数分三 HW 2

罗淦 2200013522

2024年10月20日

HW 2 1

题目. 13. 求下列函数的定义域:

(1)
$$f(x, y, z) = \ln(y - x^2 - z^2);$$

(2)
$$f(x, y, z) = \sqrt{x^2 + y^2 - z^2}$$
;

(2)
$$f(x,y,z) = \sqrt{x^2 + y^2 - z^2};$$

(3) $f(x,y,z) = \frac{\ln(x^2 + y^2 - z)}{\sqrt{z}}.$

解答. (1) $\{(x,y,z)|y|x^2+z^2\}$

(2)
$$\{(x, y, z)|z^2 \ge x^2 + y^2\}$$

(3)
$$\{(x, y, z)|x^2 + y^2 > z > 0\}$$

题目. 14. 确定下列函数极限是否存在, 若存在则求出极限:

(1)
$$\lim_{E\ni(x,y)\to(0,0)} \frac{\sin(x^3+y^3)}{x^2+y}$$
, $\sharp \vdash E = \{(x,y): y > x^2\};$

(2)
$$\lim_{(x,y)\to(0,0)} x \ln (x^2 + y^2);$$

(3)
$$\lim_{|(x,y)| \to +\infty} (x^2 + y^2) e^{-(|x| + |y|)};$$

(4)
$$\lim_{|(x,y)| \to +\infty} (x + y)^{\frac{2}{|x|+|y|}};$$

(5) $\lim_{(x,y,z)\to(0,0,0)} \left(\frac{xyz}{x^2+y^2+z^2}\right)^{x+y};$
(6) $\lim_{E\ni(x,y,z)\to(0,0,0)} x^{yz}, \not\exists + E = \{(x,y,z): x,y,z>0\};$

(5)
$$\lim_{(x,y,z)\to(0,0,0)} \left(\frac{xyz}{x^2+y^2+z^2}\right)^{x+y}$$
;

(6)
$$\lim_{E \to (x,y,z) \to (0,0,0)} x^{yz}$$
, $\not = E = \{(x,y,z) : x,y,z > 0\}$;

(7)
$$\lim_{(x,y,z)\to(0,1,0)} \frac{\sin(xyz)}{x^2+x^2}$$

(9)
$$\lim_{E\ni(x,y,z)\to(0,0,0)} \frac{x^2}{x^2}$$
, $x \in \{0\}$ $\lim_{(x,y,z)\to(0,1,0)} \frac{\sin(xyz)}{x^2+z^2}$
(8) $\lim_{(x,y,z)\to(0,0,0)} \frac{\sin xyz}{\sqrt{x^2+y^2+z^2}}$
(9) $\lim_{x\to 0} \frac{\left(\sum_{i=1}^n x_i\right)^2}{|x|^2}$.

(9)
$$\lim_{\boldsymbol{x}\to \mathbf{0}} \frac{\left(\sum_{i=1}^n x_i\right)^2}{|\boldsymbol{x}|^2}$$
.

解答.(1) $\frac{\sin(x^3+y^3)}{x^2+y} = \frac{x^3+y^3+o(x^3+y^3)}{x^2+y}$. 如果 $\lim_{(x,y)\to(0,0)} \frac{x^3+y^3}{x^2+y} = 0$,那么当然有 $\lim_{(x,y)\to(0,0)} \frac{o(x^3+y^3)}{x^2+y} = 0$ 首先考虑对分子配方,使得最 后留在分子的只有x.

$$y^{3} = (x^{2} + y)y^{2} - x^{2}y^{2} = (x^{2} + y)(y^{2} + x^{2}y) - x^{4}y = (x^{2} + y)(y^{2} + x^{2}y + x^{4}) - x^{6}$$

因此有

$$\left|\frac{x^3+y^3}{x^2+y}\right| \le \left|y^2+x^2y+x^4\right| + \left|\frac{x^3(1-x^3)}{x^2+y}\right|$$

 $|x|^2 + y| \ge |x^2 - |y||$, 即使 $y \to 0$, 我也不能取 $|y| \le \frac{x^2}{2}$, 因为这样就不是从各个方向来趋近 于(0,0)了. 当然, 如果x是趋于一个非零的数, 我是可以这么做的.

或许可以这样做: 如果 $|y|>2x^2$, 那么 $|x^2+y|\geq x^2$; 如果 $|y|\leq \frac{x^2}{2}\leq 2x^2$, 那么 $|x^2+y|\geq \frac{x^2}{2}$. 总之,

 $1 \quad HW \ 2$

 $|x^2 + y| \ge 2x^2.$

因此有

$$\left|\frac{x^3(1-x^3)}{x^2+y}\right| = \frac{\left|x^3(1-x^3)\right|}{\left|x^2+y\right|} \le \frac{\left|x^3(1-x^3)\right|}{2x^2} = \frac{\left|x(1-x^3)\right|}{2} \to 0$$

这是在没有考虑题目给出的 $y > x^2$ 的条件下做的, 如果有这个条件, 当然好做了:

$$\left|\frac{x^3(1-x^3)}{x^2+y}\right| \le \left|\frac{x^3(1-x^3)}{2x^2}\right| = \left|x(1-x^3)\right| \to 0$$

题目的注记. 主要是因为分母是 $x^2 + y$, 非齐次导致不好操作. 否则可以极坐标换元

之所以对分子配方把分子上的y全部移除是为了后面对分母做完操作之后全部都是x就好办了.(之 所以不去消去x是因为多出来的xy配方消不掉)

分类讨论来给出分母的下界这一点很有意思.

