DNA MICROARRAY FOR DETECTING ENVIRONMENT CLARIFICATION-RELATED GENE AND ENVIRONMENT CLARIFICATION METHOD

Publication number: JP2000253886

Publication date:

2000-09-19

Inventor:

MANJI KAKUEI; HOAKI TOSHIHIRO; YOSHIDA

MITSUTAKE

Applicant:

TAISEI CORP

Classification:

- international:

B01D53/34; C02F3/34; C12N15/09; C12Q1/68;

B01D53/34; C02F3/34; C12N15/09; C12Q1/68; (IPC1-

7): C12N15/09; B01D53/34; C02F3/34; C12Q1/68

- european:

Application number: JP19990064719 19990311 Priority number(s): JP19990064719 19990311

Report a data error here

Abstract of JP2000253886

PROBLEM TO BE SOLVED: To obtain an environment clarification-related DNA microarray which can efficiently clarify environment polluted air, water, and soil by fixing a specific DNA probe onto a DNA microarray substrate. SOLUTION: This array is obtained by (i) determining a base sequence of at least a part of the genomic DNA or cDNA derived from an environment clarification-related microorganism, (ii) preparing DNA probes based on its base sequence, (iii) fixing the DNA probes onto a DNA microarray substrate, (iv) hybridizing a whole RNA, mRNA, or cDNA derived from the microorganism which was cultured under the condition which allows induction of expression of an environment clarification-related gene with the fixed DNA probes which were obtained in step iii, (v) screening the hybridized DNA probes, followed by (vi) fixing a screened DNA probe onto other DNA microarray substrate. It is preferable to prepare a medium on which data concerning the environment clarification-related microorganism are recorded, and which the data can be read by a computor.

Data supplied from the ${\it esp@cenet}$ database - Worldwide

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号 特開2000-253886 (P2000-253886A)

(43)公開日 平成12年9月19日(2000.9.19)

(51) Int.Cl. ⁷		識別記号	FΙ		วี	-7]-ド(参考)
C 1 2 N	15/09	ZNA	C 1 2 N	15/00	ZNAA	4B024
B01D	53/34	ZAB	C 0 2 F	3/34	ZABZ	4B063
C 0 2 F	3/34	ZAB	C 1 2 Q	1/68	Α	4D002
C 1 2 Q	1/68		B 0 1 D	53/34	ZABZ	4 D 0 4 0

審査請求 未請求 請求項の数21 OL (全 28 頁)

(21)出願番号	特顧平11-64719	(71) 出顧人	000206211
			大成建設株式会社
(22)出願日	平成11年3月11日(1999.3.11)		東京都新宿区西新宿一丁目25番1号
		(72)発明者	万字 角英
			東京都新宿区西新宿一丁目25番1号 大成
			建設株式会社内
		(72)発明者	帆秋 利洋
			東京都新宿区西新宿一丁目25番1号 大成
			建設株式会社内
		(74)代理人	100091096
			弁理士 平木 祐輔 (外1名)
			最終頁に続く

(54) 【発明の名称】 環境浄化関連遺伝子検出用DNAマイクロアレイ及び環境浄化方法

(57)【要約】

【課題】 環境浄化菌測定用DNAマイクロアレイ及び環境浄化方法の提供。

【解決手段】 環境浄化微生物のゲノムDNA又はcDNAの全部又は一部の塩基配列が基板に固定されたDNAマイクロアレイ。

【特許請求の範囲】

【請求項1】 環境浄化微生物のゲノムDNA又はcDNAの全部又は一部の塩基配列を含むDNAプローブが基板に固定されたDNAマイクロアレイ。

【請求項2】 ゲノムDNA又はcDNAが環境浄化関連遺伝子を含むものである請求項1記載のDNAマイクロアレイ

【請求項3】 相互に同一の環境浄化機能を有する環境 浄化微生物間において共通に発現する遺伝子が基板に固 定されたDNAマイクロアレイ。

【請求項4】 環境浄化が、有機汚濁物、有機塩素化合物、芳香族化合物、硫黄化合物、ダイオキシン、硝酸態窒素、アンモニア態窒素、窒素酸化物、硫黄酸化物、二酸化炭素、石油、リン及び重金属からなる群から選択される少なくとも一つに起因する環境汚染の浄化を目的としたものである請求項1~3のいずれか1項に記載のDN Aマイクロアレイ。

【請求項5】 以下の工程:

(a) 環境浄化微生物のゲノムDNA又はcDNAの全部又は一部の塩基配列を決定する工程、(b) 該塩基配列に基づいてDNAプローブを調製する工程、(c) 該DNAプローブをDN Aマイクロアレイ基板に固定する工程、を包含する環境浄化DNAマイクロアレイの製造方法。

【請求項6】 以下の工程:

- (a) 環境浄化微生物のゲノムDNA又はcDNAの全部又は一部の塩基配列を決定する工程、(b) 該塩基配列に基づいてDNAプローブを調製する工程、(c) 該DNAプローブをDN Aマイクロアレイ基板に固定する工程
- (d) 工程(c)において得られた固定化DNAプローブに、環境浄化関連遺伝子の発現を誘導し得る条件下で培養された前記環境浄化微生物由来の全RNA、mRNA又はcDNAをハイブリダイズさせる工程、(e) 工程(d)においてハイブリダイズしたDNAプローブを選別し、選別されたDNAプローブを別のDNAマイクロアレイ基板に固定する工程、を包含する環境浄化DNAマイクロアレイの製造方法。

【請求項7】 以下の工程:

(a) 第一の環境浄化微生物のゲノムDNA又はcDNAの全部 又は一部の塩基配列を決定する工程、(b) 該塩基配列に 基づいてDNAプローブを調製する工程、(c) 該DNAプロー ブをDNAマイクロアレイ基板に固定する工程、(d) 工程 (c) において得られた固定化DNAプローブに、前記第一の 環境浄化微生物由来の全RNA、mRNA又はcDNAをハイブリ ダイズさせる工程、(e) 工程(d) においてハイブリダイ ズしたDNAプローブを選別し、選別されたDNAプローブを 別のDNAマイクロアレイ基板に固定する工程、(f) 工程 (e) において得られた固定化DNAプローブに、環境浄化機 能を有する第二の環境浄化微生物由来の全RNA、mRNA又 はcDNAをハイブリダイズさせる工程、(g) 工程(f) にお いてハイブリダイズしたDNAプローブを選別し、選別さ れたプローブをさらに別のマイクロアレイ基板に固定す る工程、を包含する環境浄化DNAマイクロアレイの製造 方法。

【請求項8】 環境浄化が、有機汚濁物、有機塩素化合物、芳香族化合物、硫黄化合物、ダイオキシン、硝酸態窒素、アンモニア態窒素、窒素酸化物、硫黄酸化物、二酸化炭素、石油、リン及び重金属からなる群から選択される少なくとも一つに起因する環境汚染の浄化を目的としたものである請求項1~4のいずれか1項に記載のDNAマイクロアレイの製造方法。

【請求項9】 以下の工程:

(a) 環境汚染場所から微生物を採取する工程、(b) 該微生物から全RNA、mRNA又はcDNAを調製する工程、(c) 該全RNA、mRNA又はcDNAを請求項1~4のいずれか1項に記載のDNAマイクロアレイとハイブリダイズさせる工程、(d) 工程(c)においてハイブリダイズした全RNA、mR NA又はcDNAを検出する工程、(e) 工程(d)において得られた検出結果に基づいて環境汚染場所から採取した微生物の遺伝子発現シグナルパターンを特定する工程、(f) 工程(e)において得られた遺伝子発現シグナルパターンと、既知の環境浄化微生物の遺伝子発現シグナルパターンとを比較して環境汚染場所から採取した微生物の種類を特定する工程、を包含する、環境浄化微生物の同定方法。

【請求項10】 環境汚染が、有機汚濁物、有機塩素化合物、芳香族化合物、硫黄化合物、ダイオキシン、硝酸態窒素、アンモニア態窒素、窒素酸化物、硫黄酸化物、二酸化炭素、石油、リン及び重金属からなる群から選択される少なくとも一つに起因するものである請求項9記載の同定方法。

【請求項11】 環境浄化微生物に関連するデータ及び / 又は汚染場所の状況に対応する浄化方法データを記録 したコンピュータ読み取り可能な記録媒体。

【請求項12】 環境浄化微生物に関連するデータが、分解活性を有する環境浄化微生物名データ、環境浄化微生物の塩基配列データ、環境浄化微生物の遺伝子発現シグナルパターンデータ、環境浄化微生物の環境適応データ、環境浄化微生物の最適浄化能力発現条件データ及び相互に同一の環境浄化機能を有する環境微生物間の浄化能力比較データからなる群から選択される少なくとも1つである請求項11に記載の記録媒体。

【請求項13】 汚染場所の状況に対応する浄化方法データが、汚染場所への適用に適した浄化微生物データ及び/又は該浄化微生物の最適浄化条件データである請求項11又は12に記載の記録媒体。

【請求項14】 環境浄化が、有機汚濁物、有機塩素化合物、芳香族化合物、硫黄化合物、ダイオキシン、硝酸態窒素、アンモニア態窒素、窒素酸化物、硫黄酸化物、二酸化炭素、石油、リン及び重金属からなる群から選択される少なくとも一つに起因する環境汚染の浄化を目的としたものである請求項11~13のいずれか1項に記

載の記録媒体。

【請求項15】 汚染場所由来の微生物の遺伝子発現シグナルパターンデータを入力させる手順、入力された遺伝子発現シグナルパターンデータを記録させる手順、記録された遺伝子発現シグナルパターンデータと既に記録されている環境浄化微生物の遺伝子発現シグナルパターンデータとを照合させる手順、照合結果に基づいて汚染場所の微生物の遺伝子発現シグナルパターンデータと一致する環境浄化微生物の遺伝子発現シグナルパターンの有無を判断させる手順及び判断結果に基づいて汚染場所由来の微生物の種類を同定させる手順をコンピューターに実行させるプログラムを記録した、コンピュータ読み取り可能な記録媒体。

【請求項16】 汚染場所のデータを入力させる手順、 入力された汚染場所のデータを記録させる手順及び記録 されたデータに基づき最適の浄化方法を構築する手順を コンピューターに実行させるプログラムを記録した、コ ンピュータ読み取り可能な記録媒体。

【請求項17】 汚染場所のデータが、汚染場所の汚染物質の性質に関するデータ、汚染場所の土壌条件に関するデータ、汚染場所の気候条件に関するデータ及び汚染場所の水分地質学的条件に関するデータからなる群から選択される少なくとも1つである請求項16記載の記録媒体。

【請求項18】 環境浄化微生物の環境浄化関連遺伝子シグナル強度を入力させる手順、入力されたシグナル強度のデータを記録させる手順及び記録されたシグナル強度のデータに基づき最適の浄化処理加速条件を構築させる手順をコンピューターに実行させるプログラムを記録した、コンピュータ読み取り可能な記録媒体。

【請求項19】 環境浄化が、有機汚濁物、有機塩素化合物、芳香族化合物、硫黄化合物、ダイオキシン、硝酸 態窒素、アンモニア態窒素、窒素酸化物、硫黄酸化物、二酸化炭素、石油、リン及び重金属からなる群から選択 される少なくとも一つに起因する環境汚染の浄化を目的としたものである請求項15~18のいずれか1項に記載の記録媒体。

【請求項20】 以下の工程:

(a) 環境汚染場所から微生物を採取する工程、(b) 該微生物から全RNA、mRNA又はcDNAを調製する工程、(c) 該全RNA、mRNA又はcDNAを請求項1~4のいずれか1項に記載のDNAマイクロアレイとハイブリダイズさせる工程、(d) 工程(c)においてハイブリダイズした全RNA、mRNA又はcDNAを検出する工程、(e) 工程(d)において得られた検出結果に基づいて環境汚染場所から採取した微生物の遺伝子発現シグナルパターンを特定する工程、(f) 工程(e)において得られた遺伝子発現シグナルパターンと、既知の環境浄化微生物の遺伝子発現シグナルパターンとを比較して環境汚染場所から微生物の種類を特定する工程、(g) 環境汚染場所の環境を分析する工程、(h)

工程(f)及び(g)において得られたデータと、環境浄化データベースに記録されたデータとを対比して、当該環境 汚染場所の浄化に適した環境浄化微生物及び/又は浄化 条件を設定する工程、(i)工程(h)において設定された 条件に基づいて汚染場所の浄化処理をする工程、を包含 する環境浄化方法。

【請求項21】 環境汚染が、有機汚濁物、有機塩素化合物、芳香族化合物、硫黄化合物、ダイオキシン、硝酸態窒素、アンモニア態窒素、窒素酸化物、硫黄酸化物、二酸化炭素、石油、リン及び重金属からなる群から選択される少なくとも一つに起因するものである請求項20記載の環境浄化方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、汚染された土壌、 大気、又は水を効率的に浄化するために用いる環境浄化 関連遺伝子検出用DNAマイクロアレイ及び該DNAマイクロ アレイを用いる環境浄化方法に関する。

[0002]

【従来の技術】我々人類は、産業革命以来、種々の科学技術を開発し産業化を進めてきた。しかし、豊かで快適な社会生活を営めるようになった一方で、地球規模での環境破壊は進行し、深刻な社会問題となっている。現在の地球上には、産業活動の副産物として生み出された多くの環境汚染物質が存在しており、これらを除去し、元の環境に修復することが極めて重要な課題となってきている。

【0003】環境汚染物質の除去に用いられる方法には、大きく分けて化学的方法、物理的方法、生物的方法がある。これらのうち、最も省エネルギーかつ省資源のプロセスが生物的方法、すなわち、微生物や植物などの浄化機能を利用するバイオレメディエーション又はファイトレメディエーションである。この技術は、生物の代謝機能を巧みに利用して、環境汚染物質を分解したり、無害化して最終的には二酸化炭素、メタン、水、無機塩、バイオマスなどに変換してしまう技術である。

