

フI
け

평면벡터

05. 평면벡터

06. 벡터의 성분

07. 벡터의 내적

08. 직선과 원의 방정식

Ⅱ. 평면벡터

05. 평면벡터

"이 단원에서는 평면벡터를 정의하고 벡터의 덧셈, 뺄셈, 실수배에 대하여 공부한다. 또, 두 벡터의 평행조건, 벡터가 서로 같을 조건을 알아본다."

- 벡터의 성분 의치벡터 ■ 벡터의 성분
- 벡터의 내적 벡터의 내적 ■ 내적의 성분과 연산 ■ 벡터의 수직과 평행
- **직선과 원의 방정식** 직선의 방정식
 두 직선의 위치 관계
 원의 방정식

벡터의 정의

H

■평면벡터

*** 1. 벡터의 정의 (화살표는 방향, 길이는 크기) *** 2. 벡터의 덧셈, 뺄셈 및 실수배

"벡터의 뜻을 이해하고 벡터의 표현과 두 벡터가 서로 같을 조건을 정의하고 그와 관계된 문제를 풀어본다."

18.

벡터의 뜻

길이, 넓이, 속력과 같이 크기만을 갖는 양을 스칼라(scalar)라 하고, 평행이동, 속도와 같이 크기와 방향을 동시에 갖는 양을 벡터(vector)라고 한다.

벡터는 방향을 가지는 선분을 이용하여 나타낸다. 즉, 오른쪽 그림과 같이 점 A에서 점 B로 향하는 방향과 크기가 주어 A 선분 AB를 벡터 AB라 하고, 기호로 AB와 같이 나타낸다. 이때 점 A를 AB

의 시점, 점 B를 \overrightarrow{AB} 의 종점이라고 한다. 또, $\overrightarrow{AB} = \overrightarrow{a}$ 와 같이 한 문자를 써서 나타낼 수 있다.그리고 선분 AB의 길이를 벡터 \overrightarrow{AB} 의 크기라 하고, $|\overrightarrow{AB}|$ 와 같이 절댓값 기호를 써서 나타낸다. 즉,

$$|\overrightarrow{AB}| = \overline{AB}$$

이다.

그리고 벡터는 평면 또는 공간 어디에서도 생각할 수 있고, 이를 구분할 때에는 평면에서의 벡터를 평면벡터, 공간에서의 벡터를 공간벡터라고 한다.

<u> 19.</u>

특히, 벡터 \overrightarrow{AA} , \overrightarrow{BB} , \cdots 등과 같이 시점과 종점이 일치하는 벡터를 영벡터라 하고, 이것을 기호로 $\overrightarrow{0}$ 와 같이 나타낸다. 즉,

$$\overrightarrow{AA} = \overrightarrow{0}$$
, $\overrightarrow{BB} = \overrightarrow{0}$

이때, 영벡터는 크기가 0이고, 방향은 생각하지 않는다. 또, 크기가 1인 벡터는 단위벡터라 하고, \overrightarrow{e} 로 나타낸다. $|\overrightarrow{e}|=1$ 이다.

두 벡터가 서로 같을 조건

오른쪽 그림의 평행사변형에서 두 벡터 \overrightarrow{AD} , \overrightarrow{BC} 와 같이 그 크기와 방향이 서로 같을 때, 두 벡터는 서로 같다고 하고

$$\overrightarrow{AD} = \overrightarrow{BC}$$

와 같이 나타낸다.

마찬가지로 두 벡터 \vec{a} , \vec{b} 가 같을 때 $\vec{a} = \vec{b}$ 로 나타낸다. 일반적으로 오른쪽 그림과 같이 임의의 벡터에 대하여 시점과 종점이 달라도 평행이동에 의하여 서로 포개어지는 벡터는 무수히 많이 존재한다. 이들 벡터를 모두 서로 같은 벡터라 한다.

☑ 오른쪽 정육각형 ABCDEF에서 세 대각선 AD,
 BE, CF의 교점을 O라고 하면
 AF=BO=OE=CD

한편, 오른쪽 그림에서 벡터 \overrightarrow{BA} 는 벡터 \overrightarrow{AB} 와 크기는 같고 방향이 반대이다. 이때, 벡터 \overrightarrow{BA} 를 벡터 \overrightarrow{AB} 의 역벡터라 하고 $-\overrightarrow{AB}$ 로 나타낸다. 즉, \overrightarrow{BA} = $-\overrightarrow{AB}$ 이다.

