An introduction to time series analysis with ARIMA

R Ladies London 24 October 2019

Welcome to LSHTM! Some logistics

Wi-fi network

eduroam

or

Ishtm-conf

password: "louispasteur"

All materials

https://github.com/7j7j/R-ladies-ARIMA-intro

```
install.packages(c("tidyverse", "forecast", "here"))
```


R-ladies Who are we?

- The R community suffers from underrepresentation of minority genders (including but not limited to cis/trans women, trans men, non-binary, genderqueer, agender) in every role and area of participation
- R-Ladies is a worldwide organization whose mission is to promote gender diversity in the R community.
- Currently 169 chapters in 46 countries and 57162 members.

Hello! My name is Jules and I am an applied social scientist.

Context & Theory

Does one time series explain another? (motivating case)

Delayed discharge / transfers of care in NHS England¹

Approximate crude mortality rate/1,000 in England²

1 Green MA et al, <u>Could the rise in mortality rates since 2015 be explained by changes in the number of delayed discharges of NHS patients</u>? *J Epi & Comm Hlth* 71(11), 16 Oct 2017.

2 Office for National Statistics, <u>Monthly figures on deaths registered by area of usual residence in England and Wales</u> and <u>England population mid-year</u> estimate, Aug 2010 – Mar 2016

Does one time series explain another?

Methods Office for National Statistics monthly data of death counts and mortality rates for the period August 2010–March 2016 were compared with delays in discharges from National Health Service (NHS) England data on transfers of care for acute and non-acute patients in England. Autoregressive Integrated Moving Average regression models were used in the analysis.

Results We estimate that each additional day an acute admission was late being discharged was associated with an increase in 0.394 deaths (95% Cls 0.220 to 0.569). For each additional acute patient delayed being discharged, we found an increase of 7.322 deaths (95% Cls 1.754 to 12.890). Findings for non-acute admissions were mixed.

conclusion The increased prevalence of patients being delayed in discharge from hospital in 2015 was associated with increases in mortality, accounting for up to a fifth of mortality increases. Our study provides evidence that a lower quality of performance of the NHS and adult social care as a result of austerity may be having an adverse impact on population health.

Basic framework for time series analysis

y_t (future forecast) data

S₊ seasonal (fixed-period) fluctuations

+ or X

 T_{t} underlying trend

+ or X

random error or varying-period cycle

Returning to the motivating case

Delayed discharge / transfers of care in NHS England

Approximate crude mortality rate/1,000 in England

- A standard method for time series analysis, alongside exponential smoothing
- Applicable across econometrics, finance/business, operational modelling, ecology, etc.

'Differencing' of data for stationarity, or integrating across orders of differences

I

Integrated

$$\mathbf{y}_\mathsf{t}$$
 data

$$ln(y_t)$$

(data transformed by logs, or other common methods, e.g. Box-Cox)

$$d_1 = y_t - y_{t-1}$$

$$d_2 = (y_t - y_{t-1}) - (y_{t-1} - y_{t-2})$$

= $y_t - 2y_{t-1} + y_{t-2}$

AR(1)

$$y_t = 18 - 0.8y_{t-1} + \varepsilon_t$$

AR(2)

$$y_t = 8 + 1.3y_{t-1} - 0.7y_{t-2} + \varepsilon_t$$

For both, $\varepsilon_t \sim \text{Norm}(0,1)$

$$y_t = c + \phi_1 y_{t-1} + \phi_2 y_{t-2} + ... + \phi_n y_{t-n} + \varepsilon_t$$

data

constant

weight 1 • data 1 time period ago

weight 2 • data 2 time periods ago

weight $p \bullet$ data p time periods ago

random error

Moving Average

of error terms

MA(1)

$$y_t = 20 + \varepsilon_t + 0.8\varepsilon_{t-1}$$

$$MA(2)$$

$$y_{t} = \varepsilon_{t} - \varepsilon_{t-1} + 0.8\varepsilon_{t-2}$$

For both, $\varepsilon_t \sim \text{Norm}(0,1)$

$$\mathbf{y}_{\mathsf{t}}$$

$$c +$$

$$= \mathbf{c} + \mathbf{\varepsilon}_{\mathsf{t}} + \mathbf{\theta}_{1} \mathbf{\varepsilon}_{\mathsf{t-1}} + \mathbf{\theta}_{2} \mathbf{\varepsilon}_{\mathsf{t-2}} + \dots + \mathbf{\theta}_{\mathsf{q}} \mathbf{\varepsilon}_{\mathsf{t-q}}$$

$$\theta_2 \epsilon_{t-2}$$

$$\theta_{q} \epsilon_{t-q}$$

data

constant

random error

weight 1 • error 1 time period ago weight 2 • error 2 time period ago

weight $q \bullet$ random error qtime periods ago

What do we mean by autocorrelation (ACF) and partial ACF? (1/2)

Just as correlation measures the extent of a linear relationship between two variables, autocorrelation measures the linear relationship between *lagged values* of a time series.

