Zima 2023-24

Spis rozmaitości treściowalnych

04.10.2	3 : Podstawowe definicje	3
1.1.	Co to kategoria	3
1.2.	Kompleksy	4
	Funktory kowariantne i kontrawariantne	5
	3 : Równoważność kategorii	10
2.1.	Presnop i snop	10
	Funktory wierne, pełne	11
2.3.	Naturalne przekształcenia funktorów	12
2.4.	Równoważność kategorii	15
16.10.2	023 : Funktory reprezentowalne i granice	18
3.1.	Kategoria funktorów	18
3.2.	Granice i kogranice	21
23.10.2	3 : Funktory sprzężone [adjoint functors]	23
4.1.	Kategorie addytywne i abelowe	25
30.10.2	023 : Kompleksy łańcuchowe i (ko)homologie	32
5.1.	Kompleks łańcuchowy i sympleksy	32
	Homologie	33
	Dull back i nuch out	24

Wykład 04.10.23: Podstawowe definicje

1.1 Co to kategoria

Rozważmy układ danych **C** zawierający:

- klasę obiektów Ob C
- dla dowolnej pary X, Y ∈ Ob **C** zbiór Hom**c**(X, Y), którego elementy nazywany *morfiz-mami* i zapisujemy φ : X → Y lub X $\xrightarrow{\varphi}$ Y
- kolekcję odwzorowań, zwanych złożeniami, dla wszystkich X, Y, Z ∈ Ob C takich, że

Definicia 1.1: kategoria (mała).

Układ danych **C** jak wyżej nazywamy **kategorią**, jeśli spełnione są następujące warunki:

- 1. Zbiory $\mathsf{Hom}_{\mathbf{C}}(X,Y)$ dla $X,Y\in\mathsf{Ob}\,\mathbf{C}$ są parami rozłączne (tzn. morfizmy mają dobrze określone dziedziny i przeciwdziedziny).
- 2. Dla każdego A \in Ob **C** istnieje Id_A \in Hom_{**C**}(A, A) takie, że $\varphi \circ$ Id_A = φ oraz Id_A $\circ \psi = \psi$.
- 3. Złożenie morfizmów jest łączne, tzn. dla morfizmów

$$\mathsf{X} \xrightarrow{\varphi} \mathsf{Y} \xrightarrow{\psi} \mathsf{Z} \xrightarrow{\eta} \mathsf{W}$$

zawsze zachodzi równość $(\eta\psi)\varphi = \eta(\psi\varphi)$.

Dodatkowo, jeśli Ob C jest zbiorem, to C nazywamy małą kategorią.

Przykład(y) 1.1

 Kategorię wszystkich pierścieni wektorowych nad ciałem K oznaczamy Vect_k. Jeśli interesują nas przestrzenie tylko skończonego wymiaru, to istnieje kategoria Vect^{fin} przestrzeni wektorowych skończenie wymiarowych.

Obiektami obu tych kategorii są przestrzenie liniowe (skończonego wymiaru), a morfizmami są przekształcenia liniowe między nimi.

- Wszystkie zbiory wraz z funkcjami między nimi jako morfizmami tworzą kategorią Set zbiorów.
- Jeśli rozważamy jako obiekty tylko zbiory z określonym dobrym porządkiem, to morfizmami mogą być funkcje słabo monotoniczne. Taką kategorię oznaczamy Set<.
- 4. Kategoria wszystkich grup wraz z homomorfizmami jako morfizmami jest oznaczana **Grp**, natomiast kategoria, której obiekty to tylko grupy abelowe jest oznaczana **Ab**.
- 5. Pojedyncza grupa G może tworzyć sama w sobie jednoobiektową kategorię \mathbf{c}_{G} taką, że
 - **⇒** Ob $C_G = \{ * \}$
 - \blacksquare Hom $_{\mathbf{c}_{G}}(\star,\star)$ = G, a złożenia działa jak mnożenie elementów G.
- 6. Dla dowolnego pierścienia R istnieje kategoria, której obiektami są (lewe) R-moduły, a morfizmami są homomorfizmy między tymi modułami. Oznaczamy to R **mod**.
- 7. Wszystkie przestrzenie topologiczne wraz z odwzorowaniami ciągłymi nazywamy kategorią przestrzeni topologicznych **Top**.
- 8. Wszystkie gładkie rozmaitości są obiektami kategorii **Diff**, a morfizmy to gładkie odwzorowania między rozmaitościami.
- 9. Kategoria $\mathbf{Rep}_{G,K}$ posiada jako obiekty reprezentacje grupy G na przestrzeniach liniowych nad K, a jako morfizmy wszystkie przekształcenia G-ekwiwariantne.
- 10. Rozważmy kategorię Δ taką, że jej obiektami są zbiory kolejnych liczb naturalnych:

$$\mathsf{Ob}\,\Delta = \{[\mathsf{n}] \ : \ \mathsf{n} \in \mathbb{N}\},\$$

[n] = $\{0, 1, ..., n\}$. Zdefiniujmy zbiory morfizmów jako $\Delta([m], [n])$ = wszystkie niemalejące funkcje z [m] w [n].

Tak zdefiniowaną kategorię nazywamy kategorię symplicjalną.

1.2 Kompleksy

Definicja 1.2: kompleksy łańcuchowe (grup abelowych). Jeśli ciąg (grup abelowych) A.

$$... \, \longrightarrow \, A_0 \, \stackrel{d_0}{\longrightarrow} \, A_1 \, \stackrel{d_1}{\longrightarrow} \, A_2 \, \stackrel{d_2}{\longrightarrow} \, ...$$

jest taki, że dla każdego n \mathbb{Z} (dopuszczamy ujemne indeksy) złożenie $d_{n+1} \circ d_n = 0$, to nazywamy go **kompleksem łańcuchowym**.

Możemy rozważać kategorię, której obiektami są kompleksy łańcuchowe obiektów z jednej kategorii \mathbf{C} , np. grup abelowych. Morfizmem między kompleksem A. a kompleksem B. nazwiemy wówczas ciąg homomorfizmów $\varphi_i \in \operatorname{Hom}_{\mathbf{C}}(A_i, B_i)$ taki, że w diagramie

każdy prostokat komutuje, tzn.

$$d_n^B \circ \varphi_n = \varphi_{n+1} \circ d_n^A$$

dla każdego n.

1.3 Funktory kowariantne i kontrawariantne

Definicja 1.3: funktor.

Funktorem z kategorii **C** w kategorię **D** nazywamy dwa przyporządkowania: między obiektami tych kategorii i między morfizmami takie, że:

- \blacksquare Ob $\mathbf{C} \ni X \mapsto F(X) \in Ob \mathbf{D}$

$$\operatorname{Hom}_{\mathbf{C}}(X,Y) \ni \varphi \mapsto \operatorname{F}(\varphi) \in \operatorname{Hom}_{\mathbf{D}}(\operatorname{F}(X),\operatorname{F}(Y))$$

zachowuje składanie morfizmów, tzn. $F(\varphi \circ \psi) = F(\varphi) \circ F(\psi)$.

Takie przyporządkowania między kategoriami nazywa się też, bardziej precyzyjnie, funktorami kowariantnymi.

Przykład(y) 1.2

 Funktor F: Set → Vect_K zdefiniujmy tak, że dowolny X ∈ Ob Set przechodzi ma przestrzeń wektorową nad ciałem K o bazie X, tzn.:

$$F(X) = \left\{ \sum_{x \in X} a_x x : \alpha_x \in K, \text{ tylko skończenie wiele } \neq 0 \right\}$$

 Dużą grupą funktorów są tzw. funktory zapominające, które gubią część informacji o strukturze obiektów w wyjściowej kategorii.

