Algorytmy tablicowe

W przypadku poniższych algorytmów będziemy posługiwać się poniższą tablicą do posortowania

Indeks	0	1	2	3	4	5	6	7	8	9
Wartość	10	9	8	7	6	5	4	3	2	1

Sortowanie bąbelkowe

https://www.youtube.com/watch?v=9I2oOAr2okY

Sortowanie to polega na porównywaniu dwóch sąsiadujących wartości i posortowanie ich w kolejności rosnącej

Krok 1. Porównujemy wartości z indeksów 0 i 1

Indeks	0	1	2	3	4	5	6	7	8	9
Wartość	10	9	8	7	6	5	4	3	2	1
	† .	†								
	<									

Jak widzimy 10 < 9, a więc zamieniamy je miejscami otrzymując taką tablicę

Indeks	0	1	2	3	4	5	6	7	8	9
Wartość	9	10	8	7	6	5	4	3	2	1

Krok 2. Tym razem porównujemy wartości indeksów 1 i 2

Indeks	0	1	2	3	4	5	6	7	8	9
Wartość	9	10	8	7	6	5	4	3	2	1
		<								

Sytuacja się powtórzyła, więc tak samo jak w kroku 1. Zamieniamy miejscem wartości

Indeks	0	1	2	3	4	5	6	7	8	9
Wartość	9	8	10	7	6	5	4	3	2	1
Krok 3										

Krok 3.

Indeks	0	1	2	3	4	5	6	7	8	9
Wartość	9	8	10	7	6	5	4	3	2	1
			1 /	. 1						

Krok 4.

Indeks	0	1	2	3	4	5	6	7	8	9
Wartość	9	8	7	10	6	5	4	3	2	1
				1	<					

Krok 5.

Indeks	0	1	2	3	4	5	6	7	8	9
Wartość	9	8	7	6	10	5	4	3	2	1
Vrol. 6						<u> </u>	•		_	_

7	6	5	10	4	3	2	1
		ı					
1	1	-					•
2	3	4	5	6	7	8	9
7	6	5	4	10	3	2	1
	7		- - - - - - - - - - 				

Krok 8.

Indeks	0	1	2	3	4	5	6	7	8	9
Wartość	9	8	7	6	5	4	3	10	2	1
								1	<	

Krok 9.

Indeks	0	1	2	3	4	5	6	7	8	9
Wartość	9	8	7	6	5	4	3	2	10	1
									† <	<

Krok 10.

Indeks	0	1	2	3	4	5	6	7	8	9
Wartość	9	8	7	6	5	4	3	2	1	10

Kroki od 1.-10. musimy powtórzyć, ale dla indeksów od 0-9, ponieważ mamy już pewność, że największa liczba znajduje się na końcu tablicy – bo przeszliśmy całą tablicę porównując jej wartości.

Po każdym przejściu przez zbiór wartości zmniejszamy jego liczność o 1 i na końcu każdego znajdziemy największą wartość z danego zbioru.

Złożoność takiego algorytmu wynosi O(n²), ponieważ zawiera on zagnieżdżoną pętlę

Sortowanie przez wybieranie

Strategia jest bardzo prosta: szukamy najmniejszego elementu z całego zbioru i zamieniamy go z pierwszym elementem.

Indeks	0	1	2	3	4	5	6	7	8	9
Wartość	10	9	8	7	6	5	4	3	2	1

Krok 1. Przechodzimy przez cała tablicę w poszukiwaniu najmniejszego elementu, jest nim 1, a więc zamieniamy go z pierwszym elementem

Indeks	0	1	2	3	4	5	6	7	8	9
Wartość	1	9	8	7	6	5	4	3	2	10

Krok 2. Znowu przechodzimy przez tablicę, ale pomijamy pierwszy element, tzn. przeszukujemy indeksy 1-9.

Indeks	0	1	2	3	4	5	6	7	8	9
Wartość	1	2	8	7	6	5	4	3	9	10

Krok 3.

Indeks	0	1	2	3	4	5	6	7	8	9
Wartość	1	2	3	7	6	5	4	8	9	10

Krok 4.

Indeks	0	1	2	3	4	5	6	7	8	9
Wartość	1	2	3	4	6	5	7	8	9	10

Krok 5.

Indeks	0	1	2	3	4	5	6	7	8	9
Wartość	1	2	3	4	5	6	7	8	9	10

Krok 6. Pomimo tego, że już mamy posortowaną tablicę to musimy przejść przez pozostałe iteracje – macie rację nic one nie zrobią, ale nie zawsze jesteśmy pewni, że trafimy na taki przykład jak ten tutaj, a więc posortowany.

Indeks	0	1	2	3	4	5	6	7	8	9
Wartość	1	2	3	7	6	5	4	8	9	10