

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

19448971992

CHEMISTRY 5070/22

Paper 2 Theory

May/June 2010 1 hour 30 minutes

Candidates answer on the Question Paper.

No additional materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Section A

Answer all questions.

Write your answers in the spaces provided in the Question Paper.

Section B

Answer any three questions.

Write your answers in the spaces provided in the Question Paper.

A copy of the Periodic Table is printed on page 20.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use				
Section A				
В7				
B8				
В9				
B10				
Total				

This document consists of 17 printed pages and 3 blank pages.

[Total: 6]

Answer **all** the questions in this section in the spaces provided.

The total mark for this section is 45.

A1	Choose for	rom the	following	compounds	to answer	the c	questions I	below.
-----------	------------	---------	-----------	-----------	-----------	-------	-------------	--------

 $\begin{array}{c} \mathsf{BaSO}_4 \\ \mathsf{CH}_4 \\ \mathsf{C}_2\mathsf{H}_4 \\ \mathsf{C}_3\mathsf{H}_8 \\ \mathsf{CO}_2 \\ \mathsf{CaCO}_3 \\ \mathsf{CF}_3\mathsf{C}1 \\ \mathsf{K}_2\mathsf{Cr}_2\mathsf{O}_7 \\ \mathsf{MgSO}_4 \\ \mathsf{NaC}1 \\ \mathsf{ZnSO}_4 \end{array}$

Each compound can be used once, more than once or not at all.

Which compound

(a)	is responsible for ozone depletion,	
		[1]
(b)	is formed by the bacterial decay of vegetable matter,	
		[1]
(c)	is used to remove sulfur dioxide in flue gas desulfurisation,	
		[1]
(d)	is an insoluble salt,	
		[1]
(e)	is orange in colour,	
		[1]
(f)	decolourises aqueous bromine?	
		[1]

5070/22/M/J/10

A2		um, sodium and potassium are elements in Group I of the Periodic Table. Francium, Fr, other element in Group I.				
	(a)	How man	y electrons are in there in the	outer shell of a francium ato	om?	
					[1]	
	(b)	Complete	the following table about an a	atom of francium.		
			mass number	223		
			proton (atomic) number			
			number of protons			
			number of electrons			
			number of neutrons			
					[2]	
	(c)	Predict tw	o physical properties of fran	cium.		
		1				
		2				
					[2]	
	(d)		at predicts that francium reacts equation for this reaction.	s violently with water.		
					[1]	
					[Total: 6]	

A3 The diagram below shows apparatus that can be used to investigate the rate of reaction between zinc and hydrochloric acid.

For Examiner's Use

(a) Write the equation, including state symbols, for the reaction between zinc and hydrochloric acid.

[2]

(b) The graph shows the change in mass that occurs during the reaction between zinc and hydrochloric acid.

(i) Explain why the mass decreases during the course of the reaction.

.....

(ii) Exactly the same experiment was repeated but with a catalyst added.

Sketch on the graph the results that would be obtained in the presence of the catalyst.

(c)	Explain why zinc reacts more slowly with dilute hydrochloric acid than with concentrated hydrochloric acid.	For Examiner's Use
	[2]	
(d)	Explain why hydrochloric acid reacts much faster with zinc powder than with lumps of zinc.	
	[2]	
(e)	Zinc is added to excess hydrochloric acid. Aqueous sodium hydroxide is added drop by drop to this reaction mixture until it is in excess. Describe what you would observe.	
	[2]	
	[Total: 11]	

The	electrical conductivity	of a substance is related to i	ts structure and bonding.	
(a)	Graphite and diamon electricity but diamon	nd are both forms of solid ca d does not.	rbon. Explain why graphite o	conducts
				[2]
b)	Explain why solid sod chloride does conduc	ium chloride does not conduc t electricity.	t electricity whereas aqueous	s sodium
				[2]
c)	Complete the following	g table about electrolysis usi		[2]
c)	Complete the followin			[2]
	·	g table about electrolysis usi	ng inert graphite electrodes.	[2]
1	electrolyte molten lead(II)	g table about electrolysis usi	ng inert graphite electrodes.	[2]
	electrolyte molten lead(II) bromide aqueous copper(II)	g table about electrolysis using product at cathode	ng inert graphite electrodes.	[2]
	electrolyte molten lead(II) bromide aqueous copper(II) sulfate	g table about electrolysis using product at cathode	product at anode	[2]
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	electrolyte molten lead(II) bromide aqueous copper(II) sulfate dilute sulfuric acid	g table about electrolysis using product at cathode	product at anode	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	electrolyte molten lead(II) bromide aqueous copper(II) sulfate dilute sulfuric acid Describe one comme	product at cathode copper	product at anode oxygen	[3]
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	electrolyte molten lead(II) bromide aqueous copper(II) sulfate dilute sulfuric acid Describe one comme use	product at cathode copper	product at anode oxygen	[3]
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	electrolyte molten lead(II) bromide aqueous copper(II) sulfate dilute sulfuric acid Describe one comme use	product at cathode copper rcial use of electrolysis.	product at anode oxygen	[3]
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	electrolyte molten lead(II) bromide aqueous copper(II) sulfate dilute sulfuric acid Describe one comme use	product at cathode copper rcial use of electrolysis.	product at anode oxygen	[3]

A5 Ethanol, C₂H₅OH, can be manufactured by two different processes. process 1 - the catalysed addition of steam to ethene process 2 – the fermentation of glucose (a) Name the type of reaction used to manufacture **ethene**. **(b) (i)** Write the equation for process **1**. [1] Suggest the name of the alcohol made when the alkene C₃H₆ reacts with steam in the presence of a catalyst.[1] (c) The equation for process 2 is shown below. $\mathrm{C_6H_{12}O_6(aq)} \, \longrightarrow \, 2\mathrm{C_2H_5OH(aq)} \, + \, 2\mathrm{CO_2(g)}$ Describe **two** essential conditions required for efficient fermentation.[2] Suggest one advantage of manufacturing ethanol by process 2 rather than by process 1.[1] (d) Process 2 makes an aqueous solution of ethanol. Suggest a method of purification that can be used to remove water from the aqueous ethanol. (e) Describe a chemical test which could be used to positively identify the carbon dioxide formed during fermentation. [Total: 8]

A6 Plastics are made of macromolecules called polymers. In the middle of the Pacific Ocean there is a huge area of water that is contaminated with small bits of plastics. The waste plastics have been washed away from coastlines.

For Examiner's Use

(a) Part of the structure of one of the polymers found in the ocean is shown below.

(i) Name this	type of	polymer.
---------------	---------	----------

Γ ₂	47	1
		1
		4

(ii) Draw the structure of the monomer used in the manufacture of this polymer.

	(iii)	Explain why this polymer is described as a saturated hydrocarbon.	
(b)	Sug	ggest why this polymer is not destroyed in water.	[1]

[Total: 4]

[1]

BLANK PAGE

Section B

For Examiner's Use

Answer three questions from this section in the spaces provided.

The total mark for this section is 30.

В7			ne, $\rm N_2H_4$, is a liquid that has been used as a rocket fuel. It reacts with oxygen as the equation.
			$N_2H_4 + O_2 \rightarrow N_2 + 2H_2O$
	This	s rea	ction is highly exothermic.
	(a)	Sug	gest why the combustion of hydrazine has very little environmental impact.
			[1]
	(b)		lain, in terms of the energy changes which occur during bond breaking and bond ning, why the combustion of hydrazine is exothermic.
			[2]
	(c)	(i)	Calculate the volume of oxygen, measured at room temperature and pressure, needed to completely combust 1.00 tonne of hydrazine. [One tonne is 10 ⁶ grams. One mole of any gas at room temperature and pressure occupies a volume of 24 dm ³ .]
			volume of oxygen = dm ³ [3]
		(ii)	A rocket burns hydrazine in an atmosphere of oxygen. Both hydrazine and oxygen are stored in the rocket as liquids. Suggest why oxygen is stored as a liquid rather than as a gas.

......[1]

a)	пус	arazine, N ₂ n ₄ , has similar chemical properties to ammonia.	For Fxaminer's
	(i)	Hydrazine reacts with hydrochloric acid. Suggest the formula of the product of this reaction.	Use
		[1]	
	(ii)	Hydrazine is a covalent compound. Draw a 'dot-and-cross' diagram for hydrazine.	

[2]

[Total: 10]

B8 An ester is made from a carboxylic acid and an alcohol.

For
Examiner's
Πea

The carboxylic acid has the molecular formula $C_4H_8O_2$. Analysis of the alcohol shows it has the following percentage composition by mass: 52.2% carbon; 13.0% hydrogen; 34.8% oxygen.

(a)	(i)	Suggest a possible name for the carboxylic acid.	[4]
	(ii)	Draw a possible structure for the carboxylic acid.	[1]
			[1]
	(iii)	What is the empirical formula for the carboxylic acid?	
(b)	Cald	culate the empirical formula for the alcohol.	
			[2]
(c)	(i)	Name the ester formed when ethanol reacts with ethanoic acid.	F.4.7
	(ii)	Suggest one commercial use of this ester.	[1]
			[1]

l) Terylene is a polyester used to make clothing materials.							
	(i)	Draw the partial structure of <i>Terylene</i> . Include all the atoms and all the bonds in the ester linkage.	Examiner's Use				
		[2]					
	(ii)	Which type of natural macromolecule contains the ester linkage?					
		[1]					
		[Total: 10]					

B9

-	drogen and iodine react together to form hydrogen iodide in a reversible redox reaction. forward reaction is endothermic.
	$H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$ $\Delta H = +53 \text{ kJ mol}^{-1}$
Нус	drogen and hydrogen iodide are colourless gases whereas iodine gas is purple.
(a)	What is meant by the term redox reaction?
	[1]
(b)	A mixture of $H_2(g)$, $I_2(g)$ and $HI(g)$ are in dynamic equilibrium at a pressure of 2 atmospheres and 200 °C.
	The temperature of the mixture is increased to 500°C but the pressure remains unchanged. Explain why the mixture becomes less purple in colour.
	[3]
(c)	Calculate the maximum mass of hydrogen iodide that can be made from 45.3g of hydrogen.
	maximum mass of hydrogen iodide = g [3]

(d)	Hyd	rogen iodide is dissolved in water to make solution X .	For
	(i)	X is acidified with dilute nitric acid and then aqueous lead(II) nitrate is added. A yellow precipitate is formed. Write an ionic equation, including state symbols, for this reaction.	Examiner's Use
		[2]	
	(ii)	A small volume of acidified potassium manganate(VII) is added to X . The solution changes colour to orange-brown. From this description what can you deduce about the chemical properties of X ?	
		[1]	
		[Total: 10]	

B10		ertilisers are used to promote plant growth and increase crop yield. ree fertilisers are potassium chloride, potassium nitrate and ammonium phosphate.							
	(a)	Potassium nitrate is a soluble salt that can be prepared by reaction between an acid a an alkali.							
		(i)	Write an equation for the reaction of an acid with an alkali to prepare potassium chloride.						
			[1]						
		(ii)	Describe the essential experimental details of this preparation of solid potassium chloride.						
			[2]						
	(b)	Amr	monium phosphate is an ionic compound containing the phosphate ion, PO_4^{3-} .						
		(i)	Write the formula for ammonium phosphate.						
			[1]						
		(ii)	Calculate the percentage by mass of nitrogen in ammonium phosphate.						

% by mass = [2]

(c) A farmer adds excess calcium hydroxide to react with hydrogen ions in acidic so then adds fertiliser to increase the nitrogen content of the soil.						
	(i)	Write an ionic equation to show the neutralisation of hydrogen ions by solid calcium hydroxide.				
		[1]				
	(ii)	Suggest why the farmer should use potassium nitrate rather than ammonium phosphate to increase the nitrogen content of the soil.				
		[1]				
(d)		cientist believes a water sample is contaminated by potassium nitrate. scribe a chemical test to confirm the presence of aqueous nitrate ions.				
		[2]				
		[Total: 10]				

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

DATA SHEET
The Periodic Table of the Elements

		0	4 He lium	20 Ne on 10	40 Ar Argon	84 Kr Krypton 36	131 Xe Xenon Xenon 54	222 Rn Radon 86		Lu Lutetium 71	260 Lr Lawrencium 103
		III		19 Fluorine	35.5 C1 Chlorine	80 Br Bromine	127 I lodine 53	210 At Astatine 85		Yb Ytterbium 70	No Nobelium 102
		IN		16 Oxygen 8	32 S ulfur 16	79 Se Selenium 34	128 Te Tellurium 52	209 PO Polonium 84		169 Tm Thulium 69	258 Md Mendelevium 101
		>		14 N itrogen 7	31 Phosphorus 15	75 AS Arsenic 33	Sb Antimony 51	209 Bi Bismuth 83		167 Er Erbium 68	257 Fm Fermium 100
		>		12 Carbon 6	28 Si licon	73 Ge Germanium 32	119 Sn Tin	207 Pb Lead Lead 82		165 Ho Holmium 67	252 ES Einsteinium 99
		=		11 Boron 5	27 A1 Aluminium 13	70 Ga Gallium 31	115 In Indium	204 T 1 Thallium 81		Dy Dysprosium 66	Californium
ts						65 Zn Zinc 30	Cadmium 48	201 Hg Mercury 80		159 Tb Terbium 65	247 BK Berkelium 97
Elemen						64 Copper 29	108 Ag Silver 47	197 Au Gold 79		Gadolinium 64	247 Cm Curium
The Periodic Table of the Elements	Group					59 N ickel	106 Pd Palladium 46	195 Pt Platinum 78		152 Eu Europium 63	Am Americium 95
odic Tabl	Gr			1		59 Co Cobalt	103 Rh Rhodium 45	192 Ir Iridium 77		Samarium 62	Pu Pu Plutonium 94
he Peric			Hydrogen			56 Fe Iron	101 Ru Ruthenium 44	190 Os Osmium 76		Pm Promethium 61	Np Neptunium
_						55 Mn Manganese 25	Tc Technetium 43	186 Re Rhenium 75		144 Nd Neodymium 60	238 C Uranium
						52 Cr Chromium 24	96 Molybdenum 42	184 W Tungsten 74		Praseodymium 59	Pa Protactinium 91
						51 V Vanadium 23	93 Niobium 41	181 Ta Tantalum 73		140 Ce Cerium 58	232 Th Thorium
						48 T Titanium 22	91 Zroonium 40	178 Hf Hafnium 72			mic mass nbol ton) number
					I	Scandium 21	89 Y	139 La Lanthanum 57 *	227 AC Actinium	oid series d series	 a = relative atomic mass X = atomic symbol b = atomic (proton) number
		=		9 Be Beryllium	Magnesium	40 Calcium	Strontium	137 Ba Barium 56	226 Ra Radium 88	* 58–71 Lanthanoid series † 90–103 Actinoid series	а Х Ф
		_		7 Li Lithium	23 Na Sodium	39 K Potassium	Rubidium	133 CS Caesium 55	223 Fr Francium 87	* 58–71 † 90–10	Key

The volume of one mole of any gas is 24dm³ at room temperature and pressure (r.t.p.).