

Schletter, Inc.		25° Tilt w/o Seismic Design
HCV	Standard PVMax Racking System	
	Representative Calculations - ASCE 7-05	

1. INTRODUCTION

1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMax ground mount system.

1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

	<u>Maximum</u>		<u>Minimum</u>
Height =	2000 mm	Height =	1900 mm
Width =	1050 mm	Width =	970 mm
Dead Load =	3.00 psf	Dead Load =	1.75 psf

Modules Per Row = 2 Module Tilt = 25°

Maximum Height Above Grade = 3 ft

1.3 Technical Codes

- ASCE 7-05 Chapter 6, Wind Loads
- ASCE 7-05 Chapter 7, Snow Loads
- ASCE 7-05 Chapter 2, Combination of Loads
- International Building Code, IBC, 2003, 2006, 2009
- Aluminum Design Manual, Eighth Edition, 2005

Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

2. LOAD ACTIONS

2.1 Permanent Loads

g_{MAX}	=	3.00	psf
g _{мім}	=	1.75	psf

Self-weight of the PV modules.

2.2 Snow Loads

	30.00 psf	Ground Snow Load, P_g =
(ASCE 7-05, Eq. 7-2)	18.56 psf	Sloped Roof Snow Load, P _s =
	1.00	I _s =
	0.82	$C_s =$
	0.90	$C_e =$

 $C_t =$

1.20

2.3 Wind Loads

Design Wind Speed, V =	90 mph	Exposure Category = C
Height <	15 ft	Importance Category = II

Peak Velocity Pressure, q_z = 12.72 psf Including the gust factor, G=0.85. (ASCE 7-05, Eq. 6-15)

Pressure Coefficients

Ct+ _{TOP}	=	1.100	
Cf+ BOTTOM	=	1.100 1.700 <i>(Pressure)</i>	Provided pressure coefficients are the result of wind tunnel
Cf- TOP, OUTER PURLIN	=	-2.500	testing done by Ruscheweyh Consult. Coefficients are located in test report # 1127/0611-1e. Negative forces are
Cf- TOP, INNER PURLIN	=	-1.900 (Suction)	applied away from the surface.
Cf- BOTTOM	=	-1.000	applied away from the currace.

2.4 Seismic Loads - N/A

S _S =	0.00	R = 1.25	ASCE 7, Section 12.8.1.3: A maximum S_s of 1.5
$S_{DS} =$	0.00	$C_S = 0$	may be used to calculate the base shear, C_s , of
$S_1 =$	0.00	$\rho = 1.3$	structures under five stories and with a period, T,
$S_{D1} =$	0.00	$\Omega = 1.25$	of 0.5 or less. Therefore, a S_{ds} of 1.0 was used to
T _a =	0.00	$C_{d} = 1.25$	calculate C _s .

2.5 Combination of Loads

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

Strength Design, LRFD

Component stresses are checked using the following LRFD load combinations:

1.2D + 1.6S + 0.8W 1.2D + 1.6W + 0.5S 0.9D + 1.6W ^M 1.54D + 1.3E + 0.2S ^R 0.56D + 1.3E ^R 1.54D + 1.25E + 0.2S ^O 0.56D + 1.25E O

Allowable Stress Design, ASD

Member deflection checks and foundation designs are done according to the following ASD load combinations:

1.0D + 1.0S 1.0D + 1.0W 1.0D + 0.75L + 0.75W + 0.75S 0.6D + 1.0W ^M (ASCE 7, Eq 2.4.1-1 through 2.4.1-8) & (ASCE 7, Section 12.4.3.2) 1.238D + 0.875E ^O 1.1785D + 0.65625E + 0.75S ^O 0.362D + 0.875E ^O

3. STRUCTURAL ANALYSIS

3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

<u>Purlins</u>	<u>Location</u>	Diagonal Struts	Location	Front Reactions Location
M13	Тор	M3	Outer	N7 Outer
M14	Mid-Top	M7	Inner	N15 Inner
M15	Mid-Bottom	M11	Outer	N23 Outer
M16	Bottom			
<u>Girders</u>	Location	Rear Struts	Location	Rear Reactions Location
M1	Outer	M2	Outer	N8 Outer
M5	Inner	M6	Inner	N16 Inner
M9	Outer	M10	Outer	N24 Outer
Front Struts	<u>Location</u>			
M4	Outer			
M8	Inner			
M12	Outer			

^M Uses the minimum allowable module dead load.

^R Include redundancy factor of 1.3.

O Includes overstrength factor of 1.25. Used to check seismic drift.

4. MEMBER DESIGN CALCULATIONS

4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).

4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).

4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M12 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).

4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M12 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).

4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M12 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).

5. FOUNDATION DESIGN CALCULATIONS

5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report. If a Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

<u>Maximum</u>	<u>Front</u>	Rear	
Tensile Load =	<u>437.36</u>	<u>5178.65</u>	k
Compressive Load =	4090.84	<u>4786.69</u>	k
Lateral Load =	21.44	2782.73	k
Moment (Weak Axis) =	0.04	0.01	k

5.2 Design of Ballast Foundations

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC tables 1804.2 (2003, 2006) & 1806.2 (2009).

Concrete Properties Footing Reinforcement Weight of Concrete = 145 pcf Use fiber reinforcing with (2) #5 rebar. 2500 psi Compressive Strength = Yield Strength = 60000 psi Overturning Check $M_0 =$ 145456.4 in-lbs Resisting Force Required = 2034.36 lbs A minimum 143in long x 35in wide x S.F. = 1.67 18in tall ballast foundation is required Weight Required = 3390.59 lbs to resist overturning. Minimum Width = Weight Provided = 7559.64 lbs Sliding Force = 668.70 lbs Use a 143in long x 35in wide x 18in tall Friction = 0.4 Weight Required = 1671.75 lbs ballast foundation to resist sliding. Resisting Weight = 7559.64 lbs Friction is OK. Additional Weight Required = Cohesion Sliding Force = 668.70 lbs Cohesion = 130 psf Use a 143in long x 35in wide x 18in tall 34.76 ft² Area = ballast foundation. Cohesion is OK. Resisting = 3779.82 lbs Additional Weight Required = 0 lbs Shear Key Additional Force = 0 lbs Lateral Bearing Pressure = 200 psf/ft Required Depth = 0.00 ft Shear key is not required. 2500 psi f'c = Length = 8 in

	Ballast Width				
	<u>35 in</u>	<u>36 in</u>	<u>37 in</u>	<u>38 in</u>	
$P_{ftg} = (145 \text{ pcf})(11.92 \text{ ft})(1.5 \text{ ft})(2.92 \text{ ft}) =$	7560 lbs	7776 lbs	7992 lbs	8208 lbs	

ASD LC	1.0D + 1.0S 1.0D + 1.0W				1.0D + 0.75L + 0.75W + 0.75S			0.6D + 1.0W								
Width	35 in	36 in	37 in	38 in	35 in	36 in	37 in	38 in	35 in	36 in	37 in	38 in	35 in	36 in	37 in	38 in
FA	1537 lbs	1537 lbs	1537 lbs	1537 lbs	1286 lbs	1286 lbs	1286 lbs	1286 lbs	1976 lbs	1976 lbs	1976 lbs	1976 lbs	-204 lbs	-204 lbs	-204 lbs	-204 lbs
F _B	1604 lbs	1604 lbs	1604 lbs	1604 lbs	1828 lbs	1828 lbs	1828 lbs	1828 lbs	2428 lbs	2428 lbs	2428 lbs	2428 lbs	-2483 lbs	-2483 lbs	-2483 lbs	-2483 lbs
F _V	202 lbs	202 lbs	202 lbs	202 lbs	1215 lbs	1215 lbs	1215 lbs	1215 lbs	1046 lbs	1046 lbs	1046 lbs	1046 lbs	-1337 lbs	-1337 lbs	-1337 lbs	-1337 lbs
P _{total}	10700 lbs	10916 lbs	11132 lbs	11348 lbs	10673 lbs	10889 lbs	11105 lbs	11321 lbs	11964 lbs	12180 lbs	12396 lbs	12612 lbs	1849 lbs	1979 lbs	2108 lbs	2238 lbs
M	3731 lbs-ft	3731 lbs-ft	3731 lbs-ft	3731 lbs-ft	3260 lbs-ft	3260 lbs-ft	3260 lbs-ft	3260 lbs-ft	4900 lbs-ft	4900 lbs-ft	4900 lbs-ft	4900 lbs-ft	4222 lbs-ft	4222 lbs-ft	4222 lbs-ft	4222 lbs-ft
е	0.35 ft	0.34 ft	0.34 ft	0.33 ft	0.31 ft	0.30 ft	0.29 ft	0.29 ft	0.41 ft	0.40 ft	0.40 ft	0.39 ft	2.28 ft	2.13 ft	2.00 ft	1.89 ft
L/6	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft
f _{min}	253.8 psf	252.8 psf	251.9 psf	250.9 psf	259.9 psf	258.7 psf	257.6 psf	256.5 psf	273.2 psf	271.7 psf	270.2 psf	268.8 psf	0.0 psf	0.0 psf	0.0 psf	3.0 psf
f _{max}	361.9 psf	357.9 psf	354.1 psf	350.5 psf	354.3 psf	350.5 psf	346.9 psf	343.5 psf	415.2 psf	409.7 psf	404.5 psf	399.6 psf	115.0 psf	115.0 psf	115.2 psf	115.6 psf

D = II = = 4 \A/: = IAI=

Maximum Bearing Pressure = 415 psf Allowable Bearing Pressure = 1500 psf Use a 143in long x 35in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Bearing Pressure

Weak Side Design

Overturning Check

 $M_0 = 1305.9 \text{ ft-lbs}$

Resisting Force Required = 895.50 lbs S.F. = 1.67

Weight Required = 1492.50 lbs Minimum Width = 35 in in Weight Provided = 7559.64 lbs A minimum 143in long x 35in wide x 18in tall ballast foundation is required to resist overturning.

Bearing Pressure

ASD LC	1	.238D + 0.875	iΕ	1.1785D + 0.65625E + 0.75S			0.362D + 0.875E			
Width		35 in			35 in			35 in		
Support	Outer	Inner	Outer	Outer	Inner	Outer	Outer	Inner	Outer	
F _Y	277 lbs	710 lbs	277 lbs	915 lbs	2602 lbs	915 lbs	81 lbs	208 lbs	81 lbs	
F _V	2 lbs	0 lbs	2 lbs	9 lbs	0 lbs	9 lbs	1 lbs	0 lbs	1 lbs	
P _{total}	9636 lbs	7560 lbs	9636 lbs	9824 lbs	7560 lbs	9824 lbs	2818 lbs	7560 lbs	2818 lbs	
М	8 lbs-ft	0 lbs-ft	8 lbs-ft	29 lbs-ft	0 lbs-ft	29 lbs-ft	2 lbs-ft	0 lbs-ft	2 lbs-ft	
е	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	
L/6	0.49 ft	0.49 ft	0.49 ft	0.49 ft	0.49 ft	0.49 ft	0.49 ft	0.49 ft	0.49 ft	
f _{min}	276.8 psf	217.5 psf	276.8 psf	281.0 psf	217.5 psf	281.0 psf	81.0 psf	217.5 psf	81.0 psf	
f _{max}	277.7 psf	217.5 psf	277.7 psf	284.4 psf	217.5 psf	284.4 psf	81.2 psf	217.5 psf	81.2 psf	

Maximum Bearing Pressure = 284 psf Allowable Bearing Pressure = 1500 psf

Use a 143in long x 35in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 143in long x 27in wide x 18in tall ballast foundation and fiber reinforcing with (2) #5 rebar.

5.3 Foundation Anchors

Threaded rods are anchored to the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.

6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of 80mm mounting clamps. The reliability of calculations is uncertain due to limited standards, therefore the strength of the clamp fasteners has been evaluated by load testing.

6.2 Strut Connections

The aluminum struts connect the aluminum girder ends to custom brackets with mounting holes. Single M12 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

Front Strut		Rear Strut
Maximum Axial Load =	3.147 k	$\frac{1}{2} = \frac{1}{2} = \frac{1}$
M12 Bolt Capacity =	12.808 k	M12 Bolt Capacity = 12.808 k
Strut Bearing Capacity =	7.421 k	Strut Bearing Capacity = 7.421 k
Utilization =	<u>42%</u>	Utilization = 47%
Diagonal Strut Maximum Axial Load = M12 Bolt Shear Capacity = Strut Bearing Capacity = Utilization =	1.986 k 12.808 k 7.421 k <u>27%</u>	Bolt and bearing capacities are accounting for double shear. (ASCE 8-02, Eq. 5.3.4-1)

Struts under compression are shown to demonstrate the load transfer from the girder. Single M12 bolts are located at each end of the strut and are subjected to double shear.

7. SEISMIC DESIGN

7.1 Seismic Drift - N/A

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

 $\begin{array}{ccc} \text{Mean Height, h}_{\text{sx}} = & & 56.48 \text{ in} \\ \text{Allowable Story Drift for All Other} & & 0.020 h_{\text{sx}} \\ \text{Structures, } \Delta = \{ & & 1.130 \text{ in} \\ \text{Max Drift, } \Delta_{\text{MAX}} = & & 0.054 \text{ in} \\ \end{array}$

The racking structure's reaction to seismic loads is shown to the right. The deflections have been magnified to provide a clear portrayal of potential story drift.

APPENDIX A

A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

Purlin = **S1.5**

Strong Axis:

3.4.14

$$\begin{array}{ll} \mathsf{L_b} = & 117 \text{ in} \\ \mathsf{J} = & 0.432 \\ & 323.677 \\ \\ S1 = & \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ \mathsf{S1} = & 0.51461 \\ \\ S2 = & \left(\frac{C_c}{1.6}\right)^2 \\ \mathsf{S2} = & 1701.56 \\ \mathsf{\phiF_L} = & \mathsf{\phib[Bc-1.6Dc*} \sqrt{((\mathsf{LbSc})/(\mathsf{Cb*} \sqrt{(\mathsf{lyJ})/2}))]} \end{array}$$

Weak Axis:

3.4.14

$$\begin{split} \mathsf{L_b} &= & 117 \\ \mathsf{J} &= & 0.432 \\ & & 205.839 \\ S1 &= & \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ \mathsf{S1} &= & 0.51461 \\ S2 &= & \left(\frac{C_c}{1.6}\right)^2 \\ \mathsf{S2} &= & 1701.56 \\ \varphi \mathsf{F_L} &= & \varphi b [\mathsf{Bc-1.6Dc*} \sqrt{((\mathsf{LbSc})/(\mathsf{Cb*} \sqrt{(\mathsf{lyJ})/2}))]} \\ \varphi \mathsf{F_L} &= & 28.7 \end{split}$$

3.4.16

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 25.1 \text{ ksi}$$

 $\phi F_1 = 27.5 \text{ ksi}$

3.4.16

$$b/t = 37.0588$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 23.1 \text{ ksi}$$

3.4.16.1

Rb/t =

S1 =

$$S1 = 1.1$$

$$S2 = C_t$$

$$\varphi F_L = 1.17 \varphi y F c y$$

$$\varphi F_L = 38.9 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

$$h/t = 37.0588$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40.985$$

$$Cc = 41.015$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.2$$

$$\varphi F_L = \varphi b[Bbr-mDbr*h/t]$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{aligned} \phi F_L St &= & 25.1 \text{ ksi} \\ lx &= & 897074 \text{ mm}^4 \\ & & 2.155 \text{ in}^4 \\ y &= & 41.015 \text{ mm} \\ Sx &= & 1.335 \text{ in}^3 \end{aligned}$$

2.788 k-ft

h/t = 32.195

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 45.5$$

$$C_0 = 45.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 23.1 \text{ ksi}$$

$$\begin{split} \phi F_L W k &= & 23.1 \text{ ksi} \\ ly &= & 446476 \text{ mm}^4 \\ & & 1.073 \text{ in}^4 \\ x &= & 45.5 \text{ mm} \\ Sy &= & 0.599 \text{ in}^3 \\ M_{max} W k &= & 1.152 \text{ k-ft} \end{split}$$

 $M_{max}St =$

Compression

3.4.9

b/t = 32.195
S1 = 12.21 (See 3.4.16 above for formula)
S2 = 32.70 (See 3.4.16 above for formula)

$$\phi F_L = \phi c[Bp-1.6Dp^*b/t]$$

 $\phi F_L = 25.1 \text{ ksi}$
b/t = 37.0588
S1 = 12.21
S2 = 32.70
 $\phi F_L = (\phi ck2^*\sqrt{(BpE))}/(1.6b/t)$
 $\phi F_L = 21.9 \text{ ksi}$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$

 $S1 = 6.87$
 $S2 = 131.3$
 $\phi F_L = \phi y F c y$
 $\phi F_L = 33.25 \text{ ksi}$
 $\phi F_L = 21.94 \text{ ksi}$
 $A = 1215.13 \text{ mm}^2$
 1.88 in^2
 $P_{\text{max}} = 41.32 \text{ kips}$

A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition

Girder = BF0

Strong Axis: Weak Axis: 3.4.14 $L_b = 104.56 \text{ in}$ $L_b = 104.56$ J = 1.08 J = 1.08 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $\phi F_L = \phi b[Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_L = \phi b[Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_1 = 29.0 \text{ ksi}$ $\phi F_1 =$ 28.9

3.4.16

3.4.16 b/t = 16.2 b/t = 7.4
$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2 S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp*b/t]$$

$$\varphi F_L = 31.6 \text{ ksi}$$
3.4.16 b/t = 7.4
$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp*b/t]$$

$$\varphi F_L = 33.3 \text{ ksi}$$

3.4.16.1 Used Rb/t = 18.1
$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$
 S1 = 1.1
$$S2 = C_t$$
 S2 = 141.0
$$\varphi F_L = \varphi b[Bt-Dt^* \sqrt{(Rb/t)}]$$

31.1 ksi

 $\phi F_L =$

16.2

 $\frac{\theta_y}{2}$ 1.3Fcy

3.4.18

h/t =

Bbr -

3.4.18

$$h/t = 7.4$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 35.2$$

$$m = 0.68$$

$$C_0 = 41.067$$

$$Cc = 43.717$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 73.8$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 29.0 \text{ ksi}$$

 $lx = 984962 \text{ mm}^4$

y = 43.717 mm

2.366 in⁴

1.375 in³

3.323 k-ft

S1 = 36.9
m = 0.65

$$C_0$$
 = 40
 C_0 = 40
 $S2 = \frac{k_1 Bbr}{mDbr}$
S2 = 77.3
 ϕF_L = 1.3 $\phi y F_C y$
 ϕF_L = 43.2 ksi
 $\phi F_L Wk$ = 33.3 ksi
 $\phi F_L Wk$ = 32.44 mm⁴
2.219 in⁴
 $\phi F_L Wk$ = 40 mm
 $\phi F_L Wk$ = 3.904 k-ft

Compression

 $M_{max}St =$

Sx =

3.4.9

b/t =12.21 (See 3.4.16 above for formula) S2 = 32.70 (See 3.4.16 above for formula) $\varphi F_L = \varphi c[Bp-1.6Dp*b/t]$ $\varphi F_L =$ 31.6 ksi b/t =7.4 S1 = 12.21 32.70 S2 = $\phi F_L = \phi y F c y$ $\varphi F_L =$ 33.3 ksi

3.4.10

Rb/t = 18.1

$$S1 = \left(\frac{Bt - \frac{\theta_{y}}{\theta_{b}}Fcy}{Dt}\right)^{2}$$
S1 = 6.87
S2 = 131.3
 $\phi F_{L} = \phi c[Bt-Dt^{*}\sqrt{(Rb/t)}]$
 $\phi F_{L} = 31.09 \text{ ksi}$
 $\phi F_{L} = 31.09 \text{ ksi}$

58.55 kips

 $P_{max} =$

A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition

Strut = **55x55**

Strong Axis:

3.4.14

$$L_{b} = 24.8 \text{ in}$$

$$J = 0.942$$

$$38.7028$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}} Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

$$32 - (\frac{1.6}{1.6})$$

S2 = 1701 56

$$\phi F_L \text{= } \phi b [\text{Bc-1.6Dc*} \\ \text{$\sqrt{((LbSc)/(Cb*} \\ \sqrt{(lyJ)/2))}]}$$

$$\phi F_L = 31.4 \text{ ksi}$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_1 = 28.2 \text{ ksi}$$

