Naïve Discriminative Learning:

Theoretical and Experimental Observations

Stefan Evert¹ & Antti Arppe²

¹Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany

²University of Alberta, Edmonton, Canada arppe@ualberta.ca

QITL-6, Tübingen, 6 Nov 2015

RIEDRICH-ALEXANDER NIVERSITÄT RLANGEN-NÜRNBERG

PHILOSOPHISCHE FAKULTÄT UND FACHBEREICH THEOLOG

Outline

- Introduction
 - Naïve Discriminative Learning
 - An example
- 2 Mathematics
 - The Rescorla-Wagner equations
 - The Danks equilibrium
 - NDL vs. the Perceptron vs. least-squares regression
- Insights
 - Theoretical insights
 - Empirical observations
 - Conclusion

Outline

- Introduction
 - Naïve Discriminative Learning
 - An example
- 2 Mathematics
 - The Rescorla-Wagner equations
 - The Danks equilibrium
 - NDL vs. the Perceptron vs. least-squares regression
- Insights
 - Theoretical insights
 - Empirical observations
 - Conclusion

Objectives

- Explain the mathematical foundations of Naïve Discriminative Learning (NDL) in one place and in a consistent way
- Highlight the theoretical similarities of NDL with linear/logistic regression and the single-layer perceptron
- Present some empirical simulations of stochastic NDL learners, in light of the theoretical insights

Naïve Discriminative Learning

- Baayen (2011); Baayen et al. (2011)
- Incremental learning equations for direct associations between cues and outcomes (Rescorla and Wagner 1972)
- Equilibrium conditions (Danks 2003)
- Implementation as R package ndl (Arppe et al. 2014)

Naive: cue-outcome associations estimated separately for each outcome (this independence assumption is similar to a naive Bayesian classifier)

Discriminative: cues predict outcomes based on total activation

level = sum of direct cue-outcome associations

Learning: incremental learning of association strengths

The Rescorla-Wagner equations (1972)

Represent incremental associative learning and subsequent on-going adjustments to an accumulating body of knowledge.

Changes in cue-outcome association strengths:

- No change if a cue is not present in the input
- Increased if the cue and outcome co-occur
- Decreased if the cue occurs without the outcome
- If outcome can already be predicted well (based on all input cues), adjustments become smaller

Only results of incremental adjustments to the cue-outcome associations are kept – no need for remembering the individual adjustments, however many there are.

Danks (2003) equilibrium conditions

- Presume an ideal stable "adult" state, where all cue-outcome associations have been fully learnt – further data points should then have no impact on the cue-outcome associations
- Provide a convenient short-cut to calculating the final cue-outcome association weights resulting from incremental learning, using relatively simple matrix algebra
- Most learning parameters of the Rescorla-Wagner equations drop out of the Danks equilibrium equation
- Circumvent the problem that a simulation of an R-W learner does usually not converge to a stable state unless the learning rate is gradually decreased

Traditional vs. linguistic applications of R-W

- Traditionally: simple controlled experiments on item-by-item learning, with only a handful of cues and perfect associations
- Natural language: full of choices among multiple possible alternatives – phones, words, or constructions – which are influenced by a large number of contextual factors, and which often show weak to moderate tendencies towards one or more of the alternatives rather than a single unambiguous decision
- These messy, complex types of problems are a key area of interest in modeling and understanding language use
- Application of R-W in the form of a Naïve Discriminative Learner to such linguistic classification problems is sucessful in practice and can throw new light on research questions

Related work

- R-W vs. perceptron (Sutton and Barto 1981, p. 155f)
- R-W vs. least-squares regression (Stone 1986, p. 457)
- R-W vs. logistic regression (Gluck and Bower 1988, p. 234)
- R-W vs. neural networks (Dawson 2008)
- similarities are also mentioned by many other authors . . .

Outline

- Introduction
 - Naïve Discriminative Learning
 - An example
- 2 Mathematics
 - The Rescorla-Wagner equations
 - The Danks equilibrium
 - NDL vs. the Perceptron vs. least-squares regression
- Insights
 - Theoretical insights
 - Empirical observations
 - Conclusion

Simple vs. complex settings – QITL-1 revisited

- Arppe and Järvikivi (2002, 2007)
- Person (FIRST PERSON SINGULAR or not) and Countability (COLLECTIVE or not) of AGENT/SUBJECT of Finnish verb synonym pair miettiä vs. pohtia 'think, ponder':

Forced-	-choice	Frequency	Acceptability		
Dispreferred	Preferred	(relative)	Unacceptable	Acceptable	
Ø	miettiä+SG1 pohtia+COLL	Frequent	Ø	miettiä+SG1 pohtiaä+COLL	
miettiä+COLL pohtia+SG1	Ø	Rare	miettiä+COLL	pohtia+SG1	

AgentGroup - miettiä

PersonFirst - pohtia

(courtesy of Dagmar Divjak)

Simple vs. complex settings – QITL-2 revisited

QITL-4 revisited – NDL vs. statistical classifiers

	$\lambda_{prediction}$	$ au_{classification}$	accuracy
Polytomous logistic regression	0.447	0.516	0.646
(One-vs-rest)			
Polytomous mixed logistic regression			
(Poisson reformulation)			
• 1 Register	0.435	0.505	0.638
• 1 Genre	0.433	0.504	0.637
• 1 Lexeme	0.428	0.499	0.634
• 1 Register + 1 Lexeme	0.431	0.502	0.636
Support Vector Machine	0.414	0.487	0.625
Memory-Based Learning	0.287	0.376	0.543
(TiMBL)			
Random Forests	0.445	0.515	0.645
Naive Discriminative Learning	0.442	0.511	0.642

Table: Classification diagnostics for models fitted to the English data set (n = 909).

