CV Evolution

Mauro Jélvez

1. Introducción a las Variables Cataclísmicas

1.1. Definición y componentes

Las Variables Cataclísmicas (CVs, por sus siglas en inglés) son sistemas binarios cercanos semi-despegados que consisten en:

- 1. Acretor (primaria): Una enana blanca (WD) con:
 - Masa típica: M_1 ~ 0.6 − 1.0 M_{\odot}
 - Radio: \hat{R}_1 ~ 0.01 R_{\odot} ~ 7000 km

 - Temperatura efectiva: $T_{\rm eff} \sim 10^4 5 \times 10^4 {\rm K}$ Campo magnético: $10^4 10^8 {\rm G}$ (en CVs magnéticas)
- 2. **Donante** (secundaria): Una estrella de secuencia principal tardía o enana marrón que:
 - Llena su lóbulo de Roche
 - Transfiere masa hacia la primaria

 - Masa típica: $M_2 \sim 0.05$ $0.8 \, M_\odot$ Tipo espectral: K-M (enanas rojas) o L-T (enanas marrones para period bouncers)
- 3. Disco de acreción: Estructura formada por el material transferido (en CVs no-magnéticas o débilmente magnéticas)
- 4. Hot spot: Región brillante donde la corriente de acreción impacta el disco

1.2. Tasas de transferencia de masa

Las CVs exhiben un rango amplio de \dot{M} :

$$\dot{M} \sim 10^{-11} - 10^{-7} \, M_{\odot} \, \text{año}^{-1}$$
 (1)

Esta tasa determina el tipo observacional:

- Alta \dot{M} ($\gtrsim 10^{-9} M_{\odot}/a\tilde{n}o$): Nova-likes (NL), brillantes y es-
- **Media** \dot{M} (~ $10^{-10} 10^{-9} M_{\odot}/a\tilde{n}o$): Novas enanas (DN), con erupciones periódicas
- Baja \dot{M} (≤ $10^{-10} M_{\odot}/a\tilde{n}o$): DN con largos tiempos de recurrencia o sistemas muy débiles

2. Fundamentos de la Dinámica Orbital

2.1. El problema de dos cuerpos

Consideremos un sistema binario con masas M_1 (enana blanca) y M_2 (donante), separadas por una distancia a. En el marco del centro de masas:

$$M_1 a_1 = M_2 a_2 \tag{2}$$

donde a_1 y a_2 son las distancias de cada componente al centro de masas, y:

$$a = a_1 + a_2 \tag{3}$$

Resolviendo para las distancias individuales:

$$a_1 = \frac{M_2}{M_1 + M_2} a = \frac{a}{1 + q} \tag{4}$$

$$a_2 = \frac{M_1}{M_1 + M_2} a = \frac{qa}{1 + q} \tag{5}$$

donde hemos definido la razón de masas:

$$q \equiv \frac{M_2}{M_1} \tag{6}$$

En CVs, siempre q < 1 (el donante es menos masivo que la WD).

2.2. Tercera Ley de Kepler

La relación entre el período orbital P_{orb} y la separación está dada

$$P_{\rm orb}^2 = \frac{4\pi^2 a^3}{G(M_1 + M_2)} \tag{7}$$

Expresando en unidades convenientes:

$$P_{\text{orb}}[\text{días}] = 0.0588 \left(\frac{a}{R_{\odot}}\right)^{3/2} \left(\frac{M_1 + M_2}{M_{\odot}}\right)^{-1/2}$$
 (8)

Para CVs típicas con $M_1 + M_2 \sim 0.8 M_{\odot}$ y $P_{\rm orb} \sim 3 h = 0.125$ días:

$$a \sim 0.0588^{2/3} \times 0.125^{2/3} \times 0.8^{1/3} \sim 1.4 R_{\odot} \sim 3 \times 10^{10} \text{ cm}$$
 (9)

2.3. Momento angular orbital

El momento angular orbital total del sistema es la suma de las contribuciones de ambas componentes:

$$J = M_1 a_1^2 \omega + M_2 a_2^2 \omega \tag{10}$$

donde ω es la velocidad angular (asumiendo órbita circular):

$$\omega = \sqrt{\frac{G(M_1 + M_2)}{a^3}} = \frac{2\pi}{P_{\text{orb}}}$$
 (11)

Sustituyendo las expresiones para a_1 y a_2 :

$$J = M_1 \left(\frac{a}{1+q}\right)^2 \omega + M_2 \left(\frac{qa}{1+q}\right)^2 \omega$$

$$= \frac{a^2 \omega}{(1+q)^2} \left(M_1 + M_2 q^2\right)$$

$$= \frac{a^2 \omega M_1}{(1+q)^2} \left(1+q^3\right)$$
(12)

Usando $\omega = \sqrt{G(M_1 + M_2)/a^3}$:

$$J = \frac{M_1 M_2}{\sqrt{M_1 + M_2}} \sqrt{Ga} = \frac{M_1^2 q}{(1+q)^{1/2}} \sqrt{Ga}$$
 (13)

Esta expresión muestra que J depende de la masa total, la razón de masas, y la separación.

3. Ecuaciones de Evolución Orbital

3.1. Derivación completa

Vamos a derivar cómo evolucionan P_{orb} y a cuando el sistema pierde momento angular y transfiere masa. Partimos de la tercera ley de Kepler:

$$P_{\text{orb}}^2 = \frac{4\pi^2 a^3}{G(M_1 + M_2)} \tag{14}$$

Tomando el logaritmo y diferenciando con respecto al tiempo:

$$2\frac{\dot{P}_{\text{orb}}}{P_{\text{orb}}} = 3\frac{\dot{a}}{a} - \frac{\dot{M}_1 + \dot{M}_2}{M_1 + M_2} \tag{15}$$

Por lo tanto:

$$\frac{\dot{P}_{\text{orb}}}{P_{\text{orb}}} = \frac{3}{2} \frac{\dot{a}}{a} - \frac{1}{2} \frac{\dot{M}_1 + \dot{M}_2}{M_1 + M_2} \tag{16}$$

Ahora necesitamos relacionar \dot{a}/a con \dot{J}/J y las tasas de cambio de masa. Partimos de:

$$J = \frac{M_1 M_2}{\sqrt{M_1 + M_2}} \sqrt{Ga}$$
 (17)

