2002 年数学(一) 真题解析

一、填空题

(1)【答案】 1.

【解】
$$\int_{\epsilon}^{+\infty} \frac{\mathrm{d}x}{x \ln^2 x} = \int_{\epsilon}^{+\infty} \frac{\mathrm{d}(\ln x)}{\ln^2 x} = -\frac{1}{\ln x} \Big|_{\epsilon}^{+\infty} = 1.$$

(2)【答案】 -2.

【解】 当x = 0时,y = 0.

$$e^{y} + 6xy + x^{2} - 1 = 0$$
 两边对 x 求导,得 $e^{y} \frac{dy}{dx} + 6y + 6x \frac{dy}{dx} + 2x = 0$,则 $y'(0) = 0$.
 $e^{y} \frac{dy}{dx} + 6y + 6x \frac{dy}{dx} + 2x = 0$ 两边对 x 求导,
得 $e^{y} \left(\frac{dy}{dx}\right)^{2} + e^{y} \frac{d^{2}y}{dx^{2}} + 12 \frac{dy}{dx} + 6x \frac{d^{2}y}{dx^{2}} + 2 = 0$,于是 $y''(0) = -2$.

(3)【答案】 $y = \sqrt{x+1}$.

【解】 方法一 令
$$y' = p$$
,则 $y'' = p \frac{dp}{dy}$,方程 $yy'' + y'^2 = 0$ 化为 $yp \frac{dp}{dy} + p^2 = 0$.

因为
$$p \neq 0$$
,所以 $\frac{\mathrm{d}p}{\mathrm{d}y} + \frac{1}{y}p = 0$,解得 $p = C_1 e^{-\int \frac{1}{y} \mathrm{d}y} = \frac{C_1}{y}$.

由
$$y(0) = 1, y'(0) = \frac{1}{2}$$
,得 $C_1 = \frac{1}{2}$,于是 $yy' = \frac{1}{2}$,解得 $\frac{1}{2}y^2 = \frac{x}{2} + C$.

由
$$y(0) = 1$$
,得 $C = \frac{1}{2}$,故 $y = \sqrt{x+1}$.

方法二 由
$$yy'' + y'^2 = 0$$
,得 $(yy')' = 0$,解得 $yy' = C_1$.

由
$$y(0) = 1, y'(0) = \frac{1}{2}$$
,得 $C_1 = \frac{1}{2}$,即 $yy' = \frac{1}{2}$ 或 $(y^2)' = 1$,解得 $y^2 = x + C_2$.

由
$$y(0) = 1$$
,得 $C_2 = 1$,故满足初始条件的特解为 $y = \sqrt{x+1}$.

方法点评:本题考查可降阶的微分方程的求解.特定类型微分方程的求解可以用相应类型微分方程的解法求解,注意运用灵活简洁的方法,往往可使解题简单且正确率高.

(4)【答案】 2.

【解】 方法一
$$A = \begin{pmatrix} a & 2 & 2 \\ 2 & a & 2 \\ 2 & 2 & a \end{pmatrix}$$
,因为二次型经过正交变换得标准形为 $f = 6y_1^2$,

所以矩阵 **A** 的特征值为 $\lambda_1 = 6$, $\lambda_2 = \lambda_3 = 0$, 由 tr **A** = $\lambda_1 + \lambda_2 + \lambda_3$ 得 a = 2.

方法二 因为二次型 f 经过正交变换化为 $f = 6y_1^2$,所以 $\lambda_1 = 6$, $\lambda_2 = \lambda_3 = 0$, 于是 |A| = 0.

由
$$|\mathbf{A}|$$
 = $\begin{vmatrix} a & 2 & 2 \\ 2 & a & 2 \\ 2 & 2 & a \end{vmatrix}$ = $(a+4)(a-2)^2 = 0$, 得 $a = -4$ 或 $a = 2$.

