해석개론 및 연습 1 과제 #1

2017-18570 컴퓨터공학부 이성찬

- **1.** 먼저 $m \in S$ 이므로 $\inf S \ge m$ 임은 당연하다. 이제 m이 S의 최대 하계임을 보이자. $\forall \epsilon > 0$ 에 대해, $m + \epsilon$ 이 S의 하계라고 가정하면 $\forall x \in S$ 에 대하여 $m + \epsilon \le x$ 이다. 그런데 $m \in S$ 이므로 $m + \epsilon \le m$ 이고 이는 $\epsilon > 0$ 에 모순이다. 따라서 $\inf S = m$.
- **2.** Claim 1. Suppose that a subset S of $\mathbb R$ contains a maximum $m \in \mathbb R$. Then $\sup S = m$. **Proof**. $m \in S$ 이므로 $\sup S \leq m$ 임은 당연하다. 이제 m이 S의 최소 상계임을 보이자. $\forall \epsilon > 0$ 에 대해, $m \epsilon$ 이 S의 상계라고 가정하면 $\forall x \in S$ 에 대하여 $m \epsilon \geq x$ 이다. 그런데 $m \in S$ 이므로 $m \epsilon \geq m$ 이고 이는 $\epsilon > 0$ 에 모순이다. 따라서 $\sup S = m$.
 - (1) Let A=(1,2). $\forall x \in A$ 에 대하여 x < 2 이므로 $\sup A \le 2$. 이제 2 가 A의 최소 상계임을 보이자. $\forall \epsilon > 0$ 에 대해, $2-\epsilon$ 이 A의 상계라고 하면 $\forall x \in A$ 에 대하여 $2-\epsilon \ge x$ 이다. 그런데 $2-\epsilon/2 \in A$ 이므로 $2-\epsilon \ge 2-\epsilon/2$ 이고 정리하면 $\epsilon \le 0$ 이되어 모순이다. 따라서 $\sup A=2$.

 $\forall x \in A$ 에 대하여 x>1 이므로 $\inf A \geq 1$. 이제 1 이 A의 최대 하계임을 보이자. $\forall \epsilon>0$ 에 대해, $1+\epsilon$ 이 A의 하계라고 하면 $\forall x \in A$ 에 대하여 $1+\epsilon \leq x$ 이다. 그런데 $1+\epsilon/2 \in A$ 이므로 $1+\epsilon \leq 1+\epsilon/2$ 이고 정리하면 $\epsilon \leq 0$ 이 되어 모순이다. 따라서 $\inf A=2$.

(2) Let $B=\left\{\frac{1}{1+n^2}:n\in\mathbb{N}\right\}$. 먼저 $f(n)=\frac{1}{1+n^2}$ 이 감소함을 보이자. $1+n^2<1+(n+1)^2$ 이므로 f(n)>f(n+1). 따라서 B의 최댓값은 n=1 일 때인 1/2 이다. 이제 Claim 1 에 의하여 $\sup B=1/2$. 우선 B의 모든 원소들은 양수이므로 $\inf B\geq 0$. 만약 $\epsilon>0$ 이 B의 하계라고 하면,

$$n^2 > \frac{1}{\epsilon} > \frac{1}{\epsilon} - 1, \quad n^2 + 1 > \frac{1}{\epsilon}$$

이므로 $\epsilon > \frac{1}{1+n^2}$ 가 되어 ϵ 이 하계라는 가정에 모순이다. 따라서 $\inf B = 0$.

(3) Let $C = \{(-1)^n + (-1/2)^m : n, m \in \mathbb{N}\}$. C의 최댓값과 최솟값을 찾자.

 $n > \sqrt{1/\epsilon}$ 인 모든 $n \in \mathbb{N}$ 에 대하여

$$-1 \le (-1)^n \le 1, \quad -\frac{1}{2} \le \left(-\frac{1}{2}\right)^m \le \frac{1}{4}$$

이므로

$$\forall x \in C, \quad -\frac{3}{2} \le x \le \frac{5}{4}$$

이다. 최댓값은 (n,m)=(2,2) 일 때 5/4, 최솟값은 (n,m)=(1,1) 일 때 -3/2 이다. $C\subset\mathbb{R}$ 이므로 Claim 1 과 1번 문제의 결과에 의해 $\sup C=5/4$, $\inf C=-3/2$.

3. (1) A, B가 유계이므로 적당한 실수 a,b,c,d 가 존재하여 모든 $x \in A, y \in B$ 에 대해 다음이 성립한다.

$$a \le x \le b,$$
 $c \le y \le d$

따라서 다음이 성립하고

$$a - d \le x - y \le b - c$$

A - B 또한 유계임을 알 수 있다.

(2) Claim. $\sup(A - B) = \sup A - \inf B$.

Proof. 우선 다음과 같이 적을 수 있다.

$$\inf A \le x \le \sup A, \quad \inf B \le y \le \sup B$$

모든 $u \in A - B$ 에 대해 $u \le \sup A - \inf B$ 이므로 $\sup (A - B) \le \sup A - \inf B$. 이제 $k = \sup A - \inf B$ 가 A - B 의 최소 상계임을 보인다. $\forall \epsilon > 0, k - \epsilon$ 가 A - B 의 상계라고 가정하자. 그런데, 상한과 하한의 정의로부터 다음을 만족하는 $x \in A, y \in B$ 가 존재한다.

$$\sup A - \frac{\epsilon}{2} < x \le \sup A, \qquad \inf B \le y < \inf B + \frac{\epsilon}{2}$$

따라서 $k - \epsilon < x - y < k$ 가 되어 상계라는 가정에 모순이므로 원하는 등식을 얻는다.

- **4.** $\lim_{n \to \infty} a_n = 0$ 이므로 임의의 주어진 $\epsilon > 0$ 에 대해 $N \in \mathbb{N}$ 이 존재하여 n > N 인 모든 $n \in \mathbb{N}$ 에 대해 $|a_n| < \epsilon$ 이다. n > N 일 때도 $0 \le |s_n s| < a_n$ 이므로 $|s_n s| < |a_n| < \epsilon$ 이다. 따라서 $\lim_{n \to \infty} s_n = s$.
- **5.** (1) Given $\forall \epsilon > 0$, take $N = \frac{49}{16\epsilon^2}$. 그러면 n > N 인 모든 $n \in \mathbb{N}$ 에 대하여

$$\left|\frac{\sqrt{n}}{2\sqrt{n}+7}-\frac{1}{2}\right|=\left|\frac{7}{4\sqrt{n}+14}\right|<\frac{7}{4\sqrt{n}}<\epsilon \qquad \left(\because\sqrt{n}>\frac{7}{4\epsilon}\right)$$
이므로 $\lim_{n\to\infty}\frac{\sqrt{n}}{2\sqrt{n}+7}=\frac{1}{2}.$

(2) Given $\forall \epsilon > 0$, take $N = \sqrt[5]{\frac{3}{\epsilon}}$. 그러면 n > N 인 모든 $n \in \mathbb{N}$ 에 대하여

$$\left| \frac{2n^5 + \cos(n^8 + 1)}{n^5 + 1} - 2 \right| = \left| \frac{\cos(n^8 + 1) - 2}{n^5 + 1} \right| \le \frac{\left| \cos(n^8 + 1) \right| + 2}{n^5 + 1}$$
$$< \frac{3}{n^5 + 1} < \frac{3}{n^5} < \epsilon \qquad \left(\because n^5 > \frac{3}{\epsilon} \right)$$

이므로
$$\lim_{n\to\infty} \frac{2n^5 + \cos(n^8 + 1)}{n^5 + 1} = 2.$$

(3) Given $\forall \epsilon > 0$, take $N = \max\left\{\frac{2}{\epsilon}, 6\right\}$. 그러면 n > N 인 모든 $n \in \mathbb{N}$ 에 대하여

$$\left| \frac{3n^2 + n(-1)^n}{n^2 + 2} - 3 \right| = \left| \frac{n(-1)^n - 6}{n^2 + 2} \right| \le \frac{n \left| (-1)^n \right| + 6}{n^2 + 2}$$
$$< \frac{n+6}{n^2} < \frac{2n}{n^2} = \frac{2}{n} < \epsilon$$

이므로
$$\lim_{n\to\infty} \frac{3n^2 + n(-1)^n}{n^2 + 2} = 3.$$

6. 수열 $\{a_n\}$ 이 수렴하여 $\lim_{n\to\infty}a_n=c\in\mathbb{R}$ 이라 하자. 그러면, $\forall \epsilon>0$ 에 대해 N이 존재하여 $n>\max\{N,1\}$ 인 모든 $n\in\mathbb{N}$ 에 대해

$$\left| \frac{(-2)^n + n}{2^n} - c \right| < \epsilon$$

를 만족한다. $\epsilon = 1/2$ 라고 해보자.

 $m \in \mathbb{N}$ 에 대하여 n = 2m 일 때, 만족해야 하는 부등식은

$$\left|\frac{2m}{2^{2m}} - c + 1\right| < \frac{1}{2}$$

이고, n = 2m + 1 일 때 만족해야 하는 부등식은

$$\left|\frac{2m+1}{2^{2m+1}}-c-1\right|<\frac{1}{2}$$

이다. 변변 더하면

$$\begin{aligned} 1 &> \left| \frac{2m+1}{2^{2m+1}} - c - 1 \right| + \left| \frac{2m}{2^{2m}} - c + 1 \right| = \left| -\frac{2m+1}{2^{2m+1}} + c + 1 \right| + \left| \frac{2m}{2^{2m}} - c + 1 \right| \\ &> \left| 2 + \frac{2m}{2^{2m}} - \frac{2m+1}{2^{2m+1}} \right| = \left| 2 + \frac{2m-1}{2^{2m+1}} \right| > 2 \end{aligned}$$

이 되어 모수이다. 따라서 주어진 수열은 발산한다.

- **7.** 수렴하는 수열은 유계임을 이용한다. $\{s_n\}$ 이 수렴하므로 $|s_n| < A$ 인 실수 A가 존재한다.
 - **(1)** $\forall \epsilon > 0$ 에 대하여, n > N 인 모든 $n \in \mathbb{N}$ 에 대해 $|s_n s| < \frac{\epsilon}{A + |s| + 4}$ 가 되게 하는 N이 존재한다. 그러므로 그 N 에 대하여 n > N 일 때마다 다음이 성립한다.

$$|s_n^2 + 4s_n + 5 - (s^2 + 4s + 5)| = |s_n^2 - s^2 + 4(s_n - s)| = |s_n - s| |s_n + s + 4|$$

$$< |s_n - s| (|s_n| + |s| + 4)$$

$$< \frac{\epsilon}{A + |s| + 4} \cdot (A + |s| + 4) = \epsilon$$

따라서 $\lim_{n\to\infty} f(s_n) = f(s)$.

(2) $\forall \epsilon > 0$ 에 대하여, n > N 인 모든 $n \in \mathbb{N}$ 에 대해 $|s_n - s| < \frac{2\epsilon}{A + |s|}$ 가 되게 하는 N 이 존재한다. 그러므로 그 N 에 대하여 n > N 일 때마다 다음이 성립한다.

$$\left| \sqrt{\frac{1}{1+s_n^2}} - \sqrt{\frac{1}{1+s^2}} \right| = \frac{\left| \sqrt{1+s_n^2} - \sqrt{1+s^2} \right|}{\sqrt{1+s_n^2}\sqrt{1+s^2}} < \left| \sqrt{1+s_n^2} - \sqrt{1+s^2} \right|$$

$$= \frac{\left| 1+s_n^2 - 1 - s^2 \right|}{\sqrt{1+s_n^2} + \sqrt{1+s^2}} < \frac{\left| s_n^2 - s^2 \right|}{2}$$

$$= \frac{\left| s_n - s \right| \left| s_n + s \right|}{2} \le \frac{\left| s_n - s \right| \left(\left| s_n \right| + \left| s \right| \right)}{2}$$

$$< \frac{2\epsilon}{A+|s|} \frac{A+|s|}{2} = \epsilon$$

첫 번째 부등호는 $\sqrt{1+x^2}>1$ $(x\in\mathbb{R})$ 으로부터 얻고, 두 번째 부등호는 $x^2\geq 0$ $(x\in\mathbb{R})$ 으로부터 얻는다. 따라서 $\lim_{n\to\infty}f(s_n)=f(s)$.

(3) Let $B = \max\{A, |s|\}$. $\forall \epsilon > 0$ 에 대하여, n > N 인 모든 $n \in \mathbb{N}$ 에 대해 $|s_n - s| < \frac{\epsilon}{2019B^{2018}}$ 가 되게 하는 N이 존재한다. 그러므로 그 N 에 대하여 n > N 일 때마다 다음이 성립한다.

$$\left| s_n^{2019} - s^{2019} \right| = \left| s_n - s \right| \left| \sum_{i=0}^{2018} s_n^{2018 - i} s^i \right| < \left| s_n - s \right| \sum_{i=0}^{2018} \left| s_n \right|^{2018 - i} \left| s \right|^i$$

$$< \left| s_n - s \right| \sum_{i=0}^{2018} B^{2018} < \frac{\epsilon}{2019 B^{2018}} 2019 B^{2018} = \epsilon$$

따라서 $\lim_{n\to\infty} f(s_n) = f(s)$.

8. 주어진 명제는 거짓이다.

[**반례**] $a_n = (-1)^n$ 일 때 1 , $b_n = \frac{1}{n} \sum_{k=1}^n (-1)^k$ 은 0 으로 수렴한다.

Claim.
$$\sum_{k=1}^{n} (-1)^k = \frac{(-1)^n - 1}{2}, b_n = \frac{(-1)^n - 1}{2n}$$

Proof. n이 짝수일 때, 좌변, 우변 모두 0이다. n이 홀수일 때, 좌변, 우변 모두 -1 이다.

이제 b_n 이 0으로 수렴함을 보이자.

Given $\forall \epsilon > 0$, take $N = 1/\epsilon$. 그러면 n > N 인 모든 $n \in \mathbb{N}$ 에 대해 다음이 성립한다.

$$\left| \frac{(-1)^n - 1}{2n} - 0 \right| \le \frac{|(-1)^n| + 1}{2n} \le \frac{1}{n} < \epsilon$$

따라서 $\lim_{n\to\infty} b_n = 0$ 이다.

 $^{^{1}}$ 수열 $(-1)^{n}$ 이 발산함은 연습시간에 보였다.