INTEGRALI ZADACI (VIII DEO)

REKURENTNE FORMULE

Rekurentne (rekurzivne) formule su formule koje zavise od prirodnih brojeva. One se koriste za snižavanje "reda" nekog integrala. Mi nadjemo kako se izračunava integral čija je podintegralna funkcija *reda n* preko integrala čija je podintegralna funkcija reda *n-1* (ili n-2, n-3,...). Na taj način dodjemo do podintegralne funkcije za koju integral možemo direktno da rešimo. Nije pravilo, al se većina ovih integrala radi preko parcijalne integracije.

primer 1.

Odrediti rekurzivnu formulu za $\int x^n e^{ax} dx$ ako je $a \neq 0$ i $n \in N$

Rešenje:

$$\int x^n e^{ax} dx = ?$$

Ovaj integral ćemo rešiti parcijalnom integracijom (ako se sećate, ovo je integral iz prve naše grupe).

$$I_{n} = \int x^{n} e^{ax} dx = \begin{vmatrix} x^{n} = u & e^{ax} dx = dv \\ nx^{n-1} dx = du & \frac{1}{a} e^{ax} = v \end{vmatrix} =$$

$$= x^{n} \cdot \frac{1}{a} e^{ax} - \int \frac{1}{a} e^{ax} nx^{n-1} dx = \frac{e^{ax} \cdot x^{n}}{a} - \frac{n}{a} \underbrace{\int e^{ax} x^{n-1} dx}$$

$$= \frac{e^{ax} \cdot x^{n}}{a} - \frac{n}{a} \cdot I_{n-1}$$

Dakle:

$$I_n = \frac{e^{ax} \cdot x^n}{a} - \frac{n}{a} \cdot I_{n-1}$$

Kako sad upotrebiti ovu formulu?

Dobijemo zadatak da rešimo $\int x^4 e^x dx = ?$

U našoj formuli je dakle n = 4 i a = 1.

$$I_{n} = \frac{e^{ax} \cdot x^{n}}{a} - \frac{n}{a} \cdot I_{n-1}$$

$$I_{4} = \frac{e^{x} \cdot x^{4}}{1} - \frac{4}{1} \cdot I_{4-1} = e^{x} \cdot x^{4} - 4I_{3}$$

$$I_{4} = e^{x} \cdot x^{4} - nI_{3}$$

sad radimo za n=3, n=2, n=1

$$I_4 = e^x \cdot x^4 - 4I_3$$

$$I_3 = e^x \cdot x^3 - 3I_2$$

$$I_2 = e^x \cdot x^2 - 2I_1$$

$$I_1 = \int e^x \cdot x dx$$

Ovaj integral znamo da rešimo:

$$\int xe^{x}dx = \begin{vmatrix} x = u & e^{x}dx = dv \\ dx = du & \int e^{x}dx = v \\ e^{x} = v \end{vmatrix} = x \cdot e^{x} - \int e^{x}dx = xe^{x} - e^{x} + C = \boxed{e^{x}(x-1) + C}$$

Vratimo rešenja unazad...

 $I_4 = e^x \cdot x^4 - 4I_2$

$$I_{3} = e^{x} \cdot x^{3} - 3I_{2}$$

$$I_{2} = e^{x} \cdot x^{2} - 2I_{1}$$

$$I_{1} = \int e^{x} \cdot x dx = e^{x} (x - 1)$$
vratimo se u I_{2}

$$I_{2} = e^{x} \cdot x^{2} - 2[e^{x} (x - 1)]$$
vratimo se u I_{3}

$$I_{3} = e^{x} \cdot x^{3} - 3\{e^{x} \cdot x^{2} - 2[e^{x} (x - 1)]\}$$
vratimo se u I_{4}

$$I_{4} = e^{x} \cdot x^{4} - 4\{e^{x} \cdot x^{3} - 3\{e^{x} \cdot x^{2} - 2[e^{x} (x - 1)]\}\} + C$$

Ovo sad malo prisredite ako vaš profesor zahteva.

