Image-Based Rendering

Computer Vision
CSE576, Spring 2005
Richard Szeliski

Today's lecture

Image-Based Rendering

- Light Fields and Lumigraphs
- Panoramas and Concentric Mosaics
- Environment Matting
- Image-Based models

Today's lecture

Video-Based Rendering

- Facial animation
- Video matting and shadow matting
- Video Textures and Animating Stills
- Video-based tours

Readings

- S. J. Gortler, R. Grzeszczuk, R. Szeliski and M. F. Cohen, The Lumigraph, SIGGRAPH'96.
- M. Levoy and P. Hanrahan, <u>Light field rendering</u>, SIGGRAPH'96.
- H.-Y. Shum and L.-W. He. Rendering with concentric mosaics, SIGGRAPH'99.

Readings

- D. E. Zongker et al. <u>Environment matting and compositing</u>, SIGGRAPH'99.
- Y.-Y. Chuang et al. Environment matting extensions: Towards higher accuracy and real-time capture. SIGGRAPH'2000, pp.121-130, 2000.
- P. E. Debevec, C. J. Taylor and J. Malik, Modeling and rendering architecture from photographs:..., SIGGRAPH'96.

Readings

- Y.-Y. Chuang *et al.* Video matting of complex scenes. ACM Trans. on Graphics, 21(3):243-248, July 2002
- Y.-Y. Chuang *et al.* Shadow matting. ACM Transactions on Graphics, 22(3):494-500, July 2003.
- A. Schödl *et al.*, Video textures. SIGGRAPH'2000, pp. 489-498, 2000.
- M. Uyttendaele et al. Image-based interactive exploration of real-world environments. IEEE Comp. Graphics and Applications, 24(3), May/June 2004.

Lightfields and Lumigraphs

(with lots of slides from Michael Cohen)

Modeling light

How do we generate new scenes and animations from existing ones?

Classic "3D Vision + Graphics":

- take (lots of) pictures
- recover camera pose
- build 3D model
- extract texture maps / BRDFs
- synthesize new views

Computer Graphics

Computer Vision

Combined

But, vision technology falls short

... and so does graphics.

Image Based Rendering

Ray

Constant radiance

time is fixed

5D

- 3D position
- 2D direction

All Rays

Plenoptic Function: all possible images • too much stuff!

Line

Infinite line

4D

- 2D direction
- 2D position
- non-dispersive medium

Ray

Distance between 2 rays

Which is closer together?

Image

All rays through a point

Panorama

Panoramic Mosaics

Convert panoramic image sequence into a cylindrical image

Image

position in plane

All light leaving object

All images

CSE 576, Spring 2005

Image-Based Rendering

Lumigraph / Lightfield

Lumigraph

Lumigraph

How to?

- organize
- capture
- render

CSE 576, Spring 2005

Image-Based Rendering

2D position 2D direction

Hold s,t constant Let u,v vary An image

CSE 576, Spring 2005

Image-Based Rendering

Discretization

- higher res near object
 - if diffuse
 - captures texture
- lower res away
 - captures directions

Lumigraph - Capture

Idea 1

- Move camera carefully over s,t plane
- Gantry
 - see Light Field paper

Lumigraph - Capture

Idea 2

- Move camera anywhere
- Rebinning
 - see Lumigraph paper

CSE 576, Spring 2005

Image-Based Rendering

Lumigraph - Rendering

For each output pixel

- determine s,t,u,v
- either
 - find closest discrete RGB
 - interpolate near values

Lumigraph - Rendering For each output pixel determine s,t,u,v either use closest discrete RGB interpolate near values

Nearest

- closest s
- closest u
- draw it

Blend 16 nearest

quadrilinear interpolation

Depth Correction

quadralinear interpolation

new "closest"

like focus

[Dynamically Reparameterized Light Fields, Isaksen, SG'2000]

Lumigraph - Ray Space

3D space ray space surface depth ⇔ slope in ray space

Lumigraph - Ray Space

Image effects:

- parallax
- occlusion
- transparency
- highlights

Lumigraph - Demo

Lumigraph

Lion, Fruit Bowl

Unstructured Lumigraph

- What if the images aren't sampled on a regular 2D grid?
- can still re-sample rays
- ray weighting becomes more complex [Buehler et al., SIGGRAPH'2000]

Surface Light Fields

Turn 4D parameterization around:

image @ every surface pt.

Leverage coherence:

compress radiance fn
(BRDF * illumination)
after rotation by n

Surface Light Fields

[Wood et al, SIGGRAPH 2000]

3D Representations

Image (and panoramas) are 2D Lumigraph is 4D What happened to 3D?

