TEMA 4: Aplicaciones lineales.

4.1. Aplicaciones lineales. Propiedades.

DEFINICION 4.1 Sean V y V' espacios vectoriales sobre el mismo cuerpo \mathbb{K} . Se dice que una aplicación $f:V\longrightarrow V'$ es una **aplicación lineal** si se satisfacen las dos condiciones siguientes:

- (i) $f(\overrightarrow{u} + \overrightarrow{v}) = f(\overrightarrow{u}) + f(\overrightarrow{v})$ para todo $\overrightarrow{u}, \overrightarrow{v} \in V$.
- (ii) $f(\alpha \overrightarrow{u}) = \alpha f(\overrightarrow{u})$ para todo $\alpha \in \mathbb{K}$ y para todo $\overrightarrow{u} \in V$.

En algunos libros las aplicaciones lineales entre espacios vectoriales reciben el nombre de **transformaciones lineales** o también **homomorfismos de espacios vectoriales**.

PROPOSICION 4.2 Sean V y V' espacios vectoriales sobre el mismo cuerpo \mathbb{K} y supongamos que $f:V\longrightarrow V'$ es una aplicación. Entonces, f es una aplicación lineal si, y sólo si,

$$f(\alpha \overrightarrow{u} + \beta \overrightarrow{v}) = \alpha f(\overrightarrow{u}) + \beta f(\overrightarrow{v})$$

para todo $\alpha, \beta \in \mathbb{K}$ y para todo $\overrightarrow{u}, \overrightarrow{v} \in V$.

Demostración: Supongamos, en primer lugar, que f es una aplicación lineal y sean $\alpha, \beta \in \mathbb{K}$ y $\overrightarrow{u}, \overrightarrow{v} \in V$. Entonces, por la condición (i) de la Definición 4.1,

$$f(\alpha \overrightarrow{u} + \beta \overrightarrow{v}) = f(\alpha \overrightarrow{u}) + f(\beta \overrightarrow{v})$$

y, por la condición (ii),

$$f(\alpha \overrightarrow{u}) + f(\beta \overrightarrow{v}) = \alpha f(\overrightarrow{u}) + \beta f(\overrightarrow{v}),$$

por lo tanto, $f(\alpha \overrightarrow{u} + \beta \overrightarrow{v}) = \alpha f(\overrightarrow{u}) + \beta f(\overrightarrow{v})$.

Supongamos ahora que $f(\alpha \overrightarrow{u} + \beta \overrightarrow{v}) = \alpha f(\overrightarrow{u}) + \beta f(\overrightarrow{v})$ para todo $\alpha, \beta \in \mathbb{K}$ y para todo $\overrightarrow{u}, \overrightarrow{v} \in V$.

Tomando $\alpha = \beta = 1$, se tiene que

$$f(\overrightarrow{u} + \overrightarrow{v}) = f(1\overrightarrow{u} + 1\overrightarrow{v}) = 1f(\overrightarrow{u}) + 1f(\overrightarrow{v}) = f(\overrightarrow{u}) + f(\overrightarrow{v}),$$

por lo que se satisface la condición (i) de la Definición 4.1.

En cambio, si tomamos $\beta = 0$, se tiene

$$f(\alpha \overrightarrow{u}) = f\left(\alpha \overrightarrow{u} + \overrightarrow{0}\right) = f\left(\alpha \overrightarrow{u} + 0\overrightarrow{v}\right) = \alpha f\left(\overrightarrow{u}\right) + 0 f\left(\overrightarrow{v}\right) = \alpha f\left(\overrightarrow{u}\right) + \overrightarrow{0} = \alpha f\left(\overrightarrow{u}\right),$$

con lo que se satisface la condición (ii) de la Definición 4.1.

En consecuencia, f es una aplicación lineal. \square

EJEMPLO 4.3 La aplicación $f: \mathbb{R}^3 \to \mathbb{R}^2$ definida por f(x,y,z) = (x+y,x-y+z) es lineal ya que

$$f(\alpha(x_1, y_1, z_1) + \beta(x_2, y_2, z_2)) = f(\alpha x_1 + \beta x_2, \alpha y_1 + \beta y_2, \alpha z_1 + \beta z_2) =$$

$$((\alpha x_1 + \beta x_2) + (\alpha y_1 + \beta y_2), (\alpha x_1 + \beta x_2) - (\alpha y_1 + \beta y_2) + (\alpha z_1 + \beta z_2)) =$$

$$\alpha(x_1 + y_1, x_1 - y_1 + z_1) + \beta(x_2 + y_2, x_2 - y_2 + z_2) = \alpha f(x_1, y_1, z_1) + \beta f(x_2, y_2, z_2),$$

cualesquiera que sean $\alpha, \beta \in \mathbb{R}$ y $(x_1, y_1, z_1), (x_2, y_2, z_2) \in \mathbb{R}^3$.

EJEMPLO 4.4 La aplicación $f: \mathbb{K}_2[x] \to \mathbb{K}^3$ dada por $f(a_0 + a_1x + a_2x^2) = (a_0, a_1, a_2)$ es una aplicación lineal.

En efecto, si $\alpha, \beta \in \mathbb{K}$ y $a_0 + a_1x + a_2x^2$, $b_0 + b_1x + b_2x^2 \in \mathbb{K}_2[x]$, entonces

$$f(\alpha(a_0 + a_1x + a_2x^2) + \beta(b_0 + b_1x + b_2x^2)) =$$

$$f((\alpha a_0 + \beta b_0) + (\alpha a_1 + \beta b_1)x + (\alpha a_2 + \beta b_2)x^2) =$$

$$(\alpha a_0 + \beta b_0, \alpha a_1 + \beta b_1, \alpha a_2 + \beta b_2) = \alpha(a_0, a_1, a_2) + \beta(b_0, b_1, b_2) =$$

$$\alpha f(a_0 + a_1x + a_2x^2) + \beta f(b_0 + b_1x + b_2x^2).$$

EJEMPLO 4.5 La aplicación $D: \mathbb{R}[x] \to \mathbb{R}[x]$ que asigna a cada polinomio $p(x) \in \mathbb{R}[x]$ su derivada $p'(x) \in \mathbb{R}[x]$ es una aplicación lineal. En efecto, si $\alpha, \beta \in \mathbb{R}$ y $p(x), q(x) \in \mathbb{R}[x]$, se tiene que

$$D\left(\alpha p\left(x\right)+\beta q\left(x\right)\right)=\alpha D\left(p\left(x\right)\right)+\beta D\left(q\left(x\right)\right).$$

EJEMPLO 4.6 La aplicación $f: \mathbb{R}^2 \to \mathbb{R}$ definida por f(x,y) = xy no es lineal ya que, por ejemplo,

$$f(3 \cdot (1,2)) = f(3,6) = 18,$$

mientras que

$$3 \cdot f(1,2) = 3 \cdot 2 = 6.$$

PROPOSICION 4.7 Sean V y V' espacios vectoriales sobre el mismo cuerpo \mathbb{K} y supongamos que $f:V\longrightarrow V'$ es una aplicación lineal. Entonces, se cumple:

$$(i)\ f\left(\overrightarrow{0}_{V}\right)=\overrightarrow{0}_{V'}.$$

(ii) $f(-\overrightarrow{u}) = -f(\overrightarrow{u})$ para todo $\overrightarrow{u} \in V$.

(iii) Si $\alpha_1, \alpha_2, \dots, \alpha_p \in \mathbb{K}$ y $\overrightarrow{u}_1, \overrightarrow{u}_2, \dots, \overrightarrow{u}_p \in V$, entonces

$$f(\alpha_1 \overrightarrow{u}_1 + \alpha_2 \overrightarrow{u}_2 + \dots + \alpha_p \overrightarrow{u}_p) = \alpha_1 f(\overrightarrow{u}_1) + \alpha_2 f(\overrightarrow{u}_2) + \dots + \alpha_p f(\overrightarrow{u}_p).$$

Demostración: (i) Para cualquier $\overrightarrow{u} \in V$ se tiene, por la condición (ii) de la Definición 4.1, que

$$f\left(\overrightarrow{0}_{V}\right) = f\left(0\overrightarrow{u}\right) = 0 f\left(\overrightarrow{u}\right) = \overrightarrow{0}_{V'}.$$

(ii) Sea $\overrightarrow{u} \in V$. De nuevo por la condición (ii) de la Definición 4.1, se tiene que

$$f(-\overrightarrow{u}) = f((-1)\overrightarrow{u}) = (-1)f(\overrightarrow{u}) = -f(\overrightarrow{u}).$$

(iii) Sean $\alpha_1, \alpha_2, \dots, \alpha_p \in \mathbb{K}$ y $\overrightarrow{u}_1, \overrightarrow{u}_2, \dots, \overrightarrow{u}_p \in V$. Procederemos por inducción sobre p.

Para p = 1, por la condición (ii) de la Definición 4.1, se tiene que

$$f(\alpha_1 \overrightarrow{u}_1) = \alpha_1 f(\overrightarrow{u}_1).$$

Supongamos que se satisface la propiedad para p-1 y veamos que también se satisface para p.

Por la condición (i) de la Definición 4.1, se tiene que

$$f(\alpha_1 \overrightarrow{u}_1 + \dots + \alpha_p \overrightarrow{u}_p) = f(\alpha_1 \overrightarrow{u}_1 + \dots + \alpha_{p-1} \overrightarrow{u}_{p-1}) + f(\alpha_p \overrightarrow{u}_p)$$
(4.1)

y, por la hipótesis de inducción y la condición (ii) de la Definición 4.1, obtenemos

$$f(\alpha_1 \overrightarrow{u}_1 + \dots + \alpha_{p-1} \overrightarrow{u}_{p-1}) + f(\alpha_p \overrightarrow{u}_p) = \alpha_1 f(\overrightarrow{u}_1) + \dots + \alpha_{p-1} f(\overrightarrow{u}_{p-1}) + \alpha_p f(\overrightarrow{u}_p). \tag{4.2}$$

De las expresiones (4.1) y (4.2), se obtiene la propiedad para p.

PROPOSICION 4.8 Sean V y V' espacios vectoriales sobre el mismo cuerpo \mathbb{K} y supongamos que $f:V\longrightarrow V'$ es una aplicación lineal. Entonces, se cumple:

- (i) Si W es un subespacio vectorial de V, entonces f(W) es un subespacio vectorial de V'.
- (ii) Si W' es un subespacio vectorial de V', entonces la preimagen de W', $f^{-1}(W')$, es un subespacio vectorial de V.

Demostración: (i) Sea W un subespacio vectorial de V. Veremos que

$$f\left(W\right):=\left\{ \overrightarrow{v}^{\prime}\in V^{\prime}\mid\overrightarrow{v}^{\prime}=f\left(\overrightarrow{v}\right)\text{ para cierto }\overrightarrow{v}\in W\right\}$$

es un subespacio vectorial.

Puesto que W es un subespacio vectorial de V, se tiene que $\overrightarrow{0}_{V} \in W$. Por la Proposición 4.7(i), $\overrightarrow{0}_{V'} = f\left(\overrightarrow{0}_{V}\right) \in f\left(W\right)$, por lo que se tiene que $f\left(W\right) \neq \emptyset$.

Sean $\lambda, \mu \in \mathbb{K}$ y $\overrightarrow{u}', \overrightarrow{v}' \in f(W)$. Entonces, existen $\overrightarrow{u}, \overrightarrow{v} \in W$ tales que $\overrightarrow{u}' = f(\overrightarrow{u})$ y $\overrightarrow{v}' = f(\overrightarrow{v})$. Además, por ser W subespacio vectorial de V, se tiene que

$$\lambda \overrightarrow{u} + \mu \overrightarrow{v} \in W.$$

Así pues, aplicando que f es una aplicación lineal, se obtiene que

$$\lambda \overrightarrow{u}' + \mu \overrightarrow{v}' = \lambda f(\overrightarrow{u}) + \mu f(\overrightarrow{v}) = f(\lambda \overrightarrow{u} + \mu \overrightarrow{v}) \in f(W).$$

Por lo tanto, como consecuencia del Corolario 2.15, f(W) es un subespacio vectorial de V'.

(ii) Supongamos ahora que W' es un subespacio vectorial de V'. Probaremos que

$$f^{-1}\left(W'\right) := \left\{\overrightarrow{v} \in V \mid f\left(\overrightarrow{v}\right) \in W'\right\}$$

es un subespacio vectorial de V.

Puesto que W' es un subespacio vectorial de V', se tiene que $\overrightarrow{0}_{V'} \in W'$. Por la Proposición 4.7(i), $f\left(\overrightarrow{0}_{V}\right) = \overrightarrow{0}_{V'} \in W'$, por lo que se tiene que $\overrightarrow{0}_{V} \in f^{-1}\left(W'\right)$ y $f^{-1}\left(W'\right) \neq \emptyset$.

Sean $\lambda, \mu \in \mathbb{K}$ y $\overrightarrow{u}, \overrightarrow{v} \in f^{-1}(W')$. Entonces, se tiene que $f(\overrightarrow{u}), f(\overrightarrow{v}) \in W'$ y, dado que W' es un subespacio vectorial de V', se tiene que

$$\lambda f(\overrightarrow{u}) + \mu f(\overrightarrow{v}) \in W'.$$

Aplicando que f es una aplicación lineal, se obtiene que

$$f(\lambda \overrightarrow{u} + \mu \overrightarrow{v}) = \lambda f(\overrightarrow{u}) + \mu f(\overrightarrow{v}) \in W'$$

y, por lo tanto, $\lambda \overrightarrow{u} + \mu \overrightarrow{v} \in f^{-1}(W')$. Así pues, como consecuencia del Corolario 2.15, $f^{-1}(W')$ es un subespacio vectorial de V. \square

PROPOSICION 4.9 Sean V y V' espacios vectoriales sobre el mismo cuerpo \mathbb{K} y supongamos que $f:V\longrightarrow V'$ es una aplicación lineal. Sean $\overrightarrow{u}_1,\overrightarrow{u}_2,\ldots,\overrightarrow{u}_p\in V$ y sea $W=\operatorname{Env}\{\overrightarrow{u}_1,\overrightarrow{u}_2,\ldots,\overrightarrow{u}_p\}$. Entonces,

$$f(W) = \operatorname{Env} \left\{ f(\overrightarrow{u}_1), f(\overrightarrow{u}_2), \dots, f(\overrightarrow{u}_p) \right\}.$$

Demostración: Por ser $W=\operatorname{Env}\{\overrightarrow{u}_1,\overrightarrow{u}_2,\ldots,\overrightarrow{u}_p\}$, se tiene que $\{\overrightarrow{u}_1,\overrightarrow{u}_2,\ldots,\overrightarrow{u}_p\}\subset W$ y, por lo tanto, $\{f(\overrightarrow{u}_1),f(\overrightarrow{u}_2),\ldots,f(\overrightarrow{u}_p)\}\subset f(W)$. Entonces, dado que f(W) es un subespacio vectorial, por la Proposición 2.24, se tiene que

$$\operatorname{Env}\left\{ f\left(\overrightarrow{u}_{1}\right), f\left(\overrightarrow{u}_{2}\right), \ldots, f\left(\overrightarrow{u}_{p}\right) \right\} \subseteq f\left(W\right).$$

Sea $\overrightarrow{v}' \in f(W)$. Entonces, existe $\overrightarrow{v} \in W$ tal que $\overrightarrow{v}' = f(\overrightarrow{v})$ y, puesto que $W = \operatorname{Env}\{\overrightarrow{u}_1, \overrightarrow{u}_2, \dots, \overrightarrow{u}_p\}$, existen escalares $\alpha_1, \alpha_2, \dots, \alpha_p \in \mathbb{K}$ tales que

$$\overrightarrow{v} = \alpha_1 \overrightarrow{u}_1 + \alpha_2 \overrightarrow{u}_2 + \ldots + \alpha_p \overrightarrow{u}_p.$$

Entonces, aplicando la Proposición 4.7(iii), se tiene que

$$\overrightarrow{v}' = f\left(\overrightarrow{v}\right) = f\left(\alpha_{1}\overrightarrow{u}_{1} + \alpha_{2}\overrightarrow{u}_{2} + \ldots + \alpha_{p}\overrightarrow{u}_{p}\right) = \alpha_{1}f\left(\overrightarrow{u}_{1}\right) + \alpha_{2}f\left(\overrightarrow{u}_{2}\right) + \ldots + \alpha_{p}f\left(\overrightarrow{u}_{p}\right)$$
y, por lo tanto, $\overrightarrow{v}' \in \text{Env}\left\{f\left(\overrightarrow{u}_{1}\right), f\left(\overrightarrow{u}_{2}\right), \ldots, f\left(\overrightarrow{u}_{p}\right)\right\}$. Así pues,

$$f(W) \subseteq \operatorname{Env} \{ f(\overrightarrow{u}_1), f(\overrightarrow{u}_2), \dots, f(\overrightarrow{u}_p) \}. \quad \Box$$

COROLARIO 4.10 Sean V y V' espacios vectoriales sobre el mismo cuerpo \mathbb{K} y supongamos que $f:V\longrightarrow V'$ es una aplicación lineal. Si W es un subespacio vectorial de V, entonces $\dim f(W)\leq \dim W$.

