明細書

肝細胞癌に関連する遺伝子

5 技術分野

20

25

本発明は、肝細胞癌に関連する遺伝子、特に肝細胞癌の再発に関連する遺伝子に関する。

背景技術

10 肝細胞癌のほとんどは、ウイルス性肝炎による慢性肝炎から発症する。その原因ウイルスは、C型肝炎ウイルスとB型肝炎ウイルスである。いずれも持続感染すると治療法はなく、肝硬変、肝細胞癌発症の恐怖と立ち向かうほかない。インターフェロンが肝炎治療薬として使用されているが、有効例はわずか30%であり、必ずしも十分な治療薬とはいえない。特に慢性肝炎ではほとんど有効例を見ないのが現状である。しかし、たとえウイルスが排除できなくとも、病態の進展を抑えることができれば、肝硬変や肝細胞癌の予防につながるため、病態の進展因子を分子レベルで明らかにすることが重要となる。

一方、一度肝細胞癌が発生すると、外科的根治術がなされても、残肝再発は高頻度に出現する。肝癌の術後 5 年生存率は全国集計で 51%であり、肝切除後 1 年で約 25%、2 年で 50%、5 年では 80%の症例で再発が起こることが報告されている。こうなると、残肝組織は正常肝組織とはいえず、すでに肝細胞癌再発の芽が存在するとも考えられる。現在、再発危険因子として、腫瘍最大径、個数、門脈腫瘍栓、術前 AFP 値、肝内転移、肝硬変の有無などが報告されている。しかし、肝細胞癌再発の予測および予防法を開発するには、これら危険因子にも関連する、再発の有無を決定する因子を分子レベルでとらえる必要がある。この分子レベルの因子は、再発だけでなく、肝細胞癌発症や病態の進展そのものにも関わる因子であると考えられる。近年、DNA マイクロアレイを用いた遺伝子発現解析により、病態を遺伝子全体の発現パターンの違いにより、より詳細に分類できるよう

になってきた。これまで癌の分類には主に組織学的、免疫学的手法が用いられてきたが、同じ型に分類された癌でも臨床経過、治療効果が症例によって異なっている。これらを詳細に分類できる手法があれば、個々に応じた治療が可能となる。 DNA マイクロアレイによる遺伝子発現解析は、このような癌の予後を知る上で、強力な方法と考える。

今までに、肝細胞癌に関わる DNA マイクロアレイ解析では、

5

10

- (i) 癌部、非癌部間において、どのような遺伝子に発現の違いが見られるか? (Shirota Y, Kaneko S, Honda M, et al. Identification of differentially expressed gene in hepatocellular carcinoma with cDNA microarrays. Hepatology 2001; 33:832-840、Xu X, Huang J, Xu Z, et al. Insight into hepatocellular carcinogenesis at transcriptome level by comparing gene expression profiles of hepatocellular carcinoma with those of corresponding noncancerous liver. Proc. Nat. Acad. Sci. USA . 2001; 98: 15089-15094)
- (ii) 癌組織の分化度において、どのような遺伝子に発現の違いが見られるか?

 (Shirota Y, Kaneko S, Honda M, et al. Identification of differentially expressed gene in hepatocellular carcinoma with cDNA microarrays. Hepatology 2001; 33:832-840、Okabe H, Satoh S, Kato T, et al. Genome-wide analysis of gene expression in human hepatocellular carcinomas using cDNA microarray: Identification of genes involved in viral carcinogenesis and tumor progression. Cancer res. 2001; 61:2129-2137)
 - (iii) B 型肝炎由来の肝細胞癌と、 C 型肝炎由来の肝細胞癌とでは、どのような遺伝子に発現の違いが見られるか? (Okabe H, Satoh S, Kato T, et al. Genome-wide analysis of gene expression in human hepatocellular carcinomas using cDNA microarray: Identification of genes involved in viral carcinogenesis and tumor progression. Cancer res. 2001; 61: 2129-2137)
- 25 (iv) 肝細胞癌血管浸潤の有無により、どのような遺伝子に発現の違いが見られるか? (Okabe H, Satoh S, Kato T, et al. Genome-wide analysis of gene expression in human hepatocellular carcinomas using cDNA microarray: Identification of genes involved in viral carcinogenesis and tumor progression. Cancer res. 2001; 61: 2129-

2137)

5

10

(v) 多結節性肝細胞癌のクローン解析を行い、肝内転移癌に共通して見られる 遺伝子の発現変化は何か?(Cheung S, Chen X, Guan X, et al. Identify metastasis-associated gene in hepatocellular carcinoma through clonality delineation for multinodular tumor. Cancer res. 2002; 62:4711-4721)

などが明らかにされている。しかしながら、再発に関与する遺伝子に関しては、 飯塚ら(Iizuka N, Oka M, Yamada-Okabe H, et al. Oligonucleotide microarray for prediction of early intrahepatic recurrence of hepatocellular carcinoma after curative resection. Lancet 2003; 361: 923-929)の癌組織での解析にとどまる。残肝組織を 反映する非癌部肝組織での解析は、未だなされていない。

発明の開示

本発明は、肝細胞癌に関連する遺伝子、特に癌の再発を予知する遺伝子を提供することを目的とする。

15 本発明者は、上記課題を解決するため鋭意研究を行った結果、肝細胞癌の再発を起こした症例と再発のなかった症例から遺伝子発現のプロファイルを検討した結果、肝細胞癌に関連する遺伝子を同定することに成功し、本発明を完成するに至った。

すなわち、本発明は以下の通りである。

- 20 (1)癌の評価方法であって、以下のステップ:
 - (a) 検体から total RNA を採取し、
 - (b) 表 $1 \sim 8$ に示される遺伝子の中の少なくとも1 つ以上の遺伝子の発現量を測定し、
 - (c) 前記測定結果を指標として癌を評価すること
- 25 を含む前記方法。

本発明においては、表 1 ~ 8 に示される遺伝子のうち、例えば PSMB8 遺伝子、RALGDS 遺伝子、GBP1 遺伝子、RPS14 遺伝子、CXCL9 遺伝子、DKFZp564F212 遺伝子、CYP1B1 遺伝子、TNFSF10 遺伝子、NR0B2 遺伝子、MAFB 遺伝子、

BF530535 遺伝子、MRPL24 遺伝子、QPRT 遺伝子、VNN1 遺伝子及び IRS2 遺伝子からなる群から選ばれる少なくとも1つの遺伝子を用いることができる。あるいは、表 $1\sim8$ に示される遺伝子のうち、例えば、PZP 遺伝子、MAP3K5 遺伝子、TNFSF14 遺伝子、LMNA 遺伝子、CYP1A1 遺伝子及び IGFBP3 遺伝子からなる群から選ばれる少なくとも1つの遺伝子を用いることができる。

5

20

25

また、内部標準遺伝子として GAPDH を用いて測定する際には、表 1 ~ 8 に示される遺伝子のうち、VNN1 遺伝子及び MRPL24 遺伝子からなる遺伝子セット、 又は PRODH 遺伝子、LMNA 遺伝子及び MAP3K12 遺伝子からなる遺伝子セット トに含まれる各遺伝子を用いることもできる。

10 さらにまた、内部標準遺伝子として 18S rRNA を用いて測定する際には、表 1 ~ 8 に示される遺伝子のうち、VNN1 遺伝子、CXCL9 遺伝子、GBP1 遺伝子及び RALGDS 遺伝子からなる遺伝子セット、又は LMNA 遺伝子、LTBP2 遺伝子、COL1A2 遺伝子及び PZP 遺伝子からなる遺伝子セットに含まれる各遺伝子を用いることもできる。

15 癌の評価は、転移の有無又は再発の有無を予測するというものである。また、 癌としては、例えば肝細胞癌が挙げられる。

遺伝子の発現量の測定は、配列番号 2n-1 及び 2n (n は 1~114 の整数を表わす)で示される塩基配列からなるプライマーの組合せを少なくとも 1 組用いて、遺伝子を増幅することにより行なうことができる。あるいは、遺伝子の発現量の測定は、VNN1 遺伝子及び MRPL24 遺伝子からなる遺伝子セット、PRODH 遺伝子、LMNA 遺伝子及び MAP3K12 遺伝子からなる遺伝子セット、VNN1 遺伝子、CXCL9 遺伝子、GBP1 遺伝子及び RALGDS 遺伝子からなる遺伝子セット、並びに LMNA 遺伝子、LTBP2 遺伝子、COL1A2 遺伝子及び PZP 遺伝子からなる遺伝子セットに含まれる各遺伝子を増幅するためのプライマーの組合せを用いて、遺伝子を増幅することにより行うことができる。

(2)配列番号 2n-1 及び 2n (n は $1\sim114$ の整数を表わす)で示される塩基配列からなるプライマーの組合せを少なくとも 1 組含むプライマーセット。

(3)VNN1遺伝子及びMRPL24遺伝子からなる遺伝子セット、PRODH遺伝子、LMNA 遺伝子及び MAP3K12 遺伝子からなる遺伝子セット、VNN1 遺伝子、CXCL9遺伝子、GBP1遺伝子及びRALGDS遺伝子からなる遺伝子セット、並びにLMNA遺伝子、LTBP2遺伝子、COL1A2遺伝子及びPZP遺伝子からなる遺伝子セットからなる群から選択される少なくとも1つの遺伝子セットに含まれる各遺伝子を増幅するためのプライマーの組合せを含むプライマーセット。

(4)表1~8に示されるいずれかの遺伝子を含む、癌の評価用キット。

上記示される遺伝子としては、例えば RALGDS 遺伝子、GBP1 遺伝子、DKFZp564F212遺伝子、TNFSF10遺伝子及びQPRT遺伝子からなる群から選ばれる少なくとも1つの遺伝子が挙げられる。

または、上記示される遺伝子としては、例えば VNN1 遺伝子及び MRPL24 遺伝子からなる遺伝子セット、PRODH 遺伝子、LMNA 遺伝子及び MAP3K12 遺伝子からなる遺伝子セット、VNN1 遺伝子、CXCL9 遺伝子、GBP1 遺伝子及び RALGDS 遺伝子からなる遺伝子セット、並びに LMNA 遺伝子、LTBP2 遺伝子、COL1A2 遺伝子及び PZP 遺伝子からなる遺伝子セットからなる群から選択される少なくとも1つの遺伝子セットに含まれる各遺伝子が挙げられる。

また、本発明のキットには前記プライマーセットを含めることができる。

本発明により、肝細胞癌の再発を予知するために有用な遺伝子が提供される。この遺伝子の発現亢進状態を解析することで、癌を評価することができる。特に、本発明の遺伝子を用いることにより、肝細胞癌の再発を予知することができ、得られた予知情報はその後の治療方針に有用である。また、これらの遺伝子および遺伝子産物を用いて、再発予防の治療法を開発することが可能となる。

25 図面の簡単な説明

10

15

20

図1は、全遺伝子発現プロファイルより作製したサンプル系統樹を示す図である。サンプル間の発現様式の類似性で遺伝子が再配列され、さらに全遺伝子の発現様式の類似性から、サンプルが再配列されて、近縁関係が系統樹として示され

る。

5

10

15

20

発明を実施するための最良の形態

以下、本発明を詳細に説明する。

本発明は、肝細胞癌切除後の長期間のフォローアップ臨床データから、予後不良 の症例群(例えば1年以内に再発して2年以内に死亡する症例群)と、予後良好 の症例群(例えば4年以上再発がない症例群)とに分け、切除した肝組織に発現 する遺伝子群の特徴から、予後を不良にする遺伝子又は予後を良好にする遺伝子 (例えば再発促進に関わる遺伝子と再発抑制に関わる遺伝子)を同定することを 特徴とする。本発明は、臨床データをもとにして、原因ウイルス別にB型肝細胞 癌症例と C 型肝細胞癌症例とに分け、各々非癌部の組織及び癌部の組織から、予 後の相関関係を有する遺伝子を同定するというものである。

本発明の遺伝子は、どの症例の、どの病態のときの、どの遺伝子を調べると、 遺伝子と病態との相関関係がわかるのかについて、実際に患者から採取した組織 と病態との相関関係を解析することによって、明らかにされたものである。

1.被検サンプルの分類

被検サンプルは、肝癌手術後の経過を観察し、再発早期群と遅延群とに分類す る。

再発早期群とは、切除術後、一定期間内に再発してその後死亡する症例群を意 味する。再発までの期間としては特に限定されるものではないが、例えば1年以 内又は2年以内を例示することができる。死亡するまでの期間も特に限定される ものではないが、例えば、再発から1年以内、2 年以内又は 3 年以内などが挙げ られる。遅延群とは、一定期間以上(例えば3年以上、好ましくは4年以上)再 発がない症例群を意味する。 25

実際には51症例の stage I および stage II の肝細胞癌手術症例を対象とした。そ の内訳は、B型肝細胞癌症例が 16 例、C型肝細胞癌症例が 35 例を含む。これら のフォローアップ臨床データをもとに、再発早期群として B 型肝細胞癌症例から

2 例、C型肝細胞癌症例から 3 例を、再発遅延群として B型肝細胞癌症例から 2 例、C型肝細胞癌症例から 3 例を選んだ。これら 10 例の非癌部および癌部組織の RNA について、以下の発現プロファイル解析を行った。

5 2. 遺伝子の解析

る。

前記の通り分類された群の肝組織から total RNA を抽出し、各群間のマイクロアレイによる遺伝子発現プロファイルを比較する。total RNA の抽出は、市販の試薬 (例えばトリゾール) を用いることにより行うことができる。発現プロファイルの検出は、例えばマイクロアレイ(アフィメトリクス社)を用いる。

10 さらに、本発明は、癌部のほか非癌部の組織において変動する遺伝子を解析することができる。ここで、非癌部とは、肝細胞癌切除術時に含まれる肝組織であって、癌細胞が含まれていない部分を意味する。但し、「非癌部」は必ずしも正常肝組織であるとは限らず、慢性肝炎(B型肝炎やC型肝炎)又は肝硬変を呈する組織も含まれる。例えば、このような組織がほとんどであるB型肝細胞癌症例やC型肝細胞癌症例の再発遅延群で、非癌部において発現亢進する遺伝子を解析の対象とすることができる。慢性肝炎又は肝硬変を呈する組織の場合は、壊死炎症反応や肝再生結節、脱落肝細胞を補う繊維化などが観察され、中には肝細胞癌発生に向けて予備軍となりうる細胞も存在する。従って非癌部組織にこそ予後と関係する遺伝子発現が存在すると考えられ、その遺伝子発現を指標として(例えば、遺伝子発現の変動を解析することで)、予後(例えば再発)を予知することができ

遺伝子発現の変動と表現型(再発、早期進行等)との相関関係から、癌を評価するための遺伝子を同定する。癌の評価とは、癌の病態や進行度に関する評価を 意味し、転移の有無、再発の有無などを予測することが挙げられる。

25 本発明では、特に再発に関連して発現が促進又は抑制される遺伝子を提供する。 再発とは、原発病巣に対する治療が完了したと判断された後に、新たな癌と考え られる病巣が肝内に出現することをいう。

3. 遺伝子の評価

5

10

15

20

25

同定された遺伝子について、病態進展を抑える因子として使えるか、病態モデル細胞や動物で、評価する。すなわち、(1)予後のわかっている残りの肝細胞癌症例について遺伝子発現定量解析を行い、予後と相関するか否かを検討する。

(2)肝細胞癌培養細胞株に遺伝子導入して発現させ、その細胞増殖性、悪性度の変化を、軟寒天培地下でのコロニー形成能やヌードマウスでの腫瘍形成能で評価する。(3)慢性肝炎患者より樹立した肝細胞培養株を用いて、遺伝子導入し発現させ、その細胞増殖性、悪性転換を、上記(2)の方法と同様の方法で評価する。(4) 肝細胞癌発癌モデル動物の肝臓に遺伝子導入して発現させ、肝発癌までの経過で評価する。

上記(1)において、遺伝子発現の定量解析は、例えばリアルタイム PCR に より行う。すなわち、上記のように作製した total RNA に市販の逆転写酵素を用い て cDNA を合成する。PCR 試薬は市販のものを用いることができ、PCR の条件も 市販のプロトコールにしたがってよい。例えば、予備加熱を95℃、10分行ったのち、 95℃15秒に続けて60℃(または65℃)、60秒を40サイクルという条件である。対象 とする内部標準遺伝子としては、例えば、glyceraldehyde 3-phosphatase dehydrogenase(GAPDH), 18S ribosomal RNA (18S rRNA), β -Actin, cyclophilin A, HPRT1 (Hypoxanthine phosphoribosyltransferase 1), B2M (beta-2 microglobulin), ribosomal protein L13a、ribosomal protein L4 等のハウスキーピング遺伝子を用い ることができ、当業者であれば適宜選択することができる。解析方法は発現量の 絶対的定量解析または相対的定量解析が採用されるが、好ましくは絶対的定量解 析である。ここで、発現量の絶対的定量とは、検量線が最適となる閾値線(threshold line)を決定し、各サンプルの閾値 PCR サイクル数、threshold cycle(Ct)値を求める ことにより得られるものであり、発現量の相対的発現量は、標的遺伝子の Ct 値 から内部標準遺伝子(例えば GAPDH)の Ct 値を差し引いた△Ct 値で表される ものである。線形発現量の評価には、(2 (- ACI)) の計算式で計算したものを用い ることができる。

検量線を作成する場合には、標準試料の系列希釈を行って同時に測定したもの

(同じ反応溶液を使って、同じプレートに入れ、同時期に測定したもの)を用いてよい。

検量線より絶対発現量を換算できる場合は、標的遺伝子および内部標準遺伝子の絶対発現量を求めて、サンプルごとに標的遺伝子発現量/内部標準遺伝子発現量の比を算出することにより、評価に用いることができる。

5

20

25

再発遅延群および再発早期群のマイクロアレイの結果から遺伝子を選択して、 上記の方法を用いて得られたリアルタイムPCRの結果がマイクロアレイの結果 と一致する遺伝子のうち、再発までの期間と相関を示した遺伝子を、たとえば非 癌部発現亢進遺伝子と同定することができる。

L記のように発現亢進遺伝子と同定される遺伝子は、同定する際の実験条件によって、例えば用いる内部標準遺伝子、プライマー配列、アニーリング温度などによって、種々のものを選択することができる。また、各種の統計方法(例えば、Mann-Whitney U test)を用いて、再発までの期間と相関する遺伝子を選別することもできる。

15 本発明の遺伝子の全長配列は、以下のようにして得ることができる。すなわち、 DNA データベースより検索し、既知の配列情報として得ることができる。 ある いは、ヒト肝臓 cDNA ライブラリーより、ハイブリダイゼーションスクリーニン グにより単離する。

本発明において、再発が早期になかった症例(再発遅延)において発現が亢進される遺伝子としては、表 $1\sim$ 表4に示されるものがあり、再発が早期にあった症例において発現が亢進される遺伝子としては、表 $5\sim$ 8に示されるものがある。表1:B型肝細胞癌症例の再発遅延群で、非癌部において発現亢進する遺伝子 (24)

表 2: C 型肝細胞癌症例の再発遅延群で、非癌部において発現亢進する遺伝子 (10)

表 3:B型肝細胞癌症例の再発遅延群で、癌部において発現亢進する遺伝子 (137) 表 4:C型肝細胞癌症例の再発遅延群で、癌部において発現亢進する遺伝子 (104)

