Question analysis: How Watson reads a clue

Manuel Gellfart

07.11.2012

Gliederung

- 1. Einführung
- 2. Parser und semantische Analyse
- 3. Fokus und LAT Erkennung
- 4. Klassifizierung und Qsections
- 5. Zusammenfassung

1. Einführung

Was ist unser Ziel?

Wir wollen wissen...

...worauf die Frage abzielt!

...wie die Frage am besten beantwortet werden kann!

1. Einführung

Was ist unser Ziel?

- Eingabe: unstrukturierter Text
- Identifizieren von syntaktischen und semantischen Elementen
- Ausgabe: strukturierte Informationen

1. Einführung

Was ist unser Ziel?

Beispiel:

"POETS & POETRY: <u>HE</u> WAS A BANK CLERK IN THE YUKON BEFORE HE PUBLISHED "SONGS OF A SOURDOUGH" IN 1907"

1. Einführung

Prolog

- Regeln sind in Prolog geschrieben:
 - Prolog ist eine der wichtigsten logischen, deklarativen Programmiersprachen
 - Prolog Programme bestehen aus Datenbasis von Fakten und Regeln
 - An diese Datenbasis werden Anfragen vom Benutzer gestellt:
 - ➤ positives Resultat ⇔ Anfrage ist logisch ableitbar

1. Einführung

Prolog

```
Prolog Beispiel:
    Fakten:
   Mann(thomas).
   Mann(adam). | Adam ist ein Mann
   Mann(tobias). | Tobias ist ein Mann
   Vater(adam, tobias). | Adam ist Vater von Tobias
   Vater(thomas, adam).
   Regeln:
   Grossvater(X,Y) :- Vater(X,Z), Vater(Z,Y).
   Anfragen:
    ?- Grossvater(thomas, tobias).
   Yes.
Freie Universität
```

- Architektur besteht aus folgenden Komponenten:
 - English Slot Grammar parser (ESG)
 - Produziert Baum wobei jeder Knoten aus
 - 1) Wort oder multiword inkl. Prädikat und logischen Argumenten
 - 2) Features
 - 3) Left & right modifiers
 - Predicate-argument structure builder (PAS)
 - Normalisiert den ESG Parse
 - Named entity recognizer (NER)
 - Co-reference resolution component
 - Relation extraction component
 - Extrahiert Informationen aus Sätzen (authorOf, temporalLink,...)

- Anpassungen für Jeopardy! Fragen
 - Statistical true-caser
 - ESG Anpassungen:
 - Jeopardy! benutzt häufig "this/these" oder "he/she/it" anstelle von "wh"-Pronomen Bsp.: "A stock that is a low risk investment is a blue this"
 - In Jeopardy! gibt es oft Sätze die nur aus Nomen bestehen
 - Co-reference Komponente:
 - Jeopardy! Fragen enthalten oft ungebundene Pronomen als Fokus:
 Bsp.: "Astronaut Dave Bowman is brought back to life in his recent novel 3001:The Final Odyssey" ("his" gehört zur Antwort Arthur C. Clarke)
 - Lösung: Fokus Suche vor Co-reference

- Besondere Relationen:
- Für Jeopardy! Fragen wurden spezielle Relationen definiert wie beispielsweise:

Frage	Relation
A.k.a., the Flavian Amphitheatre, this ancient structure was begun by the Roman Emperor Vespasian around 72 A.D.	altName(focus, Flavian Amphiteatre).
In May 1898 Portugal celebrated the 400th anniversary of this explorer's arrival in India.	anniversaryOf(this explorer's arrival in India, 400, 1898).
Chile shares ist longest land border with this country.	borderOf(focus, Chile).
In 1867 the U.S. bought this island group named for a Russian captain and leased it to seal hunting companies.	rdfTriple(buy, U.S., focus)

- Watson benötigt eine Sprache um eine große Anzahl an Regeln auszudrücken.
- Lösung: Prolog
- Die produzierten PAS Knoten werden wie folgt in Prolog implementiert: (die Zahlen sind die IDs der Knoten)

```
lemma(1, "he").
partOfSpeech(1, pronoun).
lemma(2, "publish").
partOfSpeech(2, verb).
lemma(3, "Songs of Sourdough").
partOfSpeech(3, noun).
subject(2,1).
object(2,3).
```


2. Parser und semantische Analyse

Solche Regeln werden in ein Prolog System gegeben welches LAT,
 Fokus und Relationen erkennt.

```
Beispielrelation authorOf:
    authorOf(Author, Composition) :-
        createVerb(Verb),
        subject(Verb, Author),
        author(Author),
        object(Verb, Composition).

createVerb(Verb) :-
        partOfSpeech(Verb, verb),
        lemma(Verb, VerbLemma),
        [,,write", ,,publish", ...].
```


3. Fokus und LAT Erkennung

- Mit Baseline focus detection mit zusätzlichen Anpassungen an Jeopardy!
 - Es werden bestimmte Regeln oder Muster gesucht und angewandt

3. Fokus und LAT Erkennung

- Beispiele (Fokus kursiv, Headword fett):
 - Aus Nomen bestehende Phrase mit "this" oder "these": THEATRE: A new play based on this Sir Arthur Conan Doyle canine classic opened on the London stage in 2007.
 - Das Pronomen "one": 12-LETTER WORDS:
 Leavenworth, established in 1895, is a federal *one*.
 - Satz nur aus Nomen bestehend: AMERICAN LIT:
 Number of poems Emily Dickinson gave permission to publish during her lifetime.