Tomando logaritmo:

$$\ln J = \ln M_1 + \ln M_2 - \frac{1}{2} \ln(M_1 + M_2) + \frac{1}{2} \ln(Ga)$$
 (18)

Diferenciando:

$$\frac{\dot{J}}{J} = \frac{\dot{M}_1}{M_1} + \frac{\dot{M}_2}{M_2} - \frac{1}{2} \frac{\dot{M}_1 + \dot{M}_2}{M_1 + M_2} + \frac{1}{2} \frac{\dot{a}}{a}$$

Despejando \dot{a}/a :

$$\frac{\dot{a}}{a} = 2\frac{\dot{J}}{J} - 2\frac{\dot{M}_1}{M_1} - 2\frac{\dot{M}_2}{M_2} + \frac{\dot{M}_1 + \dot{M}_2}{M_1 + M_2}$$

Manipulando algebraicamente (expresando todo en términos de M_1 , M_2 , y q):

$$\frac{\dot{a}}{a} = 2\frac{\dot{J}}{J} - 2\frac{\dot{M}_{1}}{M_{1}} - 2\frac{\dot{M}_{2}}{M_{2}} + \frac{\dot{M}_{1}}{M_{1}} \frac{M_{1}}{M_{1} + M_{2}} + \frac{\dot{M}_{2}}{M_{2}} \frac{M_{2}}{M_{1} + M_{2}}$$

$$= 2\frac{\dot{J}}{J} - \frac{\dot{M}_{1}}{M_{1}} \left(2 - \frac{1}{1+q}\right) - \frac{\dot{M}_{2}}{M_{2}} \left(2 - \frac{q}{1+q}\right)$$

$$= 2\frac{\dot{J}}{J} - \frac{\dot{M}_{1}}{M_{1}} \frac{2q+1}{1+q} - \frac{\dot{M}_{2}}{M_{2}} \frac{q+2}{1+q}$$
(21)

Para transferencia de masa conservativa:

$$\dot{M}_2 = -\dot{M}_1 \tag{22}$$

Entonces:

$$\frac{\dot{a}}{a} = 2\frac{\dot{J}}{J} + \frac{\dot{M}_2}{M_1} \frac{2q+1}{1+q} - \frac{\dot{M}_2}{M_2} \frac{q+2}{1+q}
= 2\frac{\dot{J}}{J} + \dot{M}_2 \frac{1}{1+q} \left(\frac{2q+1}{M_1} - \frac{q+2}{M_2} \right)
= 2\frac{\dot{J}}{J} + \frac{\dot{M}_2}{M_2} \frac{1}{1+q} \left(\frac{(2q+1)q - (q+2)}{q} \right)
= 2\frac{\dot{J}}{J} + \frac{\dot{M}_2}{M_2} \frac{2q^2 + q - q - 2}{q(1+q)}
= 2\frac{\dot{J}}{J} - \frac{\dot{M}_2}{M_2} \frac{2(1-q^2)}{q(1+q)}
= 2\frac{\dot{J}}{J} - \frac{\dot{M}_2}{M_2} \frac{2(1-q)(1+q)}{q(1+q)}
= 2\left[\frac{\dot{J}}{J} - (1-q)\frac{\dot{M}_2}{M_2} \right]$$
(23)

Sustituyendo de vuelta en la expresión para $\dot{P}_{\rm orb}/P_{\rm orb}$:

$$\frac{\dot{P}_{\text{orb}}}{P_{\text{orb}}} = \frac{3}{2} \frac{\dot{a}}{a} - \frac{1}{2} \frac{\dot{M}_1 + \dot{M}_2}{M_1 + M_2}$$

$$= 3 \left[\frac{\dot{J}}{J} - (1 - q) \frac{\dot{M}_2}{M_2} \right] \quad \text{(ya que } \dot{M}_1 + \dot{M}_2 = 0\text{)}$$
(24)

3.2. Ecuaciones maestras

Finalmente obtenemos las ecuaciones fundamentales de la evolución de CVs:

3.3. Interpretación física

Estas ecuaciones revelan la competencia entre dos procesos:

- 1. Pérdida de momento angular $(\dot{J} < 0)$:
 - Tiende a **disminuir** $a y P_{orb}$
 - El sistema se contrae
 - Acerca la secundaria a su lóbulo de Roche
- 2. Transferencia de masa ($\dot{M}_2 < 0$ para q < 1):
 - El término $(1 q)\dot{M}_2/M_2$ es negativo (ya que $\dot{M}_2 < 0$)
 - Tiende a **aumentar** a y P_{orb}
 - El sistema se expande
 - Aleja la secundaria de su lóbulo de Roche

3.4. Condición de estabilidad

Para que la transferencia de masa sea **estable y continua**, la secundaria debe permanecer en contacto con su lóbulo de Roche. Esto requiere que la órbita se contraiga:

$$\frac{\dot{a}}{a} < 0 \tag{27}$$

Por tanto:

$$\left| \frac{\dot{J}}{J} < (1 - q) \frac{\dot{M}_2}{M_2} \quad \Rightarrow \quad \left| \frac{\dot{J}}{J} \right| > (1 - q) \left| \frac{\dot{M}_2}{M_2} \right| \right| \tag{28}$$

Esta condición establece que la pérdida de momento angular debe ser suficientemente rápida para compensar la expansión orbital causada por la transferencia de masa.

3.5. Consecuencia evolutiva

De $\dot{P}_{orb}/P_{orb} = (3/2)\dot{a}/a \text{ y } \dot{a}/a < 0$:

$$\frac{\dot{P}_{\text{orb}}}{P_{\text{orb}}} < 0 \tag{29}$$

Conclusión fundamental: Las CVs evolucionan generalmente hacia períodos orbitales **más cortos**. La distribución observada de períodos refleja el estado evolutivo de la población.

4. Mecanismos de Pérdida de Momento Angular

4.1. Frenado Magnético (Magnetic Braking)

Fig. 1.

