Computational Electrodynamics

The Finite-Difference Time-Domain Method

Third Edition

Allen Taflove Susan C. Hagness

Contents

Pı	efac	ce to the Third Edition	xix
1	El	ectrodynamics Entering the 21st Century	1
	1.1	Introduction	1
		The Heritage of Military Defense Applications	1
		Frequency-Domain Solution Techniques	2
		Rise of Finite-Difference Time-Domain Methods	2
	1.5	History of FDTD Techniques for Maxwell's Equations	4
		Characteristics of FDTD and Related Space-Grid Time-Domain Techniques	6
		1.6.1 Classes of Algorithms	6
		1.6.2 Predictive Dynamic Range	7
		1.6.3 Scaling to Very Large Problem Sizes	8
	1.7	Examples of Applications	9
		1.7.1 Impulsive Around-the-World Extremely Low-Frequency Propagation	10
		1.7.2 Cellphone Radiation Interacting with the Human Head	11
		1.7.3 Early-Stage Detection of Breast Cancer Using an Ultrawideband Microwave Radar	11
		1.7.4 Homing Accuracy of a Radar-Guided Missile	12
		1.7.5 Electromagnetic Wave Vulnerabilities of a Military Jet Plane	12
		1.7.6 Millimeter-Wave Propagation in a Defect-Mode Electromagnetic Bandgap Structure	13
		1.7.7 Photonic Crystal Microcavity Laser	14
		1.7.8 Photonic Crystal Cross-Waveguide Switch	15
		Conclusions	16
	Ref	erences	16
2	Th	e One-Dimensional Scalar Wave Equation	21
	2.1	Introduction	21
	2.2	Propagating-Wave Solutions	21
	2.3	Dispersion Relation	22
	2.4	Finite Differences	23
	2.5	Finite-Difference Approximation of the Scalar Wave Equation	24
	2.6	Numerical Dispersion Relation	27
		2.6.1 Case 1: Very Fine Sampling in Time and Space	28
		2.6.2 Case 2: Magic Time-Step	29
		2.6.3 Case 3: Dispersive Wave Propagation	29
		2.6.4 Example of Calculation of Numerical Phase Velocity and Attenuation	34
		2.6.5 Examples of Calculations of Pulse Propagation	34
	2.7	Numerical Stability	39
		2.7.1 Complex-Frequency Analysis	40
		2.7.2 Examples of Calculations Involving Numerical Instability	43
		Summary	45
	App	pendix 2A: Order of Accuracy	47
		2A.1 Lax-Richtmyer Equivalence Theorem	47
		2A.2 Limitations	48
		erences	48
		ected Bibliography on Stability of Finite-Difference Methods	49
	Prol	blems	49

5		roduction to Maxwell's Equations and the Tee Algorithm	=-
	Alle	n Taflove and Jamesina Simpson	51
	3.1	Introduction	51
	3.2	Maxwell's Equations in Three Dimensions	51
		Reduction to Two Dimensions	54
		3.3.1 TM ₂ Mode	55
		3.3.2 TE, Mode	55
	3.4	Reduction to One Dimension	56
		3.4.1 x-Directed, z-Polarized TEM Mode	56
		3.4.2 x-Directed, y-Polarized TEM Mode	57
	3.5	Equivalence to the Wave Equation in One Dimension	57
	3.6	The Yee Algorithm	58
		3.6.1 Basic Ideas	58
		3.6.2 Finite Differences and Notation	60
		3.6.3 Finite-Difference Expressions for Maxwell's Equations in Three Dimensions	62
		3.6.4 Space Region with a Continuous Variation of Material Properties	67
		3.6.5 Space Region with a Finite Number of Distinct Media	69
		3.6.6 Space Region with Nonpermeable Media	71
		3.6.7 Reduction to the Two-Dimensional TM _z and TE _z Modes	73
		3.6.8 Interpretation as Faraday's and Ampere's Laws in Integral Form	75
		3.6.9 Divergence-Free Nature	78
	3.7	Alternative Finite-Difference Grids	80
		3.7.1 Cartesian Grids	80
		3.7.2 Hexagonal Grids	82
	3.8	Emerging Application: Gridding the Planet Earth	85
		3.8.1 Background	85
		3.8.2 The Latitude-Longitude Space Lattice	86
	2.0	3.8.3 The Geodesic (Hexagon-Pentagon) Grid	99
		Summary	103
		erences	104
	Pro	blems	103
4	Nu	merical Dispersion and Stability	107
	4.1	Introduction	10′
	4.2	Derivation of the Numerical Dispersion Relation for Two-Dimensional Wave Propagation	107
	4.3	Extension to Three Dimensions	110
	4.4	Comparison with the Ideal Dispersion Case	11
	4.5	Anisotropy of the Numerical Phase Velocity	11.
		4.5.1 Sample Values of Numerical Phase Velocity	11
		4.5.2 Intrinsic Grid Velocity Anisotropy	110
	4.6	Complex-Valued Numerical Wavenumbers	120
		4.6.1 Case 1: Numerical Wave Propagation Along the Principal Lattice Axes	12
		4.6.2 Case 2: Numerical Wave Propagation Along a Grid Diagonal	123
		4.6.3 Example of Calculation of Numerical Phase Velocity and Attenuation	126
		4.6.4 Example of Calculation of Wave Propagation	120
	4.7	Numerical Stability	128
		4.7.1 Complex-Frequency Analysis	130
		4.7.2 Example of a Numerically Unstable Two-Dimensional FDTD Model	13:
		4.7.3 Linear Growth Mode When the Normalized Courant Factor Equals 1	13′
	4.8	Generalized Stability Problem	13′
		4.8.1 Absorbing and Impedance Boundary Conditions	13′

