

REALIZATIONS OF SEIFERT MATRICES BY HYPERBOLIC KNOTS

STEFAN FRIEDL

ABSTRACT. Recently Kearton showed that any Seifert matrix of a knot is S-equivalent to the Seifert matrix of a prime knot. We show in this note that such a matrix is in fact S-equivalent to the Seifert matrix of a hyperbolic knot. This result follows from reinterpreting this problem in terms of Blanchfield pairings and by applying results of Kawauchi.

1. INTRODUCTION

We say that a square integral matrix A is of *Seifert type* if $\det(A - A^t) = 1$. Let A be a square integral matrix, then for any column vector v the matrices

$$\begin{pmatrix} A & 0 & 0 \\ v^t & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \text{ and } \begin{pmatrix} A & v & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

are called elementary enlargements of A . We also say that A is an elementary reduction of any of its elementary enlargements. Two matrices are *S-equivalent* if they can be connected by a chain of elementary enlargements, elementary reductions and unimodular congruences.

Let $K \subset S^3$ be a knot and F a Seifert surface. Given a basis for $H_1(F)$ we can then define the Seifert matrix A of K . It is well-known that A is of Seifert type. It is shown in [Mu65, Theorem 3.1] (cf. also [Le70, Theorem 1]) that the S-equivalence class of the Seifert matrix is a knot invariant.

It is well-known that any matrix of Seifert type is the Seifert matrix of a knot. In [Ke04] Kearton showed that any matrix of Seifert type is S-equivalent to the Seifert matrix of a prime knot.

In this note we prove the following:

Theorem 1.1. *Let A be a matrix of Seifert type, then there exist infinitely many hyperbolic knots $K_i, i \in \mathbb{N}$ such that A is S-equivalent to a Seifert matrix of K_i .*

The proof relies on a reformulation of the S-equivalence class in terms of Blanchfield pairings and on realization results of Kawauchi.

Date: February 1, 2008.

2000 *Mathematics Subject Classification.* Primary 57M25.

Key words and phrases. Seifert matrices, hyperbolic knots.

Added in proof: This theorem also follows for links from combining Theorem 2.2 with [Ka94, Theorem A.1].

2. PROOF OF THE THEOREM

2.1. S-equivalence and Blanchfield forms. Given a knot $K \subset S^3$ we write $X(K) = S^3 \setminus \nu K$, the knot exterior. In the following we let $\Lambda = \mathbb{Z}[t, t^{-1}]$ and $Q(\Lambda) = \mathbb{Q}(t)$ the quotient field of Λ . We view $\Lambda = \mathbb{Z}[t, t^{-1}]$ with the involution $p \mapsto \bar{p}$ induced by $t \mapsto t^{-1}$.

Consider the following sequence of Λ -homomorphisms

$$\begin{aligned} H_1(X(K); \Lambda) &\xrightarrow{\cong} H_1(X(K), \partial X(K); \Lambda) \xrightarrow{\cong} H^2(X(K); \Lambda) \xrightarrow{\cong} \text{Ext}_\Lambda^1(H_1(X(K); \Lambda), \Lambda) \\ &\xleftarrow{\cong} \text{Hom}(H_1(X(K); \Lambda), Q(\Lambda)/\Lambda). \end{aligned}$$

Here the first map comes from the long exact sequence of the pair $(X(K), \partial X(K))$, and is easily seen to be an isomorphism. The second homomorphism is Poincaré duality, the third homomorphism comes from the universal coefficient spectral sequence (and is an isomorphism by [Le77, Proposition 3.2]) and finally the last homomorphism comes from the long exact Ext-sequence corresponding to the short exact sequence of coefficients

$$0 \rightarrow \Lambda \rightarrow Q(\Lambda) \rightarrow Q(\Lambda)/\Lambda \rightarrow 0.$$

This sequence of homomorphisms defines the Blanchfield pairing

$$\lambda(K) : H_1(X(K); \Lambda) \times H_1(X(K); \Lambda) \rightarrow Q(\Lambda)/\Lambda.$$

This pairing is non-singular and Λ -hermitian. Furthermore if A is a Seifert matrix for K of size $k \times k$, then the Blanchfield pairing is isometric to the pairing

$$\begin{aligned} \Lambda^k / (At - A^t)\Lambda^k \times \Lambda^k / (At - A^t)\Lambda^k &\rightarrow Q(\Lambda)/\Lambda \\ (v, w) &\mapsto \bar{v}^t(t-1)(At - A^t)^{-1}w. \end{aligned}$$

In particular the (S-equivalence class of a) Seifert matrix determines the Blanchfield pairing of a knot. By [Tr73] (and also by comparing [Ke75] with [Le70]) the converse holds as well, more precisely, the following theorem holds true.

Theorem 2.1. *Let $K_1, K_2 \subset S^3$ be knot. Then K_1 and K_2 have S-equivalent Seifert matrices if and only if the Blanchfield pairings $\lambda(K_1)$ and $\lambda(K_2)$ are isometric.*

2.2. Kawauchi's realization results. Before we continue we recall that the derived series $G^{(n)}$, $n \in \mathbb{N}$ of a group G is defined inductively by $G^{(0)} = G$ and $G^{(n+1)} = [G^{(n)}, G^{(n)}]$, the commutator of $G^{(n)}$. We recall the following hyperbolic realization result by Kawauchi.

