NÚCLEOS POR TRAYECTORIAS MONOCROMÁTICAS EN DIGRÁFICAS

INTRODUCTION

Introducción

Capítulo 1

Definiciones

Sea D una digráfica y sean v_1, v_2, \ldots, v_n sus vértices. Sean G_1, G_2, \ldots, G_n digráficas tales que, para cualquier par de ellas, sus conjuntos de vértices son disjuntos.

Figura 1.1 D

Figura 1.2 G_x Figura 1.3 G_v Figura 1.4 G_l

La composición de las digráficas G_1, G_2, \ldots, G_n , (con respecto a D), $D[G_1, G_2, \ldots, G_n]$, tiene como conjunto de vértices la unión de los conjuntos de vértices de cada G_i . Su conjunto de flechas contiene a los conjuntos de aristas de cada G_i y además si (v_i, v_j) es una flecha en D, entonces de cada vértice de G_i sale una flecha a todos los vértices de G_j .

Figura 1.5 $D[G_x, G_l, G_v]$

1.1. Resultados

Lema 1.1. Sea D una digráfica cuasi-transitiva y A y B dos componentes conexas distintas en D. Si existe una xy-trayectoria de longitud mínima, P, para ciertos vértices x en A y y en B, entonces la flecha (x,y) está en D.

Demostración. Como D es cuasi-transitiva, en virtud de la proposición 1.1, si (x, y) no está en D, entonces (y, x) está en D o el orden de P es cuatro y existen vértices u, v tales que (y, u, v, x) y (x, u, v, y) son trayectorias en P. Notemos que no puede existir en D ninguna yx-trayectoria. De

Figura 1.6 Si (y, x) está en D entonces A y B **Figura 1.7** Si P tiene orden 4, existe una no son distintas componentes conexas yx-trayectoria en D

lo contrario, existirían xy - yyx - trayectorias dirgidas en D y por ende x y y estarían en la misma componente conexa contradiciendo la hipótesis de que están en distintas componentes conexas.

Entonces (x, y) debe ser una flecha en D.

Lema 1.2. Sean A y B dos componentes fuertemente conexas distintas de una digráfica cuasi-transitiva D con al menos una flecha de A a B. Entonces $A \mapsto B$

Figura 1.8 $A \mapsto B$

Demostración. Llamemos (a,b) a la flecha de A a B que existe en D por hipótesis. Sean x cualquier vértice en A y y cualquier vértice en B. Por ser A y B subdigráficas fuertemente conexas de D, existen una xa-trayectoria y una by-trayectoria en D. Entonces $(x, \ldots, a, b, \ldots, y)$ es una xy-trayectoria en D.

Debido al resultado probado en el lema anterior sabemos que (x, y) es una flecha de D. Como esto se cumple para cualesquiera vértices x, y y en A y B, $A \mapsto B$.

Lema 1.3. Sea D una digráfica cuasi-transitiva no conexa. Si $S = (N_0, N_1, N_2, ..., N_k)$ es una trayectoria en SC(D) entonces N_0 domina a N_i para i mayor que 0 y menor o igual que k y N_k es dominado por N_j para todo j mayor o igual a 0 y menor que k.

Demostración. Sean N_{l-1} , N_l y N_{l+1} tres componentes fuertemente conexas en S. Existen vértices n, n' y n'' en N_{l-1} , N_l y N_{l+1} respectivamente tales que (n, n') y (n', n'') son flechas de D. En virtud del lema 4.8.3, como D es cuasi-transitiva, N_{l-1} domina a N_l y N_l domina a N_{l+1} .

Sea v un vértice en N_{l+1} . Existen vértices v' en N_l y v'' en N_{l-1} tales que (v',v) y (v'',v') son flechas en D. La trayectoria (v'',v',v) está en D, y como esta es una digráfica cuasi-transitiva por hipótesis n'' y n son adyacentes en D. Recordemos que en SC(D) no existen flechas de N_{l+1} a N_{l-1} , entonces la flecha (v'',v) está en D. Por lo tanto N_{l-1} domina a N_{l+1} .

En particular N_0 domina a N_2 , y haciendo un razonamiento similar si N_0 domina a N_k y como N_k domina a N_{k+1} , N_0 domina a N_{k+1} .

Lema 1.4. Sea D una digráfica cuasi-transitiva y fuertemente conexa con al menos dos vértices. Entonces $\overline{UG(D)}$ es disconexa.

Figura 1.9 $N_{l-1} \mapsto N_{l+1}$

Demostración. La demostración se va a realizar por inducción sobre el número de vértices de V.

Sea D una digráfica con 2 vértices v_1 y v_2 . Como D es fuertemente conexa su conjunto de aristas contiene solamente a la flecha (v_1, v_2) o a la flecha (v_2, v_1) . Entonces UG(D) contiene solamente a la arista (v_1, v_2) y por lo tanto $\overline{(UG(D))}$ no contiene a ninguna arista. Así que v_1 y v_2 son componentes conexas de $\overline{(UG(D))}$.

Por hipótesis de inducción supongamos que $\overline{UG(D)}$ es disconexa para digráficas de orden n-1. Existen dos casos:

Caso 1. Supongamos que existe un vértice z tal que D-z no es fuertemente conexa. Sea v un vértice cualquiera y sea C_v la componente conexa de D-z que contiene a v. En la digráfica de componentes conexas, SC(D-z), existe una trayectoria $(N_0, N_1, \ldots, N_k, N_{k+1}, \ldots, C)$, con N_0 alguna componente inicial de SC(D-z).

