

SRI RAMACHANDRA

INSTITUTE OF HIGHER EDUCATION AND RESEARCH

(Category - I Deemed to be University) Porur, Chennai

SRI RAMACHANDRA FACULTY OF ENGINEERING AND TECHNOLOGY

CSE 320 Data Mining

YEAR – III Quarter 1 B. TECH CSE (AIML)

Course Faculty: Dr. Jayanthi G
Assistant Professor,
Faculty of Engineering and Technology

KNOW YOUR DATA

OBJECTS & ATTRIBUTES

1.1 Data Objects and Attributes

- 1.1.1 Types of Datasets
 - Record
 - Graph and Network
 - Ordered
 - Spatial
 - Image and Multimedia
 - Datasets in R
- 1.1.2 Characteristics of structured data
- 1.1.3 What is data object?
- 1.1.4 What is attribute?

Types of attributes (Nominal, Binary, Ordinal,) –Tutorial Numeric (Integer or real valued, Interval, ratio) – Tutorial Discrete Versus Continuous - Tutorial

1.1.1 Types of Data sets – Record

Relational records

Employee Id	First Name	Last Name	Date of Birth		
			Day	Month	Year
1490	Suraj	Mohan	05	April	1987
1235	Kamala	Vasudev	24	May	1990
1678	Kamal	Prasad	06	Jan	1989
1541	Rajan	Rajesh	25	June	1980
1798	Neela	Kumar	11	July	1978

Data matrix, e.g., numerical matrix, crosstabs, QR Code, Data matrix

				A	ge		
	Base	Under 18	18-24	25-34	35-44	45-54	55+
Base	204	59 29%	43 21%	38 19%	36 18%	20 10%	8 4%
Frequency of visit							
Daily	18 9%	9 4%	5 2%	4 2%	81	650 1000	8 8 25
Twice a week	35 17%	11 5%	8 4%	8 4%	7 3%	2	1 0%
Weekly	64 31%	16 8%	8 4%	16 8%	16 8%	4 2%	4 2%
Monthly	87 43%	23 11%	22 11%	10 5%	13 6%	16 8%	3 1%

4 52 0

Crosstab

CSE320 Data Mining

Document data: text documents: term-frequency vector

Document	Team	Coach	Hockey	Baseball	soccer	penalty	score	win	loss	season
Document1	5	0	3	2	3	6	4	2	1	0
Document2	3	0	2	6	2	7	0	1	2	0
Document3	0	8	0	4	6	2	3	0	5	1
Document4	0	9	2	5	3	1	2	4	4	2
Document5	1	1	8	4	3	2	2	4	3	1

• Transaction data

ATM Name	Transaction Date	No Of Withdrawals	No Of XYZ Card Withdrawals	No Of Other Card Withdrawals	Total amount Withdrawn	Amount withdrawn XYZ Card	Amount withdrawn Other Card	Weekday	Festival Religion	Working Day	Holiday Sequence
Big Street ATM	1/1/2011	50	20	30	123800	41700	82100	Saturday	Н	Н	WHH
Mount Road ATM	1/1/2011	253	67	186	767900	270900	497000	Saturday	С	Н	WHH
Airport ATM	1/1/2011	98	56	42	503400	347700	155700	Saturday	С	Н	WHH
KK Nagar ATM	1/1/2011	265	159	106	945300	532600	412700	Saturday	С	Н	WHH
Christ College ATM 9/4/2021	1/1/2011	74	25	49	287700 320 Data Mining	532600	139500	Saturday	С	Н	WHH

1.1.1 Types of Data sets – Graph and Network Molecular **Structures** Marketing Alex Catalogu Bartleby.com: Strunk's The Old Farmer's Almanac Knowledge Rating and Web Search Home Page and reviews **Experience** Social A Philosophical GNU - Free Software Foundation (FSF) **Network** (Italy Paper Money INDEX) Encyclopedia: a *a ca ay⊓a ay⊓ Artspace > Traver & Hoter u **Business** People GNU Project - Free Software **Decisions** Connections **World Wide Web** Welcome to SUSE LINUX

http://wikipedia.org, we can follow links to eventually reach **Social Networking and** millions of webpages from across the globe. **Information CSE320 Data Mining**

