Visualization, Identification, and Estimation in the Linear Panel Event-Study Design

Simon Freyaldenhoven¹ Christian Hansen² Jorge Pérez Pérez³ Jesse M. Shapiro⁴

¹Federal Reserve Bank of Philadelphia

²University of Chicago

³Banco de México

⁴Brown University and NBER

The views expressed are those of the speaker and not necessarily those of the Federal Reserve Bank of Philadelphia, the Federal Reserve System, or Banco de México.

Estimation and Event-Study Plots

Linear panel model

$$y_{it} = \alpha_i + \gamma_t + q'_{it}\psi + \sum_{m=-G}^{M} \beta_m z_{i,t-m} + C_{it} + \varepsilon_{it}$$
 (linear panel model)

- ▶ Unit fixed effects α_i and time fixed effects γ_t
- Observed controls q_{it}
- ▶ Unobserved confound C_{it} potentially related to policy z_{it}
- ▶ Unobserved error ε_{it} unrelated to policy z_{it}
- ▶ Parameters of interest $\{\beta_m\}_{m=-G}^M$
 - ▶ No *ceteris paribus* effect of policy more than *G* periods in the past or *M* periods in the future

Typical event-study plot

Building the plot

$$y_{it} = \alpha_i + \gamma_t + q'_{it}\psi + \sum_{m=-G}^{M} \beta_m z_{i,t-m} + C_{it} + \varepsilon_{it}$$
 (linear panel model)

For the event-study plot we want to:

- ▶ Show cumulative effects of the policy \rightarrow replace z_{it} with Δz_{it}
- ▶ Show pre-G and post-M dynamics \rightarrow add L_G extra leads and L_M extra lags

Estimating equation

$$y_{it} = \sum_{k=-G-L_G}^{M+L_M-1} \delta_k \Delta z_{i,t-k} + \delta_{M+L_M} z_{i,t-M-L_M} + \delta_{-G-L_G-1} (-z_{i,t+G+L_G}) + \alpha_i + \gamma_t + q'_{it} \psi + C_{it} + \varepsilon_{it}$$
(estimating equation)

- Will refer to index k as event time
- ▶ Will refer to vector δ as *event time path* of outcome

Interpretation under staggered adoption

$$... \sum_{k=-G-L_G}^{M+L_M-1} \delta_k \Delta z_{i,t-k} + \delta_{M+L_M} z_{i,t-M-L_M} + \delta_{-G-L_G-1} (-z_{i,t+G+L_G})...$$
 (key part of estimating equation)

Say that for each unit i, z_{it} starts at 0 and switches to 1 at time $t^*(i)$. Then:

$$\Delta z_{i,t-k} = \mathbf{1}\{t^*(i) = t - k\}$$

$$z_{i,t-M-L_M} = \mathbf{1}\{t^*(i) \le t - M - L_M\}$$

$$1 - z_{i,t+G+L_G} = \mathbf{1}\{t^*(i) > t + G + L_G\}$$

Interpretation as cumulative effects of policy

$$\dots \sum_{k=-G-L_G}^{M+L_M-1} \delta_k \Delta z_{i,t-k} + \delta_{M+L_M} z_{i,t-M-L_M} + \delta_{-G-L_G-1} (-z_{i,t+G+L_G}) \dots$$
 (key part of estimating equation)

Under the linear panel model, and for general z_{it} ,

$$\delta_k = \begin{cases} 0 & \text{for } k < -G \\ \sum_{m=-G}^{k} \beta_m & \text{for } -G \le k \le M \\ \sum_{m=-G}^{M} \beta_m & \text{for } k > M. \end{cases}$$

Definition of plot

Points on plot correspond to $\{(k, \hat{\delta}_k)\}_{k=-G-L_G-1}^{k=M+L_M}$.