Modelling CS u: control input, y: plant output State variable CS is in state variable form if where $m \leq n$ (causality) IO to SS Model 1. Define x s.t. highest order derivative in \dot{x} 2. Write x=Ax+Bu=f(x,u) by isolating for components of x 3. Write y=Cx+Du=h(x,u) by setting measurement output y to component of xEquilibria y_d (steady state) b/c if $y(0) = y_d$ at t = 0, then $y(t) = y_d \ \forall t \ge 0$. **Equilibrium pair** Consider the system $\dot{x} = f(x, u)$. The pair Equilibrium pair Consider the system x = f(x, u). The pair (\bar{x}, \bar{u}) is an equilibrium pair if $f(\bar{x}, \bar{u}) = 0$. Equilibrium point \bar{x} is an equilibrium point w/ control $u = \bar{u}$. If $u = \bar{u}$ and $x(0) = \bar{x}$ then $x(t) = \bar{x} \ \forall t \geq 0$ (i.e. a system that starts at equilibrium remains at equilibrium). Find Equilibrium Pair/Point 1. Set f(x, u) = 0. Solve f(x, u) = 0 to find $(x, u) = (\bar{x}, \bar{u})$. 3. If specific $u = \bar{u}$, then find $x = \bar{x}$ by solving $f(x, \bar{u}) = 0$. **Linearization of Nonlinear System** Consider system $\dot{x} = f(x, u)$ w/ equ. pair (\bar{x}, \bar{u}) , then error coordinates around equ. pair $\begin{array}{l} \delta x = x - \bar{x}, \, \delta u = u - \bar{u}, \, \delta y = y - h(\bar{x}, \bar{u}) \, \, \delta x = x - f(\bar{x}, \bar{u}) \, \, w/\\ \delta x = A \delta x + B \delta u, \, A = \frac{\partial f(\bar{x}, \bar{u})}{\partial \underline{x}} \in \mathbb{R}^{n_1 \times n_1}, \, B = \frac{\partial f(\bar{x}, \bar{u})}{\partial u} \in \mathbb{R}^{n_1}, \end{array}$ $\delta y = C\delta x + D\delta u, \ C = \frac{\partial h}{\partial \underline{x}}(\bar{x}, \bar{u}) \in \mathbb{R}^{1 \times n_1}, \ D = \frac{\partial h(\bar{x}, \bar{u})}{\partial u} \in \mathbb{R}$ *Only valid at equ. pairs. **Linear Approx.** Given a diff. fcn. $f: \mathbb{R} \to \mathbb{R}$, its linear approx at \bar{x} is $f_{\lim} = f(\bar{x}) + f'(\bar{x})(x - \bar{x})$. *Remainder Thm: $f(x) = f_{\text{lin}} + r(x)$ where $\lim_{x \to \bar{x}} \frac{r(x)}{x - \bar{x}} = 0$. *Note: Can provide a good approx. near \bar{x} but not globally. *Gen. $f: \mathbb{R}^{n_1} \to \mathbb{R}^{n_2}, \ f(x) = f(\bar{x}) + \frac{\partial f}{\partial x}(\bar{x})(x - \bar{x}) + R(x)$ *Jacobian: $\frac{\partial f}{\partial x}(\bar{x}) = \begin{bmatrix} \frac{\partial f}{\partial x_1}(\bar{x}) & \cdots & \frac{\partial f}{\partial x_{n_1}}(\bar{x}) \end{bmatrix} \in \mathbb{R}^{n_2 \times n_1}$ Linearization Steps 1. Find equ. pair (\bar{x}, \bar{u}) 2. Derive A, B, C, D and then evaluate at (\bar{x}, \bar{u}) 3. Write $\delta \dot{x} = A\delta x + B\delta u$ and $\delta y = C\delta x + D\delta u$

Laplace Transform Given a fcn $f: \mathbb{R}_{+} = [0, \infty) \rightarrow \mathbb{R}^{n}$, its Laplace transform is $F(s) = \mathcal{L}\{f(t)\} := \int_{0^{-}}^{\infty} f(t)e^{-st} dt$, $s \in \mathbb{C}$. $^*\mathcal{L}: f(t) \mapsto F(s), \ t \in \mathbb{R}_+ \ (\text{time dom.}) \ \& \ s \in \mathbb{C} \ (\text{Laplace dom.}).$ P.W. CTS: A fcn $f: \mathbb{R}_+ \to \mathbb{R}^n$ is p.w. cts if on every finite interval of \mathbb{R} , f(t) has at most a finite # of discontinuity points (t_i) and the limits $\lim_{t\to t^+} f(t)$, $\lim_{t\to t^-} f(t)$ are finite.

