	<pre>fromfuture import print_function %matplotlib inline plt.rcParams['figure.figsize'] = (15.0, 12.0) # set default size of plots plt.rcParams['image.interpolation'] = 'nearest' plt.rcParams['image.cmap'] = 'gray' # for auto-reloading extenrnal modules %load_ext autoreload %autoreload 2</pre> Part 1: Canny Edge Detector (75 points) In this part, you are going to implement a Canny edge detector. The Canny edge detection algorithm can be broken down in to five st
	In this part, you are going to implement a Canny edge detector. The Canny edge detection algorithm can be broken down in to five standard formula of the standard formula of
	<pre>Implement gaussian_kernel in edge.py and run the code below. from edge import conv, gaussian_kernel # Define 3x3 Gaussian kernel with std = 1 kernel = gaussian_kernel(3, 1) kernel_test = np.array([[0.05854983, 0.09653235, 0.05854983], [0.09653235, 0.15915494, 0.09653235], [0.05854983, 0.09653235, 0.05854983]]) # Test Gaussian kernel if not np.allclose(kernel, kernel_test): print('Incorrect values! Please check your implementation.') # Test with different kernel_size and sigma kernel size = 5</pre>
	<pre>sigma = 1.4 # Load image img = io.imread('iguana.png', as_gray=True) # Define 5x5 Gaussian kernel with std = sigma kernel = gaussian_kernel(kernel_size, sigma) # Convolve image with kernel to achieve smoothed effect smoothed = conv(img, kernel) plt.subplot(1,2,1) plt.imshow(img) plt.title('Original image') plt.axis('off') plt.subplot(1,2,2) plt.imshow(smoothed) plt.title('Smoothed image') plt.axis('off')</pre>
	plt.show() Original image Smoothed image
	Question (5 points) What is the effect of changing kernel_size and sigma? Your Answer: Write your solution in this markdown cell. The larger is kernel size and sigma the more blurred image is going to be. 1.2 Finding gradients (15 points) The gradient of a 2D scalar function $I: \mathbb{R}^2 \to \mathbb{R}$ in Cartesian coordinate is defined by: $\nabla I(x,y) = \big[\frac{\partial I}{\partial x}, \frac{\partial I}{\partial y}\big],$
	where $\frac{\partial I(x,y)}{\partial x} = \lim_{\Delta x \to 0} \frac{I(x+\Delta x,y) - I(x,y)}{\Delta x}$ $\frac{\partial I(x,y)}{\partial y} = \lim_{\Delta y \to 0} \frac{I(x,y+\Delta y) - I(x,y)}{\Delta y}.$ In case of images, we can approximate the partial derivatives by taking differences at one pixel intervals: $\frac{\partial I(x,y)}{\partial x} \approx \frac{I(x+1,y) - I(x-1,y)}{2}$ $\frac{\partial I(x,y)}{\partial y} \approx \frac{I(x,y+1) - I(x,y-1)}{2}$ Note that the partial derivatives can be computed by convolving the image I with some appropriate kernels D_x and D_y :
	$\frac{\partial I}{\partial x} \approx I*D_x = G_x$ $\frac{\partial I}{\partial y} \approx I*D_y = G_y$ Implementation (5 points) Find the kernels D_x and D_y and implement partial_x and partial_y using conv defined in edge.py . -Hint: Remeber that convolution flips the kernel. $from \ \text{edge import partial}_x, \ \text{partial}_y$ $\# \ \textit{Test input}$ $I = \text{np.array}($ $[[0, 0, 0],$ $[0, 1, 0],$ $[0, 0, 0]]$ $[0, 0, 0]]$
	<pre># Expected outputs I_x_test = np.array([[0, 0, 0], [0.5, 0, -0.5], [0, 0, 0]]) I_y_test = np.array([[0, 0.5, 0], [0, 0.5, 0], [0, -0.5, 0]]) # Compute partial derivatives I_x = partial_x(I) I_y = partial_y(I) # Test correctness of partial x and partial y</pre>
3]:	<pre>if not np.all(I_x == I_x_test): print('partial_x incorrect') if not np.all(I_y == I_y_test): print('partial_y incorrect') # Compute partial derivatives of smoothed image Gx = partial_x(smoothed) Gy = partial_y(smoothed) plt.subplot(1,2,1) plt.imshow(Gx) plt.title('Derivative in x direction') plt.axis('off') plt.subplot(1,2,2) plt.imshow(Gy) plt.title('Derivative in y direction') plt.axis('off')</pre>
	plt. show () Derivative in x direction Derivative in y direction
	Question (5 points) What is the reason for performing smoothing prior to computing the gradients? Your Answer: Write your solution in this markdown cell. It will minimize the noise to produce less pixelated image. Implementation (5 points) Now, we can compute the magnitude and direction of gradient with the two partial derivatives: $G = \sqrt{G_x^2 + G_y^2}$
