The Art and Science of Transportation Research in the AI Era

Welcome to ASTRAI

Meng Cai

A stray
/a strei/

Ashtray
/'æʃ treɪ/

Learning goals

- #1 Understand what ASTRAI is about
- **#2** Understand what you need to do in ASTRAI
- #3 Become familiar with git and GitHub
- #4 Be able to clone (i.e., download) the course repo

Agenda

#1 ASTRAI

#2 git

Agenda

#1 ASTRAI

#2 git

#1.1 The ASTRAI team

Responsible professor

Prof. Eva Kaßens-Noor, Ph.D.

Contact person, instructor

Meng Cai, Ph.D.

Instructor

Hiba Karam, M.Sc.

#1.2 Basic info

What: 6-CP seminar

When: Wednesdays 11:40-15:00

Where: L402/231

Contact: cai@verkehr.tu-darmstadt.de

Course website:

https://github.com/caimeng2/ASTRAI-WiSe25-26

Everything in the repo is freely and publicly available under the GPL-3.0 license.

No course Moodle page. We will send you

messages through TUCaN.

The Art and Science of Transportation Research in the AI Era

What does it mean?

The Art and Science of Transportation Research in the AI Era

Research processes:

- Finding a research topic
- Defining a research question
- Conducting a literature review
- Designing a methodology
- Collecting data
- Analyzing data
- Interpreting results
- Report preparation and presentation of findings

- Interdisciplinary topics
- Data-driven
- Al-powered literature review
- New methods and tools
- New data sources, automated data collection, real-time data
- Easier and better visualization
- Al-assisted writing

The Art and Science of Transportation Research in the AI Era

The examples are mostly transportation-related, but the techniques and methods are transferable across disciplines.

The Art and Science of Transportation Research in the AI Era

"Art" refers to the creative aspects of research

- Asking the right questions
- Developing novel approaches
- Finding innovative solutions
- Effectively communicating through compelling visuals

The Art and Science of Transportation Research in the AI Era

Picture sources: Microsoft stock images.

"Science" refers to the tools, techniques, and knowledge foundation for research

- Developing a good research design
- Having robust methodologies
- Leveraging advanced computational tools
- Be able to tell if the answers provided by AI are correct

#1.4 ASTRAI vision

To develop the right **mindset**:

- work across disciplines instead of domainspecific fields
- Stay updated
- Maintain a healthy skepticism of AIgenerated results, recognizing limitations
- Address ethical issues proactively in research design and implementation
- Open science

To develop new **skillsets**:

- Programming proficiency
 - Understand and code in commonly used languages such as Python, R, and Git
- Big Data handling
 - Practice techniques for data cleaning, processing, and analyzing, using databases such as SQL
- Data visualization
 - Present data insights effectively via visualization tools like PowerBI

#1.5 What ASTRAI is NOT

- It is not a lecture.
- It is not a programming course.
- It is not aimed at making you a programmer, a computer scientist, or a computational engineer

Instead

- We act as supporters rather than traditional teachers
- Less lecturing, more doing
- Open dialogue is encouraged

Picture sources: Microsoft stock images.

#1.6 Learning outcomes

By the end of the course, you will:

- Understand the fundamental concepts in research design and methodology
- Effectively formulate research questions and design a study
- Develop proficiency in data science tools and techniques

Picture sources: Microsoft stock images.

Participation	Attend class every weekBring your laptop and power cord
Pre-class requirement	From time to time, install software and/or setup accounts
In-class activities	Practice coding, debugging, etc
Student-led learning (YOU-lead)	Choose, study, and teach to your peers a computational tool/method (e.g., agent-based modeling) or a use case (e.g., simulating traffic congestion using agent-based modeling)
Final examination	Develop a one-page research proposal incorporating computational methods

#1.8 YOU-lead ASTRAI

- The topics can be anything (within the scope of this course) that you find interesting or useful. They can be a use case of what you have learned from the class or a new tool
- Include what, why, how, and activities
- You don't have to use slides
- Limited slots
- Improve your final grade by up to 0.4 points
- Sign up in week 5

#1.9 Final examination

A concise, one-page research proposal:

- A brief literature review
- 2. Clear research questions
- 3. Methodology incorporating computational tools/techniques
- 4. Discussion of the limitations of methods

Grading:

- Literature review (20%)
- Research questions (20%)
- Methodology (20%)
- Limitations (20%)
- Writing (20%)

Deadline: Feb 20, 2026

Detailed instructions: https://github.com/caimeng2/ASTRAI-WiSe25-26/blob/master/examination.pdf

#1.10 Tentative schedule

- Week 1 (Oct 15, 2025): Welcome to ASTRAI, git
- Week 2 (Oct 22, 2025): Python basics
- Week 3 (Oct 29, 2025): Web scraping
- Week 4 (Nov 5, 2025): Data wrangling
- Week 5 (Nov 12, 2025): Open-source tools, signing up for YOU-lead
- Week 6 (Nov 19, 2025): Research design and methodology

