

Présentation de l'étude

Contexte

Client:

olist Olist Store solution de vente sur les marketplaces en ligne

Mission: fournir aux équipes d'e-commerce une segmentation des clients qu'elles pourront utiliser au quotidien pour leurs campagnes de communication.

⇒ Base de données anonymisée comportant des informations sur l'historique de commandes, les produits achetés, les commentaires de satisfaction, et la localisation des clients.

Problématique

Problématique : Comprendre les différents types d'utilisateurs

grâce à leur comportement d'achat et à leurs données personnelles

Objectifs: Segmentation des clients

- Description actionnable de la segmentation et de sa logique sous-jacente pour une utilisation optimale,
- **Proposition de contrat de maintenance** basée sur une analyse de la stabilité des segments au cours du temps.

Méthodologie

Traitements et Analyses des données

- Mise en forme & Cleaning
- Exploration

Essais de différentes segmentation

- Segmentation globale
- Segmentation RFM
- Modèles : DBSCAN, K-MEANS

Finalisation de l'étude

- Sélection du modèle final
- Définition des groupes
- Maintenance du modèle

Traitements Analyses des données

Mise en forme & Cleaning

9 jeux (commandes, clients, vendeurs, produits)

Data (119151, 37) Data (119151, 46) Data (119151, 46) **X_features** (96096, 17)

Mise en forme des données

Renommage des variables communes

Suppression des lignes dupliquées

Concaténation de tous les jeux

Création / transformation de features

- Paiement : Nombre (par type)
- Transport : Date estimée de livraison, Distance des vendeurs
- Produits : Taille description de catégorie
- Comportements clients : Taille de commentaires, Nombre de jours off

Traitements des valeurs manquantes

Variable catégorielle

→ "inconnu"

Variable numérique → Médiane de la colonne en filtrant les produits de même ID / catégorie

Finalisation des features

Groupement des données par l'unique_ID des clients

Calcul de features selon :

→ RFM
→ Paiements
→ Vendeur / Transport
→ Description des produits
→ Retour clients

Mise en forme & Cleaning

#	Column	Non-Null Count	Dtype
0	recence	96096 non-null	int64
1	frequence	96096 non-null	int64
2	montant	96096 non-null	float64
3	n payment	96096 non-null	float64
3 4 5 6	pay credit card	96096 non-null	uint8
5	pay debit card	96096 non-null	uint8
6	pay boleto	96096 non-null	uint8
7	pay voucher	96096 non-null	uint8
8	seller distance	96096 non-null	float64
9	freight value	96096 non-null	float64
10	estimated_delivery_days	96096 non-null	int64
11	product description lenght	96096 non-null	†loat64
12	product category lenght	96096 non-null	float64
13	product photos qty	96096 non-null	float64
14	day off	96096 non-null	float64
15	review score	96096 non-null	float64
16	review_comment_lenght	96096 non-null	float64

Données: (96096, 17)

RFM

Paiements

- Vendeur / Transport
- Description des produits
- Retour clients

Exploration

Le nombre de jours passés après la dernières commande varient fortement avec une moyenne de 287 jours.

Les clients paient généralement en 2, 3, 4 fois.

Les clients donnent en général une bonne note.

En général, les produits achetés :

- présentent peu de photos
- sont vendus par des vendeurs en moyenne à 10000km des clients

