Thermodynamics: An Engineering Approach 8th Edition

Yunus A. Çengel, Michael A. Boles McGraw-Hill, 2015

CHAPTER 3 PROPERTIES OF PURE SUBSTANCES

Vaibhav Arghode, Department of Aerospace Engineering

Indian Institute of Technology Kanpur

Adapted from the lecture slides by **Mehmet Kanoglu** Copyright © The McGraw-Hill Education.

Permission required for reproduction or display.

Objectives

- Introduce the concept of a pure substance
- Discuss the physics of phase-change processes
- Illustrate the P-v, T-v, and P-T property diagrams and P-v-T surfaces of pure substances
- Obtaining thermodynamic properties of pure substances from tables of property data
- Describe "ideal gas" and the ideal-gas equation of state and demonstrate its use
- Introduce the compressibility factor, which accounts for the deviation of real gases from ideal-gas behavior
- Present some of the commonly used equations of state

PURE SUBSTANCE

- Pure substance: is the one that has a homogeneous and invariable chemical composition i.e. a pure substance has a fixed chemical composition throughout
- Air is a mixture of several gases, but it is considered to be a pure substance as its chemical composition is fixed

FIGURE 3-1

Nitrogen and gaseous air are pure substances.

PURE SUBSTANCE IN MULTIPLE PHASES

- Pure substance may exist in more than one phase, but the chemical composition is same in all phases
- Thus, liquid water, a mixture of liquid water and water vapor (steam), and a mixture of ice and liquid water are all pure substances; every phase has the same chemical composition
- Mixture of air and liquid air is not a pure substance, since the relative proportions of oxygen and nitrogen differ in gas and liquid phases in equilibrium

FIGURE 3-2

A mixture of liquid and gaseous water is a pure substance, but a mixture of liquid and gaseous air is not.

Boiling point O_2 (P = 1 atm): 90 K

Boiling point N_2 (P = 1 atm): 77 K

PHASES OF A PURE SUBSTANCE

- The molecules in a solid are kept at their positions by the large spring like intermolecular forces
- Molecules in liquid glide past each other
- Molecules in gases move freely

FIGURE 3-4

The arrangement of atoms in different phases: (a) molecules are at relatively fixed positions in a solid, (b) groups of molecules move about each other in the liquid phase, and (c) molecules move about at random in the gas phase.

PHASE-CHANGE PROCESSES OF PURE SUBSTANCES

Compressed liquid (subcooled liquid): A substance that it is not about to vaporize

FIGURE 3-5

At 1 atm and 20°C, water exists in the liquid phase (compressed liquid).

Saturated liquid: A liquid that is about to vaporize

FIGURE 3-6

At 1 atm pressure and 100°C, water exists as a liquid that is ready to vaporize (*saturated liquid*).

- Saturated liquid-vapor mixture: The state at which the liquid and vapor phases coexist in equilibrium
- Saturated vapor: A vapor that is about to condense
- Superheated vapor: A vapor that is not about to condense (i.e., not a saturated vapor)

As more heat is transferred, part of the saturated liquid vaporizes (saturated liquid-vapor mixture)

At 1 atm pressure, the temperature remains constant at 100°C until the last drop of liquid is vaporized (saturated vapor)

As more heat is transferred, the temperature of the vapor starts to rise (superheated vapor).

Boiling Point

- The temperature at which water starts boiling depends on the pressure
- Water boils at 100 ℃ at 1 atm and at 150 °C at 4.7 atm

TABLE 3-2

Variation of the standard atmospheric pressure and the boiling (saturation) temperature of water with altitude

	Atmospheric	Boiling				
Elevation,	pressure,	tempera-				
m	kPa	ture, °C				
	101.00	1000				

Leh, Ladakh: 3,500 m

Elevation,	pressure,	tempera-				
m	kPa	ture, °C				
0	101.33	100.0				
1,000	89.55	96.5				
2,000	79.50	93.3				
5,000	54.05	83.3				
10,000	26.50	66.3				
20,000	5.53	34.7				

TABLE 3-1

Saturation (or vapor) pressure of water at various temperatures

Temperature T, °C	Saturation Pressure P _{sat} , kPa
-10	0.260
-5	0.403
0	0.611
5	0.872
10	1.23
15	1.71
20	2.34
25	3.17
30	4.25
40	7.38
50	12.35
100	101.3 (1 atm)
150	475.8
200	1554
250	3973
300	8581

Saturation Temperature and Saturation Pressure

- Saturation temperature T_{sat}: The temperature at which a pure substance changes phase at a given pressure
- Saturation pressure P_{sat}: The pressure at which a pure substance changes phase at a given temperature

Some Consequences of T_{sat} and P_{sat} Dependence

 Boiling temperature of nitrogen at atmospheric pressure is –196 °C

FIGURE 3-12

The temperature of liquid nitrogen exposed to the atmosphere remains constant at -196°C, and thus it maintains the test chamber at -196°C.

Some Consequences of T_{sat} and P_{sat} Dependence

The variation of the temperature of fruits and vegetables with pressure during vacuum cooling from 25°C to 0°C

In 1775, ice was made by evacuating the air space in a water tank

T-v diagram

FIGURE 3-17

Property diagrams of a pure substance.

Critical point

Critical point: The point at which the saturated liquid and saturated vapor states are identical

At supercritical pressures $(P > P_{cr})$, there is no distinct phase-change (boiling) process

A supercritical fluid (SCF) is any substance at a temperature and pressure above its critical point

P-v diagram

Saturated liquid and saturated vapor states of water on *T-v* and *P-v* diagrams

Extending the Diagrams to Include the Solid Phase for a Substance that Contracts on Cooling

Extending the Diagrams to Include the Solid Phase for a Substance that Expand on Freezing

Phase (P-T) Diagram of Pure Substances

Sublimation: Passing from the solid phase directly into the vapor phase

At low pressures (below the triple-point value), solids evaporate without melting first (sublimation)

Triple Point

 At triple-point pressure and temperature, a substance exists in three phases in equilibrium

For water, $T_{tp} = 0.01^{\circ}\text{C}$ $P_{tp} = 0.6117 \text{ kPa}$

The *P-v-T* surfaces present a great deal of information at once, but in a thermodynamic analysis it is more convenient to work with two-dimensional diagrams, such as the *P-v* and *T-v* diagrams

FIGURE 3-23

P-v-T surface of a substance that *contracts* on freezing.

