Mathematica 参考

jypan@mathecnu

_,	Mathematica 基础	1
	1 基本语法规则	
	1.1 Mathematica 中的一些常用符号	1
	1.2 命令和语句的执行方式	1
	2 Mathematica 中的数与基本运算	1
	2.1 Mathematica 常用内部常数	1
	2.2 Mathematica 中数的类型	
	2.3 Mathematica 中的精确数与近似数	
	2.4 关于数的一些基本运算	
	2.5 不同进制的数的转换	
	3 基本运算	
	3.1 算术运算	
	3.2 关系运算与逻辑运算	
	4 变量与表达式	
	4.1 变量	
	4.2 表达式	
	4.3 变量操作	
	5 字符串	
	5.1 字符串操作	
	6 列表	
	6.2 列表分量	
	6.3 列表修改	
	6.4 列表运算	
	7 矩阵	
	7.1 矩阵····································	
	7.1 矩阵的生成	
	7.3 矩阵分量	
	7.4 矩阵运算	
	8 函数 8.1 常用初等函数	
	171777	
	8.2 随机函数	
	8.3 自定义函数	9
二,	符号计算	10
	1 多项式运算	10
	2 代数方程求解	10
	3 微分方程求解	10
	4 级数运算	10
	5 计算极限	10
	6 计算导数	10
	7 计算积分	10
<u> </u>	作图	11
_``	1 二维曲线做图	
	1.1 函数作图 1.2 参数方程作图	
	1.4 沙女/ // //王丁上宫1	12

	1.3 极坐标方程作图	12
	1.4 散点作图	12
	2 三维曲线做图	
	2.1 参数方程作图	13
	3 三维曲面做图	13
	3.1 函数作图	
	3.2 参数方程作图	
	3.3 球坐标作图	
	4 图形的重现与组合	
	5 动画	
ш	***	
四、	程序设计	15

一、Mathematica 基础

1 基本语法规则

- ① 所有命令和内置函数都是以大写字母开始
- ② 函数的参数是在方括号中给出
- ③ 乘法运算符可以用空格代替(不建议这么做)
- ④ 内置的函数名通常都很长,使用函数的名字的全拼
- ⑤ 输入和输出标识符: In[n]:= 和 Out[n]=

1.1 Mathematica 中的一些常用符号

()	运算的结合	%	最后一次的计算结果
f[] 函数取值		%%	倒数第二次计算结果
{} 列表		%%(k)	倒数第 k 次计算结果
[[k]]	列表的分量	%k	第 k 次计算结果,即 Out[k]
!cmd 执行 Dos 命令		(*comments*)	注解
!!filename 显示文件的内容		<pre>Print[x,y,]</pre>	屏幕输出函数
?name	显示系统变量、命令或函数的相关信息		
??name	显示系统变量、命令	或函数的全部信息	

1.2 命令和语句的执行方式

- ① 命令或语句输入结束后按 Shift + Enter (简称执行键)即可执行;
- ② 运行多个语句:输入全部语句后再按执行键;
- ③ 如果不需要显示运行结果: 在语句后面加分号;
- ④ 命令(语句)分隔符:回车或分号;
- ⑤ 长语句可以分多行输入,直接按回车键换行即可。

2 Mathematica 中的数与基本运算

Mathematica 中的数分普通的数和内部常数。

2.1 Mathematica 常用内部常数

Degree	角度到弧度的转换系数,Pi/180
E	自然对数的底, 2.71828
EulerGamma	Euler 常数 $\lim_{n\to\infty} \left(1 + \frac{1}{2} + \dots + \frac{1}{n} - \ln n\right) = 0.577217\dots$
GoldenRatio	黄金分割数 $\frac{1}{2}(1+\sqrt{5})$
I	虚部单位
Infinity	无穷大
Pi	圆周率

2.2 Mathematica 中数的类型

Mathematica 的数有:整数、有理数、实数和复数:

