Introdução ao Machine Learning

Rafael S. Calsaverini

April 22, 2024

Grupo de Estudos de ML

Notas Históricas

Inteligência Computacional Ciências Cognitivas Como funciona o cérebro? Como ele é capaz Como computadores podem resolver problemas de forma autônoma? de aprender, planejar e tomar decisões? Aprendizagem de Máquina Como computadores podem "aprender" a executar uma tarefa através de exemplos? Ciência da Mecânica Estatística Telecomunicações Como descrever dados e ajustar sobre eles Teoria de modelos descritivos, gerativos ou causais? Processos Teoria de Estocásticos Probabilidades

Programação

Cria um programa com uma série de instruções específicamente criadas para para resolver um problema.

Programação

- Problema: prever a posição de um planeta daqui a 150 anos.
- Solução: implementa um programa para executar o método numérico para resolver a segunda lei de Newton com as forças envolvidas e as condições iniciais adequadas.

Inteligência Artificial Simbólica

IA Simbólica / GOFAI

Usa algoritmos de manipulação de expressões lógico-simbólicas para encontrar uma solução dada uma descrição formal do problema.

Inteligência Artificial Simbólica

IA Simbólica / GOFAI

- Problema: provar um teorema.
- Solução: um sistema capaz de manipular expressões simbólicas correspondendo a uma série de axiomas e lemas tenta encontrar uma demonstração adequada.

Inteligência Artificial Simbólica

IA Simbólica / GOFAI

- Problema: provar um teorema.
- Solução: um sistema capaz de manipular expressões simbólicas correspondendo a uma série de axiomas e lemas tenta encontrar uma demonstração adequada.

Aprendizado de Máquina dado um conjunto de dados, um algoritmo deriva uma solução que pode ser aplicada para novos dados não vistos. Ex.:

Aprendizado de Máquina

- Problema: transcrever áudios para texto.
- Solução: dado um conjunto de áudios com transcrições conhecidas treinar um algoritmo que é capaz de aprender a fazer a transcrição, e aplicá-lo em novos áudios com transcrição desconhecida.

Tipos de Aprendizado – Aprendizado Supervisionado

Dada uma série de tarefas passadas e suas soluções corretas, o algoritmo deve aprender a resolver a tarefa corretamente em uma situação futura.

Ex.: classificação, regressão, learn-to-rank, etc.

Tipos de Aprendizado - Aprendizado Supervisionado

Dada uma série de tarefas passadas e suas soluções corretas, o algoritmo deve aprender a resolver a tarefa corretamente em uma situação futura.

Ex.: classificação, regressão, learn-to-rank, etc.

Aqui estão várias fotos. Se você pudesse agrupálas em 2 grupos por similaridade, como faria?

Agora tenho essa aqui. Em quando dos dois grupos que você definiu acima ela entra?

Tipos de Aprendizado – outros

Aprendizado por reforço:

dado um cenário em que se podem fazer ações e receber recompensas, aprender a fazer as ações que acumulam mais recompensa ao longo das rodadas. Ex.: Alpha Go.

Aprendizado Gerativo:

dado um conjunto de exemplos, aprender a simular a itens da mesma distribuição. Ex.: ChatGPT, Stable Diffusion

...e muitos outros:

aprendizado ativo, aprendizado semi-supervisionado, aprendizado de representações, aprendizado auto-supervisionado, aprendizado estruturado, etc...

Teoria – Aprendizado e o Dilema

Viés-Variância

Cenário

queremos um algoritmo para classificar papaias entre verdes e maduras[1]

Dados

Coletamos dados de muitas papaias colhidas no passado. Para cada uma criamos um **vetor de características** $x \in \mathcal{X}$ e um **rótulo** $y \in \{\text{maduro}, \text{verde}\}.$

Preditor

Queremos encontrar uma função que, para cada ${\bf x}$, retorne uma previsão para o rótulo y:

$$h: \mathcal{X} \to \{\mathsf{maduro}, \mathsf{verde}\}$$

Distribuição dos dados

Suponha que os dados coletados são descritos por uma distribuição de probabilidades D:

$$(\mathbf{z}, y) \sim D$$

Probabilidade de erro

Podemos avaliar o preditor pela probabilidade de que ele cometa um erro:

$$\varepsilon[h] = \Pr_{(\mathbf{z}, y) \sim D} \{ h(\mathbf{z}) \neq y \}$$

Um bom preditor tem esse erro o menor possível.

Problema

Não é possível calcular $\varepsilon[h]$ de antemão. Não conhecemos D!!!

Mas podemos coletar dados e aproximar $\varepsilon[h]$ Suponha que temos um monte de exemplos coletados:

$$S = \{(\mathbf{z}_k, y_k) \sim D \mid k = 1, 2, \dots, N\}$$

Podemos fazer uma estimativa do erro empírico:

$$\hat{\varepsilon}_S[h] = \frac{1}{N} \sum_{k=1}^N \mathbb{1} \left[h(\mathbf{x}_k) \neq y_k \right]$$

Dessa forma, um possível preditor "aprendido" através dos exemplos seria através da **minimização do erro empírico**.

$$h^* = \arg\min_{h \in \mathcal{H}} \hat{\varepsilon}[h]$$

Problema: Generalização e Overfitting

Suponha o seguinte preditor

$$h(\mathbf{x}) = \begin{cases} y_k, & \text{if } \mathbf{x} = \mathbf{x}_k \\ \text{verde}, & \text{otherwise} \end{cases}$$

Qual é o erro empirico desse preditor?

Problema: Generalização e Overfitting

Suponha o seguinte preditor

$$h(\mathbf{x}) = \begin{cases} y_k, & \text{if } \mathbf{x} = \mathbf{x}_k \\ \text{verde}, & \text{otherwise} \end{cases}$$

O preditor tem erro empírico zero!!! Mas... é um bom preditor?

Overfitting

O preditor não comete nenhum erro no conjunto de dados usado para treiná-lo, mas não é capaz de **generalizar** para novos casos.

A resposta para qualquer novo caso é verde.

Erro de treinamento e erro de generalização

Para determinar quão bem um preditor é capaz de classificar nossas papaias, é importante que **o erro empírico seja calculado em um conjunto não usado para treiná-lo!** Definimos o conjunto de treinamento T e o conjunto hold-out H fazendo uma **partição aleatória** dos dados coletados em $S.^1$

Erro de treinamento:

$$\varepsilon_{\mathsf{train}}[h] = \hat{\varepsilon}_T[h]$$

Erro de generalização:

$$\varepsilon_{\mathrm{gen.}}[h] = \hat{\varepsilon}_H[h]$$

 $^{^1\}mathrm{Por}$ exemplo, colocando um exemplo em T com probabilidade 0.8 e em H com probabilidade 0.2

Dilema Viés-Variância

Dilema Viés-Variância

References i

References

S. Shalev-Shwartz and S. Ben-David. **Understanding Machine Learning: From Theory to Algorithms.**Understanding Machine Learning: From Theory to Algorithms.
Cambridge University Press, 2014. ISBN: 9781107057135. URL: https://books.google.com.br/books?id=ttJkAwAAQBAJ.