Lecture 06 Dynamic programming II

Spring 2023

Zhihua Jiang

Shortest Paths

• Recursive formulation: $\delta(s,v) = \min\{w(u,v) + \delta(s,u) \, | \, (u,v) \in E\}$

Memoized DP algorithm: takes infinite time if cycles!
 in some sense necessary to handle negative cycles

• works for directed acyclic graphs in O(V+E)effectively DFS/topological sort + Bellman-Ford round rolled into a single recursion

- * Subproblem dependency should be acyclic
 - more subproblems remove cyclic dependence: $\delta_k(s, v) = \text{shortest } s \to v \text{ path using } \leq k \text{ edges}$
 - recurrence:

$$\delta_k(s, v) = \min\{\delta_{k-1}(s, u) + w(u, v) | (u, v) \in E\}$$

 $\delta_0(s, v) = \infty \text{ for } s \neq v \text{ (base case)}$
 $\delta_k(s, s) = 0 \text{ for any } k \text{ (base case, if no negative cycles)}$

- Goal: $\delta(s, v) = \delta_{|V|-1}(s, v)$ (if no negative cycles)
- memoize
- time: # subproblems · time/subproblem $O(v) = O(V^3)$
- actually $\Theta(\text{indegree}(v))$ for $\delta_k(s, v)$
- \Longrightarrow time = $\Theta(V \sum_{v \in V} \text{indegree}(v)) = \Theta(VE)$

BELLMAN-FORD!

Guessing

How to design recurrence

• want shortest $s \to v$ path

• what is the last edge in path?

- guess it is (u, v)
- path is $\underbrace{\text{shortest } s \to u \text{ path}}_{\text{by optimal substructure}} + \text{edge } (u, v)$
- cost is $\underbrace{\delta_{k-1}(s,u)}_{\text{another subproblem}} + w(u,v)$
- \bullet to find best guess, try all (|V| choices) and use best
- * key: small (polynomial) # possible guesses per subproblem typically this dominates time/subproblem
- * DP \approx recursion + memoization + guessing

DAG view

- like replicating graph to represent time
- \bullet converting shortest paths in graph \rightarrow shortest paths in DAG
- * DP \approx shortest paths in some DAG

5 Easy Steps to Dynamic Programming

1. define subproblems count # subproblems

2. guess (part of solution) count # choices

3. relate subproblem solutions compute time/subproblem

4. recurse + memoize time = time/subproblem · # sub-problems

OR build DP table bottom-up check subproblems acyclic/topological order

5. solve original problem: = a subproblem

OR by combining subproblem solutions

⇒ extra time

Examples:	Fibonacci	Shortest Paths							
subprobs:	F_k	$\delta_k(s, v)$ for $v \in V$, $0 \le k < V $							
18	for $1 \le k \le n$	$= \min s \to v \text{ path using } \leq k \text{ edges}$							
# subprobs:	n	V^2							
guess:	nothing	edge into v (if any)							
# choices:	1	indegree(v) + 1							
recurrence:	$F_k = F_{k-1}$	$\delta_k(s, v) = \min\{\delta_{k-1}(s, u) + w(u, v)\}$							
	$+F_{k-2}$	$ (u,v) \in E\}$							
time/subpr:	$\Theta(1)$	$\Theta(1 + indegree(v))$							
topo. order:	for $k = 1, \ldots, n$	for $k = 0, 1, V - 1$ for $v \in V$							
total time:	$\Theta(n)$	$\Theta(VE)$							
orig. prob.:	F_n	$\delta_{ V -1}(s,v)$ for $v \in V$							
extra time:	$\Theta(1)$	$\Theta(V)$							

