台北市立松山高級中學

114 學年度 學科能力競賽 程式設計集訓講義

目次

1.數值:	計算篇	1
多項式	Horner 法	1
	求根 - 等分法	3
	 -內插法	6
多元一		7
	- 排列組合	16
2.資料約	结構演算法篇	17
排序	-謝爾排序	23
	-選擇排序	26
	-合併排序	27
		32
	- - <u>快速排序</u>	39
		42
		43
搜尋	-循序搜尋 -二分搜尋 -雜湊搜尋	45
遞迴	- <u>回溯</u>	48
3. <u>圖論</u> .		55
	- <u>LinkList</u>	56
	- <u>DFS</u>	59
	- <u>BFS</u>	65
	-二元樹的走訪 前序 中序 後序	71
	鏈結串列結構二元樹走訪	76
	-動態規畫法	78
	郵票	80
	磁磚	82
	背包	86
		87
	最小成本生成樹 MST	88
	-霍夫曼編碼	90
	 -尤拉路徑	91
	 - <u>最短路徑</u>	93
附錄	<u> </u>	97

數值計算篇

科學家和工程師所做的計算,大都與數值有關,要解的是數值問題 (numerical problem)。以電子計算機解數值問題,就是將實數資料輸入,利用電子計算機做快速的加減乘除等運算,將求出的實數結果輸出,這樣的演算過程,統稱爲數值計算 (numerical computation)。

數值資料的準確度,受到表示它的位元數所左右,因此一般數值計算 多少都有誤差。影響誤差大小的因素很多,例如計算前所收集之數值資料 的準確度,計算機內部表示法所用的位元數;每次運算產生的誤差(如四 捨五入);多次運算所累積而衍生的更大誤差;以有限的執行步驟不能夠 無限制的提高精確度等,可見數值計算的精確度是很難預估的。

數值計算不但求快,而不產生太大的誤差也是重要的課題。本章並不 深入探討數值計算的誤差,主要是介紹一些基本的數值問題,以及解決它 們的數值計算方法。

9-1 求多項式的函數值

多項式是最基本的函數, n 次多項式可以寫成:

$$p(x)=a_0x^n+a_1x^{n-1}+\cdots+a_{n-1}x+a_n$$

求多項式的函數值就是把係數 a_0,a_1,\cdots , a_n 和變數 x 的值輸入,求出p(x) 的值。最平常的方法是求出每一項的值,並累加起來。如果以陣列 A 儲存各項的係數值,以 X 儲存變數值,以 Y 代表 X 的乘幂,而以 P 代表結果,則其演算法則如下:

輸入多項式的次數 N 輸入係數值到 A(0), A(1),…, A(N) 輸入變數值到 X

28

設定P爲A(N)

設定Y為X

使用 FOR 迴路 (I由N-1遞減到0) 重覆底下步驟:

P=P+A(I)+Y

 $Y = Y \times X$

輸出P

在這個計算方法當中,每求一項就要做兩次乘法,總共要做 2n 次乘法, 其實另外有一個更快的方法,總共只要做n 次乘法就可以了。如果把 多項式寫成

$$p(x) = ((\cdots((a_0x+a_1)x+a_2)x+\cdots)x+a_{n-1})x+a_n$$

利用以上的式子,由 a。 開始,每次乘上 x 後加上下一項的係數,直到乘上 x 再加上 an,計算就完成了,其演算法則如下:

輸入多項式的次數N

輸入係數值到 A(0), A(1),…, A(N)

輸入變數值到X

設定P為 A(0)

使用FOR迴路(I由1遞增到N)重覆底下步驟:

 $P = P \times X + A(I)$

輸出P

程式如下:

- 100 DIM A(10)
- 200 INPUT "DEG OF POLYNOMIAL"; N
- 210 FOR I=0 TO N
- 220 INPUT "COEFFICIENT":A(I)
- 230 NEXT I
- 240 INPUT "VALUE OF X=";X
- 300 P=A(0)
- 310 FOR I=1 TO N
- 320 P=P*X+A(I)
- 330 NEXT I
- 400 PRINT "VALUE OF POLYN AT X ="; X; " IS " ;
- 410 PRINT P
- 500 END

