

Vereinfachungen und Annahmen

- Da die Strategie fix ist, betrachten wir im folgenden nur aktionsunabhängige Übergangswahrscheinlichkeiten p_{ij} und -kosten c(i).
 - Frage: Warum ist das ok?
- Jede Trajektorie endet im Terminalzustand '0'.
- Ihre Länge wird mit N bezeichnet; es gilt also $s_N = 0$.
- Ausserdem schreiben wir kurz V statt V^{π} (da π ja fix ist).

Monte-Carlo-Strategiebewertung

Wir betrachten Trajektorie *t*, startend im Zustand *i*. Pfadkosten:

Monte-Carlo-Strategiebewertung

Wir betrachten Trajektorie *t*, startend im Zustand *i*. Pfadkosten:

$$g(i, t) = c(s_0) + c(s_1) + \ldots + c(s_{N-1}), \quad s_0 = i$$

Monte-Carlo-Strategiebewertung

Wir betrachten Trajektorie *t*, startend im Zustand *i*. Pfadkosten:

$$g(i, t) = c(s_0) + c(s_1) + \ldots + c(s_{N-1}), \quad s_0 = i$$

Dann gilt für $V: V(i) = \mathbb{E}[$

Monte-Carlo-Strategiebewertung

Wir betrachten Trajektorie *t*, startend im Zustand *i*. Pfadkosten:

$$g(i, t) = c(s_0) + c(s_1) + \ldots + c(s_{N-1}), \quad s_0 = i$$

Dann gilt für $V: V(i) = \mathbb{E}[g(i, t)]$

V kann auch per Mittelwertbildung abgeschätzt werden durch

$$V(i) =$$

Monte-Carlo-Strategiebewertung

Wir betrachten Trajektorie *t*, startend im Zustand *i*. Pfadkosten:

$$g(i, t) = c(s_0) + c(s_1) + \ldots + c(s_{N-1}), \quad s_0 = i$$

Dann gilt für $V: V(i) = \mathbb{E}[g(i, t)]$

V kann auch per Mittelwertbildung abgeschätzt werden durch

$$V(i) = \frac{1}{K} \sum_{t=1}^{K} g(i, t)$$

Monte-Carlo-Strategiebewertung

Wir betrachten Trajektorie *t*, startend im Zustand *i*. Pfadkosten:

$$g(i, t) = c(s_0) + c(s_1) + \ldots + c(s_{N-1}), \quad s_0 = i$$

Dann gilt für $V: V(i) = \mathbb{E}[g(i, t)]$

V kann auch per Mittelwertbildung abgeschätzt werden durch

$$V(i) = \frac{1}{K} \sum_{t=1}^{K} g(i, t)$$

Algorithmus: MC-Strategiebewertung

Es sei $V_0(i)=0 \ \forall i$ und es werden durch den Agenten wiederholt Trajektorien in Interaktion mit der Umgebung unter Verwendung der Strategie π abgelaufen. Dann wird die Wertfunktion wie folgt aktualisiert:

$$V_t(i) = V_{t-1}(i) + \alpha_t(g(i, t) - V_{t-1}(i))$$

wobei z.B. $\alpha_t = 1/t$ verwendet werden kann.

Zeitliche Differenz-Methoden

Überblick

- Motivation
- Real-Time Dynamic Programming
- 3. Die Monte-Carlo-Methode (MC)
- 4. Zeitliche-Differenzmethoden (TD) Ansatz I
- Zeitliche-Differenzmethoden (TD) Ansatz I
- 6. Die Familie der TD(λ)-Verfahren
- 7. Konvergenzaussagen zu TD (λ)

Zeitliche-Differenzmethoden (1)

Temporal-Difference-Methoden (TD)

Kernideen:

- gehen zurück auf Samuel ("Checker Player", 1959)
- Idee: Anpassung nach jedem Zustandsübergang
- Zeitliche Differenz: Diskrepanz zwischen zwei aufeinanderfolgenden Zustandsbewertungen