Exp. Order A function $f: \mathbb{R}_+ \to \mathbb{R}^n$ is of exp. order if \exists constants $K, \rho, T > 0$ s.t. $||f(t)|| \le Ke^{\rho t}, \forall t \ge T$. Existence of LT Thm If f(t) is p.w. cts and of exp. order w/ constants $K, \rho, T > 0$, then $F(\cdot)$ exists and is defined $\forall s \in D := \{s \in C : Re(s) > \rho\}$ and $F(\cdot)$ is analytic on D. *Analytic fcn iff differentiable fcn.

*D: Region of convergence (ROC), open half plane.

Unit Step 1(t) := $\begin{cases} 1, & \text{if } t \ge 0 \\ 0, & \text{otherwise} \end{cases}$

Table of Common Laplace Transforms: $f(t) \mid F(s)$ $\mathbf{1}(t) \mapsto \frac{1}{s} \quad t\mathbf{1}(t) \mapsto \frac{1}{s^2} \quad t^k \mathbf{1}(t) \mapsto \frac{k!}{s^{k+1}} \quad e^{at} \mathbf{1}(t) \mapsto \frac{1}{s-a}$ $t^n e^{at} \mathbf{1}(t) \mapsto \frac{n!}{(s-a)^{n+1}} \quad \sin(at) \mathbf{1}(t) \mapsto \frac{a}{s^2 + a^2}$ $\cos(at) \mathbf{1}(t) \mapsto \frac{s}{s^2 + a^2} \quad \frac{1}{2\omega^3} \left[\sin(\omega t) - \omega t \cos(\omega t) \right] \mathbf{1}(t) \mapsto \frac{1}{(s^2 + \omega^2)^2}$

Prop. of Laplace Transform Linearity: $\mathcal{L}\{cf(t) + g(t)\} = c\mathcal{L}\{f(t)\} + \mathcal{L}\{g(t)\}, c \sim \text{constant}.$

Differentiation: If the Laplace transform of f'(t) exists, then $\mathcal{L}\{f'(t)\} = s\mathcal{L}\{f(t)\} - f(0^-)$

If the Laplace transform of $f^{(n)}(t) := \frac{d^n f}{dt^n}(t)$ exists, then $\mathcal{L}\{f^{(n)}(t)\} = s^n \mathcal{L}\{f(t)\} - \sum_{i=1}^n s^{n-i} f^{(i-1)}(0^-).$

Integration: $\mathcal{L}\left\{\int_0^t f(\tau)d\tau\right\} = \frac{1}{s}\mathcal{L}\left\{f(t)\right\}.$

Convolution: Let $(f*g)(t) := \int_0^t f(\tau)g(t-\tau)d\tau = \int_0^t f(t-\tau)g(\tau)d\tau$, then $\mathcal{L}\{(f*g)(t)\} = \mathcal{L}\{f(t)\}\mathcal{L}\{g(t)\}$. Time Delay: $\mathcal{L}\{f(t-T)I(t-T)\} = e^{-TS}\mathcal{L}\{f(t)\}, T \geq 0$.

Multiplication by t: $\mathcal{L}\{tf(t)\} = -\frac{d}{ds}[\mathcal{L}\{f(t)\}].$

Shift in s: $\mathcal{L}\lbrace e^{at}f(t)\rbrace = \mathcal{L}\lbrace f(t)\rbrace \Big|_{s\to s-a} = F(s-a)$, where $F(s) = \mathcal{L}\{f(t)\} \& a \text{ const.}$

Trig. Id. $2\sin(2t) = 2\sin(t)\cos(t)$, $\sin(a-b) = \sin(a)\cos(b) - \cos(a)\sin(b)$, $\cos(a-b) = \cos(a)\cos(b) + \sin(a)\sin(b)$

Complete the Square: $ax^2 + bx + c = a(x + \frac{b}{2a})^2 - \frac{b^2}{4a} + c$ LT Steps: 1. Write f(t) as a sum and use linearity *Trig. id. may be useful.

