RStudio Portfolio Spring 2024

By: Nidhi Ladda

Table of Contents

Introduction	
Data Management	
Data Visualization	
Linear Regression	
Logistic Regression	14
KNN Regression	16
KNN Classification	18
CART	20
Naïve Bayes	
Clustering	23
Association Rules.	24

Introduction

NOTES/ DESCRIPTION	CODE / INSTRUCTIONS
To convert an excel sheet to a csv that can be imported into R	 Download Excel sheet Enable editing File > Save As Dropdown > CSV (comma delimited)(*.csv) Save to the AQM2000 data folder
Basics: To run a line of Code in R Studios	Ctrl + Enter
To re – run a line of code from top to bottom - Must sweep before doing this To sweep - Click the broom	Ctrl A Ctrl + Enter
Two equal signs means equal to	
! false ! = not equal to	
Install a package	install.packages ("ggplot2")
Activate a package	library (ggplot2)
#Load Data Frame	
Need to Set Working Directory when creating a new file	setwd("C:/Users/nladda1/Desktop/AQM2000spring24/Data")
Session > Set Working Directory > Choose Directory > AQM2000Spring24 > Data	- Once setting the working directory you must copy and paste the above line of code and run it through
Run 2 R files at the same time	source("C:/Users/nladda1/Desktop/TheName.R") source("C:/Users/nladda1/Desktop/BabsonAnalyticsR.R")
Import the data frame into R Studios	df = read.csv ("title.csv")
df = data frame	ex: df=read.csv("ToyotaCorolla.csv")
To view the entire data frame - It will open in a separate tab all the data points	View(df)
Summary of the entire data frame	str(df)

Picking a file that is not in the directory	df = read.csv(file.choose()) > choose the file
Creating a new column	df\$newname = df\$oldcolumname
If else statement - If value a > 5 then 1, if not 0	df\$d = ifelse (df\$a>5, 1, 0)
"#" symbol is used to make comments and explain the lines of code - It also won't run that line of code as a code - Ex: if you NULL something then need to unNull it	Ex: #Load Data Frame #Manage Data #Partion #Build Model #Key Performance Indicator #Graph
R Studios can do calculations	Ex: 5+3 5-3 8/2 sqrt(9)
To label a line of code with a name	Name of choice = line of code or value Ex: a = 3+5 a #under the values section of the global environment you will see the number 8
Creating a vector	vector name = c (#, #, #) ex: $a = c(1,3,5,7)$ $b = c(2,4,6,8)$ $c = c(4,6,8,10)$
New data frame	Name of data frame = data.frame (#.#,#) Name of data frame = data.frame (df\$columnname, def\$column, df\$column) Ex: new df = data.frame (a, b, c)

To get a data point in [row, column]	df[1,3]
To get every data point in a row	df[,5]
To get every data point in a column	df [5,]

Data Management

NOTES/ DESCRIPTION	CODE / INSTRUCTIONS
Change data structure of variable	CODE / INSTRUCTIONS
- Factor: categories, intervals, words - Logical: yes/no, 1/0, true/false (has to be in numbers in order to get it into true false statement) -if it is not already in number form you must create an ifelse statement prior - Integer: any whole number - Number: number w/ decimal	df\$rowname = as.factor(df\$rowname) = as.logical = as.int = as.num Ex of converting into logic statement if not already in 1/0 - df\$grades = ifelse(df\$grades=="KK-06",1,0) - df\$grades=as.logical(df\$grades)
How many missing data points	sum(is.na(df))
Always do this Cleaning data for missing pieces	df = na.omit(df)
Always do this Check for any missing data	anyNA(df)
Clear graph history Always do this	dev.off
To NULL a variable	df\$rowname = NULL

Data Visualization

NOTES/ DESCRIPTION	CODE / INSTRUCTIONS
Graphs w/out ggplot 1. Histogram 2. Scatterplot matrix	 hist(df\$rowname) pairs(df)
Install ggplot2	library(ggplot2)
Line Graph	$ggplot(df, aes(x = hoursSinceStart, y = total))$ $+geom_line()+xlim(0,500)+ylim(0,250)$
Bar Chart by Count	ggplot(df, aes(x = season))+geom_bar()
Bar Chart by Indentity	ggplot(df, aes(x = season, y = total))+geom_bar(stat = "identity")

