

Bu ders, Pamukkale Üniversitesi, Fen Edebiyat Fakültesi, Fizik Bölümü tarafından diğer fakültelerde ortak okutulan Genel Fizik-I dersi için hazırlanmıştır.

Ana kaynak kitap olarak resimdeki ders kitabı takip edilecektir.

https://www.pau.edu.tr/fizik

BÖLÜM-28

DOĞRU AKIM DEVRELERİ

Bu bölüm kapsamında şu konulara değinilecektir:

- Elektromotor Kuvveti
- Seri ve Paralel Bağlı Dirençler
- Kirchhoff Kuralları
- * RC Devreleri
 - Bir Kondansatörün Yüklenmesi
 - Yüklü Bir Kondansatörün Boşalması

ELEKTROMOTOR KUVVETİ

$$\varepsilon = \frac{dW}{dq}$$

Birimi; $\frac{J}{c}$ veya Volt'tur

Yandaki şekilde, sistemin mekanik bir eşdeğeri verilmiştir.

Emk kaynağının toplam çıkış gücü,

$$\mathcal{P} = I\varepsilon = I^2(R+r)$$

İdeal Batarya:

Bataryanın uçları arasındaki ΔV gerilimi, üzerinden geçen I akımına bağlı değilse emk kaynağı idealdir denir (Şekil-a).

Gerçek Batarya:

Bataryanın uçları arasındaki ΔV gerilimi, üzerinden geçen I akımıyla azalıyorsa ($\Delta V = \varepsilon - Ir$) emk kaynağı gerçektir denir (Şekil-b).

Örnek 28-1: Bir batarya, 12 V'luk emk ve 0.05Ω 'luk bir iç dirence sahiptir. Bataryanın uçları 3 Ω 'luk bir yük direncine bağlanıyor.

- a) Devredeki akımı ve bataryanın çıkış voltajını bulunuz.
- b) Yük direncinde ve bataryanın iç direncinde harcanan gücü hesaplayınız. Batarya tarafından sağlanan güç ne kadardır?

Çözüm 28-1:

a)
$$I = \frac{\varepsilon}{R+r}$$
 ise $I = \frac{12}{(3+0.05)} = 3.93 A$
 $\Delta V = \varepsilon - Ir = 12 - (3.93 \times 0.05) = 11.8 V$

b)
$$\mathcal{P}_R = I^2 R = (3,93)^2 (3) = 46,3 Watt$$

 $\mathcal{P}_r = I^2 r = (3,93)^2 (0,05) = 0,772 Watt$

Bataraya tarafından toplam harcanan güç ise

$$\mathbf{P} = \mathbf{P}_R + \mathbf{P}_r = 46.3 + 0.772 = 47.1 Watt$$

$\begin{array}{c|c} I \\ \downarrow \\ R_1 \\ R_2 \\ \downarrow I \end{array}$ $\begin{array}{c|c} I \\ R_3 \\ I \\ I \end{array}$

Seri Bağlı Dirençler

V gerilimi, Şekil-b'deki $R_{eş}$ direncinin uçları arasına uygulanırsa aynı i akımını sağlar.

$$V_1 + V_2 + V_3 = \varepsilon$$
 $IR_1 + IR_2 + IR_3 = IR_{e\S}$
 $R_1 + R_2 + R_3 = R_{e\S}$

olur. Dolayısıyla, birbirine seri bağlı n tane dirençten oluşan devrenin eşdeğer direnci:

$$R_{e\S} = R_1 + R_2 + R_3 + \dots + R_n = \sum_{i=1}^n R_i$$

bulunur.