解答. (2) 看见 $x^2 + y^2$, 比较trivial地可以想到极坐标换元.

$$x\ln(x^2 + y^2) = 2r\ln(r)\cdot\cos\theta \to 0$$

(3) 考虑放缩之后整体换元, 这样就可以使用洛必达了(虽然换元之后就显然了)

$$\frac{x^2 + y^2}{e^{|x| + |y|}} \le \frac{(|x| + |y|)^2}{e^{|x| + |y|}} = \frac{t^2}{e^t} \to 0, \quad t = |x| + |y| \to 0$$

(4) 极限不存在, 首先取 $x \equiv 0, y \rightarrow +\infty$ 的路径, 有极限为1(实际上恒等于1). 如果取 $x = y \rightarrow +\infty$ 的 路径,那么

$$(1 + \frac{1}{2|x|})^{2|x|} = (1 + \frac{1}{2|x|})^{2|x| \cdot \frac{1}{4}} \to e^{\frac{1}{4}}$$

因此, 极限不存在

(5) 考虑点列($\frac{1}{t}$, 0, 0), $t \in \mathbb{N}^*$, 那么 $\lim_{t \to \infty} o^t = 0$; 点列($\frac{1}{t}$, $\frac{1}{t}$, $\frac{1}{t}$)

那么 $\lim_{t\to\infty} (\frac{3}{t})^{\frac{2}{t}} = \lim_{t\to\infty} e^{\frac{2}{t}\ln(\frac{3}{t})} \lim_{k\to 0^+} e^{2k\ln(3k)} = 1$,极限不存在.

(6) 点列 $(0, \frac{1}{t}, \frac{1}{t})$, 极限 $\lim_{t\to\infty} 0^{\frac{1}{t^2}} = 0$; 点列 $(\frac{1}{t}, \frac{1}{t}, \frac{1}{t})$, 极限 $\lim_{t\to\infty} (\frac{1}{t})^{\frac{1}{t^2}} = 1$, 极限不存在 (7) 点列 $(\frac{1}{t}, \frac{t}{t+1}, \frac{1}{t})$, 极限 $\lim_{t\to\infty} \frac{\sin(\frac{1}{t(t+1)})}{\frac{2}{t^2}} = \frac{1}{2}$. 点列 $(\frac{1}{t}, \frac{t}{t+1}, \frac{2}{t})$, 极限 $\lim_{t\to\infty} \frac{\sin(\frac{1}{t(t+1)})}{\frac{5}{t^2}} = \frac{2}{5}$, 极限 不存在.

(8) 极限存在, 注意和前几问的重大区别, 从渐进角度来看, 大概是 $\frac{xyz}{\sqrt{x^2+u^2+z^2}}$, 分子的次数更大, 因

注意 $|\sin t| \le |t|$ 恒成立

$$\left| \frac{\sin(xyz)}{\sqrt{x^2 + y^2 + z^2}} \right| \le \left| \frac{xyz}{\sqrt{x^2 + y^2 + z^2}} \right|$$

考虑三维的球坐标换元 $\begin{cases} x = r \sin \theta \cos \phi \\ y = r \sin \theta \sin \phi \text{, 那么} \end{cases}$

$$\left|\frac{xyz}{\sqrt{x^2+y^2+z^2}}\right| = r^2 \cdot \left|\sin\theta\cos\phi\sin\theta\sin\phi\cos\phi\right| \le r^2 \to 0$$

或者,使用基本不等式:

$$\frac{n}{\sum_{i=1}^{n} \frac{1}{x_i}} \le \sqrt[n]{\prod_{i=1}^{n} x_i} \le \frac{\sum_{i=1}^{n} x_i}{n} \le \sqrt[n]{\frac{\sum_{i=1}^{n} x_i}{n}}$$

那么有 $\sqrt{x^2 + y^2 + z^2} \ge \sqrt{3} \cdot \sqrt[3]{xyz}$, 所以有

$$|\frac{xyz}{\sqrt{x^2+y^2+z^2}}| \leq |\frac{xyz}{\sqrt{3} \cdot \sqrt[3]{xyz}}| = \frac{1}{\sqrt{3}} \cdot (xyz)^{\frac{2}{3}} \rightarrow 0$$

(8) 点列($\frac{1}{t}$, 0, · · · , 0), 极限 $\lim_{t\to\infty}\frac{\frac{1}{t^2}}{\frac{1}{t^2}}=1$ 点列 $(\frac{1}{t}, \frac{1}{t}, 0, \dots, 0)$, 极限 $\lim_{t\to\infty} \frac{\frac{4}{t^2}}{\frac{2}{t^2}} = 2$, 极限不存在.

题目. 试给出三元函数 f(x,y,z) 累次极限 $\lim_{x\to x_0}\lim_{y\to y_0}\lim_{z\to z_0}f(x,y,z)$ 的定义, 并构造一个三元函数 f(x,y,z), 使得它满足: $\lim_{(x,y,z)\to(0,0,0)} f(x,y,z)$ 存在, 但 $\lim_{x\to 0} \lim_{y\to 0} \lim_{z\to 0} f(x,y,z)$ 不存在.

解答. 三元函数累次极限的定义: 设函数w = f(x, y, z)在 $E \subseteq \mathbb{R}^3$ 上有定义

且邻域 $U_0((x_0,y_0,z_0),\delta) \subseteq E$.

