(12) UK Patent Application (19) GB (11) 2 366 483 (13) A

(43) Date of A Publication 06.03.2002

- (21) Application No 0020585.6
- (22) Date of Filing 21.08.2000
- (71) Applicant(s)

Lucent Technologies Inc (incorporated in USA - Delaware) 600 Mountain Avenue, Murray Hill, New Jersey 07974-0636, United States of America

(72) Inventor(s)

Xiaobao X Chen Andrea Paparella

(74) Agent and/or Address for Service

CSTBuckley Lucent Technologies UK Limited, 5 Mornington Road, WOODFORD GREEN, Essex, IG8 OTU, **United Kingdom**

(51) INT CL7

H04L 12/56 // H04Q 11/04

- (52) UK CL (Edition T) H4L LDGP L205 L209 L213
- (56) Documents Cited

EP 0858189 A2

WO 99/31853 A

Field of Search

UK CL (Edition S) H4L LDGP LRAB LRAD LRCMR LRPMG LRPMX LRPXX INT CL7 H04L 12/56, H04Q 7/22 7/38 11/04 ONLINE: WPI, PAJ, EPODOC

(54) Abstract Title A method of delivering packets to a roaming mobile

(57) To deliver packets to the Media Access Control (MAC) address of a roaming mobile 10 in a foreign network, a proxy Address Resolution Protocol (ARP) entity is set up and informed of a care of address (COA) and MAC for the mobile. The proxy ARP then informs the last routing switch in the foreign network of the MAC address of the mobile. In addition to the proxy ARP entity, a Dynamic Host Configuration Protocol (DHCP) can be used. The proxy ARP entity may be built into a DHCP server or be in a stand alone node.

FIG. 1

FIG. 1

A METHOD OF SUPPORTING SEAMLESS HAND-OFF IN A MOBILE TELECOMMUNICATIONS NETWORK

5

30

This invention relates to a method of supporting seamless hand-off in a mobile telecommunications network, especially to hand-offs to a roaming mobile terminal in the network..

In third generation telecommunications networks such as GPRS (General Packet Radio Service) and EDGE (Enhanced Data-rate for GSM Evolution), when a mobile terminal moves into a foreign network, network connectivity is optionally maintained by the use of Mobile Internet Protocol (Mobile IP). In the home network, a Home Agent (HA) is set up which maintains the location information of the mobile by use of Binding Updates, i.e., registration of information sent to the HA by the mobile node.

Mobile IP has two working modes. The first is illustrated in Figure 1; a mobile terminal is currently attached as a Mobile Node (MN) 14 in a network different from its home network. The MN 14 is communicating with a Correspondent Node (CN) 12. A Home Agent 16 is set up in the home network by the CN 12, and a Foreign Agent (FA) 18 is set up in the foreign network. The FA 18 allocates a unique IP address for the visiting mobile, a Care of Address (COA) and this address is sent to the HA 16 in a Binding Update.

Packets for the mobile are encapsulated by the HA 16 and tunneled along tunnel 20 to the FA 18 for transmission to MN 14. In such encapsulation, an extra IP header is added to each packet, including the COA of the MN 14. This is known as FA-COA working mode.

In the second working mode (not illustrated) there is no FA, the MN 14 is allocated a unique COA and encapsulated packets are tunneled by HA 16 directly to MN 14; this is known as Collocated Care of Address mode of working (CO-COA).

In a conventional packet switched network, when a host A sends a packet to another host B, host A needs to determine the Media Access Control (MAC) address of host B so that the packet can be delivered to the correct physical address in layer 2. Host A sends a MAC broadcast frame, called an Address Resolution Protocol (ARP) request frame, which contains the host A's IP and MAC addresses and the IP address of host B. All nodes in the local network receive the broadcast IP request frame, and

compare the destination address with their own IP address. Only the node with the correct IP address of the ARP request responds by sending a ARP reply containing its MAC address. On receiving the ARP reply, host A updates its ARP cache, which usually times out periodically. After an ARP cache entry has timed out for a specific host, the ARP request is sent again to discover the MAC address of the destination. The ARP cache is consulted by a host before it sends an ARP request, and if the answer is found in the cache, the host does not need to generate an ARP request.

It is known to provide a proxy ARP which is an ARP reply sent by one node on behalf of another node which is unwilling or unable to answer its own ARP requests. 10 The sender of a proxy ARP reverses the sender and target protocol address fields and supplies some configured MAC address (generally its own) in the sender hardware address field (the place-holder field). The node receiving the reply then associates this link-layer address with the IP address of the original target node, so that future packets for this target node are transmitted to that MAC address.

