2021/6/15 2020_sol

数理逻辑 2020 春期末试卷参考答案

Made by TA in 2021SP

1.判断题

- (1) 正确,因为已知任两条 L 中的公理都无法推出第三条.
- (2) 正确,由相容的定义可知.
- (3) 正确,可以归纳证明.
- (4) 错误,E 的任何相容扩充(包括 K_N)仍然有非正规模型
- (5) 错误, 取解释域 $M=\{\mathbb{N},\emptyset,\overline{R}\}$.其中, \mathbb{N} 为自然数集, $(\overline{x},\overline{y})\in\overline{R}$ 当且仅当 $\overline{x}>1$ 且 $\overline{y}>1$. 显然 M 不是原公式的模型.
- (6) 正确
- (7) 正确,定理证明中构造的 p 为 " p 在 K_N 中不可证".最后得出 p 是真命题.

2. 简答题

开放性问答,没有标准答案,大家想到什么就写什么吧.

3. 直接证明

$$\vdash (\neg p \to p) \to (q \to p)$$

思路:

如果是间接证明,可以用 否定肯定律 和 L1 ,经过 HS 规则得到结果,即

1.
$$(\neg p \rightarrow p) \rightarrow p$$
 否定肯定律

2.
$$p \rightarrow (q \rightarrow p)$$

3.
$$(\neg p
ightarrow p)
ightarrow (q
ightarrow p)$$
 1,2,HS

但是这里要求的是直接证明,所以只好老老实实推了.

借用2020春季学期的助教写的否定肯定律的19步直接证明,有

$$\begin{array}{llll} (1) \neg p \rightarrow (\neg \neg (p \rightarrow (\neg p \rightarrow p)) \rightarrow \neg p) & (L1) \\ (2) (\neg \neg (p \rightarrow (\neg p \rightarrow p)) \rightarrow \neg p) \rightarrow (p \rightarrow \neg (p \rightarrow (\neg p \rightarrow p))) & (L3) \\ (3) (((\neg \neg (p \rightarrow (\neg p \rightarrow p)) \rightarrow \neg p) \rightarrow (p \rightarrow \neg (p \rightarrow (\neg p \rightarrow p))))) \rightarrow (\neg p \rightarrow (((\neg \neg (p \rightarrow (\neg p \rightarrow p)) \rightarrow \neg p) \rightarrow (p \rightarrow \neg (p \rightarrow (\neg p \rightarrow p)))))) & (L1) \\ (4) \neg p \rightarrow (((\neg \neg (p \rightarrow (\neg p \rightarrow p)) \rightarrow \neg p) \rightarrow (p \rightarrow \neg (p \rightarrow (\neg p \rightarrow p))))) & (2) (3) \, MP \\ (5) (\neg p \rightarrow (((\neg \neg (p \rightarrow (\neg p \rightarrow p)) \rightarrow \neg p) \rightarrow (p \rightarrow \neg (p \rightarrow (\neg p \rightarrow p))))) \rightarrow (((\neg p \rightarrow (\neg p \rightarrow p)) \rightarrow \neg p)) \rightarrow (\neg p \rightarrow (p \rightarrow \neg (p \rightarrow (\neg p \rightarrow p))))) & (L2) \\ (6) (\neg p \rightarrow ((\neg \neg (p \rightarrow (\neg p \rightarrow p)) \rightarrow \neg p)) \rightarrow ((\neg p \rightarrow p \rightarrow \neg (p \rightarrow (\neg p \rightarrow p))))) & (2) (MP) \\ (7) \neg p \rightarrow (p \rightarrow \neg (p \rightarrow (\neg p \rightarrow p)))) \rightarrow (((\neg p \rightarrow p) \rightarrow \neg (p \rightarrow (\neg p \rightarrow p))))) & (L2) \\ (8) (\neg p \rightarrow (p \rightarrow (p \rightarrow (\neg p \rightarrow p)))) \rightarrow (((\neg p \rightarrow p) \rightarrow (\neg p \rightarrow p))))) & (L2) \\ \end{array}$$

2021/6/15 2020_sol

$$(9) (\neg p \to p) \to (\neg p \to \neg (p \to (\neg p \to p))) \qquad (7) (8) \text{ MP}$$

$$(10) (\neg p \to \neg (p \to (\neg p \to p))) \to ((p \to (\neg p \to p)) \to p) \qquad (L3)$$

$$(11) ((\neg p \to \neg (p \to (\neg p \to p))) \to ((p \to (\neg p \to p)) \to p)) \to ((\neg p \to p) \to ((\neg p \to p))) \to ((p \to (\neg p \to p))) \to ((p \to (\neg p \to p))) \to (p)) \qquad (L1)$$

$$(12) (\neg p \to p) \to ((\neg p \to \neg (p \to (\neg p \to p))) \to ((p \to (\neg p \to p)) \to p)) \qquad (10) (11) \text{ MP}$$

$$(13) ((\neg p \to p) \to ((\neg p \to \neg (p \to (\neg p \to p)))) \to ((p \to (\neg p \to p)) \to p)) \qquad ((p \to (\neg p \to p))) \to ((p \to (\neg p \to p))) \to ((p \to (\neg p \to p)))) \rightarrow ((p \to (\neg p \to p))) \to ((p \to (\neg p \to p)))) \to ((p \to (\neg p \to p))) \to (p \to (\neg p \to p))) \to (p \to (\neg p \to p))) \to (p \to (\neg p \to p)) \to (p \to (\neg p \to p))) \to (p \to (\neg p \to p))) \to (p \to (\neg p \to p)) \to (p \to (\neg p \to p))) \to (p \to (\neg p \to p)) \to (p \to (\neg p \to p))) \to (p \to (\neg p \to p))) \to (p \to (\neg p \to p)) \to (p \to (\neg p \to p))) \to (p \to (\neg p \to p))) \to (p \to (\neg p \to p))) \to (p \to (\neg p \to p)) \to (p \to (\neg p \to p))) \to (p \to (\neg p \to p)) \to (p \to (\neg p \to p))) \to (p \to (\neg p \to p)) \to (p \to (\neg p \to p))) \to (p \to (\neg p \to p)) \to (p \to (\neg p \to p))) \to (p \to (\neg p \to p))) \to (p \to (\neg p \to p)) \to (p \to (\neg p \to p))) \to (p \to (\neg p \to p)) \to (p \to (\neg p \to p))) \to (p \to (\neg p \to p)) \to (p \to (\neg p \to p))) \to (p \to (\neg p \to p))) \to (p \to (\neg p \to p))) \to (p \to (\neg p \to p)) \to (p \to (\neg p \to p))) \to (p \to (\neg p \to p)) \to (p \to (\neg p \to p))) \to (p \to (\neg p \to p)) \to (p \to (\neg p \to p))) \to (p \to (\neg p \to p)) \to (p \to (\neg p \to p))) \to (p \to (\neg p \to p))) \to (p \to (\neg p \to p)) \to (p \to (\neg p \to p))) \to (p \to (\neg p \to p)) \to (p \to (\neg p \to p))) \to (p \to (\neg p \to p)) \to (p \to (\neg p \to p))) \to (p \to (\neg p \to p)) \to (p \to (\neg p \to p))) \to (p \to (\neg p \to p)) \to (p \to (\neg p \to p))) \to (p \to (\neg p \to p)) \to (p$$

然后根据 HS 规则的直接证明:

只要把上述 HS 直接证明中的 p 换成 $\neg p \rightarrow p$, q 换成 p, r 换成 $q \rightarrow p$ 即可.

4. 推理题

设原子命题 X_1 , X_2 , X_3 分别代表第一个、第二个、第三个箱子里有金子.

由于只有一个箱子中有金子,则有约束条件

$$X_1 \to \neg X_2 \land \neg X_3 = 1 \tag{1}$$

$$X_2 \to \neg X_1 \land \neg X_3 = 1 \tag{2}$$

$$X_3 \to \neg X_1 \land \neg X_2 = 1 \tag{3}$$

又因为三句画中只有一句是真话,因此有约束条件

$$\neg X_2 \to \neg X_2 \land \neg \neg X_1 = 1 \tag{4}$$

$$X_2 \to \neg \neg X_2 \land \neg \neg X_1 = 1 \tag{5}$$

$$\neg X_1 \to \neg \neg X_2 \land \neg X_2 = 1 \tag{6}$$

逐个尝试,得到仅有 $(X_1, X_2, X_3) = (1, 0, 0)$ 时,满足约束.即第一个箱子里有金子.

2021/6/15 2020_sol

5. K 中证明

$$dash orall x_1 orall x_2 (R_1(x_1)
ightarrow R_1(x_2))
ightarrow (\exists x_1 R_1(x_1)
ightarrow orall x_1 R_1(x_1))$$

这里的题干中应该加一个条件: 关系 R_1 为一元关系.

以下可以从 $\{\forall x_1 \forall x_2 (R_1(x_1) \rightarrow R_1(x_2))\}$ 中可证:

$$1. \quad \forall x_1 \forall x_2 (R_1(x_1) \rightarrow R_1(x_2))$$

已知

$$2. \quad orall x_1 orall x_2 (R_1(x_1)
ightarrow R_1(x_2))
ightarrow orall x_2 (R_1(x_1)
ightarrow R_1(x_2))$$

K4

3.
$$\forall x_2(R_1(x_1) \to R_1(x_2))$$

1,2,MP

4.
$$\forall x_2(R_1(x_1) \to R_1(x_2)) \to (R_1(x_1) \to \forall x_2 R_1(x_2))$$
 课本P76命题1的 1° (由于关系 R_1 为一元关系,因此 x_2 不在 $R_1(x_1)$ 中自由出现.)

5.
$$R_1(x_1) \to \forall x_2 R_1(x_2)$$

3,4,MP

6.
$$\forall x_2 R_1(x_2) \to \forall x_1 R_1(x_1)$$
 课本P77命题2的 1° (由于关系 R_1 为一元关系,因此 x_1 不在 $R_1(x_2)$ 中出现.)

7. $R_1(x_1) \to \forall x_1 R_1(x_1)$

5,6,MP

8.
$$\forall x_1(R_1(x_1) \to \forall x_1R_1(x_1))$$

7,Gen

9.
$$\forall x_1(R_1(x_1) \to \forall x_1R_1(x_1)) \to (\exists x_1R_1(x_1) \to \forall x_1R_1(x_1))$$
 课本P77命题2的 3° $(x_1$ 不在 $\forall x_1R_1(x_2)$ 中自由出现.)

10.
$$\exists x_1 R_1(x_1) \to \forall x_1 R_1(x_1)$$

8,9,MP

即有
$$\{ \forall x_1 \forall x_2 (R_1(x_1) \to R_1(x_2)) \} \vdash \exists x_1 R_1(x_1) \to \forall x_1 R_1(x_1).$$

又因为上述证明中所用的 Gen 变元 x_1,x_2 不在 $\forall x_1 \forall x_2 (R_1(x_1) \to R_1(x_2))$ 中自由出现,因此由演绎定理, $\vdash \forall x_1 \forall x_2 (R_1(x_1) \to R_1(x_2)) \to (\exists x_1 R_1(x_1) \to \forall x_1 R_1(x_1))$

6. K_N 中证明

$$K_N \vdash \overline{0} \times x pprox \overline{0}$$

证明序列如下:

1.
$$\overline{0} \times \overline{0} \approx \overline{0}$$

N5

$$2. \quad \overline{0} \times x' \approx \overline{0} \times x + \overline{0}$$

N₆

2021/6/15

2020_sol

3. $\overline{0} \times x + \overline{0} \approx \overline{0} \times x$

N3

 $4. \quad \overline{0} \times x' \approx \overline{0} \times x + \overline{0} \to (\overline{0} \times x + \overline{0} \approx \overline{0} \times x \to \overline{0} \times x' \approx \overline{0} \times x)$

课本P107命题2的 3° (传递性)

5. $\overline{0} \times x + \overline{0} \approx \overline{0} \times x \rightarrow \overline{0} \times x' \approx \overline{0} \times x$

2,4,MP

6. $\overline{0} \times x' \approx \overline{0} \times x$

3,5,MP

7. $\overline{0} \times x' \approx \overline{0} \times x \rightarrow (\overline{0} \times x \approx \overline{0} \rightarrow \overline{0} \times x' \approx \overline{0})$

课本P107命题2的 3° (传递性)

8. $\overline{0} \times x \approx \overline{0} \rightarrow \overline{0} \times x' \approx \overline{0}$

6,7,MP

9. $\forall x (\overline{0} \times x \approx \overline{0} \to \overline{0} \times x' \approx \overline{0})$

8.Gen

 $10. \quad \overline{0} \times \overline{0} \approx \overline{0} \to (\forall x (\overline{0} \times x \approx \overline{0} \to \overline{0} \times x' \approx \overline{0}) \to \forall x (\overline{0} \times x \approx \overline{0}))$

N7

 $11. \quad \forall x(\overline{0}\times x\approx \overline{0}\to \overline{0}\times x'\approx \overline{0})\to \forall x(\overline{0}\times x\approx \overline{0}) \quad \text{ 1,10,MP}$

12. $\forall x(\overline{0} \times x \approx \overline{0})$

9,11,MP

13. $\forall x(\overline{0} \times x \approx \overline{0}) \rightarrow \overline{0} \times x \approx \overline{0}$

K4

14. $\overline{0} \times x \approx \overline{0}$

12,13,MP