Automobile Data Set Exploratory Analysis

Brandon Thomas, <u>bthomas@bellarmine.edu</u>
Richard Osborn, <u>rosborn@bellarmine.edu</u>

I. INTRODUCTION

This data set is a list of cars from 1985 Ward's Automotive Yearbook that contain a variety of variables pertaining the certain types of cars. This can be found at https://archive.ics.uci.edu/ml/datasets/Automobile. This data set was chosen for its mix of continuous and categorical variables. Also, cars provide various methods of comparison that make for a good dataset to perform an exploratory analysis on.

II. DATA SET DESCRIPTION

This data set contains 205 samples with 26 columns with various types of data. There are 15 continuous variables and 11 discrete variables. Rows with missing data were removed for simplicity of data analysis but are included in the complete listing shown in Table 1.

Table 1: Data Types and Missing Data

Variable Name	Data Type	Missing Data (%)
Symboling	interval/float64	0%
Normalized Losses	ratio/object	20%
Make	nominal/object	0%
Fuel Type	nominal/object	0%
Aspiration	nominal/object	0%
Number of Doors	nominal/object	1%
Body Style	nominal/object	0%
Drive Wheels	nominal/object	0%
Engine Location	nominal/object	0%
Wheelbase	ratio/float64	0%
Length	ratio/float64	0%
Width	ratio/float64	0%
Height	ratio/float64	0%
Curb Weight	ratio/object	0%
Engine Type	nominal/object	0%
Number of Cylinders	nominal/object	0%
Engine Size	ratio/float64	0%
Fuel System	nominal/object	0%
Bore	ratio/object	2%
Stroke	ratio/object	2%
Compression Ratio	ratio/float64	0%
Horsepower	ratio/object	1%
Peak Rpm	ratio/object	1%
City Mpg	ratio/float64	0%
Highway Mpg	ratio/float64	0%
Price	ratio/object	2%

Explanation of Variables

Symboling - Cars are initially assigned a risk factor symbol associated with its price. Then, if it is riskier (or less), this symbol is adjusted by moving it up (or down) the scale. A value of +3 indicates that the auto is risky, -3 that it is probably safe.

Normalized Losses – The relative average loss payment per insured vehicle year. This value is then normalized for vehicles in certain size classifications to get the normalized loss value of insurance payments.

Make – The manufacturer of the vehicle.

Fuel Type – The kind of fuel required for the vehicle to run properly.

Aspiration – How air is taken into the engine to be used for combustion.

Number of Doors - Amount of doors the vehicle has.

Body Style – Category given to a vehicle based on the shape and number of doors it has.

Drive Wheels – The number and which wheels power the vehicle to move.

Engine Location – Shows where the engine is located in reference to the front or back of the vehicle.

Wheelbase – The distance between the axles of the front and back wheels of a vehicle.

Length – The total length of the car.

Width – The width of the car.

Height – The height of the car.

Curb Weight – The weight of a car with no occupants or baggage.

Engine Type – The type of engine, often classified by the number of cylinders or displacement mechanism.

Number of Cylinders – The number of cylinders in the engine where combustion takes place.

Engine Size – Refers to the space an engine's pistons operate in, often also referred to as engine displacement.

Fuel System – Contains the fuel tank, filter, pump, injectors/carburetor and named for the different parts that make it up.

Bore – The diameter of the cylinder in each car's engine.

Stroke – The distance within the cylinder the piston travels.

Compression Ratio – The ratio of volume in a cylinder when a piston is at the beginning of a stroke compared to when a piston is at the end of its stroke.

Horsepower – The power an engine produces, specifically the power needed to move 550 pounds one foot per second.

Peak RPM – The maximum revolutions per minute of the crankshaft of a car's engine.

City MPG – The average miles per gallon of a gas for a car in the city.

Highway MPG – The average miles per gallon of gas for a car on the highway.

Price – The market price the vehicle was purchased for on day of purchase.

III. Data Set Summary Statistics

These tables contains statistical information pertaining to different attributes of the car. This includes the count, mean, standard deviation, min and maxis, and each quarter percentile, respectively.