Na przykład funktor

$$F: \textbf{Vect}^{fin}_{\textbf{K}} \rightarrow \textbf{Set}$$

przeprowadza przestrzeń liniową na zbiór jej elementów bez struktury liniowej. Przkeształcenia liniowe między przestrzeniami liniowymi są wówczas przeprowadzane na zwykłe funkcje miedzy zbiorami.

Innym funktorem zapominającym jest n.p. $F:R-\textbf{mod}\to \textbf{Ab}$, który dla dowolnego $N\in Ob\ R-\textbf{mod}$ przypisuje $F(N)=Hom_R(M,N)$ dla pewnego $M\in Ob\ R-\textbf{mod}$.

- 3. Homomorfizm $\varphi: G \to H$ indukuje funktor $\Phi: \mathbf{C}_G \to \mathbf{C}_H$, który jedyny obiekt $\star \in G$ Ob \mathbf{C}_G posyła na jedyny obiekt $\emptyset \in G$ Ob \mathbf{C}_H . Natomiast morfizmy $\mathbf{C}_G \in G$ odpowiadające mnożeniu przez elementy grupy \mathbf{C}_G , przesyła na morfizmy odpowiadające mnożeniu przez $\mathbf{C}_G \in G$
- Przez **Top*** oznaczamy kategorię przestrzeni topologicznych z wyróżnionym punktem, w której morfizmami są odwzorowania ciągłe respektujące wybrane punkty. Funktor

$$\Pi_1: \textbf{Top}_* \to \textbf{Grp}$$

taki, że dla $X \in Ob \operatorname{Top}_* z$ wyróżnionym punktem $x_0 \in X$ przypisuje

$$\Pi_1(X, x_0) = [(S^1, 1), (X, x_0)]$$

czyli klasę homotopii odwzorowań ciągłych ($S^1,1$) \to (X, x_0), nazywamy **grupą** podstawową.

Dwa odwzorowania

$$f, g: (S^1, 1) \to (X, x_0)$$

są homotopijne, jeśli istnieje $H: S^1 \times [0,1] \to X$ ciągłe takie, że

$$H(z, 0) = f(z) i H(z, 1) = g(z) i H(1, t) = x_0$$

Grupa fundamentalna okręgu z wyróżnionym punktem jest izomorficzna z liczbami całkowitymi:

$$\Pi_1(S^1, 1) = \mathbb{Z}$$
.

Mając dwie przestrzenie topologiczne (X, x_0) i (Y, y_0) oraz ciągłą funkcję między nimi f, mamy

$$\begin{array}{ccc} \Pi_1(X,x_0) & \ni & [\sigma] \\ \\ \Pi_1(f) & & & \int \Pi_1(f) \\ \\ \Pi_1(Y,y_0) & \ni & [f \circ \sigma] \end{array}$$

Twierdzenie 1.1.

Każde ciągłe odwzorowanie $f:D^2\to D^2$ ma punkt stały.

Dowód

A raczej jego szkic.

Załóżmy nie wprost, że istnieje funkcja ciągła $f:D^2\to D^2$, która nie posiada punktu stałego.

Możemy wówczas zdefiniować funkcję $F: D^2 \to \partial D^2 = S^1$, która punktowi $y \in D^2$ przypisuje punkt przecięcia wychodzącej z f(y) przechodzącej przez y z obwodem D^2 :

Obcięcie takiej funkcji do brzegu ∂D^2 daje oczywiście identyczność na ∂D^2 (punkt x wyżej). Powstaje więc diagram

na który możemy nałożyć funktor Π_1 :

$$\mathbb{Z} = \Pi_1(\mathsf{S}^1) \xrightarrow{\qquad \qquad } \Pi_1(\mathsf{D}^2) = \mathsf{S}^1$$

$$\mathsf{id}_{\mathbb{Z}} = \Pi_1(\mathsf{id}_{\mathsf{S}^1}) \xrightarrow{\qquad \qquad } \Pi_1(\mathsf{F})$$

$$\Pi_1(\mathsf{S}^1) = \mathbb{Z}$$

NIE ROZUMIEM CO TO DAJE

Definicja 1.4: kategoria dualna.

Dla kategorii **C** możemy zdefiniować nową kategorię, \mathbf{C}^{op} w której każdy morfizm $\varphi^{\mathrm{op}} \in \mathrm{Hom}_{\mathbf{C}^{\mathrm{op}}}(Y, X)$ zostaje odwrócony:

$$X \stackrel{\varphi}{\underset{\varphi \circ p}{\longleftarrow}} Y$$

Wtedy Ob **C**^{op} to obiekty dualne do elementów znajdujących się w Ob **C**. Tak zdefiniowaną kategorię **C**^{op} nazywamy **kategorią dualną**.

Przykład(y) 1.3

1. Kategoria dualna do kategorii przestrzeni liniowych $\mathbf{Vect}_{\mathsf{K}}^{\mathsf{op}}$ jest kategorią, której obiekty to przestrzenie sprzężone, $\mathsf{V}^* \in \mathsf{Ob}\, \mathbf{Vect}_{\mathsf{K}}^{\mathsf{op}}$, zawierające funkcjonały liniowe $\mathsf{V} \to \mathsf{K}$. Każdy morfizm $\varphi: \mathsf{V} \to \mathsf{W}$ w $\mathbf{Vect}_{\mathsf{K}}$ indukuje wówczas odwzorowanie $\varphi^*: \mathsf{W}^* \to \mathsf{V}^*$ takie, że dla $\mathsf{f} \in \mathsf{W}^*$ mamy $\varphi^*(\mathsf{f}) = \mathsf{f} \circ \varphi: \mathsf{V} \to \mathsf{W} \to \mathsf{K}$.

Kojarzenie funkcjonału $\varphi^*\in V^*$ z elementem $v\in V$ jest czasem oznaczane przez $\langle \varphi,v\rangle$ = $\varphi(v)$.

Definicja 1.5: funktor kontrawariantny.

Funktor (kowariantny) z kategorii **C**^{op} do kategorii **D** jest nazywamy **funktorem kontrawariantnym** z **C** do **D**.

Oznacza to, że jeśli X, Y \in Ob **C** i $\varphi: X \to Y \in \mathsf{Hom}_{\mathbf{C}}(X,Y)$, to funktor kontrawariantny $F: \mathbf{C}^\mathsf{op} \to \mathbf{D}$ przeprowadza X na $F(X) \in \mathsf{Ob} \, \mathbf{D}$, a $\varphi \mapsto F(\varphi) \in \mathsf{Hom}_{\mathbf{D}}(F(Y), F(X))$.

Składanie morfizmów również zmienia kolejność, tzn.

$$\mathsf{F}(\psi\varphi) = \mathsf{F}(\varphi)\mathsf{F}(\psi)$$

Wykład 09.10.23: Równoważność kategorii

2.1 Presnop i snop

Niech X będzie przestrzenią topologiczną i związaną z nią kategorię $\mathbf{Otw}(\mathbf{X})$ zdefiniujemy tak, że

- \longrightarrow Ob **Otw(X)** = {U \subseteq X : U zbiór otwarty}

Tak zdefiniowany funktor kontrawariantny $\mathbf{Otw}(\mathbf{X})^{\mathrm{op}} \to \mathbf{C}$ nazywamy **presnopem** na przestrzeni topologicznej X.

Kategoria **C** może być kategorią zbiorów **Set**, ale możemy też przeprowadzać zbiory otwarte oraz morfizmy między nimi na kategorię **Ab**, **Vect**_K czy R–**mod**. Wtedy taki funktor będziemy nazywać odpowiednio *presnopem grup abelowych*, *przestrzeni liniowych czy* R-*modutów*.