若在 $U_0((x_0, y_0, z_0), \delta)$ 内, 对每一个固定的 $x \neq x_0, y \neq y_0$, 有 $\lim_{z \to z_0} f(x, y, z) = \varphi(x, y)$ 存在 且(二元函数的累次极限已经定义了, 直接调用) $\lim_{x\to x_0}\lim_{y\to y_0}\varphi(x,y)=A$

则有 $\lim_{x\to x_0} \lim_{y\to y_0} \lim_{z\to z_0} f(x,y,z) = A.$

构造:

$$f(x, y, z) = x + z + y \sin \frac{1}{z}$$

重极限 $\lim_{(x,y,z)\to(0,0,0)} f(x,y,z) = 0$ 存在, 但是累次极限不存在, 因为 $z\to 0$ 时就已经无穷了.

16. 设 y = f(x) 在 $U_0(0, \delta_0) \subseteq \mathbb{R}$ 中有定义, 满足 $\lim_{x\to 0} f(x) = 0$, 且对于 $\forall x \in$ $U_0(0, \delta_0)$, $f(x) \neq 0$. $E = \{(x, y) : xy \neq 0\}$, $E = \{(x, y) : xy \neq 0\}$, $E = \{(x, y) : xy \neq 0\}$, $E = \{(x, y) : xy \neq 0\}$, $E = \{(x, y) : xy \neq 0\}$, $E = \{(x, y) : xy \neq 0\}$, $E = \{(x, y) : xy \neq 0\}$, $E = \{(x, y) : xy \neq 0\}$, $E = \{(x, y) : xy \neq 0\}$, $E = \{(x, y) : xy \neq 0\}$, $E = \{(x, y) : xy \neq 0\}$, $E = \{(x, y) : xy \neq 0\}$, $E = \{(x, y) : xy \neq 0\}$, $E = \{(x, y) : xy \neq 0\}$, $E = \{(x, y) : xy \neq 0\}$, $E = \{(x, y) : xy \neq 0\}$, $E = \{(x, y) : xy \neq 0\}$, $E = \{(x, y) : xy \neq 0\}$.

- (1) $\lim_{E\ni(x,y)\to(0,0)} \frac{f(x)f(y)}{f^2(x)+f^2(y)}$ 不存在; (2) $\lim_{E\ni(x,y)\to(0,0)} \frac{yf^2(x)}{f^4(x)+y^2}$ 不存在.

解答.核心的思路: 还是去取不同的子列 (x_k,y_k) , 来使得极限趋于不同的值. 不过这里实际上需要 控制的是 $f(x_k), f(y_k)$, 所以更困难一点.

(1) 首先取子列 $(x_k, y_k) = (\frac{1}{k}, \frac{1}{k})$, 那么极限是 $\frac{1}{2}$.

其次, 对任意的 $k \in \mathbb{N}^*$, $\exists \delta_k > 0$, 使得 $|x_k| < \delta_k$, 就有 $|f(x_k)| < \frac{1}{k}$.

接下来, 对于固定的 $|f(x_k)|$, 存在 $\delta_k' > 0$, 使得 $|y_k| < \delta_k'$, 就有 $|f(y_k)| < \frac{|f(x_k)|}{k} < \frac{1}{k^2}$ 那么对于这样的子列 (x_k, y_k) ,就有极限

$$\left| \frac{f(x_k)f(y_k)}{f(x_k)^2 + f(y_k)^2} \right| = \frac{1}{\frac{|f(x_k)|}{|f(y_k)|} + \frac{|f(y_k)|}{|f(x_k)|}}$$

又因为

$$\left| \frac{f(x_k)^2 + f(y_k)^2}{f(x_k)f(y_k)} \right| = \frac{|f(x_k)|}{|f(y_k)|} + \frac{|f(y_k)|}{|f(x_k)|} \ge \frac{|f(x_k)|}{|f(y_k)|} \ge k \to +\infty$$

因此

$$\left| \frac{f(x_k)f(y_k)}{f(x_k)^2 + f(y_k)^2} \right| \to 0$$

所以极限不存在

(2) 和第一问相同的套路, 甚至还要简单一些: 首先取 $y = f(x)^2$, 极限是 $\frac{1}{2}$.

对任意的 $k \in \mathbb{N}^*$, 存在 δ_k , $|x_k| < \delta_k$, 有 $|f(x_k)| < \frac{1}{k}$ 对固定的 $|f(x_k)|$, 存在 y_k , 使得 $|y_k| < \frac{|f(x_k)|^2}{k}$, 因此有:

$$\left|\frac{y_k f(x_k)^2}{f(x_k)^4 + y_k^2}\right| = \frac{1}{\frac{f(x_k)^2}{|y_k|} + \frac{|y_k|}{f(x_k)^2}} \le \frac{1}{\frac{f(x_k)^2}{|y_k|}} \le \frac{1}{k} \to 0$$

因此极限不存在

题目. 17. 构造二元函数f(x,y),使得对 $k=1,2,\cdots,K$,有 $\lim_{x\to 0}f(x,x^k)=0$,但是 $\lim_{(x,y)\to(0,0)}f(x,y)$ 不存在.

解答. 核心的思路: 重极限不存在, 但是方向导数存在的例子, 例如: $\frac{xy}{x^2+y^2} = \frac{\sin 2\theta}{2}$, 尝试构造类似这样的多项式的分式形式

并且注意到, $k=1,2,\cdots,K$, 分母的主导项应该是更低阶的无穷小.