The value of r_k can be written as

$$r_k = rac{\sum\limits_{t=k+1}^T (y_t - ar{y})(y_{t-k} - ar{y})}{\sum\limits_{t=1}^T (y_t - ar{y})^2},$$

where T is the length of the time series.

When data have a trend, the autocorrelations for small lags tend to be large and positive because observations nearby in time are also nearby in size... When data are seasonal, the autocorrelations will be larger for the seasonal lags (at multiples of the seasonal frequency) than for other lags...

When data are both trended and seasonal, you see a combination of these effects.

.... Each partial autocorrelation can be estimated as the last coefficient in an autoregressive model.

What do we mean by autocorrelation (ACF) and partial ACF? (2/2)

Common ARIMA specifications and seasonality

White noise ARIMA(0,0,0)

Random walk ARIMA(0,1,0)

Random walk with drift ARIMA(0,1,0) with c

Autoregression ARIMA(p,0,0)

Moving average ARIMA(0,0,q)

Seasonality

non-seasonal part

seasonal part

time interval, e.g. 4 for quarters 12 for months

Example of forecasting in seasonal ARIMA (1/2)

Example of forecasting in seasonal ARIMA (2/2)

Monthly corticosteroid drug sales in Australia

(Corticosteroid sales are highly seasonal as they are used for asthma & allergies)

By contrast ARIMA allows the residual time-based data to be meaningfully used.

Statistical analysis steps

As usual, it is critical to clarify your design and data assumptions before jumping into the tools and results

- 1. Tidy your data, especially date format
- 2. Summarise descriptives, including any new analysis variables of interest
- 3. Explore visual plots of the raw data across overlapping exposure(s) and outcome(s)
- 4. Create time series objects and examine for seasonality
- 5. Decompose the time series of interest
- 6. Evaluate stationarity assumption of decompositions
- 7. Fit univariate ARIMA models, including future forecasted trends
- 8. Check forecasts for fit and predictiveness, refining and updating as needed
- 9. Extend to ARIMA-based regression between exposures and outcomes

Fitting procedures for reference & practice beyond this session

In R, try the forecast package and functions Arima() and auto.arima()

- i. Identify and specify the model
- Make sure variables are stationary
- Identify seasonality in dependent series
- Use plots of autocorrelation and partial autocorrelation functions (ACF & PACF) to determine if/how AR, I, and MA apply

ii. Estimate the parameters

- Minimised conditional sum-of-squares (method="CSS")
- Maximum likelihood (method="ML")
- Default if no missing values (method="CSS-ML")

iii. Check the model

- Check independence of residuals
- Look for constant mean and variance over time
- Carry out Ljung-Box test
- Compare AICc and BIC of different models for p and q
- Plot ACF and PACF of residuals for p and q if either is 0

Fitting procedures in this practice case

auto.arima() automates the latter tedious steps of modelling using a variation of

the Hyndman-Khandakar algorithm

Hyndman-Khandakar algorithm for automatic ARIMA modelling

- 1. The number of differences $0 \leq d \leq 2$ is determined using repeated KPSS tests.
- 2. The values of p and q are then chosen by minimising the AICc after differencing the data d times. Rather than considering every possible combination of p and q, the algorithm uses a stepwise search to traverse the model space.
 - a. Four initial models are fitted:
 - \circ ARIMA(0, d, 0),
 - \circ ARIMA(2,d,2),
 - \circ ARIMA(1, d, 0),
 - \circ ARIMA(0,d,1).

A constant is included unless d=2. If $d\leq 1$, an additional model is also fitted:

- \circ ARIMA(0, d, 0) without a constant.
- b. The best model (with the smallest AICc value) fitted in step (a) is set to be the "current model".
- c. Variations on the current model are considered:
 - vary p and/or q from the current model by ± 1 ;
 - \circ include/exclude c from the current model.

The best model considered so far (either the current model or one of these variations) becomes the new current model.

d. Repeat Step 2(c) until no lower AICc can be found.