Demostración: Supongamos que $\dim W = p$ y $\mathcal{W} = \{\overrightarrow{u}_1, \overrightarrow{u}_2, \dots, \overrightarrow{u}_p\}$ es una base de W.

Puesto que $\{\overrightarrow{u}_1, \overrightarrow{u}_2, \dots, \overrightarrow{u}_p\}$ es un conjunto generador de W, se tiene que

$$W = \operatorname{Env} \left\{ \overrightarrow{u}_1, \overrightarrow{u}_2, \dots, \overrightarrow{u}_p \right\}.$$

Aplicando la Proposición 4.9, tenemos que

$$f(W) = \operatorname{Env} \left\{ f(\overrightarrow{u}_1), f(\overrightarrow{u}_2), \dots, f(\overrightarrow{u}_p) \right\},$$

por lo que $\{f(\overrightarrow{u}_1), f(\overrightarrow{u}_2), \ldots, f(\overrightarrow{u}_p)\}$ es un conjunto generador de f(W) y, por la Proposición 2.50, existe $\mathcal{A} \subseteq \{f(\overrightarrow{u}_1), f(\overrightarrow{u}_2), \ldots, f(\overrightarrow{u}_p)\}$ tal que \mathcal{A} es una base de f(W). Así pues, $\dim f(W) = \operatorname{card}(\mathcal{A}) \leq p = \dim W$. \square

EJEMPLO 4.11 Dado el subespacio $W=\{(x,y,z)\in\mathbb{R}^3\mid x+y-z=0\}$ de \mathbb{R}^3 y la aplicación lineal $f:\mathbb{R}^3\longrightarrow\mathbb{R}^4$ tal que f(x,y,z)=(x+y,z,2y,z-x), queremos calcular una base de f(W). Como

$$W = \{(x, y, z) \in \mathbb{R}^3 \mid z = x + y\} = \{(x, y, x + y) \in \mathbb{R}^3 \mid x, y \in \mathbb{R}\},\$$

el conjunto $\{(1,0,1),(0,1,1)\}$ es un conjunto generador de W. Dado que los vectores (1,0,1),(0,1,1) son linealmente independientes, el conjunto $\{(1,0,1),(0,1,1)\}$ es una base de W y, por la Proposición 4.9,

$$f(W) = \text{Env}\{f(1,0,1), f(0,1,1)\} = \text{Env}\{(1,1,0,0), (1,1,2,1)\}.$$

Por lo tanto, $\{(1,1,0,0),(1,1,2,1)\}$ es un conjunto generador de f(W) y, dado que estos vectores son linealmente independientes, forman una base de f(W).

En este caso, $\dim f(W) = 2 = \dim W$.

Nos preguntamos ahora acerca de cuáles serán los datos (condiciones) necesarios para determinar unívocamente una aplicación lineal. ¿Será necesario conocer las imágenes de todos y cada uno de los vectores del espacio de partida para localizar totalmente un homomorfismo? El teorema que sigue responde a esta pregunta, indicando qué número mínimo de imágenes de vectores hace falta conocer para determinar una aplicación lineal.

TEOREMA 4.12 Sean V y V' espacios vectoriales sobre el mismo cuerpo \mathbb{K} . Supongamos que $\mathcal{V} = \{\overrightarrow{u}_1, \overrightarrow{u}_2, \ldots, \overrightarrow{u}_n\}$ es una base de V y $S = \{\overrightarrow{b}_1, \overrightarrow{b}_2, \ldots, \overrightarrow{b}_n\}$ es un conjunto cualquiera de n vectores de V'. Entonces, existe una única aplicación lineal $f: V \longrightarrow V'$ tal que $f(\overrightarrow{u}_i) = \overrightarrow{b}_i$, para todo $i = 1, 2, \ldots, n$.

Demostración: Como \mathcal{V} es una base de V, cada vector $\overrightarrow{x} \in V$ se puede escribir de manera única como combinación lineal de los vectores de \mathcal{V} ,

$$\overrightarrow{x} = \lambda_1 \overrightarrow{u}_1 + \lambda_2 \overrightarrow{u}_2 + \dots + \lambda_n \overrightarrow{u}_n.$$

Definimos la aplicación f haciendo corresponder a cada $\overrightarrow{x} \in V$ el vector $f(\overrightarrow{x}) \in V'$ tal que

$$f(\overrightarrow{x}) = \lambda_1 \overrightarrow{b}_1 + \lambda_2 \overrightarrow{b}_2 + \dots + \lambda_n \overrightarrow{b}_n$$

siendo los coeficientes λ_i las coordenadas de \overrightarrow{x} en la base \mathcal{V} .

Es fácil comprobar que esta aplicación, así definida, cumple que $f(\overrightarrow{u}_i) = \overrightarrow{b}_i$, para todo $i = 1, 2, \dots, n$. Veamos que, además, f es lineal. En efecto, dados dos vectores arbitrarios \overrightarrow{x} e \overrightarrow{y} de V, los escribimos en la base \mathcal{V} :

$$\overrightarrow{x} = \lambda_1 \overrightarrow{u}_1 + \lambda_2 \overrightarrow{u}_2 + \dots + \lambda_n \overrightarrow{u}_n$$

e

$$\overrightarrow{y} = \mu_1 \overrightarrow{u}_1 + \mu_2 \overrightarrow{u}_2 + \dots + \mu_n \overrightarrow{u}_n.$$

Entonces, para todo $\alpha, \beta \in \mathbb{K}$, se tiene que

$$\alpha \overrightarrow{x} + \beta \overrightarrow{y} = \alpha (\lambda_1 \overrightarrow{u}_1 + \lambda_2 \overrightarrow{u}_2 + \dots + \lambda_n \overrightarrow{u}_n) + \beta (\mu_1 \overrightarrow{u}_1 + \mu_2 \overrightarrow{u}_2 + \dots + \mu_n \overrightarrow{u}_n) =$$

$$= (\alpha \lambda_1 + \beta \mu_1) \overrightarrow{u}_1 + \dots + (\alpha \lambda_n + \beta \mu_n) \overrightarrow{u}_n.$$

Por lo tanto,

$$f(\alpha \overrightarrow{x} + \beta \overrightarrow{y}) = (\alpha \lambda_1 + \beta \mu_1) \overrightarrow{b}_1 + \dots + (\alpha \lambda_n + \beta \mu_n) \overrightarrow{b}_n =$$

$$= \alpha(\lambda_1 \overrightarrow{b}_1 + \dots + \lambda_n \overrightarrow{b}_n) + \beta(\mu_1 \overrightarrow{b}_1 + \dots + \mu_n \overrightarrow{b}_n) = \alpha f(\overrightarrow{x}) + \beta f(\overrightarrow{y}).$$

Por último, veamos que la aplicación lineal f es única. En efecto, si $g:V\to V'$ es otra aplicación lineal tal que $g(\overrightarrow{u}_i)=\overrightarrow{b}_i$, para todo $i=1,2,\ldots,n$, tendremos, por ser g lineal, que

$$g(\overrightarrow{x}) = g(\lambda_1 \overrightarrow{u}_1 + \dots + \lambda_n \overrightarrow{u}_n) = \lambda_1 g(\overrightarrow{u}_1) + \dots + \lambda_n g(\overrightarrow{u}_n) =$$
$$= \lambda_1 \overrightarrow{b}_1 + \dots + \lambda_n \overrightarrow{b}_n = f(\overrightarrow{x})$$

para todo $\overrightarrow{x} \in V$. En consecuencia, f y g son la misma aplicación y, por tanto, f es única. \square

EJEMPLO 4.13 El Teorema 4.12 nos asegura que existe una única aplicación lineal $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$, tal que f(1,0,0)=(3,2), f(0,1,0)=(1,4) y f(0,0,1)=(4,7). Vamos a determinarla y, a continuación, hallaremos la imagen del vector (1,2,-1).

Para determinar f, el primer paso es calcular las coordenadas de un vector cualquiera de \mathbb{R}^3 en la base de vectores con imágenes conocidas. En nuestro caso, esta base es la base canónica, luego escribimos

$$(x, y, z) = x(1, 0, 0) + y(0, 1, 0) + z(0, 0, 1).$$

A continuación, aplicamos f y utilizamos la linealidad,

$$f(x,y,z) = f(x(1,0,0) + y(0,1,0) + z(0,0,1)) =$$

= $xf(1,0,0) + yf(0,1,0) + zf(0,0,1),$

y sustituimos por las imágenes de los vectores de la base dada, que son conocidas,

$$f(x, y, z) = x(3, 2) + y(1, 4) + z(4, 7).$$

Por lo tanto, f(x, y, z) = (3x + y + 4z, 2x + 4y + 7z), para todo $(x, y, z) \in \mathbb{R}^3$. En particular, f(1, 2, -1) = (1, 3).

4.2. Imagen y núcleo de una aplicación lineal.

DEFINICION 4.14 Sean V y V' espacios vectoriales sobre el mismo cuerpo \mathbb{K} y supongamos que $f:V\longrightarrow V'$ es una aplicación lineal. Llamamos **núcleo** de f, y lo denotamos $\operatorname{Ker}(f)$, al subespacio vectorial $f^{-1}\left(\left\{\overrightarrow{0}_{V'}\right\}\right)$ de V, es decir,

$$\operatorname{Ker}\left(f\right) = \left\{\overrightarrow{x} \in V \mid f\left(\overrightarrow{x}\right) = \overrightarrow{0}_{V'}\right\}.$$

DEFINICION 4.15 Sean V y V' espacios vectoriales sobre el mismo cuerpo \mathbb{K} y supongamos que $f:V\longrightarrow V'$ es una aplicación lineal. Llamamos **imagen** de f, y lo denotamos $\mathrm{Im}\,(f)$, al subespacio vectorial f(V) de V', es decir,

$$\operatorname{Im}\left(f\right)=\left\{ \overrightarrow{y}\in V'\mid\overrightarrow{y}=f\left(\overrightarrow{x}\right)\text{ para alg\'un }\overrightarrow{x}\in V\right\}.$$

Llamamos **rango** de f, y lo denotamos $\operatorname{rg}(f)$, a la dimensión del subespacio $\operatorname{Im}(f)$.

PROPOSICION 4.16 Sean V y V' espacios vectoriales sobre el mismo cuerpo \mathbb{K} y supongamos que $f:V\longrightarrow V'$ es una aplicación lineal. Si $\mathcal{V}=\{\overrightarrow{u}_1,\overrightarrow{u}_2,\ldots,\overrightarrow{u}_n\}$ es una base de V, entonces

$$\operatorname{Im}\left(f\right) = \operatorname{Env}\left\{f\left(\overrightarrow{u}_{1}\right), f\left(\overrightarrow{u}_{2}\right), \dots, f\left(\overrightarrow{u}_{n}\right)\right\}$$

 $y \operatorname{rg}(f) \leq n$.

Demostración: El resultado se obtiene como consecuencia directa de la Proposición 4.9 y del Corolario 4.10. □

EJEMPLO 4.17 Dado el homomorfismo $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ tal que f(x,y,z) = (x+y,z-x), calcularemos el núcleo y la imagen de f.

Por definición, se tiene

$$\operatorname{Ker}(f) = \{(x, y, z) \in \mathbb{R}^3 \mid f(x, y, z) = (0, 0)\} = \{(x, y, z) \in \mathbb{R}^3 \mid x + y = 0, \ z - x = 0\} = \{(x, y, z) \in \mathbb{R}^3 \mid x = -y = z\} = \{(x, -x, x) \mid x \in \mathbb{R}\} = \operatorname{Env}(\{(1, -1, 1)\}).$$

Para calcular la imagen de f, consideramos una base del espacio inicial \mathbb{R}^3 (la base canónica, por ejemplo). Se tiene que $\mathbb{R}^3 = \operatorname{Env}(\{(1,0,0),(0,1,0),(0,0,1)\})$ y, aplicando la Proposición 4.16, se tiene

$$\operatorname{Im}\left(f\right) = \operatorname{Env}\left(\left\{f(1,0,0), f(0,1,0), f(0,0,1)\right\}\right) = \operatorname{Env}\left(\left\{(1,-1), (1,0), (0,1)\right\}\right).$$

Por lo tanto, $\{(1,-1),(1,0),(0,1)\}$ es un conjunto generador de $\operatorname{Im}(f)$ que contiene a la base canónica de \mathbb{R}^2 . Como $(1,-1)\in\operatorname{Env}(\{(1,0),(0,1)\})$, por la Proposición 2.34,

$$\operatorname{Env}\left(\{(1,0),(0,1)\}\right) = \operatorname{Env}\left(\{(1,-1),(1,0),(0,1)\}\right) = \operatorname{Im}\left(f\right).$$

Así pues,

$$\operatorname{Im}(f) = \operatorname{Env}(\{(1,0),(0,1)\}) = \mathbb{R}^2.$$

En el ejemplo anterior, se obtiene que $\dim \operatorname{Ker}(f) + \operatorname{rg}(f) = 1 + 2 = 3$, que es la dimensión del espacio inicial de f. En el siguiente teorema probaremos que esta igualdad se cumple para cualquier aplicación lineal.

TEOREMA 4.18 Sean V y V' espacios vectoriales sobre el mismo cuerpo \mathbb{K} y supongamos que $f:V\longrightarrow V'$ es una aplicación lineal. Entonces, se cumple que

$$\dim V = \dim \operatorname{Ker}(f) + \operatorname{rg}(f).$$

Demostración: Supongamos que $\dim V = n$ y $\dim \operatorname{Ker}(f) = p$. Hemos de probar que $\operatorname{rg}(f) = \dim \operatorname{Im}(f) = n - p$.

