Szacowanie błędu lokalnego w metodach jednokrokowych

$$u_n = u_{n-1} + \Delta t \phi(t_{n-1}, u_{n-1}, \Delta t)$$

Po co?

- 1) W rachunkach numerycznych <u>musimy</u> znać oszacowanie błędu
- 2) Gdy oszacowanie jest w miarę dokładne: można poprawić wynik
- 3) Aby ustawić krok czasowy tak, aby błąd był akceptowalny

Oszacowanie błędu lokalnego w metodach jednokrokowych

W każdym kroku generujemy nowy błąd w rachunkach. Znamy jego rząd.

$$u(t_n) = u(t_{n-1}) + \Delta t f(t_{n-1}, u_{n-1}) + \frac{\Delta t^2}{2} \left[f'_t + f'_u f \right]_{(t_{n-1}, u_{n-1})} + \frac{\Delta t^3}{6} u'''(\xi_n)$$

dla RK: wstawialiśmy rozwiązanie dokładne do schematu i je rozwijaliśmy w szereg T.

$$u(t_n) = u(t_{n-1}) + \Delta t \left[b_1 f + b_2 \left(f + c \Delta t f'_t + a \Delta t f f'_u \right) \right] + O(\Delta t^3)$$

wybór $b_1=0$, $b_2=1$, c=1/2, a=1/2 dawał RK2 punktu środkowego

$$u_{n+1} = u_n + \Delta t f(t_n + \frac{\Delta t}{2}, u_n + \frac{\Delta t}{2} f(t_n, u_n))$$

Rozwijając do jednego rzędu wyżej z Δt uzyskamy oszacowanie błędu lokalnego $d_n = u(t_n) - u_n$ [przy założeniu, że $u(t_{n-1}) = u_{n-1}$]

$$d_n = \frac{\Delta t^3}{6} \left[3(f_{tt}'' + 2f_{tu}'' + f^2 f_{yy}'') - (f_t' f_y' + f(f_y')^2) \right]_{t_{n-1}, u_{n-1}} + O(\Delta t^4)$$

świetny wzór choć mało praktyczny

Oszacowanie błędu (lokalnego) w metodach jednokrokowych

metodą rzędu p z chwili t_{n-1} wykonujemy krok do t_n

$$u_n = u_{n-1} + \Delta t \Phi(t_{n-1}, u_{n-1}, \Delta t)$$

$$u(t_n) - u_n = d_n$$

$$d_n = C_n \Delta t^{p+1} + O(\Delta t^{p+2})$$

może zależeć od t_{n-1} oraz u_{n-1} , ale nie zależy od Δt

$$d_n = \frac{\Delta t^3}{6} \left[3(f_{tt}^{"} + 2f f_{tu}^{"} + f^2 f_{yy}^{"}) - (f_t^{"} f_y^{"} + f(f_y^{"})^2) \right]_{t_{n-1}, u_{n-1}} + O(\Delta t^4)$$

folia wcześniej

szacowanie błędu:

- 1) ekstrapolacja Richardsona (*step doubling*)
- 2) osadzanie (embedding)

ekstrapolacja Richardsona

$$u_n = u_{n-1} + \Delta t \Phi(t_{n-1}, u_{n-1}, \Delta t)$$
$$u(t_n) - u_n = d_n$$
$$d_n = C_n \Delta t^{p+1} + O(\Delta t^{p+2})$$

dwa kroki Δt : dostaniemy lepsze oszacowanie u(t_{n+1})

jeden krok $2\Delta t$: dostaniemy gorsze oszacowanie u(t_{n+1})

szacujemy C_n z porównania obydwu rozwiązań

ekstrapolacja Richardsona

$$u_n = u_{n-1} + \Delta t \Phi(t_{n-1}, u_{n-1}, \Delta t)$$

błąd lokalny $u(t_n)-u_n=d_n$ jest:

$$d_n = C_n \Delta t^{p+1} + O(\Delta t^{p+2})$$

wykonujemy krok następny od t_n do t_{n+1}

$$u_{n+1} = u_n + \Delta t \Phi(t_n, u_n, \Delta t)$$

odchylenie wyniku numerycznego od dokładnego $u(t_{n+1})-u_{n+1}=\gamma d_n+d_{n+1}$

1) zakładamy, że krok jest na tyle mały, że stała błędu się nie zmienia $C_n \approx C_{n+1}$ (lub, ze w jednym kroku zmienia się o $O(\Delta t)$]

wtedy błąd lokalny popełniony w chwili t_{n+1} jest $d_{n+1} \approx d_n$.

