Math

Adrian

December 7, 2013

1 Prelude

Some math notes for myself. You can tell I'm not great at this, as the good math people know these off the top of their heads:P

2 General Notes

- Area of circumcircle of a triangle: $R = \frac{abc}{4A}$
- Sum of roots of polymonial: $-\frac{b}{a}$
- Product of roots of polynomial of degree $n: -1^n \frac{z}{a}$
- Sum of squares of root of a polynomial: $-\frac{b+2c}{a}$
- Binomial theorem: $(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k$
- Sum of cubes: $a^3 + b^3 = (a+b)(a^2 ab + b^2)$
- Difference of cubes: $a^3 b^3 = (a b)(a^2 + ab + b^2)$
- Sum of squares: $\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$
- Sum of cubes: $\sum_{k=1}^n k^3 = (\frac{n(n+1)}{2})^2$
- Sum of fourth power: $\sum_{k=0}^{n} k^4 = \frac{n(2n+1)(n+1)(3n^2+3n-1)}{30}$
- Sum of fifth power: $\sum_{k}^{n} k^{5} = \frac{n^{2}(2n^{2}+2n-1)(n+1)^{2}}{12}$
- Inequality of arithmetic and geometric means: $\sqrt[n]{x_1x_2\cdots x_n} \leq \frac{x_1+x_2+\cdots+x_n}{n}$
 - Direct consequence: $\sqrt{ab} \le \frac{a+b}{2} \le \sqrt{\frac{a^2+b^2}{2}}$
- Convex functions inequality: $f(ty + (1-t)x) \le tf(y) + (1-t)f(x)$
- Jensen's Inequality: $f(\sum_{k=1}^n t_k x_k) \leq \sum_{k=1}^n t_k f(x_k)$ where $\sum_{k=1}^n t_k = 1$
 - Direct consequence: $f(\frac{\sum_{k=1}^{n} x_k}{n}) \leq \frac{\sum_{k=1}^{n} f(x_k)}{n}$

3 Taylor Series Expansions

Function	Expansion	Region of convergence
$\frac{1}{x}$	$\sum_{k=0}^{\infty} (-1)^k (x-1)^k$	x-1 < 1
$\frac{\overline{x}}{x+1}$	$\sum_{k=0}^{\infty} (-1)^k (x)^k$	x < 1
ln(x)	$\sum_{k=0}^{\infty} (-1)^k \frac{(x-1)^k}{k}$	$0 < x \le 2$
e^x	/ k=0 k!	\mathbb{R}
$\sin(x)$	$\sum_{k=0}^{\infty} (-1)^k \frac{x^{2n+1}}{(2n+1)!}$	
$\cos(x)$	$\sum_{k=0}^{\infty} (-1)^k \frac{x^{2n}}{(2n)!}$	