

NEW N-SUBSTITUTED-1-DEOXYNOJIRIMYCIN DERIVATIVE AND METASTASIS-INHIBITOR FOR CANCEROUS CELL

Publication number: JP2306962 (A)

Publication date: 1990-12-20

Inventor(s): KURIHARA HIROSHI; YOSHIDA SEISHI; TSURUOKA TSUTOMU; TSURUOKA TAKASHI; YAMAMOTO HARUO; FUKUYASU SHUNKAI

Applicant(s): MEIJI SEIKA KAISHA

Classification:

- International: C07D211/46; A61K31/445; A61P35/00; C07D211/00; A61K31/445; A61P35/00;
(IPC1-7): A61K31/445; C07D211/46

- European:

Application number: JP19890127499 19890519

Priority number(s): JP19890127499 19890519

Abstract of JP 2306962 (A)

NEW MATERIAL: An N-substituted-1-deoxynojirimycin derivative expressed by the formula [A is 3-5C hydrocarbon may be substituted with OH, halogenated alkyl or alkoxy (said hydrocarbon may have double or triple bond); Z is phenyl, fluorine-substituted phenyl, biphenyl, cycloalkyl or halogen-substituted alkyl].

EXAMPLE: An N-(3-phenyl-3-trifluoromethyl-2-propenyl)-1-deoxynojirimycin.

USE: Used as metastasis-inhibitor for cancerous cell.
PREPARATION: For instance, 1-deoxynojirimycin is reacted with various aralkylation agent or aralkenylation agent in the presence of deoxidizer such as alkali hydroxide to afford the compound expressed by the formula.

Data supplied from the esp@cenet database — Worldwide

⑩日本国特許庁(JP) ⑪特許出願公開
 ⑫公開特許公報(A) 平2-306962

⑬Int.Cl.
 C 07 D 211/48
 A 81 K 31/445

識別記号 廣内整理番号
 ADU 7180-4C

⑭公開 平成2年(1990)12月20日

審査請求 未請求 請求項の数 2 (全12頁)

⑮発明の名称 新規N-置換-1-デオキシノジリマイシン誘導体及びそれを含有する癌細胞転移抑制剤

⑯特 願 平1-127499

⑰出 願 平1(1989)5月19日

⑱発明者 栗原 宽 神奈川県横浜市港北区師岡町760 明治製薬株式会社中央研究所内

⑲発明者 吉田 滑史 神奈川県横浜市港北区師岡町760 明治製薬株式会社中央研究所内

⑳発明者 鶴岡 勉 神奈川県横浜市港北区師岡町760 明治製薬株式会社中央研究所内

㉑出願人 明治製薬株式会社 東京都中央区京橋2丁目4番16号

㉒代理人 弁理士 小堀 益 外1名

最終頁に続く

明細書

1. 発明の名称 新規N-置換-1-デオキシノジリマイシン誘導体及びそれを含有する癌細胞転移抑制剤

2. 特許請求の範囲

1. 式

式中、Aは水酸基、ハロゲン化アルキル基又はアルコキシ基で置換されてもよい炭素数3乃至5の炭化水素基を表し、この炭化水素基は二重又は三重結合を有していてもよい、Zはフェニル基、フッ素置換フェニル基、ビフェニル基、シクロアルキル基又はハロゲン置換アルキル基を表す。

示されるN-置換-1-デオキシノジリマイシン誘導体。

2. 式

式中、Aは水酸基、ハロゲン化アルキル基又はアルコキシ基で置換されてもよい炭素数3乃至5の炭化水素基を表し、この炭化水素基は二重又は三重結合を有していてもよい、Zはフェニル基、フッ素置換フェニル基、ビフェニル基、シクロアルキル基又はハロゲン置換アルキル基を表す。

示されるN-置換-1-デオキシノジリマイシン誘導体又はその臨場的に許容される版との付加基を有効成分とすることを特徴とする癌細胞転移抑制剤。

3. 発明の詳細な説明

【医薬上の利用分野】

本発明は、癌細胞の転移形成を阻害する新規N-置換-1-デオキシノジリマイシン誘導体並びにその物質を有効成分とする癌細胞転移抑制剤に関する。

【従来の技術】

現在使用されている制癌剤は種々あるが、その主体は、癌細胞を殺細胞させるか、人の免疫系を

介して死滅させる薬剤であり、癌の根本的な治療に対して有効な薬剤は未だ得られていない。

また、化学療法薬の有効性が低い癌細胞に対しては外科手術、放射線療法等の物理的療法が行われ、原発癌の除去という点では成功率が大幅に向うとしている。しかし、反復癌細胞の伝移を防ぐすることも実現である。

(発明が解決しようとする課題)

上述の如く、従来の癌治療において、癌細胞の伝移が癌治療患者の予後を左右する最大の問題となっている。

従って、この癌細胞の伝移を抑制することが高められる新薬剤の開発は現在最も重要な課題である。

本発明はこの課題を解決する癌細胞伝移を有効に抑制する物質並びに同物質を有効成分とする癌細胞伝移抑制剤を提供することを目的とするものである。

(課題を解決するための手段)

本発明者は先に癌細胞伝移抑制作用を有する

N-置換-1-デオキシノジリマイシン誘導体を見出し、特開昭63-31095号公報、特開昭63-93873号公報、特開昭63-97454号公報、特開昭63-104850号公報、特開昭63-147815号公報及び特開昭63-147816号公報に開示した。

本発明者は更にN-置換誘導体を合成し、その広範な評価を行ったところ、強い癌細胞伝移抑制作用を有する一群の新規な化合物を見出し、本発明を完成了。

本発明は、式(1)

(式中、Aは水酸基、ハロゲン化アルキル基又はアルコキシ基で置換されてもよい炭素数3乃至5の炭化水素基を表し、この炭化水素基は二重又は三重結合を有してもよい、Zはフェニル基、フッソ置換フェニル基、ビフェニル基、シクロアルキル基又はハロゲン置換アルキル基を表す、)で示

されるN-置換-1-デオキシノジリマイシン誘導体、並びに同化合物又はその適量的許容される量との付加塩を有効成分とする癌細胞伝移抑制剤である。

本発明の式(1)で示されるN-置換-1-デオキシノジリマイシン誘導体は文献未載の新規物質である。

そして、このN-置換-1-デオキシノジリマイシン誘導体に含まれる化合物の例としては次のような物質が挙げられる。

N-(3-メトキシメチル-3-フェニル-2-プロペニル)-1-デオキシノジリマイシン

N-(3-フェニル-3-トリフルオロメチル-2-プロペニル)-1-デオキシノジリマイシン

N-(3-(4-フルオロフェニル)-2-プロペニル)-1-デオキシノジリマイシン

N-(3-(3-フルオロフェニル)-2-プロペニル)-1-デオキシノジリマイシン

N-(3-(2-フルオロフェニル)-2-プロペニル)-1-デオキシノジリマイシン

N-(3-(4-ビフェニルプロピル)-1-デオキシノジリマイシン

N-[3-(4-フルオロフェニル)-1-プロピル]-1-デオキシノジリマイシン

N-(3-シクロヘキシルプロピル)-1-デオキシノジリマイシン

N-(3-フェニル-2-プロピニル)-1-デオキシノジリマイシン

N-(2,3-ジヒドロキシ-3-フェニルプロペニル)-1-デオキシノジリマイシン

N-(6,6,6-トリフルオロヘキシル)-1-デオキシノジリマイシン

N-(5,5,5-トリフルオロベンチル)-1-デオキシノジリマイシン

N-(4,4,4-トリフルオロブチル)-1-デオキシノジリマイシン

また、本発明のN-置換-1-デオキシノジリマイシン誘導体を癌細胞伝移抑制剤として使用する場合の適量的許容される量の付加塩としては、塩酸、臭化水素酸、硫酸、硝酸、磷酸等の無機酸、

醋酸、酢酸、プロピオン酸、コハク酸、グリコール酸、乳酸、リンゴ酸、酒石酸、クエン酸、マレイン酸、フマル酸、安息香酸、セリチル酸、メタシスルホン酸等の有機酸、更にはアスパラギン酸、グルタミン酸等のアミノ酸との付加縮合が挙げられる。

本発明の化合物はいずれも文献未記載の新規化合物である。その合成法としては本発明者らによって見出された放線菌の代謝物であるノジリマイシン (5-アミノ-5-デオキシ-D-グルコピラノース) (特公昭43-760号公報参照) の還元により得られる1-デオキシノジリマイシン (Tetrahedron, 24, 2125(1968) 参照) を原料とする方法が最も一般的である。即ち、1-デオキシノジリマイシンを各種のアルコール類、ジメチルカルムアミド、ジメチルアセトアミド、ジメチルスルホキシド、スルホラン等の極性溶媒又は、それらの混合溶媒中でアラルキルハライド、アルケニルハライド又はアラルキルスルホン酸エステル、アラルケニルスルホン酸エステル等で代換される

各図のアラルキル又はアラルケニル化試剤と水酸化アルカリ、炭酸アルカリ、亞炭酸アルカリ又は適当な有機アミン類等の脱保護剤の存在下で室温又は加温することによって本発明の式(1)の化合物のN-置換A-Z基を導入することができる。また、水酸基を適当な保護基、例えばアセチル基、ベンゾイル基、テトラヒドロビラニル基、1-ブチルジメチルシリル基等で保護した1-デオキシノジリマイシンを原料として用い、N-置換反応を行わせたのち、脱保護する方法も用される。また反応試薬としてカルボニル基を有する試薬を用いて還元的条件下、例えば硫酸、シアン水素化ホウ素ナトリウム、水素化ホウ素ナトリウム或いは適当な金属触媒、例えば酸化白金、パラジウム、タネニッケル等の存在下、水素雰囲気下でいわゆる還元的アルキル化を行う方法、或いは1-デオキシノジリマイシンとアラルキルカルボン酸、又はアラルケニルカルボン酸とのアミドを還元して目的物を得る方法も使用することができる。これらの化合物は必要に応じて再結晶、カラムクロ

マトグラフィー等の一般的な精製法によって本発明の式(1)の化合物を得る。

本発明の化合物の置換基の形成及び導入に関しては合目的的な適宜の方法によって合成することができる。式(1)のA-Z基を構築するためのアラルキル、アラルケニル、アラルキニル化剤の製造については適当な方法として下記の5通りの製造法を示す。

製造法1

化合物(2)とビニル金属化合物、例えば塩化ビニルマグネシウム、臭化ジニルマグネシウム、沃化ビニルマグネシウム、ビニルリチウム、ジビニル亜鉛、ジビニル銅、ジビニルセシウム等とを無極性溶媒中、軽ましくはエーテル、テトラヒドロフラン、ジオキサン中で-50℃~室温、10分~24時間反応させることによって化合物(3)を合成することができる。化合物(3)を塩酸、臭化水素酸、オキサリルクロリド、ハロゲン化チオニル、オキシハロゲン化銀、三ハロゲン化銀、五ハロゲン化銀、3置換ホスフィン-4ハロゲン化炭

素、アリル又はアルキルスルホニルハライドと無溶媒或いはベンゼン、トルエン、エーテル、塩化メチレン、アセトニトリル等の溶媒中で0℃~100℃、30分~24時間反応させることによって化合物(3)のアリルアルコール部分の転移を伴いながら化合物(4)を合成することができる。

(式中Y₁は水素原子、ハロゲン原子、アラルキル基、水酸基を表し、Y₂は水素原子、ハロゲン原子、アラルキル基、アルコキシ基、ハロゲン置換アルキル基を表す。Xはハロゲン原子、アルキル又はアリルスルホニロキシ基を表す。ハロゲン原子としては、塩素、臭素、沃素等を、アルキル又はアリルスルホニロキシ基としてはメタンスルホニルオキシ基、トリフルオロメタンスルホニルオキシ基、

ポートルエンスル中ニルオキシ基等を示す。Mは1価又は2価の金属成いはその値を表し、金属としてはリチウム、ナトリウム、カリウム、マグネシウム、亜鉛、セシウム、銅を示す)

第2章

化合物(2)を適当な溶媒、好ましくはベンゼン、トルエン、エーテル、テトラヒドロフラン、ジオキサン、塩化メチレン、クロロホルム、メタノール、エタノール中カルボアルコキシメチレントリ置換ホスホタンと0℃～60℃で10分～24時間反応させると、又は適当な塩基、例えば水素化ナトリウム、水素化カリウム、水酸化アルカリ、炭酸アルカリの存在下、ジアラルキルホスホノ酢酸アラルキルエステルとを0℃～60℃で10分～24時間反応させ、不飽和エステル(5)を合成する。化合物(5)を適当な非プロトン性溶媒、好ましくはエーテル、テトラヒドロフラン、ジオキサン中、適当な水素化金属触体還元剤、好ましくは水素化アルミニウムリチウム、ジイソブチルアルミニウムヒドリド、水素化ビス(2-メトキシエト

エタノール、酔酸、テトラヒドロフラン、酢酸エチル等中で、金属触媒、例えばパラジウム-炭素、白金、ラネーニッケル等の存在下で水素露圧気下で30分～24時間還元し、飽和アルコール(7)を合成することができる。化合物(7)を臭化水素酸、オキナリルクロリド、ハロゲン化チオニル、オキシハロゲン化銀、三ハロゲン化銀、五ハロゲン化銀、3匹換ホスフィン-四ハロゲン化銀、アリル又はアルキルスルホニルハライド等の溶媒中で0℃～100℃、30分～24時間反応させることにより、化合物(8)を合成することができる。

(途中、 I_1 、 I_2 、 X は前記と同一意味を有す)

假想件 4

1-アリルアセチレン誘導体(1)を適当な酸
基、例えばカルボキシル基、アセトキシ基等でアセチリ

ナシ) アルミニウムナトリウムと-78℃~100℃で30分~18時間反応させることによって化合物(6)を合成することができる。化合物(6)を油酸、臭化水銀酸、オキサリルクロラド、ハロゲン化チオニル、オキシハロゲン化鉄、三ハロゲン化鉄、五ハロゲン化鉄、3置換ホスフィン-四ハロゲン化銅、アリル又はアルキルスルホニルハライドと無溶媒或いはベンゼン、トルエン、エーテル、塩化メチレン、アセトニトリル等の浴液中0℃~100℃で30分~24時間反応させることにより、化合物(4)を合成することができる。

(式中、 T_1 、 T_2 は前記と同一意義を有し、Rはアルキル基などのカルボキシル基の保護基を表す)

解説 3

製造法 2 によって得られるアルケニルアルコール（6）を適当な有機溶媒、例えばノタノール、

ドとしたのち、ホルマリンと反応させることによって、アルキニルアルコール(10)を合成することができる。化合物(10)をオキナリルクロリド、ハロゲン化チオニル、オキシハロゲン化銀、三ハロゲン化銀、五ハロゲン化銀、3置換ホスフィン-4ハロゲン化銀、アリル又はアルキルスルホニルハタイドと無妨合成いはベンゼン、トルエン、エーテル、塩化メチレン、アセトニトリル等の溶媒中0℃～100℃で30分～24時間反応させることにより、化合物(11)を合成することができる。

(其中 I₁, I₂, X は前記と同一意象を有す)

好词共5

支錠ハロゲン置換アルキル化剤の製造法としては、例えばモノハロゲン置換脂肪酸(12)を適当なフッ素化剤、例えば四フッ化イオウ (Angew. Chem. Internat. Ed., 1, 467 (1962)) で処理することに

よってトリプロロメチル誘導体(13)を合成することができる。

(其中、Xは前記と同一意義を有す)

以上の製造法1～5で製造されたアラルキルハライド、アラルケニルハライド又はアラルキルスルホン酸エステル、アラルケニルスルホン酸エステル等で代換される各種のアラルキル又はアラルケニル化試剤と各種アルコール類、ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシド、スルキラン等の極性溶媒又はそれらの混合溶媒中、水酸化アルカリ、炭酸アルカリ、苛性アルカリ又は、適当な有機アミン類等の脱酸剤の存在下で室温又は加温することによって、本発明の式(1)の化合物のN-置換A-Z基を導入することができる。また、水酸基を適当な保護基、例えばアセチル基、ベンゾイル基、テトラヒ

(式中、 T_1 、 T_2 は前記と同一意味を有す、 R' は
水素原子、アセチル基、ベンジル基、ベンゾイル
基、ピバロイル基、 α -ペチルジメチルシリル基、
テトラヒドロビラニル基を示す)

次に本発明のN-置換-1-デオキシノグリマ
イシン衍生物の例を示す。

四百四十一

N-(3-フェニル-3-トリフォロロメチル-2-プロペニル)-1-デオキシノジリマイシン
工場1

3-フェニル-3-トロロメチル-2-ブロベン-1-オニル

2. 2-トリアロアセトフェノン1.74g
 (10.0ミリモル) をテトラヒドロフラン10mlに溶かした溶液を-78℃に冷却し、1Mビニルマグネシウムブロミドテトラヒドロフラン溶液を滴下する。滴下終了後3時間同温度で搅拌後、冷浴を取り去り1時間搅拌する。氷冷下水を加えて過剰の試薬を分解した後、冷媒を留去する。残液に2N硫酸10ml加え、酢酸エチルで抽出する。抽出液を

ドロビラニル基、ヒープチルジメチルシリル基等で保護した1-デオキシノグリマイシンを原料として用い、N-置換反応を行なせた後、脱保護する方法も採用される。本発明に含まれる化合物のうち、式(1)中Aが水酸基で置換された炭化水素であるものについては、次に示す製造方法6に従って製造することができます。

第四集 8

製造法 1、成いは 2 に従って合成したアルケニル化剤と 1-デオキシノジリマイシン成いは水酸基を保護した 1-デオキシノジリマイシンとを反応させることによって合成することができる N-置換-1-デオキシノジリマイシン誘導体(16)を適当な酸化剤、例えば四酸化オスミウム等と反応させ目的物(16)を得ることができる。

水洗、乾燥後濃縮する。残波をシリカゲルカラムクロマトグラフィー〔溶出浴槽：エーネルーケサン（1:10）〕で精製し、1.66 g (82 %) の油状物を得た。

BRA (CD 02.) 8

2.61(s, 1H), 5.52(d, 1H), 5.62(d, 1H),
6.43(dd, 1H), 7.25-7.70(m, 5H)

工程 2

1-ブロモ-3-フェニル-3-トリフォロメチル-2-ブロベン

3-フェニル-3-トリフルオロメチル-2-ブロ
ベン-1-オール606 mg (3.00 ミリモル) とトリ
フェニルホスフィン943 mg (3.60 ミリモル) をア
セトニトリル4 ml に溶解し水浴する。ここへ四異
化炭素1.26 g (3.80 ミリモル) を数回に分けて加
える。水浴下1時間搅拌した後、一夜室温下搅拌
する。反応液をエーテル10 ml で希釈し、析出する
固体を遠心し、遠心を繰り返す。得られる粗粒を
シリカゲルカラムクロマトグラフィー（溶出溶媒
：ヘキサン）で精製し、440 mg (55%) の油状物

を得た。

NMR(CDCl₃) δ

3.80(dd, 2H), 8.62(tq, 1H), 7.20~7.60(m, 5H)

工程3

N-(3-フェニル-3-トリフロロメチル-2-プロペニル)-1-デオキシノグリマイシンデオキシノグリマイシン163 mg(1.00 ミリモル)と1-ブロモ-3-フェニル-3-トリフロロメチル-2-プロペン318 mg(1.20 ミリモル)をジメチルホルムアミド5 mlに溶解し、炭酸カリウム201 mg(1.50 ミリモル)を加えて室温下8時間搅拌する。反応混合物に飽和食塩水を加えてループタノールで抽出する。抽出液を減圧下濃縮し、残渣をシリカゲルカラムクロマトグラフィー(溶出浴槽:クロロホルム-メタノール(10:1))で精製し311 mg(90%)の無色固体を得た。

NMR(CDCl₃) δ

2.15(s, 2H), 3.10(dd, 1H), 3.16(t, 1H), 3.31(s, 1H), 3.42(t, 1H), 3.53(s, 1H), 3.78(dd, 1H), 3.98(ABX type, 2H).

モル)を度化メチレン20 mlに溶解し、カルボメトキシメチレントリフェニルホスホラン3.67 g(11.0 ミリモル)を加え、室温下3時間搅拌した。固体を濾別し、滤液を濃縮し、残渣をシリカゲルカラムクロマトグラフィー(溶出浴槽:酢酸エチル-ヘキサン(1:4))で精製し、無色針状品1.61 g(90%)を得た。

NMR(CDCl₃) δ

4.30(d, 2H), 6.25(m, 1H), 6.55(d, 1H), 6.95(s, 2H), 7.35(s, 2H)

工程2

3-(4-フロロフェニル)-2-ブロベン-1-オール

メチル-3-(4-フロロフェニル)-2-ブロベノエート1.61 g(9.00 ミリモル)をエーテル50 mlに溶解し、氷冷下水素化アルミニウムリチウム205 mg(5.40 ミリモル)をエーテル3 mlに懸滴したものに滴下する。滴下後室温下30分搅拌し、過剰の試薬を水で分解し、固体を濾別する。滤液を濃縮し3-(4-フロロフェニル)-2-ブロ

6.72(t, 1H), 7.32(s, 2H), 7.46(s, 3H)

製造例2

N-(3-メトキシメチル-3-フェニル-2-プロペニル)-1-デオキシノグリマイシン
製造例1と同様にして合成した1-ブロモ-3-メトキシメチル-3-フェニル-2-ブロベンを用いて合成した。

NMR(CDCl₃) δ

2.13(s, 2H), 3.06(dd, 1H), 3.15(t, 1H), 3.34(s, 1H), 3.44(t, 1H), 3.31(s, 1H), 3.38(s, 3H), 3.76(dd, 1H), 3.97(ABX type, 2H), 4.16(s, 2H), 6.08(t, 1H), 7.15~7.50(m, 5H)

製造例3

N-(3-(4-フロロフェニル)-2-ブロペニル)-1-デオキシノグリマイシン

工程1

メチル-3-(4-フロロフェニル)-2-ブロベノエート
4-フロロベンズアルデヒド1.24 g(10.0 ミリ

ベン-1-オール1.33 g(97%)を得た。

NMR(CDCl₃) δ

4.52(d, 2H), 6.31(s, 1H), 7.01(s, 2H), 7.45(s, 2H)

工程3

1-ブロモ-3-(4-フロロフェニル)-2-ブロベン
3-(4-フロロフェニル)-2-ブロベン-1-オール1.34 g(8.82 ミリモル)とトリ-ブロモクチルホスファイン4.26 g(11.5 ミリモル)をエーテル20 mlに溶解し、氷冷下四臭化炭素3.52 g(10.6 ミリモル)を数回に分け加える。室温下30分搅拌した後、沈殿物を濾別し、滤液を濃縮し残渣をシリカゲルカラムクロマトグラフィー(溶出浴槽:ヘキサン)で精製し1.61 g(85%)の無色油状物を得た。

NMR(CDCl₃) δ

3.35(d, 2H), 6.30(s, 1H), 7.00(s, 2H), 7.40(s, 2H)

Mass m/z 214.216

工程4

N - (3 - (4 - フロロフェニル) - 2 - ブロペニル) - 1 - デオキシノジリマイシン
1 - ブロモ - 3 - (4 - フロロフェニル) - 2 - ブロベン 1.61 g (7.5 ミリモル) と 1 - デオキシノジリマイシン 1.22 g (7.5 ミリモル) をジメチルホルムアミド 10 mL に溶解し、炭酸カリウム 3.12 g (22.5 ミリモル) を加え、室温下 24 時間搅拌した。反応混合物を水に注いでセーブタノールで抽出する。溶液を留去した後、残渣をシリカゲルカラムクロマトグラフィー（溶出浴液：クロロホルム - メタノール (10 : 1)）で精製し 1.36 g (61%) の淡黄色の固体を得た。

NMR(CD₃OD) δ2.1 ~ 2.2 (m, 2H), 5.40 (m, 1H), 6.7 (m, 1H),
7.10 (m, 2H), 7.55 (m, 2H)

Mass m/z 298 (FD, M+1)

製造例4

N - (3 - (3 - フロロフェニル) - 2 - ブロペニル) - 1 - デオキシノジリマイシン

製造例3 と 同様にして合成した。

NMR(CD₃OD) δ2.15 (m, 2H), 3.04 (dd, 1H), 3.16 (t, 1H),
3.2 ~ 3.35 (m, 1H), 3.39 (t, 1H),
3.49 (m, 1H), 3.68 (dd, 1H),
3.94 (ABX type, 2H), 6.41 (dt, 1H),
6.59 (d, 1H), 6.95 (dt, 1H), 7.16 (dd, 1H),
7.21 (d, 1H), 7.31 (ddd, 1H)

Mass m/z 298 (FD, M+1)

製造例5

N - (3 - (2 - フロロフェニル) - 2 - ブロペニル) - 1 - デオキシノジリマイシン

製造例3 と 同様にして合成した。

NMR(CD₃OD) δ2.1 ~ 2.25 (m, 2H), 3.06 (dd, 1H),
3.14 (t, 1H), 3.24 ~ 3.35 (m, 1H),
3.39 (t, 1H), 3.50 (m, 1H), 3.71 (m, 1H),
3.94 (ABX type, 2H), 6.45 (dt, 1H),
6.72 (d, 1H), 7.0 ~ 7.16 (m, 2H),
7.2 ~ 7.28 (m, 1H), 7.53 (dt, 1H)

Mass m/z (FD, M+1)

製造例6

N - (3 - (4 - ピフェニル) プロピル) - 1 - デオキシノジリマイシン

工程1

メチル - 3 - (4 - ピフェニル) アクリレート 4 - ピフェニルカルボキシアルデヒド 1.10 g (6.00 ミリモル) をジクロロエタン 20 mL に溶解し、カルボメトキシメチレントリフルオロエチルホスホラン 3.03 g (9.10 ミリモル) を加え、室温下 1 時間搅拌する。溶液を留去後、残渣をシリカゲルカラムクロマトグラフィー（溶出浴液：エーテル - ヘキサン (1 : 10)）で精製し、1.12 g (78%) の無色結晶を得た。

NMR(CD₃C₆) δ3.83 (s, 3H), 6.49 (d, 1H), 7.30 ~ 7.60 (m, 9H),
7.75 (d, 1H)

工程2

メチル - 3 - (4 - ピフェニル) プロピオネート

メチル - 3 - (4 - ピフェニル) アクリレート 1.40 g (4.40 ミリモル) を酢酸エチル 50 mL に溶解し、10% Pd - C 70 mg を加えて常圧下 12 時間触媒還元する。油状を精別後、溶液を留去し、1.01 g (97%) の無色油状物を得た。

NMR(CD₃C₆) δ2.68 (t, 2H), 3.00 (t, 2H), 3.68 (s, 3H),
7.20 ~ 7.70 (m, 9H)

工程3

3' - (4 - ピフェニル) - 1 - ブロバロール 水冷下、水素化アルミニウムリチウム 110 mg (2.90 ミリモル) をエーテル 10 mL に懸滴した中へメチル - 3 - (4 - ピフェニル) プロピオネート 1.01 g (4.20 ミリモル) をエーテル 35 mL に溶解したもの滴下する。同温度で 1 時間搅拌後、過剰の試薬を水で分解し、無機物を濾別、滤液を乾燥後、濃縮し、861 mg (96%) の無色結晶を得た。

NMR(CD₃C₆) δ1.56 (br, 1H), 1.94 (m, 2H), 2.77 (m, 2H),
3.71 (m, 2H), 7.15 ~ 7.76 (m, 9H)

工程4

3-(4-ビフェニル)-1-ブロモプロパン
3-(4-ビフェニル)-1-ブロバノール
119 mg (2.00ミリモル) とトリフェニルホスフィン629 mg (2.40ミリモル) をエーテル10mlに溶解し、氷冷下四塩化炭素930 mg (2.80ミリモル) を数回に分けて加える。室温下1時間搅拌した後、沈殿物を滤別し、滤液を洗浄し残渣をシリカゲルカラムクロマトグラフィー(溶出浴媒:クロロホルム-メタノール(10:1))で精製し117 mg (66%) の固体を得た。

NMR(CDCl₃) δ

2.20(quin, 2H), 2.83(t, 2H), 3.44(t, 2H),
7.23~7.65(m, 9H)

工程5

N-(3-(4-ビフェニル)プロピル)-1-デオキシノジリマイシン
3-(4-ビフェニル)-1-ブロモプロパン140 mg (0.50ミリモル) と1-デオキシノジリマイシン82 mg (0.5ミリモル) をジメチルホルムアミド1mlに溶解し、炭酸カリウム136 mg (1.00ミリモル) を加え、室温下1時間搅拌する。反応混合物を水に注いで塩酸酸性とし、エーテルにて洗浄、水層をアンモニアアルカリとし、ヘプタノールで抽出する。油状物を除去した後、残渣をシリカゲルカラムクロマトグラフィー(溶出浴媒:クロロホルム-メタノール(10:1))で精製し117 mg (66%) の固体を得た。

リモル) を加え、80℃、4時間加热した。反応混合物を水に注いで塩酸酸性とし、エーテルにて洗浄、水層をアンモニアアルカリとし、ヘプタノールで抽出する。油状物を除去した後、残渣をシリカゲルカラムクロマトグラフィー(溶出浴媒:クロロホルム-メタノール(10:1))で精製し117 mg (66%) の固体を得た。

NMR(CDCl₃) δ

1.86(m, 2H), 2.20(br, 2H), 2.65(o, 3H),
2.89(o, 1H), 3.00(o, 1H), 3.14(l, 1H),
3.47(o, 1H), 3.84(d, 2H), 7.15~7.65(m, 9H)

製造例7

N-(3-(4-フロロフェニル)プロピル)-1-デオキシノジリマイシン

製造例6と同様に合成した。

NMR(CDCl₃) δ

1.38(o, 2H), 2.05~2.22(o, 2H), 2.64(o, 2H),
2.98(dd, 1H), 3.13(l, 1H), 3.30(o, 1H),
3.38(t, 1H), 3.45(o, 1H),
3.64(o, 1H), 3.85(o, 2H), 7.18~7.35(o, 4H)

製造例8

N-(3-シクロヘキシルプロピル)-1-デオキシノジリマイシン

製造例6と同様に合成した。

NMR(CDCl₃) δ

0.75~1.08(m, 2H), 1.08~1.45(o, 7H),
1.45~2.00(o, 6H), 2.10~3.83(o, 8H),
4.00(AB type, 2H)

製造例9

N-(フェニル-2-プロピニル)-1-デオキシノジリマイシン

工程1

1-フェニル-3-ブロモプロピン

1-フェニル-2-ブロビン-1-オール660 mg (5.00ミリモル) と四塩化炭素4.98 g (15.0ミリモル) をテトラヒドロフラン30mlに溶解し、氷冷下トリフェニルホスフィン2.62 g (10.0ミリモル) を数回に分けて加える。室温下10時間搅拌後、固体を滤別し、滤液を洗浄する。残渣をシリカゲルカラムクロマトグラフィー(溶出浴媒:ヘキサ

ン) で精製し、181 mg (65%) の油状物を得た。

NMR(CDCl₃) δ

1.20(br, 1H), 2.27(s, 1H), 7.15~7.40(o, 5H)

工程2

N-(フェニル-2-プロピニル)-1-デオキシノジリマイシン

1-デオキシノジリマイシン163 mg (1.00ミリモル) と1-フェニル-3-ブロモプロピン215 mg (1.10ミリモル) をジメチルホルムアミド3mlに溶解し、炭酸カリウム166 mg (1.20ミリモル) を加え、室温下8時間搅拌する。反応混合物を水に注いで塩酸酸性とし、エーテルにて洗浄、水層をアンモニアアルカリとし、ヘプタノールで抽出する。油状物を除去した後、残渣をシリカゲルカラムクロマトグラフィー(溶出浴媒:クロロホルム-メタノール(10:1))で精製し、181 mg (65%) の固体を得た。

NMR(CDCl₃) δ

2.31(d, 1H), 2.57(t, 1H), 2.98(dd, 1H),

3.19(t, 1H), 3.50(t, 1H), 3.61(s, 1H),
3.82(ABX type, 2H), 3.98(dd, 2H)

製造例10

N-(2,3-ジヒドロキシ)-3-フェニルプロピル)-1-デオキシノグリマイシン

工程1

N-(3-フェニル-2-プロペニル)-1-デオキシノグリマイシンテトラアセテート

シンナミルブロムド1.42 g (7.20ミリモル)と1-デオキシノグリマイシン978 mg (6.00ミリモル)をジメチルホルムアミド10 mLに溶解し、炭酸カリウム996 mg (7.20ミリモル)を加えて、4時間、60~65°Cに加热する。冷後、塩化メチレン3 mLで希釈し、無水酢酸3.06 g (30.0ミリモル)とビリジン2.31 g (30.0ミリモル)を加えて室温下16時間振拌する。反応液を酢酸エチル150 mLで希釈し、飽和炭酸水素ナトリウム、水で順次洗浄、乾燥後、溶媒を留去する。残渣をシリカゲルカラムクロマトグラフィー〔溶出浴槽：ヘキサン-酢酸エチル(3:1)〕で精製し、2.12 g (81%)

注：ヘキサン-酢酸エチル(1:1)で精製し、222 mg (68%) のカラメルを得た。この化合物は2種の立体異性体の混合物(2:1)である。

NMR(CDCl₃) δ

2.32(dd), 2.57(dd), 2.70(ABX type), 2.85(dd),
2.97(s), 3.11(s), 3.12(dd), 3.16(s), 3.22(dd),
3.82(br), 4.13(ABX type), 4.20(ABX type),
4.48(t), 4.53(t), 4.86~5.12(s),
7.2~7.4(s, 5H)

工程2

N-(2,3-ジヒドロキシ)-3-フェニルプロピル)-1-デオキシノグリマイシン

N-(2,3-ジヒドロキシ)-3-フェニルプロピル)-1-デオキシノグリマイシンテトラアセテート196 mg (0.42ミリモル)をメタノール5 mLに溶解し、炭酸カリウム3 gを加えて室温下3時間振拌する。溶媒を留去した後、残渣をシリカゲルカラムクロマトグラフィー〔溶出浴槽：クロロホルム-メタノール(3:1)〕で精製し128 mg (98%) の無色カラメルを得た。この化合

の結晶を得た。

NMR(CDCl₃) δ

2.01(s, 6H), 2.03(s, 3H), 2.09(s, 3H),
2.38(dd, 1H), 2.70(dt, 1H), 3.25(dd, 1H),
3.38(dd, 1H), 3.59(ddd, 1H), 4.19(dd, 1H),
4.32(dd, 1H), 4.90~5.20(s, 3H), 6.22(dt, 1H)
6.56(d, 1H), 7.15~7.50(s, 5H)

工程3

N-(2,3-ジヒドロキシ)-3-フェニルプロピル)-1-デオキシノグリマイシンテトラアセテート

N-(3-フェニル-2-プロペニル)-1-デオキシノグリマイシンテトラアセテート305 mg (0.70ミリモル)とN-メチルセルホリン-N-オキシド98 mg (0.84ミリモル)を50%アセトン8 mLに溶解し、四酸化オスミウム2 mLを加え2時間振拌する。亞硫酸ナトリウム250 mg、水3 mLを加えて1時間振拌した後、水30 mLで希釈し酢酸エチルで抽出、水洗、乾燥後、溶媒を留去する。残渣をシリカゲルカラムクロマトグラフィー〔溶出浴槽：ヘキサン-酢酸エチル(1:1)〕で精製し、2.12 g (81%)

物は2種の立体異性体の混合物(2:1)である。

NMR(CD₃OD) δ

2.05(dd), 2.17(dd), 2.23~2.35(s), 2.54(dd),
2.87(dd), 2.98(dd), 3.10(t), 3.14(t),
3.2~4.0(s), 4.50(d), 4.68(d),
7.15~7.50(s, 5H)

次に本発明のN-置換-1-デオキシノグリマイシン誘導体の癌細胞殺傷抑制作用の評価結果を示す。
効果試験

試験法

マウスの腫瘍細胞であるメタノーマB16株よりフィドラー(Fidler)の方法(Method in Cancer Research, 15, 339-439, 1978)をもとにB16高伝移株を選択し、使用した。癌抑制作用の評価はキジマースダ(Kijima-Suda)等の方法(Proc., Natl., Acad., Sci., U.S.A., 83, 1752-1756, 1986; Cancer Research, 46, 858-862, 1986.)をもとにして行った。まずB16高伝移株を牛胎児血清を加えたダルベコME培地(DME培地)に植え、一般式(1)で表されるN-置換-1-デオ

キシノジリマイシンを加え、2～4日間、5%CO₂の存在下37℃で培養し、増殖した細胞をトリプシン-EDTA液で培養容器より剥がし。この細胞をCa⁺⁺とMg⁺⁺を含まないダルベコの平衡塩液で生細胞として1ml当たり1×10⁵細胞になるように懸滴した。

この懸滴液の0.1mlをマウス尾静脈中に注入し細胞を移植し14日間飼育した後、開腹して肺を摘出し、肺表面及び内部に形成されたB16高転移株の転移結節数を数え、薬剤処理をしなかった対照と比較した。

試験例1 細胞障害性

B16高転移株を10%牛胎児血清を加えたDME培地で5%CO₂の存在下37℃で培養し、トリプシン-EDTA液で培養容器より剥がし、1ml当たり1×10⁵細胞になるように懸滴した。この懸滴液の150μlを被検薬あるいは対照薬溶液50μlにそれぞれ加え混合した。この後、4日間培養し、倒立顕微鏡下で生死を観察し、細胞障害性を判定した。その結果は表1の通りであった。

の平衡塩液で生細胞として1ml当たり1×10⁵細胞になるように懸滴し、その0.1mlをBDF1マウス(8週令、雄)の尾静脈に注入し、細胞を移植した。14日間飼育観察後、開腹して肺を摘出し、肺表面及び内部に形成されたB16高転移株の転移結節数を数えた。その結果を表2に示した。

表 2

添加薬剤	肺転移結節数(平均±標準偏差)
無添加	207±47
製造例化合物9 (30 μg/ml)	96±29
製造例化合物10 (30 μg/ml)	60±18
製造例化合物7 (30 μg/ml)	18±7

以上の結果より本発明の化合物の処理で肺に形成される転移結節数は大きく減少した。

本発明の感細胞転移阻害剤は、上記のN-ビオキシノジリマイシン誘導体を含有する経口、非経口製剤とし臨床的に静脈、動脈、皮膚、皮下、皮内、直腸及び筋肉内を経由又は経口にて投与される。また腫瘍に直接投与することにより、より強い効果が期待できる。投与量は投与形態、

表 1

B16高転移株		
添加薬剤	濃度	生育
無添加		+
製造例化合物9	10 μg/ml	+
	30 μg/ml	+
	100 μg/ml	+
製造例化合物10	10 μg/ml	+
	30 μg/ml	+
	100 μg/ml	+
製造例化合物7	10 μg/ml	+
	30 μg/ml	+
	100 μg/ml	+
アドリアマイシン (対照)	0.1 μg/ml	-

表中+は生育、-は死滅を表す。

以上の試験結果より本発明の化合物はB16高転移株に対して細胞障害性を示さなかった。

試験例2 転移作用

B16高転移株を10%牛胎児血清を加えたDME培地に組み、被検薬を1ml当たりそれぞれ30μg加え、5%CO₂の存在下37℃で3日間培養した。

試験例1と同様の方法で細胞を培養容器より剥がし。この細胞をCa⁺⁺とMg⁺⁺を含まないダルベコ

剂量あるいは患者の年齢、体质、肉眼により異なるが、概ね1日100～3000mgを1回又は数回投与する。

非経口製剤としては、無菌の水性又は非水性溶媒あるいは乳化剤が挙げられる。非水性の溶媒剤又は乳化剤の基剤としては、プロピレングリコール、ポリエチレングリコール、グリセリン、オリーブ油、とうもろこし油、オレイン酸エチル等が挙げられる。

また、経口剤としては、カプセル剤、錠剤、顆粒剤、散剤等が挙げられる。

これらの製剤に賦形剤として、澱粉、乳糖、マニネット、エチルセルロース、ナトリウムカルボキシメチルセルロース等が配合され、滑潤剤としてステアリン酸マグネシウム又はステアリン酸カルシウムを添加する。結合剤としては、ゼラチン、アラビアゴム、セルロースエステル、ポリビニルピロリドン等が用いられる。

次に本発明の製剤例について説明する。

【実施例】

である。

N-[3-(4-フロロフェニル)-2-プロペニル]-1-

デオキシノジライシン	200	g
乳酸	130	g
ジャガイモ澱粉	70	g
ポリビニルビロドン	10	g
ステアリン酸マグネシウム	2.5	g

乳酸及びジャガイモ澱粉を混合し、これにポリビニルビロドンの20%エタノール溶液を加え、均一に混ぜさせ、1mmの網目のふるいを通して、45℃にて乾燥させ、再度1mmの網目のふるいを通して。こうして得られた顆粒をステアリン酸マグネシウムと混合し試料に成型した。

【発明の結果】

本発明は癌細胞転移抑制作用を有する極めて有用な物質である。そして、この物質を有効成分とした癌細胞転移抑制剤は、現在この防止手段が殆ど無く、癌治療患者の予後を左右する最大の問題である癌細胞の転移を解決した極めて有用な発明

特許出願人

明治製菓株式会社

代理人

小堀益(ほか1名)

第1頁の続き

- | | | |
|------------|------------------|----------------|
| ②発明者 鶴岡 崇士 | 神奈川県横浜市港北区師岡町760 | 明治製菓株式会社中央研究所内 |
| ②発明者 山本 治夫 | 神奈川県横浜市港北区師岡町760 | 明治製菓株式会社中央研究所内 |
| ②発明者 福安 春海 | 神奈川県横浜市港北区師岡町760 | 明治製菓株式会社中央研究所内 |

手続補正書

平成元年10月21日

特許庁長官 吉田文穂殿

1. 事件の表示

- 平成1年 特許 第127499号
2. 発明の名称 新規N-置換-1-デオキシノジリマイシン
誘導体及びそれを含有する癌細胞転移抑制剤

3. 補正をする者

事件との関係 特許出願人

氏名 (609) 明治製薬株式会社

4. 代理人

住所 ⑧12 福岡市博多区博多駅前1丁目1-1
博多新三井ビル 092-451-8781

氏名 (8216) 井理士 小堀 益

5. 補正の対象

明細書

6. 補正の内容

 方式
改訂

5の炭化水素基を表し、この炭化水素基は二重又は三重結合を有していてもよい、Zはフェニル基、フッソ置換フェニル基、ビフェニル基、シクロアルキル基、又はハロゲン置換アルキル基を表す。

で示されるN-置換-1-デオキシノジリマイシン誘導体又はその薬理的に許容される酸との付加塩を有効成分とすることを特徴とする癌細胞転移抑制剤。」

(2) 明細書第4頁の式(1)を下記の通り補正する。

(3) 明細書第3頁第12~14行「従って、この...
・課題である。」を下記の通り補正する。

「従って、現行の癌治療の有効性は癌細胞の転移を抑制することで、さらに高められることが期待される。」

(4) 明細書第15頁下から第9行「ケニル化試剤と

(1) 特許請求の範囲を下記の通り補正する。

1. 式

式中、Aは水酸基、ハロゲン化アルキル基又はアルコキシ基で置換されてもよい炭素数3乃至5の炭化水素基を表し、この炭化水素基は二重又は三重結合を有していてもよい、Zはフェニル基、フッソ置換フェニル基、ビフェニル基、シクロアルキル基、又はハロゲン置換アルキル基を表す。

で示されるN-置換-1-デオキシノジリマイシン誘導体。

2. 式

式中、Aは水酸基、ハロゲン化アルキル基、アルコキシ基で置換されてもよい炭素数3乃至5

各種アルコール類」を「ケニル化試剤と1-デオキシノジリマイシンを各種アルコール類」に補正する。

(3) 明細書第16頁の式(14)、(15)、(16)をそれぞれ下記の通り補正する。

JP 2306962
(English Translation)¹

DESCRIPTION

1. TITLE OF THE INVENTION

NOVEL N-SUBSTITUTED-1-DEOXYNOJIRIMYCIN DERIVATIVE AND
CANCER CELL ANTIMETASTATIC AGENT INCLUDING THE SAME

2. PATENT CLAIMS

1. An N-substituted-1-deoxynojirimycin derivative represented by the following formula,

wherein A represents a hydrocarbon group of 3 to 5 carbon atoms optionally substituted with hydroxyl, alkyl halide or alkoxy group, the hydrocarbon group optionally comprising a double or triple bond, and Z represents phenyl, fluorinated phenyl, biphenyl, cycloalkyl or halogenated alkyl group.

2. A cancer cell antimetastatic agent characterized by an active ingredient which is an N-substituted-1-deoxynojirimycin derivative represented by the following formula or an addition salt thereof with a pharmaceutically acceptable acid,

wherein A represents a hydrocarbon group of 3 to 5 carbon atoms optionally substituted with hydroxyl, alkyl halide or alkoxy group, the hydrocarbon group optionally comprising a double or triple bond, and Z represents phenyl, fluorinated phenyl, biphenyl, cycloalkyl or halogenated alkyl group.

3. DETAILED DESCRIPTION OF THE INVENTION

[Industrial Field of Application]

The present invention relates to a novel N-substituted-1-deoxynojirimycin derivative which inhibits formation of cancer cell metastases and a cancer cell antimetastatic agent containing the same as the active ingredient.

[Conventional Technique]

Various anticancer agents are currently in use. Majority of them are drugs which kill cancer cells or let human immune system destroy them, but a drug effective for fundamental treatment of cancers has not been obtained yet.

Solid cancers, to which chemotherapeutic agents have low effectiveness, are treated with physical therapies

such as surgery or radiotherapy, and the success rate is greatly improved from a viewpoint of removing primary cancer. It is however also true that metastases of cancer cells are induced on the other side.

[Problem to be Solved by the Invention]

As described above, metastasis of cancer cells are the biggest problem in conventional cancer treatments which affects prognosis of patients with cancer.

Therefore, it is currently desired the most to develop an anticancer agent which can enhance suppression of cancer cell metastasis.

In order to achieve the above object, it is the purpose of the present invention to provide a substance which effectively suppresses cancer cell metastases and a cancer cell antimetastatic agent containing the same as the active ingredient.

[Means for Solving the Problem]

The present inventors found N-substituted-1-deoxynojirimycin derivatives having a cancer cell antimetastatic effect prior to the present invention, and disclosed them in Japanese patent application publication Nos. Sho63-31095, Sho63-93673, Sho63-97454, Sho63-104850, Sho63-147815 and Sho63-147816.

The present inventors further synthesized novel N-

substituted derivatives of 1-deoxyojirimycin and broadly evaluated them, and then found a group of novel compounds having a strong cancer cell antimetastatic effect. The present invention has been thus accomplished.

The present invention is an N-substituted-1-deoxynojirimycin derivative represented by formula 1, and a cancer cell antimetastatic agent containing the compound or the addition salt thereof with a pharmaceutically acceptable acid as the active ingredient,

wherein A represents a hydrocarbon group of 3 to 5 carbon atoms optionally substituted with hydroxyl, alkyl halide or alkoxy group, the hydrocarbon group optionally comprising a double or triple bond, and Z represents phenyl, fluorinated phenyl, biphenyl, cycloalkyl or halogenated alkyl group.

The N-substituted-1-deoxynojirimycin derivative shown by formula 1 of the present invention is a novel substance which has not ever described in documents.

The following substances are examples of the compounds included in the novel N-substituted-1-deoxynojirimycin derivative:

N- (3-methoxymethyl-3-phenyl-2-propenyl)-1-

deoxynojirimycin,
N-(3-phenyl-3-trifluoromethyl-2-propenyl)-1-deoxynojirimycin,
N-[3-(4-fluorophenyl)-2-propenyl]-1-deoxynojirimycin,
N-[3[(3-fluorophenyl)-2-propenyl]-1-deoxynojirimycin,
N-[3[(2-fluorophenyl)-2-propenyl]-1-deoxynojirimycin,
N-[3-(4-biphenylpropyl)]-1-deoxynojirimycin,
N-[3-(4-fluorophenyl)-propyl]-1-deoxynojirimycin,
N-(3-cyclohexylpropyl)-1-deoxynojirimycin,
N-(3-phenyl-2-propenyl)-1-deoxynojirimycin,
N-(2,3-dihydroxy-3-phenylpropenyl)-1-deoxynojirimycin,
N-(6,6,6-trifluorohexyl)-1-deoxynojirimycin,
N-(5,5,5-trifluoropentyl)-1-deoxynojirimycin, and
N-(4,4,4-trifluorobutyl)-1-deoxynojirimycin.

When the N-substituted-1-deoxynojirimycin derivative of the present invention is used as a cancer cell antimetastatic agent, the pharmaceutically acceptable acid addition salt thereof includes addition salts of: inorganic acids such as hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid and phosphoric acid; organic acids such as formic acid, acetic acid, propionic acid, succinic acid, glycolic acid, lactic acid, malic acid, tartaric acid, citric acid, maleic acid, fumaric acid, benzoic acid, salicylic acid and methanesulfonic acid; and also amino acids such as asparagine acid and glutamic acid.

All compounds of the present invention are novel compounds which have not ever described in documents.

According to the most general synthesis method thereof, 1-deoxynojirimycin (see Tetrahedron, 24, 2125(1968)) is used as the raw material, which is obtained by reducing nojirimycin-(5-amino-5-deoxy-D-glucopyranose) (see Japanese patent application publication No. Sho43-760) which is a metabolite of an actinomycete found by the present inventors. Specifically, the N-substituted A-Z group of formula 1 of the present invention may be introduced by heating or leaving at room temperature 1-deoxynojirimycin with an aralkyl- or aralkenylation agent typified by aralkyl halide or alkenyl halide, aralkylsulfonate ester or aralkenylsulfonate ester, etc. in polar solvent such as alcohols, dimethylformamide, dimethylacetamide, dimethylsulfoxide, sulfolane and the mixture thereof in the presence of a deoxidizing agent such as alkali hydroxide, alkali carbonate, alkali bicarbonate, suitable organic amines, etc. It is also possible to employ a method such that the raw material is 1-deoxynojirimycin whose hydroxyl group is protected by a suitable protecting group, for example acetyl, benzoyl, tetrahydropyranyl, t-butyldimethylsilyl, or the like, and is subjected to the N-substitution reaction followed by deprotection. Furthermore, also available are: a method to carry out so-called reductive alkylation by use of an

agent with carbonyl group as an reactive agent in hydrogen atmosphere under a reductive condition, for example conditions in the presence of formic acid, sodium cyanoborohydride, sodium borohydride or a suitable metal catalyst of platinum oxide, palladium or Raney nickel; and a method to obtain an objective product by reducing an amide compound of 1-deoxynojirimycin with aralkylcarbonic acid or aralkenylcarbonic acid. According to need, these compounds are subjected to a general purification procedure such as recrystallization, column chromatography, etc., so as to obtain the compound of formula 1 of the present invention.

The substitution group of the compound of the present invention may be formed and introduced by any method suitable for the purpose. The following five production methods are given as suitable methods to produce an aralkyl-, aralkenyl- or aralkynylation agent for constructing the A-Z group of formula 1.

[Production Method 1]

Compound 3 may be synthesized by the reaction of compound 2 with a vinyl-metal compound, for example vinylmagnesium chloride, divinylmagnesium bromide, vinylmagnesium iodide, vinyllithium, divinylzinc, divinylcopper, divinylcesium, or the like, in nonpolar solvent, preferably in ether, tetrahydrofuran or dioxane, at -50°C to room temperature for 10 minutes to 24 hours.

Compound 4 may be synthesized by the reaction of compound 3 with hydrochloric acid, hydrobromic acid, oxalyl chloride, thionyl halide, oxyphosphorus halide, phosphorus trihalide, phosphorus pentahalide, tri-substituted phosphine-carbon tetrahalide, allyl- or alkylsulfonyl halide without solvent or in solvent such as benzene, toluene, ether, methylene chloride, acetonitrile, etc. at 0°C to 100°C for 30 minutes to 24 hours, the reaction being accompanied with transfer of the allylalcohol part of compound 3.

In the formula, Y₁ represents hydrogen atom, halogen atom, aralkyl or hydroxyl group, Y₂ represents hydrogen atom, halogen atom, aralkyl, alkoxy or halogen-substituted alkyl group, X represents halogen atom or alkyl- or allylsulfonyloxy group. The halogen atom denotes chlorine, bromine, iodine atom, etc., and the alkyl- or allylsulfonyloxy group denotes methane sulfonyloxy, trifluoromethane sulfonyloxy, p-toluene sulfonyloxy group, etc. M represents mono- or divalent metal or the salt

thereof, and the metal denotes lithium, sodium, potassium, magnesium, zinc, cesium or copper.

[Production Method 2]

Unsaturated ester 5 is synthesized by the reaction of compound 2 with carboalkoxymethylene tri-substituted phosphorane in suitable solvent, preferably benzene, toluene, ether, tetrahydrofuran, dioxane, methylene chloride, chloroform, methanol and ethanol, at 0°C to 60°C for 10 minutes to 24 hours, or with diaralkylphosphonoacetic acid aralkylester in the presence of a suitable base, for example sodium hydride, potassium hydride, alkali hydride or alkali carbonate, at 0°C to 60°C for 10 minutes to 24 hours. Compound 6 may be synthesized by the reaction of compound 5 with a suitable metal hydride complex reductant, preferably lithium aluminum hydride, diisobutylaluminum hydride, sodium bis(2-methoxyethoxy)aluminum hydride, or the like, in suitable aprotic solvent, preferably ether, tetrahydrofuran or dioxane, at -78°C to -100°C for 30 minutes to 18 hours. Compound 4 may be synthesized by the reaction of compound 6 with hydrochloric acid, hydrobromic acid, oxallyl chloride, thionyl halide, phosphorus trihalide, phosphorus pentahalide, tri-substituted phosphine-carbon tetraharide, allyl- or alkylsulfonyl halide without solvent or in solvent such as benzene, toluene, ether, methylene chloride, acetonitlile etc. at 0°C to 100°C for 30 minutes

to 24 hours.

In the formula, Y₁ and Y₂ represent the same as above, and R represents a protection group of carboxyl such as alkyl.

[Production Method 3]

Saturated alcohol 7 may be synthesized by the reduction of alkenylalcohol 6 obtained in production method 2 in the presence of a metal catalyst, for example palladium-carbon, platinum, Raney nickel, or the like, in suitable organic solvent, for example methanol, ethanol, acetic acid, tetrahydrofuran, ethyl acetate, or the like, in hydrogen atmosphere for 30 minutes to 24 hours.

Compound 8 may be synthesized by the reaction of compound 7 in solvent such as hydrobromic acid, oxalyl chloride, thionyl halide, phosphorous oxyhalide, phosphorous trihalide, phosphorous pentahalide, tri-substituted phosphine-carbon tetrahalide, allyl- or alkylsulfonyl halide, etc. at 0°C to 100°C for 30 minutes to 24 hours.

In the formula, Y₁, Y₂ and X represent the same as

above.

[Production Method 4]

Alkynylalcohol 10 may be synthesized by acetylidation of 1-allylacetylene derivative 9 with a suitable base, for example n-butyllithium, lithium diisopropylamide, sodium amide or the like, followed by reaction with formalin. Compound 11 may be synthesized by the reaction of compound 10 with oxalyl chloride, thionyl halide, phosphorous oxyhalide, phosphorous trihalide, phosphorous pentahalide, tri-substituted phosphine-carbon tetrahalide or allyl- or alkylsulfonyl halide without solvent or in solvent such as benzene, toluene, ether, methylene chloride, acetonitrile, etc. at 0°C to 100°C for 30 minutes to 24 hours.

In the formula, Y1, Y2 and X represent the same as above.

[Production Method 5]

As a production method of a terminally halogenated alkylation agent, for example, a trifluoromethyl derivative 13 may be synthesized by treating ω -halogenated fatty acid 12 with a suitable fluorinating agent, for example sulfur tetrafluoride (Angew. Chem. Internat. Ed., 1, 467 (1962)).

(12)

(13)

In the formula, X represents the same as above.

The N-substituted A-Z group of the compound of formula 1 in the present invention may be introduced by heating or leaving at room temperature with an aralkyl- or aralkenylation agent typified by the aralkyl halide or aralkenyl halide produced by the above production methods 1 to 5 and aralkylsulfonate ester or aralkenylsulfonate ester in polar solvent such as alcohols, dimethylformamide, dimethylacetamide, dimethylsulfoxide, sulfolane, etc. or the mixture thereof in the presence of a deoxidizing agent such as alkali hydroxide, alkali carbonate, alkali bicarbonate or suitable organic amines. It is also possible to employ a method such that the raw material is 1-deoxynojirimycin whose hydroxyl is protected by a suitable protecting group, for example acetyl, benzoyl, tetrahydropyranyl, t-butyldimethylsilyl, or the like, and N-substitution reaction is carried out followed by deprotection. Among the compounds included in the present invention, the ones of formula 1 where A is a hydroxyl-substituted hydrocarbon may be produced according to the following production method 6.

[Production method 6]

Objective product 16 may be obtained by the reaction

of N-substituted-1-deoxynojirimycin derivative 14, which may be synthesized by the reaction of the alkenylation agent synthesized according to production method 1 or 2 with 1-deoxynojirimycin or 1-deoxynojirimycin with protected hydroxyl, with a suitable oxidization agent, for example osmium tetroxide, or the like.

In the formula, Y_1 and Y_2 represent the same as above,
 R' represents hydrogen atom, acetyl, benzil, benzoyl,
 pivaloyl, t-butyldimethylsilyl or tetrahydropyranyl group.

Next, production examples of the N-substituted-1-deoxynojirimycin derivative of the present invention are shown.

[Production Example 1]:

N- (3-phenyl-3-trifluoromethyl-2-propenyl)-1-deoxynojirimycin

[Step 1]:

3-phenyl-3-trifluoromethyl-2-propene-1-ol

A solution of 1.74 g (10.0 mmol) 2,2,2-trifluoroacetofenone, which was dissolved in 10 ml of

tetrahydrofuran, was cooled to -78°C, and 1M vinylmagnesiumbromide solution in tetrahydrofuran was added dropwise. Following to the addition, the solution was stirred for 3 hours, and further for 1 hour without the cool bath. Water was added to decompose excess reagent in ice bath, and the solvent was then distilled away. 10 ml of 2N sulfuric acid was added to the residue, and extraction was carried out with ethyl acetate. The extract was washed with water, dried and then concentrated. The residue was purified with silica gel column chromatography (eluting solvent: ether-hexane (1:10)), so as to obtain 1.66 g (82%) of oily product.

NMR (CDCl_3) δ

2.61 (s, 1H), 5.52 (d, 1H), 5.62 (d, 1H),
6.43 (dd, 1H), 7.25-7.70 (m, 5H)

[Step 2] :

1-bromo-3-phenyl-3-trifluoromethyl-2-propene

606 mg (3.00 mmol) of 3-phenyl-3-trifluoromethyl-2-propene-1-ol and 943 mg (3.60 mmol) of triphenylphosphine were dissolved in 4 ml of acetonitrile and cooled in ice bath. 1.26 g (3.80 mmol) of carbon tetrabromide was then added in several parts. The solution was stirred for 1 hour in ice bath, and then further stirred overnight at room temperature. The reaction was diluted with 10 ml of ether, deposited solid was filtered off, and the filtrate was concentrated. The obtained residue was purified with

silica gel column chromatography (eluting solvent: hexane), so as to obtain 440 mg (55%) of oily product.

NMR (CDCl_3) δ

3.80 (dq, 2H), 8.62 (tq, 1H), 7.20-7.60 (m, 5H)

[Step 3]:

N-(3-phenyl-3-trifluoromethyl-2-propenyl)-1-deoxynojirimycin

163 mg (1.00 mmol) of deoxynojirimycin and 318 mg (1.20 mmol) of 1-bromo-3-phenyl-3-trifluoromethyl-2-propene were dissolved in 5 ml of dimethylformamide. 207 mg (1.50 mmol) of potassium carbonate was added and the solution was stirred for 8 hours at room temperature.

Saturated salt solution was added to the reaction mixture, and extraction was carried out with n-butanol. The extract was concentrated under reduced pressure, and the residue was purified with silica gel column chromatography (eluting solvent: chloroform-methanol (10:1)), so as to obtain 311 mg (90%) of colorless solid product.

NMR (CD_3OD) δ

2.15 (m, 2H), 3.10 (dd, 1H), 3.16 (t, 1H),
3.31 (m, 1H), 3.42 (t, 1H), 3.53 (m, 1H),
3.78 (dd, 1H), 3.96 (ABX type, 2H),
6.72 (t, 1H), 7.32 (m, 2H), 7.46 (m, 3H)

[Production Example 2]:

N-(3-metoxyethyl-3-phenyl-2-propenyl)-1-deoxynojirimycin

The synthesis was carried out by use of 1-bromo-3-

methoxymethyl-3-phenyl-2-propene which was synthesized in the same manner as production method 1.

NMR (CD₃OD) δ

2.13 (m, 2H), 3.06 (dd, 1H), 3.16 (t, 1H),
3.34 (m, 1H), 3.44 (t, 1H), 3.31 (m, 1H),
3.38 (s, 3H), 3.76 (dd, 1H),
3.97 (ABX type, 2H), 4.16 (s, 2H),
6.06 (t, 1H), 7.15-7.50 (m, 5H)

[Production example 3] :

N-[3-(4-fluorophenyl)-2-propenyl]-1-deoxynojirimycin

[Step 1] :

Methyl-3-(4-fluorophenyl)-2-propenoate

1.24 g (10.0 mmol) of 4-fluorobenzaldehyde was dissolved in 20 ml of methylene chloride. 3.67 g (11.0 mmol) of carbomethoxymethylenetriphenylphosphorane was added, and the mixture was stirred for 3 hours at room temperature. Solid was filtered off, the filtrate was concentrated, and the residue was purified with silica gel chromatography (eluting solvent: ethyl acetate-hexane (1:4)), so as to obtain 1.61 g (90%) of colorless needle crystal.

NMR (CDCl₃) δ

4.30 (d, 2H), 6.25 (m, 1H), 6.55 (d, 1H),
6.95 (m, 2H), 7.35 (m, 2H)

[Step 2] :

3-(4-fluorophenyl)-2-propene-1-ol)

1.61 g (9.00 mmol) of methyl-3-(4-fluorophenyl)-2-propenoate was dissolved to 50 ml of ether, and the solution was dropwise added to 205 mg (5.40 mmol) of lithium aluminum hydride suspended in 3 ml of ether in ice bath. Stirring for 30 min at room temperature after the addition, excess reagent was then decomposed with water, and solid was filtered off. The filtrate was concentrated, so as to obtain 1.33 g (97%) of 3-(4-fluorophenyl)-2-propene-1-ol.