2) gdy krok mały: współczynnik wzmocnienia błędu $\gamma \approx 1$ (błąd popełniony w kroku pierwszym nie jest istotnie wzmacniany) Przy tym założeniu: błąd po drugim kroku – suma błędów γ d_n+d_{n+1} \approx 2d_n,

$$u(t_{n+1}) - u_{n+1} = 2C_n(\Delta t)^{p+1} + O(\Delta t)^{p+2}$$

to chwili t_{n+1} dojdziemy z t_{n-1} w pojedynczym kroku $2\Delta t$

dostaniemy gorsze oszacowanie $u(t_{n+1})$

$$\tilde{u}_{n+1} = u_{n-1} + 2\Delta t \Phi(t_{n-1}, u_{n-1}, 2\Delta t)$$

$$\tilde{d}_n = C_n (2\Delta t)^{p+1} + O((2\Delta t)^{p+2})$$

$$u(t_{n+1}) - \tilde{u}_{n+1} = C_n (2\Delta t)^{p+1} + O(2\Delta t^{p+2})$$

chcemy poznać C_n (to + znajomość p da nam oszacowanie błędu): odejmujemy niebieskie wzory tak aby wyeliminować rozwiązanie dokładne (nam niedostępne)

ekstrapolacja Richardsona

$$u(t_{n+1}) - u_{n+1} = 2C_n(\Delta t)^{p+1} + O(\Delta t^{p+2})$$

$$u(t_{n+1}) - \tilde{u}_{n+1} = C_n(2\Delta t)^{p+1} + O(2\Delta t^{p+2})$$

$$\downarrow$$

$$u_{n+1} - \tilde{u}_{n+1} = C_n \left[(2\Delta t)^{p+1} - 2(\Delta t)^{p+1} \right]$$

$$C_n = \frac{u_{n+1} - \tilde{u}_{n+1}}{(2\Delta t)^{p+1} - 2(\Delta t)^{p+1}}$$

$$u(t_{n+1}) - u_{n+1} = 2C_n(\Delta t)^{p+1} + O(\Delta t)^{p+2}$$

błąd wykonany po dwóch krokach Δt wynosi więc:

$$d = u(t_{n+1}) - u_{n+1} = \frac{u_{n+1} - \tilde{u}_{n+1}}{2^p - 1} + O(\Delta t^{p+2})$$

pierwszy wniosek: jeśli znamy rząd metody p to potrafimy go podnieść o jeden

$$u(t_{n+1}) = u_{n+1} + \frac{u_{n+1} - u_{n+1}}{2^p - 1} + O(\Delta t^{p+2})$$

ekstrapolacja Richardsona

$$u(t_{n+1}) = u_{n+1} + \frac{u_{n+1} - \tilde{u}_{n+1}}{2^p - 1} + O(\Delta t^{p+2})$$

podnosimy rząd dokładności metody "algorytm"

do
$$n = 1, N$$

 $u_n = u_{n-1} + \Delta t \phi(t_{n-1}, u_{n-1}, \Delta t)$
 $u_{n+1} = u_n + \Delta t \phi(t_n, u_n, \Delta t)$
 $\tilde{u}_{n+1} = u_{n-1} + 2\Delta t \phi(t_{n-1}, u_{n-1}, 2\Delta t)$
 $u_{n+1} = u_{n+1} + \frac{u_{n+1} - \tilde{u}_{n+1}}{2^p - 1}$
enddo

$$rac{du}{dt} = u$$
 r. dokładne: $u(t) = \exp(t)$ $u(0) = 1$ $\Delta t = rac{1}{32}$

kreski: RK2 punktu środkowego (p=2), b.lok. O(Δt^3)

ekstrapolacja Richardsona

Oszacowanie błędu lokalnego w metodach jednokrokowych

- 1) ekstrapolacja Richardsona (*step doubling*)
- 2) osadzanie (embedding)

cel: szacujemy błąd lokalny metody rzędu p przy pomocy lepszej metody, np. rzędu p+1 obydwie metody szacują rozwiązanie w tych samych chwilach czasowych

