알고리즘

03. Greedy Algorithm

2014/11/03

미디어소프트웨어학과 민경하

Contents

0. Prologue

1. Divide & conquer

2. Graph

3. Greedy algorithm

4. Dynamic programming

3. Greedy algorithm

- 3.0 Basics
- 3.1 Minimum spanning trees
- 3.2 Optimal storage on tapes
- 3.3 Knapsack problem
- 3.4 Job sequencing with deadline
- 3.5 Optimal merge patterns
- 3.6 Huffman encoding

- Greedy algorithm
 - The most straightforward design technique to solve a problem
 - n inputs
 - Requires to obtain a subset that satisfies some constraints
 - Terms
 - Constraint
 - Objective function
 - Feasible solution
 - Optimal solution

- Feasible solution
 - Any subset that satisfies the constraints
- Objective function
 - We are required to find a feasible solution that either maximizes or minimizes a given objective function.
- Optimal solution
 - A feasible solution that maximizes or minimizes an objective function.

Solution

A set of all imaginable solutions to a given problem without considering the possibilities and feasibilities

Problem:
I want to
eat some
meat...

- Greedy algorithm
 - An algorithm that works in stages, considering one input at a time.
 - Selection
 - At each stage, a decision is made regarding whether or not a particular input is in an optimal solution.
 - Selection criteria is based on optimization measure.

Greedy algorithm

```
Greedy( int n, int A[] )
{
    solution ← Φ;
    for ( i = 1 to n )
        x ← SELECT (A);
        if ( FEASIBLE ( solution, x ) )
            solution ← UNION (solution, x);

    return solution;
}
```

Spanning tree

- Connecting every vertex of a graph G using minimum number of edges
- If |V| = n, then at least (n-1) edges are required.
- Depth-first spanning tree
- Breadth-first spanning tree

- Minimum cost spanning tree
 - Computed on a weighted graph
 - A spanning tree whose sum of edge weights is minimum.
 - Properties
 - No new edges.
 - (n-1) edges for |V| = n.
 - No cycle.

• Ex)

• Ex) Depth-first spanning tree

• Ex) Breadth-first spanning tree

- Edge-oriented algorithm
- Greedy algorithm: 朝四暮三
- Algorithm
 - Sort all the edges of a graph and list them in the ascending order.
 - Choose the edge of the minimum cost from the sorted list, and add it to the minimum cost tree T, if it doesn't make a cycle.
 - Repeat this process until T has (n-1) edges or the sorted list becomes empty.

```
Tree Kruskal ( Vertex V, Edge E )
   T = \{\};
    sort edges in E in ascending order;
    while ( T has less than n-1 edges &&& E is not empty ) {
      choose a least cost edge (v, w) from E;
      delete (v, w) from E;
      if ( (v, w) does not create a cycle in T )
           add (v, w) to T;
      else
          discard (v, w);
    if ( T has fewer than n-1 edges )
      printf("No Spanning Tree\n");
    return T;
```

• Ex)

edges weights

(A,D)	5
(C,E)	5
(D,F)	6
(A,B)	7
(B,E)	7
(B,C)	8
(E,F)	8
(B,D)	9
(E,G)	9
(F,G)	11
(D,E)	15

7

• Ex)

edges weights

(A,D)	5
(C,E)	5
(D,F)	6
(A,B)	7
(B,E)	7
(B,C)	8
(E,F)	8
(B,D)	9
(E,G)	9
(F,G)	11
(D,E)	15

T

(A,D)

• Ex)

edges weights

(A,D)	5
(C,E)	5
(D,F)	6
(A,B)	7
(B,E)	7
(B,C)	8
(E,F)	8
(B,D)	9
(E,G)	9
(F,G)	11
(D,E)	15

T

(A,D)
(C,E)

• Ex)

edges weights

(A,D)	5
(C,E)	5
(D,F)	6
(A,B)	7
(B,E)	7
(B,C)	8
(E,F)	8
(B,D)	9
(E,G)	9
(F,G)	11
(D,E)	15

7

(A,D)
(C,E)
(D,F)

• Ex)

edges weights

(A,D)	5
(C,E)	5
(D,F)	6
(A,B)	7
(B,E)	7
(B,C)	8
(E,F)	8
(B,D)	9
(E,G)	9
(F,G)	11
(D,E)	15

(A,D)
(C,E)
(D,F)
(A,B)