取

$$f(x,y) = \frac{x^{K+1}}{x^{K+1} + y} \Rightarrow \frac{x^{K+1}}{x^{K+1} + x^k} \sim \frac{x^{K+1}}{x^k} \to 0, \quad k = 1, 2 \cdots, K$$

而 $y = x^{K+1}$ 时,极限为 $\frac{1}{2}$,重极限不存在

题目. 18. 设函数 f(x,y) 在 \mathbb{R}^2 内除直线 x=a 与 y=b 外处处有定义,并且满足:

- (a) $\lim_{y\to b} f(x,y) = g(x)$ 存在;
- (b) $\lim_{x\to a} f(x,y) = h(y)$ 一致存在,即对于 $\forall \varepsilon > 0, \exists \delta > 0$,使得对于 $\forall (x,y) \in \{(x,y) : 0 < |x-a| < \delta\}$,有 $|f(x,y) h(y)| < \varepsilon$.

证明: 存在 $c \in \mathbb{R}$, 使得有

- (1) $\lim_{x\to a} \lim_{y\to b} f(x,y) = \lim_{x\to a} g(x) = c;$
- (2) $\lim_{y\to b} \lim_{x\to a} f(x,y) = \lim_{y\to b} h(y) = c$;
- (3) $\lim_{E\ni(x,y)\to(a,b)} f(x,y) = c$, $\sharp \oplus E = \mathbb{R}^2 \setminus \{(x,y) : x = a \not \exists y = b\}$.

解答. (1) 思路: 证明极限存在, 考虑柯西收敛准则

要证明: $\forall \epsilon > 0, \exists \delta > 0$, 使得 $\forall x_1, x_2 \in U_0(a, \delta)$, 都有 $|g(x_1) - g(x_2)| < \epsilon$.

因为 $\lim_{y\to b} f(x,y) = g(x)$, 所以, $\forall \epsilon > 0$, 存在 $y_0 \neq b$, 使得 $|g(x_1) - f(x_1,y_0)| \leq \epsilon/4$, $|g(x_2) - f(x_2,y_0)| \leq \epsilon/4$. 之所以是相同的 y_0 是为了使用一致存在的条件

因为 $\lim_{x\to a} f(x,y) = h(y)$ 一致存在,对于上面的 $\epsilon > 0$,存在 $\delta > 0$, $\forall x \in U_0(a,\delta)$,都有 $|f(x,y) - h(y)| < \epsilon/4$,那么就取最初的 $x_1, x_2 \in U_0(a,\delta)$,因此有 $|f(x_1,y_0) - h(y_0)| \le \epsilon/4$, $|f(x_2,y_0) - h(y_0)| \le \epsilon/4$.

因此有, $\forall \epsilon > 0, \exists \delta > 0, \forall x_1, x_2 \in U_0(a, \delta)$:

$$|g(x_1) - g(x_2)|$$

$$\leq |g(x_1) - f(x_1, y_0)| + |f(x_1, y_0) - h(y_0)| + |h(y_0) - f(x_2, y_0)| + |f(x_2, y_0) - g(x_2)| \leq \epsilon$$

因此极限 $\lim_{x\to a} g(x)$ 存在, 记为c.

(2) 要证明: $\forall \epsilon > 0, \exists \delta_1 > 0,$ 使得 $\forall y_1, y_2 \in U_0(b, \delta_1),$ 都有 $|h(y_1) - h(y_2)| < \epsilon.$

首先, 因为 $\lim_{x\to a} f(x,y) = h(y)$ 一致存在, 因此对上述的 $\epsilon > 0$, $\exists \delta_0 > 0$, 使得 $\forall x \in U_0(a,\delta_0)$, 都有 $|f(x,y) - h(y)| < \epsilon/5$. 注意, 因为一致性, 才可以对不同的 y_1,y_2 , 只要x和a够近, 就行

又因为我们(1)证明了 $\lim_{x\to a} g(x) = c$, 因为对取定的 $\epsilon > 0$, 存在 δ'_0 , $\forall x_1, x_2 \in U_0(a, \delta'_0)$, 都有 $|g(x_1) - g(x_2)| < \epsilon/5$.

现在取 $\delta_2 = \min\{\delta_0, \delta_0'\}, \ \mathbb{R} x_1, x_2 \in U_0(a, \delta_2).$

因此, $\forall \epsilon > 0$, $\exists \delta_1 > 0$, $\forall y_1, y_2 \in U_0(b, \delta_1)$. 以及取 $x_1, x_2 \in U_0(a, \delta_2)$

$$|h(y_1) - h(y_2)|$$

1 HW 2 5

$$\leq |h(y_1) - f(x_1, y_1)| + |f(x_1, y_1) - g(x_1)| + |g(x_1) - g(x_2)| + |g(x_2) - f(x_2, y_2)| + |f(x_2, y_2) - h(y_2)|$$

$$\leq \epsilon$$

樂, 这样只是证明了极限存在, 但是极限不一定等于c啊, 可以一步到位的:

想证明: $\forall \epsilon > 0, \exists \delta > 0, \forall y \in U_0(b, \delta), |h(y) - c| < \epsilon$

因为: $\lim_{x\to a} f(x,y) = h(y)$ 一致存在, 所以对 $\forall y$, 只要 $x \in U_0(a,\delta_1)$, 都有 $|f(x,y) - h(y)| < \epsilon/3$, 这里取 $x_0 \in U_0(a,\delta_1)$, 那么 $|f(x_0,y) - h(y)| < \epsilon/3$

