Zero Shot Domain Adaption

POSIDA-Prompt Driven Synthesis Image for Zero-shot Domain Adaption

ABSTRACT - Problem

How to train the model in unrealistic, rare event in real situation?

- 1. Data Dependency issue
- 2. Technical limitation

1 ABSTRACT

Zero shot domain adaption

- Technology that utilizes knowledge from the learned source domain to generalize to the untrained target domain
- Improve the safety and efficiency of autonomous vehicles
- Contributes to the successful application of autonomous driving in a wider range of real-world environments

base model

Prompt-driven feature augmentation

base model

base model - problem

Prompt-driven feature augmentation

Limitation embedding text

- Performance depending on prompt
- Only text prompt has limitation

Domain gap exist

So add Knowledge based prompt & Synthesis image

POSIDA

Prompt Driven Synthesis Image for Zero-shot Domain Adaption

Knowledge based prompt

 Weather-specific and driving situation-specific prompts for optimal model performance

Ex: a photo of {SNOW}

an open highway with {SNOW}

POSIDA

Prompt Driven Synthesis Image for Zero-shot Domain Adaption

Use Synthesized image

- In embedding space information of prompt is not enough
- Use Synthesized image information to increase overall performance

Data set

Source domain: Cityscapes

30 classes

(road, sidewalk, rail track, car, trailer building, building...etc)

50 cities

Several season

Daytime

Good weather condition

11GB

4 Data set

Target domain: ACDC

19 classes

(road, sidewalk, rail track, car, trailer building, building...etc)

Data split

1000foggy, 1006 nighttime, 1000 rainy and 1000 snowy

17GB

Evaluation metric - MIOU

$$IOU = \frac{Correct \ AREA}{Whole \ AREA}$$

$$\approx MIOU = \frac{1}{n} \sum_{k=1}^{n} \frac{Correct \ AREA}{Whole \ AREA}$$

Experience result 1

Table 1. Model Performance

Condition	SNOW	RAIN
Src-only	39.28	38.2
clipstyle	41.09	37.17
PODA	43.9	42.31
POSIDA	44.92	43.48

Ablation study

About LOSS function

Table 2. Loss

Condition	$\alpha = 0.3$	$\alpha = 0.5$	$\alpha = 0.8$
SNOW	44.24	44.77	44.53
RAIN	42.51	43.48	42.85

 $\text{Combined Loss} = \alpha \cdot \text{Loss}_{\text{IMAGE}} + (1 - \alpha) \cdot \text{Loss}_{\text{TEXT}}$

About Knowledge prompt

Table 3. Knowledge prompt

Condition	w/o knowledge prompt	with knowledge prompt
SNOW	44.23	44.36
RAIN	42.02	42.42

6 Conclusion

1. Overall performance increased

6 Conclusion

2. Although the model added generated images

inference time & model size unchanged

PODA: 1sec -> 5.98 img / POSIDA: 1sec -> 5.82 img

model size & num of hyper parameter is remained

3. Limitation

- lack of time & resources limitation on various condition experiment

4. Discussion

- POSIDA method can extended to various domains
- In future research can aim to improve performance through optimizing prompts

Thank you

Q&A

7 Appendix

1. CLIP style

- Use clip embedding space
- Use text prompt to change image style

