Topic: Coterminal angles

Question: Which angle is coterminal with -150° ?

Answer choices:

A 120°

B -420°

C 570°

D 230°

Solution: C

We'll check each of the answer choices. We're looking for the angle that differs from -150° by an integer multiple of 360° .

There's only one answer choice that's a negative angle, so we'll check the negative angle first. If we subtract 360° from -150° , we get

$$-150^{\circ} - 360^{\circ}$$

$$-510^{\circ}$$

So -420° isn't coterminal with -150° .

Now let's check the three positive angle choices just by adding 360° a few times to -150° .

$$-150^{\circ} + 1(360^{\circ}) = 210^{\circ}$$

$$-150^{\circ} + 2(360^{\circ}) = 570^{\circ}$$

$$-150^{\circ} + 3(360^{\circ}) = 930^{\circ}$$

The only angle that matches up is 570°.

Topic: Coterminal angles

Question: Which angle is not coterminal with $-8\pi/3$?

Answer choices:

$$A \qquad \frac{4\pi}{3}$$

$$\mathsf{B} \qquad -\frac{4\pi}{3}$$

$$C \qquad -\frac{26\pi}{3}$$

D
$$\frac{22\pi}{3}$$

Solution: B

To find angles coterminal with $-8\pi/3$, we'll add or subtract multiples of 2π from the angle. Because the angle $-8\pi/3$ is given in thirds (the denominator is 3), it'll be easier to express 2π in thirds, so we'll rewrite 2π as

$$2\pi\left(\frac{3}{3}\right)$$

$$\frac{6\pi}{3}$$

So let's start by subtracting multiples of $6\pi/3$ from $-8\pi/3$ to find negative coterminal angles.

$$-\frac{8\pi}{3} - 1\left(\frac{6\pi}{3}\right) = -\frac{14\pi}{3}$$

$$-\frac{8\pi}{3} - 2\left(\frac{6\pi}{3}\right) = -\frac{20\pi}{3}$$

$$-\frac{8\pi}{3} - 3\left(\frac{6\pi}{3}\right) = -\frac{26\pi}{3}$$

No we'll add multiples of $6\pi/3$ to $-8\pi/3$ to find more coterminal angles.

$$-\frac{8\pi}{3} + 1\left(\frac{6\pi}{3}\right) = -\frac{2\pi}{3}$$

$$-\frac{8\pi}{3} + 2\left(\frac{6\pi}{3}\right) = \frac{4\pi}{3}$$

$$-\frac{8\pi}{3} + 3\left(\frac{6\pi}{3}\right) = \frac{10\pi}{3}$$

$$-\frac{8\pi}{3} + 4\left(\frac{6\pi}{3}\right) = \frac{16\pi}{3}$$

$$-\frac{8\pi}{3} + 5\left(\frac{6\pi}{3}\right) = \frac{22\pi}{3}$$

We've seen that each of the answer choices is coterminal with $-8\pi/3$, except $-4\pi/3$.

Topic: Coterminal angles

Question: Which angle α is coterminal with $71\pi/16$ if we find α by starting at $71\pi/16$ and making two full negative rotations?

Answer choices:

$$A \qquad \alpha = \frac{7\pi}{16}$$

$$B \qquad \alpha = -\frac{7\pi}{16}$$

$$C \qquad \alpha = \frac{39\pi}{16}$$

$$D \qquad \alpha = -\frac{25\pi}{16}$$

Solution: A

One full negative rotation is given by -2π , so two full negative rotations is given by -4π . Therefore, if we start with $71\pi/16$ and make two full negative rotations, we'll get an angle of

$$\alpha = \frac{71\pi}{16} - 4\pi$$

$$\alpha = \frac{71\pi}{16} - 4\pi \left(\frac{16}{16}\right)$$

$$\alpha = \frac{71\pi}{16} - \frac{64\pi}{16}$$

$$\alpha = \frac{71\pi - 64\pi}{16}$$

$$\alpha = \frac{7\pi}{16}$$