BAYESIAN LEARNING - LECTURE 10

Mattias Villani

Division of Statistics and Machine Learning
Department of Computer and Information Science
Linköping University

OVERVIEW

- ► Bayesian model comparison
- ► Marginal likelihood

USING LIKELIHOOD FOR MODEL COMPARISON

- ▶ Consider two models for the data $\mathbf{y} = (y_1, ..., y_n)$: M_1 and M_2 .
- ▶ Let $p_i(\mathbf{y}|\theta_i)$ denote the data density under model M_i .
- ▶ If know θ_1 and θ_2 , the **likelihood ratio** is useful

$$\frac{p_1(\mathbf{y}|\theta_1)}{p_2(\mathbf{y}|\theta_2)}.$$

► The likelihood ratio with ML estimates plugged in:

$$\frac{p_1(\mathbf{y}|\hat{\theta}_1)}{p_2(\mathbf{y}|\hat{\theta}_2)}.$$

- ▶ Bigger models always win in estimated likelihood ratio.
- ► Hypothesis tests are problematic for non-nested models. End results is not very useful for analysis.

BAYESIAN MODEL COMPARISON

- ▶ Just use your priors $p_1(\theta_1)$ och $p_2(\theta_2)$.
- ▶ The marginal likelihood for model M_k with parameters θ_k

$$p_k(y) = \int p_k(y|\theta_k)p_k(\theta_k)d\theta_k.$$

- \triangleright θ_k is removed by the prior. Not a silver bullet. Priors matter!
- ▶ The Bayes factor

$$B_{12}(y) = \frac{p_1(y)}{p_2(y)}.$$

Posterior model probabilities

$$\underbrace{\Pr(M_k|\mathbf{y})}_{\text{posterior model prob.}} \propto \underbrace{p(\mathbf{y}|M_k)}_{\text{marginal likelihood}} \cdot \underbrace{\Pr(M_k)}_{\text{prior model prob.}}$$

BAYESIAN HYPOTHESIS TESTING - BERNOULLI

▶ Hypothesis testing is just a special case of model selection:

$$\begin{aligned} M_0:&x_1,...,x_n \overset{iid}{\sim} Bernoulli(\theta_0) \\ M_1:&x_1,...,x_n \overset{iid}{\sim} Bernoulli(\theta), \theta \sim Beta(\alpha,\beta) \\ &p(x_1,...,x_n|M_0) = \theta_0^s (1-\theta_0)^f, \\ &p(x_1,...,x_n|M_1) &= \int_0^1 \theta^s (1-\theta)^f B(\alpha,\beta)^{-1} \theta^{\alpha-1} (1-\theta)^{\beta-1} d\theta \\ &= B(\alpha+s,\beta+f)/B(\alpha,\beta), \end{aligned}$$

where $B(\cdot, \cdot)$ is the **Beta function**.

► Posterior model probabilities

$$Pr(M_k|x_1,...,x_n) \propto p(x_1,...,x_n|M_k)Pr(M_k)$$
, for $k = 0, 1$.

► The Bayes factor

$$BF(M_0; M_1) = \frac{p(x_1, ..., x_n | H_0)}{p(x_1, ..., x_n | H_1)} = \frac{\theta_0^s (1 - \theta_0)^f B(\alpha, \beta)}{B(\alpha + s, \beta + f)}.$$

PRIORS MATTER

EXAMPLE: GEOMETRIC VS POISSON

- ► Model 1 **Geometric** with Beta prior:
 - $y_1,...,y_n|\theta_1 \sim Geo(\theta_1)$
 - $\theta_1 \sim Beta(\alpha_1, \beta_1)$
- ► Model 2 Poisson with Gamma prior:
 - \downarrow $y_1, ..., y_n | \theta_2 \sim Poisson(\theta_2)$
 - \bullet $\theta_2 \sim Gamma(\alpha_2, \beta_2)$
- ► Marginal likelihood for M₁

$$p_1(y_1, ..., y_n) = \int p_1(y_1, ..., y_n | \theta_1) p(\theta_1) d\theta_1$$

$$= \frac{\Gamma(\alpha_1 + \beta_1)}{\Gamma(\alpha_1) \Gamma(\beta_1)} \frac{\Gamma(n + \alpha_1) \Gamma(n\bar{y} + \beta_1)}{\Gamma(n + n\bar{y} + \alpha_1 + \beta_1)}$$