NMR (CDCl_3) δ

4.52 (d, 2H), 6.31 (m, 1H), 7.01 (m, 2H),
7.45 (m, 2H)

[Step 3] :

1-bromo-3-(4-fluorophenyl)-2-propene

1.34 g (8.82 mmol) of 3-(4-fluorophenyl)-2-propene-1-ol and 4.26 g (11.5 mmol) of tri-n-octylphosphine was dissolved in 20 ml of ether, and 3.52 g (10.6 mmol) of carbon tetrabromide was added in several parts in ice bath. After stirring for 30 min at room temperature, precipitate was filtered off, the filtrate was concentrated, and the residue was purified with silica gel column chromatography (eluting solvent: hexane), so as to obtain 1.61 g (85%) of colorless oily product.

NMR (CDCl_3) δ

3.35 (d, 2H), 6.30 (m, 1H), 7.00 (m, 2H),
7.40 (m, 2H)

Mass m/z 214, 216

[Step 4] :

N-[3-(4-fluorophenyl)-2-propenyl]-1-deoxynojirimycin

1.61 g (7.5 mmol) of 1-bromo-3-(4-fluorophenyl)-2-propene and 1.22 g (7.5 mmol) of 1-deoxynojirimycin were dissolved in 10 ml of dimethylformamide. 3.12 g (22.5 mmol) of Potassium carbonate was added and stirred 24 hours at room temperature. Water was added to the reaction mixture, and extraction was carried out with n-butanol. After distilling away the solvent, the residue was purified with silica gel column chromatography (eluting solvent: chloroform-methanol (10:1)), so as to obtain 1.36 g (61%) of pale yellow solid product.

NMR (CD₃OD) δ

2.4-4.2 (m, 16H), 6.40 (m, 1H), 6.7 (m, 1H),
7.10 (m, 2H), 7.55 (m, 2H)

Mass m/z 298 (FD, M+1)

[Production Example 4] :

N-[3-(3-fluorophenyl)-2-propenyl]-1-deoxynojirimycin

The synthesis was carried out in the same manner as production example 3.

NMR (CD₃OD) δ

2.15 (m, 2H), 3.04 (dd, 1H), 3.14 (t, 1H),
3.2-3.35 (m, 1H), 3.39 (t, 1H),
3.49 (m, 1H), 3.68 (dd, 1H),
3.94 (ABX type, 2H), 6.41 (dt, 1H),

6.59 (d, 1H), 6.95 (dt, 1H), 7.16 (dd, 1H),
7.21 (d, 1H), 7.31 (ddd, 1H)

Mass m/z 298 (FD, M+1)

[Production Example 5]:

N-[3-(2-fluorophenyl)-2-propenyl]-1-deoxynojirimycin

The synthesis was carried out in the same manner as production example 3.

NMR (CD₃OD) δ

2.1-2.25 (m, 2H), 3.06 (dd, 1H),
3.14 (t, 1H), 3.24-3.35 (m, 1H),
3.39 (t, 1H), 3.50 (m, 1H), 3.71 (m, 1H),
3.94 (ABX type, 2H), 6.45 (dt, 1H),
6.72 (d, 1H), 7.0-7.16 (m, 2H),
7.2-7.28 (m, 1H), 7.53 (dt, 1H)

Mass m/z (FD, M+1)

[Production Example 6]:

N-[3-(4-biphenyl)propyl]-1-deoxynojirimycin

[Step 1]:

1.10 g (6.00 mmol) of methyl-3-(4-biphenyl)acrylate-4-biphenylcarboxyaldehyde was dissolved in 20 ml of dichloroethane. 3.03 g (9.10 mmol) of carbomethoxymethylenetriphenylphosphorane was added, and the solution was stirred for 1 hour at room temperature. After distilling away the solvent, the residue was purified with silica gel column chromatography (eluting solvent: ether-hexane (1:10)), so as to obtain 1.12 g

(78%) of colorless crystal.

NMR (CDCl₃) δ

3.83 (s, 3H), 6.49 (d, 1H), 7.30-7.60 (m, 9H),
7.75 (d, 1H)

[Step 2]:

Methyl-3-(4-biphenyl)propionate

1.40 g (4.40 mmol) of methyl-3-(4-biphenyl)acrylate was dissolved in 50 ml of ethyl acetate. 70 mg of 10% Pd-C was added to carry out catalytic reduction under ambient pressure for 12 hours. After filtering off the catalyst, the solvent was distilled away so as to obtain 1.01 g (97%) of colorless oily product.

NMR (CDCl₃) δ

2.68 (t, 2H), 3.00 (t, 2H), 3.68 (s, 3H),
7.20-7.70 (m, 9H)

[Step 3]:

3'-(4-biphenyl)-1-propanol

To suspension of 110 mg (2.90 mmol) lithium aluminum hydride in 10 ml of ether, solution of 1.01 g (4.20 mmol) of methyl-3-(4-biphenyl)propionate in 35 ml of ether was added dropwise in ice bath. After stirring for 1 hour at the same temperature, excess reagent was decomposed with water, inorganic product was filtered off, and the filtrate was dried and concentrated, so as to obtain 861 mg (96%) of colorless crystal.

NMR (CDCl₃) δ

1.56 (br, 1H), 1.94 (m, 2H), 2.77 (m, 2H),
3.71 (m, 2H), 7.15-7.76 (m, 9H)

[Step 4]:

3-(4-biphenyl)-1-bromopropane

419 mg (2.00 mmol) of 3-(4-biphenyl)-1-propanol and 629 mg (2.40 mmol) of triphenylphosphine was dissolved in 10 ml of ether. 930 mg (2.80 mmol) of carbon tetrabromide was added in ice bath in several parts. After stirring for 1 hour at room temperature, precipitate was filtered off, the filtrate was concentrated, and the residue was purified with silica gel column chromatography (eluting solvent: hexane), so as to obtain 506 mg (92%) of colorless oily product.

NMR (CDCl_3) δ

2.20 (quin, 2H), 2.83 (t, 2H), 3.44 (t, 2H),
7.23-7.65 (m, 9H)

[Step 5]:

N-[3-(4-biphenyl)propyl]-1-deoxynojirimycin

140 mg (0.50 mmol) of 3-(4-biphenyl)-1-bromopropane and 82 mmol (0.5 mmol) of 1-deoxynojirimycin were dissolved in 1 ml of dimethylformamide. 136 mg (1.00 mmol) of potassium carbonate was added and heated at 80°C for 4 hours. Water was added, and the reaction mixture was acidified with hydrogen chloride and washed with ether. The aqueous phase was alkalized with ammonia, and extraction was carried out with n-butanol. After removing

the solvent, the residue was purified with silica gel column chromatography (eluting solvent: chloroform-methanol (10:1), so as to obtain 117 mg (66%) of solid product.

NMR (CD₃OD) δ

1.86 (m, 2H), 2.20 (br, 2H), 2.65 (m, 3H),
2.89 (m, 1H), 3.00 (m, 1H), 3.14 (t, 1H),
3.47 (m, 1H), 3.84 (d, 2H), 7.15-7.65 (m, 9H)

[Production Example 7]:

N-[3-(4-fluorophenylpropyl)]-1-deoxynojirimycin

The synthesis was carried out in the same manner as production example 6.

NMR (CD₃OD) δ

1.38 (m, 2H), 2.05-2.22 (m, 2H), 2.64 (m, 2H)
2.98 (dd, 1H), 3.13 (t, 1H), 3.30 (m, 1H),
3.38 (t, 1H), 3.45 (m, 1H),
3.64 (m, 1H), 3.85 (m, 2H), 7.18-7.35 (m, 4H)

[Production Example 8]

N-(3-cyclohexylpropyl)-1-deoxynojirimycin

The synthesis was carried out with the same manner as production example 6.

NMR (CD₃OD) δ

0.75-1.08 (m, 2H), 1.08-1.45 (m, 7H),
1.45-2.00 (m, 6H), 2.70-3.83 (m, 8H),
4.00 (ABX type, 2H)

[Production Example 9]:

N-(phenyl-2-propynyl)-1-deoxynojirimycin

[Step 1] :

1-phenyl-3-bromopropin

660 mg (5.00 mmol) of 1-phenyl-2-propin-1-ol and 4.98 g (15.0 mmol) of carbon tetrabromide were dissolved in 30 ml of tetrahydrofuran. 2.62 g (10.0 mmol) of triphenylphosphine was added thereto in ice bath in several parts. After stirring for 10 hours at room temperature, solid was filtered off and the filtrate was concentrated. The residue was purified with silica gel column chromatography (eluting solvent: hexane), so as to 181 mg (65%) of colorless oily product.

NMR (CDCl_3) δ

1.20 (br, 1H), 2.27 (s, 1H), 7.15-7.40 (m, 5H)

[Step 2] :

N-(phenyl-2-propynyl)-1-deoxynojirimycin

163 mg (1.00 mmol) of 1-deoxynojirimycin and 215 mg (1.10 mmol) of 1-phenyl-3-bromopropyne were dissolved in 3 ml of dimethylformamide. 166 mg (1.20 mmol) of potassium carbonate was added thereto and stirred for 8 hours at room temperature. Water was added, and the reaction mixture was acidified with hydrogen chloride and washed with ether. The aqueous phase was alkalized with ammonia, and extraction was carried out with n-butanol. After distilling away the solvent, the residue was purified with silica gel column chromatography (eluting solvent:

chloroform-methanol (10:1)), so as to obtain 181 mg (65%) of solid product.

NMR (CD₃OD) δ

2.31 (d, 1H), 2.57 (t, 1H), 2.98 (dd, 1H),
3.19 (t, 1H), 3.50 (t, 1H), 3.61 (m, 1H),
3.82 (ABX type, 2H), 3.98 (dd, 2H)

[Production Example 10]:

N-[(2,3-dihydroxy)-3-phenylpropyl] -1-deoxynojirimycin

[Step 1]:

N-(3-phenyl-2-propenyl)-1-deoxynojirimycin tetraacetate

1.42 g (7.20 mmol) of cinnamylbromide and 978 mg (6.00 mmol) of 1-deoxynojirimycin were suspended in 10 ml of dimethylformamide. 996 mg (7.20 mmol) of Potassium carbonate was added and heated at 60 to 65°C for 4 hours. After cooled, the mixture was diluted with 3 ml of methylene chloride. 3.06 g (30.0 mmol) of acetic anhydride and 2.37 g (30.0 mmol) of pyridine were added and stirred for 16 hours at room temperature. The reaction was diluted with 150 ml of ethyl acetate, washed with saturated sodium hydrogen carbonate solution and subsequently with water. After dried, the solvent was then distilled away. The residue was purified with silica gel column chromatography (eluting solvent: hexane-ethyl acetate (3:1)), so as to obtain 2.12 g (81%) of crystal.