Przykład(y) 2.1

1. Zaczniemy od przetestowania presnopu na przestrzeni topologicznej w akcji.

Niech X będzie przestrzenią topologiczną, a U \subseteq X będzie dowolnym zbiorem otwartym. Funktor $F: \mathbf{Otw}(\mathbf{X})^{op} \to C(X)$ definiujemy na obiektach jako

$$F(U) = C(U) = \{f: U \to \mathbb{C} \mid f \text{ ciągła}\}$$

Dla $V \subseteq U \subseteq X$ otwartych zbiorów mamy

co w widoczny sposób spełnia $F(\varphi \psi) = F(\varphi)F(\psi)$.

Funktor jak wyżej jest nazywany presnopem funkcji ciągłych.

Definicja 2.1: presnop, snop.

Presnopem na kategorii C nazywamy dowolny funktor

$$\mathsf{F}:\mathbf{C}^{op}\to\mathbf{Set}$$

Snopem nazywamy presnop taki, że jeśli dla dowolnego zbioru $U = \bigcup_{i \in I} U_i$ oraz dla dowolnych i, $j \in I$ spełniony jest warunek

$$s_i \upharpoonright (U_i \cap U_j) = s_j \upharpoonright (U_i \cap U_j),$$

gdzie $s_i \in F(U_i)$ jest nazywane *cięciem presnopu*, to wówczas istnieje dokładnie jedyne cięcie $s \in F(U)$ takie, że

$$s \upharpoonright U_i = s_i$$
.

Zapisując to za pomocą kwantyfikatorów mamy:

$$\begin{split} (\forall \ U = \bigcup_{i \in I} U_i) (\forall \ s_i \in F(U_i)) \ \left[(\forall i, j \in I) \ s_i \upharpoonright (U_i \cap U_j) = s_j \upharpoonright (U_i \cap U_j) \right] \Rightarrow \\ \Rightarrow \left[(\exists ! \ s \in F(U)) (\forall i \in I) \ s \upharpoonright U_i = s_i \right] \end{split}$$

Przykład(y) 2.2

1. Presnop na przestrzeni topologicznej X spełnia również warunek opisany wyżej.

2.2 Funktory wierne, pełne

Definicja 2.2: podkategoria C' kategorii C.

To kategoria spełniająca następujące warunki:

- \blacksquare Ob**C** $' \subseteq$ Ob**C**
- # Hom_{**c**} $'(X,Y) \subseteq \text{Hom}_{\mathbf{c}}(X,Y)$
- $\implies id_X^{\mathbf{C}'} = id_X^{\mathbf{C}}$ zawsze gdy $X \in Ob\mathbf{C}'$

Mówimy, że podkategoria ${\bf C}'$ jest *pełna*, gdy dla wszystkich X, Y \in Ob ${\Bbb C}'$ zachodzi ${\sf Hom}_{{\bf C}'}({\sf X},{\sf Y})={\sf Hom}_{{\bf C}}({\sf X},{\sf Y})$

Przykład(y) 2.3

- 1. Kategoria przestrzeni skończonego wymiaru \mathbf{Vect}^{fin}_K jest podkategorią kategorii wszystkich przestrzeni liniowych \mathbf{Vect}_K . Jest to pełna podkategoria.
- 2. Analogicznie, kategoria grup abelowych Ab jest pełną podkategorią kategorii Grp
- 3. Kategoria gładkich rozmaitości \mathbf{C}^{∞} **rozm** jest podkategorią kateogorii wszystkich

przestrzeni topologicznych **Top**. Nie jest to jednak pełna podkategoria.

Definicja 2.3: funktor wierny, pełny.

Funkctor $F : C \rightarrow D$ jest

- wierny gdy F : $Hom_{\mathbf{C}}(X, Y) \rightarrow Hom_{\mathbf{D}}(F(X), F(Y))$ jest injekcją
- **pełny**, gdy dla wszystkich X, Y \in Ob**C** przekształcenie F : Hom**C**(X, Y) \rightarrow Hom**D**(F(X), F(Y)) jest surjekcją

Przykład(y) 2.4

- 1. Włożenie podkategorii w kategorie jest funktorem wiernym
- 2. Jeśli podkategoria jest pełna, to taki włożeniowy funktor jest dodatkowo pełny.

2.3 Naturalne przekształcenia funktorów

Definicja 2.4: naturalne przekształcenie funktorów.

Dla dwóch funktorów F, G: $\mathbf{C} \to \mathbf{D}$ układ morfizmów f: F \to G w \mathbf{D} taki, że dla każdego X \in Ob \mathbf{C} f(X): F(X) \to G(X) i dla każdego φ : X \to Y \in Hom $_{\mathbf{C}}$ (X, Y) diagram

$$\begin{array}{ccc} F(X) & \stackrel{f(X)}{---} & G(X) \\ F(\varphi) & & & \downarrow G(\varphi) \\ F(Y) & \stackrel{f(Y)}{---} & G(Y) \end{array}$$

jest przemienny nazywamy naturalnym przekształceniem funktorów F i G.

Przykład(y) 2.5

1. Patrzymy na funktory Id, ab : **Grp** \rightarrow **Grp** (identyczność i abelianizacja ab(G) = G/[G,G]).

Rozważmymy $f: Id \rightarrow ab$, wtedy Id(G) = G, więc sprawdzamy, czy następujący diagram komutuje:

$$Id(G) = G \xrightarrow{f(G)} G/[G, G] = ab(G)$$

$$Id(\varphi) = \varphi \downarrow \qquad \qquad \downarrow ab(\varphi)$$

$$Id(H) = H \xrightarrow{f(H)} H/[H, H] = ab(H)$$

Dla każdego $G \in \mathsf{Ob}\mathbf{Grp}$ zdefiniujemy $\mathsf{f}(G) : \mathsf{Id}(G) \to \mathsf{ab}(G)$ jako

$$f(G): G \rightarrow G^{alb} = G/[G, G]$$

jako zwykłe przekształcenie ilorazowe. Aby więc diagram komutował, czyli

$$f(H) \circ Id(\varphi) = ab(\varphi) \circ f(G),$$

wystarczy sprawdzić, że komutant grupy G przechodzi przez dowolny homomorfizm na komutant w H:

$$(\forall g, h \in [G, G]) \varphi(gh) = \varphi(g)\varphi(h) = \varphi(h)\varphi(g) = \varphi(hg).$$

Skoro tak jest, to nie ma znaczenia, czy najpierw abelianizujemy grupę, a potem nakładamy na to homomorfizm, czy najpierw nakładamy homomorfizm, a potem abelianizujemy.

2. Można pokazać, że istnieje naturalne przekształcenie funktorów z kategorii przestrzeni topologicznych z wybranym punktem bazowym (**Top***) w kategorię grup

$$H_n, \Pi_n : \mathbf{Top}_* \to \mathbf{Grp},$$

gdzie Π_n to funktor przypisujący przestrzeni n-tą homotopię (Π_1 w szczególności przyporządkowuje przestrzeni topologicznej jej grupę fundamentalną), a H_n to funktor n-tej homologii.

3. Pokażemy naturalne przekształcenie funktorów Id, $\star\star$: $\textbf{Vect}_K \to \textbf{Vect}_K$.

 $Dla\ V \in \textbf{Vect}_K\ definiujemy$

to znaczy, dla $v \in V$ mamy element $f(V)(v) = \langle \cdot, v \rangle \in V^{**}$, który elementowi $\varphi^* \in V^*$ przyporządkowuje $\langle \varphi^*, v \rangle = \varphi^*(v) \in K$.