► Marginal likelihood for M₂

$$p_2(y_1, ..., y_n) = \frac{\Gamma(n\bar{y} + \alpha_2)\beta_2^{\alpha_2}}{\Gamma(\alpha_2)(n + \beta_2)^{n\bar{y} + \alpha_2}} \frac{1}{\prod_{i=1}^n y_i!}$$

GEOMETRIC AND POISSON

GEOMETRIC VS POISSON, CONT.

Priors match prior predictive means:

$$E(y_i|M_1) = E(y_i|M_2) \iff \alpha_1\alpha_2 = \beta_1\beta_2$$

▶ Data: $y_1 = 0$, $y_2 = 0$.

▶ Data: $y_1 = 3$, $y_2 = 3$.

	') =		
	$\alpha_1 = 1$, $\beta_1 = 2$	$lpha_1=1$ 0, $eta_1=2$ 0	$\alpha_1 = 100, \beta_1 = 200$
	$\alpha_2 = 2$, $\beta_2 = 1$	$lpha_2=$ 20, $eta_2=$ 10	$\alpha_2 = 200, \beta_2 = 100$
BF_{12}	0.26	0.29	0.30
$\Pr(M_1 \mathbf{y})$	0.21	0.22	0.23
$\Pr(M_2 \mathbf{y})$	0.79	0.78	0.77

GEOMETRIC VS POISSON FOR POIS(1) DATA

GEOMETRIC VS POISSON FOR POIS(1) DATA

MODEL CHOICE IN MULTIVARIATE TIME SERIES

Multivariate time series

$$\mathbf{x}_t = \alpha \beta' \mathbf{z}_t + \Phi_1 \mathbf{x}_{t-1} + ... \Phi_k \mathbf{x}_{t-k} + \Psi_1 + \Psi_2 t + \Psi_3 t^2 + \varepsilon_t$$

- ► Need to choose:
 - ▶ Lag length, (k = 1, 2..., 4)
 - ▶ Trend model (s = 1, 2, ..., 5)
 - ▶ Long-run (cointegration) relations (r = 0, 1, 2, 3, 4).

THE MOST PROF	BABLE	(k, r, s)	COM	BINATI	ONS IN	THE	Danish	MON	ETARY	DATA.
k	1	1	1	1	1	1	1	1	0	1
r	3	3	2	4	2	1	2	3	4	3
s	3	2	2	2	3	3	4	4	4	5
p(k, r, s y, x, z)	.106	.093	.091	.060	.059	.055	.054	.049	.040	.038

GRAPHICAL MODELS FOR MULTIVARIATE TIME SERIES

- ▶ Graphical models for multivariate time series.
- ► Zero-restrictions on the effect from time series *i* on time series *j*, for all lags. (**Granger Causality**).
- ► Zero-restrictions on the elements of the inverse covariance matrix of the errors.

BAYESIAN HYPOTHESIS TESTING

▶ Hypothesis testing is just a special case of model selection:

$$\begin{aligned} M_0: &y_1, ..., y_n \overset{iid}{\sim} Bernoulli(\theta_0) \\ M_1: &y_1, ..., y_n \overset{iid}{\sim} Bernoulli(\theta), \theta \sim Beta(\alpha, \beta) \\ &p(y_1, ..., y_n | M_0) = \theta_0^s (1 - \theta_0)^f, \\ &p(y_1, ..., y_n | M_1) &= \int_0^1 \theta^s (1 - \theta)^f B(\alpha, \beta)^{-1} \theta^{\alpha - 1} (1 - \theta)^{\beta - 1} d\theta \\ &= B(\alpha + s, \beta + f) / B(\alpha, \beta). \end{aligned}$$

Posterior model probabilities

$$Pr(M_k|y_1,...,y_n) \propto p(y_1,...,y_n|M_k)Pr(M_k)$$
, for $k = 0, 1$.

Equivalent to using 'spike-and-slab' prior:

$$p(\theta) = \pi I_{\theta_0}(\theta) + (1 - \pi) Beta(\alpha, \beta)$$

▶ Note: data can now *support* a null hypothesis (not only reject it).

