6

Homework #6

Завдання 755(с)

$$P(x_1,x_2,x_3) = x_1^4 + x_2^4 + x_3^4 - 2x_1^2x_2^2 - 2x_2^2x_3^2 - 2x_3^2x_1^2$$

Маємо многочлен від 3 змінних, а отже ми можемо його розкласти на симетричні многочлени

$$\sigma_1 = x_1 + x_2 + x_3, \ \sigma_2 = x_1x_2 + x_1x_3 + x_2x_3, \ \sigma_3 = x_1x_2x_3$$

Старший член — це x_1^4 . Отже, маємо наступну таблицю:

x_1	x_2	x_3	σ_1	σ_2	σ_3	Product
4	0	0	4	0	0	σ_1^4
3	1	0	2	1	0	$\sigma_1^2\sigma_2$
2	2	0	0	2	0	σ_2^2
2	1	1	1	0	1	$\sigma_1\sigma_3$

Отже маємо розкладання

$$P(x_1,x_2,x_3) = \sigma_1^4 + lpha \sigma_1^2 \sigma_2 + eta \sigma_2^2 + \gamma \sigma_1 \sigma_3, \; lpha,eta,\gamma \in \mathbb{R}$$

Знайдемо коефіцієнти $lpha,eta,\gamma$. Зручно спочатку занулити σ_1 . Для цього оберемо трійку (1,-1,0). В такому разі $\sigma_1=0,\sigma_2=-1,\sigma_3=0$. Тоді, з одного боку

$$P(1,-1,0) = \beta \sigma_2^2 = \beta$$

3 іншого боку P(1,-1,0)=0, тому $\beta=0$.

Отже маємо $P(x_1,x_2,x_3)=\sigma_1^4+\alpha\sigma_1^2\sigma_2+\gamma\sigma_1\sigma_3$. Тепер занулимо σ_3 . Нехай $(x_1,x_2,x_3)=(1,1,0)$. В такому випадку $\sigma_1=2,\sigma_2=1$

$$P(1,1,0)=16+4lpha=0
ightarrowlpha=-4$$

Таким чином $P(x_1,x_2,x_3)=\sigma_1^4-4\sigma_1^2\sigma_2+\gamma\sigma_1\sigma_3$. Залишилось занулити σ_2 . Нехай $(x_1,x_2,x_3)=(2,2,-1)$. Тоді $\sigma_1=3,\sigma_2=0,\sigma_3=-4$. Отже

Homework #6

$$P(2,2,-1) = 81 - 12\gamma = -15 \rightarrow 12\gamma = 96 \rightarrow \gamma = 8$$

Отже $P(x_1,x_2,x_3) = \sigma_1^4 - 4\sigma_1^2\sigma_2 + 8\sigma_1\sigma_3$.

Завдання 756(b)

$$P(x_1,x_2,x_3,x_4)=(x_1x_2+x_3x_4)(x_1x_3+x_2x_4)(x_1x_4+x_2x_3)$$

Старший член $x_1^3x_2x_3x_4$. Маємо 4 змінні, тому нам потрібно виразити P через

$$\sigma_1 = x_1 + x_2 + x_3 + x_4, \; \sigma_2 = x_1x_2 + x_1x_3 + x_1x_4 + x_2x_3 + x_2x_4 + x_3x_4 \ \sigma_3 = x_1x_2x_3 + x_1x_2x_4 + x_1x_3x_4 + x_2x_3x_4, \; \sigma_4 = x_1x_2x_3x_4$$

Маємо наступну таблицю

x_1	x_2	x_3	x_4	σ_1	σ_2	σ_3	σ_4	Product
3	1	1	1	2	0	0	1	$\sigma_1^2\sigma_4$
2	2	2	0	0	0	2	0	σ_3^2
2	2	1	1	0	1	0	1	$\sigma_2\sigma_4$

Отже, маємо розкадання

$$P = \sigma_1^2 \sigma_4 + \alpha \sigma_3^2 + \beta \sigma_2 \sigma_4$$

Насправді оскільки маємо лише 2 коефіцієнти, тому можна не придумувати хитрі схеми по "зануленню" σ_j . Просто відставимо якісь 2 четвірки. Наприклад, (1,1,1,0) та (1,1,1,1). Тому маємо для першої четвірки

$$\sigma_1 = 3, \ \sigma_2 = 3, \ \sigma_3 = 1, \sigma_4 = 0$$

Отже P(1,1,1,0)=lpha=1, звідки $P=\sigma_1^2\sigma_4+\sigma_3^2+eta\sigma_2\sigma_4$. З другої четвірки маємо

$$\sigma_1 = 4, \ \sigma_2 = 6, \ \sigma_3 = 4, \ \sigma_4 = 1$$

Отже
$$P(1,1,1,1) = 16 + 16 + 6\beta = 8 \implies \beta = -4$$
. Остаточно

$$P(\sigma_1,\sigma_2,\sigma_3,\sigma_4)=\sigma_1^2\sigma_4+\sigma_3^2-4\sigma_2\sigma_4$$

Homework #6 2