1]:	$G = \sqrt{G_x^2 + G_y^2}$ $\Theta = \arctan(\frac{G_y}{G_x})$ Implement gradient in edge.py which takes in an image and outputs G and G . $\mathbf{from} \text{ edge import gradient}$ $G, \text{ theta = gradient(smoothed)}$ $\mathbf{if not np.all}(G \ge 0): \text{ print('Magnitude of gradients should be non-negative.')}$ $\mathbf{if not np.all}((\text{theta} \ge 0) * (\text{theta} < 360)): \text{ print('Direction of gradients should be in range } 0 <= \text{theta} < 360')$ $\mathbf{plt.imshow}(G)$ $\mathbf{plt.imshow}(G)$ $\mathbf{plt.title('Gradient magnitude')}$
	<pre>plt.axis('off') plt.show() Direction of gradients should be in range 0 <= theta < 360</pre>
	 1.3 Non-maximum suppression (15 points) You should be able to see that the edges extracted from the gradient of the smoothed image are quite thick and blurry. The purpose of this step is to convert the "blurred" edges into "sharp" edges. Basically, this is done by preserving all local maxima in the gradient image and discarding everything else. The algorithm is for each pixel (x,y) in the gradient image: Round the gradient direction Θ[y, x] to the nearest 45 degrees, corresponding to the use of an 8-connected neighbourhood. Compare the edge strength of the current pixel with the edge strength of the pixel in the positive and negative gradient direction example, if the gradient direction is south (theta=90), compare with the pixels to the north and south. If the edge strength of the current pixel is the largest; preserve the value of the edge strength. If not, suppress (i.e. remove) the value non_maximum_suppression in edge.py.
	We provide the correct output and the difference between it and your result for debugging purposes. If you see white spots in the Difference image, you should check your implementation. from edge import non_maximum_suppression # Test input g = np.array([[0.4, 0.5, 0.6], [0.3, 0.5, 0.7], [0.4, 0.5, 0.6]]) # Print out non-maximum suppressed output # varying theta for angle in range(0, 180, 45): print('Thetas:', angle) t = np.ones((3, 3)) * angle # Initialize theta print(non_maximum_suppression(g, t))
94	plt.imshow(nms)
	<pre>plt.title('Non-maximum suppressed') plt.axis('off') plt.show() plt.subplot(1, 3, 1) plt.imshow(nms) plt.axis('off') plt.title('Your result') plt.subplot(1, 3, 2) reference = np.load('references/iguana_non_max_suppressed.npy') plt.imshow(reference) plt.axis('off') plt.title('Reference') plt.subplot(1, 3, 3) plt.imshow(nms - reference) plt.title('Difference') plt.title('Difference') plt.axis('off')</pre>
	Non-maximum suppressed Non-maximum suppressed
	Your result Reference Difference 1.4 Double Thresholding (20 points)
	The edge-pixels remaining after the non-maximum suppression step are (still) marked with their strength pixel-by-pixel. Many of these probably be true edges in the image, but some may be caused by noise or color variations, for instance, due to rough surfaces. The simplest way to discern between these would be to use a threshold, so that only edges stronger that a certain value would be preserved. The Canny edge detection algorithm uses double thresholding. Edge pixels stronger than the high threshold are marked as strong; ed pixels weaker than the low threshold are suppressed and edge pixels between the two thresholds are marked as weak. Implement double_thresholding in edge.py from edge import double_thresholding low_threshold = 0.02 high_threshold = 0.03 strong_edges, weak_edges = double_thresholding(nms, high_threshold, low_threshold) assert(np.sum(strong_edges & weak_edges) == 0) edges=strong_edges * 1.0 + weak_edges * 0.5
	<pre>plt.subplot(1,2,1) plt.imshow(strong_edges) plt.title('Strong Edges') plt.axis('off') plt.subplot(1,2,2) plt.imshow(edges) plt.title('Strong+Weak Edges') plt.axis('off') plt.show()</pre> Strong Edges Strong+Weak Edges
	1.5 Edge tracking (15 points) Strong edges are interpreted as "certain edges", and can immediately be included in the final edge image. Weak edges are included if only if they are connected to strong edges. The logic is of course that noise and other small variations are unlikely to result in a strong edge (with proper adjustment of the threshold levels). Thus strong edges will (almost) only be due to true edges in the original image.
