# Journal

## DiDomenico

## November 24, 2016

# **Contents**

| 1                      | Disse                                                        | sissertação - API HPSM |                                                                                             |                   |   |
|------------------------|--------------------------------------------------------------|------------------------|---------------------------------------------------------------------------------------------|-------------------|---|
|                        | 1.1                                                          | Orienta                | ações                                                                                       | 1                 | 1 |
|                        |                                                              | 1.1.1                  | <2016-08-23 Ter>                                                                            | 1                 | 1 |
|                        |                                                              | 1.1.2                  | <2016-08-30 Ter>                                                                            | 1                 | 1 |
|                        |                                                              | 1.1.3                  | <2016-09-08 Qui>                                                                            |                   | 2 |
|                        |                                                              | 1.1.4                  | <2016-09-23 Sex>                                                                            |                   | 2 |
|                        |                                                              | 1.1.5                  | <2016-10-20 Qui>                                                                            |                   |   |
|                        | 1.2                                                          | Coman                  | ndos                                                                                        |                   | 2 |
|                        |                                                              | 1.2.1                  | XKaapi with GCC 4.9 compiler                                                                |                   | 2 |
|                        | 1.3                                                          | Texto                  |                                                                                             |                   | 2 |
|                        |                                                              | 1.3.1                  | Estrutura:                                                                                  |                   | 2 |
|                        |                                                              | 1.3.2                  | Tamanho:                                                                                    | 3                 | 3 |
| 1                      | 1.4                                                          | Experi                 | mentos                                                                                      | 3                 | 3 |
|                        |                                                              | 1.4.1                  | Calibragem blocos digitalis-IDCIN-2                                                         | 3                 | 3 |
|                        |                                                              | 1.4.2                  | Execuções digitalis-IDCIN-2 - NBody, Hotspot e CFD                                          | 9                 | ) |
|                        |                                                              | 1.4.3                  | Rastros                                                                                     | 17                | 7 |
|                        |                                                              | 1.4.4                  | Perfmodel StarPU+OpenMP                                                                     | 28                | 3 |
|                        |                                                              | 1.4.5                  | Perfmodel StarPU+Kaapi                                                                      | 30                | ) |
|                        |                                                              | 1.4.6                  | Overhead da API                                                                             | 31                | 1 |
| 1<br>1.1               |                                                              | sserta<br>rientaç      | ção - API HPSM                                                                              |                   |   |
| 1.1.1 <2016-08-23 Ter> |                                                              |                        | ORIENTACAO                                                                                  |                   |   |
| 1                      | . Ap                                                         | penas pa               | assado o acesso a IDCIN-2.                                                                  |                   |   |
| 1.1.2                  | 2 <                                                          | :2016-08               | 8-30 Ter>                                                                                   | ORIENTACAC        | ) |
| 1                      |                                                              |                        | gráficos do artigo com escalabilidade forte (variando o número de threads) e fas entradas). | fraca (variando o | ) |
| 2                      | . Ge                                                         | erar gráf              | ficos com o R.                                                                              |                   |   |
| 3                      | . Ver para substituir o ljforces por outro benchmark - SNAP; |                        |                                                                                             |                   |   |
| 4                      | . Te                                                         | star Sta               | rPU com OpenMP - dividindo as tarefas CPU para muitas threads;                              |                   |   |
| 5                      |                                                              |                        |                                                                                             |                   |   |
| -                      | . M                                                          | étricas d              | le software - lines of code;                                                                |                   |   |

#### 1.1.3 <2016-09-08 Qui>

**ORIENTACAO** 

- 1. Definido que a defesa será em dezembro. Prazos:
  - (a) Experimentos: até o final de outubro;
  - (b) Texto: mês de novembro.

1.1.4 <2016-09-23 Sex> ORIENTACAO

- 1. Em conversa com o professor ficou definido:
  - (a) Gerar traços das execuções com GPUs e o máxido de threads, a fim de identificar o motivo do melhor desempenho ser obtido com uma thread a menos.
  - (b) Testar outros escalonadores além do dmda, como dm, dmdar, dmdas;
  - (c) Realizar testes juntando starPU e OpenMP. A princípio utilizar o escalonador pheft.

