Distinguishing Features

110 MHz Pipelined Operation

Advance Information

VGA Compatible

to change.

- Mixed Video and Graphics
- 32-bit Graphics and 32-bit Video Pixel Ports
- YCrCb-to-RGB Conversion
- YCrCb 4:2:2 and 2:1:1 Interpolation
- Uses Brooktree's VideoCache™ Technology
- · Horizontal Video Up-Scaling
- 64 x 64 x 2 Cursor
- VRAM Shift Clock Support
- Enables DRAM-Based Motion Video Systems
- Programmable Video Extents
- · Programmable Color Keying
- Onboard TTL Clock Doubler
- Three 256 x 8 Color Palette RAMs
- · Simplifies Integration of Video into Microsoft Windows™
- 3 x 24 Cursor Color Palette

- Standard MPU Interface
- Power-Down Mode
- Directly Implements Brooktree's VideoCache™ Connector
- 160-Pin PQFP Package

Applications

- Video Decompression Acceleration
- Multimedia Workstations
- High-Resolution Graphics
- Desktop Video

Related Products

- Bt812 Video Decoder
- Bt858 Video Encoder
- Bt895 Video Controller
- Bt81295 Personal Media Adapter

110 MHz Monolithic CMOS Video CacheDAC™

Product Description

The Bt885 is designed specifically for dual or unified frame buffer multimedia subsystems. A dedicated video port accepts a CCIR601 YCrCb or RGB data stream and allows on-screen switching on a pixel-bypixel basis. Mixing occurs within programmable video extents based on a flexible color key mechanism. Bt885 is intended to replace multiple RAMDACMbased multimedia subsystems. The Bt885 register set is VGA compatible.

The Bt885 can accelerate decompression and work with the Bt812 decoder chip using programmable interpolation to pixel multiply by 1, 2, or 4 for CCIR601 4:2:2, 2:1:1, and 1:0.5:0.5 formats. This allows the video data to mix with the graphics data at the same rate.

Brooktree's 800-byte VideoCache™ FIFO enables asynchronous delivery of graphics and video, easing system bandwidth requirements for video transfer. and allowing efficient use of system memory. Non-integer scaling permits arbitrary video window sizing.

The 64 x 64 x 2 bit cursor has its own palette and has priority over the video or graphics. The cursor operates in three modes: Microsoft Windows™, three-color, and X Windows.

The Bt885 supports independent 32-bit graphics and 32-bit video pixel ports and is compatible with both VRAM- and DRAMbased video subsystems.

RS-343A-The Bt885 generates compatible video signals into a doubly terminated 75 Ω load.

Functional Block Diagram

Brooktree Corporation • 9868 Scranton Road • San Diego, CA 92121-3707 (619) 452-7580 • (800) 2BT-APPS • TLX. 383 596 • FAX: (619) 452-1249 internet: apps@brooktree.com L885001 Rev D

Brooktree*

Copyright © 1993 Brooktree Corporation. All rights reserved. Print date: 05/03/94

Brooktree reserves the right to make changes to its products or specifications to improve performance, reliability, or manufacturability. Information furnished by Brooktree Corporation is believed to be accurate and reliable. However, no responsibility is assumed by Brooktree Corporation for its use; nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by its implication or otherwise under any patent or patent rights of Brooktree Corporation.

Specifications are subject to change without notice.

PRINTED IN THE UNITED STATES OF AMERICA

Table Of Contents

ircuit Description
MPU Interface
Hardware Reset Condition
Writing Color Palette RAM Data
Resing Color Palette RAM Data
Writing Cursor and Overscan Color Data
Reading Cursor Color Data
Extended Register Mechanism
Writing Color Key Color Data
Reading Color Key Color Data
Writing Color Key Mask Data
Reading Color Key Mask Data
Additional Information
Accessing the Cursor RAM Array
6-Bit/8-Bit Operation
Power-Down Mode
Pixel Clock Selection
Frame Buffer Pixel Port Intérface
Video Port Clocking
VideoCache™ FIFO Operation
Loading VideoCache™ FIFO
Unloading VideoCache™ FIFO
HFULL
VideoCache™ Reset
DIVCLK1 / DIVCLK2
SEN
MODE0
Video Window Operation
Video Scaling Operation
Honzontal Scaling
Color Key Operation
Example 1
Example 2
Example 3

	YCrCb-to-RGB Matrix	. 9
	Modes of Operation—Graphics	
	4-Bits/Pixel Operation (8:1 MUX)	
	8-Bits/Pixel Operation (4:1 MUX)	. 9
	8-Bits/Pixel Operation (2:1 MUX)	
	8-Bits/Pixel Operation (1:1 MUX)	
	16-Bits/Pixel Operation (2:1 MUX)	
	16-Bits/Pixel Operation (1:1 MUX).	. J
	24-Bits/Pixel Operation (1:1 MUX)	10
	Pixel Read Mask Register	
	Modes of Operation—Video	12
	YCrCb 1:0.5:0.5 Operation (4 Bytes/8Pixels).	
	YCrCb 1:0.5:0.5 Operation (2 Bytes/4 Pixels)	
	YCrCb 1:0.5:0.5 Operation (1 Byte/2 Pixels)	13
	YYCrCb 2:1:1 Operation (4 Bytes/4 Pixels)	. J
	YCrCb 2:1:1 Operation (2 Bytes/2 Pixels)	· *
~	YCrCb 2:1:1 Operation (1 Byte/1 Pixel)	. →
	YCrCb 4:2:2 Operation (4 Bytes/2 Pixels)	
	YCrCb 4:2:2 Operation (2 Bytes/1 Pixels)	5
	16-Bits/Pixel 5:5:5 Operation (2:1 MUX)	5
	16-Bits/Pixel 5:5:5 Operation (1:1 MUX)	5
	16-Bits/Pixel 5:6:5 Operation (2:1 MUX)	5 6
	16-Bits/Pixel 5:6:5 Operation (1:1 MUX)	6
	24-Bits/Pixel Operation (1:1 MUX)	6
	DAC Values in 16-Bits/Pixel Video Modes	O O
4	Cursor Operation	0
(Cursor Color Support	<i>3</i> 1
i	fighlight Logic	' 4
1	/ideo Generation	1
;	SENSE* Output	1
(Command Register 0	ا ج
		J
Inter	nal Registers2	E
(Command Register 1	5
•	command Register 2	A
•	ccessing the Extended Registers	2
•	ommand Register 3	١
,	ommand Register 4	1
•	ixel head mask Hegister	•
3	atus registers 1 and 2	•
V	Ideo Window XSTART	3

	Video Window YSTART	33
	Video Window XWIDTH	33
	Video Window YHEIGHT	. 33
	XSCALEINIT (Low and High)	
	XSCALEINC (Low and High)	. 33
	Senal Clock Enable Start (Horizontal)	33
	Senal Clock Enable Duration (Honzontal)	. 33
	DIVCLK1 and DIVCLK2 Rate	. 33
	VideoCache™ FIFO Size	. 33
	Cursor (x,y) Registers	
Pir	Description	36
• ••	· • • • • • • • • • • • • • • • • • • •	
	PC Board Considerations	. 40
	Component Placement	. 40
	Ground Planes	. 40
	Power Planes	. 40
	Device Decoupling	. 40
	Power Supply Decoupling	. 40
	COMP Decoupling	. 40
	VREF Decoupling	. 40
PC	Board Layout Considerations	. 40
	Digital Signal Interconnect	
	TTL Clock Interfacing	
	Differential Clock Interfacing	
	MPU Control Signal Interfacing.	
	Analog Signal Interconnect	
	Analog Output Protection	
	Using Multiple Devices	
	ESD and Latchup Considerations	
	Sleep Operation	. 44

ļ

Absolute Maximum Ratings	45
Timing Waveforms	51
Revision History	54
Ordering Information	54
Package Drawing_160-nin Plastic Quad Flatnack (POED)	55

List of Figures

Figure 1.	Bt885 Detailed Block Diagram	2
Figure 2.	Video Window Registers.	7
Figure 3.	Cursor Positioning.	19
Figure 4.	Planar Pixel Format and Cursor RAM Array Pixel Mapping	
Figure 5.	Composite Video Output Waveforms (SETUP = 7.5 IRE)	23
Figure 6.	Composite Video Output Waveforms (SETUP = 0 IRE)	
Figure 7.	Typical Connection Diagram and Parts List (Internal Voltage Reference)	42
Figure 8.	Typical Connection Diagram and Parts List (External Voltage Reference)	43
Figure 9.	MPU Read/Write Timing	. 51
Figure 10.	Graphics Input/Output Timing	. 52
Figure 11.	Video Input/Output Timing	. 53

List of Tables

Table 1.	Control Input Truth Table (RS3 = MSB, RS0 = LSB)	
Table 2.	Address Register Operation and Autoincrementing	
Table 3.	5:5:5 RGB Graphics Color Format for Both 2:1 and 1:1 Multiplexing Modes	
Table 4.	5:6:5 RGB Graphics Color Format for Both 2:1 and 1:1 Multiplexing Modes	11
Table 5.	Graphics Pixel Index Masking	
Table 6a.	24-Bits/Pixel Graphics RGB Color Format (CR4_1, 40 = 00) for 1:1 MUX Modes	
Table 6b.	24-Bits/Pixel Graphics BRG Color Format (CR4_1, 40 = 01)	12
Table 6c.	24-Bits/Pixel Graphics BRG Color Format (CR4_1, 40 = 10)	12
Table 7.	CCIR601 1:0.5:0.5 Video Format.	17
Table 8.	CIR601 2:1:1 Video Format.	17
Table 9.	CCIR601 4:2:2 Video Format	18
Table 10.	Pseudo Code for Bt885 Monitor Connection.	20
Table 11.	Cursor Color Modes.	 22
Table 12.	Video Output Truth Table (SETUP = 7.5 IRE).	
Table 13.	Video Output Truth Table (SETUP = 0 IRE)	24
Table 14.	Modes of Operation (Video Pixel Port Configuration)	26
Table 15.	Modes of Operation (Graphic Pixel Port Configuration).	 27
Table 16.	Extended Registers Address Map (RS3-RS0 = 1010)	29
Table 17.	Register Values on Reset	35

Circuit Description

MPU Interface

As illustrated in the detailed block diagram (Figure 1). a standard MPU bus interface is supported, allowing the MPU direct access to the color palette RAM. MPU data is transferred into and out of the CacheDACTM through the D0-D7 data pins. The read/write timing is controlled by the RD* and WR* inputs.

The RSO-RS3 select inputs specify which control register the MPU is accessing, as shown in Table 1. The 8-bit address register is used to address the color palette RAM, eliminating the requirement for external address multiplexers. D0 corresponds to ADDR0 and is the LSB.

Hardware Reset Condition

On reset. Bt885 is configured for standard VGA compatibility as follows:

- 8 bits per pixel graphics, 1:1 MUX
- . 6-bit DAC resolution
- Pixel mask register set to 0xFF
- Video modes disabled
- · All control registers set for VGA compatibility
- Graphic pipelines are reset

Writing Color Palette RAM Data

To write color data, the MPU writes the address register (RAM write mode) with the address of the color palette RAM location to be modified. The MPU performs three successive write cycles (8 bits each of red, green, and blue), using RSO-RS3 to select the color palette RAM. After the blue write cycle, the 3 bytes of color information are concatenated into a 24-bit word and written to the location specified by the address register. The address register then increments to the next location, which the MPU may modify by writing another sequence of red, green, and blue data. A block of color values in consecutive locations may be written to by writing the start address and performing continuous RGB write cycles until the entire block has been written. Refer to the Timing Waveforms section for further information.

Reading Color Palette RAM Data

To read color palette RAM data, the MPU loads the address register (RAM read mode) with the address of the color palette RAM location to be read. The contents of the color palette RAM at the specified address are

copied into the red, green, or blue (RGB) registers and the address register is incremented to the next RAM location. The MPU performs three successive read cycles (8 bits each of red, green, and blue), using RSO-RS3 to select the color palette RAM. Following the blue read cycle, the contents of the color palette RAM at the address specified by the address register are copied into the RGB registers, and the address register increments again. A block of color values in consecutive locations may be read by writing the start address and performing continuous RGB read cycles until the entire block has been read.

		
RS3- RS0	Access	Addressed by MPU
0000	R/W	Address Register: Palette/ Cursor RAM Write
0001	R/W	6/8-Bit Color Palette Data
0010	R/W	Pixel Mask Register
0011	R/W	Address Register: Palette/ Cursor RAM Read
0100	R/W	Address Register; Cursor/ Overscan Color Write
0101	R/W	Cursor Overscan and Color Data
0110	R/W	Command Register 0
0111	R/W	Address Register: Cursor/ Overscan Color Read
1000	R/W	Command Register 1
1001	R/W	Command Register 2
1010	R/W	Extended Address Read/ Write Register
1011	R/W	Cursor RAM Array Data
1100	R/W	Cursor x-Low Register
1101	R/W	Cursor x-High Register
1110	R/W	Cursor y-Low Register
1111	R/W	Cursor y-High Register

Table 1. Control input Truth Table (RS3 = MSB, RS0 = LSB).

Figure 1. Bt885 Detailed Block Diagram.

Writing Cursor and Overscan Color Data

To write cursor or overscan color data, the MPU writes the address register (cursor color write mode) with the address of the cursor or overscan color location to be modified. The MPU performs three successive write cycles (8 bits each of red, green, and blue), using RSO-RS3 to select the cursor color registers. After the blue write cycle, the 3 bytes of red, green, and blue color information are concatenated into a 24-bit word and written to the cursor or overscan color location specified by the address register. The address register then increments to the next location, which the MPU may modify by writing another sequence of red, green, and blue data. A block of color values in consecutive locations may be written to by writing the start address and performing continuous RGB write cycles until the entire block has been written.

Reading Cursor Color Data

To read cursor color data, the MPU loads the address register (cursor color read mode) with the address of the cursor color location to be read. The contents of the cursor color register at the specified address are copied into the RGB registers, and the address register is incremented to the next cursor color location. The MPU performs three successive read cycles (8 bits each of red, green, and blue), using RSO-RS3 to select the cursor color registers. Following the blue read cycle. the contents of the cursor color location at the address specified by the address register are copied into the RGB registers, and the address register again increments. A block of color values in consecutive locations may be read by writing the start address and performing continuous R. G. B read cycles until the entire block has been read.

Extended Register Mechanism

An extenced register set is used to accommodate all features come Bt885. Since there are only four register select lines (and all 16 combinations have already been used), the extended registers must be accessed indirectly.

For example, Command Register 3 is accessed with the following sequence of operations:

- 1. Set RS3-RS0 = 0000, Address Register.
- 2. Write Address Register to 0x02.
- 3. Set RS3-RS0 = 1010 (Extended Address Register)
- 4. Read or Write Command Register 3.

Writing Color Key Color Data

To write the color key color data value, the MPU selects the color key data RGB register using the extended register. It then performs a write cycle setting RS3-RS0 to 1010 (Status Register). This process is repeated for each color component. The color key color register is only updated after the blue value is written.

Reading Color Key Color Data

To read the color key color data value, the MPU selects the color key data RGB register using the extended register mechanism, then performs a read cycle setting RS3-RS0 to 1010 (Status Register).

Writing Color Key Mask Data

To write the color key mask data value, the MPU selects the color key mask RGB register using the extended register mechanism. It then performs a write cycle setting RS3-RS0 to 1010 (Status Register). This process is repeated for each color component. The color key mask register is only updated after the blue value is written.

Reading Color Key Mask Data

To read the color key color mask value, the MPU selects the color key data RGB register using the extended register mechanism outlined below, then performs a read cycle setting RS3-RS0 to 1010 (Status Register).

Additional Information

When the color palette RAM is accessed, the address register resets to '0x00 following a blue read or write cycle to RAM location 0xFF.

The MPU interface operates asynchronously to the pixel clock. Data transfers between the color palette RAM and the color registers (R, G, and B in the functional block diagram) are synchronized by internal logic, and occur in the period between MPU accesses. To reduce noticeable sparkling on the CRT screen during MPU access to the color palette RAMs, internal logic maintains the previous output color data on the analog outputs while the transfer between RGB registers and lookup table RAMs occurs.

To executive track of the red, green, and blue read/write cycles, the address register has two additional bits (ADDRa and ADDRb) that count modulo three. They are reset to zero when the MPU writes to the address register and are not reset to zero when the MPU reads

the address register. The MPU does not have write access to these bits. The MPU may read the address register at any time without modifying its contents or the existing read/write mode. These bits can be read from SR1.

Accessing the Cursor RAM Array

The 64 x 64 x 2 cursor RAM is accessed in a planar format. Bits CR3_1 and CR3_0 in Command Register 3 become the load inputs to the 2 MSBs of a 10-bit address counter; therefore, these bits must be written in Command Register 3 before the lower 8 bits are written to the address counter through the MPU port. In the planar format, only nine address bits are used. The tenth bit determines which plane (0 or 1) data of the cursor RAM array is accessed. A single address presented to the cursor RAM accesses 8-bit locations in plane 0 or 1, depending on the state of address bit 9.

After each access in the planar format, the address increments. The MPU uses ADDR, a 10-bit binary address counter, to access the cursor RAM array. The address counter is the same 8-bit binary counter used for RGB autoincrementing with CR3_1 and CR3_0 as its extended MSBs. Any write to the address counter after cursor autoincrementing has been initiated resets the cursor autoincrementing logic until cursor RAM has again been accessed. Cursor autoincrementing will then begin from the address written. A read from the address counter does not reset the cursor, autoincrementing logic. The color palette RAM and the cursor RAM share the same external address register, and MPU addressing for this and all other registers is determined by the external register select lines RS3-RS0 (see Table 2).

6-Bit/8-Bit Operation

The command bit CRO_I specifies whether the MPU is reading and writing 8 bits or 6 bits of color information each cycle. For an 8-bit operation, D0 is the LSB and D7 is the MSB of color data. For a 6-bit operation, color data is contained on the lower 6 bits of the data bus, with D0 as the LSB and D5 as the MSB of color data. When the MPU is writing color data, D6 and D7 are ignored. During color read cycles, D6 and D7 are a logical zero.

Accessing the cursor RAM array does not depend on the resolution of the DACs. When Bt885 is in the 6-bit mode, the 6-bit DAC values are left justified within an 8-bit field and the two LSBs are set to zero. Therefore, Bt885's full-scale output current will be about 1.5% lower than while it is in the 8-bit mode.

Power-Down Mode

The Bt885 incorporates a power-down capability, controlled by command bit CR0_0. While command bit CR0_0 is a logical zero, the Bt885 functions normally.

While command bit CRO_0 is a logical one, the DACs, cursor circuitry, video FIFO, and power to the RAM are turned off. The RAM still retains the data. Also, the RAM may be read or written to by the MPU as long as the pixel clock is running. The RAM automatically powers up during MPU read/write cycles and shuts down when the MPU access is completed. The DACs output no current, and the four command registers may still be written to or read by the MPU. The output DACs require about one second to turn off (sleep mode) or turn on (normal), depending on the compensation capacitor used (see Table 11 in the Timing Waveforms section for further information). The DACs will be turned off during sleep mode only if a voltage reference (internal or external) is used.

When an external voltage reference is used, external circuitry should turn off the voltage reference (VREF = 0 V) to further reduce power consumption caused by biasing of portions of the internal voltage reference.

Pixel Clock Selection

OSC and OSC* provide the source for the Bt885 internal pixel clock. Graphic pixel data is latched by GLCLK. Bit CR2_4 selects whether the OSC or OSC* pin is used. A clock doubler can be enabled on the selected input by setting CR3_3 = 1. The OSC* and OSC inputs can be used together as differential ECL inputs for the external clock by setting CR34 = 1. If a differential ECL input mode is used (CR34 = 1), then the state of CR2_4 is ignored. The state of CR3_3 must be 0.

It is also possible to internally route the DIVCLK2 output to the latches connected to GLCLK by setting CR3_6 = 1. GLCLK will be ignored in this mode.

DIVCLK1 and DIVCLK2 are output on the basis of the OSC and OSC* inputs as described unless they are disabled by setting CR3_2 = 0 (DIVCLK1 disable) or CR3_5 = 0 (DIVCLK2 disable). If the clock doubler is used (CR3_3 = 1), then both the DIVCLK1 and DIVCLK2 dividers must be set to a value of 2 or greater. DIVCLK1 and DIVCLK2 are opposite phases.

40

Circuit Description (continued)

CR3_1 (bit A9 of ADDR)	ADDR 0-7 (counts binary)	ADDR a,b (counts modulo 3)	RS3	RS2	RS1	RSO	Addressed by MPU
N/A	0x00-0xFF	00 01 10	0 0 0	0 0	0	1 1 1	Color Palette RAM (Red Component) Color Palette RAM (Green Component) Color Palette RAM (Blue Component)
N/A	0x00	00 01 10	0 0 0	1 1 1	0	1 1 1	Overscan Color (Red Component) Overscan Color (Green Component) Overscan Color (Blue Component)
N/A	0x01	00 01 10	0	1 1 1	0	1 1 1	Cursor Color 1 Red Component Cursor Color 1 Green Component Cursor Color 1 Blue Component
N/A	0x02	00 01 10	0 0	1 1 1	0	1 1	Cursor Color 2 Red Component Cursor Color 2 Green Component Cursor Color 2 Blue Component
N/A	0x03	00 01 10	0	1 1 1	0 0	1 1 1	Cursor Color 3 Red Component Cursor Color 3 Green Component Cursor Color 3 Blue Component
0 1	0x000-0x1FF 0x200-0x3FF	N/A N/A	1 1	0 0	1	.1 1	Cursor RAM Array, Plane 0 Cursor RAM Array, Plane 1

Table 2. Address Register Operation and Autoincrementing.

Frame Buffer Pixel Port Interface

There are 64 input pins PO-P7 (A-H) used to interface to the graphics and video frame buffer memories. The assignment of pins to input pixels is determined by the operation mode and multiplex rate.

Video Port Clocking

Video tata is synchronously clocked into Bt885 with the \ _K input. VLCLK may be asynchronous from the p. _ and/or graphics load clock, as an internal FIFO is used to synchronize video data to graphics pixel data.

Three status signals are available to control the loading of video pixel data into Bt885: VALID, READY and HFULL. VALID is provided by the system to Bt885 and is asserted to indicate that valid

video data is being presented on the video pixel port. The READY signal is an output from Bt885 that indicates that it is accepting pixel data. For data to be accepted on any particular VLCLK rising edge, both the VALID and READY signals must be high through the clock edge. The HFULL signal is used to keep check on how full the video cache is and helps to prevent overloading the internal video FIFO.

The system must load video data into Bt885 prior to the time that it is to be used. In systems where there is a one-to-one relationship between video pixels and graphics pixels in the frame buffer and this data is delivered simultaneously, the FIFO operation can be ignored and VALID would be tied to the pixel blanking signal from the graphics subsystem (BLANK*). In this mode, the FIFO would never be filled and, therefore, READY may be ignored.

The internal video data FIFO is reset to an empty state on each detected vertical blank period. The system can immediately begin loading data into the video port regardless of the video window's position on the screen. With the VRESET signal (see Pin Descriptions section) the video data will know the start of each graphics frame. See diagram below:

If at any time the video FIFO is empty when video data is required, Status Register 2 bit SR27 will be set to one. The underflow bit will remain set until Status Register 2 is written, then SR27 will be cleared.

For proper operation of the video pipeline reset, VLCLK must be a free-running clock.

VideoCache™ FIFO Operation

The Bt885 provides a FIFO buffer for video pixels to allow for asynchronous video and graphics operation, and to ease system design requirements. Use of the VideoCacheTM FIFO features is entirely optional and not necessary for synchronous designs.

Loading VideoCache™ FIFO

The VideoCache™ FIFO accepts a group of data (the exact number is given by the current video mode) when the following conditions are met on any single rising edge of VLCLK:

- The FIFO is ready to accept data (i.e., it is not full). This is determined by the state of the READY signal.
- The system is presenting data, indicating this to the CacheDACTM by asserting the VALID signal with the data.

Unloading VideoCache™ FIFO

Bt885 will unload the VideoCache™ FIFO dependant on the setting of bit CR4_1. If CR4_1 = 1, the video will only be unloaded while Bt885 is scanning through the video window. If CR4_1 = 0, then video will always be unloaded during active graphics time. The unloading process is independent of color keying.

HFULL

This signal is asserted when the VideoCacheTM FIFO gets more than half full.

VideoCache™ Reset

There are four ways that the VideoCache FIFO gets reset:

FIFO Reset Pin. This is an external hardware FIFO RESET method for resetting the Bt885 Video FIFO. This pin must be held low for at least two VLCLKs with PIXEL CLOCK running.

CR4_7. This is a software RESET method for resetting the Bt885 VideoCache FIFO. A logical one written to this bit resets the VideoCache FIFO after four VLCLKs. A logical zero will put the FIFO back to normal operation.

An underflow occurred. The SR2_7 status bit says a VIDEO FIFO underflow occurred when a logical one is read. The VideoCache FIFO is automatically reset when this happens. A MPU write cycle to Status Register 2 will clear SR27.

Vertical Retrace Interval. An automatic VIDEO FIFO reset also occurs during the vertical retrace interval. When the ENABLE line is low for 2048 clock cycles an internal FIFO RESET sequence is initiated.

READY and VRESET* will be = 0 during the FIFO reset period. READY will become active within one PIXEL CLOCK period after VRESET* goes high.

General Purpose Signals

DIVCLK1 / DIVCLK2

These signals provide programmable free-running clocks based on the internal pixel clock. They can be used to generate external pixel load clocks, such as VLCLK or GLCLK. A gated clock may be generated from DIVCLK1 by using another general purpose signal, SEN, described below.

SEN

This signal is used to provide a gating control for DIVCLK1. SEN can be programmed to start relative to the falling edge of internally detected vertical blank (see cursor operation) in units of scanlines and relative to the falling edge of C/HSYNC* in DIVCLK1 cycles using the serial clock enable start (horizontal and vertical) registers. Duration is set in units of scanlines for the vertical direction and in DIVCLK1 cycles for the horizontal direction (relative to the beginning of SEN) using the serial clock enable duration (horizontal and vertical) registers. This signal is guaranteed to transition only during DIVCLK1 low time.

This signal may be used to control a VRAM shift clock which runs during non-blanking time. When an appropriate delay is programmed from the leading edge of C/HSYNC*, the serial data can be properly positioned before the trailing edge of BLANK*. The SEN duration register then stops the serial clock to allow the system to perform VRAM row data transfer. Because C/HSYNC* is sampled with the internal pixel clock, there may be an additional pixel clock delay between C/HSYNC* falling and the SEN rising.

MODEO

This is a general purpose, TTL compatible, registered input/output which is set using CR4_5. Selection of input or output is made using CR3_7.

This pin is user-definable and could be used to interface between hardware and software. For example, MODE0 could detect the existence of a video card. Software would detect this by reading CR4_5.

Video Window Operation

the video window begins with the first (leftmost) pixel of each horizontal scan line. The YSTART register indicates the starting Y position on the screen for the video window. A vaile of zero indicates that the video window begins on the first scan line of each frame. The XWIDTH register indicates the number of pixels per scan line within the video window. A value of zero indicates that there are no pixels in the video window. The YHEIGHT register indicates the number of scan lines within the video window. A value of zero indicates that there are no scan lines in the video window.

All four values, XSTART, XWIDTH, YSTART, and YHEIGHT should be written sequentially. Internal video window coordinates are loaded during the next detected vertical blanking interval after the YHEIGHT register is written.

Video Scaling Operation

The Bt885 supports video upscaling in the horizontal direction. Horizontally, a combination of coarse pixel interpolation and pixel-accurate replication may be applied. Downscaling of the source image, both horizontally and vertically, must be performed outside the Bt885.

Figure 2. Video Window Registers.

Pixel replication is accomplished by using the output of an overflowing 12-bit accumulator to either clock a value out of the VideoCache™ FIFO to the DACs or to hold the current DAC value.

At the start of each scan line, the accumulator is initialized to the value stored in the XSCALEINIT register. On each pixel, the value stored in the XSCALEINC register is added to the accumulator.

If the addition results in a carry, a pixel is clocked out of the VideoCache™ FIFO to the DACs. If no carry occurs, the previous DAC value is held. This style of scaling is known as a Digital Differential Algorithm (DDA).

To accomplish scaling, the system supplying the Bt885 with video pixel must precalculate the DDA constants required for the desired scale factor and load the values into the two 12-bit X-scaling registers, XSCALEINT and XSCALEINC, as follows:

XSCALEINC = [(Source Video Width * 0x1000) + 0x0800 - XSCALEINIT] /
Destination Video Width

0 ≤ XSCALEINIT ≤ 0x0FFF. XSCALEINIT can be used to set the replication phase of the DDA in more advanced applications.

Pixel interpolation is available when using certain YCrCb video modes. When used, it can interpolate the data to 2x or 4x the source horizontal pixel count. The table below shows source data formats, video mode selected (CR1), and the resulting interpolation factor achieved.

Source Video Format	Video Mode Selected	Interpolation Factor Achieved
YCrCb 4:2:2	YCrCb 4:2:2 YCrCb 2:1:1 YCrCb 1:.5:.5	1:1 2:1 4:1
YCrCb 2:1:1	YCrCb 2:1:1 YCrCb 1:.5:.5	1:1 2:1
YCrCb 1:.5:.5	YCrCb 1:.5:.5	1:1

Example: To fill a window which is 636 pixels wide with a source of 320 pixels of YCrCb 4:2:2 data loaded

in 1:1 mux mode, one should select the YCrCb 2:1:1 video mode (CR1_7-CR1_4 = 5) and set XSCALEINC to 0x0FFF for no replication. If the window were slightly larger, say 700 pixels wide, one should select the YCrCb 2:1:1 video mode and use the pixel replicator to stretch the 636 new pixels into 700 pixels (XSCALEINC = 0x0E89, XSCALEINIT = 0x0800).

Color Key Operation

Selection between the video and graphics pixel data may be based on a specified range of graphic pixel values. A "color key set" may be defined which specifies one or more graphic pixel values that allow video pixels to be shown.

To define the color key set, three color key registers and three color mask registers are used. A graphic pixel value is bitwise XORed with the color key and the result is NANDed with the color mas. If the result is one, the corresponding video pixel is displayed in its place.

When a graphic pixel value falls within the color key set, the corresponding video pixel is displayed rather than the graphic pixel. Color key detection may occur either before the palette lookup or after the palette lookup. In 16- and 24-bit pixel modes, if palette bypass is enabled, selecting matching after the palette matches based on the actual values that would be applied to the actual values that would be applied to the DACs.

When matching after the palette, bit CR4_2 of Command Register 4 should be set to 1, and the color key registers and color mask registers represent 24-bit RGB values each. The registers are ordered with red at the lowest address, then green and blue.

When matching before the palette, bit CR4_2 of Register 4 should be set to zero. The color key registers and color mask registers represent unmultiplexed graphic pixel values, with the red register as the least significant byte, then green and blue. Only the bits needed to represent the pixel are used. For example, and 8-bit pixel color key and mask use only the red gisters. 16-bit pixels use only the red and green registers.

Pixel selection occurs only within the current video window boundaries, and only when bit CR4_6 of Command Register 4 is set to 0 to allows color key detection. When CR4_6 is set to 1, all pixels within the video window ill display the video pixels, regardless of color mask and key register values.

The hardware cursor always has display priority over color key selection.

Example 1.

Match a specific 8-bit pseudo-color palatte position (value 0 x FE).

 $CR4_2 = 0$ (matching before palette)

 $CR4_6 = 0$ (allows color keying)

Color Mask: (B) 0xXX (G) 0xXX (R) 0xFF Color Key: (B) 0xXX (G) 0xXX (R) 0xFE

Example 2

Match a range of blue values between 0xC0 and 0xC7.

CR4_2 = 0 (matching after palette)

 $CR4_6 = 0$ (allows color keying)

Color Mask: (B) 0xF8 (G) 0x00 (R) 0x00

Color Key: (B) 0xC0 (G) 0x00 (R) 0x00

Example 3

Use bit 15 in a TARGA 15-bit true-color mode to perform color key.

 $CR4_3 = 0$ (matching before palette)

 $CR4_6 = 0$ (allows color keying)

Color Mask: (B) 0xXX (G) 0x80 (R) 0x00

Color Key: (B) 0xXX (G) 0x80 (R) 0x00

Note: To set the color key or color mask, all three indexes must be written, even if all three indexes are not used.

YCrCb-to-RGB Matrix

The matrix converts the YCrCb video data to 24 bits of RGB data (8 bits each).

The YCrCb-to-RGB conversion is compliant with CCIR Recommendation 601-1 as follows:

R = 1.164(Y - 16) + 1.596(Cr - 128)

G = 1.164(Y - 16) - 0.813(Cr - 128)

-0.391(Cb-128)

B = 1.164(Y - 16) + 2.018(Cb - 128)

Modes of Operation—Graphics

4-Bits/Pixel Operation (8:1 MUX)

The 32 input bits are multiplexed 8:1 and configured for 4 bits/pixel. There are eight independent 4-bit pixel ports. P7:4 (A-D) and P3:0 (A-D). The pixel bits are latched on the rising edge of GLCLK. One rising edge of GLCLK should occur every eight pixel clock cycles. The 4 bits from each port will select one of 16 locations in the palette (see Table 14 in the Internal Registers ection).

8-Bits/Pixel Operation (4:1 MUX)

The 32 input bits are multiplexed 4.1 and configured for 8 bits/pixel. There are four independent 8-bit pixel ports, (A-D). The pixel bits are latched on the rising edge of GLCLK. One rising edge of GLCLK should occur every four pixel clock cycles. The 8 bits from each port will select 1 of 256 locations in the palette (see Table 14 in the Internal Registers section).

8-Bits/Pixel Operation (2:1 MUX)

The 16 input bits are multiplexed 2:1 and configured for 8 bits/pixel. There are two independent 8-bit pixel ports, (A-B). The pixel bits are latched on the rising edge of GLCLK. One rising edge of GLCLK should occur every two pixel clock cycles. The 8 bits from each port will select 1 of 256 locations in the palette (see Table 14 in the Internal Registers section).

8-Bits/Pixel Operation (1:1 MUX)

The 8 input bits are multiplexed 1:1 and configured for 8 bits/pixel. There is one 8-bit pixel port, (A). The pixel bits are latched on the rising edge of GLCLK. One rising edge of GLCLK should occur every pixel clock cycle. The 8 bits will select 1 of 256 locations in the palette (see Table 14 in the Internal Registers section).

16-Bits/Pixel Operation (2:1 MUX)

The 32 input bits are multiplexed 2:1 and configured for 16 bits/pixel. There are two independent 16-bit pixel ports. (A-B) and (C-D). The bits are latched on the rising edge of GLCLK. One rising edge of GLCLK should occur every two pixel clock cycles. The pixel bits multiplexed in this mode are from the same ports of RGB color formats of 5:5:5 or 5:6:5. P7D and P7B are ignored internally when the 5:5:5 color format is selected (see Table 14 in the Internal Registers section).

Bit CR2_4 in Command Register 2 can be programmed to enable or disable true-color palette bypass. When the bypass mode is selected, the pixel data bypasses the palette as well as the pixel mask, and

is transferred to the proper MSBs of the respective DACs, the remaining LSB, are set to zeros. When the bypass mode is not selecte, the pixel data indexes the palette, and color information is passed to the respective DACs. Bit CR2_2 in Command Register 2 determines whether palette addressing is sparse or contiguous. For sparse palette addressing, each independent color component of pixel data is mapped to the MSBs of the respective palette address; the LSBs are set to zero. For contiguous palette addressing, each independent color component of the pixel data is mapped to the LSBs of the respective palette address; the MSBs are set to zero. The color palette values indexed, for either sparse or contiguous addressing, are

transferred to the DACs. When 5:5:5 or 5:6:5 color format is selected, the display can contain 32 K or 64 K simultaneous colors. The DACs can be configured for 6 or 8 bits of resolution in this mode. If 5:5:5 color format is selected, the MSB may be used for color key operation (see Table 3 and Table 4).

16-Bits/Pixel Operation (1:1 MUX)

The 16-bit pixel port (A-B) is latched on the rising edge of GLCLK and is multiplexed 1:1. One rising edge of GLCLK should occur every pixel clock cycle.

Bit CR2_5 in Command Register 2 can be programmed to enable or disable true-color palette bypass. When the bypass mode is selected, the pixel data bypasses the palette as well as the pixel mask, and is transferred to the proper MSBs of the respective DACs. When the bypass mode is not selected, the pixel data indexes the proper locations in the palette, and the correct color information is passed to the respective DACs. Bit CR2_2 in Command Register 2 determines whether palette addressing is sparse or contiguous. For sparse palette addressing, each independent color component of pixel data is mapped to the most significant bits of the respective palette address; the LSBs are set to zero. For contiguous palette addressing. each independent color component of the pixel data is mapped to the LSBs of the respective palette address: the MSBs are set to zero. The color palette values indexed, for either sparse or contiguous addressing, are transferred to the DACs. When 5:5:5 or 5:6:5 color format is selected, the display can contain 32 K or 64 K simultaneous colors. The DACs can be configured for 6 or 8 bits of resolution in this mode (see Table 3 and Table 4).

If 5:5:5 color format is selected, the MSB may be used for color key operation.

For graphics pixel index masking, see Table 5.

24-Bits/Pixel Operation (1:1 MUX)

When 24 bits/pixel in 1:1 MUX mode is selected, there is one 24-bit pixel port. (A-C). The pixel bits are latched on the rising edge of GLCLK and multiplexed 1:1. One rising edge of GLCLK should occur every pixel clock cycle. The RGB color format in this mode is 8:8:8.

Bit CR2_5 in Command Register 2 can be programmed to enable or disable true-color palette bypass. When the bypass mode is selected, the pixel data bypasses the palette as well as the pixel mask, and is transferred to the proper MSBs of the respective DACs. When the bypass mode is not selected, the pixel data indexes the proper locations in the palette, and the independent RGB color values are passed to the respective DACs (see Table 6a thru Table 6c). When 8:8:8 color format is selected, the display can contain 16.8 million simultaneous colors. The DACs should be configured for 8 bits of resolution in this mode (CR25 = 1, CR0_1 = 1). CR4_1 and CR4_0 can be used to alter the pixel read order to BRG or BGR.

Pixel Read Mask Register

The pixel data can be masked before being transferred to the color palette with the 8-bit pixel mask register. The pixel data is bit-wise logically ANDed with the contents of the pixel read mask register. The result is used to address the color palette RAM. The addressed location provides 24 bits of color information to the three D/A converters. Pixel masking is enabled for all modes of operation except when the true-color bypass is enabled. The pixel mask register is initialized to logical ones at reset (see Table 16, Register Values on Reset in the Internal Register section).

Bit	MSB			•												LSB
Format	х	R	R	R	R	R	G	G	G	G	G	В	В	В	В	В
Port I	P7B	P6B	P5B	P4B	P3B	P2B	PIB	POB	P7A	P6A	PSA	P4A	P3A	P2A	PIA	POA
Port 2	P7D	P6D	P5D	P4D	P3D	P2D	PID	POD	P7C	P6C	PSC	P4C	P3C	P2C	PIC	POC

Note: X bit may be used for color key before the palette.

Table 3. 5:5:5 RGB Graphics Color Format for Both 2:1 and 1:1 Multiplexing Modes.

Bit	MSB															LSI
Format	R	R	R	R	R	G	G	G	G	G	G	В	В	В	В	В
Port 1	P7B	P6B	PSB	P4B	P3B	P2B	PIB	POB	P7A	P6A	P5A	P4A	РЗА	P2A	PIA	PO/
Port 2	P7D	P6D	P5D	P4D	P3D	P2D	PID	POD	P7C	P6C	P5C	P4C	P3C	P2C	PIC	PO
			MS	В			Τ	7	T		T	LSB	T x	Man t	o Zero	
			MS	В			T	1	T		.]	LSB	X	=Map t	o Zero	
P-xel !	Mask Re	gister	MS	В	6	5	4	3		2	1	LSB 0		Map ter Bits	o Zero)
P-xel !		gister	_	В	6 x	5 x	4 x	3		2	1		Regis		o Zero	
	Pixel	gister	7	В			 ` -	+		2	1 1	0	Regist	er Bits	o Zero	
4 Bits/ 8 Bits/ 16 Bits	Pixel Pixel Pixel	gister	7 x 7	В	X .	x	X	3		2	1 1 1	0	Palette	er Bits Index		
4 Bits/ 8 Bits/ 16 Bits 5:5:5 I	Pixel Pixel VPixel Format	egister	7 x 7 7	В	x 6 6 6	x 5 5 5 5	X 4 4 4	3 3 3		2	1 1 1 1 x	0 0	Palette Palette Red Pa	er Bits Index Index alette In	idex Index	
4 Bits/ 8 Bits/ 16 Bits	Pixel Pixel VPixel Format	egister	7 x 7	В	x 6	x 5	x 4	3		2	- 1	0 0 0	Palette Palette Red Pa	er Bits Index Index alette In	idex Index	
4 Bits/ 8 Bits/ 16 Bits 5:5:5 I SPAR:	Pixel Pixel Format SE	egister	7 x 7 7	В	x 6 6 6	x 5 5 5 5	X 4 4 4	3 3 3		2	x	0 0 0 x x	Palette Palette Red Palette Green Blue F	er Bits Index Index alette In	ndex Index ndex	
4 Bits/ 8 Bits/ 16 Bits 5:5:5 I 5:5:5 I	Pixel Pixel Format SE		7 x 7 7 7	В	x 6 6 6 6	x 5 5 5 5 5	X 4 4 4 4	3 3 3	,	2	x	0 0 0 x x x	Registra Paletta Paletta Red P. Green Blue F Red P. Green	e Index Index alette In Palette Palette I	ndex Index ndex idex Index	

Table 4. 5:6:5 RGB Graphics Color Format for Both 2:1 and 1:1 Multiplexing Modes.

	MSB		1			}		LSB	X=Map to Zero
P-xel Mask Register	7	6	5	4	3	2	1	0	Register Bits
4 Bits/Pixel	X	x	X	X	3	2	1	0	Palette Index
8 Bits/Pixel	7	6	5	4	3	2	1	0	Palette Index
16 Bits/Pixel	7	6	5	4	3	x	x	X	Red Palette Index
5:5:5 Format	7	6	5	4	3	X	×	x	Green Palette Index
SPARSE	7	6	5	4	3	x	×	X	Blue Palette Index
16 Bits/Pixel	X	X	x	4	3	2	1	0	Red Palette Index
5:5:5 Format	X	x	X	4	3	2		0	Green Palette Index
CONTIGUOUS	x	X	x	4	3	2	1	0	Bive Palette Index
16 Bits/Pixel	7	6	5	4	3	- X	X	X	Red Palette Index
5:6:5 Format	7	6	5	4	3	2		X X	Green Palette Index
SPARSE	7	6	5	4	3	×	, x	, x	Blue Palette Index
16 Bits/Pixel	*	X	X	4	3	2	1	0	Red Palette Index
5:6:5 Format	X .	x	5	4	3	2	1	0	Green Palette Index
CONTIGUOUS	x	x		4	3	2	1	0	Blue Palette Index
24 Bits/Pixel	7	6	5	4	3	2	1	0	Red Palette Index
8:8:8 Format	7	6	5	4	3	2	1	0	Green Palette Index
	7	6	5	4	3	2	1	0	Blue Palette Index

Note: x means final DAC bit will be 0

Table 5. Graphics Pixel Index Masking.

BH	MS	8																						LSB
Formal	R	R	R	R	R	R	R	R	G	G	G	G	G	G	C	G	В	В	В	В	В	В	В	В
Pon 1	PTC	P6C	PSC	P4C	P3C	P2C	PIC	POC	P7B	P6B	PSB	P4B	P3B	P2B	PIB	POB	PZA	P6A	P5A	P4A	РЗА	P2A	PIĄ	POA

Table 6a. 24-Bits/Pixel Graphics RGB Color Format (CR4_1, 40 = 00) for 1:1 MUX Modes.

Bit	MSI	В				_																		LSB
Forma	В	В	В	В	В	В	В	В	R	R	R	R	R	R	R	R	С	G	G	G	G	G	G	G
Port I	P7C	P6C	P5C	P4C	P3C	P2C	PIC	POC	P7B	P6B	P5B	P4B	P3B	P2B	PIB	POB	P7A	P6A	PSA	P4A	P3A	P2A	PIA	POA

Table 6b. 24-Bits/Pixel Graphics BRG Color Format (CR4_1, 40 = 01).

Table 6c. 24-Bits/Pixel Graphics BRG Color Format (CR4_1, 40 = 10).

Modes of Operation—Video

The pixel ordering and YCrCb-to-RGB conversions are shown in Table 7 through Table 9. The video pixel port configuration is shown in Table 14 in the Internal Registers section. The following describes video operation modes.

YCrCb 1:0.5:0.5 Operation (4 Bytes/8Pixels)

The 32 input bits are configured for YCrCb 1:0.5:0.5. There are four independent 8-bit pixel ports, (E-H). Each group of 4 bytes results in 8 output pixels. The pixel bits are latched on the rising edge of VLCLK.

				YCrC	b 1:0.	5:0.5 V	ideo C	olor Fo	ormat (4 Byte	s/8 Pi	(els)	•			
Bit	MSB															LSB
Format	Съ	Съ	Съ	Co	Съ	Co	Cb	Съ	Y	Y	Y	Y	Y	Y	Y	Y
Port 1	P7H	P6H	P5H	P4H	РЗН	P2H	PIH	POH	P7G	P6G	P5G	P4G	P3G	P2G	PIG	POG
Format	Cr	Cr	Cr	Cr	Cr	Ċ	Cr	Cr	Y	Y	Y	Y	Y	Y	Y	Y
Роп 2	P7F	P6F	P5F	P4F	P3F	P2F	PIF	POF	P7E	P6E	PSE	P4E	P3E	P2E	PIE	POE

YCrCb 1:0.5:0.5 Operation (2 Bytes/4 Pixels)

The 16 input bits are configured for YCrCb 1:0.5:0.5. There are two independent 8-bit pixel ports, (G-H). Each group of 2 bytes results in 4 output pixels. The pixel bits are latched on the rising edge of VLCLK.

				YCrC	b 1:0.	5:0.5 V	ideo C	olor Fo	rmet (4 Byte	e/4 Pix	(els)				
BIt	MSB							-								LSB
Format	Cb/Cr	Cb/Cr	Cb/Cr	Cb/Cr	Cb/Cr	Cb/Cr	Cb/Cr	Cb/Cr	Y	Y	Y	Y	Y	Y	Y	Y
Port 1	P7H	P6H	PSH	P4H	РЗН	P2H	PIH	POH	P7G	P6G	PSG	P4G	P3G	P2G	PIG	POG
Format	X	X	Х	X	X	Х	X	х	Х	Х	Х	X	X	X	X	X
Port 2	P7F	P6F	P5F	P4F	P3F	P2F	PIF	POF	P7E	P6E	PSE	P4E	P3E	P2E	PIE	POE

YCrCb 1:0.5:0.5 Operation (1 Byte/2 Pixels)

The 8 input bits are configured for YCrCb 1:0.5:0.5. There is one 8-bit pixel port, (H). Each byte loaded results in 2 output pixels. The pixel bits are latched on the rising edge of VLCLK.

				CrC	1:0.5	:0.5 VI	deo Ca	olor Fo	rmet (4	Bytes	/2 Pix	ets)				
Bit	MSB															LSB
Format	Ct/Y	Cb/Y/	Ct/Y				Ct/Y/	Ct/Y	X	X,	X	X	x	X	X	X
Port 1	P7H	P6H	P5H	P4H	РЗН	P2H	PIH	POH	P7G	P6G	PSG	P4G	P3G	P2G	PIG	POG
Format	X	X	X	X	Х	x	X	Х	X	X	X	x	X	X	X	X
Port 2	F	P6F	P5F	P4F	P3F	P2F	PIF	POF	P7E	P6E	P5E	P4E	P3E	P2E	PIE	POE

YYCrCb 2:1:1 Operation (4 Bytes/4 Pixels)

The 32 input bits are configured for YCrCb 2:1:1. There are four independent 8-bit pixel ports, (E-H). The pixel bits are latched on the rising edge of VLCLK.

				YCrC	b 1:0.	5:0.5 V	ideo C	olor Fo	ormat (4 Byte	e/4 Pix	els)				
Bit	MSB															LSB
Format	Co	Съ	Съ	Съ	Co	Co	Cô	Co	Y	Y	Y	Y	Y	Y	Y	Ÿ
Port I	P7H	P6H	P5H	P4H	P3H	P2H	PIH	POH	P7G	P6G	P5G	P4G	P3G	P2G	PIG	POG
Format	Cr	Cr	Cr	- Cr	Cr	Cr	Cr	Cr	Y	Y.	Y	Y	Y	Y	Y	Y
Port 2	P7F	P6F	P5F	P4F	P3F	P2F	PIF	POF	P7E	P6E	PSE	P4E	P3E	P2E	PIE	POE

YCrCb 2:1:1 Operation (2 Bytes/2 Pixels)

The 16 input bits are configured for YCrCb 2:1:1. There are two independent 8-bit pixel ports, (G-H). The pixel bits are latched on the rising edge of VLCLK.

				YCr	Cb 12:	1:1 Vic	leo Co	lor For	mat (2	Bytes	/2 Plxe	is)				
Bit	MSB															LSB
Format	Cb/Cr	Cb/Cr	Cb/Cr	Cb/Cr	CPACI	Cb/Cr	CP/Ct	Cb/Cr	Y	Y	Y	Y	Y	Y	Y	Y
Pon I	Р7Н	P6H	PSH	P4H	РЗН	P2H	PIH	POH	P7G	P6G	P5G	P4G	P3G	P2G	PIG	POG
Format	X	X	Х	X	X	X	X	X	X	X	Х	X	X	X	X	X
Port 2	P7F	P6F	P5F	P4F	P3F	P2F	PIF	POF	P7E	P6E	P5E	P4E	P3E	P2E	PIE	POE

YCrCb 2:1:1 Operation (1 Byte/1 Pixel)

The 8 input bits are configured for YCrCb 2:1:1. There is one 8-bit pixel port, (H). Each byte loads results in two output pixels. The pixel bits are latched on the rising edge of VLCLK.

				Y	CrCb 2	1:1 V	deo Co	olor Fo	rmet (1	Byte/	1 Pixe	1)				
Bit																LSB
Format	CtY	Cr/Y			Cr/Y				X.	x	x	X	X	x	x	x
Pon 1	Р7Н	P6H	P5H	P4H	P3H	P2H	PIH	POH	P7G	P6G	P5G	P4G	P3G	P2G	PIG	POG
Format	X	X	X	X	×	X	X	X	X	X	X	X	X	X	X	X
Port 2	P7F	P6F	P5F	P4F	P3F	P2F	PIF	POF	P7E	PEE	PSE	P4E	P3E	P2E	PIE	POE

Æ

Circuit Description (continued)

YCrCb 4:2:2 Operation (4 Bytes/2 Pixels)

The 32 input bits are infigured for YCrCb 4:2:2. There are four independent 8-bit pixel ports. (F-E) and (H-G) The bits are latched on the sing edge of VLCLK.

				YC	rCb 4::	2:2 Vid	eo Coi	or For	met (4	Bytes	2 Pixe	ls)				
Bit	MSB						-									LSB
Format	Сь	Сь	Съ	Съ	Сь	Съ	Сь	Съ	Y	Y	Y	Y	Y	Y	Y	Y
Port I	Р7Н	P6H	P5H	P4H	P3H	P2H	PIH	POH	P7G	P6G	PSG	P4G	P3G	P2G	l PIG	POG
Format	Cr	Cr	Cı	Cr	Cr	Cr	Cr	Cr	Y	Y	Y	Y	Y	Y	Y	Y
Fort 2	P7F	P6F	P5F	P4F	P3F	P2F	PIF	POF	P7L	P6E	PSE	P4E	P3E	P2E	PIE	POE

YCrCb 4:2:2 Operation (2 Bytes/1 Pixels)

The 16 input bits are configured for YCrCb 4:2:2. There are two independent 8-bit pixel ports, (G-H). The input bits are latched on the rising edge of VLCLK.

				YC	rCb 4:	2:2 Vic	ieo Co	lor For	met (2	Bytes	/1 Pixe	H)				
Bit	MSB					12	-									LSB
Format	Cb/Cr	Cb/Cr	Cb/Cr	Cb/Cr	Cb/Cr	Cb/Cr	Cb/Cr	Cb/Cr	Y	Y	Y	Y	Y	Y	Y	Y
Port 1	P7H	P6H	P5H	P4H	РЗН	P2H	PIH	POH	P7G	P6G	PSG	P4G	P3G	P2G	PIG	POG
Format	X	X	X	Х	Х	X	х	х	Х	X	X	X	X	X	X	X
Port 2	P7F	P6F	P5F	P4F	P3F	P2F	PIF	POF	P7E	P6E	PSE	P4E	P3E	P2E	PIE	POE

16-Bits/Pixel 5:5:5 Operation (2:1 MUX)

The 32 input bits are configured for 16 bits/pixel. There are two independent 16-bit pixel ports, (E-F) and (G-H). The bits are latched on the rising edge of VLCLK. The RGB color format in this mode is 5:5:5. The most significant bit is not used.

16-Bits/Pixel 5:5:5 Operation (1:1 MUX)

The 16 input bits are configured for 16 bits/pixel. There is one 16-bit pixel port, (G-H). The input bits are latched on the rising edge of VLCLK. The RGB color format in this mode is 5:5:5. The most significant bit is not used.

			5:5:5 R	GB Vk	ieo Co	lor Fo	mat fo	r Both	2:1 er	nd 1:1 (Muttipi	exing	Modes			
Bit	MSP						-								-	LSB
Format	À	R	R	R	R	R	G	G	G	G	G	В	В	T : -	В	I B
Port 1	! P?C	P6G	P5G	P4G	P3G	P2G	PIG	POG	P7H	P6H	P5H	P4H	P3H	P2H	PIH	
Port 2	! P7E	P6E	PSE	P4E	P3E	P2E	PIE	POE	P7F	P6F	P5F	P4F	P3F	P2F	PIF	

16-Bits/Pixel 5:6:5 Operation (2:1 MUX)

The 32 input bits are configured for 16 bits/pixel. There are two independent 16-bit pixel ports, (E-F) and (G-H). The bits are latched on the rising edge of VLCLK. The RGB color format in this mode is 5:6:5.

16-Bits/Pixel 5:6:5 Operation (1:1 MUX)

The 16 input bits are configured for 16 bits/pixel. There is one 16-bit pixel port, (G-H). The input bits are latched on the rising edge of VLCLK. The RGB color format in this mode is 5:6:5.

	5:6:5 RGB Video Color Formet for Both 2:1 and 1:1 Multiplexing Modes															
Bit	MSB											_				LSB
Format	R	R	R	R	R	R	G	G	G	G	G	В	В	В	В	В
Port 1	P7G	P6G	PSG	P4G	P3G	P2G	PIG	POG	P7H	P6H	PSH	P4H	РЗН	P2H	PIH	POH
Port 2	P7E	P6E	PSE	P4E	P3E	P2E	PIE	POH	P7F	P6F	PSF	P4F	P3F	P2F	PIF	POF

24-Bits/Pixel Operation (1:1 MUX)

The 24 input bits are configured for 24 bits/pixel. There is one 24-bit pixel port, (F-H). The bits are latched on the rising edge of VLCLK. The RGB or BGR color format in this mode is 8:8:8. The color format is controlled by bit CR4_4 in Command Register 4.

			24-Bit	RGB V	ideo C	olor F	ormet	(CR4_4	1=0) to	r 1:1 N	luttiple	xing N	lodes		<u> </u>	
BH	MSB															LSB
Format	R	R	R	R	R	R	R	R	G	G	G	G	G	G	G	G
Port 1	P7F	P6F	P5F	P4F	P3F	P2F	PIF	POF	P7G	P6G	P5G	P4G	P3G	P2G	PIG	POG
Format	В	В	В	В	В	B	В	В								
Port 2	P7H	P6H	P5H	P4H	РЗН	P2H	PIH	POH	P7F	P6F	PSF	P4F	P3F	P2F	PIF	POF

	4-Bit RGB Video Color Format (CR4_4=1) for 1:1 Multiplexing Modes															
Bit	MSB															LSB
Format	В	В	В	В	В	В	В	В	G	G	G	G	G	G	G	G
Port I	P7F	P6F	PSF	P4F	P3F	P2F	PIF	POF	P7G	P6G	P5G	P4G	P3G	P2G	PIG	POG
Format	R	R	R	R	R	R	R	R								
Port 2	Р7Н	P6H	PSH	P4H	P3H	P2H	PIH	POH								

Brool 'ree'

Bt885

Circui

escription (c "nued)

2CCIR601 1.0.5:0.5 CCIR656 Component Ordering Coior Space. YCrCb

Subsampling: 1:0.5:0.5

Address (8N+)	0	1	:	3	4	5	6	7
Value	Сю	Y0	Ç ·	Y4	Съ8	Y8	Cr8	Y12

	_	•	2	3	4	5	6	7
Y	Y0	3Y0+Y4 4	Y0+Y4 2	3 u + 3 Y 4	Y4	3Y4 + Y8 4	Y4 + Y8	Y4 + 3Y1
Cr	Cr0	Cr0	3Cr0 + Cr8 4	3Cr0 + Cr8 4	Cr0 + Cr8 2	Cr0 + Cr8 2	Cr0 + 3Cr8	Cr0 + 3Cr
Сь	Сю	Съо	3Cb0 + Cb8	3Cb0 + Cb8	Cb0 + Cb8	Cb0 + Cb8	Cb0 + 3Cb8	Cb0 + 3Cb8
CIR601 2: CIR656 Color Space	omponent C		4	4 8601 1:0.5:0	2	2	4	4
TR656 C	omponent C : YCrCb		4	A 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	2	2	4	7

Table 7. CCIR601 1:0.5:0.5 Video Format.

Address (BN+)	0	1	2	3	4	5	6	7
Value	Съо	YO	CrO	Y2	Cb4	Y4	Cr4	Y6

 Pixel	0	1	2	3	4	5	6	7
Y	Y0	<u>Y0 + Y2</u> 2	Y2	<u>Y2 + Y4</u> 2	Y4	<u>Y4 + Y6</u> 2	Y6	<u>Y6 + Y8</u> 2
Cr	Cr0	3Cr0 + Cr4 4	<u>Cr0 + Cr4</u> 2	Cr0 + 3Cr4 4	· Cr4	3Cr4 + Cr8 4	<u>Cr4 + Cr8</u> 2	<u>Cr4 + 3Cr8</u>
Съ	Cb0	3Cb0 + Cb4 4	<u>Ch0 + Ch4</u> 2	<u>Cb0 +</u> <u>3Cb4</u> 4	Cb4	3Cb4 + Cb8 4	<u>Cb4 + Cb8</u> 2	<u>Cb4 +</u> 3Cb8 4

Table 8. CIR601 2:1:1 Video Format.

CCIR601 4:2:2

CCIR656 Component Ordering

Color Space: YCrCb

Address (6N+)	0	1	2	3	4	5	6	7
Value	Cb0	Y0	Cr0	Υı	Cb2	Y2	Cr2	Y3

Pixel	0	1	2	3
Y	YO	Y 1	Y2	Y3
Cr	Cr0	Cr0+Cr2 2	Cr2	Cr2 + Cr4 2
Cb	Съо	Cb0 + Cb2 2	Cb2	Cb2 + Cb4 2

Table 9. CCIR601 4:2:2 Video Format.

Table 9. CCIR60

Table 9. CCIR60

DAC Values in 16-Bits/Pixel
Video Modes

In order to achieve 8-bit full-scale DAC output in the 5:5:5 16-bits/pixel video modes, each 5-bit value will be used as the 5 MSBs of the 8-bit DAC value and the 3 be used as the 5 MSBs of the 8-bit DAC value and the 3 MSBs of the 5-bit pixel value will be duplicated in the low order 3 bits before the pixel value is passed to the

DACs. Similarly, in 5:6:5 modes, when processing the 6-bit green component, the 6-bit value will be used as the 6 MSBs of the 8-bit DAC value and the 2 MSBs of the 6-bit pixel value will be duplicated in the low order 2 bits before the pixel value is passed to the DACs.

Cursor Operation

The Bt885 has an on-chip, three-color, 64 x 64 x 2 pixel user-definable cursor. This cursor works with both interlaced and noninterlaced systems. The cursor always has display priority over both video and graphics pixels.

Circuit Description (continued)

The pattern for the cursor is provided by the cursor RAM, which may be accessed by the MPU at any time. The cursor is positioned through the cursor position register (Xp,Yp) (see Figure 3). A (0.0) written to the cursor position registers will place the cursor completely offscreen. A (1.1) written to the cursor position registers will place the lower right pixel of the cursor on the upper left corner of the screen. Only one cursor pattern per frame is displayed at the location specified for both interlaced and noninterlaced display formats, regardless of the number of updates to (Xp,Yp). The cursor's vertical or horizontal location is not affected during any frame displayed.

There are no restrictions on updating (Xp. Yp) other than both cursor position registers must be written when the cursor location is updated. Internal x and y position registers are loaded after the upper byte of Yp has been written to ensure one cursor pattern per frame at the correct location. The cursor pattern is displayed

at the last cursor location written. Cursor positioning is relative to ENABLE. The cursor position is not dependent upon BLANK* (see Figure 3). The cursor Xp position is relative to the first rising edge of GLCLK when ENABLE is sampled at logical one. The cursor Yp position is relative to the first rising edge of GLCLK when ENABLE is sampled at logical one after the ENABLE vertical blanking interval has been determined (see Figure 3). If an ENABLE transition from logical zero to logical one (as determined by GLCLK) does not occur within 2048 internal pixel clocks, ENABLE is in vertical blanking.

For proper cursor operation, selection of interlaced or noninterlaced cursor display must be set using bit CR2_3 in Command Register 2.

Figure 4 is a visual explanation of planar pixel format and cursor RAM array pixel mapping

While the cursor may be disabled by setting bits CR2_0-21 of Command Register 2 to zero, this practice is not recommended. The recommended method for disabling the cursor is to move it entirely offscreen by setting the cursor X and Y location registers to (0.0).

Table 10 gives the pseudo code for Bt885 to check for monitor connection.

Figure 3. Cursor Positioning.

Program Monitor?	nonitor is connected to the RAMDAC Analog Outputs ("Verify Monitor Connection")
Reset Bt885	(*Toggle RESET* of B(885*)
Set C/HSYNC* = low	(*Disable SYNC Current*)
Set BLANK = high	(*Enable RamDAC Outputs*)
Set Pixel Mask = \$00	(*Disable external Pixel Input*)
Set RGB LUT Loc.0 = \$18	(*10.3 mV x 24 = 247 mV*)
Read Status Register	(*Check on State of SENSE**)
If SR1-3 = 1	(*Check for RGB Monitor Connection*)
RGB Monitor	(Chica in No Malata Cotalogue,)
ELSE	
Single Monitor?	
Address LUT Loc. \$00	(*Set Address Register to Program Lut Loc. 0*)
Set Red DAC Output = \$00	(*Set Red DAC to Output 0 mV*)
Set Gm DAC Output = \$18	(*Set Green DAC to Output 247 mV*)
Set Blue DAC Output = \$00	("Set Blue DAC to Output 0 mV")
Read Status Register	(*Check for Single Input Monitor on Grn.*)
If SR1-3 = 1	, salar sala
Single Input Monitor	
ELSE	· ·
NO Monitor Sensed	
End	}

Table 10. Pseudo Code for Bt885 Monitor Connection.

-- <u>**</u>**

Circuit Description (continued)

Cursor Golor Support

The cursor has three modes for color selection. Bits CR2_1 and CR2_0 in Command Register 2 determine which cursor mode is to be used. Mode 1 is a three-color cursor. Mode 2 is a Microsoft WindowsTM cursor, and Mode 3 is an X-Windows cursor (see Table 11).

Highlight Logic

The highlight logic is enabled in cursor mode 2 when plane 1 and plane 0 data are logical ones (see Table 11). When the highlight logic is enabled, it ensures that the graphics pixel highlighted has a unique color. This is because the highlight logic bit-wise complements the 24 (18)-bit graphics palette or bypass data supplied to the DACs.

Video Generation

The C/HSYNC* and BLANK* inputs are latched on the rising edge of GLCLK to maintain synchronization with the pixel data.

Pipelined C/HSYNC* and VSYNC* are output on the C/HSYNC* OUT and VSYNC* OUT pins.

The CR0_5 command bit specifies whether a 0 or 7.5 IRE blanking pedestal is to be used. Command bits CR0_4. CR0_3, and CR0_2 specify whether the RGB outputs contain sync information.

Figure 5 and Figure 6, and Table 12 and Table 13 detail how the C/HSYNC* and BLANK* inputs modify the output levels.

SENSE* Output

SENSE* is a logical zero if one or more of the IOR, IOG, or IOB outputs have exceeded the internal voltage reference level of the SENSE* comparator circuit. This output determines the presence of a CRT monitor and, with diagnostic code, the difference between a loaded or an unloaded RGB line can be discerned. The reference is generated by a voltage divider from the external 1.235 V voltage reference on the VREF pin. For the proper operation of the SENSE circuit, the following levels should be applied to the comparator with the IOR, IOG, and IOG outputs:

DAC Low Voltage ≤ 260 mV (see note below)
DAC High Voltage ≥ 410 mV (see note below)

There is an additional ±10% tolerance on the above levels when the internal voltage reference is used.

C/HSYNC* should be a logical zero and BLSNK* should be a logical one for SENSE* to be stable. The SENSE* output can drive only one CMOS load.

Note: SENSE values are subject to change upon completion of characterization.

Figure 4. Planar Pixel Format and Cursor RAM Array Pixel Mapping.

Plane 1	Plane 0	MODE 1	MODE 2	MODE 3
0	0	Cursor Not Displayed	Cursor Color 1	Palette Data
0	i	Cursor Color 1	Cursor Color 2	Palette Data
1	0	Cursor Color 2	Palette Data	Cursor Color 1
1	l l	Cursor Color 3	Highlight	Cursor Color 2

Table 11. Cursor Color Modes.

Note: 75 Ω doubly terminated load, VREF = 1.235 V, and RSET = 147 Ω . RS-343A levels and tolerances assumed on all levels.

Figure 5. Composite Video Output Waveforms (SETUP = 7.5 IRE).

Description	Sync Disabled	Sync Enabled	CHSYNC*	BLANK*	DAC Input
	lout (mA)	lout (mA)		DENIK	Deta
WHITE	19.05	26.67	1		
DATA	Data + 1.44	Data + 9.05			0xFF
DATA-SYNC	Data + 1.44	Data + 1.44		1	Data
BLACK		1	0	1	Data
	1.44	9.05	1	1	0x00
BLACK-SYNC	1.44	1.44	0	1	0x00
BLANK	0	7.62	1 , 1	•	UX.CO
CHSYNC.	0			U	XX
Vote: 75 Q doubly to		0		0	XX

Note: 75 Ω doubly terminated load, VREF = 1.235 V, and RSET = 147 Ω .

Table 12. Video Output Truth Table (SETUP = 7.5 IRE).

Note: 75 Ω doubly terminated load, VREF = 1.235 V, and RSET = 147 Ω . RS-343A levels and tolerances assumed on all levels.

Figure 6. Composite Video Output Waveforms (SETUP = 0 IRE).

Description	Sync Disabled	Sync Enabled	C/HSYNC*	BLANK'	DAC Input Data	
	lout (mA)	lout (mA)]		35.12	
WHITE	17.62	25.24	1	1	OxFF	
DATA'	Data	Data + 7.62	1	1	Data	
DATA-SYNC	Data	Data	0	1	Data	
BLACK	0	7.62	1	1	0x00	
BLACK-SYNC	0	0	0	1	0x00	
BLANK	0	7.62	1	0 -	2.2	
CHSYNC	· 0	0	0	0	XX	

Note: 75 Ω doubly terminated load, VREF = 1.235 V, and RSET = 147 Ω .

Table 13. Video Output Truth Table (SETUP = 0 IRE).

Interna Registers

Commar 3 Register 0

This register may be written to or read by the MPU at any time and is not initialized at power-up. CR0_0 corresponds to data bus bit D0, the least significant data bit. All command register bits are set to logical zero upon asserting a low signal on the RESET* pin.

	CR0_7	Reserved	This bit must be written with a 0 to ensure proper operation.	
	CRO_6	Clock Disabled and with CR00 (0) Normal (1) Disable Internal Clocking	When this bit and CRO_O are a logical one, the internal clock and output clocks are disabled to further—serve power when in power-down mode. The RAM still recums the data, and MPU reads and writes can occur with no loss of data. When this bit is a logical zero, internal clocking is enabled and output clocks will be generated.	
٥	CR0_5	Pedestal IRE (0) Disable (1) Enable 7.5 IRE	This bit determines the video blanking pedestal. A logical zero always sets a 0 IRE blanking pedestal and a logical one sets 7.5 IRE.	
	CR0_4 CR0_3 CR0_2	Blue Sync Enable Green Sync Enable Red Sync Enable (0) Disable (1) Enable Sync	These bits specify whether the respective IOB, IOG, or IOR outputs are to contain sync information.	
THE PLAN IN	CR0_1	DAC 6/8-Bit Resolution (0) 6-Bit Operation (1) 8-Bit Operation	This bit specifies whether the MPU is reading and writing 8 bits (logical one) or 6 bits (logical zero) of color information each cycle.	
The state with the state of the	CRO_O	Power-Down Enable (0) Normal Operation (1) Power-Down Operation	While this bit is a logical zero, the device operates normally. If this bit is a logical one, the DACs and power to the RAM and VideoCache TM FIFO are turned off. The RAM still retains the data, and CPU reads and writes can occur with no loss of data. The DACs will be turned off during sleep mode only if a voltage reference (internal or external) is used.	

Internal Registers (continued)

Command Register 1

This register may be written to or read by the MPU at any time. CR1_0 corresponds to data bus bit D0, the least significant data bit (see Table 14). All command register bits are set to logical zero upon asserting a low signal on the RESET* pin.

	CR1_7	CR1_6	CR1_5	CR1_4	Pixel Latching Sequence	Bytes Per VLCLK	Pixels Per VLCLK	Operating Modes
	0	0	0	0	ΝΛ	N/A	NA	All Video Modes Disabled
	0	0	0	1	P7:0(H)	1	2	CCIR601 YCrCb 1:0.5:0.5
	0	0	î	0	P7:0(H) P7:0(G)	2	4	CCIR601 YCrCb 1:0.5:0.5
	0	0	1	1	P7:0(H) P7:0(G) P7:0(F) P7:0(E)	4	8	CCIR601 YCrCb 1:0.5:0.5
	0	1	0	0	P7:0(H)	1	1	CCIR601 YCrCb 2:1:1
	0	1	0	ì	P7:0(H) P7:0(G)	2	2	CCIR601 YCrCb 2:1:1
	0	l	1	0	P7:0(H) P7:0(G) P7:0(F) P7:0(E)	4	4	CCIR601 YCrCb 2:1:1
	0	١	1.	1	P7:0(H-G)	2	1 .	CCIR601 YCrCb 4:2:2
)	0	0	0	P7:0(H-G) P7:0(F-E)	4	2	CCIR601 YCrCb 4:2:2
House	1	0	0	1	P7:0(H-G)	2	1	15 Bits Per Pixel, 5:5:5
	1	0	1	0	P7:0(H-G) P7:0(F-E)	4	2	15 Bits Per Pixel, 5:5:5
	1	0	1	1	P7:0(H-G) -1	2	1	16 Bits Per Pixel, 5:6:5
	ı	1	0	0	P7:0(H-G) P7:0(F-E)	4	2	16 Bits Per Pixel, 5:6:5
	1	1	0	1	P7:0(H-F)	3	1	24 Bits Per Pixel
	1110-1111							Reserved

Table 14. Modes of Operation (Video Pixel Port Configuration).

Internal Registers (continued)

A. command register bits are set to logical zero upon asserting a low signal on the RESET* pin (see Table 15)

CR1_3	CR1_2	CR1_1	CR1_0	Pixel Letching Sequence	MUX Rate	Operating Modes
0	0	n	0	P7:0(A)	1:1	VGA 8 Bits per pixel
0	0		1	P7:0(A) P7:0(B)	2:1	8 Bics per pixel
0	0	1 .	0	P7:0(A) P7:0(B) P7:0(C) P7:0(D)	4:1	8 Bits per pixel
0	0	1	1	P7:4(A) P3:0(A) P7:4(B) P3:0(B) P7:4(C) P3:0(C) P7:4(D) P1:+(D)	8 :1	4 Bits per pixel
0	1	0 .	0	P7:0(B-A)	t:1	15 Bits Per Pixel, 5:5:5
0	1	0	1	P7:0(B-A) P7:0(D-C)	2:1	15 Bits Per Pixel, 5:5:5
0	1	1	0	P7:0(B-A)	1:1	16 Bits Per Pixel, 5:6:5
0	1	1	1	P7:0(BA) P7:0(DC)	2:1	16 Bits Per Pixel, 5:6:5
ţ	0	0	0	P7:0(C-A)	1:1	24 Bits Per Pixel
1001-1111					·	Reserved

Table 15. Modes of Operation (Graphic Pixel Port Configuration).

Internal Registers (continued)

(11) Two-Color/X-Windows Cursor

Command Register 2

This register may be written to or read by the MPU at any time. CR2_0 corresponds to data bus bit D0, the least significant data bit. All command register bits are set to logical zero upon asserting a low signal on the RESET* pin.

CR0_7	Reserved Logical 0	This bit must be written with a 0 to ensure correct operation.
CRO_6	Reserved Logical 0	This bit must be written with a 0 to ensure correct operation.
CR0_5	True-Color Bypass Enable (0) Pixel Addresses Palette (1) Pixel Bypasses Palette	When this bit is a logical zero, the pixel palette is addressed by the pixel data. When this bit is a logical one, the RGB pixel data bypasses the color palette and drives the DACs directly. True-color bypassing is only available for pixel sizes of 16 and 24 bits.
CR0_4	Oscillator Select (0) OSC Selected (1) OSC* Selected	When this bit is a logical zero, OSC is selected as the TTL pixel clock input. When this bit is a logical one, OSC* is selected as the TTL pixel clock input.
CR0_3	Display Mode Select (0) Noninterlaced (1) Interlaced	When this bit is a logical zero, the display format is noninterlaced. When the bit is a logical one, the display format is interlaced. The mode must be set properly to ensure proper operation of the internal cursor.
CR0_2	16-Bit/Pixel Palette Index Select (0) Sparse Indexing (1) Contiguous Indexing	When this bit is a logical zero, palette addressing is sparse. The RGB color component pixel data is mapped to the most significant bits of the RGB palette address. The LSBs of the palette address bits are set to (0). When this bit is a logical one, palette addressing is contiguous. The RGB color component pixel data is mapped to the LSBs of the palette address. The MSBs of the address are set to (0).
CR0_1 CR0_0	Cursor Mode Select (00) Cursor Disabled (01) Three-Color Cursor (10) Two-Color/Microsoft Windows TM Cursor	These bits determine the functionality of the onboard 64 x 64 x 2 hardware cursor.

Accessing the Extended Registers

An extended register set is used to accommodate all features of the Bt885. Since there are only four register select lines (and all 16 combinations have already been used), the extended registers must be accessed indirectly.

For example, Command Register 3 is accessed with the following sequence of operations:

- : Set RS3-RS0 = 0000, Address Register.
- 2. Write Address Register to 0x02.
- 3. Set RS3-RS0 = 1010 (Extended Address Register).
- 4. Read or Write Command Register 3.

Table 16 shows the indirect addressing mapping for each extended register.

Address Register Value	Extended Register Name
0x00	Status Register I (read only)
0x01	Status Register 2 (read/write)
0x02	Command Register 3
0x.3	Command Register 4
0x04 - 0x05	Video Window XSTART—Low and High
0x06 - 0x07	Video Window YSTART—Low and High
0x08 - 0x09	Video Window XWIDTH—Low and High
0x0A - 0x0B	Video Window YHEIGHT—Low and High
0x 1 - 0x0D	Reserved
C E-0x0F	Reserved
0x10 - 0x11	ESCALEINIT -Low and High
0x12 - 0x13	XSCALEINC-Low and High
0x14 - 0x15	Reserved
0x16 - 0x17	Reserved
0x18 - 0x19	Serial Clock Enable Start (Horizontal)—Low and High
Ox1A - Ox1B	Serial Clock Enable Duration (Horizontal)—Low and High
OxIC - OxID	Reserved
Ox IE - Ox IF	Reserved
0x20	DIVCLK1 Rate
0x21	DIVCLK2 Rate
0x22	Reserved
0x23 - 0x25	Color Mask (Ordering = RGB)
0x26	Reserved
0x27 - 0x29	Color Key (Ordering = RGB)
0x2A - 0x2D	Reserved
Ox2E	VideoCache™ FIFO Size
Ox2F - OxFF	Reserved

Table 16. Extended Registers Address Map (RS3-RS0 = 1010).

Command Register 3

This register may be written to or read by the MPU at any time. CR3_0 corresponds to data bus bit D0, the least significant data bit. All command register bits are set to logical zero upon asserting a low signal on the RESET* pin.

CR3_7	MODE0 Input/Output Select (0) MODE0 Input (1) MODE0 Output	This bit determines if the MODE0 pin is configured as an input or an output.
CR3_6	Enable Internal Load Clock (0) Use GLCLK (1) Use Internal DIVCLK2	In applications where an external load clock is not provided, setting CR3_6 = 1 allows the internal DIVCLK2, determined by the DIVCLK2 Register values, to internally sample the graphics input pixels, blanking, horizontal, and vertical sync inputs. Setting CR3_6 = 0 causes Bt885 to sample these inputs on the basis of GLCLK pin.
CR3_5	DIVCLK2 Select (0) DIVCLK2 Enabled (1) DIVCLK2 Disabled	A logical zero must be written to this bit to enable the graphics divide-down clock, DIVCLK2, to be output. A logical one written to this bit three-states the DIVCLK2 output.
CR3_4	ECL Clock Select (0) TTL Level Clock Selected (1) Differential ECL Level Clock Selected	A logical one written to this bit enables the differential ECL clock input buffer using OSC and OSC [*] as inputs. A logical zero written to this bit disables the ECL clock buffer and allows OSC. GLCLK, or the 2x clock multiplier to directly drive the logic. If a logical one is written to this bit, then the clock multiplier and TTL clock selections are overridden. If CR3_4 = 1, then bit CR3_3 must be set to zero.
CR3_3	2x Clock Multiplier Select (0) 2x Clock Multiplier Disabled (1) 2x Clock Multiplier Enabled	This bit enables or disables the $2x$ clock multiplier. A logical one written to this bit enables the onboard $2x$ TTL clock multiplier for high-speed operations. A logical zero written to this bit will disable the clock multiplier and will allow the external clock source to directly drive the logic. If $CR3_4 = 1$, then this bit must be set to zero.
CR3_2	DIVCLK1 Select (0) DIVCLK1 Enabled (1) DIVCLK1 Disabled	A logical zero must be written to this bit to enable the video divide-down clock, DIVCLK1, to be output. A logical one written to this bit three-states the DIVCLK1 output. If DIVCLK1 Select is set to one, then the SEN output pin is three-stated as well.
CR3_1. CR3_0	MSBs for 10-Bit Address Counter CR3_1 = A9 CR3_0 = A8	CR3_1 and CR3_0 are 2 MSBs of the 10-bit cursor address counter. To set this counter to access a particular location in the 64 x 64 x 2 cursor RAM array, these 2 bits must be written to Command Register 3 before the lower 8 bits are written to the address counter through the MPU port. As the 10-bit address counter autoincrements, the new values of this register can be read back through CR3_1 and CR3_0.

Command Register 4

This register may be written to or read by the MPU at any time and is not initialized at power-up. CR4_0 corresponds to data bus bit D0, the least significant data bit. All command register bits are set to logical zero upon asserting a low signal on the RESET^a pin.

CR4_7	Video Cache™ FIFO Reset	A logical zero written to this bit, enables normal
_	(0) Normal Operation (1) reset VideoCache TM FIFO	VideoCache™ FIFO operation. A logical one written to this bit resets the VideoCache™ FIFO after four video load clocks.
CR4_6	Color Key Override (0) Normal Color Key Operation (1) Video Window Override	A logical zero written to this bit, enables standard color key operation. A logical one written to this bit enables video based only on the video window.
CR4_5	Set MODE0 State (CR3_7 = 0) (0) MODE0 Pin Low (1) MODE0 Pin High	When CR3_7 = 1, this bit controls the state of the MODE0 output. A logical one written to this bit sets the MODE0 pin to high. A logical zero written to this bit sets the MODE0 pin low.
	Get MODE0 State (CR3_7 = 0) (0) MODE0 Pin Externally Driven Low (1) MODE0 Pin Externally Driven High	When CR3_7 = 0, this bit indicates the state of the MODEO input. A logical one read from this bit indicates that the MODEO pin is driven high. A logical one read from this bit indicates that the MODEO pin is driven high. A logical zero read from this bit indicates that the MODEO pin is driven low.
CR4_4	24-Bit Video Component Order (0) Before Palette (1) After Palette	A logical one written to this bit enables the differential ECL clock input buffer using OSC and OSC [®] as inputs. A logical zero written to this bit disables the ECL clock buffer and allows OSC, GLCLK, or the 2x clock multiplier to directly drive the logic. If a logical one is written to this bit, then the clock multiplier and TTL clock selections are overridden. If CR3_4 = 1, then bit CR3_3 must be set to zero.
CR4_3	Color Key Mode Select (0) Before Palette (1) After Palette	This bit controls whether color key matching occurs on the pixel value before or after the palette. A logical zero written to this bit selects color key matching on the pixel value before the palette. A logical one written to this bit selects color key matching on the 24-bit RGB value after the palette.
CR4_2	Video Cache™ Unload Select (0) Unload Within Video Window (1) Unload From Start of Active Graphic Enable	This bit controls whether VideoCache™ FIFO data is unloaded only within the video window or at all times during active graphics enable.
CR4_1, CR4_0	24-Bit Graphics Component Order (00) RGB (01) BRG (10) BGR (11) Reserved	This bit controls the component latching order in 24-bit-per-pixel graphic modes. If any other graphics mode is selected, these bits must be set to logical zero.

Pixel Read Mask Register

The 8-bit pixel read mask register may be written to or read by the MPU at any time, and is initialized to 0xFF at power-up. DO is the least significant bit. The contents of this register are bit-wise ANDed with the pixel data prior to addressing the color palette RAM.

Status Registers 1 and 2

These two 8-bit status registers are provided for device identification and to monitor certain device states. They may be read by the MPU at any time. MPU write cycles to status register 1 are ignored. D0 is the least significant bit corresponding to SR1_0 or SR2_0. These registers are not reset during power-up/reset.

SR1_7. SR1_6	Chip Identification	These bits are identification values; $SR1_7 = 1$ and $SR1_6 = 0$.
SR1_5, SR1_4	Chip Revision	These bits are revision values; $SR1_5 = 1$ and $SR1_4 = 0$.
SR1_3	Monitor Sense	This is the SENSE* bit. If it is a logical zero, one or more of the IOR, IOG, and IOB outputs have exceeded the internal voltage reference level (335 mV). This bit is used to determine the presence of a CRT monitor and, with diagnostic code, the difference between a loaded or unloaded RGB line can be discerned. The 360 mV reference has a ±100 mV tolerance when an external voltage reference equal to 1.235 V is used. A greater tolerance is expected when an internal reference equal to 1.2 V is used.
SR1_2	Read/Write Access Status (0) Write Cycle (1) Read Cycle	This bit provides RD/WR starus when Address Register 0x00, 0x03, 0x04, or 0x07 has been written. When Address Register 0x00 or 0x04 has been written, the device is in the write mode and this bit is a logical zero. When address register 0x03 or 0x07 has been written, the device is in the read mode and this bit is a logical one.
SRI_I. SRI-0	RGB Component Counter (00) Red Color Component (01) Green Color Component (10) Blue Color Component	When read, these bits reflect the color component address for the next RD/WR cycle when accessing the palette, cursor color registers, or overscan register.
SR2_7	Video Cache™ FIFO Underflow	Reading this bit as a one indicates that VideoCache™ FIFO underflow occurred. Reset by writing any value to Status Register 2.
SR2_6-0	Reserved	These bits will always be read as zero.

Video Window XSTART

Video Window XSTART is a 12-bit register that stores the starting X position on the screen for a video window. A value of zero indicates that the video window begins in the first (leftmc-1) pixel of each horizontal scan line.

Video Window YSTART

Video Window YSTART is a 12-bit register that stores the starting Y position on the screen for a video window. A value of zero indicates that the video window begins on the first active graphics scan line.

Video Window XWIDTH

Video Window XWIDTH is a 12-bit register that stores the number of pixels per scan line within the video window. A value of zero indicates that no pixels are in the video window.

Video Window YHEIGHT

Video Window YHEIGHT is a 12-bit register that stores the number of scan lines within the video window. A value of zero indicates that no scan lines are within the video window.

XSCALEINIT (Low and High)

XSCALEINIT are 12-bit registers that store the initial term for the initial area in the initial scaler.

XSCALEINC (Low and High)

XSCALEINC are 12-bit registers that store the increment term for the horizontal scaler.

Serial Clock Enable Start (Horizontal)

Serial clock enable start (horizontal and vertical) are 12-bit registers that store the number of scan lines and DIVCLKI cycles before enabling the external clock gate, starting at the leading edge of HSYNC® for the horizontal direction and the leading edge of the internally generated VSYNC® for the vertical direction.

Serial Clock Enable Duration (Horizontal)

Serial clock enable duration (horizontal and vertical) are 12-bit registers that store the number of serial shift clock cycles to be generated per scan line in units of DIVCLK1 cycles for the horizontal direction, and in units of scan lines for the vertical direction.

DIVCLK1 and DIVCLK2 Rate

DIVCLK1 and DIVCLK2 rate are two 3-bit registers that control the divide rate of the free-running DIVCLK1 and DIVCLK2 divide-down clocks, respectively. The divide-down ratios need not be the same as the input mux rate:

(000) - 1:1

(001) - 2:1

(010) - 4:1

(011) - 8:1

(100-111) - Reserved

VideoCache™ FIFO Size

This register indicates the length of the VideoCacheTM FIFO buffer in 16-byte units. This is a read-only register.

Cursor (x,y) Registers

These registers are used to specify the (x.y) coordinate of the 64 x 64 x 2 hardware cursor. The cursor (x) register is made up of the cursor (x) low register (CXLR) and the cursor (x) high register (CXHR); the cursor (y) register is made up of the cursor (y) low register (CYLR) and the cursor (y) high register (CYHR). The last value written by the MPU to these registers is the value returned on a read. These registers may be written to or read by the MPU at any time.

CXLR and CXHR are cascaded to form a 12-bit cursor (x) register. Similarly, CYLR and CYHR are cascaded to form a 12-bit cursor (y) register. Bits D4-D7 of CXHR and CYHR are ignored and should be written as zeros.

The cursor (x) value to be written is calculated as follows:

Xp = desired display screen (x) position + 64

where the (x) reference point for the display screen. x = 0, is the upper left corner of the screen. The Xp position equation places the upper lefthand corner of the cursor RAM array to the desired screen location. This allows the cursor position to be defined in the same coordinate space as the screen.

Values from 0 to 4095 may be written into the cursor (x) register. If Xp is equal to zero, the cursor will be entirely offscreen.

The cursor (y) value to be written is calculated as follows:

Yp = desired display screen (y) position + 64

where the (y) reference point for the display screen, y =0, is the upper left corner of the screen. The Yp position equation places the upper left corner of the cursor RAM array to the desired screen location. This allows the cursor position to be defined in the same coordinate space as the screen.

Values from 0 to 4095 may be written into the cursor (y) register. If Yp is equal to zero, the cursor will be entirely offscreen (see Cursor Operation in the Circuit Description section.

		Cursor (C)	(x) Hig (HR)	jh					r (x) Lo XLR)	w		
Data Bit	D3	D2	DI	D0	D 7	D6	D5	D4	D3	D2	Dì	D
X Address	XII	X10	X9	X8	X7	X6	X5	X4	ХЗ	X2	XI	x

	Cursor (y) High (CYHR)			Cursor (y) Low (CYLR)								
Date Sit	D3	D2	DI	D0	D 7	D6	D5	D4	D3	D2	DI	D0
Y Address	Y11	Y10	Y9	Y8	¥7	Y6	Y5	Y4	Y3	Y2	Yı	YO

Internal Registers and tinued)

Register Name	Reset Value
Command Register 0	0
Command Register 1	0
Command Register 2	0
Command Register 3	. 0
Command Register 4	0
Video Window XSTART—Low and High	Not Initialized
Video Window YSTART—Low and High	Not Initialized
Video Window XWIDTH—Low and High	Not Initialized
Video Window YHEIGHT—Low and High	Not Initialized
XSCALEINIT —Low and High	Not Initialized
XSCALEINC-Low and High	Not Initialized
Seilai Clock Enable Start (Horizontal)—Low and High	Not Initialized
Serial Clock Enable Duration (Horizontal)—Low and High	Not Initialized
Serial Clock Enable Start (Vertical)—Low and High	Not Initialized
Serial Clock Enable Duration (Vertical)—Low and High	Not Initialized
DIVCLK1 Rate	0
DIVCLK2 Rate	0
Color Mask	. 0
Color Key	0
FIFO Size	0x32
Color Palette RAM	Not Initialized
Pixel Read Mask	0xFF
Cursor Colors	Not Initialized
Overscan Color	Not Initialized
Cursor X.Y	Not Initialized
Cursor RAM Array	Not Initialized

Table 17. Register Values on Reset.

Pin Description

Pin Name	NO	Pin#	Description				
RESET*	I	72	Reset input (TTL con bits are initialized to		his signal is low, all the command regi ce is in VGA mode.		
BLANK*	1	98	Composite blank control input (TTL compatible). A logical zero drives the allog outputs to the blanking level, as specified in Figure 5 and Figure 6. It is latched on the rising edge of GLCLK. When BLANK* is a logical zero, the p inputs are ignored.				
ENABLE (Composite Dis- play Enable)	ı	96	and BLANK® determ sor color, pixel, or ow GLCLK. If overscann	(TTL compatible). The state of this signal outputs are blanked or contain signal is latched on the rising edge of his pin should be tied to BLANK*. The ENABLE and BLANK*:			
			ENABLE	BLANK*	Operation		
		-	x	0	Video Blanking		
			0	1	Overscan Data		
			1	1	Cursor Color or Pixel Data		
ODDÆVEN• OSC. OSC•	1	95	ing vertical blank. Thi cursor when interlaced this signal is a logical	s input is used to l operation (comu tero, an even fiek ecified. This inpu	This signal should be changed only of ensure proper operation of the onboar mand bit CR2_3 = 1) is selected. When this signal is a log t is ignored if noninterlaced operation		
OSC. OSC•	1	131, 132	but a TTL clock may to Command Register 1	c used on either (CR3_4 = 0). It is buffer to avoid re	e). This input is an ECL-compatible in OSC or OSC ^a if selected by CR2_4 it is recommended that all clock inputs be iffection-induced jitter. In 1:1 mode Diffection-induced jitter.		
DIVCLKI	0	127	to the selected pixel cl	ock divided by 8, ister. This output	ompatible). The signal on this pin is eq. 4, 2, or 1, depending on the selection has low drive capability. DIVCLK1 a		
DIVCLK2	0	128	to the selected pixel cl	ock divided by 8. Ister. This output	ompatible). The signal on this pin is eq . 4, 2, or 1, depending on the selection has low drive capability. DIVCLK1 a		
FIFO RESET	ı	14	Although FIFO RESE	le is level sensiti low for at least t	normal VideoCache™ FIFO operation ive. a transition from high to low on the video-		

Pin D scription (continued)

Pin Name	vo	Piri#	Description
GLCLK	1	13	Graphics port input load clock (TTL compatible with hysteresis). The rising edge of this signal latches P7:0 (A-D), BLANK*, ENABLE, HSYNC*, and VSYNC*.
VLCLK	I	13	Video port input load clock (TTL compatible with hysteresis). The rising edge of this signal latenes P7:0 (E-H).
P7 0 (A-H)	1	See Pin Diagram	Pixel port inputs (TTL compatible). This port can be used in various modes, as shown in Tables 10 and 11, for video and or graphics input.
VALID	1	15	Video port input pixel data valid signal (TTL compatible).
READY	0	12	Video port input pixel data ready signal (TTL compatible, low drive). This signal can be synchronously sampled using the rising edge of VLCLK. This signal changes only following a rising edge of VLCLK.
HFULL	0	. 11	VideoCache™ FIFO half-full or greater signal. (TTL compatible, low drive).
SEN	0	126	DIVCLK1 gating control signal (TTL compatible, low drive). It may be used to externally gate the DIVCLK1 output to generate a gated version of DIVCLK1. This signal changes only during DIVCLK1 low duration. The start time and duration of the pulse train may be programmed relative to the leading edge of CI HSYNC® and internally generated VSYNC.
VRESET*	0	2	Vertical reset signal (TTL compatible, low drive). This signal is generated to allow the asynchronous video data to know the start of each frame. This signal is synchronous to VLCLK.
MODE0	VO	91	General purpose registered input/output (TTL compatible) set or read using CR4_5. Selection of input or output is made using CR3_7. Must be tied high with a 10 K pullup resistor.
MODE1-MODE3	100	29, 17, 19	Reserved for future expansion. Must be tied high with a 10 K pullup resistor.
WR•	I	73	Write control input (TTL compatible with hysteresis). D0-D7 data is latched on the rising edge of WR*, and RS0-RS3 are latched on the falling edge of WR* during MPU write operations. RD* and WR* should not be asserted simultaneously.
RD•	1	74	Read control input (TTL compatible with hysteresis). To read data from the device, RD ^a must be a logical zero. RSO-RS3 are latched on the falling edge of RD ^a during MPU read operations. RD ^a and WR ^a should not be asserted simultaneously.
RSO-RS3	1	7578	Register select inputs (TTL compatible). RSO-RS3 specify the type of read or write operation being performed, as specified in Table 1 and Table 2.
D0-D7	ио	83 -9 0	Data bus (TTL compatible), data is transferred into and out of the device over this 8-Bit bidirectional data bus. D0 is the least significant bit.
SENSE*	0	71	Comparator sense output (CMOS compatible). This pin will be low if one or more of the IOR, IOG, and IOB analog output levels is above the internal comparator reference of 350 mV \pm 50 mV.
IOR. IOG. IOB	A.O	55, 58, 61	Red, green, and blue current outputs. These high-impedance current sources can directly drive a doubly terminated 75 Ω coaxial cable (see the PC Board Layout Considerations section for further information).

Bt885 Pin Description (continued)

Pin Name	vo	Pin#			Description		
C/HSYNC*	1	97	Horizontal or comp	osite sync coi	ntrol input (TTL	, compatible).	
VSYNC*	1	99	Vertical sync contro COUT*.	ol input (TTL	compatible). Th	us signal is pip	belined to VSYN-
HSYNCOUT.	0	48, 49	Pipeline delayed ho	rizontal and v	rertical sync cor	strol signals.	
FSADJUST	1,4	52	Full-scale adjust control. The IRE relationships in Figure 5 and Figure 6 are maintained, regardless of the full-scale output current.				Figure 6 are
			When an external of Figure 8 in the PC I nected between this signal. The relations output is: RSET (Ω) = K * 1.0 K is defined in the trusted for doubly terr	Board Layout pin and GNE ship between 1000 • VREF (able below. It	Considerations controls the m RSET and the fi V) / lout (mA) is recommende	section), a res agnitude of the all-scale output d that a 147 Ω	rstor (RSET) con- e full-scale video it current on each RSET resistor be
				Sync	Enabled	Sync E	beidaei
	1		Setup	0 IRE	7.5 IRE	OIRE	7.5 IRE
			K (8-bit)	2.888	3.055	2.045	2.207
	1		K (6-bit)	3.000	3.170	2.100	2.260
VREFOUT	4.0	68	K values are subject Voltage reference of may be connected d used, this pin may b	itput. This out	tput provides a VREFIN pin. If	1.2 V (typical) the on-chip re	reference and
Vrefin	A.1	67	Voltage reference in must supply this inp capacitor must be us Figure 8. The decou keep lead lengths to this pin should not capacitor (Figure 7)	ut with a 1.2 sed to decoupling capacito an absolute n lrive any extern	V (typical) refer ie this input to C or must be as clo ninimum. When	ence. A 0.1 µI IND, as shown use to the devi- the internal re	ceramic in in Figure 7 and ce as possible to eference is used.
СОМР	A.0	_. 64	Compensation pin. A the nearest VAA pin device to keep lead I must be connected to	The COMP (lengths to an a	capacitor must t bsolute minimu	e as close as p	ossible to the
VAA	A, P	See Pin Diagram	Analog power. All	/AA pins mus	be connected t	o the same and	alog power plane.
GND	G	See Pin Diagram	Analog ground. All plane.	GND pins mu	ist be connected	to the same o	ommon ground

Ľ

Pin Description (continued)

Note: All pins marked NC are reserved for future expansion and MUST be left floating.

PC Board Layout Considerations

PC Board Considerations

The layout should be optimized for lowest noise on the Bt885 power and ground planes by providing good decoupling. The trace length between groups of VAA and GND pins should be as short as possible to minimize inductive ringing.

A well-designed power distribution network is critical to eliminating digital switching noise. The ground plane must provide a low-impedance return path for the digital circuits. A PC board with a minimum of four layers is recommended, with layers 1 (top) and 4 (bottom) for signals and layers 2 and 3 for ground and power.

Component Placement

Components should be placed as close as possible to the associated CacheDACTM pin. Whenever possible, components should be placed so traces can be connected point to point.

The optimum layout enables the Bt885 to be located as close as possible to the power supply connector and the video output connector.

Ground Planes

For optimum performance, a common digital and analog ground plane is highly recommended.

Power Planes

Separate digital and analog power planes are recommended. The digital power plane should provide power to all digital logic on the PC board, and the analog power plane should provide power to all Bt885 power pins. VREF circuitry, and COMP. There should be at least a 1/8-inch gap between the digital power plane and the analog power plane.

The analog power plane should be connected to the digital power plane (VCC) at a single point through a ferrite bead, as illustrated in Figure 7 and Figure 8. This bead should be located within 3 inches of the Bt885. The bead provides resistance to switching currents, acting as a resistance at high frequencies. A low-resistance bead should be used, such as Ferroxcube 5659065-3B. TDK HF30ACB321611T, or TDK BF45-4001.

Device Decoupling

For optimum performance, all capacitors should be located as close as possible to the device, and the shortest possible leads (consistent with reliable operation) should be used to reduce the lead inductance. Chip capacitors are recommended for minimum lead inductance. Radial lead ceramic capacitors may be substituted for chip capacitors and are better than axial lead capacitors for self-resonance. Values are chosen to have self-resonance above the pixel clock.

Power Supply Decoupling

The best power supply decoupling performance is obtained with a 0.1 μ F ceramic capacitor in parallel with a 0.01 μ F chip capacitor decoupling each group of VAA pins to GND. The capacitors should be placed as close as possible to the device VAA and GND pins and connected with short, wide traces.

The 10 μ F capacitor shown in Figure 7 and Figure 8 is for low-frequency power supply ripple; the 0.1 μ F capacitors are for high-frequency power supply noise rejection.

COMP Decoupling

The COMP pin must be decoupled to VAA, typically with a 0.1 μ F ceramic capacitor and optional 15 Ω resistor. Low-frequency supply noise will require a larger value. The COMP capacitor must be as close as possible to the COMP and VAA pins. A surface-mount ceramic chip capacitor is preferred for minimal lead inductance. Lead inductance degrades the noise rejection of the circuit. Short, wide traces will also reduce lead inductance.

If the display has a ghosting problem, additional capacitance in parallel with the COMP capacitor may help.

VREF Decoupling

A 0.1 μ F ceramic capacitor should be used to decouple this input to GND.

PC Board Layout Considerations (continued)

Digital Signal Interconnect

The digital inputs to the Bt885 should be isolated as much as possible from the analog outputs and other analog circuitry. Also, these input signals should not overlay the analog power plane or analog output signals.

Most of the noise on the analog outputs will be caused by excessive edge rates (less than 3 ns), overshoot, undershoot, and ringing on the digital inputs.

The digital edge rates should not be faster than necessary, as feedthrough noise is proportional to the digital edge rates. Lower-speed applications will benefit from using lower-speed logic (3-5 ns edge rates) to reduce data-related noise on the analog outputs.

Transmission lines will mismatch if the lines do not match the source and destination impedance. This will degrade signal fidelity if the line length reflection time is greater than one-fourth the signal edge time (refer to Brooktree Application Notes AN-11 and AN-12). Line termination or line-length reduction is the solution. For example, logic edge rates of 2 ns require line lengths of less than 4 inches without use of termination. Ringing may be reduced by damping the line with a series resistor (30–300 Ω). The RS-select inputs and RD*/WR* lines must be verified for proper levels with no ringing, undershoot, or overshoot. Ringing on these lines can cause improper operation.

Radiation of digital signals can also be picked up by the analog circuitry. This is prevented by reducing the digital edge rates (rise/fall time), minimizing ringing with damping resistors, and minimizing coupling through PC board capacitance by routing the digital signals at a 90 degree angle to any analog signals.

The clock driver and all other digital devices must be adequately decoupled to prevent noise generated by the digital devices from coupling into the analog circuity.

TTL Clock Interfacing

The B1885 requires a pixel clock with monotonic clock edges for proper operation. Impedance mismatch on the pixel clock line will induce reflections on the pixel clock, which may cause erratic operation.

The Pixel Clock Pulse Width High Time and Pixel Clock Pulse Width Low Time minimum specifications (see the AC Characteristics section) must not be violated, or erratic operation can occur.

The pixel clock line must be terminated to prevent impedance mismatch. A series termination of 33-68 Ω placed at the pixel clock driver may be used, or a parallel termination may be used at the pixel clock input to the CacheDACTM. A parallel termination of 220 Ω to VCC and 330 Ω to ground will provide a Thevenin equivalent of a 110 Ω termination, which is normally sufficient to absorb reflections. The series or parallel resistor values should be adjusted to provide the optimum clock signal fidelity.

Differential Clock Interfacing

Termination requirements for differential ECL clock sources will vary depending on the particular clock generator used.

MPU Control Signal Interfacing

The Bt885 uses the RD*, WR*, and RS lines to determine which MPU accesses will take place. Glitches or ringing on any of these lines may cause improper MPU operation. When a VGA controller with edge rate control is used on these lines, a series termination is not necessary. In non-VGA controller application or in applications where the MPU control signals are daisy chained, a series termination, pull-down resistors, or additional capacitance to ground should be used to prevent glitches that could cause improper MPU accesses.

Analog Signal Interconnect

The Bt885 should be located as close as possible to the output connectors to minimize noise pickup and reflections caused by impedance mismatch.

The analog outputs are susceptible to crosstalk from digital lines; digital traces must not be routed under or adjacent to the analog output traces.

To maximize the high-frequency power supply rejection, the video output signals should not overlay the analog power plane.

For maximum performance, the analog video output impedance, cable impedance, and load impedance should be the same. The load resistor connection between the video outputs and GND should be as close as possible to the Bt885 to minimize reflections. Unused analog outputs should be connected to GND.

Analog output video edges exceeding the CRT monitor bandwidth can be reflected, producing cablelength dependent ghosts. Simple pulse filters can reduce high-frequency energy, reducing EMI and noise. The filter impedance must match the line impedance.

PC Board Layout Considerations (continued)

Analog Output Protection

The Bt885 analog output should be protected against high-energy discharges, such as those from monitor arc-over or from hot-switching AC-coupled monitors.

The diode protection circuit shown in Figure 7 and Figure 8 can prevent latchup under severe discharge conditions without adversely degrading analog

transition times. The 1N4148/9 parts are low-capacitance, fast-switching diodes, which are also available in multiple-device packages (FSA250X or FSA270X) or surface-mountable pairs (BAV99 or MMBD7001).

Location	Description	Vendor Part Number
C1-C12	0.1 µF Ceramic Capacitor	Erie RPE112ZSU104M50V
C22	10 µF Capacitor	Mallory CSR13G106KM
LI	Ferrite Bead	TDK HF30ACB321611T
R1, R2, R3	75 Ω 1% Metal Film Resistor	Dale CMF-55C
R4	15 Q 1% Metal Film Resistor	Dale CMF-55C
RSET	1% Metal Film Resistor	Dale CMF-55C

Figure 7. Typical Connection Diagram and Parts List (Internal Voltage Reference).

PC Board Layout Considerations (continued)

Location	Description	Vendor Part Number			
C1-C12	0.1 μF Ceramic Capacitor	Erie RPE112Z5U104M50V			
C22	10 µF Capacitor	Mallory CSR13G106KM			
LI	Ferrite Bead	TDK HF30ACB321611T			
R1, R2, R3	75 Ω 1% Metal Film Resistor	Dale CMF-55C			
R4	1 KΩ 5% Metal Film Resistor	Dale CMF-55C			
R5	15 Ω 1% Metal Film Resistor	Dale CMF-55C			
RSET	1% Metal Film Resistor	Dale CMF-55C			
Z 1	1.2 V Voltage Reference	National Semiconductor LM385BZ-1.2			

Figure 8. Typical Connection Diagram and Parts List (External Voltage Reference).

PC Board Layout Considerations (continued)

Using Multiple Devices

When multiple Bt885s are used, each Bt885 should have its own power plane and ferrite bead. If the internal reference is used, each Bt885 should use its own internal reference.

Although the multiple Bt885s may be driven by a common external voltage/current reference, higher performance may be obtained if each CacheDACTM uses its own reference. This will reduce the amount of color channel crosstalk and color palette interaction.

Each Bt885 must still have its own RSET resistor, analog output termination resistors, power supply bypass capacitors. COMP capacitor, and reference capacitors.

ESD and Latchup Considerations

Correct ESD-sensitive handling procedures are required to prevent device damage, which can produce symptoms of catastrophic failure or erratic device behavior with leaky inputs.

All logic inputs should be held low until power to the device has settled to the specified tolerance. DAC power decoupling networks with large time constants should be avoided. They could delay VAA power to the device. Ferrite beads must be used only for analog power VAA decoupling. Inductors and regulators cause a time constant delay that induces latchup.

Latchup can be prevented by ensuring that all VAA and GND pins are at the same potential and that the VAA supply voltage is applied before the signal pin voltages. The correct power-up sequence ensures that any signal pin voltage will never exceed the power supply voltage by more than + 0.5 V.

Sleep Operation

When the internal or external voltage reference is used, the DACs will be turned off during sleep mode.

When an external voltage reference is used, some internal circuitry will still be powered during the sleep mode. This unnecessary current drain can be disabled by turning off the external voltage reference during power-down mode.

Recommended Operating Conditions

Parameter	Symbol	Min	Тур	Max	Units
Power Supply	VAA	4.75	5.00	5.25	V
Ambient Operating Temperature	TA	0		-70	•c
Output Load	RL		37.5		Ω
Voltage Reference Configuration Reference Voltage	VREF	1.1112	1.235	1.359	٧

Absolute Maximum Ratings

Parameter	Symbol	Min	Тур	Mex	Units
VAA (Measured to GND)				7.0	٧
Voltage on Any Signal Pin (Note 1)		GND -0.5		VAA + 0.5	v
Analog Out; at Short Circuit Duration to Any Power Supply or Common	ISC		Indefinite		,
Storage Temperature	TS	-65		+150	*C
Junction Temperature	TJ		•	+150	•c
Vapor Phase Soldering (1 Minute)	TVSOL			220	° C

Stresses above those listed under "Absolute Maximum Rating," may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Note 1 This device employs high-impedance CMOS devices on all signal pins. It should be handled as an ESD-sensitive device. Voltage on any signal pin that exceeds the power supply voltage by more than + 0.5 V can cause destructive latchup.

DC Characteristics

Parameter	Symbol	Min	Тур	Max	Units
Resolution (Each DAC) Accuracy (Each DAC) Integral Linearity Error Differential Linearity Error Gray-Scale Error Monotonicity Coding	IL Di.	8	8 Guaranteed	8 ±1 ±1 ±5	LSB LSB % Gray Scale
Digital Inputs Input High Voltage Input Low Voltage Input High Current (Vin = 2.4 V) %/~ Input Low Current (Vin = 0.4 V) Input Capacitance (V = 1 MHz, Vin = 2.4 V) Hysteresis	CIN III AII' AII'	2.0 GND -0.5	0.3	VAA + 0.5 0.8 200/ tbd 50 90 tbd 7	Binary V V μA μA pF
OSC/OSC® ECL Differential Inputs Input High Voltage Input Low Voltage	ΔVin VIH VIL	0.6 VCC - 1.1 VCC - 2	0.3	VCC - 0.8	v
Output High Voltage (IOH = -400 µA) Output Low Voltage (IOL = 3.2 mA) Three-State Current Output Capacitance Load Capacitance	VOH VOL IOZ CDOUT CL	-34		VCC - 1.5	V V V µA pF
			See test cond	10 dition and notes o	pF

DC Characteristics (continued)

Parameter	Symbol	M	Тур	Max	Units
Analog Outputs		 	<u> </u>	<u> </u>	
Gray-Scale Current Range		i		30	
Output Current (Standard RS-343A)	1		, , , , , , , , , , , , , , , , , , ,	20	mA.
White Level Relative to Black		15.86	17.62	10.5	
Black Level Relative to Blank	1	15.80	17.02	18.5	mA.
SETUP = 7.5 IRE		0.95			1
SETUP = 0 IRE	1	-50	1.44 5	1.90	m.A
Blank Leve		6.29	•	50	μА
Sync Lev	1 7	, ,	7.62	8.96	mA
LSB Size	1	-510	5	50	μА
DAC-to-DAC Matching	- -		69.1	_	. μ Α
Output Compliance	voc	-0.2	2	5	₩.
Output Impedance	RAOUT	-0.2		+1.5	V
Output Capacitance	CAOUT	1	10		kΩ
(f = 1 MHz. IOUT = 0 mA)	CAOO!			30	pF
roard VREF (e 1)	REFOUT	tbd	tbd	tbd	\ \ \ \ \
Guage Referent Input Current	IVR IN		tbd	tbd	mA.
Power Supply Rejection Ratio	PSRR			0.5	% /% AVA
	IVR IN	tbd		tbd	mA

AC Characteristics

		110 MH	z Devic	es	
Parameter	Symbol	Min	Тур	Max	Units
OSC, OSC® All Mux Rates	Fmax		 	110	MHz
RSO-RS3 Serup Time WA 1 20 RSO-RS3 Hold Time	1 2	10			ns
RD* Asserted to D0-D7 Driven RD* Asserted to D0-D7 Valid RD* Negated to D0-D7 3-Stated Read D0-D7 Hold Time	3 4 5 6	2		40 20	ns ns ns
Write D0-D7 Semp Time Write D0-D7 Hold Time	7 8	10 10			ns ns
RD*, WR* Pulse Width Low RD*, WR* Pulse Width High	9	50 6° pixel clock periods			ns ns ns
GLCLK Rates 8:1 Multiplexing 4:1 Multiplexing 2:1 Multiplexing 1:1 Multiplexing	Gmax			13.75 27.5 55 90	MHz MHz MHz MHz
VLCLK Rate	Vmax			85	MHz
DIVCLK1, DIVCLK2 Rates	Dmax			55	MHz
OSC. OSC® Cycle Time (Note 1) All Mux Rates OSC. OSC® Pulse Width High All Mux Rates	11	18.18			ns
OSC. OSC* Pulse Width Low All Mux Rates	13	tbd			ns ns
Duty Cycle of Selected Pixel Clock When Clock Doubler Enabled		45		55	%
GLCLK Cycle Time 8:1 Multiplexing 4:1 Multiplexing 2:1 Multiplexing 1:1 Multiplexing	14	72.72 36.36 18.18			ns ns ns
GLCLK Pulse Width High 8:1 Multiplexing 4:1 Multiplexing 2:1 Multiplexing 1:1 Multiplexing	15	4 4 4			ns ns ns
GLCLK Pulse Width Low 8.1 Multiplexing 4:1 Multiplexing 2:1 Multiplexing	16	4 4 4			ns ns
1:1 Multiplexing	1	4			ns ns

Test conditions at end of this section

AC Characteristics (continued)

P14.6-

٠.	_	110 M	Hz Devi	Ces		
Parameter	Symbol	Min	Тур	Max	Units	
VLCLK Cycle Time 11/c- VLCLK Pulse Width High VLCLK Pulse Width Low	17 18 19	11.76 4 4			ns ns	
DIVCLK1, DIVCLK2 Cycle Time	20	14.81			ns	-
DIVCLK1. DIVCLK2 Duty Cycle	21	40		60	96	
Graphics Data Setup to GLCLK Graphics Data Hold from GLCLK	22 23	3			ns ns	7
Data Setup to GLCLK """ ENABLE, BLANK®, CHSYNC®, VSYNC®	24	3			ns	
Data Hold to GLCLK ENABLE. BLANK®, C/HSYNC®, VSYNC®	25	1			ns	
Video Data Setup to VLCLK Video Data Hold from VLCLK	26 27	3 I			ns ns	
VALID Setup to VLCLK ** VALID Hold from VLCLK	28 29	3 1			ns ns	
VLCLK to READY Valid	30		!	7	ns	
DIVCLK1 to SEN Value	31		i	3	ns	
FIFO Reset Pulse Width		2 * VLCLK periods			ns	
Analog Output Delay Analog Output Rise/Fall Time Analog Output Settling Time (Note 2) Clock and Data Feedthrough (Note 2) Glitch Impulse (Note 2) SENSE® Output Delay DAC-to-DAC Crosstalk Analog Output Skew	32 33 34 35	-	3 13 -30 75 1 -23	30	ns ns dB pV - sec µs dB ns	
VAA Supply Current Normal Operation "Sleep" Mode (Note 3)	IAA		tbd tbd	tbd tbd	mA mA mA	/

Test conditions at end of this section

AC Characteristics (continued)

Pipeline Delay	
Graphics 1:1/No Video	3 LCLKS + 16 PCLKS
MUX Graphics/No Video	(8 LCLKS + 16 PCLKS) ± 2 LCLKS
Graphics 1:1/Video	27 LCLKS + 16 PCLKS
MUX Graphics/Video	(32 LCLKS + 16 PCLKS) ± 2 LCLKS

The number of LCLKS will have to be multiplied by the respective MUX rates to get the proper number of pipeline delays. (i.e., PCLK = Pixel Clock Rate LCLK = MUX Clock Rate the pipeline delay in 2:1 MUX Graphics/No video, measured in PCLKs = 32 PCLKS ± 4 PCLKs.

Test conditions (unless otherwise specified): "Recommended Operating Conditions" using external voltage reference with SETUP = 7.5 IRE, VREF = 1.235 V, RSET = 147Ω TTL input values are 0-3 V, with input rise/fall times ≤ 3 ns. measured between the 10% and 90% points. Timing reference points at 50% for inputs and outputs. Analog output load ≤ 10 pF; SENSE® and D0-D7 output load ≤ 50 pF. DIVCLK1, DIVCLK2 output load = 50 pF. As the above parameters are guaranteed over the full temperature range, temperature coefficients are not specified or required. Timing waveforms are shown in Figure 9 through Figure 11.

- Note 1: OSC and OSC® cycle times assume the use of the 2x Clock Multiplier.
- Note 2: Numbers guaranteed by design.
- Note 3: External voltage reference is disabled during sleep mode, all inputs are low, and clock is running.

Timing Waveforms

- Note 1: Output delay measured from the 50% point of the rising edge of CLOCK to the 50% point of full-scale transition
- Note 2: Settling time measured from the 50% point of full-scale transition to the output remaining within ±1 LSB. Note 3: Output rise/fall time measured between the 10% and 90% points of full-scale transition.

Figure 9. MPU Read/Write Timing.