에 오른쪽 평행사변형 \overrightarrow{AB} CD에서 $\overrightarrow{AB} = \overrightarrow{a}$, $\overrightarrow{AD} = \overrightarrow{b}$ 라 하면

$$\overrightarrow{CD} = -\overrightarrow{AB} = -\overrightarrow{a},$$

$$\overrightarrow{CB} = -\overrightarrow{AD} = -\overrightarrow{b}$$

벡터의 뜻 기초

오른쪽 그림과 같이 $\overline{AB}=1$. $\overline{AD}=2$ 인 직사각형 ABCD가 있다.

- (1) BA와 같은 벡터를 구하여라.
- (2) **AD**의 역벡터를 모두 구하여라.
- (3) | AC|를 구하여라.

풀이

- $(1) \overrightarrow{CD}$
- (2) \overrightarrow{DA} . \overrightarrow{CB}
- (3) $|\overrightarrow{AC}| = \overline{AC} = \sqrt{5}$

(1) CD

- (2) \overrightarrow{DA} , \overrightarrow{CB}
- (3) $|\overrightarrow{AC}| = \sqrt{5}$

확인문제

오른쪽 그림과 같이 한 변의 길이가 1인 정육각형 ABCDEF에서 **34-**1

- (1) \overrightarrow{AB} 와 같은 벡터를 구하여라.
- (2) AO의 역벡터를 구하여라.
- (3) | AC|를 구하여라.

Fi

벡터의 덧셈, 뺄셈 및 실수배

" 벡터의 합에 대하여 이해하고 삼각형의 법칙과 평행사변형의 법칙에 대하여 알아본다. 또, 벡터의 덧셈에 대한 연산법칙 및 벡터의 뺄셈, 실수배에 대하여 정의한다 "

■ 평면벡터

- ···• 1. 벡터의 정의
- ---**-** 2. 벡터의 덧셈, 뺄셈 및 실수배 (합은 대각선)

벡터의 덧셈

수, 식의 경우와 같이 벡터 사이에도 연산이 가능하다. 먼저, 벡터의 덧셈을 정의하자.

벡터의 덧셈을 정의할 때, 삼각형의 법칙을 사용할 수 있다.

오른쪽 삼각형에서 $\vec{a} = \overrightarrow{AB}$, $\vec{b} = \overrightarrow{BC}$ 라 할 때,

 $\overrightarrow{AC}(=\overrightarrow{c})$ 를 \overrightarrow{a} 와 \overrightarrow{b} 의 합이라 하고 $\overrightarrow{a}+\overrightarrow{b}$ 로 나타낸다. 즉.

 $\vec{a} + \vec{b} = \vec{c} \iff \overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$

또한 다음과 같이 평행사변형의 법칙을 사용할 수 있다.

 $\vec{a}=\overrightarrow{OA}, \vec{b}=\overrightarrow{OB}$ 라 하고, $\overrightarrow{OA}, \overrightarrow{OB}$ 를 두 변으로 하는 평행사변형 OACB를 만들 때, 벡터 $\overrightarrow{OC}=\vec{c}$ 를 \vec{a} 와 \vec{b} 의 합이라 한다. 즉,

 $\vec{a} + \vec{b} = \vec{c} \iff \overrightarrow{OA} + \overrightarrow{OB} = \overrightarrow{OC}$

☑ 오른쪽 정육각형 ABCDEF에서 세 대각선 AD, BE, CF의 교점을 O라고 하면 평행사변형 ABCO에서

 $\overrightarrow{AB} + \overrightarrow{AO} = \overrightarrow{AC}$ 🗕 평행사변형의 법칙

또, $\overrightarrow{AO} = \overrightarrow{BC}$ 이므로 $\overrightarrow{AB} + \overrightarrow{AO} = \overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$

← 삼각형의 법칙

20.

벡터의 덧셈에 관한 연산법칙

수, 식의 경우에서처럼 벡터의 덧셈에서도 다음이 성립한다.

