

Lesson Goal

• Learn the concepts of the two-variable regression analysis.

Population Regression Function

• In an econometric model:

• Expectation: estimate Y with the known values of X_i .

 $E(Y|X_i)$ – "the expectation of Y given the values of X_i "

Stochastic Error Term

E(Y|X) – "the expectation of Y given the values of X"

Functionally related to X.

• Notation:

$$E(Y|X_i) = f(X_i)$$

• This is called "Conditional Expectation Function (CEF)" or "Population Regression Function (PRF)".

Population Regression Function

• If PRF is a linear function of X_i , then:

Regression coefficients (intercept and slope coefficients)

PRF – Concept of Linearity

• Linearity in the variables

$$E(Y|X_i)$$
 is a linear function of X_i

$$E(Y|X_i) = \beta_1 + \beta_2 X_i^2$$
 - nonlinear in variables

$$E(Y|X_i) = \beta_1 + \beta_2 \sqrt{X_i}$$
- nonlinear in variables

$$E(Y|X_i) = \beta_1 + \beta_2 X_i$$
- linear in variables

PRF – Concept of Linearity

• Linearity in the parameters

 $E(Y|X_i)$ is a linear function of the parameters β_1, β_2

$$E(Y|X_i) = \beta_1 + \beta_2^2 X_i$$
 - nonlinear in parameters

$$E(Y|X_i) = \beta_1^3 + \sqrt[3]{\beta_2}X_i$$
- nonlinear in parameters

$$E(Y|X_i) = \beta_1 + \beta_2 X_i$$
- linear in parameters

PRF – Concept of Linearity

- Linearity in the parameters is the preferred choice for regression analysis.
- Linear regression means:

Linear in the parameters

• May or may not be linear in X_i 's.

PRF - Stochastic Specification

- For a given population Y_i , we estimate $E(Y|X_i)$ which is also called the "mean" (estimated/predicted value) of Y_i .
- Deviation around this expected value (mean):

Sample Regression Function (SRF)

- Samples are best approximations to the population.
- Let's develop the concept of SRF:

$$\widehat{Y_i} = \widehat{\beta_1} + \widehat{\beta_2} \cdot X_i$$

- where: \widehat{Y}_i ("Y-hat" or "Y-cap") is an estimator of Y_i .
 - $\widehat{\beta_1}$ is an estimator of β_1
 - $\widehat{\beta_2}$ is an estimator of β_2

Sample Regression Function (SRF) – Stochastic Specification

Stochastic form of SRF:

• Primary aim is to estimate PRF using SRF.

$$Y_i = \widehat{\beta_1} + \widehat{\beta_2} \cdot X_i + u_i$$

Our analysis is based on a sample from a population.

THANK YOU!

Next Lesson: Method of Ordinary Least Squares (OLS)