Find the node voltages v_1 , v_2 and v_3 . Use nodal analysis.

Vs = 9V

 $R1 = 5 \Omega$

 $R2 = 5 \Omega$

b = 3 A/A

OPTION 1

$$\Re$$
 KCL D2: $\frac{\sqrt{1}-\sqrt{1}}{5}$ + $\frac{\sqrt{1}-\sqrt{3}}{5}$ + 3 $(\frac{\sqrt{1}-\sqrt{1}}{5})$ =0 ⇒ -4 $\sqrt{1}$ + 9 $\sqrt{2}$ -5 $\sqrt{3}$ =0 (2)

(3) in (2):
$$-4v_3 - 36 + 9v_2 - 5v_3 = 0 \implies 9v_1 - 9v_3 = 36$$

 $\implies v_1 - v_3 = 4$ (5)

$$(4) + (5): 2 \sqrt{3} - \sqrt{3} = -9 + 4 \implies \boxed{\sqrt{3} = -5 \sqrt{3}}$$

$$\boxed{\sqrt{1} = 4 \sqrt{3}} \quad \text{From (3)}$$

$$\boxed{\sqrt{1} = -1 \sqrt{3}} \quad \text{From (5)}$$