Lie Groups — Exercise Page #5

Elad Tzorani

January 22, 2021

Exercise 1. Show that equivalence of categories is an equivalence relation on the collection of categories.

Solution. Reflexivity: Let \mathcal{C} be a category, there's a functor $\mathrm{id}_{\mathcal{C}}$ acting as the identity on all objects and morphisms. Specifically, $\mathrm{id}_{\mathcal{C}}$ is bijective on Hom-sets and is essentially surjective, since for all $x \in \mathrm{Ob}(\mathcal{C})$ we have $X \cong X = \mathrm{id}_{\mathcal{C}}(X)$.

Transitivity: Let $\mathcal{C}, \mathcal{D}, \mathcal{E}$ be three categories and let $F: \mathcal{C} \to \mathcal{D}$ and $G: \mathcal{D} \to \mathcal{E}$ be equivalences of categories.

Let $X, Y \in \text{Ob}(\mathcal{C})$. We have

$$\operatorname{Hom}_{\mathcal{C}}\left(X,Y\right) \xrightarrow{\simeq}_{F_{X,Y}} \operatorname{Hom}_{\mathcal{D}}\left(F\left(X\right),F\left(Y\right)\right) \xrightarrow{\simeq}_{G_{F\left(X\right),F\left(Y\right)}} \operatorname{Hom}_{\mathcal{E}}\left(GF\left(X\right),GF\left(Y\right)\right)$$

so $(GF)_{X,Y} = G_{F(X),F(Y)} \circ F_{X,Y}$ is a bijection as a composition of bijections since F,G are equivalences of categories. Hence $(GF)_{X,Y}$ is a bijection so GF is fully-faithful.

Let $Z \in \mathcal{E}$. G is an equivalence of categories and is therefore essentially-surjective. Hence there's $Y \in \mathcal{D}$ such that $G(Y) \cong Z$. F is an equivalence of categories hence there's $X \in \mathcal{C}$ such that $F(X) \cong Y$.

Lemma 1.1. A functor sends isomorphisms to isomorphisms.

Proof. Let \mathcal{C}, \mathcal{D} be categories, let $\varphi \in \operatorname{Hom}_{\mathcal{C}}(X, Y)$ be an isomorphism, and let $F \colon \mathcal{C} \to \mathcal{D}$ be a functor. We have

$$\operatorname{id}_{F(Y)} = F\left(\operatorname{id}_{Y}\right) = F\left(\varphi\varphi^{-1}\right) = F\left(\varphi\right) \circ F\left(\varphi^{-1}\right)$$

and similarly $F(\varphi^{-1}) \circ F(\varphi) = \mathrm{id}_{F(X)}$, so $F(\varphi^{-1}) = F(\varphi)^{-1}$, so $F(\varphi)$ is invertible and thus an isomorphism in \mathcal{D} .

We conclude from the lemma that $G(F(X)) \cong G(Y)$ so $(G \circ F)(X) = G(F(X)) \cong Z$, which means $G \circ F$ is essentially surjective.

Symmetry: Let $F \colon \mathcal{C} \to \mathcal{D}$ be an equivalence of categories. We construct a functor $G \colon \mathcal{D} \to \mathcal{C}$ by taking $Y \in \mathrm{Ob}\,(\mathcal{D})$ to any $X \in \mathrm{Ob}\,(\mathcal{C})$ such that $F(X) \cong Y$ (which we can do thanks to the axiom of choice). Let $f \in \mathrm{Hom}_{\mathcal{D}}\,(Y,Y')$ and let X = G(Y), X' = G(Y'). Since F is fully-faithful we have $\mathrm{Hom}_{\mathcal{C}}\,(X,X') \cong \mathrm{Hom}_{\mathcal{D}}\,(Y,Y')$ so there's $\tilde{f} \in \mathrm{Hom}_{\mathcal{C}}\,(X,X')$ such that $f = F\left(\tilde{f}\right)$. Define $G(f) = \tilde{f}$.

We have to show G is functorial and an equivalence of categories.

Functorial: Let $Y \in \text{Ob}(\mathcal{D})$ and let X = G(Y). We have $\text{id}_Y = F(\text{id}_X)$ hence by definition $G(\text{id}_Y) = \text{id}_X = \text{id}_{G(Y)}$.

