Мини-практика: знакомство с данными секвенирования

Проверка качества ридов, тримминг, визуализация выравнивания, таблица каунтов, базы данных секвенирования

Где искать данные?

- ✓ Большинство данных секвенирования выкладываются в открытый доступ
- ✓ В базе GEO можно найти как «сырые» данные, так и обработанные

Gene Expression Omnibus

GEO is a public functional genomics data repository supporting MIAME-compliant data submissions. Array- and sequence-based data are accepted. Tools are provided to help users query and download experiments and curated gene expression profiles.

Keyword or GEO Accession Search

Getting Started	Tools
Overview	Search for Studies at GEO DataSets
FAQ	Search for Gene Expression at GEO Profiles
About GEO DataSets	Search GEO Documentation
About GEO Profiles	Analyze a Study with GEO2R
About GEO2R Analysis	Studies with Genome Data Viewer Tracks
How to Construct a Query	Programmatic Access
How to Download Data	FTP Site

nt	
4348	
129876	
20927	
3602181	
	4348 129876 20927

База данных **GEO**

Gene Expression Omnibus

NCBI GEO database

GEO is a public functional genomics data repository supporting MIAME-compliant data submissions. Array- and sequence-based data are accepted. Tools are provided to help users query and download experiments and curated gene expression profiles.

Используется для размещения данных научных исследований в открытый доступ.

Результаты array и секвенирования.

Чаще всего выкладывают fastq файлы и таблицы каунтов.

Также прикрепляют описание дизайна эксперимента и образцов исследования.

Можно искать по словам или по GEO Accession number.

Статьи

Идентификатор GSE53986

Поиск

Microarray analysis. Statistical analyses of microarray data were performed using the R programming language (http://r-project.org). Microarray data were normalized using the RMA method27. Data were prefiltered to remove probes that were not mapped to an annotated Entrez gene. We also filtered our data to retain only a single probe per gene, selecting the probe with the highest variance, if multiple probes were found for the gene24. For differential expression analysis, the limma R package was used29. We modelled the synergistic regulation of gene expression by the combined IFN-y and LPS treatment as an interaction term in our linear model. This model will identify changes that are significantly different from the sum of the individual treatments. Multiple test correction was done using the method of Benjamini and Hochberg30. Genes were considered significantly different if they changed more than 1.4-fold at a false discovery rate of 0.05. Genes were further filtered for immune-cell-specific expression using the gene sets defined by the Immune Response In Silico (IRIS) project31. As the IRIS-defined gene sets were derived from human immune cells, we mapped the human genes to mouse orthologues using the HomoloGene database12. Genes from all IRIS-defined categories were included in the analysis. Data were submitted to the NCBI (accession number GSE53986).

http://www.nature.com/nature/journal/v509/n7499/full/nature13152.html

Статьи

Series GSE5398	6 Query DataSets for GSE53986
Status	Public on Mar 31, 2014
Title	NRROS negatively regulates ROS in phagocytes during host defense and autoimmunity
Organism	Mus musculus
Experiment type	Expression profiling by array
Summary	Production of reactive oxygen species (ROS) is one of the important antimicrobial mechanisms of phagocytic cells. Enhanced oxidative burst requires these cells to be primed with agents such as IFNg and LPS with a synergistic effect of these agents on the level of the burst. However, excessive ROS generation will lead to tissue damage and has been implicated in a variety of inflammatory and autoimmune disease. Therefore, this process needs to be tightly regulated. In order to understand the genes regulating this process, we will treat bone marrow derived macrophages with above mentioned priming agents and study the gene expression. We used microarrays to determine the changes in gene expression that occur in bone marrow derived macrophages after treatment with IFNg, LPS, or a combination of IFNg and LPS
Overall design	Four condition experiment; Biological replicates: four replicates per condition
Contributor(s)	Noubade R, Wong K, Ota N, Rutz S, Eidenschenk C, Ding J, Valdez PA, Peng I, Sebrell A, Caplazi P, DeVoss J, Soriano RH, Modrusan Z, Hackney JA, Sai T, Ouyang W
Citation(s)	Noubade R, Wong K, Ota N, Rutz S et al. NRROS negatively regulates reactive oxygen species during host defence and autoimmunity. <i>Nature</i> 2014 May 8;509(7499):235-9. PMID: 24739962

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE53986

SRA

Sequence Read Archive (SRA)

Чтобы скачать данные нужна специальная программа SRA Toolkit, так как данные хранятся в специальном архиве с разрешением .sra

Можно скачать по ссылке https://github.com/ncbi/sra-tools/wiki/01.-
Downloading-SRA-Toolkit

Summary - 20 per page -

Search results

Items: 1 to 20 of 5107259

<< First < Prev Page

- RNA seq of untreated HEK293 cells
- 1 ILLUMINA (Illumina NovaSeq X) run: 35.9M spots, 7.3G bases, 2Gb downloads Accession: SRX26385063
- RNA seq of tau expressed HEK293 cells
- 1 ILLUMINA (Illumina NovaSeq X) run: 35.7M spots, 7.2G bases, 2Gb downloads Accession: SRX26385062

План первичного анализа

- 1. Данные с секвенатора .fastq файлы
- 2. Проверка качества
- 3. Данные после выравнивания .bam файлы
- 4. Визуализация выравненных ридов
- 5. Таблица каунтов

P.S. Ссылка на более подробный план

Для начала:

Скачиваем файлы (папка День2/toDownload):

- .fastq (данные),
- .bam (выравненные данные)
- .bam.bai (индексированный файл)
- .txt (таблица каунтов)
- *.html (отчеты о проверке качества ридов)

^{*}Необязательно

Формат файла .fastq

Файл FASTQ обычно использует четыре строки на последовательность:

- <u>Строка 1</u> начинается с символа "@", за которым следует идентификатор последовательности и необязательное описание.
- <u>Строка 2</u> это нуклеотидная последовательность.
- Строка 3 символ '+'
- Строка 4 кодирует значения качества для последовательности в строке 2

Basic statistics

Basic Statistics

Measure	Value		
Filename	<pre>good_sequence_short.txt</pre>		
File type	Conventional base calls		
Encoding	Illumina 1.5		
Total Sequences	250000		
Total Bases	10 Mbp		
Sequences flagged as poor quality	0		
Sequence length	40		
%GC	45		

Всего ридов

Длина рида

Per base sequence quality

Данный график показывает качество прочтений относительно каждого основания.

- 1. центральная красная линия медиана значений.
- 2. желтый бокс представляет интерквартильный размах (вероятное отклонение) (25-75%).
- 3. верхние и нижние линии бокса показывают 10 и 90%.
- 4. Синяя линия представляет среднее качество.

Ось X - это длина считывания, ось Y - показатель качества.

Per tile sequence quality

График показывает отклонение от среднего качества для каждого тайла. Цвета находятся в диапазоне от холодного до горячего, холодные цвета - это позиции, где качество было на уровне или выше среднего, а более теплые цвета указывают ухудшение качества.

Ось X - позиция на прочтении, ось Y - номер тайла.

Per tile sequence quality

Chip, slide, flow cell...

HiSeq 2500

Per sequence quality scores

Когда результаты секвенирования в основном сосредоточены в высоких баллах, это доказывает, что качество секвенирования хорошее.

GOOD Quality score distribution over all sequences Average Quality per read 160000 140000 120000 100000 80000 60000 40000 20000 28 30 16 18 20 22 24 26 Mean Sequence Quality (Phred Score)

Ось X - значение Q, ось Y - количество прочтений.

Per base sequence content

Отображает долю каждого нуклеотида во всех считываниях. Как правило, мы ожидаем увидеть примерно в 25% случаев в каждой позиции, но часто происходит сбой в начале рида из-за адаптера, который имеет не случайную последовательность.

Ось X - позиция на прочтении, ось Y - процент оснований.

Per sequence GC content

Синий - теоретическое распределение, а красный - истинное значение. Когда появляется красный двойной пик, это означает, что последовательности ДНК загрязнены.

Ось X - содержание GC, ось Y - количество прочтений.

Per base N content

Если секвенсор не может с достаточной уверенностью распознать основание, то он обычно заменяет его на N.

График отображает процент оснований в каждой позиции, которые были определены как N.

Ось X – позиция на прочтении, ось Y – процент непрочитанных нуклеотидов.

Sequence Length Distribution

Некоторые секвенаторы генерируют риды одинаковой длины, но другие могут давать риды с сильно различающейся длиной. Иногда некоторые конвейеры обрезают последовательности по качеству. Выдаст ошибку, если есть риды с нулевой длинной.

Ось X – длина прочтения, ось Y – количество прочтений.

Sequence Duplication Levels

В разнообразной библиотеке большинство последовательностей будут встречаться только один раз. Но в данных РНКсека наблюдается высокий процент дублицированных последовательностей из-за особенности пробоподготовки и количества мРНК в клетке.

Ось X – сколько раз повторяется последовательность, ось Y – процент.

