Course Code		21CSC202J	Course Name	OPERATING SYSTEMS							С	
Pre-req Cours		COA			Co-requisite Courses	Nil				gress ourse		
Course Of	fering D	epartment	Electric	al and Electronic	cs Engineering		Data Book / Codes/Standards					
Course Le	arning F	Rationale (CLR):	The pur	pose of learning	this course is to:					7		
CLR-1:	Outline	the structure of	OS and basic	architectural cor	mponents involved	n OS design				1	2	
CLR-2:	Introduce the concept of deadlock and various memory management mechanism									٦.		
CLR-3:	Familiarize the scheduling algorithms, file systems, and I/O schemes									ЭС		
CLR-4:	Identify and tell the various embedded operating systems and computer security concepts									/ledc		
CLR-5:	Name the various computer security techniques in windows and Linux								Knowledge	alysis		
											a	

CLR-5:	Name the various computer	securit <mark>y techniques in</mark> windows and Linux
1		
Course Le	earning Outcomes (CLO):	At the end of this course, learners will be able to:
CLO-1:	Use the appropriate concep	ss of operating system for resource utilization
CLO-2:	Choose the relevant process	s and thread concepts for solving synchronization problems
CLO-3:	Exemplify different types of	scheduling algorithms and deadlock mechanism.
CLO-4:	Experiment the performance	of different algorithms used in management of memory, file and I/O and select the appropriate one.
CLO-5:	Demonstrate different device	e and resource management techniques for memory utilization with security mechanisms

T	Program Learning Outcomes (PLO)													
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Engineering Knowledge	w Problem Analysis	Design & Development	Analysis, Design, Research	Modern Tool Usage	Society & Culture	Environment & Sustainability	Ethics	Individual &Team Work	Communication	Project Mgt. & Finance	Life Long Learning	PSO - 1	PSO - 2	PSO-3
3	3	2	2	-	-	- 1	4	-	-	-	3		-	-
3	3	3	2	-	-	-	-	-	-	-	3	-	-	-
3	3	3	2	-7	-	-	-		1	-	3		-	-
3	3	3	2		- 1	-	- 1	T	7-	-	3	-	-	-
3	2	3	2	w	-	-	-		-	-	3	-	-	-

Professional Core

3 0 2

Introduction, Computer-System Organization, Computer-System Architecture, Operating-System Structure, Operating-System Operations, Process Management, Memory Management, Storage Management, Protection and Security, Kernel Data Structures, Computing Environments, Open-Source Operating Systems, Operating-System Services, User and Operating-System Interface, System Calls, Types of System Calls, System Programs, Operating-System Design and Implementation, Operating-System Structure, Operating-System Debugging, Operating-System Generation, System Boot. Unit-2

PROCESS MANAGEMENT: Process Concept, Process Scheduling, Operations on Processes, Interprocess Communication, Communication in Client- Server Systems, Threads: Multicore Programming, Multithreading Models, Thread Libraries, Implicit Threading, Threading Issues. Process Synchronization: The Critical-Section Problem, Peterson's Solution, Synchronization Hardware, Mutex Locks, Semaphores, Classic Problems of Synchronization, Monitors

Unit-3

CPU Scheduling: Basic Concepts, Scheduling Criteria, Scheduling Algorithms, Thread Scheduling, Multiple-Processor Scheduling, Real-Time CPU Scheduling. Deadlocks: System Model, Deadlock Characterization, Methods for Handling Deadlocks, Deadlock Prevention, Deadlock Avoidance, Deadlock Detection, Recovery from Deadlock

Unit-4

MEMORY MANAGEMENT: Main Memory, Swapping, Contiguous Memory Allocation, Segmentation, Paging, Structure of the Page Table. Virtual Memory: Introduction, Demand Paging, Copy-on-Write, Page Replacement, Allocation of Frames, Thrashing, Memory-Mapped Files, Allocating Kernel Memory. STORAGE MANAGEMENT: Disk Structure, Disk Attachment, Disk Scheduling, Disk Management, Swap-Space Management, RAID Structure. File-System Interface: File Concept, Access Methods, Directory and Disk Structure, File-System Mounting, File Sharing, Protection. .

Unit-5

PROTECTION AND SECURITY: Goals of Protection, Principles of Protection, Domain of Protection, Access Matrix, Implementation of the Access Matrix, Access Control, Revocation of Access Rights, Capability-Based Systems, Language-Based Protection, The Security Problem, Program Threats, System and Network Threats, Cryptography as a Security Tool, User Authentication, Implementing Security Defenses, Firewalling to Protect Systems and Networks, Computer-Security

Classifications.

- Lab 1: Operating system Installation, Basic Linux commands
- Lab 2: Process Creation using fork() and Usage of getpid(), getppid(), wait() functions
- Lab 3: Multithreading
- Lab 4: Mutual Exclusion using semaphore and monitor
- Lab 5: Reader-Writer problem
- Lab 6: Dining Philosopher problem
- Lab 7: Bankers Algorithm for Deadlock avoidance

Lab 8: FCFS and SJF Scheduling

Lab 9: Priority and Round robin scheduling

Lab 10: FIFO Page Replacement Algorithm

Lab 11: LRU and LFU Page Replacement Algorithm

Lab 12: Best fit and Worst fit memory management policies

Lab 13: Disk Scheduling algorithm

Learning

Resources

Lab 14: Sequential and Indexed file Allocation

Lab 15: File organization schemes for single level and two level directory

1.	Abraham Silberschatz, Peter Baer Galvin and Greg Gagne, "Operating System Concepts", John Wiley & Sons	L
	(Asia) Pvt. Ltd, Tenth Edition, 2018	

RamazElmasri, A. Gil Carrick, David Levine, "Operating Systems – A Spiral Approach ", Tata McGraw Hill Edition, 7. 3. Dhananjay M. Dhamdhere, "Operating Systems – A Concept Based Approach", Third Edition, Tata McGraw Hill 9.

Edition, 2019 Andrew S. Tanenbaum, "Modern Operating Systems", Fourth Edition, Global Edition, Pearson, 2015.

William Stallings, "Operating Systems: Internals and Design Principles", Pearson Education, Sixth Edition, 2018. Charles Crowley, "Operating Systems: A Design-Oriented Approach", Tata McGraw Hill Education, 2017.

https://nptel.ac.in/courses/106/105/106105214/

https://nptel.ac.in/courses/106/106/106106144/

https://nptel.ac.in/courses/106/102/106102132/

https://onlinecourses.nptel.ac.in/noc21_cs44/preview

11. https://nptel.ac.in/courses/106/105/106105172/

	Bloom's Level of Thinking	7/ 法	Continuous Learning Assessment (CLA) - By the Course Faculty							
		Forma CLA-I Ave unit t (509	erage of est	Le CLA-	ie Long* earning II- Practice (10%)	Summative Final Examination (40% weightage)				
		Theory	Practice	Theory	Practice	Theory	Practice			
Level 1	Remember	20%	15 July 194	* USA 25 6	0%	20%	-			
Level 2	Understand	40%		U 1000	40%	40%	-			
Level 3	Apply	20%	114 9 4	and the second second	40%	20%	-			
Level 4	Analyze	20%	The state of the second		10%	10%	-			
Level 5	Evaluate	1 2 2 2 2			10%	10%	-			
Level 6	Create	437			-		-			
	Total	100	%		100 %		100 %			

EARN · LEAP · LEAD