

Advanced Interface Bus (AIB) Specification

2021.6.10 Revision 2.0.2

Revision History

Date	Version	Summary Of Changes		
10/26/18	1.0	Initial version		
04/18/19	1.1	Typographical fixes		
		Minor wording changes		
		Clarification of functionality		
		Additional bump array patterns for medium and high-density		
		bump pitches		
06/14/19	1.1.x	Typographical fixes on Figure 39, clarification to Table 51		
		Clarification of I/O mismatch requirement in Section 2.1.9		
09/27/19	1.2	Clarification of latency specification in Section 2.1.7, Section		
00,-11,10		2.2, and Section 2.2.1		
		Updated Figure 41 and Figure 42 to remove dependencies of		
		tx_transfer_en and rx_transfer_en from intermediate states		
5/31/2020	2.0	Issued closed in this revision (aib-phy-hardware numbering):		
3/31/2020	2.0	2,4 Electrical specs		
		11 Optional AUX block		
		13 Need to update *_sr_clkb doesn't operate in 2.0 mode		
		Need to update *rcv_clk/clkb do not operate in 2.0 mode		
		15 Add follower signal list and bump map to Alternate Bump Maps to section 7		
		17 Need to update Table 6 MAC Interface with signals from the		
		Usage Note		
		18 Add an AIB Plus 80 IOs Balanced example bump table 19 Table 40 lower left cell should be AIB0. lower right should be		
		19 Table 40 lower left cell should be AIB0, lower right should be AIB1		
		20 Table 36 formulas should be x=n-10, y=2n+8. Table 39 formulas		
		should be x=n-12, y=2n+20		
		21 Add an AIB Plus 80 IOs Balanced example Bump Map to match new Bump Table		
		23 Summarize change between GEN1 and GEN2 as reference		
		24 Table 2 is confusing with min/typ Gen1/typ Gen2		
		26 Indicate unused pins (e.g. ns_rcv_clk) need to be driven low in		
		Gen2		
		27 Update skew values for Gen2: Tds far 0.05Ul, Tdcs far 0.025 28 Table 20 should list "Medium bump pitch" and use footnote for		
		45u, 36u examples		
		29 Update electrical spec for Gen2: tEW Near=0.65 UI, Trace=0.2 UI		
		30 Remove master & slave references, replace with leader and follower		
		31 Describe DBI and provision for 2 DBI bits for every 40 (38) data		
		bits		
		35 Gen2 supports SDR only for the shift register		
		42 Bump tables need to explain what happens to signals not used in Gen2 like fs_sr_clkb		
		46 Clarify 3.2.1.4 Test Provision por_ovrd and device_detect_ovrd		
		with example		
		Clarify in Interface Orientation that N, S, E, W can be dual-mode		
		 48 Clarify 6.2 bump density ranges 49 Hyphenate high-density, medium-density and low-density 		
		34 Channel information in electrical specs		
		41 Figure 18: The clock should appear stable and the skew is the		
		distribution of data signals		
		43 Add standard loopback to help debug		

Date	Version	Summary Of Changes		
		50 2.0 minimum frequency should be 2Gbps. Change Table 3.		
		Issued closed in this revision (AIB-specification numbering):		
		2 Section 3.2 header format		
		3 Note to electrical specs about voltage supply		
		6 FIFOs added to 2.0 AIB Plus adapter		
		9 PHY/Application interface includes dual_mode_select signal		
		10 shift register clock signal name error		
		4 Loopback requirements		
		5 ESD specifications updated		
		12 Figure 32 error		
		13 Bump density description clarified		
		14 Added a recommended Word Mark bit location		
		16 Added m_wr_clk and m_rd_clk to MAC/PHY signal list		
		15 Added optional extension Test Pattern generator and checker		
		17 Only data and fwd_clk are low swing		
		18 Fixed SDR units in Table 3		
		19 Added Application to PHY signal m_gen2_mode for Gen1 or 2		
		20 m_power_on_reset changed to an input and an output		
		21 dual_mode_select must be stable at power-up		
		22 corrected m_rxfifo_align_done name (See issue 24)		
		i_conf_done interface reset added to Application to PHY		
		24 Change FIFO to Phase Compensator		
		25 Revert Vcm specification for AIB Gen1 to Vos / 2		
4/8/2021	2.0.1	26 Updated CONF_DONE description		
		27 Updated ns_mac_rdy description		
		28 Clarified reset and standby conditions		
		29 Updated dual_mode_select description		
		31 Corrected Word Mark bit recommended location		
		32 Added detail about the DBI bit location in the full rate word		
6/9/2021	2.0.2	32 Additional DBI detail		
		35 Phase Compensator Data Width clarification		

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or usage in trade.

This document contains information on products, services and/or processes in development. All information provided here is subject to change without notice.

Intel, the Intel logo and Stratix are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. Other names and brands may be claimed as the property of others.

© Intel Corporation.

Table of Contents

_				_
			story	
		_	ures	
			oles	
Glo	ssar	y an	d Acronyms	12
No	te on	Lar	nguage	15
1	Intr	odu	ction	16
1	.1	A S	econd Generation Die to Die Interconnect	16
1	.2	Cor	mpliance Summary	17
1	.3	Arc	hitecture	18
	1.3	.1	AIB Configurations	19
	1.3	.2	Near-Side and Far-Side Interfaces	20
	1.3	.3	Leader, Follower, and Dual-Mode Interfaces	20
	1.3	.4	AIB Interface	22
	1.3	.5	AIB-to-MAC Interface	27
	1.3	.6	AIB-to-Application Interface	31
2	Fur	nctio	nal Specification	34
2	2.1	I/O	Blocks	34
	2.1	.1	TX Block	34
	2.1	.2	RX Block	36
	2.1	.3	Data Exchange	37
	2.1	.4	Tristate	40
	2.1	.5	Weak Pull-Up and Pull-Down	40
	2.1	.6	Data-clock operation	40
	2.1	.7	Latency	
	2.1	.8	Asynchronous mode	47
	2.1	.9	Mismatched Interfaces	47
	2.1	.10	Unused Channels	48
2	2.2	AIB	Adapter (AIB Plus only)	
	2.2		Data-Retiming Register	
	2.2	.2	Adapter Phase Compensator (AIB Plus and Gen2 only)	

	2.2	2.3	Sideband Control Signals	54
	2.2	.4	Data Bus Inversion	62
3	Re	set a	and Initialization	63
	3.1	Dat	a-Transfer Ready	63
	3.1	.1	Standby Mode	64
	3.1	.2	Data-Transfer Ready Signals	64
	3.1	.3	The Effects of De-asserting Data-Transfer Ready	64
	3.2	Initi	alization	65
	3.2	.1	Power-on Reset Synchronization	65
	3.2	2	Configuration	68
	3.2	2.3	Calibration (AIB Plus only)	.70
	3.2	.4	AIB Link Ready	78
	3.3	Red	dundancy	.78
	3.3	3.1	Active Redundancy	.78
	3.3	3.2	Passive Redundancy	.80
4	Ele	ectric	al Specification	81
	4.1	Eye	Diagram	.81
	4.2	Ove	ershoot and Undershoot	82
	4.3	Ele	ctrostatic Discharge (ESD) Protection	83
5	De	sign	for Test	84
	5.1	JTA	\G	84
	5.1	.1	JTAG I/Os	84
	5.1	.2	JTAG cells	84
	5.1	. •	AIB Private JTAG instructions	
	5.2		pback	
6	Ph	ysica	al Signal Arrangement	. 87
	6.1	Inte	rface Orientation	87
	6.2	Bur	np Configuration	89
	6.3	Bur	np Assignment Process	90
	6.3	3.1	Data-Signal Bump Assignment	
	6.3	3.2	AIB AUX Signal Assignment1	801
	6.3	3.3	Example Bump Tables1	109
	6.3	.4	Example Bump Maps	113

	6.4	Sta	cking Channels into a Column	120
	6.5	Cha	annel-Number Semantics	125
	6.6	Alte	ernate Bump Maps	126
7	Ap	pend	dices	127
	7.1	Alte	ernate Bump Maps	127
	7.1	.1	Alternate (Leader) Bump Table	127
	7.1	.2	Alternate (Leader) Channel Bump Map	128
	7.1	.3	Alternate (Follower) Bump Table	130
	7.1	.4	Alternate (Follower) Channel Bump Map	131
	7.2	Sid	eband-Control-Signal Shift Register Mapping (AIB Plus only)	133
	7.3	Tes	st Pattern Extension	135
	7.3	3.1	Pattern Generator and Checker	135
	7.3	3.2	Pattern Data Paths	135

Table of Figures

Figure 1. AIB in the OSI Reference Model	. 19
Figure 2. Near Side and Far Side	. 20
Figure 3. Fixed Leader and Follower Interfaces	. 21
Figure 4. Dual-Mode Interfaces	. 22
Figure 5. AIB Signal Types	. 23
Figure 6. Interconnecting Near-Side and Far-Side Signals	. 23
Figure 7. An AIB Column	. 26
Figure 8. AIB Data Signals	. 26
Figure 9. MAC Interface	. 31
Figure 10. SDR and DDR TX Blocks	. 34
Figure 11. I/O Mapping: Transmit (Gen1 AIB Base)	. 35
Figure 12. I/O Mapping: Transmit (Gen1 AIB Plus, Gen2 AIB Base and AIB Plus use DDR only)	. 35
Figure 13. SDR and DDR RX Blocks	. 36
Figure 14. I/O Mapping: Receive (Gen1 AIB Base)	. 36
Figure 15. I/O Mapping: Receive (Gen1 AIB Plus, Gen2 AIB Base and AIB Plus use DDR only)	. 37
Figure 16. SDR Data/Clock Timing	. 38
Figure 17. DDR Data/Clock Timing	. 38
Figure 18. Unit Intervals for SDR, DDR Clocks	. 39
Figure 19. Skew Relationships	. 39
Figure 20. Forwarded Clock – Transmit	. 41
Figure 21. Forwarded Clock – Receive	. 42
Figure 22. Receive-Domain Clock - Transmit (AIB Plus only, Gen1 mode only)	. 43
Figure 23. Receive-Domain Clock - Receive (AIB Plus only, Gen1 mode only)	. 44
Figure 24. Duty-Cycle Correction (AIB Plus only)	. 45
Figure 25. Delay-Locked Loop	. 46
Figure 26. Latency Measurement	. 47
Figure 27. Asynchronous I/O Mode	. 47
Figure 28. Mismatched Interfaces, One Channel	. 48
Figure 29. Retiming Register	. 49

Figure 30. Adapter Phase Compensators (PC)	50
Figure 31. Word Marking Example,	52
Figure 32. Word Assembly Example,	53
Figure 33. Sideband Control Shift Registers	55
Figure 34. Leader Sideband Control Shift Register	56
Figure 35. Follower Sideband Control Shift Register	57
Figure 36. Free-running Clock Generation Options	58
Figure 37. Sideband-Control Shift-Register Timing	59
Figure 38. AIB Initialization	65
Figure 39. Power-on reset synchronization	66
Figure 40. Power-on reset and device detect test provision	67
Figure 41. Configuration completion signals.	69
Figure 42. Adapter Reset	70
Figure 43. Free-running Clock Calibration State Machine	71
Figure 44. Data-Path Calibration Architecture	72
Figure 45. Leader-to-Follower Datapath Calibration State Machine	75
Figure 46. Follower-to-Leader Datapath Calibration State Machine	77
Figure 47. Redundancy Routing	79
Figure 48. Direction of Redundancy Signal Shift	
Figure 49. Compliance Eye Mask	81
Figure 50. Overshoot and Undershoot at the Receiver	83
Figure 51. Near Side and Far Side Loopbacks	86
Figure 52. Interface Orientation	87
Figure 53. Standard Chiplet-to-Chiplet Interconnection	88
Figure 54. Rotated Chiplet-to-Chiplet Interconnection	89
Figure 55. Bump Spacing for Microbump Array	89
Figure 56. Signal Relationships for AIB Base Configurations	91
Figure 57. Signal Relationships for AIB Plus Configurations	92
Figure 58. Bump Map Assignment Order	107
Figure 59. Bump Map Migration Between Different Bump Densities	108
Figure 60. Low-Density Bump Map (AIB Base, 40 I/Os, Balanced)	114
Figure 61. Low-Density Bump Map (AIB Base, 20 TX)	115
Figure 62. Low-Density Bump Map (AIB Base, 20 RX)	115

Figure 63. Low-Density Bump Map (AIB Plus, 40 I/Os, Balanced)116
Figure 64. Low-Density Bump Map (AIB Plus, 20 TX)117
Figure 65. Low-Density Bump Map (AIB Plus, 20 RX)118
Figure 66 Medium-Density Bump Map (AIB Plus, 40 I/Os, Balanced)119
Figure 67 Medium-Density Bump Map (AIB Plus, 80 I/Os, Balanced)119
Figure 68 High-Density Bump Map (AIB Plus, 40 I/Os, Balanced)
Figure 69. Low-Density Channel 0 and AUX: East Side
Figure 70. Low-Density Channel 0 and AUX: West Side
Figure 71. Low-Density Channel 0 and AUX: North Side
Figure 72. Low-Density Channel 0 and AUX: South Side
Figure 73. Channel Stacking: East Side
Figure 74. Channel Stacking: West Side
Figure 75. Channel Stacking: North Side
Figure 76. Channel Stacking: South Side
Figure 77. Alternate Leader Bump Map
Figure 78. Alternate Follower Bump Map
Figure 79. Two die test case with independent pattern generators and checkers 136
Figure 80. Two die test case using far side loopback

Table of Tables

Table 1. AIB Gen1 and Gen2	17
Table 2. Design Feature Summary	18
Table 3. AIB Data Rates	20
Table 4. AIB Interface Signals in AIB Channel	25
Table 5. Number of Data Signals per Channel	25
Table 6. Number of Channels per Column	25
Table 7. MAC Interface	29
Table 8. Application Interface	33
Table 9. Skew Specifications	38
Table 10. Clock Duty-Cycle Requirements	45
Table 11. Latency Specification	46
Table 12. PC PHY/MAC Interface Width Examples	51
Table 13. Free-Running Clock Frequency	58
Table 14. Sideband Control Signals	61
Table 15. Reset Signal Summary	67
Table 16. Wired-AND Pull-Up Guidelines	70
Table 17. Calibration Initiation Signals	73
Table 18. Calibration Completion Signals	74
Table 19. Leader-to-Follower Calibration Signals	76
Table 20. Follower-to-Leader Calibration Signals	78
Table 21. Electrical signal specifications	82
Table 22. Overshoot and Undershoot Specifications	83
Table 23. ESD Specifications	83
Table 24. Private JTAG instructions	85
Table 25. Bump Spacing Specifications for Bump Array	90
Table 26. Bump Table: Starting	93
Table 27. Bump Table: Spare signals	93
Table 28. Bump Table: Inputs (AIB Base, Balanced)	93
Table 29. Bump Table: Complete (AIB Base, Balanced)	94
Table 30. Bump Table: Inputs (AIB Base, All-TX)	95
Table 31, Bump Table: Complete, (AIB Base, All-TX)	95

Table 32. Bump Table: Inputs (AIB Base, AII-RX)	96
Table 33. Bump Table: Complete (AIB Base, All-RX)	96
Table 34. Bump Table: Inputs (AIB Plus, Balanced)	97
Table 35. Bump Table: Complete (AIB Plus, Balanced)	98
Table 36. Bump Table: Inputs (AIB Plus, All-TX)	99
Table 37. Bump Table: Complete (AIB Plus, All-TX)	99
Table 38. Bump Table: Inputs (AIB Plus, All-RX)	100
Table 39. Bump Table: Complete (AIB Plus, All-RX)	101
Table 40. Bump-Table Exemplar (AIB Base, Balanced) x=n-10; y=2n+8	102
Table 41. Bump-Table Exemplar (AIB Base, All-TX) x=n-10	102
Table 42. Bump-Table Exemplar (AIB Base, All-RX) <i>y=n+8</i>	103
Table 43. Bump-Table Exemplar (AIB Plus, Balanced) <i>x=n-12; y=2n+20</i>	104
Table 44. Bump-Table Exemplar (AIB Plus, All-TX) x=n-12	105
Table 45. Bump-Table Exemplar (AIB Plus, All-RX) <i>y=n+18</i>	106
Table 46. AIB AUX Signal Bump Table	109
Table 47. Example Bump Table (AIB Base, 40 I/Os, Balanced)	109
Table 48. Example Bump Table (AIB Base, 20 RX)	110
Table 49. Example Bump Table (AIB Base, 20 TX)	110
Table 50. Example Bump Table (AIB Plus, 40 I/Os, Balanced)	111
Table 51. Example Bump Table (AIB Plus, 80 I/Os, Balanced)	112
Table 52. Example Bump Table (AIB Plus, 20 TX)	113
Table 53. Example Bump Table (AIB Plus, 20 RX)	113
Table 54. Alternate Leader Channel Bump Table	128
Table 55. Alternate Follower Channel Bump Table	131
Table 56. Leader Sideband-Control Signals	133
Table 57. Follower Sideband-Control Signal	134
Table 58. Test Pattern Polynomials	135

Glossary and Acronyms

This section defines phrases and acronyms that are not defined within the specification.

assert To make a signal TRUE or active. For an active-high signal,

this means asserting it HI; for an active-low signal, it means

asserting it LO.

boustrophedon Describes a back-and-forth motion. Literally means, "As the

ox plows."

bump A die/packaging interconnect scheme that reflows solder

bumps to make a connection from the die to the substrate to which it's being mounted. There may be a variety of sizes and means of implementing the bump. In this specification, bumps are implemented as microbumps. The terms "bump" and

"microbump" are used interchangeably.

CDM Charged-device model for ESD

chiplet A passivated bare die intended to be mounted on a substrate

like an interposer.

compliance mask Used to specify requirements on an eye diagram.

DCC Duty-cycle correction. Used to ensure that the duty cycle of a

signal remains within specification.

DCD Duty-cycle distortion. Refers to effects that may result in a

signals duty cycle being out of specification.

DDR Double data rate. Data is captured on both edges of the clock.

de-assert To make a signal FALSE or inactive. For an active-high

signal, this means de-asserting it LO; for an active-low signal,

it means de-asserting it HI.

DLL Delay-locked loop. A circuit that can synthesize multiple

frequencies and phase relationships from a single periodic signal. A digital version of a phase-locked loop (PLL).

quasi-differential

signal

A signal implemented over two wires having opposing polarities. Similar to analog differential signals, but created

polarities. Oir filar to arialog differential signals, but crea

using a pair of digital signals.

ESD Electrostatic discharge

eye diagram Used to illustrate high-speed signal switching in a manner that

allows specification and compliance testing of the signal

characteristics.

handshake A protocol that allows two sides of an interface to be

connected, configured, and synchronized.

HI A logic *high* level, equivalent to data value 1'b1. In the context

of this specification, it is implemented with a high voltage

value.

I/O Input/output. In the context of this specification, refers to

inputs and outputs collectively.

JTAG Joint Test Action Group. Refers to a standard for the testing of

chip-to-chip interconnections as well as select internal chip testing. The control and observability afforded by the standard

may be used for more than just testing.

latency The time required for a signal to traverse a given path.

Equivalent to "delay."

LO A logic *low* level, equivalent to data value 1b0. In the context

of this specification, it is implemented with a low voltage

value.

LSB Least-significant bit. In the context of a shift register, the bit

with the lowest number.

MAC Media Access Controller. The lowest-level of the Link Layer,

which is the layer above the PHY layer in the OSI reference

model.

microbump A bump interconnect scheme with very small bumps. Suitable

for mounting a die onto a substrate like an interposer, where fine lines can be created, but not for a printed circuit board. In this specification, the terms "bump" and "microbump" are used

interchangeably.

MSB Most-significant bit. In the context of a shift register, the bit

with the highest number.

OSI Open Systems Interconnection. A project undertaken at the

International Organization for Standardization (ISO), one outcome of which is the OSI reference model for networking.

overshoot For the purposes of this specification, refers to a rising signal

that exceeds the target static voltage before correcting itself

and ringing down to the target level.

PHY Physical layer. The bottom-most layer of the OSI reference

model. It specifies electrical and basic signaling requirements.

redundancy A technique for providing multiple instances of a resource for

use in case of the failure of one of them. In the context of this specification, refers to techniques that can be implemented at

or before testing and that are activated on power-up.

retiming Refers to insertion or relocation of one or more flip-flops within

a data path for the purpose of optimizing timing, power, and/or

area.

RX Receive. Applies to the inputs of a communications interface.

SDR Single data rate. Data is captured on one edge of the clock.

sideband Refers to signals that are not carried over the primary

communication channels, but rather through auxiliary

channels created specifically for those signals.

forwarded In the context of a communications link, refers to a control

signal – often the clock – sent from one side of the link to the

other.

TX Transmit. Applies to the outputs of a communications

interface.

Unit interval. The time, relative to the clock period, required to

transmit a symbol. Allows timing specifications that are

independent of a specific clock frequency.

undershoot For the purposes of this specification, refers to a falling signal

that goes below the target static voltage before correcting

itself and ringing down to the target level.

weak pull-up/down An active or passive component connecting a signal to

V_{DD}/ground to ensure that the signal, when not driven, will not float. The signal will be pulled to a HI/LO value. The term "weak" indicates that the pull-up/down component will pass

limited current.

