

MMK 2

1. Menschliche Sinnesorgane

Auge 87%, Ohr 10%, Rest 3%

1.1. Sehen

1.1.1. Das Auge

Hornhaut; Pupille; Iris (hell/dunkel Adaption); Zilliarmuskel; Linse (Fokus); Glaskörper; Retina (optisch aktive Elemente, $1-2*10^8$ Rezeptoren) mit Fovea centralis (höchste Zapfendichte) und blindem Fleck; Sehnerv(10^6 Nervenfasern); Aderhaut; Lederhaut;

$$\begin{aligned} \tan\left(\frac{\beta}{2}\right) &= \frac{h}{2l} = \frac{hz}{xd_{\mathsf{Auge}}} \\ D_{\max} &\approx 1, 4*10^{11} m^{-2} \end{aligned}$$

$$h_z = \sqrt{\frac{1}{D}}$$

$$D_{\min} \approx 5 * 10^9 m^{-2}$$

Prinzip des Sehens ca. 380-750nm $(4*10^{14} Hz - 7.5*10^{14} Hz \approx$ 1 Oktave; $\lambda = \frac{c}{f}$); 100dB; spektr. Empf. je nach Adaption: Tagsehen / photopische Sehen / Farbempfinden bzw. Nachtsehen / scotopische Sehen; Sakkade ⇒ fovea centralis;

1.1.2. Psychooptische und physik. Messgrößen

1cd \cong Lichtstärke eines monochromatischen strahles mit

$f = 5.4 \cdot 10$	Hz und der	Strahlungsstärke von	$\frac{1}{683} \frac{m}{sr}$			
Psycho	optik	Physik				
Bezeichnung	Bezeichnung Einheit		Einheit			
Lichtstärke I_v	cd (Candela)	Strahl.stärke I	$\frac{W}{sr}$			
Leuchtdichte ${\cal L}$	$\frac{cd}{m^2}$	Strahl.dichte L_Ω	$\frac{\frac{sr}{W}}{sr m^2}$			
Lichtstrom Φ_v			W			
Lichtmenge Q_e $lm \cdot s$		Strahl.energie ${\cal E}$	J = Ws			
Beleucht.stärke E_{v}	Beleucht.stärke $E_v \qquad lx = \frac{lm}{m^2}$		$\frac{W}{m^2}$			
Belichtung H	$lx \cdot s$	Energiedichte \boldsymbol{w}	$\frac{\frac{W}{m^2}}{\frac{J}{m^2}}$			
Lichtausbeute $\mu = \frac{Lichtstrom}{Stahlungsleistung} 1 \frac{lm}{W}$						

1.1.3. Farbsehen

Stäbchen sw., hohe Konz(1.2 * 108), Nachtsehen; S-Zapfen Blau 430nm, M-Zapfen Grün 530nm, L-Zapfen Rot 560nm, 1:10:10, insg. 7 * 10⁶;

1.1.4. Gesichtsfeld

volles Farbemfpinden nur im Überlappungsbereich der Farbzonen; primäres Gesichtsfeld horiz. $-15^{\circ} < \theta < +15^{\circ}$ und vert. $-17^{\circ} < \phi < +14^{\circ}$; 3D: $-55^{\circ} < \theta < 55^{\circ}$

1.2. Farbmischung

Arten der Farbmischung

- 1. Additiv aktive Primärstrahler; RGB;
- 2. Subtraktiv CMY; Absorption best. Prim.farben; Ausgegangen wird von einer weiß beleuchteten Oberfläche:

Farbwürfel Grundfarben, Mischungen, s/w definieren Ecken; $(R, G, B)^T = (1, 1, 1)^T - (C, M, Y)^T$:

1.2.1. CIE

Normfarbtafel nach C.I.E Ziel: Farbeindruck sämtlicher spektraler Farben duch additive Überlagerung dreie monochromatischer Strahler nachzubilden; $\lambda_{R,CIE}$ = $700nm, \lambda_{G,CIE}$ $546.1nm, \lambda_{B,CIE}$ 435.8nm sog. Normvalenzen; Im Bereich 350nm < λ_B <540nm negativ; \Rightarrow nachzubildende Farbe mit rot überlagert; ⇒ es ist nicht möglich, alle wahrnehmbaren Farben mit nur drei Primärstrahlern nachzubilden:

Virtuelle Normvalenzen Uneigentliche Farbmischung; X(r), Y(g), Z(b); exist nicht real durch add. Farbmischung, können aber jede wahrnehmbare Farbe darstellen:

$$\begin{pmatrix} X \\ Y \\ Z \end{pmatrix} = \overbrace{\begin{pmatrix} 0.49 & 0.31 & 0.2 \\ 0.177 & 0.813 & 0.01 \\ 0 & 0.01 & 0.99 \end{pmatrix}}^{T} \begin{pmatrix} R_{CIE} \\ G_{CIE} \\ B_{CIE} \end{pmatrix}$$

Daraus ergibt sich z = 1 - (x + y); Die Farbeindrücke durch elmag Wellen best. F, befinden sich auf Begrenzunglinie der Fläche. Im Inneren befinden sich sämtliche Mischfarben, die durch Mischug der x und v Valenzen erzeugen lassen; Weißpunkt im schwerpunkt; Luminanznormierte

$$x + y + z = 1$$

$$\Rightarrow z = 1 - (x + y)$$

$$=\frac{X}{X+Y+Z}$$
 $y=\frac{Y}{X+Y+Z}$ $z=\frac{Z}{X+Y+Z}$

2. Allgemeines

2.1. 2D-Fouriertransformation

$$G_c(\omega_1, \omega_2) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x_1, x_2) e^{-j \cdot (\omega_1 x_1 + \omega_2 x_2)} dx_1 dx_2$$
$$g(x_1, x_2) = \frac{1}{(2\pi)^2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} G_c(\omega_1, \omega_2) e^{j \cdot (\omega_1 x_1 + \omega_2 x_2)} d\omega_1 d\omega_2$$

