202I-I YDMS 6주차 과제

(Subject : Logistic Regression)

기하은

✓ 이론

로지스틱 회귀분석은 종속변수 Y가 범주형인 경우로 선형회귀의 개념을 확장한 것이다. 특히 범주형 (그 중에서도 이진형) 반응변수를 설명하거나 예측하기 위해 자주 사용되는 회귀분석이 다. 이진형 변수의 예시는 대표적으로 [성공/실패],[예/아니오],[구매/비구매],[생존/사망] 등 이 있다. 이처럼 이진형 변수는 두 분류로 나눠지며, 이때 이진형 변수는 관측치를 클래스로 분류해주는 변수임을 알 수 있다.

한편 로지스틱 회귀분석을 표현하면 위의 그림과 같다. 로지스틱 회귀분석의 경우 예측'값'을 추정하는 것이 아니라 각 관측치의 '클래스'를 추정하는 것이다. 그러나 범주형 변수가 종속변수인 상황에서 선형 증감으로는 관측치의 클래스를 추정하긴 힘들다. (그림에서 확인할 수 있듯이 선형회귀보다는 비선형회 귀에서 더 뚜렷하게 분류됨을 알 수 있다.) 따라서 비선형 증감를 이용하는 것이 로지스틱 회귀분석이다. 이를 위해 사용하는 것이 바로 '로짓(logit)' 변환이다. 이 과정을 이진형 변수에서 연속형 변수로 바꾸어주는 과정이라고 생각하면 이해하기 쉽다.

우선 로짓변환을 설명하기 앞서 몇가지 개념을 설명하려 한다. 우선 q개의 설명변수로 반응변수가 1일 확률은 다음과 같다.

$$p = P(Y=1) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \cdots + \beta_q x_q$$

그러나 이 경우에는 p가 구간 [0,1]에 들어간다는 보장이 안 된다. 이러한 문제를 해결하기 위해 앞서 설명하였듯 비선형 증감을 이용하게 된다. 이러한 문제를 보완하기 위해 Y=1일 확률(p)을 로지스틱 함수를 이용하여 표현하게 된다. 로지스틱 반응함수를 표현하면 다음과 같다.

$$f(x) = \frac{1}{1 + e^{-x}}$$

로지스틱 함수는 앞서 언급한 특정 현상을 분류하는 상황에서 매우 적합하다. 한편 로지스틱 함수를 이용하여 p에 관해 다시 표현하면 다음과 같다. 로지스틱 함수를 통해 임의의 변수 x_1, \cdots, x_q 에 대해 p는 항상 구간 [0,1] 사이의 값이 된다.

$$p = P(Y=1 | X=x_1, \dots, x_q) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_q x_q)}}$$

(✓ 과제 : 2. 오즈비에 대해 조사해오기)

이를 이용하여 Odds(오즈)에 대해 알아보자. 오즈는 쉽게 말해 사건 A가 발생할 확률과 그렇지 않을 확률의 비로 정의된다. 즉 클래스 1(Y=1)에 속할 오즈는, 클래스 0에 속하는 확률에 대한 클래스 1에 속하는 확률의 비인 것이다. 오즈에 대한 더 직관적인 이해를 위해 예시를 들어보자. 만약 게임에서 이

길 확률이
$$\frac{1}{10}$$
이라면, 게임에서 질 확률은 $\frac{9}{10}$ 이다. 이때 게임에서 이길 오즈는 바로 $\frac{\frac{1}{10}}{1-\frac{1}{10}}=\frac{1}{9}$

이다. 이를 수식으로 일반화하면 아래와 같다.

$$Odds = \frac{p_A}{1 - p_A}$$

$$Odds(Y=1) = \frac{p}{1-p}$$

한편 역으로 오즈로부터 확률을 구할 수 있다. p를 Odds에 관한 식으로 정리한 것에 로지스틱 함수를 대입하면, 예측변수와 오즈에 관계는 다음과 같이 정리된다.

$$p = \frac{Odds}{1 + Odds}$$

$$Odds(Y=1) = e^{\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_q x_q}$$

마지막으로 정리한 Odds식 양변에 자연로그를 취하면 로지스틱 모델의 표준형을 얻을 수 있다. 이때 $\log(Odds)$ 를 로짓 (logit)이라고 부른다. 오즈의 범위는 $[0,+\infty]$ 인 반면에 오즈에 로그를 취한 로짓의 범위는 $[-\infty,+\infty]$ 이다. 이렇게 회귀식의 변환을 통해 식의 좌변과 우변 모두 $[-\infty,+\infty]$ 에서 정의되기 때문에 앞서 발생한 문제를 해결할 수 있다.

