

计算机组成原理

第5讲

左德承

哈尔滨工业大学计算学部 容错与移动计算研究中心

- 2.3 定点运算
- 一、移位运算
 - 1. 移位的意义

15 m = 1500 cm

小数点右移 2 位

机器用语 15 相对于小数点 左移 2 位

(小数点不动)

左移 绝对值扩大

右移 绝对值缩小

验一种,移位与加减配合,能够实现乘除运算

2. 算术移位规则

符号位不变

	码制	添补代码
正数	原码、补码、反码	0
负数	原码	0
	补码	左移添0
	个	右移添1
	反 码	1

设机器数字长为8位(含1位符号位),写出 A=+26时,三种机器数左、右移一位和两位后的 表示形式及对应的真值,并分析结果的正确性。

解: A = +26 = +11010 则 $[A]_{\mathbb{R}} = [A]_{\mathbb{A}} = [A]_{\mathbb{R}} = 0,0011010$

移位操作	机器数 [A] _原 =[A] _补 =[A] _反	对应的真值
移位前	0,0011010	+26
左移一位	0,0110100	+52
左移两位	0,1101000	+104
右移一位	0,0001101	+13
右移两位	0,0000110	+6

设机器数字长为8位(含1位符号位),写出 A=-26时,三种机器数左、右移一位和两位后的 表示形式及对应的真值,并分析结果的正确性。

解: A = -26 = -11010

原码

移位操作	机器数	对应的真值
移位前	1,0011010	-26
左移一位	1,011010 <mark>0</mark>	- 52
左移两位	1,1101000	- 104
右移一位	1, <mark>0</mark> 001101	-13
右移两位	1,0000110	-6

补码

移位操作	机器数	对应的真值
移位前	1,1100110	-26
左移一位	1,1001100	- 52
左移两位	1,0011000	-104
右移一位	1, <mark>1</mark> 110011	- 13
右移两位	1,1111001	-7

反码

移位操作	机器数	对应的真值
移位前	1,1100101	- 26
左移一位	1,1001011	- 52
左移两位	1,0010111	-104
右移一位	1,1110010	- 13
右移两位	1, <mark>11</mark> 11001	-6

3. 算术移位的硬件实现

2.3

(a) 真值为正 (b) 负数的原码 (c) 负数的补码 (d) 负数的反码

←丢1 出错

12. n台业主 庄

出错

正确

正确

→丢1 影响精度

影响精度

影响精度

正确

4. 算术移位和逻辑移位的区别

2.3

算术移位 有符号数的移位

逻辑移位 无符号数的移位

逻辑左移 低位添 0, 高位移丢

逻辑右移 高位添 0, 低位移丢

例如 01010011

逻辑左移 10100110

算术左移 00100110

逻辑右移

算术右移

01011001

10110010

11011001 (补码)

高位1移丢

 $C_{y} \leftarrow \boxed{0 \ 1 \ 0 \ 1 \ 0 \ 1 \ 1}$

0

10100110

二、加减法运算

- 1. 补码加减运算公式
 - (1) 加法

整数
$$[A]_{\stackrel{?}{\uparrow}} + [B]_{\stackrel{?}{\uparrow}} = [A+B]_{\stackrel{?}{\uparrow}} \pmod{2^{n+1}}$$

小数
$$[A]_{\stackrel{?}{\nmid 1}} + [B]_{\stackrel{?}{\nmid 1}} = [A+B]_{\stackrel{?}{\nmid 1}} \pmod{2}$$

(2) 减法

$$A-B = A+(-B)$$

整数
$$[A-B]_{\stackrel{?}{\uparrow}}=[A+(-B)]_{\stackrel{?}{\uparrow}}=[A]_{\stackrel{?}{\uparrow}}+[-B]_{\stackrel{?}{\uparrow}}\pmod{2^{n+1}}$$

