2024학년도 2학기

문제해결프로그래밍 강의 12주차

2024.11.28

지난시간 복습

1. 코로나-19 데이터를 이용한 β 추정하기

 γ 는 회복률은 질병자체의 고유한 회복기간이 필요하므로 인위적으로 낮추기 어려움 그래서, R_0 를 1보다 작게 만들기 위해 현재 β (감염상수)가 얼마인지를 알아야 한다.

COVID-19 감염자 데이터 (2020년 8월)

날짜	3일	4일	5일	6일	7일	8일	9일	10일	11일	12일	13일	14일	15일	16일
감염된														
사람 수	3	13	13	23	9	30	30	17	23	35	47	85	154	267
(명)														

SEIR 모델 함수화

```
def f(y_t):
    S, E, I, R = y_t
    dS = -beta*S*I/N + delta*R
    dE = beta*S*I/N - alpha*E
    dI = alpha*E - gamma*I
    dR = gamma*I - delta*R
    output = np.array([dS, dE, dI, dR])
    return output
```

SEIR 모델 (잠복기가 추가된 모델)

$$\frac{d}{dt}S(t) = -\beta S(t) \frac{I(t)}{N} + \delta R(t)$$

$$\frac{d}{dt}E(t) = \beta S(t) \frac{I(t)}{N} - \alpha E(t)$$

$$\frac{d}{dt}I(t) = \alpha E(t) - \gamma I(t)$$

$$\frac{d}{dt}R(t) = \gamma I(t) - \delta R(t)$$

 β 를 실제 신규 감염자수에 맞게 추정하기 위해서

모델의 신규감염자 수(β) \approx 실제 신규 감염자수


```
for i in range(n):
    y[i+1,:] = rk4(f, y[i,:], h)
    pred_cases[i+1] = alpha*y[i,1]
```

모델의 신규 감염자 수는 $\alpha E(t)$ 로 나타낼 수 있다.

SEIR 모델 (잠복기가 추가된 모델)

$$\frac{d}{dt}S(t) = -\beta S(t)\frac{I(t)}{N} + \delta R(t)$$

$$\frac{d}{dt}E(t) = \beta S(t) \frac{I(t)}{N} - \alpha E(t)$$

$$\frac{d}{dt}I(t) = \alpha E(t) - \gamma I(t)$$

$$\frac{d}{dt}R(t) = \gamma I(t) - \delta R(t)$$

모델의 신규감염자 수와 실제 신규 감염자수를 비교해보자.

```
plt.figure(figsize=(7,4))
plt.plot(time,data['Cases'],'*k')
plt.plot(time,pred_cases,'r')
plt.xlabel('time')
plt.ylabel('Population')
plt.legend(('Observed','Fitting'),loc='best')
plt.show()
```


그럼 어떻게 데이터에 가장 알맞은 β 를 추정할 수 있을까?

데이터의 신규 감염자수와 모델의 감염자 수의 차이를 최소화

최소값을 찾는 문제 (최적화 문제)

최적화 문제의 수학적 표현

$$\begin{aligned} &\min \ f(\mathbf{X}) \\ &subject \ to \ \ g_i(x) \ \leq 0, \quad i=1,\,2,\,\dots\,,\,m \\ & \quad h_j(x) \ = 0, \quad j=1,\,2,\,\dots\,,\,p \\ & \quad x_l \leq x \leq x_u \\ &where \ \ \mathbf{X} \ = \ \left[x_1, \ x_2, \ x_3, \ \dots\,, \ x_n \right]^T \end{aligned}$$

파이썬의 scipy.optimize 패키지

Types of optimi	zation problem	Function	Method		
Local Opt. (국소)	unconstrained (비제약)	minimize	Nelder-Mead BFGS Newton-CG trust-ncg trust-krylov trust-exact		
	constrained (제약)		trust–constr SLSQP		
Clobal Ont	derivative-based (미분 적용)	basinhopping shgo	_		
Global Opt. (전역)	metahuristic	brute(?) differential_evolution dual_annealing	_		