Note on Language

In order to provide clarity on normative language as distinct from informative language, the following indicates the use of modal verbs:

- "Shall" indicates a requirement. Failure to meet the requirement will result in noncompliance.
- "May" indicates an option. Implementation of an option will result in compliance.
- "Should" indicates a strong suggestion for something outside the scope of the specification. Failure to implement the suggestion will not result in noncompliance.
- The lack of one of the above modal verbs indicates informative language.

1 Introduction

This specification describes the Advanced Interconnect Bus (AIB) architecture, interconnect attributes, signal management, and the configuration interface required to design and build systems and peripherals that are compliant with the AIB specification. The AIB is intended for interconnecting chiplets mounted within a package with signal distances of 10 millimeters or less (often referred to as Ultra-Short Reach). While no maximum interconnect distance is specified, AIB signal electrical requirements detailed in Section 4 shall be met. AIB is not intended for signals interconnecting or connecting to external package pins.

The specification is intended to provide interoperation between compliant chiplets. Choices made by the chiplet designer with respect to such elements as number and type of data signals, maximum supported clock speed, and any functionality that exceeds the minimum requirements established in the AIB specification should be documented in the chiplet datasheet.

AIB is a physical interconnect. Link, protocol and application layers are implemented on top of the AIB interface.

1.1 A Second Generation Die to Die Interconnect

The new high-level requirements of this second generation interconnect are:

- Higher bandwidth per pin to meet the increasing requirements of applications
- Reduced I/O voltage swing on data and data clocks for lower energy per bit to contain power and thermal impacts
- Compatibility with first generation AIB interfaces

Second generation AIB interfaces operate in either a Second Generation (Gen2) mode or a First Generation (Gen1) mode. Where Gen2 specifications are different than Gen1, the specifications are denoted with a Gen2 or Gen1 label.

Table 1 summarizes the new high-level requirements of Gen2.

Requirement	AIB Gen1	AIB Gen2	
Data Rate	Up to 2Gbps	Up to 6.4Gbps	
IO Voltage Output Swing	0.9V 0.4V for data Gen2 mode		
Electrical and Timing	See Table 21 Electrical Signal Specifications		
Backward Compatibility	n/a	Gen1	

Table 1. AIB Gen1 and Gen2

1.2 Compliance Summary

Table 2 summarizes the compliance points that shall be met in order to meet the AIB requirements. Each of the compliance points is discussed in the specification.

	Required		
Compliance Point	AIB Base	AIB Plus	Optional
AC Parameters (Section 4)	х	х	
JTAG boundary scan (Section 5.1)	х	Х	
Redundancy (Section 3.2.4)	х	х	
Bump assignment (Section 6.3)	х	х	
AUX (Section 1.3.4.4)	х	х	
SDR (Section 2.1.3.1)	x [1]	x [1]	
DDR (Section 2.1.3.2)	x [2]	х	
Latency specification	Х	Х	

	Requ	uired	
Compliance Point	AIB Base	AIB Plus	Optional
(Section 2.1.7)			
Free-running clock (Section 2.2.3.2)		X	
AIB Adapter (Section 2.2)		X	
Data-transfer ready (Section 3.1)	х	х	
Adapter reset (Section 3.2.3.1.1)		х	
DLL (Section 2.1.6.7)			х
DCC (Section 2.1.6.6)			х
Adapter retiming register (Section 2.2.1)		х	
Conf_done (Section 3.2.2.3.5)	х	x	

^{1.} In Gen2 mode, SDR is only supported for the Sideband Shift Register data (section 2.2.2).

Table 2. Design Feature Summary

1.3 Architecture

The AIB implements a physical-layer, or PHY, interconnect scheme, occupying Layer 1 on the OSI Reference Model.

^{2.} Gen1 AIB Base supports only SDR data transfer. In Gen2 mode AIB Base and AIB Plus support only DDR data transfer.

Figure 1. AIB in the OSI Reference Model

1.3.1 AIB Configurations

There are two AIB configurations: AIB Base and AIB Plus. AIB Base is a simpler interface; AIB Plus provides features to achieve maximum performance.

AIB Base and AIB Plus configurations are not intended to be interconnected as two sides of a link due to signals required by AIB Plus configurations that are not present in AIB Base configurations.

There is no maximum data rate specified for AIB. In the interest of interoperability, minimum rates are specified in Table 3 along with typical rates to provide a range likely to be supported by multiple chiplets. The full range of the operating data rates should be documented in the chiplet data sheet.

1.3.1.1 AIB Base

In Gen1 mode an AIB Base implementation shall transfer data using a single data rate (SDR) format (Section 2.1.3.1). In Gen2 mode an AIB Base implementation shall transfer data using a double data rate (DDR) format (Section 2.1.3.2).

1.3.1.2 AIB Plus

In Gen1 mode an AIB Plus implementation shall transfer data using a DDR format and a SDR format. In Gen2 mode an AIB Plus implementation shall transfer data using a DDR format. AIB Plus implementations shall include an AIB Adapter block, specified in Section 2.2. A primary function of the AIB Adapter is to provide a standard means for initialization of a channel such as handshaking on DLL calibration.

Data Format	Gen1 Supports Data Rates Up To This Minimum	Gen1 Typical Data Rates	Gen2 Supports Data Rates Up To This Minimum	Gen2 Typical Data Rates
SDR	500 Mbps	1Gbps	n/a	n/a
DDR	1 Gbps	2Gbps	2 Gbps	4Gbps, 6.4Gbps

Table 3. AIB Data Rates

1.3.2 Near-Side and Far-Side Interfaces

AIB specifies an interface for one chiplet that can be connected to a compatible interface on a different chiplet. An AIB interface is one side of the connection. A chiplet designer may be creating only one of those AIB interfaces; the AIB interface to which it will connect is assumed to have been created by a different designer, putting it beyond the control of the designer.

In order to provide a clear distinction between behavior that the designer shall implement and behavior that the designer shall expect from the AIB interface to which it will connect, the AIB interface being created will be referred to as the Near-Side interface. The AIB interface to which the near-side interface will connect will be called the Far-Side interface. Signal names that reflect the signal origin will be prefixed with ns_{-} or fs_{-} , respectively.

In the example of Figure 2, Chiplet A is the subject chiplet under design. Chiplet A will eventually connect to Chiplet B. From the reference of Chiplet A, Chiplet A is the near side and Chiplet B is the far side.

Figure 2. Near Side and Far Side

1.3.3 Leader, Follower, and Dual-Mode Interfaces

An AIB interface pair has a leader side and a follower side. Leaders and followers shall have specific roles only during initialization. Specifically:

• The leader shall be responsible for providing a free-running clock signal (Section

2.2.3.2).

- The leader shall provide a *device_detect* signal (Section 3.2.1).
- The follower shall provide a *power_on_reset* signal (Section 3.2.1)
- The leader and follower shall have differently sized Sideband Control Signal shift registers (Section 2.2.2).
- The AIB Adapter (AIB Plus only) shall behave differently for leaders and followers during initialization (Section 2.2).

An AIB interface configured as a leader shall be designed to connect to a follower; an AIB interface configured as a follower shall be designed to connect to a leader.

The leader/follower property of an interface is independent of the near-side/far-side property. A near-side interface can be either a leader or follower, as can a far-side interface.

An AIB interface shall be configured as leader or follower by one of the following two means:

- By designing the interface as a leader or follower, referred to as a fixed interface.
- By implementing a dual-mode interface that can be configured as leader or follower on power-up.

1.3.3.1 Fixed Interfaces

For fixed interfaces, the configuration of an interface as leader or follower shall be implemented by the chiplet designer and should be documented in the chiplet data sheet.

A chiplet may have one or more leaders, one or more followers, or a mixture of leaders and followers.

Figure 3. Fixed Leader and Follower Interfaces

1.3.3.2 Dual-Mode Interfaces

A chiplet may implement both leader and follower capability on an AIB interface, with leader or follower configured prior to operation. This promotes greater interoperability, since the chiplet may connect to chiplets that have either leader or follower AIB interfaces. Such interfaces are referred to as *dual-mode* interfaces. Any actions

required to configure the dual-mode interface should be documented in the chiplet data sheet.

Figure 4. Dual-Mode Interfaces

Dual-mode interfaces shall implement a *dual_mode_select* signal that configures the interface either as a leader or as a follower. The interface shall be configured as a leader when the *dual_mode_select* signal is HI and as a follower when the *dual_mode_select* signal is LO. The selected mode shall be valid when the AIB PHY powers up.

1.3.4 AIB Interface

The AIB interface defines four signal types:

- Data signals
 - o Inputs (RX): data input signals received by the interface
 - Outputs (TX): data output signals transmitted from the interface
- Clocks
 - Data clock out (ns_fwd_clk, ns_rcv_clk), sent by the near side chiplet to the far side chiplet
 - Data clock in (fs_fwd_clk, fs_rcv_clk): received by the near side chiplet from the far side chiplet
 - Free-running clock (AIB Plus only) (ns_sr_clk, fs_sr_clk): used by the sideband control signals
- Sideband control (AIB Plus only): used to implement calibration handshake.
- Asynchronous
 - Power-on reset: indicates whether a chiplet has completed power-on reset
 - o Device detect: used to verify presence of the leader
 - ns_mac_rdy, fs_mac_rdy: used to communicate that the MAC is ready for data transmission
 - ns_adapter_rstn, fs_adapter_rstn (AIB Plus only): used to reset the AIB Adapter registers, the AIB I/O registers, and the calibration circuits.

Figure 5. AIB Signal Types

Two interconnected chiplets will have the same set of signals. Signals from the near and far sides will be connected, such as ns_fwd_clk and fs_fwd_clk . Near-side signals should not be interconnected (e.g., ns_fwd_clk from one chiplet should not be connected to ns_fwd_clk from the other chiplet); far-side signals should not be interconnected (e.g., fs_fwd_clk from one chiplet should not be connected to fs_fwd_clk from the other chiplet. This is indicated in Figure 6, but the crossed wires are for illustration only. Microbump locations (Section 6.3) ensure that connections will be straight lines.

Figure 6. Interconnecting Near-Side and Far-Side Signals

Signal	Description	Present in AIB Base	Present in AIB Plus
TX	Synchronous data transmitted from the near side. (Section 2.1.1)	Х	Х
RX	Synchronous data received from the far side. (Section 2.1.2)	Х	Х
ns_fwd_clk/ns_fwd_clkb	Near-side transfer clock, forwarded from the near side to the far side for capturing received data. (Section 2.1.6.3)	Х	Х
fs_fwd_clk/fs_fwd_clkb	Far-side transfer clock, forwarded from the far side to the near side for capturing received data. (Section 2.1.6.3)	Х	Х
ns_rcv_clk/ns_rcv_clkb	Receive-domain clock forwarded from the near side to the far side for transmitting data from the far side. In Gen2 mode		Х

Signal	Description	Present in AIB Base	Present in AIB Plus
	these outputs are not used and shall be configured with a weak pull-down. (Section 2.1.6.4)		
fs_rcv_clk/fs_rcv_clkb	Receive-domain clock forwarded from the far side to the near side for transmitting data from the near side. In Gen2 mode these inputs are not used and shall be configured with a weak pull-down. (Section 2.1.6.4)		X
ns_sr_clk/ns_sr_clkb	Forwarded serial shift register clock from near side to far side chiplet, driven by free running clock. In Gen2 mode the ns_sr_clkb output is not used and shall be configured with a weak pull-down. (Section 2.2.3.2)		X
fs_sr_clk/fs_sr_clkb	Forwarded serial shift register clock from far side to near side chiplet, driven by free running clock. In Gen2 mode the fs_sr_clkb input is not used and shall be configured with a weak pull-down. (Section 2.2.3.2)		X
ns_sr_data	Time-multiplexed sideband-control data from near side to far side. (Section 2.2.3.5)		Х
fs_sr_data	Time-multiplexed sideband-control data from far side to near side. (Section 2.2.3.5)		Х
ns_sr load	Sideband control load signal from near side to far side. (Section 2.2.3.3)		Х
fs_sr_load	Sideband control load control signal from far side to near side. (Section 2.2.3.3)		Х
ns_mac_rdy	Data-transfer-ready signal from near side to far side. (Section 3.1).	Х	Х
fs_mac_rdy	Data-transfer-ready signal from far side to near side. (Section 3.1).	Х	Х
ns_adapter_rstn	Asynchronous adapter reset signal from near side to far side (Section 3.2.3.3.1)		Х

Signal	Description	Present in AIB Base	Present in AIB Plus
fs_adapter_rstn	Asynchronous adapter reset signal from far side to near side. (Section 3.2.3.3.1)		X

Table 4. AIB Interface Signals in AIB Channel

1.3.4.1 AIB Channel

AIB signals shall be grouped into AIB Channels. An AIB channel shall have a number of data signals not to exceed a limit determined by the microbump pitch of the chiplet.

The data signals may consist of half TX and half RX signals ("balanced" interface), all TX signals ("all-TX" interface) or all RX signals ("all-RX" interface).

	Range of data signals per channel (Increments)					
Microbump		TX			RX	
pitch (µm)	Balanced	AII-TX	AII-RX	Balanced	AII-TX	AII-RX
≤55	20-80 (20)	20-160 (20)	0	20-80 (20)	0	20-160 (20)
10	20-320 (20)	20-640 (20)	0	20-320 (20)	0	20-640 (20)

Table 5. Number of Data Signals per Channel

1.3.4.2 AIB Column

AIB channels shall be grouped into an AIB column. All AIB channels within a column shall have the same configuration (Base or Plus) and the same number of data signals.

A column may include an AUX block adjacent to the first channel.

Block type	Number allowed per column
Channels	1, 2, 4, 8, 12, 16, 24
AUX blocks	1

Table 6. Number of Channels per Column

.

Figure 7. An AIB Column

1.3.4.3 AIB data paths

Each data path within a channel shall be composed of an I/O Block (Section 2.1) and, for AIB Plus implementations, an AIB Adapter (Section 2.2).

Figure 8. AIB Data Signals

1.3.4.4 AUX Block

The AUX block shall consist of two signals: *power_on_reset* and *device_detect*. These signals shall be used during power-up initialization (Section 3.2.1). There shall be one AUX block per column.

The AUX block may use microbump IOs below the first channel or may use other IOs associated with the AIB interface.

1.3.5 AIB-to-MAC Interface

The following per-AIB-channel signals shall constitute the interface to the MAC.

Signals	In (from MAC) Out (to MAC)	Description
data_in	ln	For transmitting across the AIB link (Section 2.1.1)
data_out	Out	Received through the AIB link (Section 2.1.2)
data_in_f (AIB Plus and Gen2 only)	ln	For transmitting across the AIB link using the AIB Adapter Phase Compensator (Section 2.2.2)
data_out_f (AIB Plus and Gen2 only)	Out	Received through the AIB link using the AIB Adapter Phase Compensator (Section 2.2.2)
m_wr_clk	In	Clocks data_in_f
m_rd_clk	In	Clocks data_out_f
m_ns_fwd_clk (AIB Plus and Gen2 only)	In	For transmitting data from the near side to the far side (Section 2.1.6)
m_fs_fwd_clk	Out	Received from the far side and converted from quasi-differential to single-ended (Section 2.1.6.3)
m_ns_rcv_clk (AIB Plus only)	In	Receive-domain clock forwarded from the near side to the far side for transmitting data from the far side (Section 2.1.6.4) In Gen2 mode this input is ignored by the PHY.
m_fs_rcv_clk (AIB Plus only)	Out	Received from the far side and converted from quasi-differential to single-ended (Section 2.1.6.4). In Gen2 mode this output should be ignored by the MAC.
ns_mac_rdy	In	For resetting near-side data transfers and communicating MAC readiness for calibration to the far side (Section 3.1). Logically equivalent to the ns_mac_rdy AIB interface signal.

fs_mac_rdy	Out	Indicates that the far-side MAC is ready to transmit data (Section 3.1). Logically equivalent to the fs_mac_rdy AIB interface signal.
ns_adapter_rstn (AIB Plus only)	In	Resets the AIB Adapter (section 3.1)
ms_rx_dcc_dll_lock_req ms_tx_dcc_dll_lock_req (AIB Plus only)	In	Initiates calibration of transmit and receive paths for a leader interface (Section 3.2.3.3)
sl_rx_dcc_dll_lock_req sl_tx_dcc_dll_lock_req (AIB Plus only)	In	Initiates calibration of transmit and receive paths for a follower interface (Section 3.2.3.3)
ms_tx_transfer_en ms_rx_transfer_en (AIB Plus only)	Out	Indicate that calibration on the leader is complete for transmit and receive paths (Section 3.2.3.3)
sl_tx_transfer_en sl_rx_transfer_en (AIB Plus only)	Out	Indicate that calibration on the follower is complete for transmit and receive paths (Section 3.2.3.3)
m_rx_align_done (AIB Plus only, Gen2 only)	Out	Indicates that the receiving AIB Adapter is aligned to incoming word marked data (Section 2.2.2.2)
Signals indicating any conditions that may cause de-assertion of data-transfer ready	Out	Sent to MAC for possible data- transfer ready de-assertion by MAC (Section 3.1)
Signals indicating any conditions that may cause AIB Adapter reset and recalibration (AIB Plus only)	Out	Sent to MAC for possible adapter reset by MAC (Section 3.2.3)
User-defined shift- register bits (AIB Plus only)	In	For transmitting application-defined bits to the far side (Section 2.2.3.5.2)
i_osc_clk	In	Free running oscillator clock for a leader interface

Table 7. MAC Interface

*AIB Plus only **Gen1 AIB Plus only

Figure 9. MAC Interface

1.3.6 AIB-to-Application Interface

The following per-AIB-interface signals shall constitute the interface to the application.

Signals	In (from Application) Out (to Application)	Description
i_m_power_on_reset	Unused (Leader) In (Follower)	Follower: Controls the power_on_reset signal sent to the Leader. Must be stable at power-up.
o_m_power_on_reset	Out (Leader) Unused (Follower)	Leader: A copy of the power_on_reset signal from the Follower, qualified by override from m_por_ovrd.
m_por_ovrd	In (Leader) Unused (Follower)	Intended for standalone test without an AIB partner. If LO, the Leader is not in reset. If HI and the AIB interface signal power_on_reset input is 1, the Leader is held in reset. The Leader's power_on_reset input is required to have a weak pullup so that a no connect on that input will result in power_on_reset=HI.
m_device_detect	Unused (Leader) Out (Follower)	A copy of the AIB interface signal device_detect from the Leader, qualified by m_device_detect_ovrd.
m_device_detect_ovrd	Unused (Leader) In (Follower)	Intended for standalone test without an AIB partner. If LO, the Follower uses the AIB interface device_detect input. If HI, the Follower outputs m_device_detect=1.

dual_mode_select	In	Used with AIB interfaces that implement dual-mode (section 2.2.3.1.3). Must be stable at power up as this determines if the AIB interface receives power_on_reset (Leader) or drives power_on_reset (Follower). See section 3.2.1.1. If LO the AIB interface is a Follower. If HI the AIB interface is a Leader.
m_gen2_mode	In	If LO when the AIB interface is released from reset, the AIB interface is in Gen1 mode. If HI when the AIB interface is released from reset, the AIB interface is in Gen2 mode.
i_conf_done	In	Single control to reset all AIB channels in the interface. LO=reset, HI=out of reset. This input to the AIB PHY should be the same value as the chiplet's CONF_DONE pin. See section 3.2.2.3.5.

Table 8. Application Interface

2 Functional Specification

2.1 I/O Blocks

I/O blocks are divided into one of two types: RX or TX.

2.1.1 TX Block

A TX block shall register data before transmission. A DDR output shall combine two single-rate data streams into one double-rate stream.

Figure 10. SDR and DDR TX Blocks

Inputs to the I/O block shall be mapped according to Figure 11 and Figure 12. For DDR signaling, two AIB I/O inputs are multiplexed onto one output (for example, inputs 0 and 1 are mapped to output 0). For a DDR-capable I/O, all DDR internal signals (double the number of *TX* signals) shall be implemented. If the I/O block is configured as SDR, then half of those internal signals shall not be used.

Figure 11. I/O Mapping: Transmit (Gen1 AIB Base)

Figure 12. I/O Mapping: Transmit (Gen1 AIB Plus, Gen2 AIB Base and AIB Plus use DDR only)

2.1.2 RX Block

An RX block shall register incoming data using the forwarded clock. For a double-datarate stream data shall be clocked into one of two registers, one for each edge of the clock.

Figure 13. SDR and DDR RX Blocks

Outputs from the I/O block shall be mapped according to Figure 14 and Figure 15. For DDR signaling, one AIB I/O input is split into two AIB Adapter signals (for example, input 0 is mapped to AIB Adapter inputs 0 and 1). For a DDR-capable I/O (AIB Plus only), all DDR internal signals (double the number of *RX* signals) shall be implemented. If the I/O block is configured as SDR, then half of those internal signals shall not be used.

Figure 14. I/O Mapping: Receive (Gen1 AIB Base)

Figure 15. I/O Mapping: Receive (Gen1 AIB Plus, Gen2 AIB Base and AIB Plus use DDR only)

DDR

RX[0]

2.1.3 Data Exchange

data out[0]

AIB data signals shall be exchanged either as SDR (Gen1) or DDR (Gen1 AIB Plus or Gen2).

All data signals within an AIB channel shall use the same data exchange format.

2.1.3.1 SDR Data Exchange

Gen1 AIB Base interfaces shall exchange data using a SDR relationship between the clock and data. Data shall be transmitted on the falling edge of the clock.

