Здравствуйте!

Лекция №4

Несобственные интегралы первого рода

Пусть

1. функция f(x) определена на отрезке $[a, +\infty)$;

2.
$$\forall A > a$$
 существует $\int_{a}^{A} f(x)dx$.

Произведем теперь предельный переход $A \to +\infty$. Тогда $\lim_{A\to +\infty} \int_a^A f(x) dx$ называется **несобственным интегралом первого рода**

и обозначается символом $\int_{a}^{\infty} f(x)dx$:

$$\lim_{A\to +\infty} \int_{a}^{A} f(x)dx = \int_{a}^{\infty} f(x)dx.$$

Если этот предел **существует и конечен**, то говорят, что несобственный интеграл **сходится** (или: **существует**). Если этот предел равен **бесконечности** или вообще **не существует**, то говорят, что несобственный интеграл **расходится** (или: **не существует**).

Совершенно аналогично определяются и следующие несобственные интегралы первого рода:

$$\int_{-\infty}^{a} f(x)dx = \lim_{B \to -\infty} \int_{B}^{a} f(x)dx,$$

$$\int_{-\infty}^{+\infty} f(x)dx = \lim_{B \to -\infty} \int_{B}^{a} f(x)dx + \lim_{A \to +\infty} \int_{a}^{A} f(x)dx \quad (a - \text{любое}).$$

Простейшие свойства несобственных интегралов первого рода

1. Если сходится $\int_{a}^{\infty} f(x)dx$, то $\forall b > a$ сходится и $\int_{b}^{\infty} f(x)dx$.

Наоборот, если $\int_{b}^{\infty} f(x)dx$ сходится и существует $\int_{a}^{b} f(x)dx$, то сходится

 $u\int_{a}^{\infty} f(x)dx$. При этом верно соотношение

$$\int_{a}^{\infty} f(x)dx = \int_{a}^{b} f(x)dx + \int_{b}^{\infty} f(x)dx.$$

<u>Доказательство</u>. Пусть A > b > a. Тогда имеем

$$\int_{a}^{A} f(x)dx = \int_{a}^{b} f(x)dx + \int_{b}^{A} f(x)dx.$$

Сделаем предельный переход $A \rightarrow +\infty$:

$$\lim_{A\to +\infty} \int_{a}^{A} f(x)dx = \int_{a}^{b} f(x)dx + \lim_{A\to +\infty} \int_{b}^{A} f(x)dx.$$

Так как предел слева существует, то существует и предел справа и $\int_{-\infty}^{\infty} f(x) dx$ сходится и соотношение принимает вид

$$\int_{a}^{\infty} f(x)dx = \int_{a}^{b} f(x)dx + \int_{b}^{\infty} f(x)dx.$$

Подумайте сами, что надо изменить в предыдущей фразе, чтобы доказать обратное утверждение.

2. Если
$$\int_{a}^{\infty} f(x)dx$$
 сходится, то $\lim_{A\to +\infty} \int_{A}^{\infty} f(x)dx = 0$

Доказательство.

Согласно предыдущему пункту

$$\int_{a}^{\infty} f(x)dx = \int_{a}^{A} f(x)dx + \int_{A}^{\infty} f(x)dx$$

Отсюда

$$\int_{A}^{\infty} f(x)dx = \int_{a}^{\infty} f(x)dx - \int_{a}^{A} f(x)dx.$$

Делая предельный переход $A \rightarrow +\infty$, получаем

$$\lim_{A \to +\infty} \int_{A}^{\infty} f(x)dx = \int_{a}^{\infty} f(x)dx - \lim_{A \to +\infty} \int_{a}^{A} f(x)dx =$$

$$= \int_{a}^{\infty} f(x)dx - \int_{a}^{\infty} f(x)dx = 0.$$

3. Если сходятся $\int_{a}^{\infty} f(x)dx$ и $\int_{a}^{\infty} g(x)dx$, то сходится также и

 $\int_{0}^{\infty} (f(x) \pm g(x)) dx$ и верно соотношение

$$\int_{a}^{\infty} (f(x) \pm g(x)) dx = \int_{a}^{\infty} f(x) dx \pm \int_{a}^{\infty} g(x) dx.$$

Доказательство. Имеем

$$\int_{a}^{A} (f(x) \pm g(x)) dx = \int_{a}^{A} f(x) dx \pm \int_{a}^{A} g(x) dx.$$

Делая предельный переход $A \rightarrow +\infty$, получаем

$$\int_{a}^{\infty} (f(x) \pm g(x)) dx = \lim_{A \to +\infty} \int_{a}^{A} (f(x) \pm g(x)) dx =$$

$$= \lim_{A \to +\infty} \int_{a}^{A} f(x) dx \pm \lim_{A \to +\infty} \int_{a}^{A} g(x) dx = \int_{a}^{\infty} f(x) dx \pm \int_{a}^{\infty} g(x) dx.$$

