北京师范大学 2013~2014 学年第 1 学期期末考试试卷 (A 卷)

课程名称:	数据结构		任课教师姓名:		郑新 肖永康	
卷面总分:	<u>100</u> 分 考试时	长: 100 分钟	考试类别:	闭卷 🗹	开卷 □	其他 🗆
院 (系):		专业:			年级: _	
姓 名:	<u> </u>	学号:				
题号	第一题	第二题	第三题	第四	J 题	总分
得分						
	^{字):} 题(每小题 2)			
1. 算法分析	的目的是()。				
A. 4	研究算法的输入	与输出之间的关	系 B. 找出	数据结构	勾的合理性	Ė
C. 2	分析算法的效率	以求改进算法	D. 分析	「算法的	可读性与可	丁移植性
2. 与双向链	表相比较,单向	可链表的缺点之-	一是 ()。	o		
A. :	无法省略头结点	指针	B. 插入和册	削除操作	麻烦	
C. 无法进行随机访问 D. 占用更大的存储空间						
作对应的 A . q	【向循环链表中由 J语句依次为: p· ->rlink=p ->llink->rlink=p	->rlink=q; p->llir B. q->llink	nk=q->llink; c >rlink=p			
在任何时	至数为栈元素的标 一刻。则下面的序 ,5,4,1,3 B. 3,	序列中,()是可能的	出栈序列) 。	可以发生

5. n个结点的线索二叉树上,含有的线索数为()。
A. 2n B. n-1 C. n+1 D. n
6. 已知某非空二叉树采用顺序存储结构,树中结点的数据信息依次存放在一个一维
数组中,该二叉树的中序遍历系列为 ()
A. GDBAFHCE B. GBDAFHCE C. BDGAFHCE D. BGDAFHCE
7. 以下序列不是堆的是 ()。
A. (100, 85, 98, 77, 80, 60, 82, 40, 20, 10, 66)
B. (100, 98, 85, 82, 80, 77, 66, 60, 40, 20, 10)
C. (10, 20, 40, 60, 66, 77, 80, 82, 85, 98, 100)
D. (100, 85, 40, 77, 80, 60, 66, 98, 82, 10, 20)
8. 导致图的遍历序列不唯一的因素有 ()。
A. 出发点不同、存储结构不同、遍历方法不同
B. 出发点不同、存储结构不同
C. 遍历方法不同、存储结构不同
D. 出发点不同、遍历方法不同
9. 一个递归算法必须包括()。
A.递归部分 B. 终止条件和递归部分
C. 迭代部分 D. 终止条件和迭代部分
10. 对序列{15, 9, 7, 8, 20, -1, 4}用希尔(Shell)排序方法排序,经一趟后序列
变为{15, -1, 4, 8, 20, 9, 7}, 则该次采用的增量是()。
A. 1 B. 4 C. 3 D. 2
一 植突晒(复杂 2 八 + 20 八)
二、 填空题 (每空 2 分, 共 20 分)
1. 算法分析的前提条件是()。

2. 若节点的结构如下图所示,则向一个栈顶指针为 h 的带头节点的链式栈中插入指
针为s所指的节点时,应执行的操作为()。
data *next
3. 设有一个二维数组 A [12,10],采用以行序为主序存储,每个数据占有 2 个字节,
该数组的首元素 A[0][0]的地址为 1200,则 A[6,5]的地址为()。
4. 哈夫曼树的叶结点数目为 n0,则分支总数 B 为 ()。
5. 当栈的最大长度难以估计时,栈最好采用 () 存储结构。
6. 三个结点的二叉树共有()种形态。
7. 己知一个二叉树的前序遍历结果为 ABCDEF,中序遍历结果为 CBAEDF,则后序遍
历结果为 ()。
8. 若具有 n 个顶点的无向连通图采用邻接矩阵表示,则邻接矩阵中至少有
() 个非零元素。
9. 已知有序表为{12, 18, 24, 35, 47, 50, 62, 83, 90, 115, 134}, 当用二分法
查找47时()次查找。
10. 快速排序法在 () 情况下最有利于发挥其长处。
三、 判断题(每小题 2 分, 共 10 分)
1. 二叉树叶结点的数目只与度为 2 的结点的数目有关。()
2. 按照关键字值有序链接的链表,可对数据采用折半查找。()
3. 霍夫曼树是带权路径长度最短的树,路径上权值较大的结点离根较近。()
4. 稳定排序算法和不稳定排序算法的排序结果有差别,通常稳定排序算法的性能优
于不稳定排序算法。()
5. m 阶 B+树是一棵 m 叉平衡索引树。按"最大关键码复写"原则建立的 B+树的每
个结点最多有 m 个关键字;除根节点外,其他结点至少有[m/2]个子树。()
四、 简答题(每小题 10 分, 共 50 分)
1. 下面的函数实现带附加头结点的单链表数据结点逆序连接,请填空完善之。
// 通过一趟遍历,将链表中所有结点的链接方向逆转

