

Сортировка таблицы по возрастанию

```
df.sort_values(by='col', ascending=True)
```

Сортировка таблицы по убыванию

```
df.sort_values(by='col', ascending=False)
```

Сортировка таблицы по нескольким признакам

```
df.sort_values(by=['col1', 'col2', ascending=[False, True])
```

Группировка данных с одной агрегацией

```
df.groupby(by='group_col')['col'].mean()
```

Группировка данных с несколькими агрегациями

```
df.groupby(by='group_col')['col'].agg(['mean', 'median', 'count')
```

Математические операции со столбцами

count	Количество непустых значений
mean	Среднее
median	Медиана
std	Стандартное отклонение
min	Минимум
max	Максимум
sum	Сумма

nunique

Количество уникальных значений

Метод groupby для построения сводных таблиц

```
melb_df.groupby(by=['group_col1', 'group_col2'])['col'].mean().unstack()
```

Метод pivot_table для построения сводных таблиц

```
melb_df.pivot_table(
    values='target_col',
    index='col1',
    columns='col2',
    aggfunc='mean',
    fill_value=0
)
```

Построение многоуровневых сводных таблиц

```
melb_df.pivot_table(
    values='target_col',
    index=['idx1', 'idx2', ..., 'idxn'],
    columns=['col1', 'col2', ..., 'coln'],
    aggfunc='mean',
    fill_value=0
)
```

Конкатенация (склеивание) таблиц по строкам

```
pd.concat(
    [table1, table2, ..., tablen],
    ignore_index=True,
    axis=0
)
```


Конкатенация (склеивание) таблиц по столбцам

```
pd.concat(
    [table1, table2, ..., tablen],
    ignore_index=True,
    axis=1
)
```

Типы объединения и теория множеств

ТИП ОБЪЕДИНЕНИЯ		АНАЛОГИЯ ИЗ ТЕОРИИ МНОЖЕСТВ	МАТЕМАТИЧЕСКОЕ ОБОЗНАЧЕНИЕ
inner (внутреннее)		Пересечение (intersection) множеств А и В	A ∩ <i>B</i>
outer (внешнее)	full	Объединение (union) множеств А и В	A ∪ <i>B</i>
	left	Вычитание (difference) множества В из результата объединения (union) множеств А и В	(A ∪ B) − B
	right	Вычитание (difference) множества А из результата объединения (union) множеств А и В	(A ∪ B) − A

ОБЪЕДИНЕНИЕ ТАБЛИЦ ПО ИНДЕКСУ:	ОБЪЕДИНЕНИЕ ТАБЛИЦ ПО КЛЮЧУ:
JOIN()	JOIN()
<pre>l_table.join(r_table, how='outer')</pre>	<pre>l_table.join(r_table.set_index('key_col'), on='key_col', how='inner')</pre>

Курс Профессия Data Science **Модуль 11** "Продвинутые методы работы с данными в Pandas"

ОБЪЕДИНЕНИЕ ТАБЛИЦ ПО ИНДЕКСУ:	ОБЪЕДИНЕНИЕ ТАБЛИЦ ПО КЛЮЧУ:
MERGE()	MERGE()
<pre>l_table.merge(r_table, right_index=True, left_index=True, how='inner')</pre>	<pre>l_table.merge(r_table, on='key_col', how='inner')</pre>