2.2. Farbräume

2.2.1. RGB

$$\begin{bmatrix} R \\ G \\ B \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1.140 \\ 1 & -0.395 & -0.581 \\ 1 & 2.033 & 0 \end{bmatrix} \begin{bmatrix} Y \\ U \\ V \end{bmatrix}$$

2.2.2. YUV

Y: Chrominanz (Helligkeit)
$$U=0.492\cdot(B-Y)$$
 U, V: Luminanz (Farbe) $V=0.877\cdot(R-Y)$

Y: Garaustufen

Projection p auf UV- Ebene:

Farbsättigung

Winkel α mit U-Achse: Farbton

$$\begin{bmatrix} Y \\ U \\ V \end{bmatrix} = \begin{bmatrix} 0.299 & 0.587 & 0.114 \\ -0.147 & -0.289 & 0.436 \\ 0.615 & -0.515 & -0.1 \end{bmatrix} \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$

2.2.3. HSV (nicht blau, weiß und schwarz!!!)

H: Farbton (hue)

S: Sättigung (saturation)

V: Farbwert (value)

$$V = \max\{R,G,B\} \text{ , } S = \begin{cases} 0 & \text{für } V = 0 \\ \frac{V - \min\{R,G,B\}}{V} & \text{sonst.} \end{cases}$$

$$H = \begin{cases} \frac{G - B}{V - \min\{R,G,B\}} & \text{für } V = R, S \neq 0 \\ 2 + \frac{B - R}{V - \min\{R,G,B\}} & \text{für } V = G, S \neq 0 \\ 4 + \frac{R - G}{V - \min\{R,G,B\}} & \text{für } V = B, S \neq 0 \\ 0 & \text{sonst.} \end{cases}$$

2.3. Klassifikation

Erkennung	X vorhanden	X nicht vorhanden	
X erkannt	a) richtig positiv	b) falsch positiv	
X nicht erkannt	c) falsch negativ	d) richtig negativ	

2.4. Hauptachsentransformation / PCA

Zweck: Reduktion der Merkmale durch Verwendung der repäsentativsten Hauptachsen, Rechenaufwand geringer

Berechnung

- $\begin{array}{l} \text{1. Mittelwert der Punkte: } \overline{\underline{a}} = \frac{1}{M} \sum\limits_{i=1}^{M} \underline{a}_i \\ \text{2. Mittelwertbefreites Essemble: } \underline{\Psi} = [(\underline{a}_1 \overline{\underline{a}}), ..., (\underline{a}_M \overline{\underline{a}}) \end{array}$
- 3. Kovarianzmatirix: $\Phi = \frac{1}{M} \Psi \Psi^T$ 4. Eigenwerte: $\det(\Phi \lambda \cdot \tilde{I}) = 0$
- 5. Eigenvektoren: $\underline{\Phi} \cdot \underline{u}_k = \underline{u}_k \cdot \lambda_k \Rightarrow (\underline{\Phi} \lambda_k \cdot \underline{I})\underline{u}_k = 0$ 6. Eigenvektoren normieren \Rightarrow Eigenvektoren sind orthogonal

3. Bildverarbeitung

3.1. Separierbarkeit

Das Signal $g(x_1, x_2)$ lässt sich schreiben als:

$$g(x_1, x_2) = g_1(x_1) \cdot g_2(x_2)$$

Bildfilter möglichst immer separieren, um Laufzeit bzw. Operationen zu

3.2. Diskrete Signale

3.2.1. Kausalität

kausal, wenn:
$$g[n_1,n_2] = \begin{cases} \text{beliebig} & \text{für} n_1, n_2 > 0 \\ 0 & \text{sonst.} \end{cases}$$

Bei Z-Transformation: |Grad(Zähler)| > |Grad(Nenner)| → Infinite Impulse Response(IIR)

|Grad(Zähler)| < |Grad(Nenner)| → Finite Impulse Response(FIR)

3.2.2. Abtastung

$$g[x_1, x_2] = \sum_{l_1 = -\infty}^{\infty} \sum_{l_2 = -\infty}^{\infty} g(x_1, x_2) \delta[x_1 - l_1 \cdot X_1, x_2 - l_2 \cdot X_2]$$

$$G(\Omega_1, \Omega_2) = \frac{1}{x_1 x_2} \sum_{l_1 = -\infty}^{\infty} \sum_{l_2 = -\infty}^{\infty} G_c(\frac{\Omega_1 - 2\pi l_1}{x_1}, \frac{\Omega_2 - 2\pi l_2}{x_2})$$

Abtastabstände: X_1,X_2 Abtastheorem: $\frac{\pi}{X_1} \geq \omega_{g,1}$ und $\frac{\pi}{X_2} \geq \omega_{g,2}$ Grenzfrequenz $\omega_{g,i}$: maximal vorkommende Frequenz in Richtung ω_i

3.2.3. Quantisierung

normalerweise lineare Quantisierung mit $N=2^b$ Stufen. (b: #Bits) fürs menschliche Auge genügen 256 Graustufen

3.2.4. Dynamikbereich

Bereich zwischen dem gößten (g_{max}) und kleinsten Grauwert (g_{min})

