Συναρτήσεις Μέθοδοι Ολοκλήρωσης

Κωνσταντίνος Λόλας

Σιγά τα ολοκληρώματα!

Τι μπορούμε να ολοκληρώσουμε

- 1 Πολυώνυμα
- Σκθετικές
- 🗿 Τριγωνομετρικές
- Ψητές με πρωτοβάθμιο διαιρέτη
- 💿 Πρωτοβάθμιες άρρητες
- Έτοιμες από σύνθεση και φυσικά
- 🕖 κάθε πρόσθεση ή αφαίρεση αυτών ΜΟΝΟ

Τι γίνεται με τον πολλαπλασιασμό? Διαίρεση? Ακόμα και την απλή $\ln x$?

Ιστορία

Ξέρουμε να παραγωγίζουμε γινόμενο

$$(f\cdot g)' = f'g + fg'$$

$$f'g = (f\cdot g)' - fg'$$

Άρα

$$\int f'g \, dx = \int (f \cdot g)' \, dx - \int fg' \, dx$$
$$\int f'g \, dx = f \cdot g - \int fg' \, dx$$

$$\int f'g\,dx = f\cdot g - \int fg'\,dx$$

- Γιατί τελικά... εξαφανίζεται
- Γιατί δεν ξέρουμε να την ολοκληρώνουμε
- Γιατί μπορούμε να ξαναφτάσουμε στον ίδιο τύπο!!!!!!

$$\int f'g \, dx = f \cdot g - \int fg' \, dx$$

- Γιατί τελικά... εξαφανίζεται
- Γιατί δεν ξέρουμε να την ολοκληρώνουμε
- Γιατί μπορούμε να ξαναφτάσουμε στον ίδιο τύπο!!!!!!

$$\int f'g \, dx = f \cdot g - \int fg' \, dx$$

- Γιατί τελικά... εξαφανίζεται
- Γιατί δεν ξέρουμε να την ολοκληρώνουμε
- Γιατί μπορούμε να ξαναφτάσουμε στον ίδιο τύπο!!!!!!

$$\int f'g \, dx = f \cdot g - \int fg' \, dx$$

- Γιατί τελικά... εξαφανίζεται
- Γιατί δεν ξέρουμε να την ολοκληρώνουμε
- Γιατί μπορούμε να ξαναφτάσουμε στον ίδιο τύπο!!!!!!

- \bigcirc $\int xe^x dx$
- $3 \int x \ln x \, dx$

- \bigcirc $\int x \ln x \, dx$

- $\bigcirc \int x^3 e^x dx$
- $\Im \int x \ln x \, dx$

- $\bigcirc \int x^3 e^x dx$
- $\Im \int x \ln x \, dx$

Και στα εντός ύλης!

Κατά παράγοντες

$$\int_{a}^{b} f'(x)g(x) \, dx = \left[f(x)g(x) \right]_{a}^{b} - \int_{a}^{b} f(x)g'(x) \, dx$$

- ρητές
- άρρητες
- τριγωνομετρικές
- από σύνθεση?????

- ρητές
- άρρητες
- τριγωνομετρικές
- ο από σύνθεση?????

- ρητές
- άρρητες
- τριγωνομετρικές
- από σύνθεση?????

- ρητές
- άρρητες
- τριγωνομετρικές
- 🔹 από σύνθεση?????

- ρητές
- άρρητες
- τριγωνομετρικές
- από σύνθεση?????

Δοκιμές σύνθεσης

Δοκιμές σύνθεσης

- $3 \int 4x\varepsilon\varphi(x^2)\ln(\eta\mu(x^2))\,dx$

Δοκιμές σύνθεσης

Ναι, αλλά... τύπο έχουμε?

Μέθοδος Αντικατάστασης

$$\int_{a}^{b} f(x) \, dx$$

Θέτω x = g(u), άρα

- \bullet yia $x = a \implies u = k$
- \bullet yia $x = b \implies u = l$
- \bullet dx = g'(u)du

$$\int_{a}^{b} f(x) dx = \int_{b}^{l} f(g(u))g'(u) du$$

Να μελετήσετε τις παρακάτω συναρτήσεις ως προς την κυρτότητα

- $f(x) = x^2 \ln x$

Να μελετήσετε τις παρακάτω συναρτήσεις ως προς την κυρτότητα

- $f(x) = x^2 \ln x$
- 2 $f(x) = \sqrt{x} e^x$

Να μελετήσετε τις παρακάτω συναρτήσεις ως προς την κυρτότητα

$$f(x) = x^2 - \ln x$$

2
$$f(x) = \sqrt{x} - e^x$$

$$(3) f(x) = x^4 - 2x + 1$$

$$f(x) = x \ln x - e^{-x}$$

Λόλας 10/21 Συναρτήσεις

Να μελετήσετε τις παρακάτω συναρτήσεις ως προς την κυρτότητα

- $f(x) = x^2 \ln x$
- 2 $f(x) = \sqrt{x} e^x$
- $f(x) = x^4 2x + 1$
- $f(x) = x \ln x e^{-x}$

Δίνεται η συνάρτηση $f(x) = e^x - x$.

- ① Να μελετήσετε τη συνάρτηση f ως προς τη μονοτονία, τα ακρότατα και την κυρτότητα
- ② Να βρείτε τις οριακές τιμές της f στα άκρα του πεδίου ορισμού της, να κάνετε τον πίνακα μεταβολών της f και νο σχεδιάσετε τη C_f
- ③ Να λύσετε την εξίσωση $f(x) = \sigma v \nu x$

Λόλας Συναρτήσεις 11/21

Δίνεται η συνάρτηση $f(x) = e^x - x$.

- $oldsymbol{1}$ Να μελετήσετε τη συνάρτηση f ως προς τη μονοτονία, τα ακρότατα και την κυρτότητα
- Να βρείτε τις οριακές τιμές της f στα άκρα του πεδίου ορισμού της, να κάνετε τον πίνακα μεταβολών της f και να σχεδιάσετε τη C_f

Λόλας Συναρτήσεις 11/21

Δίνεται η συνάρτηση $f(x) = e^x - x$.

- $oldsymbol{1}$ Να μελετήσετε τη συνάρτηση f ως προς τη μονοτονία, τα ακρότατα και την κυρτότητα
- Να βρείτε τις οριακές τιμές της f στα άκρα του πεδίου ορισμού της, να κάνετε τον πίνακα μεταβολών της f και να σχεδιάσετε τη C_f
- 3 Να λύσετε την εξίσωση $f(x) = \sigma v \nu x$

Λόλας Συναρτήσεις 11/21

Να βρείτε τα διαστήματα στα οποία οι παρακάτω συναρτήσεις είναι κυρτές ή κοίλες και να προσδιορίσετε (αν υπάρχουν) τα σημεία καμπής

②
$$f(x) = 3x^5 - 5x^4$$

Λόλας Συναρτήσεις 12/21

Να βρείτε τα διαστήματα στα οποία οι παρακάτω συναρτήσεις είναι κυρτές ή κοίλες και να προσδιορίσετε (αν υπάρχουν) τα σημεία καμπής

$$(2) f(x) = 3x^5 - 5x^4$$

Να βρείτε τα διαστήματα στα οποία οι παρακάτω συναρτήσεις είναι κυρτές ή κοίλες και να προσδιορίσετε (αν υπάρχουν) τα σημεία καμπής

1
$$f(x) = \frac{1}{x^2 + 1}$$

2 $f(x) = x + \frac{1}{x}$

$$(2) f(x) = x + \frac{1}{x}$$

Να βρείτε τα διαστήματα στα οποία οι παρακάτω συναρτήσεις είναι κυρτές ή κοίλες και να προσδιορίσετε (αν υπάρχουν) τα σημεία καμπής

- ① $f(x) = \frac{1}{x^2 + 1}$ ② $f(x) = x + \frac{1}{x}$

Να βρείτε τις θέσεις των σημείων καμπής των συναρτήσεων:

$$f(x) = \sigma v \nu x - \frac{x^2}{3} + \frac{x^2}{2} - 1$$

$$(2) f(x) = 2x(\ln x - 1) - \ln^2 x$$

Λόλας 14/21 Συναρτήσεις

Να βρείτε τις θέσεις των σημείων καμπής των συναρτήσεων:

2
$$f(x) = 2x(\ln x - 1) - \ln^2 x$$

Λόλας 14/21 Συναρτήσεις

Να βρείτε τα διαστήματα στα οποία οι παρακάτω συναρτήσεις είναι κυρτές ή κοίλες και να προσδιορίσετε (αν υπάρχουν) τα σημεία καμπής

- ② $f(x) = \varepsilon \varphi x x + 2\ln(\sigma v \nu x), x \in (-\frac{\pi}{2}, \frac{\pi}{2})$

Να βρείτε τα διαστήματα στα οποία οι παρακάτω συναρτήσεις είναι κυρτές ή κοίλες και να προσδιορίσετε (αν υπάρχουν) τα σημεία καμπής

- ② $f(x) = \varepsilon \varphi x x + 2\ln(\sigma \upsilon \nu x), x \in (-\frac{\pi}{2}, \frac{\pi}{2})$

Δίνεται η συνάρτηση $f(x) = x^3 - 3x$

- Να μελετήσετε τη συνάρτηση f ως προς τη μονοτονία, τα ακρότατα, την κυρτότητα και τα σημεία καμπής
- ② Να βρείτε τις οριακές τιμές της f στα άκρα του διαστήματος του πεδίου ορισμού της, να κάνετε τον πίνακα μεταβολών της f και με βάση τις απαντήσεις σας στα προηγούμενα ερωτήματα, να σχεδιάσετε τη γραφική παράσταση της f

Λόλας Συναρτήσεις 16/21

Δίνεται η συνάρτηση $f(x) = x^3 - 3x$

- $oldsymbol{1}$ Να μελετήσετε τη συνάρτηση f ως προς τη μονοτονία, τα ακρότατα, την κυρτότητα και τα σημεία καμπής
- ② Να βρείτε τις οριακές τιμές της f στα άκρα του διαστήματος του πεδίου ορισμού της, να κάνετε τον πίνακα μεταβολών της f και με βάση τις απαντήσεις σας στα προηγούμενα ερωτήματα, να σχεδιάσετε τη γραφική παράσταση της f

Λόλας Συναρτήσεις 16/21

Δίνεται η συνάρτηση $f(x) = e^x + \ln x$. Να δείξετε ότι:

- f Q Η C_f έχει μοναδικό σημείο καμπής το ${\bf A}(x_0,f(x_0))$

Δίνεται η συνάρτηση $f(x) = e^x + \ln x$. Να δείξετε ότι:

- \bigcirc Η C_f έχει μοναδικό σημείο καμπής το $A(x_0, f(x_0))$
- $x_0 < \frac{4}{5}$

Δίνεται η συνάρτηση $f(x)=6e^x-x^3-4x^2$. Να δείξετε ότι η f έχει ακριβώς δύο σημεία καμπής

Λόλας Συναρτήσεις 18/21

Δίνεται η συνάρτηση

$$f(x) = \frac{x^4}{12} - \frac{\alpha^2 x^3}{3} + \frac{\alpha x^2}{2} - 3x + 1$$

Nα βρείτε τις τιμές του $α ∈ \mathbb{R}$ για τις οποίες:

- **1** Η f παρουσιάζει καμπή στο $x_0 = 1$
- ② Η C_f έχει ακριβώς δύο σημεία καμπής

Δίνεται η συνάρτηση

$$f(x) = \frac{x^4}{12} - \frac{\alpha^2 x^3}{3} + \frac{\alpha x^2}{2} - 3x + 1$$

Nα βρείτε τις τιμές του $α ∈ \mathbb{R}$ για τις οποίες:

- **1** Η f παρουσιάζει καμπή στο $x_0 = 1$
- ② Η C_f έχει ακριβώς δύο σημεία καμπής

