שיעור 1 תורת המספרים

1.1 משפט החילוק של אוקלידס

הגדרה 1.1 מספר שלם שמחלק מספר שלם אחר

-ט בך q כך שלם מספר מספרים או "a אם מחלק מחלק מחלק שלם אומרים שלמים. אומרים שלמים a,b

$$a = qb$$
.

q שווה למספר שלם כלומר $\frac{a}{b}$

."a אומר כי $b\mid a$ מחלק את $b\mid a$

דוגמה 1.1

- 6=3q -כך ש- q=2 כך שספר מספר מספר 3 | 6 (א
- 42 = 7q -כך ש- כך שלם q = 6 כך שקיים מספר אקיים מספר אל q = 6
 - .8=5q -בגלל שלא קיים מספר שלם בגלל שלא $5 \nmid 8$

משפט 1.1 תכונות של חילוק שלמים

. שלמים a,b,d יהיו

- $d\mid (a+b)$ אזי $d\mid b$ ר- ווע (1
- $d\mid (xa+yb)$ אזי $d\mid b$ ו- $d\mid a$ אחי שלמים. ער איזי (2
 - $a=\pm b$ אזי אם $a\mid b\mid a$ ו- (3

הוכחה:

(1

(2

(3

$$\begin{array}{ccc} a|b & \Rightarrow & b=ca \\ b|a & \Rightarrow & a=c'b \end{array} \} \qquad \Rightarrow \qquad b=ca=cc'b \qquad \Rightarrow \qquad cc'=1 \ .$$

לפיכך .
$$c=-1=c'$$
 אם $c=1=c'$ אם ורק אם $cc'=1$ לפיכך . לפיכך $b=\pm a$.

הגדרה 1.2 השארית

ומוגדרת $a \bmod b$ שלמים. השארית של בחלוקה ב- $a \bmod b$ שלמים. השארית של

$$a \bmod b = a - b \left\lfloor \frac{a}{b} \right\rfloor .$$

a % b :b - a ב-חלוקת בחלופי לשארית סימון

הערה: השאירת מוגדרת באופן חד משמעי עובר שלמים חיוביים בלבד!

דוגמה 1.2

$$43 \bmod 10 = 43 - 10 \cdot \left\lfloor \frac{43}{10} \right\rfloor = 43 - 10(4) = 3 ,$$

$$13 \bmod 4 = 13 - 4 \cdot \left\lfloor \frac{13}{4} \right\rfloor = 13 - 4(3) = 1 ,$$

$$8 \bmod 2 = 8 - 2 \cdot \left\lfloor \frac{8}{2} \right\rfloor = 8 - 2(4) = 0 .$$

משפט 1.2 משפט החילוק של אוקלידס

-יים כך שרעמים שלמים q,r יחודיים כך שא קיימים מספרים שלמים אם $b \neq 0$ יחודיים כך ש

$$a = qb + r (1.1)$$

a בחלוקה ב a ו- a נקרא השארית של a בחלוקה ב בחלוקה ב- a ו- a נקרא השארית של a בחלוקה ב- a נקרא הפירוק מנה-שארית של השלמים a ו- a

הוכחה: ההוכחה נמצאת למטה בדף ??. ההוכחה עצמה היא לא חלק של הקורס.

דוגמה 1.3

יהיו המנה והפירוק הם r=6 , q=5 המנה והשארית הם b=8 , a=46 יהיו יהיו 46=5(8)+6 .

דוגמה 1.4

יהיו הוא המנה והפירוק הם r=2 ,q=-6 המנה והשארית הם b=8 ,a=-46 יהיו היו המנה המנה המנה והשארית הם -46=(-6)(8)+2 .

משפט 1.3 שיטה מעשית לחישוב הפירוק מנה-שארית

יהיו a,b שלמים (עם $b \neq 0$). אזי המנה q והשארית במשפט החילוק של אוקלידס ניתנים כך:

$$r=a mod b$$
 אם $q=\left\lfloor rac{a}{b}
ight
floor$ איז $a>0,b>0$ אם (1

$$r=a mod |b|$$
 אם $q=-\left\lfloor rac{a}{|b|}
ight
floor$ אז $a>0,b<0$ אם (2

$$r=b-|a| mod b$$
 רי $q=-\left \lfloor rac{|a|}{b}
ight
floor -1$ אם $a<0,b>0$ אם (3

$$r=|b|-|a| mod |b|$$
 אם $a<0,b<0$ אז $a<0,b<0$ אם (4)

הוכחה: נוכיח בכל אחד מארבעת המקרים.

 $q\,,\,r$ כך ש- $q\,,\,r$ נניח $q\,,\,r$ נניח החילוק של החילוק של החילוק לפי משפט החילוק לפי משפט .a>0,b>0

$$a = qb + r, \qquad 0 \le r < b. \tag{*}$$

:bב ב-ל

$$\frac{a}{b} = q + \frac{r}{b}.$$

מכיוון ש $b-0 \leq r < 0$, מתקיים $b \leq r < 0$, ולכן

$$q = \left\lfloor \frac{a}{b} \right\rfloor$$
.