【0004】バイオレメディエーションによる汚染土壌の浄化は、土壌を掘削する必要がないため建造物下の浄化が容易であること、分解活性の高い微生物を利用することにより低濃度の有機化合物を短時間で浄化できること、低コストで環境負荷が少ないことなどの特徴を有し、環境汚染物質の分解・除去技術として、最近、特に注目されている。

【0005】バイオレメディエーションによる浄化方式は、以下の3つに大別できる。すなわち、①汚染物質の分解能を有する微生物を固定化して利用するバイオリアクター方式、②汚染された土壌や地下水中に元来生息する微生物に各種栄養物質を供給し、その分解活性を増強させる方式(バイオスティミュレーションという)、及び③汚染物質の分解能を有する微生物を汚染現場に直接散

布する方式(バイオオーグメンテーションという)である。現在、実用化されているバイオレメディエーション技術は、主に汚染現場に生息している浄化菌の浄化活性を高める条件を付与する方式(上記②)である。しかし、汚染現場に存在する微生物だけでは汚染物質を分解できない場合には、外来の浄化菌を汚染環境に導入して浄化する上記③の方式を適用する必要がある。

【0006】ところで、近年のDNAの構造解析技術の急速な進展に伴い、微生物(例えば、大腸菌、枯草菌、ラン藻、超好熱菌、酵母など)、植物(例えばイネ、シロイヌナズナなど)、哺乳動物(例えばヒト、マウスなど)などの多くの生物種について、全ゲノムの塩基配列を決定するためのゲノムプロジェクトが世界各国で展開されている。そこから得られる塩基配列情報は着実に増加し、各種生物由来のゲノム塩基配列データベースが急ピッチに整備されている。従って、微生物のゲノムについても、急速に塩基配列情報が蓄積することが予想され、その情報に基づいて環境浄化への応用が期待されている。【0007】

【発明が解決しようとする課題】本発明は、バイオレメディエーションによる環境浄化を効率的に行うための、環境浄化関連遺伝子検出用のDNAマイクロアレイ及び該マイクロアレイを用いる環境浄化方法を提供することを目的とする。

[0008]

【課題を解決するための手段】本発明者らは、上記課題を解決するため鋭意研究を行った結果、環境浄化関連遺伝子を固定化したDNAマイクロアレイを用いることによって、迅速かつ効率的な環境浄化を行うことができることを見出し、本発明を完成するに至った。すなわち、本発明は、環境浄化微生物のゲノムDNA又はcDNAの全部又は一部の塩基配列を含むDNAプローブが基板に固定されたDNAマイクロアレイである。ここで、ゲノムDNA又はcDNAとしては、環境浄化関連遺伝子を含むものが挙げられる。さらに、本発明は、相互に同一の環境浄化機能を有する環境浄化微生物間において共通に発現する遺伝子が基板に固定されたDNAマイクロアレイである。

【0009】さらに、本発明は、以下の工程:

(a) 環境浄化微生物のゲノムDNA又はcDNAの全部又は一部の塩基配列を決定する工程、(b) 該塩基配列に基づいてDNAプローブを調製する工程、(c) 該DNAプローブをDN Aマイクロアレイ基板に固定する工程、を包含する環境浄化DNAマイクロアレイの製造方法である。

【0010】さらに、本発明は、以下の工程:

(a) 環境浄化微生物のゲノムDNA又はcDNAの全部又は一部の塩基配列を決定する工程、(b) 該塩基配列に基づいてDNAプローブを調製する工程、(c) 該DNAプローブをDN Aマイクロアレイ基板に固定する工程、(d) 工程(c)において得られた固定化DNAプローブに、環境浄化関連遺伝子の発現を誘導し得る条件下で培養された前記環境浄化

微生物由来の全RNA、mRNA又はcDNAをハイブリダイズさせる工程、(e) 工程(d)においてハイブリダイズしたDNAプローブを選別し、選別されたDNAプローブを別のマイクロアレイ基板に固定する工程、を包含する環境浄化DNAマイクロアレイの製造方法である。

【0011】さらに、本発明は、以下の工程:

(a) 第一の環境浄化微生物のゲノムDNA又はcDNAの全部 又は一部の塩基配列を決定する工程、(b) 該塩基配列に 基づいてDNAプローブを調製する工程、(c) 該DNAプロー ブをDNAマイクロアレイ基板に固定する工程、(d) 工程 (c)において得られた固定化DNAプローブに、前記第一の 環境浄化微生物由来の全RNA、mRNA又はcDNAをハイブリ ダイズさせる工程、(e) 工程(d)においてハイブリダイ ズしたDNAプローブを選別し、選別されたDNAプローブを 別のDNAマイクロアレイ基板に固定する工程、(f) 工程 (e)において得られた固定化DNAプローブに、環境浄化機 能を有する第二の環境浄化微生物由来の全RNA、mRNA又 はcDNAをハイブリダイズさせる工程、(g) 工程(f)にお いてハイブリダイズしたDNAプローブを選別し、選別さ れたプローブをさらに別のマイクロアレイ基板に固定す る工程、を包含する環境浄化DNAマイクロアレイの製造 方法である。

【0012】さらに、本発明は、以下の工程:

(a) 環境汚染場所から微生物を採取する工程、(b) 該微生物から全RNA、mRNA又はcDNAを調製する工程、(c) 該全RNA、mRNA又はcDNAを上記DNAマイクロアレイとハイブリダイズさせる工程、(d) 工程(c)においてハイブリダイズした全RNA、mRNA又はcDNAを検出する工程、(e) 工程(d)において得られた検出結果に基づいて環境汚染場所から採取した微生物の遺伝子発現シグナルパターンを特定する工程、(f) 工程(e)において得られた遺伝子発現シグナルパターンと、既知の環境浄化微生物の遺伝子発現シグナルパターンとを比較して環境汚染場所から採取した微生物の種類を特定する工程、を包含する、環境浄化微生物の同定方法である。

【0013】さらに、本発明は、環境浄化微生物に関連するデータ(例えば分解活性を有する環境浄化微生物名データ、環境浄化微生物の塩基配列データ、環境浄化微生物の遺伝子発現シグナルパターンデータ、環境浄化微生物の環境適応データ、環境浄化微生物の最適浄化能力発現条件データ及び相互に同一の環境浄化機能を有する環境微生物間の浄化能力比較データからなる群から選択される少なくとも1つのデータ)、汚染場所の状況に対応する浄化方法データ(例えば汚染場所への適用に適した浄化微生物データ、該浄化微生物の最適浄化条件データなど)を記録したコンピュータ読み取り可能な記録媒体である。

【0014】さらに、本発明は、汚染場所由来の微生物の遺伝子発現シグナルパターンデータを入力させる手順、入力された遺伝子発現シグナルパターンデータを記

録させる手順、記録された遺伝子発現シグナルパターンデータと既に記録されている環境浄化微生物の遺伝子発現シグナルパターンデータとを照合させる手順、照合結果に基づいて汚染場所の微生物の遺伝子発現シグナルパターンデータと一致する環境浄化微生物の遺伝子発現シグナルパターンの有無を判断させる手順及び判断結果に基づいて汚染場所由来の微生物の種類を同定させる手順をコンピューターに実行させるプログラムを記録した、コンピュータ読み取り可能な記録媒体である。

【0015】さらに、本発明は、汚染場所のデータ(例えば汚染場所の汚染物質の性質に関するデータ、汚染場所の土壌条件に関するデータ、汚染場所の気候条件に関するデータ及び汚染場所の水分地質学的条件に関するデータからなる群から選択される少なくとも1つのデータ)を入力させる手順、入力された汚染場所のデータを記録させる手順及び記録されたデータに基づき最適の浄化方法を構築する手順をコンピューターに実行させるプログラムを記録した、コンピュータ読み取り可能な記録媒体である。

【0016】さらに、本発明は、環境浄化微生物の環境 浄化関連遺伝子シグナル強度を入力させる手順、入力さ れたシグナル強度のデータを記録させる手順及び記録さ れたシグナル強度のデータに基づき最適の浄化処理加速 条件を構築させる手順をコンピューターに実行させるプ ログラムを記録した、コンピュータ読み取り可能な記録 媒体である。

【0017】さらに、本発明は、以下の工程:

(a) 環境汚染場所から微生物を採取する工程、(b) 該微 生物から全RNA、mRNAを抽出又はcDNAを調製する工程、 (c) 該全RNA、mRNA又はcDNAを上記DNAマイクロアレイと ハイブリダイズさせる工程、(d) 工程(c)においてハイ ブリダイズした全RNA、mRNA又はcDNAを検出する工程、 (e) 工程(d)において得られた検出結果に基づいて環境 汚染場所から採取した微生物の遺伝子発現シグナルパタ ーンを特定する工程、(f) 工程(e)において得られた遺 伝子発現シグナルパターンと、既知の環境浄化微生物の 遺伝子発現シグナルパターンとを比較して環境汚染場所 から微生物の種類を特定する工程、(g) 環境汚染場所の 環境を分析する工程、(h) 工程(f)及び(g)において得ら れたデータと、環境浄化データベースに記録されたデー タとを対比して、当該環境汚染場所の浄化に適した環境 浄化微生物、浄化条件を設定する工程、(i) 工程(h)に おいて設定された条件に基づいて汚染場所の浄化処理を する工程、を包含する環境浄化方法である。

【0018】さらに、上記環境汚染としては、有機汚濁物、有機塩素化合物、芳香族化合物、硫黄化合物、ダイオキシン、硝酸態窒素、アンモニア態窒素、窒素酸化物、硫黄酸化物、二酸化炭素、石油、リン及び重金属からなる群から選択される少なくとも一つに起因する汚染が挙げられる。そして、上記環境浄化は、前記環境汚染

を浄化することを意味する。

[0019]

【発明の実施の形態】最近、DNAの検出やスクリーニン グなどを迅速かつ低コストで行うことができるDNAマイ クロアレイ(DNAチップともいう)の研究開発が活発に行 われている。DNAマイクロアレイは、1cm2ほどの固体表 面に数百から数十万のDNAプローブをアレイ状に配置し たものであり、これを用いればサンプル中に目的の遺伝 子が存在するか否かを瞬時に判断することができる。従 って、DNAアイクロアレイをバイオレメディエーション による環境浄化システムに応用することにより、汚染現 場の分析、汚染現場の浄化に最も適した環境浄化微生物 の選定、自然界からの高浄化活性微生物のスクリーニン グ、高浄化活性を有する組換え微生物の作出などを効率 的に行うことができると考えられる。さらに、DNAマイ クロアレイを用いて得られる情報を含む環境浄化に関す る様々な情報をデータベース化し、そのデータベースを 用いて構築された浄化方法を汚染現場に迅速に適用する ことにより、汚染規模の拡大を防ぎ、高効率の環境浄化 を行うことができると考えられる。本発明は、DNAマイ クロアレイ及び環境浄化データベースを用いて、汚染現 場の状況に適した浄化方法を構築し、該方法を用いて汚 染物質を浄化する方法である。

【0020】本発明の概要の一例を示すと図1のように なる。まず、汚染場所から、汚染土壌を採取し(工程 A)、得られた汚染土壌中に存在する微生物を単離する (工程B)。次いで、単離した微生物から全RNA、mRNA又 はcDNAを調製し標識する(工程C)。そして、汚染物質に 応じて適切なDNAマイクロアレイを選択する(工程D、例 えば硝酸態窒素用DNAマイクロイアレイ)。次いで、選択 したDNAマイクロアレイに、工程Cで得られた標識全RN · A、mRNA又はcDNAをハイブリダイズさせる(工程E)。そ して、標識全RNA、mRNA又はcDNAがハイブリダイズしたD NAマイクロアレイ上のDNAプローブを特定し、得られた 遺伝子発現シグナルパターンを環境浄化データベースを 用いて解析することにより前記微生物の種類を同定する (工程F)。そして、得られた微生物の同定結果を含む汚 染場所の様々な情報(例えば、汚染現場の土壌の物理化 学的性質、汚染現場の環境情報など)を環境浄化データ ベースに入力する(工程G)。最後に、入力した情報に基 づいて、最適浄化微生物、最適浄化条件を設定し、設定 された浄化条件を、汚染現場に適用する。浄化の進行状 況などを環境浄化データベースにフィードバックし、浄 化の最適化を計る(工程H)。このような本発明の環境浄 化方法に用いるDNAマイクロアレイは、以下のようにし て作製することができる。

【0021】1.環境浄化関連遺伝子検出用DNAマイクロアレイの作製

環境浄化関連遺伝子検出用DNAマイクロアレイは、DNAプローブの調製、及び調製したDNAプローブのDNAマイクロ

アレイ基板への固定化の主に2つの工程により作製することができる。ここで、環境浄化関連遺伝子とは、有機汚濁物、有機塩素化合物、芳香族化合物、硫黄化合物、ダイオキシン、硝酸態窒素、アンモニア態窒素、窒素酸化物、硫黄酸化物、二酸化炭素、石油、リン又は重金属などの環境汚染物質の浄化能力(例えば分解能、除去能、吸着能など)を有する微生物細胞中で、浄化機能の発現に関与しているタンパク質をコードしている遺伝子を意味する。また、DNAプローブとは、該遺伝子と特異的にハイブリダイズすることにより、測定対象物中の環境浄化関連遺伝子の有無及び発現レベルを測定するためにDNAマイクロアレイの基板上に固定するDNA断片をいう。