2. 将序列 25, 45, 90, 65, 55, 10, 75, 40, 30, 88 分别建立二叉排序树 (3 分) 和平衡二叉树 (7 分), 画出详细建立过程。

- 3. 已知一带权连通图采用邻接矩阵存储方法,并且邻接矩阵采用三元组表表示,其中第一个三元组(5,5,16)分别表示邻接矩阵的行数、列数与非零元素的个数,从第二个三元组开始,依次按行序为主序的次序分别给出 16 个非零元素,它们依次为(1,2,7),(1,3,5),(1,4,9),(2,1,7),(2,3,8),(2,4,5),(2,5,4),(3,1,5),(3,2,8),(3,4,6),(4,1,9),(4,2,5),(4,3,6),(4,5,2),(5,2,4),(5,4,2)。
 - (1) 请画出此网的逻辑图 (4分)。
 - (2) 按照 Kruskal 方法求该网的最小生成树的产生过程。(3分)
 - (3) 按照 Prim 算法求该网的最小生成树的产生过程。(3分)

- 4. 设散列(Hash)表的地址范围为 0~17,散列函数为 H(K)= K mod 16, K 为关键字,用线性探查法处理冲突,输入关键码序列:(10,24,32,17,31,30,46,47,40,63,49)构造散列表,试回答下列问题:
 - (4) 画出散列表示意图(4分);
 - (5) 若查找关键字 63, 需要依次与哪些关键字比较(2分)?
 - (6) 若查找关键字60,需要依次与哪些关键字比较(2分)?
 - (7) 假定每个关键字的查找概率相等,求查找成功时的平均查找长度(2分)?

- 5. 已知关键字序列为 1、2、6、7、11、4、8、13、10、5、17、9、16、20、3、12、14、18、19、15。
 - (1) 请创建一棵 5 阶 B 树,并画出创建过程 (6 分);
 - (2) 对于所创建的 B 树, 画出删除 8、16、15、4 等四个关键字的过程 (4 分)。

北京师范大学 2013~2014 学年第 1 学期期末考试试卷(B卷)

课程名称	:	数据结构		任课	教师姓名:	郑新 肖	 永康
卷面总分:	<u>100</u> 分	考试时长:	100_分钟	考试类别]: 闭卷 ☑	开卷 □	其他 □
院(系):_			专业:			年级: _	
姓 名:		学 号	크 :				
题号	第一题	第二题	第三题	第四题			总分
得分							
阅卷教师((签字):						
一、选择	题(每小题	[2分,共2	20分)				
问将结点	Q 插入结点 xt=Q; ②Q->	中的一个结点 P 后面的操作 next=P->nex	作是()	0			E成的结点 ,
_		(B) 253	① (C)	2513	(D) 24	13	
2 已知一个	栈的λ 栈字	列是 a,b,c,d,e	加该样的!	1.	`能是 ()		
		(B)decba					
		(B) 3			医率查找成功 (D)35/11	的平均查找	次数为()
4.己知下图	是一完全二	叉树的顺序有	存储结构,问	该二叉树的局	 言序遍历的结	吉果为 ()
1 2	3 4	5 6	7 8	9 10)		
	23456789						
` '	(B) 1 2 4 8 9 5 10 3 6 7 (C) 8 4 9 10 5 2 6 3 7 1						
. ,	9 10 5 2 6 7						
` '							

5.已知一有向图 G 的邻接表的存储结构如下图所示:

则基于该存储表示,从顶点 v1 出发,用广度优先遍历算法得到的顶点序列是()

