

<u>Help</u>

HuitianDiao 🗸

<u>Course</u> <u>Progress</u> <u>Dates</u> <u>Discussion</u> <u>Resources</u>

★ Course / Unit 3 Methods of E... / Lecture 10: Consistency of MLE, Covariance Matrices, and ...

10. Multivariate Central Limit Theorem

□ Bookmark this page

Exercises due Jun 29, 2021 19:59 EDT

Note: The following exercise will be presented in the video that follows. We encourage you to attempt it before watching the video.

Vector Version of the Central Limit Theorem

1/1 point (graded)

Let \mathbf{X} be a random vector of dimension $d \times 1$ and let μ and Σ be its mean and covariance. Let $\mathbf{X}_1, \ldots, \mathbf{X}_n$ be i.i.d. copies of \mathbf{X} . Let $\overline{\mathbf{X}}_n \triangleq \frac{1}{n} \sum_{i=1}^n \mathbf{X}_i$.

Based on your knowledge of the central limit theorem for a single random variable, select from the following the correct shift and scale factor for $\overline{\mathbf{X}}_n$ so that $\overline{\mathbf{X}}_n$ could potentially converge to the Gaussian random vector $\mathcal{N}\left(0,I_{d\times d}\right)$.

- igcirc $\sqrt{d}\cdot \Sigma^{-rac{1}{2}}\left(\overline{\mathbf{X}}_n-\mu
 ight)$
- igcirc $\sqrt{d}\cdot \Sigma^{-1}\left(\overline{\mathbf{X}}_n-\mu
 ight)$
- igcirc $\sqrt{n}\cdot \Sigma^{-1}\left(\overline{\mathbf{X}}_n-\mu
 ight)$
- igcirc $\sqrt{n}\cdot \Sigma^{-rac{1}{2}}\left(\overline{\mathbf{X}}_n-\mu
 ight)$
- None of the above

Submit

You have used 1 of 3 attempts

✓ Correct (1/1 point)

Multivariate Central Limit Theorem

page for this.

Otherwise, this is just linear algebra.

So now that I have this notion of taking 1 over square root of sigma squared, which is just

multiplying by this matrix, then I actually can talk about having something which converges

to a standard Gaussian.

Are there any questions?

(Optional) Multivariate Convergence in Distribution and Proof of Multivariate CLT

Convergence in Distribution in Higher Dimensions

Convergence in distribution of a random vector is **not implied** by convergence in distribution of each of its components.

A sequence $\mathbf{T}_1, \mathbf{T}_2, \ldots$ of random vectors in \mathbb{R}^d converges in distribution to a random vector \mathbf{T} if

$$\mathbf{v}^T\mathbf{T}_n \quad \xrightarrow[(d)]{n o \infty} \quad \mathbf{v}^T\mathbf{T} \qquad ext{for all } \mathbf{v} \in \mathbb{R}^d \qquad ext{(multivariate convergence in distribution)} \,.$$

That is, the vector sequence $(\mathbf{T}_n)_{n\geq 1}$ converges in distribution only if its dot product $\mathbf{v}^T\mathbf{T}_n$ with **any** constant vector \mathbf{v} , which is a scalar random variable, converges in distribution (or equivalently, if the projection of the vector sequence onto **any** line converges in distribution.)

Univariate CLT Implies Multivariate CLT

Let $\mathbf{X}_1,\ldots,\mathbf{X}_n\stackrel{i.i.d.}{\sim}\mathbf{X}$ be random vectors in \mathbb{R}^d with (vector) mean $\mathbb{E}\left[\mathbf{X}
ight]=\mu_{\mathbf{X}}$ and covariance matrix $\Sigma_{\mathbf{X}}$.

Let $\mathbf{v} \in \mathbb{R}^d$ and define $Y_i = \mathbf{v}^T \mathbf{X}_i$. Then

- Y_i is a scalar random variable;
- Its mean and variance are $\mathbb{E}\left[Y_i\right] = \mathbf{v}^T \mathbb{E}\left[\mathbf{X}_i\right]$ and $\sigma_{Y_i}^2 = \mathbf{v}^T \Sigma_{\mathbf{X}_i} \mathbf{v}$ (you can check that the variance is indeed a scalar).

Hence Y_i satisfies the univariate CLT:

$$\sqrt{n}\left(\overline{Y_n} - \mathbf{v}^T \mathbf{\mu_X}
ight) \quad \overset{n o \infty}{\longrightarrow} \quad \mathcal{N}\left(0, \mathbf{v}^T \Sigma_\mathbf{X} \mathbf{v}
ight)$$

On the other hand, consider a multivariate Gaussian variable $\mathbf{Z} \sim \mathcal{N}\left(\mathbf{0}, \Sigma_{\mathbf{X}}\right)$. For any constant vector $\mathbf{v} \in \mathbb{R}^d$, $\mathbf{v}^T\mathbf{Z}$ is a univariate Gaussian with variance $\mathbf{v}^T\Sigma_{\mathbf{X}}\mathbf{v}$. Hence, $\mathbf{v}^T\mathbf{Z} \sim \mathcal{N}\left(\mathbf{0}, \mathbf{v}^T\Sigma_{\mathbf{X}}\mathbf{v}\right)$, which is the distribution on the right hand side above. Therefore, $\overline{\mathbf{X}_n}$ converges in distribution:

$$egin{aligned} \sqrt{n} \left(\mathbf{v}^T \overline{\mathbf{X}_n} - \mathbf{v}^T \mu_{\mathbf{X}}
ight) &= \sqrt{n} \left(\overline{Y_n} - \mathbf{v}^T \mu_{\mathbf{X}}
ight) & \stackrel{n o \infty}{\longrightarrow} & \mathcal{N} \left(0, \mathbf{v}^T \Sigma_{\mathbf{X}} \mathbf{v}
ight) = \mathbf{v}^T \mathcal{N} \left(0, \Sigma_{\mathbf{X}}
ight) \ &\iff & \sqrt{n} \left(\overline{\mathbf{X}}_n - \mu_{\mathbf{X}}
ight) & \stackrel{n o \infty}{\longrightarrow} & \mathcal{N} \left(0, \Sigma_{\mathbf{X}}
ight). \end{aligned}$$

<u>Hide</u>

Discussion

Hide Discussion

Topic: Unit 3 Methods of Estimation:Lecture 10: Consistency of MLE, Covariance Matrices, and Multivariate Statistics / 10. Multivariate Central Limit Theorem

Add a Post

Show all posts

by recent activity ~

There are no posts in this topic yet.

K

© All Rights Reserved

edX

About

Affiliates

edX for Business

Open edX

Careers

<u>News</u>

Legal

Terms of Service & Honor Code

Privacy Policy

Accessibility Policy

Trademark Policy

<u>Sitemap</u>

Connect

<u>Blog</u>

Contact Us

Help Center

Media Kit

Donate

© 2021 edX Inc. All rights reserved.

深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>