PHY622/Quiz 3

Date: April 20, 2018		[Total Maximum Marks: 20]
Enrol. No.: SOLUTION	Name:	0. 50 0 0
L 0		

Instructions:

- Marks: For questions (1-5), +2 for each correct answer and -1 for each incorrect answer. For questions (6) and (7), +5 for each correct answer.
- For multiple choice type questions, mark your answer neatly. Answers with more than one selection will not be taken into account.
- For other questions write **only** the final answer in a space given in the paper.

Questions

- SU(n) is a group of n × n unitary matrices with determinant +1. The number of independent generators of this group is
 (A) n+1
 (B) 2n-1
 (C) n²
- 2. The dimension of matrices in adjoint representation of SO(8) group is (A) 7×7 (B) 8×8 (CY28 × 28 (D) 56×56
 - (A) 7×7 (B) 8×8 (C) 28×28 (D) 56×56
- 3. For the generators J_i (i=1,2,3) of SO(3) and $J_{\pm}=\frac{1}{\sqrt{2}}(J_1\pm iJ_2)$, and for an operator $\mathcal{J}=J_-J_+$ and $J_3|j,m\rangle=m|j,m\rangle$,
 - (A) $|j,m\rangle$ is an eigenstate of ${\mathcal J}$ with eigenvalue $\frac{1}{2}(j^2-m^2)$.
 - $\langle \mathcal{D} \rangle | j, m \rangle$ is an eigenstate of \mathcal{J} with eigenvalue $\frac{1}{2}(j-m)(j+m+1)$.
 - (C) $|j,m\rangle$ is an eigenstate of \mathcal{J} with eigenvalue $\frac{1}{2}(j+m)(j-m+1)$.
 - (D) $|j,m\rangle$ is not an eigenstate of \mathcal{J} .
- 4. Which of the following Lie groups contain an SU(2) as its subgroup,
 - (A) SU(3)
 - (B) SO(4)
 - (C) SO(1,3)
 - All of the above.
- 5. The elements of a general non-abelian Lie group are given as $g(\alpha) = e^{i\alpha_i J_i}$. Consider Hamiltonian of a system is H and $[H, g(\alpha)] = 0$ for all α_i . If each of the J_i corresponds to a physical observable then these observables are
 - (A) simultaneously measurable and conserved quantities.
 - not simultaneously measurable but conserved quantities.
 - (C) simultaneously measurable but not conserved quantities.
 - (D) neither simultaneously measurable nor conserved quantities.

6. For the generators J_i of SO(3) and $J_{\pm} = \frac{1}{\sqrt{2}}(J_1 \pm iJ_2)$, write down the 5-dimensional irreducible matrix representation of J_{\pm} in the diagonal basis of J_3 .

Answer:

$$\int_{+}^{0} \begin{cases}
0 & \sqrt{2} & 0 & 0 & 0 \\
0 & 0 & \sqrt{3} & 0 & 0 \\
0 & 0 & 0 & \sqrt{3} & 0 \\
0 & 0 & 0 & \sqrt{2}
\end{cases}$$

$$\int_{+}^{2} \begin{cases}
0 & 0 & 0 & 0 & 0 \\
\sqrt{2} & 0 & 0 & 0 & 0 \\
0 & \sqrt{3} & 0 & 0 & 0 \\
0 & 0 & \sqrt{3} & 0 & 0 \\
0 & 0 & \sqrt{3} & 0 & 0 \\
0 & 0 & \sqrt{3} & 0 & 0 \\
0 & 0 & \sqrt{3} & 0 & 0 \\
0 & 0 & \sqrt{2} & 0
\end{cases}$$

$$\begin{cases}
1+2\rangle, (+1)^{2}, (0)^{2}, (+1)^{2}, (-2)^{2}
\end{cases}$$

$$\begin{cases}
1-2\rangle, (-1)^{2}, (0)^{2}, (1+1)^{2}, (1+2)^{2}
\end{cases}$$

[ANY ONE OF THE ABOVE IS CORRECT ANSWER]

7. A 5×5 real matrix Λ satisfies $\Lambda^T g \Lambda = g$ where g = Diag.(+1, +1, -1, -1, -1). How many independent free parameters are required to parametrize the matrix Λ ?

Answer:

The total number of free independent Purumeters is 10.