Minimize 함수 사용 방법

```
scipy.optimize.minimize(

fun, → 목적함수
x0, → 초깃값

args=(), → 초깃값 외에 목적함수에 전달할 매개변수
method=None, → 최적화 해 찾기 종류
jac=None, hess=None, hessp=None,
bounds=None, → 경계값

보조
constraints=(), → 제약조건
tol=None, callback=None, options=None)
```

```
sol = minimize(obj_fun, x0, method='SLSQP')
```

sol

```
message: Optimization terminated successfully success: True
    status: 0
        fun: -4.056172844149885
            x: [-1.071e-01]
        nit: 6
        jac: [ 9.382e-04]
        nfev: 14
        njev: 6
```

x: 최적화 해

success: 최적화에 성공하면 True 반환

status: 종료 상태. 최적화에 성공하면 0 반환

message: 메시지 문자열

fun: x 위치에서의 함수의 값

jac: x 위치에서의 자코비안(그레디언트) 벡터의 값

hess_inv: X 위치에서의 헤시안 행렬의 역행렬의 값

nfev: 목적함수 호출 횟수

njev: 자코비안 계산 횟수

nhev: 헤시안 계산 횟수

nit: X 이동 횟수

```
bound = (0,3)
sol_2 = minimize(obj_fun, x0, method='SLSQP', bounds=(bound,))
```

범위가 하나지만 쉼표를 붙이고 괄호를 닫는다.

항상 우리가 원하는 최소화 점을 찾지 못할 수 있다.

x0=1.5일때,

x0 = 1.5

sol = minimize(obj_fun, x0, method='SLSQP')

를 실행시켜보자. 결과가 같은가?

N0!!

minimize와 basinhopping의 결과를 비교해보자.

```
from scipy.optimize import basinhopping
```

```
sol_2 = basinhopping(obj_fun, x0)
```

```
\text{sol}\_2
```

```
message: ['requested number of basinhopping iterations completed successfully']
                   success: True
                       fun: -4.056172885244464
                        x: [-1.072e-01]
    minimization_failures: 0
                     nfev: 1336
                     njev: 668
lowest_optimization_result: message: Optimization terminated successfully.
                             success: True
                              status: 0
                                 fun: -4.056172885244464
                                   x: [-1.072e-01]
                                 nit: 5
                                 jac: [ 0.000e+00]
                            hess_inv: [[ 9.339e-02]]
                                nfev: 14
                                niev: 7
```

데이터의 신규 감염자수와 모델의 감염자 수의 차이를 최소화

데이터의 신규 감염자수와 모델의 감염자 수의 MSE를 최소화

MSE를 함수화하여 Minimize 사용

가장 알맞은 β 를 추정해야 함으로 RMSE를 β 에 대한 함수로 나타내자.

1. 모델을 β 에 대한 함수로 변경하자.

2. rk4를 **β** 에 대한 함수로 변경하자.

3. MSE 함수 가져오자.

```
from sklearn.metrics import mean_squared_error
```

4. 실제 데이터와 모델의 예측 값을 β 에 대한 RMSE 함수를 정의하자.

```
pred_cases = np.zeros(len(time))

pred_cases[0] = 10

for i in range(n):
    y[i+1,:] = rk4(f, y[i,:], h)
    pred_cases[i+1] = alpha*y[i,1]

def MSE_beta(x):
    pred_cases = np.zeros(len(time))
    pred_cases[0]=10

for i in range(n):
    y[i+1,:] = rk4_beta(f_beta, y[i,:], h, x)
    pred_cases[i+1] = alpha*y[i,1]

result = mean_squared_error(data['Cases'],pred_cases)
    return_result
```

5. RMSE 함수를 목적함수로 만들자.

```
def Obj_beta(x):
   return MSE_beta(x)
```

6. 목적함수를 Minimize에 적용하자.

```
bound=(0,10)
param = minimize(Obj_beta, 1.0, method='SLSQP', bounds=(bound,))
param
message: Optimization terminated successfully
success: True
 status: 0
    fun: 251.92722631402904 최소가 되는 MSE: 251.927
      x: [ 1.392e+00]
    nit: 9
                         최적의 \beta = 1.392
    jac: [ 6.561e-04]
   nfev: 24
   njev: 9
```

오늘의 학습내용

- 1. 사회적 거리두기 단계에 따른 감염 양상은?
 - 2. 사회적 거리두기 몇 단계가 효과적일까?