2. Use prop. of LT and common LT to find F(s)

Inverse Laplace Transform Given F(s), its inverse LT is f(t) =

Inverse Laplace Transform Given F(s), its inverse LT is $J(t) = \mathcal{L}^{-1}\{F(s)\} := \frac{1}{2\pi} \int_{c-j\infty}^{c+j\infty} F(s) e^{st} ds$ $= \lim_{w \to \infty} \frac{1}{2\pi} \int_{c-jw}^{c+jw} F(s) e^{st} ds, c \in \mathbb{C} \text{ is selected s.t. the line } L := \{s \in \mathbb{C} : s = c+j\omega, \omega \in \mathbb{R}\} \text{ is inside the ROC of } F(s).$ Zero: $z \in \mathbb{C}$ is a zero of F(s) if F(z) = 0. **Pole:** $p \in \mathbb{C}$ is a pole of F(s) if $\frac{1}{F(p)} = 0$. Cauchy's Residue THM If F(s) is analytic (complex diff.) everywhere except at isolated poles $\{p_1,\ldots,p_N\}$, then $\mathcal{L}^{-1}\{F(s)\} = \sum_{i=1}^N \operatorname{Res}\left[F(s)e^{st}, s = p_i\right]\mathbf{1}(t),$ $L^{-}(F(s)) = \sum_{i=1}^{s} \text{Res } F(s)e^{st}, s = p_i \text{ I(t)},$ *Res $[F(s)e^{st} \text{ as } s = p_i]$. Residue **Computation** Let G(s) be a complex analytic fcn w/ a pole at s = p, r be the multiplicity of the pole p. Then $\text{Res}[G(s), s = p] = \frac{1}{(r-1)!} \lim_{s \to p} \frac{d^{r-1}}{ds^{r-1}} [G(s)(s-p)^r].$ Inv. LT Partial Frac.: 1. Factorize F(s) into partial fractions. 2. Find coefficients and use LT table to find inverse LT. **Complete the square. Find coefficients and any *Complete the square.
 Inv. LT Residue: 1. Find poles of F(s) and their residues.
 Peridue THM to find inverse LT.
 Considues (use Et Transfer Function: Consider a CS in IO form. Assume zero initial conds. $y(0) = \cdots = \frac{d(n-1)}{dt(n-1)}(0) = 0$ and $u(0) = \cdots = \frac{d^{(m-1)}u}{dt^{(m-1)}}(0) = 0.$ Then the TF from u to y is ... $\begin{array}{l} atv^{m-1} \\ G(s) := \frac{y(s)}{U(s)} = \frac{b_{ms}m + \cdots + b_0}{s^n + a_{n-1}s^{n-1} + \cdots + a_0} \\ *0 \text{ Ini. Conds.: } y_0(s) = G(s)u(s) \end{array}$

*Ø Ini. Conds.: $y_0(s) = G(s)u(s)$ *Ø Ini. Conds.: $y_0(s) = y_0(s) + \frac{\text{poly. based on initial conds.}}{s^n + a_{n-1}s^{n-1} + \dots + a_0}$ TF Steps (IO to TF): 1. Given IO form of CS, assume zero

*Careful: Y(s)/U(s) = G(s) not U(s)/Y(s) = G(s).

Impulse Response: Given CS modeled by TF G(s), its IR is

Impulse Response: Given CS modeled by TF G(s), its IR is $g(t) := \mathcal{L}^{-1}\{G(s)\}$. ** $\mathcal{L}\{\delta(t)\} = 1$, then if $u(t) = \delta(t)$, then Y(s) = U(s)G(s) = G(s). SS to TF: $G(s) = C(sI - A)^{-1}B + D$ s.t. y(s) = G(s)U(s). *Assume $x(0) = 0 \in \mathbb{R}^n$ (zero initial conds.). **LTI: G(s) of an LTI system is always a rational fcn. *Not Invertible: Values of s s.t. sI - A not invertible can correspond to poles of G(s).

Inverse: 1. For $A \in \mathbb{R}^{n \times n}$, find $[\operatorname{cof}(A)]_{(i,j)} = (-1)^{i+j} \det(A_{(i,j)})$. * $A_{(i,j)}$: A w/ row i and col. j removed.

