IBD : Intergiciels et Bases de Données

Introduction aux systèmes distribués

Vania Marangozova-Martin Université de Grenoble, LIG

Vania.Marangozova-Martin@imag.fr

Site web: http://ibd.forge.imag.fr

Planning

	Semaine	Mercredi 13:30 - 18:30
		Cours Introduction (Vania M-M) 13:30-15:00
	5	TP Client-serveur communication Java par sockets 15:15-16:45
		Cours RMI (Vania M-M) 13:30-15:00
		Tutoriel: Getting started with RMI 15:15-16:45
	6	TP RMI Chat 17:00 - 18:30
		TP RMI Chat 13:30 - 15:00
	7	Démos TP RMI
	8	interruption HIVER
		Cours Applis Multi-tiers et servlets 13:30 - 15:00
	9	TP Servlets 15:15 - 16:45
		Cours Hibernate (Cyril L) 13:30 - 15:00
		Titoriel : Getting Started with Hibernate 15:15 - 16:45
	10	TP Hibernate 17:00 - 18:30
		Cours noSQL (Cyril L) 13:30 - 15:00
		Tutoriel: Getting started with noSQL and MongoDB 15:15 - 16:45
	11	TP MongoDB 17:00 - 18:30
		Cours Cloud (Vania M-M) 13:30 - 15:00
		Tutoriel : Getting started with Google App Engine 15:15 - 16:45
	12	
	13	Projet cloud lancement
	13	
	14	Projet cloud support
	15	Soutenances projet cloud
	16	Interruption PRINTEMPS

Objectifs

- Appréhender la complexité des systèmes distribués
- Introduction aux intergiciels
 - Pourquoi en a-t-on besoin?
 - Qu'est-ce qu'on y met dedans?
- Considérer des aspects pratiques
 - UE avec une forte composante technique
 - Travailler avec des technologies actuelles : serveurs web, bases de données noSQL, cloud...

V. Marangozova-Martin

IBD

.

Détails d'organisation

- Evaluation
 - Note de travail pratique
 - Application de chat (RMI) : démo
 - Réseau social (Cloud) : démo
 - Examen final
- Page web
 - · ibd.forge.imag.fr

V. Marangozova-Martin IBD 3 V. Marangozova-Martin IBD 4

Contact

- Systèmes distribués et intergiciels
 - Vania Marangozova-Martin (@imag.fr)
 Maître de Conférences, Université de Grenoble
 Laboratoire LIG, équipe Nanosim

- Bases de données
 - Cyril Labbé (@imag.fr)
 Maître de Conférences, Université de Grenoble Laboratoire LIG, équipe SIGMA

- TPs
 - Vania ou Cyril + Thomas Calmant (@imag.fr)

V. Marangozova-Martin

IBD

5

Qu'est-ce un système distribué?

"A distributed system is one in which the failure of a computer you didn't even know existed can render your own computer unusable."

Leslie Lamport, 1987.

Plan

- 1. Qu'est-ce qu'un système distribué
 - Mécanismes de communication
 - Services et interfaces
 - Architecture client/serveur
- Qu'est-ce qu'un intergiciel (middleware)
- 3. Références

V. Marangozova-Martin

IBD

.

Pourquoi la distribution?

La répartition est un état de fait pour un nombre important de systèmes

- ◆ Besoins propres des systèmes
 - Intégration de parties existantes initialement séparées
 - Intégration massive de ressources
 - Grilles de calcul, cloud, data centres
 - Nouveaux domaines d'application de l'informatique
 - Intégration d'objets du monde réel (informatique omniprésente, ubiquitous computing)
 - Surveillance et commande d'installations
- Possibilités techniques
 - Coût et performances des machines et des communications
 - Interconnexion généralisée
 - Informatique+télécom+TV
 - Réseaux de capteurs

V. Marangozova-Martin IBD 7 V. Marangozova-Martin IBD

Caractéristiques des systèmes distribués

- ◆ Définition d'un système distribué
 - Ensemble composé d'éléments reliés par un système de communication; les éléments ont des fonctions de traitement (processeurs); de stockage (mémoire), de relation avec le monde extérieur (capteurs, actionneurs)
 - Les différents éléments du système ne fonctionnent pas indépendamment mais collaborent à une ou plusieurs tâches communes.

V. Marangozova-Martin IBD

En quoi un système distribué diffère d'un système centralisé? 2/7

En quoi un système distribué diffère d'un système centralisé? 1/7

- Tout est sur la même machine et accessible
 - La mémoire
 - Les données sur disque
 - Les I/O
- Le programme s'exécute en local sur la machine
 - On peut le surveiller
 - Etat mémoire
 - Etat processus
 - ...

système centralisé

V. Marangozova-Martin IBD

En quoi un système distribué diffère d'un système centralisé? 3/7

- Qu'est-ce qu'on distribue?
 - Les ressources sont distribuées
 - CPU
 - Mémoire (vive, disques) distribuée et non partagée

V. Marangozova-Martin IBD 11 V. Marangozova-Martin IBD 12

En quoi un système distribué diffère d'un système centralisé? 4/7

• Qu'est-ce qu'on distribue?

En quoi un système distribué diffère d'un système centralisé? 6/7

- Qu'est-ce qu'on distribue?
 - Les intéractions

BUS RAM CPU BUS RA

En quoi un système distribué diffère d'un système centralisé? 5/7

- ◆ Qu'est-ce qu'on distribue?
 - Les données

En quoi un système distribué diffère d'un système centralisé? 7/7

- ◆ Pas de temps global
- ◆ Pas d'état global

V. Marangozova-Martin IBD 15 V. Marangozova-Martin IBD

Propriétés souhaitées des systèmes distribués

- Le système doit pouvoir fonctionner (au moins de façon dégradée) même en cas de défaillance de certains de ses éléments
- Le systèmes doit pouvoir résister à des perturbations du système de communication (perte de messages, déconnexion, performances dégradées)
- Le système doit pouvoir résister à des attaques contre sa sécurité (violation de confidentialité, de l'intégrité, usage indu de ressources, déni de service)

V. Marangozova-Martin IBD

Mécanismes de communication

- Communication directe (synchrone)
 - Programme à programme
 - Ex. Appel de fonction à distance
 - Programme à base de données
 - E.g. Transactions distribuées (banque)
- Communication indirecte (asynchrone)
 - Communication par messages

Schéma d'un système réparti

V. Marangozova-Martin IBD 18

Mécanismes de communication (2)

◆ Appel de fonction à distance (ex. Application web)

V. Marangozova-Martin IBD

Mécanismes de communication (3)

Transactions distribuées (ex. serveur de base de données)

Plan

- . Qu'est-ce qu'un système distribué
 - Mécanismes de communication
 - Services et interfaces
 - Architecture client/serveur
- 2. Qu'est-ce qu'un intergiciel (*middleware*)
- 3. Références

Mécanismes de communication (4)

• Communication par messages (e.g. a chat system)

22

Services et interfaces

- Service
 - Un ensemble de fonctionnalités réutilisables qui définissent un comportement donné et que l'on utilise d'une manière pré-définie
 - Chaque composant logiciel ou matériel a un comportement bien défini et fournit donc un service
 - Un service peut être implémenté de différentes manières
 - "A service is a contractually defined behavior that can be implemented and provided by any component for use by another component, based solely on the contract",
- Interface
 - Un service est accessible via une ou plusieurs interfaces
 - Une interface définit les interactions possibles entre un fournisseur de service et un utilisateur de service

V. Marangozova-Martin IBD 23 V. Marangozova-Martin IBD 24

Un exemple du monde réel

Interfaces (2/2)

- Un service dépend de deux interfaces
 - Une interface requise (point de vue client)
 - Interface fournie (point de vue serveur)
- Le contrat
 - Le contrat spécifie la conformité entre les deux interfaces
 - Le client et le serveurs sont considérés être des boîtes noires i.e. leurs fonctionnements/implémentations ne sont pas connus.
 - Ils peuvent donc évoluer
 - tant que le contrat est respecté
- Le contrat peut également spécifier des aspects qui ne sont pas liés aux interfaces
 - Propriétés extra-fonctionnelles qui sont liées à la QoS

Interfaces (1/2)

V. Marangozova-Martin

Qq exemples d'interfaces importantes dans les systèmes informatiques

IBD

V. Marangozova-Martin IBD 27 V. Marangozova-Martin IBD 18D 28

Plan

- Qu'est-ce qu'un système distribué
 - Mécanismes de communication
 - Services et interfaces
 - Architecture client/serveur
- 2. Qu'est-ce qu'un intergiciel (*middleware*)
- Références

V. Marangozova-Martin IBD

Architecture client/serveur (2)

- Message de demande
 - · Envoyé par le client au serveur
 - Spécifie le service demandé (le serveur peut fournir plusieurs services)
 - Contient les paramètres pour le service
- Message de retour
 - Envoyé par le serveur au client
 - Contient le résultat d'exécution ou une erreur
- La communication est synchrone
 - Le client se bloque en attendant la réponse du serveur

Architecture client/serveur (1)

- Définitions
 - L'architecture client/serveur est un modèle d'interaction.
 - Le serveur fourni un service
 - Le client demande le service
 - Dans la plupart des cas le client et le serveur sont déployées sur deux machines différentes (ce n'est toutefois pas obligatoire)
 - * Exemples: RPC, Java RMI, Web Services, etc.

Architecture client/serveur (3)

Avantages

- Structuration
 - Séparation entre la spécification d'un service et son implémentation
 - Par conséquent, les implémentations peuvent changer tant que la même interface est utilisée
- Protection/sécurité
 - Le client et le serveur s'exécutent dans des domaines différents (domaine = espace mémoire, droits, protection...)
- Gestion de ressources
 - Un serveur peut (et souvent est) être partagé par plusieurs clients

V. Marangozova-Martin IBD 31 V. Marangozova-Martin IBD 32

Architecture client/serveur (4)

- Serveur partagé
 - · Point de vue client

- · Point de vue serveur
 - · Choisir parmi les demandes client
 - Gestion de requêtes (séquentielle ou parallèle)

Architecture client/serveur (6)

- Traitement des requêtes
 - Le client et le serveur sont deux exécutions indépendantes
 - Pendant que le client est bloqué en attendant la réponse du serveur
 - Le serveur peut traiter plusieurs requêtes en parallèle
 - vrai parallélisme (e.g. multiprocessors, I/O)
 - pseudo-parallélisme
 - Implémentation avec
 - · Plusieurs processus ou
 - plusieurs threads

Architecture client/serveur (5)

- ◆ Choix de la requête client = ordonnancement
 - · Choix d'une requête en attente
 - Traitement
 - Retour du résultat
- Stratégies d'ordonnancement
 - First-In First-Out (FIFO)
 - . Le plus court d'abord
 - Priorités

V. Marangozova-Martin

V. Marangozova-Martin IBD 34

Architecture client/serveur (7)

 Gestion de ressources chez le serveur avec processus unique

```
while (true) {
    receive(client_id,message);
    extract(message, service_id, params);
    results = do_service(service_id, params);
    send(client_id, results);
}

server

client
request
request queue
request
selection
request
processing
response
```

V. Marangozova-Martin IBD 35

IBD

Architecture client/serveur (8)

 Gestion de ressources chez le serveur avec plusieurs processus

Architecture client/serveur (10)

 Gestion de ressources chez le serveur avec un pool de processus

Architecture client/serveur (9)

 Gestion de ressources chez le serveur avec un pool de processus

```
while (true) {
   receive(client_id, message);
   extract(message, service_id,
        params);

work_to_do.put(client_id,
        service_id, params);
}

pool of processes:
while (true) {
   work_to_do.get(
        client_id, service_id,
        params);
   results = do_service(
        service_id, params);
   send(client_id, results);
}
```

V. Marangozova-Martin IBD

Architecture client/serveur (11)

- Utilisation de l'architecture client/serveur
 - Avec des opération de bas niveau
 - Se basant sur des fonctions du système de communication
 - Exemple: Sockets
 - TCP. connected mode
 - UDP, unconnected mode
 - Avec des opérations de haut niveau
 - En utilisant un intergiciel
 - Exemple: RMI (Remote Method Invocation) dans OO

V. Marangozova-Martin IBD 39 V. Marangozova-Martin IBD 40

Plan

- 1. Qu'est-ce qu'un système distribué
 - Mécanismes de communication
 - Services et interfaces
 - Architecture client/serveur
- 2. Qu'est-ce qu'un intergiciel (middleware)
- Références

V. Marangozova-Martin IBD

Caractéristiques principales d'un intergiciel

- Fonctions
 - Cacher la distribution
 - Cacher l'hétérogénéité des ressources matérielles et logicielles
 - Fournir des services communs utiles (réutilisables)
 - Fournir une interface (API) de haut niveau pour la programmation d'applications
- Objectifs
 - Implémentation, évolution and reutilisation de code applicatif
 - · Portabilité entre plate-formes
 - Interoperabilité entre applications/plates-formes hétérogènes

Intergiciel

- Objectif
 - Calcul distribué à bonne (haute) performances
- Calcul sur grappe (cluster computing)
 - Plusieurs machines interconnectées par LAN

Computer 1

Appl. A

Local OS 1

- · Homogènes = même OS, hardware
- Noeud de gestion centralisé
- Calcul sur grille (grid)
- Hétérogénéité
- Echelle
- Dispersion géographique
- Nuage (cloud)
- Applications
 - Streaming
 - Services Web
 - Calcul scientifique

MPI OpenPBS Globus gLite OpenStack STORM

Computer 4

Appl. C

Local OS 4

Network

Tanenbaum & Van Steen, Distributed Systems: Principles and Paradigms, 2e,

Application B

Distributed system layer (middleware)

Computer 3

Local OS 3

(c) 2007 Prentice-Hall Inc. All rights reserved, 0-13-239227-5

Computer 2

Local OS 2

V. Marangozova-Martin IBD 43 V. Marangozova-Martin IBD 44

Systèmes d'information

Oracle MongoDB pH1 Google Datastore ...

- Objectif
 - Fournir l'accès aux données distribuées
- Mise en place
 - Transactions
 - ACID propriétés
 - Traitement de grosses quantités de données (noSQL)

- Applications
 - Streaming
 - E-Commerce

٠...

M. van Steen, Lecture on Distributed Systems, Chapter 1, http://www.cs.vu.nl/~steen

V. Marangozova-Martin

IBD

45

Références

- Chris Britton, Peter Bye. IT Architectures and Middleware: Strategies for Building Large, Integrated Systems (2nd Edition). Addison-Wesley, 2004.
- George Coulouris, Jean Dollimore, Tim Kindberg. Distributed Systems: Concepts and Design (4th Edition). Addison Wesley, 2005.
- Arno Puder, Kay Römer, Frank Pilhofer. Distributed Systems Architecture: A Middleware Approach. Morgan Kaufmann, 2005.
- Andrew S. Tanenbaum, Maarten van Steen. Distributed Systems: Principles and Paradigms (2nd Edition). Prentice Hall, 2006.
- This lecture is partly based on lectures given by Sacha Krakowiak, http://proton.inrialpes.fr/people/krakowia/

V. Marangozova-Martin IBD 47

Systèmes omniprésents

LSM e-health ...

- Objectif
 - Accès à des données partagées depuis n'importe où
 - En préservant la confidentialité des données
- ◆ Mise en place
 - Support des changements de contexte, de la mobilité
 - Architecture ad-hoc

- Applications
 - Domotique
 - Santé (suivi médical automatisé)

V. Marangozova-Martin IBD 46