Zeitliche-Differenzmethoden (1)

Temporal-Difference-Methoden (TD)

Kernideen:

- gehen zurück auf Samuel ("Checker Player", 1959)
- Idee: Anpassung nach jedem Zustandsübergang
- Zeitliche Differenz: Diskrepanz zwischen zwei aufeinanderfolgenden Zustandsbewertungen

Ausgangspunkt:

Bei den Überlegungen zur Monte-Carlo-Strategiebewertung betrachteten wir eine Trajektorie t beginnend im Zustand s_k :

$$g(s_k, t) = c(s_k) + c(s_{k+1}) + \ldots + c(s_{N-1})$$

$$V_t(s_k) = V_{t-1}(s_k) + \alpha_t(g(s_k, t) - V_{t-1}(s_k))$$

Zeitliche-Differenzmethoden (2)

Temporal-Difference-Methoden (TD)

Einsetzen (Betrachtung für eine einzelne Episode):

$$V_t(s_k) = V_{t-1}(s_k) + \alpha_t (c(s_k) + c(s_{k+1}) + \ldots + c(s_{N-1}) - V_{t-1}(s_k))$$

Zeitliche-Differenzmethoden (2)

Temporal-Difference-Methoden (TD)

Einsetzen (Betrachtung für eine einzelne Episode):

$$V_t(s_k) = V_{t-1}(s_k) + \alpha_t \left(c(s_k) + c(s_{k+1}) + \ldots + c(s_{N-1}) - V_{t-1}(s_k) \right)$$

Umformungstrick: Addiere und subtrahiere jedes $V_{t-1}(s_l)$

$$\begin{split} V_{t}(s_{k}) &= V_{t-1}(s_{k}) + \alpha_{t}(& C(s_{k}) + V_{t-1}(s_{k+1}) - V_{t-1}(s_{k}) \\ &+ C(s_{k+1}) + V_{t-1}(s_{k+2}) - V_{t-1}(s_{k+1}) \\ &+ C(s_{k+2}) + V_{t-1}(s_{k+3}) - V_{t-1}(s_{k+2}) \\ &+ \cdots \\ &+ C(s_{N-1}) + V_{t-1}(s_{N}) - V_{t-1}(s_{N-1})) \end{split}$$

wobei benutzt wird, dass $V(s_N) = 0$ gilt.

Zeitliche-Differenzmethoden (3)

Temporal-Difference-Methoden (TD)

Definiere nun:

Definition (Zeitlicher Differenzfehler (TD-Fehler))

Die Differenz

$$d_k := c(s_k) + V_{t-1}(s_{k+1}) - V_{t-1}(s_k)$$

zwischen den erwarteten Pfadkosten $V_{t-1}(s_k)$ und der im nächsten Schritt erfahreren "besseren" Schätzung der Pfadkosten $c(s_k) + V_{t-1}(s_{k+1})$ wird als zeitlicher Differenzfehler oder kurz als TD-Fehler (engl. Temporal Difference Error) bezeichnet.

Zeitliche-Differenzmethoden (3)

Temporal-Difference-Methoden (TD)

Definiere nun:

Definition (Zeitlicher Differenzfehler (TD-Fehler))

Die Differenz

$$d_k := c(s_k) + V_{t-1}(s_{k+1}) - V_{t-1}(s_k)$$

zwischen den erwarteten Pfadkosten $V_{t-1}(s_k)$ und der im nächsten Schritt erfahreren "besseren" Schätzung der Pfadkosten $c(s_k) + V_{t-1}(s_{k+1})$ wird als zeitlicher Differenzfehler oder kurz als TD-Fehler (engl. Temporal Difference Error) bezeichnet.

