Sobre o número de cruzamentos do grafo de Kneser $K(n,2)^*$

A. D. R. de Sousa, J. C. Carneiro, L. Faria¹, M. V. Pabon²

¹Universidade do Estado do Rio de Janeiro (UERJ) Rio de Janeiro, RJ - Brasil ²Université Paris-13, Sorbonne Paris Cité LIPN, CNRS UMR7030, Villataneuse, France

antoniodrsousa@gmail.com, jonas.uerj@yahoo.com.br luerbio@ime.uerj.br, valencia@lipn.univ-paris13.fr

Abstract. The crossing number $\nu(G)$ of a graph G=(V,E) is the minimum number of crossings in a drawing D(G) in the plane of G. Let r be a straight line, called spine, $p\geq 1$, and $S_1\ldots,S_p$ be p distinct half-planes bounded by r. A drawing of G=(V,E) in p-pages has the vertices of V drawn in r and each edge of G is drawn in one of S_1,\ldots,S_p . The crossing number in p-pages $\nu_p(G)$ of G is the minimum number of crossings in a drawing in p-pages of G. We prove that if $n=2q\geq 6$, then $\frac{n^8}{2^{13}}-9\frac{n^7}{2^{13}}-\frac{n^6}{2^{10}}-\frac{n^4}{2^7}-\frac{n^3}{2^9}\leq \nu(K(n,2))\leq \nu_2(K(n,2))\leq \frac{n^8}{2^{10}}-\frac{3n^7}{2^8}+\frac{31n^6}{2^83}+\frac{7n^5}{2^6}-\frac{563n^4}{2^73}+\frac{517n^3}{2^53}-\frac{267n^2}{2^5}+\frac{107n}{2^33}$. Like complete graphs, $\nu_2(K(n,2))=\Theta(|V(K(n,2)|^4)=\nu(K(n,2))$ and the leading term is $\ell(n)$, such that $\frac{1}{2^{13}}\leq \ell(n)\leq \frac{1}{2^{10}}$.

Resumo. O número de cruzamentos $\nu(G)$ de um grafo G=(V,E) é o menor número de cruzamentos em um desenho D(G) no plano de G. Dada uma reta r, chamada espinha, $p\geq 1$, e S_1,\ldots,S_p serem p semiplanos distintos limitados por r. Um desenho de G=(V,E) em p-páginas tem os vértices de V desenhados em r e cada aresta de G é desenhada em um S_1,\ldots,S_p . O número de cruzamentos em p-páginas $\nu_p(G)$ de G é o menor número de cruzamentos em um desenho de G em p páginas. Nós provamos que se $n=2q\geq 6$, então $\frac{n^8}{2^{13}}-9\frac{n^7}{2^{13}}-\frac{n^6}{2^{10}}-\frac{n^4}{2^7}-\frac{n^3}{2^9}\leq \nu(K(n,2))\leq \nu_2(K(n,2))\leq \frac{n^8}{2^{10}}-\frac{3n^7}{2^8}+\frac{31n^6}{2^83}+\frac{7n^5}{2^6}-\frac{563n^4}{2^73}+\frac{517n^3}{2^53}-\frac{267n^2}{2^5}+\frac{107n}{2^33}$. Como os grafos completos $\nu_2(K(n,2))=\Theta(|V(K(n,2)|^4)=\nu(K(n,2))$ cujo termo líder $\ell(n)$ satisfaz $\frac{1}{2^{13}}\leq \ell(n)\leq \frac{1}{2^{10}}$.

1. Introdução

Martin Kneser [Kneser 1955] definiu os grafos de Kneser em 1955. Dados n,k dois inteiros com $0 < k \le n$ o grafo de $\mathit{Kneser}\ K(n,k) = (V,E)$ tem V a coleção dos $\binom{n}{k}$ subconjuntos com k elementos de $\{1,2,3,\ldots,n\}$ e $uv \in E$ se e somente $u \cap v = \emptyset$. O grafo K(n,k) possui inúmeras aplicações na classificação de fenômenos da combinatória, por exemplo K(n,2) é o complemento do grafo de linha de um grafo completo K_n . Algumas propriedades dos grafos de Kneser são que $|E| = \binom{n}{k}\binom{n-k}{k}/2$, K(n,k) é um grafo $\binom{n-k}{k}$ -regular, com número de clique $\omega(K(n,2)) = \lceil \frac{n-1}{2} \rceil$ e partição mínima de cliques $\lambda(K(n,2)) = 2\lceil \frac{n}{2} \rceil - 1$. O problema do número de cruzamentos é difícil [Hlinený 2006] mesmo para cúbicos e é conhecido exatamente para pouquíssimas classes de grafos,