9/4/2021

1.1.1 Types of Data sets – Ordered

1.1.1 Types of Data sets – Spatial

Tamil Nadu population density by district

1.1.1 Datasets in R

```
data("readingSkills")
head(readingSkills)
data("Groceries")
head(Groceries)
```

"transactions in sparse format with 6 transactions (rows) and 169 items (columns)"

```
data("Income")
head(Income)
```

transactions in sparse for (rows) and 50 items (colu

1.1.2 Characteristics of Structured Data

Dimensionality: Curse of dimensionality

Sparsity: Only presence counts

Resolution: Patterns depend on the scale

Distribution: Centrality and dispersion

```
str(Income)
Formal class 'transactions' [package "arules"] with 3
slots
  ..@ data :Formal class 'ngCMatrix' [package
"Matrix"] with 5 slots
                   : int [1:96264] 1 2 4 10 12 17 23
  .....@ i
26 28 30 ...
                   : int [1:6877] 0 14 28 42 56 70 84
  .... р
98 112 126 ...
  ....@ Dim
                   : int [1:2] 50 6876
  .. .. ..@ Dimnames:List of 2
  ....$: NULL
  .....$: NULL
  .. .. ..@ factors : list()
  ..@ itemInfo :'data.frame':
                                 50 obs. of 3
variables:
  ....$ labels : chr [1:50] "income=$0-$40,000"
"income=$40,000+"
  .... $\square\text{variables}: Factor w/ 14 levels "age", "dual
incomes",..: 6 6 12 12 8 8 8 8 8 1 ...
  ....$ levels : Factor w/ 48 levels "0", "$0-
$40,000",..: 2 10 28 22 29 16 19 47 42 6 ...
  ..@ itemsetInfo:'data.frame': 6876 obs. of 1
variable:
  ...$ transactionID: chr [1:6876] "2" "3" "4" "5"
```

```
data("readingSkills")
                          > data("readingSkills")
                          > head(readingSkills)
head (readingSkills)
                            nativeSpeaker age shoeSize
                                                          score
                                            5 24.83189 32.29385
                                      yes
data("Groceries")
                                      yes 6 25.95238 36.63105
head (Groceries)
                                       no 11 30.42170 49.60593
                                      yes 7 28.66450 40.28456
                                      yes 11 31.88207 55.46085
data("Income")
                                      yes 10 30.07843 52.83124
head (Income)
                          > data("Groceries")
str(Income)
                          > head(Groceries)
                          transactions in sparse format with
                           6 transactions (rows) and
                           169 items (columns)
                          > data("Income")
                          > head(Income)
                          transactions in sparse format with
```

6 transactions (rows) and

50 items (columns)


```
> str(Income)
data("BostonHomicide")
                       Formal class 'transactions' [package "arules"] with "
head (BostonHomicide)
                         ..@ data
                                       :Formal class 'ngCMatrix' [package "Matrix"]
head (BostonHousing)
                       with 5 slots
                                         : int [1:96264] 1 2 4 10 12 17 23 26 28 30
                        .. .. ..@ i
data("scPublications")
data ("Epub")
                       ....@ p : int [1:6877] 0 14 28 42 56 70 84 98 112
data("AirPassengers")
                       126 ...
data("PhillipsCurve")
                         .....@ Dim : int [1:2] 50 6876
data("GermanM1")
                         .. .. ..@ Dimnames:List of 2
                         .. .. .. $ : NULL
                         .. .. ..@ factors : list()
                         ..@ itemInfo :'data.frame': 50 obs. of 3 variables:
                         ....$ labels : chr [1:50] "income=$0-$40,000"
                       "income=$40,000+" "sex=male" "sex=female" ...
                         ....$ variables: Factor w/ 14 levels "age", "dual
                       incomes",..: 6 6 12 12 8 8 8 8 8 1 ...
                         ....$ levels : Factor w/ 48 levels "0", "$0-$40,000",...: 2
                       10 28 22 29 16 19 47 42 6 ...
                         ..@ itemsetInfo:'data.frame': 6876 obs. of 1 variable:
                         ...$ transactionID: chr [1:6876] "2" "3" "4" "5" ...
```

```
> data("BostonHomicide")
```


