TECHNICAL SPECIFICATION

Model Number: QYEG0290BNS800F6

Description : Screen Size : 2.9"

Color: Black and White

Display Resolution: 296*128

DALIAN QIYUN DISPLAY CO., LTD.

Specification for 2.9 inch EPD

Model NO.: QYEG0290BNS800F6

QY's Confirmation:

Prepared by	Checked by	Approved by

Customer approval:

Customer	Approved by	Date

Revision History

Version	Content	Date	Producer
1.0	New release	2020/02/25	

CONTENTS

1.Over View	6
2. Features	6
3. Mechanical Specification	6
4.Mechanical Drawing of EPD Module.	7
5. Input/output Pin Assignment	8
6. Electrical Characteristics.	9
6.1 Absolute Maximum Rating	9
6.2 Panel DC Characteristics	10
6.3 Panel DC Characteristics(Driver IC Internal Regulators)	11
6.4 Panel AC Characteristics	11
6.4.1 MCU Interface Selection	11
6.4.2 MCU Serial Interface (4-wire SPI)	11
6.4.3 MCU Serial Interface (3-wire SPI)	13
6.4.4 Interface Timing	14
7.Command Table	16
8. Optical Specification	24
9. Handling, Safety, and Environment Requirements	24
10. Reliability Test	25

11. Block Diagram	26
12. Typical Application Circuit with SPI Interface	27
13 Typical Operating Sequence	28
13.1Normal Operation Flow	28
13.2 Normal Operation Reference Program Code	29
13.3 OTP Operation Flow.	30
13.4 OTP Operation Reference Program Code	31
14. Part Number Definition.	32
15. Inspection condition	32
15.1 Environment	32
15.2 Illuminance.	32
15.3 Inspect method.	32
15.4 Display area	33
15.5 Inspection standard	33
15.5.1 Electric inspection standard	34
15.5.2 Appearance inspection standard	35
16.Packaging.	36

1. Over View

QYEG0290BNS800F6 is an Active Matrix Electrophoretic Display (AM EPD), with interface and a reference system design. The display is capable to display images at 1-bit white, black full display capabilities. The 2.9 inch active area contains 296×128 pixels. The module is a TFT-array driving electrophoresis display, with integrated circuits including gate driver, source driver, MCU interface, timing controller, oscillator, DC-DC, SRAM, LUT, VCOM. Module can be used in portable electronic devices, such as Electronic Shelf Label (ESL) System.

2. Features

- ◆296×128 pixels display
- ◆ High contrast High reflectance
- ◆Ultra wide viewing angle Ultra low power consumption
- ◆Pure reflective mode
- ♦Bi-stable display
- ◆Commercial temperature range
- ◆Landscape portrait modes
- ◆ Hard-coat antiglare display surface
- ◆Ultra Low current deep sleep mode
- ◆On chip display RAM
- ◆ Waveform can stored in On-chip OTP or written by MCU
- ◆ Serial peripheral interface available
- ◆On-chip oscillator
- ◆On-chip booster and regulator control for generating VCOM, Gate and Source driving voltage
- ◆I²C signal master interface to read external temperature sensor
- ◆Built-in temperature sensor

3. Mechanical Specification

Parameter	Specifications	Unit	Remark
Screen Size	2.9	Inch	
Display Resolution	128(H)×296(V)	Pixel	DPI:112
Active Area	29.06×66.90	mm	
Pixel Pitch	0.227×0.226	mm	
Pixel Configuration	Rectangle		
Outline Dimension	36.7(H)×79 (V) ×1.2(D)	mm	
Weight	5.5±0.5	g	

4.Mechanical Drawing of EPD Module

5. Input/output Pin Assignment

No.	Name	I/O	Description	Remark
1	NC		Do not connect with other NC pins	Keep Open
2	GDR	О	N-Channel MOSFET Gate Drive Control	
3	RESE	I	Current Sense Input for the Control Loop	
4	NC	NC	Do not connect with other NC pins	Keep Open
5	VSH2	С	Positive Source driving voltage(Red)	
6	TSCL	О	I2C Interface to digital temperature sensor Clock pin	
7	TSDA	I/O	I2C Interface to digital temperature sensor Data pin	
8	BS1	I	Bus Interface selection pin	Note 5-5
9	BUSY	О	Busy state output pin	Note 5-4
10	RES#	I	Reset signal input. Active Low.	Note 5-3
11	D/C#	I	Data /Command control pin	Note 5-2
12	CS#	I	Chip select input pin	Note 5-1
13	SCL	I	Serial Clock pin (SPI)	
14	SDA	I/O	Serial Data pin (SPI)	
15	VDDIO	Р	Power Supply for interface logic pins It should be connected with VCI	
16	VCI	P	Power Supply for the chip	
17	VSS	P	Ground	
18	VDD	С	Core logic power pin VDD can be regulated internally from VCI. A capacitor should be connected between VDD and VSS	
19	VPP	P	FOR TEST	Keep Open
20	VSH1	С	Positive Source driving voltage	
21	VGH	С	Power Supply pin for Positive Gate driving voltage and VSH1	
22	VSL	С	Negative Source driving voltage	
23	VGL	С	Power Supply pin for Negative Gate driving voltage VCOM and VSL	
24	VCOM	С	VCOM driving voltage	

- I = Input Pin, O = Output Pin, /O = Bi-directional Pin (Input/output), P = Power Pin, C = Capacitor Pin
- Note 5-1: This pin (CS#) is the chip select input connecting to the MCU. The chip is enabled for MCU communication only when CS# is pulled LOW.
- Note 5-2: This pin is (D/C#) Data/Command control pin connecting to the MCU in 4-wire SPI mode. When the pin is pulled HIGH, the data at SDA will be interpreted as data. When the pin is pulled LOW, the data at SDA will be interpreted as command.
- Note 5-3: This pin (RES#) is reset signal input. The Reset is active low.
- Note 5-4: This pin is Busy state output pin. When Busy is High, the operation of chip should not be interrupted, command should not be sent. The chip would put Busy pin High when -Outputting display waveform -Communicating with digital temperature sensor

Note 5-5: Bus interface selection pin

BS1 State	MCU Interface					
L	4-lines serial peripheral interface(SPI) - 8 bits SPI					
Н	3- lines serial peripheral interface(SPI) - 9 bits SPI					

6. Electrical Characteristics

6.1 Absolute Maximum Rating

Parameter	Symbol	Rating	Unit
Logic supply voltage	VCI	-0.5 to +4.0	V
Logic Input voltage	VIN	-0.5 to VCI +0.5	V
Logic Output voltage	VOUT	-0.5 to VCI +0.5	V
Operating Temp range	TOPR	0 to +50	°C.
Storage Temp range	TSTG	-25 to+70	°C.
Optimal Storage Temp	TSTGo	23±2	°C.
Optimal Storage Humidity	HSTGo	55±10	%RH

Note: Maximum ratings are those values beyond which damages to the device may occur. Functional operation should be restricted to the limits in the Panel DC Characteristics tables.

