

Princípios Gerais De Oncologia

BIOLOGIA E GENÉTICA DO CANCRO

LEONOR VASCONCELOS DE MATOS MÉDICA INTERNA DE ONCOLOGIA MÉDICA

SERVIÇO DE ONCOLOGIA MÉDICA HOSPITAL SÃO FRANCISCO XAVIER, CENTRO HOSPITALAR LISBOA OCIDENTAL

I. Compreender o processo de carcinogénese;

1. Bases bioquímicas e moleculares do processo de carcinogénese;

2. Compreender o processo de iniciação promoção e progressão;

I. Carcinogéneos; mutações ADN; oncogenes.

3. Compreender a patologia do cancro;

1. Fatores de crescimento e recetores; bases moleculares da terapêutica alvo

4. Compreender a importância do microambiente tumoral;

1. Componentes : angiogénese, estroma, matriz.

5. Compreender o papel da inflamação no cancro.

I. Componentes do infiltrado tumoral: imunidade celular inata e adaptativa.

HETEROGENEIDADE TUMORAL

Exposição Química/Dieta

- •Tabaco
- Alcool
- $\bullet As bestos$
- Arsénico;
- Berílio;
- •Gás mustarda;
- Aflatoxina;
- Cádmio;
- Benzidina;
- •Fuligem.

Radiação

•UV

lonizante

Infeções

Virais (EBV, Hep B, HPV)Bactérias (H.Pylori)

- •S. Mama/Ovário: BRCA1/2
- •S. Cowden: PTEN
- •S. Li-Fraumeni: TP53
- •PAF: APC
- •S. Lynch: MSH2,MLH1, PMS1, PMS2, MSH6
- •MENI
- •MEN2: RET
- •NFI

Síndromes Familiares Hereditários

- •VHL
- •RBI
- •C. Gástrico Difuso: CDHI

EXTRÍNSECOS

- Produtos Químicos
- Dieta
- Radiação

INTRÍNSECOS

- Idade
- Mutações Herdadas
- Polimorfismos Genéticos

2. FATORES DE RISCO

2. FATORES DE RISCO

2. FATORES DE RISCO

Unmodifiable risk factors	Modifiable risk factors	Treatable risk factors
Age	_Tobacco	Chronic inflammation
Genetics	Overweight and Obesity	Viral infections
Hereditary and somatic mutations	Nutrition	Bacterial infections
Sex	Physical activity	Diabetes
Ethnicity	Exposure to carcinogens	Irradiation
Family history	Alcohol	Hormonal status
Personal history	Lactation*	
Reproductive history*,†		
World region†		

Fator de Risco para:

- Carcinoma Mama (pós-menopausa);
- ADC Cólon;
- Carcinoma Endométrio;
- ADC Esófago ;
- Carcinoma Células Renais;
- Carcinoma Vesícula Biliar;
- Adenocarcinoma Pâncreas

<u>Benigno</u>	Maligno —
Crescimento Lento	Crescimento rápido
Cápsula bem-definida	Não encapsulado
Não invasivo	Invasivo
Bem diferenciado	Pouco diferenciado
Baixo índice mitótico	Alto índice mitótico
Não metastiza	Tem a capacidade de metastizar

Nomenclatura está de acordo com os tecidos de onde se origina:

- Carcinoma: Origem nos epitélios;
- Adenocarcinoma: origem nos epitélios glandulares;
- Sarcomas: Origem nos tecidos conjuntivos (mesenquimatosa).

Recetores de Fatores de Crescimento

- Interagem com os fatores de crescimento que, através de transdução de sinal, irão estimular a proliferação.
- Exemplos de recetores: Recetores tirosina-cinase
 (Ex: EGFR alvo do cancro do colon e no cancro do pulmão).
- Mutações nestes recetores permitem que esta via de proliferação fique ativada de forma autónoma.

- O Cancro é uma Doença dos Genes:
 - Mutações germinativas herdadas ocorrem em síndromes familiares, raros;
 - Mutações somáticas ocorrem na grande maioria dos genes;
 - Aumentos da taxa mutacional e instabilidade genómica aumentam a frequência do cancro;
 - Aneuploidia é um hallmark das células malignas;
 - Estas células conseguem depois ser geneticamente seleccionadas.

2. ONCOGENES E GENES SUPRESSORES TUMORAIS

ONCOGENES:

- Mutações em oncogenes habitualmente ocorrem em locais específicos, afetando o mesmo codão, são quase sempre *missense* e afetam um alelo: heterozigotia.
- Ativação de proto-oncogenes em Oncogenes é feita por numerosos mecanismos:
 - Translocações (BCR-ABL);
 - Inserções/Ativações (HPV, EBV, HepB);
 - ❖ Amplificações (ex: HER2);
 - Mutações pontuais (ex-RAS).

