Metody systemowe i decyzyjne

Lista 2.

Dla podanych niżej problemów decyzyjnych (zad.1 – zad.5) należy sformułować zadania optymalizacji, tj. (zadania są uogólnieniem zadań z listy 1):

- określić postać zmiennych decyzyjnych;
- podać postać funkcji celu;
- określić postać ograniczeń na decyzje.

Zadanie 1.

Firma produkuje wyroby N_1 , ..., N_n , dające odpowiednio zysk Z_1 , ..., Z_n . Do ich produkcji wymagane są zasoby R_1 , ..., R_m . Do wytworzenia jednej sztuki produktu N_j potrzebne jest a_{ij} jednostek zasobu R_i , gdzie i=1, ..., m i j=1, ..., n. Naszym celem jest znalezienie optymalnego planu produkcji, czyli planu określającego, ile jednostek x_j produktu N_j należy wyprodukować, jeżeli w sumie dostępne jest b_i jednostek zasobu R_i aby osiągnąć maksymalny zys z produkcji.

Zadanie 2.

Dysponujemy kontenerem transportowym o pojemności V oraz udźwigu P. Należy załadować do niego towar spośród dostępnych N jego rodzajów. Każdy rodzaj towaru charakteryzuje się pewną objętością v_n , ciężarem p_n oraz zyskiem ze sprzedaży c_n (n = 1, 2, . . . , N). Decydując się załadować do kontenera określoną liczbę sztuk każdego spośród N rodzajów towarów, należy maksymalizować wartość załadunku

Zadanie 3.

Dla N przedsiębiorstw przygotowano N zleceń transportowych. Każde przedsiębiorstwo wstępnie określa koszt związany z wykonaniem każdego ze zleceń. Mając powyższe dane, należy przyporządkować każdemu przedsiębiorstwu dokładnie jedno zlecenie w taki sposób, aby koszt wykonania wszystkich zleceń był najmniejszy.

Zadanie 4.

Danych jest M hurtowni oraz N zakładów produkcyjnych, od których zamawiają one produkty do sprzedaży. Ze względu na odległości i jakości dróg, z każdym przewozem zamówionego towaru z itego zakładu do j-tej hurtowni wiąże się odpowiedni, znany z góry, koszt transportu. Znane są również możliwości produkcyjne zakładów oraz zapotrzebowanie każdej hurtowni. Sformułować zadanie minimalizacji łącznego kosztu transportu.

Zadanie 5.

Mamy za zadanie wytworzyć wymagane ilości M rodzajów produktów dysponując N maszynami. Każdy produkt można wytwarzać na dowolnej maszynie, przy czym ze względu na zróżnicowaną wydajność maszyn do wytworzenia jednostki produktu i-tego maszyna j-ta potrzebuje t_{ij} jednostek czasu, co wiąże się z kosztem w wysokości c_{ij} . Do dyspozycji jest T_j jednostek całkowitego czasu j-tej maszyny. Należy przydzielić takie ilości u_{ij} produktu i-tego na j-tą maszynę, by koszt produkcji był minimalny. Wymagana ilość każdego produktu, to P_i , gdzie $i \in \{1,2,...,M\}$.