Production: Working with Training Data

\$ echo "Data Science Institute"

Agenda

3.1 Working with Training Data

- Sampling
- Labeling
- Class Imbalance
- Data Augmentation

3.2 A Training Pipeline

- Sampling in Python.
- An initial training pipeline.
- Modularizing the training pipeline.
- Decoupling settings, parameters, data, code, and results.

Slides, Notebooks, and Code

• These notes are based on Chapter 4 of *Designing Machine Learning Systems*, by Chip Huyen.

Notebooks

- ./02_notebooks/production_3_1_sampling.ipynb
- ./02_notebooks/production_3_2_pipeline.ipynb

Code

- ./05_src/credit_experiment_nb.py
- ./05_src/credit_preproc_ingredient.py
- ./05_src/
- ./05_src/.env

Our Reference Architecture

The Flock Reference Architecture

Figure 1: Flock reference architecture for a canonical data science lifecycle.

Sampling

Why Sample?

- Sampling is embedded across the ML lifecycle: data exploration, train/validation/test split, etc.
- Sometimes, sampling is necessary:
 - We cannot access all possible data in the real world.
 - Using all data is unfeasible, costly, or otherwise impractical.
 - Accomplish a task faster and cheaper: experiment with a new model, explore data, etc.

There are two families of sampling:

- Nonprobability sampling.
- Random sampling.

Nonprobability Sampling

- Generally, selecting data to train ML methods using this family of sampling methods is a bad idea, but some of them are popular.
- Convenience sampling
 - Select data based on their availability.
 - Popular and convenient: fast, inexpensive, practical.
 - Not scientific and does not offer guarantees.
- Snowball sampling
 - Future samples are selected based on existing samples.
 - Sampling in social media (or other) networks: select a base sample of accounts,
 then expand the sample by adding the accounts they follow, and so on.

Nonprobability Sampling

- Judgement sampling
 - Experts decide what samples to include.
 - AKA: risk-based, SME, subjective, etc.
- Quota sampling
 - Select samples based on predefined and heuristic quotas.
 - Example: select 100 responses from all age groups without considering the proportional representation of age groups.

Random Sampling

- Simple Random Sampling
 - All potential samples in the population have equal probabilities of being selected.
 - Advantage: Easy to implement.
 - Disadvantage: Rare categories of data may not appear in the selection: if a class appears in 0.01% of the data and we randomly select 1% of the population, we may not get a representation of this minority class.

Random Sampling

- Stratified Sampling
 - First, divide the population into groups we care about, then sample from each group separately.
 - Each group is called a stratum and this method is called stratified sampling.
 - Advantage: the distribution of groups in the population is reflected in the sample.
 - Particularly important for selecting training, validation, and test sets.
 - This method is only sometimes possible (multilabel cases, for example, may not be treated).

Random Sampling

- Weighted Sampling
 - Each sample is given a weight, determining the probability of being selected.
 - This method allows us to leverage domain expertise.
 - Can be used to adjust samples that are coming from a different distribution than the original data:
 - Assume the data contains 25% red samples and 75% blue samples.
 - We know the actual distribution is closer to 50% red and 50% blue.
 - We can apply red weights that are three times higher than blue weights.

Reservoir Sampling

- Ideal for streaming data with complex universe concept.
- Aim: unbiased sampling from Twitter feed.
- Goals:
 - Ensure equal probability for each tweet.
 - Ability to halt algorithm with correct sampling distribution.

Reservoir Sampling

- Reservoir sampling:
 - Put the first k elements into the reservoir.
 - For each incoming nth element,
 generate a random number i such that 1
 ≤ i ≤ n.
 - If 1 ≤ i ≤ k: replace the ith element in the reservoir with the nth element. Else, do nothing.
- Each incoming nth element has a k/n probability of being in the reservoir.

Labeling

Hand Labels

- Getting hand-labelled data takes a lot of work.
- It is expensive, particularly if subject matter expertise is required. For instance, compare:
 - Hand label a sentiment data set.
 - Hand label a medical diagnosis data set.
- It may be invasive: hand labelling data requires someone to see the data.
- Hand labelling is slow.

Hand Labels

- Label ambiguity or label multiplicity occurs when multiple conflicting labels exist for a data instance.
- Label multiplicity may occur when labels are input by multiple annotators or data comes from different sources.
- Disagreements among annotators are common, particularly as the need for subject matter expertise increases.
- A potential solution is to have a clear problem definition and task guidance.

Examples of Label Multiplicity

Annotaator	# entities	Annotation
1	3	[Darth Sidious], known simply as the Emperor, was a [Dark Lord of the Sith] who reigned over the galaxy as [Galactic Emperor of the First Galactic Empire].
2	6	[Darth Sidious], known simply as the [Emperor], was a [Dark Lord] of the [Sith] who reigned over the galaxy as [Galactic Emperor] of the [First Galactic Empire].
3	4	[Darth Sidious], known simply as the [Emperor], was a [Dark Lord of the Sith] who reigned over the galaxy as [Galactic

Natural Labels

- Natural ground truth labels or natural labels occur when the system can automatically evaluate or partially predict.
- Examples: time travelled on a particular route on Google Maps, stock return, etc.
- Natural labels are inexpensive to obtain and motivate many ML projects.

Natural Labels

- Recommender systems are the prime example of natural labels: we will know if the recommendation was good, if it was acted on.
- Many tasks can be framed as recommendation tasks; for example, predicting an ad's clickthrough rate can be reframed as recommending the best ads.
- Natural labels that are inferred from user behaviours like clicks and ratings are known as behavioural labels.
- Behavioural labels can be:
 - Explicit labels are observed from user behaviour (click, upvote, rating, etc.)
 - Implicit labels are inferred by non-behaviour, for example, ads that are not clicked.
- Inferring an implicit label depends on the feedback loop length, which is the time between serving a prediction and the feedback on it provided.

