1

Control Systems

G V V Sharma*

1

CONTENTS

1 Feedback Circuits

Abstract—This manual is an introduction to control systems based on GATE problems.Links to sample Python codes are available in the text.

Download python codes using

svn co https://github.com/gadepall/school/trunk/control/codes

1 FEEDBACK CIRCUITS

1.0.1. The non-inverting op-amp configuration shown in fig.1.0.1 provides direct implementation of feedback loop. Assuming operational amplifier has infinite input resistance and zero output resistance. Find the expression for feedback factor. **Solution:** Let the gain of the operational

Fig. 1.0.1

amplifier be G. The equivalent circuit of the amplifier is in fig.1.0.1 The parameters given are shown in the table.1.0.1 From the equiva-

TABLE 1.0.1

Fig. 1.0.1

lent circuit, Applying Ohms law,

$$V_0 = G(V_i) (1.0.1.1)$$

and,
$$V_i = V_+ - V_-$$
 (1.0.1.2)

Now, Applying voltage dividing rule

$$V_{-} = \left[\frac{R_1}{R_1 + R_2}\right] V_0 \tag{1.0.1.3}$$

^{*}The author is with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India e-mail: gadepall@iith.ac.in. All content in this manual is released under GNU GPL. Free and open source.

Substituting in equ.1.0.1.1

$$V_0 = G(V_+ - \left[\frac{R_1}{R_1 + R_2}\right] V_0) \quad (1.0.1.4)$$

$$\implies V_0 = GV_+ - G\left[\frac{R_1}{R_1 + R_2}\right]V_0 \quad (1.0.1.5)$$

$$G(V_+) = V_0 + G\left[\frac{R_1}{R_1 + R_2}\right] V_0$$
 (1.0.1.6)

But,

$$V_s = V_+ \tag{1.0.1.7}$$

because, no current flows through resistor.

$$V_0 = G \left[\frac{1}{1 + \frac{GR_1}{R_1 + R_2}} \right] V_s \qquad (1.0.1.8)$$

Gain =
$$\frac{V_0}{V_s} = \left[\frac{G}{1 + \frac{GR_1}{R_1 + R_2}} \right]$$
 (1.0.1.9)

For a negative feedback system,

$$\frac{V_0}{V_i} = \frac{G}{1 + GH} \quad (1.0.1.10)^{1}$$

where.,
$$H = \frac{R_1}{R_1 + R_2}$$
 (1.0.1.11)

The equation.1.0.1.1 looks exactly similar to the Gain of a negative feedback system with

- Open loop gain = G
- Loop gain = P
- Amount of feedback = F
- Feedback factor = f
- closed loop gain = T

Parame- ters	Definition	For given circuit
Open	G	G
loop gain		
Feedback	Н	$\frac{R_1}{R_1+R_2}$
factor		11112
Loop gain	GH	$G^{rac{R_1}{R_1+R_2}}$
Amount	1+GH	$1 + \frac{GR_1}{R_1 + R_2}$
of		$R_1 \cap R_2$
feedback		
Closed	$\frac{G}{1+GH}$	$\frac{G(R_1+R_2)}{R_1+R_2+GR_1}$
loop gain	1+011	K ₁ +K ₂ +OK ₁

TABLE 1.0.1

Therefore, This operational amplifier can be modelled as a negative feedback system shown in the fig. 1.0.1 So, the feedback factor ...,

Fig. 1.0.1

$$f = H = \frac{R_1}{R_1 + R_2} \tag{1.0.1.12}$$

(1.0.1.10)
1.0.2. Find the condition under which closed loop gain T is almost entirely determined by the feedback network. **Solution:** For T to entirely dependent on feedback network, it should be independent on G(open loop gain) T is given by...

$$T = \frac{G}{1 + \frac{GR_1}{R_1 + R_2}} \tag{1.0.2.1}$$

For T to be independent on G.,

$$GH >> 1$$
 (1.0.2.3)

(1.0.2.2)

$$G\frac{R_1}{R_1 + R_2} >> 1 \tag{1.0.2.4}$$

$$G >> 1 + \frac{R_2}{R_1} \tag{1.0.2.5}$$

Under such condition...

$$T = \frac{1}{H} \tag{1.0.2.6}$$

$$T = \frac{R_1 + R_2}{R_1} \tag{1.0.2.7}$$

$$T = 1 + \frac{R_2}{R_1} \tag{1.0.2.8}$$

so, the necessary condition for T depend only on feedback network is

$$G >> T$$
 (1.0.2.9)

1.0.3. If the open loop voltage gain

$$G = 10^4 \tag{1.0.3.1}$$

Find the ratio of R2 and R1 to obtain a closed loop gain of 10. **Solution:** The closed loop gain gain T is given by

$$T = \frac{G}{1 + GH} = \frac{G}{1 + \frac{GR_1}{R_1 + R_2}} = 10$$

(1.0.3.2)

where..,
$$G = 10^4$$
 (1.0.3.3)

$$10 = \frac{10^4}{1 + \frac{10^4}{1 + \frac{R_2}{R_1}}} \tag{1.0.3.4}$$

$$\implies 1 + \frac{R_2}{R_1} = \frac{10^4}{\frac{10^4}{10} - 1} \tag{1.0.3.5}$$

$$1 + \frac{R_2}{R_1} = 10.010 \tag{1.0.3.6}$$

$$\frac{R_2}{R_1} = 9.010\tag{1.0.3.7}$$

1.0.4. What is the amount of feedback in decibels? **Solution:** The value of F in decibals is given by

$$F(dB) = 20\log(F)$$
 (1.0.4.1)

where...,
$$F = 1 + GH$$
 (1.0.4.2)

$$F = \frac{G}{T} \tag{1.0.4.3}$$

where..,
$$G = 10^4$$
 (1.0.4.4)

$$T = 10 (1.0.4.5)$$

$$F(dB) = 20\log(\frac{10^4}{10}) = 20\log(1000)$$
(1.0.4.6)

$$F(dB) = 60dB (1.0.4.7)$$

1.0.5. If G decreases by 20%, what is the corresponding decrease in T? **Solution:** Given

$$G = 10^4 \tag{1.0.5.1}$$

If G decrease by 20% then, the value of G is..,

$$G = (1 - 0.2)10^4 \tag{1.0.5.2}$$

$$= 8000$$
 (1.0.5.3)

For this value of G and,

$$\frac{R_2}{R_1} = 9.010 \tag{1.0.5.4}$$

The value of T can be solved as follows,

$$T = \frac{G}{1 + \frac{G}{1 + \frac{R_2}{R_1}}} \tag{1.0.5.5}$$

$$T = \frac{8000}{1 + \frac{8000}{1 + 0.9010}} \tag{1.0.5.6}$$

$$T = 9.99749 \tag{1.0.5.7}$$

The percentage change in T is..,

$$fractional change = \frac{10 - 9.99749}{10}$$
 (1.0.5.8)

$$= 2.51x10^{-4} \qquad (1.0.5.9)$$

$$%changeinT = 0.00251$$
 (1.0.5.10)

Therefore T decreases by 0.0025% when G decreases by 20%

1.0.6. Write a python code that can compute closed loop gain,loop gain,amount of feedback given all input parameters. **Solution:** Code to compute different gains.,

codes/ee18btech11005/ee18btech11005.py