Package 'RobinCar'

November 8, 2024

Type Package

```
Title Robust Inference for Covariate Adjustment in Randomized Clinical
Version 0.3.2
Description
      Performs robust estimation and inference when using covariate adjustment and/or covariate-
      adaptive randomization in randomized clinical trials.
      Ting Ye, Jun Shao, Yanyao Yi, Qinyuan Zhao (2023) <doi:10.1080/01621459.2022.2049278>.
      Ting Ye, Marlena Bannick, Yanyao Yi, Jun Shao (2023) <doi:10.1080/24754269.2023.2205802>.
      Ting Ye, Jun Shao, Yanyao Yi (2023) <doi:10.1093/biomet/asad045>.
      Marlena Ban-
      nick, Jun Shao, Jingyi Liu, Yu Du, Yanyao Yi, Ting Ye (2024) <doi:10.48550/arXiv.2306.10213>.
License MIT + file LICENSE
Encoding UTF-8
RoxygenNote 7.3.1
Imports dplyr, magrittr, tidyr, emulator, numDeriv, tidyverse, stats,
      rlang, survival, fastDummies, data.table, broom, SuperLearner,
      AIPW, MASS
Depends R (>= 2.10)
Suggests knitr, rmarkdown, ranger, forcats, testthat (>= 3.0.0)
Config/testthat/edition 3
NeedsCompilation no
Author Marlena Bannick [cre, aut] (<a href="https://orcid.org/0000-0001-6279-5978">https://orcid.org/0000-0001-6279-5978</a>),
      Ting Ye [aut],
      Yanyao Yi [aut],
      Faith Bian [aut]
Maintainer Marlena Bannick <mnorwood@uw.edu>
Repository CRAN
Date/Publication 2024-11-08 00:30:07 UTC
```

2 car_pb

Contents

car_	pb Generate permuted block treatment assignments	
Index		2
	robincar_tte	۷
	robincar_SL_median	
	robinear_SL	
	robincar_logrank	
	robincar_linear	
	robincar_glm	
	robincar_coxscore	
	robincar_covhr	
	robincar_contrast	
	robincar_calibrate	
	print.TTEResult	
	print.LinModelResult	
	print.GLMModelResult	
	print.ContrastResult	1
	print.CalibrationResult	1
	data_gen2	(
	data_gen	
	car_sr	2
	car_ps	3
	car_pb	- 4

Description

Generate permuted block treatment assignments

Usage

```
car_pb(z, trt_label, trt_alc, blocksize = 4L)
```

Arguments

Z	The car_strata design matrix, as a data frame with factor variables
trt_label	Treatment label
trt_alc	Treatment allocation vector
blocksize	Permuted block blocksize

Value

A vector of treatment assignments with labels from the 'trt_label' argument, based on stratified permuted block randomization.

car_ps 3

Examples

car_ps

Generate Pocock-Simon minimization treatment assignments

Description

Generate Pocock-Simon minimization treatment assignments

Usage

```
car_ps(z, treat, ratio, imb_measure, p_bc = 0.8)
```

Arguments

Z	The car_strata design matrix
treat	A vector of length ${\bf k}$ (the number of treatment arms), which labels the treatment arms being compared.
ratio	A vector of length k (the number of treatment arms), which indicates the allocation ratio, e.g., $c(1,1,1)$ for equal allocation with three treatment arms.
imb_measure	What measure of imbalance should be minimzed during randomization – either "Range" or "SD"
p_bc	The biased probability, i.e., the probability of assigning each patient to the arm that minimizes the imbalance. Default is 0.8

Value

res treatment assignment vector

A vector of treatment assignments with labels from the 'treat' argument, based on Pocock-Simon's minimization.