6.2 Panel DC Characteristics

The following specifications apply for: VSS=0V, VCI=3.0V, TOPR =23°C.

Parameter	Symbol	Condition	Applicab le pin	Min.	Тур.	Max.	Unit
Single ground	Vss	-		-	0	-	V
Logic supply voltage	Vci	-	VCI	2.2	3.0	3.7	V
Core logic voltage	V_{DD}		VDD	1.7	1.8	1.9	V
High level input voltage	Vih	-	-	0.8 Vci	-	-	V
Low level input voltage	VIL	-	-	-	-	0.2 Vci	V
High level output voltage	Voh	IOH = -100uA	-	0.9 Vci	-	-	V
Low level output voltage	Vol	IOL = 100uA	-	-	-	0.1 Vci	V
Typical power	Ртүр	V _{CI} =3.0V	-	-	9	-	mW
Deep sleep mode	PSTPY	$V_{CI} = 3.0V$	-	-	0.003	-	mW
Typical operating current	Iopr_VCI	V _{CI} =3.0V	-	-	3	-	mA
Image update time	-	25 °C	-	-	3	-	sec
Sleep mode current	Islp_Vcı	DC/DC off No clock No input load Ram data retain	-	-	20		uA
Deep sleep mode current	Idslp_Vci	DC/DC off No clock No input load Ram data not retain	-	-	1	5	uA

Notes: 1. The typical power is measured with following transition from horizontal 2 scale pattern to vertical 2 scale pattern.

- 2. The deep sleep power is the consumed power when the panel controller is in deep sleep mode.
- 3. The listed electrical/optical characteristics are only guaranteed under the controller & waveform provided by QY.

6.3 Panel DC Characteristics(Driver IC Internal Regulators)

The following specifications apply for: VSS=0V, VCI=3.0V, TOPR =25°C.

Parameter	Symbol	Condition	Applicable pin	Min.	Тур.	Max.	Unit
VCOM output voltage	VCOM	-	VCOM	-	TBD	-	V
Positive Source output voltage	Vsh	-	S0~S121	+14.5	+15	+15.5	V
Negative Source output voltage	Vsl	-	S0~S121	-15.5	-15	-14.5	V
Positive gate output voltage	Vgh	-	G0~G249	+21	+22	+23	V
Negative gate output voltage	Vgl	-	G0~G249	-21	-20	-19	V

6.4 Panel AC Characteristics

6.4.1 MCU Interface Selection

The pin assignment at different interface mode is summarized in Table 6-4-1. Different MCU mode can be set by hardware selection on BS1 pins. The display panel only supports 4-wire SPI or 3-wire SPI interface mode.

Pin Name	Data/Comm	and Interface Control Signal			
Bus interface	SDA	SCL	CS#	D/C#	RES#
BS1=L 4-wire SPI	SDA	SCL	CS#	D/C#	RES#
BS1=H 3-wire SPI	SDA	SCL	CS#	L	RES#

6.4.2 MCU Serial Interface (4-wire SPI)

The serial interface consists of serial clock SCL, serial data SDA, D/C#, CS#. This interface supports Write mode and Read mode.

Function	CS#	D / C #	SCL
Write command	L	L	↑
Write data	L	Н	↑

Note: ↑ stands for rising edge of signal

In the write mode SDA is shifted into an 8-bit shift register on every rising edge of SCL in the order of D7, D6, ... D0. The level of D/C# should be kept over the whole byte. The data byte in the shift register is written to the Graphic Display Data RAM /Data Byte register or command Byte register according to D/C# pin.

Figure 6-1: Write procedure in 4-wire SPI mode

In the Read mode:

- 1. After driving CS# to low, MCU need to define the register to be read.
- 2. SDA is shifted into an 8-bit shift register on every rising edge of SCL in the order of D7, D6, ... D0 with D/C# keep low.
- 3. After SCL change to low for the last bit of register, D/C# need to drive to high.
- 4. SDA is shifted out an 8-bit data on every falling edge of SCL in the order of D7, D6, ... D0.
- 5. Depending on register type, more than 1 byte can be read out. After all byte are read, CS# need to drive to high to stop the read operation.

Figure 6-2: Read procedure in 4-wire SPI mode

6.4.3 MCU Serial Interface (3-wire SPI)

The 3-wire serial interface consists of serial clock SCL, serial data SDA and CS#. This interface also supports Write mode and Read mode.

The operation is similar to 4-wire serial interface while D/C# pin is not used. There are altogether 9-bits will be shifted into the shift register on every ninth clock in sequence: D/C# bit, D7 to D0 bit. The D/C# bit (first bit of the sequential data) will determine the following data byte in the shift register is written to the Display Data RAM (D/C# bit = 1) or the command register (D/C# bit = 0).

Function	CS#	D/C#	SCL
Write command	L	Tie	1
Write data	L	Tie	1

Note: ↑ stands for rising edge of signal

SDA (Write Mode)

Register

Register

Register

Register

Register

Figure 6-3: Write procedure in 3-wire SPI mode

In the Read mode:

- 1. After driving CS# to low, MCU need to define the register to be read.
- 2. D/C=0 is shifted thru SDA with one rising edge of SCL
- 3. SDA is shifted into an 8-bit shift register on every rising edge of SCL in the order of D7, D6, ... D0.
- 4. D/C=1 is shifted thru SDA with one rising edge of SCL
- 5. SDA is shifted out an 8-bit data on every falling edge of SCL in the order of D7, D6, ... D0.
- 6. Depending on register type, more than 1 byte can be read out. After all byte are read, CS# need to drive to high to stop the read operation.