Damit lässt sich die Aktualisierungsvorschrift für V_t , die aus dem Umformungstrick hervorgegangen ist, schreiben als

$$V_t(s_k) = V_{t-1}(s_k) + \alpha_t (d_k + d_{k+1} + \ldots + d_{N-1})$$

Der TD(1)-Algorithmus

Online-Version: Der Anpassungsschritt kann sofort durchgeführt werden, nachdem ein einzelner Übergang $s_l \rightarrow s_{l+1}$ gemacht ist. Dann steht der TD-Fehler (zeitliche Differenz) fest:

$$d_{l} = c(s_{l}) + V(s_{l+1}) - V(s_{l})$$

Der TD(1)-Algorithmus

Online-Version: Der Anpassungsschritt kann sofort durchgeführt werden, nachdem ein einzelner Übergang $s_l \rightarrow s_{l+1}$ gemacht ist. Dann steht der TD-Fehler (zeitliche Differenz) fest:

$$d_{l} = c(s_{l}) + V(s_{l+1}) - V(s_{l})$$

Algorithmus: TD(1)

Durchlaufe eine Trajektorie t mit $s_0, s_1, \ldots, s_l, \ldots, s_N$:

FOR alle bereits "durchlaufenen" Zustände $k \le l$: $V_t(s_k) = V_{t-1}(s_k) + \alpha_t d_l$

$$\mathbf{v}_{t}(\mathbf{S}_{k}) = \mathbf{v}_{t-1}(\mathbf{S}_{k}) + \alpha_{t} \mathbf{u}_{t}$$

Wichtige Bemerkung: Der TD(1)-Algorithmus ist äquivalent zur trajektorienbasierten Methode (geht durch algebraische Umformung daraus hervor), d.h. zur Monte-Carlo-Strategiebewertung.

24/50 Prof. Dr. Thomas Gabel | Vorlesung | Grundlagen adaptiver Wissenssysteme

Zeitliche Differenz-Methoden

Überblick

- Motivation
- 2. Real-Time Dynamic Programming
- Die Monte-Carlo-Methode (MC)
- 4. Zeitliche-Differenzmethoden (TD) Ansatz
- 5. Zeitliche-Differenzmethoden (TD) Ansatz II
- 6. Die Familie der TD(λ)-Verfahren
- 7. Konvergenzaussagen zu TD (λ)

TD-Methoden: Zwei Ansätze

Erinnerung:

- Generiere Trajektorien für jeden Startzustand i bis zum Erreichen des Terminalzustands.
 - ⇒ trajektorienbasierter Ansatz / Monte-Carlo-Methode
 - ⇒ äquivalent zu TD(1)
- Benutze auch Informationen entlang der Trajektorien, um so auch noch die Bewertungen von Zwischenzuständen anzupassen.
 - ⇒ übergangsbasierter Ansatz
 - ⇒ Zeitliche Differenzmethode (Temporal Difference)
 - \Rightarrow TD(λ) mit λ < 1

Ansatz II: Übergangsbasiert (1)

Verwendung der Bellman-Gleichung

Kernidee:

Anwendung einer einzelnen Aktualisierung gemäß des Bellman'schen Optimalitätsprinzips, nach jedem einzelnen Übergang $s_k \to s_{k+1}$ wie folgt

$$V_t(s_k) = \mathbb{E}_w[c(s_k) + V_{t-1}(s_{k+1})], \quad \text{mit } s_{k+1} = f(s_k, \pi(s_k), w)$$

Problem dabei:

■ Wenn $V_{t-1}(s_{k+1})$ fehlerhaft, so ist auch $V_t(s_k)$ fehlerhaft.

