

ூலங்கையின் உயர்தர கணித விஞ்ஞான

பிரிவிற்கான இணையதளம்

SCIENCE EAGLE www.scienceeagle.com

- ✓ t.me/Science Eagle ▶ YouTube / Science Eagle
- f 💆 🔘 /S cience Eagle S L

C.Maths

Physics

Chemistry

+ more

தொண்டைமானாறு வெளிக்கள நிலையம் நடாத்தும்

நான்காம் தவணைப் பரீட்சை - 2021

Conducted by Field Work Centre, Thondaimanaru. 4th Term Examination - 2021

தரம் :- 13 (2021)

இணைந்த கணிதம் I- A

நேரம் : மூன்றுமணித்தியாலம் பத்து நிமிடம்

பத்து நமடம்

சுட்டெண்		

அறிவுறுத்தல்கள்

- பகுதி A இன் எல்லா வினாக்களுக்கும் விடை எழுதுக. ஒவ்வொரு வினாவுக்கும் விடைகளைத் தரப்பட்ட இடத்தில் எழுதுக. மேலதிக இடம் தேவைப்படுமெனின், நீர் மேலதிகத் தாள்களைப் பயன்படுத்தலாம்.
- பகுதி B இல் உள்ள 7 வினாக்களில் விரும்பிய 5 வினாக்களுக்கு மாத்திரம் விடை எழுதுக.
- ஒதுக்கப்பட்ட நேரம் முடிவடைந்ததும் பகுதி A ஆன்து பகுதி B யிற்கு மேலே இருக்கக்கூடியதாக இரு பகுதிகளையும் இணைத்துப் பரீட்சைமண்டப மேற்பார்வையாளரிடம் கையளிக்க.
- வினாத்தாளின் பகுதி B யை மாத்திரம் பரீட்சை மண்டபத்திலிருந்து வெளியே எடுத்துச் செல்வதற்கு அனுமதிக்கப்படும்.

பகுதி	வினா எண்	கிடைத்த புள்ளிகள்
	1	
	2	
	3	
1	4	
	5	1344(60)
A	6	
•	7	
-	8	
	9	
ļ	10	
	11	
ŀ	12	
	13	
В	14	
	15	
	16	
İ	17	
 வினாத்தாள்	r I இன் மொத்தம்	

இணைந்த கணிதம் I	
இணைந்த கணிதம்II	
இயுதிப் புள்ளிகள்	

Click here to go 🖫 www.ScienceEagle.com

1.	, 31
	கணிதத் தொகுத்தறிவுக் கோட்பாட்டைப் பயன்படுத்தி, எல்லா $n \in \mathbb{Z}^+$ இற்கும் $\sum_{r=1}^n (2r+3) = n(n+4)$ என நிறுவுக
2 .	ஒரே வரிப்படத்தில் $y= 2x-1 $, $y=1- x $ ஆகியவற்றின் வரைபுகளை பரும்படியாக
	வரைக. இதிலிருந்து $ x + 2x-1 <1$ ஐத் திருப்திப்படுத்தும் x இன் மெய்ப்பெறுமானங்களைக்
	காண்க. சமனிலி $ x + 2x-2 <2$ இன் தீர்வுகளை உய்த்தறிக.

•••		••••																										
•••				• • • • •			• • • • •	• • • • •	• • • •					• • • •					• • • •	••••		• • • • •	. .	· · · · ·				٠.
•••	, ,,, ,							••••			••••			• • • • •								••••						
•••		•••••						••••					••••		••••		- • • •	*****			•••				••••			
•••									•••	••••	•••		•••		•••		•••	•••	***			•••		•	•••	••••	••••	,.
•••	***	***		••••	•••	• • •			• • •	•••	•••		•••-				•••.	• • • • •	•••	••••	• • • •			•••	• • • •	****	• • • • •	•
••	••••	••••	····		••••	•••				****	••••		, .			,,,,,	••••		••••		••••		••••	•••	• • • •	••••		•
٠.	****	••••	,,,,,	•••••	••••	••••			• • • •	••••	••••	• • • •	• • • •	••••	••••	,	• • • •	••••	••••		•••		••••	• • •		••••	••••	•
		••••	••••	• • • • •	••••	••••		• • • •	• • • •	••••	••••	••••	• • • • •	• • • •	••••		• • • •	• • • • •	••••	••••	• • • •	· • • •	••••	• • • •	• • • •	••••	•••••	•
• •			• • • • • •	••••	••••	••••	• • • •	• • • •	• • • •	••••	••••	••••		, • • • •	••••		• • • •		••••	••••	••••	· • • • •	••••	•••	• • • •	••••	•••••	
• •	, 			• • • • •	••••	• • • •	• • • •	• • • •		••••	••••	••••		• • • •	••••		• • • •	••••	••••	••••	••••	••••	••••	•••			• • • • • •	
• •				••••		••••	••••	. • • • •		••••	••••	• • • •			••••			••••	••••		••••		• • • •	•••		• • • • • •		
٠,	,		••••	••••		••••			• • • •	••••		••••					•••		••••	••••			••••		• • • •		• • • • • •	
٠.	· • • • • •			••••	••••					••••	••••			• • • •			••••	••••	••••	• • • •	••••		••••					· •
	· • • • • •			••••	••••	• • • •	••••		•••		••••					••••								•••		••••	••••	
		, .	••••	••••		. ,				••••	••••	••••						••••	••••	••••				•••		••••		
٠.		,	••••	/					•••	• • • •				••••	,,,,,				••••		••••			•••		••••	• • • • • •	
••		, , , , , .								• • • •					• • • • •										· • • • •			
				••••																• • • •								
li x	$m \rightarrow \frac{\pi}{6}$	taı √	$\frac{n(x)}{\overline{6x}}$	$\frac{-\frac{\pi}{6}}{\sqrt{\pi}}$	=	$\frac{\sqrt{\pi}}{3}$		ा स	5 &	காட்	டுக	j.																
P ~	6			•																								
••	/•••••			• • • • • •	• • • •	• • • •	••••					• • • •	• • • •	••••	••••	••••			••••				• • • •	• • • •	• • • •			
		••••	****	• • • • • •	• • • •	• • • •	••••	••••	•••				••••		••••	••••			••••				••••				• • • • • •	
		••••	• • • • •		••••		••••	·	•••	••••		••••				••••	••••					••••						•
••					••••		••••		•••	••••	••••	••••	· · · ·	••••	•••••	••••				• • • •	• • • •	••••	• • • •		••••	J • • • • ·		
			••••	••••	••••	•••	••••	••••	•••		• • • •	••••	••••	••••							••••		• • • • •	••••				
••			••••	• • • • • •	• • • • ·			••••							••••	• • • •			• • • •		••••		• • • •	• • • •			• • • • •	
	· • • • • •		••••		••••	• • • •	••••		•••							••••										,		
		••••	• • • • • •	• • • • • •	• • • • •	• • • •	••••		• • • •			••••								••••		••••	• • • •					
•••	, 			••••	••••				• • • •	••••				••••	• • • • •					• • • • •								
• • •				••••	••••	• • • •								• • • • •	• • • • •								••••	<i>.</i>				
					• • • • •				• • • •				. <i>.</i>										• • • • •	••••				
• • •			• • • • • •					· · · •												••••							· · · · · ·	
						•									- • •				•••			- • •			•			

