5. Ortogonalidad y mínimos cuadrados

5.1. Vectores ortogonales y ortonormales

Dados dos vectores \mathbf{u} y \mathbf{v} de \mathbb{R}^n de componentes u_i y v_i $i=1,2,\ldots,n$ respectivamente, el producto escalar de ambos se define como

$$\mathbf{u} \cdot \mathbf{v} = \sum_{i=1}^{n} u_i v_i.$$

Dos vectores se dicen *ortogonales* si su producto escalar es cero, esto es, si $\mathbf{u} \cdot \mathbf{v} = 0$.

La norma o longitud de un vector \mathbf{u} se define como

$$\|\mathbf{u}\| = \sqrt{\mathbf{u} \cdot \mathbf{u}} = \sqrt{\sum_{i=1}^{n} u_i^2}$$

Un vector unitario es aquel cuya norma es la unidad, es decir, $\|\mathbf{u}\| = 1$.

Un conjunto $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_p\}$ de vectores de \mathbb{R}^n se dice que forman un conjunto ortogonal de vectores si son ortogonales entre sí, esto es, $\mathbf{u}_i \cdot \mathbf{u}_i = 0 \ \forall i \neq j$.

Un conjunto $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_p\}$ de vectores de \mathbb{R}^n se dice que forman un conjunto ortonormal de vectores si son un conjunto ortogonal de vectores y todos ellos son unitarios, esto es, de norma igual a la unidad.

El producto escalar se puede calcular a través del producto de matrices, pensando en los vectores como matrices $1 \times n$, de modo que

$$\mathbf{u} \cdot \mathbf{v} = \mathbf{u}^T \mathbf{v}.$$

Entonces, con OCTAVE es sencillo de realizar cálculos que involucren estos productos. Además, la función norm(u) nos devuelve la norma de un vector u.

Ejercicios

1. Decidir si el siguiente conjunto de vectores forma un sistema ortogonal u ortonormal de vectores de \mathbb{R}^3

$$\mathbf{u}_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \quad \mathbf{u}_2 = \begin{bmatrix} -1 \\ 4 \\ 1 \end{bmatrix}, \quad \mathbf{u}_3 = \begin{bmatrix} 2 \\ 1 \\ -2 \end{bmatrix}.$$

2. Decidir si el siguiente conjunto de vectores forma un sistema ortogonal u ortonormal de vectores de \mathbb{R}^3

$$\mathbf{u}_1 = \begin{bmatrix} 1/\sqrt{18} \\ 4/\sqrt{18} \\ 1/\sqrt{18} \end{bmatrix}, \quad \mathbf{u}_2 = \begin{bmatrix} 1/\sqrt{2} \\ 0 \\ -1/\sqrt{2} \end{bmatrix}, \quad \mathbf{u}_3 = \begin{bmatrix} -2/3 \\ 1/3 \\ -2/3 \end{bmatrix}.$$

3. Decidir si el siguiente conjunto de vectores forma un sistema ortogonal u ortonormal de vectores de \mathbb{R}^4

$$\mathbf{u}_1 = \begin{bmatrix} 1\\2\\1\\1 \end{bmatrix}, \quad \mathbf{u}_2 = \begin{bmatrix} -2\\1\\-1\\1 \end{bmatrix}, \quad \mathbf{u}_3 = \begin{bmatrix} 1\\1\\-2\\-1 \end{bmatrix}, \quad \mathbf{u}_4 = \begin{bmatrix} -1\\1\\1\\2 \end{bmatrix}.$$

5.2. Algoritmo de Gram-Schmidt

Mediante el algoritmo de Gram-Schmidt es posible construir una base ortogonal de un subespacio partiendo de una base cualquiera suya. El algoritmo se basa en la descomposición en componentes ortogonales:

Dados los vectores $\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_p\}$ que forman una base de S, definimos

$$\begin{aligned} \mathbf{v}_1 &= \mathbf{x}_1 \\ \mathbf{v}_2 &= \mathbf{x}_2 - \frac{\mathbf{x}_2 \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_1} \mathbf{v}_1 \\ \mathbf{v}_3 &= \mathbf{x}_3 - \frac{\mathbf{x}_3 \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_1} \mathbf{v}_1 - \frac{\mathbf{x}_3 \cdot \mathbf{v}_2}{\mathbf{v}_2 \cdot \mathbf{v}_2} \mathbf{v}_2 \\ & \dots \\ \mathbf{v}_p &= \mathbf{x}_p - \frac{\mathbf{x}_p \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_1} \mathbf{v}_1 - \frac{\mathbf{x}_p \cdot \mathbf{v}_2}{\mathbf{v}_2 \cdot \mathbf{v}_2} \mathbf{v}_2 - \dots - \frac{\mathbf{x}_p \cdot \mathbf{v}_{p-1}}{\mathbf{v}_{p-1} \cdot \mathbf{v}_{p-1}} \mathbf{v}_{p-1} \end{aligned}$$

entonces, los vectores $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p\}$ forman una base ortogonal de S.

Ejercicio

1. Definir un conjunto ortogonal que genera el mismo subespacio que el conjunto de vectores

$$\mathbf{u}_1 = \begin{bmatrix} 1 \\ 2 \\ 1 \\ 0 \end{bmatrix}, \quad \mathbf{u}_2 = \begin{bmatrix} -2 \\ 1 \\ -1 \\ -1 \end{bmatrix}, \quad \mathbf{u}_3 = \begin{bmatrix} 1 \\ 1 \\ -2 \\ 2 \end{bmatrix}.$$

Verifica la ortogonalidad de los vectores obtenidos.

5.3. Descomposición QR y mínimos cuadrados

El algoritmo de Gram-Schmidt, aplicado a las columnas de una matriz y normalizando los vectores obtenidos, nos perimte factorizar una matriz en la forma QR, como producto de una matriz ortogonal y otra triangular superior e invertible, que es de aplicación en la resolución de los problemas de mínimos cuadrados.

La función de OCTAVE qr permite obtener la factorización QR de una matriz A mediante

Si A es una matriz $m \times n$, $\mathbf{b} \in \mathbb{R}^m$, una solución por mínimos cuadrados de $A\mathbf{x} = \mathbf{b}$ es una $\hat{\mathbf{x}} \in \mathbb{R}^n$ tal que

$$\|\mathbf{b} - A\hat{\mathbf{x}}\| \le \|\mathbf{b} - A\mathbf{x}\| \qquad \forall \mathbf{x} \in \mathbb{R}^n$$

El conjunto de soluciones por mínimos cuadrados de $A\mathbf{x} = \mathbf{b}$ coincide con las soluciones del sistema normal

$$A^T A \hat{\mathbf{x}} = A^T \mathbf{b}.$$

Por otra parte, si A admite una descomposición A=QR, con Q ortogonal y R triangular superior invertible, para cada $\mathbf{b} \in \mathbb{R}^m$, la solución por mínimos cuadrados es la solución de

$$R\hat{\mathbf{x}} = Q^T\mathbf{b}$$

Ejercicios

1. Halla la solución en el sentido de mínimos cuadrados de los siguientes sistemas empleando el sistema normal, mediante la descomposición QR y mediante la orden $A \setminus b$

$$a) \begin{bmatrix} -1 & 2 \\ 2 & -3 \\ -1 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 4 \\ 1 \\ 2 \end{bmatrix}, \qquad b) \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \\ 8 \\ 2 \end{bmatrix}, \qquad c) \begin{cases} x - y = -1 \\ x + 4y = 6 \\ x - y = 5 \\ x + 4y = 7 \end{cases}$$