Gen1 AIB Plus implementations shall also implement SDR data signals.

Figure 16. SDR Data/Clock Timing

2.1.3.2 DDR Data Exchange

Gen1 AIB Plus and Gen2 interfaces shall be capable of exchanging data using a DDR relationship between the clock and data. When using DDR exchange, data shall be transmitted on both rising and falling edges of the clock.

Figure 17. DDR Data/Clock Timing

An AIB I/O shall be capable of both SDR and DDR data exchange regardless of which option is selected for a specific application.

2.1.3.3 Signal Skew

Skew between data edges within a channel and between clock and data edges within a channel shall meet the following specification, where a unit interval (UI) is illustrated in Figure 18.

		Gen1		Gen2	
Symbol	Parameter	Measured at near- side output	Measured at far-side input	Measured at near- side output	Measured at far-side input
tos	Maximum data-to- data skew	0.04 UI	0.06 UI	0.04 UI	0.05 UI
tocs	Maximum data-to- clock skew	0.02 UI	0.03 UI	0.02 UI	0.025 UI

Table 9. Skew Specifications

Figure 18. Unit Intervals for SDR, DDR Clocks

Skew relationships are illustrated in Figure 19. The relationships and specifications shall be met by *TX* signals, *ns_fwd_clk*, and *ns_fwd_clkb*, and by *ns_sr_clk*, *ns_sr_clkb* (*ns_sr_clkb* is Gen1 only), *ns_sr_data*, and *ns_sr_load*.

Figure 19. Skew Relationships

2.1.4 Tristate

All output signals shall be capable of being put into tristate.

2.1.5 Weak Pull-Up and Pull-Down

All inputs and outputs shall have an associated weak pull-up and weak pull-down with the equivalent driving strength of $10-20~k\Omega$. The inputs and outputs shall be configurable either with the pull-up, with the pull-down, or with neither the pull-up nor the pull-down.

2.1.6 Data-clock operation

2.1.6.1 Transmit Clock

The AIB layer shall receive a transmit clock, $m_ns_fwd_clk$, from the MAC. That clock shall be used to transmit data and it shall be forwarded to the far side (Section 2.1.6.3). AIB Plus implementations may receive a receive-domain clock from the far side for use as a transmit clock source (Section 2.1.6.4).

2.1.6.2 Receive Clock (AIB Plus only, Gen1 mode only)

In AIB Plus implementations, the AIB layer shall receive a receive clock, *m_ns_rcv_clk*, from the MAC. That clock may optionally be sent to the far side for its use in transmitting data to the near side (Section 2.1.6.4). In Gen2 mode the receive clock is not used.

2.1.6.3 Forwarded Transmit Clock

An AIB Base or AIB Plus channel shall forward its transmit clock to the far side. The clock signal shall be quasi-differential when moving from one chiplet to the other.

The near side shall receive the forwarded clock, *fs_fwd_clk*, from the far side. Once converted from quasi-differential to single-ended, the clock shall be made available to the MAC.

Figure 20. Forwarded Clock – Transmit

Figure 21. Forwarded Clock - Receive

2.1.6.4 Receive-Domain Transmit Clock (AIB Plus only, Gen1 mode only)

An AIB Plus channel may use a receive-domain clock from the far side as its transmit clock instead of the clock from the near-side MAC if it is desired to transmit data using the far-side receive-clock domain rather than the near-side clock domain. The receive-domain clock shall be quasi-differential when moving from one chiplet to the other.

The receive-domain clock, when received from the far side, shall be sent to the near-side MAC. The MAC may select the receive-domain clock as the transmit clock to be sent to the AIB layer. This MAC selection is suggested in Figure 23 in light gray for clarity only. The specific means of implementing the clock selection within the MAC is not specified in this document.

An AIB Plus interface shall generate either an active receive-domain clock or an inactive receive-domain clock. An active near-side receive-domain clock shall present the near-side receive-domain output clock bump. An inactive near-side receive-domain clock shall have a static value on the near-side receive-domain clock bump. If active, the data sheet should document the receive-domain clock frequency. If inactive, the data sheet should document that fact.

Figure 22. Receive-Domain Clock – Transmit (AIB Plus only, Gen1 mode only)

Figure 23. Receive-Domain Clock – Receive (AIB Plus only, Gen1 mode only)

2.1.6.5 Clock Duty Cycle Requirements

The forwarded clock signal shall meet the following duty-cycle specification.

Symbol	Parameter		Near end
t _{FDCD}	Maximum forwarded- clock DCD	SDR	±10%
	Clock DCD	DDR	±3%
trdcd	Maximum receive- domain clock DCD		±10%

Table 10. Clock Duty-Cycle Requirements

2.1.6.6 Optional Forwarded-Clock Duty-Cycle Correction (AIB Plus only)

The transmit clock may pass through a duty-cycle correction (DCC) block prior to clocking the transmit register and prior to being forwarded if necessary for meeting the clock duty-cycle specification under all conditions of voltage and temperature (Section 2.1.6.5).

If the DCC is not present, calibration shall proceed as if it were (Section 3.2.3).

Figure 24. Duty-Cycle Correction (AIB Plus only)

2.1.6.7 Optional Forwarded Clock Phase Selection (AIB Plus only)

The received forwarded clock may pass through a delay-locked loop (DLL) for phase

correction before clocking the capture register if necessary to ensure correct data sampling under all conditions of voltage and temperature.

If the DLL is not present, calibration shall proceed as if it were (Section 3.2.3).

Figure 25. Delay-Locked Loop

2.1.7 Latency

The maximum latency for a signal from the input of a transmitting I/O block to the transmitted output, or from a received input to the output of the receiving I/O block, shall comply with Table 11 and Figure 26. For AIB Plus, the data sheet should indicate the total latency through the AIB Adapter and AIB I/O. The specified latency includes only the sequential delay and does not include analog delays through the transmitting output buffer, the receiving input buffer, or the interposer traces.

Latency path	AIB Base, Gen1	AIB Base, Gen2 and AIB Plus
Transmitting	1 CLK cycle (1 UI)	1.5 CLK cycle (3 UI)
Receiving	1 CLK cycle (1 UI)	1.5 CLK cycle (3 UI)

Table 11. Latency Specification

Figure 26. Latency Measurement

2.1.8 Asynchronous mode

I/O blocks that pass xx_mac_rdy (Gen1 mode only) and xx_adapter_reset signals shall operate in an asynchronous mode.

Figure 27. Asynchronous I/O Mode.

2.1.9 Mismatched Interfaces

The near side shall interoperate with a far side having a different number of I/Os than the near side provided:

- The two interfaces are of the same type (AIB Base or AIB Plus)
- The interfaces are aligned on the spare bumps.

If a near-side interface is connected to a far-side interface having fewer I/Os per channel than the near-side interface, then the unused I/Os in the near-side interface shall be placed into standby mode (Section 3.1.1). The near-side interface's MAC should be capable of handling the minimum number of I/Os from Table 5 within the larger full number of bits in the near-side's AIB-to-MAC data_in and data_out signals. The near-side MAC should be configurable for operation with the minimum number of

I/Os or with the MAC's larger full number.

Figure 28. Mismatched Interfaces, One Channel

2.1.10 Unused Channels

Any unused channels shall have the same number of data signals as the used channels. The data signals in the unused channels shall be put into standby mode.

2.2 AIB Adapter (AIB Plus only)

The AIB Adapter shall provide data retiming, sideband control signals, and calibration control for DDR mode. There shall be one AIB Adapter per channel.

2.2.1 Data-Retiming Register

Within an AIB Plus interface, the AIB Adapter shall implement at least one retiming register in the data path on the transmit and receive sides. All data signals within a channel shall have the same retiming configuration. The data sheet should include total latency through all possible datapaths in the AIB Adapter.

Figure 29. Retiming Register

2.2.2 Adapter Phase Compensator (AIB Plus and Gen2 only)

The AIB Adapter of a Gen2 AIB Plus interface shall implement a Phase Compensator (PC) for clock phase compensation between the AIB I/O and the MAC. The MAC supplied clocks shall be assumed by the AIB Adapter to be 0PPM different from the AIB I/O clocks, and the AIB Adapter shall compensate for the phase relation of the MAC-supplied clocks compared to the AIB I/O clocks. The phase compensation capability of the AIB adapter is implementation dependent. Figure 30 shows the adapter PC interfaces.

Figure 30. Adapter Phase Compensators (PC)

2.2.2.1 Phase Compensator Data Width and Rate at the PHY/MAC Interface

On the output path, the PC shall accept data from the MAC at full rate and same width as the AIB I/O's adapter interface, at half the rate and twice the width, and at one quarter the rate and four times the width. On the input path, the PC shall output data to the MAC at full rate and same width as the AIB I/O's adapter interface, at half the rate and twice the width, and at one quarter the rate and four times the width as the AIB I/O. The full rate, half rate or quarter rate mode shall be an AIB configuration setting. Note that the AIB I/O's adapter interface is twice as wide as RX or TX at the AIB I/O pins, since the AIB I/O performs SDR/DDR conversion.

The AIB Adapter shall assume that the m_wr_clk and m_rd_clk inputs correspond in frequency to the PC's full rate, half rate or quarter rate setting. For example, a 4Gbps AIB interface has $m_fs_fwd_clk$ at 2GHz. A quarter rate setting for the AIB Adapter PC has m_rd_clk at 500MHz, but still at 0PPM difference from $m_fs_fwd_clk$.

Table 12 is an example of the width of *data_out_f* and *data_in_f* compared to *RX* and *TX*, with the PC PHY/MAC interface rate varied from full rate, to half rate and to quarter

rate.

AIB <i>RX</i> or <i>TX</i> width	Adapter PC Rate Configuration	Adapter PC PHY/MAC interface width of data_out_f or data_in_f
40	Full Rate	80
40	Half Rate	160
40	Quarter Rate	320

Table 12. PC PHY/MAC Interface Width Examples

When the phase compensator is set to full rate or half rate output to MAC (data_out_f) or input from MAC (data_in_f), not all of the PHY/MAC bus is utilized, since the bus is sized to quarter rate. The full rate or half rate data starts at bit 0 and is continuous through bit Active Width-1.

2.2.2.2 AIB Adapter Word Marking and Word Assembly

Assembling a half rate or quarter rate word sent over an AIB channel requires information about the position of received full rate words within the original half rate or full rate word. A signal from the transmitting side to the receiving side is commonly used to indicate the full rate word's position. When word assembly by the AIB is enabled, the adapter uses a bit within each full rate data word to determine the full rate word's position.

The AIB Adapter shall have the capability to mark outgoing data to indicate which full rate data word was at the high position of a larger data word input from the MAC. Word marking is used in Adapter PC half rate and quarter rate configurations. A Mark bit is allocated in-band and used every full rate word. Figure 31 is an example word marking using half rate PC mode and 40Tx bits per channel. Note that the Mark bit is set to 1 only on the upper full rate word of the larger word received from the MAC. Other full rate words have their Mark bit set to 0.

Figure 31. Word Marking Example, Half Rate PC Mode, 40 Tx Bits per Channel

The Mark bit position within the full rate word shall be configurable. The recommended bit position in the full rate word is the 3rd MSB, which avoids conflict with DBI (section 2.2.4). In the example of Figure 31, the 3rd MSB position puts the Mark bit at d[77] and d[157].

Word marking shall be programmable to one of two states:

- No marking (user data passes through at the Mark bit location)
- Mark is 0 or 1 according to the full rate word's position in the word at the MAC/PHY interface, with Mark=1 only in the highest full rate word

On the receiving side, the AIB Adapter shall reassemble the data from the AIB RX into a larger word if the adapter is configured into half rate or quarter rate mode. The adapter shall use the Mark bit to determine which is the high full rate word and assemble the words into their corresponding positions. The Mark bit position within the full rate word shall be configurable. Figure 32 is an example of quarter rate word assembly.

Figure 32. Word Assembly Example, Quarter Rate PC Mode, 40 Rx Bits per Channel

Once the receiving AIB Adapter finds the Mark bit and is assembling half rate or quarter rate words, the adapter is said to be aligned. Once aligned, the adapter shall set the PHY/MAC signal $m_rx_align_done$ HI and continue assembling half rate or quarter rate words from full rate words in the sequence received. Once aligned, the adapter does not need to locate the Mark bit again. This permits the transmit side to stop sending Mark bits and instead use that bit position for data.

Once aligned, if the adapter sees an unexpected 0 or 1 in the Mark bit position, the adapter shall set $m_rx_align_done$ LO. The adapter shall still continue assembling half rate or quarter rate words in the sequence received. An interface reset (power_on_reset, i_conf_done or i_m_power_on_reset) or adapter reset (ns_adapter_rstn or fs_adapter_rstn) is required for the adapter to restart its alignment process.

Note that if a reset is applied, word marking must be enabled for the AIB Adapter to complete a new alignment process.

2.2.3 Sideband Control Signals

An AIB interface shall provide control signals for calibration and communication of control and status information between the near-side and far-side chiplets. These signals shall be time-domain multiplexed onto a single data line. Internal signals shall be first loaded into a parallel register before being shifted out serially, starting with the most-significant bit (MSB). Received serial signals shall be loaded into a parallel register upon assertion of the received *load* signal. A *load* signal (Section 2.2.3.3) shall coordinate the timing of the loading from and to parallel registers. The *load* signal shall be generated on the sending side and shall be forwarded from the sending chiplet to the receiving chiplet.

The sideband control shift register shall be clocked by a free-running clock (Section 2.2.3.2) such that the shift registers shall constantly send data. It shall not be possible to stop or restart the sending of sideband control signals.

Figure 33. Sideband Control Shift Registers

2.2.3.1 Shift-Register Configurations

The definition of the shift register and the position of signals shall depend upon whether the interface is a leader, follower, or dual-mode.

2.2.3.1.1 Leader Interface

A leader interface shall include two shift registers: one for transmitting leader sideband

control signals to the follower (the leader shift register), and one for receiving sideband control signals from the follower (the follower-copy shift register). The leader shift register shall contain 81 bits. The follower-copy shift register shall contain 73 bits. All bits shall be implemented regardless of whether optional signals are implemented. Any signals not implemented shall permanently maintain their default values as defined in Table 56.

Figure 34. Leader Sideband Control Shift Register

2.2.3.1.2 Follower Interface

A follower interface shall include two shift registers: one for transmitting follower sideband control signals to the leader (the follower register), and one for receiving sideband control signals from the leader (the leader-copy shift register). The follower shift register shall contain 73 bits. The leader-copy shift register shall contain 81 bits. All bits shall be implemented regardless of whether optional signals are implemented. Any signals not implemented shall permanently maintain their default values as defined in Table 57

Figure 35. Follower Sideband Control Shift Register

2.2.3.1.3 Dual-Mode Interface

When configured as a leader, a dual-mode interface shall implement an output shift register configured as a leader and an input shift register configured as a follower. When configured as a follower, a dual-mode interface shall implement an output shift register configured as a follower and an input shift register configured as a leader.

The *dual_mode_select* signal (Section 1.3.3.2) shall select the shift-register configuration appropriate to the selected mode.

2.2.3.2 Free-Running Clock

The shift registers shall be clocked by a free-running clock. The free-running clock shall be generated on the leader side and forwarded to the follower side.

The free-running clock shall be independent of the data clocks. It shall run continuously during operation. It shall have a frequency within the range specified in Table 13.

Parameter	Min	Max
Free-Running Clock Frequency (default)	600 MHz	1 GHz
Free-Running Clock Frequency if user-defined signals (Section 2.2.3.5.2) are not used	50 Mhz	1 Ghz

Table 13. Free-Running Clock Frequency

When user defined signals are used, the higher minimum free-running clock frequency ensures that the far side will be able to see changes in the near side user signals. Since the shift registers are approximately 100 bits long, the user defined signals can change up to approximately a frequency that is 1/200th of the free-running clock frequency and the change can be detected on the far side.

2.2.3.2.1 Free-Running Clock Generation

The leader interface chiplet shall be responsible for generating the free-running clock and distributing it to the follower interface via the sr_clk signal (ns_sr_clk when sent from the near side; fs_sr_clk when received from the far side). The follower interface (especially dual-mode) chiplet can either use forwarded free running clock from leader interface chiplet or use its existing free running clock to support output operation of its sideband control signals. If an external oscillator is used to generate the free-running clock, then output of that oscillator shall be run through the leader interface before it is distributed to the follower interface via sr_clk in order to ensure the correct phase relationships between the free-running clock and the *load* signal (Section 2.2.3.3).

Figure 36. Free-running Clock Generation Options

2.2.3.3 Load Signal

An *sr_load* signal (*ns_sr_load* when sent from the near side; *fs_sr_load* when received

from the far side) shall provide synchronous data transfer between parallel and serial shift registers (Figure 35). It shall be created from the free-running clock by a sideband-control state machine and transmitted as an SDR signal (Figure 16). The period of the *load* signal shall be a number of free-running clock cycles that is one more than the number of bits in the shift register (i.e., 1/74 or 1/82).

The *sr_load* signal shall remain LO until asserted HI; it shall remain asserted HI for one clock cycle before being de-asserted LO.

When transmitting sideband control signals, the control signal data shall be clocked into the parallel register when the *load* signal is asserted. When receiving sideband control signals, the received serial data shall be transferred into the parallel register when the *load* signal is asserted.

There shall be no valid control-bit data when the *load* signal is asserted. The MSB shall be shifted out on the falling edge of the *load* signal.

2.2.3.4 Control Signal Timing

When loading a new sideband control signal value into the parallel register for shifting out, the value presented to the parallel load register shall remain valid for at least the maximum time between *load* assertions.

The first bit of the shift register to be shifted out when transmitting shall be the MSB (bit 72 or 80); the last bit to be shifted in when receiving shall be the LSB (bit 0).

Figure 37. Sideband-Control Shift-Register Timing

2.2.3.5 Control Signals

Sideband control signals fall into one of the following categories:

- Calibration handshake
- Selective reset
- User-defined
- Reserved

The bits for any unused signals shall be maintained with default values for correct shift-register length.

The sideband control signals are summarized in Table 14 and are detailed in Table 57.

2.2.3.5.1 Calibration Bits

Calibration bits shall be generated by internal state machines as described in Section 3.2.3.

2.2.3.5.2 User-Defined Bits

User-defined bits are available for application use. Since both sides need to understand the function of user-defined bits, using these bits may limit chiplet interoperability. If implemented in an application, user-defined bits should be described in the chiplet data sheet.

2.2.3.5.3 Shift-Register Signals

Table 14 defines the sideband control signals for leader and follower chiplets. The table is organized by signal type; in-order signal tables with default values are provided in Section 7.1.3. *ms* prefixes refer to signals originating on the leader side; *sl* prefixes refer to signals originating on the follower side.

	Ciamal		Signal origin	Bit number	
Signal name	Signal function	Bits	(far-side or MAC)	Leader	Follower
Calibration (Section 3.2	2.3)				
ms_osc_transfer_en sl_osc_transfer_en	Oscillator calibration complete	1	FS	80	72
ms_tx_dcc_cal_done sl_tx_dcc_cal_done	TX DCC calibration complete	1	FS	68	31
ms_rx_transfer_en sl_rx_transfer_en	RX calibration complete	1	FS	75	70
ms_rx_dcc_dll_lock_req sl_rx_dcc_dll_lock_req	Start RX calibration	1	MAC	NA	69
ms_rx_dll_lock sl_rx_dll_lock	RX DLL locked	1	FS	74	68
ms_tx_transfer_en sl_tx_transfer_en	TX calibration complete	1	FS	78	64
ms_tx_dcc_dll_lock_req sl_tx_dcc_dll_lock_req	Start TX calibration	1	MAC	NA	63
User-defined					
external_cntl[]	Defined by protocol and/or application	Follower: 56 Leader: 63	MAC or FS	0-4 8-65	32-57 28-30 0-26
Other	Other				
Reserved			NA	79 76-77 69-73 66-67 5-7	71 65-67 58-62 27

Table 14. Sideband Control Signals

2.2.4 Data Bus Inversion

Data Bus Inversion (DBI) is intended to reduce the power delivery network load of an AIB PHY by limiting the number of AIB data bits that can switch between immediate data transfer cycles. In Gen2 mode (DDR data transfers), AIB shall support DBI-AC in groups of 20 RX and 20 TX data wires. Channels may have multiple DBI data groups, for example a channel with 40 RX and 40 TX has a total of 4 DBI data groups. DBI shall be configurable on or off. When DBI is configured on, the AIB adapter shall process both RX and TX data for DBI. With DBI off, the data inside RX and TX are unaffected.

2.2.4.1 TX DBI Function

Within a DBI group of 19 data signals, the TX DBI logic calculates the DBI bit based on the number of data signals changing from their previous state on the AIB data bus.

Generically for a group of 19 data signals on the AIB wires the formula below is used for calculating the DBI bit and performing data inversion. The formula below uses "+" to indicate arithmetic addition, "^" to indicate exclusive OR, and "?" as a ternary IF.

Key

u[n]: Data arriving at the input of the DBI logic v[n]: u[n] after DBI logic's possible inversion v_{prev}[n]: The previous period's v[n]

DBI Formula

```
DBI = ((u[18] \land v_{prev}[18]) + (u[17] \land v_{prev}[17]) + \dots + (u[1] \land v_{prev}[1]) + (u[0] \land v_{prev}[0])) > 9 ? 1 : 0);
```

If the DBI bit=1 then the TX DBI logic inverts the 19 u[18:0] bits, creating v[n] before sending {DBI, v[18:0]} on the AIB TX wires

2.2.4.2 RX DBI Function

Within a DBI group the RX DBI logic extracts the DBI bit. If DBI=1 then the RX DBI logic inverts the RX bits of the DBI group. The DBI bit is passed through.

