Contents

1	9-10	-2014	2	
	1.1	Measure Theory Chapter 6	2	
2	10-10-2014			
	2.1	Measure Theory Chapter 7	9	
	2.2	Measure Theory Chapter $5 \dots 1$	2	
	2.3	Measure Theory Chapter 7		
3	11-10-2014			
	3.1	Measure Theory Chapter 8	8	
4	12-10-2014 24			
	4.1	Measure Theory Chapter 9	4	
		Measure Theory Chapter 7		
5	13-1	0-2014	${f 2}$	
	5.1	Markov Chains 1.2	2	
		Markov Chains 1.3		
6	14-10-2014 41			
	6.1	Markov Chains 1.4	1	
		Markov Chains 1.5		
7	15-10-2014 48			
	7.1	Markov Chains 1.6	8	
	-	Markov Chains 1.7		

1 9-10-2014

1.1 Measure Theory Chapter 6

1.1 Problem 6.1a.

Consider on \mathbb{R} the family Σ of all Borel sets which are symmetric w.r.t. the origin. Show that Σ is a σ -algebra.

Proof.

- 1. To show that $\mathbb{R} \in \Sigma$, note that \mathbb{R} is a Borel set that is symmetric w.r.t. to the origin.
- 2. To show that $A \in \Sigma \Rightarrow A^c \in \Sigma$, it suffices to show that

$$\forall x \in A : -x \in A \Longrightarrow \forall y \in A^c : -y \in A^c$$
,

which is equivalent with showing that

$$\forall x \in A : -x \in A \Longrightarrow \forall y \notin A : -y \notin A$$
,

which is equivalent with showing that

$$\exists y \notin A : -y \in A \Longrightarrow \exists x \in A : -x \notin A.$$

This last statement hold if we set x := -y.

3. To show that Σ is stable under countable unions, assume $A_j = B_j \cup B_j$ for some $B_j \in \mathcal{B}([0,\infty)$. We have

$$\bigcup_{j\in\mathbb{N}} A_j = \bigcup_{j\in\mathbb{N}} B_j \cup \bigcup_{j\in\mathbb{N}} -B_j \in \Sigma$$

1.2 Problem 6.3i.

Show that non-void open sets in \mathbb{R}^n have always strictly positive Lebesgue measure.

Proof.

First remember that

1.
$$\lambda^n[a,b) = \prod_{j=1}^n (b_j - a_j)$$

- 2. λ^n is a pre-measure that can be extended to a measure on $\mathcal{B}(\mathbb{R}^n)$.
- 3. λ^n is invariant under translations

4.
$$A \subseteq B \Longrightarrow \mu(A) \le \mu(B)$$

5.
$$Q_{\epsilon} = [-\epsilon, \epsilon)$$

To show that $\lambda^n(U) > 0$ it suffices

$$\lambda^n(U') > 0$$

where $0 \in U'$ and U' = x + U for some $x \in \mathbb{R}^n$. To show that it suffices to show that

$$\lambda^n(B_{\epsilon}(0)) > 0$$

where $B_{\epsilon}(0) \subseteq U$. To show that it suffices to show that $Q_{\epsilon'} \subseteq B_{\epsilon}$ for some $\epsilon' > 0$. This holds if we set $\epsilon' := \frac{\epsilon}{\sqrt{2n}}$.

1.3 Problem 6.3ii.

Is 6.3i still true for closed sets?

Proof.

No, take $\{0\}$, then $\lambda\{x\} = 0$.

1.4 Problem 6.4i.

Show that $\lambda(a,b) = b - a$ for all $a,b \in \mathbb{R}, a \leq b$.

Proof.

$$\lambda(a,b) = \lambda([b-a) - \{b\})$$

$$= \lambda[b,a) - \lambda\{b\}$$

$$= b-a-0$$
 T4.3iii
Problem 4.11i

1.5 Problem 6.4ii.

Let $H \subseteq \mathbb{R}^2$ be a hyperplane which is perpendicular to the x_1 -direction (that is to say: H is a translate of the x_2 axis). Show that

- 1. $H \in \mathcal{B}(\mathbb{R}^2)$
- 2. $\lambda^{2}(H) = 0$

Proof.

1. To show that $H \in \mathcal{B}(\mathbb{R}^2)$, it suffices to show that H is writable as an intersection of countable half-open sets. Note that:

$$H := \{y\} \times \mathbb{R} = \bigcap_{j \in \mathbb{N}} [y, y + 1/j) \times \mathbb{R}$$

2. We have that for any $\epsilon > 0$:

$$\lambda^{2}(H) = \lambda^{2}(\{y\} \times \mathbb{R})$$

$$\leq \lambda^{2} \left(\bigcup_{n \in \mathbb{N}} [y, y + \epsilon_{n}) \times [-n, n) \right)$$

$$\leq 2 \sum_{n \in \mathbb{N}} \epsilon_{n} n$$

$$= \epsilon L$$

This follows if we choose $\epsilon_n := \frac{\epsilon}{2^n}$. Therefore $\lambda^2(H) = 0$.

1.6 Definition.

Let (X, \mathcal{A}, μ) be a measure space such that all singletons $\{x\} \in \mathcal{A}$. A point x is called an atom, if $\mu\{x\} > 0$. A measure is called *non-atomic* or *diffuse*, there are no atoms.

1.7 Problem 6.5i.

Show that λ^1 is diffuse.

Proof.

We've already shown that $\lambda\{x\} = 0$ for any $x \in \mathbb{R}$.

1.8 Problem 6.5iii.

Show that for a diffuse measure μ on (X, A) all countable sets are null sets.

Proof.

All countable sets are writable as

$$\bigcup_{j=0}^{\infty} \{x_j\}$$

where $x_i \neq x_j$. So we get

$$\lambda\left(\bigcup_{j=0}^{\infty} \{x_j\}\right) = \sum_{j=0}^{n} \lambda\{x_j\} = 0.$$

1.9 Definition.

A set $A \subseteq \mathbb{R}^n$ is called *bounded* if it can be contained in a ball $B_r \supseteq A$ of finite radius r. A set $A \subseteq \mathbb{R}^n$ is called *connected*, if we can go along a curve from any point $a \in A$ to any point $a' \in A$ without ever leaving A.

1.10 Problem 6.6a.

Construct an open and unbounded set in \mathbb{R} with finite, strictly positive Lebesgue measure.

Proof.

Consider the set

$$U := \bigcup_{n=1}^{\infty} \left(n - \frac{1}{2^n}, n + \frac{1}{2^n} \right).$$

This is an open set, as it union of countable open sets. It is unbounded, for any $B_r(0)$ we have that $r+1 \in U$ and not in $B_r(0)$. We have to show that it has finite lebesgue measure.

$$\lambda(U) = \bigcup_{n=1}^{\infty} \left(n - \frac{1}{2^n}, n + \frac{1}{2^n} \right)$$
$$= \sum_{n=1}^{\infty} \frac{2}{2^n} = 2.$$

1.11 Problem 6.6ii.

Construct an open, unbounded and connected set in \mathbb{R} with finite, strictly positive Lebesque measure.

Proof.

Consider

$$U = \bigcup_{j \in \mathbb{N}} [0, 0 + \epsilon/(2^j)) \times [-j, j)$$

then

$$\begin{split} \lambda^2(U) &= \left(\bigcup_{j \in \mathbb{N}} (-\frac{1}{2^j}, \frac{1}{2^j}) \times (-j, j) \right) \\ &\leq \sum_{j \in \mathbb{N}} \frac{4j}{2^j} \end{split}$$

Note that

$$\sum_{j\in\mathbb{N}}\frac{j}{2^j}$$

converges.

1.12 Problem 6.6iii.

Is there a connected, open and unbounded set in \mathbb{R} with finite, strictly positive Lebesgue measure?

Proof.

No, this is impossible. Since we are in one dimension, connectedness forces us to go between points in a straight, uninterrupted line. Since the set is unbounded, this means we must have a line of the sort (a, ∞) or $(-\infty, b)$ in our set and in both cases Lebesgue measure is infinite.

1.13 Definition.

Let $A \subset X$. The closure of A, denoted by \bar{A} , is the smallest closed set containing A, i.e.

$$\bar{A} = \bigcap_{\substack{F \in \mathcal{C} \\ F \supset A}} F$$

1.14 Definition.

A set $A \subseteq X$ is dense in X if $\bar{A} = X$

1.15 Problem 6.7.

Let $\lambda := \lambda^1|_{[0,1]}$ be a Lebesgue measure on $([0,1], \mathcal{B}[0,1])$. Show that for every $\epsilon > 0$ there is a dense open set $U \subseteq [0,1]$ with $\lambda(U) \leq \epsilon$.

Proof.

Note that \mathbb{Q} is dense. We are going to make an open set contained in \mathbb{Q} . Consider

$$U := \bigcup_{j=1}^{\infty} (q_j - \epsilon_j, q_j + \epsilon_j)$$

Then

$$\lambda(U) = \lambda(\bigcup_{j=1}^{\infty} (q_j - \epsilon_j, q_j + \epsilon_j)) \le \sum_{j=1}^{\infty} 2\epsilon_j.$$

So set $\epsilon_j := \frac{\epsilon}{2^{j-1}}$. And we are done.

1.16 Problem 6.10i.

Let μ be a measure on $A = \{\emptyset, [0,1), [1,2), [0,2)\}$ of X = [0,2). Such that

$$\mu[0,1) = \mu[1,2) = 1/2$$
 $\mu[0,2) = 1.$

Define for each $A \subseteq [0,2)$ the family of countable A-coverings of A

$$C(A) := \{ (A_j)_{j \in \mathbb{N}} \subseteq A : \bigcup_{j \in \mathbb{N}} A_j \supseteq A \}$$

and set

$$\mu^*(A) := \inf \left\{ \sum_{j \in \mathbb{N}} \mu(S_j) : (S_j)_{j \in \mathbb{N}} \in \mathcal{C}(A) \right\}.$$

 $Define \ \mathcal{A}^* := \{A \subseteq [0,2): \mu^*(B) = \mu^*(B \cap A) + \mu^*(B-A) \quad \forall B \subseteq X\}$

Show that

- 1. Find $\mu^*(a,b), \mu^*\{a\}$
- 2. $(0,1), \{0\} \not\in \mathcal{A}^*$

Note that in T6.1 it is proven that:

- $A \subseteq A^*$
- $\mu^*(A) = \mu(A) \quad \forall A \in \mathcal{A}$
- \mathcal{A}^* is a σ -algebra and μ^* is a measure on $([0,2),\mathcal{A}^*)$

Proof.

1. We have

$$\begin{split} \mu^*(a,b) &= \mu[0,1) \quad \text{if } a,b \in [0,1) \\ \mu^*(a,b) &= \mu[1,2) \quad \text{if } a,b \in [1,2) \\ \mu^*(a,b) &= \mu[0,2) \quad \text{if } a \in [0,1), b \in [1,2) \end{split}$$

In the case of a singleton $\{a\}$ the best possibble cover is always either [0,1) or [1,2) so that $\mu^*\{a\}=1/2$.