அதிபரவளைவு $\frac{x^2}{25}-\frac{y^2}{9}=1$ இற்கு அதன் மீது இருக்கும் $0<\theta<\frac{\pi}{2}$ ஆகுமாறுள்ள ட $P\equiv(5\sec\theta,3\tan\theta)$ இல் உள்ள தொடலிக்கோட்டின் சமன்பாடு $(3\sec\theta)x-(5\tan\theta)y$ ளனக் காட்டுக. மேலே தரப்பட்ட அதிபரவளைவிற்கு அதன் மீது உள்ள புள்ளி $(5\sqrt{2},3)$ இல் வரையப் தொடலிக் கோட்டின் $y-$ வெட்டுத்துண்டைக் காண்க.			$\int \frac{1}{dx^2} + 1$	$(2x-1)\frac{3}{dx}=$: 0 எனக் காட்	டுக.
அதிபரவளைவு $\frac{x^2}{25}-\frac{y^2}{9}=1$ இற்கு அதன் மீது இருக்கும் $0<\theta<\frac{\pi}{2}$ ஆகுமாறுள்ள பு $P\equiv(5\sec\theta,3\tan\theta)$ இல் உள்ள தொடலிக்கோட்டின் சமன்பாடு $(3\sec\theta)x-(5\tan\theta)y$ எனக் காட்டுக. மேலே தரப்பட்ட அதிபரவளைவிற்கு அதன் மீது உள்ள புள்ளி $(5\sqrt{2},3)$ இல் வரையப் தொடலிக் கோட்டின் $y-$ வெட்டுத்துண்டைக் காண்க.			·	·		
அதிபரவளைவு $\frac{x^2}{25}-\frac{y^2}{9}=1$ இற்கு அதன் மீது இருக்கும் $0< heta<rac{\pi}{2}$ ஆகுமாறுள்ள ப $P\equiv(5\sec heta,3\tan heta)$ இல் உள்ள தொடலிக்கோட்டின் சமன்பாடு $(3\sec heta)x-(5\tan heta)y$ எனக் காட்டுக. மேலே தரப்பட்ட அதிபரவளைவிற்கு அதன் மீது உள்ள புள்ளி $(5\sqrt{2},3)$ இல் வரையப் தொடலிக் கோட்டின் $y-$ வெட்டுத்துண்டைக் காண்க.						
அதிபரவளைவு $\dfrac{x^2}{25}-\dfrac{y^2}{9}=1$ இற்கு அதன் மீது இருக்கும் $0< heta<\dfrac{\pi}{2}$ ஆகுமாறுள்ள பு $P\equiv(5\sec heta,3\tan heta)$ இல் உள்ள தொடலிக்கோட்டின் சமன்பாடு $(3\sec heta)x-(5\tan heta)y$ எனக் காட்டுக. மேலே தரப்பட்ட அதிபரவளைவிற்கு அதன் மீது உள்ள புள்ளி $(5\sqrt{2},3)$ இல் வரையப்தொடலிக் கோட்டின் $y-$ வெட்டுத்துண்டைக் காண்க.		****************	****************	****************		••••••••
அதிபரவளைவு $\dfrac{x^2}{25}-\dfrac{y^2}{9}=1$ இற்கு அதன் மீது இருக்கும் $0< heta<rac{\pi}{2}$ ஆகுமாறுள்ள பு $P\equiv(5\sec heta,3\tan heta)$ இல் உள்ள தொடலிக்கோட்டின் சமன்பாடு $(3\sec heta)x-(5\tan heta)y$ ளனக் காட்டுக. மேலே தரப்பட்ட அதிபரவளைவிற்கு அதன் மீது உள்ள புள்ளி $(5\sqrt{2},3)$ இல் வரையப்தொடலிக் கோட்டின் $y-$ வெட்டுத்துண்டைக் காண்க.	*****************	***************		****************		• • • • • • • • • • • • • • • • • • • •
அதிபரவளைவு $\dfrac{x^2}{25}-\dfrac{y^2}{9}=1$ இற்கு அதன் மீது இருக்கும் $0< heta<\dfrac{\pi}{2}$ ஆகுமாறுள்ள பு $P\equiv(5\sec heta,3\tan heta)$ இல் உள்ள தொடலிக்கோட்டின் சமன்பாடு $(3\sec heta)x-(5\tan heta)y$ ளனக் காட்டுக. மேலே தரப்பட்ட அதிபரவளைவிற்கு அதன் மீது உள்ள புள்ளி $(5\sqrt{2},3)$ இல் வரையப்தொடலிக் கோட்டின் y — வெட்டுத்துண்டைக் காண்க.	••••••	•••••••	***************************************			• • • • • • • • • • • • • • • • • • • •
அதிபரவளைவு $\frac{x^2}{25}-\frac{y^2}{9}=1$ இற்கு அதன் மீது இருக்கும் $0< heta<rac{\pi}{2}$ ஆகுமாறுள்ள பு $P\equiv(5\sec heta,3\tan heta)$ இல் உள்ள தொடலிக்கோட்டின் சமன்பாடு $(3\sec heta)x-(5\tan heta)y$ எனக் காட்டுக. மேலே தரப்பட்ட அதிபரவளைவிற்கு அதன் மீது உள்ள புள்ளி $(5\sqrt{2},3)$ இல் வரையப்தொடலிக் கோட்டின் $y-$ வெட்டுத்துண்டைக் காண்க.	***************************************		******************	• • • • • • • • • • • • • • • • • • • •		•••••
அதிபரவளைவு $\frac{x^2}{25}-\frac{y^2}{9}=1$ இற்கு அதன் மீது இருக்கும் $0< heta<rac{\pi}{2}$ ஆகுமாறுள்ள பு $P\equiv(5\sec heta,3\tan heta)$ இல் உள்ள தொடலிக்கோட்டின் சமன்பாடு $(3\sec heta)x-(5\tan heta)y$ எனக் காட்டுக. மேலே தரப்பட்ட அதிபரவளைவிற்கு அதன் மீது உள்ள புள்ளி $(5\sqrt{2},3)$ இல் வரையப்தொடலிக் கோட்டின் $y-$ வெட்டுத்துண்டைக் காண்க.				••••••		
அதிபரவளைவு $\dfrac{x^2}{25}-\dfrac{y^2}{9}=1$ இற்கு அதன் மீது இருக்கும் $0< heta<\dfrac{\pi}{2}$ ஆகுமாறுள்ள பு $P\equiv(5\sec heta,3\tan heta)$ இல் உள்ள தொடலிக்கோட்டின் சமன்பாடு $(3\sec heta)x-(5\tan heta)y$ எனக் காட்டுக. மேலே தரப்பட்ட அதிபரவளைவிற்கு அதன் மீது உள்ள புள்ளி $(5\sqrt{2},3)$ இல் வரையப்தொடலிக் கோட்டின் $y-$ வெட்டுத்துண்டைக் காண்க.		••••••	******************	••••••		
அதிபரவளைவு $\frac{x^2}{25}-\frac{y^2}{9}=1$ இற்கு அதன் மீது இருக்கும் $0< heta<rac{\pi}{2}$ ஆகுமாறுள்ள பு $P\equiv(5\sec heta,3\tan heta)$ இல் உள்ள தொடலிக்கோட்டின் சமன்பாடு $(3\sec heta)x-(5\tan heta)y$ எனக் காட்டுக. மேலே தரப்பட்ட அதிபரவளைவிற்கு அதன் மீது உள்ள புள்ளி $(5\sqrt{2},3)$ இல் வரையப்தொடலிக் கோட்டின் $y-$ வெட்டுத்துண்டைக் காண்க.		***************************************	***********	•••••	• • • • • • • • • • • • • • • • • • • •	