2. Assemble cof(A) and find $det(A) = \sum_{j=1}^{n} a_{ij} [cof(A)]_{(i,j)}$ w/ fixed i or $\det(A) = \sum_{i=1}^n a_{ij} [\operatorname{cof}(A)]_{(i,j)}^{\bullet}$ w/ fixed j

3. Find $A^{-1} = \frac{1}{\det(A)} \operatorname{adj}(A) = \frac{1}{\det(A)} [\operatorname{cof}(A)]^T$.

*2 × 2 : $A^{-1} = \frac{1}{\det(A)} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$ TF (SS to TF): 1. Given SS form, assume zero initial conds.

2. Solve $G(s) = C(sI - A)^{-1}B + D$.

*If $C = \begin{bmatrix} 0 & 1_i & 0 \end{bmatrix}$ & $B = \begin{bmatrix} 0 & 1_j & 0 \end{bmatrix}$, then only need ith row

& jth col. of $\operatorname{adj}(sI-A)$ s.t. $G(s) = \frac{[\operatorname{adj}(sI-A)]_{(i,j)}}{\det(sI-A)} + D.$

*Multiple i, j non-zero entries: Work it out using MM.

TF to SS: Consider $G(s) = \frac{b_m s^m + \dots + b_0}{s^n + a_{n-1} s^{n-1} + \dots + a_0}$ < n (i.e. G(s) is strictly proper). Then the SS form is

 $_{1}^{0}$ 0 0 $\begin{bmatrix} 0 \\ -a_2 \end{bmatrix}$

 $C = \begin{bmatrix} b_0 & \cdots & b_m & | & 0 & \cdots & 0 \end{bmatrix}, I$ *Unique: State space of a TF is not unique 0], D = 0.

ym - am ym + ... + ao y (ID)

Block Diagram Types of Blocks

Cascade: $y_2 = (G_1(s)G_2(s))U \stackrel{\text{SISO}}{=} y_2 = (G_2(s)G_1(s))U$ $V \rightarrow \overline{G_1} \xrightarrow{y_1} \overline{G_2} \rightarrow y_2 = V \rightarrow \overline{G_1G_2} \rightarrow y_2$

Parallel $y = (G_1(s) + G_2(s))U$

Feedback $y = \left(\frac{G_1(s)}{1 + G_1(s)G_2(s)}\right)R$

*SC: Unity Feedback Loop (UFL) if $G_2(s) = 1$. Manipulations: 1. $y = G(U_1 - U_2) = GU_1 + GU_2$ 2. $y_1 = GU$ $y_2 = U$ | $y_1 = GU$ $y_2 = G\frac{1}{G}U$ 3. From feedback loop to UFL.

U, -SO - TG - Y U. → T67-30-34 U - G = U > a - in y. $R \rightarrow \begin{bmatrix} \frac{1}{6} \\ 0 \end{bmatrix} \rightarrow \begin{bmatrix} 0 \\ 0 \end{bmatrix} \rightarrow \begin{bmatrix} G_1 \\$

Find TF from Block Diagram: 1. Start from in \rightarrow out, making simplifications using block diagram rules.

2. Simplify until you get the form $U(s) \to G(s) \to Y(s)$. Time Response of Elementary Terms: $1(t) \leftarrow \text{pole } @ 0$ The first constant of the first pole @ 0 w/ mult. $n \mid e^{at}\mathbf{1}(t) \leftarrow \text{pole}$ @ $a \sin(\omega t + \phi)\mathbf{1}(t) \leftarrow \text{pole}$ @ $a \pm j\omega \mid \cos(\omega t + \phi)\mathbf{1}(t) \leftarrow \text{pole}$ @ $a \pm j\omega$ Real Pole: $y(s) = \frac{1}{s+a}$, real pole at s = -a, then $y(t) = e^{-at} \mathbf{1}(t)$ 1. $a>0 \implies \lim_{t\to\infty} y(t) = 0 \mid 2. \ a<0 \implies \lim_{t\to\infty} y(t) = \infty$ 3. $a=0 \implies y(t) = \mathbf{1}(t)$ is constant.

Time Constant:
$$\tau = \frac{1}{a}$$
 of the pole $s = -a$ for $a > 0$ Pair of Comp. Conj. Poles:
$$y(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2} = \frac{\omega_n^2}{(s + \sigma)^2 + \omega_d^2}, \ |\zeta| < 1, \ \text{then}$$

$$y(t) = \frac{\omega_n}{\sqrt{1 - \zeta^2}} e^{-\sigma t} \sin(\omega_d t) \mathbf{1}(t)$$

*Poles: $s_{1,2} = -\zeta \omega_n \pm j \omega_n \sqrt{1 - \zeta^2} = -\sigma \pm j \omega_d$ * $\zeta = \frac{\sigma}{\omega_n}$: Damping ratio (or damping coefficient)

 $\sigma^* = \zeta \omega_n$: Decay/growth rate | ω_d : Freq. of oscillation $*\omega_n = \sqrt{\sigma^2 + \omega_d^2} \left[\frac{\text{radians}}{\text{seconds}} \right]$: Undamped natural freq.