Λόλας Συναρτήσεις 19/21

Να αποδείξετε ότι για κάθε $\alpha\in(-2,2)$ η συνάρτηση $f(x)=x^4-2\alpha x^3+6x^2-1$ είναι κυρτή σε όλο το $\mathbb R$

Λόλας Συναρτήσεις 20/21

Έστω $f:\mathbb{R} \to \mathbb{R}$ μία συνάρτηση για την οποία ισχύει

$$f''(x) + f(x) \neq 2f'(x)$$
, για κάθε $x \in \mathbb{R}$

Να δείξετε ότι η συνάρτηση $g(x)=e^{-x}f(x)$, $x\in\mathbb{R}$ δεν έχει σημεία καμπής.

Λόλας Συναρτήσεις 21/21

Έστω $f:(1,3)\to\mathbb{R}$ μία συνάρτηση, η οποία είναι δύο φορές παραγωγίσιμη και ισχύει:

$$f^2(x)+xf(x)+x^2-3x+1=0$$
, για κάθε $x\in(1,3)$

Να δείξετε ότι η συνάρτηση f, δεν παρουσιάζει καμπή

Λόλας Συναρτήσεις 22/21

Έστω ότι η f έχει σημείο καμπής στο x_0 με κυρτή αριστερά και κοίλη δεξιά του σημείου.

Άρα $f'(x) < f'(x_0)$ για κάθε $x < x_0$ και $f'(x) < f'(x_0)$ για κάθε $x > x_0$

Αφού f' παραγωγίσιμη, θα υπάρχει το όριο

$$f''(x_0) = \lim_{x \to x_0^-} \frac{f'(x) - f'(x_0)}{x - x_0} \ge 0$$

όμοια

$$f''(x_0) = \lim_{x \to x_0^+} \frac{f'(x) - f'(x_0)}{x - x_0} \le 0$$

m Aρα $f''(x_0)=0$ Πίσω στη θεωρία

Έστω ότι η f έχει σημείο καμπής στο x_0 με κυρτή αριστερά και κοίλη δεξιά του σημείου.

Άρα $f'(x) < f'(x_0)$ για κάθε $x < x_0$ και $f'(x) < f'(x_0)$ για κάθε $x > x_0$

Αφού f' παραγωγίσιμη, θα υπάρχει το όριο

$$f''(x_0) = \lim_{x \to x_0^-} \frac{f'(x) - f'(x_0)}{x - x_0} \ge 0$$

όμοια

$$f''(x_0) = \lim_{x \to x_0^+} \frac{f'(x) - f'(x_0)}{x - x_0} \le 0$$

Άρα $f''(x_0)=0$ Πίσω στη θεωρία

Έστω ότι η f έχει σημείο καμπής στο x_0 με κυρτή αριστερά και κοίλη δεξιά του σημείου.

Άρα $f'(x) < f'(x_0)$ για κάθε $x < x_0$ και $f'(x) < f'(x_0)$ για κάθε $x > x_0$

Αφού f' παραγωγίσιμη, θα υπάρχει το όριο

$$f''(x_0) = \lim_{x \to x_0^-} \frac{f'(x) - f'(x_0)}{x - x_0} \ge 0$$

όμοια

$$f''(x_0) = \lim_{x \to x_0^+} \frac{f'(x) - f'(x_0)}{x - x_0} \le 0$$

$$m A$$
ρα $f''(x_0)=0$ Πίσω στη θεωρία

Έστω ότι η f έχει σημείο καμπής στο x_0 με κυρτή αριστερά και κοίλη δεξιά του σημείου.

Άρα $f'(x) < f'(x_0)$ για κάθε $x < x_0$ και $f'(x) < f'(x_0)$ για κάθε $x > x_0$

Αφού f' παραγωγίσιμη, θα υπάρχει το όριο

$$f''(x_0) = \lim_{x \to x_0^-} \frac{f'(x) - f'(x_0)}{x - x_0} \ge 0$$

όμοια

$$f''(x_0) = \lim_{x \to x_0^+} \frac{f'(x) - f'(x_0)}{x - x_0} \le 0$$

Άρα $f''(x_0) = 0$ Πίσω στη θεωρία