3.2.5. Speicherbedarf von Grauwertbildern

Bits für Dynamikbereich: $b = \lceil \operatorname{Id}(g_{max} - g_{min} + 1) \rceil$ M: #Zeilen, N: #Spalten

Speicherplatz: $b \cdot M \cdot N$ 3.2.6. Z-Transformation

$$G(z_1, z_2) = \sum_{n_1 = -\infty}^{\infty} \sum_{n_2 = -\infty}^{\infty} g[n_1, n_2] z_1^{-n_1} z_2^{-n_2}$$

$$\begin{array}{c|c} g[n_1,n_2] & G(z_1,z_2) \\ \hline \delta[n_1,n_2] & 1 \\ \delta[n_1-a,n_2-b] & z_1^{-a}z_2^{-b} \end{array}$$

Von der Filtermatrix zur Übertragungsfunktion

2. Impulsantwort:
$$g[n_1,n_2]=\\ =-\delta[n_1,n_2]+2\delta[n_1-1,n_2-1]+3\delta[n_1-2,n_2-1]+\\ +\delta[n_1,n_2-2]$$

3. Übertragungsfunktion:
$$G(z_1,z_2)=$$
 = $-1+2z_1^{-1}z_2^{-1}+3z_1^{-2}z_2^{-1}+z_2^{-2}$

3.2.7. Diskrete Fouriertransformation (für aperiodische Sequenzen)

$$\begin{array}{l} G[K-1,K-2] = \\ \begin{cases} \sum\limits_{n_1=0}^{N_1-1}\sum\limits_{n_2=0}^{N_2-1}g[n_1,n_2]e^{-j2\pi(\frac{k_1n_1}{N_1}+\frac{k_2n_2}{N_2})} & 0 \leq k_1 \leq N_1-k_2 \\ 0 & \text{sonst} \end{cases}$$

3.2.8. Filterstukturen

$$H(z) = \frac{Y(z)}{X(z)} = \frac{b_0 + b_1 z^{-1} + \dots + b_m z^{-m}}{1 + a_1 z^{-1} + \dots + a_m z^{-m}}$$

3.3. Faltung

$$\begin{array}{lll} s(x_1,x_2) & = & g(x_1,x_2) & * & h(x_1,x_2) & = \\ \int\limits_{\tau=-\infty}^{\infty} \int\limits_{\tau=-\infty}^{\infty} g(\tau_1,\tau_2)h(x_1-\tau_1,x_2-\tau_2)\,\mathrm{d}\tau_1\,\mathrm{d}\tau_2 \\ s(x_1,x_2) & \circ^{\underbrace{\mathcal{F}}} \bullet S(\omega_1,\omega_2) = G(\omega_1,\omega_2) * H(\omega_1,\omega_2) \\ g(x_1,x_2) & \cdot & h(x_1,x_2) & \circ^{\underbrace{\mathcal{F}}} \bullet \frac{1}{4\pi^2}G(\omega_1,\omega_2) & * & H(\omega_1,\omega_2) \\ \mathrm{Normalisierte \ Faltung:} \ s[n_1,n_2] & = & g[n_1,n_2] * h[n_1,n_2] & = \\ \sum\limits_{m_1=-\infty}^{\infty} \sum\limits_{m_2=-\infty}^{\infty} g[m_1,m_2]h[n_1-m_1,n_2-m_2] \end{array}$$

3.4. Bildstörungen

3.4.1. Additive Bildstörung

- weißes, gaußverteiltes Rauschen: ensteht durch spontane Ladungstrennung oder thermischen Störung bei der Analog/Digitalwandlung
- Impulsrauschen ("Salt'n'Pepper"): fehlerhafte Pixel erscheinen als schwarze oder weiße Bildpunkte

3.4.2. Lineare, ortsinvariante Bildstörungen

- Motion Blur:
- Verwischung durch Bewegung von Objekt oder Sensor
- Focus Blur:

Unschärfe durch falsche Fokussierung

3.4.3. SNR

$$\begin{aligned} b[n_1,n_2] &= b_I[n_1,n_2] + n[n_1,n_2] \\ \sum\limits_{\substack{N \\ \sum \\ \sum \\ \sum \\ N}} \frac{M}{(b_I[n_1,n_2])^2} \\ \text{SNR} &= 10log_10(\frac{n_1=1}{N} \frac{M}{n_2=1} (n[n_1,n_2])^2) \\ \sum\limits_{\substack{N \\ n_1=1}} \frac{M}{n_2=1} (n[n_1,n_2])^2 \\ \sum\limits_{\substack{n_1=1 \\ 2=\sigma}} e^{-\frac{(n_1-\mu_1)^2+(n_2-\mu_2)^2}{2\sigma^2}} \end{aligned}$$
 Rauschsignal: $h_n(n_1,n_2) = \frac{1}{2\sigma^2} e^{-\frac{(n_1-\mu_1)^2+(n_2-\mu_2)^2}{2\sigma^2}}$

3.5. Kantenhervorhebung

akt. Pixel ist rot und fett

3.5.1. Gradientenfilter in n_1 -Richtung

Detektion harter Kanten Pixeldifferenz:
$$\begin{bmatrix} 1 & -1 \\ 1 & -1 \end{bmatrix} \text{ separ. Pixeldiff:: } \begin{bmatrix} 1 & 0 & -1 \\ 1 & 0 & -1 \\ 1 & 0 & -1 \end{bmatrix} \text{ Sobel: } \begin{bmatrix} 1 & 0 & -1 \\ 2 & 0 & -2 \\ 1 & 0 & -1 \end{bmatrix}$$
 Frei-Chen:
$$\begin{bmatrix} 1 & 0 & -1 \\ \sqrt{2} & 0 & -\sqrt{2} \\ 1 & 0 & -1 \end{bmatrix}$$