Independent sets in trees

- Dependent set: subset of nodes $S \subset V$, and there are no edges between them
- Finding the largest independent set in a graph is intractable
- However, it can be solved in linear time when the graph is a tree, using dynamic programming
- Algorithm:
 - Start by rooting the tree at any node r. Each node defines a subtree.
 - The goal is I(r): I(u) = size of largest independent set of subtree hanging from u
 - If know I(w) for all descendants w of u, then compute I(u):

$$I(u) = \max\{1 + \sum_{grandchild} I(gc), \sum_{child} I(c)\}$$

Independent sets in trees

- The number of subproblems: O(|V|)
- The running time: O(|V|+|E|)

$$I(u) = \max\{1 + \sum_{grandchild} I(gc), \sum_{child} I(c)\}$$

Exercise 1

A subsequence is *palindromic* if it is the same whether read left to right or right to left. For instance, the sequence

$$A, C, G, T, G, T, C, A, A, A, A, A, T, C, G$$

has many palindromic subsequences, including A, C, G, C, A and A, A, A, A (on the other hand, the subsequence A, C, T is *not* palindromic). Devise an algorithm that takes a sequence $x[1 \dots n]$ and returns the (length of the) longest palindromic subsequence. Its running time should be $O(n^2)$.

Subproblems: Define variables L(i,j) for all $1 \le i \le j \le n$ so that, in the course of the algorithm, each L(i,j) is assigned the length of the longest palindromic subsequence of string $x[i,\cdots,j]$.

Algorithm and Recursion: The recursion will then be:

$$L(i, j) = \max \{L(i+1, j), L(i, j-1), L(i+1, j-1) + \text{equal}(x_i, x_j)\}\$$

where equal(a, b) is 1 if a and b are the same character and is 0 otherwise, The initialization is the following:

$$\forall i, 1 \leq i \leq n$$
, $L(i, i) = 0$
 $\forall i, 1 \leq i \leq n-1$, $L(i, i+1) = \operatorname{equal}(x_i, x_{i+1})$
For s=1 to n-1
for i=1 to n-s
 $j=i+s$

Correctness and Running Time: Consider the longest palindromic subsequence s of $x[i, \dots, j]$ and focus on the elements x_i and x_j . There are then three possible cases:

- If both x_i and x_j are in s then they must be equal and $L(i,j) = L(i+1,j-1) + \text{equal}(x_i,x_j)$
- If x_i is not a part of s, then L(i,j) = L(i+1,j).
- If x_j is not a part of s, then L(i,j) = L(i,j-1).

Hence, the recursion handles all possible cases correctly. The running time of this algorithm is $O(n^2)$, as there are $O(n^2)$ subproblems and each takes O(1) time to evaluate according to our recursion.

		i													
		Α	С	G	Τ	G	Т	С	А	Α	Α	Α	H	С	G
j	Α	0													
	C	0	0												
	G	0	0	0				(i, j-1) ⊥	(i+1, j-1)						
	Т	0	0	0	0			(i,j) ~	_(i+1, j)						
	G	1	1	1	0	0									
	Т		1	1	1	0	0								
	С			1	1	0	0	0							
	Α				1	0	0	0	0						
	Α					1	1	1	1	0					
	Α						1	1	1	1	0				
	Α							2	2	1	1	0			
	Т								2	1	1	0	0		
	С									1	1	0	0	0	
	G										1	0	0	0	0

		Α	С	G	Т	G	Т	С	Α	Α	Α	Α	Т	С	G
J	Α	0													
•	O	0	0												
	G	0	0	0											
	Т	0	0	0	0										
	U	1	1	1	0	0									
	Τ	1	1	1	1	0	0								
	O	2	2	1	1	0	0	0							
	Α	3	2	1	1	0	0	0	0						
	Α	3	2	1	1	1	1	1	1	0					
	Α	3	2	1	1	1	1	1	1	1	0				
	Α	3	2	2	2	2	2	2	2	1	1	0			
	Т	3	3	3	3	3	3	2	2	1	1	0	0		
	C	4	4	3	3	3	3	3	2	1	1	0	0	0	
	G	4	4	4	4	4	3	3	2	1	1	0	0	0	0

Exercise 2

A *vertex cover* of a graph G = (V, E) is a subset of vertices $S \subseteq V$ that includes at least one endpoint of every edge in E. Give a linear-time algorithm for the following task.

Input: An undirected tree T = (V, E).

Output: The size of the smallest vertex cover of *T*.