הצבה חזרה ב-(*) נותנת

$$r = a - b \left| \frac{a}{b} \right| = a \mod b.$$

כך ש: $ar{q}$, $ar{r}$ כלימים שלמים a , |b| נניח (2 מצב 2). לפי משפט החילוק של אוקלידס עבור הלשמים

$$a = \bar{q}|b| + \bar{r}, \qquad 0 \le \bar{r} < |b|.$$

|b|=-b נציב . $ar{r}=a mod |b|$ ו- וווי $ar{q}=\left|rac{a}{|b|}
ight|$ נציב מהמקרה הראשון:

$$a = \bar{q}(-b) + \bar{r} \quad \Rightarrow \quad a = -\bar{q}b + \bar{r}.$$
 (#)

כך ש: $q\,,\,r$ כלומר קיימים שני ממשפט החילוק (כלומר בלי הערך מלומר $a\,,\,b$ כלומר שלמים מצד שני ממשפט החילוק

$$a = qb + r , \qquad 0 \le r < |b| .$$

נותנת a=qb+rל (#) נותנת של משוואה של

$$q=-ar{q}=-\left\lfloor rac{a}{|b|}
ight
floor, \qquad r=ar{r}=a mod |b|.$$

(בך ש: $ar{q}$, $ar{r}$ כל שלמים שלמים קיימים |a| , b כל שבור הלשמים החילוק עבור מצב 3.

$$|a| = \bar{q}b + \bar{r}, \qquad 0 \le \bar{r} < b.$$

מהמקרה הראשון:

$$ar{q} = \left\lfloor rac{|a|}{b}
ight
floor, \qquad ar{r} = |a| mod b.$$

|a|=-a נציב

$$-a = \bar{q}b + \bar{r} \quad \Rightarrow \quad a = -\bar{q}b - \bar{r}.$$

b כעת השארית ונחסר מנה אחת שלמה $-\bar{r}$ לכן נוסיף ונחסר מנה אחת שלמה כעת השארית.

$$a = -\bar{q}b - \bar{r} = -(\bar{q} + 1)b + (b - \bar{r}).$$
 (**)

כך קיבלנו את הצורה הנדרשת. מצד שני עבור השלמים a , b (כלומר מצד שני עבור ממשפט ממשפט החילוק את הצורם שלמים q,r עבורם

$$a = qb + r , \qquad 0 \le r < b .$$

השוואה של זה עם משוואה (**) נותנת:

$$q = -\left|\frac{|a|}{b}\right| - 1, \qquad r = b - |a| \bmod b.$$

 $ar{q}$, $ar{r}$ כך ש: מצב 4) נניח a < 0, b < 0 לפי משפט החילוק עבור (a < 0, b < 0 מצב

$$|a| = \bar{q}|b| + \bar{r}, \qquad 0 \le \bar{r} < |b|.$$

מ-(1) נקבל

$$ar{q} = \left \lfloor rac{|a|}{|b|}
ight
floor , \qquad ar{r} = |a| mod |b| \ .$$

|a| = -a, |b| = -b נציב

$$-a = -\bar{q}b + \bar{r} \quad \Rightarrow \quad a = \bar{q}b - \bar{r}.$$

כמו קודם נוסיף ונחסר |b| כדי להפוך את השארית לחיובית:

$$a = \bar{q}b - |b| + |b| - \bar{r}$$

$$\Rightarrow \qquad a = \bar{q}b + b + |b| - \bar{r}$$

$$\Rightarrow \qquad a = (\bar{q} + 1)b + |b| - \bar{r} . \tag{##}$$

עבורם: q,r עבור השלמים שלהם) קיימים שלהם (לא הערכים מוחלטים שלהם) עבור השלמים q,r

$$a = qb + r , \qquad 0 \le r < |b| .$$

:השוואה של a=qb+r למשוואה a=qb+r נותנת

$$q=\bar{q}+1=\left\lfloor\frac{|a|}{|b|}\right\rfloor+1, \qquad r=|b|-\bar{r}=|b|-|a| \bmod |b|.$$

r שארית	מנה q	b סימן	a סימן	מצב
$a \bmod b$	$\left\lfloor \frac{a}{b} \right\rfloor$	+	+	1
$a \bmod b $	$-\left\lfloor \frac{a}{ b } \right\rfloor$	_	+	2
$b- a \bmod b$	$-\left\lfloor \frac{ a }{b} \right\rfloor - 1$	+	_	3
$ b - a \mod b $	$\left\lfloor \frac{ a }{ b } \right\rfloor + 1$	_	_	4

דוגמה 1.5

מצאו את הפירוק מנה-שארית של השלמים הבאים:

$$.a = 46 \,,\, b = 8 \,$$
 (x

$$a = -46, b = 8$$
 (2

$$.a = 101 \, , \, b = -7 \,$$
 (x

$$.a = -151, b = -12$$
 (7

פתרון:

אז $a>0\,,\,b>0$ אז במקרה א

$$q=\left\lfloor rac{a}{b}
ight
floor=\left\lfloor rac{46}{8}
ight
floor=5$$
 , $r=a mod b=a-b\left\lfloor rac{a}{b}
ight
floor=46-8\left\lfloor rac{46}{8}
ight
floor=6$,
$$46=(5)(8)+5 \ .$$

בא $a < 0 \,,\, b > 0$ אז במקרה $a < 0 \,,\, b > 0$

$$q = -\left\lfloor \frac{|a|}{b} \right\rfloor - 1 = -\left\lfloor \frac{46}{8} \right\rfloor - 1 = -6$$

$$r = b - |a| \mod b$$

$$= b - \left(|a| - b \left\lfloor \frac{|a|}{b} \right\rfloor \right)$$

$$= 8 - \left(46 - 8 \left\lfloor \frac{46}{8} \right\rfloor \right)$$

$$= 8 - \left(46 - 8(5) \right)$$

$$= 2 .$$

לכן:

$$-46 = (-6)(8) + 2.$$

אז $a>0\,,\,b<0$ אז במקרה a>0

$$q=-\left\lfloor\frac{a}{|b|}\right\rfloor=-\left\lfloor\frac{101}{7}\right\rfloor=-14\;.$$

$$r=a\bmod|b|=a-|b|\left\lfloor\frac{a}{|b|}\right\rfloor=101-7\left\lfloor\frac{101}{7}\right\rfloor=101-7\left(14\right)=3\;.$$
 לכן:

101 = (-14)(-7) + 3.

אז $a < 0 \,,\, b < 0$ אז במקרה $a < 0 \,,\, b < 0$

$$q = \left\lfloor \frac{|a|}{|b|} \right\rfloor + 1 = \left\lfloor \frac{151}{12} \right\rfloor + 1 = 12 + 1 = 13$$
.