4.1.1. Fundamento físico

El frenado magnético opera cuando la estrella donante:

- 1. Posee una envoltura convectiva significativa
- Esta convección genera un dínamo que produce campos magnéticos
- 3. El campo magnético se extiende más allá de la superficie estelar
- 4. El viento estelar es acoplado magnéticamente, co-rotando con la estrella hasta grandes distancias (radio de Alfvén)
- 5. El momento angular se transfiere del sistema binario al viento

4.1.2. Prescripción de Warner (1995)

Una formulación empírica ampliamente utilizada (aunque ahora sabemos que es incorrecta en detalles):

$$\dot{J}_{\rm MB} \approx -9 \times 10^{28} \, M_2^{7/6} \, R_2^{1/6} \quad [\text{N} \cdot \text{m}]$$
 (30)

donde M_2 está en M_{\odot} y R_2 en R_{\odot} .

4.1.3. Dependencia con el período orbital

Usando las relaciones empíricas masa-radio-período para CVs:

$$M_2[M_{\odot}] = 0.065 P_{\text{orb}}^{5/4}[h]$$
 (31)

$$R_2[R_{\odot}] = 0.094 P_{\text{orb}}^{13/12}[h]$$
 (32)

Sustituyendo:

$$\dot{J}_{\text{MB}} \approx -9 \times 10^{28} \times (0.065)^{7/6} P_{\text{orb}}^{35/24} \times (0.094)^{1/6} P_{\text{orb}}^{13/72}
\approx -2.5 \times 10^{27} P_{\text{orb}}^{1.64} \quad [\text{N·m}]$$
(33)

Característica clave: $\dot{J}_{\rm MB} \propto P_{\rm orb}^{1.64} \rightarrow {\rm Aumenta~con~} P_{\rm orb},$ dominante a períodos largos.

4.1.4. Frenado magnético moderno

Trabajos recientes (Ortúzar-Garzón et al. 2024) muestran que la prescripción de Warner es incorrecta. El frenado magnético real:

- Depende críticamente de la estructura interna de la estrella
- Cesa o se reduce dramáticamente cuando la estrella se vuelve completamente convectiva
- − Esto ocurre a $M_2 \sim 0.35 M_{\odot}$ para estrellas de campo, correspondiente a $P_{\rm orb} \sim 3$ h en CVs

4.2. Radiación Gravitacional

Fig. 2.

4.2.1. Origen físico

Según la Relatividad General, un sistema binario con momento cuadrupolar variable emite ondas gravitacionales, llevándose energía y momento angular del sistema.

La potencia radiada en ondas gravitacionales para una órbita circular es:

$$\mathcal{P}_{\text{GW}} = \frac{32}{5} \frac{G^4}{c^5} \frac{(M_1 M_2)^2 (M_1 + M_2)}{a^5}$$
 (34)

La energía orbital es:

$$E_{\text{orb}} = -\frac{GM_1M_2}{2a} \tag{35}$$

Por conservación de energía:

$$\dot{E}_{\rm orb} = -\mathcal{P}_{\rm GW} \tag{36}$$

$$\frac{GM_1M_2}{2a^2}\dot{a} = -\frac{32}{5}\frac{G^4}{c^5}\frac{(M_1M_2)^2(M_1+M_2)}{a^5}$$
 (37)

Despejando:

$$\dot{a} = -\frac{64}{5} \frac{G^3}{c^5} \frac{M_1 M_2 (M_1 + M_2)}{a^3}$$
 (38)

El momento angular es $J = M_1 M_2 \sqrt{Ga} / \sqrt{M_1 + M_2}$, entonces:

$$\dot{J} = \frac{M_1 M_2}{2\sqrt{M_1 + M_2}} \sqrt{\frac{G}{a}} \dot{a} \tag{39}$$

Sustituyendo à:

$$\dot{J}_{GR} = -\frac{32}{5} \frac{G^{7/2}}{c^5} \frac{(M_1 M_2)^2 (M_1 + M_2)^{1/2}}{a^{7/2}}$$
(40)

4.2.2. Fórmula de Warner

Usando la tercera ley de Kepler para eliminar a y después de álgebra extensa:

$$\dot{J}_{\rm GR} \approx -8.5 \times 10^{28} \, \frac{q^{5/3}}{(1+q)^{2/3}} \, \frac{M_1^3}{P_{\rm orb}^2 [{\rm h}]} \, M_2^{1/2} \, R_2^{1/2} \quad [{\rm N\cdot m}] \eqno(41)$$

4.2.3. Dependencia con el período

Usando las mismas relaciones empíricas:

$$\dot{J}_{GR} \approx -7.1 \times 10^{28} \frac{q^{5/3}}{(1+q)^{2/3}} M_1^3 P_{\text{orb}}^{-1.92}[h] \quad [\text{N·m}]$$
 (42)

Característica clave: $\dot{J}_{\rm GR} \propto P_{\rm orb}^{-1.92} \to {\rm Aumenta}$ dramáticamente a períodos cortos.

Fig. 3.

4.3. Comparación y régimenes de dominancia

4.3.1. Punto de cruce

Para CVs típicas con $M_1 \sim 0.8 M_{\odot}$, $q \sim 0.3$:

$$|\dot{J}_{\rm MB}| \sim 2.5 \times 10^{27} \, P_{\rm orb}^{1.64}$$
 (43)

$$|\dot{J}_{\rm GR}| \sim 1.3 \times 10^{28} \, P_{\rm orb}^{-1.92}$$
 (44)

Igualando, obtenemos $P_{\rm orb} \sim 1.6 \text{ h}.$

4.3.2. Régimenes

- P_{orb} ≥ 3 **h**: $|\dot{J}_{\text{MB}}| \gg |\dot{J}_{\text{GR}}|$ (frenado magnético domina)
- $-2 < P_{\text{orb}} < 3$ **h**: Transición (frenado magnético se apaga)
- $P_{\rm orb} \lesssim 2 \, \mathbf{h}$: $|\dot{J}_{\rm GR}| \gg |\dot{J}_{\rm MB}|$ (radiación gravitacional domina)

5. El Hueco de Períodos: Análisis Detallado

Fig. 4.

5.1. Evidencia observacional

La distribución de períodos de CVs muestra una notable **escasez de sistemas** entre aproximadamente $2 < P_{\text{orb}} < 3$ horas.

