

WYPEŁNIA ZDAJĄCY KOD PESEL miejsce na naklejkę

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI Poziom podstawowy

DATA: **kwiecień 2020 r.** CZAS PRACY: **170 minut**

LICZBA PUNKTÓW DO UZYSKANIA: 50

Instrukcja dla zdającego

- 1. Sprawdź, czy arkusz egzaminacyjny zawiera 26 stron (zadania 1–34). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Rozwiązania i odpowiedzi zapisz w miejscu na to przeznaczonym przy każdym zadaniu.
- 3. W rozwiązaniach zadań rachunkowych przedstaw tok rozumowania prowadzący do ostatecznego wyniku.
- 4. Pisz czytelnie. Używaj długopisu/pióra tylko z czarnym tuszem/atramentem.
- 5. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 6. Pamiętaj, że zapisy w brudnopisie nie będą oceniane.
- 7. Możesz korzystać z *Wybranych wzorów matematycznych*, linijki oraz kalkulatora prostego.
- 8. Na tej stronie oraz na karcie odpowiedzi wpisz swój numer PESEL i przyklej naklejkę z kodem.
- 9. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora.

NOWA FORMULA

MMA-P1 **1**P

W zadaniach od 1. do 25. wybierz i zaznacz poprawną odpowiedź.

Zadanie 1. (0–1)

Niech a = -2, b = 3. Wartość wyrażenia $a^b - b^a$ jest równa

- **B.** $\frac{71}{9}$ **C.** $-\frac{73}{9}$ **D.** $-\frac{71}{9}$

Zadanie 2. (0-1)

Liczba 99 · 812 jest równa

- **A.** 81^4
- **B.** 81
- $\mathbf{C}. 9^{13}$
- **D.** 9^{36}

Zadanie 3. (0–1)

Wartość wyrażenia $\log_4 8 + 5\log_4 2$ jest równa

A. 2

- **B.** 4
- C. $2 + \log_4 5$
- **D.** $1 + \log_4 10$

Zadanie 4. (0-1)

Dane są dwa koła. Promień pierwszego koła jest większy od promienia drugiego koła o 30%. Wynika stąd, że pole pierwszego koła jest większe od pola drugiego koła

A. o mniej niż 50%, ale więcej niż 40%.

B. o mniej niż 60%, ale więcej niż 50%.

C. dokładnie o 60%.

D. o więcej niż 60%.

Zadanie 5. (0-1)

Liczba $(2\sqrt{7}-5)^2 \cdot (2\sqrt{7}+5)^2$ jest równa

- 9 A.
- **B.** 3
- **C.** 2809
- **D.** $28-20\sqrt{7}$

Zadanie 6. (0-1)

Wskaż rysunek, na którym jest przedstawiony zbiór wszystkich liczb x spełniających warunek: $11 \le 2x - 7 \le 15$.

-11-9

Zadanie 7. (0–1)

Rozważmy treść następującego zadania:

Obwód prostokata o bokach długości a i b jest równy 60. Jeden z boków tego prostokata jest o 10 dłuższy od drugiego. Oblicz długości boków tego prostokata.

Który układ równań opisuje zależności między długościami boków tego prostokata?

A.
$$\begin{cases} 2(a+b) = 60 \\ a+10 = b \end{cases}$$

B.
$$\begin{cases} 2a + b = 6 \\ 10b = a \end{cases}$$

C.
$$\begin{cases} 2ab = 60 \\ a - b = 10 \end{cases}$$

A.
$$\begin{cases} 2(a+b) = 60 \\ a+10 = b \end{cases}$$
 B.
$$\begin{cases} 2a+b = 60 \\ 10b = a \end{cases}$$
 C.
$$\begin{cases} 2ab = 60 \\ a-b = 10 \end{cases}$$
 D.
$$\begin{cases} 2(a+b) = 60 \\ 10a = b \end{cases}$$

Zadanie 8. (0–1)

Rozwiązaniem równania $\frac{x+1}{x+2} = 3$, gdzie $x \ne -2$, jest liczba należąca do przedziału

- **A.** (-2,1) **B.** $(1, +\infty)$ **C.** $(-\infty, -5)$ **D.** (-5, -2)

Zadanie 9. (0-1)

Linę o długości 100 metrów rozcięto na trzy części, których długości pozostają w stosunku 3:4:5. Stąd wynika, że najdłuższa z tych części ma długość

- **A.** $41\frac{2}{3}$ metra. **B.** $33\frac{1}{3}$ metra. **C.** 60 metrów. **D.** 25 metrów.