• 30 • 高級中學電子計算機 下册

如果多項式爲 $P(x)=x^3+3x^2+3x+1$,要求 P(1.5)的值。則程式的 執行情形如下:

RUN
DEG OF POLYNOMIAL? 3
COEFFICIENT? 1.0
COEFFICIENT? 3.0
COEFFICIENT? 3.0
COEFFICIENT? 1.0
VALUE OF X=? 1.5
VALUE OF POLYN AT X = 1.5 IS 15.625
OK

9-2 求方程式的根

9-2-1 求根的數值問題

一個變數的方程式可以寫成 f(x)=0, 其中 f 是特定的數學函數,求方程式的根,就是計算出使得 f(x) 等於 0 的所有 x 的值。如果 f 是簡單的函數,可能有公式可以求根,例如 f 為二次多項式 ax^2+bx+c ,則求方程式 f(x)=0 根的公式為

 $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$, 式中除了 做加減 乘除等 運算外, 還須要 求平方根。當然在 BASIC 裏有內建函數 SQR 可用,但那也是別人事先設計好的程式,求平方根 \sqrt{d} 相當於解方程式 $x^2 - d = 0$ 。

如果 f 為三次或四次多項式,求 f(x)=0 的根雖然仍有公式,但相當複雜,如果照著去設計程式,所得的答案可能誤差很大而不適用。再看 f 為更高次多項式的情形,這時連一般的公式都沒有了,由此可見實際計算方程式的根不能太依賴數學公式,而必須把它看成數值問題,以計算機數值計算的方法求數值解。

求根的問題可分成兩個部分,首先在定義域裏選定一個區間,保證在 那個區間裏有根存在, 然後在該區 間把根的位置找出來,由於是數值計

算,我們不能夠得到根的確切位置,而只能求到一個近似位置,即根的近似值。

要選定適當的區間,則必須對函數本身有相當的了解才行。可以在一個足夠大的區間裏求一些函數值,若發現有 x_1, x_2 ,其函數值 $f(x_1), f(x_2)$ 不同號時(一正一負),我們便知道在 (x_1, x_2) 這個區間裏至少有一個根。這個概念以函數圖來看更清楚,圖 9-1(a) 表示區間裏有一個根,圖 9-1(b) 表示區間裏有一個以上的根。如果區間裏有一個以上的根,就必須再加以分段,使得每一個小區段裏只有一個根。分段的方法是求出區間中函數圖的峯點和谷點,(可以用函數圖加以簡單估計),如圖 9-1(b)中的 x_3, x_4, x_5, x_6 等點,以它們來畫分出 (x_3, x_4) , (x_4, x_5) , (x_5, x_6) 等三個區間,然後分別找三個根的近似位置。底下介紹兩種在適當區間裏求根的方法。

9-2-2 等分法

等分法就是把區間二等分,決定那一半含有根後,將該半再二等分,如此繼續下去, 直到區間的 長度相當小爲止, 因爲區間越小 就表示越接近根的眞正位置。決定往那邊細分則是靠函數值的正負關係,假設 x_3 爲 (x_1,x_2) 的中間點,若 $f(x_1)$ 和 $f(x_3)$ 異號就取區間 (x_1,x_3) ; 若 $f(x_2)$ 和 $f(x_3)$ 異號就取區間 (x_3,x_2) 。圖 9-2 顯示等分法進行的情形: 由於 $f(x_2)$ 與 $f(x_3)$ 異號,我們取 (x_3,x_2) , (x_3,x_2) 的中間點爲 x_4 ,因

• 32 • 高級中學電子計算機 下册

 $f(x_3)$ 與 $f(x_4)$ 異號,所以取 (x_3, x_4) ,依同樣原則再取 (x_3, x_5) ,如 此繼續下去,漸漸靠近根的確切位置。

演算法則列在下面,其中F表示函數 f,寫程式時可自定,P1,P2表示區間左右兩個端點,P3 表示區間的中點,函數值是否同號以其乘積的正負來決定。注意:演算法則中的 P1 永遠小於 P2。

定義函數F

輸入 P1, P2

若 F(P1)×F(P2)≤0 則做

當 P2-P1 不夠小時重覆底下步驟:

P3 = (P1 + P2)/2

若 F(P1)*F(P3)<0 則做

P2=P3

否則做

P1=P3

輸出 (P1+P2)/2

否則輸出"此區間無根"

若將 $f(x)=x^2-2$ 代入上面的演算法則,則得到一求 $\sqrt{2}$ 近似值的程式。為了避免重覆計算函數值,可以用 V1, V2, V3 分別存 F(P1), F(P2), F(P3) 的值。 $\sqrt{2}$ 顯然介於 1 與 2 之間, P1 和 P2 可分別輸入 1 和 2 作為區間端點的初值。

```
100 DEF FNPLOY(X)=X*X-2
110 INPUT"SELECT TWO PROPER END POINTS ";P1.P2
120 V1=FNPLOY(P1)
130 V2=FNPLOY(P2)
140 :
150 IF V1*V2>0 THEN GOTO 230
160
       WHILE P2-P1>=.000001
170
          P3 = (P1 + P2) / 2
180
          V3=FNPLOY(P3)
190
          IF V1*V3>0 THEN P1=P3:V1=FNPLOY(P1)
                     ELSE P2=P3: V2=FNPLOY(P2)
200
       WEND
210 PRINT"ROOT IS APPROXIMATELY "(P14P2)/2
220 GOTO 240
230 PRINT "NO ROOT IN INTERVAL."
240 END
RUN
SELSCT TWO PROPER END POINTS.? 1,2
ROOT IS APPROXIMATELY 1.414214
```

9-2-3 內揷法

內插法不以定義域 X軸上的 x_1,x_2 爲出發點,而是考慮函數圖上的兩個點 $(x_1,f(x_1))$ 和 $(x_2,f(x_2))$,若把兩點連成一直線,該直線一定和 X 軸相交於 x_1,x_2 間的一點 x_3 ,然後可重新選定區間 (x_1,x_2) 或 (x_3,x_2) ,繼續做同樣的動作,如此以相交點而不是中間點去逼近根的位置。圖 9-3 表達用內插法求根近似值的過程:由 $(x_1,f(x_1))$ 和 $(x_2,f(x_2))$ 得到交 點 x_3 ,由 $(x_1,f(x_1))$ 和 $(x_3,f(x_3))$ 得到交點 x_4 ,以此逼近根的位置。

6

34 · 高級中學電子計算機 下册

利用 (P1,F(P1)), (P2,F(P2)), (P3,F(P3)) 三點共線的性質,可求出 P3 的值,其公式為:

$$P3=P1-(P2-P1)*F(P1)/(F(P2)-F(P1))$$

雖然內插法中逼近根的過程和等分法很類似,但 P2-P1 卻不一定會趨近於 0,因此不能以 P2-P1 的大小,而是以 P3 變動的大小來控制迴路的 繼續執行與否,整個演算法則描述如下:

輸入P1,P2 若F(P1)*F(P2)≤0 則做 P3=P1-(P2-P1)*F(P1)/(F(P2)-F(P1)) 若F(P1)*F(P3)<0 則做 P2=P3 否則做 P1=P3 重覆底下步驟直到 |P4-P3| 相當小: P4=P3 P3=P1-(P2-P1)*F(P1)/(F(P2)-F(P1)) 若F(P1)*F(P3)<0 則做 P2=P3 否則做 P1=P3 輸出P3

※9-4 解聯立方程式

否則輸出"此區間無根"

現在來考慮如何解下面的聯立方程式:

解聯立方程式

• 38 • 高級中學電子計算機 下册

$$a_{11}X_{1} + a_{12}X_{2} + a_{13}X_{3} + \dots + a_{1n}X_{n} = a_{1}, \quad n+1$$

$$a_{21}X_{1} + a_{22}X_{2} + a_{23}X_{3} + \dots + a_{2n}X_{n} = a_{2}, \quad n+1$$

$$a_{31}X_{1} + a_{32}X_{2} + a_{33}X_{3} + \dots + a_{3n}X_{n} = a_{3}, \quad n+1$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$a_{n1}X_{1} + a_{n2}X_{2} + a_{n3}X_{3} + \dots + a_{nn}X_{n} = a_{n,n+1}$$