핵심

벡터의 덧셈에 대한 연산법칙

$$(1)\overrightarrow{a}+\overrightarrow{b}=\overrightarrow{b}+\overrightarrow{a}$$
 (교환법칙)

(2)
$$(\overrightarrow{a}+\overrightarrow{b})+\overrightarrow{c}=\overrightarrow{a}+(\overrightarrow{b}+\overrightarrow{c})$$
 (결합법칙)

(3) 임의의 벡터
$$\vec{a}$$
에 대하여 $\vec{a}+\vec{0}=\vec{0}+\vec{a}=\vec{a}$

(4) 임의의 벡터
$$\vec{a}$$
에 대하여 $\vec{a} + (-\vec{a}) = (-\vec{a}) + \vec{a} = \vec{0}$

해설

위의 성질은 삼각형의 법칙에 의한 벡터의 합을 이용하여 증명된다.

$$(1)$$
 $\overrightarrow{OA} = \overrightarrow{a}$, $\overrightarrow{OB} = \overrightarrow{b}$ 로 놓으면

$$\triangle OAC$$
에서

$$\vec{a} + \vec{b} = \overrightarrow{OC} \cdots \bigcirc$$

△OBC에서

$$\vec{b} + \vec{a} = \overrightarrow{OC} \cdots$$
 ②

①, ②에서
$$\vec{a}+\vec{b}=\vec{b}+\vec{a}$$

$$(\vec{a}+\vec{b})+\vec{c}=(\overrightarrow{AB}+\overrightarrow{BC})+\overrightarrow{CD}=\overrightarrow{AC}+\overrightarrow{CD}=\overrightarrow{AD}\cdots$$
 3
 $\vec{a}+(\vec{b}+\vec{c})=\overrightarrow{AB}+(\overrightarrow{BC}+\overrightarrow{CD})=\overrightarrow{AB}+\overrightarrow{BD}=\overrightarrow{AD}\cdots$ 4

$$(3.4)$$
에서 $(\vec{a}+\vec{b})+\vec{c}=\vec{a}+(\vec{b}+\vec{c})$

(3)
$$\overrightarrow{AB} = a$$
. $\overrightarrow{AA} = \overrightarrow{BB} = \overrightarrow{0}$ 으로 놓으면

$$\vec{a} + \vec{0} = \vec{A}\vec{B} + \vec{B}\vec{B} = \vec{A}\vec{B} = \vec{a} \cdots$$
 (5)

$$\vec{0} + \vec{a} = \vec{A}\vec{A} + \vec{A}\vec{B} = \vec{A}\vec{B} = \vec{a} \cdots$$
 6

$$\vec{0}$$
, $\vec{0}$ $\vec{0}$

$$(4)$$
 $\overrightarrow{AB} = \overrightarrow{a}$, $-\overrightarrow{AB} = \overrightarrow{BA} = -\overrightarrow{a}$ 으로 놓으면

$$\vec{a} + (-\vec{a}) = \overrightarrow{AB} + \overrightarrow{BA} = \overrightarrow{AA} = \vec{0} \cdots$$

$$(-\vec{a}) + \vec{a} = \overrightarrow{BA} + \overrightarrow{AB} = \overrightarrow{BB} = \vec{0} \cdots \otimes \vec{a}$$

7,
$$8$$
 에서 $\vec{a} + (-\vec{a}) = (-\vec{a}) + \vec{a} = \vec{0}$

22

벡터의 뺄셈

이번에는 벡터의 뺄셈을 정의하자.

두 벡터 \vec{a} , \vec{b} 에 대하여

$$\vec{b} + \vec{x} = \vec{a}$$

를 만족하는 \vec{x} 를 \vec{a} 에서 \vec{b} 를 뺀 차라 하고 $\vec{a} - \vec{b} (= \vec{x})$ 로 나타낸다.

오른쪽 그림에서 $\vec{a} = \overrightarrow{OA}$, $\vec{b} = \overrightarrow{OB}$ 라 하면 $\vec{a} - \vec{b} = \vec{x} \iff \overrightarrow{OA} - \overrightarrow{OB} = \overrightarrow{BA}$

벡터의 뺄셈을 계산할 때에는 덧셈과 같이 삼각형의 법칙 또는 평행사 변형의 법칙을 이용한다. 즉.

$$\vec{a} - \vec{b} = \vec{a} + (-\vec{b})$$

에서 두 벡터 \vec{a} . $-\vec{b}$ 의 합과 같다.

벡터와 실수의 곱

오른쪽 그림에서 $\vec{a} + \vec{a}$ 는 \vec{a} 와 방향이 같고 크기가 2배인 벡터이다. 이것을 $\vec{a} + \vec{a} = 2\vec{a}$ 로 나타낸다. 일반적으로 임의의 실수 m에 대하여 m과 \vec{a} 의 곱 $m\vec{a}$ 를 \vec{a} 의 실수배라고 하고, 다음과 같이 정의한다.