因为 $\lim_{y\to b} f(x,y) = g(x)$,所以 $\forall \epsilon > 0$, $\exists \delta > 0$, $\forall y \in U_0(b,\delta)$, $|f(x_0,y) - g(x_0)| < \epsilon/3$,这里的 x_0 是前面取定的 x_0

可以取 x_0 充分接近a, 使得 $|g(x_0) - c| < \epsilon/3$

因此有:

$$|h(y) - c| \le |h(y) - f(x_0, y)| + |f(x_0, y) - g(x_0)| + |g(x_0) - c| \le \epsilon$$

(3) 取x充分接近a, 那么 $x \in U_0(a, \delta_0)$, 那么任意的y, 都有 $|f(x, y) - h(y)| < \epsilon/2$.

 $\lim_{y\to b} h(y) = c, \quad \text{那么} y \in U_0(b,\delta_1), \quad \hat{\eta}|h(y) - c| < \epsilon/2.$

结合在一起就是 $|f(x,y)-c|<\epsilon, \forall (x,y)\in U_0((a,b),\delta^*),\delta^*=\min\{\delta,\delta_1\}$

題目. 19. 设函数 f(x) 在 [0,1] 上连续, 函数 g(y) 在 [0,1] 上有唯一的第一类间断点 $y_0 = \frac{1}{2}$, (g(y) 在 $[0,1]\setminus\left\{\frac{1}{2}\right\}$ 上连续). 试求函数 F(x,y)=f(x)g(y) 在 $[0,1]\times[0,1]$ 上的全体间断点.

解答. 全体间断点是: $\{(x,\frac{1}{2})|x\in[0,1],f(x)\neq0\}$

只需要考虑 $\{(x,\frac{1}{2})|x\in[0,1]\}$ 是否全部都是间断点.

如果 $f(x_0)\neq 0$,那么 $(x_0,\frac{1}{2})$ 是间断点. 反证法, 假设 $(x_0,\frac{1}{2})$ 是f(x)g(y)的连续点, 那么因为 $f(x_0)\neq 0$,那么 $\frac{1}{2}$ 会是 $\frac{f(x)g(x)}{f(x)}=g(x)$ 的连续点, 矛盾

如果 $f(x_0) = 0$,因为是第一类间断点,所以g(y)在 ½附近有界,所以

$$|f(x)g(y)| \le M|f(x)| \to 0, (x,y) \to (x_0, \frac{1}{2})$$

题目. 22. 设 $U \subseteq \mathbb{R}^n$ 是一个非空开集, 证明: 向量函数 $f: U \to \mathbb{R}^m$ 在 U 内连续的充分必要条件是开集的原像是开集, 即对 \mathbb{R}^m 中的任意开集 $E, f^{-1}(E)$ 是 \mathbb{R}^n 中的开集.

解答. 方法一: 不妨假设在 \mathbb{R}^m 取的任意开集E属于f(U), 那么 $\forall y \in E, \exists x_0, f(x_0) = y, \exists \epsilon > 0$, 使 得 $U(f(x_0), \epsilon) \subseteq E$

函数 \mathbf{f} 连续 $\iff \forall \epsilon > 0, \exists \delta > 0, \forall x_0 \in U, \ \exists x \in U(x_0, \delta) \Rightarrow f(x) \in U(f(x_0), \epsilon)$

 $\mathbb{P}f(U(x_0,\delta)) \subseteq U(f(x_0),\epsilon) \iff U(x_0,\delta) \subseteq f^{-1}(U(f(x_0),\epsilon))$

开集E的原像 $f^{-1}(E)$ 是开集 $\iff \forall x_0 \in f^{-1}(E), \exists \epsilon > 0, \ \text{使} \ \forall U(f(x_0), \epsilon) \subseteq E \Rightarrow \exists \delta > 0, \ U(x_0, \delta) \subseteq f^{-1}(E)$

- (秦) 己知开集的原像都是开集,那么 $U(f(x_0), \epsilon), \forall \epsilon > 0$ 是开集,那么原像 $f^{-1}(U(f(x_0), \epsilon))$ 也是开始,且 $x_0 \in f^{-1}(U(f(x_0), \epsilon))$,所以 $\exists \delta > 0, \ U(x_0, \delta) \subseteq f^{-1}(U(f(x_0), \epsilon))$,即 $x \in U(x_0, \delta) \Rightarrow f(x) \in U(f(x_0), \epsilon)$. 得证.
- (⇒) 已知函数 \mathbf{f} 是连续函数. 任取开集 $E \subseteq f(U)$, 对取定的E, 任取 $x_0 \in f^{-1}(E)$, 有 $y = f(x_0) \in E$, 因为E开集, $\exists \epsilon_y > 0$, $\forall 0 < \epsilon \le \epsilon_y$, 有 $U(f(x_0), \epsilon) \subseteq E$. 因为f连续, 所以 $\exists \delta > 0$, $f(U(x_0, \delta)) \subseteq U(f(x_0), \epsilon) \iff U(x_0, \delta) \subseteq f^{-1}(U(f(x_0), \epsilon)) \subseteq f^{-1}(E)$, $f^{-1}(E)$, $f^{$

方法二: 反证法:

(⇒): 已知函数连续,假设开集 $E \subseteq f(U)$ 的原像 $f^{-1}(E)$ 不是开集,存在 $x_0 \in f^{-1}(E)$ 是孤立点.