Try to visualize the Pv, PT and Tv diagrams (2D) from this 3D representation and see if they resemble the 2D representations

FIGURE 3-24

P-v-T surface of a substance that *expands* on freezing (like water).

PROPERTY TABLES

- For most substances, the relationships among thermodynamic properties are too complex to be expressed by simple equations
- Therefore, properties are frequently presented in the form of tables
- Some thermodynamic properties can be measured easily, but others cannot and are calculated by using the relations between them and measurable properties
- The results of these measurements and calculations are presented in tables in a convenient format

Property Table

A partial list of Table A-4

 v_f = specific volume of saturated liquid

 v_g = specific volume of saturated vapor

TABLE A-5

Saturated water—Pressure table

		•	volume, ³ /kg	<i>Internal energy,</i> kJ/kg		<i>Enthalpy,</i> kJ/kg			<i>Entropy,</i> kJ/kg∙K			
	Sat.	Sat.	Sat.	Sat.		Sat.	Sat.		Sat.	Sat.		Sat.
Press.,	temp.,	liquid,	vapor,	liquid,	Evap.,	vapor,	liquid,	Evap.,	vapor,	liquid,	Evap.,	vapor,
P kPa	T _{sat} °C	V_f	Vg	U_f	u_{fg}	Иg	h _f	h _{fg}	h _g	S _f	S _{fg}	Sg
1.0	6.97	0.001000	129.19	29.302	2355.2	2384.5	29.303	2484.4	2513.7	0.1059	8.8690	8.9749
1.5	13.02	0.001001	87.964	54.686	2338.1	2392.8	54.688	2470.1	2524.7	0.1956	8.6314	8.8270
2.0 2.5	17.50 21.08	0.001001 0.001002	66.990 54.242	73.431 88.422	2325.5 2315.4	2398.9 2403.8	73.433 88.424	2459.5 2451.0	2532.9 2539.4	0.2606 0.3118	8.4621 8.3302	8.7227 8.6421
3.0	24.08	0.001002	45.654	100.98	2306.9	2407.9	100.98	2443.9	2544.8	0.3543	8.2222	8.5765
4.0	28.96	0.001004	34.791	121.39	2293.1	2414.5	121.39	2432.3	2553.7	0.4224	8.0510	8.4734
5.0	32.87	0.001005	28.185	137.75	2282.1	2419.8	137.75	2423.0	2560.7	0.4762	7.9176	8.3938
7.5 10	40.29 45.81	0.001008 0.001010	19.233 14.670	168.74 191.79	2261.1 2245.4	2429.8 2437.2	168.75 191.81	2405.3 2392.1	2574.0 2583.9	0.5763 0.6492	7.6738 7.4996	8.2501 8.1488
15	53.97	0.001010	10.020	225.93	2222.1	2448.0	225.94	2372.3	2598.3	0.7549	7.2522	8.0071
20	60.06	0.001017	7.6481	251.40	2204.6	2456.0	251.42	2357.5	2608.9	0.8320	7.0752	7.9073
25	64.96	0.001020	6.2034	271.93	2190.4	2462.4	271.96	2345.5	2617.5	0.8932	6.9370	7.8302
30 40	69.09 75.86	0.001022 0.001026	5.2287 3.9933	289.24 317.58	2178.5 2158.8	2467.7 2476.3	289.27 317.62	2335.3 2318.4	2624.6 2636.1	0.9441	6.8234 6.6430	7.7675 7.6691
50	81.32	0.001020	3.2403	340.49	2142.7	2483.2	340.54	2304.7	2645.2	1.0912	6.5019	7.5931
75	91.76	0.001037	2.2172	384.36	2111.8	2496.1	384.44	2278.0	2662.4	1.2132	6.2426	7.4558
100		0.001043	1.6941	417.40 418.95	2088.2 2087.0	2505.6 2506.0	417.51 419.06	2257.5 2256.5	2675.0 2675.6	1.3028 1.3069	6.0562 6.0476	7.3589 7.3545
101.323	105.97	0.001043	1.3750	444.23	2068.8	2513.0	444.36	2240.6	2684.9	1.3741	5.9100	7.3343
150	111.35	0.001053	1.1594	466.97	2052.3	2519.2	467.13	2226.0	2693.1	1.4337	5.7894	7.2231
175	116.04	0.001057	1.0037	486.82	2037.7	2524.5	487.01	2213.1		1.4850	5.6865	7.1716
200	120.21	0.001061	0.88578	504.50	2024.6	2529.1	504.71	2201.6		1.5302		
225 250	123.97 127.41	0.001064 0.001067	0.79329 0.71873	520.47 535.08	2012.7 2001.8	2533.2 2536.8	520.71 535.35	2191.0 2181.2		1.5706 1.6072	5.5171	7.0877 7.0525
275	130.58	0.001007	0.65732		1991.6	2540.1	548.86	2172.0		1.6408		
ALCOHOLD TO ALL	- AL - 12	Charles of the latest of the l	ALL AND FRANCE		1 - W	EASTERN PROPERTY.	- W.	PER CHARLES		No. of Parks		ALCOHOLD !

Saturated Liquid-Vapor Mixture

- The relative amounts of liquid and vapor phases in a saturated mixture are specified by the quality x
- Quality, x: The ratio of the mass of vapor to the total mass of the mixture.
- Quality is between 0 (sat. liquid) and 1 (sat. vapor)

$$x = \frac{m_{\text{vapor}}}{m_{\text{total}}}$$

$$m_{\rm total} = m_{\rm liquid} + m_{\rm vapor}$$

$$m_{\text{total}} = m_f + m_g$$

Temperature and pressure are dependent properties for a mixture

Saturated Liquid-Vapor Mixture

 The properties of the saturated liquid are the same whether it exists alone or in a mixture with saturated vapor

A two-phase system can be treated as a homogeneous mixture for convenience

FIGURE 3-34

The V value of a saturated liquid–vapor mixture lies between the V_f and V_g values at the specified T or P.

