Trip recommendation system Edoardo Berardi Vittur Ali Yassine Ethan Greene

TABLE OF CONTENTS

01

Destination recommendation

Personalized recommendation to choose the destination of the trip

02

Hotel recommendation

Recommending the hotels that fit the user's requirements

03

Restaurant recommendation

Helps pick a restaurant based off food preference

Destinations opportunities:

Recommendation systems based on:

- Generic personal information
- Money restrictions
- Dates and duration

20	from	flightType	price_flight	days	price_hotel_x_day	gender	age	month
0	Recife (PE)	1	1434.38	4	313.02	male	21	9

How the data look like?

Principal Component analysis

Dimensionality reduction to plot the data in 2 dimensions.

 Clusters follow a pattern but are not recognizable from this graph.

How the data looks like?

T-SNE

Many points are also grouped correctly in two dimensions --> similarity of data for certain destinations.

Number of clusters for Kmean:

Destination results

	from	fligthType	price_flight	days	price_hotel_x_day	gender	age	month
0	Rio de Janeiro (RJ)	economic	300	5	80	male	25	9

Florianopolis (SC)	4646
Brasilia (DF)	3938
Recife (PE)	3050
Campo Grande (MS)	2573
Sao Paulo (SP)	2349

Hotel Recommendation System

```
Imports
Functions
EDA
   Cleaning
   Reshaping
   Visualizing
       KMeans-Elbow Method
       KMeans Silhouette Method
           K=2
           K=2 clusters visualized
           K=3
           K=3 clusters visualized
       Bar Graphs
User Input
```

```
Algorithms

Cosine Simlarity

Recommended( Acc to description)

Recommendation(Acc to description+scores)

Dimension Reduction-PCA

Final Result
```

Cleaning +Reshaping

df1.Hotel_Address[1]
 ' s Gravesandestraat 55 Oost 1092 AA Amsterdam Netherlands'

Parsed the address to extract country and city and create a column for each

Cleaning +Reshaping

 New column called 'review' that is the difference between total number of words in negative comments and that in positive comments.

Review_Total_Negative_Word_Counts	Total_Number_of_Reviews	Positive_Review	Review_Total_Positive_Word_Counts
397	0.817947	Only the park outside of the hotel was beauti	11
0	0.817947	No real complaints the hotel was great great	105
42	0.817947	Location was good and staff were ok It is cut	21

Cleaning +Reshaping

- Rescale all numeric column (0->10)
- Grouped by Hotel Name to get one row for each unique hotel
- Added a contract price column

```
[34] price list=[10000,20000,30000,40000,50000]
[35] contract price=[]
     for i in range(len(data)):
       num=random.choice(price list)
       contract price.append(num)
     data['Contract Price']=contract price
```

Final Data

[39]	data	a.head()							
		Hotel_Name	country	city	review	Average_Score	Total_Number_of_Reviews	Tags	Contract_Price
	0	11 Cadogan Gardens	Kingdom	United	5.171076	7.608696	0.210501	Leisure trip Couple Superior Queen Room Staye	50000
	1	1K Hotel	France	Paris	4.995788	5.434783	0.372887	Leisure trip Couple Superior M Double Room St	50000
	2	25hours Hotel beim MuseumsQuartier	Austria	Vienna	5.187664	7.826087	2.574728	Leisure trip Solo traveler Standard Double Ro	10000
	3	41	Kingdom	United	5.323378	9.565217	0.120888	Leisure trip Couple Executive King Room with	20000
	4	45 Park Lane Dorchester Collection	Kingdom	United	5.175391	9.130435	0.015036	Leisure trip Solo traveler Executive Queen Ro	20000

Investigating on the data

Clustering

Label 2 (6->9)

Label 0 (3->6)

Label 1(6->9)

User Input

User Input

[] add_user_input(data, "austria", "vienna", "business")

	Hotel_Name	country	city	review	Average_Score	Total_Number_of_Reviews	Tags	Contract_Price	id
0	user_choice	austria	vienna	10.000000	10.000000	10.000000	business	0	0
3	25hours hotel beim museumsquartier	austria	vienna	5.187664	7.826087	2.574728	leisure trip solo traveler standard double ro	10000	3
19	arcotel kaiserwasser superior	austria	vienna	5.084699	7.391304	0.730138	solo traveler 2 rooms stayed nights submitted	40000	19
20	arcotel wimberger	austria	vienna	5.112625	6.521739	1.108438	leisure trip family with young children 2 roo	30000	20
21	azimut hotel vienna	austria	vienna	5.106380	6.521739	0.611656	leisure trip group standard double room staye	20000	21

Cosine Similarity

- Using CounterVectorizer each keyword in tags became a dimensions and if the hotel has it then the value in the column is a 1 and 0 otherwise.
- Since the tags are very important for the user, we first recommend get the hotels with best fit for these tags disregarding other factors.
- We then use cosine similarity on this list to get the best option when also considering the other factors such as reviews, average scores....

