Review of Intro to ML

Jan 04, 2022

Logistics

- Final Exam (Jan 10th)
- 1 A4 cheat sheet, handwritten
- Cover all topics taught in class

CHAPTER 3: Bayesian Decision Theory

Classification

Observation → measurable input

Credit scoring: Inputs are income and savings.

Output is low-risk vs high-risk

- Input: $\mathbf{x} = [x_1, x_2]^T$, Output: $C \in \{0, 1\}$
- Prediction:

choose
$$\begin{cases} C = 1 \text{ if } P(C = 1 | x_1, x_2) > 0.5 \\ C = 0 \text{ otherwise} \end{cases}$$

or

choose
$$\begin{cases} C = 1 \text{ if } P(C = 1 | x_1, x_2) > P(C = 0 | x_1, x_2) \\ C = 0 \text{ otherwise} \end{cases}$$

ERROR? $1 - \max(P(C=1)|x1,x2), P(C=0|x1,x2))$

Bernoulli rv Condition on x1, x2

Maximum Aposterior decision rule (find the class with highest probability)

Guarantee the error is smallest as measured in terms or probability 4

Bayes' Rule

Bayes' Rule: K>2 Classes

$$P(C_{i} | \mathbf{x}) = \frac{p(\mathbf{x} | C_{i})P(C_{i})}{p(\mathbf{x})}$$

$$= \frac{p(\mathbf{x} | C_{i})P(C_{i})}{\sum_{k=1}^{K} p(\mathbf{x} | C_{k})P(C_{k})}$$

$$P(C_i) \ge 0$$
 and $\sum_{i=1}^{K} P(C_i) = 1$
choose C_i if $P(C_i | \mathbf{x}) = \max_k P(C_k | \mathbf{x})$

Make a 'classification' decision by looking at the posterior distribution

Losses and Risks

- Actions: α_i
 - This concept is important in cases when 'loss' associated to each action may not be the same
 - Finance, medical, ...so on
- Loss of α_i when the state is $C_k : \lambda_{ik}$
- Expected risk (Duda and Hart, 1973)

Loss of making a decision to assign input to class i, when the true class is k

$$R(\alpha_i \mid \mathbf{x}) = \sum_{k=1}^K \lambda_{ik} P(C_k \mid \mathbf{x})$$

choose
$$\alpha_i$$
 if $R(\alpha_i | \mathbf{x}) = \min_k R(\alpha_k | \mathbf{x})$

Minimizing expected risk by picking that action i

Discriminant Functions

Classification rule: pick one such function that maximizes

choose
$$C_i$$
 if $g_i(\mathbf{x}) = \max_k g_k(\mathbf{x})$

$$g_{i}(\mathbf{x}) = \begin{cases} -R(\alpha_{i} \mid \mathbf{x}) & \text{Three different} \\ P(C_{i} \mid \mathbf{x}) & \text{discriminant} \\ p(\mathbf{x} \mid C_{i})P(C_{i}) & \text{functions} \end{cases}$$

K decision regions $\mathcal{R}_1,...,\mathcal{R}_K$

$$\mathcal{R}_i = \{\mathbf{x} \mid \mathbf{g}_i(\mathbf{x}) = \max_k \mathbf{g}_k(\mathbf{x})\}$$

Divides feature space into K region
For those inputs x, find the function that
give the largest value (use that function
to carve out a region

8

K=2 Classes

- Dichotomizer (K=2) vs Polychotomizer (K>2)
- $g(\mathbf{x}) = g_1(\mathbf{x}) g_2(\mathbf{x})$

• Log odds:

 $\log \frac{P(C_1 \mid \mathbf{x})}{P(C_2 \mid \mathbf{x})}$

A discriminant function

Needs only 1 value to make a decision

CHAPTER 4:

Parametric Methods

Statistics based ML method

Why do we need this? Using Bayes Decision Theory for Classification

$$P(C_{i} | \mathbf{x}) = \frac{p(\mathbf{x} | C_{i})P(C_{i})}{p(\mathbf{x})}$$

$$= \frac{p(\mathbf{x} | C_{i})P(C_{i})}{\sum_{k=1}^{K} p(\mathbf{x} | C_{k})P(C_{k})}$$

$$P(C_i) \ge 0$$
 and $\sum_{i=1}^K P(C_i) = 1$

choose C_i if $P(C_i | \mathbf{x}) = \max_k P(C_k | \mathbf{x})$

The distribution function of P(x) when X is coming from a class C_i

Need this probability to be used as discriminant function

Collect data
Use training set
Learn the discriminant
function (essentially estimate
the parameters)

Maximum Likelihood Estimator

ullet Likelihood of heta given the sample ${\mathcal X}$

$$I\left(\vartheta \mid \mathcal{X}\right) = p\left(\mathcal{X} \mid \vartheta\right) = \prod_{t} p\left(x^{t} \mid \vartheta\right)$$

