ESTRUTURA DO PROJETO

CSV:

improved_traffic_data – Dados para a Previsão de Tráfego Urbano improved_health_data – Dados para a Classificação de Situação de Saúde Pública improved_sentiment_data – Dados para o Reconhecimento de Emoções improved_recommendation_data – Dados para o Sistema de Recomendação

Notebooks (ipynb):

urban_traffic_prediction – Notebook da Previsão de Tráfego Urbano classificacao_saude_publica – Notebook da Classificação de Situação de Saúde Pública

sentiment_analysis – Notebook do Reconhecimento de Emoções recommendation_system – Notebook do Sistema de Recomendação

Python:

data_gener – Script para melhorar a geração de dados (primeira geração feita pelo Copilot)

mini_dashboard_cidade_inteligente – Dashboard com Streamlit
Terminal:

streamlit run mini_dashboard_cidade_inteligente.py

Joblib:

best_traffic_model – Modelo Tráfego Urbano
best_traffic_model_info - Modelo Tráfego Urbano
traffic_y_test
traffic_y_pred
traffic_prediction_error
best_health_model – Modelo Situação de Saúde Pública
label_encoder_health – Label Encoder Situação de Saúde Pública
best_health_model_info – Parâmetros Situação de Saúde Público
sentiment_model – Reconhecimento de emoções
label_encoder - Reconhecimento de emoções
best_model - Sistema de Recomendação

Códigos:

urban_traffic_prediction - Fiz alterações

* ** `sklearn.model_selection` **:

* `train_test_split`: Divide o conjunto de dados em subconjuntos de treinamento e teste.

- * `RandomizedSearchCV`: Realiza a otimização de hiperparâmetros de forma aleatória.
- * `RepeatedKFold`: Implementa a validação cruzada k-fold repetida, para uma avaliação mais robusta do modelo.
- * `cross_val_score`: Avalia o desempenho de um modelo usando validação cruzada.
- * **` sklearn.linear_model.LinearRegression` **: Implementa o modelo de Regressão Linear, um algoritmo base para regressão.
- * **` sklearn.ensemble.RandomForestRegressor` **: Implementa o modelo Random Forest para regressão, um algoritmo de ensemble baseado em árvores de decisão.
- * **` sklearn.preprocessing.StandardScaler` **: Padroniza as features removendo a média e escalando para a variância unitária.
- * **` sklearn.metrics` **: Módulo que oferece diversas métricas para avaliar o desempenho do modelo (mean_squared_error, r2_score).
- * **` sklearn.impute.SimpleImputer` **: Preenche valores ausentes em um conjunto de dados.
- * ** scipy.stats.zscore ** Calcula o Z-score de um array, usado para detecção de outliers.

3. Pré-processamento e Limpeza de Dados

- * **Imputação de Valores Ausentes (`SimpleImputer`)**:
- * `imputer = SimpleImputer(strategy='most_frequent')`: Inicializa um imputador que preenche valores ausentes com o valor mais frequente (moda) de cada coluna.
- * `data_imputed = pd.DataFrame(imputer.fit_transform(data), columns=data.columns)`: Aplica a imputação aos dados. Esta é uma forma de **tratamento de dados ausentes**.
- * **Codificação de Variáveis Categóricas (`pd.get_dummies`)**:
- * `data_encoded = pd.get_dummies(data_imputed, columns=['day_of_week', 'weather', 'event', 'road_condition'], drop_first=True)`: Converte variáveis categóricas (como dia da semana, clima, evento, condição da estrada) em um formato numérico usando **One-Hot Encoding**. `drop_first=True` evita a

multicolinearidade, removendo uma das colunas binárias criadas para cada categoria.

- * **Conversão para Numérico (`pd.to_numeric`)**:
- * `data_encoded = data_encoded.apply(pd.to_numeric, errors='coerce')`:
 Garante que todas as colunas sejam numéricas. `errors='coerce'` converte
 valores que não podem ser transformados em números para `NaN`, que
 precisariam de tratamento posterior (embora o código não o faça explicitamente
 após essa etapa, a imputação já ocorreu).
- * **Remoção de Outliers (`zscore`)**:
- * `z_scores = np.abs(zscore(data_encoded[numeric_cols]))`: Calcula o Z-score (número de desvios padrão de distância da média) para cada ponto de dados nas colunas numéricas. O valor absoluto é usado para identificar desvios em ambas as direções.
- * `data_clean = data_encoded[(z_scores < 3).all(axis=1)]`: Filtra as linhas onde **qualquer** Z-score (para **qualquer** coluna numérica) é maior ou igual a 3. Esta é uma técnica de **detecção e remoção de outliers** baseada na regra dos 3 sigmas, que assume uma distribuição aproximadamente normal dos dados.
- * **Remoção de Colinearidade**:
- * `corr_matrix = data_clean.corr().abs()`: Calcula a matriz de correlação absoluta entre todas as features.
- * `upper = corr_matrix.where(np.triu(np.ones(corr_matrix.shape), k=1).astype(bool))`: Cria uma máscara para pegar apenas a parte superior triangular da matriz de correlação (para evitar duplicações e a diagonal).
- * `to_drop = [column for column in upper.columns if any(upper[column] > 0.95)]`: Identifica as colunas que têm uma correlação absoluta muito alta (maior que 0.95) com outras colunas.
- * `data_clean = data_clean.drop(columns=to_drop)`: Remove as colunas identificadas para reduzir a **multicolinearidade**. Isso ajuda a evitar que modelos lineares superajustem os dados e melhora a interpretabilidade dos coeficientes.
- ### 4. Preparação para Modelagem
- * **Separação de Variáveis**:
- * `X = data_clean.drop('travel_time', axis=1)`: Define as features (variáveis independentes).

