Practice: Data Wrangling with dplyr

STAT 450, Fall 2024

Here are some practice problems on data wrangling with the R package dplyr. These exercises will help prepare you for the midterm.

library(tidyverse)

All exercises use the mpg data set.

mpg

# A tibble: 234 x 11											
	${\tt manufacturer}$	model	displ	year	cyl	trans	drv	cty	hwy	fl	class
	<chr></chr>	<chr></chr>	<dbl></dbl>	<int></int>	<int></int>	<chr></chr>	<chr></chr>	<int></int>	<int></int>	<chr></chr>	<chr></chr>
1	audi	a4	1.8	1999	4	auto~	f	18	29	р	comp~
2	audi	a4	1.8	1999	4	manu~	f	21	29	p	comp~
3	audi	a4	2	2008	4	manu~	f	20	31	p	comp~
4	audi	a4	2	2008	4	auto~	f	21	30	p	comp~
5	audi	a4	2.8	1999	6	auto~	f	16	26	p	comp~
6	audi	a4	2.8	1999	6	manu~	f	18	26	p	comp~
7	audi	a4	3.1	2008	6	auto~	f	18	27	р	comp~
8	audi	a4 quattro	1.8	1999	4	manu~	4	18	26	р	comp~
9	audi	a4 quattro	1.8	1999	4	auto~	4	16	25	р	comp~
10	audi	a4 quattro	2	2008	4	manu~	4	20	28	р	comp~
# i 224 more rows											

Type help(mpg) to read about this data set in the help menu.

Exercise 1

Use filter() to subset all rows corresponding to cars that

- (a) Have less than 17 city miles per gallon.
- (b) Have less than 17 city miles per gallon and are midsize.
- (c) Have less than 17 city miles per gallon and are midsize with front-wheel drive.
- (d) Are manufactured by honda, hyundai, or subaru.

Exercise 2

Use mutate() to add a new column called mpg_diff which is the difference between the highway and city miles per gallon. Make a histogram and density plot for this new variable.

Exercise 3

Use group_by() and summarize() to create a data frame with the following columns:

- (a) Count number of cars for each car type
- (b) Mean city miles per gallon for each car type
- (c) Standard deviation of city miles per gallon for each car type
- (d) Mean highway miles per gallon for each car type
- (e) Standard deviation of highway miles per gallon for each car type

Your R code should recreate the following table:

#	A tibble:	7 x 6				
	class	count	cty_mean	cty_sd	hwy_mean	hwy_sd
	<chr></chr>	<int></int>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1	2seater	5	15.4	0.548	24.8	1.30
2	compact	47	20.1	3.39	28.3	3.78
3	midsize	41	18.8	1.95	27.3	2.14
4	minivan	11	15.8	1.83	22.4	2.06
5	pickup	33	13	2.05	16.9	2.27
6	subcompact	35	20.4	4.60	28.1	5.38
7	suv	62	13.5	2.42	18.1	2.98

Exercise 4

For each car type (class), compute the proportion of cars that have over 25 highway miles per gallon. Arrange the rows in descending order according this proportion.