- (i) m>0일 때, \vec{a} 와 방향이 같고, 그 크기가 $|\vec{a}|$ 의 m배인 벡터
- (ii) m < 0일 때, \vec{a} 와 방향이 반대이고, 그 크기가 $|\vec{a}|$ 의 |m|배인 벡터
- (iii) m=0일 때, $\overrightarrow{ma}=\overrightarrow{0}$ 이다.

참고 | 실수배의 정의에서 \vec{a} 의 역벡터 $-\vec{a}$ 는 \vec{a} 와 방향이 반대이고, 크기가 |-1|=1 즉, 크기가 같은 벡터이다.

벡터의 실수배의 연산법칙

벡터의 실수배의 연산은 수와 식에서의 연산 방법과 같다. 즉, 다음 연산법칙을 만족한다.

- (i) 결합법칙 $k(\vec{la}) = (kl)\vec{a}$
- (ii) 분배법칙 $(k+l)\vec{a} = k\vec{a} + l\vec{a}$, $k(\vec{a}+\vec{b}) = k\vec{a} + k\vec{b}$
- (iii) $0\vec{a} = \vec{0}$, $1\vec{a} = \vec{a}$, $(-1)\vec{a} = -\vec{a}$, $m\vec{0} = \vec{0}$
- 에 $3(\vec{a}+2\vec{b}-3\vec{c})+2(-\vec{a}+2\vec{b}+4\vec{c})$ 를 간단히 하여 보자. (주어진 식)= $3\vec{a}+6\vec{b}-9\vec{c}-2\vec{a}+4\vec{b}+8\vec{c}$ = $(3\vec{a}-2\vec{a})+(6\vec{b}+4\vec{b})+(-9\vec{c}+8\vec{c})=\vec{a}+10\vec{b}-\vec{c}$

<u>23.</u>

24.

벡터의 합과 차 하

기본문제

오른쪽 평행사변형 ABCD에서 대각선의 교점 을 O라 하고, $\overrightarrow{OA} = \overrightarrow{a}$, $\overrightarrow{OB} = \overrightarrow{b}$ 라 할 때, 다음 벡터를 \vec{a} , \vec{b} 로 나타내어라.

풀이

(1)
$$\overrightarrow{AB} = \overrightarrow{AO} + \overrightarrow{OB} = -\overrightarrow{OA} + \overrightarrow{OB} = -\overrightarrow{a} + \overrightarrow{b}$$

$$(2)\overrightarrow{BC} = \overrightarrow{BO} + \overrightarrow{OC} = -\overrightarrow{OB} - \overrightarrow{OA} = -\overrightarrow{b} - \overrightarrow{a} = -\overrightarrow{a} - \overrightarrow{b}$$

(3)
$$\overrightarrow{\text{CD}} = \overrightarrow{\text{CO}} + \overrightarrow{\text{OD}} = \overrightarrow{\text{OA}} - \overrightarrow{\text{OB}} = \overrightarrow{a} - \overrightarrow{b}$$

$$(1)$$
 (1) (2) (3) (3) (3) (3)

참고 비터 \vec{a} 와 방향이 같고 크기가 같으면 같은 벡터 즉, \vec{a} 이고, 벡터 \vec{a} 와 크기가 같지만 방향이 반대이면 역벡터, 즉 $-\vec{a}$ 이다.

확인문제 평행사변형 \overrightarrow{AB} CD에서 $\overrightarrow{AB} = \overrightarrow{a}$, $\overrightarrow{AD} = \overrightarrow{b}$ 일 때, 다음 벡 $\vec{35-1}$ 터를 \vec{a} , \vec{b} 로 나타내어라.

 $(1) \overrightarrow{DB}$

 $(2) \overrightarrow{CA}$

기본문제

다음 식을 간단히 하여라.

- (1) $\overrightarrow{AB} \overrightarrow{CB} + \overrightarrow{CA}$
- (2) $\overrightarrow{AD} + \overrightarrow{DE} \overrightarrow{BE} \overrightarrow{CB}$

- (1) $\overrightarrow{AB} \overrightarrow{CB} + \overrightarrow{CA}$
 - $=(\overrightarrow{AB}+\overrightarrow{BC})+\overrightarrow{CA}$
 - $=\overrightarrow{AC}+\overrightarrow{CA}$
 - $=\overrightarrow{AA} = \overrightarrow{0} \leftarrow \overrightarrow{AC} \overrightarrow{AC} = \overrightarrow{0}$
- (2) $\overrightarrow{AD} + \overrightarrow{DE} \overrightarrow{BE} \overrightarrow{CB}$
 - $=(\overrightarrow{AD}+\overrightarrow{DE})+\overrightarrow{EB}+\overrightarrow{BC}$
 - $=(\overrightarrow{AE}+\overrightarrow{EB})+\overrightarrow{BC}$
 - $= \overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$

 \blacksquare (1) $\overrightarrow{0}$ (2) \overrightarrow{AC}

참고 │ 시점과 종점이 일치하면 영벡터이다.

