Úvod

Poznámka (Historie)

MP zavedl Maurice Fréchet na podnět Felixe Hausdorffa.

Poznámka

Dále se opakovali metrické prostory.

Definice 0.1 (Baireův prostor)

 $\mathbb{N}^{\mathbb{N}}$, $d(\{x_n\}, \{y_n\}) = \frac{1}{k}$, kde k je první index, že $x_k \neq y_k$.

Poznámka

V Bairově prostoru platí $d(x,y) \leq \max(d(x,z),d(z,y))$. Metriky s touto vlastností se nazývají ultrametriky (dříve archimédovské metriky).

Definice 0.2 (Peadická metrika)

 (Q, d_p) , kde p je prvočíslo:

$$d_p(a,b) = p^{-n}, \frac{a}{b} = p^n \cdot c.$$

Definice 0.3 (Stejnoměrně ekvivalentní)

Metriky jsou stejnoměrně ekvivalentní, jestliže identická zobrazení $((X, d) \mapsto (X, e)$ a opačně) jsou stejnoměrně spojitá.

Definice 0.4 (Hölderovské zobrazení)

Nechť $\alpha \geqslant 0$. Říkáme, že zobrazení $f:(X,d) \to (Y,e)$ je hölderovské stupně α (nebo α -hölderovské), jestliže existuje $k \in \mathbb{R}$ tak, že pro všechna $x,y \in X$ platí

$$e(f(x), f(y)) \le k \cdot d^{\alpha}(x, y)$$

Hölderovské zobrazení stupně 1 se nazývá lipschitzovské. Lipschitzovské zobrazení s konstantou k<1 se nazývá kontrakce.

1

Tvrzení 0.1

 $Je-li\ f:(X,d)\to (Y,e)\ \alpha-h\"{o}lderovsk\'{e}\ pro\ \alpha>0,\ pak\ je\ f\ stejnom\'{e}rn\'{e}\ spojit\'{e}.$

 $D\mathring{u}kaz$

Máme

$$e(f(x), f(y)) \le Kd^{\alpha}(x, y).$$

Chceme

$$\forall \varepsilon > 0 \ \exists \delta > 0 : (d(x,y) < \delta \implies e(f(x),f(y)) < \varepsilon).$$

Zvolíme
$$\delta = \sqrt[\alpha]{\frac{\varepsilon}{K}}$$
.

Tvrzení 0.2

Složení f α -hölderovské a g β -hölderovské je $\alpha \cdot \beta$ -hölderovská funcke.

Důkaz

$$\varrho(g(f(x)),g(f(y))) \leqslant Ke^{\beta}(f(x),f(y)) \leqslant K(Ld^{\alpha}(x,y))^{\beta} = K \cdot L^{\beta}d^{\alpha \cdot \beta}(x,y).$$

Důsledek

Složení lipschitzovských zobrazení je lipschitzovské. Z důkazu pak i složení kontrakcí je kontrakce.

Definice 0.5 (Pseudonorma funkce)

Nechť $f:(X,d)\to (Y,e)$. Označíme

$$|f|_{\alpha} = \inf\{K, e(f(x), f(y)) \leqslant Kd^{\alpha}(x, y)\} = \sup\left\{\frac{e(f(x), f(y))}{d^{\alpha}(x, y)} | x \neq y\right\}$$

Věta 0.3

Nechť (X,d) je omezený prostor a $0 \le \beta \le \alpha$. Pak každé α -hölderovské zobrazení na (X,d) je β -hölderovské.

Důkaz

$$e(x,y) \leqslant K d^{\alpha}(f(x),f(y)) = K d^{\beta}(x,y) \cdot d^{\alpha-\beta}(x,y) \leqslant K \cdot (\operatorname{diam} f(x))^{\alpha-\beta} d^{\beta}(x,y).$$

Tvrzení 0.4

 $f: J \to \mathbb{R}, \ J \ interval \ v \ \mathbb{R}, \ J = (a, b), \ a \neq -\infty. \ Potom$

 $f \ je \ stejnoměrně \ spojitá \ \Longrightarrow \ \exists F: [a,b) \to \mathbb{R}, \ stejnoměrně \ spojitá, \ F|_{(a,b)} = f.$

 $D\mathring{u}kaz$

Dokázáno na přednášce (jednoduché).

Věta 0.5

- 1. Je-li f α -hölderovská pro $\alpha > 1$ je konstantní.
- 2. Má-li f derivaci, pak je f lipschitzovská právě když je její derivace omezená.
- 3. Lipschitzovská funkce je absolutně spojitá.

$$1. |f(x) - f(y)| \le K|x - y|^{\alpha} \implies \left| \frac{f(x) - f(y)}{x - y} \le K|x - y|^{\alpha - 1} \implies f'(x) = 0 \implies f = \text{konst.}$$

$$(3.) \implies \text{``}\exists f' naJ \land |f(x) - f(y)| \leqslant K|x - y| \implies |\frac{f(x) - f(y)}{x - y}| \leqslant K.$$

$$(3.) \iff \text{``}|f'(x)| \leqslant K \forall x \in J \implies |f(x) - f(y)| = |f'(c)| \cdot |x - y| \leqslant K(x - y).$$

 $f \text{ je lips.} \implies |f(x)-f(y)| \leqslant K \cdot |x-y| \implies \sum_{i=1}^{n} |f(a_i)-f(b_i)| \leqslant \sum_{i=1}^{n} K(b_i-a_i) = K \sum_{i=1}^{n} (b_i-a_i) < K\delta < \varepsilon.$

Definice 0.6 (Lipschitzovsky ekvivalentní metriky)

Metriky d, e na X se nazývají lipschitzovsky ekvivalentní, jestliže obě identická zobrazení jsou lipschitzovské.

Poznámka

To je ekvivalentní

$$\exists K, L > 0 \ \forall x, y \in X : Kd(x, y) < e(x, y) < Ld(x, y).$$

Věta 0.6

Buď p>0. Funkce x^p na $J\subseteq [0,+\infty)$ je lipschitzovská, právě když buď $0< a< b<+\infty$ nebo a=0 a $p\geqslant 1$ nebo $b=+\infty$ a $p\leqslant 1$.

Věta 0.7

Nechť $\alpha \in (0,1]$. Pak x^{α} je α -hölderovská na $[0,+\infty)$.

 $D\mathring{u}kaz$

$$|x^{\alpha} - y^{\alpha}| \leq K|x - y|^{\alpha}, \qquad y_0 \geq 0, x \geq y_0, g(x) = (x - y_0)^{\alpha} - (x^{\alpha} - y_0^{\alpha})na[y_0, +\infty), g(y_0) = 0,$$

$$g'(x) = \alpha(x - y_0)^{\alpha - 1} - \alpha x^{\alpha - 1} = \alpha\left((x - y_0)^{\alpha - 1} - x^{\alpha - 1}\right) \geq 0 \implies \forall x \geq y_0 : x^{\alpha} - y^{\alpha} \leq (x - y)^{\alpha}.$$

Věta 0.8

$$|x^{\alpha}|_{\alpha} = \frac{b^{\alpha} - a^{\alpha}}{(b-a)^{\alpha}}, \qquad \alpha \in [0,1].$$