SEQUENCE LISTING

<110> Williams, L. David
 Hershfield, Michael S.
 Kelly, Susan J.
 Saifer, Mark G.P.
 Sherman, Merry R.

<120> PEG-URATE OXIDASE CONJUGATES AND USE THEREOF

<130> MVIEW.1A2DV1

<150> 09/370,084

<151> 1999-08-06

<150> 09/130,392

<151> 1998-08-06

<150> 60/219,318

<151> 1999-08-05

<160> 2

<170> FastSEQ for Windows Version 4.0

<210> 1

<211> 304

<212> PRT

<213> Sus scrofa

<400> 1

Met Ala His Tyr Arg Asn Asp Tyr Lys Lys Asn Asp Glu Val Glu Phe
1 5 10 15

Val Arg Thr Gly Tyr Gly Lys Asp Met Ile Lys Val Leu His Ile Gln

Arg Asp Gly Lys Tyr His Ser Ile Lys Glu Val Ala Thr Ser Val Gln

Leu Thr Leu Ser Ser Lys Lys Asp Tyr Leu His Gly Asp Asn Ser Asp
50 55 60

Val Ile Pro Thr Asp Thr Ile Lys Asn Thr Val Asn Val Leu Ala Lys 65 70 75 80

Phe Lys Gly Ile Lys Ser Ile Glu Thr Phe Ala Val Thr Ile Cys Glu 85 90 95

His Phe Leu Ser Ser Phe Lys His Val Ile Arg Ala Gln Val Tyr Val

Glu Glu Val Pro Trp Lys Arg Phe Glu Lys Asn Gly Val Lys His Val

His Ala Phe Ile Tyr Thr Pro Thr Gly Thr His Phe Cys Glu Val Glu

Gln Ile Arg Asn Gly Pro Pro Val Ile His Ser Gly Ile Lys Asp Leu 145 150 155 160

Lys Val Leu Lys Thr Thr Gln Ser Gly Phe Glu Gly Phe Ile Lys Asp 165 170 175

Gln Phe Thr Thr Leu Pro Glu Val Lys Asp Arg Cys Phe Ala Thr Gln 185 Val Tyr Cys Lys Trp Arg Tyr His Gln Gly Arg Asp Val Asp Phe Glu 200 Ala Thr Trp Asp Thr Val Arg Ser Ile Val Leu Gln Lys Phe Ala Gly 215 220 Pro Tyr Asp Lys Gly Glu Tyr Ser Pro Ser Val Gln Lys Thr Leu Tyr 230 Asp Ile Gln Val Leu Thr Leu Gly Gln Val Pro Glu Ile Glu Asp Met 245 250 Glu Ile Ser Leu Pro Asn Ile His Tyr Leu Asn Ile Asp Met Ser Lys 265 Met Gly Leu Ile Asn Lys Glu Glu Val Leu Leu Pro Leu Asp Asn Pro Tyr Gly Arg Ile Thr Gly Thr Val Lys Arg Lys Leu Thr Ser Arg Leu 295

<210> 2 <211> 304 <212> PRT <213> Papio hamadryas

<400> 2

Met Ala Asp Tyr His Asn Asn Tyr Lys Lys Asn Asp Glu Leu Glu Phe Val Arg Thr Gly Tyr Gly Lys Asp Met Val Lys Val Leu His Ile Gln Arg Asp Gly Lys Tyr His Ser Ile Lys Glu Val Ala Thr Ser Val Gln Leu Thr Leu Ser Ser Lys Lys Asp Tyr Leu His Gly Asp Asn Ser Asp 55 Ile Ile Pro Thr Asp Thr Ile Lys Asn Thr Val His Val Leu Ala Lys 70 75 Phe Lys Gly Ile Lys Ser Ile Glu Ala Phe Gly Val Asn Ile Cys Glu Tyr Phe Leu Ser Ser Phe Asn His Val Ile Arg Ala Gln Val Tyr Val 105 Glu Glu Ile Pro Trp Lys Arg Leu Glu Lys Asn Gly Val Lys His Val 120 His Ala Phe Ile His Thr Pro Thr Gly Thr His Phe Cys Glu Val Glu 135 Gln Leu Arg Ser Gly Pro Pro Val Ile His Ser Gly Ile Lys Asp Leu Lys Val Leu Lys Thr Thr Gln Ser Gly Phe Glu Gly Phe Ile Lys Asp 170 Gln Phe Thr Lys Pro Glu Val Lys Asp Arg Cys Phe Ala Thr Gln 180 185 Val Tyr Cys Lys Trp Arg Tyr His Gln Cys Arg Asp Val Asp Phe Glu Ala Thr Trp Gly Thr Ile Arg Asp Leu Val Leu Glu Lys Phe Ala Gly 215 Pro Tyr Asp Lys Gly Glu Tyr Ser Pro Ser Val Gln Lys Thr Leu Tyr 230 235 Asp Ile Gln Val Leu Ser Leu Ser Arg Val Pro Glu Ile Glu Asp Met | Secondary | Seco