	4.8.2 Variable and Unstructured Meshing	137
	4.8.3 Lossy, Dispersive, Nonlinear, and Gain Materials	138
4.9	· · · · · · · · · · · · · · · · · · ·	138
	4.9.1 Strategy 1: Center a Specific Numerical Phase-Velocity Curve About c	138
	4.9.2 Strategy 2: Use Fourth-Order-Accurate Explicit Spatial Differences	139
	4.9.3 Strategy 3: Use a Hexagonal Grid, If Possible	146
	4.9.4 Strategy 4: Use Discrete Fourier Transforms to Calculate the Spatial Derivatives	150
4.10	Alternating-Direction-Implicit Time-Stepping Algorithm for Operation	
	Beyond the Courant Limit	154
	4.10.1 Numerical Formulation of the Zheng/Chen/Zhang Algorithm	155
	4.10.2 Sources	161
	4.10.3 Numerical Stability	161
	4.10.4 Numerical Dispersion	163
	4.10.5 Additional Accuracy Limitations and Their Implications	164
4.11	Summary	164
	erences	165
	plems	166
Proj	ects	167
J		
Inc	cident Wave Source Conditions	
Alle	n Taflove, Geoff Waldschmidt, Christopher Wagner, John Schneider, and Susan Hagness	169
5.1	Introduction	169
	Pointwise E and H Hard Sources in One Dimension	169
5.3	Pointwise E and H Hard Sources in Two Dimensions 5.2.1. Green Function for the Scales Ways Equation in Two Dimensions	171 171
	5.3.1 Green Function for the Scalar Wave Equation in Two Dimensions5.3.2 Obtaining Comparative FDTD Data	171
	5.3.3 Results for Effective Action Radius of a Hard-Sourced Field Component	172
5.4	·	175
5.4	5.4.1 Sources and Charging	176
	5.4.2 Sinusoidal Sources	178
	5.4.3 Transient (Pulse) Sources	178
	5.4.4 Intrinsic Lattice Capacitance	179
	5.4.5 Intrinsic Lattice Inductance	183
	5.4.6 Impact upon FDTD Simulations of Lumped-Element Capacitors and Inductors	183
5.5	The Plane-Wave Source Condition	185
5.6	The Total-Field / Scattered-Field Technique: Ideas and One-Dimensional Formulation	186
• • • • • • • • • • • • • • • • • • • •	5.6.1 Ideas	186
	5.6.2 One-Dimensional Formulation	188
5.7	Two-Dimensional Formulation of the TF/SF Technique	193
	5.7.1 Consistency Conditions	193
	5.7.2 Calculation of the Incident Field	197
	5.7.3 Illustrative Example	201
5.8	Three-Dimensional Formulation of the TF/SF Technique	204
	5.8.1 Consistency Conditions	204
	5.8.2 Calculation of the Incident Field	210
5.9	Advanced Dispersion Compensation in the TF/SF Technique	213
	5.9.1 Matched Numerical Dispersion Technique	214
	5.9.2 Analytical Field Propagation	218
5.10	Scattered-Field Formulation	220
	5.10.1 Application to PEC Structures	220
	5.10.2 Application to Lossy Dielectric Structures	221
	5.10.3 Choice of Incident Plane-Wave Formulation	223

5

	5.11	Waveguide Source Conditions	223
		5.11.1 Pulsed Electric Field Modal Hard Source	223
		5.11.2 Total-Field / Reflected-Field Modal Formulation	225
		5.11.3 Resistive Source and Load Conditions	225
	5.12	Summary	226
	Refe	rences	227
	Prob	lems	227
	Proje	ects	228
6	An	alytical Absorbing Boundary Conditions	229
	6.1	Introduction	229
	6.2	Bayliss-Turkel Radiation Operators	230
		6.2.1 Spherical Coordinates	231
		6.2.2 Cylindrical Coordinates	234
	6.3	Engquist-Majda One-Way Wave Equations	236
		6.3.1 One-Term and Two-Term Taylor Series Approximations	237
		6.3.2 Mur Finite-Difference Scheme	240
		6.3.3 Trefethen-Halpern Generalized and Higher-Order ABCs	243
		6.3.4 Theoretical Reflection Coefficient Analysis	245
		6.3.5 Numerical Experiments	247
	6.4	Higdon Radiation Operators	252
		6.4.1 Formulation 6.4.2 First Two Higdon Operators	252 253
		6.4.3 Discussion	253 254
	6.5	Liao Extrapolation in Space and Time	255
	0.5	6.5.1 Formulation	255
		6.5.2 Discussion	257 257
	6.6	Ramahi Complementary Operators	259
	0.0	6.6.1 Basic Idea	259
		6.6.2 Complementary Operators	260
		6.6.3 Effect of Multiple Wave Reflections	260
		6.6.4 Basis of the Concurrent Complementary Operator Method	261
		6.6.5 Illustrative FDTD Modeling Results Obtained Using the C-COM	267
		Summary	270
	Ref	erences	270
	Pro	blems	271
7	Pe	rfectly Matched Layer Absorbing Boundary Conditions	
		phen Gedney	273
		Introduction	273
		Plane Wave Incident upon a Lossy Half-Space	274
	7.3	Plane Wave Incident upon Berenger's PML Medium	276
		7.3.1 Two-Dimensional TE _z Case	276
		7.3.2 Two-Dimensional TM _z Case	281
	7.4	7.3.3 Three-Dimensional Case	281
		Stretched-Coordinate Formulation of Berenger's PML	282
	7.5	8 9	285
		7.5.1 Perfectly Matched Uniaxial Medium 7.5.2 Relationship to Bernager's Split Field DMI	285
		7.5.2 Relationship to Berenger's Split-Field PML 7.5.3 A Generalized Three-Dimensional Formulation	288
		7.5.4 Inhomogeneous Media	289
		1.5.7 Annonlogonous Moula	290

