Intégration sur un segment et techniques de calculs d'intégrales

CESI École d'ingénieurs

Valentin Bahier

06/11/2019

Motivations

- Théorie de l'intégration introduite initialement pour calculer des aires.
- Intégration (ou primitivation) : procédé inverse de la dérivation. Ex : on connaît la vitesse instantanée d'un système à tout instant ainsi que sa position initiale, comment déterminer la position du système à l'instant t?
- Calculs intervenant en Théorie des probabilités. Ex : calcul d'espérance et de variance d'une variable aléatoire suivant une loi continue.

Dans ce chapitre, [a, b] désigne un intervalle fermé de \mathbb{R} , et $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} .

1 Définitions

1.1 Intégrale des fonctions en escaliers

Définition 1

On appelle **subdivision** de [a,b] toute parte finie de [a,b] contenant a et b. Si σ est une subdivision de [a,b], on peut écrire $\sigma = \{t_0, t_1, \ldots, t_n\}$ où

$$a = t_0 < t_1 < \dots < t_n = b.$$

On appelle **pas** de la subdivision σ et on note $|\sigma|$ le réel

$$\sup_{k=1,\dots,n} (t_k - t_{k-1}).$$

Définition 2

Une fonction $\varphi : [a,b] \to \mathbb{K}$ est dite **en escalier** s'il existe une subdivision $\sigma : a = t_0 < t_1 < \cdots < t_n = b$ telle que pour tout $k = 1, \ldots, n, \varphi$ est constante sur $]t_{k-1}, t_k[$. Une telle subdivision est dite **bien adaptée** à φ . En notant c_k le nombre tel que φ vaut c_k sur $]t_{k-1}, t_k[$ pour tout k, alors l'**intégrale** de φ est

$$I(\varphi) := \sum_{k=1}^{n} c_k (t_k - t_{k-1}).$$

Remarque : Cette définition de l'intégrale de φ est indépendante de la subdivision bien adaptée choisie. On note aussi cette intégrale

$$\int_{a}^{b} \varphi(x) \mathrm{d}x.$$

1.2 Intégrale des fonctions continues par morceaux

Définition-Proposition 1

Soit $f:[a,b] \to \mathbb{K}$ une fonction continue par morceaux. Pour tout $n \in \mathbb{N}^*$, il existe une fonction en escalier $\varphi_n:[a,b] \to \mathbb{K}$ telle que

$$\sup_{x \in [a,b]} |f(x) - \varphi_n(x)| \le \frac{1}{n}.$$

De plus, la suite (u_n) définie par $u_n := \int_a^b \varphi_n(x) dx$ converge et sa limite ne dépend pas du choix des φ_n . On la note

$$\int_{a}^{b} f(x) \mathrm{d}x$$

et on l'appelle l'**intégrale** de f.

Convention: Lorsque a > b, on définit $\int_a^b f(x) dx := -\int_b^a f(x) dx$.

Plus généralement, toute fonction $f:[a,b] \to \mathbb{K}$ est dite **Riemann-intégrable** si pour tout $\varepsilon > 0$, il existe φ et μ deux fonctions en escalier sur [a,b] telles que $\varphi \leq f \leq \mu$ et $I(\mu - \phi) < \varepsilon$.

2 Propriétés des intégrales

— Relation de Chasles : Si $f:[a,b] \to \mathbb{K}$ est continue par morceaux, alors pour tout $c \in]a,b[$,

$$\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx.$$

— Linéarité de l'intégrale : Si $f, g : [a, b] \to \mathbb{K}$ sont continues par morceaux, alors pour tout $\lambda \in \mathbb{K}$,

$$\int_{a}^{b} (f + \lambda g)(x) dx = \int_{a}^{b} f(x) dx + \lambda \int_{a}^{b} g(x) dx.$$

— Majoration en module : Si $f:[a,b] \to \mathbb{K}$ est continue par morceaux, alors

$$\left| \int_{a}^{b} f(x) dx \right| \le \int_{a}^{b} |f(x)| dx.$$

— Positivité de l'intégrale : Si $f, g : [a, b] \to \mathbb{R}$ sont continues par morceaux et telles que $f \leq g$, alors

$$\int_{a}^{b} f(x) dx \le \lambda \int_{a}^{b} g(x) dx.$$

3 Techniques de calcul

Théorème 1

Soit $f:[a,b] \to \mathbb{K}$ continue par morceaux. Alors la fonction $F: x \mapsto \int_a^x f(t) dt$ est \mathcal{C}^1 par morceaux et continue sur [a,b]. De plus, F est dérivable à gauche et à droite en tout point x de [a,b] et

$$F_g'(x) = \lim_{\substack{t \to x \\ <}} f(t), \quad F_d'(x) = \lim_{\substack{t \to x \\ >}} f(t).$$

En particulier, si f est continue sur [a, b], alors F est C^1 sur [a, b] et pour tout $x \in]a, b[$,

$$F'(x) = f(x).$$

Corollaire 1

Toute fonction continue $f:[a,b]\to\mathbb{K}$ admet au moins une primitive F, et pour

toute primitive F de f on a

$$\int_{a}^{b} f(x) dx = [F(x)]_{a}^{b} = F(b) - F(a).$$

Remarque : Plus généralement, pour toute fonction f continue par morceaux, on a aussi

$$\int_{a}^{b} f(x) dx = [F(x)]_{a}^{b} = F(b) - F(a)$$

où F est une primitive par morceaux de f (c'est-à-dire que F est une fonction C^1 par morceaux, telle que F' = f sur [a, b] sauf éventuellement en un nombre fini de points qui sont des points de discontinuité de f). On peut montrer en effet que les primitives par morceaux de f diffèrent d'une constante.