Table 2: Summary Statistics for Automobile Data Set

I abi	C 2. Du	illilliai y b	musuc	3101	Xuto	шоы	CData	DCL								
	$\mathbf{S}\mathbf{y}$	Norm	Wh	Le	W	H	Cur	Eng	В	St	Comp	Hor	Pea	Cit	High	Pri
	mb	alized	eel_	ng	id	ei	b_w	ine_	or	ro	ressio	sep	k_r	\mathbf{y}_{-}	way_	ce
	olli	_losse	bas	th	th	gh	eigh	size	e	ke	n_rati	owe	pm	mp	mpg	
	ng	S	e			t	t				0	r	_	g	10	
C	159	159	159	15	1	15	159	159	1	15	159	159	159	159	159	159
0				9	5	9			5	9						
u					9				9							
nt																
M	0.7	121.13	98.2	17	6	53	2461	119.	3.	3.	10.161	95.8	511	26.	32.0	114
ea	358	2	641	2.4	5.	.8	.134	226	3	23	1	3	3.8	522	817	45.
n				12	7	99	5	4		65			364			729
				8	0	3										
					7											
St	1.1	35.651	5.16	11.	1.	2.	481.	30.4	0.	0.	3.889	30.7	465	6.0	6.45	587
d	93	2	74	52	9	26	9412	607	2	29		185	.75	97	91	7.8
				31	4	87			6	48						561
					7				7							
					_				3							
M	-2	65	86.6	14	6	49	1488	61	2.	2.	7	48	415	15	18	511
in				1.1	0.	.4			5	07			0			8
					3				4							
2	0	94	94.5	16	6	52	2065	97	3.	3.	8.7	69	480	23	28	737
5				5.6	4	.2	.5		0	10			0			2
%				5		5			5	5						
5	1	113	96.9	17	6	54	2340	110	3.	3.	9	88	520	26	32	923
0				2.4	5.	.1			2	27			0			3
%					4				7							
7	2	148	100.	11	6	55	2809	135	3.	3.	9.4	114	550	31	37	147
5			8	7.8	6.	.5	.5		5	41			0			19.
%					5				6							5
m	3	256	115.	20	7	59	4066	258	3.	4.	23	200	660	49	54	350
a			600	2	1.	.8			9	17			0			56
x				-	7				4				_			
	L	L	l	<u> </u>	<u> </u>		L	l	<u> </u>		L	l	l	l	L	l

]:		symboling	$normalized_losses$	wheel_base	length	width	height	curb_weight	engine_size	bore	stroke	$compression_ratio$	horsepower
	count	159.000000	159.000000	159.000000	159.000000	159.000000	159.000000	159.000000	159.000000	159.000000	159.000000	159.000000	159.000000
	mean	0.735849	121.132075	98.264151	172.413836	65.607547	53.899371	2461.138365	119.226415	3.300126	3.236352	10.161132	95.836478
	std	1.193086	35.651285	5.167416	11.523177	1.947883	2.268761	481.941321	30.460791	0.267336	0.294888	3.889475	30.718583
	min	-2.000000	65.000000	86.600000	141.100000	60.300000	49.400000	1488.000000	61.000000	2.540000	2.070000	7.000000	48.000000
	25%	0.000000	94.000000	94.500000	165.650000	64.000000	52.250000	2065.500000	97.000000	3.050000	3.105000	8.700000	69.000000
	50%	1.000000	113.000000	96.900000	172.400000	65.400000	54.100000	2340.000000	110.000000	3.270000	3.270000	9.000000	88.000000
	75%	2.000000	148.000000	100.800000	177.800000	66.500000	55.500000	2809.500000	135.000000	3.560000	3.410000	9.400000	114.000000
	max	3.000000	256.000000	115.600000	202.600000	71.700000	59.800000	4066.000000	258.000000	3.940000	4.170000	23.000000	200.000000

It is interesting that the average horsepower is only 95.83HP. You would expect this to be higher since most cars in the data set seem to be commuter cars that have would typically have between 150-200 horsepower. This could imply there are outliers that are bringing the horsepower average down. With a minimum of 48 and a maximum of 200, you would expect the mean to be closer to 200 than 48, so a median may be a more accurate method of comparison.

