Sam Kriegman	79 Seekonk Cross Rd. Great Barrington, MA 01230 Website: skriegman.github.io sam.kriegman@uvm.edu Google Scholar Profile
APPOINTMENTS	
2020-	Postdoctoral Associate, University of Vermont
2011–2014	Actuary, Chubb Insurance
EDUCATION	
2016–2020	Ph.D. , Computer Science, University of Vermont, USA Design for an Increasingly Protean Machine. Advisor: Josh Bongard
2014–2016	M.S., Statistics, University of Vermont, USA Evolving spatially aggregated features for regional modeling and its application to satellite data.
2006–2010	B.S. , Applied Mathematics, Ohio University, USA
AWARDS	
2021	The Cozzarelli Prize, National Academy of Sciences
2020	Computer Science Graduate Award, University of Vermont Top 10 Most Influential BioTech Projects, Project Management Institute Beazley Designs of the Year, The Design Museum
PATENTS	
pending	Engineered Multicellular Organisms.
Invited Talk	S
Mar, 2021 Mar, 2021 Mar, 2021	"Living Robots". <i>The Int'l Workshop on Embodied Intelligence</i> , Breakout Session: Kinds of Intelligence. "Xenobots in a nutshell". IT University of Copenhagen. "How to evolve your robot". Guest lecture for Introduction Soft Robotics, Yale University.
Oct, 2020 May, 2020 Apr, 2020	"Living deepfakes". Guest lecture for MIT Media Lab Deepfakes course (MAS.S60). "Design for soft robot blocks". <i>IEEE International Conference on Soft Robotics (RoboSoft)</i> . "Computer designed organisms". <i>Artificial Life Virtual Seminar Series</i> .
June, 2019	"Shapeshifting robots". Robotics: Science and Systems (RSS) in Freiburg, Germany.
Interviews	
to appear Feb, 2021	"Xenobots". Bloomberg Moonshot "Evolving robot forms". Time Horizons Podcast
Sep, 2020	"Tiny, Programmable, Living Robots". Constant Wonder

- Apr, 2020 "Soft Robotics with Sam Kriegman". IEEE Soft Robotics Podcast
- Mar, 2020 "Xenobots". Future proof
- Feb, 2020 "Living Robots". TalkSport Radio
- Jan, 2020 "UVM researchers develop tiny living robots". WCAX (CBS 3)
- Jan, 2020 "UVM aids in creating living robots". WPTZ (NBC 5)
- Jan, 2020 "Forscher haben erstmals 'lebende' Mini-Roboter erschaffen". Die Welt

SELECTED MEDIA COVERAGE _

- Dec, 2020 "The big scientific breakthroughs of 2020". The Week
- Dec, 2020 "The 10 Most Spectacular Scientific Advances of 2020". La Razón (Spain)
- Dec, 2020 "Part Robot, Part Frog: Xenobots Are the First Robots Made From Living Cells". Discover Magazine
- Nov, 2020 "The Xenobot Future Is Coming Start Planning Now". Wired
- Apr, 2020 "Meet the Xenobots: Virtual Creatures Brought to Life". New York Times
- Feb, 2020 "Giant Moon rocket, living robots and quantum computer January's best science images". Nature
- Feb, 2020 "Tiny machines made from the stem cells of frogs". The Intelligence (Economist Radio)
- Jan, 2020 "The religious, moral, and ethical implications of Xenobots". BBC Radio 4 Sunday
- Jan, 2020 "A research team builds robots from living cells". The Economist
- Jan, 2020 "Scientists use stem cells from frogs to build first living robots". The Guardian
- Jan, 2020 "Meet the xenobot: world's first living, self-healing robots created from frog stem cells". CNN
- Jan, 2020 "Scientists create first living, self-healing robots (on-air with Fredricka Whitfield)". CNN
- Jan, 2020 "Scientists at UVM, Tufts create 'living robots'". Boston Globe
- Jan, 2020 "How tiny 'biobots' could enter bodies to clean arteries and administer drugs". The Times
- Jan, 2020 "Living robots created as scientists turn frog cells into 'entirely new life-forms'". The Telegraph
- Jan, 2020 "Living robots". BBC World Service
- Jan, 2020 "Tiny 'xenobots' made from cells could heal our bodies and clean the environment". Fox News
- Jan, 2020 "Xenobots: 1st living robots made from stem cells". ESPN
- Jan, 2020 "Xenobot". Wikipedia

PUBLICATIONS

- 18. S Kriegman, A-M Nasab, D Blackiston, H Steele, M Levin, R Kramer-Bottiglio, J Bongard. (2021). Scale invariant robot behavior with fractals. *preprint*, in review.
- 17. D Blackiston, E Lederer, S Kriegman, S Garnier, J Bongard, M Levin. (2021). A new cellular platform for the development of synthetic living machines. *embargoed*, in press.
- D Shah, J Powers, L Tilton, S Kriegman, J Bongard, R Kramer-Bottiglio. (2021).
 A soft robot that adapts to environments through shape change.
 Nature Machine Intelligence, 3, 51-59.
- D Shah, B Yang, S Kriegman, M Levin, J Bongard, R Kramer-Bottiglio. (2020). Shape Changing Robots: Bioinspiration, Simulation, and Physical Realization. Advanced Materials, 2002882.
- J Powers, R Grindle, S Kriegman, L Frati, N Cheney, J Bongard. (2020).
 Morphology dictates learnability in neural controllers.
 Artificial Life Conference Proceedings, 52-59.
- S Kriegman, A-M Nasab, D Shah, H Steele, G Branin, M Levin, J Bongard, R Kramer-Bottiglio. (2020). Scalable sim-to-real transfer of soft robot designs.
 IEEE Conference on Soft Robotics (RoboSoft), 359-366, 10.1109/RoboSoft48309.2020.9116004.

12. S Kriegman*, D Blackiston*, M Levin, J Bongard. (2020).

A scalable pipeline for designing reconfigurable organisms.

Proceedings of the National Academy of Sciences, 117(4): 1853-1859.

(A perspective article on this work by P. Ball can be found here.)

11. S Kriegman. (2019).

Why virtual creatures matter.

Nature Machine Intelligence, 1(10): 492-492.

10. D Matthews, S Kriegman, C Cappelle, J Bongard. (2019).

Word2vec to behavior: morphology facilitates the grounding of language in machines.

IEEE/RSJ Conference on Intelligent Robots and Systems (IROS)

9. S Kriegman, S Walker, D Shah, M Levin, R Kramer-Bottiglio, J Bongard (2019).

Automated shapeshifting for function recovery in damaged robots.

Robotics: Science and Systems (RSS), 10.15607/RSS.2019.XV.028

(A perspective article on this work by H. Hauser can be found here.)

8. S Kriegman, N Cheney, J Bongard. (2018).

How morphological development can guide evolution.

Nature Scientific Reports, 8(1): 13934.

7. S Beaulieu, S Kriegman, J Bongard. (2018).

Combating catastrophic forgetting with developmental compression.

Genetic and Evolutionary Computation Conference (GECCO), 386-393.

6. S Kriegman, N Cheney, F Corucci, J Bongard. (2018).

Interoceptive robustness through environment-mediated morphological development.

Genetic and Evolutionary Computation Conference (GECCO), 109-116, 10.1145/3205455.3205529.

5. J Powers, S Kriegman, J Bongard. (2018).

The effects of morphology and fitness on catastrophic interference.

Artificial Life Conference Proceedings, 606-613.

4. S Kriegman, C Cappelle, F Corucci, A Bernatskiy, N Cheney, J Bongard. (2017).

Simulating the evolution of soft and rigid-body robots.

Genetic and Evolutionary Computation Conference (GECCO), 1117-1120.

3. F Corucci, N Cheney, S Kriegman, J Bongard, C Laschi. (2017).

Evolutionary developmental soft robotics as a framework to study intelligence and adaptive behavior.

Frontiers in Robotics and AI, 4(34).

2. S Kriegman, N Cheney, F Corucci, J Bongard. (2017).

A minimal developmental model can increase evolvability in soft robots.

Genetic and Evolutionary Computation Conference (GECCO), 131-138, 10.1145/3071178.3071296.

1. S Kriegman, M Szubert, J Bongard, C Skalka. (2016).

Evolving spatially aggregated features from satellite imagery for regional modeling.

Parallel Problem Solving from Nature (PPSN), 707-716.

ADVISING

2020- Sida Liu, Master's, Complex Systems, UVM.

2018-	David Matthews, Undergraduate, Computer Science, UVM.
SERVICE	
Editorships 2020–	Review Editorial Board, Frontiers Robotics and AI