

**DueApe** 

## 期末复习班

科目: COMP3331/9331

进度: 第二堂 W6~W10知识点





01 Network intro

目录 CONTENTS

O2 Application layer

03 Transport - UDP

04 Transport - TCP



## NETWORK



#### **Circuit Switching (p34)**

- Inefficient
- Fixed data rate
- Connection state maintenance

#### Packet Switching (p40)

- Data is sent as chunks of formatted bits
- Packets consist of a "header" and "payload"

例题:

What are the pros and cons of circuit switching?

例题:

In resources are allocated on demand

- A. Packet switching
- **B.** Circuit switching

#### 例题:

A message from device A to B consists of packet X and packet Y. In a circuit switched network, packet Y's path \_\_\_\_\_ packet X's path

- A. is the same
- B. is independent
- C. is always different from



#### Statistical multiplexing: pipe view (p59)





#### Statistical multiplexing: pipe view (p59)



#### Delays (p85)

- 处理时延Nodal processing dPROC
- 排队时延Queuing delay dQUEUE
- 传输时延Transmission delay dTRANS
- 传播时延Propagation delay dPROP



Propagation delay depends on the size of the packet

A. True

B. False



Consider a packet that has just arrived at a router. What is the correct order of the delays encountered by the packet until it reaches the next-hop router?

- A. Transmission, processing, propagation, queuing
- B. Propagation, processing, transmission, queuing
- C. Processing, queuing, transmission, propagation
- D. Queuing, processing, propagation, transmission

#### 例题

Consider a circuit-switched network with N=100 users where each user is independently active with probability p=0.2 and when active, sends data at a rate of R=1Mbps. How much capacity must the network be provisioned with to guarantee service to all users?

- A. 100 Mbps
- B. 20 Mbps
- C. 200 Mbps
- D. 50 Mbps
- E. 500 Mbps

#### 例题

Consider a packet-switched network with N=100 users where each user is independently active with probability p=0.2 and when active, sends data at a rate of R=1Mbps. What is the expected aggregate traffic sent by the users?

- A. 100 Mbps
- B. 20 Mbps
- C. 200 Mbps
- D. 50 Mbps
- E. 500 Mbps

#### 例题

Consider a network connecting hosts A and B through two routers R1 and R2 like this: A-----R1----R2------B. Does whether a packet sent by A destined to B experiences queuing at R1 depend on the length of the link R1-R2?

- A. Yes, it does
- B. No, it doesn't





## **Application Layer**



#### Layering & Encapsulation (p123-126)

- 1. application
- 2. transport
- 3. network
- 4. link
- 5. physical



## What are two benefits of using a layered network model? (Choose two)

- A. It makes it easy to introduce new protocols
- B. It speeds up packet delivery
- C. It allows us to have many different packet headers
- D. It prevents technology in one layer from affecting other layers
- E. It creates many acronyms



#### 例题 Pick the true statement

- A. TCP provides reliability and guarantees a minimum bandwidth
- B. TCP provides reliability while UDP provides bandwidth guarantees
- C. TCP provides reliability while UDP does not
- D. Neither TCP nor UDP provides reliability



### **Application with TCP&UDP (p143)**

|                      | application    | application<br>layer protocol           | underlying<br>transport protocol |
|----------------------|----------------|-----------------------------------------|----------------------------------|
|                      | e-mail         | SMTP [RFC 2821]                         | TCP                              |
| remote te            | rminal access  | Telnet [RFC 854]                        | TCP                              |
|                      | Web            | HTTP [RFC 2616]                         | TCP                              |
|                      | file transfer  | FTP [RFC 959]                           | TCP                              |
| streaming multimedia |                | HTTP (e.g., YouTube),<br>RTP [RFC 1889] | TCP or UDP                       |
| Inte                 | rnet telephony | SIP, RTP, proprietary (e.g., Skype)     | TCP or UDP                       |



### HTTP协议 (p150)

- 1. 是什么
- 2. 运行原理
- 3. 状态码
- 4. Methods
- 5. HTTP/1.0 (Non-persistent)
- 6. HTTP 1.1
- 7. pipelining
- 8. Caching

#### RTT

time for a small packet to travel from client to server and back



#### 例题 Pick the true statement

- A. TCP provides reliability and guarantees a minimum bandwidth
- B. TCP provides reliability while UDP provides bandwidth guarantees
- C. TCP provides reliability while UDP does not
- D. Neither TCP nor UDP provides reliability

Consider an HTML page with a base file of size S0 bits and N inline objects each of size S bits. Assume a client fetching the page across a link of capacity C bits/s and RTT of D. How long does it take to download the page using non-persistent HTTP (without parallelism)?

```
A. D + (S0 + NS)/C
B. 2D + (S0 + NS)/C
C. N(D + S/C)
D. 2D + S0/C + N(2D + S/C)
E. 2D + S0/C + N(D + S/C)
```

Consider an HTML page with a base file of size S0 bits and N inline objects each of size S bits. Assume a client fetching the page across a link of capacity C bits/s and RTT of D. How long does it take to download the page using persistent HTTP (without parallelism or pipelining)?

```
A. 2D + (S0 + NS)/C

B. 3D + (S0 + NS)/C

C. N(D + S/C)

D. 2D + S0/C + N(2D + S/C)

E. 2D + S0/C + N(D + S/C)
```

Consider an HTML page with a base file of size S0 bits and N inline objects each of size S bits. Assume a client fetching the page across a link of capacity C bits/s and RTT of D. How long does it take to download the page using persistent HTTP with pipelining?

```
A. 2D + (S0 + NS)/C
B. 4D + (S0 + NS)/C
C. N(D + S/C)
D. 3D + S0/C + NS/C
E. 2D + S0/C + N(D + S/C)
```



### DNS协议 (p215)

- 1. 是什么
- 2. 运行原理
- 3. Hierarchy
- 4. DNS name
- 5. DNS Cache Poisoning (P241)



## If a local DNS server has no clue about where to find the address for a hostname then the

- a) Server starts crying
- b) Server asks the root DNS server
- c) Server asks its neighbouring DNS server
- d) Request is not processed



## Which of the following are respectively maintained by the client-side ISP and the domain name owner?

- a) Root DNS server, Top-level domain DNS server
- b) Root DNS server, Local DNS server
- c) Local DNS server, Authoritative DNS server
- d) Top-level domain DNS server, Authoritative DNS server
- e) Authoritative DNS server, Top-level domain DNS server

#### 例题

Suppose you open your email program and send an email to salil@unsw.edu.au, your email program will trigger which type of DNS query?

- a) A
- b) NS
- c) CNAME
- d) MX
- e) All of the above

#### 例题

You open your browser and type www.zeetings.com. The minimum number of DNS requests sent by your local DNS server to obtain the corresponding IP address is:

A. 0

B. 1

C. 2

D. 3

E. 42



### P2P协议 (p249)

- 1. 是什么
- 2. 运行原理
- 3. .torrent files
- 4. Tit-for-tat
- 5. DHT(Distributed Hash Table)



#### 例题 BitTorrent uses <u>tit-for-tat</u> in each round to

- a) Determine which chunks to download
- b) Determine from which peers to download chunks
- c) Determine to which peers to upload chunks
- d) Determine which peers to report to the tracker as uncooperative
- e) Determine whether or how long it should stay after completing download



Suppose Todd joins a BitTorrent torrent, but he does not want to upload any data to any other peers. Todd claims that he can receive a complete copy of the file that is shared by the swarm. Is Todd's claim possible? Why or Why not (one short sentences)?



### **Content Distribution Networks** (p280)

- 1. 是什么
- 2. 作用



## Transport Layer



### **Reliable Data Transfer (RDT)**

#### **VERSION**

- 1.0 Transfer over a perfectly reliable channel (not a realistic model)
- 2.0 Transfer over a channel with bit errors (more realistic model)
- 2.1 Protocol includes sequence numbers #0 #1 to track expected packets
- 2.2 NAK-free protocol
- 3.0 Transfer over a channel with bit errors and loss

#### PIPELINED PROTOCOLS

- Go-Back-N (GBN)
- Selective Repeat (SR)

#### **TCP**

• Establishment:

(1) SYN -> (2) SYN-ACK -> (3) ACK + DATA -> Data exchange

• Teardown:

Data exchange -> (1) FIN -> (2) ACK-FIN -> (3) ACK -> (4) WAIT / Retransmit ACK -> (4) CLOSE

#### Fast Retransmission



- If sender receives 3 duplicate ACKs for the same data, resend the un-ACK' d data with the smallest sequence #.
- Timeout periods are often long, so there is a long delay before resending lost packets. No need to wait for timeout.

EstimatedRTT
 EstimatedRTTCURR = (1 – a) \* EstimatedRTTPREV + a \* SampleRTTRECENT



#### **TCP – Congestion Control**

- CWND
- SSThresh

Flavors

**Tahoe: CWND = 1 on DupACK and Timeout** 

Reno: Same as above.

New-Reno: TCP Reno + improved fast recovery

每周课程资料内容都会更新在Github: LINK

https://github.com/lrlrlrlr/COMP9331\_COMP3331\_20T3

# 谢谢观看

DueApe - 让你的海外学习更简单