2.2.4.3 DBI Bit Positions

Since the DBI logic function is performed at full rate, before DDR conversion, the DBI logic must anticipate the DDR conversion.

With DBI on, DBI bits replace certain data bits before the data is sent on the AIB TX wires. The example below shows a 40 bit TX channel. RX wires have DBI at the same bit locations. Channels with more IOs continue with same 19 data bits + 1 DBI bit increment. In this example, the full rate data_in is 80 bits wide, labeled as "d[n]" below. The MAC to PHY data_in may be wider if the adapter phase compensator of 2.2.2 is used in half rate or quarter rate.

Key

TX[39:0]: Data on the AIB wires

```
d[79:0]: Full rate version of data_in or data_in_f from the MAC
```

q[79:0]: d[79:0] after DBI logic's possible inversion, with DBI bits inserted. q[79:0] is the full rate word presented to the AIB output cells for SDR to DDR conversion. DBI bits occupy full rate word bit positions 79, 78, 39 and 38.

q_{prev}[79:0]: The previous full rate period's q[79:0]. Note that only odd bits 1 to 77 are used.

DBI[3:0]: DBI bits corresponding to 19bit groups as defined below

DBI Off

```
TX[39:0] (even DDR period) = {d[78],d[76],d[74], ...d[2],d[0]}; 
 TX[39:0] (following odd DDR period) = {d[79],d[77],d[75], ...d[3],d[1]};
```

DBI On

```
DBI[0] = ((d[36] \land q_{prev}[37]) + (d[34] \land q_{prev}[35]) +
     ... + (d[2] \land q_{prev}[3]) + (d[0] \land q_{prev}[1]) > 9 ? 1 : 0);
DBI[1] = ((d[37] \land q[36]) + (d[35] \land q[34]) +
     \dots + (d[3] \land q[2]) + (d[1] \land q[0])) > 9?1:0);
DBI[2] = ((d[76] \land q_{prev}[77]) + (d[74] \land q_{prev}[75]) +
     ... + (d[42] \land q_{prev}[43]) + (d[40] \land q_{prev}[41])) > 9?1:0);
DBI[3] = ((d[77] \land q[76]) + (d[75] \land q[74]) +
     \dots + (d[43] \land q[42]) + (d[41] \land q[40])) > 9?1:0);
q[79:0] = {DBI[3], DBI[2], d[77] ^ DBI[3], d[76] ^ DBI[2],
     d[75] ^ DBI[3], d[74] ^ DBI[2], ..., d[41] ^ DBI[3], d[40] ^ DBI[2],
     DBI[1], DBI[0], d[37] ^ DBI[1], d[36] ^ DBI[0],
     d[35] ^ DBI[1], d[34] ^ DBI[0], ..., d[1] ^ DBI[1], d[0] ^ DBI[0]};
TX[39:0] (even DDR period) =
     {DBI[2], q[76], q[74], ...q[42], q[40], DBI[0], q[36], q[34] ...q[2], q[0]};
TX[39:0] (following odd DDR period) =
     {DBI[3], q[77], q[75], ...q[43], q[41], DBI[1], q[37], q[35] ...q[3], q[1]};
```

3 Reset and Initialization

3.1 Data-Transfer Ready

A data-transfer ready signal shall be made available for control by the MAC layer. The data-transfer ready signal may be de-asserted due to application-driven changes, including but not limited to:

- An intentional change in clock frequency
- · Receipt of bad data

De-asserting the data-transfer ready signal may also be necessary due to conditions within the AIB interface, which may include but are not limited to:

- Completion of configuration during power-up
- Initiation of reset by the far side
- Loss of DLL lock

Internal AIB conditions indicating the need for de-assertion of the data-transfer ready signal shall be sent to the MAC so that the MAC can de-assert the data-transfer ready signal.

For AIB Plus interfaces, once data-transfer ready has been re-asserted after having been de-asserted, the AIB Adapter shall be re-calibrated (Section 3.2.3). The reverse is not true: calibration may be initiated without de-asserting data-transfer ready first.

3.1.1 Standby Mode

A signal shall be placed into standby mode by one of the following means:

- Driving the signal LO
- Putting the signal into tristate and enabling the weak pull-down.

During initialization, data outputs shall be placed into standby mode.

3.1.2 Data-Transfer Ready Signals

Each channel shall have an *ns_mac_rdy* signal that is controlled by the near-side MAC. When the *ns_mac_*rdy signal is asserted HI by the MAC, it shall indicate that the near side is ready for calibration and data transfer. De-assertion of *ns_mac_rdy* shall affect only its own channel; other channels may continue transmitting data.

The *ns_mac_rdy* signal shall be forwarded to the far side, where it shall be received on the *fs_mac_rdy* input in order to inform the far-side MAC that the near-side MAC is or is not ready for calibration.

3.1.3 The Effects of De-asserting Data-Transfer Ready

While the *ns_mac_rdy* signal is de-asserted:

- Data transmission shall halt
- Data outputs shall be placed into standby mode (Section 3.1.1)
- The clock output ns_fwd_clk shall go into standby mode.
- The reset signal ns_mac_rdy shall be sent to the far side of the interface in order to communicate that data transmission has halted and to allow for the far side to be reset.

The contents of retiming registers (Section 2.2.1) shall be undefined following deassertion of data-transfer ready.

De-assertion of the data-transfer ready signal shall not affect the free-running clock

signals or the sideband-control signals.

3.2 Initialization

Initialization will consist of two or three steps in sequence:

- Power-on reset synchronization
- Configuration
- Calibration (AIB Plus only)

Figure 38. AIB Initialization

If there are multiple AIB Plus interfaces on a single chiplet, they shall all come out of configuration at the same time, but they may complete adapter reset and calibration at different times depending on implementation.

3.2.1 Power-on Reset Synchronization

Power-on reset, being the first step in initialization, shall not require any features enabled by configuration (in the manner that the SDR/DDR option is configured, for example), since configuration will not occur until after power-on reset.

3.2.1.1 Power-on Reset Signals

Two signals shall participate in power-on reset: *power_on_reset* and *device_detect*. Their function shall depend on whether the interface is a leader, a follower, or dual-mode (Section 1.3.3).

- For leader interfaces:
 - o power on reset shall be implemented as an input.
 - device_detect shall be implemented as an output.
- For follower interfaces:
 - power_on_reset shall be implemented as an output.
 - o device detect shall be implemented as an input.
- For dual-mode interfaces, the *dual_mode_select* (Section 1.3.3.2) signal shall select the function of the *power_on_reset* and *device_detect* signals as input/output (leader) or output/input (follower).

3.2.1.2 Power-on Reset Sequence

During power-on reset, all input and output signals shall be placed into standby mode (Section 3.1.1). The power-on reset sequence shall proceed as follows:

- The leader interface shall assert its device_detect signal HI to indicate its
 presence to follower interfaces on different chiplets. If no device_detect signal is
 detected by the follower, then the follower may act both to ensure that it and its
 chiplet are in a safe state and to alert the MAC.
- 2. Each chiplet shall implement its own power-on reset routine. At the beginning of the routine, follower interfaces shall assert their *power_on_reset* signals HI.
- 3. When a chiplet completes its power-on reset sequence:
 - a. Leader interfaces shall begin the configuration stage.
 - b. Follower interfaces shall de-assert their power_on_reset signals LO and begin the configuration stage. The system designer should ensure that power_on_reset from the Follower is not deasserted before the Leader has completed its power-on reset routine.

Figure 39. Power-on reset synchronization

3.2.1.3 Unused Interfaces

In order to ensure correct operation for chiplets with unused leader interfaces, the *power_on_reset* inputs for those unused interfaces shall have weak pull-ups.

In order to ensure correct operation for chiplets with unused follower interfaces, the *device detect* inputs for those unused interfaces shall have weak pull-downs.

3.2.1.4 Test Provision

In order to test the power-on reset sequence at the wafer level, two signals shall be provided for use by automated test equipment to override the *power_on_reset* and *device_detect* signals when there is no leader/follower pair available. *por_ovrd* overrides the *power_on_reset signal*, and *device_detect_ovrd* overrides the *device_detect* signal. Figure 40 shows how each override is used when the chiplet is not connected as a pair.

Figure 40. Power-on reset and device detect test provision

As described in Table 8, *dual_mode_select* = LO is a Follower interface and *dual_mode_select* = HI is a Leader interface. A fixed Leader or Follower interface may implement *power_on_reset* and *device_detect* as input only and output only according to the Leader and Follower requirements of section 3.2.1.1.

3.2.1.5 Reset Summary

Signal	Resets Adapter State (AIB Plus only)	Resets IOs
power_on_reset	Yes when HI	Yes when HI
i_conf_done	Yes when LO	Yes when LO
		Yes for clocks and
ns_mac_rdy	No	data when LO*
fs_mac_rdy	No	No
ns_adapter_rstn (AIB Plus only)	Yes when LO	No
fs_adapter_rstn (AIB Plus only)	Yes when LO	No

^{*} rx, tx, ns_fwd_clk/b, fs_fwd_clk/b, and for m_gen2_mode=0 (Gen1 mode) ns_rcv_clk/b, fs_rcv_clk/b

Table 15. Reset Signal Summary

3.2.2 Configuration

Configuration may include:

- Host chiplet configuration (in the case of an FPGA or similar chiplet)
- AIB interface configuration
- AIB redundancy activation

The MAC should set the MAC to AIB PHY input ns_mac_rdy to LO during configuration and set ns_mac_rdy to HI when configuration completes and the chiplet is ready for calibration and data transfer. The clock input from the MAC should be stable prior to assertion of ns_mac_rdy .

3.2.2.1 Output State During Configuration

All outputs, including data outputs, the free-running clock output, sideband-control output, reset outputs, and adapter reset outputs shall be in standby mode (Section 3.1.1) during configuration. The free-running clock output, sideband-control output, reset outputs, and adapter reset outputs must come out of standby mode upon completion of configuration.

3.2.2.2 Chiplet Configuration

Configuration of any non-AIB aspects of the chiplet is outside the scope of this specification.

3.2.2.3 AIB Interface Configuration

3.2.2.3.1 Power-Up Configuration

All intended AIB features shall be configured at power-up.

3.2.2.3.2 JTAG Configuration

The chiplet data sheet should document the configuration requirements that allow for successfully implementation of JTAG EXTEST and INTEST operations.

3.2.2.3.3 Free-Running Clock Oscillator Stability (AIB Plus only)

Within a leader interface, the oscillator used for the free-running clock shall be stable before configuration is complete.

3.2.2.3.4 Sideband Control Shift Register Readiness (AIB Plus only)

The sideband control shift register shall be operational once configuration is complete.

3.2.2.3.5 Configuration Completion Signals

Each chiplet shall have a *conf_done* signal. *conf_done* shall be an open-drain output. It shall be asserted LO when configuring, and it shall be released when configuration of all interfaces on the chiplet is complete, the analog circuits are stable, and the free-running clock is stable. *conf_done* shall indicate only that AIB configuration is complete. No

other configuration completion (MAC, FPGA, etc.) shall be included in the generation of the *conf_done* signal.

All *conf_done* signals from all chiplets of a module should be connected in a wired-AND configuration to generate a module-level *CONF_DONE* signal that shall be HI when all chiplets on the module have completed AIB configuration. The pull-up resistor used to implement the wired-AND function may reside on the module containing the chiplets with AIB interfaces, or it may reside off the module. The *CONF_DONE* signal should be provided as an output of the module regardless of the resistor placement.

Figure 41. Configuration completion signals.

All inputs and outputs in the AIB bump array shall remain in standby mode (Section 3.1.1) until *CONF_DONE* is asserted, including in the case where CONF_DONE is pulled low some time after being asserted high.

The resistance and VDD values should comply with

Parameter	Value
Pull-up resistance	1 kΩ

Pull-up V _{DD} 0.9 V

Table 16. Wired-AND Pull-Up Guidelines

3.2.3 Calibration (AIB Plus only)

The calibration sequence shall proceed as follows:

- Adapter reset
- Free-running-clock synchronization
- Data path calibration

The adapter reset phase and free-running-clock synchronization phase may run concurrently.

3.2.3.1.1 Adapter Reset Signal

An AIB interface shall have an *ns_adapter_rstn* signal that is asserted by the MAC. It shall be forwarded to the far side of the interface, driving the far side's *fs_adapter_rstn* input. Likewise, the interface shall have an *fs_adapter_rstn* input that accepts the *ns_adapter_rstn* signal from the far side.

Figure 42. Adapter Reset

When either the near-side or far-side adapter reset signal is asserted LO, the adapter shall reset the calibration state machines. If adapter reset follows de-assertion of data-transfer ready, *ns_mac_rdy* must be asserted HI before *ns_adapter_rstn* is asserted HI.

3.2.3.2 Free-Running-Clock Synchronization

The free-running clocks are synchronized across the interface according to Figure 43. The numbers in black indicate the sequence of steps.

Figure 43. Free-running Clock Calibration State Machine

3.2.3.3 Data-Path Calibration

Data-path calibration shall be implemented via state machines on the leader and follower sides of the interface that intercommunicate via the sideband control signals.

Figure 44. Data-Path Calibration Architecture

Following the de-assertion of the adapter-reset signal(s), a calibration request shall be made by asserting a calibration request signal. Separate calibration sequences shall be used for a leader transmitting to a follower (Section 3.2.3.3.6) and a follower transmitting to a leader (Section 3.2.3.3.7). The two sequences may occur in any order or concurrently.

3.2.3.3.1 Adapter Reset

Data-path calibration shall be initiated when the MAC layer asserts the *ns_adapter_rstn* signal LO or the far side asserts the *fs_adapter_rstn* signal LO. If the data-transfer ready signal was de-asserted prior to the start of calibration, then the *ns_mac_rdy* signal must be asserted HI prior to asserting the adapter-reset signals HI

The MAC must de-assert the adapter-reset signal prior to requesting calibration start.

3.2.3.3.2 Calibration Request

Calibration can be requested by either the leader or the follower using the $ms_xx_dcc_dll_lock_req$ signal or the $sl_xx_dcc_dll_lock_req$ signal, respectively, where "xx" is tx or rx according to the direction of dataflow.

Calibration initiator	Dataflow direction	Initiation signal
Leader	Leader to follower	ms_tx_dcc_dll_lock_req
Follower	Leader to follower	sl_rx_dcc_dll_lock_req
Leader	Follower to leader	ms_rx_dcc_dll_lock_req
Follower	Follower to leader	sl_tx_dcc_dll_lock_req

Table 17. Calibration Initiation Signals

Calibration for a dataflow direction shall commence when both leader and follower side have asserted their calibration request signals for that dataflow direction. Calibration request signals shall remain asserted until a new calibration is requested.

3.2.3.3.3 DCC Calibration

Upon receipt of an *xx_dcc_dll_lock_req* signal, the DCC shall be calibrated. The means of calibration is not specified and is left to the designer. If the optional DCC is not present, then the state machines in Section 3.2.3.3 shall remain the same, with the DCC calibration state serving only to provide a signal indicating DCC calibration completion.

3.2.3.3.4 DLL Calibration

Following DCC calibration, the receiving DLL shall be calibrated. The means of calibrating the DLL is not specified and is left to the designer.

If the optional DLL is not present, then the state machine in Section 3.2.3.3 shall remain the same, with the DLL lock state serving only to provide a signal indicating DLL lock completion.

3.2.3.3.5 Calibration Completion

Calibration completion shall be indicated by the following signals. Full completion shall be indicated when all four signals are asserted HI. All four signals, once asserted, shall remain asserted until a new calibration sequence is requested.

Calibration Completion Signal	Meaning
ms_tx_transfer_en	Leader transmit block has completed calibration.
ms_rx_transfer_en	Leader receive block has completed calibration
sl_tx_transfer_en	Follower transmit block has

	completed calibration
sl_rx_transfer_en	Follower receive block has completed calibration

Table 18. Calibration Completion Signals

3.2.3.3.6 Calibration of Leader-to-Follower Datapath

Leader-to-follower calibration shall comply with Figure 45. The numbers in black indicate the sequence of steps. The *ms_osc_transfer_alive* signal shall come from the free-running clock synchronization state machine (Section 3.2.3.2).

Figure 45. Leader-to-Follower Datapath Calibration State Machine

Signals used in the leader-to-follower calibration sequence are listed in Table 19.

Signals	Description
sl_rx_dcc_dll_lock_req	Request from follower to start calibration. Once
	asserted, shall remain asserted until a new calibration is requested.
ms_tx_dcc_dll_lock_req	Request from leader to start calibration. Once asserted, shall remain asserted until a new calibration is requested.
ms_tx_dcc_cal_done	Indicates that leader has completed its DCC calibration. Once asserted, shall remain asserted until a new calibration is requested.
sl_rx_dll_lock	Indicates that follower has completed its DLL lock procedure. Once asserted, shall remain asserted until a new calibration is requested.
sl_rx_transfer_en	Indicates that follower has completed its RX path calibration and is ready to receive data. Once asserted, shall remain asserted until calibration is complete.
ms_tx_transfer_en	Indicates that leader has completed its TX path calibration and is ready to receive data.

Table 19. Leader-to-Follower Calibration Signals

3.2.3.3.7 Calibration of Follower-to-Leader Datapath

Follower-to-leader calibration shall comply with Figure 46. The numbers in black indicate the sequence of steps. The *ms_osc_transfer_alive* signal shall come from the free-running clock synchronization state machine (Section 3.2.3.2).

Figure 46. Follower-to-Leader Datapath Calibration State Machine

Signals	Description
sl_tx_dcc_dll_lock_req	Request from follower to start calibration. Once asserted, shall remain asserted until a new calibration is requested.
ms_rx_dcc_dll_lock_req	Request from leader to start calibration. Once asserted, shall remain asserted until a new calibration is requested.

Signals	Description
sl_tx_dcc_cal_done	Indicates that follower has completed its DCC calibration. Once asserted, shall remain asserted until a new calibration is requested.
ms_rx_dll_lock	Indicates that leader has completed its DLL lock procedure. Once asserted, shall remain asserted until a new calibration is requested.
sl_tx_transfer_en	Indicates that follower has completed its TX path calibration and is ready to receive data. Once asserted, shall remain asserted until calibration is complete.
ms_rx_transfer_en	Indicates that leader has completed its RX path calibration and is ready to receive data. Once asserted, shall remain asserted until calibration is complete.

Table 20. Follower-to-Leader Calibration Signals

3.2.4 AIB Link Ready

When both *sl_tx_transfer_en* and *ms_tx_transfer_en* are true, then the link shall be ready to transmit data.

3.3 Redundancy

In order to improve interposer assembly yields, AIB interfaces shall implement a redundancy scheme. Data signals, clocks, and sideband control signals (AIB Plus only) shall implement an active redundancy scheme; *power_on_reset* and *device_detect* signals shall implement a passive redundancy scheme.

3.3.1 Active Redundancy

Within each channel, two *spare* bumps shall be provided for implementation of active redundancy.

If a connection from one chiplet to another is either open or shorted, that signal shall be rerouted two signals away. All signals in the direction of the signal shift shall also have their signals rerouted by two signals. The shift shall terminate at the *spare* bumps. Signal shifting shall occur only between the faulty signal and the *spare* signal.

This signal shift shall be implemented by both interconnected chiplets.

Figure 47. Redundancy Routing

When a faulty connection is detected and repaired, the output cell connected to the faulty connection shall be placed into standby mode.

For channels with unused data signals (Section 2.1.9), only used data signals shall be rerouted.

If two or more connections within one channel are faulty, then it shall not be possible to repair the connection.

Figure 48. Direction of Redundancy Signal Shift

3.3.1.1 Neighboring-Cell Requirements

Each I/O cell, in addition to implementing its primary function, shall be capable of

implementing the function of a neighboring rerouted signal. Specifically:

- The *spare* cells shall be configurable as output or input.
- Synchronous cells (outputs, inputs, clocks) that may carry rerouted asynchronous signals (control signals) shall be capable of asynchronous mode (Section 2.1.8).
- Asynchronous cells (control signals) that may carry rerouted synchronous signals (outputs, inputs, clocks) shall be capable of SDR synchronous mode (Section 2.1.3).
- In Gen2 mode a full voltage swing cell that may carry a rerouted low voltage swing signal (Table 21) shall be capable of operating in low swing mode if that cell is used in Gen2 mode (Table 4, Figure 47, Figure 56, Figure 57).

3.3.1.2 Redundancy Storage

During module test, if it is determined that a signal connection within a channel between two chiplets is faulty, the necessary redundancy activation shall be determined and stored in each chiplet.

3.3.1.3 Redundancy Activation

With each power-up event, the stored redundancy information shall be retrieved and applied.

3.3.1.4 Redundancy Documentation

Each chiplet should document both how to store redundancy and how to retrieve and activate redundancy in the data sheet.

3.3.2 Passive Redundancy

Two signals shall be active prior to configuration: <code>power_on_reset</code> and <code>device_detect</code>. If the AUX Block is implemented using microbumps, in order to improve yields with respect to these signals, two bumps shall be provided for each signal and both bumps shall be soldered down to connect to two separate identical traces on the interposer. This passive redundancy scheme shall repair opens, but not shorts.