Intégration par parties

Proposition 1

Soient $u, v : [a, b] \to \mathbb{K}$ deux fonctions C^1 . Alors

$$\int_{a}^{b} u(x)v'(x)dx = [u(x)v(x)]_{a}^{b} - \int_{a}^{b} u'(x)v(x)dx.$$

Démonstration: Application directe du corollaire avec f = uv' + u'v, dont une primitive est F = uv.

Changement de variable

Proposition 2

Soit I un intervalle de \mathbb{R} , $\Phi:[a,b]\to I$ de classe \mathcal{C}^1 , et $f:I\to\mathbb{K}$ continue par morceaux. Alors

$$\int_a^b f(\Phi(t))\Phi'(t)dt = \int_{\Phi(a)}^{\Phi(b)} f(x)dx.$$

Démonstration: En notant F une primitive de f, alors $F \circ \Phi$ est C^1 par morceaux, et en tout point où elle est dérivable on a

$$(F \circ \Phi)' = (f \circ \Phi) \times \Phi'$$

donc

$$\int_a^b f(\Phi(t))\Phi'(t)\mathrm{d}t = \int_a^b (F\circ\Phi)'(t)\mathrm{d}t = F(\Phi(b)) - F(\Phi(a)) = \int_{\Phi(a)}^{\Phi(b)} f(x)\mathrm{d}x.$$

4 Sommes de Riemann

Définition 3

Soit $f:[a,b] \to \mathbb{K}$, $\sigma:a=t_0 < t_1 < \cdots < t_n=b$. Soit $\xi:=(\xi_k)_{1 \le k \le n}$ une famille de n réels tels que $\xi_k \in [t_{k-1},t_k]$ pour tout $k=1,\ldots,n$. Le couple (σ,ξ) est une **subdivision pointée** (ou **subdivision marquée**) de [a,b]. On appelle **somme de Riemann** de la fonction f pour (σ,ξ) la grandeur

$$S(f, \sigma, \xi) := \sum_{k=1}^{n} f(\xi_k)(t_k - t_{k-1}).$$

Quelques cas particuliers couramment utilisés :

- Si $\xi_k = t_{k-1}$: méthode des rectangles à gauche
- Si $\xi_k = t_k$: méthode des rectangles à droite
- Si $\xi_k = \frac{1}{2}(t_{k-1} + t_k)$: méthode du point médian

Notons que si σ est une subdivision régulière, c'est-à-dire si $t_k = a + k \times \frac{b-a}{n}$ pour $0 \le k \le n$, alors $S(f, \sigma, \xi)$ s'écrit plus simplement sous la forme

$$S(f, \sigma, \xi) = \frac{b-a}{n} \sum_{k=1}^{n} f(\xi_k).$$

Théorème 2

Soit $f:[a,b] \to \mathbb{K}$ continue par morceaux. Alors pour tout $\varepsilon > 0$, il existe $\alpha > 0$ tel que pour toute subdivision pointée (σ, ξ) de pas $|\sigma| < \alpha$,

$$\left| \int_{a}^{b} f(x) dx - S(f, \sigma, \xi) \right| \le \varepsilon.$$

Conséquence : Pour toute fonction $f:[a,b] \to \mathbb{K}$,

$$\lim_{n\to +\infty} \frac{b-a}{n} \sum_{k=1}^n f\left(a+k\times \frac{b-a}{n}\right) = \lim_{n\to +\infty} \frac{b-a}{n} \sum_{k=0}^{n-1} f\left(a+k\times \frac{b-a}{n}\right) = \int_a^b f(x)\mathrm{d}x.$$

5 Primitives

5.1 Primitives élémentaires

f(x)	F(x)
$x^{\alpha}, \alpha \neq -1$	$\frac{x^{\alpha+1}}{\alpha+1}$
$\begin{bmatrix} \frac{1}{x} \\ e^x \end{bmatrix}$	$ \ln x $
$\stackrel{x}{\mathrm{e}}^{x}$	e^x
a^x , $a > 0$, $a \neq 1$	$\frac{a^x}{\ln a}$
$\sin x$	$-\cos x$
$\cos x$	$\sin x$
$\tan x$	$-\ln \cos x $
$\cot x$	$\ln \sin x $
$\frac{1}{\cos^2 x}$	$\tan x$
$\frac{1}{\sin^2 x}$	$-\cot x$
$\sinh x$	$\cosh x$
ch x	$\int $
th x	$\ln(\operatorname{ch} x)$

