Twinkle Twinkle Little STAR: Smooth Transition AR Models in R.

Alexios Ghalanos, PhD

R in Finance 2014 Chicago, IL

May 16, 2014

Outline

1. Introduction

Market States and Cycles Observed and Unobserved Switching in R

2. Smooth Transition ARMAX models

Selected Literature Review Model Representation Transition Functions Model Extensions

3. The twinkle package

Implementation
Specification
Estimation
Examples
Forecasting

Additional methods

 Application - 2-state HAR Model Background Application Setup Results

5. Conclusion

Introduction

- Secular Cycles
- Structural Shifts
- ► Shocks/Crashes

Figure: History of the Dow

Table: DJIA Monthly Return Statistics

	mean	sd	min	max	sum
[NBER=1]	-0.00975	0.072952	-0.36674	0.298862	-3.47971
[NBER=0]	0.00924	0.045305	-0.26417	0.337761	9.720649

Observed and Unobserved Switching in R

Markov Switching (Unobserved)

- ► MSwM (Sanchez-Espigares and Lopez-Moreno [2014])
- depmixS4 (Visser and Speekenbrink [2010])
- ► fMarkovSwitching (Perlin [2008])

Threshold Autoregressive (Observed)

- ► TSA (Chan and Ripley [2012])
- ▶ tsDyn (Antonio et al. [2009])
- ► RSTAR (useR 2008) [vaporware]

Selected Literature Review

During the past twelve years many economic series have undergone what appears to be a permanent change in level. Carmichael [1928]

Selected Literature Review (Models)

Table: Selected Threshold AR Applications

Author(s)	model/contribution
Carmichael [1928]	Arctangent Transform
Quandt [1958]	Switching Regression
Tong and Lim [1980]	TAR
Priestley [1980]	NLAR
Billings and Voon [1986]	NLAR
Chan and Tong [1986]	TAR
Luukkonen et al. [1988]	STAR Test
Brockwell et al. [1992]	TARMA
Zhu and Billings [1993]	NLAR
Teräsvirta [1994]	STAR
Zakoian [1994]	TGARCH
Astatkie et al. [1997]	NeTAR
Gooijer [1998]	TMA
Tsay [1998]	MRTAR
van Dijk and Franses [1999]	MRSTAR
Chan and McAleer [2002]	STAR-GARCH
van Dijk et al. [2002]	Survey
Chan and McAleer [2003]	STAR-GARCH
Huerta et al. [2003]	Hierarchical Mixture

Figure: Selected Publications (sized by no. of citations)

Selected Literature Review (Applications)

Table: Selected Threshold AR Applications

Author(s)	model	study	type
Teräsvirta and Anderson [1992]	STAR	log production (13 countries and Europe)	E
Pesaran and Potter [1997]	(Endogenous Delay) TAR	US GNP	E
Clements and Krolzig [1998]	SETAR and MSAR	US GNP	E
Filardo and Gordon [1998]	MSAR (w/th latent probit model)	US Business Cycle durations	E
Peel and Speight [1998]	SETAR	GDP (5 industrialized economies)	E
van Dijk and Franses [1999]	MRSTAR	US Employment and GNP	E
Kapetanios [2003]	(Endogenous Delay) TAR	US GNP	E
Enders et al. [2007]	D-TAR	US GDP	E
Deschamps [2008]	STAR and MSAR	US Employment	E
Chinn et al. [2013]	STECM	US Employment and GDP (Okun's Law)	Е
Pfann et al. [1996]	SETAR with heteroscedastic dynamics	US Term Structure	I
Tsay [1998]	MRTAR	US Term Structure	- 1
Gospodinov [2005]	TAR-GARCH	US Term Structure	- 1
Maki [2006]	STAR	Japan Term Structure	1
Cao and Tsay [1992]	TAR	Volatility	S
Zakoian [1994]	TGARCH	Volatility	S
Domian and Louton [1997]	TAR	Stock Returns and Industrial Production	S
citeTsay1998	MTAR	S&P 500 Futures Arb	S
Martens et al. [2009]	SP[Z]-DAXRL	S&P 500 futures volatility	S

Key: E: Economic Output, I: Interest Rates, S: Stock Market

Model Representation-TAR

▶ 2-state TAR model (Tong and Lim [1980]):

$$y_{t} = \phi'_{1} y_{t}^{(p)} \mathbf{I}_{z_{t-d \leq c}} + \phi'_{2} y_{t}^{(p)} \mathbf{I}_{z_{t-d>c}} + \varepsilon_{t}$$

$$y_{t}^{(p)} = \left(1, \tilde{y}_{t}^{(p)}\right)', \tilde{y}_{t}^{(p)} = (y_{t-1}, \dots, y_{t-p})'$$

$$\phi_{i} = (\phi_{i0}, \phi_{i1}, \dots, \phi_{ip})'$$

$$\varepsilon_{t} \sim ID(0, \sigma)$$

- ▶ Rich dynamics, limit cycles, asymmetric behavior and jumps
- Abrupt switch between states

Model Representation-STAR

▶ 2-state STAR model (Franses and van Dijk [2000]):

$$y_{t} = \phi'_{1} y_{t}^{(p)} \left(F\left(z_{t-d}; \gamma, \alpha, c\right) \right) + \phi'_{2} y_{t}^{(p)} \left(1 - F\left(z_{t-d}; \gamma, \alpha, c\right) \right) + \varepsilon_{t}$$

$$y_{t}^{(p)} = \left(1, \tilde{y}_{t}^{(p)} \right)', \tilde{y}_{t}^{(p)} = (y_{t-1}, \dots, y_{t-p})'$$

$$\phi_{i} = (\phi_{i0}, \phi_{i1}, \dots, \phi_{ip})'$$

$$\alpha = (\alpha_{1}, \dots, \alpha_{k})'$$

$$\varepsilon_{t} \sim ID\left(0, \sigma \right)$$

$$i = 1, 2(states)$$

State Transition function:

$$\begin{aligned} & \text{(Logistic):} F\left(z_{t-d}; \gamma, \alpha, c\right) = \left(1 + \exp\left\{-\gamma \left(\alpha' z_{t-d} - c\right)\right\}\right)^{-1}, \gamma > 0 \\ & \text{(Exponential):} F\left(z_{t-d}; \gamma, \alpha, c\right) = \left(1 - \exp\left\{-\gamma \left(\alpha' z_{t-d} - c\right)^2\right\}\right), \gamma > 0 \end{aligned}$$

► State switching variable(s):

$$z_{t-d} = (z_{1t-d}, \dots, z_{jt-d})', j = 1, \dots, k$$

▶ Identification restriction $\alpha_1 = 1$

Transition Function (Logistic)

LSTAR Model

Transition Function (Exponential)

ESTAR Model

Model Extensions-AR State Dynamics

▶ Subsume γ and introduce AR dynamics¹:

$$F(z_{t-d}; \alpha, c, \beta) = (1 + \exp\{-\pi_t\})^{-1}$$

$$\pi_t = c + \alpha' z_{t-d} + \beta' \pi_t^{(q)}$$

$$\pi_t^{(q)} = (\pi_{t-1}, \dots, \pi_{t-q})'$$

Recursion Initialization:

$$\pi_0 = \frac{c + \alpha' \bar{z}}{1 - \beta' \mathbf{1}}$$
$$\bar{z} = (E[z_1], ..., E[z_k])'$$

- lacksquare Stationarity constraint: $\left|\sum\limits_{i=1}^{q}\beta_i\right|<1$
- ▶ Equivalence with standard representation:

$$c = \gamma c$$

$$\alpha' = \gamma (1, \alpha_2, \dots, \alpha_j)', j = 1, \dots, k$$

$$\beta = 0$$

¹As in the dynamic binary response model of Kauppi and Saikkonen [2008].

