DEEP-SCIENCE

A famous man once said 'we need to go deeper'

Desmond | Jonathan | Soon Poh | Wafir

Background

West Nile Virus is the most widespread mosquito-borne virus in the United States

TABLE OF CONTENTS

- **1** Introduction
- O2 Data Cleaning and Feature Selection
- Exploratory Data Analysis
- O4 Modelling
- O5 Cost-benefit Analysis, Conclusion and Recommendation

Problem Statement

This project aims to predict West Nile Virus (WNV) in mosquitoes across the city of Chicago for the years 2008, 2010, 2012 and 2014 - to identify potential spray locations and reduce the number of cases

OUR QUESTIONS

- 1. Are there any significant clusters a.k.a. hot spots
- 2. Are there any observable trends throughout the year
- 3. What is the cost-benefit comparison between overcompensating for spray locations or not at all
- 4. What are the prominent features in predicting WNV

Data Cleaning and Feature Selection

Streamlining Datasets

Train Dataset

- New row duplicated for every 50 mosquitoes vs genuine duplication
- Aggregate number of mosquitoes and number of west nile virus
- Longitude and latitude were the features kept w.r.t. Location

Spray Dataset

Dropped values beyond the area of train and test datasets

Streamlining Datasets

Weather Dataset (2 stations)

- Missing data ('M', '-', 'T', ' ')
- Impute tavg with mean value
- Impute avgspeed from other weather station
- Impute sealevel and stnpressure from previous and next day values
- Impute preciptotal with median value
- Compute timelag based on average of 9 days for the life cycle of mosquito
- Dropped water1, snowfall, depth, codesum, depart, sunset, sunrise, wetbulb, heat, cool
- Took the average across both stations

Train Dataset

- → *Hot Spots
- → Year
- → Month
- → Week of Year

Weather Dataset

→ Relative Humidity What is Relative Humidity?

Relative humidity is the amount of water vapor in the air.

DBSCAN

- 1. Latitude
- 2. Longitude
- 3. Number of Mosquitoes

Silhouette Score: 0.8538146348419249

Number of outliers: 51 (0.60% of samples)

Number of clusters: 122

Exploratory Data Analysis

Mosquitoes Species

- Three mosquito species to note
- Pearson correlation coefficient (r) = 0.49

WNV Trends

Map Visualisation

Mosquito and Spray Area in 2011

Effectiveness of Sprays

Of the 1.6%....

Hot Spots were found to be sprayed.

To measure the effectiveness...

It took an average of 17.4 days for first WNV case to occur from the date of spraying.

Modelling

- 1. Setup environment
- 2. Compare models
- 3. Generate model
- 4. Tune model
- 5. Finalize and deploy model for prediction

Top 5 Models

	Model	Accuracy	AUC	Recall	Prec.	F1	Карра	мсс	TT (Sec)
lightgbm	Light Gradient Boosting Machine	0.9026	0.8406	0.3738	0.2344	0.2861	0.2370	0.2455	0.1260
gbc	Gradient Boosting Classifier	0.8281	0.8385	0.5970	0.1739	0.2685	0.2034	0.2543	0.7000
ada	Ada Boost Classifier	0.8060	0.8314	0.6391	0.1620	0.2580	0.1897	0.2502	0.2060
xgboost	Extreme Gradient Boosting	0.9141	0.8311	0.2755	0.2335	0.2511	0.2062	0.2078	0.8820
lr	Logistic Regression	0.7170	0.8268	0.7948	0.1346	0.2300	0.1534	0.2454	0.6080

AdaBoost Classifier

- Combines multiple models (weak learners) to reach the final output (strong learners)
- Hyperparameter tuning optimizing AUC to achieve best scores in the scoring metrics (AUC and Recall)
- Accuracy score 0.82
- AUC score 0.84
- Recall score 0.72

Recall and AUC

Feature Importance

Conclusion and Recommendations

Cost-Benefit Analysis

Cost of Spray

- Estimation based on Zenivex
- USD \$300 per gallon
- Approx USD \$136 per cluster
- USD \$8,024 to spray all the hot-zone spots once
- Recommend to spray once a fortnight for 14 weeks
- Total cost of USD \$56,168 to spray the hot spots in Chicago from June to August

Cost of Medical Care

- 1 in 5 infected people develops fever
- 1 in 150 infected people develops serious nervous system illness
- Costs of additional related medical care and missed worked in the 5 years after initial infection is estimated to cost USD \$ 56 million across United States annually.
- Mean cost for acute infection **USD \$1,177**
- USD \$180 for continuing care
- Expected 1 year cost were USD \$13,648, adjusted for survival

Conclusion

AdaBoost Classifier

- ROC-AUC score of 0.77 from Kaggle
- Accuracy score of 0.82
- AUC score of 0.84
- Recall score of 0.72

Cost of spraying is low

- Reducing false negative is important
- 2011 and 2013 only covered 1.6% of the cluster hotspots identified
- Effect of spraying has a significant impact on reducing WNV
- Caveat that there is no control to weather and climate change

Recommendation

Spraying of insecticides

- Location focus on areas where the model predicts high probability
- Time focus on months with higher number of mosquitoes, eg July and August
- Wind direction further research required to determine the inefficiency caused by wind

Public education

Increase checks and patrolling during hotspot season

Project Wolbachia

Adoption of project as proven effective in countries such as Singapore, Australia and Brazil

