1. (그림 1)의 회로에서 전압원에 흐르는 전류가 0.4[A], 저항 R_1 과 R_2 에 걸리는 전압이 각각 3[V]와 4 [V]일 때, 저항 R3 값을 구하시오.

2. (그림 2)의 회로에서 $(5\,[\Omega]$ 위 저항 양단에 걸리는 전압 v_L 값을 구하시오.

3. (그림 3)의 회로에서 $v_2=33i_2$ 이고, $i_2=100\,[{
m mA}]$ 일 때, 저항 R_1 걸리는 전압 v_1 값을 구하시오.

4. (그림 4)의 회로에서 전류원 양단에 걸리는 전압 v_x 값을 구하시오.

5. (그림 5)의 회로에서 $R_1=6\,[\Omega]$ 일 때, 저항 R_1 에서 소모되는 전력(power) 값을 구하시오.

6. (그림 6)의 회로에서 전압원에 흐르는 전류 i_1 값을 구하시오.

$$\lambda_1 - 4\lambda_2 = 10$$

$$-2\lambda + 14\lambda_2 - 15\lambda_3 = 0$$

7. (그림 7)의 회로에서 전압 u_3 값을 구하시오.

30/2 - 25/3 = 100 -30/2 + 54/3 = -7 29/3 = 91 13 = 31379 12 = 11189

8. (그림 8)의 회로에서, 각 저항이 소모할 수 있는 최대 전력값(power rating)이 $0.25 \ [W]$ 일 때, 각 저항이 견딜 수 있는 최대 전류값이 되는 전류원 I_x 의 크기를 정하시오.

$$V_{100} = \frac{100}{164} \times 6$$

9. (그림 9)의 회로에서, $\alpha[\Omega]$ 의 저항에 흐르는 전류값 i_a 를 구하시오.

10. (그림 10)의 회로에서, 6 [MΩ]의 저항에서 소모되는 전력량을 구하시오.

1. (그림 1)의 회로에서 a-b 단자에서 바라본 Thevenin 등가회로를 구하시오.

2. (그림 2)의 회로에서 부하저항 R_L 에 최대 전력이 공급되려면, 부하저항 R_L 의 값은 얼마인가?

3. (그림 3)의 회로에서 inverting terminal 의 node voltage v_x 를 입력 전압, v_{in} 과 출력전압 v_{out} 값으로 표현하시오.

4. (그림 4)의 회로에서 $I_s=2$ [mA], $R_x=1$ [k Ω], $R_y=4.7$ [k Ω], 그리고 $R_f=500$ [Ω]일 때, 출력 전압 v_{out} 값을 구하시오.

5. (그림 5)의 회로에서 출력 전압 v_{out} 을 입력 전압 v_{s} 의 함수로 표현하시오.

6. (그림 6)의 회로에서 switching 동작 이후, inductor 를 포함하는 회로의 시정수(time constant)를 구 하시오.

7. (그림 7)의 회로에서 $t=0^+$ 에서 $200^- [\Omega]$ 의 저항에 흐르는 전류값 $i(0^+)$ 를 구하시오.

8. (그림 8)의 회로에서, $t=0^-$ 에서 48 [mH] inductor에 54×10^{-9} [J]의 에너지가 저장되어 있다. t = 5 [ms]에서 inductor에 남아있는 에너지 양을 구하시오.

- 9. (20 점) (그림 9)의 회로에서 $i_s(t)=50u(t)[\text{mA}]$ 이고, $t=0^-$ 에서 정상 상태에 있다고 가정한다.
 - (a) t = 0 +에서 회로의 시정수를 구하시오.
 - (b) $t = 0^+$ 에서 inductor 에 흐르는 전류 $i_L(0^+)$ 를 구하시오.
 - (c) $t = \infty$ 에서 inductor 에 흐르는 전류 $i_L(\infty)$ 를 구하시오.
 - (d) t>0에서 inductor에 흐르는 전류 $i_L(t)$ 를 구하시오.

1. 다음 회로에서 $5\,[\Omega]$ 저항에서 소비전력이 $45\,[W]$ 의 전력이 소비될 때, 저항 R의 크기를 구하시오.

2. 다음 회로에서 $\S_{\{\Omega\}}$ 저항 양단에 걸리는 전압 ν_x 값을 구하시오.

3. 아래 회로에서 node 전압 v_1 값을 구하시오.

4. 아래 회로에서 $5\left[\Omega\right]$ 저항 양단에 걸리는 전압 v_5 값을 구하시오.

5. 아래 회로에서 부하 저항 R_L 이 $1[\Omega]$ 일 때, 부하저항에서 최대 전력이 소모된다고 한다. 저항 R_1 값을 구하시오.

$$20 V \stackrel{4 \Omega}{\longrightarrow} 4 \Omega \geqslant 20 A \stackrel{\bullet}{\bigcirc} R_1 \geqslant R_L \geqslant$$

6. 개방 단자 a-b 양단에서 바라 본 Theyenin 등가회로를 구하시오.

7. 다음 회로에서 스위치가 오랜 시간 동안 닫혀있다 t=0 순간에 열렸다. 시간 $t=100 \, [s]$ 에 capacitor 에 저장된 에너지를 구하시오.

8. 다음 회로에서 스위치가 오랜 시간 동안 닫혀있다 t=0 순간에 열렸다. t>0 시간에 $15 \, [\Omega]$ 저항에 흐르는 전류 $i_x(t)$ 를 구하시오.

9. 아래 회로를 다음 회로변수의 값을 구하시오: (a) $i_R(0^-)$, (b) $i_R(0^+)$, and (c) $i_L(0^+)$.

10. 다음 회로에서 $C=\frac{1}{240}\,F$ 이고 $L=10\,H$ 일 때, inductor 에 흐르는 전류 $i_L(t),\ t>0$ 를 구하라.

