3.2 The structure of an atom determines its properties

The atomic number and name of an atom is determined by the number of protons it contains in its nucleus. The **relative atomic mass** is the sum of the number of positive protons and number of neutral neutrons. Negatively charged electrons have negligible mass and move about the nucleus in electron shells. The outermost electron shell is called the **valence shell** of the atom. The number of electrons in the valence shell determines many of the properties of the element and therefore its position in the periodic table.

The periodic table

The periodic table shows the types of atoms, or elements, in rows and columns (Figure 3.9). The rows are called **periods**. The atomic number increases by one for each element as you go across a period. The vertical lists of elements are called **groups**, with the elements in each group having similar properties. These groups are similar to the triads described by Dobereiner.

The columns and rows in the periodic table have been given names and numbers. This makes communication easier, because these elements have similar properties and trends.

Atoms and their electrons

The protons and neutrons of an atom are located within the nucleus. These subatomic particles are responsible for most of the mass of the atom and therefore have a strong influence on the properties of the atom. The number of protons is called the **atomic number** and is used to order the elements in the periodic table.

In contrast, electrons have almost negligible mass. However, because they orbit around the nucleus, these subatomic particles interact with other atoms.

Electron configurations

The **Bohr model** of the atom can be used to consider how electrons are arranged in an atom. In this model, the electrons are arranged in areas of space around the nucleus. These areas are called shells. The electron shells are

Table 3.2 The Bohr model of the atom

SHELL NUMBER (FROM THE NUCLEUS OUTWARDS) (n)	MAXIMUM NUMBER OF ELECTRONS IN THE SHELL (2n ²)				
1	2				
2	8				
3	18*				
4	32				

*The formula 2n² works for most atoms until we get to atomic number 19 (potassium). Once the third electron shell has eight electons, remaining electrons start moving into the fourth shell.

numbered from the nucleus outward. These are shown in Table 3.2, along with the maximum number of electrons in each shell.

Table 3.2 shows that the further the electron shell is from the nucleus, the more electrons it can contain. The maximum number of electrons a shell can hold is related to its shell number by the simple formula $2n^2$, where n is the number of the shell from the nucleus.

Bohr also stated that the electrons of an atom are normally located as close to the nucleus as possible. This is because the negatively charged electrons are attracted to the positive charges of the protons. This is a lower energy state for the atom and is therefore more stable.

18	4.00 Helium	10 Neon	Ar 39.95 Argon	36 Kr 83.80 Krypton	54 Xe 131.29 Xenon	86 Rn (222) Radon	Uuo (294)		71 Lu 174.97 Lutetium	103 Lr (260) Lawrencium
	T	9 F 19.00 2 Fluorine	17 CI 35.45 3 Chlorine	35 Br 79.90 8romine Kr	53 1 126.90 13	85 At (210) (3	Uus Uuo (294) (294) Ununoctium	Atomic masses in parentheses are from the most stable of common isotopes.	70 Yb 173.04 17 Ttterbium	
	91	8 0 16.00 0xygen F	S 32.07 Sulfur 0	34 Se 78.96 Selenium B	52 Te 127.60 1	84 Po (209) A Polonium	116 Lv (298) Livermorium Un	Atomic masses in parentheses are nothe most stable of common isotor	69 Tm 168.93 1 Thulium Yt	101 102 NG (259) Mendelevium Nobelium
	Non-metals 15	7 N 14.01 Nitrogen	15 P 30.97 Phosphorus	33 AS 74.92 Arsenic	51 Sb 121.76 Antimony	83 Bi 208.98 Bismuth	Uup (288) Ununpentium	nic masses most stabl	68 Er 167.26 Erbium	100 Fm (257) Fermium M
	M 41	6 12.01 Carbon	Si 28.09	32 Ge 72.63 Germanium	50 Sn 118.71 Tin	82 Pb 207.2 Lead	114 FL (289) Flerovium U	Aton from the	67 Ho 164.93 Holmium	99 ES (252) Einsteinium
	ि ह	5 B 10.81 Boron	13 AI 26.98 Aluminium	31 Ga 69.72 Gallium	49 In 114.82 Indium	81 204.38 Thallium	Uut (284) Ununtrium		66 Dy 162.50 Dysprosium	98 Cf (251) Californium
				30 Zn 65.39 Zinc	48 Cd 112.41 Cadmium	80 Hg 200.59 Mercury	Cn (285) Copernicium		65 Tb 158.93 Terbium	97 BK (247) Berkelium
umber I symbol	Atomic mass Name of element		=	29 Cu 63.55 Copper	47 Ag 107.87 Silver	Au 196.97 Gold	Rg (280) Roentgenium		64 Gd 157.25 Gadolinium	96 Curium
-Atomic number -Chemical symbol	-Atomic mass -Name of elem		10	28 Ni 58.69	46 Pd 106.4 Palladium	78 Pt 195.08 Platinum	110 DS (281) Darmstadtium		63 Eu 151.97 Europium	95 Am (243) Americium
	- E		6	27 Co 58.93 Cobalt	45 Rh 102.91 Rhodium	77 192.22 ridium	109 Mt (276) Meitnerium	Metals	Sm 150.4 Samarium	93 94 95 Np Pu Am 237.05 (244) (243) Neptunium Plutonium Americium
ن ق	12.01 - Carbon -		metals — 8	26 Fe 55.85 Iron	Ru 101.07 Ruthenium	76 0s 190.23 0smium	108 HS (277) Hassium	Me	61 Pm (145) Promethium	93 Np 237.05 Neptunium
			Transition metals 7 8	25 Mn 54.94 Manganese	43 Tc (98) Technetium	75 Re 186.21 Rhenium	107 Bh (272) Bohrium		60 Nd 144.24 Neodymium	92 U 238.03 Uranium
			9	Cr Cr 52.00 Chromium	42 Mo 95.94 Molybdenum	74 W W 183.84 Tungsten	Sg (271) Seaborgium		59 60 Pr 140.91 144.24 Praseodymium Neodymium	Pa 231.04 Protactinium
			rc	23 V 50.94 Vanadium	41 Nb 92.91 Niobium	73 Ta 180.95 Tantalum	105 Db (262) Dubnium		58 Ce 140.12 Cerium	90 Th 232.04 Thorium
			4	22 T 47.87 Titanium	40 Zr 91.22 Zirconium	72 Hf 178.49 Hafnium	104 Rf (261) Rutherfordium		57 La 138.91 Lanthanum	89 AC 227.03 Actinium
			_ m	21 Sc 44.96 Scandium	39 Y 88.91 Yttrium	57 to 71	89 to 103		Rare earth elements Lanthanoid series	Actinoid series
Group		Be 9.01 Beryllium	12 Mg 24.31 Magnesium	20 Ca 40.08 Calcium	38 Sr 87.62 Strontium	56 Ba 137.33 Barium	88 Ra 226.03 Radium		Rare earth Lanthar	Actir
	1.01 Hydrogen	3 Li 6.94 Lithium	Na 22.99 Sodium	19 K 39.10 Potassium	37 Rb 85.47 Rubidium	55 CS 132.91 Caesium	87 Fr (223) Francium		Figure	3.9 The periodic
	-	7	က	4	ប	9	7		table o	f elements.

The arrangement of electrons in an atom is termed its **electronic configuration**.

Electron configurations are often represented by simple **shell diagrams** that show the electron shells as circles. The electrons are presented in pairs. This makes it easier to draw the diagrams and is scientifically correct because, in atoms, electrons exist in pairs within the shells. The outermost occupied shell of atoms is known as the valence shell.

ELECTRONIC CONFIGURATION OF OXYGEN

The atomic number of oxygen is 8, so an uncharged atom contains eight electrons.

- > Oxygen is in period 2, so it has two electron shells.
- > The first shell can only hold two electrons.
- > The second shell holds the other six electrons.
- > The electronic configuration of oxygen is written as 2,6.

ELECTRONIC CONFIGURATION OF CALCIUM

The atomic number of calcium is 20, so an uncharged atom contains 20 electrons.

- > Calcium is in period 4, so it has four electron shells.
- > The first shell can only hold two electrons.
- > There are 18 electrons left to place in shells. The second shell can only hold eight electrons. The third shell is stable with eight electrons (even though it holds a maximum of 18).
- > The fourth shell holds the last two electrons.
- > The electronic configuration of calcium is written as 2,8,8,2.

Figure 3.10 The electronic configurations for oxygen and calcium are shown as simple shell diagrams.

Figure 3.11 In group 1, the electronic configuration of lithium is 2,1, whereas that of sodium is 2,8,1 and that of potassium is 2,8,8,1. The atoms of all other group 1 elements also have one electron in their outer valence shell of electrons.

Electrons and properties of elements

The electronic configurations of the elements can explain the properties of the elements. Being able to confidently navigate the periodic table enables you to identify trends in electrons, the properties of elements and the uses of compounds formed from them.

Groups and valence electrons

The groups of the periodic table are numbered 1–18. Elements in the same group have similar chemical properties that we now know are due to the arrangement of their electrons.

Elements in the same group have the same number of electrons in their outermost or valence shell. The valence shell electrons often interact with other atoms.

When atoms are heated in a flame, the electrons gain heat energy from the flame and become 'excited', jumping from their normal shell to one further out from the nucleus. When the electrons move back to their usual shell, this 'extra' energy is given back out in the form of light. Because the energy gaps between electron shells vary from one atom to the next, the energy released by the different atoms also varies. This variation is seen as different levels of light energy, which have different frequencies; different frequencies of light have different colours. Hence, the emission spectrum of each atom will be a 'fingerprint' of different colour patterns. These spectra cause different-coloured flames when different elements are burned, as you have seen in an experiment in Year 9.

Remember and understand

- 1 What is the valence shell of an atom?
- 2 What determines the atomic number of an atom?
- 3 For the Bohr model of the atom, what is the maximum number of electrons that the fourth electron shell can contain?

Apply and analyse

- 4 A potassium atom contains 19 protons.
 - a How many electrons will be present in a potassium atom? Justify your answer.
 - b What is the electronic configuration of a potassium atom according to the Bohr model?
 - c From the electronic configuration of potassium, it is clear that electrons do not normally occupy the fifth shell. What could be done to potassium atoms for electrons to jump into this shell?
- 5 Copy and complete the following table.

ELEMENT	ATOMIC NUMBER	ELECTRON CONFIGURATION
Beryllium		
	9	
Magnesium		
Neon		
		2,8,3
	11	
		2,8,7
Sulfur		