• Ex)

edges weights

(A,D)	5
(C,E)	5
(D,F)	6
(A,B)	7
(B,E)	7
(B,C)	8
(E,F)	8
(B,D)	9
(E,G)	9
(F,G)	11
(D,E)	15

(A,D)
(C,E)
(D,F)
(A,B)
(B,E)

• Ex)

edges weights

(A,D)	5
(C,E)	5
(D,F)	6
(A,B)	7
(B,E)	7
(B,C)	8
(E,F)	8
(B,D)	9
(E,G)	9
(F,G)	11
(D,E)	15

(A,D)
(C,E)
(D,F)
(A,B)
(B,E)

• Ex)

edges weights

(A,D)	5
(C,E)	5
(D,F)	6
(A,B)	7
(B,E)	7
(B,C)	8
(E,F)	8
(B,D)	9
(E,G)	9
(F,G)	11
(D,E)	15

(A,D)
(C,E)
(D,F)
(A,B)
(B,E)

• Ex)

edges weights

(A,D)	5
(C,E)	5
(D,F)	6
(A,B)	7
(B,E)	7
(B,C)	8
(E,F)	8
(B,D)	9
(E,G)	9
(F,G)	11
(D,E)	15

(A,D)
(C,E)
(D,F)
(A,B)
(B,E)

• Ex)

edges weights

(A,D)	5
(C,E)	5
(D,F)	6
(A,B)	7
(B,E)	7
(B,C)	8
(E,F)	8
(B,D)	9
(E,G)	9
(F,G)	11
(D,E)	15

(A,D)
(C,E)
(D,F)
(A,B)
(B,E)
(E,G)

- Performance analysis
 - Sorting edges \rightarrow O(|E| log |E|)
 - Adding edges \rightarrow O(|V|)
 - Check cycles → O(|V|)
- How to improve performance?
 - Use UNION-FIND operations for checking cycles
 - Assign labels on the vertices for UNION-FIND

- Another version of Kruskal's algorithm
 - Checking cycle by labeling vertices
 - If two vertices have same labels, then adding the edge that connects the two vertices becomes a cycle

```
Tree Kruskal ( Vertex V, Edge E )
   T = \{\};
    sort edges in E in ascending order;
    for each vertex v in the set V
             NEW LABEL (v);
    for each (u,v) in E, in ascending order of weight {
             if LABEL(u) is not equal to LABEL(v) {
                 add the edge (u,v) to the tree T;
          UNION(u, v); return T;
    return T;
```

• Ex)

edges weights

(A,D)	5
(C,E)	5
(D,F)	6
(A,B)	7
(B,E)	7
(B,C)	8
(E,F)	8
(B,D)	9
(E,G)	9
(F,G)	11
(D,E)	15

• Ex)

edges weights

(A,D)	5
(C,E)	5
(D,F)	6
(A,B)	7
(B,E)	7
(B,C)	8
(E,F)	8
(B,D)	9
(E,G)	9
(F,G)	11
(D,E)	15

(A,D)	

• Ex)

edges weights

(A,D)	5
(C,E)	5
(D,F)	6
(A,B)	7
(B,E)	7
(B,C)	8
(E,F)	8
(B,D)	9
(E,G)	9
(F,G)	11
(D,E)	15

(A,D)
(C,E)

• Ex)

edges weights

5
5
6
7
7
8
8
9
9
11
15

(A,D)
(C,E)
(D,F)

• Ex)

edges weights

(A,D)	5
(C,E)	5
(D,F)	6
(A,B)	7
(B,E)	7
(B,C)	8
(E,F)	8
(B,D)	9
(E,G)	9
(F,G)	11
(D,E)	15

(A,D)
(C,E)
(D,F)
(A,B)

• Ex)

edges weights

5
5
6
7
7
8
8
9
9
11
15

(A,D)
(C,E)
(D,F)
(A,B)
(B,E)

• Ex)

since both labels are same → cycle

edges weights

(A,D)	5
(C,E)	5
(D,F)	6
(A,B)	7
(B,E)	7
(B,C)	8
(E,F)	8
(B,D)	9
(E,G)	9
(F,G)	11
(D,E)	15

(A,D)
(C,E)
(D,F)
(A,B)
(B,E)

• Ex)

