Building Logistic Regression Models Using TensorFlow

Vitthal Srinivasan CO-FOUNDER, LOONYCORN www.loonycorn.com

Overview

Given causes, predict probability of effects - that's logistic regression

Linear regression and logistic regression are similar, yet quite different

Logistic regression can be used for categorical y-variables

Logistic regression in TensorFlow differs from linear regression in two ways

- Softmax as the activation function
- cross-entropy as the cost function

Two Approaches to Deadlines

Start 5 minutes before deadline
Good luck with that

Start 1 year before deadline

Maybe overkill

Neither approach is optimal

Starting a Year in Advance

Probability of meeting the deadline

100%

Probability of getting other important work done

Starting Five Minutes in Advance

Probability of meeting the deadline

0%

Probability of getting other important work done

100%

The Goldilocks Solution

Work fast

Start very late and hope for the best

Work smart

Start as late as possible to be sure to make it

Work hard

Start very early and do little else

As usual, the middle path is best

Working Smart

Probability of meeting the deadline

95%

Probability of getting other important work done

95%

Probability of meeting deadline

(1 year,100%)

Start 1 year before deadline 100% probability of meeting deadline

Start 5 minutes before deadline 0% probability of meeting deadline

(5 mins,0%)

Time to deadline

Time to deadline

Time to deadline

Time to deadline

Time to deadline

Time to deadline

Logistic Regression helps find how probabilities are changed by actions

Time to deadline

Time to deadline

Start too late, and you'll definitely miss

Time to deadline

Start too early, and you'll definitely make it

Time to deadline

Working smart is knowing when to start

Y-axis: probability of meeting deadline

X-axis: time to deadline

Meeting or missing deadline is binary

Probability curve flattens at ends

- floor of O
- ceiling of 1

y: hit or miss? (0 or 1?)

x: start time before deadline

p(y): probability of y = 1

$$p(y_i) = \frac{1}{1 + e^{-(A+Bx_i)}}$$

Logistic regression involves finding the "best fit" such curve

- A is the intercept
- B is the regression coefficient

(e is the constant 2.71828)

S-curves are widely studied, well understood

$$y = \frac{1}{1 + e^{-(A+Bx)}}$$

Logistic regression uses S-curve to estimate probabilities

$$p(y) = \frac{1}{1 + e^{-(A+Bx)}}$$

$$p(y_i) = \frac{1}{1 + e^{-(A+Bx_i)}}$$

If A and B are positive

$$p(y_i) = \frac{1}{1 + e^{-(A+Bx_i)}}$$

If A and B are negative

Time to deadline

Minimum value of p(y_i)

Maximum value of p(y_i)

Between maximum and minimum values of p(yi)

Logistic Regression

Categorical and Continuous Variables

Continuous

Can take an infinite set of values (height, weight, income...)

Categorical

Can take a finite set of values (male/female, day of week...)

Categorical variables that can take just two values are called binary variables

Logistic Regression helps estimate how probabilities of categorical variables are influenced by causes

Logistic Regression in Classification

Whales: Fish or Mammals

Mammal

Member of the infraorder *Cetacea*

Fish

Looks like a fish, swims like a fish, moves like a fish

Rule-based Binary Classifier

ML-based Binary Classifier

Corpus

Classification Algorithm

ML-based Classifier

ML-based Binary Classifier

ML-based Binary Classifier

ML-based Predictor

Corpus

Logistic Regression

ML-based Predictor $p(y_i) = \frac{1}{1 + e^{-(A+Bx_i)}}$

ML-based Predictor

Whales: Fish or Mammals?

If probability < 50%, it's a mammal

If probability > 50%, it's a fish

Probability of whales being fish < 50%

Probability of whales being fish > 50%

Logistic Regression and Linear Regression

X Causes Y

Cause Independent variable

EffectDependent variable

X Causes Y

Cause

Explanatory variable

Effect

Dependent variable

Linear Regression

Effect variable (y) must be continuous

y A

Logistic Regression

Effect variable (y) must be categorical

Linear Regression

Cause variables (x) can be continuous or categorical

Logistic Regression

Cause variables (x) can be continuous or categorical

Linear Regression

Connect the dots with a straight line

Logistic Regression

Connect the dots with an S-curve

Linear Regression

$$y_i = A + Bx_i$$

Logistic Regression

$$p(y_i) = \frac{1}{1 + e^{-(A+Bx_i)}}$$

Linear Regression

$$y_i = A + Bx_i$$

Objective of regression is to find A, B that "best fit" the data

Logistic Regression

$$p(y_i) = \frac{1}{1 + e^{-(A+Bx_i)}}$$

Objective of regression is to find A, B that "best fit" the data

Linear Regression

$$y_i = A + Bx_i$$

Relationship is already linear (by assumption)

Logistic Regression

$$ln(\frac{p(y_i)}{1-p(y_i)}) = A + Bx_i$$

Relationship can be made linear (by log transformation)

Linear Regression

$$y_i = A + Bx_i$$

Logistic Regression

$$logit(p) = A + Bx_i$$

$$logit(p) = ln(\frac{p}{1-p})$$

Solve regression problem using cookiecutter solvers Solve regression problem using cookiecutter solvers

Linear Regression

$$y = A + Bx$$

$$y_1 = A + Bx_1$$
 $y_2 = A + Bx_2$
 $y_3 = A + Bx_3$
...
 $y_n = A + Bx_n$

Logistic Regression

$$p(y) = \frac{1}{1 + e^{-(A+Bx)}}$$

$$p(y_i) = \frac{1}{1 + e^{-(A+Bx_i)}}$$

$$p(y_1) = \frac{1}{1 + e^{-(A+Bx_1)}}$$

$$p(y_n) = \frac{1}{1 + e^{-(A+Bx_n)}}$$

Logistic Regression

Regression Equation:

$$p(y_i) = \frac{1}{1 + e^{-(A+Bx_i)}}$$

Solve for A and B that "best fit" the data

Odds from Probabilities

$$Odds(p) = \frac{p}{1-p}$$

Odds of an Event

$$p = \frac{1}{1 + e^{-(A+Bx)}}$$

$$p = \frac{e^{A + Bx}}{1 + e^{A + Bx}}$$

$$1 - p = 1 - \frac{e^{A + Bx}}{1 + e^{A + Bx}}$$

Odds of an Event

$$1 - p = 1 - \frac{e^{A + Bx}}{1 + e^{A + Bx}}$$

$$1 - p = \frac{1 + e^{A + Bx}}{1 + e^{A + Bx}}$$

$$1 + e^{A + Bx}$$

$$1 + e^{A + Bx}$$

$$1 - p = \frac{1}{1 + e^{A + Bx}}$$

Odds of an Event

$$p = \frac{e^{A + Bx}}{1 + e^{A + Bx}}$$

$$1 - p = \frac{1}{1 + e^{A + Bx}}$$

Odds(p) =
$$\frac{p}{1-p}$$
 = $e^{A + Bx}$

Logit Is Linear

Odds(p) =
$$\frac{p}{1-p}$$
 = $e^{A + Bx}$

$$logit(p) = A + Bx$$

In(Odds(p)) is called the logit function

Logit Is Linear

$$ln Odds(p) = ln(p) - ln(1-p)$$

$$p = \frac{1}{1 + e^{-(A+Bx)}}$$

$$logit(p) = ln Odds(p) = A + Bx$$

This is a linear function!

Logistic Regression can be solved via **linear** regression on the logit function (log of the odds function)

Logistic Regression in TensorFlow

Cause
Changes in S&P 500

EffectChanges in price of Google Stock

y = Returns on Google stock (GOOG)

x = Returns on S&P 500 (S&P500)

$$p(y_i) = \frac{1}{1 + e^{-(A+Bx_i)}}$$

P(y) = Probability of Google going up in the current month i x = Returns on S&P 500 for current month

Set up the Problem

Label GOOG returns as binary (1,0)

Prediction Accuracy

DATE	ACTUAL	PREDICTED
2005-01-01	NA	NA
2005-02-01	0	1
2005-03-01	0	0
2017-01-01	1	1
2017-02-01	1	1

Compare GOOG's actual labels vs. predicted labels

Linear Regression in TensorFlow

Baseline

Non-TensorFlow implementation

Regular python code

Cost Function

Mean Square Error (MSE)

Quantifying goodness-of-fit

Training

Invoke optimizer in epochs

Batch size for each epoch

Computation Graph

Neural network of 1 neuron

Affine transformation suffices

Optimizer

Gradient Descent optimizers

Improving goodness-of-fit

Converged Model

Values of W and b

Linear Regression in TensorFlow

Baseline

Non-TensorFlow implementation

Regular python code

Cost Function

Mean Square Error (MSE)

Quantifying goodness-of-fit

Training

Invoke optimizer in epochs

Batch size for each epoch

Computation Graph

Neural network of 1 neuron

Affine transformation suffices

Optimizer

Gradient Descent optimizers

Improving goodness-of-fit

Converged Model

Values of W and b

Logistic Regression in TensorFlow

Baseline

Non-TensorFlow implementation

Regular python code

Cost Function

Cross Entropy

Similarity of distribution

Training

Invoke optimizer in epochs

Batch size for each epoch

Computation Graph

Neural network of 1 neuron

Softmax activation required

Optimizer

Gradient Descent optimizers

Improving goodness-of-fit

Converged Model

Values of W and b

Logistic Regression in TensorFlow

Baseline

Non-TensorFlow implementation

Regular python code

Cost Function

Cross Entropy

Similarity of distribution

Training

Invoke optimizer in epochs

Batch size for each epoch

Computation Graph

Neural network of 1 neuron

Softmax activation required

Optimizer

Gradient Descent optimizers

Improving goodness-of-fit

Converged Model

Values of W and b

SoftMax for True/False Classification

Shape (b) = [1]

SoftMax for Digit Classification

SoftMax for Digit Classification

Logistic Regression in TensorFlow

Baseline

Non-TensorFlow implementation

Regular python code

Cost Function

Cross Entropy

Similarity of distribution

Training

Invoke optimizer in epochs

Batch size for each epoch

Computation Graph

Neural network of 1 neuron

Softmax activation required

Optimizer

Gradient Descent optimizers

Improving goodness-of-fit

Converged Model

Values of W and b

Compare to baseline

Logistic Regression in TensorFlow

Baseline

Non-TensorFlow implementation

Regular python code

Cost Function

Cross Entropy

Similarity of distribution

Training

Invoke optimizer in epochs

Batch size for each epoch

Computation Graph

Neural network of 1 neuron

Softmax activation required

Optimizer

Gradient Descent optimizers

Improving goodness-of-fit

Converged Model

Values of W and b

Compare to baseline

The "best fit" line is called the regression line

Logistic Regression

Set up the Problem

Label GOOG returns as binary (1,0)

Prediction Accuracy

DATE	ACTUAL	PREDICTED
2005-01-01	NA	NA
2005-02-01	0	1
2005-03-01	0	0
2017-01-01	1	1
2017-02-01	1	1

Compare GOOG's actual labels vs. predicted labels

Intuition: Low Cross Entropy

Intuition: Low Cross Entropy

The labels of the two series are in-synch

Intuition: Low Cross Entropy

Intuition: High Cross Entropy

Intuition: High Cross Entropy

The labels of the two series are out-of-synch

Intuition: High Cross Entropy

Logistic Regression in TensorFlow

Baseline

Non-TensorFlow implementation

Regular python code

Cost Function

Cross Entropy

Similarity of distribution

Training

Invoke optimizer in epochs

Batch size for each epoch

Computation Graph

Neural network of 1 neuron

Softmax activation required

Optimizer

Gradient Descent optimizers

Improving goodness-of-fit

Converged Model

Values of W and b

Compare to baseline

Logistic Regression in TensorFlow

Baseline

Non-TensorFlow implementation

Regular python code

Cost Function

Cross Entropy

Similarity of distribution

Training

Invoke optimizer in epochs

Batch size for each epoch

Computation Graph

Neural network of 1 neuron

Softmax activation required

Optimizer

Gradient Descent optimizers

Improving goodness-of-fit

Converged Model

Values of W and b

Compare to baseline

tensorflow.argmax(y,1)

Finding the index of the largest element

Return the index of the largest element of tensor y along dimension k

 $\overline{\text{Tensor}}$ tensorflow.argmax(y,1)

Finding the index of the largest element

Return the index of the largest element of tensor y along dimension k

Finding the index of the largest element

Return the index of the largest element of tensor y along dimension k

Tensor y

Dimension O	Dimension 1
	5
	15
	12
	100
	74
	33

Tensor y

5
12
74

Tensor y

5
12
100
74

Tensor y

Index = 0

1

2

3

4

E

	Dimension 1
	5
	12
	100
	74
tf.argn	$nax(v_1)$

Tensor y

5	
15	
12	
100	
74	Largest value
33	

Tensor y

Index = 0

Index = M

Dimension 1 ... Dimension N

tf.equal(tf.argmax($y_{-},1$), tf.argmax(y,1))

Two invocations of tf.argmax

```
Actual labels tf.equal(tf.argmax(y_{-},1), tf.argmax(y,1))
```

Two invocations of tf.argmax

Predicted labels $f(x) = \frac{1}{2} \int_{-\infty}^{\infty} \frac{1}{y} dx$ tf.equal(tf.argmax(y_1), tf.argmax(y,1))

Two invocations of tf.argmax

```
One-hot

tf.equal(tf.argmax(y_1), tf.argmax(y,1))
```

Two invocations of tf.argmax

One-hot Representation

Label Vector

One-hot Label Vector

One-hot y_

Label Vector

One-hot Label Vector

$argmax(y_{,1})$

One-hot Label Vector

Index of one-hot element

Predicted labels $f(x) = \frac{1}{2} \int_{-\infty}^{\infty} \frac{1}{y} dx$ tf.equal(tf.argmax(y_1), tf.argmax(y,1))

Two invocations of tf.argmax

Predicted Probabilities y

P(TRUE)	= 0.70
---------	--------

P(TRUE) = 0.44

P(TRUE) = 0.34

P(TRUE) = 0.84

P(TRUE)	P(FALSE)
0.70	0.30
0.44	0.56
0.34	0.66
0.84	0.16

Probabilities

Softmax Output

Predicted Probabilities y

P(TRUE) = 0.44

P(TRUE) = 0.34

P(TRUE) = 0.84

Probabilities

Softmax Output

Predicted Probabilities y

P(TRUE) = 0.70

P(TRUE) = 0.44

P(TRUE) = 0.34

P(TRUE) = 0.84

P(TRU	IE)	P((FAI	_SE)

0.70	0.30
	0.56
0.34	0.66
0.84	

Probabilities

Softmax Output

Rule of 50% in Binary Classification

Probability of whales being Fish < 50%

argmax(y,1)

P(TRUE)	P(FALSE)
0.70	0.30
0.44	0.56
0.34	0.66
0.84	

Softmax Output

argmax(y,1)

One-hot Vectors with Digit Classes

Actual Digits

One-hot Label Vectors

y_:One-hot Vectors with Digit Classes

Actual Digits

One-hot Label Vectors

$argmax(y_{,1})$

One-hot Label Vectors

argmax(y_,1)

Digit Classification

Softmax Output

argmax(y,1)

y: Predicted Probabilities

Softmax Output

argmax(y,1)

tf.equal(tf.argmax($y_{-},1$), tf.argmax(y,1))

Two invocations of tf.argmax

```
Actual labels tf.equal(tf.argmax(y_{-},1), tf.argmax(y,1))
```

Two invocations of tf.argmax

Predicted labels $f(x) = \frac{1}{2} \int_{-\infty}^{\infty} \frac{1}{y} dx$ tf.equal(tf.argmax(y_1), tf.argmax(y,1))

Two invocations of tf.argmax

Tensor of actual labels Tensor of predicted labels tf.equal(tf.argmax(y_,1), tf.argmax(y,1))

Two invocations of tf.argmax

List of True, False values

 $tf.equal(tf.argmax(y_1,1), tf.argmax(y,1))$

Two invocations of tf.argmax

True: Correct prediction

False: Incorrect prediction

 $tf.equal(tf.argmax(y_1,1), tf.argmax(y,1))$

Two invocations of tf.argmax