 $r = |b| - |a| \mod |b|$
 $= |b| - \left(|a| - |b| \left\lfloor \frac{|a|}{|b|} \right\rfloor \right)$
 $= 12 - \left(151 - 12 \left\lfloor \frac{151}{12} \right\rfloor \right)$
 $= 12 - (151 - 12(12))$
 $= 12 - 7$
 $= 5$.

 $-151 = (13)(-12) + 5$.

1.2 מספרים ראשוניים

הגדרה 1.3 מספר ראשוני

מספר ראשוני הוא מספר שלם וחיובי $p\geq 2$ עבורו המחלקים היחידים שלו הם 1 ו- p בלבד. a
eq p מספר ראשוני אם ורק אם a
eq p לכל a
eq p מספר ראשוני אם ורק אם a
eq p לכל a
eq p

משפט 1.4 קיימים אינסוף מספרים ראשוניים

קיימים אינסוף מספרים ראשוניים.

הוכחה: נוכיח הטענה דרך השלילה.

נניח כי $P=\{p_1,\dots,p_n\}$ הוא הקבוצה של כל הראשוניים שקיימים וקבוצה זו נוצרת סופי. $m=p_1p_2\dots p_n+1$ נגדיר השלם

לפי משפט הפירוק לראשוניים (ראו משפט 1.5) m הוא ראשוני או שווה למכפלה של ראשוניים. מפר הראשוניים m אין מצב ש- m יכול להיות מספר ראשוני בגלל ש- m גדול ממש מכל הראשוניים לפי ההנחה ההתחלתית שלנו, אין מצב ש- m לכל $m>p_i$ לכל $m>p_i$.

הרי m גם לא קיים מספק ראשוני p_i אשר מחלק את

$$m \pmod{p_i} = 1 \implies p_i \nmid m$$
.

הגענו לסתירה להמשפט הפירוק לראשוניים. לכן קיימים אינסוף מספרים ראשוניים.

משפט 1.5 משפט הפירוק לראשוניים

כל מספר טבעי או מספר ראשוני או מספר ראשוניים. $a \geq 2$ הוא מספר כל מספר טבעי e_1, \dots, e_n קיימים טבעיים $a \geq 2$ עבורם

$$a = p_1^{e_1} \ p_2^{e_2} \ \dots \ p_n^{e_n}$$

.כאשר p_1,\ldots,p_n מספרים ראשוניים

דוגמה 1.6

הפירוק לראשוניים של 60 הוא:

$$60 = 2^2 \times 3^2 \times 5 ,$$

דוגמה 1.7

הפירוק לראשוניים של 98 הוא:

$$98 = 2^1 \times 7^2$$
.

הוכחה:

- נניח בשלילה שהטענה לא נכונה. אזי קיים לפחות מספר טבעי אחד שלא ראשנוי וגם לא שווה למכפלה של ראשוניים.
 - (ת הוא הדוגמה הנגדית הקטנה ביותר.) יהי שלא מקיים הטענה שלא מקיים הטענה $m \geq 2$ יהי \bullet
 - . אזי m לא ראשוניי וגם לא שווה למכפלת ראשוניים m
 - :כך ש
 $2 \leq a < m, \ 2 \leq b < m$ כבעיים טבעיים m פריק, א"א פריק, לכן
 \bullet

$$m = ab$$
.

- הוא הטבעי הקטן ביותר מסוג זה שמפריך את הטענה בעוד a,b הם קטנים ממש מ- m אז a ו- b בהכרח הוא הטענה: a אז a הוא או ראשוני או שווה למכפלת ראשוניים, ואותו דבר עבור a.
 - עבורם e_1, \ldots, e_n עבורם •

$$a = p_1^{e_1} \ p_2^{e_2} \ \dots \ p_n^{e_n}$$

עבורם f_1,\dots,f_n טבעיים וקיימים אשוניים מספרים מספרים מספרים א

$$b = q_1^{f_1} \ q_2^{f_2} \ \dots \ q_n^{f_n}$$

.כאשר q_1, \ldots, q_n מספרים ראשוניים

מכאן •

$$m = ab = p_1^{e_1} p_2^{e_2} \dots p_n^{e_n} q_1^{f_1} q_2^{f_2} \dots q_n^{f_n}$$
.

לכן m שווה למכפלה של מספרים ראשוניים, בסתירה לכך ש- m לא שווה למכפלה של ראשוניים!

1.3 המחלק המשותף הגדול ביותר

הגדרה 1.4 המחלק המשותף הגדול ביותר (gcd).

יהיו $\gcd(a,b)$ ומוגדר להיות השלם החיובי היהיו a וביותר של המשותף הגדול ביותר של החיובי המחלק המשותף הגדול ביותר שמחלק המa,b וגם a

."greatest common divisor" הסימון gcd מנובע מהשם אנגלית

דוגמה 1.8

$$\gcd(2,6) = 2$$
,

$$\gcd(3,6) = 3$$
,

$$\gcd(24,5) = 1$$
,

$$gcd(20, 10) = 10$$
,

$$gcd(14, 12) = 2$$
,

$$\gcd(8, 12) = 4$$
.

הגדרה 1.5 כפולה המשותפת הקטנה ביותר

יהיו החיובי החיובי הכפולה המשותפת הקטנה ביותר מסומנת וכm(a,b) ומוגדרת השלם החיובי החיובי החיובי החיובי הקטן ביותר עבורו a וגם b מחלקים אותו.

."lowest common multiple" מנובע מהשם אנגלית lcm מנובע

דוגמה 1.9

$$lcm(6, 21) = 42$$
,

$$lcm(3,6) = 6$$
,

$$lcm(24,5) = 120$$
,

$$lcm(20, 10) = 20$$
,

$$lcm(14, 12) = 84$$
,

$$lcm(8, 12) = 24$$
.

הגדרה 1.6 מספרים זרים

יהיו a,b שלמים. אומרים כי a ו- b מספרים זרים אם

$$\gcd(a,b)=1$$
.

כלומר, אין אף מספר גדול מאחד שמחלק את שניהם.