Not Used 0.0 3.4.16.1

Rb/t =

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = \begin{pmatrix} 1.6Dt \\ S2 = C_t \\ S2 = 141.0 \end{pmatrix}$$

$$\phi F_L = 1.17 \phi y F c y$$

$$\phi F_L = 38.9 \text{ ksi}$$

24.5

3.4.18

h/t =

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\varphi F_L = 1.3\varphi y Fcy$$

$$\varphi F_1 = 43.2 \text{ ksi}$$

$$\phi F_L St = 28.2 \text{ ksi}$$
 $lx = 279836 \text{ mm}^4$

$$0.672 \text{ in}^4$$

y = 27.5 mm

0.621 in³

$$M_{\text{max}}St = 1.460 \text{ k-ft}$$

Weak Axis:

3.4.14

$$L_{b} = 24.8$$

$$J = 0.942$$

$$38.7028$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}} Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

$\varphi F_L = \varphi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}$

$$\phi F_L = 31.4$$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_I = 28.2 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 28.2 \text{ ksi}$$

$$\psi = 279836 \text{ mm}^4$$

x =

0.672 in⁴

 $Sy = 0.621 \text{ in}^3$

 $M_{max}Wk = 1.460 \text{ k-ft}$

27.5 mm

Sx =

SCHLETTER

Compression

3.4.7
$$\lambda = 0.57371$$

$$r = 0.81 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\varphi cc = 0.87952$$

$$\varphi F_L = \varphi cc(Bc-Dc^*\lambda)$$

$$\varphi F_L = 28.0279 \text{ ksi}$$

3.4.9

$$\begin{array}{lll} b/t = & 24.5 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \\ b/t = & 24.5 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \end{array}$$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi y Fcy$
 $\phi F_L = 33.25 \text{ ksi}$
 $\phi F_L = 28.03 \text{ ksi}$
A = 663.99 mm²
1.03 in²

28.85 kips

A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition

Strut = <u>55x55</u>

 $P_{max} =$

Strong Axis: Weak Axis: 3.4.14 3.4.14 $L_b =$ 98.03 in 98.03 0.942 0.942 J = J = 152.985 152.985 $S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$ S1 = 0.51461 S1 = 0.51461 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$ $\phi F_1 =$ 29.4 ksi $\phi F_1 =$ 29.4

SCHLETTER

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1

A.16.1 Not Used

Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

$$S1 = \left(\frac{Bt - 1.17}{\theta_b} \frac{\theta_b}{\theta_b} \frac{FCY}{V}\right)$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi FCY$$

$$\varphi F_L = 38.9 \text{ ksi}$$

3.4.18

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 28.2 \text{ ksi}$$
 $lx = 279836 \text{ mm}^4$

$$0.672 \text{ in}^4$$

 $y = 27.5 \text{ mm}$
 $Sx = 0.621 \text{ in}^3$

$M_{max}St = 1.460 \text{ k-ft}$

3.4.7

Compression

$$\begin{array}{lll} \lambda = & 2.26776 \\ r = & 0.81 \text{ in} \\ & S1^* = \frac{Bc - Fcy}{1.6Dc^*} \\ S1^* = & 0.33515 \\ & S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E} \\ S2^* = & 1.23671 \\ & \phi cc = & 0.89749 \\ & \phi F_L = & (\phi cc Fcy)/(\lambda^2) \\ & \phi F_L = & 6.10803 \text{ ksi} \end{array}$$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\varphi F_L = 1.3\varphi y Fcy$$

$$\varphi F_L = 43.2 \text{ ksi}$$

$$\phi F_L W k = 28.2 \text{ ksi}$$
 $y = 279836 \text{ mm}^4$
 0.672 in^4
 $x = 27.5 \text{ mm}$

$$Sy = 0.621 \text{ in}^3$$

 $M_{max}Wk = 1.460 \text{ k-ft}$

3.4.9

$$b/t = 24.5 \\ S1 = 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = 28.2 \text{ ksi} \\ b/t = 24.5 \\ S1 = 12.21 \\ S2 = 32.70 \\ \phi F_L = \phi c [Bp-1.6Dp^*b/t]$$

3.4.10

 $\varphi F_L =$

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi y Fcy$
 $\phi F_L = 33.25 \text{ ksi}$

$$\phi F_L = 6.11 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$1.03 \text{ in}^2$$

$$P_{\text{max}} = 6.29 \text{ kips}$$

28.2 ksi

A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition

Strut = <u>55x55</u>

Strong Axis: 3.4.14		Weak Axis: 3.4.14	
L _b =	69.80 in	$L_b = 69.8$	
J =	0.942 108.93	J = 0.942 108.93	
$S1 = \left(\frac{Bc}{-}\right)$	$\left\frac{\theta_y}{\theta_b} Fcy \right)^2 \\ 1.6Dc$	$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$	
S1 = 0	.51461	S1 = 0.51461	
$S2 = \left(\cdot \right)$	$\frac{C_c}{1.6}$	$S2 = \left(\frac{C_c}{1.6}\right)^2$	
S2 = 1	701.56	S2 = 1701.56	
$\phi F_L = \phi b$	$p[Bc-1.6Dc*\sqrt{(LbSc)/(Cb*\sqrt{(lyJ)/2)}}]$	$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((L^2)^2)}]$	_bSc)/(Cb*√(lyJ)/2))]
$\phi F_L =$	30.0 ksi	$\phi F_L = 30.0$	
3.4.16		3.4.16	

$$SA.16$$

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp^*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

$$SA.16$$

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp^*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1 Not Used
$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

 $\phi F_L = 38.9 \text{ ksi}$

24.5

3.4.16.1 N/A for Weak Direction

3.4.18

h/t =

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

 $\phi F_1 St = 28.2 \text{ ksi}$

 $M_{max}St = 1.460 \text{ k-ft}$

 $lx = 279836 \text{ mm}^4$

0.672 in⁴

0.621 in³

27.5 mm

3.4.18
$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$y = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$x = 27.5 \text{ mm}$$

$$Sy = 0.621 \text{ in}^3$$

$$M_{max}Wk = 1.460 \text{ k-ft}$$

Compression

y = Sx =

3.4.7

$$\begin{array}{lll} \lambda = & 1.61471 \\ r = & 0.81 \text{ in} \\ S1^* = & \frac{Bc - Fcy}{1.6Dc^*} \\ S1^* = & 0.33515 \\ S2^* = & \frac{Cc}{\pi} \sqrt{Fcy/E} \\ S2^* = & 1.23671 \\ \phi cc = & 0.80606 \\ \phi F_L = & (\phi cc Fcy)/(\lambda^2) \\ \phi F_L = & 10.8205 \text{ ksi} \end{array}$$

3.4.9

b/t = 24.5
S1 = 12.21 (See 3.4.16 above for formula)
S2 = 32.70 (See 3.4.16 above for formula)

$$\varphi F_L = \varphi c[Bp-1.6Dp^*b/t]$$

 $\varphi F_L = 28.2 \text{ ksi}$
b/t = 24.5
S1 = 12.21
S2 = 32.70
 $\varphi F_L = \varphi c[Bp-1.6Dp^*b/t]$
 $\varphi F_L = 28.2 \text{ ksi}$

3.4.10

$$\begin{aligned} \text{Rb/t} &= & 0.0 \\ S1 &= \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2 \\ \text{S1} &= & 6.87 \\ \text{S2} &= & 131.3 \\ \text{ϕF}_L &= & \text{ϕF$Cy} \\ \text{$\phi$F}_L &= & 33.25 \text{ ksi} \\ \text{ϕF}_L &= & 10.82 \text{ ksi} \\ \text{A} &= & 663.99 \text{ mm}^2 \\ & & 1.03 \text{ in}^2 \\ \text{P}_{\text{max}} &= & 11.14 \text{ kips} \end{aligned}$$

APPENDIX B

B.1

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:__

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	.Area(Me	Surface(
1	Dead Load, Max	DĽ	_	-1	,			4	,	,
2	Dead Load, Min	DL		-1				4		
3	Snow Load	SL						4		
4	Wind Load - Pressure	WL						4		
5	Wind Load - Suction	WL						4		
6	Seismic - Lateral	EL								

Member Distributed Loads (BLC 1 : Dead Load, Max)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-9.843	-9.843	0	0
2	M14	Υ	-9.843	-9.843	0	0
3	M15	Υ	-9.843	-9.843	0	0
4	M16	Υ	-9.843	-9.843	0	0

Member Distributed Loads (BLC 2 : Dead Load, Min)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-5.454	-5.454	0	0
2	M14	Υ	-5.454	-5.454	0	0
3	M15	Υ	-5.454	-5.454	0	0
4	M16	Υ	-5.454	-5.454	0	0

Member Distributed Loads (BLC 3: Snow Load)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-55.176	-55.176	0	0
2	M14	Υ	-55.176	-55.176	0	0
3	M15	Υ	-55.176	-55.176	0	0
4	M16	Υ	-55 176	-55 176	0	0

Member Distributed Loads (BLC 4: Wind Load - Pressure)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	-45.897	-45.897	0	0
2	M14	V	-45.897	-45.897	0	0
3	M15	V	-70.932	-70.932	0	0
4	M16	V	-70.932	-70.932	0	0

Member Distributed Loads (BLC 5: Wind Load - Suction)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	٧	104.312	104.312	0	0
2	M14	٧	79.277	79.277	0	0
3	M15	V	41.725	41.725	0	0
4	M16	У	41.725	41.725	0	0

Load Combinations

	Description	S	P	S E	3	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	. B	Fa	В	Fa
1	LRFD 1.2D + 1.6S + 0.8W	Yes	Υ		1	1.2	3	1.6	4	.8														
2	LRFD 1.2D + 1.6W + 0.5S	Yes	Y		1	1.2	3	.5	4	1.6														
3	LRFD 0.9D + 1.6W	Yes	Υ		2	.9					5	1.6												
4	LATERAL - LRFD 1.54D + 1.3E	Yes	Υ		1	1.54	3	.2			6	1.3												
5	LATERAL - LRFD 0.56D + 1.3E	Yes	Υ		1	.56					6	1.3												
6	LATERAL - LRFD 1.54D + 1.25	Yes	Y		1	1.54	3	.2			6	1.25												
7	LATERAL - LRFD 0.56D + 1.25E	Yes	Υ		1	.56					6	1.25												

Model Name

: Schletter, Inc. : HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

Load Combinations (Continued)

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa
8																								
9	ASD 1.0D + 1.0S	Yes	Υ		1	1	3	1																
10	ASD 1.0D + 1.0W	Yes	Υ		1	1			4	1														
11	ASD 1.0D + 0.75L + 0.75W + 0	Yes	Υ		1	1	3	.75	4	.75														
12	ASD 0.6D + 1.0W	Yes	Υ		2	.6					5	1												
13	LATERAL - ASD 1.238D + 0.875E	Yes	Υ		1	1.2					6	.875												
14	LATERAL - ASD 1.1785D + 0.65	Yes	Υ		1	1.1	3	.75			6	.656												
15	LATERAL - ASD 0.362D + 0.875E	Yes	Υ		1	.362					6	.875												

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N8	max	533.869	2	1111.801	1	.945	1	.004	1	0	1	Ó	1
2		min	-690.11	3	-1231.986	3	.046	15	0	15	0	1	0	1
3	N7	max	.043	9	1181.383	1	69	15	001	15	0	1	0	1
4		min	158	2	-77.923	3	-16.493	1	033	1	0	1	0	1
5	N15	max	0	15	3146.803	1	0	3	0	3	0	1	0	1
6		min	-1.821	2	-336.428	3	0	10	0	10	0	1	0	1
7	N16	max	2015.343	2	3682.071	1	0	9	0	1	0	1	0	1
8		min	-2140.562	3	-3983.575	3	0	3	0	12	0	1	0	1
9	N23	max	.043	9	1181.383	1	16.493	1	.033	1	0	1	0	1
10		min	158	2	-77.923	3	.69	15	.001	15	0	1	0	1
11	N24	max	533.869	2	1111.801	1	046	15	0	15	0	1	0	1
12		min	-690.11	3	-1231.986	3	945	1	004	1	0	1	0	1
13	Totals:	max	3080.942	2	11415.242	1	0	3	·				·	
14		min	-3521.093	3	-6939.822	3	0	13						

Envelope Member Section Forces

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
1	M13	1	max	99.605	1	464.34	1	-8.091	15	0	15	.279	1	0	1
2			min	4.045	15	-590.199	3	-200.266	1	015	1	.011	15	0	3
3		2	max	99.605	1	324.516	1	-6.21	15	0	15	.088	1	.545	3
4			min	4.045	15	-415.54	3	-153.613	1	015	1	.004	15	427	1
5		3	max	99.605	1	184.691	1	-4.33	15	0	15	0	3	.9	3
6			min	4.045	15	-240.881	3	-106.96	1	015	1	054	1	703	1
7		4	max	99.605	1	44.867	1	-2.449	15	0	15	005	12	1.067	3
8			min	4.045	15	-66.222	3	-60.308	1	015	1	144	1	827	1
9		5	max	99.605	1	108.437	3	568	15	0	15	007	12	1.044	3
10			min	4.045	15	-94.958	1	-13.655	1	015	1	184	1	8	1
11		6	max	99.605	1	283.095	3	32.998	1	0	15	007	15	.832	3
12			min	4.045	15	-234.782	1	.585	12	015	1	174	1	622	1
13		7	max	99.605	1	457.754	3	79.651	1	0	15	005	15	.43	3
14			min	4.045	15	-374.607	1	2.497	12	015	1	113	1	292	1
15		8	max	99.605	1	632.413	3	126.303	1	0	15	.002	2	.19	1
16			min	4.045	15	-514.431	1	4.408	12	015	1	004	3	16	3
17		9	max	99.605	1	807.072	3	172.956	1	0	15	.161	1	.823	1
18			min	4.045	15	-654.255	1	6.319	12	015	1	.003	12	94	3
19		10	max	99.605	1	794.08	1	-8.231	12	.015	1	.374	1	1.607	1
20			min	4.045	15	-981.731	3	-219.609	1	001	3	.011	12	-1.909	3
21		11	max	99.605	1	654.255	1	-6.319	12	.015	1	.161	1	.823	1
22			min	4.045	15	-807.072	3	-172.956	1	0	15	.003	12	94	3
23		12	max	99.605	1	514.431	1	-4.408	12	.015	1	.002	2	.19	1
24			min	4.045	15	-632.413	3	-126.303	1	0	15	004	3	16	3
25		13	max	99.605	1	374.607	1	-2.497	12	.015	1	005	15	.43	3
26			min	4.045	15	-457.754	3	-79.651	1	0	15	113	1	292	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
27		14	max	99.605	1	234.782	1	585	12	.015	1	007	15	.832	3
28			min	4.045	15	-283.095	3	-32.998	1	0	15	174	1	622	1
29		15	max	99.605	1	94.958	1	13.655	1	.015	1	007	12	1.044	3
30			min	4.045	15	-108.437	3	.568	15	0	15	184	1	8	1
31		16	max	99.605	1	66.222	3	60.308	1	.015	1	005	12	1.067	3
32			min	4.045	15	-44.867	1	2.449	15	0	15	144	1	827	1
33		17	max	99.605	1	240.881	3	106.96	1	.015	1	0	3	.9	3
34			min	4.045	15	-184.691	1	4.33	15	0	15	054	1	703	1
35		18	max	99.605	1	415.54	3	153.613	1	.015	1	.088	1	.545	3
36			min	4.045	15	-324.516	1	6.21	15	0	15	.004	15	427	1
37		19	max	99.605	1	590.199	3	200.266	1	.015	1	.279	1	0	1
38			min	4.045	15	-464.34	1	8.091	15	0	15	.011	15	0	3
39	M14	1	max	54.894	1	506.979	1	-8.386	15	.01	3	.327	1	0	1
40			min	2.236	15	-463.697	3	-207.573	1	014	1	.013	15	0	3
41		2	max	54.894	1	367.155	1	-6.505	15	.01	3	.127	1	.431	3
42			min	2.236	15	-332.432	3	-160.92	1	014	1	.005	15	473	1
43		3	max	54.894	1	227.33	1	-4.624	15	.01	3	.002	3	.72	3
44			min	2.236	15	-201.167	3	-114.267	1	014	1	022	1	795	1
45		4	max	54.894	1	87.506	1	-2.744	15	.01	3	004	12	.867	3
46		7	min	2.236	15	-69.902	3	-67.615	1	014	1	12	1	966	1
47		5	max	54.894	1	61.362	3	863	15	.01	3	007	12	.872	3
48			min	2.236	15	-52.319	1	-20.962	1	014	1	168	1	985	1
49		6		54.894	1	192.627	3	25.691	1	.01	3	007	15	.734	3
		0	max	2.236	15	-192.143	1	.288	12		1		1		1
50		7	min		-					014		166		853	
51		7	max	54.894	1	323.892	3	72.344	1	.01	3	005	15	.454	3
52		_	min	2.236	15	-331.968	1	2.199	12	014	1	113	1	569	1
53		8	max	54.894	1	455.157	3	118.996	1	.01	3	0	10	.032	3
54			min	2.236	15	-471.792	1	4.111	12	014	1	009	1	133	1
55		9	max	54.894	1	586.422	3	165.649	1	.01	3	.145	1	.453	1
56		40	min	2.236	15	-611.616	1_	6.022	12	014	1	.003	12	532	3
57		10	max	54.894	1	751.441	1	-7.933	12	.014	1	.35	1	1.192	1
58		4.4	min	2.236	15	-717.687	3	-212.302	1	01	3	.011	12	<u>-1.238</u>	3
59		11	max	54.894	1	611.616	1	-6.022	12	.014	1	.145	1	.453	1
60			min	2.236	15	-586.422	3	-165.649	1	01	3	.003	12	532	3
61		12	max	54.894	1	471.792	_1_	-4.111	12	.014	1	0	10	.032	3
62			min	2.236	15	-455.157	3	-118.996	1	01	3	009	1	133	1
63		13	max	54.894	1	331.968	1	-2.199	12	.014	1	005	15	.454	3
64			min	2.236	15	-323.892	3	-72.344	1	01	3	113	1	569	1
65		14	max	54.894	1	192.143	1_	288	12	.014	1	007	15	.734	3
66			min	2.236	15	-192.627	3	-25.691	1	01	3	166	1	853	1
67		15	max		1	52.319	_1_	20.962	1	.014	1	007	12	.872	3
68			min	2.236	15	-61.362	3	.863	15	01	3	168	1	985	1
69		16	max	54.894	1	69.902	3	67.615	1	.014	1	004	12	.867	3
70			min	2.236	15	-87.506	1	2.744	15	01	3	12	1	966	1
71		17	max	54.894	1	201.167	3	114.267	1	.014	1	.002	3	.72	3
72			min	2.236	15	-227.33	1	4.624	15	01	3	022	1	795	1
73		18	max	54.894	1	332.432	3	160.92	1	.014	1	.127	1	.431	3
74			min	2.236	15	-367.155	1	6.505	15	01	3	.005	15	473	1
75		19	max	54.894	1	463.697	3	207.573	1	.014	1	.327	1	0	1
76			min	2.236	15	-506.979	1	8.386	15	01	3	.013	15	0	3
77	M15	1	max	-2.396	15	584.046	2	-8.382	15	.014	1	.326	1	0	2
78			min	-58.797	1	-244.449	3	-207.505	1	008	3	.013	15	0	3
79		2	max	-2.396	15	420.642	2	-6.501	15	.014	1	.127	1	.229	3
80			min	-58.797	1	-178.275	3	-160.852	1	008	3	.005	15	544	2
81		3	max	-2.396	15	257.237	2	-4.621	15	.014	1	.002	3	.386	3
82			min	-58.797	1	-112.1	3	-114.199	1	008	3	022	1	911	2
83		4	max	-2.396	15	95.598	1	-2.74	15	.014	1	004	12	.472	3

