Steps to compute the "chase strategy"

1. Compute the column of "Total production":

Total production_t=Demand_t-Inventory_{t-1}

2. Compute the column of "Workforce size":

Total production_t

Workforce $size_t = \frac{1000 \text{ Fe sum Fe}}{\text{Regular time per day * Working days per month / Labor hours required per unit}}$ $= \frac{1000 \text{ Fe sum Fe$

3. Compute the column of "No. laid off"

No. laid off_t=max(0, Workforce size_{t-1}- Workforce size_t)

4. Compute the column of "No. Hired"

No. Hired_t= max(0, Workforce size_{t-} Workforce size_{t-1})

Steps to compute the "level strategy"

- 1. Compute the total demand over 6 periods. It equals 16000.
- 2. Compute the total production quantity over 6 periods:

Total production over 6 periods=total demand-initial inventory+ending inventory=16000-1000+500=15500

3. Compute the column of "Workforce size":

Workforce sizet =

Total production over 6 periods

number of periods*Regular time per day * Working days per month / Labor hours required per unit $= \frac{15500}{6*8*20/4} = 64.58$

Because workforce size is integer, round it up to 65.

4. Compute the column of "Total production"

 $Total\ production_t = Workforce\ size_t*Regular\ time\ per\ day\ *$

Working days per month / Labor hours required per unit

5. Compute the column of "Inventory"

Inventory_t=(0, Inventory_{t-1}+Total production_t-Demand_t)

6. Compute the column of "Stockout"

 $Stockout_t=(0, Demand_t-Inventory_{t-1}-Total production_t)$

7. Compute the column of "No. laid off"

No. laid off_t=max(0, Workforce size_{t-1}- Workforce size_t)