When a mobile roams it maintains connectivity by the use of a unique IP address allocated to it, a Care-of-Address, as explained above. By use of Mobile IP, a packet sent from a correspondent node to a mobile node can still use the home address of the mobile node no matter where the mobile moves to. The packet received in the foreign network needs to bear the current Care of Address of the mobile as the destination 20 address. If applications running on the mobile node still use the home address of the mobile, there is seamless mobility support to those applications; the applications do not have to stop and re-start as the mobile roams.

15

However, before the packet can be sent from the last routing switch in the foreign network to the current Care of Address from the mobile, the routing switch 25 needs to know the MAC address of the mobile. In the current functional specifications of ARP and of Mobile IP, this entry cannot be created. Referring again to Figure 1, in the terms used above, either CN 12 or MN 10 can be host A, the other being host B. In either direction, packets passed through the network from router to router, and in Figure 1 two routers 22, 24, are shown schematically adjacent the optimized route 20. Suppose packets are passing from CN 12 to FA 16 via routers 22, 24; before a packet can be sent from router 24 to the current Care of Address of MN 10, router 24 needs to

know the MAC address of MN 10, as stated above.

The routers 22, 24 can alternatively be associated with the encapsulated route 18.

It is the object of the invention to provide a method of supporting seamless hand-off in a mobile telecommunications network of the type described above.

According to the invention, in a third generation mobile telecommunications network, a method of delivering packets in layer 2 to a mobile terminal in a foreign network comprises the steps of:-

providing an Address Resolution Protocol (ARP) entity;

setting up a home agent in the home network; and

allocating a Care of Address to the mobile node;

characterized by the further steps of:

10

25

setting up a proxy ARP entity; and

informing the proxy ARP entity of the Care of Address and the Media Access

Control address of the mobile node.

In the invention, in addition to the proxy ARP entity, a Dynamic Host Configuration Protocol (DHCP) can also be used. The proxy ARP server can be built into the DHCP server, or it can be in a stand alone node. The proxy ARP is informed of the Care of Address and the MAC address of the MN 10; this can be achieved during the mobile node registration process; either the proxy ARP advertises itself and receives a registration reply from the MN 10, or the MN 10 solicits the proxy ARP by broadcasting a proxy ARP soliciting request, and the proxy ARP replies to confirm the registration.

The foreign network proxy ARP controls operations in two different cases, when there is transmission from CN 12 to MN 10, and when there is transmission in the opposite direction.

In the first case, transmission from CN 12 to MN 10, when the working mode is COCOA mode, when a packet from the CN 12 arrives at the last routing switch of the foreign network, i.e. switch 24, the switch broadcasts an ARP request, with the frame format:-

Sender's MAC	Sender's IP address	MN's MAC (NULL)	MN's COA

The proxy ARP receives the broadcast message and compares the receiver's IP address with the registered Care-of-Address of the MN 10. If a match is found, the proxy ARP sends an ARP reply message having the format:-

MN's MAC	MN's COA	Sender's MAC	Sender's IP address
1	j		

5

When the switch 24 receives the ARP reply, it updates its ARP cache table by adding an entry with the unique mapping between the Care-of-Address and the MAC address of MN 10. The switch 24 can then successfully deliver the packet to MN 10 at the correct address in layer 2.

When the working mode is FA COA mode, the FA 16 replies to any request for its MAC address, sending the FA COA as the IP address of the mobile node.

In the second case, transmission from MN 10 to CN 12, there is a preliminary stage. Before a packet is sent by MN 10, the ARP module in MN 10 or the daemon running in MN 10 checks whether the destination of the packet (i.e. CN 12) is a node which is local to the home network of the MN 10. If the destination is in the home network, then the MN 10 broadcasts its ARP request using its own home IP address as the sender's address. The ARP request format is:-

MN's MAC	MN's Home IP	CN's MAC (NULL)	CN's IP Address
	Address		

When the proxy ARP receives the ARP request, it responds by sending an ARP 20 reply message to the MN 10 in the format:-

FN Default CN's IP Address MN's MAC MN's IP address Gateway's MAC	ì	
---	---	--

Consider now the position when the destination is not in the home network of MN 10.