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		Axial[lb]		y Shear[lb]				Torque[k-ft]					LC
84			min	-58.797	1	-45.925	3	-67.547	1_	008	3	121	1_	-1.102	2
85		5	max	-2.396	15	20.25	3	859	15	.014	1_	007	12	.486	3
86			min	-58.797	1	-69.573	2	-20.894	1	008	3	169	1	-1.115	2
87		6	max	-2.396	15	86.425	3	25.759	1	.014	1	007	15	.428	3
88			min	-58.797	1	-232.978	2	.354	12	008	3	166	1	955	1
89		7	max	-2.396	15	152.599	3	72.411	1	.014	1	005	15	.299	3
90			min	-58.797	1	-396.382	2	2.266	12	008	3	113	1	621	1
91		8	max	-2.396	15	218.774	3	119.064	1	.014	1	0	10	.097	3
92			min	-58.797	1	-559.787	2	4.177	12	008	3	009	1	113	1
93		9	max	-2.396	15	284.949	3	165.717	1	.014	1	.145	1	.603	2
94			min	-58.797	1	-723.192	2	6.089	12	008	3	.003	12	175	3
95		10	max	-2.396	15	886.597	2	-8	12	.008	3	.35	1	1.475	2
96			min	-58.797	1	-351.124	3	-212.369	1	014	1	.011	12	52	3
97		11	max	-2.396	15	723.192	2	-6.089	12	.008	3	.145	1	.603	2
98			min	-58.797	1	-284.949	3	-165.717	1	014	1	.003	12	175	3
99		12	max	-2.396	15	559.787	2	-4.177	12	.008	3	0	10	.097	3
100		12			-	-218.774	3	-119.064	1	014	1	009	1	113	1
		40	min	-58.797	1										_
101		13	max	-2.396	15	396.382	2	-2.266	12	.008	3	005	15	.299	3
102		4.4	min	-58.797	1	-152.599	3	-72.411	1	014	1	113	1_	621	1
103		14	max	-2.396	15	232.978	2	354	12	.008	3	007	15	.428	3
104			min	-58.797	1	-86.425	3	-25.759	1_	014	1_	166	1_	955	1
105		15	max	-2.396	15	69.573	2	20.894	1	.008	3	007	12	.486	3
106			min	-58.797	1	-20.25	3	.859	15	014	1	169	1_	-1.115	2
107		16	max	-2.396	15	45.925	3	67.547	1	.008	3	004	12	.472	3
108			min	-58.797	1	-95.598	1_	2.74	15	014	1	121	1	-1.102	2
109		17	max	-2.396	15	112.1	3	114.199	1	.008	3	.002	3	.386	3
110			min	-58.797	1	-257.237	2	4.621	15	014	1	022	1	911	2
111		18	max	-2.396	15	178.275	3	160.852	1	.008	3	.127	1	.229	3
112			min	-58.797	1	-420.642	2	6.501	15	014	1	.005	15	544	2
113		19	max	-2.396	15	244.449	3	207.505	1	.008	3	.326	1	0	2
114			min	-58.797	1	-584.046	2	8.382	15	014	1	.013	15	0	3
115	M16	1	max	-4.529	15	545.559	2	-8.106	15	.013	1	.282	1	0	2
116			min	-111.251	1	-217.58	3	-200.737	1	011	3	.011	15	0	3
117		2	max	-4.529	15	382.154	2	-6.226	15	.013	1	.09	1	.2	3
118			min	-111.251	1	-151.406	3	-154.085	1	011	3	.004	15	503	2
119		3	max	-4.529	15	218.75	2	-4.345	15	.013	1	0	12	.328	3
120		3	min	-111.251	1	-85.231	3	-107.432	1	011	3	052	1	828	2
		4									1		12		-
121		4	max	-4.529	15	55.345	2	-2.464	<u>15</u> 1	.013	_	005	1	.385	3
122		_	min	-111.251	1_	-19.056	3	-60.779		011	3	143		976	2
123		5	max	-4.529	15	47.119	3	584	15	.013	1	007	12	.369	3
124				-111.251	1	-108.066		-14.127	1	011	3	183	1_	948	2
125		6	max		15	113.294	3	32.526	1	.013	1	007	15	.282	3
126				-111.251	1	-271.465	2	.785	12	011	3	173	1_	742	2
127		7	max		15	179.468	3	79.179	1	.013	1	005	15	.124	3
128				-111.251	1	-434.87	2	2.697	12	011	3	113	1	36	2
129		8	max		15	245.643	3	125.831	1	.013	1	0	10	.207	1
130			min	-111.251	1	-598.274	2	4.608	12	011	3	003	3	106	3
131		9	max		15	311.818	3	172.484	1	.013	1	.16	1_	.937	1
132			min	-111.251	1	-761.679	2	6.519	12	011	3	.004	12	408	3
133		10	max		15	925.084	2	-8.431	12	.013	1	.372	1	1.85	2
134				-111.251	1	-377.993	3	-219.137	1	011	3	.012	12	782	3
135		11	max		15	761.679	2	-6.519	12	.011	3	.16	1	.937	1
136				-111.251	1	-311.818	3	-172.484	1	013	1	.004	12	408	3
137		12	max		15	598.274	2	-4.608	12	.011	3	0	10	.207	1
138		12		-111.251	1	-245.643	3	-125.831	1	013	1	003	3	106	3
139		13	max		15	434.87	2	-2.697	12	.011	3	005	15	.124	3
140		13	_	-111.251	1	-179.468	3	-79.179	1	013	1	113	1	36	2
140			111111	-111.201		-173.400	J	-13.113		013		113		50	

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

141		Member	Sec		Axial[lb]			LC	z Shear[lb]		Torque[k-ft]	LC	y-y Mome		z-z Mome	LC_
144			14													
144				min		1		3								
145			15	max		15				_	.011	3		12	.369	
146	144			min	-111.251	1	-47.119	3	.584	15	013	1	183	1	948	2
147	145		16	max	-4.529	15	19.056	3	60.779	1	.011	3	005	12	.385	3
148	146			min	-111.251	1	-55.345	2	2.464	15	013	1	143	1	976	2
148	147		17	max	-4.529	15	85.231	3	107.432	1	.011	3	0	12	.328	3
149	148			min						15	013			1		
150			18	max		15						3		1		
151										15				15		
152			19									<u> </u>			_	
153																
155		M2	1			_						_				
155		IVIZ														
156			2													-
157						_										
158			2										T T			-
159			3													
160													_			
161			4					_							_	
162						_						_	_			
163			5													
164												_	_			
165			6	max		1_				_					_	15
166						3	.432	15		15	0	1	_	15	003	4
167	165		7	max	1081.813	1	1.8		.796	1	0	5	.002		0	15
168	166			min	-1086.887	3	.423	15	.032	15	0	1	0	15	004	4
169	167		8	max	1082.287	1	1.763	4	.796	1	0	5	.002	1	0	15
169	168			min	-1086.532	3	.415	15	.032	15	0	1	0	15	004	4
170			9	max	1082,761	1	1.726	4	.796	1	0	5	.002	1	001	15
171						3		15		15				15		
172			10			1					0	5	.002			
173	172					3		15		15				15	005	
174			11									5	003			
175										_						
176			12									5	_			
177 13 max 1084.656 1 1.578 4 .796 1 0 5 .003 1 002 15 178 min -1084.756 3 .371 15 .032 15 0 1 0 15 007 4 179 14 max 1085.129 1 1.541 4 .796 1 0 5 .003 1 002 15 180 min -1084.4 3 .363 15 .032 15 0 1 0 15 007 4 181 15 max 1085.603 1 1.504 4 .796 1 0 5 .004 1 002 15 182 min -1084.045 3 .354 15 .032 15 0 1 0 15 008 4 183 16 max 1086.077 1 1.467 4 .796 <td< td=""><td></td><td></td><td>12</td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>			12			_										
178			13													
179 14 max 1085.129 1 1.541 4 .796 1 0 5 .003 1 002 15 180 min -1084.4 3 .363 15 .032 15 0 1 0 15 007 4 181 15 max 1085.603 1 1.504 4 .796 1 0 5 .004 1 002 15 182 min -1084.045 3 .354 15 .032 15 0 1 0 15 .008 4 183 16 max 1086.077 1 1.467 4 .796 1 0 5 .004 1 002 15 184 min -1083.69 3 .345 15 .032 15 0 1 0 15 .008 4 185 17 max 1086.551 1 <t< td=""><td></td><td></td><td>13</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>			13													
180			11										_			
181 15 max 1085.603 1 1.504 4 .796 1 0 5 .004 1 002 15 182 min -1084.045 3 .354 15 .032 15 0 1 0 15 008 4 183 16 max 1086.077 1 1.467 4 .796 1 0 5 .004 1 002 15 184 min -1083.69 3 .345 15 .032 15 0 1 0 15 008 4 185 17 max 1086.551 1 1.43 4 .796 1 0 5 .004 1 002 15 186 min -1083.334 3 .336 15 .032 15 0 1 0 15 009 4 187 18 max 1087.024 1 1.393 4 .796 <th< td=""><td></td><td></td><td>14</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>			14													
182 min -1084.045 3 .354 15 .032 15 0 1 0 15 008 4 183 16 max 1086.077 1 1.467 4 .796 1 0 5 .004 1 002 15 184 min -1083.69 3 .345 15 .032 15 0 1 0 15 008 4 185 17 max 1086.551 1 1.43 4 .796 1 0 5 .004 1 002 15 186 min -1083.334 3 .336 15 .032 15 0 1 0 15 009 4 187 18 max 1087.024 1 1.393 4 .796 1 0 5 .004 1 002 15 188 min -1082.979 3 .328			15			1							_			
183 16 max 1086.077 1 1.467 4 .796 1 0 5 .004 1 002 15 184 min -1083.69 3 .345 15 .032 15 0 1 0 15 008 4 185 17 max 1086.551 1 1.43 4 .796 1 0 5 .004 1 002 15 186 min -1083.334 3 .336 15 .032 15 0 1 0 15 009 4 187 18 max 1087.024 1 1.393 4 .796 1 0 5 .004 1 002 15 188 min -1082.979 3 .328 15 .032 15 0 1 0 15 009 4 189 19 max 1087.498 1 1.356 4 .796 1 0 5 .005 1 002 15 190 min -1082.624 3 .319 <td></td> <td></td> <td>15</td> <td></td> <td></td> <td>ر ا</td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			15			ر ا				_						
184 min -1083.69 3 .345 15 .032 15 0 1 0 15 008 4 185 17 max 1086.551 1 1.43 4 .796 1 0 5 .004 1 002 15 186 min -1083.334 3 .336 15 .032 15 0 1 0 15 009 4 187 18 max 1087.024 1 1.393 4 .796 1 0 5 .004 1 002 15 188 min -1082.979 3 .328 15 .032 15 0 1 0 15 002 15 189 19 max 1087.498 1 1.356 4 .796 1 0 5 .005 1 002 15 190 min -1082.624 3 .319			10										_			-
185 17 max 1086.551 1 1.43 4 .796 1 0 5 .004 1 002 15 186 min -1083.334 3 .336 15 .032 15 0 1 0 15 009 4 187 18 max 1087.024 1 1.393 4 .796 1 0 5 .004 1 002 15 188 min -1082.979 3 .328 15 .032 15 0 1 0 15 002 15 189 19 max 1087.498 1 1.356 4 .796 1 0 5 .005 1 002 15 190 min -1082.624 3 .319 15 .032 15 0 1 0 15 002 15 191 M3 1 max 490.862 2 8.992 4 .343 1 0 12 0 1 .01 4 192 min -642.667 3			16			_										
186 min -1083.334 3 .336 15 .032 15 0 1 0 15 009 4 187 18 max 1087.024 1 1.393 4 .796 1 0 5 .004 1 002 15 188 min -1082.979 3 .328 15 .032 15 0 1 0 15 009 4 189 19 max 1087.498 1 1.356 4 .796 1 0 5 .005 1 002 15 190 min -1082.624 3 .319 15 .032 15 0 1 0 15 002 15 190 min -1082.624 3 .319 15 .032 15 0 1 0 15 014 1 191 M3 1 max 490.862 2			4-										_			
187 18 max 1087.024 1 1.393 4 .796 1 0 5 .004 1002 15 188 min -1082.979 3 .328 15 .032 15 0 1 0 15 .009 4 189 19 max 1087.498 1 1.356 4 .796 1 0 5 .005 1002 15 190 min -1082.624 3 .319 15 .032 15 0 1 0 15 .005 1002 15 191 M3 1 max 490.862 2 8.992 4 .343 1 0 12 0 1 .01 4 192 min -642.667 3 2.114 15 .014 15 0 1 0 15 .002 15 193 2 max 490.691 2 8.12 4 .343 1 0 12 0 1 .006 4 194 min -642.795 3 1.909 15 .014 15 0 1 0 15 .001 12 195 3 max 490.521 2 7.248 4 .343 1 0 12 0 1 .003 2 196 min -642.923 3 1.704 15 .014 15 0 1 0 15 0 15 0 1			17			_										
188 min -1082.979 3 .328 15 .032 15 0 1 0 15 009 4 189 19 max 1087.498 1 1.356 4 .796 1 0 5 .005 1 002 15 190 min -1082.624 3 .319 15 .032 15 0 1 0 15 01 4 191 M3 1 max 490.862 2 8.992 4 .343 1 0 12 0 1 .01 4 192 min -642.667 3 2.114 15 .014 15 0 1 0 15 .002 15 193 2 max 490.691 2 8.12 4 .343 1 0 12 0 1 .006 4 194 min -642.795 3 1.909 <td></td> <td></td> <td>4.0</td> <td></td> <td>-</td>			4.0													-
189 19 max 1087.498 1 1.356 4 .796 1 0 5 .005 1 002 15 190 min -1082.624 3 .319 15 .032 15 0 1 0 15 01 4 191 M3 1 max 490.862 2 8.992 4 .343 1 0 12 0 1 .01 4 192 min -642.667 3 2.114 15 .014 15 0 1 0 15 .002 15 193 2 max 490.691 2 8.12 4 .343 1 0 12 0 1 .006 4 194 min -642.795 3 1.909 15 .014 15 0 1 0 15 .001 12 195 3 max 490.521 2 7.248 4 .343 1 0 12 0 1 .003 2 196 min -642.923 3 1.704 <td></td> <td></td> <td>18</td> <td></td>			18													
190 min -1082.624 3 .319 15 .032 15 0 1 0 15 01 4 191 M3 1 max 490.862 2 8.992 4 .343 1 0 12 0 1 .01 4 192 min -642.667 3 2.114 15 .014 15 0 1 0 15 .002 15 193 2 max 490.691 2 8.12 4 .343 1 0 12 0 1 .006 4 194 min -642.795 3 1.909 15 .014 15 0 1 0 15 .001 12 195 3 max 490.521 2 7.248 4 .343 1 0 12 0 1 .003 2 196 min -642.923 3 1.704																
191 M3 1 max 490.862 2 8.992 4 .343 1 0 12 0 1 .01 4 192 min -642.667 3 2.114 15 .014 15 0 1 0 15 .002 15 193 2 max 490.691 2 8.12 4 .343 1 0 12 0 1 .006 4 194 min -642.795 3 1.909 15 .014 15 0 1 0 15 .001 12 195 3 max 490.521 2 7.248 4 .343 1 0 12 0 1 .003 2 196 min -642.923 3 1.704 15 .014 15 0 1 0 15 0 3			19													
192 min -642.667 3 2.114 15 .014 15 0 1 0 15 .002 15 193 2 max 490.691 2 8.12 4 .343 1 0 12 0 1 .006 4 194 min -642.795 3 1.909 15 .014 15 0 1 0 15 .001 12 195 3 max 490.521 2 7.248 4 .343 1 0 12 0 1 .003 2 196 min -642.923 3 1.704 15 .014 15 0 1 0 15 0 3						_										
193 2 max 490.691 2 8.12 4 .343 1 0 12 0 1 .006 4 194 min -642.795 3 1.909 15 .014 15 0 1 0 15 .001 12 195 3 max 490.521 2 7.248 4 .343 1 0 12 0 1 .003 2 196 min -642.923 3 1.704 15 .014 15 0 1 0 15 0 3		M3	1	max		2				_	0	12	0		.01	-
193 2 max 490.691 2 8.12 4 .343 1 0 12 0 1 .006 4 194 min -642.795 3 1.909 15 .014 15 0 1 0 15 .001 12 195 3 max 490.521 2 7.248 4 .343 1 0 12 0 1 .003 2 196 min -642.923 3 1.704 15 .014 15 0 1 0 15 0 3	192			min	-642.667	3	2.114	15	.014	15	0			15	.002	15
194 min -642.795 3 1.909 15 .014 15 0 1 0 15 .001 12 195 3 max 490.521 2 7.248 4 .343 1 0 12 0 1 .003 2 196 min -642.923 3 1.704 15 .014 15 0 1 0 15 0 3	193		2	max	490.691	2	8.12	4	.343		0	12	0		.006	
195 3 max 490.521 2 7.248 4 .343 1 0 12 0 1 .003 2 196 min -642.923 3 1.704 15 .014 15 0 1 0 15 0 3						3		15	.014	15		1	0	15	.001	12
196 min -642.923 3 1.704 15 .014 15 0 1 0 15 0 3			3									12				
			4									_				

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC_
198			min	-643.051	3	1.499	15	.014	15	0	1	0	15	002	3
199		5	max	490.18	2	5.504	4	.343	1	0	12	0	1	0	15
200			min	-643.178	3	1.294	15	.014	15	0	1	0	15	004	4
201		6	max	490.01	2	4.632	4	.343	1	0	12	.001	1	001	15
202			min	-643.306	3	1.089	15	.014	15	0	1	0	15	006	4
203		7	max	489.839	2	3.76	4	.343	1	0	12	.001	1	002	15
204			min	-643.434	3	.884	15	.014	15	0	1	0	15	008	4
205		8	max	489.669	2	2.888	4	.343	1	0	12	.001	1	002	15
206			min	-643.562	3	.679	15	.014	15	0	1	0	15	01	4
207		9	max	489.499	2	2.016	4	.343	1	0	12	.002	1	003	15
208			min	-643.689	3	.474	15	.014	15	0	1	0	15	011	4
209		10	max	489.328	2	1.144	4	.343	1	0	12	.002	1	003	15
210			min	-643.817	3	.269	15	.014	15	0	1	0	15	012	4
211		11	max	489.158	2	.341	2	.343	1	0	12	.002	1	003	15
212			min	-643.945	3	019	3	.014	15	0	1	0	15	012	4
213		12	max	488.988	2	141	15	.343	1	0	12	.002	1	003	15
214			min	-644.073	3	6	4	.014	15	0	1	0	15	012	4
215		13	max	488.817	2	346	15	.343	1	0	12	.002	1	003	15
216			min	-644.201	3	-1.472	4	.014	15	0	1	0	15	012	4
217		14	max	488.647	2	551	15	.343	1	0	12	.002	1	003	15
218			min	-644.328	3	-2.344	4	.014	15	0	1	0	15	011	4
219		15	max	488.477	2	756	15	.343	1	0	12	.003	1	002	15
220			min	-644.456	3	-3.216	4	.014	15	0	1	0	15	009	4
221		16	max	488.306	2	961	15	.343	1	0	12	.003	1	002	15
222			min	-644.584	3	-4.088	4	.014	15	0	1	0	15	008	4
223		17	max	488.136	2	-1.166	15	.343	1	0	12	.003	1	001	15
224			min	-644.712	3	-4.96	4	.014	15	0	1	0	15	006	4
225		18	max	487.966	2	-1.371	15	.343	1	0	12	.003	1	0	15
226			min	-644.839	3	-5.832	4	.014	15	0	1	0	15	003	4
227		19	max	487.795	2	-1.576	15	.343	1	0	12	.003	1	0	1
228			min	-644.967	3	-6.704	4	.014	15	0	1	0	15	0	1
229	M4	1	max	1178.317	1	0	1	691	15	0	1	.002	1	0	1
230			min	-80.223	3	0	1	-17.069	1	0	1	0	15	0	1
231		2	max	1178.487	1	0	1	691	15	0	1	0	1	0	1
232			min	-80.095	3	0	1	-17.069	1	0	1	0	15	0	1
233		3	max	1178.657	1	0	1	691	15	0	1	0	15	0	1
234			min	-79.968	3	0	1	-17.069	1	0	1	002	1	0	1
235		4	max	1178.828	1	0	1	691	15	0	1	0	15	0	1
236			min	-79.84	3	0	1	-17.069	1	0	1	004	1	0	1
237		5	max	1178.998	1	0	1	691	15	0	1	0	15	0	1
238			min	-79.712	3	0	1	-17.069	1	0	1	006	1	0	1
239		6	max	1179.168	1	0	1	691	15	0	1	0	15	0	1
240			min	-79.584	3	0	1	-17.069	1	0	1	008	1	0	1
241		7	max	1179.339	1	0	1	691	15	0	1	0	15	0	1
242			min	-79.457	3	0	1	-17.069	1	0	1	01	1	0	1
243		8	max	1179.509	1	0	1	691	15	0	1	0	15	0	1
244			min	-79.329	3	0	1	-17.069	1	0	1	012	1	0	1
245		9	max	1179.679	1	0	1	691	15	0	1	0	15	0	1
246			min		3	0	1	-17.069	1	0	1	013	1	0	1
247		10	max	1179.85	1	0	1	691	15	0	1	0	15	0	1
248				-79.073	3	0	1	-17.069	1	0	1	015	1	0	1
249		11		1180.02	1	0	1	691	15	0	1	0	15	0	1
250			min	-78.945	3	0	1	-17.069	1	0	1	017	1	0	1
251		12		1180.19	1	0	1	691	15	0	1	0	15	0	1
252			min	-78.818	3	0	1	-17.069	1	0	1	019	1	0	1
253		13		1180.361	1	0	1	691	15	0	1	0	15	0	1
254			min	-78.69	3	0	1	-17.069	1	0	1	021	1	0	1