	weak edges can either be due to true edges or noise/color variations. The latter type will probably be distributed independently of edge on the entire image, and thus only a small amount will be located adjacent to strong edges. Weak edges due to true edges are much likely to be connected directly to strong edges. Implement link_edges in edge.py. We provide the correct output and the difference between it and your result for debugging purposes. If you see white spots in the Difference image, you should check your implementation. from edge import get_neighbors, link_edges test_strong = np.array([[1, 0, 0, 0], [0, 0, 0], [0, 0,
	<pre>test_weak = np.array([[0, 0, 0, 1], [0, 1, 0, 0], [1, 0, 0, 0], [0, 0, 1, 0]], dtype=np.bool) test_linked = link_edges(test_strong, test_weak) plt.subplot(1, 3, 1) plt.imshow(test_strong) plt.title('Strong edges') plt.subplot(1, 3, 2) plt.imshow(test_weak) plt.title('Weak edges')</pre>
	plt.subplot(1, 3, 3) plt.imshow(test_linked) plt.title('Linked edges') plt.show() <ipython-input-59-13e23629ec71>:8: DeprecationWarning: `np.bool` is a deprecated alias for the builtin `here. To silence this warning, use `bool` by itself. Doing this will not modify any behavior and is safe. If you ifically wanted the numpy scalar type, use `np.bool_` here. Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.https://numpy.org/devdocs/release/1.20.0-notes.https://numpy.org/devdocs/release/1.20.0-notes.https://numpy.org/devdocs/release/1.20.0-notes.html To silence this warning, use `bool` by itself. Doing this will not modify any behavior and is safe. If you ifically wanted the numpy scalar type, use `np.bool_` here. Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html Deprecations dtype=np.bool Strong edges Weak edges Linked edges Linked edges</ipython-input-59-13e23629ec71>
)]:	0.0 -
	<pre>plt.imshow(edges) plt.axis('off') plt.show() plt.subplot(1, 3, 1) plt.imshow(edges) plt.axis('off') plt.title('Your result') plt.subplot(1, 3, 2) reference = np.load('references/iguana_edge_tracking.npy') plt.imshow(reference) plt.axis('off') plt.title('Reference') plt.subplot(1, 3, 3) plt.imshow(edges ^ reference) plt.title('Difference')</pre>
	plt.axis('off') plt.show()
	Your result Reference Difference 1.6 Canny edge detector
	Implement canny in edge.py using the functions you have implemented so far. Test edge detector with different parameters. Here is an example of the output: iguana_edges.png We provide the correct output and the difference between it and your result for debugging purposes. If you see white spots in the Difference image, you should check your implementation. from edge import canny # Load image img = io.imread('iguana.png', as_gray=True) # Run Canny edge detector edges = canny(img, kernel_size=5, sigma=1.4, high=0.03, low=0.02) print (edges.shape)
	<pre>plt.subplot(1, 3, 1) plt.imshow(edges) plt.axis('off') plt.title('Your result') plt.subplot(1, 3, 2) reference = np.load('references/iguana_canny.npy') plt.imshow(reference) plt.axis('off') plt.title('Reference') plt.subplot(1, 3, 3) plt.imshow(edges ^ reference) plt.title('Difference') plt.axis('off') plt.axis('off') plt.show()</pre> (310, 433)
	Part2: Lane Detection (15 points) In this section we will implement a simple lane detection application using Canny edge detector and Hough transform. Here are some example images of how your final lane detector will look like.