Histogram

ggplot(df, aes(x = total))+geom_histogram()

Find Bin width

- square room of the total observation

Histogram with Bin width

sqrt(#of observations)

 $ggplot(df, aes(x = total)) + geom_histogram(bins = #)$

+geom_histogram(bins = round(sqrt(420),0))

Heat Mapping

- fill is what the shading is based on

 $ggplot(df, aes(x = weekday, y = month, fill = registered)) + geom_tile(stat = "sum")$

ggplot(df, aes(x = weekday, y = month, fill =
casual))+geom_tile(stat = "sum")

Make a stacked graph into 2 charts	+facet_grid(thefillvariable~.)
Dashed line	+geom_vline(aes(xintercept=median(read)),color="yellow",linetype="dashed", size=1)
Statistics	
median	median(df\$rowname)
mean	mean(df\$rowname)
standard deviation	sd(df\$rowname)
calculate z-score	z_score = (df\$numericrowname - mean (df\$numericrowname)) / sd (df\$numericrowname)
Find Max value	max(df\$rowname)
Find Min value	min(df\$rowname)
Correlation for variables	cor(df)
How to find outliers 1. calc the z-score 2. create a new data frame for z-score 3. find the z-scores greater than 3 standard deviations labeled as outliers	z.scores <- (df\$Price - mean(df\$Price))/(sd(df\$Price)) z.scores <- data.frame(df\$Price, z.scores) outliers <- (z.scores\$z.scores > 3) outliers
z-score: x - mean/standard deviation	

Linear Regression

NOTES/ DESCRIPTION	CODE / INSTRUCTIONS
STEP 1: PARTITION THE DATA	
Setting a Seed - randomization does not exist in computer science - there is a randomization formula which is shown through pathways that determine how the data is chosen	set.seed (###)
Count the number of rows in the data frame and store the value in "N"	N=nrow(df)
TRAINING 1: Provided how many pieces of data is 60% of the observations at rondom in trainingSize	trainingSize = round(N * .6)
TRAINING 2: Actually pulled the individual data observations at random	trainingCases = sample (N, trainingSize)
TRAINING 3: Pulls all of the columns of the training data and stores it as a data frame	training = df [trainingCases ,]
TEST DATA: Pulling all of the columns for the testing data set that are not in the training data set	test = df [- trainingCases,]
BUILDING LII	NEAR REGRESSION MODEL
*if you can say it you can code it * Linear Model (lm)	model = lm (dependant ~ independant , data = training)
This is the equation of a linear model Data = : this the data in which you want to build the model from	model = $lm (y \sim x, data = training)$ ex: model = $lm (Price \sim Age, data = training)$
Linear Model with all the Variables	model = lm (dependant ~ . , data = training)

Summary of the Model: reads the model - Equation you coded - Coefficients: (Intercept) #### Independent Variable ### - "*" indicate significance Best Subset Model with only the significant variables 1. First create the model with all the variables	model5 = lm (Price ~ . , data = training) step (model5) model5 = step (model 5)
MAK	ING PREDICTIONS
Take the formula from the model and run the testing data through it and stores it into predictions	predictions = predict (model ,test) 1. First run the model with all the variables (bench) 2. Second run the model with the significant variables
Observations: it is independent from all the other the data points of the dependent variable from the test data frame is being stored into observation	observations = test\$Price
Finds the errors	errors = observations - predictions
Create a histogram of the errors - Histogram of the residuals	hist(errors)
	library (ggplot2) test\$errors = errors test\$observations = observations ggplot(test, aes (y=errors, x = observation, color = errors)) + geom_point() + labs (x= "Fits_Test", y = "Residuals_test", title = "scatterplot") + scale_color_gradient (low = "blue", high = "green")

EVALUATE THE PERFORMANCE (KPI)	
Mean Average Percentage Error - Error in the Model	<pre>mape = mean (abs (df\$Price - predictions) / (observations)) mape = mean (abs (errors / observations)) mape</pre>
RMSE - prediction is wrong by	rmse = sqrt (mean (df\$Price – predictions) ^2) rmse = sqrt (mean (errors ^ 2)) rmse
Predictions Bench - average of the dependent data set in the training data set Errors Bench - price column in the data set and taking away the average of the dependent training data set Benchmarks are nonstatistical models	Prediction_Bench = mean (training\$Price) errors_bench = observations - Prediction_Bench
RMSE BENCH MAPE BENCH	rmse_bench = sqrt (mean (errors_bench^2)) mape_bench = mean (abs (errors_bench / observations))