Author(s)

Ting Ye Yanyao Yi

4 car_sr

Examples

```
# Create car_strata variables
library(fastDummies)
library(dplyr)

x <- runif(100)
z <- cut(x, breaks=c(0, 0.25, 0.5, 0.75, 1.0))
z <- dummy_cols(z)
A <- car_ps(
    z=z[, 2:5],
    treat=c(0, 1, 2),
    ratio=c(1, 1, 1),
    imb_measure="Range"
)</pre>
```

car_sr

Generate simple randomization treatment assignments

Description

Generate simple randomization treatment assignments

Usage

```
car_sr(n, p_trt)
```

Arguments

n Number of observations

p_trt Proportion allotted to treatment

Value

A vector of treatment assignments as 0's and 1's based on simple randomization.

Examples

```
car_sr(10, p_trt=0.4)
```

data_gen 5

data_gen

Data generation function from JRSS-B paper

Description

Data generation function from JRSS-B paper

Usage

```
data_gen(
   n,
   theta,
   randomization,
   p_trt,
   case = c("case1", "case2", "case3", "case4", "case5")
)
```

Arguments

```
n total number of subjects to be generated

theta true treatment effect

randomization randomization method in c("SR","CABC","permuted_block","minimization","urn")

p_trt proportion of treatment arm

case simulation case in the paper
```

Value

A data frame with the following columns:

6 data_gen2

data_gen2

Data generation function from covariate adjusted log-rank paper

Description

Data generation function from covariate adjusted log-rank paper

Usage

```
data_gen2(
   n,
   theta,
   randomization,
   p_trt,
   case = c("case1", "case2", "case3", "case4"),
   blocksize = 4
)
```

Arguments

n total number of subjects to be generated

theta true treatment effect

 $randomization \quad randomization \\ method \\ in \\ c("SR","CABC","permuted_block","minimization","urn") \\$

p_trt proportion of treatment arm case simulation case in the paper

blocksize block size for permuted block design

Value

A data frame with the following columns:

```
t event time

delta event indicator

I1 assignment to treatment group 1

I0 assignment to treatment group 0

model_w3 covariates

car_strata1, ...

strata variables
```

print.CalibrationResult 7

```
print.CalibrationResult
```

Print calibration result

Description

Print calibration result

Usage

```
## S3 method for class 'CalibrationResult'
print(x, ...)
```

Arguments

x A GLMModel result. If you'd like to calibrate a linear adjustment, use 'robin-car_glm' instead of 'robincar_linear'.

... Additional arguments

Value

Prints the treatment mean estimates (and variances) based on a calibration on top of a GLM working model, along with the settings used. See RobinCar::robincar_calibrate().

Description

Print contrast result

Usage

```
## S3 method for class 'ContrastResult'
print(x, ...)
```

Arguments

- x A ContrastResult object
- ... Additional arguments

Value

Prints estimates (and variances) of treatment contrasts based on a linear or GLM working model, along with the settings used. See RobinCar::robincar_contrast()

8 print.LinModelResult

Description

Print glm model result

Usage

```
## S3 method for class 'GLMModelResult'
print(x, ...)
```

Arguments

x A GLMModelResult object

.. Additional arguments

Value

Prints the treatment mean estimates (and variances) based on a GLM working model, along with the settings used. See RobinCar::robincar_glm().

```
print.LinModelResult Print linear model result
```

Description

Print linear model result

Usage

```
## S3 method for class 'LinModelResult' print(x, ...)
```

Arguments

x A LinModelResult object

... Additional arguments

Value

Prints the treatment mean estimates (and variances) based on a linear working model, along with the settings used. See RobinCar::robincar_linear().

print.TTEResult 9

print.TTEResult

Print TTE result

Description

Print TTE result

Usage

```
## S3 method for class 'TTEResult'
print(x, ...)
```

Arguments

x A TTEResult object... Additional arguments

Value

Prints results of time-to-event covariate adjusted analyses including covariate-adjusted (stratified) logrank, robust Cox score, and covariate-adjusted hazard ratio. Prints summary statistics about number of observations and events, possibly by strata, and the test statistics and/or estimates, and p-values. See RobinCar::robincar_tte() and RobinCar::robincar_covhr().

robincar_calibrate

Perform linear or joint calibration

Description

Uses linear or joint calibration to "calibrate" the estimates from a linear or GLM-type adjustment. Linear calibration fits a linear model with treatment (and treatment-by-covariate interactions) and with the predicted $\hat{\mu}(X_i) = (\hat{\mu}_1(X_i), \dots, \hat{\mu}_K(X_i))$ as constructed covariates where K is the number of treatment groups; joint calibration also includes Z_i the strata variables as covariates.

