Diszkrét matematika I.

6. előadás

Nagy Gábor nagygabr@gmail.com nagygabor@inf.elte.hu Mérai László diái alapján

Komputeralgebra Tanszék

2021. tavasz

Komplex számok Diszkrét matematika I. 2021. tavasz

Moivre-azonosságok

Tétel (HF)

Legyenek $z,w\in\mathbb{C}$ trigonometrikus alakban megadott komplex számok: $z=|z|(\cos\varphi+i\sin\varphi),\ w=|w|(\cos\psi+i\sin\psi),$ és legyen $n\in\mathbb{N}$. Ekkor $z\cdot w=|z||w|(\cos(\varphi+\psi)+i\sin(\varphi+\psi));$

$$\frac{z}{w} = \frac{|z|}{|w|}(\cos(\varphi - \psi) + i\sin(\varphi - \psi)), \text{ ha } w \neq 0;$$

$$z^n = |z|^n(\cos(n\varphi) + i\sin(n\varphi)).$$

A szögek összeadódnak, kivonódnak, szorzódnak. Az argumentumot ezek után redukcióval kapjuk!

Bizonyításhoz

$$1/w = \frac{1}{|w|}(\cos(-\psi) + i\sin(-\psi))$$

2021. tavasz

Geometriai jelentés

Legyen $z_0 = |z_0|(\cos \varphi_0 + i \sin \varphi_0) \in \mathbb{C}$ rögzített és $z = |z|(\cos \varphi + i \sin \varphi) \in \mathbb{C}$ tetszőleges. Ekkor:

$$z \cdot z_0 = |z||z_0|(\cos(\varphi + \varphi_0) + i\sin(\varphi + \varphi_0))$$

Egy $z_0 \in \mathbb{C}$ komplex számmal való szorzás $(z \mapsto z \cdot z_0)$ a komplex számsíkon mint nyújtva-forgatás hat: $|z_0|$ -lal nyújt, $arg(z_0)$ szöggel forgat.

Komplex számok gyökei

Példa

Számoljuk ki
$$\left(\frac{1+i}{\sqrt{2}}\right)^8$$
-t:
$$\left(\frac{1+i}{\sqrt{2}}\right)^8 = \left(\frac{1}{\sqrt{2}} + i\frac{1}{\sqrt{2}}\right)^8 = \left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right)^8 = \cos\left(8 \cdot \frac{\pi}{4}\right) + i\sin\left(8 \cdot \frac{\pi}{4}\right) = \cos 2\pi + i\sin 2\pi = 1$$

További komplex számok, melyeknek a 8-adik hatványa 1:

- 1;
- −1;
- $i: i^8 = (i^2)^4 = (-1)^4 = 1;$
- \bullet -i;
- $\frac{1+i}{\sqrt{2}}$; $-\frac{1+i}{\sqrt{2}}$;
- sốt: $\pm i \cdot \frac{1+i}{\sqrt{2}}$: $\left(i \cdot \frac{1+i}{\sqrt{2}}\right)^8 = i^8 \cdot \left(\frac{1+i}{\sqrt{2}}\right)^8 = 1 \cdot 1 = 1$.

Gyökvonás

A $z_1 = |z_1|(\cos \varphi_1 + i \sin \varphi_1)$ és $z_2 = |z_2|(\cos \varphi_2 + i \sin \varphi_2)$ trigonometrikus alakban megadott komplex számok pontosan akkor egyenlőek:

$$|z_1|(\cos\varphi_1+i\sin\varphi_1)=|z_2|(\cos\varphi_2+i\sin\varphi_2),$$

ha

•
$$|z_1| = |z_2|$$

• $\varphi_1 = \varphi_2 + k \cdot 2\pi$ valamely $k \in \mathbb{Z}$ szám esetén.

n-edik gyökvonás: Legyen
$$z = |z|(\cos \varphi + i \sin \varphi)$$
 és $w = |w|(\cos \psi + i \sin \psi)$, továbbá $w^n = z$:
$$w^n = |w|^n(\cos n\psi + i \sin n\psi) = |z|(\cos \varphi + i \sin \varphi).$$

Ekkor

$$|w|^n = |z| \Rightarrow |w| = \sqrt[n]{|z|}$$

• $n\psi = \varphi + k \cdot 2\pi$ valamely $k \in \mathbb{Z}$ esetén, vagyis:

$$\psi = \frac{\varphi}{n} + k \cdot \frac{2\pi}{n}$$
 valamely $k \in \mathbb{Z}$ esetén.

Ha $k \in \{0,1,\ldots,n-1\}$, akkor ezek mind különböző komplex számot adnak.