当
$$a = -4$$
 时, $\mathbf{A} = \begin{pmatrix} -4 & 2 & 2 \\ 2 & -4 & 2 \\ 2 & 2 & -4 \end{pmatrix}$.
由 $|\lambda \mathbf{E} - \mathbf{A}| = \begin{vmatrix} \lambda + 4 & -2 & -2 \\ -2 & \lambda + 4 & -2 \\ -2 & -2 & \lambda + 4 \end{vmatrix} = \lambda (\lambda + 6)^2 = 0$,得 $\lambda_1 = 0$, $\lambda_2 = \lambda_3 = -6$,矛盾,

故 a=2.

(5)【答案】 4.

【解】 由
$$X \sim N(\mu, \sigma^2)$$
,得 $P(X \leq \mu) = P(X > \mu) = \frac{1}{2}$.
当 $\Delta = 16 - 4X < 0$,即 $X > 4$ 时,方程 $y^2 + 4y + X = 0$ 无实根.
由方程 $y^2 + 4y + X = 0$ 无实根的概率为 $\frac{1}{2}$,得 $P(X > 4) = \frac{1}{2}$,于是 $\mu = 4$.

方法点评: 若 $X \sim N(\mu, \sigma^2)$, 常用知识点有:

$$(1)P\{X \leqslant \mu\} = P\{X > \mu\} = \frac{1}{2};$$

(2)
$$\frac{X-\mu}{\sigma} \sim N(0,1)$$
;

$$(3)P\{a < X \leq b\} = \Phi\left(\frac{b-\mu}{\sigma}\right) - \Phi\left(\frac{a-\mu}{\sigma}\right);$$

$$(4)\Phi(-a) = 1 - \Phi(a).$$

二、选择题

(6)【答案】 (A).

【解】 若 f(x,y) 两个偏导数连续,则 f(x,y) 一定可微,反之不对; 若 f(x,y) 可微,则 f(x,y) 连续且可偏导,反之不对,应选(A).

方法点评:二元函数 f(x,y) 在一点处的连续性、可偏导性、可微性、一阶连续可偏导性之间的关系图如下:

(7)【答案】 (C).

【解】 由
$$\lim_{n\to\infty} \frac{n}{u_n} = 1$$
,得 $\lim_{n\to\infty} \frac{1}{u_n} = 0$,
$$S_n = \left(\frac{1}{u_1} + \frac{1}{u_2}\right) - \left(\frac{1}{u_2} + \frac{1}{u_3}\right) + \dots + (-1)^{n+1} \left(\frac{1}{u_n} + \frac{1}{u_{n+1}}\right) = \frac{1}{u_1} + (-1)^{n+1} \frac{1}{u_{n+1}},$$
 因为 $\lim_{n\to\infty} S_n = \frac{1}{u_1}$,所以级数 $\sum_{n=1}^{\infty} (-1)^{n+1} \left(\frac{1}{u_n} + \frac{1}{u_{n+1}}\right)$ 收敛,(A),(D) 不对;

$$\sum_{n=1}^{\infty} \left| (-1)^{n+1} \left(\frac{1}{u_n} + \frac{1}{u_{n+1}} \right) \right| = \sum_{n=1}^{\infty} \left(\frac{1}{u_n} + \frac{1}{u_{n+1}} \right),$$

由
$$\lim_{n\to\infty}\frac{n}{u_n}=1$$
得 $\frac{1}{u_n}\sim\frac{1}{n},\quad \frac{1}{u_{n+1}}\sim\frac{1}{n+1},$

因为
$$\sum_{n=1}^{\infty} \frac{1}{n}$$
与 $\sum_{n=1}^{\infty} \frac{1}{n+1}$ 发散,所以 $\sum_{n=1}^{\infty} \frac{1}{u_n}$ 与 $\sum_{n=1}^{\infty} \frac{1}{u_{n+1}}$ 都发散,

于是
$$\sum_{n=1}^{\infty} \left(\frac{1}{u_n} + \frac{1}{u_{n+1}} \right)$$
 发散,即 $\sum_{n=1}^{\infty} (-1)^{n+1} \left(\frac{1}{u_n} + \frac{1}{u_{n+1}} \right)$ 条件收敛,应选(C).

(8)【答案】 (B).

