

Examen Final -Modèle type-

Exercice 1. Soit $\alpha > 0$ un paramètre. On considère X une variable aléatoire discrète à valeurs dans $\mathbb N$ telle que

$$\mathbb{P}(X=k) = C_{\alpha}e^{-\alpha k}, \quad \forall k \in \mathbb{N}$$

avec C_{α} une constante positive.

- 1. Que vaut C_{α} ?
- 2. On suppose que l'on observe x_1, \ldots, x_n les tirages de n variables aléatoires X_1, \ldots, X_n i.i.d. de même loi que X. Pour simplifier, on supposera que $x_1 + \ldots + x_n \neq 0$. Donner une estimation du maximum de vraisemblance de α . En déduire un estimateur du maximum de vraisemblance de α .

Exercice 2. Soit $\alpha>0$ et $\lambda>0$ deux paramètres. On considère X une variable aléatoire de densité

$$f_{\lambda,\alpha}(x) = C_{\lambda,\alpha} e^{-\lambda x} \mathbb{1}_{[0,\alpha]},$$

avec $C_{\lambda,\alpha}$ une constante positive. On observe x_1,\ldots,x_n les tirages de n variables aléatoires X_1,\ldots,X_n i.i.d. de même loi que X.

- 1. Montrer que $C_{\lambda,\alpha} = \frac{\lambda}{1 e^{-\lambda \alpha}}$.
- 2. Dans cette question, on suppose que λ est fixé et connu. Donner une estimation du maximum de vraisemblance de α . En déduire un estimateur du maximum de vraisemblance de α .
- 3. On suppose maintenant que $\alpha = 1/\lambda$. La densité de X devient donc

$$g_{\lambda}(x) = \frac{\lambda}{1 - e^{-1}} e^{-\lambda x} \mathbb{1}_{[0, 1/\lambda]}.$$

Donner une estimation du maximum de vraisemblance de λ . En déduire un estimateur du maximum de vraisemblance de λ .