ENTHALPY

$$h = u + P v \qquad (kJ/kg)$$

$$H = U + PV \tag{kJ}$$

The product *pressure* × *volume* has energy units

The combination u + Pv is frequently encountered in the analysis of control volumes

- Latent heat: The amount of energy absorbed or released during a phase-change process
- Latent heat of fusion: The amount of energy absorbed during melting. It is equivalent to the amount of energy released during freezing.
- Latent heat of vaporization (h_{fg}): The amount of energy absorbed during vaporization and it is equivalent to the energy released during condensation
- The magnitudes of the latent heats depend on the temperature or pressure at which the phase change occurs
- At 1 atm pressure, the latent heat of fusion of water is 333.7
 kJ/kg and the latent heat of vaporization is 2256.5 kJ/kg
- At 2 bar pressure the latent heat of vaporization of water is 2201.6 kJ/kg

Property of Saturated Liquid-Vapor Mixture

$$V = V_f + V_g$$

$$V = mv \longrightarrow m_t V_{avg} = m_f V_f + m_g V_g$$

$$m_f = m_t - m_g \longrightarrow m_t V_{\text{avg}} = (m_t - m_g) V_f + m_g V_g$$

Dividing by m_t yields

$$V_{\text{avg}} = (1 - x)V_f + xV_g$$

$$x = m_g/m_t.$$

$$V_{\text{avg}} = V_f + xV_{fg}$$
 (m³/kg)

$$x = \frac{V_{\text{avg}} - V_f}{V_{fg}}$$

Property of Saturated Liquid-Vapor Mixture

$$x = m_g/m_t$$

$$x = \frac{V_{\text{avg}} - V_f}{V_{fg}}$$

$$v_{\text{avg}} = v_f + x v_{fg}$$
 (m³/kg)

$$u_{\text{avg}} = u_f + x u_{fg} \qquad (kJ/kg)$$

$$h_{\text{avg}} = h_f + x h_{fg}$$
 (kJ/kg)

FIGURE 3-33

Quality is related to the horizontal distances on P- ν and T- ν diagrams.

Example: Saturated liquid-vapor mixture states

A rigid tank contains 10 kg of water at 90 °C. If 8 kg of the water is in the liquid form and the rest is in the vapor form, determine (a) the pressure in the tank (b) the volume of the tank

At T = 90 °C,
$$P_{sat}$$
 = 70.183 kPa

$$m_t = m_a + m_f = 10 \text{ kg}$$

$$x = m_{o}/m_{t} = 0.2$$

$$v_{fq} = v_q - v_f = 2.3583 \text{ m}^3/\text{kg}$$

$$v_{avg} = v_f + xv_{fg} = 0.4727 \text{ m}^3/\text{kg}$$

$$V = m_t v_{avg} = 4.73 \text{ m}^3$$

TABLE A-4

Saturated water—Temperature table

4		<i>Specific volume,</i> m³/kg		<i>Internal energy,</i> kJ/kg			<i>Enthalpy,</i> kJ/kg			<i>Entropy,</i> kJ/kg∙K		
Temp., <i>T</i> °C	Sat. press., P _{sat} kPa	Sat. liquid, v _f	Sat. vapor, v _g	Sat. liquid, u _f	Evap., u _{fg}	Sat. vapor, u_g	Sat. liquid, h _f	Evap., h _{fg}	Sat. vapor, h _g	Sat. liquid, s _f	Evap.,	Sat. vapor, s_g
0.01 5 10 15 20	0.6117 0.8725 1.2281 1.7057 2.3392	0.001000 0.001000 0.001000 0.001001 0.001002	206.00 147.03 106.32 77.885 57.762	0.000 21.019 42.020 62.980 83.913	2374.9 2360.8 2346.6 2332.5 2318.4	2374.9 2381.8 2388.7 2395.5 2402.3	0.001 21.020 42.022 62.982 83.915	2500.9 2489.1 2477.2 2465.4 2453.5	2500.9 2510.1 2519.2 2528.3 2537.4	0.0000 0.0763 0.1511 0.2245 0.2965		9.1556 9.0249 8.8999 8.7803 8.6661
25 30 35 40 45	3.1698 4.2469 5.6291 7.3851 9.5953	0.001003 0.001004 0.001006 0.001008 0.001010	43.340 32.879 25.205 19.515 15.251	104.83 125.73 146.63 167.53 188.43	2304.3 2290.2 2276.0 2261.9 2247.7	2409.1 2415.9 2422.7 2429.4 2436.1	104.83 125.74 146.64 167.53 188.44	2441.7 2429.8 2417.9 2406.0 2394.0	2546.5 2555.6 2564.6 2573.5 2582.4	0.3672 0.4368 0.5051 0.5724 0.6386	7.8466 7.6832	8.4520
50 55 60 65 70	12.352 15.763 19.947 25.043 31.202	0.001012 0.001015 0.001017 0.001020 0.001023	12.026 9.5639 7.6670 6.1935 5.0396	209.33 230.24 251.16 272.09 293.04	2233.4 2219.1 2204.7 2190.3 2175.8	2442.7 2449.3 2455.9 2462.4 2468.9	209.34 230.26 251.18 272.12 293.07	2382.0 2369.8 2357.7 2345.4 2333.0	2591.3 2600.1 2608.8 2617.5 2626.1	0.7038 0.7680 0.8313 0.8937 0.9551	7.2218 7.0769 6.9360	8.0748 7.9898 7.9082 7.8296 7.7540
75 80 85 90 95	38.597 47.416 57.868 70.183 84.609	0.001026 0.001029 0.001032 0.001036 0.001040	4.1291 3.4053 2.8261 2.3593 1.9808	313.99 334.97 355.96 376.97 398.00	2161.3 2146.6 2131.9 2117.0 2102.0	2475.3 2481.6 2487.8 2494.0 2500.1	314.03 335.02 356.02 377.04 398.09	2320.6 2308.0 2295.3 2282.5 2269.6	2634.6 2643.0 2651.4 2659.6 2667.6	1.0158 1.0756 1.1346 1.1929 1.2504	6.2853	7.6812 7.6111 7.5435 7.4782 7.4151
100 105 110 115 120	101.42 120.90 143.38 169.18 198.67	0.001043 0.001047 0.001052 0.001056 0.001060	1.6720 1.4186 1.2094 1.0360 0.89133	419.06 440.15 461.27 482.42 503.60	2087.0 2071.8 2056.4 2040.9 2025.3	2506.0 2511.9 2517.7 2523.3 2528.9	419.17 440.28 461.42 482.59 503.81	2256.4 2243.1 2229.7 2216.0 2202.1	2675.6 2683.4 2691.1 2698.6 2706.0	1.3072 1.3634 1.4188 1.4737 1.5279	5.9319 5.8193 5.7092	7.2952 7.2382