$$u_n^p = u_{n-1} + \Delta \phi_p(t_{n-1}, y_{n-1}, \Delta t)$$

$$d_n^p = C_n^p (\Delta t)^p$$

$$u_n^{p+1} = u_{n-1} + \Delta \phi_{p+1}(t_{n-1}, y_{n-1}, \Delta t) \qquad d_n^{p+1} = C_n^{p+1}(\Delta t)^{p+1}$$

$$d_n^{p+1} = C_n^{p+1} (\Delta t)^{p+1}$$

$$d_n^p = u(t_n) - u_n^p = u(t_n) - u_n^{p+1} + u_n^{p+1} - u_n^p = d_n^{p+1} + u_n^{p+1} - u_n^p$$

$$|d_n^p| \le |d_n^{p+1}| + |u_n^{p+1} - u_n^p|$$

co daje oszacowanie błędu gorszej metody

$$|d_n^p| \simeq |u_n^{p+1} - u_n^p|$$

nie nadaje się do poprawiania schematu p po cóż zresztą poprawiać qdy mamy p+1

celem szacowania błędu nie jest poprawa wyniku, (dla poprawy zawsze można ∆t zmienić)

lecz adaptacja ∆t : stały krok zawsze może okazać się zbyt wielki albo zbyt mały.

JAKI KROK CZASOWY SYMULACJI USTAWIĆ gdy coś ciekawego zdarza się tylko czasem?

Automatyczna kontrola kroku czasowego dla metod jednokrokowych

Program może sam dobierać krok czasowy w zależności od tego co dzieje się w symulacji.

$$u_n = u_{n-1} + \Delta t \Phi(t_{n-1}, u_{n-1}, \Delta t)$$

Chcemy utrzymać błąd na poziomie zbliżonym do parametru tol. nie większy aby zachować wymaganą dokładność, nie mniejszy aby nie tracić czasu na rachunki zbyt dokładne

Szacujemy błąd lokalny E (ekstrapolacja Richardsona lub metody embedding)

$$E=C[\Delta t]^{p+1}$$

chcemy zmienić krok odpowiednio do naszych wymagań z Δt do Δt (nowy)

$$tol=C[\Delta t(nowy)]^{p+1}$$
 \rightarrow $\Delta t(nowy)=(tol/E)^{1/(p+1)}\Delta t$

$$\Delta t(nowy) = (S tol/E)^{1/(p+1)} \Delta t$$
 dla bezpieczeństwa S<1

wzór zwiększy zbyt mały krok i vice versa uwaga: błąd jest szacowany, zawsze warto dorzucić sztywne ograniczenia na ∆t

Automatyczna kontrola kroku czasowego dla metod jednokrokowych

symulacja ustawiająca krok czasowy może wyglądać np. tak:

```
u<sub>0</sub>= warunek początkowy
t_0 = 0
n=1
do {
         u_n = u_{n-1} + \Delta t \Phi(t_{n-1}, u_{n-1}, \Delta t)
          jeśli E<tol
                      \{ tn:=tn+\Delta t \}
                        n:=n+1 (oznacza akceptację wyniku) }
          \Delta t := (S \text{ tol } /E)^{1/(p+1)} \Delta t
           } while ( t<T)
```


wyniki Konrada Rekiecia

przy założonej tolerancji RK4 wcale nie jest dokładniejsze od RK2

... tylko pozwala stawiać dłuższe kroki

$$\frac{du}{dt} = 2t \qquad \text{u(0)=0}$$

$$u(t+dt) = u(t) + dt \times 2t$$

proste równanie traktowane jawnym schematem Eulera

prosty problem nieco komplikujemy

$$u' = -\alpha(u-t^2) + 2t$$

$$\operatorname{niech} \alpha >\!\!> \!\! 0$$

$$u(0) = u_0$$

szybkozmienna składowa składowa wolnozmienna

część szybkozmienna gaśnie szybko, ale w schemacie jawnym Eulera nakłada ograniczenie na krok czasowy : $u'=-\alpha u$ $\alpha=100 \to dt<0.02$, gdy szybkozmienna składowa zaniknie dt jest bardzo mały w porównaniu do skali zmienności u(t)

regiony stabilności metod Eulera

metoda Eulera jawna

niejawna metoda Eulera

w metodzie niejawnej problemu ze stabilnością bezwzględna nie ma ...