Let $f \in \operatorname{Hom}_{\mathcal{D}}(Y, Y')$ and $g \in \operatorname{Hom}_{\mathcal{D}}(Y', Y'')$, we want to show $G(g \circ f) = G(g) \circ G(f)$. By definition, $G(g \circ f)$ is the unique morphism such that $F(G(g \circ f)) = g \circ f$. However,

$$F\left(G\left(g\right)\circ G\left(f\right)\right)=F\left(G\left(g\right)\right)\circ F\left(G\left(f\right)\right)=g\circ f$$

by the same property and by functoriality of F. Hence

$$F(G(g) \circ G(f)) = F(G(g \circ f)),$$

but since F is faithful this implies $G(g) \circ G(f) = G(g \circ f)$.

Fully-Faithful: For $Y, Y' \in \text{Ob}(\mathcal{D})$ and X = G(Y), X' = G(Y') we have by definition $G_{Y,Y'} = F_{X,X'}^{-1}$, hence $G_{Y,Y'} \colon \text{Hom}_{\mathcal{D}}(Y,Y') \to \text{Hom}_{\mathcal{C}}(G(Y), G(Y'))$ is bijective.

Essentially-Surjective: Let $X \in \text{Ob}(\mathcal{C})$. Let Y = F(X) and let X' = G(Y). We want to show $X \cong X'$. We have a bijection $F_{X,X'}$: $\text{Hom}_{\mathcal{C}}(X,X') \xrightarrow{\sim} \text{Hom}_{\mathcal{D}}(Y,Y)$ hence there's $f \in \text{Hom}_{\mathcal{C}}(X,X')$ such that $F(f) = \text{id}_Y$. Similarly, swapping roles between X,X' there's $g \in \text{Hom}_{\mathcal{C}}(X',X)$ such that $F(g) = \text{id}_Y$. We get

$$F(f \circ g) = F(f) \circ F(g) = \mathrm{id}_Y \circ \mathrm{id}_Y = \mathrm{id}_Y = F(\mathrm{id}_{X'})$$
$$F(g \circ f) = F(g) \circ F(f) = \mathrm{id}_Y \circ \mathrm{id}_Y = \mathrm{id}_Y = F(\mathrm{id}_X)$$

and since F is faithful this implies $f \circ g = \mathrm{id}_{X'}$ and $g \circ f = \mathrm{id}_X$, which together implies $g = f^{-1}$, so $f \colon X \xrightarrow{\sim} X'$ is an isomorphism, as required.

Exercise 2 (Adjoint Functors). Let \mathcal{C}, \mathcal{D} be categories. A pair (L, R) with $L: \mathcal{C} \to \mathcal{D}$ and $R: \mathcal{D} \to \mathcal{C}$ is called *adjoint* (where L is called *left-adjoint to* R and R right-adjoint to L) if for any $X \in \mathrm{Ob}(\mathcal{C}), Y \in \mathrm{Ob}(\mathcal{D})$ there is a bijection

$$\operatorname{Hom}_{\mathcal{D}}\left(L\left(X\right),Y\right) \xrightarrow{\sim}_{\Phi_{X,Y}} \operatorname{Hom}_{\mathcal{C}}\left(X,R\left(Y\right)\right)$$

such that

$$\Phi_{X_{1},Y_{1}}(h \circ L(f)) = \Phi_{X_{2},Y_{1}}(h) \circ f\Phi_{X_{2},Y_{2}}(g \circ h) = R(g) \circ \Phi_{X_{2},Y_{1}}(h)$$

for all

$$f \in \operatorname{Hom}_{\mathcal{C}}(X_1, X_2),$$

 $g \in \operatorname{Hom}_{\mathcal{D}}(Y_1, Y_2),$
 $h \in \operatorname{Hom}_{\mathcal{D}}(F(X_2), Y_1).$

Show that an equivalence of categories $F \colon \mathcal{C} \to \mathcal{D}$ always has a right-adjoint and a left-adjoint functor.

Solution. Let $F: \mathcal{C} \to \mathcal{D}$ be an equivalence of categories. By the previous exercise there's an equivalence of categories $G: \mathcal{D} \to \mathcal{C}$, which we show is a left-adjoint and a right-adjoint to F.

Right-Adjoint: We have to construct a bijection

$$\Phi_{X,Y} \colon \operatorname{Hom}_{\mathcal{D}}(F(X), Y) \xrightarrow{\sim} \operatorname{Hom}_{\mathcal{C}}(X, G(Y)).$$

By definition of G we have $F \circ G = \mathrm{id}_{\mathcal{D}}$, so Define

$$\Phi_{X,Y} = G_{F(X),Y}$$

which is a bijection because G is an equivalence of categories.