Figure 10. Graphics Input/Output Timing.

Timing Waveforms

Bt885

rtinued)

Figure 11. Video Input/Output Timing.

Ordering Information

Model Number	Speed	Package	Ambient Temperature Range
Bt885KHF110	110 MHz	160-pin Plastic Quad Flatpack	0°C to + 70°C

Revision History

Datasheet Revision	Changes From Previous Revision
В	Initial Release
С	Pinout change. Pin 160 was changed from GND to RPTLINE, Pin 2 was changed from GND to VRESET*. Pins 1, 39, 40, 41, 42, 79, 80, 81, 82, 119, 120, 121, 122 were changed from GND to NC.
	Vertical scaling support added. Both DIVCLK1 and DIVCLK2 and all internal clocks are derived from OSC or OSC* clock inputs.
,	DIVCLK1 and DIVCLK2 outputs are opposite phases.
D	135 MHz speed grade removed.
	Pinout change. Pin 160 was changed from RPTLINE to NC.
	Vertical scaling deleted.

Package Drawing-160-pin Plastic Quad Flatpac (PQFP)

Notes. Unless otherwise specified:

- 1. Dimensions are in inches [millimeters]. Millimeters are the controlling dimension.
- 2. Package body size does not include mold protrusion or mismatch.
- 3. PCB pad layout suggestions:
 - a. Pad size: 0.100 x 0.012 [2.54 x 0.30].
 - b. Lead pitch (millimeters): Use 0.65 center-to-center spacing.
 - c. Lead pitch (inches): If the PCB layout system to be used can handle fractional mils, use 0.0256 center-to-center spacing. If not, use a combination of 0.025(A) and 0.026(B) inch spacings in groups of five ("ABABA" repeated) to approximate the exact spacing as closely as possible. For example, "ABABA" "ABABA" and so forth.

Brooktree*

Brooktree Corporation
9868 Scranton Road
San Diego, CA 92121-3707
(619) 452-7580
1(800) 2-BT-APPS
TLX: 383 596
FAX: (619) 452-1249
Internet: apps⊕brooktree.com
L885001 Rev. D

CAUTION

ESD-sensitive device.

Permanent damage may occur on unconnected devices subjected to high-energy electrostatic fields.

Unused devices must be stored in conductive foam or shunts.

Do not insert this device into powered sockets.

Remove power before insertion or removal.

Figure 1. Bt885 Detailed Block Diagram.

₩.

Advance Information

This document contains information on a product under development. The perametric information contains target parameters that are subject to change.

Distinguishing Features

- 110 MHz Pipelined Operation
- VGA Compatible
- Mixed Video and Graphics
- 32-bit Graphics and 32-bit Video Pixel Ports
- YCrCb-to-RGB Conversion
- YCrCb 4:2:2 and 2:1:1 Interpolation
- Uses Brooktree's VideoCache™ Technology
- Horizontal Video Up-Scaling
- 64 x 64 x 2 Cursor
- VRAM Shift Clock Support
- Enables DRAM-Based Motion
- Video Systems
- Programmable Video Extents
- Programmable Color Keying
- Onboard TTL Clock Doubler
- Three 256 x 8 Color Palette RAMs
- Simplifies Integration of Video into

Functional Block Diagram

Microsoft Windows™

- 3 x 24 Cursor Color Paiette
- Standard MPU Interface
- Power-Down Mode
- Directly Implements Brooktree's VideoCache™ Connector
- 160-Pin PQFP Package

Applications

- Video Decompression Acceleration
- Multimedia Workstations
- High-Resolution Graphics
- Desktop Video

Related Products

- Bt812 Video Decoder
- **Bt858 Video Encoder**
- **Bt895 Video Controller**
- Bt81295 Personal Media Adapter

dedicated video port accepts a CCIR601

YCrCb or RGB data stream and allows onscreen switching on a pixel-by-pixel basis. Mixing occurs within programmable video

Bt885

110 MHz Monolithic CMOS

Video CacheDAC™

The Bt885 is designed specifically for dual or

unified frame buffer multimedia subsystems. A

Product Description

extents based on a flexible color key mechanism. Bt885 is intended to replace multiple RAMDAC™-based multimedia subsystems. The Bt885 register set is VGA

compatible.

The Bt885 can accelerate video decompression and work with the Bt812 decoder chip using programmable interpolation to pixel multiply by 1, 2, or 4 for CCIR601 4:2:2, 2:1:1, and 1:0.5:0.5 formats. This allows the video data to mix with the graphics data at the same rate.

Brooktree's 800-byte VideoCache™ FIFO enables asynchronous delivery of graphics and video, easing system bandwidth requirements for video transfer, and allowing efficient use of system memory. Non-integer scaling permits arbitrary video window sizing.

The 64 x 64 x 2 bit cursor has its own palette and has priority over the video or graphics. The cursor operates in three modes: Microsoft Windows™, three-color, and X Windows.

The Bt885 supports independent 32-bit graphics and 32-bit video pixel ports and is compatible with both VRAM- and DRAMbased video subsystems.

The Bt885 generates RS-343A-compatible video signals into a doubly terminated 75 Ω load.

Brooktree Corporation • 9868 Scranton Road. • San Diego, CA 92121 (619) 452-7580 • (800) 2BT- APPS • TLX: 383 596 • FAX: (619) 452-1249 L885001 Rev. D

Brooktree*

MPU Interface

As illustrated in the detailed block diagram (Figure 1), a standard MPU bus interface is supported, allowing the MPU direct access to the color palette RAM. MPU data is transferred into and out of the CacheDACTM through the D0-D7 data pins. The read/write timing is controlled by the RD* and WR* inputs.

The RSO-RS3 select inputs specify which control register the MPU is accessing, as shown in Table 1. The 8-bit address register is used to address the color palette RAM, eliminating the requirement for external address multiplexers. D0 corresponds to ADDR0 and is the least significant bit.

Hardware Reset Condition

On reset, Bt885 is configured for standard VGA compatibility as follows:

8 bits per pixel graphics, 1:1 MUX.
6-bit DAC resolution.
Pixel mask register set to 0xFF.
Video modes disabled.
All control registers set for VGA compatibility.
Graphic pipelines are reset.

Writing Color Palette RAM Data

To write color data, the MPU writes the address register (RAM write mode) with the address of the color palette RAM location to be modified. The MPU performs three successive write cycles (8 bits each of red, green, and blue), using RSO-RS3 to select the color palette RAM. After the blue write cycle, the 3 bytes of color information are concatenated into a 24-bit word and written to the location specified by the address register. The address register then increments to the next location, which the MPU may modify by writing another sequence of red, green, and blue data. A block of color values in consecutive locations may be written to by writing the start address and performing continuous RGB write cycles until the entire block has been written. Refer to the Timing Waveforms section for further information.

Reading Color Palette RAM Data

To read color palette RAM data, the MPU loads the address register (RAM read mode) with the address of the color palette RAM location to be read. The contents of the color palette RAM at the specified address are

copied into the red, green, or blue (RGB) registers and the address register is incremented to the next RAM location. The MPU performs three successive read cycles (8 bits each of red, green, and blue), using RSO-RS3 to select the color palette RAM. Following the blue read cycle, the contents of the color palette RAM at the address specified by the address register are copied into the RGB registers, and the address register increments again. A block of color values in consecutive locations may be read by writing the start address and performing continuous RGB read cycles until the entire block has been read.

R83-R80	Access	Addressed by MPU
0000	R/W	address register, palette/cursor RAM write
0001	R/W	6/8-bit color palette data
0010	R/W	pixel mask register
0011	R/W	address register; palette/cursor RAM read
0100	R/W	address register; cursor/overscan color write
0101	R/W	cursor overscan and color data
0110	R/W	command register 0
0111	R/W	address register, cursor/overscan color read
1000	R/W	command register 1
1001	R/W	command register 2
1010	R/W	extended address read/write register
1011	R/W	cursor RAM array data
1100	R/W	cursor x-low register
1101	R/W	cursor x-high register
1110	R/W	cursor y-low register
1111	RW	cursor y-high register

Table 1. Control Input Truth Table (RS3 = MSB, RS0 = LSB).

Writing Cursor and Overscan Color Data

To write cursor or overscan color data, the MPU writes the address register (cursor color write mode) with the address of the cursor or overscan color location to be modified. The MPU performs three successive write cycles (8 bits each of red, green, and blue), using RSO-RS3 to select the cursor color registers. After the blue write cycle, the 3 bytes of red, green, and blue color information are concatenated into a 24-bit word and written to the cursor or overscan color location speci-

fied by the address register. The address register then increments to the next location, which the MPU may modify by writing another sequence of red, green, and blue data. A block of color values in consecutive locations may be written to by writing the start address and performing continuous RGB write cycles until the entire block has been written.

Reading Cursor Color Data

To read cursor color data, the MPU loads the address register (cursor color read mode) with the address of the cursor color location to be read. The contents of the cursor color register at the specified address are copied into the RGB registers, and the address register is incremented to the next cursor color location. The MPU performs three successive read cycles (8 bits each of red, green, and blue), using RSO-RS3 to select the cursor color registers. Following the blue read cycle, the contents of the cursor color location at the address specified by the address register are copied into the RGB registers, and the address register again increments. A block of color values in consecutive locations may be read by writing the start address and performing continuous R, G, B read cycles until the entire block has been read.

Extended Register Mechanism

An extended register set is used to accommodate all features of the Bt885. Since there are only four register select lines (and all 16 combinations have already been used), the extended registers must be accessed indirectly.

For example, Command Register 3 is accessed with the following sequence of operations:

- 1. Set RS3-RS0 = 0000, Address Register.
- 2. Write Address Register to 0x02
- 3. Set RS3-RS0 = 1010 (Extended Address Register).
- 4. Read or Write Command Register 3.

Writing Color Key Color Data

To write the color key color data value, the MPU selects the color key data RGB register using the extended register. It then performs a write cycle setting RS3-RS0 to 1010 (Status Register). This process is repeated for each color component. The color key color register is only updated after the blue value is written.

Reading Color Key Color Data

To read the color key color data value, the MPU selects the color key data RGB register using the extended register mechanism, then performs a read cycle setting RS3-RS0 to 1010 (Status Register).

Writing Color Key Mask Data

To write the color key mask data value, the MPU selects the color key mask RGB register using the extended register mechanism. It then performs a write cycle setting RS3-RSO to 1010 (Status Register). This process is repeated for each color component. The color key mask register is only updated after the blue value is written.

Reading Color Key Mask Data

To read the color key color mask value, the MPU selects the color key data RGB register using the extended register mechanism outlined below, then performs a read cycle setting RS3-RS0 to 1010 (Status Register).

Additional Information

When the color palette RAM is accessed, the address register resets to 0x00 following a blue read or write cycle to RAM location 0xFF.

The MPU interface operates asynchronously to the pixel clock. Data transfers between the color palette RAM and the color registers (R, G, and B in the functional block diagram) are synchronized by internal logic, and occur in the period between MPU accesses. To reduce noticeable sparkling on the CRT screen during MPU access to the color palette RAMs, internal logic maintains the previous output color data on the analog outputs while the transfer between RGB registers and lookup table RAMs occurs.

To keep track of the red, green, and blue read/write cycles, the address register has two additional bits (ADDRa and ADDRb) that count modulo three. They are reset to zero when the MPU writes to the address register and are not reset to zero when the MPU reads the address register. The MPU does not have write access to these bits. The MPU may read the address register at any time without modifying its contents or the existing read/write mode. These bits can be read from SR1.

Accessing the Cursor RAM Array

The 64 x 64 x 2 cursor RAM is accessed in a planar format. Bits CR31 and CR30 in Command Register 3 become the load inputs to the 2 MSBs of a 10-bit address counter; therefore, these bits must be written in Command Register 3 before the lower 8 bits are written to the address counter through the MPU port. In the planar format, only nine address bits are used. The tenth bit determines which plane (0 or 1) data of the cursor RAM array is accessed. A single address presented to the cursor RAM accesses 8-bit locations in plane 0 or 1, depending on the state of address bit 9.

After each access in the planar format, the address increments. The MPU uses ADDR, a 10-bit binary address counter, to access the cursor RAM array. The address counter is the same 8-bit binary counter used for RGB autoincrementing with CR31 and CR30 as its extended MSBs. Any write to the address counter after cursor autoincrementing has been initiated resets the cursor autoincrementing logic until cursor RAM array has again been accessed. Cursor autoincrementing will then begin from the address written. A read from the address counter does not reset the cursor, autoincrementing logic. The color palette RAM and the cursor RAM share the same external address register, and MPU addressing for this and all other registers is determined by the external register select lines RS3-RS0 (see Table 2).

6-Bit/8-Bit Operation

The command bit CR01 specifies whether the MPU is reading and writing 8 bits or 6 bits of color information each cycle. For an 8-bit operation, D0 is the LSB and D7 is the MSB of color data. For a 6-bit operation, color data is contained on the lower 6 bits of the data bus, with D0 as the LSB and D5 as the MSB of color data. When the MPU is writing color data, D6 and D7 are ignored. During color read cycles, D6 and D7 are a logical zero.

Accessing the cursor RAM array does not depend on the resolution of the DACs. When Bt885 is in the 6-bit mode, the 6-bit DAC values are left justified within an 8-bit field and the two LSBs are set to zero. Therefore, Bt885's full-scale output current will be about 1.5% lower than while it is in the 8-bit mode.

Power-Down Mode

The Bt885 incorporates a power-down capability, controlled by command bit CR00. While command bit CR00 is a logical zero, the Bt885 functions normally.

While command bit CR00 is a logical one, the DACs, cursor circuitry, video FIFO, and power to the RAM are turned off. The RAM still retains the data. Also, the RAM may be read or written to by the MPU as long as the pixel clock is running. The RAM automatically powers up during MPU read/write cycles and shuts down when the MPU access is completed. The DACs output no current, and the four command registers may still be written to or read by the MPU. The output DACs require about one second to turn off (sleep mode) or turn on (normal), depending on the compensation capacitor used (see the Video Output Waveforms section for further information). The DACs will be turned off during sleep mode only if a voltage reference (internal or external) is used.

When an external voltage reference is used, external circuitry should turn off the voltage reference (VREF = 0 V) to further reduce power consumption caused by biasing of portions of the internal voltage reference.

Pixel Clock Selection

OSC and OSC^o provide the source for the Bt885 internal pixel clock. Graphic pixel data is latched by GLCLK. Bit CR24 selects whether the OSC or OSC^o pin is used. A clock doubler can be enabled on the selected input by setting CR33 = 1. The OSC^o and OSC inputs can be used together as differential ECL inputs for the external clock by setting CR34 = 1. If a differential ECL input mode is used (CR34 = 1), then the state of CR24 is ignored. The state of CR33 must be 0.

It is also possible to internally route the DIVCLK2 output to the latches connected to GLCLK by setting CR36 = 1. GLCLK will be ignored in this mode.

DIVCLK1 and DIVCLK2 are output on the basis of the OSC and OSC* inputs as described unless they are disabled by setting CR32 = 0 (DIVCLK1 disable) or CR35 = 0 (DIVCLK2 disable). If the clock doubler is used (CR33 = 1), then both the DIVCLK1 and DIV-CLK2 dividers must be set to a value of 2 or greater. DIVCLK1 and DIVCLK2 are opposite phases.

CR31 (bit A9 of ADDR)	ADDR 0-7 (counts binary)	ADDR a,b (counts modulo 3)	RS3	RS2	RS1	RSO	Addressed by MPU
N/A	0x00-0xFF	00	0	0			
		01	1 -	_	0	1	Color palette RAM (Red Component)
	!	•••	0	0	0	1	Color palette RAM (Green Componer
N/A		10	0	0	0	1	Color palette RAM (Blue Component
IVA	0x00	00	0	1	0	1	Overscan color (Red Component)
		01	0	1	0	1	Overscan color (Green Component)
		10	0	i	ŏ	. i	Overscan color (Blue Component)
NA	0x01	00	0	 	0	-	Component)
i		01	ŏ		اة	•	Cursor Color 1 Red Component
		10	0	: 1	٠,		Cursor Color 1 Green Component
NVA	0x02				0	_1	Cursor Color 1 Blue Component
	UKU2	00	0	1	0	1	Cursor Color 2 Red Component
	j	01	0	1	0	1	Carsor Color 2 Green Component
		10	0	1	0	i l	Cursor Color 2 Blue Component
NA	0x03	00	0	1	0		
Í		01	o i	· 1	ŏ	: 1	Cursor Color 3 Red Component
	· ·	10	ŏ	; I	0	:	Cursor Color 3 Green Component
0	0x000-0x1FF	NA	-: 	-	•		Cursor Color 3 Blue Component
1 İ	0x200-0x3FF		1	0	1	1	Cursor RAM Array, plane 0
	VALUE VIOLE	N/A	1	0	1	1	Cursor RAM Array, plane 1

Table 2. Address Register Operation and Autoincrementing.

Frame Buffer Pixel Port Interface

There are 64 input pins P0-P7 (A-H) used to interface to the graphics and video frame buffer memories. The assignment of pins to input pixels is determined by the operation mode and multiplex rate.

Video Port Clocking

Video data is synchronously clocked into Bt885 with the VLCLK input. VLCLK may be asynchronous from the pixel and/or graphics load clock, as an internal FIFO is used to synchronize video data to graphics pixel data.

Three status signals are available to control the loading of video pixel data into Bt885: VALID, READY and HFULL. VALID is provided by the system to Bt885 and is asserted to indicate that valid video data is being presented on the video pixel port. The READY signal is an output from Bt885 that indicates that it is accepting pixel data. For data to be accepted on any particular VLCLK rising edge, both the VALID and READY signals must be high through the clock edge. The HFULL signal is used to keep check on how full the video cache is and helps to prevent overloading the internal video FIFO.

The system must load video data into Bt885 prior to the time that it is to be used. In systems where there is a one-to-one relationship between video pixels and graphics pixels in the frame buffer and this data is delivered simultaneously, the FIFO operation can be ignored and VALID would be tied to the pixel blanking signal from the graphics subsystem (BLANK*). In this mode, the FIFO would never be filled and, therefore, READY may be ignored.

The internal video data FIFO is reset to an empty state on each detected vertical blank period. The system can immediately begin loading data into the video port regardless of the video window's position on the screen. With the VRESET[®] signal (see pin description) the video data will know the start of each graphics frame. See diagram below:

If at any time the video FIFO is empty when video data is required, Status Register 2 bit SR27 will be set to one. The underflow bit will remain set until Status Register 2 is written, then SR27 will be cleared.

For proper operation of the video pipeline reset, VLCLK must be a free-running clock.

ũ

VideoCache™ FIFO Operation

The Bt885 provides a FIFO buffer for video pixels to allow for asynchronous video and graphics operation, and to ease system design requirements. Use of the VideoCache™ FIFO features is entirely optional and not necessary for synchronous designs.

Loading VideoCache™ FIFO

The VideoCacheTM FIFO accepts a group of data (the exact number is given by the current video mode) when the following conditions are met on any single rising edge of VLCLK:

- The FIFO is ready to accept data (i.e., it is not full). This is determined by the state of the READY signal.
- The system is presenting data, indicating this to the CacheDACTM by asserting the VALID signal with the data.

Unloading VideoCache™ FIFO

Bt885 will unload the VideoCacheTM FIFO dependant on the setting of bit CR41. If CR41 = 1, the video will only be unloaded while Bt885 is scanning through the video window. If CR41 = 0, then video will always be unloaded during active graphics time. The unloading process is independent of color keying.

HFULL

This signal is asserted when the VideoCacheTM FIFO is more than half full.

VideoCache™ Reset

There are four ways that the VideoCache FIFO gets reset:

FIFO Reset Pin. This is an external hardware FIFO RESET method for resetting the Bt\$85 Video FIFO. This pin must be held low for at least two VLCLKs with PDCEL CLOCK running.

CR47. This is a software RESET method for resetting the Bt885 VideoCache FIFO. A logical one written to this bit resets the VideoCache FIFO after four VLCLKs. A logical zero will put the FIFO back to normal operation.

An under flow occurred. The SR27 status bit says a VIDEO FIFO under flow occurred when a logical one is read. The VideoCache FIFO is automatically reset when this happens. A MPU write cycle to Status Register-2 will clear SR27.

Vertical Retrace Interval. An automatic VIDEO FIFO reset also occurs during the vertical retrace interval. When the ENABLE line is low for 2048 clock cycles an internal FIFO RESET sequence is initiated.

READY and VRESET[®] will be = 0 during the FIFO reset period. READY will become active within one PDEL CLOCK period after VRESET[®] goes high.

General Purpose Signals

DIVCLK1 / DIVCLK2

These signals provide programmable free-running clocks based on the internal pixel clock. They can be used to generate external pixel load clocks, such as VLCLK or GLCLK. A gated clock may be generated from DIVCLK1 by using another general purpose signal, SEN, described below.

SĖN

This signal is used to provide a gating control for DIVCLK1. SEN can be programmed to start relative to the falling edge of internally detected vertical blank (see cursor operation) in units of scanlines and relative to the falling edge of C/HSYNC* in DIVCLK1 cycles using the serial clock enable start (horizontal and vertical) registers. Duration is set in units of scanlines for the vertical direction and in DIVCLK1 cycles for the horizontal direction (relative to the beginning of SEN) using the serial clock enable duration (horizontal and vertical) registers. This signal is guaranteed to transition only during DIVCLK1 low time.

This signal may be used to control a VRAM shift clock which runs during non-blanking time. When an appropriate delay is programmed from the leading edge of C/HSYNC*, the serial data can be properly positioned before the trailing edge of BLANK*. The SEN duration register then stops the serial clock to allow the system to perform VRAM row data transfer. Because C/HSYNC* is sampled with the internal pixel clock, there may be an additional pixel clock delay between C/HSYNC* falling and the SEN rising.

MODEO

This is a general purpose, TTL compatible, registered input/output which is set using CR45. Selection of input or output is made using CR37.

This pin is user-definable and could be used to interface between hardware and software. For example, MODEO could detect the existence of a video card. Software would detect this by reading CR45.

Figure 2. Video Window Registers.

Video Window Operation

The XSTART register indicates the starting X position on the screen for the video window relative to the ENABLE pin (Figure 2). A value of zero indicates that the video window begins with the first (leftmost) pixel of each horizontal scan line. The YSTART register indicates the starting Y position on the screen for the video window. A value of zero indicates that the video window begins on the first scan line of each frame. The XWIDTH register indicates the number of pixels per scan line within the video window. A value of zero indicases that there are no pixels in the video window. The YHEIGHT register indicates the number of scan lines within the video window. A value of zero indicates that there are no scan lines in the video window.

All four values, XSTART, XWIDTH, YSTART, and YHEIGHT should be written sequentially. Internal video window coordinates are loaded during the next detected vertical blanking interval after the YHEIGHT register is written.

Video Scaling Operation

The Bt885 supports video upscaling in the horizontal direction. Horizontally, a combination of coarse pixel inexpolation and pixel-accurate replication may be applied. Downscaling of the source image, both horizontally and vertically, must be performed outside the B1885.

Horizontal Scaling

Horizontal upscaling may be accomplished by using a combination of two methods: pixel replication and pixel interpolation.

Pixel replication is accomplished by using the output of an overflowing 12-bit accumulator to either clock a value out of the VideoCache™ FIFO to the DACs or to hold the current DAC value.

At the start of each scan line, the accumulator is initialized to the value stored in the XSCALEINIT register. On each pixel, the value stored in the XSCALEINC register is added to the accumulator.

If the addition results in a carry, a pixel is clocked out of the VideoCache™ FIFO to the DACs. If no carry occurs, the previous DAC value is held. This style of scaling is known as a Digital Differential Algorithm (DDA).

To accomplish scaling, the system supplying the Bt885 with video pixel must precalculate the DDA constants required for the desired scale factor and load the values into the two 12-bit X-scaling registers, XSCA-LEINIT and XSCALEINC, as follows:

XSCALEINC = [(Source Video Width * 0x1000) + 0x0800 - XSCALEINITI / Destination Video Width

0 ≤ XSCALEINIT ≤ 0x0FFF. XSCALEINIT can be used to set the replication phase of the DDA in more advanced applications.

Pixel interpolation is available when using certain YCrCb video modes. When used, it can interpolate the data to 2x or 4x the source borizontal pixel count. The table below shows source data formats, video mode selected (CR1), and the resulting interpolation factor achieved.

Source Video Format	Video Mode Selected	Interplocation Factor Achieved
YCrCb 4:2:2	YCrCb 4:2:2	1:1
	YCrCb 2:1:1	2:1
	YO:Ob 1:.5:.5	4:1
YCrCb 2:1:1	YCrCb 2:1:1	1:1
	YCrCb 1:.5:.5	2:1
YCrCb 1:.5:.5	YCrCb 1:.5:.5	1:1

Example: To fill a window which is 636 pixels wide with a source of 320 pixels of YCrCb 4:2:2 data loaded in 1:1 mux mode, one should select the YCrCb 2:1:1 video mode (CR17-CR14 = 5) and set XSCALEINC to 0x0FFF for no replication (see note below for why 636 pixels was chosen). If the window were slightly larger, say 700 pixels wide, one should select the YCrCb 2:1:1 video mode and use the pixel replicator to stretch the 636 new pixels into 700 pixels (XSCALEINC = 0x0E89, XSCALEINIT = 0x0800).

Color Key Operation

Selection between the video and graphics pixel data may be based on a specified range of graphic pixel values. A "color key set" may be defined which specifies one or more graphic pixel values that allow video pixels to be shown.

To define the color key set, three color key registers and three color mask registers are used. A graphic pixel value is bitwise XORed with the color key and the result is NANDed with the color mask. If the result is one, the corresponding video pixel is displayed in its place.

When a graphic pixel value falls within the color key set, the corresponding video pixel is displayed rather than the graphic pixel. Color key detection may occur either before the palette lookup or after the palette lookup. In 16- and 24-bit pixel modes, if palette bypass is enabled, selecting matching after the palette matches based on the actual values that would be applied to the DACs.

When matching after the palette, bit CR42 of Command Register 4 should be set to 1, and the color key registers and color mask registers represent 24-bit RGB values each. The registers are ordered with red at the lowest address, then green and blue.

When matching before the palette, bit CR42 of Command Register 4 should be set to zero. The color key registers and color mask registers represent unmultiplexed graphic pixel values, with the red register as the least significant byte, then green and blue. Only the bits needed to represent the pixel are used. For example, an 8-bit pixel color key and mask use only the red registers, 16-bit pixels use only the red and green registers.

Pixel selection occurs only within the current video window boundaries, and only when bit CR46 of Command Register 4 is set to 0 to allow color key detection. When CR46 is set to 1, all pixels within the video window will display the video pixels, regardless of color mask and key register values.

The hardware cursor always has display priority over color key selection.

Example 1

Match a specific 8-bit pseudo-color palette position (value 0xFE).

CR42 = 0 (matching before palette)

CR46 = 0 (allow color keying)

Color Mask: (B) 0xXX (G) 0xXX (R) 0xFF

Color Key: (B) OxXX (G) OxXX (R) OxFE

Example 2

Match a range of blue values between 0xC0 and 0xC7.

CR42 = I (matching after palette)

CR46 = 0 (allow color keying)

Color Mask: (B) 0xF8 (G) 0x00 (R) 0x00

Color Key: (B) 0xC0 (G) 0x00 (R) 0x00

Example 3

Use bit 15 in a TARGA 15-bit true-color mode to perform color key.

CR43 = 0 (matching before palette)

CR46 = 0 (allow color keying)

Color Mask: (B) 0xXX (G) 0x80 (R) 0x00

Color Key: (B) 0xXX (G) 0x80 (R) 0x00

Note: To set the color key or color mask, all three indexes <u>must</u> be written, even if all three indexes are not used.

YCrCb-to-RGB Matrix

The matrix converts the YCrCb video data to 24 bits of RGB data (8 bits each).

The YCrCb-to-RGB conversion is compliant with CCIR Recommendation 601-1 as follows:

R = 1.164(Y - 16) + 1.596(Cr - 128)

G = 1.164(Y - 16) - 0.813(Cr - 128)- 0.391(Cb - 128)

B = 1.164(Y - 16) + 2.018(Cb - 128)

Modes of Operation—Graphics

4-Bits/Pixel Operation (8:1 MUX)

The 32 input bits are multiplexed 8:1 and configured for 4 bits/pixel. There are eight independent 4-bit pixel ports, P7:4 (A-D) and P3:0 (A-D). The pixel bits are latched on the rising edge of GLCLK. One rising edge of GLCLK should occur every eight pixel clock cycles. The 4 bits from each port will select one of sixteen locations in the palette (see Table 11 in the Internal Registers section).

8-Bits/Pixel Operation (4:1 MUX)

The 32 input bits are multiplexed 4:1 and configured for 8 bits/pixel. There are four independent 8-bit pixel ports, (A-D). The pixel bits are latched on the rising edge of GLCLK. One rising edge of GLCLK should occur every four pixel clock cycles. The 8 bits from each port will select 1 of 256 locations in the palette (see Table 11 in the Internal Registers section).

8-Bits/Pixel Operation (2:1 MUX)

The 16 input bits are multiplexed 2:1 and configured for 8 bits/pixel. There are two independent 8-bit pixel ports, (A-B). The pixel bits are latched on the rising edge of GLCLK. One rising edge of GLCLK should occur every two pixel clock cycles. The 8 bits from each port will select 1 of 256 locations in the palette (see Table 11 in the Internal Registers section).

8-Bits/Pixel Operation (1:1 MUX)

The 8 input bits are multiplexed 1:1 and configured for 8 bits/pixel. There is one 8-bit pixel port, (A). The pixel bits are latched on the rising edge of GLCLK. One rising edge of GLCLK should occur every pixel clock cycle. The 8 bits will select 1 of 256 locations in the palette (see Table 11 in the Internal Registers section).

16-Bits/Pixel Operation (2:1 MUX)

The 32 input bits are multiplexed 2:1 and configured for 16 bits/pixel. There are two independent 16-bit pixel ports, (A-B) and (C-D). The bits are latched on the rising edge of GLCLK. One rising edge of GLCLK should occur every two pixel clock cycles. The pixel bits multiplexed in this mode are from the same ports of RGB color formats of '5:5:5 or 5:6:5. P7D and P7B are ignored internally when the 5:5:5 color format is selected (see Table 11 in the Internal Registers section).

Bit CR24 in Command Register 2 can be programmed to enable or disable true-color palette bypass. When the bypass mode is selected, the pixel data bypasses the palette as well as the pixel mask, and is transferred to the proper MSBs of the respective DACs, the remaining LSBs are set to zeros. When the bypass mode is not selected, the pixel data indexes the palette, and color information is passed to the respective DACs. Bit CR22 in Command Register 2 determines whether palette addressing is sparse or contiguous. For sparse palette addressing, each independent color component of pixel data is mapped to the most significant bits of the respective palette address; the least significant bits are set to zero. For contiguous palette addressing, each independent color component of the pixel data is mapped to the least significant bits of the respective palette address; the most significant bits are set to zero. The color palette values indexed, for either sparse or contiguous addressing, are transferred to the DACs. When 5:5:5 or 5:6:5 color format is selected, the display can contain 32 K or 64 K simultaneous colors. The DACs can be configured for 6 or 8 bits of resolution in this mode. If 5:5:5 color format is selected, the most significant bit may be used for color key operation (see Tables 3 and 4).

\$16-Bits/Pixel Operation (1:1 MUX)

The 16-bit pixel port (A-B) is latched on the rising edge of GLCLK and is multiplexed 1:1. One rising edge of GLCLK should occur every pixel clock cycle.

Bit CR25 in Command Register 2 can be programmed to enable or disable true-color palette bypass. When the bypass mode is selected, the pixel data bypasses the palette as well as the pixel mask, and is transferred to the proper MSBs of the respective DACs. When the bypass mode is not selected, the pixel data indexes the proper locations in the palette, and the correct color information is passed to the respective DACs. Bit CR22 in Command Register 2 determines whether palette addressing is sperse or contiguous. For sperse palette addressing, each independent color component of pixel data is mapped to the most significant bits of the respective palette address; the least significant bits are set to zero. For contiguous palette addressing, each independent color component of the pixel data is mapped to the least significant bits of the respective palette address; the most significant bits are set to zero. The color palette values indexed, for either sparse or contiguous addressing, are transferred to the DACs. When 5:5:5 or 5:6:5 color format is selected, the display can contain 32K or 64K simultaneous colors. The DACs can be configured for 6 or 8 bits of resolution in this mode (see Tables 3-4).

If 5:5:5 color format is selected, the most significant bit may be used for color key operation.

24-Bits/Pixel Operation (1:1 MUX)

When 24 bits per pixel in 1:1 MUX mode is selected, there is one 24-bit pixel port, (A-C). The pixel bits are latched on the rising edge of GLCLK and multiplexed 1:1. One rising edge of GLCLK should occur every pixel clock cycle. The RGB color format in this mode is 8:8:8.

Bit CR25 in Command Register 2 can be programmed to enable or disable true-color palette bypass. When the bypass mode is selected, the pixel data bypasses the palette as well as the pixel mask, and is transferred to the proper MSBs of the respective DACs. When the bypass mode is not selected, the pixel data indexes the proper locations in the palette, and the independent RGB color values are passed to the respective DACs (see Table 6a-6c). When 8:8:8 color format is selected, the display can contain 16.8 million simultaneous colors. The DACs should be configured for 8 bits of resolution in this mode (CR25 = 1, CR01 = 1). CR41 and CR40 can be used to alter the pixel read order to BRG or BGR.

Pixel Reed Mask Register

The pixel data can be masked before being transferred to the color palette with the 8-bit pixel mask register. The pixel data is bit-wise logically ANDed with the contents of the pixel read mask register. The result is used to address the color palette RAM. The addressed location provides 24 bits of color information to the three D/A converters. Pixel masking is enabled for all modes of operation except when the true-color bypass is enabled. The pixel mask register is initialized to logical ones at reset (see Table 13, Register Values on Reset in the Internal Register section).

Bit	MSB					_										LSB
Format	X	R	R	R	R	R	G	G	G	G	G	В	В	В	В	В
Port 1	P7B	P6B	PSB	P4B	P3B	P2B	PIB	POB	P7A	P6A	PSA	P4A	P3A	P2A	PIA	POA
Port 2	P7D	P6D	PSD	P4D	P3D	P2D	PID	POD	P7C	P6C	P5C	P4C	P3C	P2C	PIC	POC

Note: X bit may be used for color key before the palette.

Table 3. 5:5:5 RGB Graphics Color Format for Both 2:1 and 1:1 Multiplexing Modes.

Bit	MSB															LSB
Format	R	R	R	R	R	G	G	G	G	G	G	В	В	В	В	В
Port 1	P7B	P6B	P5B	P4B	P3B	P2B	PIB	POB	P7A	P6A	P5A	PAA	P3A	P2A	PIA	POA
Port 2	P7D	P6D	PSD	P4D	P3D	P2D	PID	POD	P7C	P6C	P5C	P4C	P3C	P2C	PIC	POC

Table 4. 5:6:5 RGB Graphics Color Format for Both 2:1 and 1:1 Multiplexing Modes.

	MSB							LSB	X=Map to Zero
Pixel Mask Register	7	6	5	4	3	2	1	0	Register Bits
4 Bits/Pixel	2	X	X	X	3	2	1	0	Palette Index
Bits/Pixel	7	6	5	4	3	2	1	0	Palette Index
6 Bits/Pixel	7	6	5	4	3	1	X		Red Palette Index
5:5:5 Formst	7	6	5	4	3	R.	, x	1	Green Palette Index
SPARSE	7	6	5	4	3	×	x	X	Blue Palette Index
16 Bitts/Pixel	1 2	x	X	4	3	2	1	0	Red Palette Index
5:5:5 Format	I X	x	×	4	3	2	1	0	Green Palette Index
CONTIGUOUS	x	x	X	4	3	2	1	0	Blue Palette Index
16 Bits/Pixel	7	6	5	4	3	X	×	X	Red Palette Index
5:6:5 Format	7	6	5	4	3	2	X.	x	Green Palette Index
SPARSE	7	6	5	4	3	x	, x		Blue Palette Index
6 Bits/Pixel	1	×	X	4	3	2	1	0	Red Palette Index
5:6:5 Formst] = [x	5	4	3	2	1	0	Green Palette Index
CONTIGUOUS	2	x	×	4	3	2	1_1_	0	Blue Palette Index
4 Bit/Pixel	7	6	5	4	3	2	1	0	Red Palette Index
l:8:8 Format	7	6	5	4	3	2	1	0	Green Palette Index
	7	6	5	4	3	2	1	0	Blue Palette Index

Note: x means final DAC bit will be 0

Table 5. Graphics Pixel Index Masking.

	MSB																			-	_			LSB
Formet	R	R	R	R	R	R	R	R	G	G	G	G	G	G	G	G	В	В	В	В	В	В	R	B
Port 1	P7C	P6C	PSC	P4C	P3C	P2C	PIC	2	P7B	P6B	P5B	MB	P3B	P2B	PIB	POB	P7A	PGA	PSA	PAA	P3A	P2A	PIA	POA

Table 6a. 24-bits/Pixel Graphics RGB Color Format (CR41,40= 00) for 1:1 MUX Modes.

Bit	MSB																		··		_			LSB
Format	В	B	В	В	В	В	В	В	R	R	R	R	R	R	R	R	G	G	G	G	G	G	G	<u> </u>
Port 1	P7C	P6C	PSC	P4C	P3C	P2C	PIC	POC	P7B	P6B	P5B	P4B	P3B	P2B	PIB	POB	P7A	PGA	P5A	PNA	P3A	PZA	PIA	POA

Table 6b. 24-bits/Pixel Graphics BRG Color Format (CR41,40 = 01).

				•	5D. 2			MU	wi	ng.er er)nu	COI	Of F	Orn	mer (U114	11,40	7 = (JI J.			
-	4465						_																
Bit	MSB	·																					
Format	B	В	В	B	В	В	В	В	G	G	G	G	G	G	G	G	R	R	R	R	R	₽	T P
Port 1	P7C	P6C	P5C	P4C	P3C	P2C	PIC	POC	P7B	P6B	PSB	P4B	P3B	P2B	PIR	POR	PZA	PAA	DX.4	D4 A	P3.4	102.4	Bi
																					11.30	1 27	ile i e
			72	DIO I	6c. 2	(4-b)	ts/	Pixe	Gn	eph.	ics l	BGA	Col	lor I	om	set ('CR4	11,4	0 =	10).			
																				•			
											,												

Table 6c. 24-bits/Pixel Graphics BGR Color Format (CR41,40 = 10).

Modes of Operation-Video

The pixel ordering and YCrCb-to-RGB conversions are shown in Figures 3 through 5, and the video pixel port configuration is shown in Table 11 in the Internal Registers section. The following describes video operation modes.

YCrCb 1:0.5:0.5 Operation (4 Byte/8 Pixels)

The 32 input bits are configured for YCrCb 1:0.5:0.5. There are four independent 8-bit pixel ports, (E-H). Each group of four bytes results in eight output pixels. The pixel bits are latched on the rising edge of VLCLK.

Bit	MSB															LSB
Former	G	G	a	a	G	Co	G	a	Y	Y	Y	Y	Y	Y	Y	Y
Port 1	Р7Н	P6H	P5H	P4H	РЗН	P2H	PIH	POH	P7G	P6G	P5G	P4G	P3G	P2G	PIG	POG
Former	Ğ	Ç	œ	œ	ď	C	C	à	Y	Y	Y	Y	Y	Y	Y	Y
Port 2	P7F	P6F	P5F	P4F	P3F	P2F	PIF	POF	P7E	PSE	PSE	P4E	PJE	P2E	PIE	POE

YCrCb 1:0.5:0.5 Video Color Format (4 Bytes / 8 Pixels).

YCrCb 1:0.5:0.5 Operation (2 Byte/4 Pixels)

The 16 input bits are configured for YCrCb 1:0.5:0.5. There are two independent 8-bit pixel ports, (G-H). Each group of two bytes results in four output pixels. The pixel bits are latched on the rising edge of VLCLK.

BA	MSB															LSB
Format	СъСт	Cb/Cr	Cb/Cr	Cb/Cr	Ca/Cr	Cb/Ci	CovCr	Co/Cr	Y	Y	Y	·Y	Y	Y	Y	Y
Port 1	P7H	P6H	PSH .	P4H	P3H	P2H	P1H	POH	P7G	P6G	P5G	P4G	P3G	P2G	PIG	POG
Format																X
Port 2	P7F	P6F	P5F	P4F	P3F	P2F	PIF	POF	P7E	PGE	PSE	PIE	P3E	P2E	PIE	POE

YCrCb 1:0.5:0.5 Video Color Format (2 Bytes / 4 Pixels).

YCrCb 1:0.5:0.5 Operation (1 Byte/2 Pixels)

The 8 input bits are configured for YCrCb 1:0.5:0.5. There is one 8-bit pixel port, (H). Each byte loaded results in two output pixels. The pixel bits are latched on the rising edge of VLCLK.

Bit	MSB															LSB
Format	Cory	Cory	COYI	Corri	CAY	CAY!	C27/	ChY/	X	X	X	X	X	X	X	X.
Port 1	P7H	P6H	PSH	P4H	РЗН	P2H	PIH	POH	P7G	P6G	P5G	P4G	P3G	P2G	PIG	POG
Format	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X
Port 2	P7F	P6F	P5F	P4F	P3F	P2F	PIF	POF	P7E	P6E	PSE	ME	P3E	P2E	PIE	POE

YCrCb 1:0.5:0.5 Video Color Format (1 Byte / 2 Pixels).

YCrCb 2:1:1 Operation (4 Byte/4 Pixels)

The 32 input bits are configured for YCrCb 2:1:1. There are four independent 8-bit pixel ports, (E-H). The pixel bits are latched on the rising edge of VLCLK.

Bit	MSB															LSB
Format	Co	G	G	Co	a	G	a	a	Y	Y	Y	Y	Y	Y	Y	Y
Port 1	P7H	P6H	PSH	P4H	РЗН	P2H	PIH	POH	P7G	P6G	P5G	P4G	P3G	P2G	PIG	POG
Format	C	C	C	G	C	Cr	C	Cr	Y	Y	Y	Y	Y	Y	Y	Y
Port 2	P7F	P6F	P5F	P4F	P3F	P2F	PIF	POF	P7E	PEE	PSE	ME	P3E	P2E	PIE	POE

YCrCb 2:1:1 Video Color Format (4 Bytes / 4 Pixels).

YCrCb 2:1:1 Operation (2 Byte/2 Pixels)

The 16 input bits are configured for YCrCb 2:1:1. There are two independent 8-bit pixel ports, (G-H). The pixel bits are latched on the rising edge of VLCLK.

Bit	MSB											*		-		LSB
Format	COVC	CD/Cr	CA/CT	CD/Cr	CD/Cr	Cocci	Carce	CD/C1	Y	Y	Y	Y	Y	Y	Y	Y
Port 1	P7H	P6H	PSH	P4H	РЗН	P2H	PIH	POH	P7G	P6G	P5G	P4G	P3G	P2G	PIG	POG
Format	X	X	X	X	X	X	Х	X	X	X	X	X	X	X	X	X
Port 2	P7F	P6F	PSF	P4F	P3F	P2F	PIF	POF	P7E	P6E	PSE	PHE	P3E	P2E	PIE	POE

YCrCb 2:1:1 Video Color Format (2 Bytes / 2 Pixels).

YCrCb 2:1:1 Operation (1 Byte/1 Pixel)

The 8 input bits are configured for YCrCb 2:1:1. There is one 8-bit pixel port, (H). The pixel bits are latched on the rising edge of VLCLK.

BH	MSB													-		LSB
Format	C27	Carr Carr	00X1	CHY/	0x1	C27/	CAY	City City	X	X	X	X	X	X	X	X
Port 1	P7H	P6H	PSH	P4H	РЗН	P2H	PIH	POH	P7G	P6G	P5G	P4G	P3G	P2G	PIG	POG
Format	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X
Port 2	PTF	P6F	PSF	P4F	P3F	P2F	PIF	POF	P7E	PE	PSE	NE	P3E	P2E	PIE	POE

YCrCb 2:1:1 Video Color Format (1 Byte / 1 Pixel).

YCrCb 4:2:2 Operation (4 Byte/2 Pixels)

The 32 imput bits are configured for 4:2:2. There are two independent 16-bit pixel ports, (F-E) and (H-G). The bits are latched on the rising edge of VLCLK.

Bit	MSB															
Format	a	a	Co	Co	0	a			1 2		7					LSB
Port 1	P7H	P6H	PSH	PAU	DILL	DOLL	200	1 00	Y	Y	Y	Y	Y	Y	Y	Y
Format	5	-	~	0:	738	PZR	PIH	POH	P7G	P6G	P5G	P4G	P3G	P2G	PIG	POG
	PTF			_	7		u	1 17	. v	·						
. 41.2	F/F	P6F	POF	P4F	P3F	P2F	PIF	POF	P7E	P6E	PSE.	P4F	DIE	BNE	Dic	
										- 30	1 JE	145	FJE	PZE	PIE	POF

YCrCb 4:2:2 Video Color Format (4 Bytes / 2 Pixels).

YCrCb 4:2:2 Operation (2 Byte/1 Pixel)

The 16 input bits are configured for YCrCb 4:2:2. There is one 16-bit pixel port, (G-H). The input bits are latched on the rising edge of VLCLK.

	Bit	MSB															
	Format Post 1	Cà/Cì	Cb/Cr	Cb/Cr	Cb/Cr	Ovc	OVC.	O.C.	0.6	-			,	·			LSB
	Port 1	P7H	P6H	PSH	PAH	PILL	BYU	PIH	COVE	1		Y	Υ.	Y	Y	Y	Y
. [Format	X	X	X	Y	· ·	TAN U	rin	POH			P5G	P4G	P3G	P2G	PIG	POG
ſ	Port 2	P7F	P6F	PSE	DAE	A DOE	<u> </u>	PIF	X	X	X	X	X	X	X	X	x
•					141	FSF	PZF	PIF	POF	P7E	P6E	PSE	P4E	P3E	P2E	PIE	POE

YCrCb 4:2:2 Video Color Format (2 Bytes / 1 Pixel).

16-Bita/Pixel 5:5:5 Operation (2:1 MUX)

The 32 input bits are are configured for 16 bits/pixel. There are two independent 16-bit pixel ports, (E-F) and (G-H). The bits are latched on the rising edge of VLCLK. The RGB color format in this mode is 5:5:5. The most significant bit is not used.

16-Bits/Pixel 5:5:5 Operation (1:1 MUX)

The 16 input bits are configured for 16 bits/pixel. There is one 16-bit pixel port, (G-H). The input bits are latched on the rising edge of VLCLK. The RGB Color format in this mode is 5:5:5. The most significant bit is not used.

Bit	MSB											- all	шси	t OIT IS	not use	20 .
Format	•	R	R	R	D	Тъ	6				,					LSB
Port 1	P7G	P6G	P5G	P4G	P3G	POG	PIG	B00	G	G	G	В	В	В	В	B POH
Port 2	P7E	PSE	PSE	P4E	P3F	POE	DIE	POE	P/H	POH	PSH	P4H	P3H	P2H	PIH PIF	POH
				100		_	FIE	TVE	PIF	P6F	PSF	P4F	P3F	P2F	PIF	POF

5:5:5 RGB Video Color Format for Both 2:1 and 1:1 Multiplexing Modes.

16-Bits/Pixel 5:6:5 Operation (2:1 MUX)

The 32 input bits are configured for 16 bits/pixel. There are two independent 16-bit pixel ports, (E-F) and (G-H). The bits are latched on the rising edge of VLCLK. The RGB color format in this mode is 5:6:5.

6-Bits/Pixel 5:6:5 Operation (1:1 MUX)

The 16 input bits are configured for 16 bits/pixel. There is one 16-bit pixel port, (G-H). The input bits are latched on the rising edge of VLCLK. The RGB color format in this mode is 5:6:5.

Bit	MSB															LSB
Format	R	R	R	'R	R	G	G	G	G	G	G	В	В	В	В	В
Port 1	P7G	P6G	PSG	P4G	P3G	P2G	PIG	POG	P7H	P6H	PSH	P4H	P3H	P2H	PIH	POH
Port 2	P7E	P6E	PSE	P4E	P3E	P2E	PIE	POE	P7F	P6F	PSF	P4F	P3F	P2F	PIF	POF

5:6:5 BGR Video Color Format for Both 2:1 and 1:1 Multiplexing Modes.

24-Bits/Pixel Operation (1:1 MUX)

The 24 input bits are configured for 24 bits/pixel. There is one 24-bit pixel port, (F-H). The bits are latched on the rising edge of VLCLK. The RGB or BGR color format in this mode is 8:8:8. The color format is controlled by bit CR44 in Command Register 4.

Bit	MSB															LSB
Format Port 1 Format	R	R	R	R	R	R	R	R	G	G	G	G	G	G	G	G
Port 1	P7F	P6F	PSF	P4F	P3F	P2F	PIF	POF	P7G	P6G	P5G	P4G	P3G	P2G	PIG	POG
Format	В	В	B	В			B									
Pon 2	P7H	P6H	P5H	P4H	P3H	P2H	PIH	POH	P7F	P6F	PSF	P4F	P3F	P2F	PIF	POF

24-Bit RGB Video Color Format (CR44=0) for 1:1 Multiplexing Modes.

Bit	MSB			,	-											LSB
Format	В	В	В	В	В	В	В	В	G	G	G	G	G	G	G	G
Port 1	P7F	P6F	PSF	P4F	P3F	P2F	PIF	POF	P7G	P6G	P5G	P4G	P3G	P2G	PIG	POG
Format	R	R	R	R	R	R	R	R								
Port 2	Р7Н	P6H	PSH	P4H	P3H	P2H	PIH	POH								

24-Bit BGR Video Color Format (CR44=1) for 1:1 Multiplexing Modes.

CCIR601 1:0.5:0.5

CCIR656 Component Ordering

Color Space: YCrCb Subsampling: 1:0.5:0.5

Address (8N+)	0	1	2	3	4	5	6	7
Value	Cbs	YO	Cr0	Y4	Cb8	Y8	Cr8	Y12

	Pixel	0	1	2	3	4	5		7
	Y	YO	3Y0 + Y4	<u>Y0 + Y4</u> 2	<u>Y0+3Y4</u> 4	Y4	3Y4 + Y8	<u>Y4 + Y8</u> 2	Y4+3Y8
	Cr	Cr0	Cr0	3Cr0 + Cr8 4	3Cr0 + Cr8	Cr0+Cr8 2	<u>Cr0+Cr8</u>	Cr0 + 3Cr8	<u>Cr0 + 3Cr8</u>
	Co.	C50	СРО	3Cb0 + Cb8 4	3Ch0 + Ch8	<u>Ch0+Ch8</u> 2	<u>□0+</u> □8 2	<u>Cb0 + 3Cb8</u>	Cb0 + 3Cb8
	CCIR601 CCIR656 Color Spa	2:1:1 Component ce: YCrCb		ure 3. CCIR	1:0.5:0.	5 Video Fol	rmet.	,	
T.		Address (IN+) 0	1.	2 3	141	5 6	7	
¥	Į.	Value	Cb0	YO	Cr0 Y2	0×	Y4 C	4 Y6	

Figure 3. CCIR601 1:0.5:0.5 Video Format.

Address (SN+)	0	1.	2	3	4	5	6	7
Value	CS6	YO	Cro	Y2	Ob4	Y4	CN	¥6

Pixel	0	1			T			
		+	-	3	4	5	6	7
Y	YO	<u>Y0+Y2</u> 2	Y2	<u>Y2+Y4</u> 2	Y4	<u>Y4+Y6</u> 2	Y6	<u>Y6 + Y8</u> 2
Cr	Cro	3 <u>C-0 + C-4</u> 4	<u> </u>	C10+3C14	Cr4	304+C4	<u>Cr4+Cr8</u> 2	CM+3C#
Co.	Сью	3C00+C04	<u> </u>	C00+3C04 4	Cb4	304+08 4	<u>Ω4+Ω8</u>	Cb4 + 3Cb8

Figure 4. CCIR601 2:1:1 Video Format.

CCIR601 4:2:2

CCIR656 Component Ordering

Color Space: YCrCb

Address (SN+)	0	1	2	3	. 4	5	6	7
Value	Cb0	Y0	Cr0	Yı	Co2	Y2	Cr2	Y3

Pixel	0	1	2	3
Y	YO ·	Yı	Y2	Y3
Cr	Cr0	<u>Cr0+Cr2</u> 2	C22	<u>CY2 + Cr4</u> 2
Co	C>0	<u>Ch0 + Ch2</u> 2	Cb2	<u>Ch2+Ch4</u> 2

Figure 5. CCIR601 4:2:2 Video Format.

DAC Values in 16-Bits/Pixel Video Modes

In order to achieve 8-bit full-scale DAC output in the 5:5:5 16-bits/pixel video modes, each 5-bit value will be used as the five most significant bits of the 8-bit DAC value and the three most significant bits of the 5-bit pixel value will be duplicated in the low order 3 bits

before the pixel value is passed to the DACs. Similarly, in 5:6:5 modes, when processing the 6-bit green component, the 6-bit value will be used as the 6 most significant bits of the 8-bit DAC value and the two most significant bits of the 6-bit pixel value will be duplicated in the low order 2 bits before the pixel value is passed to the DACs.

Cursor Operation

The Bt885 has an on-chip, three-color, $64 \times 64 \times 2$ pixel aser-definable cursor. This cursor works with both interlaced and noninterlaced systems. The cursor always has display priority over both video and graphics pixels.

The pattern for the cursor is provided by the cursor RAM, which may be accessed by the MPU at any time. The cursor is positioned through the cursor position register (Xp,Yp) (see Figure 6). A (0,0) written to the cursor position registers will place the cursor completely offscreen. A (1,1) written to the cursor position registers will place the lower right pixel of the cursor on the upper left corner of the screen. Only one cursor pattern per frame is displayed at the location specified for both interlaced and noninterlaced display formats, regardless of the number of updates to (Xp,Yp). The cursor's vertical or horizontal location is not affected during any frame displayed.

There are no restrictions on updating (Xp, Yp) other than both cursor position registers must be written when the cursor location is updated. Internal x and y position registers are loaded after the upper byte of Yp has been

written to ensure one cursor pattern per frame at the correct location. The cursor pattern is displayed at the last cursor location written. Cursor positioning is relative to ENABLE. The cursor position is not dependent upon BLANK* (see Figure 6). The cursor Xp position is relative to the first rising edge of GLCLK when ENABLE is sampled at logical one. The cursor Yp position is relative to the first rising edge of GLCLK when ENABLE is sampled at logical one after the ENABLE is sampled at logical one after the ENABLE vertical blanking interval has been determined (see Figure 6). If an ENABLE transition from logical zero to logical one (as determined by GLCLK) does not occur within 2048 internal pixel clocks, ENABLE is in vertical blanking.

For proper cursor operation, selection of interlaced or non-interlaced cursor display must be set using bit CR23 in Command Register 2.

Figure 7 is a visual explanation of planar pixel format and cursor RAM array pixel mapping.

While the cursor may be disabled by setting bits CR20-21 of Command Register 2 to zero, this practice is not recommended. The recommended method for disabling the cursor is to move it entirely offscreen by setting the cursor X and Y location registers to (0,0).

Figure 6. Cursor Positioning.

Cursor Color Support

The cursor has three modes for color selection. Bits CR21 and CR20 in Command Register 2 determine which cursor mode is to be used. Mode 1 is a three-color cursor. Mode 2 is a Microsoft WindowsTM cursor, and Mode 3 is an X-Windows cursor (see Table 7).

Highlight Logic

The highlight logic is enabled in cursor mode 2 when plane 1 and plane 0 data are logical ones (see Table 7). When the highlight logic is enabled, it ensures that the graphics pixel highlighted has a unique color. This is because the highlight logic bit-wise complements the 24 (18)-bit graphics palette or bypass data supplied to the DACs.

Video Generation

ig.

The C/HSYNC* and BLANK* inputs are latched on the rising edge of GLCLK to maintain synchronization with the pixel data.

Pipelined C/HSYNC* and VSYNC* are output on the C/HSYNC* OUT and VSYNC* OUT pins.

The CR05 command bit specifies whether a 0 or 7.5 IRE blanking pedestal is to be used. Command bits CR04, CR03, and CR02 specify whether the RGB outputs contain sync information.

Figures 8 and 9, and Tables 8 and 9 detail how the C/ HSYNC* and BLANK* inputs modify the output levels.

SENSE* Output

SENSE* is a logical zero if one or more of the IOR. IOG, or IOB outputs have exceeded the internal voltage reference level of the SENSE* comparator circuit. This output determines the presence of a CRT monitor and, with diagnostic code, the difference between a loaded or an unloaded RGB line can be discerned. The reference is generated by a voltage divider from the external 1.235 V voltage reference on the VREF pin. For the proper operation of the SENSE circuit, the following levels should be applied to the comparator with the IOR, IOG, and IOG outputs:

DAC Low Voltage ≤ 260 mV (see note below)

DAC High Voltage ≥ 410 mV (see note below)

There is an additional ±10% tolerance on the above levels when the internal voltage reference is used.

C/HSYNC* should be a logical zero and BLSNK* should be a logical one for SENSE* to be stable. The SENSE* output can drive only one CMOS load.

Note: SENSE values are subject to change upon completion of characterization.

This is Pseudo Code for Bt885 to check for Monitor connection.

Problem: Verify if an RGB or Single Input Monitor is connected to the RAMDAC Analog Outputs.

Program Monitor? Reset Bt885 Set C/HSYNC" = low Set BLANK = high Set Pixel Mask = \$00 Set RGB LUT Loc.0 = \$18 **Read Status Register** M SR1-3 = 1 **AGB Monitor** ELSE Single Monitor? Address LUT Loc. \$00 Set Red DACOutput = \$00 Set Gm DACOutput = \$18 Set Blu DACOutput = \$00 Read Status Register If SR1-3 = 1 Single input Monitor

ELSE

End

NO Monitor Sensed

("Verify Monitor Connection")
("Toggle RESET" of Bt885")
("Disable SYNC Current")
("Enable RamDAC Outputs")
("Disable external Pixel Input")
("10.3mV X 24 = 247mV")
("Check on state of SENSE"*)
("Check for RGB Monitor connection")

("Set address register to program Lut Loc. 0")
("Set Red DAC to output 0mV")
("Set Green DAC to output 247mV")
("Set Blue DAC to output 0mV")
("Check for Single Input Monitor on Gm.")

Figure 7. Planar Pixel Format and Cursor RAM Array Pixel Mapping.

Plene 1	Plane 0	MODE 1	MODE 2	110000
0	0	Cursor not displayed	Cursor Color 1	MODE 3
0	1	Carsor Color 1		Palette Data
1	0	Cursor Color 2	Cursor Color 2	Palette Data
			Palette Data	Cursor Color
		Cursor Color 3	Highlight	Cursor Color 2

Table 7. Cursor Color Modes.

Note: 75 Ω doubly-terminated load, VREF = 1.235 V, and RSET = 147 Ω . RS-343A levels and tolerances assumed on all (levels.

Figure 8. Composite Video Output Waveforms (SETUP = 7.5 IRE).

Description	Sync Disabled Sync Enabled		0.0000000		DAC Input
	lout (mA)	lout (mA)	C/HSYNC*	BLANK'	Data
WHITE	19.05	26.67	1	1	0xFF
DATA	data + 1.44	data + 9.05	1	1	data
DATA-SYNC	data + 1.44	data + 1.44	ō	1	data
BLACK	1.44	9.05	1	,	0x00
BLACK-SYNC	1.44	1.44	. 0	•	0x00
BLANK	0	7.62	i	ò	
CHSYNC*		0		0	XX XX

Note: 75 Ω doubly-terminated load, VREF = 1.235 V, and RSET = 147 Ω .

Table 8. Video Output Truth Table (SETUP = 7.5 IRE).

Note: 75 Ω doubly-terminated load, VREF = 1.235 V, and RSET = 147 Ω . RS-343A levels and tolerances assumed on all levels.

Figure 9. Composite Video Output Waveforms (SETUP = 0 IRE).

Description	Sync Disabled	Sync Enabled	CHSYNC*	BLANK'	DAC Input	
- Joseph Guller	lout (mA)	lout (mA)	Graine	- DEANN	Dete	
WHITE	17.62	25.24	1	1	OxFF	
DATA	data	data + 7.62	1	1	data	
DATA-SYNC	data	data	0	1	data	
BLACK	0	7.62	1	1	0x00	
BLACK-SYNC	0	0	0	1	0x00	
BLANK	0	7.62	1	l 0	22	
CHSYNC	0	0	0	0	EX.	

Note: 75 Ω doubly-terminated load, VREF = 1.235 V, and RSET = 147 Ω .

Table 9. Video Output Truth Table (SETUP = 0 IRE).

Internal Registers

Command Register 0

This register may be written to or read by the MPU at any time and is not initialized at power-up. CR00 corresponds to data bus bit D0, the least significant data bit. All command register bits are set to logical zero upon asserting a low signal on the RESET* pin.

•	SIRMET O	n me væde i	pm.			
	CR0	7	Reserved	This bit must be written with a 0 to ensure proper operation.		
	CR0	6	Clock Disable ANDed with CR00 (0) Normal Operation (1) Disable Internal Clocking	When this bit and CR00 are a logical one, the internal clock and output clocks are disabled to further conserve power when in power-down mode. The RAM still retains the data, and MPU reads and writes can occur with no loss of data. When this bit is a logical zero, internal clocking is enabled and output clocks will be generated.		
	CR0	5	Pedestal IRE (0) Disable (1) Enable 7.5 IRE	This bit determines the video blanking pedestal. A logical zero always sets a 0 IRE blanking pedestal and a logical one sets 7.5 IRE.		
	CR0 CR0 CR0	4 3 2	Blue Sync Enable Green Sync Enable Red Sync Enable (0) Disable Sync (1) Enable Sync	These bits specify whether the respective IOB, IOG, or IOR outputs are to contain sync information.		
	CR0	1	DAC 6/8-Bit Resolution (0) 6-bit Operation (1) 8-bit Operation	This bit specifies whether the MPU is reading and writing 8 bits (logical one) or 6 bits (logical zero) of color information each cycle.		
	CR0	0	Power-Down Enable (0) Normal Operation (1) Power-Down Operation	While this bit is a logical zero, the device operates normally. If this bit is a logical one, the DACs and power to the RAM and VideoCache TM FIFO are turned off. The RAM still retains the data, and CPU reads and writes can occur with no loss of data.		
				The DACs will be turned off during sleep mode only if a voltage reference (internal or external) is used.		

Command Register 1

This register may be written to or read by the MPU at any time. CR10 corresponds to data bus bit D0, the least signifscant data bit (see Table 10). All command register bits are set to logical zero upon asserting a low signal on the RESET* pin.

CR17	CR16	CR15	CR14	Pixel Latching Sequence	Bytes Per VLCLK	Pixels Per VLCLK	Operating Modes
0	0	0	0	NA	NA	N/A	All Video Modes Disabled
0	0	0	1	P7:0(H)	1	2	OCTR601 YCrCb 1:0.5:0.5
0	0	1	0	P7:0(H) P7:0(G)	2	4	CCIR601 YCrCb 1:0.5:0.5
0	0	- 1	1	P7:0(H) P7:0(G) P7:0(F) P7:0(E)	4	8	OCIR601 YCrCb 1:0.5:0.5
0	1	0	0	P7:0(H)	1	1	CCIR601 YCrCb 2:1:1
0	1	0	1	P7:0(H) P7:0(G)	2	2	CCIR601 YCrCb 2:1:1
0	1	î	0	P7:0(H) P7:0(G) P7:0(F) P7:0(E)	4	4	CCIR601 YCrCb 2:1:1
0	1	1	1	P7:0(H-G)	2	1	· CCIR601 YCrCb 4:2:2
1	0	0	0	P7:0(H-G) P7:0(F-E)	4	2	CCIR601 YCrCb 4:2:2
1	0	0	1	P7:0(H-G)	2	1	15-bits per pixel, 5:5:5
1	0	1	0	P7:0(H-G) P7:0(F-E)	4	2	15-bits per pixel, 5:5:5
1	0	1	1	27:0(H-G)	2	1	16-bits per pixel, 5:6:5
1	1	0	0	P7:0(H-G) P7:0(F-E)	4	2	16-bits per pixel, 5:6:5
1	1	0	1	P7:0(H-F)	3	1	24-bits per pixel
	1110-	1111					Reserved

Table 10. Modes of Operation (Video Pixel Port Configuration).

Brooktree* Internal Registers (continued)

All command register bits are set to logical zero upon asserting a low signal on the RESET® pin.

CR13	CR12	CR11	CR10	Pixel Latching Sequence	MUX Rate	Operating Modes
0	0	0	0	P7:0(A)	1:1	VGA 8-bits per pixe
0	0	0	1	P7:0(A) P7:0(B)	2:1	8-bits per pixel
0	0	i	0	P7:0(A) P7:0(B) P7:0(C) P7:0(D)	4:1	8-bits per pixel
0		1	1	P7:4(A) P3:0(A) P7:4(B) P3:0(B) P7:4(C) P3:0(C) P7:4(D) P3:0(D)	8:1	4-bits per pixel
0	1	0	0	P7:0(B-A)	1:1	15-bits per pixel, 5:5:5
0	1	0	1	P7:0(B-A) P7:0(D-C)	2:1	15-bits per pixel, 5:5:5
0	1	1	0	P7:0(B-A)	1:1	16-bits per pixel, 5:6:5
0	1	1	1	P7:0(B-A) P7:0(D-C)	2:1	16-bits per pixel, 5:6:5
<u>. </u>	0	0	0	P7:0(C-A)	1:1	24-bits per pixel
	1001-1	111				Reserved

Table 11. Modes of Operation (Graphic Pixel Port Configuration).

Command Register 2

This register may be written to or read by the MPU at any time. CR20 corresponds to data bus bit D0, the least significant data bit. All command register bits are set to logical zero upon asserting a low signal on the RESET® pin.

CR2	7	Reserved Logical 0	This bit must be written with a 0 to ensure correct operation.
CR2	6 .	Reserved Logical 0	This bit must be written with a 0 to ensure correct operation.
CR2	5	True-Color bypass Enable (0) Pixel Addresses Palette (1) Pixel Bypasses Palette	When this bit is a logical zero, the pixel palette is addressed by the pixel data. When this bit is a logical one, the RGB pixel data bypasses the color palette and drives the DACs directly. True-color bypassing is only available for pixel sizes of 16 and 24 bits.
CR2	4	Oscillator Select (0) OSC Selected (1) OSC* Selected	When this bit is a logical zero, OSC is selected as the TTL pixel clock input. When this bit is a logical one, OSC ^o is selected as the TTL pixel clock input.
CR2	3	Display Mode Select (0) Noninterlaced (1) Interlaced	When this bit is a logical zero, the display format is noninterlaced. When the bit is a logical one, the display format is interlaced. The mode must be set properly to ensure proper operation of the internal cursor.
CR2	2	16-Bit/Pixel Palette Index Select (0) Sparse Indexing (1) Contiguous Indexing	When this bit is a logical zero, palette addressing is sparse. The RGB color component pixel data is mapped to the most significant bits of the RGB palette address. The least significant of the palette address bits are set to (0). When this bit is a logical one, palette addressing is contiguous. The RGB color component pixel data is mapped to the least significant bits of the palette address. The most significant bits of the address are set to (0).
CR2	0.1	Cursor Mode Select (00) Cursor Disabled (01) 3-color cursor (10) 2-color/Microsoft Windows™ cursor (11) 2-color/X-Windows cursor	These bits determine the functionality of the onboard 64 x 64 x 2 hardware cursor.

Accessing the Extended Registers

An extended register set is used to accommodate all features of the Bt885. Since there are only four register select lines (and all 16 combinations have already been used), the extended registers must be accessed indirectly.

For example, Command Register 3 is accessed with the following sequence of operations:

- 1. Set RS3-RS0 = 0000, Address Register.
- 2. Write Address Register to 0x02
- 3. Set RS3-RS0 = 1010 (Extended Address Register).
- 4. Read or Write Command Register 3.

Table 12 shows the indirect addressing mapping for each extended register.

Address Register Value	Extended Register Name
0x00	Status Register I (read only)
0x01	Status Register 2 (read/write)
0x02	Command Register 3
Ox03	Command Register 4
0x04 - 0x05	Video Window XSTART—Low & High
0x06 - 0x07	Video Window YSTART—Low & High
0x08 - 0x09	Video Window XWIDTH—Low & High
0x0A - 0x0B	Video Window YHEIGHT—Low & High
0x0C - 0x0D	Reserved
OxOE - OxOF	Reserved
0x10 - 0x11	XSCALEINIT—Low & High
Ox12 - Ox13	XSCALEINC—Low & High
0x14 - 0x15	Reserved
0x16 - 0x17	Reserved
0x18 - 0x19	Serial Clock Enable Start (Horizontal)—Low & High
Ox1A - Ox1B .	Serial Clock Enable Duration (Horizontal)—Low & High
OxIC-OxID	Reserved
Ox IE - Ox IF	Reserved
0x20	DIVCLK1 Rate
0x21	DIVCLK2 Rate
0x22	Reserved
0x23 - 0x25	Color Mask (Ordering = RGB)
0x26	Reserved
0x27 - 0x29	Color Key (Ordering = RGB)
0x2A - 0x2D	Reserved
0x2E	VideoCache™ FIFO Size
0x2F - 0xFF	Reserved

Table 12. Extended Registers Address Map (RS3-RS0 = 1010).

Command Register 3

This register may be written to or read by the MPU at any time. CR30 corresponds to data bus bit D0, the least significant data bit. All command register bits are set to logical zero upon asserting a low signal on the RESET[®] pin.

CR3	7	MODE0 Input/Output Select (0) MODE0 Input (1) MODE0 Output	This bit determines if the MODEO pin is configured as an input or an output.
CR3	6	Enable Internal Load Clock (0) Use GLCLK (1) Use Internal DIVCLK2	In applications where an external load clock is not provided, setting CR36 = 1 allows the internal DIVCLK2, determined by the DIVCLK2 Register values, to internally sample the graphics input pixels, blanking, horizontal, and vertical sync inputs. Setting CR36 = 0 causes Bt885 to sample these inputs on the basis of GLCLK pin.
CR3	5	DIVCLK2 Select (0) DIVCLK2 Enabled (1) DIVCLK2 Disabled	A logical zero must be written to this bit to enable the graphics divide-down clock, DIVCLK2, to be output. A logical one written to this bit three-states the DIVCLK2 output.
CR3	4	ECL Clock Select (0) TTL Level Clock Selected (1) Differential ECL Level Clock Selected	A logical one written to this bit enables the differential ECL clock input buffer using OSC and OSC* as inputs. A logical zero written to this bit disables the ECL clock buffer and allows OSC, GLCLK, or the 2x clock multiplier to directly drive the logic. If a logical one is written to this bit, then the clock multiplier and TTL clock selections are overridden. If CR34 = 1, then bit CR33 must be set to zero.
CR3	3	 2x Clock Multiplier Select (0) 2x Clock Multiplier Disabled. (1) 2x Clock Multiplier Enabled. 	This bit enables or disables the 2x clock multiplier. A logical one written to this bit enables the onboard 2x TTL clock multiplier for high-speed operations. A logical zero written to this bit will disable the clock multiplier and will allow the external clock source to directly drive the logic. If CR34 = 1, then this bit must be set to zero.
CR3	2	DIVCLK1 Select (0) DIVCLK1 Enabled (1) DIVCLK1 Disabled	A logical zero must be written to this bit to enable the video divide-down clock, DIVCLK1, to be output. A logical one written to this bit three-states the DIVCLK1 output. If DIVCLK1 Select is set to one, then the SEN output pin is three-stated as well.
CR3	1,0	MSBs for 10-bit Address Counter CR31 = A9 CR30 = A8	CR31 and CR30 are 2 MSBs of the 10-bit cursor address counter. To set this counter to access a particular location in the 64 x 64 x 2 cursor RAM array, these 2 bits must be written to Command Register 3 before the lower 8 bits are written to the address counter through the MPU port. As the 10-bit address counter autoincrements, the new values of this register can be read back through CR31 and CR30.

Command Register 4

This register may be written to or read by the MPU at any time and is not initialized at power-up. CR40 corresponds to data but bit D0, the least significant data bit. All command register bits are set to logical zero upon asserting a low signal on the RESET® pin.

CR4	7	VideoCache™ FIFO Reset (0) Normal Operation (1) Reset VideoCache™ FIFO	A logical zero written to this bit, enables normal Video-Cache TM FIFO operation. A logical one written to this bit resets the VideoCache TM FIFO after four video load clocks.
CR4	6	Color Key Override (0) Normal Color Key Operation (1) Video Window Override	A logical zero written to this bit, enables standard color key operation. A logical one written to this bit enables video based only on the video window.
CR4	5	Set MODE0 State (CR37 =1) (0) MODE0 pin low (1) MODE0 pin high	When CR37 = 1, this bit controls the state of the MODEO output. A logical one written to this bit sets the MODEO pin to high. A logical zero written to this bit sets the MODEO pin low.
. delle carrie delle		Get MODEO State (CR37 = 0) (0) MODEO pin externally driven low (1) MODEO pin externally driven high	When CR37 = 0, this bit indicates the state of the MODEO input. A logical one read from this bit indicates that the MODEO pin is driven high. A logical one read from this bit indicates that the MODEO pin is driven high. A logical zero read from this bit indicates that the MODEO pin is driven low.
CR4	4	24-bit Video Component Order (0) RGB (1) BGR	This bit controls the component latching order in 24-bit per-pixel video modes.
CR4	3	Color Key Mode Select (0) Before Palette (1) After Palette	This bit controls whether color key matching occurs on the pixel value before or after the palette. A logical zero written to this bit selects color key matching on the pixel value before the palette. A logical one written to this bit selects color key matching on the 24-bit RGB value after the palette.
CR4	2	VideoCache TM Unload Select (0) Unload Within Video Window (1) Unload From Start of Active Graphics Enable	This bit controls whether VideoCache TM FIFO data is unloaded only within the video window or at all times during active graphics enable.
CR4	1,0	24-bit Graphics Component Order (00) RGB (01) BRG (10) BGR (11) Reserved	This bit controls the component latching order in 24-bit- per-pixel graphic modes. If any other graphics mode is selected, these bits must be set to logical zero.

Pixel Read Mask Register

The 8-bit pixel read mask register may be written to or read by the MPU at any time, and is initialized to 0xFF at power-up. D0 is the least significant bit. The contents of this register are bit-wise ANDed with the pixel data prior to addressing the color palette RAM.

Status Registers 1-2

These two 8-bit status registers are provided for device identification and to monitor certain device states. They may be read by the MPU at any time. MPU write cycles to status register 1 are ignored. D0 is the least significant bit corresponding to SR10 or SR20. These registers are not reset during power-up/reset.

	S R1	7–6	Chip Identification	These bits are identification values; $SR17 = 1$ and $SR16 = 0$.
	SR1	5-4	Chip Revision	These bits are revision values; SR15 = 1 and SR14 = 0.
	SRI	3	Monitor Sense	This is the SENSE* bit. If it is a logical zero, one or more of the IOR, IOG, and IOB outputs have exceeded the internal voltage reference level (335 mV). This bit is used to determine the presence of a CRT monitor and, with diagnostic code, the difference between a loaded or unloaded RGB line can be discerned. The 360 mV reference has a ±100 mV tolerance when an external voltage reference equal to 1.235 V is used. A greater tolerance is expected when an internal reference equal to 1.2 V is used.
	SRI	2	Read/Write access status. (0) Write Cycle (1) Read Cycle	This bit provides RD/WR status when Address Register 0x00, 0x03, 0x04, or 0x07 has been written. When Address Register 0x00 or 0x04 has been written, the device is in the write mode and this bit is a logical zero. When address register 0x03 or 0x07 has been written, the device is in the read mode and this bit is a logical one.
٠	SRI	1-0	RGB Component Counter (00) Red Color Component (01) Green Color Component (10) Blue Color Component	When read, these bits reflect the color component address for the next RD/WR cycle when accessing the palette, cursor color registers, or overscan register.
	SR2	7	VideoCache™ FIFO Underflow	Reading this bit as a one indicates that VideoCache TM FIFO underflow occurred. Reset by writing any value to Status Register 2.
	SR2	6-0	Reserved	These bits will always be read as zero.

Internal Registers (continued)

Video Window XSTART

Video Window XSTART is a 12-bit register that stores the starting X position on the screen for a video window. A value of zero indicates that the video window begins in the first (leftmost) pixel of each horizontal scan line.

Video Window YSTART

Video Window YSTART is a 12-bit register that stores the starting Y position on the screen for a video window. A value of zero indicates that the video window begins on the first active graphics scan line.

Video Window XWIDTH

Video Window XWIDTH is a 12-bit register that stores the number of pixels per scan line within the video window. A value of zero indicates that no pixels are in the video window.

Video Window YHEIGHT

Video Window YHEIGHT is a 12-bit register that stores the number of scan lines within the video window. A value of zero indicates that no scan lines are within the video window.

XSCALEINIT (Low & High)

XSCALEINIT are 12-bit registers that store the initial term for the horizontal scaler.

XSCALEINC (Low & High)

XSCALEINC are 12-bit registers that store the increment term for the horizontal scaler.

Serial Clock Enable Start (Horizontal)

Serial clock enable start (horizontal and vertical) are 12-bit registers that store the number of scan lines and DIVCLK1 cycles before enabling the external clock gate, starting at the leading edge of HSYNC* for the horizontal direction and the leading edge of the internally generated VSYNC* for the vertical direction.

Serial Clock Enable Duration (Horizontal)

Serial clock enable duration (horizontal and vertical) are 12-bit registers that store the number of serial shift clock cycles to be generated per scan line in units of DIVCLK1 cycles for the horizontal direction, and in units of scan lines for the vertical direction.

DIVCLK1 and DIVCLK2 Rate

DIVCLK1 and DIVCLK2 rate are two 3-bit registers that control the divide rate of the free running DIV-CLK1 and DIVCLK2 divide-down clocks, respectively. The divide-down ratios need not be the same as the input mux rate:

(000) - 1:1 (001) - 2:1 (010) - 4:1 (011) - 8:1 (100-111) - Reserved

VideoCache™ FIFO Size

This register indicates the length of the VideoCacheTM FIFO buffer in 16-byte units. This is a read-only register.

Cursor (x,y) Registers

These registers are used to specify the (x,y) coordinate of the 64 x 64 x 2 hardware cursor. The cursor (x) register is made up of the cursor (x) low register (CXLR) and the cursor (x) high register (CXHR); the cursor (y) register is made up of the cursor (y) low register (CYLR) and the cursor (y) high register (CYHR). The last value written by the MPU to these registers is the value returned on a read. These registers may be written to or read by the MPU at any time.

CXLR and CXHR are cascaded to form a 12-bit cursor (x) register. Similarly, CYLR and CYHR are cascaded to form a 12-bit cursor (y) register. Bits D4-D7 of CXHR and CYHR are ignored and should be written as zeros.

The cursor (x) value to be written is calculated as follows:

Xp = desired display screen (x) position + 64 where the (x) reference point for the display screen, x = 0, is the upper left corner of the screen. The Xp position equation places the upper lefthand corner of the cursor RAM array to the desired screen location. This allows the cursor position to be defined in the same coordinate space as the screen.

Values from 0 to 4095 may be written into the cursor (x) register. If Xp is equal to zero, the cursor will be entirely offscreen.

The cursor (y) value to be written is calculated as follows:

Yp = desired display screen (y) position + 64

where the (y) reference point for the display screen, y = 0, is the upper left corner of the screen. The Yp position equation places the upper left corner of the cursor RAM array to the desired screen location. This allows the cursor position to be defined in the same coordinate space as the screen.

Values from 0 to 4095 may be written into the cursor (y) register. If Yp is equal to zero, the cursor will be entirely offscreen (see Cursor Operation in the Circuit Description section).

		Cursor (C)	(x) Hi((HR)	gh		· · · · <u>· · · · · · · · · · · · · · · </u>		Curec (C	or (x) Lo	w		
Date Bit	D3	D2	Di	D0	D7	D6	D5	D4	D3	D2	D1	D0
X Address	XII	X10	Х9	X8	X7	X6	XS	X4	Х3	X2	XI	xo

l		Cursor (C1	(y) Hi(YHR)	gh				Cure(x (y) Lo	w		
Data Bit	D3	D2	DI	D0	D7	D6	D5	D4	D3	D2	Di	DO
Y Address	Y11	Y10	Y9	Y8	¥7	Y6	Y5	¥4	Y3	Y2	YI	YO

Brooktree* Internal Registers (continued)

Register Name	Reset Value
Command Register 0	0
Command Register 1	0
Command Register 2	
Command Register 3	0
Command Register 4	0
Video Window XSTART—Low & High	Not Initialized
Video Window YSTART—Low & High	Not Initialized
Video Window XWIDTH—Low & High	Not Initialized
Video Window YHEIGHT—Low & High	Not Initialized
XSCALEINIT—Low & High	Not Initialized
XSCALEINC—Low & High	Not Initialized
Serial Clock Enable Start (Horizontal)—Low & High	Not Initialized
Serial Clock Enable Duration (Horizontal)—Low & High	Not Initialized
Serial Clock Enable Start (Vertical)—Low & High	Not Initialized
Serial Clock Enable Duration (Vertical)—Low & High	Not Initialized
DIVCLK1 Rate	0
DIVCLK2 Rate	0
Color Mask	0
Color Key	0
FIFO Size	0x32
Color Palette RAM	Not Initialized
Pixel Read Mesk	0xFF
Cursor Colors	Not Initialized
Overscan Color	Not Initialized
Cursor X,Y	Not Initialized
Cursor RAM array	Not Initialized

Table 13. Register Values on Reset.

Pin Descriptions

	100	Pine	Description Description					
RESET*	I	72	Reset input (TTL compatible). When this signal is low, all the command registe bits are initialized to zero and the device is in VGA mode.					
BLANK*	1	98	Composite blank control input (TTL compatible). A logical zero drives the analog outputs to the blanking level, as specified in Figures 8 and 9. It is lauched on the rising edge of GLCLK. When BLANK® is a logical zero, the pixel inputs are ignored.					
ENABLE (Composite Display Enable)	ı	96	and BLANK* determines or color, pixel, or ov	nes whether the anal eracan data. This ai ng is not used, this p	IL compatible). The state of this sign of computs are blanked or contain gnal is latched on the rising edge in should be tied to BLANK*. The BLE and BLANK*:			
			ENABLE	BLANK'	Operation			
			x	0	Video Blanking			
			0	1	Overscan Data			
			1	1	Oursor Color or Pixel Data			
			ing vertical blank. This cursor when interlaced	input is used to et operation (comman	is signal should be changed only of issure proper operation of the onboth tit CR23 = 1) is selected. When the control of the cR23 is selected.			
OSC. OSC•	I	131. 132	ing vertical blank. This cursor when interlaced signal is a logical zero one, an odd field is sp (command bit CR23 = Pixel clock input (ECL but a TTL clock may Command Register 1 (s input is used to er operation (comman, an even field is specified. This input 0) is selected. TTL compatible). To be used on either Of (CR34 = 0). It is no buffer to avoid no	isure proper operation of the onbo			
,	I		ing vertical blank. This cursor when interlaced signal is a logical zero one, an odd field is sp (command bit CR23 = Pixel clock input (ECL but a TTL clock may Command Register 1 (driven by a dedicated DIVCLK = OSC or DI	s input is used to er operation (comman, an even field is specified. This input it is selected. TTL compatible). To be used on either O (CR34 = 0). It is no buffer to avoid no VCLK = OSC*.	usure proper operation of the onboth bit CR23 = 1) is selected. When the sectified, when this signal is a logic is ignored if noninterlaced operations input is an ECL-compatible in the input is an ECL-compatible input			
osc•		132	ing vertical blank. This cursor when interlaced signal is a logical zero one, an odd field is sp (command bit CR23 = Example Command bit CR23 = Example Command Register 1 (driven by a dedicated DIVCLK = OSC or DIFFrame buffer shift clock to the selected pixel ck the DIVCLK2 are opposite. Frame buffer shift clock to the selected pixel ck the selected pixel ck to the selected pixel ck to the selected pixel ck.	s input is used to er operation (comman, an even field is specified. This input of its selected. TTL compatible). The used on either of CR34 = 0). It is no buffer to avoid not comput (TTL compack divided by 8, 4, ster. This output has phases.	sure proper operation of the onbod bit CR23 = 1) is selected. When the sectified. When this signal is a logic is ignored if noninterlaced operations input is an ECL-compatible in this input is an ECL-compatible in the second of the selected by CR24 ecommended that all clock inputs effection-induced jitter. In 1:1 most atible). The signal on this pin is eq 2, or 1, depending on the selection.			
DIVCLKI	0	132	ing vertical blank. This cursor when interlaced signal is a logical zero one, an odd field is sp. (command bit CR23 = Pixel clock input (ECL but a TTL clock may Command Register 1 (driven by a dedicated DIVCLK = OSC or DI Frame buffer shift clock to the selected pixel ck the DIVCLK2 are opposite Frame buffer shift clock the DIVCLK2 are opposite A high value applied to Although FIFO RESET	s input is used to er operation (comman, an even field is specified. This input of its elected. TTL compatible). To used on either of cused on either of buffer to avoid no vCLK = OSC. Coutput (TTL compact divided by 8, 4, ster. This output has phases. Coutput (TTL compact divided by 8, 4, ster. This output has phases. Coutput (TTL compact divided by 8, 4, ster. This output has phases. This output emables as the phases. This pin enables as the phases of this pin enables as the coutput for at least 2 VI.	stare proper operation of the onboth bit CR23 = 1) is selected. When the sectified. When this signal is a logic is ignored if noninterlaced operations input is an ECL-compatible inputs of commended that all clock inputs effection-induced jitter. In 1:1 most atible). The signal on this pin is equal to the selection is low drive capability. DIVCLK1 at atible). The signal on this pin is equal to the selection of t			
DIVCLK1	0	127	ing vertical blank. This cursor when interlaced signal is a logical zero one, an odd field is sp. (command bit CR23 = 1). Pixel clock input (ECL but a TTL clock may be a triven by a dedicated DIVCLK = OSC or DIFFrame buffer shift clock to the selected pixel ck the DIVCLK2 are opposite. Frame buffer shift clock to the selected pixel ck the DIVCLK2 are opposite. A high value applied to Although FIPO RESET pin and should be kept if FIPO to be properly res	s input is used to er operation (comman, an even field is specified. This input it is selected. TTL compatible). To used on either Office on either Office on either Office of on either Office of one of on	stare proper operation of the onbod bit CR23 = 1) is selected. When the sectified. When this signal is a logic is ignored if noninterlaced operations in the section of the selected by CR24 second that all clock inputs effection-induced jitter. In 1:1 most stible). The signal on this pin is eq 2, or 1, depending on the selection is low drive capability. DIVCLK1 at low drive capability. DIVCLK1 are low drive capability.			

Pin Descriptions (continued)

Pin Name	vo	Pine	. Description
P7:0 (A-H)	I	See Pir	Pixel port inputs (TTL compatible). This port can be used in various modes a shown in Tables 10 and 11, for video and or graphics input.
VALID	1	15	Video port input pixel data valid signal (TTL compatible).
READY	0	12	Video port input pixel data ready signal (TTL compatible, low drive). This signal can be synchronously sampled using the rising edge of VLCLK. This signal changes only following a rising edge of VLCLK.
HFULL	Ó	11	VideoCache™ FIFO half-full or greater signal. (ITL compatible, low drive).
SEN	0	126	DIVCLK1 gating control signal (TTL compatible, low drive). It may be used to externally gate the DIVCLK1 output to generate a gated version of DIVCLK1. This signal changes only during DIVCLK1 low duration. The start time and duration of the pulse train may be programmed relative to the leading edge of C/HSYNC* and internally generated VSYNC.
VRESET*	0	2	Vertical reset signal (TTL compatible, low drive). This signal is generated to allow the asynchronous video data to know the start of each frame. This signal is synchronous to VLCLK.
MODE0	VO	91	General purpose registered input/output (TTL compatible) set or read using CR45. Selection of input or output is made using CR37. Must be tied high with a 10K pullup resistor.
MODE1-3	1/0	29. 17. 19	Reserved for future expansion. Must be tied high with a 10K pullup resistor.
WR*	1	73	Write control input (ITL compatible with hysteresis). D0-D7 data is latched on the rising edge of WR*, and RS0-RS3 are latched on the falling edge of WR* during MPU write operations. RD* and WR* should not be asserted simultaneously.
RD*	1	74	Read control input (TTL compatible with hysteresis). To read data from the device, RD° must be a logical zero. RS0-RS3 are latched on the falling edge of RD° during MPU read operations. RD° and WR° should not be asserted simultaneously.
RSO-RS3	I	75–78	Register select inputs (TTL compatible). RSO-RS3 specify the type of read or write operation being performed, as specified in Tables 1 and 2.
D0-D7	1/0	83 -9 0	Data bus (TTL compatible). Data is transferred into and out of the device over this 8-bit bidirectional data bus. D0 is the least significant bit.
SENSE*	0	71	Comparator sense output (CMOS comparible). This pin will be low if one or more of the IOR, IOG, and IOB analog output levels is above the internal comparator reference of 350 mV \pm 50 mV.
OR, IOG, OB	A.O	,	Red, green, and blue current outputs. These high-impedance current sources can directly drive a doubly-terminated 75 Ω coaxial cable (see the PC Board Layout Considerations section for further information).

Pin Descriptions (continued)

Pin Name	100	Pin#			Description			
C/HSYNC*	I	97	Horizontal or comp	osite sync con	erol input (TT	L compatible).	
VSYNC*	ı	99	Vertical sync control input (TTL compatible). This signal is pipelined to VSYNCOUT*.					
HSYNCOUT.	o	48, 49	Pipeline delayed horizontal and vertical sync control signals.					
FSADJUST	Ą	52	Full-scale adjust cor regardless of the ful			in Figures 8 a	and 9 are main	tained,
			When an external or the PC Board Layor between this pin and The relationship bet RSET (Ω) = K * 1.0	n Consideration I GND contro Ween RSET a	ons section), a is the magnitu nd the full-sca	resistor (RSE de of the full- le output curr	T) connected scale video si	gnal.
			K is defined in the used for doubly-term	able below. It	is recommend	ed that a 147		tor be
				Sync E	nebled	Sync (Disabled	1
			Setup	0 IRE	7.5 IRE	0 IRE	7.5 IRE	1
]]	K (8-bit)	2.888	3.055	2.045	2.207]
		1	K (6-bit)	3.000	3.170	2.100	2.260]
VREF OUT	A. O	68	K values are subject Voltage reference ou be connected directl pin may be left floan	tput. This out	put provides a TN pin. If the	1.2 V (typica	l) reference an	id may id, this
VREF IN	LA	64	Voltage reference im supply this input wit be used to decouple pling capacitor must absolute minimum. \u21a any external circuitr	h a 1.2 V (typ. this input to C be as close to When the inter	ical) reference iND, as shown the device as produced mail reference:	. A 0.1 μF cen in Figures 1: possible to ke is used, this p	ramic capacito 0 and 11. The ep lead length in should not	r must decou- s to an
СОМР	A,O		Compensation pin. A the nearest VAA pin. device to keep lead I must be connected w	The COMP or engths to an a	apacitor must bsolute minim	be as close as	s possible to th	ie .
VAA	A.P	See Pin Diag	Analog power. All V			to the same a	nalog power p	lane.
GND	G	See Pin Diag	Analog ground. All (plane.	GND pins mu	st be connected	d to the same	common ston	and
	:							

Pin Descriptions (continued)

Note: All pins marked NC are reserved for future expansion and MUST be left floating.

PC Board Layout Considerations

PC Board Considerations

The layout should be optimized for lowest noise on the Bt885 power and ground planes by providing good decoupling. The trace length between groups of VAA and GND pins should be as short as possible to minimize inductive ringing.

A well-designed power distribution network is critical to eliminating digital switching noise. The ground plane must provide a low-impedance return path for the digital circuits. A PC board with a minimum of four layers is recommended, with layers 1 (top) and 4 (bottom) for signals and layers 2 and 3 for ground and power.

Component Placement

Components should be placed as close as possible to the associated CacheDACTM pin. Whenever possible, components should be placed so traces can be connected point to point.

The optimum layout enables the Bt885 to be located as close as possible to the power supply connector and the video output connector.

Ground Planes

For optimum performance, a common digital and analog ground plane is highly recommended.

Power Planes

Separate digital and analog power planes are recommended. The digital power plane should provide power to all digital logic on the PC board, and the analog power plane should provide power to all Bt885 power pins. VREF circuity, and COMP. There should be at least a 1/8-inch gap between the digital power plane and the analog power plane.

The analog power plane should be connected to the digital power plane (VCC) at a single point through a ferrite bead, as illustrated in Figures 10 and 11. This bead should be located within 3 inches of the Bt885. The bead provides resistance to switching currents, acting as a resistance at high frequencies. A low-resistance bead should be used, such as Ferroxcube 5659065-3B, TDK HF30ACB321611T, or TDK BF45-4001.

Device Decoupling

For optimum performance, all capacitors should be located as close as possible to the device, and the shortest possible leads (consistent with reliable operation) should be used to reduce the lead inductance. Chip capacitors are recommended for minimum lead inductance. Radial lead ceramic capacitors may be substituted for chip capacitors and are better than axial lead capacitors for self-resonance. Values are chosen to have self-resonance above the pixel clock.

Power Supply Decoupling

The best power supply decoupling performance is obtained with a 0.1 μ F ceramic capacitor in parallel with a 0.01 μ F chip capacitor decoupling each group of VAA pins to GND. The capacitors should be placed as close as possible to the device VAA and GND pins and connected with short, wide traces.

The 10 μ F capacitor shown in Figures 10 and 11 is for low-frequency power supply ripple; the 0.1 μ F capacitors are for high-frequency power supply noise rejection.

COMP Decoupling

The COMP pin must be decoupled to VAA, typically with a $0.1\,\mu\text{F}$ ceramic capacitor and optional $15\,\Omega$ resistor. Low-frequency supply noise will require a larger value. The COMP capacitor must be as close as possible to the COMP and VAA pins. A surface-mount ceramic chip capacitor is preferred for minimal lead inductance. Lead inductance degrades the noise rejection of the circuit. Short, wide traces will also reduce lead inductance.

If the display has a ghosting problem, additional capacitance in parallel with the COMP capacitor may help.

VREF Decoupling

A 0.1 μF ceramic capacitor should be used to decouple this input to GND.

PC Board Layout Considerations (continued)

Digital Signal Interconnect

The digital inputs to the Bt885 should be isolated as much as possible from the analog outputs and other analog circuitry. Also, these input signals should not overlay the analog power plane or analog output signals.

Most of the noise on the analog outputs will be caused by excessive edge rates (less than 3 ns), oversboot, undershoot, and ringing on the digital inputs.

The digital edge rates should not be faster than necessary, as feedthrough noise is proportional to the digital edge rates. Lower-speed applications will benefit from using lower-speed logic (3-5 ns edge rates) to reduce data-related noise on the analog outputs.

Transmission lines will mismatch if the lines do not match the source and destination impedance. This will degrade signal fidelity if the line length reflection time is greater than one fourth the signal edge time (refer to Brooktree Application Notes AN-11 and AN-12). Line termination or line-length reduction is the solution. For example, logic edge rates of 2 ns require line lengths of less than 4 inches without use of termination. Ringing may be reduced by damping the line with a series resistor (30-300 Ω). The RS-select inputs and RD*/WR* lines must be verified for proper levels with no ringing, undershoot, or overshoot. Ringing on these lines can cause improper operation.

Radiation of digital signals can also be picked up by the analog circuitry. This is prevented by reducing the digital edge rates (rise/fall time), minimizing ringing with damping resistors, and minimizing coupling through PC board capacitance by routing the digital signals at a 90 degree angle to any analog signals.

The clock driver and all other digital devices must be adequately decoupled to prevent noise generated by the digital devices from coupling into the analog circuitry.

TTL Clock Interfacing

The Bt885 requires a pixel clock with monotonic clock edges for proper operation. Impedance mismatch on the pixel clock line will induce reflections on the pixel clock, which may cause erratic operation.

The Pixel Clock Pulse Width High Time and Pixel Clock Pulse Width Low Time minimum specifications (see the AC Characteristics section) must not be violated, or erratic operation can occur.

The pixel clock line must be terminated to prevent impedance mismatch. A series termination of 33-68 Ω placed at the pixel clock driver may be used, or a parallel termination may be used at the pixel clock input to

the CacheDAC $^{\rm m}$. A parallel termination of 220 Ω to VCC and 330 Ω to ground will provide a Thevenin equivalent of a 110 Ω termination, which is normally sufficient to absorb reflections. The series or parallel resistor values should be adjusted to provide the optimum clock signal fidelity.

Differential Clock Interfacing

Termination requirements for differential ECL clock sources will vary depending on the particular clock generator used.

MPU Control Signal Interfacing

The Bt885 uses the RD*, WR*, and RS lines to determine which MPU accesses will take place. Glitches or ringing on any of these lines may cause improper MPU operation. When a VGA controller with edge rate control is used on these lines, a series termination is not necessary. In non-VGA controller application or in applications where the MPU control signals are daisy chained, a series termination, pull-down resistors, or additional capacitance to ground should be used to prevent glitches that could cause improper MPU accesses.

Analog Signal Interconnect

The Bt885 should be located as close as possible to the output connectors to minimize noise pickup and reflections caused by impedance mismatch.

The analog outputs are susceptible to crosstalk from digital lines; digital traces must not be routed under or adjacent to the analog output traces.

To maximize the high-frequency power supply rejection, the video output signals should not overlay the analog power plane.

For maximum performance, the analog video output impedance, cable impedance, and load impedance should be the same. The load resistor connection between the video outputs and GND should be as close as possible to the Bt885 to minimize reflections. Unused analog outputs should be connected to GND.

Analog output video edges exceeding the CRT monitor bandwidth can be reflected, producing cable-length dependent ghosts. Simple pulse filters can reduce high-frequency energy, reducing EMI and noise. The filter impedance must match the line impedance.

PC Board Layout Considerations (continued)

Analog Output Protection

The Bt885 analog output should be protected against high-energy discharges, such as those from monitor arcover or from hot-switching AC-coupled monitors.

The diode protection circuit shown in Figures 10 and 11 can prevent latchup under severe discharge condi-

tions without adversely degrading analog transition times. The 1N4148/9 parts are low-capacitance, fast-switching diodes, which are also available in multiple-device packages (FSA250X or FSA270X) or surface-mountable pairs (BAV99 or MMBD7001).

Location	Description	Vendor Part Number
C1-C12 C22 L1 R1, R2, R3 R4 RSET	0.1 μF ceramic capacitor 10 μF capacitor ferrite bead 75 Ω 1% metal film resistor 15 Ω 1% metal film resistor 1% metal film resistor	Eric RPE1122SU104M50V Mallory CSR13G106KM TDK HF30ACB321611T Dale CMF-55C Dale CMF-55C Dale CMF-55C

Figure 10. Typical Connection Diagram and Parts List (Internal Voltage Reference).

Brooktree* PC Board Layout Considerations (continued)

Location	Description	Vendor Part Number
C1-C12	0.1 µF ceramic capacitor	Erie RPE11225U104M50V
CT3	10 μF capacitor	Mallory CSR13G106KM
L1	ferrite bead	TDK HF30ACB321611T
R1, R2, R3	75 Ω 1% metal film resistor	Dale CMF-55C
R4	1 KΩ 5% metal film resistor	Dale CMF-55C
R5	15 Ω 1% metal film resistor	Dale CMF-55C
RSET	1% metal film resistor	Dale CMF-SSC
Z 1	1.2 V voltage reference	National Semiconductor LM385BZ-1

Figure 11. Typical Connection Diagram and Parts List (External Voltage Reference).

Application Information

Using Multiple Devices

When multiple Bt885s are used, each Bt885 should have its own power plane and ferrite bead. If the internal reference is used, each Bt885 should use its own internal reference.

Although the multiple Bt885s may be driven by a common external voltage/current reference, higher performance may be obtained if each CacheDACTM uses its own reference. This will reduce the amount of color channel crosstalk and color palette interaction.

Each Bt885 must still have its own RSET resistor, analog output termination resistors, power supply bypass capacitors, COMP capacitor, and reference capacitors.

ESD and Latchup Considerations

Correct ESD-sensitive handling procedures are required to prevent device damage, which can produce symptoms of catastrophic failure or erratic device behavior with leaky inputs.

All logic inputs should be held low until power to the device has settled to the specified tolerance. DAC power decoupling networks with large time constants should be avoided. They could delay VAA power to the device. Ferrite beads must be used only for analog power VAA decoupling. Inductors and regulators cause a time constant delay that induces latchup.

Latchup can be prevented by ensuring that all VAA and GND pins are at the same potential and that the VAA supply voltage is applied before the signal pin voltages. The correct power-up sequence ensures that any signal pin voltage will never exceed the power supply voltage by more than +0.5 V.

Sleep Operation

When the internal or external voltage reference is used, the DACs will be turned off during sleep mode.

When an external voltage reference is used, some internal circuitry will still be powered during the sleep mode. This unnecessary current drain can be disabled by turning off the external voltage reference during power-down mode.

THE WALLE WHEN

Recommended Operating Conditions

Parameter	Symbol	Min	Тур	Mex	Units	
Power Supply	VAA	4.75	5.00	5.25		
Ambient Operating Temperature	TA	, 0		+70	•c	
Output Load	RL		37.5		Ω	
Voltage Reference Configuration Reference Voltage	VREF	1.1112	1.235	1.359	v	

Absolute Maximum Ratings

Parameter	Symbol	Min	Тур	Mex	Units
VAA (measured to GND)				7.0	V
Voltage on Any Signal Pin (Note 1)		GND-0.5		VAA+0.5	v
Analog Output Short Circuit Duration to Any Power Supply or Common	ISC		indefinite	,	
Storage Temperature	TS	-65	,	+150	•c
Junction Temperature	TI			+150	•c
Vapor Phase Soldering (1 minute)	TVSOL			220	*c

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Note 1: This device employs high-impedance CMOS devices on all signal pins. It should be handled as an ESD-sensitive device. Voltage on any signal pin that exceeds the power supply voltage by more than +0.5 V can cause destructive latchup.

DC Characteristics

Parameter	Symbol	Min	Тур	Mex	Units
Resolution (each DAC) Accuracy (each DAC) Integral Linearity Error	IL.	8	8	8 ±1	LSB
Differential Linearity Error Gray-Scale Error Monotonicity Coding	DL		Guaranteed	#5 #1	LSB LSB % Gray Scale Binary
Digital Inputs Input High Voltage Input Low Voltage Input High Current (Vin = 2.4 V) Input Low Current (Vin = 0.4 V) Input Capacitance (v = 1 MHz, Vin = 2.4 V) Hysteresis	CIN EL TH VIH	2.0 GND-0.5		VAA + 0.5 0.8 TBD TBD 7	V V µA µA pF
			0.3		v
OSC/OSC® ECL Differential Inputs Input High Voltage Input Low Voltage	Δ Vin VIH VIL	0.6 VCC-1.1 VCC-2		VCC-0.8 VCC-1.5	v v
Digital Outputs Output High Voltage (10H = -400 μA)	VOH	2.4			v
Output Low Voltage (IOL = 3.2 mA)	VOL			0.4	· v
Three-State Current Output Capacitance Load Capacitance	IOZ CDOUT CL			10 7 10	μA pF pF

See test conditions on next page.

DC Characteristics (continued)

Parameter	Symbol	Min	Тур	Max	Units
Analog Outputs					
Gray-Scale Current Range	1			20	
Output Current (Standard RS-343A)			1	1 20	
White Level Relative to Black	1	15.86	17.62		
Black Level Relative to Blank	1	13.60	17.02	18.5	mA.
SETUP = 7.5 IRE	1 1	0.95	1.44		
SETUP = 0 IRE	[]	0.95	1.44 5	1.90	mA.
Blank Level		6.29	7.62	50	μΑ
Sync Level	1	0.29	7.62 5	8.96	mA
LSB Size		U	-	. 50	μΑ
DAC-to-DAC Matching	1 1		69.1 2		μА
Output Compliance	l voc	-1.0	4	3	%
Output Impedance	RAOUT	-1.0	10	+1.5	V
Output Capacitance	CAOUT		10		kΩ
(f = 1 MHz, IOUT = 0 mA)			`	30	pF
Onboard VREF (Note 1)	VREPOUT	TBD	TBD	TBD	
Voltage Reference Input Current	IVR IN		tbd	thd	mA
Power Supply Rejection Ratio	PSRR				
$(COMP = 0.1 \mu F, f = 1 kHz)$	PSRK		·	0.5	%/% AVA

When the internal voltage reference is used, RSET may require adjustment to meet these limits. Also, the "gray-scale" output current (white level relative to black) will have a typical tolerance of ±10% rather than the ±5% specified above.

When the device is in the 6-bit mode, the output levels are approximately 1.5% lower than these values.

Note 1: Onboard VREF numbers subject to change upon completion of characterization.

Bt885 AC Characteristics

		110 M	tz Devic	:06	
Perameter	Symbol	Min	Тур	Max	Unite
OSC, OSC* All Mux Rates	Fmax			110	MHz
RSO-RS3 Setup Time	1	- 10	1		Ds.
RSO-RS3 Hold Time	2	10			BS
RD ^o Asserted to D0-D7 Driven RD ^o Asserted to D0-D7 Valid	3	2			DS
RD® Negated to D0-D7 3-Stated	1 4	ļ	i	40	ns ns
Read D0-D7 Hold Time	5	ł	j	20	ns
	6				ns
Write DO-D7 Setup Time	7	10			ns.
Write DO-D7 Hold Time	8	10	Ī	i	ns
RD*, WR* Pulse Width Low	9	50			
RD*, WR* Pulse Width High	10	6° pixel clock			ns .
		periods			D.S
GLCLK Rates	Gmax				
8:1 Multiplexing			1 1	13.75	
4:1 Multiplexing	1			27.5	MHz
2:1 Multiplexing]		ı	55	MHz
1:1 Multiplexing			l	90	MHz MHz
VLCLK Rate	Vmax			85	MHz
DIVOLKI, DIVOLK2 Rates	Dmax			55	MHz
OSC, OSC® Cycle Time (Note 1)	11	18.18			
All Mux Rates	••	10.10	- 1	1	ឆ
OSC. OSC Pulse Width High	12	tbd	I	l	DS.
All Mux Rates OSC, OSC® Pulse Width Low			- 1	1	
All Mux Rates	13	tbd		- 1	ns .
Duty Cycle of Selected Pixel Clock				- 1	
When Clock Doubler Enabled		45	1	55	%
GLCLK Cycle Time	14				
8:1 Multiplexing	.~]	72.72	- 1		J
4:1 Multiplexing	1	36.36	1	- 1	ns
2:1 Multiplexing	ļ	18.18	1	- 1	PLS
1:1 Multiplexing	- 1	11.11	- 1		DS .
GLCLK Pulse Width High	15	•••••	J	1	D.S
8:1 Multiplexing		4	- 1	1	- I
4:1 Multiplexing		4	1	- 1	ns ns
2:1 Multiplexing	}	4	- 1	1	ns l
1:1 Multiplexing		4	l	l	ns
GLCLK Pulse Width Low	16	j	ł		
8:1 Multiplexing	ļ	4	- 1		DS
4:1 Multiplexing 2:1 Multiplexing	i	4	İ	1	as I
1:1 Multiplexing	1	4		- 1	ns l
· · · · · · · · · · · · · · · · · · ·	i	4	ı	ı	1

Test conditions at end of this section.

The state of the s

Brooktree* AC Characteristics (continued)

		110 M	iHz Devi	COS	
Parameter	Symbol	Min	Тур	Max	Units
VLCLK Cycle Time	17	11.76	1	 	Da
VLCLK Pulse Width High	18	4	1	1	ns.
VLCLK Pulse Width Low	19	4].	1	25
DIVCLK1, DIVCLK2 Cycle Time	20	14.81			ns ns
DIVCLKI, DIVCLK2 Duty Cycle	21	40		60	96
Graphics Data Setup to GLCLK	22	3	1		214
Graphics Data Hold from GLCLK	23	i			20.5
Data Setup to GLCLK ENABLE, BLANK*, CHSYNC*, VSYNC*	24	3			ns
Date Hold to GLCLK ENABLE, BLANK®, CHSYNC®, VSYNC®	25	1			as
Video Data Setup to VLCLK	26		 		-
Video Data Hold from VLCLK	27				DS DS
VALID Setup to VLCLK	28	3			Ds
VALID Hold from VLCLK	29	1	ļ		25
VLCLK to READY Valid	30			7	מת
DIVCLKI to SEN Valid	31			3	DS.
FIFO Reset Pulse Width		2 • VLCLK periods			ns
Analog Output Delay	32			30	DS.
Analog Output Rise/Fall Time	33		3		ns
Analog Output Settling Time (Note 2)	34		13	ĺ	DS
Clock and Data Feedthrough (Note 2)	ļ		-30	ļ	· dB
Glitch Impulse (Note 2)		i	75	j	pV - sec
SENSE® Output Delay	35		1		ш
DAC-to-DAC Crosstalk	1	,	-23]	.
Analog Output Skew				2	ns.
VAA Supply Current	IAA				mΑ
Normal Operation	- 1	į	tbd	tbd	mA
"Sleep" Mode (Note 3)		1	thd	thd	mA

Test conditions at end of this section.

AC Characteristics (continued)

Pipeline Delay	
Graphics 1:1/No Video	3 LCLKS + 16 PCLKS
MUX Graphics/No Video	(8 LCLKS + 16 PCLKS) ± 2 LCLKS
Graphics 1:1/Video	27 LCLKS + 16 PCLKS
MUX Graphics/Video	(32 LCLKS + 16 PCLKS) ± 2 LCLKS

The number of LCLKS will have to be multiplied by the respective MUX rates to get the proper number of pipeline delays. (i.e., PCLK = Pixel Clock Rate LCLK = MUX Clock Rate the pipeline delay in 2:1 MUX Graphics/No video, measured in PCLKs = 32 PCLKS ± 4 PCLKs.

Test conditions (unless otherwise specified): "Recommended Operating Conditions" using external voltage reference with SETUP = 7.5 IRE, VREF = 1.235 V, RSET = 147Ω TTL input values are 0-3 V, with input rise/fall times ≤ 3 ns, measured between the 10% and 90% points. Timing reference points at 50% for inputs and outputs. Analog output load ≤ 10 pF; SENSE* and D0-D7 output load ≤ 50 pF. DIVCLK1, DIVCLK2 output load = 50 pF. As the above parameters are guaranteed over the full temperature range, temperature coefficients are not specified or required. Timing waveforms are shown in Figures 12-14.

Note 1: OSC and OSC* cycle times assume the use of the 2Xclock Multiplier.

Note 2: Numbers guaranteed by design.

Note 3: External voltage reference is disabled during sleep mode, all inputs are low, and clock is running.

Timing Waveforms

Note 1: Output delay measured from the 50% point of the rising edge of CLOCK to the 50% point of full-scale transition.

Note 2: Settling time measured from the 50% point of full-scale transition to the output remaining

within ±1 LSB.

Note 3: Output rise/fall time measured between the 10% and 90% points of full-scale transition.

Figure 12. MPU Read/Write Timing.

Note 1: Output delay measured from the 50% point of the rising edge of CLOCK to the 50% point of full-scale transition.

Note 2: Settling time measured from the 50% point of full-scale transition to the output remaining within ±1 LSB.

Note 3: Output rise/fall time measured between the 10% and 90% points of full-scale transition.

Figure 13. Graphics Input/Output Timing.

READY

Timing Waveforms (continued)

Figure 14. Video Input/Output Timing.

Bt885 Ordering Information

Model Number	Model Number Speed		Ambient Temperature Range
B:885KHF110	110 MHz	160-pin Plastic Quad Flatpack	0° to +70°C

Revision History

Datasheet Revision	Changes From Previous Revision
B	Initial Release
С	Pinout change. Pin 160 was changed from GND to RPTLINE, Pin 2 was changed from GND to VRESET*. Pins 1, 39, 40, 41, 42, 79, 80, 81, 82, 119, 120, 121, 122 were changed from GND to NC. Vertical scaling support added. Both DIVCLK1 and DIVCLK2 and all internal clocks are derived from OSC or OSC* clock inputs. DIVCLK1 and DIVCLK2 outputs are opposite phases.
D	135 MHz speed grade removed. Pinout change. Pin 160 was changed from RPTLINE to NC. Vertical scaling deleted.

Package Drawing-160-pin Plastic Quad Flatpack (PQFP)

Notes: Unless otherwise specified:

- 1. Dimensions are in inches [millimeters]. Millimeters are the controlling dimension.
- 2. Package body size does not include mold protrusion or mismatch.
- 3. PCB pad layout suggestions:
- a.Pad size: 0.100 x 0.012 [2.54 x 0.30].
- b.Lead pitch (millimeters): Use 0.65 center-to-center spacing.
- c.Lead pitch (inches): If the PCB layout system to be used can handle fractional mils, use 0.0256 center-to-center spacing. If not, use a combination of 0.025(A) and 0.026(B) inch spacings in groups of five ("ABABA" repeated) to approximate the exact spacing as closely as possible. For example, "ABABA" and so forth.

£2

Brooktree*

Brooktree Corporation 9868 Scranton Road San Diego, CA 92121-3707 (619) 452-7580 1(800) 2-BT-APPS TLX: 383 596 FAX: (619) 452-1249 L885001 Rev. D Information furnished by Brooktree Corporation is believed to be accurate and reliable. However, no responsibility is assumed for its use, nor for any infringements of patents or other rights of thard parties which may result from its use. No licease is granted by implication or otherwise under any patent or patent rights of Brooktree Corporation.

Copyright © 1994, Brooktree Corporation.

Specifications are subject to change without notice.

ESD-censitive device.

Permanent darrage may occur on unconnected devices subjected to high-energy electrostatic fields.

Unused devices must be stored in conductive foam or shunts.

Do not insert this device into powered excitets.

Remove power before insertion or removal.

PRINTED IN THE USA Print date: 02/15/94

printed on recycled paper

ATI020014

Advance

This document contains information on a product under development. The parametric information contains target parameters that are subject to change.

EXHIBIT RX-238

Distinguishing Features

- 135 and 110 MHz Pipelined Operation
- VGA Compatible
- · Mixed Video and Graphics
- 64-bit Graphics/Video Pixel Ports
- YCrCb-to-RGB Conversion
- YCrCb 4:2:2 and 2:1:1 Interpolation
- ##ses Brooktree's VideoCache™ Technology
- Horizontal Video Up-Scaling
- 64 x 64 x 2 Cursor
- VRAM Shift Clock Support
- Enables DRAM-Based Motion
 Video Systems
- Programmable Video Extents
- Programmable Color Keying

- Three 256 x 8 Color Palene RAMs
- Simplifies Integration of Video into Microsoft Windows™
- 3 x 24 Cursor Color Palette
- Standard MPU Interface
- · Power-Down Mode
- Directly Implements Brooktree's VideoCache™ Connector
- 160 POFP

Applications

- Video Decompression Acceleration
- Multimedia Workstations
- High-Resolution Graphics
- Desktop Video

Related Products

- Bt812 Video Decoder
- Bt858 Video Encoder

Bt885

135 MHz Monolithic CMOS Video CacheDAC™

Product Description

The Bt885 is designed specifically for dual or unified frame buffer multimedia subsystems. A dedicated video port accepts a CCIR601 YCrCb data stream and allows on-screen switching on a pixel-by-pixel basis. Mixing occurs within programmable video extents based on a flexible color key mechanism. Bt885 is intended to replace multiple RAMDACTM-based multimedia subsystems. The Bt885 register set is VGA compatible.

The Bt885 can accelerate video decompression and work with the Bt812 decoder chip using programmable interpolation to pixel multiply by 1, 2, or 4 for CCIR601 4:2:2, 2:1:1, and 1:0.5:0.5 formats. This allows the video data to mix with the graphics data at the same rate.

Brooktree's 800-byte VideoCacheTM FIFO enables asynchronous delivery of graphics and video, easing system bandwidth requirements for video transfer, and allowing efficient use of system memory. Non-integer scaling permits arbitrary video window sizing.

The 64 x 64 x 2 bit cursor has its own palette and has priority over the video or graphics. The cursor operates in three modes: Microsoft WindowsTM, three color, and X Windows.

The Bt885 supports independent 32-bit graphics and 32-bit video pixel ports and is compatible with both VRAM- and DRAM-based video subsystems.

The Bt885 generates RS-343A-compatible video signals into a doubly-terminated 75 Ω load

Functional Block Diagram

Brooktree Corporation • 9950 Barnes Canyon Rd. • San Diego, CA 92121 (619) 452-7580 • (800) 2BT- APPS • TLX: 383 596 • FAX: (619) 452-1249 L885001 Rev. B

Brooktree*

Circuit Description

Figure 1. Bt885 Detailed Block Diagram.

MPU Interface

As illustrated in the detailed block diagram, a standard MPU bus interface is supported, allowing the MPU direct access to the color palette RAM. MPU data is transferred into and out of the CacheDACTM through the D0-D7 data pins. The read/write timing is controlled by the RD* and WR* inputs.

The RSO-RS3 select inputs specify which control register the MPU is accessing, as shown in Table 1. The 8-bit address register is used to address the color palette RAM, eliminating the requirement for external address multiplexers. DO corresponds to ADDRO and is the least significant bit.

Hardware Reset Condition

On reset, Bt885 is configured for standard VGA compatibility as follows:

8 bits per pixel graphics, 1:1 MUX.

8 bits per pixel graphics, 1:1 MUX.
6-bit DAC resolution.
Pixel mask register set to 0xFF.
Video modes disabled.
All control registers set for VGA compatibility.
Graphic pipelines are reset.

Writing Color Palette RAM Data

To write color data, the MPU writes the address register (RAM write mode) with the address of the color palette RAM location to be modified. The MPU performs three successive write cycles (8 bits each of red, green, and blue), using RSO-RS3 to select the color palette RAM. After the blue write cycle, the 3 bytes of color informaalion are concatenated into a 24-bit word and written to the location specified by the address register. The address register then increments to the next location, which the MPU may modify by writing another sequence of red, green, and blue data. A block of color values in consecutive locations may be written to by writing the start address and performing continuous RGB write cycles until the entire block has been written. Refer to the Timing Waveforms for further information.

Reading Color Palette RAM Data

To read color palette RAM data, the MPU loads the address register (RAM read mode) with the address of the color palette RAM location to be read. The contents of the color palette RAM at the specified address are

copied into the red, green, or blue (RGB) registers and the address register is incremented to the next RAM location. The MPU performs three successive read cycles (8 bits each of red, green, and blue), using RSO-RS3 to select the color palette RAM. Following the blue read cycle, the contents of the color palette RAM at the address specified by the address register are copied into the RGB registers, and the address register increments again. A block of color values in consecutive locations may be read by writing the start address and performing continuous RGB read cycles until the entire block has been read.

RS3-RS0	Access	Addressed by MPU
0000	R/W	address register, palette/cursor RAM write
0001	R/W	6/8-bit color palette data
0010	R/W	pixel mask register
0011	R/W	address register; palette/cursor RAM read
0100	R/W	address register; cursor/overscan color write
0101	R/W	cursor overscan and color data
0110	R/W	command register 0
0111	R/W	address register, cursor/overscan color read
1000	R/W	command register 1
1001	R/W	command register 2
1010	R/W	extended address read/write register
1011	R/W	cursor RAM array data
1100	R/W	cursor x-low register
1101	R/W	cursor x-high register
1110	R/W	cursor y-low register
1111	R/W	cursor y-high register

Table 1. Control Input Truth Table (RS3 = MSB, RS0 = LSB).

Writing Cursor and Overscan Color Data

To write cursor or overscan color data, the MPU writes the address register (cursor color write mode) with the address of the cursor or overscan color location to be modified. The MPU performs three successive write cycles (8 bits each of red, green, and blue), using RSO-RS3 to select the cursor color registers. After the blue write cycle, the 3 bytes of red, green, and blue color information are concatenated into a 24-bit word and written to the cursor or overscan color location specified

by the address register. The address register then increments to the next location, which the MPU may modify by writing another sequence of red, green, and blue data. A block of color values in consecutive locations may be written to by writing the start address and performing continuous RGB write cycles until the entire block has been written.

Reading Cursor Color Data

To read cursor color data, the MPU loads the address register (cursor color read mode) with the address of the cursor color location to be read. The contents of the cursor color register at the specified address are copied into the RGB registers, and the address register is incremented to the next cursor color location. The MPU performs three successive read cycles (8 bits each of red, green, and blue), using RSO-RS3 to select the cursor color registers. Following the blue read cycle, the contents of the cursor color location at the address specified by the address register are copied into the RGB registers, and the address register again increments. A block of color values in consecutive locations may be read by writing the start address and performing continuous R, G, B read cycles until the entire block has been read.

Extended Register Mechanism

An extended register set is used to accommodate all features of the Bt885. Since there are only four register select lines (and all 16 combinations have already been used), the extended registers must be accessed indirectly.

For example, Command Register 3 is accessed with the following sequence of operations:

- 1. Set RS3-RS0 = 0000, Address Register.
- 2. Write Address Register to 0x02
- 3. Set RS3-RS0 = 1010 (Extended Address Register).
- 4. Read or Write Command Register 3.

Writing Color Key Color Data

To write the color key color data value, the MPU selects the color key data RGB register using the extended register. It then performs a write cycle setting RS3-RS0 to 1010 (Status Register). This process is repeated for each color component. The color key color register is only updated after the blue value is written.

Reading Color Key Color Data

To read the color key color data value, the MPU selects the color key data RGB register using the extended register mechanism, then performs a read cycle setting RS3-RS0 to 1010 (Status Register).

Writing Color Key Mask Data

To write the color key mask data value, the MPU selects the color key mask RGB register using the extended register mechanism. It then performs a write cycle setting RS3-RS0 to 1010 (Status Register). This process is repeated for each color component. The color key mask register is only updated after the blue value is written.

Reading Color Key Mask Data

To read the color key color mask value, the MPU selects the color key data RGB register using the extended register mechanism outlined below, then performs a read cycle setting RS3—RS0 to 1010 (Status Register).

Additional Information

When the color palette RAM is accessed, the address register resets to 0x00 following a blue read or write cycle to RAM location 0xFF.

The MPU interface operates asynchronously to the pixel clock. Data transfers between the color palette RAM and the color registers (R, G, and B in the functional block diagram) are synchronized by internal logic, and occur in the period between MPU accesses. To reduce noticeable sparkling on the CRT acreen during MPU access to the color palette RAMs, internal logic maintains the previous output color data on the analog outputs while the transfer between RGB registers and lookup table RAMs occurs.

To keep track of the red, green, and blue read/write cycles, the address register has two additional bits (ADDRa and ADDRb) that count modulo three. They are reset to zero when the MPU writes to the address register and are not reset to zero when the MPU reads the address register. The MPU does not have access to these bits. The MPU may read the address register at any time without modifying its contents or the existing read/write mode.

Accessing the Cursor RAM Array

The 64 x 64 x 2 cursor RAM is accessed in a planar format. Bits CR31 and CR30 in Command Register 3 become the load inputs to the 2 MSBs of a .0-bit address counter; therefore, these bits must be written in Command Register 3 before the lower 8 bits are written to the address counter through the MPU port. In the planar format, only nine address bits are used. The tenth bit determines which plane (0 or 1) data of the cursor RAM array is accessed. A single address presented to the cursor RAM accesses 8-bit locations in plane 0 or 1, depending on the state of address bit 9.

After each access in the planar format, the address increments. The MPU uses ADDR, a 10-bit binary address counter, to access the cursor RAM array. The address counter is the same 8-bit binary counter used for RGB autoincrementing with CR31 and CR30 as its extended MSBs. Any write to the address counter after cursor autoincrementing has been initiated resets the cursor autoincrementing logic until cursor RAM array has again been accessed. Cursor autoincrementing will then begin from the address written. A read from the address counter does not reset the cursor, autoincrementing logic. The color palette RAM and the cursor RAM share the same external address register, and MPU addressing for this and all other registers is determined by the external register select lines RS3-RS0 (see Table 2).

6-Bit/8-Bit Operation

The command bit CR01 specifies whether the MPU is reading and writing 8 bits or 6 bits of color information each cycle. For an 8-bit operation, D0 is the LSB and D7 is the MSB of color data. For a 6-bit operation, color data is contained on the lower 6 bits of the data bus, with D0 as the LSB and D5 as the MSB of color data. When the MPU is writing color data, D6 and D7 are ignored. During color read cycles, D6 and D7 are a logical zero.

Accessing the cursor RAM array does not depend on the resolution of the DACs. When Bi885 is in the 6-bit mode, the 6-bit DAC values are left justified within an 8-bit field and the two LSBs are set to zero. Therefore, Bi885's full-scale output current will be about 1.5 percent lower than while it is in the 8-bit mode.

Power-Down Mode

The Bt885 incorporates a power-down capability, controlled by command bit CR00. While command bit CR00 is a logical zero, the Bt885 functions normally.

While command bit CR00 is a logical one, the DACs, cursor circuitry, video FIFO, and power to the RAM are turned off. The RAM still retains the data. Also, the RAM may be read or written to by the MPU as long as the pixel clock is running. The RAM automatically powers up during MPU read/write cycles and shuts down when the MPU access is completed. The DACs output no current, and the four command registers may still be written to or read by the MPU. The output DACs require about one second to turn off (sleep mode) or turn on (normal), depending on the compensation capacitor used (see the Video Output Waveforms section for further information). The DACs will be turned off during sleep mode only if a voltage reference (internal or external) is used.

When an external voltage reference is used, external circuitry should turn off the voltage reference (VREF = 0 V) to further reduce power consumption caused by biasing of portions of the internal voltage reference.

Pixel Clock Selection

OSC and OSC[®] provide the source for the Bt885 internal pixel clock. In general, graphic pixel data is lauched by GLCLK. Bit CR24 selects whether the OSC or OSC[®] pin is used. A clock doubler can be enabled on the selected input by setting CR33 = 1. The OSC[®] and OSC inputs can be used together as differential ECL inputs for the external clock by setting CR34 = 1. If a differential ECL input mode is used (CR34 = 1), then the state of CR33 and CR24 are ignored.

It is also possible to internally route the DIVCLK2 output to the latches connected to GLCLK by setting CR36 = 1. GLCLK will be ignored in this mode.

DIVCLK1 and DIVCLK2 are output on the basis of the OSC and OSC inputs as described unless they are disabled by setting CR32 = 0 (DIVCLK1 disable) or CR35 = 0 (DIVCLK2 disable). If the clock doubler is used (CR33 = 1), then both the DIVCLK1 and DIVCLK2 dividers must be set to a value of 2 or greater. For all graphics 1:1 modes, GLCLK is used as the pixel clock and the OSC and OSCB inputs are ignored.

(bit A9 of ADDR)	ADDR 0-7 (counts binary)	ADDR a,b (counts modulo 3)	RS3	RS2	RS1	RSo	Addressed by MPU
N/A	0x00-0xFF	00	0	0	0	1	Color palette RAM (Red Component)
		01	0	0	0	1	Color palette RAM (Green Componen
	<u> </u>	10	0	0	0	1	Color palette RAM (Blue Component
N/A	0x00	00	0	1	0	1	Overscan color (Red Component)
		01	0	1	0	1	Overscan color (Green Component)
		10	0	1	0	1	Overscan color (Blue Component)
N/A	0x01	00	0	1	0	1	Cursor Color 1 Red Component
	1	01	0	1	0	1	Cursor Color 1 Green Component
		10	0	1	0	1	Cursor Color 1 Blue Component
N/A	0x02	00	0	1	0	1	Cursor Color 2 Red Component
	j i	01	0	1	0	1	Cursor Color 2 Green Component
		10	0	_ 1_	0	1	Cursor Color 2 Blue Component
N/A	0x03	00	0	1	0	1	Cursor Color 3 Red Component
		01	0	1	0	1	Cursor Color 3 Green Component
	<u> </u>	10	0	1	0	1	Cursor Color 3 Blue Component
0	0x000-0x1FF	N/A	1	0	1	1	Cursor RAM Array, plane 0
1	0x200-0x3FF	N/A	_1	0	1	1	Cursor RAM Array, plane 1
0	0x200-0x3FF	N/A	1 1 gister	0	1 1 tion an	1 1 od Auto	Cursor RAM Array, plane 0 Cursor RAM Array, plane 1 pincrementing.

Table 2. Address Register Operation and Autoincrementing.

There are 64 input pins PO-P7 (A-H) used to interface to the graphics and video frame buffer memories. The assignment of pins to input pixels is determined by the operation mode and multiplex rate.

Video Port Clockina

Video data is synchronously clocked into Bt885 with the VLCLK input. VLCLK may be asynchronous from the pixel and/or graphics load clock, as an internal FIFO is used to synchronize video data to graphics pixel data.

Two status signals are available to control the loading of video pixel data into Bt885: VALID and READY. VALID is provided by the system to Bt885 and is asserted to indicate that valid video data is being presented on the video pixel port. The READY signal is an output from B1885 that indicates that it is accepting pixel data. For data to be accepted on any particular VLCLK rising edge, both the VALID and READY signals must be high through the clock edge.

The system must load video data into Bt885 prior to the time that it is to be used. In systems where there is a one-to-one relationship between video pixels and graphics pixels in the frame buffer and this data is delivered simultaneously, the FIFO operation can be ignored and VALID would be tied to the pixel blanking signal from the graphics subsystem (BLANK®). In this mode, the FIFO would never be filled and, therefore. READY may be ignored.

The internal video data FIFO is reset to an empty state on each detected vertical blank period. The system can immediately begin loading data into the video port regardless of the video window's position on the acreen. If at any time the video FIFO is empty when video data is required. Status Register 2 bit SR27 will be set to one. The underflow bit will remain set until Status Register 2 is written, then SR27 will be cleared.

For proper operation of the video pipeline reset, VLCLK must be a free-running clock.

VideoCache™ FIFO Operation

The Bi885 provides a FIFO buffer for video pixels to allow for asynchronous video and graphics operation, and to ease system design requirements. Use of the VideoCacheTM FIFO features is entirely optional and not necessary for synchronous designs.

Loading VideoCache™ FiFO

The VideoCache^{ns} FIFO accepts a group of data (the exact number is given by the current video mode) when the following conditions are met on any single rising edge of VCLK:

- The FIFO is ready to accept data (i.e., it is not full). This is determined by the state of the READY out signal.
- The system is presenting data, indicating this to the CacheDACTM by asserting the VALID signal with the data.

Unloading VideoCache™ FIFO

Biss will unload the VideoCacheTM FIFO dependant on the setting of bit CR41. If CR41 = 1, the video will only be unloaded while Biss is scanning through the video window. If CR41 = 0, then video will always be unloaded during active graphics time. The unloading process is independent of color keying.

General Purpose Signals

DIVCLK1 / DIVCLK2

These signals provide programmable free-running clocks based on the internal pixel clock. They can be used to generate external pixel load clocks, such as VLCLK or GLCLK. A gated clock may be generated from DIVCLK1 by using another general purpose signal, SEN, described below.

SEN

This signal is used to provide a gating control for DIVCLK1. SEN can be programmed to start relative to the falling edge of internally detected vertical sync (see cursor operation) in units of scanlines and relative to the falling edge of HSYNC[®] in DIVCLK1 cycles using the serial clock enable start (horizontal and vertical) registers. Duration is set in units of scanlines for the vertical direction and in DIVCLK1 cycles for the horizontal direction (relative to the beginning of SEN) using the serial clock enable duration (horizontal and vertical)

registers. This signal is guaranteed to transition only during DIVCLK1 low time.

This signal may be used, for example, to control a VRAM shift clock which runs during non-blanking time. When an appropriate delay is programmed from the leading edge of HSYNC*, the serial data can be properly positioned before the trailing edge of BLANK*. The SEN duration register then stops the serial clock to allow the system to perform VRAM row data transfer. Because *HSYNC is sampled with the internal pixel clock, there may be an additional pixel clock delay between *HSYNC falling and the SEN rising.

HFULL

This signal is asserted when the VideoCacheTM FIFO is more than half full.

Video Window Operation

The XSTART register indicates the starting X position on the screen for the video window relative to the ENABLE pin (Figure 2). A value of zero indicates that the video window begins with the first (leftmost) pixel of each horizontal scan line. The YSTART register indicates the starting Y position on the screen for the video window. A value of zero indicates that the video window begins on the first scan line of each frame. The XWIDTH register indicates the number of pixels per scan line within the video window. A value of zero indicates that there are no pixels in the video window. The YHEIGHT register indicates the number of scan lines within the video window. A value of zero indicates that there are no scan lines in the video window.

All four values, XSTART, XWIDTH, YSTART, and YHEIGHT should be written sequentially. Internal video window coordinates are loaded during the next detected blanking interval after the YHEIGHT register is written.

Video Scaling Operation

Horizontal upscaling is accomplished by using the output of an overflowing 12-bit accumulator to either clock a value out of the VideoCache™ FIFO to the DACs or to hold the current DAC value. At the start of each scan line, the accumulator is initialized to the value stored in the XSCALEINIT register.

On each pixel, the value stored in the XSCALEINC register is added to the accumulator.

If the addition results in a carry, a pixel is clocked out of the VideoCache™ FIFO to the DACs. If no carry

Figure 2. Video Window Registers.

occurs, the previous DAC value is held. This style of scaling is known as a Digital Differential Algorithm (DDA).

To accomplish scaling, the system supplying Bt885 with video pixels must precalculate the DDA constants required for the desired scale factor and load the values into the two 12-bit X-scaling registers, XSCALEINIT and XSCALEINC, as follows:

XSCALEINC = [(Source Video Width * 0x1000) + 0X0800 - XSCALEINITY

Destination Video Width

0 ≤ XSCALEINIT ≤ 0x0fff. XSCALEINIT can be used to set the replication phase of the DDA in more advanced applications. Commonly, XSCALEINIT is set to 0x0800.

Color Key Operation

Selection between the video and graphics pixel data may be based on a specified range of graphic pixel values. A "color key set" may be defined which specifies one or more graphic pixel values that allow video pixels to be shown.

To define the color key set, three color key registers and three color mask registers are used. A graphic pixel value is bitwise XORed with the color key and the result is NANDed with the color mask. If the result is

one, the corresponding video pixel is displayed in its place.

When a graphic pixel value falls within the color key set, the corresponding video pixel is displayed rather than the graphic pixel. Color key detection may occur either before the palette lookup or after the palette lookup. In 16- and 24-bit pixel modes, if palette bypass is enabled, selecting matching after the palette matches based on the actual values that would be applied to the DACs.

When matching after the palette, bit CR42 of Command Register 4 should be set to 1, and the color key registers and color mask registers represent 24-bit RGB values each. The registers are ordered with red at the lowest address, then green and blue.

When matching before the palette, bit CR42 of Command Register 4 should be set to zero. The color key registers and color mask registers represent unmultiplexed graphic pixel values, with the red register as the least significant byte, then green and blue. Only the bits needed to represent the pixel are used. For example, an 8-bit pixel color key and mask use only the red registers, 16-bit pixels use only the red and green registers.

Pixel selection occurs only within the current video window boundaries, and only when bit CR46 of Command Register 4 is set to 0 to allow color key detection. When CR46 is set to 1, all pixels within the video win-

dow will display the video pixels, regardless of color mask and key register values.

The hardware cursor always has display priority over color key selection.

Example 1

March a specific 8-bit pseudo-color palette position (value OxFE).

CR42 = 0 (matching before palette)

CR46 = 0 (allow color keying)

Color Mask: (B) 0xXX (G) 0xXX (R) 0xFF

Color Key: (B) 0xXX (G) 0xXX (R) 0xFE

Example2

Match a range of blue values between 0xC0 and 0xC7.

CR42 = 1 (matching after palette)

CR46 = 0 (allow color keying)

Color Mask: (B) 0xF8 (G) 0x00 (R) 0x00

Color Key: (B) 0xC0 (G) 0x00 (R) 0x00

Example3

Use bit 15 in a TARGA 15-bit true color mode to Use bit 15 in a TARGA 15-bit to perform color key.

CR42 = 1 (matching after palette)

CR46 = 0 (allow color keying)

Color Mask: (B) 0x00 (G) 0x80 (R) 0x00

Color Key: (B) 0x00 (G) 0x80 (R) 0x00

YCrCb-to-RGB Matrix

The matrix converts the YCrCb video data to 24 bits of RGB data (8 bits each).

The YCrCb-to-RGB conversion is compliant with CCIR Recommendation 601-1 as follows:

R = 1.164(Y - 16) + 1.596(Cr - 128)

G = 1.164(Y - 16) - 0.813(Cr - 128)

-0.391(Cb - 128)

B = 1.164(Y - 16) + 2.018(Cb - 128)

West to per sup it is the hours

Modes of Operation—Graphics

4-Bits/Pixel Operation (8:1 MUX)

The 32 input bits are multiplexed 8:1 and configured for 4 bits/pixel. There are eight independent 4-bit pixel ports, P7:4 (A-D) and P3:0 (A-D). The pixel bits are latched on the rising edge of GLCLK. One rising edge of GLCLK should occur every eight pixel clock cycles. The 4 bits from each port will select one of sixteen locations in the palette (see Table 10 in the Internal Registers Section).

8-Bits/Pixel Operation (4:1 MUX)

The 32 input bits are multiplexed 4:1 and configured for 8 bits/pixel. There are four independent 8-bit pixel ports, (A-D). The pixel bits are latched on the rising edge of GLCLK. One rising edge of GLCLK should occur every four pixel clock cycles. The 8 bits from each port will select 1 of 256 locations in the palette (see Table 10 in the Internal Registers Section).

8-Bits/Pixel Operation (2:1 MUX)

The 16 input bits are multiplexed 2:1 and configured for 8 bits/pixel. There are two independent 8-bit pixel ports, (A-B). The pixel bits are latched on the rising edge of GLCLK. One rising edge of GLCLK should occur every two pixel clock cycles. The 8 bits from each port will select 1 of 256 locations in the palette (see Table 10 in the Internal Registers Section).

8-Bits/Pixel Operation (1:1 MUX)

The 8 input bits are multiplexed 1:1 and configured for 8 bits/pixel. There is one 8-bit pixel port. (A). The pixel bits are lawhed on the rising edge of GLCLK. One rising edge of GLCLK should occur every pixel clock cycle. The 8 bits will select 1 of 256 locations in the palette (see Table 10 in the Internal Registers Section)

16-Bits/Pixel Operation (2:1 MUX)

The 32 input bits are multiplexed 2:1 and configured for 16 bits/pixel. There are two independent 16-bit pixel ports, (A-B) and (C-D). The bits are lauched on the rising edge of GLCLK. One rising edge of GLCLK should occur every two pixel clock cycles. The pixel bits multiplexed in this mode are from the same ports of RGB color formats of 5:5:5 or 5:6:5. P7D and P7B are ignored internally when the 5:5:5 color format is selected (see Table 10 in the Internal Registers Section)

Bit CR24 in Command Register 2 can be programmed to enable or disable true-color palette bypass. When the

bypass mode is selected, the pixel data bypasses the palene as well as the pixel mask, and is transferred to the proper MSBs of the respective DACs, the remaining LSBs are set to zeros. When the bypass mode is not selected, the pixel data indexes the palette, and color information is passed to the respective DACs. Bit CR22 in Command Register 2 determines whether palette addressing is sparse or contiguous. For sparse palette addressing, each independent color component of pixel data is mapped to the most significant bits of the respective palette address; the least significant bits are set to zero. For contiguous palette addressing, each independent color component of the pixel data is mapped to the least significant bits of the respective palene address: the most significant bits are set to zero. The color palette values indexed, for either sparse or contiguous addressing, are transferred to the DACs. When 5:5:5 or 5:6:5 color format is selected, the display can contain 32 K or 64 K simultaneous color. The DACs can be configured for 6 or 8 bits of resolution in this mode. If 5:5:5 color format is selected, the most significant bit may be used for color key operation (see Tables 3 and 4).

16-Bits/Pixel Operation (1:1 MUX)

The 16-bit pixel port (A-B) is latched on the rising edge of GLCLK and is multiplexed 1:1. One rising edge of GLCLK should occur every pixel clock cycle.

Bit CR25 in Command Register 2 can be programmed to enable or disable true-color palette bypass. When the bypass mode is selected, the pixel data bypasses the palette as well as the pixel mask, and is transferred to the proper MSBs of the respective DACs. When the bypass mode is not selected, the pixel data indexes the proper locations in the palette, and the correct color information is passed to the respective DACs. Bit CR22 in Command Register 2 determines whether palette addressing is sparse or contiguous. For sparse palette addressing, each independent color component of pixel data is mapped to the most significant bits of the respective palette address; the least significant bits are set to zero. For contiguous palette addressing, each independent color component of the pixel data is mapped to the least significant bits of the respective paleue address; the most significant bits are set to zero. The color palette values indexed, for either sparse or contiguous addressing, are transferred to the DACs. When 5:5:5 or 5:6:5 color format is selected, the display can contain 32K or 64K simultaneous colors. The DACs can be configured for 6 or 8 bits of resolution in this mode (see Table 5).

If 5:5:5 color format is selected, the most significant bit is may be used for color key operation.

24-Bits/Pixel Operation (1:1 MUX)

When 24 bits per pixel in 1:1 MUX mode is selected, there is one 24-bit-pixel port, (A-C). The pixel bits are latched on the rising edge of GLCLK and multiplexed 1:1. One rising edge of GLCLK should occur every pixel clock cycle. The RGB color format in this mode is 8:8:8.

Bit CR25 in Command Register 2 can be programmed to enable or disable true-color palette bypass. When the bypass mode is selected, the pixel data bypasses the palene as well as the pixel mask, and is transferred to the proper MSBs of the respective DACs. When the bypass mode is not selected, the pixel data indexes the proper locations in the palette, and the independent RGB color values are passed to the respective DACs (see Table 7a-7c). When 8:8:8 color format is selected, the display can contain 16.8 million simultaneous colors. The DACs should be configured for 8 bits 4 of resolution in this mode (CR25 = 1, CR01 = 1). CR41 and CR40 can be used to alter the pixel read order to BRG or BGR.

Plxel Read Mask Register

4₆₄

The pixel data can be masked before being transferred to the color palette with the 8-bit pixel mask register. The pixel data is bit-wise logically ANDed with the contents of the pixel read mask register. The result is used to address the color palette RAM. The addressed location provides 24 bits of color information to the three D/A conveners. Pixel masking is menabled for all modes of operation except when the true-color bypass is enabled. The pixel mask register is initialized to logical ones at reset (see the Table 13, Register Values on Reset Table in the Internal Register section).

Modes of Operation-Video

Big-Endian versus Little-Endian Pixel Display Order

Pixel display order may be either big endian or little endian. The display order is selected by setting bit CR43 in Command Register 4 to a zero for little endian, or a one for big endian. The pixel ordering and YCrCb-to-RGB conversions are shown in Figures 3-5 and the video pixel port configuration is shown in Table 9. The following descriptions of the modes of operation of the video pixel port are based on little endian display order.

YCrCb 1:0.5:0.5 Operation (4 Byte/8 Pixels)

The 32 input bits are configured for YCrCb 1:0.5:0.5. There are four independent 8-bit pixel ports, (E-H). Each group of four bytes results in eight output pixels. The pixel bits are latched on the rising edge of VLCLK.

YCrCb 1:0.5:0.5 Operation (2 Byte/4 Pixels)

The 16 input bits are configured for YCrCb 1:0.5:0.5. There are two independent 8-bit pixel ports. (G-H). Each group of two bytes results in four output pixels. The pixel bits are latched on the rising edge of VLCLK.

YCrCb 1:0.5:0.5 Operation (1 Byte/2 Pixels)

The 8 input bits are configured for YCrCb 1:0.5:0.5. There is one 8-bit pixel port, (H). Each byte loaded results in two output pixels. The pixel bits are latched on the rising edge of VLCLK.

YCrCb 2:1:1 Operation (4 Byte/4 Pixels)

The 32 input bits are configured for YCrCb 2:1:1. There are four independent 8-bit pixel ports, (E-H). The pixel bits are latched on the rising edge of VLCLK.

YCrCb 2:1:1 Operation (2 Byte/2 Pixels)

The 16 input bits are configured for YCrCb 2:1:1. There are two independent 8-bit pixel ports, (G-H). The pixel bits are latched on the rising edge of VLCLK.

YCrCb 2:1:1 Operation (1 Byte/1 Pixel)

The 8 input bits are configured for YCrCb 2:1:1. There is one 8-bit pixel port, (H). The pixel bits are latched on the rising edge of VLCLK.

YCrCb 4:2:2 Operation (4 Byte/2 Pixels)

The 32 input bits are configured for 4:2:2. There are two independent 16-bit pixel ports, (E-F) and (G-H). The bits are latched on the rising edge of VLCLK.

YCrCb 4:2:2 Operation (2 Byte/1 Pixel)

The 16 input bits are configured for YCrCb 4:2:2. There is one 16-bit pixel port, (G-H). The input bits are latched on the rising edge of VLCLK.

Bit	MSB															LSB
Forma	X	R	R	R	R	R	G	G	G	G	G	В	В	В	В	В
Port 1	P7B	P6B	PSB	P4B	PJB	P2B	PIB	POB	P7A	P6A	PSA	P4A	P3A	P2A	PlA	POA
Port 2	P7D	P6D	PSD	MD	P3D	P2D	PID	POD	P7C	P6C	PSC	P4C	P3C	P2C	PIC	POC

Note: X bit may be used for color key before the palette.

Table 3. 5:5:5 RGB Graphics Color Format for Both 2:1 and 1:1 Multiplexing Modes.

Bit	MSB															LSB
Format	R	R	R	R	R	G	G	G	G	G	G	В	В	В	В	В
Port 1																
Port 2	P7D	P6D	BSD	P4D	P3D	P2D	PID	POD	P7C	P6C	P5C	P4C	P3C	P2C	PIC	POC

Table 4. 5:6:5 RGB Graphics Color Format for Both 2:1 and 1:1 Multiplexing Modes.

	MSB							LSB	XeMap to Zero
Pixel Mask Register	7	6	5	4	3	2	1	0	Register Bits
4 Bits/Pixel	X	x	x	×	3	2	1	0	Palette Index
8 Bits/Pixel	7	6	5	4	3	2	1	0	Palette Index
16 Bits/Pixel 5:5:5 Format SPARSE	7 7 7	6 6 6	5 5 5	4 4	3 3 3	X X X	X X	X X X	Red Palette Index Green Palette Index Blue Palette Index
16 Bits/Pixel 5:5:5 Format CONTIGUOUS	1 1 1	X X X	X X X	4 4	3 3 3	2 2 2	1 1 1	0	Red Palette Index Green Palette Index Blue Palette Index
16 Bits/Pixel 5:6:5 Format SPARSE	7 7 7	6 6 6	5 5 5	4 4	3 3 3	2 2	X X X	X X X	Red Palette Index Green Palette Index Blue Palette Index
16 Bits/Pixel 5:6:5 Format CONTIGUOUS	X X	z z z	3 3	4 4	3 3 3	2 2 2	1 1 1	0 0	Red Palette Index Green Palette Index Blue Palette Index
24 Bit/Pixel 8:8:8 Format	7 7 7	6 6	5 5 5	4 4	3 3 3	2 2 2	1 1 1	0	Red Palette Index Green Palette Index Blue Palette Index

(Note: x means final DAC bit will be 0)

Table 5. Graphics Pixel Index Masking.

Bit	MSB																							LSB
Format																								
Part 1	P7C	P6C	PSC	PIC	P3C	P2C	PIC	POC	P7B	P6B	PSB	PAB	P3B	P2B	PIB	POB	PZA	POA	PSA	P4A	P3A	P2A	PIA	POA

Table 6a. 24-bits/Pixel Graphics RGB Color Format (CR40,41 = 00) for 1:1 MUX Modes.

Bit	MSB		,																					LSB
Format	В	В	B	В	В	В	В	В	R	R	R	R	R	R	R	R	G	G	G	G	G	G	G	G
Port 1	P7C	P6C	PSC	P4C	P3C	P2C	PIC	POC	P7B	P6B	PSB	PAB	P3B	P2B	PIB	POB	P7A	PEA	PSA	P4A	P3A	P2A	PIA	POA

Table 6b. 24-bits/Pixel Graphics BRG Color Format (CR41,40 = 01).

		MSB																							LSB
FI	OTTIAL	В	В	В	В	В	В	B	В	C	C	G	G	G	G	G	G	R	R	R	R	R	R	R	R
	Port 1	P7C	P6C	PSC	P4C	P3C	PZC	PIC	POC	P7B	P6B	PSB	P4B	P3B	P2B	PIB	POB	P7A	PGA	PSA	P4A	P3A	P2A	PIA	POA

Table 6c. 24-bits/Pixel Graphics BGR Color Format (CR41,40 = 10).

16-Bits/Pixel 5:5:5 Operation (2:1 MUX)

The 32 input bits are are configured for 16 bits/pixel.
There are two independent 16-bit pixel ports, (E-F) and (G-H). The bits are latched on the rising edge of VLCLK. The RGB color format in this mode is 5:5:5.
The most significant bit is not used.

16-Bits/Pixel 5:5:5 Operation (1:1 MUX)

The 16 input bits are configured for 16 bits/pixel. There is one 16-bit pixel port, (G-H). The input bits are latched on the rising edge of VLCLK. The RGB color format in this mode is 5:5:5. The most significant bit is not used.

16-Bits/Pixel 5:6:5 Operation (2:1 MUX)

The 32 input bits are configured for 16 bits/pixel. There are two independent 16-bit pixel ports, (E-F) and (G-H). The bits are latched on the rising edge of VLCLK. The RGB color format in this mode is 5:6:5.

16-Bits/Pixel 5:6:5 Operation (1:1 MUX)

The 16 input bits are configured for 16 bits/pixel. There is one 16-bit pixel port, (G-H). The input bits are latched on the rising edge of VLCLK. The RGB color format in this mode is 5:6:5.

24-Bits/Pixel Operation (1:1 MUX)

The 24 input bits are configured for 24 bits/pixel. There is one 24-bit pixel port, (F-H). The bits are lauched on the rising edge of VLCLK. The RGB color format in this mode is 8:8:8.

Video Data Stream Length

Dependant on the video pixel interpolation selected in Bi885, a certain number of input bytes will represent a fixed number of output pixels. In general, B1885 is capable of stretching an arbitrary-length horizontal input stream of A bytes into an arbitrary horizontal window of B RGB pixels.

The system may take advantage of the VideoCache™ FIFO to lower video bandwidth and frame buffer requirements. This is achieved by loading only the number of bytes of video data required for the displayed video window.

There are two parameters that can be adjusted in Bt885 to achieve this. One is the current video mode and the other is the scale factor that is applied to the video

To calculate the X scaling increment, use the following equations:

Destination Video Width =

[(Source Video Width * 4096) /(XSCALEINC + 1)]

i.e.,

XSCALEINC = [(Source Video Width * 4096) / Destination Video Width)] - 1

If scaling is not required, both XSCALEINIT and XSCALEINIT should be set to 4095.

Video Mode	Number of Input Bytes Required for X Source Pixels Independent of Scale
4:2:2	(DYT ((X+1)/2)+1).4
2:1:1	(DIT [(X+3)/4]+1).4
1:0:5:0.5	(DIT((X+7)/8]+1).4
15/16-bit RGB	(DT ((X+1)/2)+1).4
24-bit RGB	(DIT [(3.X+3)/4]].4

The number of output pixels will depend on the values of XSCALEINIT and XSCALEINC.

The B1885 always performs linear interpolation of YCrCb values. This requires that enough data must be delivered to perform the interpolation of the final pixel of a scan line. For example, generating four YCrCb 4:2:2 pixels would require the following 12-byte data STEAM:

[Cr0 Y0 Cb0 Y1] [Cb2 Y2 Cr2 Y3] [Cb4 Y4 Cr4 Y5]

In this case, the Cb4 and Cr4 values are used to perform the interpolation of the chroma value of the fourth pixel.

Video pixels are always removed from the Video-CacheTM FIFO in 4-byte blocks. At the end of each video line, the video interpolator will be purged. Therefore, any remaining data in the interpolator at the end of a video output line up to the next 4-byte boundary will be ignored. In the example above, the Y4 would not be used and the Y5 value would be skipped.

Example: Scaling a 320 pixel wide CCIR601 4:2:2 format image to 640 pixels horizontally:

Number of input bytes =

 $INT{[(320+1)/2]+1}.4=644$ XSCALEINC = [(320 - 4096) / 640] - 1 =

 $2047 = 0 \times 07FF$

XSCALEINIT = XSCALEINC / 2 = 0 x 03FF

DAC Values in 16-Bits/Pixel Video Modes

In order to achieve 8-bit full-scale DAC output in the 5:5:5 16-bits/pixel video modes, each 5-bit value will be used as the five most significant bits of the 8-bit DAC value and the three most significant bits of the 5-bit pixel value will be duplicated in the low order 3 bits before the pixel value is passed to the DACs. Similarly, in 5:6:5 modes, when processing the 6-bit green component, the 6-bit value will be used as the 6 most significant bits of the 8-bit DAC value and the two most significant bits of the 6-bit pixel value will be duplicated in the low order 2 bits before the pixel value is passed to the DACs.

BH	MSB															LSB
Format	Cb	G	Съ	Co	Съ	Съ	Cb	C	Y	Y	Y	Y	Y	Y	Y	Y
Port 1	Р7Н	P6H	PSH	P4H	РЗН	P2H	P1H	POH	P7G	P6G	P5G	P4G	P3G	P2G	PIG	POG
Format	Cr	ů	Cr	C	Cr	Ct	Cr	G	Y	Y	Y	Y	Y	Y	Y	Y
Port 2	P7F	P6F	PSF	P4F	P3F	P2F	PIF	POF	P7E	PE	PSE	P4E	P3E	P2E	PIE	POE

YCrCb 1:0.5:0.5 Video Color Format (4 Bytes / 8 Pixels)

		MSB															LSB
F	DETTINE!	Cb/Ct	Cb/Cr	CPC	CP/C1	CPCs	CP/Ct	CP/Ct	CoC	Y	Y	Y	Y	Y	Y	Y	Y
Po	ort 1	P7H	P6H	PSH	P4H	P3H	P2H	PIH	POH	P7G	P6G	PSG	P4G	P3G	P2G	PIG	POG
								X									
P	ort 2	P7F	P6F	P5F	PAF	P3F	P2F	PIF	POF	P7E	PE	PSE	P4E	P3E	P2E	PIE	POE

YCrCb 1:0.5:0.5 Video Color Format (2 Bytes / 4 Pixels).

Bn	MSB															LSB
Format	Cb/Y/	CP/X/	CP/X\	CbY/ Gr	Cb/Y/ Cr	CPA/	CPA1	Cb/Y/ Cr	X	X	X	X	X	X	X	X
Port 1	P7H	Р6Н	PSH	P4H	РЗН	P2H	PIH	POH	P7G	P6G	PSG	P4G	P3G	P2G	PIG	POG
Forma	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X
Port 2	P7F	P6F	PSF	MF	P3F	P2F	PIF	POF	PTE	PéE	PSE	P4E	P3E	P2E	PIE	POE

YCrCb 1:0.5:0.5 Video Color Format (1 Byte / 2 Pixels).

Bit	MSB								-							LSB
Format	C	Co	G	Cb	Cb	Сь	Ca	Co	Y	Y	Y	Y	Y	Y	Y	Y
Port 1	P7H	P6H	PSH	P4H	РЗН	P2H	PIH	POH	P7G	P6G	P5G	P4G	P3G	P2G	PIG	POG
Format	Ct	C	Ğ	Cr	Cr	Cr	G	G	Y	Y	Y	Y	Y	Y	Y	Y
Port 2									P7E					P2E	PIE	POE

YCrCb 2:1:1 Video Color Format (4 Bytes / 4 Pixels)

Bit	MSB															LSB
Format	Cp/Ct	CP/Ct	CP/Ct	Cb/Cr	Cb/Cr	CP/C1	Cb/Cr	Cb/Cr	Y	Y	Y	Y	Y	Y	Y	Y
Port 1	P7H	P6H	PSH	P4H	РЗН	P2H	P1H	POH	P7G	P6G	PSG	P4G	P3G	P2G	PIG	POG
Format	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X
Port 2	P7F	P6F	PSF	PAF	P3F	P2F	P1F	POF	P7E	P6E	PSE	P4E	P3E	P2E	PIE	POE

YCrCb 2:1:1 Video Color Format (2 Bytes / 2 Pixels).

Bit	MSB															LSB
Format	CP(X)	Ct/Y/	CoV!	Cp/Y/	Cb/Y/ Cr	Cb/Y/	Cb/Y/ Cr	Cb/Y/ Ct	X	x	х	X	X	X	Х	X
Port 1	P7H	РбН	PSH	P4H	РЗН	P2H	PiH	POH	P7G	P6G	P5G	P4G	P3G	P2G	PIG	POG
Format	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X
Port 2	P7F	P6F	PSF	P4F	P3F	P2F	PIF	POF	P7E	PéE	PSE	PLE	P3E	P2E	PIE	POE

YCrCb 2:1:1 Video Color Format (1 Byte / 1 Pixel).

Format	Cb/Y/	Cb/Y/ Cr	CP(X)	Cb/Y/	Cb/Y/	Ct/ Cb/Y/	Cb/Y/ Cr	Cb/Y/ Cr	x	X	Х	X	X	X	X	1
Port 1	P7H	P6H	PSH	P4H	РЗН	P2H	PiH	POH	P7G	P6G	PSG	P4G	P3G	P2G	PIG	1
Format	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	Ì
Port 2	P7F	P6F	P5F	P4F	P3F	P2F	P1F	POF	P7E	PéE	PSE	PLE	P3E	P2E	PIE	1
				ruru	9 2:1:	i Viqe	o Col	or ron	mat (1	i Byte	/ 1 PL	X e I).				
Bit	MSR			TOTAL	9 2:1:	VIGE	o Cole		mat (1	Byte	/1 PL	xei).				
Bit	MSB	<u>G</u> 1								вуле	/1 PL	xei).				
Bit Format	MSB Cb P7H	Cb P6H	Сь	Сь	Сь Рэн	Cb	Сь	Съ	Y	Y	Y	Y	Y	Y	Y	
ottun	Съ		Сь	Сь	Сь				Y P7G	Y P6G Y	Y PSG	Y P4G Y	Y P3G Y	Y P2G Y	Y PIG	

YCrCb 4:2:2 Video Color Format (4 Bytes / 2 Pixels).

Bn	MSB											<u>_</u>	·			LSB
Forma	CP/Ct	Cb/Cr	Cb/Cr	CP/Ct	Cb/Cr	Cb/Cr	Cb/Cr	Cb/Cr	Y	Y	Y	Y	Y	Y	Y	Y
Port 1	P7H	Р6Н	PSH	P4H	РЗН	P2H	PIH	POH	P7G	P6G	PSG	P4G	P3G	P2G	PIG	POG
Former	X	X	X	Х	X	X	Х	Х	X	X	X	X	X	Y	X	X
Port 2	P7F	P6F	PSF	P4F	P3F	P2F	PIF	POF	P7E	P6E	PSE	P4E	P3E	P2E	PIE	POE

YCrCb 4:2:2 Video Color Format (2 Bytes / 1 Pixel).

Bit	MSB															LSB
Format	X	В	B	В	В	В	G	G	G	G	G	R	R	R	R	R
Port 1	Р7Н	P6H	PSH	P4H	РЗН	P2H	PIH	POH	P7G	P6G	PSG	P4G	P3G	P2G	PIG	POG
Port 2	P7F	P6F	PSF	P4F	P3F	P2F	PIF	POF	PIE	P6E	PSE	P4E	P3E	P2E	PIE	POE

5:5:5 BGR Video Color Format for Both 2:1 and 1:1 Multiplexing Modes.

Bit	MSB															LSB
Former	В	B	В	В	В	G	C	G	G	G	G	R	R	R	R	R
Port 1																
Port 2	P7F	P6F	P5F	P4F	P3F	P2F	PIF	POF	PTE	PE	PSE	P4E	P3E	P2E	PIE	POE

5:6:5 BGR Video Color Format for Both 2:1 and 1:1 Multiplexing Modes.

Bh	MSB															LSI
Format	В	В	В	B	В	В	В	В	G	G	G	G	G	G	G	G
Port 1	Р7Н	Р6Н	PSH	P4H	РЗН	P2H	PIH	POH	P7G	P6G	PSG	P4G	P3G	P2G	PIG	POC
Forma	R	R	R	R	R	R	R	R	X	X	X	X	X	X	X	X
Port 2	P7F	P6F	PSF	P4F	P3F	P2F	P1F	POF	P7E	P6E	PSE	P4E	P3E	P2E	PIE	PO

24-Bit BGR Video Color Format for 1:1 Multiplexing Modes.

CCIR601 1:0.5:0.5

CCIR656 Component Ordering

Color Space: YCrCb Subsampling: 1:0.5:0.5

Address (SN+)	0	1	2 ·	3	4	5	6	7
Value	CP0	YO	Cr0	Y4	Cbs	YS	Cr8	Y12

Pixel	0	1	2	3	4	5	6	7
Y	Y0	3Y0 + Y4	<u>Y0 + Y4</u> 2	<u>Y0+3Y4</u>	Y4	3Y4 + Y8	<u>Y4 - Y8</u>	<u>Y4 + 3Y8</u>
C:	Cro	Cr0	3Cr0 + Cr8	3Cr0 + Cr8	<u>Cr0 + Cr8</u>	<u>Cr0+Cr8</u>	Cr0+3Cr8	Cr0 + 3Cr8
Сь	Сю	Съо	3Cb0+Cb8	3Cb0+Cb8	<u>Cb0+Cb8</u> 2	<u>Cb0+Cb8</u>	Cb0+3Cb8	CH0+3Ch

Figure 3. CCIR601 1:0.5:0.5 Video Format.

CCIR601 2:1:1

CCIR656 Component Ordering Color Space: YCrCb

Address (8N+)	0	1	2	3	4	5	6	7
Value	CP0	Y0	Cr0	Y2	СЫ	Y4	Cr4	¥6

Pixel	. 0	1	2	3	4	5	6	7
Y	Y0	$\frac{Y0 + Y2}{2}$	¥2	<u>Y2 + Y4</u> 2	Y4	<u>Y4+Y6</u>	Y6	<u>Y6 + Y8</u>
Cr	Ct0	3Cr0 + Cr4	2	Cr0 + 3Cr4	CM	3Cr4 + Cr8	CM + Cr8	Crd + 3Cr8
င	СРО	3Ch0 + Ch4 4	<u>Ch0+Cb4</u> 2	<u>Cb0 + 3Cb4</u> 4	СМ	3Cb4 + Cb8	<u>Cb4 + Cb8</u>	CM+3CM

Figure 4. CCIR601 2:1:1 Video Format.

Circuit Description (continued)

CCIR601 4:2:2 CCIR656 Component Ordering Color Space: ÝCrCb

Address (SN+)	0	1	2	3	4	5	6	7
Value	СЮ	YO	Ct0	Yı	Cb2	Y2	Cr2	Y3

Pixel	0	1	2	3
Y	YO	Yı	Y2	Y3
Cr	Cr0	<u>Cr0 - Cr2</u>	Cr2	Cr2+Cr4
Co	CP0	Cb0 + Cb2 2	Cb2	Ch2+Ch4

Figure 5: CCIR601 4:2:2 Video Format.

Cursor Operation

The Bi885 has an on-chip, three-color, 64 x 64 x 2 pixel user-definable cursor. This cursor works with both interlaced and noninterlaced systems. The cursor always has display priority over both video and graphics pixels.

The pattern for the cursor is provided by the cursor RAM, which may be accessed by the MPU at any time. The cursor is positioned through the cursor position register (Xp,Yp) (see Figure 6). A (0,0) written to the cursor position registers will place the cursor completely offscreen. A (1,1) written to the cursor position registers will place the lower right pixel of the cursor on the upper left corner of the screen. Only one cursor pattern per frame is displayed at the location specified for both interlaced and noninterlaced display formats, regardless of the number of updates to (Xp,Yp). The cursor's vertical or horizontal location is not affected during any frame displayed.

There are no restrictions on updating (Xp, Yp) other than both cursor position registers must be written when the cursor location is updated. Internal x and y position registers are loaded after the upper byte of Yp has been written to ensure one cursor pattern per frame at the correct location. The cursor pattern is displayed at the last cursor location written. Cursor positioning is relative to ENABLE. The cursor position is not

dependent upon BLANK® (see Figure 6). The cursor Xp position is relative to the first rising edge of GLCLK when ENABLE is sampled at logical one. The cursor Yp position is relative to the first rising edge of GLCLK when ENABLE is sampled at logical one after the ENABLE vertical blanking interval has been determined (see Figure 6). If an ENABLE transition from logical zero to logical one (as determined by GLCLK) does not occur within 2048 internal pixel clocks, ENABLE is in vertical blanking.

For proper cursor operation, selection of interfaced or non-interfaced cursor display must be set using bit CR23 in Command Register 2.

Figure 7 is a visual explanation of planar pixel format and cursor RAM array pixel mapping.

While the cursor may be disabled by setting bits CR20-21 of Command Register 2 to zero, this practice is not recommended. The recommended method for disabling the cursor is to move it entirely offscreen by setting the cursor X and Y location registers to (0,0).

Cursor Color Support

The cursor has three modes for color selection. Bits CR21 and CR20 in Command Register 2 determine which cursor mode is to be used. Mode 1 is a three-color cursor, Mode 2 is a Microsoft WindowsTM cursor, and Mode 3 is an X-Windows cursor (see Table 7).

Figure 6. Cursor Positioning.

Highlight Logic

The highlight logic is enabled in cursor mode 2 when plane 1 and plane 0 data are logical ones (see Table 7). When the highlight logic is enabled, it ensures that the graphics pixel highlighted has a unique color. This is because the highlight logic bit-wise complements the 24 (18)-bit graphics palette or bypass data supplied to the DACs.

Video Generation

The HSYNC* and BLANK* inputs are latched on the rising edge of GLCLK to maintain synchronization with the pixel data.

Pipelined HSYNC* and VSYNC* are output on the HSYNC* OUT and VSYNC* OUT pins.

The CR05 command bit specifies whether a 0 or 7.5 IRE blanking pedestal is to be used. Command bits CR04, CR03, and CR02 specify whether the RGB outuputs contain sync information.

Tables 8 and 9 detail how the HSYNC* and BLANK*
annual modify the output levels.

SENSE* Output

SENSE* is a logical zero if one or more of the IOR, IOG, or IOB outputs have exceeded the internal voltage reference level of the SENSE* comparator circuit. This output determines the presence of a CRT monitor and, with diagnostic code, the difference between a loaded or an unloaded RGB line can be discerned. The reference is generated by a voltage divider from the external 1.235 V voltage reference on the VREF pin. For the proper operation of the SENSE circuit, the following levels should be applied to the comparator with the IOR, IOG, and IOG outputs:

DAC Low Voltage ≤ 260 mV (see note below)
DAC High Voltage ≥ 410 mV (see note below)

There is an additional ±10% tolerance on the above levels when the internal voltage reference is used. Both HSYNC* and VSYNC* should be a logical zero for SENSE* to be stable. The SENSE* output can drive only one CMOS load.

Note: SENSE values are subject to change upon completion of characterization.

Figure 7. Planar Pixel Format and Cursor RAM Array Pixel Mapping.

Plane 1	Plane 0	MODE 1	MODE 2	MODE 3
0	0	Cursor not displayed	Cursor Color 1	Palette Data
0	1	Cursor Color 1	Cursor Color 2	Palette Data
1 ,	0	Cursor Color 2	Palette Data	Cursor Color 1
11	1	Cursor Color 3	Highlight	Cursor Color 2

Table 7. Cursor Color Modes.

Note: 75 Ω doubly-terminated load, VREF = 1.235 V, and RSET = 147 Ω . RS-343A levels and tolerances assumed on all levels.

Figure 8. Composite Video Output Waveforms (SETUP = 7.5 IRE).

Description	Sync Disabled fout (mA)	Sync Enabled lout (mA)	HSYNC.	SLANK*	DAC Input Data
DATA	data + 1,44	9.05 + منعة	3	i	data
DATA-SYNC	data + 1,44	data + 1,44	Ō	;	data
BLACK	1.44	9.05	1	,	0x00
BLACK-SYNC	1.44	1.44	Ö	;	0x00
BLANK	0	7.62	i	i	
SYNC	o	0	0	o	2X XX

Note: 75 Ω doubly-terminated load, VREF = 1.235 V, and RSET = 147 Ω .

Table 8. Video Output Truth Table (SETUP = 7.5 IRE).

Note: 75 Ω doubly-terminated load, VREF = 1.235 V, and RSET = 147 Ω . RS-343A levels and tolerances assumed on all levels.

Figure 9. Composite Video Output Waveforms (SETUP = 0 IRE).

Description	Sync Disabled fout (mA)	Sync Enabled fout (mA)	HSYNC.	BLANK*	DAC Input Data
DATA	deta	data + 7.62	1	1	data
DATA-SYNC	data	data	0	1	data
BLACK	0	7.62	1	1	0x00
BLACK-SYNC	0	0	0	1	0x00
BLANK	0	7.62	1	0	22
SYNC	0	0	0	Ò	23

Note: 75 Ω doubly-terminated load. VREF = 1.235 V, and RSET = 147 Ω .

Table 9. Video Output Truth Table (SETUP = 0 IRE).

Internal Registers

Command Register 0

This register may be written to or read by the MPU at any time and is not initialized at power-up. CR00 corresponds to data bus bit D0, the least significant data bit.

CR0	7	Reserved	This bit must be written with a 0 to ensure proper operation.
CR0	6	Clock Disable ANDed with CR00 (0) Normal Operation (1) Disable Internal Clocking	When this bit and CR00 are a logical one, the internal clock and output clocks are disabled to further conserve power when in power-down mode. The RAM still retains the data, and MPU reads and writes can occur with no loss of data. When this bit is a logical zero, internal clocking is enabled and output clocks will be generated.
CR0	5	Pedesual IRE (0) Disable (1) Enable 7.5 IRE	This bit determines the video blanking pedestal. A logical zero always sets a 0 IRE blanking pedestal and sets 7.5 IRE.
THE BEST OF STREET	3	Blue Sync Enable Green Sync Enable Red Sync Enable (0) Disable Sync (1) Enable Sync	These bits specify whether the respective IOB, IOG, or IOR outputs are to contain sync information.
	1	DAC 6/8-Bit Resolution (0) 6-bit Operation (1) 8-bit Operation	This bit specifies whether the MPU is reading and writing 8 bits (logical one) or 6 bits (logical zero) of color information each cycle.
E CR0	0	Power-Down Enable (0) Normal Operation (1) Power-Down Operation	While this bit is a logical zero, the device operates normally. If this bit is a logical one, the DACs and power to the RAM and VideoCache TM FIFO are turned off. The RAM still retains the data, and CPU reads and writes can occur with no loss of data.
			The DACs will be turned off during sleep mode only if a voltage reference (internal or external) is used.

Command Register 1

This register may be written to or read by the MPU at any time. CR10 corresponds to data but bit D0, the least significant data bit (see Table 10). All command register bits are set to logical zero upon asserting a low signal on the RESET® pin.

CR13	CR12	.CR11	CR10	Pixel Latching Sequence	MUX Rate	Operating Modes
0	0	0	0	P7:0(A)	1:1	VGA 8-bits per pixel
0	0	0	1	P7:0(A) P7:0(B)	2:1	8-bits per pixel
0	0	1	0	P7:0(A) P7:0(B) P7:0(C) P7:0(D)	4:1	8-bits per pixel
0	0	1	1	P3:0(A) P7:4(A) P3:0(B) P7:4(B) P3:0(C) P7:4(C) P3:0(D) P7:4(D)	8 :1	4-bits per pixel
1	0	0	1			Reserved
0	1	0	0	P7:0(B-A)	1:1	15-bits per pixel, 5:5:
0	1	0	1	P7:0(B-A) P7:0(D-C)	2:1	15-bits per pixel, 5:5:5
0	1	1	0	P7:0(B-A)	1:1	16-bits per pixel. 5:6:5
0	1	1	1	P7:0(B-A) P7:0(B-C)	2:1 16-bits per pixel.	
1	0	0	0	P7:0(C-A)	1:1	24-bits per pixel
	1010-	1111				Reserved

Table 10. Modes of Operation (Graphic Pixel Port Configuration).

Brooktree* Internal Registers (continued)

CR17	CR16	CR15	CR14	Pixel Latching Sequence CR43 = 0	Pixel Latching Sequence CR43 = 1	Bytes Per VLCLK	Pixels Per VLCLK	Operating Modes			
0	0	0	0	N/A	N/A	N/A	N/A	All Video Modes Dusabled			
0	0	0	1	P7:0(H)	P7:0(H)	1	2	2	2	2	CCIR601 YCrCb 1:05:05
0	0	1	0	P7:0(G) P7:0(H)	P7:0(H) P7:0(G)	2	4	CCTR601 YCrCb 1:0.5:0.5			
0	0	1	1	P7:0(E) P7:0(F) P7:0(G) P7:0(H)	P7:0(H) P7:0(G) P7:0(F) P7:0(E)	4	8	CCIR601 YCrCb 1:0.5:0.5			
- 0	1	0	0	P7:0(H)	P7:0(H)	1	1	CCIR601 YCrCb 2:1:1			
0	1	0	1	P7:0(G) P7:0(H)	P7:0(H) P7:0(G)	2	2	CCIR601 YCrCb 2:1:1			
0	1	1	0	P7:0(E) P7:0(F) P7:0(G) P7:0(H)	P7:0(H) P7:0(G) P7:0(F) P7:0(E)	4	4	CCIR601 YCrCb 2:1:1			
0	1	1	1	P7:0(H-G)	P7:0(H-G)	2	1	CCIR601 YCrCb 4:2:2			
1	0	0	0	P7:0(F-E) P7:0(H-G)	P7:0(H-G) P7:0(F-E)	4	2	CCIR601 YCrCb 4:2:2			
1	0	0	1	P7:0(H-G)	P7:0(H-G)	2	1	15-bits per pixel, 5:5:5			
1	0	1	0	P7:0(F-E) P7:0(H-G)	P7:0(H-G) P7:0(F-E)	4	2	15-bits per pixel 5:5:5			
1	0	1	1	P7:0(H-G)	P7:0(H-G)	2	1	15-bits per pixel, 5:6:5			
1	1	0	0	P7:0(F-E) P7:0(H-G)	P7:0(H-G) P7:0(F-E)	4	2	15-bits per pixel, 5:6:5			
1	1	0	1	P7:0(H-F)	P7:0(H-F)	3	1	24-bits per pixel			
	1110- 1	111						Reserved			

Table 11. Modes of Operation (Video Pixel Port Configuration).

Command Register 2

This register may be written to or read by the MPU at any time. CR20 corresponds to data but bit D0, the least significant data bit. All command register bits are set to logical zero upon asserting a low signal on the RESET pin.

CR2	7	Reserved	This bit must be written with a 0 to ensure correct operation.
CR2	6	Reserved	This bit must be written with a 0 to ensure correct operation.
CR2	5	True-Color bypass Enable (0) Pixel Addresses Palette (1) Pixel Bypasses Palette	When this bit is a logical zero, the pixel palette is addressed by the pixel data. When this bit is a logical one, the RGB pixel data bypasses the color palette and drives the DACs directly. True-color bypassing is only available for pixel sizes of 16 and 24 bits.
CR2	4	Oscillator Select (0) OSC Selected (1) OSC® Selected	When this bit is a logical zero, OSC is selected as the TTL pixel clock input. When this bit is a logical one, OSC [®] is selected as the TTL pixel clock input.
CR2	3	Display Mode Select (0) Noninterlaced (1) Interlaced	When this bit is a logical zero, the display format is noninterlaced. When the bit is a logical one, the display format is interlaced. The mode must be set properly to ensure proper operation of the internal cursor.
****	2	16-Bit/Pixel Palette Index Select (0) Sparse Indexing (1) Contiguous Indexing	When this bit is a logical zero, palette addressing is sparse. The RGB color component pixel data is mapped to the most significant bits of the RGB palette address. The least significant of the palette address bits are set to (0). When this bit is a logical one, palette addressing is contiguous. The RGB color component pixel data is mapped to the least significant bits of the palette address. The most significant bits of the address are set to (0).
CR2	1,0	Cursor Mode Select (00) Cursor Disabled (01) 3-color cursor (10) 2-color/Microsoft Windows™ cursor (11) 2-color/X-Windows cursor	These bits determine the functionality of the onboard $64 \times 64 \times 2$ hardware cursor.

Accessing the Extended Registers

An extended register set is used to accommodate all features of the Bt885. Since there are only four register select lines (and all 16 combinations have already been used), the extended registers must be accessed indirectly.

For example, Command Register 3 is accessed with the following sequence of operations:

- 1. Set RS3-RS0 = 0000, Address Register.
- 2. Write Address Register to 0x02
- 3. Set RS3-RS0 = 1010 (Extended Address Register).
- 4. Read or Write Command Register 3.

Table 12 shows the indirect addressing mapping for each extended register.

Address Register Value	Extended Register Name
0x00	Status Register 1 (read only)
0x01	Status Register 2 (read/write)
0x02	Command Register 3
0x03	Command Register 4
0x04 = 0x05	Video Window XSTART-Low & High
0x06 = 0x07	Video Window YSTART-Low & High
0x08 - 0x09	Video Window XWIDTH-Low & High
0x0A - 0x0B	Video Window YHEIGHT-Low & High
0x0C - 0x0F	Reserved
0x10 - 0x11	XCALEINIT-Low & High
0x12 - 0x13	XSCALEINC-Low & High
0x14 - 0x17	Reserved
0x18 - 0x19	Serial Clock Enable Start (Horizontal)-Low & High
OxIA-OxIB	Serial Clock Enable Duration (Horizontal)-Low & High
OxIC - OxID	Serial Clock Enable Start (Vertical)-Low & High
Ox1E - Ox1F	Serial Clock Enable Duration (Vertical)-Low & High
0x20	DIVCLK1 Rate
0x21	DIVCLK2 Rate
0x22	Reserved
0x23 - 0x25	Color Mask
0x26	Reserved
0x27 = 0x29	Color Key
0x2A - 0x2D	Reserved
0x2E	VideoCache™ FIFO Size
0x2F = 0xFF	Reserved

Table 12. Extended Registers Address Map. (RS3-RS0 = 1010)

Command Register 3

This register may be written to or read by the MPU at any time. CR30 corresponds to data but bit D0, the least significant data bit. All command register bits are set to logical zero upon asserting a low signal on the RESET* pin.

	CR3	7	MODE0 Input/Output Select (0) MODE0 Input (1) MODE0 Output	This bit determines if the MODE0 pin is configured as an input or an output.
	CR3	6	Enable Internal Load Clock (0) Use GLCLK (1) Use Internal Load Clock	In applications where an external load clock is not provided, setting CR36 = 1 allows the internal load clock determined by the graphics mux rate to internally sample the graphics input pixels, blanking, horizontal, and vertical sync inputs. Setting CR36 = 0 causes Bt885 to sample these inputs on the basis of GLCLK pin.
	CR3	5	DIVCLK2 Select (0) DIVCLK2 Enabled (1) DIVCLK2 Disabled	A logical zero must be written to this bit to enable the graphics divide-down clock, DIVCLK2, to be output. A logical one written to this bit three-states the DIVCLK2 output.
	CR3	4	ECL Clock Select (0) TTL Level Clock Selected (1) Differential ECL Level Clock Selected	A logical one written to this bit enables the differential ECL clock input buffer using OSC and OSC ^o as inputs. A logical zero written to this bit disables the ECL clock buffer and allows OSC, GLCLK, or the 2x clock multiplier to directly drive the logic. If a logical one is written to this bit, then the clock multiplier and TTL clock selections are overridden. If CR34 = 1, then bit CR33 will be ignored.
Mary Mary Mary Mary Mary Mary Mary Mary	CR3	3	Clock Multiplier Select 2x Clock Multiplier Disabled. 2x Clock Multiplier Enabled.	This bit enables or disables the 2x clock multiplier. A logical one written to this bit enables the onboard 2x TTL clock multiplier for high-speed operations. A logical zero written to this bit will disable the clock multiplier and will allow the external clock source to directly drive the logic. If CR34 = 1, then this bit will be ignored.
	CR3	2	DIVCLK1 Select (0) DIVCLK1 Enabled (1) DIVCLK1 Disabled	A logical zero must be written to this bit to enable the video divide-down clock, DIVCLK1, to be output. A logical one written to this bit three-states the DIVCLK1 output. If DIVCLK1 Select is set to one, then the SEN output pin is three-stated as well.
	CR3	1,0	MSBs for 10-bit Address Counter CR31 = A9 CR30 = A8	CR31 and CR30 are 2 MSBs of the 10-bit cursor address counter. To set this counter to access a particular location in the 64 x 64 x 2 cursor RAM array, these 2 bits must be written to Command Register 3 before the lower 8 bits are written to the address counter through the MPU port. As the 10-bit address counter autoincrements, the new values of this register can be read back through CR31 and CR30. The contents of this counter will be reset with the asser-

uon of the external RESET pin.

Command Register 4

This register may be written to or read by the MPU at any time and is not initialized at power-up. CR40 corresponds to data bus bit D0, the least significant data bit. All command register bits are set to logical zero upon asserting a low signal on the RESET® pin.

	CR4	7	VideoCache™ FIFO Reset (0) Normal Operation (1) Reset VideoCache™ FIFO	A logical zero written to this bit, enables normal Video-Cache™ FIFO operation. A logical one written to this bit resets the VideoCache™ FIFO after four video load clocks. Reset value is zero (normal video FIFO operation).
	CR4	6	Color Key Override (0) Normal Color Key Operation (1) Video Window Override	A logical zero written to this bit, enables standard color key operation. A logical one written to this bit enables video based only on the video window. Reset value is low (normal color key operation).
	CR4	5	Set MODEO State (CR37 =1) (0) MODEO pin low (1) MODEO pin high	When CR37 = 1, this bit controls the state of the MODE0 output. A logical one written to this bit sets the MODE0 pin to high. A logical zero written to this bit sets the MODE0 pin low.
			Get MODE0 State (CR37 = 0) (0) MODE0 pin externally driven low (1) MODE0 pin externally driven high	When CR37 = 0, this bit indicates the state of the MODEO input. A logical one read from this bit indicates that the MODEO pin is driven high. A logical zero read from this bit indicates that the MODEO pin is driven high. A logical zero read from this bit indicates that the MODEO pin is driven low.
		4	Video Pixel Display Order (0) Little Endian (1) Big Endian	This bit controls the display order of the video pixel port. A logical zero written to this bit displays video pixels in least significant to most significant order. A logical one written to this bit displays video pixels in most significant to least significant order. Reset value is low (little endian order).
***************************************	CR4	3	Color Key Mode Select (0) Before Palette (1) After Palette	This bit controls whether color key matching occurs on the pixel value before or after the palette. A logical zero written to this bit selects color key matching on the pixel value before the palette. A logical one written to this bit selects color key matching on the 24-bit RGB value after the palette. Reset value is low (color key before palette).
	CR4	2	VideoCache ^{The} Unload Select (0) Unload Within Video Window (1) Unload From Start of Active Graphics Enable	This bit controls whether VideoCache TM FIFO data is unloaded only within the video window or at all times during active graphics enable.
	CR4	1.0	24-bit Component Order (00) RGB (01) BRG (10) BGR (11) Reserved	This bit controls the component latching order in 24-bit-per-pixel graphic modes.

Pixel Read Mask Register

The 8-bit pixel read mask register may be written to or read by the MPU at any time, and is not initialized at power-up. DO is the least significant bit. The contents of this register are bit-wise ANDed with the pixel data prior to addressing the color palette RAM.

Status Registers 1-2

These two 8-bit status registers are provided for device identification and to monitor certain device states. They may be read by the MPU at any time. MPU write cycles to status register 1 are ignored. D0 is the least significant bit corresponding to SR10 or SR20. These registers are not reset during power-up/reset.

SR1	7–6	Chip Identification	These bits are identification values; $SR17 = 1$ and $SR16 = 0$.
SR1	5-4	Chip Revision	These bits are revision values; they are always logical zero (00).
SR1	3	Monitor Sense	This is the SENSE* bit. If it is a logical zero, one or more of the IOR, IOG, and IOB outputs have exceeded the internal voltage reference level (335 mV). This bit is used to determine the presence of a CRT monitor and, with diagnostic code, the difference between a loaded or unloaded RGB line can be discerned. The 360 mV reference has a ±100 mV tolerance when an external voltage reference equal to 1.235 V is used. A greater tolerance is expected when an internal reference equal to 1.2 V is used.
SRI	2	Read/Write access status. (0) Write Cycle (1) Read Cycle	This bit provides RD/WR status when Address Register 0x00, 0x03, 0x04, or 0x07 has been written. When Address Register 0x00 or 0x04 has been written, the device is in the write mode and this bit is a logical zero. When address register 0x03 or 0x07 has been written, the device is in the read mode and this bit is a logical one.
SR1	1-0	RGB Component Counter (00) Red Color Component (01) Green Color Component (10) Blue Color Component	When read, these bits reflect the color component address for the next RD/WR cycle when accessing the palette, cursor color registers, or overscan register.
SR2	7	VideoCache™ FIFO Under- flow	Reading this bit as a one indicates that VideoCache TM FIFO underflow occurred. Reset by writing any value to Status Register 2.
SR2	6-0	Reserved	These bits will always be read as zero.

Video Window XSTART

Video Window XSTART is a 12-bit register that stores the starting X position on the screen for a video window. A value of zero indicates that the video window begins in the first (leftmost) pixel of each horizontal scan line.

Video Window YSTART

Video Window YSTART is a 12-bit register that stores the starting Y position on the screen for a video window. A value of zero indicates that the video window begins on the first active graphics scan line.

Video Window XWIDTH

Video Window XWIDTH is a 12-bit register that stores the number of pixels per scan line within the video window. A value of zero indicates that no pixels are in the video window.

Video Window YHEIGHT

Video Window YHEIGHT is a 12-bit register that stores the number of scan lines within the video window. A value of zero indicates that no scan lines are within the video window.

XSCALEINIT

XDDAINIT is a 12-bit register that stores the initial term for the horizontal scaler.

XSCALEINC

XSCALEINC is a 12-bit register that stores the increment term for the horizontal scaler.

Serial Clock Enable Start (Horizontal and Vertical)

Serial clock enable start (horizontal and vertical) are 12-bit registers that store the number of scan lines and DIVCLK1 cycles before enabling the external clock gate, starting at the leading edge of HSYNC* for the horizontal direction and the leading edge of VSYNC* for the vertical direction.

Serial Clock Enable Duration (Horizontal and Vertical)

Serial clock enable duration (horizontal and vertical) are 12-bit registers that store the number of serial shift clock cycles to be generated per scan line in units of DIVCLK1 cycles for the horizontal direction, and in units of scan lines for the vertical direction.

DIVCLK1 and DIVCLK2 Rate

DIVCLK1 and DIVCLK2 rate are two 3-bit registers that control the divide rate of the free running DIV-CLK1 and DIVCLK2 divide-down clocks, respectively. The divide-down ratios need not be the same as the input mux rate:

(000) - 1:1

(001) - 2:1

(010) - 4:1

(011) - 8:1

(100-111) - Reserved

VideoCache™ FIFO Size

This register indicates the length of the Video-CacheTM FIFO buffer in 16-byte units. This is a read-only register.

Cursor (x,y) Registers

These registers are used to specify the (x,y) coordinate of the 64 x 64 x 2 hardware cursor. The cursor (x) register is made up of the cursor (x) low register (CXLR) and the cursor (x) high register (CXHR); the cursor (y) register is made up of the cursor (y) low register (CYLR) and the cursor (y) high register (CYHR). The last value written by the MPU to these registers is the value returned on a read. These registers may be written to or read by the MPU at any time.

CXLR and CXHR are cascaded to form a 12-bit cursor (x) register. Similarly, CYLR and CYHR are cascaded to form a 12-bit cursor (y) register. Bits D4-D7 of CXHR and CYHR are ignored and should be written as

The cursor (x) value to be written is calculated as follows:

equation places the upper lefthand corner of the cursor RAM array to the desired screen location. This allows the cursor position to be defined in the same coordinate space as the screen.

Values from 0 to 4095 may be written into the cursor (x) register. If Xp is equal to zero, the cursor will be entirely offscreen.

The cursor (y) value to be written is calculated as follows:

Yp = desired display screen (y) position + 64

where the (y) reference point for the display screen, y = 0, is the upper left corner of the screen. The Yp position equation places the upper left corner of the cursor RAM array to the desired screen location. This allows the cursor position to be defined in the same coordinate space

	lows: Xp = desired display screen (x) position + 64 where the (x) reference point for the display screen, x = 0, is the upper left corner of the screen. The Xp position							ster. If	Yp is ea en (see	र्वताका क	zero, th	e cursos	ne cursor will be Circuit
Miles of the control				(HR)					(0	or (x) Lo			
	Data Bit X Address	D3 X11	D2 X10	D1 X9	X8	D7	D6 X6	DS X5	D4 X4	D3	D2 X2	D1 X1	X0

		Cursor (C)	(y) Hig (HR)	jh		Cursor (y) Low (CYLR)							
Data Bit	D3	D2	Dı	D0	D7	D6	D5	D4	D3	D2	Dì	D0	
Y Address	Y11	Y10	Y9	Y8	77	Y6	Y5	Y4	Y3	Y2	Yı	YO	

Register Name	Initial Value
Command Register 0	0
Command Register 1	0
Command Register 2	0
Command Register 3	0
Command Register 4	0
Video Window XSTART-Low & High	Not Initialized
Video Window YSTART-Low & High	Not Initializad
Video Window XWIDTH-Low & High	Not Initialized
Video Window YHEIGHT-Low & High	Not Initialized
XSCALEINIT-Low & High	Not Initialized
XSCALEINC-Low & High	Not Initialized
Serial Clock Enable Start (Horizontal)-Low & High	Not Initialized
Serial Clock Enable Duration (Horizontal)-Low & High	Not Initialized
Serial Clock Enable Start (Vertical)-Low & High	Not Initialized
Serial Clock Enable Duration (Vertical)-Low & High	Not Initialized
DIVCLK1 Rate	0
DIVCLK2 Rate	0
Color Mask	. 0
Color Key	0
FIFO Size	0x32
Color Palette RAM	Not Initialized
Pixel Read Mask	0xFF
Cursor Colors	Not Initialized
Overscan Color	Not Initialized
Cursor X.Y	Not Initialized
Cursor RAM erray	Not Initialized

Table 13: Register Values on Reset.

Pin Descriptions

Pin Name	VO	Pin#	Description						
RESET	I	72	Reset input (TTL cor bits are mutialized to	npatible). When this sero and the device is	signal is low, all the command register in VGA mode.				
BLANK*	I	98	Composite blank control input (TTL compatible). A logical zero drives the analog outputs to the blanking level, as specified in Tables 8 and 9. It is latched on the rising edge of GLCLK. When BLANK ^a is a logical zero, the pixel inputs are ignored. The falling edge of this signal determines the polarity of the HSYNC ^a and VSYNC ^a input pins. The onboard cursor positioning counters are referenced to this signal.						
ENABLE	1	96	and BLANK® determ sor color, pixel, or o	ines whether the analoverscan data. This si ing is not used, this pi	The compatible). The state of this signal og outputs are blanked or contain curgral is latched on the rising edge of in should be tied to BLANK*. The fol-BLE and BLANK*:				
			ENABLE	BLANK.	Operation				
		}	X	0	Video Blanking				
			0	1	Overscan Data				
			1	1	Cursor Color or Pixel Data				
ODD/EVEN*	I	95	ing vertical blank. The cursor when interlaced signal is a logical zero	is input is used to end operation (command o, an even field is sp pecified. This input i	is signal should be changed only dur- sure proper operation of the onboard l bit CR23 = 1) is selected. When this ecified. When this signal is a logical is ignored if noninterlaced operation				
OSC. OSC°	1	131. 132	but a TTL clock may	be used on either Of (CR34 = 0). It is rea	his input is an ECL-compatible input, SC or OSC* if selected by CR24 in commended that all clock inputs be con-induced jitter.				
DIVCLKI	0	127	Frame buffer shift cloc to the selected pixel cl the DIVCLK1 rate regi	ock divided by 8, 4, 2	uible). The signal on this pin is equal 2, or 1, depending on the selection in low drive expability.				
DIVCLK2	0	128	Frame buffer shift cloc to the selected pixel clo the DIVCLK2 rate regi	ock divided by 8, 4, 2	uible). The signal on this pin is equal t, or 1, depending on the selection in low drive capability.				
FIFO RESET	I	14	A low value applied to transition from high to	A low value applied to this pin enables normal VideoCache™ FIFO operation. A transition from high to low on this pin resets the VideoCache™ FIFO.					
GLCLK	1	130	Graphics port input load clock (TTL compatible with hysteresis). The rising edge of this signal latches P7:0 (A-D), BLANK*, ENABLE, HSYNC*, and VSYNC*.						
VLCLK	I	13	Video port input load cithis signal latches P7:0	lock (TTL compatible (E–H).	with hysteresis). The rising edge of				

Brooktree* Pin Descriptions (continued)

Pin Name	vo	Pin#	_ Description
P7:0 (A-H)	I	See Diag	Pixel port inputs (TTL compatible). This port can be used in various modes as shown in Tables 10 and 11, for video and or graphics input. It is recommended that unused pins be tied to ground to lower the device's power consumption.
VALID	I	15	Video port input pixel data valid signal (TTL compatible).
READY	0	12	Video port input pixel data ready signal (TTL compatible, low drive). This signal can be synchronously sampled using the rising edge of VLCLK. This signal changes only following a rising edge of VLCLK.
HFULL	0	11	VideoCache™ FIFO half-full or greater signal. (TTL compatible, low drive).
SEN	0	126	DIVCLK1 gating control signal (TTL compatible, low drive). It may be used to externally gate the DIVCLK1 output to generate a gated version of DIVCLK1. This signal changes only during DIVCLK1 low duration. The start time and duration of the pulse train may be programmed relative to the leading edge of HSYNC* and VSYNC*.
MODE0	1/0	91	General purpose registered input/output (TTL compatible) set or read using CR45. Selection of input or output is made using CR37.
MODE1-3	1/0	29, 17, 19	Reserved for future expansion. Must be tied high with a 10K pullup resistor.
WR*	I	73	Write control input (TTL compatible with hysteresis). D0-D7 data is latched on the rising edge of WR*, and RS0-RS3 are latched on the falling edge of WR* during MPU write operations. RD* and WR* should not be asserted simultaneously.
RD•	I	74	Read control input (TTL compatible with hysteresis). To read data from the device, RD [®] must be a logical zero. RSO-RS3 are latched on the falling edge of RD [®] during MPU read operations. RD [®] and WR [®] should not be asserted simultaneously.
RS0-RS3	I	75- 78	Register select inputs (TTL compatible). RSO-RS3 specify the type of read or write operation being performed, as specified in Tables 1 and 2.
D0-D7	1/0	83- 90	Data bus (TTL compatible). Data is transferred into and out of the device over this 8-bit bidirectional data bus. D0 is the least significant bit.
SENSE*	0	71	Comparator sense output (CMOS compatible). This pin will be low if one or more of the IOR, IOG, and IOB analog output levels is above the internal comparator reference of 350 mV \pm 50 mV.
IOR, IOG, IOB	A,0	55, 58, 61	Red, green, and blue current outputs. These high-impedance current sources can directly drive a doubly-terminated 75 Ω coaxial cable (see the PC Board Layout Considerations section for further information).
HSYNC*	1	97	Horizontal sync control input (TTL compatible).
VSYNC•	1	99	Vertical sync control input (TTL compatible).

Pin Descriptions (continued)

Pin Name	vo	Pin#	Description							
HSYNCOUT VSYNCOUT		48, 49	Pipeline delayed horizontal and vertical sync control signals.							
FSADJUST	LA	52	Full-scale adjust control. The IRE relationships in Figures 4 and 5 are maintained regardless of the full-scale output current.							
			When an external or the internal voltage reference is used (see Figures 10 and 11 in the PC Board Layout Considerations section), a resistor (RSET) connected between this pin and GND controls the magnitude of the full-scale video signal. The relationship between RSET and the full-scale output current on each output is: RSET (Ω) = K * 1,000 * VREF (V) / lout (mA) K is defined in the table below. It is recommended that a 147 Ω RSET resistor be used for doubly-terminated 75 Ω loads (i.e., RS-343A applications).							
				Sync I	nabled	Sync C	Disabled]		
			Setup	0 IRE	7.5 IRE	0 IRE	7.5 IRE	1		
:			K (8-bit)	2.888	3.055	2.045	2.207			
			K (6-bit)	3.000	3.170	2.100	2.260	1		
VREF OUT	A ,O	68	K values are subject to change upon completion of characterization. Voltage reference output. This output provides a 1.2 V (typical) reference and may be connected directly to the VREF pin. If the on-chip reference is not used, this pin may be left floating. See Figures 10 and 11. Up to four Bt885s can be driven by this output.							
VREF IN	Ţ,	67	Voltage reference input. If an external voltage reference is used (Figure 11), it must supply this input with a 1.2 V (typical) reference. A 0.1 µF ceramic espacitor must be used to decouple this input to GND, as shown in Figures 10 and 11. The decoupling espacitor must be as close to the device as possible to keep lead lengths to an absolute minimum. When the internal reference is used, this pin should not drive any external circuitry, other than the decoupling espacitor (Figure 10).							
СОМР	A,0	64	Compensation pin. A 0.1 µF ceramic capacitor must be used to bypass this pin to VAA. The COMP capacitor must be as close as possible to the device to keep lead lengths to an absolute minimum.							
VAA	A.P	See Diag	Analog power. All VAA pins must be connected to the same analog power plane.							
AGND	G	Sec Diag	Analog ground. All A	GND pins an	ast be connecte	ed to a comme	on ground plan	ne.		
GND	G	Sœ Diag	Digital ground. All G	ND pins must	be connected	to a common	ground plane.			
								ĺ		

Pin Descriptions (continued)

Note: All pins marked NC are reserved for future expansion and MUST be left floating.

PC Board Layout Considerations

PC Board Considerations

For optimum performance of the Bt885, proper CMOS CacheDACTM layout techniques should be studied in the Bt451/7/8 Evaluation Module Operation and Measurements, Application Note (AN-16), before PC board layout is begun. This application note can be found in Brooktree's Applications Handbook.

The layout should be optimized for lowest noise on the Bt power and ground planes by providing good decoupling. The trace length between groups of VAA and GND pins should be as short as possible to minimize inductive ringing.

A well-designed power distribution network is critical to eliminating digital switching noise. The ground plane must provide a low-impedance return path for the digital circuits. A PC board with a minimum of four layers is recommended, with layers 1 (top) and 4 (bottom) for signals and layers 2 and 3 for power and ground.

Component Placement

Components should be placed as close as possible to the associated CacheDACTM pin. Whenever possible, components should be placed so traces can be connected point to point.

The optimum layout enables the Bt885 to be located as close as possible to the power supply connector and the video output connector.

Ground Planes

For optimum performance, a common digital and analog ground plane is recommended.

Power Planes

Separate digital and analog power planes are recommended. The digital power plane should provide power to all digital logic on the PC board, and the analog power plane should provide power to all Bt885 power pins, VREF circuity, and COMP and VREF decoupling. There should be at least a 1/8-inch gap between the digital power plane and the analog power plane.

The analog power plane should be connected to the digital power plane (VCC) at a single point through a ferrite bead, as illustrated in Figures 10 and 11. This bead should be located within 3 inches of the Bt885. The bead provides resistance to switching currents, acting as a resistance at high frequencies. A low-resis-

tance bead should be used, such as Ferroxcube 5659065-3B, Fair-Rite 2743001111, or TDK BF45-4001.

Device Decoupling

For optimum performance, all capacitors should be located as close as possible to the device, and the shortest possible leads (consistent with reliable operation) should be used to reduce the lead inductance. Chip capacitors are recommended for minimum lead inductance. Radial lead ceramic capacitors may be substituted for chip capacitors and are better than axial lead capacitors for self-resonance. Values are chosen to have self-resonance above the pixel clock.

Power Supply Decoupling

The best power supply decoupling performance is obtained with a 0.1 μ F ceramic capacitor in parallel with a 0.01 μ F chip capacitor decoupling each group of VAA pins to GND. The capacitors should be placed as close as possible to the device VAA and GND pins and connected with short, wide traces.

The 10 μ F capacitor shown in Figures 10 and 11 is for low-frequency power supply ripple; the 0.1 μ F capacitors are for high-frequency power supply noise rejection.

When a linear regulator is used, the power-up sequence must be verified to prevent latchup. A linear regulator is recommended to filter the analog power supply if the power supply noise is greater than or equal to 200 mV. This is especially important when a switching power supply is used, and the switching frequency is close to the raster scan frequency. About 10% of the power supply hum and ripple noise less than 1 MHz will couple onto the analog outputs.

COMP Decoupling

The COMP pin must be decoupled to VAA, typically with a 0.1 µF ceramic capacitor. Low-frequency supply noise will require a larger value. The COMP capacitor must be as close as possible to the COMP and VAA pins. A surface-mount ceramic chip capacitor is preferred for minimal lead inductance. Lead inductance degrades the noise rejection of the circuit. Short, wide traces will also reduce lead inductance.

If the display has a ghosting problem, additional capacitance in parallel with the COMP capacitor may help.

PC Board Layout Considerations (continued)

VREF Decoupling

A 0.1 μF ceramic capacitor should be used to decouple this input to GND.

Digital Signal Interconnect

The digital inputs to the Bt885 should be isolated as much as possible from the analog outputs and other analog circuitry. Also, these input signals should not overlay the analog power plane or analog output signals.

Most of the noise on the analog outputs will be caused by excessive edge rates (less than 3 ns), overshoot, undershoot, and ringing on the digital inputs.

The digital edge rates should not be faster than necessary, as feedthrough noise is proportional to the digital edge rates. Lower-speed applications will benefit from using lower-speed logic (3-5 ns edge rates) to reduce data-related noise on the analog outputs.

Transmission lines will mismatch if the lines do not match the source and destination impedance. This will degrade signal fidelity if the line length reflection time is greater than one fourth the signal edge time (refer to Brooktree Application Notes AN-11 and AN-12). Line termination or line-length reduction is the solution. For example, logic edge rates of 2 ns require line lengths of less than 4 inches without use of termination. Ringing may be reduced by damping the line with a series resistor (30–300 Ω). The RS-select inputs and RD*/WR* lines must be verified for proper levels with no ringing, undershoot, or overshoot. Ringing on these lines can cause improper operation.

Radiation of digital signals can also be picked up by the analog circuity. This is prevented by reducing the digital edge rates (rise/fall time), minimizing ringing with damping resistors, and minimizing coupling through PC board capacitance by routing the digital signals at a 90 degree angle to any analog signals.

The clock driver and all other digital devices must be adequately decoupled to prevent noise generated by the digital devices from coupling into the analog circuitry.

Clock Interfacing

The Bt885 requires a pixel clock with monotonic clock edges for proper operation. Impedance mismatch on the pixel clock line will induce reflections on the pixel clock, which may cause erratic operation.

The Pixel Clock Pulse Width High Time and Pixel Clock Pulse Width Low Time minimum specifications (see the AC Characteristics section) must not be violated, or erratic operation can occur.

The pixel clock line must be terminated to prevent impedance mismatch. A series termination of 33-68 Ω placed at the pixel clock driver may be used, or a parallel termination may be used at the pixel clock input to the CacheDACTM. A parallel termination of 220 Ω to VCC and 330 Ω to ground will provide a Thevenin equivalent of a 110 Ω termination, which is normally sufficient to absorb reflections. The series or parallel resistor values should be adjusted to provide the optimum clock signal fidelity.

MPU Control Signal Interfacing

The Bt885 uses the RD*, WR*, and RS lines to determine which MPU accesses will take place. Glitches or ringing on any of these lines may cause improper MPU operation. When a VGA controller with edge rate control is used on these lines, a series termination is not necessary. In non-VGA controller application or in applications where the MPU control signals are daisy chained, a series termination, pull-down resistors, or additional capacitance to ground should be used to prevent glitches that could cause improper MPU accesses.

Analog Signal Interconnect

The Bt885 should be located as close as possible to the output connectors to minimize noise pickup and reflections caused by impedance mismatch.

The analog outputs are susceptible to crosstalk from digital lines; digital traces must not be routed under or adjacent to the analog output traces.

To maximize the high-frequency power supply rejection, the video output signals should not overlay the analog power plane.

For maximum performance, the analog video output impedance, cable impedance, and load impedance should be the same. The load resistor connection between the video outputs and GND should be as close as possible to the Bt885 to minimize reflections. Unused analog outputs should be connected to GND.

Analog output video edges exceeding the CRT monitor bandwidth can be reflected, producing cable-length dependent ghosts. Simple pulse filters can reduce high-frequency energy, reducing EMI and noise. The filter impedance must match the line impedance.

PC Board Layout Considerations (continued)

Analog Output Protection

The B1885 analog output should be protected against high-energy discharges, such as those from monitor arcover or from hot-switching AC-coupled monitors.

The diode protection circuit shown in Figures 10 and 11 can prevent latchup under severe discharge condi-

tions without adversely degrading analog transition times. The 1N4148/9 parts are low-capacitance, fast-switching diodes, which are also available in multiple-device packages (FSA250X or FSA270X) or surface-mountable pairs (BAV99 or MMBD7001).

Location	Description	Vendor Part Number
C1-C12 C13-C21 C22 L1 R1. R2. R3 R4 RSET	0.1 μF ceramic capacitor 0.1 μF ceramic chip capacitor 10 μF capacitor ferrite bead 75 Ω 1% metal film resistor 15 Ω 1% metal film resistor 1% metal film resistor	Erie RPE112ZSU104M50V

Figure 10. Typical Connection Diagram and Parts List (Internal Voltage Reference).

Brooktree* PC Board Layout Considerations (continued)

Location	Description	Vendor Part Number
C1-C12 C13-C21 C22 L1 R1. R2. R3 R4 L5	0.1 μF ceramic capacitor 0.1 μF ceramic chip capacitor 10 μF capacitor ferrite bead 75 Ω 1% metal film resistor 15 Ω 1% metal film resistor 15 Ω 1% metal film resistor 15 Ω 1% metal film resistor	Erie RPE112ZSU104MS0V

Figure 11. Typical Connection Diagram and Parts List (External Voltage Reference).

Application Information

Using Multiple Devices

When multiple Bt885s are used, each Bt885 should have its own power plane ferrite bead. If the internal reference is used, each Bt885 should use its own internal reference.

Although the multiple Bt885s may be driven by a common external voltage/current reference, higher performance may be obtained if each CacheDAC™ uses its own reference. This will reduce the amount of color channel crosstalk and color palette interaction.

Each B1885 must still have its own RSET resistor, analog output termination resistors, power supply bypass capacitors, COMP capacitor, and reference capacitors.

ESD and Latchup Considerations

Correct ESD-sensitive handling procedures are required to prevent device damage, which can produce symptoms of catastrophic failure or erratic device behavior with leaky inputs.

All logic inputs should be held low until power to the device has settled to the specified tolerance. DAC power decoupling networks with large time constants should be avoided. They could delay VAA power to the device. Ferrite beads must be used only for analog

power VAA decoupling. Inductors cause a time constant delay that induces latchup.

Latchup can be prevented by ensuring that all VAA and GND pins are at the same potential and that the VAA supply voltage is applied before the signal pin voltages. The correct power-up sequence ensures that any signal pin voltage will never exceed the power supply voltage by more than +0.5 V.

Reference Selection

An external voltage reference provides about ten times the power supply rejection on the analog outputs than does an external current reference.

Sleep Operation

When the internal or external voltage reference is used, the DACs will be turned off during sleep mode.

When an external voltage reference is used, some internal circuitry will still be powered during the sleep mode, resulting in 0.5 mA of power supply current being drawn (above the rated supply current specifications). This unnecessary current drain can be disabled by turning off the external voltage reference during power-down mode.

Recommended Operating Conditions

Parameter	Symbol	Min	Тур	Mex	Units
Power Supply	VAA	4.75	5.00	5.25	V
Ambient Operating Temperature	TA	0		+70	*C
Output Load	RL		37.5		0
Voltage Reference Configuration Reference Voltage	VREF	1.1112	1.235	1.359	v

Absolute Maximum Ratings

Parameter VAA (measured to GND) Voltage on Any Signal Pin (Note 1)	Symbol	Min	Тур	Mex	Units
VAA (measured to GND)				7.0	v
Voltage on Any Signal Pin (Note 1)		GND-0.5		VAA+0.5	
Analog Output Short Circuit Duration to Any Power Supply or Common	ISC		indefinite		•
Storage Temperature	75	-65		+150	٠٠
Junction Temperature	נד			+150	
Vepor Phase Soldering (1 minute)	TVSOL			220	*

Suresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a specification of the device at these or any other conditions above those listed in the operational sections of this specification are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Note 1: This device employs high-impedence CMOS devices on all signal pins. It should be handled as an ESD-sensitive device.

Voltage on any signal pin that exceeds the power supply voltage by more than +0.5 V can cause destructive latchup.

DC Characteristics

Parameter	Symbol	Min	Тур	Max	Units
Resolution (each DAC) Accuracy (each DAC) Integral Linearity Error Differential Linearity Error Gray-Scale Error	IL DL	8	8	\$ ±1 ±1 ±5	LSB LSB % Gray
Monotonicity Coding		<u> </u>	Guaranteed		Scale Binary
Digital Inputs Input High Voltage Input Low Voltage Input High Current (Vin = 2.4 V) Input Low Current (Vin = 0.4 V) Input Capacitance (v = 1 MHz, Vin = 2.4 V) Hysteresis	- - - - - - - - - - - - - - - - - - -	2.0 GND-0.5	0.3	VAA + 0.5 0.8 1 -1 7	V V HA HA PF
Digital Outputs Output High Voltage (IOH = -400 µA)	УОН	2.4			٧
Output Low Voltage (IOL = 3.2 mA)	VOL		·	0.4	v
Three-State Current Output Capacitance Load Capacitance	IOZ CDOUT CL			50 7 10	μΑ pF pF

See test conditions on next page.

DC Characteristics (continued)

Parameter	Symbol	Min	Тур	Max	Units
Analog Outputs					
Gray-Scale Current Range			,	20	mA
Output Current (Standard RS-343A)	1		1	~	111.5
White Level Relative to Black	1	15.86	17.62	18.5	
Black Level Relative to Blank	1 1	33.33	1	1	****
SETUP = 7.5 IRE] [0.95	1.44	1.90	mA
SETUP = 0 IRE	1 1	0	5	50	μА
Blank Level	1	6.29	7.62	8.96	BA.
Sync Level		0	5	50	μА
LSB Size	1 1		69.1		μA
DAC-to-DAC Matching	1		2	5	%
Output Compliance	VOC	-1.0		+1.5	v
Output Impedance	RAOUT		10		ŁΩ
Output Capacitance	CAOUT			30	p₽
(f = 1 MHz, IOUT = 0 mA)	1		1		_
Onboard VREF (Note 1)	VREFOUT	TBD	TBD	TBD	V
Voltage Reference Input Current	IVR IN		tbd	tbd	mA
Power Supply Rejection Ratio (COMP = 0.1 μF, f = 1 KHz)	PSRR			0.5	%/% AVA

When the internal voltage reference is used, RSET may require adjustment to meet these limits. Also, the "gray-scale" output cur-When the internal voltage reference is used, RSET may require adjustment to meet these limits. Also, the "gra-rent (white level relative to black) will have a typical tolerance of $\pm 10\%$ rather than the $\pm 5\%$ specified above.

When the device is in the 6-bit mode, the output levels are approximately 1.5% lower than these values.

Note 1: Onboard VREF numbers subject to change upon completion of characterization.

AC Characteristics

Symbol Fmax 1 2 3 4 5 6 7 8 9 10 Gmax	10 10 2 2 2 10 10 50 6°pclk	Тур	Max 135 40 20	10 10 2 2	Тур	110 40 20	Units MHz Rs Rs Rs Rs Rs Rs Rs Rs Rs Rs Rs
1 2 3 4 5 6 7 8	10 2 2 10 10 50		40	10 2 10 10		40	ns ns ns ns ns
2 3 4 5 6 7 8 9	10 2 2 10 10 50			10 2 10 10			ns ns ns ns
4 5 6 7 8 9	2 10 10			10 10			ns ns ns
9 10	10 50		,	10			
10				40			
Gmax				6°pcik			rs rs
			16.9 33.8 67.5 90			13.75 27.5 55 90	MHz MHz MHz MHz
Vmex			85			85	MHz
Dmax			67.5			55	MHz
11 12.	14.81			18.18 tbd			rus rus
· 13	45		55	tbd 45		5 5	715 %
14 15	59.17 29.58 14.81 11.11 4 4 4 4 4			72.72 36.36 18.18 11.11 4 4 4 4			
	Dmax 11 12 13 14	Dmax 11 14.81 12 13 45 14 59.17 29.58 14.81 11.11 15 4 4 4 4 16 4	Dmax 11 14.81 12 13 45 14 59.17 29.58 14.81 11.11 15 4 4 4 4 16 4 4 4	Vmax 85 Dmax 67.5 11 14.81 12 13 45 55 14 59.17 29.58 14.81 11.11 15 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Vmax 85 Dmax 67.5 11 14.81 18.18 12	Vmax 85 Dmax 67.5 11 14.81 18.18 12	Vmax 85 85 85 Dmax 67.5 55 11 14.81 18.18 12 tbd tbd 13 45 55 45 55 14 59.17 29.58 14.81 11.11 15 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

Test conditions at end of this section.

The first speed were green, since the supplied of the supplied

Brooktree* AC Characteristics (continued)

			135	MHz D	vices	110	MHz Do	vices	7
	Parameter	Symbol	Min	Тур	Mex	Min	Тур	Max	Units
	VLCLK Cycle Time VLCLK Pulse Width High VLCLK Pulse Width Low	17 18 19	11.76 4 4			11.76 4 4			16 16 16
	DIVCLK1, DIVCLK2 Cycle Time	20	14.81		 	14.81		-	l ms
	DIVCLK1, DIVCLK2 Duty Cycle	21	40		60	40		60	9
	Graphics Data Setup to GLCLK Graphics Data Hold from GLCLK	22 23	3			3 1			TIS TIS
	Data Setup to GLCLK ENABLE, BLANK®, HSYNC®, VSYNC®	24	3			3			ts
The state of the life of the l	Data Hold to GLCLK ENABLE, BLANK®, HSYNC®, VSYNC®	25	1 .			1			tus .
	Video Data Serup to VLCLK Video Data Hold from VLCLK	26 27	3						TAS TAS
	VALID Setup to VLCLK VALID Hold from VLCLK	- 28 29	3			3			ns ns
####	VLCLK to READY Valid	30			7			7	ns .
ting fine the	DIVCLK1 to SEN Valid	31		i	3			3	ns .
#	FIFO Reset Pulse Width		10			10			75
	Analog Output Delay Analog Output Rise/Fall Time Analog Output Settling Time (Note 2) Clock and Data Feedthrough (Note 2) Glitch Impulse (Note 2) SENSE® Output Delay DAC-to-DAC Crosstalk Analog Output Skew	32 33 34	.)	3 13 -30 75 1 -23	30	·	3 13 -30 75 1 -23	30	ns ns ns dB pV - sec µs dB ns
	VAA Supply Current Normal Operation "Sleep" Mode (Note 3)	IAA .		tbd tbd	tbd tbd		tbd tbd	abd abd	mA mA mA

Test conditions at end of this section.

AC Characteristics (continued)

Pipeline Delay	
Graphics 1:1/No Video	3 LCLKS + 16 PCLKS
MUX Graphics/No Video (Note 1)	(8 LCLKS + 16 PCLKS) ± 2 LCLKS
Graphics 1:1/Video	27 LCLKS + 16 PCLKS
MUX Graphics/Video (Note 1)	(32 LCLKS + 16 PCLKS) ± 2 LCLKS

Note 1: The number of LCLKS will have to be multiplied by the reprective MUX rates to get the proper number of pipeline delays. (i.e. the pipeline delay is 2:1 MUX Graphics/No video = (16 LCLKS + 16 PCLKS) ± 2 LCLKS).

Test conditions (unless otherwise specified): "Recommended Operating Conditions" using external voltage reference with SETUP = 7.5 IRE, VREF = 1.235 V, RSET = 147 Ω . TTL input values are 0-3 V, with input rise/fall times ≤ 3 ns, measured between the 10% and 90% points. Timing reference points at 50% for inputs and outputs. Analog output load ≤ 10 pF; SENSE° and D0-D7 output load ≤ 50 pF. DIVCLK1, DIVCLK2 output load = 50 pF. As the above parameters are guaranteed over the full temperature range, temperature coefficients are not specified or required. Timing waveforms are shown in Figures 12-14.

- Note 1: OSC and OSC* cycle times assume the use of the 2Xclock Multiplier.
- Note 2: Numbers guaranteed by design.
- Note 3: External voltage reference is disabled during sleep mode, all inputs are low, and clock is running.

Timing Waveforms

- Note 1: Output delay measured from the 50% point of the rising edge of CLOCK to the 50% point of full-scale transition.
- Note 2: Settling time measured from the 50% point of full-scale transition to the output remaining within ±1 LSB.
- Note 3: Output rise/fall time measured between the 10% and 90% points of full-scale transition.

Figure 12. MPU Read/Write Timing.

Timing Waveforms (continued)

- Note 1: Output delay measured from the 50% point of the rising edge of CLOCK to the 50% point of full-scale transition.
- Note 2: Settling time measured from the 50% point of full-scale transition to the output remaining within ±1 LSB.
- Note 3: Output rise/fall time measured between the 10% and 90% points of full-scale transition.

