Daniel Delgado - Fabian Salazar Figueroa

Empleando la información del número de ocupados en miles de personas (Ocupados) para las 13 principales ciudades, encuentre el mejor pronóstico para los próximos 6 meses.

Proceso: Iniciamos descomponiendo la serie para desestacionalizarla e iniciar los modelos de suavización definiendo una muestra de datos de 6 meses [Figura 1]. Después de correr los modelos nos decantamos por el modelo de Suavizacion Exponencial Lineal de Winters (Holt-Winters), ya que es el que mejor pronóstico de da y sobre él mismo se hizo la grilla buscando los mejores parámetros [Figura 2].

Posteriormente obtuvimos los mejores parámetros y el mejor modelo que nos muestra la gráfica [Figura 3].

Al final se implementa sobre todo el conjunto de datos [Figura 5].

Figura 2

ı		Error	Trend	Seasonal	Alpha	Beta	Gamma	RMSE
ı	0	add	add	add	0.339803	0.000034	0.301398	163.595460
ı	1	add	add	mul	0.513366	0.001316	0.000049	156.414786
ı	2	add	add	None	0.571964	0.006149	NaN	370.157974
ı	3	add	mul	add	0.388737	0.000039	0.337249	169.239439
ı	4	add	mul	mul	0.513649	0.000051	0.000049	154.813901
ı	5	add	mul	None	0.545040	0.000055	NaN	381.545893
ı	6	add	None	add	0.590233	NaN	0.000041	108.180690
ı	7	add	None	mul	0.595512	NaN	0.000040	93.497561
ı	8	add	None	None	0.634303	NaN	NaN	300.429030
ı	9	mul	add	add	0.500113	0.000050	0.000050	194.567616
ı	10	mul	add	mul	0.550834	0.000331	0.000045	162.249941
ı	11	mul	add	None	0.578279	0.005945	NaN	371.544336
ı	12	mul	mul	add	0.306343	0.002577	0.425171	208.687404
ı	13	mul	mul	mul	0.546603	0.000055	0.000045	160.571455
ı	14	mul	mul	None	0.548314	0.000055	NaN	394.349086
ı	15	mul	None	add	0.494480	NaN	0.291868	74.146164
ı	16	mul	None	mul	0.623238	NaN	0.000038	97.452378
ı	17	mul	None	None	0.634221	NaN	NaN	300.428295
ı								

Figura 3

Figura 4
Tabla de los
pronósticos para
los 6 meses
según el modelo
implementado
[Figura 4]

Fecha Predicción
2019-05-01 2019-04-30 10756.793111
2019-06-01 2019-05-31 10697.732377
2019-07-01 2019-06-30 10772.626007
2019-08-01 2019-07-31 10747.787155
2019-09-01 2019-08-31 10857.723293
2019-10-01 2019-09-30 10865.813758

Limitaciones: A medida que se aleja del tiempo pierde precisión - Aún el mejor modelo tiene un error alto Ventajas: No dependemos de supuestos para la modelación.

Fecha