小数
$$[A-B]_{\stackrel{?}{\nmid 1}} = [A+(-B)]_{\stackrel{?}{\mid 1}} = [A]_{\stackrel{?}{\mid 1}} + [-B]_{\stackrel{?}{\mid 1}} \pmod{2}$$

连同符号位一起相加,符号位产生的进位自然丢掉

2. 举例 2.3 例 6.18 设 A = 0.1011, B = -0.0101求 $[A+B]_{i}$ 验证 解: $[A]_{\stackrel{1}{N}} = 0.1011$ 0.1011 $+[B]_{\stackrel{?}{k}} = 1.1011$ 0.0101 $[A]_{\nmid h} + [B]_{\nmid h} = 10.0110 = [A + B]_{\nmid h}$ 0.0110 A + B = 0.0110例 6.19 设 A = -9, B = -5求 $[A+B]_{\stackrel{*}{h}}$ 验证 解: $[A]_{i} = 1,0111$ -1001 $+[B]_{\stackrel{*}{k}} = 1, 1011$ + - 0101

$$[A]_{\frac{1}{1}} + [B]_{\frac{1}{1}} = 11, \ 0 \ 0 \ 1 \ 0 = [A + B]_{\frac{1}{1}} - 1110$$

$$\therefore A + B = -1110$$

例 6.20 设机器数字长为 8 位(含 1 位符号位)2.3 且 A=15, B=24,用补码求 A-B

解:
$$A = 15 = 0001111$$
 $B = 24 = 0011000$
 $[A]_{\stackrel{?}{\nmid h}} = 0,0001111$
 $[B]_{\stackrel{?}{\nmid h}} = 0,0011000$
 $+ [-B]_{\stackrel{?}{\nmid h}} = 1,1101000$

$$[A]_{\not{\uparrow}} + [-B]_{\not{\uparrow}} = 1,1110111 = [A-B]_{\not{\uparrow}}$$

 $\therefore A - B = -1001 = -9$

练习 1 设
$$x = \frac{9}{16}$$
 $y = \frac{11}{16}$, 用补码求 $x+y$ $x+y=-0.1100=-\frac{12}{16}$ 错

练习 2 设机器数字长为 8 位(含 1 位符号位) 且 A = -97,B = +41,用补码求 A - BA - B = +1110110 = +118 错 3. 溢出判断

2.3

(1) 一位符号位判溢出

参加操作的两个数(减法时即为被减数和"求补"以后的减数)符号相同,其结果的符号与原操作数的符号不同,即为溢出

硬件实现

最高有效位的进位 符号位的进位 = 1 溢出

(2) 两位符号位判溢出

2.3

$$[x]_{\nmid h'} = \begin{cases} x & 1 > x \ge 0 \\ 4 + x & 0 > x \ge -1 \pmod{4} \end{cases}$$

$$[x]_{\not{\uparrow}} + [y]_{\not{\uparrow}} = [x + y]_{\not{\uparrow}} \pmod{4}$$

$$[x-y]_{\lambda h'} = [x]_{\lambda h'} + [-y]_{\lambda h'} \pmod{4}$$

结果的双符号位 相同

未溢出

 $00, \times \times \times \times \times$

11, ×××××

结果的双符号位 不同

溢出

10, ×××××

 $01, \times \times \times \times \times$

最高符号位 代表其 真正的符号

4. 补码加减法的硬件配置

A、X均n+1位 用减法标记 G_S 控制求补逻辑

三、乘法运算

1. 分析笔算乘法

$$A = -0.1101$$
 $B = 0.1011$

$$A \times B = -0.10001111$$
 乘积的符号心算求得

- 0.1101
- $\times 0.1011$

1101

1101

0000

1101

0.10001111

- ✓ 符号位单独处理
- ✓ 乘数的某一位决定是否加被乘数
- ? 4个位积一起相加
- ✓ 乘积的位数扩大一倍

2. 笔算乘法改进

2.3

$$A \cdot B = A \cdot 0.1011$$

$$= 0.1A + 0.00A + 0.001A + 0.0001A$$

$$= 0.1A + 0.00A + 0.001(A + 0.1A)$$

$$= 0.1A + 0.01[0 \cdot A + 0.1(A + 0.1A)]$$

$$= 0.1\{A + 0.1[0 \cdot A + 0.1(A + 0.1A)]\}$$

$$= 2^{-1}\{1 \cdot A + 2^{-1}[0 \cdot A + 2^{-1}(1 \cdot A + 2^{-1}(1 \cdot A + 0))]\}$$
第一步 被乘数 $A + 0$