表5:B型肝細胞癌症例の再発早期群で、非癌部において発現亢進する遺伝子 (48)

表 6: C型肝細胞癌症例の再発早期群で、非癌部において発現亢進する遺伝子 (12)

5 表 7:B型肝細胞癌症例の再発早期群で、癌部において発現亢進する遺伝子 (75)

表8:C型肝細胞癌症例の再発早期群で、癌部において発現亢進する遺伝子 (38)

表1 B型肝炎症例の再発遅延群で、非癌部において発現亢進する遺伝子(24) (BNgood)

番号	遺伝子	重複グループ
1	TNFSF14	
2	MMP2	•
3	SAA2	B型癌遅延群
4	COL1A1	
5	COL1A2	
6	DPYSL3	
7	PPARD	
8	LUM	
9	MSTP032	
10	CRP	
11	TRIM38	
12	S100A6	
13	PZP	
14	EMP1	
15	A1590053	
16	марзк5	
17	TIMP1	
18	GSTM1	B型癌遅延群 C型癌遅延群
19	CSDA	
20	GSTM2	B型癌遅延群 C型癌遅延群
21	SGK	B型癌遅延群
22	LMNA	
23	MGP	
24	LTBP2	,

表2 C型肝炎症例の再発遅延群で、非癌部において発現亢進する遺伝子(10)(CNgood)

番号	遺伝子	重複グループ	
25	M10098	B型癌遅延群	C型癌遅延群
26	PSMB8		
27	RALGDS		
28	APOL3		
29	GBP1		
30	RPS14		
31	CXCL9		
32	DKFZp564F212		
33	CYP1B1		
34	TNFSF10		

5

表3 B型肝炎症例の再発遅延群で、癌部において発現亢進する遺伝子 (137) (BTgood)

番号	遺伝子	重複グル	レープ	
35	HP	•	- TU PT 157 77 71	A THI -11-16-16-7-1-19-4
25 36	M10098 CYP2E1	•	C型癌遅延群	C型非癌遅延群
37	HDL		C型癌遅延群	
38	GPX4	•	0.主流是241	
39	G0S2			
40	HAO2			
41	ATF5		C型癌遅延群	
42 43	MT1F CYP3A4		C型癌遅延群 C型癌遅延群	
44	Scd		O至酒煙延杯	
45	SERPINA7			
46	AKR1D1			
47	AL031602			
48	TSC501		○ 开心宫 *屈 7元 9¥	
18 3	GSTM1 SAA2	B型非癌遅延群 B型非癌遅延群	C型癌遅延群	
49	BHMT	0 主 サト723 足り三年十	C型癌遅延群	
50	HADHSC		·	
51	FBXO9			
52	KIAA0442			
53	KIAA0293		C型癌遅延群	
54 55	IGHG3 ADH2		C型癌遅延群	
20	GSTM2	B型非癌遅延群	C型癌遅延群	
56	PPIF		<u>э</u>	
57	ALDH8A1			
58	IGLJ3		•	
59	HCN3		O 프니스 '문 '로 판'	
60 61	ADH6 AK02720		C型癌遅延群 C型癌遅延群	
62	NET-6		O生活连延研	
63	CYP2D6			
64	MAFB			
65	GHR			
66 67	KHK AÐFP			
68	LCE			
69	MPDZ		C型癌遅延群	
70	TEM6			
71	KIAA0914			
72	KLKB1 M11167		0.形容"屈"花畔	
73 21	SGK	B型非癌遅延群	C型癌遅延群	
74	EHHADH			
75	MBL2		C型癌遅延群	
76	APP			
77 70	MT1G		の刑官・展なる。	
78 79	TPD52L1 CXCL10		C型癌遅延群	
80	AI972416			
81	FCGR2B			
82	IGL@			
83	FLJ10134			
84	PPAP2B			
85 86	CDC42 HBA2			•
87	CYP1A2		C型癌遅延群	
88	CYP2B6			
89	DKFZP586B1621			
90	MTP			
91	X07868		C型癌遅延群	
92 93	RNAHP HLF		C型癌遅延群	
94	PPP1R3C		O.E./四/EX26中	
95	CDC2L2			
96	NRIP1			
97	GPD1			

(表3の続き)

番号	遺伝子	重複グル	ノープ	
98	KIAA1053			
99 100	CCL19 CRI1			
101	THBS1		C型癌遅延群	
102	SLC5A3	•		
103 104	GADD45B AGL			
105	ADK			
106	IGKC		C型癌遅延群	
107 108	CYP2A6 GADD45A		C型癌達延群	
109	FLJ20701		- <u> </u>	
110 111	LOC57826 SLC2A2			
1112	CIRBP			
113	CGI-26			
114 115	DEFB1 HMGCS1			
116	ODC1			
117	GLUL	B型非癌早期群	C型癌遅延群	
118 119	CYP27A1 SULT2A1		C型癌遅延群	
120	AK024828		0里海岸连杆	
121	PHLDA1			
122 123	NR1I2 MSRA			
124	RNASE4			
125	AI339732			
126 127	HBA2 AL050025		•	
128	CSAD			
129 130	SID6-306 NM024561			
131	BCKDK			
132	SLC6A1			
133 134	CG018 GNE			
135	CKLFSF6			
136	COMT			
137 138	AL135960 KIAA0179			
139	c−maf			
140 141	OSBPL11 R06655		C型癌遅延群	
142	KIAA04461			
143	IGF1		C型癌遅延群	
144 145	HBA1 LOC55908			
146	ENPEP			
147 148	TXNIP			
148	KIAA0624 ENPP1			
150	CYP4F3			
151 152	CAV2 BE908931			
153	LECT2			
154	MLLT2			
155 156	FLR1 TF			
157	DAO			
158	AI620911			
159 160	GBP1 UGP2			
161	GADD45B			
162	SC4MOL			
163 164	BE908931 TUBB			
165	EPHX2			
166	SORD			

表4 C型肝炎症例の再発遅延群で、癌部において発現亢進する遺伝子(104)(CTgood)

番号	遺伝子	重複グル	レープ	
167	LEAP-1			
168	PPD			
37	HDL		B型癌遅延群	
43	CYP3A4		B型癌遅延群	
107	CYP2A6		B型癌遅延群	
25	M10098	C型非癌遅延群	B型癌遅延群	
169	RACE			
170	SLC27A5			
171	FLJ20581			
172	FLJ10851			
53	KIAA0293		B型癌遅延群	
173	C9			
174	AL354872			
175	AKR1C1			
176	PCK1			- THE ST 10 77 MA
18	GSTM1		B型癌遅延群	B型非癌遅延群
87	CYP1A2		B型癌遅延群	
177	ANGPTL4			
178	AOX1			
179	SDS			
20	GSTM2		B型癌遅延群	B型非癌遅延群
73	M11167		B型癌遅延群	
180	CYP2C9			
181	SIPL			
182	GLYAT		_ TIL 15 37 TH	
75	MBL2	•	B型癌遅延群	
183	CYP1A1			
184	CRP			
141	R06655		B型癌遅延群	
185	ACADL			
93	HLF		B型癌遅延群	
186	NR1I3			
187	CA2			
188	CYP2C8			
189	PON1		_ 771	
55	ADH2		B型癌遅延群	
92	RNAHP		B型癌遅延群	
190	AQP9			
119	SULT2A1		B型癌遅延群	
191	SPP1			
192	KIAA0934			
193	AKAP12			
194	APOF			
195	FMO3			
196	SLC22A1			
197	DCXR			
198	CYP3A7			
199	SOCS2			

(表4の続き)

				(衣4
番号	遺伝子	重複グル	<i>,</i> —プ	
101	THB\$1		B型癌遅延群	
41	ATF5		B型癌遅延群	
200				
60			B型癌遅延群	
201				
202				
203				
204				
61			B型癌遅延群	
205				
206				
207	• • • • •			
208				
49			B型癌遅延群	
209				
210				
211				
212				
213				
214				
215			•	
216				
217			•	
218				
69			B型癌遅延群	
219				
220				
221				
222				
223				
224				
225				
226	-			
42			B型癌遅延群	
22				
228				
229				
230				
23				
23				
23				
234				
143	3 IGF1		B型癌遅延群	
23				
23				
23				
23				
23				
24				
10			B型癌遅延群	
24				
24				
7	_		B型癌遅延群	
24				•
11		B型非癌早期群	B型癌遅延群	
24				

表5 B型肝炎症例の再発早期群で、非癌部において発現亢進する遺伝子(48)(BNbad)

番号	遺伝子	重複グル	
245	CTH		B型癌早期群
246	OAT	٠,	
247	PRODH		B型癌早期群
248	CYP3A7		도 파(수 🗀 #n ##
249	DDT		B型癌早期群
250	PGRMC1		
251	AKR1C1		B型癌早期群
252	HGD		B至独于别研
253	FHR-4		
254	AL354872		B型癌早期群
255	FST		口无源十分种
256	COX4		
257	• •• •		
258	PSPHL CYP1A1		
259 260	ZNF216		
260 261	LEPR		B型癌早期群
262	TOM1L1		O
263	PECR		
264	ALDH7A1		
265	GNMT		•
266	OATP-C		
267	AKR1B10	C型非癌早期群	B型癌早期群
268	ANGPTL3		
269	AASS		
270	CALR		
271	BAAT		
272	PMM1 '		
. 273	RAB-R		
117	GLUL	C型癌遅延群	B型癌遅延群
274	CSHMT		
275	UGT1A3		
276	HSPG1	つぎょう 田 伊珠	
277	QPRT	C型非癌早期群	
278 279	DEPP CA2		B型癌早期群
	FTHFD		ひ主加一が押
280 281	LAMP1		
282	FKBP1A		
283	BNIP3		
284			
285			B型癌早期群
286			•
287			B型癌早期群
288			
289			
290	UK114		
291	ERF-1		
			<u> </u>

表6 C型肝炎症例の再発早期群で、非癌部において発現亢進する遺伝子(12) (CNbad)

番号	遺伝子	重複グループ
292	ALB	
293	NR0B2	·
267	AKR1B10	B型非癌早期群 B型癌早期群
294	MAFB	
295	BF530535	
296	MRPL24	
297	DSIPI	
277	QPRT	B型非癌早期群
298	VNN1	
299	IRS2	
300	FMO5	
301	DCN	

表7 B型肝炎症例の再発早期群で、癌部において発現亢進する遺伝子 (75)(BTbad)

番号	遺伝子	重複グループ
247	PRODH	B型非癌早期群
302	PLA2G2A	C型癌早期群
303	SDS	
304	LGALS3BP	
305	BACE2	
261	LEPR	B型非癌早期群
306	RCN1	
307	MRC1	
308	TM4SF5	
309	NK4	
310	PABL	
311	IGFBP2	
312	GRINA	
313	IFI27	
314	GP2	
315	GA	
316	P4HA2	
317	KYNU	
318	PCK1	
319	UQBP	
320	HLA-DRB1	
252	HGD	B型非癌早期群
321	HTATIP2	
322	GGT1	
323	CTSH	
324	MVP	
325	SLC22A1L	
326	GMNN	
327	COM1	
328	TM7SF2	
245	CTH	B型非癌早期群
329	KDELR3	
330	VPS28	
279	CA2	B型非癌早期群
331	SFN	
332	NM023948	
333	OPLAH	

<u>(表</u>7の続き)

番号	遺伝子	重複グル	レープ	(4x /
334	DGCR6	•		
335	INSIG1			
267	AKR1B10	B型非癌早期群		C型非癌早期群。
336	PTGDS		C型癌早期群	
337	SLC25A15			
338	SEPW1			
339	CD9			
340	UQCRB			
285	ASS	B型非癌早期群		
341	CPT1A			
287	PLAB	B型非癌早期群		
342	GPAA1			
343	HF1			
344	GPX2			
345	COPEB			
346	NDRG1			
347	SYNGR2			
348	GOT1			
349	POLR2K			
350	AATF			
255	FST	B型非癌早期群		
351	OAZIN		•	
352	RPL7			
353	KIAA0128			
354	CLDN7			
355	ABCB6			
356	GK			
357	LU		C型癌早期群	
358	TNFSF4			
359	OSBPL9			
360	GSN			
361	LGALS4			
249	DDT	B型非癌早期群		
362	EIF3S3			
363	SLC12A2			
364	RAMP1			
365	HSPB1			
366	AI201594			

表8 C型肝炎症例の再発早期群で、癌部において発現亢進する遺伝子(38)(CTbad)

番号	遺伝子	重複グループ
367	BL34	
368	AL022324	`
369	IGHM	
370	TXNIP	
371	FSTL3	
372	AW978896	
373	NM018687	
374	L48784	
375	AJ275355	
376	PER1	
377	CYBA	_ =====================================
302	PLA2G2A	B型癌早期群
378	SGK	
379	FKBP11	
380	AI912086	
381	IGLJ3	
382	IGKC	
336	PTGDS	B型癌早期群
383	M20812	
384	AGRN	
385	IL2RG	
386	X07868	
387	PKM2	
388	FGFR3	
389	TRB@	
390	TNFAIP3	
391	TTC3	
392	LPA '	
393	AL049987	
394	IER5	
395	BSG	
396	TM4SF3	
397	HMGB2	_ 17:1 etc [= 44:0 m)4
357	LU	B型癌早期群
398	CCL19	
399	PAM	
400	PIK3R1	
401	RANGAP1	

ただし、表 5 中、「CTH」と「AL354872」は同じタンパク質をコードする遺伝子である。

5 上記遺伝子は、単独で、又は適宜組み合わせて癌の評価用キットに含めることができる。遺伝子を組み合わせて遺伝子セットとしては、例えば、表16(後述)

を挙げることができる。上記遺伝子はその一部の配列であってもよい。これらの遺伝子は、表に記載の遺伝子発現を検出するためのプローブとして使用することができる。

また、本発明のキットには、遺伝子増幅用プライマー、緩衝液、ポリメラーゼ 5 等を含めてもよい。

遺伝子増幅用プライマーは、各遺伝子配列の DNA 配列および mRNA 配列をデータベースより得、特に variant の有無、エキソンイントロン構造を含めた情報も得るようにして、翻訳領域に当たる部分で共通な配列をターゲットとする。 なるべく片側プライマーは隣接エキソンにまたがるようにして、mRNA だけが検出されるように設計する。あるいは、web software 「Primer3」(provided by Steve Rozen and Whitehead Institute for Biomedical Research)を用いてプライマーの設計候補を得、さらに BLAST(NCBI)search でホモロジー検索を行い、類似配列へのミスアニーリングをさけるようなプライマーを選択する。

10

25

好ましいプライマーの配列番号を一般式 2n-1 及び 2n (n は 1 ~114 の整数を表わす) に示す。本発明においては、2n-1 により示されるプライマーと 2n により示されるプライマーとを 1 組のセットとして用いることができる。例えば、n を 1 とすると、配列番号 1 と配列番号 2 のプライマーを 1 組のプライマーセットを、n を 2 とすると、配列番号 3 と配列番号 4 のプライマーのセットを使用することができる。特に好ましいプライマーは、n が 2 、 4 、 7 、 9 、17 で示される場合 である。

その他、上記(1)において、遺伝子発現の定量解析をイムノドットブロットや免疫染色等で行うことも可能である。イムノドットブロットや免疫染色は、表1~8に示した遺伝子の発現産物に対する抗体を用い、定法にしたがって行うことができる。その際、市販されている抗体を利用しても良いし、マウス、ラット、ウサギ等の動物に免疫することで得られる抗体を利用しても良い。

以下、実施例により本発明をさらに具体的に説明する。ただし、本発明はこれら実施例にその技術的範囲が限定されるものではない。

実施例1

5

10

肝細胞癌症例中の発現亢進遺伝子の検出

以下のように、B型およびC型肝細胞癌症例のヒト肝組織を用いて、肝細胞癌 再発抑制分子の同定を遺伝子レベルで進めた。

肝細胞癌術後の再発機構を知り、再発の有無を予測できる遺伝子を決めるため、 再発時期の異なる症例を用いて遺伝子発現プロファイル解析を行った。TNM 分 類で stage I、II の 51 症例を対象とした。術後 4 年以上再発のない 5 例と、術後 1 年以内に再発した 5 例を選び、Affymetrix 社 HG-U133A アレイで発現解析を行なった。

凍結保存した組織に TRIzol regent(Life Technologies, Gaithersburg, MD)を加えて、ポリトロンにてホモジネートした。ホモジネート液にクロロホルムを加えてよく混和し遠心した。遠心後、上層を回収し、イソプロパノールを等量加えて、total RNA 沈殿を遠心にて回収した。

- 15 B型肝細胞癌症例(原因ウイルスがB型肝炎ウイルスである肝細胞癌症例)の 再発早期群 2 例の非癌部と癌部、再発遅延群 2 例の非癌部と癌部、C型肝細胞癌 症例(原因ウイルスがC型肝炎ウイルスである肝細胞癌症例)の再発早期群 3 例 の非癌部と癌部、再発遅延群 3 例の非癌部と癌部、合計 8 群に分け、発現解析を 行った。
- 20 各サンプル群につき 15 μg の total RNA を用意し、Affymetrix 社 GeneChip Expression Analysis Technical Manual に基づいて、ビオチン標識 cRNA を合成した。T7-(dt)₂₄ プライマーと Superscript II 逆転写酵素 (Invitrogen Life Technology) を用いて、1 時間反応させ第一鎖 cDNA を合成した。その後、E. coli DNA リガーゼ、E. coli DNA ポリメラーゼ、E. coli RNase H を加え 16℃ 2 時間反応させ、
- 25 最後に T4 DNA ポリメラーゼを加えて二本鎖 cDNA を合成した。クリーンアップを行った後、BioArray high yield RNA transcript labeling kit (Affymetrix,Inc,CA)を用いて、37℃ 4時間 in vitro 転写し、ビオチン標識 cRNA を合成した。Technical manual に基づき、ハイブリダイゼーションプローブ溶液を作製し、プレハイブリ

ダイゼーションを 45 $^{\circ}$ $^{\circ}$

データ解析は、GeneSpring ver.5.0 (SiliconGenetics, Redwood, CA)を用いて行った。normalization後、内在性定量用コントロール遺伝子 BioB のシグナルを検出限界(細胞あたり数コピーに相当する)として参考にし、100以上の輝度をもち、なおかつ、シグナルフラッグが最低 1 チップでも present の遺伝子を対象とした。7444 遺伝子が対象となり、非癌部では再発早期群/遅延群間で 2.5 倍以上差のある遺伝子を同定した。癌部では 3 倍以上差のある遺伝子を同定した。

その結果、絞り込んだ 7444 遺伝子で、再発なし/ありの非癌部間で 2.5 倍以上差のある遺伝子は、up34 個と down58 個、癌部間で 3 倍以上差のある遺伝子は、up215 個と down110 個であった。これらの中で B型/C型共通に再発なしで発現亢進する遺伝子は、非癌部で 0 個、癌部で 26 個であった。一方、B型/C型共通に再発ありで発現亢進する遺伝子は、非癌部で 2 個、癌部で 3 個であった。また、癌部/非癌部共通に発現亢進する遺伝子があり、再発なしで 5 個、再発ありで 10 個であった。(表 9)。