niejawna metoda Eulera: zastosowanie do problemu sztywnego

$$u' = -\alpha(u - t^2) + 2t$$

$$u(0) = u_0$$

$$u_n = u_{n-1} + f(t_n, u_n) \Delta t$$

$$u_n = \frac{u_{n-1} + 2\Delta t t_n + \alpha \Delta t t_n^2}{1 + \alpha \Delta t}$$

rozwiązania są stabilne i dokładne dla dużych t nawet gdy dt duże dla małych t można wstawić mniejsze dt, potem krok zwiększyć

Problemy sztywne (drętwe) (stiff, stiffness)

Problem jest praktyczny i ścisłej definicji, która byłaby użyteczna, nie ma . Jedna z możliwych: problem jest sztywny, gdy stosując schemat jawny musimy przyjąć krok czasowy bardzo mały w porównaniu ze skalą zmienności funkcji.

RRZ jest problemem sztywnym gdy:

- 1. Problem jest charakteryzowany bardzo różnymi skalami czasowymi
- Stabilność bzwz nakłada silniejsze ograniczenia na krok czasowy niż dokładność.
- 3. Metody jawne się nie sprawdzają.

$$u'=-lpha(u-t^2)+2t$$

$$u(0)=u_0$$

$$u(t)=u_0\exp(-lpha t)+t^2$$
 niech $lpha>>0$ szybkozmienna składowa wolnozmienna

Problemy sztywne (drętwe) (*stiff*)

problem najczęściej spotykany dla układ równań różniczkowych opisujących sprzężone procesy o bardzo różnych skalach czasowych

Ogólna postać układu równań pierwszego rzędu

$$rac{d\mathbf{y}}{dt} = \mathbf{F}(t,\mathbf{y})$$
fcja R×Rⁿ $ightarrow$ R

Tylko niekiedy można podać rozwiązanie w zamkniętej formie analitycznej. Można, np. dla jednorodnego problemu liniowego

$$\frac{d\mathbf{y}}{dt} = \mathbf{A}\mathbf{y}(t)$$

$$\frac{d\mathbf{y}}{dt} = \mathbf{A}\mathbf{y}(t)$$

gdzie
$$\mathbf{A}\mathbf{v_j} = \lambda_j \mathbf{v_j}$$

$$\mathbf{y}(t) = \sum_{j=1}^{n} c_j \exp(\lambda_j t) \mathbf{v_j}$$

 $\mathbf{y}(t) = \sum c_j \exp(\lambda_j t) \mathbf{v_j}$ dla niezdegenerowanych wartości własnych c_i liczone z warunku początkowego

np. problem rozpadu promieniotwórczego Izotop 2 o stałej rozpadu λ_2 rozpada się promieniotwórczo na inny izotop 1 o stałej rozpadu λ_1

$$\begin{array}{rcl} \dfrac{dy_1}{dt} & = & -\lambda_1 y_1(t) & +\lambda_2 y_2(t) & & y_1(0)=0 \\ \dfrac{dy_2}{dt} & = & -\lambda_2 y_2(t) & & y_2(0)=1 \end{array}$$

$$\mathbf{A} = \left(\begin{array}{cc} -\lambda_1 & \lambda_2 \\ 0 & -\lambda_2 \end{array} \right) \quad \longrightarrow \quad \begin{array}{c} \text{wartości własne} \; -\lambda_1, \; -\lambda_2 \\ \text{rozłożyć warunek początkowy} \\ \text{na wektory własne} \end{array}$$

$$\mathbf{y}(t) = \frac{\lambda_2}{\lambda_1 - \lambda_2} \exp(-\lambda_2 t) \begin{bmatrix} 1 \\ \frac{\lambda_1 - \lambda_2}{\lambda_2} \end{bmatrix} - \frac{\lambda_2}{\lambda_1 - \lambda_2} \exp(-\lambda_1 t) \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$\mathbf{y}(t) = \frac{\lambda_2}{\lambda_1 - \lambda_2} \exp(-\lambda_2 t) \begin{bmatrix} 1 \\ \frac{\lambda_1 - \lambda_2}{\lambda_2} \end{bmatrix} - \frac{\lambda_2}{\lambda_1 - \lambda_2} \exp(-\lambda_1 t) \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

gdy duża rozpiętość między minimalną a maksymalną wartością własną $|\lambda_{max}/\lambda_{min}| >> 1$:

duże różnice skal czasowych

wektor własny który odpowiada największej wartości własnej wygaśnie najprędzej, ale (dla metod jawnych) pozostawi najsilniejsze ograniczenie dla kroku czasowego (np. Euler, RK2 dt<2/ $|\lambda_{max}|$)

