EXAMPLE 2.2(a)

Conversion of Curvilinear Position to Cartesian ECEF Position

INPUTS:						
Equatorial radius	$R_0 =$	6378137	m			
Ellipsoid eccentricity	e =	0.081819191				
Latitude $L_b =$	45	degrees	0.785398	rad		
Longitude λ_b =	30	degrees	0.523599	rad		
Height $h_b =$	1000	m				

Transverse Radius of Curvature

From (2.106), $R_E(L_b) = \frac{R_0}{\sqrt{1 - e^2 \sin^2 L_b}}$

 $R_E = 6.39E+06$

Cartesian Position (ECEF-frame resolevd and referenced From (2.112),

 $x_{eb}^{e} = (R_{E}(L_{b}) + h_{b})\cos L_{b}\cos \lambda_{b}$ $y_{eb}^{e} = (R_{E}(L_{b}) + h_{b})\cos L_{b}\sin \lambda_{b}$ $z_{eb}^{e} = [(1 - e^{2})R_{E}(L_{b}) + h_{b}]\sin L_{b}$

 $\mathbf{r}_{eb}^{e} = \begin{bmatrix} 3912960.837 \\ 2259148.993 \\ 4488055.516 \end{bmatrix} \mathbf{m}$

EXAMPLE 2.2(b)

Conversion of Cartesian ECEF Position to Curvilinear Position Iterative Method 1

INPUTS:

Equatorial radius $R_0 = 6378137$ m Ellipsoid eccentricity e = 0.08181919

Cartesian $x_{eb}^e = 3912960.837 \text{ m}$ position $y_{eb}^e = 2259148.993 \text{ m}$ $z_{eb}^e = 4488055.516 \text{ m}$

 e^2 0.00669438 $1-e^2$ 0.99330562

$$\beta_{eb}^{e} = \sqrt{x_{eb}^{e^{2}} + y_{eb}^{e^{2}}} = 4518297.986 \text{ m}$$

Longitude

From (2.113), $\lambda_b = \arctan_2(y_{eb}^e, x_{eb}^e)$

Note: The arguments of the Excel ATAN2 function are the opposite way round

 $\lambda_b = 0.523598776 \text{ rad}$

30 degrees

Initialize latitude with geocentric latitude

From (2.114), $L_{b,0} = \boldsymbol{\varPhi}_b = \arctan\left(\frac{z_{eb}^e}{\sqrt{x_{eb}^{e^{-2}} + y_{eb}^{e^{-2}}}}\right)$ $L_{b,0} = \boxed{0.782040272} \text{ rad}$

Calculate transverse radius of curvature

From (C.3), $R_E(L_{b,k-1}) = \frac{R_0}{\sqrt{1 - e^2 \sin^2 L_{b,k-1}}}$ $R_E = \begin{bmatrix} 6388766.243 \end{bmatrix}$ m

Calculate height From (C.4), $h_{b,k-1} = \frac{\sqrt{x_{eb}^{e^{-2}} + y_{eb}^{e^{-2}}}}{\cos L_{b,k-1}} - R_E(L_{b,k-1})$ $h_{b,0} =$ -20276.7051 m

Calculate geodetic latitude

From (C.5), $L_{b,k} = \arctan\left[\frac{z_{eb}^{e} \left[R_{E}(L_{b,k-1}) + h_{b,k-1}\right]}{\sqrt{x_{eb}^{e}^{2} + y_{eb}^{e}^{2}} \left[\left(1 - e^{2}\right)R_{E}(L_{b,k-1}) + h_{b,k-1}\right]}\right]$ $L_{b,1} = \begin{bmatrix} 0.78540942 \\ \text{rad} \end{bmatrix} \text{ rad} \qquad L_{b,1} - L_{b,0} = \begin{bmatrix} 0.003369 \\ \text{rad} \end{bmatrix} \text{ rad}$

Iterate:

 $R_E =$ 6388838.532 m $h_{b,1} =$ 1071.686617 m $L_{b,2} =$ 0.785398126 rad $L_{b,2} - L_{b,1} =$ -1.1E-05 rad