Estimate parameter of the model using X with this criterion

Joint factors to product

(assume iid samples)

Log likelihood

$$\mathcal{L}(\vartheta \mid \mathcal{X}) = \log I(\vartheta \mid \mathcal{X}) = \sum_{t} \log p(x^{t} \mid \vartheta)$$

Maximum likelihood estimator (MLE)

$$\vartheta^* = \operatorname{argmax}_{\vartheta} \mathcal{L}(\vartheta \mid \mathcal{X})$$

Parametric Classification

-once done (learning), you also obtain the actual 'discriminant' function that can be used for classification

$$g_i(x) = p(x \mid C_i)P(C_i)$$

or

This is your discriminant function for classification

The actual

when using

Gaussian

implementation

$$g_i(x) = \log p(x \mid C_i) + \log P(C_i)$$

$$p(x \mid C_i) = \frac{1}{\sqrt{2\pi}\sigma_i} \exp\left[-\frac{(x - \mu_i)^2}{2\sigma_i^2}\right]$$

$$g_i(x) = -\frac{1}{2}\log 2\pi - \log \sigma_i - \frac{(x-\mu_i)^2}{2\sigma_i^2} + \log P(C_i)$$

An example of learning for two class problem

Once done, use the

Given the sample

$$\mathcal{X} = \{\mathbf{x}^t, \mathbf{r}^t\}_{t=1}^N$$

$$X \in \Re$$

$$r_i^t = \begin{cases} 1 \text{ if } x^t \in C_i \\ 0 \text{ if } x^t \in C_i, j \neq i \end{cases}$$

ML estimates are

$$\hat{P}(C_{i}) = \frac{\sum_{t} r_{i}^{t}}{N} \quad m_{i} = \frac{\sum_{t} x^{t} r_{i}^{t}}{\sum_{t} r_{i}^{t}} \quad s_{i}^{2} = \frac{\sum_{t} (x^{t} - m_{i})^{2} r_{i}^{t}}{\sum_{t} r_{i}^{t}}$$

Discriminant

Scriminant
$$g_i(x) = -\frac{1}{2}\log 2\pi - \log s_i - \frac{(x - m_i)^2}{2s_i^2} + \log \hat{P}(C_i)$$

Input x (test sample) for each i, look at the class label i, for the one that is max, pick that class i

Multivariate Data

- Multiple measurements (sensors)
- *d* inputs/features/attributes: *d*-variate
- N instances/observations/examples

$$\mathbf{X} = \begin{bmatrix} X_1^1 & X_2^1 & \cdots & X_d^1 \\ X_1^2 & X_2^2 & \cdots & X_d^2 \\ \vdots & & & & \\ X_1^N & X_2^N & \cdots & X_d^N \end{bmatrix}$$

Multivariate Normal Distribution

$$\mathbf{x} \sim \mathcal{N}_d(\mathbf{\mu}, \mathbf{\Sigma})$$

$$\rho(\mathbf{x}) = \frac{1}{(2\pi)^{d/2} |\mathbf{\Sigma}|^{1/2}} \exp\left[-\frac{1}{2} (\mathbf{x} - \mathbf{\mu})^T \mathbf{\Sigma}^{-1} (\mathbf{x} - \mathbf{\mu})\right]$$

Multivariate Normal Distribution

Use of inverse variance

- Larger variance adds less distance
- Correlated variable contribute less
- Mahalanobis distance: $(x \mu)^T \sum^{-1} (x \mu)$ measures the distance from x to μ in terms of \sum (normalizes for difference in variances and correlations)
- Bivariate: *d* = 2

$$\Sigma = \begin{bmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{bmatrix}$$

$$p(x_1, x_2) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} \exp\left[-\frac{1}{2(1-\rho^2)}(z_1^2 - 2\rho z_1 z_2 + z_2^2)\right]$$

$$z_i = (x_i - \mu_i)/\sigma_i$$

Parametric Classification

• If $p(\mathbf{x} \mid C_i) \sim N(\mu_i, \Sigma_i)$

$$\left| \boldsymbol{p}(\mathbf{x} \mid \boldsymbol{C}_{i}) = \frac{1}{(2\pi)^{d/2} |\Sigma_{i}|^{1/2}} \exp \left[-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu}_{i})^{T} \Sigma_{i}^{-1} (\mathbf{x} - \boldsymbol{\mu}_{i}) \right] \right|$$

Discriminant functions

$$\begin{aligned} g_{i}(\mathbf{x}) &= \log p(\mathbf{x} \mid C_{i}) + \log P(C_{i}) \\ &= -\frac{d}{2} \log 2\pi - \frac{1}{2} \log |\Sigma_{i}| - \frac{1}{2} (\mathbf{x} - \mu_{i})^{T} \Sigma_{i}^{-1} (\mathbf{x} - \mu_{i}) + \log P(C_{i}) \end{aligned}$$

Estimation of Parameters

$$\hat{P}(C_i) = \frac{\sum_{t} r_i^t}{N}$$

$$\mathbf{m}_i = \frac{\sum_{t} r_i^t \mathbf{x}^t}{\sum_{t} r_i^t}$$

$$\mathbf{S}_i = \frac{\sum_{t} r_i^t (\mathbf{x}^t - \mathbf{m}_i) (\mathbf{x}^t - \mathbf{m}_i)^T}{\sum_{t} r_i^t}$$

$$\left| \mathbf{g}_{i}(\mathbf{x}) = -\frac{1}{2} \log \left| \mathbf{S}_{i} \right| - \frac{1}{2} (\mathbf{x} - \mathbf{m}_{i})^{\mathsf{T}} \mathbf{S}_{i}^{-1} (\mathbf{x} - \mathbf{m}_{i}) + \log \hat{P}(C_{i}) \right|$$

Different S_i

Quadratic discriminant

Quadratic form

$$g_{i}(\mathbf{x}) = -\frac{1}{2}\log|\mathbf{S}_{i}| - \frac{1}{2}(\mathbf{x}^{T}\mathbf{S}_{i}^{-1}\mathbf{x} - 2\mathbf{x}^{T}\mathbf{S}_{i}^{-1}\mathbf{m}_{i} + \mathbf{m}_{i}^{T}\mathbf{S}_{i}^{-1}\mathbf{m}_{i}) + \log\hat{P}(C_{i})$$

$$= \mathbf{x}^{T}\mathbf{W}_{i}\mathbf{x} + \mathbf{w}_{i}^{T}\mathbf{x} + \mathbf{w}_{i0}$$

$$\text{where}$$

$$\mathbf{W}_{i} = -\frac{1}{2}\mathbf{S}_{i}^{-1}$$

$$\mathbf{w}_{i} = \mathbf{S}_{i}^{-1}\mathbf{m}_{i}$$

$$\mathbf{w}_{i0} = -\frac{1}{2}\mathbf{m}_{i}^{T}\mathbf{S}_{i}^{-1}\mathbf{m}_{i} - \frac{1}{2}\log|\mathbf{S}_{i}| + \log\hat{P}(C_{i})$$

Common Covariance Matrix S

• Shared common sample covariance **S** for all class

$$\mathbf{S} = \sum_{i} \hat{P}(C_{i}) \mathbf{S}_{i}$$

Discriminant reduces to

$$g_i(\mathbf{x}) = -\frac{1}{2}(\mathbf{x} - \mathbf{m}_i)^T \mathbf{S}^{-1}(\mathbf{x} - \mathbf{m}_i) + \log \hat{P}(C_i)$$

which is a **linear discriminant**

$$g_i(\mathbf{x}) = \mathbf{w}_i^T \mathbf{x} + \mathbf{w}_{i0}$$

where

$$\mathbf{w}_{i} = \mathbf{S}^{-1}\mathbf{m}_{i} \quad \mathbf{w}_{i0} = -\frac{1}{2}\mathbf{m}_{i}^{T}\mathbf{S}^{-1}\mathbf{m}_{i} + \log \hat{P}(C_{i})$$

Diagonal S

• When $x_j j = 1,..d$, are independent, \sum is diagonal $p(x|C_i) = \prod_j p(x_j|C_i)$ (Naive Bayes' assumption)

$$g_i(\mathbf{x}) = -\frac{1}{2} \sum_{j=1}^d \left(\frac{\mathbf{x}_j^t - \mathbf{m}_{ij}}{\mathbf{s}_j} \right)^2 + \log \hat{P}(C_i)$$

Classify based on weighted Euclidean distance (in s_j units) to the nearest mean

Diagonal S, equal variances

Nearest mean classifier: Classify based on Euclidean distance to the nearest mean

$$|g_{i}(\mathbf{x}) = -\frac{\|\mathbf{x} - \mathbf{m}_{i}\|^{2}}{2s^{2}} + \log \hat{P}(C_{i})$$

$$= -\frac{1}{2s^{2}} \sum_{j=1}^{d} (x_{j}^{t} - m_{ij})^{2} + \log \hat{P}(C_{i})$$

 Each mean can be considered a prototype or template and this is template matching

CHAPTER 6: Dimensionality Reduction

What PCA does

$$z = \mathbf{W}^T (\mathbf{x} - \mathbf{m})$$

where the columns of W are the eigenvectors of Σ and m is sample mean Centers the data at the origin and rotates the axes

How to choose k?

