$egin{aligned} Visualization & for \ Data \\ Science & with \ R \end{aligned}$

 $\label{eq:tomy-family}$ I'm so grateful for your support.

Contents

Li	List of Tables v						
Li	List of Figures vi						
Pr	opos	al	ix				
Αl	oout	the Author	xiii				
1	Ove	rview of common visualizations and how to read them	1				
	1.1	Visualization components	1				
	1.2	Bar Chart	2				
		1.2.1 Variations	4				
	1.3	Scatter Plot	4				
	1.4	Line Chart	5				
	1.5	Pie Chart	7				
	1.6	Heat Map	7				
	1.7	Histogram	8				
	1.8	Box Plot	9				
	1.9	Maps	10				
	1.10	Movies	12				
2	Buil	ding basic visualizations with ggplot2	17				
	2.1	Basic ggplot2 syntax	17				
3	Wor	king with textual data in ggplot2	19				
4	Cus	tomizing the design of ggplot2 visualizations	21				

iv	Cont	ents
5	Avoiding unethical design practices	23
6	Building ggplot2 visualizations into print publications	25
7	Basic accessibility for static visualizations	27
	7.1 Low Vision	27
	7.2 Color Vision Deficiency	27
	7.2.1 Dual encoding (never just color)	27
	7.2.2 Color palettes	27
	7.3 Alternative Text for Screen Readers	28
	7.4 Converting graphics to sound, touch, text	28
	7.5 Accessibility Resources	28
9	Exploring interactivity in visualizations with plotly and crosstalk Using RMarkdown to build websites for projects	31 33
10	Using RMarkdown to build dashboards for projects	35
11	Basic usability for interactive visualizations	37
12	Teacher's guide	39
Aŗ	ppendix	41
\mathbf{A}	Datasets	41
	A.1 Bar Chart	41
Bi	bliography	63
Inc	dex	65
		65

List of Tables

A.1 A sample from the Duke Enrollment By School dataset	By School dataset	4
---	-------------------	---

List of Figures

1	Angela M. Zoss, Ph.D		•	•	•	xii
1.1	Visualization components, labeled		•			:
1.2	A sample bar chart					
1.3	A sample bar chart, with the bars oriented horizonally.					4
A.1	Total Duke Enrollment by School					4:
A.2	Log of tissue loss by snail density					4

Proposal

Note: This book is a work in progress, with a full draft expected in April of 2022.

This book combines instruction on writing R code with building basic graphic design skills in a way that is unusual in data science literature. The book will guide readers through a series of projects, each designed to cover both how visualizations work in R and how visualizations can be designed to have the greatest impact. Far more than a "do this, then this" checklist, this book will focus on building understanding, confidence, and the ability to transfer skills to other tools and design contexts. It will avoid technical jargon that our target audience is unlikely to have encountered before. To accommodate learners who don't have time to work through an entire book, each chapter will operate independently, covering a specific set of tasks that all make sense together as part of a visualization project. For those who would like extra practice, there will be several types of hands-on exercises, from those that are entirely prescribed to those that allow readers to apply new techniques to problems in their own areas.

The book will have solutions (in the form of completed code and sample output) for all exercises. While not a textbook, the book will also include a brief teacher's guide for courses that might want to use one or more chapters to structure lessons in a course. The book will also have a website, including links to Open Access content, solutions, and related resources like video tutorials.

The target audience of this book would be professionals who are having to learn data science techniques on the job, likely at an under-resourced organization or company. These newly minted data professionals may feel comfortable in Excel but have only just started to learn R for processing data. They have never used a programming language to build a visualization before, and even creating charts in Excel has often been a frustrating and mystifying process. They appreciate that R is freely available and are able to get started on a data science project, but the idea of creating publication-quality visualizations using only code is daunting.