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	. LC
255		14	max	1180.531	1	0	1	691	15	0	1	0	15	0	1
256			min	-78.562	3	0	1	-17.069	1	0	1	023	1	0	1
257		15		1180.701	_1_	0	1	691	15	0	1	001	15	0	1
258			min	-78.434	3	0	1	-17.069	1	0	1_	025	1	0	1
259		16		1180.872	1_	0	1	691	15	0	1	001	15	0	1
260		4-	min		3	0	1	-17.069	1_	0	1	027	1	0	1
261		17		1181.042	1_	0	1	691	15	0	1	001	15	0	1
262		40	min		3	0	1	-17.069	1_	0	1	029	1_	0	1
263		18		1181.213	1	0	1	691	15	0	1	001	15	0	1
264		19	min		3	0	1	-17.069	1 15	0	<u>1</u> 1	031	15	0	1
265 266		19		1181.383 -77.923	<u>1</u> 3	0	1	691 -17.069	1	0	1	001 033	1	0	1
267	M6	1		3410.153	<u>ა</u> 1	2.266	2	0	1	0	1	0	1	0	1
268	IVIO		min	-3518.9	3	.271	12	0	1	0	1	0	1	0	1
269		2		3410.627	_ <u>3_</u> 1	2.237	2	0	1	0	1	0	1	0	12
270				-3518.544	3	.257	12	0	1	0	1	0	1	0	2
271		3	_	3411.101	1	2.208	2	0	1	0	1	0	1	0	12
272				-3518.189	3	.242	12	0	1	0	1	0	1	001	2
273		4		3411.574	1	2.179	2	0	1	0	1	0	1	0	12
274				-3517.834	3	.228	12	0	1	0	1	0	1	002	2
275		5		3412.048	1	2.151	2	0	1	0	1	0	1	0	12
276			min	-3517.478	3	.214	12	0	1	0	1	0	1	003	2
277		6	max	3412.522	1	2.122	2	0	1	0	1	0	1	0	12
278			min	-3517.123	3	.199	12	0	1	0	1	0	1	004	2
279		7	max	3412.996	1	2.093	2	0	1	0	1	0	1	0	12
280			min	-3516.768	3	.185	12	0	1	0	1	0	1	004	2
281		8	max	3413.469	1	2.064	2	0	1	0	1	0	1	0	12
282				-3516.413	3	.17	12	0	1	0	1	0	1	005	2
283		9		3413.943	_1_	2.035	2	0	1	0	1	0	1	0	12
284				-3516.057	3	.156	12	0	1	0	1	0	1	006	2
285		10		3414.417	_1_	2.006	2	0	1	0	_1_	0	1	0	12
286			min	-3515.702	3	.141	12	0	1	0	1_	0	1	006	2
287		11		3414.891	_1_	1.977	2	0	1	0	1	0	1	0	12
288			min	-3515.347	3	.127	12	0	1	0	1	0	1	007	2
289		12		3415.364	1_	1.949	2	0	1	0	1	0	1_	0	12
290		40	_	-3514.991	3	.112	12	0	1	0	1	0	1	007	2
291		13		3415.838	1_	1.92	2	0	1	0	1	0	1	0	12
292		4.4		-3514.636 3416.312	3	.095	3	0	1	0	1	0	1	008	2
293		14		-3514.281	<u>1</u>	1.891	3	0	1	0	1	0	1	0	12
294 295		15		3416.786	<u>3</u> 1	.073 1.862	2	0	1	0	1	0	1	009 0	12
296		15		-3513.925	3	.052	3	0	1	0	1	0	1	009	2
297		16		3417.259	<u> </u>	1.833	2	0	1	0	+	0	1	009 0	12
298		10		-3513.57	3	.03	3	0	1	0	1	0	1	01	2
299		17		3417.733		1.804	2	0	1	0	1	0	1	0	12
300				-3513.215	3	.008	3	0	1	0	1	0	1	01	2
301		18		3418.207	1	1.775	2	0	1	0	1	0	1	0	12
302				-3512.86	3	013	3	0	1	0	1	0	1	011	2
303		19		3418.681	1	1.746	2	0	1	0	1	0	1	0	12
304				-3512.504	3	035	3	0	1	0	1	0	1	012	2
305	M7	1		1890.608	2	9.031	4	0	1	0	1	0	1	.012	2
306				-1983.446	3	2.12	15	0	1	0	1	0	1	0	12
307		2		1890.438	2	8.159	4	0	1	0	1	0	1	.008	2
308				-1983.574	3	1.915	15	0	1	0	1	0	1	001	3
309		3		1890.267	2	7.287	4	0	1	0	1	0	1	.005	2
310				-1983.702	3	1.71	15	0	1	0	1	0	1	003	3
311		4	max	1890.097	2	6.415	4	0	1	0	1	0	1	.002	2

Model Name

Schletter, Inc.

: HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
312			min	-1983.829	3	1.505	15	0	1	0	1	0	1	005	3
313		5	max	1889.927	2	5.543	4	0	1	0	_1_	0	_1_	0	2
314			min	-1983.957	3	1.3	15	0	1	0	1	0	1	006	3
315		6	max	1889.756	2	4.671	4	0	1	0	1	0	1	001	15
316			min	-1984.085	3	1.095	15	0	1	0	1	0	1	007	3
317		7	max		2	3.799	4	0	1	0	_1_	0	1	002	15
318			min	-1984.213	3	.89	15	0	1	0	1	0	1	008	4
319		8	max	1889.416	2	2.927	4	0	1	0	_1_	0	_1_	002	15
320			min	-1984.34	3	.685	15	0	1	0	1	0	1	01	4
321		9	max	1889.245	2	2.055	4	0	1	0	_1_	0	1	003	15
322			min	-1984.468	3	.436	12	0	1	0	1	0	1	011	4
323		10	max	1889.075	2	1.359	2	0	1	0	1	0	1	003	15
324			min	-1984.596	3	.096	12	0	1	0	1	0	1	012	4
325		11	max	1888.905	2	.68	2	0	1	0	1	0	1	003	15
326			min	-1984.724	3	401	3	0	1	0	1	0	1	012	4
327		12	max	1888.734	2	0	2	0	1	0	1	0	1	003	15
328			min	-1984.851	3	911	3	0	1	0	1	0	1	012	4
329		13	max	1888.564	2	34	15	0	1	0	1	0	1	003	15
330			min	-1984.979	3	-1.433	4	0	1	0	1	0	1	011	4
331		14	max	1888.394	2	545	15	0	1	0	1	0	1	002	15
332			min	-1985.107	3	-2.305	4	0	1	0	1	0	1	011	4
333		15	max	1888.223	2	75	15	0	1	0	1	0	1	002	15
334			min	-1985.235	3	-3.177	4	0	1	0	1	0	1	009	4
335		16	max	1888.053	2	955	15	0	1	0	1	0	1	002	15
336			min	-1985.363	3	-4.049	4	0	1	0	1	0	1	008	4
337		17	max	1887.883	2	-1.16	15	0	1	0	1	0	1	001	15
338			min	-1985.49	3	-4.921	4	0	1	0	1	0	1	005	4
339		18	max	1887.712	2	-1.365	15	0	1	0	1	0	1	0	15
340			min	-1985.618	3	-5.793	4	0	1	0	1	0	1	003	4
341		19	max	1887.542	2	-1.57	15	0	1	0	1	0	1	0	1
342			min	-1985.746	3	-6.665	4	0	1	0	1	0	1	0	1
343	M8	1	max	3143.737	1	0	1	0	1	0	1	0	1	0	1
344			min	-338.728	3	0	1	0	1	0	1	0	1	0	1
345		2	max	3143.907	1	0	1	0	1	0	1	0	1	0	1
346			min	-338.6	3	0	1	0	1	0	1	0	1	0	1
347		3	max	3144.078	1	0	1	0	1	0	1	0	1	0	1
348			min	-338.473	3	0	1	0	1	0	1	0	1	0	1
349		4	max	3144.248	1	0	1	0	1	0	1	0	1	0	1
350			min	-338.345	3	0	1	0	1	0	1	0	1	0	1
351		5	max	3144.418	1	0	1	0	1	0	1	0	1	0	1
352				-338.217	3	0	1	0	1	0	1	0	1	0	1
353		6		3144.589	1	0	1	0	1	0	1	0	1	0	1
354			min		3	0	1	0	1	0	1	0	1	0	1
355		7		3144.759	1	0	1	0	1	0	1	0	1	0	1
356			min		3	0	1	0	1	0	1	0	1	0	1
357		8		3144.929	1	0	1	0	1	0	1	0	1	0	1
358			min		3	0	1	0	1	0	1	0	1	0	1
359		9	max		1	0	1	0	1	0	1	0	1	0	1
360				-337.706	3	0	1	0	1	0	1	0	1	0	1
361		10		3145.27	1	0	1	0	1	0	1	0	1	0	1
362				-337.578	3	0	1	0	1	0	1	0	1	0	1
363		11		3145.44	1	0	1	0	1	0	1	0	1	0	1
364			min		3	0	1	0	1	0	1	0	1	0	1
365		12		3145.611	1	0	1	0	1	0	1	0	1	0	1
366		12	min		3	0	1	0	1	0	1	0	1	0	1
367		13		3145.781	1	0	1	0	1	0	1	0	1	0	1
368		· ·		-337.195	3	0	1	0	1	0	1	0	1	0	1
500													_		

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
369		14		3145.951	1_	0	1	0	1	0	_1_	0	1_	0	1
370				-337.067	3	0	1	0	1	0	1_	0	1	0	1
371		15		3146.122	<u>1</u>	0	1_	0	1_	0	_1_	0	1_	0	1
372				-336.939	3	0	1	0	1	0	1	0	1	0	1
373		16		3146.292	_1_	0	1	0	1_	0	_1_	0	1	0	1
374			_	-336.812	3	0	1	0	1	0	1	0	1	0	1
375		17		3146.462	_1_	0	1	0	1	0	_1_	0	1_	0	1
376				-336.684	3	0	1	0	1	0	1_	0	1_	0	1
377		18		3146.633	_1_	0	1_	0	1	0	_1_	0	1_	0	1
378				-336.556	3	0	1	0	1	0	1_	0	1	0	1
379		19		3146.803	_1_	0	1	0	1	0	1_	0	1	0	1
380				-336.428	3	0	1	0	1	0	_1_	0	1	0	1
381	M10	1		1078.971	_1_	2.022	4	032	15	0	_1_	0	1	0	1
382			min	-1089.019	3	.476	15	796	1_	0	5	0	3	0	1
383		2		1079.444	1_	1.985	4	032	15	0	1_	0	15	0	15
384			min	-1088.664	3	.467	15	796	1_	0	5	0	1_	0	4
385		3		1079.918	_1_	1.948	4	032	15	0	1_	0	15	0	15
386				-1088.309	3	.458	15	796	1_	0	5	0	1_	001	4
387		4		1080.392	_1_	1.911	4	032	15	0	_1_	0	15	0	15
388		_	min	-1087.953	3	.45	15	796	1_	0	5	0	1_	002	4
389		5		1080.866	1	1.874	4	032	15	0	1_	0	15	0	15
390			min	-1087.598	3	.441	15	796	1_	0	5	001	1_	002	4
391		6		1081.339	1_	1.837	4	032	15	0	1_	0	15	0	15
392		_	min	-1087.243	3	.432	15	796	1_	0	5	001	1_	003	4
393		7		1081.813	<u>1</u> 3	1.8	4	032	15	0	1	0	15	0	15
394		0	min			.423	15	796	1_	0	5	002	1_	004	4
395		8		1082.287	1	1.763	<u>4</u> 15	032	<u>15</u>	0	1	0	15	0	15
396		_	min		3	.415		796	1_	0	5	002	1 1 5	004	4
397		9		1082.761 -1086.177	<u>1</u> 3	1.726	4 15	032	<u>15</u>	0	1	0	1 <u>5</u>	001	15
398 399		10		1083.234	<u>ာ</u> 1	.406 1.689	4	796 032	15	0	<u>5</u> 1	002 0	15	005 001	15
400		10	min	-1085.821	3	.397	15	796	1	0	5	002	1	005	4
401		11		1083.708	<u> </u>	1.652	4	032	15	0	1	002	15	003	15
402			min	-1085.466	3	.389	15	796	1	0	5	003	1	006	4
403		12		1084.182	_ <u></u>	1.615	4	032	15	0	1	0	15	002	15
404		12	min	-1085.111	3	.38	15	796	1	0	5	003	1	002	4
405		13	_	1084.656	1	1.578	4	032	15	0	1	0	15	002	15
406		10		-1084.756	3	.371	15	796	1	0	5	003	1	007	4
407		14		1085.129	1	1.541	4	032	15	0	1	0	15	002	15
408				-1084.4	3	.363	15	796	1	0	5	003	1	007	4
409		15		1085.603	1	1.504	4	032	15	0	1	0	15	002	15
410				-1084.045	3	.354	15	796	1	0	5	004	1	008	4
411		16		1086.077	1	1.467	4	032	15	0	1	0	15	002	15
412		ľ		-1083.69	3	.345	15	796	1	0	5	004	1	008	4
413		17		1086.551	1	1.43	4	032	15	0	1	0	15	002	15
414				-1083.334	3	.336	15	796	1	0	5	004	1	009	4
415		18		1087.024	1	1.393	4	032	15	0	1	0	15	002	15
416				-1082.979	3	.328	15	796	1	0	5	004	1	009	4
417		19		1087.498	1	1.356	4	032	15	0	1	0	15	002	15
418				-1082.624	3	.319	15	796	1	0	5	005	1	01	4
419	M11	1		490.862	2	8.992	4	014	15	0	1	0	15	.01	4
420				-642.667	3	2.114	15	343	1	0	12	0	1	.002	15
421		2	max		2	8.12	4	014	15	0	1	0	15	.006	4
422				-642.795	3	1.909	15	343	1	0	12	0	1	.001	12
423		3	max		2	7.248	4	014	15	0	1	0	15	.003	2
424				-642.923	3	1.704	15	343	1	0	12	0	1	0	3
425		4		490.351	2	6.376	4	014	15	0	1	0	15	0	2
									_						

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:_

	Member	Sec		Axial[lb]	LC	y Shear[lb]		z Shear[lb]	LC	Torque[k-ft]		y-y Mome	LC	z-z Mome	
426			min	-643.051	3	1.499	15	343	1	0	12	0	1	002	3
427		5	max	490.18	2	5.504	4	014	15	0	1	0	15	0	15
428			min	-643.178	3	1.294	15	343	1	0	12	0	1	004	4
429		6	max	490.01	2	4.632	4	014	15	0	1	0	15	001	15
430			min	-643.306	3	1.089	15	343	1	0	12	001	1	006	4
431		7	max	489.839	2	3.76	4	014	15	0	1	0	15	002	15
432			min	-643.434	3	.884	15	343	1	0	12	001	1	008	4
433		8	max	489.669	2	2.888	4	014	15	0	1	0	15	002	15
434			min	-643.562	3	.679	15	343	1	0	12	001	1	01	4
435		9	max	489.499	2	2.016	4	014	15	0	1	0	15	003	15
436			min	-643.689	3	.474	15	343	1	0	12	002	1	011	4
437		10	max	489.328	2	1.144	4	014	15	0	1	0	15	003	15
438			min	-643.817	3	.269	15	343	1	0	12	002	1	012	4
439		11	max	489.158	2	.341	2	014	15	0	1	0	15	003	15
440			min	-643.945	3	019	3	343	1	0	12	002	1	012	4
441		12	max	488.988	2	141	15	014	15	0	1	0	15	003	15
442			min	-644.073	3	6	4	343	1	0	12	002	1	012	4
443		13	max	488.817	2	346	15	014	15	0	1	0	15	003	15
444			min	-644.201	3	-1.472	4	343	1	0	12	002	1	012	4
445		14	max	488.647	2	551	15	014	15	0	1	0	15	003	15
446			min	-644.328	3	-2.344	4	343	1	0	12	002	1	011	4
447		15	max	488.477	2	756	15	014	15	0	1	0	15	002	15
448			min	-644.456	3	-3.216	4	343	1	0	12	003	1	009	4
449		16	max		2	961	15	014	15	0	1	0	15	002	15
450			min	-644.584	3	-4.088	4	343	1	0	12	003	1	008	4
451		17	max		2	-1.166	15	014	15	0	1	0	15	001	15
452			min	-644.712	3	-4.96	4	343	1	0	12	003	1	006	4
453		18	max		2	-1.371	15	014	15	0	1	0	15	0	15
454			min	-644.839	3	-5.832	4	343	1	0	12	003	1	003	4
455		19	max	487.795	2	-1.576	15	014	15	0	1	0	15	0	1
456			min	-644.967	3	-6.704	4	343	1	0	12	003	1	0	1
457	M12	1		1178.317	1	0	1	17.069	1	0	1	0	15	0	1
458			min	-80.223	3	0	1	.691	15	0	1	002	1	0	1
459		2		1178.487	1	0	1	17.069	1	0	1	0	15	0	1
460			min	-80.095	3	0	1	.691	15	0	1	0	1	0	1
461		3		1178.657	1	0	1	17.069	1	0	1	.002	1	0	1
462			min	-79.968	3	0	1	.691	15	0	1	0	15	0	1
463		4	1	1178.828	1	0	1	17.069	1	0	1	.004	1	0	1
464			min	-79.84	3	0	1	.691	15	0	1	0	15	0	1
465		5		1178.998	1	0	1	17.069	1	0	1	.006	1	0	1
466				-79.712		0	1	.691	15	0	1	0	15	0	1
467		6		1179.168	1	0	1	17.069	1	0	1	.008	1	0	1
468			min		3	0	1	.691	15	0	1	0	15	0	1
469		7		1179.339	_	0	1	17.069	1	0	1	.01	1	0	1
470			min	-79.457	3	0	1	.691	15	0	1	0	15	0	1
471		8		1179.509	1	0	1	17.069	1	0	1	.012	1	0	1
472			min		3	0	1	.691	15	0	1	0	15	0	1
473		9		1179.679	1	0	1	17.069	1	0	1	.013	1	0	1
474		Ť		-79.201	3	0	1	.691	15	0	1	0	15	0	1
475		10		1179.85	1	0	1	17.069	1	0	1	.015	1	0	1
476			min		3	0	1	.691	15	0	1	0	15	0	1
477		11		1180.02	1	0	1	17.069	1	0	1	.017	1	0	1
478			min		3	0	1	.691	15	0	1	0	15	0	1
479		12		1180.19	1	0	1	17.069	1	0	1	.019	1	0	1
480		14	min	-78.818	3	0	1	.691	15	0	1	0	15	0	1
481		13		1180.361	1	0	1	17.069	1	0	1	.021	1	0	1
482		13	min		3	0	1	.691	15	0	1	0	15	0	1
402			1111111	-70.09	J	U		.031	IU	U		U	IU	U	