For

$$f \in \operatorname{Hom}_{\mathcal{C}}(X_1, X_2),$$

 $g \in \operatorname{Hom}_{\mathcal{D}}(Y_1, Y_2),$
 $h \in \operatorname{Hom}_{\mathcal{D}}(F(X_2), Y_1)$

we get

$$\Phi_{X_{1},Y_{1}}\left(h\circ F\left(f\right)\right)=G\left(h\circ F\left(f\right)\right)=G\left(h\right)\circ GF\left(f\right)=G\left(h\right)\circ f=\Phi_{X_{2},Y_{1}}\left(h\right)\circ f$$

$$\Phi_{X_{2},Y_{2}}\left(g\circ h\right)=G\left(g\circ h\right)=G\left(g\right)\circ G\left(h\right)=G\left(g\right)\circ \Phi_{X_{2},Y_{1}}\left(h\right),$$

hence $\Phi_{X,Y}$ satisfies the required properties, so G is right-adjoint to F.

Left-Adjoint: Define $\Phi_{X,Y} = F_{G(X),Y}$ which is a bijection since F is an equivalence of categories.

Let

$$f \in \operatorname{Hom}_{\mathcal{D}}(X_1, X_2),$$

 $g \in \operatorname{Hom}_{\mathcal{C}}(Y_1, Y_2),$
 $h \in \operatorname{Hom}_{\mathcal{C}}(F(X_2), Y_1).$

We have

$$\Phi_{X_{2},Y_{1}}(h \circ G(f)) = F(h \circ G(f)) = F(h) \circ FG(f) = F(h) \circ f = \Phi_{X_{2},Y_{1}}(h) \circ f$$

$$\Phi_{X_{2},Y_{2}}(g \circ h) = F(g \circ h) = F(g) \circ F(h) = F(g) \circ \Phi_{X_{2},Y_{1}}(h),$$

so Φ satisfies the required properties, so G is a left-adjoint to F.

Exercise 3. Denote **LieGrp**, **LieAlg** the respective categories of Lie groups and algebras, with Lie group homomorphisms and Lie algebra homomorphisms. We find a natural isomorphism

$$\Phi \colon \operatorname{Hom}_{\mathbf{LieGrp}} \left(\widetilde{\Gamma} \left(- \right), - \right) \xrightarrow{\sim} \operatorname{Hom}_{\mathbf{LieAlg}} \left(-, \operatorname{Lie} \left(- \right) \right).$$

I.e. for any $\mathfrak{g} \in \mathbf{LieAlg}$ and $H \in \mathbf{LieGrp}$ we construct a bijection

$$\Phi_{\mathfrak{g},H} \colon \operatorname{Hom}_{\mathbf{LieGrp}} \left(\widetilde{\Gamma} \left(\mathfrak{g} \right), H \right) \xrightarrow{\sim} \operatorname{Hom}_{\mathbf{LieAlg}} \left(\mathfrak{g}, \operatorname{Lie} \left(H \right) \right)$$

such that the diagram

$$\operatorname{Hom}_{\mathbf{LieGrp}}\left(\tilde{\Gamma}\left(\mathfrak{g}_{2}\right),G_{1}\right) \xrightarrow{\Phi_{\mathfrak{g}_{2},G_{1}}} \operatorname{Hom}\left(\mathfrak{g}_{2},\operatorname{Lie}\left(G_{1}\right)\right)$$

$$g\circ\left(-\right)\circ\tilde{\Gamma}\left(f\right)\downarrow \qquad \qquad \downarrow \operatorname{Lie}\left(g\right)\circ\left(-\right)\circ f$$

$$\operatorname{Hom}_{\mathbf{LieGrp}}\left(\tilde{\Gamma}\left(\mathfrak{g}_{1}\right),G_{2}\right) \xrightarrow{\Phi_{\mathfrak{g}_{1},G_{2}}} \operatorname{Hom}\left(\mathfrak{g}_{1},\operatorname{Lie}\left(G_{2}\right)\right)$$

commutes for any $f: \mathfrak{g}_1 \to \mathfrak{g}_2$ in **LieAlg** and any $g: G_1 \to G_2$ in **LieGrp**. The latter description matches our definition of an adjunction since one can take $f = \mathrm{id}_{X_2}$ or $g = \mathrm{id}_{Y_1}$ to get the desired equations.