

Department of Mathematics Wintersemester 2011/2012

2nd Exercise Sheet in "Computer Algebra"

Deadline: Thursday, November 3 2011, 10.00 h

Exercise 1. For an ideal $I \subset K[x_1, \ldots, x_n]$ let $I^h := \langle f^h \mid f \in I \rangle \subset K[x_0, \ldots, x_n]$. Now let > be a global degree ordering, and let $\{f_1, \ldots, f_m\}$ be a Gröbner basis of I. Prove that

$$I^h = \langle f_1^h, \dots, f_m^h \rangle$$
.

Exercise 2. Let $A \in GL(n, \mathbb{Q})$ be a matrix defining, on $Mon(x_1, \ldots, x_n)$, the ordering > and let $I = \langle f_1, \ldots, f_m \rangle \subset K[x_1, \ldots, x_n]$ be an ideal. Consider the ordering $>_h$ on $Mon(t, x_1, \ldots, x_n)$ defined by the matrix

$$\left(\begin{array}{cccc}
1 & 1 & \dots & 1 \\
0 & & & \\
\vdots & & A & \\
0 & & &
\end{array}\right)$$

and let $\{G_1, \ldots, G_s\}$ be a homogeneous standard basis of $\langle f_1^h, \ldots, f_m^h \rangle$, f_i^h , the homogenization of f_i with respect to t. Prove that $\{G_1|_{t=1}, \ldots, G_s|_{t=1}\}$ is a standard basis for I.

Exercise 3. Let > be a global monomial ordering on $Mon(x_1, \ldots, x_n)$. Prove the *Product Criterion*: Let $f, g \in K[x_1, \ldots, x_n]$ be polynomials such that $lcm(LM(f), LM(g)) = LM(f) \cdot LM(g)$, then

$$NF(spoly(f, g) | \{f, g\}) = 0.$$

HINT: Assume that LC(f) = LC(g) = 1 and claim that spoly(f, g) = -tail(g)f + tail(f)g is a standard representation.

Exercise 4. Assume that > is a global monomial ordering on $K[x_1, \ldots, x_n]$. Write a SINGULAR procedure to compute the reduced normal form of a given polynomial f with respect to a given finite list of polynomials G.

REMARK: You are not allowed to use the implemented commands reduce and NF. Don't forget to add at least one example to your procedure.