Usage

```
robincar_calibrate(result, joint = FALSE, add_x = NULL)
```

Arguments

result	A GLMModelResult
joint	If true, then performs joint calibration with the $\hat{\mu}(X_i)$ and strata Z_i to achieve universality and efficiency gain rather than just linear calibration that uses $\hat{\mu}(X_i)$.
add_x	Additional x to use in the calibration. Must have been in the original dataset that robincar glm was called on.

10 robincar_covhr

Value

A result object that has the same structure as RobinCar::robincar_glm(), with the argument 'result' included as "original" in the list.

Description

Estimate a treatment contrast using the result of RobinCar::robincar_linear(), RobinCar::robincar_glm(), or RobinCar::robincar_SL() using the delta method.

Usage

```
robincar_contrast(result, contrast_h, contrast_dh = NULL)
```

Arguments

result A LinModelResult or GLMModelResult

contrast_h An optional function to specify a desired contrast contrast_dh An optional jacobian function for the contrast

Value

A contrast object which has the following attributes:

result A dplyr::tibble() with the label of the treatment contrast (e.g., 1 vs. 0), the

estimate of the treatment contrast, estimated SE, and p-value based on a z-test

with estimate and SE.

varcov The variance-covariance matrix for the treatment contrast estimates.

settings List of model settings used for the contrast.

robincar_covhr Covariate-adjusted estimators for time to event data

Description

Estimate a covariate-adjusted hazard ratio ('adj_method="CL"'), or a covariate-adjusted stratified hazard ratio ('adj_method="CSL"').

robincar_covhr 11

Usage

```
robincar_covhr(
   df,
   treat_col,
   response_col,
   event_col,
   car_strata_cols = NULL,
   covariate_cols = NULL,
   p_trt = 0.5,
   ref_arm = NULL,
   car_scheme = "simple",
   adj_method = "CL",
   interval = c(-10, 10)
)
```

Arguments

df A data.frame with the required columns treat_col Name of column in df with treatment variable response_col Name of the column in df with response variable Name of column in df with event indicator (0/FALSE=no event, 1/TRUE=event) event_col car_strata_cols Names of columns in df with car_strata variables covariate_cols Names of columns in df with covariate variables Treatment allocation ratio for the reference arm. p_trt ref_arm Reference arm of the treatment group, defaults to NULL, which results in using the first element of 'unique(data[, treat_col])'. Name of the type of covariate-adaptive randomization scheme. One of: "simcar_scheme ple", "pocock-simon", "biased-coin", "permuted-block". adj_method Adjustment method (one of "CL", "CSL")

Value

interval

An object with attribute named "result", which lists:

theta_L estimate of the hazard ratio
se_theta_L SE estimate of the hazard ratio

theta_CL estimate of the covariate-adjusted hazard ratio
se_theta_CL SE estimate of the covariate-adjusted hazard ratio

Interval for uniroot function

Other attributes are the settings used, data attributes, and the original data frame supplied by the user.

12 robincar_glm

robincar_coxscore

Robust cox score adjustment

Description

Robust cox score adjustment

Usage

```
robincar_coxscore(...)
```

Arguments

... Arguments to robincar_tte, other than 'adj_method'

Value

A result object with the following attributes:

result A list: "statistic" is the robust Cox score test statistic which can be used to obtain

p-values; "U" and "se" are the numerator and denominator of the test statistic,

respectively.

settings The covariate adjustment settings used.

original_df The dataset supplied by the user.

robincar_glm

Covariate adjustment using generalized linear working model

Description

Estimate treatment-group-specific response means and (optionally) treatment group contrasts using a generalized linear working model.