- 3D Lumigraph subset
- Concentric mosaics

3D Lumigraph

One row of s,t plane

• i.e., hold t constant

3D Lumigraph

One row of s,t plane

- i.e., hold t constant
- thus s,u,v
- a "row of images"

[Sloan et al., Symp. I3DG 97]

Replace "row" with "circle" of images [Shum & He, SIGGRAPH'97]

2.5D Representations

Image is 2D Lumigraph is 4D 3D

- 3D Lumigraph subset
- Concentric mosaics

2.5D

- Layered Depth Images
- Sprites with Depth (impostors)
- View Dependent Surfaces (see Façade)

Layered Depth Image

Layered Depth Image

Layered Depth Image

Rendering from LDI

- Incremental in LDI X and Y
- Guaranteed to be in back-to-front order

Layered Depth Image

Rendering from LDI

- Incremental in LDI X and Y
- Guaranteed to be in back-to-front order

Sprites with Depth

Represent scene as collection of cutouts with depth (planes + parallax)

Render back to front with fwd/inverse warping [Shade et al., SIGGRAPH'98]

Environment matting and compositing

D. E. Zongker, D. M. Werner,

B. Curless and D. H. Salesin. SIGGRAPH'99

Environment Matting

Capture the *reflections* and *refractions* of a realworld object

Composite object over a novel background

Environment Matting - examples

Figure 1 A water goblet, digitally composited onto background images, preserving the effects of refraction.

<u>Movie</u>

Environment Matting

64

Acquisition setup

Use several monitors with stripes

Figure 2 The environment matting process uses structured textures to capture how light is reflected and refracted from a backdrop (right shaft), as well as from various sidedrops (left shaft). The process also captures light coming from the backdrop that is seen through uncovered portions of a pixel (center shaft).

Environment matting equation

Captures foreground color and background directions

$$C = F + (1 - \alpha)B + \sum_{i=1}^{m} R_i \mathcal{M}(T_i, A_i)$$

Most standard texture-mapping methods actually compute the *average* value of an axis-aligned region of a texture, so we'll let $R_i = K_i A_i$. Letting $\mathcal{M}(T, A)$ be a texture-mapping operator that returns the average value of an axis-aligned region A of the texture T,

Environment matting - result

Figure 4 From left to right: an alpha matte composite, an environment matte composite, and a photograph of an object in front of a background image. The top row shows a ribbed glass candle holder; the bottom row shows a rough-surfaced glass bookend.

Environment matting extensions

[Chuang et al., SIGGRAPH'2001]

- accurate (multiple refractions):
 - soft stripes
- fast (video rate):
 - color ramp

Figure 1 Sample composite images constructed with the techniques of this paper: slow but accurate on the left, and a more restricted example acquired at video rates on the right.

Image-Based Modeling

Image Based Models

Modeling and Rendering Architecture from Photographs

Debevec, Taylor, and Malik 1996

Original photograph with marked edges CSE 576, Spring 2005

Recovered model

Model edges projected onto photograph

Synthetic rendering

Image-Based Modeling

Create 3D model (and texture maps) from images (b) Hybrid Approach

- automated
 - (structure from motion, stereo)
- interactive
 - Façade system

Façade

- 1. Select building blocks
- 2. Align them in each image
- 3. Solve for camera pose and block parameters (using constraints)

Figure 3: A wedge block with its parameters and bounding box.

Figure 4: (a) A geometric model of a simple building. (b) The model's hierarchical representation. The nodes in the tree represent parametric primitives (called blocks) while the links contain the spatial relationships between the blocks.

View-dependent texture mapping

 Determine visible cameras for each surface element

2. Blend textures (images) depending on distance between original camera and novel

viewpoint

Model-based stereo

Compute offset from block model

(b) Warped Offset Image

(c) Offset Image

(d) Computed Disparity Map

Some more results:

Image-Based Faces

Estimate shape from images
Match metrics to shape
Project video onto shape

Texture map

Animate

[Z. Liu et al., MSR-TR-2000-11]

Hierarchy of Light Fields [Levoy]

8D: Refractive/reflective environment

5D: Plenoptic Function (Ray)

4D: Lumigraph / Lightfield

4D*: Environment Matte (single view)

3D: Lumigraph Subset

3D: Concentric Mosaics

2.5D: Layered Depth Image

2.5D: Image Based Models

2D: Images and Panoramas

Graphics/Imaging Continuum

What lies *beyond* Image-Based Rendering?

Video-Based Rendering

Image-Based Rendering:

 render from (real-world) images for efficiency, quality, and photo-realism

Video-Based Rendering

- use video instead of still images for dynamic elements and source footage
- generate computer video instead of computer graphics

VBR Examples

Facial animation

Video Rewrite, ...

