TRIACS LOGIC LEVEL

DESCRIPTION

Passivated triacs in a plastic envelope, intended for use in applications requiring high bidirectional transient and blocking voltage capability and high thermal cycling performance. Typical applications include motor control, industrial and domestic lighting, heating voltages and static switching.

SYMBOL

1:MT1 2:MT2 3:GATE

ABSOLUTE MAXIMUM RATINGS (Tj=25°C)

PARAMETER	SYMBOL	RATING	UNIT
Repetitive Peak Off State Voltage	VDRM		
BT138-600		600	V
BT138-800		800	
RMS On-state Current (Full sine wave; Tmb≤99°C)	IT(RMS)	12	Α
Non-repetitive Peak. On-State Current	ITSM		
(Full sine wave; Tj=25°C prior to surge)			Α
t=20ms		95	^
t=16.7ms		105	
I ² t For Fusing (t=10ms)	I ² t	45	A ² s
Repetitive Rate of Rise of On-state Current after Triggering	dl⊤/dt		
(Iτм=20A;Ig=0.2A; dIg/dt=0.2A/μs)			
T2+G+		50	Δ/
T2+G-		50	A/μs
T2-G-		50	
T2-G+		10	
Peak Gate Voltage	VgM	5	V
Peak Gate Current	IGM	2	Α
Peak Gate Power	Рдм	5	W
Average Gate Power	PG(AV)	0.5	W
Operating Junction Temperature	Tj	125	°C
Storage Temperature	Tstg	-40~150	°C

^{*}Although not recommended, off-state voltages up to 800V may be applied without damage, but the triac may switch to the on-state. The rate of rise of current should not exceed 15A/µs.

UTC UNISONIC TECHNOLOGIES CO., LTD. 1

THERMAL RESISTANCES

PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT
Thermal Resistance, Junction to Mounting Base Full cycle Half cycle	R θ j-mb			1.5 2.0	°C /W
Thermal Resistance, Junciton to Ambient	D.O.: a		00	2.0	00.044
In free air	R θ j-a		60	-	°C /W

STATIC CHARACTERISTICS (Tj=25°C,unless otherwise specified)

OTATIO OTIAINAOTENIOTIC	70 (1) 20 0,0	incoo otherwise specifica)				
PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Gate Trigger Current		VD=12V, IT=0.1A				
T2+G+				5	35	
T2+G-	IGT			8	35	mA
T2-G-				10	35	
T2-G+				12	70	
Latching Current		V _D =12V, IGT =0.1A				
T2+G+				7	40	
T2+G-	IL			20	60	mA
T2-G-				8	40	
T2-G+				10	60	
Holding Current	lн	VD=12V, IGT=0.1A		6	30	mA
On-State Voltage	VT	IT=15A		1.4	1.65	V
Gate Trigger Voltage VGT	1/0-	V _D =12V, I _T =0.1A		0.7	1.5	.,
	VGT	V _D =400V, I _T =0.1A, Tj=125°C	0.25	0.4		V
Off-state Leakage Current	lo	VD=VDRM(max), Tj=125°C		0.1	0.5	mA

DYNAMIC CHARACTERISTICS (Tj=25°C,unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Critical Rate Of Rise Of Off-State		VDM=67% VDRM(max), Tj=125°C	100	250		V/μs
Voltage	dV⊳/dt	Exponential waveform,				
		Gate open circuit				
Critical Rate Of Change		VDM=400V,Tj=95°C, IT(RMS)=12A		20		V/μs
Of Commutating Voltage	dVcom/dt	dlcom/dt =5.4A/ms,				
		Gate open circuit				
Gate Controlled Turn-on Time	ITM=16A, VD=VDRM(max),		2		μS	
	tgt	Ig=0.1A dIg/dt=5A/μs				

TYPICAL CHARACTERISTICS

Figure 1.Maximum on -state Dissipation.Ptot vs RMS On-state Current,IT(RMS),Where α =conduction Angle.

Figure 2. Maximum Permissible Non-repetitive Peak On-state Current ITsm,vs Pulse Width t_p ,for Sinusoidal Currents, $t_p = 20ms$

Figure 3 .Maximum Permissible Non-Repetitive peak on-state Current ITSM,vs Number of Cycles,

Figure 4.Maximum Permissible RMS Current IT(RMS) vs mounting baseTemperature T_{mb}

Figure 5.Maximum Permissible Repetitive RMS on-state Current IT(RMS),vs Surge Duration,for Sinusoidal

Figure 6.Normalised Gate Trigger Voltage VgT(Tj)/ VgT(25°C),vs Junction Temperature Tj

UTC

UNISONIC TECHNOLOGIES CO., LTD.

UTC UNISONIC TECHNOLOGIES CO., LTD.

4

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

UTC UNISONIC TECHNOLOGIES CO., LTD. 5