Récapitulatif d'optique

P4-1

I. Définitions

1. Générales

Célérité c Vitesse de la lumière dans le vide est égale à 3.108 m.s $^{-1}$.

Angle limite i^* Angle d'incidence au-dessus duquel la réfraction n'est plus possible.

Déviation D Angle entre le rayon incident et le rayon réfracté/réfléchi. **Foyer objet** F Point sur l'axe principal dont les images sont à l'infini.

Foyer image F' Point sur l'axe principal vers lequel convergent les rayons provenant de l'infini.

2. Réflexion et réfraction

Réflexion: Phénomène par lequel les rayons lumineux, lorsqu'ils rencontrent une surface, sont

renvoyés dans une autre direction.

Réfraction: Changement de direction d'un rayon lumineux lorsqu'il passe obliquement d'un milieu

à un autre.

Source:

• **Primaire**: Source émettant naturellement de la lumière.

• Secondaire : Corps éclairé transmettant des rayons lumineux.

Ponctuelle: Tous les rayons lumineux sont émis à partir d'un seul point.

Étendue: Ensemble de sources ponctuelles.

Image:

• Virtuelle: Intersection du prolongement des rayons, ce point ne peut pas être matérialisé sur

un écran, les rayons divergent à partir de l'image.

• Réelle: Intersection de rayons réelle, le point peut être matérialisé, Les rayons convergent

vers l'image.

Objet:

• Virtuel: Image d'un système optique, non matérialisable sur un écran vers lequel les rayons

semblent converger.

• **Réel**: Source lumineuse d'où les rayons divergent.

3. Aberration et approximations

Aberration: Défaut d'un système optique.

Aplanétisme : Tout objet (AB) placé dans un plan perpendiculaire au système doit avoir une image

(A'B') également perpendiculaire au système

Stigmatisme parfait: Tous les rayons issu d'un point objet A doivent passer par un seul point

image A'

Approximation de Gauss : Pour un angle d'incidence faible, on considère le système comme

stigmatique et aplanétique.

II. Propriété des rayons lumineux

1. Principe de propagation rectiligne

Dans le vide / un milieu matériel transparent, homogène, isotrope, la lumière se propage en ligne droite avec une vitesse c / v indépendante de la direction adoptée.

2. Principe de Fermat

Le chemin suivi par la lumière est tel que le chemin optique soit extrémal.

3. Formules

$$f = \frac{1}{T}$$
 $\lambda = vT$ $n = \frac{c}{v}$ $n(\lambda) = A + \frac{B}{\lambda^2}$ (Formule empirique de Cauchy)

Récapitulatif d'optique

P4-1

III. Les lois de Snell-Descartes

IV. Les divers systèmes optiques

Miroirs plans		SA'	= -	SA						$\gamma = 1$	
Miroirs sphériques		$\frac{1}{\overline{SA'}}$	+	$\frac{1}{\overline{SA}}$	=	$\frac{2}{\overline{SC}}$	=	$\frac{1}{\overline{SF}}$	$= \frac{1}{\overline{SF'}}$	$\gamma = -\frac{\overline{SA'}}{\overline{SA}}$	$\frac{\overline{SC}}{\overline{SC}} > 0 \Rightarrow \text{conv}$ $\frac{\overline{SC}}{\overline{SC}} < 0 \Rightarrow \text{conc}$ $\overline{SC} = \infty \Rightarrow \text{plan}$
Dioptres sphériques	φ =	$\frac{n_2}{\overline{SA'}}$	_	$\frac{n_1}{\overline{SA}}$	=	$\frac{n_2 - n_1}{\overline{SC}}$	=	$-\frac{n_1}{\overline{SF}}$	$= \frac{n_2}{\overline{SF'}}$	$\gamma = \frac{n_1}{n_2} \frac{\overline{SA'}}{\overline{SA}}$	$\phi > 0 \Rightarrow \text{conv}$
Lentilles minces	φ =	$\frac{1}{\overline{SA'}}$	_	$\frac{1}{\overline{SA}}$	=	$(n-1)\left(\frac{1}{\overline{SC_1}}-\frac{1}{\overline{SC_2}}\right)$	=	$-\frac{1}{\overline{SF}}$	$= \frac{1}{\overline{SF'}}$	$\gamma = \frac{\overline{SA'}}{\overline{SA}}$	$\phi < 0 \Rightarrow \text{div}$

	Convexe / Convergent(e)	Concave / Divergent(e)
Miroirs sphériques	S F S	C F/S
Dioptres sphériques	F S C P	F S F
Lentilles minces	F S F	F