其中 a_{ij} , $1 \le i$, $j \le n$, 為輸入的係數; x_i , $1 \le i \le n$, 為輸出的解。

如果把任一個方程式換成該方程式減去一個常數乘另一個方程式,並不會改變聯立方程式的解,例如第 i 個方程式可以改成

$$a_{i1}X_{1} + a_{i2}X_{2} + a_{i3}X_{3} + \cdots + a_{in}X_{n} = a_{i}, _{n+1}$$

$$- c(a_{j1}X_{1} + a_{j2}X_{2} + a_{j3}X_{3} + \cdots + a_{jn}X_{n} = a_{j}, _{n+1})$$

$$(a_{i1} - ca_{j1})X_{1} + (a_{i2} - ca_{j2})X_{2} + (a_{i3} - ca_{j3})X_{3} + \cdots + (a_{in} - ca_{jn})X_{n} = a_{i,n+1} - ca_{j,n+1}$$

利用上述的方法,想辦法把原來的聯立方程式改寫成底下的形式(注意方程式左邊的項數越來越少):

$$a_{11}X_{1} + a_{12}X_{2} + a_{13}X_{3} + \dots + a_{1n}X_{n} = a_{1}, \quad n+1$$

$$a_{22}X_{2} + a_{23}X_{3} + \dots + a_{2n}X_{n} = a_{2}, \quad n+1$$

$$a_{33}X_{3} + \dots + a_{3n}X_{n} = a_{3}, \quad n+1$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$a_{nn}X_{n} = a_{n}, \quad n+1$$

這樣一來,從最後的方程式可先算出 x_n 的值為 $a_{n,n+1}/a_{nno}$ 然後由上一個 方程式算出 x_{n-1} 的值為 $(a_{n-1}, n+1-a_{n-1}, nx_n)/a_{n-1}, \dots$ 直到由第一個 方程式求出 x_1 的值。换言之,若已算出 $x_n, x_{n-1}, \dots, x_{i+1}$ 的值,由第 i 個 方程式可求出 x_i 的值為 $(a_i, n+1-a_i, i+1)$ $x_{i+1} = \dots = a_{in}x_n)/a_{ii}$ 。

爲了方便說明,我們用以下的係數陣列來表示聯立方程式:

$$a_{11}$$
 a_{12} a_{13} a_{1n} $a_{1,n+1}$
 a_{21} a_{22} a_{23} a_{2n} $a_{2,n+1}$
 a_{31} a_{32} a_{33} a_{3n} $a_{3,n+1}$
 \vdots \vdots \vdots \vdots \vdots \vdots
 a_{n1} a_{n2} a_{n3} a_{nn} $a_{n,n+1}$

因為第一行中的 $a_{21},a_{31},\cdots,a_{n1}$ 都要變成 0 , 而 $a_{i1}-(a_{i1}/a_{11})a_{11}=0$, 如果把第 i 列換成該列減掉 (a_{i1}/a_{11}) 乘以第一列,即 a_{ij} 設定為 $a_{ij}-(a_{i1}/a_{11})$ a_{1j} $2 \le i \le N$, $2 \le j \le N+1$,則陣列就變成下面形式:

接著在框起來的部分又可重覆上述的步驟,第三列以後都減去 (a_{i_2}/a_{22}) 乘以第二列, 即 a_{ij} 設定為 $a_{ij}-(a_{i_2}/a_{22})a_{2i}$, $3\leq i\leq N$, $3\leq j\leq N+1$, 陣列變成:

如此,每次處理的陣列範圍都縮小一點,重覆 n-1 次後,整個陣列就變成所要的形式:

• 40 • 高級中學電子計算機 下册

若以二維陣列A(N, N+1) 代表係數,而以一維陣列 X(N) 代表聯立 方程式的解,演算法則初步構想如下:

輸入係數到陣列A

用FOR迴路(K由1遞增到N-1)重覆底下步驟:

更改第K+1列到第N列

X(N) = A(N, N+1)/A(N,N)

用FOR迴路(I由N-1遞減到1)重覆底下步驟:

計算X(I)

輸出陣列X

「更改第K+1列到第N列」可寫成

用FOR迴路(I由K+1遞增到N)重覆底下步驟: 更改第 I 列

「更改第I列」部分又可進一步改寫成

用FOR迴路(J由K+1遞增到N+1)重覆底下步驟: A(I,J)=A(I,J)-(A(I,K)/A(K,K))*A(K,J)