## 1.1.5 <2016-10-20 Qui>

**ORIENTACAO** 

- 1. Rodar a versão StarPU+OMP com Kaapi:
  - (a) Ver como compila a versão StarPU com o Kaapi 5.4 ou o Kaapi com a versão 4.9;
  - (b) Verificar afinidade, garantindo que o Kaapi ta processando nos núcleos corretos (socket 0 ou 1);
- 2. Gerar graficos com o tempo (ao invés de apenas speedup);
- 3. Verificar se o tempo serial é proporcial quando se aumenta as entradas;

#### 1.2 Comandos

#### 1.2.1 XKaapi with GCC 4.9 compiler

Configure:  $\#+begin_{src}$  sh  $ac_{cvfuncmalloc0nonnull}=yes$   $ac_{cvfuncrealloc0nonnull}=yes$   $ac_{cvfuncrealloc0nonnull}=yes$  ac

chandler

Senha agenda on-line: jvlima xabunfo16@

#### 1.3 Texto

#### 1.3.1 Estrutura:

- 1. Introdução
- 2. Programação para aceleradores
  - (a) Arquiteturas Distribuida, compartilhada, aceleradores (GPU e Phi)
  - (b) Ferramentas de programação paralela Clássicas (MPI, OpenMP e CUDA)
  - (c) Ferramentas multi-CPU e multi-GPU
  - (d) Trabalhos relacionados
- 3. API proposta
- 4. Resultados experimentais
- 5. Conclusão
- 6. Apêndice
  - (a) C++

#### 1.3.2 Tamanho:

Entre 60 a 100 páginas

## 1.4 Experimentos

### 1.4.1 Calibragem blocos digitalis-IDCIN-2

1. NBody: existe grande mudança de desempenho a medida que o tamanho do bloco da tarefa é aumentado durante o processamento na GPU. Atráves das figuras percebe-se que com bloco de 2048 há um equilíbrio entre CPU e GPU. Com 4096, as tarefas são processadas somente na GPU. Variando-se o tamanho da entrada, o desempenho permaneceu estavel.



Figure 1: NBody: speedup sobre a execução serial variando threads e tamanho do bloco - Size: 65536.



Figure 2: NBody: speedup sobre a execução serial variando threads e tamanho do bloco - Size: 81190.



Figure 3: NBody: speedup sobre a execução serial variando threads e tamanho do bloco - Size: 98304.



Figure 4: NBody: speedup sobre a execução com máxima configuração variando tamanho da entrada - BS: 2048.



Figure 5: NBody: speedup sobre a execução com máxima configuração variando tamanho da entrada - BS: 4096.



Figure 6: NBody: speedup sobre a execução com gpus variando número de threads - BS: 2048.



Figure 7: NBody: speedup sobre a execução com gpus variando número de threads - BS: 4096.

2. Hotspot: com o hotspot, a variação do bloco não afeta o desempenho da GPU, indicando que a mesma já está com desempenho máximo. Todavia, blocos maiores acabaram prejudicando o processamento na CPU. Ao variar o tamanho da entrada, ocorreu um ganho de desempenho, porém mínimo.



Figure 8: Hotspot: speedup sobre a execução serial variando threads e tamanho do bloco - Size: 12288 x 12288.



Figure 9: Hotspot: speedup sobre a execução serial variando threads e tamanho do bloco - Size: 16384 x 16384.



Figure 10: Hotspot: speedup sobre a execução serial variando threads e tamanho do bloco - Size: 20480 x 20480.



Figure 11: Hotspot: speedup sobre a execução com máxima configuração variando tamanho da entrada - BS 1024 x 1024.



Figure 12: Hostspot: speedup sobre a execução com máxima configuração variando threads - Size: 16384 x 16384 BS: 1024 x 1024.



Figure 13: Hostspot: speedup sobre a execução com máxima configuração variando threads - Size: 20480~K 20480 BS: 1024~K 1024.

### 1.4.2 Execuções digitalis-IDCIN-2 - NBody, Hotspot e CFD

## 1. Speedup by threads:

Sizes: CFD: 131072; Hostspot: 16384 x 16384; NBody: 98304 Block sizes: CFD: 2048; Hostspot: 1024 x 1024; NBody: 2048



Figure 14: Speedup over sequential version by threads and GPUs.