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

400	Member	Sec		Axial[lb]						Torque[k-ft]			l .	_	1
483		14		1180.531	1	0	1_1	17.069	1	0	1	.023	1	0	1
484		4.5	min	-78.562	3	0	1_	.691	<u>15</u>	0	1_	0	15	0	1
485		15		1180.701	1	0	1	17.069	1_	0	1	.025	1	0	1
486		4.0	min	-78.434	3	0	•	.691	<u>15</u>	0		.001	15	0	
487		16	_	1180.872	1	0	1	17.069	<u>1</u> 15	0	1	.027	15	0	1
488		17	min	-78.307	3	0	•	.691		0		.001		0	-
489		17		1181.042	1_	0	1_	17.069	1_	0	1	.029	1_	0	1
490		40	min	-78.179	3	0	1_	.691	15	0	1_	.001	15	0	1
491		18		1181.213	1	0	1_	17.069	1_	0	1_	.031	1_	0	1
492		40	min	-78.051	3	0	1_	.691	15	0	1_	.001	15	0	1
493		19		1181.383	1_	0	1_	17.069	1_	0	1	.033	1	0	1
494		_	min	-77.923	3	0	1_	.691	15	0	1	.001	15	0	1
495	<u>M1</u>	1	max	200.273	_1_	590.161	3	-4.045	15	0	1_	.279	1	0	15
496		_	min	8.091	15	-461.931	1_	-99.415	1_	0	3	.011	15	015	1
497		2	max	200.985	_1_	589.016	3_	-4.045	<u>15</u>	0	1_	.218	1	.273	1
498		_	min	8.306	15	-463.458	1_	-99.415	_1_	0	3	.009	15	367	3
499		3	max	414.645	3	534.206	_1_	-4.013	<u>15</u>	0	3	.156	1_	.55	1
500			min	-265.302	2	-427.887	3	-98.949	1_	0	1_	.006	15	721	3
501		4	max	415.179	3	532.679	1_	-4.013	15	0	3	.095	1	.219	1
502			min	-264.59	2	-429.033	3	-98.949	1_	0	1	.004	15	455	3
503		5	max	415.713	3_	531.152	_1_	-4.013	<u> 15</u>	0	3	.033	1_	005	15
504			min	-263.878	2	-430.178	3	-98.949	1_	0	1	.001	15	189	3
505		6	max	416.247	3	529.625	1_	-4.013	15	0	3	001	15	.079	3
506			min	-263.166	2	-431.323	3	-98.949	1	0	1	028	1	441	1
507		7	max	416.781	3	528.098	1	-4.013	15	0	3	004	15	.347	3
508			min	-262.454	2	-432.468	3	-98.949	1	0	1	09	1	769	1
509		8	max	417.315	3	526.571	1	-4.013	15	0	3	006	15	.615	3
510			min	-261.742	2	-433.613	3	-98.949	1	0	1	151	1	-1.096	1
511		9	max	431.826	3	37.522	2	-6.249	15	0	9	.094	1	.721	3
512			min	-177.812	2	.466	15	-153.906	1	0	3	.004	15	-1.249	1
513		10	max	432.36	3	35.995	2	-6.249	15	0	9	0	15	.702	3
514			min	-177.1	2	.005	15	-153.906	1	0	3	002	1	-1.261	1
515		11	max	432.894	3	34.468	2	-6.249	15	0	9	004	15	.683	3
516			min	-176.388	2	-1.828	4	-153.906	1	0	3	097	1	-1.273	1
517		12	max	447.3	3	276.188	3	-3.854	15	0	1	.148	1	.596	3
518				-105.345	10	-567.283	1	-95.183	1	0	3	.006	15	-1.124	1
519		13	max	447.834	3	275.043	3	-3.854	15	0	1	.089	1	.424	3
520			min	-104.752	10	-568.81	1	-95.183	1	0	3	.004	15	772	1
521		14	max		3	273.898	3	-3.854	15	0	1	.03	1	.254	3
522				-104.159	10	-570.337	1	-95.183	1	0	3	.001	15	418	1
523		15		448.902	3	272.753	3	-3.854	15	0	1	001	15	.084	3
524				-103.565	10	-571.864	1	-95.183	1	0	3	029	1	064	1
525		16		449.436	3	271.607	3	-3.854	15	0	1	004	15	.312	2
526				-102.972	10	-573.39	1	-95.183	1	0	3	088	1	084	3
527		17	max		3	270.462	3	-3.854	15	0	1	006	15	.658	2
528				-102.379	10	-574.917	1	-95.183	1	0	3	147	1	253	3
529		18	max		15	547.91	2	-4.53	15	0	3	009	15	.329	2
530				-201.444	1	-216.524	3	-111.43	1	0	2	213	1	124	3
531		19		-8.106	15	546.383	2	-4.53	15	0	3	011	15	.011	3
532		10		-200.732	1	-217.669	3	-111.43	1	0	2	282	1	013	1
533	M5	1	max		1	1963.379	3	0	1	0	1	0	1	.029	1
534	1410	<u> </u>	min	16.463	12	-1575.966	1	0	1	0	1	0	1	0	15
535		2		439.915	1	1962.234	3	0	1	0	1	0	1	1.008	1
536				16.819	12	-1577.493	1	0	1	0	1	0	1	-1.216	3
537		3		1314.674	3	1554.232	1	0	1	0	1	0	1	1.953	1
538		٥		-917.076	2	-1337.984	3	0	1	0	1	0	1	-2.397	3
539		4		1315.208	3	1552.705	<u> </u>	0	1	0	1	0	1	<u>-2.397</u> .989	1
558		4	шах	1313.200	<u> </u>	1002.700		U		U		U	\perp	.505	

Model Name

Schletter, Inc.

: HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
540			min	-916.364	2	-1339.129	3	0	1	0	1	0	1	-1.566	3
541		5	max	1315.742	3	1551.178	1	0	1	0	1	0	_1_	.033	9
542			min	-915.652	2	-1340.275	3	0	1	0	1	0	1_	735	3
543		6	max	1316.276	3	1549.651	1	0	1	0	1	0	1	.097	3
544			min	-914.939	2	-1341.42	3	0	1	0	1	0	1	937	1
545		7	max		3	1548.124	1	0	1	0	1	0	1	.93	3
546			min	-914.227	2	-1342.565	3	0	1	0	1	0	1_	-1.898	1
547		8	max	1317.344	3	1546.597	1	0	1	0	1	0	1	1.764	3
548			min	-913.515	2	-1343.71	3	0	1	0	1	0	1	-2.858	1
549		9	max	1341.533	3	125.089	2	0	1	0	1	0	1	2.037	3
550			min	-739.67	2	.465	15	0	1	0	1	0	1	-3.241	1
551		10	max	1342.067	3	123.562	2	0	1	0	1	0	1_	1.966	3
552			min	-738.958	2	.004	15	0	1	0	1	0	1	-3.284	1
553		11	max	1342.601	3	122.035	2	0	1	0	1	0	1	1.896	3
554			min	-738.246	2	-1.57	4	0	1	0	1	0	1	-3.325	1
555		12	max	1366.999	3	841.596	3	0	1	0	1	0	1	1.661	3
556			min	-564.426	2	-1683.182	1	0	1	0	1	0	1	-2.96	1
557		13	max	1367.533	3	840.451	3	0	1	0	1	0	1	1.139	3
558			min	-563.714	2	-1684.709	1	0	1	0	1	0	1	-1.915	1
559		14	max	1368.067	3	839.306	3	0	1	0	1	0	1	.618	3
560			min	-563.002	2	-1686.236	1	0	1	0	1	0	1	868	1
561		15	max	1368.601	3	838.161	3	0	1	0	1	0	1	.25	2
562			min	-562.29	2	-1687.763	1	0	1	0	1	0	1	0	13
563		16	max	1369.135	3	837.016	3	0	1	0	1	0	1	1.267	2
564			min	-561.578	2	-1689.289	1	0	1	0	1	0	1	423	3
565		17	max		3	835.87	3	0	1	0	1	0	1	2.286	2
566			min	-560.866	2	-1690.816	1	0	1	0	1	0	1	942	3
567		18	max	-17.217	12	1855.673	2	0	1	0	1	0	1	1.172	2
568			min	-438.997	1	-755.307	3	0	1	0	1	0	1	491	3
569		19	max	-16.861	12	1854.146	2	0	1	0	1	0	1	.025	1
570			min	-438.285	1	-756.452	3	0	1	Ö	1	0	1	022	3
571	M9	1	max		1	590.161	3	99.415	1	0	3	011	15	0	15
572	1110		min	8.091	15	-461.931	1	4.045	15	0	1	279	1	015	1
573		2	max		1	589.016	3	99.415	1	0	3	009	15	.273	1
574		_	min	8.306	15	-463.458	1	4.045	15	0	1	218	1	367	3
575		3	max		3	534.206	1	98.949	1	0	1	006	15	.55	1
576			min	-265.302	2	-427.887	3	4.013	15	0	3	156	1	721	3
577		4	max	415.179	3	532.679	1	98.949	1	0	1	004	15	.219	1
578		•	min	-264.59	2	-429.033	3	4.013	15	0	3	095	1	455	3
579		5	max		3	531.152	1	98.949	1	0	1	001	15	005	15
580				-263.878	_	-430.178	_	4.013	15	0	3	033	1	189	3
581		6	max		3	529.625	1	98.949	1	0	1	.028	1	.079	3
582			min		2	-431.323		4.013	15	0	3	.001	15	441	1
583		7		416.781	3	528.098	1	98.949	1	0	1	.09	1	.347	3
584		T .	min		2	-432.468	3	4.013	15	0	3	.004	15	769	1
585		8		417.315	3	526.571	1	98.949	1	0	1	.151	1	.615	3
586			min		2	-433.613		4.013	15	0	3	.006	15	-1.096	1
587		9		431.826	3	37.522	2	153.906	1	0	3	004	15	.721	3
588				-177.812	2	.466	15	6.249	15	0	9	094	1	-1.249	1
589		10	max		3	35.995	2	153.906	1	0	3	.002	1	.702	3
590		10	min		2	.005	15	6.249	15	0	9	0	15	-1.261	1
591		11	max		3	34.468	2	153.906	1	0	3	.097	1	.683	3
592		11			2	-1.828	4	6.249	15	0	9	.004	15	-1.273	1
593		12	min		3	276.188	3	95.183	1	0	3	006	15	.596	3
		12	max								1		1		1
594		12	min			-567.283	1	3.854	15	0	_	148	_	-1.124	_
595		13		447.834	3	275.043	3	95.183	1	0	3	004	15	.424	3
596			min	-104.752	10	-568.81	1	3.854	15	0	1	089	_1_	772	1

Model Name

: Schletter, Inc. : HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

Envelope Member Section Forces (Continued)

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
597		14	max	448.368	3	273.898	3	95.183	1	0	3	001	15	.254	3
598			min	-104.159	10	-570.337	1	3.854	15	0	1	03	1	418	1
599		15	max	448.902	3	272.753	3	95.183	1	0	3	.029	1	.084	3
600			min	-103.565	10	-571.864	1	3.854	15	0	1	.001	15	064	1
601		16	max	449.436	3	271.607	3	95.183	1	0	3	.088	1	.312	2
602			min	-102.972	10	-573.39	1	3.854	15	0	1	.004	15	084	3
603		17	max	449.97	3	270.462	3	95.183	1	0	3	.147	1	.658	2
604			min	-102.379	10	-574.917	1	3.854	15	0	1	.006	15	253	3
605		18	max	-8.321	15	547.91	2	111.43	1	0	2	.213	1	.329	2
606			min	-201.444	1	-216.524	3	4.53	15	0	3	.009	15	124	3
607		19	max	-8.106	15	546.383	2	111.43	1	0	2	.282	1	.011	3
608			min	-200.732	1	-217.669	3	4.53	15	0	3	.011	15	013	1

Envelope Member Section Deflections

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
1	M13	1	max	0	1	.182	1	.008	3 1.221e-2	1_	NC	1_	NC	1
2			min	0	15	028	3	004	2 -1.811e-3	3	NC	1	NC	1
3		2	max	0	1	.233	3	.046	1 1.36e-2	1	NC	5	NC	2
4			min	0	15	004	9	.001	10 -1.688e-3	3	897.034	3	5264.163	1
5		3	max	0	1	.445	3	.107	1 1.499e-2	1	NC	5	NC	3
6			min	0	15	131	1	.005	15 -1.564e-3	3	495.287	3	2205.645	1
7		4	max	0	1	.574	3	.16	1 1.638e-2	1	NC	5	NC	3
8			min	0	15	204	1	.007	15 -1.441e-3	3	388.92	3	1476.273	1
9		5	max	0	1	.605	3	.186	1 1.777e-2	1	NC	5	NC	3
10			min	0	15	201	1	.008	15 -1.317e-3	3	369.665	3	1266.616	1
11		6	max	0	1	.541	3	.179	1 1.916e-2	1	NC	5	NC	3
12			min	0	15	124	1	.007	15 -1.194e-3	3	411.535	3	1319.757	1
13		7	max	0	1	.4	3	.14	1 2.055e-2	1	NC	5	NC	3
14			min	0	15	008	9	.006	15 -1.07e-3	3	546.464	3	1693.795	1
15		8	max	0	1	.221	3	.08	1 2.194e-2	1	NC	1	NC	2
16			min	0	15	.005	15	0	10 -9.467e-4	3	939.029	3	2973.302	1
17		9	max	0	1	.309	1	.026	3 2.333e-2	1	NC	4	NC	1
18			min	0	15	.009	15	008	10 -8.232e-4	3	1805.184	2	NC	1
19		10	max	0	1	.371	1	.025	3 2.472e-2	1	NC	3	NC	1
20			min	0	1	015	3	017	2 -6.998e-4	3	1234.015	1	NC	1
21		11	max	0	15	.309	1	.026	3 2.333e-2	1	NC	4	NC	1
22			min	0	1	.009	15	008	10 -8.232e-4	3	1805.184	2	NC	1
23		12	max	0	15	.221	3	.08	1 2.194e-2	1	NC	1	NC	2
24			min	0	1	.005	15	0	10 -9.467e-4	3	939.029	3	2973.302	1
25		13	max	0	15	.4	3	.14	1 2.055e-2	1	NC	5	NC	3
26			min	0	1	008	9	.006	15 -1.07e-3	3	546.464	3	1693.795	1
27		14	max	0	15	.541	3	.179	1 1.916e-2	1	NC	5	NC	3
28			min	0	1	124	1	.007	15 -1.194e-3	3	411.535	3	1319.757	1
29		15	max	0	15	.605	3	.186	1 1.777e-2	1	NC	5	NC	3
30			min	0	1	201	1	.008	15 -1.317e-3	3	369.665	3	1266.616	1
31		16	max	0	15	.574	3	.16	1 1.638e-2	1	NC	5	NC	3
32			min	0	1	204	1	.007	15 -1.441e-3	3	388.92	3	1476.273	1
33		17	max	0	15	.445	3	.107	1 1.499e-2	1	NC	5	NC	3
34			min	0	1	131	1	.005	15 -1.564e-3	3	495.287	3	2205.645	1
35		18	max	0	15	.233	3	.046	1 1.36e-2	1	NC	5	NC	2
36			min	0	1	004	9	.001	10 -1.688e-3	3	897.034	3	5264.163	1
37		19	max	0	15	.182	1	.008	3 1.221e-2	1	NC	1	NC	1
38			min	0	1	028	3	004	2 -1.811e-3	3	NC	1	NC	1
39	M14	1	max	0	1	.294	3	.007	3 7.402e-3	1	NC	1	NC	1
40			min	0	15	567	1	004	2 -4.549e-3	3	NC	1	NC	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r	LC	(n) L/v Ratio	LC	(n) L/z Ratio	LC
41		2	max	Ö	1	.572	3	.03	1 8.716e-3	1	NC	5	NC	2
42			min	0	15	916	1	0	10 -5.46e-3	3	669.938	1	8105.725	1
43		3	max	0	1	.811	3	.084	1 1.003e-2	1	NC	15	NC	3
44			min	0	15	-1.222	1	.004	15 -6.37e-3	3	356.897	1	2842.956	1
45		4	max	0	1	.984	3	.134	1 1.134e-2	1	9360.02	15	NC	3
46			min	0	15	-1.456	1	.006	15 -7.281e-3	3	263.186	1	1767.013	1
47		5	max	0	1	1.077	3	.162	1 1.266e-2	1	8073.641	15	NC	3
48			min	0	15	-1.6	1	.007	15 -8.192e-3	3	226.356	1	1455.342	1
49		6	max	0	1	1.09	3	.16	1 1.397e-2	1	7703.398	15	NC	3
50			min	0	15	-1.654	1	.007	15 -9.102e-3	3	215.101	1	1477.175	1
51		7	max	0	1	1.036	3	.127	1 1.529e-2	1	7921.422	15	NC	3
52			min	0	15	-1.63	1	.005	15 -1.001e-2	3	219.983	1	1860.437	1
53		8	max	0	1	.941	3	.074	1 1.66e-2	1	8589.309	15	NC	2
54			min	0	15	-1.554	1	0	10 -1.092e-2	3	236.894	1	3213.261	1
55		9	max	0	1	.844	3	.023	3 1.791e-2	1		15	NC	1
56			min	0	15	-1.467	1	007	10 -1.183e-2	3	259.828	1	NC	1
57		10	max	0	1	.798	3	.022	3 1.923e-2	1_		<u>15</u>	NC	1
58			min	0	1	-1.423	1	015	2 -1.274e-2	3	273.105	1_	NC	1
59		11	max	0	15	.844	3	.023	3 1.791e-2	1_		15	NC	1_
60			min	0	1	-1.467	1	007	10 -1.183e-2	3	259.828	1	NC	1
61		12	max	0	15	.941	3	.074	1 1.66e-2	<u>1</u>		<u> 15</u>	NC	2
62			min	0	1	<u>-1.554</u>	1	0	10 -1.092e-2	3	236.894	1	3213.261	1
63		13	max	0	15	1.036	3	.127	1 1.529e-2	<u>1</u>		15	NC	3
64			min	0	1	-1.63	1	.005	15 -1.001e-2	3	219.983	1	1860.437	1
65		14	max	0	15	1.09	3	.16	1 1.397e-2	1_		<u>15</u>	NC	3
66			min	0	1	-1.654	1	.007	15 -9.102e-3	3	215.101	1	1477.175	1
67		15	max	0	15	1.077	3	.162	1 1.266e-2	<u>1</u>		<u>15</u>	NC	3
68			min	0	1	-1.6	1	.007	15 -8.192e-3	3	226.356	1	1455.342	1
69		16	max	0	15	.984	3	.134	1 1.134e-2	1		15	NC	3
70			min	0	1	-1.456	1	.006	15 -7.281e-3	3	263.186	1	1767.013	1
71		17	max	0	15	.811	3	.084	1 1.003e-2	1_		15	NC	3
72			min	0	1	-1.222	1	.004	15 -6.37e-3	3	356.897	1	2842.956	1
73		18	max	0	15	.572	3	.03	1 8.716e-3	1_	NC	5	NC	2
74			min	0	1	916	1	0	10 -5.46e-3	3	669.938	1	8105.725	1
75		19	max	0	15	.294	3	.007	3 7.402e-3	_1_	NC	1_	NC	1_
76			min	0	1	567	1	004	2 -4.549e-3	3	NC	1	NC	1
77	M15	1	max	0	15	.301	3	.007	3 3.78e-3	3	NC	1_	NC	1_
78			min	0	1	566	1	003	2 -7.561e-3	1_	NC	1	NC	1
79		2	max	0	15	.485	3	.031	1 4.536e-3	3_	NC	5	NC	2
80			min	0	1	947	1	0	10 -8.914e-3	1_	613.942		8035.635	1
81		3_	max	00	15	.648	3	.084	1 5.292e-3	3_		<u>15</u>	NC	3
82			min	0	1	<u>-1.279</u>	1	.004	15 -1.027e-2	1_	328.071	1_	2828.439	
83		4	max	0	15	.775	3	.135	1 6.048e-3	3		<u>15</u>	NC	3
84			min	0	1	-1.528	1	.006	15 -1.162e-2	1_	243.178	1_	1760.026	
85		5	max	0	15	.86	3	.163	1 6.805e-3	3		<u>15</u>	NC	3
86		_	min	0	1	-1.676	1	.007	15 -1.297e-2	1_		1_	1450.153	
87		6	max	0	15	.899	3	<u>.161</u>	1 7.561e-3	3		<u>15</u>	NC NC	3
88			min	0	1	-1.722	1	.007	15 -1.432e-2	1_			1471.739	
89		7	max	0	15	.899	3	.128	1 8.317e-3	3		15	NC	3
90			min	0	1	<u>-1.68</u>	1	.005	15 -1.568e-2	1_		1_	1852.064	
91		8	max	0	15	.872	3	.075	1 9.073e-3	3		<u>15</u>	NC	2
92			min	0	1	<u>-1.581</u>	1	0	10 -1.703e-2	1_	230.391	1_	3189.616	
93		9	max	0	15	.836	3	.022	3 9.83e-3	3_		<u>15</u>	NC NC	1
94			min	0	1	<u>-1.474</u>	1	006	10 -1.838e-2	1_	257.679	1_	NC	1
95		10	max	0	1	.818	3	.021	3 1.059e-2	3		<u>15</u>	NC	1
96			min	0	1	<u>-1.421</u>	1	015	2 -1.973e-2	1_	_: •:•	1_	NC	1
97		11	max	0	1	.836	3	.022	3 9.83e-3	3_	9518.163	<u> 15</u>	NC	_1_

