Ch. 7 – Confidence Intervals

Standard Normal Probability

If Z is a standard normal random variable, find a constant c such that $P(-c \le Z \le c) = .95$.

Solution: We have

$$.95 = P(-c \le Z \le c) = 1 - 2\Phi(-c)$$

Solving for c gives

$$c = -\Phi^{-1}(.025) = 1.96$$

Problem

Suppose a machine drills holes whose diameters are normally distributed with mean $\mu=3.0$ mm and standard deviation $\sigma=0.4$ mm. If a random sample of 16 holes are measured, find an interval [a,b] centered on 3.0 such that the sample mean \overline{X} diameter will be in the interval [a,b] with probability .95.

The sample mean \overline{X} is normal with mean $\mu=3.0$ and standard deviation $\sigma_{\overline{X}}=\sigma/\sqrt{16}=0.1$. So $(\overline{X}-3.0)/0.1$ is a standard normal random variable. By the previous slide,

$$.95 = P(-1.96 \le \frac{\overline{X} - 3.0}{0.1} \le 1.96)$$

Rearranging,

$$.95 = P(2.804 \le \overline{X} \le 3.196)$$

Problem – Other Way Around

Suppose a machine drills holes whose diameters are normally distributed with unknown mean μ and known standard deviation $\sigma=0.4$ mm. Given a random sample of 16 holes, find an interval [A,B] depending on the sample mean \overline{X} such that μ is in the interval [A,B] with probability .95.

 \overline{X} is normal with mean μ and standard deviation $\sigma/\sqrt{16}=0.1$, so $\overline{X}_{0.1}^{\mu}$ is a standard normal random variable. Therefore

$$.95 = P\left(-1.96 \le \frac{\overline{X} - \mu}{0.1} \le 1.96\right)$$
$$= P(\overline{X} - .196 \le \mu \le \overline{X} + .196)$$

So we may take $[A, B] = [\overline{X} - .196, \overline{X} + .196]$. For example, if $\overline{X} = 3.05$, then [A, B] = [2.854, 3.246].

Confidence Intervals

- Suppose we are given a random sample X_1, \ldots, X_n from a distribution with an unknown parameter θ .
- A 95% confidence interval for θ is an interval [A, B] based on the sample, such that $P(A \le \theta \le B) = .95$.
- In general, a $100(1-\alpha)\%$ confidence interval for θ is an interval [A,B] such that $P(A \le \theta \le B) = 1-\alpha$.
- We are usually interested in constructing **equal-tailed** confidence intervals, where $P(\theta < A) = P(\theta > B) = \alpha/2$.

Confidence Interval for Mean of Normal Distribution

If a random sample of size n is taken from a normal distribution with unknown mean μ and known standard deviation σ , then an equal-tailed $100(1-\alpha)\%$ confidence interval for μ is given by

$$\overline{X}\pm\frac{z_{\alpha/2}\cdot\sigma}{\sqrt{n}}$$

where $z_{\alpha/2}$ is a **critical value** given by

$$z_{\alpha/2} = -\Phi^{-1}(\alpha/2)$$

Proof: The sample mean \overline{X} is normal with mean μ and standard deviation σ/\sqrt{n} , so $\frac{\overline{X}-\mu}{\sigma/\sqrt{n}}$ is standard normal, hence

$$\begin{split} 1 - \alpha &= P\left(-z_{\alpha/2} \leq \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \leq z_{\alpha/2}\right) \\ &= P\left(\overline{X} - \frac{z_{\alpha/2} \cdot \sigma}{\sqrt{n}} \leq \mu \leq \overline{X} + \frac{z_{\alpha/2} \cdot \sigma}{\sqrt{n}}\right) \end{split}$$

A process produces alginate beads with diameters (in mm) normally distributed with unknown mean μ and standard deviation $\sigma=.7.$ A random sample of 9 beads have the following diameters:

$$3.9, 5.1, 5.2, 5.7, 5.8, 6.1, 6.2, 6.3, 6.5$$

Find a 99% confidence interval for the mean diameter μ .