2. Suppose that $(0,1) \in \mathcal{A}^*$ then we would have that

$$\{0\} = [0,1) - (0,1) \in \mathcal{A}^*.$$

But this gives

$$\frac{1}{2} = \mu^*[0,1) = \mu^*(0,1) + \mu^*\{0\} = 1$$

2 10-10-2014

2.1 Measure Theory Chapter 7

2.1 Definition.

Let $(X, \mathcal{A}), (X', \mathcal{A}')$ be two measurable spaces. A map $T: X \to X'$ is called \mathcal{A}/\mathcal{A}' -measurable (or measurable unlesss this is too amiguous) if the preimage of every measurable set is a measurable set:

$$T^{-1}(A') \in \mathcal{A} \qquad \forall A' \in \mathcal{A}'.$$

We often denote this by $T^{-1}(\mathcal{A}') \subseteq \mathcal{A}'$.

2.2 Definition.

A random variable is a measurable map from a probability space (i.e. $\mu(X) = 1$) to any measurable space.

2.3 Lemma 7.2.

Let $(X, \mathcal{A}), (X', \mathcal{A}')$ be measurable spaces and let $\mathcal{A}' = \sigma(\mathcal{G}')$. Then $T: X \to X'$ is \mathcal{A}/\mathcal{A}' -measurable if and only if

$$T^{-1}(G') \in \mathcal{A} \qquad \forall G' \in \mathcal{G}'.$$

2.4 Problem 7.1.

Show that

$$\tau_x: \mathbb{R}^n \to \mathbb{R}^n: B \mapsto B - x$$

is a $\mathcal{B}(\mathbb{R}^n)/\mathcal{B}(\mathbb{R}^n)$ measurable map.

Proof.

Showing that

$$\tau_x: \mathcal{B}(\mathbb{R}^n) \to \mathcal{B}(\mathbb{R}^n): B \mapsto B - x$$

is $\mathcal{B}(\mathbb{R}^n)/\mathcal{B}(\mathbb{R}^n)$ measurable, is equivalent with showing that

$$\tau_x^{-1}(B) \in \mathcal{B}(\mathbb{R}^n) \qquad \forall B \in \mathcal{B}(\mathbb{R}^n),$$

which in turn is equivalent with showing that

$$x + B \in \mathcal{B}(\mathbb{R}^n) \qquad \forall B \in \mathcal{J}(\mathbb{R}^n),$$

which in turn is equivalent with showing that

$$x + [a, b) \in \mathcal{B}(\mathbb{R}^n) \qquad \forall a, b \in \mathbb{R}^n.$$

This follows as $x + [a, b) = [x + a, x + b) \in \mathcal{J}(\mathbb{R}^n) \subseteq \mathcal{B}(\mathbb{R}^n)$.

2.5 Theorem.

Every continuous map $T: \mathbb{R}^n \to \mathbb{R}^m$ is $\mathcal{B}^n/\mathcal{B}^m$ measurable.

Proof.

Showing that

$$T: \mathbb{R}^n \to \mathbb{R}^m$$

is $\mathcal{B}^n/\mathcal{B}^m$ measurable, is equivalent with showing that

$$T^{-1}(\mathcal{O}^m) \subseteq \mathcal{B}^n$$
.

As $\mathcal{O}^n \subseteq \sigma(\mathcal{O}^n) = \mathcal{B}^n$, it suffices to show that

$$T^{-1}(\mathcal{O}^m) \subseteq \mathcal{O}^n$$
,

which follows from the continuity of T.

2.6 Definition.

Let $(T_i)_{i\in I}$ be arbitrarily many mappings $T_i: X \to X_i$ from the same space X into measurable spaces (X_i, \mathcal{A}_i) . The smallest σ -algebra on X that makes all T_i simultaneously measurable is

$$\sigma(T_i: i \in I) := \sigma\Big(\bigcup_{i \in I} T_i^{-1}(\mathcal{A}_i)\Big).$$

We say that $\sigma(T_i : i \in I)$ is generated by the family $(T_i)_{i \in I}$.

2.7 Theorem.

Let (X_j, A_j) , j = 1, 2, 3, be measurable spaces and $T : X_1 \to X_2$, $S : X_2 \to X_3$ be A_1/A_2 —resp. A_2/A_3 -measurable maps. Then $S \circ T : X_1 \to X_3$ is A_1/A_3 -measurable.

2.8 Problem 7.4.

Let X be a set, (X_i, A_i) , $i \in I$, be arbitrarily many measurable spaces, and $T_i: X \to X_i$ be a family of maps. Show that a map f from a measurable space (F, \mathcal{F}) to $(X, \sigma(T_i: i \in I)$ is measurable if, and only if, all maps $T_i \circ f$ are \mathcal{F}/A_i -measurable.

Proof of \Longrightarrow .

To show that all maps $T_i \circ f$ are $\mathcal{F}/\mathcal{A}_i$ -measurable, it suffices to show that $T_i: X \to X_i$ is $\sigma(T_i: i \in I)/\mathcal{A}_i$ -measurable and $f: F \to X$ is $\mathcal{F}/\sigma(T_i: i \in I)$ -measurable.

By hypothesis, is suffices to show that $T_i: X \to X_i$ is $\sigma(T_i: i \in I)/A_i$ -measurable, which is equivalent with showing that

$$T_i^{-1}(A_i) \in \sigma(T_i : i \in I) \qquad \forall A_i \in \mathcal{A}_i.$$

It suffices to assume $A_i \in \mathcal{A}_i$ and show that

$$T_i^{-1}(A_i) \in \bigcup_{i \in I} T_i^{-1}(A_i) \qquad \checkmark.$$

Proof of \Leftarrow .

To show that a map f from a measurable space (F, \mathcal{F}) to $(X, \sigma(T_i : i \in I))$ is measurable, it suffices to show that

$$f^{-1}(\bigcup_{i\in I}T_i^{-1}(\mathcal{A}_i))\subseteq \mathcal{F}$$

To show this it suffices to show that

$$\bigcup_{i\in I} f^{-1}(T_i^{-1}(\mathcal{A}_i)) \subseteq \mathcal{F},$$

to show this it suffices to show that

$$f^{-1}(T_i^{-1}(\mathcal{A}_i)) \subseteq \mathcal{F},$$

to show this it suffices to show that

$$(T_i \circ f)^{-1}(\mathcal{A}_i) \subseteq \mathcal{F}.$$

This follows by hypothesis.

2.9 Problem 7.8.

Let $T: X \to Y$ be any map. Show that

$$T^{-1}(\sigma(\mathcal{G})) = \sigma(T^{-1}(\mathcal{G}))$$

holds for arbitrary families of \mathcal{G} of subsets of Y.

Proof.

To show that

$$T^{-1}(\sigma(\mathcal{G})) = \sigma(T^{-1}(\mathcal{G}))$$

it suffices to show:

1.
$$T^{-1}(\sigma(\mathcal{G})) \subseteq \sigma(T^{-1}(\mathcal{G}))$$

2.
$$\sigma(T^{-1}(\mathcal{G})) \subseteq T^{-1}(\sigma(\mathcal{G}))$$

To show

$$T^{-1}(\sigma(\mathcal{G})) \subseteq \sigma(T^{-1}(\mathcal{G})),$$

it suffices to show that T is $\sigma(T^{-1}(\mathcal{G}))/\sigma(\mathcal{G})$ measurable.

To show that it suffices to show that

$$T^{-1}(\mathcal{G}) \subseteq \sigma(T^{-1}(\mathcal{G})) \qquad \checkmark.$$

To show

$$\sigma(T^{-1}(\mathcal{G})) \subseteq T^{-1}(\sigma(\mathcal{G})),$$

it suffices to show that

$$T^{-1}(\mathcal{G}) \subseteq T^{-1}(\sigma(\mathcal{G})) \qquad \checkmark.$$

2.2 Measure Theory Chapter 5

2.10 Definition.

A family $\mathcal{D} \subseteq \mathcal{P}(X)$ is a *Dynkin system* if

$$X\in\mathcal{D}$$

$$D\in\mathcal{D}\Longrightarrow D^c\in\mathcal{D}$$

$$(D_j)_{j\in\mathbb{N}}\subseteq\mathcal{D} \text{ pairwise disjoint }\Longrightarrow\bigcup_{j\in\mathbb{N}}D_j\in\mathcal{D}$$

2.11 Definition.

Let $\mathcal{G} \subseteq \mathcal{P}(X)$. Then there is a smallest Dynkin system $\delta(\mathcal{G})$ containing \mathcal{G} . $\delta(\mathcal{G})$ is called the *Dynkin system generated by* \mathcal{G} .

2.12 Proposition.

Show that

$$\mathcal{G} \subseteq \delta(\mathcal{G}) \subseteq \sigma(\mathcal{G}).$$

Proof.

We have that $\mathcal{G} \subseteq \sigma(\mathcal{G})$. And therefore $\delta(\mathcal{G}) \subseteq \delta(\sigma(\mathcal{G})) = \sigma(\mathcal{G})$.

2.13 Theorem.

A Dynkin system \mathcal{D} is a σ -algebra if, and only if, it is stable under finite intersections: $D, E \in \mathcal{D} \Longrightarrow D \cap E \in \mathcal{D}$

Proof.

It suffices to show that a \cap -stable Dynkin system is stable under countable unions. To show this, it suffices to show that given $(D_i)_{i\in\mathbb{N}}\in\mathcal{D}$, we have

$$D:=\bigcup_{j\in\mathbb{N}}D_j\in\mathcal{D}.$$

Set $E_1 = D_1 \in \mathcal{D}$. And $E_2 := D_2 \cap D_1^c$. And $E_3 = D_3 \cap D_2^c \cap D_1^c$. And so on. Then

$$D = \bigcup_{j \in \mathbb{N}} E_j \in \mathcal{D}.$$

2.14 Theorem.

If $\mathcal{G} \subseteq \mathcal{P}(X)$ is stable under finite intersections, then $\delta(\mathcal{G}) = \sigma(\mathcal{G})$.

Proof.

It suffices to show that $\sigma(\mathcal{G}) \subseteq \delta(\mathcal{G})$. As $\mathcal{G} \subseteq \delta(\mathcal{G})$ it suffices to show that $\delta(\mathcal{G})$ is a σ -algebra. To show that $\delta(\mathcal{G})$ is a σ -algebra, it suffices to show that $\delta(\mathcal{G})$ is stable under finite intersections.

Fix $D \in \delta(G)$. Consider $\mathcal{D}_D := \{Q \subseteq X : Q \cap D \in \delta(\mathcal{G})\}$. It suffices to show that $\delta(\mathcal{G}) \subseteq \mathcal{D}_D$. To show that it suffices to show that \mathcal{D}_D is a Dynkin system and that $\mathcal{G} \subseteq \mathcal{D}_D$.

To show that $\mathcal{G} \subseteq \mathcal{D}_D$, it suffices to show that

$$G \cap D \in \delta(\mathcal{G}) \qquad \forall G \in \mathcal{G},$$

to show that it suffices to show that

$$\delta(\mathcal{G}) \subseteq \mathcal{D}_G \quad \forall G \in \mathcal{G},$$

to show that it suffices to show that (as \mathcal{D}_G is a dynkin system)

$$\mathcal{G} \subset \mathcal{D}_G \quad \forall G \in \mathcal{G}.$$

This follows from $\mathcal{G} \subseteq \delta(\mathcal{G})$ and \mathcal{G} is \cap -stable.

2.15 Proposition.

$$A_i \uparrow A \Longrightarrow A_i \cap B \uparrow A \cap B$$

Proof.