다음으로 Odds Ratio (오즈비)란 Odds의 비율이다. 이를 직관적으로 이해하기 위해 예시를 들어보겠다.

	당첨	당첨X	합계
도심	1	1,999	2,000
비도심	1	7,999	8,000
합계	2	9,998	10,000

도심지역 당첨 오즈(odds)=
$$\dfrac{\dfrac{1}{2000}}{1-\dfrac{1}{2000}}=\dfrac{1}{1999}$$
 , 도심지역 당첨 확률= $\dfrac{1}{2000}$

비도심지역 당첨 오즈(odds)=
$$\dfrac{\dfrac{1}{8000}}{1-\dfrac{1}{8000}}=\dfrac{1}{7999}$$
, 비도심지역 당첨 확률= $\dfrac{1}{8000}$

비도심지역 대비 도심지역 당첨 오즈비(odds)=
$$\dfrac{\dfrac{1}{1999}}{\dfrac{1}{7999}}=4.0015$$

오즈와 확률을 비교해보면 값이 거의 같음을 알 수 있다. 마찬가지로 오즈비도 극단적인 경우에 값에 민감하지 않고 안정적이다. 또한 오즈를 오즈로 나누면 비교가 가능해진다. 앞서 제시한 예시에서 비도심지역 대비 도심지역 당첨 오즈비는 약 4.0015 였다. 즉 비도심지역에서 1명 당첨될 때 도심지역에서 4명이 당첨됨을 알 수 있다. 이처럼 오즈는 확률과 대조적으로 모델의 결과를 오즈로 보고할 때 어떠한 값에 대해서도 위와 같은 해석이 가능하다. 확률의 경우 특정 예측변수의 한 단위 증가에 따른 확률의 변화가 일정하지 않다. 반면 오즈는 값에 따라 변동하는 것이 크지 않고 안정적이기 때문에 모델의 결과를 오즈로 하는 것이 더 좋다. 한편 오즈비에 관한 해석은 다음과 같다.

① OR=1 인 경우

: 결과와 원인이 유의미하지 않다. 만약 OR의 신뢰구간에 1이 포함된다면 유의미하지 않다고 해석한다.

- ② OR>1 인 경우
 - : 원인이 결과에 OR배 영향을 준다.
- ③ OR<1 인 경우
 - : 원인이 결과에 1/OR배 영향을 준다.

✓ 과제 (회귀모형)

1. Telecom에 관한 3개의 데이터를 적절히 활용하여 고객 이탈 여부에 대해 어떤 설명변수들이 얼마나 영향을 끼치는지 알아보기 위해 로지스틱 회귀모델을 사용하여 분석하여라.

[데이터 탐색]

01.demographic

:고객에 대한 인구 통계 정보 - 성별, 연령 범위 및 파트너 및 부양가족이 있는 경우

변수	변수설명
Customer ID (범주형)	고객 ID
gender (범주형)	성별
SeniorCitizen (범주형)	고령 여부
Partner (범주형)	배우자 유무
Dependents (범주형)	부양가족 유무
Churn (범주형)	고객의 이탈 여부, 타겟변수

^{*}지난 한 달 이내에 퇴사한 고객들 - 이 칼럼은 "Churn"이라고 불립니다.

02.services

: 각 고객이 가입한 서비스 ➡ 전화, 여러 회선, 인터넷, 온라인 보안, 온라인 백업, 장치 보호, 기술 지원, TV 및 영화 스트리밍

변수	변수설명		
Customer ID (범주형)	고객 ID		
PhoneServices (범주형)	폰서비스 가입 여부		
MultipleLines (범주형)	폰서비스 상품중 MultipleLine 서비스 가입 여부		
InternetService (범주형)	인터넷 서비스 가입 여부, 인터넷 서비스 종류		
OnlineSecurity (범주형)	인터넷 서비스 상품 중 OnlineSecurity 서비스 가입 여부		
OnlineBackup (범주형)	인터넷 서비스 상품 중 OnlineBackup 서비스 가입 여부		
DeviceProtection (범주형)	인터넷 서비스 상품 중 DeviceProtection 서비스 가입 여부		
TechSupport (범주형)	인터넷 서비스 상품 중 TechSupport 서비스 가입 여부		
StreamingTV (범주형)	인터넷 서비스 상품 중 StreamingTV 서비스 가입 여부		
StreamingMovies (범주형)	인터넷 서비스 상품 중 StreamingMovies 서비스 가입 여부		