【0022】(1) DNAプローブの調製

本発明の環境浄化関連遺伝子検出用DNAマイクロアレイの作製に用いるDNAプローブは、用いるDNAプローブの塩基配列が既に明らかになっているか否かに応じて、以下の2つの方法、すなわち、①遺伝子データベースを用いる方法、又は②遺伝子ライブラリーを用いる方法により調製することができる。

【0023】**①**遺伝子データベースを用いるDNAプローブの調製

遺伝子データベースを用いるDNAプローブの調製方法は、目的の環境汚染物質を効率よく分解することが知られている微生物において、既にその微生物中で浄化機能の発現に関与している遺伝子の塩基配列が決定されている場合であって、その塩基配列が利用可能な塩基配列データベース(例えばGenBankやEMBLなどの塩基配列データベースなど)に登録されている場合に、その塩基配列データベースから、所望の塩基配列を取り寄せ、入手した塩基配列に基づいて、DNAプローブを合成する方法である。

【0024】例えば、目的の遺伝子の塩基配列情報が登 録されている遺伝子データベースから前記遺伝子の塩基 配列を検索し取り寄せる。ここで、塩基配列データベー スからの環境浄化関連遺伝子の検索は、環境浄化能のあ る微生物の名称、該微生物中で浄化能の発現に関与して いるタンパク質(例えば、酵素、転写因子)の名称などを 利用した、いわゆるキーワード検索により行うことがで きる。例えば、硝酸態窒素浄化能を有するシュードモナ ス・スツッツェリー中で、亜硝酸態窒素の浄化に関与し ている亜硝酸レダクターゼ遺伝子の塩基配列を、GenBan kから検索したい場合、微生物名シュードモナス・スツ ッツェリーをキーワードとして、検索項目名の箇所に入 力し検索を実行することができる。そして検索により、 前記遺伝子の塩基配列(配列番号1)を入手することがで きる。同様に、トリクロロエチレン分解能を有するニト ロソモナス·ユートロペア(Ni trosomonas europaea)由来 アンモニアモノオキシゲナーゼ遺伝子の塩基配列(配列 番号9)やメチロシスティスsp. M由来のメタンモノオキ

シゲナーゼ遺伝子の塩基配列(配列番号10)も取り寄せる ことができる。

【0025】得られた塩基配列を用いて、DNAプローブ を調製する方法としては、ポリメラーゼ連鎖反応(PCR) を用いる方法、化学合成による方法などが挙げられる。 例えば PCRにより行う場合、まず、データベースの探索 により得られた塩基配列に基づいてプライマーを設計す る。ここで、DNAプローブは、DNAマイクロアレイ基板に おいて、該プローブの配列と相補的な配列を有する検出 対象DNAが接近したときに、そのDNAとハイブリダイゼー ションを起こすことができる一本鎖DNAとして存在する ことが好ましい。従って、DNAプローブの設計に当って は、検出対象DNAとのハイブリダイゼーションを阻害す るDNAプローブの二次構造形成が極力起こらないように 配列を選択することが好ましい。ここで、DNAプローブ の二次構造とは、プローブが折り返されて、プローブの 一部が同じプローブの他の部分にハイブリダイズして生 じるステムループ構造又はヘアピン構造などをいう。す なわち、DNAプローブとして固定化すべき候補のDNA配列 が決定されたときは、遺伝子解析ソフト(例えば、日立 ソフトウエア社製DNASISなど)を用いて、二次構造が形 成されるか否かを予測する。そして、候補のDNA配列の 中で、最も予測される二次構造形成が少なく、且つ元の 遺伝子に特異的な配列を採用することが好ましい。採用 されたDNA配列の二次構造の形成をさらに防止する場合 には、ヌクレオチドを配列の少なくとも一部を置換、欠 失、付加させることもできる。その結果、予測される二 次構造の形成を最少にさせることができる。なお、ヌク レオチドの置換、欠失、付加などの変異は、公知の方法 (Ito, W. et al.:Gene 102:67 -70(1991)]により行うこ とができる。

【0026】次いで、PCRに用いる鋳型(例えば、ゲノムDNA、全RNA、mRNA、cDNAなど)を、目的遺伝子を保有する徴生物から常法[例えばSambrook, Jet al., Molecular Cloning, Cold Spring Harbor Laboratory Press(1989)を参照のこと]により調製する。そして、調製したプライマー及び鋳型を用いて、PCRにより目的DNA断片を合成する。

【0027】例えば、硝酸態窒素の浄化能を有するシュードモナス・エルギノーサ(Pseudomonas aeruginosa)、シュードモナス・スツッツェリー(Pseudomonas stutzeri)、パラコッカス・デニトリフィカンス(Paracoccus de nitrificans)などの脱窒歯用のDNAマイクロアレイに用いるDNAプローブとしては、これらの微生物中で脱窒能の発現に関与している、硝酸レダクターゼ(nitrate reductase)、亜硝酸レダクターゼ(nitrite reductase)、酸化窒素レダクターゼ(nitric oxide reductase)、亜酸化窒素レダクターゼ(nitrous oxide reductase)など(図2)の酵素をコードする遺伝子の全部又は一部を前記方法により調製したものなどが挙げられる。

【0028】例えば、シュードモナス・スツッツェリー 由来の亜硝酸レダクターゼ遺伝子を用いるDNAプローブ の調製は、スミスらの方法(Smith, G.B. et al.: Appl. Environ. Microbiol., 58: 376-384(1992)] に従って行う ことができる。すなわち、上記菌株を硝酸ナトリウム肉 汁培地などの液体又は固体培地において振盪又は静置培 養後、沪過法、遠心分離法、掻き取り法などにより菌体 を回収する。次いで、回収した菌体から界面活性剤を用 いる方法や、熱処理を行う方法などの常法によってゲノ ムDNAを抽出する。次いで、得られたゲノムDNAを鋳型と して、GenBankから取り寄せた、シュードモナス・スツ ッツェリーの亜硝酸レダクターゼ遺伝子の塩基配列に基 づいて設計したオリゴヌクレオチドプライマーを用い、 PCRを行い、DNA断片を得る。ここで、PCRに用いること ができるプライマーとしては、センス鎖については5'-AAGCTTGATTACGGTCAAGTCCCGC-3'(配列番号7)を、アンチ センス鎖については5'-ATCGATGGTGCCGATCAGCTTGCCC-3' (配列番号8)を用いることができる。但し、本発明にお いてはこれらのプライマーに限定されるものではない。 【0029】目的断片の確認は、PCRによって得られた 断片を、pBlueScriptSK(+) (STRATAGENE社製)、pCR2.1 (Invitrogen社製)等の適切なベクターにサブクローニン グ後、塩基配列を決定することにより行うことができ る。塩基配列の決定はマキサム-ギルバートの化学修飾 法、又はM13ファージを用いるジデオキシヌクレオチド 鎖終結法等の公知手法により行うことができるが、通常 は自動塩基配列決定機(例えばPERKIN-ELMER社製373A D NAシークエンサー等)を用いて行なうことができる。 【0030】得られたDNA断片は、そのままDNAプローブ としてDNAマイクロアレイの作製に用いることもできる が、適当な制限酵素で消化した部分断片を用いることも できる。例えば、シュードモナス・スツッツェリーの亜 硝酸レダクターゼ遺伝子(nir遺伝子)の場合、図11に記 載のプローブ1(配列番号3)、プローブ2(配列番号 4)、プローブ3(配列番号5)及びプローブ4(配列番号 6)がプローブDNAとして考えられるが、スミスらの報告 (Smith, G.B. et al.: Appl. Environ. Microbiol., 58:

【0031】また、最近問題となっているトリクロロエチレンを浄化する微生物用のDNAマイクロアレイに用いるDNAプローブは、メタンモノオキシゲナーゼ、アンモニアモノオキシゲナーゼ、イソプレンオキシダーゼ、プロパンモノオキシゲナーゼ、トルエンーのモノオキシゲナーゼ、トルエンデオキシゲナーゼなどのトリクロロエチレン分解酵素をコードする遺伝子の全部又は一部をPCRにより増幅することよって調製することができる。

376-384(1992)]に従えば、これらの中でもプローブ3

(配列番号5)が好ましい。

【 0 0 3 2 】 ②遺伝子ライブラリーを用いるDNAプローブの調製

遺伝子ライブラリーを用いるDNAプローブの調製方法 は、目的の環境汚染物質を効率よく分解することが知ら れているが、その浄化機能の発現に関与している遺伝子 の塩基配列がまだ決定されていない微生物において、浄 化機能の発現条件下で特異的に発現されている遺伝子、 及び/又は同一の浄化機能を有する微生物間で共通して 発現している遺伝子を、遺伝子ライブラリーの中からハ イブリダイゼーションによってスクリーニングすること により、DNAプローブを調製する方法である。ここで、 遺伝子ライブラリーとは、浄化微生物から調製したcDNA ライブラリー、ゲノムDNAライブラリー、又はゲノム解 析から明らかとなった個々のDNA断片の集合体をいう。 なお、上記のゲノム解析において、ゲノムの全塩基配列 を決定するための方法としては、ショットガン法、プラ イマーウォーク法、ネスティッドディレーション法など が挙げられる(服部正平:蛋白質核酸酵素、42:2968-29 75(1997)]。ショットガン法は、対象DNA材料を1~数kb に断片化しこれらをランダムに塩基配列決定する方法で ある。産出される配列データはそのホモロジーを指標と したコンピュータプログラムによりデータアセンブリさ れ、1つの最終塩基配列が得られる。プライマーウォー ク法は、特異的プライマーを作製しこれにより一歩一歩 配列決定を先に延ばしていく方法である。ネスティッド ディレーション法は、200~400塩基ずつ片端から欠失し た一連の欠失体を作製し、これらを鋳型として共通プラ イマーにより配列決定する方法である。

【0033】遺伝子ライブラリーを用いるDNAプローブ 調製の具体的方法としては、サブトラクションハイブリ ダイゼーションを利用する方法が挙げられる。すなわ ち、浄化能を有する微生物を汚染物質の存在下で培養し たものと汚染物質の存在しない条件下で培養したものと からcDNAをそれぞれ調製する。次いで、一方のcDNA及び 他方のcDNAの両端に異なる種類のPCR用リンカーを結合 させ、PCRにより増幅してサブトラクションに必要な量 のcDNAを作製する。得られた2種類のcDNAを混合した 後、高温での熱変性、低温での再結合を行うことによ り、両cDNAに含まれる遺伝子はハイブリッドを形成す る。上記リンカーのいずれか一方にビオチン等を結合さ せておくと、アビジンを結合させた磁気ビーズ上に、ハ イブリッドを形成したcDNAを取り出すことができる。そ して、ハイブリッドcDNAを鋳型としてさらにPCRを行う ことにより、汚染物質が存在する条件下でのみ発現する 遺伝子を増幅させ、該増幅断片をDNAプローブとして得 ることができる。なお、サブトラクション法は、当該技 術分野において周知である[Kaneko-Ishino,T et al.:Na ture Genetics, 11:52 -59(1995)).

【0034】(2) DNAの固相表面への固定化 上記(1)において得られたDNAプローブをDNAマイクロア レイの基板上に固定化する。固定基板としては、ガラス 板、石英板、シリコンウェハーなどが挙げられる。基板 の大きさとしては、例えば3.5mm×5.5mm、18mm×18mm、22mm×75mmなどが挙げられるが、これは基板上のDNAプローブのスポット数やそのスポットの大きさなどに応じて様々に設定することができる。DNAの固定化方法としては、DNAの種類及び担体の種類に応じて適当な方法が選択される。例えば、固定化するDNAがcDNAやPCR産物の場合、DNAの荷電を利用して、ポリリジン、ポリエチレンイミン、ポリアルキルアミンなどのボリ陽イオンで表面処理した固相担体に静電結合させたり、アミノ基、アルデヒド基、エポキシ基などの官能基を導入した固相表面に、アミノ基、アルデヒド基、SH基、ビオチンなどの官能基を導入したDNAを共有結合により結合させることもできる。

【0035】ここで、DNAマイクロアレイは、固定するDNAプローブの種類を特定することにより、硝酸態窒素用、有機塩素化合物用、芳香族化合物用など単一種の環境汚染物質の浄化関連遺伝子検出用DNAマイクロアレイとして作製することもできるし、さらには硝酸態窒素及び有機塩素化合物用などのように複数の環境汚染物質に対応できるDNAマイクロアレイとして作製することもできる。調製したDNAを基盤にスポットするには、数十μπ~数百μπのサイズで定められた位置に定量的にスポットすることができるアレイヤーを用いることができる。スポット方式としては、ピン先端の固相への機械的な接触によるピン方式、インクジュエットプリンターの原理を利用したインクジェット方式、毛細管によるキャビラリー方式などが挙げられる。また、手動でスポットする場合は、ピペットマンを用いることもできる。

【 O O 3 6 】また、比較的短いDNA(例えば20~25ヌクレオチド)をDNAプローブとして用いる場合は、基板上で直接合成(on chip合成という)することもできる。on chip合成は、フォーダーらのフォトリソグラフィー技術を用いる方法[Fodor,S.P.A. etal.: Science,251:767-773]やニールセンらのペプチド核酸を用いる方法[Nielsen,P.E.: Science,254:1497-1500(1991)]などを用いることができる。

【〇〇37】さらに、マイクロアレイ基板にDNAプローブを固定化した後、ハイブリダイゼーションによって、細胞の特定の機能発現に関与している遺伝子を選択し、該遺伝子のみを別のマイクロアレイ基板に固定化することによって、DNAマイクロアレイを作製することもできる。例えば、硝酸態窒素浄化用DNAマイクロアレイを作製する場合は、図3のように、まず脱窒活性を有するシュードモナス・エルギノーサなどのゲノムDNA由来のDNA断片を固定化したDNAマイクロアレイ(基板1とする;図3)に、脱窒条件下で培養したシュードモナス・エルギノーサから調製した標識cDNAをハイブリダイズさせる(工程A)。次いで、ハイブリダイズしたDNAプローブを選択し、新しいマイクロアレイ基板に整列・固定化する(工程B)。得られたDNAマイクロアレイ(基板1とは異な

