	Training II 2021. Sept 19. Ye Cao.
	Review of C+t pointer
	John
	*
	11 live of the
	Used to get the Used to get the
0	memory location of value of the variable a variable associated the pointer
-0-	Variable 1
	Question:
4	int x = 10; 1. Is printent equal 10?
4	int *P = Qx; 2 If not, what's fix. cout & p ((end); to print 10?
4	Court Print
4	
4	Review of pair
4	were costs a suit
4	pair < int int > p; "represents a point p. first; "x-coordinate p. second; "y-coordinate
4	second: 11 y-coordinate
	P. 30000
2	Review of sort
	9
(h	(75641013)
<u>a</u>	
<u>a</u>	(13456710)
<u> </u>	
	Review of binary search: 1. Define active region
	Review of binary search: 1. Define active region 2 Execute search
8	3. Update active region
9	

• 6	
\$	
	Aquarium Tank Problem:
9	Problem Understanding:
•	Inputs: 1. Cartegion Coordinate of the convex polygor in counterclockwise order.
•	in counterclockwise order
9	
it.	
. — .	
9	
•	2 Depth D
•	Computational Procedure:
	1. How to process inputs: put into pairs contained by an array
•	2. How to calculate height of water?
	GUESSING vs Math Formula
	linear guess $-O(N)$ $O(1)$
	Binary Search - O(log(N))
	3. Look at input constraints. Gussing is feasil

•	
	Insertion
	1. Start with mot
	2. Go left if val is smaller
	3. Otherwise go right
	4. If reach a leaf node, attach up to leaf no
	Deletion.
	No children -> Remove node n One children -> Remove node n and connect
	One children -> Remove node n and connect n's parent to n's children
10	INO children ->
9	Find emallest node m that
	larger than 1, remove m a
lu _	replace n's value with m's
	plue.
	Retrieval O(h)
	1. Start with poot
	2. Go left if vol is smaller
	3. Otherwise go right
) on o
1	4. If reach a leaf node, not found