^{*}O presente trabalho foi realizado com apoio da Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Código de Financiamento 001, do CNPq (406036/2021-7 Universal, 308654/2018-8 Produtividade, 152340/2021-1 Iniciação Científica) e da FAPERJ (E26/202.902/2018 CNE).

entre elas K_n os grafos completos [Ábrego et al. 2013] e alguns limites para Q_n os ncubos [Faria et al. 2016]. O único resultado conhecido para os grafos de Kneser é que o grafo de Petersen - K(5,2) tem $\nu(K(5,2)) = \nu_2(K(5,2)) = 2$. Nossa contribuição principal nesse artigo é o número de cruzamentos $\nu(K(n,2)) = \nu_2(K(n,2)) = \Theta(n^8)$ e o desenho que a realiza. O número de cruzamentos do desenho não é ótimo, mesmo para K(6,2). Com o auxílio do computador encontramos um desenho com 49, nossa construção possui 61 e nosso limite superior prevê 83 cruzamentos.

2. O limite inferior

Em 1997, Székely estabeleceu um limite inferior para o número de cruzamentos usando um homeomorfismo do grafo com um multigrafo.

Teorema 1 [Székely 1997]) Se M é um multigrafo com n vértices, m arestas e entre cada par de vértices existem exatamente k arestas, então $\nu(M) \geq \frac{m^3}{64n^2k}$

Teorema 2 Se
$$n \in \mathbb{N}^*$$
, então $\nu(K(n,2)) \geq \frac{n^8}{2^{13}} - 9\frac{n^7}{2^{13}} - \frac{n^6}{2^{10}} - \frac{n^4}{2^7} - \frac{n^3}{2^9}$.

Prova: Seja (C_1,\ldots,C_{λ}) uma partição por cliques para K(n,2). Seja M=(V,E) o multigrafo onde $V = \{C_1, \dots, C_{\lambda}\}$ e $E = \{uv \mid \text{ existe um v\'ertice } x \in u, \text{ e } y \in v \text{ tal que } x \in u, \text{ e } y \in v \text{ tal que } x \in u, \text{ e } y \in v \text{ tal que } x \in u, \text{ e } y \in v \text{ tal que } x \in u, \text{ e } y \in v \text{ tal que } x \in u, \text{ e } y \in v \text{ tal que } x \in u, \text{ e } y \in v \text{ tal que } x \in u, \text{ e } y \in v \text{ tal que } x \in u, \text{ e } y \in v \text{ tal que } x \in u, \text{ e } y \in v \text{ tal que } x \in u, \text{ e } y \in v \text{ tal que } x \in u, \text{ e } x \in u, \text{ e } x \in v \text{ e } x \in v$ $xy \in E(K(n,2)\}. \text{ Assim, } M \text{ terá } \lambda = 2 \lceil \frac{n}{2} \rceil - 1 \text{ vértices, } m = \frac{2q(2q-1)}{2} q(q-2) \text{ arestas e entre cada par de vértices existirão } k = \lceil \frac{n-1}{2} \rceil (\lceil \frac{n-1}{2} \rceil - 2) \text{ arestas. Do Teorema 1 temos: } \nu(K(n,2)) \geq \frac{1}{64} \cdot \frac{\left(\frac{2\lceil \frac{n}{2}\rceil(2\lceil \frac{n}{2}\rceil - 1)}{2} \lceil \frac{n-1}{2}\rceil(\lceil \frac{n-1}{2}\rceil - 2)\right)^3}{(2\lceil \frac{n}{2}\rceil - 1)^2 \cdot \lceil \frac{n-1}{2}\rceil(\lceil \frac{n-1}{2}\rceil - 2)} \geq \frac{n^8}{2^{13}} - 9\frac{n^7}{2^{13}} - \frac{n^6}{2^{10}} + \frac{n^4}{2^7} - \frac{n^3}{2^9}. \quad \Box$

$$\nu(K(n,2)) \ge \frac{1}{64} \cdot \frac{\left(\frac{2\lceil \frac{n}{2}\rceil(2\lceil \frac{n}{2}\rceil - 1)}{2}\lceil \frac{n-1}{2}\rceil(\lceil \frac{n-1}{2}\rceil - 2)\right)^3}{(2\lceil \frac{n}{2}\rceil - 1)^2 \cdot \lceil \frac{n-1}{2}\rceil(\lceil \frac{n-1}{2}\rceil - 2)} \ge \frac{n^8}{2^{13}} - 9\frac{n^7}{2^{13}} - \frac{n^6}{2^{10}} + \frac{n^4}{2^7} - \frac{n^3}{2^9}. \quad \Box$$

 ${\bf Corolário~3}~~\nu(K(n,2)) = \Omega(|V(K(n,2)|^4)~e~o~termo~l\'(der~para~o~limite~inferior~\'e~2^{-13}.$

Figura 1. Desenho ótimo de K_5 em 2-páginas em (a) e (b). Desenho ótimo de K_5 em (c) obtido a partir do desenho em 2-páginas de (a) e (b). Desenho em 2-páginas de K(6,2) em (d) obtido a partir de (c) pelo algoritmo com 61 cruzamentos.