4 Electrical Specification

4.1 Eye Diagram

Compliance of data and clock signals shall be verified using a compliance mask on an eye diagram that specifies the minimum voltage swing (HI - LO), the minimum duration during which the output voltage will be stable, and the maximum allowed over- and undershoot.

Figure 49. Compliance Eye Mask

Compliance is measured both at output bumps and at input bumps. It is applicable to both DDR/SDR modes for data, clocks or active control signals (such as *_sr_data, and *_sr_load). The connection between the near end and the far end is referred to as the trace.

For the receive-domain clock (Section 2.1.6.4), the near end is on the receiving side, since that is where that clock originates; the far end becomes the transmitting side. Timing specifications for the receive-domain clock are more stringent than those of the forwarded clock since the receive-domain clock traverses a trace from near end to far end before being forwarded across a second trace.

Signals (data, clock, and active control signals) shall meet the voltage and timing specifications provided in Table 21.

- Delays are specified in terms of unit interval, or UI. This refers to the minimum interval between data changes, and it is therefore a function of the clock frequency.
- For Gen1 the near-end timing specifications reflect microbumps with low-density pitch and a 0.5-pF capacitive load. For Gen2 the near-end timing specifications reflect microbumps with medium-density pitch and a 0.3pF capacitive load. Low, Medium and High-density bump pitches are defined in section 6.2. 55um is a low-density bump pitch. 45um and 36um are medium-density bump pitches.
- The "trace" timing specifications in Table 21 reference a channel that has 2dB

loss at 2GHz.

- Skew parameters are measured from the center of the eye.
- Jitter margin shall include all possible jitter contributors within the chiplet, including but not limited to reference clock jitter; intrinsic jitter contributed by any phase-locked loop, clock-data recovery, delay-lock loop, or the clock network; jitter caused by power-supply noise; and jitter caused by switching noise.

		Gen1 Mode and Gen2 Mode low-speed signals ²		Gen2 Mode data and forwarded clock ³			
Symbol	Parameter	Near end	Trace	Far end	Near end	Trace	Far end
V _{EH}	Minimum difference between LO and HI (eye diagram height)			+/-90 mV			+/-50 mV
Vні	Minimum output voltage for HI state	0.7 V			0.4 V		
V _{LO}	Maximum output voltage for LO state	0 V			0 V		
Vos	Typical output swing	0.9 V			0.4 V		
V _{CM}	Common mode voltage	Vos / 2			0.2 V +/- 10mV ¹		
t _{EW}	Minimum duration of valid output (eye diagram width) for data and forwarded clock	0.56 UI	0.1 UI	0.4 UI	0.65 UI	0.2 UI	0.4 UI
t _{BEW}	Minimum duration of valid output (eye diagram width) for receive-domain clock	0.66 UI	0.1 UI	0.56 UI	n/a	n/a	n/a

^{1.} V_{CM} tolerance includes all board level effects, with power supply variation (e.g. regulator) within 5%.

Table 21. Electrical signal specifications

4.2 Overshoot and Undershoot

Signal overshoot and undershoot at the receiver shall meet the specification in Table 22. Overshoot and Undershoot Specifications, where the symbols are illustrated in Figure 50. Overshoot and Undershoot.

^{2. &}quot;Gen2 Mode low-speed signals" includes all signals of Table 4 except TX, RX, ns_fwd_clk, ns_fwd_clkb, fs_fwd_clk, fs_fwd_clkb.

^{3. &}quot;Gen2 Mode data and forward clock" are the signals TX, RX, ns_fwd_clk, ns_fwd_clkb, fs_fwd_clkb.

Symbol	Parameter	Level	Units
Voa	Maximum peak overshoot amplitude	0.25*Vos	V
Vua	Maximum peak undershoot amplitude	-0.25*Vos	V
Tod	Maximum overshoot duration	0.4	ns
T _{UD}	Maximum undershoot duration	0.4	ns

Table 22. Overshoot and Undershoot Specifications

Figure 50. Overshoot and Undershoot at the Receiver

4.3 Electrostatic Discharge (ESD) Protection

AIB IOs shall meet the ESD specifications in Table 23.

Parameter	Minimum
Discharge voltage (CDM)	35 V
Discharge current	300mA

Table 23. ESD Specifications

5 Design for Test

5.1 JTAG

5.1.1 JTAG I/Os

All JTAG I/Os shall be fully compliant with the JTAG specification, IEEE 1149.1.

5.1.2 JTAG cells

JTAG cells are simplified to eliminate the launch register. This means that:

- Data being shifted into the scan chain will be immediately applied during the shifting process without need for transferring the data from the chain into the launch registers. As data will be presented temporarily while being shifted, the data shall cause no undesired behavior while being shifted.
- It shall be possible to connect AIB JTAG cells into a single scan chain.
- It shall not be possible to create a single scan chain that mixes both standard JTAG cells and AIB JTAG cells.

The JTAG scan chain shall include all control and data I/Os, but not the *power_on_reset* or the *device_detect* signals.

5.1.3 AIB Private JTAG instructions

Manipulation of an AIB interface shall use the following private JTAG instructions. The operation codes should be documented in the chiplet data sheet.

Instruction Name	Description
AIB_SHIFT_EN	Enables boundary-scan register contents to be shifted out to TDO while test data is shifted into the boundary-scan registers via TDI.
AIB_SHIFT_DIS	Disables shifting of boundary-scan data out to TDO or in from TDI.
AIB_TRANSMIT_EN	Enables the forcing of a value onto output pins.
AIB_TRANSMIT_DIS	Disables the forcing of a value onto output pins
AIB_RESET_EN	Reset the registers in the input and output cells. Not effective until AIB_RESET_OVRD_EN is asserted to override the operational reset signal.
AIB_RESET_DIS	De-assert the reset signal from the registers in the input and output cells. Not effective until AIB_RESET_OVRD_EN is asserted to override the operational reset signal.
AIB_RESET_OVRD_EN	Applies the reset state set by AIB_RESET_EN or AIB_RESET_DIS, overriding the operational reset signal.
AIB_RESET_OVRD_DIS	Applies the reset state set by the operational reset signal.
AIB_WEAKPU_EN	Enable weak pull-up on all AIB IO blocks within a column.
AIB_WEAKPU_DIS	Disable weak pull-up on all AIB IO blocks within a column.
AIB_WEAKPDN_EN	Enable weak pull-down on all AIB IO blocks within a column.
AIB_WEAKPDN_DIS	Disable weak pull-down on all AIB IO cells within a column.
AIB_INTEST_EN	Enable testing of data path between the MAC layer (AIB Base) or the AIB Adapter (AIB Plus) and the I/O block.
AIB_INTEST_DIS	Disable testing of data path between the MAC layer (AIB Base) or the AIB Adapter (AIB Plus) and the I/O block.
AIB_JTAG_CLKSEL	Select the JTAG clock or the operational clock for the register in the I/O block. Takes an argument: if HI, then the JTAG clock is selected; if LO, then the operational clock is selected.

Table 24. Private JTAG instructions

5.2 Loopback

An AIB Plus Gen2 interface shall have Near Side and Far Side data loopback modes

usable for test. Figure 51 shows a Near Side Loopback Path, used for loopback into the AIB PHY and back to the MAC. The Far Side Loopback Path of Figure 51 may be used between die, where the far side chiplet is sending data and receiving the looped-back data.

Figure 51. Near Side and Far Side Loopbacks

When in near side loopback mode, the AIB interface shall connect full rate TX data to the RX adapter input data and shall connect the *ns_fwd_clk* to the RX adapter and MAC/PHY interface. When in far side loopback mode, the AIB interface shall connect incoming RX data to the TX data adapter input and shall connect the incoming *fs_fwd_clk* to the outgoing *ns_fwd_clk*.

RX and TX data LSBs shall be mapped to each other, continuing for all bits up to RX MSB and TX MSB mapped to each other.

The interface shall have a control to turn on loopback mode, for example in a test configuration of the interface.

6 Physical Signal Arrangement

6.1 Interface Orientation

Die orientation shall be with respect to the die facing up with the alignment mark (or the [0,0] origin) at the lower left. Sides shall be referred to as East/West/North/South with respect to this orientation. Interface orientation should be documented in the chiplet data sheet.

- The west interface shall have Channel 0 at the bottom. This shall be a follower or dual-mode interface.
- The north interface shall have Channel 0 at the left. This shall be a follower or dual-mode interface.
- The east interface shall have Channel 0 at the bottom. This shall be a leader or dual-mode interface.
- The south interface shall have Channel 0 at the left. This shall be a leader or dual-mode interface.
- The AUX block, if implemented using microbumps, shall be placed at the end of a column next to Channel 0.

Figure 52. Interface Orientation

This convention facilitates interconnection of interfaces between chiplets in a way that ensures correct leader/follower and channel/AUX interconnect (Figure 53).

Figure 53. Standard Chiplet-to-Chiplet Interconnection

In the event of a chiplet being rotated from the standard orientation prior to being connected, the interface on the rotated chiplet must be dual-mode and configured to ensure a leader/follower relationship (example shown in Figure 54). This is intended to facilitate straight, balanced signal connections. The long AUX (Section 1.3.4.4) connections are acceptable, since these are static signals.

Figure 54. Rotated Chiplet-to-Chiplet Interconnection

6.2 Bump Configuration

Microbumps shall be configured in staggered arrays as shown in Figure 55.

Figure 55. Bump Spacing for Microbump Array

There are three supported bump arrays for low-density, medium-density and high-density microbumps.

Low-density may be used with any microbump pitch up to 55 μm.

- Medium-density may be used with any microbump pitch up to 52 μm.
- High-density may be used with any microbump pitch up to 20 μm.

The spacing of the microbump array shall meet the following specifications (Table 25) in μ m. The X1 dimension may be reduced, but the Y dimension shall not be reduced. The channel height shall be fixed at 312.48 μ m. For medium and high-density arrays, depending on actual minimum bump pitch technology, either X1 or Z reaches minimum bump pitch first such that other dimension (Z or X1) will be set to non-minimum value.

Symbol	Description	Low-density	Medium-density	High-density
X1	Aligned-row bump-to- bump pitch	55 or ≥ minimum bump pitch such that Z minimum is met	55 or ≥ minimum bump pitch such that Z minimum is met	55 or ≥ minimum bump pitch such that Z minimum is met
X2	Staggered-row bump- to-bump pitch	X1÷2	X1÷2	X1÷2
Z	Diagonal bump-to- bump pitch	≥ minimum bump pitch	≥ minimum bump pitch	≥ minimum bump pitch
Υ	Aligned-column bump-to-bump pitch	104.16	52.08	26.04

Table 25. Bump Spacing Specifications for Bump Array

6.3 Bump Assignment Process

The low-density bump assignment process is based on the signal relationships for Balanced, All-TX, and All-RX configurations for both AlB Base and AlB Plus, as illustrated in Figure 56 and Figure 57. The goal of this placement process is to ensure the shortest, most direct connections between the near side and the far side. The connections between functional signals are described above. The *spare(0)* signal from the near side connects to the *spare(1)* signal on the far side; the *spare(1)* signal from the near side connects to the *spare(0)* signal on the far side.

The medium-density bump array is derived from the low-density bump array. The high-density bump array is derived from the medium-density bump array.

All bump arrays share the same bump table process.

RX[10] – RX[n]		RX[10] – RX[n]
fs_fwd_clk/clkb		fs_fwd_clk/clkb
RX[0] – RX[9]		RX[0] – RX[9]
fs_mac_rdy	fs_mac_rdy	fs_mac_rdy
spare	spare	spare
ns_mac_rdy	ns_mac_rdy	ns_mac_rdy
TX[0] – TX[9]	TX[0] – TX[9]	
ns_fwd_clk/clkb	ns_fwd_clk/clkb	
TX[10] – TX[n]	TX[10] – TX[n]	
Balanced	All-TX	All-RX

Figure 56. Signal Relationships for AIB Base Configurations

RX[10] – RX[n]
fs_fwd_clk/clkb
RX[0] – RX[9]
fs_rcv_clk/clkb
fs_sr_clk/clkb
fs_load/data
fs_mac_rdy/fs_adapter_rstn
spare
ns_mac_rdy/ns_adapter_rstn
113_111ac_1dy/113_adapter_13ti1
ns_sr_load/data
ns_sr_load/data
ns_sr_load/data ns_sr_clk/clkb
ns_sr_load/data ns_sr_clk/clkb ns_rcv_clk/clkb

fs_rcv_clk/clkb		
fs_sr_clk/clkb		
fs_load/data		
fs_mac_rdy/fs_adapter_rstn		
spare		
ns_mac_rdy/ns_adapter_rstn		
ns_sr_load/data		
ns_sr_clk/clkb		
ns_rcv_clk/clkb		
TX[0] – TX[9]		
ns_fwd_clk/clkb		
TX[10] – TX[n]		

RX[10] – RX[n]
fs_fwd_clk/clkb
RX[0] – RX[9]
fs_rcv_clk/clkb
fs_sr_clk/clkb
fs_load/data
fs_mac_rdy/fs_adapter_rstn
spare
ns_mac_rdy/ns_adapter_rstn
ns_sr_load/data
ns_sr_clk/clkb
ns_rcv_clk/clkb

Balanced All-TX All-RX

Figure 57. Signal Relationships for AIB Plus Configurations

6.3.1 Data-Signal Bump Assignment

Because a channel may have a range of data signals as defined in Table 5 specific bump assignments for every possible configuration are not practical. Instead, an algorithm determines how bumps shall be assigned for any legal data signal count.

Bumps shall be assigned as follows. Any bumps labeled as "(empty)" are available for any connection that doesn't involved an active AIB signal.

6.3.1.1 Gen1 and Gen2 Signals

As specified in Table 4, signals not used in Gen2 are still allocated in the bump tables for compatibility. See the notes in Table 4 for handling of those signals when in Gen2 mode.

6.3.1.2 Bump Table

1. Create a *bump table* with pairs of signals. Odd-numbered signals are on the left, even-numbered signals are on the right.

Bump ID	Bump Name	Ю

Bump ID	Bump Name	Ю

Table 26. Bump Table: Starting

2. The middle row of the table shall be for the *spare* signals (left and right).

Bump ID	Bump Name	Ю
	spare[0]	I/O

Bump ID	Bump Name	Ю
	spare[1]	I/O
	1 1	

Table 27. Bump Table: Spare signals

6.3.1.2.1 AIB Base, Balanced

- 3. Moving up from the middle, in order, the following signals, which are all inputs from the far side, shall be placed:
 - 1. Empty on left (since no adapter reset); MAC ready on right
 - 2. Five pairs of data inputs
 - 3. The forwarded negative clock on left; the forwarded positive clock on right
 - 4. The remaining pairs of used inputs
 - 5. Any unused inputs

Bump		
ID	Bump Name	10
	RX[n-1]	in
	RX[11]	in
	fs_fwd_clkb	in
	RX[9]	in
	RX[7]	in
	RX[5]	in
	RX[3]	in
	RX[1]	in
	(empty)	in
	spare[0]	I/O

Bump		
ID	Bump Name	10
	RX[n-2]	in
	RX[10]	in
	fs_fwd_clk	in
	RX[8]	in
	RX[6]	in
	RX[4]	in
	RX[2]	in
	RX[0]	in
	fs_mac_rdy	in
	spare[1]	I/O

Table 28. Bump Table: Inputs

(AIB Base, Balanced)

- 4. The "edge of chiplet" shall be directly above the topmost row.
- 5. Moving down from the *spare* signal, the following signals, which are all outputs to the far side, shall be placed:
 - 1. MAC ready on left; empty on right (since no adapter reset)
 - 2. Five pairs of data outputs
 - 3. The forwarded positive clock on left; the forwarded negative clock on right
 - 4. The remaining pairs of used outputs.
 - 5. Any unused outputs

Bump		
ID	Bump Name	IO
	RX[n-1]	in
	fs_fwd_clkb	in
	RX[9]	in
	RX[7]	in
	RX[5]	in
	RX[3]	in
	RX[1]	in
	(empty)	in
	spare[0]	I/O
	ns_mac_rdy	out
	TX[0]	out
	TX[2]	out
	TX[4]	out
	TX[6]	out
	TX[8]	out
	ns_ fwd _clk	out
	TX[10]	out
	TX[n-2]	out

Bump		
ID [*]	Bump Name	IO
	RX[n-2]	in
	fs_ fwd _clk	in
	RX[8]	in
	RX[6]	in
	RX[4]	in
	RX[2]	in
	RX[0]	in
	fs_mac_rdy	in
	spare[1]	I/O
	(empty)	out
	TX[1]	out
	TX[3]	out
	TX[5]	out
	TX[7]	out
	TX[9]	out
	ns_ fwd _clkb	out
	TX[11]	out
	• • • •	
	TX[n-1]	out

Table 29. Bump Table: Complete (AIB Base, Balanced)

6.3.1.2.2 AIB Base, AII-TX

- 3. Moving up from the middle, in order, the following signals, which are all inputs from the far side, shall be placed:
 - 1. Empty on left (since no adapter reset); MAC ready on right

Bump ID	Bump Name	Ю
	(empty)	in
	spare[0]	I/O

Bump ID	Bump Name	Ю
	fs_mac_rdy	in
	spare[1]	I/O

Table 30. Bump Table: Inputs (AIB Base, AII-TX)

- 4. The "edge of chiplet" shall be directly above the topmost row.
- 5. Moving down from the *spare* signal, the following signals, which are all outputs to the far side, shall be placed:
 - 1. MAC ready on left; empty on right (since no adapter reset)
 - 2. Five pairs of data outputs
 - 3. The forwarded positive clock on left; the forwarded negative clock on right
 - 4. The remaining pairs of used outputs.
 - 5. Any unused outputs

Bump ID	Bump Name	IO
	(empty)	in
	spare[0]	I/O
	ns_mac_rdy	out
	TX[0]	out
	TX[2]	out
	TX[4]	out
	TX[6]	out
	TX[8]	out
	ns_ fwd _clk	out
	TX[10]	out
	TX[n-2]	out

Bump		
ID	Bump Name	10
	fs_mac_rdy	in
	spare[1]	I/O
	(empty)	out
	TX[1]	out
	TX[3]	out
	TX[5]	out
	TX[7]	out
	TX[9]	out
	ns_ fwd _clkb	out
	TX[11]	out
	TX[n-1]	out

Table 31. Bump Table: Complete (AIB Base, AII-TX)

6.3.1.2.3 AIB Base, AII-RX

- 3. Moving up from the middle, in order, the following signals, which are all inputs from the far side, shall be placed:
 - 1. Empty on left (since no adapter reset); MAC ready on right
 - 2. Five pairs of data inputs
 - 3. The forwarded negative clock on left; the forwarded positive clock on right
 - 4. The remaining pairs of used inputs
 - 5. Any unused inputs

Bump	Bump Name	IO
	RX[n-1]	in
	RX[11]	in
	fs_fwd_clkb	in
	RX[9]	in
	RX[7]	in
	RX[5]	in
	RX[3]	in
	RX[1]	in
	(empty)	in
	spare[0]	I/O

Bump		
ID	Bump Name	10
	RX[n-2]	in
	• • •	
	RX[10]	in
	fs_fwd_clk	in
	RX[8]	in
	RX[6]	in
	RX[4]	in
	RX[2]	in
	RX[0]	in
	fs_mac_rdy	in
	spare[1]	I/O

Table 32. Bump Table: Inputs (AIB Base, AII-RX)

- 4. The "edge of chiplet" shall be directly above the topmost row.
- 5. Moving down from the *spare* signal, the following signals, which are all outputs to the far side, shall be placed:
 - 1. MAC ready on left; empty on right (since no adapter reset)

Bump		
ID	Bump Name	10
	RX[n-1]	in
	• • •	
		.
	fs_fwd_clkb	in
	RX[9]	in
	RX[7]	in
	RX[5]	in
	RX[3]	in
	RX[1]	in
	(empty)	in
	spare[0]	I/O
	ns_mac_rdy	out

Bump		
ID	Bump Name	10
	RX[n-2]	in
	fs_ fwd _clk	in
	RX[8]	in
	RX[6]	in
	RX[4]	in
	RX[2]	in
	RX[0]	in
	fs_mac_rdy	in
	spare[1]	I/O
	(empty)	out

Table 33. Bump Table: Complete (AIB Base, AII-RX)

6.3.1.2.4 AIB Plus, Balanced

3. Moving up from the middle, in order, the following signals, which are all inputs from the far side, shall be placed:

- 1. Adapter reset on left; MAC ready on right
- 2. Shift-register load on left; shift-register data on right
- 3. Shift-register negative clock on left; shift-register positive clock on right
- 4. The receive-domain negative clock on left; the receive-domain positive clock on right
- 5. Five pairs of data inputs
- 6. The forwarded negative clock on left; the forwarded positive clock on right
- 7. The remaining pairs of used inputs
- 8. Any unused inputs

Bump		
ID	Bump Name	10
	RX[n-1]	in
	•••	
	RX[11]	in
	fs_fwd_clkb	in
	RX[9]	in
	RX[7]	in
	RX[5]	in
	RX[3]	in
	RX[1]	in
	fs_rcv_clkb	in
	fs_sr_clkb	in
	fs_sr_load	in
	fs_adapter_rstn	in
	spare[0]	I/O