- * `y = data_clean['travel_time']`: Define a variável alvo (variável dependente).
- * **Normalização/Escalonamento de Features (`StandardScaler`)**:
 - * `scaler = StandardScaler()`: Inicializa o padronizador.
- * `X_scaled = scaler.fit_transform(X)`: Padroniza as features `X` para ter média zero e desvio padrão um. Isso é crucial para modelos que são sensíveis à escala das features (como Regressão Linear, modelos baseados em distância, e também melhora a convergência de alguns otimizadores).
- * **Divisão Treino/Teste (`train_test_split`)**:
- * `X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.2, random_state=42)`: Divide os dados em 80% para treinamento e 20% para teste. `random_state` garante a reprodutibilidade.
- ### 5. Treinamento e Otimização de Modelos
- * **Validação Cruzada (`RepeatedKFold`)**:
- * `rkf = RepeatedKFold(n_splits=5, n_repeats=3, random_state=42)`: Configura a validação cruzada k-fold repetida. Divide os dados em 5 folds (partes) e repete esse processo 3 vezes. Isso fornece uma estimativa mais robusta do desempenho do modelo, reduzindo a variância da estimativa.
- * **Modelo 1: Regressão Linear (`LinearRegression`)**:
 - * `lr_model = LinearRegression()`: Inicializa o modelo de Regressão Linear.
- * `lr_scores = cross_val_score(lr_model, X_train, y_train, cv=rkf, scoring='r2')`: Avalia o modelo usando validação cruzada no conjunto de treinamento, medindo o R².
- * `lr_model.fit(X_train, y_train)`: Treina o modelo final de Regressão Linear com todo o conjunto de treinamento.
 - * `y_pred_lr = lr_model.predict(X_test)`: Faz previsões no conjunto de teste.
- * **Modelo 2: Random Forest Regressor com Otimização de Hiperparâmetros (`RandomizedSearchCV`)**:
- * `param_grid = {...}`: Define o espaço de busca para os hiperparâmetros do Random Forest (número de estimadores, profundidade máxima, mínimo de amostras para split e leaf).
- * `rf = RandomForestRegressor(random_state=42)`: Inicializa o modelo Random Forest.

- * `random_search = RandomizedSearchCV(rf, param_distributions=param_grid, n_iter=50, cv=rkf, scoring='r2', n_jobs=-1)`: Realiza a **busca aleatória de hiperparâmetros**.
- * `n_iter=50`: Tenta 50 combinações aleatórias de hiperparâmetros. Mais eficiente que Grid Search para espaços de busca grandes.
 - * `n_jobs=-1`: Utiliza todos os núcleos da CPU para paralelizar o processo.
- * `random_search.fit(X_train, y_train)`: Executa a busca pelos melhores hiperparâmetros no conjunto de treinamento.
- * `best_rf = random_search.best_estimator_`: Obtém o modelo Random Forest com os melhores hiperparâmetros encontrados.
- * `rf_scores = cross_val_score(best_rf, X_train, y_train, cv=rkf, scoring='r2')`: Avalia o melhor modelo Random Forest usando validação cruzada.
 - * `y_pred_rf = best_rf.predict(X_test)`: Faz previsões no conjunto de teste.

6. Avaliação do Modelo

- * **MSE (Mean Squared Error)**: `mean_squared_error(y_test, y_pred)`: Média dos quadrados dos erros (diferenças entre valores reais e previstos). Penaliza erros maiores. Quanto menor, melhor.
- * **R² (R-squared)**: `r2_score(y_test, y_pred)`: Coeficiente de determinação. Indica a proporção da variância na variável dependente que é previsível a partir das variáveis independentes. Varia de 0 a 1 (ou pode ser negativo para modelos muito ruins). Quanto mais próximo de 1, melhor o ajuste do modelo.
- * Compara o desempenho dos modelos (Regressão Linear e Random Forest) tanto no conjunto de teste quanto com os resultados da validação cruzada.
- * Seleciona o "melhor modelo" com base no R² no conjunto de teste.

8. Visualização de Resultados

- * **Gráfico de Previsão vs. Real (`scatterplot`)**:
- * Cria gráficos de dispersão comparando os valores reais (`y_test`) com os valores previstos (`y_pred_lr`, `y_pred_rf`) para ambos os modelos. Um modelo ideal teria todos os pontos na linha y=x.
- * **Gráfico de Importância das Variáveis (`barh`)**:

- * **` importances = best_rf.feature_importances_` **: Para modelos baseados em árvore como Random Forest, é possível obter a importância de cada feature (o quanto ela contribui para a redução da impureza das folhas).
- * Exibe um gráfico de barras horizontais mostrando as features mais importantes para o modelo Random Forest, o que ajuda na **interpretabilidade do modelo**.

classificacao_saude_publica

1. Pré-processamento de Dados

- **Padronização de rótulos** da coluna `risk_level` para letras minúsculas.
- **Codificação de rótulos** com `LabelEncoder` para transformar categorias em valores numéricos.

2. Divisão de Dados

- Separação em **variáveis independentes (X)** e **variável alvo (y)**.
- Divisão em **conjuntos de treino e teste** com `train_test_split`.

3. Balanceamento de Classes

- Aplicação de **SMOTE (Synthetic Minority Over-sampling Technique)** para balancear as classes no conjunto de treino.