Zadanie 10. (0-1)

Na rysunku przedstawiono fragment wykresu funkcji kwadratowej / określonej wzorem $f(x) = x^2 + bx + c.$

Współczynniki b i c – we wzorze funkcji f – spełniają warunki:

- **A.** b < 0 i c > 0 **B.** b < 0 i c < 0 **C.** b > 0 i c > 0 **D.** b > 0 i c < 0

Zadanie 11. (0-1)

Dany jest ciąg arytmetyczny (a_n) , określony dla $n \ge 1$, w którym są dane: $a_1 = 2$ i $a_2 = 9$. Wtedy $a_n = 79$ dla

A.
$$n = 10$$

B.
$$n = 11$$
 C. $n = 12$ **D.** $n = 13$

C.
$$n = 12$$

D.
$$n = 13$$

Zadanie 12. (0-1)

Dany jest trzywyrazowy ciąg geometryczny o wyrazach dodatnich: (81, 3x, 4). Stąd wynika, że

A.
$$x = 18$$

B.
$$x = 6$$

D.
$$x = \frac{6}{85}$$

Zadanie 13. (0-1)

Kąt α jest ostry i spełniona jest równość $\sin \alpha = \frac{2\sqrt{6}}{7}$. Stąd wynika, że

A.
$$\cos \alpha = \frac{24}{49}$$

B.
$$\cos \alpha = \frac{5}{7}$$

C.
$$\cos \alpha = \frac{25}{49}$$

A.
$$\cos \alpha = \frac{24}{49}$$
 B. $\cos \alpha = \frac{5}{7}$ **C.** $\cos \alpha = \frac{25}{49}$ **D.** $\cos \alpha = \frac{5\sqrt{6}}{7}$

Zadanie 14. (0-1)

Na okręgu o środku w punkcie O leżą punkty A, B i C (zobacz rysunek). Kąt ABC ma miare 121°, a kat BOC ma miare 40°.

Kat AOB ma miare

- **A.** 59°
- **B.** 50°
- **C.** 81°
- **D.** 78°

Zadanie 15. (0-1)

W trójkącie \overline{ABC} punkt D leży na boku BC, a punkt E leży na boku AC. Odcinek DE jest równoległy do boku AB, a ponadto |AE| = |DE| = 4, |AB| = 6 (zobacz rysunek).

Odcinek CE ma długość

- **C.** 8
- **D.** 6

Zadanie 16. (0-1)

Dany jest trójkąt równoboczny, którego pole powierzchni jest równe $6\sqrt{3}$. Bok tego trójkąta ma długość

- **A.** $3\sqrt{2}$
- **B.** $2\sqrt{3}$ **C.** $2\sqrt{6}$ **D.** $6\sqrt{2}$

Zadanie 17. (0-1)

Punkty B = (-2,4) i C = (5,1) są sąsiednimi wierzchołkami kwadratu ABCD. Pole tego kwadratu jest równe

- **A.** 29
- **B.** 40
- **C.** 58
- **D.** 74

Zadanie 18. (0-1)

Na rysunku przedstawiono ostrosłup prawidłowy czworokątny ABCDS o podstawie ABCD.

Kąt nachylenia krawędzi bocznej SA ostrosłupa do płaszczyzny podstawy ABCD to

- **A.** *≮SAO*
- B. ∢SAB
- C. *∢SOA*
- **D.** *≺ASB*

Zadanie 19. (0-1)

Graniastosłup ma 14 wierzchołków. Liczba wszystkich krawędzi tego graniastosłupa jest równa

- **A.** 14
- **B.** 21
- **C.** 28
- **D.** 26

Zadanie 20. (0-1)

Prosta k przechodzi przez punkt A = (4, -4) i jest prostopadła do osi Ox. Prosta k ma równanie

- **A.** x-4=0
- **B.** x y = 0 **C.** y + 4 = 0 **D.** x + y = 0

Zadanie 21. (0-1)

Prosta *l* jest nachylona do osi *Ox* pod kątem 30° i przecina oś *Oy* w punkcie $(0, -\sqrt{3})$ (zobacz rysunek).