To show that

$$A_j \uparrow A \Longrightarrow A_j \cap B \uparrow A \cap B$$
,

it suffices to show that

$$A = \bigcup_{j} A_{j} \Longrightarrow A \cap B = \bigcup_{j} A_{j} \cap B,$$

which is equivalent with showing that

$$\left(\bigcup_{j} A_{j}\right) \cap B = \bigcup_{j} A_{j} \cap B \qquad \checkmark.$$

2.16 Definition.

An exhausting sequence $(A_j)_{j\in\mathbb{N}}\subseteq\mathcal{A}$ is an increasing sequence of sets $A_1\subseteq A_2\subseteq A_3\subseteq\dots$ such that $\bigcup_{j\in\mathbb{N}}A_j=X$.

2.17 Theorem.

Assume that (X, A) is a measurable space and that $A = \sigma(G)$ is generated by a family G such that

- \mathcal{G} is stable under finite intersections $G, H \in \mathcal{G} \Longrightarrow G \cap H \in \mathcal{G}$
- there exists an exhausting sequence $(G_j)_{j\in\mathbb{N}}\subseteq\mathcal{G}$ with $G_j\uparrow X$

Any two measure μ, ν that coincide on \mathcal{G} and are finite for all members of the exhausting sequence $\mu(G_i) = \nu(G_i) < \infty$, are equal on \mathcal{A} , i.e.

$$\mu(A) = \nu(A) \qquad \forall A \in \mathcal{A}.$$

Proof.

Remember that for any increasing sequence $(A_j)_{j\in\mathbb{N}}\subseteq\mathcal{A}$ with $A_j\uparrow A\in\mathcal{A}$ we have

$$\mu(A) = \lim_{j \in \infty} \mu(A_j).$$

To show that

$$\mu(A) = \nu(A) \qquad \forall A \in \mathcal{A}$$

it suffices to show that (as $G_j \cap A \uparrow X \cap A$)

$$\lim_{j \in \infty} \mu(G_j \cap A) = \lim_{j \in \infty} \mu(G_j \cap A) \qquad \forall A \in \mathcal{A}$$

To show that it suffices to show that

$$\mu(G_j \cap A) = \nu(G_j \cap A) \quad \forall j \in \mathbb{N}, \quad \forall A \in \mathcal{A}.$$

Consider $\mathcal{D}_j := \{ A \in \mathcal{A} : \mu(G_j \cap A) = \nu(G_j \cap A) \}$. It suffices to show that $\mathcal{A} \subseteq \mathcal{D}_j$, which is equivalent with showing $\sigma(\mathcal{G}) \subseteq \mathcal{D}_j$.

As \mathcal{G} is stable under finite intersections, it suffices to show that $\delta(\mathcal{G}) \subseteq \mathcal{D}_i$.

As \mathcal{G} is stable under finite intersections and $\mu(\mathcal{G}) = \nu(\mathcal{G})$, we have that $\mathcal{G} \subseteq D_j$ and therefore it suffices to show that \mathcal{D}_j is a Dynkin system.

Which you can check.

2.18 Theorem.

The n-dimensional Lebesgue measure λ^n is invariant under translations, i.e.

$$\lambda^n(x+B) = \lambda^n(B) \qquad \forall x \in \mathbb{R}^n, \forall B \in \mathcal{B}(\mathbb{R}^n).$$

Proof.

Set $\nu(B) := \lambda^n(x+B)$ for some fixed $x \in \mathbb{R}^n$. It suffices to show that

$$\lambda^n(B) = \nu(B)$$
 $B \in \mathcal{B}$.

To show that, it suffices to show that

- 1. \mathcal{J} is \cap -stable \checkmark
- 2. \mathcal{J} admits an exhausting sequence

•
$$[-j,j) \uparrow \mathbb{R}^n \quad \checkmark$$

3. $\lambda^n|_{\mathcal{J}} = \nu|_{\mathcal{J}}$

$$v([a,b)) = \lambda^{n}[x+a, x+b)$$
$$= \lambda^{n}[a,b)$$

4. ν is a measure on \mathcal{B}^n

To show that ν is a measure on \mathcal{B}^n , it suffices to show that

$$\nu(\bigcup_{j\in\mathbb{N}} B_j) = \sum_{j\in\mathbb{N}} \nu(B_j),$$

which is equivalent with

$$\lambda^n(x + \bigcup_{j \in \mathbb{N}} B_j) = \sum_{j \in \mathbb{N}} \lambda^n(x + B_j).$$

It suffices to show

$$B \in \mathcal{B}^n \Longrightarrow x + B \in \mathcal{B}^n.$$

Which we have already proven.

2.19 Theorem.

Let $(X, \mathcal{A}), (X, \mathcal{A}')$ be measurable spaces and $T: X \to X'$ be an \mathcal{A}/\mathcal{A}' measurable map. For every measure μ on (X, \mathcal{A}) ,

$$\mu'(A') := \mu(T^{-1}(A')), \qquad A' \in \mathcal{A}'.$$

The measure μ' is called the image measure of μ under T and is denoted by $T \circ \mu$ or $\mu \circ T^{-1}$.

2.3 Measure Theory Chapter 7

2.20 Problem 7.7.

Use image measures to give a new proof of Problem 5.8, i.e. to show that

$$\lambda^n(t \cdot B) = t^n \lambda^n(B) \qquad \forall B \in \mathcal{B}(\mathbb{R}^n), \forall t > 0$$

Proof.

Set $\nu(B) := t^n \lambda^n(B)$ for some fixed $x \in \mathbb{R}^n$. It suffices to show that

$$\lambda^n(tB) = \nu(B) \qquad \forall B \in \mathcal{B}.$$

To show that, it suffices to show that

- 1. \mathcal{J} is \cap -stable \checkmark
- 2. \mathcal{J} admits an exhausting sequence

•
$$[-j,j) \uparrow \mathbb{R}^n \quad \checkmark$$

3.
$$\lambda^n|_{\mathcal{J}} = \nu|_{\mathcal{J}}$$

$$\nu([a,b)) = \lambda^n[ta,tb)$$
$$= t^n \lambda^n[a,b)$$

4. ν is a measure on \mathcal{B}^n as it is a composition of the inverse of a measurable map and a measure.

3 11-10-2014

3.1 Measure Theory Chapter 8

3.1 Definition.

Note that: $u^{-1}[a,\infty)=\{x\in X:u(x)\in[a,\infty)\}=\{x\in X:u(x)\geq a\}.$ We define:

$${u(x) \ge a} = u^{-1}[a, \infty).$$

3.2 Theorem.

Let (X, A) be a measurable space. The function $u : X \to \mathbb{R}$ is A/B-measurable if, and only if, one, hence all, of the following conditions hold

- 1. $\{u \ge a\} \in \mathcal{A} \quad \forall a \in \mathbb{R}$
- 2. $\{u > a\} \in \mathcal{A} \quad \forall a \in \mathbb{R}$
- 3. $\{u \le a\} \in \mathcal{A} \quad \forall a \in \mathbb{R}$
- 4. $\{u < a\} \in \mathcal{A} \quad \forall a \in \mathbb{R}$

3.3 Definition.

We define the extended real line $\mathbb{R} := [-\infty, \infty]$ with the following rules for all $x \in \mathbb{R}$:

$$x + \infty = \infty + x = \infty$$
 $x + -\infty = -\infty + x = -\infty$
 $\infty + \infty = \infty$ $-\infty - \infty = -\infty$

And for $x \in (0, \infty]$:

$$\pm x \cdot \infty = \infty \cdot \pm x = \pm \infty$$

$$\pm x \cdot -\infty = -\infty \cdot \pm x = \mp \infty$$

$$0 \cdot \pm \infty = \pm \infty \cdot 0 = 0$$

$$\frac{1}{\pm \infty} = 0$$

3.4 Definition.

Functions which take values in $\bar{\mathbb{R}}$ are called *numerical functions*.

3.5 Definition.

The Borel σ -algebra $\bar{\mathcal{B}} = \mathcal{B}(\bar{\mathbb{R}})$ is defined by:

$$\bar{\mathcal{B}} := \left\{ B \cup S : B \in \mathcal{B} \text{ and } S \in \left\{ \varnothing, \{-\infty\}, \{\infty\}, \{-\infty, \infty\} \right\} \right\}$$

3.6 Theorem.

We have $\mathcal{B}(\mathbb{R}) = \mathbb{R} \cap \mathcal{B}(\overline{\mathbb{R}})$. Moreover $\overline{\mathcal{B}}$ is generated by all sets of the form $[a, \infty]$ or $[a, \infty]$ where $[a, \infty]$

3.7 Definition.

Let (X, \mathcal{A}) be a measurable space. We write $\mathcal{M} := \mathcal{M}(\mathcal{A})$ and $\mathcal{M}_{\mathbb{R}} := \mathcal{M}_{\mathbb{R}}(\mathcal{A})$ for the families of real valued \mathcal{A}/\mathcal{B} -measurable and numerical $\mathcal{A}/\bar{\mathcal{B}}$ -measurable functions on X.

3.8 Definition.

A simple function $g: X \to \mathbb{R}$ on a measurable space (X, \mathcal{A}) is a function of the form

$$g(x) := \sum_{j=1}^{M} y_j \mathbf{1}_{A_j}(x)$$

with finitely many sets $A_1, \ldots, A_m \in \mathcal{A}$ and $y_1, \ldots, y_M \in \mathbb{R}$. The set of simple functions is denoted by \mathcal{E} or $\mathcal{E}(\mathcal{A})$.

If the sets A_1, \ldots, A_M are mutally disjoint we call

$$\sum_{j=0}^{M} y_j \mathbf{1}_{A_j}(x)$$

with $y_0 := 0$ and $A_0 := (A_1 \cup \ldots \cup A_M)^c$ a standard representation of g. Caution, this representation is not unique.

3.9 Theorem.

Let (X, A) be a measurable space. Every $A/\bar{\mathcal{B}}$ -measurable numerical function $u: X \to \bar{\mathbb{R}}$ is the pointwise limit of simple functions:

$$u(x) = \lim_{j \to \infty} f_j(x)$$

where $f_j \in \mathcal{E}(\mathcal{A})$ and $|f_j| \leq |u|$.

If $u \ge 0$, all f_j can be chosen to be positive and increasing towards u so that $u = \sup_{j \in \mathbb{N}} f_j$.

3.10 Theorem.

Let (X, \mathcal{A}) be a measurable space. If $u_j : X \to \mathbb{R}, j \in \mathbb{N}$ are measurable functions, then so are

$$\sup_{j \in \mathbb{N}} u_j \quad \inf_{j \in \mathbb{N}} u_j \quad \limsup_{j \to \mathbb{N}} u_j \quad \liminf_{j \to \mathbb{N}} u_j$$

and whenever it exists

$$\lim_{j\to\infty} u_j.$$

3.11 Theorem.

Let u, v be A/\bar{B} -measurable functions. Then the functions

$$u \pm v$$
 uv $u \lor v := \max\{u, v\}$ $u \land v := \min\{u, v\}$

are A/\bar{B} -measurable (whenever they are defined).

3.12 Theorem.

A function u is A/B measurable if, and only if, u^{\pm} are A/\bar{B} measurable.

3.13 Theorem.

Let $T:(X,\mathcal{A}) \to (X',\mathcal{A}')$ be an \mathcal{A}/\mathcal{A}' -measurable map and let $\sigma(T) \subseteq \mathcal{A}$ be the σ -algebra generated by T. Then u = w(T) for some $\mathcal{A}'/\bar{\mathcal{B}}$ measurable function $w: X' \to \bar{\mathbb{R}}$ if and only if $u: X \to \bar{\mathbb{R}}$ is $\sigma(T)/\bar{\mathcal{B}}$ -measurable.