In the foreign network (FN) there is a Default Gateway; this Default Gateway broadcasts an ARP request message and the proxy ARP server learns the P address of the foreign network Default Gateway by receiving this message. The MN 10 broadcasts an ARP request using the Default Gateway in the foreign network as the destination IP address. The ARP request format is:-

MN's MAC	MN's Home IP Address	FN's Default Gateway	FN's Default Gateway's IP address
		MAC(NULL)	

When the proxy ARP receives the broadcast, it sends an ARP reply message to the MN 10 in the format:-

FN Default FN Default Gateway Gateway's MAC IP Address MN's MAC MN's Home IP Address		· · · · · · · · · · · · · · · · · · ·	MN's MAC	1
--	--	---------------------------------------	----------	---

The packet can therefore be successfully delivered to the CN 12.

In another variation, the ARP proxy can be built as a daemon running in the MN 10, care being taken that it does not affect the standard ARP daemon in the MN 10.

By application of the method according to the invention, seamless hand-off can be achieved even when a mobile is roaming in a foreign network.

15

CLAIMS

the further steps of:

10

In a third generation mobile telecommunications network, a method of delivering packets in layer 2 to a mobile node (10) in a foreign network comprises the steps of:-

providing an Address Resolution Protocol (ARP) entity;
setting up a home agent (14) in a home network of the mobile node;
allocating a Care of Address to the mobile node (10); and
setting up a Dynamic Host Configuration Protocol (DHCP); characterized by

setting up a proxy ARP entity; and informing the proxy ARP entity of the Care of Address and the Media Access Control address of the mobile node.

A method according to Claim 1 in which packets are transmitted from the correspondent node (12) to the mobile node (10) and the Care of Address is a Collocated Care of Address comprising the further steps of:-

a last routing switch (24) in the foreign network broadcasting an ARP request; the proxy ARP responding with an ARP reply message containing the MAC address of the mobile node (10);

the last routing switch (24) updating its ARP cache table by adding a unique mapping between the Care of Address and the MAC address of the mobile node (10); and

the last routing switch (24) delivering the packet to said MAC address.

- 3 A method according to Claim 2 in which the ARP request from said last routing switch has the frame format:-
- Sender's MAC; Sender's IP address; MN's MAC (NULL); MN's COA; and the ARP reply from the proxy ARP server has the frame format:-

MN's MAC; MN's COA; Sender's MAC; Sender's IP Address.

A method according to Claim 1 in which packets are transmitted from the mobile node to the correspondent node comprising the further steps of the ARP entity checking whether the destination of the packets is a node in the home network of the mobile node, and if so, the mobile node sending an ARP request using its own home

IP address as the sender's address; and the proxy ARP responding with a ARP reply addressed to the MN's IP address.

- 5 A method according to Claim 4 in which the ARP request from the MN has the frame format:-
- 5 MN's MAC; MN's Home IP Address; CN's MAC (NULL); CN's IP address; and the ARP reply from the proxy ARP server has the frame format:-

FN Default Gateway's MAC; CN's IP Address; MN's MAC; MN's IP address.

A method according to Claim 4 in which the destination of the packets is a node which is not in the home network of the mobile node, comprising the further steps of the mobile node sending an ARP request using the MAC address of a Default Gateway in the foreign network as the sender's address;

the Default Gateway receiving the ARP request and broadcasting it; and the proxy ARP responding by sending an ARP reply to the MN.

7 A method according to Claim 6 in which the ARP request from the MN 15 has the frame format:-

MN's MAC; MN's Home IP Address; HN's Default Gateway (NULL); HN's Default Gateway's IP address;

and the ARP reply from the proxy ARP server has the frame format:-

FN Default Gateway's MAC; HN Default Gateway's IP Address; MN's MAC; 20 MN's Home IP Address.

Application No:

GB 0020585.6

Claims searched: 1-7

5.6

Examiner:

Robert Macdonald

Date of search: 1 May 2001

Patents Act 1977 Search Report under Section 17

Databases searched:

UK Patent Office collections, including GB, EP, WO & US patent specifications, in:

UK Cl (Ed.S): H4L (LRAB, LRAD, LRCMR, LRPMG, LRPMX, LRPXX, LDGP)

Int Cl (Ed.7): H04L(12/56); H04Q(7/22, 7/38, 11/04)

Other: ONLINE: WPI, PAJ, EPODOC

Documents considered to be relevant:

Category	Identity of document and relevant passage		
A	EP 0858189 A2	(HITACHI) See whole document.	
Α	WO 9931853 A	(BRITISH TELECOM) See whole document.	

X Document indicating lack of novelty or inventive step
 Y Document indicating lack of inventive step if combined with one or more other documents of same category.

[&]amp; Member of the same patent family

A Document indicating technological background and/or state of the art.

P Document published on or after the declared priority date but before the filing date of this invention.

E Patent document published on or after, but with priority date earlier than, the filing date of this application.