

TTK4135 – Lecture 2 Optimality Conditions for Constrained Optimization: KKT Conditions

Lecturer: Lars Imsland

Purpose of Lecture

- Optimization problems and Convexity
- Motivating Examples for KKT Conditions

KKT Conditions

Reference: Chapter 12.1, 12.2 in N&W

General Optimization Problem

$$\min_{x \in \mathbb{R}^n} f(x) \qquad \text{subject to} \quad \begin{aligned} c_i(x) &= 0, & i \in \mathcal{E}, \\ c_i(x) &\geq 0, & i \in \mathcal{I}. \end{aligned}$$

Example:

$$\min (x_1 - 2)^2 + (x_2 - 1)^2$$

subject to $x_1^2 - x_2 \le 0,$ $x_1 + x_2 \le 2.$

• What if we add equality-constraint $x_1 = 0$?

Definitions: Feasible Set and Solutions

$$\min_{x \in \mathbb{R}^n} f(x) \quad \text{subject to} \quad \begin{cases} c_i(x) = 0, & i \in \mathcal{E} \\ c_i(x) \ge 0, & i \in \mathcal{I} \end{cases}$$
 (P)

- Feasible set: $\Omega = \{x \in \mathbb{R}^n \mid c_i(x) = 0, i \in \mathcal{E}; c_i(x) \geq 0, i \in \mathcal{I}\}$
- A vector x^* is a global solution to (P) if $x^* \in \Omega$ and $f(x) \ge f(x^*)$ for $x \in \Omega$.
- A vector x^* is a local solution to (P) if $x^* \in \Omega$ and there is a neighborhood \mathcal{N} of x^* such that $f(x) \geq f(x^*)$ for $x \in \mathcal{N} \cap \Omega$.
- A vector x^* is a *strict local solution* to (P) if $x^* \in \Omega$ and there is a neighborhood \mathcal{N} of x^* such that $f(x) > f(x^*)$ for $x \in \mathcal{N} \cap \Omega$ with $x \neq x^*$.

Convexity: An important property

A function is **convex** if the epigraph is a convex set.

- A convex optimization problem: Both f(x) and the feasible set convex
- Convex optimization problems are preferable!
 - For convex optimization problems, every local minimum is also a global minimum. Sufficient to search for a local minimum! Which is much easier than searching for global minimum.
 - For many convex optimization problems, it is easy to find derivatives, exploit structure, etc. making them efficient to solve.
 - They typically have "guaranteed complexity".

Convexity: Conditions

When is an optimization problem convex?

$$\min_{x \in \mathbb{R}^n} f(x) \quad \text{subject to} \quad \begin{cases} c_i(x) = 0, & i \in \mathcal{E} \\ c_i(x) \ge 0, & i \in \mathcal{I} \end{cases}$$

- Conditions for a convex optimization problem:
 - f(x) is a convex function:

$$\forall x, y \in \Omega, \ \forall \alpha \in [0, 1]: \quad f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y)$$

- The feasible set $\Omega = \{x \in \mathbb{R}^n | c_i(x) = 0, i \in \mathcal{E}, c_i(x) \geq 0, i \in \mathcal{I}\}$ is convex:

$$\forall x, y \in \Omega, \ \forall \alpha \in [0, 1]: \quad \alpha x + (1 - \alpha)y \in \Omega$$

- When is the feasible set convex?
 - $-c_i(x), i \in \mathcal{E}$ are linear
 - $c_i(x)$, $i \in \mathcal{I}$ are concave

Convex problems: Any local solution is global

Types of Constrained Optimization Problems

Linear programming

- Convex problem
- Feasible set polyhedron

Quadratic programming

- Convex problem if $P \ge 0$
- Feasible set polyhedron

$$\min \quad \frac{1}{2}x^{\mathsf{T}}Px + q^{\mathsf{T}}x$$

subject to
$$Ax \leq b$$

$$Cx = d$$

– In general non-convex!

min
$$f(x)$$

subject to $g(x) = 0$
 $h(x) \ge 0$

 $f(x) = 100(x_2 - x_1^2)^2 + (1 - x_1)^2$

$$\min_{x \in \mathbb{R}^n} f(x) \qquad \text{subject to} \quad \begin{aligned} c_i(x) &= 0, & i \in \mathcal{E}, \\ c_i(x) &\geq 0, & i \in \mathcal{I}. \end{aligned}$$

Necessary Conditions for Unconstrained Optimization

 $\min_{x \in \mathbb{R}^n} f(x)$

Theorem 2.2 (First-Order Necessary Conditions).