3.14 Proposition.

Let (X, \mathcal{A}) be a measurable space. We define the indicator function:

$$1_A: X \to \mathbb{R}: x \in A \mapsto 1 \quad x \in X - A \mapsto 0$$

Show that the indicator function is measurable if, and only if, $A \in A$.

Proof.

To show that 1_A is measurable, it suffices to show that

$$1_A^{-1}(a,\infty) \in \mathcal{A}.$$

Note that

$$1_A^{-1}(a,\infty) = \{x \in X : 1_A(x) \in (a,\infty)\} = \{1_A > a\}$$

If $a \ge 1$, then $1_A^{-1}(a, \infty) = \emptyset$.

If $a \in [0, 1)$, then $1_A^{-1}(a, \infty) = A$.

If
$$a < 0$$
, then $1_A^{-1}(a, \infty) = X$.

3.15 Proposition.

Let $A_1, \ldots, A_M \in \mathcal{A}$ be mutally disjoint sets and $y_1, \ldots, y_M \in \mathbb{R}$. Then the function

$$g: X \to \mathbb{R}: x \mapsto \sum_{j=1}^{M} y_j 1_{A_j}(x)$$

is measurable.

Proof.

To show that g is measurable it suffices to show that

$$\{g > a\} \in \mathcal{A}$$

i.e.

$$\left\{x \in X : \sum_{j=1}^{M} y_j 1_{A_j}(x) > a\right\} = \bigcup_{j: y_j > a} A_j \in \mathcal{A}.$$

3.16 Problem 8.3i.

Let (X, A) be a measurable space. Let $f, g: X \to \mathbb{R}$ be measurable functions. Show that for every $A \in A$ the functions h(x) := f(x) if $x \in A$ and h(x) := g(x), if $x \notin A$, is measurable.

Proof.

Note that

$$h(x) := 1_A(x)f(x) + 1_{A^c}(x)g(x).$$

And remember that sums and products of measurable functions are again measurable. $\hfill\Box$

3.17 Problem 8.3ii.

Let $(f_j)_{j\in\mathbb{N}}$ be a sequence of measurable functions and let $(A_j)_{j\in\mathbb{N}}\subseteq \mathcal{A}$ such that $\bigcup_{j\in\mathbb{N}} A_j = X$. Suppose that $f_j|_{A_j\cap A_k} = f_k|_{A_j\cap A_k}$ for all $j,k\in\mathbb{N}$ and set $f(x) := f_j(x)$ if $x \in A_j$. Show that $f: X \to \mathbb{R}$ is measurable.jbr $/\dot{\varepsilon}$

Proof.

We have that:

$$f^{-1}(B) = \bigcup_{j \in \mathbb{N}} A_j \cap f^{-1}(B) = \bigcup_{j \in \mathbb{N}} A_j \cap f_j^{-1}(B) \in \mathcal{A}$$

3.18 Problem 8.4.

Let (X, A) be a measurable space and let $\mathcal{B} \subset A$ be a sub- σ -algebra. Show that $\mathcal{M}(\mathcal{B}) \subset \mathcal{M}(A)$.

Proof.

To show that

$$\mathcal{M}(\mathcal{B}) \subset \mathcal{M}(\mathcal{A})$$

it suffices to show there exists a \mathcal{A} -measurable function that is not \mathcal{B} -measurable. By hypothesis, we have an element $A \in \mathcal{A}$, that is not in \mathcal{B} , i.e. $A \notin \mathcal{B}$. Since 1_A is \mathcal{B} -measurable if, and only if, $B \in \mathcal{B}$, we have find the \mathcal{A} -measurable function where we where looking for.

3.19 Theorem.

Let $u : \mathbb{R} \to \mathbb{R}$ be differentiable. Explain why u and u' = du/dx are measurable.

Proof.

If u is differentiable, it is continuous, hence measurable. Since u' exists, we can write it in the form

$$u'(x) = \lim_{k \to \infty} \frac{u(x+1/k) - u(x)}{1/k}$$

i.e. as limit of measurable functions. Thus, u' is also measurable.

3.20 Problem 8.17.

Show that the measurability of |u| does not, in general, imply the measurability of u.

Proof.

Let $A \subseteq \mathbb{R}$ be such that $A \notin \mathcal{B}$. Then it is clear that

$$u(x) := 1_A(x) - 1_{A^c}(x)$$

is not measurable. Take

$$\{u=1\}=A\not\in\mathcal{A}.$$

But |u(x)| = 1, which is a continuous function and therefore measurable.

3.21 Problem 8.14.

Consider $(\mathbb{R}, \mathcal{B})$ and $u : \mathbb{R} \to \mathbb{R}$. Show that $\{x\} \in \sigma(u)$ for all $x \in \mathbb{R}$ if, and only if, u is injective.

Proof.

To show that u is injective, it suffices to assume $x, y \in \mathbb{R}$ and show that

$$u(x) = u(y) \Longrightarrow x = y.$$

Showing that is equivalent with showing that

$$|\{u = u(x_0)\}| = 1.$$

We surely have that $\{x_0\} \subseteq \{u = u(x_0)\}$. And note that

$$\{x_0\} \in \sigma(u) = \sigma(u^{-1}(\mathcal{B}))$$

just means that $\{x_0\} = u^{-1}(B)$ for some $B \in \mathcal{B}$.

Proof.

Assume that u is injective,. This means that every point in the range $u(\mathbb{R})$ comes exactly from unique defined $x \in \mathbb{R}$. This can be expressed by saying that $\{x\} = u^{-1}(\{u(x)\}) = \{u(x)\}$. But then

$$\{x\} \in \sigma(u) = \sigma(u^{-1}(\mathcal{B})).$$

4 12-10-2014

4.1 Measure Theory Chapter 9

4.1 Definition.

Let $f = \sum_{j=0}^{M} y_j 1_{A_j} \in \mathcal{E}^+$ be a simple function in standard representation. Then the number

$$I_{\mu}(f) := \sum_{j=0}^{M} y_{j} \mu(A_{j}) \in [0, \infty]$$

is called the $(\mu$ -)integral of f.

4.2 Theorem.

1.
$$I_{\mu}(1_A) = \mu(A) \quad \forall A \in \mathcal{A}$$

2.
$$I_{\mu}(\lambda f) = \lambda I_{\mu}(f) \quad \forall \lambda \geq 0$$

3.
$$I_{\mu}(f+g) = I_{\mu}(f) + I_{\mu}(g)$$

4.
$$f \leq g \Longrightarrow I_{\mu}(f) \leq I_{\mu}(g)$$

4.3 Definition.

Let (X, \mathcal{A}, μ) be a measure space. The $(\mu$ -)integral of a positive numerical function $u \in \mathcal{M}_{\mathbb{R}}^+$ is given by

$$\int ud\mu := \sup\{I_{\mu}(g) : g \le u, g \in \mathcal{E}^+\} \in [0, \infty].$$

If we need to emphasize the integration variable, we also write

$$\int u(x)\mu(dx)$$
 or $\int u(x)d\mu(x)$

4.4 Theorem.

For all $f \in \mathcal{E}^+$ we have $\int f du = I_{\mu}(f)$.

4.5 Theorem.

Let (X, A, μ) be a measure space. For an increasing sequence of numerical functions $(u_j)_{j\in\mathbb{N}}\subseteq\mathcal{M}^+_{\mathbb{R}}, 0\leq u_j\leq u_{j+1}\leq\ldots$, we have $u:=\sup_{j\in\mathbb{N}}u_j\in\mathcal{M}^+_{\mathbb{R}}$ and

$$\int \sup_{j \in \mathbb{N}} u_j d\mu = \sup_{j \in \mathbb{N}} \int u_j d\mu$$

4.6 Theorem.

Let $u \in \mathcal{M}^+_{\mathbb{R}}$. Then

$$\int ud\mu = \lim_{j \to \infty} \int f_j d\mu$$

holds for every increasing sequence $(f_j)_{j\in\mathbb{N}}\subseteq\mathcal{E}^+$ with $\lim_{j\to\infty}f_j=u$.

4.7 Theorem.

Let $u, v \in \mathcal{M}_{\bar{\mathbb{R}}}^+$. Then

- 1. $\int 1_A d\mu = \mu(A) \quad \forall A \in \mathcal{A}$
- 2. $\int \alpha u d\mu = \alpha \int u d\mu$
- 3. $\int (u+v)d\mu = \int ud\mu + \int vd\mu$
- 4. $u \le v \Longrightarrow \int u d\mu \le \int v d\mu$

4.8 Theorem.

Let $(u_j)_{j\in\mathbb{N}}\subseteq\mathcal{M}^+_{\mathbb{R}}$. Then $\sum_{j=1}^\infty u_j$ is measurable and we have

$$\int \sum_{j=1}^{\infty} u_j d\mu = \sum_{j=1}^{\infty} \int u_j d\mu$$

4.9 Theorem.

Let $(u_j)_{j\in\mathbb{N}}\subseteq\mathcal{M}_{\mathbb{R}}^+$ be a sequence of positive measurable numerical functions. Then $u:=\liminf_{j\in\infty}\int u_jd\mu$ is measurable and

$$\int \liminf_{j \to \infty} u_j d\mu \le \liminf_{j \to \infty} \int u_j d\mu$$

4.10 Problem 9.1.

Let $f: X \to \mathbb{R}$ be a positive simple function of the form

$$f(x) = \sum_{j=1}^{m} \xi_j 1_{A_j}(x)$$
 $\xi_j \ge 0, A_j \in \mathcal{A}.$

Show that

$$I_{\mu}(f) = \sum_{j=1}^{m} \xi_j \mu(A_j)$$

Proof.

$$I_{\mu}(f) = I_{\mu}\left(\sum_{j=1}^{m} \xi_{j} 1_{A_{j}}\right) = \sum_{j=1}^{m} \xi_{j} I_{\mu}(1_{A_{j}}) = \sum_{j=1}^{m} \xi_{j} \mu(A_{j})$$

4.11 Problem 9.5.

Let (X, \mathcal{A}, μ) be a measure space and $u \in \mathcal{M}^+(\mathcal{A})$. Show that the set-function

$$A \mapsto \int 1_A u d\mu \quad A \in \mathcal{A}$$

is a measure.

Proof.

Set

$$\nu: \mathcal{A} \to [0, \infty]: A \mapsto \int 1_A u d\mu.$$

- 1. To show that $\nu(\emptyset) = 0$. Notice that $1_{\emptyset} \equiv 0$.
- 2. Let $A = \bigcup_{j \in \mathbb{N}} A_j$ a disjoint union of sets $A_j \in \mathcal{A}$. Note that

$$\sum_{j=1}^{\infty} 1_{A_j} = 1_A$$

We have to show that

$$\nu(\bigcup_{j\in\mathbb{N}} A_j) = \int \left(\sum_{j=1}^{\infty} 1_{A_j}\right) \cdot u d\mu$$

$$= \int \left(\sum_{j=1}^{\infty} 1_{A_j} u\right) d\mu$$

$$= \sum_{j=1}^{\infty} \int 1_{A_j} u d\mu$$

$$= \sum_{j=1}^{\infty} \nu(A_j).$$

4.12 Problem 9.8.

Let (X, \mathcal{A}, μ) be a measure space and $(u_j)_{j \in \mathbb{N}} \subseteq \mathcal{M}^+(\mathcal{A})$. If $u_j \leq u$ for all $j \in \mathbb{N}$ and some $u \in \mathcal{M}^+(\mathcal{A})$ with $\int u d\mu < \infty$, then

$$\limsup_{j \in \infty} \int u_j d\mu \le \int \limsup_{j \in \infty} u_j d\mu.$$

Proof.

