

Winning Space Race with Data Science

Kondamudi Raaga Laasya 7th February 2024

https://github.com/RaagaLaasya/DataScience_IBM/tree/main_

Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion

Executive Summary

- Summary of methodologies
 - Data Collection
 - Data Wrangling
 - EDA with SQL
 - EDA with data visualization
 - Building an interactive map with Folium
 - Building a dashboard with Plotly Dash
 - Predictive analysis (Classification)
- Summary of all results
 - EDA results
 - Interactive analytics
 - Predictive analysis

Introduction

- Project background and context
 - SpaceX advertises Falcon 9 rocket launches on its website, with a cost of 62 million dollars; other providers cost upwards of 165 million dollars each, much of the savings is because SpaceX can reuse the first stage.
- Problems you want to find answers
 - The project task is to predict if the first stage of the SpaceX Falcon 9 rocket will land successfully.

Methodology

Executive Summary

- Data collection methodology:
 - SpaceX Rest API
 - Web Scrapping from Wikipedia
- Perform data wrangling
 - One Hot Encoding data fields for Machine Learning and data cleaning of null values and irrelevant columns
- Perform exploratory data analysis (EDA) using visualization and SQL
- Perform interactive visual analytics using Folium and Plotly Dash
- Perform predictive analysis using classification models
 - LR, KNN, SVM, DT models have been built and evaluated for the best classifier

Data Collection

 Two methods of data collection: using the SpaceX REST API and by Web Scrapping.

Data Collection – SpaceX API

- Data collection with SpaceX REST calls
- https://github.com/RaagaLa asya/DataScience IBM/blob/ main/data-collectionapi.ipynb

Data Collection - Scraping

- Web scraping process
- https://github.com/RaagaLaa sya/DataScience IBM/blob/m ain/webscraping.ipynb

Data Wrangling

EDA with Data Visualization

https://github.com/RaagaL aasya/DataScience_IBM/bl ob/main/eda-dataviz.ipynb

EDA with SQL

https://github.com/RaagaLaasya/DataScience IBM/blob/main/eda-sql-coursera sqllite.ipynb

- SQL queries performed include:
 - Display the names of the unique launch sites in the space mission
 - Display 5 records where launch sites begin with the string 'CCA'
 - Display the total payload mass carried by boosters launched by NASA (CRS)
 - Display average payload mass carried by booster version F9 v1.1
 - List the date when the first succesful landing outcome in ground pad was acheived.
 - List the names of the boosters which have success in drone ship and have payload mass greater than 4000 but less than 6000
 - List the total number of successful and failure mission outcomes
 - List the names of the booster_versions which have carried the maximum payload mass. Use a subquery
 - List the records which will display the month names, failure landing_outcomes in drone ship ,booster versions, launch_site for the months in year 2015.
 - Rank the count of landing outcomes (such as Failure (drone ship) or Success (ground pad)) between the date 2010-06-04 and 2017-03-20, in descending order.

Build an Interactive Map with Folium

Map markers have been added with the aim to find an optimal location for building a launch site https://github.com/RaagaLaasya/DataScience_IBM/blob/main/folium_launch_site_location.jupyterlite.ipynb

Build a Dashboard with Plotly Dash

https://github.com/RaagaLaasya/DataScience_IBM/blob/main/spacex_dash_app.py

Predictive Analysis (Classification)

• SVM,KNN, Logistic Regression and Decision Tree achieved an accuracy of 83.3% however the best model is Decision Tree with a score of 0.873.


```
Best model is DecisionTree with a score of 0.8732142857142856

Best params is : {'criterion': 'gini', 'max_depth': 6, 'max_features': 'sqrt', 'min_samples_leaf': 2, 'min_samples_split': 5, 'splitter': 'random'}
```

Results

- Orbit GEO, HEO, SSO, ES L1 has the best success rate.
- KSC LC 39A had the most successful launches from all sites.
- Low weighted payloads perform better than heavier payloads
- All machine learning models performed very well on the given dataset.

Flight Number vs. Launch Site

• Launches from the CCAFS SLC40 are significantly higher that the other launch sites.

Payload vs. Launch Site

• The majority of lower mass payloads have been launched from the CCAFS SLC40

Success Rate vs. Orbit Type


```
df_groupby_orbits = df.groupby('Orbit').Class.mean()
df_groupby_orbits
Orbit
ES-L1
         1.000000
GEO
         1.000000
GTO
         0.518519
HEO
         1.000000
ISS
         0.619048
LEO
         0.714286
         0.666667
MEO
PO
         0.666667
         0.000000
SS0
         1.000000
VLEO
         0.857143
Name: Class, dtype: float64
```

• Orbit types ESL1, GEO, HEO AND SSO have the highest success rate.

Flight Number vs. Orbit Type

• Shift to VLEO is evident

Payload vs. Orbit Type

 Strong correlation between ISS and Payload at the 2000 range, same as GTO and 4000-8000 range

Launch Success Yearly Trend

 Launch success has increased since 2013 and stabilized in 2019, due to advance in science and technology.