03.account

:고객 계정 정보 ⇒ 고객 활동 기간, 계약, 결제 방법, 페이퍼리스 청구서, 월별 요금 및 총 요금

변수	변수설명		
Customer ID (범주형)	고객 ID		
tenure (연속형)	데이터 수집 당시까지 해당 고객이 회원으로 머물렀던 총 기간(월)		
Contract (범주형)	계약 기간 종류		
PaperlessBilling (범주형)	인터넷 청구서 사용 여부		
PatmentMethod (범주형)	요금 지불방법에 대한 정보		
MonthlyCharges (연속형)	월별 요금		
TotalCharges (연속형)	데이터 수집 당시 까지, 총 요금		

앞서 설명한 3개의 데이터 집합은 한 통신사에서 고객이 이탈하는 정보를 얻을 수 있는 데이터 셋이다. target 변수를 고객 이탈 여부로 두었으니, 분석의 목적은 고객의 이탈을 예측하는 것이 되겠다. 우선 3개의 데이터를 엮어 분석해야하므로 데이터 셋을 합치기로 하였다. 이 과정에서 데이터 열이 맞지 않음을 알게 되었는데, <01.demographic> 데이터 셋에 존재하는 중복값으로 인해 생긴 문제임을 확인하였다. 따라서 <01.demographic> 속 중복데이터를 삭제해준 뒤 3개의 데이터 셋을 합쳐주었다.

(a) 중복데이터 확인

CUSTOMERID 9631-XEYKE: 2 0002-ORFBO: 1 0003-MKNFE: 1 0004-TLHLJ: 1 0011-IGKFF: 1 0013-EXCHZ: 1 (other) :7037			00 No :3 00 Yes:3 00 21	642 No	pendents Churn :4934 NO :517 s:2110 Yes:186
customerID	∡ gender	SeniorCitizen	Partner	Deper	nden Churn
9631-XEYKE	Male	0	No	No	No
9631-XEYKE	Male	0	No	No	No

(b) 중복데이터 제거

```
> a<-distinct(a)
> summary(a)
      customerTD
                      gender
                                  SeniorCitizen
                                                    Partner
                                                                Dependents Churn
0002-ORFBO:
                   Female:3488
                                  Min. :0.0000
1st Qu.:0.0000
                                                    No :3641
                                                                No :4933
                                                                           No :5174
               1
 0003-MKNFE:
                   Male :3555
                                                    Yes:3402
                                                                Yes:2110
                                                                           Yes:1869
 0004-TLHLJ:
                                  Median :0.0000
 0011-IGKFF:
                                         :0.1621
 0013-EXCHZ:
                                  3rd Qu.: 0.0000
0013-MHZWF:
                                  Max.
                                         :1.0000
           :7037
 (Other)
```

© 데이터 셋 합치기: (01.demographic) + (02.services) + (03.account)

merge 함수를 이용하여 데이터를 합쳤는데, 기준은 공통 변수인 customerID를 기준으로 데이터를 병합하였다. str 함수를 이용하여 데이터의 구성을 확인하였는데, 합친 데이터 셋(t)는 총 7043개의 데이터들과 21개의 변수들로 구성되어있음을 알 수 있었다.

다음으로 합친 데이터 셋 (t)의 형태를 summary 함수를 통해 확인하였다. 이때 TotalCharges 에 결측치가 있는 것을 확인하였고, 11개의 값을 삭제해주었다.

@ 결측치 확인

@ 결측치 삭제

```
> na.omit(t)->t

> summary(t)

OcustomerID openderID ope
```

[데이터 모델링]

전처리를 완료한 데이터 셋을 모델링하기 위해 우선 데이터 셋을 train set 과 test set 으로 나누어 주었다. 이때 비율은 7:3 으로 진행하였다.