Example: Saturated liquid-vapor mixture

An 80 L vessel contains 4 kg of refrigerant-134a at a pressure of 160 kPa.

Determine (a) temperature, (b) the quality, (c) the enthalpy of the refrigerant

At P = 160 kPa,
$$T_{sat}$$
 = -15.60 °C
 v_{avg} = V/m = 0.02 m³/kg
 v_{fg} = v_g - v_f = 0.1228 m³/kg
 h_{fg} = h_g - h_f = 209.96 kJ/kg
 $x = (v_{avg} - v_f)/v_{fg}$ = 0.157
 h_{avg} = h_f + xh_{fg} = 64.2 kJ/kg

 $H = m_t h_{ava} = 256.8 \text{ kJ}$

TABLE A-12

Saturated refrigerant-134a—Pressure table

		<i>Specific volume,</i> m ³ /kg		Inte	<i>rnal enei</i> kJ/kg	gy,		<i>Enthalpy,</i> kJ/kg			Entropy, kJ/kg·K	
Press., P kPa	Sat. temp., T _{sat} °C	Sat. liquid, v _f	Sat. vapor, v _g	Sat. liquid, u _f	Evap., u _{fg}	Sat. vapor, u _g	Sat. liquid, h _f	Evap., h _{fg}	Sat. vapor, h _g	Sat. liquid, s _f	Evap., s _{fg}	Sat. vapor, s _g
60	-36.95	0.0007097	0.31108	3.795	205.34	209.13	3.837	223.96	227.80	0.01633	0.94812	0.96445
70	-33.87	0.0007143	0.26921	7.672	203.23	210.90	7.722	222.02	229.74	0.03264	0.92783	0.96047
80	-31.13	0.0007184	0.23749	11.14	201.33	212.48	11.20	220.27	231.47	0.04707	0.91009	0.95716
90	-28.65	0.0007222	0.21261	14.30	199.60	213.90	14.36	218.67	233.04	0.06003	0.89431	0.95434
100	-26.37	0.0007258	0.19255	17.19	198.01	215.21	17.27	217.19	234.46	0.07182	0.88008	0.95191
120	-22.32	0.0007323	0.16216	22.38	195.15	217.53	22.47	214.52	236.99	0.09269	0.85520	0.94789
140	-18.77	0.0007381	0.14020	26.96	192.60	219.56	27.06	212.13	239.19	0.11080	0.83387	0.94467
160	(-15.60)	0.0007435	0.12355	31.06	190.31	221.37	31.18			0.12686	0.81517	0.94202
180	-12.73	0.0007485	0.11049	34.81	188.20	223.01	34.94	207.95	242.90	0.14131	0.79848	0.93979
200	-10.09	0.0007532	0.099951	38.26	186.25	224.51	38.41	206.09	244.50	0.15449	0.78339	0.93788
240	-5.38	0.0007618	0.083983	44.46	182.71	227.17	44.64	202.68	247.32	0.17786	0.75689	0.93475
280	-1.25	0.0007697	0.072434	49.95	179.54	229.49	50.16	199.61	249.77	0.19822	0.73406	0.93228
320	2.46	0.0007771	0.063681	54.90	176.65	231.55	55.14	196.78	251.93	0.21631	0.71395	0.93026
360	5.82	0.0007840	0.056809	59.42	173.99	233.41 235.10	59.70	194.15	253.86	0.23265	0.69591	0.92856
400 450	8.91 12.46	0.0007905 0.0007983	0.051266 0.045677	63.61 68.44	171.49 168.58	237.03	63.92 68.80	191.68 188.78	255.61 257.58	0.24757 0.26462	0.67954 0.66093	0.92711 0.92555
500	15.71	0.0007963	0.045677	72.92	165.86	238.77	73.32	186.04	259.36	0.28021	0.66093	0.92555
550	18.73	0.0008038	0.041166	77.09	163.29	240.38	77.54	183.44	260.98	0.28021	0.64399	0.92420
600	21.55	0.0008129	0.037432	81.01	160.84	241.86	81.50	180.95	262.46	0.30799	0.61398	0.92302
650	24.20	0.0008265	0.031680	84.72	158.51	243.23	85.26	178.56	263.82	0.32052	0.60048	0.92100
700	26.69	0.0008331	0.029392	88.24	156.27	244.51	88.82	176.26	265.08	0.33232	0.58780	0.92012
750	29.06	0.0008395	0.027398	91.59	154.11	245.70	92.22	174.03	266.25	0.34348	0.57582	0.91930
800	31.31	0.0008457	0.025645	94.80	152.02	246.82	95.48	171.86	267.34	0.35408	0.56445	0.91853
850	33.45	0.0008519	0.024091			247.88	98.61		268.36	0.36417	0.55362	
900	35.51	0.0008580	0.022703	100.84	148.03		101.62	167.69		0.37383	0.54326	0.91709
950	37.48	0.0008640	0.021456		146.11	249.82		165.68		0.38307	0.53333	
1000	39.37	0.0008700	0.020329	106.47	144.24	250.71	107.34	163.70	271.04	0.39196	0.52378	0.91574
1200	46.29	0.0008935	0.016728	116.72	137.12	253.84	117.79	156.12	273.92	0.42449	0.48870	0.91320
1400	52.40	0.0009167	0.014119	125.96	130.44	256.40	127.25	148.92	276.17	0.45325	0.45742	0.91067

