SOEN 384

Management, Measurement and Quality

Control

http://users.encs.concordia.ca/~s384_2/

Lecture 8:

Software Engineering Management (SEM): A goal-based framework for software measurement

- Fenton, chapter 3 section 3.1
- Sylvie Trudel "Measurement for improving accuracy of estimates: the case study of a small software organisation"

- goal-based framework for software measurement program
 - Identifying the views of measurement
 - identifying the entities and attributes that we want to measure
 - internal v.s. external attributes
 - examples
- Simple measurement plan

A goal-based framework for software measurement

Measurement Program: Technical View Emphasis on

Emphasis on a particular process or product

- Technical measures are focused upon a set of internal attributes of a single product or process
- Measurement data supports <u>technical decisions</u> (choice of design, trade-offs, data structure, algorithms selection, etc.)
- Primary user of technical measurement data: software engineer

Measurement Program: Tactical View Emphasis on Program:

Emphasis on individual project

- Goals are stated in the estimated or planned values
- Measurement data is used to
 - compare actual results to target (estimated or planned) results. Any variances are noted and investigated.
 - Examples:
 - Defect discovery rate during inspection or testing activities
 - Progress to date (percentage completion measure)
 - predict values of certain indirect project measures
 - Examples:
 - Product measures to predict project measures (Using project size to predict effort and schedule)
 - Resource consumption (cost of materials, consumable resources required for the project)
- Primary user of tactical measurement data: project manager

Measurement Program: Strategic View Emphasis on I

- **Emphasis on business processes**
- Organization's goals are stated in measurable terms
- Strategic View tracks trends of summary statistics.
- Primary user of strategic measurement data: strategic manager

- Software measures are used to quantify characteristics of:
 - Software Products
 - Software Development Resources
 - Software Development Process
- This includes items which are directly measurable, such as lines of code, as well as items which are calculated indirectly from measurements, such as software quality.

Using internal measures for quality control

Internal Attributes v.s. External Attributes

- Internal: measured purely in terms of the process, project, product or resource itself
- External: can be measured only with respect to how the process, project, product or resource relates to its environment

Internal v.s. External Attributes

- Examples of Internal product attributes:
 - Size, complexity, reuse, modularity, coupling, cohesion
- Examples of External product attributes:
 - Understandability, usability, reusability, maintainability, Quality

Fenton's list

ENTITIES	ATTRIBUTES		
Products	Internal	External	
Specifications	size, reuse, modularity, redundancy, functionality, syntactic correctness,	comprehensibility, maintainability,	
Designs	size, reuse, modularity, coupling, cohesiveness, functionality,	quality, complexity, maintainability,	
Code	size, reuse, modularity, coupling, functionality, algorithmic complexity, control-flow structuredness,	reliability, usability, maintainability,	
Test data	size, coverage level,	quality,	
	Flacting and spension	S1.1.1	
Processes			
Constructing specification	time, effort, number of requirements changes,	quality, cost, stability,	
Detailed design Testing	specification faults found, time, effort, number of coding faults found,	cost, cost-effectiveness, cost, cost-effectiveness, stability,	
Resources			
Personnel	age, price,	productivity, experience, intelligence,	
Teams	size, communication level, structuredness,	productivity, quality,	
Software	price, size,	usability, reliability,	
Hardware	price, speed, memory size,	reliability,	
Offices	size, temperature, light,	comfort, quality,	

soen384-f14: measurement program

- Product: deliverable created during the course of a project
 - Not all products are delivered to the customer!
- Examples of Internal product attributes:
 - Size, Complexity, Functionality, reuse, modularity, coupling, cohesion
- Examples of External product attributes:
 - Understandability, usability, reusability, maintainability.

Entities of Object Oriented Software	Software Measures	The measure is characterizing the OO Software Entity
	Weighted Methods per Class (WMC)	True / False
	% of reused "as is" classes	True / False
Contons	Number of local methods	True / False
System	Count of objects in the system	True / False
	Average Inheritance Depth	True / False
	Number of Children (NOC)	True / False
	Operation coupling measure (count of the number of operations that access other classes, and cooperate with other classes)	True / False
Class	Weighted methods per class (WMC)	True / False
	Lack of cohesion of methods (LCOM)	True / False
	Depth of inheritance tree (DIT)	True / False
	Cyclomatic complexity	True / False
54	Attribute Inheritance Factor	True / False
Method	% of inherited methods that are overloaded	True / False
	Method Inheritance Factor Soen384-f14: measurement	True / False
	nrogram	13

How do we measure OO internal attributes?