If x^* is a local minimizer and f is continuously differentiable in an open neighborhood of x^* , then $\nabla f(x^*) = 0$.

What about constrained problems?

Contours/level curves, gradients and directions

$$f(x_1, x_2) = x_1^2 + x_2^2$$

Contours/level curves, gradients and directions

Necessary conditions for optimality

KKT Conditions

$$\min_{x \in \mathbb{R}^n} f(x) \qquad \text{subject to} \quad \begin{aligned} c_i(x) &= 0, & i \in \mathcal{E}, \\ c_i(x) &\geq 0, & i \in \mathcal{I}. \end{aligned}$$

Lagrangian

$$\mathcal{L}(x,\lambda) = f(x) - \sum_{i \in \mathcal{E} \cup \mathcal{I}} \lambda_i c_i(x)$$

- Note: One Lagrangian multiplier λ_i for each constraint
- Necessary conditions for x^* to be a solution (under some mild regularity conditions):

$$\nabla_{x} \mathcal{L}(x^{*}, \lambda^{*}) = 0,$$

$$c_{i}(x^{*}) = 0, \quad \forall i \in \mathcal{E},$$

$$c_{i}(x^{*}) \geq 0, \quad \forall i \in \mathcal{I},$$

$$\lambda_{i}^{*} \geq 0, \quad \forall i \in \mathcal{I},$$

$$\lambda_{i}^{*} c_{i}(x^{*}) = 0, \quad \forall i \in \mathcal{E} \cup \mathcal{I}.$$

• These are called the KKT conditions

We will not prove KKT, but study 3 motivating cases (Ex. 12.1-12.3 in N&W)

Looking for points where there are no descent directions...
...as these are potential local solutions

Case I: Equality constraint (Example 12.1)

$$\min x_1 + x_2$$

min
$$x_1 + x_2$$
 s.t. $x_1^2 + x_2^2 - 2 = 0$

Case II: Inequality constraint (Example 12.2)

$$\min x_1 + x_2 \qquad \text{s.t.} \qquad 2 - x_1^2 - x_2^2 \ge 0$$

Case II: Inequality constraint (Example 12.2)

$$\min x_1 + x_2 \qquad \text{s.t.} \qquad 2 - x_1^2 - x_2^2 \ge 0$$

Active Set

The active set A(x) at any feasible point x consists of the equality constraint indices from \mathcal{E} together with the indices of the inequality constraints i for which $c_i(x) = 0$. That is,

$$\mathcal{A}(x) = \mathcal{E} \cup \left\{ i \in \mathcal{I} \middle| c_i(x) = 0 \right\}$$

$$\min x_1 + x_2$$

min
$$x_1 + x_2$$
 s.t. $x_1^2 + x_2^2 - 2 = 0$

$$\min x_1 + x_2$$

$$\min x_1 + x_2 \qquad \text{s.t.} \qquad 2 - x_1^2 - x_2^2 \ge 0$$

Set of Feasible Directions

Given a feasible point x and the active constraint set A(x), the set of linearized feasible directions $\mathcal{F}(x)$ is

$$\mathcal{F}(x) = \left\{ d \mid d^{\top} \nabla c_i(x) = 0, \text{ for all } i \in \mathcal{E}, \\ d^{\top} \nabla c_i(x) \ge 0, \text{ for all } i \in \mathcal{A}(x) \cap \mathcal{I} \right\}$$

$$\min x_1 + x_2$$

min
$$x_1 + x_2$$
 s.t. $x_1^2 + x_2^2 - 2 = 0$

$$\min x_1 + x_2 \qquad \text{s.t.} \qquad 2 - x_1^2 - x_2^2 \ge 0$$

$$2-3$$

Case III: Two inequality constraints (Example 12.3)

$$\min x_1 + x_2$$

$$\min x_1 + x_2 \qquad \text{s.t.} \qquad 2 - x_1^2 - x_2^2 \ge 0, \quad x_2 \ge 0$$

Case III: Two inequality constraints (Example 12.3)

$$\min x_1 + x_2$$

$$\min x_1 + x_2 \qquad \text{s.t.} \qquad 2 - x_1^2 - x_2^2 \ge 0, \quad x_2 \ge 0$$

Case III: Two inequality constraints (Example 12.3)

$$\min_{x \in \mathbb{R}^n} f(x) \quad \text{subject to} \quad \begin{cases} c_i(x) = 0, & i \in \mathcal{E}, \\ c_i(x) \ge 0, & i \in \mathcal{I}, \end{cases} \tag{12.1}$$

Theorem 12.1 (First-Order Necessary Conditions).

