

COS10004 Computer Systems

Lecture 5.1 Encoders, Decoders and Multiplexers

CRICOS provider 00111D

Dr Chris McCarthy

ENCODERS AND DECODERS

- > Binary signals along a wire can represent a single state, or form part of a binary code
- Sometimes we want to convert between these representations:
 - We may want to encode independent input wires as a single output binary code

OR

 We may want to *decode* a multi-bit binary value to the single output line it represents

ENCODERS

- > Encoders are used to code binary data
 - Converts an active input signal into a coded output signal

- If an encoder has n Input lines and m output lines then:
 - $n \leq 2^m$

ENCODER EXAMPLE: 4-TO-2 PRIORITY ENCODER

- > Imagine 4 input lines each indicating a priority level
- > We encode the priority as a 2 bit binary number according to the truth table:

	Inputs				Outputs	
١.	D_3	D_2	D_1	D_0	Q ₁	Q_0
	0	0	0	1	0	0
	0	0	1	0	0	1
	0	-1	0	0	1	0
	1	0	0	0	1	1
	0	0	0	0	Х	Χ

ENCODER EXAMPLE: 4-TO-2 PRIORITY ENCODER

- > Imagine 4 input lines each indicating a priority level
- We encode the priority as a 2 bit binary number according to the circuit:

ENCODER EXAMPLE: 4-TO-2 PRIORITY ENCODER

- Key feature:
 - If multiple inputs are raised High, it will always encode the high priority!
 - Lets try it

ENCODER EXAMPLE: 8-TO-3 PRIORITY ENCODER

- > What about an 8-to-3 encoder?
- > Try and have a go!
 - Hint: use 3 x 4 input OR gates

ENCODER EXAMPLE: 8-TO-3 PRIORITY ENCODER

COMMON ENCODER APPLICATIONS

- Interrupts we talked about last week!
- Keyboards: Imagine microcomputer reads from keyboard only one button at a time.
 - We can reduce wires by mapping each of the 104 buttons of a QWERTY keyboard into a binary code
 - Eg ASCII code in 7 bits (= output wires)

DECODERS

- > Decoders are the opposite of encoders:
 - used to decode binary information
- Multiple input lines represent a binary code
- This code is used to select a single output line to raise High
- If a decoder has n input lines, it can have a maximum 2ⁿ output lines

DECODER EXAMPLE: 2-TO-4 DECODER

Have a go at designing a circuit to map a 2 bit binary number to select 1 of 4 output lines

DECODER EXAMPLE: 2-TO-4 DECODER

DECODER APPLICATIONS

- > Memory Address Decoder
 - Memory commonly stored across multiple chips but transferred over a common bus
 - Each memory chip has a Chip Select (CS) input
 - Memory address is decoded to select the desired chip

Img src: https://www.electronics-tutorials.ws/combination/comb_5.html

DECODER APPLICATIONS

- > Displays (eg. 7-segment display)
- 3-8 decoder outputs can feed directly into7-segment display
- > Similar concept for LCD displays

MULTIPLEXERS

- > Mulitplexers (many-to-one) are similar to encoders
- Used for routing digital data from many to one line.
- Selects a single input line from several possible lines and sends the data to the output line.

MULTIPLEXER USE-CASES

- > Telephony
- > Communication systems
- > Memory
- > Parallel to serial conversion

DE-MULTIPLEXERS

- De-Mulitplexers (one-to-many) are similar to decoders
- Used to transimit digital data from one to many lines.
- Selects an output line from several possible lines and sends the input data to that line.

DE-MULTIPLEXER USE-CASES

- > Communication systems
- > Connecting ALU with registers
- > Serial to parallel conversion

SUMMARY

- > We have covered fundamental combinatorial circuits for data manipulation and transfer
- Encoders convert an active input signal into a coded output signal
- Decoders selects a single output line based on a coded output
- Multiplexers (many-to-one) choose which line to channel data from
- De-Multiplexers (one-to-many) choose which output line to channel data to