Ansatz II: Übergangsbasiert (2)

Verwendung der Bellman-Gleichung

Lösungsidee:

- Die Übergangskosten sind genau, also nimm mehrere Übergangskosten mit in den Aktualisierungsschritt auf.
- zum Beispiel eine 3-Schritt-Vorschau:

$$V_t(s_k) = \mathbb{E}_w[c(s_k) + c(s_{k+1}) + c(s_{k+2}) + V_{t-1}(s_{k+3})]$$

Ansatz II: Übergangsbasiert (2)

Verwendung der Bellman-Gleichung

Lösungsidee:

- Die Übergangskosten sind genau, also nimm mehrere Übergangskosten mit in den Aktualisierungsschritt auf.
- zum Beispiel eine 3-Schritt-Vorschau:

$$V_t(s_k) = \mathbb{E}_w[c(s_k) + c(s_{k+1}) + c(s_{k+2}) + V_{t-1}(s_{k+3})]$$

Verallgemeinerung

- berücksichtige die Kosten der / + 1 nächsten Übergänge
- dadurch wird die Schätzung genauer

$$V_t(s_k) = \mathbb{E}[V_{t-1}(s_{k+l+1}) + \sum_{m=0}^{l} c(s_{k+m})]$$

Ansatz II: Übergangsbasiert (3)

Verwendung der Bellman-Gleichung

$$V_t(s_k) = \mathbb{E}[V_{t-1}(s_{k+l+1}) + \sum_{m=0}^{l} c(s_{k+m})]$$

Bemerkung:

- Wenn $V_{t-1} = V^{\pi}$ ist (also die Wertfunktion für π bereits perfekt abgeschätzt wird), so unterscheidet sich der rechte Teil nicht für unterschiedliche I.
- Will man kein fixes / willkürlich festlegen, so kann man z.B. V^{π} für verschiedene / ausrechnen und den Mittelwert bilden.
- Weitere Idee: Gewichte die Werte für verschiedene / (z.B. exponentiell abfallend mit wachsendem /)
 - Idee wird auf den nächsten Folien weiter verfolgt \Rightarrow TD(λ)

Zeitliche Differenz-Methoden

Überblick

- Motivation
- 2. Real-Time Dynamic Programming
- 3. Die Monte-Carlo-Methode (MC)
- 4. Zeitliche-Differenzmethoden (TD) Ansatz I
- 5. Zeitliche-Differenzmethoden (TD) Ansatz II
- 6. Die Familie der $TD(\lambda)$ -Verfahren
- 7. Konvergenzaussagen zu $\mathsf{TD}(\lambda)$

Exponentiell abfallende Gewichtung

Ausgangspunkt: Berücksichtigung mehrerer Folgeschritte bei der Aktualisierung

$$V_t(s_k) = \mathbb{E}[V_{t-1}(s_{k+l+1}) + \sum_{m=0}^{l} c(s_{k+m})]$$

Exponentiell abfallende Gewichtung

Ausgangspunkt: Berücksichtigung mehrerer Folgeschritte bei der Aktualisierung

$$V_t(s_k) = \mathbb{E}[V_{t-1}(s_{k+l+1}) + \sum_{m=0}^{l} c(s_{k+m})]$$

Kernidee: Berücksichtige alle Werte für I mit abfallendender Gewichtung: Das bedeutet, multipliziere die obige Gleichung mit $(1 - \lambda)\lambda^I$, wobei $0 \le \lambda < 1$ und $(1 - \lambda)$ ist ein Korrekturterm, weil $\sum_{l=0}^{\infty} \lambda^l = \frac{1}{1-\lambda}$:

$$V_t(s_k) = (1 - \lambda) \mathbb{E} \left[\sum_{l=0}^{\infty} \frac{\lambda^l}{l} \left(V_{t-1}(s_{k+l+1}) + \sum_{m=0}^{l} c(s_{k+m}) \right) \right]$$

Dies lässt sich in eine TD-Form bringen.