SPIKE-AND-SLAB PRIOR

 π

PROPERTIES OF BAYESIAN MODEL COMPARISON

► Coherence of pair-wise comparisons

$$B_{12} = B_{13} \cdot B_{32}$$

▶ Consistency when true model is in $\mathcal{M} = \{M_1, ..., M_K\}$

$$\Pr\left(M = M_{TRUE}|\mathbf{y}\right) \to 1 \quad \text{as} \quad n \to \infty$$

▶ "KL-consistency" when $M_{TRUE} \notin \mathcal{M}$

$$\Pr\left(M = M^* | \mathbf{y}\right) \to 1 \quad \text{as} \quad n \to \infty$$

where M^* is the model that minimizes Kullback-Leibler distance between $p_M(\mathbf{y})$ and $p_{TRUE}(\mathbf{y})$.

- ▶ Smaller models always win when priors are very vague.
- ▶ Improper priors cannot be used for model comparison.

MARGINAL LIKELIHOOD MEASURES OUT-OF-SAMPLE PREDICTIVE PERFORMANCE

▶ The marginal likelihood can be decomposed as

$$p(y_1,...,y_n) = p(y_1)p(y_2|y_1)\cdots p(y_n|y_1,y_2,...,y_{n-1})$$

▶ If we assume that y_i is independent of $y_1, ..., y_{i-1}$ conditional on θ :

$$p(y_i|y_1,...,y_{i-1}) = \int p(y_i|\theta)p(\theta|y_1,...,y_{i-1})d\theta$$

- ▶ The prediction of y_1 is based on the prior of θ , and is therefore sensitive to the prior.
- ▶ The prediction of y_n uses almost all the data to infer θ . Very little influenced by the prior when n is not small.

NORMAL EXAMPLE

- ▶ Model: $y_1, ..., y_n | \theta \sim N(\theta, \sigma^2)$ with σ^2 known.
- ▶ Prior: $\theta \sim N(0, \kappa^2 \sigma^2)$.
- ▶ Intermediate posterior at time i-1

$$\theta | y_1, ..., y_{i-1} \sim N \left[w_i(\kappa) \cdot \bar{y}_{i-1}, \frac{\sigma^2}{i - 1 + \kappa^{-2}} \right]$$

where
$$w_i(\kappa) = \frac{i-1}{i-1+\kappa^{-2}}$$
.

▶ Predictive density at time i-1

$$y_i|y_1, ..., y_{i-1} \sim N\left[w_i(\kappa) \cdot \bar{y}_{i-1}, \sigma^2\left(1 + \frac{1}{i-1+\kappa^{-2}}\right)\right]$$

- ► Terms with *i* large: $y_i|y_1,...,y_{i-1} \stackrel{approx}{\sim} N(\bar{y}_{i-1},\sigma^2)$, not sensitive to κ
- ▶ For i = 1, $y_1 \sim N\left[0, \sigma^2\left(1 + \frac{1}{r^{-2}}\right)\right]$ can be very sensitive to κ .

FIRST OBSERVATION IS SENSITIVE TO κ

First observation is sensitive to κ

LOG PREDICTIVE SCORE - LPS

- ▶ To reduce sensitivity to the prior: sacrifice n^* observations to train the prior into a better posterior.
- ► Predictive density score: PS

$$PS(n^*) = p(y_{n^*+1}|y_1,...,y_{n^*}) \cdot \cdot \cdot p(y_n|y_1,...,y_{n-1})$$

- Usually report on log scale: Log Predictive Score (LPS).
- ▶ But which observations to train on (and which to test on)?
- Straightforward for time series.
- ► Cross-sectional data: cross-validation.

AND HEY! ... LET'S BE CAREFUL OUT THERE.

- Be especially careful with Bayesian model comparison when
 - ► The compared models are
 - very different in structure
 - severly misspecified
 - very complicated (black boxes).
 - ▶ The priors for the parameters in the models are
 - not carefully elicited
 - only weakly informative
 - not matched across models.
 - ► The data
 - ► has outliers (in all models)
 - has a multivariate response.