Data-driven systems theory, signal processing, and control

Ivan Markovsky

The problems and methods reviewed today differ from those you've learned yesterday

The problems and methods reviewed today differ from those you've learned yesterday

yesterday:

object problem

approach

parametric PDEs given $\{\xi_i, u_i\}$, find $\xi \mapsto u$ neural network

The problems and methods reviewed today differ from those you've learned yesterday

yesterday:

object problem

parametric PDEs given $\{\xi_i, u_i\}$, find $\xi \mapsto u$

approach neural network

today:

object problem approach linear time-invariant systems given *u*, predict, filter, control behavioral systems theory

We are aiming at direct data-driven methods for analysis and design of dynamical systems

We are aiming at direct data-driven methods for analysis and design of dynamical systems

the classical approach is "indirect data-driven"

Data-driven does not mean model-free

data-driven methods make model assumptions

Data-driven does not mean model-free

data-driven methods make model assumptions

but don't use parametric representations

Data-driven does not mean model-free

data-driven methods make model assumptions
but don't use *parametric representations*they are *non-parametric* using directly the data

Outline

Example: Free fall prediction

Linear time-invariant systems

Data-driven representation

Dealing with noise

Outline

Example: Free fall prediction

Linear time-invariant systems

Data-driven representation

Dealing with noise

object with mass m, falling in gravitational field

object with mass m, falling in gravitational field

▶ w — position

object with mass m, falling in gravitational field

- ▶ w position
- $\mathbf{v} := \dot{\mathbf{w}}$ velocity

object with mass m, falling in gravitational field

- ▶ w position
- $\mathbf{v} := \dot{\mathbf{w}} \text{velocity}$
- \triangleright w(0), v(0) initial condition

object with mass m, falling in gravitational field

- ▶ w position
- $\mathbf{v} := \dot{\mathbf{w}} \text{velocity}$
- \triangleright w(0), v(0) initial condition

task: given initial condition, find the trajectory w

object with mass m, falling in gravitational field

- w position
- $\mathbf{v} := \dot{\mathbf{w}}$ velocity
- \triangleright w(0), v(0) initial condition

task: given initial condition, find the trajectory w

model-based approach:

object with mass m, falling in gravitational field

- w position
- $\mathbf{v} := \dot{\mathbf{w}}$ velocity
- \triangleright w(0), v(0) initial condition

task: given initial condition, find the trajectory w

1. physics → parametric model

model-based approach:

object with mass m, falling in gravitational field

- ▶ w position
- $\mathbf{v} := \dot{\mathbf{w}}$ velocity
- \triangleright w(0), v(0) initial condition

task: given initial condition, find the trajectory w

1. physics → parametric model

model-based approach: 2. model parameter estimation

object with mass m, falling in gravitational field

- ▶ w position
- $\mathbf{v} := \dot{\mathbf{w}} \text{velocity}$
- \triangleright w(0), v(0) initial condition

task: given initial condition, find the trajectory w

- 1. physics → parametric model
- model-based approach: 2. model parameter estimation
 - 3. model + ini. conditions $\mapsto w$

object with mass m, falling in gravitational field

- w position
- $\mathbf{v} := \dot{\mathbf{w}} \text{velocity}$
- \triangleright w(0), v(0) initial condition

task: given initial condition, find the trajectory w

1. physics \mapsto parametric model

model-based approach: 2. model parameter estimation

3. model + ini. conditions $\mapsto w$

▶ data-driven approach: data $w_d^1, ..., w_d^N$ + ini. cond. $\mapsto w$

Modeling from first principles yields affine time-invariant dynamical system

second law of Newton + the law of gravity

$$m\ddot{w} = m\begin{bmatrix}0\\-9.81\end{bmatrix} + f$$
, $w(0) = w_{\text{ini}}$ and $\dot{w}(0) = v_{\text{ini}}$

- 9.81 gravitational constant
- $f = -\gamma \dot{w}$ force due to friction in the air

Modeling from first principles yields affine time-invariant dynamical system

second law of Newton + the law of gravity

$$m\ddot{w}=m\left[egin{array}{c} 0 \\ -9.81 \end{array}
ight]+f, \quad w(0)=w_{\mathrm{ini}} \ \mathrm{and} \ \dot{w}(0)=v_{\mathrm{ini}}$$

- 9.81 gravitational constant
- $f = -\gamma \dot{w}$ force due to friction in the air

1st order equation

$$\dot{x} = Ax$$
, $w = Cx$, $x(0) = x_{ini}$

- \blacktriangleright state $x := (w_1, \dot{w}_1, w_2, \dot{w}_2, -9.81)$
- initial state $x_{\text{ini}} := (w_{\text{ini},1}, v_{\text{ini},1}, w_{\text{ini},2}, v_{\text{ini},2}, -9.81)$
- A, C model parameters (depend on m and γ)

data: N, discrete-time trajectories w_d^1, \ldots, w_d^N

data: N, discrete-time trajectories w_d^1, \dots, w_d^N

rank
$$\begin{bmatrix} w_d^1 & \cdots & w_d^N \end{bmatrix} = 5$$
 "informativity" condition

data: N, discrete-time trajectories w_d^1, \ldots, w_d^N

rank
$$\begin{bmatrix} w_d^1 & \cdots & w_d^N \end{bmatrix} = 5$$
 "informativity" condition

algorithm for data-driven prediction:

1. solve
$$\begin{bmatrix} w_{\mathrm{d}}^{1}(1) & \cdots & w_{\mathrm{d}}^{N}(1) \\ w_{\mathrm{d}}^{1}(2) & \cdots & w_{\mathrm{d}}^{N}(2) \\ w_{\mathrm{d}}^{1}(3) & \cdots & w_{\mathrm{d}}^{N}(3) \end{bmatrix} g = \underbrace{\begin{bmatrix} w(1) \\ w(2) \\ w(3) \end{bmatrix}}_{\text{ini. cond.}}$$

data: N, discrete-time trajectories w_d^1, \ldots, w_d^N

rank
$$\begin{bmatrix} w_d^1 & \cdots & w_d^N \end{bmatrix} = 5$$
 "informativity" condition

algorithm for data-driven prediction:

1. solve
$$\begin{bmatrix} w_d^1(1) & \cdots & w_d^N(1) \\ w_d^1(2) & \cdots & w_d^N(2) \\ w_d^1(3) & \cdots & w_d^N(3) \end{bmatrix} g = \underbrace{\begin{bmatrix} w(1) \\ w(2) \\ w(3) \end{bmatrix}}_{\text{ini. cond.}}$$

2. define
$$w := \begin{bmatrix} w_d^1 & \cdots & w_d^N \end{bmatrix} g$$

first principles modeling

first principles modeling

use Newton's 2nd law, law of gravity, and friction

first principles modeling

- use Newton's 2nd law, law of gravity, and friction
- \triangleright and model parameters m, γ , gravitational constant

first principles modeling

- use Newton's 2nd law, law of gravity, and friction
- \triangleright and model parameters m, γ , gravitational constant
- lead to autonomous affine time-invariant system

first principles modeling

- use Newton's 2nd law, law of gravity, and friction
- \triangleright and model parameters m, γ , gravitational constant
- lead to autonomous affine time-invariant system

data-driven approach

first principles modeling

- use Newton's 2nd law, law of gravity, and friction
- \triangleright and model parameters m, γ , gravitational constant
- lead to autonomous affine time-invariant system

data-driven approach

bypasses the knowledge of the physical laws

first principles modeling

- use Newton's 2nd law, law of gravity, and friction
- \triangleright and model parameters m, γ , gravitational constant
- lead to autonomous affine time-invariant system

data-driven approach

- bypasses the knowledge of the physical laws
- and prior knowledge or estimation of model parameters

first principles modeling

- use Newton's 2nd law, law of gravity, and friction
- \triangleright and model parameters m, γ , gravitational constant
- lead to autonomous affine time-invariant system

data-driven approach

- bypasses the knowledge of the physical laws
- and prior knowledge or estimation of model parameters
- no hyper-parameters to tune

The exercises are linked to the lectures, they are an integral part of the course

"I hear, I forget; I see, I remember; I do, I understand."

