2장. 정보의 표현과 처리

- 2.1 정보의 저장
- 2.2 정수의 표시
- 2.3 정수의 산술 연산
- 2.4 부동소수점

순천향대학교 컴퓨터공학과

이 상 정

2.4 부동소수점

- □ 실수(Real numbers)
 - 3.14159265..._{ten} (pi), 2.71828..._{ten} (e),
 - 0.00000001_{ten} , $0.1_{ten} \times 10^{-8}$ or $1.0_{ten} \times 10^{-9}$,
 - $3,155,760,000_{ten}$, $0.00315576 \times 10^{12}$ or 3.15576×10^{9}
- □ 과학적 표기법(Scientific notations)
 - $0.1_{\text{ten}} \times 10^{-8}$, $1.0_{\text{ten}} \times 10^{-9}$,
 - $0.00315576 \times 10^{12}$, 3.15576×10^{9}
- □ 정규화된 수(Normalized numbers)

 1.0_{ten} × 10⁻⁹, 3.15576 × 10⁹

 -2.34 × 10⁵⁶

 +0.002 × 10⁻⁴

 +987.02 × 10⁹

 1.0_{ten} × 10⁻⁹, 3.15576 × 10⁹
- □ 부동소수점(floating point)의 이진표현

 $\pm 1.xxxxxxxxx$ _{two} $\times 2^{yyyy}$

순천향대학교 컴퓨터공학과

3

2-2. 정보의 표현과 처리-실수

컴퓨터 구조

실수의 이진수 표현

- □ 101.11, 의 값은?
 - $1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 + 1 \times 2^{-1} + 1 \times 2^{-2}$ = $4 + 0 + 1 + \frac{1}{2} + \frac{1}{4} = 5\frac{3}{4} = 5.75$

실수의 이진수 표현의 한계

- □ x/2k 형식의 수만 정확하게 표현
 - 다른 값들은 근사화할 수 밖에 없음
 - 예
 - 1/3 0.0101010101[01]···₂
 - 1/5 0.001100110011[0011]...
 - 1/10 0.0001100110011[0011]···₂
- □ 근사값의 표기
 - 0.11......12의 형태의 수는 1.0 에 가깝지만 1보다는 작은 수의 표시
 => 1.0 ε

순천향대학교 컴퓨터공학과

5

2-2. 정보의 표현과 처리-실수

컴퓨터 구조

부동소수점수 표준

- □ IEEE 754 부동소점 표준
- □ 각각 다른 실수의 표현 방식에 따른 <mark>호환성</mark> 이슈의 문제를 해 결하기 위해 개발
- □ 현재 널리 사용되는 표준
- □ 두 가지 실수 표현 방식
 - 32 비트 단일정밀도 (single precision)
 - 64 비트 이중정밀도 (double precision)
- □ C 언어
 - 단일 및 이중 정밀도에 대해 float, double 자료형 제공

IEEE 부동소수점 수의 표현 - 단일정밀도

□ IEEE 754 단일정밀도의 32비트 인코딩

- 부호(Sign) 1비트, 지수(Exponent) 8비트, 비율(Fraction, 유효자리)
 23 비트
 - 비율은 소수부분 또는 유효숫자를 의미

s	ехр	frac
1	8-bits	23-bits

 $V = (-1)^s \times (1 + frac) \times 2^{(exp-bias)}$

순천향대학교 컴퓨터공학과

7

2-2. 정보의 표현과 처리-실수

컴퓨터 구조

IEEE 754 단일정밀도 인코딩 값

s e	хр	frac	sa (13) 14,633.	A CO	
1	8-hits		23-hits		

\cup V = (-1)^s x (1+frac) x 2^(exp-bias)

- s: 부호 비트 (0: 양수, 1: 음수)
- 정규화된 유효자리 (normalized significand)
 - 유효자리 = 1 + frac
 - 1.0과 2-ε 사이의 값 , 1.0 ≤ |significand| < 2.0,
 - 숨겨진 1을 덧붙여서 정규화된 이진수 표현
- exp: 지수 (exponent)
 - 음수의 표현을 제거하기 위해 바이어스(bias) 표현
 - exp = 실제값 + bias, 단일정밀도 bias = 127

단일정밀도 부동소수점 - 인코딩 예

□ 10진수 -0.75의 IEEE 754 단일정밀도 인코딩 예

- $-0.75_{10} = -0.11_2 = -1.1_{two} \times 2^{-1}$
- 음수이므로 부호비트 s = 1
- 유효자리 = 1.1 = 1 + frac

$V = (-1)^s x (1 + frac) x 2^{(exp-bias)}$

순천향대학교 컴퓨터공학과

9

2-2. 정보의 표현과 처리-실수

컴퓨터 구조

단일정밀도 부동소수점 - 디코딩 예

□ 1 10000001 0100000000000000000000000 디코딩 예

$$V = (-1)^{s} \times (1 + frac) \times 2^{(exp-bias)}$$

$$= (-1)^{1} \times (1 + 0.25) \times 2^{(129-127)}$$

$$= -1 \times 1.25 \times 2^{2}$$

$$= -1.25 \times 4$$

$$= -5.0$$

단일 정밀도 부동소수점 최소, 최대값

- □ 지수 (Exponent) = 실제값 + 바이어스 (127)
 - 지수 값 00000000 (0), 11111111 (255)는 예약된 값
- □ 가장 작은 실수
 - 지수: 00000001 => 실제 지수값 = 지수 바이어스 = 1 127 = -126
 - 소수부분: 0000 ... 00000 => 유효자리 = 1.0
 - $\pm 1.0 \times 2^{-126} \approx \pm 1.2 \times 10^{-38}$
- □ 가장 큰 실수
 - 지수: 11111110 => 실제 지수값 = 254 127 = +127
 - 소수부분: 1111 ... 1111111 => 유효자리 ≈ 2.0
 - $\pm 2.0 \times 2^{+127} \approx \pm 3.4 \times 10^{+38}$

순천향대학교 컴퓨터공학과

11

2-2. 정보의 표현과 처리-실수

컴퓨터 구조

IEEE 754 이중정밀도

- □ 이중정밀도(double precision) 부동소수점의 64비트 인코딩
 - 부호(Sign) 1 비트, 지수(Exponent) 11 비트,비율(Fraction) 52 비트
 - 바이어스 1023
 - 가장 작은 실수: ±1.0 × 2⁻¹⁰²² ≈ ±2.2 × 10⁻³⁰⁸
 - 가장 큰 실수: ±2.0 × 2⁺¹⁰²³ ≈ ±1.8 × 10⁺³⁰⁸

 $V = (-1)^{s} \times (1 + frac) \times 2^{(exp-bias)}$

부동소수점의 IEEE 754 인코딩 요약

이중경	성밀도	이중정밀도			
지수	소수부분	지수	소수부분	표현하는 값	
0	0	0	0	0	
0	0 아닌 수	0	0 아닌 수	±비정규화 수 (denormalized number)	
1~254	모든 수	1~2046	모든 수	±부동소수점 수	
255	0	2047	0	±∞	
255	0 아닌 수	2047	0 아닌 수	NaN (Not a Number)	

순천향대학교 컴퓨터공학과 13

그림 3.13 2-2. 정보의 표현과 처리-실수

컴퓨터 구조

부동소수점 연산

□ 부동소수점 연산 표현

$$x +_f y = Round(x + y)$$

$$\mathbf{x} \times_{\mathbf{f}} \mathbf{y} = \mathbf{Round}(\mathbf{x} \times \mathbf{y})$$

- 먼저 정확한 값을 계산
- 계산 결과를 해당 정밀도에 맞춤 (round)
 - 지수의 값이 너무 크면 오버플로우 발생
 - 유효자리 frac에 자릿수에 맞춤(근사화, round)

부동소수점 덧셈: 10진수 예

□ 4자리 10진 수 예

• $9.999 \times 10^{1} + 1.610 \times 10^{-1}$

단계 1. 작은 지수를 갖는 수의 지수를 큰 수에 일치 (align) 9.999 × 10¹ + 0.016 × 10¹

단계 2. 유효자리 더함 (add)

 $9.999 \times 10^{1} + 0.016 \times 10^{1} = 10.015 \times 10^{1}$

단계 3. 오버플로와 언더플로우 검사하면서 합을 정규화 (normalize) 1.0015 × 10²

단계 4. 결과를 유효자리 맞춤, 자리 4자리에 맞춤(필요하면 반올림) 1.002 × 10²

순천향대학교 컴퓨터공학과

15

2-2. 정보의 표현과 처리-실수

컴퓨터 구조

부동소수점 덧셈 예: 0.5 + (-0.4375)

[Answer]

$$0.5_{\text{ten}} = 0.1_{\text{two}} \times 2^{0} = 1.000_{\text{two}} \times 2^{-1}$$

-0.4375_{ten}= -0.0111_{two} × 2⁰ = -1.110_{two} × 2⁻²
(유효자리가 4비트로 가정)

단계 1. 작은 지수를 갖는 수의 지수를 큰 수에 일치 작은 수: $-1.110_{two} \times 2^{-2} = -0.111_{two} \times 2^{-1}$

단계 2. 유효자리 더함

 $(1.0_{\text{two}}) + (-0.111_{\text{two}}) = 0.001_{\text{two}}$

단계 3. 오버플로와 언더플로우 검사하면서 합을 정규화 0.001_{two}×2⁻¹ =0.010_{two}×2⁻² = 0.100_{two}×2⁻³ = 1.000_{two}×2⁻⁴ 127 >= -4 >= -126 는 언더플로/오버플로 아님

단계 4. 결과를 자리맞춤

 $1.000_{\text{two}} \times 2^{-4} = 0.00625$

⇒ 유효자리 4비트가 적합한 비트이므로 자리 맞춤할 필요 없음

순천향대학교 컴퓨터공학과

부동소수점 곱셈: 10진수 예

□ 4자리 10진 수 예

• $(1.110 \times 10^{10}) \times (9.200 \times 10^{-5})$

단계 1. 지수 덧셈 (add)

$$10 + (-5) = 5$$

단계 2. 유효자리 곱함 (multiply)

$$1.110 \times 9.200 = 10.212 \Rightarrow 10.212 \times 10^{5}$$

단계 3. 정규화 (normalize)와 언더플로우/오버플로 검사 1.0212 × 10⁶

단계 4. 결과를 유효자리 맞춤, 유효자리 4자리에 맞춤(필요하면 반올림) 1.021 × 10⁶

단계 5. 부호 결정

 $+1.021 \times 10^{6}$

순천향대학교 컴퓨터공학과

17

2-2. 정보의 표현과 처리-실수

컴퓨터 구조

부동소수점 곱셈 예: 0.5 x (-0.4375)

[Answer]

$$0.5_{\text{ten}} = 1.000_{\text{two}} \times 2^{-1}$$

-0.4375_{ten} = -1.110_{two} × 2⁻²

(유효자리 수는 4비트 가정)

단계 1. 지수 덧셈

$$(-1 + 127) + (-2 + 127) - 127 = (-3 + 127)$$

단계 2. 유효자리 곱함

$$1.000_{\text{two}} \times 1.110_{\text{two}} = 1.110000_{\text{two}} = 1.110_{\text{two}}$$

단계 3. 정규화와 언더플로우/오버플로 검사 이미 정규화되었고 언더플로우/오버플로 없음

단계 4. 곱셈결과 자리맞춤

변화 없음. 1.110_{two} × 2⁻³

단계 5. 부호 결정

Product =
$$-1.110_{two} \times 2^{-3} = -0.21875_{ten}$$

과제 2-5: 부동소수점 오차의 영향

□ 연습문제 2.46 (p.108)

- 미국 패트리엇트 미사일 오차
 - 1991년 걸프 전쟁에서 스커드 미사일 요격 실패로 28명 사망
- 내부 클럭
 - 0.1(1/10)초 마다 증가하는 카운터
- 시간 계산
 - 0.1초 = 카운터 값 * 1/10 <- 시간 계산을 위해 1/10 상수 곱셈이 필요
- 1/10 = 0.000110011[0011]..........(실제값)
 - 23비트로 표현 (근사값)
 - $\cdot x = 1/10 = 0.0001100110011001100$
- A. 오차는 0.1 x (실제값 근사값)
- B. 0.1초 마다 발생하는 오차 값
- C. 100시간 동작 시 오차
- D. 초속 2000 미터로 날아오는 스커드 미사일의 위치 계산 오차

순천향대학교 컴퓨터공학과

19

2-2. 정보의 표현과 처리-실수

요 약

- □ 부동소수점 표시는 숫자를 x * 2^y로 근사화
- □ IEEE 표준 754는 단일 (32비트) 및 이중 (64비트) 정밀도를 표현
- □ 부동소수점 연산은 계산 결과를 해당 정밀도에 맞춤 (round)

순천향대학교 컴퓨터공학과

21

2-2. 정보의 표현과 처리-실수

과 제

과제 2-5: 부동소수점 오차의 영향

□ 연습문제 2.46 (p.108)

- 미국 패트리엇트 미사일 오차
 - 1991년 걸프 전쟁에서 스커드 미사일 요격 실패로 28명 사망
- 내부 클럭
 - 0.1(1/10)초 마다 증가하는 카운터
- 시간 계산
 - 0.1초 = 카운터 값 * 1/10 <- 시간 계산을 위해 1/10 상수 곱셈이 필요
- 1/10 = 0.000110011[0011]..........(실제값)
 - 23비트로 표현 (근사값)
 - $\cdot x = 1/10 = 0.0001100110011001100$
- A. 오차는 0.1 x (실제값 근사값)
- B. 0.1초 마다 발생하는 오차 값
- C. 100시간 동작 시 오차
- D. 초속 2000 미터로 날아오는 스커드 미사일의 위치 계산 오차

순천향대학교 컴퓨터공학과

23

2-2. 정보의 표현과 처리-실수