Outline

- Introduction
 - Naïve Discriminative Learning
 - An example
- 2 Mathematics
 - The Rescorla-Wagner equations
 - The Danks equilibrium
 - NDL vs. the Perceptron vs. least-squares regression
- Insights
 - Theoretical insights
 - Empirical observations
 - Conclusion

• Goal of naïve discriminative learner: predict an outcome O based on presence or absence of a set of cues C_1, \ldots, C_n

- Goal of naïve discriminative learner: predict an outcome O based on presence or absence of a set of cues C_1, \ldots, C_n
- An event (\mathbf{c}, o) is formally described by indicator variables

$$c_i = egin{cases} 1 & ext{if } C_i ext{ is present} \ 0 & ext{otherwise} \end{cases} \quad o = egin{cases} 1 & ext{if } O ext{ results} \ 0 & ext{otherwise} \end{cases}$$

- Goal of naïve discriminative learner: predict an outcome O based on presence or absence of a set of cues C_1, \ldots, C_n
- An event (c, o) is formally described by indicator variables

$$c_i = egin{cases} 1 & ext{if } C_i ext{ is present} \ 0 & ext{otherwise} \end{cases} \qquad o = egin{cases} 1 & ext{if } O ext{ results} \ 0 & ext{otherwise} \end{cases}$$

• Given cue-outcome associations $\mathbf{v} = (V_1, \dots, V_n)$ of learner, the activation level of the outcome O is

$$\sum_{j=1}^{n} c_j V_j$$

- Goal of naïve discriminative learner: predict an outcome O based on presence or absence of a set of cues C_1, \ldots, C_n
- An event (c, o) is formally described by indicator variables

$$c_i = egin{cases} 1 & ext{if } C_i ext{ is present} \ 0 & ext{otherwise} \end{cases} \qquad o = egin{cases} 1 & ext{if } O ext{ results} \ 0 & ext{otherwise} \end{cases}$$

• Given cue-outcome associations $\mathbf{v} = (V_1, \dots, V_n)$ of learner, the activation level of the outcome O is

$$\sum_{j=1}^n c_j^{(t)} V_j^{(t)}$$

• Associations $\mathbf{v}^{(t)}$ as well as cue and outcome indicators $(\mathbf{c}^{(t)}, o^{(t)})$ depend on time step t

• Rescorla and Wagner (1972) proposed the R-W equations for the change in associations given an event (\mathbf{c}, o) :

$$\Delta V_i = \begin{cases} 0 & \text{if } c_i = 0 \\ \alpha_i \beta_1 \left(\lambda - \sum_{j=1}^n c_j V_j \right) & \text{if } c_i = 1 \land o = 1 \\ \alpha_i \beta_2 \left(0 - \sum_{j=1}^n c_j V_j \right) & \text{if } c_i = 1 \land o = 0 \end{cases}$$

$\lambda > 0$	target activation level for outcome ${\it O}$
$\alpha_i > 0$	salience of cue C_i
$\beta_1 > 0$	learning rate for positive ovents $(o=1)$
$\beta_2 > 0$	learning rate for negative ovents ($o = 0$)

The Widrow-Hoff rule

 The W-H rule (Widrow and Hoff 1960) is a widely-used simplification of the R-W equations:

$$\Delta V_i = \begin{cases} 0 & \text{if } c_i = 0 \\ \alpha_i \beta_1 \left(\lambda - \sum_{j=1}^n c_j V_j \right) & \text{if } c_i = 1 \land o = 1 \\ \alpha_i \beta_2 \left(0 - \sum_{j=1}^n c_j V_j \right) & \text{if } c_i = 1 \land o = 0 \end{cases}$$

$$\begin{array}{ll} \lambda = 1 & \text{target activation level for outcome } O \\ \alpha_i = 1 & \text{salience of cue } C_i \\ \beta_1 = \beta_2 & \text{global learning rate for positive and} \\ = \beta > 0 & \text{negative events} \end{array}$$

The Widrow-Hoff rule

 The W-H rule (Widrow and Hoff 1960) is a widely-used simplification of the R-W equations:

$$\Delta V_{i} = \begin{cases} 0 & \text{if } c_{i} = 0\\ \beta \left(1 - \sum_{j=1}^{n} c_{j} V_{j}\right) & \text{if } c_{i} = 1 \land o = 1\\ \beta \left(0 - \sum_{j=1}^{n} c_{j} V_{j}\right) & \text{if } c_{i} = 1 \land o = 0 \end{cases}$$

$\lambda = 1$	target activation level for outcome O
$\alpha_i = 1$	salience of cue C_i
$\beta_1 = \beta_2$	global learning rate for positive and
$=\beta>0$	negative events

The Widrow-Hoff rule

 The W-H rule (Widrow and Hoff 1960) is a widely-used simplification of the R-W equations:

$$\Delta V_{i} = \begin{cases} 0 & \text{if } c_{i} = 0\\ \beta (1 - \sum_{j=1}^{n} c_{j} V_{j}) & \text{if } c_{i} = 1 \land o = 1\\ \beta (0 - \sum_{j=1}^{n} c_{j} V_{j}) & \text{if } c_{i} = 1 \land o = 0\\ = c_{i} \beta (o - \sum_{j=1}^{n} c_{j} V_{j}) \end{cases}$$

$\lambda = 1$	target activation level for outcome
$\alpha_i = 1$	salience of cue C_i
$\beta_1 = \beta_2$	global learning rate for positive and
$=\beta>0$	negative events

t	word	o pl?	c ₁ −e	<i>c</i> ₂ − <i>n</i>	<i>c</i> ₃ – <i>s</i>	c ₄ umlaut	c ₅ dbl cons	c ₆
1	Bäume	1	1	0	0	1	0	1
2	Flasche	0	1	0	0	0	0	1
3	Baum	0	0	0	0	0	0	1
4	Gläser	1	0	0	0	1	0	1
5	Flaschen	1	0	1	0	0	0	1
6	Latte	0	1	0	0	0	1	1
7	Hütten	1	0	1	0	1	1	1
8	Glas	0	0	0	1	0	0	1
9	Bäume	1	1	0	0	1	0	1
10	Füße	1	1	0	0	1	0	1

t 1	$\begin{array}{c c} \sum c_j V_j \\ .000 \end{array}$.000	.000	<i>V</i> ₃ .000	.000	<i>V</i> ₅ .000	<i>V</i> ₆ .000
Bäume	1 0	1 c ₁	0 C 2	0 <i>C</i> 3	1 C4	0 <i>C</i> 5	1 <i>c</i> ₆

	$\begin{array}{ c c }\hline \sum c_j V_j\\ .400\\ \end{array}$						
Flasche	0 0	1 c ₁	0 <i>C</i> ₂	0 <i>C</i> 3	0 <i>C</i> 4	0 <i>C</i> 5	1 <i>c</i> ₆

t 3	$\begin{array}{c c} \sum c_j V_j \\ .120 \end{array}$.120	.000	<i>V</i> ₃ .000	.200	<i>V</i> ₅ .000	<i>V</i> ₆ .120
Baum	0	0 <i>c</i> ₁	0 C 2	0 <i>C</i> 3	0 <i>C</i> 4	0 <i>C</i> 5	1 <i>c</i> ₆

t 4	$\begin{array}{c c} \sum c_j V_j \\ .296 \end{array}$.120	.000	<i>V</i> ₃ .000	.200	<i>V</i> ₅ .000	<i>V</i> ₆ .096
Gläser	1 0	0 <i>c</i> ₁	0 <i>C</i> 2	0 <i>C</i> 3	1 C4	0 <i>C</i> 5	1 c ₆

