Interaction by particle exchange

Feynman diagrams

Feynman diagrams are a useful way of representing processes. In order to obtain the matrix element \mathcal{M} from such processes, the following rules are followed:

initial-state particle:	u(p)	
final-state particle:	$\overline{u}(p)$	•
initial-state antiparticle:	$\overline{v}(p)$	─
final-state antiparticle:	v(p)	•—
initial-state photon:	$arepsilon_{\mu}(p)$	~~~•
final-state photon:	$\varepsilon_{\mu}^{*}(p)$	•~~~
photon propagator:	$-\frac{ig_{\mu\nu}}{q^2}$	•~~~•
fermion propagator:	$-\frac{i(\gamma^{\mu}q_{\mu}+m)}{q^2-m^2}$	••
QED vertex:	$-iQe\gamma^{\mu}$	}

the quantity $-i\mathcal{M}$ is then equal to the product of the individual contributions of each particle, antiparticle, virtual particle, and vertex in the diagram. For example, the diagram:

The Feynman diagram for the QED scattering process $e^-\tau^- \to e^-\tau^-$ and the associated elements of the matrix element constructed from the Feynman rules. The matrix element is comprised of a term for the electron current, a term for the tau-lepton current and a term for the photon propagator.

has matrix element given by:

Fig. 5.7

$$-i\mathcal{M} = \left[\overline{u}(p_3)\{ie\gamma^{\mu}\}u(p_1)\right] \frac{-ig_{\mu\nu}}{q^2} \left[\overline{u}(p_4)\{ie\gamma^{\nu}\}u(p_2)\right],$$