Model Extensions-(MA)(X) Dynamics

► The STARMAX Model:

$$y_{t} = \left(\phi'_{1}y_{t}^{(p)} + \xi'_{1}x_{t} + \psi'_{1}e_{t}^{(q)}\right)\left(F\left(z_{t-d}; \alpha, c, \beta\right)\right) + \left(\phi'_{2}y_{t}^{(p)} + \xi'_{2}x_{t} + \psi'_{2}e_{t}^{(q)}\right)\left(1 - F\left(z_{t-d}; \alpha, c, \beta\right)\right) + \varepsilon_{t}$$

$$\varepsilon_{t}^{(q)} = (\varepsilon_{t-1}, \dots, \varepsilon_{t-q})'$$

$$\psi'_{i} = (\psi_{i1}, \dots, \psi_{iq})'$$

$$x_{t} = (x_{1}, \dots, x_{l})'$$

$$\xi'_{1} = (\xi_{i1}, \dots, \xi_{il})'$$

Model Extensions-Gaussian Mixture

Consider the STARMAX 2-state model:

$$y_{t} = \left(\phi'_{1}y_{t}^{(p)} + \xi'_{1}x_{t} + \psi'_{1}e_{t}^{(q)}\right)\left(F\left(z_{t-d};\alpha,c,\beta\right)\right) + \left(\phi'_{2}y_{t}^{(p)} + \xi'_{2}x_{t} + \psi'_{2}e_{t}^{(q)}\right)\left(1 - F\left(z_{t-d};\alpha,c,\beta\right)\right) + \varepsilon_{t}$$

$$\varepsilon_{t} = y_{t} - (\mu_{1t})p_{t} - (\mu_{2t})\left(1 - p_{t}\right), d > 0$$

Add and subtract $y_t p_t$, and re-arrange:

$$\begin{split} \varepsilon_{t} &= + y_{t} p_{t} - \left(\mu_{1t}\right) p_{t} + y_{t} - y_{t} p_{t} - \left(\mu_{2t}\right) \left(1 - p_{t}\right) \\ \varepsilon_{t} &= + y_{t} p_{t} - \left(\mu_{1t}\right) p_{t} + y_{t} \left(1 - p_{t}\right) - \left(\mu_{2t}\right) \left(1 - p_{t}\right) \\ \varepsilon_{t} &= \left(y_{t} - \mu_{1t}\right) p_{t} + \left(y_{t} - \mu_{2t}\right) \left(1 - p_{t}\right) \\ \varepsilon_{t} &= \left(\varepsilon_{1,t}\right) p_{t} + \left(\varepsilon_{2,t}\right) \left(1 - p_{t}\right) \\ \varepsilon_{1,t} \sim N\left(0, \sigma_{1}^{2}\right) & \varepsilon_{2,t} \sim N\left(0, \sigma_{2}^{2}\right) \\ \varepsilon_{t} \sim N\left(0, \sigma_{1}^{2} p_{t} + \sigma_{2}^{2} \left(1 - p_{t}\right)\right) \end{split}$$

Can be thought of as restricted STARMAX-STGARCH model with common state dynamics (with ARCH=GARCH=0).

Model Extensions-Multiple States

▶ van Dijk and Franses [1999] propose the following 4-state model :

$$\begin{split} y_t &= \left[{\phi '}_1 y_t^{(p)} \left({1 - F\left({{z_{t - d}};{\gamma _1},\alpha ,c} \right)} \right) + {\phi '}_2 y_t^{(p)} \left({1 - F\left({{z_{t - d}};{\gamma _1},\alpha ,c} \right)} \right)} \right] \left({1 - F\left({{z_{t - d}};{\gamma _2},b,d} \right)} \right) \\ &+ \left[{\phi '}_3 y_t^{(p)} \left({1 - F\left({{z_{t - d}};{\gamma _1},\alpha ,c} \right)} \right) + {\phi '}_4 y_t^{(p)} \left({1 - F\left({{z_{t - d}};{\gamma _1},\alpha ,c} \right)} \right)} \right] F\left({{z_{t - d}};{\gamma _2},b,d} \right) + \varepsilon_t \end{split}$$

Effectively 2 unique states modelled and one interaction:

$$\begin{split} &\mu_{1}=\phi^{\prime}_{1}\,y_{t}^{\left(p\right)}\left(1-F\left(z_{t-d};\gamma_{1},\alpha,c\right)-F\left(z_{t-d};\gamma_{2},b,d\right)+F\left(z_{t-d};\gamma_{1},\alpha,c\right)F\left(z_{t-d};\gamma_{2},b,d\right)\right)\\ &\mu_{2}=\phi^{\prime}_{2}\,y_{t}^{\left(p\right)}\left(1-F\left(z_{t-d};\gamma_{1},\alpha,c\right)-F\left(z_{t-d};\gamma_{2},b,d\right)+F\left(z_{t-d};\gamma_{1},\alpha,c\right)F\left(z_{t-d};\gamma_{2},b,d\right)\right)\\ &\mu_{3}=\phi^{\prime}_{3}\,y_{t}^{\left(p\right)}\left(F\left(z_{t-d};\gamma_{2},b,d\right)-F\left(z_{t-d};\gamma_{1},\alpha,c\right)F\left(z_{t-d};\gamma_{2},b,d\right)\right)\\ &\mu_{4}=\phi^{\prime}_{4}\,y_{t}^{\left(p\right)}\left(F\left(z_{t-d};\gamma_{2},b,d\right)-F\left(z_{t-d};\gamma_{1},\alpha,c\right)F\left(z_{t-d};\gamma_{2},b,d\right)\right) \end{split}$$

▶ Interaction used in modelling Time Varying (TV) STAR model.