Proportion of Variance (PoV) explained

$$\frac{\lambda_1 + \lambda_2 + \dots + \lambda_k}{\lambda_1 + \lambda_2 + \dots + \lambda_k + \dots + \lambda_d}$$

when λ_i (eigenvalues) are sorted in descending order

- Typically, stop at PoV>0.9
- Scree graph plots of PoV vs k, stop at "elbow"
 - adding another eigenfactor does not add much variances

After PCA

- From d-dimension to k-dimension
 - K<d, parametric discriminant function rely on fewer parameters (due to lesser features)
 - Since these features are projected to be uncorrelated (orthogonal is you assume Normal distribution)
 - The multivariate Gaussian's covariance matrix can now be assumed to be diagonal
- PCA is an unsupervised method of dimension reduction -> does not require the knowledge of label, just the data

CHAPTER 7:

Clustering

Classes vs. Clusters

- Supervised: $X = \{x^t, r^t\}_t$
- Classes C_i *i*=1,...,*K*

$$p(\mathbf{x}) = \sum_{i=1}^{K} p(\mathbf{x} \mid C_i) P(C_i)$$

where $p(\mathbf{x} | C_i) \sim N(\boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i)$

•
$$\Phi = \{P(C_i), \mu_i, \sum_i\}_{i=1}^K$$

$$\hat{P}(C_i) = \frac{\sum_t r_i^t}{N} \quad \mathbf{m}_i = \frac{\sum_t r_i^t \mathbf{x}^t}{\sum_t r_i^t}$$

$$\mathbf{S}_{i} = \frac{\sum_{t} r_{i}^{t} \left(\mathbf{x}^{t} - \mathbf{m}_{i}\right) \left(\mathbf{x}^{t} - \mathbf{m}_{i}\right)^{T}}{\sum_{t} r_{i}^{t}}$$

- Unsupervised : $X = \{x^t\}_t$
- Clusters G; *i*=1,...,*k*

$$p(\mathbf{x}) = \sum_{i=1}^{k} p(\mathbf{x} \mid G_i) P(G_i)$$

where $p(\mathbf{x} | G_i) \sim N(\mu_i, \Sigma_i)$

•
$$\Phi = \{P (G_i), \mu_i, \sum_i \}_{i=1}^k$$

Labels \mathbf{r}^{t}_{i} ?

Mixture model

$$p(\mathbf{x}) = \sum_{i=1}^{K} p(\mathbf{x} \mid G_i) P(G_i)$$

where G_i the components/groups/clusters, $P(G_i)$ mixture proportions (priors), $p(\mathbf{x} \mid G_i)$ component densities

If known, the data sample can find it's associated 'components/ groups /cluster'

Expectation-Maximization (EM)

Log likelihood of a mixture model

$$\mathcal{L}(\Phi \mid \mathcal{X}) = \log \prod_{t} p(\mathbf{x}^{t} \mid \Phi)$$

$$= \sum_{t} \log \sum_{i=1}^{k} p(\mathbf{x}^{t} \mid G_{i}) P(G_{i})$$

<u>Unknown</u>, (we don't know which cluster the sample belongs to)

No analytical solution when learning this model

EM Algorithm, core concept

- Assume there exist hidden variables z, which when known, make optimization much simpler
- Complete likelihood, $L_c(\Phi|X,Z)$, in terms of x and z
- Incomplete likelihood, $L(\Phi|X)$, in terms of x

E- and M-steps

Model parameter

Iterate the two steps

- 1. E-step: Estimate z given X and current Φ
- 2. M-step: Find new Φ' given z, X, and old Φ .

E-step:
$$Q(\Phi | \Phi') = E[\mathcal{L}_c(\Phi | \mathcal{X}, \mathcal{Z}) | \mathcal{X}, \Phi']$$

$$M-step: \Phi^{\prime+1} = \underset{\Phi}{arg \, max} \, \mathcal{Q} \Big(\Phi \, | \, \Phi^{\prime} \Big)$$

An increase in Q function increases incomplete likelihood

$$\mathcal{L}(\Phi'^{l+1} \mid \mathcal{X}) \ge \mathcal{L}(\Phi' \mid \mathcal{X})$$
 There is proof beyond this class.