- (A) v1 v2 v3 v5 v4 v6 (B) v1 v2 v5 v6 v4 v3
- (C) v1 v2 v5 v3 v4 v6 (D) v1 v2 v3 v4 v5 v6
- 6.已知有向图 G=(V,E), 其中 V={v1, v2, v3, v4, v5, v6}, E={<v1, v2>, <v1, v4>, <v2, v6>, <v3, v1>, <v3,v4>, <v4,v5>, <v5,v2>, <v5,v6>}, G的拓扑序列是()
 - (A) v3,v1,v4,v5,v2,v6
- (B) v3,v1,v4,v2,v5,v6
- (C) v3,v4,v1,v5,v2,v6
- (D) v1,v3,v4,v5,v2,v6
- 7.对于以下无向带权图,利用 Prim 算法,从 V1 出发,得到最小生成树 MST 的过程中,依次归 并到 MST 项点集 U 所产生的顶点序列和这棵最小生成树的代价(总权重)是()

- (A) V1 V2 V4 V5 V3 ,25 (B) V1 V2 V3 V5 V4 ,25
- (C) V1 V2 V4 V5 V3 ,24 (D) V1 V2 V3 V5 V4 ,24
- 8.下面的排序方法中,()是一种稳定的排序方法。
 - (A) 插入排序法
- (B) 选择排序法 (C) 快速排序法 (D) 希尔排序法

- 9.循环队列 O 队满和队空的条件是(
 - (A)(Q.rear+1)%MAXQSIZE = = Q.front, Q.rear = = Q.front
 - (B) Q.rear = =Q.front, Q.rear = =Q.front ==0
 - (C) (Q.rear+1)%MAXQSIZE==Q.front ,Q.rear==Q.front==0
 - (D) Q.rear+1 = =Q.front , Q.rear= =Q.front
- 10. 如果 m 阶 B-树中具有 n 个关键字,则叶子结点即查找不成功的结点为 ()。
 - (A) n-1

- (B) n (C) n+1 (D) $\lceil n/2 \rceil$

二、填空题(每空2分,共20分)	
1.按逻辑结构划分,可以把数据结构分为()和()2.三个结点的树共有()种形态,三个结点的二叉树共有(3.有向图的顶点数为 n,则图最少有()条边,最多有(4.对线性表采用折半查找方法,该线性表必须采用(()。)。 5.20 个结点的二叉树的最小深度为(),20 个结点的平衡二叉树的最大)。)种形态。)条边。)存储结构,并且 大深度为()。
三、判断题(每小题2分,共10分)	
 二叉树是树的特殊情形。() 线性表的逻辑顺序与物理顺序总是一致的。() 邻接表只能用于有向图的存储,而邻接矩阵对于有向图和无向图的存储 有回路的图不能进行拓扑排序。() 任一关键活动的加速一定能使整个工程提前。() 	都适用。()
四、简答题(共5道题,每道题10分,共50分)	
1. 对于序列 13,5,9,7,10,4,27,33,15,26,画出它的极小堆。在该序列末尾插 <i>)</i> 新堆。	入关键字 24 后,画出

装

订

线

2. 某系统在通信联络中只可能出现八种字符,它们分别是 ABCDEFGH,其概率分别为 0.05, 0.19, 0.18, 0.09, 0.12, 0.23, 0.13, 0.01。现要对这八种字符进行 Huffman 编码。画出该 Huffman 树(权值大的结点做左孩子),在所有的结点上标出其权值,并求出这棵树的带权路 径长度。

3. 用快速排序算法,对下列数组排序

60 56 65 99 22 16 88 100

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7]

取 a[0]为基准对象(pivot),分别列出第一轮排序的过程及排序后的元素顺序。

4. 利用 Dijkstra 算法求下图中 V1 到其它顶点的最短路径,并计算出数组 D 在算法执行过程中的每一步的变化。(D[i]表示当前所找到的从 V1 到每个顶点的最短路径长度)

D[1]	D[2]	D[3]	D[4]	D[5]	D[6]

5.	假定一个待哈希存储的线性表为(32,75,63,48,94,25,36,18,70),哈希地址空间为[0···10],若采用除留余数法构造哈希函数和采用步长为1的线性探测法处理冲突,试给出对应的哈希表,并求出在等概率情况下查找成功时的平均查找长度。