Package 'drSpaceTime'

April 6, 2016

Version 1.0

Description Apply loess smoothing to spatial-temporal data using divide and recombined concept.

Title Spatial-Temporal data analysis using divide and recombined

Description Apply loess smoothing to spatial-temporal data using divide and recombined concept Divide the data either by time or by location, and then apply either spatial loess smoothing fit to the by time division or stlplus fit to the by location division.

Date 2016-04-06

Depends R (>= 3.1.1)

Imports Spaloess,
roxygen2,
plyr,
Rcpp,
yaImpute,
stlplus

License MIT

LazyData true

RoxygenNote 5.0.1

Suggests knitr,
rmarkdown

VignetteBuilder knitr

LinkingTo Rcpp

R topics documented:

mapreduce.control	2
readIn	3
spacetime.control	4
spaofit	5
sparfit	
stlfit	7
swaptoLoc	
swaptoSubser	
swaptoTime	10

2 mapreduce.control

Index 12

mapreduce.control Set mapreduce parameter for drSpaceTime fitting

Description

Set control parameters of mapreduce for drSpaceTime fits

Usage

```
mapreduce.control(reduceTask = 0, libLoc = NULL, BLK = 512,
    map_jvm = "-Xmx3000m", reduce_jvm = "-Xmx4096m", map_memory = 5120,
    reduce_memory = 5120, slow_starts = 0.9, spill_percent = 0.8,
    io_sort = 100, task_io_sort_factor = 10, reduce_parallelcopies = 5,
    reduce_shuffle_input_buffer_percent = 0.7,
    reduce_shuffle_merge_percent = 0.66, reduce_merge_inmem = 1000,
    reduce_input_buffer_percent = 0, reduce_buffer_read = 150,
    map_buffer_read = 150, reduce_buffer_size = 10000,
    map_buffer_size = 10000)
```

Arguments

reduceTask The reduce task number, also the number of output files. If set to be 0, then there is no shuffle and sort stage after map. spill_percent For mapreduce.sort.spill.percent parameter, the threshold usage proportion for both the map output memory buffer and record boundaries index to start the process of spilling to disk. io_sort For mapreduce.task.io.sort.mb, the size, in megabytes, of the memory buffer to use while sorting map output. task_io_sort_factor For mapreduce.task.io.sort.factor reduce_parallelcopies For mapreduce.reduce.shuffle.parallelcopies reduce_shuffle_input_buffer_percent For mapreduce.reduce.shuffle.input.buffer.percent reduce_shuffle_merge_percent For mapreduce.reduce.shuffle.merge.percent reduce_merge_inmem For mapreduce.reduce.merge.inmem.shreshold reduce_input_buffer_percent For mapreduce.reduce.input.buffer.percent

Value

A list with mapreduce tuning parameters.

readIn 3

Author(s)

Xiaosu Tong

Examples

```
mapreduce.control()
```

readIn

Readin Raw text data files and save it as by time division on HDFS.

Description

Input raw text data file is divided into by time subsets and saved on HDFS

Usage

```
readIn(input, output, info, cluster_control = mapreduce.control())
```

Arguments

input The path of input file on HDFS. It should be raw text file.

output The path of output file on HDFS. It is by time division.

info The RData path on HDFS which contains all station metadata cluster_control

all parameters that are needed for mapreduce job

Author(s)

Xiaosu Tong

Examples

```
FileInput <- "/wsc/tongx/spatem/nRaw/tmax"
FileOutput <- "/wsc/tongx/spatem/tmax/test/bymth"
ccontrol <- mapreduce.control(
   libLoc=lib.loc, reduceTask=179, io_sort=512, BLK=256, slow_starts = 0.8, reduce_input_buffer_percent=0.9, reduce_parallelcopies=5, reduce_merge_inmem=0, task_io_sort_factor=100, spill_percent=0.9, reduce_shuffle_input_buffer_percent = 0.9, reduce_shuffle_merge_percent = 0.5, reduce_buffer_read = 100, map_buffer_read = 100, reduce_buffer_size = 10000, map_buffer_size = 10000
)
readIn(
  FileInput, FileOutput, info="/hdfs/path/a1950UStinfo.RData", cluster_control=ccontrol
)</pre>
```