Overrepresented sequences

Если последовательность слишком широко представлена в данных, то означает либо то, что она имеет высокую биологическую значимость, либо то, что библиотека загрязнена или не так разнообразна. Перечисляется все последовательности, которые составляют более 0,1% от общего числа.

BAD

Overrepresented sequences

Sequence	Count	Percentage	Possible Source
AGAGTTTTATCGCTTCCATGACGCAGAAGTTAACACTTTC	2065	0.5224039181558763	No Hit
GATTGGCGTATCCAACCTGCAGAGTTTTATCGCTTCCATG	2047	0.5178502762542754	No Hit
${\tt ATTGGCGTATCCAACCTGCAGAGTTTTATCGCTTCCATGA}$	2014	0.5095019327680071	No Hit
${\tt CGATAAAAATGATTGGCGTATCCAACCTGCAGAGTTTTAT}$	1913	0.4839509420979134	No Hit
${\tt GTATCCAACCTGCAGAGTTTTATCGCTTCCATGACGCAGA}$	1879	0.47534961850600066	No Hit
${\tt AAAAATGATTGGCGTATCCAACCTGCAGAGTTTTATCGCT}$	1846	0.4670012750197325	No Hit
TGATTGGCGTATCCAACCTGCAGAGTTTTATCGCTTCCAT	1841	0.46573637449150995	No Hit
${\tt AACCTGCAGAGTTTTATCGCTTCCATGACGCAGAAGTTAA}$	1836	0.46447147396328753	No Hit
GATAAAAATGATTGGCGTATCCAACCTGCAGAGTTTTATC	1831	0.4632065734350651	No Hit
${\tt ATGATTGGCGTATCCAACCTGCAGAGTTTTATCGCTTCCA}$	1779	0.45005160794155147	No Hit
${\tt AAATGATTGGCGTATCCAACCTGCAGAGTTTTATCGCTTC}$	1779	0.45005160794155147	No Hit
${\tt AATGATTGGCGTATCCAACCTGCAGAGTTTTATCGCTTCC}$	1760	0.4452449859343061	No Hit
${\tt AAAATGATTGGCGTATCCAACCTGCAGAGTTTTATCGCTT}$	1729	0.4374026026593269	No Hit
${\tt CGTATCCAACCTGCAGAGTTTTATCGCTTCCATGACGCAG}$	1713	0.43335492096901496	No Hit
${\tt ATCCAACCTGCAGAGTTTTATCGCTTCCATGACGCAGAAG}$	1708	0.43209002044079253	No Hit
${\tt CAGAGTTTTATCGCTTCCATGACGCAGAAGTTAACACTTT}$	1684	0.42601849790532476	No Hit
${\tt TGCAGAGTTTTATCGCTTCCATGACGCAGAAGTTAACACT}$	1668	0.4219708162150128	No Hit
CAACCTGCAGAGTTTTATCGCTTCCATGACGCAGAAGTTA	1668	0.4219708162150128	No Hit

GOOD

No overrepresented sequences

Для каждой перепредставленной последовательности программа будет искать совпадения в базе данных распространенных загрязнителей и сообщать о лучшем найденном совпадении.

Могут «вылезти» адаптеры.

Одна и та же последовательность может естественным образом присутствовать в значительной части библиотек при smallRNAseq.

Adapter Content

Кумулятивный график доли прочтений, где последовательность адаптера найдена в указанной нуклеотидной позиции. Может быть увеличение процента на конце рида из-за возможного маленького размера вставки.

Ось X – позиция на прочтении, ось Y – процент.

Контроль качества ридов FastQC - Профили ошибок секвенирования

Тревожные сигналы:

1) Чрезмерная кластеризация: Секвенаторы могут чрезмерно кластеризовать ячейки, что приводит к небольшим расстояниям между кластерами и перекрытию сигналов. Эти два кластера можно интерпретировать как единый кластер, в котором обнаруживаются смешанные флуоресцентные сигналы, что снижает чистоту сигнала и приводит к снижению показателей качества по всему показателю.

2) Неисправность прибора: во время работы оборудования для секвенирования иногда могут возникать проблемы с самим прибором Любое внезапное снижение качества или большой процент некачественных считываний в процессе считывания может указывать на проблему на объекте (разрыв коллектора, потеря циклов, сбой считывания).

Контроль качества ридов FastQC - Профили ошибок секвенирования

При секвенировании Illumina качество прочтения нуклеотидных оснований связано с интенсивностью сигнала и чистотой флуоресцентного сигнала. Флуоресценция низкой интенсивности или наличие множества различных флуоресцентных сигналов может привести к снижению оценки качества, присвоенной нуклеотиду. Из-за природы секвенирования путем синтеза можно ожидать некоторого снижения качества, но другие проблемы с качеством могут указывать на проблему в установке секвенирования.