확인문제 평면 위의 네 점 A, B, C, D에 대하여 다음 식을 간단히 하여라.

 $36-1 \qquad (1) \overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CD}$

(2) $\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CD} + \overrightarrow{DA}$

다음 등식을 만족하는 $\vec{x} = \vec{a}$, \vec{b} 로 나타내어라.

(1)
$$4(\vec{x} + \vec{a} - 2\vec{b}) = 3(2\vec{a} + \vec{x})$$

$$(2) \ 2(\vec{a} + \vec{x}) - 3(2\vec{b} - \vec{a}) = \vec{x}$$

$$(1) 4\vec{x} + 4\vec{a} - 8\vec{b} = 6\vec{a} + 3\vec{x}$$
$$4\vec{x} - 3\vec{x} = 6\vec{a} - 4\vec{a} + 8\vec{b}$$
$$\therefore \vec{x} = 2\vec{a} + 8\vec{b}$$

(2)
$$2\vec{a} + 2\vec{x} - 6\vec{b} + 3\vec{a} = \vec{x}$$

 $2\vec{x} - \vec{x} = -5\vec{a} + 6\vec{b}$
 $\therefore \vec{x} = -5\vec{a} + 6\vec{b}$

$$(1)\vec{x} = 2\vec{a} + 8\vec{b}$$
 (2) $\vec{x} = -5\vec{a} + 6\vec{b}$

$$\vec{x} = 3\vec{a} - 2\vec{b}$$
, $\vec{y} = 2\vec{a} + \vec{b}$ 일 때, $2(\vec{x} - \vec{y}) + 3\vec{y} = \vec{a}$, \vec{b} 로 나타내어라.

37-1

확인문제 다음 등식을 만족하는
$$\vec{x}$$
를 \vec{a} , \vec{b} 로 나타내어라.

$$2(2\vec{a}-4\vec{b}+3\vec{x})-3(2\vec{b}-\vec{a})=5(\vec{a}-2\vec{b}+2\vec{x})$$

벡터의 평행

44 두 벡터의 평행의 뜻과 그 표현을 정의한다. 또, 평면 위의 세 점이 일직선 위에 있을 때의 벡터 사이의 관계를 이해한다.

■평면벡터

--- 1. 벡터의 정의
--- 2. 벡터의 덧셈, 뺄셈 및 실수배
--- 3. 벡터의 평행

벡터의 평행

오른쪽과 같이 영벡터가 아닌 두 벡터 \vec{a} , \vec{b} 의 방향이 같거나 반대일 때, \vec{a} 와 \vec{b} 는 서로 평행하다고하며,

 $\vec{a}/\!\!/\vec{b}$

로 나타낸다. 두 벡터가 평행하다는 것은 한 벡터가 다른 벡터의 실수배라는 것과 같다. 즉, $\vec{a} \neq \vec{0}$, $\vec{b} \neq \vec{0}$ 이고 $k \neq 0$ 인 임의의 실수일 때 $\vec{a} / \vec{b} \iff \vec{a} = k\vec{b}$ (또는 $\vec{b} = k\vec{a}$)

참고 | 서로 같은 벡터 또는 벡터와 그 역벡터는 서로 평행인 벡터이다.

26.

25.

일직선 위의 세 점의 조건

서로 다른 세 점 A, B, C에 대하여 $\overrightarrow{AC}=k\overrightarrow{AB}$ $(k\neq 0$ 인 실수)를 만족하는 실수 k가 존재하면 k>0, k<0일 때, 세 점 A, B, C의 관계는 그림과 같다.

즉. 세 점 A, B, C는 일직선 위의 점이다.

역으로 세 점 A, B, C가 일직선 위의 점이면 $\overrightarrow{AC} = k\overrightarrow{AB}$ 를 만족하는 0이 아닌 실수 k가 존재한다.

