CORSO DI LAUREA TRIENNALE IN INFORMATICA PROVA SCRITTA DI ALGEBRA (GRUPPI I E II) 4 SETTEMBRE 2018

Svolgere i seguenti esercizi,

Sui fogli consegnati vanno indicati: **nome**, **cognome**, **matricola** e **gruppo** di **appartenenza**. **Non** è necessario consegnare la traccia.

Esercizio 1. Dare le definizioni di *anello*, di *divisore dello zero* in un anello e di *dominio di integrità*. Si consideri l'anello unitario R di sostegno $\mathbb{Z} \times \mathbb{Z}$ ed operazioni $+ e \cdot$ definite da: per ogni $a, b, x, y \in \mathbb{Z}$ (a, x) + (b, y) = (a + b, x + y) e $(a, x) \cdot (b, y) = (ab + ay + bx, xy)$.

- (i) Stabilire se R è commutativo, determinare lo zero 0_R e l'unità 1_R di R.
- (ii) Tra gli elementi (2,1) e (2,-1) di R, stabilire quali sono e quali non sono invertibili e quali divisori dello zero.

Esercizio 2. Consideriamo in $S = \mathbb{N} \times \mathbb{N}$ la relazione d'ordine ρ definita da: $\forall a, b, c, d \in \mathbb{N}$ $(a, b) \rho(c, d) \iff ((a, b) = (c, d) \vee (a \leq c \wedge b \leq d \wedge a \leq d)).$

- (i) Determinare gli eventuali elementi minimali, massimali, minimo, massimo in (S, ρ) .
- (ii) Determinare l'insieme dei minoranti in (S, ρ) di $T = \{(3, 1), (4, 2)\}$ e, se esiste, inf T.
- (iii) (S, ρ) è un reticolo?

Sia $V = \{0, 1, 2\} \times \{0, 1\}.$

- (iv) Disegnare il diagramma di Hasse di (V, ρ) . (V, ρ) è un reticolo? Nel caso, è distributivo, complementato, booleano?
- (v) Esiste in V un elemento a tale che, posto $W = V \setminus \{a\}$, (W, ρ) sia un reticolo? Nel caso, indicarne uno e stabilire se (W, ρ) è distributivo, se è complementato, se è booleano.

Esercizio 3. Siano $T = \mathbb{Z}_2 \times \mathbb{Z}_5$ e $X = \{2^i \in \mathbb{N} \mid i \leq 10\}$, siano $f : n \in \mathbb{N} \mapsto ([n]_2, [n]_5) \in T$ e $g : n \in X \mapsto f(n) \in T$, e sia \sim il nucleo di equivalenza di g.

- (i) f è iniettiva? f è suriettiva?
- (ii) g è iniettiva? g è suriettiva?
- (iii) Determinare $|X/\sim|$ ed elencare gli elementi di $[4]_{\sim}$ e di $[1]_{\sim}$.
- (iv) Supponiamo che Y sia una parte di $\mathbb N$ tale che $h\colon n\in Y\mapsto f(n)\in T$ sia iniettiva e $2\in Y$. Allora:
 - (a) se |Y| = 10, h è suriettiva?
 - (b) se |Y| = 3, h è suriettiva?
 - (c) si può stabilire quanti elementi ha $[2]_{\sim} \cap Y$? Nel caso, farlo.

Esercizio 4. Posto $C = \{n \in \mathbb{N} \mid n < 20\}$, esprimere il numero s_1 delle parti di C di cardinalità 6 costituite interamente da numeri pari e quello, s_2 , di tutte le parti di C di cardinalità 12 contenenti $\{3, 17\}$.

Esercizio 5. Nell'anello di polinomi $\mathbb{Z}_2[x]$ dire quali e quanti sono i polinomi di grado 4 che ammettono sia $\bar{0}$ che $\bar{1}$ come radici. Tra questi polinomi:

- (i) quanti sono irriducibili?
- (ii) quanti hanno un divisore irriducibile di grado 3?
- (iii) quanti hanno un divisore irriducibile di grado 2?
- (iv) quanti sono prodotto di polinomi di grado 1?

Esercizio 6. Facendo uso dell'algoritmo risolutivo per le equazioni congruenziali si trovino, se esistono, in \mathbb{Z}_{10} una classe A tale che $A[4]_{10} = [3]_{10}$ e una classe B tale che $B[4]_{10} = [6]_{10}$.