Usage

```
robincar_glm(
   df,
   treat_col,
   response_col,
   formula = NULL,
   car_strata_cols = NULL,
   car_scheme = "simple",
   g_family = stats::gaussian,
   g_accuracy = 7,
   contrast_h = NULL,
   contrast_dh = NULL
)
```

robincar_glm 13

Arguments

df A data.frame with the required columns

treat_col Name of column in df with treatment variable response_col Name of the column in df with response variable

formula The formula to use for adjustment specified using as.formula("..."). This over-

rides car_strata_cols and covariate_cols.

car_strata_cols

Names of columns in df with car strata variables

car_scheme Name of the type of covariate-adaptive randomization scheme. One of: "sim-

ple", "pocock-simon", "biased-coin", "permuted-block".

g_family Family that would be supplied to glm(...), e.g., binomial. If no link speci-

fied, will use default link, like behavior in glm. If you wish to use a negative binomial working model with an unknown dispersion parameter, then use

'g_family="nb"'.

g_accuracy Level of accuracy to check prediction un-biasedness.

contrast_h An optional function to specify a desired contrast

contrast_dh An optional jacobian function for the contrast (otherwise use numerical deriva-

tive)

Details

The output is the AIPW estimator given by (for each treatment group a):

$$\frac{1}{n} \sum_{i=1}^{n} \hat{\mu}_a(X_i) + \frac{1}{n_a} \sum_{i:A_i=a} \{Y_i - \hat{\mu}(X_i)\}$$

where Y_i is the outcome, A_i is the treatment assignment, X_i are the covariates, $n_a = \sum_{i=1}^n A_i = a$, and $\hat{\mu}_a$ is the estimated conditional mean function based on the GLM working model. This working model has treatment a-specific coefficients if 'adj_method' is "heterogeneous". Otherwise, they are shared across the treatment arms. Alternatively, if 'formula' is used, the working model can be specified according to the user.

Importantly, the estimated variance accounts for misspecification of the working model, and for covariate-adaptive randomization.

Value

If 'contrast_h' argument is used, outputs a 'main' and a 'contrast' object. The 'main' object has the following structure:

result A dplyr::tibble() with the treatment label, treatment mean estimate using AIPW,

estimated SE, and p-value based on a z-test with estimate and SE.

varcov The variance-covariance matrix for the treatment mean estimates.

settings List of model settings used in covariate adjustment.

original_df The original dataset provided by the user.

14 robincar_linear

mod	The fit from the glm() working model used for covariate adjustment.
mu_a	Predicted potential outcomes for each treatment category (columns) and individual (rows). These are the $\hat{\mu}_a$
g.estimate	The G-computation estimate based only on $\frac{1}{n}\sum_{i=1}^{n}\hat{\mu}_a(X_i)$. This is equivalent to the AIPW estimate when a canonical link function is used.
data	Attributes about the dataset.

The 'contrast' object has a structure that is documented in RobinCar::robincar_contrast().

robincar_linear

Covariate adjustment using linear working model

Description

Estimate treatment-group-specific response means and (optionally) treatment group contrasts using a linear working model for continuous outcomes.

Usage

```
robincar_linear(
   df,
   treat_col,
   response_col,
   car_strata_cols = NULL,
   covariate_cols = NULL,
   car_scheme = "simple",
   adj_method = "ANOVA",
   contrast_h = NULL,
   contrast_dh = NULL
)
```

Arguments

df	A data.frame with the required columns	
treat_col	Name of column in df with treatment variable	
response_col	Name of the column in df with response variable	
car_strata_cols		
	Names of columns in df with car_strata variables	
covariate_cols	Names of columns in df with covariate variables. **If you want to include the strata variables as covariates also, add them here.**	
car_scheme	Name of the type of covariate-adaptive randomization scheme. One of: "simple", "pocock-simon", "biased-coin", "permuted-block".	

robincar_logrank 15

adj_method	Name of linear adjustment method to use. One of: "ANOVA", "ANCOVA", "ANHECOVA".
contrast_h	An optional function to specify a desired contrast
contrast_dh	An optional jacobian function for the contrast (otherwise use numerical derivative)

Details

* Adjustment method "ANOVA" fits a linear model with formula 'Y ~ A' where 'A' is the treatment group indicator and 'Y' is the response. * "ANCOVA" fits a linear model with 'Y ~ A + X' where 'X' are the variables specified in the 'covariate_cols' argument. * "ANHECOVA" fits a linear model with 'Y ~ A*X', the main effects and treatment-by-covariate interactions.