	7.6	Theoretical Performance of the PML	291
		7.6.1 The Continuous Space	291
		7.6.2 The Discrete Space	292
	7.7	Complex Frequency-Shifted Tensor	294
		7.7.1 Introduction	294
		7.7.2 Strategy to Reduce Late-Time (Low-Frequency) Reflections	296
	7.8	Efficient Implementation of UPML in FDTD	297
		7.8.1 Derivation of the Finite-Difference Expressions	298
		7.8.2 Computer Implementation of the UPML	301
	7.9	Efficient Implementation of CPML in FDTD	302
		7.9.1 Derivation of the Finite-Difference Expressions	302
		7.9.2 Computer Implementation of the CPML	307
	7.10	Application of CPML in FDTD to General Media	310
		7.10.1 Introduction	310
		7.10.2 Example: Application of CPML to the Debye Medium	310
	7.11	Numerical Experiments with PML	313
		7.11.1 Current Source Radiating in an Unbounded Two-Dimensional Region	313
		7.11.2 Highly Elongated Domains and Edge Singularities	317
		7.11.3 Microstrip Patch Antenna Array	320
	7 10	7.11.4 Dispersive Media	322
		Summary and Conclusions erences	324
	Proje		324 327
	, oj.		341
8	Nea	ar-to-Far-Field Transformation	
	Allei	n Taflove, Xu Li, and Susan Hagness	329
		Introduction	329
		Two-Dimensional Transformation, Phasor Domain	329
	0.2	8.2.1 Application of Green's Theorem	330
		8.2.2 Far-Field Limit	332
		8.2.3 Reduction to Standard Form	334
	8.3	Obtaining Phasor Quantities Via Discrete Fourier Transformation	335
		Surface Equivalence Theorem	338
	8.5	Extension to Three Dimensions, Phasor Domain	340
		Time-Domain Near-to-Far-Field Transformation	343
	8.7	Modified NTFF Procedure to More Accurately Calculate Backscattering from	
		Strongly Forward-Scattering Objects	348
	8.8	Summary	351
	Refe	rences	351
	Proje	ect	352
^	D:	wantes Nauthaan and Cala Na-Aartala	
9		persive, Nonlinear, and Gain Materials	252
		Taflove, Susan Hagness, Wojciech Gwarek, Masafumi Fujii, and Shih-Hui Chang	353
		Introduction	353
		Generic Isotropic Material Dispersions	354
		9.2.1 Debye Media	354
		9.2.2 Lorentz Media	354
		9.2.3 Drude Media	355
		Piecewise-Linear Recursive-Convolution Method, Linear Material Case	355
		9.3.1 General Formulation	356
		9.3.2 Application to Debye Media	358

	9.3.3 Application to Lorentz Media	358
	9.3.4 Numerical Results	360
9	Auxiliary Differential Equation Method, Linear Material Case	361
	9.4.1 Formulation for Multiple Debye Poles	361
	9.4.2 Formulation for Multiple Lorentz Pole Pairs	363
	9.4.3 Formulation for Multiple Drude Poles	365
	9.4.4 Illustrative Numerical Results	367
9	9.5 Modeling of Linear Magnetized Ferrites	369
	9.5.1 Equivalent RLC Model	370
	9.5.2 Time-Stepping Algorithm	371
	9.5.3 Extension to the Three-Dimensional Case, Including Loss	373
	9.5.4 Illustrative Numerical Results	374
	9.5.5 Comparison of Computer Resources	375
ç	9.6 Auxiliary Differential Equation Method, Nonlinear Dispersive Material Case	376
	9.6.1 Strategy	376
	9.6.2 Contribution of the Linear Debye Polarization	377
	9.6.3 Contribution of the Linear Lorentz Polarization	377
	9.6.4 Contributions of the Third-Order Nonlinear Polarization	378
	9.6.5 Electric Field Update	380
	9.6.6 Illustrative Numerical Results for Temporal Solitons	381
	9.6.7 Illustrative Numerical Results for Spatial Solitons	383
	9.7 Auxiliary Differential Equation Method, Macroscopic Modeling of Saturable,	
	Dispersive Optical Gain Materials	387
	9.7.1 Theory 9.7.2 Validation Studies	387
		390
	9.8 Auxiliary Differential Equation Method, Modeling of Lasing Action in a Four-Level Two-Electron Atomic System	394
	9.8.1 Quantum Physics Basis	394 394
	9.8.2 Coupling to Maxwell's Equations	398
	9.8.3 Time-Stepping Algorithm	398
	9.8.4 Illustrative Results	400
	9.9 Summary and Conclusions	402
	References	404
	Problems	405
	Projects	406
		,,,
10	Local Subcell Models of Fine Geometrical Features	
	Allen Taflove, Malgorzata Celuch-Marcysiak, and Susan Hagness	407
	10.1 Introduction	
	10.2 Basis of Contour-Path FDTD Modeling	407
	10.3 The Simplest Contour-Path Subcell Models	408
	10.3.1 Diagonal Split-Cell Model for PEC Surfaces	408
	10.3.2 Average Properties Model for Material Surfaces	410
	10.4 The Contour-Path Model of the Narrow Slot	410
	10.5 The Contour-Path Model of the Thin Wire	411 415
	10.6 Locally Conformal Models of Curved Surfaces	
	10.6.1 Yu-Mittra Technique for PEC Structures	420 420
	10.6.2 Illustrative Results for PEC Structures	420 421
	10.6.3 Yu-Mittra Technique for Material Structures	424
	10.7 Maloney-Smith Technique for Thin Material Sheets	427
	10.7.1 Basis	42
	10.7.2 Illustrative Results	430

358

	10.8 Surface Impedance	432
	10.8.1 The Monochromatic SIBC	434
	10.8.2 Convolution-Based Models of the Frequency-Dependent SIBC	436
	10.8.3 Equivalent-Circuit Model of the Frequency-Dependent SIBC	442
	10.8.4 Sources of Error	445
	10.8.5 Discussion	446
	10.9 Thin Coatings on a PEC Surface	447
	10.9.1 Method of Lee et al.	447
	10.9.2 Method of Kärkkäinen	450
	10.10 Relativistic Motion of PEC Boundaries	450
	10.10.1 Basis	451
	10.10.2 Illustrative Results	454
	10.11 Summary and Discussion	458
	References	458
	Selected Bibliography	460
	Projects	461
11	Nonuniform Grids, Nonorthogonal Grids,	
	Unstructured Grids, and Subgrids	
	Stephen Gedney, Faiza Lansing, and Nicolas Chavannes	463
	11.1 Introduction	463
	11.2 Nonuniform Orthogonal Grids	464
	11.3 Locally Conformal Grids, Globally Orthogonal	471
	11.4 Global Curvilinear Coordinates	471
	11.4.1 Nonorthogonal Curvilinear FDTD Algorithm	471
	11.4.2 Stability Criterion	477
	11.5 Irregular Nonorthogonal Structured Grids	480
	11.6 Irregular Nonorthogonal Unstructured Grids	486
	11.6.1 Generalized Yee Algorithm	487
	11.6.2 Inhomogeneous Media	491
	11.6.3 Practical Implementation of the Generalized Yee Algorithm	493
	11.7 A Planar Generalized Yee Algorithm	494
	11.7.1 Time-Stepping Expressions	495
	11.7.2 Projection Operators	496
	11.7.3 Efficient Time-Stepping Implementation	498
	11.7.4 Modeling Example: 32-GHz Wilkinson Power Divider	499
	11.8 Cartesian Subgrids	501
	11.8.1 Geometry	502
	11.8.2 Time-Stepping Scheme	503
	11.8.3 Spatial Interpolation	504
	11.8.4 Numerical Stability Considerations	505
	11.8.5 Reflection from the Interface of the Primary Grid and Subgrid	505
	11.8.6 Illustrative Results: Helical Antenna on Generic Cellphone at 9	
	11.8.7 Computational Efficiency	510
	11.9 Summary and Conclusions	510
	References	511
	Problems	514
	Projects	515