3.5.2. Gradientenfilter in n_2 -Richtung

Pixeldifferenz:
$$\begin{bmatrix} -1 \\ 1 \end{bmatrix}$$
 separ. Pixeldiff:: $\begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$ Prewitt: $\begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ -1 & -1 & -1 \end{bmatrix}$ Sobel: $\begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix}$ Frei-Chen: $\begin{bmatrix} 1 & \sqrt{2} & -1 \\ 0 & 0 & 0 \\ -1 & -\sqrt{2} & -1 \end{bmatrix}$

3.5.3. Laplacefilter

Detektion weicher Kanten

$$\begin{bmatrix} 0 & -1 & 0 \\ -1 & 4 & -1 \\ 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix} \begin{bmatrix} 1 & -2 & 1 \\ -2 & 4 & -2 \\ 1 & -2 & 1 \end{bmatrix}$$

weitere Herausarbeitung der Kanten z.B für anschließende Segmentierung

$$b_{Bin}[n_1,n_2] = \begin{cases} 1 & \text{für } b[n_1,n_2] \geq s \\ 0 & \text{für } b[n_1,n_2] < s \end{cases}$$
 s ist die Entscheiderschwelle. Meist ist $s < 50$

Median wird aus auf- oder absteigend geordnetet Werten $\boldsymbol{x} = \{x_1, ..., x_N\}$ gebildet.

$$\underline{x} = \{x_1, ..., x_N\} \text{ gebildet.}$$

$$\mathsf{Median}(\underline{x}) = \begin{cases} x \frac{N+1}{2} & \text{für N ungerade} \\ 0.5 \cdot (x \frac{N}{2} + x \frac{N+2}{2}) & \text{für N gerade} \end{cases}$$

3.6. Bildrestauration /-verbesserung

3.6.1. Rauschkompensation

Mittelwertfilter und Gaußfilter sind lineare Filter.

Tiefpass/Rechteckfunktion -> langsam abklingendes Spektrum → starker Einfluss gestörter Punkte auf umliegende Pixel

Kompensationfilter

 Medianfilter: akt. Pixel bekommt den Wert des Medians der Filtermaske zugewiesen

3.6.2. Blurkompensation

Finde raus wie die Störfunktion $H(z_1\,,z_2)$ aussieht und musltipliziere mit $\frac{1}{H(z_1,z_2)}$ \Rightarrow alles roger.... total einfach... am besten mit dieser Aufgabe

3.6.3. Histogrammausgleich

Bestmögliche Ausnutzung des dynamikbereichs des Bilds → Normalverteilung Transformation existent falls Verteilungsdichtefunktion und Transformationsfunktion kontinuierlich und als analytischer Ausdruck vorhanden. Vorteil: Kontrasterverbesserung

Nachteil: u.u. unnatürliches Bild

kontinuierlich

momentane Verteilung: p_q , angestrebte Vereilung: p_f , Gesucht: $T_f(g) = f$

$$\int_{0}^{f} p_f(f_0) df_0 \stackrel{!}{=} \int_{0}^{g} p_g(g_0) dg_0$$

bei angestrebter Gleichverteilung: $T_f(g) = f = \int\limits_0^g p_g(g_0) \,\mathrm{d}g_0$

$$\begin{array}{l} \text{diskret} \\ K(g_{norm}) = \lfloor \frac{g_{norm}}{G}N - 1N_2 \rfloor + \lceil \frac{N_1n_2}{G} \rceil | 0 \leq g_{norm} \leq G - 1 \\ T(g) = & \text{argmin} \quad |K_b(g) - K_{b,norm}(g_{norm})| \\ 0 \leq g_{norm} \leq G - 1 \end{array}$$

3.7. Morphologische Operatoren

Anwendung auf Binärbilder mit kleinen Strukturelementen

Vergleich des aktuellen Pixels und Umgebung mit dem Muster des Strukturelements

3.7.1 Frosion

 $X \ominus m[n_1, n_2] = \{(n_1, n_2) | m[n_1, n_2] \subset X\}$ komplettes Muster stimmt mit der Umgebung des akt. Pixels überein ⇒ akt. Pixel ist 1 (Fläche nimmt ab)

3.7.2. Dilatation

 $X\ominus m[n_1,n_2] = \{(n_1,n_2)|m[n_1,n_2]\cap X \neq \emptyset\}$ ein Teil des Musters stimmt mit der Umgebung des akt. Pixels überein ⇒ akt. Pixel ist 1 (Fläche nimmt zu)

3.7.3. Öffnen

 $X \circ m[n_1, n_2] = (X \ominus m[n_1, n_2]) \oplus m[n_1, n_2]$ Erosion, dann Dilatation

(Unruhige Teile des Bildes werden entfernt)

3.7.4. Schließen

 $X \bullet m[n_1, n_2] = (X \oplus m[n_1, n_2]) \oplus m[n_1, n_2]$ Dilatation, dann Frosion

(kleine, getrennt liegende Teile werde zu einem größeren Objekt zusam-

$$\begin{array}{l} \text{Als Faltung: } b_m[n_1,n_2] = \frac{b_{bin}[n_1,n_2]*m[-n_1,-n_2]}{|m|} \\ b_{dil}[n_1,n_2] = \lceil b_m[n_1,n_2] \rceil \ b_{ero}[n_1,n_2] = \lfloor b_m[n_1,n_2] \rfloor \end{array}$$