20 なお、表 9 において合計が 401 となっているが、これは GLUL の重複が特別な ものであるため 402 ではなく 401 である。

5

10

表9 肝	細胞癌再	発に関	わる	遺伝子
------	------	-----	----	-----

5

10

	再発遅延群	で発現亢進	再発早期群	で発現亢進	共通	
	非癌部	癌部	非癌部	癌部	六 .	
D刑旺火	24	137			4	
B型肝炎			48	75		10
C型肝炎	10	104			1	
し生が及			12	38		0
共通	0	26				
大炬			2	3		!
合計	34	215			244	
口前			58	110		158

合計 401

表9の結果より、再発予後の違いは、非癌部より癌部のほうに遺伝子発現変化が大きく、C型肝細胞癌症例よりはB型肝細胞癌症例の方が遺伝子発現の差が大きいと言える。また、原因ウイルスとは無関係に共通して再発予後に関わる遺伝子が、見つかる場合があるが、意外に少ない。発癌と同様、再発も原因ウイルス別に異なる機構が関与していると考えられる。

サンプル系統樹解析では、全遺伝子の発現プロファイルから、まず非癌部と癌部に分かれ、各々非癌部と癌部は、再発予後ではなく、原因ウイルスによる近縁関係が観察された(図 1)。図1において、各試験群を示す「BNbad」、「BNgood」などの表記において、第1番目のアルファベットはウイルスの種類を示し、「B」はB型肝炎ウイルス、「C」はC型肝炎ウイルスを意味する。第2番目のアルファベットの「N」は非癌部、「T」は癌部を意味する。そして「bad」は再発早期、「good」は再発遅延を意味する。

15 このことは、再発予後に影響する遺伝子発現は、限られた遺伝子の発現変化で もたらされるものと考えられる。

以上のことから、再発の機構解明や有無を予測できる候補遺伝子が見出された (表1~8)。

実施例2

5

C型肝細胞癌症例における各群の遺伝子の再発期間と発現量の相関の検討 以下のとおり、C型肝細胞癌症例のうち、再発遅延群と再発早期群各々の非癌 部において発現亢進する遺伝子について、再発までの期間と発現量との相関を検 討した。

遺伝子発現プロファイル解析に用いた C型肝細胞癌症例 6 例を含め、計 22 例 10 の非癌部のサンプルを対象とした。各症例の臨床病理学的知見と再発までの期間 (再発なしの期間) を表 1 0 A に示す。

表10A C型肝細胞癌症例

症例番号	性別	年齢	非癌部	stage	再発なしの月数	マイクロアレイ
59	М	66	CH	Ι	84	遅延群
18	M	68	LC	Ι	58	遅延群
6	M	65	CH	П	51	遅延群
25	M	51	CH	Ι	45	
29	Μ,	70	CH	${f II}$	43	
12	M	66	CH	Π	41	
4	М	65	CH	I	40	
48	F	65	LC	Ι	39	
31	M	60	LC	I or II	38	
16	M	70	CH	Ι	37	
22	М	65	CH	I	34	
3	F	71	LC	Ι	29	
65	M	60	LC	· I	29	
30	F	62	LC	П	28	
10	М	56	LC	Ι	26	
23	М	62	CH	П	16	
26	M	70	LC	I	16	
14	M	62	CH	П	14	早期群
62	М	66	LC	Ι	13	
17	M	54	LC	Ι	12	
15	F	68	LC	П	8	早期群
44	M	58	CH	I	44	早期群

CH: 慢性肝炎、LC: 肝硬変症例31のstageは、未決定。

再発なしの月数とは、再発までの月数の他、 調査期間中再発がみられないものも含む。

また、追跡調査により表10Aに示す症例を変更又は更新し、さらに、本実施例の対象として症例を追加した計35例についての、臨床病理学的知見と再発までの期間(再発なしの期間)を表10Bに示す。

5

表10B C型肝細胞癌症例

<u>秋10D 0:</u>	表10B O至前 构心思证的									
症例番号	性別	年齢	非癌部	stage	再発なしの月数	マイクロアレイ				
59	M	66	CH	I	>94	遅延群				
6	M	65	CH	I	65	遅延群				
25	М	51	CH	Ι	> 58					
18	М	68	LC	I	58	遅延群				
12	M	66	CH	П	41					
4	М	65	CH	I	>40					
29	M	70	CH	П	39					
16	M	70	CH	I	>37					
48	F	65	LC	I	37					
31	М	60	LC	I	37					
80	M	73	CH	П	34					
22	M	65	CH	I	33					
3	F	71	LC	I	29					
65	M	60	LC	I	28					
30	F	62	LC	П	26					
10	М	56	LC	I	25					
70	M	57	LC	П	24					
79	М	73	LC	<u>I</u>	22					
73	М	50	CH	П	20					
81	F	69	LC	Ī	17					
26	М	70	LC	I	16					
72	М	71	LC	П	16					
69	M	66	LC	п	15	□ #n = #				
14	М	62	CH	П	14	早期群				
78	F	66	CH	Ī	13					
82	M	71	CH	Ī	13					
17	М	54	LC	Ī	12					
71	М	57	LC	Ū	12					
77	F	65	LC	I	10					
62	М	66	LC	I	9					
74	M	67	CH	П	9	早期群				
15	F	68	LC	ū	8	干别研				
76	М	72	NL	I	7					
75	M	65 58	CH CH	II I	6 4	早期群				
44	M	- 38	ОП							

CH: 慢性肝炎、LC: 肝硬変、NL:正常肝 再発なしの月数とは、再発までの月数の他、 調査時点で未だ再発がみられないものも含む。

表 2 における再発遅延群の非癌部において発現亢進する遺伝子(CNgood)の

9個、及び表 6 における再発早期群の非癌部において発現亢進する遺伝子 (CNbad)の12個の、合計21個の遺伝子に関して、再発期間と発現量との関係 を検討した。

まず、各症例非癌部肝組織から、上記実施例1と同様の方法で total RNA を抽 5 出した。

total RNA 中に混在する DNA の影響を除去するため、DNase I (DNase I (TAKARA SHUZO, Kyoto, Japan)で 37℃、20 分処理した後、TRIzol regent で 再精製した。10 μg の total RNA を用いて 25 unit の AMV reverse transcriptase XL(TAKARA)と 250 pmol の 9-mer ランダムプライマーを含む 100 μ1 の反応液に より逆転写反応を行った。

0

.5

リアルタイム PCR には、合成 cDNA を各々 $0.25\sim50$ ng 相当ずつ用いて行った。 SYBR Green PCR Master mix(Applied Biosystems, Foster City, CA)の $25\mu1$ の反 応溶液を用いて ABI PRISM 7000 (Applied Biosystems) により、予備加熱を 95 \mathbb{C} 、 10 分行ったのち、95 \mathbb{C} 15 秒に続けて 60 \mathbb{C} (または 65 \mathbb{C})、60 秒を 40 ないし 45 サイクルという条件で PCR を行った。

各サンプルの内部標準遺伝子として、glyceraldehyde 3-phosphatase dehydrogenase (GAPDH) 又は 18S rRNA を用いて相対的定量解析、および一部は絶対的定量解析を行った。標準試料の系列希釈を行って同時に測定したものを検量線作成に用いた。検量線が最適となる閾値線(threshold line)を決定し、各サンプルの閾値 PCR サイクル数、threshold cycle(Ct)値を求めた。標的遺伝子のCt 値から GAPDH 又は 18S rRNA の Ct 値を差し引いた Δ Ct 値を求め、これをその標的遺伝子の相対的発現量とした。さらに、 $2^{(-\Delta Ct)}$ の計算式で計算したものを、線形発現量の評価に用いた。

一方、検量線より絶対発現量を換算できる遺伝子については、標的遺伝子および内部標準遺伝子の絶対発現量を求め、サンプルごとに標的遺伝子発現量/内部標準遺伝子発現量の比を算出して評価に用いた。測定はすべて duplicate で行った。表11A、表11B、表12A および表12B において、「マイクロアレイと一致」とは、マイクロアレイ解析に用いた6例(表10A 又はB の症例番号59、18、

6、14、15、44)の定量 PCR の結果から、再発遅延群(症例番号 59、18、6)と早期群(症例番号 14、15、44)との比を求め、1.5 以上であったものが、実施例 1 のマイクロアレイの結果と一致としたことを意味し、一致したものについて「○」を付した。なお、上記比は 1.5 以上、好ましくは 2 以上であることが好ましい。「○」に隣接するかっこ内の数字は比の値(3 例の平均値の比)を示す。「マイクロアレイと一致」の欄の「×」はマイクロアレイの結果と不一致なものを示す。「××」は、マイクロアレイの結果とは逆相関したものを示す。

表 11A、表 11B、表 12A および表 12B において、「相関」とは、22 症例 又は再発月数が確定している 31 症例の遺伝子発現量と再発までの期間との間で、 相関を意味し、有意に相関を示した場合に \bigcirc あるいは r 値を示し、さらに p 値を 記載した。

表11B および表12B において、「2群間の有意差」の欄に、24ヶ月以内再発 19 症例と40ヶ月以上再発のない6症例(表11B、表12B「2群間の有意差」欄上段)もしくは58ヶ月以上再発のない4症例(表11B、表12B「2群間の有意差」欄下段)との間で、有意に発現量の違いのあったものについて、p値(Mann-Whitney U test)を示した。

試験に用いたプライマー配列(センス鎖(順)、アンチセンス鎖(逆))を表1 1A、表11B、表12Aおよび表12Bに示す(配列番号1~88)。

C型肝細胞癌症例の再発遅延群で、非癌部において発現亢進する遺伝子候補 (CNgood)の9個を解析した結果を表11A及び表11Bに示す。表11Aは、表10Aに示す症例を対象に、内部標準遺伝子にGAPDHを用いて表11Aに示す条件で定量PCRを行った解析結果を示す。

20

5

10

表11A「C型肝炎症例の再発遅延群で、非癌部において発現亢進する遺伝子」定量PCRの結果

番号	遺伝子	順/逆	プライマー配列 (5'-3')	配列番号	アニーリング温度	マイクロアレイと一致	相関
	D01/D0	MIX		•	60°C	O(2.52)	
26	PSMB8	順逆	AGACTGTCAGTACTGGGAGC GTCCAGGACCCTTCTTATCC	2	00 C	O(2.32)	
	DAL 000	波	GACGTGGGAAGACGTTTCCA	3	60°C	O(4.13)	O(p=0.0118)
27	RALGDS	順 逆	TGGATGATGCCCGTCTCCTT	4	00 C	O(4.10)	C(p=0.0110)
	ADOLO	順	AATTGCCCAGGGATGAGGCA	5	60°C	O(2.69)	
28	APOL3	逆	TGGACTCCTGGATCTTCCTC	6	00 C	O(2.00)	
	ODD4		GAGAACTCAGCTGCAGTGCA	9	65℃	O(6.00)	O(p=0.0031)
29	GBP1	順逆	TTCTAGCTGGGCCGCTAACT	8	00 0	O(0.00)	O(p 0.0001)
-00	DDC14	順	GACGTGCAGAAATGGCACCT	9	60°C	× (0.96)	
30	RPS14	逆	CAGTCACACGGCAGATGGTT	10	00 0	× (0.00)	
	0401.0	順	CCTGCATCACGGCAGATGGTT	11	65°C	O(11.5)	
31	CXCF8	逆	TGGCTGACCTGTTTCTCCCA	12	03.0	O(11.0)	
	DVC7-5045010		CCACATCCACCACTAGACAC	13	60°C	O(4.75)	O(p=0.0541)
32	DKFZp564F212	逆	TGACAGATGTCCTCTGAGGC	14	00 0	O(4.70)	O(p 0.0011)
	CYP1B1	順	CCTCTTCACCAGGTATCCTG	15	60°C	O(2.33)	
33	CIPIBI	逆	CCACAGTGTCCTTGGGAATG	16	00 0	C (2.00)	
0.4	TNECE10	順	GCTGAAGCAGATGCAGGACA	17	60°C	O(2.50)	O(p=0.0424)
34	TNFSF10)(月		18	00 C	C(2.00)	C(p 3.0424)
			CTAACGAGCTGACGGAGTTG	18			

マイクロアレイと一致とは、マイクロアレイ解析に用いた6例の定量PCRの結果から、 再発遅延群/早期群の比を求め、1.5以上であったものをOとした。

相関とは、22症例の遺伝子発現量と再発までの期間との間で、相関を示したものについて、〇で示し、p値を記載した。

その結果、マイクロアレイの結果と一致した遺伝子は8個であり、そのうち、 再発までの期間と相関を示した遺伝子は4個(RALGDS、GBP1、DKFZp564F212、 TNFSF10)であった。

同様に、表11Bは、表10Bに示す症例を対象に、内部標準遺伝子に GAPDH 又は 18S rRNA を用いて表 1 1 B に示す遺伝子 1 0 個を、表中の条件で定量 PCR を行った解析結果を示す。

表11B「C型肝炎症例の再発速延辞で、非癌部において発現亢進する遺伝子」定量PCRの結果

5

番号	遺伝子	順/逆	プライマー配列 (5'-3')	配列番号	アニーリング退収	マイクロアレイと一致 GAPOH補正	マイクロアレイと一致 18S rRNA領証	相関(GAPDH)	相関(18S rRNA)	2群間有意整 (GAPDH)	2群間有意签 (18S rRNA)
1	M10098	项	GGAGGTTCGAAGACGATCAG	19	65°C	××(0.60)		منے مصبوبی نے ت			
		逆	GTGGTGCCCTTCCGTCAATT	20					-0.404		
2	PSMB8	頌	AGACTGTCAGTACTGGGAGC	21	60°C	O(1.92)	O(3.60)		r=0.421		
		逆	GTCCAGGACCCTTCTTATCC	22					(p=0.0177)		
3	RALGDS	105	GTGTGGCCAACTGTGTCATC	23	65°C	O(6.71)	O(8.23)		r=0.377	0.004.4	
		逆	CTTCAGACGGTGGATGGAGT	24	_				(p=0.0361)	0.0314	
4	APOL3	逆順逆頃逆	AATTGCCCAGGGATGAGGCA	25	60°C	O(1.65)	O(2.13)				
		逆	TGGACTCCTGGATCTTCCTC	26							
5	GBP1	順逆	AACAAGCTGGCTGGAAAGAA	27	65°C	O(5.87)	O(5.76)	r=0.359	r=0.374		
		逆	GTACACGAAGGTGCTGCTCA	28	_			(p=0.0469)	(p=0.0377)		
6	RPS14	順逆順逆	GACGTGCAGAAATGGCACCT	29	60°C	O(2.02)	O(3.35)	r=0.383	r=0.458		0.0357
		逆	CAGTCACACGGCAGATGGTT	30	_			(p=0.0329)	(p=0.0089)		
7	CXCL9	顷	CCTGCATCAGCACCAACCAA	31	65°C	O(14.3)	O(12.5)	r=0.392	r=0.437		0.0131
		逆	TGGCTGACCTGTTTCTCCCA	32				(p=0.0282)	(p=0.0132)		
8	DKFZp564F212	原 逆	TGGGCAAGTGAGGTCTTCTT	33	60°C	O(4.69)	O(8.40)		r=0.501	0.0485	0.0075
	•	逆	CTGAGGATCACTGGTATCGC	34					(p=0.0036)	0.0094	0.0074
9	CYP1B1	頂	GACCCCCAGTCTCAATCTCA	35	65℃	O(4.29)	O(4.78)	r=0.424	r=0.553	0.0417	0.0042
		逆	AGTCTCTTGGCGTCGTCAGT	36				(p=0.0167)	(p=0.001)	0.0045	0.0094
10	TNFSF10	颂	GCTGAAGCAGATGCAGGACA	37	60°C	O(3.71)	O(4.54)	r=0.460	r=0.603		0.0062
		逆	CTAACGAGCTGACGGAGTTG	38				(p=0.0085)	(p=0.0002)		0.0426
	GAPDH	LÃ.	GGTCGGAGTCAACGGATTTG	39	60°C						
		逆_	GGATCTCGCTCCTGGAAGAT	40		_					

定量PCRによる各遺伝子の免現量は、GAPDHをコントロール遺伝子として用い、その免現量に対する相対値で評価した。

展現でいたから日本版でついたが最近な、いたいにコートロール及位すことであっているのでは、対していません。マイクロアレイと一致とは、マイクロアレイ解析に用いた6例の定量PCRの結果から、再発達延算・早期群の比を求め、1.5以上であったものをOとした。相関とは、再発月数が確定している31症例の遺伝子免疫量と再発までの期間との間で相関を示したものについて、値とp値を記載した。 2群間の有意差とは、24ヶ月以内再免18症例と40ヶ月以上もしくは58ヶ月以上再発のない8症例(上段)もしくは4症例(下段)との間で、有意に免疫量の違いのあったものについて、p値(Mann-Whitney U test)を示した。

その結果、発現亢進する遺伝子候補9個のうち、GAPDHを内部標準遺伝子に用いたときには、マイクロアレイの結果と一致した遺伝子は9個全であり、そのうち、再発までの期間と相関を示した遺伝子は5個であった。さらに、上記候補遺伝子9個のうち、18srRNAを内部標準遺伝子に用いたときにも、マイクロアレイの結果と一致した遺伝子は9個全でであり、そのうち、再発までの期間と相関を示した遺伝子は8個であった。

再発遅延群と早期再発群の2群間有意差検定を行った結果、有意に差のあった 遺伝子は、標準遺伝子に GAPDH を用いたときは3個であり、18S rRNA を用い たときは5個であった。

次に、C型肝細胞癌症例の再発早期群で、非癌部において発現亢進する遺伝子候補(CNbad)の12個を解析した結果を表12A及び表12Bに示す。表12Aは、表10Aに示す症例を対象に、内部標準遺伝子にGAPDHを用いて表12Aに示す条件で定量PCRを行った解析結果を示す。

表12A「C型肝炎症例の再発早期群で、非癌部において発現亢進する遺伝子」定量PCRの結果

番号	遺伝子	順/逆	プライマー配列 (5'-3')	配列番号	アニーリング温度	マイクロアレイと一致	相関
292	ALB	順	CAAAGCATGGGCAGTAGCTC	41	60°C	O(2.19)	
		逆	CAAGCAGATCTCCATGGCAG	42			
293	NR0B2	順	TCTTCAACCCCGATGTGCCA	43	60°C	O(1.48)	
		逆	AGGCTGGTCGGAATGGACTT	44			
267	AKR1B10	順	CTTGGAAGTCTCCTCTTGGC	45	60°C	O(2.44)	
		逆	ATGAACAGGTCCTCCCGCTT	46			
294	MAFB	順	ACCATCATCACCAAGCGTCG	47	60°C	O(1.56)	
		逆	TCACCTCGTCCTTGGTGAAG	48			
295	BF530535	順	GTCGCCTCACCATCTGTACA	49	65 ° ℃	O(3.74)	
		逆	CTGGAGGACAGCTGCCAATA	50			
296	MRPL24	順	TCCTAGAAGGCAAGGATGCC	51	60°C	× (0.92)	
		逆	GTGGGTTTCCTGTCCATAGG	52			
297	DSIPI	順	AACAGGCCATGGATCTGGTG	53	65°C	O(1.85)	
		逆	AGGACTGGAACTTCTCCAGC	54			
279	QPRT	順	AGGATAACCATGTGGTGGCC	55	60°C ∴	× × (0.413)	O (p=0.0092)
		逆	TGCAGCTCCTCTGGCTTGAA	56			
298	VNN1	順 逆	GCTGGAACTTCAACAGGGAC	57	60°C	×(1.11)	
		逆	CTGAGGATCACTGGTATCGC	58			
299	IRS2	順	TGAAGCTCAACTGCGAGCAG	59	60°C	O(1.57)	
		逆	ACGATTGGCTCTTACTGCGC	60			
300	FMO5	順	ACACAGAGCTCTGAGTCAGC	61	60°C	×(1.13)	
		逆	TCCAGGTTAGGAGGGAAGAC	62			
301	DCN	順	CCTCAAGGTCTTCCTCCTTC	63	60°C	×(0.74)	
		逆	CACCAGGTACTCTGGTAAGC	64			

