Question (Marks) (20 min)

Consider a robotic system described by:

$$M(q)\ddot{q} + V(q,\dot{q}) + G(q) = \tau$$

- (a) Design a nonlinear controller such that the manipulator has constant stiffness and damping throughout its workspace. (Marks).
- (b) State one advantage and one disadvantage of your design (Marks).
- (c) Assume you want to control the robot such that its joints follow certain trajectories. For joint 1, the constraints are:

$$\theta_{10} = 10^0$$

$$\theta_{1tf} = 50^{\circ}$$

All start and ending velocities and accelerations are zero.

The end time is 2 seconds.

Calculate the parameters of a quintic polynomial which can satisfy all the given constraints (Marks).

(a)
$$M(q)\ddot{q} + V(q, \ddot{q}) + G(q) = Z$$

Design $Z = M(q)f + V(q, \ddot{q}) + G(q) + F(q, \ddot{q})$

where $f = \ddot{q}\ddot{a} + K_{\nu}\ddot{E} + K_{\nu}E$
 $Kv \& k_{\Gamma} \text{ shall be diagonal}$. (2 Mins)

(c)
$$u(t) = a_0 + a_1t + a_2t^2 + a_3t^3 + a_4t^4 + a_5t^5$$

where $a_0 = u_0 = 10^\circ$ $a_{3} = \frac{20ut - 20u_0 - (8uf + 12u_0) + f}{2 + f^3}$
 $a_1 = \frac{u_0}{2} = 0$
 $a_2 = \frac{u_0}{2} = 0$
 $a_3 = \frac{20(50^\circ) - 20(10^\circ) - 0}{2(2)^3} = \frac{50}{2}$

$$a_{4} = \frac{30u_{0}-30u_{1}+(14u_{1}+18u_{0})_{+f}+(3u_{0}^{*}-2u_{1}^{*})_{+f}^{*}}{2+4^{*}}$$

$$= \frac{30(10) - 30(50) + 0}{2(2)^{+}} = -37.5$$

$$q_{5} = \frac{12u_{5} - 12u_{0} - (6u_{5} + 6u_{0}) + 4 - (u_{0} - u_{5}) + 4^{2}}{2 + 4^{5}}$$

$$= \frac{12(50) - 12(6)}{2} - 0$$

$$\frac{12(50)-12(16)-0}{2(2)^{5}}=\frac{7.5}{}$$

here:
$$U(t) = 10 + 50 + 37.5 + 47.5 + 5$$
 (7 m/4)

Sample for Trajectory Planning

Question (5 Marks)

A robot joint is required to move from $q1 = 30^{\circ}$ to $q2 = 80^{\circ}$ in 5 seconds. Additional requirements include zero velocity and zero acceleration at the start and at the end of the motion.

- (a) Calculate the parameters of a quintic polynomial, which would be able to achieve all the requirements. Show your work out, not just the final answer. (2-marks)
- (b) If the robot is required to pass through a via point $q_{via} = 100$ at t = 3 seconds during the motion from q1 to q2, with the velocity at the via point as 2 degrees/second, and accelerations as 0 degrees/second², what are the two quintic polynomials for the portion q1 \rightarrow q_{via}, and q_{via} \rightarrow q2? (3 marks)

-) a) Qu	intic polynomial:
	ult) = ao + ait + ait + ait + art + art
	ao = Uo = 10
	9, = 0
	ac=6
7	$a_3 = 20(80) - 20(30) = 4$
	$2(5^{3})$ $2x = 30(30) - 30(80) = -1.2$
	2(5*)
	ar = 12(80) - 12(70) = 0.096.
	2 (55)
71	7 12 Y 21 4 5
lum -	U(t) = 30 + 4t3 - 1.2t + 0.091t5
	(max 3 mins)
	[MAK SANIN]
h) 1st	potion:
	U = 30
	Uf = Una = 100
-	űo = 0
	Úvia = 2
	uo = 0 uo = 0 tf=3
Then	$ao = U_0 = 30$
<u> </u>	$a_1 = u_0 = 0 \tag{3 mins}$
	$a_2 = \frac{1}{\sqrt{3}} \left(\frac{1}{2} = 0 \right)$
	0.00000000000000000000000000000000000
	$a_3 = 20(100) - 20(10) - (8x2 + 12x0) \frac{3}{3} - (3x0 - 0) \frac{3}{2}$
	$\frac{2(3)^{3}}{2(400-48)} = 25.07$