Chcemy sprawdzić, że diagram

$$\begin{array}{ccc} V & \xrightarrow{f(V)} & V^{**} \\ \varphi \downarrow & & \downarrow \varphi^{**} \\ W & \xrightarrow{f(W)} & W^{**} \end{array}$$

komutuje, czyli pokazać, że $f(V) \circ \varphi^{**} = \varphi \circ f(W)$.

Troszkę przypomnienia z algebry liniowej. Przekształcenie liniowe $\varphi: V \to W$ indukuje funkcjonał liniowy $\varphi^*: W^* \to V^*$ taki, że dla $f: W \to K \in W^*$ mamy $\varphi^*(f) = f \circ \varphi \in V^*$. W takim razie, przekształcenie $\varphi^{**}: V^{**} \to W^{**}$ dla $f^*: V^* \to K \in V^{**}$ przyporządkuje

$$\varphi^{**}(f^*) = f^* \circ \varphi^* : W^* \to K$$

$$(\varphi^{**} \circ f(V))(v) = \varphi^{**}(f(V)(v)) = \varphi^{**}(\langle \cdot, v \rangle) =$$

$$= \langle \cdot, v \rangle \circ \varphi^* = \langle \varphi^*(\cdot), v \rangle =$$

$$= \langle \cdot \circ \varphi, v \rangle = \langle \cdot, \varphi(v) \rangle = f(W)(\varphi(v)) =$$

$$= (f(W) \circ \varphi)(v)$$

element W**.

Czyli wszystko się zgadza!

Naturalne przekształcenia można składać. Powstaje wtedy (meta)kategoria, której elementy to funktory, a morfizmami są naturalne przejścia. Nie jest to prawdziwa kategoria, bo morfizmy nie zawsze tworzą zbiory w takim przypadku. Taki twór oznaczamy **Funct(C, D)** i mając naturalne przekształcenia funktorów $F \stackrel{a}{\to} G \stackrel{b}{\to} H$, dowolne X, Y \in Ob**C** oraz $\varphi: X \to Y$ rysujemy

$$\begin{array}{cccc} F(X) & \xrightarrow{a(X)} & G(X) & \xrightarrow{b(X)} & H(X) \\ F(\varphi) \downarrow & & \downarrow G(\varphi) & & \downarrow H(\varphi) \\ F(Y) & \xrightarrow{a(Y)} & G(Y) & \xrightarrow{b(Y)} & H(Y) \end{array}$$

 $gdzie (b \circ a)(X) = b(X) \circ a(X).$

Definicja 2.5: izomorfizm funktorów.

W metakategorii funktorów możemy rozważać izomorfizmy, które nazywamy **natu-ralnymi izomorfizmami funktorów**. Do ich definiowania można podejść na dwa,

równoważne, sposoby:

- ⇒ naturalne przekształcenia $f: F \to G$ dla których istnieje $g: G \to F$ takie, że $f \circ g = id_G$ oraz $g \circ f = id_F$
- przekształcenie $f: F \to G$ takie, że dla każdego $X \in C$ przekształcenie $f(X): F(X) \to G(X)$ jest izomorfizmem w kategorii **D**.

Przykład(y) 2.6

 Przekształcenie funktorów Id, ** na kategorii przestrzeni wektorowych rozważane wyżej staje się izomorfizmem, gdy ograniczymy się do przestrzeni skończonego wymiaru.

2.4 Równoważność kategorii

Definicja 2.6: równoważność kategorii.

Funktor F : $\mathbf{C} \to \mathbf{D}$ zadaje **równoważność kategorii**, jeśli istnieje funktor G : $\mathbf{D} \to \mathbf{C}$ oraz naturalne przekształcenia funktorów f : $\mathbf{F} \circ \mathbf{G} \to \mathsf{Id}_{\mathbf{D}}$ i g : $\mathbf{G} \circ \mathbf{F} \to \mathsf{Id}_{\mathbf{C}}$

Równoważność kategorii jest nieco słabszym warunkiem niż istnienie izomorfizmu między nimi - złożenie $F \circ G$ niekoniecznie musi być równe $Id_{\boldsymbol{D}}$, wystarczy tylko żeby istniało naturalne przekształcenie między tymi dwoma funktorami.

Przykład(y) 2.7

1. Kategoria skończenie wymiarowych przestrzeni wektorowych **Vect**^{fin}_K jest równoważna kategorii $\mathbf{S}_{\mathbf{K}}$, której obiektami są Ob $\mathbf{S}_{\mathbf{K}} = \{\mathsf{K}^0, \mathsf{K}^1, ..., \mathsf{K}^n, ...\}$ a morfizmy to wszystkie przekształcenia liniowe miedzy nimi.

Funktor włożenia

$$F: \textbf{S}_{\textbf{K}} \rightarrow \textbf{Vect}^{fin}_{\textbf{k}}$$

jest oczywistym wyborem na pierwszy funktor, gdyż każdy obiekt z $\mathbf{S}_{\mathbf{K}}$ jest przestrzenią wektorową skończonego wymiaru.

Aby znaleźć funktor

$$\mathsf{G}: \textbf{Vect}^{fin}_{\textbf{K}} \rightarrow \textbf{S}_{\textbf{K}}$$

zaczniemy od rozważenia na co przechodzi $V \in \textbf{Vect}^{fin}_K$. Wiemy, że dim $\textbf{Vect}^{fin}_K = \infty$, możemy wiec zdefiniować

$$G(V) = K^{\dim \mathbf{Vect}_{K}^{fin}}$$

Pozostaje zastanowić się nad przekształceniem morfizmów. W każdym V możemy wyróżnić pewną bazę, a każde przekształcenie liniowe V \to W będzie macierzą o wyrazach w K zapisaną w tych wyróżnionych bazach. Wystarczy więc przekształceniu V \to W zadanemu macierzą przyporządkować przekształcenie wyznaczone przez taką samą macierz na K^{dim V} \to K^{dim W}.

Twierdzenie 2.1.

Funktor $F: \mathbf{C} \to \mathbf{D}$ zadaje równoważność kategorii \iff jest on wierny, pełny i w zasadzie surjektywny, tzn. $(\forall \ Y \in \mathsf{Ob} \ \mathbf{D})(\exists \ X \in \mathsf{Ob} \ \mathbf{C}) \ F(X) \cong \mathsf{Y}.$

Dowód

 \Leftarrow

Wiemy, że funktor $F: \mathbf{C} \to \mathbf{D}$ jest wierny, pełny i w zasadzie suriektywny i na podstawie tej wiedzy skonstruujemy $G: \mathbf{D} \to \mathbf{C}$ jak w definicji równoważności kategorii.

Dla Y \in Ob **D** wybieramy G(Y) \in Ob **C** takie, że istnieje izomorfizm $\iota_Y: Y \to F(G(Y))$. Możemy tak zrobić, gdyż F jest w zasadzie suriektywny.

Niech $\varphi: Y \to Y'$ będzie morfizmem obiektów w kategorii **D**. Chcemy sprawdzić istnienie $G(\varphi)$ takie, że mamy naturalny izomorfizm $Id_{\mathbf{D}} \leftrightarrow F \circ G$

$$\begin{array}{ccc} \operatorname{Id}_{\mathbf{D}}(Y) = Y & \stackrel{\varphi}{\longrightarrow} & Y' = \operatorname{Id}_{\mathbf{D}}(Y') \\ & & & \downarrow^{\iota_{Y}} & & \downarrow^{\iota_{Y'}} \\ F(G(Y)) & \stackrel{F(G(\varphi))?}{\longrightarrow} & F(G(Y')) \end{array}$$

Ponieważ ι_Y jest izomorfizmem, dolną strzałkę $F(G(Y)) \to F(G(Y'))$ możemy podpisać jako $\iota_{Y'} \circ \varphi \circ \iota_Y^{-1}$. Chcemy pokazać, że da się dobrać $G(\varphi)$ tak, żeby $F(G(\varphi)) = \iota_{Y'} \circ \varphi \circ \iota_Y^{-1}$, tzn. żeby diagram na górze komutował.