Bump		
ID .	Bump Name	Ю
	RX[n-2]	in
	RX[10]	in
	fs_fwd_clk	in
	RX[8]	in
	RX[6]	in
	RX[4]	in
	RX[2]	in
	RX[0]	in
	fs_rcv_clk	in
	fs_sr_clk	in
	fs_sr_data	in
	fs_mac_rdy	in
	spare[1]	I/O

Table 34. Bump Table: Inputs (AIB Plus, Balanced)

- 4. The "edge of chiplet" shall be directly above the topmost row.
- 5. Moving down from the *spare* signal, the following signals, which are all outputs to the far side, shall be placed:
 - 1. MAC ready on left; adapter reset on right
 - 2. Shift-register data on left; shift-register load on right
 - 3. Shift-register positive clock on left; shift-register negative clock on right
 - 4. The receive-domain positive clock on left; the receive-domain negative clock on right
 - 5. Five pairs of data outputs
 - 6. The forwarded positive clock on left; the forwarded negative clock on right
 - 7. The remaining pairs of used outputs.
 - 8. Any unused outputs

Bump		
ID	Bump Name	10
10	RX[n-1]	in
	TOT[II-1]	- ""
	fs_fwd_clkb	in
	RX[9]	in
	RX[7]	in
	RX[5]	in
	RX[3]	in
	RX[1]	in
	fs_ rcv _clkb	in
	fs_sr_clkb	in
	fs_sr_load	in
	fs_adapter_rstn	in
	spare[0]	I/O
	ns_mac_rdy	out
	ns_sr_data	out
	ns_sr_clk	out
	ns_ rcv _clk	out
	TX[0]	out
	TX[2]	out
	TX[4]	out
	TX[6]	out
	TX[8]	out
	ns_ fwd _clk	out
	TX[10]	out
	• • •	
	TX[n-2]	out

Bump ID	Bump Name	Ю
טו	RX[n-2]	in
	1\/[11-2]	111
	•••	
	fs_ fwd _clk	in
	RX[8]	in
	RX[6]	in
	RX[4]	in
	RX[2]	in
	RX[0]	in
	fs_ rcv _clk	
	fs_sr_clk	in
	fs_sr_data	in
	fs_mac_rdy	in
	spare[1]	I/O
	ns_adapter_rstn	out
	ns_sr_load	out
	ns_sr_clkb	out
	ns_ rcv _clkb	out
	TX[1]	out
	TX[3]	out
	TX[5]	out
	TX[7]	out
	TX[9]	out
	ns_ fwd _clkb	out
	TX[11]	out
AIB1	TX[n-1]	out

Table 35. Bump Table: Complete (AIB Plus, Balanced)

6.3.1.2.5 AIB Plus, AII-TX

- 3. Moving up from the middle, in order, the following signals, which are all inputs from the far side, shall be placed:
 - 1. Adapter reset on left; MAC ready on right
 - 2. Shift-register load on left; shift-register data on right
 - 3. Shift-register negative clock on left; shift-register positive clock on right
 - 4. The receive-domain negative clock on left; the receive-domain positive clock on right

Bump ID	Bump Name	Ю
	fs_rcv_clkb	in
	fs_sr_clkb	in
	fs_sr_load	in
	fs_adapter_rstn	in
	spare[0]	I/O

Bump ID	Bump Name	Ю
	fs_rcv_clk	in
	fs_sr_clk	in
	fs_sr_data	in
	fs_mac_rdy	in
	spare[1]	I/O

Table 36. Bump Table: Inputs (AIB Plus, AII-TX)

- 4. The "edge of chiplet" shall be directly above the topmost row.
- 5. Moving down from the *spare* signal, the following signals, which are all outputs to the far side, shall be placed:
 - 1. MAC ready on left; adapter reset on right
 - 2. Shift-register data on left; shift-register load on right
 - 3. Shift-register positive clock on left; shift-register negative clock on right
 - 4. Empty bumps since there is no receive-domain clock output
 - 5. Five pairs of data outputs
 - 6. The forwarded positive clock on left; the forwarded negative clock on right
 - 7. The remaining pairs of used outputs.
 - 8. Any unused outputs

Bump ID	Bump Name	Ю
	fs_ rcv _clkb	in
	fs_sr_clkb	in
	fs_sr_load	in
	fs_adapter_rstn	in
	spare[0]	I/O
	ns_mac_rdy	out
	ns_sr_data	out
	ns_sr_clk	out
	(empty)	out
	TX[0]	out
	TX[2]	out
	TX[4]	out
	TX[6]	out
	TX[8]	out
	ns_ fwd _clk	out
	TX[10]	out
	TX[n-2]	out

Bump ID	Bump Name	Ю
	fs_ rcv _clk	
	fs_sr_clk	in
	fs_sr_data	in
	fs_mac_rdy	in
	spare[1]	I/O
	ns_adapter_rstn	out
	ns_sr_load	out
	ns_sr_clkb	out
	(empty)	out
	TX[1]	out
	TX[3]	out
	TX[5]	out
	TX[7]	out
	TX[9]	out
	ns_ fwd _clkb	out
	TX[11]	out
	TX[n-1]	out

Table 37. Bump Table: Complete

(AIB Plus, AII-TX)

6.3.1.2.6 AIB Plus, AII-RX

- 3. Moving up from the middle, in order, the following signals, which are all inputs from the far side, shall be placed:
 - 1. Adapter reset on left; MAC ready on right
 - 2. Shift-register load on left; shift-register data on right
 - 3. Shift-register negative clock on left; shift-register positive clock on right
 - 4. Empty bumps since there is no receive-domain clock input
 - 5. Five pairs of data inputs
 - 6. The forwarded negative clock on left; the forwarded positive clock on right
 - 7. The remaining pairs of used inputs
 - 8. Any unused inputs

Bump	Dumin Nama	10
טו	Bump Name	10
	RX[n-1]	in
	RX[11]	in
	fs_fwd_clkb	in
	RX[9]	in
	RX[7]	in
	RX[5]	in
	RX[3]	in
	RX[1]	in
	(empty)	in
	fs_sr_clkb	in
	fs_sr_load	in
	fs_adapter_rstn	in
	spare[0]	I/O

Bump		
ID	Bump Name	Ю
	RX[n-2]	in
	RX[10]	in
	fs_fwd_clk	in
	RX[8]	in
	RX[6]	in
	RX[4]	in
	RX[2]	in
	RX[0]	in
	(empty)	in
	fs_sr_clk	in
	fs_sr_data	in
	fs_mac_rdy	in
	spare[1]	I/O

Table 38. Bump Table: Inputs (AIB Plus, AII-RX)

- 4. The "edge of chiplet" shall be directly above the topmost row.
- 5. Moving down from the *spare* signal, the following signals, which are all outputs to the far side, shall be placed:
 - 1. MAC ready on left; adapter reset on right
 - Shift-register data on left; shift-register load on right
 - 3. Shift-register positive clock on left; shift-register negative clock on right
 - 4. The forwarded positive clock on left; the forwarded negative clock on right
 - 5. Five pairs of data outputs
 - 6. The borrowed positive clock on left; the borrowed negative clock on right

- 7. The remaining pairs of used outputs.
- 8. Any unused outputs

Bump		
ID .	Bump Name	IO
	RX[n-1]	in
	• • •	
	fs_fwd_clkb	in
	RX[9]	in
	RX[7]	in
	RX[5]	in
	RX[3]	in
	RX[1]	in
	(empty)	in
	fs_sr_clkb	in
	fs_sr_load	in
	fs_adapter_rstn	in
	spare[0]	I/O
	ns_mac_rdy	out
	ns_sr_data	out
	ns_sr_clk	out
	ns_ rcv _clk	out

Bump		
ID	Bump Name	10
	RX[n-2]	in
	•••	
	fs_ fwd _clk	in
	RX[8]	in
	RX[6]	in
	RX[4]	in
	RX[2]	in
	RX[0]	in
	(empty)	
	fs_sr_clk	in
	fs_sr_data	in
	fs_mac_rdy	in
	spare[1]	I/O
	ns_adapter_rstn	out
	ns_sr_load	out
	ns_sr_clkb	out
	ns_ rcv _clkb	out

Table 39. Bump Table: Complete (AIB Plus, AII-RX)

6. Finally, assign bump ID starting at the bottom left with AIB0, bottom right with AIB1, and then moving up – even numbers on the left, odd numbers on the right.

The following tables illustrate the six versions of this algorithm for AIB Base and AIB Plus; Balanced, All-TX, and All-RX configurations. *n* represents the number of RX and/or TX signals.

Bump ID	Bump Name	Ю
AlBy	RX[n-1]	in
	•••	
AIBx+28	fs_fwd_clkb	in
AIBx+26	RX[9]	in
AIBx+24	RX[7]	in
AIBx+22	RX[5]	in
AIBx+20	RX[3]	in
AIBx+18	RX[1]	in
AIBx+16	(empty)	in
AIBx+14	spare[0]	I/O
AIBx+12	ns_mac_rdy	out
AIBx+10	TX[0]	out
AIBx+8	TX[2]	out
AIBx+6	TX[4]	out
AIBx+4	TX[6]	out
AIBx+2	TX[8]	out
AlBx	ns_fwd_clk	out
	• • •	
AIB0	TX[n-2]	out

Bump		
ID	Bump Name	10
AlBy+1	RX[n-2]	in
_		
AIBx+29	fs_fwd_clk	in
AIBx+27	RX[8]	in
AIBx+25	RX[6]	in
AIBx+23	RX[4]	in
AIBx+21	RX[2]	in
AIBx+19	RX[0]	in
AIBx+17	fs_mac_rdy	in
AIBx+15	spare[1]	I/O
AIBx+13	(empty)	out
AIBx+11	TX[1]	out
AlBx+9	TX[3]	out
AIBx+7	TX[5]	out
AlBx+5	TX[7]	out
AlBx+3	TX[9]	out
AIBx+1	ns_fwd_clkb	out
AIB1	TX[n-1]	out

Table 40. Bump-Table Exemplar (AIB Base, Balanced) x=n-10; y=2n+8

Bump		
ID .	Bump Name	10
AIBx+16	(empty)	in
AIBx+14	spare[0]	I/O
AIBx+12	ns_mac_rdy	out
AIBx+10	TX[0]	out
AIBx+8	TX[2]	out
AIBx+6	TX[4]	out
AIBx+4	TX[6]	out
AIBx+2	TX[8]	out
AlBx	ns_fwd_clk	out
	• • •	
AIRO	TX[n-2]	Out

Bump ID	Bump Name	IO
AIBx+17	fs_mac_rdy	in
AIBx+15	spare[1]	I/O
AIBx+13	(empty)	out
AIBx+11	TX[1]	out
AIBx+9	TX[3]	out
AIBx+7	TX[5]	out
AIBx+5	TX[7]	out
AIBx+3	TX[9]	out
AIBx+1	ns_fwd_clkb	out
AIB1	TX[n-1]	out

Table 41. Bump-Table Exemplar (AIB Base, AII-TX) x=n-10

Bump		
ID	Bump Name	Ю
AlBy	RX[n-1]	in
	•••	
AIB18	fs_fwd_clkb	in
AIB16	RX[9]	in
AIB14	RX[7]	in
AIB12	RX[5]	in
AIB10	RX[3]	in
AIB8	RX[1]	in
AIB6	(empty)	in
AIB4	spare[0]	I/O
AIB2	ns mac rdv	out

Bump ID	Bump Name	IO
AIBy+1	RX[n-2]	in
AIB19	fs_fwd_clk	in
AIB17	RX[8]	in
AIB15	RX[6]	in
AIB13	RX[4]	in
AIB11	RX[2]	in
AIB9	RX[0]	in
AIB7	fs_mac_rdy	in
AIB5	spare[1]	0
AIB3	(empty)	out

Table 42. Bump-Table Exemplar (AIB Base, AII-RX) y=n+8

Duma			Вить		
Bump	D Name	10	Bump	D Name	10
ID	Bump Name	Ю	ID	Bump Name	IO
AlBy	RX[n-1]	in	AIBy+1	RX[n-2]	in
AIBx+44	RX[11]	in	AIBx+45	RX[10]	in
AIBx+42	fs_fwd_clkb	in	AIBx+43	fs_fwd_clk	in
AIBx+40	RX[9]	in	AIBx+41	RX[8]	in
AIBx+38	RX[7]	in	AIBx+39	RX[6]	in
AIBx+36	RX[5]	in	AIBx+37	RX[4]	in
AIBx+34	RX[3]	in	AIBx+35	RX[2]	in
AIBx+32	RX[1]	in	AIBx+33	RX[0]	in
AIBx+30	fs_rcv_clkb	in	AIBx+31	fs_rcv_clk	in
AIBx+28	fs_sr_clkb	in	AIBx+29	fs_sr_clk	in
AIBx+26	fs_sr_load	in	AIBx+27	fs_sr_data	in
AIBx+24	fs_adapter_rstn	in	AIBx+25	fs_mac_rdy	in
AIBx+22	spare[0]	I/O	AIBx+23	spare[1]	I/O
AIBx+20	ns_mac_rdy	out	AIBx+21	ns_adapter_rstn	out
AIBx+18	ns_sr_data	out	AIBx+19	ns_sr_load	out
AIBx+16	ns_sr_clk	out	AIBx+17	ns_sr_clkb	out
AIBx+14	ns_rcv_clk	out	AIBx+15	ns_rcv_clkb	out
AIBx+12	TX[0]	out	AIBx+13	TX[1]	out
AIBx+10	TX[2]	out	AIBx+11	TX[3]	out
AIBx+8	TX[4]	out	AIBx+9	TX[5]	out
AIBx+6	TX[6]	out	AIBx+7	TX[7]	out
AIBx+4	TX[8]	out	AIBx+5	TX[9]	out
AIBx+2	ns_fwd_clk	out	AIBx+3	ns_fwd_clkb	out
AlBx	TX[10]	out	AIBx+1	TX[11]	out
AIB0	TX[n-2]	out	AIB1	TX[n-1]	out

Table 43. Bump-Table Exemplar (AIB Plus, Balanced) x=n-12; y=2n+20

Bump	D Name	
ID	Bump Name	10
AIBx+30	fs_rcv_clkb	in
AIBx+28	fs_sr_clkb	in
AIBx+26	fs_sr_load	in
AIBx+24	fs_adapter_rstn	in
AIBx+22	spare[0]	I/O
AIBx+20	ns_mac_rdy	out
AIBx+18	ns_sr_data	out
AIBx+16	ns_sr_clk	out
AIBx+14	(empty)	out
AIBx+12	TX[0]	out
AIBx+10	TX[2]	out
AIBx+8	TX[4]	out
AIBx+6	TX[6]	out
AIBx+4	TX[8]	out
AlBx+2	ns_fwd_clk	out
AlBx	TX[10]	out
	-	
AIB0	TX[n-2]	out

Bump		
ID	Bump Name	10
AIBx+31	fs_rcv_clk	in
AIBx+29	fs_sr_clk	in
AIBx+27	fs_sr_data	in
AIBx+25	fs_mac_rdy	in
AIBx+23	spare[1]	I/O
AIBx+21	ns_adapter_rstn	out
AIBx+19	ns_sr_load	out
AIBx+17	ns_sr_clkb	out
AIBx+15	(empty)	out
AIBx+13	TX[1]	out
AIBx+11	TX[3]	out
AIBx+9	TX[5]	out
AIBx+7	TX[7]	out
AIBx+5	TX[9]	out
AIBx+3	ns_fwd_clkb	out
AIBx+1	TX[11]	out
AIB1	TX[n-1]	out

Table 44. Bump-Table Exemplar (AIB Plus, AII-TX) x=n-12

Bump		
ID	Bump Name	10
AlBy	RX[n-1]	in
	• • •	
AIB32	RX[13]	in
AIB30	RX[11]	in
AIB28	fs_fwd_clkb	in
AIB26	RX[9]	in
AIB24	RX[7]	in
AIB22	RX[5]	in
AIB20	RX[3]	in
AIB18	RX[1]	in
AIB16	(empty)	in
AIB14	fs_sr_clkb	in
AIB12	fs_sr_load	in
AIB10	fs_adapter_rstn	in
AIB8	spare[0]	I/O
AIB6	ns_mac_rdy	out
AIB4	ns_sr_data	out
AIB2	ns_sr_clk	out
AIB0	ns_rcv_clk	out

Bump	_	
ID	Bump Name	10
AIBy+1	RX[n-2]	in
	•••	
AIB33	RX[12]	in
AIB31	RX[10]	in
AIB29	fs_fwd_clk	in
AIB27	RX[8]	in
AIB25	RX[6]	in
AIB23	RX[4]	in
AIB21	RX[2]	in
AIB19	RX[0]	in
AIB17	(empty)	in
AIB15	fs_sr_clk	in
AIB13	fs_sr_data	in
AIB11	fs_mac_rdy	in
AIB9	spare[1]	I/O
AIB7	ns_adapter_rstn	out
AIB5	ns_sr_load	out
AIB3	ns_sr_clkb	out
AIB1	ns_rcv_clkb	out

Table 45. Bump-Table Exemplar (AIB Plus, AII-RX) y=n+18

6.3.1.3 **Bump Map**

Create a *bump map* for low-density bump array as follows:

- 1. Allocate six columns and enough rows to accommodate all signals. "Row" and "Column" apply to a bump array with the side of the chiplet on the top.
- 2. Bumps are in a staggered array. Every other row starting with the first row is used for odd-numbered bumps. Every other row starting with the second row is used for even-numbered bumps.
- 3. If Balanced then:
 - 3.1. The middle two bumps (middle two rows, middle two columns) receive the *spare* signal bumps (odd and even).
- 4. If All-TX then
 - 4.1. If AIB Base then
 - 4.1.1. The two bumps in middle two columns, the row for the *spare* signals are calculated as follows, where *n* is the bump ID of the odd *spare* signal in the bump table:
 - 4.1.1.1. (n-1) mod 3 + 1 for the odd-spare row, middle columns
 - 4.1.1.2. One row down for the even-spare row, middle columns
 - 4.2. If AIB Plus then
 - 4.2.1.1. (n-1) mod 3 + 1 for the odd-spare row, middle columns
 - 4.2.1.2. One row down for the even-spare row, middle columns
- 5. If All-RX then:
 - 5.1. If AIB Base then:
 - 5.1.1. The middle columns, 3rd and 4th rows, receive the *spare* signal bumps (odd and even).
 - 5.2. If AIB Plus then:
 - 5.2.1. The middle columns, 5th and 6th rows, receive the *spare* signal bumps (odd and even).
- 6. For odd-numbered bumps, move first to the left from the *spare* bump and assign odd-numbered bumps in descending order until the left-most column is reached. From there, move up two rows and continue, this time to the right. When the rightmost column is reached, move up again two more rows and proceed back to the left. Continue in this winding fashion (boustrophedon) until all odd-numbered bumps have been assigned (figure). Any remaining bumps in the final row remain unassigned.
- 7. Moving back to the odd-numbered *spare* bump, move to the right and assign odd-numbered bumps in ascending order until the rightmost column is reached. From there, move down two rows and continue, this time to the left. Continue the boustrophedon movement until all remaining odd-numbered bumps have been assigned (figure), leaving any remaining bumps in the last row unassigned.
- 8. Repeat this process for even-numbered bumps starting from the even *spare* bump and using the even-bump rows (figure).
- 9. Repeat for all channels in the AIB interface.

Figure 58. Bump Map Assignment Order

The bump map for medium-density pitch shall be created by combining two adjacent low-density rows into a single row. As shown in Figure 59, rows 5 and 6 in the low-density map are combined to form row 3 in the medium-density map. The bump map for high-density pitch shall be created by combining two adjacent medium-density rows into a single row as shown in Figure 59.

Figure 59. Bump Map Migration Between Different Bump Densities

The IO physical placement shall not necessary be the same as the bump placement as a result of optimization of the die area, IO performance and power network. IO physical placement is not part of the AIB specification.

6.3.2 AIB AUX Signal Assignment

AIB AUX Block using Microbumps. The signals from the AIB AUX block (power_on_reset, device_detect) shall be placed below channel 0 in a column, if the AUX block uses microbumps. Otherwise the signals may be placed in any suitable location. Leader chiplets shall have output bumps for device_detect signals and input bumps for power_on_reset. Follower chiplets shall have input bumps for device_detect signals and output bumps for power_on_reset. If the AUX block uses microbumps, there shall be two bumps per signal for passive redundancy (Section 3.3.2). The AUX bump table and map are shown below.

