

基于Transformer的视觉跟踪算法探索

Dong Wang

wdice@dlut.edu.cn

Dalian University of Technology

Visual Object Tracking

- Goal
 - Track an arbitrary object in a video given its initial location **Single-object**, **Category-free**
- Challenges
 Occlusion, Light Change, Background Clutter, etc.

Visual Object Tracking Benchmarks

[LaSOT][2018] 1120 sequences for training and 280 for testing, 4M images, long-term.

[GOT-10k][2018] 10k sequences for training and 180 for testing, 3.5M images.

[TrackingNet][2018] 30k sequences for training and 511 for testing, 15M images.

[VOT Challenge][2013-2021] 60 challenging sequences for testing, 20k images.

[NfS][2017] 100 sequences for testing, 383k images, fast-moving objects.

[UAV123][2016] 123 sequences for testing, 113k images, low altitude aerial videos.

[OTB100][2015] 100 sequences for testing, 59k images.

[TC128][2015] 128 sequences for testing, 55k images.

Visual Object Tracking: One-shot vs Online

SiamFC (ECCVW16)

2 127x127x3 6x6x128 * 17x17x1

SiamRPN (CVPR18)

SiamMask (CVPR19)

MDNet (CVPR16)

ATOM (CVPR19)

DiMP (ICCV19)

Visual Object Tracking: One-shot vs Online

SiamFC (ECCVW16)

SiamRPN (CVPR18)

SiamMask (CVPR19)

MDNet (CVPR16)

ATOM (CVPR19)

DiMP (ICCV19)

Correlation-based Siamese Tracking

Correlation-based Siamese Tracking

Transformer in Computer Vison

Facebook: DETR

Google: ViT

What could Transformer bring to visual tracking?

Xin Chen, Bin Yan, Jiawen Zhu, Dong Wang, Xiaoyun yang, Huchuan Lu. Transformer Tracking. CVPR, 2021.

Code: https://github.com/chenxin-dlut/TransT

> Attention to Replace "Correlation"

 $\begin{aligned} & \text{MultiHead}(\mathbf{Q}, \mathbf{K}, \mathbf{V}) = \text{Concat}(\mathbf{H}_1, ..., \mathbf{H}_{n_h}) \mathbf{W}^O \\ & \mathbf{H}_i = \text{Attention}(\mathbf{Q} \mathbf{W}_i^Q, \mathbf{K} \mathbf{W}_i^K, \mathbf{V} \mathbf{W}_i^V) \end{aligned}$

Our TransT Framework

Ego-Context Augment Module

Cross-Feature Augment Module

- ✓ ECA based on self-attention and CFA based on cross-attention
- ✓ CFA performs feature fusion, retaining rich semantic information
- ✓ ECA and CFA establish dependence between long distance features and aggregate global information

Our Feature Fusion Network

Original Transformer

Similar with DETR

Large-scale Benchmark Results

Method	Source	L	aSOT [14]	Trac	ckingNet [30]	GOT-10k [19]			
Method	Source	AUC	P_{Norm}	P	AUC	P_{Norm}	P	AO	$SR_{0.5}$	SR _{0.75}	
TransT	Ours	64.9	73.8	69.0	81.4	86.7	80.3	72.3	82.4	68.2	
TransT-N2	Ours	64.2	73.5	68.2	80.9	86.4	79.2	69.9	80.1	65.9	
TransT-GOT	Ours		-	5 .7	-	-	-	67.1	76.8	60.9	
SiamR-CNN [39]	CVPR2020	64.8	72.2	2 -	81.2	85.4	80.0	64.9	72.8	59.7	
Ocean [48]	ECCV2020	56.0	65.1	56.6	-	-	-	61.1	72.1	47.3	
KYS [3]	ECCV2020	55.4	63.3	×-	74.0	80.0	68.8	63.6	75.1	51.5	
DCFST [49]	ECCV2020	-	-	-	75.2	80.9	70.0	63.8	75.3	49.8	
SiamFC++ [44]	AAAI2020	54.4	62.3	54.7	75.4	80.0	70.5	59.5	69.5	47.9	
PrDiMP [10]	CVPR2020	59.8	68.8	60.8	75.8	81.6	70.4	63.4	73.8	54.3	
CGACD [13]	CVPR2020	51.8	62.6	-	71.1	80.0	69.3	-	-	-	
SiamAttn [46]	CVPR2020	56.0	64.8	_	75.2	81.7	-	-	-	-	
MAML [40]	CVPR2020	52.3	-	-	75.7	82.2	72.5	-	-	-	
D3S [26]	CVPR2020	-	-	_	72.8	76.8	66.4	59.7	67.6	46.2	
SiamCAR [16]	CVPR2020	50.7	60.0	51.0	-	-	-	56.9	67.0	41.5	
SiamBAN [5]	CVPR2020	51.4	59.8	52.1	-	=	=	-	-	-	
DiMP [2]	ICCV2019	56.9	65.0	56.7	74.0	80.1	68.7	61.1	71.7	49.2	
SiamPRN++ [21]	CVPR2019	49.6	56.9	49.1	73.3	80.0	69.4	51.7	61.6	32.5	
ATOM [9]	CVPR2019	51.5	57.6	50.5	70.3	77.1	64.8	55.6	63.4	40.2	
ECO [8]	ICCV2017	32.4	33.8	30.1	55.4	61.8	49.2	31.6	30.9	11.1	
MDNet [31]	CVPR2016	39.7	46.0	37.3	60.6	70.5	56.5	29.9	30.3	9.9	
SiamFC [1]	ECCVW2016	33.6	42.0	33.9	57.1	66.3	53.3	34.8	35.3	9.8	

LaSOT Attribute

Results on NFS, OTB2015 and UAV123

Results on VOT2020

Ablation Study

Method	LaSOT [14]			Trac	kingNet [30]	GOT-10k [19]			
Wicthod	AUC	\mathbf{P}_{Norm}	P	AUC	P_{Norm}	P	AO	$SR_{0.5}$	$SR_{0.75}$	
TransT	64.9	73.8	69.0	81.4	86.7	80.3	72.3	82.4	68.2	
TransT-np	62.9	71.5	66.9	81.1	86.4	80.0	71.5	81.5	67.5	
TransT(ori)	62.3	71.1	66.2	81.3	86.1	78.9	70.3	80.2	65.8	
TransT(ori)-np	60.9	69.4	64.8	80.9	85.6	78.4	68.6	78.2	65.1	

Ablation Study

Method ECA CFA		Correlation	LaSOT [14]			Trac	ckingNet [[30]	GOT-10k [19]			
		CIA	Correlation	AUC	P_{Norm}	P	AUC	P_{Norm}	P	AO	$SR_{0.5}$	SR _{0.75}
TransT		√		64.9	73.8	69.0	81.4	86.7	80.3	72.3	82.4	68.2
TransT	000			62.9	71.9	66.2	81.1	86.2	79.1	70.6	81.2	65.7
TransT	$\sqrt{}$	0000	\checkmark	57.7	65.4	59.5	77.5	82.2	74.0	62.8	72.2	54.8
TransT			\checkmark	47.7	48.6	41.7	68.8	71.4	60.9	50.9	58.0	33.3
TransT-np	$\sqrt{}$			62.9	71.5	66.9	81.1	86.4	80.0	71.5	81.5	67.5
TransT-np	. 650			61.0	69.6	64.5	80.0	85.0	77.9	68.1	78.3	64.0
TransT-np	$\sqrt{}$	3500	\checkmark	57.3	65.2	58.8	76.2	80.8	72.8	61.4	70.7	53.7
TransT-np			\checkmark	35.3	17.9	20.1	46.5	40.3	27.4	38.2	36.8	7.0

Conclusion

> A New Transformer-based tracking Framework

> Completely offline, high performance and real-time speed

> Code and Models: https://github.com/chenxin-dlut/TransT

Disadvantages

> TransT still hasn't gotten rid of post-processing completely

> TransT does not consider temporal information

Bin Yan, Houwen Peng, Jianlong Fu, Dong Wang, Huchuan Lu. Learning Spatio-Temporal Transformer for Visual Tracking. ICCV, 2021.

Code: https://github.com/researchmm/Stark

Architecture

✓ Transformer architecture for feature integration

Corner prediction Head

- ✓ Tracking as a direct end-to-end bounding box prediction problem
- ✓ Totally post-processing free

Insights behind the "concatenation" operation

- ✓ Implicitly modeling 4 types of feature interaction.
- ✓ Scalable to more inputs, such as more templates or more search regions

Why predict heatmaps rather than directly predicting coords?

Generalized Focal Loss: Learning Qualified and Distributed Bounding Boxes for Dense Object Detection (https://arxiv.org/pdf/2006.04388.pdf)

- ✓ Directly predicting coordinates is equivalent to fitting a Delta-Distribution
- ✓ However, there are many cases where the bounding box coordinates have large uncertainty (such as TrackingNet GTs)

Dynamic Template

- ✓ Dynamic template changes over time, bringing temporal information for the STARK tracker
- ✓ An update controller to control the update of the dynamic template

Experimental Results (Short-Term)