f(x)	F(x)
$\coth x$	$\ln \operatorname{sh} x $
$\frac{1}{\cosh^2 x}$	th x
$\frac{1}{\sinh^2 x}$	$-\coth x$
$\frac{1}{\sqrt{1-x^2}}$	$\arcsin x$
$\frac{1}{\sqrt{a^2-x^2}}, a>0$	$\arcsin \frac{x}{a}$
$\frac{1}{\sqrt{1+x^2}}$	$\ln(x + \sqrt{1 + x^2})$
$\frac{1}{\sqrt{a^2+x^2}}, a \neq 0$	$\ln(x + \sqrt{a^2 + x^2})$
$\frac{1}{\sqrt{x^2-1}}$	$ \ln x + \sqrt{x^2 - 1} $
$\frac{1}{\sqrt{x^2-a^2}}, a \neq 0$	$ \ln x + \sqrt{x^2 - a^2} $
$\frac{1}{\sqrt{x^2+b}}, b \neq 0$	$ \ln x + \sqrt{x^2 + b} $
$\frac{1}{1+x^2}, a \neq 0$	$\arctan x$
$\frac{1}{a^2+x^2}, a \neq 0$	$\frac{1}{a} \arctan \frac{x}{a}$
$\frac{1}{a^2 - x^2}, \ a \neq 0$	$\frac{1}{2a} \ln \left \frac{x+a}{x-a} \right $

5.2 Primitives de fractions rationnelles

Soit f une fraction rationnelle à coefficients réels. Pour calculer une primitive de f, on commence par décomposer f en éléments simples puis on primitive chaque terme. On est ramené ainsi à primitiver des fonctions de la forme

$$\frac{1}{(x-a)^k}$$
, et $\frac{ax+b}{(x^2+cx+d)^k}$

où $k \in N^*$ et $c^2 - 4d < 0$.

Pour la première forme c'est immédiat puisqu'une primitive est donnée par

$$\begin{cases} \frac{1}{-k+1}(x-a)^{-k+1} & \text{si } k \neq 1\\ \ln|x-a| & \text{si } k = 1 \end{cases}.$$

Pour la seconde forme, on commence par écrire

$$\frac{ax+b}{(x^2+cx+d)^k} = \frac{2\alpha(x-p)}{((x-p)^2+q^2)^k} + \frac{\beta}{((x-p)^2+q^2)^k}.$$

Une primitive du premier terme du membre de droite est donnée par

$$\begin{cases} \frac{\alpha}{-k+1}((x-p)^2 + q^2)^{-k+1} & \text{si } k \neq 1\\ \alpha \ln((x-p)^2 + q^2) & \text{si } k = 1 \end{cases}.$$

Pour le deuxième, on commence par effectuer le changement de variable t = x - p, ce qui ramène le calcul à celui de $I_k := \int (t^2 + q^2)^{-k} dt$. Par intégration par parties (en posant $u = (t^2 + q^2)^{-k}$ et v' = 1), il vient

$$I_k = \frac{t}{(t^2 + q^2)^k} + 2k \int \frac{t^2}{(t^2 + q^2)^{k+1}} dt = \frac{t}{(t^2 + q^2)^k} + 2kI_k - 2kq^2I_{k+1}$$

ce qui entraîne

$$2kq^2I_{k+1} = (2k-1)I_k + \frac{t}{(t^2+q^2)^k}.$$

Cette dernière relation permet de calculer I_{k+1} connaissant I_k . De plus, le calcul de I_1 est immédiat :

$$I_1 = \frac{1}{q} \arctan \frac{x}{q}.$$

5.3 Primitives de fractions rationnelles en sinus et cosinus

Soit R une fraction rationnelle à deux variables. Une technique qui marche à tous les coups pour calculer une primitive de $R(\sin x, \cos x)$: on pose le changement de variable $t = \tan \frac{x}{2}$. Alors le calcul se ramène à celui de

$$\int R\left(\frac{2t}{1+t^2}, \frac{1-t^2}{1+t^2}\right) \frac{2dt}{1+t^2},$$

ce qui revient donc au calcul d'une primitive d'une fraction rationnelle en la variable t. Cette technique est souvent fastidieuse car elle amène à calculer des primitives de fractions rationnelles dont le dénominateur est de degré élevé. On peut plutôt commencer par essayer l'un des changement de variables $t=\sin x,\,t=\cos x$ ou $t=\tan x$ qui simplifie parfois les calculs. A ce sujet, on peut utiliser la règle de Bioche qui est la suivante :

- Si $R(\sin x, \cos x) dx$ reste inchangé en changeant x en πx , on pose $t = \sin x$.
- Si $R(\sin x, \cos x) dx$ reste inchangé en changeant x en -x, on pose $t = \cos x$.
- Si $R(\sin x, \cos x) dx$ reste inchangé en changeant x en $\pi + x$, on pose $t = \tan x$.

Remarque : Ne pas oublier que le terme dx doit faire parti de l'expression invariante.

Références

(1) Gourdon, Analyse. Ellipses, 2ème édition.