3. O limite superior

de Klerk, E., D. V. Pasechnik e G. Salazar [de Klerk et al. 2013] apresentaram a técnica do *slope* que realiza simultaneamente o número de cruzamentos e o número de cruzamentos em 2-páginas exatos do grafo completo K_n . Como um exemplo para o leitor mostramos um desenho ótimo de K_5 na Figura 1(a-c). Usando a técnica do slope, Ábrego e outros estabeleceram o Teorema 4.

Teorema 4 [Ábrego et al. 2013])
$$\nu(K_n) = \nu_2(K_n) = \frac{1}{4} \left| \frac{n}{2} \right| \left| \frac{n-1}{2} \right| \left| \frac{n-2}{2} \right| \left| \frac{n-3}{2} \right|.$$

Claude Berge [Berge 1973] projetou um algoritmo que dado um inteiro n permite definir uma partição em cliques $C_1, C_2, \ldots, C_{2\lceil \frac{n}{2} \rceil - 1}$ e um ciclo Hamiltoniano, que usa a ordem das cliques, em um grafo de Kneser $K(n,2), n \geq 6$. Nosso desenho $D(K(n,2)), n = 2q \geq 6$ é construído com o algoritmo.

- 1. Tome um desenho $D(K_{2\lceil\frac{n}{2}\rceil-1})$ em 2-páginas de $K_{2\lceil\frac{n}{2}\rceil-1}$ do algoritmo de [de Klerk et al. 2013].
- 2. Substitua cada vértice de $K_{2\lceil \frac{n}{2} \rceil 1}$ por $q = \left\lceil \frac{n-1}{2} \right\rceil$ vértices correspondentes a clique $C_i, i \in \left\{1, 2, \dots, 2\left\lceil \frac{n}{2} \right\rceil 1\right\}$ com a ordem do ciclo Hamiltoniano do algoritmo de [Berge 1973].
- 3. Ligue as arestas entre os vértices de duas cliques de acordo com a posição geométrica das arestas de $D(K_{2\lceil \frac{n}{2} \rceil 1})$.
- 4. Coloque o desenho em 1-página de $K_{\lceil \frac{n-1}{2} \rceil}$ de [de Klerk et al. 2013] para cada clique C_i no semiplano com o menor número de arestas que sai do vértice C_i de $D(K_{2\lceil \frac{n}{2} \rceil 1})$.

Vamos dividir os cruzamentos das arestas de D(K(n,2)) em 5 parcelas $cr\left(K(n,2)\right) = cr_1(n) + cr_2(n) + cr_3(n) + cr_4(n) + cr_5(n)$. Cruzamentos herdados do $K_{2\lceil\frac{n}{2}\rceil-1}$ - $(cr_1(n))$; Cruzamentos internos da clique C_i - $(cr_2(n))$; Cruzamentos entre as arestas internas de um C_i com as outras arestas - $(cr_3(n))$; Cruzamentos entre as arestas que ligam 2 cliques C_i e C_j , $i \neq j$ - $(cr_4(n))$; Cruzamentos entre as arestas que ligam a clique C_i a C_j com as arestas que ligam C_i a uma clique C_k $i \neq j, i \neq k, k \neq j$ - $(cr_5(n))$. [de Klerk et al. 2013] estabeleceram que cada conjunto de 4 vértices de K_n , $n \geq 4$ produz exatamente 1 cruzamento no desenho de K_n em 1-página (Figura 2).

Figura 2. $\binom{n}{4}$ cruzamentos nos desenhos de 1-página de K_2 , K_3 , K_4 e K_5 e $\frac{(n-2)}{6}(n-1)(n)$ cruzamentos com retas verticais.

Teorema 5 [de Klerk et al. 2013]) $\nu_1(K_n) = 0$, se $n \le 3$ e $\nu_1(K_n) = \binom{n}{4}$, se $n \ge 4$.

Teorema 6
$$cr_1(n) = (q(q-2))^2 \nu_2(K_{n-1}) = (q(q-2))^2 \frac{1}{4} \lfloor \frac{n-1}{2} \rfloor \lfloor \frac{n-2}{2} \rfloor \lfloor \frac{n-3}{2} \rfloor \lfloor \frac{n-4}{2} \rfloor = \frac{q^2(q-1)^2(q-2)^4}{4}$$
, onde $n = 2q \ge 6, q \in \mathbb{N}$.