Model Name

Schletter, Inc.HCV

:

: Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r	LC		LC		LC
98			min	0	15	-1.474	1	006	10 -1.838e-2	1	257.679	1_	NC	1
99		12	max	0	1	.872	3	.075	1 9.073e-3	3	8612.003	<u>15</u>	NC	2
100			min	0	15	-1.581	1	0	10 -1.703e-2	1	230.391	1	3189.616	1
101		13	max	0	1	.899	3	.128	1 8.317e-3	3	7939.066	15	NC	3
102			min	0	15	-1.68	1	.005	15 -1.568e-2	1	210.035	1	1852.064	
103		14	max	0	1	.899	3	.161	1 7.561e-3	3	7718.037	15	NC	3
104			min	0	15	-1.722	1	.007	15 -1.432e-2	1	202.417	1	1471.739	1
105		15	max	0	1	.86	3	.163	1 6.805e-3	3	8087.032	15	NC	3
106			min	0	15	-1.676	1	.007	15 -1.297e-2	1	210.745	1	1450.153	1
107		16	max	0	1	.775	3	.135	1 6.048e-3	3	9373.932	15	NC	3
108			min	0	15	-1.528	1	.006	15 -1.162e-2	1	243.178	1	1760.026	1
109		17	max	0	1	.648	3	.084	1 5.292e-3	3	NC	15	NC	3
110			min	0	15	-1.279	1	.004	15 -1.027e-2	1	328.071	1	2828.439	1
111		18	max	0	1	.485	3	.031	1 4.536e-3	3	NC	5	NC	2
112			min	0	15	947	1	0	10 -8.914e-3	1	613.942	1	8035.635	1
113		19	max	0	1	.301	3	.007	3 3.78e-3	3	NC	1	NC	1
114			min	0	15	566	1	003	2 -7.561e-3	1	NC	1	NC	1
115	M16	1	max	0	15	.176	1	.006	3 6.951e-3	3	NC	1	NC	1
116			min	001	1	104	3	003	2 -1.14e-2	1	NC	1	NC	1
117		2	max	0	15	.005	4	.045	1 7.98e-3	3	NC	5	NC	2
118			min	0	1	061	2	.002	15 -1.259e-2	1	1077.679	2	5331.453	1
119		3	max	0	15	.027	3	.107	1 9.01e-3	3	NC	5	NC	3
120			min	0	1	233	2	.004	15 -1.379e-2	1	601.787	2	2220.247	1
121		4	max	0	15	.053	3	.159	1 1.004e-2	3	NC	5	NC	3
122			min	0	1	329	2	.007	15 -1.498e-2	1	482.662	2	1480.999	
123		5	max	0	15	.044	3	.186	1 1.107e-2	3	NC	5	NC	3
124			min	0	1	335	2	.008	15 -1.618e-2	1	476.369	2	1267.17	1
125		6	max	0	15	.004	12	.179	1 1.21e-2	3	NC	5	NC	3
126			min	0	1	255	2	.007	15 -1.737e-2	1	569.74	2	1316.181	1
127		7	max	0	15	.005	4	.141	1 1.313e-2	3	NC	5	NC	3
128			min	0	1	106	2	.006	15 -1.857e-2	1	891.596	2	1680.584	
129		8	max	0	15	.123	1	.082	1 1.416e-2	3	NC	4	NC	3
130		T .	min	0	1	147	3	.002	10 -1.976e-2	1	2851.604	2	2912.739	
131		9	max	0	15	.284	1	.023	1 1.519e-2	3	NC	5	NC	1
132		Ť	min	0	1	216	3	005	10 -2.096e-2	1	2077.4	3	NC	1
133		10	max	0	1	.355	1	.018	3 1.622e-2	3	NC	5	NC	1
134		10	min	0	1	247	3	013	2 -2.215e-2	1	1306.363	1	NC	1
135		11	max	0	1	.284	1	.023	1 1.519e-2	3	NC	5	NC	1
136			min	0	15	216	3	005	10 -2.096e-2	1	2077.4	3	NC	1
137		12	max	0	1	.123	1	.082	1 1.416e-2	3	NC	4	NC	3
138		12	min	0	15	147	3	.002	10 -1.976e-2		2851.604		2912.739	
139		13	max	0	1	.005	4	.141	1 1.313e-2	3	NC	5	NC	3
140		13	min	0	15	106	2	.006	15 -1.857e-2	1	891.596	2	1680.584	
141		14	max	0	1	.004	12	.179	1 1.21e-2	3	NC	5	NC	3
142		14	min	0	15	255	2	.007	15 -1.737e-2	1	569.74	2	1316.181	1
143		15	max	0	1	<u>255</u> .044	3	.007 .186	1 1.107e-2	3	NC	5	NC	3
		13			15	335	2	.008	15 -1.618e-2	-		2	1267.17	1
144		16	min	0	1		3			1	476.369 NC		NC	3
145		10	max	0	15	.053	2	.159		3	482.662	<u>5</u> 2		
146		17	min	•		329		.007	15 -1.498e-2	<u>1</u>			1480.999	
147		17	max	0	1	.027	3	.107	1 9.01e-3	<u>3</u> 1	NC 601 797	<u>5</u> 2	NC 2220.247	3
148		40	min		15	233		.004	15 -1.379e-2		601.787			
149		18	max	0	1	.005	4	.045	1 7.98e-3	3	NC	5	NC F224 4F2	2
150		40	min	0	15	061	2	.002	15 -1.259e-2	1_	1077.679	2	5331.453	
151		19	max	.001	1	.176	1	.006	3 6.951e-3	3	NC	1_	NC	1
152	NAO	4	min	0	15	104	3	003	2 -1.14e-2	1_	NC NC	1_	NC NC	1
153	<u>M2</u>	1	max	.007	1	.007	2	.013	1 -1.218e-5	<u>15</u>	NC NC	1_	NC F007 40F	2
154			min	007	3	012	3	0	15 -3.006e-4	1_	NC	<u> 1</u>	5307.435	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]						(n) L/z Ratio	
155		2	max	.007	1	.006	2	.012	1	-1.149e-5	<u>15</u>	NC	_1_	NC	2
156			min	007	3	011	3	0	15	-2.836e-4	_1_	NC	1_	5786.948	1
157		3	max	.006	1	.005	2	.011	1	-1.08e-5	<u>15</u>	NC	1_	NC	2
158			min	006	3	011	3	0	15	-2.666e-4	_1_	NC	1_	6358.022	1
159		4	max	.006	1	.004	2	.01	1	-1.011e-5	<u>15</u>	NC	1_	NC	2
160		_	min	006	3	011	3	0	15	-2.496e-4	1_	NC	1_	7044.824	1
161		5	max	.006	1	.003	2	.009	1	-9.425e-6	15	NC	1_	NC	2
162			min	006	3	01	3	0	15	-2.325e-4	_1_	NC	1_	7880.298	1
163		6	max	.005	1	.002	2	.008	1	-8.736e-6	<u>15</u>	NC	1_	NC	2
164			min	005	3	01	3	0	15	-2.155e-4	_1_	NC	1_	8910.297	1
165		7	max	.005	1	0	2	.007	1	-8.048e-6	<u>15</u>	NC	1_	NC	1
166			min	005	3	01	3	0	15	-1.985e-4	_1_	NC	1_	NC	1
167		8	max	.004	1	0	2	.006	1	-7.36e-6	<u>15</u>	NC	_1_	NC	1
168			min	004	3	009	3	0		-1.815e-4	1_	NC	1_	NC	1
169		9	max	.004	1	0	2	.005	1	-6.672e-6	<u>15</u>	NC	_1_	NC	1_
170			min	004	3	009	3	0	15	-1.645e-4	<u>1</u>	NC	1_	NC	1
171		10	max	.004	1	001	15	.004	1	-5.984e-6	15	NC	_1_	NC	1
172			min	004	3	008	3	0	15	-1.475e-4	1_	NC	1_	NC	1
173		11	max	.003	1	001	15	.003	1	-5.296e-6	15	NC	_1_	NC	1
174			min	003	3	008	3	0	15	-1.305e-4	1_	NC	1_	NC	1
175		12	max	.003	1	001	15	.003	1	-4.607e-6	15	NC	1_	NC	1_
176			min	003	3	007	3	0	15	-1.135e-4	1_	NC	1_	NC	1
177		13	max	.002	1	001	15	.002	1	-3.919e-6	<u> 15</u>	NC	_1_	NC	1
178			min	002	3	006	3	0	15	-9.649e-5	1	NC	1	NC	1
179		14	max	.002	1	001	15	.001	1	-3.231e-6	15	NC	1	NC	1
180			min	002	3	005	3	0	15	-7.948e-5	1	NC	1	NC	1
181		15	max	.002	1	001	15	0	1	-2.543e-6	15	NC	1	NC	1
182			min	002	3	005	4	0	15	-6.248e-5	1	NC	1	NC	1
183		16	max	.001	1	0	15	0	1	-1.855e-6	15	NC	1	NC	1
184			min	001	ω	004	4	0	15	-4.547e-5	1	NC	1	NC	1
185		17	max	0	1	0	15	0	1	-1.167e-6	15	NC	1	NC	1
186			min	0	3	003	4	0	15	-2.846e-5	1	NC	1	NC	1
187		18	max	0	1	0	15	0	1	-4.785e-7	15	NC	1	NC	1
188			min	0	3	002	4	0	15	-1.146e-5	1	NC	1	NC	1
189		19	max	0	1	0	1	0	1	5.55e-6	1	NC	1	NC	1
190			min	0	1	0	1	0	1	5.614e-8	12	NC	1	NC	1
191	M3	1	max	0	1	0	1	0	1	-1.156e-7	12	NC	1	NC	1
192			min	0	1	0	1	0	1	-3.275e-6	1	NC	1	NC	1
193		2	max	0	3	0	15	0	1	3.215e-5	1	NC	1	NC	1
194			min	0	2	003	4	0	12	1.302e-6	15	NC	1	NC	1
195		3	max	0	3	001	15	0	1	6.758e-5	1	NC	1	NC	1
196			min	0	2	006	4	0	12	2.734e-6	15	NC	1	NC	1
197		4	max	.001	3	002	15	0	1	1.03e-4	1	NC	1	NC	1
198			min	0	2	009	4	0	12	4.165e-6	15	NC	1	NC	1
199		5	max	.001	3	003	15	0	1	1.384e-4	1	NC	1	NC	1
200			min	001	2	012	4	0	12	5.597e-6	15	8792.805	4	NC	1
201		6	max	.002	3	003	15	0	1	1.739e-4	1	NC	2	NC	1
202			min	001	2	015	4	0	12	7.028e-6	15		4	NC	1
203		7	max	.002	3	004	15	0	1	2.093e-4	1	NC	5	NC	1
204			min	002	2	017	4	0	15	8.46e-6	15	6079.122	4	NC	1
205		8	max	.002	3	004	15	.001	1	2.447e-4	1	NC	5	NC	1
206			min	002	2	019	4	0	15	9.891e-6		5450.191	4	NC	1
207		9	max	.003	3	005	15	.002	1	2.801e-4	1	NC	5	NC	1
208		Ť	min	002	2	02	4	0	_	1.132e-5		5077.449	4	NC	1
209		10	max	.002	3	005	15	.002	1	3.156e-4	1	NC	5	NC	1
210			min	002	2	021	4	0		1.275e-5		4895.736	4	NC	1
211		11	max	.004	3	005	15	.003	1	3.51e-4	1	NC	5	NC	1
								.555		0.0.0					

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]					LC	(n) L/z Ratio	LC
212			min	003	2	021	4	0	15	1.419e-5		4878.202	4	NC	1
213		12	max	.004	3	005	15	.003	1	3.864e-4	_1_	NC	5	NC	1
214			min	003	2	021	4	0	15	1.562e-5	15	5026.009	4	NC	1
215		13	max	.004	3	005	15	.004	1_	4.218e-4	_1_	NC	5_	NC	1
216			min	003	2	02	4	0	15	1.705e-5	15	5370.08	4_	NC	1
217		14	max	.005	3	004	15	.005	1	4.573e-4	_1_	NC	5	NC	1
218		<u> </u>	min	003	2	018	4	0	15	1.848e-5	<u>15</u>	5987.22	4	NC	1
219		15	max	.005	3	004	15	.006	1	4.927e-4	1_	NC 70.47.007	3	NC NC	1
220		40	min	004	2	01 <u>5</u>	4	0	15	1.991e-5		7047.997	4	NC NC	1
221		16	max	.005	3	003	15	.007	1	5.281e-4	1_	NC	1_	NC NC	1
222		4-7	min	004	2	012	4	0	15	2.134e-5		8965.765	4	NC	1
223		17	max	.006	3	002	15	.009	1	5.635e-4	1_	NC	1	NC NC	1
224		40	min	004	2	009	4	0	15	2.277e-5	<u> 15</u>	NC NC	1_	NC NC	1
225		18	max	.006	3	<u>001</u>	15	01	1_	5.99e-4	_1_	NC	1_	NC NC	2
226		40	min	005	2	006	1	0	15	2.421e-5	<u>15</u>	NC	1_	9834.731	1
227		19	max	.006	3	0	15	.012	1	6.344e-4	1_	NC	1	NC	2
228	N 4 4		min	005	2	003	1	0	15	2.564e-5	15	NC NC	1_	8431.287	1
229	M4	1_	max	.003	1	.004	2	0	15	1.567e-4	1_	NC	1	NC 2250 247	3
230			min	0	3	006	3	012	1	6.364e-6	15	NC	1_	2050.247	1
231		2	max	.003	1	.004	2	0	15	1.567e-4	1_	NC	1	NC	3
232			min	0	3	006	3	011	1_	6.364e-6	15	NC NC	1_	2227.766	
233		3	max	.003	1	.004	2	0	15	1.567e-4	1_	NC NC	1	NC	3
234		_	min	0	3	006	3	<u>01</u>	1_	6.364e-6	<u>15</u>	NC NC	1_	2439.146	1
235		4	max	.002	1	.004	2	0	15	1.567e-4	1_	NC NC	1	NC	3
236		-	min	0	3	005	3	009	1_1	6.364e-6	<u>15</u>	NC NC	1_	2693.162	1
237		5	max	.002	1	.003	2	0	15	1.567e-4	1_	NC NC	1	NC	3
238			min	0	3	005	3	008	1_1	6.364e-6	15	NC NC	1_	3001.745	
239		6	max	.002	1	.003	2	0	15	1.567e-4	1_	NC NC	1_	NC	3
240		-	min	0	3	005	3	007	1_	6.364e-6	15	NC NC	1_	3381.439	
241		7	max	.002	3	.003	2	0	15	1.567e-4	1_	NC NC	<u>1</u> 1	NC	3
242		0	min	0		<u>004</u>	3	006	1 1 5	6.364e-6 1.567e-4	<u>15</u>	NC NC	1	3855.727 NC	2
243 244		8	max	.002 0	3	.003 004	3	0	15		1_	NC NC	1	4458.857	-
			min		1			006	1 1 1 5	6.364e-6	<u>15</u>	NC NC	1		1
245		9	max	.002	-	.002	2	0	15	1.567e-4	1_		1	NC FOAD 200	2
246 247		10	min	0	3	<u>004</u>	2	<u>005</u>	1 1 5	6.364e-6	<u>15</u>	NC NC	1	5242.382 NC	2
		10	max	.001	3	.002	3	0 004	15	1.567e-4 6.364e-6	1_	NC NC	1	6286.885	1
248		11	min	0	_	<u>003</u>	2		1 1 5		<u>15</u>	NC NC	1	NC	2
			max	.001	3	.002	3	0	15	1.567e-4	1_		1	7724.173	4
250		12	min	0	1	003		003		6.364e-6	<u>15</u>	NC NC	1		1
251 252		12	max min	.001 0	3	.002 003	3	003	15	1.567e-4 6.364e-6	1_		1	NC 9782.219	2
253		13		0	1	.003	2	003 0		1.567e-4	1 <u>15</u>	NC NC	1	NC	1
254		13	max	0	3	002	3	002	1	6.364e-6	15	NC NC	1	NC NC	1
255		14		0	1	002 .001	2	<u>002</u> 0		1.567e-4	<u>15</u>	NC NC	1	NC NC	1
256		14	max min	0	3	002	3	001	1	6.364e-6	15	NC NC	1	NC NC	1
257		15		0	1	<u>002</u> 0	2	<u>001</u> 0	15		1 <u>1</u>	NC NC	1	NC NC	1
258		13	max	0	3	001	3	0	1	6.364e-6	15	NC	1	NC	1
259		16	max	0	1	<u>001</u> 0	2	0	15		1	NC	1	NC	1
260		10	min	0	3	001	3	0	1	6.364e-6	15	NC	1	NC	1
		17		0	1		2	0	15	1.567e-4		NC	1	NC	1
261 262		17	max min	0	3	0 0	3	0	1	6.364e-6	<u>1</u> 15	NC NC	1	NC NC	1
263		18	max	0	1	0	2	0	15	1.567e-4	1 <u>15</u>	NC NC	1	NC NC	1
264		10	min	0	3	0	3	0	1	6.364e-6	15	NC NC	1	NC NC	1
265		19	max	0	1	0	1	0	1	1.567e-4	1	NC	1	NC	1
266		13	min	0	1	0	1	0	1	6.364e-6	15	NC NC	1	NC NC	1
267	M6	1	max	.023	1	.027	2	0	1	0.304e-0	<u>15</u> 1	NC NC	3	NC NC	1
268	IVIO		min	023	3	036	3	0	1	0	1	2601.535	2	NC	1
200			1110111	023	J	000	J	U		U		2001.000		INC	