Leader chiplet			Follower chiplet		
Bump ID	Bump Name	Ю	Bump ID	Bump Name	Ю
AIBX3	device_detect	out	AIBX3	device_detect	in
AIBX2	device_detect	out	AIBX2	device_detect	in
AIBX1	power_on_reset	in	AIBX1	power_on_reset	out
AIBX0	power_on_reset	in	AIBX0	power_on_reset	out

Table 46. AIB AUX Signal Bump Table

6.3.3 Example Bump Tables

Bump		
ID	Bump Name	10
AIB48	RX[19]	in
AIB46	RX[17]	in
AIB44	RX[15]	in
AIB42	RX[13]	in
AIB40	RX[11]	in
AIB38	fs_fwd_clkb	in
AIB36	RX[9]	in
AIB34	RX[7]	in
AIB32	RX[5]	in
AIB30	RX[3]	in
AIB28	RX[1]	in
AIB26	(empty)	in
AIB24	spare[0]	I/O
AIB22	ns_mac_rdy	out
AIB20	TX[0]	out
AIB18	TX[2]	out
AIB16	TX[4]	out
AIB14	TX[6]	out
AIB12	TX[8]	out
AIB10	ns_fwd_clk	out
AIB8	TX[10]	out
AIB6	TX[12]	out
AIB4	TX[14]	out
AIB2	TX[16]	out
AIB0	TX[18]	out

Bump ID	Bump Name	Ю
AIB49	RX[18]	in
AIB47	RX[16]	in
AIB45	RX[14]	in
AIB43	RX[12]	in
AIB41	RX[10]	in
AIB39	fs_fwd_clk	in
AIB37	RX[8]	in
AIB35	RX[6]	in
AIB33	RX[4]	in
AIB31	RX[2]	in
AIB29	RX[0]	in
AIB27	fs_mac_rdy	in
AIB25	spare[1]	I/O
AIB23	(empty)	out
AIB21	TX[1]	out
AIB19	TX[3]	out
AIB17	TX[5]	out
AIB15	TX[7]	out
AIB13	TX[9]	out
AIB11	ns fwd clkb	out
AIB9	TX[11]	out
AIB7	TX[13]	out
AIB5	TX[15]	out
AIB3	TX[17]	out
AIB1	TX[19]	out

Table 47. Example Bump Table (AIB Base, 40 I/Os, Balanced)

Bump ID	Bump Name	Ю
AIB28	RX[19]	in
AIB26	RX[17]	in
AIB24	RX[15]	in
AIB22	RX[13]	in
AIB20	RX[11]	in
AIB18	fs_fwd_clkb	in
AIB16	RX[9]	in
AIB14	RX[7]	in
AIB12	RX[5]	in
AIB10	RX[3]	in
AIB8	RX[1]	in
AIB6	(empty)	in
AIB4	spare[0]	I/O
AIB2	ns_mac_rdy	out
AIB0	ns fwd clk	out

Bump ID	Bump Name	Ю
AIB29	RX[18]	in
AIB27	RX[16]	in
AIB25	RX[14]	in
AIB23	RX[12]	in
AIB21	RX[10]	in
AIB19	fs_fwd_clk	in
AIB17	RX[8]	in
AIB15	RX[6]	in
AIB13	RX[4]	in
AIB11	RX[2]	in
AIB9	RX[0]	in
AIB7	fs_mac_rdy	in
AIB5	spare[1]	I/O
AIB3	(empty)	out
AIB1	ns_fwd_clkb	out

Table 48. Example Bump Table (AIB Base, 20 RX)

Bump ID	Bump Name	Ю
AIB26	(empty)	in
AIB24	spare[0]	I/O
AIB22	ns_mac_rdy	out
AIB20	TX[0]	out
AIB18	TX[2]	out
AIB16	TX[4]	out
AIB14	TX[6]	out
AIB12	TX[8]	out
AIB10	ns_fwd_clk	out
AIB8	TX[10]	out
AIB6	TX[12]	out
AIB4	TX[14]	out
AIB2	TX[16]	out
AIB0	TX[18]	out

Bump ID	Bump Name	Ю
AIB27	fs_mac_rdy	in
AIB25	spare[1]	I/O
AIB23	(empty)	out
AIB21	TX[1]	out
AIB19	TX[3]	out
AIB17	TX[5]	out
AIB15	TX[7]	out
AIB13	TX[9]	out
AIB11	ns_fwd_clkb	out
AIB9	TX[11]	out
AIB7	TX[13]	out
AIB5	TX[15]	out
AIB3	TX[17]	out
AIB1	TX[19]	out

Table 49. Example Bump Table (AIB Base, 20 TX)

Bump		
ID .	Bump Name	10
AIB60	RX[19]	in
AIB58	RX[17]	in
AIB56	RX[15]	in
AIB54	RX[13]	in
AIB52	RX[11]	in
AIB50	fs_fwd_clkb	in
AIB48	RX[9]	in
AIB46	RX[7]	in
AIB44	RX[5]	in
AIB42	RX[3]	in
AIB40	RX[1]	in
AIB38	fs_rcv_clkb	in
AIB36	fs_sr_clkb	in
AIB34	fs_sr_load	in
AIB32	fs_adapter_rstn	in
AIB30	spare[0]	I/O
AIB28	ns_mac_rdy	out
AIB26	ns_sr_data	out
AIB24	ns_sr_clk	out
AIB22	ns_rcv_clk	out
AIB20	TX[0]	out
AIB18	TX[2]	out
AIB16	TX[4]	out
AIB14	TX[6]	out
AIB12	TX[8]	out
AIB10	ns_fwd_clk	out
AIB8	TX[10]	out
AIB6	TX[12]	out
AIB4	TX[14]	out
AIB2	TX[16]	out
AIB0	TX[18]	out

Bump ID	Bump Name	0
AIB61	RX[18]	in
AIB59	RX[16]	in
AIB57	RX[14]	in
AIB55	RX[12]	in
AIB53	RX[10]	in
AIB51	fs_fwd_clk	in
AIB49	RX[8]	in
AIB47	RX[6]	in
AIB45	RX[4]	in
AIB43	RX[2]	in
AIB41	RX[0]	in
AIB39	fs_rcv_clk	in
AIB37	fs_sr_clk	in
AIB35	fs_sr_data	in
AIB33	fs_mac_rdy	in
AIB31	spare[1]	I/O
AIB29	ns_adapter_rstn	out
AIB27	ns_sr_load	out
AIB25	ns_sr_clkb	out
AIB23	ns_rcv_clkb	out
AIB21	TX[1]	out
AIB19	TX[3]	out
AIB17	TX[5]	out
AIB15	TX[7]	out
AIB13	TX[9]	out
AIB11	ns_fwd_clkb	out
AIB9	TX[11]	out
AIB7	TX[13]	out
AIB5	TX[15]	out
AIB3	TX[17]	out
AIB1	TX[19]	out

Table 50. Example Bump Table (AIB Plus, 40 I/Os, Balanced)

Bump			ı	Bump		
ID	Bump Name	10		ID	Bump Name	10
AIB100	RX[39]	in	1	AIB101	RX[38]	in
AIB98	RX[37]	in		AIB99	RX[36]	in
AIB96	RX[35]	in		AIB97	RX[34]	in
AIB94	RX[33]	in		AIB95	RX[32]	in
AIB92	RX[31]	in		AIB93	RX[30]	in
AIB90	RX[29]	in		AIB91	RX[28]	in
AIB88	RX[27]	in		AIB89	RX[26]	in
AIB86	RX[25]	in	1	AIB87	RX[24]	in
AIB84	RX[23]	in		AIB85	RX[22]	in
AIB82	RX[21]	in		AIB83	RX[20]	in
AIB80	RX[19]	in		AIB81	RX[18]	in
AIB78	RX[17]	in		AIB79	RX[16]	in
AIB76	RX[15]	in		AIB77	RX[14]	in
AIB74	RX[13]	in		AIB75	RX[12]	in
AIB72	RX[11]	in		AIB73	RX[10]	in
AIB70	fs_fwd_clkb	in		AIB71	fs_fwd_clk	in
AIB68	RX[9]	in		AIB69	RX[8]	in
AIB66	RX[7]	in		AIB67	RX[6]	in
AIB64	RX[5]	in		AIB65	RX[4]	in
AIB62	RX[3]	in		AIB63	RX[2]	in
AIB60	RX[1]	in		AIB61	RX[0]	in
AIB58	fs_rcv_clkb	in		AIB59	fs_rcv_clk	in
AIB56	fs_sr_clkb	in		AIB57	fs_sr_clk	in
AIB54	fs sr load	in		AIB55	fs_sr_data	in
AIB52	fs_adapter_rstn	in		AIB53	fs_mac_rdy	in
AIB50	spare[0]	I/O		AIB51	spare[1]	I/O
AIB48	ns_mac_rdy	out		AIB49	ns_adapter_rstn	out
AIB46	ns_sr_data	out		AIB47	ns sr load	out
AIB44	ns_sr_clk	out		AIB45	ns_sr_clkb	out
AIB42	ns_rcv_clk	out		AIB43	ns_rcv_clkb	out
AIB40	TX[0]	out		AIB41	TX[1]	out
AIB38	TX[2]	out		AIB39	TX[3]	out
AIB36	TX[4]	out		AIB37	TX[5]	out
AIB34	TX[6]	out		AIB35	TX[7]	out
AIB32	TX[8]	out		AIB33	TX[9]	out
AIB30	ns_fwd_clk	out		AIB31	ns_fwd_clkb	out
AIB28	TX[10]	out		AIB29	TX[11]	out
AIB26	TX[12]	out		AIB27	TX[13]	out
AIB24	TX[14]	out		AIB25	TX[15]	out
AIB22	TX[16]	out		AIB23	TX[17]	out
AIB20	TX[18]	out		AIB21	TX[19]	out
AIB18	TX[20]	out		AIB19	TX[21]	out
AIB16	TX[22]	out		AIB17	TX[23]	out
AIB14	TX[24]	out		AIB15	TX[25]	out
AIB12	TX[26]	out		AIB13	TX[27]	out
AIB10	TX[28]	out		AIB11	TX[29]	out
AIB8	TX[30]	out		AIB9	TX[31]	out
AIB6	TX[32]	out		AIB7	TX[33]	out
AIB4	TX[34]	out		AIB5	TX[35]	out
AIB2	TX[36]	out		AIB3	TX[37]	out
AIB0	TX[38]	out		AIB1	TX[39]	out

Table 51. Example Bump Table (AIB Plus, 80 I/Os, Balanced)

112

Bump ID	Bump Name	IO
AIB38	fs_rcv_clkb	in
AIB36	fs_sr_clkb	in
AIB34	fs_sr_load	in
AIB32	fs_adapter_rstn	in
AIB30	spare[0]	I/O
AIB28	ns_mac_rdy	out
AIB26	ns_sr_data	out
AIB24	ns_sr_clk	out
AIB22	(empty)	out
AIB20	TX[0]	out
AIB18	TX[2]	out
AIB16	TX[4]	out
AIB14	TX[6]	out
AIB12	TX[8]	out
AIB10	ns_fwd_clk	out
AIB8	TX[10]	out
AIB6	TX[12]	out
AIB4	TX[14]	out
AIB2	TX[16]	out
AIB0	TX[18]	out

Bump ID	Bump Name	IO
AIB39	fs_rcv_clk	in
AIB37	fs_sr_clk	in
AIB35	fs_sr_data	in
AIB33	fs_mac_rdy	in
AIB31	spare[1]	I/O
AIB29	ns_adapter_rstn	out
AIB27	ns_sr_load	out
AIB25	ns_sr_clkb	out
AIB23	(empty)	out
AIB21	TX[1]	out
AIB19	TX[3]	out
AIB17	TX[5]	out
AIB15	TX[7]	out
AIB13	TX[9]	out
AIB11	ns_fwd_clkb	out
AIB9	TX[11]	out
AIB7	TX[13]	out
AIB5	TX[15]	out
AIB3	TX[17]	out
AIB1	TX[19]	out

Table 52. Example Bump Table (AIB Plus, 20 TX)

Bump ID	Bump Name	Ю
AIB38	RX[19]	in
AIB36	RX[17]	in
AIB34	RX[15]	in
AIB32	RX[13]	in
AIB30	RX[11]	in
AIB28	fs_fwd_clkb	in
AIB26	RX[9]	in
AIB24	RX[7]	in
AIB22	RX[5]	in
AIB20	RX[3]	in
AIB18	RX[1]	in
AIB16	(empty)	in
AIB14	fs_sr_clkb	in
AIB12	fs_sr_load	in
AIB10	fs_adapter_rstn	in
AIB8	spare[0]	I/O
AIB6	ns_mac_rdy	out
AIB4	ns_sr_data	out
AIB2	ns_sr_clk	out
AIB0	ns_rcv_clk	out

Bump		
ID	Bump Name	10
AIB39	RX[18]	in
AIB37	RX[16]	in
AIB35	RX[14]	in
AIB33	RX[12]	in
AIB31	RX[10]	in
AIB29	fs_fwd_clk	in
AIB27	RX[8]	in
AIB25	RX[6]	in
AIB23	RX[4]	in
AIB21	RX[2]	in
AIB19	RX[0]	in
AIB17	(empty)	in
AIB15	fs_sr_clk	in
AIB13	fs_sr_data	in
AIB11	fs_mac_rdy	in
AIB9	spare[1]	I/O
AIB7	ns_adapter_rstn	out
AIB5	ns_sr_load	out
AIB3	ns_sr_clkb	out
AIB1	ns_rcv_clkb	out

Table 53. Example Bump Table (AIB Plus, 20 RX)

6.3.4 Example Bump Maps

The following example bump maps represent the bump tables above as assigned to bumps. These examples include an AUX block using microbumps, in which case the

AUX block shall be placed next to Channel 0. If the AUX block does not use microbumps then the AUX assignments in these examples may be ignored.

Power microbumps are subject to chiplet requirements as established for different silicon processes, data rates, and configurations. Chiplets may implement a power-distribution network using C4 (core) bumps or microbumps to meet the power requirements. Power microbumps may be inserted between rows of I/O microbumps, in increments of six microbumps, in order to maintain signal order.

	1	2	3	4	5	6	7
			Edg	e of Chi	plet		AUX
Α	Unused		AIB1		AIB3		AIBX0
В		Unused		AIB0		AIB2	
С	AIB9		AIB7		AIB5		AIBX1
D		AIB8		AIB6		AIB4	
Ε	AIB11		AIB13		AIB15		AIBX2
F		AIB10		AIB12		AIB14	
G	AIB21		AIB19		AIB17		AIBX3
Н		AIB20		AIB18		AIB16	
-1	AIB23		AIB25		AIB27		
J		AIB22		AIB24		AIB26	
K	AIB33		AIB31		AIB29		
L		AIB32		AIB30		AIB28	
М	AIB35		AIB37		AIB39		
N		AIB34		AIB36		AIB38	
0	AIB45		AIB43		AIB41		
Р		AIB44		AIB42		AIB40	
Q	AIB47		AIB49		Unused		
R		AIB46		AIB48		Unused	

Figure 60. Low-Density Bump Map (AIB Base, 40 I/Os, Balanced)

Figure 61. Low-Density Bump Map (AIB Base, 20 TX)

Figure 62. Low-Density Bump Map (AIB Base, 20 RX)

	1	2	3	4	5	6	7
			Edg	e of Chi	plet		AUX
Α	AIB3		AIB1		Unused		AIBX0
В		AIB2		AIB0		Unused	
С	AIB5		AIB7		AIB9		AIBX1
D		AIB4		AIB6		AIB8	
Ε	AIB15		AIB13		AIB11		AIBX2
F		AIB14		AIB12		AIB10	
G	AIB17		AIB19		AIB21		AIBX3
Н		AIB16		AIB18		AIB20	
I	AIB27		AIB25		AIB23		
J		AIB26		AIB24		AIB22	
K	AIB29		AIB31		AIB33		
L		AIB28		AIB30		AIB32	
M	AIB39		AIB37		AIB35		
N		AIB38		AIB36		AIB34	
0	AIB41		AIB43		AIB45		
Р		AIB40		AIB42		AIB44	
Q	AIB51		AIB49		AIB47		
R		AIB50		AIB48		AIB46	
S	AIB53		AIB55		AIB57		
Т		AIB52		AIB54		AIB56	
U	Unused		AIB61		AIB59		
٧		Unused		AIB60		AIB58	

Figure 63. Low-Density Bump Map (AIB Plus, 40 I/Os, Balanced)

	1	2	3	4	5	6	7
			Edg	e of Chi	plet		AUX
Α	AIB3		AIB1		Unused		AIBX0
В		AIB2		AIB0		Unused	
С	AIB5		AIB7		AIB9		AIBX1
D		AIB4		AIB6		AIB8	
Ε	AIB15		AIB13		AIB11		AIBX2
F		AIB14		AIB12		AIB10	
G	AIB17		AIB19		AIB21		AIBX3
Н		AIB16		AIB18		AIB20	
I	AIB27		AIB25		AIB23		
J		AIB26		AIB24		AIB22	
K	AIB29		AIB31		AIB33		
L		AIB28		AIB30		AIB32	
М	AIB39		AIB37		AIB35		
N		AIB38		AIB36		AIB34	
0	AIB41		Unused		Unused		
Р		AIB40		Unused		Unused	

Figure 64. Low-Density Bump Map (AIB Plus, 20 TX)

	1	2	3	4	5	6	7
			Edg	e of Chi	plet		AUX
Α	Unused		Unused		AIB1		AIBX0
В		Unused		Unused		AIB0	
С	AIB7		AIB5		AIB3		AIBX1
D		AIB6		AIB4		AIB2	
Ε	AIB9		AIB11		AIB13		AIBX2
F		AIB8		AIB10		AIB12	
G	AIB19		AIB17		AIB15		AIBX3
Н		AIB18		AIB16		AIB14	
ı	AIB21		AIB23		AIB25		
J		AIB20		AIB22		AIB24	
K	AIB31		AIB29		AIB27		
L		AIB30		AIB28		AIB26	
М	AIB33		AIB35		AIB37		
N		AIB32		AIB34		AIB36	
0	Unused		AIB41		AIB39		
Р		Unused		AIB40		AIB38	

Figure 65. Low-Density Bump Map (AIB Plus, 20 RX)

	1	2	3	4	5	6	7	8	9	10	11	12	
						Edg	e of Chi	plet					
				1		1		1		1		1	AUX
Α	AIB3		AIB2		AIB1		AIB0		Unused		Unused		AIBX0
В		AIB5		AIB4		AIB7		AIB6		AIB9		AIB8	
С	AIB15		AIB14		AIB13		AIB12		AIB11		AIB10		AIBX1
D		AIB17		AIB16		AIB19		AIB18		AIB21		AIB20	
Е	AIB27		AIB26		AIB25		AIB24		AIB23		AIB22		AIBX2
F		AIB29		AIB28		AIB31		AIB30		AIB33		AIB32	
G	AIB39		AIB38		AIB37		AIB36		AIB35		AIB34		AIBX3
Н		AIB41		AIB40		AIB43		AIB42		AIB45		AIB44	
- 1	AIB51		AIB50		AIB49		AIB48		AIB47		AIB46		
J		AIB53		AIB52		AIB55		AIB54		AIB57		AIB56	
K	Unused		Unused		AIB61		AIB60		AIB59		AIB58		

Figure 66 Medium-Density Bump Map (AIB Plus, 40 I/Os, Balanced)

	1	2	3	4	5	6	7	8	9	10	11	12
						Edg	e of Chi	plet				
Α	AIB1		AIB0		AIB3		AIB2		AIB5		AIB4	
В		AIB11		AIB10		AIB9		AIB8		AIB7		AIB6
С	AIB13		AIB12		AIB15		AIB14		AIB17		AIB16	
D		AIB23		AIB22		AIB21		AIB20		AIB19		AIB18
Ε	AIB25		AIB24		AIB27		AIB26		AIB29		AIB28	
F		AIB35		AIB34		AIB33		AIB32		AIB31		AIB30
G	AIB37		AIB36		AIB39		AIB38		AIB41		AIB40	
Н		AIB47		AIB46		AIB45		AIB44		AIB43		AIB42
- 1	AIB49		AIB48		AIB51		AIB50		AIB53		AIB52	
J		AIB59		AIB58		AIB57		AIB56		AIB55		AIB54
Κ	AIB61		AIB60		AIB63		AIB62		AIB65		AIB64	
L		AIB71		AIB70		AIB69		AIB68		AIB67		AIB66
М	AIB73		AIB72		AIB75		AIB74		AIB77		AIB76	
Ν		AIB83		AIB82		AIB81		AIB80		AIB79		AIB78
О	AIB85		AIB84		AIB87		AIB86		AIB89		AIB88	
Р		AIB95		AIB94		AIB93		AIB92		AIB91		AIB90
Q	AIB97		AIB96		AIB99		AIB98		AIB101		AIB 100	

Figure 67 Medium-Density Bump Map (AIB Plus, 80 I/Os, Balanced)

Figure 68 High-Density Bump Map (AIB Plus, 40 I/Os, Balanced)

6.4 Stacking Channels into a Column

Channel 0 shall abut the AUX block bumps. The orientation shall depend on whether the interface is placed on the East/West sides or the North/South sides of the chiplet.