Logistic Regression

Noned/Decomposition	CODE / INCERNICEIONG
NOTES/ DESCRIPTION	CODE / INSTRUCTIONS TA MANAGEMENT
To merge two files of code into one so they run at the same time	source("C:/Users/nladda1/Desktop/BabsonAnalyticsR.R")
ADD THIS LINE OF CODE AT THE BEGINNING	
On the graph, it needs scaler data points which is the integer value (need to be number)	ISHIGHVAL: is in integer form 1, 0 so it can be in the model
In a logistical regression model you need a logical response in a binary output	ISHIGHVAL2: is logical True, False to make the model
logical response in a onlary output	df\$ISHIGHVAL2 = df\$ISHIGHVAL df\$ISHIGHVAL2 = as.logical (df\$ISHIGHVAL2)
	ISHIGHVAL = NULL
	If the Variable is not already in dummy variable form then you must turn it into one 1. df\$Income2=ifelse(df\$Income>100000, 1, 0) 2. df\$Income3=as.logical(df\$Income2) 3. df\$Income=NULL
PAF	TITION THE DATA
Same steps as Linear Regression	1. set.seed (###) 2. N=nrow(df) 3. trainingSize = round(N * .6) 4. trainingCases = sample (N, trainingSize) 5. training = df [trainingCases ,] 6. test = df [- trainingCases,]
	BUILD MODEL
REMEMBER TO NULL OUT THE integer variable glm = general linear model	model = glm (ISHIGHVAL2 ~ ., data = training, family = binomial())
- can run all types of models To build the model must use logical	model = step (model) #this is best model
Family = binomial because it is categorical data	summary (model)
	model = glm (ISHIGHVAL2 ~ RM, data = training, family = binomial ())
Logistical Equation	$ln\left(\frac{P}{1-P}\right) = \beta_0 + \beta_1 x_1$

ODDS = (P / 1 - P)	$\hat{P} = \frac{e^{\beta_0} + \beta_1 x_1}{1 + e^{\beta_0 + \beta_1 x_1}}$
Plugging values into the equation + or -1 Ex: 5, 6, 7	FORMANCE INDICATOR Five_rooms = (exp (B0 + (B1* X))) / (1 + exp (B0 + (B1*X))) Five_rooms Do the same thing for 6 rooms Then divide the Phat for 6 rooms by 5 rooms to get the e^B1
This will fit it to the s-curve Response = standardizes all the values from 0 to 1	predictions = predict (model2 , test, type = "response") predictions
Observations = has to be the logical True False version of the variable .5 is the center part of the curve	ISHIGHVAL2 1. observations = test\$depenantvariable 2. PredictionsTF = predictions1 > .5 3. table (PredictionsTF , observations) observations predictionsTF FALSE TRUE FALSE
Sensitivity = accuracy of the true predictions	sensitivity = sum (predictionsTF = = TRUE & observations = = TRUE) / sum(observations = = TRUE) sensitivity = 100/(100+20)
Specificity = accuracy of the false predictions	specificity = sum(predictionsTF = = FALSE & observations = = FALSE)/ sum(observations = = FALSE) specificity = 43/ (43+39)
Error rate of the model	error_rate = sum (PredictionsTF != observations) /nrow2(test) error_rate
ROCChart	ROCChart (observations, predictions) AUC – area under the curve

	3	
Lift chart	liftChart (observations, predictions)	
GRAPH		
To build the logistical regression graph	1. Un-NULL the integer version of the variable	
	- Ex: ISHIGHVAL	
	ggplot (test, aes ($x = RM$, $y = predictions$, color =	
	ISHIGHVAL))+ geom_point()+ geom_point (aes (y =	
	ISHIGHVAL))	

