$$(1) \max_{x \in \mathbb{Z}_{L}(x)} z_{L}(x) = 3x_{1} - x_{2} + 2x_{3}$$

$$(2x_{1} - x_{2} = -3)$$

$$(1) \max_{x \in \mathbb{Z}_{L}(x)} z_{L}(x) = 3x_{1} - x_{2} + 2x_{3}$$

$$(2x_{1} - x_{2}) = -3$$

$$(1) \max_{x \in \mathbb{Z}_{L}(x)} z_{L}(x) = 3x_{1} - x_{2} + 2x_{3}$$

$$(1) \max_{x \in \mathbb{Z}_{L}(x)} z_{L}(x) = 3x_{1} - x_{2} + 2x_{3}$$

$$(1) \max_{x \in \mathbb{Z}_{L}(x)} z_{L}(x) = 3x_{1} - x_{2} + 2x_{3}$$

$$(1) \max_{x \in \mathbb{Z}_{L}(x)} z_{L}(x) = 3x_{1} - x_{2} + 2x_{3}$$

$$(1) \max_{x \in \mathbb{Z}_{L}(x)} z_{L}(x) = 3x_{1} - x_{2} + 2x_{3}$$

$$(1) \max_{x \in \mathbb{Z}_{L}(x)} z_{L}(x) = 3x_{1} - x_{2} + 2x_{3}$$

$$(1) \max_{x \in \mathbb{Z}_{L}(x)} z_{L}(x) = 3x_{1} - x_{2} + 2x_{3}$$

$$(1) \max_{x \in \mathbb{Z}_{L}(x)} z_{L}(x) = 3x_{1} - x_{2} + 2x_{3}$$

$$(1) \min_{x \in \mathbb{Z}_{L}(x)} z_{L}(x) = 3x_{1} - x_{2} + 2x_{3}$$

$$(1) \min_{x \in \mathbb{Z}_{L}(x)} z_{L}(x) = 3x_{1} - x_{2} + 2x_{3}$$

$$(1) \min_{x \in \mathbb{Z}_{L}(x)} z_{L}(x) = 3x_{1} - x_{2} + 2x_{3}$$

$$(1) \min_{x \in \mathbb{Z}_{L}(x)} z_{L}(x) = 3x_{1} - x_{2} + 2x_{3}$$

$$(1) \min_{x \in \mathbb{Z}_{L}(x)} z_{L}(x) = 3x_{1} - x_{2} + 2x_{3}$$

$$(1) \min_{x \in \mathbb{Z}_{L}(x)} z_{L}(x) = 3x_{1} - x_{2} + 2x_{3}$$

$$(1) \min_{x \in \mathbb{Z}_{L}(x)} z_{L}(x) = 3x_{1} - x_{2} + 2x_{3}$$

$$(1) \min_{x \in \mathbb{Z}_{L}(x)} z_{L}(x) = 3x_{1} - x_{2} + 2x_{3}$$

$$(1) \min_{x \in \mathbb{Z}_{L}(x)} z_{L}(x) = 3x_{1} - x_{2} + 2x_{3}$$

$$(1) \min_{x \in \mathbb{Z}_{L}(x)} z_{L}(x) = 3x_{1} - x_{2} + 2x_{3}$$

$$(1) \min_{x \in \mathbb{Z}_{L}(x)} z_{L}(x) = 3x_{1} - x_{2} + 2x_{3}$$

$$(1) \min_{x \in \mathbb{Z}_{L}(x)} z_{L}(x) = 3x_{1} - x_{2} + 2x_{3}$$

$$(1) \min_{x \in \mathbb{Z}_{L}(x)} z_{L}(x) = 3x_{1} - x_{2} + 2x_{3}$$

$$(1) \min_{x \in \mathbb{Z}_{L}(x)} z_{L}(x) = 3x_{1} - x_{2} + 2x_{3}$$

$$(1) \min_{x \in \mathbb{Z}_{L}(x)} z_{L}(x) = 3x_{1} - x_{2} + 2x_{3}$$

$$(1) \min_{x \in \mathbb{Z}_{L}(x)} z_{L}(x) = 3x_{1} - x_{2} + 2x_{3}$$

$$(1) \min_{x \in \mathbb{Z}_{L}(x)} z_{L}(x) = 3x_{1} - x_{2} + 2x_{3}$$

$$(1) \min_{x \in \mathbb{Z}_{L}(x)} z_{L}(x) = 3x_{1} - x_{2} + 2x_{3}$$

$$(1) \min_{x \in \mathbb{Z}_{L}(x)} z_{L}(x) = 3x_{1} - x_{2} + 2x_{3}$$

$$(1) \min_{x \in \mathbb{Z}_{L}(x)} z_{L}(x) = 3x_{1} - x_{2} + 2x_{3}$$

$$(1) \min_{x \in \mathbb{Z}_{L}(x)} z_{L}(x) = 3x_{1} - x_{2} + 2x_{3}$$

$$(1) \min_{x \in \mathbb{Z}_{L}(x)} z_{L}(x) = 3x_{1} - x_{2} + 2x_{3}$$

$$(2) \min_{x \in \mathbb{Z}_{L}(x)} z_{L}(x) = 3x_{1} -$$

- а) напишеме сътветнама каномиста завата (К);
 б) намерете мионсеството от отплант решения и
 оитиманияма етобност на целевама функция на
 задатиме (К) и (L) като измонвате таблигиа форма на синилекс
 не года,

 + + +-

Peuce tue: a) $x_2 = x_2^+ - x_2^-$

we true: a)
$$x_2 = x_2 - y_2$$

min $2x(x) = -3x_1 + x_2^{+} - x_2^{-} - 2x_3$

$$= 3$$

$$-2x_1 + x_2^{+} - x_2^{-} = 4$$

$$x_1 + 4x_3 + x_5 = 4$$

6) (K) e 6 SazuceH leng corpsono hattaien Dague: {x2+, x4, x5}

			4			11				2
	XB	Co	×,	X2+ 1	×2 ⁻	X3 -2	×4 O	×5	6	16a CT min { 1, 4 } = 1
\	×2 ⁺ ×4	1 0	-2 1	1 0 0	-1 0 0	0 -1 4	0 1 0	0 0 1	3 1 4	min { 1) 1) XI BLUSA XY USAUBA
-	×5	0	-1	0	0	-2	0	0	-3	2 Pa CT
₩	及*X1 *5	1 -3 0	0 1 0	1 0 0	-1 0 0	-2 -1 (5)	2 1 -1	0 0 1	5 1 3	хз вмза min 37 х5 измза 15
			0	0	0	-3	1	0	-2	3TA CT, BOURES OTHO-
×k	χ [†] ×1 ×3	1 -3 -2	010	1 0 0	-1 0 0	0 0 1	815 415 -115 215	215 115 115 315	31/5 8/5 3/5 -1/5	сителни очении са неотри унтелни = 7 отпинално бор на (K)
		-	0	0	1/10//	10	1			* 2(xt) = 115

Ontumarna ci-T ha yer, ø-us ka (K) e z* = Z(x*k) = 1/5 Оптимално бдр на (K) e × k (=, 3=, 0, =, 0, 0). x, x2+ x2 x3 X4 X5

Boyne pemerus na (K): or $\bar{c}_{x_2} = 0$ uname near pool c name. $d_{\kappa}^* = (0,1,1,0,0,0)$.

Penne rus ma na (K) ca banca rocku x_t^* or buga $x_t^* = x_k^* + t d_k^*$, t > 0

 $X_{t}^{*}=\left(\frac{8}{5},\frac{31}{5},0,\frac{3}{5},0,0\right)+t\left(0,1,1,0,0,0\right)=\left(\frac{8}{5},\frac{31}{5}+t,t,\frac{3}{5},0,0\right)3\alpha t = 0$

) Onthe Manuo Sopp na (L) e × "L (8, 31, 3), out. et-T na yen. p-u, na (L) e z*L=Z(x*L) = -1/5.

Burn pemerus na (L): x1=(8,31+t-t,3)=(8,31,3)

T. e. pemenners na (L) e equicibens.

2. 3a zagacama (L):

6) nammure shou entiberera zapara (21);

У кашо пуполувате симилекените табкичуч от подточка б), пососете ед но очтиманно решение на (ДГ) м на мерете очтиманната стобност на целевана п'функция.

Pence Hue:

6) $min -3 \pi_1 + \pi_2 + 4 \pi_3$ $2\pi_1 + \pi_2 + \pi_3 \ge 3$ $-\pi_4 = -1$ $-\pi_2 + 4\pi_3 = 2$ $\pi_2 = 0$, $\pi_3 = 0$

2) Douncibercara na (K) e:

(DK) | $max 3 y_1 + y_2 + y_3 = 7$ | $max 3 y_1 + y_2 + y_3 = -3$ | $-2 y_1 + y_2 + y_3 = -3$ | $-2 y_1 + y_2 + y_3 = -3$ | $y_1 = 4$ | $-y_1 = -1$ | $-y_2 + y_3 = -2$ | $y_2 = 0$ | $y_3 = 0$ | $y_$

OT nocuepnera CT za pennenne Ha

$$y'' = c_B^T B^{-1} = \bar{L}1, -3, -2J \int_0^1 \frac{815}{915} \frac{215}{15} = \frac{1}{15}$$

=
$$\begin{bmatrix} 1, \frac{8}{5} - \frac{12}{5} + \frac{2}{5}, \frac{2}{5} - \frac{3}{5} - \frac{2}{5} \end{bmatrix} = \begin{bmatrix} 1, -\frac{2}{5}, -\frac{3}{5} \end{bmatrix}$$
.
Or bpsskam (#) za pemenne na

$$T'' = [1, \frac{2}{5}], \frac{3}{5}].$$

$$-3.1 + 2 + 4.3 = -3 + 2 + 12 = \frac{14}{5} = \frac{14}{5} - 3 = -\frac{1}{5}.$$