1.

- a) $a' = \bar{a} + S$
- b) The circuit has a logically stable value for a when iff S=1 and a=1
- c) Yes, this circuit can be used to remember a bit of 1.

2.

- a) $Q' = (D + Q)(D + \bar{S})(S + Q)$
- b) The circuit has logically stable values for Q:
 - i. Q=0 and D=0
 - ii. Q=0 and S=0
- iii. Q=1 and D=1
- iv. Q=1 and S=0
- c) Yes, this circuit can be used to remember a bit. D = 1 and S = 1 and Q = 0, then Q = 1; D = 0 and S = 1 and Q = 1, then Q = 0.
- 3. Address size = 0, addressability = 32
- 4. Address size = 12, addressability = 24
- 5. Diagram:

Transition table:

State	Input	New State					
S_0	0	S_5					
S_0	1	S_1					
S_1	0	S_2					
S_1	1	S_1					
S_2	0	S_5					
S_2	1	S_3					
S_3	0	S_2					
S_3	1	S_4					
S_4	0	S_4					
S_4	1	S_4					
S_5	0	S_5					
S_5	1	S_1					

Initial State: S_0 ; *Accepting State:* S_4

Trace of Execution:

	0		1		0		1		0		1		1		0	
S_0		S_5		S_1		S_2		S_3		S_2		S_3		S_4		S_4

6. Diagram:

Transition table:

State	Input	New State				
abc	а	bc				
abc	b	ас				
abc	С	ab				
bc	а	abc				
bc	b	С				
bc	С	b				
ас	а	С				
ас	b	abc				
ас	С	а				
ab	а	b				
ab	b	а				
ab	С	abc				
С	а	ас				
С	b	bc				
С	С	None				
b	а	ab				
b	b	None				
b	С	bc				
а	а	None				
а	b	ab				
а	С	ас				
None	а	а				
None	b	b				
None	С	С				

Initial State: abc; Accepted State: abc

Trace of Execution:

	а		b		а		С		b		С			С		a		b		a		С		
abc		bc		С		ас		а		ab		abc	abc		ab		b		None		a		ac	

7. Diagram:

Transition table:

State	Input	New State
000 / 000	0	000 / 000
000 / 000	1	001 / 100
001 / 100	0	000 / 000
001 / 100	1	010 / 010
010 / 010	0	000 / 000
010 / 010	1	011 / 001
011 / 001	0	000 / 000
011 / 001	1	100 / 000
100 / 000	0	000 / 000
100 / 000	1	101 / 111
101 / 111	0	000 / 000
101 / 111	1	000 / 000

Initial State: 000 / 000

Logic expressions:

 I_0 , I_1 , I_2 stand for current state, S'_0 , S'_1 , S'_2 stand for new state, and L_0 , L_1 , L_2 stand for light's on or off.

$$L_0 = S (I_0 \overline{I_1} \overline{I_2} + I_0 \overline{I_1} I_2)$$

$$L_1 = S \left(\overline{I_0} \ I_1 \ \overline{I_2} + I_0 \ \overline{I_1} \ I_2 \right)$$

$$L_2 = S (I_0 I_1 \overline{I_2} + I_0 \overline{I_1} I_2)$$

$$S'_0 = S (\overline{I_0} \overline{I_1} \overline{I_2} + \overline{I_0} I_1 \overline{I_2} + \overline{I_0} \overline{I_1} I_2)$$

$$S'_1 = S \left(I_0 \overline{I_1} \overline{I_2} + \overline{I_0} I_1 \overline{I_2} \right)$$

$$S'_{2} = S (I_{0} I_{1} \overline{I_{2}} + \overline{I_{0}} \overline{I_{1}} I_{2})$$