Recommendation Systems

Last time ...

- Clustering
- ▶ Today
 - ► Clustering mapreduce
 - ► Recommendation Systems
- Assignment
 - ► Assignment 1 due tonight
 - ► Assignment 2
 - ► Mail TA your ssh public keys → username.key

Clustering using Mapreduce

- \blacktriangleright User provides k
- Each Map task is assigned a subset of the points
 - Cluster its points
 - \rightarrow Output \rightarrow (1, cluster description)
- ▶ Single reducer
 - Merge all clusters

Iterative k-means using mapreduce

- ightharpoonup Randomly initialize k centers
- Classify: Assign each point to the nearest center
- Recenter: update centroid
- Repeat until convergence

Iterative k-means using mapreduce

- ightharpoonup Randomly initialize k centers
- Classify: Assign each point to the nearest center
- Recenter: update centroid
- Repeat until convergence

Map

Reduce

Recommendation Systems

Recommendation Systems

- Predicting user responses to options
 - Offering news articles based on users interests
 - Offering suggestions on what the user might like to buy/consume
 - ▶ News, Movies, music, books, products
- Physical stores/services
 - Not tailored to individual customer
 - Governed by aggregate numbers
- Online systems
 - ▶ Wider variety available → long tail
 - Need to recommend items
 - ► Ideally tailored to users

Utility Matrix

- Users (rows) & Items (columns)
- Matrix entries are scores/ratings by user for the item.
 - ▶ Boolean
 - Ordered set
 - ▶ Real
- Matrix is sparse
- Goal of recommendation systems
 - Predict the blank entries of the utility matrix
 - Not necessary to predict every entry
 - ▶ predict some high entries

Populating the Utility Matrix

- Ask users to rate items
 - ▶ Not everyone wants to rate
 - ▶ Biased within and across users
- Make inference from users behavior
 - ▶ Boolean choice likes, watched, bought
 - providers like google, amazon have an advantage
- Quality of utility matrix determines the kind of recommendation algorithms that get used

Recommendation Systems

- Two major approaches
 - ► Content based systems similarity of item properties
 - ▶ Depending on the properties of movies you have watched, suggest movies with the same properties genre, director, actors etc.
 - ► Collaborative filtering relationship between users and items
 - ▶ Find users with a similar 'taste'
 - ▶ Recommend items preferred by similar users

Content-based Recommendations

- Identify user/item profiles and match them for recommendation
- In many cases profiles for items are easy to obtain
 - ► Movies: genres, actors, director
 - Product description, dimensions, weight
- Harder for others: news articles, blogs
- Example: Search ads
 - ▶ Item profiles are categories & keywords for ads
 - User profiles are the keywords user provided for search

Features for documents

- ▶ Too much information: a document contains many words
 - ▶ A term appearing many times tends to describe the document better
 - Most common words do not carry any significance
 - \blacktriangleright 'the', 'and', ... \rightarrow stop words
- TD.IDF (Term frequency. Inverse document frequency)
 - ▶ TD → how frequent in a particular term in a document
 - ▶ IDF → how frequent is a particular term across documents
- Similarity
 - ▶ Jaccard distance → intersection size / union size
 - ▶ Cosine distance → normalized inner product

Obtaining User profiles

- Probably the most valuable data are those that contain user activities or behavior
- Direct: search keywords, filing out profiles/surveys
- Indirect:
 - ▶ Blogposts, tweets
 - Browsing history

Making recommendations

- Similarity between users and items profiles
 - ▶ Jaccard, cosine, any other metric
- Use some bucketing technique to find items
 - ▶ Trees, Hashing
- Classification algorithms
 - Using users ratings, learn users 'taste'
 - Predict ratings for other items

Collaborative Filtering

- Instead of using an item-profile vector use the column in the utility matrix
 - Item defined by which users have bought/rated the item
- Instead of using an user-profile vector use the row in the utility matrix
 - User defined by what items they have bought/liked
- Users similar if their vectors are close using some metric
 - ▶ Jaccard, cosine
- Recommendations based on finding similar users and recommending items liked by similar users

Measuring similarity

- Sparsity of utility matrix poses some challenges
- Rounding data
 - \blacktriangleright Consider 3,4,5 as 1 and 1,2 as 0 \rightarrow same as unwatched
 - Jaccard distance
- Normalizing ratings
 - Subtract average user rating from each rating
 - Convert low ratings into negative numbers
 - ▶ Cosine distance

Duality of Similarity

- Two approaches estimate missing entries of the utility matrix
 - Find similar users and average their ratings for the particular item
 - Find **similar items** and average user's ratings for those items
- Considerations
 - ▶ Similar users: only find similar users once, generate rankings on demand
 - Similar items: need to find similar items for all items
 - ▶ Is more reliable in general

Clustering users and items

- ▶ In order to deal with the sparsity of the utility matrix
- Cluster items
 - New utility matrix has entries with average rating that the user gave to items in the cluster
 - ▶ Use this utility matrix to ...
- Cluster users
 - ▶ Matrix entry → average rating that the users gave
- Recurse
 - Until matrix is sufficiently dense

Estimating entries in the original utility matrix

- Find to with clusters the user (U) and item (I) belong, say C and D
- ▶ If an entry exists for row \mathcal{C} and column \mathcal{D} , use that for the UI entry of the original matrix
- ▶ If the *CD* entry is blank, then find similar item (clusters) and estimate the value for the *CD* entry and consequently that for the *UI* entry of the original matrix.

Dimensionality reduction

- ▶ Utility Matrix, M, is low rank → Singular Value Decomposition
- $M \rightarrow n \times m$
- ightharpoonup M = UV
- ightharpoonup U o n imes d, V o d imes m
- ightharpoonup How close is *UV* to $M \rightarrow$ root mean square error (RMSE)
 - Sqrt of Sum of difference over all nonblank entries

Incremental computation of UV

- Preprocess matrix M
- \blacktriangleright Start with an initial guess for U,V
- \blacktriangleright Iteratively update U,V to minimize the RMSE
 - Optimization problem

Preprocessing M

- ▶ Normalize for user
 - Subtract average user rating
- Normalize for item
 - Subtract average item rating
- Both
 - lacktriangle Subtract average of user and item rating from m_{ij}
- ▶ Need to undo normalization while making predictions ...

Initializing *U,V*

- Need a good guess
- Some randomness helps
- Initialize all entries to the same value
 - 0 is a good choice if normalized
 - ► Else, $\sqrt{\frac{a}{d}}$ is a good value
- ▶ Ideally start with multiple initial guesses centered around 0

Optimizing

- Gradient descent
- First order approximation
- Update using steps proportional to the negative gradient of the objective function (RMSE)
- Stop when gradient is zero
- Inefficient for large matrices
 - Stochastic Gradient descent
 - Randomized SVD

Next lecture