- ① 整数: Integer, 具有任意长度的精确数;
- ② 有理数: Rational, 用最简分数表示, 有理数是精确数, 输入方式"分子/分母";
- ③ 实数: Real,是指除了整数和有理数之外的所有实数。与一般高级语言不同的是,这里

的实数分任意精度和机器精度;

④ 复数: Complex, 带虚数单位 I, 实部和虚部可以是整数、有理数或实数。

2.3 Mathematica 中的精确数与近似数

- ① 精确数:整数、有理数、数学常数以及函数在自变量取整数、有理数、数学常数时的函数值;如 12,2/3,Sin[3],Pi
- ② 近似数: 带有小数点的数; 如 12.0, 3.14159
- ③ 如果参与运算的数带有小数点,则运算结果通常为近似数,显示的时候带 6 位有效数字,实际计算时具有机器精度。

2.4 关于数的一些基本运算

N[x,n]	提取 x 的近似值,带 n 位有效数字
N[x]	提取 x 的近似值, 机器精度
Floor[x]	取整: 不大于 x 的最大整数
Ceil[x]	取整: 不小于 x 的最小整数
Round[x]	取整: 四舍五入
Precision[expr]	查看表达式计算结果的精度
<pre>IntegerPart[x]</pre>	提取 x 的整数部分
FractionalPart[x]	提取 x 的小数部分

2.5 不同进制的数的转换

b^^xxxx	输入一个 b 进制数, $2 \le b \le 36$,并输出相应的十进制数	
BaseForm[x,b]	十进制数 x 的 b 进制表示	
<pre>IntegerString[x,b]</pre>	,b] 十进制数 x 的 b 进制表示,写成字符串形式	
FromDigits["str"] 从数字字符串中构造一个整数		
FromDigits[list] 从十进制数字列表中构造一个整数		
FromDigits[list,b] 从 b 进制数字列表中构造一个整数		
IntegerDigits[x,b] 十进制数 x 的 b 进制数字列表		

3 基本运算

3.1 算术运算

+ -	加、减	运
* /	乘、除	算
•	矩阵乘积	优 先
^	幂	级
+= -= *= /=	运算后赋值	. 1.
++	自加1、自减1	由 低
! !!	阶乘、双阶乘	到
()	运算的结合	高

不同类型的数参与运算,其运算结果的类型为:

- ① 如果有复数,则计算结果为复数类型;
- ② 如果没有复数,但有实数,则计算结果为实数类型;

- ③ 如果没有复数和实数,但有分数,则计算结果为有理数类型:
- ④ 如果只有整数,则计算结果为整数类型或有理数类型。

3.2 关系运算与逻辑运算

< <= > >= == !=	比较运算
x1 == x2 == x3 ==	全部相等
x1 != x2 != x3 !=	两两不等
a <b<c< th=""><th>a<b &&="" b<c<="" th=""></th></b<c<>	a <b &&="" b<c<="" th="">
&& ! Xor	逻辑运算

- ① 关系运算的优先级低于算术运算:逻辑运算的优先级低于关系运算:
- ② 当关系表达式成立时,取值为 True; 不成立时,取值为 False; 如果不能确定,则原样输出,表示取值为非真非假;
- ③ 多个比较运算符可以同时使用,如: ac 等价于 (a<b) && (b>c)

4 变量与表达式

4.1 变量

- ① 变量名通常以字母开头,后面跟字母、数字、下划线,不能含空格;
- ② 变量名的长度不限;
- ③ 变量名区分大小写;
- ④ 变量名中也可以包含希腊字母或中文,如"数学","码头";
- ⑤ 变量名不能以数字开头,否则将理解成数字与变量的乘积;如 3ab 等价于 3*ab
- ⑥ 用户定义变量时,建议使用小写字母,以免与系统内置函数重名;
- ⑦ 变量不必事先声明,其类型可以不断改变,取决于其所存数据的类型。

4.2 表达式

- ① Mathematica 中几乎所有对象都是表达式;
- ② 基本表达式有: 算术表达式, 关系表达式, 逻辑表达式;