Supongamos, en primer lugar, que $p \neq 0$, es decir, $\operatorname{Ker}(f) \neq \left\{\overrightarrow{0}_{V}\right\}$. Consideremos una base $\left\{\overrightarrow{u}_{1}, \overrightarrow{u}_{2}, \ldots, \overrightarrow{u}_{p}\right\}$ de $\operatorname{Ker}(f) \subseteq V$. Por el Teorema de la base incompleta, existen n-p vectores $\overrightarrow{u}_{p+1}, \ldots, \overrightarrow{u}_{n} \in V$ tales que $\left\{\overrightarrow{u}_{1}, \ldots, \overrightarrow{u}_{p}, \overrightarrow{u}_{p+1}, \ldots, \overrightarrow{u}_{n}\right\}$ es una base de V. Entonces, aplicando la Proposición 4.16, se tiene que

 $\operatorname{Im}(f) = \operatorname{Env}\left(\left\{f\left(\overrightarrow{u}_{1}\right), \ldots, f\left(\overrightarrow{u}_{p}\right), f\left(\overrightarrow{u}_{p+1}\right), \ldots, f\left(\overrightarrow{u}_{n}\right)\right\}\right) = \operatorname{Env}\left(\left\{f\left(\overrightarrow{u}_{p+1}\right), \ldots, f\left(\overrightarrow{u}_{n}\right)\right\}\right),$ ya que $f\left(\overrightarrow{u}_{1}\right) = \ldots = f\left(\overrightarrow{u}_{p}\right) = \overrightarrow{0}_{V'}$. Por lo tanto, $\left\{f\left(\overrightarrow{u}_{p+1}\right), \ldots, f\left(\overrightarrow{u}_{n}\right)\right\}$ es un conjunto de generadores de $\operatorname{Im}(f)$. Veremos que tales vectores son linealmente independientes y, por lo tanto forman una base de $\operatorname{Im}(f)$ y $\operatorname{dim}\operatorname{Im}(f) = n - p$.

En efecto, si consideramos la combinación lineal nula

$$\alpha_{p+1}f(\overrightarrow{u}_{p+1}) + \ldots + \alpha_n f(\overrightarrow{u}_n) = \overrightarrow{0}_{V'},$$

aplicando la linealidad de f, se tiene que

$$f(\alpha_{p+1}\overrightarrow{u}_{p+1} + \ldots + \alpha_n\overrightarrow{u}_n) = \overrightarrow{0}_{V'},$$

es decir, $\alpha_{p+1}\overrightarrow{u}_{p+1} + \ldots + \alpha_n\overrightarrow{u}_n \in \mathrm{Ker}(f) = \mathrm{Env}\,(\{\overrightarrow{u}_1,\ldots,\overrightarrow{u}_p\})$, con lo que

$$\alpha_{p+1} \overrightarrow{u}_{p+1} + \ldots + \alpha_n \overrightarrow{u}_n = \alpha_1 \overrightarrow{u}_1 + \ldots + \alpha_p \overrightarrow{u}_p$$

o, lo que es lo mismo,

$$\alpha_1 \overrightarrow{u}_1 + \ldots + \alpha_p \overrightarrow{u}_p - \alpha_{p+1} \overrightarrow{u}_{p+1} - \ldots - \alpha_n \overrightarrow{u}_n = \overrightarrow{0}_V,$$

de donde

$$\alpha_1 = \ldots = \alpha_p = -\alpha_{p+1} = \ldots = -\alpha_n = 0,$$

ya que $\{\overrightarrow{u}_1,\ldots,\overrightarrow{u}_p,\overrightarrow{u}_{p+1},\ldots,\overrightarrow{u}_n\}$ es una base de V. En particular, $\alpha_{p+1}=\ldots=\alpha_n=0$ y los vectores $f(\overrightarrow{u}_{p+1}),\ldots,f(\overrightarrow{u}_n)$ son linealmente independientes.

Si p=0, entonces $\operatorname{Ker}(f)=\left\{\overrightarrow{0}_{V}\right\}$. Por lo tanto, si $\left\{\overrightarrow{u}_{1},\ldots,\overrightarrow{u}_{n}\right\}$ es una base de V, se tiene

que

$$\operatorname{Im}(f) = \operatorname{Env}(\{f(\overrightarrow{u}_1), \dots, f(\overrightarrow{u}_n)\})$$

y, con un razonamiento similar al del caso anterior, se obtiene que $\{f(\overrightarrow{u}_1), \ldots, f(\overrightarrow{u}_n)\}$ es una base de $\mathrm{Im}\,(f)$. Por lo tanto, $\mathrm{rg}\,(f) = \dim\mathrm{Im}\,(f) = n = \dim V$. \square

EJEMPLO 4.19 En el Ejemplo 4.17, la aplicación del Teorema 4.18 nos permite obtener, de forma inmediata, la imagen de f a partir de su núcleo, ya que, como $\dim \operatorname{Ker}(f) = 1$, necesariamente $\operatorname{rg}(f) = 3 - 1 = 2$ y, puesto que $\operatorname{Im}(f)$ es un subespacio de \mathbb{R}^2 , se tiene que $\operatorname{Im}(f) = \mathbb{R}^2$.

EJEMPLO 4.20 Consideremos ahora la aplicación lineal del Ejemplo 4.11, $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^4$ tal que f(x,y,z)=(x+y,z,2y,z-x). En este caso, considerando la base canónica en el espacio inicial y aplicando la Proposición 4.16, se tiene que

$$\operatorname{Im}(f) = \operatorname{Env}(\{f(1,0,0), f(0,1,0), f(0,0,1)\}) = \operatorname{Env}(\{(1,0,0,-1), (1,0,2,0), (0,1,0,1)\}).$$

Puesto que los vectores del conjunto $\{(1,0,0,-1),(1,0,2,0),(0,1,0,1)\}$ son linealmente independientes, se tiene que $\{(1,0,0,-1),(1,0,2,0),(0,1,0,1)\}$ es una base de $\mathrm{Im}\,(f)\,\mathrm{y}\,\mathrm{rg}\,(f)=3$. Aplicando ahora el Teorema 4.18, obtenemos que $\mathrm{dim}\,\mathrm{Ker}(f)=3-3=0$, por lo que sabemos $\mathrm{Ker}(f)=\left\{\overrightarrow{0}\right\}$ sin necesidad de calcularlo.

DEFINICION 4.21 Sean V y V' espacios vectoriales sobre el mismo cuerpo \mathbb{K} y supongamos que $f:V\longrightarrow V'$ es una aplicación lineal. Se dice que:

- f es un **monomorfismo** si f es una aplicación inyectiva.
- f es un **epimorfismo** si f es una aplicación suprayectiva.
- f es un **isomorfismo** si f es una aplicación biyectiva.

Llamaremos endomorfismos a las aplicaciones lineales para las que $V=V^\prime$ y automorfismos a los endomorfismos biyectivos.

PROPOSICION 4.22 Sean V y V' espacios vectoriales sobre el mismo cuerpo \mathbb{K} y supongamos que $f:V\longrightarrow V'$ es una aplicación lineal. Entonces, se cumple:

- (i) f es un monomorfismo si, y sólo si, $\operatorname{Ker}(f) = \{\overrightarrow{0}_V\}$.
- (ii) f es un epimorfismo si, y sólo si, Im(f) = V'.

 $\begin{array}{l} \textit{Demostración} \colon \text{(i) Supongamos que } f \text{ es un monomorfismo. Si } \overrightarrow{v} \in \operatorname{Ker}(f), \text{ entonces } f\left(\overrightarrow{v}\right) = \overrightarrow{0}_{V'}. \\ \text{Ahora, como } f\left(\overrightarrow{0}_{V}\right) = \overrightarrow{0}_{V'} \text{ y } f \text{ es inyectiva, necesariamente } \overrightarrow{v} = \overrightarrow{0}_{V}. \\ \text{Por lo tanto, } \operatorname{Ker}(f) = \left\{\overrightarrow{0}_{V}\right\}. \\ \end{array}$

Recíprocamente, supongamos que $\operatorname{Ker}(f) = \left\{\overrightarrow{0}_V\right\}$ y sean $\overrightarrow{u}, \overrightarrow{v} \in V$ tales que $f(\overrightarrow{u}) = f(\overrightarrow{v})$. Entonces, se tiene que

$$\overrightarrow{0}_{V'} = f(\overrightarrow{u}) - f(\overrightarrow{v}) = f(\overrightarrow{u} - \overrightarrow{v})$$

 $\mathbf{y}\ \overrightarrow{u}-\overrightarrow{v}\in\mathrm{Ker}(f)=\Big\{\overrightarrow{0}_{V}\Big\}.\ \mathrm{Por\ lo\ tanto},\ \overrightarrow{u}-\overrightarrow{v}=\overrightarrow{0}_{V}\ \mathbf{y}\ \overrightarrow{u}=\overrightarrow{v}.\ \mathrm{Por\ lo\ tanto},\ f\ \mathrm{es\ inyectiva}.$

(ii) Que f es un epimorfismo es lo mismo que decir que f es una aplicación suprayectiva, lo que es equivalente a f(V) = V', es decir, Im(f) = V'. \square

EJEMPLO 4.23 En el Ejemplo 4.17, f no es inyectiva pero sí es suprayectiva, de modo que f es un epimorfismo.

EJEMPLO 4.24 En el Ejemplo 4.20, f es inyectiva no suprayectiva, por lo que f es un monomorfismo.

COROLARIO 4.25 Sean V y V' espacios vectoriales sobre el mismo cuerpo \mathbb{K} y supongamos que $f:V\longrightarrow V'$ es una aplicación lineal. Entonces, se cumple:

- (i) f es un monomorfismo si, y sólo si, $rg(f) = \dim V$.
- (ii) f es un epimorfismo si, y sólo si, $\operatorname{rg}(f) = \dim V'$.

Demostración: (i) Es consecuencia de la Proposición 4.22(i) y del Teorema 4.18.

- (ii) Es consecuencia de la Proposición 4.22(ii). □
- **NOTA 4.26** Nótese que si f es un monomorfismo, el Corolario 4.25(i) afirma que $\dim V = \dim \operatorname{Im}(f)$ y, dado que $\operatorname{Im}(f)$ es un subespacio de V', $\dim \operatorname{Im}(f) \leq \dim V'$. Por lo tanto, para que f sea inyectiva, es necesario que $\dim V \leq \dim V'$. Así, por ejemplo, una aplicación definida de \mathbb{R}^3 en \mathbb{R}^2 no puede ser inyectiva.

NOTA 4.27 Del mismo modo, si f es suprayectiva, por el Corolario 4.25(ii), $\dim \operatorname{Im}(f) = \dim V'$. Pero, por el Teorema 4.18, $\dim \operatorname{Im}(f) = \dim V - \dim \operatorname{Ker}(f) \leq \dim V$. Por lo tanto, para que f sea suprayectiva, es necesario que $\dim V' \leq \dim V$. Así, por ejemplo, ninguna aplicación definida de \mathbb{R}^3 en \mathbb{R}^4 puede ser suprayectiva.

Teniendo en cuenta las dos observaciones anteriores, para que f sea una isomorfismo es necesario que $\dim V = \dim V'$. El siguiente teorema caracteriza las aplicaciones lineales entre espacios de la misma dimensión que son isomorfismos.

TEOREMA 4.28 Sean V y V' espacios vectoriales sobre el mismo cuerpo \mathbb{K} tales que $\dim V = \dim V' = n$ y supongamos que $f: V \longrightarrow V'$ es una aplicación lineal. Entonces, las siguientes condiciones son equivalentes:

(i) f es un isomorfismo.

(ii) f es un monomorfismo.

$$\textit{(iii)} \operatorname{Ker}(f) = \left\{ \overrightarrow{0}_V \right\}.$$

(iv) f es un epimorfismo.

$$(v) \operatorname{rg} (f) = n.$$

Demostración: (i) \Longrightarrow (ii) Si f es un isomorfismo, entonces f es biyectiva y, por lo tanto, f es inyectiva, o lo que es lo mismo, f es un monomorfismo.

- (ii) ⇒ (iii) Es la implicación directa de la Proposición 4.22(i).
- (iii) \Longrightarrow (iv) Como consecuencia del Teorema 4.18, $\operatorname{rg}(f) = \dim V \dim \operatorname{Ker}(f) = \dim V = \dim V'$ y, por el Corolario 4.25(ii), f es un epimorfismo.
 - (iv) \Longrightarrow (v) Si f es un epimorfismo, por el Corolario 4.25(ii), $\operatorname{rg}(f) = \dim V' = n$.
- $(v) \Longrightarrow (i) \text{ Si } \operatorname{rg}(f) = n$, entonces $\operatorname{rg}(f) = \dim V$ y, por el Corolario 4.25(i), f es inyectiva. Por otro lado, también se cumple que $\operatorname{rg}(f) = \dim V'$ y, por el Corolario 4.25(ii), f es suprayectiva. Por lo tanto, f es biyectiva y es un isomorfismo. \square

Dos espacios vectoriales sobre el mismo cuerpo \mathbb{K} se dice que son **isomorfos** si existe un isomorfismo entre ellos. Para que dos espacios vectoriales sean isomorfos, es necesario que tengan la misma dimensión.

TEOREMA 4.29 Todos los espacios vectoriales de la misma dimensión sobre un mismo cuerpo son isomorfos.

Demostración: Sean V y V' dos espacios vectoriales sobre el mismo cuerpo \mathbb{K} tales que $\dim V = \dim V' = n$. Sean $\mathcal{V} = \{\overrightarrow{u}_1, \overrightarrow{u}_2, \dots, \overrightarrow{u}_n\}$ y $\mathcal{V}' = \{\overrightarrow{v}_1, \overrightarrow{v}_2, \dots, \overrightarrow{v}_n\}$ bases de V y V', respectivamente. Consideremos $f: V \longrightarrow V'$ la única aplicación lineal tal que $f(\overrightarrow{u}_i) = \overrightarrow{v}_i$ para todo $i = 1, 2, \dots, n$ (véase Teorema 4.12). Dado que

$$\operatorname{Im}(f) = \operatorname{Env}(\{f(\overrightarrow{u}_1), \dots, f(\overrightarrow{u}_n)\}) = \operatorname{Env}(\{\overrightarrow{v}_1, \overrightarrow{v}_2, \dots, \overrightarrow{v}_n\}) = V',$$

por la Proposición 4.22(ii), f es un epimorfismo y, por el Teorema 4.28, f es un isomorfismo. Por lo tanto, V y V' son isomorfos. \Box

EJEMPLO 4.30 Todos los espacios vectoriales reales de dimensión n son isomorfos a \mathbb{R}^n y todos los espacios vectoriales complejos de dimensión n son isomorfos a \mathbb{C}^n .

EJEMPLO 4.31 Los espacios vectoriales \mathbb{R}^4 , $\mathbb{R}_3[x]$ y $\mathcal{M}_{2\times 2}(\mathbb{R})$ son isomorfos entre sí.

4.3. Operaciones con aplicaciones lineales.

En esta sección, dados V y V' dos espacios vectoriales sobre el mismo cuerpo \mathbb{K} , consideramos el conjunto $\operatorname{Hom}_{\mathbb{K}}(V,V')$ de todas las aplicaciones lineales entre V y V'.

PROPOSICION 4.32 Sean V y V' espacios vectoriales sobre el mismo cuerpo \mathbb{K} y sean $f,g \in \operatorname{Hom}_{\mathbb{K}}(V,V')$. Si $f+g:V \longrightarrow V'$ es la aplicación dada por

$$(f+g)(\overrightarrow{v}) = f(\overrightarrow{v}) + g(\overrightarrow{v}), \tag{4.3}$$

para todo $\overrightarrow{v} \in V$, entonces $f + g \in \operatorname{Hom}_{\mathbb{K}}(V, V')$.