Superheated Vapor

- In the region to the right of the saturated vapor line a substance exists as superheated vapor
- It is customary to refer to the substance as superheated vapor at temperatures above the critical temperature
- In this region, temperature and pressure are independent properties

Compared to saturated vapor, superheated vapor is characterized by:

(single-phase only) Lower pressures $(P < P_{sat})$ at a given T) Higher tempreatures $(T > T_{sat})$ at a given P) Higher specific volumes ($v > v_g$ at a given P or T) Higher internal energies ($u > u_g$ at a given P or T) Higher enthalpies $(h > h_{\varrho})$ at a given P or T)

TABLE A-6

Superheated water

Т	V	и	h	S	V	и	h	S	V	и	h	S
°C	m³/kg	kJ/kg	kJ/kg	kJ/kg⋅K	m³/kg	kJ/kg	kJ/kg	kJ/kg∙K	m³/kg	kJ/kg	kJ/kg	kJ/kg·K
	P =	0.01 MP	a (45.81°	C)*	P =	0.05 MP	a (81.32°	C)	P = 0.10 MPa (99.61°C)			
Sat.†	14.670	2437.2	2583.9	8.1488	3.2403	2483.2	2645.2	7.5931	1.6941	2505.6	2675.0	7.3589
50	14.867	2443.3	2592.0	8.1741								
100	17.196	2515.5	2687.5	8.4489	3.4187	2511.5	2682.4	7.6953	1.6959	2506.2	2675.8	7.3611
150	19.513	2587.9	2783.0	8.6893	3.8897	2585.7	2780.2	7.9413	1.9367	2582.9	2776.6	7.6148
200	21.826	2661.4	2879.6	8.9049	4.3562	2660.0	2877.8	8.1592	2.1724	2658.2	2875.5	7.8356
250	24.136	2736.1	2977.5	9.1015	4.8206	2735.1	2976.2	8.3568	2.4062	2733.9	2974.5	8.0346
300	26.446	2812.3	3076.7	9.2827	5.2841	2811.6	3075.8	8.5387	2.6389	2810.7	3074.5	8.2172
400	31.063	2969.3	3280.0	9.6094	6.2094	2968.9	3279.3	8.8659	3.1027	2968.3	3278.6	8.5452
500	35.680	3132.9	3489.7	9.8998	7.1338	3132.6	3489.3	9.1566	3.5655	3132.2	3488.7	8.8362
600	40.296	3303.3	3706.3	10.1631	8.0577	3303.1	3706.0	9.4201	4.0279	3302.8	3705.6	9.0999
700	44.911	3480.8	3929.9	10.4056	8.9813	3480.6	3929.7	9.6626	4.4900	3480.4	3929.4	9.3424
800	49.527	3665.4	4160.6	10.6312	9.9047	3665.2	4160.4	9.8883	4.9519	3665.0	4160.2	9.5682
900	54.143	3856.9	4398.3	10.8429	10.8280	3856.8		10.1000	5.4137	3856.7	4398.0	
1000	58.758	4055.3	4642.8	11.0429	11.7513	4055.2		10.3000	5.8755	4055.0	4642.6	
1100	63.373	4260.0	4893.8	11.2326	12.6745	4259.9		10.4897	6.3372	4259.8		10.1698
1200	67.989	4470.9	5150.8	11.4132	13.5977	4470.8		10.6704	6.7988	4470.7	5150.6	10.3504
1300	72.604	4687.4	5413.4	11.5857	14.5209	4687.3	5413.3	10.8429	7.2605	4687.2	5413.3	10.5229
	<i>P</i> =	0.20 MP	a (120.21	l°C)	P =	2°C)	P = 0.40 MPa (143.61°C)					
Sat.	0.88578	2529.1	2706.3	7.1270	0.60582	2543.2	2724.9	6.9917	0.46242	2553.1	2738.1	6.8955
150	0.95986	2577.1	2769.1	7.2810	0.63402	2571.0	2761.2	7.0792	0.47088	2564.4	2752.8	6.9306
200	1.08049	2654.6	2870.7	7.5081	0.71643	2651.0	2865.9	7.3132	0.53434	2647.2	2860.9	7.1723
250	1.19890	2731.4	2971.2	7.7100	0.79645	2728.9	2967.9	7.5180	0.59520	2726.4	2964.5	7.3804
300	1.31623	2808.8	3072.1	7.8941	0.87535	2807.0	3069.6	7.7037	0.65489	2805.1	3067.1	7.5677
400	1.54934	2967.2	3277.0	8.2236	1.03155	2966.0	3275.5	8.0347	0.77265	2964.9	3273.9	7.9003
500	1.78142	3131.4	3487.7	8.5153	1.18672	3130.6	3486.6	8.3271	0.88936	3129.8	3485.5	8.1933
600	2.01302	3302.2	3704.8	8.7793	1.34139	3301.6	3704.0	8.5915	1.00558	3301.0	3703.3	8.4580
700	2.24434	3479.9	3928.8	9.0221	1.49580	3479.5	3928.2	8.8345	1.12152	3479.0	3927.6	8.7012
800	2.47550	3664.7	4159.8	9.2479	1.65004	3664.3	4159.3	9.0605	1.23730	3663.9	4158.9	8.9274
900	2.70656	3856.3	4397.7	9.4598	1.80417	3856.0	4397.3	9.2725	1.35298	3855.7	4396.9	9.1394
1000	2.93755	4054.8	4642.3	9.6599	1.95824	4054.5	4642.0	9.4726	1.46859	4054.3	4641.7	9.3396

Compressed Liquid

- In the region to the left of the saturated liquid line a substance exists as compressed liquid
- It is customary to refer to the substance as compressed liquid at temperatures below the critical temperature

Compressed liquid is characterized by

Higher pressures $(P > P_{\text{sat}})$ at a given T)

Lower tempreatures $(T < T_{\text{sat}})$ at a given P

Lower specific volumes ($v < v_f$ at a given P or T)

Lower internal energies ($u < u_f$ at a given P or T)

Lower enthalpies ($h < h_f$ at a given P or T)

FIGURE 3-41

At a given P and T, a pure substance will exist as a compressed liquid if $T < T_{\text{sat @ }P}$.