	GOT-10K																	
8	Sia	mFC	SiamFC	v2 /	ATOM	SiamFC+	+ D3S	DiMI	P50 C	cean	PrDil	MP50	SiamRo	CNN	STAR	K S	STARK	STARK
		[2]	[52]		[11]	[59]	[38]	[3		[69]		[2]	[54		-S50		-ST50	-ST101
AO(%)		4.8	37.4		55.6	59.5	59.7	61.		61.1		3.4	64.9	_	67.2		68.0	68.8
SR0.5(%		5.3	40.4		63.4	69.5	67.6	71.		72.1		3.8	72.3		76.1		77.7	78.1
SR0.75(%		9.8	14.4		40.2	47.9	46.2	49.		47.3			59.		61.2		62.3	64.1
	SR0.75(%) 9.8 14.4 40.2 47.9 46.2 49.2 47.3 54.3 59.7 61.2 62.3 64.1 TrackingNet																	
	DSiamRPN ATOM SiamRPN++ DiMP50 SiamAttn SiamFC++ MAML-FCOS PrDiMP50 SiamRCNN STARK STARK STARK																	
		[0]	[11]	[2	28]	[3]	[65]	[59		[55]]	[12	2]	[54]	_	S50	-ST50	-ST101
AUC(%)	63	3.8	70.3		3.3	74.0	75.2	75.4	1	75.7		75.		81.2	8	30.3	81.3	82.0
$P_{norm}(\%)$	73	3.3	77.1	80	0.0	80.1	81.7	80.0)	82.2	2	81.	6	85.4	8	35.1	86.1	86.9
	VOT-2020																	
0 0	Г	VT	KCF	Siam	ıFC	CSR-DCF	ATOM	DiMP	UPL	TC	DPM	T Su	uperDiMP	STA	RK	STA		STARK
		49]	[19]	[2		[39]	[11]	[3]	[4				[1]	-S5		-ST		-ST101
EAO(†)	3	092	0.154	0.17		0.193	0.271	0.274	0.27		0.303		0.305	0.2		0.30		0.303
Accuracy(T. A. C. S.	345	0.407	0.4		0.406	0.462	0.457	0.46		0.492		0.477	0.4		0.4		0.481
Robustness	112	244	0.432	0.50	6100012	0.582	0.734	0.740	0.75		0.745		0.786	0.7	tractice .	0.79		0.775
			SiamEM	SiamN		SiamMargin	Ocean	D3S	FastO	cean	AlphaR		OceanPlus	STA		STA		STARK
E10(1)		45]	0.210	[57		[25]	[69]	[38]	0.44		[25]		[67]	-S50-	TOTAL TRANSPORT	-ST50		ST101+AR
EAO(†)	Accessed 2000	308 751	0.310 0.520	0.32		0.356	0.430 0.693	0.439	0.46		0.482		0.491 0.685	0.4		0.50		0.497 0.763
Accuracy(Robustness	(1)	574	0.743	0.64		0.640	0.693	0.769	0.80		0.734		0.842	0.7		0.7		0.789
Robusticss	(1) 0.	314	0.743	0.0-					A St. pales				100	0.7	77	0.0	• /	0.707
	NOTU (NFS, OTB100, TC-128, UAV123)																	
	SiamFC			ECO	Ocean	LightTrac		RPN++	ATOM	DiMl	P50 '	TransT	STARK	K-S50	STAR	K-ST5	0 STA	RK-ST101
	[2]		- 1-	[10]	[69]	[60]		28]	[11]	[3		[6]				11000		
NOTU	47.2			56.7	56.7	57.4	100	9.8	61.5	63.		65.0	64.			6.0		66.1
NFS	37.7			52.2	49.4	49.3		7.1	58.3	61.		65.3	64.			5.2		66.2
OTB100	58.3			66.6	68.4	65.4		3.7	66.3	68.		69.5	68.			8.5		68.1
TC128	48.9			58.9	55.7	55.0		7.7	59.9	61.		59.6	60.			2.6		63.1
UAV123	46.8		52.8	53.5	57.4	62.6	59	9.3	63.2	64.	.3	68.1	68.	4	6	9.1		68.2

Experimental Results (Long-Term)

Component-wise Analysis

#	Enc	Dec	Pos	Corner	Score	Succes	S
1	X					61.1	-5.3
2		X				64.5	-1.9
3			X			66.2	-0.2
4				×		63.7	-2.7
5					X	64.5	-1.9
6						66.4	

[✓] Transformer encoder and the corner prediction head are two most important component in STARK

[✓] Positional encoding is the least important component in STARK

Comparison with other frameworks

	Template	Hungarian	Update	Loc-Cls	Ours
	query		query	Joint	
Success	61.2	63.7	64.8	62.5	66.4

Conclusion

- > Tracking as a direct end-to-end bounding box prediction problem
- > Dynamic template brings temporal information
- > Code and Models: https://github.com/researchmm/Stark

July 24, 2021

• We release an extremely fast version of STARK called <u>STARK-Lightning</u> . It can run at <u>200~300 FPS</u> on a RTX TITAN GPU. Besides, its performance can beat DiMP50, while the model size is even less than that of SiamFC! More details can be found at <u>STARK_Lightning_En.md</u>/中文教程

TMT (CVPR21)

TransTrack (CVPR21)

TrackFormer(CVPR21)

Thanks!