4. Если сходятся $\int_{a}^{\infty} f(x) dx$ и c — константа, то сходится и $\int_{a}^{\infty} cf(x) dx$ и верна формула

$$\int_{a}^{\infty} cf(x)dx = c\int_{a}^{\infty} f(x)dx.$$

Доказательство. Имеем

$$\int_{a}^{A} cf(x)dx = c \int_{a}^{A} f(x)dx.$$

Делая предельный переход $A \rightarrow +\infty$, получаем

$$\int_{a}^{\infty} cf(x)dx = \lim_{A \to +\infty} \int_{a}^{A} cf(x)dx = c \cdot \lim_{A \to +\infty} \int_{a}^{A} f(x)dx = c \int_{a}^{\infty} f(x)dx.$$

Сходимость несобственных интегралов первого рода от неотрицательных функций

Важнейшим элементом теории несобственных интегралов является следующий: надо, **не вычисляя интеграла**, ответить на вопрос, сходится он или нет. В конце концов, если он сходится, то его можно вычислить численно на ЭВМ, а вот если он расходится – попытки сосчитать его численно ни к чему хорошему не приведут.

В данном разделе мы рассмотрим вопрос о признаках сходимость несобственных интегралов первого рода от неотрицательных функций. В дальнейшем будем предполагать, что $\forall x \in [a, +\infty)$ функции $f(x) \ge 0$ и $g(x) \ge 0$.

Теорема 1. Для того, чтобы $\int_{a}^{\infty} f(x) dx$ сходился, необходимо и достаточно, чтобы

$$\exists L < +\infty \ \forall A > a \ \int_{a}^{A} f(x) dx \le L.$$

Доказательство.

Рассмотрим функцию $F(A) = \int_{a}^{A} f(x) dx$. В силу того, что $f(x) \ge 0$

эта функция монотонно возрастает с ростом A, так как с ростом A промежуток интегрирования увеличивается. Но вспомним теорему о существовании предела монотонно возрастающей функции. Согласно этой теореме, для того, чтобы существовал конечный предел $\lim_{A\to +\infty} F(A)$ необходимо и достаточно, чтобы эта функция была

ограничена сверху, то есть, чтобы было выполнено условие

$$\exists L < +\infty \ \forall A > a \ F(A) \leq L.$$

Но если заменить F(A) его явным выражением мы как раз и получим условие нашей теоремы.

Теорема 2. Пусть $\forall x \in [a, +\infty)$ $f(x) \leq g(x)$. Тогда

- A) из сходимости $\int_{a}^{\infty} g(x)dx$ следует сходимость $\int_{a}^{\infty} f(x)dx$;
- **Б) из расходимости** $\int\limits_a^\infty f(x)dx$ следует расходимость $\int\limits_a^\infty g(x)dx$. Доказательство.
 - A) Пусть $\int_{a}^{b} g(x)dx$ сходится. Тогда, согласно теореме 1,

$$\exists L < +\infty \ \forall A > a \ \int_{a}^{A} g(x) dx \le L.$$

Ho $\forall x \in [a, +\infty)$ $f(x) \leq g(x)$ и поэтому

$$\forall A > a \quad \int_{a}^{A} f(x) dx \le \int_{a}^{A} g(x) dx \le L,$$

и, согласно той же теореме 1, $\int_{0}^{\infty} f(x)dx$ сходится.

Б) Пусть $\int_{0}^{\infty} f(x)dx$ расходится. Так как $f(x) \ge 0$, то это означает,

что $\lim_{A\to +\infty} \int_{a}^{A} f(x)dx = +\infty$. Но, так как $g(x) \ge f(x)$, то $\int_{a}^{A} g(x)dx \ge \int_{a}^{A} f(x)dx$,

и поэтому

$$\lim_{A \to +\infty} \int_{a}^{A} g(x) dx \ge \lim_{A \to +\infty} \int_{a}^{A} f(x) dx = +\infty$$

 $\lim_{A\to +\infty}\int\limits_a^Ag(x)dx\geq \lim_{A\to +\infty}\int\limits_a^Af(x)dx=+\infty,$ что и означает, что $\lim_{A\to +\infty}\int\limits_a^Ag(x)dx=+\infty,$ то есть $\int\limits_a^\infty g(x)dx$ расходится.

Теорема 3. Пусть
$$\exists \lim_{x \to +\infty} \frac{f(x)}{g(x)} = K$$
, $0 < K < +\infty$. Тогда интегралы

 $\int_{a}^{\infty} f(x)dx$ и $\int_{a}^{\infty} g(x)dx$ сходятся или расходятся одновременно.

Доказательство.

