PAF-FHE: Low-Cost Accurate Non-Polynomial Operator Polynomial Approximation in Fully Homomorphic Encryption Based ML Inference

Jingtian Dang*, Jianming Tong*, Anupam Golder, Arijit Raychowdhury, Cong Hao, Tushar Krishna dangjingtian@cmu.edu, jianming.tong@gatech.edu, tushar@ece.gatech.edu

Code

Georgia Institute of Technology

Motivation

1. Fully Homomorphic Encryption only supports polynomial operators. 2.non-poly. ReLU/MaxPooling→Polynomial Approximation Function (PAF)

3.prohibitive-overhead or low accuracy in current non-polynomial operators. (accuracy, ratio of overall inference latency in ResNet-32) a.Minimax_[ISCA'22]: 27-degree poly. – 27.2% ResNet-50 inference latency. b.SafeNet[ICLR'21]: <3-degree poly – 4% accuracy degrade (CNN-7; CiFar10)

Challenges								
	Low Low		Low					
	Communication	Accuracy	Latency					
	Overhead	Degradation	Overhead					
SafeNet, CryptoGCN	Х	X						
CryptoNet, CryptoDL, LoLa, CHE	×	×	/					
F1, CraterLake, BTS	✓	✓	X					
HEAX, Delphi, Gazelle, Cheetah	X	×	/					
SHE	✓	✓	X					
PAF-FHE	✓	✓	✓					

The full degree space of PAF has NOT been explored!

- 1. Deterministic coefficients determination introduces accuracy degradation for PAF with less than 27-degree.
- 2.ML-based coefficients determination hardly converge for PAF with higher than 5 degree.

We propose ML training techniques enabling convergence for PAFs with arbitrary degrees!

PAF-FHE Solutions

[Coefficients Tuning (CT)] profiles data distribution to obtain closeto-original initializations, improving convergence speed and accuracy.

[Progressive Approximation (PA)] PA progressively replaces nonpolynomial operators, one layer at a time followed by coefficients finetuning, simplifying optimization problem to SGD-optimizable regression.

[Alternative Training (AT)] AT decouples linear operators training from PAFs training to avoiding training divergence.

[Systematic Scheduler] Order of appling CT, PA, and AT affects convergence speed and final convergence accuracy.

Experiments

1						
		$f_1^2 \circ g_1^2$	$\alpha = 7$	$f_2 \circ g_3$	$f_2 \circ g_2$	$f_1 \circ g_2$
	Degree	14	12	12	10	8
	Multiplication Depth	12	10	9	8	7
Replace ReLU Only	direct replacement	51.30%	64.70%	49.40%	32.00%	18.60%
	baseline	64.30%	66.70%	64.20%	58.30%	53.10%
	\mathbf{CT}	68.60%	67.70%	67.00%	66.50%	61.70%
	AT	65.20%	68.30%	63.70%	60.50%	52.00%
	PA	65.60%	68.40%	64.60%	60.20%	52.60%
	PA + AT	64.90%	67.40%	64.60%	56.50%	47.10%
	CT + PA	68.20%	67.00%	67.60%	65.90%	60.80%
	CT + PA + AT	69.00%	68.10%	61.40%	66.50%	63.10%
	Accuracy Improvement over Direct Replacement	1.35×	1.06×	1.37×	$2.08 \times$	3.39×
	Accuracy Improvement over Baseline	1.07×	1.03×	1.05×	1.14×	1.19×
Replace all non-polynomial	CT + PA + AT + SS	69.4%	67%	65.3%	57.3%	6.5%
	Accuracy Improvement over Direct Replacement	1.07×	1.22×	$1.27 \times$	1.79×	$0.22 \times$
	Accuracy Improvement over Baseline	$1.08 \times$	1.01×	1.02×	$0.98 \times$	0.12×

CT (PA) improves validation accuracy by 1.04~2.38X (1.06~2.85X) All techniques combined enable 69.4% (plain model accuracy).

The optimal 12-degree PAF achieves even 0.84% higher accuracy with 72% latency savingv than SotA 27-degree Minimax PAFs.

Conclusions

- Existing PAFs suffer from either high latency or high post-replacement
- validation accuracy degradation, limited by training techniques. 2. PAF-FHE (training techniques) enables full degree space exploration.
- 3. PAF-FHE spots optimal 12-degree PAF with 69.4% acc (the same as original ResNet-18) and saves 72% latency of 27-degree Minimax PAF.