Data Dependence in Matrix Multiplication

```
int a[n,n], b[n,n], c[n,n]

for i=1 to n

for j=1 to n

S_0 c[i,j]=0

for k=1 to n

S c[i,j]=c[i,j]+a[i,k]*b[k,j]

end for
end for
```

Statement S_0 is at loop level 2, S at level 3

Maximum common loop index of S_0 and S is 2

Execution index sets

- $[S_0] = [1:100]^2$
- $[S] = [1:100]^3$

Control sets

- $[S_0, S_0] = \{((i, j), (i', j') \in [S_0] \times [S_0] : (i, j) < (i', j')\}$
- $[S, S_0] = \{((i, j, k), (i', j') \in [S] \times [S_0] : (i, j) < (i', j')\}$
- $[S_0, S] = \{((i, j), (i', j', k') \in [S_0] \times [S] : (i, j) \le (i', j')\}$
- $[S, S] = \{((i, j, k), (i', j', k') \in [S] \times [S] : (i, j, k) < (i', j', k')\}$

Input/output sets

- $DEF(S_0) = \{c[i, j]\}$
- $USE(S_0) = \{i, j\}$
- $DEF(S) = \{c[i,j]\}$
- $USE(S) = \{c[i, j], a[i, k], b[k, j], i, j, k\}$

Check for dependences

- 1. $S_0(i,j) \delta S_0(i',j')$
 - no pair of iteration vectors $((i, j), (i', j')) \in [S_0, S_0]$ satisfies DEP-2
 - no common variable: in every instance of S_0 a different element c[i,j] is accessed
- 2. $S(i, j, k) \delta S_0(i', j')$
 - no pair $((i, j, k), (i', j')) \in [S, S_0]$ satisfies DEP-2
 - no common variable: $S_0(i', j')$ cannot be executed after S(i, j, k) with the same values of i, j, and thus access the same c[i, j]
- 3. $S_0(i,j) \delta S(i',j',k')$
 - (a) with (i, j) < (i', j'), no pair of iteration vectors $((i, j), (i', j', k')) \in [S_0, S]$ satisfies DEP-2 (no common variable)
 - (b) with (i, j) = (i', j') the same c[i, j] is accessed in $S_0(i, j)$ and S(i', j', k') and DEP-2 is satisfied
 - DEP-3 holds for k' = 1
 - dependences: $S_0(i,j)$ $\delta_{\infty,true}$ S(i,j,1) and $S_0(i,j)$ $\delta_{\infty,out}$ S(i,j,1)
 - loop independent dependence: $S_0 \delta_{\infty,true,out}^{(=,=)} S$
- 4. $S(i, j, k) \delta S(i', j', k')$
 - • DEP-2 holds for $(i,j,k) <_3 (i',j',k')$ with $v = \mathsf{c}[\mathsf{i},\mathsf{j}]$
 - DEP-3 holds for k = k' 1
 - loop carried dependence at level 3: S $\delta_{3,true,anti,out}^{(=,=,<)}$ S

References

[1] H. Zima, B. Chapman. Supercompilers for Parallel and Vector Computers. ACM Press Frontier Series, Addison-Wesley, 1990.