 $\mathbb{E} \ \& \ \mathbb{F} \ \text{canot be connected,}$ since both labels are same \rightarrow cycle

edges weights

(A,D)	5
(C,E)	5
(D,F)	6
(A,B)	7
(B,E)	7
(B,C)	8
(E,F)	8
(B,D)	9
(E,G)	9
(F,G)	11
(D,E)	15

(A,D)
(C,E)
(D,F)
(A,B)
(B,E)

• Ex)

edges weights

(A,D)	5
(C,E)	5
(D,F)	6
(A,B)	7
(B,E)	7
(B,C)	8
(E,F)	8
(B,D)	9
(E,G)	9
(F,G)	11
(D,E)	15

(A,D)
(C,E)
(D,F)
(A,B)
(B,E)

• Ex)

edges weights

(A,D)	5
(C,E)	5
(D,F)	6
(A,B)	7
(B,E)	7
(B,C)	8
(E,F)	8
(B,D)	9
(E,G)	9
(F,G)	11
(D,E)	15

(A,D)
(C,E)
(D,F)
(A,B)
(B,E)
(E,G)

• Ex)

- Vertex-based algorithm
 - Greedy algorithm
 - Vertices on a Graph is classified into three categories:
 - Vertices in minimum-cost spanning tree (T)
 - Vertices incident to the vertices in T
 - Other vertices

Algorithm

- Initially, set T as Φ.
- Find all the vertices incident to the vertices in T.
- Find the minimum-weight edge among the edges that connect a vertex belongs to T and a vertex that does not belong to T.
- If the edge doesn't make a cycle, then add the vertex on the edge to T.
- Repeat this process until all vertices belong to T.

```
Tree Prim( Vertex V, Edge E )
{
    Vertex *U;
    vertex u,v;
    T = { };
    U = { A };
    while (U != V) {
        (u,v) = lowest cost edge with u in U and v in (V - U);
        T += (u,v);
        U += v;
    }
    return T;
}
```


• Ex)

Candidate edges: (B, C): 8

(E, C): 5 (E, G): 9

(F, G): 11

• Ex)

Candidate edges: (E, G): 9

(F, G): 11

• Ex)

• Ex)

Background:

- There are n files that are to be stored on a computer tape of length L.
- -The length of each file is l_i , $1 \le i \le n$.

- Retrieving files from the tape
 - Initially tape is positioned to the front.
 - -The files are stored in the order $I = i_1$, i_2 , ..., i_n .
 - The time t_j, needed to retrieve file i_j is

$$t_{j} = \sum_{1 \le k \le j} l_{i_{k}}$$

- MRT (Mean Retrieval Time) = $\frac{1}{n} \sum_{1 \le j \le n} t_j$

• Problem:

- We are required to find a permutation for the n files so that when they are stored on a tape in this order, the MRT is minium.
- Minimizing MRT is to minimize D(I)

$$D(I) = \sum_{1 \leq j \leq n} \sum_{1 \leq k \leq j} l_{i_k}.$$

Example:

$$-n = 3 \& I = (l_1, l_2, l_3) = (5, 10, 3)$$

- We have 6 possible permutations
 - 1, 2, 3
 - 1, 3, 2
 - 2, 1, 3
 - 2, 3, 1
 - 3, 1, 2
 - 3, 2, 1
- Optimal solution?

- Solution strategy
 - The next file to be stored on the tape would be the one which minimizes the increase of D.
 - If we have already constructed i₁, i₂, ..., i_r, and the next file is j, then the following value should be minimum: $\sum_{l_{i_k}+l_j}$

$$\sum_{1 \le k \le r} l_{i_k} + l_j$$

3.2 Optimal storage on tapes

- Greedy solution
 - Sort i's in the nondecreasing order of l_i.
 - Store them in the sorted order on the tape.
 - -Time complexity: O(n log n).

• Problem:

- We are given n objects and a knapsack.
- Object i has a weight w_i and a profit p_i,
 and the knapsack has a capacity M.
- If a fraction x_i , $0 \le x_i \le 1$, of object i is placed into the knapsack, then the profit of p_i x_i is earned.

• Problem:

- The objective is to obtain a filling of the knapsack that maximizes the total profit earned.

Maximize
$$\sum_{1 \le i \le n} p_i x_i$$
 subject to $\sum_{1 \le i \le n} w_i x_i \le M$

- The solution is a set $(x_1, x_2, ..., x_n)$

Example

- -n = 3, M = 20, $(p_1, p_2, p_3) = (25, 24, 15)$, $(w_1, w_2, w_3) = (18, 15, 10)$.
- What is the solution (x_1, x_2, x_3) ?