Showing that

$$\limsup_{j \in \infty} \int u_j d\mu \le \int \limsup_{j \in \infty} u_j d\mu$$

is equivalent with showing that

$$-\liminf_{j\in\infty} \int -u_j d\mu \le -\int \liminf_{j\in\infty} -u_j d\mu$$

which is equivalent with showing that

$$\int \liminf_{j \in \infty} -u_j d\mu \le \liminf_{j \in \infty} \int -u_j d\mu$$

which is equivalent with showing that

$$\int ud\mu + \int \liminf_{j \in \infty} -u_j d\mu \le \int ud\mu + \liminf_{j \in \infty} \int -u_j d\mu$$

which is equivalent with showing that

$$\int u + \liminf_{j \in \infty} -u_j d\mu \le \liminf_{j \in \infty} \left(\int u d\mu + \int -u_j d\mu \right)$$

which is equivalent with showing that

$$\int \liminf_{j \in \infty} \left(u - u_j \right) d\mu \le \liminf_{j \in \infty} \left(\int u - u_j d\mu \right).$$

By hypothesis, $u_j \leq u$. So we have that $u - u_j$ is a sequence of postive measurable functions and therefore our last statement follows by the theorem of Fatou.

4.2 Measure Theory Chapter 7

4.13 Proposition.

Let $(X, \mathcal{A}), (X', \mathcal{A}')$ be measurable spaces and let $\mathcal{A}' = \sigma(\mathcal{G}')$. Then $T: X \to X'$ is \mathcal{A}/\mathcal{A}' -measurable if and only if $T^{-1}(\mathcal{G}') \subseteq \mathcal{A}$.

It suffices to show assume $T^{-1}(\mathcal{G}') \subseteq \mathcal{A}$ and show that

$$T^{-1}(\mathcal{A}) \subseteq \mathcal{A}$$
.

Consider $\Sigma := \{A' \subseteq X' : T^{-1}(A') \in \mathcal{A}\}$. We have that $\mathcal{G}' \subseteq \Sigma$. It suffices to show that

$$\mathcal{A}' \subseteq \Sigma$$
.

It suffices to show that Σ is a σ -algebra.

- 1. To show that $X' \in \Sigma$, it suffices to show that $T^{-1}(X') \in \mathcal{A}$.
- 2. Showing that

$$A' \in \Sigma \Longrightarrow A'^c \in \Sigma$$

is equivalent with showing that

$$T^{-1}(A') \in \mathcal{A} \Longrightarrow T^{-1}(A'^c) \in \mathcal{A} \qquad \checkmark$$

3. Showing that

$$(A'_j)_{j\in\mathbb{N}}\subseteq\Sigma\Longrightarrow\bigcup_{j\in\mathbb{N}}A_j\in\Sigma$$

is equivalent with showing that

$$T^{-1}(A'_j) \in \mathcal{A} \Longrightarrow T^{-1}\Big(\bigcup_{j \in \mathbb{N}} A_j\Big) \in \mathcal{A} \qquad \checkmark$$

4.14 Proposition.

Let $(X, \mathcal{A}), (X, \mathcal{A}')$ be measurable spaces and $T: X \to X'$ be an \mathcal{A}/\mathcal{A}' measurable map. For every measure μ on (X, \mathcal{A}) ,

$$\mu'(A') := T(\mu)(A') := \mu(T^{-1}(A')), \qquad A' \in \mathcal{A}'$$

defines a measure on (X', \mathcal{A}') .

Proof.

1. To show that

$$\mu(T^{-1}(\varnothing)) = 0 \qquad \checkmark$$

2. Assume $(A'_j)_{j\in\mathbb{N}}\subseteq\mathcal{A}'$ mutually disjoint sets and show that

$$\mu'(\bigcup_{j\in\mathbb{N}}A'_j)=\sum_{j\in\mathbb{N}}\mu'(A'_j),$$

which is equivalent with showing that

$$\mu(T^{-1}\Big(\bigcup_{j\in\mathbb{N}}A_j'\Big) = \sum_{j\in\mathbb{N}}\mu(T^{-1}(A_j')),$$

which is equivalent with showing that

$$\mu(T^{-1}\Big(\bigcup_{j\in\mathbb{N}}A_j'\Big) = \mu\Big(\bigcup_{j\in\mathbb{N}}T^{-1}(A_j')\Big) \qquad \checkmark.$$

4.15 Problem 7.9i.

Let μ be a measure on $(\mathbb{R}, \mathcal{B})$. Show that

$$F_{\mu}(x) := \begin{cases} \mu[0, x) & \text{if } x > 0 \\ 0 & \text{if } x = 0 \\ -\mu[x, 0) & \text{if } x < 0 \end{cases}$$

- 1. is monotonically increasing
- 2. left-continuous funciton

Proof.

1. Showing that F_{μ} is monotonically increasing is equivalent with showing that

$$x \le y \Longrightarrow F_{\mu}(x) \le F_{\mu}(y).$$

- (a) $x \le 0 \le y$:. Then $F_{\mu}(x) = -\mu[x, 0) \le 0$ and $F_{\mu}(y) = \mu[0, y) \ge 0$.
- (b) $0 < x \le y$: Then $[0, x) \subseteq [0, y)$. And $\mu[0, x) \le \mu[0, y)$.
- (c) $x \le y < 0$: Then $[y, 0) \subseteq [x, 0)$. And $\mu[y, 0) \le \mu[x, 0)$.
- 2. Showing that F_{μ} is left continuous is equivalent with assuming (x_k) a sequence such that $x_k < x$ and $x_k \uparrow x$ and showing that

$$\lim_{k \to \infty} F_{\mu}(x_k) = F_{\mu}(x).$$

If if x > 0, it suffices to show that

$$\lim_{k \to \infty} \mu[0, x_k) = \mu[0, x).$$

If x < 0 it suffices to show that

$$\lim_{k \to \infty} -\mu[x_k, 0) = -\mu[x, 0).$$

If x = 0 it suffices to show that

$$\lim_{k \to \infty} -\mu[x_k, 0) = 0.$$

Remember that:

1. For any increasing sequence $(A_j)_{j\in\mathbb{N}}\subseteq\mathcal{A}$ with $A_j\uparrow A\in\mathcal{A}$ we have

$$\mu(A) = \mu(\cup A_j) = \lim_{j \in \infty} \mu(A_j)$$

2. For any decreasing sequence $(A_j)_{j\in\mathbb{N}}\subseteq\mathcal{A}$ with $A_j\downarrow A\in\mathcal{A}$ we have

$$\mu(A) = \mu(\cap A_j) = \lim_{j \in \mathbb{N}} \mu(A_j)$$

4.16 Problem 7.9ii.

Let $F: \mathbb{R} \to \mathbb{R}$ be a Stieltjes function. Show that

$$\nu_F[a,b) = F(b) - F(a) \qquad \forall a, b \in \mathbb{R}, a < b$$

has a unique extension to a measure on \mathcal{B} .

Proof.

By theorem 6.1 it suffices to show that ν_F is a pre-measure. To show this it suffices to show that

1.
$$\nu_F(\emptyset) = v_F[a, a) = 0$$

2.
$$\nu_F([a,b) \cup [b,c)) = \nu_F([a,b)) + \nu_F([b,c))$$

ullet

$$\nu_F([a,b)) + \nu_F([b,c)) = F(b) - F(a) + F(c) - F(b)$$

$$= F(c) - F(a)$$

$$= \nu_F[a,c)$$

$$= \nu_F([a,b) \cup [b,c))$$

3. For any decreasing sequence $[a_j, b_j)_{j \in \mathbb{N}} \subseteq \mathcal{J}$ with $[a_j, b) \downarrow [a, b) \in \mathcal{J}$ we have

$$\nu_F([a,b)) = \lim_{j \in \infty} \nu_F[a_j, b).$$

This last statement is equivalent with

$$F(b) - F(a) = \lim_{j \in \infty} (F(b) - F(a_j)).$$

Note that since $[a_j, b_j) \downarrow [a, b) \in \mathcal{J}$ we have that $a_j \uparrow a, a_j \leq a$ and therefore

$$\lim_{j \in \infty} (F(b) - F(a_j)) = F(b) - F(a),$$

as F is left-continous.

4. \mathcal{J} contains an exhausting sequence $[a_j,b_j)$ such that $[a_j,b_j)\uparrow\mathbb{R}$ and $v_F[a_j,b_j)<\infty$

5 13-10-2014

5.1 Markov Chains 1.2

5.1 Definition.

We say that i leads to j and write $i \rightarrow j$ if

$$\mathbb{P}_i(X_n = j \text{ for some } n \ge 0) > 0.$$

5.2 Definition.

We say i communicates with j and write $i \leftrightarrow j$ if both $i \to j$ and $j \to i$.

5.3 Theorem.

For distinct states i and j the following are equivalent:

1.
$$i \to j \iff \mathbb{P}_i(X_n = j \text{ for some } n \ge 0) > 0$$

2.
$$p_{i_1i_2}p_{i_2i_3}\dots p_{i_{n-1}i_n} > 0$$
 for some states i_1,\dots,i_n with $i_1 = i$ and $i_n = j$

3.
$$p_{ij}^n > 0$$
 for some $n \ge 0$

Proof.

Remember that

$$p_{ij}^n = \mathbb{P}_i(X_n = j) = \sum_{i_2,\dots,i_{n-1}} p_{ii_2} p_{i_2 i_3} \dots p_{i_{n-1} j}.$$

From this everything follows.

5.4 Proposition.

Show that $i \to i$.

Proof.

$$i \to i \iff \mathbb{P}_i(X_n = i \text{ for some } n \ge 0) > 0$$

This follows, as $\mathbb{P}_i(X_0 = i) = 1$.

5.5 Definition.

The equivalence classes of the equivalence relations \leftrightarrow are called *communicating classes*. We say that a class C is closed if

$$i \in C, i \to j \Longrightarrow j \in C$$

5.6 Definition.

A state i is absorbing if $\{i\}$ is a closed class.

5.7 Definition.

A chain or transition matrix P where I is a single class is called *irreducible*.

5.8 Example 1.2.2.

Find the communicating classes associated to the stochastic matrix

$$P = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 & 0\\ 0 & 0 & 1 & 0 & 0 & 0\\ \frac{1}{3} & 0 & 0 & \frac{1}{3} & \frac{1}{3} & 0\\ 0 & 0 & 0 & \frac{1}{2} & \frac{1}{2} & 0\\ 0 & 0 & 0 & 0 & 0 & 1\\ 0 & 0 & 0 & 0 & 1 & 0 \end{pmatrix}$$

Proof.

The solution is obvious from the diagram. The classes being $\{1, 2, 3\}, \{4\}$ and $\{5, 6\}$. With only $\{5, 6\}$ closed.

5.9 Exercise 1.2.1.

Identify the communicating classes of the following transition matrix:

$$P = \begin{pmatrix} \frac{1}{2} & 0 & 0 & 0 & \frac{1}{2} \\ 0 & \frac{1}{2} & 0 & \frac{1}{2} & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{2} & 0 & 0 & 0 & \frac{1}{2} \end{pmatrix}$$

The solution is obvious from the diagram. The classes being $\{1,5\}, \{2,4\}$

and $\{3\}$. With $\{1,5\}$ closed and $\{3\}$ absorbing.