<i>t</i> 5	$\begin{array}{ c c }\hline \sum c_j V_j\\ .237\end{array}$.120	.000	<i>V</i> ₃ .000	.341	.000	V ₆ .237
Flaschen	1 0	0 <i>c</i> ₁	1 <i>c</i> ₂	0 <i>C</i> 3	0 <i>C</i> 4	0 <i>C</i> 5	1 c ₆

t 6	$\begin{array}{c c} \sum c_j V_j \\ .509 \end{array}$.120	V ₂ .153	<i>V</i> ₃ .000	.341	.000	V ₆ .389
Latte	0 0	1 c ₁	0 <i>C</i> 2	0 <i>C</i> 3	0 <i>C</i> 4	1 <i>c</i> 5	1 <i>c</i> ₆

t 7	$\begin{array}{c c} \sum c_j V_j \\ .679 \end{array}$.018	V ₂ .153	.000	.341	<i>V</i> ₅ 102	V ₆ .288
Hütten	1 0	0 <i>c</i> ₁	1 <i>c</i> ₂	0 <i>C</i> 3	1 C4	1 <i>c</i> 5	1 c ₆

t 8	$\begin{array}{c c} \sum c_j V_j \\ .352 \end{array}$.018	V ₂ .217	<i>V</i> ₃ .000	.405	<i>V</i> ₅ 038	V ₆ .352
Glas	0 0	0 <i>c</i> ₁	0 <i>C</i> ₂	1 <i>c</i> ₃	0 <i>C</i> 4	0 <i>C</i> 5	1 <i>c</i> ₆

A simple example: German noun plurals

t 9	$\begin{array}{c c} \sum c_j V_j \\ .704 \end{array}$.018	V ₂ .217	<i>V</i> ₃ 070	.405	<i>V</i> ₅ 038	V ₆ .281
Bäume	1 0	1 c ₁	0 <i>C</i> 2	0 <i>C</i> 3	1 C4	0 <i>C</i> 5	1 c ₆

A simple example: German noun plurals

t 10	$ \begin{array}{c c} \sum c_j V_j \\ .882 \end{array} $.077	V ₂ .217	<i>V</i> ₃ 070	.464	<i>V</i> ₅ 038	V ₆ .340
Füße	1 0	1 c ₁	0 <i>C</i> 2	0 <i>C</i> 3	1 C4	0 <i>C</i> 5	1 c ₆

A simple example: German noun plurals

t 11	$\sum c_j V_j$.101	V ₂ .217	<i>V</i> ₃ 070	.488	<i>V</i> ₅ 038	V ₆ .364
	0	<i>c</i> ₁	C 2	C 3	C4	<i>C</i> 5	C 6

• A specific event sequence $(\mathbf{c}^{(t)}, o^{(t)})$ will only be encountered in controlled experiments

- A specific event sequence $(\mathbf{c}^{(t)}, o^{(t)})$ will only be encountered in controlled experiments
- For applications in corpus linguistics, it is more plausible to assume that events are randomly sampled from a population of event tokens $(\mathbf{c}^{(k)}, o^{(k)})$ for $k = 1, \dots, m$
 - event types listed repeatedly proportional to their frequency

- A specific event sequence $(\mathbf{c}^{(t)}, o^{(t)})$ will only be encountered in controlled experiments
- For applications in corpus linguistics, it is more plausible to assume that events are randomly sampled from a population of event tokens $(\mathbf{c}^{(k)}, o^{(k)})$ for $k = 1, \ldots, m$
 - event types listed repeatedly proportional to their frequency
- I.i.d. random variables $\mathbf{c}^{(t)} \sim \mathbf{c}$ and $o^{(t)} \sim o$ solutions of \mathbf{c} and o determined by population
- NDL can now be trained for arbitrary number of time steps, even if population is small (as in our example)
 - study asymptotic behaviour of learners
 - ▶ convergence → stable "adult" state of associations

Effect of the learning rate $\boldsymbol{\beta}$

Outline

- Introduction
 - Naïve Discriminative Learning
 - An example
- 2 Mathematics
 - The Rescorla-Wagner equations
 - The Danks equilibrium
 - NDL vs. the Perceptron vs. least-squares regression
- Insights
 - Theoretical insights
 - Empirical observations
 - Conclusion

• Since we are interested in the general behaviour of a stochastic NDL, it makes sense to average over many individual learners to obtain expected associations $\mathrm{E}[V_j^{(t)}]$

$$\mathrm{E}\big[V_{j+1}^{(t)}\big] = \mathrm{E}\big[V_{j}^{(t)}\big] + \mathrm{E}\big[\Delta V_{j}^{(t)}\big]$$

$$\mathrm{E} \big[\Delta V_j^{(t)} \big] = \mathrm{E} \left[c_i \beta \big(o - \sum_{j=1}^n c_j V_j^{(t)} \big) \right]$$

• Since we are interested in the general behaviour of a stochastic NDL, it makes sense to average over many individual learners to obtain expected associations $\mathrm{E}[V_j^{(t)}]$

$$\mathrm{E}\big[V_{j+1}^{(t)}\big] = \mathrm{E}\big[V_{j}^{(t)}\big] + \mathrm{E}\big[\Delta V_{j}^{(t)}\big]$$

$$E[\Delta V_j^{(t)}] = E\left[c_i\beta(o - \sum_{j=1}^n c_j V_j^{(t)})\right]$$
$$= \beta \cdot E[c_io] - \beta \cdot E\left[c_i \sum_{j=1}^n c_j V_j^{(t)}\right]$$

• Since we are interested in the general behaviour of a stochastic NDL, it makes sense to average over many individual learners to obtain expected associations $\mathrm{E}[V_j^{(t)}]$

$$E[V_{j+1}^{(t)}] = E[V_j^{(t)}] + E[\Delta V_j^{(t)}]$$

$$E[\Delta V_j^{(t)}] = E\left[c_i\beta(o - \sum_{j=1}^n c_j V_j^{(t)})\right]$$
$$= \beta \cdot E[c_io] - \beta \cdot \sum_{j=1}^n E[c_ic_j V_j^{(t)}]$$

ullet c_i and c_j are independent from $V_i^{(t)}$

• Since we are interested in the general behaviour of a stochastic NDL, it makes sense to average over many individual learners to obtain expected associations $\mathrm{E}[V_j^{(t)}]$

$$E[V_{j+1}^{(t)}] = E[V_j^{(t)}] + E[\Delta V_j^{(t)}]$$

$$E[\Delta V_j^{(t)}] = E\left[c_i\beta(o - \sum_{j=1}^n c_j V_j^{(t)})\right]$$

= \beta \cdot E[c_io] - \beta \cdot \sum_{j=1}^n E[c_ic_j] E[V_j^{(t)}]

- c_i and c_j are independent from $V_i^{(t)}$
- indicator variables: $E[c_i o] = Pr(C_i, O)$; $E[c_i c_i] = Pr(C_i, C_i)$

• Since we are interested in the general behaviour of a stochastic NDL, it makes sense to average over many individual learners to obtain expected associations $\mathrm{E}[V_j^{(t)}]$

$$E[V_{j+1}^{(t)}] = E[V_j^{(t)}] + E[\Delta V_j^{(t)}]$$

$$\begin{split} \mathbf{E}[\Delta V_j^{(t)}] &= \mathbf{E}\left[c_i\beta(o - \sum_{j=1}^n c_j V_j^{(t)})\right] \\ &= \beta \cdot \left(\Pr(C_i, O) - \sum_{j=1}^n \Pr(C_i, C_j) \mathbf{E}[V_j^{(t)}]\right) \end{split}$$

- c_i and c_j are independent from $V_i^{(t)}$
- indicator variables: $E[c_i o] = Pr(C_i, O)$; $E[c_i c_j] = Pr(C_i, C_j)$

$$\Delta V_{j}^{(t)} = c_{i}^{(t)} \beta \left(o^{(t)} - \sum_{j=1}^{n} c_{j}^{(t)} V_{j}^{(t)} \right)$$

$$\Delta V_{j}^{(t)} = c_{i}^{(t)} \beta \left(o^{(t)} - \sum_{j=1}^{n} c_{j}^{(t)} V_{j}^{(t)} \right)$$

$$\Delta V_{j}^{(t)} = c_{i}^{(t)} \beta \left(o^{(t)} - \sum_{j=1}^{n} c_{j}^{(t)} V_{j}^{(t)} \right)$$

$$\Delta V_{j}^{(t)} = c_{i}^{(t)} \beta \left(o^{(t)} - \sum_{j=1}^{n} c_{j}^{(t)} V_{j}^{(t)} \right)$$

$$\Delta V_{j}^{(t)} = c_{i}^{(t)} \beta \left(o^{(t)} - \sum_{j=1}^{n} c_{j}^{(t)} V_{j}^{(t)} \right)$$

$$\textstyle \mathrm{E}\big[\Delta V_j^{(t)}\big] = \beta \cdot \big(\mathrm{Pr}(C_i,O) - \textstyle \sum_{j=1}^n \mathrm{Pr}(C_i,C_j) \mathrm{E}\big[V_j^{(t)}\big]\big)$$

The Danks equilibrium

• If $\mathrm{E}[V_i^{(t)}]$ converges, the asymptote $V_i^* = \lim_{t \to \infty} \mathrm{E}[V_i^{(t)}]$ must satisfy the Danks equilibrium conditions $\mathrm{E}[\Delta V_i^*] = 0$, i.e.

$$\Pr(C_i, O) - \sum_{j=1}^n \Pr(C_i, C_j) V_j^* = 0 \quad \forall i$$

(Danks 2003, p. 113)

- Now there is a clear interpretation of the Danks equilibrium as the stable average associations reached by a community of stochastic learners with input from the same population
 - allows us to compute the "adult" state of NDL without carrying out a simulation of the learning process

The Danks equilibrium

The Danks equilibrium

$$\mathbf{X} = \begin{bmatrix} c_1^{(1)} & \cdots & c_n^{(1)} \\ c_1^{(2)} & \cdots & c_n^{(2)} \\ \vdots & & \vdots \\ c_1^{(m)} & \cdots & c_n^{(m)} \end{bmatrix} \qquad \mathbf{z} = \begin{bmatrix} o^{(1)} \\ o^{(2)} \\ \vdots \\ o^{(m)} \end{bmatrix} \qquad \mathbf{w} = \begin{bmatrix} V^{(1)} \\ \vdots \\ V^{(n)} \end{bmatrix}$$

$$\mathbf{X} = \begin{bmatrix} c_1^{(1)} & \cdots & c_n^{(1)} \\ c_1^{(2)} & \cdots & c_n^{(2)} \\ \vdots & & \vdots \\ c_1^{(m)} & \cdots & c_n^{(m)} \end{bmatrix} \qquad \mathbf{z} = \begin{bmatrix} o^{(1)} \\ o^{(2)} \\ \vdots \\ o^{(m)} \end{bmatrix} \qquad \mathbf{w} = \begin{bmatrix} V^{(1)} \\ \vdots \\ V^{(n)} \end{bmatrix}$$

$$\begin{bmatrix} f(C_1, O) \\ \vdots \\ f(C_n, O) \end{bmatrix} = \mathbf{X}^T \mathbf{z}$$

$$\mathbf{X} = \begin{bmatrix} c_1^{(1)} & \cdots & c_n^{(1)} \\ c_1^{(2)} & \cdots & c_n^{(2)} \\ \vdots & & \vdots \\ c_1^{(m)} & \cdots & c_n^{(m)} \end{bmatrix} \qquad \mathbf{z} = \begin{bmatrix} o^{(1)} \\ o^{(2)} \\ \vdots \\ o^{(m)} \end{bmatrix} \qquad \mathbf{w} = \begin{bmatrix} V^{(1)} \\ \vdots \\ V^{(n)} \end{bmatrix}$$

$$\begin{bmatrix} f(C_1, O) \\ \vdots \\ f(C_n, O) \end{bmatrix} = \mathbf{X}^T \mathbf{z} \qquad \begin{bmatrix} f(C_1, C_1) & \cdots & f(C_1, C_n) \\ \vdots & & \vdots \\ f(C_n, C_1) & \cdots & f(C_n, C_n) \end{bmatrix} = \mathbf{X}^T \mathbf{X}$$

$$\mathbf{X} = \begin{bmatrix} c_1^{(1)} & \cdots & c_n^{(1)} \\ c_1^{(2)} & \cdots & c_n^{(2)} \\ \vdots & & \vdots \\ c_1^{(m)} & \cdots & c_n^{(m)} \end{bmatrix} \qquad \mathbf{z} = \begin{bmatrix} o^{(1)} \\ o^{(2)} \\ \vdots \\ o^{(m)} \end{bmatrix} \qquad \mathbf{w} = \begin{bmatrix} V^{(1)} \\ \vdots \\ V^{(n)} \end{bmatrix}$$

$$\begin{bmatrix} \Pr(C_1, O) \\ \vdots \\ \Pr(C_n, O) \end{bmatrix} = \frac{1}{m} \mathbf{X}^T \mathbf{z} \quad \begin{bmatrix} \Pr(C_1, C_1) & \cdots & \Pr(C_1, C_n) \\ \vdots & & \vdots \\ \Pr(C_n, C_1) & \cdots & \Pr(C_n, C_n) \end{bmatrix} = \frac{1}{m} \mathbf{X}^T \mathbf{X}$$

$$\mathbf{X} = \begin{bmatrix} c_1^{(1)} & \cdots & c_n^{(1)} \\ c_1^{(2)} & \cdots & c_n^{(2)} \\ \vdots & & \vdots \\ c_1^{(m)} & \cdots & c_n^{(m)} \end{bmatrix} \qquad \mathbf{z} = \begin{bmatrix} o^{(1)} \\ o^{(2)} \\ \vdots \\ o^{(m)} \end{bmatrix} \qquad \mathbf{w} = \begin{bmatrix} V^{(1)} \\ \vdots \\ V^{(n)} \end{bmatrix}$$

$$\begin{bmatrix} \Pr(C_1, O) \\ \vdots \\ \Pr(C_n, O) \end{bmatrix} = \frac{1}{m} \mathbf{X}^T \mathbf{z} \quad \begin{bmatrix} \Pr(C_1, C_1) & \cdots & \Pr(C_1, C_n) \\ \vdots & & \vdots \\ \Pr(C_n, C_1) & \cdots & \Pr(C_n, C_n) \end{bmatrix} = \frac{1}{m} \mathbf{X}^T \mathbf{X}$$

Danks equilibrium: $\frac{1}{m}\mathbf{X}^T\mathbf{z} - \frac{1}{m}\mathbf{X}^T\mathbf{X}\mathbf{w}^* = \mathbf{0}$

$$\mathbf{X} = \begin{bmatrix} c_1^{(1)} & \cdots & c_n^{(1)} \\ c_1^{(2)} & \cdots & c_n^{(2)} \\ \vdots & & \vdots \\ c_1^{(m)} & \cdots & c_n^{(m)} \end{bmatrix} \qquad \mathbf{z} = \begin{bmatrix} o^{(1)} \\ o^{(2)} \\ \vdots \\ o^{(m)} \end{bmatrix} \qquad \mathbf{w} = \begin{bmatrix} V^{(1)} \\ \vdots \\ V^{(n)} \end{bmatrix}$$

$$\begin{bmatrix} \Pr(C_1, O) \\ \vdots \\ \Pr(C_n, O) \end{bmatrix} = \frac{1}{m} \mathbf{X}^T \mathbf{z} \quad \begin{bmatrix} \Pr(C_1, C_1) & \cdots & \Pr(C_1, C_n) \\ \vdots & & \vdots \\ \Pr(C_n, C_1) & \cdots & \Pr(C_n, C_n) \end{bmatrix} = \frac{1}{m} \mathbf{X}^T \mathbf{X}$$

Danks equilibrium: $\mathbf{X}^T \mathbf{z} = \mathbf{X}^T \mathbf{X} \mathbf{w}^*$

Matrix notation: German noun plurals

$$\mathbf{X} = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 & 1 \end{bmatrix} \qquad \mathbf{z} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \\ 1 \\ 0 \\ 1 \\ 1 \end{bmatrix} \qquad \mathbf{w} = \begin{bmatrix} V^{(1)} \\ \vdots \\ V^{(n)} \end{bmatrix}$$

$$=\begin{bmatrix} 1\\0\\0\\1\\1\\0\\1\\0\\1\\1\end{bmatrix}$$

$$\mathbf{w} = egin{bmatrix} V^{(1)} \ dots \ V^{(n)} \end{bmatrix}$$

Matrix notation: German noun plurals

$$\mathbf{X} = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 & 1 \end{bmatrix} \qquad \mathbf{z} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \\ 1 \\ 0 \\ 1 \\ 1 \end{bmatrix} \qquad \mathbf{w} = \begin{bmatrix} V^{(1)} \\ \vdots \\ V^{(n)} \end{bmatrix}$$

$$=\begin{bmatrix} 1\\0\\0\\1\\1\\0\\1\\1\\0\end{bmatrix}$$

$$\mathbf{w} = egin{bmatrix} V^{(1)} \ dots \ V^{(n)} \end{bmatrix}$$

$$\begin{bmatrix} 3 \\ 2 \\ 0 \\ 5 \\ 1 \\ 6 \end{bmatrix} = \mathbf{X}^T \mathbf{z}$$

Matrix notation: German noun plurals

$$\mathbf{X} = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 & 1 \end{bmatrix} \qquad \mathbf{z} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 1 \end{bmatrix} \qquad \mathbf{w} = \begin{bmatrix} V^{(1)} \\ \vdots \\ V^{(n)} \end{bmatrix}$$

$$x = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 1 \end{bmatrix}$$

$$\mathbf{w} = \begin{bmatrix} V^{(1)} \\ \vdots \\ V^{(n)} \end{bmatrix}$$

$$\begin{bmatrix} 3 \\ 2 \\ 0 \\ 5 \\ 1 \\ 6 \end{bmatrix} = \mathbf{X}^T \mathbf{z}$$

$$\begin{bmatrix} 3 \\ 2 \\ 0 \\ 5 \\ 1 \\ 6 \end{bmatrix} = \mathbf{X}^T \mathbf{z} \qquad \begin{bmatrix} 5 & 0 & 0 & 3 & 1 & 5 \\ 0 & 2 & 0 & 1 & 1 & 2 \\ 0 & 0 & 1 & 0 & 0 & 1 \\ 3 & 1 & 0 & 5 & 1 & 5 \\ 1 & 1 & 0 & 1 & 2 & 2 \\ 5 & 2 & 1 & 5 & 2 & 10 \end{bmatrix} = \mathbf{X}^T \mathbf{X}$$

Matrix notation: German noun plurals

$$\mathbf{X} = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 & 1 \end{bmatrix} \qquad \mathbf{z} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 1 \end{bmatrix}$$

$$x = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 1 \end{bmatrix}$$

$$\mathbf{w} = \begin{bmatrix} V^{(1)} \\ \vdots \\ V^{(n)} \end{bmatrix}$$

$$\begin{vmatrix} .3 \\ .2 \\ .0 \\ .5 \\ .1 \\ .6 \end{vmatrix} = \frac{1}{m} \mathbf{X}^T \mathbf{z}$$

$$\begin{bmatrix} .3 \\ .2 \\ .0 \\ .5 \\ .1 \\ .6 \end{bmatrix} = \frac{1}{m} \mathbf{X}^T \mathbf{z}$$

$$\begin{bmatrix} .5 & .0 & .0 & .3 & .1 & .5 \\ .0 & .2 & .0 & .1 & .1 & .2 \\ .0 & .0 & .1 & .0 & .0 & .1 \\ .3 & .1 & .0 & .5 & .1 & .5 \\ .1 & .1 & .0 & .1 & .2 & .2 \\ .5 & .2 & .1 & .5 & .2 & 1 \end{bmatrix} = \frac{1}{m} \mathbf{X}^T \mathbf{X}$$

Outline

- Introduction
 - Naïve Discriminative Learning
 - An example
- 2 Mathematics
 - The Rescorla-Wagner equations
 - The Danks equilibrium
 - NDL vs. the Perceptron vs. least-squares regression
- Insights
 - Theoretical insights
 - Empirical observations
 - Conclusion

SLP (Rosenblatt 1958) is most basic feed-forward neural network

- numeric inputs x_1, \ldots, x_n
- output activation h(y) based on weighted sum of inputs

$$y = \sum_{j=1}^{n} w_j x_j$$

inputs weights

SLP (Rosenblatt 1958) is most basic feed-forward neural network

- numeric inputs x_1, \ldots, x_n
- output activation h(y) based on weighted sum of inputs

$$y = \sum_{j=1}^{n} w_j x_j$$

 h = Heaviside step function in traditional SLP

inputs weights

SLP (Rosenblatt 1958) is most basic feed-forward neural network

- numeric inputs x_1, \ldots, x_n
- output activation h(y) based on weighted sum of inputs

$$y = \sum_{j=1}^{n} w_j x_j$$

- h = Heaviside step function in traditional SLP
- even simpler model: h(y) = y

inputs weights

SLP (Rosenblatt 1958) is most basic feed-forward neural network

- numeric inputs x_1, \ldots, x_n
- output activation h(y) based on weighted sum of inputs

$$y = \sum_{j=1}^{n} w_j x_j$$

- h = Heaviside step function in traditional SLP
- even simpler model: h(y) = y
- cost wrt. target output z:

$$E(\mathbf{w}, \mathbf{x}, z) = \left(z - \sum_{j=1}^{n} w_j x_j\right)^2$$

inputs weights

• SLP weights are learned by gradient descent training: for a single training item (\mathbf{x}, z) and learning rate $\delta > 0$

$$\Delta w_i = -\delta \frac{\partial E(\mathbf{w}, \mathbf{x}, z)}{\partial w_i}$$

• SLP weights are learned by gradient descent training: for a single training item (\mathbf{x}, z) and learning rate $\delta > 0$

$$\Delta w_i = -\delta \frac{\partial E(\mathbf{w}, \mathbf{x}, z)}{\partial w_i}$$
$$= -\delta \frac{\partial}{\partial w_i} \left(z - \sum_{j=1}^n w_j x_j \right)^2$$

• SLP weights are learned by gradient descent training: for a single training item (\mathbf{x}, z) and learning rate $\delta > 0$

$$\Delta w_i = -\delta \frac{\partial E(\mathbf{w}, \mathbf{x}, z)}{\partial w_i}$$

$$= -2\delta \left(z - \sum_{j=1}^n w_j x_j \right) (-x_i)$$

• SLP weights are learned by gradient descent training: for a single training item (\mathbf{x}, z) and learning rate $\delta > 0$

$$\Delta w_i = -\delta \frac{\partial E(\mathbf{w}, \mathbf{x}, z)}{\partial w_i}$$

$$= -2\delta \left(z - \sum_{j=1}^n w_j x_j \right) (-x_i)$$

$$= \beta c_i (o - \sum_{j=1}^n c_j V_j)$$

• SLP weights are learned by gradient descent training: for a single training item (\mathbf{x}, z) and learning rate $\delta > 0$

$$\Delta w_i = -\delta \frac{\partial E(\mathbf{w}, \mathbf{x}, z)}{\partial w_i}$$

$$= 2\delta x_i \left(z - \sum_{j=1}^n x_j w_j \right)$$

$$= \beta c_i \left(o - \sum_{j=1}^n c_j V_j \right)$$

• SLP weights are learned by gradient descent training: for a single training item (\mathbf{x}, z) and learning rate $\delta > 0$

$$\Delta w_i = -\delta \frac{\partial E(\mathbf{w}, \mathbf{x}, z)}{\partial w_i}$$

$$= 2\delta x_i \left(z - \sum_{j=1}^n x_j w_j \right)$$

$$= \beta c_i \left(o - \sum_{j=1}^n c_j V_j \right)$$

• Perfect correspondence to W-H rule with

$$V_i = w_i$$
 $c_i = x_i$ $o = z$ $\beta = 2\delta$

Batch training

- Neural networks often use batch training, where all training data are considered at once instead of one item at a time
- The corresponding batch training cost is

$$E(\mathbf{w}) = \frac{1}{m} \sum_{k=1}^{m} E(\mathbf{w}, \mathbf{x}^{(k)}, z^{(k)})$$

Batch training

- Neural networks often use batch training, where all training data are considered at once instead of one item at a time
- The corresponding batch training cost is

$$E(\mathbf{w}) = \frac{1}{m} \sum_{k=1}^{m} E(\mathbf{w}, \mathbf{x}^{(k)}, z^{(k)})$$

 \bullet Similar to stochastic NDL, batch training computes the expected weights $\mathrm{E}\big[\mathbf{w}^{(t)}\big]$ for an SLP with stochastic input

Batch training

- Neural networks often use batch training, where all training data are considered at once instead of one item at a time
- The corresponding batch training cost is

$$E(\mathbf{w}) = \frac{1}{m} \sum_{k=1}^{m} E(\mathbf{w}, \mathbf{x}^{(k)}, z^{(k)})$$
$$= \frac{1}{m} \sum_{k=1}^{m} \left(z^{(k)} - \sum_{j=1}^{n} w_j x_j^{(k)} \right)^2$$

- Similar to stochastic NDL, batch training computes the expected weights $\mathrm{E}[\mathbf{w}^{(t)}]$ for an SLP with stochastic input
- Minimization of $E(\mathbf{w}) = \text{linear least-squares regression}$