Demostración: Sean $\alpha, \beta \in \mathbb{K}$ y $\overrightarrow{u}, \overrightarrow{v} \in V$. Entonces, por ser f y g aplicaciones lineales entre V y V', se cumple que

$$f(\alpha \overrightarrow{u} + \beta \overrightarrow{v}) = \alpha f(\overrightarrow{u}) + \beta f(\overrightarrow{v}) \tag{4.4}$$

y

$$g(\alpha \overrightarrow{u} + \beta \overrightarrow{v}) = \alpha g(\overrightarrow{u}) + \beta g(\overrightarrow{v}). \tag{4.5}$$

Por lo tanto, como por definición de f+g se tiene que

$$(f+g)(\alpha \overrightarrow{u} + \beta \overrightarrow{v}) = f(\alpha \overrightarrow{u} + \beta \overrightarrow{v}) + g(\alpha \overrightarrow{u} + \beta \overrightarrow{v}),$$

por (4.4) y (4.5), se obtiene

$$(f+g)\left(\alpha \overrightarrow{u} + \beta \overrightarrow{v}\right) = \alpha f\left(\overrightarrow{u}\right) + \beta f\left(\overrightarrow{v}\right) + \alpha g\left(\overrightarrow{u}\right) + \beta g\left(\overrightarrow{v}\right) = \alpha \left(f+g\right)\left(\overrightarrow{u}\right) + \beta \left(f+g\right)\left(\overrightarrow{v}\right).$$

Por lo tanto, f + g es una aplicación lineal.

PROPOSICION 4.33 Sean V y V' espacios vectoriales sobre el mismo cuerpo \mathbb{K} . Si $f, g, h \in \operatorname{Hom}_{\mathbb{K}}(V, V')$, entonces se satisfacen las siguientes propiedades:

- (i) (f+g) + h = f + (g+h).
- (ii) f + g = g + f.
- (iii) f + O = O + f = f con $O \in \text{Hom}_{\mathbb{K}}(V, V')$ la aplicación lineal nula.
- (iv) $f + (-f) = (-f) + f = O \operatorname{con} f \in \operatorname{Hom}_{\mathbb{K}}(V, V')$ la aplicación lineal opuesta de f y $O \in \operatorname{Hom}_{\mathbb{K}}(V, V')$ la aplicación lineal nula.

Demostración: La demostración de estas propiedades se sigue de las propiedades análogas que sabemos se satisfacen en V' por ser V' un espacio vectorial sobre \mathbb{K} . Por otra parte, es fácil probar que la aplicación nula y la aplicación opuesta a una aplicación lineal f son ambas aplicaciones lineales. \square

PROPOSICION 4.34 Sean V y V' espacios vectoriales sobre el mismo cuerpo \mathbb{K} y sean $\lambda \in \mathbb{K}$ y $f \in \operatorname{Hom}_{\mathbb{K}}(V,V')$. Si $\lambda f:V \longrightarrow V'$ es la aplicación dada por

$$(\lambda f)(\overrightarrow{v}) = \lambda f(\overrightarrow{v}), \tag{4.6}$$

para todo $\overrightarrow{v} \in V$, entonces $\lambda f \in \operatorname{Hom}_{\mathbb{K}}(V, V')$.

Demostración: Sean $\alpha, \beta \in \mathbb{K}$ y $\overrightarrow{u}, \overrightarrow{v} \in V$. Entonces, por ser f aplicación lineal entre V y V', se cumple que

$$f(\alpha \overrightarrow{u} + \beta \overrightarrow{v}) = \alpha f(\overrightarrow{u}) + \beta f(\overrightarrow{v}). \tag{4.7}$$

Por lo tanto, como por definición de λf se tiene que

$$(\lambda f) (\alpha \overrightarrow{u} + \beta \overrightarrow{v}) = \lambda f (\alpha \overrightarrow{u} + \beta \overrightarrow{v}),$$

por (4.7), se obtiene

$$(\lambda f) (\alpha \overrightarrow{u} + \beta \overrightarrow{v}) = \lambda (\alpha f(\overrightarrow{u}) + \beta f(\overrightarrow{v})) = \alpha (\lambda f(\overrightarrow{u})) + \beta (\lambda f(\overrightarrow{v})) = \alpha (\lambda f) (\overrightarrow{u}) + \beta (\lambda f) (\overrightarrow{v}).$$

Por lo tanto, λf es una aplicación lineal. \square

PROPOSICION 4.35 Sean V y V' espacios vectoriales sobre el mismo cuerpo \mathbb{K} . Si $\lambda, \mu \in \mathbb{K}$ y $f, g \in \operatorname{Hom}_{\mathbb{K}}(V, V')$, entonces se satisfacen las siguientes propiedades:

(i)
$$\lambda(f+g) = \lambda f + \lambda g$$
.

(ii)
$$(\lambda + \mu) f = \lambda f + \mu f$$
.

(iii)
$$\lambda(\mu f) = (\lambda \mu) f$$
.

(*iv*)
$$1f = f$$
.

Demostración: La demostración de estas propiedades se sigue de las propiedades análogas que sabemos se satisfacen en V' por ser V' un espacio vectorial sobre \mathbb{K} .

PROPOSICION 4.36 Sean V y V' espacios vectoriales sobre el mismo cuerpo \mathbb{K} . Entonces $\operatorname{Hom}_{\mathbb{K}}(V,V')$ es un espacio vectorial sobre \mathbb{K} con la suma y la multiplicación por un escalar introducidas en (4.3) y (4.6), respectivamente.

Demostración: Es consecuencia de las Proposiciones 4.33 y 4.35. □

PROPOSICION 4.37 Sean V, V' y V'' espacios vectoriales sobre el mismo cuerpo \mathbb{K} . Si $f \in \operatorname{Hom}_{\mathbb{K}}(V, V')$ y $g \in \operatorname{Hom}_{\mathbb{K}}(V', V'')$, entonces $g \circ f \in \operatorname{Hom}_{\mathbb{K}}(V, V'')$.

Demostración: Sean $\alpha, \beta \in \mathbb{K}$ y $\overrightarrow{u}, \overrightarrow{v} \in V$. Entonces,

$$(g \circ f) (\alpha \overrightarrow{u} + \beta \overrightarrow{v}) = g (f (\alpha \overrightarrow{u} + \beta \overrightarrow{v}))$$

y, dado que f es una aplicación lineal, se tiene que $f(\alpha \overrightarrow{u} + \beta \overrightarrow{v}) = \alpha f(\overrightarrow{u}) + \beta f(\overrightarrow{v})$, por lo que

$$(g \circ f) (\alpha \overrightarrow{u} + \beta \overrightarrow{v}) = g (\alpha f (\overrightarrow{u}) + \beta f (\overrightarrow{v})).$$

Finalmente, por ser g una aplicación lineal, se obtiene

$$(g \circ f) (\alpha \overrightarrow{u} + \beta \overrightarrow{v}) = \alpha g (f (\overrightarrow{u})) + \beta g (f (\overrightarrow{v})) = \alpha (g \circ f) (\overrightarrow{u}) + \beta (g \circ f) (\overrightarrow{v}).$$

Así pues, $g \circ f \in \operatorname{Hom}_{\mathbb{K}}(V, V'')$.

PROPOSICION 4.38 Sean V y V' espacios vectoriales sobre el mismo cuerpo \mathbb{K} . Si $f \in \operatorname{Hom}_{\mathbb{K}}(V,V')$ es biyectiva, entonces $f^{-1} \in \operatorname{Hom}_{\mathbb{K}}(V',V)$.

Demostración: Por ser $f:V\longrightarrow V'$ una aplicación biyectiva, sabemos que existe la aplicación inversa $f^{-1}:V'\longrightarrow V$ y también es biyectiva.

Sean $\alpha, \beta \in \mathbb{K}$ y $\overrightarrow{u}', \overrightarrow{v}' \in V'$. Como f es biyectiva, existe un único $\overrightarrow{u} \in V$ tal que $f(\overrightarrow{u}) = \overrightarrow{u}'$ y existe un único $\overrightarrow{v} \in V$ tal que $f(\overrightarrow{v}) = \overrightarrow{v}'$. Entonces, aplicando la linealidad de f, se tiene

$$\alpha \overrightarrow{u}' + \beta \overrightarrow{v}' = \alpha f(\overrightarrow{u}) + \beta f(\overrightarrow{v}) = f(\alpha \overrightarrow{u} + \beta \overrightarrow{v}),$$

con lo que

$$f^{-1}\left(\alpha \overrightarrow{u}' + \beta \overrightarrow{v}'\right) = \alpha \overrightarrow{u} + \beta \overrightarrow{v} = \alpha f^{-1}\left(\overrightarrow{u}'\right) + \beta f^{-1}\left(\overrightarrow{v}'\right).$$

Por lo tanto, $f^{-1} \in \operatorname{Hom}_{\mathbb{K}}(V', V)$.

4.4. Matriz asociada a una aplicación lineal.

Por el Teorema 4.12, una aplicación lineal $f:V\longrightarrow V'$ queda totalmente determinada si conocemos las imágenes de los vectores de una base de V. Este hecho nos va a permitir asociar, a cada aplicación lineal, una matriz (fijadas una base del espacio inicial y otra del final).

Sean V y V' espacios vectoriales sobre un mismo cuerpo \mathbb{K} tales que $\dim V = n$ y $\dim V' = m$. Consideremos $\mathcal{V} = \{\overrightarrow{u}_1, \overrightarrow{u}_2, \ldots, \overrightarrow{u}_n\}$ y $\mathcal{V}' = \{\overrightarrow{v}_1, \overrightarrow{v}_2, \ldots, \overrightarrow{v}_m\}$ bases de V y V', respectivamente. Sea $f: V \longrightarrow V'$ una aplicación lineal. Puesto que, para cada $i=1,\ldots,n$, $f(\overrightarrow{u}_i) \in V'$, podemos considerar las coordenadas de $f(\overrightarrow{u}_i)$ en la base \mathcal{V}' . Así, se tiene

$$f(\overrightarrow{u}_1) = a_{11}\overrightarrow{v}_1 + a_{21}\overrightarrow{v}_2 + \cdots + a_{m1}\overrightarrow{v}_m$$

$$f(\overrightarrow{u}_2) = a_{12}\overrightarrow{v}_1 + a_{22}\overrightarrow{v}_2 + \cdots + a_{m2}\overrightarrow{v}_m$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$f(\overrightarrow{u}_n) = a_{1n}\overrightarrow{v}_1 + a_{2n}\overrightarrow{v}_2 + \cdots + a_{mn}\overrightarrow{v}_m$$

Diremos que la matriz

$$M_{\mathcal{V}}^{\mathcal{V}'}(f) := \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}$$

es la **matriz asociada** a f en las bases V y V'.

Cabe destacar que la columna i-ésima de la matriz $M_{\mathcal{V}}^{\mathcal{V}'}(f)$ está formada por las coordenadas de

 $f(\overrightarrow{u}_i)$ en la base \mathcal{V}' .

EJEMPLO 4.39 Consideramos el homomorfismo $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ tal que f(x,y) = (2y, y-x, y). La matriz asociada a f en las bases canónicas de \mathbb{R}^2 y \mathbb{R}^3 es

$$M_{\operatorname{Can}(\mathbb{R}^2)}^{\operatorname{Can}(\mathbb{R}^3)}(f) = \begin{pmatrix} 0 & 2 \\ -1 & 1 \\ 0 & 1 \end{pmatrix}.$$

En cambio, si consideramos las bases $\mathcal{B} = \{(1,1), (-1,0)\}$ de \mathbb{R}^2 y $\mathcal{B}' = \{(1,1,1), (1,1,0), (1,0,0)\}$ de \mathbb{R}^3 , la matriz asociada a f es

$$M_{\mathcal{B}}^{\mathcal{B}'}(f) = \begin{pmatrix} 1 & 0 \\ -1 & 1 \\ 2 & -1 \end{pmatrix},$$

ya que

$$f(1,1) = (2,0,1) = 1 \cdot (1,1,1) - 1 \cdot (1,1,0) + 2 \cdot (1,0,0),$$

$$f(-1,0) = (0,1,0) = 0 \cdot (1,1,1) + 1 \cdot (1,1,0) - 1 \cdot (1,0,0).$$

EJEMPLO 4.40 Consideramos el endomorfismo $f: \mathbb{R}^3 \to \mathbb{R}^3$ que consiste en un giro de α grados alrededor del eje OZ. Para obtener la matriz asociada a f respecto de la base canónica de \mathbb{R}^3 , necesitamos calcular las componentes de $f(\overrightarrow{e}_1)$, $f(\overrightarrow{e}_2)$ y $f(\overrightarrow{e}_3)$ en dicha base. Al aplicar el giro de α grados alrededor del eje OZ a los vectores \overrightarrow{e}_1 y \overrightarrow{e}_2 , se obtienen los vectores $f(\overrightarrow{e}_1)$ y $f(\overrightarrow{e}_2)$ representados en la Figura (4.7) y, de acuerdo con dicha figura, se pueden expresar como

$$f(\overrightarrow{e}_1) = (\cos \alpha) \overrightarrow{e}_1 + (\sin \alpha) \overrightarrow{e}_2,$$

$$f(\overrightarrow{e}_2) = (-\sin \alpha) \overrightarrow{e}_1 + (\cos \alpha) \overrightarrow{e}_2.$$

Por otra parte, es evidente que al aplicar el giro de α grados alrededor del eje OZ al vector \overrightarrow{e}_3 , este vector no cambia, luego $f(\overrightarrow{e}_3) = \overrightarrow{e}_3$. Así pues, la matriz asociada a f respecto de la base canónica es

$$M_{\operatorname{Can}(\mathbb{R}^3)}^{\operatorname{Can}(\mathbb{R}^3)}(f) = \left(egin{array}{ccc} \cos lpha & -\sin lpha & 0 \ \sin lpha & \cos lpha & 0 \ 0 & 0 & 1 \end{array}
ight).$$

Cualquier matriz que esté asociada a una aplicación lineal f, proporciona toda la información

necesaria para conocer con exactitud la aplicación f. En primer lugar, veremos que la definición de f también puede darse en forma matricial. Para ello, dado un espacio vectorial V sobre \mathbb{K} , $\mathcal{V} = \{\overrightarrow{u}_1, \overrightarrow{u}_2, \dots, \overrightarrow{u}_n\}$ una base de V y $\overrightarrow{u} \in V$, denotaremos

$$C_{\mathcal{V}}(\overrightarrow{u}) := \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix},$$

donde x_1, x_2, \ldots, x_n son las coordenadas de \overrightarrow{u} en la base \mathcal{V} .

PROPOSICION 4.41 (Ecuación matricial de una aplicación lineal) Sean V y V' espacios vectoriales sobre un mismo cuerpo \mathbb{K} y sean V y V' bases de V y V', respectivamente. Dada una aplicación lineal $f:V\longrightarrow V'$, la ecuación matricial de f respecto de las bases V y V' es la expresión

$$M_{\mathcal{V}}^{\mathcal{V}'}(f) C_{\mathcal{V}}(\overrightarrow{u}) = C_{\mathcal{V}'}(f(\overrightarrow{u}))$$

para todo $\overrightarrow{u} \in V$.