$I \qquad I_2 + I_3$ $R_1 \geqslant I_{1R_2} \geqslant I_{2R_3} \geqslant I_{3}$ $I \qquad I_{2} + I_{3} \qquad (a)$

Paralel Bağlı Dirençler

Şekil-a'da, paralel bağlı üç dirençten oluşan bir devre verilmiştir.

$$R_{es} > I$$

$$I$$

$$I$$

$$I$$

$$I$$

$$I$$

$$I$$

$$I_1 + I_2 + I_3 = I$$
 (Kirchof f'un kavşak kuralı)

$$\frac{V}{R_1} + \frac{V}{R_2} + \frac{V}{R_3} = \frac{V}{R_{e\$}}$$

$$\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} = \frac{1}{R_{e\$}}$$

olur. Dolayısıyla, birbirine paralel bağlı *n* tane dirençten oluşan devrenin eşdeğer direnci:

$$\frac{1}{R_{e_{\S}}} = \frac{1}{R_{1}} + \frac{1}{R_{2}} + \frac{1}{R_{3}} + \dots + \frac{1}{R_{n}} = \sum_{i=1}^{n} \frac{1}{R_{i}}$$

bulunur.

Örnek 28-3: Dört adet direnç şekilde gösterildiği gibi bağlanmışlarsa,

- a) a ve c noktaları arasındaki eşdeğer direnci bulunuz
- b) a ve c arasına 42 V'luk bir potansiyel farkı uygulanırsa her bir dirençteki akım ne olur?

Çözüm 28-3: a)
$$R_{e\S} = 8 + 4 + \frac{6 \times 3}{6 + 3} = 14 \Omega$$

b)
$$I = \frac{42}{14} = 3A$$
 ise

 8Ω ve 4Ω 'luk dirençlerin üzerinden aynı I akımı geçiyorsa ve üzerlerindeki toplam gerilim de;

$$V_{12} = 3 \times (8 + 4) = 36 V$$
 ise
 $V_3 = V_4 = 42 - 36 = 6 V$ olur ve böylece,
 $I_1 = \frac{6}{6} = 1 A$ ve $I_2 = \frac{6}{3} = 2 A$ olur.

Örnek 28-4: Üç adet direnç şekilde gösterildiği gibi paralel bağlanıyorlar. *a* ve *b* noktaları arasına 18 *V*'luk bir potansiyel farkı uygulanırsa,

- a) Her bir direnç üzerinden geçen akımı bulunuz.
- b) Her bir dirençte harcanan gücü ve üç direnç tarafından harcanan toplam gücü hesaplayınız.

- c) Devrenin eşdeğer direncini hesaplayınız.
- d) Batarya tarafından üretilen gücü bulmak için $R_{e_{\$}}$ i kullanınız.

Çözüm 28-4: a)
$$I_1 = \frac{\Delta V}{R_1} = \frac{18 \ V}{3.0 \ \Omega} = 6.0 \ A$$

$$I_2 = \frac{\Delta V}{R_2} = \frac{18 \ V}{6.0 \ \Omega} = 3.0 \ A$$

$$I_3 = \frac{\Delta V}{R_3} = \frac{18 \ V}{9,0 \ \Omega} = 2,0 \ A$$

olur.

b)
$$\mathcal{P} = (\Delta V)^2 / R$$
 ise

$$\mathbf{\mathcal{P}}_1 = \frac{(\Delta V)^2}{R_1} = \frac{(18 \, V)^2}{3,0 \, \Omega} = 110 \, \text{W}$$

$$\mathbf{\mathcal{P}}_2 = \frac{(\Delta V)^2}{R_2} = \frac{(18 \, V)^2}{6.0 \, \Omega} = 54 \, \text{W}$$

$$\mathbf{\mathcal{P}}_3 = \frac{(\Delta V)^2}{R_3} = \frac{(18 \, V)^2}{9.0 \, \Omega} = 36 \, \text{W}$$

c)
$$\frac{1}{R_{es}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$$
 ise $\frac{1}{R_{es}} = \frac{1}{3,0 \Omega} + \frac{1}{6,0 \Omega} + \frac{1}{9,0 \Omega}$

$$\frac{1}{R_{es}} = \frac{6}{18 \Omega} + \frac{3}{18 \Omega} + \frac{2}{18 \Omega} = \frac{11}{18 \Omega}$$

$$R_{e\S} = \frac{18 \,\Omega}{11} = 1.6 \,\Omega$$

d)
$$\mathcal{P} = \frac{(\Delta V)^2}{R_{es}} = \frac{(18 V)^2}{1.6 \Omega}$$

$$\mathcal{P} \cong 200 \,\mathrm{W}$$

KIRCHHOFF KURALLARI

Tek Halkalı Bir Devre

Şekilde tek halkalı bir devre verilmiştir.