Compressed Liquid Properties

Compressed liquid tables are not as commonly available.
One reason for this is the relative independence of compressed liquid properties from pressure

A compressed liquid may be approximated as a saturated liquid at the given temperature

Given: P and T

$$v \cong v_{f@T}$$

$$u \cong u_{f@T}$$

$$h \cong h_{f@T}$$

Enthalpy of Compressed Liquid

Out of v (specific volume), u (internal energy) and h (enthalpy), the property whose value is most sensitive to variations in the pressure is the enthalpy h

Although the approximation results in negligible error in v and u, the error in h may reach undesirable levels

However, the error in h at low to moderate pressures and temperatures can be reduced significantly by evaluating it from instead of just taking it to be $h_{f@T}$

$$h = u + Pv$$
Approximate: $u \cong u_{f@T}$ $v \cong v_{f@T}$

$$h \cong u_{f@T} + Pv_{f@T}$$

$$u_{f@T} = h_{f@T} - P_{sat@T}v_{f@T}$$

$$h \cong h_{f@T} + V_{f@T}(P - P_{sat@T})$$

TABLE A-7

Compressed liquid water

T °C		v m³/kg	<i>u</i> kJ/kg	<i>h</i> kJ/kg	<i>s</i> kJ/kg⋅K	v m³/kg	<i>u</i> kJ/kg	<i>h</i> kJ/kg	<i>s</i> kJ/kg⋅K	v m³/kg	<i>u</i> kJ/kg	<i>h</i> kJ/kg	<i>s</i> kJ/kg⋅K
	,												
		P =	= 5 MPa ((263.94°C	()	P =	10 MPa	(311.00°C)	P = 15 MPa (342.16°C)			
Sa	ıt.	0.0012862		1154.5	2.9207	0.0014522	1393.3	1407.9	3.3603	0.0016572		1610.3	3.6848
	0	0.0009977	0.04	5.03	0.0001	0.0009952	0.12	10.07	0.0003	0.0009928	0.18	15.07	0.0004
	20	0.0009996	83.61	88.61	0.2954	0.0009973	83.31	93.28	0.2943	0.0009951	83.01	97.93	0.2932
	10	0.0010057	166.92	171.95	0.5705	0.0010035	166.33	176.37	0.5685	0.0010013	165.75	180.77	0.5666
	0	0.0010149	250.29	255.36	0.8287	0.0010127	249.43	259.55	0.8260	0.0010105	248.58	263.74	0.8234
	30	0.0010267	333.82	338.96	1.0723	0.0010244	332.69	342.94	1.0691	0.0010221	331.59	346.92	1.0659
10 12		0.0010410 0.0010576	417.65 501.91	422.85 507.19	1.3034 1.5236	0.0010385 0.0010549	416.23 500.18	426.62 510.73	1.2996 1.5191	0.0010361 0.0010522	414.85 498.50	430.39 514.28	1.2958 1.5148
14		0.0010376	586.80	592.18	1.7344	0.0010349	584.72	510.75	1.7293	0.0010322	582.69	514.26	1.7243
16		0.0010703	672.55	678.04	1.9374	0.0010738	670.06	681.01	1.9316	0.0010708	667.63	684.01	1.7243
18		0.0010300	759.47	765.09	2.1338	0.0010334	756.48	767.68	2.1271	0.0010320	753.58	770.32	2.1206
20		0.0011531	847.92	853.68	2.3251	0.0011482	844.32	855.80	2.3174	0.0011135	840.84	858.00	2.3100
22		0.0011868	938.39	944.32	2.5127	0.0011809	934.01	945.82	2.5037	0.0011752	929.81	947.43	2.4951
24	10	0.0012268	1031.6	1037.7	2.6983	0.0012192	1026.2	1038.3	2.6876	0.0012121	1021.0	1039.2	2.6774
26	60	0.0012755	1128.5	1134.9	2.8841	0.0012653	1121.6	1134.3	2.8710	0.0012560	1115.1	1134.0	2.8586
28	30					0.0013226	1221.8	1235.0	3.0565	0.0013096	1213.4	1233.0	3.0410
30						0.0013980	1329.4	1343.3	3.2488	0.0013783		1338.3	3.2279
32										0.0014733		1454.0	3.4263
34	10									0.0016311	1567.9	1592.4	3.6555
	_	<i>P</i> =	20 MPa	(365.75°C	C)		P = 30	MPa			P = 50) MPa	
Sa	ıt.	0.0020378	1785.8	1826.6	4.0146								
	0	0.0009904	0.23	20.03	0.0005	0.0009857	0.29	29.86	0.0003	0.0009767	0.29	49.13	-0.0010
2	20	0.0009929	82.71	102.57	0.2921	0.0009886	82.11	111.77	0.2897	0.0009805	80.93	129.95	0.2845
4	10	0.0009992	165.17	185.16	0.5646	0.0009951	164.05	193.90	0.5607	0.0009872	161.90	211.25	0.5528
6	60	0.0010084	247.75	267.92	0.8208	0.0010042	246.14	276.26	0.8156	0.0009962	243.08	292.88	0.8055
8	30	0.0010199	330.50	350.90	1.0627	0.0010155	328.40	358.86	1.0564	0.0010072	324.42	374.78	1.0442
10	00	0.0010337	413.50	434.17	1.2920	0.0010290	410.87	441.74	1.2847	0.0010201	405.94	456.94	1.2705
12		0.0010496			1.5105	0.0010445	493.66	525.00	1.5020	0.0010349	487.69	539.43	
14	10	0.0010679	580.71	602.07	1.7194	0.0010623	576.90	608.76	1.7098	0.0010517	569.77	622.36	1.6916

Reference State and Reference Values

- The values of u, h, and s cannot be measured directly, and they are calculated from measurable properties using the relations between properties
- However, those relations give the changes in properties, not the values of properties at specified states
- Therefore, we need to choose a convenient reference state and assign a value of zero for a convenient property or properties at that state
- Some properties may have negative values as a result of the reference state chosen
- Sometimes different tables list different values for some properties at the same state as a result of using a different reference state
- However, In thermodynamics we are concerned with the changes in properties, and the reference state chosen is of no consequence in calculations

