Math 462 Homework 3

Paul Hacking

February 9, 2015

- (1) Consider the following isometries of \mathbb{R}^2 : R is rotation about the origin through angle θ counterclockwise, S is reflection in the x-axis, and T is translation by a vector $\mathbf{b} \in \mathbb{R}^2$. Give a precise geometric description of the following compositions (as a translation, rotation, reflection, or glide reflection).
 - (a) $T \circ R \circ T^{-1}$.
 - (b) $T \circ S \circ T^{-1}$.
 - (c) $R \circ S \circ R^{-1}$.
 - (d) $S \circ R \circ S$.

[Here $F \circ G$ denotes the composition of the functions F and G, i.e., $(F \circ G)(\mathbf{x}) = F(G(\mathbf{x}))$. And F^{-1} denotes the inverse of the function F, i.e., $F(\mathbf{x}) = \mathbf{y} \iff F^{-1}(\mathbf{y}) = \mathbf{x}$.]

- (2) For $T: \mathbb{R}^2 \to \mathbb{R}^2$ an isometry, the fixed locus of T is the set of points $\mathbf{x} \in \mathbb{R}^2$ such that $T(\mathbf{x}) = \mathbf{x}$. Describe the fixed locus for each type of isometry T (translation, rotation, reflection, and glide reflection).
- (3) Describe the following isometries geometrically.

(a)
$$R: \mathbb{R}^2 \to \mathbb{R}^2$$
, $R\begin{pmatrix} x \\ y \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} x+y \\ x-y \end{pmatrix}$.

(b)
$$S \colon \mathbb{R}^2 \to \mathbb{R}^2$$
, $S \begin{pmatrix} x \\ y \end{pmatrix} = \frac{1}{5} \begin{pmatrix} 3x - 4y \\ 4x + 3y \end{pmatrix}$.

(4) Determine algebraic formulas $T(\mathbf{x}) = A\mathbf{x} + \mathbf{b}$ for the following isometries T. (Here A is a 2×2 orthogonal matrix and $\mathbf{b} \in \mathbb{R}^2$ is a vector.)

- (a) Rotation about the point $\begin{pmatrix} 3 \\ 1 \end{pmatrix}$ through angle $\pi/4$ counterclockwise.
- (b) Reflection in the line y = 4.
- (c) Reflection in the line y = x + 2 followed by a translation parallel to the line through distance $3\sqrt{2}$ in the direction of increasing x. (This is a glide reflection.)
- (5) Describe the following isometries of \mathbb{R}^2 geometrically.

(a)
$$R \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} y+2 \\ -x+3 \end{pmatrix}$$
.

(b)
$$S \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -y+4 \\ -x-3 \end{pmatrix}$$
.

(6) Let $r_L : \mathbb{R}^2 \to \mathbb{R}^2$ and $r_M : \mathbb{R}^2 \to \mathbb{R}^2$ be the isometries given by reflection in lines L and M in \mathbb{R}^2 . Suppose L and M meet in a point P such that the angle from L to M is θ (measured counterclockwise). Show that the composition $r_M \circ r_L$ is the rotation about P through angle 2θ counterclockwise.

[Hint: One way to do this is to choose coordinates so that the point P is the origin and the line L is the x-axis. Now compute using matrices: writing $r_L(\mathbf{x}) = A\mathbf{x}$ and $r_M(\mathbf{x}) = B\mathbf{x}$, we have $r_M \circ r_L(\mathbf{x}) = BA\mathbf{x}$.]

- (7) As in the previous question, let r_L and r_M be the isometries of \mathbb{R}^2 given by reflection in lines L and M in \mathbb{R}^2 . Suppose the lines L and M are parallel. Give a precise geometric description of the composition $r_M \circ r_L$.
- (8) Let $R: \mathbb{R}^2 \to \mathbb{R}^2$ be the isometry of \mathbb{R}^2 given by rotation about a point P through angle θ counterclockwise. Let $S: \mathbb{R}^2 \to \mathbb{R}^2$ be the isometry given by rotation about a point Q through angle θ clockwise.
 - (a) Show that the composition $S \circ R$ is a translation, i.e., $S(R(\mathbf{x})) = \mathbf{x} + \mathbf{b}$ for some vector $\mathbf{b} \in \mathbb{R}^2$.
 - (b) Show that if the angle θ is small, then the translation vector **b** has length approximately $\theta \cdot d(P,Q)$ and is approximately perpendicular to the vector \overrightarrow{PQ} . (Here d(P,Q) denotes the distance from P to Q.) [This fact is sometimes useful when moving furniture.]

(c) What happens for $\theta = \pi$?

[Hint: By choosing coordinates appropriately we can assume P is the origin and Q lies on the x-axis. Now compute by expressing R and S in the form $T(\mathbf{x}) = A\mathbf{x} + \mathbf{b}$ where A is a 2×2 orthogonal matrix and $\mathbf{b} \in \mathbb{R}^2$ is a vector. For part (b) use the approximations $\cos(\theta) \simeq 1$ and $\sin(\theta) \simeq \theta$ for θ small.]