Datos cuantitativos (Gänsicke 2004):

- Por encima del gap: ~ 30% de CVs conocidas
- Dentro del gap: ∼ 10% de CVs conocidas
- Por debajo del gap: ∼ 60% de CVs conocidas

El mecanismo: Transición a estructura completamente convectiva

5.2.1. Estructura interna de enanas rojas

Estrellas de baja masa ($M \lesssim 0.35 \, M_{\odot}$) desarrollan envolturas convectivas profundas. A medida que la masa disminuye, la zona convectiva se profundiza hasta que:

$$M_{\rm conv} \sim 0.35 \, M_{\odot} \quad \Rightarrow \quad \text{Completamente convectiva}$$
 (45)

En estrellas de campo, esto corresponde a tipos espectrales M3-M4.

5.2.2. CVs vs estrellas de campo

Las secundarias en CVs están **fuera de equilibrio térmico** debido a:

- Pérdida continua de masa
- Irradiación por la WD y el disco
- Rotación sincronizada forzada (marealmente acopladas)

Consecuencias:

- Radio más grande que en secuencia principal para la misma
- Temperatura efectiva más baja
- Tipo espectral más tardío (típicamente M4-M6)
- Transición a estructura completamente convectiva a:

$$M_{2,\text{conv}} \sim 0.2 \, M_{\odot}$$
 en CVs (46)

Fig. 5.

5.2.3. Cambio en el dínamo estelar

La generación de campo magnético en estrellas depende críticamente de la estructura interna:

1. Estrellas con envoltura radiativa + convectiva:

- Dínamo de **interfaz** (o dínamo α Ω)
- Opera en la tacoclina (interfaz entre zona radiativa y convectiva)
- Genera campos magnéticos ordenados y fuertes
- Frenado magnético eficiente

2. Estrellas completamente convectivas:

- Dínamo **turbulento** (o dínamo α^2)
- Opera en toda la estrella
- Genera campos más desordenados y potencialmente más débiles
- Frenado magnético mucho menos eficiente o cesado

Fig. 6.

5.3. Evolución a través del hueco: Paso a paso

5.3.1. Fase pre-gap ($P_{orb} > 3 \text{ h}$)

- 1. Secundaria tiene estructura parcialmente radiativa
- 2. Frenado magnético fuerte: $|\dot{J}_{\rm MB}| \gg |\dot{J}_{\rm GR}|$
- 3. Alta tasa de transferencia de masa: $\dot{M} \sim 10^{-9} 10^{-8} \, M_{\odot} / \rm a \tilde{n}o$
- 4. CVs observadas como: Nova-likes (NL) brillantes o Novas enanas (DN) con erupciones frecuentes
- 5. Tiempo de evolución relativamente **corto** (~ 10⁸ años)

5.3.2. Entrada al gap ($P_{\rm orb} \sim 3 \text{ h}$)

- 1. La secundaria alcanza $M_2 \sim 0.2 M_{\odot}$
- 2. Transición a estructura completamente convectiva
- 3. El campo magnético sufre reorganización fundamental
- 4. Frenado magnético cesa o disminuye drásticamente
- 5. La pérdida de momento angular pasa a ser dominada por radiación gravitacional: $\dot{J} \approx \dot{J}_{\rm GR}$

5.3.3. Condición crítica

La tasa de transferencia de masa antes de entrar al gap era:

$$\dot{M}_{\rm pre-gap} \sim 10^{-9} \, M_{\odot} / \text{año}$$
 (47)

Esta tasa estaba sostenida por $\dot{J}_{\rm MB}$. Cuando el frenado magnético cesa, solo queda $\dot{J}_{\rm GR}$, que es mucho menor. Para mantener contacto con el lóbulo de Roche, se requiere:

$$\left|\frac{\dot{J}}{J}\right| > (1 - q) \left|\frac{\dot{M}_2}{M_2}\right| \tag{48}$$

Con $\dot{J} \approx \dot{J}_{\rm GR}$ (ahora mucho menor), esta condición **no se satisface** al mantener la \dot{M} previa.

Fig. 7.

5.3.4. Detachment (Separación)

- 1. La secundaria comienza a contraerse
- El radio de la secundaria se vuelve menor que su lóbulo de Roche
- 3. La transferencia de masa cesa: $\dot{M} \rightarrow 0$
- 4. El sistema se vuelve "invisible" como CV
- 5. Aparece como una binaria despegada WD + enana roja M tardía

5.3.5. Atravesando el gap $(2 < P_{orb} < 3 h)$

Durante esta fase:

- $-\dot{M} = 0$ (sistema despegado)
- $\dot{J} = \dot{J}_{\rm GR}$ continúa extrayendo momento angular
- La órbita continúa contrayéndose: à < 0
- El lóbulo de Roche disminuye con la separación
- La secundaria permanece en equilibrio térmico
- Tiempo de tránsito: ~ 10⁹ años

5.3.6. Re-emergencia ($P_{\rm orb} \sim 2 \text{ h}$)

- El lóbulo de Roche ha disminuido suficientemente para reestablecer contacto
- 2. La transferencia de masa se reanuda
- 3. Ahora a tasa mucho menor: $\dot{M} \sim 10^{-10} 10^{-11} \, M_{\odot} / \text{año}$
- 4. Esta tasa baja es sostenible por $\dot{J}_{\rm GR}$ solamente
- 5. El sistema reaparece como CV observable (aunque más débil)

5.4. CVs Magnéticas y el Hueco

Las CVs magnéticas (polares e intermedios polares) muestran una distribución diferente: las líneas de campo magnético de la WD pueden conectarse con la estrella donante, proporcionando un mecanismo alternativo de frenado magnético que **no** requiere una envoltura convectiva en el donante.

Resultado: Las MCVs no presentan hueco de períodos.

Simulaciones (Belloni et al. 2020, Schreiber et al. 2024) reproducen las características observadas.

Fig. 8.

