Non-Homogeneous Egns

1. Solve y" - 2y' - 3y = 3e2t

Soln: Wt y= Ae^{2t} (Ae^{2t})" - 2 (Ae^{2t})' - 3Ae^{2t} = 3e^{2t} 4Ae^{2t} - 4Ae^{2t} - 3Ae^{2t} = 3e^{2t} A=-1

y=-e2t ← Particular Soln of N-H eqn

y''' - 2y' - 3y' = 0 Y''' - 2y' - 3y' = 0 Y''' - 3y'' - 3y'' = 0 Y''' - 3y'' - 3y'' = 0 Y''' - 3y'' - 3y'' = 0Homogeneous eqn

homogeneous eqn

y= C,e3t + Czet-e2t ← General soln of the N-H eqn

2. Solve y" + 2y' + y = 2e-t

Consider y" + 2y' + y=0 $C(1+1)^{2} = 0 - 2C = -1$ $Y = C_{1}e^{-t} + C_{2}te^{-t}$

This is a double resonance case.

 (At^2e^{-t}) " + 2(At²e^{-t})' + At²e^{-t} = 2e^{-t} $2Ae^{-t} - 4Ate^{-t} + At^2e^{-t} + 4Ate^{-t} - 2At^3e^{-t}$ $1At^2e^{-t} = 2e^{-t}$

Recall that all terms with tor to must go.

 $2Ae^{-t} = 2e^{-t}$ A=1 $y=t^2e^{-t} \leftarrow Particular soln$

y= Cie-+ + Czte-+ +t2e-+

3. Solve y" + 4y = 3 sin (24)

Soln: $Ut \quad Y = A\cos(2t) + B\sin(2t)$ $(A\cos(2t) + B\sin(2t))^n + H(A\cos(2t) + B\sin(2t))$ $= 3\sin(2t)$ $= 4A\cos(2t) - 4B\sin(2t) + HA\cos(2t) + HB\sin(2t)$ $= 3\sin(2t)$ $0 = 3\sin(2t)$ Consider y'' + 4y = 0 $y^{2} + 4 = 0$ $y^{2} = -4$ $y = \pm 5 - 4$ $= \pm 2;$

Complex Resonance

 $\lambda = 0$, u = 2 $y_1 = e^{\lambda t} \cos(ut)$ $y_2 = e^{\lambda t} \sin(ut)$ $= \cos(2t)$ $= \sin(2t)$

Wt y= Aty, + Btyz

(Aty, + Btyz)" + 4(Aty, + Btyz) = 3 sin (2t)

4Btyz = 3 sin(2t)

Sub in the Y, and Yz we found earlier.

2A (cos (zt))" + At (cos (zt))" + 2B (sin (zt)) + Bt (sin (zt))" + 4Bt sin (zt) + 4At cos (zt) = 3sin (zt)

-4A sin(2t) - 4Atcos(2t) + 4Bcos(2t) + (-4Btsin(2t)) + 4Btsin(2t) + 4Atcos(2t) = 3sin(2t)

 $-4A \sin(czt) + 4B \cos(czt) = 3 \sin(czt)$ -4A = 3 - 5 A = -3/4-4B = 6 - 5 B = 6

y= -3t cosc2t) ← Particular soln

Y= C, cosczes + Czsin(zt) - 3tcosczes