f 10211304252231D C 11345881214192123262727 T 112414012272113402	7	
Point Update Consider this problem: There 're 1 boxes and 2 g 1. add marble to box i 2. sum marbles from box k to box y How to come up with a data structure that work in time complexity $O(m \log(n))$? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 f 1 0 2 1 1 3 0 4 2 5 2 2 3 1 D C 1 3 4 5 8 8 12 14 19 21 23 26 27 27 32 T 1 2 4 1 4 0 12 2 7 2 11 3 4 0 2		
Point Update Consider this problem: There're 1 boxes and 2 g 1. add marble to box i 2. sum marbles from box k to box r How to come up with a data structure that work in time complexity $O(m \log(n))$? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 f 1 0 2 1 1 3 0 4 2 5 2 2 3 1 D C 1 3 4 5 8 8 12 14 19 21 23 26 27 27 32 T 1 2 4 1 4 0 12 2 7 2 11 3 4 0 2	1	
Point Update Consider this problem: There're 1 boxes and 2 g 1. add marble to box i 2. sum marbles from box k to box y How to come up with a data structure that work in time complexity $O(m \log(n))$? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 f 1 0 2 1 1 3 0 4 2 5 2 2 3 1 D C 1 3 4 5 8 8 12 14 19 21 23 26 27 27 32 T 1 2 4 1 4 0 12 2 7 2 11 3 4 0 2	9	
Point Update Consider this problem: There're 1 boxes and 2 g 1. add marble to box i 2. sum marbles from box k to box y How to come up with a data structure that work in time complexity $O(m \log(n))$? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 f 1 0 2 1 1 3 0 4 2 5 2 2 3 1 D C 1 3 4 5 8 8 12 14 19 21 23 26 27 27 32 T 1 2 4 1 4 0 12 2 7 2 11 3 4 0 2		Binary Indexed Tree / Fennick Tree
Point Update Consider this problem: There're 1 boxes and 2 g 1. add marble to box i 2. sum marbles from box k to box y How to come up with a data structure that work in time complexity $O(m \log(n))$? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 f 1 0 2 1 1 3 0 4 2 5 2 2 3 1 D C 1 3 4 5 8 8 12 14 19 21 23 26 27 27 32 T 1 2 4 1 4 0 12 2 7 2 11 3 4 0 2		
Point Update Consider this problem: There're 1 boxes and 2 g 1. add marble to box i 2. sum marbles from box k to box y How to come up with a data structure that work in time complexity $O(m \log(n))$? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 f 1 0 2 1 1 3 0 4 2 5 2 2 3 1 D C 1 3 4 5 8 8 12 14 19 21 23 26 27 27 32 T 1 2 4 1 4 0 12 2 7 2 11 3 4 0 2		Proposed by Peter M. Fernial
Consider this problem: There 're 1 boxes and 2 g 1. add marble to box i 2. sum marbles from box k to box Y How to come up with a data structure that work in time complexity $O(m \log n)$? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 f 1 0 2 1 1 3 0 4 2 5 2 2 3 1 D C 1 1 3 4 5 8 8 12 14 19 21 23 26 27 27 3 T 1 1 2 4 1 4 0 12 2 7 2 11 3 4 0 2		Range Sum Query
2. sum marbles from box R to box Y. How to come up with a data structure that work in time complexity $O(m \log(n))$? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 f 1 0 2 1 1 3 0 4 2 5 2 2 3 1 D o C 1 3 4 5 8 8 12 14 18 21 23 26 2 2 7 3 T 1 2 4 1 4 0 12 2 7 2 11 3 4 0 2 1 2 3 4 5 6 7 8 8 /0 11 12 13 141		Point Update
2. sum marbles from box R to box Y. How to come up with a data structure that work in time complexity $O(m \log(n))$? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 f 1 0 2 1 1 3 0 4 2 5 2 2 3 1 D o C 1 3 4 5 8 8 12 14 18 21 23 26 2 2 7 3 T 1 2 4 1 4 0 12 2 7 2 11 3 4 0 2 1 2 3 4 5 6 7 8 8 /0 11 12 13 141		Consider this problem: There're n boxes and z gy
How to come up with a data structure that work in time complexity $O(m \log n)$? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 f 1 0 2 1 1 3 0 4 2 5 2 2 3 1 D C 1 3 4 5 8 8 12 14 1 21 23 26 2 2 7 3 T 1 2 4 1 4 0 12 2 7 2 11 3 4 0 2		1. add marble to box i
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		2. sum marbles from Dox R to DOX 1.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		How to come up with a data structure that works
f 102113042522312 C 11345881214192123262727 T 11241401227211340 123456788/0111213141		
C 1 3 4 5 8 8 12 14 18 21 23 26 27 27 3 T 1 2 4 1 4 0 12 2 7 2 11 3 4 0 2 1 2 3 4 5 6 7 8 8 10 11 12 13 141. I 3 1 5 5 7 1 9 9 11 9 13 13 13 13 14 12		
1 1 2 4 1 4 0 12 2 7 2 11 3 4 0 2 1 2 3 4 5 6 7 8 8 /0 11 12 13 14 1. 1 1 3 1 5 5 7 1 9 9 11 9 13 13 13 13 14 1.		J10211304252231D2
1 2 3 4 5 6 7 8 8 10 11 12 13 141		C / 1 3 4 5 8 8 12 14 18 21 23 26 27 27 2
1 1 3 1 5 5 7 1 9 9 11 9 13 13		T 112414012272113402
1 1 3 1 5 5 7 1 9 9 11 9 13 13		
5 5 5 5		123456788/01112131415
2 4 6 8 10 12 14		113155719911913131
2 4 6 8 10 12 14		5 5 5 5 5 5
		2 4 6 8 10 12 14
	1	

	Get sum	7,00		
	Stort	with current	idx + 1 (1- parent index	-based index
	Continue	update to	parent index	it that show
		and so	Child	12/
			4	A.L.
		1	-hass 21 70 /	amore Varia
-7-67-67	A COLUMN	100	00	1100110
			8	9-12 1
			<u></u>	1.10
	Binory Sound			
		181		
			No.	
		192	(62)	
	Commence To the			
			\ <u></u>	
	السحانات	27 2 (9/		
			<u> </u>	
_		/ 1	11. (12)	
	7 99			1
1	Table 1			
		AND SHAPE OF THE STREET		