Complete steps for GMM

 If assume Gaussian component (each mixture is a Gaussian distribution)

$$P(G_i) = \frac{\sum_{t} h_i^t}{N} \qquad \mathbf{m}_i^{t+1} = \frac{\sum_{t} h_i^t \mathbf{x}^t}{\sum_{t} h_i^t}$$
$$\mathbf{S}_i^{t+1} = \frac{\sum_{t} h_i^t (\mathbf{x}^t - \mathbf{m}_i^{t+1}) (\mathbf{x}^t - \mathbf{m}_i^{t+1})^T}{\sum_{t} h_i^t}$$

Soft assignment of a sample to a class

$$h_i^t = \frac{\pi_i |\mathbf{S}_i|^{-1/2} \exp[-(1/2)(\mathbf{x}^t - \mathbf{m}_i)^T \mathbf{S}_i^{-1} (\mathbf{x}^t - \mathbf{m}_i)]}{\sum_j \pi_j |\mathbf{S}_j|^{-1/2} \exp[-(1/2)(\mathbf{x}^t - \mathbf{m}_j)^T \mathbf{S}_j^{-1} (\mathbf{x}^t - \mathbf{m}_j)]}$$

Practice implementation of GMM

 EM is initialized by k-means -> so you get initial parameter

 Once done k-mean, use m_i and samples associated with each cluster as to estimate the initial parameters used for mixture of Gaussian distributions

 Once done-learning, the GMM model can be used for 'clustering' of samples x^t (compute h_i^t)

CHAPTER 9:

Decision Trees

Tree Uses Nodes and Leaves

Properties

- Non-parametric method
- Interpretability
 - Can be thought of as an implementation of various IF-THEN rules
 - Easy to understand what is going on in the decision making
- Each node implements a test function f_m(x) with discrete outcomes labeling the branches
 - Training incidences travel through the tree/branches until reaching leaves

A tree: Divide and Conquer Strategy

- Internal decision nodes
 - Univariate: Uses a single attribute, x_i
 - Numeric x_i : Binary split: $x_i > w_m$
 - Discrete x_i : n-way split for n possible values
 - Multivariate: Uses all attributes, x
- Leaves
 - Classification: Class labels, or proportions
 - Regression: Numeric; r average, or local fit
- Learning is **greedy**; find the best split from the root and work its way down recursively (Breiman et al, 1984; Quinlan, 1986, 1993)

Classification Trees (ID3,CART,C4.5)

• At node m, N_m instances reach m, N_m^i belong to C_i

$$\hat{P}(C_i \mid \mathbf{x}, m) \equiv p_m^i = \frac{N_m^i}{N_m}$$

If split is pure, there is no need to split anymore

- Node m is pure if p_m^i is 0 or 1
- Measure of impurity is entropy

$$I_m = -\sum_{i=1}^K p_m^i \log_2 p_m^i$$

Entropy: # of bits need to code

Other measures of two class?

Properties:

- $\Phi(\frac{1}{2}, \frac{1}{2}) >= \Phi(p, 1-p)$ for any p in [0,1].
- $\Phi(0,1) = \Phi(1,0) = 0$
- $\Phi(p, 1-p)$ is increasing in p on $[0, \frac{1}{2}]$ and decreasing in p on [1/2, 1]
- Gini index (Breiman et al. 1984)
 - $\Phi(p, 1-p) = 2p(1-p)$
- Misclassification error
 - $\Phi(p, 1-p) = 1- \max(p, 1-p)$

Rule Extraction from Trees

CHAPTER 10:

Linear Discrimination

Likelihood- vs. Discriminant-based Classification

• Likelihood-based: Assume a model for $p(x|C_i)$, use Bayes' rule to calculate $P(C_i|x)$

$$g_i(\mathbf{x}) = \log P(C_i | \mathbf{x})$$

Just any form of equations

- Discriminant-based: Assume a <u>model</u> for $g_i(x|\Phi_i)$; not density estimation
- Estimating the boundaries is enough; no need to accurately estimate the densities inside the boundaries
- Inductive bias come from your assumption of boundary not the density itself
- Knowing <u>how to separate</u> is more important (easier?) than knowing the underlying data distribution

Linear Discriminant

• Linear discriminant function (assuming a linear separation):

$$g_i(\mathbf{x} \mid \mathbf{w}_i, \mathbf{w}_{i0}) = \mathbf{w}_i^T \mathbf{x} + \mathbf{w}_{i0} = \sum_{j=1}^d \mathbf{w}_{ij} \mathbf{x}_j + \mathbf{w}_{i0}$$

- Advantages:
 - Simple: O(d) space/computation
 - Knowledge extraction: Weighted sum of attributes; positive/negative weights, magnitudes
 - Optimal when $p(x|C_i)$ are <u>Gaussian with shared cov matrix</u>; <u>useful</u> when classes are (almost) linearly separable

Two Classes

Geometry

For x1 x2 on decision plane $w^{T}(x1-x2) = 0$ w is normal to any vector lying on the decision hyperplane

 x_p = is the normal projection of x onto hyperplane

r gives us distance from x to hyperplane (positive,

Multiple Classes

$$g_i(\mathbf{x} \mid \mathbf{w}_i, \mathbf{w}_{i0}) = \mathbf{w}_i^T \mathbf{x} + \mathbf{w}_{i0}$$