$R_E =$	6388838.289	m	
h _{b ,2} =	999.7592861	m	
$L_{b,3} =$	0.785398164	rad	$L_{b,3} - L_{b,2} = 3.79E-08$ rad
$R_E =$	6388838.29	m	
h _{b ,3} =	1000.000808	m	
L _{b ,4} =	0.785398163	rad	$L_{b,4} - L_{b,3} = -1.3E-10$ rad
$R_E =$	6388838.29	m	
h _{b ,4} =	999.9999973	m	
$L_{b,5} =$	0.785398163	rad	$L_{b,5} - L_{b,4} = 4.28E-13$ rad
	45	degrees	
$R_E =$	6388838.29	m	
h _{b ,5} =	1000	m	

EXAMPLE 2.2(c)

Conversion of Cartesian ECEF Position to Curvilinear Position Iterative Method 2

INPUTS:

Equatorial radius $R_0 =$ 6378137 m Ellipsoid eccentricity e = 0.08181919

Cartesian $x_{eb}^e = 3912960.837$ m position $y_{eb}^e = 2259148.993$ m

 $e^{eb}_{eb} = 4488055.516 \,\mathrm{m}$

 e^2 0.00669438 1- e^2 0.99330562

$$\beta_{eb}^{e} = \sqrt{x_{eb}^{e^{2}} + y_{eb}^{e^{2}}} = 4518297.986 \text{ m}$$

Longitude

From (2.113), $\lambda_b = \arctan_2(y_{eb}^e, x_{eb}^e)$

Note: The arguments of the Excel ATAN2 function are the opposite way round

 $\lambda_b = 0.523598776 \text{ rad}$

30 degrees

Initialize reduced latitude

From (C.10),
$$\zeta_{b,0} = \arctan\left(\frac{z_{eb}^{e}}{\sqrt{1 - e^{2}} \sqrt{x_{eb}^{e^{2}} + y_{eb}^{e^{2}}}}\right)$$

$$\zeta_{b,0} = \boxed{0.783719472} \text{ rad}$$

Calculate latitude

From (C.12),
$$L_{b,k} = \arctan \left[\frac{z_{eb}^e \sqrt{1 - e^2} + e^2 R_0 \sin^3 \zeta_{b,k-1}}{\sqrt{1 - e^2} \left(\sqrt{x_{eb}^e}^2 + y_{eb}^e^2} - e^2 R_0 \cos^3 \zeta_{b,k-1} \right) \right]$$

$$L_{b,1} = \begin{bmatrix} 0.785398163 \\ \text{rad} \end{bmatrix}$$

Calculate reduced latitude

From (C.11),
$$\zeta_{b,k-1} = \arctan\left(\sqrt{1 - e^2} \tan L_{b,k-1}\right)$$

$$\zeta_{b,1} = 0.783718945 \text{ rad}$$
 (rad)

Iterate:

$$L_{b,2} = 0.785398163$$
 rad $L_{b,2} - L_{b,1} = -1.44E-15$ rad $\zeta_{b,2} = 0.783718945$ rad $L_{b,3} = 0.785398163$ rad $L_{b,3} - L_{b,2} = 0.00E+00$ rad degrees

Principles of GNSS, Inertial, and Multisensor Integrated Navigation Systems, 2nd Edition, by Paul D. Groves

From (C.8),
$$h_b = \frac{\sqrt{x_{eb}^{e^2} + y_{eb}^{e^2}}}{\cos L_b} - \frac{R_0}{\sqrt{1 - e^2 \sin^2 L_b}}$$

$$h_b = \boxed{1000 \text{ m}}$$

EXAMPLE 2.2(d)

Conversion of Cartesian ECEF Position to Curvilinear Position Iterative Method 3

INPUTS:

6378137 m **Equatorial radius** $R_0 =$ Ellipsoid eccentricity 0.08181919

Cartesian $x_{eh}^e =$ 3912960.837 m position 2259148.993 m 4488055.516 m

0.00669438 0.99330562 e^2

$$\beta_{eb}^{e} = \sqrt{x_{eb}^{e^{2}} + y_{eb}^{e^{2}}} = 4518297.986 \text{ m}$$

Longitude

From (2.113), $\lambda_b = \arctan_2(y_{eb}^e, x_{eb}^e)$

Note: The arguments of the Excel ATAN2 function are the opposite way round

0.523598776 rad $\lambda_b =$

30 degrees

Initialize latitude

 $L_{b,0} = \arctan\left[\frac{z_{eb}^{e}}{\sqrt{1 - e^{2}} \sqrt{x_{cb}^{e^{2}} + v_{cb}^{e^{2}}}}\right]$ From (C.13),

 $L_{b.0} =$ 0.783719472

Calculate transverse radius of curvature

From (C.3), $R_E(L_{b,k-1}) = \frac{R_0}{\sqrt{1 - e^2 \sin^2 L_{b,k-1}}}$ $R_E = \begin{bmatrix} 6388802.272 \end{bmatrix}$

Calculate latitude

From (C.14), $L_{b,k} = \arctan\left(\frac{z_{eb}^{e} + e^{2}R_{E}(L_{b,k-1})\sin L_{b,k-1}}{\sqrt{x_{ab}^{e}^{2} + y_{eb}^{e}^{2}}}\right)$ $L_{b,1} - L_{b,0} = 0.00167305$ $L_{b,1} =$ 0.785392522 rad

Iterate:

 $R_E =$ 6388838.169 $L_{b,2} - L_{b,1} = 5.62266E-06$ $L_{b,2} =$ 0.785398144 rad $R_E =$ 6388838.29 $L_{b,3} - L_{b,2} = \boxed{1.88804}$ E-08 $L_{b.3} =$ 0.785398163 rad $R_E =$ 6388838.29 $L_{b,4} - L_{b,3} = 6.33986E-11$ $L_{b,4} =$ 0.785398163 rad $R_E =$ 6388838.29

Principles of GNSS, Inertial, and Multisensor Integrated Navigation Systems, 2nd Edition, by Paul D. Groves

$$L_{b,5} =$$
 0.785398163 rad $L_{b,5} - L_{b,4} =$ 2.1283E-13 degrees

From (C.8),
$$h_b = \frac{\sqrt{x_{eb}^e{}^2 + y_{eb}^e{}^2}}{\cos L_b} - \frac{R_0}{\sqrt{1 - e^2 \sin^2 L_b}}$$
$$h_b = \boxed{1000 \text{ m}}$$

EXAMPLE 2.2(e)

Conversion of Cartesian ECEF Position to Curvilinear Position Iterative Method 4

INPUTS:

Equatorial radius $R_0 = 6378137$ m Ellipsoid eccentricity e = 0.081819191

Cartesian $x_{eb}^e = 3912960.837 \text{ m}$ position $y_{eb}^e = 2259148.993 \text{ m}$

 $z_{cb}^e = 4488055.516 \,\mathrm{m}$

 e^2 0.00669438 1- e^2 0.99330562

$$\beta_{eb}^{e} = \sqrt{x_{eb}^{e^{2}} + y_{eb}^{e^{2}}} = 4518297.986 \text{ m}$$

Longitude

From (2.113), $\lambda_b = \arctan_2(y_{eb}^e, x_{eb}^e)$

function are the opposite way round

Note: The arguments of the Excel ATAN2

 $\lambda_b = 0.523598776 \text{ rad}$

30 degrees

Calculate coefficient A

From (C.16), $A = \arctan\left(\frac{z_{eb}^{e} \sqrt{1 - e^{2}}}{\sqrt{x_{eb}^{e^{2}} + y_{eb}^{e^{2}}}}\right)$

A 0.78036111 rad

Calculate coefficient B

From (C.16), $B = \frac{e^2 R_0}{\sqrt{x_{eb}^{e^2} + y_{eb}^{e^2} + \left(1 - e^2\right) z_{eb}^{e^2}}}$ B 0.006715694