$$= 0.1\{A + 0.1[0 \cdot A + 0.1(A + 0.1A)]\}$$
第二步 右移 一位,得新的部分积
$$= 0.1A + 0.00A + 0.001(A + 0.1A)$$
②
第三步 部分积 + 被乘数 $A + 0$
③

(8)

第八步 右移一位,得结果

3. 改进后的笔算乘法过程(竖式) 2.3

部分积	乘数	说 明		
0.0000	1011	初态,部分积 = 0		
+0.1101		乘数为1,加被乘数		
0.1101				
0.0110	1 1 0 <u>1</u>	$\rightarrow 1$,形成新的部分积		
+0.1101		乘数为1,加被乘数		
1.0011	1			
0.1001	1110	→1,形成新的部分积		
+0.0000	=	乘数为0,加0		
0.1001	1 1			
0.0100	1 1 1 <u>1</u>	→1,形成新的部分积		
+ 0.1101		乘数为1,加被乘数		
1.0001	111			
0.1000	1111	→1,得结果		

小结 2.3

- 乘法 运算可用 加和移位实现 n = 4 ,加 4 次,移 4 次
- ▶由乘数的末位决定被乘数是否与原部分积相加,然后→1位形成新的部分积,同时乘数→1位
 (末位移丢),空出高位存放部分积的低位。
- > 被乘数只与部分积的高位相加
 - 硬件 3个寄存器,具有移位功能
 - 1个全加器

4. 原码乘法

(1) 原码一位乘运算规则 以小数为例

设
$$[x]_{\mathbb{R}} = x_0 \cdot x_1 x_2 \cdots x_n$$

$$[y]_{\mathbb{R}} = y_0 \cdot y_1 y_2 \cdots y_n$$

$$[x \cdot y]_{\mathbb{R}} = (x_0 \oplus y_0) \cdot (0 \cdot x_1 x_2 \cdots x_n) (0 \cdot y_1 y_2 \cdots y_n)$$

$$= (x_0 \oplus y_0) \cdot x^* y^*$$
式中 $x^* = 0 \cdot x_1 x_2 \cdots x_n$ 为 x 的绝对值
$$y^* = 0 \cdot y_1 y_2 \cdots y_n$$
 为 y 的绝对值

乘积的符号位单独处理 $x_0 \mapsto y_0$ 数值部分为绝对值相乘 $x^* \cdot y^*$

2.3

(2) 原码一位乘递推公式

$$z_{0} = 0$$

$$z_{1} = 2^{-1}(y_{n}x^{*}+z_{0})$$

$$z_{2} = 2^{-1}(y_{n-1}x^{*}+z_{1})$$

$$\vdots$$

$$z_{n} = 2^{-1}(y_{1}x^{*}+z_{n-1})$$

例6.21 已知 x = -0.1110 y = 0.1101 求 $[x \cdot y]_{\mathbb{R}}$ 2.3

解: 数值部分	的运算乘数	说 明
$ \begin{array}{r} 0.0000 \\ + 0.1110 \end{array} $	1101	部分积 初态 z ₀ = 0 + x*
逻辑右移 0.1110 + 0.0000	0 1 1 0	→1,得 z ₁ +0
逻辑右移 0.0111 + 0.1110	0 1 0 1 <u>1</u>	→1 ,得 <i>z</i> ₂
1.0001 逻辑右移 0.1000 + 0.1110	1 0 1 1 0 <u>1</u>	→1 , 得 z ₃
逻辑右移 1.0110 0.1011	1 1 0 0 1 1 0	→1 ,得 z ₄