Classes are linearly separable if

g(i) positive for only one class More realistic setting:

Choose C_i if

$$g_i(\mathbf{x}) = \max_{j=1}^{\kappa} g_j(\mathbf{x})$$

From Discriminants to Posteriors

When
$$p(\mathbf{x} \mid C_i) \sim N(\mu_i, \Sigma)$$

$$g_i(\mathbf{x} \mid \mathbf{w}_i, \mathbf{w}_{i0}) = \mathbf{w}_i^T \mathbf{x} + \mathbf{w}_{i0}$$

$$\mathbf{w}_i = \Sigma^{-1} \mu_i \quad \mathbf{w}_{i0} = -\frac{1}{2} \mu_i^T \Sigma^{-1} \mu_i + \log P(C_i)$$

$$y \equiv P(C_1 \mid \mathbf{x}) \text{ and } P(C_2 \mid \mathbf{x}) = 1 - y$$

$$\text{choose } C_1 \text{ if } \begin{cases} y > 0.5 \\ y / (1 - y) > 1 \quad \text{and } C_2 \text{ otherwise} \\ \log [y / (1 - y)] > 0 \end{cases}$$

$$\begin{aligned} \log & \mathrm{it}(P(C_1 \mid \mathbf{x})) = \log \frac{P(C_1 \mid \mathbf{x})}{1 - P(C_1 \mid \mathbf{x})} = \log \frac{P(C_1 \mid \mathbf{x})}{P(C_2 \mid \mathbf{x})} \\ &= \log \frac{p(\mathbf{x} \mid C_1)}{p(\mathbf{x} \mid C_2)} + \log \frac{P(C_1)}{P(C_2)} \\ &= \log \frac{(2\pi)^{-d/2} |\Sigma|^{-1/2} \exp\left[-(1/2)(\mathbf{x} - \mu_1)^T \Sigma^{-1}(\mathbf{x} - \mu_1)\right]}{(2\pi)^{-d/2} |\Sigma|^{-1/2} \exp\left[-(1/2)(\mathbf{x} - \mu_2)^T \Sigma^{-1}(\mathbf{x} - \mu_2)\right]} + \log \frac{P(C_1)}{P(C_2)} \\ &= \mathbf{w}^T \mathbf{x} + \mathbf{w}_0 \\ &\text{where } \mathbf{w} = \Sigma^{-1} (\mu_1 - \mu_2) \quad \mathbf{w}_0 = -\frac{1}{2} (\mu_1 + \mu_2)^T \Sigma^{-1} (\mu_1 - \mu_2) \\ &\text{The inverse of logit} \qquad \qquad \text{Logistic function} \\ &\log \frac{P(C_1 \mid \mathbf{x})}{1 - P(C_1 \mid \mathbf{x})} = \mathbf{w}^T \mathbf{x} + \mathbf{w}_0 \\ &P(C_1 \mid \mathbf{x}) = \mathrm{sigmoid}(\mathbf{w}^T \mathbf{x} + \mathbf{w}_0) = \frac{1}{1 + \exp\left[-(\mathbf{w}^T \mathbf{x} + \mathbf{w}_0)\right]} \end{aligned}$$

Sigmoid (Logistic) Function

Calculate $g(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + w_0$ and choose C_1 if $g(\mathbf{x}) > 0$, or Calculate $y = \text{sigmoid}(\mathbf{w}^T \mathbf{x} + w_0)$ and choose C_1 if y > 0.5

Sigmoid(0)=0.5, this function takes discriminant function posterior probability

Logistic Discrimination (logistic regression)

Two classes: Assume log likelihood ratio (between 2 class) is linear

$$\log \frac{p(\mathbf{x} \mid C_1)}{p(\mathbf{x} \mid C_2)} = \mathbf{w}^T \mathbf{x} + w_0^o$$

$$\log \operatorname{it}(P(C_1 \mid \mathbf{x})) = \log \frac{P(C_1 \mid \mathbf{x})}{1 - P(C_1 \mid \mathbf{x})} = \log \frac{p(\mathbf{x} \mid C_1)}{p(\mathbf{x} \mid C_2)} + \log \frac{P(C_1)}{P(C_2)}$$

$$= \mathbf{w}^T \mathbf{x} + w_0$$

$$\text{where } w_0 = w_0^o + \log \frac{P(C_1)}{P(C_2)}$$

$$y = \hat{P}(C_1 \mid \mathbf{x}) = \frac{1}{1 + \exp[-(\mathbf{w}^T \mathbf{x} + w_0)]}$$

LR Training: Two Classes

Model label given x with probability y

$$\mathcal{X} = \left\{ \mathbf{x}^t, r^t \right\}_t \quad r^t \mid \mathbf{x}^t \sim \mathsf{Bernoulli}(y^t)$$