Model Extensions-Multiple States (cont'd)

▶ Alternative representation follows multinomial regression paradigm:

$$y_{t} = \sum_{i=1}^{s} \left[\left(\phi'_{i} y_{t}^{(p)} + \xi'_{i} x_{t} + \psi'_{i} e_{t}^{(q)} \right) F_{i} \left(z_{t-d}; \alpha_{i}, c_{i}, \beta_{i} \right) \right] + \varepsilon_{t}$$

s-1 distinct states modelled

$$F_{i}(z_{t-d}; \alpha_{i}, c_{i}, \beta_{i}) = \frac{e^{\pi_{i,t}}}{1 + \sum_{i=1}^{s-1} e^{\pi_{i,t}}}$$
$$F_{s}(z_{t-d}; \alpha_{i}, c_{i}, \beta_{i}) = \frac{1}{1 + \sum_{i=1}^{s-1} e^{\pi_{i,t}}}$$

$$\sum_{i=1}^{s} F_i \left(\ldots \right) = 1$$

Implementation

```
The twinkle package 
>require(devtools)
>install_bitbucket("twinkle","alexiosg")
# depends on rugarch
```

- ► (D)(ST)(AR)(MA)(X) with static, mixture or GARCH variance
- Multiple states (max. 4)
- ▶ Specification, Estimation, Filtering, Forecasting and Simulation
- S4 classes and methods
- Enhanced methods (quantile, pit, states)
- Estimation/forecast and simulation in C for speed.
- Fully documented with vignette
- Large testing suite with examples
- ► GIRF (coming soon)
- ▶ No tests yet...

```
>starspec
(mean.model=list(states=2, include.intercept=c(1,1), arOrder=c(1, 1),
maOrder=c(0, 0), matype="linear", statevar=c("y", "s"), s=NULL, ylags=1,
xreg=NULL, statear=FALSE, yfun=NULL, transform="log"),
variance.model=list(dynamic=FALSE, model="sGARCH", garchOrder=c(1, 1),
submodel=NULL, vreg=NULL, variance.targeting=FALSE),
distribution.model="norm", start.pars=list(), fixed.pars=list(),
fixed.prob=NULL, ...)
```

- custom y-transformation function ('yfun')
- ► MA part can be inside ('state') or outside ('linear')
- variance: 'static' (default), 'mixture' or one of 3 GARCH models (vanilla, gjr or exponential)
- distributions: same as in rugarch ([skew]norm,[skew]std,[skew]ged,jsu,nig,ghyp,ghst)
- Methods on STARspec object include setbounds, setstart and setfixed

Estimation

Introduction

```
>starfit
(spec, data, out.sample=0, solver="optim", solver.control=list(),
fit.control=list(stationarity=0, fixed.se=0, rec.init="all"),
cluster=NULL, n=25, ...)
```

- Maximum likelihood estimation
- Main solver 'BFGS' (unconstrained). Bound constraints use logistic transformation
- 2 strategies:
 - random search multi-start ('msoptim')
 - cycling between non-state and state parameters ('strategy')

Estimation-Dutch Gilder example

```
>library(twinkle)
>library(quantmod);
>data(forex)
# State variable as in Franses and van Dijk (2000)
>fx = na.locf(forex, fromLast = TRUE)
>fx = fx[which(weekdays(index(forex))=="Wednesday"),4]
>fx = ROC(fx, na.pad=FALSE)*100
fun = function(x){
  x = as.numeric(x)
  N = length(x)
  if(N<4){
    y = abs(x)
  } elsef
    y = runMean(abs(x), n=4)
    v[1:3] = c(abs(x[1]), mean(abs(x[1:2])),
    mean(abs(x[1:3])))
  return(v)
>spec=starspec(mean.model=list(states=2,statevar="y",
+statear=TRUE, yfun=fun, include.intercept=c(0,1),
+arOrder=c(1,1),ylags=1))
>control=list(maxit=10000.reltol=1e-12.trace=1.
+method="BFGS",parsearch=TRUE)
>mod = starfit(spec, fx[1:521], solver='strategy',
+n=6, solver.control=control)
```

> mod

Optimal Parameters (Robust Standard Errors)

Setimate Std. Error t value Pr(> t)						
s2.phi0 -0.69411 0.187701 -3.6980 0.000217 s2.phi1 -0.16054 0.075440 -2.1281 0.033327 s1.c 1174.30851 8.562348 137.1480 0.000000 s1.alpha1 -623.18683 4.557827 -136.7289 0.000000 si_beta -0.2237 0.002187 -101.6743 0.000000 LogLikelihood -962.4082 Akaike 3.7213 Bayes 3.77105 Shibata 3.7210 Hannan-quinn 3.7437 r.squared 0.0486 r.squared 10.0356 r.squared r.squared 0.46385 skewness (res) 1227.013 skewness (res) -0.46385 ex.kurtosis (res) akeynosis -0.46385		Estima	te	Std. Error	t value	Pr(> t)
s2.phi1	s1.phi1	0.182	59	0.054069	3.3769	0.000733
s1.c 1174.30851 8.562348 137.1480 0.000000 s1.alpha1 -623.18683 4.557827 -136.7289 0.000000 s1.beta -0.22237 0.002187 -101.6743 0.000000 LogLikelihood: -962.4082 Akkaike 3.7213 Bayes 3.7785 Shibata 3.7210 Hannan-Quinn 3.7437 r.squared : 0.0486 r.squared (adj) : 0.0356 RSS : 1227.013 skewness (res) : -0.46385 ex.kurtosis (res) : 1.00692 AR roots	s2.phi0	-0.694	11	0.187701	-3.6980	0.000217
s1.alpha1 -623.18683	s2.phi1	-0.160	54	0.075440	-2.1281	0.033327
s1.beta	s1.c	1174.308	51	8.562348	137.1480	0.000000
sigma 1.53464 0.067537 22.7229 0.000000 LogLikelihood: -962.4082 Akaike 3.7213 Bayes 3.7785 Shibata 3.7210 Hannan-Quinn 3.7437 r.squared 0.0486 r.squared 0.0356 RSS 1227.013 skewness (res) z. 0.46385 ex.kurtosis (res) 1.00692	s1.alpha1	-623.186	83	4.557827	-136.7289	0.000000
LogLikelihood : -962.4082 Akaike 3.7213 Bayes 3.7785 Shibata 3.7210 Hannan-Quinn 3.7437 r.squared : 0.0486 r.squared (adj) : 0.0356 RSS : 1227.013 skewness (res) : -0.46385 ex.kurtosis (res) : 1.00692 AR roots	s1.beta	-0.222	37	0.002187	-101.6743	0.000000
Akaike 3.7213 Bayes 3.7785 Shibata 3.7210 Hannan-Quinn 3.7437 r.squared (adj) : 0.0486 r.squared (adj) : 0.0356 RSS : 1227.013 skewness (res) : -0.46385 ex.kurtosis (res) : 1.00692 AR roots	sigma	1.534	64	0.067537	22.7229	0.000000
Akaike 3.7213 Bayes 3.7785 Shibata 3.7210 Hannan-Quinn 3.7437 r.squared (adj) : 0.0486 r.squared (adj) : 0.0356 RSS : 1227.013 skewness (res) : -0.46385 ex.kurtosis (res) : 1.00692 AR roots						
Bayes 3.7785 Shibata 3.7210 Hannan-Quinn 3.7437 r.squared : 0.0486 r.squared (adj) : 0.0356 RSS : 1227.013 skewness (res) : -0.46385 ex.kurtosis (res) : 1.00692 AR roots	LogLikelil	hood : -9	62	.4082		
Shibata 3.7210	Akaike	3.721	.3			
Hannan-Quinn 3.7437 r.squared : 0.0486 r.squared (adj) : 0.0356 RSS : 1227.013 skewness (res) : -0.46385 ex.kurtosis (res) : 1.00692 AR roots	Bayes	3.778	5			
r.squared : 0.0486 r.squared (adj) : 0.0356 RSS : 1227.013 skewness (res) : -0.46385 ex.kurtosis (res) : 1.00692 AR roots	Shibata	3.721	.0			
r.squared (adj) : 0.0356 RSS : 1227.013 skewness (res) : -0.46385 ex.kurtosis (res) : 1.00692 AR roots	Hannan-Qu:	inn 3.743	7			
RSS : 1227.013 skewness (res) : -0.46385 ex.kurtosis (res) : 1.00692	r.squared		:	0.0486		
skewness (res) : -0.46385 ex.kurtosis (res) : 1.00692 AR roots	r.squared	(adj)	:	0.0356		
ex.kurtosis (res) : 1.00692 AR roots	RSS		:	1227.013		
AR roots	skewness	(res)	:	-0.46385		
	ex.kurtos:	is (res)	:	1.00692		
Moduli1	AR roots					
	1	Moduli1				

