Patrick Pegus Mini Project 1 October 1, 2015 CMPSCI-689 Prof. Sridhar Mahadevan

Theory Question 1

The axioms of inner product are:

Non-negativity: $f(\vec{x}, \vec{x}) \ge 0$ if $0, \vec{x}$ must be $\vec{0}$

Linearity: $f(\vec{x} + \vec{y}, \vec{z}) = f(\vec{x}, \vec{z}) + f(\vec{y}, \vec{z})$

Scalar multiple: $f(\alpha \vec{x}, \vec{y}) = \alpha \cdot f(\vec{x}, \vec{y})$

Symmetry: $f(\vec{x}, \vec{y}) = f(\vec{y}, \vec{x})$

Non-negativity

This axiom is not satisfied by δ . Let $\omega_i = \vec{0}$. Then $\delta(\omega_i, \omega_i) = \frac{0}{0}$, which is undefined.

Linearity

This axiom is not satisfied by δ . Let $\|\omega_i\|_2 \neq 1$ or $\|\omega_j\|_2 \neq 1$, for example let $\omega_i = [1, 2], \omega_j = [1, 0], \omega_k = [0, 1]$. Then $\delta(\omega_i + \omega_j, \omega_k) \approx 0.7$ and $\delta(\omega_i, \omega_k) + \delta(\omega_j, \omega_k) \approx 0.9$.

Scalar multiple

This axiom is not satisfied by δ , since it normalizes vectors. For example, let $\alpha = 2$ and $\omega_i = [1, 0]$. Then $\delta(\alpha\omega_i, \omega_i) = 1$ and $\alpha \cdot \delta(\omega_i, \omega_i) = 2$.