Fitting procedures in this practice case

auto.arima() automates the latter tedious steps of modelling as shown at right

Practice case

Start by loading libraries and packages

- 12 library(tidyverse)
- 13 library(forecast)
- 14 library(here)
- 18 data_orig <- read.csv(here::here('ARIMA-intro.csv'))</pre>

ONS_pop_est	out_deaths_total	$exp_days_dto\hat{c}$	exp_days_acute	exp_days_nonacutê	$exp_patients_dto\hat{\bar{c}}$	exp_patients_acute
55692423	33775	109918	55332	54586	3546	1785
55692423	36842	115855	60316	55539	3862	2011
55692423	36159	113246	58362	54884	3653	1883
55692423	39409	113091	59184	53907	3770	1973
55692423	44988	116466	59665	56801	3757	1925
56170927	46835	114346	60125	54221	3689	1940
56170927	36733	112386	60809	51577	4014	2172
56170927	41342	123130	66097	57033	3972	2132
56170927	34521	108064	58407	49657	3602	1947
56170927	37437	113364	60638	52726	3657	1956
56170927	37398	117075	64607	52468	3903	2154
56170927	33275	115517	62140	53377	3726	2005
56170927	35924	117297	63288	54009	3784	2042

1. Tidy your data, especially date format

```
23
    str(data_orig)
    levels(data_orig$i..month)
24
    data use <- data orig %>%
       mutate(i..month=as.character(i..month)) %>%
31
32
       mutate(date=paste0('24', i..month, year, sep = "", collapse = NULL)) %>%
       mutate(date=as.Date(date, "%d%B%Y")) # convert string to date
33
                                                                               year ONS_pop_est or
                                                                       ï..month
                                                                                                      date
37 data use <- data use %>%
                                                                     1 August
                                                                               2010
                                                                                      55692423
                                                                                                      2010-08-24
       select(-i..month, -year)
38
                                                                     2 September 2010
                                                                                      55692423
                                                                                                      2010-09-24
                                                                     3 October
                                                                                      55692423
                                                                                                      2010-10-24
                                                                               2010
                                                                     4 November
                                                                               2010
                                                                                      55692423
                                                                                                      2010-11-24
                                                                     5 December
                                                                                      55692423
                                                                               2010
                                                                                                      2010-12-24
                                                                                      56170927
                                                                     6 January
                                                                               2011
                                                                                                      2011-01-24
                                                                     7 February
                                                                                      56170927
                                                                               2011
                                                                                                      2011-02-24
                                                                     8 March
                                                                               2011
                                                                                      56170927
                                                                                                      2011-03-24
```

56170927

56170927

2011-04-24

2011-05-254

2011

2011

9 April

10 May

2. Summarise descriptives, including any new analysis variables of interest

```
45
   data use <- data use %>%
     mutate(annual_mort = out_deaths_total * 1000 / ONS_pop_est,
46
47
             dtoc days rate = exp days dtoc * 1000 / ONS pop est,
48
             dtoc pts rate = exp patients dtoc * 100000 / ONS pop est,
             dtoc_days_percapita = exp_days_dtoc / exp_patients_dtoc,
49
50
             prop_acute_days = exp_days_acute / exp_days_dtoc,
             prop_acute_patients = exp_patients_acute / exp_patients_dtoc)
51
52
53
   summary(data use)
```