peak_rpm	city_mpg	highway_mpg	price
159.000000	159.000000	159.000000	159.000000
5113.836478	26.522013	32.081761	11445.729560
465.754864	6.097142	6.459189	5877.856195
4150.000000	15.000000	18.000000	5118.000000
4800.000000	23.000000	28.000000	7372.000000
5200.000000	26.000000	32.000000	9233.000000
5500.000000	31.000000	37.000000	14719.500000
6600.000000	49.000000	54.000000	35056.000000

When comparing city_mpg and highway_mpg, there is a noticeable difference in the means, since highway driving is done with minimal stopping resulting in better gas mileage. Highway miles per gallon is higher than expected but also has a higher standard deviation. Based on the empirical rule, 95% of the data should fall between 19 and 45 highway_mpg. This shows that there is a lot of variability in highway mpg. This leaves more uncertainty on how to truly reflect the mean when the interval containing most of the data (95%) has such a large spread. A better measure of central tendency may be to use the median.

Table 3: Proportions for Automobile Data Set (Shown as Barcharts in Figure 7)

Symboling	Frequency	Proportion (%)
-3	0	0%
-2	3	1.9%
-1	20	12.58%
0	48	30.19%
1	46	28.93%
2	29	18.24%
3	13	8.18%

With most of the frequency being at 0 or 1, this shows that most cars taken in this sample were considered risky or somewhat risky.

Make	Frequency	Proportion(%)
Toyota	31	19.50%
Nissan	18	11.32%
Honda	13	8.18%
Subaru	12	7.55%
Mazda	11	6.92%
Volvo	11	6.92%
Mitsubishi	10	6.29%
Dodge	8	5.03%
Volkswagen	8	5.03%
Peugot	7	4.40%
Plymouth	6	3.77%
Saab	6	3.77%
Mercedes-Benz	5	3.14%
BMW	4	2.52%
Audi	4	2.52%
Chevrolet	3	1.89%
Jaguar	1	0.63%
Porsche	1	0.63

Overall, the highest proportion of cars in the sample were Toyota's and Nissan's. This would make sense since they are typically cheaper cars affordable to the general population when compared to a BMW or Jaguar.

Fuel Type	Frequency	Proportion(%)
Gas	144	90.57%
Diesel	15	9.43%

The majority of cars are gas vehicles, which is the more widely used fuel type.

Aspiration	Frequency	Proportion(%)
Standard	132	83.02%
Turbo	27	16.98%

The majority of cars also have standard aspiration, with turbo usually being more present in faster, more expensive, higher-end cars.

Number of Doors	Frequency	Proportion(%)
Four	95	59.75%
Two	64	40.25%

Four doors were more frequent in the sample but there were more two door cars than expected.

Body Style	Frequency	Proportion(%)
Sedan	79	49.69%
Hatchback	56	35.22%
Wagon	17	10.69%
Hardtop	5	3.14%
Convertible	2	1.26%

Sedans and hatchbacks are the most popular car styles, with them making up a large proportion of the data set. Conversely, hardtops and convertibles make up a very small proportion as they are much less common.

Drive Wheels	Frequency	Proportion(%)
FWD	105	66.04%
RWD	46	28.93%
4WD	8	5.03%

Over 90% of the cars had two-wheel drive (front and rear wheel drive combined), which can be expected as many vehicle owners do not have a need for 4 wheel drive in their daily activities.

Engine Location	Frequency	Proportion(%)
Front	159	100%

All cars had a front-engine location, with engines in the back still being uncommon today except in cars designed for maximal speed and horsepower.

Engine Type	Frequency	Proportion(%)
(OHC)	123	77.36%
(OHFC)	12	7.55%
(DOHC)	8	5.03%
(L)	8	5.03%
(OHCV)	8	5.03%

The overhead camshaft had over 77% of the proportion, the standard engine style. The other types are much more specialized and are not as customary.

Number of Cylinders	Frequency	Proportion(%)
Four	136	85.54%
six	14	8.81%
five	7	4.4%
eight	1	0.6%
three	1	0.6%

Four-cylinder and six-cylinder cars are the most common in the data set, because of their creation of a balanced engine and their frequency of use in commuter cars. Volkswagen has historically used five-cylinder engines, but three-cylinder and eight cylinders are uncommon.

Fuel System	Frequency	Proportion(%)
(MPFI)	64	40.25%
(2BBL)	63	39.62%
(IDI)	15	10.79%
(1BBL)	11	6.92%
(SPDI)	5	3.14%
(MFI)	1	0.6%

The multi-point fuel injection and the two-barrel carburetor have the highest proportion, with the latter typically being used on smaller cars.

