CS 726- Advanced ML

Assingment-1 Report

200100105 – Niteesh Singh

20D100007—Rushi Chavda

We will be using Earth Movers Distance(emd) for all the further analysis of the performance of the model at various settings and conditions. We will consider the best value of "test_emd" of the three runs as the final metric value.

We used learnable time embedding by passing the time step(t) of x_t to a small 2-layer NN which generates a $t_w = 16$ -dimension output, which We then concatenated with respective x_t to get an n_d im $+ t_w = 19$ -dimension input for each training example (x_t^i) after time embedding.

Fig. time embedding model used

1. Changing the Number of Training Steps:

Current model setting

• Model structure is:

```
o w = 256
```

```
self.model = torch.nn.Sequential(
  torch.nn.Linear(t_w+3, w),
  torch.nn.Tanh(),
  torch.nn.Linear(w, 2*w),
  torch.nn.Linear(2*w, w),
  torch.nn.Linear(2*w, w),
  torch.nn.Linear(w, 3)
)
```

• Hyperparameters:

lbeta: 1.0e-05
 n_dim: 3
 n_steps: 50
 ubeta: 0.0128
 batch_size: 1024
 learning_rate: 0.001

Number of Epochs = 500 (n_epochs=500)

Results-

test_emd: 65.17553504955823

train_emd: 70.40486521231745

test_nll: 2.6779849529266357

train_nll: 2.670085906982422

Number of Epochs = 1000 (n_epochs=1000)

Results

test emd: 66.36065731543384

train_emd: 66.31490655981473

test nll: 2.6448776721954346

train_nll: 2.6374194622039795

Number of Epochs = 2000 (n_epochs=2000)

Results

test_emd: 63.07423301135008

train_emd: 62.0009674093369

test_nll: 2.641606092453003

train_nll: 2.63297176361084

Analysis

- As the number of epochs increases there is very small change in test error, but it has decreased for large value so an indication that trying large value for num_epochs can be beneficial.
- train error decreases as num_epochs are increased it may be due to overfitting.
- So maybe we should some optimal number of epochs between 500-1000 and it would perform better because sample generated for higher num_epochs values are better as per visualisation.
- So, lets choose 600 as optimal value for n_epoch.

2. Model complexity:

Current model setting

• W = 256

• Hyperparameters:

lbeta: 1.0e-05
 n_dim: 3
 n_steps: 50
 ubeta: 0.0128
 batch_size: 1024
 learning_rate: 0.001
 n_epochs: 600

Simple Model, 72K trainable parameters

```
self.model = torch.nn.Sequential(
  torch.nn.Linear(t_w+3, w),
  torch.nn.Tanh(),
  torch.nn.Linear(w, w),
  torch.nn.Tanh(),
  torch.nn.Linear(w, 3)
```

Results

test_emd: 63.30597077579907

train_emd: 64.55693641071107

test_nll: 2.654146671295166

train_nll: 2.6470699310302734

Complex Model, 1.3M trainable parameters

```
self.model = torch.nn.Sequential(
  torch.nn.Linear(t_w+3, w),
  torch.nn.Tanh(),
  torch.nn.Linear(w, 2*w),
  torch.nn.Linear(2*w, 4*w),#
  torch.nn.Tanh(),#
  torch.nn.Linear(4*w, 2*w),#
  torch.nn.Tanh(),#
  torch.nn.Linear(2*w, w),
  torch.nn.Linear(2*w, w),
```

Results

test_emd: 70.31164168610466

train_emd: 62.754993318713986

test_nll: 2.6775283813476562

NOTE: the third intermediate model is same as we trained on previous part of the assingment, and the number of epochs are similar so have not trained it again

Analysis

- As the model gets complex training time increases.
- training error has increased for very complex model.
- It seems that a very simple model works fine for this toy dataset.
- We will choose an intermediate model, the model in which we did number of epoch testing because it seems like a good model with enough parameters and optimal training time and memory requirements.

So, our final model is – (w=256)

```
self.model = torch.nn.Sequential(
  torch.nn.Linear(t_w+3, w),
  torch.nn.Tanh(),
  torch.nn.Linear(w, 2*w),
  torch.nn.Tanh(),
  torch.nn.Linear(2*w, w),
  torch.nn.Tanh(),
  torch.nn.Linear(w, 3)
```

And num_epochs = 600

3. Number of diffusion steps (T):

For 3d_sin_5_5 data

Current model setting

• W = 256

• Hyperparameters:

o lbeta: 1.0e-05

o n dim: 3

o ubeta: 0.0128

o batch size: 1024

learning_rate: 0.001

o n_epochs: 600

o dataset used = 3d_sin_5_5 data

Number of Steps = 10, n_steps = 10

Results

test_emd: 83.30035817586062

train_emd: 81.41897810190828

test_nll: 2.9109654426574707

Number of Steps = 50, n_steps = 50

Results-

test_emd: 65.17553504955823

train_emd: 70.40486521231745

test_nll: 2.6779849529266357

train_nll: 2.670085906982422

Number of Steps = 100, n steps = 100

Results

test_emd: 62.59729977226936

train_emd: 64.6123901338262

test_nll: 2.6689274311065674

train_nll: 2.6577916145324707

Number of Steps = 150, n_steps = 150

Results

test_emd: 64.7138290425177

train_emd: 66.87266873899209

test_nll: 2.6902542114257812

train_nll: 2.6812427043914795

Number of Steps = 200, n_steps = 200

Results

test_emd: 69.04824575353155

train_emd: 69.0003225412479

test_nll: 2.680298089981079

train_nll: 2.670194387435913

for helix_3D data Current model setting

• W = 256

Hyperparameters:

lbeta: 1.0e-05n_dim: 3

ubeta: 0.0128batch_size: 1024learning_rate: 0.001n_epochs: 600

Number of Steps = 10, n_steps = 10

Results

test_emd: 58.99251491490972

train_emd: 48.61157009063477

test_nll: 2.352220058441162

train_nll: 2.346301317214966

Number of Steps = 50, n_steps = 50

Results

test_emd: 51.35311040806201

train_emd: 70.57267437383348

test_nll: 2.3485875129699707

train_nll: 2.3438773155212402

Number of Steps = 100, n_steps = 100

Results

test_emd: 51.60572010533156

train_emd: 50.26444759378028

test_nll: 2.3474135398864746

train_nll: 2.3469741344451904

Number of Steps = 150, n_steps = 150

Results

test_emd: 53.12005686204001

train_emd: 63.921479221190125

test_nll: 2.3685905933380127

Number of Steps = 200, n_steps = 200

Results

test_emd: 46.17424568125869

train_emd: 50.38415121867081

test_nll: 2.3596997261047363

train_nll: 2.357518196105957

2 1 0 -1 -2 2 1 2 -2

Analysis

- Here we have mentioned the best results out of the three evaluation, for all the different case.
- By overlooking at the data we can infer that by increasing the steps (T) we can get better results i.e., smaller value for EMD
- We can observe that after 100 steps the change in EMD is not significance

4. Number of diffusion steps (T):

For 3d_sin_5_5 data

Current model setting

• W = 256

Hyperparameters:

o lbeta: 1.0e-05

o n dim: 3

o n steps: 150

o ubeta: 0.0128

o batch_size: 1024

o learning_rate: 0.001

o n_epochs: 600

"Linear" Noise schedule

Beta values are linearly varying with t

Results

test_emd: 68.95116409595362

train_emd: 71.0804771180983

test_nll: 2.6895651817321777

"Constant" Noise schedule

Beta values are equal to ubeta value for all t.

Results

test_emd: 63.72570935469814

train_emd: 74.0343293062074

test_nll: 2.7506325244903564

train_nll: 2.739440679550171

"Quadratic" Noise schedule

Beta values are following a quadratic function over t and range is [lbeta, ubeta].

Results

test emd: 67.027948243499

train_emd: 70.11542925460446

test nll: 2.677572250366211

train_nll: 2.668335437774658

"warmup10" Noise schedule

Beta values ranges linearly from [lbeta to ubeta] in first 10% of total timesteps and later all values of betas are equal to ubeta. {on graph-linear function followed by const. value function}

Results

test_emd: 71.02178100826868

train_emd: 86.69617083708691

test_nll: 2.724071979522705

train_nll: 2.7135508060455322

"warmup50" Noise schedule

Beta values ranges linearly from [lbeta to ubeta] in first 50% of total timesteps and later all values of betas are equal to ubeta. {on graph- linear function followed by const. value function}

Results

test_emd: 66.07125496063745

train_emd: 76.25061033049296

test_nll: 2.7245938777923584

For helix_3D data

Current model setting

• W = 256

Hyperparameters:

lbeta: 1.0e-05
 n_dim: 3
 n_steps: 150
 ubeta: 0.0128

batch_size: 1024learning_rate: 0.001

o n_epochs: 600

"Linear" Noise schedule

Results

test_emd: 59.00353418889661

train_emd: 74.9186193992157

test_nll: 2.3739233016967773

train_nll: 2.370929002761841

"Constant" Noise schedule

Results

test_emd: 70.05747486392498

train_emd: 64.9508319559166

test_nll: 2.646155595779419

train_nll: 2.644508123397827

"Quadratic" Noise schedule

Results

test_emd: 59.34619851891867

train_emd: 61.26329202036436

test_nll: 2.3793678283691406

train_nll: 2.3778738975524902

"warmup10" Noise schedule

Results

test_emd: 69.262612540213

train_emd: 64.53478288896034

test_nll: 2.568970203399658

"warmup50" Noise schedule

Results

test_emd: 63.84509899787168

train_emd: 63.27920885475712

test_nll: 2.4459991455078125

train_nll: 2.4439995288848877

Analysis

- In both dataset the linear scheduling seems to work fine.
- Constant noise factor destroys the information very quickly, and seems to not work very well.
- The warmup50 noise scheduling also works fine and in 3d_sin_5_5 data its produces better result.

Final Results/Conclusion

• Our final model is-

```
self.model = torch.nn.Sequential(
  torch.nn.Linear(t_w+3, w),
  torch.nn.Tanh(),
  torch.nn.Linear(w, 2*w),
  torch.nn.Tanh(),
  torch.nn.Linear(2*w, w),
  torch.nn.Linear(w, 3)
)
```

- Optimal number of epochs 600
- Number of Steps(T) = 150
- Optimal Noise Scheduler = Linear and warmup50

--- Thank You ---