Introduction to Reinforcement Learning

2025. 1st semester

Evaluation to Control

- Last time: how good is a specific policy?
 - Given no access to the decision process model parameters
 - Instead have to estimate from data / experience
- Today: how can we learn a good policy?

1 1 1 1

Model-free Control

- Generalized policy improvement
- Importance of exploration
- Monte Carlo control
- Model-free control with temporal difference
 - (SARSA, Q-learning)

Model-free Control Examples

Some example problems that can be modelled as MDPs

- Elevator
- Parallel Parking
- Ship Steering
- Bioreactor
- Helicopter
- Aeroplane Logistics

- Robocup Soccer
- Quake
- Portfolio management
- Protein Folding
- Robot walking
- Game of Go

For most of these problems, either:

- MDP model is unknown, but experience can be sampled
- MDP model is known, but is too big to use, except by samples

Model-free control can solve these problems

1 1 1 1

On and Off-Policy Learning

On-policy learning

- "Learn on the job"
- Learn about policy π from experience sampled from π
- Learn to estimate and evaluate a policy from experience obtained from following that policy

Off-policy learning

- "Look over someone's shoulder"
- Learn about policy π from experience sampled from μ
- Learn to estimate and evaluate a policy using experience gathered from following a different policy

.

Recall Policy Iteration

- Initialize policy π
- Repeat:
 - Policy evaluation: compute V^{π}
 - Policy improvement: update π

$$\pi'(s) = \arg\max_{a} R(s, a) + \gamma \sum_{s' \in S} P(s'|s, a) V^{\pi}(s') = \arg\max_{a} Q^{\pi}(s, a)$$

- Now want to do the above two steps without access to the true dynamics and reward models
- Last lecture introduced methods for model-free policy evaluation

Generalized Policy Iteration (Refresher)

Policy evaluation Estimate v_{π}

e.g. Iterative policy evaluation

Policy improvement Generate $\pi' \geq \pi$

e.g. Greedy policy improvement

Generalized Policy Iteration With Monte-Carlo Evaluation

Policy evaluation Monte-Carlo policy evaluation, $V = v_{\pi}$? Policy improvement Greedy policy improvement?

Model-Free Policy Iteration Using Action-Value Function

■ Greedy policy improvement over V(s) requires model of MDP

$$\pi'(s) = \operatorname*{argmax}_{s \in \mathcal{A}} \mathcal{R}^{\mathsf{a}}_{s} + \mathcal{P}^{\mathsf{a}}_{ss'} V(s')$$

■ Greedy policy improvement over Q(s, a) is model-free

$$\pi'(s) = \operatorname*{argmax}_{a \in \mathcal{A}} Q(s, a)$$

.

Model Free Policy Iteration

- Initialize policy π
- Repeat:
 - Policy evaluation: compute Q^{π}
 - Policy improvement: update π

- Given an estimate $Q^{\pi_i}(s, a) \ \forall s, a$
- Update new policy

$$\pi_{i+1}(s) = \arg\max_{a} Q^{\pi_i}(s, a)$$

1 1 1 1

Generalized Policy Iteration with Action-Value Function

Policy evaluation Monte-Carlo policy evaluation, $Q = q_{\pi}$ Policy improvement Greedy policy improvement?

Model-free Policy Iteration

- Initialize policy π
- Repeat:
 - Policy evaluation: compute Q^{π}
 - Policy improvement: update π given Q^{π}

- May need to modify policy evaluation:
 - If π is deterministic, can't compute Q(s,a) for any $a \neq \pi(s)$
- How to interleave policy evaluation and improvement?
 - Policy improvement is now using an estimated Q

.

Example of Greedy Action Selection

"Behind one door is tenure - behind the other is flipping burgers at McDonald's."

- There are two doors in front of you.
- You open the left door and get reward 0
 V(left) = 0
- You open the right door and get reward +1V(right) = +1
- You open the right door and get reward +3V(right) = +2
- You open the right door and get reward +2V(right) = +2

:

Are you sure you've chosen the best door?

Policy Evaluation with Exploration

- Want to compute a model-free estimate of Q^{π}
- In general seems subtle
 - Need to try all (s, a) pairs but then follow π
 - Want to ensure resulting estimate Q^{π} is good enough so that policy improvement is a monotonic operator
- For certain classes of policies can ensure all (s,a) pairs are tried such that asymptotically Q^{π} converges to the true value

∈-Greedy Exploration

- Simple idea to balance exploration and exploitation
- Let |A| be the number of actions
- Then an ϵ -greedy policy w.r.t. a state-action value Q(s,a) is $\pi(a|s) = [\arg\max_a Q(s,a), \text{ w. prob } 1 \epsilon; \text{ a w. prob } \frac{\epsilon}{|A|}]$

$$\pi(a \mid s) = \begin{cases} \frac{\mathcal{E}}{|A|} + 1 - \mathcal{E}, & \text{if } a^* = \arg\max_{a \in A} Q(s, a) \\ \frac{\mathcal{E}}{|A|}, & \text{otherwise} \end{cases}$$

Monotonic ϵ -greedy Policy Improvement

Theorem

For any ϵ -greedy policy π_i , the ϵ -greedy policy w.r.t. Q^{π_i} , π_{i+1} is a monotonic improvement $V^{\pi_{i+1}} \geq V^{\pi}$

$$Q^{\pi_{i}}(s, \pi_{i+1}(s)) = \sum_{a \in A} \pi_{i+1}(a|s)Q^{\pi_{i}}(s, a)$$

$$= (\epsilon/|A|) \sum_{a \in A} Q^{\pi_{i}}(s, a) + (1 - \epsilon) \max_{a} Q^{\pi_{i}}(s, a)$$

• Therefore $V^{\pi_{i+1}} \geq V^{\pi}$ (from the policy improvement theorem)

Monotonic ϵ -greedy Policy Improvement

Theorem

For any ϵ -greedy policy π_i , the ϵ -greedy policy w.r.t. Q^{π_i} , π_{i+1} is a monotonic improvement $V^{\pi_{i+1}} \geq V^{\pi}$

$$Q^{\pi_{i}}(s, \pi_{i+1}(s)) = \sum_{a \in A} \pi_{i+1}(a|s)Q^{\pi_{i}}(s, a)$$

$$= (\epsilon/|A|) \sum_{a \in A} Q^{\pi_{i}}(s, a) + (1 - \epsilon) \max_{a} Q^{\pi_{i}}(s, a)$$

$$= (\epsilon/|A|) \sum_{a \in A} Q^{\pi_{i}}(s, a) + (1 - \epsilon) \max_{a} Q^{\pi_{i}}(s, a) \frac{1 - \epsilon}{1 - \epsilon}$$

$$= (\epsilon/|A|) \sum_{a \in A} Q^{\pi_{i}}(s, a) + (1 - \epsilon) \max_{a} Q^{\pi_{i}}(s, a) \sum_{a \in A} \frac{\pi_{i}(a|s) - \frac{\epsilon}{|A|}}{1 - \epsilon}$$

$$\geq \frac{\epsilon}{|A|} \sum_{a \in A} Q^{\pi_{i}}(s, a) + (1 - \epsilon) \sum_{a \in A} \frac{\pi_{i}(a|s) - \frac{\epsilon}{|A|}}{1 - \epsilon} Q^{\pi_{i}}(s, a)$$

$$= \sum_{a \in A} \pi_{i}(a|s)Q^{\pi_{i}}(s, a) = V^{\pi_{i}}(s)$$

• Therefore $V^{\pi_{i+1}} \geq V^{\pi}$ (from the policy improvement theorem)

1 1 1 1 1

Monte-Carlo Policy Iteration

Policy evaluation Monte-Carlo policy evaluation, $Q=q_\pi$ Policy improvement ϵ -greedy policy improvement

.

Monte-Carlo Control

Every episode:

Policy evaluation Monte-Carlo policy evaluation, $Q \approx q_{\pi}$ Policy improvement ϵ -greedy policy improvement

Greedy in the Limit with Infinite Exploration (GLIE)

Definition

Greedy in the Limit with Infinite Exploration (GLIE)

All state-action pairs are explored infinitely many times,

$$\lim_{k\to\infty} N_k(s,a) = \infty$$

The policy converges on a greedy policy,

$$\lim_{k \to \infty} \pi_k(a|s) = \mathbf{1}(a = \operatorname*{argmax}_{a' \in \mathcal{A}} Q_k(s, a'))$$

■ For example, ϵ -greedy is GLIE if ϵ reduces to zero at $\epsilon_k = \frac{1}{k}$

GLIE Monte-Carlo Control

- Sample kth episode using π : $\{S_1, A_1, R_2, ..., S_T\} \sim \pi$
- For each state S_t and action A_t in the episode,

$$N(S_t, A_t) \leftarrow N(S_t, A_t) + 1$$

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \frac{1}{N(S_t, A_t)} (G_t - Q(S_t, A_t))$$

Improve policy based on new action-value function

$$\epsilon \leftarrow 1/k$$
 $\pi \leftarrow \epsilon$ -greedy(Q)

Theorem

GLIE Monte-Carlo control converges to the optimal action-value function, $Q(s, a) \rightarrow q_*(s, a)$

Monte Carlo Online Control / On Policy Improvement

```
1: Initialize Q(s,a)=0, N(s,a)=0 \ \forall (s,a), \ \text{Set} \ \epsilon=1, \ k=1
 2: \pi_k = \epsilon-greedy(Q) // Create initial \epsilon-greedy policy
 3: loop
       Sample k-th episode (s_{k,1}, a_{k,1}, r_{k,1}, s_{k,2}, \dots, s_{k,T}) given \pi_k
       G_{k,t} = r_{k,t} + \gamma r_{k,t+1} + \gamma^2 r_{k,t+2} + \cdots \gamma^{T_i-1} r_{k,T_i}
 4:
     for t = 1, \ldots, T do
 5:
           if First visit to (s, a) in episode k then
 6:
              N(s,a) = N(s,a) + 1
              Q(s_t, a_t) = Q(s_t, a_t) + \frac{1}{N(s, a)}(G_{k, t} - Q(s_t, a_t))
 8:
           end if
 9:
      end for
10:
11:
     k = k + 1, \ \epsilon = 1/k
       \pi_k = \epsilon-greedy(Q) // Policy improvement
12:
13: end loop
```


Blackjack Example

- States (200 of them):
 - Current sum (12-21)
 - Dealer's showing card (ace-10)
 - Do I have a "useable" ace? (yes-no)
- Action stick: Stop receiving cards (and terminate)
- Action twist: Take another card (no replacement)
- Reward for stick:
 - \blacksquare +1 if sum of cards > sum of dealer cards
 - 0 if sum of cards = sum of dealer cards
 - -1 if sum of cards < sum of dealer cards
- Reward for twist:
 - -1 if sum of cards > 21 (and terminate)
 - 0 otherwise
- Transitions: automatically twist if sum of cards < 12</p>

Blackjack Value Function after Monte-Carlo Learning

Policy: stick if sum of cards \geq 20, otherwise twist

Monte-Carlo Control in Blackjack

1 1 1 1

More example-grid world

.

More example-grid world