 $*\omega_d = \omega_n \sqrt{1-\zeta^2} \left[\frac{\text{radians}}{\text{seconds}} \right]$: Damped natural freq.

 $*|s_{1,2}|^2 = \omega_n^2$: Mag. of poles is ω_n .

 $*\cos^{-1}(\zeta)$: Angle of s_1 on complex plane CW from -ve Re axis

Damping Ratio Effect: $0 < \zeta_1 < \zeta_2 < 1$, then

 $-1 < \zeta_4 < \zeta_3 < 0$, then $\sigma = \zeta \omega_n < 0$, (exp. envelop \uparrow)

Class. of 2nd Order Sys.: y(s) =

Loc. of Poles and Behavior:

Control Spec. of 2nd Order Sys.: Step Response: Given a TF G(s), its SR is y(t) resulting from applying the input $u(t) = \mathbf{1}(t)$.

i.e. $\mathcal{L}^{-1}\left\{G(s)\frac{1}{s}\right\}$. Control Spec. A control spec. is a criterion specifiying how we would like a CS to behave. $\omega_n^2 \qquad \qquad \omega_n^2 \qquad \qquad \omega_n^2 \qquad \qquad \omega_n^2 = \frac{1}{2}$

2nd Order Sys. Metrics: $G(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$ w/ $U(s) = \frac{1}{s}$ *0 < ζ < 1 (i.e. 2 comp. conj. poles w/ Re(pole) < 0).

Rise Time (RT): T_r is the time it takes y(t) to go from 10% to 90% of its steady-state value.

RT: 1. Find $t_1 > 0$ s.t. $y(t_1) = 0.1$, $t_2 > 0$ s.t. $y(t_2) = 0.9$.

 $T_r \approx \frac{1.8}{}$ 3. Compute $T_r = t_2 - t_1$.

Settling Time (ST): T_s is the time required to reach and stay w/in 2% of the steady-state value.

ST: 1. Find when it's first that $|y(t) - 1| \le 0.02$.

Peak Time: T_p is time req'd to reach the max (peak) value.

Peak Time: 1. Find the first time when
$$\dot{y}(t)=0$$
.
$$* T_p = \frac{\pi}{\omega_d} = \frac{\pi}{\omega_n \sqrt{1-\zeta^2}}.$$

*% $OS = OS \times 100\%$

* %OS =
$$\exp\left(-\frac{\pi\zeta}{\sqrt{1-\zeta^2}}\right) \iff \zeta = \frac{-\ln(OS)}{\sqrt{\pi^2 + (\ln(OS))^2}}$$

Transient Performance Sat.: Given performance spec. $T_r \leq$ Transient Performance Sat.: Given performance spec. $\iota_r \geq T_r^d$, $T_s \leq T_s^d$, $OS \leq OS^d$, find loc. of poles of G(s). *Admissible region for the poles of G(s) s.t. the step response meets all three spec. is the intersection of the above three regions. Rise Time: $T_r \approx \frac{1.8}{\omega_n} \leq T_r^d \xrightarrow{\text{app.}} \omega_n \geq \frac{1.8}{T_r^d} \equiv \omega_n^d$

Settling Time: $T_s \approx \frac{4}{\zeta \omega_n} = \frac{4}{\sigma} \leq T_s^d \stackrel{\text{app.}}{\Longleftrightarrow} \sigma \geq \frac{4}{T_s^d} \equiv \sigma^d$

$$\operatorname{OS:} \, \exp \left(\frac{-\pi \zeta}{\sqrt{1-\zeta^2}} \right) \leq \operatorname{OS}^d \, \stackrel{\operatorname{app.}}{\Longleftrightarrow} \, \zeta \geq \frac{-\ln(\operatorname{OS}^d)}{\sqrt{\pi^2 + (\ln(\operatorname{OS}^d))^2}} \equiv \zeta^d$$

Add. Poles & Zeros: The analysis remains approx. correct

under the following assumptions:

1. Any add. poles of G(s) have much more -ve real part (5-10 times) than the real part of the dom. complex conjugate poles.

