Optymalizacja systemu sygnalizacji świetlnej w oparciu o przepływowy model ruchu pojazdów.

Michał Lis

3 marca 2019

Spis treści

1	Wprowadzenie						
2	Cel pracy						
3	Zakres pracy						
4	Siatka czasowa i przestrzenna 1						
5	Makroskopowy model ruchu						
	5.1 Klasyfikacja modeli ruchu drogowego	. 13					
	5.2 Wstęp	. 13					
	5.3 Rozwój gęstości ruchu na drodze						
	5.4 Dyskretyzacja makroskopowego modelu ruchu	. 14					
6	Model sieci dróg	17					
	6.1 Wstęp	. 17					
	6.2 Symbole i notacja obliczeniowa	. 17					
	6.3 Sieć dróg	. 17					
	6.4 Przykładowe skrzyżowanie						
	6.5 Macierz stanowa sieci dróg	. 19					
	6.6 Model przepływu - przykład						
	6.7 Model przepływu - ogólny wzór						
	6.8 Model przepływu z sygnalizacją świetlną - przykład						
	6.9 Model przepływu z sygnalizacją świetlną - ogólny wzór	. 23					

4 SPIS TREŚCI

Rozdział 1 Wprowadzenie

Rozdział 2 Cel pracy

Rozdział 3 Zakres pracy

Rozdział 4

Siatka czasowa i przestrzenna

Dyskretny charakter modelu przedstawianego w pracy obliguje do określenia siatki czasowej i przestrzennej. Dla par czasu i miejsc należących do tych dwóch siatek będą określane zmienne stanowe.

Siatka czasowa jest zdefiniowana jako skończony ciąg liczb naturalnych:

$$(0,1,...,K). (4.1)$$

Niech będzie ustalona droga e, która jest odcinkiem $[0, L_e]$. Droga zostaje podzielona na L+1 odcinków o równej długości $\Delta x = \frac{L_e}{L+1}$. Siatka przestrzenna drogi to ciąg odcinków:

$$(b_l)_{l=0}^L = [l\Delta x, (l+1)\Delta x]$$

Rysunek 4.1: Siatka przestrzenna

Rozdział 5

Makroskopowy model ruchu

5.1 Klasyfikacja modeli ruchu drogowego

Modele ruchu drogowego mają na celu ukazanie rzeczywistego przepływu pojazdów w sposób czysto matematyczny. Ważnym kryterium doboru modelu jest przystępność jego implementacji informatycznej. Powszechnie klasyfikuje się 3 podejścia modelowe dla omawianego problemu [1] - makroskopowy, mezoskopowy oraz mikroskopowy. Czasem [2] wyróżnia się także czwarte podejście - submikroskopowe. Jest to podział ze względu na poziom modelu. Najniższy poziom i najbardziej dokładny model gwarantuje podejście mikroskopowe. Rozważa ono pojazdy indywidualnie w czasoprzestrzeni. Przyspieszenie pojazdu jest wyliczane na podstawie dynamiki (prędkości, przyspieszenia) i pozycji pojazdu bezpośrednio przed nim. Model mezoskopowy zapewnia indywidualne rozróżnienie pojazdów, jednak ich zachowanie jest wyliczane na danych zagregowanych [3]. Przykładowo pojazdy sa zgrupowane w grupe podróżującą z pewnego punktu startowego do celu. Inne modele [4] mezoskopowe wyliczają dynamike ruchu na podstawie aktualnego zatłoczenia drogi. Poziom mezoskopowy jest obliczeniowo bardziej opłacalny od mikroskopowego. Wiele symulatorów stosujących model mezoskopowy oferuje symulacje w czasie rzeczywistym dla sieci dróg całego miasta[5]. Idea modelu makroskopowego jest traktowanie ruchu ulicznego identycznie jak ruchu cieczy lub gazów. Po raz pierwszy w roku 1956 M. J. Lighthill i G. B. Whitham [6] przedstawili pomysł przyrównania ruchu ulicznego na zatłoczonych drogach do przepływu wody w rzekach. Z tego powodu nie rozróżniamy w nim indywidualnie pojazdów, ani też nawet grupowo. Rozważamy natomiast gestość ruchu w danym punkcie na drodze i czasie - czyli ilość pojazdów na danym odcinku drogi. Sposób w jaki poruszają się pojazdy jest wyliczany jedynie na podstawie gestości ruchu. Jest to najmniej kosztowny obliczeniowo model. Właśnie w modelu makroskopowym zostało stworzone środowisko symulacyjne. Szczegóły modelu są przedstawione w następnym podrozdziale.

