BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI – K K BIRLA GOA CAMPUS INSTRUCTION DIVISION SECOND SEMESTER 2015-2016 Course Handout (Part II)

Date: 13-01-2016

In addition to Part I (General Handout for all courses appended to the time table) this portion gives further specific details regarding the course.

Course Number : MATH F112
Course Title : MATHEMATICS-II
Instructor-in-charge : P. DHANUMJAYA

Instructors : Prasanna Kumar, Tarkeshwar Singh, Anil Kumar, Manoj Kumar Pandey,

Amit Setia, Prabal Paul, Himadri Mukherjee, Samanta Gauranga, B. Pradeep,

Toby Joseph

1. Scope and Objective of the Course:

The course is meant as an introduction to Linear Algebra, and theory of Complex Variable functions. Study of linear algebra helps us in solving the system of linear equations and various properties of linear transformations. Systems of linear equations are needed to be solved in several branches of sciences and engineering. Complex variables deals with the method of solving contour integrals, which cannot be evaluated through our conventional techniques. Students are encouraged to study MATLAB's capabilities for solving linear algebra problems given in the Text Book.

2. Text Books:

- a. Stephen Andrilli and David Hecker, Elementary Linear Algebra, Elsevier, 4th edition, 2015.
- b. R.V. Churchill and J.W. Brown, Complex Variables and applications, McGraw-Hill, 8th edition, 2008.

3. Reference Books:

- a. H. Anton and Chris Rorres, *Elementary Linear Algebra: Application Version*, John Wiley & Sons, 9th Ed, 2008.
- b. B. Kolman and D.R. Hill, *Introductory Linear Algebra with Applications*, Pearson Education, 8th edition, 2005.
- c. A.D. Wunsch, Complex Variables with Applications, Pearson Education, 3rd edition, 2005.
- d. V. Krishnamurthy, V.P. Mainra and J.L. Arora, An Introduction to Linear Algebra, East-West Press, 1976.

4. Course Plan:

Learning Objectives	Topics to be covered	Sec. No.	
Linear	Algebra		
Review of Vectors & Matrices	Self-study	Chapter-	
Solving system of linear equations	Solutions of linear systems of equations by Gauss Elimination, Gauss-Jordan, RREF, Equivalent systems, Rank, Row space, Inverse of Matrices	2.1- 2.4.	
Introduction to abstract vector spaces, finite and infinite dimensional vector spaces and related concepts	Vector spaces, subspaces, Span, linear independence, basis and dimension, Coordinatization	4.1-4.7	
Eigenvalues and Diagonalization	Eigenvalues & Diagonalization	3.4	

Introduction to linear transformations, examp les of linear transformations	Linear transformation, Matrix of a Linear transformation, Dimension theorem & Diagonalization of Linear Operators	5.1-5.3, 5.4, 5.6
Orthogonality	Orthogonal bases & Gram-Schmidt process	6.1.

Complex Variables

Revising the knowledge of complex numbers	Self-study	1-11
Evaluation of limit of functions of complex variables at	Functions of a complex variable. Limit and	12,15-18
a point. Testing continuity of such functions	continuity	
Introduction to analytic functions. Finding out singular	Derivative, CR-equations, Analytic functions	19-24,26
point of a function	Derivative, Cit-equations, Analytic functions	19-24,20
Study of elementary functions. These functions occur	Exponential, trigonometric and hyperbolic	
frequently all through the complex variable theory,	functions, Logarithmic functions, complex	29-35
Understanding Multiple Valued Function, branch cut	exponents, inverse functions	
and branch point	exponents, inverse functions	
Integrating along a curve in complex plane	Contour integrals, anti-derivatives	37-43
Learning techniques to find integrals over particular	Cauchy-Goursat Theorem, Cauchy Integral	44-46,
contours of different functions	Formula, <u>Morera's</u> Theorem (No proof)	48-52
To study application of complex variable theory to	Liouville's Theorem, Fundamental Theorem of	53-54
algebra	Algebra	
Series expansion of a function analytic in an annular	Laurent series (No proof)	60-62
domain. To study different types of singular points	Laurent series (No proor)	
Calculating residues at isolated singular points	Residues, Residue Theorem	68-73
To study application of complex integration to	Improper real integrals	78-81
improper real integral	improper real integrals	

5. Evaluation Scheme:

EC No.	Evaluation Components	Duration	Weightage (%)	Date, Time	Remarks
1	Test I	60 Min.	25	26-02-2016, 12.00-1.00 PM	СВ
2	Test II	60 Min.	25	01-04-2016, 12.00-1.00 PM	СВ
3	SSC/Quiz/ Attendance/ Surprise test/Online Exam	**	10	**	
4	Comp. Exam	3 Hours	40	12-05-2016, 2:00-5:00 PM	CB & OB

^{**} To be announced later.

- **6. Problems:** Students are strongly advised to work out all the problems in the text-book and do similar problems from other reference books.
- 7. Make-up: Make-up will be given only in genuine cases and for that, prior permission must be obtained from I/C.
- **8.** Chamber consultation hour: To be announced in the class.
- **9. Self Study Components (SSC):** Matrices and its applications, inversion of matrices, Complex numbers and its applications. **Use MATLAB** Software to perform matrix operations and solve system of equations.
- 10. Notices: All notices regarding MATH F112 will be displayed on Moodle course page.