다음과 같이 주어진 세 벡터 \overrightarrow{p} , \overrightarrow{q} , \overrightarrow{r} 에 대하여 $\overrightarrow{p} - \overrightarrow{q}$ 와 $\overrightarrow{q} + \overrightarrow{r}$ 가 평행할 때. 상수 k의 값을 구하여라.

$$\vec{p} = 5\vec{a} + \vec{b}, \vec{q} = k\vec{a} + 4\vec{b}, \vec{r} = -8\vec{a} + 2\vec{b}$$

풀이

주어진 세 벡터 \overrightarrow{p} , \overrightarrow{q} , \overrightarrow{r} 로부터 $\vec{b} - \vec{a} = (5 - k)\vec{a} - 3\vec{b}$ $\vec{q} + \vec{r} = (k-8)\vec{a} + 6\vec{b}$ 이때. $(\vec{p}-\vec{q})/(\vec{q}+\vec{r})$ 이므로 $(\vec{p}-\vec{q})=m(\vec{q}+\vec{r})$ (m은 실수) $\vec{=}$ $(5-k)\vec{a}-3\vec{b}=m\{(k-8)\vec{a}+6\vec{b}\}$ 두 벡터가 같을 조건에서 5-k=m(k-8), -3=6m즉, $m=-\frac{1}{2}$ 이고, 이때, $5-k=-\frac{1}{2}(k-8)$, $\frac{1}{2}k=1$ $\therefore k=2$

2 2

확인문제

세 벡터 \vec{a} , \vec{b} , \vec{c} 와 $\vec{p} \neq \vec{0}$, $\vec{q} \neq \vec{0}$, $\vec{p} \times \vec{q}$ 인 두 벡터 \vec{p} , \vec{q} 에 대하여 $\vec{a} = 2\vec{p} + \vec{q}$, $\vec{b} = -\vec{p} + 3\vec{q}$, $\vec{c} = -2\vec{p} - \vec{q}$ **38-**1

일 때. $\vec{a} + \vec{b}$ 와 $\vec{b} + m\vec{c}$ 가 서로 평행하도록 실수 m의 값을 정하여라.

일직선 위의 세 점의 조건 중

기본문제 **39**

 $\overrightarrow{OA} = \overrightarrow{a}$, $\overrightarrow{OB} = 2\overrightarrow{a} - \overrightarrow{b}$, $\overrightarrow{OC} = 4\overrightarrow{a} + t\overrightarrow{b}$ 일 때, A, B, C가 일직선 위에 있도록 상수 t의 값을 구하여라. (단, $\overrightarrow{a} \neq \overrightarrow{b}$, $\overrightarrow{a} \neq \overrightarrow{0}$, $\overrightarrow{b} \neq \overrightarrow{0}$)

풀이 세 점 A, B, C가 일직선 위에 있을 조건은

-3

확인문제

39-1

 $\overrightarrow{OA} = \overrightarrow{a} + 2\overrightarrow{b}$, $\overrightarrow{OB} = 2\overrightarrow{a} + k\overrightarrow{b}$ 에 대하여 세 점 O, A, B가 일직선 위에 있을 때, 상수 k의 값을 구하여라.

확인문제

평행이 아닌 두 벡터 \vec{a} , \vec{b} 에 대하여

39-2

 $\overrightarrow{OP} = \overrightarrow{a} + \overrightarrow{b}, \overrightarrow{OQ} = 2\overrightarrow{a} - \overrightarrow{b}, \overrightarrow{OR} = m\overrightarrow{a} + 5\overrightarrow{b}$ (단, $\overrightarrow{a} \neq \overrightarrow{0}, \overrightarrow{b} \neq \overrightarrow{0}$) 이다. 세 점 P. Q. R가 일직선 위에 있을 때. 실수 m의 값을 구하여라.

벡터의 연산과 서로 같을 조건 중

기본문제

영벡터가 아닌 두 벡터 \overrightarrow{a} , \overrightarrow{b} 가 평행이 아닐 때, 다음이 성립함을 보여라.