Figure 6-4: Read procedure in 3-wire SPI mode

6.4.4 Interface Timing

Mode)

The following specifications apply for: VSS=0V, VCI=3.0V, TOPR =25°C.

Serial Interface Timing Characteristics

 $(VCI - VSS = 2.2V \text{ to } 3.7V, TOPR = 25^{\circ}C, CL=20pF)$

Write mode

Symbol	Parameter	Min	Тур.	Max	Unit
fSCL	SCL frequency (Write Mode)			20	MHz
tCSSU	Time CS# has to be low before the first rising edge of SCLK	60			ns
tCSHLD	Time CS# has to remain low after the last falling edge of SCLK	20			ns
tCSHIGH	Time CS# has to remain high between two transfers	100			ns
tSCLHIGH	Part of the clock period where SCL has to remain high	25			ns
tSCLLOW	Part of the clock period where SCL has to remain low	25			ns
tSISU	Time SI (SDA Write Mode) has to be stable before the next rising edge of SCL	10			ns
tSIHLD	Time SI (SDA Write Mode) has to remain stable after the rising edge of SCL	40			ns

Read mode

Symbol	Parameter	Min	Тур.	Max	Unit
fSCL	SCL frequency (Read Mode)			2.5	MHz
tCSSU	Time CS# has to be low before the first rising edge of SCLK	100			ns
tCSHLD	Time CS# has to remain low after the last falling edge of SCLK	50			ns
tCSHIGH	Time CS# has to remain high between two transfers	250			ns
tSCLHIG H	Part of the clock period where SCL has to remain high	180			ns
tSCLLOW	Part of the clock period where SCL has to remain low	180			ns
tSOSU	Time SO(SDA Read Mode) will be stable before the next rising edge of SCL		50		ns
tSOHLD	Time SO (SDA Read Mode) will remain stable after the falling edge of SCL		0		ns

7. Command Table

	Ommanu Table											,
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Comman d	Description
0	0	01	0	0	0	0	0	0	0	1	Driver	Gate setting
0	1		A7	A6	A5	A4	A3	A2	A1	A0	Output	Set A[8:0]=0127h
0	1		0	0	0	0	0	0	0	A8	control	Set B[8:0]=00h
0	1		0	0	0	0	0	B2	B1	B0		
0	0	03	0	0	0	0	0	0	1	1	Gate	Set Gate Driving voltage
0	1		0	0	0	A4	A3	A2	A1	A0	Driving voltage control	A[4:0]=17h[POR],VGH at 20V[POR] VGH setting from 10V to 20V
0	0	04	0	0	0	0	0	1	0	0	Source	Set Source Driving voltage
0	1		A7	A6	A5	A4	A3	A2	A1	A0	Driving	A[7:0]= 41h[POR],VSH1 at 15V
0	1		В7	В6	В5	B4	В3	B2	B1	В0	voltage control	B[7:0]=A Ch[POR], VSH2 at 5.4V C[7:0]= 32h[POR], VSL at -15V
0	1		C7	C6	C5	C4	C3	C2	C1	C0	Control	[C[7.0]
0	0	08	0	0	0	0	1	0	0	0	Initial Code Setting OTP Program	Program Initial Code Setting The command required CLKEN=1. Refer to Register 0x22 for detail. BUSY pad will output high during operation
0	0	09	0	0	0	0	1	0	0	1	Write	Write Register for Initial Code Setting
0	1		A7	A6	A5	A4	A3	A2	A1	A0	Register	Selection
0	1		В7	В6	В5	B4	В3	B2	B1	В0	for Initial Code	A[7:0] ~ D[7:0]: Reserved Details refer to Application Notes of Initial
0	1		C7	C6	C5	C4	C3	C2	C1	C0	Setting	Code Setting
0	1		D7	D6	D5	D4	D3	D2	D1	D0		J
0	0	0A	0	0	0	0	1	0	1	0	Read Register for Initial Code Setting	Read Register for Initial Code Setting
0	0	10	0	0	0	1	0	0	0	0	Deep	Deep Sleep mode Control:
0	1		0	0	0	0	0	0	0	A_0	Sleep mode	A[1:0]: Description 00 Normal Mode [POR]
0	1		0	0	0	0	0	A_2	A_1	A_0	inoue	01 Enter Deep Sleep Mode 1
0	1		1	A6	A5	A4	A3	A2	A1	A0		11 Enter Deep Sleep Mode 2
0	1		1	В6	В5	B4	В3	B2	В1	В0		After this command initiated, the chip will enter Deep Sleep Mode, BUSY pad will
0	1		1	C6	C5	C4	C3	C2	C1	C0		keep output high. Remark:
0	1		0	0	D5	D4	D3	D2	D1	D0		To Exit Deep Sleep mode, User required to send HWRESET to the driver

0	0	11	0	0	0	1	0	0	0	1	Data Entry mode setting	Define data entry sequence A[2:0] = 011 [POR] A [1:0] = ID[1:0] Address automatic increment / decrement setting The setting of incrementing or decrementing of the address counter can be made independently in each upper and lower bit of the address. 00 - Y decrement, X decrement, 01 - Y decrement, X increment, 10 - Y increment, X increment, 11 - Y increment, X increment [POR] A[2] = AM Set the direction in which the address counter is updated automatically after data are written to the RAM
												Set the direction in which the address counter is updated automatically after data are written to the RAM.
												AM= 0, the address counter is updated in the X direction. [POR] AM = 1, the address counter is updated in the Y direction