12	Bodies of Revolution	
	Thomas Jurgens, Jeffrey Blaschak, and Gregory Saewert	517
	12.1 Introduction	517
	12.2 Field Expansion	517
	12.3 Difference Equations for Off-Axis Cells	519
	12.3.1 Ampere's Law Contour Path Integral to Calculate e_r	519
	12.3.2 Ampere's Law Contour Path Integral to Calculate e_{ϕ}	521
	12.3.3 Ampere's Law Contour Path Integral to Calculate e_z	523
	12.3.4 Difference Equations	525
	12.3.5 Surface-Conforming Contour Path Integrals	528
	12.4 Difference Equations for On-Axis Cells	529
	12.4.1 Ampere's Law Contour Path Integral to Calculate e_z on the z-Axis	529
	12.4.2 Ampere's Law Contour Path Integral to Calculate e_{ϕ} on the z-Axis	532
	12.4.3 Faraday's Law Calculation of h_r on the z-Axis	534
	12.5 Numerical Stability	535
	12.6 PML Absorbing Boundary Condition	536
	12.6.1 BOR-FDTD Background	536
	12.6.2 Extension of PML to the General BOR Case	537
	12.6.3 Examples	543
	12.7 Application to Particle Accelerator Physics	543
	12.7.1 Definitions and Concepts	545
	12.7.2 Examples	547
	12.8 Summary	550
	References	550
	Problems Projects	551 552
	Tojects	332
13	Periodic Structures	
	James Maloney and Morris Kesler	553
	13.1 Introduction	553
	13.2 Review of Scattering from Periodic Structures	555
	13.3 Direct Field Methods	559
	13.3.1 Normal Incidence Case	559
	13.3.2 Multiple Unit Cells for Oblique Incidence	560
	13.3.3 Sine-Cosine Method	562
	13.3.4 Angled-Update Method	563
	13.4 Introduction to the Field-Transformation Technique	567
	13.5 Multiple-Grid Approach	571
	13.5.1 Formulation	571
	13.5.2 Numerical Stability Analysis	573
	13.5.3 Numerical Dispersion Analysis	574
	13.5.4 Lossy Materials	575
	13.5.5 Lossy Screen Example	577
	13.6 Split-Field Method, Two Dimensions	578
	13.6.1 Formulation	578
	13.6.2 Numerical Stability Analysis	580
	13.6.3 Numerical Dispersion Analysis	581
	13.6.4 Lossy Materials 13.6.5 Lossy Screen Example	582
	13.0.3 Lossy acreen example	583

	13.7 Spit-ried Method, Three Dimensions	58.
	13.7.1 Formulation	584
	13.7.2 Numerical Stability Analysis	589
	13.7.3 UPML Absorbing Boundary Condition	590
	13.8 Application of the Periodic FDTD Method	594
	13.8.1 Electromagnetic Bandgap Structures	59:
	13.8.2 Frequency-Selective Surfaces	593
	13.8.3 Antenna Arrays	597
	13.9 Summary and Conclusions	603
	Acknowledgments	603
	References	603
	Projects	605
	Tojects	00.
14	Antennas	
	James Maloney, Glenn Smith, Eric Thiele, Om Gandhi, Nicolas Chavannes, and Susan Hagness	607
	14.1 Introduction	607
	14.1 Introduction 14.2 Formulation of the Antenna Problem	607
	14.2.1 Transmitting Antenna	
		607
	14.2.2 Receiving Antenna	609
	14.2.3 Symmetry	610
	14.2.4 Excitation	611
	14.3 Antenna Feed Models	612
	14.3.1 Detailed Modeling of the Feed	613
	14.3.2 Simple Gap Feed Model for a Monopole Antenna	614
	14.3.3 Improved Simple Feed Model	617
	14.4 Near-to-Far-Field Transformations	621
	14.4.1 Use of Symmetry	621
	14.4.2 Time-Domain Near-to-Far-Field Transformation	622
	14.4.3 Frequency-Domain Near-to-Far-Field Transformation	624
	14.5 Plane-Wave Source	625
	14.5.1 Effect of an Incremental Displacement of the Surface Currents	625
	14.5.2 Effect of an Incremental Time Shift	627
	14.5.3 Relation to Total-Field / Scattered-Field Lattice Zoning	628
	14.6 Case Study I: The Standard-Gain Horn	628
	14.7 Case Study II: The Vivaldi Slotline Array	634
	14.7.1 Background	634
	14.7.2 The Planar Element	635
	14.7.3 The Vivaldi Pair	637
	14.7.4 The Vivaldi Quad	639
	14.7.5 The Linear Phased Array	640
	14.7.6 Phased-Array Radiation Characteristics Indicated by the FDTD Modeling	641
	14.7.7 Active Impedance of the Phased Array	644
	14.8 Near-Field Simulations	647
	14.8.1 Generic 900-MHz Cellphone Handset in Free Space	647
	14.8.2 900-MHz Dipole Antenna Near a Layered Bone-Brain Half-Space	649
	14.8.3 840-MHz Dipole Antenna Near a Rectangular Brain Phantom	650
	14.8.4 900-MHz Infinitesimal Dipole Antenna Near a Spherical Brain Phantom	650
	14.8.5 1.9-GHz Half-Wavelength Dipole Near a Spherical Brain Phantom	652
	14.9 Case Study III: The Motorola T250 Tri-Band Phone	653
	14.9.1 FDTD Phone Model	654
	14.9.2 Measurement Procedures	656
	14.9.3 Free-Space Near-Field Investigations and Assessment of Design Capabilities	656