משפט 1.6 שיטת פירוק לראשוניים לחישוב

יהיו שלמים חיוביי כך שהפירוק לראשוניים שלהם הם: a,b

$$a = p_1^{e_1} p_2^{e_2} \dots p_n^{e_n}$$
, $b = p_1^{f_1} p_2^{f_2} \dots p_n^{f_n}$

אז ה- $\gcd(a,b)$ הינו

$$\gcd(a,b)=p_1^{\min(e_1,f_1)}p_2^{\min(e_2,f_2)}\dots p_k^{\min(e_n,f_n)}\ .$$

 $d\mid b$ וגם $d\mid a$ כי $d\mid a$ וגם $d\mid a$ וגם

$$a = p_1^{e_1} \dots p_i^{e_i} \dots p_n^{e_n}$$

$$= (p_1^{e_1 - \min(e_1, f_1)} \dots p_i^{e_i - \min(e_i, f_i)} \dots p_n^{e_n - \min(e_n, f_n)}) (p_1^{\min(e_1, f_1)} \dots p_i^{\min(e_i, f_i)} \dots p_n^{\min(e_n, f_n)})$$

$$= qd$$

. באשר q אז q אז q אז $e_i-\min(e_i,f_i)\geq 0$ החזקה $q=p_1^{e_1-\min(e_1,f_1)}\dots p_i^{e_i-\min(e_i,f_i)}\dots p_n^{e_n-\min(e_n,f_n)}$ באשר q אז q q q

 $d \mid b$ באופן דומה אפשר להוכיח שגם

הוכחנו כי d הוא המחלק משותף של a ו- a כעת נראה כי b הוא המחלק המשותף הגדול ביותר.

b נניח בשלילה שקיים מחלק משותף c שלם כך ש- $c\mid b$ ו- $c\mid b$ ו- $c\mid a$ שלם כך שלם כל נניח בשלילה שקיים מחלק משותף c שלם כך ש- $c\mid b$ ו- $c\mid a$ שלם כך שגדול יותר מ- d מופיע רק אותם ראשוניים של $c\mid b$ ו- $c\mid a$ שמופיעים בפירוקים של a ושל b לכן יש לנו:

$$c = p_1^{g_1} \dots p_i^{g_i} \dots p_n^{g_n} ...$$

לכל $g_i \leq f_i$ אז אז $c \mid b$ -מכיוון ש- לכל קנל לכל אז פון לכל אז לכל פון אז אז יכן מכיוון ש-

$$g_i \leq \min(e_i, f_i)$$
 נכל .

לפיכד

$$c = p_1^{g_1} \dots p_i^{g_i} \dots p_n^{g_n} \quad \leq \quad p_1^{\min(e_1, f_1)} \dots p_i^{\min(e_i, f_i)} \dots p_n^{\min(e_n, f_n)} = d$$

c>d -ש בסתירה לכך בסתירה $c\leq d$ נ"ג

דוגמה 1.10

 $.\gcd(19200,320)$ מצאו את

פתרון:

הפירוקים לראשוניים של 19200 ושל 320 הם

$$19200 = 2^8 \, 3^1 \, 5^2 \,$$
, $320 = 2^6 \, 5^1 = 2^6 \, 3^0 \, 5^1 \,$.

לכן

$$\gcd(19200,320) = 2^{\min(8,6)}3^{\min(1,0)}5^{\min(2,1)} = 2^6 3^0 5^1 = 320.$$

דוגמה 1.11

 $.\gcd(154,36)$ מצאו את

פתרון:

הם 36 ושל ושל הפירוקים לראשוניים של

$$154 = 2^1 7^1 11^1$$
, $36 = 2^2 3^2$.

36 ו- 36 ו- 36 כמכפלות של אותם ראשוניים על ידי הוספת חזקות של

$$154 = 2^1 \, 3^0 \, 7^1 \, 11^1 \, , \qquad 36 = 2^2 \, 3^2 \, 7^0 \, 11^0 \, .$$

$$\gcd(154,36) = 2^{\min(1,2)} 3^{\min(0,2)} 7^{\min(1,0)} 1 1^{\min(1,0)} = 2^1 \ 3^0 \ 7^0 \ 11^0 = 2 \ .$$

משפט 1.7 gcd של מספרים ראשוניים

יהיו p,q שני מספרים ראשוניים שונים (p
eq q). מתקיים

$$\gcd(p,q)=1$$
.

הוכחה:

שיטה 1: הוכחה ישרה

הוא ראשוני אז הפירוק לראשונים שלו הוא p

$$p = p^1 q^0 .$$

הוא ראשוני אז הפירוק לראשונים שלו הוא q

$$q = p^0 q^1$$

לפי משפט 1.6,

$$\gcd(p,q) = p^{\min(1,0)}q^{\min(0,1)} = p^0q^0 = 1.$$

שיטה 2: הוכחה בשלילה

 $1 \leq d \leq q$ ונניח כי $d \leq d \leq d$ אז א נמצא בטווח של שלמים האפשריים ונניח כי $d \leq d \leq d$ נמיח בשלילה כי $d \leq d \leq d$

 $d\mid q$ וגם $d\mid p$ אז א ושל q ושל מסותף מסיוון ש- מכיוון ש

ראשוני. $d \mid q$ בסתירה לכך ש- p ראשוני. $d \mid p$ הוא ראשוני אז $d \mid q$ רק אם $d \mid q$ לכן אם גם $d \mid q$ אז זה גורר ל

משפט 1.8 שיטת פירוק לראשוניים לחישוב משפט

יהיו a,b שלמים חיוביים כך שהפירוק לראשוניים שלהם הם:

$$a = p_1^{e_1} p_2^{e_2} \dots p_n^{e_n} , \qquad b = p_1^{f_1} p_2^{f_2} \dots p_n^{f_n} .$$