- ① 乘积的符号位 $x_0 \oplus y_0 = 1 \oplus 0 = 1$
- ② 数值部分按绝对值相乘

$$x^* \cdot y^* = 0.10110110$$

则
$$[x \cdot y]_{\mathbb{R}} = 1.10110110$$

特点 绝对值运算

用移位的次数判断乘法是否结束

逻辑移位

(3) 原码一位乘的硬件配置

2.3

A、X、Q均 n+1 位

移位和加受末位乘数控制

5. 补码乘法

2.3

(1) 补码一位乘运算规则

以小数为例 设被乘数 $[x]_{i} = x_0 \cdot x_1 x_2 \cdot \dots \cdot x_n$ 乘数 $[y]_{i} = y_0 \cdot y_1 y_2 \cdot \dots \cdot y_n$

① 被乘数任意,乘数为正

同原码乘 但加和移位按补码规则运算 乘积的符号自然形成

② 被乘数任意,乘数为负 乘数[y]_补,去掉符号位,操作同① 最后加[-x]_补,校正

③ Booth 算法(被乘数、乘数符号任意) 2.3

④ Booth 算法递推公式

$$\begin{split} [z_0]_{\nmid h} &= 0 \\ [z_1]_{\nmid h} &= 2^{-1} \{ (y_{n+1} - y_n)[x]_{\nmid h} + [z_0]_{\nmid h} \} \qquad y_{n+1} = 0 \\ \vdots \\ [z_n]_{\nmid h} &= 2^{-1} \{ (y_2 - y_1)[x]_{\nmid h} + [z_{n-1}]_{\nmid h} \} \end{split}$$

$$[x \cdot y]_{\stackrel{\text{\tiny λ}}{}} = [z_n]_{\stackrel{\text{\tiny λ}}{}} + (y_1 - y_0)[x]_{\stackrel{\text{\tiny λ}}{}}$$

最后一步不移位

如何实现 y_{i+1} - y_i ?

$y_i y_{i+1}$	y_{i+1} – y_i	操作
0 0	0	→1
0 1	1	$+[x]_{\nmid h} \rightarrow 1$
1 0	-1	$+[-x]_{\uparrow \downarrow} \rightarrow 1$
1 1	0	→ 1

例6.23 已知 x = +0.0011 y = -0.1011 求 $[x \cdot y]_{\mbox{\tiny h}}$ **2.3**

解: 00.0000 +11.1101	1.0101	0	 +[- <u>-</u> x] _补	$[x]_{\not =} = 0.0011$
补码 11.1101 右移 11.110 + 00.0011	1 1010	1	$ \rightarrow 1 \\ +[x]_{\not \uparrow h}$	$[y]_{\begin{subarray}{l} \begin{subarray}{l} \begin{subarray}{l}$
补码 00.0001 右移 00.000 +11.1101	1 11 10 <u>1</u>	0	$\rightarrow 1$ + $[-x]_{\stackrel{?}{\Rightarrow}}$	
补码 11.1101 右移 11.1110 +00.0011	1 1 1 1 1 <u>0</u>	1	$\rightarrow 1$ + $[x]_{\not\uparrow \uparrow}$	$∴ [x \cdot y]_{*}$ =1.11011111
补码 右移 200.000 +11.1101	111 1111 1	0	$\begin{array}{c} \longrightarrow 1 \\ +[-x]_{*} \end{array}$	
11.1101	1111		最后一步	不移位

(2) Booth 算法的硬件配置

2.3

A、X、Q 均 n+2 位 移位和加法操作受乘数末两位控制

累加器乘法小结

- 整数乘法与小数乘法完全相同可用 逗号 代替小数点
- ➤ 原码乘 符号位 单独处理 补码乘 符号位 自然形成
- > 原码乘去掉符号位运算 即为无符号数乘法
- > 不同的乘法运算需有不同的硬件支持