Note the difference to likelihood method

$$y = P(C_1 \mid \mathbf{x}) = \frac{1}{1 + \exp[-(\mathbf{w}^T \mathbf{x} + \mathbf{w}_0)]}$$

Maximize this function label/data condition likelihood based on data we have

$$I(\mathbf{w}, \mathbf{w}_0 \mid \mathcal{X}) = \prod_{t} (\mathbf{y}^t)^{(r^t)} (1 - \mathbf{y}^t)^{(1 - r^t)}$$

$$E = -\log I$$
 Minimize this

$$E(\mathbf{w}, \mathbf{w}_0 \mid \mathcal{X}) = -\sum_{t} r^t \log y^t + (1 - r^t) \log (1 - y^t)$$

What is this? This is a function that we call 'cross entropy'

Training: Gradient-Descent

$$E(\mathbf{w}, \mathbf{w}_{0} \mid \mathcal{X}) = -\sum_{t} r^{t} \log y^{t} + (1 - r^{t}) \log (1 - y^{t})$$

$$If \ y = \text{sigmoid}(\mathbf{a}) \quad \frac{dy}{da} = y(1 - y)$$

$$\Delta \mathbf{w}_{j} = -\eta \frac{\partial E}{\partial \mathbf{w}_{j}} = \eta \sum_{t} \left(\frac{r^{t}}{y^{t}} - \frac{1 - r^{t}}{1 - y^{t}} \right) y^{t} (1 - y^{t}) x_{j}^{t}$$

$$= \eta \sum_{t} (r^{t} - y^{t}) x_{j}^{t}, j = 1, ..., d$$

$$\Delta \mathbf{w}_{0} = -\eta \frac{\partial E}{\partial \mathbf{w}_{0}} = \eta \sum_{t} (r^{t} - y^{t})$$

CHAPTER 14:

Kernel Machines

Kernel Machines

- Discriminant-based: No need to estimate densities first
- Define the discriminant in terms of support vectors
 - Support vectors: subset of training instances
- The use of kernel functions, application-specific measures of similarity
- Convex optimization problems with a unique solution

Margin

- Distance from the discriminant to the closest instances on either side
- Distance of x to the hyperplane is $\frac{|\mathbf{W}^T \mathbf{X}^T + \mathbf{W}_0|}{\|\mathbf{w}\|}$
- We require $\frac{r^t(\mathbf{w}^T\mathbf{x}^t + \mathbf{w}_0)}{\|\mathbf{w}\|} \ge \rho, \forall t$ Like to maximize this distance
- For a unique sol'n, fix $\rho || \mathbf{w} || = 1$, and to max margin equal minimize w

$$\min \frac{1}{2} \|\mathbf{w}\|^2$$
 subject to $r^t (\mathbf{w}^T \mathbf{x}^t + \mathbf{w}_0) \ge +1, \forall t$

Margin

$$\min \frac{1}{2} \|\mathbf{w}\|^2$$
 subject to $r^t (\mathbf{w}^T \mathbf{x}^t + \mathbf{w}_0) \ge +1, \forall t$

$$L_{p} = \frac{1}{2} \|\mathbf{w}\|^{2} - \sum_{t=1}^{N} \alpha^{t} \left[\mathbf{r}^{t} \left(\mathbf{w}^{T} \mathbf{x}^{t} + \mathbf{w}_{0} \right) - 1 \right]$$

$$= \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{t=1}^{N} \alpha^t r^t (\mathbf{w}^T \mathbf{x}^t + \mathbf{w}_0) + \sum_{t=1}^{N} \alpha^t$$

Use LaGrange multiplier

$$\frac{\partial L_p}{\partial \mathbf{w}} = 0 \Longrightarrow \mathbf{w} = \sum_{t=1}^N \alpha^t r^t \mathbf{x}^t$$

$$\frac{\partial L_p}{\partial w_0} = 0 \Longrightarrow \sum_{t=1}^N \alpha^t r^t = 0$$

karush kuhn tucker condition

Maximum a^t
Such that
Lp gradient is 0
With respect to
ws

The reason to rewrite this

- Original complexity depends on d
- Turn the solution into complexity depends on N

$$\begin{split} L_{d} &= \frac{1}{2} \left(\mathbf{w}^{\mathsf{T}} \mathbf{w} \right) - \mathbf{w}^{\mathsf{T}} \sum_{t} \alpha^{t} r^{t} \mathbf{x}^{t} - \mathbf{w}_{0} \sum_{t} \alpha^{t} r^{t} + \sum_{t} \alpha^{t} \\ &= -\frac{1}{2} \left(\mathbf{w}^{\mathsf{T}} \mathbf{w} \right) + \sum_{t} \alpha^{t} \\ &= -\frac{1}{2} \sum_{t} \sum_{s} \alpha^{t} \alpha^{s} r^{t} r^{s} \left(\mathbf{x}^{t} \right)^{\mathsf{T}} \mathbf{x}^{s} + \sum_{t} \alpha^{t} \end{split}$$
 solve for alpha subject to $\sum_{t} \alpha^{t} r^{t} = 0$ and $\alpha^{t} \geq 0$, $\forall t$

