AMENDMENTS

Kindly amend the claims as follows:

Claims 1 - 10 (Cancelled)

(Previously presented) A method for providing sedation, mitigating anxiety or 11. providing anaesthesia in a subject in need thereof, comprising administering to the subject an effective amount of a therapeutic compound, wherein said therapeutic compound is of the formula (Ia):

F² is a nitrate group or an organic radical which may be joined in a cyclic ring system with G², and which may contain inorganic counterions;

E is a methylene group;

G¹ is a methylene group or does not exist;

F¹ is H; and

G² is R^N-Z^N; wherein R^N is an organic radical possessing a heteroaryl group containing a P or S atom, where said P or S is positioned β , γ , or δ to a nitrate group; and Z^{N} is $W^{N}_{mm}-X^{N}_{nn}-Y^{N}_{oo}$; wherein

mm, nn, oo are 0 or 1 and W^N, X^N, Y^N are NH, NR^{NN}, CO, O, or CH₂; wherein R^{NN} is a $C_1 - C_{12}$ alkyl group.

(Cancelled) 12.

13 (Previously presented) A method for providing sedation, mitigating anxiety or providing anaesthesia in a subject in need thereof, comprising administering to said subject an effective amount of a therapeutic compound, wherein said therapeutic compound is of the formula (Ic):

E is $(R^1R^2C)_m$ and $G^2-G^1-CF^1F^2$ is $R^{19}-(R^3R^4C)_p-(R^{17}R^{18}C)_n$; wherein each of m, n, and p is an integer from 0 to 10;

R^{3,17} are each independently hydrogen, a nitrate group, or A; and R^{1,4} are each independently hydrogen, or A;

where A is selected from a substituted or unsubstituted aliphatic group comprising a branched or straight-chain aliphatic moiety having from 1 to 24 carbon atoms in the chain, which optionally may contain O, S, NR⁶, or an unsaturation in the chain, optionally bearing from 1 to 4 hydroxy, nitrate, amino, aryl, or heterocyclic groups; an unsubstituted or substituted cyclic aliphatic moiety having from 3 to 7 carbon atoms in the aliphatic ring, which optionally may contain O, S, NR⁶, or an unsaturation in the ring, optionally bearing from 1 to 4 hydroxy, nitrate, amino, aryl, or heterocyclic groups; an unsubstituted or substituted aliphatic moiety constituting a linkage of from 0 to 5 carbons, between R¹ and R³ and/or between R¹⁷ and R⁴, which optionally may contain O, S, NR⁶, or an unsaturation in the linkage, and optionally bearing from 1 to 4 hydroxy, nitrate, amino, aryl, or heterocyclic groups; a substituted or unsubstituted aliphatic group comprising a branched, cyclic or straight-chain aliphatic moiety having from 1 to 24 carbon atoms in

the chain, containing linkages selected from the group consisting of C=O, C=S, and C=NOH, which optionally may contain O, S, NR⁶, or an unsaturation in the chain, optionally bearing from 1 to 4 hydroxy, nitrate, amino, aryl, or heterocyclic groups; a substituted or unsubstituted aryl group; a substituted or unsubstituted heterocyclic group; an amino group selected from alkylamino, dialkylamino, cyclic amino, diamino, triamino, arylamino, diarylamino, and alkylarylamino moieties; hydroxy; alkoxy; and a substituted or unsubstituted aryloxy; wherein

X is F, Br, Cl, NO₂, CH₂, CF₂, O, NH, NMe, CN, NHOH, N₂H₃, N₂H₂R¹³, N₂HR¹³R¹⁴, N₃, S, SCN, SCN₂H₂(R¹⁵)₂, SCN₂H₃(R¹⁵), SC(O)N(R¹⁵)₂, SC(O)NHR¹⁵, SO₃M, SH, SR⁷, SO₂M, S(O)R⁸, S(O)₂R⁹, S(O)OR⁸, S(O)₂OR⁹, PO₂HM, PO₃HM, PO₃M₂, P(O)(OR¹⁵)(OR¹⁶), P(O)(OR¹⁶)(OM), P(O)(R¹⁵)(OR⁸), P(O)(OM)R¹⁵, CO₂M, CO₂H, CO₂R¹¹, C(O), C(O)R¹², C(O)(OR¹³), PO₂H, PO₂M, P(O)(OR¹⁴), P(O)(R¹³), SO, SO₂, C(O)(SR¹³), SR⁵, SSR⁷ or SSR⁵;