Moduli1 state_1 5.476806 state 2 6.228787

Estimation-Dutch Gilder example (cont'd)

>plot(mod)

Estimation-Dutch Gilder example (cont'd)

>trans2fun2d(mod, colidx = 1)

Transition Function

Estimation-2 states (mixture) example

```
>set.seed(25)
>gmix = xts(c(rnorm(1000, 0.1, 0.2),
+rnorm(500, 0.1, 0.1)), as.Date(1:1500))
>ttrend = xts(seq(0, 1, length.out=1500), index(gmix))
spcc = starspec(mean.model=list(states=2,
+include.intercept=c(1,1), ar@rder=c(0,0),
+statevar="s", s=ttrend), variance.model=list(
+dynamic=TRUE, model="mixture"))
solver.control=list(maxit=17000, reltol=e-12,
+trace=1, method="BFGS")
mod = starfit(spcc, data=gmix, solver="strategy",
+solver.control=solver.control.ne0)
```

>round(mod@fit\$robust.matcoef, 4)

	Estimate	Std. Error	t value	Pr(> t)
s1.phi0	0.1014	0.0040	25.5403	0
s2.phi0	0.1010	0.0055	18.2999	0
s1.c	-229.2983	0.2874	-797.7274	0
s1.alpha1	345.5743	0.4258	811.5344	0
s1.sigma	0.0941	0.0029	31.9533	0
a) airma	0 2006	0.0044	4E 000E	0

Estimation-4 states example

```
set.seed(77)
>mix4=xts(c(rnorm(1000, 0.1, 0.1),
+rnorm(1000, -0.2, 0.1),
+rnorm(1000, 0.2, 0.1),
+rnorm(1000, -0.1, 0.1)),
+as.Date(1:4000))
>ttrend=xts(seq(0, 1, length.out=4000),
+index(mix4))
>spec=starspec(mean.model=list(states=4,
+include.intercept=c(1,1,1,1),
arOrder=c(0,0,0,0), statevar="s", ylags=1,
+s=ttrend))
solver.control=list(maxit=10000, reltol=1e-14,
+trace=1,method="BFGS")
>mod=starfit(spec, data=mix4, solver="strategy",
+solver.control=solver.control, n=15)
```

> round(mod@fit\$robust matcoef 4)

- Tound(modelTtelTobast.matcoel, 4)								
	Estimate	Std. Error	t value	Pr(> t)				
s1.phi0	0.2058	0.0039	52.8805	0				
s2.phi0	-0.1027	0.0036	-28.7900	0				
s3.phi0	0.1024	0.0031	33.3015	0				
s4.phi0	-0.2039	0.0033	-62.5670	0				
s1.c	-57.8622	0.1887	-306.6501	0				
s1.alpha1	115.8724	0.7737	149.7634	0				
s2.c	-6807.9119	1.5574	-4371.3689	0				
s2.alpha1	9115.6159	2.0940	4353.1041	0				
s3.c	551.7943	0.1744	3163.8852	0				
s3.alpha1	-2208.0543	0.6974	-3166.3001	0				
sigma	0.1009	0.0016	62.4083	0				

Forecasting

Consider a general nonlinear first order autoregressive model:

$$y_t = F\left(y_{t-1}; \theta\right) + \varepsilon_t$$

- ▶ 1-step ahead: $\hat{y}_{t+1|t} = E[y_{t+1} | \Im_t] = F(y_t; \theta)$
- ▶ h-step ahead²: $g\left(y_{t+h} \mid \Im_{t}\right) = \int_{-\infty}^{\infty} g\left(y_{t+h} \mid y_{t+h-1}\right) g\left(y_{t+h-1} \mid \Im_{t}\right) dy_{t+h-1}$
- ▶ Nonlinear relationship: $E[F(.)] \neq F(E[.])$
- ► Start at h=2³: $\hat{y}_{t+2|t} = \frac{1}{T} \sum_{i=1}^{T} F\left(\hat{y}_{t+1|t} + \varepsilon_i; \theta\right)$
- $\,\blacktriangleright\,$ Recursively estimate for each h>2 using quadrature integration or monte carlo summation

$$g(y_{t+h} | \Im_t) = \int_{-\infty}^{\infty} g(y_{t+h} | y_{t+h-1}) g(y_{t+h-1} | \Im_t) dy_{t+h-1}$$

which leads to the h-step ahead equation after taking conditional expectations from both sides.

³In the case of a GARCH model this should be:

$$\hat{y}_{t+2|t} = \frac{1}{T} \sum_{i=1}^{T} F\left(\hat{y}_{t+1|t} + z_i \hat{\sigma}_{t+2|t}; \theta\right)$$

²This is based on the Chapman-Kolmogorov relation:

Forecasting (cont'd)

```
>starforecast
(fitORspec, data=NULL, n.ahead=1, n.roll=0, out.sample=0,
external.forecasts = list(xregfor=NULL, vregfor=NULL, sfor=NULL,
probfor=NULL), method=c("an.parametric", "an.kernel", "mc.empirical",
"mc.parametric", "mc.kernel"), mc.sims=NULL, ...)
```

- Multiple dispatch methods (STARfit and STARspec with fixed parameters)
- ▶ Choice of integral evaluation for h > 1 (quadrature and monte carlo)
- ► Choice of error distribution (parametric, empirical and kernel)
- ▶ Rolling h-ahead forecasts (in combination with out.sample option)

Forecasting-Dutch Gilder Example (cont'd)

>forc=starforecast(mod, n.ahead=10, method="mc.empirical", mc.sims=4000)
>plot(forc)

Rolling Estimation and Forecasting

```
>rollstar
function (spec, data, n.ahead=1, forecast.length=500, n.start=NULL,
refit.every=25, refit.window=c("recursive", "moving"),
window.size=NULL, solver="msoptim", fit.control=list(),
solver.control=list(), calculate.VaR=TRUE,
VaR.alpha=c(0.01, 0.05), cluster=NULL, keep.coef=TRUE, ...)
```

- Support for parallel evaluation of estimation windows
- Quick extractor methods for rolling quantiles (VaR) and PIT
- Forecast evaluation tests from rugarch: VaRTest, ESTest, HLTest, BerkowitzTest, GMMTest, and mcs
- resume method for resubmitting non-converged windows

Rolling Estimation and Forecasting-Dutch Gilder Example (cont'd)