Figure 13. Graphics Input/Output Timing

Timing Waveforms (continued)

Figure 14. Video Input/Output Timing

Bt885 Ordering Information

Model Number	Speed	Package	Ambient Temperature Range
B&85KHF135	135 MHz	160-pin Plastic Quad Flatpack	0° to +70°C
B#85KHF110	110 MHz	160-pin Plastic Quad Flatpack	0° to +70°C

82750PD Video Processor Programmer's Reference Manual

. intel®

ATI017761

82750PD Video Processor Programmer's Reference Manual Order Number: 272352-001 ATI017762

Revision	Date
-001	09/93

Copyright 1993 Intel Corporation All Rights Reserved

Intel Corporation 2200 Mission College Drive Santa Clara, California 95052-8119

iv

ATI017764

THE THE THE THE

Table of Contents

	napter 1 - Guide to this Manual	34
∴ _{1.}	Manual Contents	، القيار . عين م
1.3	Notational Conventions and Terminology	••••••••••••••••••••••••••••••••••••••
	The state of the s	
		•
	•	***
_		
<u>Ur</u>	napter 2 - Introduction to the 82750PD	
•	Introduction	
$\frac{1}{2}.2$	Memory and Registers	•••••••
2.3	82750PD Memory Address Space	•••••••
2.4	82750PD Core Registers	••••••
2.5	Shared Frame Buffer (SFB)	•••••
	2.5.1 Accessing the 64-Bit SFB	••••••
	2.5.2 Accessing the 32 Bit SFB	***************************************
	2.5.3 Types of Memory on the SFRI	*******************
	2.5.3 Types of Memory on the SFBI	********
3.1 3.2	2.5.3 Types of Memory on the SFBI Reserved Memory Locations apter 3 - 82750PD Core Architecture Overview General Purpose Registers Arithmetic/Logic Unit (ALU) 3.3.1 Condition Code Register 3.3.2 ALU Operations	1
<u>Ch</u> 3.1 3.2	2.5.3 Types of Memory on the SFBI Reserved Memory Locations apter 3 - 82750PD Core Architecture Overview General Purpose Registers Arithmetic/Logic Unit (ALU) 3.3.1 Condition Code Register 3.3.2 ALU Operations 3.3.3 82750PD Interrupts	1
3.1 3.2 3.3	2.5.3 Types of Memory on the SFBI Reserved Memory Locations apter 3 - 82750PD Core Architecture Overview General Purpose Registers Arithmetic/Logic Unit (ALU) 3.3.1 Condition Code Register 3.3.2 ALU Operations 3.3.3 82750PD Interrupts 3.3.4 Performance Monitoring	1
3.1 3.2 3.3	2.5.3 Types of Memory on the SFBI Reserved Memory Locations apter 3 - 82750PD Core Architecture Overview General Purpose Registers Arithmetic/Logic Unit (ALU) 3.3.1 Condition Code Register 3.3.2 ALU Operations 3.3.3 82750PD Interrupts 3.3.4 Performance Monitoring Barrel Shifter	1
Ch 3.1 3.2 3.3	2.5.3 Types of Memory on the SFBI Reserved Memory Locations apter 3 - 82750PD Core Architecture Overview General Purpose Registers Arithmetic/Logic Unit (ALU) 3.3.1 Condition Code Register 3.3.2 ALU Operations 3.3.3 82750PD Interrupts 3.3.4 Performance Monitoring	1

12 12 13 10 10 10 10 10 10 10	3.10 Core Input FIFOs	12
18 12 12 13 14 15 15 15 15 15 15 15	3.11 Core Output FIFOs	
18 12 12 13 14 15 15 15 15 15 15 15	3.11 Core Output FIFOs. 16	13
3.12 Statistical Decoder 23 3.12.1 Statistical Codes 24 Code Description Table 25 Short Mode and End Mode 27 3.12.2 Statistical Decoder Control Register 30 3.12.3 Writing and Reading the Code Description Table 32 3.13.1 Sequential Interpolation 38 3.13.2 Random Interpolation 39 3.13.3 Pixel Interpolator Control 40 40 40 40 40 40 40 4	3.12 Statistical Decoder 23 3.12.1 Statistical Codes 24 Code Description Table 25 Short Mode and End Mode 27 Short Mode and End Mode 28 3.12.2 Statistical Decoder Control Register 36 3.12.3 Writing and Reading the Code Description Table 37 3.13.1 Sequential Interpolation 38 3.13.2 Random Interpolation 38 3.13.3 Pixel Interpolation 39 3.13.3 Pixel Interpolation 39 3.13.3 Pixel Interpolation 30 3.14.1 Control Status, and Interrupt Flag Registers 40 3.14.1 Core Control Register 40 3.14.2 Core Interrupt Flag Register 40 3.14.3 Core Status Register 40 3.14.4 Summary of Interrupt Bits 40 3.14.4 Summary of Interrupt Bits 40 3.15 Host Access to the Core Registers 50 Chapter 4 - Microcode Instruction Format 4.3.1 NADDR Next Instruction Address Field 4.3.2 CFSEL Condition Flag Select Field 4.3.3 ASRC A Bus Source Select Field 4.3.4 ADST A Bus Destination Select Field 4.3.5 BSRC B Bus Source Select Field 4.3.6 BDST B Bus Destination 4.3.7 CNT Decrement Loop Counter Bit 4.3.8 LIT Literal Select Bit 4.3.9 SHFT Shift Control Field 4.3.10 ALUSS ALU Source Select Bits 10 4.3.11 ALUOP ALU Operation Code Field 10 4.3.11 ALUOP ALUOP ALUOP ALUOP ALUOP ALUOP ALUOP ALUOP ALUOP	.18
Code Description Table 25 Short Mode and End Mode 27 3.12.2 Statistical Decoder Control Register 30 3.12.3 Writing and Reading the Code Description Table 32 3.13 Pixel Interpolator 37 3.13.1 Sequential Interpolation 38 3.13.2 Random Interpolation 39 3.13.3 Pixel Interpolator Control 40 40 40 41 41 42 43 44 44 44 45 47 47 47 47	Code Description Table 25	23
Short Mode and End Mode	Short Mode and End Mode	
3.12.2 Statustical Decoder Control Register	3.12.2 Statustical Decoder Control Register	25
3.12.3 Writing and Reading the Code Description Table 32	3.12.3 Writing and Reading the Code Description Table	
3.12.3 Writing and Reading the Code Description Table 32	3.12.3 Writing and Reading the Code Description Table	30
3.13 Pixel Interpolator 37 3.13.1 Sequential Interpolation 38 3.13.2 Random Interpolation 39 3.13.3 Pixel Interpolator Control 40 40 40 41 41 42 42 43 42 45 45 45 45 45 45 45	3.13.1 Sequential Interpolation 3.13.2 Random Interpolation 3.13.3 Pixel Interpolation 3.13.3 Pixel Interpolator Control 4.13.14.1 Core Control Register 4.13.14.1 Core Control Register 4.14.2 Core Interrupt Flag Register 4.15.14.3 Core Status Register 4.15.14.4 Summary of Interrupt Bits 4.15.15 Host Access to the Core Registers 5.16.15 Host Access to the Core Registers 5.17.1 NADDR Next Instruction Address Field 4.17.2 CFSEL Condition Flag Select Field 4.17.3 ASRC A Bus Destination Select Field 4.17.4 ADST A Bus Destination Select Field 4.17.5 BSRC B Bus Source Select Field 4.17.5 BSRC B Bus Source Select Field 4.17.5 BSRC B Bus Destination Select Field 4.17.5 BSRC B Bus Destination Select Field 4.17.5 BSRC B Bus Destination 5.17.5 BSRC BSRC B Bus Destination 5.17.5 BSRC B	32
3.13.1 Sequential Interpolation	3.13.1 Sequential Interpolation 33.13.2 Random Interpolation 34.3.13.3 Pixel Interpolator Control 44.3.14.1 Core Control Register 4.3.14.1 Core Control Register 4.3.14.2 Core Interrupt Flag Register 4.3.14.3 Core Status Register 4.3.14.4 Summary of Interrupt Bits 4.3.14.4 Summary of Interrupt Bits 4.3.15 Host Access to the Core Registers 5.3.15.15 Host Access to the Core Registers 5.3.15 Instruction Sequencing 5.3 Instruction Word Field Descriptions 4.3.1 NADDR Next Instruction Address Field 4.3.2 CFSEL Condition Flag Select Field 4.3.3 ASRC A Bus Source Select Field 4.3.4 ADST A Bus Destination Select Field 4.3.5 BSRC B Bus Source Select Field 4.3.6 BDST B Bus Destination Select Field 4.3.7 CNT Decrement Loop Counter Bit 4.3.8 LTT Literal Select Bit 4.3.9 SHFT Shift Control Field 4.3.10 ALUSS ALU Source Select Bits 14.3.11 ALUOP ALU Operation Code Field 1.3.11 ALUOP -	
3.13.3 Pixel Interpolator Control	3.13.3 Pixel Interpolator Control 3.14 Control, Status, and Interrupt Flag Registers 3.14.1 Core Control Register 3.14.2 Core Interrupt Flag Register 3.14.3 Core Status Register 3.14.4 Summary of Interrupt Bits 4.15 Host Access to the Core Registers 5.1 Overview 6.2 Instruction Sequencing 6.3 Instruction Word Field Descriptions 4.3.1 NADDR Next Instruction Address Field 4.3.2 CFSEL Condition Flag Select Field 4.3.3 ASRC A Bus Source Select Field 4.3.4 ADST A Bus Destination Select Field 4.3.5 BSRC B Bus Source Select Field 4.3.6 BDST B Bus Destination 4.3.7 CNT Decrement Loop Counter Bit 4.3.8 LIT Literal Select Bit 4.3.9 SHFT Shift Control Field 4.3.10 ALUSS ALU Source Select Bits 4.3.11 ALUOP ALU Operation Code Field	
3.14 Control Status and Interrupt Flag Registers 43	3.14 Control. Status, and Interrupt Flag Registers 3.14.1 Core Control Register 4.3.14.2 Core Interrupt Flag Register 4.3.14.3 Core Status Register 4.3.14.4 Summary of Interrupt Bits 4.3.15 Host Access to the Core Registers 5.4.15 Host Access to the Core Registers 5.4.10 Verview 5.2 Instruction Sequencing 6.3 Instruction Word Field Descriptions 6.3 Instruction Word Field Descriptions 6.3.1 NADDR Next Instruction Address Field 6.3.2 CFSEL Condition Flag Select Field 6.3.3 ASRC A Bus Source Select Field 6.3.4 ADST A Bus Destination Select Field 6.3.5 BSRC B Bus Source Select Field 6.3.6 BDST B Bus Destination 6.3.7 CNT Decrement Loop Counter Bit 6.3.8 LIT Literal Select Bit 6.3.9 SHFT Shift Control Field 6.3.10 ALUSS ALU Source Select Bits 6.3.11 ALUOP ALU Operation Code Field 6.3.11 ALUOP ALU	39
3.14.1 Core Control Register	3.14.1 Core Control Register	40
3.14.1 Core Control Register	3.14.1 Core Control Register	43
3.14.3 Core Status Register	3.14.3 Core Status Register	
3.14.3 Core Status Register	3.14.3 Core Status Register	46
Chapter 4 - Microcode Instruction Format 1 Overview	Chapter 4 - Microcode Instruction Format 1 Overview	
Chapter 4 - Microcode Instruction Format 1.1 Overview	Chapter 4 - Microcode Instruction Format 1.1 Overview	.49
1	Chapter 4 - Microcode Instruction Format 1.1 Overview	.50
4.2 Instruction Sequencing 1 4.3 Instruction Word Field Descriptions 2 4.3.1 NADDR Next Instruction Address Field 2 4.3.2 CFSEL Condition Flag Select Field 3 4.3.3 ASRC A Bus Source Select Field 5 4.3.4 ADST A Bus Destination Select Field 8 4.3.5 BSRC B Bus Source Select Field 8 4.3.6 BDST B Bus Destination 8 4.3.7 CNT Decrement Loop Counter Bit 8 4.3.8 LIT Literal Select Bit 9 4.3.9 SHFT Shift Control Field 9 4.3.10 ALUSS ALU Source Select Bits 10 4.3.11 ALUOP ALU Operation Code Field 10	4.2 Instruction Sequencing 4.3 Instruction Word Field Descriptions 4.3.1 NADDR Next Instruction Address Field 4.3.2 CFSEL Condition Flag Select Field 4.3.3 ASRC A Bus Source Select Field 4.3.4 ADST A Bus Destination Select Field 4.3.5 BSRC B Bus Source Select Field 4.3.6 BDST B Bus Destination 4.3.7 CNT Decrement Loop Counter Bit 4.3.8 LIT Literal Select Bit 4.3.9 SHFT Shift Control Field 4.3.10 ALUSS ALU Source Select Bits 14.3.11 ALUOP ALU Operation Code Field	
4.3 Instruction Word Field Descriptions	4.3 Instruction Word Field Descriptions 4.3.1 NADDR Next Instruction Address Field 4.3.2 CFSEL Condition Flag Select Field 4.3.3 ASRC A Bus Source Select Field 4.3.4 ADST A Bus Destination Select Field 4.3.5 BSRC B Bus Source Select Field 4.3.6 BDST B Bus Destination 4.3.7 CNT Decrement Loop Counter Bit 4.3.8 LIT Literal Select Bit 4.3.9 SHFT Shift Control Field 4.3.10 ALUSS ALU Source Select Bits 4.3.11 ALUOP ALU Operation Code Field	
4.3 Instruction Word Field Descriptions	4.3 Instruction Word Field Descriptions 4.3.1 NADDR Next Instruction Address Field 4.3.2 CFSEL Condition Flag Select Field 4.3.3 ASRC A Bus Source Select Field 4.3.4 ADST A Bus Destination Select Field 4.3.5 BSRC B Bus Source Select Field 4.3.6 BDST B Bus Destination 4.3.7 CNT Decrement Loop Counter Bit 4.3.8 LIT Literal Select Bit 4.3.9 SHFT Shift Control Field 4.3.10 ALUSS ALU Source Select Bits 4.3.11 ALUOP ALU Operation Code Field	
4.3.1 NADDR Next Instruction Address Field 2 4.3.2 CFSEL Condition Flag Select Field 3 4.3.3 ASRC A Bus Source Select Field 5 4.3.4 ADST A Bus Destination Select Field 8 4.3.5 BSRC B Bus Source Select Field 8 4.3.6 BDST B Bus Destination 8 4.3.7 CNT Decrement Loop Counter Bit 8 4.3.8 LIT Literal Select Bit 9 4.3.9 SHFT Shift Control Field 9 4.3.10 ALUSS ALU Source Select Bits 10 4.3.11 ALUOP ALU Operation Code Field 10	4.3.1 NADDR Next Instruction Address Field 4.3.2 CFSEL Condition Flag Select Field 4.3.3 ASRC A Bus Source Select Field 4.3.4 ADST A Bus Destination Select Field 4.3.5 BSRC B Bus Source Select Field 4.3.6 BDST B Bus Destination 4.3.7 CNT Decrement Loop Counter Bit 4.3.8 LIT Literal Select Bit 4.3.9 SHFT Shift Control Field 4.3.10 ALUSS ALU Source Select Bits 4.3.11 ALUOP ALU Operation Code Field	
4.3.2 CFSEL Condition Flag Select Field 3 4.3.3 ASRC A Bus Source Select Field 5 4.3.4 ADST A Bus Destination Select Field 8 4.3.5 BSRC B Bus Source Select Field 8 4.3.6 BDST B Bus Destination 8 4.3.7 CNT Decrement Loop Counter Bit 8 4.3.8 LIT Literal Select Bit 9 4.3.9 SHFT Shift Control Field 9 4.3.10 ALUSS ALU Source Select Bits 10 4.3.11 ALUOP ALU Operation Code Field 10	4.3.2 CFSEL Condition Flag Select Field 4.3.3 ASRC A Bus Source Select Field 4.3.4 ADST A Bus Destination Select Field 4.3.5 BSRC B Bus Source Select Field 4.3.6 BDST B Bus Destination 4.3.7 CNT Decrement Loop Counter Bit 4.3.8 LIT Literal Select Bit 4.3.9 SHFT Shift Control Field 4.3.10 ALUSS ALU Source Select Bits 4.3.11 ALUOP ALU Operation Code Field	1
4.3.3 ASRC A Bus Source Select Field 5 4.3.4 ADST A Bus Destination Select Field 8 4.3.5 BSRC B Bus Source Select Field 8 4.3.6 BDST B Bus Destination 8 4.3.7 CNT Decrement Loop Counter Bit 8 4.3.8 LIT Literal Select Bit 9 4.3.9 SHFT Shift Control Field 9 4.3.10 ALUSS ALU Source Select Bits 10 4.3.11 ALUOP ALU Operation Code Field 10	4.3.3 ASRC A Bus Source Select Field. 4.3.4 ADST A Bus Destination Select Field. 4.3.5 BSRC B Bus Source Select Field. 4.3.6 BDST B Bus Destination. 4.3.7 CNT Decrement Loop Counter Bit. 4.3.8 LIT Literal Select Bit. 4.3.9 SHFT Shift Control Field. 4.3.10 ALUSS ALU Source Select Bits. 4.3.11 ALUOP ALU Operation Code Field.	1 2
4.3.4 ADST A Bus Destination Select Field 8 4.3.5 BSRC B Bus Source Select Field 8 4.3.6 BDST B Bus Destination 8 4.3.7 CNT Decrement Loop Counter Bit 8 4.3.8 LIT Literal Select Bit 9 4.3.9 SHFT Shift Control Field 9 4.3.10 ALUSS ALU Source Select Bits 10 4.3.11 ALUOP ALU Operation Code Field 10	4.3.4 ADST A Bus Destination Select Field. 4.3.5 BSRC B Bus Source Select Field. 4.3.6 BDST B Bus Destination. 4.3.7 CNT Decrement Loop Counter Bit. 4.3.8 LIT Literal Select Bit. 4.3.9 SHFT Shift Control Field. 4.3.10 ALUSS ALU Source Select Bits.	1 2 2
4.3.6 BDST B Bus Destination	4.3.6 BDST B Bus Destination	1 2 2
4.3.6 BDST B Bus Destination	4.3.6 BDST B Bus Destination	1 2 2 3
4.3.8 LIT Literal Select Bit	4.3.9 SHFT Shift Control Field	1 2 3 5
4.3.8 LIT Literal Select Bit	4.3.9 SHFT Shift Control Field	1 2 3 5 8
4.3.9 SHFT Shift Control Field	4.3.9 SHFT Shift Control Field	1 2 3 5 8
4.3.10 ALUSS ALU Source Select Bits	4.3.10 ALUSS ALU Source Select Bits	1 2 3 5 8 8
4.3.11 ALUOP ALU Operation Code Field10	4.3.11 ALUOP ALU Operation Code Field	1 2 3 5 8 8
		238899
	4.3.12 LC LOOP Counter Select Bit	2388899
	4.0.12 DO DOOL COUNCI OUCCE DIE IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	1 2 3 8 8 8 9 9
		1 2 3 8 8 8 9 9
Contents-2	Contents 2	1 2 3 8 8 8 9 9

THE THE THE THE THE THE

Chapter 5 - UNIVERSAL HOST BUS INTERFACE

5.1	Introduction to the Universal Host Bus Interface	1
5.2	Host Interface Address Configuration	3
	5.2.1 Configuration of Devices in a Single Slot	4
	5.2.2 Address Configuration	5
	ISA POS Information	7
	EISA POS Register Format	7
	Micro Channel POS Register Format	۶
	PCI POS Register Format	ء
	VL-Bus POS Information	10
5.3	Host I/O Registers	11
5.4	EMS-Style Memory Address Mode	14
	5.4.1 "EMS" Memory Mapping and Registers	15
	5.4.2 Setting Up the "EMS" Mode	17
	POS Registers and the "EMS" Mode	18
	"EMS" Configuration Registers	18
	Page Address Registers	20
5.5	82750PD Indirect Access	21
5.6	Host-SFB FIFOs	. 25
	5.6.1 Host-SFB Write FIFO	26
	Basic Operation of the Host-SFB Write FIFO	28
	Write FIFO Control Register (WFCON)	29
	Write FIFO Address Counter (WFCNTR)	34
	Write FIFO Data Register (WFDATA)	35
	Loading the Write FIFO Data Register	35
	Saving and Restoring the State of the Write FIFO	37
	Write FIFO Test Register	38
	5.6.2 Host-SFB Read FIFO	39
	Basic Operation of the Host-SFB Read FIFO	40
	Read FIFO Control Register (RFCON)	41
	Read FIFO Address Counter (RFCNTR)	45
	Read FIFO Data Register (RFDATA)	46
	Read FIFO Test Register (RFTEST)	47
	Reading the RFDATA Register	48
	Saving and Restoring the State of the Read FIFO	50
5.7	Interrupts and Meta-Interrupts	50
	5.7.1 The Interrupt/Meta-Interrupt System	51
	5.7.2 General Control and General Status Registers	56
	5.7.3 Setting Up the 82750PD Interrupt	57
5.8	Configuration Registers	58

Contents-3

		٥.
	5.8.2 I/O Base CFG	61
	5.8.3 Bus CFG Register	62
	5.8 4 Interrupt CFG Register	
4 1	5.0 F CPDI CPC Decrees	00
	5.8.5 SFBI CFG Registers	
	5.8.6 "EMS" CFG Registers	70
	5.8.7 Reserved CFG Registers	70
	Chapter 6 - SynchroLink	· ·
		,
	6.1 Introduction	
	6.2 Arbiter, Source, and Target	
	6.3 SynchroLink Data Packets	4
\$ 458 B	6.3.1 Arbiter, Source, and Target Interactions	4
	6.3.2 Data Packet Fields	
	6.3.3 Service Requests	
	6.3.4 Service Completion Message	
	6.3.5 Broadcast Messages	14
	6.4 SynchroLink Registers and Operations	16
	6.4.1 SynchroLink Registers	
	6.4.2 Transceiver Registers (XCVRn)	
4	6.4.3 Broadcast Transmit Mode	
# 1	6.4.4 Broadcast Receive Mode	
	6.4.5 Sending a Request and Receiving a Complete	on29
	6.4.6 Receiving a Request and Sending a Complete	
	Receive Service Register (RSRV)	
	Operations	
	6.4.7 Message Status Register (MSTATUS)	36
	6.4.8 Match Service Register (MSRV)	38
	6.4.9 Configuring the SynchroLink Interface	
	Message Configuration Register (MCFG)	
	Configuration Procedure	
	6.5 Meta-Interrupts	
	•	
	Contents-4	
	ATI	17768

Appendix B - Logical and Device Addresses

Appendix C - Programming Examples

C. 1	Host-SFB FIFOs
	C.1.1 Wnte FIFO
	C.1.2 Read FIFO
C.2	Indirect I/O to a Configuration Register
C.3	Writing to the maddr Register
.C.4	Writing to the pc Register

Contents-5

Figures

Figure 2-1.	Shared Frame Buffer System
Figure 2-2.	82750PD Block Diagram2
Figure 2-3.	Block Diagram Showing Memory
	and Registers 3
Figure 3-1.	82750PD Core Block Diagram2
Figure 3-2.	Input FIFO Modes for Reading Data17
Figure 3-3.	Output FIFO Modes for Writing Data21
Figure 3-4.	SFB Bit-Stream Decoding Addresses36
Figure 3-5.	
Figure 3-6.	
Figure 3-7.	Pixel Pair Phases42
•	
Figure 4-1.	Microcode Instruction Format
	Literal Field Mapping onto a Bus9
Figure 5-1.	Multiple Devices in a Single Logical Slot4
	Host I/O Registers12
Figure 5-3.	"EMS" Window Mapping15
Figure 5-4.	Details of "EMS" Mapping
Figure 5-5.	82750PD Indirect Register Mapping22
Figure 5-6.	82750PD Indirect Register Address
` I	Pranslation25
Figure 5-7.	Block Diagram of the Read and Write FIFOs25
Figure 5-8.	Block Diagram of the Write FIFO27
Figure 5-9.	Data Paths from the Write FIFO
I	Data Register to the SFB36
Figure 5-10	. Block Diagram of the Read FIFO40
Figure 5-11	. Data Paths from the SFB to the
	Read FIFO Data Register49
Figure 5-12	. Diagram of the Meta-Interrupt System53
-	- ^
	•
Figure 6-1.	The SynchroLink with Devices Connected2
Figure 6-2.	Data Packet - Source Accepts4

Contents-6

ATI017770

•				
Co	n	P	n	t۶

Figure 6-3. Data Packet – Source Accepts and Target Acknowledges
Figure 6-4. Data Stream - Invitation Not Acknowledged
Figure 6-5. Data Packet Format
Figure 6-6. Broadcast Transmit State Diagram2-
Figure 6-7. Send Service Request State Diagram3
Tables
Table 2-1. 82750PD and Host CPU Access to the Memory
Address Space
Table 2-2. Quad Word Interleaving for a 64-Bit SFB
Table 2-3. Dword Interleaving for a 32-Bit SFB
•
Table 3-1. ALU Condition Code Register
Table 3-2. ALU Operations
Table 3-3. Barrel Shifter Operations and Registers
Table 3-4. Microcode RAM Registers
Table 3-5. Core Input FIFO Registers
Table 3-6. Input FIFO Control Registers1-
Table 3-7. Circular Buffer Register (circbuf)
Table 3-8. Output FIFO Registers19
Table 3-9. Output FIFO Control Registers
Table 3-10. Registers Associated with the
Statistical Decoder23
Table 3-11. Codes that Can Be Read by the
Statistical Decoder24
Table 3-12. Sample Code Description Tables25
Table 3-13. Decoded Values
Table 3-14. Decoded Values Using END Mode28
Table 3-15. END Flag Decoded Values29
Table 3-16. Packed 3-bit Field Decoded Values30
Table 3-17. Statistical Decoder Control Register3
Table 3-18. Control Bits for the Code Description Table3.
Table 3-19. SFB Bit-Stream Decode Values
Table 3-20. Decoding Symbols
Table 3-21. Pixel Interpolator Control Register
rable 3-22. Interpolator wiode Sciection4.

e sales e

Contents-7

Co	nte	nts

Table 5-20. I/O Sequence to Read/Write the SFB Address	.34
Table 5-21. Write FIFO Test Register	39
Table 5-22. Read FIFO Registers	. 40
Table 5-23. Read FIFO Control Register	42
Table 5-24. Byte Select Bits in the RFCON Register	
Table 5-25. I/O Sequence for RFCNTR Register Accesses.	46
Table 5-26. Read FIFO Test Register	47
Table 5-27. Enabling SFBI Events to Generate Meta-	
Interrupts	51
Table 5-28. VBUS Codes	54
Table 5-29. Prionties for Generation of VBUS Codes	
Table 5-30. General Control Register	
Table 5-31. General Status Register	57
Table 5-32. CFG Register Numbers and Names	59
Table 5-33. CFG Register Number Register	60
Table 5-34. CFG Register Data Register	60
Table 5-35. General Configuration Register	
Table 5-36. I/O Base CFG Register	61
Table 5-37. Bus CFG Register	
Table 5-38. Configuration Bits for the ISA Bus.	63
Table 5-39. Configuration Bits for the EISA Bus	.64
Table 5-40. Configuration Bits for the PCI Bus	
Table 5-41. Configuration Bits for the VL-Bus	
Table 5-43. INT CFG Register	
Table 5-44. Values of Interrupt Configuration Bits	.67
Table 5-45. SFBI CFG 04 Register	e.
Table 5-46. SFBI CFG 05 Register	
Table 6-1. Examples of Signal Events	q
Table 6-2. Service Request Data Packet Definition	
Table 6-3. Service Completion Data Packet Definition	
Table 6-4. Other Function Code Data Packet Definition	
Table 6-5. SynchroLink Register Map	
Table 6-6. Transceiver Registers	
Table 6-7. Enabling SFBI Events to Generate VBUS Codes	
Table 6-8. XCVRn Register Modes	
Table 6-9. XCVRn Settings for the Four Message Modes	
Table 6-10. Priority of Transmission Requests	
Table 6-11. Broadcast Transmission Bit Activity	
Table 6-12. Send Service Request Bit Activity	
rable 0-12. Sellu Selvice Request Dit Acuvity	,. . 0

Contents-9

Table 6-14. Message Status Register		Table 6-13. Receive Service Register
Table 6-16. Match Service Register. 38		Table 6-14. Message Status Register
Table 6-17 Message Configuration Register 40		Table 6-15. Transceiver Status Bits and the SMSG Bit37
Table 6-18. SynchroLink Clock Frequency		Table 6-16. Match Service Register38
Table 6-18. SynchroLink Clock Frequency		Table 6-17. Message Configuration Register40
Table 6-19. Enabling Meta-Interrupt Evens to Generate VBUS Codes		
Table A-1. 82750PD Core Registers Excluded from Appendix A		
Table A-1 82750PD Core Registers Excluded from Appendix A		
Appendix A Table A-2 EISA POS2 Register		
Appendix A 1 Table A-2 EISA POS3 Register 2 Table A-3 EISA POS3 Register 2 Table A-4 ALU Condition Code Register 3 Table A-5 Core Control Register 4 Table A-6 I/O Base CFO Register 5 Table A-7 Bus CFO Register 5 Table A-7 Bus CFO Register 5 Table A-9 General Configuration Register 6 Table A-9 General Configuration Register 6 Table A-10 INT CFO Register Number Register 6 Table A-10 INT CFO Register Number Register 8 Table A-11 CFO Register Number Register 8 Table A-12 SFBI CFO 04 Register 10 Table A-13 SFBI CFO 05 Register 10 Table A-14 Core Interrupt Flag Register 11 Table A-15 Core Interrupt Flag Register 11 Table A-16 Core Status Register 12 Table A-17 EMS* Configuration Register 13 Table A-18 General Control Register 14 Table A-20 Input FIFO Control Register 14 Table A-20 Input FIFO Control Register 14 Table A-21 Indirect Address Register 14 Table A-23 Message Configuration Register 16 Table A-24 Micro Channel POS3 Register 17 Table A-25 Micro Channel POS3 Register 18 Table A-26 Match Service Register 19 Table A-26 Match Service Register 19 Table A-29 EMS* Page Address Register 20 Table A-29 "EMS* Page Address Register 21 Table A-29 "EMS* Page Address Register 22 Table A-30 Pixel Interpolator Control Register 23 Contents-10		
Table A-2 EISA POS3 Register		
Table A-3 EISA POS2 Register 2 Table A-4 ALU Condition Code Register 3 Table A-5 Core Control Register 4 Table A-6 I/O Base CFG Register 5 Table A-7 Bus CFG Register 5 Table A-7 Bus CFG Register 5 Table A-8 CFG Register Data Register 6 Table A-9 General Configuration Register 6 Table A-10. INT CFG Register Number Register 7 Table A-10. INT CFG Register Number Register 8 Table A-12. SFBI CFG 05 Register 9 Table A-13. SFBI CFG 05 Register 9 Table A-14. Core Interrupt Flag Register 10 Table A-14. Core Interrupt Flag Register 11 Table A-15. PCI POS2 Register 11 Table A-16. Core Status Register 12 Table A-17. EMS Configuration Registers 13 Table A-19. General Control Register 13 Table A-19. General Status Register 14 Table A-20. Input FIFO Control Register 14 Table A-21. Indirect Address Register 16 Table A-23. Message Configuration Register 16 Table A-24. Micro Channel POS3 Register 17 Table A-25. Micro Channel POS3 Register 19 Table A-26. Match Service Register 19 Table A-27. Message Status Register 19 Table A-28. Core Output FIFO Control Register 19 Table A-29. TeXPS Page Address Registers 21 Table A-29. Pxel Interpolator Control Register 21 Table A-29. TeXPS Page Address Registers 22 Table A-30. Pxel Interpolator Control Register 21 Table A-29. TeXPS Page Address Registers 22 Table A-30. Pxel Interpolator Control Register 21 Table A-30. Pxel Interpolator Control Register 22		
Table A-5. Core Control Register		Table A-2. EISA POS3 Register2
Table A-5. Core Control Register		Table A-3. EISA POS2 Register2
Table A-6. I/O Base CFG Register	HE I	Table A-4. ALU Condition Code Register3
Table A-7. Bus CFC Register		Table A-5. Core Control Register4
Table A-7. Bus CFC Register		Table A-6. I/O Base CFG Register5
Table A-9. General Configuration Register 6 Table A-10. INT CFG Register 77 Table A-11. CFG Register Number Register 8 Table A-12. SFBI CFG 04 Register 99 Table A-13. SFBI CFG 05 Register 10 Table A-14. Core Interrupt Flag Register 11 Table A-15. PCI POS2 Register 11 Table A-16. Core Status Register 11 Table A-16. Core Status Register 12 Table A-17. EMS" Configuration Registers 13 Table A-18. General Control Register 13 Table A-19. General Status Register 14 Table A-20. Input FIFO Control Register 14 Table A-21. Indirect Address Register 16 Table A-23. Message Configuration Register 16 Table A-24. Micro Channel POS3 Register 17 Table A-25. Micro Channel POS3 Register 18 Table A-26. Match Service Register 99 Table A-26. Match Service Register 90 Table A-27. Sincer Ochannel POS3 Register 90 Table A-28. Core Output FIFO Control Register 21 Table A-29. "EMS" Page Address Register 22 Table A-30. Pixel Interpolator Control Register 22 Table A-30. Pixel Interpolator Control Register 23 Contents-10		Table A-7. Bus CFG Register5
Table A-9. General Configuration Register		
Table A-10. INT CFG Register		
Table A-12. CFG Register Number Register		
Table A-12. SFBI CFG 04 Register 9 Table A-13. SFBI CFG 05 Register 10 Table A-14. Core Interrupt Flag Register 11 Table A-16. Core Status Register 12 Table A-16. Core Status Register 12 Table A-17. EMS" Configuration Registers 13 Table A-19. General Control Register 14 Table A-20. Input FIFO Control Register 14 Table A-20. Input FIFO Control Register 14 Table A-20. Indirect Address Register 16 Table A-21. Indirect Address Register 16 Table A-22. Merso Channel POS3 Register 17 Table A-24. Micro Channel POS3 Register 18 Table A-25. Micro Channel POS3 Register 19 Table A-26. Match Service Register 19 Table A-27. Message Status Register 20 Table A-28. Core Output FIFO Control Register 21 Table A-29. "EMS" Page Address Registers 22 Table A-30. Pixel Interpolator Control Register 23 Contents-10		
Table A-13. SFBI CFG 05 Register 10 Table A-15. PCI POS2 Register 11 Table A-16. Core Interrupt Flag Register 11 Table A-16. Core Status Register 12 Table A-17. "EMS" Configuration Registers 13 Table A-18. General Control Register 13 Table A-19. General Status Register 14 Table A-20. Input IFIO Control Register 14 Table A-21. Indirect Address Register 16 Table A-22. Indirect Address Register 16 Table A-23. Message Configuration Register 17 Table A-24. Micro Channel POS3 Register 18 Table A-25. Micro Channel POS3 Register 19 Table A-26. Match Service Register 19 Table A-27. Message Status Register 20 Table A-28. Core Output IFIO Control Register 21 Table A-29. "EMS" Page Address Registers 22 Table A-30. Pixel Interpolator Control Register 23 Contents-10		
Table A-14. Core Interrupt Flag Register 11 Table A-15. PCI POS2 Register 12 Table A-16. Core Status Register 12 Table A-17. "EMS" Configuration Registers 13 Table A-19. General Control Register 14 Table A-20. Input FIFO Control Register 14 Table A-20. Input FIFO Control Register 16 Table A-21. Indirect Address Register 16 Table A-22. Indirect Data Register 16 Table A-23. Message Configuration Register 17 Table A-24. Micro Channel POS3 Register 18 Table A-25. Micro Channel POS3 Register 19 Table A-26. Match Service Register 19 Table A-27. Message Status Register 20 Table A-28. Core Output FIFO Control Register 21 Table A-29. "EMS" Page Address Registers 22 Table A-30. Pixel Interpolator Control Register 23 Coments-10		
Table A-15. PCI POS2 Register		
Table A-16. Core Status Register. 12 Table A-17. "EMS" Configuration Registers 13 Table A-19. General Control Register. 14 Table A-20. Input FIFO Control Register. 14 Table A-21. Indirect Address Register. 16 Table A-22. Indirect Address Register. 16 Table A-23. Message Configuration Register 17 Table A-24. Micro Channel POS3 Register. 18 Table A-25. Micro Channel POS3 Register. 19 Table A-26. Mach Service Register. 19 Table A-27. Message Status Register. 19 Table A-28. Core Output FIFO Control Register. 21 Table A-29. "EMS" Page Address Registers. 22 Table A-30. Pixel Interpolator Control Register. 23 Contents-10		
Table A-18. General Control Registers 13 Table A-19. General Status Register 14 Table A-20. Input FIFO Control Register 14 Table A-21. Indirect Address Register 16 Table A-22. Indirect Data Register 16 Table A-23. Message Configuration Register 17 Table A-24. Micro Channel POS3 Register 18 Table A-25. Micro Channel POS3 Register 19 Table A-26. Match Service Register 19 Table A-27. Message Status Register 20 Table A-28. Core Output FIFO Control Register 21 Table A-29. "EMS" Page Address Registers 22 Table A-30. Pixel Interpolator Control Register 23 Contents-10	g 1	
Table A-19. General Control Register		
Table A-19. General Status Register	- j	
Table A-20. Input FIFO Control Register 14 Table A-21. Indirect Address Register 16 Table A-23. Message Configuration Register 17 Table A-24. Micro Channel POS3 Register 18 Table A-25. Micro Channel POS3 Register 19 Table A-26. Match Service Register 19 Table A-27. Message Status Register 20 Table A-28. Core Output FIFO Control Register 21 Table A-29. "EMS" Page Address Registers 22 Table A-30. Pixel Interpolator Control Register 23 Contents-10		
Table A-21. Indirect Address Register		
Table A-22. Indurect Data Register		
Table A-23. Message Configuration Register 17 Table A-24. Micro Channel POS3 Register 19 Table A-26. Micro Channel POS3 Register 19 Table A-27. Message Status Register 20 Table A-28. Core Output FIFO Control Register 21 Table A-29. "EMS" Page Address Registers 22 Table A-30. Pixel Interpolator Control Register 23 Contents-10		
Table A-24. Micro Channel POS3 Register		
Table A-25. Micro Channel POS3 Register		
Table A-26. Match Service Register		
Table A-27. Message Status Register		
Table A-28. Core Output FIFO Control Register		
Table A-29. "EMS" Page Address Registers		
Table A-30. Pixel Interpolator Control Register		
Contents-10		
		Table A-50. Thei like polator conduct register
		Contents-10
	and the second	
ATI017774		
		*

		Table A-31. Read FIFO Address Cou Table A-32. Read FIFO Control Regis
		Table A-32. Read FIFO Data Register
		Table A-34. Read FIFO Selected Byte
	-111	Table A-35. Read FIFO Test Register
		Table A-36. Receive Service Register
		Table A-37. Statistical Decoder Cont
		Table A-38. Write FIFO Address Cou
		Table A-39. Write FIFO Control Regi
!		Table A-40. Write FIFO Data Registe Table A-41. Write FIFO Selected Byte
		Table A-42. Write FIFO Test Register
		Table A-43. Transceiver Registers
		Table II 40. It and the included the
		Table B-1. Association of 82750PD A
		DRAM/VRAM Bits
		Table B-2. 82750PD Internal Bus Ad
		Physical Address Mapping
	TE	
	11	
		•
		,
	A Company	

Table A-31.	Read FIFO Address Counter Register	2-
Table A-32.	Read FIFO Control Register	25
Table A-33.	Read FIFO Data Register	2.
Table A-34.	Read FIFO Selected Byte Register	27
	Read FIFO Test Register	
	Receive Service Register	
	Statistical Decoder Control Register	
	Write FIFO Address Counter Register	
Table A-39.	Write FIFO Control Register.	31
Table A-40.	Write FIFO Control Register	
Table A-41.	Write FIFO Selected Byte Register	33
	Write FIFO Test Register	
	Transceiver Registers	
	, 3	
	Association of 82750PD Address Bits to PRAM/VRAM Bits	,
Table B-2. 8	32750PD Internal Bus Address to DRAM/ hysical Address Mapping	VRAM

Contents-11

6 Ħ Ħ Contents-12

Chapter 1 Guide to this Manual

This manual describes the 82750PD video processor. It is written for programmers who are familiar with programming microprocessors and who have some acquaintance with video signal processing. The manual provides detailed information for writing 82750PD microcode and for programming the host processor.

1.1 Manual Contents

Chapter 2 Introduction to the 82750PD Provides an overview of the 82750PD and the Shared Frame Buffer (SFB) Architecture. Also included are descriptions of the memory types, register types, and the memory address space.

Chapter 3 82750PD Core Architecture Describes the operation of the 82750PD core, which is a reimplementation of the 82750PB processor embedded in the 82750PD.

Chapter 4
Microcode
Instruction
Format

Outlines the fields of the microcode instructions and describes the instruction sequencing.

Chapter 5 Universal Host Bus Interface

Describes the 82750PD
Universal Host Bus Interface
(UHBI) for the host CPU The
UHBI can accommodate the
following bus types: ISA EISA
Micro Channel*. PCI. and VLBus:

Chapter 6 SynchroLink*

Describes the SynchroLink communications bus, which supports the 82750PD communications with other devices on the Shared Frame Buffer Interconnect (SFE!).

Appendix A
82750PD
Registers
Appendix B
Logical and Device
Addresses

Provides detailed descriptions of the 82750PD registers.

Appendix C
Programming
Examples

Specifies the correspondence between 82750PD logical address bits and VRAM/DRAM physical address bits.

Shows illustrative examples of programming the 82750PD in assembly language and "C" language.

All products mentioned are trademarks of their respective companies.

1.2 Notational Conventions and Terminology

italics

Italics are used to introduce terminology. Italics are also used for 82750PD core register names and for some variables. See "Register Names" and "Variables" in this section.

Register Names Mnemonics for registers inside the 82750PD core are written in italics. For example, the mnemonic for the Field Counter Register is *fcrit*. Mnemonics for 82750PD registers outside the 82750PD core are written in upper case. The mnemonic for the General Control Register is GENCON.

Variables

Variables (indices) in register mnemonics are shown in upper case or lower case and in italics or non-italics to contrast with the mnemonic.

For example, the three "EMS" Configuration Registers have the mnemonics EMSCFGn: n = 1-3. The individual registers are EMSCFG1, EMSCFG2, and EMSCFG3.

The two Input FIFO Control Registers in the 82750PD core have the mnemonics inN-c; N=1,2. Individually, they are written as in1-c and in2-c.

Reserved. RSVD Certain register bytes and bits are labeled "Reserved" or "RSVD." A reserved register byte or bit is nonfunctional in the current product but may have a function in a later product. Unless otherwise noted, reading a reserved bit or byte returns an unspecified value. For compatibility with future products, write a reserved byte as 00h and a reserved bit as '0'.

Illegal

A bit combination marked "illegal" should not be used. If it is used, the results are unspecified. The following bit table shows an example:

1-3

Numbers

Bit 1	Bit 2	
0	0	Single point mode
0	1	Random mode
1	0	Sequential mode
1	1	Illegal

The bit combination [1] I should not be used. If it is used, the operation is unspecified.

Set and Clear The terms set and clear describe the state of a bit or the act of driving a bit to that state. A bit with the value '0' is clear. To clear a bit means to drive it to '0'. A bit with the value '1' is set. To set a bit means to drive it to '1'.

Hexadecimal numbers are represented by a string of digits followed by the character h. If the number would otherwise begin with the letter A. B.or F. a prefix '0' is added. For example, FA6h is written as 0FA6h.

Binary numbers are written with an appended "b" in cases where the base may not be clear. The binary value six could be written as "110" or "110b".

Abbreviations LSB = least significant bit MSB = most significant bit

Units of The following symbols are used to represent units of Measure measure:

Kbyte kilobyte = 1024 bytes Mbyte megabyte = 1024 kilobytes Gbyte gigabyte = 1024 megabytes MHz megahertz

μs microseconds

Related i750^m . i860^m . and i96^m Processors and Related Documents Products: Intel Corporation. 1993 (Order Number: 272084-002).

1-4

82750PD Vide (Order Numbe Microcode Dev Corporation.)

82750PD Video Processor. Intel Corporation, 1993. (Order Number: 272341-001). 1750 Pixel Processor Microcode Development Tools User's Guide, Intel Corporation, 1993 (Order Number: 485407-001)

1-5

AT1017781

Chapter 2 Introduction to the 82750PD

2.1 Introduction

The 82750PD is a programmable video processor that supports a variety of video compression algorithms. The core of the 82750PD is its predecessor, the 82750PB, which includes a variable length sequence decoder and a pixel interpolator. The 82750PD is microcode-compatible with the 82750PB.

The 82750PD's design is based on a Shared Frame Buffer (SFB) architecture. The Shared Frame Buffer Interconnect (SFBI) is a multi-master bus that interconnects the SFB, the 82750PD, a graphics processor, and other multimedia system components, as shown in Figure 2-1. This architecture provides shared access to the SFB (video memory) and results in an integrated video and graphics subsystem.

Figure 2-2 is a closer look at the 82750PD itself. The Universal Host Bus Interface (UHBI) supports several bus types: ISA. EISA. Micro Channel. PCI. and VI_Bus. The bus type is selected by strapping inputs. The UHBI has a pair of Host-SFB FIFOs, which provide the host with high-speed access to the Shared Frame Buffer via the internal bus.

Devices on the SFBI communicate via the SynchroLink, a serial bus that provides for synchronization of graphics, video, and audio events without using interrupts to the host.

2-

A want

بر ماد رد

Figure 2-1. Shared Frame Buffer System

Figure 2-2. 82750PD Block Diagram

2.2 Memory and Registers

* :ZK.

Figure 2-3 is a 82750PD block diagram showing the on-chip memory and registers that are accessible by the 82750PD core and/or the host computer

Figure 2-3. Block Diagram Showing Men. ry and Registers

The 82750PD's memory and registers include these categories:

- Data RAM and Microcode RAM.
- Core Registers. These registers reside in the core. The host can access the core registers via the 82750PD internal bus (the on-chip address/data bus, which is external to the core). The 82750PD can access these registers

only through microcode instructions. The core registers are described in Chapter 3.

- SynchroLink Registers. These registers are used by the 82750PD in its communications with other devices on the SFBI. They are accessible from the 82750PD and the host via the internal bus. These registers include:
 - twelve transceiver registers.
 - four registers for configuration, status, and control.

Chapter 6 describes the event syncronization registers.

- Host I/O Registers. This group includes registers for the Universal Host Bus Interface and registers for the SFB interface. The 82750PD cannot access these registers. They are accessible from the host either directly in its I/O space or indirectly through its I/O registers. The following register categories comprise the host I/O registers.
 - "EMS" page address registers.
 - Host-SFB FIFO registers
 - Indirect I/O registers
 - Configuration Registers
 - General status and control registers

The host I/O registers are described in Chapter 5.

2.3 82750PD Memory Address Space

The addresses of the following memory and register groups, are in the 82750PD memory address space:

- the Shared Frame Buffer (SFB)
- the core registers

2-4

(Note that the host I/O registers, which are associated with the Universal Host Bus Interface, are accessed in the host computer's I/O space and are not accessible from the core.)

The memory address space can be accessed by the host as well as the 82750PD. However, not all registers and memory are accessible from both the 82750PD and the host. Further, the host can access this address space by high-speed Host-SFB FIFOs (see Chapter 5) and also by using the indirect I/O and "EMS" modes (which access a common set of memory and registers).

Table 2-1 shows the memory address space as π is accessed by:

- the 82750PD core.
- the host via the Host-SFB FIFOs.
- the host via "EMS" and indirect I/O accesses.

2-5

Table 2-1. 82750PD and Host CPU Access to the Memory Address Space

Address	Accessible from the 82750PD	Accessible from the Host PC via Host-SFB FIFOs	Accessible from the Host via "EMS" and indirect I'C Modes	
FFFFFFFh	RESERVED	Not Accessible	Not Accessible	
01800000h 017FFFFFh	SFB Interleaved* ODD	Not Accessible	Not Accessible	
01400000h 013FFFFh	Quad Words SFB	Not Accessible	Not Accessible	
01000000h	Interleaved* EVEN Quad Words			
∞FFFFFFh	SynchroLink Registers	SynchroLink Registers	SynchroLink Registers	
00FF0000h	Access byte, word, dword, dword aligned	Access: byte, word.dword, dword aligned	Access byte word dword dword aligned	
00FEFFFFh	RESERVED	RESERVED	Core Registers	
00FE0000h			Access word word aligned	
00FDFFFFh	RESERVED	RESERVED	RESERVED	
007FFFFFh	SFB	SFB	SFB	
00000000h	Access byte, word, nonaligned	Access byte, word; nonaligned	Access byte word aword nonaligned	

^{*} An example of interleaving is given in Section 2.5

2.4 82750PD Core Registers

The 82750PD core registers (i.e., the registers located inside the 82750PD core) can be accessed by both the 82750PD and the host. The 82750PB core accesses these registers in microcode: it cannot access them as memory locations in the memory address space. The host, using the indirect I/O or "EMS" modes, accesses the core registers at addresses 00FE0000h—00FEFFFFh in the 82750PD memory address space (see Table 2-1).

2.5 Shared Frame Buffer (SFB)

The Shared Frame Buffer (SFB) is memory connected to the Shared Frame Buffer Interconnect (SFBI). For a 64-bit SFB this area of memory comprises 8 Mbytes in the range 00000000h—007FFFFFh. As noted in the following subsections: the 82750PD can also access this memory at locations in the range 01000000h—017FFFFFh. A 32-bit SFB occupies 4 Mbytes in the range 00000000h—003FFFFFh, and can also be accessed at locations in the range 01000000h—013FFFFFh.

2.5.1 Accessing the 64-Bit SFB

The host can access the 64 bit Shared Frame Buffer via the Host-SFB FIFOs, the indirect I/O mode, and the "EMS" mode. The 82750PD can access each quad word in the 8-Mbyte SFB at two addresses:

 Consecutive even quad words in the address range 00000000h—007FFFFh can also be accessed in the 4-Mbyte range: 01000000h— 013FFFFFh. Consecutive odd quad words in the range 00000000h—007FFFFFh can also be accessed in the 4-Mbyte range: 01400000h— 017FFFFFh.

Table 2-3 shows how the first few quad words of the 64-bit SFB are mapped into the even quad word and odd quad word areas. The columns in the center show the quad words in lower memory with the bytes numbered. The column on the left shows the unmapped quad word addresses. The column on the right lists the mapped quad word addresses.

Table 2-2. Quad Word Interleaving for a 64-Bit SFB

Quad Word Addresses (Unmapped)			Nur	nber	ed By	rtes		·	Mapped Quad Word Addresses
0000 0000h	7h	6 h	5h	4	3£	ź	1h	g	0100 0000h
0000 0008h	Fn	Ę	Ďħ	Ç	Ð	Ą	9h	85 -	0140 0000h
0000 0010h	17h	16h	15h	14h	13h	12h	11h	10h	0100 0008h
0000 0018h	1Fh	1Eh	1Dh	1Ch	18h	1Ah	19h	18h	0140 0008h
		•	:	:	:	•	•		

2.5.2 Accessing the 32 Bit SFB

The host can access the the 32-bit Shared Frame Buffer via the Host-SFB FIFOs, the indirect I/O mode, and the "EMS" mode. The 82750PD can access each dword in the 4-Mbyte SFB at two addresses:

 Consecutive even dwords in the address range 00000000h—003FFFFFh can also be accessed in the 2-Mbyte range: 01000000h— 011FFFFFh. Consecutive odd dwords in the range 00000000h—003FFFFFh can also be accessed in the 2-Mbyte range: 01200000h— 013FFFFFh.

Table 2-3 shows how the first few dwords of the 32 bit SFB are mapped into the even dword and odd dword areas. The columns in the center show the dwords in lower memory with the bytes numbered. The column on the left shows the unmapped dword addresses. The column on the right lists the mapped dword addresses.

Table 2-3. Dword Interleaving for a 32-Bit SFB

Dword Addresses (Unmapped)	Nui	nber	ed By	Mapped Dword Addresses	
0000 0000h	3h	25	1h	Oh	0100 0000h
0000 0004h	711	6h	5h	4h	0140 0000h
0000 0008h	Bh	Ah	9h	8h	0100 0004h
0000 000Ch	Fh	Ē	Dh	Ch	0140 0004h
• ,	•	•	•	٠	•
•	•	•	•	• 1	•
•	•	•	•	•	•

2.5.3 Types of Memory on the SFBI

All memory connected to the SFB Interconnect is considered a part of the Shared Frame Buffer. The SFB can be subdivided into "display memory" (memory for storing the screen pixels) and "off-screen memory. The off-screen memory is subdivided into "82750PD workspace." "graphics workspace" (for the graphics processor), and "other memory." While the display memory must be implemented in VRAM, the 82750PD workspace and the graphics workspace can be implemented in VRAM or DRAM.

2.6 Reserved Memory Locations

Memory locations marked as "Reserved" or "RSVD" should not be accessed. To prevent the 82750PD and host interface from hanging, do not write software to access reserved locations; future products may define these regions to serve new functions. See table 2-1 for reserved addresses

2-10

Chapter 3 82750PD Core Architecture

The 82750PD core is a re-implementation of the 82750PB architecture with the necessary changes to imbed it in the 82750PD. This chapter describes the 82750PD core architecture and discusses the operation of the core FIFOs, the Statistical Encoder, and the Pixel Interpolator.

3.1 Overview

The 82750PD core includes a wide instruction word processor that comprises a number of processing. storage, and input/output elements. The wide instruction word architecture allows a number of these elements to operate in parallel. The various elements are connected via two 16-bit buses, the A bus and B bus, as shown in Figure 3-1. During each instruction execution cycle, data can be transferred from a bus source to a bus destination on the A and B buses. The 82750PD core executes one instruction every internal clock. The internal clock runs at one-half the frequency of the SFBI clock. The 82750PD core data and address lines are connected to the 82750PD internal bus, which is inside the 82750PD but external to the 82750PD core. Signals from the SynchroLink interface enter the core on the VBUS.

The core accesses the core registers only in microcode (see Chapter 4). The host accesses the core registers in the 82750PD memory address space. The core register addresses are given in Section 3.15.

Figure 3-1. 82750PD Core Block Diagram

3-2

ATI017793

3.2 General Purpose Registers

The 82750PD core has 16 general purpose data registers, each 16 bits wide, which are connected to both the A bus and B bus as both sources and destinations. These registers, denoted by $r0-r15^{\circ}$. constitute the General Registers in Figures 3-1 and 3-Error! Bookmark not defined.. All of the registers are functionally identical except 10, which is described in the following paragraph. A register can be the source for both the A bus and B bus in the same instruction. However, a register cannot be the desunation for both the A bus and the B bus in a single instruction. Because the registers are doubly latched, the same register can be both a source and destination in the same cycle. The result is that the data in the register prior to the current cycle is driven on the source bus, and the data on the destination bus is latched into the register at the end of the clock cycle.

The r0 register has additional logic to allow bit shifting and byte swapping. In addition, the MSB and LSB of the r0 register are stored in the ALU Condition Flag Register, cc. described in the following section. The value in r0 can be shifted left or right one bit position per instruction cycle. For right shifts, the new MSB is equal to the old MSB: i.e., the value is sign-extended. For left shifts, the new LSB is equal to '0'. Register r0 cannot be shifted and loaded in the same instruction.

^{1 82750}PD core registers are shown in lower case italics. (See Section 1.2 for register notation.)

Byte swapping only occurs when r0 is being loaded with a value from the A bus or B bus. Byte swapping causes the most significant byte and the least significant byte of the 16-bit value being loaded into r0 to be interchanged. Refer to Chapter 4 for a description of the SHFT microcode field that controls the shifting and swapping operation in r0.

3.3 Arithmetic/Logic Unit (ALU)

The ALU performs 16-bit arithmetic and logic operations, and can also be operated as two independent 8-bit ALU's for the Dual-Add-with-Saturate operation (discussed later in this section) Two fields in the microcode instruction affect the operation of the ALU. The ALUOP field specifies the operation to be performed, and the ALUSS field specifies the source of the two ALU inputs. Refer to Chapter 4 for further information on these fields.

The two ALU operands come from values held in the ALU input latches or from "eavesdropping" on the A or B bus. The result of any ALU operation is latched in the 16-bit ALU Output Register. alu. In a subsequent instruction, this result can be transferred to any A or B bus destination.

3.3.1 Condition Code Register

The ALU has four condition flag outputs — ALU Carry Out, ALU Sign, ALU OVerflow, and ALU Zero — which are stored in the Condition Code Register. cc. Table 3-1 shows the cc register and defines the ALU condition code outputs. For most ALU operations the states of these four condition flags are latched when the operation is complete. The exceptions are given in Section 3.3.2.

Table 3-1. ALU Condition Code Register

Mnemonic: &

Address, Core Register*

Access:	Access: See bit descriptions. Reset State: Not available								
Bit No.	15-8	7	6	5	4	3	2	1 '	0
Name	ASVD	∕C MSB	<i>r</i> o LSB	LCNTZ	ALU Zero	ALU Sign	ALU Overflow	ALU Carry Out	Э

^{*} See Section 3.15 for core register addresses

Bit No.	Name	Description
0	RSVD	
1	ALU Carry Out	(R/W) The value of this bit equals the carry out of the most significant bit position in the ALU. This bit is '0' for all logical operations
2	ALU Overflow	(RW) The value of this bit is: (ALU Carry Out) XOR (Carry in to most significant bit of ALU result). This bit is '0' for all logical operations
- 3	ALU Sign	(RVW) The value of this bit is the most significant bit of the ALU result
4	ALU Zero	(R/W) This bit is set only if all bits of the ALU result are '0'
5	LCNTZ	(R/O) This bit is set only if the value of the loop counter is '0'
6	Ø LSB	(R/O). The value of this bit is the value of the least significant bit of register ${\it n0}$
7	r∂ MSB	(R/O). The value of this bit is the value of the most significant bit of register $\it ro$
158	RSVD	

3.3.2 ALU Operations

Table 3-2 is a list of the ALU operations. The condition flags in the cc register are latched upon completion of the ALU operations, with the exceptions of the eight operations tagged with astensks in Table 3-2. These operations do not disturb the condition flags of the previous ALU operation. Microcode routines can read and write the cc register to save and restore the states of these flags.

Table 3-2. ALU Operations

Operation	Operation
No Operation*	Increment a
Pass a	Increment b
Pass b	Decrement a
1's Compliment of a	Decrement b
1's Compliment of b	Dual Add with Saturate*
a AND b	a + b + (Previous Carry
(NOT a) AND b	a - b - (Previous Borrow
a AND (NOT b)	- a + b - (Previous Borrow
a OR b	Interrupt Host*
a XOR b	Zero*
a+b	Pass a Don't Latch Flags*
a+b+1	Pass b Don't Latch Flags'
a-b	(NOT a) OR b
-a + b	a OR (NOT b)
2's Compliment of a	Dual Subtract with Saturate*
2's Compliment of b	Performance Monitor*

The Dual-Add-with-Saturate operation performs independent, 8-bit ADDs on the upper and lower bytes of the two ALU operands. The two bytes of the A operand are treated as unsigned binary numbers (00:FFh corresponds to 0: 255). The two bytes of the B operand are treated as offset binary numbers with an offset of +128 (00:FFh corresponds to -128: 127). The upper and lower byte results, including the carry output of each byte, are treated as 9-bit offset binary numbers with a +128 offset (000:1FFh corresponds to - 128:383) and are saturated to a range of 0-255. A result less than zero is set equal to '0' (00h), and a result greater than +255 is set equal to +255 (FFh).

In fact, the Dual-Add-with-Saturate operation is symmetric with respect to the two operands. Either the A operand or the B operand can be defined as

the unsigned binary value, and the other operand is treated as the offset, signed binary value.

Dual-Subtract-with-Saturate is similar to Dual-Addwith-Saturate. It calculates A – B + 128 on each 8-bit half of the two 16-bit inputs, and clamps the results to 0 and 255. This can be viewed as subtracting an offset-binary signed byte (– 128 to 127) from an unsigned byte (0 to 255).

3.3.3 82750PD Interrupts

The "interrupt host" operation produces the MCINT (microcode interrupt) condition, which can potentially generate an 82750PD interrupt. This is one of several 82750PD interrupt sources, which are discussed in Sections 3.14 and 5.7.

3.3.4 Performance Monitoring

The "performance monitor" operation toggles the PMON# pin, and is primarily used for performance monitoring and/or debugging. The PMON# function is available only when the ISA or PCI host bus is selected.

3.4 Barrel Shifter

The barrel shifter performs a single-cycle. n-bit shift, left or right. It operates independently of the ALU and affects none of the condition flags. Table 3-3 describes the three types of shifts that can be performed. Each type of shift has an associated register, which is named for the shift operation. The A bus registers shift-r, shift-rl, and shift-l specify the type and length of a shift.

Table 3-3. Barrel Shifter Operations and Registers

Shift Operation (and Register Name)	Description
shift-r	Right shift with sign extension
snift-ri	Right shift with 'O' fill
shift-i	Left shift with '0' fill
shift	Stores the result of the shift

To invoke a shift operation, write the 4-bit shift amount to the register named for the desired shift. The operand is taken from the B bus, and the result is stored in the Shifter Result Register, shift. As in the case of the ALU Result Register, the value in shift can be read onto the A bus or B bus in the instruction cycle that follows.

3.5 Data RAM

The Data RAM (DRAM) holds 512. 16-bit words. which are accessed via four pointers: dramN. N=1-4. To access a specific location in DRAM, the microcode routine loads a pointer with the address to be accessed and then performs a read or write via the same pointer. The pointer can optionally be post-incremented or post-decremented in parallel with the DRAM access.

The four pointers, dram1-dram4, can be written and read via the A bus. When a DRAM pointer, which is only 9 bits wide, is read onto the A bus, the upper seven bits of the A bus are cleared.

NOTE

The width of the DRAM pointers may change in later versions of the 82750PD. Software should not rely on the width of a pointer to, for example, mask the upper seven bits of a value to '0'.

All four pointers can be used to read or write the Data RAM from either the A bus or B bus. Only one DRAM access can be performed in a single clock cycle.

The notation for a DRAM access is (using C-like language syntax) *dram1. The * means "the value pointed to by". As another example, *dram3++ means access the Data RAM using the pointer dram3 and then increment dram3. The symbol -- in place of the ++ indicates autodecrement.

3.6 Loop Counters

Microcode programs can use two 16-bit loop counters. cnt and cnt2, for automatically counting iterations of a microcode loop. In parallel with other operations performed in an instruction, the 82750PD core can decrement either loop counter, and execute a conditional branch based on the loop counter value being equal or not equal to '0'.

Refer to Section 4.3 for descriptions of the following microcode bits and flags associated with the loop counters:

- LC, the Loop Counter Select bit
- CNT, the Decrement Loop Counter bit
- LCNTZ, the Loop Counter Zero value in the Condition Flag Select (CFSEL) field of the microcode instruction

3-9

The two loop counters (cnt and cnt2) can be read or written on the A bus and, therefore, can be used for variable storage when they not serving as loop counters. You can also write to and decrement a loop counter in the same instruction cycle by specifying the counter as A DEST and setting the CNT bit. The value of the counter at the start of the next cycle is the newly loaded value of the counter minus one. Note that the LC microcode bit does not affect the loop counter that is written or read over the A bus, because each loop counter is separately addressable as an A bus source or destination.

3.7 Microcode RAM

The 82750PD executes instructions stored in Microcode RAM (MRAM), which is inside the core. The MRAM holds 512 48-bit instructions. To start the microcode processor, the host CPU normally loads a microcode program into the MRAM, points the program counter, pc, to the start of the program, and then clears the HALT bit in the ccontrol register. The microcode processor can also load its own MRAM to overlay new routines. Table 3-4 lists the registers associated with the microcode RAM.

Table 3-4. Microcode RAM Registers

Register Mnemonic	Register Name	Description
mcode1 – mcode3	Microcode Instruction Register 1–3	mcode1-mcode3 are loaded with the three words of a 48-bit instruction to be written to MRAM
maddr	Microcode Address Register	A pointer to locations in microcode RAM
рс	Program Counter	A pointer to the next microcode instruction to be executed

3-10

ATI017801

w with the fire

The host CPU can write an instruction to MRAM by executing the following steps:

- 1. Load the three registers mcode1-mcode3 with the three 16-bit words of the instruction (the most significant word goes into mcode1). The order of loading does not matter.
- 2. Load *maddr* with the address where the instruction is to be written. This initiates the write to microcode RAM.

The host CPU can read the MRAM with this sequence:

- Load the pc with the address of the instruction to be read.
- 2. Read the three 16-bit words of the instruction from the *mcode1-mcode3* registers.

Normally, this would be done by the host CPU while the 82750PD is halted.

The mcode1-mcode3 registers used in a read instruction and the write mcode1-mcode3 registers used in a write instruction are, in fact, different registers. Writing values into mcode1-mcode3 and then reading the values of mcode1-mcode3 does not return the same values as just written. The read registers hold the instructions stored in the instruction latch (the instruction to be executed). The write registers hold an instruction that is about to be written into microcode RAM.

After writing to maddr to load an instruction into microcode RAM, a one-cycle freeze occurs. During the freeze, the instruction is written to microcode RAM. The instruction following the write to maddr can either jump to the address just loaded or start loading the mcode1-mcode3 registers with the next instruction to be written.

The 82750PD requires at least one instruction between the write to *maddr* and the execution of the instruction that is loaded by the write to *maddr*. See Section C.3 for an illustrative example of code

When the host CPU writes a microcode-RAM address to the pc, the instruction at that address is loaded into the mcode1-mcode3 registers. When the microcode processor is released from its Halt condition, this is the first instruction executed.

When the host CPU reads the pc, the result returned is the address of the instruction that is executed when Halt is released, that is, the address of the instruction held in the mcode 1-mcode 3 registers.

3.8 Horizontal Line Counter

The 12-bit Horizontal Line Counter, lcnt. is updated by VBUS codes. (See Section 5.7 for the generation of VBUS codes.) The counter is cleared by a VODD code and incremented by an HLINE code. A value can also be written into the Horizontal Line Counter by microcode or the host. The upper four bits of lcnt always read '0's.

3.9 Field Counter

The 4-bit Field Counter, fcnt, is updated by VBUS codes. The counter is incremented each time a VODD code or VEVEN code is received. When the field counter is read, the upper 12 bits read '0's. This counter is not initialized by reset.

3-12

ATI017803

ويريونه

3.10 Core Input FIFOs

The two Core Input FIFOs are a pair of high-speed input channels that read data from the SFB via the internal bus. These FIFOs are distinct from the 82750PD host-SFB FIFOs, which reside outside the 82750PD core and transfer data between the SFB and the host (see Section 5.6).

(The Core Input FIFOs can read from any address on the internal bus that is accessible from the 82750PD — not just the SFBI. However, the description of the FIFO operations is simplified by assuming that the FIFO is reading the SFB.)

The two input FIFOs are independent. They can read the SFB in bytes, beginning with any byte, or in words, beginning on any word boundary. To speed the data input process, you can program the FIFO to automatically increment or decrement the SFB address and to increment/decrement by words or dwords. To obtain the requested bytes/words, the FIFO fetches the data in quad words (64 bits), which are then read by the microcode. The FIFO's double buffered design enables it to fetch the next quad word while the microcode reads the bytes/words from the current quad word in the FIFO. (This quad-word fetching operation is transparent to the programmer.)

A FIFO is denoted by FIFOn, where n=1 or 2. Table 3-5 lists the registers associated with the Core Input FIFOs.

3-13

Table 3-5. Core Input FIFO Registers

Register Mnemonic	Register Name	Description
in 1-lo, in 2-lo	Core Input FIFOn Low Address	Specifies bits 15—0 of the address in 82750PD memory address space
ın1-hi, in2-hi	Core Input FIFOn High Address	Specifies bits 31–16 of the address in 82750PD memory address space
ın1-c, ın2-c	Core Input FIFOn Control	Each of these registers controls its corresponding FIFO.
*in1, *in2	Core Input FIFOn Data	Reading this register reads the (byte-word) tetched over the internal bus by the Core Input FIFO
arcbuf	Circular Buffer	Specifies the size of the circular buffer and forces the associated address bit low

InN-lo, InN-hi Table 3-6 shows the form of the control registers, in1-c, in2-c. The paragraphs to follow describe the register bits.

Table 3-6. Input FIFO Control Registers

Mnemonic: InN-c; N=1,2 Address: Core Register*

Access, n/v						TOT STENSOIC	
Bit No.	15-6	5	4	3	2	1	0
Name	RSVD	BY-32 MODE	CB	PF-OFF	AHOLD	DEC/ INC#	BYTE WORD#

* See Section 3 15 for core register addresses

WORD/BYTE (bit 0) (See also the BY-32 Mode bit.).

- 1 = Byte mode. The FIFO reads bytes. The high byte of *inN holds the value 00h.
- 0 = Word mode. The FIFO reads words beginning on any word boundary.

DEC/INC# (Decrement/Increment#, bit 1). This bit determines the order of reading bytes/words from the SFB, as shown below:

- 1 = Decrement mode. The FIFO reads from the most significant to the least significant byte or word.
- 0 = Increment mode. The FIFO reads from the least significant to the most significant byte or word.

AHOLD (Address Hold, bit 2) Setting this bit disables automatic incrementing/decrementing of inN-lo and inN-hi, and prevents the Core Input FIFOs from double buffering the read data. At the end of an internal bus cycle the FIFO is updated with 64 bits of data. The Core Input FIFO does not issue another read request to the internal bus until there is a write to inN-lo or a roll-over/roll-under read access of the Core Input FIFO. If there is a write to inN-lo, the FIFO then fetches data from the new location. If a roll-over/roll-under occurs, a memory request is issued to fetch data from the unchanged address.

PF-OFF (Prefetch Off, bit 3). Setting this bit causes the Core Input FIFO to wait for a request to fetch a new quad word over the internal bus.

- 1 = Prefetch-Off mode. The FIFO prefetches the first two quad words to fill its buffer (when started at a new address location) but thereafter fetches a new quad word only when there is a read request for a byte/word in an unfetched quad word.
- 0 = Prefetch-On mode. The Core Input FIFO prefetches successive quad words as necessary to keep its buffer full. Fetch addresses ascend or descend according to the INC/DEC bit.

CB (Circular Buffer, bit 4). Setting this bit enables the creation of a circular buffer in the SFB. The appropriate address bit on the internal bus (depending on the size of the circular buffer to be created) is cleared. The register pointers remain

unchanged. The size of the circular buffer can be 64 Kbytes. 128 Kbytes, or 256 Kbytes, as determined by bits 2-0 of the Circular Buffer Register. *circular* (shown in Table 3-7).

Table 3-7. Circular Buffer Register (circular)

Bits 2-0	Buffer Size	Effect on 82750PD Internal Address Bus (For Function Enabled)
000	Disabled	None
100	256 Kbytes	Internal Address 18 forced to 0
010	128 Kbytes	Internal Address 17 forced to 0
001	64 Kbytes	internal Address 16 forced to 0

BY-32 MODE (bit 5). This bit is a "don't care" if prefetches are disabled (PF-OFF = 1).

- 1 = The SFB pointer increments or decrements by four bytes.
- 0 = The SFB pointer increments or decrements by two bytes.

The WORD/BYTE bit and the PF-OFF bit determine which bytes or words are read when the SFB address is automatically incremented/decremented.

Figure 3-2 shows the data words obtained for the four combinations of the WORD/BYTE and BY-32 MODE bits.

WORD/BYTE = 0	WORD/BYTE = 0
BY-32 MODE = 0	BY-32 MODE = 1
Begin at byte 1. "00h" BYTE 1 "00h" BYTE 3 "00h" BYTE 5	Begin at byte 1. "00h" BYTE 1 "00h" BYTE 5 "00h" BYTE 9
WORD/BYTE = 1	WORD/BYTE = 1
BY-32 MODE = 0	BY-32 MODE = 1
Begin at byte 0. BYTE 1 BYTE 0 BYTE 3 BYTE 2 BYTE 5 BYTE 4	BYTE 1 BYTE 0 BYTE 5 BYTE 4 BYTE 9 BYTE 8

Figure 3-2. Input FIFO Modes for Reading Data

The following steps are the standard sequence for initializing a Core Input FIFO and beginning a read operation:

- 1. Write to the control register (inN-c).
- 2. Using a single instruction, write to the high address register (inN-hi) and low address register (inN-lo). (After this write the FIFO begins fetching bytes or words from the SFB via the internal bus.)
- 3. Read a byte or word from *inN.

Successive reads from *inN read sequential bytes or words from the SFB. Writing to the control register each time the FIFO is started at a new address is unnecessary, except to change the FIFO mode. Further, if the new address is within the same 64-Kbyte page of the SFB, only the lo-address need

2-17

be written to start the FIFO reading from the new address. Any old data in the FIFO is lost.

If microcode attempts to read a value from an empty Core Input FIFO, the processor is frozen prior to the execution of the next instruction. It remains frozen until the FIFO control logic has fetched another dword over the internal bus and extracted the next value. At this point the processor is released, and the instruction that reads the value is executed. When the processor is frozen and waiting for an empty FIFO, that FIFO's SFB access priority is raised above all other FIFO's.

3.11 Core Output FIFOs

The Core Output FIFOs, are high-speed output channels for writing data over the internal bus to the SFB. These FIFOs are distinct from the 82750PD's host-SFB FIFOs, which are external to the 82750PD core and transfer data between the SFB and the host (see Section 5.6).

The Core Output FIFOs operate independently, each with its own set of registers. The FIFOs can write to any address on the internal bus that is accessible to the 82750PD. To simplify the discussion, we assume that the FIFOs are writing to the SFB.

Data can be written to the SFB in bytes/words beginning on any byte/word boundary, respectively. To speed the data input process, you can program the FIFO to automatically increment or decrement the SFB address by words or dwords. The FIFO collects the bytes/words written to it and writes them to the SFB in quad words. The FIFO's double buffered design permits the microcode to write the bytes/words of one quad word while the FIFO writes the previous quad word to the SFB. (The actual

process of assembling the quad words and wnting to the SFB is transparent to the programmer.)

Table 3-8 describes briefly the registers associated with the Core Output FIFOs.

Table 3-8. Output FIFO Registers

Register Mnemonic	Register Name	Description
out1+lo, out2+ lo	Output FIFOn Low Address	Specifies bits 15–0 of the address in the 82750PD memory address space
out1-hi, out2- hi	Output FIFOn High Address	Specifies bits 31–16 of the address in the 82750PD memory address space
out1-c, out2- c	Output FIFOn Control	Each of these registers controls its associated FIFO
*out1, *out2	Output FIFOn Data	A byte-word written to this register is written to the internal bus by the FIFO
out1++, out2++	Output FIFOn Skip Data	A byte/word written to this register is skipped by the FIFO. It is not written to the 82750PD address space.
arcbul	Circutar Buffer	Specifies the size of the circular buffer and forces the associated address pin low

Each Core Output FIFO has its own control register. out1-c or out2-c. which is described in Table 3-9 and the following bit descriptions..

Table 3-9. Output FIFO Control Registers

Mnemonic: outN-c; N=1,2
Access: R/W
Access: R/W
Access: R/W
Access: R/W
Access: R/W

Bit No.	15-6	5	4	3	2	1	0
Name	RSVD	BY-32 MODE	1	FORCE LSB VALUE	AHOLD	DEC/	BYTE WORD#

^{*} See Section 3.15 for core register addresses.

BYTE/WORD# (bit 0). This bit determines whether the FIFO writes words or bytes to the SFB. (See also the BY-32 Mode bit.).

- 1 = Byte mode. The FIFO writes bytes to the SFB on any byte boundary. The low byte written to "out" is written to the byte address in the SFB. The high byte written to "out" is ignored, and the corresponding byte in the SFB is unchanged.
- 0 = Word mode. The FIFO writes word-aligned words to the SFB (the address of the low byte must be even).

DEC/INC# (Decrement/Increment, bit 1). This bit determines the order in which bytes or words are written to the SFB.

- 1 = Decrement mode. The FIFO writes from the most significant to the least significant byte or word.
- 0 = Increment mode. The FIFO writes from the least significant to the most significant byte or word.

AHOLD (Address Hold, bit 2). Setting this bit disables automatic incrementing/decrementing of outN-hi and outN-lo. The FIFO continues to write to a single quad word in the SFB.

Force LSB Value (bit 3). The value of this bit is the value of the LSB written to each byte, provided that the FORCE LSB ENABLE bit is set.

Force LSB Enable, (bit 4). Setting this bit forces the LSB of each byte written to the SFB to be a '1' or a '0', as specified by the FORCE LSB VALUE bit.

BY-32 MODE (bit 5). This bit affects operations only for AHOLD = 0.

- 1 = The SFB pointer increments or decrements by four bytes.
- 0 = The SFB pointer increments or decrements by two bytes.

Figure 3-3 shows the data words written to the SFE for the four combinations of the WORD/BYTE and BY-32 MODE bits. These sequences are the same as those for the core input FIFO (see Figure 3-3).

Figure 3-3. Output FIFO Modes for Writing Data

In BY-32 MODE the pointer increments or decrements by four bytes, regardless of whether the FIFO is in 8-bit pixel mode (WORD/BYTE = 0) or 16-bit pixel mode (WORD/BYTE = 1). BY-32 MODE facilitates writing microcode that operates on one component of an image with 32 bits per pixel. The bytes or words that are skipped are unchanged in the SFB.

The standard sequence for initializing a Core Output FIFO comprises the following steps:

1. Write to the control register (outN-c)

3-21

- 2. Write to the low address register (outN-lo)
- 3. Write to the high address register (outN-hi)
- 4. Write a series of bytes or words to *outN.

There must be one instruction between the write to the Core Output FIFO's low address outN-lo and the first write to *outN. Therefore, it is recommended that outN-lo be written before outN-hi as in the sequence above. Note that this is the reverse of the order for the Input FIFOs.

After writing one or more bytes or words to "our". and before changing the SFB address, always flush any data that is not yet written to the SFB (i.e., data remaining in "our". A flush is scheduled by any write to the control register (our".-c). To execute the flush, load any valid address into our".-lo. The data is lost if you change our".-lo while data is in the FIFO.

When pointing to a new SFB address that is in the same 64-Kbyte page of the SFB, you need write only the low address to outN-lo. However, it is still necessary to have one additional instruction before the first write to *outN.

When writing bytes or words to the SFB through a Core Output FIFO, you can skip a byte or word by writing to outN++ instead of *outN. When the values are written to the SFB, any byte or word that was skipped retains its original value in the SFB. This can be used when writing a series of pixels, some of which are "transparent," allowing whatever was behind them to show through.

If the microcode routine attempts to write a value to a full Core Output FIFO, the processor is frozen prior to the execution of the write instruction. The processor remains frozen until the FIFO has a chance to write one of the buffered quad words to

the SFB. At that point the processor is released from the frozen state, and the write instruction is executed. When the processor is frozen and waiting for a particular FIFO that is full, that FIFO's SFE access priority is raised above all other FIFOs.

3.12 Statistical Decoder

The Statistical Decoder (or Huffman decoder) is a specialized input channel that can read a variable-length bit sequence over the 82750PD internal bus and convert it to a fixed-length bit sequence that is read by the microcode processor. This section discusses the variable-length code, the variable-to-fixed conversion process, and how to control this process with the Statistical Decoder Control Register.

Table 3-10 lists the registers associated with the Statistical Decoder. Further descriptions are given in this section.

Table 3-10. Registers Associated with the Statistical Decoder

Register Mnemonic	Register Name	Description
stat-c	Decoder Control	Specifies the decoding mode, as well as modes for reading and writing the code description table
stat-ram	Decoder Table Write	Writing data to this register stores the data in the code description table
*sta!	Decoder Read	Reading this register reads data from the code description table
'state	Decoder Hold Read	Reading from this register instead of "stat prevents the decoder from automatically starting to decode the next symbol
\$121-10	Decoder SFB Pointer Low	Least significant byte of the decoder's pointer to the SFB
stat-hi	De∞der SFB Pointer High	Most significant byte of the decoder's pointer to the SFB

3.12.1 Statistical Codes

In image compression, as well as in other applications such as text compression, certain data values occur more frequently than others. A means of compressing this data is to use fewer bits to encode more frequently occurring values and more bits to encode less frequently occurring values. This type of encoding results in a variable-length sequence in which the length of a symbol (the group of bits used to encode a single value) can range, for example, from one to sixteen bits.

The statistical code that the decoder can interpret has one of two forms, which are illustrated by the examples in Table 3-11.

Table 3-11. Codes that Can Be Read by the Statistical Decoder

Example of Form A		
Ox		
10x		
110xxx		
1110xxxxx (5 'x's)		
•		
•		
•		
1111111110xxxxx (8 '1's, 6 'x's)		
11111111110xxxxx (9 '1's 6 'x's)		

	Example of Form B
1x	
01	x
00	txx
00	01xxxx (5 'x's)
	•
	•
:	•
00	0000001xxxxxx (8 '0's 6 'x's)
00	00000001xxxxxx (9 0's 6 x's

Each symbol of a given length (one per line, as in the examples shown in Table 3-11) comprises a run-in sequence followed by some number of x-bits. There are two forms of the run-in sequence. In Form A the run-in sequence consists of zero or more '1's followed by a '0'. In Form B the run-in sequence consists of zero or more '0's followed by a '1'.

The run-in sequence is defined as a senes of zero or more '1's followed by a '0' (Form A) or zero or more '0's followed by a '1' (Form B). The remainder of this description uses examples of form A. A bit in the

3-24

decoder control register (discussed later) selects the polarity of the run-in sequence bits.

Each x-bit can be '0' or '1'. In this example of Form A there are two symbols of length two: 00 and 01. In general, the number of x-bits on a line in Table 3-11 can be independently set to a value from zero to six. The goal, in general, is to have a few short codes and a larger number of long codes. Thus, codes with fewer run-in bits typically have fewer x's following. However, this is not a hardware constraint.

Code Description Table

A code of this form is completely described by a code description table. For each length of run-in sequence, this table lists:

- R = the number of 'I's in the run-in sequence.
- x = the number of x-bits following the '0'.

The value of R is used as an index to the code description table. However, instead of storing x in the table, we store 2^{x} because it is easier to implement in logic.

For the example above, the corresponding code description table is shown in Table 3-12.

Table 3-12. Sample Code Description Tables

×	R	2 ^X (dec.)	2 ^X (bin.)
1	0	2	000 0010
1	1	2	000 0010
3	2	8	000 1000
5	3	32	010 0000
	•••		
6	7	64	100 0000

3-25

Note that the highest number of '1's in the run-in is seven. For symbols with more than seven '1's, the value of x and 2^x for seven '1's is used for all symbols having seven or more '1's in the run-in sequence. For example, in the code above a symbol with eight or more '1's in the run-in sequence has six x-bits following the '0', which is the same as for symbols having seven '1's.

For each different symbol, including all symbols of the same run-in length with different x-bit values, the decoder generates a unique fixed-length, 16-bit value. Some of the decoded values for the sample code given above are listed in Table 3-13.

Table 3-13. Decoded Values

Symbol*	Decoded Value
∞	0
01	1
10 <u>0</u>	2
101	3
110 <u>000</u>	4
110 <u>001</u>	5
110 <u>010</u>	6
•••	•••
110 <u>111</u>	11
111000000	12
•••	•••
1110 <u>11111</u>	43
•••	•••

The x-bits of the symbol are underlined for clarity.

E

The following steps comprise an algorithm for generating a decoded value from a symbol:

 All symbols of a given run-in length are assigned a base value B, which is given by the following formula:

 $B(R) = SUM[2^{X(r)}]$ with r = 0, 1, 2, ..., R-1

where x(r) corresponds to the x-value in the table entry corresponding to R = r (see Table 3-12).

2. The value corresponding to a particular symbol is equal to B plus the binary value of the x-bits in the symbol.

For example, in the above code:

B(0) = 0. (B(0) is always '0')

B(1) = 0 + 2 = 2

B(2) = 0 + 2 + 2 = 4

B(3) = 0 + 2 + 2 + 8 = 12

B(4) = 0 + 2 + 2 + 8 + 32 = 44

Note that a logical implementation of B(R) is easier as a summation of $2^{X(r)}$ than it would be for a summation of x(r). This is a reason for using 2^X in the code description table (Table 3-12).

Short Mode and End Mode

The implementation of this coding scheme in the 82750PD core can be enhanced by using two modifications, SHORT mode and END mode.

SHORT mode allows the decoder to be switched easily to a simpler code format without having to reload the code description table. In SHORT form all symbols have the same number of x-bits, as though all entries in the table had been filled with the same

value of 2^X . SHORT mode is invoked by setting the SHORT bit in the Statistical Decode Control Register (discussed in the next section), and the value of 2^X is placed in the SVAL field of this register (see Table 3-17 below).

END mode consists of dropping the '0' at the end of the longest run-in sequence. For example, consider the code:

0 10x 110x

END mode shortens the last symbol to 11x instead of 110x. The trailing '0' is not required because the decoder is told that the maximum length of a run-in is two '1's. The resulting symbol set and corresponding decoded values are given in Table 3-14

Table 3-14. Decoded Values Using END Mode

Symbol	Decoded Value
0	0
100	1
101	2
110	3
111	4

In END Mode the number of x-bits must be constant for all symbols of the same run-in length. Therefore a code such as the following is **incorrect**:

3-28

ATI017819

. Tre.

0 10xx 11xxx

The last symbol (11xxx in this case) uses the same table entry for 2^X as the next-to-last symbol (10xx) and, therefore, the last symbol should be 11xx.

The maximum length of the run-in sequence in END mode is specified by placing an END flag in the code description table. For example, a code and the corresponding table are shown in Table 3-15.

Table 3-15. END Flag Decoded Values

		Table Entries				
Code	Index	END bit	2 ^X			
0	0	0	0			
10xx	1	0	_ 4			
110xxx	2	1	8			
111xxx	3	-				
	4	-	-			
	5	-				
	6					
	7	_	_			

The hyphens indicate that those table entries are not used to decode this code. Note that the symbol $111\infty x$ has three x-bits because of the value of 2^X in Index 2: it is not based on the 2^X value in Index 3.

SHORT mode and END mode can be invoked simultaneously, resulting in a code such as:

0x 10x 110x 111x

3-29

ATI017820

mist this -

SHORT mode provides a value of 2^{X} equal to 2 (for one x-bit in each symbol). The END bit is set for Index = 2.

The Statistical Decoder can read packed binary fields, with one to seven bits per field, by:

- · setting the END bit in Index 0, and
- programming the x value to be N-1, where N is the number of bits per field.

For example, packed three-bit fields could be decoded as shown in Table 3-16.

Table 3-16. Packed 3-bit Field Decoded Values

	Table Entries					
Code	Index	END bit	2 ^X			
0xx	0	1	4 (N = 3 so x = 2)			
1xx	1					
	2	-	-			
	3		-			
	4	_	_			
	5	-	_			
	6	_	_			
	7	_	-			

The order of the unpacked bits is the reverse of the order in the SFB. For example, if three-bit values are packed in the SFB, the pattern 110 in the SFB is read from right to left and gives an unpacked or decoded value of 3.

3.12.2 Statistical Decoder Control Register

Table 3-17 describes the Statistical Decoder Control Register (stat-c), which specifies the decoding mode

3-30

ATIC17821

as well as modes for reading and writing the code description table.

Table 3-17. Statistical Decoder Control Register

Mnemonic:	stat-c		Address: Care Register*	
Access: R/	w		Reset State: Not available.	
Bit No.	15_	14	13	12-8
Name	POL	RSVD	СВ	SVAL

^{*} See Section 3.15 for core register addresses.

Bit No.	7	6	5	4	3	2-0
Name	SHORT	END	TEST	WRITE	RSVD*	STNCX

STNDX (Starting Index, bits 2–0). These bits specify the starting index value of the code description table. The table access begins at this value.

WRITE (bit 4) and **TEST** (bit 5). These bits control reads and writes to the code description table, as shown in Table 3-18.

Table 3-18. Control Bits for the Code Description Table.

TEST	WRITE	Function
0	0	After writing new values to the code description table, clear WRITE and TEST to activate the new values
0	1	Enables a write to the code description table
1	0	Enables a read of the code description table
1	1	Reserved

END (bit 6). Setting this bit invokes END mode. The '1'/'0' trailing the run-in sequence is dropped from the code.

SHORT (bit 7). Setting this bit invokes SHORT mode. The values of 2^X are the same for every entry in the code description table.

E

E

SVAL (Short Value, bits 12–8) If the SHORT bit is set, these bits specify the value of 2^X that is used in the code description table in SHORT mode.

CB (Circular Buffer, bit 13) Setting this bit enables the creation of circular buffers of size 64 Kbytes, 128 Kbytes, or 256 Kbytes. Table 3-7 shows the sizes specified by the *circbuf* register.

POL (Polarity, bit 15). This bit specifies the polarity of the bits in the run-in sequence.

3.12.3 Writing and Reading the Code Description Table

To write to the code description table, execute the following sequence:

- 1. Set the WRITE bit (bit 4) to enable writes to the table.
- 2. Set up a pointer to point to the table index where you want to write.
- 3. Write the table entry to the stat-ram register. Each 8-bit entry consists of the END bit in bit 7 and the value of 2^X in bits 6-0. Each write to stat-ram increments the index by one. The index wraps around from seven to zero.

To read the code description table, execute the following sequence.

- 1. Set the TEST bit (bit4) of the c-star register.
- 2. Read the table entries from the decoder's Data Register (*stat). Reads and writes always start at table entry zero.

3-32

ATI017923

- 'm 1.5-5-2." ."

NOTE:

When reading the code description table, it is necessary to wait one instruction time between the write to stat-c and the first read from the *stat register.

The example below illustrates the insertion of one instruction time in the code for reading the table entries in the first eight locations of data RAM.

dram3 = 0 stat-c = 0x20 cnt = 8 LOOP:

. *dram3++ = *stat cnt-jcp LOOP

Setting the END bit (bit 6) in stat-c enables END mode. Setting the SHORT bit enables SHORT mode. When the decoder is in SHORT mode, the five SVAL bits (bits 12-8) in the CONTROL register are the value of $2^{\rm X}$ to be used in all table entries.

The POL bit (bit15) determines the polarity of the bits in the run-in sequence. Setting POL selects a run-in sequence of '1's ending in '0' (e.g., 1110xxx). Clearing POL selects a run-in sequence of '0's ending in '1' (e.g., 0001xxx).

To set up a circular buffer in the SFB, set the CB bit (bit 13). Then, bits 2-0 of the circular buffer register determine the buffer size (as shown in Table 3-7) and the external address pin that is forced to '0'. (Register pointer—unchanged.).

The decoding parameters can be changed between symbols by writing to the stat-c register and, if necessary, writing new values into the code description table. The procedure for changing the code type or decode mode is to read the last value from the decoder prior to the change using *star*

instead of "stat. This keeps the decoder from automatically starting to decode the next symbol. At this point, the code description table and the SHORT and END mode bits can be changed as desired. The next time the stat-c register is written with both TEST = 0 and WRITE = 0, the decoder begins to decode the next symbol using the new parameters.

The Statistical Decoder buffers one quad word that is read over the 82750PD internal bus. As a result, the decoding of bits in one 32-bit word and the fetch of the next 32-bit word may overlap. As with the core FIFOs, the decoder has an associated SFB pointer that points to the location in the SFB from which it is reading data. This pointer increments twice each time a new quad word is read; there is no decrement mode. When the least significant word of the decoder's pointer (stat-lo) is written, any data that had previously been prefetched over the 82750PD internal bus is ignored, and the decoder fetches one quad word starting from this new location.

The 82750PD core assumes that the statistically encoded bit-stream in the SFB starts with the least significant bit of a *double* word. That is, the two LSBs of the address written to *start-lo* are ignored.

The Statistical Decoder decodes data at a rate of one bit per clock cycle. To a first approximation, the decode time for an N-bit symbol is:

decode time = N + 1 (clock cycles)

Since decoding data from one quad word takes at least 64 clock cycles, which is the time required for eight quad word reads over the 82750PD internal bus, the decoder should rarely run out of data. Therefore, the above estimate of the decoding rate should be accurate.

3-34

The Statistical Decoder always begins reading the bit-stream from the least significant bit of the dword at the starting location in the SFB. That is, the decoder, unlike the core FIFOs, can start only on a dword boundary. The bit stream moves from the least significant bit to the most significant bit of a dword and then to the least significant bit of the next dword (at the next higher address location). For the x-bits, the first x-bit read from the bit-stream becomes the most significant bit of the x-bit field when it is interpreted as a binary number.

The example below shows a code definition, a bitstream stored in the SFB, and the resulting decoded values. The code definition and the range of values for each symbol are indicated in Table 3-19.

Table 3-19. SFB Bit-Stream Decode Values

Symbol	Values	Comments
0		
10x	1.2	100 = 1, 101 = 2
110xx	3-6	11000 = 3 11011 = 6
1110xxx	7-14	1110000 = 7 1110111 = 14

Decoding starts at address 0 in this example. The double words at addresses 0 and 1 are:

0: 0AC98E14Dh 1: 0372E74CBh

The bit-stream in the SFB, with colons dividing the symbols (read from right to left starting at LSB of address 0), is shown in Figure 3-4. Table 3-20 lists the symbols in the order they are encountered in the bit stream, and the corresponding decoded values.

Figure 3-4. SFB Bit-Stream Decoding Addresses

Table 3-20. Decoding Symbols

Symbol	Value	Comments
101	2	Starts at LSB Address 0 scanning left
100	1	
101	2	
0	0	
0	0	
0	0	
0	0	
1110001	88	
100	11	
100	1	
11010	5	
1110100	11	Spans 1st and 2nd dword
11001	4	
0	0	
1110011	10	
101	2	
0	0	
0	0	
1110110	13	
•••	•••	

3.13 Pixel Interpolator

The Pixel Interpolator performs a bilinear interpolation on four 8-bit pixels to generate, in effect, a pixel shifted by a fraction of a pixel position Figure 3-5 shows four pixels with values A. B. C. and D and the interpolated pixel with value W. The horizontal and vertical weightings are h and v. respectively. The interpolated value, ignoring any quantization effects, is then given by:

$$W = A (1 - h)(1 - v) + B h (1 - v) + C (1 - h) v + D h v$$

The values of h and v are even multiples of 1/16. In Figure 3-5 the horizontal weighting is 6/16 and the vertical weighting is 10/16.

Figure 3-5. Pixel Interpolation

3-37

The Pixel Interpolator can operate in two modes: Sequential-2D and Random-2D. Sequential-2D mode is used for motion video decoding and when an array of pixels is interpolated with a common weighting. Random-2D mode is used either when the pixel arrays to be interpolated are not adjacent pixels in two rows or when the weight is changed for each interpolation. ("Random" is used here to mean non-sequential.)

3.13.1 Sequential Interpolation

Figure 3-6 illustrates Sequential-2D interpolation. A single row of pixels (W, X, Y, Z, ...) is interpolated using two rows from the onginal (source) bitmap. The h and v weightings are constant for all of the interpolated pixels.

A		В		Ε		F		1	First input row
	W		X		Υ		Z		Interpolated row
C		D		G		Н		Κ	Second Input row

Figure 3-6. Sequential-2D Pixel Interpolation

Source pixels are written to the interpolator as pixel pairs. In Figure 3-6, the pixel pair BA would be written first, followed by the pixel pair DC. (It may seem more natural to refer to the pixel pair as AB, but because of the way 8-bit pixels are arranged in 16-bit words in the SFB, the left-most pixel on the screen is in the least significant byte position. For example, if pixel A had a hex value of 0AAh, and B had a value of 0BBh, the value of the 16-bit word containing pixels A and B would be 0BBAAh.)

Ė

The Pixel Interpolator is pipelined and requires a startup sequence to fill the pipeline. Once filled, the interpolator generates a new interpolated pixel every two clock cycles in Sequential-2D mode.

After the pairs BA and DC have been written, two pixels are read from the interpolator. Because the pipeline is not yet full, these pixels are read and discarded. This loop of writing two pixel pairs and reading two output pixels continues four times. The two pixels that are read the fourth time are the first two valid output pixels: W and X. The interpolator may also collect output (interpolated) pixels into a 16-bit pixel pair XW. There are two possible phase relationships between the input pixel pairs and output pixels pairs (either X and W paired or Y and X paired). Either phase can be specified for the interpolator.

3.13.2 Random Interpolation

Random-2D interpolation is used either when the pixels to be interpolated are not in horizontal rows or when the weight is changed for each interpolated pixel. In Random-2D mode, the processing for successive interpolated pixels cannot take advantage of pipelining: each pixel is considered to be the first pixel in a Sequential-2D interpolation. The weight and the two input pixel pairs are written into the interpolator. After waiting at least ten clock cycles (in standard mode) or six clock cycles (in fast mode), the single interpolated pixel can be read. Then, the next two input pixel pairs and, if necessary, the new weight value, are written. Ten clock cycles later the next interpolated pixel can be read.

3.13.3 Pixel Interpolator Control

Table 3-21 shows the Pixel Interpolator Control Register (pixint-c). Following paragraphs discuss the bit combinations for different modes of interpolation.

Table 3-21. Pixel Interpolator Control Register

Mnemonic: pixint-c Address: Core Register* Access: R'W Reset State: Not available. Bit No. 15 14 13 12 11 Name RSVD PIPELINING PHASE RSVD PAIRING RESET MODE SELECT

* See Section 3.15 for core register addresses

Bit No.	7-4	3-0
Name	VERTICAL WEIGHT	HORIZ WEIGHT

HORIZ WEIGHT (Horizontal Weighting, h, bits 3–0). VERTICAL WEIGHT (Vertical Weighting, v, bits 7–4). These bits contain the horizontal and vertical weightings, expressed as the numerator of a fraction that is an even multiple of 1/16, i.e., h and v must be chosen from the following values: 0, 2, 4, 6, 14.

MODE SELECT (Mode Selection, bits 9–8). These bits select the operating mode, as shown in Table 3-22. Use the Random-2D mode if the pixels are not in horizontal rows or if the h and v weightings are not constant over all pixels. Use the Sequential-2D mode if the h and v weightings are constant for all interpolations.

Table 3-22. Interpolator Mode Selection

Bit 9	Bit 8	Operating Mode
0	0	Random-2D
0	1	Sequental-2D
1	0	Reserved
1	1	Reserved

Note: The interpolator must be reset (set the RESET bit) when switching modes.

RESET (Reset. bit 10). Setting this bit resets the Pixel Interpolator by flushing the source pixels stored in the interpolator. Set this bit when making a mode change (writing to the MODE SELECT bits.)

PAIRING (Pixel Pairing, bit 11). This bit determines whether the interpolator outputs a single pixel or a pair of pixels.

- 1 = The interpolator outputs 16-bit pixel pairs comprising adjacent pixels, provided that the MODE SELECT bits select Sequential-2D mode. When combined with the ALU's dualadd-with-saturate operation, this feature aids in motion video decoding by allowing two pixels to be processed during each cycle.
- 0 = The Pixel Interpolator outputs individual 8-bit pixels.

PHASE (Bitmap Phase, bit 13). This bit selects the phase (alignment) of the output pixel pairs relative to the input pixel pairs, as shown in Figure 3-7. (Recall that the pixel on the left is the least significant pixel of a pair. For example, A is the least significant pixel of the pair BA.

1 = Out of phase. The first pixel (W) is placed in the most significant byte of the first pixel pair: the least significant byte of the first pixel pair contains invalid data.

3-41

0 = In phase. The first two output pixels (W and X) are grouped as one 16-bit pair with the first pixel (W) in the least significant byte.

This bit also affects the pipeline delay (see the PIPELINING bit).

Figure 3-7. Pixel Pair Phases

PIPELINING. (Pipelining, bit 14). Setting this bit reduces the pipeline delay, which is determined by this bit and the PHASE bit, as shown in Table 3-23.

Setting the PIPELINING bit selects a faster mode, which has reduced pipeline delay compared to the standard pipelining mode (PIPELINING = 0).

Table 3-23. Pipeline Delay

PIPELINING (bit 14)	PHASE (bit 13)	Pipeline delay (in output pixels)
0	0	6
0	1	-
1	C	2
,	1	3

Changing the PAIRING bit (bit 11) from '0' (single pixels) to '1' (pixel pairs) does not change the amount of pixel delay, but half as many reads and writes are required to fill the pipeline because each read or write transfers two pixels. For example, in standard mode (PIPELINING = 0), with zero phase (PHASE = 0) and pair mode (PAIRING = 1), three indeterminate pixel pairs must be read before the first valid pixel pair is read. In the same case, but with the Phase bit = 1, the fourth pixel pair read contains one valid pixel and one indeterminate pixel, and the fifth pixel pair read contains two valid pixels.

3.14 Control, Status, and Interrupt Flag Registers

Three 82750PD core registers control and monitor the 82750PD interrupt and other core operations.

The 82750PD has four interrupt sources, which share a single interrupt line to the host CPU. Any one of the four sources (if enabled) can assert the single 82750PD interrupt. For convenience, we refer to the four interrupt sources as the four "82750PD interrupts," with the understanding that these are combined to form the single interrupt to the host.

In addition to the four 82750PD interrupts described in this section, there are meta-interrupts associated

with the SynchroLink. Meta-interrupts are described in Section 6.5. Section 5.7 describes the combined interrupt and meta-interrupt system and gives a procedure for setting up the 82750PD interrupt to the host.

This section describes the following three core registers:

- The Core Control Register (ccontrol, W/O) has bits for enabling the four 82750PD interrupts and bits to control other aspects of core operation.
- The Core Interrupt Flag Register (cintflag, R/O) has bits that indicate which interrupts are asserted.
- The Core Status Register (cstatus, R/O) has bits that reflect the states of the interrupt enabling bits in the ccontrol register and other status bits.

The next three subsections cover these registers individually. Section 3.14.4 discusses the four 82750PD interrupts and the functions of the registers in the interrupt system.

3.14.1 Core Control Register

Table 3-24 shows the Core Control Register (ccontrol). This write-only register has bits that control the operation of the core and bits that enable the 82750PD interrupt sources. Setting an enable bit (x_E) enables the corresponding interrupt condition to assert the 82750PD interrupt. Section 3.14.4 describes the individual interrupt sources.

3-44

Table 3-24. Core Control Register

Mnemoni	ic: econtrol	Byte Offset: 100h			
Access: W/O					Reset State: 01h
Bit No.	15	14	13	12	11-8
Name	CORE_EN	RSVD	PMON/FRZ	1.	RSVD

1	Bit No.	7	6	54	3	2	• 1	0
	Name	EFI_E	OFI_E	RSVD	VBI_E	MCINT_E	STEP	HALT

^{*} Bit 12 must be set when writing to this register

HALT (Halt, bit 0), STEP (Step, bit 1).

The combined values of the HALT and STEP bits command the core to run normally, to execute a single instruction, or to halt, as shown in Table 3-25. (Note that the CORE_EN bit must be set for the core to function in any of these modes.)

Table 3-25. Run, Step, and Halt Modes.

HALT	STEP	Mode
0	0	Core runs normally
0	1	Core runs normally
1	0	Core haits
1	1	Core executes one instruction and then haits

MCINT_E (Microcode Interrupt Enable, bit 2).

VBI_E (Vertical Blanking Interrupt Enable, bit 3).

OFI_E(Odd Field Interrupt Enable, bit 6),

EFI_E (Even Field Interrupt Enable, bit 7).

Setting one of these bits enables the corresponding interrupt condition to assert the 82750PD interrupt.

Only one enable bit of VBI_E, OFI_E, and EFI_E should be set at a time. Section 3.14.4 has a further discussion of these bits.

1. 10 日間に

PMON/FRZ (Performance Monitor/Freeze, bit 13). This bit determines which output signal is on the PMFRZ# pin. This bit is functional only for ISA and PCI buses.

- 1 = Output signal FRZ# is on PMFRZ# pin.
- 0 = Output signal PMON# is on PMFRZ# pin.

CORE_EN (Core Enable, bit 15). This bit must be set to enable the core to run in any of the modes as determined by the HALT and STEP bits.

3.14.2 Core Interrupt Flag Register

The Core Interrupt Flag Register (cintflag) has a flag bit for each of the four interrupt sources in the 82750PD core (see Table 3-26). A flag bit is set when the interrupt condition is detected (regardless of the state of the corresponding interrupt Enable bit in the ccontrol register). Reading the cintflag register clears all of the flags. If the cintflag register is read and an interrupt condition is detected during the same cycle, the flag bit corresponding to that interrupt condition is set. This new interrupt condition is then seen by the host processor when it next reads the cintflag register. The flag ensures that an interrupt condition is not lost if it occurs at the same cycle that the cintflag register is read (and reset). In addition, the microcode interrupt source has an overflow flag (MCINTO_F) that is set if more than one microcode interrupt condition has occurred since the cintflag register was last read. Further descriptions of these bits are in Section 3.14.4.

3-46

ATI017837

e gentle i e

Table 3-26. Core Interrupt Flag Register

Mnemonic: cintilag

Byte Offset: 100h
Access: R/O

Reset State: 1FFh

ACCESS: F	ACCess: R/O						Reset State: 1FFn		
Bit No.	15	14	13	12	11	10	9	8	
Name	RSVD	VBI_F	MCINT_F	RSVD	MCINTO_F	OFI_F	EFI_F	RSVD	

Bit No.	70
Name	RSVD

MCINT_F (Microcode Interrupt Flag, bit 13).

VBI_F (Vertical Blanking Interrupt Flag, bit 14).

OFI_F(Odd Field Interrupt Flag, bit 10).

EFI_F (Even Field Interrupt Flag, bit 9).

Any bit in this group is set when its corresponding interrupt condition is detected, regardless of the state of the enable bit in the ccontrol register.

3.14.3 Core Status Register

The 82750PD Core Status Register (cstatus) provides status information on the 82750PD core (see Table 3-27). Four of the bits (MCINT_S, VBI_S, OF_S, and EF_S) reflect the values of the corresponding ccontrol register bits that enable the interrupt sources. Note, however, that the bit positions and bit ordering are not the same as in the ccontrol register.

Table 3-27. Core Status Register

 Mnemonic: cstatus
 Byte Offset: 102

 Access: R/O
 Reset State:1FFh

 Bit No.
 15
 14
 13–12
 11
 10
 9–8

 Name
 EFI_S
 OFI_S
 RSVD
 VBI_S
 MCINT_S
 RSVD

Bit No.	7-3	2	1	0
Name	RSVD	PMON	FREEZE	HALT_S

HALT_S (Halt Status, bit 0). This bit is set when the processor is halted due to at least one of the following conditions:

- The HALT bit in the ccontrol register is set.
- The HALT bit in the INT CFG register is set (see Section 5.8).
- The HALT# pin is asserted.

FREEZE (Freeze, bit 1). This bit is set when the processor is waiting for at least one of the following:

- The Statistical Decoder.
- Data to be fetched from the SFB for an input FIFO.
- Data from an output FIFO to be written to the SFB.

PMON (Performance Monitor, bit 2). This bit, which can be toggled by the ALU "performance monitor" operation, can be used to monitor microcode performance.

Bits 3-9. Reserved.

Constitute and a market in

E

MCINT_S (Microcode Interrupt Status, bit 10).

VBI_S (Vertical Blanking Interrupt Status, bit 11).

OFI_S (Odd Field Interrupt Status, bit 14).

EFI_S (Even Field Interrupt Status, bit 15).

Each of these bits reflects the state of its corresponding bit in the ccontrol register. Note that the corresponding bits in ccontrol have different bit numbers.

3.14.4 Summary of Interrupt Bits

Table 3-28 lists the four 82750PD interrupt conditions, the bit name prefixes for the interrupt conditions, and the bit numbers in the cintflag. ccontrol, and cstatus registers.

Hardware sets a flag bit in the cintflag register upon detection of the corresponding interrupt condition. Software sets an enable bit in the ccontrol register to enable the corresponding interrupt condition to actually assert the 82750PD interrupt. Only one of the VBUS code interrupts (VBI, OFI, EFI) should be enabled at a time.

Hardware sets a status bit in the cstatus register when the corresponding bit in the ccontrol register is set by software. (Note that the control, status, and flag bits for a specific interrupt are in different bit positions in the three registers.)

3-49

ATI017840

The sales of the sales of the sales of

Table 3-28. Interrupt Bits in the Flag, Control, and Status Registers

		Flag*	Enable"	Status***
Interrupt Condition	Bit Prefix	Bit No. in	Bit No. in econtrol	Bit No. in
Microcode Interrupt. The MCINT interrupt is generated by the "Interrupt Host" ALU operation	MCINT	13	2	10
Vertical Blanking Interrupt. The VBI interrupt is generated upon detection of either a VODD or a VEVEN VBUS code	VBI	14	3	1;
Odd Field Interrupt: The OFi interrupt is generated upon detection of a YODD VBUS code	OFI	10	6	14
Even Field Interrupt: The EFI interrupt is generated upon the detection of a VEVEN VBUS code	EFI	9	7	15

^{*} Hardware sets this bit when an interrupt condition is detected.

3.15 Host Access to the Core Registers

This section describes how the host computer accesses the core registers. The host accesses the core registers at addresses 00FE0000h—00FEFFFFh in the 82750PD memory address space, as described in Section 2.5. Note that the 82750PD core can access these registers only in microcode. The access information in this section does not apply to the core.

Table 3-29 lists the core register addresses in terms of offsets from the base address for host accesses to the core. The base address is 00FE0000h.

3-50

Setting this bit enables an interrupt condition to interrupt the host CPU

^{***} This bit reflects the state of the corresponding event in the ccontrol register

Table 3-29. Host Address Mapping of the Core Registers

Byte Address'	Register Category
(a) 000h-07Eh	A bus source and destination registers
(b) 080h-0FEh	B bus source and destination registers
(c) 100h-17Eh	Microcode processor status and control registers
(d) 180h—1FEh	SFB pointer locations in RAM

^{*} Offsets from the base address 00FE 0000h

NOTE:

The host may address the core registers using word-aligned word accesses only. Software is responsible for enforcing this restriction.

When the host CPU accesses areas (a), (b), or (d) in Table 3-29, and the 82750PD is not already in a Halt state, the 82750PD automatically halts for the one clock cycle actually required to complete the data transfer. The 82750PD then restarts. If the 82750PD is in a Halt state when the host access is initiated, it remains in the Halt state following the access. This is transparent to both the host and the microcode processor.

During an access to areas (a) or (b), bits 6–1 of the byte offset should contain the source or destination byte address for the register to be accessed. Bit 0 is always clear. The source/destination addresses are given in Tables 3-30 and 3-31.

Table 3-32 lists the byte addresses for the SFB pointers.

Table 3-30. 82750PD A Bus Source/Destination Address

Address (Hex)	ADST	ASRC		Address (Hex)	ADST	ASRC
000h	nut			040h	out:	¹ın1
002h		hwid]	042h	out1	*in2
004h		cc]	044h	shift-ri	'stat
006h	maddr]	046h	out1-h:	'stat=
008h		alu		048h	*out2	
00Ah	cnt	cnt]	04Ah	out2-	
00Ch	£ 12	cnt2		04Ch	shift-r	
00Eh	lont	lont		04Eh	out2-hi	
010H	ю	ro		050h	out1-c	
012h	r1	r1		052h	m1-c	
014h	12	12		054h	shift-1	
016h	હ	ß]	056h	ın 1-hi	
01 8 h	r4	r4		058h	out2-c	
01Ah	r5	r5		05Ah	in2-c	
01Ch	æ	r6]	05Ch		
01Eh	r7	r7]	05Eh	ın2-hı	
020H	mcode3	mcode3		060h	r8	r8
022h	mcode2	mcode2		062h	19	19
024h	mcode1	mcode1		064h	r10	r10
026h	pc	рс		066h	r11	r11
028h	pixint-c]	068h	r12	r12
02Ah	pixint	pixant		06Ah	r13	r13
02Ch	*dram1	*dram1		06Ch	r14	r14
02Eh	*dram2	'dram2	1	06Eh	r15	r15
030h	*dram1++	*dram1++	1	070h	CC	shift.
032h	*dram2++	*dram2++]	072h	font	fcnt
034h	*dram1	*dram1]	074h	*dram3	*dram3
036h	*dram2	"dram2		076h	*dram4	*dram4
038h	dram1	dram1		078h	'dram3++	*dram3
03Ah	dram2	dram2		07Ah	*dram4++	*dram4
03Ch	dram3	dram3		07Ch	*dram3	*dram3
03Eh	dram4	dram4]	07Eh	*dram4	*dram4

3-52

ATI017843

E

E

Table 3-31. 82750PD B Bus Source/Destination Address

Address (Hex)	BDST	BSRC		Address (Hex)	BDST	BSRC
080h	nut			0C0h	°out1	prof
082h		alu		oC2h	out1	
084h	'dram3	"dram3		0C4h	out1-lo	out1-lo
086h	*dram4	*dram4		0C6h	out1-hi	out*-hi
088h	*dram3++	*dram3++		0C8h	*out2	stat-to
08Ah	*dram4	*dram4++		0CAh	out2	stat-hi
08Ch	*dram3	*dram3		OCCh	out2-io	out2-ic
08Eh *	*dram4	*dram4		0Ceh	out2-hi	out2-h.
090H	ю	6		0D0h	out1-c	out1-c
092h	r1	rı		0D2h	in1-c	In1-c
094h	R	12		0D4h	ın 1-lo	in 1-lo
096h	ß	13	1	OD6h	ın1-hı	เก1-hi
098h	r4	r4]	0D8h	0u12-c	out2+c
09Ah	r5	<i>r</i> 5		ODAh	ın2-c	ın2-c
09Ch	r6	r6		ODCh	ın2-lo	In2-lc
09Eh	r7	r7		ODEN	tn2-hi	ın2-hı
OAOH	r8	*in1		0E0h	stat-ram	r8
0A2h	l 19	*in2		0E2h	stat-c	19
0A4h	r10	*stat		0E4h	stat-lo	r10
0A6h	r11	*stat#]	0E6h	stat-hi	rt1
0A8h	r12	arcbuf		0E8h	yeven-lo	r12
OAAh	r13			0EAh	yeven-hi	r13
OACh	r14]	0ECh	yodd-io	r14
0AEh	r15			0EEh	yodd-hi	r15
080h	arcbut	literal 0		0F0h	ypitch	shift
0B2h		literal 1]	0F2h		stat-c
0B4h	*dram1	literal 2]	0F4h	vu-lo	*dram1
0 8 6h	*dram2	literal 3		0F6h	vu-hi	*dram2
0B8h	*dram1	literal 4		0F8h	vuprtch	'dram1
0BAh	*dram2++	literal 5		0FAh	vpitch	'dram2++
OBCh	'dram1	literal6]	0FCh	vptr-lo	'dram1
0BEh	*dram2	literal 7	1	OFEN	vptr-hi	dram2-

3-53

Table 3-32. SFB Pointer Addresses

Byte Address	Mnemonic	Description
180 182		Reserved
184h 185h	out1-lo out1-hi	Output FIFO 1 Pointer
188h 18Ah		Reserved
18Ch 18Eh	out2-lo out2-hi	Output FIFO 2 Pointer
190h 192h		Reserved
194h 196h	in1-lo in1-hi	Input FiFO 1 Pointer
198h 19A	ļ	Reserved
19Ch 19Eh	in2-lo in2-hi	Input FIFO 2 Pointer
1A0h 1A2h		Reserved
1A4h 1A6h	stat-lo stat-hi	Working Copy of Statistical Decoder Pointer
018Ah 018Eh		Reserved

Area (c) in Table 3-29 contains three registers: the Core Control Register (ccontrol), the Core Interrupt Flag Register (cintflag), and the Core Status Register (cstatus), which are described in Section 3.14. Table 3-33 lists the byte offsets for these registers.

3-54

Table 3-33. Byte Offsets for the Area-c Registers

Byte Offset for Host Access	Register
100h (WRITE)	Care Control Register (control
100h (READ)	Core Interrupt Flag Register (antilac
102h	Core Status Register (Catatus)

Chapter 4 Microcode Instruction Format

4.1 Overview

The 82750PD core executes instructions from microcode RAM (MRAM), which stores 512 48-bit instructions. This chapter describes the execution sequence and the format of the microcode instructions. For a more extensive guide to microcode programming, see i750 Pixel Processor Microcode Development Tools User's Guide, Intel Corporation, 1993 (Order Number: 485407-001).

4.2 Instruction Sequencing

Figure 4-1 shows the format of a microcode instruction.

Figure 4-1. Microcode Instruction Format

The bits in the NADDR field determine the address of the next instruction to be executed. The upper eight bits of the field specify a pair of instructions: an odd-address instruction and an even-address

4-1

instruction. Each instruction fetch reads both instructions of this pair. One of these is the next instruction to be executed. This selection is described in the next two sections, which describe the NADDR and CFSEL fields.

4.3 Instruction Word Field Descriptions

The subsections to follow describe the fields of a microcode instruction.

4.3.1 NADDR -- Next Instruction Address Field

The Next Instruction Address field (NADDR, bits 8–0) holds the address of the next instruction to be executed. A zero-delay, two-way branch can be achieved by taking advantage of the physical organization of the microcode RAM, which is 96 bits wide (the width of two instruction words) by 256 deep. An instruction read cycle fetches a pair of instruction words, one with the even-address and the other with the odd address. The next instruction to be executed (the even-address instruction) is determined by the LSB of the NADDR field of the current instruction and the state of the condition flag. This selection is described in the following section on the CFSEL field.

An instruction that writes to the program counter (pc) is the only type of instruction for which the NADDR field does not determine the next instruction to be executed.

When an instruction (Instruction A) loads the pc. a one-instruction delay occurs before the load takes effect. Therefore, the instruction that follows the write to the pc (Instruction B) is always executed.

4-2

ATI017848

However, the processor ignores the NADDR field of Instruction B and jumps to the address in the pc. Table 4-1 shows an example. Note that the instruction following a PC load is **always** executed. even if the processor is in Step mode or if the processor is frozen on that instruction. Another example of writing to the pc register is shown in Appendix C.

Table 4-1. PC Load Example

Address	Instruction	NADDR	Comments
10	DC = 0	55	Load PC with zero
55	r0 = 1	х	This instruction is executed but its next address field is ignored
0	r1 = 10	25	PC load takes effect after a one- instruction delay, the result is that r1 = r0 = 1.

4.3.2 CFSEL -- Condition Flag Select Field

The eight most significant bits of the NADDR field specify an odd-even instruction pair. The LSB of the NADDR field and the Condition Flag Select field (CFSEL, bits 11-9) select the next instruction from this odd-even pair.

The CFSEL field selects the condition flag. Table 4-1 lists the condition flag selected for each value in the CFSEL field. These flags are bits in the ALU Condition Code Register (cc. see Section 3.3). A condition flag value is TRUE ('1') or FALSE ('0').

Table 4-2. Condition Flag Select Field Assignments

Value	Flag	Description
000	FALSE	Select this flag for an Unconditional Branch
001	CARRY	Carry Out from ALU Condition Flag Later
010	ALU OVF	Overflow from ALU Condition Flag Laten
011	ALU SIGN	Sign from ALU Condition Flag Later
100	ALU ZERO	Zero from ALU Condition Flag Laten
101	LCNTZ	TRUE if Selected Loop Counter = 0
110	LSB	LSB of Data Register ro
111	MSB	MSB of Data Register #0

NOTE

The ALU condition flags (CARRY, OVF, SIGN, and ZERO) are latched in the ALU Condition Flag register. This register is updated for most (but not all) ALU operations. The remaining flags (LCNTZ, LSB, and MSB) are updated and latched each cycle.

CFSEL = '000' selects the unconditional branch flag. The name of the flag is FALSE because its state is always '0'. The states of the other flags can be '0' (FALSE) or '1' (TRUE).

Table 4-3 shows how the next instruction is chosen from the condition flag state and the LSB of the NADDR field in the current instruction.

Table 4-3. Microcode Next Instruction Selection

LSB of Address	Condition Flag State	Next Instruction
0	0 (FALSE)	EVEN
C	1 (TRUE)	EVEN
1	0 (FALSE)	ODD
1	1 (TRUE)	EVEN

For an unconditional branch (CFSEL = 000), the FALSE condition flag (which is always zero) is selected: this leaves the LSB of the address to determine the next instruction: for LSB = 0 the EVEN instruction is selected, and for LSB = 1 the ODD instruction is selected. This allows unconditional branching to any of the 512 instructions in the microcode RAM.

For a conditional branch (CFSEL \neq 000) the LSB of the address in NADDR is set. In this case (the last two entries in Table 4-3) the state of the condition flag selects the next instruction: FALSE selects the ODD instruction: TRUE selects the EVEN instruction. Therefore, a conditional branch jumps to either the odd or even instruction of an odd/even pair, depending on the state of the condition flag.

4.3.3 ASRC - A Bus Source Select Field

The A Bus Source Select field (ASRC, bits 18-12) selects the unit within the 82750PD core that drives its data onto the A bus during the execution of this instruction. The mapping for this and the following three fields is provided in Table 4-4.

Table 4-4. 82750PD Core Source/Destination Coding

Address (Hex)	BDST	BSRC	ADST	ASRC
OOh	กนเ		nui	
01h		aju	1	
02h	dram3	dram3		çc
03h	*dram4	*dram4	mador	
04h	*dram3	*dram3++	j	aju
05h	*dram4++	*dram4++	cnt	æ,
06h	*dram3	*dram3	cnt2	cnt2
07h	*dram4	*dram4	icnt	lcn:
085	ro	ro	r0	ю
09h	r1	r1	r1	r1
QAh	12	12	12	12
oxBh	r3	r3	ß	ß
och	r4	r4	r4	r4
QDh	r5	r 5	r5	చ
0Eh	r6	r6	r6	r6
0Fh	17	r7	17	1.
01 0 h	r8	°in1	mcode3	mcode3
011h	ю	*in2	mcode2	mcode2
012h	r10	'stat	mcode1	mcode1
013h	r11	'stat#	pc	pc
014h	r12	arcbuf	pixint-c	
015h	r13		pixint	pixint
016h	r14		*dram1	*dram1
017h	r15		"dram2	°dram2
018h	arcbut	literal 0	*dram1++	*dram1
019h		literal 1	*dram2+-	*dram2++
01Ah	°dram1	literal 2	'dram1	*dram1
01Bh	°dram2	literal 3	*dram2	*dram2
01Ch	'dram1	literal 4	dram 1	dram1
01Dh	*dram2++	literal 5	dram2	oram2
01Eh	'dram1	interal6	dram3	dram3
01 <i>F</i> h	*dram2	literal 7	dram4	dram4
02 0 h	out1	prof	out1	*in1

45 to 1

E

E

Ē

E

E

E

E

Table 4-5. 82750PD Source/Destination Coding (Con't.).

Address (Hex)	BDST	BSRC	ADST	ASRC
021	out1		out1	*in2
022	cut1-ic	out1-lo	shift-ri	*stat
023	out1-hi	out1-hi	out1-hi	*stat#
024	°out2	stat-lo	'out2	1
025	out2	stat-hi	out2	
ox26	out2-lo	out2-10	shift-r	
0x27	out2-hi	out2-hi	out2-hi	
0x28	out1-c	out1-c	out1-c	
029	in1-c	in1-c	in1-c	1
02A	ın 1-lo	ın1-lo	shift-1	
02B	in1-hi	ın 1-hı	m1-hi	
02C	out2-c	out2-c	out2-c	
02D	in2-c	ın2-c	in2-c	
02E	in2-lo	in2-lo		
02F	in2-hi	in2-hı	in2-hi	
030	stat-ram	r8	18	r8
031	stat-c	r9	en	r9
032	stat-lo	r10	r10	r10
033	stat-hi	r11	r11	r11
034	yeven-to	r12	r12	r12
035	yeven-hı	r13	r13	r13
036	yodd-lo	r14	r14	r14
037	yodd-hi	r15	r15	r15
038	ypitch	shift	cc	shift
039		stat-c	fcnt	fent
03A	vu-lo	*dram1	*dram3	*dram3
03B	vu-hi	"dram2	*dram4	*dram4
03C	vupitch	'dram1++	*dram3++	*dram3++
03D	vpitch	*dram2++	"dram4++	*dram4+-
03E	vptr-lo	*dram1	*dram3-	'dram3
03F	vptr-hi	*dram2	*dram4	*dram4

· 25.20 ·

4.3.4 ADST -- A Bus Destination Select Field

The A Bus Destination Select field (ADST, bits 23-18) selects the element that latches data from the A bus during the execution of this instruction. See ASRC above and Table4-4.

4.3.5 BSRC - B Bus Source Select Field

The B Bus Source Select field (BSRC, bits 29–24) selects the unit within the 82750PD core that drives its data onto the B bus during the execution of this instruction (see Table 4-4).

4.3.6 BDST -- B Bus Destination

The B Bus Destination field (BDST, bits 35–30) selects the element that latches data from the B bus during the execution of this instruction. See BSRC above and Table 4-4.

4.3.7 CNT -- Decrement Loop Counter Bit

Bit 36 of the instruction word is the Decrement Loop Counter bit (CNT). If the CNT bit is set, the selected Loop Counter (cnt or cnt2, as selected by the loop counter select bit, LC) is decremented. The new value of the loop counter and the updated LCNTZ condition flag are not ready until the next instruction cycle. Therefore, in a loop where the loop counter is decremented and tested for zero in the same instruction (typically in a one instruction loop), the start value for the loop counter should be one less than the number of times the loop is to be executed.

4.3.8 LIT - Literal Select Bit

Bit 37 is the Literal Select bit (LIT). When the LIT bit is set, the ASRC and CFSEL fields (bits 17–9) become a single 9-bit literal field. The value in this field is driven onto the least significant 9 bits of the A bus, and zeros are driven onto the upper 7 bits of the A bus. Figure 4-2 shows how the bits from ASRC and CFSEL produce the literal value on the A bits.

A Bus. Bits	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	٥
Bits Forced to '0'	0	٥	0	٥	0	0	٥									
ASRC Bits								A	A	A	A	A				
CFSEL Bits													С	С	С	С

Figure 4-2. Literal Field Mapping onto a Bus

NOTE

A conditional branch and a literal on the A bus are not allowed in the same instruction. A 3-bit literal can be placed on the B bus in any instruction.

4.3.9 SHFT -- Shift Control Field

The Shift Control field (SHFT, bits 46–45) controls the bit shifting and byte swapping logic associated with the r0 register. The encoding of this field is given in Table 4-6.

4-9

ATI017855

James and the said

Table 4-6. SHIFT Control Field Coding

SHFT	Operation
0 0	No shift or swap operation
0 1	Shift 10 right 1 bit position sign extend
1 0	Shift 10 left 1 bit position zero fill
1 1	Byte swap the value being loaded into rc

Byte swapping only works when r0 is the destination on the A bus or the B bus. The bytes of the data being loaded into r0 are swapped, not the bytes of the data already in r0. In order to byte swap data already in register r0, r0 must be both a source and destination for either the A or B bus.

4.3.10 ALUSS - ALU Source Select Bits

The bits in the ALU Source Select field (ALUSS. 39–38) are enable bits for the two ALU input latches connected to the A and B buses. Bit 39 enables the A bus latch; bit 38 enables the B-bus latch. A 'I' in either bit position causes the corresponding input latch to latch the 16-bit value on the bus to which it is connected (the A or B bus). A 'O' in either bit causes the corresponding latch to hold its current content. This allows the ALU operands either to come from "eavesdropping" on the A or B bus transfers occurring in the current instruction cycle or to be held for multiple instruction cycles in either the A or B input latch.

4.3.11 ALUOP - ALU Operation Code Field

The ALU Operation Code field (ALUOP, bits 44—40) specifies the ALU instruction to be performed during the current instruction cycle. The encoding of this field is given in Table 4-7, and Section 3.3 discusses some of the opcodes. Normally, at the end of the instruction execution, the result of the ALU operation is latched in the ALU output latch (the alu

4-10

ATI017856

on the stranger of the fine in

register). This latch can be a source for either the A bus or the B bus. However, if "no operation" is selected for the ALU operation, the ALU output latch is not latched into the alu register: the data is held from the previous instruction. Two additional ALU opcodes, "microcode interrupt" and "performance monitor," do not actually perform ALU operations and, therefore, do not latch the ALU results.

Table 4-7. ALU Operations

Bit Coding	Operation	Bit Coding	Operation
00h	No Operation	010h	a - b
01h	Zero	011h	a-b
02h	Pass a	012h	-a + b
03h	Pass b	013h	2's Compliment of a
04h	1's Compliment of a	014h	2's Compliment of b
05h	1's Compliment of b	015h	Increment a
06h	a AND b	016h	Increment b
07h	(NOT a) AND b	017h	Decrement a
08h	a AND (NOT b)	018h	Decrement b
09h	a+b+1	019h	Interrupt Host
OAh	a OR b	01Ah	Performance Monitor
oxBh	(NOT a) OR b	01Bh	Pass a Don't Latch Flags
oCh	a OR (NOT b)	01Ch	Pass b. Don't Latch Flags
0Dh	a - b - (Previous Borrow)	01Dh	a + b + (Previous Carry)
0Eh	a-b	01Eh	Duai Add with Saturate*
0Fh	-a + b - (Previous Borrow)	01Fh	Dual Sub with Saturate*

· tento is a wint.

