UE 6
INITIATION À LA CONNAISSANCE DU
MÉDICAMENT

Pharmacocinétique

Cours N° 6

Dr. F. DESPAS

- Détermination des modalités d'administration
 - 1. Rappels
 - 2. Variantes d'évolution des concentrations suivant voie d'administration
 - 3. Administration en doses répétées
 - 4. Demi-vie longue et dose de charge
 - 5. Administration en perfusion continue

- Détermination des modalités d'administration
 - 1. Rappels
 - 2. Variantes d'évolution des concentrations suivant voie d'administration
 - 3. Administration en doses répétées
 - 4. Demi-vie longue et dose de charge
 - 5. Administration en perfusion continue

1. Rappels

Aspects des courbes expérimentales

1. Rappels

Aspects des courbes expérimentales

- Détermination des modalités d'administration
 - 1. Rappels
 - 2. Variantes d'évolution des concentrations suivant voie d'administration
 - 3. Administration en doses répétées
 - 4. Demi-vie longue et dose de charge
 - 5. Administration en perfusion continue

2. Variantes d'évolution des concentrations suivant voie d'administration

Absorption

- I.V.
 - Absorption immédiate et totale

Voie orale

- Absorption non immédiate
 - Cmax, Tmax=délai d'action
- Potentiellement partielle, biodisponibilité de 0 à 100%
 - Rapport des SSC : VO/IV

2. Variantes d'évolution des concentrations suivant voie d'administration

Distribution

- Pour toutes voies d'administrations égalité du volume de distribution
 - Vd=Vd
 - fonction propriétés physico-chimiques

Elimination

- Pour toutes voies d'administration Egalité demi-vie
 - t½=t½

NB: pour forme à libération immédiate!

- Exemples : Paracétamol biodisponibilité VO : 90-95% ; Tmax 30-60 min
 - **V.O. Dafalgan**[®] : t ½ = 2 heures → 0,5 à 1g jusqu'à **4 f/j**
 - I.V. Perfalgan[®] : t $\frac{1}{2}$ = 2 heures \rightarrow 0,5 à 1g jusqu'à 4 f/j

- Détermination des modalités d'administration
 - 1. Rappels
 - 2. Variantes d'évolution des concentrations suivant voie d'administration
 - 3. Administration en doses répétées
 - 4. Demi-vie longue et dose de charge
 - 5. Administration en perfusion continue

3. Administration en doses répétées

- L'étude des paramètres pharmacocinétiques (Phase I, II) permet d'établir la posologie appropriée :
 - Dose: D pour une voie d'administration donnée (μg, mg, g)
 - τ: Intervalle d'administration (temps entre deux administrations d'une dose D)
- Généralement administration des médicaments de manière répétée
 - Plusieurs jours de traitement
 - Traitement chronique : Ex. QSP 3 mois
- Administration en doses répétées
 - SANS cumul de dose
 - AVEC cumul de dose

3. a. Administration en doses répétées SANS cumul de dose

- Lorsque la dose administrée est totalement éliminée avant la dose suivante (τ >7 t½)
 - Profil de pic successif d'administration aiguë

3. b. Administration en doses répétées AVEC cumul de dose

- Lorsque la prise intervient avant l'élimination totale de la dose précédente (τ < 7 $t\frac{1}{2}$)
 - Accumulation jusqu'à équilibre : $\mathbf{C}_{moy, eq}$

3. b. Administration en doses répétées AVEC cumul de dose

- Notion d'état d'équilibre
 - C_{moy, eq} est déterminée par :

$$C_{\text{moy, eq}} = \frac{\text{(Dose/}\tau)}{\text{Cl}_{\text{Totale}}}$$

Nombre d'administration (n) nécessaire pour parvenir à $C_{mov, eq}$

$$n \ge 3.3 \times t\frac{1}{2}$$

- En pratique :
 - Calcul de τ pour atteinde C_{moy, eq} en 5 t ½

Voie orale

3. b. Administration en doses répétées AVEC cumul de dose

Ex. : Problème dans votre service de cardiologie

5 patients, diagnostic d'endocardite bactérienne, traités par Imipenem (Tienam®)

2 patients ont été admis vendredi dernier (NB. lendemain de votre anniversaire...)

