Basic Foundations: Standards, Models, and Language

Dr. Sachin R Khedekar

Introduction

- Standards
 - Standards organizations
 - Protocol standards of transport layers
 - Protocol standards of management (application) layer
- Management Models
- Language

Table 3.1 Network Management Standards

Standard	Salient Points	
OSI / CMIP	■ International standard (ISO / OSI)	
	 Management of data communications network - LAN and WAN 	
	■ Deals with all 7 layers	
	■ Most complete	
	■ Object oriented	
	■ Well structured and layered	
	■ Consumes large resource in implementation	
SNMP / Internet	■ Industry standard (IETF)	
	 Originally intended for management of Internet components, currently adopted for WAN and telecommunication systems 	
	■ Easy to implement	
	■ Most widely implemented	
TMN	■ International standard (ITU-T)	
	■ Management of telecommunications network	
	■ Based on OSI network management framework	
	 Addresses both network and administrative aspects of management 	
IEEE	■ IEEE standards adopted internationally	
	■ Addresses LAN and MAN management	
	■ Adopts OSI standards significantly	
	■ Deals with first two layers of OSI RM	
Web-based	■ Web-Based Enterprise Management (WBEM)	
Management	■ Java Management Application Program Interface (JMAPI)	

OSI Architecture and Model

Figure 3.1 OSI Network Management Model

- Organization
 - Network management components
 - Functions of components
 - Relationships
- Information
 - Structure of management information (SMI)
 - Syntax and semantics
 - Management information base (MIB)
 - Organization of management information

OSI Architecture and Model

Figure 3.1 OSI Network Management Model

- Communication
 - Transfer syntax with bi-directional messages
 - Transfer structure (PDU)
- Functions
 - Application functions
 - Configure components
 - Monitor components
 - Measure performance
 - Secure information
 - Usage accounting

SNMP Architecture and Model

Figure 3.1 OSI Network Management Model

- Organization
 - Same as OSI model
- Information
 - Same as OSI
- Communication
 - Messages less complex than OSI and unidirectional
 - Transfer structure (PDU)
- Functions
 - Application functions
 - Operations
 - Administration
 - Security

TMN Architecture

- Addresses management of telecommunication networks
- Based on OSI model
- Superstructure on OSI network
- Addresses network, service, and business management

Organizational Model

- Manager
 - Sends requests to agents
 - Monitors alarms
 - Houses applications
 - Provides user interface
- Agent
 - Gathers information from objects
 - Configures parameters of objects
 - Responds to managers' requests
 - Generates alarms and sends them to mangers
- Managed object
 - Network element that is managed
 - Houses management agent
 - All objects are not managed / manageable

Two-Tier Model

Figure 3.2 Two-Tier Network Mangement Organization Model

- Agent built into network element
 Example: Managed hub, managed router
- An agent can manage multiple elements
 Example: Switched hub, ATM switch
- MDB is a physical database
- Unmanaged objects are network elements that are not managed - both physical (unmanaged hub) and logical (passive elements)

Three-Tier Model

Figure 3.3 Three-Tier Network Mangement Organization Model

- Middle layer plays the dual role
 - Agent to the top-level manager
 - Manager to the managed objects
- Example of middle level: Remote monitoring agent (RMON)

Manager of Managers

Figure 3.4 Network Mangement Organization Model with MoM

- Agent NMS manages the domain
- MoM presents integrated view of domains
- Domain may be geographical, administrative, vendor-specific products, etc.

Peer NMSs

Figure 3.5 Dual Role of Management Process

- Dual role of both NMSs
- Network management system acts as peers
- Dumbbell architecture discussed in Chapter 1
- Notice that the manager and agent functions are processes and not systems

Information Model: Analogy

- Figure in a book uniquely identified by
 - ISBN, Chapter, and Figure number in that hierarchical order
- ID: {ISBN, chapter, figure}
- The three elements above define the syntax
- Semantics is the meaning of the three entities according to Webster's dictionary
- The information comprises syntax and semantics about an object

Structure of Management Information (SMI)

- SMI defines for a managed object
 - Syntax
 - Semantics
 - plus additional information such as status
- Example

sysDescr: { system 1 }

Syntax: OCTET STRING

Definition: "A textual description of the entity."

Access: read-only

Status:mandatory

Management Information Base (MIB)

- Information base contains information about objects
- Organized by grouping of related objects
- Defines relationship between objects
- It is NOT a physical database. It is a *virtual* database that is compiled into management module

Information Base View: An Analogy

- Fulton County library system has many branches
- Each branch has a set of books
- The books in each branch is a different set
- The information base of the county has the view (catalog) of all books
- The information base of each branch has the catalog of books that belong to that branch.
 That is, each branch has its view (catalog) of the information base
- Let us apply this to MIB view

MIB View and Access of an Object

- A managed object has many attributes its information base
- There are several operations that can be performed on the objects
- A user (manager) can view and perform only certain operations on the object by invoking the management agent
- The view of the object attributes that the agent perceives is the MIB view
- The operation that a user can perform is the MIB access

Management Data Base / Information Base

Figure 3.6 Network Configuration with Data and Information Base

- Distinction between MDB and MIB
 - MDB physical database; e.g.. Oracle, Sybase
 - MIB virtual database; schema compiled into management software
- An NMS can automatically discover a managed object, such as a hub, when added to the network
- The NMS can identify the new object as hub only after the MIB schema of the hub is compiled into NMS software

Managed Object

- Managed objects can be
 - Network elements (hardware, system)
 - hubs, bridges, routers, transmission facilities
 - Software (non-physical)
 - programs, algorithms
 - Administrative information
 - contact person, name of group of objects (IP group)

Management Information Tree

Figure 3.7 Generic Representation of Management Information Tree

OSI Management Information Tree

Figure 3.8 OSI Management Information Tree

- iso International Standards Organization
 itu International Telecommunications Union
 dod Department of Defense
- Designation:
 - iso 1
 - org 1.3
 - dod 1.3.6
 - internet 1.3.6.1

Object Type and Instance

- Type
 - Name
 - Syntax
 - Definition
 - Status
 - Access
- Instance

- Example of a circle
 - "circle" is syntax
 - Semantics is definition from dictionary"
 "A plane figure bounded by a single curved line, every point of which is of equal distance from the center of the figure."
- Analogy of nursery school

Managed Object: Internet Perspective

Figure 3.9(a) Internet Perspective

∙object ID	unique ID	
and descriptorsyntax	and name for the object used to model the object	
•access	access privilege to a managed object	
•status	implementation requirements	
• definition semantics	textual description of the of object	
type		

Managed Object: OSI Perspective

Figure 3.9(b) OSI Perspective

Notes

• object class managed object

• attributes at its boundary

• operations operations which may be applied to it

•behaviour behaviour exhibited by it in response to operation

•notifications notifications emitted by the object

Packet Counter Example

Characteristics	Example	
Object type	PktCounter	
Syntax	Counter	
Access	Read-only	
Status	Mandatory	
Description	Counts number of packets	

Figure 3.10(a) Internet Perspective

Characteristics	Example	
Object class	Packet Counter	
Attributes	Single-valued	
Operations	get, set	
Behavior	Retrieves or resets values	
Notifications	Generates notifications on new value	

Figure 3.10 (b) OSI Perspective

Figure 3.10 Packet Counter As Example of Managed Object

Internet Vs OSI Managed Object

- Scalar object in Internet Vs Object-oriented approach in OSI
- OSI characteristics of operations, behaviour, and notification are part of communication model in Internet: get/set and response/alarm
- Internet syntax is absorbed as part of OSI attributes
- Internet access is part of OSI security model
- Internet status is part of OSI conformance application
- OSI permits creation and deletion of objects;
 Internet does not: Enhancement in SNMPv2

Mgmt. Communication Model

Figure 3.11 Management Message Communication Model

- In Internet requests/responses, in OSI operations
- In Internet traps and notifications (SNMPv2), in OSI notifications

Transfer Protocols

Figure 3.12 Management Communication Transfer Protocols

- Internet is based on SNMP; OSI is based on CMIP
- OSI uses CMISE (Common Management Information Service Element) application with CMIP
- OSI specifies both c-o and connectionless transport protocol; SNMPv2 extended to c-o, but rarely used

Abstract Syntax Notation One

- ASN.1 is more than a syntax; it's a language
- Addresses both syntax and semantics
- Two type of syntax
 - Abstract syntax: set of rules that specify data type and structure for information storage
 - Transfer syntax: set of rules for communicating information between systems
- Makes application layer protocols independent of lower layer protocols
- Can generate machine-readable code: Basic Encoding Rules (BER) is used in management modules

Backus-Nauer Form (BNF)

Definition:

<name> ::= <definition>

Rules:

<digit> ::= 0|1|2|3|4|5|6|7|8|9

<number> ::= <number> | <digit> <number>

< op > ::= +|-|x|/

<SAE> ::= <number>|<SAE>|<SAE><op><SAE>

Example:

- 9 is *primitive* 9
- 19 is construct of 1 and 9
- 619 is *construct* of 6 and 19

- BNF is used for ASN.1 constructs
- Constructs developed from primitives
- The above example illustrates how numbers are constructed from the primitive <digit>
- Simple Arithmetic Expression entity (<SAE>)
 is constructed from the primitives <digit> and
 <op>

Simple Arithmetic Expression

<SAE> ::= <number> | <SAE><op><number>

Example: $26 = 13 \times 2$

Constructs and primitives

Type and Value

- Assignments
 - <BooleanType> ::= BOOLEAN
 - <BooleanValue> ::= TRUE | FALSE
- ASN.1 module is a group of assignments person-name Person-Name::=

 first "John",
 middle "I",
 last "Smith"

Data Type: Example 1

```
PersonnelRecord ::= SET
                Name,
        title
               GraphicString,
        division CHOICE
          marketing
                        [0] SEQUENCE
            {Sector,
            Country},
                    [1] CHOICE
        research
            {product-based [0] NULL,
            basic
                            [1] NULL},
        production
                        [2] SEQUENCE
            {Product-line,
            Country }
etc.
```

Figure 3.13 ASN.1 Data Type Definition Example 1

- Module name starts with capital letters
- Data types:
 - Primitives: NULL, GraphicString
 - Constructs
 - Alternatives : CHOICE
 - List maker: SET, SEQUENCE
 - Repetition: SET OF, SEQUENCE OF:
- Difference between SET and SEQUENCE

Data Type: Example 2

```
Trade-message ::= SEQUENCE
   {invoice-no
                   INTEGER
    name
                   GraphicString,
               SEQUENCE OF
    details
                   SEQUENCE
                       INTEGER
           {part-no
            quantity
                       INTEGER},
                REAL,
    charge
    authenticator
                    Security-Type}
Security-Type ::= SET
```

Figure 3.14 ASN.1 Data Type Definition Example 2

Notes

SEQUENCE OF SEQUENCE makes tables of rows

ASN.1 Symbols

Symbol Meaning

::= Defined as

| or, alternative, options of a list

- Signed number

-- Following the symbol are comments

{} Start and end of a list

[] Start and end of a tag

() Start and end of subtype

... Range

Keyword Examples

- CHOICE
- SET
- SEQUENCE
- OF
- NULL

Notes

• Keywords are in all UPPERCASE letters

ASN.1 Data Type Conventions

Data Types	Convention	Example	
Object name	Initial lowercase letter	sysDescr, etherStatsPkts	
Application data type	Initial uppercase letter Counter, IpAddress		
Module	Initial uppercase letter	PersonnelRecord	
Macro, MIB module	All uppercase letters	RMON-MIB	
Keywords	All uppercase letters	INTEGER, BEGIN	

Data Type: Structure & Tag

Figure 3.15 ASN.1 Data Type Structure and Tag

- Structure defines how data type is built
- Tag uniquely identifies the data type

Structure

```
    Simple

      PageNumber ::= INTEGER
      ChapterNumber ::= INTEGER

    Structure / Construct

      BookPageNumber ::=
           SEQUENCE
             {ChapterNumber, Separator, PageNumber
      Example: {1-1, 2-3, 3-39}

    Tagged

    Derived from another type; given a new ID

      • In Fig. 3-14, INTEGER is either universal or
       application specific
 • Other types:
      • CHOICE, ANY
  Notes
BookPages ::= SEQUENCE OF { BookPageNumber}
                              or
BookPages ::=
          SEQUENCE OF
          SEQUENCE
            {ChapterNumber, Separator, PageNumber}
```

Tag

- Tag uniquely identifies a data type
- Comprises *class* and *tag number*
- Class:
 - Universal always true
 - Application only in the application used
 - Context-specific specific context in application
 - Private used extensively by commercial vendors

Notes

Example:

BOOLEAN Universal 1
INTEGER Universal 2
research Application [1] (Figure 3.13)
product-based Context-specific under research [0]

Enumerated Integer

- ENUMERATED is a special case of INTEGER
- Example: RainbowColors(5) is orange

ASN.1 Module Example

IpNetMediaEntry ::=SEQUENCE{

ipNetToMedialfIndex INTEGER

ipNetToMediaPhysAddress PhysAddress

ipNetToMediaType INTEGER}

```
John P Smith
Name:
                  Director
Title:
Employee Number 51
Date of Hire:
                  17 September 1971
Name of Spouse; Mary T Smith
Number of Children 2
Child Information
                  Ralph T Smith
      Name
      Date of Birth 11 November 1957
Child Information
                   Susan B Jones
      Name
      Date of Birth 17 July 1959
                 (a) Informal description of personnel record
PersonnelRecord ::= [APPLICATION 0] IMPLICIT SET {
      Name.
      title [0] VisibleString,
      number EmployeeNumber,
      dateOfHire [1] Date,
     nameOfSpouse [2] Name,
      children [3] IMPLICIT SEQUENCE OF ChildInformation DEFAULT { } }
ChildInformation ::= SET {
      Name,
      dateOfBirth [0] Date }
Name ::= [APPLICATION 1] IMPLICIT SEQUENCE {
      givenName VisibleString,
      initial VisibleString,
      familyName VisibleString }
EmployeeNumber ::= [APPLICATION 2] IMPLICIT INTEGER
Date ::= [APPLICATION 3] IMPLICIT VisibleString -- YYYYMMDD
                 (b) ASN.1 description of the record structure
                         {givenName "John", initial "T", familyName "Smith"},
      title
                         "Director"
                         "51"
      number
      dateOfHire
                         "19710917"
      nameOfSpouse
                         {givenName "Mary", initial "T", familyName "Smith"},
      children
                         {givenName "Ralph", initial "T", familyName "Smith"},
        dateOfBirth
                               "19571111"},
                         {givenName "Susan", initial "B", familyName "Jones"}
                               "19590717"}}}
        dateOfBirth
            (c) ASN.1 description of a record value
```

Object Name

Notes

• internet OBJECT IDENTIFIER ::= {ISO(1) ORG(3) DOD(6) INTERNET(1)}

TLV Encoding

Class	8 th bit	7 th bit
Universal	0	0
Application	0	1
Context-specific	1	0
Private	1	1

Notes

• TLV Type, length, and value are components of the structure

Macro

```
<macroname> MACRO ::=
    BEGIN
       TYPE NOTATION ::= <syntaxOfNewType>
       VALUE NOTATION ::= <syntaxOfNewValue>
       <auxiliaryAssignments>
    END
Example:
CS8803 OBJECT-IDENTITY
   STATUS
               current
   DESCRIPTION "A graduate-level network
   management course offered every fall by
    College of Computing in Georgia Institute of
    Technology."
       ::= {csclasses 50}
```

Notes

Macro is used to create new data types

Functional Model

- Configuration management
 - set and change network configuration and component parameters
 - Set up alarm thresholds
- Fault management
 - Detection and isolation of failures in network
 - Trouble ticket administration
- Performance management
 - Monitor performance of network
- Security management
 - Authentication
 - Authorization
 - Encryption
- Accounting management
 - Functional accounting of network usage