QPRT遺伝子は、逆相関を示す遺伝子であった。

5

10

その結果、マイクロアレイの結果と一致した遺伝子は、7個であったが、有意 に再発までの期間との相関を示した遺伝子はなかった。しかし、QPRT 遺伝子は、 有意に逆の相関を示した。従ってこの遺伝子を、再発遅延群において、非癌部に おいて発現亢進する遺伝子と同定した。

同様に、表12Bは、表10Bに示す症例を対象に、内部標準遺伝子に GAPDH または18S rRNA を用いて表12Bに示す条件で定量PCR を行った解析結果を示 す。

表12B 「C型肝炎症例の再発早期群で、非癌部において発現亢進する遺伝子」定量PCRの結果

番号	遺伝子	顺/逆	プライマー配列 (5'-3')	配列番号	アニーリング退度	マイクロアレイと一致 GAPDH語正	マイクロアレイと一致 tes-foxA指正	相関 (GAPDH)	相関 (18S rRNA)	2群間有危楚 (GAPDH)	2群間有意差 (18S rRNA)
1	ALB	Щ	CAAAGCATGGGCAGTAGCTC	65	60°C	×(1.25)	××(0.64)				
		逆	CAAGCAGATCTCCATGGOAG	66							
2	NROB2	頌	TCTTCAACCCCGATGTGCCA	67	65°C	×(1.13)	×(1,04)				0.0220
		逆	AGGCTGGTCGGAATGGACTT	68							
3	AKR1B10	琐	CTTGGAAGTCTCCTCTTGGC	69	60°C	× (0.83)	× (0.92)				
		逆	ATGAACAGGTCCTCCCGCTT	70							
4	MAFB	迎述	GACGTGAAGAAGGAGCCACT	71	60°C	×(0.71)	× × (0.61)	r=0.422	r=0.501		0.0281
		逆	CGCCATCCAGTACAGATCCT	72		•		(p=0.0171)	(p=0.0036)		
5	BF530538	蹴	TGCCATAGTGGCTTGATTTG	73	60°C	× (0.82)	× × (0.48)				0.0486
		逆	TCAGAATCCCCATCATCACA	74							
6	MRPL24	逆順	CAGGGCAAAGTGGTTCAAGT	75	65℃	× × (0.46)	××(0.31)	r=0.431	r=0.483	0.0083	0.0083
		39	TOTOAGTGGGTTTCCTGTCC	76				(p=0.0147)	(p=0.0053)	0.0040	0.0426
7	DSIPI	原逆順	AACAGGCCATGGATCTGGTG	77	65°C	O(2.57)	O(1.75)				
		逆	AGGACTGGAACTTCTCCAGC	78							
8	QPRT	瞑	AACTACGCAGCCTTGGTCAG	79	65°C	×(0.72)	× × (0.54)				0.0075
		逆	TGGCAGTTGAGTTGGGTAAA	80							0.0231
9	VNN1	順	GCTGGAACTTCAACAGGGAC	81	65°C	× × (0.65)	× × (0.41)			0.0018	0.0009
		逆	CTGAGGATCACTGGTATCGC	82						0.0035	0.0074
10	IRS2	顺	CCACTCGGACAGCTTCTTCT	83	65°C	× (0.78)	× × (0.63)	r=0.419	r=0.462		
		逆	GGATGGTCTCGTGGATGTTC	84				(p=0.0181)	(p=0.0082)		
11	FMO5	顷	ACACAGAGCTCTGAGTCAGC	85	60℃	×(1.02)	× × (0.62)				
		逆	TCCAGGTTAGGAGGGAAGAC	88							
12	DCN	項	CCTCAAGGTCTTCCTCCTTC	87	60℃	×(1.40)	× (0.77)				
		逆	CACCAGGTACTCTGGTAAGC	88							

マイクロアレイと一致とは、マイクロアレイ解析に用いた6例の定量PCRの結果から、再発達延詳/早期群の比を求め、1.5以上であったものをOとした。 ×は差がなかったもの、××は逆相関したものを示す。 相関とは、再発月数が確定している31症例の遺伝子能現量と再発までの期間との間で相関を示したものについて、r値(逆相関)とp値を記載した。 2財間の有登を比、24ヶ月以内再等19症例と40ヶ月以上もしくは58ヶ月以上再発のない6症例(上段)もしくは4症例(下段)との間で、 有意に発現量の違い(逆相関)のあったものについて、p値(Mann-Whitney U test)を示した。

その結果、発現亢進する遺伝子候補12個のうち、内部標準遺伝子に GAPDH 又は 18S rRNA を用いたときには、マイクロアレイの結果と一致した遺伝子は1 個であった。しかし、内部標準遺伝子に GAPDH を用いたときには、MAFB 遺伝 子、MRPL24 遺伝子、VNN1 遺伝子、IRS2 遺伝子は、有意に逆の相関を示した。 また、内部標準遺伝子に 18S rRNA を用いたときには NR0B2 遺伝子、MAFB 遺 伝子、BF530535 遺伝子、MRPL24 遺伝子、QPRT 遺伝子、VNN1 遺伝子、IRS2 遺伝子は、有意に逆の相関を示した。従って、これらの遺伝子を、再発遅延群に おいて、非癌部において発現亢進する遺伝子と同定した。

15

10

以上のように種々の条件で検討することにより、C型肝細胞癌症例において再発を予測する非癌部発現遺伝子として、PSMB8 遺伝子、RALGDS 遺伝子、GBP1 遺伝子、RPS14 遺伝子、CXCL9 遺伝子、DKFZp564F212 遺伝子、CYP1B1 遺伝子、TNFSF10 遺伝子、NR0B2 遺伝子、MAFB 遺伝子、BF530535 遺伝子、MRPL24 遺伝子、QPRT 遺伝子、VNN1 遺伝子及び IRS2 遺伝子という15個の遺伝子が同定された。上記遺伝子名の内容を以下に示す。

PSMB8 遺伝子(LMP7 遺伝子ともいう): proteasome subunit, beta type, 8 の遺伝子

RALGDS 遺伝子: ral guanine nucleotide dissociation stimulator の遺伝子

GBP1 遺伝子: guanylate-binding protein 1 の遺伝子

5

10

RPS14 遺伝子:: ribosomal protein S14 の遺伝子

CXCL9 遺伝子: chemokine (C-X-C motif) ligand 9 の遺伝子

DKFZp564F212 遺伝子:ドイツゲノムプロジェクトで見いだされた発現遺伝子で、遺伝子産物が同定されておらず、機能予測もできていない遺伝子

15 CYP1B1 遺伝子: cytochrome P450, family 1, subfamily B, polypeptide 1 の遺伝子

TNFSF10: TNF (ligand) super family, member 10 の略で、TNF-related apoptosis inducing ligand (TRAIL)の遺伝子

NR0B2 遺伝子: nuclear receptor subfamily 0, group B, member 2 の遺伝子

20 MAFB 遺伝子: v-maf musculoaponeurotic fibrosarcoma oncogene homolog B の 遺伝子

BF530535 遺伝子: 遺伝子産物が同定されておらず、機能予測もできていない 遺伝子

MRPL24 遺伝子:mitochondrial ribosomal protein L24 の遺伝子

25 QPRT 遺伝子: quinolinate phosphoribosyltransferase の遺伝子

VNN1 遺伝子: vanin 1 の遺伝子

IRS2 遺伝子:insulin receptor substrate 2 の遺伝子

実施例3

5

10

15

B型肝細胞癌症例における各群の遺伝子の再発期間と発現量の相関の検討以下のとおり、B型肝細胞癌症例のうち、再発遅延群と再発早期群各々の非癌部において発現亢進する遺伝子について、再発までの期間と発現量との相関を検討した。

遺伝子発現プロファイル解析に用いた B型肝細胞癌症例 4 例を含め、計 16 例の非癌部のサンプルを対象とした。各症例の臨床病理学的知見と再発までの期間 (再発なしの期間)を表 1 3 に示す。

表13 B型肝細胞癌症例

症例番号	性別	年齢	非癌部	stage	再発なしの月数	マイクロアレイ
67	M	45	CH	II	>99	遅延群
87	M	45	CH	I	>92	
85	F	64	NL	п	84	
93	M	58	CH	I	>67	
94	F	59	LC	I	>66	
60	M	60	NL	·I	. 64	遅延群
35	М	69	CH	I	>48	
45	М	68	CH	I	>48	
84	M	51	CH	I/II	47	
54(86)	M	√52	CH	П	27	
47	M	36	CH	I	23	
8	М	68	CH	П	17	
13	F	51	CH	Ţ	14	早期群
42(88)	М	74	CH	П	14	
89	М	45	CH	П	9	
9	М	44	CH	<u>II</u>	7	早期群

CH: 慢性肝炎、LC: 肝硬変、NL:正常肝。 stage I/IIは、どちらかではあるが不明。

再発なしの月数とは、再発までの月数の他、調査時点で未だ再発がみられないものも含む。

表 1 における再発遅延群の非癌部において発現亢進する遺伝子 (BNgood) の 24 個、及び表 5 における再発早期群の非癌部において発現亢進する遺伝子 (BNbad) の 47 個の、合計 71 個の遺伝子に関して、再発期間と発現量との関係を検討した。

まず、各症例非癌部肝組織から、上記実施例1と同様の方法で total RNA を抽出した。

total RNA 中に混在する DNA の影響を除去するため、DNase I (DNase I (TAKARA SHUZO, Kyoto, Japan)で 37℃、20 分処理した後、TRIzol regent で 再精製した。10 μg の total RNA を用いて 25 unit の AMV reverse transcriptase XL(TAKARA)と 250 pmol の 9-mer ランダムプライマーを含む 100 μ1 の反応液に より逆転写反応を行った。

5

10

15

20

リアルタイム PCR には、合成 cDNA を各々0.25-50 ng 相当ずつ用いて行った。 SYBR Green PCR Master mix(Applied Biosystems, Foster City, CA)の $25 \mu 1$ の反 応溶液を用いて ABI PRISM 7000 (Applied Biosystems) により、予備加熱を 95 \mathbb{C} 、 10 分行ったのち、95 \mathbb{C} 15 秒に続けて 60 \mathbb{C} (または 65 \mathbb{C})、60 秒を 40-45 サイクル という条件で PCR を行った。

各サンプルの内部標準遺伝子として、GAPDH 又は 18S rRNA を用いて絶対的 定量解析を行った。標準試料の系列希釈を行って同時に測定したものを検量線作 成に用いた。

標的遺伝子および内部標準遺伝子の絶対発現量を求め、サンプルごとに標的遺伝子発現量/内部標準遺伝子発現量の比を算出して評価に用いた。測定はすべて duplicate で行った。

表14および表15中の「マイクロアレイと一致」とは、実施例2の記載と同様に、マイクロアレイ解析に用いた4例(表13の症例番号67、60、13、9)の定量PCRの結果から、再発遅延群(症例番号67、60)と早期群(症例番号13、9)との比を求め、1.5以上であったものが、実施例1のマイクロアレイの結果と一致することを意味する。上記比が1.5以上、好ましくは2以上のものを〇とした。「〇」に隣接するかっこ内の数字は比の値を示す。「マイクロアレイと一致」の欄の「×」はマイクロアレイの結果と不一致なものを示す。「××」は、マイクロアレイの結果とは逆相関したものを示す。

25 表14および表15中の「相関」の欄は、再発月数が確定している 10 症例の 遺伝子発現量と再発までの期間との間で、相関を示したものについて r 値及び p 値を記載した。

表14および表15中の「2群間の有意差」の欄は、24ヶ月以内再発6症例と

48ヶ月以上再発のない8症例(表14、表15中「2群間の有意差」欄上段)も しくは60ヶ月以上再発のない6症例((表14、表15中「2群間の有意差」欄 下段) との間で、有意に発現量の違いのあったものについて、p値(Mann-Whitney U test)を示した。

試験に用いたプライマー配列(センス鎖(順)、アンチセンス鎖(逆))を表1 5 4 および表15に示す(配列番号89~228)。

B 型肝細胞癌症例の再発遅延群で、非癌部において発現亢進する遺伝子候補 (BNgood)の 24 個を解析した結果を表14に示す。表14は、表13に示す症例 を対象に、内部標準遺伝子に GAPDH 又は 18S rRNA を用いて表14に示す条件 で定量 PCR を行った解析結果を示す。

表14「B型肝炎症例の再発返延群で、非癌部において発現亢進する遺伝子」定量PCRの結果

番号	遺伝子	順/逆	ブライマー配列 (5'-3')	配列番号	アニーリング 辺皮	マイクロアレイと一 数(GAPOH接圧)	マイクロアレイと一 数(185/RNA指正)	相関 (GAPDH)	相関 (18S rRNA)	2群間有意袋 (GAPDH)	2群関有思差 (18S rRNA)
1	TNFSF14	UI i#	CTGTTGGTCAGCCAGCAGT GAAAGCCCCGAAGTAAGACC	89 80	65°C	O(6.11)	O(2.36)				0.0065
2	MMP2	頭	CAAGGACCGGTTCATTTGGC GAACACAGCCTTCTCCTCCT	91 92	60℃	O(3.82)	O(2.09)				
3	SAA2	iii	TGCTCGGGGGAACTATGATG GGCCTGTGAGTCTCTGGATA	93 94	60°C	O(5.20)	O(2.47)				
4	COL1A1	順	GGAAGAGTGGAGAGTACTGG ATCCATCGGTCATGCTCTCG	95 86	60°C	O(2.56)	× (1.33)				
5	COL1A2	順	GTATTCCTGGCCCTGTTGGT CTCACCCTTGTTACCGCTCT	97 98	60°C	O(2.92)	O(1.52)				
6	DPYSL3	填	CTTTGAAGGGATGGAGCTGC ATCGTACATGCCCCTTGGGA	99 100	65℃	O(1.52)	× (0.78)				
7	PPARD	頌	GGCTCTATCGTCAACAAGG GCGTTGAACTTGACAGCAAA	101 102	60°C	×(1.04)	× × (0.40)				
8	LUM	党职党职党政党政党职党的党员党政党	TACCAATGGTGCCTCCTGGA CCACAGACTCTGTCAGGTTG	103 104	60℃	×(1.38)	× (0.82)				
9	MSTP032(RGS5)	順	CTGGAAAGGGCCAAGGAGAT TCTGGGTCTTGGCTGGTTTO	105 108	60°C	O(1.79)	× (1.03)				
10	CRP	建	TGGCCAGACAGACATGTCGA	107 108	60°C	O(3.43)	O(1.60)				
11	TRIM38	順	TCGAGGACAGTTCCGTGTAG TCTCTGGAGGCTGGAGAAAG	109 110	65°C	×(1.18)	× × (0.49)				
12	S100A6	逆順逆	GTTTCCAGCTTCACAGCCCA ATTGGCTCGAAGCTGCAGGA	111	60°C	O(1.83)	× (0.87)				
13	PZP	櫃	TACTOCAATGCAACCACCAA	112 113	65 ° ℃	O(4.39)	O(2.15)		r=0,717 (p=0.0171)		
14	EMP1	逆順	AACACAAGTTGGGATGCACA TGGTGTGCTGGCTGTGCATT	114 115	60°C	O(1.65)	× (0.92)		(p=0.0171)		
15	Al590053	逆順逆	GACCAGATAGAGAACGCCGA GTGAATGCCTCTGGAGTGGT	116 117	65℃	×(1.20)	× × (0.46)				
16	(AL137672) MAP3K5	順	TTCTGTTCTGACGCCAAGTG GTTCTAGCCAGTACTTCCGG	118 119	60°C	O(1.64)	×(0.69)			0.0528	
17	TIMP1	逆順	ACTCGCTCCGAATTCTTGC ATTCCGACCTCGTCATCAGG	120 121	60°C	O(2.91)	O(1.62)				
18	GSTM1	逆吸	GCTGGTATAAGGTGGTCTGG GGACTTTCCCAATCTGCCCT	122 123	60℃	O(3.19)	O(1.64)				
19	CSDA	逆	AGGTTGTGCTTGCGGGCAAT AGGAGAGAAGGGTGCAGAAG	124 125	60°C	O(2.50)	×(1.09)				
20	GSTM2	逆原	ACAACCTGTGCGGGGAATCA	126 127	65 ° ℃	O(1.82)	× (0.75)				
21	SGK	逆順	GGTCATAGCAGAGTTTGGCC GCAGAAGGACAGGACAAAGC	128 129	60°C	O(1.75)	×(0.71)				
22	LMNA	逆順逆順	CAGGCTCTTCGGTAAACTCG ATGGAGATGATCCCTTGCTG	130 131	60℃	×(1.11)	× × (0.50)			•	0.0282(逆
23	MGP	逆順	AGGTGTTCTGTGCCTTCCAC GCTCTAAGCCTGTCCACGAG	132 133	60℃	O(3.12)	O(1.83)				0.0547(逆
24	LTBP2	逆順逆	CGCTTCCTGAAGTAGCGATT GCGACACAGGAGTGTCAAGA TGACCATGATGTAGCCCTGA	134 135 136	60°C	O(2.20)	×(1.21)				

マイクロアレイと一致とは、マイクロアレイ解析に用いた4例の定量PCRの結果から、再発運延群ノ早期詳の比を求め、1.5以上であったものを〇とした。 ×は差がなかったもの、××は逆相関したものを示す。 相限とは、再発月数が確定している10症例の遺伝子発現量と再発までの期間との間で相関を示したものについて、r値とp値を記載した。 2群間の有き差とは、24ヶ月以内再発を虚例と49ヶ月以上もしくは80ヶ月以上再発のない8症例(上段)もしくは6症例(下段)との間で、 有意に発現量の違いのあったものについて、p値(Mann-Whitney U test)を示した。

その結果、発現亢進する遺伝子候補 24 個のうち、マイクロアレイの結果と一致した遺伝子は、GAPDH を内部標準遺伝子に用いたときには 19 個であり、そのうち、再発までの期間と相関を示した遺伝子はなかった。また、上記遺伝子のうち、マイクロアレイの結果と一致した遺伝子は 18srRNA を内部標準遺伝子に用いたときには 9 個であり、そのうち、再発までの期間と相関を示した遺伝子は 1個(PZP 遺伝子)であった。

5

10

再発遅延群と早期再発群の2群間有意差検定を行った結果、差のあった遺伝子は、標準遺伝子に GAPDH を用いたときは1個(MAP3K5 遺伝子)であり、18S rRNAを用いたときは1個(TNFSF14 遺伝子)であったが、反対に、再発までの期間と逆相関して有意に差のあった遺伝子が1個(LMNA 遺伝子)あった。従ってこの遺伝子を、早期再発群において、非癌部において発現亢進する遺伝子と同定した。

