Univerza *v Ljubljani* Fakulteta *za matematiko in fizik*o

Oddelek za fiziko Uklon svetlobe

Poročilo pri fizikalnem praktikumu IV

Kristofer Čepon Povšič

Asistenta: Jelena Vesić

Uvod

Uklon je pojav, kjer se svetloba ne giblje več premo, ampak se širi v geometrijsko senco. To se zgodi, ko imamo tipične dimenzije primerljive z valovnimi dolžinami svetlobe. Za začetek si lahko pomagamo s <u>Huygensovim principom</u>, ki pravi, da lahko vsako točko, do katere je svetloba že prišla, obravnavamo kot nov točkast izvor. Ta princip ima pomanjkljivost, saj se v točkastem izvoru valovanje širi tudi nazaj. Le to sta popravila Fresnel in Kirchhoff.

Po poenostavitvi Fresnel-Kirchhoffov enačbe in izračunom jakosti svetlobe daleč od uklonskih rež (Fraunhoferjev približek) lahko izračunamo, da je jakost svetlobe v sredini uklonskega vzorca, ki je od radija reže r odvisna:

$$j(r) = j_0 \sin\left(\frac{kr^2}{4R}\right) \tag{1}$$

pri čemer smo R definirali kot $R^{-1}=z_f^{-1}+z_z^{-1}$. Pri tem je z_z razdalja od uklonskih rež do zaslona, z_f pa razdalja od rež do gorišča leče, s katero iz laserja ustvarimo približni točkovni izvor.

Periodični ekstremi sredinske jakosti, v katerih velja

$$n = \frac{r^2}{\lambda R} \tag{2}$$

pri čemer je n liho število za maksimume jakosti ter sod za minimume.

Naloga

- Izmeri uklonsko sliko svetlobe za zasloni z režami. Uporabi zaslone z 1, 2, 3, 5 in 10 režami. Določi relativne intenzitete uklonskih slik. Določi širino rež D in razdalje med njimi d.
- \bullet Opazuj uklon na okrogli odprtini. Določi premer odprtine 2R.

Potrebščine

- HeNe laser z valovno dolžino 633nm, nosilna plošča za laser in translator za zaslone,
- par prizem v nosilcu za razširitev žarka,
- zasloni z odprtinami, leča z nosilcem, ravno ogledalo z nosilcem,
- x translator z montiranim fotodetektorjem in pretvornik signalov,
- ullet prenosnik s programom UklSve

Navodilo

Prižgemo in pripravimo laser skupaj z različnimi zasloni, ki imajo različne laserje. Prižgemo računalnik, inicializiramo program in z vrtenjem vijaka pomikamo mizico s fotodiodo iz ene v drugo skrajno lego. Shranimo podatke za vse reže.

Za drugi del odstrani uklonski zaslon z režo in vstavi uklonski zaslon z okroglo odprtino. Takoj za laser postavi v snop lečo in nastavi njen položaj tako, da je divergentni laserski snop še vedno centriran na zaslonki. Svetlobo usmeri v steno za laserjem. Na zaslonu dobiš uklonsko sliko, to so koncentrični temni in svetli kolobarji. Zanima nas predvsem sredina vzroca. Premikaj položaja okrogle zaslonke povzroči izmenične svetla in temna polja.

Obdelava podatkov

Razdalja do senzorja je

$$L = (200 \pm 2) \mathrm{cm}$$

Narišem graf odvisnosti jakosti svetlobe od položaja senzorja za uklonske zaslone z režami 1, 2, 3 in 5.

Slika 1: Izmerjene jakosti Fraunhoferjevega uklona na n režah

Izračunam, da je debeline rež sledeča

$$D = (22.0 \pm 0.1) \mu \text{m}$$

Razdalje med režami pa so

$$d_2 = (99.7 \pm 0.1) \mu \text{m}$$

$$d_3 = (100.1 \pm 0.3) \mu \text{m}$$

$$d_5 = (99.7 \pm 0.5) \mu \text{m}$$

Za drugi del naloge imamo sledeče podatke:

- $\bullet\,$ razdalja med lečo in režo $d_0=(11.2\pm0.2)\mathrm{cm}$
- razdalja med lečo in zaslonom $z_{z0} = (144.5 \pm 2) \mathrm{cm}$

S spreminjanjem razdaljem dobim sledečo izmenjavo svetlih in temnih con:

Slika 2: Graf prikazuje vrednosti $\frac{1}{\lambda R_n}$. Svetle cone so minimumi, temne pa maksimumi jakosti. Naklon prilagojene premice je $\frac{1}{r^2}$

Radij uklonske reže je tako

$$r = (1.98 \pm 0.06) \text{mm}$$