Le reti dei calcolatori

Slides are mainly taken from

- W.R. Stevens "Unix Network Programming" Prentice Hall, 1999
- Peterson Davie "Computer Networks: A system approach" Morgan Kaufmann 2000
- Andrew Tanenbaum and David Wetherall, "Computer Networks"
- William Stallings "Operating Systems: Internals and Design Principles", 8/E (Chapter 5).

Sistemi di Calcolo 2

Instructor: Riccardo Lazzeretti

Special thanks to: Daniele Cono D'Elia, Leonardo Aniello, Roberto Baldoni

Architettura di Internet

Business Applications (1)

Business Applications (2)

The client-server model involves requests and replies

Home Applications

In a peer-to-peer system there are no fixed clients and servers.

Network classification by scale

Interprocessor distance	Processors located in same	Example
1 m	Square meter	Personal area network
10 m	Room	
100 m	Building	Local area network
1 km	Campus	
10 km	City	Metropolitan area network
100 km	Country)
1000 km	Continent	├ Wide area network
10,000 km	Planet	The Internet

Personal Area Network

Local Area Networks

Wireless and wired LANs. (a) 802.11. (b) Switched Ethernet.

Wireless LANs: 802.11 (2)

Multipath fading

Wireless LANs: 802.11 (3)

The range of a single radio may not cover the entire system.

Metropolitan Area Networks

A metropolitan area network based on cable TV.

WAN that connects three branch offices in Australia

Wide Area Networks (2)

WAN using an ISP network.

Wide Area Networks (3) Internet Link via the Internet Brisbane Perth Melbourne

WAN using a virtual private network.

Internet Service Providers

Rete geografica per trasmissione dati

- = terminale di utente
- = unità di accesso
- = nodo del sottosistema di comunicazione

Global IP Backbone

ohal IP Barkhone 8

The company has essentially two huge networks: the one that connects users to Google services (Search, Gmail, YouTube, etc.) and another (internal) that connects Google data centers to each other.

- Google is in control of scheduling internal traffic (bursty), but it faces difficulties in traffic engineering.
- Often Google has to move many petabytes of data (indexes of the entire web, millions of backup copies of user Gmail) from one place to another.

Architecture of the Internet

Overview of the Internet architecture

Third-Generation Mobile Phone Networks (1)

Cellular design of mobile phone networks

Third-Generation Mobile Phone Networks (2)

Architecture of the UMTS 3G mobile phone network.

Third-Generation Mobile Phone Networks (3)

Mobile phone handover (a) before, (b) after.

RFID and Sensor Networks (1)

RFID used to network everyday objects.

RFID and Sensor Networks (2)

Multihop topology of a sensor network

■ Neutral/Network access point

Architettura a tre livelli di Internet

Eliminare colli di bottiglia (soluzioni hardware)

- first mile, last mile -> aumentare la banda che connette al provider
- •Backbone -> dipende dal miglioramento delle infrastrutture di rete dei singoli ISP (non controlabile dagli utenti finali)

Eliminare il collo di bottiglia di backbone (soluzione software)

- Content Delivery Netwoks.
- Caching di pagine vicino a dove risiede l'utente completamente trasparente all'utente (e.g. AKAMAI). In questo modo si spera che l'utente possa accedervi con larga banda

Nota: idea di soluzione simile a quella della gerarchia di caching delle memorie nei processori

Akamai's Global Platform

Akamai's Internet Platform

- 100,000+ servers
- 72 countries
- 1,500+ locations
- 1,000 networks

Ginormous Daily Traffic

- Carries 15-30% of the world's web traffic on any given day
- More than 1 trillion requests
- More than 30 petabytes
- 10 million+ concurrent video streams

Protocol Hierarchies (1)

The philosopher-translator-secretary architecture

Protocol Hierarchies (2)

Layers, protocols, and interfaces.

Protocol Hierarchies (3)

Example information flow supporting virtual communication in layer 5.

The OSI Reference Model

Principles for the seven layers

- Layers created for different abstractions
- Each layer performs well-defined function
- Function of layer chosen with definition of international standard protocols in mind
- Minimize information flow across interfaces between boundaries
- Number of layers optimum

Il modello di comunicazione OSI

ESEMPIO DI PROFILO DEI PROTOCOLLI PER IL PIANO UTENTE (commutazione di pacchetto)

ESEMPIO DI PROFILO DEI PROTOCOLLI PER IL PIANO UTENTE (commutazione di circuito)

Critique of the OSI Model and Protocols

- Bad timing.
- Bad technology.
- Bad implementations.
- Bad politics.

Rete geografica di calcolatori

Struttura a tre livelli di una rete di calcolatori

Area Applicativa

Interoperabilità trasporto dell'informazione

Infrastruttura di trasporto dell'informazione

Struttura a tre livelli di una rete di calcolatori

Rete geografica di calcolatori

Host A Host B

Esempi di problematiche comuni: Indirizzamento

Interoperabilità Trasporto dell'informazione: Internet

L'ARCHITETTURA TCP/IP E LA RETE INTERNET

Protocol Stack: esempi

http= hyper text tranfer protocol smtp= simple mail transfer protocol Rpc= remote procedure call

Basi di TCP/IP

- IP e' una grande coperta che nasconde ai protocolli sovrastanti tutte le disomogeneità della infrastruttura di trasporto dell'informazione
- Per far questo necessità di due funzionalità di base:
 - Indirizzamento di rete (indirizzi omogenei a dispetto della rete fisica sottostante)
 - Instradamento dei pacchetti (Routing) (capacità di inviare pacchetti da un host ad un altro utilizzando gli indirizzi definiti al punto precedente)

Proprietà di IP

- Senza connessione (datagram based)
- Consegna Best effort
 - I pacchetti possono perdersi
 - I pacchetti possono essere consegnati non in sequenza
 - I pacchetti possono essere duplicati
 - I pacchetti possono subire ritardi arbitrari

Servizi di compatibilità con l'hardware sottostante

- Frammentazione e riassemblaggio
- Corrispondenza con gli indirizzi dei livelli sottostanti (ARP)

In Trasmissione, IP

 riceve il segmento dati dal livello di trasporto

Segmento dati

- inserisce header e crea datagram

IP Segmento dati

- applica l'algoritmo di routing
- invia i dati verso l'opportuna interfaccia di rete

In Ricezione, IP

 consegna il segmento al protocollo di trasporto individuato

Segmento dati

 se sono dati locali, individua il protocollo di trasporto, elimina l'intestazione

IP Segmento dati

- verifica la validità del datagram
 e l'indirizzo IP
- riceve i dati dalla interfaccia di rete

Indirizzamento

Classi di indirizzi

Address Resolution Protocol: ARP

FIGURE 4.9.

Resolution of an IP address into its MAC address using ARP.

Address Resolution Protocol: ARP

Forwarding diretto: esempio

MAC-D 000060AD8744 **MAC-S** 00082C785852

IP-D 192.168.10.35

IP-S 192.168.10.10

Forwarding indiretto: esempio

Strato di Trasporto

20 byte

Strato di Trasporto

TCP header

TCP Overview

- Connection-oriented
- Byte-stream
 - app writes bytes
 - TCP sends *segments*
 - app reads bytes

- Full duplex
- Flow control: keep sender from overrunning receiver
- Congestion control: keep sender from overrunning network

Strato di Trasporto: TCP

UDP

- minimum protocol mechanism
 - connectionless
 - no guarantees about delivery, preservation of sequence, nor protection against duplication
 - useful, e.g., for transaction-oriented applications
 - multicast support

Domain Name System (DNS)

