This morning, I asserted that a linear function $f: \mathbf{R}^n \to \mathbf{R}^m$ cannot be invertible unless n = m. Prove this.

Proceed as follows. First observe that f is linear means that there is an $m \times n$ [on the original, there was a typo with m and n transposed.] matrix A such that $f(\vec{x}) = A\vec{x}$ for every $\vec{x} \in \mathbf{R}^n$. Next, observe that f is invertible means that the equation $f(\vec{x}) = \vec{b}$ has a unique solution $\vec{x} \in \mathbf{R}^n$ for every $\vec{b} \in \mathbf{R}^m$. Now, using what you learned in Chapter 1, demonstrate the following.

(a) If n > m, then $f(\vec{x}) = \vec{b}$ cannot have a unique solution $\vec{x} \in \mathbf{R}^n$ for any $\vec{b} \in \mathbf{R}^m$.

In this case, the rank of A is, at most, m and so A must have at least one non-pivot column. Hence, either there are no solutions, if the last column of $[A | b]_{rref}$ is a pivot column, or there are infinitely many solutions.

(b) If n < m, then there are some $\vec{b} \in \mathbf{R}^m$ for which $f(\vec{x}) = \vec{b}$ has no solution.

In this case, the rank of A is, at most n and so, A has at least one row of zeros. It is always* possible to choose \vec{b} in \mathbf{R}^m so that the last column of $[A | \vec{b}]_{ref}$ is a pivot column and $A\vec{x} = \vec{b}$ has no solutions.

* This result has been alluded to before. Here is a proof. Suppose that $r_1, r_2, ..., r_p$ is a sequence of elementary row operations that changes A to A_{rref} . We'll write r(B) to indicate that the elementary row operation r has been applied to the matrix B. So, $r_p(...(r_2(r_1(A)))...) = A_{rref}$. Now, each elementary row operation has an inverse elementary row operation that "undoes" what the original did. We will denote the inverse of r by r^{-1} . If the first zero row of A_{rref} is the kth row, let $\vec{b} = r_1^{-1} \left(r_2^{-1} \left(\dots r_p^{-1} \left(\hat{e}_k \right) \dots \right) \right)$.

Applying the sequence of elementary row operations above to [A|b] yields

$$[A \mid b]_{rref} = \left[r_p \left(\dots \left(r_2 \left(r_1 \left(A \right) \right) \right) \dots \right) \mid r_p \left(\dots \left(r_2 \left(r_1 \left(\vec{b} \right) \right) \right) \dots \right) \right]$$

$$= \left[A_{rref} \mid r_p \left(\dots \left(r_2 \left(r_1 \left(r_1^{-1} \left(r_2^{-1} \left(\dots r_p^{-1} \left(\hat{e}_k \right) \dots \right) \right) \right) \right) \right) \dots \right) \right]$$

$$= \left[A_{rref} \mid \hat{e}_k \right]$$

But this means that the kth row contains a pivot in the last column.