LECTURE ASSIGNMENT 1

Polynomial interpolant p(x) to dataset $\{...,(x_{i-1},f_{i-1}),(x_i,f_i),...\}$ is the simplest possible continuous polynomial giving the prescribed values at the grid points, i.e., $p(x_i) = f_i$ for all indices. Use the Lagrange interpolation polynomial on a regular grid of spacing Δx to find the three point backward, central, and forward difference formulas for the first and second derivatives at point i.

Backward difference approximations use dataset $\{(-2\Delta x, f_{i-2}), (-\Delta x, f_{i-1}), (0, f_i)\}$. Central difference approximations use dataset $\{(-\Delta x, f_{i-1}), (0, f_i), (\Delta x, f_{i+1})\}$. Forward difference approximations use dataset $\{(0, f_i), (\Delta x, f_{i+1}), (2\Delta x, f_{i+2})\}$. Interpolants to the datasets follow straightforwardly by using the Lagrange interpolation polynomial:

$$p_{b}(x) = f_{i} + \frac{x}{2\Delta x}(f_{i-2} - 4f_{i-1} + 3f_{i}) + \frac{x^{2}}{2\Delta x^{2}}(f_{i-2} - 2f_{i-1} + f_{i}),$$

$$p_{c}(x) = f_{i} + \frac{x}{2\Delta x}(-f_{i-1} + f_{i+1}) + \frac{x^{2}}{2\Delta x^{2}}(f_{i-1} - 2f_{i} + f_{i+1}),$$

$$p_{\rm f}(x) = f_i - \frac{x}{2\Delta x} (3f_i - 4f_{i+1} + f_{i+2}) + \frac{x^2}{2\Delta x^2} (f_i - 2f_{i+1} + f_{i+2}).$$

Thereafter, using the definitions $f_i' = p_b'(0)$, $f_i'' = p_b''(0)$, $f_i'' = p_c''(0)$, $f_i'' = p_c''(0)$, $f_i'' = p_c''(0)$, and $f_i'' = p_f''(0)$ (origin is placed at point i):

	Backward	Central	Forward	
$f_i^{'}$				
f_i''				