Figure 69. Low-Density Channel 0 and AUX: East Side

		Edge	e of Chiplet	plet		
AUX	AIB3		AIB1		Unused	
AIBXO		AIB2		AIBO		Unused
	AIB5		AIB7		AIB9	
AIBX1		AIB4		AIB6		AIB8
	AIB15		AIB13		AIB11	
AIBX2		AIB14		AIB12		AIB10
	AIB17		AIB19		AIB21	
AIB8		AIB16		AIB18		AIB20
	AIB27		AIB25		AIB23	
		AIB26		AIB24		AIB22
	AIB29		AIB31		AIB33	
		AIB28		AIB30		AIB32
	AIB39		AIB37		AIB35	
		AIB38		AIB36		AIB34
	AIB41		AIB43		AIB45	
		AIB40		AIB42		AIB44
	AIB51		AIB49		AIB47	
		AIB50		AIB48		AIB46
	AIB53		AIB55		AIB57	
		AIB52		AIB54		AIB56
	Unused		AIB61		AIB59	
		Unused		AIB60		AIB58

Figure 70. Low-Density Channel 0 and AUX: West Side

AUX		Edg	e of Chi	plet		
AIBX0	AIB3		AIB1		Unused	
		AIB2		AIB0		Unused
AIBX1	AIB5		AIB7		AIB9	
		AIB4		AIB6		AIB8
AIBX2	AIB15		AIB13		AIB11	
		AIB14		AIB12		AIB10
AIB8	AIB17		AIB19		AIB21	
		AIB16		AIB18		AIB20
	AIB27		AIB25		AIB23	
		AIB26		AIB24		AIB22
	AIB29		AIB31		AIB33	
		AIB28		AIB30		AIB32
	AIB39		AIB37		AIB35	
		AIB38		AIB36		AIB34
	AIB41		AIB43		AIB45	
		AIB40		AIB42		AIB44
	AIB51		AIB49		AIB47	
		AIB50		AIB48		AIB46
	AIB53		AIB55		AIB57	
		AIB52		AIB54		AIB56
	Unused		AIB61		AIB59	
		Unused		AIB60		AIB58

Figure 71. Low-Density Channel 0 and AUX: North Side

	AIB58		AIB60		Unused	
		AIB59		AIB61		Unused
	AIB56		AIB54		AIB52	
		AIB57		AIB55		AIB53
	AIB46		AIB48		AIB50	
		AIB47		AIB49		AIB51
	AIB44		AIB42		AIB40	
		AIB45		AIB43		AIB41
	AIB34		AIB36		AIB38	
		AIB35		AIB37		AIB39
	AIB32		AIB30		AIB28	
		AIB33		AIB31		AIB29
	AIB22		AIB24		AIB26	
		AIB23		AIB25		AIB27
	AIB20		AIB18		AIB16	
AIB8		AIB21		AIB19		AIB17
	AIB10		AIB12		AIB14	
AIBX2		AIB11		AIB13		AIB15
	AIB8		AIB6		AIB4	
AIBX1		AIB9		AIB7		AIB5
	Unused		AIB0		AIB2	
AIBX0		Unused		AIB1		AIB3
		Edg	e of Chi	plet		

Figure 72. Low-Density Channel 0 and AUX: South Side

The remaining channels shall be stacked by abutting each channel against the prior channel. The order shall depend on whether the interface is placed on the East/West sides or the North/South sides of the chiplet.

Figure 73. Channel Stacking: East Side

Figure 74. Channel Stacking: West Side

Figure 75. Channel Stacking: North Side

Figure 76. Channel Stacking: South Side

6.5 Channel-Number Semantics

The AIB Specification assumes no application-level semantics associated with channel numbers within a column. If an application implements channel-number semantics that impact how one interface connects to another, then it is the responsibility of the designer to resolve any channel-number conflicts.

6.6 Alternate Bump Maps

Alternate 40-data-signal bump tables could be used for devices intending to connect to an existing AIB interface devices. The tables and associated bump maps are shown in the appendix (Section 7.1).

If alternate implementation is to interface with an AIB Plus implementation, redundancy shall be disabled. In addition, one row of microbumps shall be inserted after each set of six channels when stacking channels into a column.

7 Appendices

7.1 Alternate Bump Maps

7.1.1 Alternate (Leader) Bump Table

Bump ID	Bump Name	Ю	Bump ID	Bump Name	IO
AIB61	unused_AIB61	tri	AIB50	unused_AIB50	tri
AIB72	unused_AIB72	tri	AIB73	unused_AIB73	tri
AIB75	unused_AIB75	tri	AIB74	unused_AIB74	tri
AIB91	unused_AIB91	tri	AIB90	unused_AIB90	tri
AIB95	ns_sr_data	out	AIB94	ns_sr_load	out
AIB85	ns_sr_clk	out	AIB84	ns_sr_clkb	out
AIB76	unused_AIB76	tri	AIB77	unused_AIB77	tri
AIB58	unused_AIB58	tri	AIB63	unused_AIB63	tri
AIB48	unused_AIB48	tri	AIB55	unused_AIB55	tri
AIB62	unused_AIB62	tri	AIB60	unused_AIB60	tri
AIB53	unused_AIB53	tri	AIB54	unused_AIB54	tri
AIB49	ns_mac_rdy	out	AIB56	ns_adapter_rstn	out
AIB51	unused_AIB51	tri	AIB52	unused_AIB52	tri
AIB57	fs_rcv_clk	in	AIB59	fs_rcv_clkb	in
AIB64	unused_AIB64	tri	AIB65	fs_adapter_rstn	in
AIB80	unused_AIB80	tri	AIB81	unused_AIB81	tri
AIB78	unused_AIB78	tri	AIB79	unused_AIB79	tri
AIB87	ns_rcv_clk	out	AIB86	ns_rcv_clkb	out
AIB83	fs_sr_clk	in	AIB82	fs_sr_clkb	in
AIB89	unused_AIB89	tri	AIB88	unused_AIB88	tri
AIB93	fs_sr_data	in	AIB92	fs_sr_load	in
AIB71	unused_AIB71	tri	AIB70	unused_AIB70	tri
AIB68	unused_AIB68	tri	AIB69	unused_AIB69	tri
AIB66	unused_AIB66	tri	AIB67	unused_AIB67	tri
AIB20	RX[0]	in	AIB21	RX[1]	in
AIB22	RX[2]	in	AIB23	RX[3]	in
AIB24	RX[4]	in	AIB25	RX[5]	in
AIB26	RX[6]	in	AIB27	RX[7]	in
AIB28	RX[8]	in	AIB29	RX[9]	in
AIB43	fs_fwd_clk	in	AIB42	fs_fwd_clkb	in
AIB30	RX[10]	in	AIB31	RX[11]	in
AIB32	RX[12]	in	AIB33	RX[13]	in

Bump ID	Bump Name	IO	Bump ID	Bump Name	IO
AIB34	RX[14]	in	AIB35	RX[15]	in
AIB36	RX[16]	in	AIB37	RX[17]	in
AIB38	RX[18]	in	AIB39	RX[19]	in
AIB44	fs_mac_rdy	in	AIB45	unused_AIB45	tri
AIB18	TX[18]	out	AIB19	TX[19]	out
AIB16	TX[16]	out	AIB17	TX[17]	out
AIB14	TX[14]	out	AIB15	TX[15]	out
AIB12	TX[12]	out	AIB13	TX[13]	out
AIB10	TX[10]	out	AIB11	TX[11]	out
AIB41	ns_fwd_clk	out	AIB40	ns_fwd_clkb	out
AIB8	TX[8]	out	AIB9	TX[9]	out
AIB6	TX[6]	out	AIB7	TX[7]	out
AIB4	TX[4]	out	AIB5	TX[5]	out
AIB2	TX[2]	out	AIB3	TX[3]	out
AIB0	TX[0]	out	AIB1	TX[1]	out
AIB46	unused_AIB46	tri	AIB47	unused_AIB47	tri

Table 54. Alternate Leader Channel Bump Table

7.1.2 Alternate (Leader) Channel Bump Map

Figure 77 shows a full alternate bump map with allocation for power and ground bump. VCCIO bumps are dedicated for last stage of AIB I/O buffers. VCCD bumps are dedicated for digital circuits including AIB adapter. If the AIB chiplet is connected to Intel FPGA using Intel EMIB silicon interposer, VCCIO will be powered by FPGA and varies between 0.75V to 0.97V. The maximum VCCIO current consumption should not exceed 40mA per AIB channel.

	1	2	3	4	5	6
			Edge of	Chiplet	:	
Α	VCCIO		VCCIO		VCCIO	
В		VCCIO		VCCIO		VCCIO
С	VCCIO		VCCIO		VCCIO	
D		VCCIO		VCCIO		VCCIO
Ε	VSS		VSS		VSS	
F		VSS		VSS		VSS
G	AIB16		AIB41		AIB2	
Н		AIB12		AIB8		AIB46
ı	AIB17		AIB40		AIB3	
J		AIB13		AIB9		AIB47
К	AIB18		AIB10		AIB4	
L		AIB14		AIB6		AIB0
М	AIB19		AIB11		AIB5	
N		AIB15		AIB7		AIB1
0	AIB44		AIB30		AIB24	
Р		AIB34		AIB43		AIB20
Q	AIB45		AIB31		AIB25	
R		AIB35		AIB42		AIB21
S	AIB38		AIB32		AIB26	
Т		AIB36		AIB28		AIB22
U	AIB39		AIB33		AIB27	
V		AIB37		AIB29		AIB23
w	VSS		VSS		VSS	
X		VSS		VSS		VSS
Y	VCCD	100	VCCD	100	VCCD	
Z	VCCD	VCCD	VCCD	VCCD	VCCD	VCCD
AA	AIB57	VCCD	AIB87	VCCD	AIB93	VCCD
AB	Albor	AIB64	Albor	AIB83	AIDJJ	AIB66
AC	AIB59	AIDOT	AIB86	AIDOS	AIB92	Alboo
AD	Alboo	AIB65	Alboo	AIB82	AIDJZ	AIB67
AE	AIB51	AIDOS	AIB78	AIDOZ	AIB71	Albor
AF	AIDJI	AIB80	AID76	AIB89	AID/1	AIB68
	AIB52	Albou	AIB79	AIDOJ	AIB70	Albuo
AG AH	AIDOZ	AIB81	AID/3	ΔIDQQ	AID/U	AIB69
AI	AIB53	VIDOT	VIBES	AIB88	ΔIP75	AIDUS
	AIB33	AIRCO	AIB58	AIROE	AIB75	AIDC1
AJ	AIDE 4	AIB62	AIRCO	AIB95	AID74	AIB61
AK	AIB54	AIRCO	AIB63	AIRO4	AIB74	AIREO
AL AM	AID 40	AIB60	AIRZC	AIB94	AIDO1	AIB50
	AIB49	ALD 40	AIB76	ALDOE	AIB91	A1D72
AN	AIRES	AIB48	415	AIB85	AIFCO	AIB72
AO	AIB56	4/55-	AIB77	4/55	AIB90	4/2
AP	. 45 -	AIB55	145	AIB84		AIB73
AQ	VSS		VSS		VCCD	
AR		VSS		VCCD		VCCD
AS	VSS		VSS		VCCD	
AT		VSS		VCCD		VCCD
77	, A I	4	-4-		d a #	D

Figure 77. Alternate Leader Bump Map

129

7.1.3 Alternate (Follower) Bump Table

Bump ID	Bump Name	Ю
AIB61	unused_AIB61	out
AIB50	unused_AIB50	in
AIB72	unused_AIB72	out
AIB73	unused_AIB73	out
AIB75	unused_AIB75	in
AIB74	unused_AIB74	out
AIB91	unused_AIB91	in
AIB90	unused_AIB90	in
AIB95	fs_sr_data	in
AIB94	fs_sr_load	in
AIB85	fs_sr_clk	in
AIB84	fs_sr_clkb	in
AIB76	unused_AIB76	in
AIB77	unused_AIB77	in
AIB58	unused_AIB58	out
AIB63	unused_AIB63	out
AIB48	unused_AIB483	in
AIB55	unused_AIB553	in
AIB62	unused_AIB62	in
AIB60	unused_AIB60	in
AIB53	unused_AIB533	in
AIB54	unused_AIB543	in
AIB49	fs_mac_rdy	in
AIB56	fs_adapter_rstn	in
AIB51	unused_AIB51	in
AIB52	unused_AIB52	in
AIB57	ns_rcv_clk	out
AIB59	ns_rcv_clkb	out
AIB64	unused_AIB64	out
AIB65	ns_adapter_rstn	out
AIB80	unused_AIB80	out
AIB81	unused_AIB81	out
AIB78	unused_AIB78	out
AIB79	unused_AIB79	out

Bump ID	Bump Name	IO
AIB87	fs_rcv_clk	in
AIB86	fs_rcv_clkb	in
AIB83	ns_sr_clk	out
AIB82	ns_sr_clkb	out
AIB89	unused_AIB89	out
AIB88	unused_AIB88	out
AIB93	ns_sr_data	out
AIB92	ns_sr_load	out
AIB71	unused_AIB71	in
AIB70	unused_AIB70	in
AIB68	unused_AIB68	in
AIB69	unused_AIB69	in
AIB66	unused_AIB66	in
AIB67	unused_AIB67	out
AIB20	tx[0]	out
AIB21	tx[1]	out
AIB22	tx[2]	out
AIB23	tx[3]	out
AIB24	tx[4]	out
AIB25	tx[5]	out
AIB26	tx[6]	out
AIB27	tx[7]	out
AIB28	tx[8]	out
AIB29	tx[9]	out
AIB43	ns_fwd_clk	out
AIB42	ns_fwd_clkb	out
AIB30	tx[10]	out
AIB31	tx[11]	out
AIB32	tx[12]	out
AIB33	tx[13]	out
AIB34	tx[14]	out
AIB35	tx[15]	out
AIB36		
AIB37	tx[17]	out

Bump ID	Bump Name	Ю
AIB38	tx[18]	out
AIB39	tx[19]	out
AIB44	ns_mac_rdy	out
AIB45	unused_AIB45	out
AIB18	rx[18]	in
AIB19	rx[19]	in
AIB16	rx[16]	in
AIB17	rx[17]	in
AIB14	rx[14]	in
AIB15	rx[15]	in
AIB12	rx[12]	in
AIB13	rx[13]	in
AIB10	rx[10]	in
AIB11	rx[11]	in

Bump ID	Bump Name	Ю
AIB41	fs_fwd_clk	in
AIB40	fs_fwd_clkb	in
AIB8	rx[8]	in
AIB9	rx[9]	in
AIB6	rx[6]	in
AIB7	rx[7]	in
AIB4	rx[4]	in
AIB5	rx[5]	in
AIB2	rx[2]	in
AIB3	rx[3]	in
AIB0	rx[0]	in
AIB1	rx[1]	in
AIB46	unused_AIB46	in
AIB47	unused_AIB47	in

Table 55. Alternate Follower Channel Bump Table

7.1.4 Alternate (Follower) Channel Bump Map

Figure 77 shows an alternate bump map for a Follower.

1	2	3	4	5	6
Edge of Chiplet					
VCCIO		VCCIO		VSS	
	VCCIO		VSS		VSS
AIB1		AIB7		AIB15	
	AIB5		AIB11		AIB19
AIB0		AIB6		AIB14	
	AIB4		AIB10		AIB18
AIB47		AIB9		AIB13	
	AIB3		AIB40		AIB17
AIB46		AIB8		AIB12	
	AIB2		AIB41		AIB16
AIB23		AIB29		AIB37	
	AIB27		AIB33		AIB39
AIB22		AIB28		AIB36	
	AIB26		AIB32		AIB38
AIB21		AIB42		AIB35	
	AIB25		AIB31		AIB45
AIB20		AIB43		AIB34	
	AIB24		AIB30		AIB44
AIB69		AIB88		AIB81	
	AIB70		AIB79		AIB52
AIB68		AIB89		AIB80	
	AIB71		AIB78		AIB51
AIB67	7.1.07.1	AIB82	7570	AIB65	7.11001
711007	AIB92	711002	AIB86	711000	AIB59
AIB66	AIDJZ	AIB83	Alboo	AIB64	Alboo
Alboo	AIB93	Albos	AIB87	Albor	AIB57
AIB73	AIDJJ	AIB84	Albor	AIB55	Albor
AID/3	AIB90	Albo4	AIB77	Alboo	AIB56
AIB72	AIDSU	AIB85	Alb//	AIB48	Albou
AID/2	AIB91	Albos	AIB76	AID40	AIB49
AIDEO	AIDJI	AIDO4	AID/0	AIRCO	AID43
AIB50	A ID 74	AIB94	AIDCO	AIB60	AIDE 4
AUDCA	AIB74	AIDOF	AIB63	AUDCO	AIB54
AIB61	A1075	AIB95	AIDEC	AIB62	AIDEO
VCCIC	AIB75	1/6616	AIB58	\/CC	AIB53
VCCIO	1/00:0	VCCIO	1/65	VSS) /C C
1/00:5	VCCIO	1000	VSS	\ (C.C.	VSS
VCCIO		VCCIO		VSS	
	VCCIO		VSS		VSS
VCCIO		VCCIO		VSS	
	VCCIO		VSS		VSS
VCCIO		VCCIO		VSS	
	VCCIO		VSS		VSS
VCCIO		VCCIO		VSS	
	VCCIO		VSS		VSS
VCCIO		VCCIO		VSS	
	VCCIO		VSS		VSS

Figure 78. Alternate Follower Bump Map

132

7.2 Sideband-Control-Signal Shift Register Mapping (AIB Plus only)

Bit Order	Side Band Control Signals from Leader to Follower	Bit Width	Default Value	Descriptions
[80]	ms_osc_transfer_en	1	1	MS output to SL to indicate MS OSC transfer has been enabled.
[79]	Reserved	1	1	Reserved
[78]	ms_tx_transfer_en	1	1	TX output to RX to indicate that TX OSC transfer has been enabled.
[77]	Reserved	1	1	Reserved
[76]	Reserved	1	1	Reserved
[75]	ms_rx_transfer_en	1	1	RX output to TX to indicate that RX is ready for data transfer.
[74]	ms_rx_dll_lock	1	1	RX output to TX to indicate that RX DLL achieves lock.
[73:71]	Reserved	3	3'b111	Reserved
[70:69]	Reserved	2	2'b11	Reserved
[68]	ms_tx_dcc_cal_done	1	1	TX output to RX to indicate that DCC calibration is done
[67]	Reserved	1	0	Reserved
[66]	Reserved	1	1	Reserved
[65:12]	User defined	1	0	For application use
[11]	User defined	1	0	For application use
[10]	User defined	1	0	For application use
[9]	User defined	1	0	For application use
[8]	User defined	1	0	For application use
[7]	Reserved	1	1	Reserved
[6]	Reserved	1	0	Reserved
[5]	Reserved	1	1	Reserved
[4:0]	User defined	1	0	For application use

Table 56. Leader Sideband-Control Signals

Bit Order	Side Band Control Signals from Follower to Leader	Bit Width	Default Value	Descriptions
[72]	sl_osc_transfer_en	1	1	RX output to MS to indicates SL OSC transfer has been enabled.

Bit Order	Side Band Control Signals from Follower to Leader	Bit Width	Default Value	Descriptions
[71]	Reserved	1	0	Reserved
[70]	sl_rx_transfer_en	1	1	RX output to MS to indicate SL RX is ready to receive data
[69]	sl_rx_dcc_dll_lock_req	1	1	DLL/DCC calibration request from Follower RX to Leader TX AIB to start full DLL/DCC calibration.
[68]	sl_rx_dll_lock	1	1	RX output to MS (adapter and PHY) to indicate SL DLL achieves lock.
[67:65]	Reserved	3	3'b000	Reserved
[64]	sl_tx_transfer_en	1	1	TX sends to RX (adapter and PHY) that it is ready for TX data transfer.
[63]	sl_tx_dcc_dll_lock_req	1	1	PHY DLL/DCC calibration request from Follower TX to Leader RX AIB to start full DLL/DCC calibration.
[62]	Reserved	1	0	Reserved
[61]	Reserved	1	0	Reserved
[60]	Reserved	1	1	Reserved
[59]	Reserved	1	0	Reserved
[58]	Reserved	1	1	Reserved
[57:32]	User defined	1	0	For application use
[31]	sl_tx_dcc_cal_done	1	1	TX AIB to notify MS that DCC calibration is complete.
[30:28]	User defined	1	0	For application use
[27]	Reserved	1	0	Reserved
[26:17]	User defined	1	0	For application use
[16]	User defined	1	0	For application use
[15]	User defined	1	0	For application use
[14]	User defined	1	0	For application use
[13]	User defined	1	0	For application use
[12:0]	User defined	1	0	For application use

Table 57. Follower Sideband-Control Signal

7.3 Test Pattern Extension

The ability for an AIB PHY to generate and check test patterns is useful for some application and test purposes. This optional test pattern extension describes the pattern generation and checking capabilities.

7.3.1 Pattern Generator and Checker

The test pattern function contains a pattern generator block and a pattern checker block for each AIB TX/RX signal pair. The pattern generator and checker may be programmed to use the PRBS polynomials of Table 58 and programmable patterns.

Name	Polynomial
PRBS40	$X^{40} + x^{38} + x^{21} + 1$
PRBS31	$x^{31} + x^{28} + 1$
PRBS23	$x^{23} + x^{18} + 1$
PRBS10	$x^{10} + x^7 + 1$
PRBS7	$x^7 + x^6 + 1$

Table 58. Test Pattern Polynomials

The pattern generator may be initialized (seeded) to an arbitrary value.

In addition to the PRBS patterns, the pattern generator is capable of storing a programmable pattern and pattern length. In programmable pattern mode, the generator repeats the pattern continuously. The programmable pattern generator is capable of producing all 0s, all 1s, alternating 0 and 1 and other patterns by storing the desired pattern into the pattern generator. The pattern checker is similarly capable of checking that the received RX data matches the pattern stored in the pattern checking block.

7.3.2 Pattern Data Paths

The AIB PHY may be programmed to select the pattern generation block as the source of AIB TX data in place of the MAC to PHY *data_in* or *data_in_f* signals of Table 7.

Figure 79 is a supported two die test case where the test patterns in each direction are independent.

Figure 79. Two die test case with independent pattern generators and checkers

Figure 80 is a supported two die test case using the pattern generator and checker on one die and far side loopback (section 5.2) on the second die.

Figure 80. Two die test case using far side loopback