Exploration

recence	1	0.01	0.01	0.05	-0.01	-0.05	0.02	0.02	0.03	-0.05	0.23	-0.04	-0.04	-0	-0.06	-0.03	0.02
frequence	0.01	1	0.29	0.02	0.5	0.02	0.21	0.62	0.03	0.02	0.04	-0.05	0.04	-0.07	0.14	-0.08	0.05
montant	0.01	0.29	1	0.27	0.15	-0.01	0.02	0.21	0.04	0.38	0.08	0.16	0.04	0.02	0.05	-0.03	0.05
n_payment	0.05	0.02	0.27	1	0.32	-0.08	-0.29	-0.07	0.06	0.21	0.1	0.04	0.01	0	0.02	-0.03	0.05
pay_credit_card	-0.01	0.5	0.15	0.32	1	-0.14	-0.5	-0.02	0.02	0.03	0.03	-0.04	0.02	-0.06	0.13	-0.06	0.04
pay_debit_card	-0.05	0.02	-0.01	-0.08	-0.14	1	-0.04	-0.01	-0.01	-0.01	-0.03	0	0	-0.01	0.01	0.01	0.01
pay_boleto	0.02	0.21	0.02	-0.29	-0.5	-0.04	1	-0.05	0.01	-0	0.02	-0.01	0.03	-0.02	0.03	-0.02	0.01
pay_voucher	0.02	0.62	0.21	-0.07	-0.02	-0.01	-0.05	1	0.01	0	0.01	-0.01	-0	-0.01	0.01	-0.01	0.01
seller_distance	0.03	0.03	0.04	0.06	0.02	-0.01	0.01	0.01	1	0.17	0.26	0.01	0.02	-0.02	0.04	-0.02	0.01
freight_value	-0.05	0.02	0.38	0.21	0.03	-0.01	-0	0	0.17	1	0.29	0.09	0.06	0.02	0.02	-0.04	0.04
estimated_delivery_days	0.23	0.04	0.08	0.1	0.03	-0.03	0.02	0.01	0.26	0.29	1	-0	0.03	-0.04	0.06	-0.05	0.04
product_description_lenght	-0.04	-0.05	0.16	0.04	-0.04	0	-0.01	-0.01	0.01	0.09	-0	1	0.02	0.13	-0.05	0.02	-0
product_category_lenght	-0.04	0.04	0.04	0.01	0.02	0	0.03	-0	0.02	0.06	0.03	0.02	1	0.01	0	0.02	-0.01
product_photos_qty	-0	-0.07	0.02	0	-0.06	-0.01	-0.02	-0.01	-0.02	0.02	-0.04	0.13	0.01	1	-0.05	0.03	-0.01
day_off	-0.06	0.14	0.05	0.02	0.13	0.01	0.03	0.01	0.04	0.02	0.06	-0.05	0	-0.05	1	0.01	-0
review_score	-0.03	-0.08	-0.03	-0.03	-0.06	0.01	-0.02	-0.01	-0.02	-0.04	-0.05	0.02	0.02	0.03	0.01	1	-0.4
review_comment_lenght	0.02	0.05	0.05	0.05	0.04	0.01	0.01	0.01	0.01	0.04	0.04	-0	-0.01	-0.01	-0	-0.4	1
	recence	frequence	montant	n_payment	pay_credit_card	pay_debit_card	pay_boleto	pay_voucher	seller_distance	freight_value	estimated_delivery_days	product_description_lenght	product_category_lenght	product_photos_qty	day_off	review_score	review_comment_lenght
			varial	alac n	a nrác	cantai	at nac	· da fa	rta a	srrála:	tion						10

Les variables ne présentent pas de forte corrélation

Essais de différentes segmentations

Principe:

Segmentation sur l'ensemble des features (17 features)

Essais de 2 modèles :

- DBSCAN
- K-MEANS

1. DBSCAN

- a. Estimation des paramètres : eps & min_sample
 - min_sample : ~2 fois la taille du jeu ⇒ 34
 - **eps:** Points triés par distance jusqu'au 34e voisin le plus proche

⇒ 125

1. DBSCAN

b. Implémentation du modèle

Nombre de clusters: 14

- ⇒ Assez grand mais acceptable
- Silhouette Coefficient: -0.752
- Score Davies Bouldin: 2.426

⇒ Scores pas bons

⇒ Modèle pas pertinent pour les données

2. K-MEANS

a. Estimation du nombre de cluster

$$\Rightarrow$$
 N_clusters = 3

2. K-MEANS

b. Implémentation du modèle

• Nombre de clusters : 3

Silhouette Coefficient: 0.564

Silhouette Plot of KMeans Clustering for 96096 Samples in 3 Centers

--- Average Silhouette Score

0

-0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 silhouette coefficient values

- \Rightarrow score assez bon
- clusters avec un silhouette score > silhouette moyen
 ⇒ chaque groupe bien éloigné des autres
- épaisseurs du tracé des silhouette des clusters similaires ⇒ taille des clusters assez similaires entre eux.