0	0	0C	0	0	0	0	1	1	0	0	Booster	Booster Enable with Phase 1, Phase 2 and Phase 3
											Soft start	for soft start current and duration setting.
											Control	A[7:0] -> Soft start setting for Phase1
												= 8Bh [POR]
												B[7:0] -> Soft start setting for Phase2
												= 9Ch [POR]
												C[7:0] -> Soft start setting for Phase3
												- 06h [DOD]
												= 96h [POR]
												D[7:0] -> Duration setting
												= 0Fh [POR]
												Bit Description of each byte:
												A[6:0] / B[6:0] / C[6:0]:
												Bit[6:4]
												Driving Strength
												Selection
												000 1(Weakest)
												001 2
												010 3
												011 4
												100 5
												101 6
												110 7
												Bit[3:0]
												Min Off Time Setting of GDR
												[Time unit]
												0000
												~
												0011
												NA
												0100 2.6
												0101 3.2
												0110 3.9
												0111 4.6
												1000 5.4
												1001 6.3
												1010 7.3
												1011 8.4
												1100 9.8
												1101 11.5
												1110 13.8
												1111 16.5
												D[5:0]: duration setting of phase
												D[5:4]: duration setting of phase 3
												D[3:2]: duration setting of phase 2
												D[1:0]: duration setting of phase 1
												Bit[1:0]
												Duration of Phase
												[Approximation]
												00 10ms
												01 20ms
												10 30ms
												11 40ms
	l			l							1	101110

0	0	12	0	0	0	1	0	0	1	0	SWRES ET	It resets the commands and parameters to their S/W Reset default values except R10h-Deep Sleep Mode During operation, BUSY pad will output high. Note: RAM are unaffected by this command.
0	0	18	0	0	0	1	1	0	0	0	_	Temperature Sensor Selection
0	1		A7	A6	A5	A4	A3	A2	A1	A0	ure Sensor Control	A[7:0] = 48h [POR], external temperature sensor A[7:0] = 80h Internal temperature sensor
0	0	1A	0	0	0	1	1	0	1	0	Temperat	Write to temperature register.
0	1		A7	A6	A5	A4	A3	A2	A1	A0	ure Sensor	A[11:0] = 7FFh [POR]
0	1		B7	B6	B5	B4	0	0	0	0	Control (Write to temperat ure register)l	
0	0	20	0	0	1	0	0	0	0	0	Master Activatio n	Activate Display Update Sequence The Display Update Sequence Option is located at R22h User should not interrupt this operation to avoid corruption of panel images.
0	0	21	0	0	1	0	0	0	0	1	Display	RAM content option for Display Update
0	1		A7	A6	A5	A4	A3	A2	A1	A0	Update	A[7:0] = 00h [POR]
0	1		B7	0	0	0	0	0	0	0	Control 1	B[7:0] = 00h [POR] A[7:4] Red RAM option 0000 Normal 0100 Bypass RAM content as 0 1000 Inverse RAM content A[3:0] BW RAM option 0000 Normal 0100 Bypass RAM content as 0 1000 Inverse RAM content B[7] Source Output Mode 0 Available Source from S0 to S175 1 Available Source from S8 to S167

			1		1	_	1	_	1	1	1	
0	0	22	0	0	1	0	0	0	1	0	Display	Display Update Sequence Option:
												Enable the stage for Master Activation
											Control 2	A[7:0]= FFh (POR)
												Operating sequence
												Parameter
												(in Hex)
												Enable clock signal 80
												Disable clock signal 01
												Enable clock signal
												Enable Analog
												C0
												Disable Analog
												Disable clock signal
												03
												Enable clock signal
				1.0	1		1.2	1.0	4.1	4.0	-	Load LUT with DISPLAY Mode 1
0	1		A7	A6	A5	A4	A3	A2	A1	A0		Disable clock signal
												91
												Enable clock signal
												Load LUT with DISPLAY Mode 2
												Disable clock signal
												99
												Enable clock signal
												Load temperature value
												Load LUT with DISPLAY Mode 1
												Disable clock signal
												B1
												Enable clock signal
												Load temperature value
												Load LUT with DISPLAY Mode 2
												Disable clock signal
												B9
												Enable clock signal
												Enable Analog
												Display with DISPLAY Mode 1
												Disable Analog
												Disable OSC
												C7
												Enable clock signal
												Enable Analog
												Display with DISPLAY Mode 2
												Disable Analog
												Disable OSC
												CF
												Enable clock signal
												Enable Analog
												Load temperature value
												DISPLAY with DISPLAY Mode 1
												Disable Analog
												Disable OSC
												F7
												Enable clock signal
												Enable Analog
		1	1	1	1		1		1	1		Load temperature value

0	0	24	0	0	1	0	0	1	0	0	Write RAM (Black White) / RAM 0x24	After this command, data entries will be written into the BW RAM until another command is written. Address pointers will advance accordingly For Write pixel: Content of Write RAM(BW) = 1 For Black pixel: Content of Write RAM(BW) = 0
0	0	26	0	0	1	0	0	1	1	0	Write RAM (RED) / RAM 0x26)	After this command, data entries will be written into the RED RAM until another command is written. Address pointers will advance accordingly. For Red pixel: Content of Write RAM(RED) = 1 For non-Red pixel [Black or White]: Content of Write RAM(RED) = 0
0	0	2C	0	0	1	0	1	1	0	0	Write	Write VCOM register from MCU interface
0	1		A7	A6	A5	A4	A3	A2	A1	A0	VCOM register	A[7:0] = 00h [POR]
0	0	2D	0	0	1	0	1	1	0	1	OTP	Read Register for Display Option:
1	1		A7	A6	A5	A4	A3	A2	A1	A0	Register Read for	A[7:0]: VCOM OTP Selection (Command 0x37, Byte A)
1	1		В7	В6	В5	B4	В3	B2	B1	B0	Display	B[7:0]: VCOM Register
1	1		C7	C6	C5	C4	C3	C2	C1	C0	Option	(Command 0x2C)
1	1		D7	D6	D5	D4	D3	D2	D1	D0		C[7:0]~G[7:0]: Display Mode
1	1		E7	E6	E5	E4	Е3	E2	E1	E0		(Command 0x37, Byte B to Byte F) [5 bytes]
1	1		F7	F6	F5	F4	F3	F2	F1	F0		H[7:0]~K[7:0]: Waveform Version
1	1		G7	G6	G5	G4	G3	G2	G1	G0		(Command 0x37, Byte G to Byte J)
1	1		Н7	Н6	H5	H4	Н3	H2	H1	Н0		[4 bytes]
1	1		I7	I6	15	I4	I3	I2	I1	10		
1	1		J7	J6	J5	J4	J3	J2	J1	J0		
1	1		K7	K6	K5	K4	K3	K2	K1	K0		

