

Distributed Algorithms

Security

Content

- Basics
- Symmetric/Asymmetric Cryptosystems
- Hybrid
- Authentication
- Hash Functions
- Digital Signatures
- Authorization
- Certificates
- Security Protocols

Security

Mechanisms

- Authentication
- Authorization
- Confidentiality
- Integrity
- Non-Repudiation

Basic technologies

- Cryptography
- Security Protocols

Cryptography

- Encryption algorithms are based on keys
- Based on the identity $P = D_K(E_K(P))$
- Algorithm itself can be openly published
- Only the keys need to be protected

Resistance Against Attacks

- Cryptography and security protocols depend on their resistance against attacks
- For example: For any encryption/decryption function it should be computationally infeasible to find the key when given the plaintext and corresponding ciphertext
- Passive Attacks
 - Eavesdropping
 - Analysis of communication patterns
 - Countermeasures: Encryption, Ensuring Anonymity

Active Attacks

- Password and encryption key cracking (brute force, dictionary attack etc.)
- Modification of the message stream
 - Insertion, deletion, modification, repetition of messages
- Unauthorized access to resources
 - (e.g., stolen password, security hole)
 - Reading, changing, insertion, deletion of data (e.g., vandalism)
 - Triggering of functionality
- Denial of Service
 - Triggering of system crashes or spamming system with messages
- Countermeasures: Authentication, Authorization, Encrypted Sequence Number, Limited Key and Password Lifetime, Digital Signatures, Certificates, Fixing of Security Vulnerabilities

Symmetric Cryptographic Systems

- Aka. secret-key or shared-key systems
- Sender and receiver use **the same secret key** *K* for encryption and decryption
- Problem: How to securely exchange the secret key?
- Symmetric algorithms are typically fast and suitable for processing large streams of data
- Prominent Algorithms: DES, IDEA, AES

Asymmetric Cryptographic Systems

- Aka. public key systems
- Different keys used for encryption and decryption
- Each participant manages two keys,
 - a private key K that is kept secret and
 - a public key K₁ that is openly published
- Assumption: Private key cannot be computed from public key efficiently
- Prominent Algorithms: RSA, ElGamal

SYMMETRIC CRYPTOGRAPHIC SYSTEMS

One-Time Pads

- Plaintext is XORed with a random bit sequence to generate the ciphertext and vice versa
 - For each bit in the pad which is 1, the bit in the ciphertext is derived by negating the bit in the plaintext; the other bits are equal
- The Sequence must be
 - known to the sender and the receiver only,
 - really random, e.g., generated using white noise,
 - only used once,
 - as long as the plaintext.
- Then, cryptographic analysis is not possible
- Disadvantages
 - Expensive key exchange
 - Possible loss of synchronization
 - Generation of "good" random numbers required

DES (Data Encryption Standard)

- · Prominent symmetric method
- US Standard since 1977
- Block cipher using 64-Bit data blocks
- 16 x 48-Bit keys are generated from an original 56-Bit key
- 18 processing steps
 - Initial permutation
 - 16 processing steps using the generated keys and a mangler function f
 - Final permutation
- Designed for hardware encryption
 and decryption → slow software implementation

DES (contd.)

- Today no longer considered safe enough
- Exhaustive testing of all 2⁵⁶ (ca. 7 · 10¹⁷) keys seems possible with a few fast or a lot of slower computers
- "Chinese Lottery" (Quisquater and Girault, 1991)
 - Build a cheap DES Chip into every TV set and radio
 - The Chinese government will distribute the cipher text (and a key) to all devices; devices decrypt text with given key
 - The one who finds the clear text ("winner of lottery") obtains a prize (→ incentive)
 - Solution could be found in approximately 60 seconds

Triple DES (3DES)

- Uses 2 keys K1, K2 with 56-Bit each
 → key size is 112-Bit
- Encryption: $C = E_{K1}(D_{K2}(E_{K1}(P)))$
- Decryption: $P = D_{K1}(E_{K2}(D_{K1}(C)))$
- Choosing *K*1 = *K*2 degrades 3DES to DES
- Double DES would only have 57-Bit effective key size due to a meet-in-the-middle attack

Mutual Authentication Using a Shared Key

- Alice and Bob share a secret key and want to do mutual authentication
- Protocol is based upon a challenge / response interaction
 - Challenges are usually random numbers that are only used once
 → nonces (numbers used once)
 - A valid response is the encrypted challenge
 - The issuer of the challenge decrypts the response and compares it to the original challenge
 - If they are equal, he is sure that he is talking with the intended partner
- For *mutual* authentication the challenge / response interaction must be done in both directions

Mutual Authentication Using a Shared Key

- Alice sends her identity A to Bob
- Bob sends a challenge R_B to Alice
- Alice encrypts the received challenge and sends it, i.e.
 K_{AB}(R_B), to Bob
- Bob decrypts the received encrypted challenge and compares it R_B
- Alice send a challenge R_A to Bob
- Bob encrypts the received challenge and sends it, i.e.
 K_{AB}(R_A), to Alice
- Alice decrypts the received encrypted challenge and compares it to R_A

Needham-Schroeder Protocol

- Mutual authentication using a Key Distribution Center (KDC)
- For *n* communication partners, only *n* keys are needed instead of n(n-1)/2 keys for direct mutual authentication

Slide 16

Problems with Needham-Schroeder Protocol

- Main problem: No guarantees on the freshness of the ticket
- Example scenario
 - Mallory gets in possession of K_{AB}
 - Replays step 3
 - \rightarrow Mallory can easily answer message 4 as he knows K_{AB} (this is even possible if Alice has changed her key!)
- Possible solutions
 - Add extra nonces to guarantee freshness of messages (cf. Otway-Rees)
 - Add timestamps to prevent later replay of messages (cf. Kerberos)