	The algorithm can broken down into the following steps: 1. Detect edges using the Canny edge detector. 2. Extract the edges in the region of interest (a triangle covering the bottom corners and the center of the image). 3. Run Hough transform to detect lanes. 2.1 Edge detection Lanes on the roads are usually thin and long lines with bright colors. Our edge detection algorithm by itself should be able to find the pretty well. Run the code cell below to load the example image and detect edges from the image.
	<pre># Run Canny edge detector edges = canny(img, kernel_size=5, sigma=1.4, high=0.03, low=0.02) plt.subplot(211) plt.imshow(img) plt.axis('off') plt.title('Input Image') plt.subplot(212) plt.imshow(edges) plt.axis('off') plt.title('Edges') plt.show()</pre> <pre>Input Image</pre>
	Edges
	<pre>2.2 Extracting region of interest (ROI) We can see that the Canny edge detector could find the edges of the lanes. However, we can also see that there are edges of other of that we are not interested in. Given the position and orientation of the camera, we know that the lanes will be located in the lower hal the image. The code below defines a binary mask for the ROI and extract the edges within the region. H, W = img.shape # Generate mask for ROI (Region of Interest) mask = np.zeros((H, W)) for i in range(H): if i > (H / W) * j and i > -(H / W) * j + H: mask[i, j] = 1</pre>
	<pre>mask[i, j] = 1 # Extract edges in ROI roi = edges * mask plt.subplot(1,2,1) plt.imshow(mask) plt.title('Mask') plt.axis('off') plt.subplot(1,2,2) plt.imshow(roi) plt.title('Edges in ROI') plt.axis('off') plt.axis('off') plt.show()</pre> Mask Edges in ROI
	2.3 Fitting lines using Hough transform (15 points) The output from the edge detector is still a collection of connected points. However, it would be more natural to represent a lane as a parameterized as $y = ax + b$, with a slope a and y -intercept b . We will use Hough transform to find parameterized lines that represent detected edges.
	In general, a straight line $y=ax+b$ can be represented as a point (a,b) in the parameter space. However, this cannot represent verifies as the slope parameter will be unbounded. Alternatively, we parameterize a line using $\theta \in [-\pi,\pi]$ and $\rho \in \mathbb{R}$ as follows: $\rho = x \cdot cos\theta + y \cdot sin\theta$ Using this parameterization, we can map every point in xy -space to a sine-like line in $\theta \rho$ -space (or Hough space). We then accumulate parameterized points in the Hough space and choose points (in Hough space) with highest accumulated values. A point in Hough space then can be transformed back into a line in xy -space. See notes on Hough transform.

	<pre>ys_right = [] # Coordinates for left lane xs_left = [] ys_left = [] for i in range(20): idx = np.argmax(acc) r idx = idx // acc.shape[1] t_idx = idx % acc.shape[1] acc[r_idx, t_idx] = 0 # Zero out the max value in accumulator rho = rhos[r_idx] theta = thetas[t_idx] # Transform a point in Hough space to a line in xy-space. a = - (np.cos(theta)/np.sin(theta)) # slope of the line b = (rho/np.sin(theta)) # y-intersect of the line # Break if both right and left lanes are detected if xs_right and xs_left:</pre>								
plt plt plt	<pre>if xs_right: continue xs = xs_right ys = ys_right for x in range(img y = a * x + b if y > img.shap xs.append(xys.ap</pre>	.shape[1]): pe[0] * 0.6 and y < x) int(round(y)))							