Boosting

This file is meant for personal use by gelson.diaz@austin.utexas.edu only.

Sharing or publishing the contents in part or full is liable for legal action.

Proprietary content. © Great Learning. All Rights Reserved. Unauthorized use or distribution prohibited.

Boosting Methods

- AdaBoosting (Adaptive Boosting)
 - In AdaBoost, the successive learners are created with a focus on the ill fitted data of the previous learner
 - Each successive learner focuses more and more on the harder to fit data i.e.
 their residuals in the previous tree
- Gradient Boosting (GBM)
 - Each learner is fit on a modified version of original data. Original data is replaced with the x values and residuals from previous learner
 - By fitting new models to the residuals, the overall learner gradually improves in areas where residuals are initially high
- XG Boost (Extreme Gradient Boosting)
 - Upgraded implementation of Gradient Boosting. Developed for high computational speed, scalability, and better performance.
 - Parallel Implementation, Cross-Validation, Cache Optimization, Distributed Computation This file is meant for personal use by gelson.diaz@austin.utexas.edu only.

AdaBoost

X1	X2	Υ
		+
		+ +
		-
••		

AdaBoost

This file is meant for personal use by gelson.diaz@austin.utexas.edu only.

Sharing or publishing the contents in part or full is liable for legal action. Proprietary content. © Great Learning. All Rights Reserved. Unauthorized use or distribution prohibited.

Gradient Boosting

 X	у	y ₀	y - y ₀	h
	50	40	10	8
	92	100	-8	-8
	60	80	-20	-10
	64	50	14	12

Sharing or publishing the contents in part or full is liable for legal action. Proprietary content. © Great Learning. All Rights Reserved. Unauthorized use or distribution prohibited.

Sharing or publishing the contents in part or full is liable for legal action. Proprietary content. © Great Learning. All Rights Reserved. Unauthorized use or distribution prohibited.

This file is meant for personal use by gelson.diaz@austin.utexas.edu only.

Sharing or publishing the contents in part or full is liable for legal action.

Proprietary content. © Great Learning. All Rights Reserved. Unauthorized use or distribution prohibited.