$$E: y^2 = x^3 + Ax + B$$

$$-16(4A^3 + 27B^2) \neq 0$$

$$P \mapsto nP$$

$$1728 \frac{A^3}{4A^3 + 27B^2}$$

A pairing is a nondegenerate map $e: G_1 \times G_2 \to G_3$, where G_i are cyclic and $|G_i| = p$ satisfying:

1.
$$e(aP, bQ) = e(P, Q)^{ab}$$

2.
$$e(P,Q) \neq 1$$
 for some P,Q

3. e is efficiently computable

The Weil Pairing: $e: E(F_p)[r] \times E(F_p)[r] \to \mu_r$, where $E(F_p)[r]$ is the group of r-torsion points and $\mu_r \subset \overline{F_p}$ are the rth roots of unity.

The Tate Pairing:
$$\tau: E(F_p)[r] \times E(F_p)[r]/rE(F_p) \to \mu_r$$

The Weil/Tate Pairing is efficiently computable when $\mu_r \subset F_{p^k}$, where k is small. This holds iff $\gcd(r, p^k - 1) = r \iff p^k - 1 \equiv 0 \mod r \iff p$ is a primitive kth root of unity mod r. A curve with efficiently computable pairings is pairing-friendly.

If
$$r \approx p$$
, then $\Pr[\text{pairing-friendly curve}] = O(\frac{\log^3 M}{M})$