4 spacetime.control

spacetime.control

Set smoothing parameters for drSpaceTime fitting

Description

Set control parameters for the smoothing fit

Usage

```
spacetime.control(vari = "resp", time = "date", seaname = "month", n,
n.p = 12, s.window, s.degree = 1, t.window = NULL, t.degree = 1,
inner = 4, outer = 1, statbytime = 2, degree, span, Edeg,
surf = c("interpolate", "direct"), iterations = 1)
```

Arguments

vari	variable name in string of the response variable
time	variable name in string of time index of the whole time series
seaname	variable name in string of the seasonal variable
n	the number of total observations
n.p	the number of observation in each subseries
s.window	either the character string "periodic" or the span (in lags) of the loess window for seasonal extraction, which should be odd. This has no default.
s.degree	degree of locally-fitted polynomial in seasonal extraction. Should be 0, 1, or 2.
inner	The iteration time for inner loop of stlplus for time dimension fitting
outer	The iteration time for outer loop of stlplus for time dimension fitting
statbytime	The number of locations will be grouped together in the by time division after stlfit. The parameter is only used for swaptoTime. Since there may be to many time point in each location, the swaptoTime looping all time point will add to much overhead caused by rhcollect. So every statbytime time point are collect into one key-value pair.
degree	smoothing degree for the spatial loess smoothing. It can be 0, 1, or 2.
span	smoothing span for the spatial loess smoothing.
Edeg	the degree for the conditioanl parametric model including elevation.
surf	should the fitted surface be computed exactly or via interpolation from a kd tree.
iterations	the number of iterations used for the space-time back-fitting.

Value

A list with space-time fitting parameters.

Author(s)

5 spaofit

References

R. B. Cleveland, W. S. Cleveland, J. E. McRae, and I. Terpenning (1990) STL: A Seasonal-Trend Decomposition Procedure Based on Loess. *Journal of Official Statistics*, **6**, 3–73.

Examples

```
spacetime.control(
n = 786432, n.p = 12, s.window = 21, s.degree = 1, t.window = 241,
 t.degree = 1, degree = 2, span = 0.015, Edeg = 2, surf = "interpolate"
```

spaofit

Conduct the spatial loess fitting on the original observations at each location in parallel

Description

Call spaloess function on the spatial domain at each time point in parallel. Every spatial domain uses the same smoothing parameters. NA observations will be imputed.

Usage

```
spaofit(input, output, info, model_control = spacetime.control(),
 cluster_control = mapreduce.control())
```

Arguments

input The path of input sequence file on HDFS. It should be by location division.

output The path of output sequence file on HDFS. It is by location division but with

seasonal and trend components

info The RData path on HDFS which contains all station metadata

Should be a list object generated from spacetime.control function. The list model_control

including all necessary smoothing parameters of nonparametric fitting.

cluster_control

Should be a list object generated from mapreduce.control function. The list including all necessary Rhipe parameters and also user tunable MapReduce pa-

rameters.

Author(s)

6 sparfit

Examples

```
FileInput <- "/wsc/tongx/spatem/tmax/sim/bymth"
FileOutput <- "/wsc/tongx/spatem/tmax/sim/bymthfit"
ccontrol <- mapreduce.control(
   libLoc=lib.loc, reduceTask=0, BLK=128, map_jvm = "-Xmx3584m",
   map_memory = 5120, map_buffer_read = 100, map_buffer_size = 1000
)
mcontrol <- spacetime.control(
   vari="resp", time="date", seaname="month", n=786432, n.p=12,
   s.window=13, t.window = 241, degree=2, span=0.015, Edeg=2
)
spaofit(
   FileInput, FileOutput, target=you$vari, na=TRUE,
   info="/wsc/tongx/spatem/stationinfo/a1950UStinfo.RData",
   model_control=mcontrol, cluster_control=ccontrol
)</pre>
```

sparfit

Conduct the spatial loess fitting on the remainder at each location in parallel

Description

Call spaloess function on the spatial domain at each time point in parallel. Every spatial domain uses the same smoothing parameters

Usage

```
sparfit(input, output, info, model_control = spacetime.control(),
  cluster_control = mapreduce.control())
```

Arguments

input The path of input file on HDFS. It should be by location division.

output The path of output file on HDFS. It is by location division but with seasonal and

trend components

info The RData path on HDFS which contains all station metadata

model_control Should be a list object generated from spacetime.control function. The list

including all necessary smoothing parameters of nonparametric fitting.

cluster_control

Should be a list object generated from mapreduce.control function. The list including all necessary Rhipe parameters and also user tunable MapReduce parameters.

