Lista de Exercícios 2

- 1. Seja $A=\{3,4,5,7,9,11,13\}$. Verifique se as afirmações abaixo são verdadeiras ou falsas (justifique sua resposta).
 - a) $(\forall x \in A) \ x^2 > 10$
 - b) $(\forall x \in A) \ x + 3 \notin A$
 - c) $(\forall x \in A) \ x \in \text{impar}$
 - d) $(\forall x \in A)(\forall y \in A) \ x + y \in A$
 - e) $(\forall x \in A)(\exists y \in A) \ x + y \in A$
 - f) $(\forall x \in A)(\exists y \in A) \ x + 2y > 25$
- 2. Determine o valor verdade de cada uma das proposições abaixo:
 - a) $(\forall x \in \mathbb{Z})(\forall y \in \mathbb{Z})(x+y=0)$
 - b) $(\forall x \in \mathbb{Z})(\exists y \in \mathbb{Z})(x+y=0)$
 - c) $(\exists x \in \mathbb{Z})(\forall y \in \mathbb{Z})(x+y=0)$
 - d) $(\exists x \in \mathbb{Z})(\exists y \in \mathbb{Z})(x+y=0)$
 - e) $(\forall x \in \mathbb{Z})(\forall y \in \mathbb{Z})(x \cdot y = 0)$
 - f) $(\forall x \in \mathbb{Z})(\exists y \in \mathbb{Z})(x \cdot y = 0)$
 - g) $(\exists x \in \mathbb{Z})(\forall y \in \mathbb{Z})(x \cdot y = 0)$
 - h) $(\exists x \in \mathbb{Z})(\exists y \in \mathbb{Z})(x \cdot y = 0)$
 - i) $(\forall x \in \mathbb{Z})(\forall y \in \mathbb{Z})(x > y \lor y > x)$
 - j) $(\forall x \in \mathbb{Z})(\forall y \in \mathbb{Z})(x^2 = y)$
 - k) $(\forall x \in \mathbb{Z})(\exists y \in \mathbb{Z})(x^2 = y)$
 - 1) $(\exists x \in \mathbb{Z})(\exists y \in \mathbb{Z})(x^2 = y)$
 - m) $(\forall x \in \mathbb{Z})(\forall y \in \mathbb{Z})(x+5=y)$
 - n) $(\forall x \in \mathbb{Z})(\exists y \in \mathbb{Z})(x+5=y)$
 - o) $(\forall x \in \mathbb{Z})(\exists y \in \mathbb{N})(x+5=y)$
 - p) $(\forall x \in \mathbb{Z})(\exists y \in \mathbb{Z})(5x = y)$
 - q) $(\forall x \in \mathbb{Z})(\exists y \in \mathbb{Z})(x y \in \mathbb{Z})$
 - r) $(\forall x \in \mathbb{N})(\forall y \in \mathbb{N})(x y \in \mathbb{N})$
 - s) $(\forall x \in \mathbb{N})(\forall y \in \mathbb{N})(xy \text{ não é primo})$
 - t) $(\exists x \in \mathbb{N})(\forall y \in \mathbb{N})(xy \text{ não \'e primo})$
 - u) $(\forall x \in \mathbb{Z})(\forall y \in \mathbb{Z})(\forall z \in \mathbb{Z})(xy > z)$
 - v) $(\forall x \in \mathbb{Z})(\exists y \in \mathbb{Z})(\forall z \in \mathbb{Z})(xy > z)$
 - x) $(\forall x \in \mathbb{Z})(\forall y \in \mathbb{Z})(\exists z \in \mathbb{Z})(xy > z)$

- 3. Negue as proposições do exercício anterior.
- 4. Seja $f: \mathbb{R} \longrightarrow \mathbb{R}$ uma função. Dizemos que f é uma função contínua em $x_0 \in \mathbb{R}$ se e somente se para cada $\epsilon > 0$ existe um número $\delta > 0$ tal que $|f(x) f(x_0)| < \epsilon$, sempre que $|x x_0| < \delta$.
 - a) Reescreva a definição acima utilizando os quantificadores \forall , \exists e os conectivos lógicos estudados.
 - b) Negue a proposição acima; ou seja, complete a frase: Dizemos que f não é contínua em $x_0 \in \mathbb{R}$ se e somente se ...
- 5. A CONTRAPOSITIVA de uma proposição do tipo $p \longrightarrow q$ é a proposição $q \longrightarrow p$. Escreva em linguagem corrente, a contrapositiva e a negação das seguintes afirmações:
 - a) Se todos os gatos estão miando então algum cachorro latiu.
 - b) Se algum vídeo é bom então todos acessam o utube.
 - c) Se todos os bixos são pintados então todos os veteranos ficam felizes.
- 6. Negue as seguintes proposições expressando-as em linguagem corrente.
 - a) Se ocorrer algum tumulto então alguém é morto.
 - b) Todo número inteiro é racional.
 - c) Algumas retas do plano não são paralelas.
 - d) Nenhum triângulo escaleno é isósceles.
 - e) Todo número natural n é tal que $n^2 + 2 > 8$.
 - f) Todos os triângulos são isósceles.
- 7. Quais das afirmações abaixo são verdadeiras? Justifique.
 - a) $(\forall n \in \mathbb{N}) \ n = 2 \implies n^2 n 2 = 0.$
 - b) $(\forall n \in \mathbb{N}) \ n^2 n 2 = 0 \Longrightarrow n = 2.$
 - c) $(\forall n \in \mathbb{N}) \ n^2 n 2 = 0 \implies (n = -1 \land n = 2).$
 - d) $(\forall n \in \mathbb{N}) \ n^2 n 2 = 0 \implies (n = -1 \lor n = 2).$
 - e) $(\forall n \in \mathbb{N}) \ n^2 n 2 = 0 \iff (n = -1 \land n = 2).$
 - f) $(\forall n \in \mathbb{N}) \ n^2 n 2 = 0 \iff (n = -1 \lor n = 2).$
 - g) $(\forall n \in \mathbb{N}) (n^2 n 2 = 0 \implies n = 2) \lor (n^2 n 2 = 0 \implies n = -1).$
 - h) $(\forall n \in \mathbb{N})$ $(n = 2 \implies n^2 n 2 = 0) \lor (n = -1 \implies n^2 n 2 = 0).$
 - i) $(\forall n \in \mathbb{N})$ $(n = 2 \implies n^2 n 2 = 0) \land (n = -1 \implies n^2 n 2 = 0)$.
 - j) $(\forall n \in \mathbb{Z}) \ n > 5 \implies n^2 > 25.$
 - k) $(\forall n \in \mathbb{Z}) \ n^2 > 25 \implies n > 5.$