Value

See value of RobinCar::robincar_glm(), this function is a wrapper using a linear link function.

Toblifical_logi ank	robincar_logrank	Robust (potentially stratified) logrank adjustment
---------------------	------------------	--

Description

Perform a robust covariate-adjusted logrank test ("CL") that can be stratified ("CSL") if desired.

Usage

```
robincar_logrank(adj_method, ...)
```

Arguments

adj_method	Adjustment method, one of "CL", "CSL"
	Additional arguments to 'robincar_tte'

Value

A result object with the following attributes:

result	A list: "statistic" is the adjusted logrank test statistic which can be used to obtain p-values; "U" and "se" are the numerator and denominator of the test statistic, respectively.
settings	The covariate adjustment settings used.
original_df	The dataset supplied by the user.

16 robincar_logrank

Examples

```
library(magrittr)
library(dplyr)
library(forcats)
set.seed(0)
n=100
data.simu0=data_gen(n=n,
                     theta=0,
                     randomization="permuted_block",
                    p_{trt=0.5}
                   case="case2") %>% mutate(strata1=sample(letters[1:3],n,replace=TRUE),
                                             strata2=sample(LETTERS[4:5],n,replace=TRUE))
out <- robincar_logrank(df=data.simu0,</pre>
                         treat_col="I1",
                        p_trt=0.5,
                        ref_arm=0,
                         response_col="t",
                        event_col="delta",
                         covariate_cols=c("model_z1", "model_z2"),
                         car_scheme="simple",
                         adj_method=c("CL"))
set.seed(0)
n=100
data.simu0=data_gen(n=n,
                    theta=0,
                    randomization="permuted_block",
                    p_trt=0.5,
                     case="case1")
data.simu <- data.simu0 %>%
  tidyr::pivot_longer(cols=starts_with("car_strata"),
                      names_prefix="car_strata",
                      names_to="strt") %>%
  filter(value==1) %>% select(-value) %>%
  mutate(strt=forcats::as_factor(strt)) %>%
  select(t,strt) %>%
  left_join(data.simu0, .)
out1 <- robincar_logrank(df=data.simu,</pre>
                          treat_col="I1",
                          p_{trt=0.5}
                          ref_arm=0,
                          response_col="t",
                          event_col="delta",
                          car_strata_cols="strt",
                          covariate_cols=NULL,
                          car_scheme=c("permuted-block"),
                          adj_method=c("CSL")
)
```

robincar_SL 17

robincar_SL

BETA: Covariate adjustment using working models from the super learner libraries through the AIPW package with cross-fitting.

Description

Estimate treatment-group-specific response means and (optionally) treatment group contrasts using a generalized linear working model.

Usage

```
robincar_SL(
   df,
   treat_col,
   response_col,
   car_strata_cols = NULL,
   covariate_cols = NULL,
   car_scheme = "simple",
   covariate_to_include_strata = NULL,
   SL_libraries = c(),
   SL_learners = c(),
   k_split = 2,
   g_accuracy = 7,
   contrast_h = NULL,
   contrast_dh = NULL
)
```