Increasingly, programs of study with a focus on preparing students for professional careers in under-resourced fields, like public policy and even management, include courses on data analysis and communication using freely available software. This book, while not a textbook, could easily be used for a semester-long course, titled something like "Practical data visualization for

x Proposal

the modern workforce." A chapter could be covered each week, and larger projects could help learners synthesize chapters into a complete set of analyses and communication materials.

Why read this book

This book will be:

- Written for non-academics, beginning programmers
- Each chapter stands alone
- Covers pressing modern issues, like accessibility and ethics
- Focuses on freely available software
- Combines hands-on exercises with basic graphic design principles

Structure of the book

- Chapter 1: Overview of common visualizations and how to read them
- Chapter 2: Building basic visualizations with ggplot2
- Chapter 3: Working with textual data in ggplot2
- Chapter 4: Customizing the design of ggplot2 visualizations
- Chapter 5: Avoiding unethical design practices
- Chapter 6: Building ggplot2 visualizations into print publications
- Chapter 7: Basic accessibility for static visualizations
- Chapter 8: Exploring interactivity in visualizations with plotly and crosstalk
- Chapter 9: Using RMarkdown to build websites for projects
- Chapter 10: Using RMarkdown to build dashboards for projects
- Chapter 11: Basic usability for interactive visualizations
- Chapter 12: Teacher's guide

Software information and conventions

I used the **knitr** package (Xie, 2015) and the **bookdown** package (Xie, 2021) to compile my book. My R session information is shown below:

Proposal xi

```
xfun::session_info()
```

```
## R version 4.1.0 (2021-05-18)
## Platform: x86_64-apple-darwin17.0 (64-bit)
## Running under: macOS Big Sur 10.16
## Locale: en_US.UTF-8 / en_US.UTF-8 / en_US.UTF-8 / C / en_US.UTF-
8 / en_US.UTF-8
##
## Package version:
    base64enc_0.1.3
                       bookdown_0.23
    compiler_4.1.0
                       digest_0.6.27
##
##
    evaluate_0.14
                       glue_1.4.2
    graphics_4.1.0
                       grDevices_4.1.0
##
##
    highr_0.9
                       htmltools_0.5.1.1
##
    jquerylib_0.1.4
                       jsonlite_1.7.2
##
    knitr_1.33
                       magrittr_2.0.1
##
    markdown_1.1
                       methods_4.1.0
##
    mime_0.11
                       rlang_0.4.11
    rmarkdown_2.10
                       rstudioapi_0.13
    stats_4.1.0
                       stringi_1.7.3
##
    stringr_1.4.0
                       tinytex_0.33
     tools_4.1.0
                       utils_4.1.0
##
     xfun_0.25
                       yaml_2.2.1
```

Package names are in bold text (e.g., **rmarkdown**), and inline code and filenames are formatted in a typewriter font (e.g., knitr::knit('foo.Rmd')). Function names are followed by parentheses (e.g., bookdown::render_book()).

Angela Zoss

About the Author

FIGURE 1: Angela M. Zoss, Ph.D.

Angela is the Assessment & Data Visualization Analyst¹ in the Assessment & User Experience Department² in the Duke University Libraries³. She has many years of experience in teaching and training, predominantly focusing on teaching data visualization to university students, faculty, and staff. She is also active in several open source development projects, including FOLIO⁴ and Wax⁵.

¹https://library.duke.edu/about/directory/staff/angela.zoss

²https://library.duke.edu/about/depts/assessment-user-experience

³https://library.duke.edu/

⁴https://github.com/folio-org/

⁵https://github.com/minicomp/wax

Overview of common visualizations and how to read them

This book will cover how to create a variety of visualizations using R. One of the first things you should do to improve your skills creating visualizations is to become familiar with the kinds of visualizations that are possible and the different features of each.

Effective visualization design relies on a solid understanding of how data properties, visualization types, and audience characteristics interact to help people make sense of a visualization. In this chapter, we'll look at a series of common visualization types, and we'll break down how each is meant to be read. Understanding these basic visualization types will create a solid foundation for communicating your data science work to a broad audience.