KNN Regression

NOTES/ DESCRIPTION	CODE / INSTRUCTIONS
DA	TA MANAGEMENT
To merge two files of code into one so they run at the same time	source("C:/Users/nladda1/Desktop/BabsonAnalyticsR.R")
ADD THIS LINE OF CODE AT THE BEGINNING	
MUST Load package correct Package	library(caret) library(ggplot2)
Load data frame	df=read.csv("BostonHousing.csv")
Remove missing data	df=na.omit(df)
Can only have scaler data points	df\$CHAS= NULL
- Remove any categorical data or	df\$ISHIGHVAL = NULL
logistical data	dfRAD = $NULL$
standardize df- makes all of the	Processor s = preProcess(df [, 1:10], c("center", "scale"))
independent variables into z-score values	
Normalization of df [,column#: column#] Can only do this to the independent variables – NOT dependent	Processor_n = preProcess(df [, 1:10], c("range"))
** Make sure dependent variable is at the bottom of the df list**	If Dependent variable is not at the bottom df\$new.name.of.dependant.variable = df\$actual.name.of dependant.variable df\$acutal.name.of.dependant.variable = NULL
	df1 = predict(Processor_s, df) #standadization first

Make two separate df's for the	
standardization and normalization	df2 = predict(Processor_n,df) #then normalization
	z-score standardization range [
PA	RTITION DATA
PARTITION FOR DF 1 AND DF 2 SEPARATELY	dfl partition set.seed(5) N1=nrow(df1) trainingSize1= round(N1*.6) trainingCases1 = sample(N1, trainingSize1) training1 = df1[trainingCases1,] test1 = df1[-trainingCases1,]
В	df2 partition set.seed(5) N2=nrow(df2) trainingSize2= round(N2*.6) trainingCases2 = sample(N2, trainingSize2) training2 = df2[trainingCases2,] test2 = df2[-trainingCases2,] BUILD MODEL
Creates a chart using	TO THE TAX PROPERTY OF THE PRO
BabsonAnalyticsR.file	
 graph shows the metric of the neighborhood 	knnCrossVal(MEDV ~., data = training1) knnCrossVal(MEDV ~., data = training2)
	Kimeross vai(ivii) v ., data training2)
- knnreg comes from the BabsonAnalyticsR.file	model1 = knnreg(MEDV \sim ., data = training1, k = 2)
 to choose k value: pick the lowest point on the chart after running it a few times 	model2 = knnreg(MEDV \sim ., data = training2, k = 2)
	KPI
	predictions1 = predict(model1, test1) predictions2 = predict(model2, test2)
	observations1 = test1\$MEDV observations2 = test2\$MEDV
	errors1 = observations1 - predictions1 errors2 = observations2 - predictions2
RMSE 1 and RMSE 2 Lower rmse is better	rmse1 = sqrt (mean (errors1 2))
Lower filise is better	rmse2 = sqrt (mean (errors $2 ^2$))

MAPE 1 and MAPE 2	mape1 = mean (abs (errors1 / observations1))
Lower mape is better	
	mape2 = mean (abs (errors2 / observations2))
Creating a Benchmark	errors_bench1 = observations1-mean(training1\$MEDV)
 values for benchmark should be 	errors_bench2 = observations2-mean(training2\$MEDV)
the same for benchmark 1 and 2	
	mape_bench1 = mean(abs(errors_bench1/observations1))
	mape_bench2 = mean(abs(errors_bench2/observations2))
	rmse_bench1 = sqrt(mean(errors_bench1^2))
	rmse_bench2 = sqrt(mean(errors_bench2^2))
Interpretation of the KPI	Based on the lower/higher RMSE and lower/higher
	MAPE of model1/model2 we can determine that
	standardization/normalization is better for this data
GENERAL NOTES	

• kNN: k Nearest Neighbors

- neighborhood: measurement of distance around a desirable outcome it contains the X # of points that will be used to make a prediction
- k: is a metric of distance (we use the Euclidean distance formula) the # of points in neighborhood
- need to remove all none numerical variables
- need to determine which method is better, standardization or normalization by testing both options out and evaluating the RMSE and MAPE of each
- CAN NOT run standardization and normalization method at the same time that is why you must create a two sperate dfs for them
- Regression uses numerical values only
- MAPE should never be over 1 mean there is a 100% error that the prediction is wrong by indicating a poor model
- Summary(model) is irrelevant because we are using KPIs to determine if the model is good or bad
- If value of K is too large end up using entire data to predict one specific point not accurate
- If value of K is too small only using 1 point then allows for guessing and randomization to effect the model
- Want k to be relatively narrow / appropriate
- ** CAN NOT cross check with KPIs to pick the value for K because leakage could occur between training and testing data when we are not using a seed **