> head(BostonHomicide

	homicides	population	populationBM	ahomicides25	ahomicides35	unemploy	season	year
1	2	228465	12977	2	1	20.2	Jan	1992
2	1	228465	12977	1	0	20.2	Feb	1992
3	1	228465	12977	5	1	20.2	Mar	1992
4	1	228465	12977	1	0	20.2	Apr	1992
5	3	228465	12977	3	0	20.2	May	1992
6	3	228465	12977	6	2	20.2	Jun	1992

> head(BostonHousing)

```
crim zn indus chas
                                             dis rad tax ptratio
                                                                       b lstat medv
                          nox
                                  rm age
                      0 0.538 6.575 65.2 4.0900
1 0.00632 18
              2.31
                                                    1 296
                                                             15.3 396.90
                                                                           4.98 24.0
                                                             17.8 396.90
2 0.02731
                      0 0.469 6.421 78.9 4.9671
                                                    2 242
              7.07
                                                                           9.14 21.6
                                                    2 242
3 0.02729
              7.07
                      0 0.469 7.185 61.1 4.9671
                                                             17.8 392.83
                                                                           4.03 34.7
                                                    3 222
 0.03237
              2.18
                      0 0.458 6.998 45.8 6.0622
                                                             18.7 394.63
                                                                          2.94 33.4
5 0.06905
              2.18
                      0 0.458 7.147 54.2 6.0622
                                                    3 222
                                                             18.7 396.90
                                                                           5.33 36.2
6 0.02985
                      0 0.458 6.430 58.7 6.0622
                                                    3 222
                                                             18.7 394.12
                                                                           5.21 28.7
              2.18
```

- > data("scPublications")
- > data("Epub")
- > data("AirPassengers")
- > data("PhillipsCurve")
- > data("GermanM1")

1.1.3 What is data object?

- The raw data sets are the source of data objects.
- A data object is an entity in the real world.
- There are also known as samples, instances, data points, tuples etc., Each row is a data object, Columns in the table represents attributes.
 - Sales Database : items, Customer transactions, Turnover
 - Medical Database: Patients, Symptoms, diagnosis,
 - University Database: Programme, Courses, Students, Professors
 - Geospatial Database: Spatial coordinate Lat, Long, Geometry, Altitude, demography

How data objects are represented in R?

- 1. Array
- 2. Matrix
- 3. Data Frame
- 4. List
- 5. Factor
- 6. Vector

In **R**, variables are assigned to objects rather than data types. This enables the use of basic types in a different way during data manipulation. The **class()** function is used to extract attribute information of R objects.

Example: Relational Database such as

- Sales Database
- Medical Database
- University Database
- Geospatial Database

1.1.3 Understanding types of variables?

Data is a specific measurement of a variable.

Attribute (or dimensions, features, variables): a data field, representing a specific property or characteristics or feature of a data object. *E.g., Unique ID. Name. Admission Year*

Number of participants in an event Number of likes, dislikes **Variable Discrete** Categorical Nominal **Ordinal** Interval Ratio scaled **Continuous**

Example

Discrete: Count of individual data items.