4.3.12 LC - LOOP Counter Select Bit

The Loop Counter Select bit (LC) selects which of the two loop counters is used for decrementing or Loop-Counter-Zero conditional branching in the current instruction (see Section 3.6).

0 = Select cnt

l = Select cnt2

4-12

Chapter 5 UNIVERSAL HOST BUS INTERFACE

The 82750PD Universal Host Bus Interface (UHBI) is the link between the host CPU and the other components of the multimedia system. The UHBI, which can accommodate different bus types provides the host with four access modes to the other system components: direct I/O, indirect I/O, an EMS-like memory access mode, and a pair of host-SFB FIFOs. In addition, the UHBI supports a single 82750PD interrupt.

5.1 Introduction to the Universal Host Bus Interface

The Universal Host Bus Interface supports five bus types:

- ISA
- EISA
- · Micro Channel
- PCI
- VL-Bus

The host can access the multimedia system in four modes via the UHBI:

- Direct access to the 82750PD host I/O registers.
- Indirect I/O access to the 82750PD memory address space.
- Access to the 82750PD memory address space via an EMS-style window in the host's memory address space.
- I/O access to the SFB via a pair of Host-SFB FIFOs.

5-1

The host I/O registers are a block of eight 32-bit registers in the host I/O space. These registers offer the programmer flexibility in configuring and controlling the other three access modes listed above.

Table 5-1 lists 82750PD register and memory categories and indicates the modes that the host can use to access them. The UHBI also supports an 82750PD interrupt to the host bus (see Section 5.7).

Table 5-1. Host Access Modes to the Multimedia System

82750PD Registers/Memory	Access Modes						
Accessible from the Host CPU	Direct VO	Indirect I/O	"EMS" Memory Mapping"	Host-SFB FIFOs			
Host I/O Registers	Yes	Yes"	No	No			
Core Registers	Na	Yes	Yes	No			
Shared Frame Butter (SFB)	No	Yes	Yes	Yes			
Event Synchronization Registers	No	Yes	Yes	Yes			

^{*} This is similar to true EMS mapping, but does not conform to the EMS specifications

Host accesses to the multimedia system utilize the 82750PD internal bus. However, the 82750PD contains logic which ensures that the host does not monopolize the bus. For every non-82750PD core access of the internal bus, the 82750PD core is given an opportunity to access the internal bus. The following case is an exception: Under certain conditions the core can, if so programmed, allow a Host-SFB FIFO to use two consecutive internal bus cycles to access the SFB. (See the FAST bit in the read and write Host-SFB FIFOs).

5-2

ATI017860

Some 82750PD registers are accessible indirectly via the host I/O registers. The host I/O registers themselves are accessible only by direct I/O addressing.

The host I/O registers are a block of eight 32-bit registers in the host I/O space. These registers offer the programmer flexibility in configuring and controlling the other three access modes listed above.

Table 5-1 lists 82750PD register and memory categories and indicates the modes that the host can use to access them. The UHBI also supports an 82750PD interrupt to the host bus (see Section 5.7).

Table 5-1. Host Access Modes to the Multimedia System

82750PD Registers/Memory	Access Modes						
Accessible from the Host CPU	Direct I/O	Indirect VO	"EMS" Memory Mapping"	Host-SFB FIFOs			
Host I/O Registers	Yes	Yes**	No	No			
Core Registers	No	Yes	Yes	No			
Shared Frame Buffer (SFB)	No	Yes	Yes	Yes			
Event Synchronization Registers	No	Yes	Yes	Yes			

^{*} This is similar to true EMS mapping, but does not conform to the EMS specifications

Host accesses to the multimedia system utilize the 82750PD internal bus. However, the 82750PD contains logic which ensures that the host does not monopolize the bus. For every non-82750PD core access of the internal bus, the 82750PD core is given an opportunity to access the internal bus. The following case is an exception: Under certain conditions the core can, if so programmed, allow a Host-SFB FIFO to use two consecutive internal bus cycles to access the SFB. (See the FAST bit in the read and write Host-SFB FIFOs).

5-2

ATIC17861

^{**} Some 82750PD registers are accessible indirectly via the host I/O registers. The host I/O registers themselves are accessible only by direct I/O addressing.

NOTE

All internal bus cycles to the host interface are treated as unique operations. Software must be aware that the host CPU itself may decompose a single operation into multiple bus cycles. Multiple bus cycles are not reassembled by the 82750PD. Furthermore, there is no mechanism for atomic readmodify-write operations.

The remaining sections in this chapter describe the following UHBI topics:

- The host I/O registers and their configuration.
- Indirect access to system components via a pair of host I/O registers.
- Configuration of the EMS-style window.
- Access to the SFB via a pair of Host-SFB FIFOs.
- Configuration of the 82750PD interrupt to the host bus.
- The general configuration registers and their setup by the host.

5.2 Host Interface Address Configuration

This section describes how the host addresses several devices that share the same logical "slot." For each host bus type, it describes the Programmable Option Select (POS) registers, which are used to configure the host interface addresses. By writing to the POS registers, the host specifies the location of an "I/O window" in the host I/O space and enables or disables that I/O window and the EMS-style window. For the bus types that do not employ POS registers, an equivalent set of information is given.

5-3

5.2.1 Configuration of Devices in a Single Slot

For the PCI and Micro Channel bus types, the devices on the SFBI appear to the host as a single logical I/O slot. This section, which applies only to the PCI and Micro Channel bus types, describes the protocol for devices sharing a single slot.

Figure 5-1 shows the I/O slots (A, B and C) and the devices for a PCI or Micro Channel bus. The devices in slot C have device IDs 0 through 7.

Figure 5-1. Multiple Devices in a Single Logical Slot

The following protocol is established to enable multiple devices to share a single logical slot without contention:

 Device 0 is responsible for providing all of the read data during POS (configuration) read cycles.

5-4

ATI017863

- Device 0 is responsible for providing all handshaking (as required for each bus) for POS read and write cycles.
- Devices 1 through 7 do not provide handshaking for POS read and write cycles.
- All devices must snoop write data and decode the bits that determine which device is to receive the data written to the slot.

The set of bits to be snooped depends on the details of the devices sharing the slot.

NOTE

The 82750PD does not fully support operation as Device 0. The strap inputs should not be set for Device 0 during reset configuration.

The 82750PD POS registers are write-only registers. The 82750PD ignores any attempt to read data from these I/O registers because the 82750PD cannot be Device 0. A different device in the system should be Device 0, and hence respond to any such read requests. The 82750PD software can read its POS register bits from the CFG registers, as described later.

5.2.2 Address Configuration

Address configuration of the host interface depends on the host bus type: ISA, EISA, Micro Channel, PCI, or VL-Bus. However, for any of these host bus types the address configuration can be expressed in terms three genenc fields: IO_BASE, IO_ENABLE, and MEM_ENABLE. These fields are defined in Table 5-2.

5-5

ATI017864

1511、连通通道111、111

Table 5-2. Generic Address Configuration Fields.

POS Field Name	Definition
IO_BASE	This 9-bit field specifies the location of the I/O window in the host I/O space
IO_ENABLE	This 1-bit field enables/disables the I/C window
MEM_ENABLE	This 1-bit field enables/disables the "EMS" window

NOTE:

The data values for the IO_BASE are restricted as noted here:

IO_BASE Values:

x xxxx xx00b Legal

x xxxx xx01b Legal

x xxxx xx10b Legal

x xxxx xxllb Rlegal

The specific implementation of these generic fields depends on the bus type. The subsections that follow show the locations of the POS registers and the implementations of the three generic fields. Depending on the bus type, the values of IO_BASE. IO_ENABLE, and MEM_ENABLE are permanently in a clear or set state, or determined by straps/jumpers, or programmable via the POS registers. In any case, the values of these fields can be read from the CFGINT register (MEM_ENABLE, IO_ENABLE, IO_BASE[8] and the CFGBASE register (IO_BASE[7:0], which are shown in Tables 5-36 and 5-43.

5-6

ISA POS Information

The ISA bus does not have a POS register. Table 5-3 lists the generic POS fields and their implementation in the ISA bus.

Table 5-3. ISA Implementation of POS Fields

POS Fields	ISA Implementation
IO_ENABLE	= 1 (always enabled)
MEM_ENABLE	= 1 (always enabled)
IO_BASE[8:0]	Latched from straps/jumpers at reset

EISA POS Register Format

Tables and 5-4 and 5-5 show the POS registers for the EISA bus.

Table 5-4. EISA POS2 Register

Mnemonic: BCNTL		Address: 0zC84h*	
Access: W/O	·	Reset State: Not available	
Bit No.	7-1	1 0	
Name	RSVD	ENABLE	

Bit No.	Name	Description
0	ENABLE	ENABLE - IO_ENABLE - MEM_ENABLE. Clearing this bit disables
ì	1	the host I/O registers and disables the "EMS" window, even if the
l .	1	EWE bit (bit 0 in the CFG 06 register) is set

[&]quot; Z in the Address field denotes slot-dependent bits

D-1

Table 5-5. EISA POS3 Register

Mnemonic: BASE

Address: 0zCB8Eh*

 Access: W/O
 Reset State: 75h**

 Bit No.
 0

 Name
 IOB[7:0]

Bit No.	Name	Description
7-0	IOB[7:0]	IOB(7 0) = I/O Base(7.0)***

z in the Address field denotes slot-dependent bits

Micro Channel POS Register Format

Tables 5-6 and 5-7 show the POS registers for the Micro Channel bus.

Table 5-6. Micro Channel POS2 Register

Mnemonic: — Address: xx02h*

Access: V	V/O	Reset State: 00h
Bit No.	7-1	0
Name	RSVD	CDEN

Bit No.	Name	Description
0	CDEN	CDEN = IO_ENABLE = MEM_ENABLE. Clearing this bit disables the host I/O registers, and disables the "EMS" window, even if the
		EWE bit (bit 0 in the CFG 06 register) is set

^{*} xx denotes eight don't-care bits

iconstant is:

5-8

ATI017867

ENERGIA TAN

If IO_BASE[8] = 1, the reset state corresponds to IO_START = x2EAh, where x depends on the Device ID (see Section 5.3)

^{***} I/O Base[8] is latched from straps or jumpers at reset.

Table 5-7. Micro Channel POS3 Register

Mnemonic: —		Address
Access: W/O		Address: xx03h*
Bit No.		Reset State: 75h
	7-0	
Name	IOB[7·0]	

Bit No.	Name	Description
7-0	108[7:0]	10B[7:0] = 10 BASE[7:0]**

^{*} xx denotes eight don't-care bits.

Snooping: -cdsetup must be '0' and m/-10 must be '0' for POS snooping to be enabled.

PCI POS Register Format

Tables and 5-8 and 5-9 show the POS registers for the PCI bus.

Table 5-8. PCI POS2 Register

Mnemonic: CMD0	•		
Access: W/O			iress: 041
Bit No.	7-2	Reset :	State: 00h
Name	RSVD	1 NEVEN	0

Bit No.	Name	
		Description
	IOEN	Clearing this bit disables the host I/O registers
1		Clearing this bit disables the "EMS" window even if the EWE bit (bit 0
		in the CFG 06) register is set

The second of the second secon

^{**} I/O Base[8] is latched from straps or jumpers at reset.

Table 5-9. PCI POS3 Register

 Mnemonic: BASE
 Address: 43h

 Access: W/O
 Reset State: 75h*

 Bit No.
 7-0

 Name
 IOB[7 0]

Bit No.	Name	Description
7-0	10B[7 0]	IOB[7 0] = I/O Base[7 0]**

If IO_BASE[8] = 1 this reset state corresponds to IO_START = x2EAn where x depends on Device ID (see Section 5.3)

Snooping: Snooping is enabled on configuration cycles.

VL-Bus POS Information

The VL-Bus bus does not have a POS register. Table 5-10 lists the generic POS fields and their implementation in the VL-Bus.

Table 5-10. VL-Bus Implementation of POS Fields

POS Fields	VL-Bus Implementation
IO_ENABLE	= 1 (always enabled)
MEM_ENABLE	= 1 (always enabled)
IO_BASE[8:0]	Set by 9 straps/jumpers at reset

5-10

Gran .

٠٠٠ و مثيره

new with the the water with

ATI017869

سيد شياق

A Commence of the Commence of

[&]quot; I/O Base[8] is latched from straps or jumpers at reset.

5.3 Host I/O Registers

-

- Tokacin Saltin marc.

Eight 32-bit registers in the host I/O space are provided for the host to access the 82750PD and the SFB. The 82750PD responds when any byte in these host I/O registers is accessed by the host. The 82750PD core cannot access the host I/O registers.

Figure 5-2 shows a map of the host I/O registers. Following sections in this chapter discuss these registers in detail.

Software should not access REG 7, which is Reserved. REG7 appears in the host I/O address space and is decoded by the hardware. Bus cycles to this CFG register generate the proper acknowledgment for the bus type used and do not hang. Any data written to this CFG register is ignored. Any read of this register returns random data.

The address of the first byte of the I/O registers. REG0-BYTE0. is named IO_START (see Figure 5-2). Table 5-11 shows how the value of IO_START is determined. Note that IO_START is not a physical register: it is just a label given to REG0-BYTE0.

5-11

ATI017870

market of the second

	BYTE3	57-E2	BALE.	87E:
ſ	PAR.	DAQ.	PARC	PARC
REG 0	HiG-	LOW .	- Gr	-sw
	(IC_START+ 0003-	(IC_START+ 0002-	(0_START- 000"H	:C_START+ 2000-
	PAR3	PAR3	PARZ	2422
REG 1	HIGH	row	4'S=	-Sw
	(IC_START+ CACCH)	(IC_START+ 0402H)	(IO_START+ 0401H	C_STAPT+ 0400-
	HOST-SFB	HCST-SFB	HOST-SFE	-05T-SFB
REG 2	WRITE FIFO	WRITE FIFO CONTROL	WRITE FIFC DATA HIGH	WRITE FIRC
	SELECTED BYTE	CONTROL	DATA - NIGH	• • • • • • • • • • • • • • • • • • • •
	(IC_START+ 0803H)	(IC_START+ 0802H)	(IO_START+ 0801H)	(IC_START+ 3800=
	HOST-SFB	HOST-SFB	HOST-SFB	HOST-S#3
REG 3	READ FIFD	READ FIFO CONTROL	READ FIFC DATA HIGH	CF F CASP WCJ ATAC
	SELECTED BYTE	CONTROL	DATA INIGHT	54.1.
	(IO_START+ 0C03H)	(IO_START+ OCO2H)	(IO_START+ 0C01H)	(IC_START+ 0C00H
	PD INDIRECT	PD INDIRECT	PD INDIRECT	PO INDIPECT
REG4	ADDRESS	ADDRESS HIGH	ADDRESS MID	ADDRESS LOW
	EXTRA	nigh		.5
	(IO_START+ 1003H1	(IO_START+ 1002H)	(IO_START+ 1001H)	RC START- 1000H
	PD INDIRECT	PD INDIRECT	PD INDIRECT DATA	PD INDIRECT CATA
REG 5	DATA BYTE3	DATA BYTE2	BYTE.	BALEC
	IC START+ 1403H1	(IC_START+ 1402H)	(IO_START+ 1401H	(IC_START+ 1400-
	GENERAL STATUS	GENERAL	CFG REGISTER	OFG REGISTER
REG 6		CONTROL	DATA	NUMBE=
AEG 5	(IO_START+ 1803H)	:10_START+ 1802H)	(IO_START+ 1801H)	(IC_STAFT+ 1800H)
	RESERVED	RESERVED	RESERVED	RESERVED
REG 7	/IO_START+ 1C03H1	IO_START+ 1C02H)	(IO_START+ 1C01H1	HO_START+ 1C00H
				

Figure 5-2. Host I/O Registers

5-12
ATI017871

. materials

Ë

Table 5-11. The Value of IO_START

Address Field	31-16	15-13	12-10	9-1	. 0
Contents	0	Device_ID	0	IO_BASE	RSVD

Field	Contents	Description
0	RSVD	
9–1	IO_BASE	This field is part of the POS information for each bus type
12-10	0	
15–13	Device_ID	The device ID assigned to the 82750PD
31-16	0	

A general host I/O register address has the format shown in Table 5-12. This format applies to all of the host bus types. (Note that the value of IO_START in Figure 5-2is the address value in Table 5-12 with REGNUM=0.)

Table 5-12. Format for the Address of a Host I/O Register

Address Field	31-16	15-13	12-10	9-1	0
Contents	0	Device_ID	REG_NUM	IO_BASE	×

Field	Contents	Description
0	×	"don't care"
9-1	IO_BASE	This field is part of the POS information for each bus type
12-10	REG_NUM	The register number (0-7) in Figure 5-2
15-13	Device_ID	The device ID assigned to the 82750PD

Universal Host Bus Interface

The following equation defines the computation of the address of a byte in a host I/O register:

BYTE_ADDRESS = IO_START

+ 0400H * REG_NUM

+ BYTE_NUM

The byte addresses in Figure 5-2 illustrate this computation.

5.4 . EMS-Style Memory Address Mode

One way the host can access the 82750PD memory space is by using an EMS-style address mode. The "EMS" mode provides a window through the host memory address space and into the 82750PD memory address space. When the host accesses an address inside the "EMS" window, the access is redirected to an address in the 82750PD memory space. The location of the "EMS" window in the host memory address space is determined by configuration registers. Note that the host is not required to use the "EMS" mode to access the 82750PD memory address space. This space can also be accessed by other address modes (see Table 5-1). The following subsections describe the "EMS" address mode, the associated 82750PD registers. and setting up the "EMS" mode.

5-14

ATI017873

. . . .

¹ The EMS-style address mode described here is similar to true EMS addressing but does not satisfy all of the EMS requirements. For brevity we use "EMS" to refer to this address mode.

5.4.1 "EMS" Memory Mapping and Registers

The "EMS" window in the host address space occupies 8 Kbytes, which are divided into four 2-Kbyte pages (see Figure 5-3). Each page of the window has an associated Page Address Register (PAR 0 - PAR 3) in located in the host I/O space (REGO and REG1). The page address register specifies a 2-Kbyte target page in the 82750PD memory address space. In this way an access to a 2-Kbyte page in the host memory address space is redirected to a 2-Kbyte page in the 82750PD memory address space.

Figure 5-3. "EMS" Window Mapping

5-15

Figure 5-4 is a more detailed view of mapping a host memory address into a 82750PD memory address. When the host accesses its memory, it checks to see if the memory address is inside the "EMS" window In Figure 5-4, the 19 bits in the Match field of the host address specify which 8-Kbyte area is about to be accessed. Three "EMS" configuration registers store 19 bits. EMS[18:0], which specify the 8-Kbyte base address of the "EMS" window. (The "EMS" configuration registers are described in Section 5.4.2.) If the bits in the MATCH field of the host memory address match EMS[18:0], then the host address is in the "EMS" window and is mapped into the 82750PD memory address space. (If there is no match, the address is used directly as an address in the host address space.)

E

E

Figure 5-4. Details of "EMS" Mapping

5-16

For a host memory access that is inside the "EMS" window, the two PAR bits (bits 11 and 12) of the host address specify the page address register (0-3) that is used for the mapping. (The four PAR registers, described in Section 5.4.2, provide the programmer with up to four different mappings to use for different purposes.) The figure shows an example where the PAR bits are '1 0', which selects PAR 2. Each 16-bit page address register contains a 13-bit field that specifies the base address of a 2-Kbyte page in the 82750PD memory space. These bits (the 13 bits from PAR2 in the example) become the 13 most significant bits of the 82750PD memory address. The 11 least significant bits are taken directly from the 11 least significant bits (the Offset field) of the host memory address.

The three fields of the host memory address (OFFSET, PAR, and MATCH) can be computed from the host memory address (ADDRESS) by the following 'C' statements:

Offset Int Long:

Offset = ADDRESS & ((1 << 11) - 1):

Par_Select = (ADDRESS >> 11) & 3:

Match = ADDRESS & !((1 << 21) - 1):

5.4.2 Setting Up the "EMS" Mode

This section describes the steps to set up the "EMS" mode. These steps involve the POS registers, the "EMS" CFG registers and the Page Address Registers.

POS Registers and the "EMS" Mode

To enable the "EMS"-style mode, set the MEM_ENABLE "bit" (see Section 5.2) and set the EWE bit (see below).

The implementation of the MEM_ENABLE "bit" depends on the bus type. Information regarding MEM_ENABLE is listed here for each bus type:

- ISA bus: MEM_ENABLE = 1 ("EMS" is always enabled).
- EISA bus: Set the ENABLE bit in POS2.
- Micro Channel bus: Set the CDEN bit (bit 0 in POS2).
- PCI bus: Set the MEMEN bit in CMD0.
- VL-Bus: MEM_ENABLE = 1. ("EMS" is always enabled).

"EMS" Configuration Registers

The "EMS" configuration registers. EMSCFG[2:0]. are shown in Table 5-13. The EWE bit in EMSCFG0 must be set to enable the "EMS" mode. The EMSn bits specify the window location. Bits EMS[18:0] in the EMSCFG[2:0] registers are the 19 most significant bits of the base address of the 8-Kbyte "EMS" window. An example of setting up the EMSCFG registers follows.

5-18

ATI017877

Table 5-13. "EMS" Configuration Registers

Mnemonic; EMSCFG[2:0]

Address: CFG 08-06

Access: R/W						Reset St	ate : 00h. (00h. 00h
Bit No.)	7	6	5	4	3	2	1	<u> </u>
EMSCFG2	EMS18	EMS17	EMS16	EMS15	EMS14	EMS13	EMS12	EMS::
EMSCFG1	EMS10	EMS9	EMS8	EMS7	EMS6	EMS5	EMS4	EMS3
EMSCFG0	EMS2	EMS1	EMS0		RS	VD		EWE

Bit No.	Name	Description
7-0 7-0 7-5	EMS[18·0]	EMS[18:0] are the 19 MSBs of the base address of the 8-Kbyte "EMS" window. The MATCH field of the host address is compared to EMS[18:0] to detect an address that is to be mapped
0	EWE	Setting this bit enables the "EMS" window, provided the MEM ENABLE bit is set (see Section 5.2)

NOTES

- 1. The EWE bit and the MEMEN bit must be set to enable the "EMS" window.
- 2. The EWE bit must be clear while software changes EMS[18:0]. The write to EMSCFGO that sets EWE must not change the values of EMS[2:0]. A violation of this may cause a momentary conflict that could hang the system.
- 3. After writing the EWE bit. software should read it back. before accessing the "EMS" window. (This ensures that the "EMS" window has had enough time to complete the configuration operation.)

As an example, assume that the "EMS" window base address is chosen to be 000D6000h. To obtain the 19 EMS bits that specify the window starting address, strip the 13 least significant bits. (or divide by 2000h) to obtain 6Bh. Place this value into bits EMS[18:0]. Doing this and setting the EWE bit gives the following values in the EMS CFG registers:

Bit No.	7	6	5	4	3	2	1	0
EMS CFG2	0	0	0	0	0	0	<u> </u> 0	, с
EMS CFG1	0	0	0	0	1	:	0	
EMS CFG0	0	1	1	0	0	0	С	. 1

Page Address Registers

Table 5-14 shows the format of the four Page Address Registers (PARs), which consist of host I/O registers REGO and REG1. Each PAR specifies a 2-Kbyte area in 82750PD memory address space for the "EMS" mapping. Bits 2-0 of each PAR are hardwred to 'O'. These bits always read as 'O' and should be written as 'O'. Bits 15-3 of the PAR are the 13 most significant bits of the base address, which must be on a 2-Kbyte boundary. To load a PAR register, strip the 8 least significant bits of the base address (11 bits minus the 3 hardwired bits), and write the resulting 16-bit value to the PAR register.

You must write the base address to the Page Address Register before accessing the corresponding "EMS" page.

The PARs can be written and read with either byte-I/O or word-I/O operations. You can write the bytes in any order. However, be sure to update the entire PAR register with the desired address value before accessing the corresponding "EMS" page.

E

Table 5-14. "EMS" Page Address Registers.

15-3

PAR

Mnemonic: PAR[3:0]

Bit No.

Name

Address: REG1-BYTES3-2, REG1-BYTES1-0: REG0-BYTES3-2, REG0-BYTES1-0

Access: See bit descriptions.

	H	eset	State	UUUUN	
2		1	1	0_	_
0	T	0	1	0	

Bit No.	Name	Description
3-0	0	These bits are wired to '0'. They read as '0' and should be written as '0'
15–3	PAR	These R/W bits are the 13 MSBs of the base address of a 2 Kbyte page in the 82750PD memory address space. A host access to page of the "EMS" window is redirected to this page (provided the "EMS" mode is enabled).

5.5 82750PD Indirect Access

The 82750PD Indirect Access mode provides a way for the host to indirectly access the 82750PD internal bus memory space through two 32-bit registers in the host's I/O space. Figure 5-5 illustrates this access mode.

Figure 5-5. 82750PD Indirect Register Mapping

The host's indirect address register (see Table 5-15) holds the address of the dword in the 82750PD memory space that is accessed (PD_ADDR). The host's indirect data register (see Table 5-16) holds the data (PD_DATA) that is written to (or read from) that address. When the host accesses the 82750PD indirect data register, the 82750PD generates an internal bus read or write cycle to access the dword in the 82750PD memory space.

Table 5-15. Indirect Address Register

Mnemonic: —	Address: REG4-BYTES3-REG4-BYTE0
Access: R/W	Reset State; 00000000h
Bit No.	310
Name	_

Bit No.	Name	Description
15-0	_	These four bytes are the 82750PD memory address for an indirect
		access of a location in the 82750PD memory address space

5-22

ATI017881

Table 5-16. Indirect Data Register

Mnemonic: —	Address: REG5-BYTE3-	REG5-BYTEO
Access: R/W	Reset State	e: Uninitialized
Bit No.	31–0	
Name		

ſ	Bit No.	Name	Description
	15-0	-	These four data bytes are data read from or written to the 82750PD memory for an indirect access of the 82750PD memory address space. The 82750PD address for the indirect access is in REG4-BYTE3—REG4-BYTE0

To indirectly access a location in the 82750PD memory address space, execute the following two steps:

- 1. Write the 82750PD address to be accessed (PD_ADDR in Figure 5-5) to the host's Indirect Address register (REG4-BYTE3—REG4-BYTE0).
- Read/Write the 82750PD data (PD_DATA in Figure 5-5) from/to the 82750PD Indirect Data register (REG5-BYTE3—REG5-BYTE0).

The indirect access can be a byte-I/O, word-I/O, or dword-I/O operation. The bytes accessed in the 82750PD memory dword are the same bytes as those accessed in REG5. The order of accessing the bytes in the 82750PD memory dword is the same as the order of accessing the bytes in REG5.

You may access the bytes of REG5 in any order: however you must update the entire 82750PD indirect address register (REG4) with the desired address value before accessing the 82750PD indirect data register.

An access to REG5 with IO_BASE[0] = 1 activates internal byte swapping logic in the 82750PD. For an

example with IO_BASE = 75h and 82750PD device ID = 1, a computation as specified in Section 5.3 yields the following addresses for the bytes of REG5:

REG5-BYTE0 = 34EAh REG5-BYTE1 = 34EBh REG5-BYTE2 = 34ECh REG5-BYTE3 = 34EDh

For example, when a dword I/O write instruction is executed, the host splits this into two host write cycles because this is a non-aligned operation. For each of these host cycles, the data bytes are on the wrong 16-bit lines to go directly to the specified bytes of REG5. Hence, for this case the 82750PD internally swaps these data lines in order to reference the correct bytes of REG5. Each of these host cycles causes a separate write to memory with appropriate byte enables set.

The indirect data register is "pass-through" (there is no buffering). Host cycles access the 82750PD memory space directly. The 82750PD indirect data register is uninitialized at reset because no physical indirect data register exits.

Figure 5-6 shows the generation of the 82750PD address from the host I/O address and the address held in the 82750PD indirect address register (REG4). The least significant two bits and the most significant eight bits of the 82750PD indirect address register are never used. Accordingly, these bits are hardwired to '0'. Any value written to these bits is ignored. Software should always write these bits as '0'.

5-24

AT1017883

Figure 5-6. 82750PD Indirect Register Address Translation

5.6 Host-SFB FIFOs

The Host-SFB FIFOs. shown in Figure 5-7, provide a high performance data path for the host to read or write the SFB. The host accesses the FIFOs in the host's I/O address space. In a single data transaction the FIFO reads or writes one dword. The FIFOs are useful for accessing the SFB in high performance modes or through host DMA channels.

Figure 5-7. Block Diagram of the Read and Write FIFOs

The FIFO data holding registers (DH3-DH0 in Figure 5-7) are four bytes wide. The double buffered design allows the host and the SFB to access the data holding register simultaneously without contention. This design maximizes the throughput of the host bus and the 82750PD internal bus.

Both FIFOs can be programmed to operate in an auto-increment mode, which causes the SFB address to increment by four after each FIFO access.

NOTE

The FIFOs contain no consistency checking hardware. It is software's responsibility to handle any "stale" data problems (typically by re-initializing or flushing the FIFOs).

5.6.1 Host-SFB Write FIFO

The Host-SFB Write FIFO, shown in Figure 5-8, is a high-speed data path from the host to the SFB. The data to be written to the SFB is placed in the Write FIFO Data Register (WFDATA). The Write FIFO Address Counter (WFCNTR) consists of bytes CNTRH, CNTRM, and CNTRL. The data in WFDATA is written to the 24-bit address held in WFCNTR. Registers R1 and R2 comprise the double-buffered data holding register, which holds the dword of data to be written to the SFB. Write FIFO operations are controlled by the Write FIFO Control Register (WFCON). The Write FIFO Test Register (WFTEST) provides diagnostic information.

Figure 5-8. Block Diagram of the Write FIFO

The host communicates with the Write FIFO via one 32-bit I/O register. REG2. Table 5-17 lists the addresses and names of the Write FIFO registers. The WFCNTR register bytes (CNTRH, CNTRM, CNTRL) and the WFTEST register are accessed indirectly through the Write FIFO Selected Byte Register (WFSELB).

Table 5-17. Host-SFB Write FIFO Registers

Address	Mnemonic	Register Name
REG2-BYTE1-REG2-BYTE0	WFDATA	Write FIFO Data Register
REG2-BYTE2	WFCON	Write FIFO Control Register
REG2-BYTE3	WFSELB	Write FIFO Selected Byte Register
	WFCNTR*	Write FIFO Address Counter
	WFTEST	Write FIFO Test Register

^{*}These registers are accessed via WFSELB

Basic Operation of the Host-SFB Write FIFO

This section briefly describes the operation of the Write FIFO. Details are given in following sections on the registers and on specific procedures.

To write to memory via the Write FIFO, the host first writes the three bytes of the starting SFB address to the three bytes of the WFCNTR register. The host then writes data to the WFDATA register. After each write, the hardware moves the data to the data holding register, and the FIFO uses a normal internal bus cycle to move the data from the data holding register to the SFB.

Two items to be discussed later should be noted here:

- The FIFO waits until the host writes to the most significant byte (DH3) of the data holding register before writing the data to the SFB.
 This means that if DH3 is not loaded when the last data is written to the WFDATA register.
 software must command the last data to be written to the SFB.
- There is no byte-alignment hardware between the WFDATA register and the data holding register. As a result the software must attend to loading data bytes into the WFDATA register. (See "Loading the Write FIFO Data Register.")

The 32-bit data holding register (R1 and R2 in Figure 5-8) is double-buffered to increase the throughput of the host bus and the 82750PD internal bus. While the FIFO is delivering the dword in R2 to the SFB, the host can write a new dword to register R1. (The data transfer from R1 to R2 is transparent to the programmer, who treats R1 and R2 as a single register.)

Write FIFO Control Register (WFCON)

The Write FIFO Control Register (REG2-BYTE2) is shown in Table 5-18. Following paragraphs discuss the bits. (Full bit descriptions are given in Appendix A.)

NOTE:

Before altering the WFCON register, software should verify that the Write FIFO is empty (see the EMPTY bit in the WFCON register).

Table 5-18. Write FIFO Control Register

Mnemonic: WFCON

Address: REG2-BYTE2

Bacat State: 08h

Access: R/W

	Treat State: 6011								
Bit No.	7	6	5	4	3	_ 2	1_1	0	
Name	AUTO	TEST	R:FULL* W: RSVD	FAST	R' EMPTY" W' RSVD	BS2	BS1	BSo	

* R = Read, W = Write

BS2-BS0 (Byte Select, bits 2-0). The Byte Select field, comprising bits BS2, BS1 and BS0, selects the bytes or operations listed in Table 5-19. The values of BS in the table represent the combinations of the BS2-BS0 bits. The bytes in Table 5-19 are accessed by reading or writing the WFSELB register.

Table 5-19. Byte Select Bits in the WFCON Register

BS2	BS1	BS0	88	Write	Read
0	0	0	0	CNTRL	CNTRL
0	0	1	1	CNTRM	CNTRM
0	1	С	2	CNTRH	CNTRH
0	1	1	3	FLUSH'	TEST
1	0	٥	4	CNTRL	CHC
1	0	1	5	CNTRM	loh.
1	1	0	6	CNTRH	IDH3
1	1	1	7	FLUSH*	IDH3

^{*} FLUSH denotes an operation

The BS values 0. 1. and 2 select bytes of the WFCNTR register, which holds the starting address of the next dword to be written to the SFB (or read from the SFB in TEST mode). (The BS values 4, 5, and 6 serve the same purpose for writes only.) A following section, "Write FIFO Address Counter (WFCNTR)," gives a procedure for writing the SFB address to this register.

Writing BS = 3 or 7 to the control register "flushes" the data holding register. A more detailed look at the hardware in Figure 5-8 is helpful here. Whenever the FIFO hardware transfers data from R1 to R2, the FIFO tries to write the data to the SFB (it requests the internal bus). Data is not moved from R1 to R2 until new data is written from the data register to the most significant byte (DH3) of R1. This means that R1 could have data in any or all of the lower bytes (DH0-DH2), and the data would not be moved to R2 as long as DH3 is not written.

The flush operation provides a way to move data from the DH0-DH2 bytes of the data holding register to the SFB without writing to DH3. Upon execution of a flush, the FIFO waits, if necessary, for the data in R2 to be written to the SFB, and then moves data in R1 to R2, from where it is written to the SFB.

memory when the flush is executed. After a flush the FIFO is "empty" (see the EMPTY bit). If there is data in the data holding register that would finally be moved to the SFB (in normal operation), and if software executes a flush, the final result is the same as if the flush were not executed. In other words, a superfluous flush does not change the result.

Reading the WFSELB register with BS = 3 reads the WFTEST register. This register, which provides information regarding the data holding registers, is described in the section "Write FIFO Test Register."

Reading the WFSELB register with BS = 4-7 reads the data holding register bytes DHO-DH3. At reset, the data holding bytes are uninitialized.

EMPTY (Empty, bit 3). When the control register is read, the EMPTY bit (bit 3) reflects the status of the data holding registers R1 and R2. If the host has not written to R1 since the FIFO has written the contents of both R2 and R1 to the SFB, the FIFO is "empty," and the EMPTY bit is set. The EMPTY bit is also set following a flush. When writing to the control register, write a '0' to bit 3. Reading bit 3 always returns the value of the EMPTY bit, regardless of the value written to that bit.

Software must verify that the FIFO is "empty" before it alters the WFCNTR register or WFCON register. If these registers are altered when EMPTY = 0, a pending data operation can fail. Such alterations include changes to the AUTO bit, the TEST bit, or the TCLK bit.

FAST (Fast, bit 4). Under certain conditions, setting the FAST bit allows the FIFO to write two dwords from the data holding register (R1 and R2) to the

5-31

SFB in two consecutive internal bus cycles. The following conditions are required:

- FULL = 1 (the FIFO is full).
- WFCNTR points to an even dword address (an address whose least significant bits are '00').
- AUTO = 1 (the FIFO is in auto-increment mode).
- FAST = 1.

This increases efficiency by saving the overhead of arbitration and transfer of control for writing the second dword. For FAST = 0, the 82750PD executes normal bus cycles.

FULL (R), (Full, bit 5). For a control register read, the FULL bit reflects the status of the holding registers R1 and R2. The FULL bit is set only if both of the following conditions hold:

- Register R2 holds valid data, and the FIFO has not yet written that data to the SFB.
- The host has written data to (at least) the most significant byte of register R1.

Since the FIFO requests an internal bus cycle when (at least) the most significant byte of R1 is valid, it is entirely possible that the FIFO is never full in normal operation.

If the FIFO is full, then setting the FAST bit speeds the writes to the SFB under certain conditions (see the FAST bit). If the FIFO is full and the host writes to the WFDATA register, wait states are inserted in the host bus cycle until the FIFO can accept the data from the host.

(Note that having the FULL bit set is not the complement of having the EMPTY bit clear. For

example, if DH1 is the only holding register byte with valid data, the FIFO is neither full nor empty.

TEST (Test. bit 6). Setting this bit prevents the internal bus acquisition logic from requesting the bus. This allows the host to access the Write FIFO registers without triggering a write cycle. This is useful in the following two situations:

- FIFO initialization. The TEST bit must be set during initialization of the FIFO.
- FIFO diagnostics. Inhibiting the write cycle facilitates debugging.

Note that setting the TEST bit does not interrupt an internal bus cycle that is already in process, i.e., once the FIFO has requested the internal bus, the write eventually occurs. If TEST = 1 and the FIFO is full, a write to the WFDATA register is ignored.

For diagnostic purposes, the TEST bit may stay set through several register reads and writes. Previous FIFO implementations required software to set the test bit at the beginning of each operation to ensure correct initialization (prevent a false cycle). The 82750PD implementation does not require the TEST bit to be set repeatedly; however, it does run compatibly with software that does set the TEST bit before each operation.

AUTO (Automatic Increment. bit 7). If the AUTO bit is set, the WFCNTR register increments by four after each write data cycle on the internal bus. If the FIFO writes two dwords in consecutive internal bus cycles (see the discussion of the FAST bit), it increments by 8. (Actually, there are two increments by 4. The difference is moot except under unusual circumstances, such as in a diagnostic program, where it might be possible for the software to catch the intermediate value.) If

AUTO = 0. the Write FIFO accesses the same location repeatedly until a new address is written.

Write FIFO Address Counter (WFCNTR)

The three bytes (CNTRH, CNTRM, CNTRL) of the WFCNTR register hold the starting address of the next dword to be written to the SFB. The WFCON register is cleared at reset. To write the SFB address to the WFCON register, execute the sequence of writes indicated in Table 5-20. Accesses to the three bytes of the WFCNTR register must be in the order shown. You can write to the WFCON register (REG2-BYTE2) and the WFCNTR register (REG2-BYTE3) in the same instruction.

NOTE:

Before altering the WFCNTR register. software should verify that the Write FIFO is empty (see the EMPTY bit in the WFCON register).

Table 5-20. I/O Sequence to Read/Write the SFB Address

Step	Value of BS in WFCON Register (REG2-BYTE2)	Byte of WFCNTR Accessed the WFSELB Register (REG2-BYTE3)			
1	BS = 0	CNTRL (low byte)			
2	BS = 1	CNTRM (middle byte)			
3	BS = 2	CNTRH (high byte)			

The host-to-SFB data transfer can start and end on any byte boundary in the SFB, and data can be moved from any byte boundary in the host memory. However, some rules must be followed to obtain the desired byte alignments in the SFB. (See "Loading the Write FIFO Data Register.")

E

Write FIFO Data Register (WFDATA)

The Write FIFO Data Register (REG2-BYTE1—REG2-BYTE0) is a write-only register. (Reading this register returns undefined data, and does not affect the Write FIFO). The WFDATA register is uninitialized at reset.

The WFDATA register can be written 8 or 16 bits at a time. However, when writing to the data register, observe these rules:

- When writing with byte operations, always write both bytes of WFDATA and alternate the writes to BYTE1 and BYTE0.
- Do not access the WFDATA register and the WFCON register in the same host bus cycle.
 Doing so may leave false data in the data register.

Loading the Write FIFO Data Register

The diagram in Figure 5-9 shows the data paths for bytes moving from the WFDATA register to the data holding register and, finally, to the SFB. Note that data transfers from the Write FIFO (from the data holding register) to the SFB are in dword units, and the dword is stored on a dword boundary. In addition, transfers from the WFDATA register to the holding register are in word units. To store bytes in the desired SFB locations, software must compensate for the lack of byte-alignment hardware. This section gives a data-loading procedure that results in the data being stored in the correct SFB address.

A brief look at the Write FIFO hardware points to the procedure for loading the WFDATA register. The diagram in Figure 5-9 shows the data paths for

bytes moving from the WFDATA register, to the data holding register, and to the SFB.

Figure 5-9. Data Paths from the Write FIFO Data Register to the SFB

The hardware examines bit 1 (CNT1) of the SFB address. (i.e., bit 1 of the least significant byte (CNTRL) in the WFCNTR register). The hardware then moves the word in the 16-bit data register to the 32-bit data holding register according to the following rules:

- If CNT1 = 0. BYTE1-BYTE0 is moved to bytes DH1-DH0 of the holding register (dashed arrows in Figure 5-9).
- If CNT1 = 1, BYTE1-BYTE0 is moved to bytes DH3-DH2 of the holding register (solid arrows in Figure 5-9).

To coordinate with the hardware, the software should follow this procedure:

- 1. Write the SFB (destination) address of the first data byte to the WFCNTR register.
- Load data into the WFDATA register according to these directions:
 - If the SFB address of the first byte is odd (CNT0 = 1), move the first data byte to REG2-BYTE1 of the data register. (For CNT0 = 1, the data in BYTE0 is a "don't care"; it is ignored by the hardware.)
 - If the SFB address of the first byte is even (CNTO = 0), move the first data word to the data register, and then move the second word to the data register.

(The hardware moves each word to DH1-DH0 and DH3-DH2 according to bit CNT1, as described above.)

3. Continue moving data words to the WFDATA register.

To ensure correct results, be careful with the I/O address, the I/O transfer size, and the WFCNTR register. The two least significant bits (CNT1, CNT0) of the WFCNTR register always correctly reflect the SFB address of the next byte to be written. Programming examples illustrating how to begin a data move from the host to the SFB are in Appendix C.

Saving and Restoring the State of the Write FIFO

The following is a procedure for saving the state of the Write FIFO:

1. Read the WFCON register and save it for restoring the FIFO.

- 2. If the EMPTY bit is set, go to step 4.
- 3. Flush the FIFO and wait until the EMPTY bit in the WFCON register is set.
- Read and save the 24-bit WFCNTR register. (This is the SFB address of the next byte to be moved.)
- 5. Restore the control register state that was saved in step 1.

The FIFO can now be initialized and used for another transfer.

"Restoring" the state of the FIFO is indistinguishable from beginning a new operation. Write the SFB starting address for the next data transfer to the WFCNTR register and proceed with the new operation.

Write FIFO Test Register

The Write FIFO Test Register (WFTEST) provides diagnostic information concerning the data holding registers. To read the WFTEST register, read the WFSELB register with BS = 3. The bits of this register(see Table 5-21) indicate whether the bytes in the data holding registers are empty, i.e., not written since: (i) initialization, or (2) a flush, or (3) the latest transfer from R2 to the SFB.

Table 5-21. Write FIFO Test Register

Mnemonic: WF	TEST	Address: REG2-BYTE3 with BS = 3
Access: R/O		Reset State: 0FFh
Bit No.	7–4	3-0
Name	R1DH[7 4]	R2DH(3 0)

Bit No.	Name	Description
3-0	R2DHn	The R2DH n bit ($n = 0, 1, 2, 3$)of data holding register R2 is set if bit n of data holding register R2 is empty
7–4	R1DHn	The R1DHn bit (n = 0, 1, 2, 3)of data holding register R1 is set if bit n of data holding register R2 is empty

5.6.2 Host-SFB Read FIFO

The 32-bit Read FIFO, shown in Figure 5-10, is a high-speed data path from the SFB to the host. The host accesses the Read FIFO via one 32-bit I/O register, REG3. Two bytes (REG3-BYTE1-REG3-BYTE0) comprise the Read FIFO Data Register (RFDATA). REG3-BYTE2 is the Read FIFO Control Register (RFCON), and REG3-BYTE3 is the Read FIFO Selected Byte Register (RFSELB). The RFSELB register is used to access the three bytes (CNTRL. CNTRM, and CNTRH) of the Read FIFO Address Counter Register (RFCNTR). (The RFSELB register is also used to access the Read FIFO Test Register. which is described later.) Registers R1 and R2 comprise the double-buffered data holding register. While the host reads the data in R2 via the RFDATA register, the FIFO can fetch the next dword of data from the SFB and place it into R1. This doublebuffered design maximizes the throughput of the host bus and the 82750PD internal bus. Table 5-22 lists the Host-SFB Read FIFO registers.

Figure 5-10. Block Diagram of the Read FIFO

Table 5-22. Read FIFO Registers

Address	Mnemonic	Register Name
REG3-BYTE1, REG3-BYTE0	RFDATA	Read FIFO Data Register
REG3-BYTE2	RFCON	Read FIFO Control Register
REG3-BYTE3	RFSELB	Read FIFO Selected Byte Register
	RECNTR*	Read FIFO Address Counter
	RFTEST	Read FIFO Test Register

^{*} These registers are accessed via the RFSELB Register

Basic Operation of the Host-SFB Read FIFO

This section describes the basic operation of the Read FIFO. (The Read FIFO operates differently according to whether the host is reading the data in (i) single bytes or words or (ii) blocks. These differences are described in the following section on the control register (RFCON).

5-40

ATI017899

E

É

To read the SFB memory via the Read FIFO, the host first loads the RFCNTR register with the starting SFB address. This requires three write operations. Each write simultaneously assigns the RFSELB register to one byte of the RFCNTR register and writes one byte of the SFB address to the RFSELB register. The three SFB address bytes must be written in order from the lowest byte to the highest byte: CNTRL, CNTRM, CNTRH. The write to CNTRLH signals the Read FIFO to fetch data from the SFB.

The Read FIFO fetches one dword (never a single word or byte) and places it into the input buffer (R1) of the data holding register. The next step depends on whether buffer R2 has data that is yet to be read by the host (via the RFDATA register). If R2 contains data, the FIFO waits until the host has read that data and then moves the new dword from R1 to R2. If register R2 is empty, the new dword is moved immediately from R1 to R2. Then, while the host is reading the dword in R2, the Read FIFO fetches the next dword and places it in R1. This prefetch ensures that the host can read the next dword without waiting for an internal bus cycle.

Note that while the FIFO fetches data in dwords, the host reads the data from the RFDATA register in words or bytes. The section, "Reading the Read FIFO Data Register." describes how the host software can accommodate this difference.

Read FIFO Control Register (RFCON)

Table 5-23 shows the RFCON register. Paragraphs following the table discuss the operation of the Read FIFO in terms of the state of the RFCON register. (Full bit descriptions are given in Appendix B.)

Table 5-23. Read FIFO Control Register

Mnemonic: RFCON

Address: REG3-BYTE2

Access:	R/W						Reset :	Sta	te: 00h
Bit No.	7	6	5	Δ	3	2	1	1	С
Name	AUTO	TEST	RSVD	FAST	R EMPTY W: RSVD	BS2	BS:	1	3 S 3

^{*} R = Read, W = Write

BS2-BS0 (Byte Select, bits 2-0). The Byte Select field, comprising bits BS2, BS1 and BS0, is used to select a byte in the RFCNTR register (for both reads and writes) or to select the Read FIFO Test Register (RFTEST) for reads. Table 5-24 shows these selections. The values of BS in the table represent the combinations of the BS1-BS0 bits. Note that the BS2 bit is a "don't care." The RFTEST register is described in a section below.

Table 5-24. Byte Select Bits in the RFCON Register

BS2	BS1	BS0	88	Write	Read
Х	0	0	0	CNTRL	CNTRL
X	0	1	1	CNTRM	CNTRM
X	1	0	2	CNTRH	CNTRH
X	1	1	3	NOP	RETEST

EMPTY (Empty, bit 3, R/O). The EMPTY bit reflects the status of the data holding registers. R1 and R2. The EMPTY bit is set if neither R1 nor R2 contains data. In AUTO mode, the EMPTY bit would normally be set only for a short time after the SFB address has been loaded. The EMPTY bit and the FULL bit are not complements.

If the FIFO is empty, then setting the FAST bit speeds the reads from the SFB under certain conditions (see the FAST bit). If the host reads the RFDATA register when the EMPTY bit is set, wait

states are inserted in the host bus cycle until the read is finished.

FAST (Fast, bit 4). Under certain conditions, setting the FAST bit allows the FIFO to read two dwords from the SFB and place them in the data holding register (R1 and R2) in two consecutive internal bus cycles. The following conditions are required:

- EMPTY= 1 (the FIFO is full).
- WFCNTR points to an even dword address (an address whose least significant bits are '00').
- AUTO = 1 (the FIFO is in auto-increment mode).
- FAST = 1.

This increases efficiency by saving the overhead of arbitration and transfer of control that would normally be incurred in reading the second dword. For FAST = 0, the 82750PD executes normal bus cycles.

FULL (R/O) (Full, bit 5). When the host reads the RFCON register, bit 5 is the FULL bit. This bit reflects the status of the data holding registers. R1 and R2. The FULL bit is set if register R1 has data and the high byte (DH3) of register R2 has data, i.e., has not been read.

Software should verify that the FIFO is "full" before it alters the RFCNTR or RFCON register. (The full state is stable.) Altering these registers when the FIFO is not full can cause a pending data operation to fail. Such alterations include changes to the AUTO bit, the TEST bit, and the TCLK bit and a change of address in RFCNTR.

If the FULL bit is not set, the Read FIFO contains some residual data because the Read FIFO tries to fill the data holding registers whenever the most significant byte of a 32-bit word is read by the host. If the FIFO is not in the AUTO mode, and if a transfer to the host ends on the first, second, or third byte (DH0, DH1, or DH2) then the FIFO contains some residual data. When in the AUTO mode, the Read FIFO always contains some residual data after the transfer is finished. This unwanted data is a by-product of reading ahead and trying to keep the FIFO full. Since the FIFO controller always attempts to keep up with the host reads, the normal operating condition of the FIFO is "full." To purge residual data, take the FIFO out of AUTO mode and read (at least) byte DH3 of R2.

TEST (Test. bit 6). The TEST bit is used for Read FIFO diagnostics. Setting this bit initializes the FIFO and prevents the internal bus acquisition logic from requesting the bus. This allows the host to access the Read FIFO registers without triggering a read cycle. Note that setting the TEST bit does not interrupt an internal bus cycle that has already begun: once the FIFO has requested the bus, the read eventually occurs. Reading an empty Read FIFO with TEST = 1 returns erroneous data. Furthermore, IOCHRDY is never asserted (the read cycle is never initiated).

For diagnostic purposes, the TEST bit may stay set through several register reads and writes. Previous FIFO implementations required software to set the test bit at the beginning of each operation to ensure correct initialization (prevent a false cycle). The 82750PD implementation does not require software to set the TEST bit repeatedly; however, it runs compatibly with software that does set the TEST bit before each operation.

AUTO (Auto-increment, bit 7). Setting the AUTO bit puts the Read FIFO in auto-increment mode, which facilitates reading a block of data from the SFB. To read a single dword, word, or byte, the AUTO bit

should be clear. When the AUTO bit is set, the RFCNTR register increments by four after each read cycle of the internal bus, thus setting up the address counter for reading the next dword. When the Auto bit is clear, the RFCNTR register does not increment automatically. The Read FIFO accesses the same SFB address repeatedly until a new address is written to the RFCNTR register.

When the AUTO bit is set, the Read FIFO fetches a dword as soon as the host writes the high byte of the RFCNTR register. It continues to prefetch dwords as long as the data deposited into RI can be moved immediately into R2 (as a result of the host reading the RFDATA register). However, if the FIFO becomes empty (EMPTY = 1), the Read FIFO fetches two dwords from the SFB in consecutive internal bus cycles, provided other conditions are met (see the FAST bit).

When the AUTO bit is clear, the Read FIFO does not prefetch data. It fetches data only when the host attempts to read the RFDATA register and there is no data in R2. The fetch is then a Slow SFB cycle: wait states are inserted into the host bus cycle until the RFDATA register receives data.

Read FIFO Address Counter (RFCNTR)

The three bytes (CNTRH, CNTRM, CNTRL) of the Read FIFO Address Counter (RFCNTR) hold the address of the next dword to be read from the SFB. Accessing the 24-bit address involves both the RFCON register (REG3-BYTE2) and the RFSELB register (REG3-BYTE3). To access the RFCNTR register, execute 16-bit I/O operations in the order shown in Table 5-25. In auto-increment mode (AUTO = 1) the FIFO fetches data from the SFB when the high byte of the address is written to the CNTRH byte.

Table 5-25. I/O Sequence for RFCNTR Register Accesses

Slep	Value of BS in the RFCON Register (REG3-BYTE2)	Byte of RFCNTR Accessed through the RFSELB Register (REG3-BYTE3)
1	BS = 0	CNTRL flow byte.
2	BS = 1	CNTRM (middle byte)
3	BS = 2	CNTRH (high byte:

The SFB-to-host data transfer can start and end on any byte boundaries in the SFB. However, some rules should be followed to obtain the desired byte alignments. (See the section "Reading the Read FIFO Data Register.")

Read FIFO Data Register (RFDATA)

The Read FIFO Data Register (RFDATA at REG3-BYTE1) accepts data from the SFB (via the data holding register) and holds it for reading by the host. At reset this register is uninitialized. The RFDATA register is read-only. (If the register is written, the write cycle completes, but the Read FIFO is unchanged.) The RFDATA register can be read with word or byte operations. However, the following rules should be observed:

- When reading the RFDATA register with byte operations, read the high byte (REG3-BYTE1) between any two reads of the low byte (REG3-BYTE0).
- Do not access the RFDATA register and the RFCON register in the same host bus cycle.

The RFDATA register is not initialized at reset.

There is no byte alignment hardware between the data holding register and the RFDATA register. The section "Reading the Read FIFO Data Register"

describes steps reading the desired data from the SFR

Read FIFO Test Register (RFTEST)

The Read FIFO Test Register (RFTEST) provides the programmer with diagnostic information. This register is accessed by reading the RFCON register with BS = 3 or 7. This register should be written as 00h, although the value written is ignored. Table 5-26 describes the RFTEST register.

Table 5-26. Read FIFO Test Register

Mnemonic: RFTEST

Address: REG3-BYTE3, BS = 3 or 7

Access: F	Access: R/O Reset State: 6								
Bit No.	7	6	5	4_	3	2	1	0	
Name	REQ	SEL	RFRES	FAST	CNT2	NXTFAST	HR1	HR2	

HR2 (Holding Register 2, bit 0). If this bit is set, data holding register R2 (host side) contains valid data.

HR1 (Holding Register 1, bit 1). If this bit is set, data holding register R1 (SFB side) contains valid data.

NXTFAST (Next Fast, bit 2). If this bit is set, the Read FIFO is requesting a 64-bit internal bus cycle.

CNT2 (CNT2, bit 3). This bit is bit 2 of the RFCNTR register.

FAST (Fast, bit 4). This is the FAST bit (bit 4) of the RFCON register.

RFRES (Read FIFO Reset, bit 5). If this bit is set, the Read FIFO is being reset. The FIFO enters its reset state upon reset of the 82750PD or when the

Universal Host Bus Interface

host writes the low byte of the RFCNTR register. The FIFO exits its reset state when the host writes the high byte of the RFCNTR register.

SEL (Select. bit 6). If this bit is clear, the internal bus arbiter has selected the Read FIFO.

REG (Request, bit 7). If this bit is set, the Read FIFO is requesting use of the 82750PD internal bus.

Reading the RFDATA Register

The diagram in Figure 5-11 shows the data paths for bytes moving from the SFB to the data holding register and then to the RFDATA register. Data transfers from the SFB to the data holding register are in dword units beginning at a dword boundary in the SFB. Data transfers from the data holding register to the RFDATA register are in word units. Hardware moves the high or low word from the data holding register to the WFDATA register according to the value of bit 1 (CNT1) of the address.

If a word or a byte is read from an even address, hardware loads the that word (or the word containing that byte) into the RFDATA register with the low byte in BYTEO. In this case no software adjustment is needed.

Figure 5-11. Data Paths from the SFB to the Read FIFO

Data Register

If a word or a byte is read from an odd address, hardware loads that word (or the word containing that byte) into the RFDATA register with the low byte in BYTE1. For the case of a single byte read, software must take that byte from BYTE1 rather than BYTE0.

For the case of a word read from an odd address, software must compensate for the following two effects:

- The low byte is in BYTE1 of the RFDATA register rather than in BYTE0.
- The high byte is not in the RFDATA register.
 Software must perform another read to read the high byte.

Saving and Restoring the State of the Read FIFO

The following procedure can be used to save the state of the 32-bit Read FIFO:

- Read the RFCON register and save it for the state restoration.
- If the FIFO was in AUTO mode, wait until the FIFO is FULL by checking the RFCON register.
- 3. Read the RFCNTR register.
- If the FIFO was in AUTO mode, subtract 8
 from the value in RFCNTR. This is the FIFO
 Counter Value (i.e., the address of the next
 byte to be read from the SFB).

The FIFO can now be initialized and used for another transfer. Restoring the state of the FIFO is indistinguishable from beginning a new operation. It consists of beginning a new transfer using the 24-bit SFB address calculated in step 4.

5.7 Interrupts and Meta-Interrupts

The 82750PD system of interrupts and meta-interrupts enables the 82750PD core and the host CPU to automatically learn of events concerning devices on the SFBI. This system includes the SynchroLink registers (see Section 6.5), the interrupt registers in the core (see Section 3.14), and the interrupt registers in the host interface. This section describes the interrupt and meta-interrupt system, the associated UHBI registers, and a procedure for setting up interrupts.

5.7.1 The Interrupt/Meta-Interrupt System

SFBI events are communicated to the 82750PD by the SynchroLink. Table 5-27 lists the SFBI events that can be programmed to generate meta-interrupts to the 82750PD core and, possibly, an interrupt to the host. The second column describes how these events are manifested in the XCVRn and RSRV registers in the SynchroLink interface. Column three lists the register bits that can enable each interrupt event to generate a meta-interrupt.

Table 5-27. Enabling SFBI Events to Generate Meta-Interrupts

SFBI Event	Effect on SynchroLink Interface Registers	Enabling Bit	VBUS Code Group
The 82750PD has received and acknowledged an incoming message	Hardware sets VALID (bit 16) in RSRV register.	IINT (bit 24) in RSRV register	V1CODE
A message transmission by the 82750PD is complete	Hardware clears TXIPR (bit 16) in XCVRn register	TXINT (bit 24) in XCVRn register	VICODE
A service request from the 82750PD was not accepted by the target device.	Hardware sets NACK (bit 17) in XCVRn register.	NINT (bit 25) in XCVRn register	V1CODE
A device that was sent a service request by the 82750PD has replied	Hardware sets COMPLETE (bit 19) in XCVRa register	CINT (bit 27) in XCVRn register	V1CODE
The 82750PD has received a message with a certain function code *	Hardware sets FMATCH(bit 18) in XCVRn register.	BINT (bit 26) in XCVRn register	V1CODE
The 82750PD has received a message with a certain function code "	Hardware sets FMATCH(bit 18) in XCVRn register	BINT2 (bit 29) in XCVRn register	V2CODE

The last two events are identical, but the meta-interrupts are enabled by different bits and generate different VBUS codes

Figure 5-12 shows a diagram of the interrupt and meta-interrupt system. The top portion shows the arrival paths of the SFBI events, which are identified by their enabling bits, as listed in Table 5-27. (See Sections 6.4.2 and 6.4.6 for descriptions of the XCVRn and RSRV registers, respectively.)

The SFBI events, represented by their enabling bits. are divided into two groups. V1CODE events consist of IINT, TXINT, NINT, BINT, and CINT. V2CODE events consist of BINT2 only. Whenever an enabled event in the V1CODE group occurs, a message is sent to the core. The message is the same. regardless of which event in the VICODE group occurs. Similarly, if BINT2 is enabled and its corresponding event occurs, a message is sent to the core. The exact message is determined by the V1CODE and V2CODE fields of the MCFG register (Section 6.4.9). When setting up the interrupt system, the programmer can write into the V1CODE field any VBUS code listed in Table 5-28. The VBUS code is chosen according to the desired action(s) in response to a VICODE event. A similar choice is made for V2CODE.

5-52

ATI017911

E

Figure 5-12. Diagram of the Meta-Interrupt System

5-53

Table 5-28. VBUS Codes

VBUS Name Code*		Action		
0000-1011	Reserved**			
1100	VODD	VBI interrupt, OF interrupt increment font register; dear lont register.		
1101	VEVEN	VBI Int. EF Int: increment fan:		
1110	HLINE	increment lcnt register		
1111	NULL	This is the idle state of the VBUS		

The VBUS codes are written to the V1CODE field (bits 27-24) and the V2CODE field (bits 31-28) of the MCFG register.

The selected code is sent over the VBUS to the core. The decoded signal (VEVEN, VODD, or HLINE) alters the fent and/or lent registers as shown in Figure 5-12. (These are the alterations described in Table 5-28.) This register alteration constitutes the metameterrupt. It is software's responsibility to sense the meta-interrupt by polling the fent and lent registers.

The same VBUS code can also be programmed to trigger the 82750PD interrupt to the host. The bits in the ccontrol register enable the interrupt. A VEVEN code can trigger an even field interrupt (EFI_E bit) and/or a vertical blanking interval interrupt (VBI_E bit). A VODD code can trigger an odd field interrupt (bit OFI_E) and/or a vertical blanking interval interrupt (VBI_E bit). Only one of these enable bits should be set at a time. (Note that an HLINE code can trigger only a meta-interrupt.

The 82750PD hardware sets fixed priorities for the generation of VBUS codes, as listed in Table 5-29.

5-54

ATI017913

[&]quot; Do not use Reserved codes

Table 5-29. Priorities for Generation of VBUS Codes

Priority	VBUS code			
Highest	Currently driven VBUS code			
	V2CODE			
Lowest	V1CODE			

V1CODE requests are queued only 1 deep. If a second V1CODE request is generated before the first has been driven to the 82750PD core, then the second request is ignored. V2CODE requests are also queued only 1 deep.

The DINT bit in the GENCON (Section 5.7.1) register enables the single interrupt to the host. The interrupt output pin can be configured as three-state or open drain and with a desired polarity to meet the requirements of the particular bus type.

The DINT bit facilitates interrupt handling in both level-triggered and edge-triggered interrupt systems. When an interrupt occurs, the host's interrupt handler typically disables all interrupts while it processes the one that was just detected. If a second interrupt occurs while all of the interrupts are disabled, and if the interrupt system is leveltriggered, it is detected when the interrupt handler re-enables the interrupts. However, in an edgetriggered interrupt system, such as the ISA bus, this second interrupt condition would be undetected because the interrupts are disabled when the edge occurs. This problem is solved with the use of the DINT bit (described in the following subsection). By employing the DINT bit, software can use the same approach for buses with level-triggered interrupts and edge-triggered interrupts. The DINT bit does this by giving software the ability to generate an interrupt edge, even when interrupt conditions occur very close to each other.

The next subsection describes the GENCON register. which includes the DINT bit, and the GENSTAT register, which indicates whether the 82750PD interrupt signal is asserted/deasserted. A second subsection describes how to set up the 82750PD interrupt.

5.7.2 General Control and General Status Registers

The General Control Register (REG6-BYTE2), shown in Figure 5-12, has only one functional bit, the Disable Interrupt bit (DINT).

Table 5-30. General Control Register

Mnemonic: GENCON

Address: REG6-BYTE2

Access:	R/W			Reset State: 00h	
Bit No.	7	6	5-0		
Name	RSVD	DINT	RSVD		

Bit	Name	Description				
6	DINT	Disable Interrupt. Setting this bit disables the 82750PD interrupt.				
		Cleaning this bit enables the 82750PD to generate an interrupt.				

Setting DINT disables the 82750PD interrupt. The DINT bit does not change the interrupt conditions. it only blocks the signal from being driven onto the interrupt line. (Note: DINT simply forces the interrupt inactive: DINT does not three-state the interrupt pin.) The interrupt handler should set DINT and then clear it after the system interrupt controller has been reset. If another interrupt was pending before the system interrupt controller was reset, that interrupt is reasserted.

The General Status Register, shown in Table 5-31. contains the Video Interrupt bit (VINT), a read-only bit that reflects the status of the interrupt signal

from the 82750PD. VINT is set whenever the interrupt signal from the 82750PD is asserted. To reset this bit, execute a read of the 82750PD Interrupt Flag register, which is located at '0xFE0100' (see Section 3.14).

Table 5-31. General Status Register

Mnemonic: GENSTAT

Access: R/O

Reset State: 00h

Bit No. 7-2 1 0

Name RSVD

Bit Name Description

6 VINT VINT. This bit is set whenever the 82750PD interrupt signal is

5.7.3 Setting Up the 82750PD Interrupt

Setting up and handling the 82750PD interrupt involves the following registers:

- Three core registers:
 - Core Control Register (ccontrol, see Section 3.14.1).
 - Core Interrupt Flag Register (cutflag. see Section 3.14.2).
 - Core Status Register (cstatus, see Section 3.14.3)
- General Control Register (GENCON, see Section 5.7.1).
- General Status Register (GENSTAT, see Section 5.7.1).
- Interrupt Configuration Register (INT CFG, see Section 5.8.4).

The following steps are a procedure for setting up the 82750PD interrupt:

- 1. Disable the 82750PD interrupt by setting the DINT bit (bit 6) in the GENCON register.
- 2. Configure the interrupt for the appropriate bus type by writing to the INT CFG register.
- Enable or disable the individual interrupt sources by writing to the ccontrol register. The bits in ccontrol can be monitored by reading the cstatus register.
- 4. Enable the 82750PD interrupt by clearing the DINT bit (bit 6) in the GENCON register.

When an 82750PD interrupt occurs, the host CPU's interrupt handler can determine the source by reading the cintflag register.

5.8 Configuration Registers

The 82750PD has configuration (CFG) registers that are accessed indirectly through two host 1/O registers. This section contains bit descriptions of the CFG registers and describes how to access them.

The CFG registers are accessed indurectly through the CFG Register Number Register (CFGNUM) at REG6-BYTE0 and the CFG Data Register (CFGDATA) at REG6-BYTE1. Table 5-32 lists the CFG registers and their numbers.

5-58

AT1017917

Table 5-32. CFG Register Numbers and Names

CFG Register Number	CFG Register Name
∞	General CFG
01	I/O Base CFG
02	Bus CFG
03	INT CFG
04	SFBI CFG0
05	SFBI CFG1
06	EMS CFG0
07	EMS CFG1

CFG Register Name
EMS CFG2
RESERVED

To access a CFG register, follow this sequence:

- Write the encoded CFG register number to the CFGNUM register (REG6-BYTE0).
- Read from or write to the CFGDATA register (REG6-BYTE1). The same CFG register can be repeatedly accessed via the CFGDATA register without writing again to the CFGNUM register.

The CFGNUM register must be setup before accessing the CFGDATA register. Software may not access the CFGNUM register and the CFGDATA register in the same instruction. Table 5-33 and 5-34 show the structure of the CFGNUM and CFGDATA registers.

Table 5-33. CFG Register Number Register

Mnemonic: CFGNUM

Address: REG6-BYTE0

Access: R/W

Access: R	/W	Reset State: 00h
Bit No.	7-4	3-0
Name	RSVD	R[3 0]

Bit No.	Name	Description				
0	Ro	Bit 0 (LSB) of the CFG register numi	per +			
1	R1	Bit 1 of the CFG register number	- 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.			
2	R2	Bit 2 of the CFG register number				
3	R3	Bit 3 (MSB) of the CFG register num	ber			
4-7	RSVD					

Table 5-34. CFG Register Data Register

Mnemonic: CFGDATA

Address: REG6-BYTE1

豆

Access: R/W Bit No.

Name

	 THE SET OF THE PERSON NAMED
31-0	

* This is not a physical register.

Bit No.	Name	Description
15-0		This register holds the data that is read from or written to a configuration register that is accessed via the CFGNUM register (REGG-BYTEO)

5.8.1 General CFG Register

Table 5-35. General Configuration Register

Mnemonic: CFGGEN

Address: CFG 00

	•••	•	•	••	_	•		•	•	_	_	_
							_					

Access:				Reset State*
Bit No.	7	6	5-3	2-0
Name	MTYP	RSVD	BTYP[5.3)	DID[2 0]

^{*} Determined by strapping options at reset.

Bit No.	Name	Description
2-0	DID[2:0]	Device ID. These bits define the device 1D of the 82750PD. The bit values are determined from the configuration straps at reset
5-3	BTYP[2:0]	Bus Type. These bits reflect the bus type. The bit values are determined from the configuration straps at reset. Strapping information is given in the data sheet.
6	RSVD	
7	МТҮР	Memory Type. This bit reflects the memory type. The value is determined from the configuration straps at reset. Strapping information is given in the data sheet.

5.8.2 I/O Base CFG

Table 5-36. I/O Base CFG Register

Mnemonic: CFGBASE

Address: CFG 01

Access: R/O	Res	et State: See bit definitions
Bit No.	7-0	
Name	IOB[7:0]	

Bit No.	Name	Description
7-0	IOB[7:0]	These bits indicate the state of the IO_BASE 'POS' field See Section 5.2. "Host interface Address Configuration" for how these bits are reset and/or changed

ISA BCFG[7:0]. Table 5-38 describes the bus configuration bits for the ISA bus. The default ISA configuration runs standard 8-bit memory cycles and standard 8-bit I/O cycles. Zero wait state and 16-bit cycles are turned off.

Table 5-38. Configuration Bits for the ISA Bus.

Bit No.	Name	Description			
0	BCFG[0]	Setting BCFG[0] disables the addition of wait states when the host writes fields that affect the address becoder			
1	BCFG[1]	Setting BCFG[1] enables the issuance of MCS16. This effectively enables 16-bit memory cycles. (The default is 8-bit memory cycles.) Bits 1 and 4 must have the same value.			
2	BCFG[2]	Setting BCFG[2] enables the insertion of one additional MCLK period in the time necessary for a command to be recognized as active			
3	BCFG[3]	Setting BCFG[3] enables the issuance of NOWS. This effectively enables compressed cycles.			
4	BCFG[4]	Setting BCFG[4] enables the issuance of IO16. This effectively enables 16-bit IIO cycles. (The default is 8-bit I/O cycles.) Bits 1 and 4 must have the same value.			
5	BCFG[5]	BCFG[5] must always be clear (Setting this bit may hang the system.)			
6	BCFG[6]	BCFG[6] must always be clear (Setting this bit may hang the system.)			
7	BCFG[7]	BCFG[7] must always be clear (Setting this bit may hang the system)			

EISA BCFG[7:0]. Table 5-39 describes the bus configuration bits for the EISA bus. The default EISA configuration runs single standard 32-bit memory cycles and single standard 8-bit I/O cycles with rescinding output buffers. Compressed, burst, and 16-bit I/O cycles are turned off.

Table 5-39. Configuration Bits for the EISA Bus.

Bit No.	Name	Description
O	BCFG[0]	Setting BCFG[0] disables the addition of wait states when the host writes fields that affect the additions decoder
1	BCFG[1]	Setting BCFG[1] enables issuance of SLBURST for write cycles. This effectively enables write burst cycles.
2	BCFG[2]	Setting BCFG[2] enables issuance of SLBURST for read cycles. This effectively enables read burst cycles.
3	BCFG[3]	Setting BCFG(3) enables the issuance of NOWS. This effectively enables compressed cycles.
4	BCFG[4]	Setting BCFG[4] enables issuance of IO15. This effectively enables 16-bit I/O cycles. (The default is 8-bit I/O cycles.)
5	BCFG[5]	Setting BCFG[5] disables the use of resanding output butters
6	BCFG[6]	BCFG[6] must always be clear: Setting this bit may hang the system
7	BCFG[7]	BCFG[7] must always be clear Setting this bit may hang the system

5-64

ATIC17923

PCI BCFG[7:0]. Table 5-40 describes the bus configuration bits for the PCI bus. The default PCI configuration runs single memory cycles and I/O cycles. (STOP is generated after the first data cycle.) If the master generates a non-burst cycle, a read executes in a minimum of 4 clock periods, and a write executes in a minimum of 3 clock periods. Burst and 2-clock write cycles are turned off.

Table 5-40. Configuration Bits for the PCI Bus

Bit No.	Name	Description -
0	BCFG[0]	Setting BCFG[0] disables the addition of walt states when the host writes fields that affect the address decoder
1	BCFG[1]	Setting BCFG[1] enables burst write cycles If this bit is clear STOP is issued after the first data cycle
2	BCFG[2]	Reserved
3	BCFG[3]	Reserved
4	BCFG[4]	Setting BCFG[4] enables toggle-mode read burst cycles if this bit is clear. STOP is issued after the first data cycles
5	BCFG[5]	Setting BCFG[5] enables incrementing read burst cycles. If this bit is clear, STOP is issued after the first data cycles.
6	BCFG[6]	Setting BCFG[6] enables decrementing read burst cycles If this bit is clear STOP is issued after the first data cycles
7	BCFG[7]	Setting BCFG[7] allows address decoding and the generation of TRDY in the same clock period that frame is asserted. This effectively enables two clock write cycles.

VL-BCFG [7:0]. Table 5-41 describes the bus configuration bits for the VL-Bus. The default VL-Bus configuration runs single memory cycles and I/O cycles (BRDY is not generated). If the master generates a non-burst cycle, a read executes in a minimum of 4 clocks, and a write executes in a minimum of 3 clocks. Burst and 2-clock write cycles are turned off.

Table 5-41. Configuration Bits for the VL-Bus

Bit No.	Name	Description ====
0	BCFG[0]	Setting BCFG[0] disables the addition of war states when the host writes fields that affect the address decoder
1	BCFG[1]	Setting BCFG[1] enables burst write cycles. If this bit is clear BRDY is not generated and write cycles respond with LRDY
2	BCFG[2]	Reserved
3	BCFG[3]	Reserved
4	BCFG[4]	Setting BCFG[4] enables toggle mode read burst cycles. If this bit is clear, BRDY is not generated and read cycles respond with LRDY.
5	BCFG[5]	Setting BCFG[5] enables the removal of the forced address turnaround cycles on the multiplexed A/D bus
6	BCFG[6]	Setting BCFG[6] enables the removal of the forced data turnaround cycles on the multiplexed A/D bus
7	BCFG[7]	Setting BCFG[7] enables the removal of the extra cycle inserted to allow additional address decode time

5.8.4 Interrupt CFG Register

The Interrupt Configuration Register (Table5-43) has bits for configuring the 82750PD interrupt. Table 5-42 lists the values of the VIP bit, which determines the interrupt signal polarity, and the VIT bit, which selects a totem pole or open drain interrupt output.

Table 5-43. INT CFG Register

 Mnemonic: CFGINT
 Address: CFG 03

 Access: See bit descriptions.
 Reset State: See bit descriptions.

 Bit No.
 7
 6
 5
 4
 3
 2
 1
 0

Bit No.	7	6	5	4	3	2	1	0
Name	MEMEN	IOEN	IOB8	HALT	RSVD	VIP	VIE	ViT

Bit No.	Name	Description
0	MEMEN	Memory Enable. This R/O bit reflects the state of the MEM_ENABLE 'POS' field (See Section 5.2 for a description of this bit.)
1	IOEN	NO Enable. This R/O bit reflects the state of the IO_ENABLE PCS field (See Section 5.2 for a description of the Skt.)
2	IOB8	I/O Base. This R/O bit indicates the state of the 9th bit of the IO BASE POS' field. This bit is tatched trade strap during reset.
3	HALT	HALT. This R/W bit is used to control the 82750PD core Setting HALT causes the PB core execution to halt. Reset state = 0
4	RSVD	
5	VIP	VIP. This R/W bit is the interrupt level polarity bit for 82750PB interrupts. If VIP is set, the interrupt is active high. If VIP is clear, the interrupt is active low. Reset state = 0
6	VIE	VIE. This R/W bit is the Interrupt level enable bit for 82750PB interrupts. If VIE is set, the PB interrupt is presented on the IRQ pin. If VIE is clear, the PB interrupt is three-stated. Reset state = 0
7	VIT	VIT. This R/W bit is the Interrupt level type bit for 82750PB interrupts if VIT is set, the PB interrupt is totem pole output. If VIT is clear, the PB interrupt is open drain output. Reset state = 0

Table 5-44. Values of Interrupt Configuration Bits

Bus Type	MEMEN	IOEN	VIE	VIT
ISA	1	1	1	1
EISA	= ENABLE bit in POS2 register	ENABLE bit in POS2 register	1	1
Micro Chanel	- CDEN bit (bit0) in POS2 register	= CDEN bit (bit0) in POS2 register	0	0
PCI	- MEMEN bit (bit 1) in POS2 register	= IOEN bit (bit 0) in POS2 register	0	0
VL-Bus	1	1	1	1

5.8.5 SFBI CFG Registers

Tables 5-45 and 5-46 show the Shared Frame Buffer Interconnect CFG registers. CFGSFBI4 and CFGSFBI5.

Table 5-45. SFBI CFG 04 Register

Mnemonic: CFGSFBI4

Address: CFG 04

Access: R/W

Reset State: 00h

Bit No.	7	6	5	4	3		1	. 0
Name	PAGE	REFEN	HCAS	ньсн	RSVD	1157 2	MSZ:	MSZO

Bit No.	Name	Description			
2-0	MSIZ[2:0]	Memory Size. This 3-bit R/W field defines the size of the Shared Frame Buffer (SFB).			
		MSIZ[2-0] SFB Size			
		0 1 0 1MB (also configures SFBC as 32-bit)			
		011 2MB			
		100 4MB			
	1	110 6MB			
		111 8MB			
		Note: All other values are illegal. (Illegal values produce memory cycle and "readys" but the data is not guaranteed			
3	RSVD				
4	HLCH	Half Latch. If this R/W bit is set, the data latch is closed one-half clock early			
5	HCAS	Half CAS. If this R/W bit is set, the CAS signal is activated one-half clock early			
6	REFEN	Refresh Enable. Setting this R/W bit enables the SFB interface to cause a CAS-before-RAS refresh cycle in response to 82750PD refresh cycles			
7	PAGE	Page. This bit determines whether the 82750PD leaves the SFB page open or closes it while the 82750PD owns the SFBI. Setting this bit leaves the SFB page open (RAS low). Clearing this bit closes the SFB page (RAS high).			

Table 5-46. SFBI CFG 05 Register

Mnemonic: CFGSFBI5

Address: CFG 05

Access:	R/W						Reset 9	state: 00h
Bit No.	7	6	5	4	i 3	2	1	0
Name	MMPR1	MMPRO	QUASI	CCNT4	CCNT3	CCNT2	CONTI	LCCNTS

Bit No.	Name	Description		
4-0	ССNT[4:0]	These 5-bit R/W field that defines the maximum number of SFBC clocks (0 – 32) that the 82750PD is allowed to issue before giving up the SFBC in response to GRANT being deasserted. If GRANT is deasserted, the 82750PD continues using the SFBC (if it has any outstanding requests) until reference to the maximum number of clocks. At the end of this time interval, the 82750PD completes any current bus cycle and then release the SFBC.		
5	Quasi	This R/W bit determines whether the GRANT signal from the SFBC arbiter is synchronous or asynchronous 0 = Synchronous 1 = Asynchronous		
7-6	MMPR[1:0]	This 2-bit R/W field that defines the priority the 82750PD uses when requesting the SFBC		
<u> </u>		MMPR(1-0) Prienty		
		0 0 High Priority		
		0.1 Medium Priority		
		1.0 Low Priority		
		1 1 No Priority (ILLEGAL! If No Priority is programmed		
		and any memory cycle is attempted, the 82750PD		
	1	HANGS.)		

5.8.6 "EMS" CFG Registers

The "EMS" CFG registers are in Section 5.4.2.

5.8.7 Reserved CFG Registers

CFG registers 09h-0Fh are Reserved. These registers appear in the CFG register map (see Table 5-32), but no physical registers exist. Data written to these reserved CFG registers is ignored. Data read from them is undefined.

Ē

ţ

E-

Ľ

5-70

ATI017929

6.1 Introduction

The multimedia system can function successfully only if the devices on the Shared Frame Buffer Interconnect (SFBI) are synchronized. For example, when the 82750PD has decompressed a frame for display, it should notify the graphics processor that the frame is ready. In reply, the graphics processor should signal the 82750PD when if has finished writing the frame. SynchroLink is a senal two-wire bus, which, together with the Synchrolink interface, supports these communications.

Events that should be communicated to devices on the SFBI are SFBI events. A message regarding an SFBI event is sent in the form of a data packet on the SynchroLink. Figure 6-1 shows the connection of the 82750PD and two other devices to the SynchroLink. The bus activities are directed by one of the devices, the arbiter, which invites each device in turn to transmit its message.

The 82750PD writes to registers in the SynchroLink interface to prepare a data packet that is sent over the SynchroLink. In return, data packets from other devices update the SynchroLink interface registers. Some incoming data packets generate meta-interrupts, which are sent to the 82750PD core via the four-wire, unidirectional VBUS. The VBUS is also connected directly to package pins for test purposes.

Figure 6-1. The SynchroLink with Devices Connected

This chapter describes communications via the SynchroLink. Sections 6.2 through 6.4 describe the protocol for the bus communications and the registers in the SynchroLink interface. Section 6.5 describes meta-interrupts and the VBUS.

NOTE:

Software developers should initialize all registers prior to use.

6.2 Arbiter, Source, and Target

Devices on the SFBI assume different roles when communicating over the SynchroLink. One device is the arbiter, which provides a stable clock and directs the communications. The arbiter sends a senes of SynchroLink messages that invite each device, in turn, to use a brief time slot to send its message. Any device on the bus should be capable of functioning as the arbiter. During device initialization, software designates one device to be the arbiter.

All devices on the bus monitor the invitations from the arbiter. When a device receives its invitation, it can decline or it can choose to accept the invitation and thereby become the source. The source is given temporary control of the bus to send a message. For example, a display processor can broadcast to all devices that it has just finished "painting" the display screen from top to bottom.

In a different type of message, the source can request a service from a particular device, the target. The target acknowledges that the request was received. In a subsequent message, the target becomes the source and sends a the requesting device a reply saying that the service was performed successfully or unsuccessfully. For example, the 82750PD could send a "Go Blt" request to the graphics controller and then receive a "Blt Done." The reply could be programmed to generate a metainterrupt to the 82750PD core. (See Section 6.5 for a description of meta-interrupts.)

The 82750PD SynchroLink interface is capable of sending messages to itself. If an outgoing message is detected as being a message that the 82750PD should receive, then it is received properly. This loopback capability applies to all types of messages and requires no special bit settings.

6.3 SynchroLink Data Packets

This section describes SynchroLink data packets, with attention to the roles of the arbiter, the source, and the target. Following subsections treat the data packets in more detail and describe how to program the SynchroLink registers to generate the desired data packets.

6.3.1 Arbiter, Source, and Target Interactions

A typical data packet, shown in Figure 6-2, begins when the arbiter transmits an *initiation*, which is composed of a start bit (bit 0) followed by a 3-bit identification number, the message ID, for the invited device. (Each device on the SynchroLink has a unique message ID). The arbiter performs a switch over on cycle 4, leaving the bus in the de-asserted state. If the device with the matching message ID wants to send a message, it asserts an Invitation Acknowledge (bit 5) to indicate that it is now the source and will commence transmission of a signal event (bits 6-13, 15-22). Bit 23 is a switch over bit that allows the arbiter to take over the bus and begin the next cycle of invitations.

Figure 6-2. Data Packet - Source Accepts

6-4

ATI017933

E

E

In some cases, a signal event from the invited source requires an acknowledgment from the target (destination device) of the signal event (see Figure 6-3). In this case, the Service Acknowledge bit is driven by the target at bit 22 of the same packet. Bit 21 is then used as a switch over time for the source of the signal event to release the bus to the target. A service requires an acknowledgment because the target may have very limited queuing capabilities and may miss a signal event if it is too busy to accept the service request. If a request is not acknowledged, the requester can retry each time it is invited to use the bus until the request is acknowledged.

Figure 6-3. Data Packet - Source Accepts and Target Acknowledges

A SynchroLink transaction requires one or two data packets (messages). If the source merely wants to inform all of the other devices that it has performed some operation, one packet is sufficient. If Device X asks Device Y to perform a service, Device Y acknowledges the request in the first packet. In a second packet Device Y informs Device X that the service is completed successfully or unsuccessfully.

Most of the time, the SynchroLink carnes only circulating invitations from the arbiter with no device actually accepting the invitations (see Figure 6-4). In these cases, the signal event portion of the packet is skipped. It is the responsibility of each device on the bus to monitor the Invitation Acknowledge bit of each invitation to determine when to begin looking for the next start bit.

F

E

E

E

E

Figure 6-4. Data Stream - Invitation Not Acknowledged

6.3.2 Data Packet Fields

This section defines the data packet fields, which are illustrated in Figure 6-4 and described in subsequent paragraphs.

Figure 6-5. Data Packet Format

Start Bit (bit 0).

Message ID (bits 1-3). This field, written by the arbiter, contains the ID of the device that is invited to take over the SynchroLink. If that device accepts the invitation, it becomes the source.

SW (Switch over, bit 4). This is a switch over bit. The bus is de-asserted while control is transferred from the arbiter to the source.

Invitation Acknowledge (bit 5). The invited device sets this bit to acknowledge the invitation and to announce that it has become the source.

FCODE (bits 6–9). The function code, which is written by the source, specifies an action or a type of information. Of the sixteen possible function codes, only two are predefined: service request and service completion. These are described in Section 6.3.3. Software can define other function codes.

Service Number (bits 10–13, 15–20). When the source asks a target device to perform a service, it writes a service number to this 10-bit field. The service number specifies two things: the target and the service to be performed by that target.

For the 82750PD, the Match Service Register (MSRV), see Section 6.4.8) specifies a range of values within the 1024 possible values in the service number field. The 82750PD monitors the service number of any service request packet on the bus. If the service number is within the range specified by the MSRV register, the 82750PD is the target and must respond. From the specific value it determines which service is requested to perform. Each of the devices on the bus recognizes its own unique range of service numbers.

DATA (bits 10–13, 15–22 or 15–25). The data field, which is written by the source, methodes the bits of the service number plus bits 21–and 22. However, if the source requires an acknowledgment from the target (as in the example of Figure 6-3), the data field is shortened to accommodate a switch over bit (bit 21) and an acknowledge bit (bit 22) from the target.

Signal Event (bits 6-13, 15-22, or 15-20). The signal event is composed of the function code and the data or the service number. Examples of signal events are in Table 6-1.

SW (Switch over, bit 23). This is a switch over bit. The bus is de-asserted while control is transferred from the source to the arbiter or from the target to the arbiter.

41

Table 6-1. Examples of Signal Events

Function Code (bits 6-9)	Data (bits 10-13, 15-20)*	Bit 21	Bit 22	
Service Request = 0En	A ten-bit Service Number (bits 10–13 15–20)	Switch over	Acknowledge receipt of message	
Service Completion = 0Fh (always paired with service request)	10-bit Service Number	Unusea	Service successful	
Audio Record Sync *	12-bit Time Stamp			
Audio Playback Sync *	12-bit Time Stamp			
Graphics Scan Line Count	12-bit Line Number			
Video Scan Line Count *	12-bit Line Number	t Line Number		

^{*} These examples have no predefined function codes

6.3.3 Service Requests

When a source device wants another device to perform a service, the source sends a service request data packet, which consists of the following elements:

- a function code: FCODE = 0Eh
- a 10-bit service number (bits 10-13, 15-20).
- a switch over bit (bit 21) to release the bus to the target. (The source de-asserts the bus and then releases it to a high impedance state.)

The target sets bit 22 in the same data packet to acknowledge receipt of the service request. Table 6-2 gives a detailed description of a service request data packet.

6-10

AT1017939

r jak is

E

E

Ë

E

Table 6-2. Service Request Data Packet Definition

Bit(s)	Description		
o	Start bit Always set Driven by arbiter All devices synchronize to the leading edge of this bit		
1-3	Message ID Driven by arbiter This is the message ID of the device that has control during bits 5–22. Bit 1 is the MSB of the ID		
	Switch Over First driven inactive by arbiter then released to tigh impedance		
5	Invitation Acknowledge Set by the device with matching ID to indicate that it will send a signal event. If not driven, this bit defaults to 10' and bits 6–23 are skipped.		
6-9	Function Code Only transmitted if the invitation acknowledge was asserted Bit 6 is the MSB. OEh		
10–13	Service Number (most significant 4-bits) Only transmitted if the invitation acknowledge was asserted Contains the high 4-bits of the 10-bit data field Bit 10 is the MSB		
14	Event in Progress Only transmitted if the invitation acknowledge was asserted Always set Used only to prevent a "break" (ten consecutive '0' bits) from being buried in the signal event		
15–20	Service Number (least significant 6 bits) Only transmitted if the invitation acknowledge was asserted These are the low 6 bits of the 10-bit data field Bit 20 is the LSB		
21	Switch Over Cleared by the device with the matching ID then released to high impedance		
22	Service Ack Set by the target to acknowledge receipt of the request		
23	Switch Over Cleared by the target then released to high impedance		

6.3.4 Service Completion Message

A service completion message is a reply from the device that received the service request to the device that sent the request. A service completion data packet consists of these elements:

- A function code = 0Fh
- The same 10-bit service number that was in the service request. This indicates that the target is responding to that service request.
- An unused bit (bit 21).

A Service Successful flag (bit 227 indicating that the service was performed successfully (= 1) or unsuccessfully (= 0).

Table 6-3 gives a detailed description of a service completion data packet.

Table 6-3. Service Completion Data Packet Definition

Bit(s)	Description			
٥	Start bit			
ľ	Always set			
	All devices synchronize to the leading edge of this bit.			
	Driven by the arbiter			
1-3	Message ID			
	Indicates which device has control during bits 5–22			
	Bit 1 is the MSB of the ID			
	• 0-7 (bits 1-3 = 000-111) are available as valid message 0			
	Driven by arbiter			
4	Switch Over			
	First driven inactive by arbiter then released to high.			
	impedance ====================================			
5	Invitation Acknowledge			
	Set by the device with matching ID to indicate that it will send a			
	signal event.			
	If not set, this bit defaults to '0' and bits 6–23 are sk coes			
6 -9	Function Code (high byte)			
	Only transmitted if the invitation acknowledge was asserted			
	Bit 6 is the MSB			
_	• • 0Fh			
10-13	Service Number (most significant 4-bits)			
	Only transmitted if the invitation acknowledge was asserted.			
	These are the high 4-bits of the 10-bit data field			
	Bit 10 is the MSB			
14	Event in Progress			
	Only transmitted if the invitation acknowledge was asserted.			
	Always set			
	Used only to prevent a "break" (ten consecutive '0 b.ts) from			
	being buried in the signal event			
15-20	Service Number (least significant 6 bits)			
	Only transmitted if the invitation acknowledge was asserted.			
	These are the low 6-bits of the 10-bit data field			
	Bit 20 is the LSB			
21	Unused			
	Only transmitted if the invitation acknowledge was asserted			
	The value of this bit is a "don't care "			
22	Service Successful			
	Only transmitted if the invitation acknowledge was assented.			
	 Set by the target of the request if the service was performed 			
	successfully			
23	Switch Over			
	Cleared by the device with the matching ID, then released to			
	high impedance			

6.3.5 Broadcast Messages

Table 6-4 describes the data packet for a broadcast message. The source can select a function code value in the range 00h–0Dh (i.e., any value other than those for a service request (0Eh) or a service completion (0Fh)). A broadcast message can be received by any device(s) that are set up to receive the same function code value (see Section 6.4.3).

E

Table 6-4. Other Function Code Data Packet Definition

Bit(s)	Description			
0	Start bi:			
	Always se:			
	All devices synchronize to the leading edge of this cit			
	Driven by arbiter			
1-7	Message ID			
	Indicates which device has control during bits 5–22			
	Bit 1 is the MSB of the ID			
}	0-7 (bits 1-3 = 000 - 111) are available as valid message !Cs			
	Driven by the arbiter			
4	Switch Over			
	Cleared by the arbiter and then released to high impedance			
5	Invitation Acknowledge			
	Set by the device with the matching ID to indicate that it will			
ľ	send a signal event			
	If not set, this bit defaults to '0' and bits 6–23 are skipped			
6–9	Function Code			
	Only transmitted if the invitation acknowledge was asserted Bit 6 is the MSB			
	The value is in the range 00h-00h The value is in the range 00h-00h			
10-13	Signal Event (most significant 4-bits)			
10-13	Only transmitted if the invitation acknowledge was asserted.			
1	Contains the most significant 4-bits of the data field			
]	Bit 10 is the MSB			
14	Event in Progress			
	Always set			
Ì	Used only to prevent a "break" (ten consecutive '0' bits' from			
	being buried in the signal event			
15-22	Signal Event (low byte)			
	Only transmitted if the invitation acknowledge was asserted.			
1	This is least significant byte of the data field			
	Bit 22 is the LS8			
23	Switch Over			
	Cleared by the device with the matching ID and then released to			
}	high impedance			
	A start bit can begin in the next clock cycle to initiate another			
L	invitation			

6.4 SynchroLink Registers and Operations

This section describes the SynchroLink operations and the SynchroLink registers. The first subsection introduces the registers. Following subsections give more detailed descriptions of the operations and the associated registers.

6.4.1 SynchroLink Registers

The SynchroLink interface includes sixteen registers that control the SynchroLink operations. These registers, listed in Table 6-5, are mapped into the 82750PD memory address space (see Table 2-1), where they can be accessed by the 82750PD core and the host.

6-16

ATI017945

Table 6-5. SynchroLink Register Map

Register Name	Mnemonic	Memory Address
Transceiver Register	XCVR0	00FF0000-00FF0003
·	XCVR1	00FF0004-00FF00C7
•	XCVR2	00FF0008-00FF000B
•	XCVR3	00FF00C1-00FF000F
•	XCVR4	00FFGG10-00FF0C13
•	XCVR5	00FF0014-00FF0017
•	XCVR6	00FF0018-30FF0C1B
•	XCVR7	00FF001C-00FF001F
•	XCVR8	00FF0030-00FF0023
•	XCVR9	00FF0024-00FF002
•	XCVRA	00FF0028-00FF0025
•	XCVRB	00FF002C-00FF002F
Message Status Register	MSTATUS	00FF0030-00FF0033
Receive Service Register	RSRV	00FF0034-00FF0037
Match Service Register	MSRV	00FF0038-00FF003B
Message Configuration Register	MCFG	00FF003C-00FF003F
Reserved	_	00FF0040-00FFFFFF

The Transceiver Registers (XCVRn, n = 00h-0Bh) perform and control operations, provide status information, and hold received data or data to be sent over the SynchroLink.

The Message Status Register (MSTATUS) provides information on the status of all of the XCVRn registers. The Match Service Register (MSRV) defines the range of service numbers to which the 82750PD should respond. The Message Configuration Register (MCFG) is used to configure the SynchroLink interface and to specify the use of the internal VBUS.

6.4.2 Transceiver Registers (XCVRn)

All of the Transceiver Registers have the format shown in Table 6-6. The paragraphs following describe the register bits. Comprehensive bit descriptions are in Appendix A.

NOTE:

Software developers should initialize all registers prior to use.

Table 6-6. Transceiver Registers

Mnemonic: XCVRn, n = 00h-0Bh Access: RW Address: 00FF0000h-00FF002Fh Reset State: See bit descriptions.

Bit No.	31	30	29	28	27	26	25	24
Name	SMSG	RXEN	BINT2	RSVD	CINT	BINT	NINT	TXINT

Bit No.	23-22	21	20	19	18	17	16
Name	RSVD	EXTRA	SUCCESS	COMPLETE	FMATCH	NACK	TXIPS

Bit No.	15—12	11—0
Name	FCODE	DATA

DATA (bits 11–0; uninitialized at reset). These bits correspond to the data bits in the data packet (packet bits 10–13, 15–22). When the register is in the broadcast transmit mode (RXEN = 0), software can write these bits. When the register is in the broadcast receive mode (RXEN = 1), hardware can write these bits.

FCODE (function code, bits 15–12: uninitialized at reset). This field contains the function code.

TXIPR (Transmit Initiate, bit 16: reset state = 0). Software sets this bit to initiate a transmission, i.e. to write the FCODE and DATA fields onto the

SynchroLink. Hardware clears this bit when the transmission is complete, regardless of whether the transmission is acknowledged.

NACK (Not Acknowledged, bit 17: reset state = 0). This bit is used only in a service-request/service-completion operation (SMSG = 1). Hardware sets this bit in the source's register to indicate that the target does not acknowledge the service request.

FMATCH (Function Code Match, bit 18: reset state = 0). This bit is used by a device that is in broadcast receive mode (RXEN = 1). Software clears this bit when it begins listening for a certain type of broadcast message (i.e., for a certain function code). Hardware sets this bit to indicate that a message with the specified function code has been received. To listen for more than one function code, the device must set up a separate register for each code

COMPLETE (bit 19; reset state = 0). This bit is used only in a service-request/service-completion transaction (SMSG = 1). Software must clear this bit in the source's register when it transmits a service request (i.e., sets TXIPR). Hardware sets the COMPLETE bit when a corresponding completion message is received, i.e. when:

- The FCODE in the service completion message is 0Fh, and
- The service number (packet bits 10-13.15-20)
 in the completion message matches the service
 number in the transceiver register that was
 used to send the service request.

SUCCESS (bit 20: reset state = 0). This bit is set by hardware to indicate that a service has been completed successfully. (When a service completion message causes the COMPLETE bit to be set, the value of the SUCCESS bit is latched from packet bit 22 of the message.)

EXTRA (bit 21: reset state = 0). This bit is currently undefined. In a read operation its state is unknown. It should be written as '0'.

TXINT (bit 24), NINT (bit 25), BINT (bit 26), CINT (bit 27). BINT2 (bit 29): reset state = 0 for all of these bits. Each of these bits enables the SynchroLink interface to generate a meta-interrupt in response to an SFBI event, i.e., an event involving a device on the SFBI. Such an event is manifested by a bit being set or cleared in an XCVRn register. This bit activity causes the SynchroLink interface to send a VBUS code to the 82750PD core, provided that the corresponding enabling bit is set. Table 6-7 lists the bit activity in XCVRn that signals the occurrence of an SFBI event, the corresponding enabling bits in XCVRn, and the VBUS codes generated. Section 6.5 has further information on meta-interrupts and VBUS codes. Section 5.7 describes the system of interrupts and metainterrupts.

Table 6-7. Enabling SFBI Events to Generate VBUS Codes

Bit Activity in XCVRn Register	Enabling Bit in XCVRn	VBUS Code
Hardware clears TXIPR bit (bit 16)	TXINT (bit 24)	VICODE
Hardware sets NACK bit (bit17)	NINT (bit 25)	VICODE
Hardware clears FMATCH bit (bit 18)	BINT (bit 26)	VICODE
Hardware clears COMPLETE bit (bit 19)	CINT (bit 27)	VICODE
Hardware sets FMATCH bit (bit 18).	BINT2 (bit 29)	V2CODE

RXEN (bit 30) and **SMSG** (bit 31). This pair of bits controls the mode of this register. The RXEN bit determines whether the DATA field of this register can be written by the 82750PD software or by the SynchroLink hardware. The SMSG bit determines whether the register is in the broadcast mode (send/receive) or the service mode (service request/service completion). Table 6-8 lists the

register control bits that are used for each of the transmit/receive modes. Note that while these bits have the same values for service request and service completion, the two modes can be distinguished by the FCODE fields: 0Eh = service request, 0Fh = service request.

Table 6-8. XCVRn Register Modes

Register Mode	SMSG	RXEN	Register Control Bits
Broadcast Transmit	0	0	TXIPR TXINT
Broadcast Receive	0	1	FMATCH_BINT BINT2
Send Service Request	1	0	TXIPR TXINT NACK NINT
Receive Service Completion	1	0	CINT, SUCCESS, COMPLETE, EXTRA
Reserved	1	1	

Do **not** change the SMSG bit or the RXEN bit unless MSG_EN = 0 and DMSG_EN = 0 in the Message Configuration Register (see Section 6.4.9). Changing the SMSG or RXEN bit when MSG_EN = 1 or DMSG_EN = 1 may corrupt a message on the SynchroLink.

Table 6-9 shows the XCVRn registers in each of the four transmit/receive modes. The mode is determined by the SMSG and RXEN bits (along with the FCODE for service request and service completion). For any mode, the bits marked with an asterisk are operational: they function according to their bit descriptions. For a register read, the values of the shaded bits are meaningless. When the register is written, the shaded bits should be cleared.

Syn	ch	ro	Li	n
-----	----	----	----	---

Table 6-9. XCVRn Settings for the Four Message Modes

Broadcast Transmit

İ	SMSG	RXEN	BINT2	CINT	BINT	NINT	TXINT	succss	CMPLT	FMATCH	NACK'	ععالات
į	0	0					*					

Broadcast Receive

SMSG	RXEN	BINT2	CINT	BINT	NINT	TXINT	succss	CMPLT	FMATCH	NACK TXIP
0	1	*		*		x. 73		وسني	*	

Send Service

	SMSG	RXEN	BINT2	CINT	BINT	NINT	TXINT	succss	CMPLT	FMATCH	NACK' TXIDI
I	1	0	. :	9 . 1	A. 1		*	,	. : *		

Receive Completion

SMSG	RXEN	BINT2	CINT	BINT	NINT	TXINT	succss	CMPLT	FMATCH	NACK	TXIPE
1	0	1.5	*		100		*	*			

- For a register read, the value of this bit is meaningless.
- * = This bit is operational for this mode

The XCVRn registers can generate multiple simultaneous requests for transmission. The arbitration of these multiple transmission requests uses the fixed priority scheme given in Table 6-10.

Table 6-10. Priority of Transmission Requests

Priority	Register
Highest	Currently Transmitting Register
•	XCVR0
•	XCVR1
•	XCVR2
•	XCVR9
•	XCVRA
Lowest	XCVRB

6-23

6.4.3 Broadcast Transmit Mode

In broadcast transmit mode a device transmits a broadcast message and determines if the message was received. The broadcast message is characterized by its function code and can be received by any device with an XCVRn register that is set up to receive a message with that same function code. The broadcast transmit mode requires SMSG = 0 and RXEN = 0, as shown in Table 6-8.

The broadcast transmit mode has two states and two transitions, which are characterized by the values of certain bits in the XCVRn register. Figure 6-6 shows the states and transitions, and Table 6-11 shows the associated bit activity in the XCVRn register.

Figure 6-6. Broadcast Transmit State Diagram

亡

Table 6-11. Broadcast Transmission Bit Activity

State/Transition	Associated Register Bits
idie state	TXIPR = 0
Wart for Broadcast Send state	TXIPR = 1
SEND_BCST transition	Software writes TXIPR = 1
ACK transition	Hardware drives TXIPR = 0

The following example illustrates a typical programming sequence for transmitting a broadcast message.

1. Configure the register and, for this example, set the TXINT bit to enable its corresponding meta-interrupt.

XCVRn

Bit No.	31	30	29	28	27	26	25	24
Name	SMSG	RXEN	BINT2	RSVD	CINT	BINT	NINT	TXINT
Value	0	0	0	0	0	0	0	1

(Note: The choice of which (if any) meta-interrupts to enable depends on the application. Setting the TXINT bit, which enables a meta-interrupt to be generated when hardware clears the TXIPR bit, is just an illustrative example. Instead, you might set BINT or BINT2, or you could choose to enable none of the meta-interrupts.

- Write the FCODE and DATA fields into bits 15–0.
- Initiate the transmit operation by writing bits 23-16 to set TXIPR:

XCVRn

Bit No.	23-22	21	20	19	18	17	16
Name	RSVD	EXTRA	SUCCESS	COMPLETE	FMATCH:	NACK	TXIEE
Value	0	0	0	0	0	0	,

4. Wait for a meta-interrupt:

If TXIPR = 0, the transmission is complete. (Hardware clearing this bit generates the TXINT meta interrupt.) If TXIPR = 1, the meta-interrupt was not generated-by this register.

. . - -

ᆮ

A new broadcast transmission can then begin.

The following notes may preclude confusion regarding the operation of the NACK bit and the FMATCH bit.

- Hardware may toggle the NACK bit in broadcast mode. However, the NACK bit has no significance in this mode and can be ignored.
- When the 82750PD is in broadcast transmit and broadcasts a message with a certain function code, hardware sets the FMATCH bit in all transceiver registers having the same function code — including the register that broadcasts the message.

6.4.4 Broadcast Receive Mode

The 82750PD can receive different types of broadcast messages, where each type is characterized by a unique function code. For each type of message to be received there must be an XCVRn register set up with the corresponding function code. When a message with a function code X is received, the data field bits in the packet are latched into the data field of the XCVRn register

that has X in the FCODE field. (The 82750PD ignores messages with function codes not in its range.) The XCVRn register that receives the message with function code X can be set up to trigger a meta-interrupt.

The following example illustrates a typical programming sequence to receive broadcast messages.

1. Configure the XCVRn register to listen for broadcast messages by writing bits 31-24:

XCVRn

AUTIN	<u>'</u>							
Bit No.	31	30	29	28	27	26 :-	- 25	24
Name	SMSG	RXEN	BINT2	RSVD	CINT	BINT	NINT	TXINT
Value	0	1	0	0	0	0	0	0

2. Write the FCODE bits (bits 15–12) with the function code for the type of message to be received. (When the 82750PD writes to the register in this mode, the bits in the DATA field (bits 11–0) are "don't care": they are not written to the register.)

(Writes to the FCODE field take effect in one 82750PD core clock. Incoming messages are received, synchronized to the 82750PD core clock, and presented to this XCVRn register. If this register is written in the exact clock that a message is presented, then the "old" contents of the register are used.)

 Clear the FMATCH bit by writing to bits 23– 16:

XCVR_n

Bít No.	23	22	21	20	19	18	17	16
Name	RSVD	RSVD	EXTRA	SUCCESS	COMPLETE	FMATCH	NACK	TXIPR
Value	0	С	0	0	0	0	0	0

Note that the FMATCH bit must always be cleared when a new function code is written in broadcast receive mode. Otherwise, a message with the new function code goes undetected.

4. Enable the desired broadcast meta-interrupt (BINT or BINT2) by writing bits 31-24 (BINT is enabled in this example.).

XCVRn

Bit No.	31	30	29	28	27	26	25	24
Name	SMSG	RXEN	BINT2	RSVD	CINT	BINT	NINT	TXINT
Value	0	1	O	0	0	1	С	С

When a broadcast message with the selected function code is received, the FMATCH bit is set, the DATA field is updated with the data from the packet, and a meta-interrupt is generated. At this point, the device should read the DATA field of the XCVRn register. If a second message of the same type arrives, it overwrites the DATA field.

The DATA field always contains the data from the most recently received message (with the specified FCODE). Software can determine that this register received a message by reading the FMATCH bit. Software need not clear the FMATCH bit for the receipt of a new message (with the same FCODE) to generate another meta-interrupt. However, to identify uniquely each message received by this register, software must clear the FMATCH bit after each message is received and before the next message is received.

6.4.5 Sending a Request and Receiving a Completion

When the 82750PD attempts to send a service request, there are two possible outcomes:

- The message is sent successfully (accepted by the target), and the 82750PD receives a service completion message.
- The message is not acknowledged (NACKed).

Either one of these outcomes occurs within approximately 21 µs. The hardware does not provide an automatic resend capability. It is software's responsibility to repeat the attempt to send. The hardware provides a one-shot attempt to send a message; it is either sent or is NACKed.

Service completion messages are a special class of broadcast transmit messages. After a device has received a service request and has completed the task, it sends a service completion message back to the device that requested the service. These messages are asynchronous and cannot be NACKed: they must be accepted. Each service completion message is paired with a service request message. The XCVRn register that sends the service request receives the service completion. As a result, the number of outstanding service requests is then limited to the number of registers configured for service completion (a maximum of 12 XCVRn registers with SMSG = 1 and RXEN = 0). Figure 6-7 shows a state diagram for sending a service request and receiving a service completion, and Table 6-12 lists the bit activity in the XCVRn register.

Figure 6-7. Send Service Request State Diagram

Table 6-12. Send Service Request Bit Activity

State/Transition	Bit Values in XCVRn
State: Idle	TXIPR = 0
State wait to send service request	TXIPR = 1, NACK = 0. COMPLETE = 0
State NACKed	TXIPR = 0 NACK = 1 COMPLETE = 0
State received service completion	TXIPR = 0, NACK = 0, COMPLETE = 1
Transition. SEND_SRV	Software writes TXIPR = 1, NACK = 0, COMPLETE = 0
Transition, ACK	Hardware drives TXIPR = 0
Transition: NACK	Hardware drives TXIPR = 0 NACK = 1
Transition. RESEND_SRV	Software writes TXIPR = 1, NACK = 0, COMPLETE = 0
Transition: RCV_COMP	Hardware drives COMPLETE = 1
Transition: CLEAR_NACK	Software writes TXIPR = 0, NACK = 0 COMPLETE = 0
Transition, CLEAR_COMP	Software writes TXIPR = 0, NACK = 0, COMPLETE = 0

H

Ë

F

NOTE

The register returns to the IDLE state after the service request has been sent. It is software's responsibility to "remember" that a service request was sent and that a corresponding service completion is expected.

The following example illustrates a typical programming sequence to transmit a service request message and receive the service completion message.

1. Configure the XCVRn register to transmit a service request and receive a service completion by writing bits 31-24:

XCVRn

Bit No.	31	30	29	28	27	26	25	24
Name	SMSG	RXEN	BINT2	RSVD	CINT	BINT	NINT	TXINT
Value	1	٥	0	0	0	0	0	i c

- 2. Write the target ID and service number to the DATA field (bits 11-2). DATA field bits 1 and 0 may be written with any value. Write 0Eh (the service request code) to the FCODE field (bits 15-12).
- Enable the service completion (CINT) and the NACK (NINT) meta-interrupts by writing bits 31-24:

XCVRn

Bit No.	31	30	29	28	27	26	25	24
Name	SMSG	RXEN	BINT2	RSVD	CINT	BINT	NINT	TXINT
Value	1	0	0	O	1	0	1	0

4. Initiate the transmission by writing to bits 23-16 to clear the NACK, COMPLETE, and SUCCESS bits and to set the TXIPR bit:

XCVRn

Bit No.	23	22	21	20	19	18	17	16
Name	RSVD	RSVD	EXTRA	SUCCESS	COMPLETE	FMATCH	NACK	TXIPR
Value	0	0	0	0	0	0	0	•

- 5. Wait for a meta-interrupt. The pseudo code that follows describes the meanings of the bit values and the actions to taken.
 - if TXIPR = 1 then the interrupt was not generated by this register

else if NACK = 1 then go to step 4 (must retry because the target was unable to accept the command)

else if SUCCESS = 1
then the service was completed
successfully
else service was not completed
successfully.

Another attempt to send a service request and receive a service completion (using the same target ID and service number) can be executed by simply going to step 4.

6.4.6 Receiving a Request and Sending a Completion

The 82750PD can receive service request messages from other devices. An incoming service request is held in the Receive Service Register (RSRV). The 82750PD reads this register, performs the requested service, and sends a service completion message to the originator of the service request. The following subsections describe the RSRV register and the operations for receiving a request and sending a completion.

Receive Service Register (RSRV)

The Receive Service Register (RSRV) holds a service request message that arrives from another device. The 82750PD reads the RSRV register to find out what service it is asked to perform. The 82750PD must read the RSRV register to access the first service request before the RSRV register can accept a second service request. If a second service request arrives before the 82750PD reads the RSRV register for the first service request, the second service request is NACKed. Table 6-13 shows the RSRV register.

Table 6-13. Receive Service Register

Mnemonic: RSRV

Address: 00FF0034-00FF0037

Access:	See bit des	criptions	Reset State: See bit descriptions.				
Bit No.	31-25	24	23-17	16	15-12	11-2	1-0
Name	RSVD	IINT	RSVD	VALID	FCODE	SERV_NUM	RSVD

SERV_NUM (Service Number, bits 11-2: R/O, uninitialized by reset). This field latches the service number (packet bits 10-13 and 15-20) from the received message.

FCODE (Function Code, bits 15-12; R/O; uninitialized by reset). This 4-bit field always contains 0Eh (the service request code) after a service request is received. These bits are uninitialized by reset.

VALID (Valid, bit 16; R/W: reset state = 0). This can be used by 82750PD core microcode or the host to determine if a completion message was received. The SynchroLink hardware sets this bit when a service completion message is received and acknowledged. An incoming completion message is defined as a message satisfying these criteria:

- The function code (bits 6-9) = 0Eh (service request).
- The service number (packet bits [10-13, 15-20]) is a recognized service number (see the Match Service register [MSRV] described in Section 6.4.8).

If the message does not meet these criteria, the VALID bit is not set and the service acknowledge bit (bit 22) in the message packet is not set.

The 82750PD core microcode and the host can reset the valid bit, but writing a '1' has no effect. If software clears this bit and hardware sets this bit in the same clock, the bit is cleared.

IINT (Incoming Message Interrupt, bit 24; R/W; reset state = 0). Setting this bit enables a NOT-VALID to VALID transition (bit 6) to generate the V1CODE VBUS code.

Operations

This section describes procedures for receiving a service request and sending the corresponding service completion message.

Assume that the 82750PD uses one of its transceiver registers (denoted by XCVRX) to send a service request message to the 82750PD. The 82750PD reads the service request from its RSRV register, performs the service, and sends a service completion message to the 82750PD. The 82750PD sends the service completion whether it was successful or unsuccessful in performing the requested service. Note that the 82750PD hardware does not send the service completion. The 82750PD software is responsible for sending the service completion.

When the 82750PD receives the service completion message, the COMPLETE bit is set in the XCVRX register. If the service was performed successfully, the SUCCESS bit is also set in the XCVRX register.

The following example illustrates a typical programming sequence where the 82750PD receives a service request and sends the service completion. Before beginning this sequence, the 82750PD should configure a transceiver register (denoted by XCVRX) for a broadcast transmit operation (see Section 6.5.3).

- 1. Clear the VALID bit in the RSRV register by writing 00h to bits 23–16.
- Enable the incoming message interrupt (IINT) in the RSRV register by writing 01h to bits 31– 24.
- 3. Wait for a meta-interrupt. When it arrives, check the VALID bit. If the VALID bit is set, a service request message has arrived.

 Otherwise, the meta interrupt was not caused by a service request message.

(For the following steps, assume that the VALID bit is set.)

- Read the FCODE and DATA bits 15-0 from the RSRV register. (The FCODE should be 0Eh, the code for a service request.)
- 5. Perform the service request as indicated in the DATA field.
- 6. Initiate the following broadcast transmit operation to send the service completion message. Register XCVRX is configured for broadcast transmit.
 - a) Write 00h to bits 31-24 of the XCVRX register.
 - b) Write the FCODE and DATA fields in bits 15–0 of the XCVRX as follows:

Load the FCODE field (bits 15–12) with 0Fh (the service completion FCODE).

Load DATA bits 11-2 with the 10-bit DATA field read from the RSRV register.

(When the data returned to the 82750PD is the same as the data that the 82750PD sent. hardware sets the COMPLETE bit in the 82750PD's transceiver register.)

If the service was completed successfully, set bit 0. (This causes the SUCCESS bit to be set in the 82750PD's XCVRX register.)

- c) Set the TXIPR bit in the XCVRX register by writing 01h to bits 23–16.
- d) Poll the TXIPR bit until it is cleared by hardware. This indicates that the transmission is complete.
- Clear the VALID bit in the RSRV register by writing 00h to bits 23-16. This allows the hardware to accept another service request. As long as the VALID bit is set, incoming service requests are NACKed.

At this point the 82750PD hardware is prepared to accept another service request (i.e., prepared to recommence at step 3.)

6.4.7 Message Status Register (MSTATUS)

The Message Status Register, shown in Table 6-14. is a read-only register that provides status information on the XCVRn registers and the RSRV register.