ⓐ 분할

(b) train set

다음으로 train set으로 로지스틱 회귀분석을 돌려 전반적인 성능을 확인해보았다. 빨간색 표시선에서 볼 수 있듯 결측치로 나오는 변수가 생겼음을 확인하였다. 공통적으로 3개의 범주로 나누어진 변수에서 발생하였다. 이를 참고하여 "Yes", "No", "No~~service" 으로 나누어진 범주형 변수는 "Yes"와 "No"로만 구성될 수 있도록 수정하였다. 이후 수정된 데이터를 가지고 다시 로지스틱 회귀모델을 돌려보았다. 수정 이후 NA값은 사라진 것을 확인할 수 있다. train의 로지스틱 회귀모델에 사용된 예측변수는 총 23개이다.

© train set 의 stepwise

위에서 진행한 모델에서 유용한 변수만 선택하기 위해 단계적 선택방법을 이용하여 모델을 돌려보았다. 그 결과 5개의 변수가 줄어 총 18개의 예측변수가 모델에 사용되었다.

d-1. 오즈비 확인

> extractOR(step)				
	OR	1c1	ucl	p
(Intercept)	6.92	3.03	15.83	0.0000
SeniorCitizen	1.31	1.08	1.60	0.0065
PhoneServiceYes	1.80	0.98	3.30	0.0588
MultipleLinesYes	1.76	1.41	2.20	0.0000
InternetServiceFiber optic	13.65	7.13	26.14	0.0000
InternetServiceNo	0.10	0.04	0.22	0.0000
OnlineBackupYes	1.22	0.98	1.52	0.0759
DeviceProtectionYes	1.36	1.09	1.71	0.0071
StreamingTVYes	2.42	1.76	3.33	0.0000
StreamingMoviesYes	2.41	1.75	3.32	0.0000
tenure	0.94	0.93	0.96	0.0000
ContractOne year	0.51	0.40	0.65	0.0000
ContractTwo year	0.24	0.16	0.36	0.0000
PaperlessBillingYes	1.38	1.16	1.64	0.0002
PaymentMethodCredit card (automatic)	0.85	0.65	1.10	0.2178
PaymentMethodElectronic check	1.25	1.00	1.55	0.0487
PaymentMethodMailed check	0.83	0.64	1.09	0.1844
MonthlyCharges	0.93	0.91	0.96	0.0000
TotalCharges	1.00	1.00	1.00	0.0004

앞서 이론파트에서 설명한 것과 같이 오즈비 신뢰구간에 1이 포함되어 있으면 유의미하지 않은 변수라고 하였다. 따라서 오즈비 신뢰구간에 1이 들어간 변수는 제거해주었다.

d-2. '수정된' 모델의 오즈비 확인

	OR	101	ucl	p
(Intercept)	2.05	1.24	3.38	0.0052
SeniorCitizen	1.35	1.12	1.64	0.0022
MultipleLinesYes	1.58	1.30	1.93	0.0000
InternetServiceFiber optic	6.26	4.30	9.10	0.0000
InternetServiceNo	0.20	0.13	0.29	0.0000
StreamingTVYes	1.87	1.51	2.32	0.0000
StreamingMoviesYes	1.72	1.39	2.12	0.0000
tenure	0.97	0.96	0.97	0.0000
Contractone year	0.46	0.36	0.59	0.0000
ContractTwo year	0.21	0.14	0.32	0.0000
PaperlessBillingYes	1.44	1.21	1.71	0.0000
MonthlyCharges	0.97	0.96	0.98	0.0000

오즈비의 신뢰구간에 1이 포함되지 않음을 확인할 수 있다. 따라서 최종 선택한 변수는 8개로 다음과 같다. SeniorCitizen, MultipleLines, InternetService, StreamingTV, StreamingMovies, tenure+Contract, PaperlessBilling, MonthlyCharges