## 2. Time by threads:

Sizes: CFD: 131072; Hostspot: 16384 x 16384; NBody: 98304 Block sizes: CFD: 2048; Hostspot: 1024 x 1024; NBody: 2048



Figure 15: Time by threads and GPUs.

### 3. Speedup by size (max configuration):

NBody: 2048

```
Sizes:
   CFD: 98304, 114688, 131072, 147456, 163840;
   Hostspot: 12288N, 14336N, 16384N, 18432N, 20480N;
   NBody: 65536, 81920, 98304, 114688, 131072;
Block sizes:
   CFD: 2048;
   Hostspot: 1024 x 1024;
```



Figure 16: Speedup over sequential version by sizes with maximum threads and GPUs.

#### 4. Speedup by size (best configuration):

```
Config:
  * CFD:
    StarPU:
                  OGPU+28CPUs, 1GPU+26CPUs, 2GPUs+12CPUs,
                  3GPUs+10CPUs, 4GPUs+10CPUs;
    StarU+OpenMP: OGPU+28CPUs, 1GPU+10CPUs, 2GPUs+10CPUs,
                  3GPUs+10CPUs, 4GPUs+10CPUs;
    StarPU+Kaapi: 0GPU+28CPUs, 1GPU+10CPUs, 2GPUs+10CPUs,
                  3GPUs+10CPUs, 4GPUs+10CPUs;
  * Hotspot
    StarPU:
                  OGPU+28CPUs, 1GPU+26CPUs, 2GPUs+25CPUs,
                  3GPUs+24CPUs, 4GPUs+23CPUs;
    StarU+OpenMP: OGPU+28CPUs, 1GPU+12CPUs, 2GPUs+12CPUs,
                  3GPUs+10CPUs, 4GPUs+10CPUs;
    StarPU+Kaapi: 0GPU+28CPUs, 1GPU+12CPUs, 2GPUs+12CPUs,
                  3GPUs+10CPUs, 4GPUs+10CPUs;
  * NBody:
    StarPU:
                  OGPU+28CPUs, 1GPU+27CPUs, 2GPUs+26CPUs,
                  3GPUs+25CPUs, 4GPUs+24CPUs;
    StarU+OpenMP: 0GPU+28CPUs, 1GPU+27CPUs, 2GPUs+26CPUs,
                  3GPUs+25CPUs, 4GPUs+24CPUs;
    StarPU+Kaapi: OGPU+28CPUs, 1GPU+27CPUs, 2GPUs+26CPUs,
                  3GPUs+25CPUs, 4GPUs+24CPUs;
Sizes:
  CFD: 98304, 114688, 131072, 147456, 163840;
  Hostspot: 12288N, 14336N, 16384N, 18432N, 20480N;
```

NBody: 65536, 81920, 98304, 114688, 131072;

Block sizes: CFD: 2048;

Hostspot: 1024 x 1024;

NBody: 2048



Figure 17: Speedup over sequential version by sizes with maximum threads and GPUs.

5. Speedup - calibragem melhor configuração CPUs + GPUs:



Figure 18: Speedup over sequential version by sizes calibrating CPUs + GPUs.

6. Time - calibragem melhor configuração CPUs + GPUs:



Figure 19: Time by sizes calibrating CPUs + GPUs.

7. Speedup - calibragem escalonador CFD, Hotspot e NBody com dmda, dm, dmdar, dmdas: realizados testes para identificar se modificando o escalonador da StarPU resultava em mudança no comportamento das execuções. No geral, o escalonamento DMDA é o que obteve os melhores desempenhos.



Figure 20: Speedup over sequential version by sizes calibrating schedules.

- 8. Speedup comparing two block sizes with StarPU, StarPU+OpenMP e StarPU+Kaapi: teste realizado para avaliar o desempenho com um bloco maior (dobro) que o utilizado nos testes anteriores. Espera-se que o desempenho dos back-ends StarPU+OMP e StarPU+Kaapi alcancem resultados melhores com o bloco maior, pois haverá mais paralelismo disponível para as tarefas.
  - (a) CFD: block size 2048 and 4096 (size: 131072);
  - (b) Hostpot: block size 1024 and 2048 (size: 16384);
  - (c) NBody: block size 2048 and 4096 (size: 98304);



Figure 21: Speedup over sequential version using StarPU/StarPU+OMP/StarPU+Kaapi with different block sizes.