次に、B型肝細胞癌症例の再発早期群で、非癌部において発現亢進する遺伝子 (候補(BNbad)の 47 個を解析した結果を表 1 5 に示す。表 1 5 は、表 1 3 に示す症 例を対象に、内部標準遺伝子に GAPDH 又は 18S rRNA を用いて表 1 5 に示す条 件で定量 PCR を行った解析結果を示す。

表15「B型肝炎症例の再発早期群で、非癌部において発現亢進する遺伝子」定量PCRの結果

番号	遺伝子	顺/逆	プライマー配列 (5'-3')	配列番号	アニーリング 湿皮	マイクロアレイとー 数(GAPDH袖正)	マイクロアレイと一 数(18S/RNA指正)	相関 (GAPDH)	相関(18 S rRNA)	2群間有意 登 (GAPDH)	2群間有意差 (18S rRNA)
7	СТН	100	TGAATGGCCACAGTGATGTT	137	60°C	O(4.47)	O(13.25)				
		逆	CCATTCCGTTTTTGAAATGC *	138	_						
2	OAT	順	TCGTAAGTGGGGCTATACCG	139	60°C	O(2.70)	O(11.89)				
		逆	CTGGTTGGGTCTGTGGAACT	140			C (00 00)				
3	PRODH	頤	CTGACCACCGGGTGTACTTT	141	60°C	O(4.61)	O(22.30)				
		逆	GACAAGTAGGGCAGCACCTC	142			(4. 031				
4	CYP3A7	珥	GGAACCCGTACACATGGACT	143	60℃	××(0.39)	× (1.27)				
		逆	AACGTCCAATAGCCCTTACG	144			0(4.40)				
5	DDT	颐	CGCCCACTTCTTTGAGTTTC	145	60°C	×(1.04)	O(4.42)				
		逆	CATGACCGTCCCTATCTTGC	146	0.00	W/4 4 EV	O(3.48)				
6	PGRMC1	珥	TATGGGGTCTTTGCTGGAAG	147	65℃	×(1.15)	O(3,46)				
_		逆	GCCCACGTGATGATACTTGA	. 148 . 149	60°C	× (1.32)	O(3.95)				
7	AKR1C1	頭	GGTCACTTCATGCCTGTCCT	150	60 C	A (1.32)	O(3.83)				
_		逆	TATGGCGGAAGCCAGCTTCA	151	60°C	O(1.81)	O(5.80)				
8	HGD	颂	CACAAGCCCTTTGAATCCAT TGTCTCCAGCTCCACACAAG	152	80 C	O(1.01)	O(0.00)				
	FHR4	逆頃	TTGAGAATTCCAGAGCCAAGA	153	60°C	× (0.83)	O(1,85)				
9	+HH4	逆	CACCCATCTTCACCACACAC	154	000	~ (0.00)	O(1.15-7				
	FST	頌	AAGACCGAACTGAGCAAGGA	155	65℃	O(3.58)	O(6.80)				
10	FSI	逆	TTTTTCCCAGGTCCACAGTC	156	•••	O (0.00)	• (
11	COX4	蜃	-		_	_	-				
	COM	逆	_								
12	APP	頂	CGGGCAAGACTTTTCTTTGA	157	60°C	×(1.28)	O(4.13)				
		逆	TGCCTTCCTCATCCCCTTAT	158							
13	PSPHL	逗	TCCAAGGATGATCTCCCACT	159	60°C	O(4.97)	O(5.44)				
	,	頃 逆	AGCATCCGATTCCTTCTA	160							
14	CYP1A1	類	TGATAAGCACGTTGCAGGAG	161	65℃	O(2.77)	O(11.30)				0.0389
		逆	AAGTCAGCTGGGTTTCCAGA	162							0.0547
15	ZNF216	頂逆	GGTGTCAGAGCCAGTTGTCA	163	60°C	O(1.84)	O(5.39)				
		逆	AAATTTCGACATCGGCAGTC	184		0(==0)	O(4400)				
16	LEPR	顶	CCACCATTGGTACCATTTCC	165	60℃	O(5.78)	O(14.99)				
		逆順	CCCCTCACCTGAACCTCATA	166	0000	·· (0.00)	O(0.01)				
17	TOM1L1	Щ	TTTTCTGGAACATTCAAATTCA	167	60°C	× (0.89)	O(2.61)				
		逆順	CACTTTTTGTCATCGCTGGA	168 169	60°C	×(1.19)	O(3.49)				
18	PECR		TGCAGTGGAATACGGATCAA	170	90 C	~(I.1 0)	O(0.40)				
		遵	GAAGCAGACCACAGAGAG AGTGGAAGGTGTGGGTGAAG	171	65℃	×(1.34)	O(3.45)				
19	ALDH7A1	典	CAACCATACACTGCCACAGG	172	00 0	(1.6-1)	• • • • • • • • • • • • • • • • • • • •				
	GNMT	頭逆頃	CACTTAAGGAGCGCTGGAAC	173	60°C	O(1.82)	O(8.15)				
20	GNWI	逆	TTTGCAGTCTGGCAAGTGAG	174	•••	• • • • • • • • • • • • • • • • • • • •					
21	OATPC	幅	GCCACTTCTGCTTCTGTGTTT	175	60°C	× (1.27)	O(3.50)				
21	UAIFU	順逆	TOCACCATAAAAGATGTGGAAA	176							
22	AKRIB10		CCTCCACTCATGTCCCATTT	177	60℃	O(2.92)	O(8.05)				
	. ,	逆	TCAAGCCATGCTTTTCTGTG	178							
23	ANGPTL3		ATTTTAGGCAATGGCCTCCT	179	60℃	× (1.18)	O(3.37)				
		逆	CACTGGTTTGCAGCGATAGA	180	_						
24	AASS	顯	ATTGGTGAATTGGGATTGGA	181	60°C	O(2.04)	O(6.83)				
		逆	GAAGCCCACACAGTAGGAA	182							
25	CALR	頃	TEGATCGAATCCAAACACAA	183	60℃	×(1.12)	O(2.77)				
		逆	CTGGCTTGTCTGCAAACCTT	184			0/400				
26	BAAT	順	CTCCATCATCCACCCACTTT	185	60℃	×(1.15)	O(4.08)				
		逆	GGAAGGCCAGCAAGTGTAGA	186	60%	× (1.04)	O(3.53)				
27	PMM1	頂	GCCAGAAAATTGACCCTGAG	187	60°C	X (1,04)	U (3.33)				
		逆	CAGCTGCTCAGCGATCTTAC	188	60℃	×(1.15)	O(3.78)				
28	B RABR	頣	CCCTCATCGTGTCAAGTCAA	189 190	90 C	^(1.13)	O(3.76)				
۰.		逆	AGCATCAAACAGACCCAACC	191	60°C	× (0.85)	O(2.41)				
21	9 GLUL	順	TTGTTTGGCTGGGATAGAGG GCTCTGTCCGGATAGCTACG	192	00 0	~ (0.00/	U(241)				
30	ochie.	逆瞳	CCCTACAAGGTGAACCCAGA	193	60°C	×(1.20)	O(3.33)				
	D CSHMT	误	GGAGTAGCAGGTGAACCCAGA	194	00 0	** (********	C(230)				

											(数15統含)
番号	遺伝子	順/逆	ブライマー配列 (5'-3')	配列番号	アニーリング 温度	マイクロアレイとー 致(GAPDH指正)	マイクロアレイと一 致(18SrRNA指正)	相関 (GAPDH)	相關(18S -RNA)	2群間有意 登 (GAPDH)	2群間有意差 (18S rRNA)
31	UGT1A3	10	TGACAACCTATGCCATTTCG	195 ·	60°C	× (0.89)	O(3.10)				
		逆	CCACACAAGACCTATGATAGA	196							
32	HSPG1	頌	CTCAAGGATGACGTGGGTTT	197	60℃	×(1.45)	O(4.17)				
		逆	GATTTCCTCTGGCCAATTCA	198							
33	QPRT	順逆	AACTACGCAGCCTTGGTCAG	199	60℃	× (1.24)	O(3.91)				
		逆	TGGCAGTTGAGTTGGGTAAA	200							
34	DEPP	顶	GATGTTACCAATCCCGTTCG	201	60°C	O(2.68)	O(6.92)				
		逆	TGGGCTCCTATATGCGGTTA	202							
35	CA2	頌	TGCTTTCAACGTGGAGTTTG	203	65°C	O(1.73)	O(4.89)				
		逆	CCCCATATTTGGTGTTCCAG	204							
36	FTHFD	頭	CAAAATGCTGCTGGTGAAGA	205	60 ° C	×(1.28)	O(4.65)				
		逆	GCCTCTGTCAGCTCAAGGAC	208							
37	LAMPI	66	GTCGTCAGCAGCCATGTTTA	207	60°C	××(0.61)	O(1.97)				
		逆	GGCAGGTCAAAGGTCATGTT	208							
38	FKBPIA	逆頃	GGGATGCTTGAAGATGGAAA	209	60°C	× (0.79)	O(1.79)				
		逆	CAGTGGCACCATAGGCATAA	210							
39	BNIP3	順	GCTCCTGGGTAGAACTGCAC	211	60℃	×(1.00)	O(2.70)				
		逆	GCCCTGTTGGTATCTTGTGG	212							
40	MAP3K12		TTGAGGAAATCCTGGACCTG	213	60℃	× × (0.59)	O(1.52)				
		逆	TTGAGGTCTCGCACCTTCTT	214							
41	ASS	项	CTGATGGAGTACGCAAAGCA	215	60°C	O(2.81)	O(9.16)				
		逆	CTCGAGAATGTCAGGGGTGT	216							
42	ACTB	顷	ACAGAGCCTCGCCTTTGC	217	60℃	× (0.74)	O(2.04)				
		逆	CACGATGGAGGGGAAGAC	218							
43	PLAB	10	GAGCTGGGAAGATTCGAACA	219	60°C	O(2.57)	O(5.03)				
		順逆	AGAGATACGCAGGTGCAGGT	220							
44	ENO1L1	頭逆	GAGATCTCGCCGGCTTTAC	221	60°C	× (0.75)	O(2.14)				
		逆	CGCGAGAGTCAAAGATCTCC	222							
45	IGFBP3	頑	CAGCTCCAGGAAATGCTAGTG	223	60℃	× (0.88)	O(2.81)			0.0528(逆)	
		逆	GGTGGAACTTGGGATCAGAC	224							
46	UK114	頭	GAGGGAAGGCTTAGCCATGT	225	60°C	×(1.11)	O(3,13)				
		逆	TTGAAGGGTCCATGCCTATC	226							
47	ERF1	頂	GCCTGTAAGTACGGGGACAA	227	60°C	×(1.16)	O(2.82)				
		199	CTCTTCAGCGTTGTGGATGA	228							

5

10

15

その結果、GAPDH を内部標準遺伝子に用いたときには、マイクロアレイの結 果と一致した遺伝子は 16 個であったが、有意に再発までの期間との相関を示し た遺伝子はなかった。しかし、IGFBP3 遺伝子は、2群間有意差検定において有 意に逆の相関を示した。従ってこの遺伝子を、再発遅延群において、非癌部にお いて発現亢進する遺伝子と同定した。

また、18S rRNA を内部標準遺伝子に用いたときには、マイクロアレイの結果 と一致した遺伝子は 45 個であったが、有意に再発までの期間との相関を示した 遺伝子はなかった。しかし、CYP1A1 遺伝子は、2 群間有意差検定において有意 に相関を示した。従ってこの遺伝子を、再発早期群において、非癌部において発 現亢進する遺伝子と同定した。

以上より、B型肝細胞癌症例において再発を予測する非癌部発現遺伝子として、 PZP 遺伝子、MAP3K5 遺伝子、TNFSF14 遺伝子、LMNA 遺伝子、CYP1A1 遺伝 子及び IGFBP3 遺伝子という6つの遺伝子が同定された。上記遺伝子の内容を以

遺伝子替号22と33はCNbedと共通する遺伝子であるが、22のPCRプライマーは異なる配列を用いた 遺伝子番号11は2 primer setを用いてPCRを試みたが、いずれにおいても安定した増幅が得られなかった為保留とした マイクロアレイと一致とは、マイクロアレイ解析に用いた4例の定量PCRの結果から、再発早期詳/遅延群の比を求め、1.5以上であったものをOとした。 ×は差がなかったもの。××は連相関したものを示す。 再発月数が確定している10症例の遺伝子発現量と再発までの期間との間で相関を示したものはなかった。 2詳間の才養差とは、247月以内再免症例と84月以上もしくは60ヶ月以上再発のない8症例(上段)もしくは6症例(下段)との間で、 有常に発現量の遠いのあったものについて、p値(Menn-Whitney U test)を示した。

下に示す。

PZP 遺伝子: pregnancy-zone protein の遺伝子

MAP3K5 遺伝子: mitogen-activated protein kinase kinase kinase 5 の遺伝子

TNFSF14 遺伝子: tumor necrosis factor (ligand) superfamily, member 14 の遺伝

5 子

LMNA 遺伝子: lamin A/C の遺伝子

CYP1A1 遺伝子: cytochrome P450, family 1, subfamily A, polypeptide 1 の遺伝子

IGFBP3 遺伝子: insulin-like growth factor binding protein 3 の遺伝子

10

15

実施例4

の1例を表16に示す。

再発早期群と再発遅延群とを判別するための遺伝子の組合わせの選択 実施例2及び3の結果より得られた、C型又はB型肝細胞癌の再発を予測する 非癌部発現遺伝子を複数組み合わせることにより、より正確な再発予測を行うこ とが可能となる。このような遺伝子のセットは、多種考えられる。前記組合わせ

表16 肝細胞癌再発早期群と遅延群とを判別する遺伝子の組み合わせの例

原因別	早期群	遅延群	GAPDH補正	18S rRNA補正
C型肝細胞癌	<24ヶ月	>40ヶ月	VNN1	VNN1
			MRPL24	CXCL9
				GBP1
				RALGDS
	分類率		88%	100%
B型肝細胞癌	<24ヶ月	>48ヶ月	PRODH	LMNA
			LMNA	LTBP2
			MAP3K12	COL1A2
				PZP
	分類率		100%	100%

(1) C型肝細胞癌の予測

5

10

15

25

再発 24 ヶ月までの早期再発群と、40 ヶ月以上再発のない再発遅延群とを判別するのに、内部標準遺伝子に、GAPDH を用いて補正する場合は VNN1 及びMRPL24 の各遺伝子発現量を調べればよい。あるいは、上記判別を内部標準遺伝子に 18S rRNA を用いて補正する場合は、VNN1、CXCL9、GBP1 及び RALGDSの遺伝子セットについての各遺伝子の発現量を調べればよい。上記各遺伝子の発現量を、各遺伝子で求められていた判別関数係数を用いた判別式に代入し、その値を判別に用いる。当該遺伝子群の発現レベルを解析することによる、早期再発群と再発遅延群との分類率は、GAPDH補正の場合は 88%であり、18S rRNA の場合は 100%である。

(2) B型肝細胞癌の予測

再発 24 ヶ月までの早期再発群と、48 ヶ月以上再発のない再発遅延群とを判別するのに、内部標準遺伝子に GAPDH を用いて補正する場合は PRODH、LMNA及び MAP3K12 の遺伝子セットについての各遺伝子発現量を調べればよい。あるいは、上記判別を内部標準遺伝子に 18S rRNA を用いて補正する場合は、LMNA、LTBP2、COL1A2及び PZP の遺伝子セットについての各遺伝子発現量を調べればよい。上記と同様、これらの発現量を判別式に代入し、その値を判別に用いる。当該遺伝子群の発現レベルを解析することによる早期再発群と再発遅延群との分類率は、GAPDH 補正の場合も 18S rRNA の場合も 100%である。

20 上記遺伝子の内容を以下に示す。

PRODH 遺伝子: proline dehydrogenase (oxidase) 1 の遺伝子

LTBP2 遺伝子: latent transforming growth factor beta binding protein 2 の遺伝子 COL1A2 遺伝子: collagen, type I, alpha 1 の遺伝子

MAP3K12 遺伝子:mitogen-activated protein kinase kinase kinase 12 の遺伝子

産業上の利用可能性

患者及び健常人由来の共通遺伝子と原因別特異遺伝子とを同定することで、予

後の予測、再発の予測が可能になるため、診断、治療法開発、治療薬選択の戦略(テーラーメード医療)に役立てることができる。

配列表フリーテキスト

5 配列番号1~228:合成 DNA

請求の範囲

- 1. 癌の評価方法であって、以下のステップ:
 - (a) 検体から total RNA を採取し、
- 5 (b) 表 $1 \sim 8$ に示される遺伝子から選ばれる少なくとも 1 つの遺伝子の発現 量を測定し、
 - (c) 前記測定結果を指標として癌を評価すること を含む前記方法。
 - 2. 癌の評価方法であって、以下のステップ:
- 10 (a) 検体から total RNA を採取し、

- (b) PSMB8 遺伝子、RALGDS 遺伝子、GBP1 遺伝子、RPS14 遺伝子、CXCL9 遺伝子、DKFZp564F212 遺伝子、CYP1B1 遺伝子、TNFSF10 遺伝子、NR0B2 遺伝子、MAFB 遺伝子、BF530535 遺伝子、MRPL24 遺伝子、QPRT 遺伝子、VNN1 遺伝子及び IRS2 遺伝子からなる群から選ばれる少なくとも1つの遺伝子の発現量を測定し、
- (c) 前記測定結果を指標として癌を評価すること を含む前記方法。
- 3. 癌の評価方法であって、以下のステップ:
 - (a) 検体から total RNA を採取し、
- 20 (b) PZP 遺伝子、MAP3K5 遺伝子、TNFSF14 遺伝子、LMNA 遺伝子、CYP1A1 遺伝子及び IGFBP3 遺伝子からなる群から選ばれる少なくとも1つの遺伝子の発現量を測定し、
 - (c) 前記測定結果を指標として癌を評価すること を含む前記方法。
- 25 4. 癌の評価方法であって、以下のステップ:
 - (a) 検体から total RNA を採取し、
 - (b) VNN1 遺伝子及び MRPL24 遺伝子からなる遺伝子セット、又は PRODH 遺伝子、LMNA 遺伝子及び MAP3K12 遺伝子からなる遺伝子セットに含まれ

る各遺伝子の発現量を、内部標準遺伝子として GAPDH を用いて測定し、

- (c) 前記測定結果を指標として癌を評価すること を含む前記方法。
- 5. 癌の評価方法であって、以下のステップ:
- 5 (a) 検体から total RNA を採取し、

