

Query Languages

- Categories of languages
 - procedural
 - *non-procedural
- □ "Pure" languages:
 - Relational Algebra
 - * Relational Calculus
 - > Tuple Relational Calculus
 - > Domain Relational Calculus
- Pure languages form underlying basis of query languages that people use

RELATIONAL CALCULUS

- Relational Calculus
- Tuple Relational Calculus
- Domain Relational Calculus

@ SKG 12/8/2020

Relational Calculus

- A relational calculus expression creates a new relation, which is specified in terms of variables that range
 - over rows of the stored database relations,

tuple relational calculus

over columns of the stored relations

domain relational calculus

Both TRC and DRC are simple subsets of first-order logic/ first order predicate calculus.

- Expressions in the calculus are called formulas.
- Answer tuple is an assignment of constants to variables that make the formula evaluate to *true*.

@ SKG 12/8/2020

First-Order Predicate Logic

Predicate: is a feature of language which you can use to make a statement about something, e.g., to attribute a property to that thing.

Peter *is tall*. We predicated tallness of peter or attributed tallness to peter.

A predicate may be thought of as a kind of function which applies to individuals and yields a **proposition**.

- Proposition logic is concerned only with sentential connectives such as and, or, not.
- Predicate Logic, where a logic is concerned not only with the sentential connectives but also with the internal structure of atomic propositions.

FOPL

- First-order predicate logic, first-order says we consider predicates on the one hand, and individuals on the other; that atomic sentences are constricted by applying the former to the latter; and that quantification is permitted only over the individuals
- First-order logic permits reasoning about propositional connectives and also about quantification.
 - All men are mortal → mortal(men) or \forall X, mortal(X)
 - Some men are mortal → \thereexits X, mortal(X)
 - Peter is a man → man(peter)
- Peter is mortal mortal (peter)

Relational Calculus

- In a calculus expression, there is no order of operations to specify how to retrieve the query result—a calculus expression specifies only what information the result should contain. This is the main distinguishing feature between relational algebra and relational calculus
- Relational calculus is considered to be a nonprocedural language. This differs from relational algebra, where we must write a sequence of operations to specify a retrieval request; hence relational algebra can be considered as a procedural way of stating a query

RELATIONAL CALCULUS

❖ Tuple Relational Calculus

@ SKG 12/8/2020

Tuple Relational Calculus

- □ The tuple relational calculus is based on specifying a number of **tuple variables**
- □ Each tuple variable usually *ranges over* a particular database relation, meaning that the variable may take as its value any individual tuple from that relation

employee

fname	lname	empid	bdate	address	dno	salary
John	Smith	123		Houston	5	
Franklin	Wong	345		Houston	5	
Jeniffer	Wallace	987		Bellarice	4	
James	Bomg	865		Houston	1	

Tuple Relational Calculus

□ A simple tuple relational calculus query is of the form

{t | COND(t)}

where t is a tuple variable and COND (t) is a conditional expression involving t. The result of such a query is the set of all tuples t that satisfy COND (t) $\frac{1}{2}$

employee

fname	lname	empid	bdate	address	dno	salary
John	Smith	123		Houston	5	
Franklin	Wong	345		Houston	5	
Jeniffer	Wallace	987		Bellarice	4	
James	Bomg	865		Houston	1	

@ SKG 12/8/2020

Tuple Relational Calculus

- A general expression of the tuple relation calculus is of the form
 - $\rightarrow \{t_1.a_1, t_2.a_2,..., t_n.a_n \mid Cond(t_1,t_2,..., t_n,t_{n+1},..., t_{n+m})\}$
 - t_i is a tuple and a_i is an attribute of the relation on which t_i ranges

Example of Relation

employee

works_on

fname lname empid bdate address dno salary John Smith 123 Houston Franklin Wong 345 Houston 5 Jeniffer Wallace 987 Bellarice 4 865 Houston James Bomg

project

<u>eid</u>	<u>pno</u>	hrs
123	1	32
123	2	7
345	2	10
345	3	10
345	10	10
987	30	20
987	20	15

	ploc	dnum
1	Bellaire	5
2	Sugarland	5
3	Houston	5
10	Stafford	4
20	Houston	1
30	Stafford	4
	3 10 20	2 Sugarland 3 Houston 10 Stafford 20 Houston

department

dname	dnum	mgr_eid
Research	5	345
Admin	4	987
Headqtr	1	865

dependent

e_id	depname	bdate	relation		
345	Alice		Daughter		
345	Theodore		Son		
345	Joy		Spouse		
123	Michale		Son		
123	Alice		Daughter		
123	Eliza		Spouse		

12/8/2020

Tuple Relational Calculus

Example1: To find the employees whose salary is above \$50000.

{t | COND(t)}

COND(t): employee (t) t. salary>50000

Ans. in TRC:

{t | employee (t) t. salary>50000};

SELECT * FROM employee WHERE salary> 50000;

Tuple Relational Calculus

Example2: To find the first and last names of all employees whose salary is above \$50,000

{t.fname, t.lname | employee (t) t. salary>50000};

SELECT fname, Iname FROM employee WHERE salary> 50000;

@ SKG 12/8/2020 15

Tuple Relational Calculus

Example3: Retrieve the birth date and address of employee whose name is "John smith",

{t.bdate, t.address | employee (t) t. fname="John" t. Iname="Smith"};

SELECT bdate, address FROM employee WHERE fname="John" AND Iname="Smith";

Example of Relation

employee

fname lname empid bdate address dno salary John Smith 123 Houston Franklin Wong 345 Houston 5 987 Bellarice Jeniffer Wallace 4 865 Houston James Bomg

department

dname	dnum	mgr_eid
Research	5	345
Admin	4	987
Headqtr	1	865

works_on

<u>eid</u>	<u>pno</u>	hrs
123	1	32
123	2	7
345	2	10
345	3	10
345	10	10
987	30	20
987	20	15

project

pname pnum		ploc	dnum
prod_x	1	Bellaire	5
prod_y	2	Sugarland	5
prod_z	3	Houston	5
Compt	10	Stafford	4
Reorg	20	Houston	1
newb	30	Stafford	4

dependent

•			
e_id	depname	bdate	relation
345	Alice		Daughter
345	Theodore		Son
345	Joy		Spouse
123	Michale		Son
123	Alice		Daughter
123	Eliza		Spouse

@ SKG

12/8/2020

17

Tuple Relational Calculus-example

■ Example 4: Retrieve the name and address of all employees who work for the 'Research' department.

Ans:

 $\{t.fname, t.address \mid employee (t) \quad ((\exists d) (department (d) d.dname="research" d.dnum=t.dno))\}$

□ The *only free tuple variables* in a relational calculus expression should be those that appear to the left of the bar (|).

SELECT fname, Iname, address FROM employee, department WHERE dname="Research" AND dnum =dno;

@ SKG

12/8/2020

18

Predicate Calculus Formula

- 1. Set of attributes and constants
- 2. Set of comparison operators: (e.g., \langle , \leq , =, \neq , \rangle , \geq)
- 3. Set of connectives: and (\land) , or (\lor) , not (\neg)
- 4. Implication (\Rightarrow): $x \Rightarrow y$, if x if true, then y is true

$$X \Rightarrow Y \equiv \neg X \lor Y$$

- 5. Set of quantifiers:
 - \in $\exists t \in r \ (Q \ (t \)) \equiv$ "there exists" a tuple t in relation r such that predicate Q(t) is true

@ SKG 12/8/2020 19

Tuple Relational Calculus-example

□ **Example 5:** For every project located in "Stafford", list the project number, controlling department number, department manager's last name, birthdate and address

Ans:

{p.pnum, p.dnum, t.lname, t.bdate, t.address | employee (t) $(\exists p)$ project(p) p.ploc="Stafford" $((\exists d)(\text{ department }(d))$ p.dnum=d.dnum d.mgr_eid=t.empid)) }

SELECT pnum, p.dnum, Iname, bdate address FROM employee, project p, department d WHERE p.dnum =d.dnum AND mgr_eid =empid;

Tuple Relational Calculus-example

Example6:

Find the name of each employee, who works on some project controlled by department no 5.

■ Example7:

Make alist of project numbers for projects that involve an employee whopse last name is "Smith", either as a worker or as a manager of the controlling department for the project

@ SKG 12/8/2020 21

Tuple Relational Calculus-example

■ Example8:

Find the name of employees, who have no dependents.