9. Time sequencial: tempo das execuções seriais variando o tamanho da entrada:

#### Sizes:

CFD: 98304, 114688, 131072, 147456, 163840; Hostspot: 12288N, 14336N, 16384N, 18432N, 20480N; NBody: 65536, 81920, 98304, 114688, 131072;

100ay. 03330, 01920, 90304, 114000, 131072,





Figure 22: Time by sizes.

#### 1.4.3 Rastros

- 1. Hotspot com GPUs mais máximo de threads:
  - (a) Traços: traços para identificar a razão da execução com uma thread a menos que o máximo possível resultar no melhor desempenho.



Figure 23: Trace from Hotspot benchmark with 1 GPU + 26/27 threads.



Figure 24: Trace from Hotspot benchmark with 2 GPUs + 25/26 threads.



Figure 25: Trace from Hotspot benchmark with 3 GPUs + 24/25 threads.



Figure 26: Trace from Hotspot benchmark with 4 GPUs + 23/24 threads.

#### 2. NBody com 1 GPUs mais 16 a 26 threads:

(a) Traços: indicam que o motivo da estabilização dos resultados a partir de 16 threads é que o escalonador opta por não utilizá-las, visto que elas ficam ociosas. Desta forma, as tarefas passam a ser processadas apenas pelas GPUs.



Figure 27: Trace from NBody benchmark with 1 GPU + 16/18 threads.



Figure 28: Trace from NBody benchmark with 1 GPU + 16/20 threads.



Figure 29: Trace from NBody benchmark with 1 GPU + 16/22 threads.



Figure 30: Trace from NBody benchmark with 1 GPU + 16/24 threads.



Figure 31: Trace from NBody benchmark with 1 GPU + 16/26 threads.

#### 3. StarPU+OpenMP - resultados estranhos:

(a) Hotspot: queda de rendimento de 10 para 12 threads.



Figure 32: Trace from Hotspot benchmark (StarPU+OpenMP) with 3 GPU + 10/12 threads.

(b) CFD: desempenho bem baixo com 4 threads em relação à 6 threads.



Figure 33: Trace from CFD benchmark (StarPU+OpenMP) with 2 GPU + 4/6 threads.

#### 1.4.4 Perfmodel StarPU+OpenMP

1. Calibragem das tarefas CFD - Size: 131072 - comprovação do efeito NUMA, com piora no tempo a partir de 14 threads para os dois tamanhos de bloco:



Figure 34: StarPU+OpenMP perfmodel from CFD benchmark - Size: 131072.

2. Calibragem das tarefas Hotspot - Size: 16384 x 16384 - não há ocorrência do efeito NUMA:



Figure 35: StarPU+OpenMP perfmodel from Hotspot benchmark - Size: 16384 x 16384.

3. Calibragem das tarefas NBody - Size: 98304 - não há ocorrência do efeito NUMA:



Figure 36: StarPU+OpenMP perfmodel from NBody benchmark - Size: 98304.

### 1.4.5 Perfmodel StarPU+Kaapi

1. Calibragem das tarefas CFD - Size: 131072 - comprovação do efeito NUMA, com piora no tempo a partir de 14 threads para os dois tamanhos de bloco:



Figure 37: StarPU+Kaapi perfmodel from CFD benchmark - Size: 131072.

2. Calibragem das tarefas Hotspot - Size: 16384 x 16384 - não há ocorrência do efeito NUMA:



Figure 38: StarPU+Kaapi perfmodel from Hotspot benchmark - Size: 16384 x 16384.

3. Calibragem das tarefas NBody - Size: 98304 - não há ocorrência do efeito NUMA:



Figure 39: StarPU+Kaapi perfmodel from NBody benchmark - Size: 98304.

### 1.4.6 Overhead da API

Comparado o tempo sequencial com o tempo obtido pela API executando com 1 thread. O gráfico de overhead demosntra que o uso da HPSM traz um custo para a execução que varia de acordo com a aplicação. Com a Hotspot o sobrecusto foi praticamente 0, enquanto que com a Hotspot o custo é maior, com os tempos de execução aumento até 14%.



Figure 40: API overhead.