但由于 $f(x_0)$ 是开集E的内点,因此 $\exists \epsilon > 0, U(f(x_0), \epsilon) \subseteq E$,因为f连续, $\exists \delta > 0, f(U(x_0, \delta)) \subseteq U(f(x_0), \epsilon) \iff U(x_0, \delta) \subseteq f^{-1}(U(f(x_0), \epsilon)) \subseteq f^{-1}(E)$,因此矛盾.

(秦) 已知开集的原像是开集,不妨假设f有间断点 x_0 ,即 $\exists \epsilon_0 > 0$, $\forall k \in \mathbb{N}^*$, $\exists x_k$,使得 $|f(x_k) - f(x_0)| > \epsilon_0$,但是开集 $U(f(x_0), \epsilon_0)$ 的原像 $f^{-1}(U(f(x_0), \epsilon_0))$ 是开集,且 $x_0 \in f^{-1}(U(f(x_0), \epsilon_0))$,而 $\{x_k\} \not\subseteq f^{-1}(U(f(x_0), \epsilon_0))$,这与开集的定义矛盾.

题目. 25. 设函数 f(x,y) 在 $D = [0,1] \times [0,1]$ 上连续, 它的最大值为 M,最小值为 m. 证明: 对于 $\forall c \in (m,M)$, 存在无限多个 $(\xi,\eta) \in D$, 使得

$$f(\xi, \eta) = c.$$

解答. 因为是连续的, 那么任意不同的两点, 有无数条连通的道路, 且这些道路的交集只有端点. 对这些连续道路使用介值定理, 可以得到无限多个 (ξ, η) . 得证.

题目. 28. 证明: 函数 $f(x,y) = \sqrt{xy}$ 在闭区域 $D = \{(x,y) : x \ge 0, y \ge 0\}$ 上不一致连续.

解答. f(x,y)不一致连续 $\iff \exists \epsilon_0 > 0, \forall \delta > 0, s.t., \exists (x_1,y_1), (x_2,y_2) \in D, \|(x_1,y_1) - (x_2,y_2)\| < \delta, |f(x_1,y_1) - f(x_2,y_2)| > \epsilon_0$. 考虑取两个子列, 这两个子列在 \mathbb{R}^2 上距离趋于零, 但函数值不是:

$$||(k, \frac{1}{k}) - (k, 0)|| = \frac{1}{k} \to 0$$

 $|f(k, \frac{1}{k}) - f(k, 0)| = 1$

因此不一致连续

题目. 31. 设 $E \in \mathbb{R}^n$ 是开集, $D \subseteq E$ 称为E的一个分支, 若D是区域, 并且对任意区域 $D' \subseteq E$, 只要 $D \cap D' \neq \varnothing$, 总有 $D' \subseteq D$. 证明: \mathbb{R}^n 任意开集都是可数个分支的并

解答. 取 $\mathbb{Q}^n \cap D$, 因为 \mathbb{Q}^n 在 \mathbb{R}^n 中稠密,且属于任意开集D的任意一个分支都是开区域,因此,必然有至少一个有理点落入这个分支中,因此可以用这个有理点来标记这个分支,又因为分支之间是无交的,因此任意开集是可数个分支的并

题目. 1. 设函数 u = f(x) 在 $U(x_0, \delta_0) \subset \mathbb{R}^n$ ($\delta_0 > 0$) 内存在各个偏导数, 并且所有的偏导数 在该邻域内有界, 证明 f(x) 在 x_0 处连续; 举例说明存在函数 u = g(x), 它在 x_0 的某个邻域 内存在无界的各个偏导数, 但它在 x_0 处连续.

解答. 常见的思路: 拆添项, 构造成关于某个分量的拉格朗日中值定理

$$i \exists x = (x_1, \dots, x_n), x_0 = (u_1, \dots, u_n), \Delta x_i = x_i - u_i,$$
那么

$$f(u_1 + \Delta x_1, u_2, \dots, u_n) = f(u_1, \dots, u_n) + \Delta x_1 f_1(u_1 + \theta_1 \Delta x_1, u_2, \dots, u_n)$$
$$f(u_1 + \Delta x_1, u_2 + \Delta x_2, u_3, \dots, u_n) = f(u_1 + \Delta x_1, u_2, \dots, u_n) + \Delta x_2 f_2(u_1 + \Delta x_1, u_2 + \theta_2 \Delta x_2, \dots, u_n)$$

$$f(x_1, \dots, x_{n-1}, x_n) = f(x_1, \dots, x_{n-1}, u_n) + \Delta x_n f_n(x_1, \dots, x_{n-1}, u_n + \theta_n \Delta x_n)$$

因此, 根据导函数的有界性, 得到

$$|f(\boldsymbol{x}) - f(\boldsymbol{x}_0)| \le M(|\Delta x_1| + \dots + |\Delta x_n|) \to 0$$

构造反例, 想到在一元函数中, $t\sin(t)$ 补充在零点取0的定义后, 满足在t=0连续, 但导函数无界, 因 此考虑 $t = x^2 + y^2$ 的情况,构造:

$$g(x,y) = \begin{cases} (x^2 + y^2) \sin(\frac{1}{x^2 + y^2}), & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$