4.3 变量操作

x=expr	变量赋值
Unset[x] 或 x=.	清除变量的值
Print[x1,x2,]	打印变量的值
Clear[x1,x2,]	清除变量
expr/.{x->a,y->b,}	变量替换(注:变量本身没有被赋值)

建议: 使用变量前先清除其中的内容

Mathematica 中的变量名还可以用作代数中的数学符号:在命令或程序中出现的变量名,如果该变量名所代表的变量没有被赋值,则它就作为一个数学符号参与数学公式的推导和运算;如果该变量被赋值了,则用该变量所赋的值参与对应数学公式的推导和运算。因此,如果用户在做符号运算时,所使用的符号变量已经被赋值,则会出现意想不到的错误。

5 字符串

字符串:用双引号括起来的字符序列。

5.1 字符串操作

Characters[str]	转化为字符列表
StringJion[str1,str2,]	字符串合并
str1 <> str2 <>	字符串合并
StringLength[str]	打印变量的值
StringSplit[str]	根据空白字符分隔字符串
ToExpression[str]	转化为表达式
ToString[expr]	将表达式转化为字符串

6 列表

- ① 是 Mathematica 的基本对象,可用来表示集合,数组等;
- ② 可分为标准列表和稀疏列表;
- ③ 标准列表:用大括号括起来的有限个元素,元素之间用逗号分隔;稀疏列表:通常由 SparseArray 来定义;
- ④ 列表中的元素可以是不同类型的任意 Mathematica 对象;
- ⑤ 列表可以嵌套,形成多维列表,如矩阵;
- ⑥ 当函数作用在列表上时,采用的是数组运算,即作用在每个分量上。

6.1 列表的生成

{x1,x2,}	枚举法,直接输入
Array[f,n]	生成一维列表{f[1],f[2],,f[n]}
Array[f,{n1,n2,}]	生成多维列表, f 为函数
Range[a,b,h]	生成一个等差数列构成的列表: a 为首项, h 为公差, 最后一项不超过 b; a 和 h 的缺省值为 1
Table[expr,{n}]	生成 n 元列表 {expr, expr,, expr}
Table[expr,{i,a,b,h}]	{expr i在 Range[a,b,h]中变化}
<pre>Table[expr,{i,list}]</pre>	{expr i在 list 中变化},expr 为通项公式
RandomInteger[range,n]	生成 n 个伪随机整数列表,range 表示范围
RandomReal[range,n]	生成 n 个伪随机实数列表, n 的缺省值为 1

6.2 列表分量

list[[k]]	列表 list 的第 k 个分量
list[[-k]]	倒数第 k 个分量
list[[i]][[j]]	第 i 个分量的第 j 个分量(嵌套列表)
list[[i,j]]	第 i 个分量的第 j 个分量(嵌套列表)
list[[{i,j,}]]	{list[[i]],list[[j]], }
<pre>First[list], Last[list]</pre>	第一个和最后一个分量
<pre>Take[list,k], Take[list,-k]</pre>	前k个和最后k个分量
<pre>Take[list,{i}]</pre>	{list[[i]]}
<pre>Take[list,{i,j}]</pre>	{list[[i]],list[[i+1]],, list[j]}
<pre>Take[list,{i,j,h}]</pre>	{list[[i]],list[[i+h]], } (步长为h)
list[[i;;j;;h]]	同上,h可以省略,缺省值为1

6.3 列表修改

<pre>Drop[list,{k}]</pre>	删除第 k 个分量
Drop[list,k]	删除前 k 个分量
Drop[list,-k]	删除最后 k 个分量
<pre>Drop[list,{i,j,h}]</pre>	删除 list[[i]],list[[i+h]],
Rest[list]	删除第一个分量
Most[list]	删除最后一个分量
Delete[list,k]	删除第 k 个分量
Delete[list,-k]	删除倒数第 k 个分量
<pre>Delete[list,{i,j,}]</pre>	删除 list[[i,j,]]
Delete[list,{{i1,j1,},	[i2,j2, },}] 删除多个分量
<pre>Insert[list,x,k]</pre>	在第 k 个位置插入 x
Prepend[list,x]	将 x 插入到 list 的最前面
PrependTo[list,x]	将 x 插入到 list 的最前面,并将结果赋给 list
Append[list,x]	将 x 插入到 list 的最后面
AppendTo[list,x]	将 x 插入到 list 的最前面,并将结果赋给 list

6.4 列表运算

Sort[list]	从小到大排列	
Sort[list,p]	用排序函数 p 对元素排序	
Sort[list,f]	排序方式根据 f 应用到每个元素的结果	
Ordering[list]	列表 list 中元素按 Sort[list] 顺序排列的位置	
Ordering[list,n]	列表中前 n 个元素按 Sort[list] 顺序排列的位置	
Ordering[list,-n]	列表中后 n 个元素按 Sort[list] 顺序排列的位置	
Ordering[list,n,p]	列表中前 n 个元素按 Sort[list,p] 排列的位置	
Length[list]	列表 list 中元素的个数	
Reverse[list]	将列表中的元素反过来排列	
Permutations[list]	列表中所有元素的所有排列	
Permutations[list,n]	列表中不超过 n 个元素的所有排列	
<pre>Permutations[list,{n}]</pre>	列表中 n 个元素的所有排列	
MemberQ[list,a]	判断 a 是否在列表中	
Subset[list]	列表的所有子集	
Subset[list,n]	列表的所有不超过 n 个元素的子集	
<pre>Subset[list,{n}]</pre>	列表的所有含 n 个元素的子集	
Flatten[list]	将列表压缩为一维列表	
Partition[a,n]	将列表拆分成若干长度为 n 的子列表	
Partition[a,{n1,n2,,}]	将列表拆分成 n1×n2×大小的字块	
Union[list1,list2,]	合并列表并排序,删除重复元素	
<pre>Intersection[a1,a2,]</pre>	计算交集并排序, 删除重复元素	
Apply[Plus,list]	计算列表中所有元素的和	

Apply[Times,list]	计算列表中所有元素的乘积
Total[list]	计算列表中所有元素的和

7 矩阵

向量是一维列表,矩阵是二维列表。

7.1 矩阵的生成

矩阵可以通过 Array, Table 等函数生成。

Array[函数名,变量取值范围]		
Array[f,n]	生成长度为 n 的向量{f[1],f[2],,f[n]}	
Array[f,{m,n}]	生成 m×n 的矩阵,元素为 f[i,j]	
Table[通项公式,{循环范围},]		
Table[expr,{i,a,b,h}]		生成向量{expr i=a:h:b}
Array[expr,{i,a1,b1,h1},{j,a2,b2,h2}]		生成 m×n 的矩阵

注: Table 中的循环范围的一般表示方法为

{i,a,b,h}	i从a到b,步长为h,最后一项不超过b	
{i,a,b}	步长缺省为1	
{i,b}	首项缺省为1	
{k}	重复k次	

7.2 特殊矩阵

<pre>IndentityMatrix[n]</pre>	n 阶单位矩阵
<pre>ConstantArray[c,{m,n}]</pre>	常数矩阵: $a_{ij} = c$
DiagonalMatrix[list]	以列表 list 中的元素为对角线的对角矩阵
HilbertMatrix[n]	n阶 Hilbert 矩阵
<pre>HilbertMatrix[{m,n}]</pre>	m×n 的 Hilbert 矩阵
ToeplitzMatrix[n]	n阶 Toeplitz 矩阵: $a_{ij}=\mid i-j\mid +1$
ToeplitzMatrix[list]	以 list 的元素为第一列的对称 Toeplitz 矩阵
<pre>ToeplitzMatrix[list1,list2]</pre>	指定第一列和第一行的 Toeplitz 矩阵
HankelMatrix[n]	n 阶 Hankel 矩阵: $a_{ij}=i-j+1$
HankelMatrix[list]	以 list 的元素为第一列的 Hankel 矩阵
<pre>HankelMatrix[list1,list2]</pre>	指定第一列和最后一行的 Hankel 矩阵
RotationMatrix[θ]	平面逆时针旋转 θ 所对于的 2 阶矩阵
RotationMatrix[θ ,w]	空间绕w逆时针旋转 θ 所对应的 3 阶矩阵

7.3 矩阵分量

A[[i,j]]	提取 a_{ij}
A[[All,j]]	提取第j列
A[[i,A11], A[[i]]	提取第i行
Take[A,{i1,i2,},{j1,j2,}]	提取一个子矩阵

7.4 矩阵运算

MatrixForm[A]	按矩阵形式输出 A
TableForm[A]	按表格形式输出 A
Length[v]	元素个数
Dimensions[A]	矩阵的维数 (行数和列数)
Dimensions[A,k]	矩阵的前 k 重维数
VectorQ[v]	是否为向量
MatrixQ[A]	是否为矩阵

A+B, Plus[A,B]	矩阵或向量相加
A-B, Subtract[A,B]	矩阵或向量相减
-A, Minus[A]	负矩阵或负向量
А+а, А-а	矩阵(向量)每个分量都与数相加
A.B	矩阵普通乘积
x.y, Dot[x,y]	向量内积
Cross[x,y]	向量外积
MatrixPower[A,n]	矩阵的幂
MatrixExp[A]	矩阵的指数函数
A*B, Times[A,B]	对应分量相乘(数组运算)
A/B, Divide[A,B]	对应分量相除(数组运算)
A^n, Power(A,n)	对应分量的幂(数组运算)
Det[A]	行列式
Inverse[A]	矩阵的逆
Transpose[A]	矩阵转置
ConjugateTranspose[A]	共轭转置
MatrixRank[A]	矩阵的秩
Eigenvalues[A]	特征值
Eigenvectors[A]	特征向量
Eigensystem[A]	特征值和特征向量
Norm[A]	矩阵的2范数
Norm[A,1], Norm[A,Infinity]	1 范数和无穷范数
Norm[x,p]	向量的 p 范数, p≥1, 缺省为 2 范数
Tr[A]	矩阵的迹
LinearSolve[A,b]	解线性方程组 $Ax = b$
NullSpace[A]	矩阵的零空间的一组基
Normalize[x]	向量单位化
Orthogonalize[A]	将矩阵 A 的行向量标准正交化
LUDecomposition[A]	LU 分解
CholeskyDecomposition[A]	Cholesky 分解
HessenbergDecomposition[A]	Hessenberg 化

JordanDecomposition[A]	Jordan 标准型
QRDecomposition[A]	QR 分解
SchurDecomposition[A]	Schur 分解
SingularValueDecomposition[A]	SVD 分解

8 函数

Mathematica 提供了超过 3000 个内置函数,具体见"帮助" \rightarrow "参考资料中心"的左下角处的"函数索引"。

Mathematica 系统内置函数的函数名一般使用数学中的英文单词,只要输入相应的函数名,就可以方便地使用这些函数。内部函数既有数学中常用的函数,又有工程中用的特殊函数。用户也可以自己定义新的函数。

Mathematica 函数命名规则

- ① 第一个字母大写,后面跟小写字母,如 Sin[x],Log[x]
- ② 当函数名分为几段时,每一段的头一个字母大写,后面的字母用小写,如: ArcSin[x]
- ③ 查看某个函数的用法: ??函数名,如 ??Sin

Mathematica 函数调用方式

- ① 标准方式: 函数名[变量列表], 如: Sin[Pi/3], Mod[5,2]
- ② 后缀方式: 变量//函数名, 如: Pi/3//Sin
- ③ 前缀方式: 函数名@变量, 如: Sin@(Pi/3)
- ④ 中缀方式:变量~函数名~变量,如:5~Mod~2

注: 使用前缀方式时,函数只作用在@后面的第一个变量上,如 Sin@Pi/3 等价于 Sin[Pi]/3,正确使用方法为 Sin@(Pi/3);而使用后缀方式时,函数作用在前面的所有 表达式上,如 1-Pi/3//Sin 等价于 Sin[1-Pi/3],正确使用方法为 1-(Pi/3//Sin)。

