

Translated Excerpt of Japanese Laid-Open Patent Publication
No. 10-78582

[0010] A display includes a liquid crystal display panel, a
5 front electrode, a rear electrode, and an organic
electroluminescence layer. The liquid crystal display panel
has an liquid crystal held between a pair of transparent
substrates. Each substrate has an electrode. One of the
transparent substrates has a display surface. The front
10 electrode has transmittance to visible light. The rear
electrode has reflectivity to visible light. The organic
electroluminescence layer is located between the front
electrode and the rear electrode, and substantially has
transmittance to visible light. When a predetermined voltage
15 is applied between the front electrode and the rear electrode,
the organic electroluminescence layer emits light. The
display is characterized by an organic electroluminescent
panel facing the liquid crystal display panel.

20 [0015]

Fig. 1 is a cross-sectional view illustrating a display
according to a first embodiment of the present invention. The
display includes an organic electroluminescent device 12
located at a relatively rear portion and a liquid crystal
25 display portion 13 located forward of the organic
electroluminescent device 12.

[0016] The structure of the organic electroluminescent device
12 will now be described. In the organic electroluminescent
30 device 12, a reflection cathode 15 functioning as a rear
electrode is formed on a glass substrate 14. The reflection
cathode 15 is made of light reflecting metal, such as MgIn.

[0017] An electron transportation layer 16 made of Alq₃ is
35 formed on the reflection cathode 15. The shape and area of

the electron transportation layer 16 correspond to the display region.

A hole transportation layer 17 is formed on the electron transportation layer 16. The hole transportation layer 17 is
5 made by mixing PVCz, BND, and a light emitting material through wet film forming such as dip coating and spin coating.

The electron transportation layer 16 and the hole transportation layer 17 form an electroluminescence layer 18.

10 [0020] An anode 19 is formed on the entire surface of the electroluminescence layer 18. The anode 19 is formed of an electrode material that has transmittance to outside light and light emitted by the electroluminescent device 12. For example, the anode 19 is formed of ITO.

15