4. Normalização

- Uso de `StandardScaler` para padronizar os dados com média 0 e desvio padrão
 1.
- O scaler é ajustado apenas no conjunto de treino e aplicado ao teste.

5. Seleção de Atributos

- Uso de `SelectKBest` com `f_classif` para selecionar as melhores features com base em análise univariada.

Modelos testados com `GridSearchCV`:

- **Decision Tree**
- **K-Nearest Neighbors (KNN)**
- **Support Vector Machine (SVM)**

Hiperparâmetros otimizados:

- **Decision Tree**: `max_depth`, `min_samples_split`
- **KNN**: `n_neighbors`, `weights`
- **SVM**: `C`, `kernel`

sentiment_analysis

- * **`re` **: Módulo para operações com expressões regulares, essencial para a limpeza de texto.
- * **` nltk` **: (Natural Language Toolkit) Biblioteca para processamento de linguagem natural.
- * **` unidecode` **: Converte caracteres acentuados ou especiais para sua representação ASCII mais próxima (ex: "ação" para "acao").
- * **` nltk.corpus.stopwords` **: Contém uma lista de palavras comuns (stopwords) que são frequentemente removidas do texto.
- * **` sklearn.model_selection.train_test_split` **: Divide o conjunto de dados em subconjuntos de treinamento e teste.
- * ** `sklearn.preprocessing.LabelEncoder ` **: Converte rótulos categóricos em rótulos numéricos (0, 1, 2...).
- * **` sklearn.pipeline.Pipeline` **: Permite encadear várias etapas de processamento de dados e modelagem em um único objeto, garantindo que as transformações sejam aplicadas consistentemente.
- * ** sklearn.feature_extraction.text.TfidfVectorizer **: Converte uma coleção de documentos brutos em uma matriz de recursos TF-IDF.
- * **` sklearn.metrics` **: Módulo que oferece diversas métricas para avaliar o desempenho do modelo (accuracy_score, classification_report, confusion_matrix, f1_score).
- * **` sklearn.linear_model.LogisticRegression` **: Implementa o algoritmo de Regressão Logística, um modelo linear para classificação.
- * **` imblearn.over_sampling.SMOTE` **: (Synthetic Minority Over-sampling Technique) Técnica de reamostragem para lidar com desequilíbrio de classes.

```
* **` nltk.download('stopwords')` **: Baixa as palavras irrelevantes (stopwords)
para vários idiomas, neste caso, português e inglês.
* **`stop words =
set(stopwords.words('portuguese')).union(set(stopwords.words('english')))` **:
Cria um conjunto único de stopwords em português e inglês para remoção
eficiente. Usar um `set` melhora a performance da busca.
### 3. Pré-processamento de Texto (`preprocess` function)
* **` text = str(text)` **: Garante que a entrada seja uma string.
* **` text = unidecode(text)` **: Remove acentos e caracteres especiais,
padronizando o texto (ex: "Olá" -> "Ola").
* **` text = re.sub(r'https?://\S+|@\w+|#[\w-]+', '', text)` **: Remove padrões
comuns em texto de redes sociais:
  * `https?://\S+`: URLs (links).
 * `@\w+`: Menções de usuários (ex: `@fulano`).
  * `#[\w-]+`: Hashtags (ex: `#exemplo`).
* **`text = re.sub(r'\W|\d', ' ', text.lower())` **:
  * `text.lower()`: Converte todo o texto para minúsculas, garantindo que "Amor" e
"amor" sejam tratados como a mesma palavra.
  * `re.sub(r'\W|\d', '', ...)`: Remove caracteres não alfanuméricos (`\W`) e dígitos
(`\d`), substituindo-os por um espaço. Isso ajuda a isolar as palavras.
* **` tokens = text.split()` **: Divide o texto em uma lista de palavras (tokens).
* ** tokens = [t for t in tokens if t not in stop words and len(t) > 2] **: Filtra os
tokens:
  * `t not in stop_words`: Remove palavras comuns que não adicionam
significado ao sentimento (ex: "o", "a", "de", "e").
  * `len(t) > 2`: Remove palavras muito curtas (geralmente ruído ou caracteres
residuais).
* **`return ''.join(tokens)`**: Junta os tokens limpos de volta em uma única string.
```

4. Carregamento e Preparação Inicial dos Dados

- * **` df.dropna(subset=['text', 'sentiment'], inplace=True)` **: Remove linhas onde as colunas 'text' ou 'sentiment' possuem valores nulos. Isso é uma etapa importante de **limpeza de dados**.
- * ** df['text_clean'] = df['text'].apply(preprocess)` **: Aplica a função de préprocessamento `preprocess` a cada texto na coluna 'text', criando uma nova coluna `text_clean` com os textos limpos.

5. Codificação de Rótulos (Label Encoding)

- * **` le = LabelEncoder()` **: Inicializa o codificador de rótulos.
- * ** df['sentiment_encoded'] = le.fit_transform(df['sentiment']) **: Converte os rótulos de sentimento categóricos (ex: 'positivo', 'negativo', 'neutro') em valores numéricos inteiros (ex: 0, 1, 2). Isso é necessário porque os algoritmos de Machine Learning geralmente trabalham com entradas numéricas. `fit_transform` aprende os mapeamentos e os aplica.

