Homework 5

DDL: April 11th

Problem 1

Question: Show that the coefficients A and B for the lease-squares line can be computed as follows. First

compute the means \overline{x} and \overline{y} , and then perform the calculations. (*Hint*, Use $X_k=x_k-\overline{x}, Y_K=y_k-\overline{y}$ and first find the line Y=AX)

$$\overline{x} = \frac{1}{N} \sum_{k=1}^{N} x_k \quad and \quad \overline{y} = \frac{1}{N} \sum_{k=1}^{N} y_k \quad for \quad \{(x_k, y_k)\}_{k=1}^{N}$$

$$C = \sum_{k=1}^{N} (x_k - \overline{x})^2, \quad A = \frac{1}{C} \sum_{k=1}^{N} (x_k - \overline{x})(y_k - \overline{y}), \quad B = \overline{y} - A\overline{x}$$

$$(1)$$

Problem 2

Question:

- (a) Derive the normal equation for finding the least-squares linear fit through the origin y = Ax.
- **(b)** Derive the normal equation for finding the least-squares power fit $y = Ax^3$.

b Derive the normal equation for finding the least-squares fit $y=Ax^3+B$

Problem 3

Question: For each set of data, find the least-squares curve:

- (a.1) $f(x)=Ce^{Ax}$, by using the change of variables X=x,Y=ln(y) and $C=e^{B}$ from Table 5.6 (Textbook Page 269) to linearize the data points A.
- (a.2) $f(x)=Cx^A$, by using the change of variables X=ln(x), Y=ln(y) and $C=e^B$ from Table 5.6 (Textbook Page 269) to linearize the data points A.
- (a.3) Use $E_2(f)$ to determine which curve (a.1, a.2) gives the best fit.

data points
$$A:(x_k,y_k) = \{(1,0.6),(2,1.9),(3,4.3),(4,7.6),(5,12.6)\}$$
 (2)

- **(b.1)** $f(x)=Ce^{Ax}$, by using the change of variables X=x,Y=ln(y) and $C=e^{B}$ from Table 5.6 to linearize the data points B.
- **(b.2)** f(x)=1/(Ax+B), by using the change of variables X=x,Y=1/y from Table 5.6 to linearize the data points B.
- **(b.3)** Use $E_2(f)$ to determine which curve (b.1, b.2) gives the best fit.

Problem 4

Question: The least-squares plane z=Ax+By+C for the N points $(x_1,y_1,z_1),\ldots,(x_N,y_N,z_N)$) is obtained by minimizing $E(A,B,C)=\sum_{k=1}^N (Ax_k+By_k+C-z_k)^2$. Derive the normal equations:

$$(\sum_{k=1}^{N} x_k^2) A + (\sum_{k=1}^{N} x_k y_k) B + (\sum_{k=1}^{N} x_k) C = \sum_{k=1}^{N} z_k x_k,$$

$$(\sum_{k=1}^{N} x_k y_k) A + (\sum_{k=1}^{N} y_k^2) B + (\sum_{k=1}^{N} y_k) C = \sum_{k=1}^{N} z_k y_k,$$

$$(\sum_{k=1}^{N} x_k) A + (\sum_{k=1}^{N} y_k) B + NC = \sum_{k=1}^{N} z_k.$$

$$(4)$$

Problem 5

Question: Find the natural cubic spline that passes through the points (-3,2), (-2,0), (1,3), (4,1) with the free boundary conditions S''(-3) = 0 and S''(4) = 0.

Problem 6

Question: Find the parabolically terminated cubic spline that passes through the points (-3,2), (-2,0), (1,3), (4,1).

Problem 7

Question:

- (a) Using the nodes $x_0=-2$ and $x_1=0$, determine whether $f(x)=2x^3-x$ is is own clamped cubic spline on the interval [-2,0].
- **(b)** Using the nodes $x_0=-2, x_1=0$ and $x_2=2$, show that $f(x)=x^3-x$ is is own clamped cubic spline on the interval [-2,2]. NOTE: f has an inflextion point at x_1 .
- (c) Use the results from part (b) to show that any third-degree polynomial, $f(x) = a_0 + a_1 + a_2 x^2 + a_3 x^3$ is its own clamped cubic spline on any cloased interval [a,b].
- **(b)** What, if anything, can be said about the other four types of cubic splines described in Lemmas 5.2-5.5 from Textbook Page 285-287.

Problem 8

$$a_{0} = \frac{1}{P} \int_{-P}^{P} f(x) dx$$

$$a_{j} = \frac{1}{P} \int_{-P}^{P} f(x) \cos(\frac{j\pi x}{P}) dx \quad for \ j = 1, 2, \dots$$

$$b_{j} = \frac{1}{P} \int_{-P}^{P} f(x) \sin(\frac{j\pi x}{P}) dx \quad for \ j = 1, 2, \dots$$

$$(5)$$

Question: For a periodic function f(x) with period 2P, f(x+2P)=f(x), we have Euler's formulas (5) and (6) for f as illustrated above. Please use the above equations to find the Fourier series representations of the given function. Graph f(x), $S_4(x)$ and $S_6(x)$ on the same coordinate system.

$$f(x) = \begin{cases} -1 & for -3 \le x < -1 \\ x & for -1 \le x < 1 \\ 1 & for 1 \le x < 3 \end{cases}$$
 (6)

Problem 9

Question: Show that

(a)
$$P''(0) = N(N-1)(P_2 - 2P_1 + P_0)$$

(b)
$$P''(1) = N(N-1)(P_N - 2P_{N-1} + P_{N-2})$$

Problem 10 (Programming)

Please submit executable files, and append your programming result in your homework.

ATTENTION: Existing python/matlab packages (i.e., sympy.solve, matlab fsolve...) are NOT ALLOWED

Question: The distance d_k that a car traveled at time t_k is given in the following table. Use Program 5.3 with the first derivative boundary conditions S'(0) = 0 and S'(8) = 98, and find the clamped cubic spline for the points.

$$(t_k, d_k) = \{(0, 0), (2, 40), (4, 160), (6, 300), (8, 480)\}$$

$$(7)$$

Problem 11 (Programming)

Please submit executable files, and append your programming result in your homework.

ATTENTION: Existing python/matlab packages (i.e., sympy.solve, matlab fsolve...) are NOT ALLOWED

Question: Modify Program 5.3 to find the (a) natural, (b) extrapolated, (c) parabolically terminated, or (d) endpoint curvature-adjusted cubic splines for a given set of points.