Der $TD(\lambda)$ -Algorithmus (1)

Ausgangspunkt: Exponentielle Gewichtung der Pfadkosten-"Datenpunkte"

$$V_t(s_k) = (1 - \lambda) \mathbb{E} \left[\sum_{l=0}^{\infty} \lambda^l \left(V_{t-1}(s_{k+l+1}) + \sum_{m=0}^{l} c(s_{k+m}) \right) \right]$$

Diese Idee umgeformt in "TD-Form" ergibt den $TD(\lambda)$ -Algorithmus (Beweis/Umformung: sh. Literatur)

Der $TD(\lambda)$ -Algorithmus (1)

Ausgangspunkt: Exponentielle Gewichtung der Pfadkosten-"Datenpunkte"

$$V_t(s_k) = (1 - \lambda) \mathbb{E} \left[\sum_{l=0}^{\infty} \frac{\lambda^l}{l!} \left(V_{t-1}(s_{k+l+1}) + \sum_{m=0}^{l} c(s_{k+m}) \right) \right]$$

Diese Idee umgeformt in "TD-Form" ergibt den $TD(\lambda)$ -Algorithmus (Beweis/Umformung: sh. Literatur)

Algorithmus: $TD(\lambda)$

Durchlaufe Trajektorie t mit s_0, s_1, \ldots, s_N und aktualisiere:

$$V_t(s_k) = V_{t-1}(s_k) + \alpha \sum_{m=0}^{N} \lambda^m d_{k+m}$$

mit zeitlichem Differenzfehler $d_m = c(s_m) + V_{t-1}(s_{m+1}) - V_{t-1}(s_m)$

Der $TD(\lambda)$ -Algorithmus (2)

Online-Version: Wie schon bei der Besprechung von TD(1)/MC gilt, dass der Anpassungsschritt sofort durchgeführt werden kann, nachdem ein einzelner Übergang $s_l \rightarrow s_{l+1}$ gemacht ist. Dann steht der TD-Fehler (zeitlicher Differenzfehler) für Schritt / fest und kann zum Update benutzt werden: $d_l = c(s_l) + V(s_{l+1}) - V(s_l)$

Der $TD(\lambda)$ -Algorithmus (2)

Online-Version: Wie schon bei der Besprechung von TD(1)/MC gilt, dass der Anpassungsschritt sofort durchgeführt werden kann, nachdem ein einzelner Übergang $s_l \rightarrow s_{l+1}$ gemacht ist. Dann steht der TD-Fehler (zeitlicher Differenzfehler) für Schritt / fest und kann zum Update benutzt werden: $d_l = c(s_l) + V(s_{l+1}) - V(s_l)$

Algorithmus: $TD(\lambda)$, Online-Version

```
Durchlaufe Trajektorie s_0, s_1, \ldots, s_l, \ldots, s_N:
```

```
FOR alle bereits "durchlaufenen" Zustände k \leq l { V_t(s_k) = V_{t-1}(s_k) + \alpha \, \lambda^{l-k} \, d_l }
```


Diskussion $TD(\lambda)$ (1)

Beispiel:

- kleines Beispiel: gleich
- ausführliches Beispiel: siehe Übungen

Bemerkungen:

■ Verfahren geht zurück auf Richard Sutton, 1987: Learning to predict by the methods of temporal differences und ist als $TD(\lambda)$ -Algorithmus bekannt (Sutton, 1987).

Sonderfälle:

- Für λ = 1 ergibt sich das trajektorienbasierte Monte-Carlo-Verfahren.
- Für λ = 0: siehe nächste Folie

Diskussion $TD(\lambda)$ (2)

Sonderfälle:

Für $\lambda = 0$ ergibt sich (wegen $0^0 = 1$, $\lambda^m = 0^m = 0$ für m > 0)

$$V_t(s_k) = V_{t-1}(s_k) + \alpha (c(s_k) + V_{t-1}(s_{k+1}) - V_{t-1}(s_k))$$

Dieses Verfahren bezeichnet man als TD(0)-Algorithmus.