6. El Mínimo de Períodos

6.1. Observación del mínimo

La distribución de períodos muestra un **corte abrupto** alrededor de:

$$P_{\rm orb,\,min} \approx 76 - 82 \, {\rm minutos}$$
 (49)

6.2. Física de la degeneración

A medida que la secundaria pierde masa, eventualmente alcanza masas donde la presión de degeneración electrónica se vuelve dominante:

Main-sequence secondary:

Degenerate secondary:

Fig. 9.

$$M_2 \lesssim 0.08 \, M_{\odot} \quad \Rightarrow \quad \text{Secundaria degenerada}$$
 (50)

Para materia degenerada no-relativista:

$$R \propto M^{-1/3} \tag{51}$$

6.3. Comparación: MS vs Degenerado

- Secuencia Principal: $R \propto M^{0.8-1.0} \rightarrow \text{Al perder masa}, R$ disminuye
- **Degenerado**: $R \propto M^{-1/3}$ → Al perder masa, R aumenta

Main-sequence secondary:

Fig. 10.

Degenerate secondary:

Degenerate secondary:

Degenerate secondary:

Main-sequence secondary:

Fig. 11.

Main-sequence secondary:

Fig. 12.

Fig. 13.

6.4. Evolución de la separación

Para una secundaria degenerada:

$$\frac{\dot{R}_2}{R_2} = -\frac{1}{3} \frac{\dot{M}_2}{M_2} \tag{52}$$

La secundaria debe mantenerse en contacto con su lóbulo de Roche. Para mantener $R_2 = R_L$, análisis detallado muestra que:

$$\frac{\dot{a}}{a} = 2\left[\frac{\dot{J}}{J} - (1 - q)\frac{\dot{M}_2}{M_2}\right] \tag{53}$$

Con q pequeño y la expansión del donante al perder masa, el término de transferencia de masa domina, resultando en:

$$\frac{\dot{a}}{a} > 0 \tag{54}$$

Conclusión crucial: Con $\dot{J} < 0$, obtenemos $\dot{a} > 0$. La órbita se **expande** a pesar de la pérdida continua de momento angular.

Fig. 14.

6.5. El punto de inflexión

El mínimo de períodos ocurre cuando:

$$\frac{\dot{P}_{\text{orb}}}{P_{\text{orb}}} = 0 \quad \Rightarrow \quad \frac{\dot{a}}{a} = 0 \tag{55}$$

Parámetros en el mínimo:

$$P_{\text{orb, min}} \approx 78 \text{ min}$$
 (56)

$$M_{2,min} \approx 0.06 - 0.08 \, M_{\odot}$$
 (57)

$$\dot{M}_{\rm min} \approx 10^{-11} - 10^{-10} \, M_{\odot} / \text{año}$$
 (58)

6.6. Period Bouncers

Period Bouncers: CVs que han pasado por el mínimo de períodos y están evolucionando de vuelta hacia períodos más largos.

Características:

- $P_{\text{orb}} > P_{\text{orb, min}}$ (típicamente 80 90 min)
- Donante completamente degenerado (enana marrón)
- $-M_2 < 0.06 M_{\odot}$
- \dot{M} extremadamente baja: ≤ $10^{-11} M_{\odot}/\text{año}$

CVs within 150 pc (Gaia DR2):

Fig. 15.

– q muy pequeño: $q \lesssim 0.05$

Según modelos (Knigge et al. 2011), deberían representar **40-70% de todas las CVs**, pero observacionalmente son extremadamente raras.

7. Identificación de Period Bouncers: Superhumps

7.1. El problema

Para identificar period bouncers, necesitamos medir q porque $q_{\rm bouncer}(P_{\rm orb}) < q_{\rm normal}(P_{\rm orb})$ a un período dado. Pero el donante es demasiado débil para espectroscopía directa.

7.2. Superhumps: Teoría

Los **superhumps** son modulaciones de luz observadas en novas enanas durante **superoutbursts** con:

$$P_{\rm sh} > P_{\rm orb} \tag{59}$$

Origen: Durante superoutbursts, el disco alcanza la resonancia 3:1, desarrolla excentricidad, y el disco excéntrico precesa. Definimos el parámetro de superhump:

$$\varepsilon \equiv \frac{P_{\rm sh} - P_{\rm orb}}{P_{\rm orb}} \tag{60}$$

7.3. Relación superhump-q

Fig. 16.

La tasa de precesión es proporcional a la masa perturbadora (M_2) :

$$\frac{\Omega_{\text{prec}}}{\Omega_{\text{orb}}} = \frac{3}{4} \frac{q}{(q+1)^{1/2}} \left(\frac{R}{a}\right)^{3/2}$$
(61)

En la resonancia 3:1, $R \approx 0.46a$, lo que da:

$$\varepsilon \approx \frac{0.23 \, q}{1 + 0.27 \, q} \tag{62}$$

Calibración empírica (Patterson et al. 1998):

$$\varepsilon = \frac{0.18 \, q + 0.29 \, q^2}{1 + 0.27 \, q} \tag{63}$$

Esta relación permite determinar q de manera robusta, identificando así las period bouncers por su q anormalmente bajo.

7.4. Ejemplo: QZ Lib

Fig. 17.

Observaciones (Pala et al. 2018):

- $P_{\rm orb} = 84.5 \, {\rm min}$
- $-P_{\rm sh} = 85.9 \, {\rm min}$
- $\varepsilon = 0.0166$
- $-q \approx 0.045$ (de la relación)

Para $P_{\rm orb} = 84.5$ min, esperaríamos $q \sim 0.08 - 0.10$ para una CV normal.

Conclusión: QZ Lib es un period bouncer confirmado.

8. La Paradoja de los Period Bouncers

8.1. El problema

- Predicción teórica: 40-70% de CVs deberían ser period bouncers
- Realidad observacional: ≤ 20 confirmados de ~ 3000 CVs
 (< 1%)

Esta discrepancia es uno de los problemas abiertos más importantes.