Theorem 2.2. *Let $L \subset S^3$ be any link, then for any $V \in \mathbb{R}$ there exists a hyperbolic link $\tilde{L} \subset S^3$ together with a map $f : (S^3, \tilde{L}) \rightarrow (S^3, L)$ such that the following hold:*

- (1) $\text{Vol}(S^3 \setminus \tilde{L}) > V,$

- (2) the induced map $\pi_1(S^3 \setminus \tilde{L})/\pi_1(S^3 \setminus \tilde{L})^{(n)} \rightarrow \pi_1(S^3 \setminus L)/\pi_1(S^3 \setminus L)^{(n)}$ is an isomorphism for any n .

The theorem follows from the theory of almost identical imitations of Kawauchi. More precisely, the theorem follows from combining [Ka89b, Theorem 1.1] with [Ka89a, Properties I and V, p. 450] (cf. also [Ka89c]).

2.3. Conclusion of the proof of the theorem. Let $K \subset S^3$ be a knot and $V \in \mathbb{R}$. Let \tilde{K} be as in Theorem 2.2. Since we can choose V arbitrarily large it follows from Theorem 2.1 that it is enough to show that the Blanchfield pairings $\lambda(K)$ and $\lambda(\tilde{K})$ are isometric.

First note that by Theorem 2.2 (2), applied to $n = 1$, we have a commutative diagram

$$\begin{array}{ccc} \pi_1(X(\tilde{K})) & \xrightarrow{f_*} & \pi_1(X(K)) \\ & \searrow & \swarrow \\ & \mathbb{Z}. & \end{array}$$

In particular we get induced maps $H_i(X(\tilde{K}); \Lambda) \rightarrow H_i(X(K); \Lambda)$. Write $X = X(K)$ and $\tilde{X} = X(\tilde{K})$. We then get the following commutative diagram

$$\begin{array}{ccccccc} H_1(\tilde{X}; \Lambda) & \rightarrow & H_1(\tilde{X}, \partial\tilde{X}; \Lambda) & \rightarrow & H^2(\tilde{X}; \Lambda) & \rightarrow & \text{Ext}_\Lambda^1(H_1(\tilde{X}; \Lambda), \Lambda) \xleftarrow{\cong} \text{Hom}(H_1(\tilde{X}; \Lambda), Q(\Lambda)/\Lambda) \\ \downarrow & & \downarrow & & \downarrow & & \downarrow \\ H_1(X; \Lambda) & \rightarrow & H_1(X, \partial X; \Lambda) & \rightarrow & H^2(X; \Lambda) & \rightarrow & \text{Ext}_\Lambda^1(H_1(X; \Lambda), \Lambda) \xleftarrow{\cong} \text{Hom}(H_1(X; \Lambda), Q(\Lambda)/\Lambda). \end{array}$$

This means that we get a commutative diagram

$$\begin{array}{ccccc} H_1(X(\tilde{K}); \Lambda) & \times & H_1(X(\tilde{K}); \Lambda) & \rightarrow & Q(\Lambda)/\Lambda \\ \downarrow & & \downarrow & & \downarrow= \\ H_1(X(K); \Lambda) & \times & H_1(X(K); \Lambda) & \rightarrow & Q(\Lambda)/\Lambda. \end{array}$$

But it follows from Theorem 2.2 (2), applied to $n = 2$, that the induced map $H_1(X(\tilde{K}); \Lambda) \rightarrow H_1(X(K); \Lambda)$ is an isomorphism of Λ -modules. In particular $\lambda(\tilde{K})$ is isometric to $\lambda(K)$.

REFERENCES

- [Ka89a] A. Kawauchi, *An imitation theory of manifolds*, Osaka J. Math. 26, no. 3: 447–464 (1989)
- [Ka89b] A. Kawauchi, *Almost identical imitations of $(3, 1)$ -dimensional manifold pairs*, Osaka J. Math. 26, no. 4: 743–758 (1989)
- [Ka89c] A. Kawauchi, *Imitation of $(3, 1)$ -dimensional manifold pairs*, Sugaku Expositions 2 (1989)
- [Ka94] A. Kawauchi, *On coefficient polynomials of the skein polynomial of an oriented link*, Kobe J. Math. 11, no. 1, 49–68 (1994).
- [Ke75] C. Kearton, *Blanchfield duality and simple knots*, Trans. Amer. Math. Soc. 202 (1975), 141–160.

- [Ke04] C. Kearton, *S-equivalence of knots*, J. Knot Theory Ramifications 13 (2004), no. 6, 709–717.
- [Le70] J. Levine, *An algebraic classification of some knots of codimension two*, Comment. Math. Helv. 45 (1970) 185–198
- [Le77] J. Levine, *Knot modules. I*, Trans. Amer. Math. Soc. 229 (1977), 1–50.
- [Mu65] K. Murasugi, *On a certain numerical invariant of link types*, Trans. Amer. Math. Soc. 117 (1965) 387–422.
- [Tr73] H. F. Trotter, *On S-equivalence of Seifert matrices*, Invent. Math. 20 (1973), 173–207.

UNIVERSITÉ DU QUÉBEC À MONTRÉAL, MONTRÉAL, QUÈBEC

E-mail address: friedl@alumni.brandeis.edu