МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ ЛЬВІВСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ ІМЕНІ ІВАНА ФРАНКА

Факультет прикладної математики та інформатики

Кафедра програмування

Індивідуальне завдання № 6 Нелінійні моделі

Виконала: студентка групи ПМОм-11 Кравець Ольга

Хід роботи

Варіант - 3

Визначила variant. Встановила set.seed та згенерувала redundant.

```
> variant=3
> variant
[1] 3
> set.seed(variant)
> redundant=floor(runif(1,5,25))
> redundant
[1] 8
```

Завдання 1.

Модифікувала дані Auto

```
> set.seed(variant)
> Auto_new=Auto[-sample(1:length(Auto[,1]), round((redundant / 100) * length(Auto[,1]))), ]
> fix(Auto new)
```

	row.names	mpg	cylinders	displacement	horsepower	weight	acceleration	year	origin	name	varll	var12	var13
1	1	18	8	307	130	3504	12	70	1	chevrolet chevelle malibu			
2	2	15	8	350	165	3693	11.5	70	1	buick skylark 320			
3	3	18	8	318	150	3436	11	70	1	plymouth satellite			
4	4	16	8	304	150	3433	12	70	1	amc rebel sst			
5	5	17	8	302	140	3449	10.5	70	1	ford torino			
6	6	15	8	429	198	4341	10	70	1	ford galaxie 500			
7	7	14	8	454	220	4354	9	70	1	chevrolet impala			
8	8	14	8	440	215	4312	8.5	70	1	plymouth fury iii			
9	9	14	8	455	225	4425	10	70	1	pontiac catalina			
10	10	15	8	390	190	3850	8.5	70	1	amc ambassador dpl			
11	11	15	8	383	170	3563	10	70	1	dodge challenger se			
12	13	15	8	400	150	3761	9.5	70	1	chevrolet monte carlo			
13	14	14	8	455	225	3086	10	70	1	buick estate wagon (sw)			
14	16	22	6	198	95	2833	15.5	70	1	plymouth duster			
15	17	18	6	199	97	2774	15.5	70	1	amc hornet			
16	18	21	6	200	85	2587	16	70	1	ford maverick			
17	19	27	4	97	88	2130	14.5	70	3	datsun p1510			
18	20	26	4	97	46	1835	20.5	70	2	volkswagen 1131 deluxe sedan			

Використовуючи poly(), встановила кубічну поліноміальну регресію для передбачення mpg за допомогою horsepower.

Результати регресії: третій степінь не ϵ значущим для моделі, оскільки його значення $\Pr(>|t|) = 0.3991$ перевищу ϵ поріг 0.05.

Побудувала графік даних та поліноміальної регресії.

```
> horsepower_sorted = sort(Auto_new$horsepower)
> predicted_mpg_sorted = predict(PolReg, newdata = data.frame(horsepower = horsepower_sorted))
> plot(Auto_new$horsepower, Auto_new$mpg, xlab = "Horsepower", ylab = "MPG", pch = 16, col = "blue")
> lines(horsepower_sorted, predicted_mpg_sorted, col = "red", lwd = 2)
```


Побудувала поліноміальні моделі для степенів 1-15 і їхні RSS.

```
> rss values = numeric(15)
> for (d in 1:15) {
    model = lm(mpg ~ poly(horsepower, d, raw = TRUE), data = Auto new)
    predictions = predict(model, newdata = Auto new)
    residuals = Auto new$mpg - predictions
    rss_values[d] = sum(residuals^2)
> for (d in 1:15) {
   cat(sprintf("%d\t%.2f\n", d, rss values[d]))
        8926.08
2
        7062.84
3
        7048.77
        7010.73
4
        6841.03
5
        6768.89
6
        6701.40
        6692.02
        6677.53
9
10
        6664.46
11
        6651.97
12
        6651.97
        6650.06
13
14
        6650.06
15
        6649.35
```

На основі перехресної перевірки вибрала «оптимальний» степінь для поліноміальної регресії.

3 графіка видно, що найнижча помилка досягається при степенях від 3 до \sim 10. Там помилка є стабільно низькою та майже не змінюється. Після степеня 12-13 помилка стрімко зростає, особливо при 15. Оптимальний степінь полінома - 3 або трохи більший (до 6-8), оскільки в цьому діапазоні помилка мінімальна і модель ще не перенавчається.

Використовуючи bs(), пристосувала сплайн регресію для прогнозування mpg за допомогою horsepower.

```
> knots = quantile(Auto_new$horsepower, probs = c(0.25, 0.5, 0.75))
> SplineReg = lm(mpg ~ bs(horsepower, knots = knots), data = Auto new)
> summary(SplineReg)
Call:
lm(formula = mpg ~ bs(horsepower, knots = knots), data = Auto new)
Residuals:
              1Q Median
    Min
-15.7146 -2.5515 -0.2403 2.2368 15.1387
Coefficients:
                              Estimate Std. Error t value Pr(>|t|)
                                       1.979 16.502 < 2e-16 ***
(Intercept)
                                32.650
bs(horsepower, knots = knots)1
                                5.635
                                           3.511 1.605
                                                           0.109
bs(horsepower, knots = knots)2
                               -2.059
                                           2.027 -1.016
                                                            0.310
                                           2.282 -4.758 2.85e-06 ***
bs(horsepower, knots = knots)3 -10.860
bs(horsepower, knots = knots)4 -16.685
                                           2.777 -6.007 4.69e-09 ***
                                           3.781 -6.117 2.52e-09 ***
bs(horsepower, knots = knots)5 -23.128
bs(horsepower, knots = knots)6 -18.265
                                          2.860 -6.386 5.37e-10 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 4.354 on 354 degrees of freedom
Multiple R-squared: 0.6973, Adjusted R-squared: 0.6922
F-statistic: 135.9 on 6 and 354 DF, p-value: < 2.2e-16
```