Prosta l ma równanie

A.
$$y = \frac{\sqrt{3}}{3}x - \sqrt{3}$$
 B. $y = \frac{\sqrt{3}}{3}x + \sqrt{3}$ **C.** $y = \frac{1}{2}x - \sqrt{3}$ **D.** $y = \frac{1}{2}x + \sqrt{3}$

B.
$$y = \frac{\sqrt{3}}{3}x + \sqrt{3}$$

C.
$$y = \frac{1}{2}x - \sqrt{3}$$

D.
$$y = \frac{1}{2}x + \sqrt{3}$$

Zadanie 22. (0-1)

Dany jest stożek o wysokości 6 i tworzącej $3\sqrt{5}$. Objętość tego stożka jest równa

A. 36π

В. 18π **C.** 108π

D. 54π

Zadanie 23. (0-1)

Średnia arytmetyczna zestawu ośmiu danych: x, 2, 4, 6, 8, 10, 12, 14 jest równa 9. Wtedy mediana tego zestawu danych jest równa

A. 8

B. 9

C. 10

D. 16

Zadanie 24. (0-1)

Ile jest wszystkich czterocyfrowych liczb naturalnych mniejszych niż 2017?

A. 2016

B. 2017

C. 1016

D. 1017

Zadanie 25. (0-1)

Z pudełka, w którym jest tylko 6 kul białych i n kul czarnych, losujemy jedną kulę. Prawdopodobieństwo wylosowania kuli białej jest równe $\frac{1}{3}$. Liczba kul czarnych jest równa

A. n=9

B. n = 2

C. n = 18

D. n = 12

Zadanie 26. (0-2)

Rozwiąż nierówność $2x^2 + x - 6 \le 0$.

Odpowiedź:		

Zadanie 27. (0-2)

Rozwiąż równanie $(x^2-6)(3x+2)=0$.

Odpowiedź:	

Zadanie 28. (0–2)Wykaż, że dla dowolnej dodatniej liczby rzeczywistej *x* prawdziwa jest nierówność

$$4x + \frac{1}{x} \ge 4.$$

Zadanie 29. (0-2)

Dany jest trójkąt prostokątny ABC, w którym $| \not \sim ACB | = 90^\circ$ i $| \not \sim ABC | = 60^\circ$. Niech D oznacza punkt wspólny wysokości poprowadzonej z wierzchołka C kąta prostego i przeciwprostokątnej AB tego trójkąta. Wykaż, że |AD|: |DB| = 3:1.

Zadanie 30. (0–2)

Ze zbioru liczb $\{1, 2, 4, 5, 10\}$ losujemy dwa razy po jednej liczbie ze zwracaniem. Oblicz prawdopodobieństwo zdarzenia A polegającego na tym, że iloraz pierwszej wylosowanej liczby przez drugą wylosowaną liczbę jest liczbą całkowitą.

Odpowiedź:

Zadanie 31. (0-2)

Dany jest ciąg arytmetyczny (a_n) , określony dla $n \ge 1$, w którym spełniona jest równość $a_{21} + a_{24} + a_{27} + a_{30} = 100$. Oblicz sumę $a_{25} + a_{26}$.

Odpowiedź:		

Zadanie 32. (0–4)

Funkcja kwadratowa f określona wzorem $f(x) = ax^2 + bx + c$ ma dwa miejsca zerowe: $x_1 = -2$ i $x_2 = 6$. Wykres funkcji f przechodzi przez punkt A = (1, -5). Oblicz najmniejszą wartość funkcji f.

(Odpowiedź:																							
	o apo mode.																							
	Strona 21 z 26																							

Zadanie 33. (0-4)

Punkt C = (0,0) jest wierzchołkiem trójkąta prostokątnego ABC, którego wierzchołek A leży na osi Ox, a wierzchołek B na osi Oy układu współrzędnych. Prosta zawierająca wysokość tego trójkąta opuszczoną z wierzchołka C przecina przeciwprostokątną AB w punkcie D = (3,4).

Oblicz współrzędne wierzchołków A i B tego trójkąta oraz długość przeciwprostokątnej AB.

ſ																								
	Odpowiedź:																							
	Strona 23 z 26																							

Zadanie 34. (0–5)

Podstawą graniastosłupa prostego ABCDEF jest trójkąt prostokątny ABC, w którym $|\not\prec ACB| = 90^\circ$ (zobacz rysunek). Stosunek długości przyprostokątnej AC tego trójkąta do długości przyprostokątnej BC jest równy 4 : 3. Punkt S jest środkiem okręgu opisanego na trójkącie ABC, a długość odcinka SC jest równa 5. Pole ściany bocznej BEFC graniastosłupa jest równe 48. Oblicz objętość tego graniastosłupa.

Odpowiedź:		