அதிபரவளைவு $\frac{x^2}{25}-\frac{y^2}{9}=1$ இற்கு அதன் மீது இருக்கும் $0< heta<rac{\pi}{2}$ ஆகுமாறுள்ள ப $P\equiv(5\sec heta,3\tan heta)$ இல் உள்ள தொடலிக்கோட்டின் சமன்பாடு $(3\sec heta)x-(5\tan heta)y$ எனக் காட்டுக. மேலே தரப்பட்ட அதிபரவளைவிற்கு அதன் மீது உள்ள புள்ளி $(5\sqrt{2},3)$ இல் வரையப் தொடலிக் கோட்டின் $y-$ வெட்டுத்துண்டைக் காண்க.	•••••		***************************************			
அதிபரவளைவு $\frac{x^2}{25}-\frac{y^2}{9}=1$ இற்கு அதன் மீது இருக்கும் $0< heta<rac{\pi}{2}$ ஆகுமாறுள்ள ப $P\equiv(5\sec heta,3\tan heta)$ இல் உள்ள தொடலிக்கோட்டின் சமன்பாடு $(3\sec heta)x-(5\tan heta)y$ எனக் காட்டுக. மேலே தரப்பட்ட அதிபரவளைவிற்கு அதன் மீது உள்ள புள்ளி $(5\sqrt{2},3)$ இல் வரையப் தொடலிக் கோட்டின் $y-$ வெட்டுத்துண்டைக் காண்க.	***************************************		******			
அதிபரவளைவு $\frac{x^2}{25}-\frac{y^2}{9}=1$ இற்கு அதன் மீது இருக்கும் $0< heta<rac{\pi}{2}$ ஆகுமாறுள்ள ப $P\equiv(5\sec heta,3\tan heta)$ இல் உள்ள தொடலிக்கோட்டின் சமன்பாடு $(3\sec heta)x-(5\tan heta)y$ எனக் காட்டுக. மேலே தரப்பட்ட அதிபரவளைவிற்கு அதன் மீது உள்ள புள்ளி $(5\sqrt{2},3)$ இல் வரையப் தொடலிக் கோட்டின் $y-$ வெட்டுத்துண்டைக் காண்க.	*******************	****************	*************			
அதிபரவளைவு $\frac{x^2}{25}-\frac{y^2}{9}=1$ இற்கு அதன் மீது இருக்கும் $0< heta<rac{\pi}{2}$ ஆகுமாறுள்ள ப $P\equiv(5\sec heta,3\tan heta)$ இல் உள்ள தொடலிக்கோட்டின் சமன்பாடு $(3\sec heta)x-(5\tan heta)y$ எனக் காட்டுக. மேலே தரப்பட்ட அதிபரவளைவிற்கு அதன் மீது உள்ள புள்ளி $(5\sqrt{2},3)$ இல் வரையப் தொடலிக் கோட்டின் $y-$ வெட்டுத்துண்டைக் காண்க.					*	
அதிபரவளைவு $\frac{x^2}{25}-\frac{y^2}{9}=1$ இற்கு அதன் மீது இருக்கும் $0< heta<rac{\pi}{2}$ ஆகுமாறுள்ள ப $P\equiv(5\sec heta,3\tan heta)$ இல் உள்ள தொடலிக்கோட்டின் சமன்பாடு $(3\sec heta)x-(5\tan heta)y$ எனக் காட்டுக. மேலே தரப்பட்ட அதிபரவளைவிற்கு அதன் மீது உள்ள புள்ளி $(5\sqrt{2},3)$ இல் வரையப் தொடலிக் கோட்டின் $y-$ வெட்டுத்துண்டைக் காண்க.						
அதிபரவளைவு $\frac{x^2}{25}-\frac{y^2}{9}=1$ இற்கு அதன் மீது இருக்கும் $0< heta<rac{\pi}{2}$ ஆகுமாறுள்ள பு $P\equiv(5\sec heta,3\tan heta)$ இல் உள்ள தொடலிக்கோட்டின் சமன்பாடு $(3\sec heta)x-(5\tan heta)y$ எனக் காட்டுக. மேலே தரப்பட்ட அதிபரவளைவிற்கு அதன் மீது உள்ள புள்ளி $(5\sqrt{2},3)$ இல் வரையப்தொடலிக் கோட்டின் $y-$ வெட்டுத்துண்டைக் காண்க.	***************************************	*****************	***************************************			***************************************
அதிபரவளைவு $\frac{x^2}{25}-\frac{y^2}{9}=1$ இற்கு அதன் மீது இருக்கும் $0< heta<rac{\pi}{2}$ ஆகுமாறுள்ள ப $P\equiv(5\sec heta,3\tan heta)$ இல் உள்ள தொடலிக்கோட்டின் சமன்பாடு $(3\sec heta)x-(5\tan heta)y$ எனக் காட்டுக. மேலே தரப்பட்ட அதிபரவளைவிற்கு அதன் மீது உள்ள புள்ளி $(5\sqrt{2},3)$ இல் வரையப் தொடலிக் கோட்டின் $y-$ வெட்டுத்துண்டைக் காண்க.	*******************	**************	•••••••••			******************
அதிபரவளைவு $\frac{x^2}{25}-\frac{y^2}{9}=1$ இற்கு அதன் மீது இருக்கும் $0< heta<rac{\pi}{2}$ ஆகுமாறுள்ள ப $P\equiv(5\sec heta,3\tan heta)$ இல் உள்ள தொடலிக்கோட்டின் சமன்பாடு $(3\sec heta)x-(5\tan heta)y$ எனக் காட்டுக. மேலே தரப்பட்ட அதிபரவளைவிற்கு அதன் மீது உள்ள புள்ளி $(5\sqrt{2},3)$ இல் வரையப் தொடலிக் கோட்டின் $y-$ வெட்டுத்துண்டைக் காண்க.	**************	*******	•••••••••••••••••	••••••		•••••
மேலே தரப்பட்ட அதிபரவளைவிற்கு அதன் மீது உள்ள புள்ளி (5√2,3) இல் வரையப் தொடலிக் கோட்டின் y — வெட்டுத்துண்டைக் காண்க.						
தொடலிக் கோட்டின் y — வெட்டுத்துண்டைக் கான்க.	எனக் காட்டுக.					
	மேலே தரப்பட்ட	அதிபரவளை	ாவிற்கு அதன்	மீது உள்ள பு	ள்ளி $(5\sqrt{2},3)$	இல் வரையப்ப
	தொடலிக் கோட்ட	ஷன் y – வெட்	.டுத்துண்டைக் -	கான்க.		
	•					
				1102	•••••••	
						•••••••••••••••••••••••••••••••••••••••
						•••••••••••••••••••••••••••••••••••••••
·····						
·						•••••••••••••••••••••••••••••••••••••••
						•••••••••••••••••••••••••••••••••••••••
						•••••••••••••••••••••••••••••••••••••••
						•••••••••••••••••••••••••••••••••••••••

