Data Science Fundamentals: Essential Notes

1. Introduction to Data Science

- We live in a world surrounded by data, generated constantly through digital interactions (e.g., social media, e-commerce, banking).
- **Comment:** Understanding this context shows how central data is to modern life and how it drives change in organizations.

2. What is Data?

- **Data** is simply a collection of facts, which could be:
 - Numbers
 - Alphabets
 - Alphanumeric strings
 - Symbols
 - o Images, Audio, Video, etc.
- Comment: Think of data as the raw material for all analysis—it's unprocessed and lacks context.1.-DATA-SCIENCE-FUNDAMENTALS.PDF

3. What is Information?

• **Information** is processed data—the result of organizing and interpreting data so that it becomes meaningful and useful.

 Comment: A crucial skill for any data scientist is the ability to transform data into valuable information through contextualization.1.-DATA-SCIENCE-FUNDAMENTALS.PDF

4. Data Processing

- Data Processing is the act of converting raw data into meaningful information.
- Example: Names, professions, and locations as raw data can be organized into structured records (see example tables in source).1.-DATA-SCIENCE-FUNDAMENTALS.PDF

5. What is Data Science?

- **Data Science** uses scientific methods and algorithms to extract knowledge and insights from data.
- Includes steps like:
 - Processing data
 - Understanding historical and current trends
 - Supporting decision-making
 - Predicting future outcomes
 - Creating new solutions and products
- Comment: Data science overlaps with fields like statistics, computer science, business, and domain expertise—communication is key for impact.1.-DATA-SCIENCE-FUNDAMENTALS.PDF

6. Who is a Scientist? (in Data Science)

- A scientist systematically gathers information, performs research, tests evidence, and shares knowledge.
- **Comment:** Cultivating curiosity and critical thinking is vital for success in data science.

7. Big Data

- **Big Data** refers to data sets so large and complex that traditional processing tools cannot handle them.
- Examples: Social media streams, sensor data from IoT, transaction logs.1.-DATA-SCIENCE-FUNDAMENTALS.PDF

8. Types of Big Data

Туре	Description	Examples
Structured	Table formats (rows/columns). Easy to analyze.	Database tables
Semi-structure d	Partial structure (tags/attributes) but not fully tabular	XML, JSON files
Unstructured	No predefined structure	Emails, videos

Comment: Most real-world data is unstructured, posing unique challenges for storage and analysis.1.-DATA-SCIENCE-FUNDAMENTALS.PDF

9. 3 Vs of Big Data

- **Volume:** Sheer size of data generated and stored.
- Variety: Different formats and types (structured, semi-structured, unstructured).

- Velocity: Speed at which new data is generated and processed.
- **Comment:** Sometimes, more Vs are mentioned (Veracity, Value)—being aware of data quality and usefulness is important.

10. Data Analytics

- Analysis of data (especially big data) to improve decision making, customer understanding, and business performance.
- **Comment:** Every productive company leverages analytics to stay competitive and innovative.1.-DATA-SCIENCE-FUNDAMENTALS.PDF

11. Types of Analytics

Type	Purpose	Example
Descriptive	What happened?	Sales trends last quarter
Diagnostic	Why did it happen?	Root cause analysis of a sales drop
Predictive	What will happen?	Next month's sales forecast
Prescriptive	What should we do next?	Recommended marketing strategies

Additional Comments & Tips

- **Learn essential tools:** Python/R, SQL, spreadsheets, data visualization tools (e.g., Tableau, Power BI).
- **Sharpen critical thinking:** Always ask what business or research question you are answering.
- Stay ethical: Handle data privacy and bias responsibly.
- **Practice communication:** Explaining findings to both technical and non-technical audiences is indispensable.
- **Build a portfolio**: Solve real problems and document your work on GitHub or personal blogs.

•