Handling the Lack of Labels

Method	How	Ground truths required?
Weak supervision	Leverages (often noisy) heuristics to generate labels	No, but a small number of labels are recommended to guide the development of heuristics
Semi- supervision	Leverages structural assumptions to generate labels	Yes, a small number of initial labels as seeds to generate more labels
Transfer learning	Leverages models pretrained on another	No for zero-shot learning. Yes for fine-tuning, though the number of ground truths required is often much smaller than what would be needed

Weak Supervision

- Can we automate costly hand labeling?
- Weak supervision relies on codified heuristics using Labeling Functions (LF) such as keyword heuristics, regular expressions, database lookup, and outputs from other models.
- LFs are combined, reweighted, and denoised to generate labels.
- While ideally no hand labels are necessary, a few may be needed initially to assess LF accuracy.

Semi-Supervision

- Leverages structural assumptions to generate new labels based on a small set of initial labels.
- Useful when the number of labels is limited.
- Approach 1: self-training.
 - Train a model on an existing set of labelled data.
 - Make predictions for unlabeled samples; keep only the ones with high raw probability scores.
 - Train a new model on an expanded set of labels.

Semi-Supervision

- Approach 2: similarity.
 - Assume that data samples that share similar characteristics share the same labels.
 - Similarity is established by more complex methods (clustering, k-nn, etc.)
- Approach 3: perturbation.
 - Assume that small perturbations to a sample do not change its label.
 - Apply small perturbations to your training instances to obtain new training instances.

Class Imbalance

What is Class Imbalance?

- Class imbalance occurs when one or more classes have significantly lower proportions in the data than other classes.
- The majority class dominates, but interest is generally in the minority class (e.g., default, fraud, or market crash).
- Models trained on imbalanced data will tend to be under-fitted; they will not be able to classify the minority class successfully.
- ML (particularly deep learning) works well when the class distribution is balanced. At the same time, performance decreases with class imbalance because:
 - There is insufficient signal for the model to learn to detect the minority class.
 - It is easier for a model to find a suboptimal solution by exploiting a simple heuristic instead of learning anything useful about the underlying pattern.
 - Asymmetric costs of error.

What is Class Imbalance?

- Class imbalance is the norm in many subject domains.
- To handle class imbalance:
 - Choose the right performance metric.
 - Data-level methods: change the data distribution to reduce the imbalance.
 - Algorithm level methods: change the learning method to make it more robust to class imbalance.

Performance Metrics

Confusion Matrix FN = False Negative Naïve Bayes Classifier (Type II error) TN = True Negative Actual Actual Positive Negative Predicted 3,903 55,843 Negative Predicted 147 Positive FP = False Positive TP = True Positive (Type I error)

Class Probabilities Carry Information

- Class probabilities offer more information about model predictions than the simple class value.
- Given class probabilities, one could decide to predict a class by comparing them to a threshold.
- A Receiver Operating Characteristic (ROC)
 curve shows the relationship between the
 True Positive Rate (TPR) and the False
 Positive Rate (FPR) for a variety of
 thresholds.

Class Probabilities Carry Information

- A greater Area Under the ROC Curve (AUC ROC) indicates a better model: AUC ROC can be interpreted as the probability that the classifier ranks a randomly chosen positive instance above a randomly chosen negative one.
- AUC ROC measures the ranking order of a model's prediction: it is useful when costs are unavailable and class distributions are unknown.

Cross-entropy, Negative Log-Loss, and Log-Likelihood

- Log loss or cross-entropy loss is a performance metric that quantifies the difference between predicted and actual probabilities.
- In a two-class setting, it is given by:

$$H(p,q) = -\sum_{i=1}^n \left(y_i log(\hat{y}_{ heta,i}) + (1-y_i) log(1-\hat{y}_{ heta,i})
ight)$$

• Formulation is related to maximum likelihood: minimizing negative log-likelihood is the "same" as minimizing log loss.

Cross-entropy, Negative Log-Loss, and Log-Likelihood

- Assume the actual value is 1.
- If the model is confident and correctly predicted 0.9, then

Loss =
$$-(1*log(0.9)) = 0.10536$$

If the model is unsure and predicted 0.5, then

Loss =
$$-(1*log(0.5)) = 0.6931$$

• If the model is confident but incorrectly predicted 0.1, then

Loss =
$$-(1*log(0.1))$$
 = 2.0258

Class Weights

- Some models can optimize a cost or loss function that differentiates for specific types of errors.
- In some instances, one can assume that misclassifying minority events (false negatives) is more costly than incorrectly predicting non-events (false positives).
- Relative cost or class weights can be determined by
 - Consulting a Cost Specialist or Subject Matter Expert
 - Balance function

$$W_y = rac{N_{samples}}{M_{classes} N y}$$

Cross-Validation Performance

5-fold CV | 90K observations | Class Weight Strategies

Class Weights and Performance

- Class weights (unequal costs)
 can affect model parameters and performance.
- Not every model will be equally affected by class weight strategies.

SMOTE

- SMOTE: Synthetic Minority Oversampling TEchnique
 - Creates new instances based on random linear combinations of existing cases.
- ADASYN: Adaptive Synthetic Sampling Method
 - Similar to SMOTE, but new instances are generated based on density.
- With the availability of conformal prediction and advanced ML methods, synthetic oversampling is challenging to justify.

References

References

- Agrawal, A. et al. "Cloudy with high chance of DBMS: A 10-year prediction for Enterprise-Grade ML." arXiv preprint arXiv:1909.00084 (2019).
- Huyen, Chip. "Designing machine learning systems." O'Reilly Media, Inc. (2022).