$y=x^2,y=2x$ ஆகிய வளையிகளினால் உள்ளடைக்கப்பட்ட பிரதேசத்தை x அச்சைப்பற்றி 2	2π
ஆரையன் களினூடாகச் சுழற்றுவதனால் பிறப்பிக்கப்படும் திண்மத்தின் கனவளவு $\frac{64\pi}{15}$ க	ன
அலகுகள் எனக் காட்டுக.	
	•••
·	
	••
	••
	••
	••
	••
	••
	• •
	• •
நேர்கோடு $2x-y=0$ இல் உள்ள P,Q என்ற புள்ளிகளில் இருந்து நேர்கோடு $3x-4y-5=$	
இற்கு வரையப்பட்ட செங்குத்தின் <mark>நீளம் 5 அலகுகள் எனி</mark> ன் P,Q இன் ஆள்கூறுகளைக் காண்க	Б.
	••
	••
	• •
	•••
	• •
	••
	••
	••
	••
	••
	••
	••
	•••
	••
	••

9.	$x^2+y^2-4x-2y+4=0$ என்ற வட்டத்தின் மையத்தையும் ஆரையையும் காண்க. உற்பத்தியில்
	இருந்து வட்டத்திற்கு வரையப்படும் தொடலிகளின் சமன்பா டுகளைக் காண்க .
	*

10.	$A+B=rac{\pi}{6}$ எனின் $(\sqrt{3}+\tan A)(\sqrt{3}+\tan B)=4$ எனக் காட்டுக. இதிலிருந்து, $ anrac{\pi}{12}=2-\sqrt{3}$
	என்பதை உய்த்தறிக.

	\cdot

தொண்டைமானாறு வெளிக்கள நிலையம் நடாத்தும் நான்காம் தவணைப் பரீட்சை - 2021

Conducted by Field Work Centre, Thondaimanaru. 4th Term Examination - 2021

தரம் :- 13 (2020)

இணைந்த கணிதம் I - B

	 · · · · · ·		· · · · · ·	
சுட்டெனர்				

- 11. a) α , β என்பன இருபடிச்சமன்பாடு $x^2 + bx + C = \odot$ இன் மூலங்களாகும். இங்குக $C \neq \odot$ $\alpha^3 \beta$, $\alpha \beta^3$ ஆகியவற்றை மூலங்களாகக் கொண்ட இருபடிச்சமன்பாட்டை b, c ஆகியவற்றின் சார்பில் காண்க. இதிலிருந்து $\left(\alpha^3 \beta + \frac{1}{\alpha \beta^3}\right)$, $\left(\alpha \beta^3 + \frac{1}{\alpha^3 \beta}\right)$ ஆகியவற்றை மூலங்களாகக் கொண்ட சமன்பாட்டை உய்த்தறிக.
 - b) $x^2 + ax + b = 0$, $x^2 + bx + a = 0$ ($a \neq b$) ஆகிய சமன்பாடுகளுக்கு ஒரு பொதுமூலம் இருப்பின் சமன்பாடு $2x^2 + (a+b)x = (a+b)^2$ இன் மூலங்கள் $x = 1, x = -\frac{1}{2}$ எனக் காட்டுக.
 - c) $h(x) = x^3 + ax^2 + bx + c$ எனக்கொள்வோம். $a, b, c \in R$ ஆகும். h(x) இன் காரணி $(x^2 4)$ எனத்தரப்பட்டுள்ளது. b = -4 எனக்காட்டுக. மேலும் h(x) ஆனது $x^2 2x$ இனால் வகுக்கப்படும் போது மீதி 4x + k எனத்தரப்பட்டுள்ளது. இங்கு $k \in R$ ஆகும். k இன் பெறுமானத்தைக் கண்டு h(x) ஐ வடிவம் $(x \lambda)^2(x \mu)$ இல் எழுதலாம் எனக்காட்டுக. இங்கு $\lambda, \mu \in R$.
- 12. a) $a,b,c\in R^+$ எனக் கொள்வோம்.

$$\frac{a}{b} + \frac{b}{a} \ge 2$$
 ஐ நிறுவுக.