3. Fokus und LAT Erkennung

- Beispiel ohne Fokus: MOVIE TITLE PAIRS: 1999: Jodie Foster & Chow Yun-Fat.
- Baseline LAT Erkennung:
 - Nimmt normalerweise <u>nur</u> das Headword als LAT mit wenigen Ausnahmen wie beispielsweise:
 - Wenn Fokus eine Konjunktion ist: Henry destroyed the Canterbury Cathedral Tomb of this saint and chancellor of Henry II.

3. Fokus und LAT Erkennung

 Die Baseline Regeln haben allerdings Probleme, weshalb Watson Anpassungen durchführt:

Problem	Anpassung
Richtiges Pronomen wählen	Anstelle des lexikalisch ersten Pronoms versucht Watson ungebundene Pronomen zu finden.
Fokus drückt Subclass Relation aus	Superclass als LAT wählen.
LAT Einzel- oder Multiwort?	LAT ist Multiwort, wenn das Multiwort kein Untertyp des Hauptwortes ist (bsp.: vice president)

3. Fokus und LAT Erkennung

LAT aus Kategorie filtern:

- Problem: Kategorien in Jeopardy! sind nicht immer LATs.
- Drei Bedingungen für die Kategoriewörter, welche in Frage kommen:
- 1. Sie sind Entitätstypen (bspw. Land, Stadt, ...)
- 2. Entitätstyp ist konsistent mit LATs in der Frage
- Das Wort oder Instanzen des Typs kommen nicht in der Frage vor

3. Fokus und LAT Erkennung

Beispiel:

- BRITISH MONARCHS: She had extensive hair loss by the age of 31.
- ATTORNEYS GENERAL: Edmund Randolph helped draft and ratify the Constitution before becoming this man's Attorney General.
- ACTRESSES' FIRST FILMS: Oklahoma!
- U.S. **CITIES**: *It's* home to the University of Kentucky and to horseracing's Toyota Blue Grass Stakes.
- U.S. CITIES: St. Petersburg is home to Florida's annual tornament in *this game popular on shipdeck*.

3. Fokus und LAT Erkennung

Bestimmung der LAT Sicherheit:

- Bei LAT Erkennung gibt es false-positives
- Lösung: confidence values für jeden gefundenen LAT
- Logistische Regression mit Fokus und angewandten LAT Erkennungsregeln als Features
- Dadurch wird auch Lernen durch vorherige Fragen ermöglicht

3. Fokus und LAT Erkennung

Evaluierung der LAT Erkennung anhand von 9000+ Fragen:

	Baseline	Watson
Precision	0.817	0.829
Recall	0.613	0.766
F1	0.700	0.796
Per Question Recall	0.840	0.905

Auswirkung auf Antwortengenauigkeit: Watson 2-4% besser als Baseline

4. Klassifizierung & QSections

- Motivation: Jeopardy! enthält unterschiedliche Klassen von Fragen
 - Beispiele: Fill-in-the-blanks, Multiple Choice,
 Definition, Übersetzung, Abkürzung,...
- Unterschiedliche Klassen erfordern andere Antwortmethodik
 - Zum Beispiel kann unser bisheriges System Multiple Choice Fragen nicht beantworten, da die Antwort in der Frage vorkommt

4. Klassifizierung & QSections

- Lösung: Durch Regeln ähnlich zur LAT Erkennung
- Beispiele:

Klasse	Regel
Kategorie	Fragetext besteht aus einer oder mehreren Entitäten und enthält keinen Fokus
Abkürzungen	Regeln zur Abkürzungserkennung + statistischer Klassifizierer

4. Klassifizierung & QSections

- QSections sind Annotationen über Textpassagen
- Annotationen repräsentieren eine Funktion, die die Passage in der Frage spielt
- QSections werden über Prolog Regeln oder reguläre Ausdrücke gefunden
- Durch QSections beantwortet Watson 2.9% mehr Fragen korrekt

4. Klassifizierung & QSections

Hier ein paar Beispiele für QSections:

QSection	Erklärung
LexicalConstraint	Passagen wie "this 4-letter word"
Abbreviation	Abkürzungen
McAnswer	Multiple Choice Antwort

5. Zusammenfassung

- Watson analysiert Fragen mit dem Ziel vier wichtige Elemente zu finden:
 - **≻**Fokus
 - >LATs
 - ➤ Klasse der Frage
 - ➤ QSections
- Dabei wird pattern matching im Parser und der semantischen Analyse mit Prolog benutzt
- Dadurch kann Watson Fragen in Bruchteilen einer Sekunde Analysieren

5. Zusammenfassung

- Watson wurde dabei bei der Evaluierung mit der Baseline Analyse verglichen und erzielt insgesamt 5.9% mehr korrekte Antworten.
- Dadurch erhöht sich auch die Chance dafür, dass Watson gegen einen menschlichen Gegner gewinnt!