- *dominant poles, additional poles.
 2. Real part of zeros are -ve & very diff. from the real part of the two dom. poles.

- Internal Stablity: $\dot{x}=Ax$ is

 1. Stable if $\forall x(0) \in \mathbb{R}^n$, the soln. x(t) is bdd; that is, $\exists M>0$ s.t. $\|x(t)\| \leq M \ \forall t \geq 0$.

 2. Asymp. Stable if it's stable & $\forall x(0) \in \mathbb{R}^n$, the soln. x(t) converges to the origin; that is, $\lim_{t\to\infty} x(t) = 0$.

 3. Unstable if it's not stable; that is, $\exists x(0) \in \mathbb{R}^n$ s.t. x(t) is not bdd.

Asymptotic Stablity Thm. x = Ax is A.S. iff $\operatorname{eig}(A) \subseteq \mathbb{C}^- \equiv \{s \in \mathbb{C} \mid \operatorname{Re}(s) < 0\}$, i.e. open left half plane (OLHP). Instability Thm. If \exists an eigenvalue λ of $A \le M$ w/ $\operatorname{Re}(\lambda) > 0$, then

output y(t) is also bdd. BIBO Unstable: An LTI system w/ 0 i.c. is BIBO unstable if it's not BIBO stable; that is, \exists a bdd u(t) s.t. y(t) is not bdd. BIBO Stable Thm. A system y(s) = G(s)U(s) is BIBO stable

iff poles $(G(s)) \subseteq \mathbb{C}^-$. Lemma: If p is a pole of G(s), then p is an eig(A). I.e. poles $(G(s)) := \{p \in \mathbb{C} \mid p \text{ is a pole of } G(s), \text{ then } p \text{ is an eig}(A)$. *Pole-0 Cancellation: eige(A) need not be a pole of G(s).

Thm. If $\operatorname{eig}(A) \subseteq \mathbb{C}^-$, then $\forall B, C, D$ the TF G(s) is BIBO stable. That is, internal asymptotic stability \Rightarrow BIBO stability. BIBO Stability 1. Find G(s) from SS form and determine poles. 2. Check if $\operatorname{poles}(G(s)) \subseteq \mathbb{C}^-$.

Routh-Hurwitz: Consider $a(s) = s^n + a_{n-1}s^{n-1} + \dots + a_0$.

* $s^n \mid 1 \quad a_{n-2} \quad a_{n-4} \quad a_{n-6} \quad \dots \quad 0$ * $s^{n-1} \mid a_{n-1} \quad a_{n-3} \quad a_{n-5} \quad a_{n-7} \quad \dots \quad 0$ * $s^{n-2} \mid b_1 \quad b_2 \quad b_3 \quad \dots$ * $s^{n-3} \mid c_1 \quad c_2 \quad \dots$

 $*_s n-3 \mid c_1 \quad c_2 \quad \dots$

 $c_2 = -\frac{1}{b_1} \det \begin{bmatrix} a_{n-1} & a_{n-5} \\ b_1 & b_3 \end{bmatrix}$

Routh-Hurwitz Stability Criterion: The roots of a(s) are in Consider the standard Content of the standard s

sign changes is equal to the # of roots of $a(s) \in \mathbb{C}^+ := \{s \in \mathbb{C} : \text{Re}(s) > 0\}$.

*If 1st element of a row is 0, Rooth array cannot be completed.

FVT v1: Suppose $Y(s) = \mathcal{L}\{y(t)\}$ is a proper rational fcn. If $y(\infty) := \lim_{s \to \infty} y(t)$ exists and is finite, then $y(\infty) = \lim_{s \to \infty} sY(s)$ FVT v2: Suppose $Y(s) = \mathcal{L}\{y(t)\}$ is a proper rational fcn. Moreover, suppose either:

- 1. $poles(Y(s)) \subseteq \mathbb{C}^-$
- 2. Y(s) has only one pole at s=0 and all other poles are in \mathbb{C}^- . Then $y(\infty):=\lim_{t\to\infty}y(t)$ exists and is finite and satisfies $y(\infty):=\lim_{s\to 0}sY(s)$. FVT 1. Does $y(\infty)$ exist? Check if pole at s=0, then compute

Rooth Array to see if poles are in $\mathbb C$

2. Compute $\lim_{s\to 0} \hat{sY}(s)$ if it exists.