최종 모델

SEIHR 모델 (병원 및 격리가 추가된 모델)

$$\frac{d}{dt}S(t) = -\beta S(t)\frac{I(t)}{N} + \delta R(t)$$

$$\frac{d}{dt}E(t) = \beta S(t) \frac{I(t)}{N} - \alpha E(t)$$

$$\frac{d}{dt}I(t) = \alpha E(t) - \theta I(t) \longleftarrow$$
신규 감염자

$$\frac{d}{dt}H(t) = \theta I(t) - \gamma H(t)$$

$$\frac{d}{dt}R(t) = \gamma H(t) - \delta R(t)$$

Q. 이미 감염병 발생한 이후라면?

R_t: Effective reproduction number

- 정의: t일의 새롭게 감염되는 환자 평균 수
- 의의: R, 변화에 따라 방역의 효과 분석 가능

$$R_0 = 3$$

 $R_t = 2 (6/3)$

$$R_0 = 3$$

 $R_t = 1 (3/3)$

R_t < 1 이도록 하기 위해서는

- p, 접촉 당 감염될 확률- 감염종류에 따라 다름
 - p를 줄이기 위한 조치: 장갑사용 , 수혈 혈액 검사 등
 - * 코로나 19: 마스크 , 고글 , 장갑 사용 , 기침예절 , 사람간 2 미터 이상 간격두기
- α , 단위시간당 접촉- 감염종류에 따라 다름
 - 같은 방, 재채기 거리, 피부접촉
 - α 를 줄이기 위한 조치: 격리 (Isolation), 사회적 거리두기 (코로나 19)
- $\frac{1}{r'}$ 환자들의 감염 전파기간
 - 의료적 조치로 감소
 - * 코로나 19 : 접촉자 추적 , 적극적 검사 , 격리 (Tracing, Testing, & Isolation)

 γ 증가, $\frac{1}{\gamma}$ 감소

즉 회복율 증가

사회적 거리두기 단계 (SD)에 따라 우리의 모델은 어떤 것이 변화하나? β

 β 와 SD는 어떤 관계가 있는가? SD \uparrow β \downarrow

β 감소율과 SD를 함수 형태로 나타낼 수 있는가?

A, B, C 중 가장 이상적인 그림은 어떤 그림인가?

나의 선택은?

선택의 이유는?

- 1. 처음에는 작은 거리두기만으로 효과가 클 것이다.
- 2. 거리두기를 단계가 강화 될수록 쉽고 효과적인 규제가 감소하여 단계 증가의 효과가 갈수록 감소할 것이다.

그래프를 선택을 했다면 함수화를 시켜보자.

이 그래프 계형에 어울리는 함수는 어떤 것이 있는가?

- 제곱근(루트) 함수
- 로그 함수
- Sin 함수

Sin 함수로 생각해 보자.

X축은 SD, y축은 β 감소율 이다.

그리고 기본 SD 1단계라고 할 때, 이 제곱근 함수는 점 (SD, β 감소율) = (1,0) 를 지난다.

그러므로

 β 감소율 = sinA(SD - 1)

$$\beta$$
 감소율 = $sinA(SD - 1)$

A값은 어떻게 구할 수 있을까?

우리는 쉽게 사회적 거리두기가 완전 봉쇄 단계라고 할 때, β 감소율 = 1 이라는 것을 알 수 있다.

우리 정부는 2020년 8월에 사회적 거리두기를 1~3단계까지 정의했으며, 실제로 시행한 가장 높은 단계가 2.5단계였다.

따라서 우리는 임의로 3단계가 완전 봉쇄 단계라고 가정해보자.

$$\beta$$
 감소율 = $sinA(SD - 1)$

$$1 = sinA(3-1)$$

$$sin(x)$$
 가 1이 될려면, $x = \frac{\pi}{2}$

$$A(3-1)=2A=\frac{\pi}{2}$$

$$A = \frac{\pi}{4}$$

최종적으로 β 감소율과 SD의 함수는 다음과 같다.

$$\beta$$
 감소율 = $sin\frac{\pi}{4}(SD-1)$

2주간(8.16~) 서울·경기지역 사회적 거리 두기 2단계 격상

서울시와 경기도의 주민들께서는 앞으로 <mark>2주간은 모임이나 외출을 삼가시고,</mark> 꼭 필요한 외출 외에는 **집에 머물러 주실 것**을 부탁드립니다.

- 01. 집합·모임·행사*자제 권고 '실내50인, 실외 100인 이상
- 02. 클럽 등 일부 고위험시설 추가 방역 수칙 의무화
- 03, 위험도가 높은 다중이용시설* 핵심 방역수칙 준수 의무화 *학원, 결혼식장, 장례식장, 영화관, 목욕탕 등
- 04. 실내 국공립시설 이용인원 제한
- 05. 스포츠 행사 무관중 경기 전환
- 06. 학교 원격수업 전환 권고 집단발생지속발생한시군구
- 07. 기관·기업 유연·재택근무 등을 통해 근무인원 제한 권고

수도권 등 사회적 거리 두기 1.5단계 격상 (11.19.(목) 0시부터, 2주간)

수능시험(12.3.) 대비 수능특별방역기간 설정 및 방역관리(11.19.~)

- #1 수도권·강원도 일부 지역, 2주간 식사동반 모임 취소 권고
 - 재택근무·점심시간 시차 운영, 시차출퇴근제 권고
- #2 1.5단계 격상 조치에 따른 강화된 방역 조치
 - 일반관리시설 이용 인원 4m당 1명 제한, 좌석 띄우기 실시
 - 중점관리시설 중 유흥시설 춤추기·좌석 간 이동 금지, 노래연습장·공연장 음식섭취 금지
 - 국·공립 시설 이용 인원 50% 제한, 스포츠 관람 30% 관중 입장 제한
 - 사회복지시설 운영 유지 및 긴급돌봄 등 제공
 - 위험도 높은 집합·모임(집회·시위, 대규모 콘서트, 학술행사, 축제 등) 100인 미만 인원 제한
 - 종교활동 좌석 30% 이내 인원 제한, 소모임·식사 등 금지

정부에서 일반적으로 사회적 거리두기 전략을 2주 간격으로 정하고 있다.

그럼 SD가 각각

- 1단계
- 1.5단계
- 2단계
- 2.5단계
- 3단계

일 때, 2주간 신규 감염자가 어떻게 될 지 예측해보자.

SD에 따른 신규 감염자 예측 시뮬레이션

새로운 COVID-19 감염자 데이터 (2020년 8월)

정부의 사회적거리두기 적용 시기

2020-08-03 2020-08-04 13 2020-08-05 13 2020-08-06 23 2020-08-07 2020-08-08 30 2020-08-09 30 2020-08-10 17 2020-08-11 23 2020-08-12 35 2020-08-13 47 2020-08-14 2020-08-15 154 2020-08-16 267 2020-08-17 188 2020-08-18 235 2020-08-19 283 276 2020-08-20 2020-08-21 315 2020-08-22 315 2020-08-23 386 2020-08-24 258 2020-08-25 264 2020-08-26 307 2020-08-27 434 2020-08-28 359 2020-08-29 308 2020-08-30 283

date

Cases

거리두기 적용전 (13일)

거리두기 적용후 (14일)

변경된 모델에 대해서 다시 8월 16일까지 데이터를 활용해서 eta를 추정하자.

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

from google.colab import drive
drive.mount('/content/drive')
```

data = pd.read_excel('drive/MyDrive/Colab Notebooks/Problem_solver/COVID19_data_2.xlsx')

총시간은 거리두기 적용전 시간(13일)과 적용후 시간(14일)을 합쳐 27일이다.

```
t0 = 0

t1 = 13 ← 거리두기 적용전 시간

tf = 27 ← 총시간

n1 = 13 ← 거리두기 적용전 간격수

n = 27 ← 총 간격수

h = (tf-t0)/n
```

time = np.linspace(t0, tf, n+1)

```
N = 51840000
beta = 1.0
gamma = 1/14
delta = 1/229
alpha = 1/5
theta = 1/4
```

theta = 1/4 ← 증상이 나타난 이후 격리 혹은 병원에 가는데 걸리는 비율 (시간을 평균 4일 가정)

초기값 설정

```
H0 = data.loc[0, 'Cases']
y = np.zeros((n+1,5))
initial_value = np.array([N-H0*(1+1/theta-1/(theta*alpha)), H0/theta/alpha, H0/theta, H0, 0.0])
y[0,:] = initial_value
```

SEIHR 모델 함수화

```
def f_beta(y_t, x):
    S, E, I, H, R = y_t
    dS = (-x*S*I/N + delta*R).item()
    dE = (x*S*I/N - alpha*E).item()
    dI = (alpha*E - theta*I).item()
    dH = (theta*I - gamma*H).item()
    dR = (gamma*H - delta*R).item()
    return np.array([dS, dE, dI, dH, dR])
```

$$\frac{d}{dt}S(t) = -\beta S(t)\frac{I(t)}{N} + \delta R(t)$$

$$\frac{d}{dt}E(t) = \beta S(t) \frac{I(t)}{N} - \alpha E(t)$$

$$\frac{d}{dt}I(t) = \alpha E(t) - \frac{\theta I(t)}{\theta I(t)}$$

$$\frac{d}{dt}H(t) = \theta I(t) - \gamma H(t)$$

$$\frac{d}{dt}R(t) = \gamma H(t) - \delta R(t)$$

Runge-Kutta method 함수화

```
def rk4_beta(f, y_t, h, x):
   k1 = f_beta(y_t, x)
   k2 = f_beta(y_t+k1*h/2, x)
   k3 = f_beta(y_t+k2*h/2, x)
   k4 = f_beta(y_t+k3*h, x)
   y_t1 = y_t+h*(k1+2*k2+2*k3+k4)/6
   return y_t1
```

8월 16일까지의 실제 신규 감염자수 데이터와 모델의 신규감염자수에 대한 MSE 함수화

```
from scipy.optimize import minimize
from sklearn.metrics import mean_squared_error
def RMSE_beta(x):
  pred_cases = np.zeros(len(time))
  for i in range(n1):
    y[i+1,:] = rk4\_beta(f\_beta, y[i,:], h, x)
    pred_cases[i+1] = theta*y[i+1,2]
  result = mean_squared_error(data['Cases'][:n1+1],pred_cases[:n1+1])
  return result
def Obj_beta(x):
  return RMSE_beta(x)
```

```
bound=(0,10)
param = minimize(Obj_beta, 1.0, method='SLSQP', bounds=(bound,))
param
message: Optimization terminated successfully
 success: True
 status: 0
    fun: 539.2103316054863
      x: [ 1.396e+00]
    nit: 6
    iac: [ 2.352e-01]
   nfev: 16
   njev: 6
pred_cases = np.zeros(len(time))
pred_cases[0]=H0
for i in range(n1):
  y[i+1,:] = rk4\_beta(f\_beta, y[i,:], h, param.x)
  pred_cases[i+1] = theta*y[i+1,2]
```

```
plt.figure(figsize=(7,4))
plt.plot(time,data['Cases'],'*k')
plt.plot(time[:n1+1],pred_cases[:n1+1],'r')
plt.xlabel('time')
plt.ylabel('Population')
plt.legend(('Observed','Fitting'),loc='best')
plt.show()
```


2주간 예측을 위해 새로운 시간과 추정한 $oldsymbol{eta}$, 8월 16일의 초기값을 정의한다.

$$beta = param.x$$

import math

Sin, π 등 수학 함수를 사용하기 위한 라이브러리

```
def beta_SD(SD):
  return math.sin(math.pi * (SD.item() - 1) / 4)
```

 β 감소율 함수를 정의하자.

$$\beta$$
 감소율 = $sin\frac{\pi}{4}(SD-1)$

 β 감소율이 반영된 미분방정식 함수를 새로 정의하자. 사회적 거리두기(SD)가 적용되면 기존의 β 가 앞서 정의한 β 감소율 함수가 적용되도록 변형하자.

```
def f_SD(y_t, SD):
    S, E, I, H, R = y_t
    dS = (-beta*(1-beta_SD(SD))*S*I/N + delta*R).item()
    dE = (beta*(1-beta_SD(SD))*S*I/N - alpha*E).item()
    dI = (alpha*E - theta*I).item()
    dH = (theta*I - gamma*H).item()
    dR = (gamma*H - delta*R).item()
    return np.array([dS, dE, dI, dH, dR])
```

Runge-Kutta method 함수화

```
def rk4_SD(f_SD, y_t, h, SD):
   k1 = f_SD(y_t, SD)
   k2 = f_SD(y_t+k1*h/2, SD)
   k3 = f_SD(y_t+k2*h/2, SD)
   k4 = f_SD(y_t+k3*h, SD)
   y_t1 = y_t+h*(k1+2*k2+2*k3+k4)/6
   return y_t1
```

결과를 result_SD에 데이터프레임 형식으로 저장해보자.

```
result_SD=pd.DataFrame()

SD를 1부터 0.5간격으로 3까지

for SD in np.linspace(1.0,3.0,5):
    result_SD.loc[0,'SD_'+str(SD)] = pred_cases[n1]
    for num,i in enumerate(range(n1,n)):
        y[i+1,:] = rk4_SD(f_SD, y[i,:], h, SD)_SD적용
        result_SD.loc[num+1,'SD_'+str(SD)] = theta*y[i+1,2]

신규 감염자를 result에 입력
```

	SD_1.0	SD_1.5	SD_2.0	SD_2.5	SD_3.0
0	221.617084	221.617084	221.617084	221.617084	221.617084
1	300.311103	288.776385	279.162658	272.823320	270.613271
2	406.945810	360.341844	323.021833	299.175282	291.004892
3	551.439444	441.826789	359.273372	309.069508	292.339601
4	747.229046	537.736316	391.600087	308.240422	281.469413
5	1012.517301	652.378624	422.250705	300.592426	263.252772
6	1371.959817	790.363372	452.616722	288.772773	241.082154
7	1858.947378	956.949570	483.578425	274.565918	217.279258
8	2518.690887	1158.331769	515.712532	259.164913	193.389930
9	3412.387599	1401.915065	549.416867	243.358124	170.403323
10	4622.840768	1696.609966	584.985309	227.657652	148.913965
11	6262.027158	2053.168751	622.652941	212.387600	129.240914
12	8481.264455	2484.581077	662.623340	197.744702	111.514791
13	11484.829472	3006.545714	705.085178	183.839927	95.740823
14	15548.120667	3638.036320	750.222429	170.726991	81.844072

결과를 그림으로 그려보자.

```
Population
                                                        400
plt.figure(figsize=(7,4))
                                                        200
plt.plot(time, data['Cases'], '*k')
plt.plot(time[:n1+1],pred_cases[:n1+1],'r')
                                                                                    15
                                                                                            20
                                                                                 time
for i in np.linspace(1.0,3.0,5):
  plt.plot(time[n1:],result_SD['SD_'+str(i)],'--')
plt.xlabel('time')
plt.ylabel('Population')
plt.ylim([0,1000])
plt.legend(('Observed', 'Fitting', 'SD_1.0', 'SD_1.5', 'SD_2.0', 'SD_2.5', 'SD_3.0'), loc='best')
plt.show()
```

1000

Observed Fitting

SD 1.5 SD 2.0 SD 2.5

25

--- SD 3.0

- 실제 사회적 거리두기를 2단계를 시행하고,
- 본격적으로 8월 30일부터 사회적 거리두기 2.5단계를 시행하려고, 하는 단계에서,
- 우리 예측의 2단계와 2.5단계 사이에 감염자
 가 났음으로 잘 예측된 결과라고 할 수 있다.

어떻게 가장 적절한 사회적 거리두기 단계를 결정할 수 있을까?

코로나로 인해 발생할 수 있는 피해는?

- 감염으로 인한 피해
- 사망으로 인한 피해

거리두기로 인해 발생할 수 있는 피해는?

- 오프라인 매장 영업 피해 (이용객 감소, 이용시간 감소)
- 관련 중소, 대기업 적자
- 소비 불황
- 정부의 방역체계에 따른 관리 비용

코로나 감염과 사망으로 인한 직접 피해 비용과 거리두기로 인한 피해 비용

어떻게 계산할 수 있을까?

감염

Infected case

직접 의료비 (치료)+ 비직접의료비 (역학조사)+ 간접비(경제적손실)

Close contacts of a COVID-19 case

간접비

: 감염기간 동안 연령별 밀접접촉자의 경 제적 손실 비용

- 직접 의료비
 실제 감염자의 치료에 필요한 비용
- 감염자의 치료 비용
- 코로나-19 진단검사 비용
- 비의료비
 의료비를 제외한 직접비용
- 역학조사비용
- 역학조사관 인건비
- 데이터 구축비
- 육아 및 가사노동 비용
- 3. 간접비 확진자와 격리대상자가 일하지 못해 발생하는 경제적 비용
- 확진자의 경제적 손실비용
- 격리대상자의 경제적 손실 비용

코로나19로 인한 질병비용은 얼마나 들까

연합뉴스가 코로나19 유행 시나리오를 바탕으로 코로나19 질병비용 분석 (사회적 거리두기로 인한 영업중단, 등교연기 등에 의해 파생된 경제적 손실 제외)

환자 1명당 최소 4,400만원

1명의 코로나19 슈퍼전파자가 4일 후 21명을 집단으로 감염시키고, 이들 21명이 4일 후 3.5명씩 감염시켜 8일간 총 95.5명의 환자가 발생했다고 가정

● 직접 의료비

- 1인당 **625**만원
- •95,5명이총 **5억9,673**만원

무증상 경증환자:

4억6,327만원

중증환자:

1억3,346만원

② 비직접 의료비

- 1인당 **430**만원
- · 총 **4**억원

역학조사 비용: 620만원

데이터 관리비:2억7,000만원

육아 및 가사노동 비용:

1억3,100만원

③ 간접비 (노동손실액*

- •1인당 3,370만원
 - ·총 32억1,475만원

격리대상자 1인당: 77만원

확진자 1인당: 155만원

◆확진자 1명당 접촉자 수십명 격리

*확진자와 격리대상자가 일하지 못해 발생한 경제적 손실

자료/ 질병관리본부, 건강보험공단 등

⑦연압뉴스

김영은 기자 / 20200518

트위터 @yonhap_graphics 페이스북 tuney,kr/LeYN1

사망

- 사망자 1명에 따른 경제적 손실
- 통계적 생명 데이터 (Value of a Statistical Life, VSL) 사람들이 건강과 관련하여 만드는 위험/보상 절충을 볼 때 보는 경제적 가치
- 연령 i 사망에 따른 경제적 손실 계산식

$$Cost_i = \sum_{i=1}^{5} \frac{\overline{\ThetaDP_{per\ capita_{Korea}}}}{\overline{\ThetaDP_{per\ capita_{USA}}}}$$
 $\frac{GDP_{per\ capita_{Korea}}}{GDP_{per\ capita_{USA}}}$

	0-19	20-34	35-49	50-64	65+
1인당 사망비용(\$/명)	4,176,111	3,214,984	2,344,604	1,512,463	513,667
그룹별연령평균 (5세단위 계산)	10.13	26.97	42.22	56.80	74.30
평균기대수명 (2019)	83.3	83.3	83.3	83.3	83.3
평균남은수명(year)	73.17	56.33	41.08	26.5	9

재난지원금 14.3조+7.8조+9.3조+20.6조+8.6조 =60.6조 코로나 대략 600일 60.6조/600일=1010억

24일 국회는 본회의에서 총 34조9000억 원 **규모**의 추경안을 통과했다. 이 중 5차 재난지원금으로 쓰이는 금액은 총 8조6000억 원으로, 국민 87.7%에게 1인당 25만 원씩 지급할 예정이다. 1인 가구 기준 연소득 5000만 원 이상의 고소득자는 제외된다. 2021, 7, 26.

현재 우리는 사망자는 다루지 않으므로

감염 비용 + 사회적 비용 을 최소화 시키는 사회적 거리두기 단계가

가장 적절한 사회적 거리두기 단계라고 생각할 수 있다.

코로나19로 인한 질병비용은 얼마나 들까

연합뉴스가 코로나19 유행 시나리오를 바탕으로 코로나19 질병비용 분석 (사회적 거리두기로 인한 영업중단, 등교연기 등에 의해 파생된 경제적 손실 제외)

환자 1명당 최소 4,400만원

1명의 코로나19 슈퍼전파자가 4일 후 21명을 집단으로 감염시키고, 이들 21명이 4일 후 3.5명씩 감염시켜 8일간 총 95.5명의 환자가 발생했다고 가정

● 직접 의료비

- 1인당 **625**만원
- •95.5명이총 **5억9,673**만원

무증상 경증환자:

4억6,327만원

중증환자:

1억3,346만원

② 비직접 의료비

- 1인당 430만원
- · 총 **4억**원

역학조사 비용: 620만원

데이터 관리비:2억7,000만원

육아 및 가사노동 비용:

1억3,100만원

❸ 간접비 (노동손실액*)

- 1인당 3.370만원
 - •총 32억1,475만원

격리대상자 1인당: 77만원

확진자 1인당: 155만원

◆확진자 1명당 접촉자 수십명 격리

*확진자와 격리대상자가 일하지 못해 발생한 경제적 손실

자료/ 질병관리본부, 건강보험공단 등

김영은 기자 / 20200518

트위터 @yonhap_graphics 페이스북 tuney.kr/LeYN1

감염자 한사람당 비용은 왼쪽표와 같이 정부에서 계산한 값이 있기 때문에 그대로 활용하자.

한사람당: 4,400만원

사회적 거리두기 단계에 따른 사회적 비용은? 알 수 없다. 앞서 거리두기와 β 감소율 관계처럼 가정해보자.

나의 선택은? B

선택의 이유는?

- 1. 처음에는 작은 거리두기는 적은 비용이 소모될 것이다.
- 2. 거리두기를 단계가 강화 될수록 소득에 영향을 미치는 거리두기 규제가 많아져 비용 상승률이 갈수록 증가할 것이다.

그래프를 선택을 했다면 함수화를 시켜보자.

이 그래프 계형에 어울리는 함수는 어떤 것이 있는가?

- 2차 함수
- arcsin 함수

거리두기 비용 SD 2차 함수로 생각해 보자.

X축은 SD, y축은 거리두기 비용이다.

그리고 기본 SD 1단계라고 할 때, 이 제곱근 함수는 점 (SD, 거리두기 비용) = (1,0) 를 지난다.

또한 3단계 봉쇄비용이 C라고 가정하면,

(SD, 거리두기 비용) = (3,C) 를 지난다. 그때 이 두점을 지나는 2차함수는?

거리두기 비용 =
$$\frac{C}{4}(SD-1)^2$$

그러므로 하루 3단계 SD 비용(c)에 따라 최적의 SD 결과가 달라질 것이다. 그래서 다음과 같이 비용(c)이

- 100억
- 300억
- 500억
- 1000억
- 5000억

일 때, 2주간 최적의 SD와 그에 따른 신규 감염자 양상을 추정해 보자.

거리두기 비용에 따른 최적의 SD단계 추정 시뮬레이션