Here $\alpha = 1 - .99 = .01$, so the relevant critical value is

$$z_{\alpha/2} = z_{.005} = -\Phi^{-1}(.005) = 2.57$$

The sample mean is $\overline{X} = 5.64$, so the confidence interval is given by

$$\overline{X} \pm \frac{z_{\alpha/2} \cdot \sigma}{\sqrt{n}} = 5.64 \pm \frac{2.57 \cdot 0.7}{\sqrt{9}} = 5.64 \pm 0.60$$

Determining Necessary Sample Size

In the previous example, a random sample of 9 beads was used to estimate the mean diameter μ , with a margin of error of 0.60, at a 99% confidence level. What sample size would be required for a margin of error of no more than 0.10, at the 99% confidence level?

We were given that the standard deviation of the bead diameters is $\sigma=.7$. Setting the margin of error $\frac{z_{\alpha/2} \cdot \sigma}{\sqrt{n}}$ equal to 0.10 gives an equation

$$\frac{2.57 \cdot 0.7}{\sqrt{n}} = 0.10$$

Solving for *n* gives

$$n = \left(\frac{2.57 \cdot 0.7}{0.10}\right)^2 = 323.64$$

Rounding up to an integer, a sample size of at least n = 324 would be required.

Confidence Intervals

Recall the confidence interval for the mean μ of a normal population:

$$\overline{X}\pm\frac{z_{\alpha/2}\cdot\sigma}{\sqrt{n}}$$

The margin of error may be decreased in any of the following ways:

- Decrease the confidence level (e.g., from 99% to 90%).
- ullet Decrease the standard deviation σ of the population.
- Increase the sample size n.

Caution: Confidence intervals are used to estimate parameters, not to predict future observations:

- If [4.9, 5.1] is a 95% confidence interval for the mean diameter μ , we can be 95% confident that μ is between 4.9 and 5.1.
- It does not mean that 95% of beads will have diameter between 4.9 and 5.1.

Large-sample Confidence Interval for Mean

If X_1,\ldots,X_n are a random sample from a distribution with unknown mean μ and unknown variance σ^2 , and if n is sufficiently large, then an approximate $100(1-\alpha)\%$ confidence interval for μ is given by

$$\overline{X} \pm \frac{z_{\alpha/2} \cdot S}{\sqrt{n}}$$

- This is based on the fact that if *n* is large then $S \approx \sigma$.
- Here S is the sample standard deviation

$$S = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2}$$

• Rule of thumb: The large-sample confidence interval for μ may be used if n > 40.

Suppose that a random sample of 600 light bulbs of a certain type had a mean lifetime $\overline{X}=842$ hours, with sample standard deviation S=799. Find the large-sample approximate 95% confidence interval for the mean lifetime μ .

$$\overline{X} \pm \frac{z_{\alpha/2} \cdot S}{\sqrt{n}} = 842 \pm \frac{1.96 \cdot 799}{\sqrt{600}}$$

$$= 842 \pm 63.9$$

$$= [778.1, 905.9]$$

Small-Sample Confidence Interval for Mean of Normal

Suppose we have a random sample X_1,\ldots,X_n from a normal distribution, where the mean μ and variance σ^2 are both unknown. We have seen that if n is large, then the pivotal statistic $T=\frac{\overline{X}-\mu}{S/\sqrt{n}}$ is approximately a standard normal random variable. However, if n is small then T instead has a so-called **t distribution with** $\nu=n-1$ degrees of freedom.

Confidence Interval for Mean of Normal

Suppose we have a random sample X_1, \ldots, X_n from a normal distribution, where the mean μ and variance σ^2 are both unknown.

Previously, we have used the fact that n is large, then the statistic $\frac{\overline{X}-\mu}{S/\sqrt{n}}$ is approximately equal to $\frac{\overline{X}-\mu}{\sigma/\sqrt{n}}$, which is a standard normal random variable. However, if n is small then this is not a good approximation. Instead, T has a so-called **t distribution**.