20

- (b) VNN1 遺伝子、CXCL9 遺伝子、GBP1 遺伝子及び RALGDS 遺伝子からなる遺伝子セット、又は LMNA 遺伝子、LTBP2 遺伝子、COL1A2 遺伝子及び PZP 遺伝子からなる遺伝子セットに含まれる各遺伝子の発現量を、内部標準 遺伝子として 185 rRNA を用いて測定し、
- 10 (c) 前記測定結果を指標として癌を評価すること を含む前記方法。
 - 6. 癌の評価が、転移の有無又は再発の有無の予測である請求項1~5のいずれか1項に記載の方法。
 - 7. 癌が肝細胞癌である請求項1~5のいずれか1項に記載の方法。
- 8. 遺伝子の発現量の測定が、配列番号 2n-1 及び 2n (n は 1 ~ 114 の整数を表わす)で示される塩基配列からなるプライマーの組合せを少なくとも 1 組用いて遺伝子を増幅することにより行なわれるものである請求項 2 又は 3 記載の方法。
 - 9. 遺伝子の発現量の測定が、VNN1 遺伝子及び MRPL24 遺伝子からなる遺伝子セット、PRODH 遺伝子、LMNA 遺伝子及び MAP3K12 遺伝子からなる遺伝子セット、VNN1 遺伝子、CXCL9 遺伝子、GBP1 遺伝子及び RALGDS 遺伝子からなる遺伝子セット、並びに LMNA 遺伝子、LTBP2 遺伝子、COL1A2遺伝子及び PZP 遺伝子からなる遺伝子セットからなる群から選択される少なくとも1つの遺伝子セットに含まれる各遺伝子を増幅するためのプライマーの組合せを用いて、遺伝子を増幅することにより行われるものである請求項4又は5記載の方法。
 - 10. 配列番号 2n-1 及び 2n (n は $1\sim114$ の整数を表わす) で示される塩基配列 からなるプライマーの組合せを少なくとも 1 組含むプライマーセット。

1 1. VNN1遺伝子及びMRPL24遺伝子からなる遺伝子セット、PRODH遺伝子、LMNA遺伝子及びMAP3K12遺伝子からなる遺伝子セット、VNN1遺伝子、CXCL9遺伝子、GBP1遺伝子及びRALGDS遺伝子からなる遺伝子セット、並びにLMNA遺伝子、LTBP2遺伝子、COL1A2遺伝子及びPZP遺伝子からなる遺伝子セットからなる群から選択される少なくとも1つの遺伝子セットに含まれる各遺伝子を増幅するためのプライマーの組合せを含むプライマーセット。

12.表1~8に示されるいずれかの遺伝子を含む、癌の評価用キット。

5

15

- 13. RALGDS 遺伝子、GBP1 遺伝子、DKFZp564F212 遺伝子、TNFSF10 遺伝
 子及びQPRT 遺伝子からなる群から選ばれる少なくとも1つの遺伝子を含む、 癌の評価用キット。
 - 1 4. VNN1遺伝子及びMRPL24遺伝子からなる遺伝子セット、PRODH遺伝子、LMNA遺伝子及びMAP3K12遺伝子からなる遺伝子セット、VNN1遺伝子、CXCL9遺伝子、GBP1遺伝子及びRALGDS遺伝子からなる遺伝子セット、並びにLMNA遺伝子、LTBP2遺伝子、COL1A2遺伝子及びPZP遺伝子からなる遺伝子セットからなる群から選択される少なくとも1つの遺伝子セットに含まれる各遺伝子を含む、癌の評価用キット。
 - 15. さらに請求項10又は11記載のプライマーセットを含む、請求項12~ 14のいずれか1項記載のキット。

図1

SEQUENCE LISTING

- <110> Nihon University
- <120> A gene which relates to a hepatoma
- <130> P03-0134PCT
- <150> JP 2003-299363
- <151> 2003-08-22
- <150> JP 2003-334444
- <151> 2003-09-25
- <160> 228
- <170> PatentIn version 3.2
- <210> 1
- <211> 20
- <212> DNA
- <213≯ Artificial
- <220>
- <223≯ synthetic DNA
- <400> 1
- agactgtcag tactgggagc
- <210> 2
- <211> 20
- <212> DNA
- <213≻ Artificial
- <220>
- <223> synthetic DNA
- <400> 2
- gtccaggacc cttcttatcc

<210> 3

⟨211⟩ 20

<212> DNA

<213> Artificial

<220>

<223> synthetic DNA

⟨400⟩ 3

gacgtgggaa gacgtttcca

20

⟨210⟩ 4

<211> 20

<212> DNA

<213≻ Artificial

<220>

<223≯ synthetic DNA

<400> 4

tggatgatgc ccgtctcctt

20

<210> 5

<211> 20

<212> DNA

<213≻ Artificial

<220>

<223> synthetic DNA

<400> 5

aattgcccag ggatgaggca

20

<210> 6

<211> 20

<212> DNA

<213> Artificial

<220>

<223> synthetic DNA

<400> 6

tggactcctg gatcttcctc 20

<210> 7

<211> 20

<212> DNA

<213> Artificial

<220>

<223> synthetic DNA

⟨400⟩ 7

gagaactcag ctgcagtgca 20

<210> 8

<211> 20

<212> DNA

<213> Artificial

<220>

<223≯ synthetic DNA

<400> 8

ttctagctgg gccgctaact 20

<210> 9

<211> 20

<212> DNA

<213> Artificial

<220>

<223> synthetic DNA

<400> 9

WO 2005/021745	PCT/JP2004/012425
gacgtgcaga aatggcacct	20

<210>	10
⟨211⟩	
<212>	DNA
<213>	Artificial
(0.0.0)	
<220>	
<223>	synthetic DNA
<400>	10
	acacg gcagatggtt
cagica	icacs scasaissii
<210>	11
<211>	20
<212>	DNA
<213>	Artificial
40.00	
⟨220⟩	
<223>	synthetic DNA
<400>	11
	atcag caccaaccaa
COLEC	arcas cuccaaccaa
⟨210⟩	12

<210> 12 <211> 20 <212> DNA <213> Artificial

<220>
<223> synthetic DNA
<400> 12
tggctgacct gtttctccca

<210> 13 <211> 20

WO 2003	5/021/45	PC 1/JP2004/01242
<212>	DNA	
<213>	Artificial	
<220>		
	synthetic DNA .	
<400>	13	
ccacat	ccac cactagacac	20
/010 \	1.4	
	14	
<211>		
<212>		
(413)	Artificial	
<220>		
	synthetic DNA	
\0007	Synthetic bun	
<400>	14	
tgacag	atgt cctctgaggc	20
<210>	15	
<211>		
<212>		
<213>	Artificial	
(000)		
<220>		
⟨223⟩	synthetic DNA	
<400>	15	
	cacc aggtatcctg	20
001011		20
<210>	16	
<211>	20	
<212>	DNA	
<213>	Artificial	
<220>		
2993 5	synthetic DNA	

WO 2005/021745	PCT/JP2004/012425
<400> 16	
ccacagtgtc cttgggaatg	20
<210> 17	
<211> 20	
<212> DNA	
<213> Artificial	
<220>	
<223> synthetic DNA	
<400> 17	
gctgaagcag atgcaggaca	20
<210> 18	
<211> 20	·
<212> DNA	•
<213> Artificial	
<220>	
<223> synthetic DNA	
<400> 18	
ctaacgagct gacggagttg	. 20
<210> 19	,
<211> 20	
<212> DNA	
<213> Artificial	
<220>	
<223> synthetic DNA	
<400> 19	
ggaggttcga agacgatcag	20

WO 2005/	021745	PCT/JP2004/01242
<210>	20	
<211>	20	
<212>	DNA .	
<213>	Artificial -	
<220>		
	synthetic DNA	
<400>	20	
gtggtg	ccct tccgtcaatt	20
(0.4.0)		
<210>		
<211>		
<212>		
\Z13 >	Artificial	
<220>		
<223>	synthetic DNA	
<400>	21	
agactg	tcag tactgggagc	20
	•	
<210>		
<211>		
<212>		
<213>	Artificial	
<220>		
<223>	synthetic DNA	
<400>	22	
gtccag	gace ettettatee	20
/91 0 \	99	
<210>		
<211>		
<212>	DNA	

<213≻ Artificial

WO 2005/	021745	PCT/JP2004/012425
<220>		
<223 ² >	synthetic DNA	
<400>	23	
gtgtgg	ccaa ctgtgtcatc	20
<210>	24	
<211>	20	
<212>	DNA	
<213>	Artificial	
<220>		
<223>	synthetic DNA	
<400>		
cttcag	acgg tggatggagt	
<210>	25	
<211>	20	
<212>	DNA	
<213>	Artificial	
<220>		
<223>	synthetic DNA	
<400>		
aattgo	ccag ggatgaggca	20
<210>	26	
<211>		
<212>	DNA	
	Artificial	
<220>		
<223>	synthetic DNA	
<400>	26	
tggact	tectg gatettecte	20

<210>	27	
<211>	20	•
<212>	DNA	•
<213>	Artificial	
(0.0.0)		
⟨220⟩		
<223>	synthetic DNA	
<400>	27	
aacaag	ctgg ctggaaagaa	20
∕ 210\	90	
<210><211>		
<211>		
	Artificial	
\610/	MITITOTAL	•
<220>		
<223>	synthetic DNA	
<400>	28	
	gaag gtgctgctca	20
0	30440 010010114	
40.4.0		
<210>		
<211>	20	
<212>		
(213)	Artificial	
<220>		
	synthetic DNA	
<400>	29	
gacgt	gcaga aatggcacct	20
<210>	30	

<211> 20 <212> DNA

WO 2005/	021745	PCT/JP2004/012425
<213>	Artificial	
<220>		
<223>	synthetic DNA	
<400>	30	
cagtca	cacg gcagatggtt	20
<210>	31	
<211>	20	
<212>	DNA	
<213>	Artificial	
<220>		
<223>	synthetic DNA	
<400>	31	,
cctgca	atcag caccaaccaa	20
<210>	32	,
	20	
<212>		•
	Artificial	
<220>		
	synthetic DNA	
<400>	32	
tggcti	gacct gtttctccca	20
<210>	33	
<210>		
<212>		
	Artificial	
<220>		
<223>	synthetic DNA	

VO 2005/021745	. PCT/JP2004/012425
⟨400⟩ 33	
tgggcaagtg aggtcttctt	20
,	
•	
⟨210⟩ 34 .	
⟨211⟩ 20	
<212> DNA	
<213> Artificial	
<220>	
<223> synthetic DNA	
<400> 34	
ctgaggatca ctggtatcgc	20
<210> 35	
<211> 20	
<212> DNA	•
<213> Artificial	
<220>	
<223> synthetic DNA	
<400> 35	
gaccccagt ctcaatctca	20
<210> 36	
<211> 20	*
<212> DNA	
<213≻ Artificial	
⟨220⟩	
<223> synthetic DNA	
<400> 36	
agtctcttgg cgtcgtcagt	20

<210> 37

U 2003/	021743	PC1/JP2004/0124
<211>	20	
<212>	DNA	
<213>	Artificial	
<220>		
<223>	synthetic DNA	
<400>	37	
gctgaa	gcag atgcaggaca	20
∕910 \	38	•
<210><211>	20	
<211>	DNA	
	Artificial	
\\\L_10\/	Aitiliciai	
<220>		
	synthetic DNA	•
<400>	38	
ctaacg	gagct gacggagttg	20
40.40		
<210>	39	
<211>	20	
<212>		
\Z13 >	Artificial	
<220>		
	synthetic DNA	
	•	
<400>	39	
ggtcgg	gagtc aacggatttg	20
<210>	40	
<211>	20	
<212>	DNA	
<213>	Artificial	
		·
<220>		

WO 2005/021745	PCT/JP2004/012425
<223> synthetic DNA	
<400> 40	
ggatctcgct cctggaagat -	. 20
•	
<210> 41	
<211> 20	
<212> DNA	
<213> Artificial	
<220>	
<223> synthetic DNA	
<400> 41	
caaagcatgg gcagtagctc	20
<210> 42	
<211> 20	
<212> DNA	
<213> Artificial	
<220>	
<223> synthetic DNA	
<400> 42	
caagcagatc tccatggcag	20
⟨210⟩ 43	
<211> 20	
<212> DNA	
<213> Artificial	
(222)	
<220>	
<223> synthetic DNA	
<400> 43	
tetteaacce egatgtgeca	20

<210> 44 ⟨211⟩ 20 <212> DNA <213> Artificial <220> <223≯ synthetic DNA <400> 44 20 aggctggtcg gaatggactt <210> 45 <211> 20 <212> DNA <213> Artificial <220> <223≯ synthetic DNA **<400> 45** 20 cttggaagtc tcctcttggc <210> 46 <211> 20 <212> DNA <213> Artificial <220> <223> synthetic DNA <400> 46 20 atgaacaggt cctcccgctt <210> 47

PCT/JP2004/012425

WO 2005/021745

<211> 20 <212> DNA

<213> Artificial

20

<220>

<223≯ synthetic DNA

<400> 47

accatcatca ccaagcgtcg

<210> 48

<211> 20

<212> DNA

<213> Artificial

<220>

<223> synthetic DNA

<400> 48

tcacctcgtc cttggtgaag 20

<210> 49

<211> 20

<212> DNA

<213> Artificial

<220>

<223> synthetic DNA

<400> 49

gtcgcctcac catctgtaca 20

<210> 50

<211> 20

<212> DNA

<213> Artificial

<220>

<223> synthetic DNA

<400> 50

WO 2005 /	/021745
ctggag	gaca gctgccaata
<210>	51
<211>	20
<212>	DNA
<213>	Artificial
<220>	
<223>	synthetic DNA
<400>	51
tcctag	gaagg caaggatgcc
<210>	52
<211>	20
<212>	DNA
<213>	Artificial
<220>	
<223>	synthetic DNA
<400>	52
	tttcc tgtccatagg
<210>	53
<211>	20
<212>	DNA
<213>	Artificial
<220>	

<210> 54 <211> 20

<400> 53

<223> synthetic DNA

aacaggccat ggatctggtg

WO 2005/021745	PCT/JP2004/012425	
<212> DNA		
<213> Artificial		
⟨220⟩		
<223> synthetic DNA		
<400> 54		
aggactggaa cttctccagc	20	
<210> 55		
⟨211⟩ 20		
<212> DNA		
<213> Artificial		
<220>		
<223> synthetic DNA		
<400> 55		
aggataacca tgtggtggcc	20	
<210> 56		
<211> 20		
<212> DNA		
<213> Artificial		
<220>		
<223> synthetic DNA		
<400> 56	00	
tgcagctcct ctggcttgaa	20	
<210> 57		
⟨211⟩ 20		
<212> DNA		
<213> Artificial		
<220>	•	
<223> synthetic DNA		

WO 2005/021745		PCT/JP2004/012425
<400>	57	
gctggaa	actt caacagggac	20
<210>		
<211>		
<212>		
<213>	Artificial	
<220>		
<223>	synthetic DNA	
<400>		00
ctgagg	atca ctggtatcgc	20
<210>	59	
<211>	20	
<212>	DNA	
<213>	Artificial	
<220>		
<223>	synthetic DNA	
<400>	59	
tgaago	tcaa ctgcgagcag	20
<210>	60	
<211>	20	
<212>	DNA	
<213>	Artificial	
<220>		·
<223>	synthetic DNA	
<400>		
acgat	tggct cttactgcgc	20

WO 2005/021745			PCT/JP2004/012425	
<210>	61			
<211>	20			
<212>	DNA			
<213>	Artificial -			
<220>				
<223>	synthetic DNA			
<400>	61			
acacag	gaget etgagteage			20
<210>	62			
(211)				
<211>				
	Artificial			
<220>				
<223>	synthetic DNA			
<400>	62			
tccagg	gttag gagggaagac			20
	ı			
<210>				
⟨211⟩				
<212>				
⟨213⟩	Artificial			
<220>				
<223>	synthetic DNA			
<400>	63	. •		
cctca	aggte tteeteette		•	. 20
/0 · 0`				
⟨210⟩				
<211>				
<212>	DNA			

<213> Artificial

WO 2005/	021745		PCT/JP2004/012425
<220>			
<223>	synthetic DNA		
<400>	64		
caccag	gtac tctggtaagc		20
<210>	65 ·		
<211>	20		
<212>	DNA		
<213>	Artificial		
<220>			
<223>	synthetic DNA		
<400>	65		
caaagc	atgg gcagtagctc		20
<210>	66	·	
<211>		•	
<212>			
	Artificial		
<220>			
<223>	synthetic DNA		
<400>	66		
caagca	agate tecatggeag		20
<210>	67		
<211>			
<212>			
	Artificial		
<220>			
<223>	synthetic DNA		
<400>			22
tcttc	aaccc cgatgtgcca		20

<210>	68		
<211>	20		
<212>	DNA	•	
<213>	Artificial		
<220>			
<223>	synthetic DNA		
(100)	20		
<400>			90
aggctg	gtcg gaatggactt		20
<210>	69		
<211>	20		
<212>	DNA		
<213>	Artificial		
<220>			
<223>	synthetic DNA		
<400>	69		
•	agtc tcctcttggc		20
000000			
<210>	70		
<211>	20		
<212>			
<213>	Artificial		
∠ 0.00\			
<220>	ormthatia DNA		
(443/	synthetic DNA		
<400>	70		
	caggt cctcccgctt		20
<210>	71		

<211> 20 <212> DNA

WO 2005/021745	PCT/JP2004/012	
<213> Artificial		
<220>		
<223> synthetic DNA		
<400> 71		
gacgtgaaga aggagccact	20	
<210> 72		
⟨211⟩ 20		
<212> DNA		
<213> Artificial		
<220>		
<223> synthetic DNA		
<400> 72		
cgccatccag tacagatcct	20	
<210> 73		
<211> 20		
<212> DNA		
<213> Artificial		
<220>		
<223> synthetic DNA		
<400> 73		
tgccatagig gcitgatitg	20	
<210> 74		
<211> 20		
<212> DNA		
<213> Artificial		
<220>		
<223> synthetic DNA		

WO 2005/	021745	PCT/JP2004/012425
<400>	74	
tcagaa	tece cateateaca	20
	•	
45 . 5		•
<210>		
<211>		
<212>		
<213>	Artificial	
<220>		
	synthetic DNA	
(220)	Synthetic blut	
<400>	75	
cagggc	aaag tggttcaagt	20
		•
<210>	76	
<210>		
<211>	•	
	Artificial	
\2107	ALLITICIAI	
<220>		
<223>	synthetic DNA	
	·	
<400>	76	
tctcag	tggg tttcctgtcc	20
<210>	77	
<211>		
<212>		
	Artificial	
(2.0)		
<220>		
<223>	synthetic DNA	
(100)	an	
<400>		22
aacage	gccat ggatctggtg	20

<210> 78

WO 2005/021745		PCT/JP2004/012425
<211>	20	
<212>	DNA	
<213>	Artificial	
<220>		
<223>	synthetic DNA	
<400>	78	
aggact	ggaa cttctccagc	20
<210>	79	
<211>	20	
<212>	DNA	
<213>	Artificial	
<220>		
<223>	synthetic DNA	
<400>	79	
aactad	egcag cettggteag	20
<210>	80	
<211>		
<212>		
	Artificial	
<220>		
<223>	synthetic DNA	
<400>	80	
tggca	gttga gttgggtaaa	20
<210>	81	
<211>		
<212>	DNA	
<213>	Artificial	
<220>		

WO 2005/021745		PCT/JP2004/012425
<223> synthetic	c DNA	
<400> 81	,	
gctggaactt caaca	agggac	. 20
(2.12)	·	
<210> 82		
<211> 20		
<212> DNA		
<213> Artificia	al	
<220>		
<223≯ synthetic	c DNA	
<400> 82		
ctgaggatca ctgg	tatege	20
<210≻ 83		
<211> 20		
<212> DNA		
<213> Artifici	al	
⟨220⟩		
<223> syntheti	c DNA	
<400> 83		
ccactcggac agct	tettet	20
<210> 84		
<211> 20	•	
<212> DNA		
<213> Artifici	ial	
<220>		
<223> syntheti	ic DNA	
<400> 84	·	
ggatggtctc gtgg	gatgitc	20

PCT/JP2004/012425 WO 2005/021745 <210> 85 <211> 20 <212> DNA <213> Artificial <220> <223≯ synthetic DNA <400> 85 20 acacagaget ctgagtcage <210> 86 <211> 20 <212> DNA <213≻ Artificial <220> <223> synthetic DNA <400> 86 tccaggttag gagggaagac 20 <210> 87 <211> 20 <212> DNA <213> Artificial <220> <223> synthetic DNA <400> 87 cctcaaggtc ttcctccttc 20 <210> 88 <211> 20 <212> DNA

<213> Artificial

<220>

<223> synthetic DNA

<400> 88

caccaggtac tctggtaagc

20

<210> 89

<211> 19

<212> DNA

<213> Artificial

<220>

<223≯ synthetic DNA

<400> 89

ctgttggtca gccagcagt

19

<210> 90

⟨211⟩ 20

<212> DNA

<213> Artificial

<220>

<223≯ synthetic DNA

<400> 90

gaaagccccg aagtaagacc

20

<210> 91

<211> 20

<212> DNA

<213> Artificial

<220>

<223> synthetic DNA

<400> 91

caaggaccgg ttcatttggc 20

<210> 92

<211> 20

<212> DNA

<213> Artificial

<220>

<223> synthetic DNA

<400> 92

gaacacagcc ttctcctcct 20

<210> 93

<211> 20

<212> DNA

<213≻ Artificial

<220>

<223> synthetic DNA

<400> 93

tgctcggggg aactatgatg 20

<210> 94

⟨211⟩ 20

<212> DNA

<213> Artificial

<220>

<223≯ synthetic DNA

<400> 94

ggcctgtgag tctctggata 20

<210> 95

<211> 20

WO 2005/021745		PCT/JP2004/0124
<212>	DNA	
<213>	Artificial	
<220>		
<223>	synthetic DNA	
<400>	95	
ggaaga	gtgg agagtactgg	20
<210>	96	
<211>		
<212>		
	Artificial	
<220>		•
<223>	synthetic DNA	
<400>	96	
atccat	cggt catgeteteg	20
<210>	97	
<211>	1	
<211>		
	Artificial	
<220>		
<223>	synthetic DNA	
<400>	97	
gtatto	ectgg ccctgttggt	20
2010 \	0.0	
<210>		
<211>		
<212>	DNA Artificial	
\ 410/	ALLITICIAI	
⟨220⟩		
⟨223⟩	synthetic DNA	

WO 2005/021745		PCT/JP2004/012425		
<400>	98			
ctcacco	cttg ttaccgctct	20		
<210>	99			
	20			
<212>				
<213>	Artificial			
<220>				
<223>	synthetic DNA			
<400>	99	•		
ctttga	aggg atggagctgc	20		
<210>	100			
<211>				
<212>				
	Artificial			
<220>	1			
<223>	synthetic DNA			
<400>				
atcgta	catg cccttggga	20		
<210>	101			
<211>	20			
<212>				
<213>	Artificial			
<220>				
<223>	synthetic DNA			
<400>				
ggcctc	ctate gteaacaagg	. 20		

O 2005/	021745	PCT/JP2004/01242
<210>	102	
<211>	20	
<212>	DNA .	
<213>	Artificial	
<220>	•	
<223>	synthetic DNA	
<400>	102	
gcgttg	aact tgacagcaaa	20
<210>	103	
<211>	20	
<212>		
	Artificial	
<220>		
<223>	synthetic DNA	
<400>	103	
taccaa	atggt gcctcctgga	20
	ı	
<210>	104	
<211>	20	
<212>	DNA	
<213>	Artificial	
<220>		
	synthetic DNA	
<400>	104	
ccacas	gactc tgtcaggttg	20
/01 0 \	105	
⟨210⟩		
<211><212>		
(212)	UNA	

<213≻ Artificial

WO 2005/021745	PCT/JP2004/012425
<220>	
<223> synthetic DNA	
<400> 105	
ctggaaaggg ccaaggagat .	20
<210> 106	
<211> 20	
<212> DNA	
<213> Artificial	
<220>	
<223> synthetic DNA	
<400> 106	
tctgggtctt ggctggtttc	. 20
<210> 107	
<211> 20	
<212> DNA	
<213> Artificial	
<220>	
<223> synthetic DNA	
<400> 107	
tggccagaca gacatgtcga	20
<210> 108	
<211> 20	
<212> DNA	
<213> Artificial	
<220>	
<223> synthetic DNA	
<400> 108	•
tcgaggacag ttccgtgtag	20

<210> 109 <211> 20 <212> DNA <213≯ Artificial <220> <223> synthetic DNA <400> 109 20 tctctggagg ctggagaaag <210> 110 <211> 20 <212> DNA <213≻ Artificial <220> <223> synthetic DNA <400> 110 ... 20 gtttccagct tcacagccca <210> 111 <211> 20 <212> DNA <213> Artificial <220> <223> synthetic DNA **<400>** 111 20 attggctcga agctgcagga

<210> 112 <211> 20 <212> DNA

WO 2005/021745		PCT/JP2004/0124		
<213>	Artificial			
<220>				
<223>	synthetic DNA			
<400>	112			
ggaagg	tgac atactcctgg	20		
(010)	110			
⟨210⟩				
<211>				
<212>				
<213>	Artificial			
<220>				
<223>	synthetic DNA			
<400>	113			
tactcc	aatg caaccaccaa	20		
4		·		
<210>				
	20			
<212>				
<213>	Artificial			
⟨220⟩				
	synthetic DNA			
<400>	114			
aacaca	agtt gggatgcaca	20		
(0.4.0)				
⟨210⟩		•		
<211>				
<212>				
⟨213⟩	Artificial			
<220>				
<223>	synthetic DNA			

021745	PC1/JP2004/01242
115	
ctg gctgtgcatt	20
·	
	•
synthetic DNA	
116	
atag agaacgccga	20
116	
•	
Artificial	
synthetic DNA	
•	
117	
gcct ctggagtggt	20
110	
Artificial .	
synthetic DNA	
118	
ttctg acgccaagtg	20
	115 totg gctgtgcatt 116 20 DNA Artificial synthetic DNA 116 atag agaacgccga 117 20 DNA Artificial synthetic DNA 117 gcct ctggagtggt 118 20 DNA Artificial synthetic DNA 118

<210> 119

PCT/JP2004/012425 WO 2005/021745 <211> 20 <212> DNA <213≯ Artificial <220> <223> synthetic DNA <400> 119 20 gttctagcca gtacttccgg <210> 120 <211> 19 <212> DNA <213> Artificial <220> <223> synthetic DNA **<400>** 120 19 actcgctccg aattcttgc <210> 121 <211> 20 <212> DNA <213> Artificial <220> <223> synthetic DNA <400> 121 20 attccgacct cgtcatcagg <210> 122 <211> 20 <212> DNA <213> Artificial

<220>

WO 2005/02	1745	PCT/JP2004/012425
<223> sy	nthetic DNA	
<400> 12	2	
gctggtata	a ggtggtctgg	20
	·	
<210> 12		
<211> 20		
<212> DA		
<213> A	tificial	
<220>		
<223> s	nthetic DNA	
<400> 13	23	
ggactttc	ec aatetgeeet	20
(010) 1		
<210> 1		
<211> 2		
<212> D		
<213≯ A	rtificial	
<220>	•	
	ynthetic DNA	
<400> 1	24	
aggttgtg	ct tgcgggcaat	20
<210> 1	25	
<211> 2	0	
<212> D	NA	
<213> A	rtificial	
<220>		
<223> s	ynthetic DNA	
<400> 1	25	
aggagaga	ag ggtgcagaag	20

aggagagaag ggtgcagaag

<210> 126 ⟨211⟩ 20 <212> DNA <213≻ Artificial <220> <223> synthetic DNA <400> 126 20 ccttccatag tagccacgtc <210> 127 <211> 20 <212> DNA <213≯ Artificial <220> <223> synthetic DNA <400> 127 20 acaacctgtg cggggaatca <210> 128 <211> 20 <212> DNA <213> Artificial . <220> <223> synthetic DNA **<400>** 128 20 ggtcatagca gagtttggcc <210> 129 <211> 20

PCT/JP2004/012425

WO 2005/021745

<212> DNA

<213> Artificial

<220> <223> synthetic DNA <400> 129 20 gcagaaggac aggacaaagc <210> 130 <211> 20 <212> DNA <213> Artificial <220> <223> synthetic DNA <400> 130 caggetette ggtaaacteg 20 <210> 131 <211> 20 <212> DNA <213> Artificial <220> <223> synthetic DNA <400> 131 20 atggagatga tcccttgctg <210> 132 <211> 20 <212> DNA <213> Artificial <220> <223> synthetic DNA **<400>** 132

WO 2005/021745

PCT/JP2004/012425

WO 2005/021745	PCT/JP2004/012425		
aggigitetg igceticeae	20		

<210>		
<211>	20 .	
<212>	DNA	
<213>	Artificial	
<220> <223>	synthetic DNA	·
<400> gctcta	> 133 taagcc tgtccacgag	

<210> 134 <211> 20 <212> DNA <213> Artificial

<220> <223> synthetic DNA

<400> 134 cgcttcctga agtagcgatt

<210> 135 <211> 20 <212> DNA <213> Artificial

<220> <223> synthetic DNA

<400> 135 gcgacacagg agtgtcaaga

<210> 136 <211> 20 20

20

20

40/68

O 2005/	021745	PCT/JP2004/012425
<212>	DNA	
<213>	Artificial	
<220>		
<223>	synthetic DNA .	
<400>	136	
tgacca	tgat gtagccctga	20
(010)	107	
⟨210⟩		
<211>		
<212>		
⟨213⟩	Artificial	
<220>		
<223>	synthetic DNA	
<400>	137	,
tgaatg	gcca cagtgatgtt	20
	138	
<211>		
<212>		
<213>	Artificial	
<220>		
<223>	synthetic DNA	
<400>	138	
ccatto	ccgtt tttgaaatgc	20
(010)	100	•
<210>		
<211>		
<212>		
<213>	Artificial	
<220>		
<223>	synthetic DNA	

<400> 139 20 tcgtaagtgg ggctataccg <210> 140 ⟨211⟩ 20 <212> DNA <213> Artificial <220> <223> synthetic DNA <400> 140 20 ctggttgggt ctgtggaact <210> 141 <211> 20 <212> DNA <213> Artificial <220> <223> synthetic DNA **<400>** 141 20 ctgaccaccg ggtgtacttt <210> 142 <211> 20 <212> DNA <213> Artificial <220> <223> synthetic DNA **<400>** 142

PCT/JP2004/012425

20

WO 2005/021745

gacaagtagg gcagcacctc

WO 2005/021745			PCT/JP200		CT/JP2004/012425
<210>	143				
<211>	20				
<212>	DNA	•			
<213>	Artificial	•			
<220>		•			
<223>	synthetic DNA				
<400>	143				
ggaacc	cgta cacatggact				20
<210>	144				
<211>	20				
<212>	DNA				
<213>	Artificial				
<220>					
<223>	synthetic DNA				
<400>	144				
aacgt	ccaat agcccttacg				20
	•				
<210>	145				
<211>	20				
	DNA				
<213>	Artificial				
<220>	,			•	
<223>	synthetic DNA		·	·	
<400>	145	•			
cgccc	acttc tttgagtttc				20
(210)	146		·		
(211)					
	> DNA				
, - ,				•	

<213> Artificial

WO 2005/021745	PCT/JP2004/012425
<220>	
<223> synthetic DNA	
<400> 146	
catgaccgtc cctatcttgc	20
<210> 147	
⟨211⟩ 20	
<212> DNA	
<213> Artificial	
<220>	
<223> synthetic DNA	·
<400> 147	0.0
tatggggtct ttgctggaag	
<210> 148	
<211> 20	
<212> DNA	
<213> Artificial	
<220>	
<223> synthetic DNA	
<400> 148	
gcccacgtga tgatacttga	20
<210> 149	
<211> 20	
<212> DNA	
<213> Artificial	
<220>	
<223> synthetic DNA	
< 400> 149	•
ggtcacttca tgcctgtcct	20

20

20

20

<210> 150 <211> 20 <212> DNA <213≯ Artificial <220> <223> synthetic DNA **<400>** 150 tatggcggaa gccagcttca <210> 151 <211> 20 <212> DNA <213> Artificial <220> <223> synthetic DNA <400> 151 cacaagccct ttgaatccat <210> 152 <211> 20 <212> DNA <213> Artificial <220> <223> synthetic DNA <400> 152 tgtctccagc tccacacaag

<211> 21 <212> DNA

⟨210⟩ 153

O 2005/021745		PCT/JP2004/012425
<213>	Artificial	
<220>		
	synthetic DNA	
<400>	153	
ttgaga	attc cagagccaag a	21
<210>		
<211>		
<212>		
<213>	Artificial	
<220>		
<223>	synthetic DNA	
<400>	154	
caccca	tett caccacacac	20
<210>		
<211>	20	
<212>		
<213>	Artificial	
<220>		
<223>	synthetic DNA	
<400>	155	
aagaco	cgaac tgagcaagga	20
<210>	156	
<211>	20	
<212>	DNA	
<213>	Artificial	
<220>		

<223≯ synthetic DNA

WO 2005/021745	PCT/JP2004/012425
<400> 156	
tttttcccag gtccacagtc	. 20
<210> 157	•
<211> 20	
<212> DNA	
<213> Artificial	
<220>	
<223> synthetic DNA	•
<400> 157	
cgggcaagac ttttctttga	20
<210> 158	
<211> 20	
<212> DNA	
<213> Artificial	
<220>	
<223> synthetic DNA	
<400> 158	
tgccttcctc atccccttat	20
<210> 159	
<211> 20	
<212> DNA	
<213> Artificial	
<220>	
<223> synthetic DNA	
<400> 159	20
tccaaggatg atctcccact	

<210> 160

WO 2005/021745		PCT/JP2004/012425	
<211>	20		
<212>	DNA		
<213>	Artificial		
<220>			
<223>	synthetic DNA		
<400>	160	·	
agcatc	cgat tccttcttca	20	
<210>	161		
	20		
<212>			
	Artificial		
<220>			
<223>	synthetic DNA		
<400>	161		
tgataa	gcac gttgcaggag .	20	
<210>	169		
<211>			
<212>			
	Artificial		
<220>			
<223>	synthetic DNA		
<400>			
aagtca	agctg ggtttccaga	20	
<210>	163		
<211>	20		
<212>	DNA		
<213>	Artificial		
<220>			

WO 2005/021745	PCT/JP2004/012425
<223> synthetic DNA	
<400> 163	
ggtgtcagag ccagttgtca	20
<210> 164	
<211> 20	
<212> DNA .	
<213> Artificial	
⟨220⟩	
<223> synthetic DNA	
<400> 164	20
aaatttccac atcggcagtc	20
<210> 165	•
<211> 20	
<212> DNA	
<213> Artificial	
<220>	
<223> synthetic DNA	
<400> 165	
ccaccattgg taccatttcc	20
<210> 166	
<211> 20	
<212> DNA	
<213> Artificial	
<220>	
<223> synthetic DNA	
<400> 166	
ccctcacct gaacctcata	20

cccctcacct gaacctcata

<210> 167

⟨211⟩ 22

<212> DNA

<213> Artificial

<220>

<223> synthetic DNA

<400> 167

ttttctggaa cattcaaatt ca

22

<210> 168

<211> 20

<212> DNA

<213> Artificial

<220>

<223≯ synthetic DNA

<400> 168

cactttttgt catcgctgga

20

<210> 169

<211> 20

<212> DNA

<213> Artificial

<220>

<223> synthetic DNA

<400> 169

tgcagtggaa tacggatcaa

20

<210> 170

<211> 20

<212> DNA

<213> Artificial

<220>

<223> synthetic DNA

<400> 170

ggaagcagac cacagaggag 20

<210> 171

⟨211⟩ 20

<212> DNA

⟨213⟩ Artificial

<220>

<223> synthetic DNA

<400> 171

agtggaaggt gtgggtgaag 20

<210> 172

<211> 20

<212> DNA

<213≯ Artificial

<220>

<223> synthetic DNA

<400> 172

caaccataca ctgccacagg 20

<210> 173

<211> 20

<212> DNA

<213> Artificial

<220>

<223≯ synthetic DNA

<400> 173

wo	2005/021745
----	-------------

cacttaagga gcgctggaac

PCT/JP2004/012425

20

<210> 174

<211> 20

<212> DNA

<213> Artificial

<220>

<223≯ synthetic DNA

<400> 174

tttgcagtct ggcaagtgag

20

<210> 175

<211> 21

<212> DNA

<213≻ Artificial

<220>

<223> synthetic DNA

<400> 175

gccacttctg cttctgtgtt t

21

<210> 176

<211> 22

<212> DNA

<213> Artificial

<220>

<223≯ synthetic DNA

<400> 176

tccaccataa aagatgtgga aa

22

<210> 177

<211> 20

WO 200	05/021745	PCT/JP2004/01242
<212>	DNA	
<213>	Artificial	
<220>	•	
<223>	synthetic DNA	
<400>	177	
cctcca	ctca tgtcccattt	20
(0.1.0)		
⟨210⟩		
<211>	20	
<212>		
<213>	Artificial	
<220>		
<223>	synthetic DNA	
<400>	178	•
tcaago	catg citticigig	20
<210>	179	
<211>		
<212>	DNA	
	Artificial	
<220>		
<223>	synthetic DNA	
<400>	179	
atttta	agcca atggcctcct	20
<210>	180	
<211>	20	
<212>	DNA	
<213>	Artificial	
⟨220⟩		
	synthetic DNA	
\UUU/	DIM CHICK TO DIVE	

<400> 180 20 cactggtttg cagcgataga <210> 181 <211> 20 <212> DNA <213≻ Artificial <220> <223> synthetic DNA **<400>** 181 20 attggtgaat tgggattgga <210> 182 <211> 20 <212> DNA <213> Artificial <220> <223> synthetic DNA <400> 182 20 gaagcccacc acagtaggaa <210> 183 <211> 20 <212> DNA <213> Artificial <220> <223> synthetic DNA **<400>** 183

PCT/JP2004/012425

20

WO 2005/021745

tggatcgaat ccaaacacaa

WO 200	5/021745	PCT/JP2004/012425
<210>	184	
<211>	20	
<212>	DNA .	
<213>	Artificial	
<220>	·	
<223>	synthetic DNA	
<400>		•
ctggct	ttgtc tgcaaacctt	20
<210>	185 ·	
<211>	20	
<212>	DNA	
<213>	Artificial	
<220>		
<223>	synthetic DNA	
<400>	185	
ctcca	tcatc cacccacttt	20
	•	
<210>	186	
<211>		
	> DNA	
<213>	Artificial	
<220>	>	
<223)	> synthetic DNA	
<400)	> 186	
ggaa	ggccag caagtgtaga	20
<210	> 187	
<211	> 20	
<212	> DNA	
<213	> Artificial	