而「計算X(I)」則可改寫成

SUM = 0

用FOR迴路(J由I+1遞增到N)重覆底下步驟:

$$SUM = SUM + A(I, J) \times X(J)$$
$$X(I) = (A(I, N+1) - SUM)/A(I, I)$$

整個演算法則爲:

輸入係數到陣列A

用FOR迴路(K由1遞增到N-1)重覆底下步驟:

用FOR洄路(I由K+1源增到N)重覆底下步驟:

用FOR洄路(J由K+1遞增到N+1)重覆底下步驟:

$$A(I,J)=A(I,J)-(A(I,K)/A(K,K))*A(K,J)$$

X(N)=A(N, N+1)/A(N,N)

用FOR迴路(I由N-1遞減到1)重覆底下步驟:

SUM = 0

用FOR迴路 (J由 I+1 遞增到N) 重覆底下步驟:

 $SUM = SUM + A(I, J) \times X(J)$

X(I) = (A(I, N+1) - SUM)/A(I, I)

輸出陣列X

問 題

- 1. 以內插法寫一程式,以求√n的近似值, n 爲任意正整數。
- 2. 寫一程式,以求正弦函數 SIN 的近似值。

註: SIN(x)=
$$\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!} = \frac{x}{1!} - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots$$

- 3. 寫一程式,以便能快速求得 xⁿ,設 x=2.7,n 爲任意正整數。
 - 註: 若將 n 以二進位表示爲 $a_m a_{m-1} \cdots a_0$ ($n = a_m 2^m + a_{m-1} 2^{m-1} + \cdots + a_1 2 + a_0$),則 $x^n = x^{a_m 2^m} x^{a_{m-1} 2^{m-1}} \cdots x^{a_1 2} x^{a_0}$,所以如果能依序求出 a_0, a_1, a_2, \cdots , a_m ,則可在 m 步裏算出 x^n ,這裏的 m 並不需要預先知道。
- 4. 將解聯立方程式的演算法則改寫成程式。

漸進式 9-3數值計算

寫一程式,以便能快速求得 x^n ,設x=2.7,n 為任意正整數。

註:若將n以二進位表示為 $a_m a_{m-1} ... a_0$ $(n = a_m 2^m + a_{m-1} 2^{m-1} + ... + a_1 2 + a_0)$

則 $x^n=x^{a_m2^m}x^{a_{m-1}2^{m-1}}...x^{a_12}x^{a_0}$,所以如果能依序求出 $a_0,a_1,a_2...,a_m$,則可在m步裡算出 x^n ,這裡的m並不需要預先知道。

解:

$$x^{n} = x^{a_{m} 2^{m}} x^{a_{m-1} 2^{m-1}} ... x^{a_{1} 2} x^{a_{0}}$$

$$= ((((x^{a_{m}})^{2} \cdot x^{a_{m-1}})^{2} \cdot x^{a_{m-2}})^{2} \cdot x^{a_{m-3}})^{2} ... x^{a_{0}}$$

令
$$p = x^{a_m}$$

重覆 $m \rightarrow 1$ 次
$$p = p^2 \cdot x^{a_{m-1}}$$

例: 求 x¹¹

解:
$$x^{11} = x^{1011_2} = x^{1 \cdot 2^3} x^{0 \cdot 2^2} x^{1 \cdot 2^1} x^{1 \cdot 2^0}$$

= $(((x^1)^2 \cdot x^0)^2 \cdot x^1)^2 \cdot x^1$

驗算:

$$(((x^{1})^{2} \cdot x^{0})^{2} \cdot x^{1})^{2} \cdot x^{1}$$

$$= ((x^{2} \cdot 1)^{2} \cdot x^{1})^{2} \cdot x^{1}$$

$$= (x^{4} \cdot x^{1})^{2} \cdot x^{1}$$

$$= (x^{5})^{2} \cdot x^{1}$$

$$= x^{10} \cdot x^{1}$$

$$= x^{11}$$

指數律

$$x^{ab} = (x^a)^b$$

$$x^{a+b} = x^a \cdot x^b$$