CSE 425 Stochastic Processes

Brett Hansen

Contents

1 Week of August 14th, 2016			lugust 14th, 2016	2
	1.1	Basic	Probability Review	-
			Example 1.12	
		1.1.2	Partitions	4
		1.1.3	Example 1.13 - Craps	6

1 Week of August 14th, 2016

Stochastic Process a collection of random variables

1.1 Basic Probability Review

1.1.1 Example 1.12

Compute the probability that event E occurs before event F if we repeat the experiment.

1.1.2 Partitions

If $\{B_1, B_2, \dots, B_n\}$ is a partition of Ω and $A \subset \Omega$ then,

$$\mathbb{P}(A) = \mathbb{P}\left(\bigcup_{i=1}^{n} A \cap B_{i}\right)$$

$$= \sum_{i=1}^{n} (\mathbb{P}(A \cap B_{i}))$$

$$= \sum_{i=1}^{n} \mathbb{P}(A \mid B_{i}) \mathbb{P}(B_{i})$$

1.1.3 Example 1.13 - Craps

Roll two dice, then if

- 1. the sum is 7 or 11 \longrightarrow you win!
- 2. the sum is 2, 3, or $12 \longrightarrow you lose!$
- 3. the sum, i, is such that $i \in \{4, 5, 6, 8, 9, 10\}$, keep rolling until
 - (a) the sum is $7 \longrightarrow \text{you lose!}$
 - (b) the sum is $i \longrightarrow you$ win!

Let W be the event that you win and D the sum of the two dice.

$$\begin{array}{lll} \mathbb{P}(W) & = & \displaystyle \sum_{i=2}^{12} \left(\mathbb{P}\left(W \mid D=i\right) \mathbb{P}\left(D=i\right) \right) \\ & = & \mathbb{P}\left(D=7\right) & + & \mathbb{P}\left(D=11\right) & + & \displaystyle \sum_{i \in \{4,5,6,8,9,10\}} \left(\mathbb{P}\left(W \mid D=i\right) \mathbb{P}\left(D=i\right) \right) \\ & = & \frac{6}{36} & + & \frac{2}{36} & + & \displaystyle \sum_{i \in \{4,5,6,8,9,10\}} \left(\frac{\mathbb{P}\left(D=i\right)^2}{\mathbb{P}\left(D=i\right) + \mathbb{P}\left(D=7\right)} \right) \\ & = & \frac{6}{36} & + & \frac{2}{36} & + & \displaystyle 2\left(\frac{1}{36} + \frac{4}{90} + \frac{25}{396}\right) \\ & = & \frac{4880}{9900} & \approx & 0.4929 \end{array}$$