

Visão Geral da Álgebra de Boole

Universidade Federal de Uberlândia Faculdade de Computação Prof. João Henrique de Souza Pereira

Créditos dos slides para o Prof. Dr. Daniel D. Abdala

Na Aula Anterior ...

- Adição e subtração binária;
- Adição e Subtração no sistema de complemento de 2;
- Multiplicação de números binários;
- Divisão de números binários.

Nesta Aula

- Conceitos básicos da Álgebra Booleana;
- Variáveis e Funções Booleanas;
- Operações E, OU e NÃO;
- Tabelas Verdade;
- Exemplos de Funções Lógicas;
- Operações compostas:
 - NÃO-E;
 - NÃO-OU;
 - OU-Exclusivo;
 - NÃO-OU-Exclusivo;
- Circuitos Lógicos Gerados a partir de Expressões Booleanas;
- Expressões Booleanas Geradas por Circuitos Lógicos;
- Interligação entre Expressões, Circuitos e Tabelas Verdade.

Introdução

- Principal Diferença com relação à Álgebra tradicional reside no fato de que as variáveis e funções podem assumir apenas dois possíveis valores: "0" ou "1", ou seja, é um tipo especial de Álgebra que trabalha com números binários;
- Álgebra Booleana é definida por uma 6-upla (X,Λ,V,¬,0,1), que é interpretado como uma variável Booleana, as três possíveis operações e as quantidades válidas;
- Vista anteriormente na disciplina de lógica para computação.

Variáveis e Funções Booleanas

- Variáveis Booleanas, normalmente representadas por letras maiúsculas (A, B, C, D, etc...) podem acomodar apenas dois possíveis valores, ou seja, "0" ou "1";
- Funções Booleanas, também geralmente representadas por letras maiúsculas (F, G, etc...) representam operações válidas entre variáveis Booleanas.

Álgebra Booleana

• Importante:

Como o conjunto de possíveis valores é discreto e reduzido, é possível listar todos os possíveis valores que uma função booleana pode assumir.

Operação E

 Primeira das três operações fundamentais da Álgebra Booleana;
Pode ser interpretada como:

Α	В	A.B
0	0	0
0	1	0
1	0	0
1	1	1

"verdade (1) apenas quando ambos os operadores forem verdadeiros"

- Representa a operação E lógico;
- Representações alternativas:
 - E, AND, ⋅, Λ
 - Em expressões/funções Booleanas, a ausência de operador significa que o operador E deve ser inferido

Porta E

A	В	A.B
0	0	0
0	1	0
1	0	0
1	1	1

Diagrama de Tempo – E

A	В	A.B
0	0	0
0	1	0
1	0	0
1	1	1

Operação OU

Segunda operação fundamental;

Pode ser interpretada como:

"verdade (1) quando qualquer dos operadores for verdadeiro"

Α	В	A+B
0	0	0
0	1	1
1	0	1
1	1	1

- Representa o OU lógico;
- Representações alternativas:
 - OU, OR, +, V

Porta OU

A	В	A+B
0	0	0
0	1	1
1	0	1
1	1	1

Diagrama de Tempo – OU

Α	В	A+B
0	0	0
0	1	1
1	0	1
1	1	1

Operação NÃO

 Terceira e última das operações fundamentais;

Α	~ A
0	1
1	0

Pode ser interpretada como:

"complemento ou inverso do valor atual"

- Representa o NÃO lógico;
- Representações alternativas:
 - NÃO, NOT, ~, ¬
- Há uma notação muito usada na qual a operação não é representada com uma barra sobre a variável Booleana. Ex: A

Porta NÃO

Α	~A
0	1
1	0

Diagrama de Tempo – NÃO

A	~A
0	1
1	0

Operações Compostas

- É possível definir algumas operações compostas a partir das operações básicas
- Ex: Em Álgebra tradicional N² = N×N
- Em Álgebra Booleana, definem-se as seguintes operações compostas:
 - NAND
 - NOR
 - -XOR
 - XNOR

Porta NÃO E

Α	В	A·B
0	0	1
0	1	1
1	0	1
1	1	0

Diagrama de Tempo – NÃO E

Α	В	Ā⋅B
0	0	1
0	1	1
1	0	1
1	1	0

Porta NÃO OU

Α	В	A+B
0	0	1
0	1	0
1	0	0
1	1	0

Diagrama de Tempo – NÃO OU

Α	В	Ā+B
0	0	1
0	1	0
1	0	0
1	1	0

Porta XOU

Α	В	А⊕В
0	0	0
0	1	1
1	0	1
1	1	0

Diagrama de Tempo – XOU

Α	В	А⊕В
0	0	0
0	1	1
1	0	1
1	1	0

Operação NÃO OU-Exclusivo

 Pode ser interpretada como:
"verdade (1) quando os dois operadores forem iguais"

Α	В	A⊗B
0	0	1
0	1	0
1	0	0
1	1	1

•	F(A,B) =	$(\overline{A} \cdot \overline{B}) + (A \cdot B)$	$=A \otimes B$
---	----------	---	----------------

Precedência de Operadores

- Existem apenas três operadores fundamentais: (¬,∧,∨)
- Sua precedência segue a orientação da esquerda para a direita, sendo o operador mais a esquerda o mais significativo
- Os símbolos "(" e ")" podem ser utilizados para alterar a precedência entre operações

Exemplos de Funções Booleanas

•
$$F(A,B) = A \cdot B$$

- F(A,B) = A+B
- $F(A,B) = \overline{A} \cdot B$
- $F(A,B,C) = A \cdot B \cdot C$
- $F(A,B) = (\overline{A} \cdot B) + (\overline{B} \cdot A)^{\otimes}$

Parênteses são usados para redefinir a ordem de avaliação de expressões Booleanas, tal como na Álgebra tradicional.