Enerjinin korunumu gereği bu enerji direnç üzerinde 1s1 enerjisi olarak açığa çıkar:

$$\varepsilon - RI = 0$$

Bu son eşitlik, **Kirchhoff' un çevrim kuralı** olarak bilinir. Daha açık bir ifadeyle; "Bir elektrik devresindeki herhangi bir çevrim boyunca tüm elemanlar üzerindeki potansiyel değişimlerinin toplamı sıfırdır" şeklinde tarif edilebilir.

Direnç Kuralı

Bir direnç üzerinden geçen akımla **ters yönde** hareket ediyorsak, direnç üzerindeki potansiyel değişimi:

$$\Delta V = +IR$$

Bir direnç üzerinden geçen akımla **aynı yönde** hareket ediyorsak, direnç üzerindeki potansiyel değişimi:

$$\Delta V = -IR$$

olur.

EMK Kuralı

$$\Delta V = +\varepsilon$$

İdeal bir kaynak üzerinde, **emk' nın tersi yönünde** hareket
ediyorsak, kaynak üzerindeki
potansiyel değişimi:

$$\Delta V = -\varepsilon$$

alınır.

Çok Halkalı Devreler

Şekilde iki halkalı bir devre verilmiştir. Bu devre, *bad*, *bdc* ve *bd* olmak üzere üç kolludur.

b ve d noktaları birer kavşaktır. Yükün korunumu gereği, d noktasına gelen I_1 ve I_3 akımlarının toplamı I_2 akımına eşittir.

$$(I_1 + I_3 = I_2)$$

Bu, Kirchhoff' un kavşak kuralı olarak bilinir ve daha açık bir ifadeyle; "Bir kavşağa gelen akımların toplamı, o kavşağı terkeden akımların toplamına eşittir" şeklinde tarif edilir.

Devredeki I_1 , I_2 ve I_3 akımlarını belirlemek için üç denkleme ihtiyacımız vardır. Bunlardan birincisi, d noktasına uygulanan kavşak kuralından bulunur:

$$I_1 + I_3 = I_2$$
 (Eş-1)

Diğer iki tanesi de, *bad* ve *bdc* halkaları için saat ibrelerinin tersi yönünde hareket edilerek Kirchhoff un çevrim kuralının uygulanmasıyla bulunur:

bad için;
$$\varepsilon_1 - I_1 R_1 + I_3 R_3 = 0$$
 (Eş-2)
bdc için; $-I_3 R_3 - I_2 R_2 - \varepsilon_2 = 0$ (Eş-3)

adcb için;
$$\varepsilon_1 - I_1 R_1 - I_2 R_2 - \varepsilon_2 = 0$$
 (Eş-4)

Eş-2 ile Eş-3'ün toplamından başka bir şey değildir.

Örnek 28-7: Yanda verilen tek halkalı (ilmekli) devrede bataryanın iç direncini ihmal ederek,

- a) Devreden geçen akımı bulunuz.
- b) Her bir dirençte kaybolan güç nedir? 12 V'luk bir bataryanın verdiği güç ne kadardır

Çözüm 28-7:

a)
$$\sum V = 0$$

$$\varepsilon_1 - IR_1 - \varepsilon_2 - IR_2 = 0$$

$$I = \frac{\varepsilon_1 - \varepsilon_2}{R_1 + R_2} = \frac{6.0 \ V - 12 \ V}{8.0 \ \Omega + 10 \ \Omega} = -0.33 \ A$$

b)
$$\mathcal{P}_1 = I^2 R_1 = (0.33 \, A)^2 (8.0 \, \Omega) = 0.87 \, \text{W}$$
 $\mathcal{P}_2 = I^2 R_2 = (0.33 \, A)^2 (10 \, \Omega) = 1.1 \, \text{W}$ $\mathcal{P} = \mathcal{P}_1 + \mathcal{P}_2 = 0.87 \, \text{W} + 1.1 \, \text{W} = 2.0 \, \text{W}$