0	0	2F	0	0	1	0	1	1	1	1	Status Bit Read	Read IC status Bit [POR 0x01] A[5]: HV Ready Detection flag [POR=0] 0: Ready 1: Not Ready A[4]: VCI Detection flag [POR=0] 0: Normal 1: VCI lower than the Detect level A[3]: [POR=0] A[2]: Busy flag [POR=0] 0: Normal 1: BUSY A[1:0]: Chip ID [POR=01] Remark: A[5] and A[4] status are not valid after RESET, they need to be initiated by command 0x14 and command 0x15 respectively
0	0	30	0	0	1	1	0	0	0	0		Program OTP of Waveform Setting The contents should be written into RAM before sending this command. The command required CLKEN=1. Refer to Register 0x22 for detail. BUSY pad will output high during operation
0	0	32	0	0	1	1	0	0	1	0	Write	Write LUT register from MCU interface
0	1	<u> </u>	A7	A6	A5	A4	A3	A2	A1	A0	LUT	[153 bytes], which contains the content of
0	1		B7	B6	B5	B4	B3	B2	B1	B0	register	VS[nX-LUTm], TP[nX], RP[n], SR[nXY],
0	1		:	:	:	:	:	:	:	:		FR[n] and XON[nXY] Refer to Session 6.7 WAVEFORM
0	1		:	:	:	:	:	:	:	:		SETTING
0	1		:	:	:	:	:	:	:	:		
0	1		:		:			:	:	:		
0	0	39	0	0	1	1	1	0	0	1	OTP program mode	OTP program mode A[1:0] = 00: Normal Mode [POR] A[1:0] = 11: Internal generated OTP programming voltage Remark: User is required to EXACTLY follow the reference code sequences