Algorithmus: TD(0)

Durchlaufe beliebige Zustandsübergänge $s_k \to s_{k+1}$ und aktualisiere die Wertfunktion V gemäß:

$$V(s_k) \leftarrow V(s_k) + \alpha \left(c(s_k) + V(s_{k+1}) - V(s_k)\right)$$

Diskussion $TD(\lambda)$ (3)

Sonderfall $\lambda = 0$:

- TD(0) entspricht der Realisierung der Aktualisierung gemäß der Bellman-Gleichung für einen einzelnen Übergang (übergangsbasiert) im Rahmen einer stochastischen Approximation.
- Das Verfahren für $\lambda = 0$ kann für beliebige Zustände im Zustandsraum angewendet werden und ist damit insbesondere *nicht* auf das Durchlaufen ganzer Trajektorien angewiesen.
- Das Verfahren ist auch für diskontierte MDPs einsetzbar. Dann kommt in der Formel der Diskontierungsfaktor γ mit hinzu.

$$V(s_k) \leftarrow V(s_k) + \alpha (c(s_k) + \gamma V(s_{k+1}) - V(s_k))$$

Beispiel: für die Anwendung von $TD(\lambda)$ (1)

$TD(\lambda)$ -Anwendung der Online-Version

lacksquare nach Übergang 1: $(s_0 o s_1)$

$$V(s_0) := V(s_0) + \alpha d_0$$

 \blacksquare nach Übergang 2: $(s_1 o s_2)$

$$V(s_0) := V(s_0) + \alpha \lambda d_1$$

$$V(s_1) := V(s_1) + \alpha d_1$$

Beispiel: für die Anwendung von $TD(\lambda)$ (2)

$TD(\lambda)$ -Anwendung

nach Übergang 3: $(s_2 \rightarrow s_3)$

$$V(s_0) := V(s_0) + \alpha \lambda^2 d_2$$

$$V(s_1) := V(s_1) + \alpha \lambda d_2$$

$$V(s_2) := V(s_2) + \alpha d_2$$

allgemein: $(s_k \rightarrow s_{k+1})$

$$V(s_0) := V(s_0) + \alpha \lambda^k d_k$$

$$V(s_1) := V(s_1) + \alpha \lambda^{k-1} d_k$$

. .

$$V(s_k) := V(s_k) + \alpha d_k$$

Beispiel: für die Anwendung von $TD(\lambda)$ (3)

Offline-Variante von $TD(\lambda)$:

- Durchlaufe die komplette Trajektorie
- führe die Anpassung der Werte anschliessend durch
- Ergebnis: Wenn ein Zustand öfters besucht wird, unterscheiden sich die Resultate der Online-Version leicht von denen der Offline-Version.

Zusammenfassung TD-Verfahren (1)

Aktualisierung bei TD(1) (Monte-Carlo-Strategiebewertung)

$$V(s_t) \leftarrow V(s_t) + \alpha(g(s_t) - V(s_t))$$

Zusammenfassung TD-Verfahren (2)

Aktualisierung bei TD(0) (Temporal Difference Backup)

$$V(s_t) \leftarrow V(s_t) + \alpha (c(s_t) + \gamma V(s_{t+1}) - V(s_t))$$

Zusammenfassung TD-Verfahren (3)

Zum Vergleich: Aktualisierung bei DP (Dynamic Programming)

$$V(s_t) \leftarrow \sum_{s_{t+1} \in S} p_{s_t, s_{t+1}}(\pi(s_t)) \left(c(s_t, \pi(s_t)) + \gamma V(s_{t+1}) \right)$$

Zusammenfassung TD-Verfahren (4)

Methodenüberblick

Zeitliche Differenz-Methoden

Überblick

- Motivation
- 2. Real-Time Dynamic Programming
- 3. Die Monte-Carlo-Methode (MC)
- 4. Zeitliche-Differenzmethoden (TD) Ansatz I
- 5. Zeitliche-Differenzmethoden (TD) Ansatz II
- 6. Die Familie der TD(λ)-Verfahren
- 7. Konvergenzaussagen zu $TD(\lambda)$

Konvergenz $TD(\lambda)$

Man kann zeigen, dass der $TD(\lambda)$ -Algorithmus für beliebige Werte von λ mit Wahrscheinlichkeit 1 gegen V^{π} konvergiert, wenn

- 1. jeder Zustand unendlich oft besucht wird und
- 2. die Schrittweite α (Lernrate) "vernünftig" abnimmt
 - Vernünftig bedeutet dabei gemäß der Forderungen der stochastische Approximation.