- (1) $\overrightarrow{ma} + \overrightarrow{nb} = \overrightarrow{0} \iff m = n = 0 \ (m, n$ 은 실수)
- $(2) \overrightarrow{ma} + n\overrightarrow{b} = \overrightarrow{m'a} + n'\overrightarrow{b} \iff m = m', n = n' (m, n, m', n') 은 실수$

풀이 $(1) \overrightarrow{ma} + n\overrightarrow{b} = 0$ 에서 $\overrightarrow{ma} = -n\overrightarrow{b}$

- (i) $m \neq 0$ 일 때, 양변을 m으로 나누면 $\vec{a} = -\frac{n}{m} \vec{b}$ 즉, $\vec{a} = k\vec{b}$ $(k \neq 0)$ 꼴이므로 \vec{a} , \vec{b} 는 서로 평행하게 되어 조건에 부적합하다.
- (ii) m=0일 때, $\vec{ma}=0\cdot\vec{a}=\vec{0}$ 이므로 $\vec{0}=-n\vec{b}$ 가정에서 $\vec{b}\neq\vec{0}$ 이므로 n=0
- (i). (ii)에 의하여 m=n=0
- (2) $(m-m')\vec{a}+(n-n')\vec{b}=\vec{0}$
 - (1)에 의하여 m=m', n=n'

🔡 풀이 참조

확인문제

40-1

영벡터가 아닌 두 벡터 \vec{a} , \vec{b} 가 평행이 아닐 때, 다음을 만족시키는 상수 k, l의 값을 구하여라.

(1)
$$(2k-4)\vec{a}+(k+l-3)\vec{b}=\vec{0}$$

(2)
$$3(2\vec{a} - k\vec{b}) + 2(-\vec{b} + \vec{a}) = l\vec{a} + \vec{b}$$

확인문제하는

$$k^2 + 9 \cdot 4 = 45$$
에서 $k^2 = 9$

$$\therefore k=3 \ (\because k>0)$$

$$3 \cdot x + 9 \cdot 2 \cdot y = 45$$
 $\therefore x + 6y - 15 = 0$

$$3 \cdot x + 9 \cdot 2 \cdot y - 43$$
 . . $x + 6y - 13 - 9$ 이 식이 $x + ay + b = 0$ 과 일치하므로

$$a=6, b=-15$$

$$k+a+b=3+6-15=-6$$

33-1. 정답
$$y=2x+2$$
 또는 $y=-2x+2$

접점을
$$(x_1, y_1)$$
이라 놓으면

$$4x_1^2 - 3y_1^2 = 6$$

또,
$$(x_1, y_1)$$
에서의 접선의 방정식은

$$4x_1x - 3y_1y = 6 \qquad \cdots$$

이 직선이
$$(0, 2)$$
를 지나므로

$$-6y_1 = 6$$
 $\therefore y_1 = -1$

$$\stackrel{\text{\tiny 2}}{=}$$
, $4x_1^2 - 3 = 6$
 $4x_1^2 = 9$, $x_1^2 = \frac{9}{4}$

$$x_1 = \pm \frac{3}{2}$$

즉,
$$\left(-\frac{3}{2},\;-1\right)$$
, $\left(\frac{3}{2},\;-1\right)$ 에서 \bigcirc 에 대입하면

$$-6x+3y=6$$
 또는 $6x+3y=6$

∴
$$y=2x+2$$
 또는 $y=-2x+2$

II. 평면벡터

05. 평면벡터

확인문제 [p.67~80]

....(¬)

34-1. 정답 (1) $\overrightarrow{FO} = \overrightarrow{OC} = \overrightarrow{ED}$ (2) $\overrightarrow{OA} = \overrightarrow{DO} = \overrightarrow{EF} = \overrightarrow{CB}$ (3) $\sqrt{3}$

(1)
$$\overrightarrow{FO} = \overrightarrow{OC} = \overrightarrow{ED}$$

(2)
$$\overrightarrow{OA} = \overrightarrow{DO} = \overrightarrow{EF} = \overrightarrow{CB}$$

$$(3)$$
 \overline{BO} , \overline{AC} 의 교점을 M 이라 하면

$$\overline{AC} = 2\overline{AM}$$

이때,
$$\triangle ABO$$
에서 $\overline{AM} = \frac{\sqrt{3}}{2}$

$$|\overrightarrow{AC}| = \sqrt{3}$$

35-1. 정답 (1)
$$\vec{a} - \vec{b}$$
 (2) $-\vec{a} - \vec{b}$

$$(1) \overrightarrow{DB} = \overrightarrow{DA} + \overrightarrow{AB}$$

$$=$$
 $-\overrightarrow{AD}+\overrightarrow{AB}$

$$= \vec{a} - \vec{b}$$

(2)
$$\overrightarrow{CA} = \overrightarrow{CB} + \overrightarrow{BA}$$

= $-\overrightarrow{AD} + (-\overrightarrow{AB})$

= $-\vec{a}$ $-\vec{b}$

(1)
$$\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CD}$$

$$= (\overrightarrow{AB} + \overrightarrow{BC}) + \overrightarrow{CD}$$
$$= \overrightarrow{AC} + \overrightarrow{CD}$$

$$=\overrightarrow{\mathrm{AD}}$$

(2)
$$\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CD} + \overrightarrow{DA}$$