		14.9.4 Performance in Loaded Conditions (SAM and MRI-Based Human Head Model)	657
		14.9.5 Radiation Performance in Free Space and Adjacent to the SAM Head	659
		14.9.6 Computational Requirements	661
		14.9.7 Overall Assessment	661
		Selected Additional Applications	661
		14.10.1 Use of Electromagnetic Bandgap Materials	662
		14.10.2 Ground-Penetrating Radar	663
		14.10.3 Antenna-Radome Interaction	667
		14.10.4 Biomedical Applications of Antennas	669
		Summary and Conclusions	671
	Refere	· · · · · · · · · · · · · · · · · · ·	671
	Project	ts	676
15	High	a-Speed Electronic Circuits with Active and Nonlinear Compon	ents
		da Piket-May, Wojciech Gwarek, Tzong-Lin Wu, Bijan Houshmand, Tatsuo Itoh,	
		imesina Simpson	677
		Introduction	677
		Basic Circuit Parameters for TEM Striplines and Microstrips	679
	13.2	15.2.1 Transmission Line Parameters	679
		15.2.2 Impedance	680
		15.2.3 S-Parameters	680
		15.2.4 Differential Capacitance	681
		15.2.5 Differential Inductance	682
	15.3	Lumped Inductance Due to a Discontinuity	682
	13.3	15.3.1 Flux / Current Definition	684
		15.3.2 Fitting $Z(\omega)$ or $S(\omega)$ to an Equivalent Circuit	684
		15.3.3 Discussion: Choice of Methods	685
	15.4	Inductance of Complex Power-Distribution Systems	685
		15.4.1 Method Description	685
		15.4.2 Example: Multiplane Meshed Printed-Circuit Board	687
		15.4.3 Discussion	688
	15.5	Parallel Coplanar Microstrips	688
		Multilayered Interconnect Modeling	690
	15.7	S-Parameter Extraction for General Waveguides	692
	15.8	Digital Signal Processing and Spectrum Estimation	694
		15.8.1 Prony's Method	695
		15.8.2 Autoregressive Models	697
		15.8.3 Padé Approximation	702
	15.9	Modeling of Lumped Circuit Elements	706
		15.9.1 FDTD Formulation Extended to Circuit Elements	706
		15.9.2 The Resistor	708
		15.9.3 The Resistive Voltage Source	708
		15.9.4 The Capacitor	709
		15.9.5 The Inductor	711
		15.9.6 The Arbitrary Two-Terminal Linear Lumped Network	711
		15.9.7 The Diode	714
		15.9.8 The Bipolar Junction Transistor	715
	15.10	Direct Linking of FDTD and SPICE	717
		15.10.1 Basic Idea	718
		15.10.2 Norton Equivalent Circuit "Looking Into" the FDTD Space Lattice	719
		15.10.3 Thevenin Equivalent Circuit "Looking Into" the FDTD Space Lattice	721

	15.1	l Case Study: A 6-GHz MESFET Amplifier Model	723
		15.11.1 Large-Signal Nonlinear Model	723
		15.11.2 Amplifier Configuration	725
		15.11.3 Analysis of the Circuit without the Packaging Structure	726
		15.11.4 Analysis of the Circuit with the Packaging Structure	728
	15.12	2 Emerging Topic: Wireless High-Speed Digital Interconnects Using Defect-Mode	
		Electromagnetic Bandgap Waveguides	731
		15.12.1 Stopband of the Defect-Free Two-Dimensional EBG Structure	732
		15.12.2 Passband of the Two-Dimensional EBG Structure with Waveguiding Defect	732
		15.12.3 Laboratory Experiments and Supporting FDTD Modeling	734
	15.13	Summary and Conclusions	736
	Ackr	nowledgments	737
	Refe	rences	737
	Selec	eted Bibliography	740
	Proje	cts	741
16	Pho	otonics	
10		frey Burr, Susan Hagness, and Allen Taflove	743
	16.1	Introduction	743
		Introduction to Index-Contrast Guided-Wave Structures	743
		FDTD Modeling Issues	744
		16.3.1 Optical Waveguides	744
		16.3.2 Material Dispersion and Nonlinearities	747
	16.4	Laterally Coupled Microcavity Ring Resonators	747
		16.4.1 Modeling Considerations: Two-Dimensional FDTD Simulations	748
		16.4.2 Coupling to Straight Waveguides	750
		16.4.3 Coupling to Curved Waveguides	750
		16.4.4 Elongated Ring Designs ("Racetracks")	752
		16.4.5 Resonances of the Circular Ring	752
	16.5	Laterally Coupled Microcavity Disk Resonators	756
		16.5.1 Resonances	756
		16.5.2 Suppression of Higher-Order Radial Whispering-Gallery Modes	760
		Vertically Coupled Racetrack	761
		Introduction to Distributed Bragg Reflector Devices	765
	16.8	Application to Vertical-Cavity Surface-Emitting Lasers	765
		16.8.1 Passive Studies	766
		16.8.2 Active Studies: Application of the Classical Gain Model	767
		16.8.3 Application of a New Semiclassical Gain Model	769
		Quasi-One-Dimensional DBR Structures	770
		Introduction to Photonic Crystals	772
	16.11	Calculation of Band Structure	774
		16.11.1 The "Order-N" Method	775
		16.11.2 Frequency Resolution	778
		16.11.3 Filter Diagonalization Method	780
		16.11.4 The Triangular Photonic Crystal Lattice	782
	16 10	16.11.5 Sources of Error and Their Mitigation	784
		Calculation of Mode Patterns Variational Approach	787 700
		Variational Approach Modeling of Defect-Mode Photonic Crystal Waveguides	790 791
	10.14	16.14.1 Band Diagram of a Photonic Crystal Slab	791 793
		16.14.1 Band Diagram of a Photonic Crystal State 16.14.2 Band Diagram of a Photonic Crystal Waveguide	795
		10.14.2 Dand Diagram of a finotome Crystal Waveguide	193