Number of students in a class

Number of courses offered

Discrete

Quantitative

Continuous

	Discrete Versus Continuous Variable										
Type of Variable	Representation	Examples	Values								
Discrete (integer)	Count of individual items or values Binary attributes are special case	 The strength of a classroom The different biological species in a Zoological Park Pin codes Profession the set of words in a collection of documents 	 The number of students The number of species 600 001, 600 116 Professor, Associate, Assistant {"the", "an", "as", "of"} 								
Continuous (Ratio)	Count of non-finite values	 Distance Speed Calendar Date Time Temperature, Height, Weight 	570 meters 40 Km/Hr 12-07-2021 09:00 AM -15°C , 25°C ; 150.5 cm; 45.5 Kg								

- Continuous variables are real numbers.
 - E.g., temperature, height, or weight
- Practically, real values can only be measured and represented using a finite number of digits

CSE320 Data Mining

Qualitative Variable (Categorical)	Attribute	Example
Nominal	Categories, States, names of things	Color = { red, green, yellow} Zip codes, Profession, Martial Status.
Symmetric Nominal	Outcome has only 2 states (1 and 0) equally important	Gender
Asymmetric Nominal	Outcome not equally important (+ve, -ve)	Tested COVID Positive, Tested COVID Negative
Ordinal	Ranking – Meaningful ordering exists while magnitude between successive values not known.	Grade Army ranking Size = { small, medium, large, Extra Large}
Interval [integer or real]	Measured on a scale of equal-sized units Values have order, No true zero-point	E.g., temperature in C°or F°, calendar dates
Ratio Scaled [integer or real]	Inherent zero-point , o rder of magnitude larger than the unit of measurement (10 K° is twice as high as 5 K°).	e.g., temperature in Kelvin, length, counts, monetary quantities

NOMINAL

- Nominal level is the most basic level of measurement
- Nominal is also known as categorical or qualitative.
- Data can only be categorised.
- Examples of nominal variables: Gender, preferred type of chocolate, colour. These are descriptions or labels with no sense of order.
- These are descriptions or labels with no sense of order.
- Nominal values can be stored as a word, or text, or can be given a numerical code. However the number does not imply any order.
- To summarise nominal data we use a frequency or percentage.

Variable		Level of measurement : Nominal							
Colour									
		De	scriptive Stat	istics		1			
Frequency	1/7	1/7	1/7	1/7	2/7		1/7		
Percentage (%)	14.2857	14.2857	14.2857	14.2857	28.57		14.2857		
Mean 💥		Cannot calculate mean or average value of nominal data							

Data Variable

Continuous – quantity that varies with measures

- Predict a contiguous target variable (dependent variable) from one or multiple independent variables.
- Note: The best choice of regression analysis is with naturally-occurring (non-manipulated) variables, rather than variables that have been manipulated through experimentation.

Discrete

- Information that can only take certain values.

Categorical

- In statistics it is a variable that can take on one of a limited, and usually fixed, a number of possible value.

Activity 1: Match the best choice of graph for the data below.

Chart to show a company's profit over a number of years.

Chart to show favorite drink chosen by customers in a shopping center.

Chart to show the temperature on each day of the week.

Chart to show percentage of each sale of ticket type at a concert.

Variables - Qualitative (Categorical), & Quantitative (Discrete, Continuous) -The best Chart type and other suitable choices

Answer

Chart to show a company's profit over a number of years.

The **best choice** here is (**d**) the bar chart as it can show the profit clearly year by year.

Chart to show favorite drink chosen by customers in a shopping center.

The **best choice** here is (**b**) the tally chart since you can add to this data as each customer makes their choice. A bar or pie chart would also be suitable.

Chart to show the temperature on each day of the week.

The **only choice here** is **(c)** the line graph as it shows how the temperature changes over time.

Chart to show percentage of each sale of ticket type at a concert.

The **best choice** here is probably (a) the pie chart since it shows clearly the breakdown of each type of ticket sale. A bar chart would also represent the data suitably.