Demostración: Supongamos que $\mathcal{V} = \{\overrightarrow{u}_1, \overrightarrow{u}_2, \dots, \overrightarrow{u}_n\}, \mathcal{V}' = \{\overrightarrow{v}_1, \overrightarrow{v}_2, \dots, \overrightarrow{v}_m\}$ y

$$M_{\mathcal{V}}^{\mathcal{V}'}(f) := \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}.$$

Por la propia definición de $M_{\mathcal{V}}^{\mathcal{V}'}\left(f\right)$, sabemos que

$$f(\overrightarrow{u}_{1}) = a_{11}\overrightarrow{v}_{1} + a_{21}\overrightarrow{v}_{2} + \cdots + a_{m1}\overrightarrow{v}_{m},$$

$$f(\overrightarrow{u}_{2}) = a_{12}\overrightarrow{v}_{1} + a_{22}\overrightarrow{v}_{2} + \cdots + a_{m2}\overrightarrow{v}_{m},$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$f(\overrightarrow{u}_{n}) = a_{1n}\overrightarrow{v}_{1} + a_{2n}\overrightarrow{v}_{2} + \cdots + a_{mn}\overrightarrow{v}_{m}.$$

$$(4.8)$$

Sea $\overrightarrow{u} \in V$ y supongamos que

$$C_{\mathcal{V}}(\overrightarrow{u}) := \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \qquad \mathbf{y} \qquad C_{\mathcal{V}'}(f(\overrightarrow{u})) := \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{pmatrix},$$

es decir

$$\overrightarrow{u} = x_1 \overrightarrow{u}_1 + x_2 \overrightarrow{u}_2 + \dots + x_n \overrightarrow{u}_n$$

y

$$f(\overrightarrow{u}) = y_1 \overrightarrow{v}_1 + y_2 \overrightarrow{v}_2 + \dots + y_m \overrightarrow{v}_m. \tag{4.9}$$

Como f es una aplicación lineal, se tiene que

$$f\left(\overrightarrow{u}\right) = f\left(x_{1}\overrightarrow{u}_{1} + x_{2}\overrightarrow{u}_{2} + \dots + x_{n}\overrightarrow{u}_{n}\right) = x_{1}f\left(\overrightarrow{u}_{1}\right) + x_{2}f\left(\overrightarrow{u}_{2}\right) + \dots + x_{n}f\left(\overrightarrow{u}_{n}\right)$$

y, por (4.8),

$$f(\overrightarrow{u}) = x_1 (a_{11} \overrightarrow{v}_1 + a_{21} \overrightarrow{v}_2 + \dots + a_{m1} \overrightarrow{v}_m) + x_2 (a_{12} \overrightarrow{v}_1 + a_{22} \overrightarrow{v}_2 + \dots + a_{m2} \overrightarrow{v}_m) + \dots + x_n (a_{1n} \overrightarrow{v}_1 + a_{2n} \overrightarrow{v}_2 + \dots + a_{mn} \overrightarrow{v}_m),$$

de donde

$$f(\overrightarrow{u}) = (x_1 a_{11} + x_2 a_{12} + \dots + x_n a_{1n}) \overrightarrow{v}_1 + (x_1 a_{21} + x_2 a_{22} + \dots + x_n a_{2n}) \overrightarrow{v}_2$$
 (4.10)

$$+ \dots + (x_1 a_{m1} + x_2 a_{m2} + \dots + x_n a_{mn}) \overrightarrow{v}_m.$$

Dado que las coordenadas de un vector respecto de una cierta base son únicas, teniendo en cuenta (4.9) y (4.10), se obtiene

o, lo que es lo mismo

$$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{pmatrix},$$

que es la forma matricial del enunciado.

EJEMPLO 4.42 En el ejemplo 4.39 podemos calcular la imagen del vector $\overrightarrow{u}=(3,2)$ usando la forma matricial de la aplicación f. Dado que conocemos las coordenadas del vector \overrightarrow{u} en la base canónica de \mathbb{R}^2 , usaremos las matriz $M_{\operatorname{Can}(\mathbb{R}^2)}^{\operatorname{Can}(\mathbb{R}^3)}(f)$ para obtener las coordenadas de $f(\overrightarrow{u})$ en la base canónica de \mathbb{R}^3 . Así,

$$C_{\operatorname{Can}(\mathbb{R}^2)}(\overrightarrow{u}) = \left(\begin{array}{c} 3\\2 \end{array}\right)$$

y

$$C_{\operatorname{Can}(\mathbb{R}^3)}\left(f\left(\overrightarrow{u}\right)\right) = M_{\operatorname{Can}(\mathbb{R}^2)}^{\operatorname{Can}(\mathbb{R}^3)}(f)C_{\operatorname{Can}(\mathbb{R}^2)}\left(\overrightarrow{u}\right) = \begin{pmatrix} 0 & 2 \\ -1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 3 \\ 2 \end{pmatrix} = \begin{pmatrix} 4 \\ -1 \\ 2 \end{pmatrix}.$$

Así pues, $f(\overrightarrow{u}) = (4, -1, 2)$.

Dado un espacio vectorial V sobre \mathbb{K} , la aplicación identidad $id:V\longrightarrow V$ definida por $id(\overrightarrow{u})=\overrightarrow{u}$ para todo $\overrightarrow{u}\in V$, es trivialmente una aplicación lineal. Si consideramos dos bases de V, $\mathcal{V}=\{\overrightarrow{u}_1,\overrightarrow{u}_2,\ldots,\overrightarrow{u}_n\}$ y $\mathcal{V}'=\{\overrightarrow{v}_1,\overrightarrow{v}_2,\ldots,\overrightarrow{v}_n\}$, se tiene que

$$M_{\mathcal{V}}^{\mathcal{V}}(id) = I,$$

mientras que

$$M_{\mathcal{V}}^{\mathcal{V}'}\left(id\right) = \left(a_{ij}\right)$$

donde $a_{i} = C_{\mathcal{V}'}(\overrightarrow{u}_{i})$ para todo $j = 1, \dots, n$. Además, para cualquier $\overrightarrow{u} \in V$, se tiene

$$M_{\mathcal{V}}^{\mathcal{V}'}(id) C_{\mathcal{V}}(\overrightarrow{u}) = C_{\mathcal{V}'}(id(\overrightarrow{u})) = C_{\mathcal{V}'}(\overrightarrow{u}),$$

es decir, si multiplicamos la matriz asociada $M_{\mathcal{V}}^{\mathcal{V}'}(id)$ por las coordenadas de \overrightarrow{u} en la base \mathcal{V} se obtienen las coordenadas de \overrightarrow{u} en la base \mathcal{V}' . Debido a ello, a la matriz $M_{\mathcal{V}}^{\mathcal{V}'}(id)$ le llamaremos **matriz cambio de base** de \mathcal{V} a \mathcal{V}' y la denotaremos por $P_{\mathcal{V}}^{\mathcal{V}'}$.

EJEMPLO 4.43 En el ejemplo 4.39, calculamos las matrices cambio de base de $\operatorname{Can}(\mathbb{R}^2)$ a \mathcal{B} y de \mathcal{B}' a $\operatorname{Can}(\mathbb{R}^3)$. Para ello, necesitamos conocer las coordenadas de los vectores de la base canónica de \mathbb{R}^2 en la base \mathcal{B} y las coordenadas de los vectores de \mathcal{B}' en la base canónica de \mathbb{R}^3 .

Por un lado, se tiene

$$(1,0) = 0 \cdot (1,1) + (-1) \cdot (-1,0) (0,1) = 1 \cdot (1,1) + 1 \cdot (-1,0),$$

por lo que

$$P_{\operatorname{Can}(\mathbb{R}^2)}^{\mathcal{B}} = \left(egin{array}{cc} 0 & 1 \ -1 & 1 \end{array}
ight).$$

Por otra parte,

$$\begin{array}{lll} (1,1,1) & = & 1 \cdot (1,0,0) + 1 \cdot (0,1,0) + 1 \cdot (0,0,1) \\ (1,1,0) & = & 1 \cdot (1,0,0) + 1 \cdot (0,1,0) + 0 \cdot (0,0,1) \\ (1,0,0) & = & 1 \cdot (1,0,0) + 0 \cdot (0,1,0) + 0 \cdot (0,0,1) \,, \end{array}$$

de modo que

$$P_{\mathcal{B}'}^{\operatorname{Can}\left(\mathbb{R}^{3}\right)} = \left(\begin{array}{ccc} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \end{array}\right).$$

Dado el vector $\overrightarrow{u}=(3,2)\in\mathbb{R}^2$, se pueden calcular sus coordenadas en la base \mathcal{B} de la siguiente forma:

$$C_{\mathcal{B}}(\overrightarrow{u}) = \begin{pmatrix} 0 & 1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 3 \\ 2 \end{pmatrix} = \begin{pmatrix} 2 \\ -1 \end{pmatrix}.$$

Ahora, utilizando la matriz $M_{\mathcal{B}}^{\mathcal{B}'}(f)$, podemos calcular las coordenadas de $f(\overrightarrow{u})$ en la base \mathcal{B}'

$$C_{\mathcal{B}'}\left(f\left(\overrightarrow{u}\right)\right) = M_{\mathcal{B}}^{\mathcal{B}'}(f)C_{\mathcal{B}}\left(\overrightarrow{u}\right) = \begin{pmatrix} 1 & 0 \\ -1 & 1 \\ 2 & -1 \end{pmatrix} \begin{pmatrix} 2 \\ -1 \end{pmatrix} = \begin{pmatrix} 2 \\ -3 \\ 5 \end{pmatrix}.$$

Por último, podemos calcular las coordenadas de $f(\overrightarrow{u})$ en la base canónica de \mathbb{R}^3 de la siguiente manera:

$$C_{\operatorname{Can}(\mathbb{R}^3)}\left(f\left(\overrightarrow{u}\right)\right) = P_{\mathcal{B}'}^{\operatorname{Can}\left(\mathbb{R}^3\right)} C_{\mathcal{B}'}\left(f\left(\overrightarrow{u}\right)\right) = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 2 \\ -3 \\ 5 \end{pmatrix} = \begin{pmatrix} 4 \\ -1 \\ 2 \end{pmatrix}.$$

PROPOSICION 4.44 Sean V, V' y V'' espacios vectoriales sobre un mismo cuerpo \mathbb{K} y sean V, V' y V'' bases de V, V' y V'', respectivamente. Dadas las aplicaciones lineales $f, g: V \longrightarrow V'$ $y \mapsto V''$, se verifica:

$$(i) M_{\mathcal{V}}^{\mathcal{V}'}(f+g) = M_{\mathcal{V}}^{\mathcal{V}'}(f) + M_{\mathcal{V}}^{\mathcal{V}'}(g).$$

(ii) $M_{\mathcal{V}}^{\mathcal{V}'}(\lambda f) = \lambda M_{\mathcal{V}}^{\mathcal{V}'}(f)$, para todo $\lambda \in \mathbb{K}$.

$$\textit{(iii)}\ M_{\mathcal{V}}^{\mathcal{V}''}\left(h\circ f\right)=M_{\mathcal{V}'}^{\mathcal{V}''}\left(h\right)M_{\mathcal{V}}^{\mathcal{V}'}\left(f\right).$$

Demostración: Supongamos que $\mathcal{V} = \{\overrightarrow{u}_1, \overrightarrow{u}_2, \dots, \overrightarrow{u}_n\}, \ \mathcal{V}' = \{\overrightarrow{v}_1, \overrightarrow{v}_2, \dots, \overrightarrow{v}_m\} \ \text{y} \ \mathcal{V}'' = \{\overrightarrow{w}_1, \overrightarrow{w}_2, \dots, \overrightarrow{w}_p\}.$ Entonces $M_{\mathcal{V}}^{\mathcal{V}'}(f), \ M_{\mathcal{V}'}^{\mathcal{V}'}(g) \in \mathcal{M}_{m \times n}(\mathbb{K}) \ \text{y} \ M_{\mathcal{V}'}^{\mathcal{V}''}(h) \in \mathcal{M}_{p \times m}(\mathbb{K}).$ Supongamos que $M_{\mathcal{V}}^{\mathcal{V}'}(f) = (a_{ij}), M_{\mathcal{V}}^{\mathcal{V}'}(g) = (b_{ij}) \ \text{y} \ M_{\mathcal{V}'}^{\mathcal{V}''}(h) = (c_{ki}).$

(i) Si $M_{\mathcal{V}}^{\mathcal{V}'}(f) = (a_{ij}) \text{ y } M_{\mathcal{V}}^{\mathcal{V}'}(g) = (b_{ij}), \text{ entonces}$

$$f(\overrightarrow{u}_j) = a_{1j}\overrightarrow{v}_1 + a_{2j}\overrightarrow{v}_2 + \dots + a_{mj}\overrightarrow{v}_m$$

y

$$g(\overrightarrow{u}_{j}) = b_{1j}\overrightarrow{v}_{1} + b_{2j}\overrightarrow{v}_{2} + \dots + b_{mj}\overrightarrow{v}_{m}$$

para todo $j = 1, 2, \dots, n$. Entonces,

$$(f+g)(\overrightarrow{u}_j) = f(\overrightarrow{u}_j) + g(\overrightarrow{u}_j) = (a_{1j} + b_{1j}) \overrightarrow{v}_1 + (a_{2j} + b_{2j}) \overrightarrow{v}_2 + \dots + (a_{mj} + b_{mj}) \overrightarrow{v}_m$$
 para todo $j = 1, 2, \dots, n$. Por lo tanto,

$$M_{\mathcal{V}}^{\mathcal{V}'}(f+g) = (a_{ij} + b_{ij}) = (a_{ij}) + (b_{ij}) = M_{\mathcal{V}}^{\mathcal{V}'}(f) + M_{\mathcal{V}}^{\mathcal{V}'}(g)$$
.