ה- $\operatorname{lcm}(a,b)$ נתונה על ידי הנוסחה

$$lcm(a,b) = p_1^{\max(e_1,f_1)} p_2^{\max(e_2,f_2)} \dots p_n^{\max(e_n,f_n)}$$

 $a\mid D$ גם $a\mid D$ וגם $a\mid D$ ראשית נראה כי $D=p_1^{\max(e_1,f_1)}p_2^{\max(e_2,f_2)}\dots p_n^{\max(e_n,f_n)}$ וגם

$$D = p_1^{\max(e_1, f_1)} p_2^{\max(e_2, f_2)} \dots p_n^{\max(e_n, f_n)}$$

$$= \left(p_1^{\max(e_1, f_1) - e_1} \dots p_i^{\max(e_i, f_i) - e_i} \dots p_n^{\max(e_n, f_n) - e_n} \right) \left(p_1^{e_1} \dots p_i^{e_i} \dots p_n^{e_n} \right)$$

$$= aa$$

כאשר $\max(e_i,f_i)-e_i\geq 0$ החזקה $q=p_1^{\max(e_1,f_1)-e_1}\dots p_i^{\max(e_i,f_i)-e_i}\dots p_n^{\max(e_n,f_n)-e_n}$ אזי $a\mid D$ אזי $a\mid D$

 $b\mid D$ באופן דומה אפשר להוכיח שגם

. הוא ביותר a ושל b ושל a ושל הכפולה כי b ושל a ושל a ושל הקטנה ביותר. כעת נראה כי b ושל הקטנה של הוא כי

b ושל a ושל מדיים C אשר כפולה של ושל C וושל C וושל C בניח שקיים C אשר כפולה של פול מניח בשלילה שקיים של מר בפירוקים של a ושל בפירוקים של a ושל מכיוון ש- a וושל a וושל a וושל a וושל a וושל a וושל פירוק לראשוניים של a לכן יש לנו:

$$C=p_1^{g_1}\dots p_i^{g_i}\dots p_n^{g_n}\dots$$
 מכיוון ש- $f_i\leq g_i$ אז או $f_i\leq g_i$ לכל $e_i\leq g_i$ לכל $e_i\leq g_i$ לכל $a\mid C$ מכיוון ש-

לפיכד

$$C = p_1^{g_1} \dots p_i^{g_i} \dots p_n^{g_n} \quad \geq \quad p_1^{\max(e_1, f_1)} \dots p_i^{\max(e_i, f_i)} \dots p_n^{\max(e_n, f_n)} = D$$

C < D -טמירה לכך שC > D ז"א

משפט 1.9

יהיו a,b שלמים חיוביים. אזי

$$gcd(a, b) lcm(a, b) = ab$$
.

a ושל ושל a ושל הוכחה: יהיו הירוקים לראשוניים של

$$a = p_1^{e_1} \dots p_n^{e_n}$$
, $b = p_1^{f_1} \dots p_n^{f_n}$.

אזי ממשפט 1.6 וממשפט 1.8:

$$\begin{split} \gcd(a,b) \operatorname{lcm}(a,b) &= p_1^{\min(e_1,f_1)} \dots p_n^{\min(e_n,f_n)} p_1^{\max(e_1,f_1)} \dots p_n^{\max(e_n,f_n)} \\ &= p_1^{\min(e_1,f_1) + \max(e_1,f_1)} \dots p_n^{\min(e_n,f_n) + \max(e_n,f_n)} \\ &= p_1^{e_1+f_1} \dots p_n^{e_n+f_n} \\ &= p_1^{e_1} \dots p_n^{e_n} p_1^{f_1} \dots p_n^{f_n} \\ &= ab \ , \end{split}$$

כאשר נעזרנו בהזהות

$$\min(e, f) + \max(e, f) = e + f.$$

1.4 האלגוריתם של אוקלידס

משפט 1.10 האלגוריתם של אוקלידס

$$r_0 = a , \qquad r_1 = b .$$

אם q_1 אז מתחילים את הלולאה. בשלב i=1 מחשבים את $r_1=b \neq 0$ אם

$$q_1 = \left\lfloor \frac{r_0}{r_1} \right\rfloor , \qquad r_2 = r_0 - q_1 r_1 = r_0 - \left\lfloor \frac{r_0}{r_1} \right\rfloor .$$

אם q_2 את q_2 אם i=2 שבו לשלב i=2 אם ממשיכים ממשיכים לשלב

$$q_2 = \left\lfloor \frac{r_1}{r_2} \right\rfloor , \qquad r_3 = r_1 - q_2 r_2 = r_1 - \left\lfloor \frac{r_1}{r_2} \right\rfloor .$$

התהליך ממשיך עד שנקבל $r_{n+1}=0$ בשלב ה- $r_{n+1}=0$ התהליך ממשיך עד החליך הם כדלקמן:

$$q_1 = \left \lfloor rac{r_0}{r_1}
ight
floor r_2 = r_0 - q_1 r_1 = r_0 - \left \lfloor rac{r_0}{r_1}
ight
floor r_1$$
 $: i = 1$ שלב $q_2 = \left \lfloor rac{r_1}{r_2}
ight
floor r_3 = r_1 - q_2 r_2 = r_1 - \left \lfloor rac{r_1}{r_2}
ight
floor r_2$ $: i = 2$ שלב $q_3 = \left \lfloor rac{r_2}{r_3}
ight
floor r_4 = r_2 - q_3 r_3 = r_2 - \left \lfloor rac{r_2}{r_3}
ight
floor r_3$ $: i = 3$ $: i = 3$ שלב $q_{n-1} = \left \lfloor rac{r_{n-2}}{r_{n-1}}
ight
floor r_n = r_{n-2} - q_n r_n = r_{n-2} - \left \lfloor rac{r_{n-2}}{r_{n-1}}
ight
floor r_{n-1}$ $: i = n-1$ $: i = n-1$ שלב $q_n = \left \lfloor rac{r_{n-1}}{r_n}
ight
floor r_{n+1} = 0$ $: i = n$

 $.r_n=\gcd(a,b)$ התהליך מסתיים בשלב ה-n-ית אם $.r_{n+1}=0$ ואז הפלט של האלגוריתם בשלב ה-n-ית אם

למטה רשום ייצוג פסאודו-קוד של האלגוריתם של אוקלידס:

Algorithm 1 האלגוריתם של אוקלידס

1: Input: Integers a, b.