Ces 2 patients ont de violentes céphalées, agressifs, désorientation spatio-

temporelle et hallucinations surtout le matin...

Aucun antécédent psychiatrique rapporté...

→ POURQUOI seulement ces 2 patients?

Posologie: 500 mg x 3 f/j \neq 3 x 500 mg x 1 f/j

• Fluctuation des concentrations en fonction de τ :

$$\frac{C_{\text{max}}}{C_{\text{min}}} = e^{k.\tau}$$

- Détermination des modalités d'administration
 - 1. Rappels
 - 2. Variantes d'évolution des concentrations suivant voie d'administration
 - 3. Administration en doses répétées
 - 4. Demi-vie longue et dose de charge
 - 5. Administration en perfusion continue

3. Demi-vie longue et dose de charge

- Exemples de l'Amiodarone : t ½ = de 20 à 100 jours
- Atteinte C_{mov, eq} en 5 t ½ ???

– D' où administration en deux phases :

Dose de charge (Vd & C_{moy, eq}) + Posologie d'entretien

Amiodarone (Cordarone®)

- » Traitement d'attaque : 3 x 200mg/j pendant 8 à 10 jours
- » Traitement d'entretien : 200 mg tous les 2 jours

- Détermination des modalités d'administration
 - 1. Rappels
 - 2. Variantes d'évolution des concentrations suivant voie d'administration
 - 3. Administration en doses répétées
 - 4. Demi-vie longue et dose de charge
 - 5. Administration en perfusion continue

4.a. Administration en perfusion continue

- Modèle théorique
 - Si médicament non éliminé : t ½ = ∞
 - Relation linéaire entre vitesse de perfusion (mg/temps) et concentration plasmatique (mg/ml)

4.a. Administration en perfusion continue

- En pratique
 - Médicament éliminé avec une t ½
 - Atteinte d'un état d'équilibre avec C_{moy, eq}
 - A l'état d'équilibre : **Qp = Qe**
 - Vitesse perfusion = vitesse élimination ; volume par unité de temps
 - 90% de $C_{\text{moy, eq}}$ atteinte en 3,3 t½
 - 97% de C_{mov, eq} atteinte en 5 t½
 - Niveau de C_{moy, eq} est déterminé par vitesse de perfusion (mg/temps)

4. b. Administration dose de charge puis perfusion continue

- Médicaments t½ longues
 - Administration dose de charge (Vd et C_{mov, eq})
 - Puis administration perfusion d'entretien,
 - Etat d'équilibre où Qp = Qe (volume par unité de temps)

Mr. H. 57 ans est transféré au services des soins intensifs de cardiologie pour traitement de choc cardiogénique post SCA

- Médecin prescrit de la dobutamine
 - Indication : Syndrome de bas débit cardiaque
 - Pharmacodynamie
 - » β₁-mimétique : stimulant/analeptique cardiaque
 - PK : $t\frac{1}{2}$ = 2 min ; biodisponibilité V.O. = 0%
 - Quelles sont les modalités d'administration ?

Perfusion continue:

Si débit de 5 μ g/kg/min : $C_{mov, eq} = 100 \text{ ng/ml}$

- Après 7 jours de traitement, le patient est insevrable à la dobutamine, prescription de Levosimendan
 - Indication : Syndrome de bas débit cardiaque insevrable à la dobutamine
 - Pharmacodynamie:
 - » Augmente la sensibilité de la myosine myocardique au calcium
 - PK: métabolite actif OR-1855 t $\frac{1}{2}$ = 80 heures, médicament disponible que I.V.
 - Quelles sont les modalités d'administration ?

<u>Dose de charge + Perfusion continue :</u>

12 μg/kg sur 10min puis 0,1 μg/Kg/min pendant 24 h

Pharmacocinétique : PK

Synthèse

- Etude du devenir des médicaments dans l'organisme
 - A.D.M.E.
 - Biodisponibilité, Vd, Clairance, t½, τ...
- Définir la posologie d'un médicament
 - Posologie usuelle
 - Dose & rythme d'administration
 - Schéma posologique particulier
 - Dose de charge puis posologie d'entretien
- Anticiper les modifications en fonction des caractéristiques individuelles
 - Population
 - Comorbidités
 - Interactions médicamenteuses...

Merci de votre attention