Y is F, Br, Cl, CH₃, CF₂H, CF₃, OH, NH₂, NHR⁶, NR⁶R⁷, CN, NHOH, N₂H₃, N₂H₂R¹³, N₂HR¹³R¹⁴, N₃, S, SCN, SCN₂H₂(R¹⁵)₂, SCN₂H₃(R¹⁵), SC(O)N(R¹⁵)₂, SC(O)NHR¹⁵, SO₃M, SH, SR⁷, SO₂M, S(O)R⁸, S(O)₂R⁹, S(O)OR⁸, S(O)₂OR⁹, PO₂HM, PO₃M₂, P(O)(OR¹⁵)(OR¹⁶), P(O)(OR¹⁶)(OM), P(O)(R¹⁵)(OR⁸), P(O)(OM)R¹⁵, CO₂M, CO₂H, CO₂R¹¹, C(O)R¹², C(O)(OR¹³), C(O)(SR¹³), SR⁵, SSR⁷ or SSR⁵, or does not exist; each of R², R⁵, R¹⁸, and R¹⁹ is, independently, hydrogen, A, or X-Y;

each of R^6 , R^7 , R^8 , R^9 , R^{11} , R^{12} , R^{13} , R^{14} , R^{15} , R^{16} is, independently, an alkyl or acyl group containing 1-24 carbon atoms, which may contain 1-4 ONO₂ substituents; a C_1 - C_6 connection to R^1 – R^4 in a cyclic derivative, which may contain 1-4 ONO₂ substituents; a hydrogen, a nitrate group, or A;

M is H, Na⁺, K⁺, NH₄⁺, or N⁺H_kR¹¹_(4-k), where k is 0-3; or other pharmaceutically acceptable counterion;

and with the proviso that when m = n = p = 1 and R^{19} , R^2 , R^{18} , $R^1 = H$ and R^{17} , R^3 are nitrate groups, R^4 is not H.

14. (Previously presented) The method of claim 11, wherein F^2 is a nitrate group; with the proviso that when E and G^1 are methylene groups and F^1 is H, G^2 is not R^N - Z^N ; wherein

 R^N is any aryl or heteroaryl group and Z^N is $(CO)_{mm}$ - X^N_{nn} - Y^N_{oo} ; wherein mm, nn, oo are 0 or 1 and X^N , Y^N are NH, NR^{NN} , O or CH_2 ; wherein R^{NN} is a $C_1 - C_{12}$ alkyl group.

15. (Previously presented) The method of claim 11, wherein F^2 is a nitrate group; E and G^1 are methylene groups; F^1 is H; and G^2 is R^N - Z^N ; wherein

 R^N is an organic radical possessing an heteroaryl group containing P or S atoms where said P or S are positioned β , γ , or δ to a nitrate group as identified in formula Ia; and Z^N is $W^N_{mm}-X^N_{nn}-Y^N_{oo}$; wherein

mm, nn, oo are 0 or 1 and W^N , X^N , Y^N are NH, NR^{NN} , CO, O or CH₂; wherein R^{NN} is a C_1-C_{12} alkyl group.

- 16. (Original) The method of claim 13, wherein R¹⁹ is X-Y.
- 17. (Previously presented) The method of claim 16, wherein:

 R^1 and R^3 are the same or different and selected from H and C_1 - C_4 , alkyl chains, which chains may include one O linking R^1 and R^3 to form pentosyl, hexosyl, cyclopentyl, or cyclohexyl rings, which rings may optionally bear hydroxyl substituents;

 R^2 and R^4 are the same or different and selected from H, a nitrate group, a C_1 - C_4 alkyl chain, optionally bearing 1-3 nitrate groups, and an acyl group (-C(O) R^5);

 R^7 and R^{11} are the same or different C_1-C_8 alkyl or C_1-C_8 acyl; each of R^5 , R^6 , R^8 , R^9 , R^{12} , R^{13} , R^{14} , R^{15} , R^{16} is, independently, an alkyl group containing 1-12 carbon atoms, which may contain 1-4 ONO₂ substituents; or a C_1 or C_2

connection to R^1 - R^3 in a cyclic derivative; and M is H, Na^+ , K^+ , NH_4^+ or $N^+H_kR^{11}_{(4-k)}$, where k is 0-3.