A	0	0	3C	0	0	1	1	1	1	0	0		Select border waveform for VBD
A7, A6 A3 A4 A7 A8 A8 A8 A8 A8 A8 A8												-	A[7:0] = C0h [POR], set VBD as HIZ.
00 GS Transition, Defined in A[2] and A[1:0] 01 Fix Level, Defined in A[2] and A[1:0] 01 Fix Level, Defined in A[5:4] 10 VCOM 11[POR] 11iZ A[5:4] Fix Level Setting for VBD A[5:4] VBD level 00 VSS 01 VSH1 10 VSL 11 VSH2 A[2] GS Transition control A[2] GS Transition control A[2] GS Transition control A[2] GS Transition control A[2] GS Transition setting for VBD A[1:0] VBD Transition A[1:0] VBD Transition DEVILY A[1:0] GS Transition Control A[1:0] VBD Transition DEVILY A[1:0] GS Transition Control A[1:0] VBD Transition DEVILY DEVILY A[1:0] GS Transition Control A[1:0] VBD Transition DEVILY A[1:0] GS Transition Control A[1:0] VBD Transition DEVILY A[1:0] GS Transition Control A[1:0] CS A[1:0] VBD Transition DEVILY A[1:0] CS A[1:0] VBD Transition DEVILY Control A[1:0] CS A[1:0] Transition DEVILY DEVILY DEVILY A[1:0] CS A[1:0] Transition DEVILY D	0	1		A_7	A_6	A_5	A_4	0	0	A_1	A_0		
Defined in A[2] and A[1:0] OF File Fix Level Defined in A[5:4] OF Fix Level Setting for VBD A[5:4] VBD Evel OF VSS OF VSH OF OF OF OF OF OF OF O													
A 1-0 01 Fix Level, Defined in A 5-4 10 VCOM 11 POR HiZ A 5-4 Fix Level Setting for VBD A 2-3 Fix Le													l ·
Defined in A[5:4] 10 VCOM 11 10 VCOM 11 10 VCOM 12 A[5:4] VBD level 10 VSS 01 VSH1 10 VSS 01 VSH1 10 VSL 11 VSH2 A[2] GS Transition control A[10] VBD Transition A[10] VBD													
10													
11 POR HiZ A 5:4 Fix Level Setting for VBD A 5:4 Fix Level Setting for VBD A 5:4 Fix Level Setting for VBD A 5:4 Fix Level Setting for VBD A 5:4 VBD level 00 VSS 01 VSH1 10 VSHL 11 VSH2 A 2 GS Transition control A 2 GS Transition control 0 Follow LUT (Output VCOM @ RED) 1 Follow LUT A 1:0 GS Transition setting for VBD A 1:0 VBD Transition 00 LUT0 01 LUT1 10 LUT2 11 LUT3 11 LUT3 12 LUT3 13 LUT3 14 LUT3 14 LUT3 14 LUT3 14 LUT3 15 LUT													
A 5:4 Fix Level Setting for VBD A 5:4 VBD level VBD A 5:4 VBD													
A[5:4] VBD level													
01 VSH1 10 VSL 11 VSH2 A[2] GS Transition control A[2] GS Transition control O Follow LUT (Output VCOM @ RED) 1 Follow LUT A [1:0] GS Transition setting for VBD A[1:0] VBD Transition O1 LUT1 10 LUT2 11 LUT3 O LUT3 O LUT6 O LUT7 OUTPUT OU													
10 VSL 11 VSH2 12 ST Transition control A[2] GS Transition control A[2] GS Transition control O Follow LUT Coutput VCOM @ RED) Tollow LUT A[1:0] VBD Transition O0 LUT0 O1 LUT1 O1 LUT2 O1 LUT1 O1 LUT2 O1 LUT1 O1 LUT2 O1 LUT3 O1 LUT4 O1 LUT5 O1 LUT6 O1 LUT6 O1 LUT7 O1 LUT7 O1 LUT7 O1 LUT7 O1 LUT7 O1 LUT7 O1 LUT9 O1 LUT													
11 VSH2 A[2] GS Transition control A[2] GS Transition control O Follow LUT (Output VCOM @ RED) 1 Follow LUT A [1:0] GS Transition setting for VBD A[1:0] VBD Transition O LUTO OI LUT1 IO LUT2 II LUT3 O													
A[2] GS Transition control A[1:0] UT A[1:0													
A[2] GS Transition control O Follow LUT Couptut VCOM @ RED I Follow LUT A [1:0] VBD Transition O LUTO OI LUT1 ID LUT2 ID LUT3 OU OU OU OU OU OU OU O													
0													
Coutput VCOM @ RED 1 Follow LUT A [1:0] GS Transition setting for VBD A[1:0] GS Transition setting for VBD A[1:0] GS Transition setting for VBD A[1:0] GS Transition OB LUT0 O1 LUT1 I0 LUT2 I1 LUT3													
A [1:0] GS Transition setting for VBD A[1:0] VBD Transition O0 LUT0 O1 LUT1 O1 LUT2 O1 LUT1 O1 LUT2 O1 LUT3 O1 LUT3 O1 LUT4 O1 LUT5													(Output VCOM @ RED)
A A A A A A A A A A													
A A A A A A A A A A													A [1:0] GS Transition setting for VBD
0													
10													00 LUT0
11 LUT3 12 LUT3 13 LUT3 14 LUT3 15 LUT3 15 LUT3 16 LUT3 17 LUT3 17 LUT3 17 LUT3 17 LUT3 18 L													01 LUT1
0 0 44 0 1 0 0 1 0 0 Set RAM Specify the start/end positions of the window address in the X direction by an address unit A[4:0]: XSA[4:0], X Start, POR = 00h 0 1 0 0 0 B4 B3 B2 B1 B0 Start / End position Start / End position A[4:0]: XSA[4:0], X Start, POR = 00h B[4:0]: XEA[4:0], X End, POR = 14h 0 0 45 0 1 0 0 0 1 Set Ram position Specify the start/end positions of the window address in the Y direction by an address unit A[8:0]: XEA[4:0], X End, POR = 14h 0 1 A7 A6 A5 A4 A3 A2 A1 A0 0 1 A7 A6 A5 A4 A3 A2 A1 A0 0 1 B7 B6 B5 B4 B3 B2 B1 B0 End 0 1 D D D D D D D A2 A1 A0													10 LUT2
0													11 LUT3
O 1	0	0	44	0	1	0	0	0	1	0	0	Set RAM	Specify the start/end positions of the window
0 1 0 0 0 B4 B3 B2 B1 B0 Address Start / End position A[4:0]: XSA[4:0], X Start, POR = 00h B[4:0]: XEA[4:0], X End, POR = 14h 0 0 0 45 0 1 0 0 1 0 1 Set Ram A2 A1 A0 Y- address in the Y direction by an address on the Y direction by an address in the Y direction by an address on the Y direction by an address in the Y direction by an address on the Y direction by an address in the Y direction by an address on the Y direction by an address in the Y direction by an address on the Y direction by an address in the Y direction by an address in the Y direction by an address on the Y direction by an address in the Y direction by and the Y direction by an address in the Y direction by an address in the Y direction by and the Y direction by an address in the Y direction by and direction by and direction by and direction	0	1		0	0	0	A_4	A ₃	A_2	A_1	A_0	1	
Start End Portion	0			0	0	0							
Desire		1		U	0	0	D4	D 3	D 2	DI	D 0	1	B[4:0]: XEA[4:0], X End, POR = 14h
0 0 45 0 1 0 0 1 0 1 Set Ram Y-A6 Specify the start/end positions of the window address in the Y direction by an address unit A[8:0]: YSA[8:0], Y Start, POR = 0127h 0 1 0 0 0 0 0 0 A8 Start / B[8:0]: YSA[8:0], Y Start, POR = 0127h B[8:0]: YEA[8:0], Y End, POR = 0000h 0 1 0 0 0 0 0 0 B8 position 0 1 0 0 0 0 0 B8 position 0 0 4E 0 1 0 0 1 1 0													
0 1 A ₇ A ₆ A ₅ A ₄ A ₃ A ₂ A ₁ A ₀ Y-address address and the Y direction by an address unit A[8:0]: YSA[8:0], Y Start, POR = 0127h A ₈ Start / B ₈ S												position	
No No No No No No No No			45										
0 1 0 0 0 0 0 A ₈ Start / B[8:0]: YEA[8:0], Y End, POR = 0000h 0 1 B ₇ B ₆ B ₅ B ₄ B ₃ B ₂ B ₁ B ₀ B ₁ B ₀ End B ₈ position B ₈ Start / B ₁ B ₂ B ₁ B ₀ End B ₁ B ₂ B ₁ B ₂ B ₁ B ₂ B ₁ B ₀ End B ₁ B ₂	0	1		A ₇	A ₆	A ₅	A ₄	A ₃	A_2	A_1			
0 1 B ₇ B ₆ B ₅ B ₄ B ₃ B ₂ B ₁ B ₀ End position 0 1 0 0 0 0 0 0 B ₈ position 0 0 4E 0 1 0 0 1 1 0	0	1		0	0	0	0	0	0	0	A ₈		
0 0 4E 0 1 0 0 1 1 0 Set RAM Make initial settings for the RAM X address in the address counter (AC) A[4:0]: XAD[4:0], POR is 00h 0 0 4F 0 1 0 0 1 1 1 Set RAM Accounter Make initial settings for the RAM Y address in the address counter (AC) 0 1 A7 A6 A5 A4 A3 A2 A1 A0 Y the address counter (AC) A[8:0]: YAD[8:0], POR is 0127h	0	1		B ₇	B ₆	B ₅	B ₄	B ₃	B ₂	B ₁	B_0	End	, , , , , , , , , , , , , , , , , , ,
0 1 0 0 A4 A3 A2 A1 A0 X address counter (AC) A[4:0]: XAD[4:0], POR is 00h 0 0 4F 0 1 0 0 1 1 1 1 1 Set RAM Make initial settings for the RAM Y address in the address counter (AC) A[8:0]: YAD[8:0], POR is 0127h	0	1		0	0	0	0	0	0	0	\mathbf{B}_8	position	
0 0 4F 0 1 0 0 1 1 1 1 Set RAM Make initial settings for the RAM Y address in the address counter (AC) 0 1 A ₇ A ₆ A ₅ A ₄ A ₃ A ₂ A ₁ A ₀ Y the address counter (AC) A[8:0]: YAD[8:0], POR is 0127h	0	0	4E	0	1	0	0	1	1	1	0	Set RAM	
0 0 4F 0 1 0 0 1	0	1		0	0	0	A4	Аз	A ₂	Aı	Ao		
0 0 4F 0 1 0 1		-						-5			-0	address	A[4:0]: XAD[4:0], POR is 00h
0 1 A ₇ A ₆ A ₅ A ₄ A ₃ A ₂ A ₁ A ₀ Y the address counter (AC) address A[8:0]: YAD[8:0], POR is 0127h												counter	
0 1 0 0 0 0 0 0 0 0 0 Ac address A[8:0]: YAD[8:0], POR is 0127h	0	0	4F	0	1	0	0	1	1	1	1		
	0	1		A ₇	A_6	A_5	A_4	A_3	A_2	A_1	A_0		
, , , , , , , , , , , , , , , , , , ,	0	1		0	0	0	0	0	0	0	$\overline{A_8}$	counter	A[8:U]: YAD[8:U], PUK IS U12/h