Tétel

Legyen $z=|z|(\cos\varphi+i\sin\varphi),\ n\in\mathbb{N}^+$. Ekkor a z n-edik gyökei azok a w-k, amikre $w^n=z$:

$$w_k = \sqrt[n]{|z|} \left(\cos \left(\frac{\varphi}{n} + \frac{2k\pi}{n} \right) + i \sin \left(\frac{\varphi}{n} + \frac{2k\pi}{n} \right) \right)$$

$$k = 0, 1, \ldots, n - 1.$$

Gyökvonás

$$w_k = \sqrt[n]{|z|} \left(\cos \left(\frac{\varphi}{n} + \frac{2k\pi}{n} \right) + i \sin \left(\frac{\varphi}{n} + \frac{2k\pi}{n} \right) \right) : k = 0, 1, \dots, n - 1.$$

Példa

Számítsuk ki a $\sqrt[6]{\frac{1-i}{\sqrt{3}+i}}$ értékét!

$$1 - i = \sqrt{2} \left(\frac{\sqrt{2}}{2} - i \frac{\sqrt{2}}{2} \right) = \sqrt{2} \left(\cos \frac{7\pi}{4} + i \sin \frac{7\pi}{4} \right)$$
$$\sqrt{3} + i = 2 \left(\frac{\sqrt{3}}{2} + i \frac{1}{2} \right) = 2 \left(\cos \frac{\pi}{6} + i \sin \frac{\pi}{6} \right)$$

Mivel $\frac{7\pi}{4} - \frac{\pi}{6} = \frac{19\pi}{12}$, ezért:

$$\sqrt[6]{\frac{1-i}{\sqrt{3}+i}} = \sqrt[6]{\frac{1}{\sqrt{2}}\left(\cos\frac{19\pi}{12} + i\sin\frac{19\pi}{12}\right)} =
= \frac{1}{\frac{12}{\sqrt{2}}}\left(\cos\frac{19\pi + 24k\pi}{72} + i\sin\frac{19\pi + 24k\pi}{72}\right) : k = 0, 1, \dots, 5.$$

Komplex egységgyökök

Definíció

Az $\varepsilon^n=1$ feltételnek eleget tevő komplex számok az $\emph{n}\text{-edik}$ egységgyökök:

$$\varepsilon_k = \varepsilon_k^{(n)} = \left(\cos\frac{2k\pi}{n} + i\sin\frac{2k\pi}{n}\right) : k = 0, 1, \dots, n-1.$$

Példa

Nyolcadik komplex egységgyökök

Komplex számok Diszkrét matematika I. 2021. tavasz

Gyökvonás

Pozitív valós számok négyzetgyöke: legyen r>0 valós szám, ekkor az $x^2=r$ megoldásai: $\pm \sqrt{r}$.

Tétel

Legyen $z\in\mathbb{C}$ nemnulla komplex szám. $n\in\mathbb{N}$ és $w\in\mathbb{C}$ olyan, hogy $w^n=z$. Ekkor z n-edik gyökei felírhatóak a következő alakban: $w\varepsilon_k: k=0,1,\ldots n-1$.

Bizonyítás

A $w\varepsilon_k$ számok mind *n*-edik gyökök: $(w\varepsilon_k)^n = w^n\varepsilon_k^n = z \cdot 1 = z$. Ez *n* különböző szám, így az összes gyököt megkaptuk.

Komplex számok Diszkrét matematika I. 2021. tavasz

10.

Rend

Bizonyos komplex számok hatványai periodikusan ismétlődnek:

- **1**, 1, 1, . . .
- \bullet -1, 1, -1, 1, . . .
- \bullet $i, -1, -i, 1, i, -1, \dots$
- $\frac{1+i}{\sqrt{2}}$, i, $\frac{-1+i}{\sqrt{2}}$, -1, $\frac{-1-i}{\sqrt{2}}$, -i, $\frac{1-i}{\sqrt{2}}$, 1, $\frac{1+i}{\sqrt{2}}$, i, ...

Általában:

 $\cos(\frac{2\pi}{n}) + i\sin(\frac{2\pi}{n})$ -nek *n* darab különböző hatványa van.

Definíció

Egy z komplex szám különböző (egész kitevős) hatványainak számát a z rendjének nevezzük.

Példa

- 1 rendje 1;
- 2 rendje ∞ : 2, 4, 8, 16, . . . ;
- -1 rendje 2: 1, -1;
- i rendje 4: 1, i, -1, -i.

Komplex számok Diszkrét matematika I. 2021. tavasz 11.

Primitív egységgyökök

Az *n*-edik egységgyökök rendje nem feltétlenül *n*:

4-edik egységgyökök: 1, i, -1, -i.