1.1 Visualization components

As we discuss different visualizations, we will also be talking about different components within the visualizations. In figure 1.1 below, the major components of the visualization are labeled: the main title, the subtitle, the x axis title, the y axis title, the panel, the horizontal and vertical gridlines, and the axis labels and tick marks for both axes. Almost all of the visualizations we cover in this book will use these basic components.

In this set of basic visualization components, we see two components labeled as an axis. These axes are called the x and y axes, and they always appear in these positions: the x axis always goes left to right, and the y axis always goes up and down.

FIGURE 1.1: Visualization components, labeled.

1.2 Bar Chart

The bar chart is possibly the most common type of visualization. In this type of visualization, the basic shape being used to represent data values is a rectangle. In a traditional bar chart, each rectangle (or bar) has exactly the same width, and the height of the bar is representative of some data value. To create a simple bar chart, the data set should have one column that contains textual data and one column that contains numerical data. (Another common way to create a bar chart is to start with one textual data column and count each instance of each text value to create the numerical column.)

In the sample bar chart above, we see a classic style of bar chart where each bar has the same width and the heights are proportionate to a data value. Each bar has a starting value of zero on the y axis. For data values that are positive, the bar travels upward from zero and stops at the correct data value. For data values that are negative, the bar travels downward from zero and stops at the correct data value. The x axis title and labels appear at the bottom of the panel, below the lowest data values.

When reading this visualization, we are comparing the lengths of bars in order to understand patterns within the numerical data values from our data set.

1.2 Bar Chart 3

FIGURE 1.2: A sample bar chart.

The power of the bar chart lies in how precisely we can detect differences in the lengths of bars. This is something that people naturally do quite well. Bar charts are especially effective if the bars that have small differences in lengths appear close to each other. In the above chart, this is accomplished by arranging the bars so they appear with the highest data values on the left and the lowest data values on the right.

For stylistic reasons, bar charts may also appear with the bars oriented horizontally instead of vertically. In that case, each bar will have the same height, and the widths of the bars will vary based on the data values. The text (or categorical) axis will then be the y axis, and the numerical axis will be the x axis.

FIGURE 1.3: A sample bar chart, with the bars oriented horizonally.

1.2.1 Variations

1.2.1.1 Stacked and grouped bar charts

1.2.1.2 Dot plots

1.2.1.3 Dumbbell plots

1.3 Scatter Plot

scatter plot / scatter plot with color / bubble chart / countour plot

1.4 Line Chart 5

1.4 Line Chart

line chart / area chart

`summarise()` has grouped output by 'Year'. You can override using the `.groups` argument.

`summarise()` has grouped output by 'Year'. You can override using the `.groups` argument.

1.5 Pie Chart 7

1.5 Pie Chart

pie chart / donut chart

1.6 Heat Map

heat map / matrix / circles with color and size

`summarise()` has grouped output by 'Index.categories.2020'. You can override using the `.groups` an

- ## Warning: Unknown levels in `f`:
- ## Inclusiveness.index.2020

1.7 Histogram

histogram / density

```
## `stat_bin()` using `bins = 30`. Pick better value
## with `binwidth`.
```

1.8 Box Plot 9

1.8 Box Plot

box plot / violin plot / bee swarm

Warning: Removed 113 rows containing non-finite values

(stat_boxplot).

1.9 Maps

 ${\it choropleth / proportional\ symbol\ map}$

1.9 Maps 11

1.10 Movies

- ## Warning: Removed 53573 rows containing missing values
- ## (geom_point).

1.10 Movies 13

Warning: Removed 10 row(s) containing missing values
(geom_path).

`summarise()` has grouped output by 'mpaa'. You can override using the `.groups` argument.

`stat_bin()` using `bins = 30`. Pick better value
with `binwidth`.

1.10 Movies 15

(No maps, but maybe that's okay)

2

Building basic visualizations with ggplot2

2.1 Basic ggplot2 syntax

Working with textual data in ggplot2

sample text

Cleaning data: use duke_enrollment (either by status or school) to talk about factors. Have Semester, which is really a time-based variable. Need to combine with Year to get the real sequence of enrollment.

4

Customizing the design of ggplot2 visualizations

 $sample\ text$

We talk about the FOO method in this chapter.

Avoiding unethical design practices

 $sample\ text$

$Building\ ggplot 2\ visualizations\ into\ print\\ publications$

 $sample\ text$

Basic accessibility for static visualizations

7.1 Low Vision

- Large text
 - "output-examples" file¹
- High color contrast
 - Both marks/text on background and labels on marks
 - Check with savonliquide package²

7.2 Color Vision Deficiency

7.2.1 Dual encoding (never just color)

- Line color also vary line type
- Point color also vary point shape
- https://www.youtube.com/watch?v=mbi_JVC1arM

7.2.2 Color palettes

• colorspace package³

¹https://github.com/amzoss/RVis-2Day/blob/master/Day%201/templates/output-examples.

md

 $^{^2}$ https://github.com/feddelegrand7/savonliquide

³http://colorspace.r-forge.r-project.org/index.html

7.3 Alternative Text for Screen Readers

In R, R Markdown:

- fig.alt⁴ in code chunk (new, just for HTML output)
- fig.cap⁵ in code chunk as backup
- embedded images: write alt text between square brackets
- New: ggplot2 v3.3.4 adds alt option in labs()⁶, with plans to propagate to Rmd, Shiny

Writing good alt text for visualizations⁷

Longer descriptions: savonliquide package⁸

7.4 Converting graphics to sound, touch, text

- · sonify package
- tactileR package
- BrailleR package⁹
 - Note: set plot title, subtitle, caption using labs()

Accessible Data Science for the Blind Using R¹⁰

7.5 Accessibility Resources

• savonliquide package¹¹

```
4 https://blog.rstudio.com/2021/04/20/knitr-fig-alt/
5 https://bookdown.org/yihui/rmarkdown/r-code.html
6 https://ggplot2.tidyverse.org/reference/labs.html
7 https://nightingaledvs.com/writing-alt-text-for-data-visualization/
8 https://github.com/feddelegrand7/savonliquide
9 https://r-resources.massey.ac.nz/BrailleRInAction/GGPlot.html
10 https://jooyoungseo.com/post/ds4blind/
11 https://github.com/feddelegrand7/savonliquide
```

- $\bullet\,$ Making betteR figures: Accessibility and Universal Design 12
- Highlights from the DVS accessibility fireside $\rm chat^{13}$

¹²https://bookdown.org/ybrandvain/Applied-Biostats/betteRfigs.html#accessibility-and-

universal-design 13 https://nightingaledvs.com/highlights-from-the-dvs-accessibility-fireside-chat/

Exploring interactivity in visualizations with plotly and crosstalk

 $sample\ text$

Using RMarkdown to build websites for projects

 $sample\ text$

Using RMarkdown to build dashboards for projects

 $sample\ text$

Basic usability for interactive visualizations

 $sample\ text$

$Teacher's\ guide$

 $sample\ text$

A

Datasets

Duke Enrollment

Duke enrollment¹

Sample of Duke Enrollment By School dataset, Table A.1.

A.1 Bar Chart

Figure A.1.

TABLE A.1: A sample from the Duke Enrollment By School dataset.

Year	Semester	Origin	Region	Sex	School	Count
1970	Fall	Alabama	United States	Female	Trinity	11
1970	Fall	Alabama	United States	Female	Graduate	7
1970	Fall	Alabama	United States	Female	Divinity	1
1970	Fall	Alabama	United States	Female	Law	1
1970	Fall	Alaska	United States	Female	Trinity	1
1970	Fall	Alaska	United States	Female	Graduate	1

¹https://doi.org/10.7924/r4db82p1j

FIGURE A.1: Total Duke Enrollment by School

Coral Resilience Data

Protecting coral reefs²

Figure A.2.

```
## Warning: Removed 1 rows containing missing values
## (geom_point).
```

Git Experience

A Behavioral Approach to Understanding the Git Experience³

Warning: Removed 1 row(s) containing missing values
(geom_path).