>library(parallel)
>cl=makePSOCk(luster(15)
>clusterEvalq(cl, library(quantmod))
>roll = rollstar(spec, data-dx[1:521],
forecast.length=100,
refit.every=5, refit.windou="recursive",
solver="strategy", cluster = cl)

```
>show(roll)
              STAR Roll
No.Refits : 20
Refit Horizon : 5
No.Forecasts: 100
states
statevar
            : y
statear
             : FALSE
variance
             : static
distribution : norm
Forecast Density
               Mu Sigma Prob[State=1] Prob[State=2] Realized
                                            0.3343 1.0335
1988-02-03 -0.2025 1.5513
                              0.6657
1988-02-10 0.4348 1.5513
                              0.0444
                                            0.9556 0.1317
1988-02-17 0.3203 1.5513
                              0.0115
                                            0.9885 0.9173
1988-02-24 0.3522 1.5513
                              0.0035
                                            0.9965 -0.7069
1988-03-02 0.0682 1.5513
                              0.0044
                                            0.9956 -0.1052
1988-03-09 -0.1126 1.5446
                              0.9993
                                            0.0007 -1.4572
               Mu Sigma Prob[State=1] Prob[State=2] Realized
1989-11-22 0.0596 1.5399
                              0.0003
                                            0.9997 -1.3736
1989-11-29 -0.3152 1.5343
                              0.0009
                                            0.9991 -1.6905
1989-12-06 -0.5405 1.5343
                              0.0121
                                            0.9879 -0.9338
1989-12-13 -0.4006 1.5343
                              0.0300
                                            0.9700 -1.4249
```

0.1556

0.0159

1989-12-20 -0.3619 1.5343

1989-12-27 -0.1384 1.5343

0.8444 0.0000

0.9841 -2.8651

Additional Methods

- Filtering: starfilter
- ► Simulation: starsim, starpath
- Standard Extractors: residuals, fitted, coef, likelihood, infocriteria, score, vcov, modelmatrix
- Special Extractors: quantile, pit, states, sigma
- ► Inference: plot, show

Smooth Transition ARMAX models The twinkle package Application - 2-state HAR Model Conclusion

Background⁴

- ▶ What drives aggregate market volatility?
- Excess volatility and clustering
- Volatility and the business cycle (Schwert [1989], Paye [2012], Christiansen et al. [2012])

⁴This is joint work with Eduardo Rossi (Department of Economics and Management, University of Pavia)

Realized Volatility Across the Business Cycle

Figure: S&P 500 Monthly Realized Volatility

Table: S&P 500 Monthly Realized Volatility Statistics

	mean	sd	min	max
[NBER=1]	0.00489	0.00776	0.00079	0.05730
[NBER=0]	0.00196	0.00426	0.00021	0.08138

Realized Volatility Models

Multiplicative Error Model (MEM) of Engle and Gallo [2006]

$$y_t = \mu_t \varepsilon_t, \varepsilon_t \sim \Gamma(\phi, \phi)$$

$$\mu_t = \omega + \alpha \mu_{t-1} + \beta y_{t-1}$$

► Heterogeneous AR Model of Corsi [2009]

$$\log RV_{t+1d}^{(d)} = c + \beta^{(d)} \log RV_t^{(d)} + \beta^{(w)} \log RV_t^{(w)} + \beta^{(m)} \log RV_t^{(m)} + \varepsilon_{t+1d}^{(d)}$$

▶ Realized GARCH model of Hansen et al. [2012]⁵

⁵See www.unstarched.net/2014/01/02/the-realized-garch-model/

Setup-Dataset

- S&P 500 monthly realized variance
- Logarithmic transformation of realized variance⁶
- Optimal Forecast under log transformation (Granger and Newbold [1976]):

$$y_{t+h|t}^{opt} = \exp\left(\log\!y_{t+h|t} + \frac{1}{2}\sigma_{\log\!y}^2\left(h\right)\right)$$

- ▶ In-sample period: Apr-1967 to Feb-2014
- Out-of-sample period: Oct-1995-Feb-2014 (recursive window with base Apr-1967)
- 11 Economic and Market explanatory factors:

ld	Variable	Description
x_1	$\%\Delta CPI_{t-1}^{3}$	3 month % change in inflation (CPI)
x_2	$\%\Delta IP_{t-1}^{3}$	3 month % change in industrial production (IP)
x_3	$\%\Delta NFP_{t-1}^{1}$	1 month % changes in non-farm payrolls (NFP)
x_4	$\%\Delta MDU_{t-1}^{1}$	1 month % changes in median duration of unemployment (MDU)
x_5	$\%\Delta SPX_{t-1}^{1}$	1 month % change in the S&P500 return (SPX)
x_6	$T_{t-1}^{10y} - T_{t-1}^{3m}$	Term Spread 10Y and 3Month
x_7	$T_{t-1}^{10y} - AAA_{t-1}$	Spread 10Y and Moody's AAA Corporate
x_8	$AAA_{t-1} - BAA_{t-1}$	Spread Moody's AAA and BAA Corporate
x_9	$NAPM_{t-1}$	PMI Composite Index (NAPM)
x_{10}	$BEARBULL_{t-1}$	month-end ratio of bearish to bullish consensus (Investors Intelligence)
x_{11}	$NYHILO_{t-1}$	NYSE News Highs to Lows as % of Total Issues traded

⁶See Cao and Tsay [1992] and Gonçalves and Meddahi [2011] for an alternative based on the Box-Cox transform.

Setup-Models

► Model1: HAR model of Corsi [2009]:

$$\mathsf{LRV}_t^{\mathsf{1M}} = \phi_{1,0} + \xi_{1,1} \mathsf{LRV}_{t-1}^{\mathsf{1M}} + \xi_{1,2} \mathsf{LRV}_{t-1}^{\mathsf{3M}} + \xi_{1,3} \mathsf{LRV}_{t-1}^{\mathsf{6M}} + \xi_{1,4} \mathsf{LRV}_{t-1}^{\mathsf{12M}} + \varepsilon_t$$

Model2: HAR(MA)(X)

$$\begin{split} \mathsf{LRV}_t^{\mathsf{1M}} &= \phi_{1,0} + \xi_{1,1} \mathsf{LRV}_{t-1}^{\mathsf{1M}} + \xi_{1,2} \mathsf{LRV}_{t-1}^{\mathsf{3M}} + \xi_{1,3} \mathsf{LRV}_{t-1}^{\mathsf{6M}} + \xi_{1,4} \mathsf{LRV}_{t-1}^{\mathsf{12M}} \\ &+ \sum_{j=1}^{11} \alpha_j x_{j,t-1} + \psi_{1,1} \varepsilon_{t-1} + \varepsilon_t \end{split}$$

Model3: 2-state (X) Smooth Transition HAR

$$\begin{split} \mathsf{LRV}_{t}^{\mathsf{IM}} &= \sum_{j=1}^{2} F_{j} \left(\pi_{t} ; c, a \right) \left(\phi_{j,0} + \xi_{j,1} \mathsf{LRV}_{t-1}^{\mathsf{IM}} + \xi_{j,2} \mathsf{LRV}_{t-1}^{\mathsf{3M}} + \xi_{j,3} \mathsf{LRV}_{t-1}^{\mathsf{6M}} + \xi_{j,4} \mathsf{LRV}_{t-1}^{\mathsf{12M}} \right) + \varepsilon_{t} \\ F_{1} &= \frac{1}{1 + e^{-\pi_{t}}}, \qquad F_{2} = 1 - F_{1} \\ \pi_{t} &= c + \sum_{i=1}^{11} \alpha_{j} x_{j,t-1} \end{split}$$