那么计算偏导数,有

$$\frac{\partial f}{\partial x} = 2x \sin(\frac{1}{x^2 + y^2}) - 2\frac{x}{x^2 + y^2} \cos(\frac{1}{x^2 + y^2})$$
$$\frac{\partial f}{\partial y} = 2y \sin(\frac{1}{x^2 + y^2}) - 2\frac{y}{x^2 + y^2} \cos(\frac{1}{x^2 + y^2})$$

上面的两个偏导数在 $(x,y) \rightarrow (0,0)$ 的时候无界. 第一项能收敛到0, 但第二项无法控制:

$$\frac{x}{x^2+y^2}\cos(\frac{1}{x^2+y^2}) = \frac{\cos\theta}{r}\cos(\frac{1}{r^2}) \to \infty$$

题目. 4. 求下列函数的各个偏导数:

(1)
$$z = \frac{x}{2x^2 + y^3 + xy}$$
;
(2) $z = x\sqrt{x^2 - y^2}$;

(2)
$$z = x\sqrt{x^2 - y^2}$$

(3)
$$z = \tan(x^2 + 2y^3)$$
;

(4)
$$u = (x + y + z)e^{xyz}$$
;

(5)
$$u = \sin(ye^{xz})$$
;

(6)
$$u = \ln(xy + x^4 + z^2)$$

(6)
$$u = \ln (xy + x^2 + z^2)$$

(7) $u = \sqrt[3]{1 - z\sin^2(x + y)}$
(8) $u = \frac{\sin xz}{\cos x^2 + y}$

(8)
$$u = \frac{\sin xz}{\cos x^2 + y}$$

(9)
$$u = \ln(\sec\sqrt{x+y-z});$$

$$(10) u = e^{-xz} \tan y$$

(11)
$$u = e^z (x^2 + y^2 + z^2);$$

$$(12) \ u = \left(\frac{x}{y}\right)^z;$$

(13)
$$u = \ln\left(1 + \sqrt{\sum_{i=1}^{n} x_i^2}\right);$$

$$(14) \ u = x_1 x_2 \cdots x_n + (x_1 + x_2 + \cdots + x_n)^n.$$

解答.(1)

$$\frac{\partial z}{\partial x} = \frac{1}{2x^2 + y^3 + xy} - \frac{x(4x + y)}{(2x^2 + y^3 + xy)^2}, \ \frac{\partial z}{\partial y} = -\frac{x(3y^2 + x)}{(2x^2 + y^3 + xy)^2}$$

(4)

$$\begin{split} \frac{\partial u}{\partial x} &= e^{xyz} + (x+y+z)yze^{xyz} \\ \frac{\partial u}{\partial y} &= e^{xyz} + (x+y+z)xze^{xyz} \\ \frac{\partial u}{\partial z} &= e^{xyz} + (x+y+z)xye^{xyz} \end{split}$$

$$\frac{\partial u}{\partial x} = \frac{1}{3} (1 - z \sin^2(x+y))^{-2/3} \cdot (-2z) \sin(x+y) \cos(x+y)$$

$$\frac{\partial u}{\partial y} = \frac{1}{3} (1 - z \sin^2(x+y))^{-2/3} \cdot (-2z) \sin(x+y) \cos(x+y)$$

$$\frac{\partial u}{\partial z} = \frac{1}{3} (1 - z \sin^2(x+y))^{-2/3} \cdot (-1) \sin^2(x+y)$$
(10)
$$\frac{\partial u}{\partial x} = -ze^{-xz} \tan y$$

$$\frac{\partial u}{\partial y} = e^{-xz} \frac{1}{\cos^2 y}$$

$$\frac{\partial u}{\partial z} = -xe^{-xz} \tan y$$

(13)

$$\frac{\partial u}{\partial x_i} = \frac{x_i}{(\sum_{i=1}^n x_i^2) + (\sum_{i=1}^n x_i^2)^{\frac{1}{2}}}$$

题目. 7. 设函数 $f(x,y,z) = x^2 - xy + y^2 + z^2$, 求它在 (1,1,1) 处的沿各个方向的方向导数, 并求出方向导数的最大值、最小值以及方向导数为零的所有方向.

解答. 对于梯度存在的函数, 求方向导数, 可以先求梯度, 然后方向导数就是梯度在这个方向的单位向量上的投影. 但如果是不可微的函数, 那么就需要按照定义来计算了. 注意: 这个单位向量一般用方向余弦表示, 在 \mathbb{R}^2 可以简化为($\cos \theta$, $\sin \theta$)

计算在(1,1,1)处梯度 $\nabla f(1,1,1) = (1,1,2)$

考虑方向单位向量: $u=(u_1,u_2,u_3)=(\cos\theta_1,\cos\theta_2,\cos\theta_3)$, 得到 $\frac{\partial f}{\partial u}=u_1+u_2+2u_3$. 方向导数的最大值和最小值: 梯度方向的同方向和反方向, 即 $\max\frac{\partial f}{\partial u}=\sqrt{6}$, $\min\frac{\partial f}{\partial u}=-\sqrt{6}$

方向导数为0: 满足 $\begin{cases} u_1+u_2+2u_3 &=0\\ u_1^2+u_2^2+u_3^2 &=1 \end{cases}$ 因此是圆和平面相交的圆环上的向量,也即所有平行于 平面 $u_1+u_2+2u_3=0$ 的向量方向

题目. 10. 设定义在 \mathbb{R}^n 上的函数由下式给出:

$$f(x) = \begin{cases} |x|^2 \sin \frac{1}{|x|^2}, & |x| \neq 0 \\ 0, & |x| = 0 \end{cases}$$

证明: $\frac{\partial f(\boldsymbol{x})}{\partial x_i}(i=1,2,\cdots,n)$ 在 $\boldsymbol{x}=\boldsymbol{0}$ 处不连续, 但 $f(\boldsymbol{x})$ 在 \mathbb{R}^n 上处处可微.