® train set 회귀 모델

선택한 변수를 가지고 회귀모델을 돌렸다. 각 변수의 p-value값이 낮게 나옴을 보고 더 이상 수정하지 않았다.

```
> summary(step.train_1)
glm(formula = Churn ~ SeniorCitizen + MultipleLines + InternetService +
    StreamingTV + StreamingMovies + tenure + Contract + PaperlessBilling +
    MonthlyCharges, family = "binomial", data = train_1)
Deviance Residuals:
Min 1Q Median 3Q
-1.9383 -0.6624 -0.2990 0.7179
                                          Max
                                      3.2141
coefficients:
                              Estimate Std. Error z value Pr(>|z|)
                                         0.256126 2.797 0.00516 **
(Intercept)
                             0.716373
                                         0.098713 3.067 0.00217 **
SeniorCitizen
                             0.302712
                                         0.100834 4.536 5.74e-06 ***
MultipleLinesYes
                             0.457355
                                         0.191014 9.598 < 2e-16 ***
0.198603 -8.196 2.48e-16 ***
InternetServiceFiber optic 1.833389
InternetServiceNo
                            -1.627807
                                        0.109306 5.744 9.26e-09 ***
0.108297 4.993 5.93e-07 ***
                             0.627834
StreamingTVYes
StreamingMoviesYes
                            0.540760
                            -0.035202
                                        0.002556 -13.773 < 2e-16 ***
tenure
Contractone year
                                         0.126332 -6.140 8.26e-10 ***
0.208266 -7.462 8.55e-14 ***
                            -0.775656
ContractTwo year
PaperlessBillingYes
                            -1.553983
                             0.364783
                                         0.088169 4.137 3.51e-05 ***
                             -0.031892 0.005575 -5.720 1.06e-08 ***
MonthlyCharges
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
    Null deviance: 5743.0 on 4992 degrees of freedom
Residual deviance: 4155.4 on 4981 degrees of freedom
AIC: 4179.4
Number of Fisher Scoring iterations: 6
```

f) train set 회귀 모델 predict

다음으로 회귀모델을 평가하기 위해 predict 함수를 이용하여 Churn을 예측해보았다. 이 과정 이전에 Churn의 경우 반드시 "Yes"와 "No"를 1과 0으로 설정해주어야 한다.

```
> t$Churn<-ifelse(t$Churn=="Yes",1,0)
> str(t$Churn)
num [1:7032] 0 0 0 0 0 0 0 0 0 0 ...
```

⑨ cutoff 값 설정

지금 하고 있는 회귀모델은 로지스틱 회귀분석 모델이기 때문에 cutoff (컷오프) 값을 지정하여 각 예측값들을 0 또는 1로 클래스를 나누어 주어야 한다. 따라서 cutoff=0.5로 설정하고 분석을 진행하였다.

위와 같이 값들이 0 또는 1로 올바르게 바뀌었음을 확인할 수 있다.

[모델 성능 평가]

ⓐ train set 평가

```
> confusionMatrix(predict_1, train_1$Churn)
Confusion Matrix and Statistics
         Reference
Prediction
           0
        0 3317
        1 368 715
              Accuracy: 0.8075
                95% CI: (0.7963, 0.8184)
   No Information Rate: 0.738
   P-Value [Acc > NIR] : < 2.2e-16
                 Kappa: 0.473
Mcnemar's Test P-Value: 4.981e-13
           Sensitivity: 0.9001
           Specificity: 0.5466
        Pos Pred Value : 0.8483
        Neg Pred Value : 0.6602
            Prevalence: 0.7380
        Detection Rate: 0.6643
   Detection Prevalence: 0.7831
     Balanced Accuracy: 0.7234
       'Positive' Class: 0
```

train set 에서 정확도는 0.8075 정도이다. 좀더 자세히 보면, 민감도와 특이도도 확인할 수 있다. 이데이터의 경우 0을 0으로 맞추는 경우를 민감도로 보았다. 하지만 실제로 우리가 생각하는 민감도는 1을 1로 맞추는 경우, 즉 탈퇴한 사람을 잘 찾아내는 것이 중요하므로 다음 분석 결과는 민감도와 특이도를 바꾸어 해석할 생각이다. 이에 맞게 보면 민감도는 0.5466이고, 특이도는 0.9001이다.

