

EE 604 Digital Image Processing

Announcement

• More problems posted in assignment#1

Lecture outline

- Image enhancement in spatial domain
 - wrapping up
- Image enhancement in frequency domain
 - Fourier transform of images
 - Frequency domain filtering

Enhancement in spatial domain

Point operations

transformation of a pixel depends <u>only</u> on the intensity of that pixel.

Histogram processing

- transformation depends on global image characteristics
- unaware of location, neighborhood

Spatial filters

- transformation depends on the local neighborhood of a pixel
- smoothing, sharpening, other operations

<u>1</u> 9	<u>1</u> 9	19
<u>1</u>	<u>1</u>	<u>1</u>
9	9	9
<u>l</u>	<u>1</u>	<u>1</u>
9	9	9

averaging mask

<u>1</u> 273	1	4	7	4	1
	4	16	26	16	4
	7	26	41	26	7
	4	16	26	16	4
	1	4	7	4	1

Gaussian (weighted averaging) mask

0	1	0	1	1	1
1	-4	1	1	-8	1
0	1	0	1	1	1
0	-1	0	-1	-1	-1
-1	4	-1	-1	8	-1
0	-1	0	-1	-1	-1

Laplacian mask

-1	-2	-1	-1	0	1
0	0	0	-2	0	2
1	2	1	-1	0	1

Sobel mask

after high-boost filtering

© Gonzalez and Woods, 2nd Ed

Lecture outline

- Image enhancement in spatial domain
 - wrapping up
- Image enhancement in frequency domain
 - Fourier transform of images
 - Frequency domain filtering

Fourier transform

- Decomposes a signal in terms of sinusoids
- DFT pairs

$$F(u) = \frac{1}{M} \sum_{x=0}^{M-1} f(x)e^{\frac{-j2\pi ux}{M}}$$

$$f(x) = \sum_{u=0}^{M-1} F(u)e^{\frac{j2\pi ux}{M}}$$

Fourier transform of an image

$$F(u,v) = \frac{1}{M} \frac{1}{N} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x,y) e^{-j2\pi(\frac{ux}{M} + \frac{vy}{N})}$$

$$f(x,y) = \sum_{u=0}^{M-1} \sum_{v=0}^{N-1} F(u,v) e^{j2\pi(\frac{ux}{M} + \frac{vy}{N})}$$

Frequency domain filters

Gaussian low pass

Gaussian high pass

Laplacian in frequency domain

Homomorphic filtering