6. Divisão de Dados (Train-Test Split)

- * ** X_train, X_test, y_train, y_test = train_test_split(...) **: Divide o conjunto de dados em subconjuntos para treinamento e teste.
 - * `df['text_clean']`: Os dados de entrada (features) para o modelo.
 - * `df['sentiment_encoded']`: Os rótulos de saída (target).
- * `test_size=0.2`: 20% dos dados serão usados para teste, 80% para treinamento.
- * ** stratify=df['sentiment_encoded'] **: Esta é uma técnica crucial para garantir que a proporção de classes no conjunto de treinamento e teste seja a mesma que no conjunto de dados original. Isso é especialmente importante em conjuntos de dados desbalanceados para evitar que um dos conjuntos tenha poucas ou nenhuma amostra de uma classe minoritária.
 - * `random_state=42`: Garante a reprodutibilidade da divisão.

7. Vetorização de Texto (TF-IDF)

* **` vectorizer = TfidfVectorizer(...)` **: Transforma o texto limpo em representações numéricas que o modelo pode entender.

- * **` ngram_range=(1, 2)` **: Inclui tanto palavras únicas (unigrams) quanto pares de palavras consecutivas (bigrams) como recursos. Bigrams podem capturar mais contexto (ex: "não gosto" é diferente de "gosto").
- * **`min_df=2` **: Ignora termos que aparecem em menos de 2 documentos. Isso ajuda a remover palavras muito raras que podem ser ruído ou irrelevantes.
- * **` max_df=0.85` **: Ignora termos que aparecem em mais de 85% dos documentos. Isso ajuda a remover palavras muito comuns (mesmo que não sejam stopwords) que podem não ter poder discriminatório (ex: "o" ou "e" se não foram totalmente removidos).
- * ** sublinear_tf=True **: Aplica uma escala logarítmica à frequência de termos (TF), o que significa que o aumento da frequência de uma palavra tem um impacto menor nas pontuações TF-IDF. Ajuda a reduzir o impacto de palavras muito frequentes.
- * ** X_train_vec = vectorizer.fit_transform(X_train) **: `fit_transform` aprende o vocabulário e os pesos TF-IDF do conjunto de treinamento e depois o transforma.
- * ** X_test_vec = vectorizer.transform(X_test) **: `transform` aplica o vocabulário e os pesos TF-IDF *aprendidos no conjunto de treinamento* ao conjunto de teste. É fundamental não usar `fit_transform` no conjunto de teste para evitar vazamento de dados (data leakage).

8. Balanceamento de Classes (SMOTE)

- * ** smote = SMOTE(random_state=42) *: Inicializa o algoritmo SMOTE.
- * ***`X_train_bal, y_train_bal = smote.fit_resample(X_train_vec, y_train)` **: Aplica SMOTE ao conjunto de treinamento. Esta é uma técnica de **oversampling**, que gera amostras sintéticas da(s) classe(s) minoritária(s) para balancear a distribuição de classes. Isso é crucial para modelos de classificação em dados desbalanceados, pois ajuda o modelo a aprender igualmente sobre todas as classes, evitando o viés em direção à classe majoritária.

9. Treinamento do Modelo (Regressão Logística)

- * **` model = LogisticRegression(max_iter=1000)` **: Inicializa o modelo de Regressão Logística.
- * **` max_iter=1000` **: Define o número máximo de iterações para o algoritmo de otimização. Um valor maior pode ajudar o modelo a convergir se os dados forem complexos, mas também aumenta o tempo de treinamento.

* **` model.fit(X_train_bal, y_train_bal)` **: Treina o modelo usando os dados de treinamento vetorizados e balanceados.

10. Avaliação do Modelo

- * **` y_pred = model.predict(X_test_vec)` **: Realiza previsões no conjunto de teste.
- * **` accuracy = accuracy_score(y_test, y_pred)` **: Calcula a **acurácia**, que é a proporção de previsões corretas.
- * **`f1 = f1_score(y_test, y_pred, average='weighted')`**: Calcula o **F1-score**.
- * O F1-score é a média harmônica de precisão e recall. É uma métrica mais robusta que a acurácia para conjuntos de dados desbalanceados.
- * `average='weighted'`: Calcula o F1-score para cada classe e depois pondera pela proporção de cada classe no conjunto de dados.
- * **` conf_matrix = confusion_matrix(y_test, y_pred)` **: Gera a **matriz de confusão**, que mostra o número de verdadeiros positivos, verdadeiros negativos, falsos positivos e falsos negativos. É fundamental para entender o desempenho do modelo em cada classe.
- * ** `class_report = classification_report(y_test, y_pred, target_names=le.classes_) ` **: Gera um ** relatório de classificação ** detalhado, incluindo precisão (precision), recall, F1-score e suporte (número de ocorrências) para cada classe. `target_names=le.classes_` exibe os nomes originais dos sentimentos em vez de 0, 1, 2.

12. Visualização (Matriz de Confusão)

- * ** sns.heatmap(...) **: Utiliza a biblioteca `seaborn` para criar um mapa de calor visual da matriz de confusão.
 - * `annot=True`: Mostra os valores numéricos em cada célula.
 - * `fmt="d"`: Formata os números como inteiros.
 - * `cmap="Blues"`: Define o esquema de cores.
- * `xticklabels=le.classes_`, `yticklabels=le.classes_`: Define os rótulos dos eixos com os nomes originais dos sentimentos.
- * ** $\operatorname{plt.xlabel(...)}$, $\operatorname{plt.ylabel(...)}$, $\operatorname{plt.title(...)}$ **: Adiciona rótulos e um título ao gráfico para melhor clareza.

* **` plt.show()` **: Exibe o gráfico.

recommendation system

* **` sklearn.metrics.pairwise.cosine_similarity` **: Calcula a similaridade do cosseno entre vetores, a métrica central para encontrar usuários semelhantes.