Author(s)

stlfit 7

Examples

```
FileInput <- "/wsc/tongx/spatem/tmax/sim/bymthse"
FileOutput <- "/wsc/tongx/spatem/tmax/sim/bymthfitse"
ccontrol <- mapreduce.control(
   libLoc=lib.loc, reduceTask=0, BLK=128, map_jvm = "-Xmx3584m",
   map_memory = 5120, map_buffer_read = 100, map_buffer_size = 1000
)
mcontrol <- spacetime.control(
   vari="remainder", time="date", seaname="month", n=786432, n.p=12,
   s.window=13, t.window = 241, degree=2, span=0.015, Edeg=2
)
sparfit(
   FileInput, FileOutput, target=you$vari, na=TRUE,
   info="/wsc/tongx/spatem/stationinfo/a1950UStinfo.RData",
   model_control=mcontrol, cluster_control=ccontrol</pre>
```

stlfit

Conduct the stlplus fitting at each location in parallel

Description

Calling stlplus function from Ryan Hafen's stlplus package on time series at each location in parallel. Every station uses the same smoothing parameter

Usage

```
stlfit(input, output, model_control = spacetime.control(),
  cluster_control = mapreduce.control())
```

Arguments

input The path of input sequence file on HDFS. It should be by location division.

output The path of output sequence file on HDFS. It is by location division but with

seasonal and trend components

model_control The list contains all smoothing parameters

cluster_control

A list contains all mapreduce tuning parameters.

Author(s)

Xiaosu Tong

References

R. B. Cleveland, W. S. Cleveland, J. E. McRae, and I. Terpenning (1990) STL: A Seasonal-Trend Decomposition Procedure Based on Loess. *Journal of Official Statistics*, **6**, 3–73.

Ryan Hafen (2010): stlplus: Local regression models: Advancements, applications, and new methods. *Purdue University*

8 swaptoLoc

See Also

```
spacetime.control, mapreduce.control
```

Examples

```
FileInput <- "/wsc/tongx/spatem/tmax/sim/bystat"
FileOutput <- "/wsc/tongx/spatem/tmax/sim/bystatfit"
ccontrol <- mapreduce.control(libLoc=lib.loc, reduceTask=0)
mcontrol <- spacetime.control(
   vari = "resp", time = "date", seaname = "month",
   n = 786432, n.p = 12, s.window = "periodic", t.window = 241,
   degree = 2, span = 0.015, Edeg = 2
)
stlfit(FileInput, FileOutput, model_control=mcontrol, cluster_control=ccontrol)</pre>
```

swaptoLoc

Swap to division by location

Description

Switch input key-value pairs which is division by time to the key-value pairs which is division by location.

Usage

```
swaptoLoc(input, output, cluster_control = mapreduce.control())
```

Arguments

input

The path of input file on HDFS. It should be by location division.

output

The path of output file on HDFS. It is by time division.

cluster_control

Should be a list object generated from mapreduce.control function. The list including all necessary Rhipe parameters and also user tunable MapReduce parameters.

Details

The value of each input key-value pair is a vector of spatial smoothed value in the same order based on location index. For each of element of this vector a intermediate key-value pair is collected. The value of final output key-value pair is a vector in order to keep the size as small as possible, and also guarantee the combiner can set to be TRUE.

Author(s)

swaptoSubser 9

See Also

```
spacetime.control, mapreduce.control
```

Examples

```
FileInput <- "/wsc/tongx/spatem/tmax/sim/bymthfit"
FileOutput <- "/wsc/tongx/spatem/tmax/sim/bystat"
ccontrol <- mapreduce.control(
   libLoc=lib.loc, reduceTask=169, io_sort=768, BLK=256, slow_starts = 0.5,
   map_jvm = "-Xmx3072m", reduce_jvm = "-Xmx4096m",
   map_memory = 5120, reduce_memory = 5120,
   reduce_input_buffer_percent=0.4, reduce_parallelcopies=10,
   reduce_merge_inmem=0, task_io_sort_factor=100,
   spill_percent=0.9, reduce_shuffle_input_buffer_percent = 0.8,
   reduce_shuffle_merge_percent = 0.4,
   reduce_buffer_read = 100, map_buffer_read = 100,
   reduce_buffer_size = 10000, map_buffer_size = 100
)
swaptoLoc(FileInput, FileOutput, cluster_control=ccontrol)</pre>
```

swaptoSubser

Swap to division by subseries

Description

Switch input key-value pairs which is division by location to the key-value pairs which is division by subseries.

