CS 205 Homework 2 -

Keith Lehman, kpl56@scarletmail.rutgers.edu

February 21, 2021

- 1. Prove or disprove: Every odd number is the difference of two squares.
 - Disproof: Using 1, the lowest squares are $1^2 = 1$ and $2^2 = 4$ which already have a difference of 3. Each successive square beyond these has a large and larger difference in between. Therefore, there does not exist two squares whose difference is equal to 1.
- 2. Prove or disprove: If x > 3 and y < 2, then $x^2 2y > 5$.
 - Proof: The lowest possible value of x is 4 so the lowest possible value of the first term is 16 or $(4)^2$. The largest possible value of y of 1, so the largest possible value of the second term is 2 or (2) * 1. Under these conditions, the left side is equal to 15, which is greater than 5. As x continues to rise and y continues to decline, this value will continue to rise, but the lowest possible value that can be found is 15.
- 3. Prove or disprove: For all real numbers x > 0, there exists a real number y such that x = y(y+1). Proof: x = y(y+1) can be rerranged as $y^2 + y - x$. Since x is a constant, this is in the form of a quadratic equation. The quadratic equation $x^2 + x + C$ (the base of the aforementioned one) has at least one real zero as long as $C \le 0.25$, so for the original equation, since the constant x is on the opposite side, as long as x is greater than -0.25 there will be a real number for y that satisfies the equation. Since the original restrictions are x > 0, and this shows that 0 > -0.25, the original statement is true.
- 4. Suppose 2y + 3x = 3y 4x, and x and y are not both zero. Prove that $y \neq 0$. Disproof: If y = 0, the equation would be reduced to 3x = -4x, which could be true if x = 0 but both numbers are not allowed to equal zero.
- 5. What is wrong with this "proof"?
 - While the statement does ask to prove that $x \neq 5$ AND $y \neq 12$, these conditions need to also be tested individually to make sure that under all cases, x can never be 5 and y can never be 12. Simply setting x = 5 and y = 9 will disprove the theory, as x + y = 14 even though x = 5, one of the terms x was not allowed to be.
- 6. What is wrong with this "proof"?
 - This proof only tests one specific case. When PROVING by contradiction, it must be shown why the contradiction can NEVER be true, not just one case. A wiser approach for this would be to show that squaring any real number always results in a positive value, which can never be less than 0.
- 7. Prove or disprove: If x is even and y is odd, then $y^2 x^2 = y + x$. Disproof: When x = 2 and y = 1, then $y^2 x^2 = 1 4 = -3$ while y + x = 2 + 1 = 3.
- 8. Let x and y be any real numbers.
 - (a) Show that $|x| \le y$ if and only if $-y \le x \le y$. Proof: For positive values of x, $|x| \le y$ can be represented as $x \le y$ and for negative values $-x \le y$. For the negative x equation, when both sides are divided by -1 the result is $x \ge -y$. This can be combined with the positive equation to arrive at $-y \le x \le y$. Therefore, the original statement is proven.
 - (b) Show that $-|x| \le x \le |x|$.
 - (c) Show that $|x+y| \le |x| + |y|$ (the "triangle inequality").
- 9. Prove that for every integer n, n^3 is even if and only if n is even.
 - Proof: Assume that an even integer can be presented as 2k, where k is another integer. An odd integer could be represented as 2k+1. If n is an even integer that can be expressed as 2k, $n^3 = (2k)^3 = 8k^3 = 2(4k^3)$. Therefore, the cube of an even integer will always be even. If m is an odd integer, m^3 would be equal to $(2k+1)^3 = 8k^3 + 12k^2 + 6k + 1$. Since $8k^3 + 12k^2 + 6k = 2(4k^3 + 6k^2 + 3k)$ is an integer that can be represented as 2(k), the +1 at the would mean that this an odd integer. Therefore, the cube of an odd integer will always be an odd integer.
- 10. Prove or disprove: If we color each of the integers from 1 to 8 two colors (say, red and blue), then for any coloring, there are three integers x < y < z that have the same color, and y x = z y (i.e., x, y, z formm an arithmetic progression). Proof: