4. FUNÇÕES REAIS DE VARIÁVEL REAL (SOLUÇÕES)

4.1.

a)
$$D_f =]-\infty, -\sqrt{3}] \cup [\sqrt{3}, +\infty[;$$
 b) $D_f =]-1, 0];$ c) $D_f = \mathbb{R};$

b)
$$D_f =]-1,0];$$

c)
$$D_f = \mathbb{R}$$
;

d)
$$D_f =]-2, 2[;$$

e)
$$D_f =]-2, 2[;$$
 f) $D_f = \mathbb{R}^-;$

$$f)$$
 $D_f = \mathbb{R}^-$

$$p(g) D_f = [1, +\infty[$$
;

h)
$$D_f = [-1, sen1[;$$

i)
$$D_f = \left\{ x \in \mathbb{R} : x \neq \frac{k\pi}{2}, k \in \mathbb{R} \right\}.$$

4.2.

- a) f é impar; b) f não é par nem impar. c) f é par;

- d) f é par; e) f é impar;

f) f não é par nem ímpar.

4.3.

a)
$$f^{-1}(x) = \frac{x-3}{2}$$
 e $D_{f^{-1}} = \mathbb{R}$;

b)
$$f^{-1}(x) = 2e^x$$
 e $D_{f^{-1}} = \mathbb{R}$;

c)
$$f^{-1}(x) = \frac{1}{3}tg \ x \ e \ D_{f^{-1}} = \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[.$$

4.4. a)
$$D_f = \left[-\frac{1}{2}, \frac{1}{2} \right], \ D_f' = \left[-\frac{5\pi}{4}, \frac{7\pi}{4} \right] \ e \ x = \frac{1}{2} sen\left(\frac{\pi}{12} \right);$$

b)
$$f^{-1}(x) = \frac{1}{2}sen\left(\frac{\pi}{12} - \frac{x}{3}\right);$$

$$c) \ \ x = 0.$$

4.5.
$$f(0) = \frac{1}{6}$$
 e $x \in \left[\ln \left(\frac{2}{3} \right), +\infty \right[$.

4.6. a)
$$D_f = \mathbb{R} \setminus \{1\}$$
 e $D'_f =]2, 3[\cup]3, +\infty[;$ b) $x = 2 + e^{-2}.$

b)
$$x = 2 + e^{-2}$$
.

4.8.

- a) 2; b) 0; c) 1; d) $na^{n-1}, n \in \mathbb{N}, a \in \mathbb{R};$ e) $\frac{4}{3}$;

$$f) \ \frac{4}{3};$$
 $g) \ 0;$ $h) \ \frac{1}{2};$ $i) \ 0;$ $j) \ \frac{3}{2};$

$$h) \frac{1}{2}$$

$$j) \frac{3}{2}$$

$$k)$$
 1; $l)$ 0;

$$m) \ \frac{1}{3}; \qquad \qquad n) \ \frac{1}{2}; \qquad \qquad o) \ e;$$

$$n) \frac{1}{2}$$

q) não existe.

4.9. a)
$$f(0^-) = 0$$
, $f(0^+) = 1$ e $\sharp \lim_{x \to 0} f(x)$; b) $g(0^-) = -\infty$, $g(0^+) = 0$ e $\sharp \lim_{x \to 0} g(x)$.

b)
$$g(0^-) = -\infty$$
, $g(0^+) = 0$ e $\#\lim_{x \to 0} g(x)$.

4.12.

$$g) \frac{2}{3}$$

a) 1; b) k; c)
$$+\infty$$
; d) 0; e) 1;
f) 1; g) $\frac{2}{3}$; h) 0; i) $\frac{-1}{4}$.

4.14.

- a) contínua em $\mathbb{R}\setminus\{0\}$;
- b) contínua em \mathbb{R} ;
- c) contínua em \mathbb{R}^+ ;

- f) contínua em \mathbb{R} ;

- g) contínua em $\mathbb{R}\backslash \{4\}$;
- h) contínua em \mathbb{R} ;
- i) contínua em \mathbb{R} .

4.15. a) A função i não é prolongável;

b)
$$F(x) = \begin{cases} \frac{x^4 + x^2}{x^4 + 3x} & \text{se } x \neq 0, \\ 0 & \text{se } x = 0. \end{cases}$$

4.17.
$$m = \frac{1}{4}$$
.

4.18.
$$a = -3 \text{ e } b = 4$$

4.18.
$$a = -3 \text{ e } b = 4.$$
 4.19. $m = 0 \text{ e } k = -\frac{1}{2}.$

4.20.
$$a) r = \frac{\pi}{2}.$$

- b) contínua em $\mathbb{R}\setminus\{-1\}$.
- c) $D_f' = \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$, tem supremo e máximo igual a $\frac{\pi}{2}$ e tem ínfimo e mínimo igual a $-\frac{\pi}{2}$.

$$d) \lim_{x \to -\infty} f(x) = 0$$
e $\lim_{x \to +\infty} f(x)$ não existe.

4.21. a) contínuas nos respectivos domínios.

$$b) \ F(x) = \left\{ \begin{array}{ll} e^{-\frac{1}{x^2}} & \text{se} & x \neq 0, \\ & & & \text{e} \ g \ \text{n\~{a}o\'e} \ \text{prolong\'avel}. \\ 0 & \text{se} & x = 0. \end{array} \right.$$

4.22. a) $D_f = [0, 1[\cup]1, +\infty[$.

b)
$$\lim_{x \to +\infty} f(x) = 0$$
, $\lim_{x \to 1^{-}} f(x) = -\infty$ e $\lim_{x \to 1^{+}} f(x) = +\infty$.

- c) $D'_f = \mathbb{R}$.
- d) Por exemplo, $u_n = 1 \frac{1}{n}$ e $v_n = n$.

4.23. f é continua no seu domínio e

$$F(x) = \begin{cases} \ln|x+2| + arctg\left(\frac{1}{x}\right) - \ln 2 & \text{se } x \le 0, \\ tg\left(\frac{\pi}{4}x\right) - \frac{\pi}{2} & \text{se } 0 < x < 1, \\ e^{x-1} + \frac{\pi}{4} & \text{se } x > 1. \end{cases}$$

4.27. a)
$$a = 2 e b = 0$$
.

4.28. a)
$$q(0) = 0$$
 e $q(3) = 3$.

- b) F.
- c) Não.

4.29. b) Por exemplo,
$$f(x) = \frac{x+1}{2}$$
.

4.30. a) F; b) V; c) V; d) F.