		16.14.3 Intrinsic Loss in Photonic Crystal Waveguides	798
		16.14.4 Transmission in Photonic Crystal Waveguides	803
		16.14.5 Aperiodic Photonic-Crystal Waveguides	806
		16.14.6 Photonic Crystal Waveguide Extrinsic Scattering Loss from the Green Function	806
	16.15	Modeling of Photonic Crystal Resonators	807
		Modeling Examples of Photonic Crystal Resonators	810
	10.10	16.16.1 Electrically Driven Microcavity Laser	810
		16.16.2 Photonic Crystal Cross-Waveguide Switch	812
	16.17	Introduction to Frequency Conversion in Second-Order Nonlinear Optical	
	10,17,	Materials	813
	16.18	PSTD-4 Algorithm	813
		Extension to Second-Order Nonlinear Media	814
		Application to a Nonlinear Waveguide with a QPM Grating	814
		Application to Nonlinear Photonic Crystals	817
		Introduction to Nanoplasmonic Devices	820
		FDTD Modeling Considerations	820
		FDTD Modeling Applications	821
		Introduction to Biophotonics	822
		FDTD Modeling Applications	822
		16.26.1 Vertebrate Retinal Rod	822
		16.26.2 Precancerous Cervical Cells	824
		16.26.3 Sensitivity of Backscattering Signatures to Nanometer-Scale Cellular Changes	827
	16.27	PSTD Modeling Application to Tissue Optics	828
		Summary	830
	Ackno	owledgments	830
	Refere	ences	830
17	Adv	ances in PSTD Techniques	
17		ances in PSTD Techniques Liu and Gang Zhao	847
17	Qing	_	847
17	<i>Qing</i> 17.1	Liu and Gang Zhao	_
17	<i>Qing</i> 17.1	Liu and Gang Zhao Introduction	847
17	<i>Qing</i> 17.1	Liu and Gang Zhao Introduction Approximation of Derivatives	847 847
17	<i>Qing</i> 17.1	Liu and Gang Zhao Introduction Approximation of Derivatives 17.2.1 Derivative Matrix for the Second-Order Finite-Difference Method	847 847 848
17	<i>Qing</i> 17.1	Liu and Gang Zhao Introduction Approximation of Derivatives 17.2.1 Derivative Matrix for the Second-Order Finite-Difference Method 17.2.2 Derivative Matrices for Fourth-Order and N'th-Order Finite-Difference Methods	847 847 848 849
17	Qing 17.1 17.2	Liu and Gang Zhao Introduction Approximation of Derivatives 17.2.1 Derivative Matrix for the Second-Order Finite-Difference Method 17.2.2 Derivative Matrices for Fourth-Order and N'th-Order Finite-Difference Methods 17.2.3 Trigonometric Interpolation and FFT Method 17.2.4 Nonperiodic Functions and Chebyshev Method Single-Domain Fourier PSTD Method	847 847 848 849 850
17	Qing 17.1 17.2	Liu and Gang Zhao Introduction Approximation of Derivatives 17.2.1 Derivative Matrix for the Second-Order Finite-Difference Method 17.2.2 Derivative Matrices for Fourth-Order and N'th-Order Finite-Difference Methods 17.2.3 Trigonometric Interpolation and FFT Method 17.2.4 Nonperiodic Functions and Chebyshev Method	847 847 848 849 850 851
17	Qing 17.1 17.2	Liu and Gang Zhao Introduction Approximation of Derivatives 17.2.1 Derivative Matrix for the Second-Order Finite-Difference Method 17.2.2 Derivative Matrices for Fourth-Order and N'th-Order Finite-Difference Methods 17.2.3 Trigonometric Interpolation and FFT Method 17.2.4 Nonperiodic Functions and Chebyshev Method Single-Domain Fourier PSTD Method 17.3.1 Approximation of Spatial Derivatives 17.3.2 Numerical Stability and Dispersion	847 847 848 849 850 851 854
17	Qing 17.1 17.2	Liu and Gang Zhao Introduction Approximation of Derivatives 17.2.1 Derivative Matrix for the Second-Order Finite-Difference Method 17.2.2 Derivative Matrices for Fourth-Order and N'th-Order Finite-Difference Methods 17.2.3 Trigonometric Interpolation and FFT Method 17.2.4 Nonperiodic Functions and Chebyshev Method Single-Domain Fourier PSTD Method 17.3.1 Approximation of Spatial Derivatives 17.3.2 Numerical Stability and Dispersion Single-Domain Chebyshev PSTD Method	847 848 849 850 851 854 855
17	Qing 17.1 17.2	Liu and Gang Zhao Introduction Approximation of Derivatives 17.2.1 Derivative Matrix for the Second-Order Finite-Difference Method 17.2.2 Derivative Matrices for Fourth-Order and N'th-Order Finite-Difference Methods 17.2.3 Trigonometric Interpolation and FFT Method 17.2.4 Nonperiodic Functions and Chebyshev Method Single-Domain Fourier PSTD Method 17.3.1 Approximation of Spatial Derivatives 17.3.2 Numerical Stability and Dispersion Single-Domain Chebyshev PSTD Method 17.4.1 Spatial and Temporal Grids	847 847 848 849 850 851 854 855 856
17	Qing 17.1 17.2	Liu and Gang Zhao Introduction Approximation of Derivatives 17.2.1 Derivative Matrix for the Second-Order Finite-Difference Method 17.2.2 Derivative Matrices for Fourth-Order and N'th-Order Finite-Difference Methods 17.2.3 Trigonometric Interpolation and FFT Method 17.2.4 Nonperiodic Functions and Chebyshev Method Single-Domain Fourier PSTD Method 17.3.1 Approximation of Spatial Derivatives 17.3.2 Numerical Stability and Dispersion Single-Domain Chebyshev PSTD Method 17.4.1 Spatial and Temporal Grids 17.4.2 Maxwell's Equations in Curvilinear Coordinates	847 847 848 849 850 851 854 855 856
17	Qing 17.1 17.2	Liu and Gang Zhao Introduction Approximation of Derivatives 17.2.1 Derivative Matrix for the Second-Order Finite-Difference Method 17.2.2 Derivative Matrices for Fourth-Order and N'th-Order Finite-Difference Methods 17.2.3 Trigonometric Interpolation and FFT Method 17.2.4 Nonperiodic Functions and Chebyshev Method Single-Domain Fourier PSTD Method 17.3.1 Approximation of Spatial Derivatives 17.3.2 Numerical Stability and Dispersion Single-Domain Chebyshev PSTD Method 17.4.1 Spatial and Temporal Grids 17.4.2 Maxwell's Equations in Curvilinear Coordinates 17.4.3 Spatial Derivatives	847 847 848 849 850 851 854 855 856 857
17	Qing 17.1 17.2	Liu and Gang Zhao Introduction Approximation of Derivatives 17.2.1 Derivative Matrix for the Second-Order Finite-Difference Method 17.2.2 Derivative Matrices for Fourth-Order and N'th-Order Finite-Difference Methods 17.2.3 Trigonometric Interpolation and FFT Method 17.2.4 Nonperiodic Functions and Chebyshev Method Single-Domain Fourier PSTD Method 17.3.1 Approximation of Spatial Derivatives 17.3.2 Numerical Stability and Dispersion Single-Domain Chebyshev PSTD Method 17.4.1 Spatial and Temporal Grids 17.4.2 Maxwell's Equations in Curvilinear Coordinates 17.4.3 Spatial Derivatives 17.4.4 Time-Integration Scheme	847 847 848 849 850 851 854 855 856 857 857
17	Qing 17.1 17.2	Liu and Gang Zhao Introduction Approximation of Derivatives 17.2.1 Derivative Matrix for the Second-Order Finite-Difference Method 17.2.2 Derivative Matrices for Fourth-Order and N'th-Order Finite-Difference Methods 17.2.3 Trigonometric Interpolation and FFT Method 17.2.4 Nonperiodic Functions and Chebyshev Method Single-Domain Fourier PSTD Method 17.3.1 Approximation of Spatial Derivatives 17.3.2 Numerical Stability and Dispersion Single-Domain Chebyshev PSTD Method 17.4.1 Spatial and Temporal Grids 17.4.2 Maxwell's Equations in Curvilinear Coordinates 17.4.3 Spatial Derivatives 17.4.4 Time-Integration Scheme Multidomain Chebyshev PSTD Method	847 848 849 850 851 854 855 856 857 857 858
17	Qing 17.1 17.2 17.3	Introduction Approximation of Derivatives 17.2.1 Derivative Matrix for the Second-Order Finite-Difference Method 17.2.2 Derivative Matrices for Fourth-Order and N'th-Order Finite-Difference Methods 17.2.3 Trigonometric Interpolation and FFT Method 17.2.4 Nonperiodic Functions and Chebyshev Method Single-Domain Fourier PSTD Method 17.3.1 Approximation of Spatial Derivatives 17.3.2 Numerical Stability and Dispersion Single-Domain Chebyshev PSTD Method 17.4.1 Spatial and Temporal Grids 17.4.2 Maxwell's Equations in Curvilinear Coordinates 17.4.3 Spatial Derivatives 17.4.4 Time-Integration Scheme Multidomain Chebyshev PSTD Method 17.5.1 Subdomain Spatial Derivatives and Time Integration	847 848 849 850 851 854 855 856 857 858 860 861
17	Qing 17.1 17.2 17.3	Introduction Approximation of Derivatives 17.2.1 Derivative Matrix for the Second-Order Finite-Difference Method 17.2.2 Derivative Matrices for Fourth-Order and N'th-Order Finite-Difference Methods 17.2.3 Trigonometric Interpolation and FFT Method 17.2.4 Nonperiodic Functions and Chebyshev Method Single-Domain Fourier PSTD Method 17.3.1 Approximation of Spatial Derivatives 17.3.2 Numerical Stability and Dispersion Single-Domain Chebyshev PSTD Method 17.4.1 Spatial and Temporal Grids 17.4.2 Maxwell's Equations in Curvilinear Coordinates 17.4.3 Spatial Derivatives 17.4.4 Time-Integration Scheme Multidomain Chebyshev PSTD Method 17.5.1 Subdomain Spatial Derivatives and Time Integration 17.5.2 Subdomain Patching by Characteristics	847 848 849 850 851 854 855 856 857 858 860 861
17	Qing 17.1 17.2 17.3	Introduction Approximation of Derivatives 17.2.1 Derivative Matrix for the Second-Order Finite-Difference Method 17.2.2 Derivative Matrices for Fourth-Order and N'th-Order Finite-Difference Methods 17.2.3 Trigonometric Interpolation and FFT Method 17.2.4 Nonperiodic Functions and Chebyshev Method Single-Domain Fourier PSTD Method 17.3.1 Approximation of Spatial Derivatives 17.3.2 Numerical Stability and Dispersion Single-Domain Chebyshev PSTD Method 17.4.1 Spatial and Temporal Grids 17.4.2 Maxwell's Equations in Curvilinear Coordinates 17.4.3 Spatial Derivatives 17.4.4 Time-Integration Scheme Multidomain Chebyshev PSTD Method 17.5.1 Subdomain Spatial Derivatives and Time Integration 17.5.2 Subdomain Patching by Characteristics 17.5.3 Subdomain Patching by Physical Conditions	847 848 849 850 851 854 855 856 857 857 858 860 861 861
17	Qing 17.1 17.2 17.3	Introduction Approximation of Derivatives 17.2.1 Derivative Matrix for the Second-Order Finite-Difference Method 17.2.2 Derivative Matrices for Fourth-Order and N'th-Order Finite-Difference Methods 17.2.3 Trigonometric Interpolation and FFT Method 17.2.4 Nonperiodic Functions and Chebyshev Method Single-Domain Fourier PSTD Method 17.3.1 Approximation of Spatial Derivatives 17.3.2 Numerical Stability and Dispersion Single-Domain Chebyshev PSTD Method 17.4.1 Spatial and Temporal Grids 17.4.2 Maxwell's Equations in Curvilinear Coordinates 17.4.3 Spatial Derivatives 17.4.4 Time-Integration Scheme Multidomain Chebyshev PSTD Method 17.5.1 Subdomain Spatial Derivatives and Time Integration 17.5.2 Subdomain Patching by Characteristics 17.5.3 Subdomain Patching by Physical Conditions 17.5.4 Filter Design for Corner Singularities	847 848 849 850 851 854 855 856 857 857 858 860 861 861 862 863
17	Qing 17.1 17.2 17.3	Introduction Approximation of Derivatives 17.2.1 Derivative Matrix for the Second-Order Finite-Difference Method 17.2.2 Derivative Matrices for Fourth-Order and N'th-Order Finite-Difference Methods 17.2.3 Trigonometric Interpolation and FFT Method 17.2.4 Nonperiodic Functions and Chebyshev Method Single-Domain Fourier PSTD Method 17.3.1 Approximation of Spatial Derivatives 17.3.2 Numerical Stability and Dispersion Single-Domain Chebyshev PSTD Method 17.4.1 Spatial and Temporal Grids 17.4.2 Maxwell's Equations in Curvilinear Coordinates 17.4.3 Spatial Derivatives 17.4.4 Time-Integration Scheme Multidomain Chebyshev PSTD Method 17.5.1 Subdomain Spatial Derivatives and Time Integration 17.5.2 Subdomain Patching by Characteristics 17.5.3 Subdomain Patching by Physical Conditions 17.5.4 Filter Design for Corner Singularities 17.5.5 Multidomain PSTD Results for 2.5-Dimensional Problems	847 848 849 850 851 854 855 856 857 857 858 860 861 862 863 864
17	Qing 17.1 17.2 17.3 17.4	Introduction Approximation of Derivatives 17.2.1 Derivative Matrix for the Second-Order Finite-Difference Method 17.2.2 Derivative Matrices for Fourth-Order and N'th-Order Finite-Difference Methods 17.2.3 Trigonometric Interpolation and FFT Method 17.2.4 Nonperiodic Functions and Chebyshev Method Single-Domain Fourier PSTD Method 17.3.1 Approximation of Spatial Derivatives 17.3.2 Numerical Stability and Dispersion Single-Domain Chebyshev PSTD Method 17.4.1 Spatial and Temporal Grids 17.4.2 Maxwell's Equations in Curvilinear Coordinates 17.4.3 Spatial Derivatives 17.4.4 Time-Integration Scheme Multidomain Chebyshev PSTD Method 17.5.1 Subdomain Spatial Derivatives and Time Integration 17.5.2 Subdomain Patching by Characteristics 17.5.3 Subdomain Patching by Physical Conditions 17.5.4 Filter Design for Corner Singularities	847 848 849 850 851 854 855 856 857 858 860 861 861 862 863 864