る別基板2;図3)に、シュードモナス・スツッツェリー、バラコッカス・デニトリフィカンスなどの脱窒活性を有する微生物を脱窒機能発現条件下で培養したもの由来の標識cDNAをハイブリダイズさせる(工程C)。シュードモナス・スツッツェリー及びパラコッカス・デニトリフィカンス両方の菌由来の標識cDNAとハイブリダイズしたDNAプローブを選別する(工程D)。次いで、ハイブリダイズしたDNAをさらに別のマイクロアレイ基板(基板1,2とは異なる基盤3;図3)に整列・固定化することにより、硝酸態窒素用DNAマイクロイアレイを作製することができる(工程E)。

【0038】2. DNAマイクロアレイによる浄化微生物の検出

(1)汚染土壌サンプル中の微生物から全RNAの調製 上記1のDNAマイクロアレイを用いることにより、汚染 場所に汚染物質を分解する微生物が存在するか否かを調 べることができる。すなわち、汚染場所が土壌である場 合は、汚染土壌をいくつかの区画に分けて(図4)、各区 画から適当量の土壌を採取する(図1;工程A)。土壌採 取は、汚染の程度(例えば汚染物質が浸透している深さ) に応じて、地表面からの採取する位置を調整する。採取 した土壌から微生物を分離し、次いで、分離した微生物 から全RNAを抽出する。ここで、微生物の分離及び全RNA の抽出は、以下のようにして行うことができる。すなわ ち、サンプル土壌を一定量の滅菌水などに懸濁し、懸濁 液の上清を、適当な培地に播種後、適当な培養条件下 (例えば、温度、酸素濃度などを調節したもの)で培養す る。次いで増殖した微生物コロニーからRNeasy Total R NA KIT(Quiagen社製)により全RNAを抽出する(図1;工 程B)。ここで、微生物コロニーを混合して全RNAの抽出 源として用いることにより、一度の抽出操作により、複 数の微生物種から同時に全RNAを抽出することができ

【0039】また、汚染場所が水環境である場合は、汚染した水域の水サンプルを数ヵ所から採取し、微生物を培養後、培養微生物から全RNAを調製することもできる。さらに、汚染場所が大気環境である場合は、該汚染区域に生息する植物、土壌など汚染物質の浄化に関連するあらゆる生物から全RNAを抽出することができる。また、必要に応じて全RNAから、常法〔例えばSambrook, Jet al., MolecularCloning, Cold Spring Harbor Laboratory Press(1989)を参照のこと〕に従い、mRNA又はcDNAを調製し、以下のハイブリダーゼーションに用いることもできる。上記において得られた全RNA、mRNA又はcDNAは、蛍光物質、放射性物質などで検出可能なように標識する。蛍光標識の場合、蛍光物質として例えば、フルオレセン(FITC)、スルホローダミン(TR)、テトラメチルローダミン(TRITC)などを用いることができる。

【0040】(2) ハイブリダイゼーション 上記1において作製したDNAマイクロアレイに、上記の ように調製した標識全RNA、mRNA又はcDNAをハイブリダイズさせる。ハイブリダイゼーションの条件は、DNAマイクロアレイの基板上に固定したDNAプローブの種類、及び標識全RNA、mRNA又はcDNAの種類により最適化する必要がある。すなわち、DNAマイクロアレイ基板上のDNAプローブが相同性の高い塩基配列とのみハイブリダイズする条件を設定する必要がある。例えば、ハイブリダーゼーションを、DNAマイクロアレイの標識全RNA、mRNA又はcDNA溶液への浸漬により行う場合、ハイブリダーゼーション及び洗浄における溶液の塩濃度(例えばNaC1、クエン酸3ナトリウムの濃度など)、温度、時間などをDNAプローブが相同性の高い塩基配列とのみハイブリダイズするように設定する。ここで、塩濃度が低いほどまた温度が高いほど、相同性の高いハイブリッド形成を促進することができる。

【0041】(3) 検出

ハイブリダーゼーションにより、マイクロアレイ上に形 成された二重鎖は、RI又は蛍光イメージスキャナーで解 析する。マイクロアレイ上の蛍光強度は、蛍光レーザー 顕微鏡とCCDカメラ及びコンピュータを連結した装置で 自動的に測定することができる。スキャナーは、スポッ トの大きさが数十µmで、スポット間の距離が約10µm程 度のスポットを定量的に識別できるものが好ましい。さ らに、複数種の標識に対応できること、広範囲を高速で スキャンできること、基板のミクロな歪みに対応可能な オートフォーカス機能を有するものであることが好まし い。このような機能を備えたスキャナーとしては、例え ばGMS 418 Array Reader (Micro Systems社(GMS社)製)な どが挙げられる。また、データの解析に用いるソフト は、変異や多型の解析のように、部分的に重複した配列 のオリゴヌクレオチドが多数含まれる複雑な解析にも対 応できるものが好ましい。

【0042】3. 環境浄化データベース

バイオレメディエーションによる効率的な環境浄化を実現するためには、汚染場所の汚染状況を的確且つ迅速に分析し、分析結果に基づいて、構築された方法をより迅速に上記汚染場所に適用することが必要である。そのた

めには、環境浄化に関連する様々な情報が記録されている環境浄化データベースを構築することが不可欠である。ここで環境浄化データベースとは、環境浄化関連データ及び/又は環境浄化関連プログラムなどが記録されたデータ及び/又はプログラムの集合体をいう。そして、それらのデータ又はプログラムは、適当な記録媒体に記録して、環境浄化関連データとして浄化方法の検討に用いることができる。記録する記録媒体としては、磁気テープ、CD-ROM、ICカード、RAMなどのあらゆるタイプの記録媒体が挙げれる。さらにデータは、技術の進歩に応じて、環境浄化に関連する有用な情報を、逐次補充追加することができ、プログラムについても、より効率的なプログラムへとバージョンアップさせることができる。

【 0 0 4 3 】(1) 環境浄化関連データを記録した記録媒 体

環境浄化関連データとは、環境浄化に関連する様々なデータを記録したものであり、①環境浄化微生物に関連するデータ、②汚染場所の状況に対応する浄化方法データなどのデータなどが挙げられる。

【0044】 ①環境浄化微生物に関連するデータ環境浄化微生物に関連するデータとしては、(a) 環境浄化微生物名データ、(b) 環境浄化微生物の塩基配列データ、(c) 環境浄化微生物の遺伝子発現シグナルパターンデータ、(d) 環境浄化微生物の環境適応データ、(e) 環境浄化微生物の最適浄化能力発現条件データ及び(f) 相互に同一の環境浄化機能を有する環境浄化微生物間の浄化能力比較データなどが挙げられる。

【0045】(a) 環境浄化微生物名データ

環境浄化微生物名データは、各汚染物質に対して、分解活性を有することが確認されている微生物名を記録したデータである(表1)。これらのデータ内容は、環境浄化微生物に関する新たな情報を追加され逐次修正されるものである。

[0046]

【表1】

表 1 環境浄化微生物名データ

污染物質	分解微生物
** 9700t 7:=#	アルカリゲネユ・ユートロアアス(Alcaligenes eutrophus)
フェノール、フェノール誘導体	j xx71^*7jjh.71/4ba sp.nov.(Desulfobacterium phenolicum sp.
nov.)	
a-=\071/-&, m-=\071/-&	ሃኔ-ት የተአ-ን ታያ (Pseudomonas putida)
p-=\071/-%	tījītī sp. (Moraxella sp.)
本*リクロロフェノール	ロトーコナカス・クロロフェノリカス(Rhodococcus chlorophenolicus)
2, 4, 6-19=101/12	17 ቆወይ፲ት ፡ ሳባሃスት የሳ仏(Phanerochaete chrusosporium)
^a7*t>	月ロシナス・トリコス本、4ウム OB3b(Methylosinus trichosporium OB3b)
p-9VY*-N	/a-1 Eta.7 ff (Pseudomonas putida)
1007= ! >	tī/tī sp. (Moraxella sp.)
トリクロロエチレン	בּוְמּיִלּבָּג יִבְּים (Nitrosomonas europaea)
	月中ロウスティス sp. M(Methylocystis sp. M)
	ジュート もナス・セペーシブ (Pseudomonas cepacia)
1,3-ジニトロベンゼン	ロ) プラガス sp. QT-1(Rhodococcus sp. QT-1)
1,2-9'000^*>t*>	91-1° Et 2 sp. (Pseudomonas)
1,4-ジクロロベンゼン	7#ከዛዮ ነጻ sp. (Alcaligenes sp. strain Al75)
1, 2, 4-1/1/00^* > 2* >	٧١-١-۴ ٤ ٤٦ (Pseudomonas sp.)
1.2.4.5-テトラクロロペンセ゚ン	ýı-h'Etlsp.(Pseudomonas sp.)
2,4-9*=\071/-#	יום מאליבין apha יוא (Rhodococcus erythropolis)
2, 4, 6-11/1007x/-1	እ° ሐኃጵሴ? ግን - ሆነ ንታት (Burkholderia pickettii DTP0602)
除草剤シマジン	₹ラクセラ・オピス(Moraxella ovis)

【 O O 4 7 】(b) 環境浄化微生物の塩基配列データ 環境浄化微生物の塩基配列データとは、環境浄化微生物 の環境浄化機能の発現に関連する遺伝子、環境浄化微生 物の同定に用いることができる特有の塩基配列を有する 遺伝子の塩基配列データをいう。既に目的の環境浄化微 生物中から浄化活性を担う遺伝子が単離され、その塩基 配列が塩基配列データベース(例えばGenBank、EMBLな ど)に登録されている場合には、該データベースから目 的の塩基配列を取り寄せて、環境浄化微生物の塩基配列 データの作成に用いることができる。例えば、脱窒菌シ ュードモナス・スツッツェリーの亜硝酸レダクターゼ遺 伝子は、GenBankから酵素名をキーワードとして検索 し、取り寄せることができる。なお、取り寄せたシュー ドモナス・スツッツェリーの亜硝酸レダクターゼ遺伝子 の塩基配列を配列番号1に、該遺伝子のコードするタン パク質のアミノ酸配列を配列番号2に示す。また、ある 環境浄化微生物において、浄化活性を担う遺伝子の塩基 配列が決定されていない場合は、常法(例えばSambrook, J et al., Molecular Cloning, Cold Spring Harbor L aboratory Press(1989)を参照のこと]に従って、環境浄 化微生物から浄化活性を担う遺伝子を単離し、塩基配列 決定することもできる。

【 0 0 4 8 】(c) 環境浄化微生物の遺伝子発現シグナル パターンデータ

環境浄化微生物の遺伝子発現シグナルバターンデータとは、特定の環境浄化微生物中で発現する遺伝子を本発明のDNAマイクロアレイを用いて測定した場合における遺伝子発現のパターンを集めたデータである。また、遺伝

子発現シグナルパターンとは、特定の環境浄化微生物から調製した全RNA、mRNA又はcDNAを特定のDNAマイクロアレイにハイブリダイズさせたときに得られる、ハイブリダイズしたスポットのパターンををいう。

【0049】例えば、硝酸態窒素浄化能を有する脱窒菌 の浄化関連遺伝子(図5)の場合のように、浄化微生物中 の汚染物質の浄化に関わる遺伝子が既に分かっている場 合には、まず基準となる特定の硝酸態窒素浄化微生物由 来の一連の遺伝子(例えば、シュードモナス・エルギノ ーサの場合、亜硝酸レダクターゼ遺伝子nirS、nirM、ni rC、nirF、nirD、nirL、nirG、nirH、nirJ、nirE、nirN など)を固定化したDNAマイクロアレイを作製する。次い で、別の種類の硝酸態窒素浄化微生物由来の核酸調製物 (例えばシュードモナス・スツッツェリー又はパラコッ カス・デニトリフィカンス由来の全RNA、IRNA、cDNA、 ゲノムDNAなど)をハイブリダイズさせる。得られたDNA マイクロアレイを分析し、例えば、シュードモナス・ス ツッツェリー由来のサンプルがnirS、nirM、nirC、nir F、nirD、nirL、nirG、nirH遺伝子プローブとのみハイ ブリダイズした場合、そのハイブリダイズパターンが、 シュードモナス・スツッツェリーの遺伝子発現シグナル パターンとなり、またパラコッカス・デニトリフィカン ス由来のサンプルがnirS、nirC、nirF、nirE遺伝子プロ ーブとのみハイブリダイズした場合、そのハイブリダイ ズパターンが、パラコッカス・デニトリフィカンスの遺 伝子発現シグナルパターンとなる。このようにして、各 微生物に特有の遺伝子発現シグナルパターンを明らかに することができる。

【0050】(d) 環境浄化微生物の環境適応データ環境浄化微生物の環境適応データとは、環境浄化微生物が、環境への適応条件を集めたデータである。環境適応データとしては、環境浄化微生物の生育可能な温度、PH、汚染物質の成分と濃度、栄養塩の種類と濃度、生育促進物質の種類と濃度、酸化還元電位、塩濃度、他の微生物などとの共存の必要性及びその共存微生物などの種類の範囲に関する情報、並びに対象汚染物質の最大分解活性を有する上記各条件に関する情報などが挙げられる。

【0051】(e) 環境浄化微生物の最適浄化能力発現条件データ

環境浄化微生物の最適浄化能力発現条件データとは、環 境浄化微生物が、効率的な浄化能力を発現するための条 件を集めたデータである。最適浄化能力発現条件データ としては、環境浄化微生物が上記浄化能力を発現する場 合の、温度、pH、有機栄養源の種類及び濃度、無機栄養 源の種類及び濃度、酸素量並びに水分量などのデータが 挙げられる。最適浄化能力発現条件は、微生物によって 異なる。例えば脱窒菌シュードモナス・アエルギノーサ とパラコッカス・デニトリフィカンスは脱窒活性を発現 する最適温度が37℃であるのに対し、シュードモナス・ スツッツェリーは30℃が脱窒活性を発現する最適温度で ある。このように菌によって浄化能を発現するための最 適温度は異なる。季節や汚染現場の地理的な違いにより 温度は異なるため(例えば、冬の北海道では低温であ り、夏の沖縄では高温が予想される)、温度による評価 は極めて重要な要素である。一方、酸素濃度に注目する と、各菌によって最適酸素濃度は異なる。例えば、アク アスピリリューム・マグネトタクティウム(Aquaspirill um magnetotactium)は空気飽和度が1.8%以下で脱窒活 性を示すのに対し[Bazylinski, D.A.ら: Appl. Environ. Microbiol. 46:1118 -1124(1983)]、パラコッカス・デ ニトリフィカンスは好気から絶対嫌気まで脱窒活性を示 す(Alefounder, P.R.ら: FEMS Microbiol. Lett. 12:321-326(1981); Lloyd, D. S.; FEMS Microbiol. Ecol. 45:185 -190(1987)].