Score Davies Bouldin: 0.543

- \Rightarrow score assez bon
- **⇒** Modèle pertinent pour les données

2. K-MEANS c. Interpretation

Comportements différents pour les 3 groupes obtenus

⇒ Bonne segmentation des clients

Principe:

Segmentation sur 3 features :

- Récence : date de la dernière commande (en nombre de jours)
- Fréquence : fréquence de commandes
- Montant : montant total de tous les commandes passées

Essais de 2 modèles:

- DBSCAN
- K-MEANS

1. DBSCAN

- a. Estimation des paramètres : eps & min_sample
 - min_sample : ~2 fois la taille du jeu ⇒ 6
 - **eps**: Points triés par distance jusqu'au 6e voisin le plus proche

⇒ 1.25

1. DBSCAN

b. Implémentation du modèle

- Nombre de clusters : 110 ⇒ Trop grand
- Silhouette Coefficient: -0.660
- Score Davies Bouldin: 1.784

⇒ Scores pas bon

⇒ Modèle pas pertinent pour les données

2. K-MEANS

a. Estimation du nombre de cluster

⇒ N_clusters = 5 (meilleurs scores)

2. K-MEANS

b. Implémentation du modèle

- Nombre de clusters : 5
- Silhouette Coefficient: 0.465

- ⇒ score moyennement bon
- clusters avec un silhouette score > silhouette moyen
 ⇒ chaque groupe bien éloigné des autres
- épaisseurs du tracé des silhouette des clusters non similaires
 - \Rightarrow tailles des clusters pas similaire entre eux.

Score Davies Bouldin: 0.655

- ⇒ score moyennement bon
- ⇒ Modèle pertinent pour les données

2. K-MEANS

c. Interpretation

- Comportements assez similaires pour les groupes 0 et 1 (seule différence la date de dernière commande)
- Comportements assez similaires pour les groupes 3 et 4 (seule différence la date de dernière commande)
- ⇒ Segmentation des clients moyennement bonne

Finalisation de l'étude

Choix de la Segmentation

⇒ Segmentation globale avec K-MEANS

Segmentation globale avec K-MEANS

PETITS CLIENTS

- Comportement RFM: peu d'achats, petits montants, dernière commande pas trop longtemps.
- Préférence de paiement : en peu de fois et plutôt par carte de crédit et/ou carte de débit.
- <u>Type de produits consultés</u>: Qté d'informations (description, catégorie) moyennes et beaucoup de photos.
- <u>Type de vendeurs fréquentés</u>: vendeurs proches, avec très peu ou pas de frais de livraison et peu de temps de livraison.
- Retour : bonnes notes, très peu de commentaires.

MOYENS CLIENTS

- <u>Comportement RFM</u>: achats à fréquence moyenne, montants élevés, dernière commande <u>depuis un</u> grand moment.
- <u>Préférence de paiement</u>: en plusieurs fois et par carte de crédit et/ou par voucher.
- <u>Type de produits consultés</u>: peu de description, autres d'informations (catégorie, photo) moyennes.
- <u>Type de vendeurs fréquentés</u>: vendeurs moyennement loins, avec des frais et temps de livraison assez chers.
- Retour : notes moyennes, beaucoup de commentaires.

GROS CLIENTS

- <u>Comportement RFM</u>: achats très fréquents, montants élevés, dernière commande depuis un certain temps.
- <u>Préférence de paiement :</u> versements moins nombreux et paiement par carte de crédit et/ou par billets.
- <u>Type de produits consultés</u>: bonne décription, <u>catégories bien renseignés</u>, <u>avec</u> Qté moyenne <u>de photos</u>.
- <u>Type de vendeurs fréquentés</u>: vendeurs plus loins, donc avec des frais et temps de livraison plus conséquents.
- **Retour :** notes moyennes, peu de commentaires.

Maintenance du modèle

- Modèle de base : K-MEANS (n=3) fitté sur des données de référence (6 premiers mois)
- Ajout de données par mois
- Modèle : K-MEANS (n=3) fitté sur les nouvelles données
- **Evaluation:**
 - ⇒ ARI (groupes base % groupes nouv.)
- ⇒ Modèle stable sur la durée des données
- ⇒ Tendance négative su fur et à mesure du temps

Améliorations

- Essais d'autres features (selon les besoins, en concertation avec eq. marketing)
- Essais de segmentation avec d'autres features (ex : RFM + notes)
- Essais d'autres modèles de segmentation
- Essais d'autres évaluateurs (ex : Calinski_Harabasz score)
- Correction aux cas où modèle n'est plus stable :
 - ⇒ vérifier minutieusement les données à partir de la date,
 - ⇒ réaliser un autre modèle à partir de cette date.

MERCI

Questions