 $^{^2 \}mathtt{https://doi.org/10.7924/G8348HFP}$

³https://osf.io/57tb8/

FIGURE A.2: Log of tissue loss by snail density

Warning: Removed 3 row(s) containing missing values

(geom_path).

Joining, by = "system"

Warning: Removed 15 rows containing non-finite values
(stat_sum).

`summarise()` has grouped output by 'year_vcs'. You can override using the `.groups` argument.

Warning: Removed 9 rows containing non-finite values
(stat_sum).

Warning: Removed 3 rows containing missing values
(geom_point).

Warning: Removed 15 rows containing missing values

(geom_point).

Warning: Removed 15 rows containing missing values
(geom_point).

Warning: Removed 3 rows containing missing values
(geom_tile).

Inclusiveness Index

Inclusiveness Index⁴

```
## `geom_smooth()` using formula 'y ~ x'
## Warning: Removed 111 rows containing non-finite values
## (stat_smooth).
## Warning: Removed 111 rows containing missing values
## (geom_point).
```



```
## `geom_smooth()` using formula 'y ~ x'
```

^{##} Warning: Removed 109 rows containing non-finite values
(stat_smooth).

^{##} Warning: Removed 109 rows containing missing values
(geom_point).

 $^{^{4} \}verb|https://belonging.berkeley.edu/inclusivenessindex/data-and-resources|\\$


```
## geom_smooth() using formula 'y ~ x'
```

```
## Warning: Removed 113 rows containing non-finite values
## (stat_smooth).
```

```
## Warning: Removed 113 rows containing missing values
## (geom_point).
```



```
## geom_smooth() using formula 'y ~ x'
```

```
## Warning: Removed 90 rows containing non-finite values
## (stat_smooth).
```

Warning: Removed 90 rows containing missing values
(geom_point).


```
## geom_smooth() using formula 'y ~ x'
```

Warning: Removed 90 rows containing non-finite values
(stat_smooth).

Warning: Removed 90 rows containing missing values

(geom_point).


```
## geom_smooth() using formula 'y ~ x'
```

Warning: Removed 113 rows containing non-finite values
(stat_smooth).

Warning: Removed 113 rows containing missing values
(geom_point).


```
## geom_smooth() using formula 'y ~ x'
```

Warning: Removed 113 rows containing non-finite values
(stat_smooth).

Warning: Removed 113 rows containing missing values
(geom_point).


```
## geom_smooth() using formula 'y ~ x'
```

Warning: Removed 113 rows containing non-finite values
(stat_smooth).

Warning: Removed 113 rows containing missing values
(geom_point).

Warning: Removed 113 rows containing non-finite values
(stat_boxplot).

Candidate Demographics

Candidate Demographics⁵

Includes State, Candidate Name, Candidate Party, Office Name, White/Non-White, Race, Gender, Race/Gender Category, Office Level; 4 years (2012, 2014, 2016, 2018), over 40k records

Affinity Spending

Affinity Spending 6

⁵https://wholeads.us/research/rising-tide-ballot-demographics/

 $^{^{6} \}texttt{https://github.com/OpportunityInsights/EconomicTracker}$

Bibliography

Xie, Y. (2015). Dynamic Documents with R and knitr. Chapman and Hall/CRC, Boca Raton, Florida, 2nd edition. ISBN 978-1498716963.

Xie, Y. (2021). bookdown: Authoring Books and Technical Documents with R Markdown. R package version 0.23.

Index

```
bookdown, x FOO,\, 21,\, 23,\, 25,\, 31,\, 33,\, 35,\, 37,\, 39 knitr, x
```