Algorithmen

Michael Kaufmann

24/11/2020 – 7. Vorlesung Graphenalgorithmen -Grundbegriffe

Gliederung

I. Einführung

II. Grundlegende Datenstrukturen

- Arrays und Listen
- Bäume
- Keller und Warteschlangen
- Heaps und Prioritätswarteschlangen
- Hashing

III. Graphenalgorithmen

- Grundlegendes
- Kürzeste Wege
- Graphdurchmusterung
- IV. Sortieren
- V. Suchen
- VI. Generische algorithmische Methoden
- VII. Algorithmen auf Zeichenketten

III. Graphenalgorithmen

Ein Graph G = (V, E) besteht auf einer Menge von Knoten V und einer Menge von Kanten $E \subset V \times V$.

- Kanten können ungerichtet oder gerichtet sein. Zugehörige Notation $\{u, v\}$ oder (u, v)
- u heißt adjazent (benachbart) zu v, falls es eine Kante zwischen u und v gibt. Die Kante $\{u, v\}$ ist inzident zu u und v.

- In einem ungerichteten Graph schreiben wir $u \sim v$, falls u adjazent zu v ist
- In einem gerichteten Graph schreiben wir $u \rightarrow v$, falls es Kante $(u, v) \in E$ gibt
- Sind Gewichte oder Kosten auf den Kanten, so hat jede Kante (u, v) ein Gewicht w(u, v) oder Kosten c(u, v).
- Manchmal sehen wir ungewichtete Graphen als speziell gewichtete Graphen an, wo alle Kantengewichte entweder
 = 0 (keine Kante) oder = 1 (Kante existiert) sind.
- Eine Kante e = (u, v) ist eine Selbstschleife, wenn u = v.

Ausgangsgrad eines Knoten v sind die Zahl seiner ausgehenden Kanten,

Formal:
$$outdeg(v) = |\{w \in V \mid (v, w) \in E\}|$$

Analog $indeg(v) = |\{w \mid (w, v) \in E\}|$ Eingangsgrad sowie deg(v) = indeg(v) + outdeg(v) bzw. $= |\{w \mid \{v, w\} \in E\}|$ Grad von v (ungerichtet)

outdeg(2) = 2

$$indeg(1) = 3$$

 $deg(3) = 3$

Sei G = (V, E) ein Graph.

Eine Folge $(v_0, v_1, ..., v_k)$ heißt **Pfad**, falls für alle $0 \le i \le k - 1$ Kanten (v_i, v_{i+1}) existieren.

Der Pfad startet in v_0 , endet in v_k .

Ein Pfad (v_0, v_1, \ldots, v_k) heißt **Zykel**, falls $v_k = v_0$.

Grundlegendes

Graph G = (V, E) heißt Baum, falls

- a) V enthält genau ein v_0 mit $indeg(v_0) = 0$
- b) Für alle $v \in V \setminus \{v_0\}$: indeg(v) = 1
- c) G ist azyklisch (ohne Zykel)

G = (V, E) heißt Wald, falls G aus mehreren disjunkten Bäumen besteht. $(G = G_1 \cup ... \cup G_k$, jedes G_i ist Baum)

Grundlegendes

Vollständige Graphen

sind Graphen, für die für beliebige Knoten $u, v \in V$ gilt: Kante $\{u, v\} \in E$

*K*₈: der vollst. Graph mit 8 Knoten

 $K_{5,3}$: der vollst. bipartite Graph mit 5 und 3 Knoten

Noch mehr Begriffe

Ein Graph G = (V, E) heißt **bipartit**, wenn $V = A \cup B$ und $\emptyset \neq A \neq V$ und für alle Kanten u, v gilt: Falls $u \in A$, dann $v \in B$, sowie falls $u \in B$, dann $v \in A$.

Für einen Graph G = (V, E) heißt ein Teilgraph G' = (V', E') induziert, falls $V' \subseteq V$ und für alle Kanten $\{u, v\} \in E$ mit $u, v \in V'$ gilt: $\{u, v\} \in E'$

Noch mehr Begriffe (2)

Ein ungerichteter Graph (V, E) heißt **zusammenhängend**, falls es zwischen zwei beliebigen Knoten $u, v \in V$ einen Pfad gibt mit den Endpunkten u und v.

Eine **Zusammenhangskomponente** (ZK) eines ungerichteten Graphen G ist ein maximaler zusammenhängender Teilgraph von G.

Noch mehr Begriffe (3)

Ein **gerichteter** Graph G = (V, E) heißt **stark zusammenhängend**, falls für alle Knoten $u \neq v \in V$ gilt: Es gibt einen Pfad von u nach v UND es gibt einen Pfad von v nach u.