8. Optical Specification

Measurements are made with that the illumination is under an angle of 45 degree, the detection is perpendicular unless otherwise specified

Symbol	Parameter	Conditions	Min	Тур.	Max	Units	Notes
R	White Reflectivity	White	30	35	-	%	8-1
CR	Contrast Ratio	indoor	8:1		-		8-2
GN	2Grey Level	-	-	DS+(WS-DS)*n(m-1)			8-3
T update	Image update time	at 25 °C	-	3	-	sec	
Life		Topr		1000000times or 5years			

Notes: 8-1. Luminance meter: Eye-One Pro Spectrophotometer.

8-2. CR=Surface Reflectance with all white pixel/Surface Reflectance with all black pixels.

8-3 WS: White state, DS: Dark state

9. Handling, Safety, and Environment Requirements

Warning

The display glass may break when it is dropped or bumped on a hard surface. Handle with care. Should the display break, do not touch the electrophoretic material. In case of contact with electrophoretic material, wash with water and soap.

Caution

The display module should not be exposed to harmful gases, such as acid and alkali gases, which corrode electronic components. Disassembling the display module.

Disassembling the display module can cause permanent damage and invalidates the warranty agreements.

Observe general precautions that are common to handling delicate electronic components. The glass can break and front surfaces can easily be damaged. Moreover the display is sensitive to static electricity and other rough environmental conditions.

Data sheet status					
Product specification This data sheet contains final product specifications.					
	Limiting values				
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.					
Application information					
Where application information is given, it is advisory and does not form part of the specification.					

10. Reliability Test

NO	Test items	Test condition
1	Low-Temperature Storage	T = -25°C, 240 h Test in white pattern
2	High-Temperature Storage	T = +70°C, RH=40%,240h Test in white pattern
3	High-Temperature Operation	T = +50°C, RH = 30%,240h
4	Low-Temperature Operation	0°C, 240h
5	High-Temperature, High-Humidity Operation	T=+40°C, RH=90%,240h
6	High Temperature, High Humidity Storage	T=+60°C, RH=80%,240h Test in white pattern
7	Temperature Cycle	1 cycle:[-25°C 30min]→[+70 °C 30 min] : 100 cycles Test in white pattern
8	UV exposure Resistance	765W/m² for 168hrs,40 °C Test in white pattern
9	ESD Gun	Air+/-15KV;Contact+/-8KV (Test finished product shell, not display only) Air+/-8KV;Contact+/-6KV (Naked EPD display, no including IC and FPC area) Air+/-4KV;Contact+/-2KV (Naked EPD display, including IC and FPC area)

Note: Put in normal temperature for 1hour after test finished, display performance is ok.

11. Block Diagram

12. Typical Application Circuit with SPI Interface

Part Name	Value	Reference Part Requires		Requirements for spare part
C4 C7	1uF	X5R/X7R;Voltage Rating:6v or 25v		
C1 C2 C6 C8 C9	1uF	0402/0603/0805; X5R/X7R; Voltage Rating: 25v		
C10 C3	0.47uF/1 uF	0603/0805; X7R;Voltage Rating:25v NOTE: Effective capacitance >0.25uF @18v DC bias		
R1	3.0Ohm	0402,0603,0805; 1% variation, ≥ 0.05W		
D4 D5 D6	Diode	1) Reverse DC Voltage ≥ 30V 2) Io≥500mA 3) Forward voltage ≤ 430mV		J
Q1	NMOS	Si1304BDL/NX3008NBK	1) Drain-Source breakdown voltage≥30v	
L2	10uH	CDRH2D18/LDNP-100NC 1) Io=500mA(max)		

13 Typical Operating Sequence

13.1Normal Operation Flow

13.2 Normal Operation Reference Program Code

ACTION	VALUE/DATA	COMMENT
	POWER C	ON .
delay	10ms	
•	PIN CONFIG	
RESE#	low	Hardware reset
delay	200us	
RESE#	high	
delay	200us	
Read busy pin		Wait for busy low
Command 0x12		Software reset
Read busy pin		Wait for busy low
Command 0x01	Data 0x27 0x01 0x00	Set display size and driver output control
Command 0x11	Data 0x01	Ram data entry mode
Command 0x44	Data 0x01 0x10	Set Ram X address
Command 0x45	Data 0x27 0x01 0x00 0x00	Set Ram Y address
Command 0x3C	Data 0x05	Set border
	SET VOLTAGE AND	D LOAD LUT
Command 0x2C	Data 0x36	Set VCOM value
Command 0x03	Data 0x17	Gate voltage setting
Command 0x04	Data 0x41 0xAC 0x32	Source voltage setting
Command 0x32	Write 153 bytes LUT	Load LUT
	LOAD IMAGE ANI	O UPDATE
Command 0x4E	Data 0x00	Set Ram X address counter
Command 0x4F	Data 0x27 0x01	Set Ram Y address counter
Command 0x24	4736 bytes	Load BW image (128/8*296)(BW)
Command 0x22	Data 0XC7	Image update
Command 0x20		
Read busy pin		Wait for busy low
Command 0x10	Data 0X01	Enter deep sleep mode
	POWER OFF	