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
269		2	max	.021	1	.024	2	0	1	0	1		3	NC	1
270			min	022	3	034	3	0	1	0	1	2864.342	2	NC	1
271		3	max	.02	1	.022	2	0	1	0	1_	NC	3	NC	1
272			min	021	3	032	3	0	1	0	1	3183.452	2	NC	1
273		4	max	.019	1	.019	2	0	1	0	1		3_	NC	1
274		_	min	019	3	03	3	0	1	0	1	3575.647	2	NC	1
275		5	max	.018	1	.017	2	0	1	0	1	NC 4004 005	3_	NC NC	1
276		_	min	018	3	029	3	0	1	0	1_	4064.685	2	NC NC	1
277 278		6	max	.016 017	3	.015 027	3	0	1	0	1	NC 4685.112	2	NC NC	1
279		7	min max	017 .015	1	027 .013	2	0	1	0	1	NC	<u>2</u> 1	NC NC	1
280		-	min	016	3	025	3	0	1	0	1	5488.786	2	NC	1
281		8	max	.014	1	.011	2	0	1	0	1	NC	1	NC	1
282			min	014	3	023	3	0	1	0	1	6556.543	2	NC	1
283		9	max	.013	1	.009	2	0	1	0	1		1	NC	1
284			min	013	3	021	3	0	1	0	1	8020.356	2	NC	1
285		10	max	.011	1	.007	2	0	1	0	1	NC	1	NC	1
286			min	012	3	019	3	0	1	0	1	NC	1	NC	1
287		11	max	.01	1	.005	2	0	1	0	1	NC	1_	NC	1_
288			min	01	3	017	3	0	1	0	1	NC	1	NC	1
289		12	max	.009	1	.004	2	0	1	0	_1_	NC	1_	NC	1
290			min	009	3	01 <u>5</u>	3	0	1	0	1_	NC	<u>1</u>	NC	1
291		13	max	.008	1	.003	2	0	1	0	1	NC	1_	NC NC	1
292		4.4	min	008	3	013	3	0	1	0	1_	NC NC	1_	NC NC	1
293 294		14	max	.006 006	3	.001 011	3	0	1	0	1	NC NC	1	NC NC	1
295		15	min max	006 .005	1	<u>011</u> 0	2	0	1	0	1	NC NC	1	NC NC	1
296		15	min	005	3	009	3	0	1	0	1	NC	1	NC	1
297		16	max	.004	1	<u>009</u>	2	0	1	0	1	NC	1	NC	1
298		10	min	004	3	006	3	0	1	0	1	NC	1	NC	1
299		17	max	.003	1	0	2	0	1	0	1	NC	1	NC	1
300			min	003	3	004	3	0	1	0	1	NC	1	NC	1
301		18	max	.001	1	0	2	0	1	0	1	NC	1	NC	1
302			min	001	3	002	3	0	1	0	1	NC	1	NC	1
303		19	max	0	1	0	1	0	1	0	1_	NC	1_	NC	1
304			min	0	1	0	1	0	1	0	1_	NC	1_	NC	1
305	M7	11	max	0	1	0	1	0	1	0	1_	NC	1_	NC	1
306			min	0	1	0	1	0	1	0	1_	NC	1_	NC	1
307		2	max	.001	3	0	15	0	1	0	1	NC NC	1_	NC NC	1
308		2	min	001 .002	3	003 001	3 15	0	1	0	1	NC NC	<u>1</u> 1	NC NC	1
310		3	max min	002	2	001 006	3	<u> </u>	1	0	1	NC NC	1	NC NC	1
311		4	max	.002	3	002	15	0	1	0	1	NC	1	NC	1
312		7	min	003	2	002	3	0	1	0	1	NC	1	NC	1
313		5	max	.004	3	003	15	0	1	0	1	NC	1	NC	1
314			min	004	2	012	3	0	1	0	1		4	NC	1
315		6	max	.005	3	003	15	0	1	0	1	NC	1	NC	1
316			min	005	2	015	3	0	1	0	1	7275.189	4	NC	1
317		7	max	.006	3	004	15	0	1	0	1	NC	1	NC	1
318			min	006	2	017	4	0	1	0	1		4	NC	1
319		8	max	.008	3	004	15	0	1	0	1		2	NC	1
320			min	007	2	019	4	0	1	0	1	5565.32	4	NC	1
321		9	max	.009	3	005	15	0	1	0	1	NC	5	NC	1
322		40	min	008	2	02	4	0	1	0	1_		4_	NC NC	1
323		10	max	.01	3	005	15	0	1	0	1		5	NC NC	1
324		4.4	min	009	2	021	4	0	1	0	1		4	NC NC	1
325		11	max	.011	3	005	15	0	1	0	<u>1</u>	NC	5	NC	_1_

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio			LC
326			min	01	2	021	4	0	1	0	1	4963.814	4	NC	1
327		12	max	.012	3	005	15	0	1	0	1	NC	5	NC	1
328			min	011	2	021	4	0	1	0	1_	5110.047	4	NC	1
329		13	max	.013	3	005	15	0	1	0	1	NC	_5_	NC	1
330		4.4	min	012	2	02	4	0	1	0	_1_	5456.141	4_	NC	1
331		14	max	.014	3	004	15	0	1	0	1	NC	2	NC NC	1
332		45	min	013	2	018	4	0	1	0	1_	6079.721	4	NC NC	1
333		15	max	.015	3	004	15	0	1	0	1	NC	1_	NC NC	1
334		10	min	014	2	015	4	0	1	0	1_	7153.58	4	NC NC	1
335		16	max	.016	3	003	15	<u>0</u> 	1	0	<u>1</u> 1	NC 9096.774	<u>1</u> 4	NC NC	1
336		17	min	015 .017	3	013 002	4		1		_	NC	1	NC NC	1
337		17	max min	016	2	002 01	15	0	1	0	1	NC NC	1	NC NC	1
339		18	max	.018	3	001 001	15	0	1	0	1	NC NC	1	NC NC	1
340		10	min	018	2	007	1	0	1	0	1	NC	1	NC	1
341		19	max	.019	3	<u>007</u> 0	15	0	1	0	1	NC	1	NC	1
342		13	min	019	2	005	1	0	1	0	1	NC	1	NC	1
343	M8	1	max	.008	1	.018	2	0	1	0	1	NC	1	NC	1
344	IVIO	'	min	0	3	02	3	0	1	0	1	NC	1	NC	1
345		2	max	.007	1	.017	2	0	1	0	1	NC	1	NC	1
346		_	min	0	3	019	3	0	1	0	1	NC	1	NC	1
347		3	max	.007	1	.016	2	0	1	0	1	NC	1	NC	1
348			min	0	3	018	3	0	1	0	1	NC	1	NC	1
349		4	max	.006	1	.015	2	0	1	0	1	NC	1	NC	1
350			min	0	3	017	3	0	1	0	1	NC	1	NC	1
351		5	max	.006	1	.014	2	0	1	0	1	NC	1	NC	1
352			min	0	3	015	3	0	1	0	1	NC	1	NC	1
353		6	max	.005	1	.013	2	0	1	0	1	NC	1	NC	1
354			min	0	3	014	3	0	1	0	1	NC	1	NC	1
355		7	max	.005	1	.012	2	0	1	0	1_	NC	1_	NC	1
356			min	0	3	013	3	0	1	0	1	NC	1_	NC	1
357		8	max	.005	1	.011	2	0	1	0	1	NC	1_	NC	1
358			min	0	3	012	3	0	1	0	1_	NC	1_	NC	1
359		9	max	.004	1	.01	2	0	1	0	_1_	NC	_1_	NC	1
360			min	0	3	011	3	0	1	0	1_	NC	1_	NC	1
361		10	max	.004	1	.009	2	0	1	0	1_	NC	_1_	NC	1
362			min	0	3	01	3	0	1	0	1_	NC	1_	NC	1
363		11	max	.003	1	.008	2	0	1	0	1	NC		NC NC	1
364		40	min	0	3	009	3	0	1	0	1_	NC	1_	NC NC	1
365		12	max	.003	1	.007	2	0	1	0	1_	NC	1_	NC NC	1
366		40	min		3	008	3	0	1	0	1	NC NC	1	NC NC	1
367		13	max	.003	3	.006	2	0	1	0	1	NC NC	1	NC NC	1
368		1.1	min	0	1	007	2	0	1	0	<u>1</u> 1	NC NC	<u>1</u> 1	NC NC	1
369		14	max	.002	3	.005	3	0 0	1	0	1	NC NC	1	NC NC	1
370 371		15	min max	.002	1	006 .004	2	0	1	0	1	NC NC	1	NC NC	1
372		13	min	0	3	004	3	0	1	0	1	NC	1	NC	1
373		16	max	.001	1	.003	2	0	1	0	1	NC	1	NC	1
374		10	min	0	3	003	3	0	1	0	1	NC	1	NC	1
375		17	max	0	1	.002	2	0	1	0	1	NC	1	NC	1
376		17	min	0	3	002	3	0	1	0	1	NC	1	NC	1
377		18	max	0	1	0	2	0	1	0	1	NC	1	NC	1
378		10	min	0	3	001	3	0	1	0	1	NC	1	NC	1
379		19	max	0	1	0	1	0	1	0	1	NC	1	NC	1
380		1.5	min	0	1	0	1	0	1	0	1	NC	1	NC	1
381	M10	1	max	.007	1	.007	2	0	15	3.006e-4	1	NC	1	NC	2
382			min	007	3	012	3	013	1	1.218e-5	15	NC	1	5307.435	
											_				_

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r	LC		LC		
383		2	max	.007	1	.006	2	0	15	2.836e-4	_1_	NC	_1_	NC	2
384			min	007	3	011	3	012	1	1.149e-5	15	NC	<u>1</u>	5786.948	1
385		3	max	.006	1	.005	2	0	15	2.666e-4	_1_	NC	_1_	NC	2
386			min	006	3	011	3	011	1	1.08e-5	15	NC	1_	6358.022	1
387		4	max	.006	1	.004	2	0	15	2.496e-4	_1_	NC	_1_	NC	2
388			min	006	3	011	3	01	1	1.011e-5	15	NC	1	7044.824	1
389		5	max	.006	1	.003	2	0	15	2.325e-4	_1_	NC	_1_	NC	2
390			min	006	3	01	3	009	1	9.425e-6	15	NC	1_	7880.298	
391		6	max	.005	1	.002	2	0	15	2.155e-4	_1_	NC	_1_	NC	2
392			min	005	3	01	3	008	1	8.736e-6	15	NC	1_	8910.297	1
393		7	max	.005	1	0	2	0	15	1.985e-4	_1_	NC	_1_	NC	1
394			min	005	3	01	3	007	1	8.048e-6	15	NC	1	NC	1
395		8	max	.004	1	0	2	0	15	1.815e-4	_1_	NC	_1_	NC	1
396			min	004	3	009	3	006	1	7.36e-6	15	NC	1_	NC	1
397		9	max	.004	1	0	2	0	15	1.645e-4	1_	NC	_1_	NC	1
398			min	004	3	009	3	005	1	6.672e-6	15	NC	1	NC	1
399		10	max	.004	1	001	15	0	15	1.475e-4	1_	NC	1_	NC	1
400			min	004	3	008	3	004	1	5.984e-6	15	NC	1	NC	1
401		11	max	.003	1	001	15	0	15	1.305e-4	1	NC	1	NC	1
402			min	003	3	008	3	003	1	5.296e-6	15	NC	1	NC	1
403		12	max	.003	1	001	15	0	15	1.135e-4	1	NC	1	NC	1
404			min	003	3	007	3	003	1	4.607e-6	15	NC	1	NC	1
405		13	max	.002	1	001	15	0	15	9.649e-5	1	NC	1	NC	1
406			min	002	3	006	3	002	1	3.919e-6	15	NC	1	NC	1
407		14	max	.002	1	001	15	0	15	7.948e-5	1	NC	1	NC	1
408			min	002	3	005	3	001	1	3.231e-6	15	NC	1	NC	1
409		15	max	.002	1	001	15	0	15	6.248e-5	1	NC	1	NC	1
410			min	002	3	005	4	0	1	2.543e-6	15	NC	1	NC	1
411		16	max	.001	1	0	15	0	15	4.547e-5	1	NC	1	NC	1
412			min	001	3	004	4	0	1	1.855e-6	15	NC	1	NC	1
413		17	max	0	1	0	15	0	15	2.846e-5	1	NC	1	NC	1
414			min	0	3	003	4	0	1	1.167e-6	15	NC	1	NC	1
415		18	max	0	1	0	15	0	15	1.146e-5	1	NC	1	NC	1
416			min	0	3	002	4	0	1	4.785e-7	15	NC	1	NC	1
417		19	max	0	1	0	1	0	1	-5.614e-8	12	NC	1	NC	1
418			min	0	1	0	1	0	1	-5.55e-6	1	NC	1	NC	1
419	M11	1	max	0	1	0	1	0	1	3.275e-6	1	NC	1	NC	1
420			min	0	1	0	1	0	1	1.156e-7	12	NC	1	NC	1
421		2	max	0	3	0	15	0	12	-1.302e-6	15	NC	1	NC	1
422			min	0	2	003	4	0	1	-3.215e-5	1	NC	1	NC	1
423		3	max	0	3	001	15	0	_	-2.734e-6	_	NC	1	NC	1
424			min	0	2	006	4	0	1	-6.758e-5	1	NC	1	NC	1
425		4	max	.001	3	002	15	0	12	-4.165e-6		NC	1	NC	1
426		T	min	0	2	009	4	0	1	-1.03e-4	1	NC	1	NC	1
427		5	max	.001	3	003	15	0	12	-5.597e-6		NC	1	NC	1
428			min	001	2	012	4	0	1	-1.384e-4	1	8792.805	4	NC	1
429		6	max	.002	3	003	15	0	12	-7.028e-6	15	NC	2	NC	1
430			min	001	2	015	4	0	1	-1.739e-4	1	7098.313	4	NC	1
431		7	max	.002	3	004	15	0	15	-8.46e-6	15		5	NC	1
432			min	002	2	004 017	4	0	1	-2.093e-4	1	6079.122	4	NC	1
433		8	max	.002	3	017 004	15	0		-9.891e-6		NC	5	NC NC	1
434		0	min	002	2	004 019	4	001	1	-9.691e-6	1	5450.191	4	NC	1
435		9		.002	3	019 005	15	<u>001</u> 0	15		15	NC	5	NC NC	1
436		3	max	002	2	005 02	4	002	1	-1.132e-3 -2.801e-4	1	5077.449	4	NC NC	1
437		10	min	.002	3	02 005	15	<u>002</u> 0		-2.601e-4 -1.275e-5		NC	_ 4 _	NC NC	1
437		10	max	003 002	2	005 021	4	002	15	-1.275e-5 -3.156e-4	1	4895.736	<u>5</u>	NC NC	1
		11	min				_				_				
439		11	max	.004	3	005	15	0	15	-1.419e-5	15	NC	5	NC	1

Model Name

: Schletter, Inc. : HCV

. : Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC		LC
440			min	003	2	021	4	003	1	-3.51e-4	1_	4878.202	4	NC	1
441		12	max	.004	3	005	15	0	15		15	NC	5	NC	1
442			min	003	2	021	4	003	1	-3.864e-4	1_	5026.009	4	NC	1
443		13	max	.004	3	005	15	0		-1.705e-5	15	NC	_5_	NC	1
444			min	003	2	02	4	004	1	-4.218e-4	1_	5370.08	<u>4</u>	NC	1
445		14	max	.005	3	004	15	0	15	-1.848e-5	<u>15</u>	NC 5007.00	5_	NC NC	1
446		4.5	min	003	2	018	4	005	1_	-4.573e-4	1_	5987.22	4	NC NC	1
447		15	max	.005	3	004	15	0	15	-1.991e-5	<u>15</u>	NC	3	NC NC	1
448		4.0	min	004	2	015	4	006	1	-4.927e-4	1_	7047.997	4	NC NC	1
449		16	max	.005	3	003 012	15	0 007	15	-2.134e-5	<u>15</u> 1	NC 8965.765	<u>1</u> 4	NC NC	1
450 451		17	min	004 .006	3	012	15	<u>007</u> 0	15	-5.281e-4 -2.277e-5	_	NC	_ 4 _	NC NC	1
451		17	max	004	2	002 009	4	009	1	-2.277e-5 -5.635e-4	<u>15</u> 1	NC NC	1	NC NC	1
452		18		.006	3	009 001	15	<u>009</u> 0	15	-2.421e-5		NC NC	1	NC NC	2
454		10	max min	005	2	006	1	01	1	-5.99e-4	<u>15</u> 1	NC NC	1	9834.731	1
455		19	max	.006	3	000 0	15	<u>01</u> 0	15	-2.564e-5	15	NC	1	NC	2
456		13	min	005	2	003	1	012	1	-6.344e-4	1	NC	1	8431.287	1
457	M12	1	max	.003	1	.003	2	.012	1	-6.364e-6		NC	1	NC	3
458	10112		min	0	3	006	3	0		-1.567e-4	1	NC	1	2050.247	1
459		2	max	.003	1	.004	2	.011	1	-6.364e-6	15	NC	1	NC	3
460			min	0	3	006	3	0	15		1	NC	1	2227.766	
461		3	max	.003	1	.004	2	.01	1	-6.364e-6	15	NC	1	NC	3
462			min	0	3	006	3	0	15	-1.567e-4	1	NC	1	2439.146	1
463		4	max	.002	1	.004	2	.009	1	-6.364e-6	15	NC	1	NC	3
464			min	0	3	005	3	0	15	-1.567e-4	1	NC	1	2693.162	1
465		5	max	.002	1	.003	2	.008	1	-6.364e-6	15	NC	1	NC	3
466			min	0	3	005	3	0	15	-1.567e-4	1	NC	1	3001.745	1
467		6	max	.002	1	.003	2	.007	1	-6.364e-6	15	NC	1	NC	3
468			min	0	3	005	3	0	15	-1.567e-4	1	NC	1	3381.439	1
469		7	max	.002	1	.003	2	.006	1	-6.364e-6	<u>15</u>	NC	1_	NC	3
470			min	0	3	004	3	0	15	-1.567e-4	1_	NC	1	3855.727	1
471		8	max	.002	1	.003	2	.006	1	-6.364e-6	15	NC	_1_	NC	2
472			min	0	3	004	3	0	15	-1.567e-4	1_	NC	1_	4458.857	1
473		9	max	.002	1	.002	2	.005	1	-6.364e-6	<u>15</u>	NC	_1_	NC	2
474			min	0	3	004	3	0	15	-1.567e-4	_1_	NC	_1_	5242.382	1
475		10	max	.001	1	.002	2	.004	1	-6.364e-6	<u>15</u>	NC	_1_	NC	2
476			min	0	3	003	3	0	15	-1.567e-4	_1_	NC	1_	6286.885	1
477		11	max	.001	1	.002	2	.003	1	-6.364e-6	<u>15</u>	NC	1_	NC NC	2
478		40	min	0	3	003	3	0	15		1_	NC	1_	7724.173	1
479		12	max	.001	1	.002	2	.003	1	-6.364e-6	<u>15</u>	NC	1_	NC	2
480		40	min		3	003	3	0		-1.567e-4		NC NC	1	9782.219	
481		13	max	0	3	.001	2	.002	1	-6.364e-6	15	NC NC	1	NC NC	1
482		1.1	min	0	1	002	2	0	15		1 =	NC NC	<u>1</u> 1	NC NC	1
483		14	max	0	3	.001	3	.001	1 15	-6.364e-6 -1.567e-4		NC NC	1	NC NC	1
484 485		15	min max	0	1	002 0	2	<u> </u>	1	-6.364e-6	1_	NC NC	1	NC NC	1
486		15	min	0	3	001	3	0		-0.304e-0	1	NC	1	NC	1
487		16	max	0	1	<u>001</u> 0	2	0	1	-6.364e-6		NC	1	NC	1
488		10	min	0	3	001	3	0		-0.304e-0	1	NC	1	NC	1
489		17	max	0	1	001 0	2	0	1	-6.364e-6	15	NC NC	1	NC NC	1
490		17	min	0	3	0	3	0	_	-0.364e-6	1 <u>1</u>	NC NC	1	NC NC	1
491		18	max	0	1	0	2	0	1	-6.364e-6	-	NC	1	NC	1
492		10	min	0	3	0	3	0	15	-1.567e-4	1	NC	1	NC	1
493		19	max	0	1	0	1	0	1	-6.364e-6	•	NC	1	NC	1
494		13	min	0	1	0	1	0	1	-1.567e-4	1	NC	1	NC	1
495	M1	1	max	.008	3	.182	1	0	1	1.41e-2	1	NC	1	NC	1
496			min	004	2	028	3	0		-2.081e-2	3	NC	1	NC	1
			1111111		_	.020							_		

