CS1DM3 DISCRETE MATH

CHAPTER 3 - ALGORITHMS

3.1 ALGORITHMS

INTRO

DEFINITIONS

An **algorithm** is a is a finite sequence of mathematically rigorous instructions, typically used to solve a class of specific problems or to perform a computation.

Pseudocode is a description of the steps in an algorithm intended for human reading rather than machine control.

To gain insight into how an algorithm works it is useful to construct a **trace** that shows its steps when given specific input

PROPERTIES OF ALGORITHMS

► Input	An algorithm has input values from a (possibly empty) specified set.
► Output	From each set of input values an algorithm produces output values, which are the solution to the problem, from a (possibly empty) specified set.
▶ Definiteness	The steps of an algorithm must be defined precisely .
► Correctness	An algorithm should produce the correct output values for each set of input values.
► Finiteness	An algorithm should produce the desired output after a finite (perhaps large) number of steps for any input in the set.
► Effectiveness	It must be possible to perform each step of an algorithm exactly and in a finite amount of time .
► Generality.	The procedure should be applicable for all problems of the desired form, not just for a particular set of input values

sequentially checks each element of the list until a match is found or the whole list has been searched

ALGORITHM 2 The Linear Search Algorithm.

procedure *linear search*(x: integer, a_1, a_2, \ldots, a_n : distinct integers)

i := 1

while $(i \le n \text{ and } x \ne a_i)$

i := i + 1

if $i \le n$ **then** location := i

else location := 0

return *location* { *location* is the subscript of the term that equals x, or is 0 if x is not found }

Worst-case O(n)Best-case O(1)Worst-case O(1)

Find 42:

Explanation of time complexity: p232, 3.3 Ex1&4

Check middle element of the sorted array.

If not found, check **middle element of the upper/lower half** that target must be within. **Repeat** until target value is found – or determined not in array.

ALGORITHM 3 The Binary Search Algorithm.

```
procedure binary search (x: integer, a_1, a_2, \ldots, a_n: increasing integers)
i := 1\{i \text{ is left endpoint of search interval}\}
j := n \{j \text{ is right endpoint of search interval}\}
while i < j
m := \lfloor (i+j)/2 \rfloor
if x > a_m then i := m+1
else j := m
if x = a_i then location := i
else location := 0
return location{location is the subscript i of the term a_i equal to x, or 0 if x is not found}
```

Worst-case $O(\log n)$

Best-case O(1)

Worst-case (Space) O(1)

Explanation: p232,

3.3 Ex2

Compare each element with next one, swapping if needed. Repeat.

ALGORITHM 4 The Bubble Sort.

procedure $bubblesort(a_1, ..., a_n : real numbers with <math>n \ge 2)$ **for** i := 1 **to** n - 1

for i := 1 to n - iif $a_j > a_{j+1}$ then interchange a_j and a_{j+1} $\{a_1, \dots, a_n \text{ is in increasing order}\}$

6 5 3 1 8 7 2 4

 $O(n^2)$ comparisons Worst-case $O(n^2)$ swaps O(n)comparisons **Best-case** swaps O(n)total Worst-case (Space) O(1)auxillory

Explanation: p232, 3.3 Ex3&5

ALGORITHM 5 The Insertion Sort.

Removes each element from array,

Find its appropriate location within the sorted list,

insert it there. Repeat.

procedure insertion $sort(a_1, a_2, ..., a_n)$: real numbers with $n \ge 2$)

for
$$j := 2$$
 to n
 $i := 1$
while $a_j > a_i$
 $i := i + 1$
 $m := a_j$
for $k := 0$ to $j - i - 1$
 $a_{j-k} := a_{j-k-1}$
 $a_i := m$
 $\{a_1, \dots, a_n \text{ is in increasing order}\}$

6 5 3 1 8 7 2 4

3.3 Ex6

PRACTICE PROBLEM

Identify **Big-O time complexity** of:

```
ALGORITHM 6 Naive String Matcher.

procedure string match (n, m): positive integers, m \le n, t_1, t_2, ..., t_n, p_1, p_2, ..., p_m: characters)

for s := 0 to n - m
j := 1
while (j \le m \text{ and } t_{s+j} = p_j)
j := j + 1
if j > m then print "s is a valid shift"
```

Check your answer by searching online or this wiki article:

Naïve / Brute-Force String Matching algorithm

3.2 GROWTH OF FUNCTIONS

BIG-O NOTATION

Sometimes written f(x) = O(g(x)). However, "=" does not represent a genuine equality.

"witnesses"

DEFINITIONS

Let f and g be functions from the set of integers or real numbers to the set of real numbers.

We say that f(x) is O(g(x)), read as "big-oh", if there are constants C and k, whenever x > k such that:

$$|f(x)| \le C|g(x)|$$

This says f(x) grows **slower** than some **fixed multiple** of g(x) as x grows without bound.

The part of the graph of f(x) that satisfies f(x) < Cg(x) is shown in color.

FIGURE 2 The function f(x) is O(g(x)).

Note that in Example 1 we have two functions, $f(x) = x^2 + 2x + 1$ and $g(x) = x^2$, such that f(x) is O(g(x)) and g(x) is O(f(x))—the latter fact following from the inequality $x^2 \le x^2 + 2x + 1$, which holds for all nonnegative real numbers x. We say that two functions

The part of the graph of $f(x) = x^2 + 2x + 1$ that satisfies $f(x) < 4x^2$ is shown in color.

FIGURE 1 The function $x^2 + 2x + 1$ is $O(x^2)$.

EXAMPLE

Show that $7x^2$ is $O(x^3)$.

Solution:

When x > 7, by multiplying both sides by x^2 , we have $7x^2 < x^3$.

Take C = 1 and k = 7 as witnesses to establish:

Whenever x > 7 such that $|7x^2| \le 1 \cdot |x^3|$

Alternatively, when x > 1, we have $7x^2 < 7x^3$, so C = 7 and k = 1 are also witnesses.

$$O(2^n)$$

$$O(n!)$$
 $O(2^n)$
 $O(n^2)$

 $O(n \log n)$

O(n) Fair

 $O(\log n)$ Good

0(1) **Best**

BIG O COMPLEXITY

O(n!)

 $O(2^n)$

RI

 $O(n^2)$

 $O(n \log n)$ Bad

O(n) Fair

 $O(\log n)$ Good

0(1) Best

BIG O COMPLEXITY

DEFINITIONS

Let f and g be functions from the set of integers or real numbers to the set of real numbers.

We say that
$$f(x)$$
 is $\Omega(g(x))$, read as "big-omega",

if there are constants C and k, with C > 0 such that:

$$|f(x)| \ge C|g(x)|$$

$$f(x) = \Omega(g(x))$$
 if and only if $g(x) = O(f(x))$

$$|C_1|g(x)| \le |f(x)| \le |C_2|g(x)|$$

DEFINITIONS

Let f and g be functions from the set of integers or real numbers to the set of real numbers.

We say that
$$f(x)$$
 is $\Theta(g(x))$, read as "big-theta",

if
$$g(x) = O(f(x))$$
 and $f(x) = \Omega(g(x))$.

If
$$f(x) = \Theta(g(x))$$
, we say that $f(x)$ is of order $g(x)$, and that $f(x)$ and $g(x)$ are of the same order.

From the definition of big-O notation, there are constants C_1 , C_2 , k_1 , and k_2 such that

$$|f_1(x)| \le C_1 |g_1(x)|$$
 when $x > k_1$, and $|f_2(x)| \le C_2 |g_2(x)|$ when $x > k_2$.