Layer/matte extraction

Video Matting, ...

Dynamic (stochastic) element

Video Textures, ...

3-D world navigation

Image-Based Realities, ...

Facial animation

Modeling from still images

[Pighin et al., SG'98]

Lip-synching from video

- Video Rewrite [Bregler et al., SG'97]
- [Ezzat et al., SG'02]

Matting and Compositing

Digital Matting and Compositing

http://grail.cs.washington.edu/projects/digital-matting/

Overview

Matting and compositing are important operations in the production of special effects. These techniques enable directors to embed actors in a world that exists only in imagination, or to revive creatures that have been extinct for millions of years. During matting, foreground elements are extracted from a film or video sequence. During compositing, the extracted foreground elements are placed over novel background images.

Traditional approaches to matting include *blue-screen matting* and *rotoscoping*. The former requires filming in front of an expensive blue screen under carefully controlled lighting, and the latter demands talent and intensive user interaction. Our <u>Bayesian matting algorithm (CVPR 2001)</u> can pull alpha matters of complex shapes from natural images. In the <u>"video matting" paper (SIGGRAPH 2002)</u>, we extended this approach to video by interpolating user-drawn keyframes using optical flow. A novel technique for smoke matte extraction is also demonstrated.

Traditional compositing operations can only model color blending effects like anti-aliasing, motion blur and transparency. This model, however, can't model reflections, refractions and shadows. In SIGGRAPH 1999, we introduced environment matting which can captures how a foreground object refracts and reflects light. The foreground object can then be placed in a new environment using environment compositing, where it will refract and reflect light from that scene. We later developed more sophisticated sampling schemes to capture mattes with higher accuracies, and techniques requiring fewer images, to allow for real-time capture. Shadows are yet another effects that traditional approaches fail to model correctly. In SIGGRAPH 2003, we introduced a novel process called "shadow matting and compositing" to acquire the photometric and geometric properties of the background for making realistic shadow composites.

Video Matting

Pull dynamic α-matte from video with complex backgrounds

[Chuang et al. @ UW, SIGGRAPH'2002]

Video Matting

Image-Based Rendering

Transfer a shadow from one background to another:

- Extract and model photometry (darkening)
- Extract and model geometry (deformation)

Shadow matting

Shadow matting. Starting from a source image sequence (one frame shown in (a)), we first remove the foreground character using video matting. Our shadow matting algorithm recovers lit and shadow images (b,c) using max/min compositing. It then estimates â by projecting observed pixel colors onto the color lines between them (d).

CSE 576, Spring 2005

Shadow compositing (d) Geometric shadow (c) Composite without (a) Target lit image (b) Target shadow image displacement scanning (e) Regular grid on the (f) Displacement map (g) Composite with (h) Using another background visualization reference plane displacement

Image-Based Rendering

Video

Video Textures

Video Textures

How can we turn a short *video clip* into an ∞ amount of continuous video?

- dynamic elements in 3D games and presentations
- alternative to 3D graphics animation?

[Schödl, Szeliski, Salesin, Essa, SG'2000]

Video Textures

Find cyclic structure in the video

(Optional) region-based analysis
Play frames with random shuffle
Smooth over discontinuities (morph)

Region-based analysis

Crossfading and morphing

Jump Cut

Crossfade

Morph

Video portrait

Dynamic scene element

Live waterfall in static panorama

CSE 576, Spring 2005

Image-Based Rendering

Interactive fish

A complete animation

Image-Based Rendering

Video-Based Tours

Video-Based Walkthroughs

Move camera along a rail ("dolly track") and play back a 360° video

Applications:

- Homes and architecture
- Outdoor locations (tourist destinations)

Surround video acquisition system

Built by Point Grey Research (*Ladybug*)

Six camera head

Portable hard drives, fiber-optic link

Resolution per image: 1024 x 768

FOV: ~100° x ~80°

Acquisition speed: 15 fps uncompressed

Acquisition platforms

Robotic cart

Wearable

Open issues

How to best sample and interpolate Light Field

- (sub-?) pixel accurate stereo
- reflections, refractions, ...

Compositing

- how to insert Light Field into new environment
- relighting
- ...?

Summary

Image-Based Rendering

- Light Fields and Lumigraphs
- Panoramas and Concentric Mosaics
- Matting: natural, environment, and shadows
- Image-Based models

Video-Based Rendering

- Facial animation
- Video Textures and Animating Stills
- Video-based tours

Summary

Image-Based Rendering

- Light Fields and Lumigraphs
- Panoramas and Concentric Mosaics
- Environment Matting
- Image-Based models

Video-Based Rendering

- Facial animation
- Video matting
- Video Textures and Animating Stills
- Video-based tours