இதிலிருந்து,
$$(a+b+c)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\geq 9$$
 எனக் காட்டுக.

மேலே உள்ள முடிவில் a,b,c இற்குப் பொருத்தமான பிரதியீடுகளைப் பயன்படுத்துவதன் மூலம்

$$(a+b+c)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\geq \frac{9}{2}$$
 என்பதைப் பெறுக

இதிலிருந்து,
$$\frac{c}{a+b}+\frac{a}{b+c}+\frac{b}{c+a}\geq \frac{3}{2}$$
 என்பதை உய்த்தறிக

- b) பின்வரும் சமன்பாடுகளைத் தீர்க்க.
 - i) $\log_2(x-2) = \log_4(x+4)$
 - ii) $2x(\log_2 10 \log_2 5) = \log_2(10.2^x 16)$

13. a) $x \neq 2$ இற்கு $f(x) = \frac{x(x-3)}{(x-2)^2}$ எனக்கொள்வோம். $x \neq 2$ இற்கு f(x) இன் பெறுமதி f'(x)

ஆனது $f'^{(x)}=rac{6-x}{(x-2)^3}$ இனால் தரப்படுகின்றது எனக்காட்டுக. இதிலிருந்து f(x)

அதிகரிக்கின்ற ஆயிடையையும் f(x) குறைகின்ற ஆயிடைகளையும் காண்க. மேலும் f(x)இன் திரும்பற் புள்ளியின் ஆள்கூறுகளையும் காண்க.

 $x \neq 3$ இற்கு $f''(x) = \frac{2(x-8)}{(x-2)^4}$ எனத் தரப்பட்டுள்ளது. y = f(x) இன் வரைபின் விபத்திப் புள்ளியின் ஆள்கூறுகளைக் காண்க.

y=f(x) இன் வரைபை அணுகுகோடுகள், திரும்பற்புள்ளிகள், விபத்திப்புள்ளிகள் ஆகியவற்றைக் காட்டி பரும்படியாக வரைக.

b) உருவில் காட்டியவாறு r ஆரையுள்ள ஒரு கால்வட்டத்தினுள் ஒரு செவ்வகம் OPQR வரையப்பட்டுள்ளது. இங்கு O மையமாகும். $P\hat{O}Q=\theta$ எனத் தரப்பட்டுள்ளது. செவ்வகம் OPQR இன் பரப்பளவு A ஆனது $A=\frac{r^2}{4}\sin 2\theta$ என்பதால் தரப்படும் எனக்காட்டுக. $\theta=\frac{\pi}{4}$ ஆக இருக்கும் போது A உயர்வாகும் எனக்காட்டுக.

- 14) a) $\frac{1}{x(x-1)^2}$ ஐப் பகுதிப்பின்னங்களாக எடுத்துரைக்க. இதிலிருந்து $\int \frac{1}{x(x-1)^2} \, dx$ ஐக் காண்க.
 - b) $(x^2-1)+rac{1}{(x^2+1)}$ ஐச் சுருக்குக. இதனையும் பகுதிகளாகத் தொகையிடலையும் பயன்படுத்தி $\int x^3 an^{-1} x \, dx$ ஐக் காண்க.
 - c) $t=e^x$ எனும் பிரதியீட்டைப் பயன்படுத்தி $\int_{0}^{a} \frac{e^{3x}}{e^{2x}+1} \ dx$ ஐக் காண்க.
 - d) a மாறிலியாக இருக்கும் சூத்திரம் $\int f(x)dx = \int (a-x)dx$ ஐப் பயன்படுத்தி $\int_{o}^{\pi}x\cos^{4}x\,\sin x\,\,dx = \frac{\pi}{2}\int_{o}^{\pi}\cos^{4}x\,\sin x\,\,dx$ எனக்காட்டுக. இதிலிருந்து $\int_{o}^{\pi}x\cos^{4}x\,\sin x\,\,dx = \frac{\pi}{5}$ எனக்காட்டுக.
- 15) $a, x + b, y + c_1 = 0$, $a_2x + b_2y + c_2 = 0$ ஆகிய இடைவெட்டும் நேர்கோடுகளுக்கு இடையிலான கோணங்களின் இருகூறாக்கிகளின் சமன்பாடுகளைக் காண்க. புள்ளி A(1,2) இனூடு செல்லும் ℓ_1 , ℓ_2 ஆகிய நேர்கோடுகளின் படித்திறன்கள் முறையே 1, 7 ஆகும்.
 - i) ℓ_1 , ℓ_2 ஆகியவற்றின் சமன்பாடுகளைக் காண்க.