1. В формулировке теоремы сказано, что $\exists \lim_{x \to +\infty} \frac{f(x)}{g(x)} = K$. Согласно определению предела это значит, что

$$\forall \varepsilon > 0 \; \exists b \; \forall x > b \; K - \varepsilon < \frac{f(x)}{g(x)} < K + \varepsilon.$$
 (*)

2. Пусть $\int_a g(x)dx$ сходится. В (*) рассмотрим вторую половину неравенства, которую запишем в виде $f(x) < (K + \varepsilon)g(x)$. Тогда имеем следующую цепочку следований (сообразите сами, где идет ссылка на свойства несобственных интегралов и где на теорему 2):

$$\int_{a}^{\infty} g(x)dx \text{ сходится} \Rightarrow \int_{b}^{\infty} g(x)dx \text{ сходится} \Rightarrow \int_{b}^{\infty} (K+\epsilon)g(x)dx \text{ сходится} \Rightarrow$$

$$\int_{b}^{\infty} f(x)dx \text{ сходится} \Rightarrow \int_{a}^{\infty} f(x)dx \text{ сходится}.$$

3. Пусть теперь $\int_a^b f(x)dx$ сходится. Возьмем є настолько малым, чтобы было $K-\varepsilon>0$. Тогда из левого неравенства в (*) следует, что $g(x) < f(x)/(K-\varepsilon)$ и мы имеем следующую цепочку следований (и снова сообразите сами, где идет ссылка на свойства несобственных интегралов и где на теорему 2):

$$\int_{a}^{\infty} f(x)dx \operatorname{сходится} \Rightarrow \int_{b}^{\infty} f(x)dx \operatorname{сходится} \Rightarrow \int_{b}^{\infty} \frac{f(x)}{K - \varepsilon} dx \operatorname{сходится} \Rightarrow$$

$$\int_{b}^{\infty} g(x)dx \operatorname{сходится} \Rightarrow \int_{a}^{\infty} g(x)dx \operatorname{сходится}.$$

Практический признак сходимости.

Пусть
$$\exists \lim_{x \to +\infty} x^{\lambda} f(x) = K$$
, $K \neq 0$, $+\infty$. Тогда $\int_{a}^{\infty} f(x) dx$ сходится при

 $\lambda > 1$ и расходится при $\lambda \le 1$.

(Заметим, что вопрос о том, как же находить λ , остается на данном этапе открытым).

Доказательство.

Возьмем функцию g(x) в виде $g(x) = \frac{1}{x^{\lambda}}$. Тогда условие теоремы

3 примет вид $\exists \lim_{x \to +\infty} x^{\lambda} f(x) = K$, $K \neq 0$, $+\infty$ и $\int_{a}^{\infty} f(x) dx$ сходится или

расходится одновременно с интегралом $\int_{a}^{\infty} \frac{dx}{x^{\lambda}}$. Рассмотрим поэтому вопрос о сходимости этого интеграла.

1. Пусть $\lambda \neq 1$. Тогда

$$\int_{a}^{A} \frac{dx}{x^{\lambda}} = \frac{x^{1-\lambda}}{1-\lambda} \bigg|_{a}^{A} = \frac{A^{1-\lambda} - a^{1-\lambda}}{1-\lambda}.$$

Будут два варианта:

а) $\lambda > 1$. В этом случае $1 - \lambda < 0$, поэтому $\lim_{A \to +\infty} A^{1-\lambda} = 0$ и

$$\int_{a}^{\infty} \frac{dx}{x^{\lambda}} = \lim_{A \to +\infty} \int_{a}^{A} \frac{dx}{x^{\lambda}} = \frac{a^{1-\lambda}}{\lambda - 1},$$

так что $\int_{a}^{\infty} \frac{dx}{x^{\lambda}}$ сходится.

б) $\lambda < 1$. В этом случае $1 - \lambda > 0$, поэтому $\lim_{A \to +\infty} A^{1-\lambda} = +\infty$ и

$$\int_{a}^{\infty} \frac{dx}{x^{\lambda}} = \lim_{A \to +\infty} \int_{a}^{A} \frac{dx}{x^{\lambda}} = +\infty,$$

так что $\int_{-\infty}^{\infty} \frac{dx}{x^{\lambda}}$ расходится.

2.
$$\lambda = 1$$
. Тогда

$$\int_{a}^{\infty} \frac{dx}{x} = \lim_{A \to +\infty} \int_{a}^{A} \frac{dx}{x} = \lim_{A \to +\infty} (\ln A - \ln a) = +\infty,$$

так что $\int_{a}^{\infty} \frac{dx}{x}$ расходится.

Таким образом, $\int_{a}^{\infty} \frac{dx}{x^{\lambda}}$ сходится при $\lambda > 1$ и расходится при $\lambda \le 1$. По

теореме 3 $\int_{a}^{\infty} f(x)dx$ также сходится при $\lambda > 1$ и расходится при $\lambda \le 1$.

Все упирается в нахождение величины λ . Как это делать — будет разобрано на практике.