Initialize reduced latitude

From (C.10), $\zeta_{b,0} = \arctan\left(\frac{z_{eb}^{e}}{\sqrt{1 - e^{2}} \sqrt{x_{eb}^{e^{2}} + y_{eb}^{e^{2}}}}\right)$ $\zeta_{b,0} = \boxed{0.783719472} \text{ rad}$

Calculate reduced latitude

From (C.15), $\zeta_{b,k} = \zeta_{b,k-1} - \frac{2\sin(\zeta_{b,k-1} - A) - B\sin 2\zeta_{b,k-1}}{2\cos(\zeta_{b,k-1} - A) - B\cos 2\zeta_{b,k-1}}$

 $\zeta_{b,1} = \begin{bmatrix} 0.783718945 \text{ rad} \end{bmatrix}$ rad $\zeta_{b,1} - \zeta_{b,0} = \begin{bmatrix} -5.2735\text{E-O7} \text{ rad} \end{bmatrix}$

Iterate:

 $\zeta_{b,2} =$ 0.783718945 rad $\zeta_{b,2} - \zeta_{b,1} =$ -5.9466E-12 rad $\zeta_{b,3} =$ 0.783718945 rad $\zeta_{b,3} - \zeta_{b,2} =$ 0 rad

Calculate latitude

From (C.17),
$$L_b = \arctan\left(\frac{\tan \zeta_b}{\sqrt{1 - e^2}}\right)$$

 $L_b = \frac{0.785398163}{45} \text{ rad}$

From (C.8),
$$h_b = \frac{\sqrt{x_{eb}^{e^2} + y_{eb}^{e^2}}}{\cos L_b} - \frac{R_0}{\sqrt{1 - e^2 \sin^2 L_b}}$$

EXAMPLE 2.2(f)

Conversion of Cartesian ECEF Position to Curvilinear Position Heikkinen Closed-Form Exact Solution

INPUTS:

Equatorial radius $R_0 = 6378137$ m Ellipsoid eccentricity e = 0.08181919

Cartesian $x_{eb}^e =$ position $y_{eb}^e =$

3912960.837 m 2259148.993 m

 $z_{eb}^e =$

 $\frac{e}{eb} = 4488055.516 \text{ m}$

$$e^{2}$$

0.00669438 0.99330562

$$\beta_{eb}^{e} = \sqrt{x_{eb}^{e^{2}} + y_{eb}^{e^{2}}} = 4518297.986 \text{ m}$$

Longitude

From (2.113), $\lambda_b = \arctan_2(y_{eb}^e, x_{eb}^e)$

Note: The arguments of the Excel ATAN2 function are the opposite way round

 $\lambda_b =$

0.523598776 rad

30 degrees

From (C.19), $F = 54(1 - e^2)R_0^2 z_{eb}^{e^2}$

 $F = 4.39522E + 28 \text{ m}^4$

From (C.20),

G =

$$G = \beta_{eb}^{e^2} + (1 - e^2) z_{eb}^{e^2} - e^4 R_0^2$$
4.0421E+13 m²

From (C.21), $C = \frac{e^4 F \beta_{eb}^{e^2}}{G^3}$

C = 0.000608878

From (C.22), $S = (1 + C + \sqrt{C^2 + 2C})^{1/3}$

S = 1.01169944

From (C.23), $P = \frac{F}{3(S + \frac{1}{S} + 1)^2 G^2}$

P = 0.996239781

From (C.24), $Q = \sqrt{1 + 2e^4P}$

Q = 1.000044645

From (C.25),
$$T = \sqrt{\frac{R_0^2}{2} \left(1 + \frac{1}{Q}\right) - \frac{P(1 - e^2) z_{eb}^{e^2}}{Q(1 + Q)} - \frac{P\beta_{eb}^{e^2}}{2}} - \frac{P\beta_{eb}^{e^2}}{1 + Q}$$

$$\frac{R_0^2}{2} \left(1 + \frac{1}{Q} \right) =$$
 4.06797E+13

$$\frac{P(1-e^2)z_{eb}^{e^2}}{Q(1+Q)} = 9.96562E+12$$

$$\frac{Pe^2\beta_{eb}^e}{1+O} =$$
 15066.39744

From (C.26),
$$V = \sqrt{\left(\beta_{eb}^{e} - e^{2}T\right)^{2} + \left(1 - e^{2}\right)z_{eb}^{e^{2}}}$$