2. Summarise descriptives, including any new analysis variables of interest

> summary	/(data_use)											
ONS_pop	_est	out_dea	ths_total	exp_day	/s_dtoc	exp_da	ys_acut	e exp_d	ays_non	acute exp_	_patient:	s_dtoc
	ents_acute											
Min. :	55692423	Min.	: 32934	Min.	:107652	Min.	: 55332	2 Min.	:4097	3 Min.	: 347	3
Min. :	1785											
1st Qu.:	56567796	1st Qu.	: 36967	1st Qu.	:116878	3 1st Qu	1.: 70028	8 1st Q	u.:4600	6 1st	Qu.:386	2
1st Qu.:	2305											
	57408654	Median	: 39378	Median	:135428	3 Mediar	: 88686	6 Media	n:4918	5 Medi	an :448	5
Median :												
	57555780	Mean	:40121	Mean	:138665	Mean	: 87697	7 Mean	:5096	8 Mear	:455	6
	2882	ricari	. 10121	ricari	. 150005	ricari	. 0, 05,	ricari	. 5050	o Ficul		
	58381217	3rd Ou	:42295	3rd Ou	:151383	3rd O	.: 99627	7 3rd 0	u.:5458	6 3nd	Qu.:496	Q
3rd Qu.:		Ji u Qu.	.42233	Ji u Qu.	. 131303) Jiu qu	1 9902	Ji d Q	u5450	o siu	Qu+30	O
	59115809	Max.	:60075	Max.	: 200095	Max.	:13425	6 Max.	: 6744	4 Max.	:666	0
		Max.	. 0007 3	Max.	. 200093	Max.	.134230	o Max.	.0/44	4 Max.	.000	U
	4475											
NA's :	8											
avn nati	ents nonce	.+.	date		annua	mont.	d+ac di	ays_rate	d+ac n	ts	d+oc d	21.65 12.0
	ents_nonacı	ite	date		annua	_mor.r	a coc_a	ays_rate	a coc_p	ts_rate	dtoc_d	ays_pe
rcapita	1 2 7 1		2010	20.24		.0 5022		1 003		6 140		- 20 0
	1371	Min.	: 2010-0	J8-24	Min.	:0.5822	Min.	:1.903	Min.	: 6.140	Min.	:28.0
0	4.500		- 2012			0.6444		2 257				20.0
1st Qu.:	1522	Ist	Qu.:2012-1	L1-24	ıst Qu.	:0.6441	Ist Qu	.:2.057	1st Qu	.: 6.804	1st Qu	.:30.0
0	4.535		2015							7 600		24.0
Median :	1635	Medi	an :2015-0	02-24	Median	:0.6758	Median	:2.321	Median	: 7.629	Median	:31.0
0												
	1675	Mear	:2015-0	02-22	Mean	:0.6955	Mean	:2.406	Mean	: 7.905	Mean	:30.4
4												
3rd Qu.:	1797	3rd	Qu.:2017-0	05-24	3rd Qu.	:0.7341	3rd Qu	.:2.641	3rd Qu	.: 8.582	3rd Qu	.:31.0
0												
Max. :	2212	Max.	:2019-0	08-24	Max.	:1.0162	Max.	:3.427	Max.	:11.337	Max.	:31.0
0				_								
					NA's	:8	NA's	:8	NA's	:8		
prop_acu	ıte_days pı	op_acut	e_patients	5								
			0.5034									
1st Qu.:		st Qu.:(
Median :		edian :(
			0.6269									
3rd Qu.:		rd Qu.:(
			0.6860									
Max	0.0000 Ma	٠٨										

```
63
   ggplot(data=data_use, aes(x=date)) +
     ggtitle("Trends in English mortality and NHS DAYS delayed") +
64
     geom line(aes(y=out deaths total), color="darkred") +
65
66
     geom line(aes(y=exp days dtoc), color="black") +
67
     geom_line(aes(y=exp_days_acute), color="black", linetype="longdash") +
     geom_line(aes(y=exp_days_nonacute), color="black", linetype="dotted") +
68
     xlab("Time") + ylab("Total counts of deaths and dtoc days") +
69
     geom vline(aes(xintercept = as.numeric(as.Date("2015/03/24"))), color="darkgreen")
70
```



```
83
   ggplot(data=data use, aes(x=date)) +
84
       geom line(aes(y=dtoc days percapita), color="darkblue", linetype="dotdash") +
       xlab("Time") + ylab("Mean days of delay per hospitalised patient") +
85
86
       scale x date(minor breaks=seq(as.Date("2010/08/24"), as.Date("2019/08/24"),
by="months"),
87
       breaks=seq(as.Date("2010/08/24"), as.Date("2019/08/24"), by="quarter")) +
       geom_vline(aes(xintercept = as.numeric(as.Date("2015/03/24"))),
88
color="darkgreen") +
       theme(axis.text.x = element blank())
89
```


4. Create time series objects and examine for seasonality

```
data_green <- data_use %>%
filter(date<"2016-04-24")

119  ts_dtocdays_all <- ts(data_use$exp_days_dtoc, frequency=12, start=c(2010, 8))
120  ts_deaths_all <- ts(data_use$out_deaths_total, frequency=12, start=c(2010, 8))

122  ts_dtocdays_green <- ts(data_green$exp_days_dtoc, frequency=12, start=c(2010, 8))
123  ts_deaths_green <- ts(data_green$out_deaths_total, frequency=12, start=c(2010, 8))</pre>
```