(ii) Del mismo modo, dado $\lambda \in \mathbb{K}$, se tiene que

$$(\lambda f)(\overrightarrow{u}_{j}) = \lambda f(\overrightarrow{u}_{j}) = \lambda (a_{1j}\overrightarrow{v}_{1} + a_{2j}\overrightarrow{v}_{2} + \dots + a_{mj}\overrightarrow{v}_{m}) = (\lambda a_{1j})\overrightarrow{v}_{1} + (\lambda a_{2j})\overrightarrow{v}_{2} + \dots + (\lambda a_{mj})\overrightarrow{v}_{m}$$

para todo $j = 1, 2, \dots, n$. Por lo tanto,

$$M_{\mathcal{V}}^{\mathcal{V}'}(\lambda f) = (\lambda a_{ij}) = \lambda (a_{ij}) = \lambda M_{\mathcal{V}}^{\mathcal{V}'}(f).$$

(iii) Si $M_{\mathcal{V}'}^{\mathcal{V}''}(h) = (c_{ki})$, entonces

$$h\left(\overrightarrow{v}_{i}\right) = c_{1i}\overrightarrow{w}_{1} + c_{2i}\overrightarrow{w}_{2} + \dots + a_{pi}\overrightarrow{w}_{p}$$

para todo $i=1,2,\ldots,m$. Entonces, para todo $j=1,2,\ldots,n$,

$$(h \circ f) (\overrightarrow{u}_j) = h (f (\overrightarrow{u}_j)) = h (a_{1j} \overrightarrow{v}_1 + a_{2j} \overrightarrow{v}_2 + \dots + a_{mj} \overrightarrow{v}_m)$$

y, como h es lineal, se tiene que

$$(h \circ f) (\overrightarrow{u}_{j}) = a_{1j}h(\overrightarrow{v}_{1}) + a_{2j}h(\overrightarrow{v}_{2}) + \dots + a_{mj}h(\overrightarrow{v}_{m})$$

$$= a_{1j}(c_{11}\overrightarrow{w}_{1} + c_{21}\overrightarrow{w}_{2} + \dots + a_{p1}\overrightarrow{w}_{p}) + a_{2j}(c_{12}\overrightarrow{w}_{1} + c_{22}\overrightarrow{w}_{2} + \dots + a_{p2}\overrightarrow{w}_{p})$$

$$+ \dots + a_{mj}(c_{1m}\overrightarrow{w}_{1} + c_{2m}\overrightarrow{w}_{2} + \dots + a_{pm}\overrightarrow{w}_{p})$$

y, agrupando términos, se obtiene

$$(h \circ f) (\overrightarrow{u}_{j}) = (a_{1j}c_{11} + a_{2j}c_{12} + \dots + a_{mj}c_{1m}) \overrightarrow{w}_{1}$$

$$+ (a_{1j}c_{21} + a_{2j}c_{22} + \dots + a_{mj}c_{2m}) \overrightarrow{w}_{2}$$

$$+ \dots + (a_{1j}c_{p1} + a_{2j}c_{p2} + \dots + a_{mj}c_{pm}) \overrightarrow{w}_{p}$$

o, lo que es lo mismo,

$$(h \circ f)(\overrightarrow{u}_j) = (c_1 \cdot a_{\cdot j}) \overrightarrow{w}_1 + (c_2 \cdot a_{\cdot j}) \overrightarrow{w}_2 + \dots + (c_p \cdot a_{\cdot j}) \overrightarrow{w}_p.$$

Por lo tanto,

$$M_{\mathcal{V}}^{\mathcal{V}''}(h \circ f) = \begin{pmatrix} c_{1} \cdot a_{.1} & c_{1} \cdot a_{.2} & \cdots & c_{1} \cdot a_{.n} \\ c_{2} \cdot a_{.1} & c_{2} \cdot a_{.2} & \cdots & c_{2} \cdot a_{.n} \\ \vdots & \vdots & \ddots & \vdots \\ c_{p} \cdot a_{.1} & c_{p} \cdot a_{.2} & \cdots & c_{p} \cdot a_{.n} \end{pmatrix} = (c_{ki}) (a_{ij}) = M_{\mathcal{V}'}^{\mathcal{V}''}(h) M_{\mathcal{V}}^{\mathcal{V}'}(f). \quad \Box$$

PROPOSICION 4.45 Sea V un espacio vectorial sobre \mathbb{K} y \mathcal{V} y \mathcal{V}' dos bases de V. Entonces, la matriz cambio de base de \mathcal{V} a \mathcal{V}' es regular y su inversa es la matriz cambio de base de \mathcal{V}' a \mathcal{V} .

Demostración: Sabemos que la matriz cambio de base de \mathcal{V} a \mathcal{V}' es la matriz asociada a la aplicación identidad respecto de las bases \mathcal{V} y \mathcal{V}' , mientras que la matriz cambio de base de \mathcal{V}' a \mathcal{V} es la matriz asociada a la aplicación identidad respecto de las bases \mathcal{V}' y \mathcal{V} . Teniendo en cuenta que la composición $id \circ id = id$ y aplicando la Proposición 4.44(iii), se tiene que

$$P_{\mathcal{V}}^{\mathcal{V}'} \cdot P_{\mathcal{V}'}^{\mathcal{V}} = M_{\mathcal{V}'}^{\mathcal{V}'}(id \circ id) = M_{\mathcal{V}'}^{\mathcal{V}'}(id) = I$$

y

$$P_{\mathcal{V}'}^{\mathcal{V}} \cdot P_{\mathcal{V}}^{\mathcal{V}'} = M_{\mathcal{V}}^{\mathcal{V}}(id \circ id) = M_{\mathcal{V}}^{\mathcal{V}}(id) = I.$$

Por lo tanto, $P_{\mathcal{V}'}^{\mathcal{V}}$ y $P_{\mathcal{V}}^{\mathcal{V}'}$ son matrices inversas.

PROPOSICION 4.46 Sean V y V' espacios vectoriales sobre el mismo cuerpo \mathbb{K} , $f:V\longrightarrow V'$ una aplicación lineal, \mathcal{V}_1 y \mathcal{V}_2 dos bases de V y \mathcal{V}'_1 y \mathcal{V}'_2 dos bases de V'. Entonces, se cumple

$$M_{\mathcal{V}_2}^{\mathcal{V}_2'}(f) = P_{\mathcal{V}_1'}^{\mathcal{V}_2'} M_{\mathcal{V}_1}^{\mathcal{V}_1'}(f) P_{\mathcal{V}_2}^{\mathcal{V}_1}.$$

Demostración: Sabemos que la matriz cambio de base de V_2 a V_1 es la matriz asociada a la aplicación identidad de V respecto de las bases V_2 y V_1 , mientras que la matriz cambio de base de V_1' a V_2' es la matriz asociada a la aplicación identidad de V' respecto de las bases V_1' y V_2' . Aplicando la Proposición 4.44(iii), se tiene que

$$P_{\mathcal{V}_1'}^{\mathcal{V}_2'} M_{\mathcal{V}_1}^{\mathcal{V}_1'}(f) P_{\mathcal{V}_2}^{\mathcal{V}_1} = M_{\mathcal{V}_2}^{\mathcal{V}_2'}(id_{V'} \circ f \circ id_V) = M_{\mathcal{V}_2}^{\mathcal{V}_2'}(f). \qquad \Box$$

EJEMPLO 4.47 Consideramos de nuevo el Ejemplo 4.39. Calculamos la matriz asociada a f respecto de las bases $\mathcal{B} = \{(1,1),(-1,0)\}$ y $\mathcal{B}' = \{(1,1,1),(1,1,0),(1,0,0)\}$ a partir de la matriz $M_{\operatorname{Can}(\mathbb{R}^3)}^{\operatorname{Can}(\mathbb{R}^3)}(f)$ utilizando la Proposición 4.46. Por un lado, es fácil calcular las matrices cambio de base $P_{\mathcal{B}}^{\operatorname{Can}(\mathbb{R}^2)}$ y $P_{\mathcal{B}'}^{\operatorname{Can}(\mathbb{R}^3)}$, ya que se trata de poner en columnas las coordenadas de los vectores de la base \mathcal{B} , en el primer caso, y de la base \mathcal{B}' , en el segundo,

$$P_{\mathcal{B}}^{\operatorname{Can}\left(\mathbb{R}^{2}
ight)}=\left(egin{array}{cc} 1 & -1 \ 1 & 0 \end{array}
ight) \qquad ext{y} \qquad P_{\mathcal{B}'}^{\operatorname{Can}\left(\mathbb{R}^{3}
ight)}=\left(egin{array}{cc} 1 & 1 & 1 \ 1 & 1 & 0 \ 1 & 0 & 0 \end{array}
ight).$$

Por la Proposición 4.45, se tiene que

$$P_{\operatorname{Can}(\mathbb{R}^3)}^{\mathcal{B}'} = \left(P_{\mathcal{B}'}^{\operatorname{Can}\left(\mathbb{R}^3\right)}\right)^{-1} = \left(\begin{array}{ccc} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \end{array}\right)^{-1} = \left(\begin{array}{ccc} 0 & 0 & 1 \\ 0 & 1 & -1 \\ 1 & -1 & 0 \end{array}\right)$$

y, por la Proposición 4.46,

$$M_{\mathcal{B}}^{\mathcal{B}'}(f) = P_{\operatorname{Can}(\mathbb{R}^{3})}^{\mathcal{B}'} M_{\operatorname{Can}(\mathbb{R}^{2})}^{\operatorname{Can}(\mathbb{R}^{3})}(f) P_{\mathcal{B}}^{\operatorname{Can}(\mathbb{R}^{2})}$$

$$= \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & -1 \\ 1 & -1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 2 \\ -1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix}$$

$$= \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & -1 \\ 1 & -1 & 0 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ -1 & 1 \\ 2 & -1 \end{pmatrix}.$$

$$(4.11)$$

PROPOSICION 4.48 Sean V y V' espacios vectoriales sobre el mismo cuerpo \mathbb{K} y sea $f:V\longrightarrow V'$ una aplicación lineal. Entonces, $\operatorname{rg}(f)=\operatorname{rg}(A)$, donde A es cualquier matriz asociada a la aplicación lineal f.

 $\textit{Demostración} \colon \mathsf{Consideremos} \; \mathcal{V} = \{\overrightarrow{u}_1, \overrightarrow{u}_2, \dots, \overrightarrow{u}_n\} \; \mathsf{y} \; \mathcal{V}' = \{\overrightarrow{v}_1, \overrightarrow{v}_2, \dots, \overrightarrow{v}_m\} \; \mathsf{bases} \; \mathsf{de} \; V \; \mathsf{y} \; V', \\ \mathsf{respectivamente}, \; \mathsf{y} \; \mathsf{sea} \; A = M_{\mathcal{V}}^{\mathcal{V}'}(f).$

Por definición, $rg(f) = \dim Im(f)$ y, por la Proposición 4.16,

$$\operatorname{Im}(f) = \operatorname{Env}(\{f(\overrightarrow{u}_1), f(\overrightarrow{u}_2), \dots, f(\overrightarrow{u}_n)\}),$$

por lo que se tiene que

$$rg(f) = \dim \operatorname{Env}(\{f(\overrightarrow{u}_1), f(\overrightarrow{u}_2), \dots, f(\overrightarrow{u}_n)\}).$$

Supongamos que $\operatorname{rg}(f) = r \leq n$. Podemos suponer, sin pérdida de generalidad, que $\{f(\overrightarrow{u}_1), f(\overrightarrow{u}_2), \dots, f(\overrightarrow{u}_r)\}$ es una base de $\operatorname{Im}(f)$. Entonces, se tiene que

$$f(\overrightarrow{u}_k) \in \text{Env}(\{f(\overrightarrow{u}_1), f(\overrightarrow{u}_2), \dots, f(\overrightarrow{u}_r)\})$$

para todo $k = r + 1, \dots, n$ y existen escalares únicos $\lambda_{1k}, \dots, \lambda_{rk} \in \mathbb{K}$ tales que

$$f(\overrightarrow{u}_k) = \lambda_{1k} f(\overrightarrow{u}_1) + \lambda_{2k} f(\overrightarrow{u}_2) + \dots + \lambda_{rk} f(\overrightarrow{u}_r)$$

para todo $k = r + 1, \dots, n$. Como las coordenadas de un vector en una base son únicas, se tiene que

$$C_{\mathcal{V}'}(f(\overrightarrow{u}_k)) = \lambda_{1k}C_{\mathcal{V}'}(f(\overrightarrow{u}_1)) + \lambda_{2k}C_{\mathcal{V}'}(f(\overrightarrow{u}_2)) + \dots + \lambda_{rk}C_{\mathcal{V}'}(f(\overrightarrow{u}_r))$$
(4.12)

para todo k = r + 1, ..., n. Ahora bien, por la definición de matriz asociada a una aplicación lineal, se tiene que $a_{\cdot j} = \mathcal{C}_{\mathcal{V}'}\left(f\left(\overrightarrow{u}_{j}\right)\right)$ para todo j = 1, ..., n, y (4.12) se puede expresar como

$$a_{\cdot k} = \lambda_{1k} a_{\cdot 1} + \lambda_{2k} a_{\cdot 2} + \dots + \lambda_{rk} a_{\cdot r},$$

para todo $k=r+1,\ldots,n$, de donde se tiene que las n-r últimas columnas de la matriz A son combinación lineal de las r primeras. Probando que $\{a_{.1},a_{.2},\ldots,a_{.r}\}$ son linealmente independientes, se obtiene que $\operatorname{rg}(A)=r$.

Consideremos la combinación lineal nula

$$\lambda_1 a_{\cdot 1} + \lambda_2 a_{\cdot 2} + \dots + \lambda_r a_{\cdot r} = \mathbf{0}.$$

Entonces,

$$\begin{vmatrix} a_{11}\lambda_1 + a_{12}\lambda_2 + \dots + a_{1r}\lambda_r = 0 \\ a_{21}\lambda_1 + a_{22}\lambda_2 + \dots + a_{2r}\lambda_r = 0 \\ \vdots \\ a_{m1}\lambda_1 + a_{m2}\lambda_2 + \dots + a_{mr}\lambda_r = 0 \end{vmatrix}$$

y, puesto que

$$\overrightarrow{0} = 0 \overrightarrow{v}_1 + 0 \overrightarrow{v}_2 + \dots + 0 \overrightarrow{v}_m = (a_{11}\lambda_1 + a_{12}\lambda_2 + \dots + a_{1r}\lambda_r) \overrightarrow{v}_1 + (a_{21}\lambda_1 + a_{22}\lambda_2 + \dots + a_{2r}\lambda_r) \overrightarrow{v}_2 + \dots + (a_{m1}\lambda_1 + a_{m2}\lambda_2 + \dots + a_{mr}\lambda_r) \overrightarrow{v}_m,$$

reagrupando, se obtiene

$$\overrightarrow{0} = \lambda_1 \left(a_{11} \overrightarrow{v}_1 + a_{21} \overrightarrow{v}_2 + \dots + a_{m1} \overrightarrow{v}_m \right) + \lambda_2 \left(a_{12} \overrightarrow{v}_1 + a_{22} \overrightarrow{v}_2 + \dots + a_{m2} \overrightarrow{v}_m \right) + \dots + \lambda_r \left(a_{1r} \overrightarrow{v}_1 + a_{2r} \overrightarrow{v}_2 + \dots + a_{mr} \overrightarrow{v}_m \right)$$

o, lo que es lo mismo,

$$\overrightarrow{0} = \lambda_1 f(\overrightarrow{u}_1) + \lambda_2 f(\overrightarrow{u}_2) + \dots + \lambda_r f(\overrightarrow{u}_r).$$

Dado que los vectores $f(\overrightarrow{u}_1), f(\overrightarrow{u}_2), \ldots, f(\overrightarrow{u}_r)$ son linealmente independientes, se tiene que $\lambda_1 = \lambda_2 = \cdots = \lambda_r = 0$. Así pues, las r primeras columnas de A son linealmente independientes y $\operatorname{rg}(A) = r$. \square

TEOREMA 4.49 Sean V y V' espacios vectoriales sobre un mismo cuerpo \mathbb{K} de dimensiones n y m, respectivamente, y sean V una base de V y V' una base de V'. Entonces, la aplicación

$$\Psi_{\mathcal{V},\mathcal{V}'}: \operatorname{Hom}_{\mathbb{K}}(V,V') \longrightarrow \mathcal{M}_{m \times n}(\mathbb{K})$$

que asocia a cada aplicación lineal entre V y V' su matriz asociada en las bases V y V', es un isomorfismo.

Demostración: Dado que, para cada $f \in \text{Hom }_{\mathbb{K}}(V,V')$, $\Psi_{\mathcal{V},\mathcal{V}'}(f) = M_{\mathcal{V}}^{\mathcal{V}'}(f)$, la Proposición 4.44

(i) y (ii) nos asegura que $\Psi_{\mathcal{V},\mathcal{V}'}(f+g) = M_{\mathcal{V}}^{\mathcal{V}'}(f+g) = M_{\mathcal{V}'}^{\mathcal{V}'}(f) + M_{\mathcal{V}'}^{\mathcal{V}'}(g) = \Psi_{\mathcal{V},\mathcal{V}'}(f) + \Psi_{\mathcal{V},\mathcal{V}'}(g)$ y $\Psi_{\mathcal{V},\mathcal{V}'}(\lambda f) = M_{\mathcal{V}'}^{\mathcal{V}'}(\lambda f) = \lambda M_{\mathcal{V}'}^{\mathcal{V}'}(f) = \lambda \Psi_{\mathcal{V},\mathcal{V}'}(f)$, para todo $f,g \in \operatorname{Hom}_{\mathbb{K}}(V,V')$ y para todo $\lambda \in \mathbb{K}$, por lo que $\Psi_{\mathcal{V},\mathcal{V}'}$ es una aplicación lineal.