Table 4: Correlation Table/Tables for Automobile Data Set

	Norm	Wh	Le	Wi	Н	Cur	En	Во	St	Com	Hor	Pe	Cit	Hig	pri
	alize	eel	ng	dt	ei	b_	gin	re	ro	press	sep	ak	y_	hwa	ce
	d_los	_ba	th	h	gh	wei	e_s		ke	ion_r	OW	_r	m	y_m	
	ses	se			t	ght	ize			atio	er	р	pg	pg	
												m			
Norm	1	-	0.	0.	-	0.1	0.2	-	0.	-	0.2	0.	-	-	0.
alized		0.0	03	10	0.	258	07	0.0	06	0.127	90	23	0.	0.1	20
_loss		600	55	97	41	58	82	31	33	259	51	76	23	885	27
es		86	41	26	37		0	55	30		1	97	55	64	61
					02			8					23		
Whee	-	1	0.	0.	0.	0.8	0.6	0.5	0.	0.291	0.5	-	-	-	0.
I_bas	0.060		87	81	55	101	49	78	16	431	16	0.	0.	0.6	73
е	086		15	49	57	81	20	15	74		94	28	58	117	44
			34	91	67		6	9	49		8	92	06	50	19
												34	57		
Lengt	0.035	0.8	1	0.	0.	0.8	0.7	0.6	0.	0.184	0.6	-	-	-	0.
h	541	715		83	49	712	25	46	12	814	72	0.	0.	0.7	76
		34				91						23	72		

				83 38	92 51		95 3	31 8	10 73		06 3	40 74	45 44	245 99	09 52
Width	0.109 726	0.8 149 91	0. 83 83 38	1	0. 29 27 06	0.8 705 95	0.7 79 25 3	0.5 72 25 4	0. 19 66 19	0.258 752	0.6 81 87 2	- 0. 23 22 16	- 0. 66 66 84	- 0.6 933 39	0. 84 33 71
Heigh t	- 0.413 702	055 576 7	0. 49 92 51	0. 29 27 06	1	0.3 670 52	0.1 11 08 3	0.2 54 83 6	- 0. 09 13 13	0.233 308	0.0 34 31 7	- 0. 24 58 64	- 0. 19 97 37	- 0.2 261 36	0. 24 48 36
Curb _weig ht	0.125 858	0.8 101 81	0. 87 12 91	0. 87 05 95	0. 36 70 52	1	0.8 88 62 6	0.6 45 79 2	0. 17 38 44	0.224 724	0.7 90 09 5	- 0. 25 99 88	- 0. 76 21 55	- 0.7 893 38	0. 89 36 39
Engin e_siz e	0.207 820	0.6 492 06	0. 72 59 53	0. 77 92 53	0. 11 10 83	0.8 886 26	1	0.5 95 73 7	0. 29 96 83	0.141 097	0.8 12 07 3	- 0. 28 46 86	- 0. 69 91 39	- 0.7 140 95	0. 84 14 96
Bore	- 0.031 558	0.5 781 59	0. 64 63 18	0. 57 25 54	0. 25 48 36	0.6 457 92	0.5 95 73 7	1	- 0. 10 25 81	0.015 119	0.5 60 23 9	- 0. 31 22 69	- 0. 59 04 40	- 0.5 908 50	0. 53 38 90
Strok e	0.063 330	0.1 674 49	0. 12 10 73	0. 19 66 19	- 0. 09 13 13	0.1 738 44	0.2 99 68 3	- 0.1 02 58 1	1	0.243 587	0.1 48 80 4	- 0. 01 13 12	- 0. 02 00 55	- 0.0 129 34	0. 16 06 64
Comp ressio n_rati oo	- 0.127 259	0.2 914 31	0. 18 48 14	0. 25 87 52	0. 23 33 08	0.2 247 24	0.1 41 09 7	0.0 15 11 9	0. 24 35 87	1	- 0.1 62 30 5	- 0. 41 67 69	0. 27 83 32	0.2 214 83	0. 20 93 61
Horse powe r	0.290 511	0.5 169 48	0. 67 20 63	0. 68 18 72	0. 03 43 17	0.7 900 95	0.8 12 07 3	0.5 60 23 9	0. 14 88 04	- 0.162 305	1	0. 07 40 57	- 0. 83 72 14	- 0.8 279 41	0. 75 98 74
Peak _rpm	0.237 697	- 0.2 892 34	- 0. 23 40 74	- 0. 23 22 16	- 0. 24 58 64	- 0.2 599 88	- 0.2 84 68 6	- 0.3 12 26 9	- 0. 01 13 12	- 0.416 769	0.0 74 05 7	1	- 0. 05 29 29	- 0.0 327 77	- 0. 17 19 16
City_ mpg	- 0.235 523	- 0.5	- 0. 72	- 0. 66	- 0. 19	0.7	- 0.6 99	- 0.5 90	- 0. 02	0.278 332	- 0.8 37	- 0. 05	1	0.9 719 99	- 0. 69

		806	45	66	97	621	13	44	00		21	29			22
		57	44	84	37	55	9	0	55		4	29			73
High	-	-	-	-	-	-	-	-	-	0.221		-	0.	1	-
way_	0.188	0.6	0.	0.	0.	0.7	0.7	0.5	0.	483	8.0	0.	97		0.
mpg	564	117	72	69	22	893	14	98	01		27	03	19		72
		50	45	33	61	38	09	08	29		94	27	99		00
			99	39	36		5	50	34		1	77			90
Price	0.202	0.7	0.	80	0.	8.0	8.0	0.5	0.	0.209	0.7	-	-	-	1
	761	344	76	43	24	936	41	33	16	361	59	0.	0.	0.7	
		19	09	37	48	39	49	89	06		87	17	69	200	
			52	1	36		6	0	64		4	19	22	90	
												16	73		

1:		$normalized_losses$	wheel_base	length	width	height	curb_weight	engine_size	bore	stroke	$compression_ratio$	horsepower	peak_rpm
	normalized_losses	1.000000	-0.060086	0.035541	0.109726	-0.413702	0.125858	0.207820	-0.031558	0.063330	-0.127259	0.290511	0.237697
	wheel_base	-0.060086	1.000000	0.871534	0.814991	0.555767	0.810181	0.649206	0.578159	0.167449	0.291431	0.516948	-0.289234
	length	0.035541	0.871534	1.000000	0.838338	0.499251	0.871291	0.725953	0.646318	0.121073	0.184814	0.672063	-0.234074
	width	0.109726	0.814991	0.838338	1.000000	0.292706	0.870595	0.779253	0.572554	0.196619	0.258752	0.681872	-0.232216
	height	-0.413702	0.555767	0.499251	0.292706	1.000000	0.367052	0.111083	0.254836	-0.091313	0.233308	0.034317	-0.245864
	curb_weight	0.125858	0.810181	0.871291	0.870595	0.367052	1.000000	0.888626	0.645792	0.173844	0.224724	0.790095	-0.259988
	engine_size	0.207820	0.649206	0.725953	0.779253	0.111083	0.888626	1.000000	0.595737	0.299683	0.141097	0.812073	-0.284686
	bore	-0.031558	0.578159	0.646318	0.572554	0.254836	0.645792	0.595737	1.000000	-0.102581	0.015119	0.560239	-0.312269
	stroke	0.063330	0.167449	0.121073	0.196619	-0.091313	0.173844	0.299683	-0.102581	1.000000	0.243587	0.148804	-0.011312
	compression_ratio	-0.127259	0.291431	0.184814	0.258752	0.233308	0.224724	0.141097	0.015119	0.243587	1.000000	-0.162305	-0.416769
	horsepower	0.290511	0.516948	0.672063	0.681872	0.034317	0.790095	0.812073	0.560239	0.148804	-0.162305	1.000000	0.074057
	peak_rpm	0.237697	-0.289234	-0.234074	-0.232216	-0.245864	-0.259988	-0.284686	-0.312269	-0.011312	-0.416769	0.074057	1.000000
	city_mpg	-0.235523	-0.580657	-0.724544	-0.666684	-0.199737	-0.762155	-0.699139	-0.590440	-0.020055	0.278332	-0.837214	-0.052929
	highway_mpg	-0.188564	-0.611750	-0.724599	-0.693339	-0.226136	-0.789338	-0.714095	-0.590850	-0.012934	0.221483	-0.827941	-0.032777
	price	0.202761	0.734419	0.760952	0.843371	0.244836	0.893639	0.841496	0.533890	0.160664	0.209361	0.759874	-0.171916

When looking at the correlation table, much of the data has a positive correlation. For example, the length and width have a large, positive correlation that is intuitive. Engine size and horsepower also have a large, positive correlation as a larger engine often results in more horsepower.

city_mpg	highway_mpg	price
-0.235523	-0.188564	0.202761
-0.580657	-0.611750	0.734419
-0.724544	-0.724599	0.760952
-0.666684	-0.693339	0.843371
-0.199737	-0.226136	0.244836
-0.762155	-0.789338	0.893639
-0.699139	-0.714095	0.841496
-0.590440	-0.590850	0.533890
-0.020055	-0.012934	0.160664
0.278332	0.221483	0.209361
-0.837214	-0.827941	0.759874
-0.052929	-0.032777	-0.171916
1.000000	0.971999	-0.692273
0.971999	1.000000	-0.720090
-0.692273	-0.720090	1.000000

Figure 5 – Heatmap of Automobile Dataset Correlations

igure 5 – I	ıcaııı	iap oi	Auto	шовис	Data	isei Ci	ni eia	uons								1.00
normalized_losses -	1	-0.06	0.036	0.11	-0.41	0.13	0.21	-0.032	0.063	-0.13	0.29	0.24	-0.24	-0.19	0.2	-1.00
wheel_base -		1	0.87	0.81		0.81	0.65					-0.29	-0.58	-0.61	0.73	
length -		0.87	1	0.84		0.87	0.73	0.65			0.67	-0.23	-0.72	-0.72	0.76	- 0.75
width -		0.81	0.84	1		0.87	0.78				0.68	-0.23	-0.67	-0.69	0.84	
height -	-0.41	0.56			1	0.37						-0.25		-0.23	0.24	- 0.50
curb_weight -		0.81	0.87	0.87		1	0.89	0.65			0.79	-0.26	-0.76	-0.79	0.89	
engine_size -		0.65	0.73	0.78		0.89	1	0.6			0.81	-0.28	-0.7	-0.71	0.84	- 0.25
bore -		0.58	0.65			0.65	0.6	1	-0.1		0.56	-0.31	-0.59	-0.59	0.53	
stroke -								-0.1	1	0.24					0.16	- 0.00
compression_ratio -									0.24	1	-0.16	-0.42			0.21	
horsepower -		0.52	0.67	0.68		0.79	0.81	0.56		-0.16	1	0.074	-0.84	-0.83	0.76	0.25
peak_rpm -		-0.29			-0.25	-0.26	-0.28	-0.31		-0.42		1	-0.053		-0.17	
city_mpg -	-0.24	-0.58	-0.72	-0.67		-0.76	-0.7	-0.59			-0.84		1	0.97	-0.69	0.50
highway_mpg -	-0.19	-0.61	-0.72	-0.69	-0.23	-0.79	-0.71	-0.59			-0.83		0.97	1	-0.72	
price -		0.73	0.76	0.84		0.89	0.84	0.53			0.76		-0.69	-0.72	1	0.75
	normalized_losses -	wheel base -	length -	width-	height -	curb weight -	engine_size -	- pore	stroke -	compression_ratio -	horsepower -	peak_rpm -	- bdw -dp	highway_mpg -	price -	

IV. DATA SET GRAPHICAL EXPLORATION Figure 6 - Pairwise Plot/ Scatter Plots of Automobile Data Set's Continuous Variables

One of the most interesting distributions is the compression ratio. Most of the data is under 10 while there are a few outliers that are over 20 which affect the graph. Interestingly, the stroke, bore engine size, height, width, and length all have a line that follows the shape of a normal distribution. The normalized losses and wheelbase tend to look more like a chi square distribution however, potentially showing the impact of larger sample size.

These graphs are normally distributed with few significant outliers. Besides price, most of the data has little to no skew. There is a higher frequency of cars that are under \$10,000, which makes sense given the relatively low mean car price.

Throughout all of the data, there is a clear distinction between the different values of the compression ratio. It is either under 10 or over 20, with no points falling in the middle in any of the pair plots. This suggests a common ratio that is optimal for most vehicles and suggests that more expensive cars often have a higher compression ratio.

The city MPG and the highway MPG are positively correlated with each other, taking a linear shape. This shows that as your city MPG increases, your highway MPG also increases. Another interesting feature is that curb weight has a negative correlation with city MPG and highway MPG. This would be expected because the heavier your car is, the less likely you are to get a good MPG. This is demonstrated with the positive correlation to engine size and curb weight since you need a larger engine to power a bigger vehicle.

Actual Proportions and descriptions of data are shown in Table 3.

Figure 8 – Boxplot of Make and Price

The higher proportion of cars were cheaper with most of the data occupying the lower realm of the figure than the few expensive ones. For the Jaguar and Porsche, there was not enough data to make a reliable boxplot graph as there was only one instance of each.

Figure 9 – Boxplot of Make and Engine Size

Nissan typically had the highest standard deviation on engine size, with the sample containing multiple Nissans with different engine types. Audi and Plymouth had one of the tightest deviations, with them using similar engines in all their cars. For cars with a straight line, this meant that all of the cars in the sample had the same size engine or there was only one instance of each car type.

Figure 10 – Boxplot of Make and Normalized Losses

The higher value vehicles typically have higher normalized loss values, since it costs more to insure the vehicle each year. Toyota has the largest spread meaning that to insure their vehicles is not consistent and they may have a wide range of vehicle quality.

Figure 11 - Boxplot of Make and Wheel Base

A large amount of these brands kept the same size wheelbase for all of the cars that were included in the sample. This reduces variability and allows multiple different vehicles to have the same wheelbases.

Figure 12 – Boxplot of Make and Bore Size

All of the makes have a bore between 2 and 4, with Porsche and Volvo having the highest average bore size.

Figure 13 – Boxplot of Make and Stroke

Most of the cars fall within the same range for stroke. Higher-powered cars such as Jaguar and Mercedes-Benz are slight outliers as they have a larger stroke to produce more power output for their more expensive, powerful vehicles.

Figure 14 - Boxplot of Make and Compression Ratio

This graph is interesting since most of the cars used the same general compression ratio for their cars. However, Volkswagen and Peugot had other makes of cars that had high compression ratios, skewing the distribution.

Figure 15 – Boxplot of Make and Horsepower

With Nissan having the largest deviation for engine size, it makes sense that they would have a higher deviation of horsepower. The different size engines produce different horsepower. Most companies produce similar cars, so the other makes have smaller, tighter spreads.

Figure 16 – Boxplot of Make and Peak RPM

Most makes have a peak rpm that is set by the company itself. This is to protect the engine from working too hard and overheating which can cause engine failure or damage. BMW has the biggest deviation of peak rpm as they produce a variety of luxury cars. They set a specific rpm limit for each distinct style of car they produce.

Chevrolet has the highest average city mpg. Most other cars fall between 15 and 30 miles per gallon. For example, Honda and Audi have higher city mpg deviation, but lower highway mpg deviation. This shows they are more consistent when driving on highways and will get the best gas mileage.

Figure 18 - Boxplot of Make and Highway MPG

This is very similar to the city mpg, with the deviation typically being smaller with highway mpg. The averages are mostly all higher than the city mpg but retain much of the same shape and spread as the boxplot of city mpg

V. SUMMARY OF FINDINGS

Overall, this dataset gave insight into the proportion of cars that were surveyed. While there was some missing data throughout the set, it was mostly complete, and the missing data was dealt with so as not to affect the end results. Much of the data was either a nominal or ratio data type, which was to be expected since the categories were mainly continuous variables. When looking at the proportions of each of the categories, there are results that confirmed general life observations. For example, you would expect most of the cars to have a front engine and that most of the cars were sedans and hatchbacks as could be noticed by a quick survey while on the road as the general population more often buys cars of these types.

The correlations that were explored in this analysis could be useful for new car buyers. For example, normalized losses have the highest positive correlation with horsepower and price. This implies that they are more often expensive to own and can lead to more price loss due to insurance coverage. So as a new buyer, it may be better to settle for a car with lower horsepower and price to avoid high insurance fees. This data set provided useful insight pertaining to cars in 1985, much of which still holds true today even though it was over 35 years ago.