1 Kolobarji polinomov

Računanje s kompleksnimi števili

$$z = x + iy = re^{i\varphi} = r(\cos\varphi + i\sin\varphi)$$

$$r = |z| = \sqrt{x^2 + y^2}$$

$$\varphi = \arg z = \arctan\frac{y}{x}$$

De Moivreova formula

$$z^n = r^n (\cos \varphi n + i \sin \varphi n)$$

Osnovni izrek algebre

Vsak nekonstanten polinom $a_n x^n + \cdots + a_0$ ima natanko n kompleksnih ničel (štetih z večkratnostjo).

Trigonometrične identitete

$$\sin(x \pm y) = \sin(x)\cos(y) \pm \cos(x)\sin(y)$$

$$\cos(x \pm y) = \cos(x)\cos(y) \mp \sin(x)\sin(y)$$

$$\tan(x \pm y) = \frac{\tan(x) \pm \tan(y)}{1 \mp \tan(x)\tan(y)}$$

$$\cot(x \pm y) = \frac{\cot(x)\cot(y) \mp 1}{\tan(x) \pm \tan(y)}$$

$$\sin^{2}(x) + \cos^{2}(x) = 1$$

$$1 + \cot^{2}(x) = \frac{1}{\sin^{2}(x)}$$

$$1 + \tan^{2}(x) = \frac{1}{\cos^{2}(x)}$$

$$\sin \frac{x}{2} = \pm \sqrt{\frac{1 - \cos x}{2}}$$

$$\cos \frac{x}{2} = \pm \sqrt{\frac{1 + \cos x}{2}}$$

Mali Fermantov izrek

$$\forall a \in \mathbb{Z}, p \in \mathbb{P}: \ a^p \equiv_p a \tag{1}$$

Polinomi

Polinom je **razcepen**, če ga lahko zapišemo kot produkt dveh nekonstantnih polinomov. Nekonstanten polinom, ki ni razcepen je **nerazcepen**.

Polinom $a_n x^n + \cdots + a_0$ je **primitiven**, če velja $\gcd(a_0, \ldots, a_n) = 0$

Gaussova lema

$$p(x) \in \mathbb{Z}[x]$$
 razcepen nad $\mathbb{Z} \iff p(x)$ razcepen nad \mathbb{Q} (2)

Hornerjev algoritem

$$a_n x^n + \dots + a_0 = 0$$

- možne cele ničle: \pm delitelji a_0
- možne racionalne ničle: $\pm \frac{\text{delitelji} \ a_0}{\text{delitelji} \ a_n} = k$

Eisensteinov kriterij

Naj bo $a(x) = a_n x^n + \dots + a_0 \in \mathbb{Z}[x]$ polinom. Če $\exists p \in \mathbb{P} : p | a_0, \dots, a_{n-1} \land p \nmid a_n \land p^2 \nmid a_0$, potem je a(x) nerazcepen nad \mathbb{Q} .

Rodovne funkcije

$$\sum_{n=0}^{\infty} q^n = \frac{1}{1-q} \sum_{n=0}^{b} q^n = \frac{1-q^{b+1}}{1-q}$$

$$\sum_{n=a}^{\infty} q^n = \frac{q^a}{1-q} \sum_{n=a}^{b} q^n = \frac{q^a - q^{b+1}}{1-q}$$

$$a^n - b^n = (a-b)(a^{n-1} + a^{n-2}b + \dots + ab^{n-2} + b^{n-1})$$

$$\frac{a_0 + \dots + a_{k-1}x^{k-1}}{1-x^k} = a_0 + \dots + a_{k-1}x^{k-1} + a_0^k + \dots + a_{k-1}x^{2k-1} + \dots$$

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k$$

$$\frac{1}{(1-x)^n} = \sum_{k=0}^n \binom{n+k-1}{k} x^k$$

$$B_{\lambda}(x) = \sum_{n=0}^n \binom{\lambda}{n} x^n = (1+x)^{\lambda}; \qquad \binom{\lambda}{n} = \frac{\lambda^n}{n!}$$