- ii) ℓ_1 , ℓ_2 ஆகியவற்றிற்கு இடையிலான கூர்ங்கோணத்தின் இருகூறாக்கி ℓ_3 இன் சமன்பாடு 2x-y=0 எனக் காட்டுக.
- iii) முதலாம் கால்வட்டத்தில் உள்ளதும் நேர்கோடு ℓ_3 மீது உள்ளதுமான புள்ளி B யிலிருந்து ℓ_1 , ℓ_2 இற்கான செங்குத்துத்தூரம் ஒவ்வொன்றும் $\sqrt{2}$ அலகுகள் எனின் B இன் ஆள்கூறுகள் $(3,\ 6)$ எனக் காட்டுக.
- iv) AB இன் செங்குத்து இருகூறாக்கி மீதுள்ள யாதாயினும் ஒரு புள்ளியின் ஆள்கூறுகள் வடிவம் (2+2t,4-t) இல் எழுதப்படலாம் எனக் காட்டுக, இங்கு $t\in R$.
- v) APBQ ஒரு சதுரம் ஆகுமாறு P, Q இன் ஆள்கூறுகளைக் காண்க.
- $A \equiv (-2,3), B \equiv (4,-5), C \equiv (10,11)$ எனக் கொள்வோம்
 - i) AB ஐ விட்டமாகக் கொண்ட வட்டம் S இன் சமன்பாட்டை எழுதுக.
 - ii) புள்ளி C ஆனது வட்டம் S இற்கு வெளியே உள்ளதெனக் காட்டி புள்ளி C இற்கு அண்மையாகவும் தொலைவாகவும் வட்டம் S மீது உள்ள புள்ளிகள் முறையே P, Q எனின் P, Q இன் ஆள்கூறுகளைக் காண்க.
 - iii) C இற்கூடாகச் செல்வதும் வட்டம் S ஐ வெளிப்புறமாகத் தொடும் வட்டங்களில் மிகச் சிறிய வட்டம் S_1 இன் சமன்பாட்டைக் காண்க.
 - iv) C இற்கூடாகச் செல்வதும் வட்டம் S ஐ உட்புறமாகத் தொடும் வட்டங்களில் மிகச்சிறிய வட்டம் S₂ இன் சமன்பாட்டைக் காண்க.
 - b) $x^2+y^2+2g_1\ x+2f_1\ y+c_1=0$, $x^2+y^2+2g_2\ x+2f_2\ y+c_2=0$ ஆகிய வட்டங்கள் நிமிர்கோண முறையாக இடைவெட்டுமெனின் $2g_1\ g_2+2f_1\ f_2=c_1+c_2$ எனக்காட்டுக. புள்ளி $(1,\ 2)$ இல் மையத்தைக் கொண்டுள்ளதும். வட்டம் $x^2+y^2+4x-y-1=0$ ஐ நிமிர்கோண முறையாக இடைவெட்டுவதுமான வட்டத்தின் சமன்பாட்டைக் காண்க.
- (A+B), $\sin(A+B)$, $\sin(A-B)$ ஆகியவற்றின் விரிவுகளை எழுதுக.
 - i) $\sin(90^{\circ} \theta) = \cos \theta$ எனவும்
 - ii) $\sin 2\theta = 2 \sin \theta \cos \theta$ எனவும் நிறுவுக.
 - iii) $\sin 75^{\circ} = \frac{\sqrt{6} + \sqrt{2}}{4}$ எனவும் $\sin 15^{\circ} = \frac{\sqrt{6} \sqrt{2}}{4}$ எனவும் காட்டி $\sin 75^{\circ} \sin 15^{\circ} = \frac{1}{4}$ என்பதை உய்த்தறிக.

உருவில் தரப்பட்ட முக்கோணி ABC இல் BC யின் நடுப்புள்ளி D ஆகும். $A\hat{C}D=15^\circ$ உம் $B\hat{A}D=75^\circ$ உம் ஆகும். $A\hat{D}B=\alpha$ எனக் கொள்வோம்.

பொருத்தமான முக்கோணிகளுக்குச் சைன்நெறியைப் பயன்படுத்தி,

 $\sin(\alpha-15^\circ)\sin(105^\circ-\alpha)=\sin75^\circ\sin15^\circ$ எனக் காட்டுக.

ஏன் $\sin(105^\circ-\alpha)=\cos(\alpha-15^\circ)$ என விளக்கி, மேலே (a) இல் உள்ள பொருத்தமான முடிவுகளையும் பயன்படுத்தி $\alpha=30^\circ$ என உய்த்தறிக.

c) சமன்பாடு $tan^{-1}(5tan^2x) + tan^{-1}(cos^2x) = \frac{\pi}{4}$ ஐத் தீர்க்க

தொண்டைமானாறு வெளிக்கள நிலையம் நடாத்தும் நான்காம் தவணைப் பரீட்சை - 2021 Conducted by Field Work Centre, Thondaimanaru. 4th Term Examination - 2021

தரம் :- 13 (2021)

இணைந்த கணிதம் II - B

- கிடைத்தரையில் இருந்து குறிப்பிட்ட உயரத்தில் உள்ள ஒரு புள்ளி O இல் இருந்து 11) a) கிடைத்தரையை நோக்கி புவியீர்ப்பின் கீழ் நிலைக்குத்தாக $\sqrt{2gh}$ வேகத்துடன் எறியப்படும் துணிக்கை கிடைத்தரையை அடையும் கணத்தில் எறியல் கதியின் 3 மடங்கு கதியை பெறுகின்றது. துணிக்கை நிலைத்தை அடையும் கணத்தில் துணிக்கைக்கு மேல்நோக்கி கொடுக்கப்படும் ஓர் விசையினால் துணிக்கை சடுதியாக மேல்நோக்கி நிலைக்குத்தாக தான் நிலத்தை அடைந்த கதியிலும் $\sqrt{8gh}$ ஆல் கூடிய கதியுடன் மேல்நோக்கி புவியீர்ப்பின் கீழ் இயங்குகின்றது. துணிக்கை எறியப்பட்ட கணத்தில் இருந்து தரையை அடைந்து பின் அது இயக்கத்தில் தரையில் இருந்து அதி உயர் உயரத்தை அடைந்து மிண்டும் எறியற்புள்ளியை கடக்கும் வரைக்கான துணிக்கையின் வேகநேர இயக்கத்திற்கான வரைபை ஒரே வரிப்படத்தில் வரைக. வரைபில் இருந்து
 - எறியற்புள்ளியில் இருந்து கிடைத்தரைக்கான தூரம்.
 - ii) தரையில் இருந்து துணிக்கை அடைந்த அதி உயர் உயரம்.
 - iii) துணிக்கை எறியற் புள்ளியை இரண்டாவது தடவையாக கடக்கும் கதி.
 - iv) இயக்கத்திற்கு எடுத்த மொத்த நேரம் என்பவற்றை g,h சார்பில் காண்க.
 - b) ஒரு குறித்த கணத்தில் சைக்கிள் ஓட்டி B என்பவர் மோட்டார் சைக்கிள் ஓட்டி M இந்கு $\sqrt{3}$ கிழக்கே 2d தூரத்தில் உள்ளார். சைக்கிள் ஓட்டி சீரான கதி $\frac{\sqrt{3}}{2}\,u$ உடனும் மோட்டார் சைக்கிளோட்டி சீரான கதி $\sqrt{3}\,u$ உடனும் தேரு தேரத்தில் பயணத்தை ஆரம்பிக்கின்றனர்.
 - i) மோட்டார் சைக்கிளோட்டி கிழக்கு 30° வடக்கு திசையில் செல்லும் போது சைக்கிளோட்டியை சந்திப்பின் சார்புவேக கோட்பாட்டைப் பயன்படுத்தி வேக முக்கோணியை வரைந்து இருவரும் ஒருவரை ஒருவர் சந்திக்க எடுக்கும் நேரத்தைக் காண்க.
 - ii) மோட்டார் சைக்கிளோட்டி கிழக்குக்கு 60° வடக்கு திசையில் பயணிக்கும் போது சைக்கிள் ஓட்டிக்கு மோட்டார் சைக்கிள் கிழக்குக்கு 30° வடக்குத்திசையில் பயணிப்பதாக தோற்றுகின்றது எனில் சார்பு வேக கோட்பாட்டைப் பயன்படுத்தி வேக முக்கோணியை வரைந்து சைக்கிள் ஓட்டிக்கும் மோட்டார் சைக்கிளோட்டிக்கும் இடையிலான மிகக்கிட்டிய தூரத்தையும் அதற்கு எடுக்கும் நேரத்தையும் காண்க.

