Ejemplo 2.9 del libro de la asignatura

Enunciado:

Sabiendo que las fuentes de tensión del circuito de la figura vienen definidas por las formas de onda $u_1(t) = 10\sqrt{2} \cdot \cos(1000 \cdot t) \, \text{V}$ y $u_2(t) = 5\sqrt{2} \cdot \sin(1000 \cdot t) \, \text{V}$, se debe calcular las potencias de cada elemento, así como el balance de potencias del circuito.

Solución:

Se convierte $u_1(t)$ en función senoidal, obteniéndose $u_1(t) = 10\sqrt{2} \cdot \sin(1000 \cdot t + \frac{\pi}{2})$ V. Así, los fasores de \overline{U}_1 y \overline{U}_2 son:

$$\overline{U}_1 = 10/90^{\circ} V$$

$$\overline{U}_2 = 5/0^{\circ} V$$

Se calcula también el valor de \overline{X}_L :

$$\overline{X}_L = j\,\omega L = j\,\Omega$$

Con esto, el sistema matricial por el método de mallas es:

$$\begin{bmatrix} 10/90^{\circ} \\ -5/0^{\circ} \end{bmatrix} = \begin{bmatrix} 1-j2 & j2 \\ j2 & -j \end{bmatrix} \cdot \begin{bmatrix} \overline{I_a} \\ \overline{I_b} \end{bmatrix}$$

Resolviendo el sistema se obtiene que:

$$\overline{I}_a = 2 + 6j A$$

 $\overline{I}_b = 4 + 7j A$

y reemplazando en el circuito:

$$ar{I} = ar{I}_a = 2 + 6j A$$
 $ar{I}_1 = ar{I}_a - ar{I}_b = -2 - j A$
 $ar{I}_2 = -ar{I}_b = -4 - 7j A$

Con las corrientes, y los valores de las impedancias, se calculan las potencias activas y reactivas:

$$P_R = R \cdot I^2 = 40 \text{ W}$$

 $Q_L = X_L \cdot I_2^2 = 65 \text{ VAr}$
 $Q_C = X_C \cdot I_1^2 = -10 \text{ VAr}$

siendo la potencia aparente total consumida por los receptores:

$$\overline{S} = P + jQ = 40 + 55j \text{ VA}$$

Se calcula también la potencia aparente entregada por las fuentes de alimentación:

$$\overline{S}_{u1} = \overline{U}_1 \cdot \overline{I}^* = 60 + 20 \text{j VA}$$

$$\overline{S}_{u2} = \overline{U}_2 \cdot \overline{I}_2^* = -20 + 35 \text{j VA}$$

$$\overline{S}_g = \overline{S}_{u1} + \overline{S}_{u2} = 40 + 55 \text{j VA}$$

Comprobamos que coincide con el triángulo de potencias de los receptores.