- 18. (Original) The method of claim 17, wherein m = 1, n = 0, p=1.
- 19. (Previously presented) The method of claim 18, wherein:

X is CH₂, O, NH, NMe, CN, NHOH, N₂H₃, N₂H₂R¹³, N₂HR¹³R¹⁴, N₃, S, SCN, SCN₂H₂(R¹⁵)₂, SCN₂H₃(R¹⁵), SC(O)N(R¹⁵)₂, SC(O)NHR¹⁵, SO₃M, SH, SR⁷, SO₂M, S(O)R⁸, S(O)₂R⁹, S(O)OR⁸, S(O)₂OR⁹, PO₃HM, PO₃M₂, P(O)(OR¹⁵)(OR¹⁶), P(O)(OR¹⁶)(OM), P(O)(R¹⁵)(OR⁸), P(O)(OM)R¹⁵, CO₂M, CO₂H, CO₂R¹¹, C(O), C(O)R¹², C(O)(OR¹³), PO₂M, P(O)(OR¹⁴), P(O)(R¹³), SO, SO₂, C(O)(SR¹³), or SSR⁵; and Y is CN, N₂H₂R¹³, N₂HR¹³R¹⁴, N₃, SCN, SCN₂H₂(R¹⁵)₂, SC(O)N(R¹⁵)₂, SC(O)NHR¹⁵, SO₃M, SR⁴, SO₂M, PO₃HM, PO₃M₂, P(O)(OR¹⁵)(OR¹⁶), P(O)(OR¹⁶)(OM), P(O)(R¹⁵)(OR⁸), P(O)(OM)R¹⁵, CO₂M, CO₂H, CO₂R¹¹, C(O)R¹², C(O)(SR¹³), SR⁵, or SSR⁵, or does not exist.

20. (Previously presented) The method of claim 18, wherein:

each of R^5 , R^6 , R^8 , R^9 , R^{12} , R^{13} , R^{14} , R^{15} , R^{16} is, independently, an alkyl group containing 1-12 carbon atoms, which may contain 1-4 ONO₂ substituents; or a C_1 or C_2 connection to R^1 - R^3 in a cyclic derivative

X is CH₂, O, NH, NMe, S, SO₃M, SH, SR⁷, SO₂M, S(O)R⁸, S(O)₂R⁹, S(O)OR⁸, S(O)₂OR⁹, PO₃M₂, P(O)(OR¹⁵)(OR¹⁶), P(O)(OR¹⁶)(OM), P(O)(R¹⁵)(OR⁸), PO₃HM or P(O)(OM)R¹⁵; and

Y is SO_2M , SO_3M , PO_3HM , PO_3M_2 , $P(O)(OR^{15})(OR^{16})$, $P(O)(OR^{16})(OM)$, SR^5 , SSR^7 or SSR^5 , or does not exist.

21. (Cancelled)

22. (Original) The method of claim 13, with the proviso that when m = n = p = 1 and R^{19} , R^2 , R^{18} , $R^1 = H$ and R^{17} , R^3 are nitrate groups, R^4 is not $C_1 - C_3$ alkyl.

23. (Cancelled)

- 24. (Previously presented) The method of any one of claims 11, 13, 14 or 15, further comprising administering said therapeutic compound with a pharmaceutically acceptable vehicle.
- 25. (Cancelled)
- 26. (Previously presented) The method of any one of claims 11, 13, 14, or 15, wherein said therapeutic compound modulates levels of the cyclic nucleotides cGMP and/or cAMP in said subject.
- 27. (Cancelled)
- 28. (Previously presented) The method of any one of claims 11, 13, 14, or 15, wherein said therapeutic compound modulates guanylyl cyclase activity in said subject.