 $\Psi_{\mathcal{V},\mathcal{V}'}$ es inyectiva ya que si $f \in \operatorname{Ker} \Psi_{\mathcal{V},\mathcal{V}'}$, entonces $\Psi_{\mathcal{V},\mathcal{V}'}(f) = M_{\mathcal{V}}^{\mathcal{V}'}(f) = O$, donde O representa la matriz nula de orden $m \times n$. Pero la única aplicación lineal que tiene como matriz asociada la matriz nula es la aplicación nula. Así pues, $\operatorname{Ker} \Psi_{\mathcal{V},\mathcal{V}'} = \{0\}$ y $\Psi_{\mathcal{V},\mathcal{V}'}$ es inyectiva.

 $\Psi_{\mathcal{V},\mathcal{V}'}$ también es suprayectiva ya que, dada una matriz $A \in \mathcal{M}_{m \times n}(\mathbb{K})$, existe una aplicación lineal $f \in \operatorname{Hom}_{\mathbb{K}}(V,V')$ cuya matriz asociada es A, la que tiene como ecuación matricial

$$C_{\mathcal{V}'}\left(f\left(\overrightarrow{u}\right)\right) = A \cdot C_{\mathcal{V}}\left(\overrightarrow{u}\right).$$

Por lo tanto, $\Psi_{\mathcal{V},\mathcal{V}'}$ es un isomorfismo.

NOTA 4.50 De la Proposición 4.46 se deduce que las matrices asociadas a una misma aplicación lineal en distintas bases son matrices equivalentes.

EJEMPLO 4.51 Considerando las matrices del Ejemplo 4.39,

$$A = M_{Can(\mathbb{R}^{2})}^{Can(\mathbb{R}^{3})}(f) = \begin{pmatrix} 0 & 2 \\ -1 & 1 \\ 0 & 1 \end{pmatrix}$$

y

$$B = M_{\mathcal{B}}^{\mathcal{B}'}(f) = \begin{pmatrix} 1 & 0 \\ -1 & 1 \\ 2 & -1 \end{pmatrix},$$

y denotando como P y Q las matrices cambio de base obtenidas en el Ejemplo 4.47,

$$P = P_{Can(\mathbb{R}^3)}^{B'} = \begin{pmatrix} 0 & 0 & 1\\ 0 & 1 & -1\\ 1 & -1 & 0 \end{pmatrix}$$

y

$$Q = P_{\mathcal{B}}^{can(\mathbb{R}^2)} = \begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix},$$

se tiene que B = PAQ (véase (4.11)) con P y Q matrices regulares, por lo que A y B son matrices equivalentes.

PROPOSICION 4.52 Dadas dos matrices $A, B \in \mathcal{M}_{m \times n}(\mathbb{K})$, A y B son matrices equivalentes si, y sólo si, existen un homomorfismo $f : \mathbb{K}^n \longrightarrow \mathbb{K}^m$, bases \mathcal{U}, \mathcal{V} de \mathbb{K}^n y bases $\mathcal{U}', \mathcal{V}'$ de \mathbb{K}^m tales que $A = M_{\mathcal{U}}^{\mathcal{U}'}(f)$ $y B = M_{\mathcal{V}}^{\mathcal{V}'}(f)$.

Demostración: Supongamos que A y B son matrices equivalentes. Entonces existen $P \in \mathcal{M}_{m \times m}$ (\mathbb{K}) y $Q \in \mathcal{M}_{n \times n}$ (\mathbb{K}) matrices regulares tales que B = PAQ.

Consideremos \mathcal{U} y \mathcal{U}' las bases canónicas de \mathbb{K}^n y \mathbb{K}^m , respectivamente, \mathcal{V} la base de \mathbb{K}^n formada por los vectores cuyas componentes en la base canónica de \mathbb{K}^n son las columnas de Q y \mathcal{V}' la base de \mathbb{K}^m formada por los vectores cuyas componentes en la base canónica de \mathbb{K}^m son las columnas de P^{-1} . Entonces $P^{-1} = P_{\mathcal{V}'}^{\mathcal{U}'}$ y $Q = P_{\mathcal{V}}^{\mathcal{U}}$.

Sea $f: \mathbb{K}^n \longrightarrow \mathbb{K}^m$ el único homomorfismo tal que $M_{\mathcal{U}}^{\mathcal{U}'}(f) = A$ (véase Teorema 4.49). Entonces, por la Proposición 4.46, se tiene que

$$M_{\mathcal{V}}^{\mathcal{V}'}(f) = P_{\mathcal{U}'}^{\mathcal{V}'} M_{\mathcal{U}}^{\mathcal{U}'}(f) P_{\mathcal{V}}^{\mathcal{U}} = PAQ = B.$$

Recíprocamente, si $f \in \operatorname{Hom}_{\mathbb{K}}(\mathbb{K}^n, \mathbb{K}^m)$, \mathcal{U} , \mathcal{V} son bases de \mathbb{K}^n y \mathcal{U}' , \mathcal{V}' son bases de \mathbb{K}^m tales que $A = M_{\mathcal{U}}^{\mathcal{U}'}(f)$ y $B = M_{\mathcal{V}}^{\mathcal{V}'}(f)$, entonces, por la Proposición 4.46, se tiene que $M_{\mathcal{V}}^{\mathcal{V}'}(f) = P_{\mathcal{U}'}^{\mathcal{V}'}M_{\mathcal{U}}^{\mathcal{U}'}(f)P_{\mathcal{V}}^{\mathcal{U}}$. Tomando $P = P_{\mathcal{U}'}^{\mathcal{V}'}$ y $Q = P_{\mathcal{V}}^{\mathcal{U}}$, se tiene que B = PAQ o, lo que es lo mismo, A y B son matrices equivalentes. \square

NOTA 4.53 Como consecuencia de la proposición anterior, dos matrices son equivalentes cuando son matrices asociadas a una misma aplicación lineal en distintas bases. Además las matrices P y Q son realmente matrices de cambio de base: P en el espacio final y Q en el espacio inicial.

COROLARIO 4.54 Sean $A, B \in \mathcal{M}_{m \times n}(\mathbb{K})$. Las siguientes afirmaciones son equivalentes:

- (i) A y B representan a la misma aplicación lineal en pares de bases distintas.
- (ii) Existen matrices regulares P y Q tales que A = PBQ.
- (iii) A y B tienen el mismo rango.

Demostración: La equivalencia entre (i) y (ii) se ha demostrado en la Proposición 4.52.

- (i) ⇒ (iii) Es consecuencia inmediata de la Proposición 4.48.
- (iii) \Longrightarrow (ii) Supongamos que $\operatorname{rg} A = \operatorname{rg} B = r$. Entonces, por el Teorema 3.99, tanto A como B son equivalentes a la matriz C_r , y por la propiedad transitiva de la equivalencia de matrices, A y B son equivalentes, es decir, se verifica (ii). \square

4.5. Matrices asociadas a endomorfismos.

Sea V un espacio vectorial sobre \mathbb{K} tal que $\dim V = n$ y sea $f: V \longrightarrow V$ un endomorfismo en V. Si \mathcal{U} es una base de V, denotamos por $M_{\mathcal{U}}(f)$ a la matriz asociada a f cuando consideramos la misma base \mathcal{U} en los espacios inicial y final de f. Además, si \mathcal{U} y \mathcal{V} son bases distintas de V, se

tiene

$$M_{\mathcal{V}}(f) = P_{\mathcal{U}}^{\mathcal{V}} M_{\mathcal{U}}(f) P_{\mathcal{V}}^{\mathcal{U}} = P_{\mathcal{U}}^{\mathcal{V}} M_{\mathcal{U}}(f) \left(P_{\mathcal{U}}^{\mathcal{V}}\right)^{-1}. \tag{4.13}$$

DEFINICION 4.55 Dos matrices $A, B \in \mathcal{M}_{n \times n}(\mathbb{K})$ son **semejantes** si existe una matriz P regular tal que $A = PBP^{-1}$.

NOTA 4.56 De (4.13) se deduce que las matrices asociadas a un mismo endomorfismo en distintas bases son matrices semejantes.

PROPOSICION 4.57 Dos matrices $A, B \in \mathcal{M}_{n \times n}(\mathbb{K})$ son semejantes si, y solo si, existen un endomorfismo $f : \mathbb{K}^n \longrightarrow \mathbb{K}^n$ y dos bases \mathcal{U} y \mathcal{V} de \mathbb{K}^n tales que $A = M_{\mathcal{U}}(f)$ y $B = M_{\mathcal{V}}(f)$.

Demostración: La prueba es similar a la de la Proposición 4.52. □

PROPOSICION 4.58 Si $A, B \in \mathcal{M}_{n \times n}(\mathbb{K})$ son matrices semejantes, entonces $\det A = \det B$ y $\operatorname{tr}(A) = \operatorname{tr}(B)$.

Demostración: Si A y B son matrices semejantes, entonces existe una matriz regular P tal que $A = PBP^{-1}$. Entonces

$$\det A = (\det P) (\det B) (\det P^{-1}) = (\det P) (\det B) (\det P)^{-1} = \det B.$$

Por otra parte, dado que $\operatorname{tr}(CD) = \operatorname{tr}(DC)$, cualesquiera que sean las matrices C y D, se tiene

$$\operatorname{tr}(A) = \operatorname{tr}(PBP^{-1}) = \operatorname{tr}(P^{-1}PB) = \operatorname{tr}(B).$$

DEFINICION 4.59 Sea V un espacio vectorial sobre \mathbb{K} y sea $f:V\longrightarrow V$ un endomorfismo en V. Se define el **determinante** de f, $\det f$, como el determinante de la matriz asociada a f respecto de cualquier base de V. Del mismo modo se define la **traza** de f, $\operatorname{tr} f$.

EJEMPLO 4.60 Sea $f : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ tal que f(x,y) = (x+y,x-y). La matriz de f en la base canónica de \mathbb{R}^2 es

$$A = M_{Can(\mathbb{R}^2)}(f) = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}.$$

La matriz de f en la base $\mathcal{V} = \{(1,1),(2,0)\}$ es

$$B = M_{\mathcal{V}}(f) = \left(\begin{array}{cc} 0 & 2\\ 1 & 0 \end{array}\right).$$

Se verifica que $A = P_{\mathcal{V}}^{Can(\mathbb{R}^2)}BP_{Can(\mathbb{R}^2)}^{\mathcal{V}} = P_{\mathcal{V}}^{Can(\mathbb{R}^2)}B(P_{\mathcal{V}}^{Can(\mathbb{R}^2)})^{-1}$ donde $P_{\mathcal{V}}^{Can(\mathbb{R}^2)} = \begin{pmatrix} 1 & 2 \\ 1 & 0 \end{pmatrix}$ es una matriz regular. Por lo tanto, A y B son matrices semejantes. En este caso, $\det f = -2$ y $\operatorname{tr} f = 0$.

Subespacios invariantes de un endomorfismo.

DEFINICION 4.61 Dado un espacio vectorial V sobre \mathbb{K} y un endomorfismo $f:V\to V$, se dice que un subespacio W de V es invariante para f si $f(W)\subset W$.

EJEMPLO 4.62 Sea $f: \mathbb{R}^3 \to \mathbb{R}^3$ tal que f(x, y, z) = (-y, x, z). El plano z = 0 y el eje OZ son subespacios invariantes para f.

En efecto, sean $W_1=\{(x,y,0)\mid x,y\in\mathbb{R}\}$ y $W_2=\{(0,0,z)\mid z\in\mathbb{R}\}$. Se tiene que f(x,y,0)=(-y,x,0) para todo $x,y\in\mathbb{R}$, por lo que $f(W_1)\subset W_1$.

En el caso de W_2 , se tiene que f(0,0,z)=(0,0,z) para todo $z\in\mathbb{R}$, por lo que $f(W_2)\subset W_2$.

EJEMPLO 4.63 Para cualquier endomorfismo de V, los subespacios impropios de V son invariantes, ya que $f(\overrightarrow{0}) = \overrightarrow{0}$ y $f(V) \subset V$.

PROPOSICION 4.64 Sea V un espacio vectorial sobre \mathbb{K} y $f:V\to V$ un endomorfismo. Entonces, Ker f e Im f son subespacios invariantes para f.

Demostración: Por definición, para todo $\overrightarrow{u} \in \operatorname{Ker} f$, se tiene que $f(\overrightarrow{u}) = \overrightarrow{0}$ y, de acuerdo con la Proposición 4.7(i), $\overrightarrow{0} \in \operatorname{Ker} f$. Así pues, $f(\operatorname{Ker} f) \subset \operatorname{Ker} f$.

Por otra parte, puesto que $\operatorname{Im} f \subset V$, se tiene que $f(\operatorname{Im} f) \subset f(V) = \operatorname{Im} f$. \square

PROPOSICION 4.65 Sea V un espacio vectorial sobre \mathbb{K} y $f:V \to V$ un endomorfismo. Entonces, la intersección y la suma de subespacios invariantes para f son también subespacios invariantes.

Demostración: Sean W_1 y W_2 subespacios vectoriales de V que son invariantes para f. Si $\overrightarrow{u} \in W_1 \cap W_2$, entonces $\overrightarrow{u} \in W_1$ y $\overrightarrow{u} \in W_2$. Como W_1 y W_2 son invariantes para f, se tiene que $f(\overrightarrow{u}) \in W_1$ y $f(\overrightarrow{u}) \in W_2$, por lo que $f(\overrightarrow{u}) \in W_1 \cap W_2$. Así pues, $W_1 \cap W_2$ es invariante para f.

Sea ahora $\overrightarrow{u} = \overrightarrow{u}_1 + \overrightarrow{u}_2 \in W_1 + W_2$. Como f es lineal y W_1 y W_2 son invariantes para f, se tiene que $f(\overrightarrow{u}) = f(\overrightarrow{u}_1 + \overrightarrow{u}_2) = f(\overrightarrow{u}_1) + f(\overrightarrow{u}_2) \in W_1 + W_2$, lo que demuestra que $W_1 + W_2$ es invariante.

El razonamiento es similar si se consideran más de dos subespacios vectoriales.

PROPOSICION 4.66 Sea V un espacio vectorial sobre \mathbb{K} y $f:V\to V$ un endomorfismo. Si $V=W_1\oplus W_2\oplus \cdots \oplus W_p$, con W_i subespacio de V invariante para f para todo $i=1,\ldots,p$, entonces existe una base de V respecto de la cual la matriz asociada a f es diagonal por bloques.