8.2. Hipótesis del campo magnético tardío

Schreiber et al. (2023) y Schreiber & Belloni (2025) proponen que los campos magnéticos en WDs se generan tarde, después de convertirse en CVs, a través de:

Dínamo por cristalización:

1. Las WDs se enfrían con el tiempo 2. A $T_{\rm core} \sim 10^7$ K, el núcleo de C/O comienza a cristalizar 3. La cristalización crea convección en el núcleo

4. Convección + rotación \Rightarrow dínamo \Rightarrow campo magnético 5. El campo difunde hacia la superficie en $\sim 10^8-10^9$ años

8.3. Consecuencias

Si los campos magnéticos emergen tarde ($\tau_{\rm B} \sim 1-3\times10^9$ años):

- La fracción de MCVs debe aumentar con la edad del sis-
- Period bouncers (edad > 2×10^9 años) tienen alta fracción de MCVs ($\sim 60 - 80\%$)
- Una vez emerge el campo magnético fuerte:
 - Se conecta con el donante (enana marrón)
 - Transfiere momento angular de espín a la órbita
 - La separación aumenta
 - El sistema queda despegado: WD magnética + enana

Esto explica la escasez de period bouncers: muchos están despegados durante la mayor parte de su vida.

8.4. Predicción testeable

Debe existir una **gran población** de binarias despegadas:

- WD magnética fría ($T_{\rm eff} \sim 5000 8000 \, {\rm K}$) + enana marrón
- $-P_{\text{orb}} \sim 80 \text{ min } -3 \text{ h}$ Número esperado: $\sim 100 1000 \text{ en muestras actuales}$
- Estado actual: Solo 6 conocidos (Cunningham et al. 2025)

Los próximos años deberían revelar muchos más sistemas de este tipo.

9. Novas: Erupciones Termonucleares

9.1. Concepto fundamental

Principio clave:

Las novas NO son un tipo especial de CV.

Toda CV experimenta erupciones de nova periódica-

Las CVs observadas son novas entre erupciones.

9.2. Física de la ignición

La WD acreta material rico en hidrógeno. La ignición termonuclear ocurre cuando:

$$T_{\text{base}} \gtrsim 10^7 \text{ K} \text{ y } \rho_{\text{base}} \gtrsim 10^4 \text{ g/cm}^3$$
 (64)

Estas condiciones se alcanzan cuando la masa acretada alcanza la masa crítica de la envoltura:

$$M_{\text{env, crit}} = f(M_{\text{WD}}, \dot{M}_1) \tag{65}$$

Dependencia (Townsley & Bildsten 2004, 2005):

- Mayor M_{WD} Menor $M_{\text{env, crit}}$ Mayor M_1 Menor $M_{\text{env, crit}}$

9.3. El tiempo de recurrencia

$$t_{\rm rec} = \frac{M_{\rm env,\,crit}}{\langle \dot{M}_1 \rangle} \tag{66}$$

Ejemplos para $M_1 = 0.8 M_{\odot}$:

- $-\dot{M}_1 = 10^{-8} M_{\odot}/\tilde{a}no \rightarrow t_{rec} \sim 10^4 \tilde{a}nos$
- $-\dot{M}_1 = 10^{-9} M_{\odot} / \text{año} \rightarrow t_{\text{rec}} \sim 10^5 \text{ años}$ $-\dot{M}_1 = 10^{-10} M_{\odot} / \text{año} \rightarrow t_{\text{rec}} \sim 10^6 \text{ años}$ $-\dot{M}_1 = 10^{-11} M_{\odot} / \text{año} \rightarrow t_{\text{rec}} \sim 10^8 \text{ años}$

Consecuencia: La mayoría de novas observadas son CVs de alta \dot{M} .

9.4. Distribución de períodos de novas

Observaciones (Pala et al. 2017, Fuentes-Morales et al. 2021):

- Pico fuerte **arriba del gap**: $P_{\text{orb}} \sim 3 5 \text{ h} (\sim 40 50\%)$
- **-** Pocas novas **en el gap**: P_{orb} ∼ 2 − 3 h (~ 5 − 10%)
- Número moderado **debajo del gap**: $P_{orb} < 2 \text{ h} (\sim 30 40\%)$

Esta distribución refleja que las novas ocurren preferentemente en sistemas de alta \dot{M} (arriba del gap).

9.5. Ejemplos de post-novas

1. **DQ Her** (Nova Her 1934): Polar intermedia, $P_{\text{orb}} = 4.65 \text{ h}$

Fig. 18.

2. **V1500 Cyg** (Nova Cyg 1975): Polar, $P_{\text{orb}} = 3.35 \text{ h}$

Fig. 19.

- La erupción causó asincronía temporal
- 3. **V446 Her** (Nova Her 1960): Nova enana, $P_{\text{orb}} = 4.97 \text{ h}$

9.6. Masa eyectada

Observaciones (Yaron et al. 2005, Bode & Evans 2008):

$$M_{\rm ei} \sim 10^{-5} - 10^{-4} \, M_{\odot}$$
 (67)

Si $M_{\rm ej} \approx M_{\rm acc}$, entonces $t_{\rm rec} \approx M_{\rm ej}/\langle \dot{M}_1 \rangle$.

Fig. 20.

10. Crecimiento de Masa de la WD y SNe la

10.1. La pregunta

¿Puede la WD crecer en masa a través de ciclos repetidos de acreción-nova hasta alcanzar $M_{\rm Ch} \approx 1.4 \, M_{\odot}$ y producir una SN

10.2. Análisis cuantitativo

Fig. 21.

Supongamos:

- $M_{\rm ej}$ ≈ $10^{-4} M_{\odot}$ por erupción

- Eficiencia de retención: $\eta \sim 20\%$ - \Rightarrow Masa retenida: $M_{\rm ret} \approx 2 \times 10^{-5} M_{\odot}$

Para que la WD crezca de 0.8 a $1.4 M_{\odot}$:

 $-\Delta M_{\rm WD} = 0.6\,M_{\odot}$

- Erupciones necesarias: N = 30,000

- Con $t_{\rm rec} \sim 10^4$ años: $\Delta t = 3 \times 10^8$ años

Problema: Durante este tiempo, la secundaria pierde:

$$\Delta M_2 = 10^{-8} \times 3 \times 10^8 = 3 \, M_{\odot} \tag{68}$$

¡Pero la secundaria solo tiene $\sim 0.3 - 0.5 \, M_{\odot}$ inicialmente!

10.3. Conclusión

Conclusión robusta:

La **gran mayoría** de CVs NO son progenitoras viables de SNe Ia.

11. Pérdida Consecuencial de Momento Angular (CAML)

Schreiber et al. (2016) proponen que debe existir un mecanismo adicional:

$$\dot{J}_{\rm CAML} = f(M_{\rm WD}) \tag{69}$$

Características:

Fig. 22.

