Lecture 9

Reference Design Inverter Schematics: Power Electronics & Sensing Circuits

Objectives:

- Study the schematics and circuits of a previously designed 250W threephase power inverter system.
- Discuss the considerations for power supply design and components.
- Discuss isolation and its potential need in sensing circuits, power supplies, and gate driver circuits.
- Discuss different voltage sensing methods and when to consider isolation of the signal and resistor power ratings.
- Discuss different current sensing methods, with pros and cons for each.

Keywords:

Bypass capacitor Gate driver IC

Galvanic isolation Gate drive power

Optical isolation Miller Capacitance

Under Voltage Lock Out (UVLO) Miller Effect

Optocoupler or Optoisolator Differential amplifier

Hall Effect

Shunt resistor

Overview of Power Inverter Schematics

Discuss the different sections of the schematic

Key Points of the Infineon BTN8980 IC

The Need for Isolation

Discuss different ground references resulting from the switching nodes

Upper switch needs a floating supply.

Difficulty to measure current through a shunt on a switching node

FF-	499	Three-Phase	AC N	/lotor	Control
ᆫᆫ	サンノ	THILL HIGGE	$\neg \subset \cap$	violoi	COLLUD

Gate Drivers and the Miller Effect

Discuss the need for level-shifting and current amplification of PWM signals

Voltage Sensing Methods

Voltage sensing of LV DC and HV DC

Sensing of AC voltages

Power ratings for resistors & safety / redundancy

Current Sensing Methods

Discuss Hall Effect vs. shunt resistor

Discuss the level-shifting (common-mode voltage) issues with shunts

Discuss the power rating issues with shunts

Discuss the bandwidth limitations with Hall Effect sensors

Lecture 9