All Launch Site Names

```
Task 1
         Display the names of the unique launch sites in the space mission
In [13]:
          sql SELECT DISTINCT LAUNCH_SITE FROM SPACEXTBL ORDER BY 1;
         * sqlite:///my_data1.db
        Done.
Out[13]:
           Launch_Site
           CCAFS LC-40
          CCAFS SLC-40
            KSC LC-39A
           VAFB SLC-4E
```

Launch Site Names Begin with 'CCA'

Task Displa		ds where launch si	tes begin with	n the string 'C	CA'				
1]: sql	sql SELECT * FROM SPACEXTBL WHERE LAUNCH_SITE LIKE 'CCA%' LIMIT 5;								
* sqlite:///my_data1.db Done.									
Date	Time (UTC)	Booster_Version	Launch_Site	Payload	PAYLOAD_MASSKG_	Orbit	Customer	Mission_Outcome	Landing_Outcome
2010- 06-04	18:45:00	F9 v1.0 B0003	CCAFS LC- 40	Dragon Spacecraft Qualification Unit	0	LEO	SpaceX	Success	Failure (parachute
2010- 12-08	15:43:00	F9 v1.0 B0004	CCAFS LC- 40	Dragon demo flight C1, two CubeSats, barrel of Brouere cheese	0	LEO (ISS)	NASA (COTS) NRO	Success	Failure (parachute
2012- 05-22	7:44:00	F9 v1.0 B0005	CCAFS LC- 40	Dragon demo flight C2	525	LEO (ISS)	NASA (COTS)	Success	No attemp
2012- 10-08	0:35:00	F9 v1.0 B0006	CCAFS LC- 40	SpaceX CRS-1	500	LEO (ISS)	NASA (CRS)	Success	No attemp
2013- 03-01	15:10:00	F9 v1.0 B0007	CCAFS LC-	SpaceX CRS-2	677	LEO (ISS)	NASA (CRS)	Success	No attempt

Total Payload Mass

Task 3 Display the total payload mass carried by boosters launched by NASA (CRS) In [15]: sql SELECT SUM (PAYLOAD_MASS__KG_) FROM SPACEXTBL WHERE CUSTOMER='NASA (CRS)' * sqlite:///my_data1.db Done. Out[15]: SUM (PAYLOAD_MASS_KG_) 45596

Average Payload Mass by F9 v1.1

```
Task 4

Display average payload mass carried by booster version F9 v1.1

In [16]: sql SELECT AVG(PAYLOAD_MASS__KG_) FROM SPACEXTBL WHERE booster_version LIKE 'F9 v1.1%'

* sqlite:///my_data1.db
Done.

Out[16]: AVG(PAYLOAD_MASS__KG_)

2534.66666666666665
```

First Successful Ground Landing Date

2015-12-22

Task 5 List the date when the first successful landing outcome in ground pad was acheived. Hint:Use min function In [28]: sql SELECT MIN(DATE) FROM SPACEXTBL WHERE LANDING_OUTCOME = 'Success (ground pad)'; * sqlite:///my_datal.db Done. Out[28]: MIN(DATE)

Successful Drone Ship Landing with Payload between 4000 and 6000

Total Number of Successful and Failure Mission Outcomes

```
Task 7
          List the total number of successful and failure mission outcomes
In [23]:
           sql SELECT MISSION_OUTCOME, COUNT(*) FROM SPACEXTBL GROUP BY MISSION_OUTCOME
         * sqlite:///my data1.db
        Done.
Out[23]:
                     Mission_Outcome COUNT(*)
                        Failure (in flight)
                               Success
                                               98
                               Success
          Success (payload status unclear)
```

Boosters Carried Maximum Payload

2015 Launch Records

Task 9

List the records which will display the month names, failure landing_outcomes in drone ship ,booster versions, launch_site for the months in year 2015.

Note: SQLLite does not support monthnames. So you need to use substr(Date, 6,2) as month to get the months and substr(Date, 0,5) = '2015' for year.

```
In [30]: sql SELECT BOOSTER_VERSION, LAUNCH_SITE FROM SPACEXTBL WHERE LANDING_OUTCOME='Failure (drone ship)' AND DATE LIKE '2015%';

* sqlite:///my_data1.db
Done.

Out[30]: Booster_Version Launch_Site

F9 v1.1 B1012 CCAFS LC-40

F9 v1.1 B1015 CCAFS LC-40
```

Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

Mark all launch sites in a map

Mark the successful/failed launches for each site on the map

Calculate the distances between a launch site to its proximities

Total count

Success rate by site

Payload vs launch outcome

Classification Accuracy

The accuracies of logistic regression, svm, knn and decision tree were all found to be 83.3%, therefore the use of a bar chart would be redundant.

Confusion Matrix

Conclusions

• SVM,KNN, Logistic Regression and Decision Tree achieved an accuracy of 83.3% however the best model is Decision Tree with a score of 0.873

```
Best model is DecisionTree with a score of 0.8732142857142856

Best params is : {'criterion': 'gini', 'max_depth': 6, 'max_features': 'sqrt', 'min_samples_leaf': 2, 'min_samples_split': 5, 'splitter': 'random'}
```

