Aula 23

Teorema (Liouville): Seja $f: \mathbb{C} \to \mathbb{C}$ inteira e limitada, ou seja, tal que existe um M>0 para o qual $|f(z)|\leq M$ para todo o $z\in \mathbb{C}$. Então f é constante.

Teorema Fundamental da Álgebra: Seja

$$P_n(z) = a_n z^n + a_{n-1} z^{n-1} + \dots + a_1 z + a_0,$$

com $a_n, a_{n-1}, \ldots, a_1, a_0 \in \mathbb{C}$, $a_n \neq 0$, um polinómio de grau n. Então existe $z_0 \in \mathbb{C}$ tal que $P_n(z_0) = 0$.

<u>Definição</u>: Seja $\Omega \subset \mathbb{R}^n$ aberto, e $f: \Omega \to \mathbb{R}, \mathbb{C}$ de classe $C^2(\Omega)$. Então, diz-se que f é **harmónica** se

$$\Delta f = \frac{\partial^2 f}{\partial x_1^2} + \frac{\partial^2 f}{\partial x_2^2} + \dots + \frac{\partial^2 f}{\partial x_n^2} = 0.$$

<u>Teorema</u>: Seja $f: D_f \subset \mathbb{C} \to \mathbb{C}$, dada por f(z) = u(x,y) + iv(x,y) uma função holomorfa na região D_f . Então u e v são funções reais harmónicas em D_f , ou seja, f é harmónica:

$$\Delta f = \Delta u + i \Delta v = 0,$$

para todo o $z = x + iy \in D_f$.

<u>Definição</u>: Seja $\Omega \subset \mathbb{R}^2$ aberto, e $u:\Omega \to \mathbb{R}$ uma função harmónica. Então, diz-se que $v:\Omega \to \mathbb{R}$ é **conjugado** harmónico de u em Ω se f=u+iv é holomorfa em $\Omega \subset \mathbb{C}$.

<u>Teorema</u>: Seja $\Omega \subset \mathbb{R}^2$ uma região simplesmente conexa. Então, se $u:\Omega \to \mathbb{R}^2$ é harmónica em Ω , existe conjugado harmónico nesse conjunto, que é único a menos duma constante real aditiva. Em particular, toda a função harmónica é infinitamente diferenciável.

Séries

Seja $\{z_j\}$ uma sucessão complexa. Quer-se somar os infinitos termos da sucessão

$$\sum_{j=1}^{\infty} z_j = z_1 + z_2 + z_3 + \cdots$$

<u>Definição</u>: Dada uma sucessão complexa $\{z_j\}$ chama-se **sucessão das somas parciais** à sucessão

$$S_n = \sum_{j=1}^n z_j = z_1 + z_2 + z_3 + \dots + z_n.$$

Diz-se que a série $\sum_{j=1}^{\infty} z_j$ converge se converge a sucessão das somas parciais. Nesse caso chama-se **soma da série** ao limites da sucessão das somas parciais,

$$\sum_{j=1}^{\infty} z_j = \lim_{n \to \infty} S_n = \lim_{n \to \infty} \sum_{j=1}^n z_j.$$

Proposição: Uma série da forma

$$\sum_{j=j_0}^{\infty} r^j,$$

diz-se uma **série geométrica de razão** $r \in \mathbb{C}$. Diverge se $|r| \geq 1$ e converge para |r| < 1 com soma

$$\sum_{j=j_0}^{\infty} r^j = r^{j_0} \frac{1}{1-r}.$$

Proposição: Se uma série $\sum_{j=1}^{\infty} z_j$ converge então, necessariamente, o termo geral é um infinitésimo, ou seja $\lim_{j\to\infty} z_j = 0$. Equivalentemente, se $z_j \not\to 0$ então a correspondente série diverge.

Proposição: Se $\sum_{j=1}^{\infty} z_j$ e $\sum_{j=1}^{\infty} w_j$ são séries convergentes, então também o são as séries

- $\sum_{j=1}^{\infty} (z_j + w_j)$ e a soma é $\sum_{j=1}^{\infty} z_j + \sum_{j=1}^{\infty} w_j$.
- $\sum_{j=1}^{\infty} cz_j$ para qualquer $c \in \mathbb{C}$ e a soma é $c \sum_{j=1}^{\infty} z_j$.

Proposição: Uma série $\sum_{j=1}^{\infty} z_j$ converge se e só se a sucessão das somas parciais é uma sucessão de Cauchy

$$\forall_{\delta>0} \ \exists_{N\in\mathbb{N}} : n,m>N \Rightarrow |S_n-S_m| = \left|\sum_{j=m+1}^n z_j\right| < \delta.$$

Corolário: A convergência duma série $\sum_{j=1}^{\infty} z_j$ não se altera por modificações num número finito de termos (mas, no caso de convergir, o valor da soma pode alterar-se).

Corolário: Se a série $\sum_{j=1}^{\infty} |z_j|$ converge, então $\sum_{j=1}^{\infty} z_j$ converge.