【解】 若 $\lim_{x\to +\infty} f'(x) \neq 0$,不妨设 $\lim_{x\to +\infty} f'(x) = A > 0$.

取
$$\varepsilon_0 = \frac{A}{2} > 0$$
,则存在 $X > 0$,当 $x > X$ 时, $|f'(x) - A| < \frac{A}{2}$,于是 $f'(x) > \frac{A}{2}$. 当 $x > X$ 时, $f(x) - f(X) = f'(\xi)(x - X)$,其中 $\xi \in (X, x)$,则 $f(x) > f(X) + \frac{A}{2}(x - X)$,

因为
$$\lim_{x \to +\infty} \left[f(X) + \frac{A}{2}(x - X) \right] = +\infty$$
,所以 $\lim_{x \to +\infty} f(x) = +\infty$,与 $f(x)$ 有界矛盾,应选(B).

(9)【答案】 (B).

【解】 因为
$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}, \mathbf{X} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}, \mathbf{b} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}.$$

因为 $r(A) = r(\overline{A}) = 2 < 3$,所以方程组AX = b有无数个解,即三个平面有无数个交点,因为(A)只有一个交点,而(C),(D)没有交点,所以应选(B).

(10)【答案】 (D).

【解】 方法一 因为 $\int_{-\infty}^{+\infty} [f_1(x) + f_2(x)] dx = \int_{-\infty}^{+\infty} f_1(x) dx + \int_{-\infty}^{+\infty} f_2(x) dx = 2 \neq 1$,所以 $f_1(x) + f_2(x)$ 一定不是某个随机变量的密度函数,(A) 不对; 设 $X_1 \sim E(1)$, $X_2 \sim E(1)$,则

$$f_1(x) = f_2(x) = \begin{cases} 0, & x \leq 0, \\ e^{-x}, & x > 0, \end{cases}$$
 $f_1(x)f_2(x) = \begin{cases} 0, & x \leq 0, \\ e^{-2x}, & x > 0, \end{cases}$

因为 $\int_{-\infty}^{+\infty} f_1(x) f_2(x) dx = \int_{0}^{+\infty} e^{-2x} dx = \frac{1}{2} \neq 1$,所以 $f_1(x) f_2(x)$ 不是某个随机变量的

密度函数,(B)不对;

因为 $F_1(+\infty)+F_2(+\infty)=2\neq 1$,所以 $F_1(x)+F_2(x)$ 不是某个随机变量的分布函数,(C) 不对,应选(D).

方法二 因为 $F_1(x)$, $F_2(x)$ 为两个随机变量的分布函数, 所以 $0 \le F_1(x) \le 1$, $0 \le F_2(x) \le 1$, $F_1(x)$, $F_2(x)$ 单调不减, $F_1(x)$, $F_2(x)$ 右连续且

$$F_1(-\infty) = F_2(-\infty) = 0$$
, $F_1(+\infty) = F_2(+\infty) = 1$,

于是 $F_1(x)F_2(x)$ 满足: $0 \le F_1(x)F_2(x) \le 1$, $F_1(x)F_2(x)$ 单调不减, $F_1(x)F_2(x)$ 右连续且 $F_1(-\infty)F_2(-\infty)=0$, $F_1(+\infty)F_2(+\infty)=1$, 故 $F_1(x)F_2(x)$ 为某个随机变量的分布函数,应选(D).

三、解答题

(11)【解】 将 h = 0 代入 af(h) + bf(2h) - f(0) = o(h) 中,得(a + b - 1)f(0) = 0. 由 $f(0) \neq 0$,得 a + b = 1;

由
$$af(h) + bf(2h) - f(0) = o(h)$$
, 得 $\lim_{h \to 0} \frac{af(h) + bf(2h) - f(0)}{h} = \lim_{h \to 0} \frac{o(h)}{h} = 0$,

$$\overline{m} \lim_{h \to 0} \frac{af(h) + bf(2h) - f(0)}{h} = \lim_{h \to 0} \frac{af(h) + bf(2h) - (a+b)f(0)}{h}$$

$$= a \lim_{h \to 0} \frac{f(h) - f(0)}{h} + 2b \lim_{h \to 0} \frac{f(2h) - f(0)}{2h}$$

$$= (a+2b)f'(0),$$

所以(a+2b) f'(0)=0,由 $f'(0)\neq 0$ 得 a+2b=0,于是 $\begin{cases} a+b=1,\\ a+2b=0. \end{cases}$