"I hear, I forget; I see, I remember; I do, I understand."

your task

1. write a function for model-based free fall simulation

"I hear, I forget; I see, I remember; I do, I understand."

your task

- 1. write a function for model-based free fall simulation
- 2. collect free falls data w_d^1, \dots, w_d^N using the model

"I hear, I forget; I see, I remember; I do, I understand."

your task

- 1. write a function for model-based free fall simulation
- 2. collect free falls data w_d^1, \dots, w_d^N using the model
- 3. implement and try the direct data-driven method

"I hear, I forget; I see, I remember; I do, I understand."

your task

- 1. write a function for model-based free fall simulation
- 2. collect free falls data w_d^1, \dots, w_d^N using the model
- 3. implement and try the direct data-driven method

if you have questions

"I hear, I forget; I see, I remember; I do, I understand."

your task

- 1. write a function for model-based free fall simulation
- 2. collect free falls data w_d^1, \dots, w_d^N using the model
- 3. implement and try the direct data-driven method

if you have questions

- option 1: use the "raise hand" function
- option 2: post them in the chat

"I hear, I forget; I see, I remember; I do, I understand."

your task

- 1. write a function for model-based free fall simulation
- 2. collect free falls data w_d^1, \dots, w_d^N using the model
- 3. implement and try the direct data-driven method

if you have questions

- option 1: use the "raise hand" function
- option 2: post them in the chat

Outline

Example: Free fall prediction

Linear time-invariant systems

Data-driven representation

Dealing with noise

Signals are functions of time

 $(\mathbb{R}^q)^{\mathscr{T}}$ — signal space: functions $\mathscr{T} \mapsto (\mathbb{R}^q)$

Signals are functions of time

$$(\mathbb{R}^q)^{\mathscr{T}}$$
 — signal space: functions $\mathscr{T} \mapsto (\mathbb{R}^q)$

 $w \in (\mathbb{R}^q)^{\mathscr{T}}$ — real vector-valued signal

Signals are functions of time

$$(\mathbb{R}^q)^{\mathscr{T}}$$
 — signal space: functions $\mathscr{T} \mapsto (\mathbb{R}^q)$

 $w \in (\mathbb{R}^q)^{\mathscr{T}}$ — real vector-valued signal

 $w(t) \in \mathbb{R}^q$ is the value of w at time $t \in \mathcal{T}$

Signals are classified according to # of variables q and type of time axis $\mathscr T$

q = 1 — scalar signal

Signals are classified according to # of variables q and type of time axis \mathscr{T}

```
q = 1 — scalar signal q > 1 — vector signal
```

Signals are classified according to # of variables q and type of time axis \mathscr{T}

```
q = 1 — scalar signal q > 1 — vector signal
```

 $\mathscr{T} = \mathbb{R}$ — continuous-time

Signals are classified according to # of variables q and type of time axis \mathcal{T}

```
q = 1 — scalar signal q > 1 — vector signal
```

 $\mathcal{T} = \mathbb{R}$ — continuous-time $\mathcal{T} = \mathbb{Z}$ — discrete-time

Signals are classified according to # of variables q and type of time axis \mathcal{T}

$$q = 1$$
 — scalar signal $q > 1$ — vector signal

$$\mathcal{T} = \mathbb{R}$$
 — continuous-time $\mathcal{T} = \mathbb{Z}$ — discrete-time

 $(\mathbb{R}^q)^\mathbb{R} \mapsto (\mathbb{R}^q)^\mathbb{Z}$ — sampling / time-discretization

$$(\sigma w)(t) := w(t+1)$$
 — unit-shift operator

$$(\sigma w)(t) := w(t+1)$$
 — unit-shift operator $\underbrace{R_0 + R_1 \sigma + \ldots + R_\ell \sigma^\ell}_{R(\sigma)}$ — polynomial operator

$$(\sigma w)(t) := w(t+1)$$
 — unit-shift operator

$$\underbrace{R_0 + R_1 \sigma + \ldots + R_\ell \sigma^\ell}_{R(\sigma)}$$
 — polynomial operator

 $w|_{[t_1,t_2]}$ and $w|_T$ — restriction to interval

The classical view of dynamical system is a "signal processor": an input/output map

The classical view of dynamical system is a "signal processor": an input/output map

accepts input signal and produces output signal

The classical view of dynamical system is a "signal processor": an input/output map

accepts input signal and produces output signal

intuition: the input causes the output

 $\mathscr{B} \subset (\mathbb{R}^q)^{\mathbb{Z}}$ — q-variate discrete-time system

 $\mathscr{B} \subset (\mathbb{R}^q)^{\mathbb{Z}}$ — q-variate discrete-time system

▶ q = 1 — scalar system

 $\mathscr{B} \subset (\mathbb{R}^q)^{\mathbb{Z}}$ — q-variate discrete-time system

- ightharpoonup q = 1 scalar system
- ▶ q > 1 multivariable system

$$\mathscr{B} \subset (\mathbb{R}^q)^{\mathbb{Z}}$$
 — *q*-variate discrete-time system

- ightharpoonup q = 1 scalar system
- ▶ q > 1 multivariable system

 $w \in \mathcal{B}$ — w is a trajectory of \mathcal{B}

$$\mathscr{B} \subset (\mathbb{R}^q)^{\mathbb{Z}}$$
 — q -variate discrete-time system

- ▶ q > 1 multivariable system

$$w \in \mathcal{B}$$
 — w is a trajectory of \mathcal{B}

 \blacktriangleright w is allowed/predicted by \mathscr{B}

$$\mathscr{B} \subset (\mathbb{R}^q)^{\mathbb{Z}}$$
 — q -variate discrete-time system

- ▶ q > 1 multivariable system

$w \in \mathcal{B}$ — w is a trajectory of \mathcal{B}

- \blacktriangleright w is allowed/predicted by \mathscr{B}
- \triangleright \mathscr{B} is unfalsified by w

$$\mathscr{B} \subset (\mathbb{R}^q)^{\mathbb{Z}}$$
 — q -variate discrete-time system

- ▶ q > 1 multivariable system

$$w \in \mathcal{B}$$
 — w is a trajectory of \mathcal{B}

- \triangleright w is allowed/predicted by \mathscr{B}
- \triangleright \mathscr{B} is unfalsified by w

 $\mathscr{B}|_T$ — restriction of \mathscr{B} to the interval $1, \ldots, T$

a given ${\mathscr B}$ allows different representations

a given \mathscr{B} allows different representations

parametric vs non-parametric representations

a given ${\mathscr B}$ allows different representations

- parametric vs non-parametric representations
- uniqueness of the parameters

a given ${\mathscr B}$ allows different representations

- parametric vs non-parametric representations
- uniqueness of the parameters
- how to switch from one representation to another?

a given ${\mathscr B}$ allows different representations

- parametric vs non-parametric representations
- uniqueness of the parameters
- how to switch from one representation to another?

different representations \leadsto different methods

a given ${\mathscr B}$ allows different representations

- parametric vs non-parametric representations
- uniqueness of the parameters
- how to switch from one representation to another?

different representations \leadsto different methods

problems related to a system \mathcal{B} :

$$\mathscr{B} = \{ w \mid f(w) = 0 \}$$
 is a representation of \mathscr{B}

a given ${\mathscr B}$ allows different representations

- parametric vs non-parametric representations
- uniqueness of the parameters
- how to switch from one representation to another?

different representations \leadsto different methods

problems related to a system \mathcal{B} :

 $\triangleright \mathscr{B} \mapsto w$ — simulation

$$\mathscr{B} = \{ w \mid f(w) = 0 \}$$
 is a representation of \mathscr{B}

a given ${\mathscr B}$ allows different representations

- parametric vs non-parametric representations
- uniqueness of the parameters
- how to switch from one representation to another?

different representations \leadsto different methods

problems related to a system \mathcal{B} :

- $\triangleright \mathscr{B} \mapsto w$ simulation
- $ightharpoonup w_d \mapsto \mathscr{B}$ identification

$$\mathscr{B} = \{ w \mid f(w) = 0 \}$$
 is a representation of \mathscr{B}

a given ${\mathscr B}$ allows different representations

- parametric vs non-parametric representations
- uniqueness of the parameters
- how to switch from one representation to another?

different representations --> different methods

problems related to a system \mathcal{B} :

- $\triangleright \mathscr{B} \mapsto w$ simulation
- \triangleright $w_d \mapsto \mathscr{B}$ identification
- noise filtering, prediction, control, ...

