**Johns Hopkins COVID-19 Data Analysis - version 1** Data - https://github.com/CSSEGISandData/COVID-19/tree/master/csse covid 19 data/csse covid 19 time series **Code developed by Swanand Mhalagi** For further info https://www.linkedin.com/in/swanand-mhalagi-8b1813a7/ https://github.com/swanandM https://medium.com/@swan1991m Below code uses Linux packages like NumPy, Pandas, Plotly and Cufflinks In [1]: #Silent download of the CSV files !wget -N -q --timestamping https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse\_covid\_19\_data/csse\_ covid\_19\_time\_series/time\_series\_covid19\_confirmed\_global.csv !wget -N -q --timestamping https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse\_covid\_19\_data/csse\_ covid\_19\_time\_series/time\_series\_covid19\_deaths\_global.csv !wget -N -q --timestamping https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse\_covid\_19\_data/csse\_ covid\_19\_time\_series/time\_series\_covid19\_recovered\_global.csv In [2]: import numpy as np # linear algebra import pandas as pd import cufflinks as cf import plotly.offline import plotly.graph\_objects as go cf.go\_offline() cf.set\_config\_file(offline=False, world\_readable=True) # show all pandas columns and only 2 decimal points pd.set\_option("display.max.columns", None) pd.set\_option("display.precision", 3) In [3]: | df\_csv = pd.read\_csv('time\_series\_covid19\_confirmed\_global.csv') df\_reco = pd.read\_csv('time\_series\_covid19\_recovered\_global.csv') df\_ded = pd.read\_csv('time\_series\_covid19\_deaths\_global.csv') In [4]: def world\_case\_status(df\_csv): df\_csv\_conf = df\_csv[df\_csv['Province/State'].isnull()] **#Delete uncessesary columns** df\_csv\_conf = df\_csv\_conf.drop(['Province/State','Lat','Long'], axis=1) #set date as index df\_csv\_conf = df\_csv\_conf.set\_index('Country/Region') #Rate of increase **#Diff** between tow column df\_world = df\_csv\_conf.diff(axis=1) #df\_world.head() df\_world = df\_world.T **#Total Cases** df\_csv\_conf = df\_csv\_conf.T return df\_csv\_conf.iplot(mode='lines', xTitle='Date', yTitle='Case Count', title='Total Confirmed Case Distribut ion'), df\_world.iplot(mode='lines', xTitle='Date', yTitle='Case Count', title='New cases per day') In [5]: world\_case\_status(df\_csv) **Total Confirmed Case Distribution** — Afghanistan —— Albania 500k — Algeria — Andorra —— Angola 400k —— Antigua and Barbuda Argentina Case Count —— Armenia 300k-—— Austria — Azerbaijan Bahamas 200k — Bahrain Bangladesh Barbados 100k Belarus Bhutan Export to plot.ly » New cases per day — Afghanistan 35k-— Albania Algeria 30k-— Andorra ---- Angola 25k —— Antigua and Barbuda ---- Argentina Count 20k Austria Azerbaijan 15k-Bahamas —— Bahrain 10k Bangladesh Barbados Belarus Benin Bhutan **Export to plot.ly »** Out[5]: (None, None) In [ ]: In [6]: def for\_country(df\_csv, Country): df = df\_csv[df\_csv['Country/Region'].str.contains(Country)] Region = df['Country/Region'].values[0] #State Wise df\_State\_conf = df[df['Province/State'].notnull()] #set State as index df\_State\_conf = df\_State\_conf.set\_index('Province/State') #Select column df\_State\_conf = df\_State\_conf.loc[:,'1/22/20':] df\_State\_conf = df\_State\_conf.T #Select data for whole country df\_Country\_conf = df[df['Province/State'].isnull()] #df\_Country\_conf total = df\_Country\_conf.iloc[:,-1].values[0] print ("Total Cases in " + Region + " are " + str(total) ) df\_Country\_conf = df\_Country\_conf.loc[:,'1/22/20':] df\_Country\_conf = df\_Country\_conf.T #Daily increase rate daily\_inc = df\_Country\_conf.T daily\_inc = daily\_inc.diff(axis=1) daily\_inc = daily\_inc.T return df\_Country\_conf.iplot(kind='bar', xTitle='Date', yTitle='Case Count', title='Total Case Count : ' + Regio n ), df\_State\_conf.iplot(mode='lines', xTitle='Date', yTitle='Case Count', title='Case Distribution for ' + Region), daily\_inc.iplot(mode='lines', xTitle='Date', yTitle='Case Count', title='Daily increase rate : ' + Region ) In [7]: | for\_country(df\_csv, "United Kingdom") Total Cases in United Kingdom are 84279 Total Case Count : United Kingdom 80k 70k-60k 50k-30k 20k-10k Date Export to plot.ly » Case Distribution for United Kingdom Channel Islands Gibraltar Isle of Man 300 Montserrat Anguilla Count British Virgin Islands Turks and Caicos Islands 200 Falkland Islands (Malvinas) 100-Date Export to plot.ly » Daily increase rate: United Kingdom 8000 6000 Case Count 4000 2000 Date Export to plot.ly » Out[7]: (None, None, None) In [8]: def con\_rec\_ded(Country): #look for perticular country series = df\_csv[df\_csv['Country/Region'].str.contains(Country)] series = series[series['Province/State'].isnull()] # Change the row indexes series.index = ['Confirmed'] series **#Dead Cases** df\_ded\_con = df\_ded[df\_ded['Country/Region'].str.contains(Country)] df\_ded\_con = df\_ded\_con[df\_ded\_con['Province/State'].isnull()] # Change the row indexes df\_ded\_con.index = ['Dead'] df\_ded\_con #Recovered cases df\_reco\_con = df\_reco[df\_reco['Country/Region'].str.contains(Country)] df\_reco\_con = df\_reco\_con[df\_reco\_con['Province/State'].isnull()] # Change the row indexes df\_reco\_con.index = ['Recovered'] df\_reco\_con #Select column df\_ded\_con = df\_ded\_con.loc[:,'1/22/20':]  $df_ded_con = df_ded_con.T$ df\_reco\_con = df\_reco\_con.loc[:,'1/22/20':] df\_reco\_con = df\_reco\_con.T series = series.loc[:,'1/22/20':] series = series.T result = pd.concat([series, df\_ded\_con, df\_reco\_con], axis=1, join='inner') return result.iplot(mode='lines', xTitle='Date', yTitle='Case Count', title='Case Distribution for ' + Country) In [9]: con\_rec\_ded("United Kingdom") Case Distribution for United Kingdom Confirmed 80k-Dead Recovered 70k 60k 50k 40k 30k Date Export to plot.ly » In [10]: *#World Map* import plotly.express as px In [11]: def world\_plot(date): df\_world\_today = df\_csv.loc[:,date:] df\_info = df\_csv.loc[:,'Province/State':'Long'] df\_world\_today = pd.concat([df\_info, df\_world\_today], axis=1, join='inner') return px.scatter\_geo(df\_world\_today, lat="Lat", lon="Long", color="Country/Region", hover\_name="Country/Region", size=date, title='Confirmed cases', size\_max=int(60), width=1200, height=1000,) In [12]: world\_plot("4/11/20") Confirmed cases