Überlegungen zur Wahl von λ (1)

Beispiel

Eigenschaften:

- Übergang von 'a' → 'b' sei deterministisch, danach geht es stochastisch weiter.
- Jede Trajektorie starte in $s_0 = a$.
- Seien g(a, t) die Pfadkosten für Trajektorie t.
- Da 'a' nur einmal pro Trajektorie besucht wird, ist der Mittelwert der g(a, t) ein erwartungstreuer Schätzer und das beste, was man hier machen kann.
- Also: $TD(\lambda)$ mit $\lambda = 1$ und $\alpha = 1/t$ ist gute Wahl. Prof. Dr. Thomas Gabel | Vorlesung | Grundlagen adaptiver Wisserlssysteme

Überlegungen zur Wahl von λ (2)

Beispiel

Eigenschaften:

- ABER: Annahme, es gebe eine gute Schätzung $V^{\pi}(b)$ für 'b'.
 - Beispielsweise war 'b' schon Ausgangspunkt mehrerer Trajektorien.
- TD(1) benutzt diese Information überhaupt nicht!
- Falls $V^{\pi}(b)$ eine gute Schätzung des Erwartungswerts ab 'b' liefert, kann der TD-Algorithmus mit $\lambda = 0$ und $\alpha = 1$ den richtigen Wert für 'a' in einem einizen Schritt bestimmen!
 - Da der Übergang von 'a' nach 'b' ja deterministisch ist.

Überlegungen zur Wahl von λ (3)

Weitere Aspekte:

- Diskussion in [Singh, Dayan, 1996]: Analytisch hergeleitete Formeln, um den mittleren quadratischen Fehler vorherzusagen. Ganz grob: Mittlere Werte für λ (zwischen 0 und 1) funktionieren i.A. am besten, aber komplizierter Zusammenhang mit der Wahl der Schrittweite α .
- Wenn die Werte im Laufe des Verfahrens exakter werden, ist eine plausible Strategie, den Wert von λ gegen '0' gehen zu lassen.
- Der Konvergenzbeweis für $TD(\lambda)$ erlaubt variable λ —Werte, deshalb steht einem solchen Vorgehen nichts im Weg; allerdings ist bis heute auch kein mathematischer Beweis für den Vorteil eines solchen Verfahrens bekannt.

Zusammenfassung

- Lernen von Kosten durch Beispieltrajektorien mit fester Strategie
- Grundprinzip: Anwendung von Monte-Carlo-Methoden und stochastischer Approximation
- Variante: $TD(\lambda)$ -Algorithmus;
 - λ = 1 entspricht trajektorienbasierter Evaluierung
 - $\lambda = 0$ entspricht Übergangsbasierter Evaluierung
- Online-/Offline-Version

Aus- und Überblick

Bisheriger Stand

- Approximiere V^{π} ohne Modell durch Durchlaufen vieler Trajektorien mit fester Strategie
- Beherrschung sehr grosser Zustandsräume durch Lernen auf "interessanten" Teilmengen

Aus- und Überblick

Bisheriger Stand

- Approximiere V^{π} ohne Modell durch Durchlaufen vieler Trajektorien mit fester Strategie
- Beherrschung sehr grosser Zustandsräume durch Lernen auf "interessanten" Teilmengen

Nächste Schritte

- Verbessere π durch gierige ("greedy") Auswertung von $V\pi$ (Strategieiteration)
 - Problem: Hierzu braucht man immer noch ein Modell ...
- Repräsentation der Pfadkosten für kontinuerliche Zustände?