- 1 rendje 1;
- −1 rendje 2;
- *i* rendje 4.

Definíció

Az n-ed rendű n-edik egységgyökök a primitív n-edik egységgyökök.

Példa

- Primitív 1. egységgyök: 1;
- Primitív 2. egységgyök: −1;
- Primitív 3. egységgyökök: $\frac{-1\pm i\sqrt{3}}{2}$;
- Primitív 4. egységgyökök: $\pm i$;
- Primitív 6. egységgyökök: $\frac{1\pm i\sqrt{3}}{2}$.

Állítás

Egy primitív *n*-edik egységgyök hatványai pontosan az *n*-edik egységgyökök.

12.

Összefoglaló (kombinatorikai alapesetek)

Ismétlés nélküli permutáció $P_n = n!$, n elem lehetséges sorrendje (sorrend számít, egy elem (pontosan) egyszer).

Ismétléses permutáció $P_n^{k_1,k_2,...,k_m} = \frac{(k_1 + k_2 + ... + k_m)!}{k_1! \cdot k_2! \cdot ... \cdot k_m!}$, $n = k_1 + k_2 + ... + k_m$ elem lehetséges sorrendje, ahol az i típusú elemet

 k_i -szer választjuk (sorrend számít, egy elem többször).

Ismétlés nélküli variáció $V_n^k = n!/(n-k)!$, n elemből k-t választunk (sorrend számít, egy elem legfeljebb egyszer).

Ismétléses variáció ${}^{i}V_{n}^{k}=n^{k}$, n elemből k-szor választunk (sorrend számít, egy elem akár többször is).

Ismétlés nélküli kombináció $C_n^k = \binom{n}{k}$, n elemből k-t választunk (sorrend nem számít, egy elem legfeljebb egyszer).

Ismétléses kombináció ${}^{i}C_{n}^{k}=\binom{n+k-1}{k}$, n elemből k-szor választunk (sorrend nem számít, egy elem akár többször is).

13.

Elemi leszámlálások

Adott két véges, diszjunkt halmaz:

$$A = \{a_1, a_2, \ldots, a_n\}, \quad B = \{b_1, b_2, \ldots, b_m\}.$$

Hányféleképpen tudunk választani egy elemet A-ból vagy B-ből?

Lehetséges választások: $a_1, a_2, \ldots, a_n, b_1, b_2, \ldots, b_m$.

Számuk: n + m.

Példa

Egy cukrászdában 3-féle édes sütemény (isler, zserbó, kókuszkocka) és 2-féle sós sütemény (pogácsa, perec) van. Hányféleképpen tudunk egy édes vagy egy sós sütemény enni? Megoldás: 3+2=5.

Elemi leszámlálások

Adott két véges, diszjunkt halmaz:

$$A = \{a_1, a_2, \ldots, a_n\}, \quad B = \{b_1, b_2, \ldots, b_m\}.$$

Hányféleképpen tudunk választani elemet \mathcal{A} -ból és \mathcal{B} -ből? Lehetséges választások:

Számuk: *n* · *m*.

Példa

Egy cukrászdában 3-féle édes sütemény (isler, zserbó, kókuszkocka) és 2-féle sós sütemény (pogácsa, perec) van. Hányféleképpen tudunk egy édes és egy sós sütemény enni? Megoldás: $3 \cdot 2 = 6$.

15.

Permutáció

Tétel

Legyen \mathcal{A} egy n elemű halmaz. Ekkor az \mathcal{A} elemeinek lehetséges sorrendje: $P_n = n! = n(n-1)(n-2) \cdot \ldots \cdot 2 \cdot 1$ (n faktoriális). Itt 0! = 1.

Példa

Reggelire a

- 2 különböző szendvicset $2! = 2 \cdot 1 = 2$ -féle sorrendben lehet megenni.
- 3 különböző szendvicset $3! = 3 \cdot 2 \cdot 1 = 6$ -féle sorrendben lehet megenni.
- 4 különböző szendvicset $4! = 4 \cdot 3 \cdot 2 \cdot 1 = 24$ -féle sorrendben lehet megenni.

A 200 fős évfolyam 200! = $200 \cdot 199 \cdot 198 \cdot \ldots \cdot 2 \cdot 1 \approx 7,89 \cdot 10^{374}$ -féle sorrendben írhatja alá a jelenléti ívet.

Bizonyítás

Az n elemből az első helyre n-féleképpen választhatunk, a második helyre n-1-féleképpen választhatunk, ... Így az összes lehetőségek száma $n(n-1)\cdot\ldots\cdot 2\cdot 1$.

