Sequential Design

ELEC 311 Digital Logic and Circuits Dr. Ron Hayne

Images Courtesy of Cengage Learning

Sequential Circuits

311_16

2

Design Example

◆ 2-bit Variable Counter

X1	X0	Function	Ex. Sequence (Z1 Z0)
0	0	down	00, 11, 10, 01, 00,
0	1	up	00, 01, 10, 11, 00,
1	0	down, even	00, 10, 00, 10, 00,
1	1	up, odd	01, 11, 01, 11, 01,

State Assignment: Q1 Q0 = Z1 Z0

Transition Table (1)

	Inputs		PS		NS	
mt	X1	X0	Q1	Q0	Q 1+	Q 0+
0	0	0	0	0		
1	0	0	0	1		
2	0	0	1	0		
3	0	0	1	1		
4	0	1	0	0		
5	0	1	0	1		
6	0	1	1	0		
7	0	1	1	1		

Transition Table (1)

	Inputs		P	S	NS	
mt	X1	X0	Q1	Q0	Q 1+	Q 0+
0	0	0	0	0	1	1
1	0	0	0	1	0	0
2	0	0	1	0	0	1
3	0	0	1	1	1	0
4	0	1	0	0		
5	0	1	0	1		
6	0	1	1	0		
7	0	1	1	1		

Transition Table (1)

	Inputs		P	S	NS	
mt	X1	X0	Q1	Q0	Q 1+	Q0 +
0	0	0	0	0	1	1
1	0	0	0	1	0	0
2	0	0	1	0	0	1
3	0	0	1	1	1	0
4	0	1	0	0	0	1
5	0	1	0	1	1	0
6	0	1	1	0	1	1
7	0	1	1	1	0	0

Transition Table (2)

	Inputs		P	PS		NS	
mt	X1	X0	Q1	Q0	Q 1+	Q0 +	
8	1	0	0	0			
9	1	0	0	1			
10	1	0	1	0			
11	1	0	1	1			
12	1	1	0	0			
13	1	1	0	1			
14	1	1	1	0			
15	1	1	1	1			

Transition Table (2)

	Inputs		P	'S	NS	
mt	X1	X0	Q1	Q0	Q1+	Q 0+
8	1	0	0	0	1	0
9	1	0	0	1	0	0
10	1	0	1	0	0	0
11	1	0	1	1	1	0
12	1	1	0	0		
13	1	1	0	1		
14	1	1	1	0		
15	1	1	1	1		

Transition Table (2)

	Inputs		P	PS		NS	
mt	X1	X0	Q1	Q0	Q1+	Q 0+	
8	1	0	0	0	1	0	
9	1	0	0	1	0	0	
10	1	0	1	0	0	0	
11	1	0	1	1	1	0	
12	1	1	0	0	0	1	
13	1	1	0	1	1	1	
14	1	1	1	0	1	1	
15	1	1	1	1	0	1	

Next State (FF) Equations

- D1(X1,X0,Q1,Q0) = Q1+ = Σ m(0,3,5,6,8,11,13,14)
- $D0(X1,X0,Q1,Q0) = Q0 + = \Sigma m(0,2,4,6,12,13,14,15)$
- D1 = $(X0' \cdot Q1' \cdot Q0') + (X0 \cdot Q1' \cdot Q0) + (X0' \cdot Q1 \cdot Q0) + (X0 \cdot Q1 \cdot Q0')$
 - $D0 = (X1' \cdot Q0') + (X1 \cdot X0)$

Xilinx CPLD Implementation

Xilinx FPGA Implementation

UNISIM Library Components

- FDC
 - D Flip-Flop with Asynchronous Clear

```
component FDC
port (Q : out STD_LOGIC;
        C : in STD_LOGIC;
        CLR : in STD_LOGIC;
        D : in STD_LOGIC);
end component;
```

VHDL Package

- project4_pkg.vhdClock Divider

VHDL Model

```
library UNISIM;
use UNISIM.VComponents.all;
use work.Project4 Pkg.all;
entity Counter is
  Port ( X : in std logic vector(1 downto 0);
         CLR : in std logic;
         CLK : in std logic;
         Z : out std logic vector(1 downto 0));
end Counter;
architecture DATAFLOW of Counter is
  signal D : std logic vector(1 downto 0);
  signal Q : std logic vector(1 downto 0);
  signal SLOW CLK : std logic;
```

311_16

15

VHDL Model

begin

```
D(1) \le (\text{not } X(0)) \text{ and not } Q(1) \text{ and not } Q(0)) \text{ or }
            (X(0)) and not Q(1) and Q(0) or
            (not X(0) and Q(1) and Q(0)) or
            (X(0)) and Q(1) and not Q(0);
  D(0) \le (\text{not } X(1) \text{ and not } Q(0)) \text{ or }
            (X(1) \text{ and } X(0));
  CDIV : CLK DIV port map (CLK, SLOW CLK);
  FF1 : FDC port map(Q(1), SLOW CLK, CLR, D(1));
  FF0 : FDC port map(Q(0), SLOW CLK, CLR, D(0));
  Z \ll 0;
end DATAFLOW;
```

Summary

- Design Example
 - Functional Description
 - Transition Table
 - Next State Equations
 - FPGA Implementation
 - VHDL Model