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC		LC	(n) L/y Ratio		(n) L/z Ratio	LC
497		2	max	.008	3	.09	1	0	15	6.801e-3	1	NC	5	NC	1_
498			min	004	2	013	3	009	1	-1.033e-2	3	1468.963	1_	NC	1
499		3	max	.008	3	.012	3	0	15	3.228e-6	<u>10</u>	NC	5	NC	2
500			min	004	2	01	2	013	1	-2.81e-4	1_	705.28	1_	9753.443	
501		4	max	.008	3	.055	3	0	15	4.864e-3	1_	NC	<u>15</u>	NC	1
502		-	min	004	2	122	1	012	1	-4.152e-3	3	443.329	1_	NC NC	1
503		5	max	.008	3	.11	3	0	15	1.001e-2	1_	9546.857	<u>15</u>	NC NC	1
504			min	004	2	24	1	008	1	-8.201e-3	3	318.618	1_	NC NC	1
505		6	max	.008	3	.171	3	0	15	1.515e-2	1	7536.806	<u>15</u>	NC NC	1
506		7	min	004	2	<u>356</u> .229	1	004	1	-1.225e-2	3	250.093	1_	NC NC	1
507 508			max	.008 004	3	459	3	0 0	3	2.03e-2 -1.63e-2	<u>1</u>	6350.97 209.747	<u>15</u> 1	NC NC	1
509		8	min	.007	3	4 <u>59</u> .278	3	.001	1	2.544e-2	<u>3</u> 1	5649.728	<u> </u>	NC NC	1
510		0	max	004	2	542	1	<u>.001</u>	15	-2.035e-2	3	185.932	1	NC NC	1
511		9	max	.007	3	.31	3	0	15	2.798e-2	1	5283.179	15	NC	1
512		3	min	003	2	593	1	0	1	-2.056e-2	3	173.532	1	NC	1
513		10	max	.007	3	.322	3	0	1	2.878e-2	1		15	NC	1
514		10	min	003	2	611	1	0	15	-1.82e-2	3	169.814	1	NC	1
515		11	max	.007	3	.315	3	0	1	2.957e-2	1	5282.975	15	NC	1
516			min	003	2	593	1	0	15	-1.585e-2	3	173.763	1	NC	1
517		12	max	.007	3	.289	3	0	15	2.788e-2	1	5649.302	15	NC	1
518		<u> </u>	min	003	2	54	1	001	1	-1.336e-2	3	186.641	1	NC	1
519		13	max	.006	3	.246	3	0	15	2.246e-2	1	6350.234	15	NC	1
520			min	003	2	456	1	0	1	-1.069e-2	3	211.482	1	NC	1
521		14	max	.006	3	.191	3	.003	1	1.704e-2	1	7535.572	15	NC	1
522			min	003	2	351	1	0	15	-8.016e-3	3	253.8	1	NC	1
523		15	max	.006	3	.129	3	.008	1	1.162e-2	1	9544.739	15	NC	1
524			min	003	2	234	1	0	15	-5.342e-3	3	326.217	1	NC	1
525		16	max	.006	3	.066	3	.011	1	6.207e-3	1	NC	15	NC	1
526			min	003	2	115	1	0	15	-2.669e-3	3	459.217	1	NC	1
527		17	max	.006	3	.004	3	.012	1	7.9e-4	1_	NC	5	NC	1
528			min	003	2	005	2	0	15	4.837e-6	3	740.797	1_	NC	1
529		18	max	.006	3	.09	1	.009	1	8.759e-3	2	NC	5_	NC	1
530			min	003	2	052	3	0	15	-2.942e-3	3	1558.774	1_	NC	1
531		19	max	.006	3	.176	1	0	15	1.74e-2	2	NC	1_	NC	1
532			min	003	2	104	3	001	1	-5.989e-3	3	NC	1_	NC	1
533	<u>M5</u>	1	max	.025	3	.371	1	0	1	0	1	NC	1_	NC	1
534			min	017	2	<u>015</u>	3	0	1	0	1_	NC	_1_	NC NC	1
535		2	max	.025	3	.184	1	0	1	0	1_	NC	5	NC NC	1
536			min	017	2	006	3	0	1	0	1_	718.918	1_	NC NC	1
537		3	max	.025	3	.036	3	0	1	0	11	NC	<u>15</u>	NC NC	1
538		4	min	017	2	032	2	0	1	0	1_	334.422	1_	NC NC	1
539		4	max	.025	3	.139	3	0 0	1	0	1	6757.225	<u>15</u> 1	NC NC	1
540		-	min	017	2	295	3		1	0	1	201.923 4711.947	•	NC NC	1
541 542		5	max min	.024 017	3	.286 587	1	<u> </u>	1	0	1	140.48	<u>15</u> 1	NC NC	1
543		6	max	.023	3	.452	3	0	1	0	1	3617.767	15	NC	1
544		0	min	016	2	879	1	0	1	0	1	107.645	1	NC	1
545		7	max	.023	3	.616	3	0	1	0	1	2987.512	15	NC	1
546			min	016	2	-1.145	1	0	1	0	1	88.746	1	NC	1
547		8	max	.022	3	.754	3	0	1	0	1	2621.891	15	NC	1
548			min	016	2	-1.358	1	0	1	0	1	77.789	1	NC	1
549		9	max	.022	3	.844	3	0	1	0	1	2434.485	15	NC	1
550			min	015	2	-1.493	1	0	1	0	1	72.179	1	NC	1
551		10	max	.021	3	.877	3	0	1	0	1		15	NC	1
552		1.0	min	015	2	-1.538	1	0	1	0	1	70.51	1	NC	1
553		11	max	.021	3	.856	3	0	1	0		2434.572	15	NC	1
			max	.021		.000						= 10 h.01 Z			

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
554			min	015	2	-1.492	1	0	1	0	1	72.289	1	NC	1
555		12	max	.02	3	.782	3	0	1	0	1	2622.104	15	NC	1
556			min	014	2	-1.354	1	0	1	0	1	78.154	1	NC	1
557		13	max	.02	3	.662	3	0	1	0	1		15	NC	1
558		1	min	014	2	-1.134	1	0	1	0	1	89.7	1	NC	1
559		14	max	.019	3	.511	3	0	1	0	1		15	NC	1
560		17	min	014	2	861	1	0	1	0	1	109.808	1	NC	1
561		15	max	.019	3	.342	3	0	1	0	1		15	NC	1
562		13	min	014	2	565	1	0	1	0	1	145.218	1	NC	1
		16							1						
563		16	max	.018	3	.171	3	0		0	1_		<u>15</u>	NC	1
564		47	min	014	2	273	1	0	1	0	1_	212.655	1_	NC	1
565		17	max	.018	3	.012	3	0	1	0	1		<u>15</u>	NC	1
566			min	013	2	017	2	0	1	0	1_	360.803	1_	NC	1
567		18	max	.018	3	.186	1	0	1	0	1_	NC	5	NC	1
568			min	013	2	124	3	0	1	0	1_	790.519	1_	NC	1
569		19	max	.018	3	.355	1	0	1	0	_1_	NC	1_	NC	1
570			min	013	2	247	3	0	1	0	1_	NC	1_	NC	1
571	M9	1	max	.008	3	.182	1	0	15	2.081e-2	3	NC	1_	NC	1
572			min	004	2	028	3	0	1	-1.41e-2	1	NC	1	NC	1
573		2	max	.008	3	.09	1	.009	1	1.033e-2	3	NC	5	NC	1
574			min	004	2	013	3	0	15	-6.801e-3	1	1468.963	1	NC	1
575		3	max	.008	3	.012	3	.013	1	2.81e-4	1	NC	5	NC	2
576			min	004	2	01	2	0	15	-3.228e-6	10	705.28	1	9753.443	
577		4	max	.008	3	.055	3	.012	1	4.152e-3	3		15	NC	1
578			min	004	2	122	1	0	15	-4.864e-3	1	443.329	1	NC	1
579		5	max	.008	3	.11	3	.008	1	8.201e-3	3		15	NC	1
580		<u> </u>	min	004	2	24	1	0	15	-1.001e-2	1	318.618	1	NC	1
581		6	max	.004	3	.171	3	.004	1	1.225e-2	3		15	NC	1
582		-		004	2	356	1				1	250.093	1		1
		7	min					0	15	-1.515e-2	•			NC NC	
583		7	max	.008	3	.229	3	0	3	1.63e-2	3		<u>15</u>	NC NC	1
584			min	004	2	459	1	0	1_	-2.03e-2	1_	209.747	1_	NC	1
585		8	max	.007	3	.278	3	0	15	2.035e-2	3		<u>15</u>	NC	1
586			min	004	2	542	1	001	1	-2.544e-2	1_	185.932	1_	NC	1
587		9	max	.007	3	.31	3	0	1	2.056e-2	3		15	NC	1
588			min	003	2	593	1	0	15	-2.798e-2	1_	173.532	1_	NC	1
589		10	max	.007	3	.322	3	0	15	1.82e-2	3_		15	NC	1
590			min	003	2	611	1	0	1	-2.878e-2	1_	169.814	1	NC	1
591		11	max	.007	3	.315	3	0	15	1.585e-2	3	5282.975	15	NC	1
592			min	003	2	593	1	0	1	-2.957e-2	1	173.763	1	NC	1
593		12	max	.007	3	.289	3	.001	1	1.336e-2	3	5649.302	15	NC	1
594			min	003	2	54	1	0	15	-2.788e-2	1	186.641	1	NC	1
595		13	max	.006	3	.246	3	0	1	1.069e-2	3		15	NC	1
596			min	003	2	456	1	0	15	-2.246e-2	1	211.482	1	NC	1
597		14	max	.006	3	.191	3	0		8.016e-3	3		15	NC	1
598			min	003	2	351	1	003	1	-1.704e-2	1	253.8	1	NC	1
599		15	max	.006	3	.129	3	0	15	5.342e-3	3		15	NC	1
600			min	003	2	234	1	008	1	-1.162e-2	1	326.217	1	NC	1
601		16	max	.006	3	.066	3	<u>.000</u>			3		15	NC	1
602		10	min	003	2	115	1	011	1	-6.207e-3	1	459.217	1	NC	1
		17													
603		17	max	.006	3	.004	3	0	15	-4.837e-6	3	NC 740 707	5	NC NC	1
604		40	min	003	2	005	2	012	1	-7.9e-4	1_	740.797	1	NC NC	1
605		18	max	.006	3	.09	1	0	15	2.942e-3	3_	NC 4550.774	5	NC	1
606		4 -	min	003	2	052	3	009	1	-8.759e-3	2	1558.774	1	NC	1
607		19	max	.006	3	.176	1	.001	1	5.989e-3	3_	NC	1_	NC	1
608			min	003	2	104	3	0	15	-1.74e-2	2	NC	1_	NC	1

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 14-	-40 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method: ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes hmin (inch): 8.50 c_{ac} (inch): 9.67 C_{min} (inch): 1.75 Smin (inch): 3.00

Load and Geometry

<Figure 1>

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}$: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 14-	-40 Inch	Width
Address:			
Phone:			
E-mail:			•

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 14-	-40 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	1020.0	27.0	565.0	565.6	
Sum	1020.0	27.0	565.0	565 6	

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 1020

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)	
8095	0.75	6071	

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	f'c (psi)	h _{ef} (in)	N_b (lb)			
17.0	1.00	2500	5.247	10215			
$\phi N_{cb} = \phi (A_t)$	Nc / A_{Nco}) $\Psi_{ed,N}$ $\Psi_{c,N}$	$_{N}\Psi_{cp,N}N_{b}$ (Sec. I	D.4.1 & Eq. D-4))			
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cb} (lb)
220.36	247.75	0.967	1.00	1.000	10215	0.65	5710

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

rt-term K _{sat} τ _{k,cr} (psi)
0 1.00 1035
. D-16f)
(in) h_{ef} (in) N_{a0} (lb)
0 6.000 9755
Ψ _{ed,Na} Ψ _{p,Na} N _{a0} (Sec. D.4.1 & Eq. D-16a)
$\Psi_{ m ed,Na}$ $\Psi_{ m p,Na}$

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	4/5
Project:	Standard PVMax - Worst Case, 14-	40 Inch	Width
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in y-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

l _e (in)	d _a (in)	λ	f'_c (psi)	c _{a1} (in)	V_{by} (lb)			
4.00	0.50	1.00	2500	7.00	6947			
$\phi V_{cby} = \phi (A_V)$	/c / A vco) \(\mathcal{P}_{ed, V} \(\mathcal{P}_{c, V} \)	$ \sqrt{\Psi_{h,V}V_{by}} $ (Sec.	D.4.1 & Eq. D-2	1)				
A_{Vc} (in ²)	A_{Vco} (in ²)	$arPsi_{\sf ed,V}$	$arPsi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cby} (lb)	
192.89	220.50	0.925	1.000	1.000	6947	0.70	3934	

 V_{bx} (lb)

8282

Shear perpendicular to edge in x-direction:

$V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f_c c_{a1}}^{1.5}$ (Eq. D-24)									
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)					
4.00	0.50	1.00	2500	7.87					

 $\phi V_{cbx} = \phi (A_{Vc}/A_{Vco}) \Psi_{ed,V} \Psi_{c,V} \Psi_{h,V} V_{bx}$ (Sec. D.4.1 & Eq. D-21)

Avc (in ²)	Avco (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
165.27	278.72	0.878	1.000	1.000	8282	0.70	3018

Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f_c c_{a1}}^{1.5} \text{ (Eq. D-24)}$ $\frac{I_e \text{ (in)} \qquad d_a \text{ (in)} \qquad \lambda \qquad \qquad f'_c \text{ (psi)} \qquad c_{a1} \text{ (in)} \qquad V_{by} \text{ (lb)}}{4.00 \qquad 0.50 \qquad 1.00 \qquad 2500 \qquad 7.00 \qquad 6947}$ $\phi V_{cbx} = \phi (2) (A_{Vc}/A_{Vc}) \Psi_{ed,V} \Psi_{c,V} \Psi_{h,V} V_{by} \text{ (Sec. D.4.1, D.6.2.1(c) \& Eq. D-21)}$

$\varphi \mathbf{v} \cos \varphi \left(\frac{2}{3} \right) (11)$	/c/ / (v co) 1 eu, v 1 c, i	V 1 11, V V by (OCO. D	.+. 1, D.O.Z. 1(0)	α Lq. D Z 1)			
Avc (in ²)	$Av\infty$ (in ²)	$\varPsi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V _{by} (lb)	ϕ	ϕV_{cbx} (lb)
192.89	220.50	1.000	1.000	1.000	6947	0.70	8508

Shear parallel to edge in y-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

l _e (in)	da (in)	λ	f'_c (psi)	<i>c</i> _{a1} (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	7.87	8282		
$\phi V_{cby} = \phi (2)$	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{bx}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$arPsi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cby} (lb)
165.27	278.72	1.000	1.000	1.000	8282	0.70	6875

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{cp} = \phi \min |k_{cp} N_a \; ; \; k_{cp} N_{cb}| = \phi \min |k_{cp} (A_{Na}/A_{Na0}) \, \Psi_{ed,Na} \, \Psi_{p,Na} N_{a0} \; ; \; k_{cp} (A_{Nc}/A_{Nco}) \, \Psi_{ed,N} \, \Psi_{c,N} \, \Psi_{cp,N} N_b| \; (\text{Eq. D-30a})$

Kcp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{p,Na}$	N _{a0} (lb)	N _a (lb)		
2.0	109.66	109.66	1.000	1.000	9755	9755		
Anc (in²)	Ανω (in²)	$\Psi_{ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N _b (lb)	Ncb (lb)	ϕ	$\phi V_{c ho}$ (lb)
220.36	247.75	0.967	1.000	1.000	10215	8785	0.70	12298

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	5/5
Project:	Standard PVMax - Worst Case, 14-	-40 Inch	Width
Address:			
Phone:			
E-mail:			_

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	1020	6071	0.17	Pass
Concrete breakout	1020	5710	0.18	Pass
Adhesive	1020	5365	0.19	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	566	3156	0.18	Pass (Governs)
T Concrete breakout y+	565	3934	0.14	Pass
T Concrete breakout x+	27	3018	0.01	Pass
Concrete breakout y+	27	8508	0.00	Pass
Concrete breakout x+	565	6875	0.08	Pass
Concrete breakout, combined	-	-	0.14	Pass
Pryout	566	12298	0.05	Pass
Interaction check Nua	$/\phi N_n$ $V_{ua}/\phi V_n$	Combined Rat	io Permissible	Status
Sec. D.7.1 0.1	9 0.00	19.0 %	1.0	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 21-	-31 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment: Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes h_{min} (inch): 8.50 c_{ac} (inch): 9.67 C_{min} (inch): 1.75 S_{min} (inch): 3.00

Load and Geometry

Load factor source: ACI 318 Section 9.2 Load combination: not set

Seismic design: No

Anchors subjected to sustained tension: No

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

Ψ_{c,V}: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 7.00 x 0.28

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 21	-31 Inch	Width
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 21	-31 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)
1	2495.5	1558.5	0.0	1558.5
2	2495.5	1558.5	0.0	1558.5
Sum	4991.0	3117.0	0.0	3117.0

Maximum concrete compression strain (%): 0.00 Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 4991

Resultant compression force (lb): 0 Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

k c	λ	f'_c (psi)	h _{ef} (in)	N_b (lb)				
17.0	1.00	2500	6.000	12492				
$\phi N_{cbg} = \phi (A_i)$	$_{ m Nc}$ / $A_{ m Nco}$) $\Psi_{ m ec,N}$ $\Psi_{ m ec}$	$_{d,N} arPsi_{c,N} arPsi_{cp,N} \mathcal{N}_b$ (S	Sec. D.4.1 & Eq	. D-5)				
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (Ib)
378.00	324.00	1.000	0.972	1.00	1.000	12492	0.65	9208

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

τ _{k,cr} (psi)	f short-term	K_{sat}	$\tau_{k,cr}$ (psi)	
1035	1.00	1.00	1035	
$N_{a0} = \tau_{k,cr} \pi d_{a}$	hef (Eq. D-16f)			
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)	
1035	0.50	6.000	9755	

 $\phi N_{ag} = \phi \left(A_{Na} / A_{Na0} \right) \Psi_{ed,Na} \Psi_{g,Na} \Psi_{ec,Na} \Psi_{p,Na} N_{a0} \text{ (Sec. D.4.1 \& Eq. D-16b)}$

A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$arPsi_{ec,Na}$	$arPsi_{ ho, Na}$	$N_{a0}(lb)$	ϕ	ϕN_{ag} (lb)
158.66	109.66	1.000	1.043	1.000	1.000	9755	0.55	8093

Company:	Schletter, Inc.	Date:	8/1/2016			
Engineer:	HCV	Page:	4/5			
Project:	Standard PVMax - Worst Case, 21-31 Inch Width					
Address:						
Phone:						
E-mail:						

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ extit{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in x-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

l _e (in)	d _a (in)	λ	f'_c (psi)	<i>c</i> _{a1} (in)	V_{bx} (lb)			
4.00	0.50	1.00	2500	12.00	15593			
$\phi V_{cbgx} = \phi (A$	Avc / Avco) Yec, v Ye	$_{ed,V} \varPsi_{c,V} \varPsi_{h,V} V_{bx}$	(Sec. D.4.1 & Ed	ą. D-22)				
Avc (in ²)	$Av \infty$ (in ²)	$\Psi_{ec,V}$	$\mathscr{\Psi}_{ed,V}$	$arPsi_{ extsf{c}, extsf{V}}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbgx} (Ib)
378.00	648.00	1.000	0.836	1.000	1.000	15593	0.70	5323

Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

le (in)	da (in)	λ	f'c (psi)	<i>c</i> _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	8.16	8744		
$\phi V_{cbx} = \phi (2)$	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (Ib)
299.64	299.64	1.000	1.000	1.000	8744	0.70	12241

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{cpg} = \phi \min |k_{cp} N_{ag} \; ; \; k_{cp} N_{cbg}| = \phi \min |k_{cp} (A_{Na} / A_{Nao}) \; \Psi_{ed,Na} \; \Psi_{g,Na} \; \Psi_{ec,Na} \; \Psi_{p,Na} N_{a0} \; ; \; k_{cp} (A_{Nc} / A_{Nco}) \; \Psi_{ed,N} \; \Psi_{e,N} \; \Psi_{c,N} \;$

,			(,	-, 3,,	μ, ,μ (,	,,,	(-1)
<i>k</i> _{cp}	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{ec,Na}$	$\Psi_{ m p,Na}$	N _{a0} (lb)	Na (lb)
2.0	158.66	109.66	1.000	1.043	1.000	1.000	9755	14715
A_{Nc} (in ²)	A _{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N _b (lb)	N _{cb} (lb)	ϕ
378.00	324.00	1.000	0.972	1.000	1.000	12492	14166	0.70

φV_{cpg} (lb) 19833

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	2496	6071	0.41	Pass
Concrete breakout	4991	9208	0.54	Pass
Adhesive	4991	8093	0.62	Pass (Governs)
Shear	Factored Load, Vua (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	1559	3156	0.49	Pass
T Concrete breakout x+	3117	5323	0.59	Pass (Governs)

Company:	Schletter, Inc.	Date:	8/1/2016		
Engineer:	HCV	Page:	5/5		
Project:	Standard PVMax - Worst Case, 21-31 Inch Width				
Address:					
Phone:					
E-mail:					

Concrete break	out y- 1559	12241	0.	13	Pass (Governs)	
Pryout	3117	19833	0.	16	Pass	
Interaction check	Nua/φNn	Vua/ ϕ Vn	Combined Ratio	Permissible	Status	
Sec. D.7.3	0.62	0.59	120.2 %	1.2	Pass	

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.