4. Gesichtsdetektion

Gesichter werden auf Bildern erkannt

4.1. Farbbasierte Gesichtsdetektion

Hautfarbensegmentierung: Analyse sehr vieler verschiedener Gesichter typische Farbwerte für Gesichter im HSV-Raum:

 $0 \le H \le 36^{\circ}$ und $0, 1 \le S \le 0.57 und \text{V}$: 0 - 255

⇒Binarisierung der Gesichtsbilder

Fazit: eignet sich für genauere Überprüfungen von erkannten Gesichtern aus anderen Verfahren

4.1.1. rg-Chrominanzmodell

$$\begin{split} g_1 &= -0.7279 \cdot r^2 + 0.6066 \cdot r + 0.1766 \\ g_2 &= -1.8423 \cdot r^2 + 1.5294 \cdot r + 0.0422 \\ W_r^2(r,g) &= (r - 0.33)^2 + (g - 0.33)^2 \\ b_{bin,HSV}[n_1,n_2] &= \begin{cases} 1 & \text{für} g_1 \leq b_g[n_1,n_2] \leq g_2, \\ W(b_r[n_1,n_2],b_g[n_1,n_2]) \leq 0.02 \\ 0 & sonst \end{cases} \end{split}$$

4.2. Multiskalen-basierte Gesichtsdetektion

Skalierte Bilder, um verschiedene Blockgrößen für unterschiedliche Gesichtsgrößen erhalten zu können

Tiefpassfilterung des Bildes

Unterabtastung um den Faktor $2 \Rightarrow \frac{N}{4}$ neue Bildpunkte

Speicherung: $N_{qes} = \frac{4}{3} \cdot N$ (geomtr. Reihe)

4.3. Viola-Jones

ist formbasiert

hohe Erkennungsrate und geringe Rechenzeit für Detektion Anwendung auf Hautfarbenbereiche

4.3.1. Merkmale

Allgemeine Form: $m_s \cdot m \times n_s \cdot n$

Тур	Basis	min. Höhe $(m_s\cdot m)$	min. Breite $(n_s\cdot n)$
A	$\begin{bmatrix} 1 & -1 \end{bmatrix}$	$1 \cdot m$	$2 \cdot n$
В	$\begin{bmatrix} 1 \\ -1 \end{bmatrix}$	$2\cdot m$	$1 \cdot n$
С	$\begin{bmatrix} 1 & -1 & 1 \end{bmatrix}$	$1 \cdot m$	$3 \cdot n$
D	$\begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$	$3\cdot m$	$1 \cdot n$
E	$\begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$	$2\cdot m$	$2 \cdot n$

 $\begin{array}{l} \text{max. Skalierung} \quad \text{mit Bild } M \times N \text{:} \\ m_{max} = \lfloor \frac{M}{m_{\mathcal{S}}} \rfloor \text{ und } n_{max} = \lfloor \frac{N}{n_{\mathcal{S}}} \rfloor \end{array}$

Anzahl d. Translationen in n- und m-Richtung:

 $N_{m,trans} = M - m_s m + 1$ und $N_{n,trans} = N - n_s n + 1$

Anzahl d. Realisierungen N_{qes}

$$\begin{split} N_{ges} &= \sum_{n=1}^{n_{max}} \sum_{m=1}^{m_{max}} N_{n,trans} \cdot N_{m,trans} = \\ &= \sum_{n=1}^{n_{max}} N_{n,trans} \sum_{m=1}^{m_{max}} N_{m,trans} = \\ &= \frac{n_{max}[2N + 2 - n_s(n_{max} + 1)] \cdot m_{max}[2M + 2 - m_s(m_{max} + 1)]}{4} \end{split}$$

4.3.2. Integralbild

Integration des Orginalbildes (Aufsummierung der Pixelwerte bis zum

$$b_{int}[n_1,n_2] = \sum_{n_1'=1}^{n_1} \sum_{n_1'=1}^{n_2} b[n_1,n_2]$$

⇒ Einspaarungen von Operationen: Bei Rechteckfiltern ⇒ Reduzierung auf 4 Operationen (Verrechnung der Eckwerte)

⇒ Unabhängigkeit von der Merkmalsskalierung

$$\begin{split} I_{a} &= \sum_{A} b[n_{1}, n_{2}] \\ I_{b} &= I_{a} + \sum_{B} b[n_{1}, n_{2}] \\ I_{c} &= I_{a} + \sum_{C} b[n_{1}, n_{2}] \\ I_{d} &= \sum_{A} b[n_{1}, n_{2}] + \sum_{B} b[n_{1}, n_{2}] + \sum_{C} b[n_{1}, n_{2}] + \sum_{D} b[n_{1}, n_{2}] \\ \sum_{D} b[n_{1}, n_{2}] &= I_{d} + I_{a} - (I_{c} + I_{b}) \end{split}$$