F jest wierny i pełny, więc przejście

$$\mathsf{Hom}_{\mathbf{C}}(\mathsf{G}(\mathsf{Y}),\mathsf{G}(\mathsf{Y}')) \stackrel{\mathsf{F}}{\to} \mathsf{Hom}_{\mathbf{D}}(\mathsf{F}(\mathsf{G}(\mathsf{Y})),\mathsf{F}(\mathsf{G}(\mathsf{Y}')))$$

jest jednocześnie bijekcją i inijekcją, czyli możemy je odwracać. Istnieje więc jedyne

$$\psi = \mathsf{F}^{-1}(\iota_{\mathsf{Y}'}\varphi\iota_{\mathsf{Y}}^{-1}) : \mathsf{G}(\mathsf{Y}) \to \mathsf{G}(\mathsf{Y}')$$

które możemy przypisać do $G(\varphi)=\psi$. Zbiór izomorfizmów ι_Y zadaje więc naturalny izomorfizm $\mathrm{Id}_{\mathbf{D}}\to\mathrm{F}\circ\mathrm{G}$:

Pozostaje sprawdzić, że dla tak zdefiniowanego G istnieje również naturalne przekształcenie $Id_{\bf C} \to G \circ F$.

Dla X, X' \in Ob **C** oraz $\psi: X \to X'$ istnieje izomorfizm F(X) \cong F(G(F(X))), gdyż tak właśnie zdefiniowaliśmy funktor G. Aby utrzymać konwencję z powyższego fragmentu dowodu, naziwjmy te izomorfizmy odpowiednio $\iota_{F(X)}$ i $\iota_{F(X')}$:

$$\begin{array}{ccc} F(X) & \xrightarrow{\iota_{F(X)}} & F(G(F(X))) \\ F(\psi) & & & & \downarrow F(G(F(\psi))) \\ F(X') & \xrightarrow{\iota_{F(X')}} & F(G(F(X'))) \end{array}$$

Ponieważ F jest wiernym i pełnym funktorem, to możemy najbardziej zewnętrzne F zdjąć, by otrzymać diagram:

$$\begin{array}{ccc} X & \xrightarrow{F^{-1}(\iota_{F(X)})} & G(F(X)) \\ \psi \downarrow & & & \downarrow G(F(\psi)) \\ X' & \xrightarrow{F^{-1}(\iota_{F(X')})} & G(F(X')) \end{array}$$

Ponieważ diagram przed zdjęciem F był przemienny, to również diagram niżej musi taki być - w końcu to zwykłe nałożenie F $^{-1}$ na wszystkie elementy i strzałki. W takim razie, morfizmy F $^{-1}(\iota_{\mathsf{F}(\mathsf{X})})$ zadają naturalny izomorfizm Id $_{\mathbf{C}} \to \mathsf{G} \circ \mathsf{F}$.

 \Rightarrow

Dowód drugiej implikacji zostaje pozostawiony jako ćwiczenie.

Wykład 16.10.2023: Funktory reprezentowalne i granice

3.1 Kategoria funktorów

W kategorii **Set** zbiór $X \in Ob$ **Set** możemy widzieć jako $Hom_{\textbf{Set}}(1, X)$ gdzie 1 jest singletonem. Robimy to utożsamiając element $x \in X$ z morfizmem $1 \mapsto x \in Hom_{\textbf{Set}}(1, X)$.

Uogólniając obserwację wyżej, w dowolnej kategorii **C** obiektowi X możemy przypisać funktor

$$h_X: \textbf{C}^{op} \to \textbf{Set}$$

$$h_X(Y) = Hom_{\mathbf{C}}(Y, X) (\star)$$

gdzie (*) zapisujemy czasem jako X(Y).

Ponieważ nie we wszystkich kategoriach istnieje odpowiednich singletona 1, musimy rozważać wszystkie obiekty Y i morfizmy:

$$\begin{array}{ccc}
Y & \xrightarrow{f} & Y' \\
\alpha \downarrow & & \downarrow \alpha \circ f \\
X & \xrightarrow{h_X(f)} & X
\end{array}$$

dobrane tak, że diagram komutuje.

Oczywiście, możemy też definiować funktor kowariantny $g: \mathbf{C} \to \mathbf{Set}$ taki, że $g_X(Y) = \mathrm{Hom}_{\mathbf{C}}(X,Y)$.

Definicja 3.1: Kategoria funktorów i funktory reprezentowalne.

Kategorię funktorów (C^{op} , **Set**), której obiektami są h_X jak w przykładzie wyżej, oznaczamy $\widehat{\mathbf{C}}$.

Funktor $F \in \widehat{\mathbf{C}}$ jest **reprezentowalny**, jeśli $F \cong h_X$ dla pewnego $X \in Ob\mathbf{C}$. Takie X jest jedyne z dokładnością do izomorfizmu.

Dla morfizmu X $\xrightarrow{\varphi}$ X' w **C** określamy morfizm $h_{\varphi}: h_X \to h_{\chi'}$ w $\widehat{\mathbf{C}}$.

$$\begin{array}{ccc} \operatorname{Hom}_{\mathbf{C}}(\mathbf{Y},\mathbf{X}) & \stackrel{\mathsf{h}_{\varphi}}{-\!\!\!\!-\!\!\!\!-\!\!\!\!-\!\!\!\!\!-} & \operatorname{Hom}_{\mathbf{C}}(\mathbf{Y},\mathbf{X}') \\ \overset{\cup}{\alpha} & \overset{\cup}{-\!\!\!\!\!-\!\!\!\!-\!\!\!\!\!-} & \overset{\cup}{\varphi} \circ \alpha \end{array}$$

Funktor h_X można również oznaczyć jako Hom $_{\bf C}$ (-, X). Wówczas dla morfizmu $\varphi: {\bf Y} \to {\bf Y}'$ mamy

$$h_{\varphi}(\alpha) = Hom_{\mathbf{C}}(\varphi, X)(\alpha) = \varphi \circ \alpha$$

dla $\alpha \in \text{Hom}_{\mathbf{c}}(-, X)$

Przykład(y) 3.1

- 1. $\mathcal{P}(X)$: **Set** \rightarrow **Set** jest funktorem, który przypisuje X jest zbiór potęgowy. Jest on reprezentowalny, bo $\mathcal{P}(X) \cong \text{Hom}(X, 2)$.
 - Dla dowolnego zbioru X \in **Set** naturalne przekształcenie f(X) : Hom(X, 2) $\rightarrow \mathcal{P}(X)$ przypisze funkcji $\alpha \in$ Hom(X, 2) zbiór tych elementów $x \in X$ dla których $\alpha(x) = 2$. Przekształcenie odwrotne do tego przypisze zbiorowi A $\in \mathcal{P}(X)$ funkcję $\alpha : X \rightarrow 2$ taką, że $\alpha(x) = 1$ jeśli $x \notin A$ i $\alpha(x) = 2$ wpp.
- Funktor kohomologii Hⁿ: C → Ab z kategorii CW-kompleksów w grupy abelowe taki, że Hⁿ(X, G) = [X, K(G, n)] jest funktorem reprezentowalnym. Pokazuje to twierdzenie Browna o reprezentowalności o którym uczy się przy okazji topologii algebraicznej.
- 3. co tutaj maja do roboty wiązki styczne? $Vect_n(X) = [X, C^{\infty}]????$

Przyporządkowania X \mapsto h $_{\rm X}$ oraz $\varphi\mapsto {\sf h}_{\varphi}$ dają w oczywisty sposób funktor h : ${\sf C}\to\widehat{\sf C}.$

Lemat 3.1: Yoneda lemma.