From (C.27),
$$L_b = \arctan \left[\left(1 + \frac{e^2 R_0}{V} \right) \frac{z_{eb}^e}{\beta_{eb}^e} \right]$$

$$L_b = \boxed{ 0.785398163}$$

$$45$$
degrees

From (C.28),
$$h_b = \left[1 - \frac{\left(1 - e^2\right)R_0}{V}\right] \sqrt{\left(\beta_{eb}^e - e^2T\right)^2 + z_{eb}^{e^2}}$$

EXAMPLE 2.2(g)

Conversion of Cartesian ECEF Position to Curvilinear Position Borkowski Closed-Form Exact Solution

INPUTS:

Equatorial radius $R_0 = 6378137$ m Ellipsoid eccentricity e = 0.08181919Cartesian $x_{ab}^e = 3912961$ m

Cartesian $x_{eb}^{e} = 3912961 \text{ m}$ position $y_{eb}^{e} = 2259149 \text{ m}$ $z_{cb}^{e} = 4488056 \text{ m}$

$$e^2$$
 0.00669438
1- e^2 0.99330562

$$\beta_{eb}^{e} = \sqrt{x_{eb}^{e^{2}} + y_{eb}^{e^{2}}} = 4518298 \text{ m}$$

Longitude

From (2.113), $\lambda_b = \arctan_2(y_{eb}^e, x_{eb}^e)$

Note: The arguments of the Excel ATAN2 function are the opposite way round degrees

 $\lambda_b = 0.523598776 \text{ rad}$

From (C.29), $E = \frac{\sqrt{1 - e^2} |z_{eb}^b| - e^2 R_0}{\beta_{eb}^b}$ $E = \begin{bmatrix} 0.980526352 \end{bmatrix}$

From (C.30), $F = \frac{\sqrt{1 - e^2} \left| z_{eb}^b \right| + e^2 R_0}{\beta_{eb}^b}$ $F = \begin{bmatrix} 0.999426245 \end{bmatrix}$

From (C.31), $P = \frac{4}{3}(EF + 1)$

P = 2.639951693

From (C.32), $Q = 2(E^2 - F^2)$ $Q = \begin{bmatrix} -0.07484178 \end{bmatrix}$

From (C.33), $D = P^3 + Q^2$ D = 18.40433528

From (C.34), $V = \left(D^{1/2} - Q\right)^{1/3} - \left(D^{1/2} + Q\right)^{1/3}$ $V = \boxed{0.018898933}$

From (C.35), $G = \frac{1}{2} \left(\sqrt{E^2 + V} + E \right)$ $G = \begin{bmatrix} 0.985321471 \end{bmatrix}$ Principles of GNSS, Inertial, and Multisensor Integrated Navigation Systems, 2nd Edition, by Paul D. Groves

From (C.36),
$$T = \sqrt{G^2 + \frac{F - VG}{2G - E}} - G$$

 $T = \boxed{0.415197568}$

From (C.37),
$$L_{b} = \text{sign } (z_{eb}^{e}) \arctan \left(\frac{1 - T^{2}}{2T\sqrt{1 - e^{2}}} \right)$$

$$L_{b} = \boxed{ 0.785398163 \text{ rad } \\ \text{degrees} }$$

From (C.38),
$$h_b = \left(\beta_{eb}^e - R_0 T\right) \cos L_b + \left(z_{eb}^e - \operatorname{sign}\left(z_{eb}^e\right) R_0 \sqrt{1 - e^2}\right) \sin L_b$$

$$h_b = \boxed{1000} \, \mathrm{m}$$