解答. $||x||^2 = \sum_{i=1}^n x_i^2$

首先计算在0处的偏导数:

$$\lim_{x_i \to 0} \frac{x_i^2 \sin \frac{1}{x_i^2}}{x_i} = \lim_{x_i \to 0} x_i \sin \frac{1}{x_i^2} = 0$$

然后计算 $x \neq 0$ 的偏导数:

$$\frac{\partial f}{\partial x_i} = 2x_i \sin \frac{1}{\sum_{i=1}^n x_i^2} - \frac{2x_i}{\sum_{i=1}^n x_i^2} \cos \frac{1}{\sum_{i=1}^n x_i^2}$$

在 $x \to 0$ 时, 第一项趋于0, 但第二项无法控制, 例如在 $x_1 = x_2 = \cdots = x_n$ 时, 有

$$\left| \frac{2x_i}{\sum_{i=1}^n x_i^2} \cos \frac{1}{\sum_{i=1}^n x_i^2} \right| = \left| \frac{2}{nx_i} \cos \frac{1}{nx_i^2} \right| \to \infty$$

因此偏导数在0不连续

讨论f(x)的可微性, 因为偏导数在 $\mathbb{R}^n\setminus\{0\}$ 连续, 因此函数在非零点可微, 只需要说明在 $\mathbf{0}$ 处可微根据可微性的定义, 要证明存在向量 \mathbf{h} 使得:

$$\lim_{\|\Delta \boldsymbol{x}\| \to 0} \frac{f(\Delta \boldsymbol{x}) - f(0) - \boldsymbol{h}^T \Delta \boldsymbol{x}}{\|\Delta \boldsymbol{x}\|} = \lim_{\|\Delta \boldsymbol{x}\| \to 0} \frac{f(\Delta \boldsymbol{x}) - \boldsymbol{h}^T \Delta \boldsymbol{x}}{\|\Delta \boldsymbol{x}\|} = 0$$

因为

$$\lim_{\|\Delta \boldsymbol{x}\| \to 0} \frac{f(\Delta \boldsymbol{x}) - \boldsymbol{h}^T \Delta \boldsymbol{x}}{\|\Delta \boldsymbol{x}\|} = \lim_{\|\Delta \boldsymbol{x}\| \to 0} \frac{f(\Delta \boldsymbol{x})}{\|\Delta \boldsymbol{x}\|} - \lim_{\|\Delta \boldsymbol{x}\| \to 0} \frac{\boldsymbol{h}^T \Delta \boldsymbol{x}}{\|\Delta \boldsymbol{x}\|}$$
$$= \lim_{\|\Delta \boldsymbol{x}\| \to 0} \|\Delta \boldsymbol{x}\| \sin \frac{1}{\Delta \boldsymbol{x}} - \lim_{\|\Delta \boldsymbol{x}\| \to 0} \boldsymbol{h}^T \frac{\Delta \boldsymbol{x}}{\|\Delta \boldsymbol{x}\|} = 0$$

因此可微(实际上只需要验证 $\frac{f(x_0 + \delta x) - f(x_0)}{\|\delta x\|} \to 0$ 即可)

题目. 13. 设函数 $f(x,y) = x^2y - 3y$, 求 f(x,y) 的微分, 并求 f(5.12,6.85)的近似值

解答. 考虑:

$$f(5.12, 6, 85) = f(5,7) + f_x(5,7) * 0.12 + f_y(5,7) * (-0.15) = 159.1$$

精确值:

159.01

很精确! □

| | **题目.** 16. 求下列函数的梯度:

- (1) $f(x, y, z) = x^2 \sin yz + y^2 e^{xz} + z^2$;
- (2) $f(\boldsymbol{x}) = |\boldsymbol{x}|e^{-|\boldsymbol{x}|}, \boldsymbol{x} \in \mathbb{R}^n \setminus \{\boldsymbol{0}\} (n \geqslant 2).$

解答.(1)

$$\nabla f = (2x \sin yz + y^2 z e^{xz}, x^2 z \cos yz + 2y e^{xz}, x^2 u \cos yz + xy^2 e^{xz} + 2z)$$

(2)

$$\frac{\partial f}{\partial x_i} = \frac{x_i}{\sqrt{\sum_{i=1}^n x_i^2}} e^{-\sqrt{\sum_{i=1}^n x_i^2}} - x_i e^{-\sqrt{\sum_{i=1}^n x_i^2}}$$

$$\Rightarrow \nabla f = \left(\frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_n}\right)$$

题目. 19. 求函数 $f(x,y,z) = 2x^3y - 3y^2z$ 在 (1,2,-1) 处所有的方向导数构成的集合

解答. 因为函数处处可微, 可以直接计算梯度:

$$\nabla f(1,2,-1) = (12,14,-12)$$

方向余弦 $v = (\cos \theta_1, \cos \theta_2, \cos \theta_3)$ 和 ∇f 的内积就是所有方向导数构成的集合:

$$\{v^T \nabla f = 12\cos\theta_1 + 14\cos\theta_2 - 12\cos\theta_3 | \cos^2\theta_1 + \cos^2\theta_2 + \cos^2\theta_3 = 1\}$$