Przyporządkowanie $h: \mathbf{C} \to \widehat{\mathbf{C}}$ zadaje równoważność kategorii \mathbf{C} z pełną podkategorią kategorii $\widehat{\mathbf{C}}$, której obiektami są funktory reprezentowalne.

Dowód

Wystarczy pokazać, że h jest funktorem wiernym, pełnym i w zasadzie surjektywnym.

$$\begin{array}{ccc} X & \xrightarrow{h(X)} & h_X = \operatorname{Hom}_{\mathbf{C}}(-, X) \\ \varphi \downarrow & & \downarrow h_{\varphi} \\ X' & \xrightarrow{h(X')} & h_{X'} = \operatorname{Hom}_{\mathbf{C}}(-, X') \end{array}$$

Chcemy pokazać, że przekształcenie h

$$\mathsf{Hom}_{\mathbf{C}}(\mathsf{X},\mathsf{X}')\mathsf{Hom}_{\widehat{\mathbf{C}}}(\mathsf{h}_{\mathsf{X}},\mathsf{h}_{\mathsf{X}'})$$
 \in
 $\varphi \xrightarrow{\qquad \qquad \mathsf{h}} \in \mathsf{h}_{\varphi}$

jest bijekcją.

Musimy pokazać, że

jest bijekcją.

Jeśli funktor $F \in \widehat{\mathbf{C}}$ jest reprezentowalny, to reprezentujący go obiekt jest jedyny z dokładnością do izomorfizmu, bo

izomorfizm \star pojawia się bezpośrednio po tym, że F \to h_X i F \to h_X' są izmorfizmami z definicji i od razu zadają izomorfizm $\star\star$.

Niech teraz $F \in Hom_{\widehat{\mathbf{c}}}(h_X, h_{X'}).$

Jeśli $F = h_{\mathbf{c}}$, to mamy

WRÓCIĆ TUTAJ BO NIE WIEM CO SIĘ DZIEJE

3.2 Granice i kogranice

Czyli o granicach odwrotnych [granica] i prostych [kogranica].

Niech I będzie małą kategorią, a $F: I \rightarrow \mathbf{C}$ będzie funktorem.

Definicja 3.2: granica funktora F.

Obiekt X z rodziną odwzorowań (zbioru morfizmów) $\Pi_{\bf i}:{\sf X}\to{\sf F}({\bf i})$ dla X $\in{\sf Ob}{\bf C}$, które spełniają

 \Rightarrow [zgodność] dla dowolnych i $\xrightarrow{\alpha}$ j w I diagram

komutuje, tzn. $\Pi_i = F(\alpha) \circ \Pi_i$.

= [uniwersalność] dla każdego układu (X', Π_i') spełniającego poprzedni warunek istnieje jedyny morfizm $\lambda: X' \to X$ taki, że dla każdego i \in I diagram

komutuje

jest nazywany granicą funktora F i oznaczamy ją jako lim F.

Granica funktora może nie istnieć, ale zawsze gdy istnieje, to jest jedyna z dokładnością do izomorfizmu.

Przykład(y) 3.2

1. Dla I = $\{0,1\}$ oraz F : I \rightarrow **C** granicę lim F nazywamy *produktem* obiektów F(0) i F(1)

Definicja 3.3: granica odwrotna.

Wykład 23.10.23: Funktory sprzężone [adjoint functors]

Definicja 4.1: funktory sprzężone.

Para funktorów L : $\mathbf{A} \to \mathbf{B}$ i R : $\mathbf{B} \to \mathbf{A}$ nazywamy **parą sprzężoną** (L jest lewo sprzężony do R, a R jest prawo sprzężony do L), jeśli istnieją naturalne bijekcje (zarówno względem **A** jak i **B**)

$$\mathsf{Hom}_{\mathbf{B}}(\mathsf{L}(\mathsf{A}),\mathsf{B})\longleftrightarrow \mathsf{Hom}_{\mathbf{A}}(\mathsf{A},\mathsf{R}(\mathsf{B}))$$

Funktory sprzężone oznaczamy L ⊢ R

Przykład(y) 4.1

- 1. Jest sporo przykładów, gdy R jest funktorem zapominającym
 - \Rightarrow jeśli R : **Grp** \rightarrow **Set**, wtedy

$$\mathsf{Hom}_{\mathbf{Grp}}(\star,\mathsf{B}) \longleftrightarrow \mathsf{Hom}_{\mathbf{Set}}(\mathsf{A},\mathsf{B})$$
 grupa jako zbiór

- * będzie grupą wolną o zbiorze generatorów A, co oznaczamy F_A.
- \blacksquare R : **Vect**_K \rightarrow **Set** z bijekcjami zdefiniowanymi jako

$$\mathsf{Hom}_{\boldsymbol{Vect}_K}(\mathsf{LA},\mathsf{V}) \longleftrightarrow \mathsf{Hom}_{\boldsymbol{Set}}(\mathsf{A},\mathsf{V})$$

gdzie LA to przestrzeń liniowa o bazie równej zbiorowi A.

2. Dla R-modułów A, B, X zachodzi

$$Hom_R(A\otimes X,B)\cong Hom_R(A,Hom_R(X,B))$$

dla $\varphi \in Hom_R(A, Hom_R(X, B))$ mamy

$$(a \otimes x \mapsto (\varphi(a))(x)) \mapsto \varphi$$

Dla ustalonego X mamy funktory sprzężone z R-modułów w R-moduły: L = $- \otimes$ X oraz R = Hom(X, -)

3. Bardzo często włożenie kategorii w inną kategorię jest funktorem mającym funktor sprzężonym.

Włożenie kategorii Ab → Grp posiada funktor sprzężony:

$$Hom_{\mathbf{Ab}}(\star, B) \longleftrightarrow Hom_{\mathbf{Grp}}(A, B)$$

komutant dowolnej grupy A przechodzi przez każdy homomorfizm $\varphi: A \to B$ na element neutralny, więc od razu indukwoane mamy przekształcenie $A^{op} \to B$, stąd $\star = A^{op}$.

Włożenie kategorii ciał w dziedziny wyrzuca część homomorfizmów. Mamy

$$\mathsf{Hom}_{\mathbf{Ciala}}(\star,\mathsf{K}) \longleftrightarrow \mathsf{Hom}_{\mathbf{Dziedziny}}(\mathsf{R},\mathsf{K})$$

Jeśli mamy odwzorowanie z pierścienia R w ciało K, to to odwzorowanie rozszerza się na odwzorowanie z ciała ułamków ciała R w ciało K:

$$stad \star = R_o$$

$$\mathsf{Hom}_{\textbf{Cpf}\mathsf{T}_0}(\star,\mathsf{Y}) \longleftrightarrow \mathsf{Hom}_{\textbf{Top}}(\mathsf{X},\mathsf{Y})$$

więc $\star=\beta X$ czyli uzwarceniem Cecha-Stone'a. To jest maksymalne możliwe uzwarcenie.

Bierzemy przestrzeń X i patrzymy na wszystkie ciągłe odwzorowania z X w [0, 1] i potem odwzorowujemy diagonalnie X w ten produkt, a potem domykamy obraz tego diagonalnego odwzorowania i to jest maksymalne uzwarcenie.