4 D > 4 A > 4 B > 4 B > B 900

Matrix formulation of the linear least-squares problem:

$$E(\mathbf{w}) = \frac{1}{m} \sum_{k=1}^{m} \left(z^{(k)} - \sum_{j=1}^{n} w_j x_j^{(k)} \right)^2$$

• Matrix formulation of the linear least-squares problem:

$$E(\mathbf{w}) = \frac{1}{m} \sum_{k=1}^{m} \left(z^{(k)} - \sum_{j=1}^{n} w_j x_j^{(k)} \right)^2$$
$$= \frac{1}{m} (\mathbf{z} - \mathbf{X} \mathbf{w})^T (\mathbf{z} - \mathbf{X} \mathbf{w})$$

• Matrix formulation of the linear least-squares problem:

$$E(\mathbf{w}) = \frac{1}{m} \sum_{k=1}^{m} \left(z^{(k)} - \sum_{j=1}^{n} w_j x_j^{(k)} \right)^2$$
$$= \frac{1}{m} (\mathbf{z} - \mathbf{X} \mathbf{w})^T (\mathbf{z} - \mathbf{X} \mathbf{w})$$

• Minimum of $E(\mathbf{w})$, the L_2 solution, must satisfy $\nabla E(\mathbf{w}^*) = \mathbf{0}$, which leads to the normal equations

$$\mathbf{X}^T \mathbf{z} = \mathbf{X}^T \mathbf{X} \mathbf{w}^*$$

• Matrix formulation of the linear least-squares problem:

$$E(\mathbf{w}) = \frac{1}{m} \sum_{k=1}^{m} \left(z^{(k)} - \sum_{j=1}^{n} w_j x_j^{(k)} \right)^2$$
$$= \frac{1}{m} (\mathbf{z} - \mathbf{X} \mathbf{w})^T (\mathbf{z} - \mathbf{X} \mathbf{w})$$

• Minimum of $E(\mathbf{w})$, the L_2 solution, must satisfy $\nabla E(\mathbf{w}^*) = \mathbf{0}$, which leads to the normal equations

$$\mathbf{X}^T \mathbf{z} = \mathbf{X}^T \mathbf{X} \mathbf{w}^*$$

• Normal equations = Danks equilibrium conditions

Matrix formulation of the linear least-squares problem:

$$E(\mathbf{w}) = \frac{1}{m} \sum_{k=1}^{m} \left(z^{(k)} - \sum_{j=1}^{n} w_j x_j^{(k)} \right)^2$$
$$= \frac{1}{m} (\mathbf{z} - \mathbf{X} \mathbf{w})^T (\mathbf{z} - \mathbf{X} \mathbf{w})$$

• Minimum of $E(\mathbf{w})$, the L_2 solution, must satisfy $\nabla E(\mathbf{w}^*) = \mathbf{0}$, which leads to the normal equations

$$\mathbf{X}^T \mathbf{z} = \mathbf{X}^T \mathbf{X} \mathbf{w}^*$$

- Normal equations = Danks equilibrium conditions
- Regression theory shows that batch training / stochastic NLP converges to the unique* solution of the L₂ problem

What have we learned?

stochastic = batch =
$$L_2$$
 regression
NDL = SLP

These equivalences also hold for the general R-W equations with arbitrary values of α_i , β_1 , β_2 and λ (see paper)

Outline

- Introduction
 - Naïve Discriminative Learning
 - An example
- 2 Mathematics
 - The Rescorla-Wagner equations
 - The Danks equilibrium
 - NDL vs. the Perceptron vs. least-squares regression
- Insights
 - Theoretical insights
 - Empirical observations
 - Conclusion

 $\beta > 0$: learning rate \rightarrow convergence of individual learners

 $\beta > 0$: learning rate \rightarrow convergence of individual learners

 $\lambda \neq 1$: linear scaling of associations / activation (obvious)

- $\beta > 0$: learning rate \rightarrow convergence of individual learners
- $\lambda \neq 1$: linear scaling of associations / activation (obvious)
- $\alpha_i \neq 1$: salience of cue C_i determines how fast associations are learned, but does not affect the final stable associations (same L_2 regression problem)

- $\beta > 0$: learning rate \rightarrow convergence of individual learners
- $\lambda \neq 1$: linear scaling of associations / activation (obvious)
- $\alpha_i \neq 1$: salience of cue C_i determines how fast associations are learned, but does not affect the final stable associations (same L_2 regression problem)
- $\beta_1 \neq \beta_2$: different positive/negative learning rates *do* affect the stable associations; closely related to prevalence of positive and negative events in the population

Logistic regression is the standard tool for predicting a categorical response from binary features

 can be expressed as SLP with probabilistic interpretation

inputs weights

Logistic regression is the standard tool for predicting a categorical response from binary features

- can be expressed as SLP with probabilistic interpretation
- uses logistic activation function

$$h(y) = \frac{1}{1 + e^{-y}}$$

inputs weights

Logistic regression is the standard tool for predicting a categorical response from binary features

- can be expressed as SLP with probabilistic interpretation
- uses logistic activation function

$$h(y) = \frac{1}{1 + e^{-y}}$$

and Bernoulli cost

$$E(\mathbf{w}, \mathbf{x}, z) = \begin{cases} -\log h(y) & \text{if } z = 1\\ -\log(1 - h(y)) & \text{if } z = 0 \end{cases}$$

 Gradient descent training leads to delta rule that corresponds to a modified version of the R-W equations

$$\Delta V_i = \begin{cases} 0 & \text{if } c_i = 0\\ \beta \left(1 - h\left(\sum_{j=1}^n c_j V_j\right) \right) & \text{if } c_i = 1 \land o = 1\\ \beta \left(0 - h\left(\sum_{j=1}^n c_j V_j\right) \right) & \text{if } c_i = 1 \land o = 0 \end{cases}$$

 Gradient descent training leads to delta rule that corresponds to a modified version of the R-W equations

$$\Delta V_i = \begin{cases} 0 & \text{if } c_i = 0\\ \beta \left(1 - h\left(\sum_{j=1}^n c_j V_j\right) \right) & \text{if } c_i = 1 \land o = 1\\ \beta \left(0 - h\left(\sum_{j=1}^n c_j V_j\right) \right) & \text{if } c_i = 1 \land o = 0 \end{cases}$$

- Same as original R-W, except that activation level is now transformed into probability h(y)
- But no easy way to analyze stochastic learning process (batch training \neq expected value of single-item training)
- Less robust for highly predictable outcomes → w diverges