5.2 Markov Chains 1.3

5.10 Definition.

Let X_n be a Markov chain with transition matrix P. The *hitting time* of a subset A of I is the random variable

$$H^A: \Omega \to \{0, 1, 2, \dots, \infty\}$$

given by

$$H^A(\omega) = \inf\{n \ge 0 : X_n(\omega) \in A\}$$

where we agree that the infimum of the empty set \emptyset is ∞ . The probability starting from i that $(X_n)_{n\geq 0}$ ever hits A is then

$$h_i^A = \mathbb{P}_i(H^A < \infty).$$

When A is a closed class, h_i^A is called the absorption probability. The mean time taken for X_n to reach A is given by

$$k_i^A = E_i(H^A) = \sum_{n < \infty} n \mathbb{P}(H^A = n) + \infty \mathbb{P}(H^A = \infty).$$

We shall often write less formally

$$h_i^A = \mathbb{P}_i(\text{hit } A)$$
 $k_i^A = E_i(\text{time to hit } A).$

5.11 Example 1.3.1.

Consider the chain with following diagram:

- 1. Starting from 2, what is the probability of absorption in 4?
- 2. How long does it take until the chain is absorbed in 1 or 4?

Proof.

1. Note that $A = \{4\}$ is a closed class. The aborption probability is defined as

$$h_i := h_i^{\{4\}} = \mathbb{P}_i(\text{hit } 4).$$

We have

$$h_1 = 0$$

$$h_4 = 1$$

$$h_2 = \frac{1}{2}h_1 + \frac{1}{2}h_3 = \frac{1}{2}h_3$$

$$h_3 = \frac{1}{2}h_2 + \frac{1}{2}h_4 = \frac{1}{2}h_2 + \frac{1}{2}$$

Hence

$$h_2 = \frac{1}{4}h_2 + \frac{1}{4}$$

$$\implies \frac{3}{4}h_2 = \frac{1}{4}$$

$$\implies h_2 = \frac{1}{3}$$

2. We need to compute

$$k_2 = k_2^{\{1,4\}} = E_2$$
 (time to hit $\{1,4\}$).

We have

$$k_1 = 0$$

$$k_4 = 0$$

$$k_2 = 1 + \frac{1}{2}k_3$$

$$k_3 = 1 + \frac{1}{2}k_2$$

Hence

$$k_2 = \frac{3}{2} + \frac{1}{4}k_2$$

$$\implies \frac{3}{4}k_2 = \frac{3}{2}$$

$$\implies k_2 = 2$$

5.12 Theorem 1.3.2.

The vector of hitting probabilities $h^A = (h_i^A : i \in I)$ is the minimal non-negative solution to the system

$$\begin{cases} h_i^A = 1 & fori \in A \\ h_i^A = \sum_{j \in I} p_{ij} h_j^A & for i \notin A. \end{cases}$$

Minimality means that if $x = (x_i : i \in I)$ is another solution with $x_i \ge 0$ for all i, then $x_i \ge h_i$ for all i.

5.13 Example 1.3.1(continued).

Use theorem 1.3.2 to compute h_2 again.

Proof.

The vector of hitting probabilities $h^{\{4\}} = \left(h_1^{\{4\}}, h_2^{\{4\}}, h_3^{\{4\}}, h_4^{\{4\}}\right)$ is the minimal non-negative solution to the system

$$\begin{split} h_1^{\{4\}} &= \sum_{j \in I} p_{ij} h_j^{\{4\}} = h_1^{\{4\}} \\ h_2^{\{4\}} &= \sum_{j \in I} p_{ij} h_j^{\{4\}} = \frac{1}{2} h_1^{\{4\}} + \frac{1}{2} h_3^{\{4\}} \\ h_3^{\{4\}} &= \sum_{j \in I} p_{ij} h_j^{\{4\}} = \frac{1}{2} h_2^{\{4\}} + \frac{1}{2} h_4^{\{4\}} \\ h_4^{\{4\}} &= 1 \end{split}$$

The minimality condition gives, that $h_1^{\{4\}}=0$. So that $\operatorname{jbr}/\mathcal{L}$

$$h_2^{\{4\}} = \frac{1}{2}h_3^{\{4\}}$$

$$h_3^{\{4\}} = \frac{1}{2}h_2^{\{4\}} + \frac{1}{2}$$

which gives:

$$\begin{split} h_2^{\{4\}} &= \frac{1}{4} h_2^{\{4\}} + \frac{1}{4} \Longrightarrow h_2^{\{4\}} = \frac{1}{3} \\ h_3^{\{4\}} &= \frac{1}{4} h_3^{\{4\}} + \frac{1}{2} \Longrightarrow h_3^{\{4\}} = \frac{2}{3} \end{split}$$

5.14 Theorem.

Consider a recurrence relation of the form

$$ax_{n+1} + bx_n + cx_{n-1} = 0$$
 $a, c \neq 0$.

Let α, β be the roots of the quadratic equation

$$ax^2 + bx + c$$
.

Then the general soltuions is given by

$$x_n = \begin{cases} A\alpha^n + B\beta^n & \text{if } \alpha \neq \beta \\ (A+nB)\alpha^n & \text{if } \alpha = \beta \end{cases}$$

5.15 Proposition.

Give a general solution for the recurrence relation

$$h_0 = 1$$

 $h_i = ph_{i+1} + qh_{i-1}$

Proof.

Note that we have $-ph_{i+1} + h_i - qh_{i-1} = 0$. Consider

$$-px^2 + x - 1 + p = 0$$

We have the roots $\alpha = 1, \beta = \frac{q}{p}$. If $q \neq p$, this gives

$$h_i = A\alpha^i + B\beta^i = A + B\left(\frac{q}{p}\right)^i.$$

And if p = q, then $\alpha = \beta = 1$, and we have

$$h_i = A\alpha^i + B\beta^i = A + iB$$

5.16 Example 1.3.3.

Consider the Markov chain with diagram

where $0 . What is <math>h_i = \mathbb{P}_i(hit \ 0)$?

Proof.

We know that h is the minimal non-negative solution to

$$h_0 = 1$$

 $h_i = ph_{i+1} + qh_{i-1}$

We consider some cases:

• Suppose p = q, then we have

$$h_i = A\alpha^i + B\beta^i = A + iB$$

and as $0 \le h_i \le 1$ is a probability, we must have B = 0. We then have

$$h_i = A$$
,

and as $h_0 = 1$, we must have $h_i = 1$.

• Suppose $p \neq q$, we then have

$$h_i = A\alpha^i + B\beta^i = A + B\left(\frac{q}{p}\right)^i.$$

If $\frac{q}{p} > 1$, then we must set B = 0 again.

• Suppose $\frac{q}{p} < 1$. We have that $h_0 = 1$, and therefore A + B = 1. Hence:

$$h_i = \left(\frac{q}{p}\right)^i + A\left(1 - \left(\frac{q}{p}\right)^i\right)$$

So the minimal non-negative solutions is $h_i = (q/p)^i$.

5.17 Example 1.3.4.

Consider the Markov chain with diagram

where for i = 1, 2, ..., we have $0 < p_i = 1 - q_i < 1$. As in the preceding example, 0 is the absorbing state, and we wish to calculate the absorption probability starting form i.

Proof.

Consider the system of equations

$$h_0 = 1$$

 $h_i = p_i h_{i+1} + q_i h_{i-1}$ for $i = 1, 2, ...$

Consider

$$u_i := h_{i-1} - h_i,$$

then

$$p_i u_{i+1} = p_i h_i - p_i h_{i+1}$$

 $q_i u_i = q_i h_{i-1} - q_i h_i$

$$\implies q_i u_i - p_i u_{i+1} = h_i - q_i h_i - p_i h_i = 0$$

Therefore $p_i u_{i+1} = q_i u_i$ and we have

$$u_{i+1} = \left(\frac{q_i}{p_i}\right)u_i = \prod_{i=1}^{i} \frac{q_i}{p_i}u_1 = \gamma_1 u_1$$

We also have

$$u_1 + \ldots + u_i = h_0 - h_i$$

SO

$$h_i = h_0 - (u_1 + \ldots + u_i) = 1 - u_1(\gamma_0 + \ldots + y_{n-1}).$$

At this point A remains to be determined. In the case that $\sum_{i=0}^{\infty} \gamma_i = \infty$, we must have A = 0. In the other case, we can't take A < 0, but we can take A > 0 so long as

$$h_i = 1 - A \sum_{i=0}^{i-1} \gamma_i \ge 0.$$

Which means that

$$A \le (\sum_{i=0}^{i-1} \gamma_i)^{-1}$$

but still as big as possible. So we get

$$A = (\sum_{i=0}^{\infty} \gamma_i)^{-1}.$$

And therefore

$$h_i = \frac{\sum_{j=i}^{\infty} \gamma_j}{\sum_{j=0}^{\infty} \gamma_j}$$

5.18 Theorem 1.3.5.

The vector of mean hitting times $k^A = (k^A : i \in I)$ is the minimal non-negative solution to the system of linear equations

$$\begin{cases} k_i^A = 0 & \text{for } i \in A \\ k_i^A = 1 + \sum_{j \notin A} p_{ij} k_j^A & \text{for } \notin A \end{cases}$$

6 14-10-2014

6.1 Markov Chains 1.4

6.1 Definition.

A random variable $T: \Omega \to \{0, 1, 2, ..., \infty\}$ is called a *stopping time* if the event $\{T = n\}$ depends only on $X_0, X_1, ..., X_n$ for n = 0, 1, 2, ... Intuitively, by watching the process, you know at the time when T occurs. If asked to stop at T, you know when to stop.

6.2 Proposition.

The first passage time

$$T_j = \inf\{n \ge 1 : X_n = j\}$$

is a stopping time.

Proof.

To show that T_j is a stopping time, we have to show that

$$\{T_j = n\}$$

depends only on X_0, \ldots, X_n .

This follows from

$${T_i = n} = {X_1 \neq j, \dots X_{n-1} \neq j, X_n = j}$$

6.3 Proposition.

The first hitting time

$$H^A = \inf\{n \ge 0 : X_n \in A\}$$

is a stopping time.

Proof.

To show that H^A is a stopping time, we have to show that

$$\{H^A = n\}$$

depends only on X_0, \ldots, X_n . This follows from

$$\{H^A = n\} = \{X_0 \notin A, \dots, X_{n-1} \notin A, X_n \in A\}$$

6.4 Proposition.

The last exit time

$$L^A = \sup\{n \ge 0 : X_n \in A\}$$

is not in general a stopping time.

Proof.

The event $\{L^A = n\}$ depends on whether $(X_{n+m})_{m\geq 0}$ visits A or not. So we don't have a stopping time.

6.5 Theorem 1.4.2 (Strong Markov property).

Let $(X_n)_{n\geq 0}$ be $Markov(\lambda, P)$ and let T be a stopping time of $(X_n)_{n\geq 0}$. Then, conditional on $T < \infty$ and $X_T = i, (X_{T+n})_{n\geq 0}$ is $Markov(\delta_i, P)$ and independent of X_0, \ldots, X_T .

We now consider an application of the strong Markov property to a Makrov chain $(X_n)_{n\geq 0}$ observed only at certain times. In the first instance suppose that J is some subset of the state space I and that we observe the chain only when it takes values in J.

