Метод деления отрезка пополам

Допустим, что мы нашли отрезок [a;b], в котором расположено искомое значение корня $x = x^*$, т.е. $a < x^* < b$.

Пусть для определенности F(a) < 0, F(b) > 0 (рис. 2.1). В качестве начального приближения корня x_0 принимается середина этого отрезка, т.е. $x_0 = (a+b)/2$. Далее исследуем значение функции F(x) на концах отрезков $[a; x_0]$ и $[x_0; b]$. Тот из них, на концах которого F(x) принимает значения разных знаков, содержит искомый корень. Поэтому его принимаем в качестве нового отрезка. Вторую половину отрезка [a; b] отбрасываем. В качестве первой итерации корня принимаем середину нового отрезка и т. д.

Рис. 2.1 Метод деления отрезка пополам.

|b-a|< ϵ , счет прекращается.

Таким образом, после каждой итерации отрезок, на котором расположен корень, уменьшается вдвое, т.е. после nитераций он сокращается в 2^n раз. Если полученного длина отрезка становится допустимой меньше погрешности, T.e.

Метод Ньютона (метод касательных)

Суть метода состоит в том, что на k -й итерации в точке $(x_k; F(x_k))$ строится касательная к кривой y = F(x) и ищется точка пересечения касательной с осью абсцисс (рис. 2.6). Если задан интервал изоляции корня [a;b], то за начальное приближение x_0 принимается тот конец отрезка, на котором

$$F(x_0)F''(x_0) > 0. (2.1)$$

Уравнение касательной, проведенной к кривой y = F(x) в точке M_0 с координатами x_0 и $F(x_0)$, имеет вид:

$$y - F(x_0) = F'(x_0)(x - x_0)$$
 (2.2)

Рис. 2.6. Метод касательных.

За следующее приближение корня x_1 примем абсциссу точки пересечения касательной с осью OX. Из (1.2) при $x = x_1$, $y = y_1 = 0$ получим

$$x_1 = x_0 - \frac{F(x_0)}{F'(x_0)} \tag{2.3}$$

При этом необходимо, чтобы $F'(x_0) \neq 0$.

Аналогично могут быть найдены и следующие приближения как точки пересечения с осью абсцисс касательных, проведенных в точках M_1 , M_2 и т.д. Формула для k+1-го приближения имеет вид:

$$x_{k+1} = x_k - \frac{F(x_k)}{F'(x_k)}$$
 (2.4)

Для завершения итерационного процесса можно использовать условия $|F(x_k)| < \varepsilon$ или $|x_{k+1} - x_k| < \varepsilon$.

Объем вычислений в методе Ньютона больше, чем в других методах, поскольку приходится находить значение не только функции F(x), но и ее производной. Однако скорость сходимости здесь значительно выше.

Метод простой итерации

Для использования этого метода исходное нелинейное уравнение F(x) = 0 необходимо привести к виду $x = \varphi(x)$.

В качестве $\phi(x)$ можно принять функцию $\phi(x) = x - F(x)/M$, где M - неизвестная постоянная величина, которая определяется из условия сходимости метода простой итерации $0 < |\phi'(x)| < 1$. При этом для определения M условие сходимости записывается в следующем виде:

$$|1 - F'(x_0)/M| < 1$$
 или $M = 1,01 \cdot F'(x_0)$. (2.5)

Если известно начальное приближение корня $x = x_0$, подставляя это значение в правую часть уравнения $x = \varphi(x)$, получаем новое приближение $x_1 = \varphi(x_0)$.

Далее подставляя каждый раз новое значение корня в уравнение $x = \varphi(x)$, получаем последовательность значений:

$$x_2 = \varphi(x_1), x_3 = \varphi(x_2), ..., x_{k+1} = \varphi(x_k), \qquad k = 1, 2, ..., n.$$

Итерационный процесс прекращается, если результаты двух последовательных итераций близки, т.е. $|x_{k+1}-x_k|<\epsilon$.

Геометрическая интерпретация метода простой итерации. Построим графики функций y=x и $y=\varphi(x)$. Корнем x^* уравнения $x=\varphi(x)$ является абсцисса пересечения кривой $y=\varphi(x)$ с прямой y=x (рис. 2.9). Взяв в качестве начальной точки x_0 , строим ломаную линию. Абсциссы вершин этой ломаной представляют собой последовательные приближения корня x^* . Из рисунка видно, что если $-1<\varphi'(x)<0$ на отрезке [a;b] (рис. 2.9a), то последовательные приближения $x_{k+1}=\varphi(x_k)$ колеблются около корня. Если же производная $0<\varphi'(x)<1$ (рис. 2.9б), то последовательные приближения сходятся монотонно.

Рис. 2.9. Геометрическая интерпретация метода простой итерации.

Численные методы решения нелинейных уравнений

Определить корни уравнения графически и уточнить один из них итерационными методами (методом деления отрезка пополам, методом Ньютона, методом простой итерации) с точностью 0,01:

1.
$$x^3 + 2x + 2 = 0$$

2.
$$x^3 - 2x + 2 = 0$$

3.
$$x^3 + 3x - 1 = 0$$

4.
$$x^3 + x - 3 = 0$$

5.
$$x^3 + 2x + 4 = 0$$

6.
$$(x+1)^2 = \frac{1}{x}$$

7.
$$x = (x+1)^3$$

8.
$$x^3 + 4x - 4 = 0$$

9.
$$x^3 + 6x - 1 = 0$$

10.
$$x^3 + 12x - 12 = 0$$

11.
$$x^3 + 0.4x - 1.2 = 0$$

12.
$$x^3 + 0.5x - 1 = 0$$

13.
$$x^3 + 2x - 4 = 0$$

14.
$$x^3 + 0.4x + 2 = 0$$

15.
$$x^3 + 9x - 11 = 0$$

16.
$$x^3 + 6x + 3 = 0$$

17.
$$x^3 + 5x - 1 = 0$$

18.
$$x^3 + 9x - 3 = 0$$

19.
$$x^3 + 10x - 5 = 0$$

20.
$$x^3 + 13x - 13 = 0$$

21.
$$x^3 + 7x - 7 = 0$$

22.
$$x^3 + 4x - 2 = 0$$

23.
$$x^3 + 5x - 4 = 0$$

24.
$$x^3 + 8x - 6 = 0$$

25.
$$x^3 + 2.5x - 4 = 0$$

26.
$$x^3 + 2.5x - 5 = 0$$

27.
$$x^3 + 5.5x - 2 = 0$$

28.
$$x^3 + 7x - 3 = 0$$

29.
$$x^3 + 8x - 5 = 0$$

30.
$$x^3 + 15x - 10 = 0$$

31.
$$\ln x - \frac{1}{x} = 0$$

32.
$$\cos x + 2x - 1,5 = 0$$

33.
$$\ln x - \sin x = 0$$

34.
$$\ln x - \cos x = 0$$

$$35. \qquad \cos x - x = 0$$

36.
$$\sin x + x - 1 = 0$$

37.
$$\ln x - \frac{x}{2} - \frac{m}{2} = 0$$

38.
$$x^3 - 5x^2 + 2x + 8 = 0$$

39.
$$\sin x - \sqrt{1 - x^2} = 0, \ 0 \le x \le 1$$

$$40. x^3 - 2x^2 - 5x + 6 = 0$$