Note in the table that as the step size h is halved the error is approximately halved. The error at a given point is therefore roughly proportional to the step size h. We found a similar result with numerical integration in Section 4.6. There we saw that the error for the left or right Riemann Sum Rule is proportional to h = 1/nand that the error for the Trapezoidal Rule is proportional to $h^2 = 1/n^2$. The Parabolic Rule is even better, having an error proportional to $h^4 = 1/n^4$. This raises the question of whether there are better methods for approximating the solution of $y' = f(x, y), y(x_0) = y_0$. In fact, there are a number of methods that are better then Euler's Method, in the sense that the error is proportional to a higher power of h. These methods are conceptually similar to Euler's Method: they are "step methods," that is, they begin with the initial condition and successively approximate the solution at each of a number of steps to the right. One method, the Fourth-Order **Runge-Kutta Method**, has an error that is proportional to $h^4 = 1/n^4$.

Concepts Review

- 1. For the differential equation y' = f(x, y), a plot of line segments whose slopes equal f(x, y) is called a _
- 2. The basis for Euler's Method is that the solution at x_0 will be a good approximation to the solution over the interval $[x_0, x_0 + h]$.
- 3. The recursive formula for the approximation to the solution of a differential equation using Euler's Method is $y_n =$
- 4. If the solution of a differential equation is concave up, then Euler's Method will ____ (underestimate or overestimate) the solution.

Problem Set 6.7

In Problems 1-4, a slope field is given for a differential equation of the form y' = f(x, y). Use the slope field to sketch the solution that satisfies the given initial condition. In each case, find $\lim y(x)$ and approximate y(2).

1.
$$y(0) = 5$$

2. y(0) = 6

3.
$$y(0) = 16$$

4.
$$y(1) = 3$$

In Problems 5 and 6, a slope field is given for a differential equation of the form y' = f(x, y). In both cases, every solution has the

same oblique asymptote (see Section 3.5). Sketch the solution that satisfies the given initial condition, and find the equation of the oblique asymptote.

5.
$$y(0) = 6$$

6.
$$y(0) = 8$$

CAS In Problems 7–10, plot a slope field for each differential equation. Use the method of separation of variables (Section 3.9) or an integrating factor (Section 6.6) to find a particular solution of the differential equation that satisfies the given initial condition, and plot the particular solution.

7.
$$y' = \frac{1}{2}y$$
; $y(0) = \frac{1}{2}$

8.
$$y' = -y$$
; $y(0) = 4$

9.
$$y' = x - y + 2$$
; $y(0) = 4$

10.
$$y' = 2x - y + \frac{3}{2}$$
; $y(0) = 3$

 $\ \Box$ In Problems 11–16, use Euler's Method with h=0.2 to approximate the solution over the indicated interval.

11.
$$y' = 2y$$
, $y(0) = 3$, $[0, 1]$

12.
$$y' = -y$$
, $y(0) = 2$, $[0, 1]$

13.
$$y' = x, y(0) = 0, [0, 1]$$

14.
$$y' = x^2$$
, $y(0) = 0$, [0, 1]

15.
$$y' = xy, y(1) = 1, [1, 2]$$

16.
$$y' = -2xy$$
, $y(1) = 2$, [1, 2]

17. Apply Euler's Method to the equation y' = y, y(0) = 1 with an arbitrary step size h = 1/N where N is a positive integer.

- (a) Derive the relationship $y_n = y_0(1+h)^n$.
- (b) Explain why y_N is an approximation to e.

18. Suppose that the function f(x, y) depends only on x. The differential equation y' = f(x, y) can then be written as

$$y' = f(x), \qquad y(x_0) = 0$$

Explain how to apply Euler's Method to this differential equation if $y_0 = 0$.

- **19.** Consider the differential equation y' = f(x), $y(x_0) = 0$ of Problem 18. For this problem, let $f(x) = \sin x^2$, $x_0 = 0$, and h = 0.1.
- (a) Integrate both sides of the equation from x₀ to x₁ = x₀ + h. To approximate the integral, use a Riemann sum with a single interval, evaluating the integrand at the left end point.
- (b) Integrate both sides from x_0 to $x_2 = x_0 + 2h$. Again, to approximate the integral use a left end point Riemann sum, but with two intervals.
- (c) Continue the process described in parts (a) and (b) until $x_n = 1$. Use a left end point Riemann sum with ten intervals to approximate the integral.
- (d) Describe how this method is related to Euler's Method.
- **20.** Repeat parts (a) through (c) of Problem 19 for the differential equation $y' = \sqrt{x+1}$, y(0) = 0.

21. (Improved Euler Method) Consider the change Δy in the solution between x_0 and x_1 . One approximation is obtained

from Euler's Method:
$$\frac{\Delta y}{\Delta x} = \frac{y(x_1) - y_0}{h} \approx \frac{\hat{y}_1 - y_0}{h} = f(x_0, y_0).$$

(Here we have used \hat{y}_1 to indicate Euler's approximation to the solu-tion at x_1 .) Another approximation is obtained by finding an approximation to the slope of the solution at x_1 :

$$\frac{\Delta y}{\Delta x} = \frac{y(x_1) - y_0}{h} \approx f(x_1, y_1) \approx f(x_1, \hat{y}_1)$$

- (a) Average these two solutions to get a single approximation for $\Delta y/\Delta x$.
- (b) Solve for $y_1 = y(x_1)$ to obtain

$$y_1 = y_0 + \frac{h}{2} [f(x_0, y_0) + f(x_1, \hat{y}_1)]$$

(c) This is the first step in the Improved Euler Method. Additional steps follow the same pattern. Fill in the blanks for the following three-step algorithm that yields the Improved Euler Method:

1. Set
$$x_n =$$

2. Set
$$\hat{y}_n =$$

3. Set
$$y_n =$$

 \Box For Problems 22–27, use the Improved Euler Method with h = 0.2 on the equations in Problems 11–16. Compare your answer with those obtained using Euler's Method.

CAS 28. Apply the Improved Euler Method to the equation y' = y, y(0) = 1, with h = 0.2, 0.1, 0.05, 0.01, 0.005 to approximate the solution on the interval [0, 1]. (Note that the exact solution is $y = e^x$, so y(1) = e.) Compute the error in approximating y(1) (see Example 3 and the subsequent discussion) and fill in the following table. For the Improved Euler Method, is the error proportional to h, h^2 , or some other power of h?