Ожидаемые ошибки

Затухание сигнала: По мере продолжения секвенирования интенсивность флуоресцентного сигнала уменьшается с каждым циклом, что приводит к снижению показателей качества в конце считывания на 3'. Это связано с:

- Разрушение флуорофоров
- Доля нитей в пучке не удлинилась

Таким образом, доля излучаемого сигнала продолжает уменьшаться с каждым циклом.

Фазирование: По мере увеличения числа циклов сигнал начинает размываться, поскольку кластер теряет синхронность, что также приводит к снижению показателей качества в конце считывания на 3'. По мере прохождения циклов в некоторых цепочках происходит случайный сбой включения нуклеотидов из-за:

- Неполное удаление 3'-терминаторов и флуорофоров
- Включение нуклеотидов без эффективных 3'терминаторов

Контроль качества ридов FastQC

Per tile sequence quality: Стабильно низкие баллы часто обнаруживаются по краям, но низкое качество прочтения также может возникать в середине, если в какой-то момент во время запуска образовался воздушный пузырь.

Per sequence quality scores: Показатели качества для каждой последовательности - график качества для всех ридов во всех позициях (показывает, какие показатели качества являются наиболее распространенными).

Per base sequence content: отображает долю каждого нуклеотида во всех ридах. Как правило, мы ожидаем увидеть примерно в 25% случаев в каждой позиции, но часто происходит сбой в начале рида из-за адаптера, который имеет не случайную последовательность.

Per sequence GC content: график плотности среднего содержания GC в каждом из считываний.

Per base N content: процент случаев, когда 'N' встречается в позиции во всех ридах. Если в определенной позиции наблюдается увеличение, это может указывать на то, что что-то пошло не так во время секвенирования.

Sequence Length Distribution: распределение длин последовательностей всех ридов в файле. Если данные необработанные, часто наблюдается резкий пик, однако, если риды были обрезаны, может наблюдаться распределение меньшей длины.

Sequence Duplication Levels: распределение дублицированных последовательностей. При секвенировании мы ожидаем, что большинство ридов будут встречаться только один раз. Если некоторые последовательности встречаются более одного раза, это может указывать на смещение обогащения (например, в результате ПЦР). Если образцы имеют высокое покрытие (или RNA-seq), это может быть неверно.

Overrepresented sequences: список последовательностей, которые встречаются чаще, чем можно было бы ожидать случайно.

Adapter Content: график, показывающий, где последовательности адаптеров встречаются при считывании.

Основные команды Linux

ls список файлов **pwd** выводится полное имя текущего каталога cd <каталог> изменить местонахождение mkdir <имена создаваемых каталогов > создать новые каталоги rm <имена удаляемых файлов> rm -fr <имена удаляемых файлов или директорий> ти старое-имя новое-имя перемещение ср старое-имя новое-имя копирование **vim, nano** консольные текстовые редакторы man – справка по командам и программам (наример, man ls) less – когда в небольшом окне терминала надо просмотреть очень длинный текст **cat** – читает файл и выводит на экран (stdout) **head** – первые N строк в файле (наприме head -10 file) **tail** – последние N строк в файле (наприер tail –n 10 file)

Контроль качества ридов

- 1) С помощью программы $\underline{FastQC} \rightarrow C$ Скачиваем программу (\underline{FastQC}) sudo apt install fastqc
- 2) Открываем файл N3_S1_L001_R2_001.fastq.gz, проверяем качество ридов

fastqc N3_S1_L001_R2_001.fastq.gz

- 3) После оценки качества происходит фильтрация/очистка данных с помощью программ **Trimmomatic** или **Cutadapt**
- → Устанавливаем программу <u>Cutadapt</u>

sudo apt install cutadapt

4) Удаляем адаптеры

cutadapt -a GATCGTCGGACTGTAGAACTCTGAAC -o N3_trimmed.fastq.gz N3_S1_L001_R2_001.fastq.gz

5) Проверяем качество полученного файла в FastQC

fastqc N3_trimmed.fastq.gz

Выравнивание ридов на референсный геном

- ✓ Делается +/- 2 в строчки командной строки → Пропустим эту стадию на практике (требуем времени)
- ✓ Программы **STAR, HiSat, Bowtie** (HiSat эффективный и быстрый, STAR задействует много памяти)
- ✓ Samtools → для манипулирования выравниваниями в формате SAM, включая сортировку, объединение, индексацию и генерацию выравниваний в формате для каждой позиции.
 - .sam = текстовые файлы с разделителями табуляции, содержащие информацию для каждого отдельного выровненного рида и ее соответствие геному .bam = сжатая SAM файла для уменьшения размера и обеспечения возможности индексации, что обеспечивает эффективный произвольный доступ к данным, содержащимся в файле.