ASYMMETRIC CRYPTOGRAPHIC SYSTEM

Asymmetric Encryption

- Private and public key together form a unique pair of keys
- $K_{+}(K_{-}(P)) = K_{-}(K_{+}(P)) = P$
- If P is encrypted with a public key, it can only be decrypted with the corresponding private key and vice versa
- Advantage: No secret keys need to be exchanged!
- Applications
 - Confidentiality
 - Authentication
 - Electronic signature (integrity, non-repudiation)
- Disadvantage: Not nearly as efficient as symmetric encryption
 - Therefore, hybrid techniques are often used in practice (more on this later)

Usage Scenarios for Asymmetric Cryptography

- Ensuring confidentiality
 - The sender uses the receiver's public key to encrypt the message
 - Only the receiver can decrypt the encrypted message (with its private key)
- Ensuring authenticity, integrity, and non-repudiation
 - The sender encrypts the message with its own private key
 - Everybody can decrypt the encrypted message (with the sender's public key)
 - This serves as a proof for the authenticity of the message
 → Digital Signatures

RSA (Rivest-Shamir-Adleman) Cryptosystem

- Based on the fact that it is computational infeasible to find the prime factors of large numbers
- Private and public key are constructed from two very large prime numbers
- Breaking RSA is as hard as finding those prime numbers!
- However: It is not known whether it is possible to decrypt a ciphertext without knowing the secret key!

RSA Key Generation, Encryption, Decryption

Key Generation

- 1. Choose two very large prime numbers *p* and *q*
- 2. Compute $n = p \cdot q$ and $z = (p-1) \cdot (q-1)$
- 3. Choose a number *d* that is relatively prime to *z*
- 4. Compute the number e such that $e \cdot d \mod z = 1$

(n, e) is the public key which is openly published

(n, d) is the private key which is kept secret

Encryption with public key: $C = P^e \mod n$ (P < n)

Decryption with private key: $P = C^d \mod n$

Also possible: encryption with private key and decryption with public key (used for digital signatures)

RSA Example

$$p = 13, q = 23$$

$$n = p \cdot q = 299$$

$$z = (p - 1) \cdot (q - 1) = 264$$

$$d = 5$$

$$e = 53$$

$$P = \text{``H"} = 72$$

$$C = P^e \mod n = 72^{53} \mod 299 = 271$$

$$P' = C^d \mod n = 271^5 \mod 299 = 72 = \text{`H''}$$

$$C = P^d \mod n = 72^5 \mod 299 = 128$$

$$P = C^e \mod n = 128^{53} \mod 299 = 72 = "H"$$

(p and q are prime numbers)

$$(GCD(d,z) = 1)$$

$$(z + 1)$$
 is a factor of $e \cdot d$

Hybrid Techniques

- Goal: Increased efficiency
- Sender side
 - Generate session key K_s
 - Encrypt plaintext P with K_s resulting in ciphertext C
 - Encrypt K_s with the public key of the receiver
 - Send C and the encrypted key K_s in one message
 → digital envelope
- Receiver side
 - Receive message
 - Decrypt K_s with private key
 - Decrypt C with K_s

Mutual Authentication and Secure Key Exchange with Asymmetric Encryption

- Alice encrypts her identity A and a challenge R_A with K_{B+} and sends the result to Bob
- Bob decrypts the received message with K_B.
- Bob encrypts the received challenge together with a new challenge R_B and a generated secret key K_{AB} with K_{A+} and sends the result to Alice
- Alice decrypts the received message with K_A and compares the first of the received challenges to R_A
- Alice encrypts the second of the received challenges with the received key and sends the result to Bob
- Bob decrypts the received message with K_{AB} and compares the received challenge to R_B

Requirements of Digital Signatures

- The requirements for digital signatures are similar to those one expects to hold for handwritten signatures
 - The identity of the signer can be verified (authenticity)
 - The signer cannot deny the contents of the message (message integrity)
 - The signer cannot repudiate the fact that he signed the message (non-repudiation)
- Note that the 3rd requirement implies that no other person can sign messages in the name of the signer
- To increase efficiency, usually a message digest (generated using a cryptographic hash function)
 is signed instead of the whole message!

Digital Signatures using a Public Key Cryptosystem

Digital Signatures using a Public Key Cryptosystem

- Signing a Message
 - The hash value of the message is encrypted with the private key of the signer and attached to the message
- Verifying a signed Message
 - The message to be verified is hashed again and the output is compared with the signed hash value that is decrypted with the public key of the signer
- Hash values are signed instead of messages as a hash value is usually much smaller than the original message

Certificates

- Problem: How can it be verified that a public key really belongs to some person?
- Solution: Public keys are certified (i.e. digitally signed) by a trusted Certification Authority (CA)
 whose public key is known to all parties
- Problem: What happens if a private key is stolen?
- Solution: The certificate belonging to the stolen key is revoked → Certificate Revocation List (CRL)
- Requirement: On-line access to the CRL is necessary

Bibliography

- 1. A. S. Tanenbaum and M. van Steen. *Distributed Systems: Principles and Paradigms*. Prentice Hall, 2002. pages 413-491
- G. Coulouris, J. Dollimore, and T. Kindberg. *Distributed Systems: Concepts and Design*. Addison-Wesley, 3rd edition, 2001. pages 251-308
- 3. R. Needham and M. Schroeder. *Using Encryption for Authentication in Large Networks of Computers*. Communications of the ACM, 21(12):993--999, 1978

