Feuille d'exercices 17 : Polynômes

Dans toute la suite, \mathbb{K} désigne l'ensemble \mathbb{R} ou \mathbb{C}

Ensemble $\mathbb{K}[X]$ 1

Exercice 1. Soit $n \in \mathbb{N}^*$, on pose $P_n = (X^2 + 1)^{2n} - (X^2 - 1)^{2n}$.

Déterminer le degré de P_n et son coefficient dominant.

Exercice 2. Déterminer l'ensemble des $P \in \mathbb{K}[X]$ tels que :

$$P(X^2) = (X^2 + 1)P(X).$$

Exercice 3. Déterminer tous les polynômes $P \in \mathbb{R}[X]$ de degré 3 tels que $P(X+1) - P(X-1) = X^2 + 1$.

Exercice 4.

Soit $n \ge 1$. Soit P un polynôme de degré n.

Déterminer le degré des polynômes $Q = X^2P' + P$ et R = XP' + P.

2 Divisibilité

Exercice 5.

Soit $n \in \mathbb{N}$, montrer que :

$$X^{2}|(X+1)^{n} - nX - 1.$$

Exercice 6. Effectuer la division euclidienne de A par B avec :

1.
$$A = 4X^5 - 2X^4 + 3X^3 + 2X^2 - X + 5$$
 et $B = X^2 + X + 1$.

2.
$$A = iX^3 - X^2 + 1 - i$$
, $B = (1+i)X^2 - iX + 3$.

Exercice 7. Effectuer la division euclidienne de A par B avec :

1.
$$A = 3X^6 - 2X^5 + X^3 - X^2 + 2X + 1$$
 et $B = 2X^3 + 3X - 1$.
2. $A = X^3 - iX^2 - X$, $B = X - 1 + i$,

$$A = X^3 - iX^2 - X$$
 $B = X - 1 + i$

Exercice 8. Soient $n \in \mathbb{N}$, $p \in \mathbb{N}^*$, q et r le quotient et le reste de la division euclidienne de n par p et soit $a \in \mathbb{K}^*$.

- 1. Montrer que le reste de la division euclidienne de X^n par $X^p a$ est $a^q X^r$.
- Calculer le reste de la division euclidienne de Xⁿ aⁿ par X^p a^p.
 Calculer le reste de la division euclidienne de X¹² + 8X¹¹ + 5X⁶ 3X⁴ + X² 5 par X³ 1.

Exercice 9. Déterminer le reste de la division de :

$$A = (\cos a + X \sin a)^n \quad \text{par} \quad B = X^2 + 1.$$

Exercice 10. Montrer que pour tout $P \in \mathbb{K}[X]$, P - X divise $P \circ P - X$.

En déduire les solutions $x \in \mathbb{R}$ de :

$$(x^2 - 3x + 1)^2 = 3x^2 - 8x + 2.$$

3 Dérivation dans $\mathbb{K}[X]$

1. Déterminer tous les polynômes $P \in \mathbb{C}[X]$ tels que $P'(X)^2 = 4P(X)$.

2. Déterminer tous les $P \in \mathbb{C}[X]$ vérifiant la relation : $(X^2 + 1)P'' - 6P(X) = 0$.

Exercice 12. Déterminer tous les polynômes P tels que :

$$P(2) = 6, P'(2) = 1, P''(2) = 4,$$

$$\forall n > 3, P^{(n)}(2) = 0.$$

Exercice 13. Pour tout $n \in \mathbb{N}$ et $x \in \mathbb{R}$, on pose :

$$L_n(X) = \frac{1}{2^n n!} P_n^{(n)}$$
 où $P_n = (X^2 - 1)^n$.

- 1. Déterminer le degré et le coefficient dominant de L_n .
- 2. Calculer $L_n(1)$ et $L_n(-1)$.

4 Racines

Exercice 14.

Soit $n \in \mathbb{N}^*$, montrer que :

$$X^{2} - 3X + 2|(X - 2)^{2n} + (X - 1)^{n} - 1.$$

Exercice 15 (d'après Petites Mines).