Most α^t are 0 and only a small number have $\alpha^t > 0$;

Pick any support vector and solve for w
Average over support vector

they are the support vectors they satisfy $r^{t}(w^{T}x^{t} + w_{0}) = 1$

These are support vector machines, it only cares those on the boundaries not within the decision regions

testing

- $g(x)=w^{T}x + w_{0}$
- Choose the results according to sign

CHAPTER 11:

Multilayer Perceptrons

Perceptron

What a Perceptron Does

• Regression: $y=wx+w_0$

• Classification: $y=1(wx+w_0>0)$

$$y = \text{sigmoid}(o) = \frac{1}{1 + \exp[-\mathbf{w}_{4}^{T}\mathbf{x}]}$$

Multilayer Perceptrons

$$\mathbf{y}_i = \mathbf{v}_i^T \mathbf{z} = \sum_{h=1}^H \mathbf{v}_{ih} \mathbf{z}_h + \mathbf{v}_{i0}$$

$$z_h = \operatorname{sigmoid} \left(\mathbf{w}_h^T \mathbf{x} \right)$$

$$= \frac{1}{1 + \exp \left[-\left(\sum_{j=1}^d w_{hj} x_j + w_{h0} \right) \right]}$$

(Rumelhart et al., 1986)

CHAPTER 12: Deep Learning

Deep Neural Networks

- Many hidden layers
 - Problematic in training: chain rule multiplication of derivatives (vanish of gradients or explosion)
- End-to-end training
- Learn increasingly abstract representations with minimal human contribution
 - Layers of abstraction in intuitive
 - Vision, speech, language, and so on
- Basis functions calculated from simpler basis functions

Representation learning is really the KEY behind Deep learning

Rectified Linear Unit (ReLU)

$$ReLU(a) = \begin{cases} a & \text{if } a > 0 \\ 0 & \text{otherwise} \end{cases}$$

Left deriviation: Relu'(a) = 1 if a>0, 0 otherwise

- Does not saturate for large a
- Leads to a sparse representation
 - Some of the nodes will results in 0
- No learning for a<0, be careful with initialization
 - Initialization should make sure all weights are positive
- Leaky ReLU: {a if a>0, α a otherwise, α is set 0.01)

Improving Training Convergence

 Momentum. At each update, also add a fraction of the average of past gradients:

$$s_i^t = \alpha s_i^{t-1} + (1 - \alpha) \frac{\partial E^t}{\partial w_i}$$

$$\Delta w_i^t = -\eta s_i^t$$

Adaptive Learning Factor

 RMSprop. Make update inversely proportional to the sum of past gradients, so, update more when gradient is small and less where it is large.

$$\Delta w_i^t = -\frac{\eta}{\sqrt{r_i^t}} \frac{\partial E^t}{\partial w_i}$$

where r_i is the accumulated past gradient,

$$r_i^t = \rho r_i^{t-1} + (1 - \rho) \left| \frac{\partial E^t}{\partial w_i} \right|^2$$

ADAM: Adaptive Learning Factor w/ Momentum

$$s_{i}^{t} = \alpha s_{i}^{t-1} + (1 - \alpha) \frac{\partial E^{t}}{\partial w_{i}}$$

$$\Delta w_{i}^{t} = -\eta \frac{\tilde{s}_{i}^{t}}{\sqrt{\tilde{r}_{i}^{t}}}$$

$$r_{i}^{t} = \rho r_{i}^{t-1} + (1 - \rho) \left| \frac{\partial E^{t}}{\partial w_{i}} \right|^{2}$$

$$\Delta w_i^t = -\eta \frac{\tilde{s}_i^t}{\sqrt{\tilde{r}_i^t}}$$

Initially both s and r terms are 0, so we bias-correct them (both α and ρ are <1, so they get smaller as t gets large):

$$\tilde{s}_i^t = \frac{s_i^t}{1 - \alpha^t} \text{ and } \tilde{r}_i^t = \frac{r_i^t}{1 - \rho^t}$$

Regularization: Convolutions

 Each unit is connected to a small set of units in the preceding layer. In images, this corresponds to a local patch (LeCun et al

Regularization: Weight Sharing

The same weights are used in different locations

1d example with 1x4 convolutions and weight sharing

Multiple Convolutional Layers

