T320 - Introdução ao Aprendizado de Máquina II: *Classificação (Parte IV)*

Felipe Augusto Pereira de Figueiredo felipe.figueiredo@inatel.br

Recapitulando

- Anteriormente, aprendemos uma nova função de limiar, chamada de função logística, com a qual foi possível se encontrar uma solução com gradiente descendente.
- Classificadores que utilizam a *função logística* como *função de limiar* são conhecidos como *regressores logísticos* e são utilizadoa em problemas de *classificação binária*, ou seja, problemas com 2 classes apenas.
- Na sequência, veremos como lidar com problemas de classificação que envolvem mais de 2 classes, também chamados de classificação multiclasses.

Casos multi-classe

- Até agora, nós vimos como classificar utilizando **regressão logística** quando os dados pertencem a apenas 2 classes (i.e., Q=2), mas e quando existem mais de 2 classes (i.e., Q>2)? Por exemplo
 - Reconhecimento de dígitos escritos à mão: 10 dígitos.
 - Classificação de texto: Esportes, Economia, Política, Entretenimento, etc.
 - Classificação de sentimentos: Neutro, Positivo, Negativo.
- Existem algumas abordagens para classificação multi-classe:
 - Um-contra-o-Resto
 - Um-contra-Um
 - Regressão softmax
- As 2 primeiras abordagens podem ser aplicadas a qualquer tipo de *classificador binário* e não apenas ao *regressor logístico*.
- A terceira abordagem é uma generalização do classificador logístico para problemas multi-classe.

Um-Contra-o-Resto

- Nesta abordagem, nós treinamos um *classificador binário* (e.g., *regressor logístico*), representado por sua função hipótese, $h_a(x(i))^{(q)}$, para cada classe q para predizer a probabilidade de $\hat{y} = q$, ou seja, $P(\hat{y} = q | x; a)$.
- Em outras palavras, cria-se Q classificadores binários, onde para cada classificador, a classe positiva $C_2=q$ e a classe negativa C_1 é a junção de todas as outras Q-1 classes.
- Portanto, o *classificador* deve indicar a classe positiva caso o exemplo pertença à classe q, e a classe negativa caso o exemplo pertença a qualquer outra classe.
- Para cada novo exemplo de entrada, x, realiza-se as predições e escolhe-se a classe que maximize

$$C_q = \arg\max_q h_a(\mathbf{x}(i))^{(q)}.$$

- A vantagem desta abordagem é que se treina apenas *Q classificadores*.
- A desvantagem é que cada *classificador binário* precisa ser treinado com um conjunto negativo que é Q-1 vezes maior, o que pode aumentar o tempo de treinamento.

Um-Contra-o-Resto

Um-Contra-Um

- Nesta abordagem, treina-se Q(Q-1)/2 classificadores binários.
- Cada *classificador* é construído para fazer a distinção entre exemplos pertencentes a cada um dos possíveis *pares* de classes.
 - \circ Se Q=4, então treina-se 6 *classificadores* para classificar entre C_1/C_2 , C_1/C_3 , C_1/C_4 , C_2/C_3 , C_2/C_4 , e C_3/C_4 .
- No final, cada exemplo é classificado conforme o voto majoritário entre os classificadores.
- A principal vantagem da abordagem Um-Contra-Um é que cada classificador precisa ser treinado apenas na parte do conjunto de treinamento para as duas classes que ele deve distinguir.
- A desvantagem é que por exemplo, se Q=10, temos que treinar 45 classificadores.

Exemplo: ClassificationOfFourClassesWithOvAandOvO.ipynb

Um-Contra-Um

- Também conhecida como *regressão logística multinomial*.
- A ideia é ter um *único* classificador que classifique mais de 2 classes.
 - Por exemplo, para um problema com 4 classes, teríamos um único classificador, mas com 4 saídas.
- É importante salientar que ele prediz *apenas uma classe de cada vez*, ou seja, ele é *multi-classe* e não *multi-saída*, portanto, ele deve ser usado apenas com *classes mutuamente exclusivas*, como por exemplo diferentes tipos de plantas, dígitos, categorias de notícias, etc.
- Portanto, você não poderia usá-lo para reconhecer várias pessoas em uma foto, por exemplo.
- É uma abordagem mais robusta que as anteriores e que consiste em criar um modelo em que cada saída representa a *probabilidade* de um exemplo pertencer a uma classe específica.

 Isto é feito a partir de uma generalização da regressão logística chamada de função softmax, a qual é definida como

$$P(C_q | \mathbf{x}(i)) = h_a^q(\mathbf{x}(i)) = \frac{e^{g_q(\mathbf{x}(i))}}{\sum_{j=1}^Q e^{g_j(\mathbf{x}(i))}} = \frac{e^{\mathbf{x}(i)^T \mathbf{a}_q}}{\sum_{j=1}^Q e^{\mathbf{x}(i)^T \mathbf{a}_j}} \in \mathbb{R} [0,1],$$

O somatório de termos exponenciais normaliza o valor da *q*-ésima saída de tal forma que o somatório das Q saídas seja igual a 1.

onde $a_q = \begin{bmatrix} a_{0}^q, & a_{1}^q, & \cdots & a_{K}^q \end{bmatrix}^T$ é o **vetor de pesos** associado à q-ésima saída do classificador, $h_a^q(x(i))$ é a **função hipótese** associada à q-ésima classe e

$$g_q(\mathbf{x}(i)) = \mathbf{x}(i)^T \mathbf{a}_q = a_0^q + a_1^q x_1 + \dots + a_K^q x_K = a_0^q + \sum_{k=1}^q a_k^q x_k$$
,

é a *função discriminante* para a q-ésima classe.

- A *função softmax* estende a ideia do *regressor logístico* ao mundo multi-classes.
- Ou seja, a função softmax atribui probabilidades, no intervalo [0, 1], a cada classe em um problema com várias classes.
- Essas probabilidades devem somar 1.

- Assim como fizemos anteriormente, precisamos definir uma *função de erro* para podermos encontrar os *pesos* das *Q funções hipótese* do classificador.
- A *função de erro médio* é dada por

$$J_e(A) = -\frac{1}{N} \sum_{i=0}^{N-1} \sum_{q=1}^{Q} 1\{y(i) + 1 == q\} \log \left(h_a^q(x(i))\right),$$

onde $1\{\cdot\}$ é a *função indicadora*, de modo que $1\{$ uma condição verdadeira $\}=1$ e $1\{$ uma condição falsa $\}=0$ e $A\in\mathbb{R}^{K+1\times Q}$ é a matriz com os *pesos* para todas as *funções hipótese* das Q classes.

 Usando-se a representação one-hot-encoding, a equação acima pode ser re-escrita como

$$J_e(\mathbf{A}) = -\frac{1}{N} \sum_{i=0}^{N-1} \mathbf{y}(i)^T \log \left(\mathbf{h}_a(\mathbf{x}(i)) \right),$$

onde $y(i) = [1\{y(i) + 1 == 1\}, \dots, 1\{y(i) + 1 == Q\}]^T$ é o vetor com **one-hot-encoding** e

$$h_a(x(i)) = [h_a^1(x(i)), \dots, h_a^Q(x(i))]^T = [P(C_1 \mid x; a_1) \dots P(C_Q \mid x; a_Q)]^T.$$

Observem que, quando existem apenas duas classes (Q = 2), a função de erro acima é equivalente à função de erro do regressor logístico.

- Usamos o algoritmo do gradiente descendente para encontrar os pesos que minimizam a função de erro médio.
- A atualização iterativa dos pesos ae q-ésima classe é dada por

$$\mathbf{a}_q = \mathbf{a}_q - \alpha \frac{\partial J_e(\mathbf{A})}{\partial \mathbf{a}_q}$$

• A derivada de $J_e(A)$ com respeito a cada vetor de pesos, a_q , tem uma expressão semelhante àquela obtida para a **regressão logística**:

$$\frac{\partial J_e(A)}{\partial a_q} = -\frac{1}{N} \sum_{i=0}^{N-1} \left[y^q(i) - h_a^q(x(i)) \right] x(i)^T.$$

- $\sum_{q=1}^{Q} h_a^q(x(i)) = \sum_{q=1}^{Q} P(C_q | x; a_q) = 1$, ou seja, o somatório da **probabilidade condicional** de todas as classes é igual a 1.
- $0 \le h_a^q(x(i)) \le 1$, ou seja, temos, um vetor

$$h_a(x(i)) = [h_a^1(x(i)) \cdots h_a^Q(x(i))] \in \mathbb{R}^{Q \times 1}$$

que atende os requisitos de uma *função probabilidade de massa* (PMF, do inglês *probability mass function*) *multinomial*.

• Após o treinamento do classificador, para cada novo exemplo de entrada, x, realiza-se as predições e escolhe-se a classe que maximize

$$C_q = \arg \max_q h_a^q(\mathbf{x}(i)) = \arg \max_q P(C_q \mid \mathbf{x}(i); \mathbf{a}_q) = \arg \max_q \mathbf{x}(i)^T \mathbf{a}_q.$$

- Assim como o classificador de regressão logística, o classificador de regressão softmax prevê a classe com a maior probabilidade estimada (que é simplesmente a classe com a maior valor para o produto escalar $x(i)^T a_q$).
- A arquitetura de um regressor softmax é mostrada abaixo.

Exemplo: softmax_regressor_with_scikit_learn.ipynb

Tarefas

- Quiz: "T320 Quiz Classificação (Parte IV)" que se encontra no MS Teams.
- Exercício Prático: Laboratório #4.
 - Pode ser baixado do MS Teams ou do GitHub.
 - Pode ser respondido através do link acima (na nuvem) ou localmente.
 - Instruções para resolução e entrega dos laboratórios.
 - Atividades podem ser feitas em grupo, mas as entregas devem ser individuais.

Obrigado!