Arguments

df	A data.frame with the required columns	
treat_col	Name of column in df with treatment variable	
response_col	Name of the column in df with response variable	
car_strata_cols		
	Names of columns in df with car_strata variables	
covariate_cols	Names of columns in df with covariate variables	
car_scheme	Name of the type of covariate-adaptive randomization scheme. One of: "simple", "pocock-simon", "biased-coin", "permuted-block".	
covariate_to_include_strata		
	Whether to include car_strata variables in covariate adjustment. Defaults to F for ANOVA and ANCOVA; defaults to T for ANHECOVA. User may override by passing in this argument.	
SL_libraries	Vector of super-learner libraries to use for the covariate adjustment (see Super-Learner::listWrappers)	
SL_learners	Optional list of super-learner "learners" to use for the covariate adjustment (see SuperLearner::create.Learner())	

18 robincar_SL

k_split	Number of splits to use in cross-fitting
g_accuracy	Level of accuracy to check prediction un-biasedness (in digits).
contrast_h	An optional function to specify a desired contrast
contrast_dh	An optional jacobian function for the contrast (otherwise use numerical derivative)

Details

WARNING: This function is still under development and has not been extensively tested. This function currently only works for two treatment groups. Before using this function, you must load the SuperLearner library with 'library(SuperLearner)', otherwise the function call will fail.

Value

See value of RobinCar::robincar_glm, but the working model for $\hat{\mu}(X_i)$ is based on the AIPW::AIPW package that uses specified SuperLearner libraries and cross-fitting. Also, 'mod' attribute is an object of class AIPW::AIPW.

Examples

```
library(SuperLearner)
library(ranger)
n <- 1000
set.seed(10)
DATA2 <- data.frame(A=rbinom(n, size=1, prob=0.5),
                    y=rbinom(n, size=1, prob=0.2),
                    x1=rnorm(n),
                    x2=rnorm(n).
                    x3=as.factor(rbinom(n, size=1, prob=0.5)),
                    z1=rbinom(n, size=1, prob=0.5),
                     z2=rbinom(n, size=1, prob=0.5))
DATA2[, "y"] <- NA
As <- DATA2$A == 1
DATA2[DATA2$A == 1, "y"] <- rbinom(
  sum(As),
  size=1,
  prob=exp(DATA2[As,]$x1)/(1+exp(DATA2[As,]$x1)))
DATA2[DATA2$A == 0, "y"] <- rbinom(
  n-sum(As),
  size=1,
  prob=exp(1 +
    5*DATA2[!As,]$x1 + DATA2[!As,]$x2)/
    (1+exp(1 + 5*DATA2[!As,]$x1 + DATA2[!As,]$x2)))
DATA2$A <- as.factor(DATA2$A)</pre>
sl.mod <- robincar_SL(</pre>
  df=DATA2,
  response_col="y",
  treat_col="A",
  car_strata_cols=c("z1"),
  covariate_cols=c("x1"),
```

robincar_SL_median 19

```
SL_libraries=c("SL.ranger"),
  car_scheme="permuted-block",
  covariate_to_include_strata=TRUE
)
sl.mod$result
```

robincar_SL_median

BETA: Covariate adjustment using working models from the super learner libraries through the AIPW package with cross-fitting, with median adjustment.

Description

Estimate treatment-group-specific response means and (optionally) treatment group contrasts using a generalized linear working model. Perform median adjustment to limit randomness induced from cross-fitting.

Usage

```
robincar_SL_median(
 n_times,
  seed,
 df,
  treat_col,
 response_col,
 car_strata_cols = NULL,
  covariate_cols = NULL,
  car_scheme = "simple",
  covariate_to_include_strata = NULL,
  SL_libraries = c(),
  SL_learners = c(),
 k_split = 2,
 g_{accuracy} = 7,
 contrast_h = NULL,
  contrast_dh = NULL
)
```

Arguments

n_times	Number of times to run the robincar_SL function
seed	Seed to set before running the set of functions
df	A data frame with the required columns
treat_col	Name of column in df with treatment variable
response_col	Name of the column in df with response variable