	17.7	Discontinuous Galerkin Method for PSTD Boundary Patching	87.			
		17.7.1 Weak Form of Maxwell's Equations	873			
		17.7.2 Space Discretization and Domain Transformation	873			
		17.7.3 Mass Matrix and Stiffness Matrix	874			
		17.7.4 Flux on the Boundary	870			
		17.7.5 Numerical Results for DG-PSTD Method	870			
	17.8	Summary and Conclusions	879			
		endix 17A: Coefficients for the Five-Stage, Fourth-Order Runge-Kutta Method	879			
		rences	886			
18	Advances in Unconditionally Stable Techniques					
	Han.	s De Raedt	883			
	18 1	Introduction	883			
		General Framework	883			
		Matrix-Exponential Concepts	884			
		Product-Formula Approach	887			
	10.4	18.4.1 The Classic Yee Algorithm as a Particular Realization	887			
		18.4.2 The ADI Method as a Second Realization	888			
		18.4.3 Unconditionally Stable Algorithms: Real-Space Approach	889			
			891			
	10.7	18.4.4 Unconditionally Stable Algorithms: Fourier-Space Approach				
		Chebyshev Polynomial Algorithm	892			
		Extension to Linear Dispersive Media	895			
		Extension to Perfectly Matched Layer Absorbing Boundary Conditions	898			
		Summary	899			
		endix 18A: Some Technical Details	900			
		endix 18B: Stability Analysis of Equation (18.17)	902			
		endix 18C: Stability Analysis of Equation (18.19)	904			
		rences	904			
	Proje	cts	905			
19		Advances in Hybrid FDTD-FE Techniques				
	Thon	nas Rylander, Fredrik Edelvik, Anders Bondeson, and Douglas Riley	907			
	19.1	Introduction	907			
	19.2	Time-Domain Finite Elements	910			
		19.2.1 Coupled Curl Equations	910			
		19.2.2 Wave Equation	913			
		19.2.3 Equivalences Between Finite Elements and FDTD	917			
	19.3	Tetrahedral, Hexahedral (Brick), and Pyramidal Zeroth-Order Edge and Facet Elements	918			
		19.3.1 Tetrahedral Finite Elements	919			
		19.3.2 Hexahedral (Brick) Finite Elements	921			
		19.3.3 Pyramidal Finite Elements	922			
	19.4	Stable Hybrid FDTD-FE Interface	924			
		19.4.1 Spatial Discretization	924			
		19.4.2 Time-Stepping on a Hybrid Space Lattice	927			
		19.4.3 Generalized Newmark Scheme	928			
		19.4.4 Proof of Stability	929			
		19.4.5 Alternative Time-Stepping Schemes	930			
		19.4.6 Extensions of the Hybrid FDTD-FE Concept	931			
		19.4.7 Reflection at the Interface of FDTD and FE Regions of a Hybrid Space Lattice	931			
		19.4.8 Scattering from the PEC Sphere	933			
	19 5	Mesh-Generation Approaches	935			
	17.5	ATAOM COMPANION A SPEROMONO				