- Ras associa-se à membrana plasmática;
- Ras re-transmite sinais dos recetores de superfície celular para o núcleo, funcionando como um interruptor.

ONCO SCHOOL ESCOLA DE FORMAÇÃO AEOP

I. CARCINOGÉNESE

A mutação KRAS é preditiva de ausência de resposta a anticorpos anti-EGFR.

GENES SUPRESSORES TUMORAIS

- Perda de Heterozigotia;
- Mutações ocorrem por diversos mecanismos;
 - Substituições de Nucleóticos;
 - Inserções/Deleções;
 - Rearranjos cromossómicos;
 - Alteração do número de cópias.
- ❖ Ex: RBI; TP53 o guardião do genoma.

GENES SUPRESSORES TUMORAIS

- Muitos foram identificados pela sua associação com síndromes hereditários.
- Perda de Heterozigotia
- Necessários 2 hits para perda de função.

Mutação BRCA1

- Risco de desenvolver C. Ovário ~ 45-60%.
- Risco de C. Mama ~70-85%.
- Risco C. Mama contralateral ~40%
- < 3% das portadoras desenvolvem C.
 Ovário até aos 40 anos.
 - Mas 40% terão aos 80 anos.
- ~72% terão C. Mama até aos 80 anos.

Mutação BRCA2

- Risco de desenvolver C. Ovário 17-30%.
- Risco de C.Mama ~70-74%.
- Risco C. Mama contralateral ~26%;
- 3% das portadoras desenvolvem C.
 Ovário até aos 50 anos.
 - Mas + 17% até aos 80 anos.
- ~69% terão C. Mama até aos 80 anos.

LETALIDADE SINTÉTICA

- CÉLULA NORMALTEM POTENCIAL REPLICATIVO LIMITADO
- Número limitado de duplicações;
- Encurtamento de telómeros com cada divisão celular;
- Perda de capacidade de proteger a célula de fusões cromossómicas end-to-end que, quando ocorrem, resultam em apoptose.
- Senescência Celular (Hipótese de Hayflick);
- Telomerase quase ausente

- CÉLULA MALIGNA TEM POTENCIAL REPLICATIVO ILIMITADO
- Mantém replicação;
- Telomerase: DNA-polimerase especializada que adiciona repetições de telómeros ao fim dos telómeros;
- Telomerase: Muito presente nas células malignas

Família Bcl-2

- Proteínas reguladoras pró e anti-apoptóticas;
- BCL-2 inibe a apoptose, ligando-se e inativando duas proteínas pró-apoptóticas, que vivem na membrana mitocondrial (Bax e Bak);
- ❖ Bax e Bak: quando libertas da inibição do Bcl-2 liberam o citocromo c, que ativa a cascata de caspases proteoliticas, levando às alterações elulares de apoptose.

PATHWAYS LEADING TO CANCER

- O cancro é uma doença da rede de sinalização celular, causada por:
- Mutações genéticas que resultam em vias hiperativas que estimulam crescimento e metastização;
- Mutações genéticas que inativam proteínaschave que suprimem o cancro.

A alteração destes circuitos fornece à célula maligna vantagem para a sobrevivência

- Identificação de importantes mutações genéticas que são drivers biológicos de alguns cancros;
- Melhoria do diagnóstico e prognóstico;
- Identificação de alvos adicionais para desenvolvimento farmacológico;
- Bases para a medicina de precisão e terapêutica personalizada.

NEXT-GENERATION SEQUENCING (NGS)

DI

Hospital

Análise Molecular (NGS)

D2-3

Biópsia tumoral

Análise analítica

D4-5

Revisão por AP

Molecular Tumor Board

D6-7

Preparação da amostra

Resultados e Tratamento

PROJETO DE SEQUENCIAÇÃO DO GENOMA

- O projeto para determinar a sequência completa do genoma humano começou em 1990 e foi completada em 2003;
- Vários laboratórios de sequenciação genética estiveram envolvidos;
- O Projeto do Genoma Humano teve um custo de 2.7 biliões de dólares;
- Avanços progressivos na tecnologia permitem sequenciação mais rápida e menos dispendiosa;
- Atualmente, pode ser obtido em poucos dias e por algumas centenas de euros;

- Estadio I: Localizado: Confinado ao orgão primário de origem;
- Estadio II-III: Localmente avançado: Crescimento local e/ou para gânglios linfáticos locais;
- Estadio IV: Avançado/Metastizado: para orgãos à distância

PROCESSO DE METASTIZAÇÃO

OBRIGADA PELA VOSSA ATENÇÃO QUESTÕES?