Table 6-14. Message Status Register

Mnemonic: MSTATUS

Address: 00FF0030h-00FF0033

Access: R/O Reset									
Bit No.	31-25	24	23-22	21-20	19-18	17-16			
Name	∌ 0	RSRV	XCVRB STAT	XCVRA STAT	XCVR9 STAT	XCVR5 STAT			

Bit No.	15-14	13-12	11-10	9-8	7-6	5-4	3-2	1-0
Name	XCVR7 STAT			XCVR4 STAT				

XCVRn STAT (Transceiver Status). This two-bit field reflects the status of an XCVRn register (n = 0, 1, ..., 9, A, B). The definitions of these bits depend on the state of the SMSG bit in that register, as shown in Table 6-15.

Table 6-15. Transceiver Status Bits and the SMSG Bit.

SMSG	XCVRn STAT[1] in the MSTATUS Register	XCVRn STAT[0] in the MSTATUS Register
0	FMATCH	TXIPR
1	NACK OR' COMPLETE	TXIPR

^{*} Logical inclusive OR

Software can monitor bit 0 of the XCVRn STAT field to determine if the XCVRn register has completed a transmission. In a broadcast receive situation (SMSG = 0), software can monitor bit 1 to determine if the XCVRn register has received a message with a function code that matches the function code in XCVRn. When XCVRn is waiting for a response to a service request, software can monitor bit 1 to determine if any response has been received i.e., the request has been NACKed or the service has been completed.

RSRV STAT (Receive Service Status, bit 24). This bit reflects the state of the valid bit the RSRV register.

6.4.8 Match Service Register (MSRV)

When the 82750PD sees a service request message on the SynchroLink, it checks to see if the service number falls within the range assigned to the 82750PD. If it does, this is a recognized service number, and the 82750PD responds to the request. (A paragraph below defines a recognized service number.) If the service number is not recognized, the 82750PD can ignore the service request. The Match Service Register (see Table 6-7) defines the range of service numbers that the 82750PD recognizes. Software must not alter this register unless MSG_EN = 0 and DMSG_EN = 0 in the Message Configuration Register (defined below). Such an alteration may result in incorrect message reception.

Table 6-16. Match Service Register

Mnemonic	:: MSRV			Address: 00FF0	038h-00FF003B		
Access: R	Access: R/W Reset State: See bit description					bit descriptions.	
Bit No.	31-25	27-18	17-16 15-12 11-2 1-0				
Name	0	SEV MASK		_	CRY DATA		

SRV_DATA (Service Data, bits 11-2; uninitialized by reset). The bits in this field are compared with the service number bits that are selected by the SRV_MASK field. If the bits match, the received message is recognized, and the 82750PD responds to the request.

A recognized service number is defined as a service number that satisfies the following criterion:

(packet bit[10] = SRV_DATA[9]) OR (SRV_MASK[9]=0) AND (packet bit[11] = SRV_DATA[8]) OR (SRV_MASK[8]=0) AND (packet bit[12] = SRV_DATA[7]) OR (SRY_MASK[7]=0) AND (packet bit[13] = SRV_DATA[6]) OR (SRY_MASK[6]=0) AND (packet bit[15] = SRV_DATA[5]) OR (SRV_MASK[5]=0) AND (packet bit[16] = SRV_DATA[4]) OR (SRV_MASK[4]=0) AND (packet bit[17] = SRV_DATA[3]) OR (SRV_MASK[3]=0) AND (packet bit[18] = SRV_DATA[2]) OR (SRV_MASK[2]=0) AND (packet bit[19] = SRV_DATA[1]) OR (SRV_MASK[1]=0) AND (packet bit[20] = SRV_DATA[0]) OR (SRV_MASK[0]=0)

SRV_MASK (Service Mask, bits 27–18; uninitialized by reset). This field selects the bits of the service number that are to be compared with the bits in the SRV_DATA field. If bit x in the SRV_MASK field is set, then bit x in the service number is compared to bit x in the SRV_DATA field.

6.4.9 Configuring the SynchroLink Interface

The SynchroLink interface and the internal VBUS are configured by writing to the MCFG register. The following subsections describe the MCFG register and give an example of a configuration procedure.

Message Configuration Register (MCFG)

Table 6-17 shows the Message Configuration Register (MCFG).

6-39

Table 6-17. Message Configuration Register

Mnemonic: MCFG

Address: 00FF003C-00FF003F

Access: R/W			Reset State: See bit description		
Bit No.	31-28	27-24	23	22-17	16
Name	V2CODE	VICODE	PROTECT	C	EXTVBUS

Bit No.	15-12	11	10	9	8	7–6	5_4	' 3	,	2-0
Name	RSVD	CLK_EN	ARB_EN	DMSG_EN	MSG_EN	RSVD	CLKDIV	≥sv	oin	ASG_!D

MSG_ID (Message ID, bits 2–0; ununitialized by reset). This field defines the ID of the 82750PD in the SynchroLink protocol.

CLEDIV (Clock Division, bits 5-4; reset state = 0) When the 82750PD is the arbiter (ARB_EN = 1), these bits define the SynchroLink clock frequency (SLCLK) in terms of the SFBI clock frequency (MCLK) as listed in Table 6-18.

Table 6-18. SynchroLink Clock Frequency.

CLKD	IV Bits	SynchroLink Frequency
Bit 5	Bit 4	(SLCLK)
	0	MCLK/2
0	11	MCLK/4
1	0	MCLK/6
1	1	MCLK/8

MSG_EN (Message Enable, bit 8: reset state = 0). Setting this bit enables the 82750PD to send and receive messages. Clearing MSG_EN prevents the 82750PD from sending or receiving messages. However, it does continue to monitor the SynchroLink to identify message start bits. The effect of changes in the MSG_EN bit do not take

effect until a break (ten consecutive '0' bits) on the SynchroLink is detected. This prevents a change from occurring in mid-message. Software should use the DMSG_EN bit to determine when the 82750PD responds to changes in the MSG_EN bit.

DMSG_EN (Delay Message Enable, bit 9: reset state = 0) The value of this R/O bit follows the value written to the MSG_EN bit. However, DMSG_EN changes state only when the actual status of the 82750PD changes. (The actual change in status is delayed until the next break (ten consecutive '0' bits) on the two wire bus after a change in the MSG_EN bit.) By writing the MSG_EN bit and then polling the DMSG_EN bit software can determine when the change has occurred.

ARB_EN (Arbiter Enable, bit 10; reset state = 0). Setting this bit defines the 82750PD as the arbiter for the SynchroLink, i.e., the 82750PD polls the devices for requests to use the SynchroLink. For ARB_EN = 0, the 82750PD does not poll for requests from other devices.

CLK_EN (Clock Enable, bit 11: reset state = 0). Setting this bit causes the 82750PD to drive the SynchroLink clock at a frequency specified by the CLKDIV bits (bits 5–4).

EXTVBUS (External VBUS, bit 16: reset state = 0). Setting this bit enables the 82750PD VBUS to be driven from the external VBUSIN pins of the chip. Do not select this mode unless the host bus type is ISA or PCI. Furthermore, do not select this mode if you want to allow meta-interrupts to the 82750PD core. If the EXTVBUS bit is set, the VBUS codes generated by the SynchroLink interface are not driven to the 82750PD core. Instead, the states of the external VBUSIN pins are driven to the core via the VBUS.

PROTECT (Protect. bit 23: reset state = 0). Setting/clearing this bit disables/enables further writes to this register. During normal operation, this bit can be cleared only by writing bits 31-24 with data that matches the data already in bits 31-24. Reading this bit always returns '0', even if the bit is set.

V1CODE (bits 27-24: uninitialized by reset). These bits define the code to be driven onto the 82750PD core's VBUS in response to a meta-interrupt in the V1CODE group (see Section 6.5)...

V2CODE (bits 31–28: uninitialized by reset). These bits define the code to be driven onto the 82750PD core VBUS in response to a meta-interrupt in the V2CODE group (see Section 6.5).

Configuration Procedure

The following example illustrates a typical programming sequence for configuring the SynchroLink interface. Software must confirm that no transmission requests are pending on the SynchroLink (i.e., TXIPR = 0 in all transceiver registers) and that all expected completion messages have been received.

- 1. Clear the MSG_EN bit without changing the states of the other bits in byte 1 (bits 15–8). (If the 82750PD is the arbiter, and the CLK_EN and ARB_EN bits are cleared, a break never occurs on the SynchroLink, and the DMSG_EN bit is never cleared. If another device is supplying the clock signal, the CLK_EN bit can be clear.)
- 2. Poll the DMSG_EN bit until it is clear.
- Examine all registers for any "last minute" messages that might have been received.

- 4. Assign the 82750PD its message ID by writing the MSG_ID bits.
- 5. Configure the VBUS codes by writing the V1CODE and V2CODE bits.
- Specify an internal or external VBUS source by writing the EXTVBUS bit.
- Select the desired transceiver register modes by writing the SMSG and RXEN bits in all transceiver registers (XCVRn, n = 01h - 0Bh).
- Enable the 82750PD to send and receive messages by setting the MSG_EN bit without changing the states of the other bits in byte 1 of the register.
- 9. Poll the DMSG_EN bit. When it is set, the SynchroLink interface is configured.

6.5 Meta-Interrupts

The 82750PD has an interrupt system composed of interrupts and meta-interrupts. The interrupts are described in Section 3.14. This section covers meta-interrupts. The combined system of interrupts and meta-interrupts is described in Section 5.7.

Some events that originate from devices on the SFBI are of special interest to the 82750PD. For example, the 82750PD should be informed when the capture device has a frame that is ready for compression. Such events alter registers in the SynchroLink interface. Although the 82750PD software could poll these registers to detect the event, a metainterrupt can signal the 82750PD core directly (via the VBUS) when the event occurs.

6-43

Meta-interrupts are a mechanism for notifying the 82750PD core of certain events associated with devices on the SFBI without causing an 82750PD interrupt to the host. When an SFBI event occurs, it sets or clears a register bit in the SynchroLink interface. At the programmers discretion, that change in the register causes a signal to be sent over the VBUS to the core, where the signal alters the core registers fent and/or lent. To discover the occurrence of a meta-interrupt, the core microcode must poll these registers.

Table 6-19 lists the SFBI events (i.e., events that can be programmed to generate meta-interrupts to the 82750PD core), the effect of each event on registers in the SynchroLink interface, and the register bit that enables the meta-interrupt.

6-44

Table 6-19. Enabling Meta-Interrupt Events to Generate VBUS Codes

SFBI Event	Effect on Event SynchroLink Interface	Enabling Bit
	Registers	Zileomig Di.
The 82750PD has received and acknowledged an incoming service request message	Hardware sets VALID (bit 16) in RSRV register	IINT (bit 24) in RSRV register
A message transmission is complete	Hardware clears TXIPF (bit 16) in XCVRn register	TXINT (5.t 24) in XCVRn register
A service request from the 82750PD was not accepted by the target device	Hardware sets NACK (bit 17) in XCVRn register	SGVRn register
A device that was sent a service request by the 82750PD has replied	Hardware sets COMPLETE (bit 19) in XCVRn register	CINT (bit 27) in XCVRn register
The 82750PD has received a broadcast message with a certain function code *	Hardware sets FMATCH(bit 18) in XCVRn register	BINT (bit 26) in XCVRn register
The 82750PD has received a broadcast message with a certain function code *	Hardware sets FMATCH(bit 18) in XCVRn register	BINT2 (bit 29) in XCVRn register

These events are identical, but the meta-interrupts are enabled by different bits and generate different VBUS codes

Appendix A 82750PD Registers

This appendix contains tables of the 82750PD registers. Information in the tables includes the register name, its mnemonic, the address, the read/write access, the reset value, and the bit descriptions. The registers are listed in the alphabetical order of the mnemonics.

82750PD core registers that consist of a single field have been excluded. The mnemonics for these registers are listed in Table A-1.

Table A-1. 82750PD Core Registers Excluded from Appendix A

Core Registers				
alu	"outN: N = 1,2			
cnt cnt2	pc			
dramN N=1-4	pixint			
dramN N=1-4	m: N = 0-15			
*dramN; N=1-4	shift			
fant	shift-r, L d			
inN-hi inN-lo: N = 1,2	stat-c			
"InN:N = 1 2	stat-hi stat-lo			
lant	stat-ram			
outN-	*stat			
סעות-חום ומ-12 outh-lo N = 12	*stat#			

A-1

Table A-2. EISA POS3 Register

Mnemonic: BASE Access: W/O		Address: 0zCB8Eh Reset State: 75h*	
Bit No.	0		
Name	108[7 0]		

Bit No.	Name	Description
7-0	108[7:0]	IOB[7:0] = I/O Base[7:0]***

z in the Address field denotes slot-dependent bits.

Table A-3. EISA POS2 Register

Mnemonic: BCNTL Access: W/O		Address: 0zC84h* Reset State: Not available.
Bit No.	7-1	0
Name	RSVD	ENABLE

Bit No.	Name	Description
0	ENABLE	ENABLE = IO_ENABLE = MEM_ENABLE Clearing this bit disables the host I/O registers and disables the "EMS" window even if the EWE bit (bit 0 in the CFG 06 register) is set

^{*} z in the Address field denotes slot-dependent bits

[&]quot; If IO_BASE[8] = 1, the reset state corresponds to IO_START = x2EAh, where x depends on the Device ID (see Section 5.3)

^{***} I/O Base[8] is latched from straps or jumpers at reset.

Table A-4. ALU Condition Code Register

Address' Mnemonic: Reset State: Not available Access: R'W 3 2 Bit No. 15-8 /C LSB ALU ALU ALU ALL Loop Name RSVD MSB Sign Overflow Carry 0 Counter Zero Zero Out

Bit No.	Name	Description
0	C	(R/O) This bit reads as '0' and is unaffected by writes
1	ALU Carry Out	ALU Carry Out (R.W) The value of this bit equals the carry out of the most significant bit position in the ALU. This bit-is '0' for all logical operations.
2	ALU Overflow	ALU Overflow (R/W). The value of this bit is (ALU carry out) XOR (Carry in to most significant bit of ALU result). This bit is '0' for all logical operations.
3	ALU Sign	ALU Sign (R/W) The value of this bit is the most significant bit of the ALU result.
4	ALU Zero	ALU Zero (R/W) This bit is set only if all bits of the ALU result are '0
5	Loop Counter Zero	Loop Counter Zero (R/O). This bit is set only if the value of the loop counter is '0'
6	<i>ι</i> ο LSB	σ LSB (R/O). The value of this bit is the value of the least significant bit of register σ
7	€ MSB	no MSB (R/O). The value of this bit is the value of the most significant bit of register no
15–8	RSVD	

^{*} See A and B bus addresses

Table A-5. Core Control Register

Mnemonic	: ccontrol	Byte Offset: 100h			
Access: W	1'0	Reset State: 01h			
Bit No.	15	14	13	12	11–6
Name	CORE_EN	RSVD	PMON/FRZ	DSYNC	RSVD

Bit No.	7	Ι ε	5	4	3	2	1	ı c
Name	EFI_M	OFI_M	RSVD	RSVD	VBI_M	MCINT_M	STEP	HALT

Bit No.	Name	Description:	
0	HALT	Halt. For CORE_EN = 1. This bit and the STEP bit place the ∞re in normal run mode, single step mode, or the Halt state, as shown below: STEP HALT 0	
1	STEP	halts. Step. For CORE_EN = 1, this bit and the HALT bit control the	
		running mode for the core. See the HALT bit above	
2	MCINT_E	Microcode Interrupt Enable. Setting this bit enables the microcode interrupt condition to interrupt the core	
3	VBI_E	Vertical Blanking Interrupt Enable. Setting this bit enables the vertical blanking interrupt condition to interrupt the core	
4.5	RSVD	Reserved	
6	OFI_E	Odd Field Interrupt Enable. Setting this bit enables the odd field interrupt condition to interrupt the core	
7	EFI_E	Even Field Interrupt Enable. Setting this bit enables the even field interrupt condition to interrupt the core	
11-8	RSVD	Reserved	
12	DSYNC	Disable Synchronizers. Setting this bit disables the synchronizers for the HREQ#/HALEN# signal	
13	PMON/FRZ	Performance Monitor/Freeze. This bit determines which output signal is on the PMFRZ# pin. This bit is functional only for ISA and PCI buses 1 = Output signal FRZ# is on PMFRZ# pin C = Output signal PMON# is on PMFRZ# pin	

F

E

E

E

Ę

Table A-5. Core Control Register (Continued)

14	RSVD	Reserved
15	CORE_EN	Core Enable. This bit must be set for the core to operate it must be set for the core to be in single-step mode or in the Halt state as well for normal running mode. See the HALT and STEP bits.

Table A-6. I/O Base CFG Register

Mnemonic: CFGBASE		<u> </u>	Address: CFG 01
Access: R/O			: See bit definitions
Bit No.	7-0		
Name	108[7:0]		

Bit No.	Name	Description
7-0	IOB[7:0]	These bits indicate the state of the IO BASE 'POS' field See Section
	1	5.2, "Host Interface Address Configuration" for how these bits are reset
	1	and/or changed

Table A-7. Bus CFG Register

Mnemonic: CFGBUS	Mnemonic: CFGBUS		
Access: R/W		Reset State: 00h	
Bit No.	7-0		
Name			

Bit No.	Name	Description
7-0	BCFG[7:0]	These configuration bits depend on the bus type

Table A-8. CFG Register Data Register

Mnemonic: CFGDATA Address: REG6-BYTE1

*This is not a physical register

Bit No.	Name	Description
150		This register holds the data that is read from or written to a configuration
		register that is accessed via the CFGNUM register (REG6-BYTE0.

Table A-9. General Configuration Register

Mnemonic: Address: CFG 00

Access: R/O Reset State*

 Bit No.
 7
 6
 5-3
 2-0

 Name
 MTYP
 RSVD
 BTYP[5 3]
 DID[2 0]

* Determined from strapping options at reset

Bit No.	Name	Description	
2-0	DID[2:0]	Device ID. These bits define the device ID of the 82750PD. The bit values are determined from the configuration straps at reset	
5-3	BTYP[2:0]	Bus Type. These bits define the bus type. The bit values are determined from the configuration straps at reset.	
6	RSVD		
7	МТҮР	Memory Type. This bit is set if 4 Mb DRAM chips are used in the SFB. The bit is latched from a strap at reset."	

VIE |

VIT

Table A-10. INT CFG Register

 Mnemonic: CFGINT
 Address: CFG 03

 Access: See bit descriptions.
 Reset State: See bit descriptions.

 Bit No.
 7
 6
 5
 4
 3
 2
 1
 0

HALT

TEST

1088

MEMEN

IOEN

Bit No.	Name	Description
0	MEMEN	This R/O bit reflects the state of the MEM_ENABLE 'POS' field (See Section 5.2 for a description of this bit.)
!	IOEN	This R/O bit reflects the state of the IO_ENABLE POS field (See Section 5.2 for a description of this bit.)
2	IOB8	This R/O bit indicates the state of the 9th bit of the IO_BASE POS field. This bit is latched from a strap during reset.
3	HALT	This R/W bit is used to control the 82750PD core Setting HALT causes the PB core execution to halt. Reset state = 0
4	RSVD	
5	VIP	This R/W bit is the interrupt level polarity bit for 82750PB interrupts if VIP is set, the interrupt is active high. If VIP is clear, the interrupt is active low. Reset state = 0
6	VIE	This R/W bit is the Interrupt level enable bit for 82750FB interrupts If VIE is set, the PB interrupt is presented on the IRQ pin. If VIE is clear, the PB interrupt is three-stated. Reset state = 0
7	VIT	This RVW bit is the interrupt level type bit for 82750PB interrupts. If VIT is set, the PB interrupt is totem pole output. If VIT is clear the PB interrupt is open drain output. Reset state = 0

A-7

Table A-11. CFG Register Number Register

Mnemonic: CFGNUM

Address: REG6-BYTE0

Access: R/W

		Hesel State: 00h
Bit No.	7-4	3-0
Name	RSVD	R[3 0]

Bit No.	Name	Description
0	. R0	Bit 0 (LSB) of the CFG register number -
1	R1	Bit 1 of the CFG register number
2	R2	Bit 2 of the CFG register number
3	R3	Bit 3 (MSB) of the CFG register number
4-7	RSVD	

Table A-12. SFBI CFG 04 Register

Mnemonic: CFGSFBI4

Address: CFG 04

Access: R/W								tate: 00h
Bit No.	7	6	5	4	3	2	, 1	1 0
Name	PAGE	REFEN	HCAS	HLCH	RSVD	MSZ2	MSZ:	MSZC

Brt No	Name	Description
2-0	MSIZ[2-0]	Memory Size. This 3-bit R/W field defines the size of the Shared Frame Buffer (SFB)
		MSIZI2-01 SFB Size
		0 1 0 1MB (also configures SFBC as 32-bit)
		0 1 1 2MB
		100 4MB
		110 6MB
		111 8MB
		Note: All other values are illegal. (Illegal values produce memory cycle and "readys" but the data is not guaranteed
3	RSVD	
4	HLCH	Half Latch. If this R/W bit is set, the data latch is closed one-half clock early
5	HCAS	Half CAS. If this R/W bit is set, the CAS signal is activated one-half clock early
6	REFEN	Refresh Enable. Setting this R/W bit enables the SFB interface to cause a CAS-before-RAS refresh cycle in response to 82750PD refresh cycles
7	PAGE	Page. This bit determines whether the 82750PD leaves the SFB page open or closes it while the 82750PD owns the SFBI Setting this bit leaves the SFB page open (RAS low). Clearing this bit closes the SFB page (RAS high).

Name

Table A-13. SFBI CFG 05 Register

 Mnemonic: CFGSFBI5
 Address: CFG 05

 Access: R/W
 Reset State: 00h

 Bit No.
 7
 6
 5
 4
 3
 2
 1
 0

CONT2 | CONT1 ! CONTO

MMPR1 MMPR0 QUASI CCNT4 CCNT3

Name	Description							
CCNT(4-0)	These 5-bit R/W field that defines the maximum number of SFBC clocks (0 – 32) that the 82750PD is allowed to issue before gring up the SFBC in response to GRANT being deasserted. If GRANT is deasserted, the 82750PD continues using the SFBC (if it has any outstanding requests) until it has issued the maximum number of clocks. At the end of this time interval, the 82750PD completes any current bus cycle and then release the SFBC.							
Quasi	This R/W bit determines whether the GRANT signal from the SFBC arbiter is synchronous or asynchronous 0 = Synchronous 1 = Asynchronous							
MMPR[1-0]	This 2-bit R/W field that defines the priority the 82750PD uses when requesting the SFBC.							
	MMPR(1-0] Priority							
	0.0 High Priority							
}	0.1 Medium Priority							
ļ	1.0 Low Priority							
	No Priority (ILLEGAL! If No Priority is programmed and any memory cycle is attempted, the 82750PD HANGS.)							
	CCNT[4-0] Quasi							

A-10

AT1017984

E

E

Table A-14. Core Interrupt Flag Register

Mnemonic: cintflag Byte Offset: 100h										
Access: F	3/0					A	eset Sta	te: 01FFh		
Bit(s)	15	14	13	12	11	10	9	8		
Name	RSVD	VB: F	MCINT F	RSVD	MCINTO_F	OFI_F	EFI_F	Unused		

Bit(s)	7-0
Name	Unused

Bit No.	Name	Description ==
8-0	RSVD	
9	EFI_F	Even Field Interrupt Flag.* This bit is set if as even field interrupt condition is detected
10	OFI_F	Odd Field Interrupt Flag.*
11	MCINTO_F	Microcode interrupt Overflow Flag. This bit is set if more than one microcode interrupt condition has occurred since the last time this register was read.
12	RSVD	Reserved
13	MCINT_F	Microcode Interrupt Flag.*
14	VBI F	Vertical Blanking Interrupt Flag.*
15	RSVD	Reserved

This bit is set if its respective interrupt condition is detected, regardless of the state of its corresponding bit (corresponding by name, not by bit number), in the countrol register

Table A-15. PCI POS2 Register

 Mnemonic: CMD0
 Address: 04h

 Access: W/O
 Reset State: 00h

 Bit No.
 7-2
 1
 0

 Name
 RSVD
 MEMEN
 IOEN

Bit No.	Name	Description
0	IOEN	Clearing this bit disables the host I/O registers
1	MEMEN	Clearing this bit disables the "EMS" window, even if the EWE bit (bit 0 in the CFG 06) register is set.

Table A-16. Core Status Register

Name: estatus

Byte Offset = 102:

E

Access: R/0	•				
D24/=1		1			

Access: R	Reset State						
Bit(s)	15	14	13	12	11	10	98
Name	EFI_S	OFI_S	RSVD	RSDV	VBI_S	MCINT_S	Unusec

Bit(s)	7-4	3	2		0
Name	Unused	SYNC_S	PMON	FREEZE :	HALT_S

Bit No.	Name	Description
0	HALT_S	Half Status. This bit is set when the processor is halted because the HALT bit in the coontrol register is set or because the HALTs on is asserted
1	FREEZE	Freeze. This bit is set when the processor is waiting for the statistical decoder or one of the core FIFO's to become ready
2	PMON	Performance Monitor. This bit can be toggled by a special ALU opcode or by a special B source code. Set PMON to monitor the performance of microcode.
3	SYNC_S	Synchronize Status. This bit is set if the internal synchronizers for the HREQ#/HALEN inputs are disabled
4-9		Unused
10	MCINT_S	Microcode Interrupt Status.*
11	VBLS	Vertical Blanking Interrupt Status.*
12. 13	RSVD	Reserved
14	OFI S	Odd Field Interrupt Status.*
15	EFI S	Even Field Interrupt Status."

^{*} The state of each these bits follows the state of its corresponding bit (corresponding by name, not by bit number) in the coontrol register

. Table A-17. "EMS" Configuration Registers

Mnemonic: EMSCFG n: n = 2-0

Mnemonic: t	MSCFGR	Address: CFG 08-06						
Access: R/W		Reset St.	Reset State : 00h. 00h. 00h					
Bit No.	7	6	5	4	3	2	1	0
EMSCFG2	EMS18	EMS17	EMS16	EMS15	EMS14	EMS13	EMS12	EM\$11
EMSCFG1	EMS10	EMS9	EMS8	EMS7	EMS6	EMS5	EMS4	EMS3
EMSCFG0	EMS2	EMS1	EMSO	[EWE			

Bit No.	Name	Description
7-0 7-0 7-5	EMS[18·0]	EMS[18:0] are the 19 MSBs of the base address of the 8-Kbyte "EMS" window. The MATCH field of the host address is compared to EMS[18:0] to detect an address that is to be mapped.
0	EWE	Setting this bit enables the "EMS" window, provided the MEM_ENABLE bit is set (see Section 5.2)

Table A-18. General Control Register

Mnemonic: GENCON

RSVD

DINT

Access: R/W Bit No.

Name

	Address: REG6-BYTE2				
	Reset State: 00h				
5-0					
SVD					

Bit No.	Name	Description
6	DINT	Disable Interrupt. Setting this bit disables the 82750PD interrupt
		Cleaning this bit enables the 82750PD to generate an interrupt

Table A-19. General Status Register

Mnemonic: GENSTAT

Address: REG6-BYTE3

Access: R/O

Bit No.

Name

9it_	Name	Description
6	VINT	VINT. This bit is set whenever the 82750PD interrupt signal is
	1	asserted

7-2

RSVD

Table A-20. Input FIFO Control Register

Mnemonic: inN-c; N=1, 2

Address'

Access:					Rese	t State: N	ot available.
Bit No.	15–6	5	4	3	2	1	0
Name	RSVD	BY-32 MODE	СВ	PF-OFF	AHOLD	INC/ DEC	WORD/ BYTE

	T	
Bit	Name	Description
o	WORD/BYTE	Word/Byte. This bit determines whether the Core input FIFO operates in word mode or byte mode
		Byte mode. The FIFO can start reading memory on any byte boundary. Each word read has data in the low byte and 00h in the high byte.
		Word mode. The FiFO can start reading memory on any word boundary. Each word read has data in both the low high bytes
1	INC/DEC	Increment/Decrement. This bit determines the order in which bytes or words are read from the internal bus
		Decrement mode. The FIFO reads from the most significant to the least significant byte or word
		Increment mode. The FIFO reads from the least significant to the most significant byte or word

Table A-20. Input FIFO Control Register (Continued)

2	AHOLD	Address Hold. Setting this bit disables automatic incrementing decrementing of InN-Io and InN-Io. and prevents the Core Input FIFOs from double buffering the read data. At the end of an internal bus cycle the FIFO is updated with 64 bits of data. The Core Input FIFO will not issue another read request to the internal bus until there is a write to InN-Io OR a roll-over/roll-under read access of the Core Input FIFO. If there is a write to InN-Io the FIFO will then fetch data from the new location. If a roll-over roll-under occurs, then a memory request will be issued to fetch data from the unchanged address.
3	PF-OFF	Prefetch Off. Setting this bit causes the Core Input FiFO to wait for a request to fetch a new quad word over the internal bus 1 = PREFETCH ON mode. The Core input FiFC prefetches successive quad words as necessary to keep its buffer full. Fetch addresses ascend or descend according to the INC/DEC bit. 0 = PREFETCH-OFF mode. The FIFO will still prefetch the first two quad words to fill its buffer (when started at a new address location) but will fetch a new quad word only when a read request is made to the FIFO for a value in the next unfetched quad word.
4	СВ	Circular Buffer. Setting this bit enables the creation of a circular buffer in the SFB. The appropriate address bit on the internal bus (depending on the size of the circular buffer to be created) is cleared. The register pointers remain unchanged. The size of the circular buffer can be 64 Kbytes, 128 Kbytes, or 256 Kbytes, as determined by bits 2–0 of the Circular Buffer register.
5	BY-32 MODE	BY-32 MODE. Setting this bit causes the pointer to increment or decrement by four bytes rather than two bytes
15-9		Reserved bits

^{*} See A and B bus addresses

A-15

Table A-21. Indirect Address Register

Mnemonic: INDADDR

Address: REG4-BYTES3-REG4-BYTE0

Access: R/W	Reset State: 0000000	Oh
Bit No.	31-0	
Name	-	

Bit No.	Name	Description
15-0	-	These four bytes are the 82750PD internal bus address for an indirect
		access of the 82750PD memory address space

Table A-22. Indirect Data Register

Mnemonic: INDDATA

Address: REG5-BYTE3-REG5-BYTE0

Access: R/W	Reset State: Uninitialized
Bit No.	31–0
Name	-

Bit No.	Name	Description
15-0		These four data bytes are data read from or written to the 82750PD memory for an indirect access of the 82750PD memory address space. The 82750PD address for the indirect access is in REG4-BYTE3—REG4-BYTE0.

Table A-23. Message Configuration Register

Mnemonic: MCFG

Address: 00FF003C-00FF003F

Access: I	R/W		Reset State: See bit descri			
Bit No.	31-28	27-24	23	22-17	16	
Name	V2CODE	VICODE	PROTECT	0	EXTVBUS	

Bit NO.	15-12	11	10	9	8	7-6	5-4	3	2-0
Name	RSVD	CLK_EN	ARB_EN	DMSG_E N	MSG_EN	RSVD	CLKDIV	RSVD	MSG_IC

	i	
Bit No.	Name	Description
2-0	MSG_ID	Message ID. This field defines the ID of the 82750PD in the SynchroLink protocol
_3	0	
5-4	CLKDIV	Clock Division. When the 82750PD is the arbiter (ARB_EN = 1), these bits define the SynchroLink bus clock frequency (SLCLK) in terms of the SFBI clock frequency (MCLK) as listed in the following table.
		SynchroLink
		Bit 5 Bit 4 Bus Fred SLCLK
		0 0 MCLK/2
		0 1 MCLK/4
		1 0 MCLK/6
		1 1 MCLK/8
7–6	0	
8	MSG_EN	Message Enable. Setting this bit enables the 82750PD to send and receive messages. Clearing MSG_EN prevents the 82750PD from sending or receiving messages. The effect of changes in the MSG_EN bit do not take effect until a break (ten consecutive '0' bits) on the SynchroLink bus is detected.
9	DMSG_EN	Delay Message Enable. The value of this R/O bit follows the value written to the MSG_EN bit. DMSG_EN changes state only when the actual status of the 82750PD changes. (The actual change in status is delayed until the next break (ten consecutive '0' bits) on the two wire bus after a change in the MSG_EN bit.)
10	ARB_EN	Arbiter Enable. Setting this bit defines the 82750PD as the arbiter for the SynchroLink bus
11	CLK_EN	Clock Enable. Setting this bit causes the 82750PD to drive the SynchroLink clock at a frequency specified by the CLKDIV bits (bits 5—4)

Table A-23. Message Configuration Register (Continued)

15-12	0	
16	EXTVBUS	External VBUS. Setting this bit enables the 82750PD VBUS to be driven from the external VBUSIN pins of the chip. Do not select this mode unless the host bus type is ISA or PCI. Furthermore do not select this mode if you want to allow meta-interrupts to the 82750PD core. If the EXTVBUS is set, the VBUS codes generated by the SynchroLink interface are not driven to the 82750PD core. Instead, the states of the external VBUSIN pins are driver to the core via the VBUS.
22-17	0	
ສ	PROTECT	PROTECT. Setting/clearing this bit disables/enables turther writes to this register. During normal operation, this bit can be cleared only by writing bits 31–24 with data that matches the data already in bits 31–24.

Table A-24. Micro Channel POS3 Register

Mnemonic: — Access: W/O		Address: xx02h* Reset State: 00h
Bit No.	7–1	0
Name	RSVD	CDEN

Bit No.	Name	Description				
0	CDEN	CDEN = IO_ENABLE = MEM_ENABLE. Clearing this bit disables the host I/O registers, and disables the "EMS" window, even if the EWE bit (bit 0 in the CFG 06 register) is set				

^{*} xx denotes eight don't-care bits

Table A-25. Micro Channel POS3 Register

Mnemonic: — Access: W/O		Address: xx03h* Reset State: 75h
Bit No.	7-0	
Name	108(7.0]	

١	Bit No.	Name	Description
	7-0	IOB[7:0]	IOBI7:01 = IO BASEI7 01"

Table A-26. Match Service Register

Mnemonic	Mnemonic:				Address: 00FF0038h-00FF003				
Access: R	W			Re	set State: See	bit descriptions.			
Bit No.	31-25	27-18	17-16	15-12	11-2	1-0			
Name	0	SRV_MASK	0	0	SRV_DATA	0			

Bit No.	Name	Description
31-25	0	The 0 denotes bits that should always be written with 0. The actual value written is ignored. These bits will be 0 when read.
27-18	SRV_MAS K	SRV_MASK is a 10-bit R/W field that is used to select which bits of the service number are compared. If a bit in SRV_MASK = 1, then the corresponding bit in the service number of the service request will be compared with the corresponding bit in the SRV_DATA field. If a bit in SRV_MASK = 0, then the corresponding bit in the service number of the service request will be ignored. These bits are uninitialized by RESET.
17-16	0	The 0 denotes bits that should always be written with 0. The actual value written is ignored. These bits will be 0 when read.
15-12	0	The 0 denotes bits that should always be written with 0 The actual value written is ignored. These bits will be 0 when read.
11-2	SRV_DATA	SRV_DATA is a 10-bit R/W field that is compared with the service number of service request messages to determine if the message is an incoming message. These bits are uninitialized by RESET.
1-0	0	The 0 denotes bits that should always be written with 0. The actual value written is ignored. These bits will be 0 when read

xx denotes eight don't-care bits
1/O Base(8) is latched from straps or jumpers at reset.

Table A-27. Message Status Register

Mnemonic: MSTATUS

Address: 00FF0030h-00FF0033

				Reset :	State: 00h
31-25	24	23-22	21-20	19-18	17-16
0	RSRV	XCVRB	XCVRA STAT	XCVR9 STAT	XCVR8 STAT
	31-25	RSRV	RSRV XCVRB	RSRV XCVRB XCVRA	31-25 24 23-22 21-20 19-18 RSRV XCVRB XCVRA XCVR9

Bit No.	15-14	13-12	11-10	9-8	7-6	5-4	3-2	1-0
Name						XCVR2		

Bit	Name	Description				
2n+1- 2n	XCVRn STAT	Transceiver n Status ($n = 0, 1, 2,, 9, A, B$). Each 2-bit field reflects the status of bits in the corresponding XCVR n register. The specific bits whose status is shown depends on the value of the SMSG bit in the same XCVR n register. The selected XCVR n bits take their values from the XCVR n bits as follows:				
		SMSG XCVRn STATI2n+11 XCVRn STATI2n1				
		0 FMATCH TXIPR 1 NACK OR* COMPLETE TXIPR				
		Logical inclusive OR				
24	RSRV _STAT	Receive Service Status. This bit reflects the state of the VALID bit in the RSRV register				
31-25	_	These bits are clear.				

Table A-28. Core Output FIFO Control Register

 Mnemonic: outN-c; N=1,2
 Address: Core Register

 Access: R/W
 Reset State: Not available.

 Bit No.
 15-6
 5
 4
 3
 2
 1
 0

Bit No.	15-6	5	4	3	2	1	0
Name	RSVD	BY-32 MODE	FORCE-LSB ENABLE	FORCE LSB VALUE	AHOLD	DEC INC#	BYTE #CROW

Bit No	Name	Description
0	BYTE: WORD#	Byte/Word#. This bit determines whether the Core Output FiFC operates in word mode or byte mode.
		Byte mode The FIFO can start writing memory on any byte boundary
		 Word mode The FIFO can start writing memory on any word boundary
1	DEC/INC#	Decrement/Increment#. This bit determines the order in which bytes or words are written to the 82750PD internal bus
		1 = Decrement mode. The FIFO writes from the most significant to the least significant byte or word.
!		 Increment mode. The FIFO writes from the least significant to the most significant byte or word
2	AHOLD	Address Hold. Setting this bit disables automatic incrementing/decrementing of outN-hi and outN-hi. The FIFO continues to write to a single quad word in the 82750PD address space.
3	FORCE LSB VALUE	Force LSB Value. The value of this bit is the value of the least significant bit written to each byte, provided that the FORCE LSB ENABLE bit is set
4	FORCE LSB ENABLE	Force LSB Enable. Setting this bit forces the least significant bit of each byte written to the 82750PD internal bus to be a '1' or a '0', as specified by the FORCE LSB VALUE bit
5	BY-32 MODE	By-32 Mode Setting this bit causes the pointer to increment or decrement by four bytes rather than 2 bytes
156	RSVD	

^{*} See A and B bus addresses

Table A-29. "EMS" Page Address Registers.

Mnemonic: PARπ; n = 3-0

Address: REG1-BYTES3-2, REG1-BYTES1-0, REG0-BYTES3-2, REG0-BYTES1-0

E

Access: See bit descriptions.

Access: See Dit Des	criptions.		Reset S	ate: 0000h
Bit No.	15–3	2	1	! o
Name	PAR	0	a	0

Bit No.	Name	Description
3-0	0	These bits are wired to '0'. They read as '0' and should be written as '0'.
15–3	PAR	These R/W bits are the 13 MSBs of the base address of a 2 Kbyte page in the 82750PD memory address space. A host access to page n of the "EMS" window is redirected to this page (provided the "EMS" mode is enabled).

A-22

ATI017996

Table A-30. Pixel Interpolator Control Register

Mnemonic: pixint-c

Address'

Access: RW						Reset St	ate: Not available
Bit No.	15	14	13	12	11	10	9:8
Name	RSVD	PIPELINING	PHASE	RSVD	PAIRING	RESET	MCDE SELECT

Bit No.	7:4	3:0	
Name	VERTICAL WEIGHT	HORIZ WEIGHT	

Bit No.	Name	Description
3-0	HORIZ WEIGHT	Horizontal Weighting, h. These bits contain the horizontal weighting, expressed as the numerator of a fraction which is an even multiple of 1/16.
7-4	VERTICAL WEIGHT	Vertical Weighting, v These bits contain the vertical weighting, expressed as the numerator of a fraction which is an even multiple of 1/16
9-8	MODE SELECT	Pixel Interpolator Operating Modes 0 0 = Random-2D (nonsequential) Use this mode if the pixels are not in horizontal rows or if the n and v weightings are not constant over all pixels 0 1 = Sequential-2D: the h and v weightings are constant for all interpolations 1 0 = RSVD 1 1 = RSVD
10	RESET	Setting this bit resets the pixel interpolator
11	PAIRING	Pixel Pairing 0 = The pixel interpolator outputs individual 8-bit pixels 1 = The interpolator outputs 16-bit pixel pairs comprising adjacent pixels, provided that the MODE SELECT bits select Sequential 2-D mode
12	RSVD	The state of the s

Table A-30. Pixel Interpolator Control Register (Continued)

13	PHASE	Bitmap Phase				
		In phase The first two output pixel pairs are grouped into one 16-bit pair with the first pixel in the least significant byte				
		1 = Out of phase. The first pixel is placed in the most significant byte of the first pixel pair; the least significant byte of the first pixel pair contains invalid data.				
14	PIPELINING	Pipelining Setting this bit reduces the pipelining delay which also depends on the PHASE bit				
İ		Pipeline Delay in				
		Bit 14 Bit 13 Output Pixels				
1		0 0 6				
l		0 1 7				
1		1 0 2				
]		1 1 3				
15	RSVD					

^{*} See A bus and B bus addresses

Table A-31. Read FIFO Address Counter Register

Mnemonic: RFCNTR Address: REG3-BYTE3 with BS = 2-0

Access:	R/W		Reset State: 00h
Bit No.	23-16	158	7-0
Name	CNTRH (BS = 2)	CNTRM (BS = 1)	CNTRL (BS = 0)

Bit No	Name	Description	
7-0	CNTRL	Low byte of Read FIFO Address Counter	
158	CNTRM	Middle byte of Read FIFO Address Counter	
23-16	CNTRH	High byte of Read FIFO Address Counter	

E

E

E

Table A-32. Read FIFO Control Register

Mnemonic: RFCON Address: REG3-BYTE2

Access:	Access: R/W Res							State: 00h
Bit No.	7	6	5	4	3	2	1	С
Name	AUTO	TEST	R FULL' W RSVD	FAST	R EMPTY* W RSVD	BS2	BS.	BSC :

R = Read, W = Write

Bit No.	Name	Description				
0-2	BS 0-BS2	Byte Select: These bits specify the register byte that is to be accessed through the Selected Byte Register (REG2-BYTE3): BS2 is a "don't care"; it is not decoded by the hardware				
		BS2 BS1 BS0 BS WRITE READ X 0 0 0 CNTRL CNTRL X 0 1 1 CNTRM CNTRM X 1 0 2 CNTRH CNTRH X 1 1 3 NOP RFTEST				
		Writing these bits selects a byte in the "WRITE" column a byte (CNTRx) of the 24-bit SFB address. Reading these bits selects a listing in the "READ" column: a byte (CNTRx) of the 24-bit SFB address, a byte (DHx) from the data holding register, or the WFTEST register. For a read of the RFTEST register see the RFTEST register table.				
3	EMPTY	Empty. The EMPTY bit reflects the status of the data holding registers, R1 and R2. The EMPTY bit is set if neither R1 nor R2 contains data. In AUTO mode, the EMPTY bit would normally be set only for a short time after the SFB address has been loaded. The EMPTY bit and the FULL bit are not complements. If the host reads the RFDATA register when the EMPTY bit is set, the access becomes a "stow access." i.e., host wait states are inserted until the read is finished. See also the FAST bit.				
4	FAST	Fast If the fast bit is set and the host reads the RFDATA register the access becomes a "fast access" provided these additional conditions are met.				
		The FIFO is in AUTO mode. The FIFO is empty (EMPTY = 1) The RFCNTR register is pointing to an even dword				

Table A-32. Read FIFO Control Register (Continued)

5	FULL (Read) TCLK (Write)	Full (Read) This bit is set if register R1 has data and the high byte (DH3) of register R2 has data, i.e., has not been read. Software should verify that the FIFO is "full" before it alters the RFCNTR or RFCON register. If the FULL bit is clear, the Read FIFO contains some residual data.
		When in the AUTO mode, the Read FIFO always contains some residual data. When in the AUTO mode, the Read FIFO always contains some residual data after the host reads the RFDATA register. To purge residual data, take the FIFO out of AUTO mode and read (at least; byte DH3 of R2.
		TCLK. TCLK must be clear for proper FIFO operation in its normal mode. Set TCLK only for diagnostics. If TCLK is set, the FIFO address in RFCNTR is not incremented in AUTO mode. If TCLK changes from set to clear, the RFCNTR register is incremented by 4.
6	Test	Test. The bit is used for diagnostics. Setting this bit initializes the FiFO and prevents the internal bus acquisition logic from requesting the bus. This allows the host to access the Read FIFO registers without triggering a read cycle. Reading an empty Read FIFO with TEST = 1 returns erroneous data. Furthermore, IOCHRDY is never asserted (the read cycle is never initiated)
7	AUTO	Automatic Increment. When the AUTO bit is set, the RFCNTR register increments by four after each read cycle of the internal bus, thus setting up the address counter for reading the next dword. When the Auto bit is clear, the RFCNTR register does not increment automatically. To read a single dword, word, or byte, the AUTO bit should be clear. The Read FIFO accesses the same SFB address repeatedly until a new address is written to the RFCNTR register.

Table A-33. Read FIFO Data Register

Mnemonic: RFDATA Address: REG3-BYTE1—REG3-BYTE0

Access: R/W	Reset State: Uninitialize
Bit No.	15-0
Name	_

Bit	Name	Description
15-0		Data retrieved from SFB is read from this register

A-26

ATI018000

Table A-34. Read FIFO Selected Byte Register

Mnemonic: RFSELB Address: REG3-BYTE3 Access: R/W

Reset State: See description below

This register is used to access the registers specified by the BS2-BS0 bits of the RFCON register. See the RFCON register. The registers accessed via RFSELB have the following

reset values CNTRL CNTRM CNTRH

00h RFTEST 43hh

Table A-35. Read FIFO Test Register

Address: REG3-BYTE3, BS = 3 or 7 Mnemonic: RFTEST

Access: R/O Reset State: 43h Bit No. 2 0 REQ SEL **RFRES** FAST CNT2 FFB Name NXTFAST FFA

Bit No.	Name	Description
0	FFA	Flipflop A. If this bit is set, data holding register R2 (host side) contains valid data.
1	FF8	Flipflop B. If this bit is set, data holding register R1 (SFB side) contains valid data
2	NXTFAST	Next Fast. If this bit is set, the Read FIFO is requesting a 64-bit internal bus cycle.
3_	CNT2	CNT2. This bit is bit 2 of the RFCNTR register
4	FAST	FAST. This is the FAST bit (bit 4) of the RFCON register
5	RFRES	Read FIFO Reset. If this bit is set, the Read FIFO is being reset. The FIFO enters its reset state upon reset of the 82750PD or when the host writes the low byte of the RFCNTR register. The FIFO exits its reset state when the host writes the high byte of the RFCNTR register.
6	SEL	Select. If this bit is clear, the internal UHBI arbiter has selected the Read FIFO
7	REQ	Request. If this bit is set, the Read FIFO is requesting use of the 82750PD internal bus

Table A-36. Receive Service Register

E

F

E

E

E

E

E

E

E

Mnemonic: RSRV Address: 00FF0034~00FF0037
Access: See bit descriptions. Reset State: See bit descriptions

Bit No.	31–25	24	23-17	16	15-12	11–2	1-0
Name	RSVD	IINT	RSVD	VALID	FCODE	SERV_NUM	RSVD

Bit	Name	Description					
1-0	RSVD	_					
11–2	SERV_NUM	Service Number (R/O, uninitialized by reset) This field latches the service number (packet bits 10-13 and 15-20) from the received message					
15–12	FCODE	Function Code (R/O; uninitialized by reset) This 4-bit field always contains 0Eh (the service request code) after a service request is received. These bits are uninitialized by reset.					
16	VALID	Valid. (R/W; reset state = 0). This can be used by 82750PD core microcode or the host to determine if a completion message was received. The SynchroLink hardware sets this bit when a service completion message is received and acknowledged. An incoming completion message is defined as a message satisfying these criteria:					
		The function code (bits 6-9] = 0Eh (service request)					
		The service number (packet bits [10–13, 15–20]) is a recognized service number (see the Match Service register (MSRV) described in Section 6.4.8)					
	 	If the message does not meet these criteria, the VALID bit is not set and the service acknowledge bit (bit 22) in the message packet is not set.					
		The 82750PD core microcode and the host can reset the valid bit, but writing a '1' has no effect. If software clears this bit and hardware sets this bit in the same clock, the bit is cleared					
23-17	RSVD						
24	IINT	Incoming Message Interrupt (R/W: reset state = 0) Setting this bit enables a NOT-VALID to VALID transition (bit 6) to generate the V1CODE VBUS code					
31-25	RSVD						

Table A-37. Statistical Decoder Control Register

Mnemonic: stat-c

Address'

Access: R	WW			Reset State: Not availa	ble.
Bit No.	15	14	13	12:8	
Name	POL	RSVD"	СВ	SVAL	

Bit No.	7	6	5	4	3	20
Name	SHORT	END	TEST	WRITE	RSVD.	STNDX

Bit No.	Name	Description
2-0	STNDX	Starting Index. These bits specify the starting index value of the code description table. The table access begins at this value.
3	RSVD	
4	WRITE	Write The WRITE bit and the TEST bit control reads and writes to the code description table as follows TEST WRITE 0 0 After writing to the code description table and
		cleaning these bits, the new values in the c d table will take effect.
		0 1 Enables a write to the c d table
		1 0 Enables a read of the c. d. table
	<u> </u>	1 1 Reserved
. 2	TEST	Test. See description for WRITE
6	END	End. Setting this bit invokes the END bit mode. The '1'70' trailing the run-in sequence is dropped from the code.
7	SHORT	Short. Setting this bit invokes the SHORT mode. The values of 2 ^X are the same for every entry in the code description table.
8-12	SVAL	Short Value. If the SHORT bit is set, these bits specify the value of 2 ^X that is used in the code description table in SHORT mode
13	CB	Circular Buffer. Setting this bit enables the creation of circular buffers of size 64 Kbytes 128 Kbytes or 256 Kbytes
14	RSVD	
15	POL	Polarity. This bit specifies the polarity of the bits in the run-in sequence

^{*} See A bus and B bus addresses

Table A-38. Write FIFO Address Counter Register

Mnemonic: WFCNTR

Address: REG2-BYTE3 with BS = 2-0 (R:W) or 6-4 (W) E

E

Access: R/W Reset State: 0000h

			Tieser State, voven
Bit No.	23–16	15-8	7-0
Name	CNTRH	CNTRM	CNTRL
	(BS = 2 (W/R), BS = 6 (W))	(BS = 1 (W/R), BS = 5 (W))	(BS = 0 (W'R), BS = 4 (W))

Bit No.	Name	Description
7-0	CNTRL	Low byte of Write FIFO Address Counter
15-8	CNTRM	Middle byte of Write FIFO Address Counter
23-16	CNTRH	High byte of Write FIFO Address Counter

A-30

ATI018004

Table A-39. Write FIFO Control Register

Mnemonic: WFCON

Address: REG2-BYTE2

Reset State: 08h

Access: R/W

 Bit No.
 7
 6
 5
 4
 3
 2
 1
 0

 Name
 AUTO
 TEST
 R FULL*
 FAST
 R EMPTY*
 RS2
 RS1
 RS0

 W TCLK
 W RSVD
 W RSVD
 RS2
 RS1
 RS0

* R = Read, W = Write

		1							
Bit No.	Name		Description						
0–2	BSO-BS2	Byte Select. These bits specify the register byte that is to be accessed through the Selected Byte Register (REG2-BYTE3)							
٠		0	0	<u>BS0</u> 0 1	<u>BS</u> 0 1	WRITE CNTRL CNTRM			
İ		0	1	0	_	CNTRH	• • • • • • • • • • • • • • • • • • • •		
		0	1	1	3	FLUSH	WFTEST		
		1	0	0	4		DH0		
		1	0	1	-	CNTRM	_		
ļ		1	1	0	-	CNTRH	T T		
1		1	1	1	7	FLUSH	DH3		
		Writing these bits selects a byte in the "WRITE" column a byte (CNTRx) of the 24-bit SFB address or the FLUSH Register. Reading these bits selects a listing in the "READ" column a byte (CNTRx) of the 24-bit SFB address, a byte (DHx) from the data holding register, or the TEST register. Writing any value to the FLUSH register flushes the data holding register (R1, R2). For a read of the WFTEST register see the WFTEST register.							
		table	.,				29.3.6. 366 016 771 1201 169.3.6.		
3	R EMPT' W'RSVD	EMPTY. This bit is set, when either of two conditions notd (i) the host has not written to the data holding register since the FIFO has written holding registers R2 and R1 to the SFB, OR (ii) The FIFO has just been flushed							
4	FAST	FAST. If FAST = 1 and the FIFO is full, then attempting to write data to an even dword address causes the 82750PD to execute a fast internal bus cycle (i.e., the data in both R1 and R2 are written to the SFB). If FAST = 0 the 82750PD executes only normal bus cycles							

Table A-39. Write FIFO Control Register (Continued)

5	R FULL' W TCLK	FULL TCLK. READ. The FULL bit is set if (i) data holding register R2 holds valid data which has not yet been written to the SFB AND in the host has written data to (at least) the most significant byte of R1.
		WRITE. Setting this bit prevents incrementation (by 4) of the WFCNTP register when the AUTO bit is set. If TCLK changes from set to clear the address counter is incremented by 4. TCLK must be clear for operation in normal mode; set this bit only in TEST mode.
6	TEST	TEST. Setting this bit invokes TEST mode, which is for diagnostics in TEST mode, the FIFO is prevented from requesting the internal bus the host can access the Write FIFO registers without triggering a write cycle Clear this bit for normal operation.
7	. AUTO	Automatic. Setting this bit causes the FIFO WFCNTR register to increment by 4 after each internal bus write data cycle. If AUTO is clear, the FIFO will access the same location repeatedly, until a new address is written to the address counter.

Table A-40. Write FIFO Data Register

Mnemonic: WFDATA Address: REG2-BYTE1—REG2-BYTE0

Access: R	<u> </u>	Reset S	tate: Uninitialized
Bit No.		15-0	
Name	•	_	

Bit No.	Name	Description
150		Data to be written to the SFB is written to this register

E

Table A-41. Write FIFO Selected Byte Register

Mnemonic: WFSELB

Address: REG2-BYTE3

Access: R/W

Reset State: 00h

This register is indirectly addressed to access the registers specified by the BS2–BSC bits of the Write FIFO Control register (WFCON). See the WFCON register. The registers accessed via WFSELB have the following reset values.

CNTRL, CNTRM, CNTRH 00h DH3—DH0 uninitialized WFTEST 0FFh

Table A-42. Write FIFO Test Register

Mnemonic: WFTEST

Address: REG2-BYTE3 with BS = 3

Access: R/	0	Reset State: 0FFh
Bit No.	7-4	3_0
Name	R1DH[7:4]	R2DH[3 0]

Bit No.	Name	Description
3	R2DHn	The R2DH n bit ($n = 0, 1, 2, 3$) of data holding register R2 is set if bit n of data holding register R2 is empty
7-4	R1DH#	The R1DHn bit (n = 0, 1, 2, 3)of data holding register R1 is set if bit no of data holding register R2 is empty

Table A-43. Transceiver Registers

Mnemonic: XCVRn; n = 00h—0Bh Address: 00FF0000h—00FF002Fh

access: R/W Reset State: See bit descriptions. Bit No. 31 30 29 28 27 26 25 24 Name SMSG RXEN BINT2 RSVD CINT BINT | NINT | TXINT

Bit No.	23-21	20	19	18	17	16
Name	RSVD	SUCCESS	COMPLETE	FMATCH	NACK	TXISS

Bit No.	15—12	11—0
Name	FCODE	DATA

Bit No.	Name	Description
11-0	DATA	DATA (Uninitialized at reset). These bits correspond to the data bits in the data packet (packet bits 10-13, 15-22). When the register is in the Broadcast Transmit mode (RXEN = 0), software can write these bits. When the register is in the Broadcast Receive mode (RXEN = 1), hardware can write these bits.
15-12	FCODE	Function code (Uninitialized at reset). This field contains the function code
16	TXIPR	TXIPR (reset state = 0). Software sets this bit to initiate a transmission (write the FCODE and DATA fields onto the SynchroLink bus). Hardware clears this bit when the transmission is complete regardless of whether the transmission is acknowledged
17	NACK	Not Acknowledged (reset state = 0). This bit is used only in a service-request/service-completion operation (SMSG = 1) Hardware sets this bit in the source's register to indicate that the target does not acknowledge the service request
18	FMATCH	Function Code Match (reset state = 0) This bit is used by a device that is in broadcast receive mode (RXEN = 1) Software clears this bit when it begins listening for a broadcast message with a specific function code). Hardware sets this bit to indicate that a message with that function code has been received.
19	COMPLETE	Complete (reset state = 0). This bit is used only in a service-request/service-completion transaction (SMSG = 1). Software must clear this bit in the source's register when it transmits a service request (sets TXIPR). Hardware sets this bit when a corresponding completion message is received, i.e. when: (i) The FCODE in the service completion message is 0Fh, and (ii) the service number (packet bits 10–13.15–20) in the completion message matches the service number in the transceiver register that was used to send the service request.

A-34

ATI018008

E

Table A-43. Transceiver Registers (Continued)

20	SUCCESS	Success (reset state = 0) This bit is set by hardware to indicate that a service has been successfully completed. (When a service completion message causes the COMPLETE bit to be set, the value of the SUCCESS bit is latched from packet bit 22 of the message.)				
21-23	RSVD					
24	TXINT	Transmit Interrupt Enable (reset state = 0) If this bit is set when hardware clears the TXIPR bit, a meta interrupt and a V1CCDE signal are generated				
25	TNIN	Nack Interrupt Enable (reset state = 0) If this bit is set when hardware sets the NACK bit, a meta interrupt and a V1CODE signa are generated				
26	BINT	B Interrupt Enable (reset state = 0) If this bit is set when hardware clears the FMATCH bit, a meta interrupt and a V1CODE signal are generated				
27	CINT	Complete interrupt Enable (reset state = 0) If this bit is set when hardware clears the COMPLETE bit, a meta interrupt and a VICODE signal are generated.				
28	RSVD					
29	BINT2	B2 Interrupt Enable (reset state = 0). If this bit is set when hardware sets the FMATCH bit, a meta interrupt and a V2CCDE signal are generated				
30	SMSG	Service Message (reset state = 0). Setting this bit puts this register into service request and completion mode. Clearing this bit put this register into broadcast send and receive mode. This bit and the RXEN bit put this register into the following modes: SMSG RXEN 0 0 Broadcast Transmit 0 1 Broadcast Receive 1 0 Service Request (send) 1 1 Service Completion (receive)				
3:	RXEN	Transmit Enable(reset state = 0). Setting this bit enables the SynchroLink hardware (only) to write to the data field. Cleaning this bit enables the 82750PD software (only) to write to the data field. See also the SMSG bit.				

Appendix B Logical and Device Addresses

The 82750PD address bits are used to address memory on the SFBI. The exact association of 82750PD address bits to DRAM/VRAM bits depends on the exact DRAM/VRAMs used. Table B-1 details this association.

Table B-1. Association of 82750PD Address Bits to DRAM/VRAM Bits

MEMSIZE (Mbytes)	MEMTYPE*	Interleave A24=1(yes)	Bank Select (CAS[3:0])	Row Address (MA[9:0])	Column Address (MA[9:0])	Byte Select (WE[7:0])	Bus Width
010 (1-4)	0	A24=0	A[21:20]	A[20:11]	A[11:2]	A[1:0]	32-64
010 (1-4)	0	A24=1	A[20:19]	A[19:10]	A[10.2, 22]	A[1:0]	32-6-1
111(2-8)	0	A24=0	A[22:21]	A[21:12]	A[12:3]	A[2 0]	64·c·:
111(2-8)	0	A24=1	A[21:20]	A[20:11]	A[11.3.22]	A[2-0]	64-bit
010 (1-4)	1	A24=0	A[21:20]	A[10,19.11]	A[11:2]]	A[1:0]	32-bit
010 (1-4)	1	A24=1	A[20:19]	A(9.18·10)	A[10:2.22]	A[1 0]	32-bit
111(2-8)	1	A24=0	A[22:21]	A[11.20·12]		A[2:0]	64-bit
111 (8MB)	1	A24=1	A[21:20]	A(10.19·11)		A(2:0)	64-bit

MEMTYPE. 0 = symmetrical, 1 = nonsymmetrical

The 82750PD accomodates both symmetrical and non-symmetrical DRAMs/VRAMs, which are denoted by MEMTYPE (0 = symmetrical, 1 = non-symmetrical). Symmetrical memones use a 9-row, 9-column address scheme, while non-symmetrical memones use a 10-row, 8-column scheme. For the non-symmetrical memory, the chip must have ten address pins (MA[9:0]). For symmetrical memories, only MA[8:0] are required to generate the RAM address. For non-symmetrical memories, MA[9:0] and MA[7:0] are used. For MEMTYPE = 1, the board can use symmetrical as well a non-symmetrical RAM by mapping the unused column MA[8] to the row MA[9].

Association of Logical and Physical Addresses

Table B-2 shows an example of how 82750PD addresses map to physical DRAM/VRAM bytes. This example uses MEMTYPE = 0 and covers MEMSIZE = 2MB, 4MB, 6MB, 8MB. Note that accesses to addresses, for which physical memory does not exist (e.g., above 2MB for MEMSIZE = 2MB), result in aliasing to existing memory or non-existing banks. In either case, the memory cycle completes and the 82750PD does not hang.

B-2

ATI018011

Table B-2. 82750PD Internal Bus Address to DRAM.VRAM Physical Address Mapping

1	Logical	Memory bank	ROW address	Column
ì	82750PD	memory same	NOW 4001835	address
	Address			address
	- 2202 2020	151 Dank 256Kx64	0 0000 0000 5	: :30:: ::::: E
	0000 0005 -	15: pank 256Kx64	c 0000 0000 b	0 0000 000° E
	0000 1000 -	1s: Dank 256Kx64	0 0000 200: 5	3 2002 2002 2 !
	2010 0000 -	1st bank 256Kx64	1 0000 0000 t	0 0000 0000 0
	CO1E EEEB -	15: Dank 256Kx54		
	0020 0000 =	2nd bank 256Kx64	C 0000 3000 b	0 0000 0000 b
	0020 0005 7	2nd bank 256Kx64	0 0000 0000 5	2 2000 000 : 2
	0020 1000 h	2nd bank 256Kx64	C 0000 0001 E	: :::: ::::::::::::::::::::::::::::::::
Unmapped	0030 0000 5	2nd bank 256Kx64	1 0000 0000 5	2 2000 2000 8
Addresses	003F EEF9 =	2nd bank 256Kx64	1 1111 111 6	
	0040 0000 n	3r0 bank 256Kx64	3 0000 0000 5	0 0000 0000 E
	0040 0008 -	3rc bank 256Kx64	0 0000 0000 0	0 0000 0001 = 1
	0040 1000 1	3rc bank 256Kx64	2 0000 0001 5	0 0000 0000 0
	0050 0000 r	3rd bank 256Kx64	1 0000 0000 b	0 0000 0000 0
	005F FFF8 F	315 bank 256Kx64	1 11** 1111 5	• • • • • • • •
	0060 0000 n	4m bank 256Kx64	0 0000 000C to	0 0000 0000 b
	0060 0008 n	41h bank 256Kx64	d 0000 0000 b	0 0000 000 5
	0060 1000 h	4th bank 256Kx54	0 0000 000: b	3 6000 0000 5
	0070 0000 h	4m bank 256Kx64	1 0000 0000 b	0 0000 0000 0
	007F FFF8 h	41h bank 256Kx64	1 1111 ::11 6	1 **** **** 5
	0100 0000 h	151 Dank 256Kx64	c 0000 0000 p	3 0000 0000 5
	0100 0008 n	1st bank 256Kx64	d 2000 0000 b	0 0000 0010 5
	0100 1000 h	1st bank 256Kx64	0 0000 0010 0	0 0000 0000 0
Mapped	0110 0000 h	2nd bank 256Kx64	0 0000 0000 b	3 3000 0000 5
Even Addresses	011F FFF8 h	2nd bank 256Kx64		
	0120 0000 n	3rd bank 256Kx64	3 3300 0000 D	2 0000 0000 5
	0120 0008 h	3rd bank 256Kx64	0 0000 0000 c	3 0000 0010 5
	0120 1000 h	3rd bank 256Kx64	0 0000 0010 5	0 0000 0000 e
	0130 0000 7	4th bank 256Kx64	0 0000 0000 5	C 6000 0000 b
	013F FFFE "	4th bank 256Kx64	1 1111 1111 5	
	0140 0000 5	1st bank 256Kx64	0 0000 0000 b	3 3033 3651 5
	0140 0008 n	1st bank 256Kx64	0 0000 0000 b	0 0000 0011 5
	0140 1000 h	151 bank 256Xx64	0 0000 0010 6	c 0000 0000 t
	0150 0000 h	2nd bank 256Kx64	5 2000 0000 0	0 0000 0001 5
Mapped	OISE FEFS #	2nd bank 256Kx64	1 1111 1111 5	111111115
Odd Addresses	0160 0000 n	3rd bank 256Kx64	0 0000 0000 b	0 0000 000. 5
	0160 0008 n	3rd bank 256Kx64	0 0000 0000 b	-0 0000 0011 5
	0160 1000 h	3rd bank 256Kx64	C 0000 0010 b	0 0000 000 =
	0160 1000 n	4th bank 256Kx64	0 0000 0000 b	C 0000 0000 5
	0175 5556 -	4th bank 256Kx64	1	

B-3

ATI018012

Appendix C Programming Examples

This appendix contains examples of programming the 82750PD in X86 assembly language and in "C".

C.1 Host-SFB FIFOs

C.1.1 Write FIFO

The following example of code, shown first in x86 assembly language and then in "C", initializes the 32-bit Host-SFB Write FIFO to address '0xFA0600' and then writes '0x0123' '0x4567' '0x89AB' to that address. The first write to the FIFO control register (WFCON, REG2-BYTE2) has the TEST bit set to initialize the FIFO.

Assembly Language

MOV	DX.REG2BYTE2	Load the I/O port address into DX
MOV	DX.REG2BYTE2	Load the I/O port address into DX
MOV	AL,40	,Control Reg. TEST initialization and RS=0
MOV	AH,00	Least Significant byte of FIFO Address
		;Counter
OUT	DX.AX	Write the FiFO Address Counter Byte
MOV	AL.01	,Control Reg. RS≖1
MOV	AH,06	Next byte of FIFO Address Counter
OUT	DX.AX	:Write the FIFO Address Counter Byte
MOV	AL.82	:Control Reg, AUTO No TEST and RS=2
MOV	AH FA	:Most Significant byte of FIFO Address
		;Counter
OUT	DX.AX	,Write the FiFO Address Counter Byte
MOV	DX.REG2BYTE0	Point to the FIFO Data Registers

Programming Examples

MOV	AX.0123	First word of data
OUT	DX AX	Output first two bytes
MOV	AX,4567	.Second word of data
CUT	DX,AX	Output next two bytes
MOV	AX,89AB	Third word of data
OUT	DX.AX	.Output last two bytes
MOV	DX REG2BYTE2	Point to the FIFO Control Register
MOV	AX,0083	Will select FIFO Test Register with current
		.operating mode
OUT	DX.AX	Flush FIFO Data Registers

E

"C" Language

outpw(REG2BYTE2, 0x0040),	/* Write FIFO address counter byte * /*and control (TEST, RS=0) *
outpw(REG2BYTE2, 0x0601),	/* Write next byte of FIFO address / counter and control (RS=1)*
	· · ·
outpw(REG2BYTE2, 0xFA82);	Write most significant byte of *
	address */
	COunter and control (AUTO *
	/" no TEST, RS=2) */
outpw(REG2BYTE0, 0x0123),	F Write first word of data *.
outpw(REG2BYTE0, 0x4567);	/* Write second word of data *
outpw(REG2BYTEO, 0x89AB).	/" Write third word of data "
NUMBER SEVERS ANDRES	C Shieh ma SIEO *

C.1.2 Read FIFO

The following example of code, shown first in x86 assembly language and then in "C", initializes the 32-bit Host-SFB Read FIFO to address '0x124200' and reads 6 bytes from the SFB. The first write to the FIFO control register (RFCON, REG3-BYTE2) has the TEST bit set to initialize the FIFO. The first write to the 32-bit Read FIFO's FIFO Control Register must have the AUTO bit clear. This code leaves the FIFO in AUTO mode armed to fetch data. (The last OUT instruction sets the 32-bit Read FIFO Request in the hardware.) Because the FIFO

Address Counter is at an even dword address and the FAST bit is set, the FIFO fills with 8 bytes of data with just one internal bus cycle.

Assembly Language

MOV	DX.REG3BYTE2	Load the I/O port address into DX
MOV	AL40	,Control Reg. TEST and BS=0
MOV	AH,00	Least Sig. byte of FIFO Address Counter
OUT	DX.AX	Write the FIFO Address Counter Byte
MOV	AL.01	,Control Reg, BS≠1
MOV	AH,42	:Next byte of FIFO Address Counter
CUT	DX.AX	Write the FIFO Address Counter Byte
MOV	AL.92	:Control Reg. AUTO, FAST No TEST ,and BS=2
MQV	AH,12	:Most Sig. byte of FIFO Address Counter
OUT	DX,AX	;Write the FIFO Address Counter Byte
MOV	DX.REG3BYTE0	Point to the FIFO Data Register
IN	AX.DX	Input the first two bytes
IN	AX.DX	;input the next two bytes
IN	AX.DX	input the last two bytes

"C" Language

data = inpw(REG3BYTE0).

outpw(REG3BYTE2, 0x0040),	Write FIFO address counter *
	#byte and control (TEST_RS=0) **
outpw(REG3BYTE2, 0x4201).	/* Write next byte of FIFO **
	raddress counter and control *-
	/* (RS=1) */
outpw(REG3BYTE2, 0x1292).	"Write most significant byte of "
•	faddress counter and contro!"
	/ (AUTO.FAST, no TEST, RS=2) */
data = inpw(REG3BYTE0).	read first two bytes *
data = inpw(REG3BYTE0).	" read next two bytes "

/* read last two bytes */

C-3

ATI018015

C.2 Indirect I/O to a Configuration Register

The following code illustrates writing to a 82750PD configuration register by the indirect I/O method.

Assembly Language

	MOV	DX.REG4BYTE2	Load address of high cyte of PB
			indirect address
	MOV	AL.OFEH	.PB host CFG register are based at FECCOC
	OUT	DX.AL	unit high byte of PB memory
	address		
	MOV	DX.REG4BYTE0	,Load address of low & mid byte of indirect
•			;address
	MOV	AX.PBREGNUM	,desired PB CFG register
	OUT	DX,AX	;init low and mid byte of PB
	memor	y address	
	AND	AX,02	is it even or odd PS CFG register
	JNZ	ODDREG	.go to odd handler
EVENREG	M	DV DX.REG5BYTE0	low 16 bit of data CFG register
	MOV	AX.PBDATA	:data to be written
	OUT	DX.AX	write data to addressed CFG register
	JMP	DONE	:
ODDREG	MOV	DX.REG5BYTE2	;high 16 bits of data CFG register
	MOV	AX,PBDATA	data to be written
	OUT	DX.AX	write data to addressed CFG
			register
DONE			

Reading the 82750PD registers would be accomplished in a similar fashion, except that the OUT instructions in the EVENREG and ODDREG section of code would be changed to IN.

"C" Language

outp(REG4BYTE2, 0xFE), "Set base address of PB registers", outpw(REG4BYTE0, PBREGNUM) / Select desired PB Register "If(PBREGNUM, 0x02) "If the address is odd, write data to "

C-4

ATI018016

Section 1

cutpw(REG5BYTE2, PBDATA).

eise

" REG5BYTE2 "

 ${\cal F}$ if the address is even write

"data to "

outow(REG5BYTEO PBDATA)

* REGSBYTEO *

C.3 Writing to the maddr Register

The 82750PD requires at least one instruction between a write to the *maddr* register and the execution of the instruction that is loaded by the write to *maddr*. The following two examples illustrate inserting this instruction.

C-5

ATI018017

Programming Examples Example 1: maddr = &ADDR1 JMP ADDR1 nce ADDR1 r0 = 0 Example 2: mado: = &INST nop INST. r0 = 1 C.4 Writing to the pc Register When a microcode routine writes to the pc register, one more instruction is executed before the jump to the new address takes effect. For example pc = &ADDR1 r0 = r1 jmp ADDR2 nop ADDR1 r3 = r0 C-6 ATI018018

82750PB, 1-1, 2-1, 3-1

82750PD interrupt. See interrupt

Α

A and B buses, 3-1, 3-3, 3-10

address

core source/destination, 4-6

address bits

82750PD, B-1 DRAM/VRAM, B-1

ALU, 3-4-3-8

operations, 3-6, 4-12

ALU Output Register. See alu register.

alu register, 3-4, 4-12

ALUOP field, 4-11

ALUSS field, 4-11

arbiter, 6-1, 6-2-6-4, 6-10, 6-15, 6-49

ASRC field, 4-5

В

barrel shifter, 3-8

BASE register, 5-10, A-2

base value (B) of code symbol, 3-30

BCNTL register, 5-9, A-2

BDST field, 4-8

bit shifting, 3-3

branch

conditional, 4-2, 4-5, 4-9

unconditional, 4-5

broadcast mode. See mode. transmit

BSRC field, 4-8

bus

A and B. See A and B buses. internal. See internal bus.

bus types, 1-2, 2-2, 5-1

byte swapping, 3-3, 4-9, 4-11, 5-26

C

c-stat register, 3-36

cc register, 3-3, 3-4-3-6, 3-11, 4-3, A-3 bit definitions, 3-6

ccontrol register, 3-48, 3-49-3-50, 3-54, 5-57, 5-61.

A-4

byte offset, 3-60

CFGBASE register, A-5

CFGBUS register, A-5

CFGDATA register, A-6

CFGGEN register. A-6

CFGINT register, A-7

CFGNUM register, A-8

CFGSFBI4 register. A-9

CFGSFBI5 register. A-10

CFSEL field, 4-3

cintflag register, 3-48, 3-50, 3-54, 5-61, A-11 byte offset, 3-60

circbuf register, 3-15

and Core Output FIFO. 3-20 and Statistical Decoder. 3-37

Circular Buffer Register. See circluf register.

clock

internal, 3-1

SFBI. 3-1 SynchroLink. 6-49. 6-50

CMD0 register, A-11

CNT field (bit), 4-8

cnt register, 4-8, 4-13

cnt2 register, 4-8, 4-13

code

fixed-length, 3-24 variable-length, 3-24

code description table, 3-25, 3-27-3-30, 3-37 reading, 3-36 writing, 3-35

Condition Code Register. See cc register.

condition flag, 4-2, 4-3, 4-5, 4-8

condition flag outputs, 3-4

core, 1-1

architecture, 3-1 overview, 3-1

Core Control Register. See ccontrol register.

Core Input FIFO, 3-14-3-19 initialization, 3-18 registers, 3-15

Core Interrupt Flag Register. See conflag register.

Core Output FIFO, 3-19-3-62 initialization, 3-22 registers, 3-20

core registers, 0-1-7
access by host CPU, 5-3
access to, 3-2
core access to, 3-55
host access to, 3-55
memory address offsets, 3-56

naming, 1-3 source/destination addresses, 3-56

ATI018022

"EMS" addressing, 2-6

"EMS" mode. 5-17-5-24

access to memory address space. 5-2 configuration registers. 5-19, 5-21

enabling, 5-22 mapping, 5-18 PAR registers, 5-23 setting up, 5-20 window, 5-18

window, enable/disable, 5-7

event

SFBI. 6-22. 6-52

fcnt register, 3-14, 6-52 and meta-interupt, 5-57

field

DATA. 6-7, 6-21, 6-23, 6-33 data packet, 6-6 FCODE, 6-6, 6-9, 6-21, 6-33, 6-40 FMATCH, 6-21 microcode instruction, 4-2-4-13 service number, 6-7, 6-40

Field Counter. See fcnt register.

FIFOs

core FIFOs. See Core Input FIFOs. Core Output FIFOS Host-SFB, see Host-SFB FIFOs

flush

Core Output FIFO, 3-23

frozen (processor), 3-13, 3-19, 3-23, 4-3

function code. 6-6. 6-8-6-17, 6-20, 6-21, 6-30, 6-32 service completion, 6-7, 6-8 service request, 6-6, 6-8

G

F

GENCON register, 5-58, 5-59, 5-61, A-13

General Control Register. See GENCON register. General Status Register. See GENSTAT register. GENSTAT register. 5-60, 5-61, A-14

Н

Halt mode, 3-13, 3-49 conditions for, 3-52

Horizontal Line Counter. See lont register.

host bus. See also UHBI. address configuration. 5-6 bus types. 5-1

host I/O registers, 5-2, 5-13 access by host CPU, 5-3 address computation, 5-17 address format, 5-16 address map, 5-13

Host-SFB FIFOs, 2-2

Host-SFB Read FIFO, 5-2, 5-42-5-54, 5-45
automatic increment, 5-48
data holding register, 5-44
empty, 5-45
full, 5-46, 5-47
prevent bus acquisition for testing, 5-47
programming example, C-2
registers (REG 3), 5-14
residual data, 5-47
saving and restoring the state, 5-53

Host-SFB Read FIFO Address Counter Register. See RFCNTR register.

Host-SFB Read FIFO Control Register. See RFCON register.

Host-SFB Read FIFO Data Register. See RFDATA register

Host-SFB Read FIFO Selected Byte Register. See RFSELB register.

Host-SFB Read FIFO Test Register. See RFTEST register.

Host-SFB Write FIFO. 5-2. 5-28-5-42
automatic increment. 5-36
data holding register. 5-32. 5-38
empty. 5-31. 5-33
flush. 5-32
full. 5-34
prevent bus acquisition for testing. 5-35
programming example. C-1
registers (REG 2), 5-14
saving and restoring the state. 5-40
WFCNTR register.. See WFCNTR register.

Host-SFB Write FIFO Address Counter. See WFCNTR register

Host-SFB Write FIFO Control Register. See WFCON register.

Host-SFB Write FIFO Data Register. See WFDATA register.

Host-SFB Write FIFO Selected Byte Register. See WFSELB register.

Host-SFB Write FIFO Test Register. See WFTEST register.

I/O. See direct I/O. indirect I/O.

I/O window

configuration, 5-5, 5-7 enable/disable, 5-7

ID

ı

message, 6-6, 6-10, 6-12, 6-15, 6-51

illegal

bit combinations, 1-4

INDADDR register, A-16

INDDATA register, A-16

Index-8

Index

ATI018026

sources. 3-47 summary, 3-54 to host. 3-47, 5-2, 5-54 VBUS code interrupt, 3-54 Vertical Blanking interrupt, 3-50, 3-54 VEVEN code, 5-58 VODD code, 5-58

"interrupt host" operation, 3-8

invitation acknowledge, 6-4, 6-5, 6-6, 6-7, 6-10, 6-12, 6-15

IO_BASE. A-2

IO_START. 5-13. A-2

ISA bus, 5-1

POS information, 5-9

ISA bus type, 3-50

latch

A bus, 4-11 ALU input, 4-11 ALU output, 4-11 B bus, 4-11

LC field (bit), 4-13

lcnt register, 3-14, 6-52 and meta-interupt, 5-57

LIT field, 4-9

logical address, 1-2

loop counter, 4-13

loop counters. 3-10-3-11

loopback capability, 6-4

M

L

maddr register. 3-12 programming example. C-5 writing to, 3-13

Index-9

ATI018027

Index

ATI018028

E

E

E

E

E

E

Micro Channel POS3 Register, A-18, A-19

nucrocode

instruction. Chapter 4 instruction format. 4-1 instruction sequencing. 4-1 instructions. 1-1

Microcode Address Register. See maddr register.

Microcode Instruction Register. See mcodeN register.

microcode interrupt. See interrupt. microcode.

Microcode RAM. See MRAM.

mode

broadcast, 6-23 broadcast receive, 6-20, 6-24, 6-32, 6-44 broadcast transmit, 6-20, 6-24, 6-30, 6-42 service, 6-23 service completion, 6-24 service request, 6-24 XCVRn register, 6-23, 6-24, 6-51

modes

Pixel Interpolator. See Pixel Interpolator modes.

MRAM, 2-3, 3-11-3-14 organization, 4-2 reading, 3-12 writing instruction to, 3-12

MSRV register, 6-7, 6-18, 6-45, A-19

MSTATUS register, 6-18, 6-19, 6-43, A-21

N

NACK, 6-21, 6-36

NADDR field, 4-2, 4-4, 4-5

notation, 1-3

0

off-screen memory, 2-9 operating modes, 3-49

Р

index

PAR registers. 5-13. 5-18
PARn register. A-23
pc register. 3-12. 4-2
programming example. C-6

writing to, 4-2
PCI bus, 5-1

POS registers. 5-11 PCI bus type. 3-50

performance monitor operation, 3-8 physical address, 1-2

Pixel Interpolator, 3-41-3-47 modes. 3-42 pairing, 3-42 pipelining, 3-43, 3-46 pixel pair phase, 3-43, 3-46 pixel pairing selection, 3-45 start up sequence, 3-43 start-up delay, 3-43, 3-44, 3-47

weightings, 3-41, 3-44

Pixel Interpolator Control Register. See pixint-c register.

Pixel Interpolator modes
Random-2D, 3-42, 3-43-3-44
selection, 3-45
Sequential-2D, 3-42, 3-43

prant-c register, 3-44, A-24

pointer

DRAM. See dramN register

Index-12

ATI018G30

T. 442 -

SFB. See SFB pointer.

polarity

bits in run-in sequence. 3-37

POS registers, 5-6, 5-7

EISA bus, 5-9

ISA bus. 5-9

Micro Channel bus. 5-10

PCI bus. 5-11

VL-Bus. 5-12

priority

transmission requests by XCVRn registers. 6-

29

Program Counter, See pc register.

programming

examples, 1-2

programming sequence

broadcast receive mode. 6-33

broadcast transmit mode, 6-31

protocol

devices in logical slot. 5-5

R

R (index to code description table), 3-27

r0 register, 3-3, 4-10

Receive Service Register. See RSRV register.

references, 1-5

REG0-REG7. 5-14

registers

core. 3-3

general purpose, 3-3-3-4

naming, 1-3

RAM. See MRAM registers

SynchroLink interface, 5-54, 6-17, 6-53

Reserved

bits, bytes, 1-3

Reserved memory, 2-10

RFCNTR register. 5-42, 5-43, 5-49-5-50, A-25 accessing bytes. 5-44 warning on write. 5-46

RFCON register, 5-42, A-26 warming on write, 5-46

RFDATA register, 5-42, 5-49, 5-52-5-53, A-28 reading, 5-50

RFSELB register, 5-42, 5-44, A-29

RFTEST register, 5-45, 5-50, A-29

RSRV register, 6-18, 6-39, 6-43, 6-44, 6-45, A-30 affected by meta-interrupt event, 5-55 effect of SFBI event, 6-54

RSVD

bits, bytes, 1-3

run-ın sequence, 3-26

S

service acknowledgement, 6-5, 6-11

service completion. See message, service completion: see mode, service completion.

service number, 6-7, 6-8, 6-9, 6-10, 6-11, 6-12, 6-21, 6-40, 6-47

recognized, 6-41, 6-45, 6-47

service request. See message. service request: see mode, service request.

service successful, 6-13

SFB. 1-1, 0-1-10 access, 5-3 access by host CPU, 5-2 and Core Input FIFO, 3-14 and Core Output FIFO, 3-19

SFB pointers

byte addresses, 3-57, 3-60

Index-14

ATI018032

for Statistical Decoder, 3-38

SFBI. 1-2, 0-1-3, 6-1 event, 5-54

SFBI event, 5-55, 6-1, 6-22

Shared Frame Buffer Interconnect. . See SFBI.

SHFT field, 4-9

signal event. 6-4. 6-7. 6-12. 6-15

slot (logical)

configuration, 5-5 protocol for devices sharing, 5-5 shared by multiple devices, 5-5

snooping (data), 5-6 Micro Channel bus, 5-11 PCI bus, 5-12

source

on SynchroLink, 6-2-6-4

source/destination coding, 4-5, 4-6

start bit, 6-4, 6-6, 6-10, 6-15

stat-c register, 3-25, A-31 bit definitions, 3-34

stat-hi, stat-lo registers, 3-25

stat-ram register, 3-25, 3-36

*stat register, 3-25, 3-36

*stat# register, 3-25, 3-37

Statistical Decoder, 3-24

codes. 3-25

decode time, 3-38

END mode, 3-31-3-32

registers, 3-24

SHORT mode, 3-30-3-31, 3-33, 3-37

variable-length code, 3-25

Statistical Decoder Control Register. See stat-c register.

Step mode, 3-49, 4-3 switch over, 6-4, 6-6, 6-7, 6-9, 6-10, 6-12, 6-15 SynchroLink, 1-2, 0-2-3, 2-2, 6-1 frequency, 6-48 SynchroLink interface, 0-3, 3-1, 6-1, 6-22 affected by meta-interrupts, 5-35, 6-54 configuration, 6-47, 6-51 registers. See registers. SynchroLink interface. SynchroLink registers, 0-3-4 access by host CPU, 5-3 T target device, 6-7 on SynchroLink, 6-2-6-4 Transceiver Register, See XCVRn register. U UHBI, 1-2, 0-2-4, 2-2 access to multimedia system, 5-1 address configuration, 5-4 bus types supported, 5-1 Universal Host Bus Interface, See UHBI. V1CODE, 6-50 V1CODE event, 5-56 V2CODE, 6-50 V2CODE event. 5-56 variables notation for, 1-3 VBUS, 3-1, 5-57, 6-1 code, 5-56, 5-57 pnonty, 5-57 VBUS code, 3-14 updating lcnt register, 3-14 VEVEN code, 3-14

Index-16

ATI018034

VODD code. 3-14

VBUSIN puns. 6-50

VL-Bus, 5-1

POS information, 5-12

W

wait states

host bus reading from Host-SFB Read FIFO. 5-46

host bus writing to Host-SFB Write FIFO, 5-35

WFCNTR register. 5-29, 5-36, A-32 accessing bytes, 5-36 warning on write, 5-37

WFCON register, 5-29, 5-31-5-36, A-33 byte selection, 5-31

WFDATA register. 5-28, 5-37, A-34
alternation of bytes for write. 5-38
loading, 5-38
loading procedure, 5-39
write restrictions, 5-37

WFSELB register, 5-31, 5-33, 5-41, A-35

WFTEST register, 5-33, 5-41, A-35

workspace

82750PD, 2-10 graphics, 2-10

X

XCVRn register, 6-18, 6-20, 6-37-6-39, A-36 broadcast receive mode, 6-32 broadcast transmit mode, 6-30 enabling meta-interrupts, 5-55, 6-54 mode, 6-23

Index-17

ATI018035

UNITED STATES INTERNATIONAL TRADE COMMISSION Washington, D.C. 20436

Before The Honorable Debra Morriss Administrative Law Judge

)
In the Matter of) Inv. No. 337-TA-412
CERTAIN VIDEO GRAPHICS DISPLAY)
CONTROLLERS AND PRODUCTS)
CONTAINING SAME)
)

EXPERT REPORT OF WILLIAM G. MEARS

UNITED STATES INTERNATIONAL TRADE COMMISSION Washington, D.C. 20436

Before The Honorable Debra Morriss Administrative Law Judge

)
In the Matter of) .
) Inv. No. 337-TA-412
CERTAIN VIDEO GRAPHICS DISPLAY)
CONTROLLERS AND PRODUCTS	·)
CONTAINING SAME)
)

EXPERT REPORT OF WILLIAM G. MEARS

I have prepared this expert report at the request of respondent ATI Technologies, Inc. and if called to testify as the contents of the report, could and would testify competently thereto. In this report, I consider issues of validity relating to asserted claims of U.S. Patent No. 5,598,525 ("the '525 patent"). I will describe the 1280 and VIPER series graphics and video controller products that were designed, manufactured, and sold by Parallax Graphics, Inc., a company that I co-founded in 1982. As I detail in my report, the 1280 and VIPER graphics and video controllers contain features and functionality that are described and claimed in the '525 patent. In fact, we at Parallax were implementing the architecture and functionality set forth in the '525 patent many years before the patent. We were years ahead of most others in the industry in our work dealing with the merger of video and graphics.

As fully explained below, I believe that asserted claims of the '525 patent are invalid in view of the 1280/VIPER products. In forming my opinions, I rely on my knowledge and

experience in the field of graphics and video controllers, and on certain documents and information that are specifically referenced in the report. I would like to point out that my work in this case is continuing and that this report represents only a current evaluation of my positions on validity. I may supplement this report as additional information becomes available and my trial testimony may also include additional views developed in connection with my ongoing work in this case. I also may submit a rebuttal expert report regarding any issues raised by Cirrus's experts.

MY GENERAL BACKGROUND

I have over 15 years of experience in video and graphics product development. That experience is summarized in my resume which is attached hereto as Exhibit 1. At the hearing in this case, I may offer testimony relating to my background and experience, some of which is captured in my resume.

Briefly, however, much of my experience derives from my work at Parallax from 1982 through 1991, a company I co-founded. I describe this experience in more detail below. After Parallax. I worked at Force Computers as a manager in the VME Engineering group where I designed and developed VME processor cards that were successfully launched into the market. In early 1994, I started my own contracting business where I worked with a number of companies to develop integrated Computer Graphics/Video products for a variety of applications. In early 1995, I was asked to be Director of R&D at Viewgraphics, Inc. where I developed and brought to market the company's Serial Digital Adapter (SDA) & Digital Data Adaptor (DDA) product families. These products successfully interfaced

broadcast quality real-time video and were successfully introduced to the computer market. I am now Vice-President of Cogent Technology, a company that I have co-founded. At Cogent, I have developed architecture and performed designed work for a MPEG-2 transport stream processing product line. This product line is intended to facilitate the deployment of the digital television broadcast infrastructure. I have a Bachelor of Science in Electrical Engineering from Cornell University.

I am being compensated for my efforts in this case at my standard consulting rate of \$250/hr. My compensation in this case is not tied to the result of the litigation.

In the preceding four years, I have not provided any expert testimony at trial or in deposition. In the preceding ten years, to the best of my recollection, I have authored no publications dealing with the subject of graphics and video.

PARALLAX GRAPHICS - THE COMPANY

In 1982, I co-founded Parallax to fill a need in the market for high performance and low cost graphics. We envisioned designing and producing boards that would replace high overhead and high cost "box" like equipment, yet provide at least the same level of functionality and performance of previous generation products. Because of my previous exposure to video, I felt it was critical to integrate video and graphics in the architecture of our products.

In 1982, we designed our first product referred to as the Parallax 600. This product had the ability to capture and display video in real-time and could overlay graphics on a live video background using a simple form of color-keying. This product was successful

predominantly because of its ability to integrate graphics and video. We sold many hundreds of these systems which were used by, for example. Clairol to do visual make-overs of people's images by capturing real-time images and overlaying them with graphical data. The product also captured real-time motion video for overlay. Although the product was successful, it had problems. Specifically, the Parallax 600 processed video in the graphics space. That is, the product used 8 bits per pixel to store both graphics and video data. The color was derived by using RGB format with three bits for red, three for green, and two for blue. This only provided for a total of 256 colors that were used for both video and graphics. This was not enough color subtlety for high quality video.

So we began to explore alternative storage formats for the video data. The human eye sees most detail in terms of black/white images or luminance. Thus, if more bits of storage are allocated to "luma" image and less to the "chroma" image, the resulting data format would be more visually appealing with the same number of bits. This storage data format is well known as YUV in the video industry (and indeed was known in the 1950's during the transition from B/W to color television broadcast). When the data is sampled in the YUV format, only one sample of U & V (or chroma) is needed for each four Y (or luma) samples. For example, across a sample of four pixels there would be four 6 bit luma samples, and one sample of each U & V at a resolution of four bits. The visual perception created a pixel of 16.536 possible different colors, far more than the 256 colors of the previous system. Also, this approach freed the color tables to be available to the user's preference for graphics colors.

We (and, in particular, I) applied these principles to the design and architecture of a next generation product referred to as the 1280. Design for this product began by early 1984. In designing the 1280, we had several design goals in mind: (1) display resolution at 1280 x 1024; (2) ability to capture and display with enhanced resolution as compared to the 600; (3) increased graphics performance with increased off-screen memory; (4) and increased integration to reduce product size and power demands. With these objectives, we designed an architecture for the 1280.

The design of the new video encoding format, as well as the ability to display video on a high resolution display was innovative and deemed patentable at the time. However, Parallax Graphics chose to use protection of trade secrets as our operating paradigm, rather than pursue patents for the purpose of protection. As described below, however, there are contemporaneous documents describing the operation of our products.

During this time frame (early to mid 1984), we also had discussions with Martin Marietta about implementing our design and architecture in conjunction with products produced by them. In this regard, Martin Marietta actually participated in the design specifications for the 1280 in order to ensure that our product would meet their needs. Martin Marietta was developing a portable tactical computer that used video discs to store maps, a product referred to as ASAS. This product was being designed for the military. The 1280 was to be the display for the ASAS work station, and was required to capture live video, and overlay graphics onto the video. Because of their need to display graphics over video, we

enhanced our design to include "graphics-over-video" features. These enhancements included the ability to draw graphics directly over the video, in addition to having video windows.

The result of our efforts were completed sometime in 1985 and in 1986 we were shipping the product to customers, including Martin Marietta. A write up of our product appeared in a March 25, 1986 article entitled "Coprocessors Provide Integrated Video and Graphics," written by Marty Picco, a co-founder of Parallax.

The 1280 series graphics processor was very successful, particularly because of its unique ability to capture and display live video. For example, Boeing used it to dramatically improve its documentation for its 747. Boeing used the 1280 to create laser disc based manuals that replaced the paper manuals previously used at Boeing, which filled a tractortrailer. The system was implemented by Boeing to display textual description of procedures relating to its many thousands of parts and would display an instructional video along side graphics and text. Our controllers were also used to pilot remote control robots used in the clean-up of the Three Mile Island nuclear accident. To the best of my recollection, other customers include Electronic Data Systems, the Israeli Ministry of Defense, and Texas Instruments. The 1280 was designed for use in Q-Bus and VME workstations from ecompanies like Digital Equipment Corp., and Sun; there was also a version for IBM PCS. Through the introduction of this product, our annual sales volume increased from relatively little to over three million dollars per year. The products, depending on the configuration, sold from \$9,000 to \$35,000 each.

The 1280 was successful and possessed many product features not otherwise available in the market place during this period of time. In an effort to keep the 1280 product competitive in the market place, we envisioned a next generation product called the VIPER. This product would reduce the size and cost of the 1280 by consolidating discrete circuitry into gate arrays that reduced the power and space requirements in the design. The VIPER was introduced sometime in 1988. The VIPER is described in a version of its users manual dated 1989 (ATI031566-ATI032067). A picture of the VIPER displaying graphics and multiple video windows is depicted in a 1989 publication entitled The NEWS Book. We were selling an average of 50 VIPER controllers per month during this time period and our annual revenues increased to 9 to 10 million dollars per year. I note that at this period of time, the market began to see the emergence of windowing systems such as NEWS for Sun workstations and "X" for DEC workstations. Our product was used with both which further enhanced our sales.

The success of the Parallax 1280 and VIPER products did not go unnoticed in the industry. In 1989, we were acquired by a company called Dynatech Corporation, a 400 million dollar publicly traded company, which continued to sell the product. I left the company in 1991.

PARALLAX - THE PRODUCTS

The Parallax 1280/VIPER series graphics and video processors can be understood with reference to a Parallax 1280 technical manual (ATI032068-ATI032775); a Parallax VIPER technical manual (ATI031566-ATI032067); an excerpt from The News Book at pp. 178-221

(ATI0___-ATI0___); and a March 25,1986 Digital Design article entitled "Coprocessors Provide Integrated Video and Graphics." by Marty Picco (a co-founder of Parallax). I also have in my possession sample 1280 and VIPER boards.

A. THE 1280 SERIES

The architecture and functionality of the 1280 series controller is now described. The architecture can best be understood by considering its different functional blocks. In the Parallax 1280 technical manual (ATI032068-ATI032775), there is a high level functional block diagram that generally depicts the functionality of the 1280 product. See Figure H-5 on page H-27 (ATI032738). For purposes of this discussion, I will consider the following functional blocks: (1) control/processor section (2) display memory section; (3) video input section; and (4) display generation section.

The control processor section consisted of a core processor that was responsible for choreographing all operations of the controller. The core processor accepted high level instructions from the host and translated them into multiple low-level read and write instructions that were issued to the display memory circuitry. The host sent both graphics and video data to the core processor over the system bus. More specifically, the graphics or video data from the host was received by the Bus Interface Unit (BIU), which is a multi-aperture port. As well as converting host commands, the core processor was also responsible for controlling the display generation circuitry. Additionally, the core processor also directed the read out of data from memory.

The core processor performed various manipulations on display memory which included (1) writing a single pixel; (2) writing a horizontal run of solid color pixels of programmable length and position; (3) writing a repeating pattern of pixels (STIPPLE); (4) copying a horizontal run of pixels from one area in memory (such as off-screen) to another; (5) and importing horizontal run from the real-time video interface. As well as controlling what pixels were written, the core processor also had control over the Access Attribute Control, which had the role of modifying and enabling the writing of each pixel on an individual basis according to the mapping specified by the Access Attribute Control.

In the 1280, display memory was interleaved by a factor of eight. This means that eight locations are read or written simultaneously. The interleave was organized horizontally such that a single access to memory would read eight horizontally consecutive pixels. This interleaving was important to achieve the necessary data rates demanded by the display while still retaining sufficient bandwidth for drawing into and modifying display memory. Access to display memory was timed-division-multiplexed, meaning that either the display circuitry or the access circuitry would have sole access that was traded off as necessary. The display circuitry, however, always had priority.

The display memory (or frame buffer) of the 1280 had a dimension of 2048 x 2048, or 320 percent of the memory necessary for a 1280 x 1024 display. The frame buffer had onscreen and off-screen memory that each stored any kind of data including video and graphics data. The frame buffer also stored the graphics and video data in their respective graphics and video formats (i.e. RGB for graphics and YUV for video). The frame buffer had no

restriction on the size or position of the video or graphics areas (other than video areas needed to start and end on multiples of 4 pixels horizontally). While the standard configuration of the product employed an 8 bit depth of the display memory, we also offered 16 and 24 bit versions of the product to certain customers who demanded it. With this extended memory option, certain additional display features were made available.

The 1280 also had a real-time video port as shown in the Figure. The function of this port was to decode an analog RS170 color video signal and convert it to a digital bit stream. Synchronization information from the analog signal was separated from image data and sent to the control processor that managed the frame grabbing process. The control processor also included circuitry that generated a memory address for the video data. The image data was formatted into video mode byte stream that was written directly into the display memory during the frame grabbing process.

during the frame grabbing process.

Finally, the display generation circuitry of the 1280 is described. This circuitry performed two basic functions: (1) control the timing and synchronization of memory retrieval from the frame buffer to the raster scan of the display monitor and (2) process the stream of pixels as either video format pixels or graphics, and deliver them to the monitor at the appropriate time.

The timing and synchronization circuitry used an origin register that was written by the core processor. The origin register included the number of lines of data to be displayed from that origin. When the display of those lines were completed, the display generator would interrupt the core processor for the next display segment. This technique permitted the

screen to be split into multiple independent display regions. As well as controlling split screen operations, the control processor programmed a SYNC generator with appropriate monitor parameters.

While only 1280 x 1024 pixels were displayable in any given frame. ALL of the display memory was viewable by simply changing the values loaded into the display origin register. This means that graphics and video format data stored in off-screen memory could be easily displayed without copying it to the on-screen area of memory.

The second part of the display circuitry processed the stream of pixels. Pixels were processed as either video or graphics depending on the value of the display attribute map (DAM). This extra bit plane in the frame buffer was used to distinguish areas of video format data from areas of graphics format data. The display stream hardware was comprised of two pipelines: one pipeline for video and one pipeline for graphics. The graphics pipeline passed each pixel through an 8 x 24 color look up table yielding a 24 bit RGB pixel. The video pipeline processed the video format data, which included decoding YUV into RGB.

A multiplexer served as data selector, or overlay generator, that would selectively pass data from either the video display pipeline or the graphics display pipeline through to the monitor in a manner that was mode dependent, i.e. graphics mode, video mode, and graphics over video mode. All display memory data was passed to both pipelines; based on the DAM bit, contents from the display memory would be output as either video format data, or as graphics format data. Data output from the other pipeline for that pixel location was simply discarded. In an optional display mode known as graphics over video, bit zero of each

luma sample in the video pipeline acted like a color key. In the case where bit zero was off (i.e. 0), video samples passed through the video pipeline as described above. In the case where bit zero was on (i.e. 1), bits 1-5 were treated as a pseudo color graphics pixel and displayed from the graphics pipeline. Thus, 32 colors were made available to display graphics pixels within a video region on a pixel by pixel basis.

In the case of 16 and 24 bit memory options, the display circuitry could treat graphics areas as true color pixels. This means that if the DAM bit was a 0, that the graphics pixel would be generated in true color mode from a full 16 or 24 bits of display memory. If the DAM bit was a 1, then the video format pixel would be generated exactly as described above.

B. THE VIPER SERIES

As I noted above, we at Parallax created the next generation product called the VIPER in order to reduce power consumption, space requirements, and the cost of the processors to our customers. This was intended to ensure that the 1280 had continued viability into the future. With these design objectives in mind, we modified the 1280 by consolidating discrete circuitry into gate arrays that reduced the power and space requirements in the design. The functionality and architecture of the VIPER is otherwise the same as the 1280. As such, everything I said above with respect to the 1280 equally applies to the VIPER.

C. SUMMARY OF FUNCTIONALITY FOR THE PARALLAX 1280/VIPER PRODUCTS

To summarize the architectural and functional features of the 1280/VIPER, I identify the attributes of the 1280/VIPER products:

(1) The 1280/VIPER merged video and graphics data from a single multi-format

frame-buffer for simultaneous display on a computer monitor. Multiple video windows could appear anywhere on the display monitor. There was no specific correspondence between the location of the video data stored in the frame buffer and the location of the video window on the monitor.

- (2) The 1280/VIPER had a multi-aperture port for receiving both video and graphics data from the system bus. The arriving data had a host assigned address that was temporarily stored in an address buffer.
- (3) The 1280/VIPER used a single frame buffer to store both video and graphics data in their native formats (i.e. RGB and pseudo-color for graphics and YUV for video).

 The frame buffer had on-screen and off-screen areas. Also, YUV video data could be stored in either off-screen or on-screen memory and RGB graphics data could be stored in either on-screen and off-screen memory.

 (4) The 1280/VIPER contained circuitry for writing into on-screen and off-screen
 - (4) The 1280/VIPER contained circuitry for writing into on-screen and off-screen areas of the frame buffer. The 1280/VIPER also contained circuitry for selectively retrieving data from on-screen and off-screen portions of the memory and directing the data to the backend graphics and video pipelines.
 - (5) The 1280/VIPER had a graphics over video mode that utilized a version of color keying to overlay video with graphics. In other modes, the control overlay circuitry switched data streams at the output with the presence of the DAM bit.
 - (6) The 1280/VIPER has a real-time video port that decoded analog RS170 color video signal and converted it to a digital bit stream in a YUV format. The control processor

also included circuitry that generated a memory address for the video data. The image data was formatted into a video format byte stream which was written directly into the display memory during the frame grabbing process.

THE '525 PATENT

The '525 patent is entitled "Apparatus, System and Method For Controlling Graphics And Video Data in Multimedia Data Processing And Display Systems," and issued on January 28, 1997. The '525 patent contains a total of 47 claims with claims 1, 13, 25, 34, 37, and 43 being independent claims. In the hearing in this case, I may offer testimony generally describing the '525 patent from the perspective of one skilled in the art.

I understand that a patent claim is invalid based on anticipation if one prior art reference or product includes all the limitations of that claim. I also understand that a patent claim is invalid based on obviousness in view of one or more prior art references. I am told that when examining the question of obviousness, one must consider the following factors: scope and content of the prior art; level of skill in the art; differences, if any, between the invention claimed and the prior art; secondary considerations including commercial success, copying, long-felt need, and other independent development of the claimed invention. I am also told that obviousness must be tested as of the time the invention was made. One must ask the questions, "Would this have been obvious to a person having ordinary skill in the art at the time the invention was made?" I am also told that the test for obviousness is what the combined teachings of the references would have suggested, disclosed, or taught to one of ordinary skill in the art.

I also understand that the plaintiff in this case claims to have made the invention of the '525 patent in September 1993. At that time, the level of skill in the art of graphics controller development and also the art of video product development was quite high. At the same time, the multimedia market was expanding quite quickly, creating an incentive to provide products which combined video with graphics. There was a large demand for designers with overlapping skills. A person of ordinary skill in this combined area would have experience designing graphics controllers as well as video processing circuits and would have been familiar with many different design choices. I was such a designer, and at the time, knew other designer with similar skills in the art of video/graphics controllers. In the following chart, I compare the elements of the claims of the '525 patent with the Parallax 1280/VIPER products and with my knowledge of ordinary skill in the graphics/video art. In doing so, I interpret the words of the claims according to their ordinary meanings to me as an engineer. I am not a lawyer and am not attempting to give legal meaning to the claims. I understand that doing so requires consideration of the patent specification, the patent prosecution history, and numerous legal principles. I have read the patent specification but not the prosecution history. Once the claims have been legally construed in this case, I reserve the right to modify the chart below. I also must again stress that my investigation is continuing, and that additions and/or deletions may be made in the future and reflected in my trial testimony. For trial, I may also prepare diagrams, other charts, and possibly a demonstration that illustrates the architecture and operation of the Parallax products.

APPLICATION OF THE PARALLAX 1280/VIPER TO THE ASSERTED CLAIMS

CLAIM 37 IS INVALID OVER PARALLAX

CLAIM 37	PRIOR ART
37. A display controller comprising:	Parallax 1280/VIPER
circuitry for selectively retrieving data from an associated multi-format frame buffer for simultaneously storing graphics and video data;	circuitry in Parallax 1280/VIPER for selectively retrieving graphics (RGB) and video (YUV) data from display memory.
a first pipeline for processing words of graphics data selectively retrieved from said frame buffer; and	circuitry in Parallax 1280/VIPER for processing graphics (RBG) data
a second pipeline for processing words of video data selectively retrieved from said frame buffer.	circuitry in Parallax 1280/VIPER for processing video (YUV) data

CLAIM 43 IS INVALID OVER PARALLAX

CLAIM 43	PRIOR ART
43. A display controller for interfacing a multi-format frame buffer and a display device, the multi-format frame buffer having on-screen and off-screen areas each for simultaneously storing both graphics and video pixel data, said display controller comprising:	Parallax 1280/VIPER, with frame buffer for simultaneously storing graphics (RGB) and video (YUV), each in on-screen or off-screen areas
circuitry for selectively retrieving pixel data from a selected one of said on-screen and off-screen areas of said frame buffer;	circuitry in Parallax 1280/VIPER for selectively retrieving graphics (RGB) and video (YUV) data, from either on-screen or off-screen regions of the frame buffer
a graphics backend pipeline for processing graphics data retrieved from said selected one of said areas of said frame buffer;	circuitry in Parallax 1280/VIPER for processing graphics (RBG) data

a video backend pipeline for processing video data retrieved from said selected one of said areas of said frame buffer; and	circuitry in Parallax 1280/VIPER for processing video (YUV) data
an output selector for selectively passing to said display device data received from said graphics or video backend pipelines.	circuitry in Parallax 1280/VIPER for selecting between graphics/video pipelines (overlay generator, or multiplexer)

CLAIM 1 IS INVALID OVER PARALLAX

CLAIM 1	PRIOR ART
A graphics and video controller comprising:	Parallax 1280/VIPER
an interface for receiving words of pixel data, each said word associated with an address buffer;	circuitry in Parallax 1280/VIPER for receiving pixel data
circuitry for writing each said word of said pixel data received by said interface to a one of on-screen and off-screen memory areas of a frame buffer;	circuitry in Parallax 1280/VIPER for writing pixel data into on-screen and off-screen regions of the frame buffer
circuitry for selectively retrieving said words from said on-screen and off-screen area;	circuitry in Parallax 1280/VIPER for selectively retrieving pixel data from on- screen and off-screen regions of the frame buffer
a first pipeline for processing words of graphics data retrieved from said frame buffer;	circuitry in Parallax 1280/VIPER for processing graphics (RBG) data
a second pipeline for processing words of video data retrieved from said frame buffer.	circuitry in Parallax 1280/VIPER for processing video (YUV) data

CLAIM 2 IS INVALID OVER PARALLAX

CLAIM 2	PRIOR ART
2. The controller of claim 1 and further comprising output selection circuitry for selecting for output between graphics data received from said first pipeline and data received from said second pipeline, said selection circuitry operable to:	circuitry in Parallax 1280/VIPER for selecting between graphics and video pipelines
in a first mode, pass data from said first pipeline; and	circuitry in Parallax 1280/VIPER for passing data from graphics pipeline
in a second mode, pass data from said second pipeline when said data corresponds to a selected display position of a display window.	circuitry in Parallax 1280/VIPER for passing data from video pipeline when in a video region

CLAIM 3 IS INVALID OVER PARALLAX

CLAIM 3	PRIOR ART
3. The controller of claim 2 wherein said selection circuitry is further operable to:	

We the two was the time of

in a third mode, pass data from said second pipeline when said data corresponds to said selected display position of said display window and data from said first pipeline match a color key.

Dis

circuitry in Parallax 1280/VIPER for passing data from video pipeline when in a video region and based on graphics over video keying control

In Parallax 1280/VIPER, overlay of video onto graphics with video-based keying was accomplished with Access Attribute control during a copy or frame grabbing operation. This technique differed from the popular "color-key blue" which was well known in the art, while still solving customer needs for keying of video over graphics.

Parallax's choice to key graphics OVER video was a design decision based on customer needs. Nothing unique about this choice over decision to overlay video onto graphics.

CLAIM 4 IS INVALID OVER PARALLAX

CLAIM 4	PRIOR ART
4. The controller of claim 3 wherein said selection circuitry is further operable in a fourth mode to pass data from said second pipeline when data from said first pipeline	circuitry in Parallax 1280/VIPER for passing data from video pipeline based on graphics over video keying control
match a color key.	In Parallax 1280/VIPER, overlay of video onto graphics with video-based keying was accomplished with Access Attribute control during a copy or frame grabbing operation. This technique differed from the popular "color-key blue" which was well known in the art, while still solving customer needs for keying of video over graphics.
	Choice to key graphics OVER video was a design decision based on customer needs. Nothing unique about this choice over decision to overlay video onto graphics.

CLAIM 5 IS INVALID OVER PARALLAX

CLAIM 5	PRIOR ART
	Ecircuitry in Parallax 1280/VIPER for passing graphics data to graphics pipeline and for passing video data to video pipeline when in a video region Position of video region was indicated by DAM bit in addition to position on raster display scan.

CLAIM 6 IS INVALID OVER PARALLAX

CLAIM 6	PRIOR ART
6. The controller of claim 1 and further comprising:	-
a video port for receiving real-time video data; and	circuitry in Parallax 1280/VIPER for receiving real-time video
circuitry for generating an address to said memory at which said real-time video data is to be stored.	circuitry in Parallax 1280/VIPER for generating addresses for received real-time video data

CLAIM 7 IS INVALID OVER PARALLAX

CLAIM 7	PRIOR ART
7. The controller of claim 1 wherein said second pipeline includes a first first-infirst-out memory for receiving data for a first display line of pixels in memory and a second display line of pixels memory.	Parallax hardware employed first-in-first- out buffering between the display memory and the display monitor for the graphics format data and the video format data.
	Parallax's implementation required only one line of buffering outside the display memory. The addition of a second FIFO buffer would be a requirement of the design implementation, NOT a unique invention.

CLAIM 8 IS INVALID OVER PARALLAX

CLAIM 8	PRIOR ART
8. The controller of claim 7 wherein said first display line adjacent in memory to said second display line.	Parallax hardware employed first-in-first- out buffering between the display memory and the display monitor for the graphics format data and the video format data. In the event that a given design would need more than a single line of buffering, it would be obvious that the second line of
	buffering be adjacent to the first (and below the first).

CLAIM 9 IS INVALID OVER PARALLAX

CLAIM 9	PRIOR ART
9. The controller of claim 7 wherein said output selection circuitry comprises:	

	an output selector for selecting between data from said second pipeline and data from said first pipeline in response to a selection control signal:	circuitry in Parallax 1280/VIPER for selecting between graphics/video pipelines (overlay generator, or multiplexer)
THE WITH THE STATE IN THE STATE OF THE STATE	a register for maintaining a plurality of overlay control bits;	register of plural control bits in Parallax 1280/VIPER
		There is nothing inventive about the use of a register to hold control bits. Parallax implemented a register specific to the control of the video/graphics MUX.
	window position control circuitry for selectively generating a position control signal when a word of said data stream	circuitry in Parallax 1280/VIPER for passing data from video pipeline when in a video region
	from said second pipeline falls within a display window;	Position of video region was indicated by DAM bit in addition to position on raster display scan.
	color comparison circuitry for comparing words of said data stream from said first pipeline with a color key and for providing	circuitry in Parallax 1280/VIPER for passing data from video pipeline based on graphics over video keying control
	in response a color comparison control signal; and	In Parallax 1280/VIPER, overlay of video onto graphics with video-based keying was accomplished with Access Attribute control during a copy or frame grabbing operation. This technique differed from the popular "color-key blue" which was well known in the art, while still solving customer needs for keying of video over graphics.
		Choice to key graphics OVER video was a design decision based on customer needs. Nothing unique about this choice over decision to overlay video onto graphics.

COMPACT FROM A STATE

a control selector for selectively providing a said selection control signal in response to said overlay control bits in said register and at least one of said position control and color comparison control signals. circuitry in Parallax 1280/VIPER for passing data from video pipeline when in a video region and based on graphics-overvideo keying control bit.

This functionality was selectively provided in response to overlay control bits from the overlay control register.

In addition, overlay controls were well known in art, and it was well known in art to store control bits in a register.

CLAIM 10 IS INVALID OVER PARALLAX

CLAIM 10	PRIOR ART
10. The controller of claim 9 wherein said window position control circuitry comprises:	
window position counters operable to increment from initial count values corresponding to a starting pixel of a display window as data representing each pixel in a display screen is pipelined through said overlay control circuitry;	window position counters in the Parallax 1280/VIPER for the generation of coherent pixel display streams (which is well known art in graphics controllers). Parallax 1280/VIPER hardware was able to maintain a plurality of video display start coordinates within a single display, each with arbitrary X and Y origins.
screen position counters operable to count as data representing each pixel in said display screen is pipelined through said overlay control circuitry; and	window position counters in the Parallax 1280/VIPER for the generation of coherent pixel display streams (which is well known art in graphics controllers). Parallax 1280/VIPER hardware was able to maintain a plurality of video display start coordinates within a single display, each with arbitrary X and Y origins

comparison circuitry operable to compare a current count in said window position counters and a current count in said screen position counters and selectively generate said position control signal in response.

circuitry in Parallax 1280/VIPER for loading counters with difference, and comparing result to zero

This form of compare circuit is well known in the art.