Prova: O valor de $cr_1(n)$ será o produto do número de cruzamentos de $D(K_{n-1})$ vezes o quadrado do número de arestas q(q-2) que substitui 1 aresta de K_{n-1} . Que totalizam $cr_1(n) = (q(q-2))^2 \nu_2(K_{n-1}) = (q(q-2))^2 \frac{1}{4} \lfloor \frac{n-1}{2} \rfloor \lfloor \frac{n-2}{2} \rfloor \lfloor \frac{n-3}{2} \rfloor \lfloor \frac{n-4}{2} \rfloor.$

Teorema 7
$$cr_2(n) = (n)\binom{q}{4} = \frac{q(q-1)(q-2)(q-3)(2q+1)}{24}$$
, onde $n = 2q+1 \geq 7, q \in \mathbb{N}$.
Teorema 8 $cr_2(n) = (n-1)\binom{q}{4} = \frac{q(q-1)(q-2)(q-3)(2q-1)}{24}$, onde $n = 2q \geq 6, q \in \mathbb{N}$.

Teorema 8
$$cr_2(n) = (n-1)\binom{q}{4} = \frac{q(q-1)(q-2)(q-3)(2q-1)}{24}$$
, onde $n=2q \geq 6, q \in \mathbb{N}$.

Prova: Como cada clique C_i corresponde a um K_q desenhado em 1-página, estes cruzamentos serão dados por $cr_2(n) = (n-1)\binom{q}{4}$.

Teorema 9 O desenho $D(K_{2q-1})$ de K_{2q-1} em 2 páginas de [de Klerk et al. 2013] tem

- 1. q vértices com q-1 arestas para cima e q-1 arestas para baixo e
- 2. q-1 vértices com ou (a) q-2 arestas para cima e q arestas para baixo, ou (b) q-2 arestas para baixo e q arestas para cima.

Teorema 10
$$cr_3(n) = \frac{q(q-1)^3(q-2)^2}{3}$$
, onde $n = 2q \ge 6, q \in \mathbb{N}$.

Dado um par de retas paralelas (s^1, s^2) e p pontos a_1, a_2, \ldots, a_p serem p pontos com $a_1 < a_2 < \ldots < a_p$, um monte pelos p pontos de grau s é um conjunto de p curvas tal que existem s curvas cuja única interseção é o vértice $a_i, i \in \{1, \dots, p\}$. Dados p, r, s 3 inteiros positivos com $p \ge 2$. Dados a_1, a_p dois pontos em uma espinha. Dadas r pares $(s_1^1, s_1^2), \dots (s_r^1, r_r^2)$, de semiretas paralelas não coincidentes passando, respectivamente por a_1, a_p contidas em um semiplano definido pela espinha. Uma malha(p, r, s)é um conjunto com p pontos a_1, a_2, \ldots, a_p , com $a_1 < a_2 < \ldots < a_p$, mais r pares $(s_1^1, s_1^2), \dots (s_r^1, r_r^2)$, de semiretas paralelas não coincidentes passando, respectivamente por a_1, a_p e s montes para cada (s_i^1, s_i^2) .

Teorema 11
$$cr_4(n) \leq \frac{q(q-1)(2q-1)(q^3-2q^2-7q+16)}{4}$$
, onde $n = 2q \geq 6, q \in \mathbb{N}$.

Teorema 12
$$cr_5(n) = \frac{q(q-1)^3(q-2)^2(2q-3)}{2}$$
, onde $n = 2q \ge 6, q \in \mathbb{N}$.

Teorema 13 Se
$$n = 2q \ge 6, q \in \mathbb{N}$$
, então $\nu_2(K(n,2)) \le \frac{6q^8 - 36q^7 + 62q^6 + 84q^5 - 563q^4 + 1034q^3 - 801q^2 + 214q}{24}$, onde $n = 2q \ge 6, q \in \mathbb{N}$.

Referências

Ábrego, B. M., Aichholzer, O., Fernández-Merchant, S., Ramos, P., and Salazar, G. (2013). The 2-page crossing number of K_n . Discret. Comput. Geom., 49(4):747–777.

Berge, C. (1973). Graphs and hypergraphs. North-Holland Pub. Co.

de Klerk, E., Pasechnik, D. V., and Salazar, G. (2013). Improved lower bounds on book crossing numbers of complete graphs. SIAM J. Discret. Math., 27(2):619–633.

Faria, L., de Figueiredo, C. M. H., Richter, R. B., and Vrt'o, I. (2016). The same upper bound for both: The 2-page and the rectilinear crossing numbers of the n-cube. J. *Graph Theory*, 83(1):19–33.

Hlinený, P. (2006). Crossing number is hard for cubic graphs. J. Comb. Theory, Ser. B, 96(4):455–471.

Kneser, M. (1955). Aufgabe 360, Jber. Deutsch. Math. Verein, 58:27.

Székely, L. A. (1997). Crossing numbers and hard Erdős problems in discrete geometry. Combinatorics, Probability and Computing, 6(3):353–358.