Geometria e Algebra - MIS-Z

Secondo Esonero

13/06/2023

Nome e Cognome:		
Corso di Laurea:		
Matricola:		

Informazioni

Questo esonero contiene 4 esercizi per un totale di 34 punti. Sia x il punteggio il punteggio totale ottenuto. Il compito è ritenuto sufficiente se $x \geq 18$. In tal caso il voto del secondo esonero appello sarà dato da x.

Le risposte devono essere opportunamente giustificate per ottenere il punteggio massimo. Le risposte indecifrabili non verranno valutate.

Il tempo a disposizione è di 3 ore. È vietato l'utilizzo di ogni tipo di calcolatrice.

Esercizio	Punteggio
1	
2	
3	
4	
5	

TOTALE

ESERCIZIO 1 [8 punti]. Vero o Falso?

Per ciascun asserto si stabilisca se è vero o falso, motivando in modo conciso ed esauriente la risposta.

(a) Nel famiglia di piani

$$\pi_h: X + h^2 Y + 2hZ = 3, \quad h \in \mathbb{R}$$

esiste un piano passante per il punto (1,1,1).

- \square VERO
- \Box FALSO

Giustificazione

(b) Per ogni $k \in \mathbb{R}$ l'applicazione

$$f_k : \mathbb{R}^2 \to \mathbb{R}^2$$

 $(x,y) \mapsto (x+k,ky)$

è un'applicazione lineare.

- \square VERO
- \Box FALSO

Giustificazione

(c) Sia V uno spazio vettoriale euclideo con prodotto scalare \langle , \rangle . Siano $u,v,w \in V$ tali che v è ortogonale sia a u che a w . Allora v è ortogonale a $u+w$.
\square VERO
\Box FALSO
Giustificazione
(d) Esiste un'applicazione lineare $f:\mathbb{R}^3\to\mathbb{R}$ tale che $f(1,0,0)=1,$ $f(1,1,0)=2$ e $f(1,1,1)=3.$
\square VERO
\Box FALSO
Giustificazione

ESERCIZIO 2 [8 punti]. Geometria nello spazio.

Si consideri lo spazio \mathbb{E}^3 con il riferimento cartesiano standard.

(a) Si scrivano le equazioni parametriche e le equazioni cartesiane della retta r_1 passante per i punti A(2,0,-1) e B(-1,1,1) di \mathbb{E}^3 .

(b) Al variare di $h \in \mathbb{R}$ si determini la posizione reciproca della retta r_1 e del piano π_h , dove π_h è definito dall'equazione cartesiana:

$$\pi_h: X - hY + hZ = 1.$$

Per i valori di h per cui r_1 e π_h sono incidenti se ne determini il punto di intersezione e per i valori di h per cui r_1 e π_h sono paralleli se ne determini la distanza.

(c) Per h=3 si determini una retta r_2 perpendicolare al piano π_3 e incidente la retta r_1 . Siano P e Q i punti di intersezione di r_2 rispettivamente con r_1 e π_3 . Si verifichi che la distanza tra P e Q coincide con la distanza tra r_1 e π_3 calcolata al punto (b).

ESERCIZIO 3 [12 punti]. Una famiglia di endomorfismi di \mathbb{R}^3 .

(a) Siano V e W due spazi vettoriali su un campo K e sia $f:V\to W$ un'applicazione lineare. Si dimostri che se $\ker(f)=\{0_V\}$ allora f è iniettiva.

(b) Per $k \in \mathbb{R}$, si consideri l'endomorfismo

$$f_k: \mathbb{R}^3 \to \mathbb{R}^3$$

 $(x, y, z) \mapsto (kx + y + 3z, x + ky + 3z, -x - y).$

(b1) Si determinio i valori di k per cui f_k non è iniettiva e per tali valori si determini una base di $\ker(f_k)$.

(b2) Si determinino i valori di k per cui $f(1,1,1) \in Span\{(1,1,1),(-1,0,1)\}.$

(b3) Per k=4, si determini se l'operatore f_4 è diagonalizzabile e in caso affermativo si trovi una base diagonalizzante.

(b4) Sia A la matrice associata all'operatore f_4 rispetto alla base canonica \mathcal{B} di \mathbb{R}^3 e sia D la matrice diagonale associata a f_4 rispetto alla base diagonalizzante \mathcal{B}' trovata al punto (b3). Si determini una matrice $P \in \mathcal{M}_3(\mathbb{R})$ tale che $D = P^{-1}AP$ e se ne determini la sua inversa P^{-1} .

ESERCIZIO 4 [6 punti]. Un po' di teoria...

(a) Si definisca il rango di un insieme finito di vettori di uno spazio vettoriale. Si definisca quindi il rango di una matrice.

(b) Si enunci e si dimostri il teorema di Rouché-Capelli.

(c) Si dimostri o si confuti l'asserto seguente:

Sia $A \in \mathcal{M}_{2022,2023}(\mathbb{R})$ e sia $X = (X_1, X_2, \dots, X_{2023})$. Allora esiste $b \in \mathcal{M}_{2022,1}(\mathbb{R})$ tale che il sistema AX = b ammette un'unica soluzione.