由 $\begin{vmatrix} 1 & 1 \\ 1 & 2 \end{vmatrix} = 1 \neq 0$ 得方程组 $\begin{cases} a+b=1, \\ a+2b=0 \end{cases}$ 有唯一解,故存在唯一一组 a=2,b=-1,使得

$$af(h) + bf(2h) - f(0) = o(h).$$

(12) **[M]**
$$\frac{\mathrm{d}}{\mathrm{d}x} \int_{0}^{\arctan x} \mathrm{e}^{-t^2} \, \mathrm{d}t = \mathrm{e}^{-\arctan^2 x} \cdot \frac{1}{1+x^2}, \quad \frac{\mathrm{d}}{\mathrm{d}x} \int_{0}^{\arctan x} \mathrm{e}^{-t^2} \, \mathrm{d}t \Big|_{x=0} = 1,$$

因为曲线 y = f(x) 与 $y = \int_0^{\arctan x} e^{-t^2} dt$ 在(0,0) 处切线相同,所以 f'(0) = 1 且 f(0) = 0. 所以切线方程为 y = x,

而且
$$\lim_{n\to\infty} nf\left(\frac{2}{n}\right) = 2\lim_{n\to\infty} \frac{f\left(\frac{2}{n}\right)}{\frac{2}{n}} = 2\lim_{n\to\infty} \frac{f\left(\frac{2}{n}\right) - f(0)}{\frac{2}{n}} = 2f'(0) = 2.$$

(13)【解】 方法一 如图所示,

$$\oint D_{1} = \{(x,y) \mid 0 \le x \le 1, 0 \le y \le x\},
D_{2} = \{(x,y) \mid 0 \le x \le y, 0 \le y \le 1\},
\iint_{D} e^{\max(x^{2},y^{2})} dx dy = \iint_{D_{1}} e^{x^{2}} dx dy + \iint_{D_{2}} e^{y^{2}} dx dy
= \int_{0}^{1} e^{x^{2}} dx \int_{0}^{x} dy + \int_{0}^{1} e^{y^{2}} dy \int_{0}^{y} dx
= \int_{0}^{1} x e^{x^{2}} dx + \int_{0}^{1} y e^{y^{2}} dy
= 2 \int_{0}^{1} x e^{x^{2}} dx = e^{x^{2}} \Big|_{0}^{1} = e - 1.$$

方法二 $\diamondsuit D_1 = \{(x,y) \mid 0 \leqslant x \leqslant 1, 0 \leqslant y \leqslant x\},$

由对称性得
$$\iint_D e^{\max\{x^2, y^2\}} dx dy = 2 \iint_{D_1} e^{x^2} dx dy$$
$$= 2 \int_0^1 e^{x^2} dx \int_0^x dy = 2 \int_0^1 x e^{x^2} dx = e^{x^2} \Big|_0^1 = e - 1.$$

(14) **[M]** (**[** 1)
$$P(x,y) = \frac{1}{y} [1 + y^2 f(xy)] = \frac{1}{y} + y f(xy),$$

$$\frac{\partial P}{\partial y} = -\frac{1}{y^2} + f(xy) + xy f'(xy),$$

$$Q(x,y) = \frac{x}{y^2} [y^2 f(xy) - 1] = x f(xy) - \frac{x}{y^2},$$

$$\frac{\partial Q}{\partial x} = -\frac{1}{y^2} + f(xy) + xy f'(xy),$$

因为 $\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}$,所以曲线积分 I 与路径 L 无关;

$$\begin{split} (\parallel) \; \boldsymbol{\texttt{方法}} - \quad I = & \int_{L} \frac{1}{y} [1 + y^2 f(xy)] \mathrm{d}x + \frac{x}{y^2} [y^2 f(xy) - 1] \mathrm{d}y \\ = & \int_{L} \frac{1}{y} \mathrm{d}x - \frac{x}{y^2} \mathrm{d}y + \int_{L} y f(xy) \mathrm{d}x + x f(xy) \mathrm{d}y \,, \\ \int_{L} \frac{1}{y} \mathrm{d}x - \frac{x}{y^2} \mathrm{d}y = & \int_{(a,b)}^{(c,d)} \mathrm{d}\left(\frac{x}{y}\right) = \frac{x}{y} \left|_{(a,b)}^{(c,d)} = \frac{c}{d} - \frac{a}{b} = \frac{bc - ad}{bd} \,; \end{split}$$

取 $L_1:xy=ab$ (起点为(a,b),终点为(c,d)),

因为曲线积分与路径无关,所以

$$\int_{L} yf(xy) dx + xf(xy) dy = \int_{L_{1}} yf(xy) dx + xf(xy) dy$$
$$= f(ab) \int_{L_{1}} y dx + x dy = f(ab) \int_{(a,b)}^{(c,d)} d(xy)$$
$$= f(ab)xy \Big|_{(a,b)}^{(c,d)} = 0,$$

于是
$$I = \int_{L} \frac{1}{y} [1 + y^2 f(xy)] dx + \frac{x}{y^2} [y^2 f(xy) - 1] dy = \frac{bc - ad}{bd}.$$

方法二 令 f(u) 的原函数为 F(u),则

$$\int_{L} y f(xy) dx + x f(xy) dy = \int_{(a,b)}^{(c,d)} dF(xy) = F(xy) \Big|_{(a,b)}^{(c,d)} = F(cd) - F(ab) = 0,$$

$$\exists E I = \int_{L} \frac{1}{y} [1 + y^{2} f(xy)] dx + \frac{x}{y^{2}} [y^{2} f(xy) - 1] dy = \frac{bc - ad}{bd}.$$

(15)【解】 因为级数 $\sum_{n=0}^{\infty} \frac{x^{3n}}{(3n)!}$ 的收敛半径为 $R = +\infty$,所以其收敛域为 $(-\infty, +\infty)$.

(I) 由
$$y'(x) = \frac{x^2}{2!} + \frac{x^5}{5!} + \frac{x^8}{8!} + \dots + \frac{x^{3n-1}}{(3n-1)!} + \dots,$$

$$y''(x) = x + \frac{x^4}{4!} + \frac{x^7}{7!} + \dots + \frac{x^{3n-2}}{(3n-2)!} + \dots,$$

$$y'''(x) = 1 + \frac{x^3}{3!} + \frac{x^6}{6!} + \dots + \frac{x^{3n-3}}{(3n-3)!} + \dots,$$
得 $y'' + y' + y = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \dots + \frac{x^n}{n!} + \dots = e^x.$
(II) 令 $y(x) = \sum_{n=0}^{\infty} \frac{x^{3n}}{(3n)!}$, 由(1) 得 $y(x)$ 满足 $y'' + y' + y = e^x$.
$$y'' + y' + y = 0$$
 的特征方程为 $\lambda^2 + \lambda + 1 = 0$,特征根为 $\lambda_{1,2} = -\frac{1}{2} \pm \frac{\sqrt{3}}{2}$ i,

$$y'' + y' + y = 0$$
 的通解为 $y = e^{-\frac{x}{2}} \left(C_1 \cos \frac{\sqrt{3}}{2} x + C_2 \sin \frac{\sqrt{3}}{2} x \right)$.

又 $y'' + y' + y = e^x$ 有特解 $y = \frac{1}{3}e^x$,故 $y'' + y' + y = e^x$ 的通解为

$$y = e^{-\frac{x}{2}} \left(C_1 \cos \frac{\sqrt{3}}{2} x + C_2 \sin \frac{\sqrt{3}}{2} x \right) + \frac{1}{3} e^x.$$

由 y(0) = 1, y'(0) = 0 得 $C_1 = \frac{2}{3}, C_2 = 0$,故 $\sum_{n=0}^{\infty} \frac{x^{3n}}{(3n)!}$ 的和函数为

$$y(x) = \frac{2}{3}e^{-\frac{x}{2}}\cos{\frac{\sqrt{3}}{2}x} + \frac{1}{3}e^{x}(-\infty < x < +\infty).$$

(16)【解】 (I)h(x,y) 在 $M(x_0,y_0)$ 处沿梯度的方向方向导数最大,且方向导数的最大值即为梯度的模,而梯度为

grad
$$h \mid_{M} = \{ y_0 - 2x_0, x_0 - 2y_0 \},$$

故 $g(x_0, y_0) = \sqrt{(y_0 - 2x_0)^2 + (x_0 - 2y_0)^2} = \sqrt{5x_0^2 + 5y_0^2 - 8x_0y_0}$.

(II) 由题意,求目标函数 g(x,y) 在约束条件 $x^2 + y^2 - xy - 75 = 0$ 下的最大值.

$$\Rightarrow F(x, y, \lambda) = 5x^{2} + 5y^{2} - 8xy + \lambda(x^{2} + y^{2} - xy - 75),$$

$$\begin{cases} F'_{x} = 10x - 8y + \lambda (2x - y) = 0, \\ F'_{y} = 10y - 8x + \lambda (2y - x) = 0, \\ F'_{\lambda} = x^{2} + y^{2} - xy - 75 = 0, \end{cases}$$

前两式相加得 $(x+y)(\lambda+2)=0$,则 y=-x 或 $\lambda=-2$.

当
$$y = -x$$
 时,解得 $\begin{cases} x = -5, \\ y = 5, \end{cases}$ 或 $\begin{cases} x = 5, \\ y = -5; \end{cases}$

当
$$\lambda = -2$$
 时,代人第一式得 $y = x$,解得 $\begin{cases} x = 5\sqrt{3}, \\ y = 5\sqrt{3}, \end{cases}$, $\begin{cases} x = -5\sqrt{3}, \\ y = -5\sqrt{3}. \end{cases}$

因为 $g(5,-5) = g(-5,5) = 15\sqrt{2}$, $g(5\sqrt{3},5\sqrt{3}) = g(-5\sqrt{3},-5\sqrt{3}) = 5\sqrt{6}$, 所以可以 选择(5,-5) 或(-5,5) 作为攀登的起点.

(17)【解】 因为 α_2 , α_3 , α_4 线性无关,而 $\alpha_1 = 2\alpha_2 - \alpha_3$,所以 α_1 , α_2 , α_3 , α_4 的秩为3,于是r(A) = 3. 又因为 $\beta = \alpha_1 + \alpha_2 + \alpha_3 + \alpha_4$,所以 $r(A) = r(\overline{A}) = 3$,AX = 0的基础解系含一个线性无关的解向量.

而 $AX = \mathbf{0}$ 等价于 $x_1 \boldsymbol{\alpha}_1 + x_2 \boldsymbol{\alpha}_2 + x_3 \boldsymbol{\alpha}_3 + x_4 \boldsymbol{\alpha}_4 = \mathbf{0}$,由 $\boldsymbol{\alpha}_1 - 2\boldsymbol{\alpha}_2 + \boldsymbol{\alpha}_3 + 0\boldsymbol{\alpha}_4 = \mathbf{0}$,得 $AX = \mathbf{0}$ 的基础解系为 $\boldsymbol{\xi} = (1, -2, 1, 0)^{\mathrm{T}}$.

又 $AX = \beta$ 等价于 $x_1 \alpha_1 + x_2 \alpha_2 + x_3 \alpha_3 + x_4 \alpha_4 = \beta$ 且 $\beta = \alpha_1 + \alpha_2 + \alpha_3 + \alpha_4$,则方程组 $AX = \beta$ 的特解为 $\eta = (1,1,1,1)^T$,故方程组 $AX = \beta$ 的通解为

$$\mathbf{X} = k \begin{bmatrix} 1 \\ -2 \\ 1 \\ 0 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} (k 为任意常数).$$

方法点评:本题考查方程组解向量形式与方程组的通解.