4. Create time series objects and examine for seasonality

4. Create time series objects and examine for seasonality

4. Create time series objects and examine for seasonality Deaths in England

```
ggseasonplot(ts_deaths_all, year.labels=TRUE, year.labels.left=TRUE) +
ylab("Count of deaths") + ggtitle("Seasonal plot: deaths in England")

ggseasonplot(ts_death_all, polar=TRUE) +
ylab("Count of deaths") + ggtitle("Polar seasonal plot: deaths in England")
```


4. Create time series objects and examine for seasonality Days of delayed transfers of care in NHS England

```
ggseasonplot(ts_dtocdays_all, year.labels=TRUE, year.labels.left=TRUE) +
      ylab("Count of days delayed in transfers of care") + ggtitle("Seasonal plot: days
159
of DTOCs in England")
    ggseasonplot(ts_dtocdays_all, polar=TRUE) +
165
166
      ylab("Count of days delayed in transfers of care") + ggtitle("Polar seasonal
plot: days of DTOCs in England")seasonal plot: deaths in England")
```


5. Decompose the time series of interest *Deaths in England*

```
decomp_deaths_add <-
decompose(ts_death_counts, type="additive")
plot(decomp_deaths_add)</pre>
```


5. Decompose the time series of interest Days of delayed transfers of care in NHS England

```
decomp_dtocdays_all <-
decompose(ts_dtocdays_all, type="additive")
plot(decomp_dtocdays_all)</pre>
```


6. Evaluate stationarity assumption of decompositions *Deaths in England*

```
203 Acf(ts_deaths_all, lag.max = NULL, type = c("correlation", "covariance",
                                "partial"), plot = TRUE, na.action = na.contiguous,
demean = TRUE)
205 Pacf(ts deaths all, lag.max = NULL, plot = TRUE, na.action = na.contiguous, demean
= TRUE)
   ts_deaths_all %>% ggtsdisplay() # summary view across data, Acf, and Pacf
206
    Box.test(diff(ts deaths all), lag=12, type="Ljung-Box")
207
214 ts deaths all %>% diff(lag=12) %>% ggtsdisplay()
215 ts deaths all %>% diff(lag=12) %>% diff(lag=12) %>% ggtsdisplay()
```

6. Evaluate stationarity assumption of decompositions Deaths in England - raw data (i.e. differencing = 0)

6. Evaluate stationarity assumption of decompositions *Deaths in England,* after differencing=1

7. Fit univariate ARIMA models, with forecast using auto.arima() Deaths in England – full data available now, through August 2019

```
Series: .
      fit_deaths_all <- ts_deaths_all %>%
221
                                                                ARIMA(0,0,0)(2,1,0)[12] with drift
222
          auto.arima()
                                                                Coefficients:
      fit_deaths_all
223
                                                                                      drift
                                                                             -0.3793
                                                                                   33.9801
                                                                      0.1047
                                                                                   13.7082
                                                                sigma^2 estimated as 9354336: log likelihood=-918.08
                                                                            AICc=1844.6
                                                                AIC=1844.16
                                                                                       BIC=1854.46
      fit_deaths_all %>% forecast(h=12) %>% autoplot()
```


7. Fit univariate ARIMA models, with forecast using auto.arima() Deaths in England – Green et al replication, through March 2016

```
227
      fit_deaths_green <- ts_deaths_green %>%
                                                             > fit_deaths_green
                                                             Series: .
228
        auto.arima()
                                                             ARIMA(0,0,0)(1,1,0)[12] with drift
      fit_deaths_green
229
                                                             Coefficients:
                                                                            drift
                                                                   -0.5258 44.0512
                                                                   0.1176 25.5866
                                                             s.e.
                                                             sigma^2 estimated as 10826652: log likelihood=-533.91
                                                             AIC=1073.83
                                                                         AICc=1074.29
                                                                                      BIC=1079.9
      fit_deaths_green %>% forecast(h=12) %>% autoplot()
231
```

Returning to the applied case – one data point is replicated

Delayed discharge / transfers of care in NHS England

Mortality in England, including 12-month forecast

A white-noise general trend with clear **seasonal pattern of** upward drift apparent in the autoregressive and integration (differencing) aspects

Green MA et al, Could the rise in mortality rates since 2015 be explained by changes in the number of delayed discharges of NHS patients? J Epi & Comm HIth 71(11), 16 Oct 2017.