Rešenje:

I ovde radimo parcijalnu integraciju:

$$I_{n} = \int \sin^{n} x dx = \begin{vmatrix} \sin^{n-1} x = u & \sin x dx = dv \\ (n-1)\sin^{n-1-1} x(\sin x) dx = du & -\cos x = v \end{vmatrix} = \\ (n-1)\sin^{n-2} x \cdot \cos x dx = du & -\cos x = v \end{vmatrix} = \\ = \sin^{n-1} x \cdot (-\cos x) - \int (-\cos x)(n-1)\sin^{n-2} x \cdot \cos x dx \\ = -\sin^{n-1} x \cdot \cos x + (n-1) \int \sin^{n-2} x \cdot \cos^{2} x dx$$

$$Iz \sin^{2} x + \cos^{2} x = 1 \to \cos^{2} x = 1 - \sin^{2} x, \text{ pa to zamenimo umesto } \cos^{2} x \\ = -\sin^{n-1} x \cdot \cos x + (n-1) \int \sin^{n-2} x \cdot (1 - \sin^{2} x) dx \\ = -\sin^{n-1} x \cdot \cos x + (n-1) \int (\sin^{n-2} x - \sin^{n} x) dx \\ = -\sin^{n-1} x \cdot \cos x + (n-1) \int \sin^{n-2} x dx - (n-1) \int \sin^{n} x dx \\ = -\sin^{n-1} x \cdot \cos x + (n-1) \int \sin^{n-2} x dx - (n-1) \int \sin^{n} x dx \\ = -\sin^{n-1} x \cdot \cos x + (n-1) \int \sin^{n-2} x dx - (n-1) \int \sin^{n} x dx \\ = -\sin^{n-1} x \cdot \cos x + (n-1) \int \sin^{n-2} x dx - (n-1) \int \sin^{n} x dx \\ = -\sin^{n-1} x \cdot \cos x + (n-1) \int \sin^{n-2} x dx - (n-1) \int \sin^{n} x d$$

Da spakujemo:

$$I_{n} = -\sin^{n-1} x \cdot \cos x + (n-1) \cdot I_{n-2} - (n-1) \cdot I_{n}$$

$$I_{n} + (n-1) \cdot I_{n} = -\sin^{n-1} x \cdot \cos x + (n-1) \cdot I_{n-2}$$

$$I_{n} + n \cdot I_{n} = -\sin^{n-1} x \cdot \cos x + (n-1) \cdot I_{n-2}$$

$$n \cdot I_{n} = -\sin^{n-1} x \cdot \cos x + (n-1) \cdot I_{n-2}$$

$$I_{n} = \frac{-\sin^{n-1} x \cdot \cos x + (n-1) \cdot I_{n-2}}{n}$$

$$I_{n} = \frac{-\sin^{n-1} x \cdot \cos x + (n-1) \cdot I_{n-2}}{n}$$

Ovo je tražena rekurentna formula.

Uočimo da ako je n paran broj , tada postupnom primenom dobijene formule na kraju dolazimo do $\int dx$ a ako je n neparan broj dobijamo $\int \sin x dx$

primer 3. Odrediti rekurzivnu formulu za $\int \frac{dx}{\sin^n x}$ ako je $n \ge 2$

Rešenje:

Ovde ćemo najpre upotrebiti malo trikče: dodamo $\frac{\sin x}{\sin x}$, videćemo zašto...

$$I_n = \int \frac{dx}{\sin^n x} = \int \frac{\sin x}{\sin x} \cdot \frac{dx}{\sin^n x} = \int \frac{\sin x dx}{\sin^{n+1} x}$$

Sad radimo parcijalnu integraciju:

$$\int \frac{\sin x dx}{\sin^{n+1} x} = \begin{vmatrix} u = \frac{1}{\sin^{n+1} x} & \sin x dx = dv \\ ? & -\cos x = v \end{vmatrix}$$

Izvući ćemo ovaj izvod na stranu jer je izvod složene funkcije...

$$\left(\frac{1}{\sin^{n+1} x}\right) = \left(\sin^{-(n+1)} x\right) = -(n+1)\sin^{-(n+1)-1} x \cdot (\sin x) = -(n+1)\sin^{-(n+2)} \cdot \cos x = -(n+1)\frac{\cos x}{\sin^{n+2}}$$
vratimo se na zadatak:

$$\int \frac{\sin x dx}{\sin^{n+1} x} = \left| \frac{1}{\sin^{n+1} x} = u \right| = \left| \frac{1}{\sin^{n+1} x} = u \right| = \left| \frac{1}{\sin^{n+1} x} \left(-\cos x \right) - \int (-\cos x) \left[-(n+1) \frac{\cos x}{\sin^{n+2} x} dx \right] \right| = \left| -\cos x \cdot \frac{1}{\sin^{n+1} x} \left(-\cos x \right) - \int (-\cos x) \left[-(n+1) \frac{\cos x}{\sin^{n+2} x} dx \right] \right| = \left| -\cos x \cdot \frac{1}{\sin^{n+1} x} - (n+1) \int \frac{\cos^2 x}{\sin^{n+2} x} dx \right| = \left| -\cos x \cdot \frac{1}{\sin^{n+1} x} - (n+1) \left[\int \frac{1}{\sin^{n+2} x} dx - \int \frac{\sin^2 x}{\sin^{n+2} x} dx \right] \right| = \left| -\cos x \cdot \frac{1}{\sin^{n+1} x} - (n+1) \left[\int \frac{1}{\sin^{n+2} x} dx - \int \frac{1}{\sin^n x} dx \right] \right| = \left| -\cos x \cdot \frac{1}{\sin^{n+1} x} - (n+1) \left[\int \frac{1}{\sin^{n+2} x} dx - \int \frac{1}{\sin^n x} dx \right] \right| = \left| -\cos x \cdot \frac{1}{\sin^{n+1} x} - (n+1) \left[\int \frac{1}{\sin^{n+2} x} dx - \int \frac{1}{\sin^n x} dx \right] \right| = \left| -\cos x \cdot \frac{1}{\sin^{n+1} x} - (n+1) \left[\int \frac{1}{\sin^{n+2} x} dx - \int \frac{1}{\sin^n x} dx \right] \right| = \left| -\cos x \cdot \frac{1}{\sin^{n+1} x} - (n+1) \left[\int \frac{1}{\sin^{n+2} x} dx - \int \frac{1}{\sin^n x} dx \right] = \left| -\cos x \cdot \frac{1}{\sin^{n+1} x} - (n+1) \left[\int \frac{1}{\sin^{n+2} x} dx - \int \frac{1}{\sin^n x} dx \right] = \left| -\cos x \cdot \frac{1}{\sin^{n+1} x} - (n+1) \left[\int \frac{1}{\sin^{n+2} x} dx - \int \frac{1}{\sin^n x} dx \right] = \left| -\cos x \cdot \frac{1}{\sin^{n+1} x} - (n+1) \left[\int \frac{1}{\sin^{n+2} x} dx - \int \frac{1}{\sin^n x} dx \right] = \left| -\cos x \cdot \frac{1}{\sin^{n+1} x} - (n+1) \left[\int \frac{1}{\sin^{n+2} x} dx - \int \frac{1}{\sin^n x} dx \right] = \left| -\cos x \cdot \frac{1}{\sin^{n+1} x} - (n+1) \left[\int \frac{1}{\sin^{n+2} x} dx - \int \frac{1}{\sin^n x} dx \right] = \left| -\cos x \cdot \frac{1}{\sin^{n+1} x} - (n+1) \left[\int \frac{1}{\sin^{n+2} x} dx - \int \frac{1}{\sin^n x} dx \right] = \left| -\cos x \cdot \frac{1}{\sin^{n+1} x} - (n+1) \left[\int \frac{1}{\sin^{n+2} x} dx - \int \frac{1}{\sin^n x} dx \right] = \left| -\cos x \cdot \frac{1}{\sin^{n+1} x} - (n+1) \left[\int \frac{1}{\sin^{n+2} x} dx - \int \frac{1}{\sin^{n+2} x} dx \right] = \left| -\cos x \cdot \frac{1}{\sin^{n+1} x} - (n+1) \left[\int \frac{1}{\sin^{n+2} x} dx - \int \frac{1}{\sin^{n+2} x} dx \right] = \left| -\cos x \cdot \frac{1}{\sin^{n+1} x} - (n+1) \left[\int \frac{1}{\sin^{n+2} x} dx - \int \frac{1}{\sin^{n+2} x} dx \right] = \left| -\cos x \cdot \frac{1}{\sin^{n+2} x} - (n+1) \left[\int \frac{1}{\sin^{n+2} x} dx - \int \frac{1}{\sin^{n+2} x} dx \right] = \left| -\cos x \cdot \frac{1}{\sin^{n+2} x} - (n+1) \left[\int \frac{1}{\sin^{n+2} x} dx - \int \frac{1}{\sin^{n+2} x} dx \right] = \left| -\cos x \cdot \frac{1}{\sin^{n+2} x} - (n+1) \left[\int \frac{1}{\sin^{n+2} x} dx - \int \frac{1}{\sin^{n+2} x} dx \right] = \left| -\cos x \cdot \frac{1}{\sin^{n+2} x} - (n+1) \left[\int \frac{1}{\sin^{n+2} x} dx - \int \frac{1}{\sin^{n+2} x} dx \right] = \left| -\cos x \cdot \frac{1}{\sin^{n+2} x} - (n+1) \left[\int \frac{$$

vratimo se od početka:

$$\begin{split} I_n &= -\cos x \cdot \frac{1}{\sin^{n+1} x} - (n+1)[I_{n+2} - I_n] \\ I_n &= -\cos x \cdot \frac{1}{\sin^{n+1} x} - (n+1)I_{n+2} + (n+1)I_n \\ (n+1)I_{n+2} &= -\cos x \cdot \frac{1}{\sin^{n+1} x} + nI_n + I_n \\ (n+1)I_{n+2} &= -\cos x \cdot \frac{1}{\sin^{n+1} x} + nI_n \\ \hline I_{n+2} &= \frac{-\cos x}{(n+1) \cdot \sin^{n+1} x} + \frac{n}{n+1} \cdot I_n \end{split}$$

Dobili smo traženu rekurentnu formulu al po n+2, da bi dobili formulu po n, kako nam traže, jednostavno ćemo umesto n staviti n-2.

$$I_{n+2} = \frac{-\cos x}{(n+1)\cdot \sin^{n+1} x} + \frac{n}{n+1}\cdot I_n \longrightarrow \boxed{I_n = \frac{-\cos x}{(n-1)\cdot \sin^{n-1} x} + \frac{n-2}{n-1}\cdot I_{n-2}}$$

primer 4. Odrediti rekurentnu formulu za $I_{n,m} = \int x^n \cdot \ln^m x dx$ ako je $n, m \in N$

$$I_{n,m} = \int x^{n} \cdot \ln^{m} x dx = \begin{vmatrix} \ln^{m} x = u & x^{n} dx = dv \\ m \cdot \ln^{m-1} x \cdot \frac{1}{x} dx = du & \frac{x^{n+1}}{n+1} = v \end{vmatrix} =$$

$$= \ln^{m} x \cdot \frac{x^{n+1}}{n+1} - \int \frac{x^{n+1}}{n+1} \cdot m \cdot \ln^{m-1} x \cdot \frac{1}{x} dx$$

$$= \ln^{m} x \cdot \frac{x^{n+1}}{n+1} - \int \frac{x^{n} \cdot x}{n+1} \cdot m \cdot \ln^{m-1} x \cdot \frac{1}{x} dx$$

$$= \ln^{m} x \cdot \frac{x^{n+1}}{n+1} - \frac{m}{n+1} \left[\int x^{n} \cdot \ln^{m-1} x dx \right]$$

$$= \ln^{m} x \cdot \frac{x^{n+1}}{n+1} - \frac{m}{n+1} \cdot I_{n,m-1}$$

Dakle:

$$I_{n,m} = \ln^m x \cdot \frac{x^{n+1}}{n+1} - \frac{m}{n+1} \cdot I_{n,m-1}$$