டி நிலைப்படுத்தப்பட்ட ஒப்பமான இலேசான கப்பிகளுக்கு மேலாக சென்று துணிக்கை P ஆனது F இறை அரு கேயும், P ஆனது P இரை குற்கு அருகேயும், P ஆனது P இரைக்கு மாறு தினைக்கு P ஆனது P இரைக்கு P ஆனது P இரைக்கு மாறும் வைக்கப்பட்டு முனைகளுக்கு இணைக்கப்பட்டு இழையானது P இரை கிருக்குமாறும் வைக்கப்பட்டு முனைகளுக்கு இணைக்கப்பட்டு இழையானது P இருக்கும் P ஆனது P இற்கு அருகேயும், P ஆனது P ஆகல் P ஆனது P ஆனது P ஆனது P ஆனது P ஆகல் P ஆ

- i) $\alpha = \frac{\pi}{3}$ எனக் காட்டுக
- துணிக்கைகள், ஆப்புகளில் தாக்கும் விசைகளை குறிக்க.
- iii) தளத்தில் O ஓர் நிலையான புள்ளி ஆக இயக்கத்தில் ஒரு குறித்தகணத்தில் OB = x, OE = y என கொண்டு ஆப்புகள் ABC, DEF என்பவற்றின் ஆர்முடுகல்களை x, y சார்பில் எழுதுக
- iv) *CP = z* எனவும் எடுத்து துணிக்கைகள் P, Q இன் ஆர்முடுகல்களை குறிக்க.
- v) ஆப்புகள், துணிக்கைகள், இழையில் உள்ள இழுவை என்பவற்றை துணிவதற்கு போதுமான சமன்பாடுகளை எழுதுக. (P ஆனது தரையை அடையவில்லை எனக் கொள்க)
- vi) துணிக்கை P ஆனது தரையை அடைவதற்கும் அந்நேரத்தில் B, D இற்கு இடைப்பட்ட தூரத்தை காண்பதற்கான சமன்பாடுகளை பெறுக.
- vii) துணிக்கை P தரையை அடித்தபின் ஆப்பு DEF இன் இயக்கம் பற்றி யாது கூறுவீர்.

AO 01C காட்டப்பட்டவாறு ஆனது படத்தில் ஒரு நிலைக்குத்தான சுவர் C ஆனது சுவரின் மேல் விளிம்பு படத்தில் காட்டப்பட்டவாறு 4α,α ஆரையுடைய AMB. வட்டவில் வடிவில் உள்ள ஒப்பமான CND ஆகிய குழாய்கள் ஒரே நிலைக்குத்து தளத்தில் பொருத்தப்பட்டுள்ளன. AMD, CND இன் ஆகும். O', B என்பன O' $B=2\sqrt{3}$ a0,0' ஒரே கிடைமட்டத்திலும் உள்ளன. D ஆனது ஆகவும் நிலைக்குத்து சுவரில் இருந்து $\frac{\sqrt{3} \ a}{2}$ தூரத்தில் உள்ளது. m திணிவுள்ள துணிக்கை P ஆனது குழாயின் முனை A இல் வைக்கப்பட்டு கிடையாக கொடுக்கப்படும் இனால் B இன் ஊடாக வெளியேறி குழாய் CND யினுள் கிடையாக உள்நுளைந்து D இன் ஊடாக வெளியேறி சுவரில் அடிக்கின்றது.

- i) துணிக்கை B இன் ஊடாக வெளியேறும் கதி 2 √2ag எனக்காட்டுக
- ii) துணிக்கை குழாய் AB இனுள் கீழ் முக நிலைக்குத்துடன் θ கோணம் அமைக்கும் போது துணிக்கை P இன் கதியையும் துணிக்கை P இல் உள்ள மறுதாக்கத்தையும் காண்க
- iii) u இன் பெறுமானத்தைக் காண்க .
- iv) துணிக்கை குழாய் CND இனுள் நுழைந்த பின் துணிக்கை மேல்முக நிலைக்குத்துடன் α கோணம் அமைக்கும் போது துணிக்கையின் கதியையும் துணிக்கையில் தாக்கும் மறுதாக்கத்தையும் காண்க.
- v) துணிக்கை D இன் ஊடாக வெளியேறும் கதி யாது?
- vi) துணிக்கை சுவரை A இற்கு மேலே எவ்வளவு தூரத்தில் அடிக்கும் எனக் காண்க.
- 4) ஒரு குறித்த கதியில் ஒரு நிலைக்குத்து தளத்தில் எறியப்படும் துணிக்கையின் எறியற்புள்ளி ஊடான அதி உயர் கிடைவீச்சு R ஆகும். துணிக்கையின் எறியற்கதியின் கிடை நிலைக்குத்துக் கூறுகளை R சார்பில் காண்க.

அதே எறியற் கதியில் கிடைத்தரையில் உள்ள ஒரு புள்ளி O இல் இருந்து கிடையுடன் θ கோணத்தில் நிலைக்குத்து தளத்தில் எறியப்படும் துணிக்கையின் எறியற்புள்ளியில் இருந்தான கிடை நிலைக்குத்து தூரங்கள் முறையே. x,y ஆக உள்ள போது $y=x\tan\theta-\frac{x^2}{2R}\sec^2\theta$ எனக்காட்டுக.