ⓑ test set 으로 모델 돌린 뒤 cutoff (0.5) 설정

```
202
1 0 0
381 383 387
1 0 0
501 502 504
0 0 0
598 600 601
                           0 0 0 0 0 0 0
368 370 371 372 373 376
0 0 0 0 0 0
                                                                          0
398
0
514
                                                                                 412 414 416 424 430
1 0 0 0 0
                                                  0 1 0 0
496 501 502 504
0 0 0 0 0
597 598 600 601
0 1 1 0
694 698 699 704
0 1 0 0
799 802 805 819
                                                                              515 517
                           486 490 491 492 494 495
                                                                      509
                                                                                     519 520
                                                                                             523 525
                          486 490 491 492 494 495
0 0 1 1 0 0
576 581 583 584 587 595
0 0 0 0 0 0 1
659 669 675 676 685 691
0 0 0 0 0
780 782 787 790 791 792
                                                                      1
609
0
707
                                                                          1
613
                                                                                  0 0 1
616 618 632
                                                                              0
615
                                                                  1 0 1
705 707 708
0 0 0
824 843 853
                                                                             0 0 0 0 1 1 0 0 0 0
710 711 713 714 715 725 735 736 738
0 0 0 0 0 0 0 1 0 0
862 863 864 867 869 870 880 889 893
이하 생략
```

© test set 평가

```
> confusionMatrix(pred_test_2, test_2$Churn)
Confusion Matrix and Statistics
         Reference
Prediction
             0
         0 1325 266
         1 153 295
               Accuracy: 0.7945
                 95% CI: (0.7763, 0.8119)
    No Information Rate: 0.7249
    P-Value [Acc > NIR] : 2.490e-13
                  Kappa: 0.4505
 Mcnemar's Test P-Value : 4.461e-08
            Sensitivity: 0.8965
            Specificity: 0.5258
         Pos Pred Value : 0.8328
         Neg Pred Value : 0.6585
             Prevalence: 0.7249
         Detection Rate : 0.6498
   Detection Prevalence: 0.7803
      Balanced Accuracy: 0.7112
       'Positive' Class: 0
```

test set 에서의 정확도는 0.7945 이다. train set 에서보다 정확도가 다소 떨어지긴 했지만 큰 차이는 보이지 않음을 보아 train에서의 과적합은 일어나지 않았다고 판단하였다. 한편 test 에서의 민감도는 0.5258 이며, 특이도는 0.8965 이다.

d) test set에서의 cutoff 조절

한편 컷오프의 값은 어느 정도 분석자의 주관에 따라 설정되는 값이다. 컷오프가 어느 값에서 설정되느냐에 따라 분석의 결과가 달라질 수 있기 때문에 컷오프 설정은 중요하다. 이러한 생각을 하게 되어 test에서의 컷오프의 값을 변경하여 모델을 돌려보았다.

*컷오프의 값을 0.5에서 0.4로 조정해보았다.

```
pred_test_3<-ifelse(pred_test_3>0.4, 1, 0)
pred_test_3
0 0
184 186
0 0
300 305
                                     202
                                     314
0 1 0 0 0 0 0 0 0 5
515 517 519 520 523 525 526 533 534 535
0 0 0 1 0 0 1 0 0 0
509 514
613 615 616 618 632 633 634 636 639
                               708
                                       715
                                        725
                                          735
                                  711
                                    713
                                     714
                                710
853
                                     867
                                       869
                                862
                                  863 864
                                         870
                                          880
                                            889
                                               896
                                     0 1 0 1 0 0 1
997 1001 1007 1010 1011 1018 1020
                               977
                                988
                                  991 994
이하 생략
```

```
> confusionMatrix(pred_test_3, test_2$Churn)
Confusion Matrix and Statistics
          Reference
Prediction
             0
         0 1221 195
         1 257
                 366
               Accuracy : 0.7783
95% CI : (0.7597, 0.7962)
    No Information Rate: 0.7249
    P-Value [Acc > NIR] : 1.93e-08
                  Kappa: 0.4627
Mcnemar's Test P-Value: 0.004115
            Sensitivity: 0.8261
            Specificity: 0.6524
         Pos Pred Value : 0.8623
         Neg Pred Value : 0.5875
             Prevalence: 0.7249
         Detection Rate: 0.5988
   Detection Prevalence : 0.6945
      Balanced Accuracy: 0.7393
       'Positive' Class: 0
```

위의 분석 결과를 보면 정확도는 다소 0.7783으로 떨어졌지만, 민감도가 0.6524로 증가함을 볼 수 있다. 분석의 목적이 고객의 이탈 여부를 예측하는 것이므로 상당히 의미있는 결과라고 생각된다. 따라서 컷오프의 설정이 분석에서 중요하다고 생각된다.

Discussion

로지스틱 회귀분석에서 다중공선성을 보아야하는가에 대해 이야기를 나눠보고 싶습니다.