```
#C 봉쇄비용이라 가정

def Cost_SD(C,SD):
  return C*((SD-1)**2)/4
```


거리두기 비용 =
$$\frac{C}{4}(SD-1)^2$$

목적함수 총비용(Total_cost)을 C와 SD에 관한 함수로 나타내보자.

사회적 비용 = SD시행 일수*1일당 거리두기 비용

```
def Obj_cost(SD):
    return Total_cost(C,SD)
```

비용과 우리의 결과의 저장공간을 정의하자.

```
      Max_cost = [100,300,500,1000,5000]
      5가지 가정한 비용

      optimal_cost_SD = np.zeros(5)
      5가지 비용에 따른 최적의 SD 저장 공간 확보

      optimal_result = pd.DataFrame()
      5가지 비용에 따른 최적의 SD일 때, 신규 감염자
```

C 비용에 따른 최적의 SD를 계산하는 코드를 구현해보자.

```
bound_SD = (1.0,3.0) ← SD는 1-3단계 범위
SD_0 = 2.0 ◆ 최적화를 위한 SD 초기값
for num, C in enumerate(Max_cost):
                                                                        Minimize 사용
 SD_optimal = minimize(Obj_cost, SD_0, method = 'SLSQP', bounds = (bound_SD,))
 optimal_cost_SD[num] = SD_optimal.x.item() ← 최적의 SD 결과저장
 optimal_result.loc[0, 'Cost_'+str(C)] = pred_cases[n1]
 for num, i in enumerate(range(n1,n)):
   y[i+1,:] = rk4_SD(f_SD, y[i,:], h, SD_optimal.x) ← 최적의 SD에 따른 모델 시뮬레이션
   optimal_result.loc[num+1, 'Cost_'+str(C)] = theta*y[i+1,2]
```

최적의 SD에 따른 신규 감염자 저장

C 비용에 따른 최적의 SD 결과를 확인해보자.

```
optimal_cost_SD
array([2.57794387, 2.26288588, 2.11243483, 1.91397657, 1.49950538])
100억 300억 500억 1000억 5000억
```

사회적 SD 비용이 비쌀 수록 감염자를 줄이기 위한 강한 거리두기를 하기 주저하게 된다.

C 비용에 따른 최적의 SD를 적용했을때, 신규 감염자 양상을 확인해보자.

```
Fitting
                                                                            Cost 100
                                                                            Cost 300
                                                                            Cost 500
                                                                            Cost 1000
plt.figure(figsize=(7,4))
                                                                            Cost 5000
plt.plot(time,data['Cases'],'*k')
plt.plot(time[:n1+1],pred_cases[:n1+1],'r')
                                                                     200
for C in Max_cost:
                                                                                              15
                                                                                                     20
                                                                                                            25
  plt.plot(time[n1:],optimal result['Cost '+str(C)],'--')
                                                                                            time
plt.xlabel('time')
plt.ylabel('Population')
plt.ylim([0,1000])
plt.legend(('Observed', 'Fitting', 'Cost_'+str(Max_cost[0]), 'Cost_'+str(Max_cost[1]),
             'Cost_'+str(Max_cost[2]),'Cost_'+str(Max_cost[3]),'Cost_'+str(Max_cost[4])),loc='best')
plt.show()
```

1000

Observed