Ismétléses permutáció

Példa

Egy vizsgán 5 hallgató vett részt, 2 darab 4-es, 3 darab 5-ös született.

Hány sorrendben írhatjuk le az eredményeket?

Megoldás

Ha figyelembe vesszük a hallgatókat is: (2+3)! = 5! lehetséges sorrend van.

Ha a hallgatókat nem tüntetjük fel, egy lehetséges sorrendet többször is figyelembe vettünk:

Az 5-ösöket 3! = 6-féleképpen cserélhetjük, ennyiszer vettünk figyelembe minden sorrendet.

Hasonlóan a 4-eseket 2! = 2-féleképpen cserélhetjük, ennyiszer vettünk figyelembe minden sorrendet.

Összes lehetőség: $\frac{5!}{2! \cdot 3!} = \frac{120}{2 \cdot 6} = 10.$

17.

Ismétléses permutáció

Tétel

 k_1 darab első típusú, k_2 második típusú, ..., k_m m-edik típusú elem lehetséges sorrendjét az elemek ismétléses permutációinak nevezzük, és számuk $n=k_1+k_2+\ldots+k_m$ esetén

$$P_n^{k_1,k_2,...,k_m} = \frac{n!}{k_1! \cdot k_2! \cdot ... \cdot k_m!}.$$

Bizonyítás

Ha minden elem között különbséget teszünk: $(k_1 + k_2 + ... + k_m)!$ lehetséges sorrend létezik.

Ha az i-edik típusú elemek között nem teszünk különbséget, akkor az előbb megkapott lehetséges sorrendek között k_i !-szor fordulnak elő a különböző sorrendek.

Ha az azonos típusú elemek között nem teszünk különbséget, akkor az előbb megkapott lehetséges sorrendek között $k_1! \cdot k_2! \cdot \ldots \cdot k_m!$ -szor fordulnak elő a különböző sorrendek. Így ekkor a lehetséges sorrendek száma: $(k_1 + k_2 + \ldots + k_m)!/(k_1! \cdot k_2! \cdot \ldots \cdot k_m!)$.

18.

Variáció

Példa

Az egyetemen 10 tárgyunk van, ezek közül 3-at szeretnénk hétfőre tenni. Hányféleképpen tehetjük meg ezt?

Megoldás

Hétfőn az első óránk 10-féle lehet. A második 9-féle, a harmadik 8-féle lehet.

Így összesen $10 \cdot 9 \cdot 8$ -féleképpen tehetjük meg.

Tétel

Adott egy n elemű $\mathcal A$ halmaz. Ekkor k különböző elemet $V_n^k = n \cdot (n-1) \cdot \ldots \cdot (n-k+1) = n!/(n-k)!$ -féleképpen választhatunk ki, ha számít a sorrend. Egy ilyen választást az $\mathcal A$ halmaz k-ad osztályú variációjának nevezzük.

Bizonyítás

Az \mathcal{A} halmazból először n-féleképpen választhatunk, második esetben $(n-1), \ldots, k$ -adik esetben n-k+1-féleképpen választhatunk.

Ismétléses variáció

Példa

A 0, 1, 2 számjegyekből hány legfeljebb kétjegyű szám képezhető? Megoldás

Az első helyiértékre 3-féleképpen írhatunk számjegyet:

_0 _1 _2

A második helyiértékre szintén 3-féleképpen írhatunk számjegyet:

Összesen:

$$3.3 = 9$$

Ismétléses variáció

Tétel

Egy n elemű \mathcal{A} halmaz elemeiből $^{i}V_{n}^{k}=n^{k}$ darab k hosszú sorozat készíthető (ezek az \mathcal{A} halmaz k-ad osztályú ismétléses variációi).

Bizonyítás

A sorozat első elemét n-féleképpen választhatjuk, a második elemét n-féleképpen választhatjuk, . . .

Példa

Egy totószelvényt (13 + 1 helyre 1, 2 vagy X kerülhet)

 $3^{14} = 4782969$ -féleképpen lehet kitölteni.

Mennyi egy n elemű halmaz összes részhalmazainak száma? Legyen $\mathcal{A} = \{a_1, a_2, \dots, a_n\}$. Ekkor minden részhalmaz megfelel egy n hosszú 0-1 sorozatnak: ha a sorozat i-edik eleme 1, akkor a_i benne van a részhalmazban.

 $\varnothing \leftrightarrow (0,0,\ldots,0), \{a_1,a_3\} \leftrightarrow (1,0,1,0,\ldots,0), \ldots, \mathcal{A} \leftrightarrow (1,1,\ldots,1)$ Hány n hosszú 0-1 sorozat van: 2^n .