Experiment -3

Design a chain of inverters for a minimum delay.

Objectives:

- 4. To find input capacitance of a inverter.
- 5. Finding delay of stages of NOT gate using linear delay model.
- 6. Finding optimum number of stages for less delay through linear delay model.

Software Used: Cadence Virtuoso

Experimental Procedure:

Part a) To find input capacitance of NOT gate.

- 7. Create a symbol for two input NOT gate.
- 8. To find the input capacitance of the of the NOT gate, invoke the symbol you have created and connect a piece wise linear source to inputs of NOT gate and perform transient analysis..
- 9. Plot the input voltage(net) and input current(node).
- 10.Integrate the output plot i.e current plot from 0ns to time period the wave(10ns).
- 11. Find input capacitance using the formulae $C_{in} = \frac{\int i \, dt}{v_C(t)}$.
- 12. Find load capacitance = 64x(Cin).

Part b) To find number of stage of chain of not gates that gives less delay.

- 4. Create a chain of NOT gates i.e 1 stage, 2 stage, 3 stage, 4 stage with load capacitance calculated in above part.
- 5. Do Sizing of pull up network and pull down network accordingly.
- 6. Find delay between input and output and check which stage has less delay.

Schematic circuit of CMOS inverter for symbol:

Symbol Creation of inverter:

Transient analysis results of inverter:

Schematic circuit to find input capacitance of inverter:

Output plot of input capacitance vs input current:

Schematic for stages of Inverters

Output plot of transient analysis:

Theoretical Calculations:

Results and Analysis:

- 1. Input capacitance has been calculated and Cin=0.927fF.
- 2. Load capacitance has been calculated and Cload=60fF.
- 3. Symbol of NOT gate has been tested and working properly.
- 4. Finding delays in Stages:

No of	Output	T(L-H)	T(H-L)	Tpdr (ns)	Tpdf (ns)	Tpd avg=
Stages	Signal	in ns	in ns			(Tpdr+tpdf)/2
	A	5.05	10.05			
1	Y1	5.36979	10.3139	0.31979	0.2639	0.291845
2	Y2	5.14603	10.1456	0.09603	0.0956	0.095815
3	Y3	5.13454	10.1312	0.08454	0.0812	0.08287
4	Y4	5.13365	10.1338	0.08365	0.0838	0.083725

From the above calculations we can clearly observe that three stages gives the minimum delay which matches theoretically.

***** THANK YOU*****