KNN Classification

NOTES/ DESCRIPTION	CODE / INSTRUCTIONS
DATA MANAGEMENT	
	source("C:/Users/nladda1/Desktop/BabsonAnalyticsC
	(1).R")
Install package	library(ggplot2)
	library(caret)
Remove missing data always	df3=na.omit(df3)
Dependent Variable – is categorical –	To turn variable in to a categorical
make into factor	df3\$price1 = ifelse(df3\$price>540000,1,0)

Independent Variable – is scaler- NULL	
all the variables that are not scaler	
Partition Data	T.
	set.seed(12) N3 = nrow(df3) trainingSize3 = round(N3*.6) trainingCases3= sample(N3,trainingSize3) training3 = df3[trainingCases3,] test3 = df3 [-trainingCases3,]
Build Model	1 0 /1
kNNcrossval will give k value	kNNCrossVal(price1 ~ .,training3) predictions3 = kNN(price1~ ., training3,test3, k= 16) observations3 = test3\$price1
KPI	
Correctly classifies $0 ((0,0)/(0,0)+(0,1)\%$ of the time	table(predictions3, observations3)
Correctly classifies 1 $((1,1)/(1,1)+(1,0)\%$ of the time	
Accuracy of the false predictions	error_rate3= sum(predictions3 != observations3)/nrow(test3) error_rate3
Accuracy of the true predictions	error_rate4= 1-sum(predictions3 == observations3)/nrow(test3) error_rate4
	error_bench3 = benchmarkErrorRate(training3\$price1, test3\$price1) predictions_no_standardization = kNN(price1 ~ ., training3, test3, k=16, standardize = FALSE) error_rate_no_standardization = sum(predictions_no_standardization != observations3)/nrow(test3)
	error_rate3 #the model is wrong 30.7% of the time error_bench3 #The error bench is 51.2% error_rate_no_standardization #the error without standardization is 28%
General Notes	#The model without standardization is better than the model with standardization

General Notes

- In regression Knn you are using scaler data points so you can actually calculate the rmse and mape however with KNN classification you are using a categorical dependant variable so you can't calculate the rmse or mape
- kNN regression is for scaler data only where as kNN Classification is for predicting categorical data

CART

NOTES/ DESCRIPTION	CODE / INSTRUCTIONS	
DATA MANAGEMENT		
Install Babson Analytics C file	source("C:/Users/nladda1/Desktop/BabsonAnalyticsC (1).R")	
Turn on Library Packages	library(rpart)	
	library(rpart.plot)	
Partition Data		
	set.seed(12)	
	n = nrow(df)	
	trainingsize = round(n*.6)	
	trainingcases = sample(n, trainingsize)	
	training = df[trainingcases,]	
2 1126 11	test = df[-trainingcases,]	
Build Model		
	model = rpart(Competitive ~., data=training) rpart.plot(model)	
#Leaf node is the last node in the diagram		
# the right most leaf node is the strongest		
because 91% of this leaf node is		
competitive out of 21% of the data set		
# the left most leaf node is also strong		
because 24% of the leaf node is		
competitive out of 34% of the data - the		
majority however is not competitive # this first diagram is not good because		
there are some leaf nodes with only 1% of		
the data set ideally we would want it to		
have 3% or more		
Makes the model a bit easier to read	rpart.plot(model, tweak = 1.1, varlen = 4, faclen = 4)	
type = class - says don't give me the	predictions = predict(model, test, type = "class")	
numbers give me the factor level back	observations = test\$Competitive	
# Athough our model has a much lower	error_rate = sum(predictions != observations)/nrow(test)	
error rate than the benchmark it is	error_bench = benchmarkErrorRate(training\$Competitive,	
important to note that overcomplextiy is	test\$Competitive)	
present becasue we have leaf nodes at 1%		
, 2%, 3% - menaing th model has to many		
splits for this respected data set		
# Stopping rules	stopping_rules = rpart.control(minsplit=2, minbucket=1,	
# model complexity is the number of splits	cp=0)	
in the model the more splits in the		
model the highr the chances are for	# overfitted model: this mean only 2 observations needed	
overfitting	in each leaf node and only 1 observation needed to be	
# minplit: how data is left in the leaf node	different # kinda have to guess and check here but try to	
is the node big enough to split, typically	get the nodes to 3% atleast	