Reference State and Reference Values

Saturate	ed water—	Temperatur	e table A-4									
		Specific volume, m ³ /kg		Internal energy, kJ/kg			Enthalpy, kJ/kg			Entropy, kJ/kg · K		
Temp.,	Sat. press., P _{sat} kPa	Sat. liquid, v _f	Sat. vapor, v_g	Sat. Iiquid, <i>u_f</i>	Evap., u _{fg}	Sat. vapor, u_g	Sat. Iiquid, <i>h_f</i>	Evap., h _{fg}	Sat. vapor, h_g	Sat. Iiquid, <i>s_f</i>	Evap., s _{fg}	Sat. vapor, s_g
0.01 5	0.6117 0.8725	0.001000 0.001000	206.00 147.03	0.000	2374.9 2360.8	2374.9 2381.8	0.001	2500.9 2489.1	2500.9 2510.1	0.0000	9.1556 8.9487	9.1556 9.0249

Satura	Saturated refrigerant-134a—Temperature table A-11											
	<i>Specific volume,</i> m ³ /kg		Inte	<i>Internal energy,</i> kJ/kg			<i>Enthalpy,</i> kJ/kg			Entropy, kJ/kg · K		
Temp.,	Sat. press., P _{sat} kPa	Sat. Iiquid, v _f	Sat. vapor, v_g	Sat. liquid, <i>u_f</i>	Evap., u _{fg}	Sat. vapor, u_g	Sat. Iiquid, <i>h_f</i>	Evap., h _{fg}	Sat. vapor, h _g	Sat. liquid, s _f	Evap., s_{fg}	Sat. vapor, s_g
-40	51.25	0.0007054	0.36081	-0.036	207.40	207.37	0.000	225.86	225.86	0.00000	0.96866	0.96866

- The reference state for water is 0.01°C and for R-134a is -40°C in tables
- Note that h = u + Pv, hence both h and u cannot be simultaneously zero due to finite pressure (P) and specific volume (v) terms

THE IDEAL-GAS EQUATION OF STATE

- Equation of state: Any equation that relates the pressure, temperature, and specific volume of a substance
- The simplest and best-known equation of state for substances in the gas phase is the ideal-gas equation of state. This equation predicts the P-v-T behavior of a gas quite accurately within some properly selected region

$$P = R\left(\frac{T}{V}\right)$$

$$P \lor = RT$$

Ideal gas equation of state

Substance	$R, kJ/kg\cdot K$
Air	0.2870
Helium	2.0769
Argon	0.2081
Nitrogen	0.2968

UNIVERSAL GAS CONSTANT

$$P \lor = RT$$

$$R = \frac{R_u}{M} \qquad (kJ/kg \cdot K \text{ or } kPa \cdot m^3/kg \cdot K)$$

R: gas constant

M: molar mass (kg/kmol)

R_u: universal gas constant

$$R_{u} = \begin{cases} 8.31447 \text{ kJ/kmol} \cdot \text{K} \\ 8.31447 \text{ kPa} \cdot \text{m}^{3}/\text{kmol} \cdot \text{K} \\ 0.0831447 \text{ bar} \cdot \text{m}^{3}/\text{kmol} \cdot \text{K} \\ 1.98588 \text{ Btu/lbmol} \cdot \text{R} \\ 10.7316 \text{ psia} \cdot \text{ft}^{3}/\text{lbmol} \cdot \text{R} \\ 1545.37 \text{ ft} \cdot \text{lbf/lbmol} \cdot \text{R} \end{cases}$$

Mass = Molar mass × Mole number

$$m = MN$$
 (kg)

$$\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2}$$

Ideal gas equation at two states for a fixed mass

Various expressions of ideal gas equation

$$V = mv \longrightarrow PV = mRT$$

$$mR = (MN)R = NR_u \longrightarrow PV = NR_uT$$

$$V = N\overline{V} \longrightarrow P'\overline{V} = R_u T$$

 Real gases behave as an ideal gas at low densities (i.e., low pressure, high temperature)

FIGURE 3-43

Properties per unit mole are denoted with a bar on the top.

Is Water Vapor an Ideal Gas?

- At pressures below 10 kPa, water vapor can be treated as an ideal gas, regardless of its temperature, with negligible error (less than 0.1 percent)
- At higher pressures, however, the ideal gas assumption yields unacceptable errors, particularly in the vicinity of the critical point and the saturated vapor line

Percentage of error $([|v_{table} - v_{ideal}|/v_{table}] \times 100)$ involved in assuming steam to be an ideal gas, and the region where steam can be treated as an ideal gas with less than 1 percent error.

COMPRESSIBILITY FACTOR—A MEASURE OF DEVIATION FROM IDEAL-GAS BEHAVIOR

- Compressibility factor Z: A factor that accounts for the deviation of real gases from ideal-gas behavior at a given temperature and pressure.
- The farther away Z is from unity, the more the gas deviates from ideal-gas behavior

$$PV = ZRT$$

$$Z = \frac{PV}{RT}$$

$$Z = \frac{V_{\text{actual}}}{V_{\text{ideal}}}$$

$$Z = \frac{V_{\text{actual}}}{V_{\text{ideal}}}$$
FIGURE 3-46
The compressibility factor is unity

for ideal gases.

DEVIATION FROM IDEAL-GAS BEHAVIOR

- At low pressures (P_R << 1), gases behave as an ideal gas regardless of temperature
- At high temperature (T_R > 2), ideal-gas behavior can be assumed regardless of pressure (except when PR >> 1)
- The deviation of a gas from ideal-gas behavior is greatest in the vicinity of the critical point

DEVIATION FROM IDEAL-GAS BEHAVIOR

FIGURE 3-48

At very low pressures, all gases approach ideal-gas behavior (regardless of their temperature).

FIGURE 3-49

Gases deviate from the ideal-gas behavior the most in the neighborhood of the critical point.