2: $r_0 \leftarrow a$

3: $r_1 \leftarrow b$

4: $n \leftarrow 1$

5: while $r_n \neq 0$ do

6:
$$q_n \leftarrow \left\lfloor \frac{r_{n-1}}{r_n} \right\rfloor$$
7: $r_{n+1} \leftarrow r_{n-1} - q_n r_n$

7:

 $n \leftarrow n + 1$

9: end while

10: $n \leftarrow n-1$

11: **Output:** $r_n = \gcd(a, b)$

דוגמה 1.12

 $.\gcd(1071,462)$ - מצאו את ה

פתרון:

.a = 1071, b = 462

נאתחל אוקלידס: $r_1=b=462$ ו- $r_0=a=1071$ נאתחל

r_i	q_i	שלב
$ \begin{array}{ c c } \hline r_2 = r_0 - q_1 r_1 \\ = 1071 - (2)(462) = 147 \end{array} $	$q_1 = \left\lfloor \frac{r_0}{r_1} \right\rfloor = \left\lfloor \frac{1071}{462} \right\rfloor = 2$:i=1
	$q_2 = \left\lfloor \frac{r_1}{r_2} \right\rfloor = \left\lfloor \frac{462}{147} \right\rfloor = 3$:i=2
$ \begin{vmatrix} r_4 = r_2 - q_3 r_3 \\ = 147 - (7)(21) = 0 \end{vmatrix} $	$q_3 = \left\lfloor \frac{r_2}{r_3} \right\rfloor = \left\lfloor \frac{147}{21} \right\rfloor = 7$:i = 3

 $\gcd(1071,462)=r_3=21$ לפיכך

דוגמה 1.13

 $.\gcd(26,11)$ מצאו את

פתרון:

.a = 26, b = 11

r_i	q_i	שלב
$ \begin{array}{c c} r_2 = r_0 - q_1 r_1 \\ = 26 - (2)(11) = 4 \end{array} $	$q_1 = \left\lfloor \frac{r_0}{r_1} \right\rfloor = \left\lfloor \frac{26}{11} \right\rfloor = 2$:i=1
	$q_2 = \left\lfloor \frac{r_1}{r_2} \right\rfloor = \left\lfloor \frac{11}{4} \right\rfloor = 2$:i=2
	$q_3 = \left\lfloor \frac{r_2}{r_3} \right\rfloor = \left\lfloor \frac{4}{3} \right\rfloor = 1$:i = 3
$ r_5 = r_3 - q_4 r_4 $ $= 3 - (3)(1) = 0 $	$q_4 = \left\lfloor \frac{r_3}{r_4} \right\rfloor = \left\lfloor \frac{3}{1} \right\rfloor = 3$:i=5

 $gcd(26,11) = r_4 = 1$ לפיכך

משפט 1.11 משפט בזו (Bezout's identity)

יהיו a,b עבורם אלמים s,t,d עבורם

$$sa + tb = d {(1.2)}$$

a ו- a

משפט 1.12 האלגוריתם המוכלל של אוקלידס

עבורם s,t,d שלמים שלמים אשר נותן אלגוריתם אלגורים. קיים חיוביים. שלמים a,b

$$d = sa + tb$$

כאשר $d = \gcd(a,b)$, כדלקמן. ראשית מאתחלים:

$$r_0 = a$$
, $r_1 = b$, $s_0 = 1$, $s_1 = 0$, $t_0 = 0$, $t_1 = 1$.

 q_1,r_2,s_2,t_2 אז מבצעים את בשלב i=1 מחשבים של הלולאה. הראשונה איטרציה האיטרציה הראשונה של איז מבצעים האיטרציה הראשונה א

$$q_1 = \left| \frac{r_0}{r_1} \right|$$
, $r_2 = r_0 - q_1 r_1$, $s_2 = s_0 - q_1 s_1$, $t_2 = t_0 - q_1 t_1$.

 q_2,r_3,s_3,t_3 אם שבה מחשבים את i=2 איטרציה לאיטרציה אז עוברים אז עוברים איטרציה

$$q_2 = \left| \frac{r_1}{r_2} \right|$$
, $r_3 = r_1 - q_2 r_2$, $s_3 = s_1 - q_2 s_2$, $t_3 = t_1 - q_2 t_2$.

התהליך ממשיך עד השלב ה- n שבו מקבלים r_{n+1} , ואז פולטים $d=r_n=\gcd(a,b), s=s_n, t=t_n$ כל התהליך ממשיך עד השלב ה- n שבו מקבלים כדלקמן:

$q_1 = \left\lfloor \frac{r_0}{r_1} \right\rfloor$	$r_2 = r_0 - q_1 r_1$	$s_2 = s_0 - q_1 s_1$	$t_2 = t_0 - q_1 t_1$:1 שלב
$q_2 = \left\lfloor \frac{r_1}{r_2} \right\rfloor$	$r_3 = r_1 - q_2 r_2$	$s_3 = s_1 - q_2 s_2$	$t_3 = t_1 - q_2 t_2$:2 שלב
				:
$q_i = \left\lfloor \frac{r_{i-1}}{r_i} \right\rfloor$	$r_{i+1} = t_{i-1} - q_i t_i$	$s_{i+1} = s_{i-1} - q_i s_i$	$t_{i+1} = t_{i-1} - q_i r_i$:i שלב
				:
$q_{n-1} = \left\lfloor \frac{r_{n-2}}{r_{n-1}} \right\rfloor$	$r_n = t_{n-2} - q_{n-1}t_{n-1}$	$s_n = s_{n-2} - q_{n-1}s_{n-1}$	$t_n = t_{n-2} - q_{n-1}r_{n-1}$	n-1 שלב
$q_n = \left\lfloor \frac{r_{n-1}}{r_n} \right\rfloor$	$r_{n+1} = t_{n-1} - q_n t_n$	$s_{n+1} = s_{n-1} - q_n s_n$	$t_{n+1} = t_{n-1} - q_n r_n$:n שלב
$d = \gcd(a, b) = r_n , \qquad s = s_n , \qquad t = t_n .$				