8.1 常用初等函数

Abs[x]	绝对值	
Sign[x]	符号函数	
Power[x,y]	幂函数 x ^y	
Sqrt[x]	平方根	
Exp[x]	以 e 为底的指数函数	
Log[x], Log[b,x]	以 e 和 b 为底的对数函数	
Factorial[n]	n!	
Factorial2[n]	n!!	
GCD[n1,n2,]	最大公约数	
GCD[list]	列表中所有数的最大公约数	
LCM[n1,n2,], LCM[list]	最小公倍数	
Max[x1,x2,], Max[list]	求最大值	
Min[x1,x2,], Min[list]	求最小值	
Re[x], Im[x]	提取实部和虚部	
Conjugate[x]	取共轭	
Arg[x]	辐角	
Mod[m,n]	m除以n的余数	

Quotient[m,n]	m 除以n的整数商
Sin[x], Cos[x],	三角函数
ArcSin[x], ArcCos[x],	反三角函数
Sinh, Cosh,,	双曲函数
ArcSinh, ArcCosh,	反双曲函数
Prime[k]	第 k 个素数
PrimeQ[n]	判断 n 是否为素数
Binomial[n,m]	二项式系数 C_n^m

8.2 随机函数

Random[]	生成[0,1]内的一个随机实数
Random[Real, a]	生成[0,a]内的一个随机实数
Random[Real, {a,b}]	生成[a,b]内的一个随机实数
Random[Integer]	随机给出整数 Ø 或 1
Random[Integer, {a,b}]	生成[a,b]内的一个随机整数
Random[Complex]	生成一个[0,1]×[0,1]内的一个随机复数

8.3 自定义函数

函数名[自变量名 1_, 自变量名 2_, ...]:= 表达式

- ① 这里函数名与变量名的规定相同
- ② 方括号中的每个自变量名后都要有一个下划线 "_"
- ③ 中间的":="为定义号
- ④ 表达式中一般都含有自变量

f[x_]:=2*x-3	定义一个一元函数
f[x_,y_]:=Log[x/y]-Power[x,y]	定义一个二元函数
Clear[f]	清除自定义的函数

自定义函数前,最好先清除自变量的值,否则可能会出现意想不到的错误。

注:函数与符号表达式的区别!

二、符号计算

1 多项式运算

略

2 代数方程求解

略

3 微分方程求解

略

4 级数运算

略

5 计算极限

Limit[f,x->a]	计算极限 $\lim_{x\to a} f(x)$, 这里 f 是符号表达式
Limit[f,x->a,Direction->1]	左极限
Limit[f,x->a,Direction->-1]	右极限

6 计算导数

D[f,x]	计算 $f'(x)$, 这里 f 是符号表达式
D[f,x,y]	二重偏导数 $\frac{\partial}{\partial x} \frac{\partial}{\partial y} f(x)$
D[f,x,y,]	多重偏导数
D[f,{x,n}]	n 重导数 $f^{(n)}(x)$
D[f,{{x,y,}}]	计算梯度 $\left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \dots\right]$

7 计算积分

<pre>Integrate[f,x]</pre>	计算 $\int f(x) dx$, 省略积分常数
<pre>Integrate[f,x,y]</pre>	二重积分 $\iint f(x,y) dy dx$ (自右向左)
<pre>Integrate[f,x,y,]</pre>	多重积分
<pre>Integrate[f,{x,a,b}]</pre>	定积分 $\int_a^b f(x) dx$
<pre>Integrate[f,{x,a,b},{y,c,d},]</pre>	多重定积分
<pre>Integrate[f,{{x,y,}}]</pre>	计算梯度 $\int_a^b f(x) dx$
NIntegrate[f,{x,a,b},{y,c,d},]	数值积分