【0052】これらの浄化能力発現条件データは、目的の環境浄化微生物の浄化活性の発現度を、様々な条件下で測定することにより調べることができる。ここで発現度とは、環境浄化微生物により分解された汚染物質の量、環境浄化微生物中での環境浄化に関連するタンパク質(例えば、汚染物質の分解酵素など)の活性、環境浄化微生物中での環境浄化に関連する遺伝子の発現度などをいう。特に、環境浄化微生物中での環境浄化に関連する遺伝子の発現度(遺伝子発現シグナル強度ともいう)は、上記1において得られたDNAマイクロアレイを用いて測定することができる。そして、各環境浄化微生物についての条件検討の結果、微生物の浄化能力を最大に引き出すことができる条件を最適浄化能力発現条件とする。こ

こで、最適浄化能力発現条件が、汚染現場において実施不可能なもの(例えば、温度が100℃の)の場合、その条件に最も近い実施可能なものを、最適浄化能力発現条件として用いることができる。

【0053】(f) 相互に同一の環境浄化機能を有する環境浄化微生物間の浄化能力比較データ

環境浄化微生物間において、相互に同一の環境浄化機能 を有する浄化能力比較データとしては、同一条件下で特 定の汚染物質を浄化させた場合の、各環境浄化微生物の 浄化能力の優劣を記録したデータなどが挙げられる。こ こで環境浄化能とは、汚染物質を分解除去する環境浄化 微生物の能力をいう。能力の優劣の判断手法は、環境浄 化微生物を用いて汚染物質を処理した前と後との汚染物 質の量を測定することにより、分解された汚染物質の量 を算出し、分解された汚染物質の量が多い方が環境浄化 能力が高いと評価する。また、汚染物質の分解評価が困 難な場合、環境浄化関連遺伝子検出用DNAマイクロアレ イによる発現シグナルの強度により、浄化能力評価を行 う。微生物の遺伝子発現過程で最も調節を受けるのが、 転写の開始段階であるため、それを直接測定できるDNA マイクロアレイの結果は、発現、すなわち浄化能力の高 さを表すのに適していると考えられる。得られた評価結 果に基づいて、同一汚染物質に対して浄化活性を有する 微生物を、該微生物の浄化能力順にランキング付けす る。単一微生物ではなく、複数の微生物の集合体(バル クともいう)によって初めて浄化活性を発現する場合に は、集合体の状態で環境浄化活性を評価しデータ化する こともできる。これらのデータの作成及び環境浄化への 浄化微生物の適用のために、微生物保存施設(例えば、 発酵研究所(IFO)、理化学研究所微生物系統保存施設(JC M)、American Type CultureCollection(ATCC)など)から の分譲により、目的の環境浄化活性を有する微生物を取 得することが可能である。但し、様々な環境汚染に対応 するために、自然界からに新たな環境浄化微生物のスク リーニング及び豊富なカルチャーコレクションの作製を 日常的に行うことが好ましい。

【0054】**②**汚染場所の状況に対応する浄化方法データ

汚染場所の状況に対応する浄化方法データとしては、汚染場所への適用に適した浄化微生物データ、該浄化微生物の最適浄化条件データなどが挙げられる。汚染場所への適用に適したデータとは、汚染場所に存在する汚染物質を分解することができる浄化微生物に関するデータであり、上記のに記載のような各汚染物質に対して分解能を有する微生物についてのデータが挙げられる。

【0055】また、浄化微生物の最適浄化条件データとは、環境浄化微生物を用いて浄化処理を行う場合の様々な条件についてのデータである。例えば、汚染場所の浄化方法として、汚染場所にもともと存在する微生物を活性化することによって浄化処理を行うバイオスティミュ

レーション法を適用する場合と、汚染場所に人為的に浄 化微生物を添加するバイオオーグメンテーション法に分 けて記録された種々の処理条件についてのデータなどが 挙げられる(表2)。 【0056】 【表2】

表2 浄化方法データ

バイオスティミュレーション法

添加する有機栄養源及び/又は無機栄養源の種類及び添加量、添加する水分量、通気方式及び通気量、土壌混合の深さ、土壌耕運の頻度、 汚染物質の組成と濃度、pH 制御、土壌温度の管理と制御、塩濃度、土 壌の性質(砂、粘土など)

バイオオーグメンテーション法

用いる浄化微生物の種類及び添加量、浄化微生物への栄養源の供給量、水分の供給量、供給周期、供給方法、汚染物質の組成と濃度、pH 制御、土壌温度の管理と制御、塩濃度、土壌の性質(砂、粘土など)

【 0 0 5 7 】(2) 環境浄化関連プログラムを記録した記録媒体

環境浄化関連プログラムとは、環境浄化に関連する様々なプログラムを記録したプログラムであり、微生物同定プログラム、最適浄化方法構築プログラム、浄化加速最適条件構築プログラムなどが挙げられる。図6は、該環境浄化関連プログラムを用いる場合のシステムの一例である。すなわち、該システムは、環境浄化関連データ及び環境浄化関連プログラムを保持するメモリ、そのメモリ中のプログラムを実行する主制御部、主制御部で作成された結果の出力及び外部からのデータの入力を行う入出力制御部、入出力制御部と相方向に接続された出力装置、入力装置及び表示装置から構成される。

【0058】**①**微生物同定プログラム

微生物同定プログラムとは、汚染場所から分離した微生物を同定するコンピュータープログラムである。このプログラムは、サンプル微生物のシグナルパターンデータを微生物同定プログラムがインストールされたコンピュータに入力する手順、入力されたシグナルパターンデータが微生物同定プログラムの指令により記録される手順、記録されたシグナルパターンデータが予め記録されている既知の環境浄化微生物の遺伝子発現シグナルパターンと照合される手順、照合の結果サンプル微生物の種を未知種又は既知種と判断する手順、未知種と判断され

た場合にはそこでプログラムは終了し、一方、既知種と判断された場合には、次に該微生物種を同定する手順からなる(図7)。具体的には、汚染場所から分離した微生物から全RNA、mRNA又はcDNAを調製し、得られた全RNA、mRNA又はcDNAを標識後、本発明のDNAマイクロアレイを用いて、遺伝子発現シグナルパターンを測定する。次いで、得られたシグナルパターンを、上記プログラムがインストールされたコンピュータを用いて分析することにより、微生物種を同定することができる。

【0059】②最適浄化方法構築プログラム

最適浄化方法構築プログラムとは、汚染場所の様々なデータに基づき最適の浄化条件を構築するコンピュータプログラムである。このプログラムは、最適浄化方法構築プログラムがインストールされたコンピュータに汚染場所のデータを入力する手順、入力された汚染場所のデータが最適浄化方法構築プログラムの指令により記録される手順、記録された汚染場所のデータに基づき最適の環境浄化方法が構築される手順からなる(図8)。具体的には、表3のような汚染場所のデータを上記プログラムがインストールされたコンピュータ入力し、該データに基づいて、最適な環境浄化方法を構築することができる。

[0060]

【表3】

表3 汚染場所のデータ

〈汚染物質の性質〉

物理的な構成、有機成分と濃度、金属成分と濃度、栄養塩類の組成と濃度、 栄養分、pH、栄養汚染現場の状況

〈汚染現場の条件〉

土壌の性質

地形、土壌の組成、カチオン交換容量、土壌 pH、土の含水比、土壌中の徴生物の組成と菌数、栄養分の組成と濃度、土壌温度の季節的変化、地下水位、水温の季節的変化、腐食質含有量

気候条件

温度、降水量

水分地質学的条件

地下水位の季節的変化、利用可能な帯水層、地表水までの距離

【0061】③浄化加速最適条件構築プログラム 浄化加速最適条件構築プログラムとは、最適浄化方法構 築プログラムにより構築された汚染浄化方法を汚染場所 に適用した後に、浄化が効率的に進行しているか否かを 判断し、十分な浄化活性が発現していない場合には、浄 化活性が向上する条件を提示するプログラムである。こ のプログラムは、浄化加速最適条件構築プログラムがイ ンストールされたコンピュータに環境浄化微生物の遺伝 子発現シグナル強度のデータを入力する手順、入力され たシグナル強度のデータが浄化加速最適浄化構築プログ ラムの指令により記録される手順、記録されたシグナル 強度のデータに基づき、環境浄化微生物が十分な浄化能 力を発現しているか否かが判断される手順、十分な浄化 能力を発現していると判断された場合には、そのままプ ログラムは終了し、十分な浄化能力を発現していないと 判断された場合には、次に浄化微生物の浄化活性が向上 する条件が構築される手順からなる(図9)。具体的に は、まず汚染場所から、浄化を担う浄化微生物を分離 し、該微生物における環境浄化関連遺伝子の発現度を本 発明のDNAマイクロアレイにより調べる。発現度は、DNA マイクロアレイを用いて検出された遺伝子発現シグナル 強度により規定することができる。得られた遺伝子発現 シグナル強度のデータを上記プログラムがインストール されたコンピュータ入力し、該データに基づいて、浄化 が十分でない場合、浄化加速最適条件が提示され、その 浄化加速最適条件を汚染現場に適用する。

【0062】4. 環境浄化データベースを用いるバイオ レメディエーション

上記3.の環境浄化データベースを用いることによって、汚染土壌に最も適したバイオレメディエーション条件を設定することができる。例えば、硝酸態窒素で汚染された土壌をバイオレメディエーションによって浄化する場合、図10のように、汚染現場から汚染土壌を採取し(工程A)、次いで、そこに生育している微生物を分離し、増殖させる(工程B)。増殖させた微生物細胞から標識全RNA、mRNA又はcDNAを調製する(工程C)。次いで、

得られた標識全RNA、mRNAあるいは標識cDNAを上記1の 環境浄化関連遺伝子検出用DNAマイクアレイ(脱窒関連遺 伝子検出用)にハイブリダイズさせる(工程D)。ハイブ リダイゼーションによりDNAマイクロアレイ上に形成さ れた二重鎖を、蛍光イメージスキャナーなどで解析後、 得られた遺伝子発現シグナルパターンと一致するシグナ ルパターンを浄化微生物同定用シグナルパターンデータ ベースから、上記微生物同定プログラムをインストール したコンピュータを用いて検索する(工程F)。次いでシ グナルパターンに基づいて微生物の種類を同定する(工 程E)。ここで、脱窒に直接関与する遺伝子をDNAプロー ブとして固定したDNAマイクロアレイにおいて、DNAマイ クロアレイ全体にシグナルが検出された場合などは、脱 窒菌が存在すると判断する。また、シグナルが検出され なかったり、極一部にしか検出されない場合などは、脱 窒菌が存在しないと判断する。また、脱窒に直接関連す る遺伝子の一部にのみシグナルが検出される場合には、 その菌のみでなく、複数の集合で脱窒能を示す菌の一部 と判断することもある。

【0063】検出結果から、硝酸態窒素汚染現場に脱窒 菌が生息していると判断した場合にはバイオスティミュ レーションの適用場面である。従って、環境浄化データ ベースから、発現パターンの類似した菌を選択し、その 菌の至適脱窒条件を構築する。また、硝酸態窒素汚染現 場に脱窒菌が生息していないと判断した場合はバイオオ ーグメンテーションの適用場面である。従って、予め調 査した汚染現場の状況(例えば、土壌条件、水条件、大 気条件など)をもとに、環境浄化データベースから、そ の条件に適した脱窒菌を検索し、汚染現場に添加する。 次いで、添加した浄化微生物が最大の浄化能を発揮でき るように、環境を整えることが重要である。その場合、 温度、pH、栄養源などが特に重要である。微生物による 汚染物質の分解は0~10℃の範囲でも起こることが確認 されているが、生物分解の速度は低温で下がるのが普通 である。そこで、微生物が最も効率よく浄化機能を発揮 できるように、必要に応じて温度を制御することが好ま

しい。浄化初期段階における呼吸熱による温度上昇の回避にはエアレーション装置による加剰空冷方式を採用して温度調節を行う。一方、土壌温度の人工的上昇は難しいため、低温においても活性を示す分解菌(例えば、トリクロロエチレン(TCE)汚染に対しては、バルクホルデリア属細菌)を採用することが好ましい。また、バイオレメディエーションにおける微生物の浄化能力にはpHが大きな影響を及ぼす。従って、バイオレメディエーション対象土壌が酸性又はアルカリ性の場合は、緩衝能力を高めるように中和剤を添加して至適なpHを維持する必要がある。例えば、酸性土壌であれば、これを中和するための尿素、消石灰などの薬剤が適用され、またゴミ焼却灰などのアルカリ土壌であれば、これを中和するための硝酸、リン酸などの薬剤が適用される。