NMR (CDCl₃) δ

2.01 (s, 6H), 2.03 (s, 3H), 2.09 (s, 3H),

2.38 (dd, 1H), 2.70 (dt, 1H), 3.25 (dd, 1H),
3.38 (dd, 1H), 3.59 (ddd, 1H), 4.19 (dd, 1H),
4.32 (dd, 1H), 4.90-5.20 (m, 3H), 6.22 (dt, 1H),
6.56 (d, 1H), 7.15-7.50 (m, 5H)

[Step 2] :

N-[(2,3-dihydroxy)-3-phenylpropyl]-1-deoxynojirimycin
tetraacetate

305 mg (0.70 mmol) of N-(3-phenyl-2-propenyl)-1-deoxynojirimycin tetraacetate and 98 mg (0.84 mmol) of N-methylmorpholine-N-oxide were dissolved in 8 ml of 50% acetone. 2 mg of osmium tetroxide was added and stirred for 2 hours. After adding 250 mg of sodium nitrite and 3 ml of water and stirring for 1 hours, the solution was diluted with 30 ml of water and extraction was carried out with ethyl acetate. After washed with water and dried, the solvent was distilled away. The residue was purified with silica gel column chromatography (eluting solvent: hexane-ethyl acetate (1:1)), so as to obtain 222 mg (68%) of caramel product. This compound was a mixture (2:1) of two stereoisomers.

NMR (CDCl_3) δ

2.32 (dd), 2.57 (dd), 2.70 (ABX type), 2.85 (dd),
2.97 (m), 3.11 (s), 3.12 (dd), 3.16 (s), 3.22 (dd),
3.82 (br), 4.13 (ABX type), 4.20 (ABX type),
4.48 (t), 4.53 (t), 4.86-5.12 (m),
7.2-7.4 (m, 5H)

[Step 3] :

N-[(2,3-dihydroxy)-3-phenylpropyl]-1-deoxynojirimycin
196 mg (0.42 mmol) of N-[(2,3-dihydroxy)-3-phenylpropyl]-1-deoxynojirimycin tetraacetate was dissolved in 5 ml of methanol. 3 mg of potassium carbonate was added and stirred for 3 hours at room temperature. After distilling away the solvent, the residue was purified with silica gel column chromatography (eluting solvent: chloroform-methanol (3:1)), so as to obtain 128 mg (98%) of colorless caramel product. This compound was a mixture (2:1) of two stereoisomers.

NMR (CD_3OD) δ

2.05 (dd), 2.17 (dd), 2.23-2.35 (m), 2.54 (dd),
2.87 (dd), 2.98 (dd), 3.10 (t), 3.14 (t),
3.2-4.0 (m), 4.50 (d), 4.68 (d),
7.15-7.50 (m, 5H).

Next, shown are results of evaluating cancer cell antimetastatic effect of the N-substituted deoxynojirimycin derivatives of the present invention.

[Effect Test]

[Test Method]

From melanoma B16 strain, which is a mouse tumor cell, a B16 high metastatic strain was selected for use based on the Fidler's method (Method in Cancer Research, 15, 339-439, 1978). Antimetastatic effect was evaluated based on the method of Kijima-Suda and others (Proc.,

Natl., Acad., Sci., U.S.A., 83, 1752-1756, 1986; Cancer Research, 46, 858-862, 1986.). First, the B16 high metastatic strain was seeded on Dulbecco's ME medium (DME medium) containing fetal bovine serum. N-substituted-1-deoxynojirimycin represented by general formula 1 was added, and the cells were cultured for 2 to 4 days at 37°C in the presence of 5% CO₂. The grown cells were peeled from the culture vessel with trypsin-EDTA solution. These cells were suspended in Dulbecco's balanced salt solution without Ca⁺⁺ and Mg⁺⁺ at 1×10⁶ cells/1 ml based on living cells.

Mice were injected with 0.1 ml of this suspension via tale vine to transplant the cells. After grown for 14 days, the lungs were extirpated by laparotomy. The number of the surface and internal metastatic nodes of B16 high metastatic strain formed on the lungs was counted and compared with the control which was not treated with the agent.

[Test Example 1]: Cellular Cytotoxicity

The B16 high metastatic strain was cultured in DME medium containing 10% fetal bovine serum at 37°C in the presence of 5% CO₂. The cells were peeled from the culture vessel with trypsin-EDTA solution, and suspended at 1×10⁴ cells per 1 ml. 150 µl of the suspension were added to and mixed with each 50 µl of test drug and control drug solution. The cells were then cultured for 4

days, and the living/dead thereof was observed under an inverted microscope to decide cellular cytotoxicity. The result is shown in Table 1.

Table 1

Used cell	B16 high metastasis strain	
Added drug	Concentration	Viability
Non-added		+
Compound of Production Example 9	10 µg/ml	+
	30 µg/ml	+
	100 µg/ml	+
Compound of Production Example 10	10 µg/ml	+
	30 µg/ml	+
	10 µg/ml	+
Compound of Production Example 7	10 µg/ml	+
	30 µg/ml	+
	100 µg/ml	+
Adriamycin (control)	0.1 µg/ml	-

"+" represents "living" and "--" represents "dead".

According to the test result, the compounds of the present invention did not have cellular cytotoxicity to B16 high metastatic strain.

[Test Example 2]: Antimetastatic Effect

B16 high metastatic strain was seeded to DME medium containing 10% fetal bovine serum. Each test drug was added at 30 µg per 1 ml, and the cells were cultured for 3 days at 37°C in the presence of 5% CO₂. The cells were peeled from the culture vessel in the same way as test example 1. These cells were suspended in Dulbecco's

balanced salt solution without Ca^{++} and Mg^{++} at 1×10^6 cells/1 ml based on living cells. BDF₁ Mice (8 weeks old, male) were injected with 0.1 ml thereof via tail vein to transplant the cells. After grown for 14 days, the lungs were extirpated by laparotomy. The number of the surface and internal metastatic nodes of B16 high metastatic strain formed in the lungs was counted. The result is shown in Table 2.

Table 2

Added drug	The number of lung metastatic nodes (average \pm standard deviation)
Non-added	207 ± 47
Compound of Production Example 9 (30 $\mu\text{g}/\text{ml}$)	96 ± 29
Compound of Production Example 10 (30 $\mu\text{g}/\text{ml}$)	60 ± 18
Compound of Production Example 7 (30 $\mu\text{g}/\text{ml}$)	18 ± 7

According to the result, the treatment with the compounds of the present invention greatly reduced the number of metastatic nodes formed in the lung.

The cancer cell antimetastatic agent of the present invention is oral or parenteral formulate containing the above N-substituted-1-deoxynojirimycin derivative, and clinically administered via vein, artery, skin, subcutaneous, intracutaneous, rectum or muscle, or orally. It is expected that direct administration to a tumor brings intense effect. The dose, which depends on

administration route, dosage form, and age, weight and condition of a patient, is basically 100 to 3,000 mg per day and given one or several times.

As the parenteral formulate, there can be given sterile aqueous and non-aqueous liquid formulation and emulsion formulation. As the base of the non-aqueous liquid formulation and emulsion formulation, there can be given propylene glycol, polyethylene glycol, glycerin, olive oil, corn oil, ethyl oleate, etc.

As the oral formulate, there can be given capsule, tablet, granule, powder, etc.

To these formulates, starch, lactose, mannite, ethylcellulose, sodium carboxymethylcellulose or the like is blended as excipient, and magnesium stearate or calcium stearate is added as lubricant. As binder, gelatin, gum arabic, cellulose ester, polyvinylpyrrolidone or the like is used.

Next, a formulation example of the present invention is described.

[Example]

N-[3-(4-fluorophenyl)-2-propenyl]-1-deoxynojirimycin: 200 mg

lactose: 130 mg

potato starch: 70 mg

polyvinylpirroridone: 10 mg

magnesium stearate: 2.5 mg

Lactose and potato starch were mixed and wetted uniformly with 20% solution of polyvinylpirrolidone in ethanol. The mixture was filtered with 1 mm mesh, dried at 45°C, and filtered with 1 mm mesh again. The obtained granule was mixed with magnesium stearate, and shaped to tablets.

[Advantage of the Invention]

The present invention is a highly useful substance having cancer cell antimetastatic effect. The cancer cell antimetastatic agent containing this substance as the active ingredient solves the problem of cancer cell metastasis, which there is currently little countermeasure for and affects prognosis of patients with cancer the most, and is therefore a highly useful invention.

AMENDMENT

6. Content of Amendment

(1) The patent claims are amended as follows.

"1. An N-substituted-1-deoxynojirimycin derivative represented by the following formula,

wherein A represents a hydrocarbon group of 3 to 5 carbon atoms optionally substituted with hydroxyl, alkyl halide or alkoxy group, the hydrocarbon group optionally comprising a double or triple bond, and Z represents phenyl, fluorinated phenyl, biphenyl, cycloalkyl or halogenated alkyl group.

2. A cancer cell antimetastatic agent characterized by an active ingredient which is an N-substituted-1-deoxynojirimycin derivative represented by the following formula or an addition salt thereof with a pharmaceutically acceptable acid,

wherein A represents a hydrocarbon group of 3 to 5 carbon atoms optionally substituted with hydroxyl, alkyl halide or alkoxy group, the hydrocarbon group optionally comprising a double or triple bond, and Z represents phenyl, fluorinated phenyl, biphenyl, cycloalkyl or halogenated alkyl group."

(2) On p.4 (p.4) of the description, formula 1 is amended as follows.

(3) On p.3, 1.12-14 (p.3, 1.10-12) of the description, "Therefore, it is ... cancer cell metastasis." is amended as follows.

"Therefore, it is expected that suppression of cancer cell metastasis further improves the effectiveness of current cancer treatments."

(4) On p.15 in the 9th line from the bottom (p.12, 1.4-5) of the description, "... heating or leaving at room temperature with an aralkyl- or aralkenylation agent ..." is amended as follows.

"... heating or leaving at room temperature 1-

nojirimycin with an aralkyl- or aralkenylation agent ..."

(5) On p.16 (p.13) of the description, formulae (14), (15) and (16) are amended as follows.