Given a random sample X_1, \ldots, X_n from a normal distribution with unknown mean and variance, A $100(1-\alpha)\%$ confidence interval for the mean μ is

$$\overline{X} \pm \frac{t_{\alpha/2,\nu} \cdot S}{\sqrt{n}}$$

where $t_{\alpha/2,\nu}$ is a critical value from a **t distribution** with $\nu=n-1$ degrees of freedom.

PDF of t Distribution vs. Standard Normal

As $\nu \to \infty$, the t distribution approaches a standard normal.

A process produces alginate beads with diameters (in mm) normally distributed with unknown mean μ and unknown standard deviation σ . A random sample of 9 beads have the following diameters:

$$3.9, 5.1, 5.2, 5.7, 5.8, 6.1, 6.2, 6.3, 6.5$$

Find a 99% confidence interval for the mean diameter μ .

Here $\alpha = 1 - .99 = .01$, so the relevant critical value is

$$t_{\alpha/2,\nu} = t_{.005,8} = 3.355$$

The sample mean is $\overline{X}=5.64$ and the sample standard deviation is S=.809, so the confidence interval is given by

$$\overline{X} \pm \frac{t_{\alpha/2} \cdot S}{\sqrt{n}} = 5.64 \pm \frac{3.355 \cdot 0.809}{\sqrt{9}} = 5.64 \pm 0.90$$

Prediction Interval for a Normal Population

Given a random sample X_1, \ldots, X_n from a normal distribution, suppose we want to construct an interval [A, B] which we can be 95% confident will contain a future observation X_{n+1} . Such an interval is called a **prediction interval**.

The statistic $T=rac{\overline{X}-X_{n+1}}{S\sqrt{1+rac{1}{n}}}$ has a t distribution with $\nu=n-1$ degrees of freedom.

Given a random sample X_1, \ldots, X_n from a normal distribution, a $100(1-\alpha)\%$ prediction interval for an independent observation X_{n+1} is

$$\overline{X} \pm t_{\alpha/2,n-1} \cdot S\sqrt{1+rac{1}{n}}$$

An article reports the following data on the breakdown voltage of electrically stressed circuits, assumed to be normally distributed:

$$1470, 1510, 1690, 1740, 1900, 2000, 2030, 2100, 2200, \\ 2290, 2380, 2390, 2480, 2500, 2580, 2190, 2700$$

Find a 95% confidence interval for the mean μ . Then find a 95% prediction interval for a future observation.

We found $\overline{X}=2126.5$ and $S^2=137324.3$. The critical value is $t_{\alpha/2,\nu}=t_{.025,16}=2.120$, giving the confidence interval for μ :

$$\overline{X} \pm \frac{t_{\alpha/2,\nu} \cdot S}{\sqrt{n}} = 2126.5 \pm 190.5$$

Likewise we get the prediction interval:

$$\overline{X} \pm t_{\alpha/2,\nu} \cdot S\sqrt{1 + \frac{1}{n}} = 2126.5 \pm 808.4$$

Confidence Interval for Variance of Normal

Suppose we want to find a confidence interval for the variance σ^2 of a normal distribution based on a random sample X_1, \ldots, X_n .

The statistic $(n-1)S^2/\sigma^2$ has a so-called χ^2 distribution with $\nu=n-1$ degrees of freedom.

Given a random sample X_1, \ldots, X_n from a normal distribution with unknown mean μ and variance σ^2 , A $100(1-\alpha)\%$ confidence interval for σ^2 is

$$\left[\frac{(n-1)S^2}{\chi^2_{\alpha/2,n-1}}, \frac{(n-1)S^2}{\chi^2_{1-\alpha/2,n-1}}\right]$$

where $\chi^2_{\alpha/2,n-1}$ and $\chi^2_{1-\alpha/2,n-1}$ are critical values from a χ^2 distribution with $\nu=n-1$ degrees of freedom.