12 V'luk bataryanın verdiği güç ise $I\varepsilon_2 = 4 \, \mathrm{W}$ olu

Örnek 28-8: Yanda verilen devrenin kollarından geçen I_1 , I_2 ve I_3 akımlarını, Kirchhoff' un çevrim ve kavşak kurallarını kullanarak bulunuz.

c kavşağı için de; $I_1 + I_2 = I_3$ (Eş – 3)

kurallarını kullanarak bulunuz.

Çözüm 28-8: Kirchhoff' un çevrim ve kavşak kurallarından,

abcda ilmeği için; $10-6I_1-2I_3=0\Rightarrow 5=3I_1+I_3$ (Eş – 1)

bef cb ilmeği için; $-14-10+6I_1-4I_2=0$ $12=3I_1-2I_2$ (Eş – 2)

$$E\$-1 \ den \ E\$-2 \ \varsigma \iota karılırsa; \ 7=-2I_2-I_3 \ (E\$-4)$$

Eş – 3 ün her iki tarafını 2 ile çarparsak; $2I_1 + 2I_2 = 2I_3$

Bu if adeyide $E\S - 4$ ile birleştirirsek $2I_1 = 7 + 3I_3$ $(E\S - 5)$

 $E_{\S} - 5$ ile $E_{\S} - 1$ birbirinden çıkarılırsa; $22 = 11I_1 \implies I_1 = 2$ A

$$I_2 = -3\,A$$

$$I_3 = -1\,A$$
 bulunur. I_2 ve I_3 akımlarının başlangıç yönleri yanlış, I_1 akımının başlangıç yönü ise doğru seçilmiştir.

Ornek: Yanda verilen devrenin kollarından geçen I_1 , I_2 ve I_3 akımlarını, Kirchhoff' un çevrim ve kavşak kurallarını kullanarak bulunuz.

Cözüm: Kirchhoff' un çevrim ve kavşak kurallarından, abcf ilmeği için; $12 - I_1 - 3I_1 + 5I_2 + I_2 - 4 = 0$ $4 = 2I_1 - 3I_2$ (Es – 1)

c kavşağı için de;
$$I_1 + I_2 = I_3$$
 (Eş – 3)

Eş-1 ve Eş-2'den I_1 ve I_3 çekilip Eş-3'te yerine konulursa,

$$I_2 = -\frac{6}{13} A$$

$$I_1 = \frac{17}{13} A$$

$$I_3 = \frac{11}{13} A$$

bulunur. I_1 ve I_3 akımlarının başlangıç yönleri doğru, I_2 akımının başlangıç yönü ise ters seçilmiştir.

Ornek 28-9: Şekilde verilen çok ilmekli devrenin;

- a) Kollarından geçen I_1 , I_2 ve I_3 akımlarını, kararlı durumda değerlerini bulunuz.
- b) Kondansatör üzerindeki yük nedir?
- Çözüm 28-9: İlk olarak kondansatörün bir açık devreyi temsil ettiğine ve böylece kararlı durum şartları altında g ve b arasında ghab yolu boyunca akımın olmadığına dikkat edelim.
 - a) Kirchhoff' un çevrim ve kavşak kurallarından,

c kavşağı için;
$$I_1 + I_2 = I_3$$
 (Eş – 1)
def cd ilmeği için; $4 - 3I_2 - 5I_3 = 0$ (Eş – 2)
cf gbc ilmeği için; $3I_2 - 5I_1 + 8 = 0$ (Eş – 3)

a) Kirchhoff' un çevrim ve kavşak kurallarından,
$$c \text{ kavşağı için; } I_1 + I_2 = I_3 \text{ } (E\$-1)$$

$$def cd \text{ ilmeği için; } 4 - 3I_2 - 5I_3 = 0 \text{ } (E\$-2)$$

$$3.00 \text{ V} \text{ } 6.00 \mu\text{F}$$

$$cf \text{ gbc ilmeği için; } 3I_2 - 5I_1 + 8 = 0 \text{ } (E\$-3)$$

$$E\$-3 \text{ ün içerisine } E\$-1 \text{ konulursa; } I_1 = I_3 - I_2 \implies 8I_2 - 5I_3 + 8 = 0 \text{ } (E\$-4)$$

$$E\$-4 \text{ ile } E\$-2 \text{ birbirinden çıkarılırsa; } I_2 = -\frac{4}{11} = -0,364 \text{ A}$$

