Collisions of Primordial Black Holes and Neutron Stars

Introduction

Flat Star Model

Numerical Approach

Collisions of Primordial Black Holes and Neutron Stars

Brady Metherall 100516905

Monday November 28, 2016

Introduction

Collisions of Primordial Black Holes and Neutron Stars

> Brady Metheral

Introduction

Flat Star

Numerica Approach A primordial black hole is a black hole that was hypothetically created in the early universe.

Flat Star Model

Collisions of Primordial Black Holes and Neutron Stars

> Brady Metheral

Introductio

Flat Star Model

Solving for φ Solving for η Plotting η Solving for E

Numeric Approacl

- Neutron stars are flat and infinite
- Primordial black holes are point masses
- Neutron stars are incompressible fluids
- Gravitational interactions are Newtonian
- Constant velocity

Eigenfunctions of Laplacian

Collisions of Primordial Black Holes and Neutron Stars

> Brady Metheral

ntroduction

Flat Star

Solving for φ Solving for η Plotting η Solving for E

Numerical Approach Assume a product solution for the velocity potential and solve the Laplacian.

$$\varphi = R(r)Z(z)\Theta(\theta)T(t)$$

$$\nabla^{2}\varphi = 0$$

$$\implies \varphi \propto \begin{cases} J_{\mu}(kr) \\ Y_{\mu}(kr) \end{cases} \begin{cases} e^{-kz} \\ e^{kz} \end{cases} \begin{cases} \sin(\mu\theta) \\ \cos(\mu\theta) \end{cases} T(t)$$

$$\implies \varphi \propto J_{0}(kr)e^{kz}T(t)$$

T(t) comes from boundary conditions.

Solving for φ

Collisions of Primordial Black Holes and Neutron Stars

> Brady Metheral

Introduction

Flat Star

Solving for φ Solving for η Plotting η

$$\begin{split} \Phi &= \frac{-Gm}{\sqrt{r^2 + (z + vt)^2}} \\ & \left(\frac{\partial^2 \varphi}{\partial t^2} + g \frac{\partial \varphi}{\partial z}\right) \bigg|_{z=0} = -\frac{\partial \Phi}{\partial t}\bigg|_{z=0} \\ \varphi &= \frac{Gmv}{g} \int_0^\infty \frac{J_0(kr)e^{kz}}{1 + kv^2/g} \left(-\operatorname{sgn}(t)e^{-kv|t|} + 2H(t) \operatorname{cos}(\omega_k t)\right) dk \\ & \qquad \qquad \text{with } \omega_k^2 = gk \end{split}$$

Deformation of Surface

Collisions of Primordial Black Holes and Neutron Stars

> Brady Metheral

Introduction

Flat Star

Solving for φ Solving for η Plotting η

$$\begin{split} \left. \frac{\partial \varphi}{\partial z} \right|_{z=0} &= \frac{\partial \eta}{\partial t} \\ \eta &= \frac{Gm}{g} \int_0^\infty \frac{J_0(kr)}{1 + kv^2/g} \left(e^{-kv|t|} + 2H(t)v \sqrt{\frac{k}{g}} \sin(\omega_k t) \right) dk \end{split}$$

Collisions of Primordial Black Holes and Neutron Stars

Brady Methera

Introductio

Flat Star Model Solving for φ Solving for η Plotting η

Figure : t = -1 s.

Collisions of Primordial Black Holes and Neutron Stars

Brady Metheral

Introductio

Flat Star Model Solving for φ Solving for η Plotting η

Figure : t = 0 s.

Collisions of Primordial Black Holes and Neutron Stars

> Brady Metheral

Introductio

Flat Star Model Solving for φ Solving for η Plotting η

Figure : t = 1 s.

Collisions of Primordial Black Holes and Neutron Stars

> Brady Metheral

Introductio

Flat Star

Solving for φ Solving for η Plotting η

Solving for E

Figure : t=2 s.

Collisions of Primordial Black Holes and Neutron Stars

> Brady Metheral

Introductio

Flat Star Model

Solving for φ Solving for η Plotting η

Figure : t = 3 s.

Collisions of Primordial Black Holes and Neutron Stars

> Brady Metheral

Introductio

Flat Star

Solving for φ Solving for η Plotting η

Figure : t=4 s.

Energy Transferred

Collisions of Primordial Black Holes and Neutron Stars

> Brady Metherall

Introduction

Flat Star

Solving for φ Solving for η Plotting η Solving for E

$$\begin{split} E &= \lim_{t \to \infty} \frac{1}{2} \rho \int_{-\infty}^{0} \int_{0}^{\infty} |\nabla \varphi|^{2} \, r dr dz \int_{0}^{2\pi} d\theta \\ &+ \rho g \int_{0}^{\infty} \int_{0}^{\eta} z dz \, r dr \int_{0}^{2\pi} d\theta \\ &= 4\pi \rho \frac{G^{2} m^{2}}{g} \end{split}$$

Collisions of Primordial Black Holes and Neutron Stars

> Brady Metherall

ntroduction

Flat Star

Numerical

Approach Smooth Particle Hydrodynamics