MATE 5201: Tarea 5

Due on 2 de diciembre

Prof. Alejandro Velez, C41, 2 de diciembre

Sergio Rodriguez

Problem 1

(8 puntos) – Dado $\{a_n] \in \mathbb{R}$ sucesion con $a_n > 0$ para $n \geq N_0$ (algun $N_0 \in \mathbb{N}$), pruebe que si $\sum a_k$ converge, entonces $\sum_{k=1}^{\infty} \frac{\sqrt{|a_k|}}{k}$ converge.

Prueba:

MEP

Problem 2

 $(8 \ puntos) - \textit{Sea} \ \{a_n\} \in \mathbb{N} \ \textit{sucesion de numeros naturales con} \ a_n \leq n-1 \ \textit{para cada} \ n \in \mathbb{N}.$ Demuestre que $\sum_{k=1}^{\infty} \frac{a_k}{k!} \in \mathbb{Q} \ \textit{si y solo si existe} \ N_0 \in \mathbb{N} \ \textit{tal que} \ a_n = n-1 \ \textit{para todo} \ n \geq N_0.$

Prueba:

MEP

Problem 3

(16 puntos) – Dado $a \in (0,1]$ y s > 1, definimos la funcion a-zeta de Riemann por:

$$\zeta(s;a) := \sum_{k=0}^{\infty} \frac{1}{(a+k)^s} \tag{1}$$

La funcion zeta de Riemann clasica es cuando a=1, y se denota por $\zeta(s)$.

(a) - (4 puntos) – Pruebe que $\zeta(\cdot;\cdot)$ esta bien definida.

Prueba:

Note que como a es positivo, $\frac{1}{(a+k)^s} \leq \frac{1}{k^s}$, pero $\sum_{k=1}^{\infty} \frac{1}{k^s}$ converge por que es una p-serie con p=s>1. Entonces $\zeta(s;a)$ converge.

Ahora note que dados $s_1>1, s_2>1, a_1, a_2\in (0,1],$

$$\begin{aligned} &(s_1,a_1) = (s_2,a_2)\\ \Longrightarrow s_1 = s_2 \wedge a_1 = a_2 \end{aligned} \tag{2}$$

Ahora usaremos induccion. Note que $a_1^{s_1}=a_2^{s_2}$. Ahora:

$$S_{j}(s_{1}, a_{1}) = S_{j}(s_{2}, a_{2})$$

$$\Rightarrow \sum_{k=0}^{j} (a_{1} + k)^{s_{1}} = \sum_{k=0}^{j} (a_{2} + k)^{s_{2}}$$

$$\Rightarrow \sum_{k=0}^{j} (a_{1} + k)^{s_{1}} + (a_{1} + j + 1)^{s_{1}} = \sum_{k=0}^{j} (a_{2} + k)^{s_{2}} + (a_{2} + j + 1)^{s_{2}}$$

$$\Rightarrow \sum_{k=0}^{j+1} (a_{1} + k)^{s_{1}} = \sum_{k=0}^{j+1} (a_{2} + k)^{s_{2}}$$

$$\Rightarrow S_{j+1}(s_{1}, a_{1}) = S_{j+1}(s_{2}, a_{2})$$
(3)

Entonces:

$$\begin{split} S_n(s_1,a_1) &= S_n(s_2,a_2) \\ \Longrightarrow \lim_{n \to \infty} S_n(s_1,a_1) &= \lim_{n \to \infty} S_n(s_2,a_2) \end{split} \tag{4}$$

 $\div \zeta(s_1;a_1) = \zeta(s_2;a_2)$ y ζ esta bien definida.

MEP

(b) - (6 puntos) – Demuestre que
$$\sum\limits_{j=1}^{m} \zeta \Big(s; rac{j}{m}\Big) = m^s \zeta(s).$$

Prueba:

MEP

(c) - (6 puntos) – Pruebe que
$$\sum\limits_{k=1}^{\infty} \left(-1\right)^{k-1} k^{-s} = \left(1-2^{1-s}\right) \zeta(s).$$

Prueba:

MEP

Problem 4

(8 puntos) - Dadas las sucesiones $\{a_n\}, \{b_n\} \subseteq \mathbb{R}$, si $\sum a_k$ converge y $\{b_n\}$ es sucesion monotonica acotada, demuestre que $\sum a_k b_k$ converge.

Prueba:

Primero demostraremos la formula de sumatorias parciales. Si $\{a_n\},\{b_n\}$ son sucesiones, y $A_n:=\sum_{k=0}^n a_k$ es la sucesion de sumas parciales de a_n , tenemos que:

$$\sum_{n=p}^{q} a_n b_n = \sum_{n=p}^{q-1} A_n (b_n - b_{n+1}) + A_q b_q - A_{p-1} b_p \tag{5}$$

Prueba:

$$\begin{split} \sum_{n=p}^{q} a_n b_n &= \sum_{n=p}^{q} (A_n - A_{n-1}) b_n \\ &= \sum_{n=p}^{q} A_n b_n - \sum_{n=p-1}^{q-1} A_n b_{n+1} \\ &= \sum_{n=p}^{q-1} A_n b_n - \sum_{n=p-1}^{q-1} A_n b_{n+1} + A_q b_q \\ &= \sum_{n=p}^{q-1} A_n b_n - \sum_{n=p}^{q-1} A_n b_{n+1} + A_q b_q - A_{p-1} b_p \\ &= \sum_{n=p}^{q-1} A_n (b_n - b_{n+1}) + A_q b_q - A_{p-1} b - p \end{split}$$

Ahora demostraremos que $\sum a_k b_k$ converge cuando b_k es no-creciente.

Como $\sum a_k$ converge, A_k es acotada. Entonces sea M>0 tal que $|A_k|< M$. Ademas, al ser monotonica y acotada, b_n converge. Sea $\lim_{n\to\infty}b_n=L$. Entonces $\exists N\in\mathbb{N}$ tal que $n\geq N\Longrightarrow |b_n-L|<\frac{\varepsilon}{2M}-L$.

Entonces tenemos que, para $n>m\geq N$, tenemos que:

$$\left| \sum_{k=m+1}^{n} a_{k} b_{k} \right| = \left| \sum_{k=m+1}^{n-1} A_{k} (b_{k} - b_{k+1}) + A_{n} b_{n} - A_{m} b_{m+1} \right|$$

$$\leq M \left| \sum_{k=m+1}^{n-1} (b_{k} - b_{k+1}) + b_{n} - b_{m+1} \right|$$

$$= M |b_{n} + b_{n+1}| = M |(b_{n} - L) + (b_{n+1} - L) + 2L|$$

$$< M \left| \frac{\varepsilon}{2M} - L + \frac{\varepsilon}{2M} - L + 2L \right| = M \left| \frac{\varepsilon}{M} \right| < \varepsilon$$
(7)

Entonces, por el criterio de Cauchy, $\sum a_k b_k$ converge.

MEP