 I_1

4.00 V

 3.00Ω

 5.00Ω

Böylece $I_1 = 1.38 A$ ve $I_3 = 1.02 A$ bulunur.

 I_1 ve I_3 akımlarının başlangıç yönleri doğru, I_2 akımının başlangıç yönü ise ters seçilmiştir.

b)
$$-8 + \Delta V_c - 3 = 0 \implies \Delta V_c = 11 V$$
 ve buradan, $Q = C\Delta V$ ise $Q = 6 \times 10^{-6} \times 11 = 66 \times 10^{-6} C$

RC Devreleri

Bir kondansatör ve bir direncin seri bağlanması ile oluşan devreye **RC devresi** adı verilir.

Bir Kondansatörün Yüklenmesi (Dolması)

Yanda verilen devreyi ele alalım. t = 0 anında Yanda verilen devreyi ele alalım. t=0 anında kapasitörün boş olduğunu ve S anahtarının a noktasına temas ettirildiğini kabul edelim. Böylece batarya, kapasitörü R direnci üzerinden yüklemeye başlar. (I = dq/dt)

$$\varepsilon - IR - \frac{q}{C} = 0 \implies \varepsilon - \frac{dq}{dt}R - \frac{q}{C} = 0 \implies \frac{dq}{dt}R + \frac{q}{C} = \varepsilon$$

Bu eşitlik, homojen olmayan birinci dereceden lineer bir diferansiyel denklemdir.

$$\frac{dq}{dt}R = \varepsilon - \frac{q}{C} = \frac{\varepsilon C - q}{C} \Rightarrow \frac{dq}{\varepsilon C - q} = \frac{dt}{RC}$$

$$\Rightarrow \int_{0}^{q} \frac{dq}{\varepsilon C - q} = \int_{0}^{t} \frac{dt}{RC}$$

$$\ln\left(\frac{\varepsilon C - q}{\varepsilon C}\right) = -\frac{t}{RC} \Rightarrow q(t) = \varepsilon C \left(1 - e^{-\frac{t}{\tau}}\right)$$

Kondansatördeki maksimum yük $Q = \varepsilon C$

$$q(t) = Q(1 - e^{-\frac{t}{\tau}})$$

 $I_0 = \frac{\mathcal{E}}{R}$ $0.368I_0 = \frac{\mathcal{E}}{\tau}$

(b)

Burada $\tau = RC$ 'dir ve devrenin "zaman sabiti" olarak tanımlanır.

Kapasitör üzerinde biriken yükün zamana bağlı değişimi Şekil-a'da verilmiştir. Devreden geçen akım ise,

$$I = \frac{dq}{dt} \Longrightarrow I(t) = \frac{\varepsilon}{R} \left(e^{-\frac{t}{\tau}} \right)$$

$$\tau = RC = \frac{\varepsilon q}{i \varepsilon} = \frac{q}{q/t} = t$$

Örnek 28-11: Sığası C olan yüksüz bir kapasitör, emk'sı ε olan bir batarya ile, şekildeki gibi, R direnci üzerinden yükleniyor. $C = 5\mu F$, $R = (8 \times 10^5)\Omega$ ve $\varepsilon = 12V$ olduğuna göre, devrenin zaman sabitini, kapasitördeki maksimum yükü ve devredeki maksimum akımı bulunuz. Anahtar kapatıldıktan τ kadar sonra, kapasitördeki yük ve devredeki akım ne olur?