20 robincar_tte

car_strata_cols		
	Names of columns in df with car_strata variables	
covariate_cols	Names of columns in df with covariate variables	
car_scheme	Name of the type of covariate-adaptive randomization scheme. One of: "simple", "pocock-simon", "biased-coin", "permuted-block".	
covariate_to_include_strata		
	Whether to include car_strata variables in covariate adjustment. Defaults to F for ANOVA and ANCOVA; defaults to T for ANHECOVA. User may override by passing in this argument.	
SL_libraries	Vector of super-learner libraries to use for the covariate adjustment (see Super-Learner::listWrappers)	
SL_learners	Optional list of super-learner "learners" to use for the covariate adjustment (see SuperLearner::create.Learner())	
k_split	Number of splits to use in cross-fitting	
g_accuracy	Level of accuracy to check prediction un-biasedness (in digits).	
contrast_h	An optional function to specify a desired contrast	
contrast_dh	An optional jacobian function for the contrast (otherwise use numerical derivative)	

Details

WARNING: This function is still under development and has not been extensively tested. This function currently only works for two treatment groups. Before using this function, you must load the SuperLearner library with 'library(SuperLearner)', otherwise the function call will fail.

Value

See value of RobinCar::robincar_SL. Attributes 'mods' and 'mu_as' are lists of 'mod' and 'mu_a' attributes, respectively, for each replicate of 'robincar_SL' used in the median.

robincar_tte

Covariate adjustment for time to event data

Description

Perform a covariate-adjusted logrank test ('adj_method="CL"'), covariate-adjusted stratified logrank test ('adj_method="CSL"'), or a covariate-adjusted robust Cox score test ('adj_method="coxscore"').

Usage

```
robincar_tte(
  df,
  treat_col,
  response_col,
  event_col,
```

robincar_tte 21

```
adj_method,
  car_strata_cols = NULL,
  covariate_cols = NULL,
  p_trt = 0.5,
  ref_arm = NULL,
  sparse_remove = TRUE,
  car_scheme = "simple"
)
```

Arguments

df A data frame with the required columns treat_col Name of column in df with treatment variable Name of the column in df with response variable response_col Name of column in df with event indicator (0/FALSE=no event, 1/TRUE=event) event_col Adjustment method (one of "CL", "CSL", or "coxscore") adj_method car_strata_cols Names of columns in df with car_strata variables covariate_cols Names of columns in df with covariate variables Treatment allocation ratio for the reference arm. p_trt ref_arm Reference arm of the treatment group, defaults to NULL, which results in using the first element of 'unique(data[, treat_col])'. sparse_remove Remove sparse car_strata from calculation Name of the type of covariate-adaptive randomization scheme. One of: "simcar_scheme

Details

'robincar_coxscore' and 'robincar_logrank' are wrapper functions around 'robincar_tte'.

ple", "pocock-simon", "biased-coin", "permuted-block".

Value

For adjustment method "CL" or "CSL", see value of RobinCar::robincar_logrank(); for adjustment method "coxscore" see value of RobinCar::robincar_coxscore().

Index

```
AIPW::AIPW, 18
car_pb, 2
car_ps, 3
car_sr, 4
data_gen, 5
data_gen2, 6
dplyr::tibble(), 10, 13
glm(), 14
print.CalibrationResult, 7
print.ContrastResult, 7
print.GLMModelResult, 8
print.LinModelResult, 8
print.TTEResult, 9
RobinCar::robincar_calibrate(), 7
RobinCar::robincar_contrast(), 7, 14
RobinCar::robincar_covhr(), 9
RobinCar::robincar_coxscore(), 21
RobinCar::robincar_glm, 18
RobinCar::robincar_glm(), 8, 10, 15
RobinCar::robincar_linear(), 8, 10
RobinCar::robincar_logrank(), 21
RobinCar::robincar_SL, 20
RobinCar::robincar_SL(), 10
RobinCar::robincar_tte(), 9
robincar_calibrate, 9
robincar\_contrast, 10
robincar_covhr, 10
robincar_coxscore, 12
robincar_glm, 12
robincar_linear, 14
robincar_logrank, 15
robincar_SL, 17
robincar_SL_median, 19
robincar_tte, 20
SuperLearner, 18
```

SuperLearner::create.Learner()), 17, 20 SuperLearner::listWrappers, 17, 20