Diszkrét matematika 1

Gráfok

Mérai László, Farkas Izabella Ingrid

merai@inf.elte.hu

Komputeralgebra Tanszék

2025 tavasz

Gráfok

Minden fának van levele

Tétel

Legyen G=(V,E) egy körmentes nem-üres $(E\neq\emptyset)$ véges gráf. Ekkor $\exists v\in V: d(v)=1$.

- Mivel $E \neq \emptyset$, G-ben van út. (Például egy egy hosszú v, e, v' út.)
- Legyen $v_0, e_1, \dots, e_k, v_k$ egy maximális hosszú út.
- Mivel *G* körmentes, v_k nem szomszédja v_i -nek $0 \le i < k 1$.

- ullet Mivel az út maximális, v_k -nak nincs az úton kívüli szomszédja.
 - $v_0 \longrightarrow v_1 \cdots v_{k-1} \longrightarrow v_k \cdots$
- Azaz v_k -nak csak v_{k-1} a szomszédja $\Longrightarrow d(v_k) = 1$.

Minden fának van levele

Tétel

Legyen G=(V,E) egy körmentes nem-üres $(E\neq\emptyset)$ véges gráf. Ekkor $\exists v\in V: d(v)=1.$

Megjegyzések:

- Itt *G* nem feltétlenül fa, lehet több komponense (erdő).
- Levél: első fokú csúcs.
- Mindhárom feltétel szükséges:
 - Ha $E = \emptyset \longrightarrow$ minden fok csúcsa 0.
 - Ha G nem körmentes $\longrightarrow G = C_n$.
 - Ha G nem véges $\longrightarrow G$: végtelen hosszú lánc (nincs se eleje, se vége).

Fák élszáma

Tétel

Legyen *G* egyszerű *n* csúcsú gráf. Ekkor a következők ekvivalensek:

- 1. *G* fa;
- 2. G körmentes és n-1 éle van;
- 3. G összefüggő és n-1 éle van;

Példa

- 1. \Rightarrow 2. \Rightarrow 3. \Rightarrow 1.
- n szerinti indukció
- n = 1 esete triviális

Fák élszáma, 1/3

1. Állítás (1. \Rightarrow 2.)

Legyen G egyszerű n csúcsú gráf. Ekkor G fa $\Rightarrow G$ körmentes és n-1 éle van;

Bizonyítás.

- Tfh k < n csúcsú gráfra teljesül.
- Tekintsünk egy n csúcsú G fát.
- Mivel G fa (spec. körmentes), van elsőfokú csúcsa.
- Ezt elhagyva (az illeszkedő éllel) a kapott G' részgráf egy n-1 csúcsú fa.
- A részgráfnak n-2 éle van (indukció szerint).
- Az élet visszahúzva G-nek így n-1 éle van.

G gráf

Fák élszáma, 2/3

2. Állítás (2. \Rightarrow 3.)

Legyen G egyszerű n csúcsú gráf. Ekkor G körmentes és n-1 éle van $\Rightarrow G$ összefüggő és n-1 éle van.

- Tfh k < n csúcsú gráfra teljesül.
- Tekintsünk egy n csúcsú G körmentes n-1 élű gráfot.
- Mivel G körmentes, van elsőfokú v csúcsa.
- Ezt elhagyva (az illeszkedő éllel) a kapott G' részgráf n-1 csúcsú, összefüggő és n-2 élű.
- A részgráf összefüggő (indukció szerint). Azaz minden v' és v'' csúcs között van séta.
- Az eredeti G gráf összefüggősége: legyen v' a v szomszédja. Tetszőleges v"-ből van séta v'-be, ahonnan van séta v-be.

Fák élszáma, 3/3

3. Állítás (3. \Rightarrow 1.)

Legyen G egyszerű n csúcsú gráf. Ekkor G összefüggő és n-1 éle van $\Rightarrow G$ fa.

Bizonyítás.

- Tekintsünk egy n csúcsú G összefüggő n-1 élű gráfot.
- Ha G körmentes is, akkor fa.
- Ha van benne kör, a körön egy élt elhagyva a részgráf még mindig összefüggő.
- Folytassuk ezt addig, amíg körmentes T gráfot (és így fát) kapunk.
- Legyen ℓ az elhagyott élek száma.
- A T gráfnak n csúcsa és $n-1-\ell$ éle van.
- T fa \Rightarrow élei száma $n-1 \Rightarrow \ell=0 \Rightarrow G$ körmentes volt.

Így az **eredeti** tételt is beláttuk.

Svájci 10 frankos, 1984

- 1984-es svájci frank sorozat
- 10 frankoson Leonhard Euler 1707 (Bázel) - 1783 (Szentpétervár)

- 10 frankos hátoldala:
 - \bullet n!
 - Gamma függvény
 - Naprendszer

A königsbergi hidak problémája

Königsbergi lakosok megkeresték Eulert:

 Végig lehet-e menni a königsbergi 7 hídon, hogy mindegyiken csak egyszer megyünk át?