▶ Model4: 2-state (Self-Exciting) Smooth Transition HAR

$$\mathsf{LRV}_{t}^{\mathsf{1M}} = \sum_{j=1}^{2} F_{j} \left(\mathsf{LRV}_{t-1}^{\mathsf{1M}}; c, a \right) \left(\phi_{j,0} + \xi_{j,1} \mathsf{LRV}_{t-1}^{\mathsf{1M}} + \xi_{j,2} \mathsf{LRV}_{t-1}^{\mathsf{3M}} + \xi_{j,3} \mathsf{LRV}_{t-1}^{\mathsf{6M}} + \xi_{j,4} \mathsf{LRV}_{t-1}^{\mathsf{12M}} \right) + \varepsilon_{t}$$

- ► Model5: 2-state (X) Smooth Transition HAR(MA)
- ► Model6: 2-state (X) Smooth Transition HAR(Normal-Mixture)
- ▶ Model7: MEM model of Engle and Gallo [2006] on volatility (QML based)

Results-In Sample

Table: S&P 500 realized variance model (in-sample)

Log-Variance Dynamics	HAR	HARMAX	SE-STHAR	X-STHAR	X-STHARMA	X-STHAR-N
φ _{1,0}	-1.355***	-1.488 ***	2.000***	-2.072 ***	-2.440***	-2.106 ***
Ψ1,1		-0.145			0.366***	
€1,1	0.406***	0.491 ***	-0.906***	0.308 ***	0.053	0.334 ***
€1.2	0.232**	0.132	8.005***	0.235 **	0.314***	0.220 **
€1.3	0.091	0.093	-24.186***	0.080	0.159	0.069
€1.4	0.069	0.058	17.310***	0.087	0.130	0.080
ψ _{2.0}			-1.404***	-0.280	0.492	-0.349
Ψ2.1					-0.827***	
€2.1			0.395***	0.151	1.201***	0.097
€2.2			0.222**	0.343	-0.408*	0.351
€2,3			0.105	-0.179	-0.033	-0.083
€2,4			0.069	0.587 ***	0.268***	0.526 **
x ₁		0.201				
n2		-0.540				
m ₃		5.123				
×4		0.723				
α ₅		-3.589 *** -0.041 **				
¹⁴ 6		-0.041				
×7		-0.024				
*8 *9		-0.003				
α ₁₀		-0.133 *				
α ₁₁		-0.525				
a1 a2 a3 a4 a5 a6 a7 a8			12.786***	-99.607 155.425 -71.974 -20.375 -520.141 -83.107 -109.205 -146.412	12.776*** 28.142*** -31.480*** -0.387 224.050*** -40.516*** -90.230*** -18.889***	5.564 *** 46.392 ** -21.970 *** -4.925 *** 340.672 ** -122.273 ** -153.698 ** -25.688 ***
01 02 03 04 05 06 07 08			12.786	155.425 *** -71.974 *** -20.375 *** 520.141 *** -83.107 *** -109.205 *** -146.412 *** 395.537 ***	28.142*** -31.480*** -0.387 224.050*** -40.516*** -90.230*** -18.889*** 182.134***	46.392 *** -21.970 *** -4.925 *** 340.672 *** -122.273 ** -153.698 *** -25.688 ***
a1 a2 a3 a4 a5 a6 a7 a8 a9 a10			12.786	155.425 -71.974 -20.375 520.141 -83.107 -109.205 -146.412	28.142*** -31.480*** -0.387 224.050*** -40.516*** -90.230***	46.392 ** -21.970 ** -4.925 ** 340.672 ** -122.273 ** -153.698 ** -25.688 ** 266.380 **
c a1 a2 a3 a4 a5 a6 a7 a8 a9 a11 a11	0.590***	0.564 ***	0.581***	155.425 *** -71.974 *** -20.375 *** 520.141 *** -83.107 *** -109.205 *** -146.412 *** 395.537 *** 441.408 ***	28.142*** -31.480*** -0.387 224.050*** -40.516*** -90.230*** -18.880*** 182.134***	46.392 ** -21.970 ** -4.925 ** 340.672 ** -122.273 ** -153.698 ** -25.688 ** -26.380 ** 178.393 ** 508.072 **
01 02 02 03 04 04 05 05 05 05 05 05 05 05 05 05 05 05 05	-473.245 1.805	-449.260 1.760	0.581*** -465.145 1.801	155.425 *** -71.974 *** -20.375 *** -20.375 *** -83.107 *** -100.205 *** -146.412 *** -95.537 *** -422.886 -1.679	28.142*** -0.387 224.050*** -40.516** -0.230** -18.899** 182.134*** 231.606*** 0.523***	46.392 ** -21.970 ** -4.925 ** 340.672 ** -122.273 ** -153.698 ** -25.683 ** -25.683 ** -26.330 ** 178.393 ** 508.072 ** -407.884 1.627
α1 α2 α3 α4 α4 α5 α6	-473.245 1.805 1.853	-449.260 1.760 1.905	-465.145 1.801 1.906	155.425 *** -71.974 *** -20.375 *** -520.141 *** -83.107 *** -109.205 *** -146.412 *** -395.537 *** -422.896 -1.579 -1.865	28.142*** -0.387 224.050*** -40.516*** -90.230*** -18.890*** 182.134** 147.223** 321.666*** 0.523***	46.392 ** -21.970 ** -4.925 ** 340.672 ** -122.273 *123.698 *25.688 ** -25.688 ** -25.688 ** -26.380 ** -26.380 ** -27.893 ** -407.884 1.627 1.820
a1 a2 a3 a4 a4 a5 a6 a6 a7 a8 a9 a10 a11	-473.245 1.805 1.853 0.522	-449.260 1.760 1.905 0.564	0.581*** -465.145 1.801 1.906 0.537	155.425 *** -71.974 *** -20.375 *** -20.375 *** -30.205 *** -146.412 *** -395.537 *** -422.886 -1.579 -1.865 -0.605	28.142*** -31.480*** -0.387 -22.050** -40.516*** -0.230*** -18.890*** 147.223*** 0.523*** -400.371 1.636 1.8373 0.6245	46.392 ** -21.970 ** -4.925 ** 340.672 ** -122.273 ** -133.698 ** -25.683 ** -25.683 ** -25.683 ** -26.330 ** -27.05 ** -407.884 -1.627 -1.820 -0.601
α 1 α 2 α 3 α 4 α 5 α 6 α 7 α 8 α 9 α 9 α 10 α 11 σ 1 σ 2 Legtlic AIC	-473.245 1.805 1.853	-449.260 1.760 1.905	-465.145 1.801 1.906	155.425 *** -71.974 *** -20.375 *** -520.141 *** -83.107 *** -109.205 *** -146.412 *** -395.537 *** -422.896 -1.579 -1.865	28.142*** -0.387 224.050*** -40.516*** -90.230*** -18.890*** 182.134** 147.223** 321.666*** 0.523***	46.392 ** -21.970 ** -4.925 ** 340.672 ** -122.273 *123.698 *25.688 ** -25.688 ** -25.688 ** -26.380 ** -26.380 ** -27.893 ** -407.884 1.627 1.820
α1 α2 α3 α4 α5 α6 α6 α7 α8 α9 α10 α111 σ1 σ2 Logslik AlC BIC	-473.245 1.805 1.853 0.522 0.517	-449.260 1.760 1.905 0.564 0.548	0.581*** -465.145 1.801 1.906 0.537 0.525	155.425 *** -71.974 *** -20.375 *** -520.141 *** -83.107 *** -1.00.205 *** -1.00.205 *** -146.412 *** -395.537 *** 41.468 *** 0.537 *** -422.886 1.679 1.865 0.605 0.605	28.142*** -0.387 224.050*** -40.516*** -90.230*** -18.889*** 182.134*** 147.223** 321.666*** 0.523*** -409.371 1.636 1.8373 0.6245 0.6099	46.392 ** -21.970 ** 4.925 ** 340.672 ** -122.273 *133.698 ** -25.688 ** 266.330 ** -178.393 ** 508.072 ** 0.473 ** 0.705 ** -407.884 * 1.627 * 1.820 * 0.601 ** 0.582

