Simple Structure Logic

by Sven Nilsen, 2020

In this paper I represent a logic for simple data structures as a small subset of path semantics.

A simple structure logic is a logic of some type `T` with some list of ordered properties `p_i`:

$$p_i:T \to U_i$$

Together with Boolean Algebra of sub-types over `p_i` using Higher Order Operator Overloading.

The properties are ordered to permit transformation of expressions into canonical form. This can be used to prove whether two sub-types are equal.

Every property can be expressed with the following sub-types:

$$x:[p_i] (= y)$$
 $x:[p_i] (\neg = y)$ $x:T$ $y:U_i$

When `U_i` is ordered, the property can also be expressed with the following sub-types:

$$x:[p_i](< y)$$
 $x:[p_i](<= y)$ $x:[p_i](>= y)$ $x:[p_i](> y)$

The order of comparison operators is <, <=, =, =, >=, >.

In simple structure logic, every data record can be translated into a sub-type such that:

$$|\cap i \{ [p_i] (= y_i) \} | = 1$$

For example, if a 'person' is uniquely determined by a 'name' and 'age' property:

|[age] (= 20)
$$\wedge$$
 [name] (= "Hans")| = 1
age : person \rightarrow nat
name : person \rightarrow str

The properties are ordered such that for some finite \hat{n} , the properties $\hat{p}_0, p_1, ..., p_n$ constructs every possible data record. Generically, this form can be written in a short hand syntax:

Sometimes the list `p_i` is infinite, for example by composing functions within a programming language.

A canonical form can be chosen e.g. by using Conjuctive Normal Form (CNF).

For example, it is known from the law of distribution that the following expressions are the same:

$$a \wedge (b \vee c) = \langle (a \wedge b) \vee (a \wedge c) \rangle$$

The expression $\hat{a} \wedge (b \vee c)$ is in CNF, therefore one can apply the rule of transformation:

$$(a \wedge b) \vee (a \wedge c) => a \wedge (b \vee c)$$

CNF uses these connectives of Boolean Algebra:

AND Commutative:
$$a \land b = b \land a$$
 Associative: $(a \land b) \land c = a \land (b \land c)$ V OR Commutative: $a \lor b = b \lor a$ Associative: $(a \lor b) \lor c = a \lor (b \lor c)$ NOT Single-argument

Transformation into CNF uses Negation Normal Form, such that negation is only applied to variables. This means that in simple structure logic, negation is only applied to sub-type properties.

However, simple structure logic can eliminate any negation applied to a sub-type property:

$$\neg[p] (< y) <=> [p] (>= y)
 $\neg[p] (<= y) <=> [p] (> y)
 $\neg[p] (= y) <=> [p] (\neg= y)$$$$

Therefore, the canonical form based on CNF does not require `¬`. Only `^` and `v` are needed.

Yet, there is one edge case: Boolean properties are ambiguous since the value can be inverted:

[p] (= false)
$$\Leftrightarrow$$
 [p] (¬= true)
[p] (= true) \Leftrightarrow [p] (¬= false)

This means that one can choose to express `false` as one of the following:

[p] (= false) [p] (
$$\neg$$
= true)

The standard convention is to use `[p] (= false)`, due to construction of data records.

AND and OR might be represented internally as multi-argument functions.

This semantics is relative to representation with binary functions, where the following order holds:

order(a
$$\land$$
 (b \land c)) < order((a \land b) \land c)
order(a \lor (b \lor c)) < order((a \lor b) \lor c)

The semantics of AND and OR as multi-argument functions is the least order:

and(a, b, c)
$$\ll$$
 a \wedge (b \wedge c) or(a, b, c) \ll a \vee (b \vee c)