Chi-squared distribution

Recall the breakdown voltage data, assumed to be normal:

1470, 1510, 1690, 1740, 1900, 2000, 2030, 2100, 2200, 2290, 2380, 2390, 2480, 2500, 2580, 2190, 2700

Find a 95% confidence interval for the standard deviation σ .

The observed sample mean and sample variance are $\overline{X}=2126.5$ and $S^2=137324.3$. The critical values are $\chi^2_{.025,16}=28.845$ and $\chi^2_{.975,16}=6.908$, which gives a 95% confidence interval of

$$\left[\frac{(n-1)S^2}{\chi^2_{\alpha/2,n-1}}, \frac{(n-1)S^2}{\chi^2_{1-\alpha/2,n-1}}\right] = [76172.3, 318064.4]$$

for σ^2 . The corresponding confidence interval for σ is

$$[\sqrt{76172.3}, \sqrt{318064.4}] = [276.0, 564.0]$$

Estimating a Proportion

Suppose we have a sequence of n Bernoulli trials, where the probability p of success is unknown. If we observe X successes, we know that the maximum likelihood estimator of p is the sample proportion $\hat{p} = X/n$.

How do we construct a confidence interval for p based on \hat{p} ?

Suppose X is a binomial random variable counting the number of successes in n trials where each trial has probability p of success. If n is sufficiently large an approximate $100(1-\alpha)\%$ confidence interval is given by

$$\hat{
ho}\pm z_{lpha/2}\sqrt{rac{\hat{
ho}(1-\hat{
ho})}{n}}$$

where $\hat{p} = X/n$ is the sample proportion, and $z_{\alpha/2}$ is a critical value from the standard normal distribution.

Rule of thumb: This may be used if the number of successes X and the number of failures n-X are both at least 10.

A quality control team for a manufacturer tests 200 randomly selected devices, out of which 15 are defective. Assume that defective devices occur independently of one another. Find an approximate 95% confidence interval for the proportion defective.

Here the sample proportion is $\hat{p}=15/200=.075$, and the critical value is $z_{.025}=1.96$, so the approximate 95% confidence interval is

$$\hat{\rho} \pm z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} = .075 \pm 1.96 \sqrt{\frac{.075(1-.075)}{200}}$$
$$= .075 \pm .037$$

Necessary Sample Size for Estimating Proportion

In the previous example, a 95% confidence interval for the proportion was .075 \pm .037. Estimate the required sample size to achieve a margin of error of .01.

Setting the margin of error equal to .01 gives an equation

$$.01 = z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

Solving for *n* gives

$$n = \frac{z_{\alpha/2}^2 \hat{p}(1-\hat{p})}{.01^2}$$

Unfortunately, this depends on \hat{p} , which is unknown until *after* the new sample is taken. However, we can estimate the required n by using our previous sample proportion $\hat{p} = .075$:

$$n \approx \frac{1.96^2(.075)(1 - .075)}{01^2} = 2665.11 \approx 2666$$

Summary

Confidence interval for mean μ of normal, σ known	$\overline{X} \pm \frac{z_{\alpha/2} \cdot \sigma}{\sqrt{n}}$
Large-sample approximate confidence interval for mean μ	$\overline{X} \pm \frac{z_{\alpha/2} \cdot S}{\sqrt{n}}$
Confidence interval for mean μ of normal, σ unknown	$\overline{X} \pm rac{t_{lpha/2,n-1} \cdot S}{\sqrt{n}}$
Prediction interval for normal observation	$\overline{X} \pm t_{\alpha/2,n-1} \cdot S\sqrt{1+\frac{1}{n}}$
	ı , , , , , , , , , , , , , , , , , , ,
Confidence interval for variance σ^2 of normal	$\left[\frac{(n-1)S^2}{\chi^2_{\alpha/2,n-1}}, \frac{(n-1)S^2}{\chi^2_{1-\alpha/2,n-1}}\right]$