Eine **starke Zusammenhangskomponente** (SZK) ist ein maximaler stark zusammenhängender Teilgraph eines gerichteten Graphen G

Darstellung

1. Adjazenzmatrix $A = (a_{i,j})$

$$a_{i,j} = 1$$
 falls $(i,j) \in E$
= 0 sonst

Bei ungerichteten Graphen existieren beide Richtungen jeder Kante.

 \rightarrow Matrix ist symmetrisch.

Notationen und Adjazenzmatrix

Sei |V| = n und |E| = m.

Platzbedarf: $O(n^2)$.

Zugriffszeit: O(1).

Platz eventuell nicht effizient. Insbesondere bei 'dünnen' Graphen, wo m = O(n).

Typische Fragen:

- Welcher Knoten hat die meisten eingehenden Kanten? (beliebteste Person)
- Welches Knotenpaar ist am weitesten auseinander? ('Durchmesser')
- Welcher Knoten ist 'zentral'?

2. Adjazenzlisten

Speichern für jeden Knoten v die Nachbarknoten.

Falls G gerichtet:

$$InAdj(v) = \{ w \in V \mid (w, v) \in E \}$$
$$OutAdj(v) = \{ w \in V \mid (v, w) \in E \}$$

Falls G ungerichtet:

$$Adj(v) = \{ w \in V \mid \{v, w\} \in E \}$$

Bsp: OutAdj als Adjazenzliste

Platz: O(n+m)

Adjazenzlisten

```
Zugriff auf Kante (v, w) in O(outdeg(v)), wobei outdeg(v) = |\{w \in V \mid (v, w) \in E\}|
```

Platzbedarf: O(n+m).

Zugriffszeit: O(outdeg(v)).

Platz sehr effizient. Insbesondere bei 'dünnen' Graphen, wo m = O(n) viel besser als Matrixdarstellung. Zugriff evtl. schlechter...

Viele Algorithmen auf Adjazenzlistendarstellung ausgelegt.

Algorithmus: Topologisches Sortieren

Sei G = (V, E) ein gerichteter Graph (DAG). Eine Abbildung

$$num: V \to \{1, 2, ..., n\}$$

mit n = |V| heißt topologische Sortierung, falls für alle $(v, w) \in E$ gilt:

$$num(v) < num(w)$$
.

Pfeile alle nach rechts gerichtet.

Topologisches Sortieren

Lemma:

Graph G besitzt genau dann eine topologische Sortierung, wenn G azyklisch ist.

Beweis:

' \Rightarrow ' Annahme: G zyklisch. Dann sei $(v_0, ..., v_k)$ ein Zykel mit $v_0 = v_k$. Es muss gelten:

 $num(v_0) < num(v_1) < \dots < num(v_k) = num(v_0) \quad \text{Wid.}!$

 $'\Leftarrow'$: Sei G azyklisch.

Beh.: G enthält Knoten v mit indeg(v) = 0.

 $\rightarrow v$ kriegt die num(v) = 1. Lösche v und dann induktiv

Bew.: Starte bei belieb. w. Laufe eingeh. Kanten rückwärts. Nach spätestens n-1 Schritten ist v gefunden (oder Zykel)

Algorithmus TopSort

```
TopSort((V, E), i)
   If (|V| = 1)
       num(v) \leftarrow i \text{ für } v \in V
   If (|V| > 1) {
       v \leftarrow \text{Knoten aus } V \text{ mit indegree } 0
       num(v) \leftarrow i
       TopSort((V \setminus \{v\}, E \setminus \{(v, w) \mid (v, w) \in E\}), i + 1)
```

Algorithmus TopSort

```
count \leftarrow 0
while (\exists v \in V \text{ mit } indeg(v) = 0) {
count++
num(v) \leftarrow count
streiche v mit ausgehenden Kanten
}
if (count < |V|)
return 'G zyklisch'
```

Ziel: Laufzeit O(n+m)

Implementierungsfragen

- 1. benutzen Adjazenzlisten: Platz O(n+m)
 - Lösche v und Kanten mit Durchlaufen von OutAdj(v) in O(outdeg(v))
 - insgesamt Laufzeit $\sum_{v} O(outdeg(v)) = O(n+m)$

2. Finden geeignetes *v*:

- Benutze inZaehler[] für InDegrees und Menge ZERO
- Wird (v, w) gelöscht, dekrementiere inZaehler [w].
 Nimm eventuell w in ZERO auf
- ullet Geeignetes v wird in ZERO gezogen und gelöscht o ZERO als Stack o Laufzeit O(1)

3. Initialisierung von inZaehler[] und ZERO:

- Durchlaufe Adj.listen. Erhöh inZaehler [w] für Kante (v, w)
- Initialisierung ZERO ?
- Insgesamt Laufzeit O(n+m)

TopSort

Satz

Gegeben ein gerichteter Graph G = (V, E). In Zeit O(n + m) kann festgestellt werden, ob G einen Zykel hat, und wenn nicht, kann G topologisch sortiert werden,