למטה רשום ייצוג פסאודו-קוד של האלגוריתם:

Algorithm 2 אוקלידס של המוכלל האלגוריתם

```
1: Input: Integers a, b.

2: r_0 \leftarrow a

3: r_1 \leftarrow b

4: s_0 \leftarrow 1
```

5:
$$s_1 \leftarrow 0$$

6: $t_0 \leftarrow 0$
7: $t_1 \leftarrow 1$

$$n: \iota_1 \leftarrow 1$$

8: $n \leftarrow 1$

8:
$$n \leftarrow 1$$

9: while
$$r_n \neq 0$$
 do

10:
$$q_n \leftarrow \left\lfloor \frac{r_{n-1}}{r_n} \right\rfloor$$
11: $r_{n+1} \leftarrow r_{n-1} - q_n r_n$

12:
$$s_{n+1} \leftarrow s_{n-1} - q_n s_n$$

13:
$$t_{n+1} \leftarrow t_{n-1} - q_n t_n$$

14:
$$t_{n+1} \leftarrow t_{n-1} - q_n$$

15: end while

16:
$$n \leftarrow n-1$$

17: Output:
$$r_n, s_n, t_n$$

$$\triangleright d = r_n = \gcd(a, b)$$
 and $d = sa + tb$ where $s = s_n$, $t = t_n$.

דוגמה 1.14 (אלגוריתם המוכלל של איוקלידס)

d=240s+46t עבורם s,t שלמים ומצאו $d=\gcd(240,46)$ מצאו את

מאתחלים:

$$r_0 = a = 240$$
, $r_1 = b = 46$,
 $s_0 = 1$, $s_1 = 0$,
 $t_0 = 0$, $t_1 = 1$.

$q_1 = \left\lfloor \frac{240}{46} \right\rfloor = 5$	$r_2 = 240 - 5 \cdot 46 = 10$	$s_2 = 1 - 5 \cdot 0 = 1$	$t_2 = 0 - 5 \cdot 1 = -5$: i = 1 שלב
$q_2 = \left\lfloor \frac{46}{10} \right\rfloor = 4$	$r_3 = 46 - 4 \cdot 10 = 6$	$s_3 = 0 - 4 \cdot 1 = -4$	$t_3 = 1 - 4 \cdot (-5) = 21$: i=2 שלב
$q_3 = \left\lfloor \frac{10}{6} \right\rfloor = 1$	$r_4 = 10 - 1 \cdot 6 = 4$	$s_4 = 1 - 1 \cdot (-4) = 5$	$t_4 = -5 - 1 \cdot (21) = -26$:i=3 שלב
$q_4 = \left\lfloor \frac{6}{4} \right\rfloor = 1$	$r_5 = 6 - 1 \cdot 4 = 2$	$s_5 = -4 - 1 \cdot 5 = -9$	$t_5 = 21 - 1 \cdot (-26) = 47$:i=4 שלב
$q_5 = \left\lfloor \frac{4}{2} \right\rfloor = 2$	$r_6 = 4 - 2 \cdot 2 = 0$	$s_6 = 5 - 2 \cdot (-9) = 23$	$t_6 = -26 - 2 \cdot (47) = -120$:i=5 שלב

$$\gcd(a,b)=r_5=2$$
 , $s=s_5=-9$, $t=t_5=47$.
$$sa+tb=-9(240)+47(46)=2$$
 .

דוגמה 1.15 (אלגוריתם המוכלל של איוקלידס)

d=326s+78t עבורם s,t שלמים ומצאו $d=\gcd(326,78)$ את מצאו את

פתרון:

מאתחלים:

$$r_0 = a = 326$$
, $r_1 = b = 78$,
 $s_0 = 1$, $s_1 = 0$,
 $t_0 = 0$, $t_1 = 1$.

$\boxed{q_1 = \left\lfloor \frac{326}{78} \right\rfloor = 4}$	$r_2 = 326 - 4 \cdot 78 = 14$	$s_2 = 1 - 4 \cdot 0 = 1$	$t_2 = 0 - 4 \cdot 1 = -4$:i=1 שלב
$q_2 = \left\lfloor \frac{78}{14} \right\rfloor = 5$	$r_3 = 78 - 5 \cdot 14 = 8$	$s_3 = 0 - 5 \cdot 1 = -5$	$t_3 = 1 - 5 \cdot (-4) = 21$:i=2 שלב
$q_3 = \left\lfloor \frac{14}{8} \right\rfloor = 1$	$r_4 = 14 - 1 \cdot 8 = 6$	$s_4 = 1 - 1 \cdot (-5) = 6$	$t_4 = -4 - 1 \cdot (21) = -25$:i=3 שלב
$q_4 = \left\lfloor \frac{8}{6} \right\rfloor = 1$	$r_5 = 8 - 1 \cdot 6 = 2$	$s_5 = -5 - 1 \cdot 6 = -11$	$t_5 = 21 - 1 \cdot (-25) = 46$:i=4 שלב
$q_5 = \left\lfloor \frac{6}{2} \right\rfloor = 3$	$r_6 = 6 - 3 \cdot 2 = 0$:i=5 שלב

$$\gcd(a,b)=r_5=2$$
 , $s=s_5=-11$, $t=t_5=46$.
$$sa+tb=-11(326)+46(78)=2$$
 .

1.5 יחס השקילות המודולרית

הגדרה 1.7 שקילות מודולרית

יהיו a,b,n שלמים ($n \neq 0$). היחס:

 $a \equiv b \pmod{n}$

a-b אומר כי n מחלק את ההפרש כלומר:

 $a \equiv b \pmod n$ אם ורק אם $n \mid a - b$.