Çözüm 28-11:
$$q(t) = \varepsilon C (1 - e^{-\frac{t}{\tau}})$$
 ve $I(t) = \frac{\varepsilon}{R} (e^{-\frac{t}{\tau}})$ ise $\tau = RC = (8 \times 10^5)(5 \times 10^{-6}) = 4 \text{ s}$ $q_{max} = \varepsilon C = (12)(5 \times 10^{-6}) = 60 \mu C$ $I_{max} = \frac{\varepsilon}{R} = \frac{12}{8 \times 10^5} = 1.5 \times 10^{-5} A = 15 \mu A$ $q(t) = \varepsilon C (1 - e^{-\frac{t}{\tau}}) = \varepsilon C (1 - e^{-1}) = 37.9 \ \mu C$ $I(t) = \frac{\varepsilon}{R} (e^{-\frac{t}{\tau}}) = \frac{\varepsilon}{R} (e^{-1}) = 5,52 \ \mu A$

Yüklü Bir Kondansatörün Boşalması

Yanda verilen devreyi ele alalım. t = 0 anında kapasitördeki yükün Q olduğunu varsayalım ve S anahtarının b noktasına temas ettirildiğini kabul edelim. Böylece bataryadan ayrılan kapasitör, R direnci üzerinden boşalmaya başlar.

$$IR - \frac{q}{C} = 0 \rightarrow \frac{dq}{dt}R + \frac{q}{C} = 0$$

$$\left(I = -\frac{dq}{dt} \text{ olarak alınmıştır !!}\right)$$

$$\frac{dq}{dt} = -\frac{q}{RC} \Rightarrow \frac{dq}{q} = -\frac{dt}{RC} \Rightarrow \int_{Q}^{q} \frac{dq}{q} = -\int_{0}^{t} \frac{dt}{RC}$$

$$\ln\left(\frac{q}{Q}\right) = -\frac{t}{RC} \Rightarrow \mathbf{q}(t) = \mathbf{Q}e^{-\frac{t}{\tau}}$$

$$I = \frac{dq}{dt} \Longrightarrow I(t) = -\frac{Q}{RC} \left(e^{-\frac{t}{\tau}} \right) \Longrightarrow I(t) = -I_0 \left(e^{-\frac{t}{\tau}} \right)$$

Örnek: Yanda verilen devredeki S anahtarı, kapasitör tamamen doluncaya kadar kapalı tutulsun. Her direnç üzerindeki kararlı akımı ve kapasitör üzerindeki yükü bulunuz. t=0 anında anahtar açılırsa, R_2 direnci üzerinden geçen akımı zamanın fonksiyonu olarak bulunuz ve kapasitör üzerindeki yükün maksimum değerinin 1/5' ine düşmesi için geçen süreyi hesaplayınız.

Çözüm: Devre kararlı duruma ulaştıktan sonra, kapasitörün bulunduğu koldan akım geçmez. Böylece, $12 k\Omega$ ve R_2 dirençlerinin üzerinden aynı akım geçer.

$$I = \frac{9}{\left((12+15)\times 10^3\right)} = 0.33 \, mA$$

$$V_C = IR_2 = \frac{q_{max}}{C} \implies q_{max} = (0.33\times 10^{-3})(15\times 10^3)(10\times 10^{-6}) \implies q_{max} = 50\mu C$$

t=0 anında anahtar açılırsa, kapasitör birbirine seri bağlı 12 $k\Omega$ ve 3 $k\Omega$ 'luk dirençler üzerinden

boşalacaktır.
$$q(t) = q_{max}e^{-\frac{t}{R_{e\S}C}} = \frac{\varepsilon}{R}\left(e^{-\frac{t}{\tau}}\right)$$
 ve $I(t) = -\frac{q_{max}}{R_{e\S}C}\left(e^{-\frac{t}{\tau}}\right)$ ise

$$\frac{q_{max}}{5} = q_{max}e^{-\frac{t}{R_{e\S}C}} \implies t = R_{e\S}C \ln 5 = (18 \times 10^3)(10 \times 10^{-6})(\ln 5) \implies t = 0,29 \text{ ms}$$

Örnek: Yandaki devre, sığaları $C_1 = 2\mu F$ ve $C_2 = 3\mu F$ olan iki kapasitör, dirençleri $R_1 = 2k\Omega$ ve $R_2 = 3k\Omega$ olan iki direnç ve emk'sı $\varepsilon = 120\,V$ olan bir bataryadan oluşmuştur. Kapasitörler başlangıçta boştur ve t=0 anında S anahtarı kapatılıyor. Kararlı denge durumunda, kapasitörler üzerindeki q_1 ve q_2 yüklerini bulunuz.

$$R_{e\S} = \frac{R_1 R_2}{R_1 + R_2} = \frac{(2 \times 10^3)(3 \times 10^3)}{(2 \times 10^3) + (3 \times 10^3)} = 1.2 \, k\Omega$$

$$C_1$$
 ve C_2 kapasitörleri paralel olduğundan; $C_{e\S} = C_1 + C_2 = 5 \,\mu F$

Artık devremiz, sığası $5 \mu F$ ve direnci $1,2 k\Omega$ olan basit bir RC devresi haline gelmiştir. Kapasitör üzerindeki maksimum yük;

$$q_{max} = \varepsilon C_{es} = (120)(5 \times 10^{-6}) = 600 \,\mu C$$

$$\begin{aligned} q_{max} &= q_1 + q_2 \\ V_{C_1} &= V_{C_2} \rightarrow \frac{q_1}{C_1} = \frac{q_2}{C_2} \end{aligned} \implies \qquad q_1 = \left(\frac{C_1}{C_1 + C_2}\right) q_{max} = 240 \ \mu C \\ q_2 &= \left(\frac{C_2}{C_1 + C_2}\right) q_{max} = 360 \ \mu C \end{aligned}$$

Örnek 28-13: $5 \mu F$ 'lık bir kondansatör, 800 V'luk bir potansiyel farkı ile yüklenmekte ve sonra 25 $k\Omega$ 'luk bir direnç üzerinden boşalmaktadır. Kondansatör tamamen boşaldığı zaman, dirençte harcanan toplam enerji ne kadardır?

Çözüm 28-13: Kondansatör direnç üzerinden boşalırken, direnç üzerinde enerjinin harcanma hızı I^2R olur. Burada I;

$$I(t) = -\frac{q}{RC} \left(e^{-\frac{t}{\tau}} \right)$$

Güç, enerjinin değişim hızı olarak tanımlandığı için

$$Enerji = \int_{0}^{\infty} I^{2} R dt = \int_{0}^{\infty} \left(I_{0} e^{-\frac{t}{RC}} \right)^{2} R dt$$

$$Enerji = \frac{1}{2}C\varepsilon^2$$

Bölüm Sonu Problemleri

Problemler

Problem 28-9: Şekildeki verilen devrede,

- a) 20 Ω'luk dirençteki akımı,
- b) a ve b noktaları arasındaki potansiyel farkını bulunuz

Çözüm 28-9:
$$\frac{1}{R'_{e\S}} = \frac{1}{10} + \frac{1}{5} + \frac{1}{(20+5)} \implies R'_{e\S} = 2,94 \,\Omega$$

$$R_{e\S} = 10 + 2,94 = 12,94 \,\Omega$$

$$I = \frac{\Delta V}{R_{e\S}} = \frac{25}{12.94} = 1,93 \,A$$

$$\Delta V = IR'_{e\S} = (1,93)(2,94) = 5,68 V$$

a)
$$I = \frac{\Delta V_{ab}}{R_{ab}} = \frac{5,68}{25} = 0,227 A$$

b) Bu nedenle $\Delta V_{ab} = 5,68 V$ olur.

Problem 28-22: Kirchhoff kurallarını kullanarak,

- a) Şekilde gösterilen devrede her bir dirençteki akımı bulunuz.
- b) c ve f noktaları potansiyel farkını bulunuz. Bu noktaların hangisi daha yüksek potansiyeldedir?

Çözüm 28-22:

rkını bulunuz. Bu stansiyeldedir?
$$I_{R_1} = I_3 + I_1$$

$$I_1 = 0.385 \text{ mA}$$

$$I_2 = 3.08 \text{ mA}$$

$$I_3 = 2.69 \text{ mA}$$

$$I_{R_1} = 0.00 \text{ k}\Omega$$

$$I_{R_2} = 0.00 \text{ k}\Omega$$

$$I_{R_2} = 0.00 \text{ k}\Omega$$

$$I_{R_1} = 0.00 \text{ k}\Omega$$

$$I_{R_2} = 0.00 \text{ k}\Omega$$

$$I_{R_1} = 0.00 \text{ k}\Omega$$

$$I_{R_2} = 0.00 \text{ k}\Omega$$

$$I_{R_1} = 0.00 \text{ k}\Omega$$

$$I_{R_2} = 0.00 \text{ k}\Omega$$

 $4.00 \text{ k}\Omega$

b)
$$\Delta V_{cf} = -60 - (3.08 \times 10^{-3})(3 \times 10^{3}) = -69.2 V$$

c noktasının potansiyeli d noktasının potansiyeline göre daha yüksek potansiyeldedir.

Problem 28-32: Şekilde görülen devrede, *S* anahtarı uzun zamandır açıktır. Anahtar ani olarak kapatılıyor,

b) Anahtar kapatıldıktan sonra, zaman sabitini bulunuz.

c) t = 0 da anahtar kapaliysa, zamanin fonksiyonu olarak devredeki akimi hesaplayiniz.

Çözüm 28-32:

a)
$$\tau = RC = (150 \times 10^3)(10 \times 10^{-6}) = 1.5 s$$

b)
$$\tau = (1 \times 10^5)(10 \times 10^{-6}) = 1 s$$

c) Bataryanın taşıdığı akım;
$$I = \frac{10}{50 \times 10^3} = 200 \,\mu A$$

100 $k\Omega$ 'luk dirençteki akım;

$$I(t) = I_0 e^{-t/RC} = \left(\frac{10}{100 \times 10^3}\right) \left(e^{-t/1}\right)$$
$$I = (200 + 100 e^{-t})(\mu A)$$

Problem 28-67: Şekildeki devrede, anahtarın kondansatör tamamen yükleneceği kadar yeterince uzun bir süre kapatıldığı varsayılıyor.

- a) Her bir dirençten geçen kararlı durum akımını,
- b) Kondansatördeki yükü bulunuz.
- c) Şimdi anahtar t = 0 anında açılıyor. R_2 'den geçen I_{R_2} akımı için zamanın fonksiyonu olarak bir denklem yazınız.
- d) Kondansatör üzerindeki yük başlangıç değerinin 1/5'ine düşmesi için geçecek zaman bulunuz.

Çözüm 28-67:

a) Kararlı durumdan sonra, kondansatör üzerinden akım akmaz.

Böylece R_3 için; $I_{R_3} = 0$ (kararlı durum)

$$I_{R_1 + R_2} = \frac{9}{(27 \times 10^3)} = 333 \,\mu A$$
 (kararlı durum)

b)
$$q = C(\Delta V_{R_2}) = CI_{R_1 + R_2}R_2$$

$$q = (10 \times 10^{-6})(333 \times 10^{-6})(15 \times 10^3)$$

$$q = 50\mu C$$

c)
$$\tau = (R_2 + R_3)C = (18 \times 10^3)(10 \times 10^{-6}) = 0.18 s$$

$$I_i = \frac{\Delta V_C}{(R_2 + R_3)} = \frac{I_2 R_2}{(R_2 + R_3)} = 278 \,\mu A$$

$$I_{R_2} = I_i e^{-t/((R_2 + R_3)C)}$$

d)
$$q = q_i e^{-t/((R_2 + R_3)C)}$$

 $\frac{q_i}{5} = q_i e^{-t/(0,18)}$
 $5 = e^{t/0,18}$
 $\ln 5 = \frac{t}{0.10} \implies t = 290 \text{ m}$