Побудувала графік даних та отриманої сплайн регресії.

```
> horsepower_grid = sort(Auto_new$horsepower)
> spline_predictions = predict(SplineReg, newdata = data.frame(horsepower = horsepower_grid))
> plot(Auto_new$horsepower, Auto_new$mpg, pch = 16, col = "blue", xlab = "Horsepower", ylab = "MPG")
> lines(horsepower grid, spline predictions, col = "red", lwd = 2)
```


Пристосувала сплайн регресію для діапазону ступенів свободи та навела відповідні RSS.

```
> rss spline = numeric(13)
> for (df in 3:15) {
   model = lm(mpg ~ bs(horsepower, df = df), data = Auto new)
  preds = predict(model, newdata = Auto new)
  residuals = Auto new$mpg - preds
+ rss spline[df - 2] = sum(residuals^2)
+ }
> for (i in 1:13) {
   cat(sprintf("%d\t%.2f\n", i + 2, rss spline[i]))
3
       7048.77
      6874.26
      6724.81
      6711.22
7
      6730.13
8
      6685.25
       6566.16
10
       6585.23
     6585.23
6516.58
11
12
      6412.70
     6449.28
6427.76
14
15 6417.09
```

На основі перехресної перевірки вибрала найкращий ступінь свободи для сплайн регресії на цих даних.

```
> set.seed(variant)
> cv_error_spline = numeric(13)
> for (df in 3:15) {
+ glm_fit = glm(mpg ~ bs(horsepower, df = df), data = Auto new)
  cv_result = cv.glm(Auto_new, glm_fit, K = 10)
   cv error spline[df - 2] = cv result$delta[1]
> for (i in 1:13) {
   cat(sprintf("%d\t%.2f\n", i + 2, cv_error_spline[i]))
+ }
       19.88
3
4
       19.54
5
       19.46
      19.42
7
      19.76
     19.55
     19.69
19.98
19.87
10
11
12
      19.69
13
      19.14
      19.83
14
```

Найкращий ступінь свободи = 13, оскільки помилка = 19.14 - найменший серед усіх.

Порівняла найкращу поліноміальну регресію та найкращу сплайн регресію.

```
> set.seed(variant)
> auto poly = poly(Auto_new%horsepower, 6, raw = TRUE)
> auto_poly_model = glm(Auto_new%mpg ~ auto_poly)
> auto_poly_summary = summary(auto_poly_model)
> approx_cv_error = auto_poly_summary%dispersion * (nrow(Auto_new) - auto_poly_summary%df[1]) / nrow(Auto_new)
> approx_cv_error
[1] 18.75039
> set.seed(variant)
> auto_spline = bs(Auto_new%horsepower, df = 13)
> auto_spline = bs(Auto_new%norsepower, df = 13)
> auto_spline = summary = summary(auto_spline)
> auto_spline_summary = summary(auto_spline_model)
> approx_cv_error_spline = auto_spline_summary$dispersion * (nrow(Auto_new) - auto_spline_summary$df[1]) / nrow(Auto_new)
> approx_cv_error_spline
[1] 17.86504
```

Сплайн-регресія (df=13) показала меншу середню помилку (17.87) порівняно з поліноміальною регресією ступеня 6 (18.75), тому вона ϵ точнішою моделлю.

Завдання 2.

Застосувала метод підгонки для моделі множинної лінійної регресії.

Згенерувала предиктори, визначила є, обчислила залежну змінну Y за формулою зі завдання.

```
> variant = 3
> variant
[1] 3
>
> DegFd = variant / 15
> n = 100
>
> set.seed(variant)
> X1 = rt(n, df = DegFd)
> X2 = rt(n, df = DegFd)
> e = rnorm(n, mean = 0, sd = 1)
> Y = variant * X1 + 2 * (variant + 1) * X2 + e
```

Використовуючи rchisq(), ініціалізувала β1.

```
> betal = rchisq(l, df = variant / 20)
```

Запустила цикл з 100 ітерацій, в якому оцінки β1 і β2 оновлюються за допомогою lm(). Зберегла оцінки на кожній ітерації в матрицю results.

```
> set.seed(variant)
> betal = rchisq(1, df = variant / 20)
>
> result = matrix(NA, nrow = 100, ncol = 2)
> for (i in 1:100) {
+   beta2 = lm(I(Y - beta1 * X1) ~ X2)$coef[2]
+   betal = lm(I(Y - beta2 * X2) ~ X1)$coef[2]
+   result[i, ] <- c(beta1, beta2)
+ }</pre>
```

Побудувала графіки.

```
> plot(result[,1], type = "1", col = "blue", ylim = range(result), ylab = "Estimates \beta", xlab = "Iteration") > lines(result[,2], col = "red")  
> legend("topright", legend = c("\beta1", "\beta2"), col = c("blue", "red"), lty = 1)
```


Порівняла параметри з моделлю $Y \sim X1 + X2$.

```
> summary(lm(Y ~ X1 + X2))$coefficients

Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.1506697 9.286340e-02 -1.622487e+00 0.1079449
X1 3.0000000 1.734057e-10 1.730047e+10 0.0000000
X2 8.0000000 2.801701e-09 2.855408e+09 0.0000000
```

Метод множинної регресії дає точніші та стабільніші оцінки, тоді як метод підгонки має більшу варіативність і потребує більше ітерацій для стабільності.