- 1. Factoriser dans $\mathbb{C}[X]$ le polynôme $Q = X^2 + X + 1$.
- 2. Soient m, n, p trois entiers naturels. Démontrer que Q divise $X^{3m+2} + X^{3n+1} + X^{3p}$.
- 3. Pour quelles valeurs de $n \in \mathbb{N}$ le polynôme $(X+1)^n + X^n + 1$ est-il divisible par Q?

Exercice 16. Montrer que la fonction sinus n'est pas polynomiale.

Exercice 17. (Polynômes de Tchebychev)

On définit une suite de polynômes par :

$$T_0 = 1, T_1 = X,$$

$$\forall n \in \mathbb{N}, T_{n+2} = 2XT_{n+1} - T_n.$$

- 1. Déterminer le degré et le coefficient dominant de T_n .
- 2. Soit $n \in \mathbb{N}$. Montrer que T_n est l'unique polynôme vérifiant :

$$\forall \theta \in \mathbb{R}, T_n(\cos \theta) = \cos(n\theta).$$

3. Déterminer les racines de T_n .

Exercice 18. Soit $n \in \mathbb{N}^*$, montrer que :

$$(X-1)^2 \left| \left(\sum_{k=0}^{n-1} X^k \right)^2 - n^2 X^{n-1} \right|$$

Exercice 19. Soit $n \in \mathbb{N}^*$, montrer que :

$$(X-1)^3 | nX^{n+2} - (n+2)X^{n+1} + (n+2)X - n.$$

Exercice 20. Soit n un entier tel que $n \ge 2$. Soit le polynôme $P(X) = \sum_{k=0}^{n} \frac{X^k}{k!}$.

- 1. Calculer P(X) P'(X).
- 2. Montrer que toutes les racines complexes de P sont simples.

Exercice 21. Soit $P = X^5 - 6X^4 + 14X^3 - 16X^2 + 9X - 2 \in \mathbb{C}[X]$.

- 1. Montrer que 1 est racine de P et déterminer son ordre de multiplicité.
- 2. En déduire une factorisation de P sous forme d'un produit de polynômes de degré 1.

Exercice 22. Soit $P = X^{10} - 25X^6 + 48X^5 - 25X^4 + 1 \in \mathbb{C}[X]$. Montrer que 1 est racine de P et déterminer son ordre de multiplicité.

Exercice 23. Soit le polynôme $P(X) = X^4 + (-4+2i)X^3 + (12-8i)X^2 + (4+26i)X - 13$.

- 1. Montrer que -i est une racine de P. Préciser son ordre de multiplicité.
- 2. Calculer les racines de P.

Exercice 24. Soient $a, b \in \mathbb{C}$ tels que $b \neq 0$.

Trouver les polynômes de degré 5 tels que P(X) + a soit divisible par $(X + b)^3$ et P(X) - a soit divisible par $(X - b)^3$.

Exercice 25. Soit P un polynôme de $\mathbb{R}[X]$ de degré non nul. Parmi les propositions suivantes, lesquelles sont vraies? Justifier.

- 1. Si P est de degré impair, alors P admet une racine réelle.
- 2. Si P admet une racine réelle, alors P' admet une racine réelle.
- 3. Si P admet deux racines réelles, alors P' admet une racine réelle.
- 4. Si toutes les racines de P' sont simples, alors toutes les racines P sont simples.

Exercice 26. Soit $P \in \mathbb{R}[X]$ tel que $\deg(P) \geq 2$.

Montrer que si P est scindé alors P' est scindé.

Décomposition en facteurs irréductibles de $\mathbb{C}[X]$ et $\mathbb{R}[X]$ 5

Exercice 27. Soit $P \in \mathbb{C}[X]$ tel que :

$$P(X^2) = P(X - 1)P(X + 1).$$

- 1. Montrer que si α est racine de P, il existe une racine de P dont le module est strictement supérieur à $|\alpha|$.
- 2. En déduire le polynôme P.

