(a)
$$y'' - 5y' + (ey = 0)$$
, $y(0) = 0$, $y'(0) = 1$
L>. $\angle z_1 + s_3 = \angle z_3 y_3 (s^2 - 5s + 6) = 5y(0) - sy(0) - y'(0)$
 $= \angle z_3 y_3 (s^2 - 5s + 6) = 0 - 0 - 1$
 $= \angle z_3 y_3 (s^2 - 5s + 6) - 1$

(a)
$$y'' + 4y = 0$$
, $y(0) = 1$, $y'(0) = 3$
LES • $L_{3}^{2}UHS_{3}^{2} = L_{3}^{2}y_{3}^{2}(s^{2}+1) - s - 3$
 $= L_{3}^{2}y_{3}^{2}(s^{2}+1) - s - 3$

•
$$\mathbb{L} = \frac{1}{2} = \frac{1}{2}$$

© y"-5y'+6y =
$$\frac{t^3}{3!}$$
, y(0)=1, y'(0)=1
L> • $\int \frac{1}{3!} \int \frac$

•
$$L = \frac{1}{54}$$

 $\Rightarrow L = \frac{1}{54}$
 $\Rightarrow L = \frac{1}{54}$
 $= \frac{1}{54}$
 $= \frac{55 + 654 + 1}{54}$
 $= \frac{54(5-3)(5-2)}{54(5-3)(5-2)}$

T

(d)
$$y'' + 4y' + 4y = e^{\frac{1}{4}} + f$$
, $y(0) = -2$, $y'(6) = -2$

$$= \frac{1}{5} + \frac{1}$$

Ly •
$$\mathcal{L}_{1}^{2}$$
 + \mathcal{L}_{2}^{3} + \mathcal{L}_{3}^{2} + \mathcal{L}_{3}^{2} + \mathcal{L}_{4}^{3} + \mathcal{L}_{5}^{2} +

(g)
$$y'' - 4y = te^{-3t}\cos t - \sin(2t)$$
, $y(0) = 4$, $y'(0) = 0$

Later Lay G (5²-4) - 45

S²+65+8

((5+3)²-1)

((5+3)²+1)²,

b/c Later Lay G

S²-1

(5²+1)²

4

= 45²+485²+2405²+6715²+12785³+18205²+13845-168

[te²-tcost] = C(5+3)²

(5+2)(5-2)(5²+4)(5²+65+16)²