For instance, in the following tree, possible vertex covers include $\{A, B, C, D, E, F, G\}$ and $\{A, C, D, F\}$ but not $\{C, E, F\}$. The smallest vertex cover has size 3: $\{B, E, G\}$.

$$V(i) = \min\{\#child + \sum V(grandchild), 1 + \sum V(child)\}\$$

The subproblem V(u) will be defined to be the size of the minimum vertex cover for the subtree rooted at node u. We have V(u) = 0 if u is a leaf, as the subtree rooted at u has no edges to cover. The crucial observation is that if a vertex cover does not use a node it has to use all its neighboring nodes. Hence, for any internal node i

$$V(i) = \min \left\{ \sum_{j:(i,j)\in E} \left(1 + \sum_{k:(j,k)\in E} V(k) \right), 1 + \sum_{j:(i,j)\in E} V(j) \right\}$$

The algorithm can then solve all the subproblems in order of decreasing depth in the tree and output V(n). The running time is linear in n because while calculating V(i) for all i we look at most at 2*|E| = O(n) edges in total.

$$V(i) = \min\{\#child + \sum V(grandchild), 1 + \sum V(child)\}\$$

Exercise 4

You are given a string of n characters s[1...n], which you believe to be a corrupted text document in which all punctuation has vanished (so that it looks something like "itwasthebestoftimes..."). You wish to reconstruct the document using a dictionary, which is available in the form of a Boolean function $dict(\cdot)$: for any string w,

$$dict(w) = \begin{cases} \text{true} & \text{if } w \text{ is a valid word} \\ \text{false} & \text{otherwise.} \end{cases}$$

- (a) Give a dynamic programming algorithm that determines whether the string $s[\cdot]$ can be reconstituted as a sequence of valid words. The running time should be at most $O(n^2)$, assuming calls to dict take unit time.
- (b) In the event that the string is valid, make your algorithm output the corresponding sequence of words.

a) Subproblems: Define an array of subproblems S(i) for $0 \le i \le n$ where S(i) is 1 if $s[1 \cdots i]$ is a sequence of valid words and is 0 otherwise.

Algorithm and Recursion: It is sufficient to initialize S(0) = 1 and update the values S(i) in ascending order according to the recursion

$$S(i) = \max_{0 \le j \le i} \{S(j) : \operatorname{dict}(s[j+1 \cdots i]) = \operatorname{true}\}$$

Then, the string s can be reconstructed as a sequence of valid words if and only if S(n) = 1.

Correctness and Running Time: Consider $s[1 \cdots i]$. If it is a sequence of valid words, there is a last word $s[j \cdots i]$, which is valid, and such that S(j) = 1 and the update will cause S(i) to be set to 1. Otherwise, for any valid word $S[j \cdots i]$, S(j) must be 0 and S(i) will also be set to 0. This runs in time $O(n^2)$ as there are n subproblems, each of which takes time O(n) to be updated with the solution obtained from smaller subproblems.

b) Every time a S(i) is updated to 1 keep track of the previous item S(j) which caused the update of S(i) because $s[j+1\cdots i]$ was a valid word. At termination, if S(n)=1, trace back the series of updates to recover the partition in words. This only adds a constant amount of work at each subproblem and a O(n) time pass over the array at the end. Hence, the running time remains $O(n^2)$.

HW2-1

A contiguous subsequence of a list S is a subsequence made up of consecutive elements of S. For instance, if S is

$$5, 15, -30, 10, -5, 40, 10,$$

then 15, -30, 10 is a contiguous subsequence but 5, 15, 40 is not. Give a linear-time algorithm for the following task:

Input: A list of numbers, a_1, a_2, \ldots, a_n .

Output: The contiguous subsequence of maximum sum (a subsequence of length zero has sum zero).

For the preceding example, the answer would be 10, -5, 40, 10, with a sum of 55.

(*Hint*: For each $j \in \{1, 2, ..., n\}$, consider contiguous subsequences ending exactly at position j.)

HW2-2

Assume aa=ab=bb=b, ac=bc=ca=a, ba=cb=cc=c on the set $A=\{a, b, c\}$. Given a string $x=x_1x_2...x_n$, design a dynamic programming algorithm to check whether there is a computational order such that the final result is a.

For example,

$$x=bbbba \Rightarrow \text{Yes.} (b(bb))(ba) = (bb)(ba) = b(ba) = bc = a$$

 $x=bca \Rightarrow \text{No.} (bc)a = aa = b, b(ca) = ba = c$