OTHER EQUATIONS OF STATE

Several equations have been proposed to represent the P-v-T behavior of substances accurately over a larger region with no limitations.

van der Waals Berthelet Redlich-Kwang Beattie-Bridgeman Benedict-Webb-Rubin Strobridge Virial

Van der Waals Equation of State

$$\left(P + \frac{a}{v^2}\right)(v - b) = RT$$

$$a = \frac{27R^2T_{\rm cr}^2}{64P_{\rm cr}} b = \frac{RT_{\rm cr}}{8P_{\rm cr}}$$

 This model includes two effects not considered in the ideal-gas model: the intermolecular attraction forces (a/v² term) and the volume occupied by the molecules themselves (b term)

Beattie-Bridgeman Equation of State

$$P = \frac{R_u T}{\overline{v}^2} \left(1 - \frac{c}{\overline{v} T^3} \right) (\overline{v} + B) - \frac{A}{\overline{v}^2}$$

$$A = A_0 \left(1 - \frac{a}{\overline{V}} \right) B = B_0 \left(1 - \frac{b}{\overline{V}} \right)$$

The constants are given in Table 3–4 for various substances. It is known to be reasonably accurate for densities up to about $0.8\rho_{\rm cr}$.

Benedict-Webb-Rubin Equation of State

$$P = \frac{R_u T}{\overline{V}} + \left(B_0 R_u T - A_0 - \frac{C_0}{T^2}\right) \frac{1}{\overline{V}^2} + \frac{b R_u T - a}{\overline{V}^3} + \frac{a \alpha}{\overline{V}^6} + \frac{c}{\overline{V}^3 T^2} \left(1 + \frac{\gamma}{\overline{V}^2}\right) e^{-\gamma/\overline{V}^2}$$

The constants are given in Table 3–4. This equation can handle substances at densities up to about 2.5 ρ_{cr} .

Virial Equation of State

$$P = \frac{RT}{V} + \frac{a(T)}{V^2} + \frac{b(T)}{V^3} + \frac{c(T)}{V^4} + \frac{d(T)}{V^5} + \dots$$

The coefficients a(T), b(T), c(T), and so on, that are functions of temperature alone are called *virial coefficients*. These coefficients can be determined experimentally or theoretically from statistical mechanics

TABLE 3-4

Constants that appear in the Beattie-Bridgeman and the Benedict-Webb-Rubin equations of state

(a) When P is in kPa, \overline{v} is in m³/kmol, T is in K, and $R_u = 8.314$ kPa·m³/kmol·K, the five constants in the Beattie-Bridgeman equation are as follows:

Gas	A_{0}	а	B_0	b	с
Air	131.8441	0.01931	0.04611	-0.001101	4.34×10^{4}
Argon, Ar	130.7802	0.02328	0.03931	0.0	5.99×10^{4}
Carbon dioxide, CO ₂	507.2836	0.07132	0.10476	0.07235	6.60×10^{5}
Helium, He	2.1886	0.05984	0.01400	0.0	40
Hydrogen, H ₂	20.0117	-0.00506	0.02096	-0.04359	504
Nitrogen, N ₂	136.2315	0.02617	0.05046	-0.00691	4.20×10^{4}
Oxygen, O ₂	151.0857	0.02562	0.04624	0.004208	4.80×10^{4}

Source: Gordon J. Van Wylen and Richard E. Sonntag, Fundamentals of Classical Thermodynamics, English/SI Version, 3rd ed. (New York: John Wiley & Sons, 1986), p. 46, table 3.3.

(b) When P is in kPa, \overline{v} is in m³/kmol, T is in K, and $R_u = 8.314$ kPa·m³/kmol·K, the eight constants in the Benedict-Webb-Rubin equation are as follows:

Gas	а	A_{0}	b	B_{0}	С	C_{o}	α	γ
n-Butane, C ₄ H ₁₀ Carbon	190.68	1021.6	0.039998	0.12436	3.205×10^{7}	1.006 × 10 ⁸	1.101×10^{-3}	0.0340
dioxide, CO ₂ Carbon	13.86	277.30	0.007210	0.04991	1.511×10^{6}	1.404×10^{7}	8.470×10^{-5}	0.00539
monoxide, CO Methane, CH ₄ Nitrogen, N ₂	3.71 5.00 2.54	135.87 187.91 106.73	0.002632 0.003380 0.002328	0.05454 0.04260 0.04074	1.054×10^{5} 2.578×10^{5} 7.379×10^{4}	8.673×10^{5} 2.286×10^{6} 8.164×10^{5}	1.350×10^{-4} 1.244×10^{-4} 1.272×10^{-4}	0.0060 0.0060 0.0053

van der Waals: 2 constants. Accurate over a limited range.

Beattie-Bridgeman: 5 constants. Accurate for $\rho \le 0.8 \rho_{cr.}$

Benedict-Webb-Rubin: 8 constants. Accurate for $\rho \le 2.5\rho_{cr.}$

Strobridge: 16 constants.

More suitable for computer calculations.

Virial: may vary.

Accuracy depends on the number of terms used.

FIGURE 3-55

Complex equations of state represent the *P-v-T* behavior of gases more accurately over a wider range.

FIGURE 3–56
Percentage of error involved in various equations of state for nitrogen (% error = $[(|v_{table} - v_{equation}|)/v_{table}] \times 100)$.

Summary

- Pure substance
- Phases of a pure substance
- Phase-change processes of pure substances
 - ✓ Compressed liquid, Saturated liquid, Saturated vapor, Superheated vapor
 - ✓ Saturation temperature and Saturation pressure
- Property diagrams for phase change processes
 - ✓ The *T-v* diagram, The *P-v* diagram, The *P-T* diagram, *The P-v-T* surface
- Property tables
 - ✓ Enthalpy
 - ✓ Saturated liquid, saturated vapor, Saturated liquid vapor mixture, Superheated vapor, compressed liquid
 - ✓ Reference state and reference values
- The ideal gas equation of state
 - ✓ Is water vapor an ideal gas?
- Compressibility factor
- Other equations of state
 - ✓ van der Waals Equation of State, Beattie-Bridgeman Equation of State
 - ✓ Benedict-Webb-Rubin Equation of State, Virial Equation of State