jesteśmy zmuszeni przyjąć malutki krok w porównaniu z przebiegiem rozwiązania (w przeciwnym wypadku eksplozja)

następny przykład:

podobny do poprzedniego

problem sztywny z liniowego równania drugiego rzędu o bliskich współczynnikach

$$\begin{cases} w_1 = u \\ w_2 = u' \end{cases} \qquad \begin{cases} w_2' + 1001w_2 + 1000w_1 = 0 \\ w_1' = w_2 \end{cases}$$

$$\begin{pmatrix} w_1' \\ w_2' \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -1000 & -1001 \end{pmatrix} \begin{pmatrix} w_1 \\ w_2 \end{pmatrix}$$
 wartości / wektory własne: -1 / [-1,1]^{\mathsf{T}} bardzo różne skale czasowe
$$\begin{pmatrix} w_1 \\ w_2 \end{pmatrix} = c \exp(-t) \begin{pmatrix} -1 \\ 1 \end{pmatrix} + d \exp(-1000t) \begin{pmatrix} 1 \\ -1000 \end{pmatrix}$$

szczególnie dotkliwy przypadek: równanie niejednorodne (bez rozwiązania analitycznego)

$$rac{d\mathbf{y}}{dt} = \mathbf{A}\mathbf{y}(t) + \phi(t)$$
 załóżmy, że wartości własne **A** są ujemne

Rozwiązanie będzie miało postać:

$$\mathbf{y}(t) = \underbrace{\sum_{j=1}^{n} c_j \exp(\lambda_j t) \mathbf{v_j}}_{j} + \Psi(t)$$
 stan ustalony wolnozmienny

stan przejściowy (wszystkie zgasną)

Na czym polega problem?:

Rozwiązując problem numerycznie metodą jawną (Euler, RK2)

musimy przyjąć krok czasowy $\Delta t < 2/|\lambda_max|$ aby uniknąć eksplozji rozwiązań nawet gdy wszystkie wyrazy z powyższej sumy w rozwiązaniu znikają

 y_2 – izotop matka wolno rozpadająca się na y_1

 y_1 – izotop szybko rozpadający się, niejednorodność: dodatkowo pewna ilość jest w stałym tempie doprowadzana z zewnątrz

$$\frac{dy_1}{dt} = -\lambda_1 y_1 + \lambda_2 y_2 + \frac{\lambda_1/2}{2}
\frac{dy_2}{dt} = -\lambda_2 y_2,$$

$$y_2(0)=1
y_1(0)=0$$

$$\lambda_1 = 1/10$$

 $\lambda_2 = 1/10\ 000$

bardzo wolno się rozpada [taka i większa rozpiętość lambd typowa również dla reakcji chemicznych spotykana również dla układów elektrycznych]

automatyczna kontrola kroku czasowego dla jawnego RK2 z krokiem czasowym ustawianym przez ekstrapolację Richardsona

Wzór trapezów i **krok automatycznie dobierany** przez ekstrapolację Richardsona

trapezy (najdokładniejsza metoda A-stabilna spośród wielokrokowych)

metoda trapezów: jako A-stabilna radzi sobie nieźle z doborem kroku czasowego w problemach sztywnych – ale jest stosunkowo mało dokładna dokładniejsza A-stabilna pozwoliłaby stawiać jeszcze dłuższe kroki

niestety = dokładniejszej A-stabilnej tej w klasie metod (liniowe wielokrokowe) nie ma

dlatego: niejawne metody RK (jednokrokowe, nieliniowe)

trapezy z tolerancją 0.00001 (najdokładniejsza metoda A-stabilna spośród wielokrokowych)

Mówimy, że RRZ jest problemem sztywnym gdy:

- 1. Problem jest charakteryzowany różnymi skalami czasowymi.
- 2. Stabilność bzwz nakłada silniejsze ograniczenia na krok czasowy niż dokładność.
- 3. Metody jawne się nie sprawdzają.