5.2 Wstęp

Istotą makroskopowego modelu ruchu jest pojęcie gęstości ruchu. Jest to zmienna stanowa określona dla każdego punktu drogi w czasie. Formalnie gęstość można rozumieć jako czynnik definiujący dynamikę ruchu. Im większa gęstość tym mniejsza prędkość ruchu. W niektórych

artykułach gestość ruchu [7] jest przedstawiona jako iloraz ilości pojazdów znajdujących się na pewnym odcinku i długości tego odcinka drogi. Nie są to jednak czysto matematyczne formalne definicje. W makroskopowym modelu nie rozróżniamy pojedynczych pojazdów, ani nawet grup, wiec taka definicja gestości ruchu może być odebrana jako nieścisła z idea modelu.

5.3 Rozwój gęstości ruchu na drodze

Makroskopowy model ruchu jest oparty o równanie różniczkowe (5.2) wraz z warunkiem poczatkowym (5.1). Model makroskopowy traktuje ruch uliczny na drogach podobnie do przepływu wody w rzece[ref]. Gęstość ruchu można utożsamiać z polem powierzchni przekroju poprzecznego rzeki, co dla ustalonej szerokości rzeki - upraszcza się do wysokości wody w rzece. Istotną uwagą w tym miejscu jest zaznaczenie, iż rzeka zazwyczaj posiada pewien spadek, który zapewnia ruch cieczy ze źródła do ujścia. Ruch makroskopowy zdefiniowany przez równanie (5.2) z kolei odnosi się do rzeki która jest na całym swoim odcinku pozioma. W takim przypadku de facto nie ma zdefiniowanego zwrotu ruchu.

Dla ustalonej drogi e zmiane gestości ruchu definiuje następujący układ równań:

$$\int p(x,0) = p_0(x) \tag{5.1}$$

$$\begin{cases} p(x,0) = p_0(x) \\ \frac{\partial p(x,t)}{\partial t} + \frac{\partial f(p(x,t))}{\partial x} = 0 \end{cases}$$
 (5.1)

Gdzie p(x,t) to gestość ruchu w punkcie x i czasie t. Wartość funkcji gestości należy do przedziału $[0, p^{max}].$

Równanie (5.1) zakłada istnienie pewnej z góry nałożonej początkowej gestości drogi $p_0(x)$. Równianie (5.2) określa wedle założeń modelu makroskopowego [6] rozwój gestości ruchu na drodze. Funkcja płynności ruchu f powinna być wklesła [ref]. W przedstawionym w tej pracy modelu funkcja ma następująca definicję:

$$f(p) = \begin{cases} \lambda p & \text{dla } p \in [0, p^*] \\ \lambda \cdot (2p^* - p) & \text{dla } p \in (p^*, p^{max}] \end{cases}$$
 (5.3)

Gdzie λ jest stałym parametrem funkcji trójkątnej oraz $p^* = \frac{1}{2}p^{max}$

Dyskretyzacja makroskopowego modelu ruchu 5.4

Niech będzie ustalona droga e oraz jej siatka przestrzenna b_l . Celem jest przedstawienie wartości gestości dla odcinków siatki przestrzennej w chwilach k=0,1,...,K. Gestość w odcinku b_l i czasie k jest zdefiniowana jako:

$$p_l^k = \int_{b_l} \frac{p(x,k)}{\Delta x} dx. \tag{5.5}$$

Na podstawie (5.2) można wywnioskować, że:

$$\int_{b_{l}} p(x, k+1) - p(x, k)dx + \int_{k}^{k+1} f(b_{l+1}, k) - f(b_{l}, k)dk = 0$$
(5.6)

Upraszczając otrzymujemy:

$$\Delta x(p_l^{k+1} - p_l^k) + \int_k^{k+1} f(b_{l+1}, k) - f(b_l, k) dk = 0 = 0$$
(5.7)

Wartości gęstości zmieniają się w tylko w chwilach k. Wtedy wartości $f(b_{l+1}, k)$ i $f(b_l, k)$ są stałe na całym przedziale całkowania [k, k+1). Otrzymujemy równanie:

$$\Delta x(p_l^{k+1} - p_l^k) + (f(b_{l+1}, k) - f(b_l, k)) = 0$$
(5.8)

Rezultatem jest końcowy rekurencyjny wzór na gęstość ruchu:

$$p_l^{k+1} = p_l^k - \frac{1}{\Delta x} (f(b_{l+1}, k) - f(b_l, k))$$
(5.9)

Rozdział 6

Model sieci dróg

6.1 Wstęp

Ze względu na dużą złożoność końcowego modelu zostanie przedstawiony najpierw bardzo prosty, podstawowy model. W każdej kolejnej sekcji dodawane będą zmiany przybliżające do ostatecznej postaci. Jest to podejście pozwalające na proste przedstawienie modelu, który zawiera bardzo wiele aspektów m.in: ujęcie sygnalizacji świetlnej, brak kolizyjnych manewrów, makroskopowy przepływ ruchu, przepływ ruchu na skrzyżowaniu, struktura sieci dróg. Zestawienie w jednej sekcji wszystkich tych kwestii byłoby bardzo przytłaczające.