CLAIM 12 IS INVALID OVER PARALLAX

CLAIM 12	PRIOR ART
12. The controller of claim 1 wherein said interface includes a dual-aperture port.	circuitry in Parallax 1280/VIPER for receiving graphics and video data through multi-aperture port

CLAIM 13 IS INVALID OVER PARALLAX

13. A controller comprising:	•
circuitry for writing selectively each word of received data into [a] selected one of on-screen and off-screen memory spaces of a frame buffer:	circuitry in Parallax 1280/VIPER qualifying each write to on-screen and off-screen areas of display memory through the Access Attribute Control
a first port for receiving video and graphics data. a word of said data received with an address of said memory spaces directing said word to be processed as a word of video data or a word of graphics data;	circuitry in Parallax 1280/VIPER for receiving graphics and video data and directing that it be stored and displayed as video or graphics
a second port for receiving real-time video data:	circuitry in Parallax 1280/VIPER for receiving real-time video data
circuitry for generating an address associated with a selected one of said memory spaces for a work of said real- time video data;	circuitry in Parallax 1280/VIPER for generating addresses for received real-time video data

circuitry for selectively retrieving said words of data from said on-screen and off- screen memory spaces as data is rastered for driving a display;	circuitry in Parallax 1280/VIPER for selectively retrieving graphics (RGB) and video (YUV) data, from either on-screen or off-screen regions of the frame buffer
a graphics backend pipeline for processing ones of said words of data representing graphics data retrieved from said frame buffer;	circuitry in Parallax 1280/VIPER for processing graphics (RBG) data
a video backend pipeline for processing other ones of said words of data representing video data retrieved from said frame buffer. said circuitry for retrieving always rastering a stream of data from said frame buffer to said graphics backend pipeline and rastering video data to said video backend pipeline when a display raster scan reaches a display position of a window; and	circuitry in Parallax 1280/VIPER for processing video (YUV) data, for passing graphics data to graphics pipeline, and for passing data to video pipeline when in a video region. Position of video region was indicated by DAM bit in addition to position on raster display scan.
output selector circuitry for selecting for output between works of data output form said graphics backend pipeline and words of data output from said video backend pipeline.	circuitry in Parallax 1280/VIPER for selecting between graphics/video pipelines (overlay generator, or multiplexer)

CLAIM 14 IS INVALID OVER PARALLAX

CLAIM 14	PRIOR ART
14. The controller of claim 13 wherein said output selector is further operable to select between graphics data output from a color look-up table and true color data output from said graphics pipeline.	circuitry in Parallax 1280/VIPER for processing graphics data as either 24-bit true color or 8-bit color look-up table data

CLAIM 15 IS INVALID OVER PARALLAX

CLAIM 15	PRIOR ART
15. The controller of claim 13 wherein said output selector is operable to:	
in a first mode pass only a word of data output from said graphics pipeline;	circuitry in Parallax 1280/VIPER for passing data from graphics pipeline
in a second mode pass a word of data output from said video pipeline when said display raster scan has reached a display position corresponding to a window and a word of data from said graphics pipeline when said display raster scan is in any other display position;	circuitry in Parallax 1280/VIPER for passing data from video pipeline when in a video region and from graphics pipeline elsewhere
in a third mode pass a word of data output from said video pipeline when said display raster scan has reached a display position corresponding to a window and a corresponding word of data from said graphics pipeline matches a color key and a word of data from said graphics pipeline when said display raster scan is in any other display position; and	circuitry in Parallax 1280/VIPER for passing data from video pipeline when in a video region and based on graphics over video keying control and from graphics pipeline elsewhere In Parallax 1280/VIPER, overlay of video onto graphics with video-based keying was accomplished with Access Attribute control during a copy or frame grabbing operation. This technique differed from the popular "color-key blue" which was well known in the art, while still solving customer needs for keying of video over graphics. Choice to key graphics OVER video was a design decision based on customer needs. Nothing unique about this choice over decision to overlay video onto graphics.

in a fourth mode pass a word of data from said video pipeline when said corresponding word of data from said graphics pipeline matches a color key and a word of data from said graphics pipeline when said display raster scan is in any other display position.

circuitry in Parallax 1280/VIPER for passing data from video based on graphics over video keying control and from graphics pipeline elsewhere

In Parallax 1280/VIPER, overlay of video onto graphics with video-based keying was accomplished with Access Attribute control during a copy or frame grabbing operation. This technique differed from the popular "color-key blue" which was well known in the art, while still solving customer needs for keying of video over graphics.

Choice to key graphics OVER video was a design decision based on customer needs. Nothing unique about this choice over decision to overlay video onto graphics.

CLAIM 16 IS INVALID OVER PARALLAX

CLAIM 16

PRIOR ART

Parallax 1280/VIPER hardware employed first-in-first-out buffering between the display memory and the display monitor for the graphics format data and the video format data.

Parallax's implementation required only one line of buffering outside the display memory. The addition of a second FIFO buffer would be a requirement of the design implementation, NOT a unique invention.

CLAIM 17 IS INVALID OVER PARALLAX

CLAIM 17	PRIOR ART
said first display line is stored adjacent in memory to said second display line.	Parallax 1280/VIPER hardware employed first-in-first-out buffering between the display memory and the display monitor for the graphics format data and the video format data.
	In the event that a given design would need more than a single line of buffering, it would be obvious that the second line of buffering be adjacent to the first (and below the first).

CLAIM 18 IS INVALID OVER PARALLAX

CLAIM 18	PRIOR ART
18. The controller of claim 13 wherein said output selector circuitry comprises:	
a control selector having a plurality of control inputs coupled to a register said register storing a plurality of overlay control bits:	circuitry in Parallax 1280/VIPER for passing data from video pipeline when in a video region and based on graphics-over-video keying control bit.
	This functionality was selectively provided in response to overlay control bits from the overlay control register.
	In addition, overlay controls were well known in art, and it was well known in art to store control bits in a register.

window position control circuitry coupled to a first control input of said control selector, said window position control circuitry operable to selectively provide a first control signal to said first control input when a word of data being pipelined through said video pipeline falls within a display window; circuitry in Parallax 1280/VIPER for passing data from video pipeline when in a video region

Position of video region was indicated by DAM bit in addition to position on raster display scan.

color comparison circuitry operable to compare a word of data being pipelined through said graphics pipeline with a color key and provide in response a second control signal to a second control input of said control selector; and circuitry in Parallax 1280/VIPER for passing data from video pipeline based on graphics over video keying control

In Parallax 1280/VIPER, overlay of video onto graphics with video-based keying was accomplished with Access Attribute control during a copy or frame grabbing operation. This technique differed from the popular "color-key blue" which was well known in the art, while still solving customer needs for keying of video over graphics.

Choice to key graphics OVER video was a design decision based on customer needs. Nothing unique about this choice over decision to overlay video onto graphics.

wherein said control selector is operable to provide an output selection control signal in response to at least one of said first and second control signals and said overlay control bits being stored in said register. circuitry in Parallax 1280/VIPER for selecting between graphics/video pipelines (overlay generator, or multiplexer)

This functionality was selectively provided in response to overlay control bits from the overlay control register.

In addition, overlay controls were well known in art, and it was well known in art to store control bits in a register.

CLAIM 19 IS INVALID OVER PARALLAX

CLAIM 19	PRIOR ART
19. The circuitry of claim 18 wherein said output selector circuitry further includes at third control input coupled to certain bits of said graphics pipeline, said output selector further operable to select between data on said respective video and graphics pipelines in response to said certain bits presented to said selector circuitry.	circuitry in Parallax 1280/VIPER for selecting between graphics/video pipelines (overlay generator, or multiplexer) In the event that a given design would need more than two control variables, it would be obvious to use a third control signal.

CLAIM 20 IS INVALID OVER PARALLAX

	CLAIM 20	PRIOR ART
There then the the	20. The circuitry of claim 18 wherein said window position control circuitry comprises:	
Distributed that the transfer of the transfer	a window x-position counter operable to count from a loaded x-position value in response to a video clock, said x-position counter reloading in response to display horizontal synchronization signal;	window position counters in the Parallax 1280/VIPER for the generation of coherent pixel display streams (which is well known art in graphics controllers). Parallax 1280/VIPER hardware was able to maintain a plurality of video display start coordinates within a single display, each with arbitrary X and Y origins.
B) 151001	a window y-position counter operable to count from a loaded y-position value in response to said horizontal synchronization signal, said y-position counter reloading in response to a display vertical synchronization signal;	window position counters in the Parallax 1280/VIPER for the generation of coherent pixel display streams (which is well known art in graphics controllers). Parallax 1280/VIPER hardware was able to maintain a plurality of video display start coordinates within a single display, each with arbitrary X and Y origins.

4
ليا
July House
=
C
4 4 4
1-1
È
ij
ij
34

CRT position circuitry operable maintain counts corresponding to a current display pixel; and	window position counters in the Parallax 1280/VIPER for the generation of coherent pixel display streams (which is well known art in graphics controllers).
	Parallax 1280/VIPER hardware was able to maintain a plurality of video display start coordinates within a single display, each with arbitrary X and Y origins.
comparison circuitry operable to compare current counts in said window counters with said current counts held in said CRT position circuitry and generate in response	circuitry in Parallax 1280/VIPER for loading counters with difference, and comparing result to zero
said first control signal.	This form of compare circuit is well known in the art.

CLAIM 21 IS INVALID OVER PARALLAX

CLAIM 21	PRIOR ART
21. The circuitry of claim 20 wherein said window position control circuitry further comprises an x-position register for holding said x-position value for loading into said x-position counter and a y-position register	window position counters in the Parallax 1280/VIPER for the generation of coherent pixel display streams (which is well known art in graphics controllers).
for holding said y-position value for loading into said y-position counter.	Placing registers to store load values for counters is not inventive, and had been implemented many times by Parallax's hardware design engineers.
	Parallax 1280/VIPER hardware was able to maintain a plurality of video display start coordinates within a single display, each with arbitrary X and Y origins.

CLAIM 23 IS INVALID OVER PARALLAX

CLAIM 23	PRIOR ART
23. The circuitry of claim 13 wherein said video pipeline comprises:	I- ' Pac
a first-in/first-out memory for receiving a first stream of words of data from said frame buffer;	Parallax 1280/VIPER hardware employed first-in-first-out buffering between the display memory and the display monitor for the graphics format data and the video format data.
a second first-in/first-out memory disposed in parallel with said first first-in/first-out memory for receiving a second stream of words of data from said frame buffer; and	Parallax 1280/VIPER hardware employed first-in-first-out buffering between the display memory and the display monitor for the graphics format data and the video format data.
	Parallax's implementation required only one line of buffering outside the display memory. The addition of a second FIFO buffer would be a requirement of the design implementation, NOT a unique invention.
interpolation circuitry for selectively generating an additional word of data by interpolating a word of said first stream and a word of second stream data output from said first and second first-in/first-out memories.	Parallax's implementation did not interpolate display lines between sampled lines. Parallax's implementation used direct samples from the line above or the line below. However, use of interpolation filters for spatially expanding a display area was well known art as of September 1993, and can be found in numerous video special effect generators (for example Abekas 8150).

CLAIM 24 IS INVALID OVER PARALLAX

CLAIM 24	PRIOR ART
24. The controller of claim 13 wherein said first port comprises a dual-aperture port.	circuitry Parallax 1280/VIPER for receiving graphics and video data through multi-aperture port

I understand that I may be asked to prepare a rebuttal report and/or give rebuttal testimony at a hearing on matters not covered in this expert report. Additionally, I understand that discovery has not been completed and that I will consider additional evidence in connection with the issues discussed above. After considering any such additional evidence. I may supplement this report as necessary.

Date: November <u>'7</u>, 1998

Respectfully submitted,

35

APPLICATIONS

- Presentation
- Video Editing
- Video Authoring
- Video Teleconferencing
- **Interactive Education Systems**
- Games

FEATURES

- ☐ Extensive software support available contact Cirrus Logic Sales office for complete details
- Supports up to three simultaneous video data streams
- Video scaling
- Supports both YCbCr and RGB formats
- Interfaces to CODECs, decoders, encoders
- Integrated ISA, MCA, and host bus interfaces

(cont. next page)

Digital Video Processor

OVERVIEW

The CL-PX2070 Digital Video Processor (DVP) provides a powerful, cost-effective desktop solution for computer graphics and imaging. The DVP can be used in presentations, video teleconferencing, animation, and video capture for scaling with video signal processors dedicated to compressing and decompressing video data streams.

(cont. next page)

Functional Block Diagram

FEATURES (cont.)

- Complete frame buffer control
- 1/2 8 Mbytes of frame buffer memory
- Video stream format conversion
- Color space conversion
- Supports up to eight simultaneous object buffers
- Programmable, triple-channel LUT RAM
- E Prescaling, zoom, and windowing
- Graphic and bitmapped stream support
- E Programmable sync slave or master
- When used with the CL-PX2080 MediaDAC™
 - Simultaneous video and graphics display
 - Four simultaneous, overlapping (occluded) display windows
 - Zooms from 1x to 256x
 - 1024 x 768 display at 85 MHz

OVERVIEW (cont.)

The DVP combines the real-time video scaling features of the CL-PX0072 VWG with the frame buffer memory management, arithmetic and logical processing, a programmable host system bus interface, flexible mainstream video datapath, and windowing control for multiple, simultaneous video data streams.

The DVP has four major functional units:

- HIU: Host Interface Unit
- · VBU: Video Bus Unit
- VPU: Video Processing Unit
- "RFU: Reference Frame Unit

HIU: Host Interface Unit

The HIU interfaces the DVP to the host system. It transfers graphic or video data between the host system and the frame buffer through direct access to FIFOs in the VPU, and accesses the DVP control registers.

VBU: Video Bus Unit

The VBU manages the flow of video and graphic streams between the DVP and up to three independent devices (including the host system).

The VBU provides two independent, real-time video I/O ports (V1 and V2), and contains two subunits — the VIU and VSU.

V1 and V2 have the following characteristics:

- Each can be configured as input only, output only, or pixel- or field-duplexed I/O;
- Each provides programmable sync polarity;
- Either port can use the VSU sync generator;
- Each supports the following video formats:
 - Input: YCbCr 16-bit 4:2:2, 12-bit 4:1:1; RGB 16-bit, 8-bit;
 - Output: YCbCr 16-bit: RGB 16-bit, 8-bit;
- V2 controls the video stream data flow between the DVP and typical CODEC devices.

	ISA Bus	MCA Bus	Local Hardware
Interface	DVP interfaces with the host s	DVP interfaces with the processor bus.	
Multiplex Support	DVP signals support the requirempleading, and provide bidire system data bus.	N/A	
Address Decode	DVP internally decodes the bucycles.	The host system provides the decoded chip select signal for use with register select input signals.	

Semiconductor A Cirrus Logic Company

The VIU (Video Interface Unit) controls the flow of internal video streams through the video ports to all external devices, it controls:

- the source and direction of video stream and sync control inputs:
- the field-toggling mode and field ID signals;
- the watchdog timer feature.

Two VIU master control registers provide matching fields that specify input and output sync modes.

The VSU (Video Sync Unit) implements identical, independent reference signals for each video port:

- Vertical sync signals specify the beginning of a field or frame.
- Horizontal sync signals specify the beginning of a line.
- Horizontal/composite blanking signals specify the horizontal/composite blanking interval.

VPU: Video Processing Unit

The VPU processes field-oriented video. It can simultaneously process two external, bidirectional real-time video streams and a single external, bidirectional host video or graphic data stream. It also provides a data path between the DVP and the host system for bidirectional graphic streams through the HIU. FIFO D can send to, and FIFO F can receive from the HIU directly.

The VPU has five subunits — the IPU1, IPU2, OPU, ALU, and SIU.

The IPU1 (Input Processor Unit 1) prepares an input video stream for ALU processing and/or storage in the frame buffer, then outputs the prepared stream to the frame buffer data bus. Its video processing features include:

- YCbCr and RGB input stream format conversion.
- color space conversion.
- programmable data tagging,
- three-channel lookup table operations,
- horizontal prescaling,
- window clipping,
- horizontal and vertical scaling, and
- output stream format conversion.

The IPU2 (Input Processor Unit 2) controls prescaling and windowing.

The OPU (Output Processing Unit) controls zoom. window clipping, and output format functions.

The ALU (Arithmetic Logic Unit) performs arithmetic, logical, and tagging operations for YCbCr streams, and logical and tagging operations only for RGB and 8-bit pseudocolor streams. It controls stream format, operand source selection, tagging operation selection, and arithmetic or logical operation for both field times, and can process up to three simultaneous video streams input through its FIFOs.

The SIU (Sequencer Instruction Unit) is a specialpurpose microcontroller that coordinates the flow of multiple, simultaneous data streams between the IPU1, IPU2, OPU, ALU, and OBU.

The SIU is field-based when processing interlaced video data: that is, it distinguishes between the vertical sync pulses for each field and executes one of two different instruction sequences, causing multiple stream flows to appear concurrent.

RFU: Reference Frame Unit

The RFU provides simultaneous access to eight object buffers and four display windows. It has three subunits — the OBU, DWU, and MMU.

The OBU (Object Buffer Unit) specifies the size, location, operating mode, X and Y raster directions, FIFO association, chrominance and luminance channel masking, and output decimation for each object buffer. It allows each object buffer to be locked to either video source, or to be programmed to operate independently. Object buffers can also be placed anywhere within the linearly-addressable frame buffer.

The DWU (Display Window Unit) allows each display window to be any size or location. These display windows can overlap when the DVP is used with the CL-PX2080 MediaDAC™.

The MMU (Memory Management Unit) provides the frame buffer control interface for up to 8 megabytes of DRAM or VRAM.

TABLE OF CONTENTS

LIST OF TABLES	
CONVENTIONS, ABBREVIATIONS, AND TRADEMARKS	
1. PIN INFORMATION	
1.1 Pin Diagram	
1.2 DVP Functional Signal Groups	
1.3 Pin Assignment Table	
2. DETAILED SIGNAL DESCRIPTIONS	
2.1 Host Interface — ISA	
2.2 Host Interface — MCA	
2.3 Host Interface — Local Hardware	
2.4 Graphics Overlay Interface	
2.5 Video Interface	
2.6 Frame Buffer Interface	
2.7 Power and Ground	
JU FUNCTIONAL DESCRIPTION	
4 DETAILED REGISTER DESCRIPTIONS	
4 1 HIU: Host Interface Unit	
4.1.1 HIU_CSU: Configuration Setup	
4.1.2 HIU_DBG: Debug Control	
4.1.3 HIU_DRD: Debug Read	
4.1.5 HIU_OCS: Operation Control/Status	
4.1.6 HIU RIN: Register Index	
4.1.7 HIU_RDT: Register Data Port	
4.1.8 HIU_MDT: Memory Data Port	20
4.1.9 HIU_ISU: Interrupt Setup	23
4.2.1 VIU: Video Interface Unit	
4.2.1.1 VIU_MCRp: VIU Master Control	
4.2 VBU: Video Bus Unit):
4.2.1.2 VIU_DPCI: Datapath Control	ک
4.2.1.3 VIU_WDT: Watchdog Timer	بن
4.2.1.4 VIU_TEST: Test Register	و
4.2.2 VSU: Video Sync Unit	
	31
4.2.2.2 VSU_HAD: Horizontal Active Delay	3
4.2.2.4 VSU_HP: Horizontal Period	3
4.2.2.5 VSU_VSW: Vertical Sync Width	3
4.2.2.6 VSU_VAD: Vertical Active Delay	3
4.2.2.7 VSU_VAP: Vertical Active Pixels	
4 2 2 8 VSU VP: Vertical Period	
4.3 VPU: Video Processor Unit	
4.3.1 VPU Global Control	
4.3.1.1 VPU_MCR: VPU Master Control ATIO1	19030 4

4.3.2	IPU1: Inp	out Processor Unit 1		
	4.3.2.1	IPU1_PIX: Pixel Count		
	4.3.2.2	IPU1_LIC: Line Count		
	4.3.2.3	IPU1_FLC: Field Count		
	4.3,2.4	IPU1_LIR: Line Count Interrupt Request		
	4.3.2.5	IPU1_FIR: Field Count Interrupt Request		
	4.3.2.6	IPU1_LRB: LUT RAM Base Address		
	4.3.2.7	IPU1_LRD: LUT RAM Data		
	4.3.2.8	IPU1_MCRf: IPU1 Master Control		
	4.3.2.9	IPU1_XBnf: X Begin		
	4.3.2.10	IPU1_XEIf: X End		
	4.3.2.11	IPU1_XSnf: X Shrink		
	4.3.2.12	IPU1_YBnf: Y Begin		
	4.3.2.13	IPU1_YEIf: Y End		
	4.3.2.14	IPU1_YSnf: Y Shrink		
	4.3.2.15	IPU1_KFCf: Key Function Code		
	4.3.2.16	IPU1_MMxf: Chroma Key Max/Min		
4.3.3	IPU2: Inp	out Processing Unit 2		
	4.3.3.1	IPU2_PIX: Pixel Count		
	4.3.3.2	IPU2_LIC: Line Count		
	4.3.3.3	IPU2_FLC: Field Count		
	4.3.3.4	IPU2_LIR: Line Count Interrupt Request		
	4.3.3.5	IPU2_FIR: Field Count Interrupt Request		
	4.3.3.6	IPU2_MCRf: IPU2 Master Control		
	4.3.3.7	IPU2_XBIf: X Begin		
	4.3.3.8	IPU2_XEI1: X End		
	4.3.3.9	IPU2_YBIf: Y Begin		
	4.3.3.10	IPU2_YEIf: Y End	• • • • • • • • • • • • • • • • • • • •	58
4.3.4	SIU: Seq	uencer Instruction Unit		
	4.3.4.1	SIU_MCR: SIU Master Control		
	4.3.4.2	SIU_FCS: FIFO Control/Status		
	4.3.4.3	SIU_FOU: FIFO Overflow/Underflow		
	4.3.4.4	SIUs_SIM: Sequencer Instruction Memory		81
	4.3.4.5	SIU_FAR: FIFO Auto Reset		62
4.3.5	ALU: Arit	hmetic and Logic Unit	· · · · · · · · · · · · · · · · · · ·	62
	4.3.5.1	ALU_MCRf: ALU Master Control		62
	4.3.5.2	ALU_TOP: Tag Operation	· · · · · · · · · · · · · · · · · · ·	64
	4.3.5.3	ALU_AV: Alpha Value		
	4.3.5.4	ALU_LOPx: Logic Operation	• •• • • • • • • • • • • • • • • • • • •	65
	4.3.5.5	ALU_CAx: Constant A	4	55
	4.3.5.6	ALU_CBx: Constant B		. <i></i> .68
	4.3.5.7	ALU_CCx: Constant C	• * * • * • * • * • • • • • • • • • • •	
4.3.6		tput Processing Unit	* * * * * * * * * * * * * * * * * * * *	
	4.3.6.1	OPU_MCRf: OPU Master Control		67
	4.3.6.2	OPU_XBI1: X Begin		
	4.3.6.3	OPU_XEII: X End		
	4.3.6.4	OPU_YBIf: Y Begin		
	4.3.6.5		ATI019031	69
4.3.7	RFU: Ref	ference Frame Unit	,	70

	4	.3.8	MMU: Me	mory Management Unit	
			4.3.8.1	MMU_MCR: MMU Master Control	 73
	4	.3.9	OBU: Obj	ect Buffer Unit	
			4.3.9.1	OBUo_MCR: Object Buffer Master Control	
			4.3.9.2	OBUo_RFX: Object Buffer Reference Frame Size	
	4			6b: Object Buffer Linear Start Address	
				OBUo_BSa: Object Buffer Size	
				OBUo_DEC: Object Buffer Decimate Control	
	4			play Window Unit	
				DWU_MCR: Display Window Master Control	
			4.3.11.2	DWU_HCR: Display Window Horizontal Control	
			4.3.11.3	DWUd_DZF: Display Window Display Zoom Factor	
			4.3.11.4	DWUd_RFX: Display Window Reference Frame Size	
			4.3.11.5	DWUd_LSb: Display Window Linear Start Address	
			4.3.11.6	DWUd_WSa: Display Window Size	
			4.3.11.7	DWUd_DSa: Display Window Start	83
5.	ELECT	RICAL	SPECIFIC	CATIONS	
	5.1 A	bsolut	e Maximur	m Ratings	
	5.2 D	VP Sp	ecification	s (Digital)	
a. i	5.3 A	C Cha	racteristics	s/Timing Information	
- TE	5			iming Information	
	5			īming	
	5	.3.3	MCA Bus	Timing	
	5			dware Interface Timing	
5, Egr an	5			t Timing	
2 200 5	_			īming	
6.	PACKA	GE DII	MENSION	S — 160-Lead PQFP	
	ORDER	ING IN	FORMAT		
5	ENDIX A	.	DVP REG	ISTERS — QUICK REFERENCE	
77.47				a or car or car on the car or car or car or car or car or car or car or car or car or car or car or car or car	
				TERS	
				. F. 1.A. *********************************	

LIST OF FIGURES

Figure 1-1.	DVP Pin Diagram	
Figure 4-1.	VSU Horizontal Sync Timing	
Figure 4-2.	VSU Vertical Sync Timing	
Figure 5-1.	ISA Bus — I/O Timing	87
Figure 5-2.	MCA Bus — VO Timing	
Figure 5-3.	MCA Bus — CDSFDBK* Timing	
Figure 5-4.	MCA Bus — CDSETUP* Timing	89
Figure 5-5.	Local Hardware Interface — Write Timing	90
Figure 5-6.	Local Hardware Interface — Read Timing	91
Figure 5-7.	Video I/O Timing	93
Figure 5-8.	STALL* and STALLRQ* Timing	93
Figure 5-9.	Video and Graphics Port Timing	93
Figure 5-10.	Read Transfer Cycle Timing	94
Figure 5-11.	CAS* Before RAS* Refresh Timing	95
Figure 5-12.	Memory Read Timing	 97
Figure 5-13.	Memory Write Timing	
Figure 6-1.	DVP Package Information	98
Figure 6-2.	DVP Package Information (Expanded View)	
,	LIST OF TABLES	
Table 4-1.	HIU Register Address Map	22
Table 4-2.	HIU Registers Accessed by the Register Data Port	
Table 5-1.	ISA Bus Timing	
Table 5-2.	MCA Bus Timing	
Table 5-3.	Local Hardware Interface — Write Timing	90
Table 5-4.	Local Hardware Interface — Read Timing	91
Table 5-5.	Video Port Timing	
Table 5-6.	Read Transfer Cycle Timing	
Table 5-7.	CAS* Before RAS* Refresh Timing	
Table 5-8.	Memory Read and Write Timing	

CONVENTIONS, ABBREVIATIONS, AND TRADEMARKS

CONVENTIONS

VIU_DPCf	Register names containing lower case variables represent groups of registers with similar functions. For example, VIU_DPC1 represents both registers — VIU_DPC1 (Datapath Control, Field 1) and VIU_DPC2 (Datapath Control, Field 2). In this data book, the following register variables are used:					
	a	(axis)	•	X, Y		
	b	(byte)	-	L (Low) or H (High)		
	c	(color space)		Y, U, V or R, G, B		
	d	(display window)	-	0:3		
	f	(field)	•	1:2		
Total	n	(number)	•	F (Fraction) or I (Integer)		
	. 0	(object buffer)	•	0:7		
5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	р	(port)	•	1:2		
	s	(SIM)	•	0:31		
The state of the s	×	(channel)	•	Y, U, V		

ABBREVIATIONS, ACRONYMS, and MNEMONICS

ALU	Arithmetic and Logic Unit					
CODEC	COde/DEcode or Compress/decompress					
CPU	Central Processing Unit					
CRT	Cathode Ray Tube					
CTAG	Control TAG multiplexer signal					
DRAM	Dynamic Random Access Memory					
DWU	Display Window Unit					
FBO	Frame Buffer Data					
FIFO	First In, First Out					
ISA	Industry Standard Architecture					
1/0	Input/Output					
LSA	Linear Start Address					
JPEG	Joint Photographic Expert Group ATI 019034					

CL-PX2070 Digital Video Processor

LSB	Least Significant Byte			
LSb	Least Significant bit			
LUT	Look-Up Table			
MCA	Micro Channel Architecture			
MMU	Memory Management Unit			
MSB	Most Significant Byte			
MSb	Most Significant bit			
OPU	Output Processor Unit			
OTAG	Output TAG multiplexer signal			
IPU1	Input Processor Unit 1			
IPU2	Input Processor Unit 2			
POS	Programmable Option Select			
PQFP	Plastic Quad Flat Pack			
PSE	PreScaler Enable			
RGB	Red, Green, Blue			
RAM	Random Access Memory			
RFU	Reference Frame Unit			
SIM	Sequencer Instruction Memory			
SIU	Sequencer Instruction Unit			
VPU	Video Processor Unit			
VRAM	Video dynamic Random Access Memory			
YCbCr	Components of the CCIR601 color representation standard. Y = luminance; CbCr = chrominance Y-blue, chrominance Y-red			

TRADEMARKS

MediaDAC™ is a trademark of Pixel Semiconductor, Inc.

1. PIN INFORMATION

The CL-PX2070 DVP is available in a 160-lead Plastic Quad Flat Pack (PQFP) surface-mount package. It can be configured for ISA, MCA, and local hardware configurations, as shown in Figure 1-1 NOTE: (*) denotes active-low signals.

1.1 Pin Diagram

Figure 1-1. DVP Pin Diagram

1.2 DVP Functional Signal Groups

The following conventions are used in the pin assignment table:

- (*) = active-low signal
 - I = input
- O = output

PWR - power

- TTL = the pad has standard TTL input threshold and output levels
- OD = open drain, TTL inputs
 - 4 = 4-mA sink and 2-mA source drive capability
- 24 = 24-mA sink and 8-mA source drive capability

NAME			PIN	TYPE	CELL	FUNCTION
HOST INTERI	FACE					
ISA	MCA	LOCAL -				
Address/Date						
SAD[15:0]	AD(15:0)		48:62, 65	VO	TTL, 4	Address/Data Bus
-	_	D[15:0]	48:62, 65	VO	TTL, 4	Data Bus
Control						Data Buffer Fachle
DEN.	DEN*	_	44	00	TTL, 8	Data Buffer Enable
	-	RS1	44	i O	ш.	Register Select
opir	DDIR		43	00	TTL, 8	Data Buffer Direction
VEN		NC .	43	NA	NA	No Connect (must be left floating)
IÕÃ.		IOR*	35		TTL	VO Read
	S1*	_	35	1	ΠL	Status 1
IOM.	_	iOM.	36	1	ΠL	VO Write
	S0°	-	36	1	TTL	Status 0
AEN			32	i	TTL	Address Enable
in the second se	W10.		32	1	TTL	Memory or I/O Cycle
		cs•	32	1	TTL	Chip Select
NE	_	NC	38	NA	NA	No Connect (must be left floating)
	CDSFDBK*		38	0	TTL, 4	Card Select Feedback
	-	NC	37	NA	NA	No Connect (must be left floating)
	CDSETUP*	_	37	1	Π L	Card Setup
EO	IRQ	IRQ	45	0	TTL, 4	Interrupt Request
GHRDY	CDCHRDY	CHRDY*	40	OD	TTL, 24	
1016*	_	_	39	OD	TTL, 24	16-bit I/O Cycle
_	CDDS16*	_	39	OD	TTL, 24	Card Data Size
_	-	NC	39	NA	N/A	No Connect (must be left floating)
NC		—	41	NA	NA	No Connect (must be left floating)
-	CMD*	_	41	1	TTL	Command
_		PCLK	41	1	TTL	Processor Clock
RESET	CDRESET	RESET	42	1	TTL .	Reset
NC	_	_	33	NA	NA	No Connect (must be left floating)
_	ADL*		33	1	TTL	Address Latch
_	_	RS2	33	1	TTL	Register Select
AUXCS*			34	1	TTL	Auxiliary Chip Select
_	CARDEN	, 	34	1	Π L	Card Enable
_	-	RS3	34	1	TTL	Register Select

CL-PX2070 Digital Video Processor

NAME	PIN	TYPE	CELL	FUNCTION
GRAPHICS C	VERLAY INTERFACE			
GPCLK	69	1	TTL	Graphics Pixel Clock
GVS	67	1	ΠL	Graphics Vertical Sync
GHS	66	1	TTL	Graphics Horizontal Sync
GBL	68	i	TTL	Graphics Blanking
ZC[3:0]	80:77	0	TTL, 4	Zoom Control Bus
VIDEO INTER	RFACE			
Data .				
V1D[15:0]	137:138, 141:153, 156	VO	TTL, 4	V1 (Video Port 1) Data Bus
V2D[15:0]	3:12, 14:16, 19:20, 22	1/0	TTL, 4	V2 (Video Port 2) Data Bus
Control	• • • • • • • • • • • • • • • • • • • •		· · · · · ·	,
V1VS	1	1/0	TTL, 4	V1 Vertical Sync
V2VS	27	1/0	TTL, 4	V2 Vertical Sync
V1HS	160	1/0	TTL, 4	V1 Horizontal Sync
V2HS	26	1/0	TTL, 4	V2 Horizontal Sync
		1/0	TTL, 4	V1 Horizontal/Composite Blanking
V1BL	159	1/0	TTL, 4	V2 Horizontal/Composite Blanking
V28L	25	1/0	· ·	V1 Data Clock
V1CLK	2	i	ΠL	
V2CLK	29	1	$\frac{\Pi}{\Gamma}$	V2 Data Clock
V1PH	158	1	<u>TTL</u>	V1 Phase
V2PH	24	I_	TTL	V2 Phase
V1IEN*	157	0	TTL, 4	V1 Input Enable
V2IEN*	2 3	0	TTL, 4	V2 Input Enable
STALLRQ*	31	1 .	ΠL	Stall Request
STALL*	30	0	TTL, 4	Stall
FRAME BUF	FER INTERFACE			-
Address/Data				
FBD(31:0)	99, 101:102, 105:107, 109:125, 128:136	1/0	TTL, 4	Frame Buffer Data Bus
FBA[9:0]	98:94, 92:88	0	TTL, 8	Frame Buffer Address Bus
Control		•		Row Address Strobes
RAS[1:0]*	87:86	0	TTL, 8	
CAS[1:0]*	85:84	0	TTL, 8	Column Address Strobes
WE'	83	0	TTL, 12	Write Enable
DTE.	82 ·	0	TTL, 12	Data Transfer Enable
FRDY	81	1	ΠL	FIFO Ready
SBCLK	76	0	TTL, 8	Serial Bus Clock
SOE[1:0]*	73:72	0	TTL, 8	Serial Port Output Enable
MCLK	71	1	Π L	Memory Clock
FCLK	70	0	TTL, 8	FIFO Write Clock
POWER AND	GROUND			
VDD	18, 21, 46, 64, 75, 100,	owo .	ΝA	+5 VDC for Digital Logic and Interface Buffers
4 U U		C 111 [IAU	10 100 for bigital begin and missions and
VSS	103, 126, 140, 155 13, 17, 28, 47, 63, 74,	P WR	N/A	Ground for Digital Logic and Interface Buffers
	93, 104, 108, 127, 139,			
	154			ATI019039 ====

2. DETAILED SIGNAL DESCRIPTIONS

2.1 Host Interface - ISA

Signal	Pin	Type	Cell	Function	
SAD[15:0]	48:62. 65	1/0	that transfe	Address/Data Bus. Bidirectional, multiplexed address/data bus that transfers video data and operation status and commands between the host system and the DVP.	
DEN*	44	OD	TTL, 8	Data Buffer Enable. 0 Enables the host data bus buffer.	
DDIR	43	OD	TTL, 8	Data Buffer Direction. Specifies the direction of data flow on SAD(15:0]. O The host system is reading data from SAD(15:0]; The host system is writing data to SAD(15:0].	
IOR*	35	1	TTL	I/O Read. 0 Specifies an I/O read cycle.	
low.	36	١	TTL	VO Write. 0 Specifies an VO write cycle.	
AEN	32	ı	ΠL	Address Enable. 0 I/O cycle in progress. 1 DMA cycle in progress.	
NC	38	N/A	N/A	No Connect. (must be left floating).	
NC	37	N/A	NA	No Connect. (must be left floating).	
RQ	45	0	TTL, 4	Interrupt Request. 1 The DVP is requesting service from the host system.	
CHRDY	40	00	TTL, 24	Channel Ready. The DVP is not ready to complete the current host access cycle. The current host access cycle is complete.	
IO16*	39	OD	TTL, 24	16-bit I/O Cycle. O The DVP is able to respond as a 16-bit I/O data device for both read and write cycles.	
NC .	41	N/A	NA	No Connect. (must be left floating).	
RESET	42	1	TTL	Reset. 1 Stops all DVP activity and resets the hardware.	
NC	33	N/A	NA	No Connect. (must be left floating).	
AUXCS*	34		TTL	Auxiliary Chip Select. When programmed for aux ISA mode, primary and secondary addresses are ignored; AUXCS* and SAD[3:1] select specific registers.	

2.2 Host Interface - MCA

Signal	Pin	Type	Cell	Function	
AD[15:0]	48:62, 65	1/0	TTL, 4	Address/Data Bus. Bidirectional, multiplexed address/data bus that transfers video data and operation status and commands between the host system and the DVP.	
DEN.	44	OD	TTL, 8	Data Buffer Enable. 0 Enables the host data bus buffer.	
DDIR	43	00	TTL, 8	Data Buffer Direction. Specifies the direction of data flow on SAD[15:0]. O The host system is reading data from SAD[15:0]; The host system is writing data to SAD[15:0].	
S1°	35	1	ПL	Status 1. Specifies current bus cycle (used with M/IO* and S0*).	
SO*	36	1	ΠL	Status 0. Specifies current bus cycle (used with M/IO* and S1*).	
CDSFDBK*	32	0	TTL, 4	Memory or I/O Cycle. Specifies current bus cycle current bus cycle (used with S0* and S1*): M/IO* S0* S1* 0 0 0 Reserved 0 1 VO Write 0 1 0 VO Read 0 1 1 Inactive 1 0 0 Reserved 1 0 1 Memory Write 1 1 0 Memory Read 1 1 1 Inactive Card Select Feedback. 0 Specifies that the DVP has decoded the current address and status inputs. The DVP does not drive CDSFDBK* low during the configuration period (CDSETUP* = 0).	
CDSETUP*	37	ı	π	Card Setup. O Specifies that the host system is accessing the configuration registers of the MCA adapter. To obtain adapter ID and configuration data (containing POS [Programmable Option Select] 100, 101, and 102), perform an VO read cycle to the DVP.	
IRQ	45	0	TTL, 4	Interrupt Request. O The DVP is requesting service from the host system.	
CDCHRDY	40	OD	TTL, 24	Channel Ready. The DVP is ready to complete the current host access cycle.	
CDDS16*	39	OD	TTL, 24	Card Data Size. O The DVP is able to respond as a 16-bit I/O data device for both read and write cycles.	

July 1993

ATI019041

PRELIMINARY DATA BOOK

2.2 Host Interface — MCA (cont.)

Signal	Pin	Type	Cell	Function
CMD*	41		TTL	Command. O Valid data is on AD[15:0] (write cycle); or DVP should place valid data on AD[15:0] (read cycle).
CDRESET	42	1	TTL.	Reset. 1 Stops all DVP activity and resets the hardware.
ADL*	33	1	π	Address Latch. O Demultiplexes the address from bus AD[15:0], and status from signals M/IO*, S1*, and S0*. The address and status must be valid during the low-to-high transition.
CARDEN	34	1	TTL	Card Enable. Specifies that the data on bus AD[15:8] is valid.

2 Host Interface — Local Hardware

gnal	Pin	Туре	Cell	Function	
1 5:0]	48:62, 65	1/0	TTL, 4	Data Bus. Bidirectional data bus that transfers video data between the host system and the DVP.	
-	34:33. 44	ı	TTL	Register Select. Specify the register address during a host access.	
	43	N/A	NA	No Connect. (must be left floating).	
6(3:1) 6	35	1	π	I/O Read. 0 Specifies an I/O read cycle.	
ow.	36	1	TTL	UO Write. O Specifies an VO write cycle.	
:s•	32	ı	π	Chip Select. O The host system is accessing the DVP.	
1C	38	NA	NA	No Connect. (must be left floating).	
1C	37	N/A	NA	No Connect. (must be left floating).	
RQ	45	0	TTL, 4	Interrupt Request. O The DVP is requesting service from the host system.	
CHRDY*	40	00	TTL, 24	Channel Ready. The DVP is ready to complete the current host access cycle.	
NC	39	N/A	N/A	No Connect. (must be left floating).	

2.3 Host Interface — Local Hardware (cont.)

Signal	Pin	Туре	Cell	Function
PCLK	41	ı	TTL	Processor Clock. Input clock that synchronizes the flow of data on bus D[15:0] during DMA data transfers.
RESET	42	ı	ΠL	Reset. 1 Stops all DVP activity and resets the hardware.

2.4 Graphics Overlay Interface

Signal Pin Type Cell Function		Function		
GPCLK	6 9	1	πι	Graphics Pixel Clock. Clocks display output pixel data from the graphics controller.
GVS	67	1	πι	Graphics Vertical Sync. Identifies the start of the vertical sync interval. A vertical sync pulse is generated once every field time for interlaced data, and once every frame time for non-interlaced data. Register DWU_MCR, bit GVSP specifies GVS as active high or active low.
GHS	66	1	TTL	Graphics Horizontal Sync. Identifies the start of the horizontal sync interval. A horizontal sync pulse is generated once for each input line. Register DWU_MCR, bit GHSP specifies GHS as active high or active low.
GBL	68	ı	П	Graphics Blanking. Identifies the blanking interval. Register DWU_MCR, bit GBP specifies GBL as active high or active low.
ZC[3:0]	80:77	0	TTL, 4	Zoom Control Bus (used only with CL-PX2080 MediaDAC™). Specifies to the MediaDAC™ the zoom factor to be used on the current data.

2.5 Video Interface

Signal	Pin	Type	Cell	Function	
V1D[15:0]	156, 153:141, 138:137	I/O	TTL 4	V1 (Video Port 1) Data Bus.	VnD[15:0]. Bidirectional data bus that transfers video data between the DVP and an external device through video
V2D[15:0]	3:12, 14:16, 19:20, 22	VO	TTL, 4	V2 (Video Port 2) Data Bus.	port Vn.
V1VS	1	VO	TTL, 4	V1 Vertical Sync.	VnVS. Identifies the start of the vertical
V2VS	27	VO	TTL, 4	V2 Vertical Sync.	sync interval. A vertical sync pulse is generated once every field time for intellaced data, and once every frame time for non-interlaced data. Register VIU_MCRp (bits OVSP/IVSP) specifies VnVS as active high or active low.
VIHS	160	1/0	TTL, 4	V1 Horizontal Sync.	VnHS. Identifies the start of the horizon-
v z us	26	VO	TTL, 4	V2 Horizontal Sync.	tal sync interval; register VIU_MCRp (bits OHSP/IHSP) specifies VnHS as active high or active low.
VIBL	159	VO	TTL, 4	V1 Horizontal/Com- posite Blanking.	VnBL. Identifies the blanking interval; register VIU_MCRp (bits OBP/IBP) specifies VnBL as active high or active low.
V28L	25	VO	TTL, 4	V2 Horizontal/Composite Blanking.	
VICLK	2	1	TTL	V1 Data Clock.	VnCLK. Clocks bidirectional video data
V2CLK	29	1	TTL	V2 Data Clock.	on bus VnD(15:0).
VIEH	158	1	TTL, 4	V1 Phase.	VnPH. Controls data qualification and
V2PH	24	ı	ТЪ	V2 Phase.	duplexing of video data on VnD(15:0).
V1IEN*	157	0	TTL, 4	V1 Input Enable.	VnIEN*. Specifies that the DVP is not
V2IEN*	23	0	TTL, 4	V2 Input Enable.	driving bus VnD[15:0]. VnIEN° can be used as a tristate control by an external buffer connected to bus VnD[15:0].
STALLRQ*	31	1.	πι	Stall Request. O Requests that V2D(15:0) be s	the current transfer of video data on bus suspended.
STALL'	30	0	TTL,4	Stall. 0 The DVP has s	suspended transferring data on V2D(15:0).

2.6 Frame Buffer Interface

Signal	Pin	Туре	Cell	Function	
FBD(31:0)	136:128, 125:109, 107:105, 102:101, 99	1/0	TTL, 4	Frame Buffer Data Bus. Bidirectional data bus that transfers data between the DVP and the frame buffer.	
FBA[9:0]	98:94, 92:88	0	TTL, 8	Frame Buffer Address Bus. Multiplexed output bus that specifies an address to the frame buffer. The row address is valid during the HIGH-to-LOW transition of signals RAS[1:0]*; the column address is valid during the high-to-low transition of CAS[1:0]*.	
RAS[1:0]*	87:86	0	TTL, 8	Row Address Strobes. Instruct the frame buffer to latch the row address from bus FBA[9:0] during the HIGH-to-LOW transition.	
CAS[1:0]*	85:84	0	TTL, 8	Column Address Strobes. Instruct the frame buffer to latch the column address from bus FBA[9:0] during the HIGH-to-LOW transtion.	
WE*	83	0	TTL, 12	Write Enable. Specifies a write cycle to the frame buffer.	
DTE.	82	0	TTL, 12	Data Transfer Enable. Specifies a transfer cycle to the frame buffer (VRAMs only).	
FRDY	81	1	π	FIFO Ready. (used only with CL-PX2080 MediaDAC™) Specifies that the input FIFO of the MediaDAC™ is ready to receive serial data from the frame buffer.	
SBCLK	76	0	TTL, 8	Serial Bus Clock. Clocks serial data from the frame buffer (VRAMs only).	
SOE[1:0]*	73:72	0	TTL, 8	Serial Port Output Enable. O Enable the frame-buffer serial data port output.	
MCLK	71	1	ΠL	Memory Clock. Synchronizes all frame buffer control signals.	
FCLK	70	0	TTL, 8	FIFO Write Clock. (used only with CL-PX2080 MediaDAC™) Clocks serial data into the MediaDAC™.	

2.7 Power and Ground

Signal	Pin	Type	Function
VDD	18, 21, 46, 64, 75, 100, 103, 126, 140, 155	PWR	+5 VDC for Digital Logic and Interface Buffers. Each VDD pin must be connected directly to the VDD plane.
VSS	13, 17, 28, 47, 63, 74, 93, 104, 108, 127, 139, 154	PWR	Ground for Digital Logic and Interface Buffers. Each VSS pin must be connected directly to the ground plane.

FUNCTIONAL DESCRIPTION

AND DESCRIPTION OF THE PERSON

4. DETAILED REGISTER DESCRIPTIONS

This section lists and defines the CL-PX2070 DVP registers.

NOTE:

In order to maintain compatibility with future Pixel Semiconductor products, all reserved registers bits must be written as '0'. Data values in reserved register locations are not guaranteed on readback.

Register names containing lower-case variables represent groups of registers with similar functions. Refer to the *Conventions* table on page 8 for a list of DVP register variables.

4.1 HIU: Host Interface Unit

Table 4-1. HIU Register Address Map

Register	Pri. Map	Sec. Map	Definition	Used by f	Registers	Ref. Section
HIU_0	27C0	0290	Register VO Address 0	HIU_CSU HIU_DBG HIU_DRD	Configuration Setup Debug Control Debug Read	4.1.1, p. 23 4.1.2, p. 24 4.1.3, p. 24
HU	27C2	0292	Register VO Address 1	HIU_OCS HIU_IRQ	Operation Control/Status Interrupt Request	4.1.5, p. 26 4.1.4, p. 25
HIE 2	27C4	0294	Register VO Address 2	HIU_RIN	Register Index	4.1.6, p. 27
HIUES	27C6	0296	Register VO Address 3	HIU_RDT	Register Data Port	4.1.7, p. 28
HU_4	27C8	0298	Register VO Address 4	HIU_MOT	Memory Data Port	4.1.8, p. 28

Table 4-2. HIU Registers Accessed by the Register Data Port

Register	Index	Definition	Ref. Section
HIU 15U	0001	Interrupt Setup	4.1.9, p. 29

CL-PX2070

Digital Video Processor

4.1.1 HIU_CSU: Configuration Setup

I/O Address

15

14

13

27C0 (Primary Map) 0290 (Secondary Map)

12

11

10

HIU_CSU is a read-only register that stores hardware configuration data for the DVP. An external configuration register must provide configuration data to bits 5:0 during the reset interval. HIU_CSU is shadowed by registers HIU_DBG and HIU_DRD.

7

	RSVD			VER		RSVD	HSB	RSVD	FBT	PAS
Bit #	Access	Reset	Descrip	tion		,			,	
15:12	R	0000	RSVD	Reserv	ed (rea	d as '0").		•		
11:8	R	0000	VER	DVP D 0000 0001	CL-PX	ersion (2070 revision (2070, revision				
7:6	R	00	RSVD	Reserv	ed (rea	d as '00')				-
5:3	R	111	HSB	Host S; DVP. 000 001 010 011 100 101 111 XXX	ISA bu MCA I Reser Local Aux IS Aux M Local	us bus ved hardware inte SA ICA - hardware inte		system conn	ected t	o the
2	R	1	RSVD	Reserv	red (rea	d as 1)				
1	R	1	FBT	Frame Does n 0	Buffer of affect of DRAM	ct internal DV 4	. (Used only for so P operation.)	oftware conf	iguratio	on.
0	A	0	PAS	Port Adtem sh	ould us Prima	Select. Speci e when acce ry port map ndary port ma	fies the I/O addressing the DVP.	ss map that	the hos	st sys-

4.1.2 HIU_DBG: Debug Control

I/O Address

27C0 (Primary Map)

0290 (Secondary Map)

HIU_DBG is a write-only register that controls the diagnostic mode of the DVP. Register HIU_OCS, field MDE enables access to this register when set to '1.' HIU_DBG is shadowed by register HIU_DRD.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
RSVD											RSVD				

Bit #	Access	Reset	Description									
15:10	w	Oh	RSVD	Reserved (read as '0').								
9	W	0	DRE	Debug Read Enable. Enables access to shadow register HIU_DRD. O Disable debug read 1 Enable debug read								
870	W	00h	RSVD	Reserved (read as '0').								

4.3.3 HIU_DRD: Debug Read

Address

27C0 (Primary Map)

0290 (Secondary Map)

See also:

HIU_DBG: Debug Control, p. 24

SIU_MCR: SIU Master Control, p. 58

HIU_OCS: Operation Control/Status, p. 26

SIUs_SIM: Sequencer Instruction Memory, p. 61

DRD is a read-only register that provides diagnostic information, including the global Error Detection Trap, the current object buffer counters, and the SIU current index. HIU_DRD is a shadow register to HIU_CSU. Read access to this register is enabled when HIU_OCS, field MDE and HIU_DBG, field DRE are set to '1.'

Lina	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	EDT			XC					YC			,		SIMIN		

Bit #	Access	Reset	set Description										
15	R	0	EDT	Error Detection Trap. This field is the logical OR of all FIFO overflow and underflow flags, and the watchdog timeout. O No error Error detected									
14:10	R	0h	XC ·	X Counter. Upper 5 bits of X Counter (Single-Step Mode). (0-1Fh)									
9:5	R	0h	YC	Y Counter. Upper 5 bits of Y Counter (Single-Step Mode). (0-1Fh)									
4:0	R	0h	SIMIN	Sequence Instruction Memory Current Index (0-1Fh)									

OBT IP2C IP1C FUN FOV WDT

4.1.4 HIU_IRQ: Interrupt Request

I/O Address

27C2 (Primary Map)

12

0292 (Secondary Map)

See also:

15

14

13

HIU_OCS: Operation Control/Status, p. 26

10

RSVD

HIU_ISU: Interrupt Setup, p. 29

HIU_IRQ is a read-only register that accesses all interrupt requests generated by the IPU1, IPU2, OBU, the watchdog timer, and the FIFO overflow and underflow flags. An interrupt service routine typically uses HIU_IRQ to determine the interrupt request source(s). HIU_IRQ shadows register HIU_OCS, field SRC must be set to '1' to enable this register.

L															
Bit #	Access	Reset	Descrip	Description											
15:6	R	Oh	RSVD	Reserved (read as '0').											
5	R	0	OBT	Object Buffer Termination (auto reset on read). No interrupt request Specifies that an object buffer termination condition occurred in the OBU.											
4	R	0	IP2C	1PU2 Counter (auto reset on read). No interrupt request Specifies that a line, field, or vertical sync pulse interrupt request occurred in the IPU2.											
3	R	0	IP1C	IPU1 Counter (auto reset on read). No interrupt request Specifies that a line, field, or vertical sync pulse interrupt request occurred in the IPU1.											
2	R	0	FUN	FIFO Underflow (auto reset on read). No interrupt request Specifies that an underflow condition occurred in a FIFO. (See SIU_FOU: FIFO Overflow/Underflow, p. 60.)											
1	R	0	FOV	FIFO Overflow (auto reset on read). No interrupt request Specifies that an overflow condition occurred in a FIFO. (See SIU_FOU: FIFO Overflow/Underflow, p. 60.)											
0	R .	0	WDT ~	Watchdog Timer to generate signal IRQ (auto reset on read). No interrupt request Specifies that a timeout condition occurred in VIU_WDT.											

4.1.5 HIU_OCS: Operation Control/Status

I/O Address

27C2h (Primary Map) 0292 (Secondary Map)

12

11

Register HIU_OCS controls the operating mode of the DVP and provides status indicators. HIU_OCS is shadowed during read cycles by register HIU_IRQ.

NOTE:

15

14

13

Modifications to registers designated as posted do not affect the operation of the DVP until a post command is issued either manually using bit PMC, or automatically by the SIU. Automatic posting typically occurs between field or frame times.

RSVD	FONE FF	NF RSVD	SRC	MDE DF	C MPC	PMC	RSVD	SA	IEM					
Bit #	Acces	s Reset	Desci	ription										
15	R	0	RSVD	Reser	ved (read	as '0').								
	R	0	FDNE	FIFO 1	D Nearly I		16 pixels of	being e	mpty					
3	R	0	FFNF	FIFO 1	F Nearly I FIFO F		16 pixels of	being fu	II					
2	A	0	RSVD	Reser	ved (read	as '0').								
ñ	R/W	0	SRC	Status 0 1	Status Read Select. Specifies register to access during a read cycle. O Read status from register HIU_OCS 1 Read status from shadow register HIU_IRQ									
	F/W	0	MDE	Maste 0 1		debug s			_DBG and HIU_DRD and HIU_DRD					
	P/W	0	DPC		r posting Disable	mode of posting	Operation C the DWU. (auto reset o		auto reset). Enables the					
3	R/W	0	MPC	Maste logic. 0	Disable	posting	(auto reset). (auto reset o		all DVP register posting					
7	R/W	σ	PMC	Postin 0	sync)	s norma			peration (waits for vertical DPC, MPC must = '1')					

Reserved (read as '0').

ATI019052

6:5

0

R/W

RSVD

Bit #	Access	Reset	Descri	Description									
4	R/W	0	SR	Soft Reset. Causes a soft reset to be performed on all internal units. All registers are reset to 0, all FIFOs are cleared, and all counters are set to 0. Output signals are not placed in three-state. No reset performed Perform soft reset									
3:0	R/W	0000	IEM	Interrupt Enable Mask. Enables interrupt requests. When more than one interrupt source is enabled, the requests are ORed — any source can assert signal IRQ. See Section 4.1.9 on page 29 for additional information on the interrupt system. O001 Enable counter to generate signal IRQ O100 Enable watchdog to generate signal IRQ O100 Enable object buffer termination to generate signal IRQ Enable FIFO overflow/underflow to generate signal IRQ									

4.1.6 HIU_RIN: Register Index

I/O Address

27C4 (Primary Map) 0294 (Secondary Map)

Register HIU_RIN specifies the index value of the next register to be accessed. An optional control (bit AIC) automatically increments the index address on consecutive read or write cycles.

15	14 13	12	11	10 9	8	/	6	5	4	3	2	1	0
AIC						RIN							
Bit #	Access	Reset	Descr	ription	·								
15	R/W	0h	AIC	Auto 0 1	matic Inc Disab Enabl	le	Control	(index	addres	s).			
14:0	R/W	0h	RIN	Regi	ster Index	c. (0-7Ff	Fh)						

4.1.7 HIU_RDT: Register Data Port

I/O Address

27C6 (Primary Map)

0296 (Secondary Map)

HIU_RDT is the register data port. Registers are index-mapped to HIU_RDT by HIU_RIN.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	11	0
				-			DI	0	\						

Bit #	Access	Reset	Descri	ption
15:0	R/W	Oh	DIO	Register Data I/O

4.1.8 HIU_MDT: Memory Data Port

Ve Address

27C8 (Primary Map)

0298 (Secondary Map)

port HIU_MDT accesses the frame buffer. To maintain data integrity when reading or writing to this port, first check the status of the appropriate FIFO.

1 5	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
(in the second							M	10							

##	Access	Reset	Descri	ption	
5 :0	R/W	Oh	МЮ	Memory Data I/O	,

4.1.9 HIU_ISU: Interrupt Setup

1/O Address

HIU_RDT

index

0001

13

Register HIU_ISU specifies the interrupt modes for the IPU1, IPU2, and the OBU. Any interrupt requests generated in the IPU1, IPU2, and OBU must also be enabled through register HIU_OCS, field IEM.

IPU interrupts are combined with an AND function. If more than one interrupt source is enabled within an IPnS field, all sources must be active before an interrupt request is posted.

The interrupt sources in the OBIS field use an OR function. If more than one interrupt source is selected, any one active source can trigger an interrupt.

RSV	0	IP2S		IP1S	OBIS								
Bit #	Access	Reset	Des	cription									
15:14	R/W	00	RSV	D Reserved (rea	Reserved (read as '0').								
13:11	R/W	000	IP2S	input vertical s request. 001 Interru 010 Interru	001 Interrupt on line count 010 Interrupt on field count								
10:8	R/W	000	IP1S	input vertical s request. 001 Interru 010 Interru	Select. Specifies the IPU1 line count, field count, and ync pulse combination required to generate an interrupt of line count pt on field count pt on vertical sync								
7:0	R/W	Oh	OBI	buffer terminal rupt request si 01h Object 02h Object 04h Object 08h Object 10h Object 20h Object	Fermination Interrupt Request. Specifies the OBU object ion conditions combination required to generate intergnal IRQ. It buffer 0 termination It buffer 1 termination It buffer 2 termination It buffer 3 termination It buffer 4 termination It buffer 5 termination It buffer 6 termination It buffer 6 termination It buffer 7 termination								

4.2 VBU: Video Bus Unit

Register Index		Definition	Posted?	Ref. Section
VIU: Video Inte	erface Unit			4.2.1, p. 30
VIU_MCR1	1000	VIU Master Control V1	-	4.2.1.1, p. 30
VIU_MCR2	1001	VIU Master Control V2	-	4.2.1.1, p. 30
VIU_DPC1	1002	Datapath Control, Field 1	POSTED	4.2.1.2, p. 32
VIU_DPC2	1003	Datapath Control, Field 2	POSTED	4.2.1.2, p. 32
/IU_WDT	1004	Watchdog Timer	POSTED	4.2.1.3, p. 33
/IU_TEST	1006	Test Register		4.2.1.4, p. 34
VSU: Video Sy		Horizontal Succ Width	POSTED	4.2.2, p. 35
/SU_HSW	1100	Horizontal Sync Width	POSTED	4.2.2.1, p. 35
/SU_HAD	1101	Horizontal Active Delay	POSTED	4.2.2.2, p. 36
/SU_HAP	1102	Horizontal Active Pixels	POSTED	4.2.2.3, p. 36
/SU_HP	1103	Horizontal Period	POSTED	4.2.2.4, p. 36
/SU_VSW	1104	Vertical Sync Width	POSTED	4.2.2.5, p. 37
/SU_VAD	1105	Vertical Active Delay	POSTED	4.2.2.6, p. 37
/SU_VAP /SU_VP	1106	Vertical Active Pixels	POSTED	4.2.2.7, p. 38

4.2.1 VIU: Video Interface Unit

4.2.1.1 VIU_MCRp: VIU Master Control

I/O Address

HIU_RDT

index

1000 (VIU_MCR1: VIU Master Control V1)

1001 (VIU_MCR2: VIU Master Control V2)

Registers VIU_MCR1 and VIU_MCR2 specify the functional and I/O characteristics of Video Port Interfaces 1 and 2.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1 0	
STM	OFP	os	S	OVSP	OHSP	082	OBT	IFP	ISS	IVSP	IHSP	189	18T	IOM	

Bit #	Access	Res	Descrip	tion
15	R/W	0	STM	Stall Mode (VIU_MCR2 only). 0 Disabled 1 Enabled
14	R/W	0	OFP	Output Video Field Polanty. O Normal polarity Inverted polanty
13:12	R/W		OSS	Output Video Sync Source. OU VnVS, VnHS, and VnBL input to DVP O1 VnVS, VnHS input to DVP; VnBL output from OPU 10 VnVS, VnHS, and VnBL output from VSU 11 VnVS, VnHS output from VSU, VnBL output from OPU
11	R/W	0	OVSP	Output Video Vertical Sync Polarity. Specifies VnVS polarity when output. O Active low 1 Active high
10	R/W	0 .	OHSP	Output Video Honzontal Sync Polanty. Specifies VnHS polanty when output. O Active low 1 Active high
9	R/W	0	OBP	Output Video Blank Polanty. Specifies VnBL polarity when output: O Active low 1 Active high
8	R/W	0	OBT	Output Video Blank Type. Specifies VnBL type when output. O Horizontal blank Composite blank
7	R/W	0	IFP	Input Video Field Polanty. O Active low 1 Active high
6	R/ W	0	ISS	Input Video Sync Source. O VnVS, VnHS, and VnBL input to DVP 1 VnVS, VnHS, and VnBL output from DVP
5	R/W	0	IVSP	Input Video Vertical Sync Polarity. Specifies VnVS polarity when input. O Active low 1 Active high
4	R/W	0	IHSP	Input Video Horizontal Sync Polarity. Specifies VnHS polarity when input. O Active low Active high
3	R/W	0	18P	input Video Blank Polarity. Specifies VnBL polarity when input. O Active low Active high
2	R/W	0	181	Input Video Blank Type. Specifies VnBL type when input. 1 Composite blank
1.0	R/W	0 0	10 M	V1/V2 Input/Output Mode. 00 Input only 01 Output only 10 Duplex, output on VnPH high 11 Duplex, output on VnPH low

4.2.1.2 VIU_DPCf: Datapath Control

12

POSTED

I/O Address

HIU_ROT

13

Index

15

14

1002 (VIU_DPC1: Datapath Control, Field 1)

1003 (VIU_DPC2: Datapath Control, Field 2)

10

Registers VIU_DPC1 and VIU_DPC2 specify the flow of stream data and the source of control sync references for the IPU1, the IPU2, and the OPU for fields 1 and 2.

													
	RSVD		VSUO	C	IPU1DC	IPU2DC	ODC						
Bit#	Access	Reset	Descrip	tion									
15:12	R/W	0000	RSVD	Reserved (read as '0').									
11:9	R/W	000	VSUDC	JDC VSU Datapath Control 000 V1 sources clock 001 V1 sources clock, V1PH qualified 010 V2 sources clock 011 V2 sources clock, V2PH qualified 100 MCLK+3 (sequencer clock) timebase 101 MCLK+6 timebase XXX All other configurations reserved									
8:6	R/W	000	IPU1DC		U1 Datapath Control. Specifies the source of control sync red input stream data for the IPU1. V1 sources sync and data V1 sources sync and data, V1PH qualified V2 sources sync and data V2 sources sync and data OPU sources data, MCLK+3 HS timebase, VSU sources OPU sources data, MCLK+6 HS timebase, VSU sources								
5:3	R/W	000	IPU2DC		out stream data for the V1 sources sync and V1 sources sync and V2 sources sync and OPU sources data.	d data d data, V1PH qualifie	d d a, VSU sources sync a, VSU sources sync						

Bit #	Access	Reset	Descri	ption
2.0	R/W	,	ODC	OPU Datapath Control. Specifies the source of control sync references and the destination of output stream data from the OPU. OO V1 sources sync O1 V1 sources sync, V1PH qualified O10 V2 sources sync O11 V2 sources sync, V2PH qualified VSU sources sync, MCLK+3 timebase O10 VSU sources sync, MCLK+6 timebase O10 VSU sources sync, MCLK+6 timebase O10 VSU sources sync, MCLK+6 timebase O10 Reserved

4.2.1.3 VIU_WDT: Watchdog Timer

POSTED

I/O Address

HIU_RDT 1004

Index

Register VIU_WDT controls watchdog timer operation, and specifies the field toggle mode of the SIU.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
RSVD	ммѕ		MFTS		WTE					TM	TUC				

Bit #	Access	Reset	Descrip	tion
15	R/W	0	RSVD	Reserved (read as '0').
14	R/W	0	MMS	Manual Mode Start. Writing 0, then 1 while MFTS is programmed to 6h initiates a field toggle in manual mode.
13:11	R/W	000	MFTS	Master Field Toggle Select. Specifies the field toggle mode for the SIU. The field toggles on the leading edge of vertical sync. 000 Field timing from V1VS input 001 Field timing from V2VS output 010 Field timing from V2VS input 100 Field timing from watchdog timer 101 Field timing from VSU vertical sync 110 Field timing from manual mode start 111 Reserved
10	R/W	0	WTE	Watchdog Timer Enable. O Disable watchdog timer Enable watchdog timer
9:0	R/W	Oh	TMOUT	Timeout. Specifies the watchdog timer interval. The timebase interval is MCLK prescaled by a factor of 49.152 (3 * 214). (0-3FFh)

VIU_TEST: Test Register 4.2.1.4

I/O Address

HIU_RDT 1006

Index

VIU_TEST is a read-only test register for diagnostic use and software debugging. It allows user to monitor conditions between IPU1, IPU2, OPU, and VIU.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
MF	MFID		RSVD		OBIN	ovs	OHS	OBL	OFID	12VS	128L	12FID	IIVS	IIBL	ITFID
Bit #	Ace	cess	Reset	Des	Description										
15	R		0	MF	1	Master 0 1	SIU_N	pecifie ICR, fie ICR, fie	ld SI1	SIU lo	op is b	eing ex	ecuted.	,	
14	R		0	MF	!	gie Seid	ect cond 1 and I	dition. I PU1 ar	nverted e selec	from s	elected	IU_WD I source inverted	field II	D. For e	exam-
13:11	R		000	RS	√D	Reserved.									
10	А		0	ОВ								alues pi and OF			o reg-
9	R		0	OV:	S (OPU V	ertical S	ync.	-						
8-	R		0	OH	s (OPU H	onizonta	J Sync	•						
2	R		0	ОВІ		OPU BI	ank.								
6.	R		0	OF		OPU FI				on OF	PU field	polarity	(speci	fied by	
SE.	R		0	127	S I	PU2 V	entical S	ync.							
4	R		0	1281	_	PU2 B	lank.								
3	R	,	0	I2FI		IPU2 Field ID. Value depends on IPU2 field polarity (specified by IPU2_MCRf, bit FPS).									
2	R		0	I1V	S I	PU1 V	ertical S	ync.							
1	R		0	1181		PU1 BI	ank.								
0	Ŗ		0	ITFI		PU1 Fi				on IP	J1 field	polarit	y (spec	ified by	

4.2.2 VSU: Video Sync Unit

The following sections describe the VSU registers, shown in Figure 4-1 and Figure 4-2.

Figure 4-1. VSU Horizontal Sync Timing

Figure 4-2. VSU Vertical Sync Timing

4.2.2.1 VSU_HSW: Horizontal Sync Width

POSTED

I/O Address

Index

HIU_RDT

Register VSU_HSW specifies the width of the horizontal sync pulse generated by the internal sync generator. The timebase is specified by registers VIU_DPCf, bits IPU1DC and IPU2DC.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				RSVD								HSW			

Bit#	Access	Reset	Descrip	tion
15:7	R/W	Oh	RSVD	Reserved (read as '0').
6:0	R/W	Oh	HSW	Horizontal Sync Width. (0-7Fh) (20h - 7Fh in loopback mode)

ATIC12061

4.2.2.2 VSU_HAD: Horizontal Active Delay

POSTED

I/O Address

HIU_RDT

Index

1101

Register VSU_HAD specifies the delay from the start of the horizontal sync pulse generated by the internal sync generator to the beginning of the horizontal active interval. The timebase is specified by VIU_DPCf, bits IPU1DC and IPU2DC. VSU_HAD must equal VSU_HSW+3 when OPU_MCRf, bit LSM = 1.

٠	15	14	13	12	11	10	9	8	 6	5	4	3	2	. 1	0
			RS	VD						H	VD			,	

Bit#	Access	Reset	Descrip	otion
15:10	R/W	Oh	RSVD	Reserved (read as '0').
9:0	R/W	0h	HAD	Horizontal Active Delay. (0-3FFh)

4.2.2.3 VSU_HAP: Horizontal Active Pixels

POSTED

I/O Address

HIU_ROT

index

1102

Register VSU_HAP specifies the width of the horizontal active interval generated by the internal sync generator. The timebase is input memory clock signal MCLK prescaled by a factor of 3 or 6, as specified by VIU_DPCf, bits IPU1DC and IPU2DC.

											•						
M	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
			RSVD								HAP						

Bit #	Access	Reset	Descrip	otion
15:11	R/W	Oh	RSVD	Reserved (read as '0').
10:0	R/W	0h	HAP	Horizontal Active Pixels (0-3FFh)

4.2.2.4 VSU_HP: Horizontal Period

POSTED

I/O Address

HIU_ROT

Index

1103

Register VSU_HP specifies the width of the horizontal sync period generated by the internal sync generator. The timebase is input memory clock signal MCLK prescaled by a factor of 3 or 6, as specified by VIU_DPCf, bits IPU1DC and IPU2DC:

NOTE: The number entered in HP must be one less than the desired interval.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		RS	VD							Н	P				

Bit #	Access	Reset	Descrip	tion
15:10	R/W	0h	RSVD	Reserved (read as '0').
9:0	R/W	0h	нР	Desired Horizontal Penod = (0-3FFh) - 1

4.2.2.5 VSU_VSW: Vertical Sync Width

POSTED

I/O Address

HIU_RDT

Index

1104

Register VSU_VSW specifies the width of the vertical sync pulse generated by the internal sync generator. The time-base is the horizontal sync interval specified by register VSU_HP.

15	14	13	12	11	10	9	8	7	6	5	4	. 3	2	1	0
				RSVD								vsw			

Bit #	Access	Reset	Descrip	otion
15:7	R/W	Oh	RSVD	Reserved (read as '0').
6:0	R/W	0h	vsw	Vertical Sync Width (0-7Fh)

4.2.2.6 VSU_VAD: Vertical Active Delay

POSTED

I/O Address HIU_RDT

Index

1105

Register VSU_VAD specifies the delay from the start of the vertical sync pulse generated by the intern sync generator to the beginning of the vertical active interval. The timebase is the horizontal sync intervence by register VSU_HP.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	С
		RS	VO							V	10				

Bit #	Access	Reset	Descrip	otion	المجالة والمراقع المراقع	
15.10	P/W	Oh	RSVD	Reserved (read as '0').	ATI019063	
9.0	R/W	0h	VAD	Vertical Active Delay. (0-3FFh)		

VSU_VAP: Vertical Active Pixels 4.2.2.7

POSTED

I/O Address

HIU_ROT

Index

1106

Register VSU_VAP specifies the width of the vertical active interval generated by the internal sync generator. The timebase is the horizontal sync interval specified by register VSU_HP.

٠	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			RSVD								VAP					<u> </u>

Bit #	Access	Reset	Descrip	ption
15:11	R/W	Oh	RSVD	Reserved (read as '0').
10:0	R/W	0h	VAP	Vertical Active Pixels. (0-7FFh)

VSU_VP: Vertical Period

POSTED

Address

HIU_RDT

index

1107

Register VSU_VP specifies the width of the vertical sync period generated by the internal sync generator. The timebase is the horizontal sync interval specified by register VSU_HP. This register also provides the enable and single sweep controls for the internal sync generator.

5		13		11	10	9	8	7	6	5	4	3	2	- 1	a
ŞGE	SSE	VFL	RS	VD						VP		-			
-															

BH#_	Access	Reset	Descr	iption
15	R/W	0	SGE	Sync Generator Enable. (Enabled when SSE = 1.) 1 Another single sweep occurs (SGE resets to '0' at the end of the sweep)
14	R/W	0	SSE	Single Sweep Enable. Enables single sweep mode. O SGE ignored SGE enabled
13	R/W	0	VFL	Video Field Lock. No field lock Field-locks (synchronizes) VSU to the incoming field of the video source selected as the master in register VIU_WDT, bit MFTS; allows an internal process that may run much faster to remain in sync with an incoming stream.
12	R/W	0000	RSVD	Reserved (read as '0').
9:0	R/W	Oh	VP	Vertical Active Count (0-7FFb) ATI 0190

12	R/W	0000	RSVD	Reserved (read as '0").	
9:0	R/W	0h	VP	Vertical Active Count. (0-7FFh)	ATI019064
					A

4.3 VPU: Video Processor Unit

Name Index		Definition	Posted?	Ref. Section
VPU Global Co	ntrol	•		4.3.1, p. 44
VPU_MCR	2000	VPU Master Control	POSTED	4.3.1.1, p. 44
IPU1: Input Pro	cessor Unit	1		4.3.2, p. 45
IPU1_PIX	2100	Pixel Count		4.3.2.1, p. 45
IPU1_LIC	2101	Line Count	-	4.3.2.2, p. 45
IPU1_FLC	2102	Field Count		4.3.2.3, p. 46
IPU1_LIR	2103	Line Count Interrupt Request	-	4.3.2.4, p. 46
IPU1_FIR	2104	Field Count Interrupt Request		4.3.2.5, p. 46
IPU1_LRB	2200	LUT RAM Base Address	-	4.3.2.6, p. 47
IPU1_LRD	2201	LUT RAM Data		4.3.2.7, p. 47
IPU1_MCR1	3000	IPU1 Master Control, Field 1	POSTED	4.3.2.8, p. 48
IPU1_XBF1	3001	X Begin Fraction, Field 1	POSTED	4.3.2.9, p. 49
IPU1_XBI1	3002	X Begin Integer, Field 1	POSTED	4.3.2.9, p. 49
IPU1_XEI1	3003	X End Integer, Field 1	POSTED	4.3.2.10, p. 50
IPU1_XSF1	3004	X Shrink Fraction, Field 1	POSTED	4.3.2.11, p. 50
IPU1_XSI1	3005	X Shrink Integer, Field 1	POSTED	4.3.2.11, p. 50
IPU1_YBF1	3006	Y Begin Fraction, Field 1	POSTED	4.3.2.12, p. 51
IPU1_YBI1	3007	Y Begin Integer, Field 1	POSTED	. 4.3.2.12, p. 51
IPU1_YEI1	3008	Y End Integer, Field 1	POSTED	4.3.2.13, p. 51
IPU1_YSF1	3009	Y Shrink Fraction, Field 1	POSTED	4.3.2.14, p. 52
IPU1_YSI1	300a	Y Shrink Integer, Field 1	POSTED	4.3.2.14, p. 52
IPU1_KFC1	300b	Key Function Code, Field 1	POSTED	4.3.2.15, p. 52
IPU1_MMY1	300c	Chroma Key Y/R Max/Min, Field 1	POSTED	4.3.2.16, p. 53
IPU1_MMU1	30 0 d	Chroma Key U/G Max/Min, Field 1	POSTED	4.3.2.16, p. 53
IPU1_MMV1	300e	Chroma Key V/B Max/Min, Field 1	POSTED	4.3.2.16, p. 53
IPU1_MCR2	3100	IPU1 Master Control, Field 2	POSTED	4.3.2.8, p. 48
IPU1_XBF2	3101	X Begin Fraction, Field 2	POSTED	4.3.2.9, p. 49
IPU1_X8I2	3102	X Begin Integer, Field 2	POSTED	4 3.2.9, p. 49

Name	Index	Definition	Posted?	Pot Card
iPU1_XEI2	. 0100		Fusied?	Ref. Section
	3103	X End Integer, Field 2	POSTED	4.3 2.10, p. 50
IPU1_XSF2	3104	X Shrink Fraction, Field 2	POSTED	4 3.2.11, p. 50
IPU1_XSI2	3105	X Shrink Integer, Field 2	POSTED	4.3.2.11, p. 50
IPU1_YBF2	3106	Y Begin Fraction, Field 2	POSTED	4.3.2.12, p. 51
IPU1_YBI2	3107	Y Begin Integer, Field 2	POSTED	4.3.2.12, p. 51
IPU1_YEI2	3108	Y End Integer, Field 2	POSTED	4.3.2.13, p. 51
IPU1_YSF2	3109	Y Shrink Fraction, Field 2	POSTED	4.3.2.14, p. 52
IPU1_YSI2	310a	Y Shrink Integer, Field 2	POSTED	4.3.2.14, p. 52
IPU1_KFC2	310b	Key Function Code, Field 2	POSTED	4.3.2.15, p. 52
EU1_MMY2	310c	Chroma Key Y/R Max/Min, Field 2	POSTED	4.3.2.16, p. 53
PU1_MMU2	310d	Chroma Key U/G Max/Min, Field 2	POSTED	4.3.2.16, p. 53
PU1_MMV2	310e	Chroma Key V/B Max/Min, Field 2	POSTED	4.3.2.16, p. 53
PU2: Input Pro	cessor Unit			4.3.3, p. 54
PU2_PIX	2300	Pixel Count		4.3.3.1, p. 54
BOS_NC	2301	Line Count	_	4.3.3.2, p. 54
U2_FLC	2302	Field Count	_	4.3.3.3, p. 54
Ū2_LIR	2303	Line Count Interrupt Request	-	4.3.3.4, p. 55
U2_FIR	2304	Field Count Interrupt Request		4.3.3.5, p. 55
PU2_MCR1	3200	IPU2 Master Control, Field 1	POSTED	4.3.3.6, p. 56
PU2_XBI1	3202	X Begin Integer, Field 1	POSTED	4.3.3.7, p. 56
U2_XEI1	3203	X End Integer, Field 1	POSTED	4.3.3.8, p. 57
U2_YBI1	3207	Y Begin Integer, Field 1	POSTED	
U2_YEI1	3208	Y End Integer, Field 1	POSTED	4.3.3.9, p. 57
U2_MCR2	3300	IPU2 Master Control, Field 2	POSTED	4.3.3.10, p. 58
U2_XBI2	3302	X Begin Integer, Field 2		4.3.3.6, p. 56
U2_XEI2	3303	X End Integer, Field 2	POSTED	4.3.3.7, p. 56
J2_YBI2	3307	Y Begin Integer, Field 2	POSTED	4.3.3.8, p. 57
J2_YEI2	3308		POSTED	4.3.3.9, p. 57
	JJ06	Y End Integer, Field 2	POSTED	4.3.3.10, p. 58

Name	Index	Definition	Posted?	Ref. Section
SIU: Sequence	r Instruction	Unit		4 3.4, p. 58
SIU_MCR	2800	SIU Master Control		4.3.4.1, p. 58
SIU_FCS	2801	FIFO Control/Status	_	4.3.4 2. p. 59
SIU_FOU	2802	FIFO Overflow/Underflow	-	4.3.4.3, p. 60
SIU_FAR	4001	FIFO Auto Reset		4.3.4.5, p. 62
SIU0_SIM	2e00	Sequencer Instruction Memory 0	-	4.3.4.4, p. 61
SIU1_SIM	2e01	Sequencer Instruction Memory 1		4 3.4.4, p. 61
SIU2_SIM	2e02	Sequencer Instruction Memory 2	_	4 3.4.4, p. 61
SIU3_SIM	2e03	Sequencer Instruction Memory 3	_	4.3.4.4, p. 61
SIU4_SIM	2004	Sequencer Instruction Memory 4	-	4.3.4.4, p. 61
SIU5_SIM	2e05	Sequencer Instruction Memory 5	_	4.3.4.4, p. 61
SIU6_SIM	2906	Sequencer Instruction Memory 6	-	4.3.4.4, p. 61
SIU7_SIM	2e07	Sequencer Instruction Memory 7	-	4.3.4.4, p. 61
SIU8_SIM	2e08	Sequencer Instruction Memory 8	-	4.3.4.4, p. 61
SIU9_SIM	2e09	Sequencer Instruction Memory 9	_	4.3.4.4, p. 61
SIU10_SIM	2e0a	Sequencer Instruction Memory 10	-	4.3.4.4, p. 61
SIU11_SIM	2e0b	Sequencer Instruction Memory 11	-	4 3.4.4, p. 61
SIU12_SIM	2e0c	Sequencer Instruction Memory 12	-	4.3.4.4, p. 61
SIU13_SIM	2e0d	Sequencer Instruction Memory 13		4.3.4.4, p. 61
SIU14_SIM	2e0e	Sequencer Instruction Memory 14	_	4.3.4.4, p. 61
SIU15_SIM	2e0f	Sequencer Instruction Memory 15	-	4.3.4.4, p. 61
SIU16_SIM	2010	Sequencer Instruction Memory 16	-	4.3.4.4, p. 61
SIU17_SIM	2911	Sequencer Instruction Memory 17	-	4.3.4.4, p. 61
SIU18_SIM	2912	Sequencer Instruction Memory 18	_	4.3.4.4, p. 61
SIU19_SIM	2013	Sequencer Instruction Memory 19	_	4 3.4.4, p. 61
SIU20_SIM	2014	Sequencer Instruction Memory 20		4.3.4.4, p. 61
SiU21_SiM	2e15	Sequencer Instruction Memory 21	_	4.3 4 4, p. 61
SiU22_SIM	2e16	Sequencer Instruction Memory 22		4 3.4 4, p. 61
SIU23_SIM	2e17	Sequencer Instruction Memory 23		4 3 4 4, p. 61

Name	¹ Index	Definition	- Posted?	Ref. Section
SIU24_SIM	2e18	Sequencer Instruction Memory 24		4.3.4.4, p. 61
SIU25_SIM	2e19	Sequencer Instruction Memory 25		4.3.4.4, p. 61
SIU26_SIM	2e1a	Sequencer Instruction Memory 26		4.3.4.4, p. 61
SIU27_SIM	2e1b	Sequencer Instruction Memory 27		4.3.4.4, p. 61
SIU28_SIM	2e1c	Sequencer Instruction Memory 28		4.3.4.4, p. 61
SIU29_SIM	2e1d	Sequencer Instruction Memory 29		4.3.4.4, p. 61
SIU30_SIM	2e1e	Sequencer Instruction Memory 30		4.3.4.4, p. 61
SIU31_SIM	2e1f	Sequencer Instruction Memory 31		4.3.4.4, p. 61
ALU: Arithmet	ic and Logic			4.3.4.5, p. 62
ALL_MCR1	2900	ALU Master Control, Field 1	POSTED	4.3.5.1, p. 62
ALL_MCR2	2901	ALU Master Control, Field 2	POSTED	4.3.5.1, p. 62
ALU_TOP	2902	Tag Operation	POSTED	4.3.5.2, p. 64
ALU_AV	2903	Aipha Value	POSTED	4.3.5.3, p. 64
ALU_LOPY	2904	Logic Operation Channel Y	POSTED	4.3.5.4, p. 65
ALU_LOPU	2905	Logic Operation Channel U	POSTED	4.3.5.4, p. 65
ALUILOPV	2906	Logic Operation Channel V	POSTED	4.3.5.4, p. 65
ALU_CAY	2907	Constant A, Channel Y	POSTED	4.3.5.5, p. 65
ALU_CAU	2908	Constant A, Channel U	POSTED	4.3.5.5, p. 65
ALU_CAV	2909	Constant A, Channel V	POSTED	4.3.5.5, p. 65
ALU_CBY	290a	Constant B, Channel Y	POSTED	4.3.5.6, p. 66
ALU_CBU	290b	Constant B, Channel U	POSTED	4.3.5.6, p. 66
ALU_CBV	290c	Constant B, Channel V	POSTED	4.3.5.6, p. 66
ALU_CCY	290d	Constant C, Channel Y	POSTED	4.3.5.7, p. 66
ALU_CCU	290e	Constant C, Channel U	POSTED	4.3.5.7, p. 66
ALU_CCV	290f	Constant C, Channel V	POSTED	4.3.5.7. p. 66

Name Index Definition		Definition	Posted?	Ref. Section
OPU: Output Pr	rocessing U	nit		4.3.6, p. 67
OPU_MCR1	2a00	OPU Master Control, Field 1	POSTED	4.3.6.1, p. 67
OPU_XBI1	2a02	X Begin Integer, Field 1	POSTED	4.3.6.2, p. 68
OPU_XEI1	2a03	X End Integer, Field 1	POSTED	4.3.6.3, p. 68
OPU_YBI1	2a07	Y Begin Integer, Field 1	POSTED	4.3.6.4, p. 69
OPU_YEI1	2a08	Y End Integer, Field 1	POSTED	4.3.6.5, p. 69
OPU_MCR2	2b00	OPU Master Control, Field 2	POSTED	4.3.6.1, p. 67
OPU_XBI2	2002	X Begin Integer, Field 2	POSTED	4.3.6.2, p. 68
OPU_XEI2	2503	X End Integer, Field 2	POSTED	4.3.6.3, p. 68
OPU_YBI2	2507	Y Begin Integer, Field 2	POSTED	4.3.6.4, p. 69
OPU_YEI2	2508	Y End Integer, Field 2	POSTED	4.3.6.5, p. 69

4.3.1 VPU Global Control

4.3.1.1 VPU_MCR: VPU Master Control

12

POSTED

I/O Address

HIU_RDT

Index

2000

Register VPU_MCR controls the operation of the IPU1, the IPU2, and the OPU for fields 1 and 2.

RSVD		ALUE	OI	PFSS	IP2FSS	IP1FSS
3it #	Access	Reset	Descrip	tion		
5:13	R/W	0h	RSVD	Reserved (rea	d as '0').	
2	R/W	0	ALUE	-	le ALU operation e ALU operation	
2	R/W	0000	OPFSS	chronization a 0000 Disab 0001 Start (0010 Start (0011 Start (0100 Start (nc Select. Enables OPU op nd processing. le OPU operation OPU on next field, both field OPU on field 1, single field OPU on field 2, single field OPU on field 2, both fields	processsed processsed processsed
The state of the s	R/W	0000	IP2FSS	chronization a 0000 Disab 0001 Start 0010 Start 0011 Start 0100 Start	nc Select. Enables IPU2 of and processing. He IPU2 operation IPU2 on next field, both field IPU2 on field 1, single field IPU2 on field 2, single field IPU2 on field 2, both fields	processsed processsed processsed
1:0	R/W	0000	IP1FSS	chronization a	rnc Select. Enables IPU1 o and processing. ble IPU1 operation IPU1 on next field, both fie	peration, specifies field syn- lds processsed

0010

0011

0100

0101

Start IPU1 on field 1, single field processsed

Start IPU1 on field 1, both fields processsed

Start IPU1 on field 2, single field processsed

Start IPU1 on field 2, both fields processsed

4.3.2 IPU1: Input Processor Unit 1

4.3.2.1 · IPU1_PIX: Pixel Count

I/O Address

HIU_RDT

Index

2100

Register IPU1_PIX is a read-only register that reads back the value of the current 11-bit pixel counter.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	-	RSVD								PC					

Bit #	Access	Reset	Descrip	otion
15:11	R	0h	RSVD	Reserved (read as '0').
10.0	R	0h	PC	Pixel Count current line. Automatically resets to '0' at the beginning of each line. (0-7FFh)

4.3.2.2 IPU1_LIC: Line Count

I/O Address

HIU_RDT

Index

2101

Register iPU1_LIC is a read-only register of the current 11-bit line count.

15	14	13	12	11	10	9.	8	7	6	5	4	3	2	1	0
		RSVD								LC					

Bit #	Access	Reset	Descrip	otion
15:11	R	0h	RSVD	Reserved (read as '0').
10:0	R	0h	LC	Line Count current field. Automatically resets to '0' at the beginning of each field. (0-7FFh)

4.3.2.3 IPU1 FLC: Field Count

I/O Address

HIU_ROT

Index

2102

Register IPU1_FLC returns the current 15-bit field count on read.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
RSVD					•			FC							

Bit #	Access	Reset	Descrip	otion
15	R	0h	RSVD	Reserved (read as '0').
14:0	R	Oh	FC	Field Count. Resets to '0' when IPU1_FIR, bit FCE = '0.'

432.4 IPU1_LIR: Line Count Interrupt Request

I/O Address

HIU_RDT

index

2103

Register IPU1_LIR generates an interrupt request when the 11-bit value in field IRLC is equal to the value in IPU1_LIC, bit LC.

15 14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	RSVD								IRLC					

BIL.	Access	Reset	Descrip	otion -
1511	R/W	Oh	RSVD	Reserved (read as '0').
10.0	R/W	0h	IRLC	Interrupt Request Line Count (0-7FFh)

4.3.2.5 IPU1_FIR: Field Count Interrupt Request

I/O Address

HIU_RDT

index

2104

Register IPU1_FIR generates an interrupt request when the 15-bit value in field IRFC is equal to the value in IPU1_FLC, field FC.

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
F	CE		•						IRFC							

Bit #	Access	Reset	Descri	ption
·5	. R∕W	Oh	FCE	Field Count Enable. O Disable field count 1 Enable field count
14 0	R/W	0h	IRFC	Interrupt Request Field Count.

4.3.2.6 IPU1_LRB: LUT RAM Base Address

I/O Address

HIU_RDT

Index

2200

Register IPU1_LRB preloads the 8-bit LUT RAM address counter and initializes the channel pointer to the YR channel. The channel pointer automatically advances to the next channel after each LUT RAM access, and address counter automatically increments after accessing the CrB channel, LUT RAM elements are accessed in the following order: YR[LRB+0], CbG[LRB+0], CrB[LRB+0], YR[LRB+1], CbG[LRB+1], CrB[LRB+1], etc.

1	5	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				RS	VD							Lf	38			

Bit #	Acces	s Reset	Descrip	otion
15.8	R/W	Oh	RSVD	Reserved (read as '0').
70	R/W	Oh	LRB	LUT RAM Base Address. Specifies the 8-bit address generator pre- load value. (0-FFh)

4.3.2.7 IPU1_LRD: LUT RAM Data

I/O Address

HIU_RDT

Index

2201

Register IPU1_LRD is the bidirectional data port to the storage elements of the three-channel LUT RAM.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			AS	VD							LF	10			

Bit #	Access	Reset	Description									
15.8	R/W	Oh	RSVD	Reserved (read as '0').								
7 0	R/W	0h	LAD	LUT RAM Data. Data written to this field transfers to the current LUT RAM element (R, G, B); data to be read from the current LUT RAM element appears in this field. (0-FFh)								

4.3.2.8 IPU1_MCRf: IPU1 Master Control

POSTED

I/O Address

HIU_RDT

Index

3000 (IPU1_MCR1: IPU1 Master Control, Field 1)

3100 (IPU1_MCR2: IPU1 Master Control, Field 2)

Registers IPU1_MCR1 and IPU1_MCR2 control the operation of the IPU1 for fields 1 and 2.

	15	14	13	12	11	10	9 8	7	6	5	4	3	- 2	1	0
ſ	FPS	IM	PSE	CSCE	LE	YSP	OOT		0	F				=	

Bit#	Access	Reset	Descrip	otion								
15	R/W	0	FPS	Field Polarity Select. Controls the polarity of the field ID signal supplied to the Window Clipping and XY Scaler. Normal polarity Invert polarity								
	R/W -	0 	iM	Interlace Mode. Specifies the input stream as interlaced or progressive-scan (non-interlaced) data. O Progressive-scan input Interlaced input								
	R/W	0	PSE	X Prescaler Enable. 0 Bypass prescaler 1 Enable 0.5x prescaler								
	· R/W	0	CSCE	Color Space Converter Enable. O Bypass Color Space Converter 1 Enable Color Space Converter								
	. R/W	0	LE	LUT Enable. 0 Bypass LUT RAM 1 Enable LUT RAM								
IÓ	R/W	0	YSP	Y Scaling Path. Enables or disables the special Y Scaling Path Mode. O Enable IPU1 Y scaling Disable IPU1 Y scaling (ALU performs Y scaling)								
9:8	R/W	00	ODT	Output Data Tag. Controls input selection of Input Tag Unit tag mux. OO Pass tag unchanged O1 Set tag to field ID 10 Set tag to inverse chroma key tag 11 Set tag to chroma key tag								
7:4	R/W	0000	OF	Output Data Stream Format. 0000 YCbCr 4:2:2 non-tagged data 0001 YCbCr 4:2:2 tagged data 1000 RGB 5:6:5 non-tagged data 1001 RGB 1:5:5:5 tagged data 1010 RGB 8:8:8 non-tagged data 1011 RGB 1:8:8:8 tagged data 1110 RGB 3:3:2 non-tagged data ATI01907								

Bit #	Access	Reset	set Description											
3:0	R/W	0000	IF	Input Data Stream Format. O000 YCbCr 4:2:2 non-tagged data O001 YCbCr 4:2:2 tagged data O010 YCbCr 4:1:1 non-tagged data 1000 RGB 5:6:5 non-tagged data 1001 RGB 1:5:5:5 tagged data 1110 Pseudo color (indirect color mapping via IPU1 LUT) XXXX All other configurations reserved										

4.3.2.9 IPU1_XBnf: X Begin

POSTED

I/O Address

HIU_RDT

Index

3001 (IPU1_XBF1: X Begin Fraction, Field 1) 3002 (IPU1_XBI1: X Begin Integer, Field 1) 3101 (IPU1_XBF2: X Begin Fraction, Field 2)

3102 (IPU1_XBI2: X End Integer, Field 2)

Registers IPU1_XBnf specify the 11.3 format X begin value for fields 1 and 2.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	<u> </u>
	BF					1			RSVD						
	,	ASVD								BI					l

Access	Reset	Descri	DUON
BFf: X Begi	n Fractio	n Index	
R/W	Oh	BF	Begin X Column Fractional Index. Specifies the 3-bit fractional portion of the 11.3 format X begin value. Allows the virtual left boundary of the post-scaled window to be aligned between pixels of the pre-scaled window for fields 1 and 2. (0-7h)
R/W	Oh	RSVD	Reserved (read as '0').
	BFf: X Begi R/W	BFf: X Begin Fractio	,

IPU1_XEIf: X Begin Integer Index

15:11	R/W	Oh	RSVD	Reserved (read as '0').
10:0	R/W	Oh	BI	Begin X Column Integer Index. Specifies the 11-bit integer portion of the 11.3 format X begin value. Defines the left boundary of the prescaling window for fields 1 and 2. All video to the left of this boundary is clipped and is not used to generate the scaled window. (0-7FFh)

4.3.2.10 IPU1_XEIf: X End

POSTED

I/O Address

HIU_RDT

Index

3003 (IPU1_XEI1: X End Integer, Field 1)

3103 (IPU1_XEI2: X End Integer, Field 2)

Registers IPU1_XEI1 and IPU1_XEI2 specify the 11-bit X end value for fields 1 and 2.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	. 1	0
		RSVD								EI					

Bit #	Access	Reset	Descrip	Description								
15:11	R/W	0h	RSVD	Reserved (read as '0').								
10:0	R/W	0h	EI	X End Column Integer Index. Specifies the 11-bit X end value. (0-7FFh)								

4.3.2.11 IPU1_XSnf: X Shrink

POSTED

ı ir

I/O Address

HIU_RDT

lindex
3004 (IPU1_XSF1: X Shrink Fraction, Field 1)
3005 (IPU1_XSI1: X Shrink Integer, Field 1)
3104 (IPU1_XSF2: X Shrink Fraction, Field 2)

3105 (IPU1_XSI2: X Shrink Integer, Field 2)

Registers IPU1_XSnf specify the 6.10 format X shrink value for fields 1 and 2.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	
	-			5	RSVD										
				AS	VD			,				5	S t		

Bit#	Access	Reset	set Description											
IPU1_X	U1_XSFI: X Shrink Fraction													
15:5	R/W	Oh	SF	X Shrink Fraction. Specifies the 10-bit fractional portion of the 6.10 for- mat X shrink value. (0-3FFh)										
4:0	R/W	Oh	RSVD	Reserved (read as '0").										
IPU1_X	(SIf: X Shrin	k integer												
15:6	R/W	0h	RSVD	Reserved (read as '0').										
5:0	R/W	Oh	SI	X Shrink Integer. Specifies the 4-bit integer portion of the 4.10 format X shrink value. (0-Fh)										
				ATI01907										

CL-PX2070

POSTED

I/O Address

HIU_RDT

Access Reset

Index

Rit #

EFERO FRONKAGE

3006 (IPU1_YBF1: Y Begin Fraction, Field 1)

Description

3106 (IPU1_YBF2: Y Begin Fraction, Field 2) 3107 (IPU1_YBI2: Y Begin Integer, Field 2)

3007 (IPU1_YBI1: Y Begin Integer, Field 1)

Registers IPU1_YBnf specify the 11.3 format Y begin value for fields 1 and 2.

15	14	13	12	11	10	9	. 8	7	6	5 _	4	3	2	1	0
	BF								ASVD						
		RSVD								81					,

DIL #	MCCES	3 11636	Descri	24011
IPU1_Y	BFf: Y Be	gin Fract	ion Index	
15:13	R/W	0h	8F	Begin Y Row Fractional Index. Specifies the 3-bit fractional portion of the 11.3 format Y begin value. Allows the virtual top row of the post- scaled window to be aligned between rows of the pre-scaled window for fields 1 and 2. (0-7h)
12:0	R/W	Oh	RSVD	Reserved (read as '0").
IPU1_Y	Bif: Y Beç	jin Intege	r Index	
15:11	R/W	0h	RSVD	Reserved (read as '0').
10:0	R/W	Oh	81	Begin Y Row Integer Index. Specifies the 11-bit integer portion of the 11.3 format Y begin value: Defines the top edge of the pre-scaling window for fields 1 and 2. All video above this boundary is clipped and does not become part of the scaled window. (0-7FFh)

4.3.2.13 IPU1_YEIf: Y End

POSTED

I/O Address

HIU_RDT

Index

3008 (IPU1_YEI1: Y End Integer, Field 1)

3108 (IPU1_YEI2: Y End Integer, Field 2)

Registers IPU1_YEI1 and IPU1_YEI2 specify the 11-bit Y end value for fields 1 and 2.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		RSVD								El					

Bit #	Access	Reset	Descri	ATI019077
15:11	R/W	Oh	RSVD	Reserved (read as '0').
10:0	R/W	Oh	El	End Y Row Integer Index. Specifies the 11-bit Y end value. (0-7FFh)

July 1993

4.3.2.14 IPU1_YSnf: Y Shrink

POSTED

I/O Address

HIU RDT

Index

3009 (IPU1_YSF1: Y Shrink Fraction, Field 1) 3109 (IPU1_YSF2: Y Shrink Fractic :, Field 2)

300a (IPU1_YSI1: Y Shrink Integer, Field 1)

310a (IPU1_YSI2: Y Shrink Integer, Field 2)

Registers IPU1_YSnf specify the 4.10 format Y shrink value for fields 1 and 2.

15	14	13	12	11	10	9	8	7	6	5	4	3	∞2	1	0
				S	F							R	eve		
	RSVD												SI		

Bit #	Access	Reset	Descri	ption
_	SFf: Y Shri	nk Fractio	on	
1 5 6	R/W	Oh -	SF	Y Shrink Fraction. Specifies the 10-bit fractional portion of the 4.10 format Y shrink value. (0-3FFh)
5:0	R/W	Oh	RSVD	Reserved (read as '0').
	SII: Y Shrin	ik integer		
15,6 5:0	R/W	Oh	RSVD	Reserved (read as '0').
5:0	Ļ R∕W	Oh	SI	Y Shrink Integer. Specifies the 4-bit integer portion of the 4.10 format Y shrink value. (0-Fh)
771.1				

4.3.2.15 IPU1_KFC1: Key Function Code

POSTED

index

ØAddress

HIU RDT

300b (IPU1_KFC1: Key Function Code, Field 1) 310b (IPU1_KFC2: Key Function Code, Field 2)

Registers IPU1_KFC1 and IPU1_KFC2 specify the tag values used by the key function code multiplexers for fields 1 and 2 in the tag unit, allowing a match on any combination of YUV to trigger a tag.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			AS	VD							KE	YFC			

Bit#	Access	Reset	Description											
15:8	P/W	Oh	RSVD	Reserved (read as '0').										
7:0	R/W	Oh	KEYFC	Key Function Code. Specifies eight 1-bit input tag values used by the key function code multiplexers. (1 = match, or within range.) (0-FFh)										
				YUV YUV YUV YUV YUV 000 = KEYFC0 010 = KEYFC2 100 = KEYFC4 110 = KEYFC6 001 = KEYFC1 011 = KEYFC3 101 = KEYFC5 111 = KEYFC7										

№ 4.3.2.16 IPU1_MMxf: Chroma Key Max/Min

POSTED

.I/O Address

HIU RDT

index

300c (IPU1_MMY1: Chroma Key Y/R Max/Min, Field 1)

300d (IPU1_MMU1: Chroma Key U/G Max/Min, Field 1) 300e (IPU1_MMV1: Chroma Key V/B Max/Min, Field 1) 310c (IPU1_MMY2: Chroma Key Y/R Max/Min, Field 2) 310d (IPU1_MMU2: Chroma Key U/G Max/Min, Field 2) 310e (IPU1_MMV2: Chroma Key V/B Max/Min, Field 2)

Registers IPU1_MMxf specify the maximum and minimum 8-bit chroma key comparator values used by the input Tag Unit for fields 1 and 2. These values are used for each of three 8-bit input channels for both fields 1 and 2.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			YRA	XAN							YR	MIN			
			UGI	XAN		_					UG	MIN			- "
			VBA	XAN							VB	MIN			

Bit #	Access	Reset	Descrip	don
IPU1_M	IMYf: Key Y	/R Maxim	um/Minimu	um
15:8	P/W	Oh	YRMAX	Key Y/R Maximum. Specifies the upper threshold for the 8-bit Y/R channel comparator. (0-FFh)
7:0	R/W	Oh	YRMIN	Key Y/R Minimum. Specifies the lower threshold for the 8-bit Y/R channel channel comparator. (0-FFh)
IPU1_M	IMUf: Key U	/G Maxin	num/Minim	um
15:8	R/W	Oh	UGMAX	Key U/G Maximum. Specifies the upper threshold for the 8-bit Cb/G channel comparator. (0-FFh)
7:0	R/W	Oh	UGMIN	Key U/G Minimum. Specifies the lower threshold for the 8-bit Cb/G channel comparator. (0-FFh)
IPU1_N	MVf: Key V	/B Maxim	num/Minim	um
15:8	R/W	0h	VBMAX	Key V/8 Maximum. Specifies the upper threshold for the 8-bit Cr/8 channel comparator. (0-FFh)
7:0	R/W	Oh	VBMIN	Key V/B Minimum. Specifies the lower threshold for the 8-bit Cr/B channel comparator. (0-FFh)

4.3.3 IPU2: Input Processing Unit 2

4.3.3.1 IPU2_PIX: Pixel Count

I/O Address

HIU_RDT

Index

2300

Register IPU2_PIX is a read-only register that specifies the current 11-bit pixel count.

15	14	13	12	11	10	9	8	7.	6	5	4	3	- 2	1	0
		RSVD								PC					

Bit #	Access	Reset	Descrip	otion
15:11	R	0h	RSVD	Reserved (read as '0').
10:0	R	Oh	PC	Pixel Count current line. Automatically resets to '0' at the beginning of each line. (0-7FFh)

43.3.2 IPU2_LIC: Line Count

VO Address

HIU_RDT

index 2301

Register IPU2_LIC is a read-only register that specifies the current 11-bit line count.

 5	14	13	12	11	10	9	8	7	6	5	4	3	2	1	 -
a di		RSVD								LC					

Bit #	Access	Reset	Descrip	otion
量11	R	Oh	RSVD	Reserved (read as '0').
14 11	R	0h	LC	Line Count current field. Automatically resets to '0' at the beginning of each field. (0-7FFh)

4.3.3.3 IPU2_FLC: Field Count

I/O Address

HIU_RDT

Index

2302

Read-only register IPU2_FLC returns the current 15-bit field count.

15	14	13	12	11	10	9	8	. 7	6	5	4	3	2	1	
RSVD								FC							

Bit #	Access	Reset	Descrip	otion	
15	R	0h	RSVD	Reserved (read as '0').	
14:0	R	Oh	FC	Field count.	AT1019080

I/O Address

HIU RDT

Index

2303

Register IPU2_LIR specifies an 11-bit line count value that generates an interrupt request when equal to the realtime line count value in register IPU2_LIC.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		RSVD					-			IRLC					

Bit #	Access	Reset	Descrip	otion
15:11	R/W	Oh	RSVD	Reserved (read as '0').
10:0	R/W	0h	IALC	Interrupt Request Line Count. (0-7FFh)

4.3.3.5 IPU2_FIR: Field Count Interrupt Request

I/O Address

HIU_RDT

index

2304

Register IPU2_FIR specifies a 16-bit field count value that generates an interrupt request when equal to the realtime field count value in register IPU2_FLC.

13	14	13	12	1 1	-					 	 	
FCE							IRFC	· · · · · · · · · · · · · · · · · · ·	, <u> </u>	 	 	
Bit #	Acce	33	Reset	Descri	ption					 	 	
15	R/W		0	FCE	Field Co 1 0	Enab	nable. le field c de field c				 	
14:0	R/W		Oh	IRFC	Interrup	t Req	uest Fiel	d Coun	t.			

ATI019081

55

4.3.3.6 IPU2_MCRf: IPU2 Master Control

POSTED

I/O Address

HIU ROT

Index

3200 (IPU2_MCR1: IPU2 Master Control, Field 1)

3300 (IPU2_MCR2: IPU2 Master Control, Field 2)

Registers IPU2_MCR1 and IPU2_MCR2 control the operation of the IPU2.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
FPS	IM	PSE							RSVD						

Bit #	Access	Reset	Descrip	otion
15	R/W	Oh	FPS	Field Polarity Select. Controls the polarity of the field ID signal supplied to the XY Window Clipping subunit. O Normal polarity Invert polarity
	R/W	Oh	IM	Interlace Mode. Specifies the input stream as interlaced or non-interlaced (progressive-scan) data. O Progressive-scan input Interlaced input
	R/W	Oh	PSE	Prescaler Enable. Enables or disables the operation of the Prescaler. O Bypass Prescaler 1 Enable 0.5x Prescaler
12:0	R/W	0h	RSVD	Reserved (read as '0').

4.3.3.7 IPU2_XBIf: X Begin

POSTED

10 Address

HIU_RDT

Index

3202 (IPU2_XBI1: X Begin Integer, Field 1) 3302 (IPU2_XBI2: X Begin Integer, Field 2)

Registers IPU2_XBI1 and IPU2_XBI2 specify the 11-bit X begin value for fields 1 and 2.

15	14	13	12	11	10	. 9	8	7	6	5	4	3	2	1	•
		RSVD								BI					i

Bit #	Access	Reset	Description						
15:11	R/W	Oh	RSVD	Reserved (read as '0').					
10:0	R/W	Oh	81	Begin X Column Integer Index. Specifies the 11-bit integer portion of the 11.0 format X begin value. (0-7FFh)					

4.3.3.8 IPU2_XEI1: X End

POSTED

I/O Address

HIU_RDT

Index

3203 (IPU2_XEI1: X End Integer, Field 1)

3303 (IPU2_XEI2: X End Integer, Field 2)

Registers IPU2_XEI1 and IPU2_XEI2 specify the 11-bit X end value for fields 1 and 2.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		ASVD								Εi					

Bit #	Access	Reset	Descri	otion
15:11	R/W	0h	RSVD	Reserved (read as '0').
10:0	R/W	0h	EI	End X Column Integer Index. Specifies the 11-bit X end value. (0-7FFh)

4.3.3.9 IPU2_YBit: Y Begin

POSTED

I/O Address

HIU_RDT

index

3207 (IPU2_YBI1: Y Begin Integer, Field 1)

3307 (IPU2_YBI2: Y Begin Integer, Field 2)

Registers IPU2_YBI1 and IPU2_YBI2 specify the 11-bit Y begin value for fields 1 and 2.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		RSVO							,	Bi					

Bit #	Access	Reset	Descrip	otion
15:11	R/W	Oh	RSVD	Reserved (read as '0').
10:0	P/W	Oh	81	Begin Y Row Integer Index. Specifies the 11-bit integer portion of the 11-bit Y begin value. (0-7FFh)

4.3.3.10 IPU2_YEIf: Y End

POSTED

I/O Address

HIU_RDT

Index

3208 (IPU2_YEI1: Y End Integer, Field 1) 3308 (IPU2_YEI2: Y End Integer, Field 2)

Registers IPU2_YEI1 and IPU2_YEI2 specify the 11-bit Y end value for fields 1 and 2.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		RSVD								EI					

Blt#	Access	Reset	Description							
15:11	R/W	Oh	RSVD	Reserved (read as '0').						
10:0	R/W	Oh	El	End Y Row Integer Index. Specifies the 11-bit Y end value. (0-7FFh)						

43.4 SIU: Sequencer Instruction Unit

4.3.4.1 SIU_MCR: SIU Master Control

I/O Address

HIU_RDT

Index

2800

Register SIU_MCR controls the operation of the SIU for fields 1 and 2.

	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
# RS\	/ D	S	E	F	ग			SI2					SI1		

Access	Reset	Descri	ption
R/W	0h	RSVD	Reserved (read as '0').
R/W	00	SE	Sequencer Enable. Enables the operation of the SIU. OO SIU disabled 10 SIU enabled, start on SI1 11 SIU enabled, start on SI2
R/W	00	FT	Field Toggle. Specifies the field toggle mode and the association of the start index values to a field. ON No field toggle SI1 and SI2 toggle on vertical sync; no field association Field 1 associated to SI1, fields 1 and 2 toggle on vertical sync Field 1 associated to SI2, fields 1 and 2 toggle on vertical sync
R/W	Oh	SI2	Start Index 2. Specifies the 5-bit sequencer instruction Start Index 2. (0-1Fh)
R/W	0h	SI1	Start Index 1. Specifies the 5-bit sequencer instruction Start Index 1. (0-1Fh) ATI01
	R/W R/W	R/W 00 R/W 0h	R/W 0h RSVD R/W 00 SE R/W 00 FT

O Address

Index

Register SIU_FCS is a special read/write register that provides realtime access to the full and empty flags from FIFOs A-G. All flags are active high.

15															
RSV	VD	FGF	FGE	FFF	FFE	FEF	FEE	FDF	FDE	FCF	FCE	F8F	FBE	FAF	FAE

Bit #	Access	Reset	Descri	ption	
15:14	R/W	0h	RSVD	Reserved (read as '0").	
13	R	0h	FGF	FIFO G Full Flag	
12	R/W	0h	FGE	FIFO G Empty Flag	_
11	R	0h	FFF	FIFO F Full Flag	_
10	R/W	Oh	FFE	FIFO F Empty Flag	For all FIFO Full flags (odd bits 13:1):
9	R	0h	FEF	FIFO E Full Flag	O Enables FIFO Resets FIFO
8	R/W	0h	FEE	FIFO E Empty Flag	<u>-</u>
7	R	0h	FDF	FIFO D Full Flag	_
6	R/W	0h	FDE	FIFO D Empty Flag	
5	R	0h	FCF	FIFO C Full Flag	For all FIFO Empty flags
4	R/W	0h	FCE	FIFO C Empty Flag	(even bits 12:0):1 FIFO is empty
3	R	0h	FBF	FIFO B Full Flag	_
2	R/W	0h	FBE	FIFO B Empty Flag	_
1	R	0h	FAF	FIFO A Full Flag	_
0	R/W	Oh	FAE	FIFO A Empty Flag	_

AD101900E

4.3.4.3 SIU_FOU: FIFO Overflow/Underflow

12

I/O Address

HIU_RDT

Index

15

14

2802

13

Register SIU_FOU is a read-only register that provides realtime access to the overflow and underflow flags from FIFOs A-G.

		- 13	16	- 11	10	y	- 5	,	6	5	4	3	2	1	0
RS	SVD	FGO	FGU	FFO	FFU	FEO	FEU	FDO	FDU	FCO	FCU	FBO	FBU	FAO	FAU
Bit #	Ac	cess	Reset	Des	criptl	on	,								
15:14	R		0h	RSV	/ D	Reserve	ed (read	d as '0").			•			
13	R		Oh	FGC		FIFO G	Overflo	ow Flag]						
2	R		Oh	FGL	j i	FIFO G	Under	low Fla	g						
	R		0h	FFO) [FIFO F	Overfic	w Flag							
0 .	R		Oh	FFU	1	FIFO F	Underf	ow Fla	g				Overflov	w flags	
	R		0h	FEO	1	7F0 E	Overtic	w Flag			(odd b	its 13:1 Rese): ts FIFO	,	
Ë	R		Oh	FEU	1	7F0 E	Underf	ow Fla	g		1		overflo		
	R		Oh	FDO	1	IFO D	Overtio	w Flag							
E;	R		0h	FDU	F	FO D	Underf	ow Fla	g						
	R		0h	FCO	F	IFO C	Overfio	w Flag			Sec ell	EIEO 1	l m m m m ti	()	
H	R		0h	FCU	F	IFO C	Underfi	ow Fla	9			oits 12:		•	•
	R		0h	FBO	F	IFO B	Overflo	w Flag			0		s FIFO underfi		
W.	R		0h	FBU	F	IFO B	Underti	ow Flag)		-			-· ·	
	R	- (Oh	FAO	F	IFO A	Overflo	w Flag							
	R	()h	FAU	F	IFO A	Underfi	ow Flac	<u> </u>	_					

4.3.4.4 SIUs_SIM: Sequencer Instruction Memory

I/O Address	HIU_RDT		-	
Index	2e00 (SIU0_SIM)	2e08 (SIU8_SIM)	2e10 (SIU16_SIM)	2e18 (SIU24_SIM)
	2e01 (SIU1_SIM)	2e09 (SIU9_SIM)	2e11 (SIU17_SIM)	2e19 (SIU25_SIM)
	2e02 (SIU2_SIM)	2e0a (SIU10_SIM)	2e12 (SIU18_SIM)	2e1a (SIU26_SIM)
	2e03 (SIU3_SIM)	2e0b (SIU11_SIM)	2e13 (SIU19_SIM)	2e1b (SIU27_SIM)
	2e04 (SIU4_SIM)	2e0c (SIU12_SIM)	2e14 (SIU20_SIM)	2e1c (SIU28_SIM)
	2e05 (SIU5_SIM)	2e0d (SIU13_SIM)	2e15 (SIU21_SIM)	2e1d (SIU29_SIM)
	2e06 (SIU6_SIM)	2e0e (SIU14_SIM)	2e16 (SIU22_SIM)	2e1e (SIU30_SIM)
	2e07 (SIU7_SIM)	2e0f (SIU15_SIM)	2e17 (SIU23_SIM)	2e1f (SIU31_SIM)

The 32 identical registers SIUs_SIM store the instruction sequence for fields 1 and 2.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
RSV	Ω'			OTN			EP		F	A			OE	BA	

Bit #	Access	Reset	Descri	ption
15:14	R/W	Oh	RSVD	Reserved (read as '0').
13:9	R/W	Oh .	OTN	Offset to Next Instruction. Specifies the signed, 5-bit displacement to the next instruction to execute. (0-1Fh)
8	R/W	0	EP	Exit Point. Identifies the current instruction as the exit point when the field toggle condition is detected. O Normal fall-through instruction 1 Exit point instruction
7:4	FVW	0000	FA	FIFO Association. Associates a FIFO with the current instruction. 0000 FIFO G 0001 FIFO F 0010 FIFO E 0011 FIFO A 0100 FIFO B 0101 FIFO C 0110 FIFO D XXXX All other configurations reserved
3:0	F/W	0000	OBA	Object Buffer Association. Associates an object buffer with the current instruction (see field FA). 0000 Object buffer 0 0001 Object buffer 1 0010 Object buffer 2 0011 Object buffer 3 0100 Object buffer 4 0101 Object buffer 5 0110 Object buffer 6 0111 Object buffer 7

4.3.4.5 SIU_FAR: FIFO Auto Reset

I/O Address

HIU_RDT

Index

4001

Register SIU_FAR controls whether SIU FIFOs F and G are automatically reset (cleared) or the vertical sync from the video source designated as master in register VIU_WDT, bit MFTS.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				RSVD					FGR	FFR			RSVD		

Bit #	Access	Reset	Descri	otion
15:7	R/W	Oh	RSVD	Reserved (read as '0').
6 11	R/W	0	FGR	FIFO G Reset. Reset FIFO G on the vertical sync master in register VIU_WDT, bit MFTS. O no auto reset clear FIFO G on vertical sync.
	R/W	0	FFR	FIFO F Reset. Reset FIFO F on the vertical sync master in register VIU_WDT, bit MFTS. O no auto reset 1 clear FIFO F on vertical sync.
Ö	R/W	Oh	RSVD	Reserved (read as '0').