2. Carregamento e Pré-processamento de Dados

* **` data = data[~data['user'].isin(['User1', ..., 'User5'])]` **: **Filtragem de Dados**. Remove usuários específicos (User1 a User5) do conjunto de dados. Isso pode ser feito para remover ruído, bots, ou usuários de teste.

3. Engenharia de Features: Interesse Ponderado

* ** data['weighted_interest'] = data['rating'] * data['frequency'] **: Cria uma nova feature, `weighted_interest` (interesse ponderado), multiplicando a `rating` (avaliação) pela `frequency` (frequência). Esta é uma forma simples de **engenharia de features** que tenta capturar um nível mais robusto de engajamento do usuário com um serviço do que apenas a avaliação bruta.

4. Criação da Matriz Usuário-Serviço

- * **` user_service_matrix = data.pivot_table(index='user', columns='service', values='weighted_interest', aggfunc='mean', fill_value=0)` **: Transforma os dados em uma **matriz de interesse usuário-serviço**.
 - * `index='user'`: Usuários se tornam os índices das linhas.
 - * `columns='service'`: Serviços se tornam as colunas.
- * `values='weighted_interest'`: Os valores dentro da matriz são os interesses ponderados.
- * `aggfunc='mean'`: Se um usuário tiver múltiplos registros para o mesmo serviço, a média do interesse ponderado será usada.
- * `fill_value=0`: Preenche os valores ausentes (onde um usuário não interagiu com um serviço) com 0.

5. Normalização da Matriz

- * ** `user_service_matrix_normalized =
 user_service_matrix.div(user_service_matrix.sum(axis=1), axis=0) ` **:

 Normalização por Linha. Normaliza cada linha (usuário) da matriz
 `user_service_matrix`. Isso significa que o interesse total de cada usuário será 1.

 A normalização ajuda a lidar com o "problema de escala" (alguns usuários
 avaliam/interagem mais do que outros), tornando as comparações de
 similaridade mais justas.
- ### 6. Cálculo de Similaridade entre Usuários (Similaridade do Cosseno)
- * **` user_similarity = cosine_similarity(user_service_matrix)` **: Calcula a **similaridade do cosseno** entre todos os pares de usuários na matriz de interesse não normalizada.
- * **` user_similarity_df = pd.DataFrame(...)` **: Converte a matriz de similaridade NumPy em um DataFrame Pandas com rótulos de usuário.
- * **` user_similarity_normalized = cosine_similarity(user_service_matrix_normalized)` **: Repete o cálculo da similaridade do cosseno para a matriz de interesse *normalizada*.
- * **` user_similarity_normalized_df = pd.DataFrame(...)` **: Converte a matriz de similaridade normalizada em um DataFrame.
- * **Similaridade do Cosseno**: Mede o ângulo entre dois vetores. Se os vetores são na mesma direção (usuários com gostos muito semelhantes), o cosseno é 1. Se são opostos, é -1. Se são ortogonais (sem relação), é 0. É uma métrica comum para dados esparsos como os gerados por filtragem colaborativa.
- ### 7. Função de Recomendação (`recommend_services`)

Esta função implementa a lógica central da filtragem colaborativa:

- * **Identificação de Usuários Semelhantes**: `similarity_df[user].nlargest(top_n + 1).index[1:]` encontra os `top_n` usuários mais semelhantes ao usuário alvo (excluindo o próprio usuário).
- * **Cálculo de Scores Ponderados**: `sum(similarity_df[user][sim_user] * matrix.loc[sim_user] for sim_user in similar_users)`: Para cada serviço, ele soma os interesses dos usuários semelhantes, ponderando pelo quão semelhantes eles são ao usuário alvo. Isso é o cerne da filtragem colaborativa.

- * **Filtragem de Serviços Já Utilizados**: `user_services[user_services.isnull() | (user_services == 0)].index` identifica os serviços que o usuário alvo ainda não utilizou (ou cujo interesse ponderado é 0). Isso evita recomendar algo que o usuário já conhece.
- * **Geração de Recomendações**:
- `weighted_scores.loc[not_rated].nlargest(top_n)` seleciona os `top_n` serviços com os maiores scores ponderados dentre aqueles que o usuário ainda não utilizou.
- * **Fallback para Serviços Populares**:
 - * Se o usuário já utilizou todos os serviços, ou
- * Se nenhuma recomendação personalizada puder ser gerada (ex: nenhum serviço não avaliado tem score positivo),
- * O sistema recomenda os `top_n` serviços mais populares (`matrix.sum().sort_values(ascending=False).head(top_n)`). Isso é uma estratégia de **tratamento de cold start para itens** ou **fallback para usuários com poucas interações**.
- * **Tratamento de Usuário Desconhecido**: Verifica se o usuário está na matriz e retorna um erro se não estiver, uma forma básica de **tratamento de cold start para usuários**.

8. Métricas de Avaliação (`precision_recall_at_k`)

Esta função calcula a **Precision@K** e **Recall@K**, métricas comuns para avaliar sistemas de recomendação:

- * **` recommendations = recommend_services(...)` **: Obtém as recomendações para o usuário.
- * **` relevant_services = matrix.loc[user][matrix.loc[user] >= threshold]` **: Define o que é um serviço "relevante" para o usuário. Neste caso, um serviço é relevante se o interesse ponderado do usuário por ele for maior ou igual a um `threshold` (limiar). Isso simula o "verdadeiro interesse" do usuário.
- * **` interseção =
 set(recommended_services).intersection(set(relevant_services.index))` **:
 Calcula quantos dos serviços recomendados são realmente relevantes.
- * **Precision@K**: `len(interseção) / len(recommended_services)`. A proporção de recomendações que são relevantes. Um Precision@K alto significa que o sistema é bom em não recomendar coisas irrelevantes.

