Manipal University Jaipur

Department of Mathematics and Statistics

B.Tech. First Year

Assignment – I, MAS1001_Calculus and Matrices

Topics: Matrix Algebra: Rank, Inverse of a matrix, and solution of linear simultaneous equations. Eigenvalues and Eigenvectors of a matrix, Cayley-Hamilton theorem. Curvatures.

Q. No.	Questions Script	Answer
1.	Find the inverse of the matrix $A = \begin{bmatrix} 2 & 3 & 4 \\ 4 & 3 & 1 \\ 1 & 2 & 4 \end{bmatrix}$ by using elementary row transformations.	
2.	Find the inverse of the matrix $A = \begin{bmatrix} -1 & -3 & 3 & -1 \\ 1 & 1 & -1 & 0 \\ 2 & -5 & 2 & -3 \\ -1 & 1 & 0 & 1 \end{bmatrix}$ by using elementary row transformations.	
3.	Find the value of b such that the rank of the matrix A is 3. $A = \begin{bmatrix} 1 & 1 & -1 & 0 \\ 4 & 4 & -3 & 1 \\ b & 2 & 2 & 2 \\ 9 & 9 & b & 3 \end{bmatrix}$	b = 2, -6
4.	Find the rank of matrix $A = \begin{bmatrix} 1 & 3 & -1 & 2 \\ 0 & 11 & -5 & 3 \\ 2 & -5 & 3 & 1 \\ 4 & 1 & 1 & 5 \end{bmatrix}$	Rank = 2
5.	Find the rank of a matrix $A = \begin{bmatrix} 2 & -3 & 7 \\ 3 & 1 & -3 \\ 2 & 19 & -47 \end{bmatrix}$	Rank =2
6.	Discuss the consistency of the system and if consistent, solve the equations: x+y+z=6 x+2y+3z=14 2x+4y+7z=30	x=0, y=4, z=2
7.	Discuss the consistency of the system and if consistent, solve the equations: 2x-3y+7z=5 3x+y-3z=13 2x+19y-47z=32	No Solution.

8.	Investigate that for what value of λ & μ , the system of equations: $x+y+z=6, \\ x+2y+3z=10,$	(a) No Solution for $\lambda=3$, $\mu\neq 10$. (b) Unique Solution
	$x+2y+\lambda z=\mu,$ have (i) No Solution (ii) a Unique Solution (iii) an infinite solution.	for $\lambda \neq 3$ and for any value of μ . (c) Infinite Solution for λ =3, μ =10.
9.	Using Loop Current Method in an electric circuit, the following equations are obtained: $7i_1-i_2=10,\\i_1-6i_2+3i_3=0,\\3i_2-13i_3=20$ Test the consistency of the system and if possible, find the values of the current i_1 ,	System is consistent and have unique solution: i_1 =-1.68amp, i_2 =-0.62 amp & i_3 =1.34 amp
	$i_2 \& i_3$.	amp
10.	Test for consistency of the following system of equations 2x-3y+5z=1, 3x+y-z=2, x+4y-6z=1 and, if consistent, solve the system.	Ans. x=7-2t/11, y= 1+17t/11, z=t, where t is a parameter
11.	Find the eigen values and eigen vectors for the matrix A: $A = \begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$	$\lambda = 0, 3, 15$ $\begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \\ -2 \end{bmatrix} \begin{bmatrix} 2 \\ -2 \\ 1 \end{bmatrix}$
12.	Find the eigen values and eigen vectors for the matrix A: $A = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 0 & 0 & 1 \end{bmatrix}$	$ \lambda=1, 1, 3 \begin{bmatrix} 1\\0\\1\end{bmatrix} \begin{bmatrix} 1\\-1\\0\end{bmatrix} \begin{bmatrix} 1\\1\\0\end{bmatrix} $
13.	Verify Cayley-Hamilton theorem for the matrix A:	B=A ² +A+I
	$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{bmatrix}$	$B = \begin{bmatrix} 16 & 27 & 34 \\ 27 & 50 & 61 \\ 34 & 61 & 77 \end{bmatrix}$
	Hence express B = A^8 - $11A^7$ - $4A^6$ + A^5 + A^4 - $11A^3$ - $3A^2$ + $2A$ + 1 as a quadratic polynomial in A, also find B.	
14.	Verify the Cayley-Hamilton theorem for the matrix A and, hence, find A ⁻¹	$A^{-1} = \frac{1}{4} \begin{bmatrix} 3 & 1 & -1 \\ 1 & 3 & 1 \\ -1 & 1 & 3 \end{bmatrix}$
	$A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$	
15.	Find the radius of curvature at the point $(\frac{3a}{2}, \frac{3a}{2})$ of the curve $x^3 + y^3 = 3axy$.	$\frac{3a}{8\sqrt{2}}$ in magnitude
16.	Show that the radius of curvature for the curve $\sqrt{x}+\sqrt{y}=\sqrt{a}$ at $\left(\frac{a}{4},\frac{a}{4}\right)$ is $\frac{a}{\sqrt{2}}$.	
17.	Find the circle of curvature of the curve $2xy + x + y = 4$ at (1,1)	$ \frac{1}{\left(x - \frac{5}{2}\right)^2 + \left(y - \frac{5}{2}\right)^2 = \frac{9}{2} } $
18.	Find the circle of curvature at origin for the curve $y = \frac{x(1-x)}{1+x^2}$	$(x-1)^2 + (y+1)^2 = 2$

19.	If ρ be the radius of curvature at any point P on the parabola $y^2=4ax$ and S be its focus, then show that ρ^2 varies as $\left(SP\right)^3$.	
20.	Show that, for the curve $x = a(3 \cos t - \cos 3t)$; $y = a(3 \sin t - \sin 3t)$, the radius of curvature at any point 't' is $3a \sin t$.	
21.	Find the radius of curvature at any point of the cycloid $x=a(\theta+sin\theta)$, $y=a(1-cos\theta)$.	4a cos $(\theta/2)$
22.	If ρ_1 and ρ_2 be the radii of curvature at the ends of a focal chord of the parabola $y^2=4ax$, then show that $(\rho_1)^{\frac{-2}{3}}+(\rho_2)^{\frac{-2}{3}}=(2a)^{\frac{-2}{3}}$.	
23.	Find the centre and circle of curvature of the curve $\sqrt{x}+\sqrt{y}=\sqrt{a}$ at $\left(\frac{a}{4},\frac{a}{4}\right)$.	$\left(x - \frac{3a}{4}\right)^2 + \left(y - \frac{3a}{4}\right)^2$ $= \frac{a^2}{2}$
24.	Find the centre of the curve $y = x^3 - 6x^2 + 3x + 1$ at $\left(\frac{a}{4}, \frac{a}{4}\right)$.	$\left(-36, \frac{-43}{6}\right)$