something like 2% of the total number of records # minbucket: comparison of the split itself when you split, the split should be big enough (on both side) of the split. something like 1% of the total number of records # Complexity parameter: CP: does the split improve the model (many factors go into this) (in this class always 0)	model = rpart(Competitive ~., data=training, control = stopping_rules) rpart.plot (model)
	<pre>predictions_overfit = predict(model, test, type="class") error_rate_overfit = sum(predictions_overfit != observations)/nrow(test)</pre>
	model = easyPrune(model) rpart.plot(model)
	<pre>predictions_pruned = predict(model, test, type="class") error_rate_pruned = sum(predictions_pruned!= observations)/nrow(test)</pre>

General Notes

- The strongest lead node is the one where the middle # is the closest to 0 or 1
 - O Close to 0 means you should not do the action
 - O Close to 1 means you should do the action
- The minsplit option specifies the minimum number of observations that must exist in a node in order for a split to be attempted.
- The minbucket option specifies the minimum number of observations allowed in any terminal (leaf) node.

Naïve Bayes

NOTES/ DESCRIPTION	CODE / INSTRUCTIONS		
	DATA MANAGEMENT		
MUST ADD THE SOURCE	source("C:/Users/nladda1/Desktop/BabsonAnalyticsC (1).R")		
	** there is a space between C and (1) **		
	df2= read.csv ("MovieReviews.csv")		
Every variable needs to be a factor	every_column = colnames(df)		
so that it is in the form of 0 and 1			
	df[every_column] = lapply(df[every_column], as.factor)		
Types on the mooded library montroes	Library (a1071)		
Turn on the needed library package	library(e1071)		
PARTITION DATA			
Partition the data into testing and	set.seed(33)		
training	n2=nrow(df2)		
	trainingsize2 = round($n2*.6$)		
	trainingcases2= sample(n2, trainingsize2)		

	training2 = df2[trainingcases2,]
	test2 = df2[-trainingcases2,]
	BUILD MODEL
From the Dobgen Applyting C file	model2 = naiveBayes(PositiveTweet ~ ., data = training2)
From the Babson Analytics C file use naiveBayes code to build model	model2 – narveBayes(FositiveTweet ~ ., data – training2)
use naiveBayes code to build model	
Predictions	predictions2 = predict(model2, test2)
Observations	observations2 = test2\$PositiveTweet
Error rate	error rate2 = sum(predictions2 != observations2)/nrow(test2)
	error rate2
Error Bench	error bench2 = benchmarkErrorRate(training2\$PositiveTweet,
	test2\$PositiveTweet)
	error bench2
	INTERPRETATIONS
Build Table Observation /	table(predictions2, observations2)
predictions table	·
	> table(predictions2, observations2)
	observations2 predictions2 0 1
	0 1122 25
	1 62 1625
Table to test the Likelihood	model2\$tables\$awesome
	> model2\$tables\$awesome
	awesome Y 0 1
	0 1.0000000 0.0000000
	1 0.7292111 0.2707889
	(1:1): given that the statement is positive there is a 27% chance
	the word awesome is present
	(1: 0): given that the statement is positive there is a 72%
	chance the word awesome is not present
	(0,1): given that the statement is not positive there is a $0%$
	chance the word awesome is present
	(0,0) given that the statement is not positive there is a 100%
	chance the word awesome is not present
	Y axis: conditional statement is not present (0) conditional
	statement is present (1)
	Awesome: Not Present (0) Present (1)
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	GIVEN is going to be from the model of what the dependent
	variable/ conditional statement is (ex: positive statement or
	not)
Create a new data frame that pulls all	limited2 = df2[df2\$awesome == "1",]
the statements that have the word in	_
it	** note the number of observations that have the word
	Ex: the word awesome appears 1123 times