- Depende de la masa de la WD
- Más fuerte para WDs más masivas
- Mejora el acuerdo con observaciones

Hipótesis física: Las erupciones de nova podrían proporcionar CAML a través de una fase de envoltura común breve (mini-CE), extrayendo momento angular adicional.

La naturaleza física sigue siendo incierta y requiere más investigación.

12. Hibernación

12.1. Modelo clásico

Propuesto por Shara et al. (1986), Prialnik & Shara (1986), refinado por Hillman et al. (2020).

12.1.1. Ciclo completo

Fig. 23.

- 1. Erupción de nova: La WD se calienta $(T_{\text{eff}} \rightarrow 10^5 \text{ K})$
- Calentamiento de secundaria: WD caliente irradia, secundaria se hincha
- 3. Enhanced mass transfer: \dot{M} aumenta dramáticamente
- 4. Expansión orbital: $\dot{a}/a > 0$ debido a alta \dot{M}
- 5. Enfriamiento: WD se enfría, secundaria se contrae
- 6. **Detachment**: $R_2 < R_L$, $\dot{M} = 0$
- 7. **Hibernación**: Sistema despegado por $\sim 10^4 10^5$ años
- 8. **Re-emergencia**: J_{GR} reduce órbita, re-contacto

12.2. Evidencia

A favor:

- Post-novas brillantes prolongadamente
- WDs calientes en post-novas viejas

En contra:

- Escasez de CVs despegadas
- Post-novas con DN tempranas (V728 Sco: DN a 150 años post-nova; V446 Her: DN a 35 años)

12.3. Estado actual

La mayoría acepta que alguna forma de perturbación post-nova ocurre, pero:

- Duración debatida: ¿10³ o 10⁵ años?
- ¿Universal o solo en algunos sistemas?

Modelo modificado más aceptado: hibernación **breve** ($\sim 10^3$ años) en sistemas específicos.

13. Búsqueda de Post-Novas

13.1. Desafíos

- Cambio dramático de brillo: $\Delta V \sim 10 15$ mag
- Coordenadas imprecisas (novas históricas)
- Campos muy poblados (disco galáctico)
- ~ 50% de novas sin post-nova identificada

13.2. Estrategias

13.2.1. Diagramas color-color

CVs ocupan regiones específicas en (u - g) vs (g - r) debido a exceso UV:

$$(u-g) < 0.5, \quad (g-r) \sim -0.2 \text{ a } 0.5$$
 (70)

Procedimiento:

- 1. Fotometría multi-banda del campo
- 2. Identificar candidatos en región de CVs
- 3. Espectroscopía de confirmación

13.2.2. Espectroscopía de campo integral (MUSE)

MUSE en VLT es revolucionario:

- Campo: $1' \times 1'$
- Obtiene espectro de **TODAS** las estrellas simultáneamente
- Búsqueda automática de H α en emisión y HeII
- Altamente eficiente para campos poblados

Ha permitido identificar $\sim 30 - 40$ post-novas nuevas en los últimos años.

14. Preguntas Abiertas

14.1. Problemas sin resolver

- Paradoja de period bouncers: Predicción 40-70%, observación < 1%
 - Solución propuesta: Campo magnético tardío + detachment
 - Test: Encontrar binarias WD-BD despegadas
- 2. Naturaleza de CAML: Mecanismo físico desconocido
 - Hipótesis: Erupciones de nova (mini-CE)
 - Necesidad: Simulaciones hidrodinámicas 3D
- 3. Hibernación: ¿Ocurre? ¿Duración?
 - Evidencia mixta
 - Necesidad: Monitoreo largo plazo

4. Origen de campos magnéticos en WDs

- Dínamo por cristalización vs difusión vs fósil
- Necesidad: Simulaciones y estadísticas

14.2. Avances futuros

- LSST: Aumentará CVs conocidas ~ 30×
- Gaia: Distancias precisas, muestras limitadas por volumen
- MUSE y 4MOST: Espectroscopía sistemática
- Simulaciones modernas: Modelos más realistas

15. Conclusiones

15.1. Síntesis

Las CVs son sistemas cuya evolución está determinada por:

- 1. **Pérdida de momento angular**: MB (dominante P > 3 h), GR (dominante P < 2 h), posiblemente CAML
- 2. **Transferencia de masa**: Respuesta de secundaria (MS vs degenerada)
- 3. **Erupciones de nova**: Ocurren en todas CVs, t_{rec} varía ~ 7 órdenes de magnitud
- 4. Campos magnéticos: ~ 25% de CVs, posiblemente emergen tarde

15.2. Características principales

- Hueco de períodos (2 3 h): Transición a estructura completamente convectiva, MB cesa
- Mínimo de períodos (~ 78 min): Transición a donante degenerado, $R \propto M^{-1/3}$
- Period bouncers: Mayoría desaparecidos por detachment magnético

15.3. Importancia

CVs son laboratorios para:

- Evolución de binarias cercanas
- Física de acreción
- Enanas blancas y estrellas de baja masa
- Campos magnéticos en objetos compactos
- Nucleosíntesis (novas)
- Ondas gravitacionales (LISA)

16. Resumen Ejecutivo

16.1. Ecuaciones clave

- 1. Evolución orbital: $\frac{\dot{a}}{a} = 2 \left[\frac{\dot{J}}{J} (1 q) \frac{\dot{M}_2}{M_2} \right]$
- 2. Condición de estabilidad: $\left| \frac{\dot{J}}{J} \right| > (1 q) \left| \frac{\dot{M}_2}{M_2} \right|$
- 3. **Lóbulo de Roche**: $R_L \approx 0.46 q^{1/3} a$
- 4. Superhump-q: $\varepsilon \approx \frac{0.23q}{1 + 0.27q}$ 5. Tiempo de recurrencia: $t_{\rm rec} = \frac{M_{\rm env,crit}}{\dot{M}_1}$