三、作图

1 二维曲线做图

1.1 函数作图

已知曲线方程: $y = f(x), x \in [a,b]$

Plot[f,{x,a,b}]	作 $f(x)$ 的图形, 绘图区间 $[a,b]$	
Plot[f,{x,a,b},options]	带绘图选项 (后面详细介绍各选项)	
Plot[{f1,f2,},{x,a,b}]	同时画多个图形,也可以带选项	

常用绘图选项

AspectRatio	图形的高宽比,缺省约为 6.18, 如: AspectRatio->1
AxesLabel	坐标轴标注,缺省不加标注,如: AxesLabel->{x,f[x]}
PlotLabel	标题,缺省没有标题,如: PlotLabel->{y==f[x]}
PlotPoint	作图时取的样本点个数,缺省为25,如:PlotPoint->50
PlotRange	指定 y 的范围
AxesStyle	坐标轴属性(含标签和刻度),如颜色,粗细等,可以取多个值
BaseStyle	指定基本样式
PlotStyle	图形的属性,如颜色,线型,粗细等

AxesStyle, BaseStyle 和 PlotStyle 的取值

线型	Dashed, Dotted, DotDashed, Dashing[{w1,w1,}]
粗细	Thin, Thick, Thickness[w] (w∈[0,1],通常小于0.1)
颜色	Red, Blue, Black, White, Green, Yellow, Gray, Cyan, Magenta, Brown, Orange, Pink, Purple LightRed, LightBlue, Transparent
颜色	RGBColor[r,g,b] $(r,g,b \in [0,1])$
字体大小	FontSize->大小,如 FontSize->15

作图举例:

更多选项

Filling	填充,取值可以是 Axis, Bottom, Top,	
Background->颜色	设置背景颜色	
Ticks->None	取消刻度	
Axes->None	不显示坐标轴	
Frame->True	加上边框	
FrameLabel	边框标注	
WorkingPrecison	画图时内部计算使用的精度	

PolarPlot[\mathbf{r} , {θ,α,β}] 极坐标方程作图,可带选项

1.2 参数方程作图

已知曲线参数方程: $x = x(t), y = y(t), t \in [a,b]$

ParametricPlot[{x,y},{t,a,b}]	参数方程作图,可带选项
ParametricPlot[{{x1,y1},{x2,y2},},{t,a,b}]	同时画多个图形

```
In[1] := ParametricPlot[\{Sin[t],Sin[2*t]\}, \{t,0,2*Pi\},\\ BaseStyle \rightarrow \{FontSize \rightarrow 15\},\\ PlotStyle \rightarrow \{Blue,Thick,Dashed\}]
In[2] := ParametricPlot[\{\{2*Cos[t],2*Sin[t]\}, \{2*Cos[t],Sin[t]\},\\ \{Cos[t],2*Sin[t]\}, \{Cos[t],Sin[t]\}\},\\ \{t,0,2*Pi\},\\ PlotStyle \rightarrow \{\{Blue,Thick\}, \{Red,Dashed\},\\ \{Green,Dotted\}, \{Black,DotDashed\}\}]
```

1.3 极坐标方程作图

极坐标方程: $r = r(\theta), \theta \in [\alpha, \beta]$

<pre>In[1]:= PolarPlot[5,{t,0,2*Pi}, PlotStyle→{Blue,Thick}]</pre>
<pre>In[2]:= PolarPlot[{1,1+1/24*Sin[12*t],0.5,0.5+1/24*Sin[12*t]},</pre>
<pre>In[3]:= PolarPlot[Exp[Cos[t-Pi/2]]-2*Cos[4*(t-Pi/2)]</pre>

1.4 散点作图

已知数据点: $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$

ListPlot[{{x1,y1},{x2,y2},}]	散点图,可带选项
ListLinePlot[{y1,y2,}]	数据点为 $(1, y_1), (2, y_2),, (n, y_n)$
ListPlot[list,Joined->True]	画通过数据点的折线
ListPolarPlot[list]	在极坐标下的散点图
ListLinePlot[list]	带连线的散点图