6.2 Symbole i notacja obliczeniowa

Obliczenia w tym rozdziale będą wykonywane głównie na macierzach. Zazwyczaj macierze będą wyrazem ciągu, którego indeksem jest czas. Przykładowo P(k) odnosi się do wartości w chwili k. Notacja P(k,l) odnosi się do l-tej kolumny macierzy P(k). $\overrightarrow{P(k)}$ jest następująca operacją macierzową:

Jak łatwo zauważyć przesuwa ona wszystkie kolumny o jeden indeks w prawo. Pierwsza kolumna jest zerowa.

6.3 Sieć dróg

Sieć dróg przedstawia uporządkowana dwójka G = (V, E), gdzie:

- \bullet V to zbiór skrzyżowań
- E to zbiór dróg

Skrzyżowania są oznaczone numerami: 1,2,3. Punkty z numerem 0 są jedynie początkami i końcami dróg.

Rysunek 6.1: Przykładowa sieć dróg

6.4 Przykładowe skrzyżowanie

Niech dane będzie skrzyżowanie dwóch dróg włotowych e_1, e_2 i jednej wylotowej e_3 . Każda z dróg jest jednakowej długości. Struktura skrzyżowania jest przedstawiona na rysunku 6.2. Macierz B jest **macierzą przejścia** skrzyżowania v. Wartości 1 oznaczają możliwy przejazd na skrzyżowaniu z drogi odpowiadającej indeksowi kolumny do drogi zadanej przez indeks wiersza.

$$B = \begin{bmatrix} e_1 & e_2 & e_3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} e_1 \\ e_2 \\ e_3 \end{bmatrix}$$
 (6.2)

Rysunek 6.2: Skrzyzowanie 1

6.5 Macierz stanowa sieci dróg

Strukturą przedstawiającą stan sieci dróg jest **macierz stanowa** P(k). Składuje ona zmienne stanowe w danym momencie k. Każdy wiersz macierzy odpowiada jednej drodze e. Indeks kolumny określa konkretny odcinek tej drogi.

Wartość zmiennej stanowej początkowo jest ilością pojazdów na danym odcinku. Jako przykład zostanie przedstawiona początkowa macierz stanowa skrzyżowania z rysunku 6.2. Niech siatki przestrzenne dróg składają się z 4 odcinków. Początkowa macierz stanu P(0) może być przedsta-

wiona jako:

$$P(0) = \begin{bmatrix} b_0 & b_1 & b_2 & b_3 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} e_1 \\ e_2 \\ e_3 \end{bmatrix}$$
 (6.3)

Powyższa macierz przekazuje informację iż w chwili 0 pojazdy są na następujących drogach:

- e_1 na odcinkach b_1, b_3
- e_2 na odcinku b_3
- e_3 na odcinku b_0

6.6 Model przepływu - przykład

Początkowy model przepływu pojazdów zakłada, iż wszystkie pojazdy w chwili k+1 są o jeden odcinek dalej w swojej podróży niż w momencie k. Założone jest iż żadne nowe pojazdy nie pojawiają się w sieci dróg, a pojazdy będące w chwili k w ostatnim odcinku drogi e_3 opuszczają układ. Wtedy kolejne macierze stanowe dla przykładu 6.3 są następujące:

$$P(1) = \begin{bmatrix} b_0 & b_1 & b_2 & b_3 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} e_1 \\ e_2 \\ e_3 \end{bmatrix}$$
 (6.4)

$$P(2) = \begin{bmatrix} b_0 & b_1 & b_2 & b_3 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 \end{bmatrix} \begin{bmatrix} e_1 \\ e_2 \\ e_3 \end{bmatrix}$$
 (6.5)

$$P(3) = \begin{bmatrix} 0 & b_1 & b_2 & b_3 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 2 & 1 \end{bmatrix} \begin{bmatrix} e_1 \\ e_2 \\ e_3 \end{bmatrix}$$
 (6.6)

$$P(4) = \begin{bmatrix} b_0 & b_1 & b_2 & b_3 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 2 \end{bmatrix} \begin{bmatrix} e_1 \\ e_2 \\ e_3 \end{bmatrix}$$
 (6.7)

6.7 Model przepływu - ogólny wzór

W poprzedniej sekcji został przedstawiony przykład wyliczenia macierzy stanowej dla kolejnych momentów w czasie. Następnym krokiem jest przedstawienie rozwiązania dla ogólnego przypadku.

Ogólny wzór przedstawiający rozwój macierzy stanowej to:

$$P(k+1) = \overrightarrow{P(k)} + S(k) \tag{6.8}$$

Macierz S(k) nazywana będzie **macierzą źródła**. Dotyczy ona ruchu wpływającego do poszczególnych dróg w momencie k+1. Jest to macierz rzadka, istotna obliczeniowo jest jedynie pierwsza kolumna, a pozostałe wartości są zerowe by osiągnąć wymiar macierzy pozwalający na dodawanie z $\overline{P(k)}$. Pierwsza kolumna jest zdefiniowana w oparciu o ostatnią kolumnę macierzy P(k) i jest równa:

$$S(k,0) = B \cdot P(k,l) \tag{6.9}$$

Dla przykładu z poprzedniej sekcji, gdzie

$$P(0) = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

Dla kolejnego momentu k = 1 korzystając ze wzoru (6.8):

$$P(1) = \overrightarrow{P(0)} + S(0) \tag{6.10}$$

Należy wyliczyć macierz źródła, jej pierwsza kolumna to:

$$S(0,0) = B \cdot P(0,l) = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix}$$

Zatem

$$S(0) = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 2 & 0 & 0 & 0 \end{bmatrix}$$

Oczywiście

$$\overrightarrow{P(0)} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

Ostatecznie ze wzoru (6.10) wynika, że

$$P(1) = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 2 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \end{bmatrix}$$

Warto zauważyć, że w chwili 0 na obydwu drogach wlotowych e_1, e_2 pojazdy znajdowały się na końcowym odcinku. Problemem okazuje się kolizyjność manewrów wjazdu na drogę e_3 z dróg odpowiednio e_1 i e_2 . Początkowo ta kwestia została ona pominięta. Następna sekcja przedstawia rozwiązanie tego problemu.

6.8 Model przepływu z sygnalizacją świetlną - przykład

Rysunek 6.3: Skrzyzowanie 1 z sygnalizacją świetlną w chwili 0

Wprowadzona zostaje sygnalizacja świetlna dla dwóch dróg wlotowych e_1,e_2 . Sygnalizacja świetlna będzie oparta o ciąg **macierzy sygnalizacji**. Określają one z której drogi pojazdy będą mogły wjechać na drogę e_3 . Dla chwili 0 przyjęte jest, że zgodnie z rysunkiem 6.3 pojazdy na ostatnim odcinku drogi e_2 będą musiały poczekać. Przykładowa początkowa macierz to:

$$M(0) = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & \mathbf{0} & 0 \end{bmatrix} \begin{bmatrix} e_1 \\ e_2 \\ e_3 \end{bmatrix}$$
 (6.11)

Przekazuje ona informację, że:

- Jest zielone światło na drodze e_1 w chwili 0
- Jest czerwone światło na drodze e_2 w chwili 0

Poniższy przykład obrazuje rozwój macierzy stanowej dla skrzyżowania z sygnalizacją świetlną.

$$P(0) = \begin{bmatrix} b_0 & b_1 & b_2 & b_3 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} e_1 \\ e_2 \\ e_3 \end{bmatrix}$$
 (6.12)

Zgodnie z rysunkiem 6.3 czerwone światło na drodze e_2 powoduje, że pojazdy nie opuszczają ostatniego odcinka tej drogi. Z kolei pojazdy ostatniego odcinka drogi e_1 wjeżdżają na drogę e_3 . Zatem:

$$P(1) = \begin{bmatrix} b_0 & b_1 & b_2 & b_3 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} e_1 \\ e_2 \\ e_3 \end{bmatrix}$$
 (6.13)

Sygnalizacja świetlna nie zmienia się w chwili 1. Dochodzi do sytuacji gdy ruch kumuluje się na ostatnim odcinku drogi e_2 .

$$P(2) = \begin{bmatrix} b_0 & b_1 & b_2 & b_3 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 2 \\ 0 & 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} e_1 \\ e_2 \\ e_3 \end{bmatrix}$$
 (6.14)

Niech w chwili 2 będzie zielone światło dla drogi e_2 , czyli

$$M(2) = \begin{bmatrix} e_1 & e_2 & e_3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ \mathbf{0} & \mathbf{1} & 0 \end{bmatrix} \begin{bmatrix} e_1 \\ e_2 \\ e_3 \end{bmatrix}$$
 (6.15)

Początkowo założone jest, że wszystkie pojazdy na ostatnim odcinku drogi przejeżdżają przez skrzyżowanie. Wtedy:

$$P(3) = \begin{bmatrix} b_0 & b_1 & b_2 & b_3 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 2 & 0 & 1 & 1 \end{bmatrix} \begin{array}{c} e_1 \\ e_2 \\ e_3 \end{array}$$
 (6.16)

6.9 Model przepływu z sygnalizacją świetlną - ogólny wzór

Następnym krokiem jest wyznaczenie ogólnego wzoru macierzy stanowej z uwzględnieniem sygnalizacji świetlnej.

Macierz źródła z uwzględnieniem sygnalizacji świetlnej jest przedstawiona wzorem:

$$S(k,0) = M(k) \cdot P(k,l) \tag{6.17}$$

Oprócz pierwszej kolumny macierz S dalej posiada wartości zerowe.

Wprowadzony zostanie ciąg W(k) pomocniczych **macierzy oczekujących pojazdów**. Będą to macierze rzadkie z wartościami innymi niż 0 tylko w ostatniej kolumnie. Macierze te będą składowały informację o pojazdach oczekujących na zielone światło w swojej ostatniej kolumnie. Jest ona zdefiniowana jako:

$$W(k,l) = P(k,l) - S(k,0)$$

Wzór określający rozwój macierzy stanowej jest następujący:

$$P(k+1) = \overrightarrow{P(k)} + S(k) + W(k) \tag{6.18}$$

Dla wcześniej przedstawionego przykładu w tabeli są wypisane obliczenia wedle wzoru (6.18).

Tablica 6.1: Rozwój macierzy stanowej na skrzyżowaniu 1 z sygnalizacją świetlną

k	M(k)	P(k)	$\overrightarrow{P(k)}$	S(k,0)	W(k,l)
0	$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$	$\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$
1	$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$	$\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$
2	$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 2 \\ 0 & 1 & 1 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$	$\begin{bmatrix} 0 \\ 2 \\ 0 \end{bmatrix}$	$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$
3		$\begin{bmatrix} 0 & 0 & 1 & 1 \\ 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$			

Pogrubione wartości odnoszą się do pojazdów, które przejeżdżają w momencie k przez skrzyżowanie.

Bibliografia

- [1] S. Boubaker, F. Rehimi, and A. Kalboussi, "Comparative analysis of microscopic models of road traffic data," in *Logistics (LOGISTIQUA)*, 2011 4th International Conference on. IEEE, 2011, pp. 474–478.
- [2] P. Kumar, R. Merzouki, B. Conrard, V. Coelen, and B. O. Bouamama, "Multilevel modeling of the traffic dynamic," *IEEE Transactions on Intelligent Transportation Systems*, vol. 15, no. 3, pp. 1066–1082, 2014.
- [3] W. Burghout, H. N. Koutsopoulos, and I. Andreasson, "A discrete-event mesoscopic traffic simulation model for hybrid traffic simulation," in *Intelligent Transportation Systems Conference*, 2006. ITSC'06. IEEE. IEEE, 2006, pp. 1102–1107.
- [4] M. Ben-Akiva, M. Bierlaire, D. Burton, H. N. Koutsopoulos, and R. Mishalani, "Network state estimation and prediction for real-time traffic management," *Networks and spatial economics*, vol. 1, no. 3-4, pp. 293–318, 2001.
- [5] V. A. Vu and G. Tan, "High-performance mesoscopic traffic simulation with gpu for large scale networks," in *Proceedings of the 21st International Symposium on Distributed Simulation and Real Time Applications.* IEEE Press, 2017, pp. 127–135.
- [6] M. J. Lighthill and G. B. Whitham, "On kinematic waves ii. a theory of traffic flow on long crowded roads," *Proc. R. Soc. Lond. A*, vol. 229, no. 1178, pp. 317–345, 1955.
- [7] D. Helbing, A. Hennecke, V. Shvetsov, and M. Treiber, "Master: macroscopic traffic simulation based on a gas-kinetic, non-local traffic model," *Transportation Research Part B: Methodological*, vol. 35, no. 2, pp. 183–211, 2001.
- [8] S. Göttlich, M. Herty, and U. Ziegler, "Modeling and optimizing traffic light settings in road networks," *Computers & operations research*, vol. 55, pp. 36–51, 2015.