TECHNICAL UNIVERSITY OF DENMARK

CONSTRAINED OPTIMIZATION

Course 02612

Assignment 1

 $\begin{array}{c} Authors: \\ {\rm Jakub~Czerny,~s99999} \end{array}$

Oskar Hint, s161559

Joachim Finn Jensen, s134052

March 12, 2017

Contents

1	Intr	roduction	1
2	Assignment		1
	2.1	Problem 1 - Quadratic Optimization	1
	2.2	Problem 2 - Equality Constrained Quadratic Optimization	1
	2.3	Problem 3 - Inequality Constrained Quadratic Programming	1
	2.4	Problem 4 - Markowitz Portfolio Optimization	1
	2.5	Problem 5 - Interior-Point Algorithm for Convex Quadratic Programming	1
9	Cor	nclusion	1
		ICHISION	

1 Introduction

this is some report

2 Assignment

2.1 Problem 1 - Quadratic Optimization

blablablablbal

2.2 Problem 2 - Equality Constrained Quadratic Optimization

blablablablbal

2.3 Problem 3 - Inequality Constrained Quadratic Programming

From page 475 in Nocedal and Wright the following system is given.

$$\min_{x} q(x) = (x_{1} - 1)^{2} + (x_{2} - 2.5)^{2}$$

$$s.t.x_{1} - 2x_{2} + 2 >= 0,$$

$$-x_{1} - 2x_{2} + 6 >= 0,$$

$$-x_{1} + 2x_{2} + 2 >= 0,$$

$$x_{1} >= 0,$$

$$x_{2} >= 0.$$
(1)

in MatLab a contour plot of this is made and seen in figure 1.

2.4 Problem 4 - Markowitz Portfolio Optimization

blablablablbal

2.5 Problem 5 - Interior-Point Algorithm for Convex Quadratic Programming

blablablablbal

3 Conclusion

Some conclusions things

2 3 Conclusion

Figure 1: A contour plot of the problem.