Tabelas Verdade

 Listagem sistemática de TODOS os possíveis valores que uma função Booleana pode assumir.

• Ex: $F(A,B,C) = A \cdot B \cdot C$

A	В	C	A·B	A·B·C		
0	0	0	0	0		
0	0	1	0	0		
0	1	0	0	0		
0	1	1	0	0		
1	0	0	0	0		
1	0	1	0	0		
1	1	0	1	0		
1	1	1	1	1		

Outro Exemplo

• $F(A,B) = (\overline{A} \cdot B) + (\overline{B} \cdot A)$

A	В	Ā	B	Ā·B	B ⋅A	(Ā·B)+(Ē·A)
0	0	1	1	0	0	0
0	1	1	0	1	0	1
1	0	0	1	0	1	1
1	1	0	0	0	0	0

Outro Exemplo

• $F(A,B,C) = A \cdot \overline{B} \cdot C$

Α	В	С	В	A·B	A·B·C
0	0	0	1	0	0
0	0	1	1	0	0
0	1	0	0	0	0
0	1	1	0	0	0
1	0	0	1	1	0
1	0	1	1	1	1
1	1	0	0	0	0
1	1	1	0	0	0

Mais um Exemplo

• $F(A,B,C) = (A \cdot \overline{B}) \cdot (C + \overline{A})$

Α	В	С	Ā	В	A·B	C+Ā	$(A \cdot \overline{B}) \cdot (C + \overline{A})$
0	0	0	1	1	0	1	0
0	0	1	1	1	0	1	0
0	1	0	1	0	0	1	0
0	1	1	1	0	0	1	0
1	0	0	0	1	1	0	0
1	0	1	0	1	1	1	1
1	1	0	0	0	0	0	0
1	1	1	0	0	0	1	0

- Há uma correlação direta entre circuitos lógicos e expressões Booleanas;
- Ex: Dada a Função Booleana abaixo, construa o circuito lógico que a implementa:

$$F(A,B) = (\overline{A} \cdot B) + (A \cdot \overline{B})$$

- Passo 1: identificar as entradas
 - As entradas do circuito sempre encontram-se na assinatura da função F(A,B). Caso a assinatura não seja dada, basta identificar todas as variáveis distintas.

 Desenhe as entradas no topo de linhas paralelas verticais. Desenhe uma linha para cada entrada

 A seguir, identifique todas as operações lógicas da expressão

$$F(A,B) = (\overline{A} \cdot B) + (A \cdot \overline{B})$$

- Cada operação identificada será traduzida diretamente para uma porta lógica;
- A seguir, desenhe todas as portas lógicas identificadas.

 $F(A,B) = (\overline{A} \cdot B) + (A \cdot \overline{B})$ Α B Saída

- A seguir, reorganize a ordem das portas de modo que a disposição geral do circuito fique mais clara.
- Tente minimizar o número de ligações se cruzando.

Expressões Booleanas a Partir de Circuitos Lógicos

 Primeiramente redesenhamos o circuito de modo que possamos escrever sobre as conexões.

 A seguir, propague as entradas para as entradas das portas lógicas.

 Por fim, escreva a função Booleana, como sendo a saída → F(A,B) = (Ā·B)+(A·B̄)

Interligação entre Expressões, Circuitos e Tabelas Verdade

- Na aula passada, vimos que a partir de uma expressão Booleana, podemos levantar sua tabela verdade;
- Na aula de hoje, vimos que a partir de uma expressão Booleana podemos levantar o seu circuito lógico e vice-versa;
- Na realidade, Tabelas Verdade, Função Booleana e Circuito Lógico nada mais são do que diferentes maneiras de se olhar para o mesmo problema.

Pro Lar

- Leitura: (Tocci) 3 3.7 (pgs. 48 62)
- Leitura: (Capuano) 2 2.2.6 (pgs. 44 52)
- Exercícios: (Tocci) $E=\{3.1-3.15\}$

Exercício

Demonstre via tabela da verdade que:

$$F(A,B) = (\overline{A} \cdot \overline{B}) + (A \cdot B) = (\overline{A} \cdot B) + (\overline{B} \cdot A) = A \otimes B = \overline{A \oplus B}$$

Bibliografia Comentada

TOCCI, R. J., WIDMER, N. S., MOSS, G. L.
Sistemas Digitais – Princípios e Aplicações.
11ª Ed. Pearson Prentice Hall, São Paulo,
S.P., 2011, Brasil.

- CAPUANO, F. G., IDOETA, I. V. **Elementos de Eletrônica Digital**. 40º Ed. Editora Érica.
- São Paulo. S.P. 2008. Brasil.