Fakt 4.1: jedyność funktora sprzężonego.

Funktor sprzężony, jeśli istnieje, to jest jedyny z dokładnością do izomorfizmu.

Dowód

Bardzo poglądowy, bo trzeba się dokładnie wgryźć w spojrzenie jak to działa na morfizmach.

R(B) to jedyny element reprezentujący funktor

$$A^{op}\ni A\mapsto Hom_{\boldsymbol{B}}(LA,B)\in \boldsymbol{Set}$$

Z lematu Yonedy wiemy, że jeśli takie coś istnieje, to jest jedyne z dokładnością do izomorfizmu.

Fakt 4.2: funktory sprzężone zachowują granice (prostą/odwrotną).

Jeśli L ⊢ R, to R zachowuje granice, a L kogranice.

Dowód OBRAZEK

Musimy wziąć dowolny obiekt $A \in \mathbf{A}$ i sprawdzić, czy $\Pi_i': A \to (R \circ F)(I)$ sfaktoryzuje się w jedyny możliwy sposób na $R \circ R(\Pi_i)$. Musimy wziąć obiekt $LA \in \mathbf{B}$ i tutaj dostajemy jedyną strzałkę $LA \to X$, gdyż X jest granicą. Ale sprzężoność R z L mówi, że mamy jedyność odpowiadania strzałek między elementami \mathbf{A} a elementami \mathbf{B} .

4.1 Kategorie addytywne i abelowe

Definicja 4.2: kategoria addytywna. Kategoria addytywna A to kategoria

Dla każdej pary obiektów A, B ∈ ObA na HomA (A, B) jest określona struktura grupy abelowej. Złożenia są biaddytywne:

$$A \xrightarrow{g} B \xrightarrow{f'} C \xrightarrow{h} D$$

$$(f + f') \circ g = f \circ g + f' \circ g$$

$$h \circ (f + f') = h \circ f + h \circ f'$$

- Istnieje obiekt zerowy 0 taki, że Hom_A(0, 0) = 0 jest grupą trywialną
- Dla dowolnej pary obiektów A, B ∈ Ob**A** istnieje obiekt C (zwykle oznaczany A ⊕ B), który jest ich produktem i koproduktem, tzn.: istnieją morfizmy

$$A \stackrel{i_A}{\leftarrow} C \stackrel{P_B}{\leftarrow} B$$

takie, że $P_a \circ i_A = id_A i P_A \circ i_B = 0$ (analogicznie gdy przestawimy A i B). Dodatkowo, $i_A P_A + i_B P_B = id_C$.

Tłumacząc ostatni warunek, chcemy pokazać, że istnieje jedyna stratka DightarrowC:

Zauważmy że $i_A f_A + i_B f_B : D \rightarrow C$, wystarczy więc sprawdzić, czy taka definicja $D \rightarrow C$ sprawia, że diagram komutuje, tzn. złożyć ją z P_A i P_B :

$$P_A(i_Af_A + i_Bf_B) = \underbrace{P_Ai_A}_{id_A} f_A + \underbrace{P_Ai_B}_{0} f_B = f_A$$

$$\mathsf{P}_\mathsf{B}(\mathsf{i}_\mathsf{A}\mathsf{f}_\mathsf{A}+\mathsf{i}_\mathsf{B}\mathsf{f}_\mathsf{B}) = \underbrace{\mathsf{P}_\mathsf{B}\mathsf{i}_\mathsf{A}}_0 \mathsf{f}_\mathsf{A} + \underbrace{\mathsf{P}_\mathsf{B}\mathsf{i}_\mathsf{B}}_{\mathsf{id}_\mathsf{B}} \mathsf{f}_\mathsf{B} = \mathsf{f}_\mathsf{B}$$

Jeśli istnieją dwa takie odwzorowania, to ich różnica u zamykałaby diagram

Zauważmy, że

$$u = id_{C} \circ 0 =$$

= $i_{A}P_{A}u + i_{B}P_{B}u =$
= $i_{A}0 + i_{B}0 = 0 + 0 = 0$

Analogicznie pokazuje się dla koproduktu.

Dygresja: parę słów o zerach.

Dla dowolnego obiektu A \in Ob**A** mamy Hom(0, A) = 0 i Hom(0, A) = 0, bo dla f : A \rightarrow 0 jest id₀ \circ f = f, czyli f = 0 \circ f, a więc

$$0f = (0 + 0)f = 0f + 0f \Rightarrow 0 = 0f \Rightarrow f = 0$$

Przykład(y) 4.2

- 1. AB
- 2. R-moduly
- 3. Presnopy grup abelowych na jakiejś przestrzeni topologicznej (lub kategorii)

Pre – **snop/AB**(X) i od razu zagubione w tym gąszczu snopy.

Definicja 4.3: kategoria abelowa.

Kategoria addytywna jest **abelowa**, jeśli każdy morfizm ma jądro i kojądro i naturalny morfizm z koobrazu w obraz jest izomorfizmem.

Definicja wyżej często jest formułowana w inny, równoważny, sposób.

Kilka wyjaśnień:

- \Longrightarrow Jądro f to ekwalizator A $\overset{f}{\underset{0}{\Longrightarrow}}$ B . Inaczej, jest to K $\overset{k}{\longrightarrow}$ A taki, że
 - 1. $K \xrightarrow{k} A \xrightarrow{f} B = 0$
 - 2. Zachodzi własność uniwersalna:

 \clubsuit Kojądro f to koekwalizator A $\overset{f}{\Longrightarrow}$ B jak w następującym diagramie:

- \blacksquare Niech f : A \rightarrow B, wówczas
 - im f = ker(B \rightarrow Coker f)
 - Coim $f = Coker(ker f \rightarrow A)$

Naturalne odwzorowanie zaznaczone przerywaną linią ma być izomorfizmem jeśli działaby w kategorii abelowej.

Definicja 4.4: mono-, epi-.

Morfizm $f: X \rightarrow Y$ jest

monomorfizmem, jeśli dla dowolnych dwóch odwzorowań $g_1, g_2: Z \to X$ zachodzi

$$f \circ g_1 = f \circ g_2 \Rightarrow g_1 = g_2$$

W kategorii addytywnej można zamiast powyższego zażądać, żeby dla każdego g : Z o X f \circ g = 0 \Rightarrow g = 0

$$h_1 \circ f = h_2 \circ f \Rightarrow h_1 = h_2$$

W kategorii addytywnej można zamiast tego powiedzieć, że mając $f:A\to B$ i $h:B\to W$ to

$$hf = 0 \Rightarrow h = 0$$

Można pokazać, że jeśli f jest monomorfizmem, to ker f=0, a jeśli f jest epimorfizmem, to Coker f=0.

Lemat 4.3.

Jądra są monomorfizmami, a kojądra są epimorfizmami.

Dowód

W przypadku jądra wystarczy zbadać diagram:

i zauważyć, że jedyność odwzorowania $Z \to K$ wymaga, aby g = 0.

Uwaga 4.4.

Dla każdego morfizmu f : A \to B w kategorii abelowej istnieje jedyny, z dokładnością do izomorfizmu, rozkład

$$K \xrightarrow{k} A \xrightarrow{i} I \xrightarrow{j \text{mono}} B \xrightarrow{c} C$$

w którym k = ker f, c = Coker f, i = Coker k oraz j = ker c i f = $j \cdot i$.

Dowód

Załóżmy, że istnieją dwa takie rozkłady:

Strzałki niebieska i czerwona są izomorfizmami wynikającymi z definicji kategorii abelowej. Strzałkę zieloną dobbieramy w taki sposób, aby diagram

komutował. Chcemy jeszcze pokazać, że lewa strona również komutuje, czyli zajmujemy się diagramem

Lemat 4.5.

