University of Toronto Faculty of Arts and Science

PLEASE BANDAV

MAT224H1S Linear Algebra II

Final Examination April 2010

M. Mazin, S. Uppal

Duration: 3 hours

Last Name:	
Given Name:	
Student Number:	

No calculators or other aids are allowed.

FOR MARKER USE ONLY				
Question	Mark			
1	/10			
2	/10			
3	/10			
4	/10			
5	/10			
6	/10			
TOTAL	/60			

[10] **1.** Consider the subspace $W = span\{(1, i.1 - i), (i, -1, 0)\}$ of \mathbb{C}^3 . Find an orthonormal basis for W^{\perp} .

EXTRA PAGE FOR QUESTION 1 - please do not remove.

[10] **2.** Let T be the linear operator on \mathbb{C}^2 defined by

$$T(z_1, z_2) = (-iz_1 - z_2, z_1 + iz_2).$$

- (a) Show that T is normal.
- (a) Find an orthonormal basis for \mathbb{C}^2 consisting of eigenvectors of T.

		-

EXTRA PAGE FOR QUESTION 2 - please do not remove.

		-

[10] 3. Show that if T is a normal linear operator on an inner product space V, then

$$ker(T) = ker(T^*).$$

		•

[10] 4. Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be the linear operator that has the matrix

$$A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ -1 & 0 & 1 \end{pmatrix}$$

realtive to the standard basis of \mathbb{R}^3 . Find the spectral decomposition of T (relative to the standard basis of \mathbb{R}^3).

		•

EXTRA PAGE FOR QUESTION 4 - please do not remove

[10] 5. Let $P: \mathbb{R}^n \to \mathbb{R}^n$ be a linear operator, and W a subprace of \mathbb{R}^n . Show that if $P^2 = P$ and P is symmetric, then P is the orthogonal projection onto W.

		,

[10] 6. Let $T: \mathbb{C}^4 \to \mathbb{C}^4$ be the linear operator that has the matrix

$$A = \begin{pmatrix} 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & -1 \\ 0 & 0 & i & 1 \\ 0 & 0 & 0 & i \end{pmatrix}$$

realtive to the standard basis of \mathbb{C}^4 . Find a basis of \mathbb{C}^4 such that the matrix of T relative to this basis is the Jordan canonical matrix J for T, and find J.

		•
		•

EXTRA PAGE FOR QUESTION 6 - please do not remove.

		* · · · · · · · · · · · · · · · · · · ·