Fortgeschrittene Techniken der Kryptographie

Jürgen Fuß

Episode 9: Elliptische Kurven in der Krytographie

Elliptische Kurven über \mathbb{Z}_p

Elliptische Kurven über \mathbb{Z}_p

Die Formeln für elliptische Kurven kann man auch verwenden, wenn man die Koordinaten der Punkte als Restklassen modulo $p \in \mathbb{P}$ betrachtet, in den Formeln kommen nur die Grundrechenoperationen $+,-,\cdot$ und / vor, die ja auch für solche Restklassen funktionieren.

Satz

Es sei $p \in \mathbb{P}$ und p > 3. Weiterhin seien $a, b \in \mathbb{Z}_p$ so, dass $4a^3 + 27b^2 \neq 0$ und $\mathcal{E}: y^2 = x^3 + ax + b \pmod{p}$ eine elliptische Kurve über \mathbb{Z}_p und $P = (x_1, y_1)$ und $Q = (x_2, y_2)$ zwei Punkte auf \mathcal{E} . Dann lassen sich die Koordinaten (x_3, y_3) von R := P + Q nach den selben Formeln wie zuvor berechnen.

$$y^{2} = \chi^{3} + a \chi + b \qquad (\chi, \gamma) \qquad (\chi, -\gamma)$$
pHop($p^{2} + 1$ max.

Satz von Hasse

Es sei n die Anzahl der Punkte auf einer elliptischen Kurve modulo p. Dann ist

$$(p+1)-2\sqrt{p} \le n \le (p+1)+2\sqrt{p}.$$

(D.h. die Anzahl der Punkte auf der elliptischen Kurve ist von der selben Größenordnung wie p, denn \sqrt{p} hat nur halb so viele Stellen wie p.)

Beispiel (1)

Untersuchen wir die elliptische Kurve

$$y^2 = x^3 + 4x + 4 \pmod{29}$$
.

Dazu bestimmen wir für jedes $x \in \mathbb{Z}_{29}$ den Wert der rechten Seite der Kurvengleichung.

		,	(2, 7) (2, 22)									(13,7	2) (14,22)
X	0	1	2	3	4	5 6	7	8	9	10	11	12	13	14
	4	9		14	_		27	26	15	, 0	16	11	20	20
	$ \begin{array}{cccc} (0,2) & (4,5) & (5,2) & (40,6) & (44,6) \\ (0,27) & (4,16) & (5,17) & (44,6) & (44,6) \end{array} $) .5)		
X	15	16		' 18	19	20	21	22	23	24	25	26	27	28
	17	17	26	5 21	8	22	11	10	25	4	11	23	17	28
	(20,15) (23,5) (23,24) (2													

Beispiel (2)

Untersuchen wir die elliptische Kurve

$$y^2 = x^3 + 4x + 4 \pmod{29}$$
.

Nun berechnen wir für alle $y \in \mathbb{Z}_{29}$ den Wert der linken Seite der Kurvengleichung.

у	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	
	0	1	4	9	16	25	7	20	6	23	13	5	28	24	22	
у	28	2	7	26	25	24	23	22	21	20	19	18	17	16	15	
	1	4	1	9	16	25	7	20	6	23	13	5	28	3 24	- 22	_

Beispiel (3)

Damit lässt sich nun einfach erkennen, dass die folgenden Punkte Elemente der elliptischen Kurve sind.

$$(0,2), (0,27), (1,3), (1,26), (2,7), (2,22), (5,2), (5,27), (10,0),$$

 $(11,4), (11,25), (13,7), (13,22), (14,7), (14,22), (20,14), (20,15),$
 $(23,5), (23,24), (24,2), (24,27), (26,9), (26,20), (28,12), (28,17), \infty$

Die Ordnung der Gruppe ist 26. Dies ist innerhalb der Hasse-Grenzen $(29+1)\pm 2\sqrt{29}$, die hier eine Ordnung zwischen 20 und 40 ergeben.

Beispiel (4)

- Für den Punkt P = (10,0) ist $2 \cdot P = P + P = \infty$.
- ▶ Die Ordnung von *P* ist 2.
- ▶ Punkte auf dieser elliptischen Kurve haben die Ordnungen 1, 2, 13 oder 26, denn dies sind die einzigen Teiler der Gruppenordnung.
- ▶ Der Punkt Q=(2,7) hat die Ordnung 26. Um dies zu verifizieren, muss ausgeschlossen werden, dass $13 \cdot Q = \infty$ und dass $2 \cdot Q = \infty$. Dazu berechnet man $2 \cdot Q = (5,2) \neq \infty$ und $13 \cdot Q = 8Q + 4Q + Q = (11,25) + (23,5) + (2,7) = (10,0) \neq \infty$.
- Somit ist Q erzeugendes Element der Gruppe.
- ▶ Der diskrete Logarithmus von (10,0) zur Basis Q ist 13.


```
7.P= 1P+2P+4P
7=2°+21+22
> import si
> from si import EC, Point
                                  1+2+4
> e = EC(4, 4, 29)
> si.hasse bounds( 29 )
                                         2P
(20.40)
> e.order()
                                        2(2P) = 4P
26
> e.list_of_points()
[Point(EC(4, 4, 29), (0, 2)),
                                                 3 x Vect.
 Point( EC( 4, 4, 29 ), ( 0, 27 ) ),
 [\ldots]
Point(EC(4, 4, 29), (28, 17)),
 Point( EC( 4, 4, 29 ), None )]
```



```
> p = Point(e, (10,0))
> p.double()
Point( EC( 4, 4, 29 ), None )
> 2*p
Point( EC( 4, 4, 29 ), None )
> q = Point(e, (2,7))
> q.inverse()
Point(EC(4, 4, 29), (2, 22))
> -q
Point( EC( 4, 4, 29 ), ( 2, 22 ) )
> q.double()
Point(EC(4, 4, 29), (5, 2))
```



```
> q.double( verbose=2 )
      doubling (2, 7):
           k = (3*2**2 + 4) / (2*7)
             = 16 / 14
             = 16 * 27
             = 26
          x3 = 26**2 - 2*2
          y3 = -7 + 26*(2-5)
             = -7 + 26*26
      2 * (2, 7) = (5, 2)
Point(EC(4, 4, 29), (5, 2))
```



```
> 13*q
Point( EC( 4, 4, 29 ), ( 10, 0 ) )
> q.mult( 13, verbose=1 )
computing 13 * ( 2, 7 )
adding ... doubling ... doubling ...
adding ... doubling ... adding ...
Point( EC( 4, 4, 29 ), ( 10, 0 ) )
> p+q
Point( EC( 4, 4, 29 ), ( 1, 3 ) )
```



```
> p.add( q, verbose=2 )
adding (10, 0) and (2, 7):
 k = (0-7) / (10-2)
   = 22 / 8
   = 22 * 11
   = 10
x3 = 10**2 - 10 - 2
   = 1
 y3 = -0 + 10*(10-1)
   = -0 + 10*9
   = 3
(10, 0) + (2, 7) = (1, 3)
Point(EC(4, 4, 29), (1, 3))
```


Kryptografische Verfahren mit elliptischen Kurven

Rückblick: Diffie-Hellman mit Gruppen

Diffie-Hellman-Schlüsselaustausch in einer Gruppe G

Setup: Alice und Bob einigen sich auf eine Gruppe \mathbb{G} und auf ein Element $g \in \mathbb{G}$ mit der Ordnung ω . Diese Parameter (Domain Parameter) sind öffentlich.

Key Agreement:

Ephemeral ECDH

Setup: Alice und Bob einigen sich auf eine Primzahl p, eine elliptische Kurve $\mathcal{E}: y^2 = x^3 + ax + b$ modulo p und einen Punkt G mit primer Ordnung ω auf \mathcal{E} . Als Domain Parameter werden \mathcal{E} , G, p und ω veröffentlicht.

Key Agreement:

Rückblick: DSA – Domain-Parameter und Schlüsselerzeugung

Setup: Als Hashfunktion wird eine Hashfunktion H aus der SHA-x-Familie verwendet. Eine L Bit große Primzahl p wird vereinbart, so dass p-1 einen N Bit großen Primfaktor ω besitzt, weiterhin ein Element g der Ordnung ω in der Gruppe \mathbb{Z}_p^* .

Schlüsselerzeugung: Alice wählt zufällig eine Zahl $\alpha \in \mathbb{Z}_{\omega}$. Sie berechnet

$$A:=g^{\alpha} \bmod p$$

und veröffentlicht ihren Public Key A. Den Private Key α hält sie geheim.

ECDSA – Domain-Parameter und Schlüsselerzeugung

ECDSA (FIPS 186)

Setup: Hier werden als Domain Parameter eine zumindest 256 Bit lange Primzahl p und eine **elliptische Kurve** $\mathcal E$ modulo p vereinbart, deren Ordnung einen großen Primfaktor ω besitzt, weiterhin ein Element G der Ordnung ω auf $\mathcal E$. Als Hashfunktion wird eine Hashfunktion H aus der SHA-x-Familie verwendet.

Schlüsselerzeugung: Alice wählt zufällig eine Zahl $\alpha \in \mathbb{Z}_{\omega}$. Sie berechnet

$$A := \alpha \cdot G$$

und veröffentlicht ihren Public Key ${\it A}$. Den Private Key α hält sie geheim.

Rückblick: DSA – Signieren und verifizieren

Signieren: Um zu signieren, wählt Alice zufällig eine Zahl $k \in \mathbb{Z}_{\omega}$. Dann berechnet sie die Signatur (r, s) der Nachricht m als

$$r := (g^k \mod p) \mod \omega,$$

$$s := k^{-1}(H(m) + \alpha r) \mod \omega.$$

Verifizieren: Will Bob die Signatur überprüfen, so führt er die folgenden Schritte durch:

- **1**. Er prüft: Ist $1 \le r < \omega$ und $1 \le s < \omega$?
- 2. Er berechnet $x := s^{-1} \cdot H(m) \mod \omega$ und $y := s^{-1} \cdot r \mod \omega$.
- 3. Er prüft: Ist $r = (g^x \cdot A^y \mod p) \mod \omega$?

ECDSA - Signieren und verifizieren

ECDSA (FIPS 186-5)

Signieren: Um zu signieren, wählt Alice zufällig eine Zahl $k \in \mathbb{Z}_{\omega}$. Dann berechnet sie die Signatur (r,s) der Nachricht m als

$$r := (k \cdot G)_{x-\text{Koord}} \mod \omega,$$

$$s := k^{-1}(H(m) + \alpha r) \mod \omega.$$

Verifizieren: Will Bob die Signatur überprüfen, so führt er die folgenden Schritte durch:

- 1. Er prüft: Ist $1 \le r < \omega$ und $1 \le s < \omega$?
- 2. Er berechnet $x := s^{-1} \cdot H(m) \mod \omega$ und $y := s^{-1} \cdot r \mod \omega$.
- 3. Er prüft: Ist $r = (x \cdot G + y \cdot A)_{x-Koord} \mod \omega$?