Demostración: Supongamos que W_i es una base de W_i para todo $i=1,\ldots,p$. Dado que $V=W_1\oplus W_2\oplus \cdots \oplus W_p$, por el Corolario 2.83, se tiene que $V:=\bigcup_{i=1}^p \mathcal{W}_i$ es una base de V. Por ser W_i invariante para f, se tiene que $f(W_i)\subset W_i$, para todo $i=1,2,\ldots,p$, y por lo tanto, podemos considerar el endomorfismo $f\backslash_{W_i}:W_i\to W_i$. Si denotamos por A_i la matriz asociada a $f\backslash_{W_i}$ respecto de la base \mathcal{W}_i , para todo $i=1,2,\ldots,p$, obtenemos

$$\mathcal{M}_{\mathcal{V}}(f) = \begin{pmatrix} A_1 & O & \cdots & O \\ O & A_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & O \\ O & \cdots & O & A_p \end{pmatrix},$$

que es una matriz diagonal por bloques.

EJEMPLO 4.67 Consideremos el endomorfismo del Ejemplo 4.62, $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ tal que f(x,y,z)=(-y,x,z). Consideremos también los subespacios invariantes para f

$$W_1 = \{(x, y, 0) \mid x, y \in \mathbb{R}\} = \text{Env}(\{(1, 0, 0), (0, 1, 0)\})$$

y

$$W_2 = \{(0,0,z) \mid z \in \mathbb{R}\} = \text{Env}(\{(0,0,1)\}).$$

Dado que $W_1 + W_2 = \text{Env}(\{(1,0,0),(0,1,0),(0,0,1)\}) = \mathbb{R}^3$ y

$$\dim (W_1 + W_2) = \dim W_1 + \dim W_2,$$

se tiene que $\mathbb{R}^3 = W_1 \oplus W_2$.

Si consideramos la base canónica de \mathbb{R}^3 que es unión de las bases de W_1 y W_2 , se tiene

$$\mathcal{M}_{\mathcal{V}}\left(f
ight) = \left(egin{array}{c|cc|c} 0 & -1 & 0 \ 1 & 0 & 0 \ \hline 0 & 0 & 1 \end{array}
ight),$$

que es una matriz diagonal por bloques.

4.6. Problemas.

PROBLEMA 4.1 Estudia cuáles de las siguientes aplicaciones son lineales entre los espacios vectoriales dados:

1.
$$f_B: \mathcal{M}_{2\times 2}\left(\mathbb{R}\right) \to \mathcal{M}_{2\times 1}\left(\mathbb{R}\right)$$
 dada por $f_B\left(A\right) = AB$ con $B = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$.

2.
$$g_B: \mathcal{M}_{2\times 2}(\mathbb{R}) \to \mathcal{M}_{2\times 2}(\mathbb{R})$$
 dada por $g_B(A) = A + B$ con $B \in \mathcal{M}_{2\times 2}(\mathbb{R})$ fija.

3.
$$h_B: \mathcal{M}_{2\times 2}\left(\mathbb{R}\right) \to \mathcal{M}_{2\times 2}\left(\mathbb{R}\right)$$
 dada por $h_B\left(A\right) = AB - BA$ con $B = \begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix}$.

4.
$$S:\mathcal{M}_{n\times n}\left(\mathbb{C}\right)\to\mathcal{S}_{n}\left(\mathbb{C}\right)$$
 dada por $S\left(A\right)=\frac{1}{2}\left(A+A^{t}\right)$ donde $\mathcal{S}_{n}\left(\mathbb{C}\right)=\{A\in\mathcal{M}_{n\times n}\left(\mathbb{C}\right)\mid A=A^{t}\}.$

5.
$$R: \mathcal{M}_{n \times n}(\mathbb{R}) \to \mathcal{S}_n(\mathbb{R})$$
 dada por $R(A) = AA^t$.

6.
$$f: \mathbb{C}_n[x] \to \mathbb{C}_n[x]$$
 dada por $f(p(x)) = p(x+1)$.

7.
$$g: \mathbb{C}_n[x] \to \mathbb{C}_n[x]$$
 dada por $g(p(x)) = p(x) + 1$.

PROBLEMA 4.2 Sea $f: \mathbb{R}^3 \to \mathbb{R}^3$ dada por $f(x_1, x_2, x_3) = (x_1 + x_2, x_3, x_1 + x_3)$. Halla la imagen mediante f de los siguientes subespacios vectoriales de \mathbb{R}^3 , indicando en cada caso la dimensión del subespacio y la de su imagen:

1.
$$V_1 = \{(x_1, x_2, x_3) \in \mathbb{R}^3 \mid x_1 + x_2 + x_3 = 0\}$$
.

2.
$$V_2 = \{(x_1, x_2, 0) \in \mathbb{R}^3 \mid x_1, x_2 \in \mathbb{R}\}$$
.

3.
$$V_3 = \{(x_1, x_2, x_3) = t(1, -1, 1) \mid t \in \mathbb{R}\}.$$

PROBLEMA 4.3 Encuentra las matrices de las siguientes aplicaciones lineales con respecto a las bases canónicas de los espacios vectoriales dados:

1. f_B y h_B del Problema 4.1.

2.
$$f: \mathbb{R}_2[x] \to \mathbb{R}^4$$
 dada por $f(p(x)) = (p(0), p(1), p(2), p(3))$.

3.
$$f: \mathbb{C}_3[x] \to \mathbb{C}_3[x]$$
 dada por $f(p(x)) = p(x+1)$.

PROBLEMA 4.4 Respecto de la base canónica en \mathbb{R}^3 , halla las matrices de las siguientes aplicaciones lineales:

29

- **1.** Simetría con respecto a la recta x = 0, y = 0.
- 2. Simetría con respecto a la recta $x=y,\,z=0.$
- 3. Proyección sobre el plano x y + z = 0.

4. Simetría con respecto a la recta (x, y, z) = t (1, 1, 1).

PROBLEMA 4.5 Sabiendo que la aplicación f lleva los vectores

$$\overrightarrow{u}_1 = (1,0,0), \qquad \overrightarrow{u}_2 = (1,1,0), \qquad \overrightarrow{u}_3 = (1,1,1)$$

de \mathbb{R}^3 en los vectores

$$\overrightarrow{w}_1 = (2, 1, 2), \qquad \overrightarrow{w}_2 = (3, 1, 2), \qquad \overrightarrow{w}_3 = (6, 2, 3)$$

respectivamente, encuentra la matriz de f en las siguientes bases:

- **1.** La base canónica de \mathbb{R}^3 .
- **2.** La base $\{\overrightarrow{u}_1, \overrightarrow{u}_2, \overrightarrow{u}_3\}$.

PROBLEMA 4.6 Encuentra las ecuaciones de las siguientes aplicaciones lineales realizando cambios de base adecuados:

- **1.** Simetría con respecto a la recta (x, y, z) = t(1, 1, 1).
- **2.** Proyección sobre el plano x y + z = 0.
- **3.** Giro de 90° con respecto a la recta x + y = 0, z = 0.

PROBLEMA 4.7 Sea $f: \mathbb{R}_3[x] \to \mathbb{R}_3[x]$ tal que $f(1) = x^2 + 1$, f(x) = -x, $f(x^2) = x^3$ y $f(x^3) = x^2 + x - 1$. Calcula $f(x^2 + 2x + 1)$ y $f((x - 2)^2 + x^3)$. Encuentra la matriz de f con respecto a la base $\{1, x, x^2, x^3\}$ de $\mathbb{R}_3[x]$.

PROBLEMA 4.8 Sea $f: \mathbb{R}^3 \rightarrow \mathbb{R}^3$ la aplicación lineal definida por

$$f(x, y, z) = (-x - 2z, x + 2y, -y + z).$$

- 1. Hallar la matriz asociada a f respecto de la base canónica.
- **2.** Calcular el núcleo y la imagen de f y una base para cada uno de estos subespacios.
- **3.** Hallar la matriz de f respecto de las bases

$$\mathcal{B} = \{(1, 1, 0), (1, 0, 1), (0, 1, 1)\}\ y\ \mathcal{B}' = \{(-1, 2, 0), (0, 1, 0), (1, -1, 1)\}$$

en los espacios inicial y final, respectivamente.

4. Si (2,3,0) son las coordenadas de un vector \overrightarrow{v} en la base \mathcal{B} , calcular las coordenadas de $f(\overrightarrow{v})$ en la base canónica.

PROBLEMA 4.9 Sea la matriz

$$A = \left(\begin{array}{ccc} 0 & -6 & -4 \\ -1 & -11 & -7 \end{array}\right)$$

30

y las bases

$$\mathcal{B}_1 = \{(1,0,-1),(2,1,0),(0,1,1)\}\ \ y\ \mathcal{B}_2 = \{(-2,1),(1,-1)\}$$

de \mathbb{R}^3 y \mathbb{R}^2 , respectivamente. Sea $f: \mathbb{R}^3 \to \mathbb{R}^2$ la aplicación lineal que tiene como matriz asociada respecto de las bases \mathcal{B}_1 y \mathcal{B}_2 a la matriz A. Se pide:

- **1.** Halla la matriz asociada a f respecto de las bases canónicas de \mathbb{R}^3 y \mathbb{R}^2 .
- **2.** Da una expresión general para f.
- **3.** Calcula el núcleo y la imagen de f y una base para cada uno de estos subespacios.
- **4.** Clasifica la aplicación f.

PROBLEMA 4.10 Considérese $f: \mathbb{R}^3 \to \mathbb{R}^3$ consistente en la composición de un giro de 90^o alrededor del eje OX con una simetría respecto del plano x=0.

- **1.** Hallar la matriz de f referida a la base canónica $\{\overrightarrow{e_1}, \overrightarrow{e_2}, \overrightarrow{e_3}\}$ de \mathbb{R}^3 .
- **2.** Idem respecto de la base $\{\overrightarrow{e_1}, \overrightarrow{e_2}, \overrightarrow{e_1} + \overrightarrow{e_3}\}$.

PROBLEMA 4.11 Sea $f: \mathbb{R}^2 \to \mathbb{R}^4$ una aplicación lineal tal que

$$f(3,-5) = (1,1,1,1)$$
 $f(-1,2) = (2,1,0,-2)$

- **1.** Hallar la matriz asociada a f respecto de las bases canónicas de \mathbb{R}^2 y \mathbb{R}^4 .
- **2.** Hallar la expresión general de la aplicación f.
- 3. Determinar el subespacio imagen de la aplicación lineal f y su dimensión.
- **4.** Clasificar la aplicación f.

PROBLEMA 4.12 Dados dos espacios vectoriales reales E_3 y E_3' , se define una aplicación lineal $f: E_3 \to E_3'$ de manera que $f(\overrightarrow{u}_1) = \overrightarrow{v}_1 - \overrightarrow{v}_2$, $f(\overrightarrow{u}_2) = \overrightarrow{v}_2$ y $f(\overrightarrow{u}_3) = \overrightarrow{v}_1$, siendo $\mathcal{B} = \{\overrightarrow{u}_1, \overrightarrow{u}_2, \overrightarrow{u}_3\}$ y $\mathcal{B}' = \{\overrightarrow{v}_1, \overrightarrow{v}_2, \overrightarrow{v}_3\}$ bases de E_3 y E_3' , respectivamente. Se pide:

- **1.** Matriz asociada a f respecto de las bases \mathcal{B} y \mathcal{B}' .
- **2.** Dimensión de img f.
- **3.** Una base de ker f.
- **4.** Si en E_3 se considera una nueva base $\mathcal{B}_1 = \{\overrightarrow{u}_1', \overrightarrow{u}_2', \overrightarrow{u}_3'\}$ donde $\overrightarrow{u}_1 = \overrightarrow{u}_1', \overrightarrow{u}_2 = \overrightarrow{u}_1' + \overrightarrow{u}_2'$ y $\overrightarrow{u}_3 = \overrightarrow{u}_1' + \overrightarrow{u}_3'$, calcular la matriz asociada a f respecto de las bases \mathcal{B}_1 y \mathcal{B}' .
- **5.** Si en E_3' se hace el cambio de coordenadas $x_1' = x_1 + x_2 x_3$, $x_2' = x_1 x_2$ y $x_3' = x_3$, donde (x_1, x_2, x_3) son las coordenadas en la base \mathcal{B}' de cualquier vector $\overrightarrow{x} \in E_3'$ y (x_1', x_2', x_3') son las

coordenadas del mismo vector \overrightarrow{x} en una nueva base \mathcal{B}'_1 de E'_3 , calcular la matriz asociada a f respecto de las bases \mathcal{B} y \mathcal{B}'_1 .

6. Obtener la matriz asociada a f respecto de las bases \mathcal{B}_1 y \mathcal{B}'_1 .

PROBLEMA 4.13 En el espacio vectorial, $\mathbb{R}_3[x]$, de los polinomios en una variable, x, con coeficientes reales de grado menor o igual que 3, se considera la aplicación $f: \mathbb{R}_3[x] \to \mathbb{R}_3[x]$ dada por

$$f(p) = p(x+1) + p(x)$$
.

Se pide:

- **1.** Demuestra que f es una aplicación lineal.
- **2.** Determina la matriz asociada a f respecto de la base $\mathcal{B} = \{1, x, x^2, x^3\}$ de \mathbb{R}_3 [x].
- **3.** Clasifica la aplicación f.
- **4.** Determina, si existe, el polinomio $p \in \mathbb{R}_3[x]$ tal que $f(p) = 2 + x + x^2 + 2x^3$.

PROBLEMA 4.14 Sea $M_2(\mathbb{R})$ el espacio vectorial de las matrices cuadradas de orden 2 con elementos en \mathbb{R} y sea

$$\mathcal{B} = \left\{ \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right), \left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array} \right) \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right) \right\}.$$

Se pide:

- **1.** Demuestra que las matrices de \mathcal{B} son linealmente independientes.
- **2.** Sea $N_2(\mathbb{R})$ el subespacio generado por \mathcal{B} . Demuestra que las matrices pertenecientes a $N_2(\mathbb{R})$ son de la forma

$$\begin{pmatrix} a & b+c \\ b-c & a \end{pmatrix}$$
,

con $a, b, c \in \mathbb{R}$.

3. Sea $f: N_2(\mathbb{R}) \to M_2(\mathbb{R})$ la aplicación lineal definida por

$$f\left(\left(\begin{array}{cc}a&b+c\\b-c&a\end{array}\right)\right)=\left(\begin{array}{cc}0&2b+c\\-2b+c&0\end{array}\right).$$

Calcula la matriz asociada a f respecto de las bases \mathcal{B} y \mathcal{C} , donde $\mathcal{C} = \operatorname{Can}(M_2(\mathbb{R})) = \{E_{11}, E_{12}, E_{21}, E_{22}\}$ representa la base canónica de $M_2(\mathbb{R})$.

4. Calcula el núcleo y la imagen de f.

PROBLEMA 4.15 En \mathbb{R}^4 consideramos los subespacios

$$W_1 = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 \mid x_1 - x_3 = 0, x_2 + x_4 = 0\}$$

32

y

$$W_2 = \left\{ (x_1, x_2, x_3, x_4) \in \mathbb{R}^4 \mid x_1 - x_2 = 0, \ x_3 - x_4 = 0 \right\},$$
 y el endomorfismo $f: \mathbb{R}^4 \to \mathbb{R}^4$ tal que
$$f\left(x_1, x_2, x_3, x_4\right) = \frac{1}{2} \left(3x_1 + x_2 - x_3 - x_4, 4x_1 - 2x_3, -2x_1 + 4x_3 - 2x_4, -3x_1 + x_2 + x_3 + x_4\right).$$
 Se pide:

- **1.** Demostrar que W_1 y W_2 son subespacios invariantes para f.
- 2. Encontrar una base de W_1+W_2 y otra de $W_1\cap W_2$.
- 3. Encontrar una base de \mathbb{R}^4 respecto de la cual la matriz asociada a f sea diagonal a trozos.