The odds of the condition in the scenario	odds2 = sum(limited2\$PositiveTweet == "1")/ sum(limited2\$PositiveTweet == "0") odds2 for every 1122 positive tweets that contains the word awesome there is 1 negative tweet that contains the word awesome
	it is a ratio 1122 : 1
	inf: means condition is always in that scenario
	zero: means conditions is never in that scenario
	CENTED AT MORES

GENERAL NOTES

- NB works directly with conditional probability → something already exists we are seeing the likely hood of the action occurring
 - o Ex: given that it is a rainy day what are the odds you have a test
- Issues with NB when measuring the sensitivity of a string of sentences
 - o In theory we would need to build out the entire English language including slang, abbreviations, dif variations of words, special characters, emojis (how would the algorithm know the difference between aww and awwww)
 - Every single piece of data needs to be in 1's and 0's \rightarrow all conditions \rightarrow 0 = not present 1= present
- The dependent variable (aka conditional probability statement) does not need to be first in the data set → make sure it is in the appropriate location of the model section of code
- STEPS
 - o Change all the columns to factor → NB algorithm will not work with numbers
 - Summary table is not useful because it is not a model with a graph associated because it is all dealing with conditional probabilities and table associations
 - O Benchmarks comparing training and test data to see when they match up without any sort of statistical model
 - Training data is observable observations
 - Testing data is the model you created for the benchmark

Clustering

NOTES/ DESCRIPTION	CODE / INSTRUCTIONS	
	DATA MANAGEMENT	
MUST ADD THE SOURCE	source("C:/Users/nladda1/Desktop/BabsonAnalyticsC (1).R")	
#This type a of data is ordinal - it is	library (caret)	
an opinion-based rating system - not		
reliable	df = read.csv("utilities.csv")	
	df\$Company = NULL – null because it is a chr / has words	
#normal curve of distribution -		
symmetric, asymtotic, normal - 50%	df= na.omit(df)	
of data on either side		
	elbowChart(df)	

standardizer = preProcess(df, method = c("center", "scale")) #read the cusp of the curve and that would tell you what the cluster size df2= predict (standardizer, df) should be #cluster of 1 is the whole data set is model = kmeans(df2, 4)in it so it is not useful which is not model\$centers useful model\$size #too many clusters means every data set is its on cluster #y axis - is the sum of sqares which #If there is an outlier in the model it would just create its own is the variance between the groups cluster #knn has a target value and d = dist(df2)clustering analysis does not supervised vs unsupervised #this elbow chart should come first so you can determine how many model = hclust(d, method= "average") there should be plot(model, labels = df2\$Company) model = hclust(d, method= "single") plot(model, labels = df2\$Company) model = hclust(d, method= "complete") plot(model, labels = df2\$Company)

Association Rules

BUILD MODEL	
NOTES/ DESCRIPTION	CODE / INSTRUCTIONS
	install.packages("arules") install.packages("arulesViz")
	library(arules) library(arulesViz) data("Groceries")
	itemFrequencyPlot(Groceries) itemFrequencyPlot(Groceries, topN=5)
	######################################

```
rules = apriori(Groceries, parameter =
list(support=0.001,confidence=0.5))
summary(rules)# now we have 5668 rules
#rule length distribution (lhs + rhs):sizes
#2 3 4 5 6
                 2 means Item 1 --> item 2. 3 means item
1&2 --> item 3, 4 means item 1&2&3 --> item 4 ...
#11 1461 3211 939 46 how many are in each grouping
#Once the support and confidence thresholds are met choose the
one with
#the strongest lift. Lift is how often we see the given scenario of
#conditional probability and the confidence together relative to
how often
#we would see them together if they were independent
rules = apriori(Groceries, parameter =
list(support=0.001,confidence=0.5))
sorted = sort(rules, by="lift")
inspect(sorted[1:10])
summary(rules)
?apriori # look at the bottom for the rules threshold
rules = apriori(Groceries, parameter = list(support=0.1))
summary(rules)
rules = apriori(Groceries, parameter = list(support=0.01))
summary(rules)
rules = apriori(Groceries, parameter = list(support=0.001))
summary(rules)
rules = apriori(Groceries, parameter =
list(support=0.001,confidence=0.5))
summary(rules)
sorted = sort(rules, by="lift")
inspect(sorted[1:20])
plot(rules)
```