- * **Recall@K**: `len(interseção) / len(relevant_services)`. A proporção de serviços relevantes que foram encontrados pelo sistema. Um Recall@K alto significa que o sistema é bom em encontrar a maioria das coisas que o usuário acharia relevantes.
- * **Tratamento de Casos Vazios**: Retorna 0.0, 0.0 se não houver recomendações ou serviços relevantes.

9. Teste e Exibição de Resultados

- * **` for user in users: ` **: O sistema é testado para os primeiros 3 usuários.
- * Calcula e exibe as recomendações, Precision@K e Recall@K para ambas as abordagens (com e sem normalização), permitindo comparar o impacto da normalização.

10. Visualização de Dados

- * **` sns.heatmap(...)` **: Gera mapas de calor para visualizar a matriz de similaridade entre usuários (com e sem normalização). Isso ajuda a entender visualmente como os usuários se agrupam por gostos semelhantes.
- * **` sns.barplot(...)` **: Gera um gráfico de barras da popularidade geral dos serviços, mostrando quais serviços são mais utilizados/avaliados no conjunto de dados.

Mini_dashboard_cidade_inteligente.py

1. Importações de Bibliotecas

- streamlit as st: A biblioteca principal para construir a aplicação web interativa.
- sklearn.model selection:
 - o train_test_split: Para dividir dados em conjuntos de treino e teste.
 - GridSearchCV: Para otimização de hiperparâmetros (não diretamente usado nos módulos apresentados, mas foi usado na fase de treinamento externa).
 - cross_val_score: Para avaliação do modelo usando validação cruzada (também para fase de treinamento externa).

sklearn.preprocessing:

- o LabelEncoder: Para codificar rótulos categóricos em numéricos.
- StandardScaler: Para padronizar features numéricas.
- sklearn.tree.DecisionTreeClassifier: Um tipo de classificador (modelo de ML).
- sklearn.neighbors.KNeighborsClassifier: Outro tipo de classificador.
- **sklearn.svm.SVC**: Classificador Support Vector Machine.
- sklearn.linear_model.LinearRegression: Modelo de regressão linear.
- sklearn.ensemble.RandomForestRegressor: Modelo de regressão Random Forest.

sklearn.metrics:

- o accuracy_score: Mede a acurácia de um classificador.
- o confusion_matrix: Cria a matriz de confusão para classificadores.
- classification_report: Gera um relatório completo de métricas de classificação.
- o mean_squared_error: Mede o erro quadrático médio para regressão.
- **sklearn.feature_extraction.text.TfidfVectorizer**: Converte texto em representações numéricas TF-IDF.
- **sklearn.pipeline.Pipeline**: Permite encadear múltiplas etapas de processamento e modelagem.
- **imblearn.over_sampling.SMOTE**: Técnica para lidar com desequilíbrio de classes (usada na fase de treinamento do modelo de sentimento).
- re: Para operações com Expressões Regulares (usado no préprocessamento de texto).
- **sklearn.metrics.pairwise.cosine_similarity**: Para calcular similaridade entre vetores (usado no sistema de recomendação).
- sklearn.linear_model.LogisticRegression: Classificador de Regressão Logística.
- **sklearn.naive_bayes.MultinomialNB**: Classificador Naive Bayes para dados de texto.
- **nltk**: (Natural Language Toolkit) Para processamento de linguagem natural.

- **nltk.corpus.stopwords**: Contém listas de palavras irrelevantes.
- **nltk.stem.RSLPStemmer**: Algoritmo de "stemming" para a língua portuguesa.

2. Configuração Inicial e Pré-processamento Compartilhado

- nltk.download('stopwords'): Baixa as stopwords do NLTK (se ainda não tiverem sido baixadas).
- stop_words = set(stopwords.words('portuguese')): Carrega as stopwords em português em um set para busca eficiente.
- stemmer = RSLPStemmer(): Inicializa o stemmer para português. O stemming reduz palavras à sua "raiz" ou radical (ex: "correndo", "corria" -> "corr").
- Função preprocess(text): Esta função é reutilizada em diferentes módulos que lidam com texto.
 - o re.sub(r'\W|\d', ' ', text.lower()): Converte o texto para minúsculas, remove caracteres não alfanuméricos (\W) e dígitos (\d), substituindo-os por espaços.
 - o tokens = text.split(): Divide o texto em palavras (tokens).
 - tokens = [stemmer.stem(word) for word in tokens if word not in stop_words and len(word) > 2]: Filtra os tokens:
 - Remove stopwords.
 - Remove palavras com 2 ou menos caracteres (geralmente ruído).
 - Aplica o stemming a cada palavra restante.
 - o return ''.join(tokens): Junta os tokens limpos de volta em uma string.

3. Carregamento de Dados Iniciais

Quatro datasets são carregados no início da aplicação. Cada um é usado por uma seção específica:

- health_data.csv
- traffic_data.csv

- sentiment_data.csv
- recommendation data.csv

4. Estrutura da Aplicação Streamlit (Menu Lateral)

- st.sidebar.title("Cidade Inteligente Lumenópolis"): Define o título na barra lateral da aplicação.
- app_selection = st.sidebar.selectbox("Selecione a aplicação:", [...]):
 Cria um menu selectbox na barra lateral, permitindo ao usuário escolher qual das quatro aplicações (Previsão de Tráfego, Classificação de Saúde, Análise de Sentimentos, Sistema de Recomendação) deseja visualizar.
- O código usa blocos if/elif para renderizar o conteúdo da aplicação selecionada.