Outline

- Introduction
 - Naïve Discriminative Learning
 - An example
- 2 Mathematics
 - The Rescorla-Wagner equations
 - The Danks equilibrium
 - NDL vs. the Perceptron vs. least-squares regression
- Insights
 - Theoretical insights
 - Empirical observations
 - Conclusion

AgentGroup - pohtia

moderate positive association → convergence

PersonFirst - miettiä

equivocal association → convergence

PersonFirst - pohtia

equivocal association → convergence

PatientInfinitive - ajatella

near-perfect positive association \rightarrow non-convergence with $1\times$ data

4□ > 4□ > 4 = > 4 = > = 90

Some NDL simulation runs

PatientInfinitive - ajatella (5x)

near-perfect positive association \Rightarrow convergence with $5 \times$ data

Some NDL simulation runs

PatientDirectQuote - ajatella

near-perfect negative association extstyle non-convergence with 1 imes data

Some NDL simulation runs

PatientDirectQuote - ajatella (5x)

near-perfect negative association \rightarrow convergence with $5\times$ data

Convergence vs. non-convergence – artificial data

word form	frequency	outcomes	cues
hand	10	hand_NIL	h_a_n_d
hands	20	hand_PLURAL	h_a_n_d_s
land	8	$land_NIL$	$l_a_n_d$
lands	3	$land_PLURAL$	l_a_n_d_s
and	35	$and_{L}NIL$	a_n_d
sad	18	$sad_{L}NIL$	s_a_d
as	35	as_NIL	a_s
lad	102	$lad_{-}NIL$	l_a_d
lad	54	lad_PLURAL	l_a_d
lass	134	lass_NIL	l_a_s_s

Perfect positive association → convergence

Perfect positive association: h – hand

Moderate positive association → non-convergence

Perfect positive association → convergence

Moderate negative association → non-convergence

Outline

- Introduction
 - Naïve Discriminative Learning
 - An example
- 2 Mathematics
 - The Rescorla-Wagner equations
 - The Danks equilibrium
 - NDL vs. the Perceptron vs. least-squares regression
- Insights
 - Theoretical insights
 - Empirical observations
 - Conclusion

$${\sf STOCHASTIC} = {\sf Batch} = {\sf L}_2 \; {\sf regression}$$
 ${\sf NDL} = {\sf SLP}$

stochastic = batch =
$$L_2$$
 regression
NDL = SLP

 How many training steps are needed for a stochastic NDL learner to converge to the Danks equilibrium?

```
stochastic = batch = L_2 regression
NDL = SLP
```

- How many training steps are needed for a stochastic NDL learner to converge to the Danks equilibrium?
- Are there cases of non-convergence? If yes, why?

```
stochastic = batch = L_2 regression
NDL = SLP
```

- How many training steps are needed for a stochastic NDL learner to converge to the Danks equilibrium?
- Are there cases of non-convergence? If yes, why?
- Does NDL accuracy always improve with more cues and more training data? If not, why?

```
{\sf SLP} stochastic = {\sf batch} = {\sf L}_2 regression
```

- How many training steps are needed for a stochastic NDL learner to converge to the Danks equilibrium?
- Are there cases of non-convergence? If yes, why?
- Does NDL accuracy always improve with more cues and more training data? If not, why?
- How does logistic regression behave as incremental learner?

```
stochastic = batch = L_2 regression

NDL = SLP
```

- How many training steps are needed for a stochastic NDL learner to converge to the Danks equilibrium?
- Are there cases of non-convergence? If yes, why?
- Does NDL accuracy always improve with more cues and more training data? If not, why?
- How does logistic regression behave as incremental learner?
- Which sequences / patterns in the input data lead to significantly different behaviour from stochastic learner?

Acknowledgements 1/2

The mathematical analysis was fuelled by large amounts of coffee and cinnamon rolls at Cinnabon, Harajuku, Tokyo

Follow me on Twitter: @RattiTheRat

Acknowledgements 2/2

The empirical analyses were conducted in the natural environment of Ninase, Saaremaa, Estonia.

References I

- Arppe, Antti and Järvikivi, Juhani (2002). Verbal synonymy in practice: Combining corpus-based and psycholinguistic evidence. Presentation at the Workshop on Quantitative Investigations in Theoretical Linguistics (QITL-1).
- Arppe, Antti and Järvikivi, Juhani (2007). Every method counts: Combining corpus-based and experimental evidence in the study of synonymy. *Corpus Linguistics and Linguistic Theory*, **3**(2), 131–159.
- Arppe, Antti; Hendrix, Peter; Milin, Petar; Baayen, R. Harald; Shaoul, Cyrus (2014). ndl: Naive Discriminative Learning. R package version 0.2.16.
- Baayen, R. Harald (2011). Corpus linguistics and naive discriminative learning. *Brazilian Journal of Applied Linguistics*, 11, 295–328.
- Baayen, R. Harald; Milin, Petar; Durđević, Dusica Filipović; Hendrix, Peter; Marelli, Marco (2011). An amorphous model for morphological processing in visual comprehension based on naive discriminative learning. *Psychological Review*, 118(3), 438–81.
- Danks, David (2003). Equilibria of the Rescorla-Wagner model. *Journal of Mathematical Psychology*, 47, 109–121.
- Dawson, Michael R. W. (2008). Connectionism and classical conditioning. Comparative Cognition & Behavior Reviews, 3.

References II

- Gluck, Mark A. and Bower, Gordon H. (1988). From conditioning to category learning: An adaptive network model. *Journal of Experimental Psychology: General*, 117(3), 227–247.
- Rescorla, Robert A. and Wagner, Allen R. (1972). A theory of Pavlovian conditioning: Variations in the effectiveness of reinforcement and nonreinforcement. In A. H. Black and W. F. Prokasy (eds.), Classical Conditioning II: Current Research and Theory, chapter 3, pages 64–99. Appleton-Century-Crofts, New York.
- Rosenblatt, Frank (1958). The perceptron: A probabilistic model for information storage and organization in the brain. *Psychological Review*, **65**(6), 386–408.
- Stone, G. O. (1986). An analysis of the delta rule and the learning of statistical associations. In D. E. Rumelhart and J. L. McClelland (eds.), *Parallel Distributed Processing: Explorations in the Microstructure of Cognition, Vol. 1: Foundations*, chapter 11, pages 444–459. MIT Press, Cambridge, MA.
- Sutton, Richard S. and Barto, Andrew G. (1981). Toward a modern theory of adaptive networks: Expectation and prediction. *Psychological Review*, **88**(2), 135–170.
- Widrow, Bernard and Hoff, Marcian E. (1960). Adaptive switching circuits. In *IRE WESCON Convention Record*, pages 96–104, New York. IRE.