高校 1 年生向け 60 分セミナー ログとネイピア数

著者:____chatgpt + overleaf

2025年7月10日

目次

6	まとめ (概算 5 分)	4
5.1	連続複利の極限としての <i>e</i>	4
5	ネイピア数とは(10 分)	3
4	底の変換公式(10分)	3
3	基本性質(15分)	3
2	log とは? 表し方(15 分)	2
1	はじめに(5 分)	2

1 はじめに (5分)

- 指数・対数は「掛け算を足し算に変える道具」。
- e (ネイピア数) は「連続的な成長」の自然なスケール。

本セミナーでは

- 1) log とは?表し方
- 2) 基本性質
- 3) 底の変換公式
- 4) ネイピア数とは

を 60 分で理解できるようにする。

 $\int_{1}^{2} \left(-\frac{1}{2} - \frac{1}{2} \right)$

2 log とは? 表し方(15分)

定義 2.1 (対数). a > 0, $a \neq 1$ とする。x > 0 に対し

$$\log_a x = y \iff a^y = x.$$

a を 底 (てい)、x を 真数 という。

例 2.2. $\log_{10} 1000 = 3 \ (10^3 = 1000)$ 。 $\log_2 \frac{1}{8} = -3 \ (2^{-3} = 1/8)$ 。

■記号の使い分け

$$\log x := \log_{10} x, \qquad \ln x := \log_{10} x.$$

理科系分野では log を ln 意味で使うこともあるので注意。

対数の図示 (任意)

指数関数 $y=a^x$ と対数関数 $y=\log_a x$ は y=x に関して点対称(逆関数の関係)である。

基本性質(15分) 3

命題 3.1 (対数の基本公式). $a > 0, a \neq 1, x > 0, y > 0$ とすると

(1)
$$\log_a(xy) = \log_a x + \log_a y$$
,

(1)
$$\log_a(xy) = \log_a x + \log_a y$$
,
(2) $\log_a(\frac{x}{y}) = \log_a x - \log_a y$,
(3) $\log_a(x^r) = r \log_a x \quad (r \in \mathbb{R})$,
(4) $\log_a 1 = 0$, $\log_a a = 1$.

(3)
$$\log_a(x^r) = r \log_a x \quad (r \in \mathbb{R}),$$

(4)
$$\log_a 1 = 0$$
, $\log_a a = 1$.

Proof. (1) を示す。 $\log_a x = p,\ \log_a y = q$ と置くと $a^p = x,\ a^q = y$ 。掛け合わせて $a^{p+q} = xy$ 。 対数の定義へ戻すと $\log_a(xy) = p + q = \log_a x + \log_a y$ 。

- (2) は $\frac{x}{y}=x\cdot y^{-1}$ に (1) を適用し、 $\log_a y^{-1}=-\log_a y$ を使う。 (3) は $x^r=(a^{\log_a x})^r=a^{r\log_a x}$ から従う。
- (4) は定義 $a^0 = 1$, $a^1 = a$ を逆向きに読むだけ。

 $m{3.2.} \, \log_a x \,$ は真数の積を足し算に、累乗を掛け算に変換する演算である。

底の変換公式(10分)

定理 4.1 (底の変換公式). a > 0, $a \neq 1$, b > 0, $b \neq 1$, x > 0 とすると

$$\log_b x = \frac{\log_a x}{\log_a b} \, .$$

 $Proof. \ \log_b x = y \iff b^y = x$ 。 両辺に \log_a を取ると $\underline{\log_a(b^y) = \log_a x}$ 。 基本性質(3)により $y\log_a b = \log_a x$ 。 $y = \frac{\log_a x}{\log_a b}$ で公式成立。

ネイピア数とは(10分) 5

定義 5.1 (ネイピア数 e).

$$e := \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n \approx 2.718281828\dots$$

5.1 連続複利の極限としての *e*

年利 100% を n 回に分け複利運用すると

$$\left(1+\frac{1}{n}\right)^n \quad (n \ \Box)$$

になり、分割回数 $n \to \infty$ で e に近づく。「最も効率的な成長係数」が e と言える。

定理 5.2 (指数関数 e^x の微分).

$$\frac{\mathrm{d}}{\mathrm{d}x}e^x = e^x.$$

系 5.3 (自然対数).

$$\ln x = \int_{1}^{x} \frac{1}{t} \, \mathrm{d}t$$

と定義すると $\frac{\mathrm{d}}{\mathrm{d}x} \ln x = \frac{1}{x}$ かつ $e^{\ln x} = x$ である。 よって $\ln x = \log_e x$ 。

6 まとめ (概算 5 分)

- $\log_a x$ は「a を何乗したら x?」を答える演算。
- 掛け算→足し算、累乗→掛け算へ写す基本性質が計算の要。
- 底の変換公式により、任意の底の対数は一つの底で計算可能。
- e は連続的成長の極限で現れる普遍定数。
- 自然対数 $\ln x$ は e を底とする対数。

演習(時間が余ったら)

- 1. log₂32 を求めよ。
- 2. log₁₀ 2 を使って ln 2 を近似せよ。
- 3. 底の変換公式を用い $\log_3 5$ を \log_{10} だけで表せ。
- 4. $\lim_{n\to\infty} \left(1+\frac{3}{n}\right)^n$ を e を用いて表せ。