Mathematical Foundations of Computer Science

CS 499, Shanghai Jiaotong University, Dominik Scheder

Group Name: **NOIDEA**

1 Broken Chessboard and Jumping With Coins

1.1 Tiling a Damaged Checkerboard

${\bf Exercise}$	1.1.	$Re ext{-}write$	the	proof	in	your	own	way,	using	simple	English
sentences.											
Proof. Yo	ur pro	oof									
Exercise	1.2.	Another e	exer	cise							
Proof. Yo	ur pro	oof									

2 Exclusion-Inclusion

2.1 Sets

Exercise 2.1.

1. Proof. As is shown in the Venn diagram below, |A| + |B| add the common part $|A \cap B|$ twice. So it should be subtracted once if we want to count $|A \cup B|$.

Figure 1: Venn Diagram

- 2. Solution. $|A \cup B \cup C| = |A| + |B| + |C| |A \cap B| |A \cap C| |B \cap C| + |A \cap B \cap C|$
- 3. Solution. $|A \cup B \cup C \cup D| = |A| + |B| + |C| + |D| |A \cap B| |A \cap C| |A \cap D| |B \cap C| |B \cap D| |C \cap D| + |A \cap B \cap C| + |A \cap B \cap D| + |A \cap C \cap D| + |B \cap C \cap D| |A \cap B \cap C \cap D|$

Exercise 2.2.

Solution.
$$|A_1 \cup \ldots \cup A_n| = \sum_{i=1}^n |A_i| - \sum_{i,j:1 \le i < j \le n} |A_i \cap A_j| + \sum_{i,j,k:1 \le i < j < k \le n} |A_i \cap A_j \cap A_k| - \ldots + (-1)^{n-1} |A_1 \cap \ldots \cap A_n|$$

Exercise 2.3.

Proof. \Box

- 1. testddd
- 2. testddd