6.6 Proposition.

Let $(X_n)_{n\geq 0}$ be a markov chain. Consider

$$T_0 = \inf\{n \ge 0 : X_n \in J\}$$

and, for m = 0, 1, 2, ...

$$T_{m+1}=\inf\{n>T_m:X_n\in J\}.$$

Assume $P(T_m < \infty) = 1$ for all m. Show that $Y_m = X_{T_m}$ is a markov chain and compute its transition matrix in terms of the transition matrix P of X_n .

Proof.

Showing that (Y_m) is a markov chain is equivalent with showing that

$$\mathbb{P}(Y_{m+1} = i_{m+1} | Y_0 = i_1, \dots, Y_m = i_m)$$

= $\mathbb{P}(Y_{m+1} = i_{m+1} | Y_m = i_m)$

which in turn is equivalent with showing that

$$\mathbb{P}(X_{T_{m+1}} = i_{m+1} | X_{T_0} = i_1, \dots, X_{T_m} = i_m)$$

= $\mathbb{P}(X_{T_{m+1}} = i_{m+1} | X_{T_m} = i_m).$

The Markov property gives that $(X_{T_m+n})_{n\geq 0}$ is a markov chain and independent of X_0, \ldots, X_{T_m} , and so surely independent of $X_{T_0} = i_1, \ldots, X_{T_{m-1}}$. Now $X_{T_{m+1}} = X_{T_m+n}$ for some n. So the equality follows.

Now the question is, strating from $i \in J$ what is the chance that we hit $j \in J$ the first time we hit J? Call this chance h_i^j Well this is chance is surely greater than p_{ij} as there is also a chance that we first get outside of J and then next time hit J, and so on. With a similar reasoning as in Theorem 1.3.2 we can show that for $j \in J$ the vector $(h_i^j : i \in I)$ is the minimal non-negative solution to

$$h_i^j = p_{ij} + \sum_{k \notin J} p_{ik} h_k^j.$$

6.7 Proposition.

Let $(X_n)_{n>0}$ be a markov chain. Consider

$$T_0 = \inf\{n \ge 0 : X_n \ne X_0\}$$

and, for m = 0, 1, 2, ...

$$T_{m+1} = \inf\{n \ge T_m : X_n \ne X_{T_m}\}.$$

Assume $\mathbb{P}(T_m < \infty) = 1$ for all m. Show that $Y_m = X_{T_m}$ is a markov chain and compute its transition matrix in terms of the transition matrix P of X_n .

Proof.

Showing that (Y_m) is a markov chain is equivalent with showing that

$$\mathbb{P}(Y_{m+1} = i_{m+1} | Y_0 = i_1, \dots, Y_m = i_m)$$

= $\mathbb{P}(Y_{m+1} = i_{m+1} | Y_m = i_m)$

which in turn is equivalent with showing that

$$\mathbb{P}(X_{T_{m+1}} = i_{m+1} | X_{T_0} = i_1, \dots, X_{T_m} = i_m)$$

= $\mathbb{P}(X_{T_{m+1}} = i_{m+1} | X_{T_m} = i_m).$

The Markov property gives that $(X_{T_m+n})_{n\geq 0}$ is a markov chain and independent of X_0, \ldots, X_{T_m} , and so surely independent of $X_{T_0} = i_1, \ldots, X_{T_{m-1}}$. Now $X_{T_{m+1}} = X_{T_m+n}$ for some n. So the equality follows.

Now, the question is, starting from i what is the chance to go to j now, if we set the chance $p_{ii} = 0$. Call this chance \tilde{p}_{ij} . We have

$$\tilde{p}_{ij} = \frac{p_{ij}}{\sum\limits_{k \neq i} p_{ik}}$$

6.2 Markov Chains 1.5

6.8 Definition.

Let $(X_n)_{n\geq 0}$ be a Markov chain with transition matrix P. We say that a state i is recurrent if

$$\mathbb{P}_i(X_n = i \text{ for infinitely many } n) = 1.$$

A recurrent state is a state i where you keep coming back.

6.9 Definition.

We say that a state i is transient if

$$\mathbb{P}_i(X_n = i \text{ for infinitely many } n) = 0.$$

A transient state is a state i which you eventually leave for ever.

6.10 Theorem.

A state i is either recurrent or transient.

6.11 Definition.

Recall that the first passage time to a state i is the random variable T_i defined by

$$T_i(\omega) = \inf\{n \ge 1 : X_n(\omega) = i\}$$

where $\inf \emptyset = \infty$. We now define inductively the rth passage time $T_i^{(r)}$ to state i by

$$T_i^{(0)}(\omega) = 0$$
 $T_i^{(1)}(\omega) = T_i(\omega)$

and for r = 0, 1, 2, ...,

$$T_i^{(r+1)}(\omega) = \inf\{n \ge T_i^{(r)}(\omega) + 1 : X_n(\omega) = i\}.$$

The length of the rth excursion to i is then

$$S_i^{(r)} = \begin{cases} T_i^{(r)} - T_i^{(r-1)} & \text{if } T_i^{(r-1)} < \infty \\ 0 & \text{otherwise} \end{cases}.$$

6.12 Lemma 1.5.1.

For $r=2,3,\ldots$, conditional on $T_i^{(r-1)}<\infty$, $S_i^{(r)}$ is independent of $\{X_m:m\leq T_i^{(r-1)}\}$ and

$$\mathbb{P}(S_i^{(r)} = n | T_i^{(r-1)} < \infty) = \mathbb{P}_i(T_i = n)$$

6.13 Definition.

The *number of visits* to i is denoted by

$$V_i = \sum_{n=0}^{\infty} 1_{\{X_n = i\}}.$$

6.14 Theorem.

$$E_i(V_i) = \sum_{n=0}^{\infty} p_{ii}^{(n)}$$

Proof.

We have

$$E_i(V_i) = \sum_{n=0}^{\infty} E_i(1_{\{X_n = i\}})$$

$$= \sum_{n=0}^{\infty} \mathbb{P}_i(X_n = i)$$

$$= \sum_{n=0}^{\infty} p_{ii}^{(n)}$$

6.15 Definition.

The return probability of i is denoted by

$$f_i = \mathbb{P}_i(T_i < \infty).$$

6.16 Lemma 1.5.2.

For $r = 0, 1, 2, \ldots$, we have $\mathbb{P}_i(V_i > r) = f_i^r$.

Proof.

Showing that

$$\mathbb{P}_i(V_i > r) = f_i^r$$

is equivalent with showing that

$$\mathbb{P}_i(V_i > r) = \mathbb{P}_i(T_i < \infty)^r$$

which in turn is equivalent with

$$\mathbb{P}_i(T_i^{(r)} < \infty) = \mathbb{P}_i(T_i < \infty)^r.$$

This last statement can be proven by induction.

6.17 Theorem 1.5.3.

The following dichotomy holds:

- 1. if $\mathbb{P}_i(T_i < \infty) = 1$, then i is recurrent and $\sum_{n=0}^{\infty} p_{ii}^{(n)} = \infty$
- 2. if $\mathbb{P}_i(T_i < \infty) < 1$, then i is transient and $\sum_{n=0}^{\infty} p_{ii}^{(n)} < \infty$

6.18 Theorem 1.5.4.

Let C be a communicating class. Then either all states in C are transient or all are recurrent.

6.19 Theorem 1.5.5.

Every recurrent class is closed. And the contrapositive: Every class that is not closed, is transient.

6.20 Theorem 1.5.6.

Every finite closed class is recurrent. And the contrapositive: Every transient class is either infinite or not closed..

6.21 Theorem 1.5.7.

Suppose P is irreducible and recurrent. Then for all $j \in I$ we have

$$\mathbb{P}(T_i < \infty) = 1.$$

6.22 Exercise 1.5.1.

Identify the recurrent and transient states of the Markov chain with the following transition matrix:

$$P = \begin{pmatrix} \frac{1}{2} & 0 & 0 & 0 & \frac{1}{2} \\ 0 & \frac{1}{2} & 0 & \frac{1}{2} & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{2} & 0 & 0 & 0 & \frac{1}{2} \end{pmatrix}$$

The solution is obvious from the diagram:

The classes being $\{1,5\}$, $\{2,4\}$ and $\{3\}$. With $\{1,5\}$ closed and finite, and therefore recurrent. The class $\{3\}$ is absorbing, so closed and finite, and therefore recurrent. The other class $\{2,4\}$ is not closed, and therefore, not recurrent. So we have that $\{2,4\}$ is transient.

7 15-10-2014

7.1 Markov Chains 1.6

7.1 Theorem.

A state i is recurrent if and only if $\sum_{n=0}^{\infty} p_{ii}^{(n)} = \infty$.

7.2 Example 1.6.1 The simple random walk on \mathbb{Z} .

Compute $\sum_{n=0}^{\infty} p_{00}^{(n)}$.

Proof.

First note that $p_{00}^{(2n+1)} = 0$.

Any given sequence of steps of length 2n from 0 to 0 occurs with probability p^nq^n , there being n steps up and n steps down. And the number of such sequences is the number of ways of choosing the n steps up from 2n. Thus

$$p_{00}^{(2n)} = {2n \choose n} p^n q^n = \frac{(2n)!}{n!^2} (pq)^n.$$

Remember that

$$n! \simeq \sqrt{2\pi n} (n/e)^n \qquad n \to \infty.$$

So

$$(2n)! \simeq \sqrt{4\pi n} (2n/e)^{2n}$$
 $n \to \infty$
 $n!^2 \simeq 2\pi n (n/e)^{2n}$ $n \to \infty$.

And therefore

$$\frac{(2n)!}{n!^2}(pq)^n \simeq \frac{(4pq)^n}{\sqrt{\pi n}} \qquad n \to \infty$$

• p = q: Then p = q = 1/2, so 4pq = 1. And we have

$$p_{00}^{(2n)} \simeq \frac{1}{\sqrt{\pi n}} \qquad n \to \infty$$

which is equivalent with

$$\forall \epsilon > 0 \ \exists N : n \ge N \Longrightarrow \frac{1}{\sqrt{\pi}\sqrt{n}} - \epsilon < p_{00}^{(2n)} < \frac{1}{\sqrt{\pi n}} + \epsilon.$$

So there exists a N such that for all $n \geq N$ we have

$$p_{00}^{(2n)} > \frac{1}{2\sqrt{n}}.$$

Therefore

$$\sum_{n=0}^{\infty} p_{00}^{(n)} > \sum_{n=N}^{\infty} p_{00}^{(2n)} > \sum_{n=N}^{\infty} \frac{1}{2\sqrt{n}} = \infty$$

• $p \neq q$: Then 4pq = r < 1. And we have

$$p_{00}^{(2n)} \simeq \frac{r^n}{\sqrt{\pi n}} \qquad n \to \infty$$

which is equivalent with

$$\forall \epsilon > 0 \; \exists N : n \ge N \Longrightarrow \frac{r^n}{\sqrt{\pi}\sqrt{n}} - \epsilon < p_{00}^{(2n)} < \frac{r^n}{\sqrt{\pi n}} + \epsilon.$$

So there exists a N such that for all $n \geq N$ we have

$$p_{00}^{(2n)} < r^n$$

Therefore

$$\sum_{n=N}^{\infty} p_{00}^{(n)} = \sum_{n=N}^{\infty} p_{00}^{(2n)} < \sum_{n=N}^{\infty} r^n < \infty.$$

And therefore

$$\sum_{n=0}^{\infty} p_{00}^{(n)} < \infty.$$

7.3 Example 1.6.2 The simple random walk on \mathbb{Z}^2 . Compute $\sum_{n=0}^{\infty} p_{00}^{(n)}$.

Proof.

