Thinking about the RDKit representation of stereochemistry

Greg Landrum RDKit UGM 2019

Tetrahedral stereo

Double bond stereo

One more form you can't draw: no information present

Stereo groups

Tetrahedral stereo

Representation: atom attribute implicitly using the order of bonds around the atom

CHI_TETRAHEDRAL_CW, CHI_TETRAHEDRAL_CCW

3

Double bond stereo

One more form you can't draw: no information present

Representation: Bond attribute(s)

STEREO_E, STEREO_Z

STEREO_CIS, STEREO_TRANS (use stereoAtoms attribute)

Stereo groups

Representation: vector of StereoGroup objects on ROMol

More information in github:

https://github.com/rdkit/rdkit/blob/master/Docs/Code/EnhancedStereo.md

What's not handled?

Non-tetrahedral atomic stereochemistry

Atropisomers

Helicenes, etc.

Things to think about

- What the input looks like: how do we know how to interpret the input correctly?
- What the internal representation is: how do we store it? At what level of granularity? Atom/bond property? Stored at the molecule level?
- Can we canonicalize it? How?
- What the public API is: how can client code interrogate/use stereochemistry?
- When it matters: when do we use the stereochemistry info? Just I/O?
 Drawing? Conformer generation? Substructure search?
 Fingerprints/descriptors? Elsewhere?
- How do we make clear the difference between when information has not been provided and when it is explicitly marked as unknown?

Simplifying the implementation

- Switch to using an explicit internal representation:
 - Directly store the atom order around a generalized stereocenter
 - Always store the atoms determining the stereochemistry of a double bond (currently done for cis/trans only)
 - o "generalized stereocenter": an atom, set of atoms (position is defined by the mean if it's a set of atoms), or bond
- Store stereo information on the molecule instead of on atoms/bonds
 - Still provide API functionality to retrieve whatever stereo info is present about atoms/bonds

0

"Generalized stereocenters"

This isn't really a generalized stereocenter. It's a bond whose stereochemistry is determined by non-adjacent atoms

