9 Page 68

- **1.4** (a) for every $(a,b) \in A \times B$, let f((a,b)) = (b,a).
 - (b) f(((a,b),c)) = (a,(b,c)).
 - (c) Since $B \neq \emptyset$ there is some $b \in B$, let f(a) = (a, b) for every $a \in A$.
- **1.5** for every $s \in S$ let $f(s) = \{s\}$, clearly $f(s) \in \mathcal{P}(S)$ and for every $s \in S$ there is a unique $\{s\}$, thus f is one-to-one.

- **1.6** We need to show there is a one-to-one mapping $f: A \to A^S$. if $A = \emptyset$ then $A^S = \emptyset$ and this case is trivial, so assume that it is non-empty, for every $a \in A$, let $f(a) = h_a$ such that $h: S \to A$ is a function such that for every $s \in S$, $h_a(s) = a$, clearly there is just one function for each $a \in A$, therefore f is one-to-one.
- 1.7 Like previous exercise for empty A the proof is trivial, assume that it is non-emty, so there is some $a \in A$. for every $f \in A^S$ define F(f) = f' such that $f' \in A^T$, f'|S = f and for every $t \in T S$, f'(t) = a, clearly $F: A^S \to A^T$, to prove that it is one-to-one assume F(f) = F(g), then there are two function $f', g' \in A^T$ such that f' = g' and f'|S = f and g'|S = g, it means that g = f.
- **1.8** Since $2 \leq |S|$ there are at least two distinct element $a, b \in S$. define F as follows: for every $t \in T$ let $f_t \in S^T$ such that $f_t(t) = a$, for every $t \neq x \in T$, $f_t(x) = b$, clearly this is function in A^T . To prove it is one-to-one, assume that F(t) = F(t'), then $f_t = f_{t'}$, it means that $f_t(t) = f_{t'}(t)$, but $f_t(t) = a$, therefore $f_{t'}(t) = a$ but the only value for which $f_{t'}(x)$ is equal to a is when x = t', from this we get t = t'.