WO 2005/021745	PCT/JP2004/012425
<220>	
<223> synthetic D	NA .
<400> 187	
gccagaaaat tgaccct	gag . 20
<210> 188	
<210 188 <211> 20	
<211> 20 <212> DNA	
<212> DNA <213> Artificial	
\215/ AITIICIAI	
<220>	
<223> synthetic I	NA .
<400> 188	
cagcigcica gcgatci	ttac 20
	·
<210> 189	
<211> 20	
<212> DNA	
<213> Artificial	
<220>	
<223> synthetic l	DNA
<400> 189	
ccctcatcgt gtcaag	tcaa 20
<210> 190	
<211> 20	
<212> DNA	
<213> Artificial	
<220>	
<223> synthetic	DNA
<400> 190	
agcatcaaac agacco	eaacc 20

<210> 191 <211> 20 <212> DNA <213> Artificial <220> <223> synthetic DNA <400> 191 20 ttgtttggct gggatagagg <210> 192 <211> 20 <212> DNA <213≻ Artificial <220> <223> synthetic DNA <400> 192 20 gctctgtccg gatagctacg **<210>** 193 <211> 20 <212> DNA <213> Artificial <220> <223≯ synthetic DNA **<400> 193** 20 ccctacaagg tgaacccaga <210> 194

<211> 20 <212> DNA

WO 2005/021745 PCT/JP2004/012425 <213> Artificial <220> <223> synthetic DNA <400> 194 20 ggagtagcag ctggttcctg ⟨210⟩ 195 <211> 20 <212> DNA <213> Artificial <220> <223> synthetic DNA <400> 195 20 tgacaaccta tgccatttcg <210> 196 <211> 21 <212> DNA <213> Artificial <220> <223≯ synthetic DNA <400> 196 21 ccacacaaga cctatgatag a <210> 197 <211> 20 <212> DNA <213> Artificial <220>

<223≯ synthetic DNA

WO 200	5/021745	PCT/JP2004/012425
<400>	197	
ctcaagg	gatg acgtgggttt	20
<210>	198	
<211>	20	
<212>	DNA	
<213>	Artificial	
<220>		
<223>	synthetic DNA	
<400>	198	
gatttc	ctct ggccaattca	20
	199	
	20	
	DNA	
<213>	Artificial	
<220>		
<223>	synthetic DNA	
<400>		
aactac	gcag ccttggtcag	20
(0.1.0)	000	
⟨210⟩	200	
<211>	20	
<212><213>		
\Z13/	Aitificiai	
<220>		
<223>	synthetic DNA	
<400>	200	
tggcag	ttga gttgggtaaa	20

59/68

<210> 201

VO 2005/	/021745	PCT/JP2004/012425
⟨211⟩	20	
<212>	DNA	
<213>	Artificial	
<220>		
<223>	synthetic DNA	
<400>	201	
gatgtt	acca atcccgttcg	20
<210>	202	
<211>		
<212>		
<213>	Artificial	
<220>		
	synthetic DNA	
<400>	202	•
tgggct	ccta tatgcggtta	20
<210>	203	
<210>		
<212>		
	Artificial	
<220>		
<223>	synthetic DNA	
<400>	203	
tgctt	tcaac gtggagtttg	20
<210>	204	
<211>		
	DNA	
<213>	Artificial	
<220>		

WO 2005/021745	PCT/JP2004/012425
<223> synthetic DNA	
<400> 204 .	
ccccatattt ggtgttccag .	20
·	
<210> 205	
<211> 20	
<212> DNA	
<213> Artificial	
<220>	
<223> synthetic DNA	
<400> 205	
caaaatgctg ctggtgaaga	20
<210> 206	
<211> 20	
<212> DNA	
<213> Artificial	
<220>	
<223> synthetic DNA	
<400> 206	
gcctctgtca gctcaaggac	20
<210> 207	
<211> 20	
<212> DNA	
<213> Artificial	·
<220>	
<223> synthetic DNA	
<400> 207	
gtcgtcagca gccatgttta	20

<210> 208 <211> 20 <212> DNA <213> Artificial <220> <223> synthetic DNA **<400> 208** 20 ggcaggtcaa aggtcatgtt <210> 209 <211> 20 <212> DNA <213> Artificial <220> <223> synthetic DNA <400> 209 20 gggatgcttg aagatggaaa <210> 210 ⟨211⟩ 20 <212> DNA <213> Artificial <220> <223> synthetic DNA <400> 210 20 cagtggcacc ataggcataa <210> 211 <211> 20

PCT/JP2004/012425

WO 2005/021745

<212> DNA

<213> Artificial

WO 2005/021745 PCT/JP2004/012425

<220>

<223> synthetic DNA

<400> 211

gctcctgggt agaactgcac

20

<210> 212

<211> 20

<212> DNA

<213> Artificial

<220>

<223> synthetic DNA

<400> 212

gccctgttgg tatcttgtgg 20

<210> 213

<211> 20

<212> DNA

<213> Artificial

<220>

<223> synthetic DNA

<400> 213

ttgaggaaat cctggacctg 20

<210> 214

<211> 20

<212> DNA

<213> Artificial

<220>

<223> synthetic DNA

<400> 214

WO 2005/	021745	PCT/JP2004/012425
	cete geacettett	20
<210>	215	
<211>		
<212>		•
	Artificial	
<220>	·	
<223>	synthetic DNA	
<400>	215	
ctgatg	gagt acgcaaagca	20
<210>	216	
<210>		
<211>		
	Artificial	•
,		
<220>		
	synthetic DNA	
<400>	216	
ctcgag	aatg tcaggggtgt	20
(010)	0.15	
<210>		
<211>		
<212>	DNA Artificial	
\ 410 /	MICHICIAI	
<220>		
<223>	synthetic DNA	
<400>	217	

<210> 218 <211> 18

acagageete geetitge

18

WO 2005/021745		PCT/JP2004/012425
<212>	DNA	
<213>	Artificial	
<220>		
<223>	synthetic DNA	
<400>	218	
cacgai	tggag gggaagac	18
(010)	010	
<210>		
<211>		
<212>		
⟨213⟩	Artificial	
<220>		
<223>	synthetic DNA	
<400>	219	•
gaget	gggaa gattcgaaca	20
<210>	220 ,	
<211>	20 ·	
<212>	DNA	
<213>	Artificial	
<220>		
<223>	synthetic DNA	
<400>	220	
agaga	tacgc aggtgcaggt	20
/010 \	801	
	221	
<211>		
	DNA	
<213>	Artificial	
⟨220⟩		
<223>	synthetic DNA	

WO 2005/021745	PCT/JP2004/01242		
<400> 221			
gagatetege eggetttae	19		
<210> 222			
<211> 20			
<212> DNA			
<213> Artificial			
<220>			
<223> synthetic DNA			
<400> 222			
cgcgagagtc aaagatctcc	20		
<210> 223			
<211> 21			
<212> DNA			
<213> Artificial			
<220> .			
<223> synthetic DNA			
<400> 223			
cagctccagg aaatgctagt g	21		
<210> 224			
<211> 20			
<212> DNA			
<213> Artificial			
<220>			
<223> synthetic DNA			
<400> 224			
ggtggaactt gggatcagac	20		

WO 2005/021745		PCT/JP2004/012	2425
<210>	225		
<211>	20		
<212>	DNA		
<213>	Artificial		
<220>		·	
	synthetic DNA	·	
(550)	Synthetic Ditt		
<400>	225		
gagggaa	agge ttagecatgt	20	
		•	
<210>	226		
<211>			
<212>			
<213>	Artificial		
<220>			
	synthetic DNA	·	
(443)	Synthetic DNA		
<400>	226		
ttgaag	ggtc catgcctatc	20	
<210>	227		
<211>			
<212>			
	Artificial		
(220)			
<220>			
	synthetic DNA		
<400>			
gcctgt	aagt acggggacaa	20	
⟨210⟩	228		
<211>			
<212>			

<213> Artificial

WO 2005/021745 PCT/JP2004/012425

<220>

<223> synthetic DNA

<400> 228

ctcttcagcg ttgtggatga . 2

20

International application No.
PCT/JP2004/012425

	 	101/01	2004/012423		
	CATION OF SUBJECT MATTER C12N15/09, C12N15/12, C12Q1/6	68, G01N33/50, G01N33/1	15		
According to Int	ernational Patent Classification (IPC) or to both nationa	al classification and IPC			
B. FIELDS SE					
Minimum docum Int.Cl ⁷	Minimum documentation searched (classification system followed by classification symbols) Int.Cl ⁷ C12N15/00-15/90, C12N1/00-9/99, C12Q1/00-70, G01N33/00-98, C07K1/00-19/00, A61K31/00-48/00				
Ī	Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched				
WPI (ST	pase consulted during the international search (name of only), BIOSIS (STN), MEDLINE (STN),	data base and, where practicable, search Genbank/EMBL/DDBJ/Gene	terms used) Seq		
C. DOCUMEN	ITS CONSIDERED TO BE RELEVANT				
Category*	Citation of document, with indication, where ap		Relevant to claim No.		
A	Hiroshi Okabe et al., "Genome of Gene Expression in Human F Carcinomas Using cDNA Microar Identification of Genes Invol Carcinogenesis and Tumor Proc Cancer Research, Vol.61, (200 2129 to 2137	Hepatocellular cray: Lved in Viral gression.", D1), pages	10		
А	Xiang-Ru Xu et al., "Insight carcinogenesis at transcriptor comparing gene expression problematocellular carcinoma with corresponding noncancerous liperoc.Natl.Acad.Sci.USA, Vol. 9 (2001), pages 15089 to 15094	ome level by ofiles of those of ver.",	10		
× Further do	cuments are listed in the continuation of Box C.	See patent family annex.			
Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier application or patent but published on or after the international filing date "C" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means document published prior to the international filing date but later than the priority date claimed "C" document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention cannot be considered novel or cannot be considered novel or cannot be considered novel or cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art document fulling date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art document member of the same patent family					
Date of the actual completion of the international search Date of mailing of the international search report					
Date of the actual completion of the international search 07 December, 2004 (07.12.04) Date of mailing of the international search report 25 January, 2005 (25.01.05)					
Name and mailing address of the ISA/ Japanese Patent Office Authorized officer					
Facsimile No.	0 (second sheet) (January 2004)	Telephone No.			

International application No.
PCT/JP2004/012425

		PCT/JP20	004/012425			
(Continuation). DOCU	UMENTS CONSIDERED TO BE RELEVANT					
Category* Ci	itation of document, with indication, where appropriate, of the relevant	ant passages	Relevant to claim No.			
micr recu cura	Norio IIZUKA et al., "Oligonucleotide microarray for prediction of early intrahepatic recurrence of hepato-cellular carcinoma after curative resection.", The Lancet, Vol.361, No. 9361, 15 March, 2003 (15.03.03), pages 923 to 929					
A Sin asso	Tim Cheung et al., "Identify Metastas ociated Genes in Hepatocellular Carcin ough Clonality Delineation for Multing or.", Cancer Research, Vol.62, (2002), 1 to 4721	noma odular	10			

Form PCT/ISA/210 (continuation of second sheet) (January 2004)

International application No.
PCT/JP2004/012425

Ro	x No.	Nucleotide and/or amino acid sequence(s) (Continuation of item1.b of the first sheet)
1.	With	regard to any nucleotide and/or amino acid sequence disclosed in the international application and necessary to the claimed nation, the international search was carried out on the basis of:
	a.	type of material X a sequence listing table(s) related to the sequence listing
	b.	format of material in written format in computer readable form
	c.	time of filing/furnishing contained in the international application as filed filed together with the international application in computer readable form furnished subsequently to this Authority for the purposes of search
2.	×	In addition, in the case that more than one version or copy of a sequence listing and/or table relating thereto has been filed or furnished, the required statements that the information in the subsequent or additional copies is identical to that in the application as filed or does not go beyond the application as filed, as appropriate, were furnished.
3.	Add	itional comments:

International application No.

PCT/JP2004/012425

Box No. II	Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)
1. X Claim becau The in cancer" condition the huma 2. Claim becau	nal search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons: as Nos.: 1-9 use they relate to subject matter not required to be searched by this Authority, namely: ventions according to claim 1 to 9 relate to "a method of evaluating which is recognized as a method of substantially judging pathological ons of humans or the like by measuring a gene expression amount in an body and collecting data for a medicinal (continued to extra sheet) as Nos.: use they relate to parts of the international application that do not comply with the prescribed requirements to such an t that no meaningful international search can be carried out, specifically:
	ns Nos.; use they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box No. III	Observations where unity of invention is lacking (Continuation of item 3 of first sheet)
1. As all	I required additional search fees were timely paid by the applicant, this international search report covers all searchable is.
	I searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of dditional fee.
	nly some of the required additional search fees were timely paid by the applicant, this international search report covers those claims for which fees were paid, specifically claims Nos.:
	equired additional search fees were timely paid by the applicant. Consequently, this international search report is cted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark on Pr	The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

International application No.

PCT/JP2004/012425

Continuation	Οİ	Box	No.II-1	ΟÍ	continuation	ΟĪ	first	sheet (2)
									_

purpose, i.e., to find out a disease or understand health conditions. Thus, the inventions according to claims 1 to 9 pertain to diagnostic methods.

A. 発明の属する分野の分類(国際特許分類 (IPC))

Int.Cl 7 C12N 15/09, C12N 15/12, C12Q 1/68, G01N 33/50, G01N 33/15

B. 調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int.Cl 7 C12N 15/00 \sim 15/90, C12N 1/00 \sim 9/99, C12Q 1/00 \sim 70, G01N 33/00 \sim 98, C07K 1/00 \sim 19/00, A61K 31/00 \sim 48/00

最小限資料以外の資料で調査を行った分野に含まれるもの

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語) WPI(STN), BIOSIS(STN), MEDLINE(STN) Genbank/EMBL/DDBJ/GeneSeg

C. 関連すると認められる文献	•			
引用文献の カテゴリー* 引用文献名 及び一部の箇所が関連する	ときは、その関連する箇所の表示	関連する 請求の範囲の番号		
A Hiroshi Okabe, et al., "Gend Expression in Human Hepa Using cDNA Microarray: Id Involved in Viral Carcinogene Cancer Research, Vol.61, (2)	tocellular Carcinomas entification of Genes sis and Tumor Progression."	10		
図 C欄の続きにも文献が列挙されている。	□ パテントファミリーに関する別]紙を参照。		
* 引用文献のカテゴリー 「A」特に関連のある文献ではなく、一般的技術水準を示す もの 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表されたもの 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用する 文献 (理由を付す) 「O」口頭による開示、使用、展示等に言及する文献 の日の後に公表された文献 の用郷出願日又は優先日後に公表された文献の思知の理解のために引用するもの 「X」特に関連のある文献であって、当該文献のみで紹の新規性又は進歩性がないと考えられるもの 「Y」特に関連のある文献であって、当該文献と他の1 上の文献との、当業者にとって自明である組合せまって進歩性がないと考えられるもの				

「&」同一パテントファミリー文献

特許庁審査官 (権限のある職員)

齊藤真由美

電話番号 03-3581-1101 内線 3448

2005

4 B

8931

国際調査報告の発送日

様式PCT/ISA/210 (第2ページ) (2004年1月)

「P」国際出願日前で、かつ優先権の主張の基礎となる出願

07. 12. 2004

国際調査を完了した日

国際調査機関の名称及びあて先

日本国特許庁(ISA/JP)

郵便番号100-8915 東京都千代田区霞が関三丁目4番3号

C (続き).	関連すると認められる文献	
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
A	Xiang-Ru Xu, et al., "Insight into hepatocellular carcinogenesis at transcriptome level by comparing gene expression profiles of hepatocellular carcinoma with those of corresponding noncancerous liver." Proc. Natl. Acad. Sci. USA, Vol. 98, No. 26, (2001), p.15089-15094	10
A	Norio Iizuka, et al., "Oligonucleotide microarray for prediction of early intrahepatic recurrence of hepato- cellular carcinoma after curative resection." The Lancet, Vol. 361, No. 9361, (15 March 2003), P. 923-929	10
A	Siu Tim Cheung, et al., "Identify Metastasis-associated Genes in Hepatocellular Carcinoma through Clonality Delineation for Multinodular Tumor." Cancer Research, Vol.62, (2002), p.4711-4721	10
	,	
	·	
	,	
	·	
	·	
		,
. ,		

第1欄 ヌクレオチド又は	tアミノ酸配列 (第1ページの1. bの続き)
1. この国際出願で開示さ 以下に基づき国際調査	されかつ請求の範囲に係る発明に必要なヌクレオチド又はアミノ酸配列に関して、 Eを行った。
a. タイプ [X 配列表
_ [配列表に関連するテーブル
b. フォーマット [書面
. [図 コンピュータ読み取り可能な形式
c. 提出時期 [出願時の国際出願に含まれる
. [X この国際出願と共にコンピュータ読み取り可能な形式により提出された
	出願後に、調査のために、この国際調査機関に提出された
2. 図 さらに、配列表3 した配列が出願 出があった。	スは配列表に関連するテーブルを提出した場合に、出願後に提出した配列若しくは追加して提出 特に提出した配列と同一である旨、又は、出願時の開示を超える事項を含まない旨の陳述書の提
3. 補足意見:	
	·
·	

	請求の範囲の一部の調査ができないときの意見(第1ページの2の続き)
法第8多	条第3項(PCT17条(2)(a))の規定により、この国際調査報告は次の理由により請求の範囲の一部について作
成しなな	いった。
	•
1. X	請求の範囲1-9 は、この国際調査機関が調査をすることを要しない対象に係るものである。
-	つまり、
	請求の範囲1-9に係る発明は「癌の評価方法」である。これは、病気の発見、健康
	状態の認識等の医療目的で、人間の身体の遺伝子の発現量を計測して資料を収集し、
	実質的に、人間の病状等について判断する方法であると認める。
	したがって、請求の範囲1-9に係る発明は、診断方法に該当する。
2.] 請求の範囲は、有意義な国際調査をすることができる程度まで所定の要件を満たしてい
_	ない国際出願の部分に係るものである。つまり、
	· ·
	···
3.] 請求の範囲は、従属請求の範囲であってPCT規則6.4(a)の第2文及び第3文の規定に
L	従って記載されていない。
第Ⅲ欄	発明の単一性が欠如しているときの意見(第1ページの3の続き)
次に注	述べるようにこの国際出題に二以上の発明があるとこの国際調査機関は認めた。
1.	出願人が必要な追加調査手数料をすべて期間内に納付したので、この国際調査報告は、すべての調査可能な請求
	の範囲について作成した。
-	
2.	追加調査手数料を要求するまでもなく、すべての調査可能な請求の範囲について調査することができたので、追し
	加調査手数料の納付を求めなかった。
	•
3. 🗀	出願人が必要な追加調査手数料を一部のみしか期間内に納付しなかったので、この国際調査報告は、手数料の納
	付のあった次の請求の範囲のみについて作成した。
	·
Ì	
l	
4.	出願人が必要な追加調査手数料を期間内に納付しなかったので、この国際調査報告は、請求の範囲の最初に記載し
4.	出願人が必要な追加調査手数料を期間内に納付しなかったので、この国際調査報告は、請求の範囲の最初に記載している発明に係る次の請求の範囲について作成した。
4.	
4. 🗌	
4. 🗌	
4.	
追加調	されている発明に係る次の請求の範囲について作成した。