• Euler: nem lehet!

gráfelmélet születése

Definíció

Egy G gráfban a $v_0, e_1, v_1, \dots, v_{k-1}, e_k, v_k$ séta egy Euler-séta, ha

- \bullet $e_i \neq e_i \ (i \neq j)$.
- a séta *G* minden élét tartalmazza.
- zárt Euler-séta: $v_0 = v_k$

Azaz az Euler-séta a gráf minden élét pontosan egyszer tartalmazza.

Példa

- G-ben van Euler-séta
- H-ban nincs Euler-séta
- egyikben sincs zárt Euler-séta

Tétel

Egy véges gráfban pontosan akkor van zárt Euler-séta, ha

- 1. izolált csúcsoktól eltekintve összefüggő;
- 2. minden csúcs foka páros.

Bizonyítás. ->

- Legyen $v_0, e_1, v_1, \dots, v_{k-1}, e_k, v_0$ egy zárt Euler-séta
- a gráf összes éle fel van sorolva a sétában
 - \Rightarrow minden v csúcs is szerepel, amire illeszkedik él $(d(v) \ge 1)$
 - \Rightarrow minden nem-izolált csúcs között van séta \Rightarrow 1.
- legyen $i \neq 0$, ekkor v_i közbenső csúcs
- ekkor e_{i-1}, e_i 2-vel járul hozzá $d(v_i)$ -hez
- i = 0: e_1 ill. e_k is 1 + 1-gyel járul hozzá $d(v_0)$ -hoz $\Rightarrow 2$.

Tétel

Létezik zárt Euler-séta \iff összefüggő (leszámítva az izolált csúcsokat) és d(v) páros

Bizonyítás.

- A bizonyítás konstruktív
- hagyjuk el az izolált csúcsokat (a maradék gráf tartalmazza a zárt Euler-sétát)
- ullet induljunk el egy v_0 tetszőleges csúcsból eddig nem látogatott élek mentén
- minden d(v) páros, így csak akkor akadunk el ha v_0 -ba érkeztünk
- ha minden élet felsoroltunk ⇒ kész
- ha nem ⇒ iteratívan bővíteni fogjuk a zárt sétát

g

Tétel

Létezik zárt Euler-séta \iff összefüggő (leszámítva az izolált csúcsokat) és d(v) páros

- A bizonyítás konstruktív (folyt.)
- van egy zárt sétánk, ami nem tartalmazza az összes élt ⇒ bővítjük a sétát
- ha nem soroltunk fel minden élt ⇒ van olyan v_i a már látogatott csúcsok között, amire illeszkedik nem-látogatott él (Miért? ö.f. miatt)
- v_i -ből elindulva a nem-látogatott él mentén sétáljunk mindig nem-látogatott éleken
- ekkor visszatérünk v_i -be (Miért?) \Rightarrow a két zárt sétát egyesítve hosszabb zárt sétát kapunk
- az eljárást iterálva egy zárt Euler-sétát kapunk

Tétel

Egy véges gráfban pontosan akkor van zárt Euler-séta, ha

- 1. izolált csúcsoktól eltekintve összefüggő;
- 2. minden csúcs foka páros.

Következmény: (Biz.: HF)

Egy véges gráfban pontosan akkor van nem-zárt Euler-séta, ha

- 1. izolált csúcsoktól eltekintve összefüggő;
- 2. minden csúcs foka páros kivéve pontosan kettőt .

Példa

- *H*-ban nincs Euler-séta $d(v_i) = 3$
- G-ben nincs zárt Euler-séta $d(v_1) = d(v_2) = 3$, $d(v_3) = d(v_4) = 4$, $d(v_5) = 2$
- *G*-ben van nem-zárt Euler-séta $d(v_1) = d(v_2) = 3$, $d(v_3) = d(v_4) = 4$, $d(v_5) = 2$

Utazás a föld körül

Sir William Rowan Hamilton (1857): Végig tudjuk-e látogatni a dodekaéder (szabályos test, 12 oldala szabályos 5 szög) 20 csúcsán lévő városokat, hogy minden városban pontosan egyszer vagyunk?

Hamilton-út, Hamilton-kör

Definíció

Legyen G egy véges egyszerű gráf.

- A G gráfban egy út Hamilton-út, ha minden csúcsot pontosan egyszer tartalmaz.
- A G gráfban egy kör Hamilton-kör, ha minden csúcsot pontosan egyszer tartalmaz.
- minden élet pontosan egyszer tartalmaz
 - → Euler-séta
- minden csúcsot pontosan egyszer tartalmaz
 - --- Hamilton-út

Hamilton-kör a dodekaéderen

Hamilton-út létezése

Emlékeztető: Egy gráfban létezik zárt Euler-séta

- (lényegében) összefüggő;
- minden csúcs foka páros.
- Ekkor van hatékony algoritmus a zárt Euler-séta megtalálására.

Kérdés: Mikor létezik egy gráfban Hamilton-kör?

- 1M USD értékű kérdés! (általában: P v.s NP probléma)
- Ha lenne hatékony algoritmusunk, sok biztonsági rendszert fel tudnánk törni!

Lehetőségeink:

- Nem hatékony algoritmus: n csúcsú gráfon n! lehetséges sorrendje a csúcsoknak → kimerítő keresés.
- Elégséges feltétel Hamilton-út létezésére.