PCA


```
total=0
for i in range(len(dfx_pca.explained_variance_ratio_)):
    total=total+dfx pca.explained variance ratio [i]
    if total>0.9:
     n=i
     print(n)
     break
```

PCA

	ø	1	2	3	4	5	6	7	8	9	
0	8.935204	3.253622	2.793380	1.103115	2.410415	-0.903439	1.084676	0.379189	-0.419739	-0.462841	0.
1	1.768751	0.191977	-0.540381	-0.674409	0.113401	-0.965103	-0.693144	0.234126	0.652246	-0.122305	-0.
2	0.205814	-0.394670	-0.765924	0.291291	-1.158145	1.294623	-1.017946	0.582162	-0.675942	-0.546161	0.
3	0.411302	-1.039892	-0.180343	-0.050216	-0.733820	0.960374	-0.928122	-0.006086	0.679524	-0.681028	0.
4	-0.403669	-1.110787	0.361837	-0.516304	0.249397	-0.363648	0.160275	0.275966	0.134922	-0.825257	0.
5 r	ows × 58 col	umns									

Order of Hotels - without considering prices

```
[142] ordered data.insert(9, 'order factor', (data.Total Number of Reviews/data.review)*data.Average Score)
[143] ordered data=ordered data.sort values(by=['order factor'],ascending=False)
[267] print("Recommended Hotels without price paid considered")
      print(*result1,sep='\n')
      Recommended Hotels without price paid considered
      leonardo hotel vienna
      austria trend parkhotel sch nbrunn wien
      melia vienna
      steigenberger hotel herrenhof
      arion cityhotel vienna und appartements
      best western plus amedia wien
      intercityhotel wien
      austria trend hotel bosei wien
      hotel schani wien
      hotel viennart am museumsquartier
      mercure josefshof wien
      nh collection wien zentrum
      fleming s conference hotel wien
      the levante parliament a design hotel
      hotel wandl
      hotel mailberger hof
      nh wien city
      fourside hotel vienna city center
```

Ordering-with pricing

0

print("Recommended Hotels with price paid considered")
print(*result2,sep='\n')

Recommended Hotels with price paid considered austria trend hotel bosei wien hotel viennart am museumsquartier fleming s conference hotel wien hotel mailberger hof austria trend parkhotel sch nbrunn wien leonardo hotel vienna melia vienna steigenberger hotel herrenhof arion cityhotel vienna und appartements hotel schani wien nh collection wien zentrum best western plus amedia wien intercityhotel wien mercure josefshof wien the levante parliament a design hotel fourside hotel vienna city center hotel wandl nh wien city

Restaurant Recommender

Restaurant data

Restaurant Id: Unique id of every restaurant across various cities of the world

- Restaurant Name: Name of the restaurant
- Country Code: Country in which restaurant is located
- City: City in which restaurant is located
- Address: Address of the restaurant
- Locality: Location in the city
- Locality Verbose: Detailed description of the locality
- Longitude: Longitude coordinate of the restaurant's location
- Latitude: Latitude coordinate of the restaurant's location
- Cuisines: Cuisines offered by the restaurant
- Average Cost for two: Cost for two people in different currencies
- Currency: Currency of the country
- Has Table booking: yes/no

- Has Online delivery: yes/ no
- Is delivering: yes/ no
- Switch to order menu: yes/no
- Price range: range of price of food
- Aggregate Rating: Average rating out of
- Rating color: depending upon the average rating color
- Rating text: text on the basis of rating of rating
- Votes: Number of ratings casted by people

Standardizing

- Average Cost for two: Cost for two people in different currencies
- Currency: Currency of the country
- Country Code: Country in which restaurant is located
- Price range: range of price of food
- Aggregate Rating: Average rating out of 5

Expense data frames

	rating	votes	price_for_oneUSD	price_rating
Restaurant Name				
Le Petit Souffle	4.8	314	41.40	3
Izakaya Kikufuji	4.5	591	45.16	3
Heat - Edsa Shangri-La	4.4	270	150.54	4
Ooma	4.9	365	56.45	4
Sambo Kojin	4.8	229	56.45	4
Din Tai Fung	4.4	336	37.64	3
Buffet 101	4.0	520	75.27	4
Vikings	4.2	677	75.27	4
Spiral - Sofitel Philippine Plaza Manila	4.9	621	225.82	4
Locavore	4.8	532	41.40	3
Silantro Fil-Mex	4.9	1070	30.11	3
Mad Mark's Creamery & Good Eats	4.2	488	33.87	3
Silantro Fil-Mex	4.8	294	30.11	3
Guevarra's	4.2	458	37.64	3
Sodam Korean Restaurant	4.3	223	26.35	3

Separating the cuisines

Cuisines

French, Japanese, Desserts

Japanese

Seafood, Asian, Filipino, Indian

Separate into multiple categories?

```
def uniqueList(data):
    myCuis = df["Cuisines"].unique()
    new list = []
    for i in myCuis:
        if i != i:
            continue
        listy = i.split(", ")
        for j in listy:
            new list.append(j)
    best list = []
    for food in new list:
        found = False
        for cuisine in best list:
            if food == cuisine:
                found = True
        if(not found):
            best list.append(food)
    return best list
```

```
def makeScore(data,restrauntCats):
    perRestraunt = []
    catScore = []
    index = 0
    found = True
    for cuisineList in data['Cuisines']:
        #print(cuisineList)
        if cuisinelist != cuisinelist:
            cuisinelist = "None"
        cuisines = cuisineList.split(", ")
        catScore = []
        for restrauntCat in restrauntCats:
            found = False
            #print(restrauntCat)
            for cuisine in cuisines:
                if(found):
                    continue
                #print("Cuis and restCuis")
                #print(cuisine)
                #print(restrauntCat)
                if restrauntCat == cuisine:
                    catScore.append(1)
                    found = True
                    #print(catScore)
            if(not found):
                catScore.append(0)
                #print(catScore)
        perRestraunt.append(catScore)
    return perRestraunt
```

What I've been looking for

	French	Japanese	Desserts	Seafood	Asian	Filipino	Indian	Sushi	Korean	Chinese		Drinks Only	Oriya	Bihari	Assamese	Andhra	Mangalorean
Restaurant Name																	
Le Petit Souffle	1	1	1	0	0	0	0	0	0	0		0	0	0	0	0	0
Izakaya Kikufuji	0	1	0	0	0	0	0	0	0	0		0	0	0	0	0	0
Heat - Edsa Shangri-La	0	0	0	1	1	1	1	0	0	0	7.75	0	0	0	0	0	0
Ooma	0	1	0	0	0	0	0	1	0	0		0	0	0	0	0	0
Sambo Kojin	0	1	0	0	0	0	0	0	1	0		0	0	0	0	0	0
Din Tai Fung	0	0	0	0	0	0	0	0	0	1	300	0	0	0	0	0	0
Buffet 101	0	0	0	0	1	0	0	0	0	0		0	0	0	0	0	0
Vikings	0	0	0	1	1	1	0	0	0	0		0	0	0	0	0	0
Spiral - Sofitel Philippine Plaza Manila	0	0	0	0	1	0	1	0	0	0	112	0	0	0	0	0	0
Locavore	0	0	0	0	0	1	0	0	0	0	032	0	0	0	0	0	0

PCA and silhouette score

```
In [150]: kmeans = KMeans(n clusters=7)
            kmeans.fit(scaled features)
            kmeans silhouette = silhouette score(
                scaled features, kmeans.labels
            ).round(2)
            kmeans_silhouette
  Out[150]: 0.08
         pipe.fit(df cuisines)
         preprocessed_data = pipe["preprocessor"].transform(df_cuisines)
         predicted labels = pipe["clusterer"]["kmeans"].labels
         silhouette_score(preprocessed_data, predicted_labels)
Out[92]: 0.77518093602708
```

Visualizing our clusters

Recommending from this:

def recc_restraunts(X, new_data_point):

```
new_data_point = makeScore(["Ice Cream, Pizza"], uniqueCuis)
recc_restraunts(X, new_data_point)

Baskin Robbins
KB's Kulfi & Icecream
KB's Kulfi & Icecream
Konetto Pizza
Hot N Fresh Pizza
Da Pizza Corner
Kwality wall's swirl's
Amul Ice-Cream Parlour
```