16.2. Conceptos críticos

- CVs evolucionan a períodos cortos: J < 0 domina
- Hueco existe: MB se apaga en estructura completamente convectiva
- Mínimo existe: Degeneración invierte R(M)
- Pocas bouncers: Campo magnético tardío causa detachment
- MCVs sin gap: Frenado magnético conectado
- CVs no progenitoras SNe Ia: Secundaria se agota antes
- Transición degeneración: $M_2 \sim 0.06 0.08 M_{\odot}$
- \dot{M} arriba del gap: $\sim 10^{-9} 10^{-8} M_{\odot}/\text{año}$
- \dot{M} debajo del gap: ~ 10^{-11} 10^{-10} M_{\odot} /año
- Masa eyectada nova: $M_{\rm ej} \sim 10^{-5} 10^{-4} M_{\odot}$
- Fracción period bouncers (teoría): 40 70%
- Fracción MCVs: ~ 25%

17. Apéndices

17.1. Apéndice A: Relaciones útiles

17.1.1. Conversión de unidades

- $1 M_{\odot} = 1.989 \times 10^{33} \text{ g}$ (71)
- $1 R_{\odot} = 6.96 \times 10^{10} \text{ cm}$
- $1 L_{\odot} = 3.828 \times 10^{33} \text{ erg/s}$
- $1 \text{ año} = 3.156 \times 10^7 \text{ s}$
 - $G = 6.674 \times 10^{-8} \text{ cm}^3 \text{ g}^{-1} \text{ s}^{-2}$

17.1.2. Lóbulo de Roche

Aproximación de Eggleton (1983):

$$\frac{R_L}{a} = \frac{0.49q^{2/3}}{0.6q^{2/3} + \ln(1 + q^{1/3})}$$

Para $q \ll 1$:

$$\frac{R_L}{q} \approx 0.462 \, q^{1/3}$$

17.1.3. Período orbital y separación

$$P_{\text{orb}}[h] = 0.141 \left(\frac{a}{R_{\odot}}\right)^{3/2} \left(\frac{M_1 + M_2}{M_{\odot}}\right)^{-1/2}$$

17.2. Apéndice B: Órdenes de magnitud

Parámetro	Arriba del gap	Debajo del gap
P_{orb}	3 - 8 h	80 – 120 min
M_1	$0.6 - 1.0 M_{\odot}$	$0.7 - 0.9 M_{\odot}$
M_2	$0.2 - 0.8 M_{\odot}$	$0.05 - 0.15 M_{\odot}$
q	0.2 - 0.6	0.05 - 0.2
q M	$10^{-9} - 10^{-8} M_{\odot}/\text{año}$	$10^{-11} - 10^{-10} M_{\odot}$ /año
$L_{ m acc}$	$10^{33} - 10^{34} \text{ erg/s}$	$10^{31} - 10^{32} \text{ erg/s}$
M_V	10 - 14	14 - 18
$t_{\rm rec}$	$10^3 - 10^4$ años	$10^6 - 10^7$ años
$ \dot{J}/J $	$10^{-9} \ a\tilde{n}o^{-1}$	$10^{-10} \ a\tilde{n}o^{-1}$

17.3. Apéndice C: Nomenclatura

17.3.1. Tipos de CVs

- Novas Enanas (DN):

- U Gem: Erupciones irregulares
- Z Cam: DN con standstills
- SU UMa: DN con superoutbursts
- WZ Sge: DN muy raras

– Nova-Likes (NL):

- VY Scl: NL con low states
- SW Sex: Líneas peculiares
- UX UMa: NL clásicas

– CVs Magnéticas:

- Polares (AM Her): B > 10 MG, sincronizada
- Polares Intermedias (DQ Her): 1 < B < 10 MG

– Novas:

- Clásicas: Una erupción
- Recurrentes: $t_{rec} < 100$ años

17.4. Apéndice D: Recursos

17.4.1. Libros

- Warner, B. (1995). Cataclysmic Variable Stars. Cambridge University Press.
- Hellier, C. (2001). Cataclysmic Variable Stars: How and Why They Vary. Springer.
- (74)17.4.2. Reviews

(72)

(73)

- (75)- Knigge et al. (2011). ApJS, 194, 28.
 - Zorotovic & Schreiber (2020). Adv. Space Res., 66, 1080.

17.4.3. Bases de datos

- Ritter & Kolb Catalogue
- CVcat (online)
- AAVSO (curvas de luz) (76)

References

Belloni, D., et al. (2020). MNRAS, 491, 5717.

Bode, M. F., & Evans, A. (2008). Classical Novae (2nd ed.). Cambridge Univ.

- (77)Cunningham, T., et al. (2025). MNRAS, en preparación. Fuentes-Morales, I., et al. (2021). MNRAS, 501, 6083. Gänsicke, B. T. (2004). ASP Conf. Ser., 330, 3. Gänsicke, B. T., et al. (2009). MNRAS, 397, 2170 Hillman, Y., et al. (2020). Nature Astronomy, 4, 886. Knigge, C., Baraffe, I., & Patterson, J. (2011). ApJS, 194, 28.
- Ortúzar-Garzón, D., et al. (2024). A&A, 683, A145. (78)
- Pala, A. F., et al. (2017). MNRAS, 466, 2855.

Pala, A. F., et al. (2018). MNRAS, 481, 2523. Pala, A. F., et al. (2020). MNRAS, 494, 3799.

Patterson, J., et al. (1998). PASP, 110, 1290.

Prialnik, D., & Shara, M. M. (1986). ApJ, 311, 172.

Schreiber, M. R., et al. (2016). MNRAS, 455, L16. Schreiber, M. R., et al. (2023). MNRAS, 523, L54.

Schreiber, M. R., et al. (2024). MNRAS, 528, 3602.

Schreiber, M. R., & Belloni, D. (2025). Nature Astronomy, en revisión.

Shara, M. M., et al. (1986). ApJ, 311, 163.

Tappert, C., et al. (2012). MNRAS, 423, 2476. Townsley, D. M., & Bildsten, L. (2004). ApJ, 600, 390.

Vogt, N., et al. (2018). A&A, 614, A34.

Warner, B. (1995). Cataclysmic Variable Stars. Cambridge Univ. Press.

Wijnen, T. P. G., et al. (2018). A&A, 619, A144.

Yaron, O., et al. (2005). ApJ, 623, 398.

Zorotovic, M., et al. (2016). A&A, 536, A42.