Schnelles Aufstellen des Integralbildes

1. Orginalbild:
$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

3. Berechnung d. Zeilensummen: 2 4 6

$$\begin{bmatrix} 3 & 6 & 9 \end{bmatrix}$$
 A.3.3. Merkmalselektion Selektion der geeigneten Merkmale
$$h_j(b[n_1,n_2) = \begin{cases} 1 & \text{fiir} p_j \cdot f_j(b[n_1,n_2) \leq p_j \cdot \Theta_j \\ -1 & \text{sonst} \end{cases}$$

$$\Theta_j = \frac{1 \leq i \leq N_{pos}}{sgn(\theta_j - \text{median } 1 \leq i \leq N_{pos}(f_j(b_{neg,i}[n_1,n_2))))}$$

$$\begin{bmatrix} Z & 0 & X_q & y_q \\ 0 & Z & -Y_q & X_q \\ X_q & -Y_q & N & 0 \\ Y_q & X_q & 0 & N \end{bmatrix} \cdot \begin{bmatrix} a_x \\ a_y \\ t_x \\ t_y \end{bmatrix} = \begin{bmatrix} C_1 \\ C_2 \\ X_p \\ Y_p \end{bmatrix}$$

4.3.4. AdaBoost-Algorithmus

Maschinelles Lernen zur Merkmalsselektion & optimale Kombination der selektierten Klassifikatoren

Gewichtung schwacher Klassifikatoren, so dass ihre Kombination eine höhere Klassifikationsrate erzielt → zuverlässige Klassifikationen Dedektionsfenster mit variabler Größe

- Änderung der Merkmale
- Skalierung der Gewichte

4.3.5. Kaskadierung

Ziel: hohe Dedektionsrate bei möglichst niedriger Fehlalarmrate. Komplexität der Klassifikatoren nimmt mit steigender Kaskadisierungstiefe zu. Blöcke ohne Gesicht werden verworfen - Blöcke mit Gesicht gelangen eine Ehene tiefer

5. Gesichtsidentifikation

Merkmale von bereits erkannten Gesichtern werden weiterverabeitet

5.1. Gesichtserkennung mit Eigengesichtern

Darstellung von Gesichtsbildern in einem anderen Koordinatensystem duch Hauptachsentransformation

Hauptachsen sind Vektoren die selbst als Gesichtsbilder aufgefssst werden können ⇒ Eigengesichter

starke Reduktion der Dimensionalität möglich

dann Abstandsklassifikatoren im reduzierten Merkmalsraum

M Gesichtsbilder der Größe $N_1 \times N_2$ Verfahren siehe PCA(Allgemeines)

5.1.1. Bestimmung der Eigengesichter

- Gesichter als $(N-1 \cdot N_2 x 1)$ Vektor in Matrix $A = [a_1, ..., a_m]$
- Vektor in neuem Raum: $w = U \cdot (b \overline{a})$
- ullet Schätzung durch Eigenvektoren: $b=\overline{a}+\sum\limits_{i=1}^{T}u_{i}\cdot w_{i}$
- nur M-1 sinvolle Eigenvektoren
- ullet Eigenvektoren ightarrow Richtung größter Änderung
- Gewichtsgrenzen: $-3\sqrt{\lambda_{s,i}} \leq w_{s,i} \leq 3\sqrt{\lambda_{s,i}}$

5.2. Prokrustes Analyse

Ziel: Möglichst gute Übereinstimmung der zwei Vielecke

$$egin{align*} & \mathcal{P} = [\underline{p}_1,...,\underline{p}_N] \;, \; \mathcal{Q} = [\underline{q}_1,...,\underline{q}_N] \ & \underbrace{\mathcal{M}}(a_x,a_y) = \begin{bmatrix} a_x & -a_y \\ a_y & a_x \end{bmatrix} = \underbrace{\mathcal{A}}_{skal} \cdot \underbrace{\mathcal{A}}_{rot} : \; \text{Skalierung, Rotation} \ & a_x = s\cos\alpha, \; a_y = s\sin\alpha \ & \text{t: Translation} \ & \text{t: Translation} \end{aligned}$$

 $O^{(1)} = proc(P, Q)$ Gewichtungsfaktor c_i (meistens 1)

Minimierung des Quadrates der gewichteten Fehler:

$$E = \sum_{i=1}^{N} E_i = \sum_{i=1}^{N} c_i | \underline{\boldsymbol{p}}_i - \underline{\boldsymbol{M}}(a_x, a_y) [\underline{\boldsymbol{q}}_i] - \underline{\boldsymbol{t}} |^2$$

$$\begin{array}{l} \frac{\partial E}{\partial (a_x, a_y, t_x, t_y)} = 0 \\ \Rightarrow \frac{\partial E}{\partial a_x} = 0, \frac{\partial E}{\partial a_y} = 0, \frac{\partial E}{\partial t_x} = 0, \frac{\partial E}{\partial t_y} = 0 \\ \begin{bmatrix} Z & 0 & X_q & y_q \\ 0 & Z & -Y_q & X_q \end{bmatrix} \begin{bmatrix} a_x \\ a_y \end{bmatrix} \begin{bmatrix} C_1 \\ C_2 \end{bmatrix}$$

$$\begin{aligned} & \left[\begin{array}{l} Y_q & X_q & 0 \\ X_p & \sum_{i=1}^N c_i \cdot p_{x,i} \\ Y_p & = \sum_{i=1}^N c_i \cdot p_{y,i} \\ X_q & = \sum_{i=1}^N c_i \cdot q_{x,i} \\ Y_q & = \sum_{i=1}^N c_i \cdot q_{y,i} \end{aligned} \right.$$

$$Y_p = \sum_{i=1}^{N} c_i \cdot p_{y,i}$$

$$X_q = \sum_{i=1}^{N} c_i \cdot q_x,$$

$$Y_q = \sum_{i=1}^{N} c_i \cdot q_{y,i}$$

$$Z = \sum_{i=1}^{N} c_i \cdot (q_{x,i}^2 + q_{y,i}^2)$$

$$C = \sum_{i=1}^{N} c_i$$

$$C = \sum_{i=1}^{N} c_i$$

$$C_1 = \sum_{i=1}^{N} c_i \cdot (p_{x,i} \cdot q_{x,i} + p_{y,i} \cdot q_{y,i})$$