- Solution strategy
 - At each step, we include that object which has the maximum profit per unit of capacity.
 - In the order of the ratio p_i / w_i.

Knapsack algorithm

• Problem:

- We are given n jobs.
- Each job i has a deadline $d_i \ge 0$ and a profit $p_i \ge 0$.
- For any job i, the profit p_i is earned if and only if the job is completed by its deadline.

• Problem:

- In order to complete a job, one has to process the job on a machine for one unit of time.
- Feasible solution for this problem is a subset, J, of jobs such that each job in this subset can be completed by its deadline.
- The value of J is $\Sigma_i p_i$.
- Optimal solution: J with maximum value

Example:

- -n = 4, $(p_1, p_2, p_3, p_4) = (100, 10, 15, 27)$ and $(d_1, d_2, d_3, d_4) = (2, 1, 2, 1)$.
- What are the feasible solutions and their values?

Solution strategy

- -J is a set of k jobs and $\sigma = i_1, i_2, ..., i_k$ be a permutation of jobs such that $d_{i1} \le d_{i2}$ ≤ ... ≤ d_{ik} .
- J is a feasible solution if and only if the jobs in J can be processed in the order σ without violating any deadline.
- $-D(J(1)) \le D(J(2)) \le ... \le D(J(k)).$
- $-D(J(r)) \ge r$, for $1 \le r \le k$.

- Solution strategy
 - We assume that the jobs are sorted such that $p_1 \ge p_2 \ge ... \ge p_n$.
 - We assume that min $\{ D(i) \} = 1$.
 - Select the job in the non-ascending order of profit.
 - If the pre-selected jobs can yield, then make them yield as much as possible.

Job scheduling

```
void JobSchedule( int D[], int J[], int n )
// initially jobs are sorted such that p_1 \ge p_2 \ge ... \ge p_n
     D[0] \leftarrow J[0] \leftarrow 0;
     k \leftarrow 1; J[1] \leftarrow 1;
     for ( i \leftarrow 2 to n by 1 )
          r \leftarrow k:
          while (D[J[r]] > D[i] and D[J[r]] != r)
                r \leftarrow r - 1:
          if (D[J[r]] \leftarrow D[i] \text{ and } D[i] > r)
                for (1 = k; 1 >= r + 1 by -1)
                     J[1+1] \leftarrow J[1];
                J[r+1] \leftarrow i; k \leftarrow k+1;
```

Job scheduling

```
void JobSchedule( int D[], int J[], int n )
   initially jobs are sorted such that p_1 \ge p_2 \ge ... \ge p_n
     D[0] \leftarrow J[0] \leftarrow 0;
                                                            Find the one
     k \leftarrow 1; J[1] \leftarrow 1;
                                                            that can yield
     for ( i \leftarrow 2 to n by 1 )
          r \leftarrow k;
         while (D[J[r]] > D[i] and D[J[r]] != r)
               r \leftarrow r - 1;
          if (D[J[r]] \le D[i] and D[i] > r)
               for ( l = k; l >= r + 1 by -1 )
                    J[1+1] \leftarrow J[1];
               J[r+1] \leftarrow i; k \leftarrow k+1;
```

Job scheduling

```
void JobSchedule( int D[], int J[], int n )
   initially jobs are sorted such that p_1 \ge p_2 \ge ... \ge p_n
     D[0] \leftarrow J[0] \leftarrow 0;
     k \leftarrow 1; J[1] \leftarrow 1;
     for ( i \leftarrow 2 to n by 1 )
          r ← k;
          while (D[J[r]] > D[i] and D[J[r]] != r)
               r \leftarrow r - 1;
          if (D[J[r]] \le D[i] and D[i] > r
               for ( 1 = k; 1 >= r + 1 by -1 )
                    J[1+1] \leftarrow J[1];
                                                            If feasible,
               J[r+1] \leftarrow i; k \leftarrow k+1;
                                                           insert the job
```

Example:

$$-n = 5$$
, $(p_1, p_2, p_3, p_4, p_5) = (20, 15, 10, 5, 1)$, $(d_1, d_2, d_3, d_4, d_5) = (3, 4, 1, 2, 5)$

Condition of feasibility?