By rotating \mathbb{Z}^2 we get that each step is like moving in one step in each of the independent, one dimensional, simple random walks. Hence

$$p_{00}^{(2n)} \simeq \left(\frac{1}{\sqrt{\pi n}}\right)^2 = \frac{1}{\pi n}$$

which is equivalent with

$$\forall \epsilon > 0 \; \exists N : n \ge N \Longrightarrow \frac{1}{\pi n} - \epsilon < p_{00}^{(2n)} < \frac{1}{\pi n} + \epsilon.$$

So there exists a N such that for all $n \geq N$ we have

$$p_{00}^{(2n)} > \frac{1}{4n}.$$

Therefore

$$\sum_{n=0}^{\infty} p_{00}^{(n)} > \sum_{n=N}^{\infty} p_{00}^{(2n)} > \frac{1}{4} \sum_{n=N}^{\infty} \frac{1}{n} = \infty$$

7.2 Markov Chains 1.7

7.4 Definition.

We say that a measure $\lambda = (\lambda_i : i \in I)$ where $\lambda_i \geq 0$ is invariant if

$$\lambda P = \lambda$$
.

7.5 Theorem 1.7.1.

Let $(X_n)_{n\geq 0}$ be a $Markov(\lambda, P)$ and suppose that λ is invariant for P. Then $(X_{n+m})_{n\geq 0}$ is also $Markov(\lambda, P)$.

7.6 Theorem 1.7.2.

Let I be finite. Suppose for some $i \in I$ that for all $j \in J$

$$p_{ij}^{(n)} \to \pi_j \qquad n \to \infty.$$

Then $\pi = (\pi_j : j \in I)$ is an invariant distribution.

7.7 Proposition.

Give a example of infinite state space I where Theorem 1.7.2 doesn't hold.

Proof.

For the random walk in \mathbb{Z} we have for all $i, j \in I$

$$p_{ij}^n \to 0 \qquad n \to \infty.$$

Note however that $(0,0,\ldots)$ is not a distribution. As the total mass

$$\sum_{i \in I} \lambda_i = 0 \neq 1.$$

7.8 Theorem.

Consider a recurrence relation of the form

$$x_{n+1} = ax_n + b.$$

The general solution is

$$x_n = \begin{cases} Aa^n + b/(1-a) & a \neq 1 \\ x_n = x_0 + nb & a = 1 \end{cases}$$

7.9 Example 1.1.4.

The most general two-state chain has transition matrix of the form

$$P = \begin{pmatrix} 1 - \alpha & \alpha \\ \beta & 1 - \beta \end{pmatrix}.$$

Draw the diagram, and find $p_{11}^{(n)}$.

Proof.

We have that

$$P^{n+1} = P^n \begin{pmatrix} 1 - \alpha & \alpha \\ \beta & 1 - \beta \end{pmatrix}.$$

And therefore

$$p_{11}^{(n+1)} = p_{11}^{(n)}(1-\alpha) + p_{12}^{(n)}\beta.$$

Note that we have

$$p_{12}^{(n)} = 1 - p_{11}^{(n)}$$
.

So we have

$$p_{11}^{(n+1)} = p_{11}^{(n)}(1 - \alpha - \beta) + \beta.$$

The general solution of this recurrence relation is

$$p_{11}^{(n)} = \begin{cases} A(1 - \alpha + \beta)^n + \alpha/(\alpha + \beta) & (1 - \alpha + \beta) \neq 1\\ 1 + n\beta & 1 - \alpha + \beta = 1 \end{cases}$$

This reduces to:

$$p_{11}^{(n)} = \begin{cases} \frac{\beta}{\alpha+\beta} (1-\alpha+\beta)^n + \alpha/(\alpha+\beta) & \alpha+\beta > 0\\ 1 & \alpha = \beta = 0 \end{cases}$$

7.10 Proposition.

Consider the two-state Markov chain with transition matrix

$$P = \begin{pmatrix} 1 - \alpha & \alpha \\ \beta & 1 - \beta \end{pmatrix}$$

Ignore the trivial cases $\alpha = \beta = 0$ and $\alpha = \beta = 1$.

Proof.

From example 1.1.4 we have

$$p_{11}^{(n)} = \begin{cases} \frac{\alpha}{\alpha + \beta} (1 - \alpha - \beta)^n + \beta/(\alpha + \beta) & \alpha + \beta > 0\\ 1 & \alpha = \beta = 0 \end{cases}$$

In a similar we could have shown that

$$p_{12}^{(n)} = \begin{cases} \frac{\alpha}{\alpha + \beta} (1 - \alpha - \beta)^n + \alpha/(\alpha + \beta) & \alpha + \beta > 0\\ 1 & \alpha = \beta = 0 \end{cases}$$

Therefore $p_{11}^{(n)} \to \frac{\beta}{\alpha+\beta}$ and $p_{12}^{(n)} \to \frac{\alpha}{\alpha+\beta}$. And by theorem 1.7.2 we get that

$$\left(\frac{\beta}{\alpha+\beta}, \frac{\alpha}{\alpha+\beta}\right)$$

is an invariant distribution.

7.11 Definition.

For a fixed state k, consider for each i the expected time spent in i between visits to k:

$$\gamma_i^k = E_k \sum_{n=0}^{T_k - 1} 1_{\{X_n = i\}}$$

7.12 Theorem 1.7.5.

Let P be irreducible and recurrent. Then

- 1. $\gamma_k^k = 1$
- 2. $\gamma^k = (\gamma_i^k : i \in I)$ satisfies $\gamma^k P = \gamma^k$
- 3. $0 < \gamma_i^k < \infty \text{ for all } i \in I$

7.13 Theorem 1.7.6.

Let P be irreducible and let λ be an invariant measure for P with $\lambda_k = 1$. Then $\lambda \geq \gamma^k$. If in addition P is recurrent, then $\lambda = \gamma^k$.

Recall that a state i is recurrent if

$$\mathbb{P}_i(X_n = i \text{ for infinitely many } n) = 1$$

and we showed in Theorem 1.5.3 that this is equivalent to

$$\mathbb{P}_i(T_i < \infty) = 1.$$

7.14 Definition.

We call a recurrent state i positive recurrent if

$$m_i = E_i(T_i) < \infty.$$

If a recurrent state fails to have this stronger property we call it *null recurrent*.

7.15 Theorem 1.7.7.

Let P be irreducible. Then the following are equivalent:

- 1. every state is positive recurrent
- 2. some state i is positive recurrent
- 3. P has an invariant distribution π

7.16 Theorem.

If P has an invariant distribution π , we have that $m_i = E_i(T_i) = \frac{1}{\pi_i}$ for all i.

7.17 Example 1.7.8.

Show that the simple symmetric random walk on \mathbb{Z} is null recurrent.

Proof.

The simple symmetric random walk on \mathbb{Z} is irreducible and, by example 1.6.1, it also recurrent. Remember that

$$(\pi P)_j = \sum_{i \in I} \pi_i p_{ij}$$

and this equals to

$$\sum_{i \in I} \pi_i p_{ij} = 1/2\pi_{j-1} + 1/2\pi_{j+1}.$$

So

$$\pi_i = \frac{1}{2}\pi_{i-1} + \frac{1}{2}\pi_{i+1}.$$

We get the equation

$$x^2 - 2x + 1 = 0.$$

And so we have

$$\alpha = \beta = 1.$$

And so the general solutions is

$$\pi_i = A + iB$$
.

and the total mass is then

$$\sum_{i} \pi_{i} = A \sum_{i} 1 + B \sum_{i} i = B \infty.$$

So whatever A, B we choose, we never get the total mass to be zero. So there doesn't exists a invariant distribution, and by Theorem 1.7.7 we have that all states must be null recurrent.

7.18 Example 1.7.9.

Show that the existence of an invariant measure does not guarantee recurrence.

Proof.

The simple symmetric random walk on \mathbb{Z}^3 has an invariant measure. Consider:

$$(\pi P)_j = \sum_{i \in I} \pi_i p_{ij} = 1/4(\pi_a + \pi_b + \pi_c + \pi_d)$$

So if we set $\pi = (1, 1, 1, ...)$. Then π is invariant. But \mathbb{Z}^3 is also transient. \square

7.19 Example 1.7.10.

Consider the asymmetric random walk on \mathbb{Z} with transition probabilities $p_{i,i-1} = q . Show that the walk is null recurrent.$

Proof.

We have

$$\pi_j = (\pi P)_j = \sum_{i \in I} \pi_i p_{ij} = \pi_{j-1} p_{j-1,j} + \pi_{j+1} p_{j+1,j}$$
$$= \pi_{j-1} p + \pi_{j+1} q$$

This is a recurrence relation and we have the equation

$$qx^{2} - x + p = 0$$

$$D = \sqrt{1 - 4(1 - p)p} = \sqrt{1 - 4p + 4p^{2}} = 1 - 2p$$

$$\alpha = \frac{-1 + 1 - 2p}{-2p} = 1 \qquad \beta = \frac{-2 + 2p}{-2p} = \frac{1 - p}{p} = \frac{q}{p}$$

So we have the general solution:

$$\pi_j = A\alpha^j + B\beta^j = A + B\left(\frac{p}{q}\right)^i.$$

And the total mass is therefore

$$\sum_{j=0}^{\infty} \pi_j = \sum_{j=0}^{\infty} A + B\left(\frac{p}{q}\right)^i = B\infty.$$

So whatever A, B we choose, we never get the total mass to be zero. So there doesn't exists a invariant distribution, and by Theorem 1.7.7 we have that all states must be null recurrent.

7.20 Example 1.7.11.

Consider a success-run chain on \mathbb{Z}^+ , whose transition probabilities given by

$$p_{i,i+1} = p_i$$
 $p_{i0} = q_i = 1 - p_i$.

And where

$$p = \prod_{i=0}^{\infty} p_i > 0.$$

Show that every state is transient.

Proof.

We have

$$\pi_{j} = (\pi P)_{j} = \sum_{i \in I} \pi_{i} p_{ij}$$
$$= \pi_{j-1} p_{j-1}$$
$$= \pi_{0} \prod_{i=0}^{j-1} p_{i}$$

and

$$\pi_0 = \sum_{i=0}^{\infty} \pi_i p_{i0}$$

$$= \sum_{i=0}^{\infty} (1 - p_i) \pi_i$$

$$= \pi_0 \sum_{i=0}^{\infty} (1 - p_i) \prod_{j=0}^{i-1} p_j$$

$$= \pi_0 \sum_{i=0}^{\infty} \prod_{j=0}^{i-1} p_j - \prod_{j=0}^{i} p_j$$

$$= \pi_0 (1 - \prod_{j=0}^{\infty} p_j).$$

The last equality need some thinking, but notice that it's a telescoping sum. Define

$$a_i := \prod_{j=0}^{i-1} p_j,$$

the sum is

$$\sum_{i=0}^{\infty} (a_i - a_{i+1}) = a_0 - \lim_{k \to \infty} a_k = 1 - \prod_{j=0}^{\infty} p_j$$

The equation

$$\pi_0 = \pi_0 (1 - \prod_{j=0}^{\infty} p_j)$$

forces π_0 to be 0. And therefore all π_i are zero. So there is no invariant distribution and we have that P is transient by theorem 1.7.7.