$$C_1 = \sum_{i=1}^{N} c_i \cdot (p_{x,i} \cdot q_{x,i} + p_{y,i} \cdot q_{y,i})$$

$$C_2 = \sum_{i=1}^{N} c_i \cdot (p_{y,i} \cdot q_{x,i} - p_{x,i} \cdot q_{y,i})$$

roseparameter:
$$a_x = -\frac{X_p \cdot X_q + Y_p \cdot Y_q - N \cdot C_1}{N \cdot Z - X_q^2 - Y_q^2}$$

$$a_y = \frac{X_p \cdot X_q - Y_p \cdot Y_q + C \cdot C_2}{N \cdot Z - X_q^2 - Y_q^2}$$

$$t_x = \frac{X_p \cdot Z - C_1 \cdot X_q + C_2 \cdot Y_q}{N \cdot Z - X_q^2 - Y_q^2}$$

$$t_y = \frac{Y_p \cdot Z - C_1 \cdot Y_q - C_2 \cdot X_q}{N \cdot Z - X_q^2 - Y_q^2}$$

$$s = \sqrt{a_x^2 + a_y^2}$$

$$\alpha = \arccos\left(\frac{a_x}{s}\right) = \arcsin\left(\frac{a_y}{s}\right)$$

5.2.1. Projection auf Mittelwertsform

$$\overline{F}_k = \frac{1}{M} \cdot \sum_i i = 1M F_i^{(k)}$$

$$F_i^{(k)} = proc(\overline{F}_{k-1}, F_i^{(k-1)})$$

5.3. Delaunay-Kriterium

Erfüllt, wenn sich im Umkreis des Dreiecks a, b, c kein weiterer Punkt $p_{_{_{\mathrm{CP}}}}$ befindet. Der Mittelpunkt des Umkreises ist der Schnittpunkt der Seitenhalbierenden.

$$\underline{\underline{g}} = \underline{\underline{s}}_a + \lambda \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} (\underline{\underline{b}} - \underline{\underline{a}})$$

$$\underline{\underline{s}}_a = \underline{\underline{a}} + 0.5(\underline{\underline{b}} - \underline{\underline{a}})$$

$$\underline{\underline{h}} = \underline{\underline{s}}_b + \mu \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} (\underline{\underline{c}} - \underline{\underline{a}})$$

$$\underline{s}_b = \underline{b} + 0.5(\underline{c} - \underline{b})$$

q = h setzen \Rightarrow 2 Geleichungen mit 2 Unbekannten $\mu, \lambda \Rightarrow$ Einsetzen in g oder h ⇒ Umkreismittelpunkt ⇒ Radius bestimmen

Abbildung von Dreiecken einer Textur, so dass sie mit einem korrespondierendem Dreieck der Mittelweretsform übereinstimmten. Textur

Bilineare Interpolation:

Gruawert durch vier Nachbarn im Originalbild bestimmt

$$\begin{array}{l} n_1 = \lfloor x_1 \rfloor, n_2 = \lfloor x_2 \rfloor \\ g'[n'_1, n'_2] = \xi_1(\xi_2 \cdot g[n_1 + 1, n_2 + 1] + (1 - \xi_2) \cdot g[n_1 + 1, n_2]) + \\ (1 - \xi_1) \cdot \xi_2 \cdot g[n_1, n_2 + 1]) + (1 - \xi_2) \cdot g[n_1, n_2]) \\ \text{Mittelwertsextur:} \end{array}$$

- Wrapping sämtlicher Texturen aus dem Trainingsdatensatz auf die Mittelwertsform
- Grauwertnormierung → Kompensation von störungen

5.4. Kombinaion von Form- und Texturmodell

$$b = \begin{pmatrix} N \cdot w_s \\ w_g \end{pmatrix}$$

$$n_{ii} = \begin{pmatrix} \sum_{i=1}^{M} \lambda_{g,i} \end{pmatrix} \cdot \begin{pmatrix} \sum_{i=1}^{M} \lambda_{s,i} \end{pmatrix}^{-1}$$

$$b = u_c \cdot w_c \\ a = [\overline{s} + U_{c,s}^T \cdot N \cdot U_{c,s}^T \cdot w_c, \overline{g} + U_{c,g}^T \cdot N \cdot U_{c,g}^T \cdot w_c]$$

Anpassung der Gewichte: Textur ders Originalbilds $g_0(p)$ - Texturschätzung der AAM auf Mittelwerts-Form gewrappt $g_{\scriptscriptstyle S} p$ $r(p) = g_0(p) - g_s p$ $p^{(k)} = p^{(k-1)} - R \cdot (g_0(p^{(k-1)}) - g_s(p^{(k-1)})), 1 \le k \le K$ $R = \left[\left(\frac{\partial r(p)}{\partial p} \right)^T \cdot \frac{\partial r(p)}{\partial p} \right]^{-1} \cdot \frac{\partial r(p)}{\partial p}$