- COUPLING:
 - coupling between object classes
 - response for a class
- INHERITANCE:
 - depth of the inheritance tree
 - number of children
- COHESION:
 - lack of cohesion in methods
- TESTABILITY:
 - cyclomatic complexity

OOD Internal/External Attributes Example

soen384-f14: measurement program

ISO 25010: external attribute

ISO/IEC 25010:2011(E)

Maintainability

Definition: degree of effectiveness and efficiency with which a product or system can be modified by the intended maintainers

System/Software **Product Quality**

Maintainability

Modularity Reusabillity Analysability Modifiability

Testability

4.2.7.1

modularity

degree to which a system or computer program is composed of discrete components such that a change to one component has minimal impact on other components

4.2.7.2

reusability

degree to which an asset can be used in more than one system, or in building other assets

4.2.7.3

analysability

degree of effectiveness and efficiency with which it is possible to assess the impact on a product or system of an intended change to one or more of its parts, or to diagnose a product for deficiencies or causes of failures, or to identify parts to be modified

4.2.7.4

modifiability

degree to which a product or system can be effectively and efficiently modified without introducing defects or degrading existing product quality

4.2.7.5

Modifiability is a combination of changeability and stability.

testability

degree of effectiveness and efficiency with which test criteria can be established for a system, product or component and tests can be performed to determine whether those criteria have been met soen384-f14: measurement

LOGISCOPE: Maintainability

MAINTAINABILITY = ANALYZABILITY + CHANGEABILITY + STABILITY +TESTABILITY

4.2.7.3

analysability

degree of effectiveness and efficiency with which it is possible to assess the impact on a product or system of an intended change to one or more of its parts, or to diagnose a product for deficiencies or causes of failures, or to identify parts to be modified

4.2.7.4

modifiability

degree to which a product or system can be effectively and efficiently modified without introducing defects or degrading existing product quality

Modifiability is a combination of changeability and stability.

4.2.7.5

testability

degree of effectiveness and efficiency with which test criteria can be established for a system, product or component and tests can be performed to determine whether those criteria have been met

Logiscope tool

MAINTAINABILITY = ANALYZABILITY + CHANGEABILITY + STABILITY + TESTABILITY

- Resources are those objects that serve as input to the processes:
 - People, tools, materials, methods, time, money, training
 - Internal attributes:
 - Cost, capability, constraints on use, consumption
 - External attributes:
 - Performance, productivity

Entities (Objects) of Measurement: Processes

- Process: software-related activity associated with some time-scale development process or
 - Examples: maintenance process, testing process, and so on

Examples of Internal process attributes:

- the duration of the process or one of its activities
- the effort associated with the process or one of its activities
- the number of incidents of a specified type arising during the process or one of its activities

Examples of External process attributes:

Cost

Simple measurement plan – tactical view (source: Sylvie Trudel)

- Small Canadian software development organisation
- "Not to exceed" estimate business model, guarantees that fixing all defects found by their customer are free of charge.
- **Motivation for a measurement program**: the inaccuracy of initial estimates (half of the projects ended up exceeding estimates)
- Measurement results were used to improve the accuracy of estimation models
- With more accurate estimates, several sound business decisions were made regarding future projects

Simple measurement plan (source: Sylvie Trudel)

ID	Objectives	Reason
G1	Deliver projects within effort estimates	To reach corporate goal of 30% gross margin.
G2	Deliver detect tree versions into production	Ensure product quality and customer satisfaction, minimise rework.

Identifying Quantifiable Questions and Indicators

Measurement Goals

- Object of interest
- Purpose
- Perspective
- Environment and constraints

Question 1

Question 2

Question 3

Question 4

Indicators

Simple measurement plan: Questions & Indicators (source: Sylvie Trudel)

Q1	Q2	Q3	Q4
For each project, what is the difference between actual effort and planned effort?	has an overrun > 5%?	planned effort and the initial Scrum	How many defects do we have per year and per release?
(planned effort + CRs))*100	1 3		Number of defects per release and total
G1	G1	G1	G2
Verify that the process was applied, especially on CRs Verify any encountered issue.		Re-estimate either plan or Scrum. If appropriate, advise customer of an estimate change prior to beginning project.	When > 1, do a retrospective.

Identifying Measurement Data

Indicators

- the data elements that you must collect to construct the indicators that you identified in the previous exercise
- how you want the data elements to be defined, so that the indicators will show what they purport to show

Simple measurement plan: some base measures related to goal G1

ID	M1	M2	M3	M4
Measures	Actual effort	Planned effort	Total effort for all CRs	Scrum initial effort
Scope	Per project	Per project	Per project	Per project
U of M	Hours	Hours	Hours	Hours
Precision	1 hr	1 hr	1 hr	1 hr
Measured by	Employees	PM	PM	Employees
Data source	Anatime	Project plan	CR files	Scrum Works
Data collection procedure	Timesheet must be entered every day	Project < 50 hrs = manual only Project > 50 hrs = FSM	As soon as a CR is approved, enter it in the CR Follow-up table in the project plan.	As soon as Scrum initial effort is completed, the PM copies the effort value in the project portfolio file.

See "Quality-Management-SylvieTrudel.xls" file