【0064】バイオレメディエーション適用期間中の浄 化微生物の活性は、本発明の環境浄化関連遺伝子検出用 DNAマイクロアレイを用いることによって、モニタリン グするこが可能である。例えば、シュードモナス・デニ トリフィカンス、パラコッカス・デニトリフィカンス、 アルカリゲネス・フェカリスなどの脱窒細菌による脱窒 は、図2のように、①硝酸レダクターゼによる硝酸の亜 硝酸への還元、②亜硝酸レダクターゼによる亜硝酸の酸 化窒素への還元、③酸化窒素レダクターゼによる酸化窒 素の亜酸化窒素への還元、④亜酸化窒素の窒素への還元 の4つの過程を経て行われる。従って、これらの酵素を コードする遺伝子の発現状況を、本発明のDNAマイクロ アレイを用いて調べることによって、汚染土壌の脱窒活 性をモニタリングすることができる。この場合は、DNA マイクロアレイ上の蛍光強度(目的の遺伝子の発現シグ ナル強度)を、蛍光レーザー顕微鏡とCCDカメラ及びコン ピューターを連結した装置で自動的に測定する。得られ た結果に基づいて、環境浄化データベースを用い、環境 浄化微生物が十分な浄化活性を発現しているか否かを判 断する。十分な浄化活性を発現していると判断された場 合は、引き続き環境浄化発現遺伝子の発現シグナル強度 のモニタリングを行う。一方、十分な浄化活性を発現し ていないと判断された場合には、環境浄化データベース を用いて、浄化微生物の浄化能力加速させる条件を構築 し、該条件を汚染場所に適用する。ここで、浄化微生物 の浄化能力を加速させる条件(例えばpH、温度、栄養 源、水分、酸素濃度など)としては、発現が十分ではな い遺伝子の発現を特異的に上昇させる条件などが挙げら れる。これらの条件は、環境浄化微生物を種々の条件下 で培養し、該微生物中の環境浄化関連遺伝子の発現強度 を本発明のDNAマイクロアレイを用いて測定することに より調べることができる。

【0065】5.本発明のDNAマイクロアレイを用いる 活性汚泥中の微生物組成のモニタリング 生物的汚水処理法である活性汚泥法は、廃水及び活性汚 泥を加えた曝気槽内に空気又は酸素を吹き込み、好気性 微生物の働きにより有機物を酸化分解する処理法であ る。活性汚泥法は、汚濁物質の除去率が高くかつランニ ングコストが低いため、現在各種有機廃水の処理に広く 採用されている。活性汚泥法において、効率的な浄化能 力を維持するための重要な操作因子として、活性汚泥中 の微生物量を示す活性汚泥濃度(MLSS)、曝気槽内の溶存 酸素量、活性汚泥の沈降性状を表す汚泥容量指数(SVI) などがある。有機物の分解効率は、活性汚泥中に存在す る微生物の種類により大きな影響を受けるため、活性汚 泥中に存在する微生物の組成及び該微生物中の浄化能に 関連するタンパク質をコードする遺伝子の発現度を迅速 に測定することができれば、活性汚泥中の微生物組成を 好ましい微生物組成になるように条件設定し直し、より 効率的な廃水処理を行うことができる。

【0066】従って、本発明のDNAマイクロアレイは、 遺伝子の発現度を測定することによる活性汚泥中の浄化 微生物の浄化能力の評価にも用いることができる。通 常、活性汚泥中で浄化の主役を演じていると考えられて いる微生物としては、ズウグレア(Zoogloea)、アエロバ クター(Aerobacter)、アルカリゲネス(Alcaligenes)、 バチルス(Bcillus)、バクテリウム(Bacterium)、エッシ ェリヒア(Escherichia)、フラボバクテリウム(Flavobac terium)、ノカルディア(Nocardia)、シュードモナス(Ps eudomonas)属に属するものなどが挙げられるが、それら の分解能は様々である. したがって、廃水の種類に応じ て、好ましい微生物組成になるように、種々の条件を設 定し直すことで、より効果的な廃水処理が可能となる。 例えば、廃水中にPCBなどの有機塩素化合物が含まれて いる場合は、それらの分化能を有するアルカリゲネス・ ユートロファスなどの微生物を人為的に添加し、その後 の該微生物の生育状況及び該微生物中のPOB分解に関与 する遺伝子の発現度を、本発明の環境浄化関連遺伝子検 出用DNAマイクロアレイを用いて、速やかに判断し、所 望の微生物組成になるように、運転条件等を改善するこ とができる。

【0067】さらに、廃水中に、重金属などの有害金属が含有されている場合は、それらの金属を吸蔵する能力の高い微生物を添加し、本微生物の生育状況、吸蔵に関与するタンパク質をコードする遺伝子の発現状況を本発明の環境浄化関連遺伝子検出用DNAマイクロアレイを用いてモニターすることができる。なお、重金属を吸蔵する能力を有する微生物としては表4に記載のものが挙げられる。

[0068]

【表4】

表4 重金属吸蔵能を有する微生物

金属	改生物
カドミウム	アスコフィラム・ノドサム(Ascophyllum nodosum)
	サッカロマイセス・セレビシエ(Saccharomyces cerevisiae)
水銀	リゾーブス・アーヒズス(Rhizopus arrhizus)
鉛	アブシディア・オーキディス(Absidia orchidis)
	ペニシリウム・クリソゲナム(Penicillium chrysogenum)

【0069】排水中に特殊な有機化合物が存在し、それらを分解するために、人為的に分解微生物を添加して用いる場合には、それらの微生物も含まれる。

【0070】6. 原油流出事故現場の汚染土壌のバイオレメディエーション

原油流出による環境汚染は、原油タンカーの座礁や原油 タンクの崩壊など地球のいたるところで発生し得る。本 発明のDNAマイクロアレイ及び環境浄化データベースを 用いることにより、事故現場の汚染土壌を高い効率で迅 速に浄化することができる。例えば、原油基地の石油タ ンクが崩壊し、燃料オイルが大量に流出した場合、汚染 地域の土壌を採集し、本発明のDNAマイクロアレイを用 いて、汚染土壌中に芳香族炭化水素を分解し得る菌が存 在するか否かを迅速に検出する。そして地中に芳香族炭 化水素を分解し得る菌がもともと存在していることが確 認されれば、環境浄化データベースに保存されているデ ータに基づき、該菌の浄化能力が最大となる条件に汚染 土壌を設定することによって、迅速かつ効率的な浄化を 行うことができる。また、汚染土壌中に炭化水素を分解 し得る菌が存在しないとなれば、その汚染土壌の環境に おいて最大の浄化能力を発揮し得る菌を人為的に当該汚 染土壌に添加し浄化の効率化を図る。

【0071】ここで、汚染土壌のPHが酸性であることにより、中性付近のPHで生育及び浄化作用の発現が最大となる芳香族炭化水素浄化菌の作用には適していないと判断された場合は、本発明の環境浄化データベースから選択された適切な中和剤を添加して、より迅速に対応することができる。

[00.72]

【実施例】以下に、本発明を実施例を示して具体的に説明するが、本発明の範囲はこれらに限定されるものではない。

〔実施例1〕脱窒菌の検出に用いるDNAマイクロアレイ の作製

(1) ゲノムDNAの調製

ATCCから入手した脱窒菌シュードモナス・スツッツェリ

ー(Pseudomonas stutzeri)ATCC4405株を5ml肉汁培地

DNA溶液	1.0μ l
10×PCR緩衝液(TOYOBO社製)	$2.5\mu 1$
2mM dNTPs	$2.5 \mu 1$
25mM MgCl ₂	1.5μ l
2μMセンスプライマー	5.0µ1
2μMアンチセンスプライマー	$5.0 \mu 1$

[0076]

中、28℃で一晩振盪培養した。次いで、1.5mIをマイクロチューブに移し2分間遠心して得られた沈殿を567 μ IのTEバッファー(10mM Tris-HCl(pH8.0)、1mM EDTA)に懸濁した。30 μ Iの10%SDSと3 μ Iの20mg/mIプロティナーゼK溶液を加えて混合し、37℃で1時間インキュベートすることにより菌体破砕液を得た。

【0073】得られた菌体破砕液に100μ1の5M NaClと8 0μ1のセチルトリメチルアンモニウムブロマイド(CTAB)/NaClを加えて混合し、65℃で10分間インキュベートして多糖を除去した。この処理液に、等量のクロロホルム/イソアミルアルコール(24:1)を加えて混合し、12,000×gで5分間遠心した。上層を新しいマイクロチューブに移し、フェノール/クロロホルム/イソアミルアルコール(25:24:1)を加えて混合後、12,000×gで5分間遠心することによってCTAB-蛋白質/多糖混合物を除去した。

【0074】上層を新しいマイクロチューブに移し、0.6容のイソプロピルアルコールを加えて糸状の沈殿が生成するまでチューブをよく振盪した。沈殿をチップですくい、予め1m1の70%エタノール(-20℃)を入れておいたマイクロチューブに移し、12,000×gで5分間遠心した。沈殿を70%エタノール(-20℃)でリンスし、凍結乾燥機を用いて乾燥させた。沈殿を100μ1のTEバッファーに溶解し、ゲノムDNA試料溶液として凍結保存した。

【0075】(2) PCRによるシュードモナス・スツッツェリーの亜硝酸レダクターゼをコードする遺伝子(nir遺伝子)の増幅

鋳型として上記(1)において得られたゲノムDNAを用いPC Rにより亜硝酸レダクターゼ遺伝子を増幅した。ここで 5'センスプライマー配列としては5'-AAGCTTGATTACGGTC AAGTCCCGC-3'(配列番号7)を、3'アンチセンスプライ マー配列としては5'-ATCGATGGTGCCGATCAGCTTGCCC-3' (配列番号8)を用いた。なお、合成オリゴヌクレオチド

(配列番号8)を用いた。なお、合成オリゴヌクレオチドは、全自動DNA合成機を使用して化学合成した。PCRに用いた反応液の組成は以下の通りである。

5U/μ1 Taq ポリメラーゼ 0.15μ1 <u>蒸留水 7.35μ1</u>

全量 25.0 μ1

【 O O 7 7 】 PCRは、サーマルサイクラー(ABI 社製、970 0型)を用いて、94℃で30秒間の熱変性、55℃で30秒間のアニーリング、72℃で1分間の伸長反応の条件を1サイクルとして、30サイクル行った。得られたPCR産物をダイターミネーターサイクルシークエンシングFSレディーリアクションキット(ABI 社製)を用い、蛍光自動DNAシーケンサー(ABI 社製、377型)により解析した。塩基配列の決定により、目的のnir遺伝子が増幅されていることを確認した。

【0078】(3) 脱窒菌検出用のDNAマイクロアレイの 作製

上記(2)において得られたnir遺伝子断片を、制限酵素Sa 1I及びClalで切断し、得られた約1.1kbpのDNA断片(図11中プローブ3;配列番号5)を、脱窒細菌検出用のプローブとして用い、デリシらの方法[DeRisi,J.L. et a 1.: Science 278:680-686(1997)]に従って基板上に固定した。ただし、DNAサンプルのスポッティングには、ピペットマンを使用した。

【0079】 〔実施例2〕 硝酸態窒素用DNAマイクロアレイを用いる土壌サンプルの評価及び汚染土壌の浄化(1) 硝酸態窒素汚染土壌サンプルの調製

千葉県習志野市茜浜の大成建設生物工学研究所の敷地内から採取した土壌10gを1Lの滅菌水に懸濁し、得られた懸濁液に、3g/L寒天、3g/L肉エキス、5g/Lペプトン、1g/L硝酸ナトリウムになるように、各成分を添加後、121℃で20分間滅菌し、半流動培地を調製した。得られた半流動培地にATCCから入手した脱窒菌シュードモナス・エルギノーサATCC47053株の培養菌体1gを添加したもの及び添加しないものを調製した。37℃に24時間放置することにより、脱窒菌添加硝酸態窒素汚染土壌サンプル及び脱窒菌無添加硝酸態窒素汚染土壌サンプルを調製した。

【0080】(2) 標識cDNAの調製

の調製	
RNA溶液	17µ1
5×一本鎖合成緩衝液	10 <i>µ</i> 1
25mM dATP	$1 \mu l$
25mM dCTP	$1 \mu l$
25mM dGTP	1μ l
25mM dTTP	$0.4 \mu 1$
1 mM Cy3-dUTP(Amersham社製)	5μ1
20ሀ/μ1リボヌクレーゼインヒビター	5μ1
20U/μ1逆転写酵素(RAV-2)	5μ1
ジエチルピロカーボネート処理水	4.6µ1