6. Objektvverfolgung

6.1. Stochastische Objektverfolgung

Wahrscheinlichkeit eines Partikels:

$$\begin{vmatrix} k_t = \frac{1}{p(bt|B_{t-1})} \\ p(x_t|B_t) = k_t \cdot p(b_t|x_t) \cdot \int\limits_{-\infty}^{\infty} p(b_t|x_{t-1}) \cdot p(x_{t-1}|B_{t-1}) dx_{t-1} \\ p(b_t|x_t) \propto e^{-\frac{1}{2\sigma^2}(x_t - A \cdot x - t - 1)^T \cdot (x_t - A \cdot x - t - 1)} \\ \pi_{i,t} = \frac{p(b_t|x_{i,t})}{\sum\limits_{i=1}^{N} p(b_t|x_{i,t})} \\ \overline{x}_t = \mathcal{E}\{x_{i,t}\} = \sum\limits_{i=1}^{N} x_{i,t} \cdot \pi_{i,t}$$

7. Mathematik

7.1. Exponentialfunktion und Logarithmus

$$\begin{array}{ll} a^x = e^x \ln a & \log_a x = \frac{\ln x}{\ln a} & \ln x \leq x - 1 \\ \ln(x^a) = a \ln(x) & \ln(\frac{x}{a}) = \ln x - \ln a & \log(1) = 0 \end{array}$$

7.2. Sinus, Cosinus $\sin^2(x) + \cos^2(x) = 1$ $\pi/4$ $1\frac{1}{2}\pi$ 2π $\pi/3$ 00 45° 30° 60° 90° 180° 270° 360° φ \sin 0 0 -1 $\frac{1}{\sqrt{2}}$ 0 -10 cos 0 $\sqrt{3}$ 0 $\pm \infty$ tan $\mp \infty$

Additionstheoreme Stammfunktionen

$$\begin{array}{ll} \cos(x-\frac{\pi}{2})=\sin x & \int x\cos(x)\,\mathrm{d}x=\cos(x)+x\sin(x)\\ \sin(x+\frac{\pi}{2})=\cos x & \int x\sin(x)\,\mathrm{d}x=\sin(x)-x\cos(x)\\ \sin 2x=2\sin x\cos x & \int \sin^2(x)\,\mathrm{d}x=\frac{1}{2}\left(x-\sin(x)\cos(x)\right)\\ \cos 2x=2\cos^2x-1 & \int \cos^2(x)\,\mathrm{d}x=\frac{1}{2}\left(x+\sin(x)\cos(x)\right)\\ \sin(x)=\tan(x)\cos(x) & \int \cos(x)\sin(x)=-\frac{1}{2}\cos^2(x) \end{array}$$

$$\begin{split} \sin(x\pm y) &= \sin x \, \cos y \pm \sin y \, \cos x & \sin x = \frac{1}{2!}(e^{\mathrm{i}x} - e^{-\mathrm{i}x}) \\ \cos(x\pm y) &= \cos x \, \cos y \mp \sin x \, \sin y & \cos x = \frac{1}{2!}(e^{\mathrm{i}x} + e^{-\mathrm{i}x}) \end{split}$$

7.3. Integralgarten

Partielle Integration: $\int uw' = uw - \int u'w$ Substitution: $\int f(g(x))g'(x) dx = \int f(t) dt$

F(x) - C	f(x)	f'(x)
$\frac{1}{q+1}x^{q+1}$	x^q	qx^{q-1}
$\frac{2\sqrt{ax^3}}{3}$	\sqrt{ax}	$\frac{a}{2\sqrt{ax}}$
$x \ln(ax) - x$	$\ln(ax)$	$\frac{a}{x}$
$\frac{1}{a^2}e^{ax}(ax-1)$	$x \cdot e^{ax}$	$e^{ax}(ax+1)$
$\frac{a^x}{\ln(a)}$	a^x	$a^x \ln(a)$
$-\cos(x)$	$\sin(x)$	$\cos(x)$
$\cosh(x)$	$\sinh(x)$	$\cosh(x)$
$\mathrm{Si}(x)$	$\operatorname{sinc}(x)$	$\frac{x\cos(x)-\sin(x)}{x^2}$
$-\ln \cos(x) $	tan(x)	$\frac{1}{\cos^2(x)}$

$$\int e^{at} \sin(bt) dt = e^{at} \frac{a \sin(bt) + b \cos(bt)}{a^2 + b^2}$$
$$\int x e^{ax^2} dx = \frac{1}{2a} e^{ax^2} \qquad \int t^2 e^{at} dt = \frac{(ax-1)^2 + 1}{a^3} e^{at}$$

2^1	2^2	2^3	2^{4}	2^{5}	2^{6}	2^{7}	2^{8}	2^{16}
2	4	8	16	32	64	128	256	65536

8. Fouriertransformation

8.1. Eigenschaften der Fouriertrafo

Zusammenhang zwischen geraden und ungeraden Signalanteilen:

 $x(t) \circ \xrightarrow{\mathcal{F}} X(f) \circ \xrightarrow{\mathcal{F}} x(-t) \circ \xrightarrow{\mathcal{F}} X(-f)$ Bei periodischen Signalen: Fourierreihen!

8.2. Wichtige Fouriertransformationen

8.3. Weitere Paare

f(t)	$F(\omega)$	f(t)	$F(\omega)$
$ t^n $	$\frac{2n!}{(i\omega)^{n+1}}$ $2\pi i^n \delta^{(n)}(\omega)$	$\operatorname{sinc}(\frac{t}{T})$	$T \operatorname{rect}(fT)$
t^n	$2\pi i^n \delta^{(n)}(\omega)$	$\frac{t^{n-1}}{(n-1)!}e^{-at}u(t)$	$\frac{1}{(a+\mathrm{i}\omega)^n}$
		$\exp(-\alpha t)$	$\frac{1}{\mathrm{i} 2 \pi f + \alpha}$