13.30TP Operation Flow

13.4 OTP Operation Reference Program Code

ACTION	VALUE/DATA	COMMENT			
	POWER ON				
delay	10ms				
	PIN CONFIG				
RESE#	low	Hardware reset			
delay	200us				
RESE#	high				
delay	200us				
Read busy pin		Wait for busy low			
Command 0x12		Software reset			
Read busy pin		Wait for busy low			
	SET VOLTAGE AND LO	OAD LUT			
	LOAD IMAGE AND U	DDATE			
G 10.24					
Command 0x24	4736 bytes	Load BW image (128/8*296)(BW)			
Command 0x20					
Read busy pin		Wait for busy low			
Command 0x10	Data 0X01	Enter deep sleep mode			
POWER OFF					

14. Part Number Definition

QYE G 0290 B N S800 F10 1 2 3 4 5 6 7

1: QYE:QY EPD product

2: G:Dot matrix type

3: The E-paper size: 2.9 inch: 0290

4: The color of E-paper:

B: Black/White R: Black/White/Red Y: Black/White/Yellow

5: OT range: N: Normal L/S: Low temperature H/W: High temperature

6: Driver type: internal temperature sensor

7: FPC type

15. Inspection condition

15.1 Environment

Temperature: $25\pm3^{\circ}$ C Humidity: $55\pm10^{\circ}$ RH

15.2 Illuminance

Brightness:1200~1500LUX;distance:20-30CM;Angle:Relate 45°surround.

15.3 Inspect method

15.4 Display area

15.5 Inspection standard

15.5.1 Electric inspection standard

NO.	Item	Standard	Defect level	Method	Scope
1	Dispay	Display complete Display uniform	MA		
2	Black/White spots	D≤0.25mm, Allowed 0.25mm < D≤0.4mm ∘ N≤4, and Distance≥5mm 0.4mm < D Not Allow		Visual inspection	
3	Black/White spots (No switch)	L \leq 0.4mm, W \leq 0.1mm negligible 0.4mm $<$ L \leq 1.0mm 0.1mm $<$ W \leq 0.4mm N \leq 4 allowable L $>$ 1.0mm, W $>$ 0.4mm, Not Allow	MI	Visual/ Inspection card	Zone A
4	Ghost image	Allowed in switching process	MI	Visual inspection	

5	Flash spots/ Larger FPL size	Flash spots in switching, Allowed FPL size larger than viewing area, Allowed	MI	Visual/ Inspection card	Zone A Zone B
6	Display wrong/Missing	All appointed displays are showed correct	MA	Visual inspection	Zone A
7	Short circuit/ Circuit break/ Display abnormal	Not Allow			

15.5.2 Appearance inspection standard

NO.	Item	Standard	Defect level	Method	Scope
1	B/W spots /Bubble/ Foreign bodies/ Dents	D= $(L+W)/2$ D ≤ 0.25 mm, negligible 0.25mmD ≤ 0.4 mm, N ≤ 4 Allowed D ≥ 0.4 mm, Not Allow	MI	Visual inspection	Zone A
2	Glass crack	Not Allow	MA	Visual	Zone A Zone B
3	Dirty	Allowed if can be removed	MI	/ Microscope	Zone A Zone B
4	Chips/Scratch/ Edge crown	$X \le 3$ mm, $Y \le 0.5$ mmAnd without affecting the electrode is permissible 2 mm $\le X$ or 2 mm $\le Y$ Not Allow $W \le 0.1$ mm, $L \le 5$ mm, No harm to the electrodes and $N \le 2$ allow	MI	Visual / Microscope	Zone A Zone B

		,			
5	TFT Cracks	Not Allow	MA	Visual / Microscope	Zone A Zone B
6	Dirty/ foreign) (I	Visual	Zone A /
	body	Allowed if can be removed/ allow	MI	/ Microscope	Zone B
7	FPC broken/ Goldfingers xidation/ scratch	Not Allow	MA	Visual / Microscope	Zone B
8	TFT edge bulge /TFT chromatic aberration	TFT edge bulge: $X \le 3$ mm, $Y \le 0.3$ mm Allowed TFT chromatic aberration :Allowed	MI	Visual / Microscope	Zone A Zone B
9	PCB damaged/ Poor welding/ Curl	PCB (Circuit area) damaged Not Allow PCB Poor welding Not Allow PCB Curl≤1%			
10	Edge glue height/ Edge glue bubble	Edge Adhesives H≤PS surface (Including protect film) Edge adhesives seep in≤1/2 Margin width Length excluding Edge adhesives bubble: bubble Width ≤1/2 Margin width; Length ≤5.0mm₀ n≤5	MI	Visual / Ruler	Zone B
11	Protect film	Surface scratch but not effect protect function, Allowed		Visual Inspection	
12	Silicon glue	Thickness ≤ PS surface(With protect film): Full cover the IC; Shape: The width on the FPC ≤ 0.5mm (Front) The width on the FPC≤1.0mm (Back) smooth surface,No obvious raised.	MI	Visual Inspection	
13	Warp degree (TFT substrate)	FPL TFT t≤1.0mm	MI	Ruler	
14	Color difference in COM area (Silver point area)	Allowed		Visual Inspection	

16.Packaging

2019.03.15 DATE EPD PACKING INSTRUCTION DESIGN CHECKED QY-QS. D-010 APPROVED P/N Customer Code Ref.P/N Printing Pull Tape Type PKG Method Surface Marks Bar.Code QYEG0290 **GLASS** Blister **BACK** YES None Marks instruction: Pull tape: print on the back of the product Contents:model+Lot# 18PCS/LAYER,2 INNER BOX/CTN,TOTAL 360PCS/CTN. Packing Materials List Q'ty Model Materials List Unit Barcode Instruction: corrugate Piece Carton 7#(INNER) corrugate 2 BOX Piece 22 Piece PET Blister QYEG0290 Piece EPE 20 Thin foam 285.6*268.36*T1.8-2.0 Vaccum bag 430.0*590.0*0.075 Piece EPE QY2251-10 Piece Foam board Detail: Blister box: Foam board Vaccum bag Thin foam Blister PUT IT INTO 7# INNER CARTON INNER BOX LABEL 7# INNER BOX PUT TWO 7# INNER BOXS INTO 7# CARTON 7# CARTON Packing belt Quantity:3*6=18PCS