Następny przykład: sztywny problem w pojedynczym równaniu:

$$\frac{du}{dt} = -100\left(u - \cos(t)\right) - \sin(t)$$

dla dużych t – rozwiązanie ustalone u(t) = cos(t)

dwie bardzo różne skale czasowe

- 1) rozwiązania ustalonego okres 2pi
- 2) skala czasowa tłumienia "odchylenia od stanu ustalonego" exp(-100 t) czasowa stała zaniku 0.01

z u(0) = 2

rozwiązanie: "stacjonarne" u(t) = cos(t)

niejawny schemat Eulera – krok stały

tutaj: startowane od warunku u(0)=1

następny przykład: równanie <u>swobodnego</u> oscylatora van der Pola [historycznie = odkrycie deterministycznego chaosu w lampach firmy Philips aperiodyczne oscylacje przy periodycznym <u>wymuszeniu</u>]

$$u'' - \lambda (1 - u^2)u' + u = 0 \quad \text{($\lambda=0$ = zwykły o. harmoniczny)}$$

$$u' = v$$
$$v' = \lambda(1 - u^2)v - u$$

jawny RK4 = zmienny krok czasowy

punkt u(t) policzony = krzyż po lewej: krzyże położone rozsądnie w porównaniu ze zmiennością rozwiązania

po prawej: problem sztywny gładkie rozwiązanie a krzyże się zlewają

równanie: czasem sztywne czasem nie

przydałoby się narzędzie do wykrywania sztywności np. dla podjęcia decyzji:

tam gdzie sztywność = schemat niejawny tam gdzie nie = schemat jawny (tańszy)

Detekcja sztywności dla problemu nieliniowego

(dla liniowego = wystarczy rozwiązać problem własny macierzy układu równań)

$$\frac{du}{dt} = f(t, u) \quad \text{układ N równań } (u,f\text{-wektory})$$

w chwili t rozwiązanie $u^*(t)$ rozwiązanie chwilę później opisane przez odchylenie $\delta u(t)$ od u^* $u(t) = u^*(t) + \delta u(t)$

linearyzacja: zakładamy, że odchylenie małe, rozwijamy f(t,u) względem u wokół $f(t,u^*)$: [Taylor dla wektora]

$$f(t,u) = B + J(t)u(t) + \dots$$

$$[J(t)]_{ij} = \frac{\partial f^i}{\partial u_j}(t, u^*(t)) \leftarrow \text{macierz Jakobiego } [N \text{ na } N]$$

$$\frac{du}{dt} = f(t, u)$$

$$f(t,u) = B + J(t)u(t) + \dots$$

problem zlinearyzowany

$$\frac{du}{dt} = Au + B$$

B bez znaczenia dla stabilności rozwiązać problem własny A: dostaniemy wartości własne λ_i :

 $[J(t)]_{ij} = \frac{\partial f^i}{\partial u_i}(t, u^*(t))$

Aby rachunek się powiódł: $\Delta t \lambda_i$ musi leżeć w regionie stabilności używanej metody dla wszystkich *i*. Jeśli duża rozpiętość λ : problem będzie sztywny.

Przykład: nieliniowy układ równań z warunkowo występującą sztywnością

$$\begin{pmatrix} \frac{du^{(1)}}{dt} \\ \frac{du^{(2)}}{dt} \end{pmatrix} = \begin{pmatrix} -u^{(1)}u^{(2)} \\ \cos(u^{(1)}) - \exp(u^{(2)}) \end{pmatrix}$$

$$[J(t)]_{ij} = \frac{\partial f^{i}}{\partial u_{j}}(t, u^{*}(t))$$

$$J = \begin{pmatrix} -u^{(2)} & -u^{(1)} \\ -\sin(u^{(1)}) & -\exp(u^{(2)}) \end{pmatrix}$$

jeśli druga składowa **u** urośnie – macierz prawie diagonalna z szerokim zakresem wartości własnych - sztywność

Przykład detekcja sztywności dla: oscylatora van der Pola

$$u' = v$$

$$v' = \lambda(1 - u^2)v - u$$

$$J = \begin{pmatrix} 0 & 1 \\ -2\lambda vu - 1 & \lambda(1 - u^2) \end{pmatrix}$$

wartości własne:

$$w(t) = \frac{1}{2} \left(1 - u(t)^2 \right) \pm \frac{1}{2} \sqrt{(1 - u(t)^2)^2 - 8\lambda v(t)u(t) - 4}$$

$$w = \frac{1}{2} (1 - u^2) \pm \frac{1}{2} \sqrt{\lambda^2 (1 - u^2)^2 - 8\lambda vu - 4}$$

niebieskie i czarne: części rzeczywiste wartości własnych