= $\overrightarrow{AC} + \overrightarrow{CD} + \overrightarrow{DA}$

$$=\overrightarrow{AD}+\overrightarrow{DA}$$

$$=\overrightarrow{AB} + \overrightarrow{DA}$$

 $=\overrightarrow{AA} = \overrightarrow{0}$

37-1. 정답 8
$$\vec{a}$$
 $-3\vec{b}$

-1. 정답
$$8\vec{a} - 3\vec{b}$$

 $2(\vec{x} - \vec{y}) + 3\vec{y} = 2\vec{x} - 2\vec{y} + 3\vec{y}$

$$=2\vec{x}+\vec{y}$$

$$=2(3\vec{a}-2\vec{b})+2\vec{a}+\vec{b}$$

$$=6\vec{a}-4\vec{b}+2\vec{a}+\vec{b}$$

$$=8\vec{a}-3\vec{b}$$

37-2. 정답
$$\frac{1}{2}\vec{a} - \vec{b}$$

주어진 식을 정리하면
$$4\vec{a} - 8\vec{b} + 6\vec{x} - 6\vec{b} + 3\vec{a} = 5\vec{a} - 10\vec{b} + 10\vec{x}$$

$$4\vec{x} = (7\vec{a} - 14\vec{b}) - (5\vec{a} - 10\vec{b})$$
$$= 2\vec{a} - 4\vec{b}$$

$$\therefore x = \frac{1}{2}\vec{a} - \vec{b}$$

$$\vec{a} + \vec{b} = t(\vec{b} + m\vec{c})$$
로 놓을 수 있으므로
$$\vec{p} + 4\vec{q} = t\{-\vec{p} + 3\vec{q} + m(-2\vec{p} - \vec{q})\}$$
$$= t\{(-2m-1)\vec{p} + (3-m)\vec{q}\}$$

$$t(-2m-1)=1, t(3-m)=4$$

즉,
$$\frac{1}{-2m-1} = \frac{4}{3-m}$$
에서

$$3-m=-8m-4,7m=-7$$

$$\therefore m = -1$$

$$\overrightarrow{\mathrm{OA}} = t\overrightarrow{\mathrm{OB}}$$
 $(t$ 는 실수)에서

$$\vec{a} + 2\vec{b} = t(2\vec{a} + k\vec{b})$$
$$\vec{a} + 2\vec{b} = 2t\vec{a} + kt\vec{b}$$

$$\therefore 1=2t, 2=kt$$

$$t=\frac{1}{2}, k=4$$

따라서. 구하는 값은 $k=4$

$$\overrightarrow{PR} = t \overrightarrow{PQ}$$
 (단, $t \neq 0$ 인 실수)

이때,
$$\overrightarrow{PQ} = \overrightarrow{OQ} - \overrightarrow{OP} = \overrightarrow{a} - 2\overrightarrow{b}$$
이고

$$\overrightarrow{PR} = \overrightarrow{OR} - \overrightarrow{OP} = (m-1)\overrightarrow{a} + 4\overrightarrow{b} \circ | \overrightarrow{r} |$$

즉,
$$(m-1)\vec{a}+4\vec{b}=t(\vec{a}-2\vec{b})$$
에서

$$(m-1)\vec{a} + 4\vec{b} = t\vec{a} - 2t\vec{b}$$

따라서 $m-1=t$, $4=-2t$ 이므로

$$t = -2, m = -1$$

40-1. 정답 (1)
$$k=2$$
, $l=1$ (2) $k=-1$, $l=8$

$$(1) 2k-4=0, k+l-3=0$$
에서

$$\therefore k=2, l=1$$

(2)
$$(6\vec{a} - 3k\vec{b}) + (2\vec{a} - 2\vec{b}) = l\vec{a} + \vec{b}$$

 $8\vec{a} - (2 + 3k)\vec{b} = l\vec{a} + \vec{b}$

$$l = 8, 2 + 3k = -1$$

$$k = -1, l = 8$$