W kategorii abelowej, jeśli f jest epimorfizmem, to f = Coker ker f, a jeśli f jest monomofizmem, to f = ker Coker f.

Dowód

Zrobimy dowód dla epimorfizmu korzystając z rozkładu przedstawionego wyżej.

$$K \longrightarrow A \longrightarrow I \xrightarrow{j} B \xrightarrow{0} 0$$

wiemy, że j jest ker(B ightarrow 0), czyli funkcji zerowej. Czyli musi być j = id_B, możemy więc przerysować

ale przecież i : $A \to I$ było i = Coker ker f, z drugiej strony ponieważ $A \to I \to B$ jest równe f, a w tym konkretnym przypadku jest to równe $A \to B \to B$ gdzie druga strzałka to id_B, to musi być i : $A \to I = f$: $A \to B$.

Uwaga 4.6.

W kategorii addytywnej warunek z 4.4 jest równoważny stwierdzeniu, że każdy morfizm ma jądro i kojądro oraz zachodzi lemat 4.5

Przykład(y) 4.3

1. Rozważmy kategorię abelowych grup topologicznych z warunkiem Hausdorffa. Tworzą one kategorię addytywną. Jądro ker f to algebraiczne jądro f z dziedziczoną topologią, a Coker f to tak naprawdę iloraz przez domknięcie obrazu im f.

$$\mathsf{A} \stackrel{\mathsf{f}}{\longrightarrow} \mathsf{B} \longrightarrow \mathsf{B}/\overline{\mathsf{f}[\mathsf{A}]}$$

Przez taką definicję Coker mamy kategorię addytywną, która nie jest kategorią abelową.

Wystarczy sprawdzić

$$0 \longrightarrow \mathbb{R}^{\delta} \longrightarrow \mathbb{R} \longrightarrow 0$$

gdzie \mathbb{R}^{δ} ma topologię dyskretną, a \mathbb{R} traktujemy jako zwykłą przestrzeń euklidesową. Wtedy nie mamy naturalnego izomorfizmu między kojądrami JESZCZE RAZ PRZEMYŚLEĆ TEN PRZYKŁAD

 Podstawowym przykładem kategorii abelowej jest kategoria R-modułów. Bardzo często kiedy pracujemy w kategorii abelowej zachowujemy się jakbyśmy byli w kategorii R-modułów na mocy twierdzenia Freyd-Mitchella:

Dygresja: twierdzenie Freyd-Mitchella.

Mała kategoria belowa ma wierne, pełne i dokładne zanurzenie w kategorię R-modułów dla pewnego R.

Wykład 30.10.2023: Kompleksy łańcuchowe i (ko)homologie

5.1 Kompleks łańcuchowy i sympleksy

Definicja 5.1: kompleks łańcuchowy.

Kompleks (ko)łańcuchowy w kategorii abelowej A to ciąg obiektów i morfizmów

$$... \, \longrightarrow \, A^{n-1} \, \stackrel{d^{n-1}}{\longrightarrow} \, A^n \, \stackrel{d^n}{\longrightarrow} \, A^{n+1} \, \longrightarrow \, ...$$

taki, że dla każdego n $d^n \circ d^{n-1} = 0$

Przykład(y) 5.1: kompleksów łańcuchowych

1. Niech X będzie *kompleksem symplicjalnym*. Z takim sympleksem można teraz stowarzyszyć kompleks symplicjalny z obiektami

$$C_n X = \bigoplus_{\sigma - n \text{-sympleks}} \mathbb{Z}$$

i wtedy $\partial: C_n X \to C_{n-1} X$ jest odwzorowaniem brzegu między tymi obiektami takim, że

$$\partial [\sigma^{\mathsf{n}}] = \sum_{\tau^{\mathsf{n}-1} < \sigma^{\mathsf{n}}} \pm [\tau^{\mathsf{n}-1}]$$

gdzie σ^n to generator składniku $\mathbb Z$ odpowiadający sympleksowi σ^n . Jeśli mamy sympleks σ^n = $(v_0,...,v_n)$ to przez ścianę τ^{n-1} rozumiemy

$$\tau^{n-1} = (v_0, ..., \widehat{v_i}, ..., v_n)$$

gdzie przez $\hat{v_i}$ rozumiemy opuszczenie tej współrzędnej.

2. Niech X będzie przestrzenią topologiczną, wówczas

$$S_n X = \bigoplus_{\sigma: \Delta^n \to X} \mathbb{Z}$$

gdzie $\sigma:\Delta^{\mathbf{n}}\to {\sf X}$ jest ciągłym odwzorowaniem z sympleksu w X. To się nazywa kompleks singularny.

Odwzorowanie brzegu $\partial: S_n X \to S_{n-1} X$ na $\sigma: \Delta^n \to X$ przyjmuje wartość

$$\partial \sigma = \sum_{i=0}^{n} (-1)^{i} (\sigma \mid_{i-ta \text{ sciana}})$$

3. Kompleks de Rhama

Niech M będzie gładką rozmaitością, $A^n = \Omega^n M$ będzie zbiorem gładkich form na niej. Wówczas d : $\Omega^n M \to \Omega^{n+1} M$ jest pochodną zewnętrzną.

W szczególności, jeśli M = T^2 , to $H^1 = \mathbb{R}^2$, $H^2 = \mathbb{R}$ oraz $H^{>2} = 0$.

5.2 Homologie

Skoro $\partial_n \cdot \partial_{n+1} = 0$, to im $\partial_{n+1} \subseteq \ker \partial_n$, wiec możemy zastanowić się nad

$$H_nX = \ker \partial_n / \operatorname{im} \partial_{n+1}$$
.

Tak zdefiniowane H_nX nazywamy homologiami.

Definicja 5.2: ogólna definicja (kohomologii).

Niech A' będzie kompleksem (ko)łańcuchowym i patrzymy na jego wycinek

$$... \longrightarrow A^{n-1} \xrightarrow{d^{n-1}} A^n \xrightarrow{d^n} A^{n+1} \longrightarrow ...$$

$$\downarrow a \qquad \qquad ker d^n$$

Ponieważ d $^n \circ$ d $^{n-1} = 0$, to pojawia się nam od razu odwzorowanie do jądra a: A $^{n-1} \to K$. Chcemy więc nazwać

$$H^{n}(A^{\cdot}) = Coker a$$

homologią.

Ale to samo można zrobić dualnie, tzn.

i zdefiniować Hⁿ(A⁻) = ker b.

Lemat 5.1.

W definicji jak wyżej $H^n(A^{\cdot})$: Coker $a \cong \ker b$.

Dowód

Przy dodatkowym założeniu, że dⁿ⁻¹ jest monomorfizmem, a dⁿ jest epimorfizmem, dostajemy

$$d^n = Coker ker d^n = Coker k$$

$$d^{n-1} = \ker c$$

Pokażemy, że a = ker ck oraz b = Coker ck, z czego od razu wynika teza:

i strzałka ★ jest izomorfizmem na mocy lematu 4.5.

POBAWIĆ SIĘ WYKRESEM za zdjęcia

Bez dodatkowych założeń

ZDJĘCIA

5.3 Pull-back i push-out

Po polsku czasem mówi się na to kwadrat kartezjański i kwadrat kokartezjański.

Definicja 5.3.

Pull-back to granica diagramu

➡ Push-out to z kolei kogranica diagramu

Fakt 5.2.

W abelowej kategorii istnieją pull-backi i push-outy.

Dowód

Kandydatem na pull-back będzie jądro odwzorowania.