Suppose that x^* is a local solution of (12.1), that the functions f and c_i in (12.1) are continuously differentiable, and that the LICQ holds at x^* . Then there is a Lagrange multiplier vector λ^* , with components λ_i^* , $i \in \mathcal{E} \cup \mathcal{I}$, such that the following conditions are satisfied at (x^*, λ^*)

$$\nabla_{x} \mathcal{L}(x^*, \lambda^*) = 0, \tag{12.34a}$$

$$c_i(x^*) = 0$$
, for all $i \in \mathcal{E}$, (12.34b)

$$c_i(x^*) \ge 0$$
, for all $i \in \mathcal{I}$, (12.34c)

$$\lambda_i^* \ge 0, \quad \text{for all } i \in \mathcal{I},$$
 (12.34d)

$$\lambda_i^* c_i(x^*) = 0$$
, for all $i \in \mathcal{E} \cup \mathcal{I}$. (12.34e)

Linear Independence Constraint Qualification (LICQ)

Given the point x and the active set $\mathcal{A}(x)$, we say that the linear independence constraint qualification (LICQ) holds if the set of active constraint gradients $\{\nabla c_i(x), i \in \mathcal{A}(x)\}$ is linearly independent.

Why are KKT-conditions so important?

- KKT conditions can be used to solve nonlinear programming problems, but only for very simple problems
- But: Most algorithms for constrained optimization look for candidate solutions that fulfill KKT conditions
 - These are iterative algorithms that stop when KKT conditions fulfilled
- And also:
 - When faced with an optimization problem that you don't know how to handle, write down the optimality conditions
 - Often you can learn about a problem by examining the properties of its optimal solutions
- And finally:
 - The Lagrange multipliers tell you the 'hidden cost' of constraints

Taylor Expansions

From calculus?

$$f(x) = f(a) + (x - a)f'(a) + \frac{(x - a)^2}{2}f''(a) + O(\|x - a\|^3)$$

This course:

$$f(x+h) = f(x) + hf'(x) + \frac{h^2}{2}f''(x) + O(\|h\|^3)$$

$$\min_{x \in \mathbb{R}^n} f(x)$$
 subject to $\begin{cases} c_i(x) = 0, & i \in \mathcal{E} \\ c_i(x) \geq 0, & i \in \mathcal{I} \end{cases}$

Lagrangian:
$$\mathcal{L}(x,\lambda) = f(x) - \sum_{i \in \mathcal{E} \cup \mathcal{I}} \lambda_i c_i(x)$$

KKT-conditions (First-order necessary conditions): If x^* is a local solution and LICQ holds, then there exist λ^* such that

$$\nabla_{x}\mathcal{L}(x^{*}, \lambda^{*}) = 0,$$

$$c_{i}(x^{*}) = 0, \quad \forall i \in \mathcal{E},$$

$$c_{i}(x^{*}) \geq 0, \quad \forall i \in \mathcal{I},$$

$$\lambda_{i}^{*} \geq 0, \quad \forall i \in \mathcal{I},$$

$$\lambda_{i}^{*}c_{i}(x^{*}) = 0, \quad \forall i \in \mathcal{E} \cup \mathcal{I}.$$

$$\nabla_{x}\mathcal{L}(x^{*}, \lambda^{*}) = 0,$$

$$c_{i}(x^{*}) = 0, \quad \forall i \in \mathcal{E},$$

$$c_{i}(x^{*}) \geq 0, \quad \forall i \in \mathcal{I},$$

$$\lambda_{i}^{*} \geq 0, \quad \forall i \in \mathcal{I},$$

$$\lambda_{i}^{*}c_{i}(x^{*}) = 0, \quad \forall i \in \mathcal{E} \cup \mathcal{I}.$$