****,** and * denote significance at the 1%,5% and 10% levels respectively, based on robust standard errors.

00000000

Table:	S&P 500 Realized Variance Forecast Tests

			: Forecast Error St					
	HAR	HARMAX	HARMEMX	SE-STHAR	X-STHAR	X-STHARMA	X-STHAR-NN	
RMSE	0.00049	0.00028	0.00031	0.00056	0.00034	0.00031	0.0002	
MAE	0.00162	0.00156	0.00189	0.00169	0.00170	0.00174	0.00174	
MedAE	0.00069	0.00062	0.00082	0.00069	0.00063	0.00063	0.00063	
Skewness	7.11177	6.79254	3.51048	6.97993	6.00732	3.51368	5.3799	
Stdev	0.004226	0.004110	0.004137	0.004555	0.004452	0.004799	0.00449	
Panel B: Mincer-Zarnowitz Regression								
	HAR	HARMAX	HARMEMX	SE-STHAR	X-STHAR	X-STHARMA	X-STHAR-NN	
(Intercept)	-0.00023	0.00067*	0.00061*	-0.00010	0.00069*	0.00129***	0.0008**	
β	1.26282***	0.86645 ***	0.73746***	1.24941 ***	0.87857***	0.66227***	0.80489***	
R.squared (adj)	0.4103	0.4358	0.4790	0.3064	0.3325	0.3005	0.3319	
Prob(Intercept=0,β=1)	0.0064	0.0704	0.0000	0.0220	0.1710	0.000	0.0238	
	Panel C	: Mincer-Zarnowitz I	ligh-Low State Re	gression (X-STHA	R States)			
	HAR	HARMAX	HARMEMX	SE-STHAR	X-STHAR	X-STHARMA	X-STHAR-NN	
(Intercept)	6.78E-04	0.0012150***	0.00114***	8.85E-04	0.00099*	0.001826***	0.00106**	
β_H	1.268***	0.8545***	0.73713***	1.2713***	0.86537***	0.64525 ***	0.79626+++	
$\beta_L^{\prime\prime}$	0.668***	0.5012**	0.42836***	0.5960**	0.65926**	0.27917 ***	0.63596 * *	
R.squared (adj)	0.4310	0.4400	0.4868	0.3330	0.3309	0.3019	0.3291	
Prob(Intercept=0, β_L =1, β_H =1)	0.0002	0.0451	0.0000	0.0004	0.2474	1.42E-06	0.0520	
			Panel D: MCS Test					
	HAR	HARMAX	HARMEMX	SE-STHAR	X-STHAR	X-STHARMA	X-STHAR-NN	
Loss1:	0.54	1.00	0.29	0.95	0.28	0.27	0.27	
Loss2:	0.56	1.00	0.01	0.56	0.56	0.56	0.37	
Loss3:	0.05	0.08	0.00	0.08	0.08	0.08	1.00	
Loss4:	0.22	1.00	0.00	0.18	0.73	0.86	0.18	
Loss5:	0.06	0.85	0.00	0.06	0.59	1.00	0.06	
Loss6:	0.10	0.82	0.00	0.10	0.58	1.00	0.10	
Loss7:	0.31	1.00	0.01	0.31	0.94	0.95	0.41	

 $⁽R_{t+1} - \tilde{R}_{t+1})^2$

Results-Out of Sample

 $R_{t+1} - \tilde{R}_{t+1}$

 $R_{t+1} - R_{t+1} + I_{\hat{S}_{t+1}=L} + (R_{t+1} - R_{t+1})^2 * I_{\hat{S}_{t+1}=H}$

 $R_{t+1} - \tilde{R}_{t+1} + I_{R_{t+1} < 0.005} + (R_{t+1} - \tilde{R}_{t+1})^2 * I_{R_{t+1} \ge 0.005}$

 $R_{t+1} - R_{t+1} + I_{R_{t+1} < 0.007} + (R_{t+1} - R_{t+1})^2 * I_{R_{t+1} \ge 0.007}$

 $[|]R_{t+1} - \tilde{R}_{t+1}| * I_{R_{t+1} < 0.01} + (R_{t+1} - \tilde{R}_{t+1})^2 * I_{R_{t+1} \ge 0.01}$

Results-Out of Sample (cont'd)

Figure: S&P 500 Forecast Variance and States

Final Thoughts

- ► Powerful modelling tool
- ► Accessible interface
- ▶ Possible future extensions: STARFIMA, Smooth Transition VAR, ECM
- ▶ State variable transformations, basis functions and separation

Thanks/Q&A

- ▶ blog: http://www.unstarched.net
- current development repository [b]: https://bitbucket.org/alexiosg

	Package	CRAN	R-Forge	Bitbucket	Description
-	rugarch	√		✓	Univariate GARCH
	rmgarch	✓		✓	Multivariate GARCH
	racd			✓	Higher Moment Dynamics
	twinkle			✓	STAR
	parma	✓	✓		Portfolio Optimization
	spd	✓			Semi-Parametric Distribution
	RsoInp	✓	✓		Nonlinear Solver