Exercice 28. Déterminer tous les polynômes de $\mathbb{C}[X]$ dont la fonction polynomiale associée est périodique.

Exercice 29. Factoriser les polynômes :

- 1. $X^5 + X$ dans $\mathbb{C}[X]$ et $\mathbb{R}[X]$

- 2. $(X^2 X + 1)^2 + 1$ dans $\mathbb{R}[X]$ 3. $X^3 5X^2 + 3X + 9$ dans $\mathbb{R}[X]$ 4. $6X^5 + 15X^4 + 20X^3 + 15X^2 + 6X + 1$ dans $\mathbb{R}[X]$

Exercice 30. Donner la décomposition en facteurs irréductibles dans $\mathbb{C}[X]$ puis dans $\mathbb{R}[X]$ de :

$$P = X^n - 1$$

Exercice 31. Factoriser les polynômes :

- 1. $X^6 + 1$ dans $\mathbb{R}[X]$ 2. $X^6 7X^3 8$ dans $\mathbb{C}[X]$ et $\mathbb{R}[X]$ 3. $(X+1)^n (X-1)^n$ où $n \in \mathbb{N}$ dans $\mathbb{C}[X]$ et $\mathbb{R}[X]$
- 4. $\sum_{k=0} X^{2k}$ où $n \in \mathbb{N}$ dans $\mathbb{C}[X]$ et $\mathbb{R}[X]$

Exercice 32. Factoriser dans $\mathbb{C}[X]$ puis dans $\mathbb{R}[X]$ le polynôme $P(X) = X^{2n} - 2\cos(\phi)X^n + 1$ où $\phi \in \mathbb{R} \setminus \pi\mathbb{Z}$ et $n \in \mathbb{N}^*$.

Exercice 33. Quels sont les polynômes P de $\mathbb{C}[X]$ tels que P' divise P? On pourra compter les racines.

Exercice 34.

- 1. Soit $n \in \mathbb{N}^*$, soit $P_n = \sum_{k=0}^n X^k$. Déterminer la décomposition en produit de polynômes irréductibles dans $\mathbb{C}[X]$ de P_n .
- 2. En déduire, pour tout $n \in \mathbb{N}^*$, la valeur de :

$$\prod_{k=1}^{n} \sin \frac{k\pi}{n+1}.$$

Somme et produit des racines d'un polynôme 6

Exercice 35.

Soit (S) le système :

$$\left\{\begin{array}{rcl} 3x + 4xy + 3y & = & -5 \\ x - 2xy + y & = & 5 \end{array}\right.$$

- 1. Déterminer la valeur de la somme s = x + y et du produit p = xy de tout couple (x, y) de solutions de (S).
- 2. Résoudre (S).

Exercice 36. Soient $n \in \mathbb{N}^*$, $a \in \mathbb{R}$.

- 1. Déterminer les racines du polynôme $P = (X+1)^n e^{i2na}$.
- 2. En déduire la valeur de $\prod_{k=0}^{n-1} \sin\left(a + \frac{k\pi}{n}\right)$. 3. Puis déterminer la valeur $\prod_{k=1}^{n-1} \sin\left(\frac{k\pi}{n}\right)$.

Exercice 37 (d'après Centrale-Supélec). Le but de cet exercice est de résoudre dans $\mathbb{C}[X]$ l'équation

$$P(X^2) = P(X)P(X-1).$$

- 1. Montrer que si P est un polynôme non nul vérifiant cette relation, alors l'ensemble de ses racines est contenu dans $\{0, -1, j, j^2\}$.
- 2. En déduire l'ensemble des solutions de cette équation.

Exercice 38. Soit $P \in \mathbb{C}[X] \setminus \{0\}$, soit $n = \deg P$. Montrer que les sommes des racines de $P, P', \ldots, P^{(n-1)}$ forment une progression arithmétique.