Пример команды для запуска STAR

Шаг 1. Индексация генома

./STAR

- --runThreadN 40
- --runMode genomeGenerate
- --genomeDir ./STAR_mm10_genome_index
- -genomeFastaFiles ./GRCm38.primary_assembly.genome.fa
- --sjdbGTFfile ./gencode.vM10.primary_assembly.annotation.gtf.gz
- --sjdbOverhang 50

#число потоков
#создание индекса генома
#куда сохранить индекс
#путь до fasta файла генома
#путь до аннотации к геному
#длина рида минус 1

Индексирование генома можно объяснить аналогично индексированию книги.

Если вы хотите узнать, на какой странице появляется определенное слово или начинается глава, гораздо эффективнее/быстрее искать его в предварительно созданном индексе, чем просматривать каждую страницу книги, пока не найдете его.

То же самое касается выравниваний. Индексы позволяют выравнивателю сузить потенциальное происхождение последовательности в геноме, экономя как время, так и память.

Пример команды для запуска STAR

Шаг 2. Команда для выравнивания

./STAR

- --genomeDir ./STAR_genome_index/
- --readFilesCommand zcat
- --runThreadN 20
- --readFilesIn Read_R1.fastq.gz Read_R2.fastq.gz
- --outFileNamePrefix Read_aligned
- --outSAMtype BAM SortedByCoordinate
- --outSAMunmapped Within
- --outSAMattributes Standard

#папка с индексом генома
#риды находятся в архиве gz
#число потоков
#передний и обратный риды
#префикс в названии файла
#формат файла на выходе
#оставили в итоговом файле
только выравненные
последовательности
#использовать стандартные флаги
для оценки качества выравнивания

Недостаток STAR:

Для запуска нужно много оперативной памяти. Скорее всего ноутбук не справится. Особенно, если это человеческий геном.

Геномный браузер

- Посмотрим на файл выровненных ридов
- Загружаем IGV геномный браузер https://software.broadinstitute.org/software/igv/download
- Открываем IGV
- В верхнем левом углу выбираем геном "Mouse (mm10)"
- File → Load from file → файл
 wt_control_2_S2_L001_R1_001.bam
- Смотрим гены: Actb, Lmna, Myh7

Таблица каунтов

✓ Подсчет каунтов был сделан программой featureCounts

```
./featureCounts
                                                         #путь до программы
                                                         #указывает на парные риды
-p
-T 12
                                                         #число потоков
-s 2
                                                         #передний рид в паре из прямой
                                                         цепи, а второй рид на обратной
                                                         цепи
-a ./genome.gtf
                                                         #путь до файла с аннотацией
                                                         генома
-o ./Counts.txt
                                                         #название таблицы каунтов
./*.out.bam
                                                         #на вход подаем файлы с
                                                         выравниванием
```

✓ Откроем объединенную таблицу для всех образцов featureCounts_LMNA.txt

Таблица каунтов

Geneid [‡]	P1_before	P2_before	P1_after ‡	P2_after [‡]	P3_before	P3_after [‡]	P4
LINGOOOOLLTOJI						10	_
ENSG00000169962	2	0	0	0	0	0	
ENSG00000107404	212	60	190	22	22	47	
ENSG00000284372	0	0	0	0	0	0	
ENSG00000162576	60	95	134	72	33	269	
ENSG00000175756	336	143	333	73	35	105	
ENSG00000221978	23	13	27	7	5	55	
ENSG00000224870	1	0	0	0	0	0	
ENSG00000242485	34	16	40	4	5	5	
ENSG00000235098	3	0	4	0	1	8	
ENSG00000205116	0	0	0	0	0	0	
ENSG00000179403	16	5	10	4	2	15	
FNSG00000215915	2	n	1	1	n	0	

Количество ридов для данного образца данного гена

Образцы

! Таблица экспрессии в целых числах - особенность ненормализованных данных РНК-сека (raw counts RNA-seq)

Если таблица экспрессии в действительных числах, то это либо данные микрочипов, либо таблица была нормализована (что нежелательно для реанализа)

Спасибо за внимание!