	19.6	Subcell Wire and Slot Algorithms for Time-Domain Finite Elements	936	
		19.6.1 Modeling Thin Wires	936	
		19.6.2 Modeling Thin Slots	939	
		19.6.3 Numerical Results for Thin Wires and Slots	941	
	19.7	Application to Advanced Scattering and Radiation Problems	943	
		19.7.1 Monostatic RCS of the NASA Almond	943	
		19.7.2 Bistatic RCS of the Saab Trainer Aircraft	945	
		19.7.3 Input Impedance of the Four-Arm Sinuous Antenna	948	
		Summary	949 950	
		owledgments	950	
	Refei	rences	950	
20	Advances in Hardware Acceleration for FDTD			
	Ryan	Schneider, Sean Krakiwsky, Laurence Turner, and Michal Okoniewski	955	
	20.1	Introduction	955	
	20.2	Background Literature	956	
	20.3	Fundamental Design Considerations	957	
	20.4	Conceptual Massively Parallel FPGA Implementation	958	
	20.5	Case Study of Using the FPGA as a Coprocessor	962	
	20.6	Performance of Custom Hardware Implementations	964	
	20.7	Fundamentals of Graphics Processor Units	965	
		20.7.1 Overview	965	
		20.7.2 Graphics Pipeline	965	
		20.7.3 Memory Interface	967	
		20.7.4 Programmable Fragment and Vertex Processors	968	
	20.8	Implementing FDTD on a Graphics Processor Unit	969	
		20.8.1 Initialization	969	
		20.8.2 Electric and Magnetic Field Updates	970	
		20.8.3 Boundaries	972	
		20.8.4 Source Excitation	974	
		20.8.5 Archiving Observation Nodes	97:	
		20.8.6 Multipass Rendering 20.8.7 Display	97:	
	20.9	Performance Measurements of the GPU Accelerator	97	
		O Summary and Conclusions	977	
		rences	973	
	ROL	Tollocs	978	
Acronyms and Common Symbols About the Authors				
				Index