IFT-1015

Démo 2

Exercice 1

Base 10	Base 16	Base 8	Base 2
0	0	0	0
1	1	1	1
2	2	2	10
3	3	3	11
4	4	4	100
5	5	5	101
6	6	6	110
7	7	7	111
8	8	10	1000
9	9	11	1001
10	a	12	1010
11	b	13	1011
12	c	14	1100
13	d	15	1101
14	e	16	1110
15	f	17	1111
16	10	20	10000
17	11	21	10001
18	12	22	10010
19	13	23	10011
20	14	24	10100

Exercice 2

$$64_{16} = 16^1 \cdot 6 + 16^0 \cdot 4 = \frac{100_{10}}{100}$$

$$100_8 = 8^2 \cdot 1 + 8^1 \cdot 0 + 8^0 \cdot 0 = 64_{10}$$

$$2988_{10} = 16^2 \cdot 11 + 16^1 \cdot 10 + 16^0 \cdot 12 = bac_{16} = 0$$
xbac

$$0xff = ff_{16} = 16^1 \cdot 15 + 16^0 \cdot 15 = 255_{10}$$

Exercice 3

Convertir en binaire(signé), inverser les bits, convertir en décimal $\sim 12_{10}\to\sim 01100_2\to 10011_2\to -13_{10}$

Convertir en binaire, appliquer le "et" logique, convertir en décimal $3_{10}~\&~5_{10}\to0011_2~\&~0101_2\to0001_2\to1_{10}$

Convertir en binaire, appliquer le "ou" logique, convertir en décimal $3_{10}\mid 5_{10}\to 0011_2\mid 0101_2\to 0111_2\to 7_{10}$

Convertir en binaire, appliquer le "exclusive or" logique, convertir en décimal $3_{10}~\hat{}~5_{10}\to0011_2~\hat{}~0101_2\to0110_2\to6_{10}$

Convertir en binaire le nombre de gauche, appliquer le décalage logique vers la gauche, convertir en décimal

$$3_{10} << 4_{10} \rightarrow 0011_2 << 4_{10} \rightarrow 00110000_2 \rightarrow 48_{10}$$

Convertir en binaire le nombre de gauche, appliquer le décalage logique vers la droite, convertir en décimal

$$100_{10}>>2_{10}\rightarrow 01100100_2>>2_{10}\rightarrow 0011001_2\rightarrow 25_{10}$$

Exercice 4

nombre	s	e	f
0.0	0	00000000000	000000000000000000000000000000000000000
7.0	0	10000000001	1100000000000000000000000000000000000
-2.5	1	10000000000	0100000000000000000000000000000000000
1.0	0	01111111111	000000000000000000000000000000000000000
2.0	0	10000000000	000000000000000000000000000000000000000

Exercice 5

$$\sim$$
 x == -1-x

Exercice 6

$$x\%2 == x\&1$$

Exercice 7

```
1 a = 2  # partie 1
2 b = 1  # partie 2
3 c = 5  # partie 3
4
5 facteur = 100/(a+b+c)
6
7 print(a*facteur)
8 print(b*facteur)
9 print(c*facteur)
```

Exercice 8

```
_{\rm 2} # Ce programme permet de trouver le jour de la semaine
_{\rm 3} # pour une certaine date. Le résultat imprimé indique
# le jour de la semaine, avec 1=dimanche, 2=lundi, etc.
6 annee = 2020
                # annee de la date
              # mois de la date
7 \text{ mois} = 9
8 quant = 8
                  # quantieme de la date
10 # Calculer l'ajustement des années bisextiles
nbMois = annee*12 + mois - 3 # nombres de mois écoulés
12 nbAns = nbMois // 12
                                # nombres d'années écoulées
nb4Ans = nbAns // 4
                                 # nombre périodes de 4 ans écoulées
                            # nombre périodes de 100 ans écoulées
# nombre périodes de 400 ans écoulées
14 nb100Ans = nbAns // 100
15 nb400Ans = nbAns // 400
16 ajustBisext = (mois+9)//12*4 + nbAns + nb4Ans - nb100Ans + nb400Ans
18 # Calculer le jour de la semaine
jour = (23*mois//9 + ajustBisext + quant + 5) % 7 + 1
21 print(jour)
```