43.5 ALU: Arithmetic and Logic Unit

43.5.1 ALU_MCRf: ALU Master Control

I/O-Address

HIU RDT

Incex

2900 (ALU_MCR1: ALU Master Control, Field 1) 2901 (ALU_MCR2: ALU Master Control, Field 2)

Registers ALU_MCR1 and ALU_MCR2 specify the ALU operating mode for fields 1 and 2.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
GBM	Т	F		AC	OP O		YO	UT	UO	υT	VO	UT	OPCS	OPBS	OPAS	

Bit #	Access	Reset	Descrip	otion
15	R/W	00	GBM	Three-operand Bit Mask selecting tag source.

O Bit per bit mask — bit n in FIFO C will mask bit n of the pixel currently operated on (from FIFO A or B) by the ALU

Bit per pixel mask — bit n in FIFO C will mask pixel n from FIFO A or B

Bit #	Access	Reset	Descri	ption
14:13	R/W	0000	TF	Tag Format. Specifies both the input and output stream tag formats. No tag Tagged 4:2:2 YCbCr data Tagged 5:5:5 RGB data Tagged 8:8:8 RGB data
12:9	R/W	00	AOP	Arithmetic Operation Select. 0000 Alpha mix using alpha register (dA + (1-d)B) 0001 Alpha mix using operand C (cA + (1-c)B) 0010 Operand A + Operand B 0011 Operand A - Operand B 0100 (Operand A - Operand B) / 2 0101 Reconstruct field from operands A and B 0110 Four frame interpolate from operands A and B XXXX All other configurations are reserved; results are unpredictable
8:7	R/W	00	YOUT	Y Output Source Select. O Source output from logical unit O Source output from arithmetic unit Source output based on control tag Enable arithmetic out based on tag
6:5	R/W	00	UOUT	U Output Source Select. O Source output from logical unit O Source output from arithmetic unit 10 Source output based on control tag 11 Enable arithmetic out based on tag
4:3	R/W	0	VOUT	V output Source Select. O Source output from logical unit O Source output from arithmetic unit Source output based on control tag Enable arithmetic out based on tag
2	R/W	0	OPCS	Operand C Source Select. O Operand sourced from constant register Operand sourced from FIFO
1	R/W	0	OPBS	Operand B Source Select. Operand sourced from constant register Operand sourced from FIFO
0	R/W	0	OPAS	Operand A Source Select. O Operand sourced from constant register Operand sourced from FIFO

4.3.5.2 ALU_TOP: Tag Operation

I/O Address

HIU_RDT

Index

2902

Register ALU_TOP specifies the control and output tag multiplexer operation codes.

15	14	13	12	11	10	9	8	7	6	- 5	4	3	2	1	0
			C1	C							0	TC			

Bit #	Access	Reset	Description							
15:8	R/W	0h	CTC	Control Tag Code. (0-FFh)						
7:0	R/W	0h	отс	Output Tag Code. (0-FFh)						

4.3.5.3 ALU_AV: Alpha Value

I/O Address

HIU_RDT

Index

2903

Register ALU_AV specifies the alpha mix constant.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			RS	VD							F	V			

Bit#	Access	Reset	Descrip	ption
15.8	R/W	Oh	RSVD	Reserved (read as '0').
7.0	R/W	0h	AV	Alpha Value. (0-FFh)
11555				

4.3.5.4 ALU_LOPx: Logic Operation

I/O Address

HIU_RDT

Index

2904 (ALU_LOPY: Logic Operation Channel Y) 2905 (ALU_LOPU: Logic Operation Channel U) 2906 (ALU_LOPV: Logic Operation Channel V)

Registers ALU LOPY, ALU_LOPU, and ALU LOPV specify the constant values for logical multiplexers A, B, and C, respectively.

15 11 10 MLOP

Bit # Access Reset Description 15:0 R/W 0h MLOP Multiplexor Logical Operation.

4.3.5.5 ALU_CAx: Constant A

I/O Address

HIU_RDT

Index

2907 (ALU_CAY: Constant A, Channel Y) 2908 (ALU_CAU: Constant A, Channel U)

2909 (ALU_CAV: Constant A, Channel V)

See also:

ALU_MCRf: ALU Master Control, p. 62

Registers ALU_CAY, ALU_CAU, and ALU_CAV specify the constant values for Operand A, based on the value of register ALU_MCRf, field OPAS.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			RS	VD							CC	N			
			RSVD				TAG					N			

Bit #	Access	Reset	t Description								
15:9	R/W	0h	RSVD	Reserved (read as '0').							
8	P/W	Oh	TAG	Tag. (ALU_CAU and ALU_CAV only) Specifies the constant tag bit to insert in the input stream. (0-1h)							
7:0	FVW	Oh	CON	Constant. Specifies the constant 8-bit value to use in place of the real-time input stream channel for operand A. (0-FFh)							

4.3.5.6 ALU_CBx: Constant B

I/O Address

HIU RDT

Index

290a (ALU_CBY: Constant B, Channel Y) 290b (ALU_CBU: Constant B, Channel U)

290c (ALU_CBV: Constant B, Channel V)

See also:

ALU_MCRf: ALU Master Control, p. 62

Registers ALU_CBY, ALU_CBU, and ALU_CBV specify the constant values for Operand B, based on the value of register ALU_MCRf, field OPBS.

15	14	13	12	11	10	9	8	7	6	5	4.	3	2	1	0
			RS	VD							CC	N			
			RSVD				TAG				CC	N			

Bit #	Access	Reset	Description								
15.9	R/W	0h	RSVD	Reserved (read as '0').							
8	R/W	Oh	TAG	Tag. (ALU_CBU and ALU_CBV only) Specifies the constant tag bit to insert in the input stream. (0-1h)							
7.0-	R/W	Oh `	CON	Constant. Specifies the constant 8-bit value to use in place of the real-time input stream channel for operand B. (0-FFh)							

4:3.5.7 ALU_CCx: Constant C

I/O Address

HIU_RDT

Index

290d (ALU_CCY: Constant C, Channel Y)

290e (ALU_CCU: Constant C, Channel U) 290f (ALU_CCV: Constant C, Channel V)

See also:

ALU_MCRf: ALU Master Control, p. 62

Registers ALU_CCY, ALU_CCU, and ALU_CCV specify the constant values for Operand C, based on the value of register ALU_MCRf, field OPCS.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			RS	VD							C	NC			
			RSVD				TAG				C	NC			

Bit #	Access	Reset	Descrip	Description							
15:9	R/W	0h	RSVD	Reserved (read as '0').							
8	R/W	0h	TAG	Tag. (ALU_CCU and ALU_CCV only) Specifies the constant tag bit to insert in the input stream. (0-1h)							

Bit #	Access	Reset	Descrip	otion
7:0	R/W	0h	CON	Constant. Specifies the constant 8-bit value to use in place of the real-time input stream channel for operand C. (0-FFh)

4.3.6 OPU: Output Processing Unit

4.3.6.1 OPU_MCRf: OPU Master Control

POSTED

I/O Address HIU RDT

Index 2a00 (OPU M

2a00 (OPU_MCR1: OPU Master Control, Field 2b00 (OPU_MCR2: OPU Master Control, Field

Registers OPU_MCR1 and OPU_MCR2 control the operation of the OPU for fields 1 and 2.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
FPS	IM	ZE	RS	VD	LSM			RS	VD				11	F	

Bit #	Access	Reset	Descri	ption
15	R/W	0	FPS	Field Polarity Select. Controls the polarity of the field ID signal supplied to the OPU Window Clipping Unit. Normal polarity Invert polarity
14	R/W	0	IM	Interlace Mode. Specifies the input stream as interlaced or non-interlaced data. O Progressive scan input Interlaced input
13	R/W	0	ZE	Zoom Enable. Enables or disables the operation of the 2:1 X zoom subunit. Only affects source object size. O Disable zoom Enable 2X zoom
12:11	R/W	Oh	RSVD	Reserved (read as '0').
10	R/W	0	LSM	Line Start Mode. O Active line starts on horizontal blank inactive 1 Active line starts on horizontal sync inactive (VSU_HAD must = VSU_HSW+3 in loopback mode.)
9:4	R/W	0h	RSVD	Reserved (read as '0').
3:0	R/W		IF	Input Data Format. Specifies the format of the input data stream. O000 YCbCr 4:2:2 non-tagged data O001 YCbCr 4:2:2 tagged data ATI019093 ATI019093 ATI019093 ATI019093 ATI019093 ATI019093

4.3.6.2 OPU_XBI1: X Begin

POSTED

I/O Address

HIU_RDT

Index

2a02 (OPU_XBI1: X Begin Integer, Field 1) 2b02 (OPU_XBI2: X Begin Integer, Field 2)

Registers OPU_XBI1 and OPU_XBI2 specify the 11-bit X begin value for fields 1 and 2.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	· · ·	RSVD							-	81					

Bit #	Access	Reset	Descrip	Reserved (read as '0').				
15:11	R/W	0h	RSVD	Reserved (read as '0').				
10:0	R/W	0h	81	Begin X Column Integer Index. Specifies the 11-bit integer portion of the 11-bit X begin value. (0-7FFh)				

4.3.6.3 OPU_XEIf: X End

POSTED

/O Address

HIU_RDT

ndex

2a03 (OPU_XEI1: X End Integer, Field 1) 2b03 (OPU_XEI2: X End Integer, Field 2)

Registers OPU_XEI1 and OPU_XEI2 specify the 11-bit X end value for fields 1 and 2.

										~				
15	14	13	12	11	10	9	 7	6	5	4	3	2	1	0
		RSVD							El					

BIH#	Access	Reset	Descrip	otion
15:11	R/W	Oh	RSVD	Reserved (read as '0').
10:0	R/W	Oh	EI	End X Column Integer Index. Specifies the 11-bit X end value. (0-7FFh)

4.3.6.4 OPU_YBIf: Y Begin

POSTED

I/O Address

HIU_ROT

Index

2a07 (OPU_YBI1: Y Begin Integer, Field 1)

2b07 (OPU_YBI2: Y Begin Integer, Field 2)

Registers OPU_YBI1 and OPU_YBI2 specify the 11-bit Y begin value for fields 1 and 2.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		RSVD	"							BI					

Bit #	Access	Reset	Descrip	otion
15:11	R/W	0h	RSVD	Reserved (read as '0').
10:0	R/W	0h	BI	Begin Y Row Integer Index. Specifies the 11-bit integer portion of the 11-bit Y begin value. (0-7FFh)

4.3.6.5 OPU_YEIf: Y End

POSTED

I/O Address

HIU_RDT

Index

2a08 (OPU_YEI1: Y End Integer, Field 1)

2b08 (OPU_YEI2: Y End Integer, Field 2)

Registers OPU_YEI1 and OPU_YEI2 specify the 11-bit Y end value for fields 1 and 2.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		RSVD	•							El					

Bit #	Access	Reset	Descrip	otion
15:11	R/W	Oh	RSVD	Reserved (read as '0").
10:0	R/W	0h	El	End Y Row Integer Index. Specifies the 11-bit Y end value. (0-7FFh)

4.3.7 RFU: Reference Frame Unit

Name	Index	Definition	Posted?	Ref. Section
MMU: Memory	Managemen	t Unit		
MMU_MCR	4000	MMU Master Control	POSTED	4.3.8.1, p. 73
OBU: Object B	uffer Unit			4.3.9, p. 74
OBUO_MCR	4800	Object Buffer 0 Master Control	POSTED	4.3.9.1, p. 74
OBU0_RFX	4801	Object Buffer 0 Reference Frame X Size	POSTED	4.3.9.2, p. 75
OBUO_LSL	4802	Object Buffer 0 Linear Start Address Low	POSTED	4.3.10, p. 76
OBUO_LSH	4803	Object Buffer 0 Linear Start Address High	POSTED	4.3.10, p. 76
OBUO_BSX	4804	Object Buffer 0 X Size	POSTED	4.3.10.1, p. 77
OB 0_BSY	4805	Object Buffer 0 Y Size	POSTED	4.3.10.1, p. 77
OBUO_DEC	4806	Object Buffer 0 Decimate Control	POSTED	4.3.10.2, p. 78
0801_MCR	4810	Object Buffer 1 Master Control	POSTED	4.3.9.1, p. 74
OBU1_RFX	4811	Object Buffer 1 Reference Frame X Size	POSTED	4.3.9.2, p. 75
OBU1_LSL	4812	Object Buffer 1 Linear Start Address Low	POSTED	4.3.10, p. 76
OBLH_LSH	4813	Object Buffer 1 Linear Start Address High	POSTED	4.3.10, p. 76
OBUI_BSX	4814	Object Buffer 1 X Size	POSTED	4.3.10.1, p. 77
OBLI _BSY	4815	Object Buffer 1 Y Size	POSTED	4.3.10.1, p. 77
OBU1_DEC	4816	Object Buffer 1 Decimate Control	POSTED	4.3.10.2, p. 78
OBU2_MCR	4820	Object Buffer 2 Master Control	POSTED	4.3.9.1, p. 74
OBU2_RFX	4821	Object Buffer 2 Reference Frame X Size	POSTED	4.3.9.2, p. 75
OBU2_LSL	4822	Object Buffer 2 Linear Start Address Low	POSTED	4.3.10, p. 76
OBU2_LSH	4823	Object Buffer 2 Linear Start Address High	POSTED	4.3.10, p. 76
OBU2_BSX	4824	Object Buffer 2 X Size	POSTED	4.3.10.1, p. 77
OBU2_BSY	4825	Object Buffer 2 Y Size	POSTED	4.3.10.1, p. 77
OBU2_DEC	4826	Object Buffer 2 Decimate Control	POSTED	4.3.10.2, p. 78
OBU3_MCR	4830	Object Buffer 3 Master Control	POSTED	4.3.9.1, p. 74
OBU3_RFX	4831	Object Buffer 3 Reference Frame X Size	POSTED	4.3.9.2, p. 75
DBU3_LSL	4832	Object Buffer 3 Linear Start Address Low	POSTED	4.3.10, p. 76
DBU3_LSH	4833	Object Buffer 3 Linear Start Address High	POSTED	4.3.10, p. 76

4.3.7 RFU: Reference Frame Unit (cont.)

Name	Index	Definition	Posted?	Ref. Section
OBU3_BSX	4834	Object Buffer 3 X Size	POSTED	4.3.10.1, p. 77
OBU3_BSY	4835	Object Buffer 3 Y Size	POSTED	4.3.10.1, p. 77
OBU3_DEC	4836	Object Buffer 3 Decimate Control	POSTED	4.3.10.2, p. 78
OBU4_MCR	4840	Object Buffer 4 Master Control	POSTED	4.3.9.1, p. 74
OBU4_RFX	4841	Object Buffer 4 Reference Frame X Size	POSTED	4.3.9.2, p. 75
OBU4_LSL	4842	Object Buffer 4 Linear Start Address Low	POSTED	4.3.10, p. 76
OBU4_LSH	4843	Object Buffer 4 Linear Start Address High	POSTED	4.3.10, p. 76
OBU4_BSX	4844	Object Buffer 4 X Size	POSTED	4.3.10.1, p. 77
OBU4_BSY	4845	Object Buffer 4 Y Size	POSTED	4.3.10.1, p. 77
OBU4_DEC	4846	Object Buffer 4 Decimate Control	POSTED	4.3.10.2, p. 78
OBU5_MCR	4850	Object Buffer 5 Master Control	POSTED	4.3.9.1, p. 74
OBU5_RFX	4851	Object Buffer 5 Reference Frame X Size	POSTED	4.3.9.2, p. 75
OBU5_LSL	4852	Object Buffer 5 Linear Start Address Low	POSTED	4.3.10, p. 76
OBU5_LSH	4853	Object Buffer 5 Linear Start Address High	POSTED	4.3.10, p. 76
OBU5_BSX	4854	Object Buffer 5 X Size	POSTED	4.3.10.1, p. 77
OBU5_BSY	4855	Object Buffer 5 Y Size	POSTED	4.3.10.1, p. 77
OBU5_DEC	4856	Object Buffer 5 Decimate Control	POSTED	4.3.10.2, p. 78
OBU6_MCR	4860	Object Buffer 6 Master Control	POSTED	4.3.9.1, p. 74
OBU6_RFX	4861	Object Buffer 6 Reference Frame X Size	POSTED	4.3.9.2, p. 75
OBU6_LSL	4862	Object Buffer 6 Linear Start Address Low	POSTED	4.3.10, p. 76
OBU6_LSH	4863	Object Buffer 6 Linear Start Address High	POSTED	4.3.10, p. 76
OBU6_BSX	4864	Object Buffer 6 X Size	POSTED	4.3.10.1, p. 77
OBU6_BSY	4865	Object Buffer 6 Y Size	POSTED	4.3.10.1, p. 77
OBU6_DEC	4866	Object Buffer 6 Decimate Control	POSTED	4.3.10.2, p. 78
OBU7_MCR	4870	Object Buffer 7 Master Control	POSTED	4.3.9.1, p. 74
OBU7_RFX	4871	Object Buffer 7 Reference Frame X Size	POSTED	4.3.9.2, p. 75
OBU7_LSL	4872	Object Buffer 7 Linear Start Address Low	POSTED	4.3.10, p. 76
OBU7_LSH	4873	Object Buffer 7 Linear Start Address High	POSTED	4.3.10, p. 76
OBU7_BSX	4874	Object Buffer 7 X Size	POSTED	4.3.10.1, p. 77

July 1993

ATI019097

71

4.3.7 RFU: Reference Frame Unit (cont.)

Name	Index	Definition	Posted?	Ref. Section
OBU7_BSY	4875	Object Buffer 7 Y Size	POSTED	4.3.10.1, p
OBU7_DEC	4876	Object Buffer 7 Decimate Control	POSTED	4.3.10.2, c 78
DWU: Display W	indow Unit		POSTED	4.3.11, p. 78
DWU_MCR	4100	Display Window Master Control	POSTED	4.3.11.1, p. 78
DWU_HCR	4101	Display Window Horizontal Control	POSTED	4.3.11.2, p. 80
DWU0_DZF	4400	Display Window 0 Zoom Factor	POSTED	4.3.11.3, p. 81
DWU0_RFX	4401	Display Window 0 Reference Frame X Size	POSTED	4.3.11.4, p. 81
DWU0_LSL	4402	Display Window 0 LSA Low	POSTED	4.3.11.5, p. 82
DWU0_LSH	4403	Display Window 0 LSA High	POSTED	4.3.11.5, p. 82
DWU0_WSX	4404	Display Window 0 X Size	POSTED	4.3.11.6, p. 82
DWU0_WSY	4405	Display Window 0 Y Size	POSTED	4.3.11.6, p. 82
DWU0_DSX	4406	Display Window 0 X Start	POSTED	4.3.11.7, p. 83
DWU0_DSY	4407	Display Window 0 Y Start	POSTED	4.3.11.7, p. 83
DWU1_DZF	4410	Display Window 1 Zoom Factor	POSTED	4.3.11.3, p. 81
QWU1_RFX	4411	Display Window 1 Reference Frame X Size	POSTED	4.3.11.4, p. 81
DWU1_LSL	4412	Display Window 1 LSA Low	POSTED	4.3.11.5, p. 82
DWU1_LSH	4413	Display Window 1 LSA High	POSTED	4.3.11.5, p. 82
DWU1_WSX	4414	Display Window 1 X Size	POSTED	4.3.11.6, p. 82
DWU1_WSY	4415	Display Window 1 Y Size	POSTED	4.3.11.6, p. 82
DWU1_DSX	4416	Display Window 1 X Start	POSTED	4.3.11.7, p. 83
DWU1_DSY	4417	Display Window 1 Y Start	POSTED	4.3.11.7, p. 83
DWU2_DZF	4420	Display Window 2 Zoom Factor	POSTED	4.3.11.3, p. 81
DWU2_RFX	4421	Display Window 2 Reference Frame X Size	POSTED	4.3.11.4, p. 81
DWU2_LSL	4422	Display Window 2 LSA Low	POSTED	4.3.11.5, p. 82
DWU2_LSH	4423	Display Window 2 LSA High	POS ED	4.3.11.5, p. 82
DWU2_WSX	4424	Display Window 2 X Size	POSTED	4.3.11.6, p. 82
DWU2_WSY	4425	Display Window 2 Y Size	POSTED	4.3.11.6, p. 82
DWU2_DSX	4426	Display Window 2 X Start	POSTED	4.3.11.7, p. 83

4.3.7 RFU: Reference Frame Unit (cont.)

Name	Index	Definition	Posted?	Ref. Section
DWU2_DSY	4427	Display Window 2 Y Start	POSTED	4.3.11.7, p. 83
DWU3_DZF	4430	Display Window 3 Zoom Factor	POSTED	4.3.11.3, p. 81
DWU3_RFX	4431	Display Window 3 Reference Frame X Size	POSTED	4.3.11.4, p. 81
DWU3_LSL	4432	Display Window 3 LSA Low	POSTED	4.3.11.5, p. 82
DWU3_LSH	4433	Display Window 3 LSA High	POSTED	4.3.11.5, p. 82
DWU3_WSX	4434	Display Window 3 X Size	POSTED	4.3.11.6, p. 82
DWU3_WSY	4435	Display Window 3 Y Size	POSTED	4.3.11.6, p. 82
DWU3_DSX	4436	Display Window 3 X Start	POSTED	4.3.11.7, p. 83
DWU3_DSY	4437	Display Window 3 Y Start	POSTED	4.3.11.7, p. 83

4.3.8 MMU: Memory Management Unit

4.3.8.1 MMU_MCR: MMU Master Control

I/O Address

HIU_ROT

index

4000

Register MMU_MCR specifies the characteristics of the frame buffer used by the DVP.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	
					RSVD						FB0		FB	C	

Bit #	Access	Reset	Descrip	otion
15:5	R/W	0h	RSVD	Reserved (read as '0').
4	R/W	0	FBD	Frame Buffer Data Bus Width. 0 16-bit 1 32-bit
3:0	R/W	0000	FBC	Frame Buffer Memory Device Address Configuration. 0000 64K 0001 128K 0010 256K 0011 1 M

4.3.9 OBU: Object Buffer Unit

4.3.9.1 OBUo MCR: Object Buffer Master Control

POSTED

I/O Address

HIU_RDT

Index

4800 (OBU0_MCR: Object Buffer 0 Master Control)
4810 (OBU1_MCR: Object Buffer 1 Master Control)
4820 (OBU2_MCR: Object Buffer 2 Master Control)
4830 (OBU3_MCR: Object Buffer 3 Master Control)
4840 (OBU4_MCR: Object Buffer 4 Master Control)
4850 (OBU5_MCR: Object Buffer 5 Master Control)
4860 (OBU6_MCR: Object Buffer 6 Master Control)
4870 (OBU7_MCR: Object Buffer 7 Master Control)

The eight identical registers OBUo_MCR control the operation of the eight object buffers.

15	14	13	12	11	10	9 8	7	6	5	4	3	2	1	
	RSVD		LME	CME	FL		PM		SSM	YBDC	XBDC		FA	
! #	Acce	ess f	Reset	Descri	ption								<u>-</u>	
5 213	R/W	C	000	RSVD	Reser	ved (read	as '0').							
	R/W	C)	LME	stream	ance Mas n (typically or masked Enable I Disable	the Y o d. Iuminan	channel ce data	of YCb update	Cr data (MSB	i) is writi written i	ten to t to obje	6-bit inpo the object oct buffer	at
	R/W	C)	CME	stream	ninance M n (typically or masked Enable Disable	the Cb d. chromin	Cr chan	inel of \ ata upd	(CbCr (ate (LS	data) is B writte	written n to ob	16-bit in to the o bject buff	bject
0	R/W	(FL		Lock. Field or in registe not field field loc	or VIU_	WDT, bi			source	selecte	ed as the)
9:6	R/W		Oh	OPM		(bit FL n Enable Enable Enable Enable OBU0 o Enable	and add OBU; in OBU; in OBU; in OBU; in OBU; in OBU; in obu; i	dressing ne lock to IP i) idepend idepend idepend idepend idepend	mode U1, add lent, int lent, int lent, no lent, lin lent, blo DBUO o	s. dress g erlaced erlaced mal ac e replic ock mo	enerationadores addres addres ddresses	n lock ses, st ses, st s resses	ed to IPI art on lir art on lir (on read (8 x 8 b	U1 ne 1 ne 2 d)

Bit #	Access	Reset	Descrip	otion
5	R/W	0 .	SSM	Single Sweep Mode. 0 Disable single sweep mode 1 Enable single sweep mode (reset OPM to 00000 after one field)
4	R/W	0	YBDC	Y BLT Direction Control. Specifies whether the Y address counter is incremented or decremented after each line. BLT to decreasing memory addresses BLT to increasing memory addresses
3	R/W	0	XBDC	X BLT Direction Control. Specifies whether the X address counter is incremented or decremented after each line. BLT to decreasing memory addresses BLT to increasing memory addresses
2:0	R/W	000	FA	FIFO Association. Specifies whether the stream written into the object buffer is to be copied to one of the output FIFOs. OO No FIFO copy OOI Copy object buffer to FIFO A during write OIO Copy object buffer to FIFO B during write OII Copy object buffer to FIFO C during write OO Copy object buffer to FIFO D during write OO Copy object buffer to FIFO D during write XXX All other configurations reserved

4.3.9.2 OBUo_RFX: Object Buffer Reference Frame Size

POSTED I/O Address Index	HIU_RDT 4801 (OBU0_RFX: Object Buffer 0 Reference Frame X Size) 4811 (OBU1_RFX: Object Buffer 1 Reference Frame X Size) 4821 (OBU2_RFX: Object Buffer 2 Reference Frame X Size) 4831 (OBU3_RFX: Object Buffer 3 Reference Frame X Size) 4841 (OBU4_RFX: Object Buffer 4 Reference Frame X Size) 4851 (OBU5_RFX: Object Buffer 5 Reference Frame X Size)
	4861 (OBU6_RFX: Object Buffer 6 Reference Frame X Size)
	4871 (OBU7_RFX: Object Buffer 7 Reference Frame X Size)

The eight identical registers OBUo_RFX specify, for each of the eight object buffers, the 11-bit width (in pixels) of the reference frame containing the object buffer.

	ASV)		RFX		
Bit#	Access	Reset	Descri	otion		
15:11	R/W	0h	RSVD	Reserved (read as '0').		
10:0	R/W	0h	RFX	Reference Frame X size (0-7FFh)		_
					- ATTO10101	_

ATI019101

0

15

13

12

4.3.10 OBUo_LSb: Object Buffer Linear Start Address

20	5	H	E	U
I/O	Α	d	ď	re:

I/O Address

HIU_RDT

Index

4802 (OBU0_LSL: Object Buffer 0 Linear Start Address Low) 4812 (OBU1_LSL: Object Buffer 1 Linear Start Address Low)

4822 (OBU2_LSL: Object Buffer 2 Linear Start Address Low) 4832 (OBU3_LSL: Object Buffer 3 Linear Start Address Low) 4842 (OBU4_LSL: Object Buffer 4 Linear Start Address Low)

4852 (OBU5_LSL: Object Buffer 5 Linear Start Address Low) 4862 (OBU6_LSL: Object Buffer 6 Linear Start Address Low)

4872 (OBU7_LSL: Object Buffer 7 Linear Start Address Low)

4803 (OBU0_LSH: Object Buffer 0 Linear Start Address High) 4813 (OBU1_LSH: Object Buffer 1 Linear Start Address High)

4823 (OBU2_LSH: Object Buffer 2 Linear Start Address High)

4833 (OBU3_LSH: Object Buffer 3 Linear Start Address High)

4843 (OBU4_LSH: Object Buffer 4 Linear Start Address High) 4853 (OBU5_LSH: Object Buffer 5 Linear Start Address High)

4863 (OBU6_LSH: Object Buffer 6 Linear Start Address High)

4873 (OBU7_LSH: Object Buffer 7 Linear Start Address High)

Registers OBUo_LSL and OBUo_LSH specify the 23-bit linear starting address of the object buffer.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							L	SL							
i de la				RS	SVD							L	SH		

BIL#	Access	Reset	Description

Object Buffer Linear Start Address Low

15 0	R/W	0h	LSL	Linear Start Address Low. Specifies the lower bits of the 22-bit linear
				starting address (LSb must = 0). (0-FFFEh)

Object Buffer Linear Start Address High

15:6	R/W	Oh	RSVD	Reserved (read as '0').
5:0	R/W	Oh	LSH	Linear Start Address High. Specifies the upper 6 bits of the 22-bit linear starting address. (0-7Fh)

4.3.10.1 OBUo_BSa: Object Buffer Size

POSTED-

I/O Address

HIU_RDT

Index

DI+ #

10:0

R/W

Oh

BSY

4804 (OBU0_BSX: Object Buffer 0 X Size) 4805 (OBU0_BSY: Object Buffer 0 Y Size) 4814 (OBU1_BSX: Object Buffer 1 X Size) 4815 (OBU1_BSY: Object Buffer 1 Y Size) 4824 (OBU2_BSX: Object Buffer 2 X Size) 4825 (OBU2_BSY: Object Buffer 2 Y Size) 4834 (OBU3_BSX: Object Buffer 3 X Size) 4835 (OBU3_BSY: Object Buffer 3 Y Size) 4844 (OBU4_BSX: Object Buffer 4 X Size) 4845 (OBU4_BSY: Object Buffer 4 Y Size) 4854 (OBU5_BSX: Object Buffer 5 X Size) 4855 (OBU5_BSY: Object Buffer 5 Y Size) 4864 (OBU6_BSX: Object Buffer 6 X Size) 4865 (OBU6_BSY: Object Buffer 6 Y Size) 4874 (OBU7_BSX: Object Buffer 7 X Size) 4875 (OBU7_BSY: Object Buffer 7 Y Size)

Registers OBUo_BSX and OBUo_BSY specify the size of the object buffer.

 15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		RSVD				,				BSX					
		RSVD								BSY					

15:11	R/W	Oh	RSVD	Reserved (read as '0').
10:0	R/W -	Oh	BSX	Buffer X Size. Specifies the object buffer's width in pixels. The hard ware always forces the LSb to '0'. (0-7FFh)
OBUo_l	BSY: Obje	ct Buffer	Y Size	
15:11	R/W	Oh	RSVD	Reserved (read as '0').

Buffer Y Size. Specifies the object buffer's height in pixels. (0-7FFh)

4.3.10.2 OBUo_DEC: Object Buffer Decimate Control

POSTED

I/O Address

HIU_RDT

Index

4806 (OBU0_DEC: Object Buffer 0 Decimate Control)
4816 (OBU1_DEC: Object Buffer 1 Decimate Control)
4826 (OBU2_DEC: Object Buffer 2 Decimate Control)
4836 (OBU3_DEC: Object Buffer 3 Decimate Control)
4846 (OBU4_DEC: Object Buffer 4 Decimate Control)
4856 (OBU5_DEC: Object Buffer 5 Decimate Control)
4866 (OBU6_DEC: Object Buffer 6 Decimate Control)
4876 (OBU7_DEC: Object Buffer 7 Decimate Control)

Register OBUo_DEC specifies the write decimation mask. DM7-DM0 are mapped to each successive group of eight pixels written into the object buffer. Do not drop the first line or pixel in a transfer to an object buffer (i.e., when BLT direction is up, DM0 must be '0'; when BLT direction is down, DM7 must be '0').

15	14 13	12	11 - 1	0 9	8	7	6	5	4	3	2	1	0
		RS\	/0			DM7	DM6	DM5	DM4	DM3	DM2	DM1	OMO
BH #	Access	Reset	Descri	ption									
BH #	R/W	0h	RSVD	Reserve	ed (read	as '0).	ı						
7.	R/W	. Oh	DM7	Write D	ecimati	on Mask	Bit 7.				,		
6	R/W	0h	DM6	Write D	ecimati	on Mask	Bit 6.						
5	R/W	Oh	DM5	Write D	ecimati	on Mask	Bit 5.	,	For all	l Writa	Decima	ition Bit	s 7:0:
4 14 3 2	R/W	0h	DM4	Write D	eamati	on Mask	Bit 4.		0 W	rite pix	el to fra		
300	R/W	0h	DM3	Write D	ecimati	on Mask	Bit 3.		ָּט וָ	rop pix	9ŧ		
2	P/W	0h	DM2	Write D	ecimati	on Mask	Bit 2.	•					
1	R/W	Oh	DM1	Write D	ecimati	on Mask	Bit 1.						•
0	R/W	Oh	DMO	Write D	ecimati	on Mask	Bit O.						

4.3.11 DWU: Display Window Unit

4.3.11.1 DWU_MCR: Display Window Master Control

POSTED

I/O Address

HIU_RDT

Index

4100

Register DWU_MCR controls the operation of the display window and indicates to the RFU whether or not the CL-PX2080 is present.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
GCS	GFP	GFM	GVSP	GHSP	GBP	occ	IMS		AS	OVS		WC3	WC2	WC1	WCO
Bit #	Acc	cess	Reset	Des	cript	ion									
15	R/W	1	0	GCS	6	Graphio 0 1		k Select SPCLK CLK							
14	R/W	I	0	GFP		Graphic 0 1	norma	Polarity polarity dopolarity	,						····
13	R/W		0	GFM	•	Graphic 0 1	s Field field po GHSP	Mode plarity del input use	ermir ed as	ned by field se	value o	f GHSP	on falli	ing GV	SP
12	R/W		0	GVS	(Graphic 0 1	S Vertice		Polari	ty. Spe	cifies p	olarity o	of signa	GVS.	_
11	R/W		0	GHS	(Graphic O	s Horiz active active		nc Pol	anty. S	pecifie	s polant	y of sig	nal GH	S.
10	R/W	ı	0	GBP	(Graphic) I	s Blank active I active I	•	Spec	ifies po	plarity o	of signal	GBL.		
9	R/W		0	occ		onfigur)	ation in CL-PX	low Controllows the 2080 is part 2080 is not 2080 is n	e CL- resen	·PX208 t — sy:	0. stem su	pports	occiude	ed wind	ows
3	R/W	• (IMS		bject bi ion-inte	uffer for riaced. Progres	Select. S r display I ssive-sca ed video	by the	currer	it displa	ay windi			
7:4	R/W	(0000	RSV) F	Reserve	d (read	as '0').							
3	R/W)	WC3	٧	Vindow	3 Cont	roi							_
2	R/W	C)	WC2	٧	Vindow	2 Cont	rot	-	- F0		indow (ble wind		s 3:0:	
	R/W	O		WC1	٧	Vindow	1 Contr	rol		- 1		ole wind	_		
)	R/W	0		WCO	٧	/indow	0 Contr	'Ol		-					

4.3.11.2 DWU_HCR: Display Window Horizontal Control

POSTED

I/O Address

HIU_RDT

Index

4101

Register DWU_HCR shares two functions, depending on whether or not the DVP is operating with the CL-PX2080, as specified register DWU_MCR, bit OCC.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	
		RSVD				4				HAC					
		-	RS	VD	<u> </u>						M	NS			

Bit #	Access	Reset	Descrip	otion
Horizor	ntal Active (Count (DV	VU_MCR.	bit OCC = 0)
5:11	R/W	Oh	RSVD	Reserved (read as '0').
5 :11 0 :0	R/W	Oh	HAC	Honzontal Active Count. Specifies the number of pixel periods in the horizontal line active interval for the output CRT display. (0-7FFh)
(I nimu	ım Window	Separatio	on (DWU_l	MCR, bit OCC = 1)
5.8 -0	R/W	0h	RSVD	Reserved (read as '0').
	R/W	0h	MWS	Minimum Window Separation. Specifies the minimum number of pixe periods required to separate display windows. (0-ffh)

POSTED

I/O Address

HIU_RDT

Index

4400 (DWU0_DZF: Display Window 0 Zoom Factor)
4410 (DWU1_DZF: Display Window 1 Zoom Factor)
4420 (DWU2_DZF: Display Window 2 Zoom Factor)

4430 (DWU3_DZF: Display Window 3 Zoom Factor)

Register DWUd_DZF specifies the X and Y zoom factors to be applied to the display window output (functional only when used with CL-PX2080). The image is scaled according to the following formula:

For example, a zoom factor of 128 yields a scaling factor of 2. A zoom factor of '0h' specifies a scaling factor of one (no change in image size).

NOTE: The contents of the object buffer are not affected by the zoom factors.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			YZC	MOC	•						XZC	ОМ			

Bit #	Access	Reset	Descrip	tion
15:8	R/W	Oh	YZOOM	Y Zoom Factor — line replication value. (0-FFh)
7:0	R/W	0h	XZOOM	X Zoom Factor — pixel replication value. (0-FFh)

4.3.11.4 DWUd_RFX: Display Window Reference Frame Size

POSTED

I/O Address

I/O Address

HIU_RDT

Index

4401 (DWU0_RFX: Display Window 0 Reference Frame X Size)

4411 (DWU1_RFX: Display Window 1 Reference Frame X Size) 4421 (DWU2_RFX: Display Window 2 Reference Frame X Size) 4431 (DWU3_RFX: Display Window 3 Reference Frame X Size)

Register DWUd_RFX specifies the 11-bit pixel width of the reference frame containing the display window.

15	14	13	12	, 11	10	9	8	7	6	5	4	3	2	1	0
		RSVD				-				RFX				_	

Bit #	Access	Reset	Descri	otion		
15:11	R/W	0h	RSVD	Reserved (read as '0').		
10:0	R/W	0h	RFX	Reference Frame X size. (0-7FFh)	ATI019107	=

4.3.11.5 DWUd_LSb: Display Window Linear Start Address

POSTED

I/O Address

HIU RDT

Access Beent

Index

RIF#

4402 (DWU0_LSL: Display Window 0 LSA Low) 4403 (DWU0_LSH: Display Window . LSA High)

4412 (DWU1_LSL: Display Window 1 LSA Low) 4413 (DWU1_LSH: Display Window | LSA High) 4422 (DWU2_LSL: Display Window 2 LSA Low) 4423 (DWU2_LSH: Display Window 2 LSA High) 4432 (DWU3_LSL: Display Window 3 LSA Low) 4433 (DWU3_LSH: Display Window 3 LSA High)

Registers DWUd_LSL and DWUd_LSH specify the 23-bit linear starting address of the display window.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							L	SL							· · · · ·
	ASVD											LS	SH		

511 #	70000	110361	Description	

PWUd_LSL: Display Window Linear Start Address Low

Description

1 5 .0	R/W	Oh	LSL	Linear Start Address Low. Specifies the lower bits of the 22-bit linear
				starting address. (LSb must = 0). (0-7FFFh)
t. E				

DWUd LSH: Display Window Linear Start Address High

157	, R/W	0h	RSVD	Reserved (read as '0").
6:0	R/W	Oh	LSH	Linear Start Address High. Specifies the upper 7 bits of the 22-bit linear starting address. (0-7Fh)

孤.11.6 DWUd_WSa: Display Window Size

POSTED

LO Address

HIU RDT

index

4404 (DWU0_WSX: Display Window 0 X Size) 4405 (DWU0_WSY: Display Window 0 Y Size) 4414 (DWU1_WSX: Display Window 1 X Size) 4415 (DWU1_WSY: Display Window 1 Y Size)

4424 (DWU2_WSX: Display Window 2 X Size) 4426 (DWU2_WSY: Display Window 2 Y Size)

4434 (DWU3_WSX: Display Window 3 X Size) 4435 (DWU3_WSY: Display Window 3 Y Size)

Registers DWUd_WSX and DWUd_WSY specify the size of the display window.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		RSVD	_							wsx					
		RSVD								WSY					

Access	Reset	Descrip	ption
WSX: Displa	ay Windov	v X Size	
R/W	Oh	RSVD	Reserved (read as '0').
P/W	0h	wsx	Window X Size. Specifies the X dimension of the display window in pixels. (LSb must = 0)
WSY: Dispi	ay Windo	w Y Size	
R/W	0h	RSVD	Reserved (read as '0').
R/W	Oh	WSY	Window Y Size. Specifies the Y dimension of the display window in pixels. (0-7FFh)
	WSX: Displa R/W R/W WSY: Displ	R/W 0h R/W 0h WSY: Display Windo	WSX: Display Window X Size R/W Oh RSVD R/W Oh WSX WSY: Display Window Y Size R/W Oh RSVD

4.3.11.7 DWUd_DSa: Display Window Start

POSTED

I/O Address HIU_RDT

Index 4406 (DWU0_DSX: Display Window 0 X Start) 4407 (DWU0_DSY: Display Window 0 Y Start)

4416 (DWU1_DSX: Display Window 1 X Start) 4417 (DWU1_DSY: Display Window 1 Y Start)

4426 (DWU2_DSX: Display Window 2 X Start) 4427 (DWU2_DSY: Display Window 2 Y Start) 4436 (DWU3_DSX: Display Window 3 X Start) 4437 (DWU3_DSY: Display Window 3 Y Start)

Registers DWUd_DSX and DWUd_DSY specify the location of the top left corner of the display window relative to the top left corner of the output CRT display.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	RS	D							DS	sx					
	AS	VD			· <u></u>				DS	SY					

Bit # Access Reset Description

DWUd_DSX: Display Window X Start

15:12	R/W	Oh	RSVD	Reserved (read as '0').
11:0	R/W	Oh	DSX	Display X Start. Specifies the pixel offset from the CRT column 0 to the left-most column of the display window. (0-7FFh)

DWUd_DSY: Display Window Y Start

15:12	R/W	0h	RSVD	Reserved (read as '0").
11:0	R/W	Oh	DSY	Display Y Start. Specifies the pixel offset from the CRT row 0 to the top-most row of the display window. (0-7FFh)

5. ELECTRICAL SPECIFICATIONS

5.1 Absolute Maximum Ratings

This section lists the absolute maximum ratings of the DVP. Stresses above those listed can cause permanent damage to the device. This is a stress rating only, and functional operation of the device at these or any conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods can affect device reliability.

Storage temperature	65_to +150°C
Voltage on any pin with respect to ground	-0.5 Volts to V _{DD} +0.5V
Power Supply Voltage	7V
Lead Temperature (10 seconds)	

5.2 DVP Specifications (Digital)

Symbol	Parameter	MIN	MAX	Conditions
Symbol V000 Viii Voit	Power Supply Voltage	4.75 V	5.25 V	Normal Operation
/N	Input Low Voltage	0 V	0.8 V	
/#	Input High Voltage	2.0 V	V _{DO} + 0.8 \	
/ 	Output Low Voltage		0.4 V	I _{OL} = 4 mA
/OH	Output High Voltage	2.4 V	٧	l _{OH} = 400 μA
<u> </u>	Digital Supply Current		NA	VDD Nominal
	Input Leakage	-10 μA	- 10 μA	0 < V _{IN} < V _{DD}
	Input Capacitance		10 pF	
Pour	Output Capacitance		10 pF	

5.3 AC Characteristics/Timing Information

This section includes system timing requirements for the DVP. Timings are provided in nanoseconds (ns), at TTL input levels, with the ambient temperature varying from 0 to 70°C, and V_{CC} varying from 4.75 to 5.25V DC.

NOTE: 1. All timings assume a load of 50 pF.

2. TTL signals are measured at TTL threshold; CMOS signals are measured at CMOS threshold.

5.3.1 Index of Timing Information

ISA Bus Timing		86
Figure 5-1.	ISA Bus — I/O Timing	87
MCA Bus Timing		
Figure 5-2.	MCA Bus — VO Timing	89
Figure 5-3.	MCA Bus — CDSFDBK* Timing	
Figure 5-4.	MCA Bus — CDSETUP* Timing	
Local Hardware	Interface Timing	
Figure 5-5.	Local Hardware Interface — Write Timing	90
Figure 5-6.	Local Hardware Interface — Read Timing	91
Video Port Timin	g	92
Figure 5-7.	Video I/O Timing	93
Figure 5-8.	STALL* and STALLRQ* Timing	93
Figure 5-9.	Video and Graphics Port Timing	93
Memory Timing .	· · · · · · · · · · · · · · · · · · ·	94
Figure 5-10.	Read Transfer Cycle Timing	94
Figure 5-11.	CAS* Before RAS* Refresh Timing	95
Figure 5-12.	Memory Read Timing	97
Figure 5-13.	Memory Write Timing	97

5.3.2 ISA Bus Timing

Table 5-1. ISA Bus Timing

Ref.	Parameter	·	MIN	MAX
1	Setup	AD[15:0] address valid before IOR*/IOW* active	30 na	
	Delay	IOR*/IOW* active to DEN* active, DDIR change	4 ns	20 ns
}	Delay	IOR* active to AD[15:0] read data out low Z	4 ns	75 ns
	Delay	IOR° active to AD[15:0] read data out valid		75 ns
	Pulse Width	IOR*/IOW*	100 ns	
	Delay	IOR*/IOW* inactive to DEN* inactive, DDIR change	4 ns	20 ns
	Delay	IOR* inactive to AD[15:0] read data invalid	4 ns	20 ns
·9	Hold	AD[15:0] address valid after IOR*/IOW* active	4 ns	
	Setup	AD[15:0] write data valid before IOW* inactive	50 ns	
o	Hold	AD[15:0] write data valid after IOW* inactive	4 ns	
	Delay	IOW*/IOR* inactive to IOW*/IOR* active	80 ns	

PORT OF THE PARTY

NOTE: AEN must be low during cycle.

Figure 5-1. ISA Bus — I/O Timing

5.3.3 MCA Bus Timing

Table 5-2. MCA Bus Timing

Ref.	Parameter		MIN	MAX
t ₁	Setup	AD[15:0] address valid before ADL* active	40 ns	
12	Setup	S0*, S1* valid before ADL* active	7 ns	
3	Pulse Width	ADL*	35 ns	
4	Hold	S0°, S1° from ADL° inactive	20 ns	
5	Hold	AD[15:0] address from ADL* inactive	25 ns	
6	Hold	M/IO* from ADL* inactive		
7	Setup	AD[15:0] address valid before CMD* active	80 ns	
9	Setup	S0°, S1° valid before CMD° active	50 ns	
	Setup	ADL* active before CMD* active	35 ns	
10	Hold	AD[15:0] address from CMD* active	25 ns	
10	Hold	S0*, S1* from CMD* active	25 ns	
12	Setup	AD[15:0] write data valid before CMD* active	15 ns	
13	Hold	AD[15:0] write data valid from CMD* inactive	0 ns	
ii 1 4:	Delay	CMD* active to AD[15:0] read data valid	45 ns	
16	Delay	CMD* inactive to AD[15:0] read data invalid	0 ns	
16:	Delay	CMD* inactive to AD[15:0] read data high Z		30 ns
17	Delay	CMD* active to DEN* active/DDIR change		35 ns
18	Delay	CMD* inactive to DEN* inactive/DDIR change		20 ns
19	Delay	CMD* inactive to CMD* active		
20	Pulse Width	CMD*	90 ns	
21	Delay	AD[15:0] address, M/IO* valid to CDSFDBK* active		55 ns
22	Delay	AD[15:0] address, M/IO* invalid to CDSFDBK* inactive	0 ns	
23	Setup	CDSETUP* active before ADL* active	10 ns	
24	Hold	CDSETUP* active after CMD* active	25 ns	
25	Hold	CDSETUP* active after ADL* inactive	20 ns	

Figure 5-2. MCA Bus — I/O Timing

NOTE: Slaves do not drive CDSFDBK* when they are selected by the 'card setup' signal.

Figure 5-3. MCA Bus — CDSFDBK* Timing

Figure 5-4. MCA Bus — CDSETUP* Timing

5.3.4 Local Hardware Interface Timing

Table 5-3. Local Hardware Interface — Write Timing

Ref.	Parameter		MIN	MAX
t ₁	Period	PCLK	50 ns	
t ₂	Pulse Width	PCLK	12 ns	
t ₃	Setup	IOW*, CS* before PCLK rising edge	10 ns	
t ₄	Setup	CS*, RS[3:1] before IOW* active	1 cycle	
t ₅	Pulse Width	IOW*	2 cycles	
t ₆	Hold	PCLK rising edge to IOW*, CS* transition	2 ns	
t ₇	Delay	IOW* inactive to IOW* active	2 cycles	
<u>ta</u>	Setup	D[15:0] valid before IOW* inactive	15 ns	
4	Hold	CS*, RS[3:1], D[15:0] valid to IOW* inactive	2 ns	
140	Delay	PCLK rising edge to CHRDY* active	4 ns	20 ns
lā.	Delay	IOW* inactive to CHRDY* inactive	4 ns	20 ns
t _{i2}	Pulse Width	CHRDY*	1 cycle	2 cycles
is	Delay	IOW* active to CHRDY* active	1 cycle	1 cycle
L _I	Transition	PCLK		5 ns
Jac.				

clock. Internally, D[15:0], IOW*/IOR*, RS[3:1] must be stable for the entire cycle following CS* active. D[15:0] is sampled on the

2nd rising edge after CS* is asserted.

CS*, IOW*, RS(3:1) must be asserted.

If IOW* exceeds 2 cycles. CHRDY* is negated after 2 cycles. In this case, t₁₁ is referenced to PCLK.

Figure 5-5. Local Hardware Interface — Write Timing

Table 5-4. Local Hardware Interface — Read Timing

Ref.	Parameter		MIN	MAX
t ₁	Period	PCLK	50 ns	
t ₂	Pulse Width	PCLK	12 ns	
t ₃	Setup	IOR*, CS* active before PCLK rising edge	12 ns	
t ₄	Setup	CS*, RS[3:1] valid before IOR* active	1 cycle	
t ₅	Pulse Width	IOR*	3 cycles	
t ₆	Hold	PCLK rising edge to IOR* inactive, CS* inactive	2 ns	
t ₇	Delay	IOR* inactive to IOR*/IOW* active	2 cycles	
tg	Delay	IOR* active to D[15:0] low impedance	4 ns	20 ns
tg	Delay	IOR* active to D[15:0] valid	4 ns	40 ns
t ₁₀	Hold	IOR* inactive to D[15:0], CS*, RS[3:1] invalid	2 ns	
t ₁₁	Delay	PCLK rising edge to CHRDY* active	4 ns	20 ns
t ₁₂	Delay	IOR* active to CHRDY* active	1 cycle	1 cycle
t ₁₃	Pulse Width	CHRDY*	2 cycles	2 cycles
t ₁₄	Delay	PCLK rising edge to CHRDY* inactive	4 ns	20 ns
t ₁₅	Delay	IOR* inactive to D[15:0] high impedance	2 ns	20 ns
t ₁₆	Transition	PCLK -		5 ns

Figure 5-6. Local Hardware Interface — Read Timing

5.3.5 Video Port Timing

Table 5-5. Video Port Timing

Ref.	Parameter		MIN	MAX
l ₁	Period	VnCLK	33 ns	
2	Pulse width	VnCLK high	12 ns	
3	Setup	VnPH before VnCLK rising edge	10 ns	
la la	Hold	VnPH from VnCLK rising edge	2 ns	
	Delay	VnD[15:0] output, VnVS/VnHS/VnBL valid after VnCLK rising edge	5 ns	15 ns
6	Delay	VnIEN° valid after VnCLK rising edge	5 ns	15 ns
t ₇	Transition	GPCLK		5 ns
ta _{nk} .	Transition	SBCLK		5 ns
lg []	Setup	VnD[15:0] input, VnVS/VnHS/VnBL before VnCLK rising edge	10 ns	
	Hold	VnD[15:0] input, VnVS/VnHS/VnBL after VnCLK rising edge	2 ns	
111	Transition	VnCLK		5 ns
	Setup	STALLRQ* active before V2CLK rising edge	10 ns	
t ga	Hold	STALLRQ® active after V2CLK rising edge	2 ns	
114_	Hold	STALL* valid after V2CLK rising edge	7 ns	20 ns
1151	Hold	STALL* invalid after V2CLK rising edge	7 ns	20 ns
1	Pulse Width	GPCLK high	4 ns	·
1175	Pulse Width	GPCLK low	4 ns	
t _f	Period	GPCLK	12.5 ns	12.5 ns
t ₁₉	Setup	GHS, GVS, GBL before GPCLK rising edge	10 ns	
120	Hold	GHS, GVS, GBL after GPCLK rising edge	2 ns	
121	Delay	FCLK rising edge after GPCLK rising edge	5 ns	15 ns
122	Delay	SBCLK rising edge after GPCLK rising edge	5 ns	15 ns
123	Delay	SBCLK low from GPCLK rising edge	5 ns	15 ns
124	Delay	FCLK low from GPCLK rising edge	5 ns	15 ns
t ₂₅	Delay	SBCLK rising edge from FCLK	0 ns	5 ns
t ₂₆	Setup	FRDY valid before GPCLK rising edge	10 ns	
127	Hold	FRDY valid after GPCLK rising edge	2 ns	
128	Setup	ZC[3:0] valid before FCLK rising edge	10 ns	
t ₂₉	Hold	ZC[3:0] valid after FCLK rising edge	2 ns	ATI01911

Figure 5-7. Video I/O Timing

Figure 5-8. STALL* and STALLRQ* Timing

Figure 5-9. Video and Graphics Port Timing

5.3.6 Memory Timing

Table 5-6. Read Transfer Cycle Timing

Ref.	Parameter		MIN	AX
1	Setup	FBA[9:0] row address valid before RAS* active	160 ns	
2	Hold	FBA[9:0] row address valid after RAS* active	22 ns	
3	Setup	FBA[9:0] column address valid before CAS* active	6 ns	
	Hold	FBA[9:0] column address valid after CAS* active	22 ns	
 5	Setup	SBCLK falling edge (static interval) before RAS* active	86 ns	
	Delay	RAS* active to CAS* active to SBCLK active	38 ns	
	Delay	RAS* inactive to SBCLK active	86 ns	
Secret	Pulse Width	CAS*	22 ns	
	Pulse Width	RAS[1:0]*	86 ns	
0	Period	MCLK	16 ns	
I	Transition	MCLK		5 ns
	Setup	DTE* active to RAS(1:0)* active	10 ns	
3	Delay	RAS[1:0]* inactive to DTE* inactive		,

Figure 5-10. Read Transfer Cycle Timing

Table 5-7. CAS' Before RAS' Refresh Timing

Ref.	Parameter		MIN MAX
t ₁	Pulse Width	RAS1*	86 ns
12	Pulse Width	RASO*	86 ns
3	Delay	CAS* active to RAS1* active	38 ns
4	Delay	CAS* active to RASO* active	38 ns
5	Period	MCLK	16 ns
6	Transition	MCLK	5 ns

Figure 5-11. CAS* Before RAS* Refresh Timing

Table 5-8. Memory Read and Write Timing

Ref.	Parameter		MIN	IAX
t ₁	Period	MCLK	16 ns	
12	Transition	MCLK		5 ns
l ₃	Pulse Width	MCLK low	6 ns	
4	Setup	FBA[9:0] row address valid before RAS* active	.6 ns	· · · · · · · · · · · · · · · · · · ·
5	Hold	FBA[9:0] row address valid after RAS* active	22 ns	
6	Setup	FBA[9:0] column address valid before CAS* active	6 ns	
7	Hold	FBA[9:0] column address valid after CAS* active	22 ns	-
8	Delay	RAS* active to CAS* active	38 ns	
9 =	Delay	CAS* inactive to CAS* active (precharge)	11 ns	
10	Hold	RAS* active from CAS* active	38 ns	
11 12 13 15 15 15 15 15 15 15 15 15 15 15 15 15	Delay	RAS* inactive to RAS* active (precharge)	86 ns	
12	Pulse Width	CAS*	27 ns	
13	Setup	WE* inactive before RAS* active	38 ns	
134	Delay	FBD[31:0] valid after CAS* active (CAS* access time)	22 ns	
A I	Hold	FBD[31:0] valid after CAS* inactive	0 ns	
8	Delay	FBD[31:0] valid after DTE* active	38 ns	
7	Setup	WE* active before CAS* active	6 ns	6 ns
8	Pulse Width	CAS*	27 ns	
19	Hold	WE* active from CAS* active	70 ns	
20	Setup	FBD[31:0] write valid before CAS* active	6 ns	
21	Hold	FBD[31:0] write valid after CAS* active	22 ns	

Figure 5-12. Memory Read Timing

Figure 5-13. Memory Write Timing

6. PACKAGE DIMENSIONS — 160-Lead PQFP

Figure 6-1. DVP Package Information

Figure 6-2. DVP Package Information (Expanded View)

7. ORDERING INFORMATION

When ordering the CL-PX2070 DVP, use the following format:

[†] Contact Cirrus Logic, Inc., for up-to-date information on revisions.

APPENDIX A. DVP REGISTERS — QUICK REFERENCE

HIU: Hos	t Interf	ace Uni	•	-				5	IVSP
-				_				4	IHSP
HIU_CSU	27C0	15:12	RSVD					3	IBP
	0290	11.8	VER					2	IBT
		7:6	RSVD					1:0	IOM
		5:3	HSB			1000	_		
		2	RSVD		VIU_DPCf	1002	P	15:12	RSVD
		1	FBT			1003		11.9	VSUDC
		0	PAS					8.6	IPU1DC
				_				5:3	IPU2DC
HIU_DBG	27C0	15:10	RSVD					2:0	0 0 C
_	0290	9	DRE		VIU_WDT	1004	ρ	15	RSVD
		8:0	RSVD					14	MMS
HIU_DRD	27C0	15	EDT	-				13:11	MFTS
	0290	14:10	xc					10	WIE
		9.5	YC					3.0	TMOUT
		40	SIMIN		VIU_TEST	1006		15	MF
		~ ~	J		-			14	MFID
	2702		001/0	-				13:11	RSVD
HIU_OCS	27 C2 0 292	15	RSVO					10	OBIN
	0292	14	FONE					9	ovs
		13	FFNF					8	OHS
IA.		12	RSVD					7	OBL
		11	SRC					6	OFID
- Age =		10	MDE					5	12VS
		9	DPC .					4	12 BL
		8 7	MPC		,			3	12FID
1 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1			PMC					2	IIVS
arkiro		6.5	RSVD					1	I1BL
		4	SR					1	12FID
		3.0	IEM						
HIU_IRQ	27 C2	15:6	ASVO	-	VSU_HSW	1100	P	15:7	RSVD
	0292	5	OBT					6:0	HSW
III		4	IP2C		VSU_HAD	1101	P	15:10	RSVD
		3.	IP1C					9:0	HAD
		2	FUN		VSU_HAP	1102	P	15:11	RSVD
AT		1	FOV		_			10:0	HAP
41		0	WOT		VSU_HP	1103	ρ	15:10	RSVD
HIU RIN	27C4	15	AIC	-			•	9:0	HP
[,	0294	14:0	RIN		VEIL VEW	1104	P	15:7	
HIU_ROT	27C6	15:0	DIO	-	vsu_vsw	1104	_		RSVD
1110_1101		13.6	0.0					6:0	VSW
	0296			-	VSU_VAD	1 105	P	15:10	RSVD
HIU_MOT	27 C8	15:0	MIO					9:0	VAD
	0298				VSU_VAP	1106	P	15:11	RSVD
HIU_ISU	0001	15:14	RSVD	_				10:0	VAP
		13:11	IP2S		VSU_VP	1107	P	15	SGE
		10:8	IPIS		_			14	SSE
		7.0	OBIS					13	VFL
		=						12:10	RSVD
VBU: Vid	eo Bus	Unit						9:0	VP
VIU_MCRp	1000	15	STM	-	VDH. VIA	oo Dee			init
	1001	14	OFP -		VPU: Vide				
		13:12	oss		VPU_MCR	2000	P	15:13	RSVD
		11	OVSP					12	ALUE
		10	OHSP		_			11:8	OPFSS
		9	08P					7:4	IP2FSS
		8	OBT					3:0	IP1FSS
		7	IFP						
		ć	ICC			•			

IPU1_PIX	2100		15:11	RSVD
			10:0	PC
IPU1_LIC	2101		15:11	RSVD
			10:0	LC
IPU1_FLC	2102		15	RSVD
			15:0	FC
PU1_LIR	2103		15:11	ASVD
			10:0	IRLC
IPU1_FIR	2104		15	FCE
			14:0	IRFC
IPU1_LRB	2200		15:8	RSVD
			7:0	LAB
IPU1_LRD	2201		15:8	RSVD
-			7.0	LRD
IPU1_MCRI	3000	P	15	FPS
	3100		14	IM
			13	PSE
			12	CSCE
			11	LE
			10	YSP
			9:8 7:4	ODT OF
			3.0	IF
PU1_X8F1	3001	_	15:13	BF
IPUI_XOFI	3101	_	12:0	RSVD
IPU1_XBIf	3002	_	15:11	RSVD
IPU1_ABI	3102	_	10:0	BI
IPU1_XEIf	3003	_	15:11	RSVD
IPUI_XEII	3103	7	10:0	Ei
IPU1_XSFf	3004	Р	15:5	SF
IFUI_X3FI	3104	_	4:0	ASVD
IPU1_XSIf	3005	٥	15:6	RSVD
15 G 1 _ XOII	3105	•	5.0	SI
IPU1_YBFf	3006	ρ	15:13	BF
01	3106	•	12:0	RSVD
IPU1_YBIf	3007	P	15:11	RSVD
0101	3107	•	10:0	BI
IPU1_YEIf	3008	P	15:11	RSVD
0	3108	•	10:0	EI
IPU1_YSFI		P	15:6	SF
	3109	•	5.0	RSVD
IPU1_YSIT	300a	P	15:6	RSVD
010	310a	•	5:0	SI
IPU1_KFCf	300b	P	15:8	RSVD
01 01	310b	•	7:0	KEYFC
PU1_MMYI	300c	٩	15:8	YRMAX
	310c	•	7.0	YRMIN
IPU1 MMUf	300d	ρ	15:8	UGMAX
01	310d	•	7.0	UGMIN
IPU1 MMVf	300e	ρ	15:8	VBMAX
ILO I TARMAI	3100	_	7:0	VBMIN
t	3.00		, . 	,

CL-PX2070 Digital Video Processor

IPU2_PIX	2300		15:11	RSVD		SIU_FAR	4001		15:7	RSVD
			10.0	PC		_			6	FGR
IPU2_LIC	2301		14:11	RSVD					5	FFR
			10.0	LC	_	Cilla Cilla	2-00		4:0	RSVD
IPU2_FLC	2302		15	RSVD		SIUs_SIM	2900 291f	•	15:14 13:9	RSVD
			14:0	FC			2011		8	EP
IPU2_LIR	2303		15:11	RSVD					7:4	FA
10110 510	~~~		10:0	IRLC					3:0	OBA
IPU2_FIR	2304		15 14:0	FCE		4411.44004				
PU2_MCRf	3200	ρ	15	FPS	_	ALU_MCR!	2900 2901	P	15 14:13	GBM TF
02	3300	•	14	iM			200		12:9	AOP
			13	PSE					8:7	YOUT
			12:0	RSVD	_				6:5	UOUT
IPU2_XBIf	3202	P	15:11	RSVD					4:3 2	VOUT
IOUS VEI	3302	_	10:0	BI	_				1	OPBS
IPU2_XEI1	3203 3303	۳	15:11 _. 10:0	RSVD El					0	OPAS
IPU2 YBIf	3207	P	15:11	RSVD	_	ALU_TOP	2902	ρ	15:8	CTC
02	3307	•	10:0	BI					7:0	отс
IPU2_YEIf	3208	ρ	15:11	RSVD	_	ALU_AV	2903	Ρ	15.8	RSVD
_	3308		10:0	EI					7:0	AV
						ALU_LOPx	2904	. Р	15 0	MLOP
SIU_MCR	2800		15:14	RSVD		4111 0411	2906	_	44.0	5015
			13:12	SE FT		ALU_CAX	2907 2908	Р	15.9 8	RSVD TAG
			9:5	SI2			2909		7:0	CON
			4.0	SII	_	ALU_C8x	290a	P	15.9	RSVD
SIU_FCS	2801		15:14	RSVD		-	290b		8	TAG
			13	FGF			290c		70	CON
			12 11	FGE FFF		AW_CCx	290d	P	15.9	RSVD
			10	FFE			290e 290f		8 7:0	TAG CON
			9	FEF		OPU_MCRI	2a00	P	15	FPS
			8	FEE		OLO_WOM	2500	r	14	IM
			7 6	FDF FDE					13	ZE
			5	FCF					12:11	RSVD
			4	FCE					10 9:4	LSM RSVD
			3	FBF					3:0	IF
			2	FBE FAF		OPU_XBI1	2202	P		RSVD
			ò	FAE			2602		10:0	BI
SIU_FOU	2802		15:14	RSVD	-	OPU_XEH	2a03	ρ		RSVD
			13	FGO			2003		10.0	EI
			12 11	FGU FFO		OPU_YBI	2207	P	15:11	RSVD
			10	FFU		OPU_YEIF	2507 2a08	_	10:0	RSVD
			9	FEO		OP0_15#	2b08	_	10:0	EI
			8	FEU						
			7 6	FDO FDU		000.04				41-14
•			5	FCO		RFU: Refe		1		
			4	FCU		MMU_MCR	4000		15:5	ASVD
			3	FBO					4 3:0	FBC FBC
			2	FBU FAO					J. J	. 55
			0	FAU		OBUO_MCR	4800	Ρ	15:13	RSVD
							4870		12	LME
						*			11	CME

	Pixel Semiconductor A Cirrus Logic Company
--	--

			10:6	OPM	
			5	SSM	
			4	YBDC	
			3	XBOC	
			2.0	FA	
OBU _{_RFX}	4801 4871	. Р	15:11 10:0	RSVD RFX	
OBUO_LSL	4802 4872	. Р	15:0	LSL	
OBUO LSH	4803	P	15:7	RSVD	
	4873		6.0	LSH	
OBUo_BSX	4804	. Р	15:11	RSVD	
_	4874		10:0	BSX	
OBUo_BSY	4805 4875	. Р	15:11 10:0	RSVD BSY	
OBUO_DEC	4806	P		RSVD	
	4876	•	7	DM7	
			6	DM6	
			5	DM5	
			4	DM4	
			3	DM3	
	_		2	DM2 -	
			ò	DMO	
			•		
DWU MCR	4100	ρ	15	GCS	
-			14	occ	
			13	GFM	
			12	GBP	
			11	G 8P	
			10	GBP	
			9 8	OCC IMS	
			7:4	RSVD	
			3	WC3	
			2	WC2	
			1	WC1	
			<u> </u>	wco	
DWU_HCR	4101	Ρ		RSVD	
			10:0	HAC	
			15:8 7:0	RSVD MWS	
DWU4 DZF	4400	P		YZOOM	
UWU4_U2P	4430		7:0	XZOOM	
DWUd_RFX		P		RSVD	
5110 5_ 111 X	4431	•	10:0	RFX	
DWUd_LSL	4402 4432	Ρ	15:0	LSL	
DWUd_LSH		ρ	15:7 6:0	RSVD LSH	
DWUd_WSX		P	15:11	RSVD	
J#104_#13A	4434		10:0	WSX	
DWUd WSY		Ρ		RSVD	
2	4435	•	10:0	WSY	
DWU DSX		P			
JUUUA	4436	•	11:0		
DWUd_DSY		P	15:12		
JJ	4437		11:0	DSY	
		_			
ATT010107					

INDEX

Symbols	fractional index 51	
+5 VDC, signal VDD 19	integer index 51, 69 blanking	
Numerics	horizontai/composite signal V1HB 18	
040 14	signal V2HB 18	
SAD 14	signal GBL 17	
16-bit I/O cycle, signal IO16 14	buffer	
A	data, see data buffer	
A	digital logic and interface	
absolute maximum ratings 84	+5 VDC, signal VDD 19	
AC characteristics/timing information 85-93	ground, signal VSS 19	
AD[15:0] 15	frame, see frame buffer	
address	size 77	
/data bus, signals AD(15:0) 15	bus clock	
/data bus, signals SAD[15:0] 14	serial, signal SBCKL 19	
bus, signals FBA(9:0) 19	bus video data, signals V1D[15:0] 18	
column address strobes, signals CAS(1:0) 19	byte enable high, signal SBHE* 16	
counter, preloading 47		
enable, signal AEN 14	C	
column address strobes, signals CAS[1:0] 19 counter, preloading 47 enable, signal AEN 14 HIU register address map 22	capacitance, input and output 84	•
	card	
index, automatic increment control 27	data size, signal CDDS16° 15	
atch, signal ADL* 16	select feedback, signal CDSFDBK* 15	
linear start address 76, 82	setup, signal CDSETUP* 15	
port address select 23	CAS[1:0] 19	
row address strobes, signals RAS[1:0] 19	CDCHRDY 15	
ADL: 16	CDOS16* 15	
AEN 14	CDRESET 16	
Alcha Value 64	CDSETUP* 15	
ALU	timing (MCA Bus) 89	
master control 62	CDSFDBK* 15	-
registers 42	timing (MCA Bus) 89	
ALU_AV: Alpha Value 64	channel	
ALU_CAx: Constant A 65	pointer, initializing 47	
ALU_CBx: Constant B 66	ready, signal CHRDY 14, 15, 16	
ALU_CCx: Constant C 66	chip select, signal CS* 16	
ALU_LOPx: Logic Operation 65	CHRDY 14	
ALU_MCRf: Master Control 62	CHRDY* 16	
ALU_TOP: Tag Operation 64	chroma key max/min 53 chrominance mask enable 74	
arithmetic operations, select 63	clock	
automatic increment control 27	FIFO write, signal FCLK 19	
	memory, signal MCLK 19	
В	pixel, signal GPCLK 17	•
hans V and are	processor, signal PCLK 17	
begin X column	video data, signal V1CLK 18	
fractional index 49	CL-PX2070	
integer index 49, 56, 68	electrical specifications 84-93	
begin Y row	operating mode 26	ATI019128
	·	

81

pin assignment table 11 pin information 10-12 signal descriptions, detailed 14-19 CL-PX2080 79 CMD* 16	DWU_LSb: Linear Start Address 82 DWU_MCR: Master Control 78 DWU_RFX: Reference Frame X Size DWU_WSa: Window Size 82
Color Space Converter, enable 48	E
column address strobes, signals CAS[1:0] 19	E
command, signal CMD* 16	electrical specifications 84-93
composite	enable input
/horizontal blanking	signal V1IEN° 18
signal V1HB 18	signal V2IEN* 18
signal V2HB 18	end 51
/vertical sync, signal V2VS 18	X column integer index 57, 68
configuration setup 23	Y row integer index 58, 69
Constant 65, 66, 67	error detection trap 24
control sync references, source of 32	exit point 61
control tag codes 64	
CS* 16	F
	— 10
D	FBA[9:0] 19
	FBD[31:0] 19
D[15:0] 16	FCLK 19
data buffer	FDRY* 19
direction, signal DDIR 14, 15	field
enable, signal DEN* 14, 15	count 46, 54
data bus	interrupt request 46, 55 polarity select 48, 56, 67
signals 0[15:0] 16	toggle 58
signals FBD(31:0) 19	Field Lock 74
data transfer enable, signal DTE 19	FIFO
DDIR 14, 15	association 61,75
debug control 24	flag
read 24	empty 59
read enable 24	full 59
support registers, accessing 26	overflow 60
debug enable, master 26	underflow 60
DEN* 14, 15	overflow 25, 60
detailed signal descriptions 14-19	ready, signal FDRY* 19
diagnostic	underflow 25
information, accessing 24	write clock, signal FCLK 19
mode, controlling 24	FL 74
display	frame buffer
start 83	configuration 73
window, posting operation control 26	depth 73
zoom factor 81	interface
DTE 19	detailed signal descriptions 19
DWU	pin assignments 13
master control 78	signals 19
register posting mode 26	type 23
registers 72	Functional Signal Groups 11
DWU_DSa: Display Start 83	
DWU_DZF: Display Zoom Factor 81	04 04 00
DWU_HAC: Honzontal Active Count 80	ATI019129

G	1
GBL 17	I/O address map, used by host system 23
GHS 17	I/O read
GPCLK 17	signal IOR* 14, 16
graphics	timing, local hardware interface 91
blank polanty 79	I/O write
field	signal IOW* 14, 16
mode 79	timing
polarity 79	ISA bus 86
hsync polarity 79	local hardware interface 90
·	index
overlay interface	address, automatic increment control 27
detailed signal descriptions 17	
pin assignments 13	value, specifying 27
vsync polarity 79	input
ground, signal VSS 19	data format 49, 67
GVS 17	enable
	signal V1IEN* 18
H	signal V2IEN* 18
harmon configuration data storing 23	stream, specifying the format of 49
hardware configuration data, storing 23	tag multiplexer, controlling the input selection 48
HILI	VIU input/output mode 31
register address map 22	voltages 84
registers 22-29	interlace mode 56, 67
HIU_CSU: Configuration Setup 23 HIU_DBG: Debug Control 24	select 79
HIU_DBG: Debug Control 24	specifying interlaced or non-interlaced 48
HIU_DRD: Debug Read 24	internal sync generator, controls for 38
access to 24	interrupt
HIU_IRQ: Interrupt Request 25	enable, mask 27
HIU_MDT: Memory Data Port 28	mode 29
HIU_OCS: Operation Control/Status 20	request 25
ER HO_NDT. Register Data Fort 20	field count 47, 55
	line count 46, 55
registers accessed by the Register Data Port 22	signal IRQ 14, 15, 16
nenzontal	1016* 14
active	IOR* 14, 16
count 80	IOW* 14, 16
delay 36	IPU1 49, 51, 52
pixels 36	counter 25
period 36	datapath control 32
sync	field sync select 44
signal GHS 17	interrupt select 29
signal V1HS 18	master control 48
signal V2CLK 18	registers 39
signal V2HS 18	IPU1_FIR: Field Count Interrupt Request 46
width 35	IPU1_FLC: Field Count 46
horizontal/composite blanking	IPU1_KFCf: Key Function Code 52
signal V1HB 18	IPU1_LIC: Line Count 45
signal V2HB 18	IPU1_LRB: LUT RAM Base Address 47
host system	IPU1_LRD: LUT RAM Data 47
bus 23	IPU1_MCRf: Master Control 48
specifying 23	IPU1_MMxf: Chroma Key Max/Min 53
	IPU1_PIX: Pixel Count 45
	ATI019130

IPU1_XBnf: X Begin 49	LUT RAM
IPU1_XEIf: X End 50	base address 47
IPU1_XSI2_50	data 47
IPU1_XSnf: X Shrink 50	
IPU1_Y8nf: Y Begin 51	M
IPU1 YEIf: Y End 51	
IPU1_YSnf: Y Shrink 52	WIO* 15
IPU2	manual mode start 33
counter 25	master control .
datapath control 32	ALU 62
field sync select 44	DWU 78
interrupt select 29	IPU1 48
registers 40	IPU2 56
IPU2_FIR: Field Count Interrupt Request 55	MMU 73
IPU2_FLC: Field Count 54	OBU 74
IPU2_LIC: Line Count 54	OPU 67
IPU2_LIR: Line Count Interrupt Request 55	SIU 58
IPU2_PIX: Pixel Count 54	VIU 30
IPU2_XBIf: X Begin 56	VPU 44
IPU2_XEIf: X End 57	maximum ratings, absolute 84
IPU2_YBIf: Y Begin 57	MCA bus
IPU2_YEIf: Y End 58	CDSETUP* timing 89
IRQ 14, 15, 16	CDSFDBK* timing 89
ISA bus	detailed signal descriptions 15
detailed signal descriptions 14	pin assignments 12
I/O write timing 86	processor interface signals 15
pin assignments 12	timing, write cycle 88
processor interface signals 14	MCLK 19
•	memory
K	clock, signal MCLK 19
•	data 28
key function code 52	or I/O cycle, signal M/IO* 15
key maximum/minimum 53	Minimum Window Separation 80
	MMU
L	master control 73
	registers 70
lead temperature 84	MMU_MCR: Master Control 73
leakage 84	mode, stall 31
line count 45, 54	multiplexers
current field 45, 54	key function code 52
interrupt request 55	logical operation 65
to interrupt request 46	logical, specifying the constant values for 65
line start mode 67	
linear start address 76, 82	0
local hardware interface	
detailed signal descriptions 16	object buffer
I/O read timing 91	association 61
I/O write timing 90	termination 25, 29 ATI019131
pin assignments 12	080
processor interface signals 16	master control 74
logic operation 65	registers 70
Luminance Mask Enable 74	OBU_BSa: Buffer Size 77
LUT enable 48	OBU_DEC: Decimate Control 78

OBU_LSb: Linear Start Address 76	PQFP 10	
OBU_MCR: Master Control 74	prescaler enable 48, 56	
OBU_RFX: Reference Frame X Size 75	processor clock, signal PCLK 17	
Occluded Window Control 79	processor interface	
Offset to Next Instruction 61	ISA bus mode	
operands	detailed signal descriptions 14	
3-operand bit mask 62	pin assignments 12	
source select 63	local hardware interface mode	
specifying constant values for 65, 66	detailed signal descriptions 16	
operating mode 26, 74	pin assignments 12	
operations, control/status 26	MCA bus mode	
OPU	detailed signal descriptions 15	
datapath control 33	pin assignments 12	
field sync select 44	_	
master control 67	R	
registers 43	DAC(1:0) 10	
OPU_MCRf: Master Control 67	RAS[1:0] 19	
OPU_XBIf: X Begin_68	Reference Frame, X size 75, 81	
OPU_XEIf: X End 68	register	
OPU_YBIf: Y Begin 69 OPU_YEIf: Y End 69	access, during a read cycle 25 address map, HIU 22	
OPU_YEIf: Y End 69	data port 28	
orgering information 99	VO data 28	
output 10	index 27	
data 48	posting 26	
stream, specifying the format of 48	select, signals RS[2:1] 16	
tag codes 64	registers	_
officer voltages 84	HIU 22-29	
Werflow condition, FIFO 25	RFU 70-83	
flag 60	VBU 30-38	
	VPU 39-69	
**************************************	reset	
package dimensions 98	signal RESET 14, 16, 17	
PELK 17	saft 27	
phase	RFU registers 70-83	
signal V1PH 18	row address strobes, signals RAS[1:0] 19	
signal V2PH 18	RS[2:1] 16	
pin assignment table 11	•	
pin diagram 10	S	
pin information 10-12		
pixel clock, signal GPCLK 17	S0° 15	
pixel count 45, 54	\$1. 12	
current line 45, 54	SBCLK 19	
Plastic Quad Flat Pack, 160-lead 10	SBHE* 16	
polarity, graphics 79	sequencer enable 58	
port address select 23	Sequencer Instruction Memory 61	
posting control, master 26	current index 24	
posting mode control 26	serial bus clock, signal SBCLK 19	10
power and ground	serial port output enable, signals SOE[1:0	1 17
detailed signal descriptions 19	signal descriptions, detailed 14-19	
signals 19	frame buffer interface 19	
power interface, pin assignments 13	graphics overlay interface 17	λ πτ 04046=
power supply voltage 84	power and ground 19	ATI019132

processor interface

processor interface	information/AC characteristics 85-93		
ISA bus mode 14	write cycle (MCA bus) 88		
local hardware interface mode 16	, (====, ===		
MCA bus mode 15	U		
Video 18	•		
single sweep mode 75	U output Source Select 63		
SIU	underflow condition, FIFO 25		
master control 58	flag 60		
registers 41			
master control 58	V		
SIU_FARC:FIFO Auto Reset Control 62	•		
SIU_FCS: FIFO Control/Status 59	V output Source Select 63		
SIU_FOU:FIFO Overflow/Underflow 60	V1CLK 18		
SIU_MCR: Master Control 58	V1D[15:0] 18		
SIU_SIM: Sequencer Instruction Memory 61	V1HB 18		
SOE[1:0]* 19	V1HS 18		
soft reset 27	V11EN* 18		
specifications, electric 84-93	V1PH 18		
stall	V1VS 18		
mode 31	V2CLK 18		
request, signal STALLRQ* 18	. V2D(15:0) 18		
STALL* 18	V2HB 18		
STALLRQ* 18	V2HS 18 ·		
Start Index 58	V2IEN 18		
status	V2PH 18		
read select 26	V2VS 18		
storage temperature 84	VBU registers 30-38		
strobes	+5 VDC, signal VDD 19		
column address, signal CAS[1:0] 19	VDD 19		
row address, signals RAS[1:0] 19	vertical active		
supply currents, digital and total 84	delay 37		
sync, honzontal	pixels 38		
signal GHS 17	vertical period 38		
signal V1HS 18	vertical sync		
signal V2CLK 18	signal GVS 17		
signal V2HS 18	timing 35		
sync, vertical	width 37		
signal GVS 17	vertical/composite sync		
sync, vertical/composite	signal V1Vs 18		
signal V1VS 18	signal V2VS 18		
signal V2VS 18	video		
•	interface signals 18		
T	port interfaces, characteristics 30		
	processor, device version 23		
tag 65, 66	video data bus		
format 63	signals V1D(15:0) 18		
operation 64	signals V2D(15:0) 18		
timeout condition, watchdog timer 25	video data clock, signal V1CLK 18		
timing	video input 31		
CDSETUP* (MCA bus) 89	video output 31 ATI019133		
CDSFDBK* (MCA bus) 89	field polarity 31		

video port 1

detailed signal descriptions 18

I/O read 91

I/O write 86, 90

> 1

107


```
pin assignments 13
VIU
    registers
       VIU_DPCf: Datapath Contol 32
       VIU_MCRp:Master Control 30
voltages, low and high 84
VPU
    global control 39, 44
    master control 44
    registers 39-69
       VPU_MCR: Master Control 44
VSS 19
VSU registers
    VSU_HAD: Honzontal Active Delay 36
    VSU_HAP: Horizontal Active Pixels 36
    VSU_HP: Horizontal Period 36
    VSU_HSW: Horizontal Sync Width 35
    VSU_VAD: Vertical Active Delay 37
    VSU_VAP: Vertical Active Pixels 38
 VSU_VP: Vertical Period 38
   VSU VSW: Vertical Sync Width 37
VSU sync timing 35
watchdog timer, signal IRQ 25
₩E* 19
windows
   aligning between pixels 49
 controls 79
 size 82
  Ecycle timing (MCA Bus) 88
  decimation, mask bits 78
 enable, signal WE* 19
X
X 50
X Begin 49, 56
X BLT, direction control 75
X counter 24
X display start 83
X End 50, 57
X prescaler, enabling and disabling 48
X shrink 50
X window size 83
X zoom factor 81
Y
Y 52
Y Begin 51, 57
```

```
Y BLT direction control 75
Y counter 24
Y display start 83
Y End 51, 58, 69
Y output source select 63
Y row integer index 51
Y scaling path, enabling and disabling 48
Y shrink 52
Y window size 83
Y zoom factor 81

Z
ZC[3:0] 17
zoom
    control bus, signals ZC[3:0] 17
    enable 67
```


INDEX OF CONTROL REGISTERS

A	Н
ALU_AV: Alpha Value 64	HIU_0 22
ALU_CAx: Constant A 65	HIU_1 22
ALU_CBx: Constant B 66	HIU_2 22
ALU_CCx: Constant C 66	HIU_3 22
ALU_LOPx: Logic Operation 65	HIU_4 22
ALU_MCRf: ALU Master Control 62	HIU_CSU: Configuration Setup 22, 23
ALU_TOP: Tag Operation 64	HIU_DBG: Debug Control 24 HIU_DBG: Debug Control/Status 22
	HIU DRD: Debug Read 22, 24
C	HIU IRQ: Interrupt Request 22, 25
Chroma Key Max/Min 53	HIU_ISU: Interrupt Select 22
Configuration Setup 22, 23	HIU_ISU: Interrupt Setup 29
Constant A 65	HIU_MDT: Memory Data Port 22, 28
Constant B 66	HIU_OCS: Operation Control/Status 22, 26
Constant C 66	HIU_RDT: Register Data Port 22, 28
	HIU_RIN: Register Index 22, 27
D	Horizontal
	Active Delay 36
Datapath Control 32	Active Period 36
Debug	Period 36
Control 24	Sync Width 35
Control/Status 22	
Read 22, 24	1
Display Window Display Zoom Factor 81	latárn jat
Horizontal Control 80	Interrupt Request 22, 25
Linear Start Address 82	Select 22
Master Control 78	Setup 29
Reference Frame Size 81	IPU1_FIR: Field Count Interrupt Request 46
Size 82	IPU1_FLC: Field Count 46
Start 83	IPU1_KFCf: Key Function Code 52
DWU_HCR: Display Window Horizontal Control Regis-	IPU1_LIC: Line Count 45
ter 80	IPU1_LIR: Line Count Interrupt Request 46
DWU_MCR: Display Window Master Control 78	IPU1_LRB: LUT RAM Base Address 47
DWUd_DSa: Display Window Start 83	IPU1_LRD: LUT RAM Data 47
DWUd_DZF: Display Window Display Zoom Factor 81	iPU1_MCRf: IPU1 Master Control 48
DWUd_LSb: Display Window Linear Start Address 82	IDI Is Likheli Chroma Kou May/Min 53
	IPU1_MMxf: Chroma Key Max/Min 53
DWUd_RFX: Display Window Reference Frame Size	IPU1_PIX: Pixel Count 45
81	IPU1_PIX: Pixel Count 45 IPU1_XBnf: X Begin 49
	IPU1_PIX: Pixel Count 45 IPU1_XBnf: X Begin 49 IPU1_XElf: X End 50
81 DWUd_WSa: Display Window Size 82	IPU1_PIX: Pixel Count 45 IPU1_XBnf: X Begin 49 IPU1_XElf: X End 50 IPU1_XSnf: X Shrink 50
81	IPU1_PIX: Pixel Count 45 IPU1_XBnf: X Begin 49 IPU1_XElf: X End 50 IPU1_XSnf: X Shrink 50 IPU1_YBnf: Y Begin 51
81 DWUd_WSa: Display Window Size 82 F	IPU1_PIX: Pixel Count 45 IPU1_XBnf: X Begin 49 IPU1_XElf: X End 50 IPU1_XSnf: X Shrink 50 IPU1_YBnf: Y Begin 51 IPU1_YElf: Y End 51
81 DWUd_WSa: Display Window Size 82 F Field Count 46, 54	IPU1_PIX: Pixel Count 45 IPU1_XBnf: X Begin 49 IPU1_XElf: X End 50 IPU1_XSnf: X Shrink 50 IPU1_YBnf: Y Begin 51 IPU1_YElf: Y End 51 IPU1_YSnf: Y Shrink 52
81 DWUd_WSa: Display Window Size 82 F	IPU1_PIX: Pixel Count 45 IPU1_XBnf: X Begin 49 IPU1_XElf: X End 50 IPU1_XSnf: X Shrink 50 IPU1_YBnf: Y Begin 51 IPU1_YElf: Y End 51 IPU1_YSnf: Y Shrink 52 IPU2_FIR: Field Count Interrupt Request 55
81 DWUd_WSa: Display Window Size 82 F Field Count 46, 54 Interrupt Request 46, 55 FIFO	IPU1_PIX: Pixel Count 45 IPU1_XBnf: X Begin 49 IPU1_XElf: X End 50 IPU1_XSnf: X Shrink 50 IPU1_YBnf: Y Begin 51 IPU1_YElf: Y End 51 IPU1_YSnf: Y Shrink 52 IPU2_FIR: Field Count Interrupt Request 55 IPU2_FLC: Field Count 54
81 DWUd_WSa: Display Window Size 82 F Field Count 46, 54 Interrupt Request 46, 55 FIFO auto reset control 62	IPU1_PIX: Pixel Count 45 IPU1_XBnf: X Begin 49 IPU1_XElf: X End 50 IPU1_XSnf: X Shrink 50 IPU1_YBnf: Y Begin 51 IPU1_YElf: Y End 51 IPU1_YSnf: Y Shrink 52 IPU2_FIR: Field Count Interrupt Request 55 IPU2_FLC: Field Count 54 IPU2_LIC: Line Count 54
81 DWUd_WSa: Display Window Size 82 F Field Count 46, 54 Interrupt Request 46, 55 FIFO	IPU1_PIX: Pixel Count 45 IPU1_XBnf: X Begin 49 IPU1_XElf: X End 50 IPU1_XSnf: X Shrink 50 IPU1_YBnf: Y Begin 51 IPU1_YElf: Y End 51 IPU1_YSnf: Y Shrink 52 IPU2_FIR: Field Count Interrupt Request 55 IPU2_FLC: Field Count 54

IPU2_PIX: Pixel Count 54 IPU2_XBIf: X Begin 56 IPU2_XEI1: X End 57 IPU2_YBIf: Y Begin 57 IPU2_YEIf: Y End 58 K Key Function Code 52 L Line Count 45, 54 Interrupt Request 46, 55 Logic Operation 65 **LUT RAM** Base Address 47 Data 47 M Memory Data Port 22, 28 MMU_MCR: MMU Master Control 73 oi Object Buffer Decimate Control 78 Linear Start Address 76 Master Control 74 Reference Frame Size 75 Size 77 OBUO_BSa: Object Buffer Size 77 OBBO DEC: Object Buffer Decimate Control 78 OBilo_LSb: Object Buffer Linear Start Address 76 OBTO_MCR: Object Buffer Master Control 74 OBUo_RFX: Object Buffer Reference Frame Size 75 Operation Control/Status 22, 26 OPU_MCRf: OPU Master Control 67 OPU_XBI1: X Begin 68 OPU_XEIf: X Begin 68 OPU_YBif: Y Begin 69 OPU_YEIf: Y End 69 Pixel Count 45, 54 R Register

S Sequencer Instruction Memory 61 SIU_FARC: FIFO Auto Reset Control 62 SIU_FCS: FIFO Control Status 59 SIU_FOU: FIFO Overflow/Underflow 60 SIU_MCR: SIU Master Control 58 SIUs_SIM: Sequencer Instruction Memory 61 T Tag Operation 64 test register 34 Vertical Active Delay 37 Active Period 38 Period 38 Sync Width 37 VIU_DPCf: Datapath Contol 32 VIU_MCRp: VIU Master Control 30 VIU_TEST: test register 34 VIU_WDT: Watchdog Timer 33 VPU_MCR: VPU Master Control 44 VSU_HAD:Horizontal Active Delay 36 VSU_HAP: Horizontal Active Period 36 VSU_HP: Horizontal Period 36 VSU_HSW: Horizontal Sync Width 35 VSU_VAD: Vertical Active Delay 37 VSU_VAP: Vertical Active Period 38 VSU_VP: Vertical Period 38 VSU_VSW: Vertical Sync Width 37 W Watchdog Timer 33 X X Begin 49, 56, 68 X End 50, 57 X Shrink 50 Y

Y Begin 51, 57, 69 Y End 51, 58, 69

Y Shrink 52

ATI019136

Data Port 22, 28 Index 22, 27

INDEX OF REGISTER FIELDS

A

AIC: Automatic Increment Control 27

ALUE: ALU Enable 44

AOP: Arithmetic Operation Select 63

AV: Alpha Value 64

В

BF: Begin X Column Fractional Index 49

BF: Begin Y Row Fractional Index 51

Bl: Begin X Column Integer Index 49, 56, 68

BI: Begin Y Row Integer Index 51, 57, 69

BSX: Buffer X Size 77 BSY: Buffer Y Size 77

O . . . O G

C

CME: Chrominance Mask Enable 74

CON: Constant 65, 66, 67

CSCE: Color Space Converter Enable 48

CTC: Control Tag Code 64

D

Datapath Control 32, 33

DIO: Register Data I/O 28

DM7:DM0 78

DMAW: DMA Wait State 26

DMD: DMA Direction 26

DPC: Display Window Posting Operation Control 26

DRE: Debug Read Enable 24

DSX: Display X Start 83

DSY: Display Y Start 83

E

EDT: Error Detection Trap 24

El: End X Column Integer Index 50, 57, 68

El: End Y Row Integer Index 51, 58, 69

EP: Exit Point 61

F

FA: FIFO Association 61, 75

FBC: Frame Buffer Address Configuration 73

FBD: Frame Buffer Data Bus Width 73

FBT: Frame Buffer Jumper State 23

FC: Field Count 46, 54

FCE: Field Count Enable 47, 55

FDH: FIFO D Half Full 26

FFH: FIFO F Half Full 26

FGE - FAE: FIFO Empty Flags 59 FGF - FAF: FIFO Full Flags 59

FGO - FAO: FIFO Overflow Flags 60

FGU - FAU: FIFO Underflow Flags 60

Field Sync Select 44 FL: Field Lock 74

FOV: FIFO Overflow 25

FPS: Field Polarity Select 48, 56, 67

FT: Field Toggle 58

FUN: FIFO Underflow 25

G

GBM: Three-Operand Bit Mask Selecting Tag Source

62

GBP: Graphics Blank Polarity 79

GCS: Graphics Clock Select 79 GFM: Interlace Mode Select 79

GFP: Graphics Field Polarity 79

GHSP: Graphics Hsync Polarity 79

Graphics Field Mode 79

GVSP: Graphics Vsync Polarity 79

H

HAC: Horizontal Active Count 80

HAD: Horizontal Active Delay 36

HAP: Horizontal Active Pixels 36

HP: Horizontal Period 37

HSB: Host System Bus 23

HSW: Horizontal Sync Width 35

1

11BL 34

11FID 34

11VS 34

128L 34

12FID 34

12VS 34

INTR 34

IBP: Input Video Blank Polarity 31

IBT: Input Video Blank Type 31

IEM: Interrupt Enable Mask 27

IF: Input Data Format 49, 67

IFP: Input Video Field Polarity 31

IHSP: Input Video Horizontal Sync Polarity 31

IM: Interlace Mode 48, 56, 67

IMS: Graphics Field Mode 79

Interlace Mode Select 79

ATI019137

IOM: Input/Output Mode 31

IP1C: IPU1 Counter 25

IP1FSS: IPU1 Field Sync Select 44

IP1S: IPU1 Select 29 IP2C: IPU2 Counter 25

IP2FSS: IPU2 Field Sync Select 44
IP2S: IPU2 Interrupt Select 29
IPU1DC: IPU1 Datapath Control 32
IPU2DC: IPU2 Datapath Control 32

IRFC: Interrupt Request Field Count 47, 55 IRLC: Interrupt Request Line Count 46, 55

ISS: Input Sync Source 31

IVSP: Input Video Vsync Polanty 31

K

KEYFC: Key Function Code 52

L

LC: Line Count 45

LG Line Count Current Field 54

LE LUT Enable 48

LME: Luminance Mask Enable 74 LEB: LUT RAM Base Address 47

LRD: LUT RAM Data 47

LSH: Linear Start Address High 76, 82 LSE: Linear Start Address Low 76, 82

LSM: Line Start Mode 67

M

MDE: Master Debug Enable 26

MF 34 MFD 34

MFTS: Master Field Toggle Select 33

MIO: Memory Data I/O 28

MMP: Multiplexor Logical Operation 65

MMS: Manual Mode Start 33 MPC: Master Posting Control 26

MWS: Minimum Window Separation 80

0

OBA: Object Buffer Association 61

OBIN 34

OBIS: Object Buffer Termination Interrupt Request 29

OBL 34

OBP: Output Video Blank Polarity 31 OBT: Object Buffer Termination 25 OBT: Output Video Blank Type 31 OCC: Occluded Window Control 79 ODC: OPU Datapath Control 33

ODT: Output Data Tag 48 OF: Output Data Format 48 OFID 34

OFP: Output Video Field Polanty 31

OHS 34

OHSP: Output Video Horizontal Sync Polarity 31

OPAS: Operand A Source Select 63 OPBS: Operand B Source Select 63 OPCS: Operand C Source Select 63 OPFSS: OPU Field Sync Select 44

OPM: Operation Mode 74

ORS: Operation Restart Select 24 OSS: Output Video Sync Source 31

OTC: Output Tag Code 64

OTN: Offset to Next Instruction 61

OVS 34

OVSP: Output Video Vertical Sync Polanty 31

P

PAS: Port Address Select 23

PC: Pixel Count 45

PC: Pixel Count Current Line 54 PMC: Posting Mode Control 26 PSE: Prescaler Enable 48, 56

R

RFX: Reference Frame X Size 75

RFX: Reference Frame X size 81

RIN: Register Index 27

S

SE: Sequencer Enable 58

SF: X Shrink Fraction 50

SF: Y Shrink Fraction 52

SGE: Sync Generator Enable 38

SI: X Shrink Integer 50 SI: Y Shrink Integer 52 SI1: Start Index 1 58

SI2: Start Index 2 58

SIMIN: Sequence Instruction Memory Current Index 24

SR: Soft Reset 27

SRC: Status Read Select 26 SSE: Single Sweep Enable 38 SSM: Single Sweep Mode 75

STM: Stall Mode 31

T

TAG: Constant Tag Bit 65, 66

TF: Tag Format 63 TMOUT: Timeout 33

U

UGMAX: Key U/G Maximum 53 UGMIN: Key U/G Minimum 53 UOUT: U Output Source Select 63

٧

VAD: Vertical Active Delay 37 VAP: Vertical Active Pixels 38 VBMAX: Key V/B Maximum 53 VBMIN: Key V/B Minimum 53

VER: Video Processor Device Version 23

VOUT: V Output Source Select 63

VP: Vertical Active Count 38

VSUDC: VSU Datapath Control 32 VSW: Vertical Sync Width 37

W

WC3 - WC0: Window Controls 79 WDT: Watchdog Timer 25 Write Decimation Mask Bits 7:0 78 WSX: Window X Size 83

WSY: Window Y Size 83

WTE: Watchdog Timer Enable 33

X

XBDC: X BLT Direction Control 75

XC: X Counter 24

XZOOM: X Zoom Factor — pixel replication value 81

Y

YBDC: Y BLT Direction Control 75

YC: Y Counter 24

YOUT: Y Output Source Select 63 YRMAX: Key Y/R Maximum 53 YRMIN: Key Y/R Minimum 53

YSP: Y Scaling Path 48

YZOOM: Y Zoom Factor — line replication value 81

Z

ZE: Zoom Enable 67

NOTES

NOTES

Cirrus Logic Direct Sales Offices

Domestic

N. CALIFORNIA San Jose

TEL: 408/436-7110 FAX: 408/437-8960

S. CALIFORNIA

Tustin

TEL: 714/258-8303 FAX: 714/258-8307

Thousand Oaks TEL: 805/371-5381 FAX: 805/371-5382

ROCKY MOUNTAIN

AREA Denver, CO

TEL: 303/768-9696 FAX: 303/768-9695 SOUTH CENTRAL

AREA Austin, TX

TEL: 512/794-8490 FAX: 512/794-8069

Plano, TX

TEL: 214/985-2334 FAX: 214/964-3119

NORTHEASTERN AREA

Andover, MA

TEL: 508/474-9300 FAX: 508/474-9149

Philadelphia, PA TEL: 215/625-0781

FAX: 215/625-0731

CENTRAL AREA

Chicago, IL

TEL: 708/490-5940 FAX: 708/490-5942

SOUTH EASTERN

AREA

Boca Raton, FL TEL: 407/362-5225

FAX: 407/362-5235

International

GERMANY

Herrsching

TEL: 49/08152-2030 FAX: 49/08152-6211 JAPAN

Tokyo

TEL: 81/3-3340-9111

FAX: 81/3-3340-9120

SINGAPORE

TEL: 65/3532122

FAX: 65/3532166

TAIWAN

Taipei

TEL: 886/2-718-4533 FAX: 886/2-718-4526

UNITED KINGDOM

Hertfordshire, England

TEL: 44/0727-872424 FAX: 44/0727-875919

The Company

Cirrus Logic, Inc., is a leading supplier of high-integration peripheral controller circuits for mass siprage, graphics, and data communications. The company also produces state-of-the-art software and filmware to complement its product lines. Cirrus Logic technology is used in leading-edge personal computers, engineering workstations, and office automation.

Pixel Semiconductor, Inc., a subsidiary of Cirrus Logic, Inc., is a developer of integrated circuits for advanced display systems. These circuits enable the integration of real-time video with traditional computer graphics.

Cirrus Logic's fabless manufacturing strategy, unique in the semiconductor industry, employs a full manufacturing infrastructure to ensure maximum product quality, availability and value for our customers.

Talk to our systems and applications specialists; see how you can benefit from a new kind of semiconductor company.

© Copyright Pixel Semiconductor, Inc., 1993

Preliminary product information describes products which are in production, but for which full characterization data is not yet available. Pixel Semiconductor, Inc., believes that the information contained in this document is accurate and reliable. However, it is marked Preliminary and is subject to change without notice. Pixel Semiconductor, Inc., assumes no responsibility for its use, nor for infringements of patients or other rights of third parties. This document implies no license under patients or copyrights. Trademarks in this document belong to their respective companies.

CIRRUS LOGIC, Inc.,

3100 West Warren Ave. TEL: 510/623-8300

Fremont, CA 94538 FAX: 510/226-2180

742070-002

APPLICATIONS

- **■** Presentation
- Video Editina
- Video Authoring
- Video Teleconferencing
- Interactive Education
- **Games**

FEATURES

- Direct ISA/MCA bus interface
- Interlaced or non-interlaced output
- Pixel clock rates up to 85 MHz
- Video inputs
 - 8:8:8 RGB at 40 MHz
 - (1)5:5:5 (T)RGB at 85 MHz
 - 5:6:5 RGB at 85 MHz
 - 4:2:2 YUV at 85 MHz
 - Tagged 4:2:2 YUV at 85 MHz

Graphics input

- 4-bit pseudo-color at 85 MHz
- 8-bit pseudo-color at 85 MHz

(cont. next page)

MediaDAC™

OVERVIEW

The CL-PX2080 MedicDAC is a multiple-source, digital-to-analog video converter. It manages and mixes two different video data streams while converting the input data into the format of the display subsystem, and changes color space and resolution from the input to the output format in real-time.

ARCHITECTURAL OVERVIEW

This section describes the architecture and functionality of the CL-PX2080 MediaDAC.

The CL-PX2080 has a video port for YCbCr or RGB data and two graphics ports for both 8-bit VGA and 32-bit high-resolution ports. Its display functions include pseudo-color, display of true color RGB data, X-zooming of video port dat hardware cursor controls and a combination of three graphics overlay controls.

(cont. next page)

System Block Diagram

CONFIDENTIAL-SUBJECT TO COURT PROTECTIVE ORDER LEVEL ONE Civil Action No. 952388R (AJB)

FEATURES (cont.)

- 5:6:5 RGB at 85 MHz
- 5:5:5 RGB at 85 MHz
- 8:8:8 RGB at 40 MHz
- Zoom controls
- Hardware cursor controls
- Three overlay combination controls
 - Tagged chroma color key
 - Graphics overlay color key
 - X/Y window

ARCHITECTURAL OVERVIEW (cont.)

Host System Interface

The CL-PX2080 connects directly to ISA and MCA buses, internally decoding a 16-bit address and responding as an 8-bit peripheral, its internal ISA/MCA bus interface eliminates most of the costly glue circuitry common to many personal computer system expansion boards.

In response to customer demands for increased performance, the display subsystem in many new systems has migrated onto the host processor bus. The CL-PX2080 is designed to accommodate.

this trend with its local Hardware Interface Mode, illustrated below.

Video Input Interface

The video input interface accepts digitized video in a wide range of formats. The video data stream is converted to its final output format, then is overlaid with processed graphics data and cursor data.

Features:

- 36-bit input data path (32-bit data, 4-bit zoom code)
- Internal 256 x 36-bit input FIFO that supports:
 - 24-bit RGB data (up to 40 mega-pixels per second)
 - 16-bit RGB or YCbCr data (up to 85 megapixels per second)
- Chrominance interpolation
- Color-space conversion
- Zoom control

Graphics Frame Buffer Interface

The CL-PX2080 accepts data from the graphics display source through either of two paths:

- an 8-bit VGA data path, or
- a 32-bit VRAM serial data path.

Video Input Interface

Both paths allow CL-PX2080-based. next-generation PC graphics subsystems to maintain compatibility with the large installed base of VGA systems and VGA-specific software, while also achieving higher performance and resolution via the VRAM serial data path.

Features:

- VRAM Interface
 - 32-bit data bus

- Efficient pixel mapping within graphicsdata-word
- Designed to accept data from VRAM serial ports, can be used with a variety of architectures
- VGA interface
- True-color (CLUT bypass) option

Graphics Frame Buffer Interface

Graphics Overlay Control

The graphics overlay controls allow a video image and a graphics image to be combined using a variety of operations (see figure at right).

Every graphics pixel is either transparent or opaque. The color information for an opaque pixel is displayed on the screen. The color information for a transparent pixel is not displayed: instead, the color information of the video pixel behind it is displayed on the screen. The graphics overlay controls determine which graphics pixels are transparent. The CL-PX2080 has 256 possible overlay combinations based on the video-pixel tag bit, the graphics-pixel overlay color, and the X/Y window of the video data.

MAY CONTAIN
CONFIDENTIAL INFORMATION
SUBJECT TO PROTECTIVE ORDER

ATI020383

CONFIDENTIAL-SUBJECT TO COURT PROTECTIVE ORDER LEVEL ONE Civil Action No. 952388R (AJB)

Pixel Semiconductor A'Cirrus Logic Company

Cursor

The CL-PX2080 implements an on-chip, three-color, user-definable hardware cursor in a 32 x 32 x 2-bit memory. This cursor works in both interlaced and non-interlaced systems.

Output DACs

The CL-PX2080 has three video-speed. 8-bit digital-to-analog converters, internal comparators to provide the sense function, and sync alignment logic. These form a complete RGB monitor interface.

Source Mix and Monitor Interface

Power-Down Mode

During the CL-PX2080 power-down condition, the DACs power-down and the RAM enters a low-power, data-retaining Standby Mode. The processor can read from or write to the RAM as long as the pixel clock is running. The RAM automatically powers-up during processor read/write cycles, and shuts down when processor access is completed. The three DAC-command registers are also accessible.

Cirrus Logic Direct Sales Offices

Domestic N CALIFORNIA Sen Jose TEL 408/436-7110 FAX 408/437-8960 S. CALIFORNIA TUSIM TUSIM TEL 714/258-8303 FAX 714/258-8307 Thousend Caks TEL 805/371-5381 FAX 805/371-5382 ROCKY MT AREA Denver, CD TEL 303/682-0050 FAX, 303/682-0053 S CENTRAL AREA Austim TX TEL 512/794-8490 FAX 512/794-8069	Plano TX TEL. 214/985-2334 FAX. 214/984-3119 CENTRAL AREA Cnicago. IL TEL 708/490-5940 FAX 708/490-5942 N EASTERN AREA Andover MA TEL 508/474-9300 FAX 508/474-9149 New Brunswick NJ TEL 908/603-7756 S EASTERN AREA BOCA RAION FL TEL 407/362-5225 FAX 407/362-5235	International JAPAN Tokyo TEL 81/3-5389-5300 FAX 81/3-5389-5540 SINGAPORE TEL 65/3532122 FAX 65/3532166 TAIWAN Taipe: TEL 886/2-718-4533 FAX 886-2-718-4526 GERMANY Herrsching TEL 49/8152-2030 FAX 49/8152-6211 UNITED KINGDOM Hertfordshire England TEL 44/0727-872424 FAX 44/0727-875919
--	--	---

The Company

Cirrus Logic. Inc., is a leading supplier of high-integration peripheral controller circuits for mass storage, graphics, and data communications. The company also produces state-of-the-art software and firmware to complement its product lines. Cirrus Logic technology is used in leading-edge personal computers, engineering workstations, and office automation.

Pixel Semiconductor, Inc., a subsidiary of Cirrus Logic, Inc., is a developer of integrated circuits for advanced display systems. These circuits enable the integration of real-time video with traditional computer graphics.

Cirrus Logic's fabless manufacturing strategy, unique in the semiconductor industry, employs a full manufacturing infrastructure to ensure maximum product quality, availability and value for our customers.

Talk to our systems and applications specialists, see how you can benefit from a new kind of semiconductor company

E Capyright Proof Semiconauction and 1982

Preliminary product information describes products that are in production, but for which full characterization data is not yet available. Pixel Semiconductor, fnc., believes that the information contained in this document is accurate and reliable. However, it is marked Preliminary and is subject to change without notice. Pixel Semiconductor, fnc., assumes no responsibility for its use nor for intingements of patents or other rights of third parties. This document implies no license under patents or copyrights. Trademarks in this document belong to their respective companies.

CIRRUS LOGIC, Inc., 3100 West Warren Ave Fremont, CA 94538

TEL 510/623-8300 FAX: 510/226-2180

752000-001

MAY CONTAIN
CONFIDENTIAL INFORMATION
SUBJECT TO PROTECTIVE ORDER

FEATURES

- CL-PX0070 superset
- direct ISA/MCA bus interface
- Interlaced or non-interlaced output
- up to 85 MHz pixel clock rates
- video inputs
 - 8:8:8 RGB at 40 MHz
 - (1)5:5.5 (T)RGB at 85 MHz
 - 5 6:5 AGB
 - 4:2:2 YUV at 85 MHz
 - taggec 4:2:2 YUV at 85 MHz
- zoom controls
- hardware cursor controls
- graphics input
 - 4-bit pseudocolor at 85 MHz
 - 8-bit pseudocolor at 85 MHz
 - 5:6:5 RGB at 80 MHz
 - (1)5:5:5 (T)RGB at 85 MHz
 - 8:8:8:8 aRGB at 40 MHz

MediaDAC™

- 3 overlay combination controls
 - tagged chroma color key
 - graphics overlay color key
 - XY window

APPLICATIONS

- Presentation
- Video Editing
- MultiMedia Authoring
- Video Teleconferencing
- Animation
- Video capture and scaling for VSPs

ATI020370

May 29, 1992

M - ers were, and

OVERVIEW

The CL-PX2080 MediaDAC[™] is a multiple-source video digital to analog convener. It manages and mixes two different video data streams while converting the input data into the format of the display subsystem, and changes color space and resolution from the input to the output format in real time.

The CL-PX2080 has a video port for YCbCr or RGB data and a graphics port with both 8-bit VGA and 32-bit high resolution ports. Its display functions include:

- pseudocolor.
- · display of true-color RGB data,
- X zooming,
- · hardware cursor controls, and
- a combination of three graphics overlay controls.

Host System Interface

The CL-PX2080 connects directly to ISA and MCA buses, internally decoding a 16-bit address and responding as an 8-bit peripheral. Its internal ISA/MCA bus interface eliminates most of the costly_"glue" circuity common to many personal computer system expansion boards.

In response to customer demands for increased performance, the display subsystem in many new systems has migrated onto the host-processor bus. The CL-PX2080 is designed to accommodate this trend; in host bus mode, the host processor directly accesses CL-PX2080 registers with 16-bit I/O addresses.

2

May 29, 1992

Video Input Interface

The video input interface accepts digitized video in a wide range of formats. The video data stream is converted to its final output format, then mixed and/or overlaid with processed graphics data and cursor data.

Features:

- 36-bit input data path;
- internal 256x36 bit input FIFO that supports:
 - 24-bit RGB data (up to 40 mega-pixels/s)
 - 16-bit RGB or YCbCr data (up to 80 mega-pixels/s)
- · chrominance format alignment:
- color-space interpolation;
- · zoom control.

Graphics Frame Buffer Interface

The CL-PX2080 accepts data from the graphics display source through either of two paths:

- . an 8-bit VGA data path, or
- a 32-bit VRAM serial data path.

Both paths allow CL-PX2080-based, next-generation PC graphics subsystems to maintain compatibility with the large installed base of VGA systems and VGA-specific software, while also achieving higher performance and resolution via the VRAM serial data path.

Features:

- VRAM Interface
 - 32-bit data bus
 - efficient pixel mapping within graphics-data word
- VGA Interface
- true color (CLUT bypass) option

Cursor

The CL-PX2080 implements an on-chip, three-color, user-definable hardware cursor in a 32x32x2 bit memory. This cursor works in both interfaced and non-interfaced systems.

Graphics Overlay Control

The graphics overlay controls allow a video image and a graphics image to be combined using a variety of operations (see above figure).

Every graphics pixel is either transparent or opaque. The color information for an opaque pixel is displayed on the screen. The color information for a transparent pixel is not displayed; instead, the color information of the video pixel behind it is displayed on the screen. The graphics overlay controls determine which graphics pixels are transparent.

Output DACs

LRD

Power Down Mode

During the CL-PX2080's power-down condition, the DACs power down and the RAM enters a low-power, data-retaining standby mode. The processor can read from or write to the RAM as long as the pixel clock is running. The RAM automatically powers up during processor read/write cycles, and shuts down when processor access is completed. The three DAC-command registers are also accessible.

MAY CONTAIN
CONFIDENTIAL INFORMATION
SUBJECT TO PROTECTIVE ORDER

ATI020372

May 29, 1992

Cirrus Logic Direct Sales Offices

Domestic		International	
N. CALIFORNIA San Jose TEL: 408/436-7110 FAX: 408/437-8960	S. CENTRAL AREA Austin, TX TEL: 512/794-8490 FAX: 512/794-8069	JAPAN Tokyo TEL: 81/3-5389-5300 FAX: 81/3-5389-5540	UNITED KINGDOM Hertfordshire, England TEL: 44/0727-872424 FAX: 44/0727-875919
S. CALIFORNIA Tustin TEL: 714/258-8303 FAX: 714/258-8307	Plano, TX TEL: 214/985-2334 FAX: 214/964-3119	SINGAPORE TEL: 65/3532122 FAX: 65/3532166	
Thousand Oaks TEL: 805/371-5381 FAX: 805/371-5382	N. EASTERN AREA Andover, MA TEL: 508/474-9300 FAX: 508/474-9149	TAIWAN Taipei TEL: 886/2-718-4533 FAX: 886/2-718-4526	
ROCKY MT AREA Boulder, CO TEL: 303/939-9739 FAX: 303/440-5712	S. EASTERN AREA Boca Raton, FL TEL: 407/994-9883 FAX: 407/994-9887	GERMANY Herrsching TEL: 49/8152-2030 FAX: 49/8152-6211	

The Company

Cirrus Logic, Inc., is a leading supplier of high-integration peripheral controller circuits for mass storage, graphics, and data communications. The company also produces state-of-the-art software and firmware to complement its product lines. Cirrus Logic technology is used in leading-edge personal computers, engineering workstations, and office automation.

Pixel Semiconductor, Inc., a subsidiary of Cirrus Logic, Inc., is a developer of integrated circuits for advanced display systems. These circuits enable the integration of real-time video with traditional computer graphics.

Cirrus Logic's extensive quality assurance program — one of the industry's most stringent — ensures the utmost in product reliability. Talk to our systems and applications specialists; see how you can benefit from a new kind of semiconductor company — Cirrus Logic.

© Copyright Pixel Semiconductor, Inc., 1992

Preliminary product information describes products which are in production, but for which full characterization data is not yet available. Pixel Semiconductor, Inc., believes that the information contained in this document is accurate and reliable. However, it is marked Preliminary and is subject to change without notice. Pixel Semiconductor, Inc. assumes no responsibility for as use, nor for infiningements of patents or other rights of third parties. This document implies no license under patents or copyrights. Trademarks in this document belong to their respective companies.

CIRRUS LOGIC, Inc., 3100 West Warren Ave. TEL: 510/623-8300

Fremont, CA 94538 FAX: 510/226-2160

752070-001

CONFIDENTIAL - May 29, 1992

ATI020373

CONFIDENTIAL-SUBJECT TO COURT PROTECTIVE ORDER LEVEL ONE Civil Action No. 952388R (AJB)

MAY CONTAIN CONFIDENTIAL INFORMATION SUBJECT TO PROTECTIVE ORDER