Table of Contents

end

function coe = rv2coe(r, v, mu) % Convert pos/vel to classical orbital elements % Output vector is arranged as follows: % coe - [a, e, i, raan, aop, theta_star] r_norm = norm(r); r_hat = r/r_norm; v_norm = norm(v); $v_hat = v/v_norm;$ h = cross(r, v);h_norm = norm(h); h_hat = h/h_norm; $K = [0 \ 0 \ 1];$ n = cross(K, h);n_norm = norm(n); n_hat = n/n_norm; $e = 1/mu * ((v_norm^2 - mu/r_norm)*r - dot(r,v)*v);$ e_norm = norm(e); e_hat = e/e_norm; eps = v_norm^2/2 - mu/r_norm; **if** e == 1.0 $p = h_norm^2/mu;$ else a = -mu/(2*eps); $p = a * (1 - e_norm^2);$ end $i = acos(h_hat(3));$ raan = sign(n_hat(2)) * abs(acos(n_hat(1))); $aop = sign(e(3)) * abs(acos(dot(n, e)/(n_norm * e_norm)));$ theta_star = sign(dot(r, v)) * abs(acos(dot(e, r)/(e_norm * r_norm))); % Special cases aop_true = acos(e_hat(1)); if e(2) < 0aop_true = 2*pi - aop_true; end coe = [a, e_norm, i, raan, aop, theta_star];

Not enough input arguments.

```
Error in rv2coe (line 6)
r_norm = norm(r);
```

Published with MATLAB® R2024a