常用选项

PointSize[size]	点的大小,需通过 PlotStyle 来设置	
PlotMarkers->{marker,size}	设置点的类型和大小,可通过面板输入特殊字符	

2 三维曲线做图

2.1 参数方程作图

已知曲线方程: $x = x(t), y = y(t), z = z(t), t \in [a,b]$

ParametricPlot3D[{x,y,z},{t,a,b}]	三维曲线作图
ParametricPlot3D[{{x1,y1,z1},{x2,y2,z2},},{t,a,b}]	同时画多个图

常用绘图选项

Boxed->False	去除立体方框
BoxRatios	立体方框的比例,缺省值为 {1,1,0.4}

3 三维曲面做图

3.1 函数作图

已知曲面方程: $z = z(x, y), x \in [a,b], y \in [c,d]$

常用绘图选项

Boxed->False	去除立体方框	
BoxRatios	立体方框的比例,缺省值为 {1,1,0.4}	
Mesh->None	去除网格,其它常用取值有 All, Full	
MeshStyle	设置网格元素的属性,如颜色,透明度等	
RegionFunction	通过函数指定绘图区域	
BoundaryStyle	图形边界属性(可与 RegionFunction 联合画两个曲面的交线)	
Opacity[a]	设置透明度, $a \in [0,1]$	

3.2 参数方程作图

已知曲面参数方程: $x = x(u,v), y = y(u,v), z = z(u,v), u \in [a,b], v \in [c,d]$

ParametricPlot3D[{x,y,z},{u,a,b},{v,c,d}] 三维曲面参数方程作图

注: 也可以同时画多个图

```
In[1] := ParametricPlot3D[ \left\{ 3*Sec[u]*Cos[v], 3*Sec[u]*Sin[v], 5*Tan[u] \right\}, \left\{ u, -Pi/3, Pi/3 \right\}, \left\{ v, 0, 2*Pi \right\}, Boxed \rightarrow False] \\ In[2] := ParametricPlot3D[ \left\{ \left\{ 4+(3+Cos[v])*Sin[u], 4+(3+Cos[v])*Cos[u], 4+Sin[v] \right\}, \left\{ 8+(3+Cos[v])*Cos[u], 3+Sin[v], 4+(3+Cos[v])*Sin[u] \right\} \right\}, \left\{ u, 0, 2*Pi \right\}, \left\{ v, 0, 2*Pi \right\}, Boxed \rightarrow False] \\
```

3.3 球坐标作图

直角坐标与球坐标关系:

 $x = r \sin \theta \cos \varphi$, $y = r \sin \theta \sin \varphi$, $y = r \cos \theta$

$$r = \sqrt{x^2 + y^2 + z^2}$$
, $\theta = \arctan \frac{\sqrt{x^2 + y^2}}{z} = \arccos \frac{z}{r}$, $\varphi = \arctan \frac{y}{x}$

SphericalPlot3D[r ,{ θ , α 1, β 1},{ φ , α 2, β 2}]	球坐标作图
SphericalPlot3D[$\{r1,r2,\},\{\theta,\alpha1,\beta1\},\{\phi,\alpha2,\beta2\}$]	同时画多个图

```
In[1]:= SphericalPlot3D[\{1,2,3\},\{u,0,Pi\},\{v,0,3*Pi/2\}]
In[2]:= SphericalPlot3D[v,\{u,0,Pi\},\{v,0,2*Pi\},
BoxRatios\rightarrow \{1,1,1\}]
```

4 图形的重现与组合

Show[pic]	显示图形表达式	
Show[pic,options->values]	添加选项	
Show[pic1,pic2,]	将多个图形放在一个绘图区域中	
GraphicsGrid[{{p11,p12,},{p21,p22,},}] 按		按矩阵方式显示图形

5 动画

```
In[1]:= Manipulate[Plot[Sin[n*x]/(x+1),{x,0,2*Pi}, PlotStyle \rightarrow {RGBColor[(10-n)/10,n/10,0],Thick ness[0.01]}], {n,1,20,1}]
```

四、程序设计

待续