

THE FINITE ELEMENT METHOD

L. Amerio

DATA:

- Mass per unit length m = 9.75 kg/m
- Flexural rigidity EJ = 1.34·10⁴ Nm²
- Axial stiffness $EA = 2.57 \cdot 10^7 N$
- Length L = 2 m
- Structural Damping Matrix $[C_s] = \alpha[M] + \beta[K]$ ($\alpha = 0.2 \text{ s}^{-1}$; $\beta = 1 \cdot 10^{-4} \text{ s}$)

We want to calculate:

- Natural frequencies;
- Mode shapes.

The length of the beam finite element influences the maximum frequency of the structure analysis.

The beam finite element must have a quasi-static behaviour (the considered shape functions are the static ones) during vibration of the structure.

$$\omega_{fe,i} = \left(\frac{\pi}{l_{fe,i}}\right)^2 \sqrt{\frac{EJ}{m}} >> \Omega_{max} \implies l_{fe,i,max} << \sqrt{\frac{\pi^2}{\Omega_{max}}} \cdot \sqrt{\frac{EJ}{m}}$$

m, EJ, EA, L

For the considered structure:

f _{max} [Hz]	$\Omega_{\rm max}$ [rad/s]	l _{fe,i,max} [m]
5	31.4	3.41
10	62.8	2.41
20	125.7	1.71
50	314.2	1.08
100	628.3	0.76
200	1256.6	0.54
300	1885.0	0.44

m, EJ, EA, L

Each element has it's own mass and stiffness matrixes depending on the type of the element (string, beam, shell, brick...)

$$\mathbf{K}_{el} = \frac{EJ}{L^3} \begin{bmatrix} 12 & 6 \ L & -12 & 6 \ L \\ 6 \ L & 4 \ L^2 & 6 \ L & 2 \ L^2 \\ -12 & -6 \ L & 12 & -6 \ L \\ 6 \ L & 2 \ L^2 & -6 \ L & 4 \ L^2 \end{bmatrix} \quad \mathbf{M}_{el} = mL \begin{bmatrix} \frac{12}{35} & -\frac{11}{210} L & \frac{9}{70} & \frac{13}{420} L \\ -\frac{11}{210} L & \frac{1}{105} L^2 & -\frac{13}{420} L & -\frac{1}{140} L^2 \\ \frac{9}{70} & -\frac{13}{420} L & \frac{13}{35} & \frac{11}{210} L \\ \frac{13}{420} L & -\frac{1}{140} L^2 & \frac{1}{210} L & \frac{1}{105} L^2 \end{bmatrix}$$

How to obtain the system matrixes?

idf matrix

Node	X DoF	Y DoF	Rotation
1	15	16	1
2	2	3	4
3	5	6	7
4	8	9	10
5	11	12	13
6	17	18	14

Incidence matrix

Element	1	II	III	IV	V	VI
1	15	16	1	2	3	4
2	2	3	4	5	6	7
3	5	6	7	8	9	10
4	8	9	10	11	12	13
5	11	12	13	17	18	14

Element			III	IV	٧	M
1	15	16	1	2	3	4
2	2	3	4	5	6	7

If we divide the structure in 5 beam finite elements (6 nodes - 3 d.o.f. for each node = 18 d.o.f.):

$$[M]_{18\times18} = \begin{bmatrix} [M_{FF}]_{14\times14} & [M_{FC}]_{14\times4} \\ [M_{CF}]_{4\times14} & [M_{CC}]_{4\times4} \end{bmatrix}$$
$$[K]_{18\times18} = \begin{bmatrix} [K_{FF}]_{14\times14} & [K_{FC}]_{14\times4} \\ [K_{CF}]_{4\times14} & [K_{CC}]_{4\times4} \end{bmatrix}$$

Effect of beam finite element length

16

Ridurre il numero di elementi aumenta la rigidezza "apparente" del sistema

	$l_{fe} = 1m$	$l_{fe} = 0.5m$	$l_{fe} = 0.4 m$	$l_{fe} = 0.1 m$
	$\omega_{\rm n} = 58 \; \rm Hz$	$\omega_{\rm n} = 233$	$\omega_{\rm n} = 364$	$\omega_{\rm n} = 5823$
f _{real} [Hz]	f _{fem} [Hz]	f _{fem} [Hz]	f _{fem} [Hz]	f _{fem} [Hz]
14.56	14.62	14.56	14.56	14.56
58.23	64.63	58.46	58.33	58.23
131.02	162.46	133.42	132.06	131.03
232.93	296.19	258.54	238.3	232.96

$$f_{\text{real,k}} = \frac{1}{2\pi} \left(\frac{k\pi}{L}\right)^2 \sqrt{\frac{EJ}{m}}$$

The equation of motion for the system is

$$M\ddot{x} + R\dot{x} + Kx = F_0 e^{i\Omega t}$$

To solve the ODE we assume

$$x = x_0 e^{i\Omega t}$$

Therefore

$$(-\Omega^2 M + i\Omega R + Kx) x_0 = F_0$$

$$x_0(\Omega) = \left(-\Omega^2 M + i\Omega R + K_{\square}\right)^{-1} F_0$$

A harmonic force $F=F_0e^{i\Omega t}$ is applied in A: we want to calculate the FRF of the system ($I_{fe}=0.1m$).

Now it's your turn...

A harmonic force $F=F_0e^{i\Omega t}$ is applied in B: we want to calculate the FRF of the system for the displacement in B ($I_{fe}=0.1$ m).

A harmonic force $F=F_0e^{i\Omega t}$ is applied in B: we want to calculate the FRF of the system for the displacement in A (i.e. $I_{fe}=0.1$ m).