No existen flechas hacia vértice de N_0 desde ninguna otra componente conexa de D-z ya que D_0 tiene ingrado 0 en SC(D). Sin embargo, D es fuertemente conexa y debe existir una trayectoria desde z a cualquier vértice en N_0 . Entonces existe un vértice n_0 en N_0 tal que (z, n_0) es una flecha en D.

En virtud del lema 1.3, N_0 domina a C, y existe una flecha (n_0, v) en D. Entonces la trayectoria (z, n_0, v) está en D, y D es cuasi-transitva por hipótesis haciendo a z adyacente a v. z es adyacente a cualquier vértice de D-z y por lo tanto en $\overline{UG(D)}$ z no es adyacente a ningún vértice de D-z. Entonces, z es una componente conexa de $\overline{UG(D)}$.

Caso 2. Supongamos que existe un vértice z tal que D-z es fuertemente conexa. D también es fuerte, así que existe al menos un vértice w en D-z tal que (z,w) es una flecha en D. Por hipótesis de inducción $\overline{UG(D-z)}$ es disconexa. Sean S y S' componentes conexas de $\overline{UG(D-z)}$

Figura 1.12 z es adyacente a v

tales que que S contenga a w. Sea s' cualquier vértice en S'. Debido al lema x.x, S domina a S' (S' no domina a S completamente ya que (z,w) es una flecha en D), entonces (w,s') es una flecha en D al igual que (z,w), y (z,w,s') es una trayectoria en D, que por hipótesis es una digráfica cuasi-trasntivia. Por lo tanto z es adyacente a s'. Como z es adyacente a todos los vértices de S' en D, z no es adyacente a ningún vértice de S' en $\overline{UG(D)}$, y por lo tanto S' es una componente conexa de $\overline{UG(D)}$.

Figura 1.13 S y S' son componentes conexas de $\overline{UG(D-z)}$, z es advacente a s'

Lema 1.5. Sea D una digráfica cuasi-transitiva y fuertemente conexa. Sean S y S' dos subdigráficas de D tales que $\overline{UG(S)}$ y $\overline{UG(S')}$ son componentex conexas de $\overline{UG(D)}$. Si $P=(x=p_0,p_1,\ldots,p_n=y)$ es una xy-trayectoria en $\overline{UG(S)}$, entonces para todo $0 \le i \le n-1$, (p_i,p_{i+1}) no es una arista de E(UG(D)).

Demostración. Supongamos que (p_i, p_{i+1}) es una arista en E(UG(D)). Por definición, (p_i, p_{i+1}) no puede ser arista de E(UG(D)).

Por lo tanto (p_i, p_{i+1}) no puede ser arista tampoco de ninguna subgráfica de $\overline{UG(D)}$. En particular no podría serlo de $\overline{UG(S)}$.

Pero esto contradice la hipótesis de que P es una trayectoria en $\overline{UG(S)}$. Por lo tanto (p_i, p_{i+1}) no es un arista en E(UG(D)).

Proposición 1.6. Sea D una digráfica cuasi-transitiva con al menos dos vértices. Si S y S' son dos subdigraáficas de D tales que $\overline{UG(S)}$ y $\overline{UG(S')}$ son componentes conexas distintas de $\overline{UG(D)}$, entonces $S \mapsto S'$ o $S' \mapsto S$, o $S \mapsto S'$ y $S' \mapsto S$ en caso de que |V(S)| = |V(S')| = 1.

Demostración. Sea x un vértice en S'. Como S' es una componente conexa en $\overline{UG(D)}$, existe un vértice y tal que $Q=(q_0=y,q_1,\ldots,q_n=x)$ es una trayectoria en $\overline{UG(S')}$ (si S' contiene solo un vértice la trayectoria es de longitud 1). Sea u un vértice en S. u es adyacente a todos los vértices de Q como consecuencia de que S y S' son completamente adyacentes en UG(D) ya que son componentes distintas de $\overline{UG(D)}$. Supongamos sin pérdida de generalidad que (u,q_0) es flecha de D. Sabemos que la arista (u,q_1) está en UG(D), así que la flecha (u,q_1) , o la flecha (q_1,u) o ambas están en D. Sabemos por el Lema 4.1 que q_1 y q_2 no son adyacentes en D. Debido a este resultado (q_1,u) no es una flecha de D, de lo contrario q_1 y q_2 serían adyacentes debido a la existencia dela trayectoria de longitud 3 (q_1,u,q_0) en D. Así que (u,q_1) está en D. Análogamente, si (u,q_1) es una flecha de D, (q_{l+1},u) no puede ser flecha en D, y por ende la arista (u,q_{l+1}) está en D.

Figura 1.14 S y S' son componentes conexas de $\overline{UG(D-z)}$, z es adyacente a s'

Entonces u domina a x y no existen flechas desde P a u, para ningún u en S'. Notemos que x es cualquier vértice en S', así que $u \mapsto S'$ para todo u en S. Por lo tanto $S \to S'$.

(Como S' es conexa en $\overline{UG(D)}$, si v es cualquier vértice distinto de u en S' existe una uv-trayectoria $P=(u=p_0,p_1,\ldots,p_m=v)$ en $\overline{(UG(S))}$. Las flechas (p_i,q_j) están en D en esa dirección para evitar trayectorias del tipo (p_j,q)

_

Capítulo 2

Descomposición canónica de una digráfica cuasi-transitiva