இதில் இருந்து அதே கதியில் O இல் இருந்து கிடைநிலைக்குத்து உயரங்கள் முறையே. $\frac{1}{2}$ R, $\frac{1}{4}$ R ஆகுமாறு உள்ள புள்ளியின் ஊடாக இரு திசைகளில் எறியலாம் எனக் காட்டுக. அச்சந்தர்ப்பத்தில் எறியற்புள்ளியின் ஊடான கிடை வீச்சு R or $\frac{3R}{5}$ ஆகிய இரு கிடைவீச்சுக்களுக்கு சாத்தியம் உண்டு எனக் காட்டுக.

- a) O குறித்து A, B என்ற புள்ளிகளின் தானக்காவிகள் \underline{a} , \underline{b} ஆகுமாறு $\overline{OD} = \frac{1}{2}$ \underline{a} ஆகுமாறும் $\overline{DC} = \frac{|a|}{2|b|}$ த ஆகுமாறும் C, D என்ற புள்ளிகள் உள்ளன.
 - i) \overrightarrow{OC} , \overrightarrow{CA} என்பவற்றை \underline{a} , \underline{b} சார்பாக காண்க
 - ii) $\overrightarrow{OC} \overrightarrow{CA} = \frac{|a|}{|b|} \underline{b}$ எனக் காட்டுக.
 - iii) $AP:PB=\left|\underline{a}\right|:\left|\underline{b}\right|$ ஆகுமாறு P என்பது AB இல் இருப்பின் \overrightarrow{OP} ஐக் காண்க. இதிலிருந்து.
 - O, C, P ஒரே நேர்கோட்டிலுள்ளன எனக் காட்டுக.
 - 2) $2|\overrightarrow{OC}| > |\overrightarrow{OP}|$ எனக்காட்டுக.
- b) ABCD ஒரு செவ்வகம் AB=3a,BC=4a. 7w,6w,10w,13w,15w N, விசைகள் \overrightarrow{BA} , \overrightarrow{BC} , \overrightarrow{DC} , \overrightarrow{DA} , \overrightarrow{AC} வழியே தாக்குகின்றன.
 - i) தொகுதியின் விளையுள் விசையின் பருமனைக் காண்க.
 - ii) விளையுளின் தாக்கக்கோடு AD யை வெட்டும்புள்ளி A இலிருந்து எவ்வளவு தூரத்தில் உள்ளது எனக் காண்க.
 - iii) மேலதிக விசை P N, D ல் தாக்கும் போது தொகுதி இணைக்கு ஒடுங்கும் எனின் விசை P இன் பெறுமானத்தையும், இணையின் பருமனையும் போக்கையும் காண்க.

AB, BC, CD, DE என்பன 2a நீளமும் அவற்றின் நிறைகள் முறையே. w, 3w, 2w, 2w ஆகவும் உள்ள சீரான கோல்கள் ஆகும். அவை படத்தில் காட்டப்பட்டவாறு B, C, D இல் ஒப்பமாக மூட்டப்பட்டும் ACE ஒரே கிடை மட்டத்திலும் AC = CE = 2a ஆகுமாறு A, E முறைகள் பிணைக்கப்பட்டும் C இல் கட்டப்பட்ட நிலைக்குத்து இழையினால் சமநிலையில் பேணப்படுகின்றது. சமநிலையில் B, D என்ற மூட்டுக்களில், மறுதாக்கங்களை காண்க.

- b) AB, BC, BE, BD, ED, DC ஆகிய இலேசான கோல்கள் அவற்றின் முனைகளில் சுயாதீனமாக பிணைக்கப்பட்டு சட்டப்படல் படத்திலுள்ளவாறு அமைந்துள்ளது. நிலைக்குத்து சுவரில் A, E இல் பிணைக்கப்பட்டுள்ளது. சாய்ந்துள்ள ஒவ்வொரு கோலும் கிடையுடன் 60⁸ கோணத்தில் சாய்ந்துள்ளன. கோல்கள் EB, DC கிடையானவை போவின் குறியீட்டு முறையில் தகைப்பு வரிப்படம் வரைந்து அதில் இருந்து கோலில் உள்ள தகைப்புகளையும், A, E இலுள்ள மறுதாக்கங்களையும் காண்க.
- a) w நிறையுடைய சீரான வளையம் A என்ற கரடான முளையில் தொங்கவிடப்பட்டுள்ளது. நிலைக்குத்து தளத்தில் தொங்கும் போது AB விட்டமாக அமையுமாறு B இல் படிப்படியாக அதிகரிக்கும் P என்ற கிடை விசை பிரயோகிக்கப்படுகிறது. வளையம் வழுக்காது சமநிலையில் உள்ள போது AB கீழ்முக நிலைக்குத்துடன் θ கோணத்தை அமைக்கும் எனில் P இன் பெறுமானத்தை w, θ சார்பாக காண்க. A இலுள்ள உராய்வு விசைக்கும், செவ்வன் மறுதாக்கத்திற்குமான விகிதம் $\frac{\tan \theta}{2 + \tan^2 \theta}$ எனக் காட்டுக. உராய்வு குணகம் μ எனின் $\mu \geq \frac{1}{2\sqrt{2}}$ எனக்காட்டுக.
- b) R ஆரையுள்ள ஓர் உருளை அதன் வளைபரப்பு ஒப்பமான நிலைக்குத்து சுவருடன் தொடுகையில் நிலையாக இருக்க 2a நீளமான கோல் சுவருடன் 30° கோணத்தில் சாய்ந்தும் மறுதுனை உருளையின் மீது தொட்டும் சமநிலையிலுள்ளது. தொடுகைகள் ஒப்பமானவை. $R = \frac{\sqrt{13}}{12} \left(\sqrt{13} + 1\right)a$ எனக்காட்டி சுவர், வளைபரப்புமீதான மறுதாக்கங்கள் முறையே. $\frac{w}{2\sqrt{3}}$, $\frac{w\sqrt{13}}{2\sqrt{3}}$ எனக்காட்டுக.

ூலங்கையின் உயர்தர கணித விஞ்ஞான

பிரிவிற்கான இணையதளம்

SCIENCE EAGLE www.scienceeagle.com

- f ✓ ◎ /Science Eagle SL

- Biology
- C.Maths
- Physics
- Chemistry
 - + more