5. Seções da Aplicação (Detalhes por Bloco)

5.1. Previsão de Tráfego Urbano (if app_selection == "Previsão de Tráfego Urbano":)

Esta seção exibe o desempenho de um modelo de regressão para prever o tempo de viagem.

- st.title(" | Previsão de Tráfego Urbano"): Título da seção.
- Carregamento do Modelo:
 - model = joblib.load("best_traffic_model.joblib"): Carrega o modelo de previsão de tráfego pré-treinado.
 - model_info = joblib.load("best_traffic_model_info.joblib"): Carrega um dicionário com o nome do modelo e suas métricas salvas.
 - Tratamento de erros (try-except) caso o modelo n\u00e3o possa ser carregado.
- Preparação dos Dados (para inferência e avaliação):

- expected_cols: Lista de colunas esperadas pelo modelo treinado.
 Isso é crucial para garantir que os dados de entrada para o modelo tenham a mesma estrutura (mesmas colunas, mesma ordem) que os dados usados no treinamento.
- X = traffic_data.drop('travel_time', axis=1): Separa as features do dataset de tráfego.
- X = pd.get_dummies(X): Aplica One-Hot Encoding às colunas categóricas restantes em X.
- Garantia de Colunas Consistentes: O loop for col in expected_cols: e a linha X = X[expected_cols] garantem que X tenha exatamente as colunas esperadas pelo modelo, adicionando colunas faltantes com valor 0 (o que é comum em One-Hot Encoding quando uma categoria não está presente no conjunto de dados atual, mas esteve no treino) e reordenando-as.
- o y = traffic data['travel time']: Separa a variável alvo.
- X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42): Divide os dados. Atenção: Embora o modelo tenha sido treinado externamente, essa divisão é feita aqui para que as métricas de avaliação (mse, rmse) possam ser calculadas em um conjunto de teste consistente. O X_test e y_test gerados aqui simulam o que o modelo veria em um ambiente de teste.

• Previsões e Métricas:

- y_pred = model.predict(X_test): O modelo carregado faz previsões no conjunto de teste.
- mse = mean_squared_error(y_test, y_pred): Calcula o Erro
 Ouadrático Médio.
- o rmse = np.sqrt(mse): Calcula a Raiz do Erro Quadrático Médio.

Exibição no Streamlit:

- Mostra o nome do modelo e as métricas salvas (model info).
- o Exibe o MSE e RMSE calculados.
- Gráfico de Previsão vs. Real: Usa st.line_chart para mostrar as primeiras 100 previsões comparadas aos valores reais, permitindo uma visualização rápida do desempenho.

 Gráfico de Distribuição dos Erros: Usa sns.histplot para plotar um histograma dos erros (y_test - y_pred). Uma distribuição centrada em zero indica que o modelo não tem um viés sistemático.

5.2. Classificação de Saúde Pública (elif app_selection == "Classificação de Saúde Pública":)

Esta seção avalia um modelo de classificação que prevê o nível de risco em saúde pública.

- st.title("Classificação de Saúde Pública"): Título da seção.
- Carregamento de Modelos:
 - model = joblib.load("best_health_model.joblib"): Carrega o modelo de classificação de saúde.
 - label_encoder = joblib.load("label_encoder_health.joblib"): Carrega o LabelEncoder usado para transformar os rótulos de risco de volta aos seus nomes originais.
 - model_info = joblib.load("best_health_model_info.joblib"): Carrega informações sobre o modelo (nome, hiperparâmetros).
 - Tratamento de erros.
- Exibição de Informações do Modelo: Mostra o nome do modelo e os melhores hiperparâmetros.
- Preparação dos Dados (para avaliação):
 - data = pd.read_csv("improved_health_data.csv"): Recarrega os dados de saúde.
 - data['risk_level'] = data['risk_level'].str.lower(): Normaliza os rótulos para minúsculas.
 - data['risk_level'] = label_encoder.transform(data['risk_level']):
 Codifica os rótulos de risco usando o LabelEncoder carregado.
 - X = data.drop('risk_level', axis=1): Separa as features.
 - y = data['risk_level']: Separa a variável alvo.
 - scaler = StandardScaler(): Inicializa o scaler.
 - X_scaled = scaler.fit_transform(X): Padroniza as features. Atenção:
 O fit_transform no conjunto completo X aqui pode não ser o ideal para uma avaliação geral do modelo se ele foi treinado em um subconjunto. Idealmente, o scaler também deveria ser salvo e

carregado, e apenas transform aplicado aos dados. No entanto, para fins de demonstração da performance *geral* do modelo nos dados disponíveis, é aceitável.

Previsões e Métricas:

- y_pred = model.predict(X_scaled): O modelo faz previsões nos dados padronizados.
- o acc = accuracy_score(y, y_pred): Calcula a acurácia.
- report = classification_report(y, y_pred, target_names=label_encoder.classes_, output_dict=True): Gera o relatório de classificação como um dicionário.
- o cm = confusion_matrix(y, y_pred): Gera a matriz de confusão.

