Problem Reduction Search

AND/OR Graphs (AO* Algorithm)

Problem Reduction Search

Planning how best to solve a problem that can be recursively decomposed into sub problems in multiple ways.

Formulations

AND/OR Graphs

- An OR node represents a choice between possible decompositions
- An AND node represents a given decomposition

Game Trees

- Max nodes represent the choice of my opponent
- Min nodes represent my choice

$$A1 = 3 X 4$$

 $A2 = 4 X 10$
 $A3 = 10 X 1$

AND/OR Graph Search Problem

Problem definition:

- Given: [G, s, T, h] where:
 - G: implicitly specified AND/OR graph
 - s: start node of the AND/OR graph
 - T: set of terminal nodes
 - h(n): heuristic function estimating the cost of solving the sub problem at n
- To Find:
 - Minimum Cost Solution Tree

AO* Algorithm

- 1. Initialize: Set $G^* = \{s\}$, f(s) = h(s) if $s \in T$, label s as SOLVED
- 2. Terminate: if s is SOLVED, then Terminate
- 3. Select: A non-terminal leaf node n from the marked sub tree.
- 4. **Expand:** Mark explicit the successors of n

 For each new successor m:

set f(m) = h(m)

if $m \in T$, label m as SOLVED

AO* Algorithm

- 5. Cost Revision: Call cost-revise(n)
- 6. Loop: Goto step 2

Cost Revisoin in AO* cost-revise(n)

- 1. Create $Z = \{n\}$
- 2. If $Z = \{ \}$ then return
- 3. Select the node m from Z such that m has no descendants in Z
- 4. If m is an AND node with successors R1, R2, R3, Rk

set
$$f(m) = \sum [f(Ri) + C(m,Ri)]$$

Mark the edge to each successor of m

if each successor is labeled SOLVED then label m as SOLVED

Cost-revise(n)

- 5. If m is an OR node with successors R1, R2, R3, Rk

 set f(m) = min [f(Ri) + C(m,Ri)]

 Mark the edge to best successor of m

 if marked successor is labeled SOLVED
- 6. If the cost or label of m has changed, then insert those parents of m into Z for which m is a marked successor

then label m as SOLVED

7. Goto step 2

Searching OR Graph

■ How would AO* behave when we have only OR nodes ????