Ans:

```
{e.fname, e.lname| employee (e) not((∃d) (dependent (d)
d.e_id=e.empid))}
```

□ Example9:

List the name of managers who have at least one dependent.

```
{e.fname, e.lname| employee (e) (\exists t)(department (t) e.empid=t.mgr_eid ((\exists d) (dependent (d) d.e_id=e.empid)))}
```

Safety of Expressions

 It is possible to write tuple calculus expression that generate infinite relations

{t| not (employee (t))}

results in an infinite relation if the domain of any attribute of relation r is infinite

- \square An expression $\{t \mid P(t)\}$ in the tuple relational calculus is *safe* if every component of t appears in one of the relations, tuples, or constants that appear in P
 - NOTE: this is more than just a syntax condition.

@ SKG 12/8/2020 23

Safety of Expressions

$$\{ < x_1, x_2, ..., x_n > | P(x_1, x_2, ..., x_n) \}$$

is safe if all of the following hold:

- All values that appear in tuples of the expression are values from dom(P) (that is, the values appear either in P or in a tuple of a relation mentioned in P)
- 2. For every "there exists" subformula of the form $\exists x (P_1(x))$, the subformula is true if and only if there is a value of x in $dom(P_1)$ such that $P_1(x)$ is true
- 3. For every "for all" subformula of the form $\forall_x (P_1(x))$, the subformula is true if and only if $P_1(x)$ is true for all values x from $dom(P_1)$

RELATIONAL CALCULUS

* Domain Relational Calculus

@ SKG 12/8/2020 25

The Domain Relational Calculus

- Domain calculus differs from tuple calculus in the type of variables used in formulas
- Rather than having variables range over tuples, the variables range over single values from domains of attributes
- To form a relation of degree n for a query result, we must have n of these domain variables—one for each attribute
- An expression of the domain calculus is of the form

 $\{x_1,\,x_2,\,\ldots,\,x_n\,|\,\, \text{COND}(x_1,\,x_2,\,\ldots,\,x_n,\,x_{n+1},\,x_{n+2},\,\ldots,\,x_{n+m})\}$ where $x_1,\,x_2,\,\ldots,\,x_n,\,x_{n+1},\,x_{n+2},\,\ldots,\,x_{n+m}$ are domain variables that range over domains (of attributes) and COND is a **condition** or

formula of the domain relational calculus

Domain Relational Calculus

Example1: To find the name of employees whose salary is above \$50000 Ans. in DRC:

 $\{qr \mid (\exists s) (\exists t) (\exists u)(\exists v) (\exists w) (employee (qrstuvw) w>50000)\};$

SELECT fname,Iname FROM employee WHERE salary> 50000;

Example2: Retrieve the birth date and address of employee whose name is "John smith"

 $\{tu \mid (\exists q) (\exists r) (\exists s)(\exists v) (\exists w) (employee (qrstuvw) q="John" r="Smith")\};$

SELECT bdate, address FROM employee WHERE fname="John" AND Iname="Smith";

Domain Relational Calculus-Example

□ Example 3: Retrieve the name and address of all employees who work for the 'Research' department

Ans:

```
{qru | (\exists I)(\exists m)(\exists v) employee (qrstuvw) department (Imn) l="research" m=v)};
```

SELECT fname, Iname, address FROM employee, department WHERE dname="Research" AND dnum =dno;

@ SKG 12/8/2020 29

Domain Relational Calculus-Example

□ **Example 4:** For every project located in "Stafford", list the project number, controlling department number, department manager's last name, birth date and address

Ans:

SELECT pnum, p.dnum, Iname, bdate address FROM employee, project p, department d WHERE p.dnum =d.dnum AND mgr_eid =empid;

Domain Relational Calculus-Example

■ Example5:

Find the name of each employee, who works on some project controlled by department no 5.

■ Example6:

Make alist of project numbers for projects that involve an employee whopse last name is "Smith", either as a worker or as a manager of the controlling department for the project

@ SKG 12/8/2020 31

Domain Relational Calculus-example

■ Example 7:

Find the name of employees, who have no dependents.

Ans:

 $\{qr \mid (\exists s) (employee (qrstuvw) \quad not((\exists a) (dependent(abcd) \quad a=s)))\};$

□ Example 8:

List the name of managers who have at least one dependent.