Quantitative(Continuous, Discrete) and Qualitative(Categorical) - Level of Measurements (scale)

Nominal

- categorical variable scale
- labeling variables into distinct classifications
- No quantitative value or order
- It's simplest measurement scale
- Example: A customer survey
- Which brand of smartphones do you prefer?" Options:
 "Apple"- 1, "Samsung"-2,
 "OnePlus"-3.

Ordinal

- · variable measurement scale.
- simply depict the order of variable and not the difference.
- A relative position of variables.
- used in market research.
- Example: How satisfied are you with our services?
- Very Unsatisfied 1
- Unsatisfied 2
- Neutral 3
- · Satisfied 4
- Very Satisfied 5

Interval

- A numerical scale. The order of variables is known.
- Data analytics descriptive statistics, mean, median, or mode.
- correlation, and regression analysis.
- The only drawback is there is no pre-decided starting point or a true zero value that represents the absence of the property being measured (e.g., no money, no behavior, none correct).
- Example: Calendar years and time.
- What is your family income?
- What is the temperature in your city?

Ratio

- A variable measurement scale.
- The order of variables and the difference between variables are known along with information on the value of true zero. Example: weight and height.
- geometric mean, the coefficient of variation, or harmonic mean.
- Example: What is your weight in kilograms?
- Less than 50 kilograms
- 51- 70 kilograms
- 71- 90 kilograms
- 91-110 kilograms
- More than 110 kilograms

Quantitative Variables(Continuous, Discrete, and Categorical) - Summary on Level of Measurements (scale)

Factors influencing data analytics	Nominal	Ordinal	Interval	Ratio
1. Can we sequence the variables?	-	Yes	Yes	Yes
2. The descriptive statistics: Mode	Yes	Yes	Yes	Yes
3. The descriptive statistics: Median	-	Yes	Yes	Yes
4. The descriptive statistics: Mean	-	•	Yes	Yes
5. Can we evaluate the difference between variables ?	-	-	Yes	Yes
6. Can we add or subtract the variables ?	-	•	Yes	Yes
7. How about with Multiplication and Division of variables ?	-	-	-	Yes
8. Absolute zero	-	-	-	Yes

WHY IDENTIFY THE UNITS OF ANALYSIS

- Without units of analysis, there is no measurement.
- Without Measurement, there is no data.
- Without Data, there is no Analysis.
- Without Analysis, there is no Modeling.
- Without Modeling, there is no Explanation and Prediction.
- Without Explanation, there is no Insight.
- Without Prediction, there can be no Optimization.
- Without Insight & Optimization, there is no Management.

References

How to interpret ordinal data (Achilleas Kostoulas)

Solutions to Categorical, Discrete and Continuous Variable Problems (superprof.co.uk)

<u>Quartiles - Definition, Formula, Solved Example Problems</u> (brainkart.com)

Solutions to Quartiles, Deciles and Percentiles Problems (superprof.co.uk)

Categorise the following variable

Brand of Cell phones

Size of Shoes

Body Temperature

Score in math quiz

Ages of children enrolled in a daycare center

Ranking in a mobile legend game

Time required to complete the chess game

Telephone number

Favorite Color

Low, medium, and high income group

Number of siblings

Religion

Weight of a newly born baby

Grade in math 7

Height of your friend

Salary

Blood Type

Answers: Categorise the following variable

Brand of Cell phones – Categorical - Nominal

Size of Shoes - Discrete

Body Temperature - Continuous

Score in math quiz - Discrete

Ages of children enrolled in a daycare center – Continuous

Ranking in a mobile legend game

Time required to complete the chess game

Telephone number – numeric nominal

Favorite Color - Nominal

Low, medium, and high income group - Ordinal

Number of siblings - Discrete

Religion - Categorical (Nominal)

Weight of a newly born baby – Continuous [Interval]

Grade in math - ordinal

Height of your friend – Continuous

Salary – Nominal (Unordered Categorical) under Ambiguous cases, Otherwise Continuous numeric value.

Blood Type: Categorical