 $w \in (\mathbb{R}^2)^{\mathbb{R}_+}$ — object's position $(q = 2, \mathcal{T} = \mathbb{R}_+)$

$$w \in (\mathbb{R}^2)^{\mathbb{R}_+}$$
 — object's position $(q = 2, \mathscr{T} = \mathbb{R}_+)$

 $\mathscr{B} \subset (\mathbb{R}^2)^{\mathbb{R}_+}$ — all possible free-fall trajectories the object may have

$$w \in (\mathbb{R}^2)^{\mathbb{R}_+}$$
 — object's position $(q = 2, \ \mathscr{T} = \mathbb{R}_+)$

 $\mathscr{B}\subset (\mathbb{R}^2)^{\mathbb{R}_+}$ — all possible free-fall trajectories the object may have

representations

$$\begin{split} \mathscr{B} &= \left\{ \ w \in (\mathbb{R}^2)^{\mathbb{R}_+} \mid m \ddot{w} = m \begin{bmatrix} 0 \\ -9.81 \end{bmatrix} - \gamma \dot{w}, \ \begin{bmatrix} w(0) \\ \dot{w}(0) \end{bmatrix} \in \mathbb{R}^4 \right\} \\ &= \left\{ \ w \in (\mathbb{R}^2)^{\mathbb{R}_+} \mid \text{there is } x \in (\mathbb{R}^5)^{\mathbb{R}_+}, \text{ such that} \right. \\ &\qquad \qquad \dot{x} = Ax, \ w = Cx, \ x_5(0) = -9.81 \right\} \end{split}$$

 \mathscr{B} is linear system : $\iff \mathscr{B}$ is linear subspace

 \mathscr{B} is linear system : $\iff \mathscr{B}$ is linear subspace

 \mathscr{B} is time-invariant : $\iff \sigma\mathscr{B} = \mathscr{B}$

 \mathscr{B} is linear system : $\iff \mathscr{B}$ is linear subspace

 \mathscr{B} is time-invariant : $\iff \sigma\mathscr{B} = \mathscr{B}$

 \mathscr{B} is linear system $:\iff \mathscr{B}$ is linear subspace

 \mathscr{B} is time-invariant : $\iff \sigma\mathscr{B} = \mathscr{B}$

 \mathcal{L}^q linear time-invariant (LTI) model class

 $ightharpoonup m(\mathcal{B})$ — number of inputs

 \mathscr{B} is linear system $:\iff \mathscr{B}$ is linear subspace

 \mathscr{B} is time-invariant : $\iff \sigma\mathscr{B} = \mathscr{B}$

- ightharpoonup m(\mathscr{B}) number of inputs
- ▶ \(\ell(\mathscr{B})\) lag

 \mathscr{B} is linear system $:\iff \mathscr{B}$ is linear subspace

 \mathscr{B} is time-invariant : $\iff \sigma\mathscr{B} = \mathscr{B}$

- $ightharpoonup m(\mathscr{B})$ number of inputs
- ▶ \(\ell(\mathscr{P})\) lag
- $ightharpoonup \mathbf{n}(\mathscr{B})$ order

 \mathscr{B} is linear system $:\iff \mathscr{B}$ is linear subspace

$$\mathscr{B}$$
 is time-invariant : $\iff \sigma\mathscr{B} = \mathscr{B}$

- $ightharpoonup m(\mathscr{B})$ number of inputs
- ▶ \(\ell(\mathscr{P})\) lag
- $ightharpoonup \mathbf{n}(\mathscr{B})$ order

$$\mathscr{B} \in \mathscr{L}^q \implies \dim \mathscr{B}|_L = \mathbf{m}(\mathscr{B})L + \mathbf{n}(\mathscr{B}), \text{ for all } L \geq \ell(\mathscr{B})$$

$$\left\{ w \mid R_0 w(t) + R_1 w(t+1) + \dots + R_\ell w(t+\ell) = 0, \text{ for all } t \in \mathcal{T} \right\}$$

$$\left\{ w \mid R_0 w(t) + R_1 w(t+1) + \dots + R_\ell w(t+\ell) = 0, \text{ for all } t \in \mathscr{T} \right\}$$

$$\left\{ w \mid \underbrace{R_0 w + R_1 \sigma w + \dots + R_\ell \sigma^\ell}_{R(\sigma)} w = 0 \right\}$$

$$\left\{ w \mid R_0 w(t) + R_1 w(t+1) + \dots + R_\ell w(t+\ell) = 0, \text{ for all } t \in \mathscr{T} \right\}$$

$$\left\{ w \mid \underbrace{R_0 w + R_1 \sigma w + \dots + R_\ell \sigma^\ell}_{R(\sigma)} w = 0 \right\}$$

$$\Leftrightarrow \text{ker } R(\sigma)$$
(KER)

$$\left\{ w \mid R_0 w(t) + R_1 w(t+1) + \dots + R_\ell w(t+\ell) = 0, \text{ for all } t \in \mathscr{T} \right\}$$

$$\left\{ w \mid \underbrace{R_0 w + R_1 \sigma w + \dots + R_\ell \sigma^\ell}_{R(\sigma)} w = 0 \right\}$$

$$\Leftrightarrow \ker R(\sigma)$$
(KER)

the parameter is a polynomial matrix $R(z) \in \mathbb{R}^{g \times q}[z]$

Input/state/output representation is 1-st order vector difference equation

$$\left\{ \begin{array}{ll} w = \Pi \left[\begin{smallmatrix} u \\ y \end{smallmatrix} \right] \ \middle| \ \text{there is } x \in (\mathbb{R}^n)^\mathbb{N}, \text{ such that} \\ & \sigma x = Ax + Bu, \ y = Cx + Du \right\} \quad \text{(I/S/O)} \\ \\ x \quad - \quad \text{state} \quad , \quad n \quad := \quad \dim x \quad - \quad \text{order} \\ u \quad - \quad \text{input} \quad , \quad m \quad := \quad \dim u \quad - \quad \# \text{ of inputs} \\ y \quad - \quad \text{output} \quad , \quad p \quad := \quad \dim y \quad - \quad \# \text{ of outputs} \end{array} \right.$$

the parameters are:

- **permutation matrix** $\Pi \in \mathbb{R}^{q \times q}$ and
- ▶ matrices $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times m}$, $C \in \mathbb{R}^{p \times n}$, $D \in \mathbb{R}^{p \times m}$

 $w \in (\mathbb{R}^q)^{\mathscr{T}}$ signals are functions of time

 $w \in (\mathbb{R}^q)^{\mathscr{T}}$ signals are functions of time

 $\mathscr{B}\subset (\mathbb{R}^q)^\mathbb{Z}$ systems are sets of signals \mathscr{B} can be represented by different equations

 $w \in (\mathbb{R}^q)^{\mathscr{T}}$ signals are functions of time

 $\mathscr{B} \subset (\mathbb{R}^q)^{\mathbb{Z}}$ systems are sets of signals \mathscr{B} can be represented by different equations

 \mathcal{L}^q LTI model class: shift-invariant subspaces

- $w \in (\mathbb{R}^q)^{\mathscr{T}}$ signals are functions of time
- $\mathscr{B}\subset (\mathbb{R}^q)^\mathbb{Z}$ systems are sets of signals \mathscr{B} can be represented by different equations
- \mathcal{L}^q LTI model class: shift-invariant subspaces
 - complexity: (# of inputs, lag, order)

- $w \in (\mathbb{R}^q)^{\mathscr{T}}$ signals are functions of time
- $\mathscr{B}\subset (\mathbb{R}^q)^\mathbb{Z}$ systems are sets of signals \mathscr{B} can be represented by different equations
- \mathcal{L}^q LTI model class: shift-invariant subspaces
 - complexity: (# of inputs, lag, order)
 - $\mathscr{B} = \ker R(\sigma)$ kernel representation

- $w \in (\mathbb{R}^q)^{\mathscr{T}}$ signals are functions of time
- $\mathscr{B}\subset (\mathbb{R}^q)^\mathbb{Z}$ systems are sets of signals \mathscr{B} can be represented by different equations
- \mathcal{L}^q LTI model class: shift-invariant subspaces
 - complexity: (# of inputs, lag, order)
 - \triangleright $\mathscr{B} = \ker R(\sigma)$ kernel representation
 - input/state/output representation

Outline

Example: Free fall prediction

Linear time-invariant systems

Data-driven representation

Dealing with noise

The finite-horizon behavior $\mathcal{B}|_L$ is used for both analysis and computations restriction of w to finite interval [1, L]

$$w|_L := (w(1), \ldots, w(L)) \in (\mathbb{R}^q)^L$$

The finite-horizon behavior $\mathcal{B}|_L$ is used for both analysis and computations

restriction of w to finite interval [1, L]

$$w|_L := (w(1), \ldots, w(L)) \in (\mathbb{R}^q)^L$$

restriction of \mathcal{B} to [1, L]

$$\mathscr{B}|_L := \{ w|_L \mid w \in \mathscr{B} \} \subset (\mathbb{R}^q)^L$$

The finite-horizon behavior $\mathcal{B}|_L$ is used for both analysis and computations restriction of w to finite interval [1, L]

$$w|_L := (w(1), \ldots, w(L)) \in (\mathbb{R}^q)^L$$

restriction of \mathcal{B} to [1, L]

$$\mathscr{B}|_L := \{ w|_L \mid w \in \mathscr{B} \} \subset (\mathbb{R}^q)^L$$

if \mathscr{B} is linear, $\mathscr{B}|_L$ is a linear subspace of $(\mathbb{R}^q)^L$

 $\mathcal{B}|_L$ can be obtained experimentally by collecting "informative" data collect $N \ge qL$ random trajectories

$$w_d^1, \ldots, w_d^N \in \mathscr{B}|_L$$

 $\mathcal{B}|_L$ can be obtained experimentally by collecting "informative" data collect N > qL random trajectories

$$w_d^1, \dots, w_d^N \in \mathscr{B}|_L$$

by the linearity of \mathcal{B} , we have

$$\operatorname{span}\left\{\left.\boldsymbol{w}_{d}^{1},\ldots,\boldsymbol{w}_{d}^{N}\right.\right\}\subseteq\mathscr{B}|_{L}$$

 $\mathcal{B}|_L$ can be obtained experimentally by collecting "informative" data collect N > qL random trajectories

$$w_d^1, \ldots, w_d^N \in \mathscr{B}|_L$$

by the linearity of \mathcal{B} , we have

span
$$\{w_d^1, \dots, w_d^N\} \subseteq \mathscr{B}|_L$$

with probability one equality holds

Discrete-time LTI systems over finite horizon can be studied using linear algebra only

$$\underbrace{\begin{bmatrix} w_{\mathsf{d}}^1 & \cdots & w_{\mathsf{d}}^N \end{bmatrix}}_{W} \in \mathbb{R}^{qL \times N} - \text{``trajectory matrix''}$$

Discrete-time LTI systems over finite horizon can be studied using linear algebra only

$$\underbrace{\begin{bmatrix} w_{\mathsf{d}}^1 & \cdots & w_{\mathsf{d}}^N \end{bmatrix}}_{W} \in \mathbb{R}^{qL \times N} - \text{``trajectory matrix''}$$

 $\widehat{\mathscr{B}}|_{L} = \text{image } W - \text{data-driven representation}$

Discrete-time LTI systems over finite horizon can be studied using linear algebra only

$$\underbrace{\begin{bmatrix} w_{\mathsf{d}}^1 & \cdots & w_{\mathsf{d}}^N \end{bmatrix}}_{W} \in \mathbb{R}^{qL \times N} - \text{"trajectory matrix"}$$

 $\widehat{\mathscr{B}}|_L = \text{image } W - \text{data-driven representation}$

now, we can do explorations, in particular check

$$\dim \mathscr{B}|_{L} = \mathbf{m}(\mathscr{B})L + \mathbf{n}(\mathscr{B}) \ge \operatorname{rank} W, \quad \text{for } L \ge \ell(\mathscr{B})$$

$\dim \mathcal{B}|_L$ is a piecewise affine function of L

 $\dim \mathcal{B}|_{L} = mL + n$, for all $L \ge \ell$

Data-driven representation (infinite horizon)

data: exact infinite trajectory w_d of $\mathscr{B} \in \mathscr{L}$

Data-driven representation (infinite horizon)

data: exact infinite trajectory w_d of $\mathscr{B} \in \mathscr{L}$

$$\widehat{\mathscr{B}} = \mathscr{B}_{mpum}(w_d) = \operatorname{span}\{w_d, \sigma w_d, \sigma^2 w_d, \dots\}$$

Data-driven representation (infinite horizon)

data: exact infinite trajectory w_d of $\mathcal{B} \in \mathcal{L}$

$$\widehat{\mathscr{B}} = \mathscr{B}_{mpum}(w_d) = \operatorname{span}\{w_d, \sigma w_d, \sigma^2 w_d, \dots\}$$

identifiability condition: $\mathscr{B} = \widehat{\mathscr{B}}$

Consecutive application of σ on finite w_d results in Hankel matrix with missing values

$$\begin{array}{c|ccccc}
\sigma^{0}w_{d} & \sigma^{1}w_{d} & \cdots & \sigma^{T_{d}-1}w_{d} \\
\hline
w_{d}(1) & w_{d}(2) & \cdots & w_{d}(T_{d}) \\
w_{d}(2) & \vdots & \ddots & ? \\
\vdots & w_{d}(T_{d}) & \ddots & \vdots \\
w_{d}(T_{d}) & ? & \cdots & ?
\end{array}$$

for
$$w_d = (w_d(1), \dots, w_d(T_d))$$
 and $1 \le L \le T_d$

Consecutive application of σ on finite w_d results in Hankel matrix with missing values

$$\begin{array}{c|ccccc} \sigma^0 w_{\mathsf{d}} & \sigma^1 w_{\mathsf{d}} & \cdots & \sigma^{T_{\mathsf{d}}-1} w_{\mathsf{d}} \\ \hline w_{\mathsf{d}}(1) & w_{\mathsf{d}}(2) & \cdots & w_{\mathsf{d}}(T_{\mathsf{d}}) \\ w_{\mathsf{d}}(2) & \vdots & \ddots & ? \\ \vdots & w_{\mathsf{d}}(T_{\mathsf{d}}) & \ddots & \vdots \\ w_{\mathsf{d}}(T_{\mathsf{d}}) & ? & \cdots & ? \end{array}$$

for
$$w_d = (w_d(1), \dots, w_d(T_d))$$
 and $1 \le L \le T_d$

$$\mathscr{H}_L(w_d) := \left[(\sigma^0 w_d)|_L \ (\sigma^1 w_d)|_L \ \cdots \ (\sigma^{T_d - L} w_d)|_L \right]$$

Data-driven representation (finite horizon)

the finite horizon data-driven representation

$$\mathscr{B}|_{L} = \widehat{\mathscr{B}}|_{L} := \operatorname{image} \mathscr{H}_{L}(w_{d})$$
 (DD-REPR)

holds if and only if

$$\operatorname{rank} \mathscr{H}_L(w_d) = L\mathbf{m}(\mathscr{B}) + \mathbf{n}(\mathscr{B}) \tag{GPE}$$

GPE — generalized persistency of excitation

fact:
$$\mathscr{B} = \mathscr{B}' \iff \mathscr{B}|_{\ell+1} = \mathscr{B}'|_{\ell+1}$$

fact:
$$\mathscr{B} = \mathscr{B}' \iff \mathscr{B}|_{\ell+1} = \mathscr{B}'|_{\ell+1}$$
 then

$$\begin{split} \widehat{\mathscr{B}} &= \mathscr{B} &\iff & \widehat{\mathscr{B}}|_{\ell+1} = \mathscr{B}|_{\ell+1} \\ &\iff & \dim \widehat{\mathscr{B}}|_{\ell+1} = \dim \mathscr{B}|_{\ell+1} \end{split}$$

fact:
$$\mathscr{B} = \mathscr{B}' \iff \mathscr{B}|_{\ell+1} = \mathscr{B}'|_{\ell+1}$$
 then

$$\begin{split} \widehat{\mathscr{B}} &= \mathscr{B} &\iff & \widehat{\mathscr{B}}|_{\ell+1} = \mathscr{B}|_{\ell+1} \\ &\iff & \dim \widehat{\mathscr{B}}|_{\ell+1} = \dim \mathscr{B}|_{\ell+1} \end{split}$$

 \mathscr{B} is identifiable from $w_d \in \mathscr{B}|_{T_d}$ if and only if

$$\operatorname{rank} \mathscr{H}_{\ell+1}(w_{\mathsf{d}}) = (\ell+1)m + n$$

fact:
$$\mathscr{B} = \mathscr{B}' \iff \mathscr{B}|_{\ell+1} = \mathscr{B}'|_{\ell+1}$$
 then

$$\begin{split} \widehat{\mathcal{B}} &= \mathcal{B} &\iff & \widehat{\mathcal{B}}|_{\ell+1} = \mathcal{B}|_{\ell+1} \\ &\iff & \dim \widehat{\mathcal{B}}|_{\ell+1} = \dim \mathcal{B}|_{\ell+1} \end{split}$$

 \mathscr{B} is identifiable from $w_d \in \mathscr{B}|_{T_d}$ if and only if

$$\operatorname{rank} \mathscr{H}_{\ell+1}(w_{\mathsf{d}}) = (\ell+1)m + n$$

 $w_d \mapsto \mathscr{B}$ — system identification

Generic data-driven problem: trajectory interpolation/approximation

given:

 $(w|_{I_{given}}$ selects the elements of w, specified by I_{given})

Generic data-driven problem: trajectory interpolation/approximation

given: "data trajectory" $w_d \in \mathcal{B}|_{T_d}$ and elements $w|_{I_{given}}$ of a trajectory $w \in \mathcal{B}|_T$

 $(w|_{I_{given}}$ selects the elements of w, specified by I_{given})

aim: minimize over $\widehat{w} \| w|_{I_{given}} - \widehat{w}|_{I_{given}} \|$ subject to $\widehat{w} \in \mathcal{B}|_{T}$

Generic data-driven problem: trajectory interpolation/approximation

given:

 $\begin{array}{ll} \text{``data trajectory''} & w_{\mathsf{d}} \in \mathscr{B}|_{\mathcal{T}_{\mathsf{d}}} \\ \text{and elements} & w|_{\mathit{J}_{\mathsf{given}}} \\ \text{of a trajectory} & w \in \mathscr{B}|_{\mathcal{T}} \\ \end{array}$

 $(w|_{I_{\text{given}}}$ selects the elements of w, specified by I_{given})

aim: minimize over $\widehat{w} \| w|_{I_{\text{given}}} - \widehat{w}|_{I_{\text{given}}} \|$ subject to $\widehat{w} \in \mathcal{B}|_{T}$

$$\widehat{\mathbf{w}} = \mathscr{H}_T(\mathbf{w}_{\mathsf{d}})(\mathscr{H}_T(\mathbf{w}_{\mathsf{d}})|_{I_{\mathsf{given}}})^+ \mathbf{w}|_{I_{\mathsf{given}}}$$
 (SOL)

Special cases

simulation

- given data: initial condition and input
- to-be-found: output (exact interpolation)

Special cases

simulation

- given data: initial condition and input
- to-be-found: output (exact interpolation)

smoothing

- given data: noisy trajectory
- ▶ to-be-found: ℓ_2 -optimal approximation

Special cases

simulation

- given data: initial condition and input
- to-be-found: output (exact interpolation)

smoothing

- given data: noisy trajectory
- ▶ to-be-found: ℓ_2 -optimal approximation

tracking control

- given data: to-be-tracked trajectory
- ▶ to-be-found: ℓ_2 -optimal approximation

Generalizations

multiple data trajectories w_d^1, \dots, w_d^N

$$\widehat{\mathscr{B}}|_L = \text{image} \underbrace{\left[\mathscr{H}_L(w_d^1) \cdots \mathscr{H}_L(w_d^N)\right]}_{\text{mosaic-Hankel matrix}}$$

Generalizations

multiple data trajectories w_d^1, \ldots, w_d^N

$$\widehat{\mathscr{B}}|_L = \text{image} \underbrace{\left[\mathscr{H}_L(w_d^1) \cdots \mathscr{H}_L(w_d^N)\right]}_{\text{mosaic-Hankel matrix}}$$

w_d not exact / noisy

maximum-likelihood estimation

- \leadsto Hankel structured low-rank approximation/completion nuclear norm and ℓ_1 -norm relaxations
- → nonparametric, convex optimization problems

Generalizations

multiple data trajectories
$$w_d^1, \dots, w_d^N$$

$$\widehat{\mathscr{B}}|_L = \text{image} \underbrace{\left[\mathscr{H}_L(w_d^1) \cdots \mathscr{H}_L(w_d^N)\right]}_{\text{mosaic-Hankel matrix}}$$

w_d not exact / noisy

maximum-likelihood estimation

- \rightsquigarrow Hankel structured low-rank approximation/completion nuclear norm and ℓ_1 -norm relaxations
- → nonparametric, convex optimization problems

nonlinear systems

results for special classes of nonlinear systems: Volterra, Wiener-Hammerstein, bilinear, ...

Summary: data-driven representation

assuming rank
$$\mathcal{H}_L(w_d) = \mathbf{m}(\mathcal{B})L + \mathbf{n}(\mathcal{B})$$

Summary: data-driven representation

assuming rank
$$\mathcal{H}_L(w_d) = \mathbf{m}(\mathcal{B})L + \mathbf{n}(\mathcal{B})$$

$$\mathscr{B}|_L = \operatorname{image} \mathscr{H}_L(w_d)$$
 holds

Summary: data-driven representation

assuming rank
$$\mathcal{H}_L(w_d) = \mathbf{m}(\mathcal{B})L + \mathbf{n}(\mathcal{B})$$

$$\mathscr{B}|_L = \operatorname{image} \mathscr{H}_L(w_d)$$
 holds

replaces parametric representations

Outline

Example: Free fall prediction

Linear time-invariant systems

Data-driven representation

Dealing with noise

w_d exact and satisfying (GPE)

- "systems theory" problems
- ▶ image $\mathcal{H}_L(w_d)$ is nonparametric finite-horizon model
- data-driven solution = model-based solution

w_d exact and satisfying (GPE)

- "systems theory" problems
- ▶ image $\mathcal{H}_L(w_d)$ is nonparametric finite-horizon model
- data-driven solution = model-based solution

w_d inexact, due to noise and/or nonlinearities

naive approach: apply the solution (SOL) for exact data

w_d exact and satisfying (GPE)

- "systems theory" problems
- ▶ image $\mathcal{H}_L(w_d)$ is nonparametric finite-horizon model
- data-driven solution = model-based solution

w_d inexact, due to noise and/or nonlinearities

- naive approach: apply the solution (SOL) for exact data
- ▶ rigorous: assume noise model ~> ML estimation problem

w_d exact and satisfying (GPE)

- "systems theory" problems
- ▶ image $\mathcal{H}_L(w_d)$ is nonparametric finite-horizon model
- data-driven solution = model-based solution

w_d inexact, due to noise and/or nonlinearities

- naive approach: apply the solution (SOL) for exact data
- ▶ rigorous: assume noise model ~> ML estimation problem
- heuristics: convex relaxations of the ML estimator

The maximum-likelihood estimation problem in the errors-in-variables setup is nonconvex

errors-in-variables setup: $w_d = \overline{w}_d + \widetilde{w}_d$

- $ightharpoonup \overline{w}_d$ true data, $\overline{w}_d \in \mathscr{B}|_{T_d}$, $\mathscr{B} \in \mathscr{L}_c^q$
- $ightharpoonup \widetilde{w}_d$ zero mean, white, Gaussian measurement noise

The maximum-likelihood estimation problem in the errors-in-variables setup is nonconvex

errors-in-variables setup:
$$w_d = \overline{w}_d + \widetilde{w}_d$$

- $ightharpoonup \overline{w}_d$ true data, $\overline{w}_d \in \mathscr{B}|_{T_d}$, $\mathscr{B} \in \mathscr{L}_c^q$
- $\sim \widetilde{w}_{d}$ zero mean, white, Gaussian measurement noise

ML problem: given w_d , c, and $w|_{I_{given}}$

$$\begin{split} & \underset{g}{\text{minimize}} & & \|w|_{I_{\text{given}}} - \mathscr{H}_T(\widehat{w}_{\text{d}}^*)|_{I_{\text{given}}} g \| \\ & \text{subject to} & & \widehat{w}_{\text{d}}^* = \arg\min_{\widehat{w}_{\text{d}},\widehat{\mathscr{B}}} & \|w_{\text{d}} - \widehat{w}_{\text{d}}\| \\ & & \text{subject to} & & \widehat{w}_{\text{d}} \in \widehat{\mathscr{B}}|_{T_{\text{d}}} \text{ and } \widehat{\mathscr{B}} \in \mathscr{L}_c^q \end{split}$$

The ML estimation problem is equivalent to Hankel structured low-rank approximation

$$\begin{split} & \underset{g}{\text{minimize}} & & \|w|_{I_{\text{given}}} - \mathscr{H}_T(\widehat{w}_{\text{d}}^*)|_{I_{\text{given}}} g \| \\ & \text{subject to} & & \widehat{w}_{\text{d}}^* = \arg\min_{\widehat{w}_{\text{d}}, \widehat{\mathscr{B}}} & \|w_{\text{d}} - \widehat{w}_{\text{d}}\| \\ & & \text{subject to} & & \widehat{w}_{\text{d}} \in \widehat{\mathscr{B}}|_{T_{\text{d}}} \text{ and } \widehat{\mathscr{B}} \in \mathscr{L}_c^q \\ & & & \updownarrow \\ \\ & & & & \updownarrow \\ \\ & & & \text{minimize} & \|w|_{I_{\text{given}}} - \mathscr{H}_T(\widehat{w}_{\text{d}}^*)|_{I_{\text{given}}} g \| \\ & & & \text{subject to} & & & & \|w_{\text{d}} - \widehat{w}_{\text{d}}\| \\ & & & & \text{subject to} & & & & \|w_{\text{d}} - \widehat{w}_{\text{d}}\| \\ & & & & & \text{subject to} & & & & \text{rank} \mathscr{H}_{\ell+1}(\widehat{w}_{\text{d}}) \leq (\ell+1)m+n \end{split}$$

Solution methods

local optimization

- choose a parametric representation of $\widehat{\mathscr{B}}(\theta)$
- optimize over \widehat{w} , $\widehat{w_d}$, and θ
- depends on the initial guess

Solution methods

local optimization

- choose a parametric representation of $\widehat{\mathscr{B}}(\theta)$
- optimize over \widehat{w} , $\widehat{w_d}$, and θ
- depends on the initial guess

convex relaxation based on the nuclear norm

minimize over
$$\widehat{w}_{\mathsf{d}}$$
 and $\widehat{w} = \|w|_{I_{\mathsf{given}}} - \widehat{w}|_{I_{\mathsf{given}}} \| + \|w_{\mathsf{d}} - \widehat{w}_{\mathsf{d}} \|$

$$+ \gamma \cdot \left\| \left[\mathscr{H}_{\Delta}(\widehat{w}_{\mathsf{d}}) - \mathscr{H}_{\Delta}(\widehat{w}) \right] \right\|_{*}$$

Solution methods

local optimization

- choose a parametric representation of $\widehat{\mathscr{B}}(\theta)$
- optimize over \widehat{w} , $\widehat{w_d}$, and θ
- depends on the initial guess

convex relaxation based on the nuclear norm

minimize over
$$\widehat{w}_{\mathsf{d}}$$
 and $\widehat{w} = \|w|_{I_{\mathsf{given}}} - \widehat{w}|_{I_{\mathsf{given}}} \| + \|w_{\mathsf{d}} - \widehat{w}_{\mathsf{d}}\| + \gamma \cdot \| \left[\mathscr{H}_{\Delta}(\widehat{w}_{\mathsf{d}}) - \mathscr{H}_{\Delta}(\widehat{w}) \right] \right\|_{*}$

convex relaxation based on ℓ_1 -norm (LASSO)

minimize over
$$g = \|w|_{I_{\mathsf{given}}} - \mathscr{H}_{\mathsf{T}}(w_{\mathsf{d}})|_{I_{\mathsf{given}}} g \| + \lambda \|g\|_1$$

Empirical validation on real-life datasets

	data set name	T_{d}	m	p
1	Air passengers data	144	0	1
2	Distillation column	90	5	3
3	pH process	2001	2	1
4	Hair dryer	1000	1	1
5	Heat flow density	1680	2	1
6	Heating system	801	1	1

B. De Moor, et al. DAISY: A database for identification of systems. Journal A, 38:4–5, 1997

G. Box, and G. Jenkins. Time Series Analysis: Forecasting and Control, Holden-Day, 1976

ℓ_1 -norm regularization with optimized λ achieves the best performance

$$e_{\mathsf{missing}} \coloneqq \frac{\| \textit{w} |_{\textit{J}_{\mathsf{missing}}} - \widehat{\textit{w}} |_{\textit{J}_{\mathsf{missing}}} \|}{\| \textit{w} |_{\textit{J}_{\mathsf{missing}}} \|} \ 100\%$$

	data set name	naive	ML	LASSO
1	Air passengers data	3.9	fail	3.3
2	Distillation column	19.24	17.44	9.30
3	pH process	38.38	85.71	12.19
4	Hair dryer	12.35	8.96	7.06
5	Heat flow density	7.16	44.10	3.98
6	Heating system	0.92	1.35	0.36

Tuning of λ and sparsity of g (datasets 1, 2)

Tuning of λ and sparsity of g (datasets 3, 4)

Tuning of λ and sparsity of g (datasets 5, 6)

Summary: convex relaxations

w_d exact \rightsquigarrow systems theory

- exact analytical solution
- current work: efficient real-time algorithms

Summary: convex relaxations

w_d exact \rightsquigarrow systems theory

- exact analytical solution
- current work: efficient real-time algorithms

*w*_d inexact → nonconvex optimization

- subspace methods
- local optimization
- convex relaxations

Summary: convex relaxations

w_d exact \rightsquigarrow systems theory

- exact analytical solution
- current work: efficient real-time algorithms

*w*_d inexact → nonconvex optimization

- subspace methods
- local optimization
- convex relaxations

empirical validation

- the naive approach works (surprisingly) well
- parametric local optimization is not robust
- $ightharpoonup \ell_1$ -norm regularization gives the best results

References

Data-Driven Control Based on the Behavioral Approach

FROM THEORY TO APPLICATIONS IN POWER SYSTEMS

IVAN MARKOVSKY . LINBIN HUANG . and FLORIAN DÖRFLER

Outline

Case study: Dynamic measurement

Nonparametric frequency response estimation

Generalization for nonlinear systems

A textbook problem

D. G. Luenberger, Introduction to Dynamical Systems: Theory, Models and Applications. John Wiley, 1979.

"A thermometer reading 21°C, which has been inside a house for a long time, is taken outside. After one minute the thermometer reads 15°C; after two minutes it reads 11°C. What is the outside temperature?"

A textbook problem

D. G. Luenberger, Introduction to Dynamical Systems: Theory, Models and Applications. John Wiley, 1979.

"A thermometer reading 21°C, which has been inside a house for a long time, is taken outside. After one minute the thermometer reads 15°C; after two minutes it reads 11°C. What is the outside temperature?"

According to Newton's law of cooling, an object of higher temperature than its environment cools at a rate that is proportional to the difference in temperature.

Main idea: predict the steady-state value from the first few samples of the transient

textbook problem:

- 1st order dynamics
- 3 noise-free samples
- batch solution

Main idea: predict the steady-state value from the first few samples of the transient

textbook problem:

- 1st order dynamics
- 3 noise-free samples
- batch solution

generalizations:

- $ightharpoonup n \ge 1$ order dynamics
- $ightharpoonup T \geq 3$ noisy (vector) samples
- recursive computation

Main idea: predict the steady-state value from the first few samples of the transient

textbook problem:

- 1st order dynamics
- 3 noise-free samples
- batch solution

generalizations:

- $ightharpoonup n \ge 1$ order dynamics
- ightharpoonup T > 3 noisy (vector) samples
- recursive computation

implementation and practical validation

Thermometer: first order dynamical system

environmental heat transfer thermometer's temperature \bar{u} reading y

Thermometer: first order dynamical system

environmental heat transfer thermometer's temperature \bar{u} reading y

measurement process: Newton's law of cooling

$$y = a(\bar{u} - y)$$

heat transfer coefficient a > 0

Scale: second order dynamical system

$$(M+m)\frac{\mathrm{d}}{\mathrm{d}\,t}y+dy+ky=g\bar{u}$$

The measurement process dynamics depends on the to-be-measured mass

Dynamic measurement: take into account the dynamical properties of the sensor

to-be-measured measurement process measured variable u wariable u wariable v assumption 1: measured variable is constant $u(t) = \bar{u}$ assumption 2: the sensor is stable LTI system assumption 3: sensor's DC-gain v (calibrated sensor)

The data is generated from LTI system with output noise and constant input

$$y_d$$
 = y + e

measured true measurement noise

 y = u + v 0

true steady-state transient response

assumption 4: e is a zero mean, white, Gaussian noise

using a state space representation of the sensor

$$x(t+1) = Ax(t),$$
 $x(0) = x_0$
 $y_0(t) = cx(t)$

we obtain

$$\begin{bmatrix}
y_{d}(1) \\
y_{d}(2) \\
\vdots \\
y_{d}(T)
\end{bmatrix} = \begin{bmatrix}
1 \\
1 \\
\vdots \\
1
\end{bmatrix} \bar{u} + \begin{bmatrix}
c \\
cA \\
\vdots \\
cA^{T-1}
\end{bmatrix} x_{0} + \begin{bmatrix}
e(1) \\
e(2) \\
\vdots \\
e(T)
\end{bmatrix}$$

Maximum-likelihood model-based estimator

solve approximately

$$\begin{bmatrix} \mathbf{1}_T & \mathscr{O}_T \end{bmatrix} \begin{bmatrix} \widehat{u} \\ \widehat{x}_0 \end{bmatrix} \approx y_{\mathsf{d}}$$

standard least-squares problem

minimize over
$$\widehat{y}$$
, \widehat{u} , $\widehat{x}_0 \quad \|y_d - \widehat{y}\|$ subject to $\begin{bmatrix} \mathbf{1}_T & \mathscr{O}_T \end{bmatrix} \begin{bmatrix} \widehat{u} \\ \widehat{x}_0 \end{bmatrix} = \widehat{y}$

recursive implementation \rightsquigarrow Kalman filter

Subspace model-free method

goal: avoid using the model parameters (A, C, \mathcal{O}_T)

in the noise-free case, due to the LTI assumption,

$$\Delta y(t) := y(t) - y(t-1) = y_0(t) - y_0(t-1)$$

satisfies the same dynamics as y_0 , *i.e.*,

$$x(t+1) = Ax(t),$$
 $x(0) = \Delta x$
 $\Delta y(t) = cx(t)$

Hankel matrix—construction of multiple "short" trajectories from one "long" trajectory

$$\mathcal{H}(\Delta y) := egin{bmatrix} \Delta y(1) & \Delta y(2) & \cdots & \Delta y(\mathrm{n}) \\ \Delta y(2) & \Delta y(3) & \cdots & \Delta y(\mathrm{n}+1) \\ \Delta y(3) & \Delta y(4) & \cdots & \Delta y(\mathrm{n}+2) \\ \vdots & \vdots & & \vdots \\ \Delta y(T-\mathrm{n}) & \Delta y(T-\mathrm{n}) & \cdots & \Delta y(T-1) \end{bmatrix}$$

fact: if rank $\mathcal{H}(\Delta y) = n$, then

image
$$\mathcal{O}_{T-n} = \text{image } \mathcal{H}(\Delta y)$$

model-based equation

$$\begin{bmatrix} \mathbf{1}_T & \mathscr{O}_T \end{bmatrix} \begin{bmatrix} \bar{u} \\ \widehat{x}_0 \end{bmatrix} = y$$

data-driven equation

$$\begin{bmatrix} \mathbf{1}_{T-n} & \mathscr{H}(\Delta y) \end{bmatrix} \begin{bmatrix} \bar{u} \\ \ell \end{bmatrix} = y|_{T-n} \tag{*}$$

subspace method

solve (*) by (recursive) least squares

Empirical validation

dashed — true parameter value \bar{u}

solid — true output trajectory y_0

dotted — naive estimate $\hat{u} = G^+ y$

dashed — model-based Kalman filter

bashed-dotted — data-driven method

estimation error:
$$e := \frac{1}{N} \sum_{i=1}^{N} \|\bar{u} - \hat{u}^{(i)}\|$$

(for N = 100 Monte-Carlo repetitions)

Simulated data of dynamic cooling process

 $e(t) \rightarrow 0$ as $t \rightarrow \infty$ at different rates

best is the Kalman filter (maximum likelihood estimator)

Simulation with time-varying parameter

Proof of concept prototype

Results in real-life experiment

Summary

dynamic measurement

steady-state value prediction

Summary

dynamic measurement

steady-state value prediction

the subspace method is applicable for

- high order dynamics
- noisy vector observations
- online computation

Summary

dynamic measurement

steady-state value prediction

the subspace method is applicable for

- high order dynamics
- noisy vector observations
- online computation

future work / open problems

- numerical efficiency
- real-time uncertainty quantification
- generalization to nonlinear systems

Outline

Case study: Dynamic measurement

Nonparametric frequency response estimation

Generalization for nonlinear systems

Problem formulation

given: "data" trajectory $(u_d, y_d) \in \mathcal{B}|_{T_d}$ and $z \in \mathbb{C}$

find: H(z), where H is the transfer function of \mathcal{B}

Direct data-driven solution we are interested in trajectory

$$w = \begin{bmatrix} u \\ y \end{bmatrix} = \begin{bmatrix} \exp_z \\ \widehat{H} \exp_z \end{bmatrix} \in \mathscr{B}, \text{ where } \exp_z(t) := z^t$$

using the data-driven representation, we have

$$\begin{bmatrix} \mathscr{H}_{L}(u_{\mathsf{d}}) \\ \mathscr{H}_{L}(y_{\mathsf{d}}) \end{bmatrix} g = \begin{bmatrix} \mathbf{z} \\ \widehat{H}\mathbf{z} \end{bmatrix}, \quad \text{where } \mathbf{z} := \begin{bmatrix} z^1 \\ \vdots \\ z^L \end{bmatrix}$$

which leads to the system

$$\begin{bmatrix} 0 & \mathcal{H}_{L}(u_{d}) \\ -\mathbf{z} & \mathcal{H}_{L}(y_{d}) \end{bmatrix} \begin{bmatrix} \widehat{H} \\ g \end{bmatrix} = \begin{bmatrix} \mathbf{z} \\ 0 \end{bmatrix}$$
 (SYS)

Solution method: solve (SYS) for \widehat{H}

under (GPE) with
$$L \ge \ell + 1$$
, $\widehat{H} = H(z)$

without prior knowledge of ℓ

$$L = L_{\text{max}} := \lfloor (T_{d} + 1)/3 \rfloor$$

trivial generalization to

- multivariable systems
- ► multiple data trajectories $\{w_d^1, ..., w_d^N\}$
- evaluation of H(z) at multiple points in $\{z_1, \ldots, z_K\} \in \mathbb{C}^K$

Comparison with classical nonparametric frequency response estimation methods

ignored initial/terminal conditions \leadsto leakage

DFT grid → limited frequency resolution

improvements by windowing and interpolation

- the leakage is not eliminated
- the methods involve hyper-parameters

Generalization of (SYS) to noisy data

preprocessing: rank-mL + n approx. of $\mathcal{H}_L(w_d)$

- ▶ hyper-parameters $L \ge \ell + 1$ and n
- if the approximation preserves the Hankel structure, the method is maximum-likelihood in the EIV setting

regularization with $||g||_1$

hyper-parameter: the 1-norm regularization parameter

regularization with the nuclear norm of $\mathscr{H}_L(\widehat{w_d})$

hyper-parameters: L and the regularization parameter

Matlab implementation

```
function Hh = dd_frest(ud, yd, z, n)
L = n + 1; t = (1:L)';
m = size(ud, 2); p = size(yd, 2);
%% preprocessing by low-rank approximation
H = [moshank(ud, L); moshank(yd, L)];
[U, \sim, \sim] = svd(H); P = U(:, 1:m * L + n);
%% form and solve the system of equations
for k = 1:length(z)
  A = [[zeros(m*L, p); -kron(z(k).^t, eye(p))] P];
  hg = A \setminus [kron(z(k).^t, eye(m)); zeros(p*L, m)];
  Hh(:, :, k) = hq(1:p, :);
end
```

- effectively 5 lines of code
- MIMO case, multiple evaluation points
- ightharpoonup L = n+1 in order to have a single hyper-parameter

Example: EIV setup with 4th order system

dd_frest is compared with

- ident parametric maximum-likelihood estimator
- ▶ spa nonparameteric estimator with Welch filter

Monte-Carlo simulation over different noise levels and number of samples

Outline

Case study: Dynamic measurement

Nonparametric frequency response estimation

Generalization for nonlinear systems

Kernel representation

LTI systems

$$\begin{split} \mathscr{B} &= \ker R(\sigma) := \left\{ w \mid R(\sigma)w = 0 \right\} \\ &= \left\{ w \mid R_0w + R_1\sigma w + \dots + R_\ell\sigma^\ell w = 0 \right\} \end{split}$$

nonlinear time-invariant system

$$\mathscr{B} = \left\{ w \mid R(\underbrace{w, \sigma w, \dots, \sigma^{\ell} w}_{x}) = 0 \right\}$$

linearly parameterized R

$$R(x) = \sum \theta_i \phi_i(x) = \theta^{\top} \phi(x), \quad \begin{array}{ccc} \phi & -- & \text{model structure} \\ \theta & -- & \text{parameter vector} \end{array}$$

Polynomial SISO NARX system

$$\mathscr{B}(\theta) = \left\{ w = \begin{bmatrix} u \\ y \end{bmatrix} \mid y = f(u, \sigma w, \dots, \sigma^{\ell} w) \right\}$$

split f into 1st order (linear) and other (nonlinear) terms

$$f(x) = \theta_{\mathsf{li}}^{\top} x + \theta_{\mathsf{nl}}^{\top} \phi_{\mathsf{nl}}(x)$$

 ϕ_{nl} — vector of monomials

Special cases

Hammerstein

$$\phi_{\mathsf{nl}}(x) = egin{bmatrix} \phi_{\mathsf{u}}(x) & \phi_{\mathsf{u}}(\sigma u) & \cdots & \phi_{\mathsf{u}}(\sigma^\ell u) \end{bmatrix}^ op$$

FIR Volterra

$$\phi_{\mathsf{nl}}(x) = \phi_{\mathsf{nl}}(x_u), \quad \mathsf{where} \ x_u := \mathsf{vec}(u, \sigma u, \dots, \sigma^\ell u).$$

bilinear

$$\phi_{\mathsf{nl}}(x) = x_u \otimes x_y, \quad \mathsf{where} \ x_y := \mathsf{vec}(y, \sigma y, \dots, \sigma^{\ell-1} y)$$

generalized bilinear

$$\phi_{\mathsf{nl}}(x) = \phi_{u,\mathsf{nl}}(x_u) \otimes x_y$$

LTI embedding of polynomial NARX system

$$\mathscr{B}_{\text{ext}}(\theta) := \left\{ \left. \textbf{\textit{w}}_{\text{ext}} = \left[\begin{smallmatrix} \textbf{\textit{u}} \\ \textbf{\textit{u}}_{\text{nl}} \\ \textbf{\textit{y}} \end{smallmatrix} \right] \; \middle| \; \sigma^{\ell} \textbf{\textit{y}} = \theta_{\text{li}}^{\top} \textbf{\textit{x}} + \theta_{\text{nl}}^{\top} \textbf{\textit{u}}_{\text{nl}} \right. \right\}$$

define: $\Pi_w w_{\text{ext}} := w$ and $\Pi_{u_{\text{nl}}} w_{\text{ext}} := u_{\text{nl}}$

fact: $\mathscr{B}(\theta) \subseteq \Pi_{\mathsf{W}} \mathscr{B}_{\mathsf{ext}}(\theta)$, moreover

$$\mathscr{B}(\theta) = \Pi_{W} \{ w_{\mathsf{ext}} \in \mathscr{B}_{\mathsf{ext}}(\theta) \mid \Pi_{u_{\mathsf{nl}}} w_{\mathsf{ext}} = \phi_{\mathsf{nl}}(x) \}$$

FIR Volterra data-driven simulation given

data $w_{\rm d} = (u_{\rm d}, y_{\rm d})$ of lag- ℓ FIR Volterra system ${\mathscr B}$ $\phi_{\rm nl}$ — system's model structure

assume ID conditions for \mathcal{B}_{ext} hold

then, $\mathcal{B}|_{L} = \text{image } M$, where

$$M(w_{\text{ini}}, u) := \mathscr{H}_{L}(\sigma^{\ell}y_{\text{d}}) \underbrace{ \begin{bmatrix} \mathscr{H}_{\ell}(w_{\text{d}}) \\ \mathscr{H}_{L}(\sigma^{\ell}u_{\text{d}}) \\ \mathscr{H}_{\ell}(\phi_{\text{nl}}(x_{u_{\text{d}}})) \\ \mathscr{H}_{L}(\sigma^{\ell}\phi_{\text{nl}}(x_{u_{\text{d}}})) \end{bmatrix}^{\dagger} \begin{bmatrix} w_{\text{ini}} \\ u \\ \phi_{\text{nl}}(x_{u_{\text{ini}}}) \\ \phi_{\text{nl}}(x_{u}) \end{bmatrix}}_{g}$$

proof

$$\begin{bmatrix} \mathcal{H}_{\ell}(w_{d}) \\ \mathcal{H}_{L}(\sigma^{\ell}u_{d}) \\ \mathcal{H}_{\ell}(\phi_{\mathsf{nl}}(x_{u_{d}})) \\ \mathcal{H}_{L}(\sigma^{\ell}\phi_{\mathsf{nl}}(x_{u_{d}})) \\ \mathcal{H}_{L}(\sigma^{\ell}y_{d}) \end{bmatrix} g = \begin{bmatrix} w_{\mathsf{ini}} \\ u \\ \phi_{\mathsf{nl}}(x_{u_{\mathsf{ini}}}) \\ \phi_{\mathsf{nl}}(x_{u}) \\ y \end{bmatrix} \} \mathsf{B3}$$

- B1 constraint on g, such that $w_\mathsf{ini} \wedge (u, \mathscr{H}_\mathsf{L}(\sigma^\ell y_\mathsf{d})g) \in \mathscr{B}_\mathsf{ext}$
- B2 constraint $u_{nl} = \phi_{nl}(x) \iff \mathscr{B}_{ext} = \mathscr{B}(\theta)$
- B3 defines the to-be-computed output y

generalized bilinear models

also tractable because B2: $u_{nl} = \phi_{nl}(x)$ is still linear in y