Bibliography I

- Fabio Di Narzo Antonio, Jose Luis Aznarte, and Matthieu Stigler. tsDyn: Time series analysis based on dynamical systems theory, 2009. URL http://stat.ethz.ch/CRAN/web/packages/tsDyn/vignettes/tsDyn.pdf. R package version 0.7.
- T Astatkie, DG Watts, and WE Watt. Nested threshold autoregressive (netar) models. International Journal of Forecasting, 13(1): 105–116, 1997.
- SA Billings and WSF Voon. Correlation based model validity tests for non-linear models. *International journal of Control*, 44(1):235–244, 1986.
- Peter J Brockwell, Jian Liu, and Richard L Tweedie. On the existence of stationary threshold autoregressive moving-average process. Journal of Time Series Analysis, 13(2):95–107, 1992.
- Charles Q Cao and Ruey S Tsay. Nonlinear time-series analysis of stock volatilities. Journal of Applied Econometrics, 7(S1):S165–S185, 1992.
- FL Carmichael. The arc tangent in trend determination. Journal of the American Statistical Association, 23(163):253-262, 1928.
- Felix Chan and Michael McAleer. Maximum likelihood estimation of star and star-garch models: theory and monte carlo evidence. *Journal of Applied Econometrics*, 17(5):509–534, 2002.
- Felix Chan and Michael McAleer. Estimating smooth transition autoregressive models with garch errors in the presence of extreme observations and outliers. Applied Financial Economics, 13(8):581–592, 2003.
- K. S. Chan and H. Tong. On estimating thresholds in autoregressive models. Journal of Time Series Analysis, 7:178–190., 1986.
- Kung-Sik Chan and Brian Ripley. TSA: Time Series Analysis, 2012. version 1.01.
- Menzie D Chinn, Laurent Ferrara, and Valérie Mignon. Post-recession us employment through the lens of a non-linear okuns law. Technical report, National Bureau of Economic Research, 2013.
- Charlotte Christiansen, Maik Schmeling, and Andreas Schrimpf. A comprehensive look at financial volatility prediction by economic variables. Journal of Applied Econometrics, 27(6):956–977, 2012.
- Michael P Clements and Hans-Martin Krolzig. A comparison of the forecast performance of markov-switching and threshold autoregressive models of us gnp. The Econometrics Journal, 1(1):47–75, 1998.
- Fulvio Corsi. A simple approximate long-memory model of realized volatility. Journal of Financial Econometrics, 7(2):174-196, 2009.
- Philippe J Deschamps. Comparing smooth transition and markov switching autoregressive models of us unemployment. Journal of Applied Econometrics, 23(4):435–462, 2008.
- Dale L Domian and David A Louton. A threshold autoregressive analysis of stock returns and real economic activity. International Review of Economics & Finance, 6(2):167–179, 1997.

Bibliography II

- Walter Enders, Barry L Falk, and Pierre Siklos. A threshold model of real us gdp and the problem of constructing confidence intervals in tar models. Studies in Nonlinear Dynamics & Econometrics, 11(3), 2007.
- Robert F Engle and Giampiero M Gallo. A multiple indicators model for volatility using intra-daily data. *Journal of Econometrics*, 131(1): 3–27, 2006.
- Andrew J Filardo and Stephen F Gordon. Business cycle durations. Journal of Econometrics, 85(1):99-123, 1998.
- Philip Hans Franses and Dick van Dijk. Non-linear time series models in empirical finance. Cambridge University Press, 2000.
- Sílvia Gonçalves and Nour Meddahi. Box-cox transforms for realized volatility. Journal of Econometrics, 160(1):129-144, 2011.
- Jan De Gooijer. On threshold moving-average models. Journal of Time Series Analysis, 19(1):1-18, 1998.
- Nikolay Gospodinov. Testing for threshold nonlinearity in short-term interest rates. Journal of Financial Econometrics, 3(3):344–371, 2005.
- Clive WJ Granger and Paul Newbold. Forecasting transformed series. Journal of the Royal Statistical Society. Series B (Methodological), pages 189–203, 1976.
- Peter Reinhard Hansen, Zhuo Huang, and Howard Howan Shek. Realized garch: a joint model for returns and realized measures of volatility. Journal of Applied Econometrics, 27(6):877–906, 2012.
- Gabriel Huerta, Wenxin Jiang, and Martin A Tanner. Time series modeling via hierarchical mixtures. Statistica Sinica, 13(4):1097–1118, 2003.
- George Kapetanios. Threshold models for trended time series. Empirical Economics, 28(4):687-707, 2003.
- Heikki Kauppi and Pentti Saikkonen. Predicting us recessions with dynamic binary response models. The Review of Economics and Statistics, 90(4):777–791, 2008.
- Ritva Luukkonen, Pentti Saikkonen, and Timo Teräsvirta. Testing linearity against smooth transition autoregressive models. *Biometrika*, 75(3):491–499, 1988.
- Daiki Maki. Non-linear adjustment in the term structure of interest rates: a cointegration analysis in the non-linear star framework. Applied Financial Economics, 16(17):1301–1307, 2006.
- Martin Martens, Dick Van Dijk, and Michiel De Pooter. Forecasting s&p 500 volatility: Long memory, level shifts, leverage effects, day-of-the-week seasonality, and macroeconomic announcements. International Journal of Forecasting, 25(2):282–303, 2009.
- Bradley S Paye. déjà vol: Predictive regressions for aggregate stock market volatility using macroeconomic variables. *Journal of Financial Economics*, 106(3):527–546, 2012.
- David A Peel and AEH Speight. Threshold nonlinearities in output: some international evidence. Applied Economics, 30(3):323–333, 1998.

Bibliography III

- Marcelo Perlin. fMarkovSwitching: R Package for Estimation, Simulation and Forecasting of a Univariate Markov Switching Model, 2008. version 1.0.
- M Hashem Pesaran and Simon M Potter. A floor and ceiling model of us output. Journal of Economic Dynamics and Control, 21(4): 661–695, 1997.
- Gerard A Pfann, Peter C Schotman, and Rolf Tschernig. Nonlinear interest rate dynamics and implications for the term structure. Journal of Econometrics, 74(1):149–176, 1996.
- MB Priestley. State-dependent models: A general approach to non-linear time series analysis. Journal of Time Series Analysis, 1(1):47–71, 1980.
- Richard E Quandt. The estimation of the parameters of a linear regression system obeying two separate regimes. *Journal of the american statistical association*, 53(284):873–880, 1958.
- Josep A. Sanchez-Espigares and Alberto Lopez-Moreno. MSwM: Fitting Markov Switching Models, 2014. version 1.2.
- G William Schwert. Why does stock market volatility change over time? The journal of finance, 44(5):1115–1153, 1989.
- Timo Teräsvirta. Specification, estimation, and evaluation of smooth transition autoregressive models. Journal of the American Statistical Association, 89:208–218, 1994.
- Timo Teräsvirta and Heather M Anderson. Characterizing nonlinearities in business cycles using smooth transition autoregressive models. Journal of Applied Econometrics, 7(S1):S119–S136, 1992.
- Howell Tong and K.S Lim. Threshold autoregression, limit cycles and cyclical data. *Journal of the Royal Statistical Society, Series B*, 42 (3):245–292, 1980.
- Ruey S Tsay. Testing and modeling multivariate threshold models. *Journal of the American Statistical Association*, 93(443):1188–1202, 1998.
- Dick van Dijk and Philip Hans Franses. Modeling multiple regimes in the business cycle. Macroeconomic dynamics, 3(03):311-340, 1999.
- Dick van Dijk, Timo Teräsvirta, and Philip Hans Franses. Smooth transition autoregressive modelsa survey of recent developments. Econometric Reviews, 21(1):1–47, 2002.
- Ingmar Visser and Maarten Speekenbrink. depmixS4: An R package for hidden markov models. Journal of Statistical Software, 36(7): 1–21, 2010. URL http://www.jstatsoft.org/v36/i07/.
- Jean-Michel Zakoian. Threshold heteroskedastic models. Journal of Economic Dynamics and Control, 18(5):931-955, 1994.
- Q.M. Zhu and S. Billings. Parameter estimation for stochastic nonlinear rational models. International Journal of Control, 57(2):309–333, 1993.