

空间中的一个点,即是一个顶点,也是一个向量

点乘运算返回2个向量之间的夹角

叉乘运算结果返回一个新的向量,这个新的向量与原来的2个向量垂直

 1 4 7

 2 5 8

 3 6 9

 0 42

 1.5 0.877

 2 14

三个矩阵

OpenGL 变换术语概况

变换	应用
视图	指定观察者或照相机的位置
模型	在场景中移动物体
模型视图	描述视图和模型变换的二元性
投影	改变视景体的大小和重新设置它的形状
视口	这一种伪变化,只是对窗口上的最终输出进行缩放

2个视角观察视觉坐标

围绕z轴旋转得到新的x轴

现在沿着X轴平移 其实是沿着X1轴平移

现在将平移后的坐标系进行旋转

透视投影 正投影

n :近平面距离

f :远平面距离

单个顶点上应用模型视图变换的矩阵方程式

 A₀ A₁ A₂ A₃

 A₄ A₅ A₆ A₇

 A₈ A₉ A₁₀ A₁₁

 A₁₂ A₁₃ A₁₄ A₁₅

 A₀ A₄ A₈ A₁₂

 A₁ A₅ A₉ A₁₃

 A₂ A₆ A₁₀ A₁₄

 A₃ A₇ A₁₁ A₁₅

行矩阵

列矩阵

转置矩阵:将行矩阵A的换成同序列列得到的矩阵,叫做A的转换矩阵。计为AT。

矩阵转置,其实就是行列互换。有很多地方都用到。比如数学、程序语言、计算机数据结构中

一个4*4矩阵是如何在3D空间中表示一个位置和方向的 列向量进行了特别的标注:矩阵的最后一行都为0,只有最后一个元素为1

$$\begin{bmatrix} 4.0 \\ 5.5 \\ 2.0 \\ 1.0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 4.0 \\ 5.5 \\ 2.0 \\ 1.0 \end{bmatrix}$$

将一个向量乘以一个单位矩阵得到的结果还是原来的矩阵

一个正方体围绕任意轴旋转

立方体不一致缩放