

cs4341 Digital Logic & Computer Design

Lecture Notes 9

Omar Hamdy

Assistant Professor

Department of Computer Science

Review: Karnaugh Map (K-Map)

- ➤ A K-map is a diagram made of a collection of adjacent squares each representing a minterm.:
- > Adjacent squares differ in the value of one variable only
- K-Map identifies and removes redundancies by:
 - > forming largest possible 2ⁿ squares that produce 1 (prime implicants)
 - > removing ineffective literals from these prime-implicants.
- ➤ The size of the prime implicants determines the number of redundant literals that can be removed.

4-Variable K-Map

Example: 7-Segment Display Decoder

- ➤ A seven-segment display decoder takes a 4-bit data input (variables), D3:0, and produces seven outputs to control light-emitting diodes to display a digit from 0 to 9
- The seven outputs are often called segments a through g, or S_a – S_g

Solution Step 1: Truth Table

D ₃	D ₂	D ₁	D ₀	Sa	S _b	S _c	S _d	S _e	S _f	Sg
0	0	0	0	1	1	1	1	1	1	0
0	0	0	1	0	1	1	0	0	0	0
0	0	1	0	1	1	0	1	1	0	1
0	0	1	1	1	1	1	1	0	0	1
0	1	0	0	0	1	1	0	0	1	1
0	1	0	1	1	0	1	1	0	1	1
0	1	1	0	1	0	1	1	1	1	1
0	1	1	1	1	1	1	0	0	0	0
1	0	0	0	1	1	1	1	1	1	1
1	0	0	1	1	1	1	0	0	1	1
1	0	1	0	0	0	0	0	0	0	0
1	0	1	1	0	0	0	0	0	0	0
1	1	0	0	0	0	0	0	0	0	0
1	1	0	1	0	0	0	0	0	0	0
1	1	1	0	0	0	0	0	0	0	0
1	1	1	1	0	0	0	0	0	0	0

Solution Step 2: K-Map

Sa	minterm
1	m ₀
0	
1	m ₂
1	m ₃
0	
1	m ₅
1	m ₆
1	m ₇
1	m ₈
1	m ₉
0	
0	
0	
0	
0	
0	

S_a							
$D_{1:0}$	^{3:2} 00	01	11	10			
S_a $D_{1:0}$ 00	1	0	0	1			
01	0	1	0	1			
11	1	1	0	0			
10	1	1	0	0			

S_b $D_{1:0}$ D_{0} D_{0							
$D_{1:0}$	3:2 00	01	11	10			
00	1	1	0	1			
01	1	0	0	1			
11	1	1	0	0			
10	1	0	0	0			

S _b	minterm
1	m ₀
1	m_1
1	m_2
1	m_3
1	m ₄
0	
0	m ₆
1	m ₇
1	m ₈
1	m ₉
0	
0	
0	
0	
0	
0	

Solution Step 3: Find Prime Implicants

S_a							
$D_{1:0}$	3:2 00	01	11	10			
S_a $D_{1:0}$ 00	1	0	0	1			
01	0	1	0	1			
11	1	1	0	0			
10	1	1	0	0			

S_b $D_{1:0}$ $D_{3:2}$ 00 01 11 10							
$D_{1:0}$	00	01	11	10			
00	1	1	0	1			
01	1	0	0	1			
11	1	1	0	0			
10	1	0	0	0			

Solution Step 4: Prime Implicants & SOP

Prime Implicant Variations

$$S_a = \overline{D}_3 D_1 + \overline{D}_3 D_2 D_0 + D_3 \overline{D}_2 \overline{D}_1 + \overline{D}_3 \overline{D}_2 \overline{D}_0$$

Correct Variation

 $S_a = \overline{D}_3 D_1 + \overline{D}_3 D_2 D_0 + D_3 \overline{D}_2 \overline{D}_1 + \overline{D}_3 \overline{D}_2 \overline{D}_1 \overline{D}_0$

Wrong Variation

Don't Care in Outputs

- Don't cares can appear in truth table outputs where the output value is unimportant, or the corresponding input combination can never happen.
- They can be treated as 1s or 0s in the truth table and the K-map.
- They could then help cover larger prime implicants if treated as 1s.

$$S_a = D_3 + D_2 D_0 + \overline{D}_2 \overline{D}_0 + D_1$$

Don't Care in Outputs

Multiplexers

- ➤ Combinational logic is often grouped into larger building blocks to build more complex systems such as the priority circuit and the 7-segment display decoder.
- > Two famous combinational circuits are multiplexers and decoders.
- ➤ Multiplexers (MUX) choose an output from among several possible inputs (usually 2ⁿ) based on the value of a select signal.
- ➤ In other words, a 2ⁿ x 1 multiplexer (MUX) is a device that selects binary information from one of 2ⁿ input terminals and routes these data to a single output line

To Do List

- > Review lecture notes, and try the examples yourself
- ➤ Work on Assignment 1