$$D(J(1)) \le D(J(2)) \le \dots \le D(J(k))$$

$$\&$$

$$D(J(r)) \ge r$$

Example:

$$-n = 5,$$

$$(p_{1}, p_{2}, p_{3}, p_{4}, p_{5}) = (20, 15, 10, 5, 1),$$

$$(d_{1}, d_{2}, d_{3}, d_{4}, d_{5}) = (3, 4, 1, 2, 5)$$

$$r$$

$$1 2 3 4 5$$

$$J(r) 0 3 1 2 4$$

$$p(J(r)) 0 p(J(1)) p(J(2)) p(J(3)) p(J(4)) = 3$$

$$= 4$$

$$= 2$$

Example:

• Problem:

- Merge k files → Various combinations of merging patterns
- c.f. Merging two sorted files containing n and m records into one file takes O(n+m).
- Determine an optimal way to pairwisely merge k sorted files together.

Example:

- X1, X2 and X3 are three sorted files of length 30, 20, and 10 records each.
- Merge pattern 1:
 - Merge X1 & X2 → Y1 (50 steps)
 - Merge Y1 & X3 → Y2 (60 steps)
- Merge pattern 2:
 - Merge X2 & X3 → Y1 (30 steps)
 - Merge Y1 & X1 → Y2 (60 steps)
- Compare the time required

- Solution strategy:
 - 2-way merge pattern can be represented as a binary merge tree with minimum weighted external path length
 - Example:
 - Five patterns with (20, 30, 10, 5, 30)

- Solution strategy:
 - Corresponding binary tree

- Solution strategy:
 - If a pattern of length q_i is stored at a node whose depth is d_i, then the number of moves of the pattern is q_i d_i.
 - The total moves of the patterns is:

$$\sum_{1 \le i \le n} d_i q_i$$

The weighted external path length of a tree

Optimal merge pattern

- Example: The encoding process of MP3
 - Sample at regular rates
 - In CD, 44,100 samples per second
 - A 50 min-length symphony has 50 X 60 X 44,100 ≈ 130,000,000 samples
 - Each sample is quantized
 - Each sample value is approximated by a nearby number from a finite set T.
 - The resulting string is encoded in binary

- Size of encoding
 - Estimating the size of encoding
 - Number of samples X T.
 - If T = {A, B, C, D}, previous example has 130,000,000 X 2 bits = 37.5MByte
 - If T has M symbols, encoding for T requires (log₂ M) bits.
 - How can we reduce the size of encoding?
 - Reduce sample rates
 - Reduce the length of alphabets in T

- Reduce the length of alphabets in T
 - Greedy approach
 - → Variable-length encoding

Alphabet	Frequency	Conventional	Variable-length
А	70M	00	0
В	3M	01	001
С	20M	10	10
D	37M	11	11

The resulting size of encoding becomes

Туре	Formula	Size
Conventional	130,000,000 X 2 bits	260M bits
Variable-length	70M X 1 bit + 57M X 2 bits + 3M X 3bits	193M bits

- Problem of previous encoding?
 - Ambiguity
 - What is 0010?
 - AAC or BA
 - How to avoid ambiguity?
 - Prefix-free encoding
 - No codeword can be a prefix of another codeword
 - Can be represented using full binary tree
- Huffmann encoding
 - Variable-length & prefix-free encoding
 - Similar to optimal merge pattern algorithm

Strategy

- Similar to optimal merge pattern
- Sort the symbols according to the increasing order of frequency

- Huffmann encoding
 - Variable-length & prefix-free encoding

Alphabet	Frequency	Conventional	Variable-length	Huffman code
А	70M	00	0	1
В	3M	01	001	000
С	20M	10	10	001
D	37M	11	11	01

Туре	Formula	Size
Conventional	130,000,000 X 2 bits	260M bits
Variable-length	70M X 1 bit + 57M X 2 bits + 3M X 3bits	193M bits
Huffman code	70M X 1 bit + 37M X 2 bits + 23M X 3bits	213M bits

3. Greedy algorithm

- 3.0 Basics
- 3.1 Minimum spanning trees
- 3.2 Optimal storage on tapes
- 3.3 Knapsack problem
- 3.4 Job sequencing with deadline
- 3.5 Optimal merge patterns
- 3.6 Huffman encoding

Contents

0. Prologue

1. Divide & conquer

2. Graph

3. Greedy algorithm

4. Dynamic programming