Usage

```
swaptoSubser(input, output, cluster_control, model_control)
```

Arguments

input The path of input file on HDFS. It should be by location.

output The path of output file on HDFS. It is by subseries division.

cluster_control

Should be a list object generated from mapreduce.control function. The list including all necessary Rhipe parameters and also user tunable MapReduce parameters.

model_control S

Should be a list object generated from spacetime.control function. The list

including all necessary smoothing parameters of nonparametric fitting.

Details

swaptoSubser is used for switch division by location to division by subseries. The smoothing procedure can be applied to each subseries in parallel. So the output files will be intput to parallel seasonal fitting of stlplus.

10 swaptoTime

Author(s)

Xiaosu Tong

See Also

```
spacetime.control, mapreduce.control
```

Examples

```
FileInput <- "/wsc/tongx/spatem/tmax/sims/bystat"
FileOutput <- "/wsc/tongx/spatem/tmax/sims/bysubser"
ccontrol <- mapreduce.control(libLoc=.libPaths(), reduceTask=179)
mcontrol <- spacetime.control(
  vari = "resp", time = "date", seaname = "month",
  n = 786432, n.p = 12, s.window = "periodic", t.window = 241,
  degree = 2, span = 0.015, Edeg = 2, statbytime = 2
)
swaptoSubser(FileInput, FileOutput, cluster_control=ccontrol, model_control=mcontrol)</pre>
```

swaptoTime

Swap to division by time

Description

Switch input key-value pairs which is division by location to the key-value pairs which is division by time.

Usage

```
swaptoTime(input, output, cluster_control = mapreduce.control(),
  model_control = spacetime.control())
```

Arguments

input The path of input file on HDFS. It should be by location division.

output The path of output file on HDFS. It is by time division.

cluster_control

Should be a list object generated from mapreduce.control function. The list including all necessary Rhipe parameters and also user tunable MapReduce parameters.

rameters.

model_control Should be a list object generated from spacetime.control function. The list

including all necessary smoothing parameters of nonparametric fitting.

swaptoTime 11

Details

swaptoTime is used for switching division by location to division by time. The input key is location index, and input value is a vectorized matrix with Mlcontrol\$n rows and 3 columns in order of resp, seasonal, trend. For each row of matrix, a new key-value pair is generated. Since the matrix is vectorized by column, the trend in ith row is i+Mlcontrol\$n. Index j controls the index of multiple location in one time point.

Author(s)

Xiaosu Tong

See Also

spacetime.control, mapreduce.control

Examples

```
FileInput <- "/wsc/tongx/spatem/tmax/sims/bystatfit"</pre>
FileOutput <- "/wsc/tongx/spatem/tmax/sims/bymth"</pre>
ccontrol <- mapreduce.control(</pre>
  libLoc=lib.loc, reduceTask=358, io_sort=1024, BLK=128, slow_starts = 0.5,
  map_jvm = "-Xmx3072m", reduce_jvm = "-Xmx4096m",
  map_memory = 5120, reduce_memory = 5120,
  reduce_input_buffer_percent=0.2, reduce_parallelcopies=10,
  reduce_merge_inmem=0, task_io_sort_factor=100,
  spill_percent=0.9, reduce_shuffle_input_buffer_percent = 0.7,
  reduce_shuffle_merge_percent = 0.5,
  reduce_buffer_read = 100, map_buffer_read = 100,
  reduce_buffer_size = 10000, map_buffer_size = 10
mcontrol <- spacetime.control(</pre>
  vari = "resp", time = "date", seaname = "month",
  n = 786432, n.p = 12, s.window = "periodic", t.window = 241,
  degree = 2, span = 0.015, Edeg = 2, statbytime = 2
swaptoTime(FileInput, FileOutput, cluster_control=ccontrol, model_control=mcontrol)
```

Index

```
mapreduce.control, 2, 8-11
readIn, 3
spacetime.control, 4, 8-11
spaofit, 5
sparfit, 6
stlfit, 7
swaptoLoc, 8
swaptoSubser, 9
swaptoTime, 10
```