To estimate the sum of $f_1(x)$ and $f_2(x)$, note that

$$|(f_1 + f_2)(x)| = |f_1(x) + f_2(x)|$$

 $\leq |f_1(x)| + |f_2(x)|$ using the triangle inequality $|a + b| \leq |a| + |b|$.

When x is greater than both k_1 and k_2 , it follows from the inequalities for $|f_1(x)|$ and $|f_2(x)|$ that

$$\begin{split} |f_1(x)| + |f_2(x)| &\leq C_1 |g_1(x)| + C_2 |g_2(x)| \\ &\leq C_1 |g(x)| + C_2 |g(x)| \\ &= (C_1 + C_2) |g(x)| \\ &= C|g(x)|, \end{split}$$

where $C = C_1 + C_2$ and $g(x) = \max(|g_1(x)|, |g_2(x)|)$. [Here $\max(a, b)$ denotes the maximum, or larger, of a and b.]

This inequality shows that $|(f_1 + f_2)(x)| \le C|g(x)|$ whenever x > k, where $k = \max(k_1, k_2)$.

Suppose
$$f_1(x) = O(g_1(x))$$
, $f_2(x) = O(g_2(x))$. Then
$$(f_1 + f_2)(x) = O(g(x))$$

where $\forall x, g(x) = (\max(|g_1(x)|, |g_2(x)|).$

Suppose that $f_1(x)$ and $f_1(x)$ are both O(g(x)). Then

$$(f_1+f_2)(x)=\mathbf{0}(g(x))$$

Suppose that $f_1(x) = O(g_1(x))$, $f_2(x) = O(g_2(x))$. Then $(f_1f_2)(x)$ is $O(g_1(x)g_2(x))$.

EXAMPLE

Give a big-O estimate for $f(x) = (x + 1) \log(x^2 + 1) + 3x^2$.

Solution: First, a big-O estimate for $(x + 1) \log(x^2 + 1)$ will be found. Note that (x + 1) is O(x). Furthermore, $x^2 + 1 \le 2x^2$ when x > 1. Hence,

$$\log(x^2 + 1) \le \log(2x^2) = \log 2 + \log x^2 = \log 2 + 2\log x \le 3\log x,$$

if x > 2. This shows that $\log(x^2 + 1)$ is $O(\log x)$.

From Theorem 3 it follows that $(x + 1) \log(x^2 + 1)$ is $O(x \log x)$. Because $3x^2$ is $O(x^2)$, Theorem 2 tells us that f(x) is $O(\max(x \log x, x^2))$. Because $x \log x \le x^2$, for x > 1, it follows that f(x) is $O(x^2)$.

3.3 COMPLEXITY OF FUNCTIONS

BIG-O NOTATION

TABLE 1 Commonly Used Terminology for the Complexity of Algorithms.

Complexity	Terminology
$\Theta(1)$	Constant complexity
$\Theta(\log n)$	Logarithmic complexity
$\Theta(n)$	Linear complexity
$\Theta(n \log n)$	Linearithmic complexity
$\Theta(n^b)$	Polynomial complexity
$\Theta(b^n)$, where $b > 1$	Exponential complexity
$\Theta(n!)$	Factorial complexity

PRACTICE PROBLEMS

Explain Best, Worst, and Average Big-Oh time complexities of these Algorithms:

- ☐ Find max element in a finite set of integers (3.1Alg1, Solution: 3.3 Ex1)
- □Linear Search (3.1Alg2, Solution: 3.3Ex2, Ex4)
- ☐Binary Search (3.1Alg3, Solution: 3.3Ex3)
- □Bubble Sort (3.1Alg4, Solution: 3.3Ex5)
- □Insertion Sort (3.1Alg5, Solution 3.3Ex6)
- □Matrix Multiplication (3.3Alg1, Solution 3.3Ex7)
- □Brute-Force Alg for Closest Pair of Points (3.3Alg3, Solution 3.3Ex8)

DEFINITIONS

- algorithmic paradigm
- tractable,

P VS NP PROBLEM