דוגמה 1.16

הוכיחו כי

$$5 \equiv 2 \pmod{3}$$
 (x

$$43 \equiv 23 \pmod{10}$$
 د

$$7 \not\equiv 2 \pmod{4}$$
 (x

פתרון:

(×

$$5-2=3=1\cdot 3 \quad \Rightarrow \quad 3 \mid 5-2 \quad \Rightarrow \quad 5 \equiv 2 \pmod 3 \ .$$

(Þ

$$43-23=20=2\cdot 10\quad \Rightarrow\quad 10\mid 43-23\quad \Rightarrow\quad 43\equiv 23 \pmod{10}\ .$$

.7 - 2 = 5 (x

לכן
$$7-2 \nmid 4$$
 לכן לכן $7-2=4q$ כך שלם לא קיים שלם לא לא

 $7\not\equiv 2\pmod 4$.

ההגדרה 1.7 של שקילות מודולרית בין שלמים גוררת למשפט הבא באופן טבעי:

משפט 1.13

a,b,r יהיו a,b,r שלמים,

a=qn+b אם שלם q קיים שלם האס אם ורק אם אם אם ורק אם אם אם ורק אם $a\equiv b \pmod n$

הוכחה:

הגרירה הראשונה אם נובעת $a \equiv r \pmod{b} \Leftrightarrow b \mid a-r$ של יחס שקילות. מהגרירה הראשונה יחס שקילות:

a=qn+b \iff a-b=qn אם ורק אם קיים שלם q עבורו $n\mid a-b$

משפט 1.14 תכונות של יחס השקילות המודולרית

יהיו a,b שלמים ו- $n \neq 0$ שלם.

- $a\equiv a\pmod n$ רפלקסיבי: (1
- $a \equiv a \pmod n$ אם ורק אם $a \equiv b \pmod n$ (2
- $a\equiv c\pmod n$ אזי $b\equiv c\pmod n$ וכן $a\equiv b\pmod n$ אזי $a\equiv b\pmod n$ טרנזיטיבי:

הוכחה:

:רפלקסיבי

 $a \equiv a \pmod n$, לכן שלם $a \equiv a \pmod n$, או במילים אחרות או במילים, או במילים $n \neq a \equiv a \pmod n$

:סימטרי (2

עבורו $a\equiv b\pmod n$ עבורו . $a\equiv b\pmod n$

$$a = qn + b \quad \Leftarrow \quad b = (-q)n + a$$
.

 $a \equiv a \pmod n$ לכן $b \equiv \bar q n + a$ עבורו ar q = -q לכן איים שלם

 $b \equiv c \pmod n$ וכן $a \equiv b \pmod n$ נניח ש- (3

$$\left. \begin{array}{ll} a & = qn + b \\ b & = \bar{q}n + c \end{array} \right\} \quad \Rightarrow \quad a = qn + \bar{q}n + c = (b + \bar{q})n + c$$

 $a\equiv c\pmod n$ לכן a=Qn+c עבורו Q=q+ar q לכן ז"א קיים שלם

משפט 1.15 חיבור וכפל של שלמים השקולים מודולריים

יהיו a,b,c,d שלם. a,b,c,d

- $a+c\equiv b+d\pmod n$ אזי $a\equiv b\pmod n$ וכן $a\equiv b\pmod n$ חיבור: אם $a\equiv b\pmod n$
 - $ac \equiv bd \pmod n$ אזי $a \equiv b \pmod n$ וכך ($a \equiv b \pmod n$ אזי (2

הוכחה:

עבורו q שלם q אזי קיים שלם a=qn+b אזי קיים שלם אזי אזי קיים שלם מור ווכן אם מוכן $a\equiv d\pmod n$ אזי קיים שלם $a\equiv b\pmod n$ אזי לפיכך .c = $\bar qn+d$

$$a+c=(q+\bar{q})n+b+d \quad \Rightarrow \quad a+c=Qn+(b+d)$$
,

 $a+c\equiv b+d\pmod n$ לכן לכן a+c=Qn+b+d עבורו שקיים שלם Q עבורו .Q=q+ar q

q שלם אזי קיים אזי $c\equiv d\pmod n$ וכן אם a=qn+bעבורו שלם אזי קיים אזי $a\equiv b\pmod n$ אזי בפל: אם כפל: $c\equiv \bar qn+d$ עבורו לפיכך

$$ac = (qn + b)(\bar{q}n + d) \implies ac = (q\bar{n} + dq + b\bar{q})n + bd \implies ac = Qn + bd,$$

 $.ac \equiv bd \pmod n$ לכן ac = Qn + bd עבורו שקיים שלם Q = (qar n + dq + bar q) כאשר

1.6 משפט של פרמה

משפט 1.16 המשפט של פרמה

:p לכל שלם a ולכל משפר ראשוני

$$a^p \equiv a \pmod{p}$$
 .1

$$a^{p^k} \equiv a \pmod{p}$$
 .2

הוכחה:

טענה 1. נוכיח באינדוקציה.

<u>שלב בסיס:</u>

עבור a=0 מתקיימת. a=0 מתקיימת.

שלב המעבר:

a נניח כי הטענה מתקיימת עבור

$$(a+1)^p = a^p + pa^{p-1} + \frac{p(p-1)}{2}a^{p-2} + \dots + pa + 1 \equiv a^p + 1 \pmod{p}$$

לכן $a^p \equiv a \pmod p$ - שומרת אומרת האינדוקציה ההנחת

$$(a+1)^p \equiv a^p + 1 \pmod{p} \equiv (a+1) \pmod{p}$$

כנדרש.

טענה 2. נוכיח באינדוקציה.

<u>שלב בסיס:</u>

עבור k=1 הטענה $a^p\equiv a\pmod p$ מתקיימת לפי סעיף 1).

שלב המעבר: