Problem 0: Homework checklist

✓I didn't talk with any one about this homework.

✓ Source-code are included at the end of this document.

Problem 1: Prove or disprove

For the proof below, I will assume all the matrices are $n \times n$ matrices.

1. The product of two diagonal matrices is diagonal.

 \boldsymbol{A} and \boldsymbol{B} are diagonal matrices, so

$$\mathbf{A}_{ij} = 0, if \ i \neq j$$

$$\boldsymbol{B}_{ij} = 0, if \ i \neq j$$

$$C = A \times B$$

$$C_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj}$$

 $C_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj}$ Only if i = j = k, C_{ij} will not be zero, which mean C is also a diagonal matrix.

2. The product of two upper triangular matrices is upper triangular A and Bare two upper triangular matrices, so

$$\mathbf{A}_{ij} = 0, if \ i \geqslant j$$

 $\mathbf{B}_{ij} = 0, if \ i \geqslant j$

$$C = A \times B$$

$$oldsymbol{C}_{ij} = \sum_{k=1}^n oldsymbol{A}_{ik} oldsymbol{B}_{kj}$$

When $i \geqslant j$, $C_{ij} = 0$ because one of A_{ik} and B_{kj} must be zero.

3. The product of two symmetric matrices is symmetric. A and B are two symmetric matrices, so

$$\mathbf{A}_{ij} = \mathbf{A}_{ji}, if \ i = j$$

$$\boldsymbol{B}_{ij} = \boldsymbol{B}_{ji}, if \ i = j$$

$$C = A \times B$$

$$C_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj}$$

 $C_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj}$ Then C_{ij} is not necessary to be equal to C_{ji}

Counter-example:

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}$$
 is a symmetric matrix

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}$$
 is a symmetric matrix;
 $B = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ is also a symmetric matrix.

$$C = A \times B = \begin{bmatrix} 2 & 2 \\ 3 & 3 \end{bmatrix}$$
 which is not a symmetric matrices.

4. The product of two orthogonal matrices is orthogonal. This statement is incorrect.

Counter-example: $\mathbf{A} = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}$ is a full rank matrix;

$$B = \begin{bmatrix} 3 & 5 \\ 1 & 1 \end{bmatrix}$$
 is also a full rank matrix.

$$C = A \times B = \begin{bmatrix} 4 & 6 \\ 2 & 3 \end{bmatrix}$$
 which is not a full matrices.

5.	The product of two square, full rank matrices is full rank