上記(1)において調製した硝酸態窒素汚染土壌サンプル から、ハーマンらの方法[Hermann, M. et al.:Appl. Env iron, Microbiol, 51:1124-1126(1986)]に従って、微生 物を単離後、得られた微生物由来のcDNAを調製した。す なわち、上記(1)の土壌サンプル1gを、脱酸素した9回 の滅菌済生理食塩水(塩酸システイン及びレサズリン含 有生理食塩水)に懸濁後、得られた懸濁液のうち1mlを、 窒素ガスをバブリングさせている 9mlの滅菌水に希釈し た。このうち100μ1を、ねじロプレートボトル中の5回 寒天培地(3g/L肉エキス、5g/Lペプトン、1g/L硝酸ナト リウム、15g/L寒天)に接種し、嫌気条件下でコロニーが 形成されるまで培養した。その後、同じ組成の液体培地 5回1に植菌し、37℃、嫌気条件下で48時間培養した。次 いで、1.5mlをマイクロチューブに移し、室温、12,000 ×gで10分間の遠心分離によって菌体を調製後、得られ た菌体からRNAを調製した。RNAの抽出には、RNeasy Tot al RNA kit(Quiagen社製)を使用し、製造者の提示した 方法に従った。DNAの混入の可能性を排除するため、抽 出物はリボヌクレアーゼを含まないDNaseI (MAXIscript kit, Qiagen社製)を用い、37℃で1時間処理した。処理 した抽出物は、0.5M酢酸アンモニウム及び2.5倍容のエ タノールで沈殿させ、70%エタノールで洗浄後、50µ1 のDEPC処理水(蒸留水100ml に対しジエチルピロカーボネ ート0.2mlを加えて激しく振盪後、オートクレーブした もの)に溶解した。

【0081】得られたRNA 5μgの溶液にランダム9mer sプライマー(0.3μg/μ1)5μ1を加え、65℃、5分間反応させた後、氷上に10分間静置してアニーリングさせた。cDNA合成キット (TaKaRa社製)により一本鎖蛍光標識cDNAを合成した。一本鎖蛍光標識cDNAの合成に用いた反応液の組成は以下の通りである。

[0082]

(3) ハイブリダイゼーション

上記(2)において調製した土壌サンプル由来の標識cDNA を、シェーナらの方法[Schena, M. et al.:Science 270: 467-470(1995)]に従って、実施例1において作製したDN Aマイクロアレイにハイブリダイズさせた。

【0083】(4) 検出

(3)においてハイブリイダイズさせたDNAマイクロアレイについて、Micro Radiance共焦点イメージングシステム MR/A-1(Bio-Rad社製)を用いて蛍光分析した。その結果、脱窒菌添加硝酸態窒素汚染土壌サンプル由来のものには脱窒菌の存在を示すシグナルが得られたが、脱窒菌無添加硝酸態窒素汚染土壌サンプル中にはシグナルが得られなかった。

【0084】(5) サンプル土壌中の硝酸態窒素の浄化 上記(4)において、脱窒菌の存在を示すシグナルが得ら れなかった脱窒菌無添加硝酸憩窒素汚染土壌サンプルに 硝酸態窒素分解能のある微生物を添加するバイオオーグ メンテーション法により汚染土壌の浄化を行った。すな わち、上記脱窒菌無添加硝酸態窒素汚染土壌サンプル10 mlに対して、シュードモナス・エルギノーサ1mgを添加し、土壌を撹拌した。また、pHをシュードモナス・エルギノーサが最も活発に活動し得るpH7.0に調整した。3 日間放置した後の硝酸態窒素の含有量を調べたところ、シュードモナス・エルギノーサを添加したことにより、添加前に約1g/Lの濃度であった硝酸態窒素の含有量が、添加後には、約0.1g/Lに減少していることが確認され、効率的に硝酸態窒素が浄化されていることがわかった。

[0085]

【発明の効果】本発明により、本発明は、汚染された大 気、水質及び土壌を効率的に浄化するために用いる環境 浄化関連遺伝子検出用DNAマイクロアレイ及び該DNAマイ クロアレイを用いる環境浄化システムが提供される。

[0086]

【配列表】

SEQUENCE LISTING

<;110>; Taisei Corporation

<;120>; DNA Microarrays for Detection of Environmental Remediation Related Genes and Methods of Environmental Remediation.

<;160>; 10

<;210>; 1 <;211>; 2382 <;212>; DNA

<;213>; Pseudomonas stutzeri

<;220>;

<;221>; CDS

<;222>; (307)..(1959)

<;400>; 1

aagettgatt acggteaagt eeegettgaa atggeaeett etegaggeeg tgeaeeegee 60 ageagegeag geegtaeteg ggetegeega getttegttt etgeatacaa eeetegeeeg 120 caetggeete eeegegacae gaegteaegt teggggggte geegaaagae tettgaetge 180 cateaagege gttegeaaga ggeecaeeta ggatgeaaae egegeaeaag aagaaageae 240 eegggaaetg eeacategee gtaaetagea ggageegeee eaagegetee aaaaggagag 300 acatee atg agt ace att ggt aaa eet gtg ate gge etg tte gee gge 348

Met Ser Thr Ile Gly Lys Pro Val Ile Gly Leu Phe Ala Gly

1 5 10
atg tcg aat ctg ctc ggc atg gcg gtc gcc cat gcc gca ccg gac 396
Met Ser Asn Leu Leu Gly Met Ala Val Ala His Ala Ala Ala Pro Asp

25 -

Met Thr Ala Glu Glu Lys Glu Ala Ala Lys Lys Ile Tyr Phe Glu Arg

20

				35					40					45		
tgc	gcc	ggc	tgt	cac	ggt	gtt	ctg	cgc	aag	ggc	gcc	acg	ggc	aag	aac	492
Cys	Ala	Gly	Cys 50	His	Gly	Val	Leu	Arg 55	Lys	Gly	Ala	Thr	Gly 60	Lys	Asn	
ctc	gaa	ccg	cac	tgg	gaa	aag	acc	gaa	gac	ggc	aag	aaa	atc	gaa	ggc	540
Leu	Glu	Pro 65	His	Trp	Glu	Lys	Thr 70	Glu	Asp	Gly	Lys	Lys 75	He	Glu	Gly	
ggc	acc	ctg	aag	ctg	ggc	acc	aag	cgc	ctg	gag	aac	atc	att	gcc	ttc	588
Gly	Thr 80	Leu	Lys	Leu	Gly	Thr 85	Lys	Arg	Leu	Glu	Asn 90	He	He	Ala	Phe	
								tac				-		-	_	636
Gly 95	Thr	Glu	Gly	Gly	Met 100	Val	Asn	Tyr	Asp	Asp 105	He	Leu	Thr	Ala	Glu 110	
gaa	atc	aac	ctg	atg	gcg	cgc	tat	atc	cag	cac	acg	ccg	gac	att	ccg	684
Glu	He	Asn	Leu	Met 115	Ala	Arg	Tyr	Ile	Gl n 120	His	Thr	Pro	Asp	He 125	Pro	
	-					_	-	aag	-	-			_		-	732
Pro	Glu	Phe	Ser 130	Leu	Gln	Asp	Met	Lys 135	Asp	Ser	Trp	Asn	Leu 140	He	Val	
_								aac								780
		145					150	Asn				155				
								cag								828
Phe	Al a 160	He	Thr	Leu	Arg	Asp 165	Ala	Gln	Leu	Trp	Asp 170	Gly	Asp	Thr	His	
		_	_					ggc	_							876
	He	Trp	Lys	He		Asp	Thr	Gly	Tyr		Val	His	He	Ser		
175	.		.		180	_4_	1_1			185			L		190	~ 4
								aca Thr								924
				195					200					205		072
								gaa Glu				_			_	972
			210					215					220			1000
	_		_		_	_		gac	-		-		_			1020
		225					230	Asp				235				1000
															tcg ·	1068
	240					245		Thr			250					
								ccg								1116
255					260			Pro		265					270	
								cac								1164
				275				His	280					285		
								gag								1212
1 le	Val	Ala	Ser 290	His	lle	Lys	Pro	G1 u 295	Trp	Val	Val	Asn	Va 1 300	Lys	Glu	
200	aaa	024	210	at a	ota	ato	420	+ 20	200	420	2+4	224		ata	224	1260

Thr	Gly	G1n 305	He	Met	Leu	Val	Asp 310	Tyr	Thr	Asp	Ile	Lys 315	Asn	Leu	Lys	
acc	acc	acc	atc	gaa	tcc	gcc	aag	ttc	ctg	cac	gac	ggc	ggc	tgg	gat	1308
Thr	Thr	Thr	He	Glu	Ser	Ala	Lys	Phe	Leu	His	Asp	Gly	Gly	Trp	Asp	
	320					325					330					
gcc	tcc	cat	cgc	tac	ttc	atg	gtc	gcc	gcc	aac	gcc	tcc	aac	aag	gct	1356
	_		_	_	Phe							_		_		
335			Ū	•	340		_			345				•	350	
	cct.	gca	gtc	gat.	acc	aag	acc	ggt.	aag		gca	gct.	ct.g	atc		1404
		_	_		Thr	_			_	_	_	_	_		-	110
			,	355		D , D		٠.,	360	Dou	,,,,		Dou	365	·wr	
acc	ara	220	atc		acc	raa	ara	cac		ttc	σtσ	cac	cca		ttc	1452
		_		_	Thr				_							1-1-72
	ni u	LJS	370	LII S	1111	n 8	1111	375	ASII	THE	141	1113	380	GIII	THE	
aac	cca	at a	_	too	200	aao	000		aao	420	420	ata	_	too	oto	1500
	_ `		_ `		acc					-	-			_	_	1500
uış	110	385	пр	<i>J</i> C1	Thr	GIY		LCu	OI y	nsp	nsy		Vai	Je1	Leu	
a t a	+		oot	toa	ant.		390		+	~~~	224	395		404		15/0
	_		_		gat					-						1548
116		1111	FIU	æi	Asp		sei	Lys	1 71	Ald		I y I	Lys	GIU	пі	
	400			-4-		405					410					1500
					cag		_									1596
	ІГР	Lys	vai	vai	Gln	GIU	Leu	Lys	мет		GIY	Ala	ыу	ASI		
415					420					425					430	
					ccg	_							_		_	1644
Phe	Val	Lys	Ihr		Pro	Lys	Ser	Lys		Phe	Trp	Ala	ASP		Pro	
				435					440					445		
		_			gag											1692
Met	Asn	Pro		Arg	Glu	Val	Ala		Ser	Val	Tyr	Val	Phe	Asp	Met	
			450					455					460			
					gca											1740
Asn	Asp		Ser	Lys	Ala	Pro		Gln	Leu	Asn	Val		Lys	Asp	Ser	
		465					470					475				
ggt	ctg	ccg	gaa	agc	aag	gca	atc	cgc	ggc	gct	gtg	cag	ccc	gag	tac	1788
Gly		Pro	Glu	Ser	Lys		He	Arg	Gly	Ala		Gln	Pro	Glu	Tyr	
	480					485					490					
					gaa											1836
	Lys	Ala	Gly	Asp	Glu	Val	Trp	He	Ser		Gly	Ala	Gly	Lys		
495					500					505					510	
					gtg											1884
Asp	Gln	Ser	Ala	Ile	Val	He	Tyr	Asp	Asp	Lys	Thr	Leu	Lys	Leu	Lys	
				515					520					525		
cgc	gtc	atc	acc	gac	ccg	gcc	gtc	gtc	act	ccg	acc	ggt	aag	ttc	aac	1932
Arg	Val	l le	Thr	Asp	Pro	Ala	Val	Val	Thr	Pro	Thr	Gly	Lys	Phe	Asn	
			530					535					540			
gtg	ttc	aac	acc	atg	aac	gac	gtg	tac	taac	ccg	cc 8	gagaa	ecgg	a		1979
Val	Phe	Asn	Thr	Met	Asn	Asp	Val	Tyr								
		545					550									
															agacca	
caaa	igaco	cg	aacc	gaag	sc ta	gccs	gcctt	t tai	tcts	gcgc	cggo	cgas	gta o	gcgc	ctactc	2099
acto	danc	ac s	ttct	cate	o to	aats	tte	1 64:		aaaa	tati	+++	add d	icaa,	rttcaa	2150

2382

caacgtctat cccgaataca aggaaaccat ccactactcc aaccgcaccg gcgtacgggc 2279 tacctgcccc gactgccacg tgcccaagga gtggacgcac aagatggtgc gcaaggtcga 2339 ggcctccaag gagctctggg gcaagctgat cggcaccatc gat <;210>; 2 <;211>; 551 <;212>; PRT <:213>; Pseudomonas stutzeri <;400>; 2 Met Ser Thr Ile Gly Lys Pro Val Ile Gly Leu Phe Ala Gly Met Ser 10 Asn Leu Leu Gly Met Ala Val Ala His Ala Ala Ala Pro Asp Met Thr 25 Ala Glu Glu Lys Glu Ala Ala Lys Lys Ile Tyr Phe Glu Arg Cys Ala 40 Gly Cys His Gly Val Leu Arg Lys Gly Ala Thr Gly Lys Asn Leu Glu 55 60 Pro His Trp Glu Lys Thr Glu Asp Gly Lys Lys Ile Glu Gly Gly Thr 70 Leu Lys Leu Gly Thr Lys Arg Leu Glu Asn Ile Ile Ala Phe Gly Thr 90 Glu Gly Gly Met Val Asn Tyr Asp Asp Ile Leu Thr Ala Glu Glu Ile 105 Asn Leu Met Ala Arg Tyr Ile Gln His Thr Pro Asp Ile Pro Pro Glu 120 Phe Ser Leu Gln Asp Met Lys Asp Ser Trp Asn Leu Ile Val Pro Val 135 140 Glu Arg Arg Gln Met Asn Lys Val Asn Leu Glu Asn Val Phe Ala Ile Thr Leu Arg Asp Ala Gln Leu Trp Asp Gly Asp Thr His Glu Ile 170 165 Trp Lys Ile Leu Asp Thr Gly Tyr Ala Val His Ile Ser Arg Leu Ser 185 Ala Ser Gly Arg Met Ser Thr Pro Ser Ala Gly Trp Leu Thr Thr Ile Ile Asp Met Trp Tyr Pro Glu Pro Thr Thr Val Ala Thr Val Arg Leu 215 220 Gly Pro Ile Arg Ser Val Asp Val Ser Lys Phe Lys Gly Tyr Glu Asp 230 235 Lys Tyr Leu Ile Gly Gly Thr Tyr Trp Pro Pro Gln Tyr Ser Ile Met 250 Asp Gly Glu Thr Leu Glu Pro Met Lys Val Val Ser Thr Arg Gly Gln 265 Thr Val Asp Gly Asp Tyr His Pro Glu Pro Arg Val Ala Ser Ile Val Ala Ser His Ile Lys Pro Glu Trp Val Val Asn Val Lys Glu Thr Gly 295 300 Gln Ile Met Leu Val Asp Tyr Thr Asp Ile Lys Asn Leu Lys Thr Thr