In 2026, YOU-lead

Agenda

#1 ASTRAI

#2 git

#2.1 What is git

- Git is a version control system
- It is widely used in software development
- With Git, you can:
 - Track changes to files over time
 - Manage multiple versions of a project
 - Revert files to previous versions
 - Work simultaneously with others without overwriting each other's changes

#2.1 What is git

#2.2 What is GitHub

GitHub is a web-based platform for managing Git repositories

#2.2 What is GitHub

#2.3 Why use git/GitHub

- Collaboration: Enables users to collaborate more efficiently.
- Version history: Every change is recorded, and you can revert to previous versions if needed.
- Branching & merging: Allows users to create different branches for new features or bug fixes, without affecting the main codebase.
- Open source contributions: GitHub makes contributing to open-source projects simple and accessible.
- Backups: Code stored on GitHub acts as a backup and is accessible from anywhere.

#2.4 Why we use git/GitHub

- In the spirit of open science
- It is an invaluable tool for anyone working with code
- It keeps the course materials backed up and accessible from any device
- It might seem complicated at first, but it's easier to learn than most people think
- It enables us to build the course together

#2.5 git terminology

Repo: A git repository is a folder or directory that contains all the files and the complete history of changes for a project. There can be a local repository (on your computer) and a remote repository (hosted on platforms like GitHub)

Clone: To create a copy of a remote repository on your local machine.

Fork: Forking creates a copy of a repository on a remote platform such as GitHub. This copy is independent of the original and you can make changes to it without affecting the original project. **Commit:** A commit is a snapshot of the changes made to the files in a repository at a specific point in time.

Push: When you want to upload your local changes to the remote repository, you push them.

Pull: To update your local repository with changes from a remote repo, you pull those changes. This is typically done before pushing your own changes to ensure you have the latest update.

Pull request: In the context of GitHub, a pull request is a way to propose changes to a repository. It allows collaborators to review and discuss the proposed changes before merging them into the main branch.

Adapted from: https://medium.com/@unaware_harry/all-about-git-terminology-d9c91ea0a734

More info: https://git-scm.com/docs/gitglossary

#2.6 Common git commands

Command	Function	Syntax
git init	starts a new repository	git init
git clone	duplicates a remote repository to your local machine	git clone <repository-url></repository-url>
git status	shows the current status of the working directory and staging area	git status
git add	adds files to the staging area, preparing them for commit	git add <file-name> git add . # Add all files</file-name>
git commit	commits changes in the staging area to the repository, recording a snapshot of the project history	git commit -m "commit message"

#2.6 Common git commands

Command	Function	Syntax
git push	pushes changes to a remote repository	git push origin <branch-name></branch-name>
git pull	fetches changes from a remote repository and merges them into the current branch	git push origin <branch-name></branch-name>
git branch	lists all branches or creates a new branch	git branch # List all branches git branch <new-branch- name> # Create a new branch</new-branch-
git checkout	switches to another branch or commit	git checkout <branch-name></branch-name>
git merge	merges a branch into the current branch	git merge <branch-name></branch-name>

#2.7 Activity: fork ASTRAI repo

Step 1: Sign up for an account at https://github.com

Step 2: Sign in to your account

Step 3: Go to ASTRAI repo (https://github.com/caimeng2/ASTRAI-WiSe25-26) and click the "Fork" button

#2.7 Activity: submit an issue to ASTRAI

Step 1: Go to ASTRAI repo

Step 2: Click on "Issues"

Step 3: Click on the "New issue" button

Step 4: What do you wish to accomplish through ASTRAI? Share your thoughts and hit "Submit new issue." Note: The issues are public. Do not share any sensitive information there.

#2.7 Activity: Install git

Instructions: https://github.com/git-guides/install-git

macOS/ Linux:

- Use the built-in **Terminal** application.
- You can open the terminal by searching for "Terminal" in your applications menu.

Windows:

- You can use Git Bash, which comes with Git for Windows.
 - Download Git from https://git-scm.com/downloads
 - Install it. During installation, you'll be given the option to use Git Bash.
 - Git Bash provides a Unix-like terminal for Windows users, so the commands work the same as in Linux/macOS.

Type in "git --version" to check if you have git installed

#2.7 Activity: clone ASTRAI repo

Step 1: Open Terminal or Git Bash

(Step 2: Change the directory: cd xx)

Step 3: Type in Terminal or Git Bash :
git clone https://github.com/caimeng2/ASTRAIWiSe25-26.git

#2.8 Questions?

Take a moment to review the repo.

Do you have any questions or concerns?

Learning goals

- #1 Understand what ASTRAI is about
- **#2** Understand what you need to do in ASTRAI
- #3 Become familiar with git and GitHub
- #4 Be able to clone (i.e., download) the course repo