• Exibição no Streamlit:

- o Mostra a acurácia geral.
- o Exibe o relatório de classificação em formato de tabela.
- Matriz de Confusão: Usa sns.heatmap para visualizar a matriz de confusão, com rótulos amigáveis.
- Gráfico de Precisão por Classe: Um gráfico de barras que exibe a precisão para cada classe de risco.
- Gráfico de Distribuição Real vs. Previsto: Compara a distribuição dos rótulos reais e previstos, ajudando a identificar desequilíbrios ou vieses nas previsões do modelo.

5.3. Análise de Sentimentos (elif app_selection == "Análise de Sentimentos":)

Esta seção demonstra um modelo de classificação de sentimento.

st.title(" Análise de Sentimentos da População"): Título da seção.

Carregamento de Modelos:

- pipeline = joblib.load('sentiment_model.joblib'): Carrega o Pipeline completo (TF-IDF + Classificador) do modelo de sentimento.
- label_encoder = joblib.load('label_encoder.joblib'): Carrega o LabelEncoder para os sentimentos.
- o Tratamento de erros.

• Preparação dos Dados (para avaliação):

- sentiment_data['text_clean'] =
 sentiment_data['text'].apply(preprocess): Aplica a função de pré processamento de texto (definida no início do script) aos dados de
 sentimento.
- sentiment_data = sentiment_data.dropna(subset=['text_clean']):
 Remove linhas onde o texto limpo pode ter se tornado vazio.
- X = sentiment_data['text_clean']: Separa o texto limpo como feature.
- y = label_encoder.transform(sentiment_data['sentiment']): Codifica os rótulos de sentimento.

• Previsões e Métricas:

- y_pred = pipeline.predict(X): O pipeline faz as previsões (ele se encarrega da vetorização e classificação).
- o Calcula e exibe acurácia e relatório de classificação.

• Exibição no Streamlit:

- o Mostra a acurácia e o relatório de classificação.
- Matriz de Confusão: Visualiza a matriz de confusão para o sentimento.
- Gráfico de Métricas por Classe: Exibe precisão, revocação (recall)
 e F1-score por classe.
- Palavras Mais Frequentes por Sentimento: Permite ao usuário selecionar um sentimento e ver as 10 palavras mais comuns associadas a ele, dando insights sobre os dados.
- Parâmetros e Configurações do Modelo: Tenta exibir os parâmetros do TfidfVectorizer e do classificador dentro do pipeline, o que é ótimo para transparência e depuração.

5.4. Sistema de Recomendação (elif app_selection == "Sistema de Recomendação":)

Esta seção implementa e demonstra um sistema de recomendação baseado em filtragem colaborativa User-Based, com a capacidade de adicionar novos usuários.

- st.title("Sistema de Recomendações de Serviços Públicos"): Título da seção.
- Entrada de Novo Usuário:

- Permite ao usuário da interface adicionar um novo usuário e registrar suas avaliações para serviços específicos através de st.text_input e st.multiselect/st.slider.
- Quando o botão "Adicionar usuário" é clicado, os novos dados são concatenados ao recommendation_data DataFrame.

Reconstrução da Matriz Usuário-Serviço e Similaridade:

- Após a possível adição de um novo usuário, o código recalcula a matriz de interesse ponderado (weighted_interest = rating * frequency).
- Recalcula a user_service_matrix usando pivot_table.
- Recalcula as matrizes de similaridade (user_similarity_df, user_similarity_normalized_df) usando cosine_similarity.
 Importante: Isso significa que o "modelo" de recomendação não é salvo e carregado, mas sim recalculado dinamicamente a cada interação/adição de usuário, o que é viável para datasets pequenos, mas não escalável para grandes volumes de dados.

Função recommend_services (Atualizada para o Streamlit):

- o É a mesma lógica da função original de recomendação.
- Inclui mensagens st.warning e st.info para feedback ao usuário sobre o status da recomendação (usuário não encontrado, já utilizou todos os serviços, fallback para populares).

Interface de Recomendação:

- selected_user = st.selectbox(...): Permite ao usuário selecionar um usuário existente (ou o recém-adicionado) para obter recomendações.
- Ao clicar em "Recomendar serviços", exibe as recomendações geradas.

Visualizações:

- Mapa de Calor da Similaridade: Mostra a similaridade entre usuários, visualizando os "vizinhos" de gosto.
- Popularidade dos Serviços: Exibe um gráfico de barras dos serviços mais populares, que é usado como fallback nas recomendações.

6. Observações Gerais sobre a Implementação

- **Modularidade:** A aplicação é bem estruturada com módulos para cada tipo de problema de ML, tornando-a fácil de navegar e entender.
- Uso de Modelos Persistidos (joblib): Para as seções de Tráfego e Saúde/Sentimento, os modelos são carregados de arquivos joblib. Isso significa que os modelos foram treinados e salvos separadamente e a aplicação Streamlit serve apenas para demonstração/inferência, o que é uma boa prática.
- Recálculo Dinâmico (Recomendação): A seção de recomendação recalculou a matriz de similaridade em tempo real. Embora funcional para pequenas demonstrações, isso seria um gargalo de performance para um sistema de recomendação real em larga escala.
- Apresentação de Métricas e Visualizações: Para cada módulo, o código não apenas faz previsões, mas também apresenta métricas de avaliação e visualizações relevantes (gráficos de dispersão, matrizes de confusão, importâncias de features, etc.), o que é excelente para demonstrar a performance do modelo.
- Feedback ao Usuário: O uso de st.success, st.error, st.warning, st.info e outros elementos de Streamlit oferece feedback claro ao usuário sobre o status da aplicação e dos processos.