cacegocatg gaagecagea acacegaaae ettetgeate teetgecaeg agatgggega 2219

```
305
                    310
                                        315
                                                            320
Thr Ile Glu Ser Ala Lys Phe Leu His Asp Gly Gly Trp Asp Ala Ser
                                    330
His Arg Tyr Phe Met Val Ala Ala Asn Ala Ser Asn Lys Ala Ala Pro
            340
                                345
Ala Val Asp Thr Lys Thr Gly Lys Leu Ala Ala Leu Ile Asp Thr Ala
                            360
Lys Ile Arg Thr Arg Thr Arg Asn Phe Val His Pro Gln Phe Gly Pro
                        375
                                            380
Val Trp Ser Thr Gly His Leu Gly Asp Asp Val Val Ser Leu Ile Ser
385
                    390
                                        395
Thr Pro Ser Asp Glu Ser Lys Tyr Ala Lys Tyr Lys Glu His Asn Trp
                                    410
Lys Val Val Gln Glu Leu Lys Met Pro Gly Ala Gly Asn Leu Phe Val
            420
                                425
Lys Thr His Pro Lys Ser Lys His Phe Trp Ala Asp Ala Pro Met Asn
                            440
                                                445
Pro Glu Arg Glu Val Ala Glu Ser Val Tyr Val Phe Asp Met Asn Asp
                        455
                                            460
Leu Ser Lys Ala Pro Thr Gln Leu Asn Val Ala Lys Asp Ser Gly Leu
                    470
                                        475
Pro Glu Ser Lys Ala Ile Arg Gly Ala Val Gln Pro Glu Tyr Asn Lys
                485
                                    490
Ala Gly Asp Glu Val Trp Ile Ser Ser Gly Ala Gly Lys Thr Asp Gln
                                505
Ser Ala Ile Val Ile Tyr Asp Asp Lys Thr Leu Lys Leu Lys Arg Val
                            520
Ile Thr Asp Pro Ala Val Val Thr Pro Thr Gly Lys Phe Asn Val Phe
                        535
                                            540
Asn Thr Met Asn Asp Val Tyr
545
                    550
<;210>; 3
<;211>; 944
<;212>; DNA
<:213>: Pseudomonas stutzeri
<;400>; 3
agettgatta eggteaagte eegettgaaa tggeaeette tegaggeegt geaeeegeea 60
gcagcgcagg ccgtactcgg gctcgccgag ctttcgtttc tgcatacaac cctcgcccgc 120
actggcctcc ccgcgacacg acgtcacgtt cggggggtcg ccgaaagact cttgactgcc 180
atcaagegeg ttegeaagag geecacetag gatgeaaaee gegeacaaga agaaageaee 240
egggaactge cacategeeg taactageag gageegeeee aagegeteea aaaggagaga 300
catecatgag taccattggt aaacetgtga teggeetgtt egeeggeatg tegaatetge 360
teggeatgge ggtegeecat geegeegeae eggacatgae egeggaagaa aaagaggeeg 420
ccaagaagat ctacttcgag cgctgcgccg gctgtcacgg tgttctgcgc aagggcgcca 480
cgggcaagaa cctcgaaccg cactgggaaa agaccgaaga cggcaagaaa atcgaaggcg 540
gcaccetgaa getgggcace aagegeetgg agaacateat tgeetteggt aeegaaggeg 600
gcatggtcaa ctacgacgac atcctgaccg ccgaagaaat caacctgatg gcgcgctata 660
tecageacae geeggaeatt eegeeagagt tetetetgea ggaeatgaag gaeagetgga 720
```

acctgatcgt tccggtggaa cgccgaagac agatgaacaa ggtcaacctc gagaacgtgt 780 tegecateae eetgegtgae gegeagetet gggaeggtga tacceaegag atetggaaga 840 tectegatae eggetaegeg gtgeacatet egegtetgte egeeteegge egtatgteta 900 caccetegge eggatggetg accaccatea tegacatgtg gtat 944 <:210>: 4 <;211>; 286 <;212>; DNA <;213>; Pseudomonas stutzeri <;400>; 4 ccggaaccga ccaccgtcgc gaccgttcgc ctgggtccga tccgctcggt ggacgtctct 60 aagttcaagg getaegaaga caagtaeetg ateggtggea eetaetggee gecaeagtae 120 tegateatgg acggegagae tetggaaceg atgaaagteg tetecaceeg eggeeagaee 180 gtogatggog actaccacco ogagooggog gtggogtoca togtogooto gcacatcaag 240 cccgagtggg tggtgaacgt gaaggagacc gggcagatca tgctgg 286 <;210>; 5 <;211>; 1147 <:212>: DNA <;213>; Pseudomonas stutzeri <:400>: 5 tegactacae egacateaag aaceteaaga eeaceaceat egaateegee aagtteetge 60 acgacggcgg ctgggatgcc tcccatcgct acttcatggt cgccgccaac gcctccaaca 120 aggetgegee tgeagtegat accaagaceg gtaagetgge agetetgate gatacegega 180 agateegeae eeggaegee aacttegtge accegeagtt eggeeeggta tggteeaeeg 240 gecaectggg egaegaegtg gtgteeetea tetecaegee tteggatgaa tecaagtaeg 300 ccaagtacaa ggagcacaac tggaaggtgg tgcaggagct gaagatgccg ggcgccggca 360 acctgttcgt caagacccac ccgaagtcga agcacttctg ggccgacgcg ccgatgaacc 420 eggagegtga ggtageegaa teggtgtaeg tgttegacat gaaegaeetg agcaaggeae 480 egacecaget caaegtegee aaggacteeg gtetgeegga aageaaggea ateegeggeg 540 ctgtgcagcc cgagtacaac aaggcgggtg acgaagtgtg gatctcctct ggggcgggca 600 agaccgacca gtccgcgatc gtgatctatg acgacaagac actgaagctc aagcgcgtca 660 teacegacee ggeegtegte acteegaceg gtaagtteaa egtgtteaac accatgaaeg 720 acgtgtacta accegecega gaacggcatg cegacteece egtgeegege gggggagetg 780 gecagggaat egcacecatg acagaceaca aagaceegaa acegaageta geegeettta 840 ttctgcgccg gccgagtacg cgctactcgc tcggcggcat tctcatcgtc ggtattcgcg 900 accaggggta tttttggggc ggcttcaaca ccgccatgga agccagcaac accgaaacct 960 tetgeatete etgecaegag atgggegaea aegtetatee egaatacaag gaaaceatee 1020 actactecaa cegeacegge gtacgggeta cetgeceega etgecaegtg eccaaggagt 1080 ggacgcacaa gatggtgcgc aaggtcgagg cctccaagga gctctggggc aagctgatcg 1140 gcaccat 1147

<;210>; 6 <;211>; 695 <;212>; DNA

<;213>; Pseudomonas stutzeri

<;400>; 6

```
taagttcaag ggctacgaag acaagtacct gatcggtggc acctactggc cgccacagta 60
ctcgatcatg gacggcgaga ctctggaacc gatgaaagtc gtctccaccc gcggccagac 120
cgtcgatggc gactaccacc ccgagccgcg cgtggcgtcc atcgtcgcct cgcacatcaa 180
georgagtag gtggtgaacg tgaaggagac egggcagate atgetggteg actacacega 240
catcaagaac ctcaagacca ccaccatcga atccgccaag ttcctgcacg acggcggctg 300
ggatgcctcc catcgctact tcatggtcgc cgccaacgcc tccaacaagg ctgcgcctgc 360
agtogatace aagaceggta agetggeage tetgategat aeegegaaga teegeaceeg 420
gacgcgcaac ttcgtgcacc cgcagttcgg cccggtatgg tccaccggcc acctgggcga 480
cgacgtggtg teceteatet ceaegeette ggatgaatee aagtacgeea agtacaagga 540
gcacaactgg aaggtggtgc aggagctgaa gatgccgggc gccggcaacc tgttcgtcaa 600
gacccacccg aagtcgaagc acttctgggc cgacgcgccg atgaacccgg agcgtgaggt 660
agccgaatcg gtgtacgtgt tcgacatgaa cgacc
                                                                  695
<;210>; 7
<;211>; 25
<;212>; DNA
<:213>; Artificial Sequence
<:220>:
<:223>: Designed oligonucleotide based on the upstream sequence of nir gen
<;400>; 7
aagettgatt aeggteaagt eeege
                                                                   25
<;210>; 8
<:211>: 25
<;212>; DNA
<;213>; Artificial Sequence
<;220>;
<;223>; Designed oligonucleotide based on the downstream sequence of nir g
ene.
<;400>; 8
atcgatggtg ccgatcagct tgccc
                                                                    25
<;210>; 9
<;211>; 606
<;212>; DNA
<;213>; Nitrosomonas europaea
<;400>; 9
tggcgtgtac atatggcaat catgccgctg tttgcgctgg ttacctgggg ttggatcctg 60
aaaacgcgtg atacgaaaga gcaattggat aatctggatc ccaaactgga aatcaaacgc 120
tacttctact acatgatgtg gctgggtgta tacatttttg gtgtttactg gggtggtagc 180
ttcttcacgg agcaagatgc ctcctggcac caagtgatta ttcgtgatac cagtttcacg 240
ccaagtcacg tagtggtgtt ttacggatca ttcccgatgt acatcgtttg cggtgttgca 300
acctacctgt atgcaatgac tegeetgeea ttgtteagee gtggaattte etteeegetg 360
gttatggcga ttgcaggccc gttgatgatt ctgcctaacg ttggtctgaa cgagtggggt 420
```

catgetteet ggtteatgga agagttgtte agegeaceae tgeaetgggg atttgtagtg 480 ttgggetggg egggtetgtt eeagggtggt gttgeagete agateattae eegttattee 540 aatetgaeeg atgtggttg gaacaaceaa ageaaagaaa ttetgaataa eeggattgta 600 gettaa 606

<;210>; 10 <;211>; 495 <;212>; DNA

<;213>; Methylocystis sp. M

<;400>; 10

gtcgactgga aggatcgtcg tatgtggccg acggttctgc cgatcctcgg cgtgaccttc 60
tgcgcggcgt cgcaggcttt ctggtgggtc aacttccgtc ttccgttcgg cgccgttttc 120 ,
gcggttctgg gcctgatgat cggcgagtgg atcaaccgct acgtcagett ctggggctgg 180
acctacttcc cgatcagcct cgtgttcccg tctgctatga tcgttccggc gatctggctc 240
gacgtgatcc tgctcctgtc gggctcctat gtgatcagg cggttgtcgg ttcgctcggc 300
tggggtctgc tgttctatcc gaacaactgg ccggcgatcg ccgccttcca ccaggcgacc 360
gaacagcatg gtcagttgat gacgctggcc gatctcatcg gtctgcactt cgtccgacc 420
tcgatgccgg aatacatccg catggtcgag cgcggcacgc tgcgcacctt cggtaaggac 480
gttgtgccgg ttgcg

[0087]

【配列表フリーテキスト】配列番号7: nir遺伝子の上 流配列に基づいて合成したオリゴヌクレオチド。

配列番号8: nir遺伝子の下流配列に基づいて合成した オリゴヌクレオチド。

【図面の簡単な説明】

【図1】本発明の環境浄化方法の手順を示した図である。

【図2】グラム陰性菌の脱窒経路を示した図である。

【図3】本発明の環境浄化関連遺伝子検出用DNAマイクロアレイの製造方法を示した図である。

【図4】石油汚染現場の土壌を採取する場合の採取区画を例示した図である。

【図5】亜硝酸還元酵素の遺伝子を固定したDNAマイクロアレイを用いて異なる種の脱窒菌の遺伝子発現シグナ

ルパターンを調べる手順を示した図である。

【図6】環境浄化関連プログラムを用いて効率的な環境 浄化方法を構築するためのシステムを例示した図である。

【図7】 微生物同定プログラムのフローチャートを示した図である。

【図8】最適浄化方法構築プログラムのフローチャート を示した図である。

【図9】浄化加速最適条件構築プログラムのフローチャートを示した図である。

【図10】汚染現場から土壌を採取して、土壌中に存在する微生物を特定するまでの工程を示した図である。

【図11】硝酸態窒素用DNAマイクロアレイの作製に用いたプローブを示した図である。

【図2】

Nar: 研放レダクターゼ Nar: 亜硫酸レダクターゼ Nor:酸化壺素レダクターゼ Nos:亜酸化窒素レダクターゼ

【図8】

【図3】

【図4】

【図9】

【図11】

フロントページの続き

(72)発明者 吉田 光毅 東京都新宿区西新宿一丁目25番1号 大成 建設株式会社内 F 夕一ム(参考) 48024 AA11 AA17 AA19 CA03 CA04 CA09 CA12 GA19 GA27 HA12 4B063 QA01 QA08 QA13 QA18 QA20 QQ05 QQ18 QQ19 QQ43 QQ53 QQ57 QR32 QR38 QR56 QR84 QS03 QS07 QS14 QS25 QS34 QS39 QX02 4D002 AA02 AA09 AA12 AA13 AA21 AA27 AA28 BA17 CA07 DA58 DA59 HA01 4D040 DD01 DD12 DD14 DD16 DD18

DD20 DD22