本题关键需要使用 AX=0 的向量形式 $x_1\alpha_1+x_2\alpha_2+x_3\alpha_3+x_4\alpha_4=0$ 及 AX=b 的向量形式 $x_1\alpha_1+x_2\alpha_2+x_3\alpha_3+x_4\alpha_4=b$.

(18)【解】 (1)设 $A \sim B$,则存在可逆矩阵P,使得 $P^{-1}AP = B$.

于是
$$|\lambda E - B| = |\lambda E - P^{-1}AP| = |\lambda P^{-1}P - P^{-1}AP|$$

= $|P^{-1}| |\lambda E - A| |P| = |\lambda E - A|$.

因为 $r(\mathbf{A}) = 0 \neq r(\mathbf{B}) = 1$,所以 \mathbf{A} 与 \mathbf{B} 不相似.

若 | $\lambda E - A$ |=| $\lambda E - B$ | ,则 A ,B 有相同的特征值,设为 λ_1 , λ_2 ,···· , λ_n .

因为A,B可对角化,所以存在可逆矩阵 P_1,P_2 ,使得

$$\boldsymbol{P}_{1}^{-1}\boldsymbol{A}\boldsymbol{P}_{1} = \begin{bmatrix} \lambda_{1} & 0 & \cdots & 0 \\ 0 & \lambda_{2} & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & \lambda_{n} \end{bmatrix}, \quad \boldsymbol{P}_{2}^{-1}\boldsymbol{B}\boldsymbol{P}_{2} = \begin{bmatrix} \lambda_{1} & 0 & \cdots & 0 \\ 0 & \lambda_{2} & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & \lambda_{n} \end{bmatrix},$$

从而 $P_1^{-1}AP_1 = P_2^{-1}BP_2$ 或 $(P_1P_2^{-1})^{-1}AP_1P_2^{-1} = B$, 令 $P = P_1P_2^{-1}$,则 $P^{-1}AP = B$,即 $A \sim B$.

(19)【解】 显然 $Y \sim B(4, p)$, 其中

$$p = P\left\{X > \frac{\pi}{3}\right\} = \int_{\frac{\pi}{3}}^{\pi} f(x) dx = \int_{\frac{\pi}{3}}^{\pi} \cos \frac{x}{2} d\left(\frac{x}{2}\right) = \sin \frac{x}{2} \Big|_{\frac{\pi}{3}}^{\pi} = \frac{1}{2},$$

于是 $Y \sim B\left(4, \frac{1}{2}\right)$.

由
$$E(Y) = 4 \times \frac{1}{2} = 2$$
, $D(Y) = 4 \times \frac{1}{2} \times \frac{1}{2} = 1$, 得 $E(Y^2) = D(Y) + [E(Y)]^2 = 5$.

(20) [M]
$$E(X) = 0 \times \theta^2 + 1 \times 2\theta (1-\theta) + 2\theta^2 + 3(1-2\theta) = 3-4\theta$$
,
$$\overline{x} = \frac{3+1+3+0+3+1+2+3}{8} = 2$$
,

令 $E(X) = \overline{x}$ 得 θ 的矩估计值为 $\hat{\theta} = \frac{1}{4}$.

似然函数为 $L(\theta) = 4\theta^{6}(1-\theta)^{2}(1-2\theta)^{4}$,

$$\ln L(\theta) = \ln 4 + 6\ln \theta + 2\ln(1-\theta) + 4\ln(1-2\theta),$$

由
$$\frac{\mathrm{d}}{\mathrm{d}\theta}\ln L(\theta) = \frac{6}{\theta} - \frac{2}{1-\theta} - \frac{8}{1-2\theta} = 0$$
,得 $\theta = \frac{7\pm\sqrt{13}}{12}$.

因为
$$\theta = \frac{7 + \sqrt{13}}{12} > \frac{1}{2}$$
,所以 θ 的极大似然估计值为 $\hat{\theta} = \frac{7 - \sqrt{13}}{12}$.