Claims 29-32 (Cancelled)

33. (Previously presented) A method of providing sedation or mitigating anxiety in a subject in need thereof, comprising administering to the subject an effective amount of a therapeutic compound selected from the group consisting of:

$$OCF_2CF_2H$$
 ONO_2
 ONO_2 IIIc,

$$O_2NO$$
ONO₂
IIId,

$$O_2NO$$
 O_2NO
 ONO_2
IIIf,

$$O_2NO$$
 O_2NO
 O_2NO

$$O_2NO$$
 IIIi,

$$\operatorname{\mathsf{Br}}$$
 $\operatorname{\mathsf{O}_2\mathsf{NO}}$ $\operatorname{\mathsf{ONO}_2}$ $\operatorname{\mathsf{III}}$ \mathbf{j} ,

$$O_2NO$$
 N
 SO_3H
 $IIIz$,

$$O_2NO$$
 SO_3H ONO_2 IIIab,

$$\bigcap_{\mathsf{ONO}_2}^{\mathsf{O}} \bigcap_{\mathsf{ONO}_2}^{\mathsf{ONO}_2}$$

$$O_2N$$
 ONO₂ IIIah,

$$O_2NO$$
 S_2O_3Na
 ONO_2
IIIai,

34. (Previously presented) The method of claim 33, wherein said compound has the formula IIIt:

35. (Previously presented) The method of claim 33, wherein said compound has the formula IIIf:

36. (Previously presented) A method of providing sedation or mitigating anxiety in a subject in need thereof, comprising administering to said subject an effective amount of a therapeutic compound selected from the group consisting of:

$$S_2O_3Na$$
 ONO_2 IVe,

$$O_2NO$$
 IVg,

$$O_2$$
NO IVh,

$$\begin{array}{c|c} O & & & & & \\ \hline & S & & & & \\ \hline & ONO_2 & & & ONO_2 & \\ \hline & ONO_2 & & & ONO_2 & \\ \hline \end{array}$$

$$\bigcap_{O_2NO} \bigcap_{S} \bigcap_{ONO_2} \bigcap_{IVq,}$$

37. (Previously presented) A method of providing sedation in a subject in need thereof, comprising administering to said subject an effective amount of a therapeutic compound having the formula IVk:

38. (Previously presented) A method of mitigating anxiety in a subject in need thereof, comprising administering to the subject an effective amount of a therapeutic compound selected from the group consisting of:

Va,

$$--$$
ONO $_2$ Vi,

$$S-S$$
 ONO_2
 Vj ,
 CO_2NO
 $S-S$
 NH_2
 Vk ,
 ONO_2

$$O_2NO$$
 O_2NO
 O_2N

-ONO₂

Vw,

39. (Previously presented) The method of claim 38, wherein said compound has the formula Va:

$$S-S$$
 ONO_2
 ONO_2
 ONO_2

40. (Previously presented) A method of mitigating anxiety in a subject in need thereof, comprising administering to said subject an effective amount of a therapeutic compound having the formula IVr:

41. (Previously presented) The method of claim 11, wherein

G² is not R^N-Z^N; wherein

 R^N is any aryl or heteroaryl group and Z^N is $(CO)_{mm}$ - X^N_{nn} - Y^N_{oo} ; wherein mm, nn, oo are 0 or 1 and X^N , Y^N are NH, NR^{NN} , O or CH_2 ; wherein

$$R^{NN}$$
 is a $C_1 - C_{12}$ alkyl group.

- 42. (Cancelled)
- 43. (Currently amended) The method of claim 16, wherein | X and/or Y contains a sulfur-containing functional group |

 $X \text{ is } CH_2, CF_2, O, NH, NMe, S, SCN, SCN_2H_2(R^{15})_2, SCN_2H_3(R^{15}), SC(O)N(R^{15})_2,$ $SC(O)NHR^{15}, SO_3M, SH, SR^7, SO_2M, S(O)R^8, S(O)_2R^9, S(O)OR^8, S(O)_2OR^9, C(O), SO,$ $SO_2, C(O)(SR^{13}), SR^5, SSR^7 \text{ or } SSR^5; \text{ and}$ $\underline{Y \text{ is SCN, SCN}_2H_2(R^{15})_2, SCN}_2H_3(R^{15}), SC(O)N(R^{15})_2, SC(O)NHR^{15}, SO_3M, SH, \\ \underline{SR^7, SO_2M, S(O)R^8, S(O)_2R^9, S(O)OR^8, S(O)_2OR^9, C(O)(SR^{13}), SR^5, SSR^7 \text{ or } SSR^5, \text{ or} \\ \underline{does \text{ not exist.}}$