8. Check forecasts for fit and predictiveness, refining and updating as needed

```
checkresiduals(fit_deaths_all, lag=12)

checkresiduals(fit_deaths_green)

Ljung-Box test

data: Residuals from ARIMA(0,0,0)(2,1,0)[12] with drift Q* = 124.64, df = 19, p-value < 2.2e-16

Model df: 3. Total lags used: 22

checkresiduals(fit_deaths_green)

Ljung-Box test

data: Residuals from ARIMA(0,0,0)(1,1,0)[12] with drift Q* = 68.616, df = 12, p-value = 5.809e-10

Model df: 2. Total lags used: 14
```

8. Check forecasts for fit and predictiveness, refining and updating as needed Deaths in England – full data available now, through August 2019

8. Check forecasts for fit and predictiveness, refining and updating as needed Deaths in England – Green et al replication, through March 2016

8. Check forecasts for fit and predictiveness, refining and updating as needed

- 248 autoplot(refit_deaths_all)
- 249 autoplot(refit_deaths_green)

All current data through August 2019

Green et al replication through March 2016


```
ts_acutedays_all <- ts(data_use$exp_days_acute, frequency=12, start=c(2010, 8))
ts_acutedays_green <- ts(data_green$exp_days_acute, frequency=12, start=c(2010, 8))</pre>
```

Firstly, can we replicate the same estimates as the Green et al paper through March 2016?

```
regress_green_auto <- auto.arima(ts_deaths_green, xreg=ts_acutedays_green, allowdrift=TRUE)
regress_green_auto
regress_green_auto %>% forecast(xreg=ts_acutedays_green, h=12) %>% autoplot()
```

Er, nope.

```
270 regress_all_auto <- auto.arima(ts_deaths_all, xreg=ts_acutedays_all,
allowdrift=TRUE)
271 regress_all_auto</pre>
```

Next, what happens when we include the additional 41 further months of data now available (through August 2019)?

279 regress_all_auto %>% forecast(xreg = ts_acutedays_all, h=12) %>% autoplot()

Discussion

Advantages and limitations of ARIMA

Advantages

- Enables useful, robust predictions and exploration of univariate + multivariable associations in time series data
- Captures nuanced time variations without needing to know underlying predictors
- Parametrically parsimonious
- Extremely flexible

Disadvantages

- Very limited causal strength (cf. Granger causality vs. more strict Pearl/Rubin sense of counterfactual causality)
- Cannot capture exogenous shocks or information
- Risk of model over-specification
- Data hungry, requiring constant updates
- Limited generalisability

Do NOT use ARIMA to...

- Make long-term predictions
 - Always update time series data wherever possible
 - In general, avoid ever making predictions for a longer timeline than the historical data you have available
 - Be aware that predictions will always become more uncertain the farther they are in the future
 - ARIMA is not good at all at handling exogenous shocks (cf. this practice case!)
- Evaluate time series for which stationarity cannot be achieved, e.g. data too sparse
 - Consider alternate methods, e.g. exponential smoothing
- 'Skip ahead' in science: In most cases of complex reality, ARIMA is not very suited to <u>test</u> (hypotheses) of generalisable or externally valid <u>causal</u> relationships
 - Instead, consider research design as well as analytical strategies, e.g. Survival analysis based on individual exposures and outcome censoring over time

Caveat emptor

Divorce rate in Maine

correlates with

Per capita consumption of margarine

ARIMA is useful to...

- Assess historic time trends and make near-term predictions
 - Relatively elegant parameterization makes for very nice internal validity across many different kinds of time series
 - Strength of internal validity in decomposing noisy data is particularly wellsuited to ongoing monitoring of deterministic systems (e.g. sales forecasts)
 - Availability of quick, user-friendly ML and visualization tools allows for nifty widgets
- Build an evidence base toward tricky scientific inference: Explore associations and surface hypotheses for potential causal links after descriptive comparison and expert intuition suggest 'there is something there'
 - Time-series analysis is particularly well-suited to ecological studies
 - Consistency or robustness of findings across space as well as time adds compelling evidence (e.g. regression effects observed in different local areas, among sub-populations of different ages)

57

Further references & reading

Chambers JC et al. "How to choose the right forecasting technique", Harvard Business Review, July 1971.

Coghlan A. *A little book of R for time series*, v0.2, Sept 2018.

Dalinina R. "Introduction to forecasting with ARIMA in R", Jan 2017.

Hyndman RJ. R documentation: forecast package, v8.9.

Hyndman RJ & Athanasopoulos G, Forecasting: principles and practice, 2nd ed. 2018.

Jones RH. "Maximum likelihood fitting of ARMA models to time series with missing observations", Technometrics, Mar 2012.

SAS/ETS® 9.2 Users' Guide. "X-11 ARIMA method" (for SAS vs. R implementation) 58

Thank you