GODDIKO

IN-46-CR 126015

EVALUATION OF SURFACE ENERGY AND RADIATION BALANCE SYSTEMS ON THE KONZA PRAIRIE

1507.

Part A

A Report to

Forest Hall
Laboratory of Terrestrial Physics
Space and Earth Sciences Directorate
National Aeronautics and Space Administration
NASA/Goddard Flight Center
Greenbelt, MD 20771

Grant Number NAG 5-521

BY

Leo J. Fritschen
College of Forest Resources AR10
University of Washington
Seattle, WA 98195

June 18, 1987

(NASA-CR-182534) EVALUATION OF SURFACE ENERGY AND RADIATION EALANCE SYSTEMS ON THE KONZA PRAIRIE (Washington Univ.) 150 p CSCL 04A

N88-18097

Unclas G3/46 0126015

# EVALUATION OF SURFACE ENERGY AND RADIATION BALANCE SYSTEMS ON THE KONZA PRAIRIE

## Part A

Leo J. Fritschen
College of Forest Resources AR10
University of Washington
Seattle, WA 98195

## **ABSTRACT**

This report consists of three parts, A to C. Part A is discussed in this document. Parts B and C are results from a subcontract with Dr. Lloyd Gay from the University of Arizona and are presented in separate documents. Part B is entitled Evaluation of Surface Radiation and Energy Balance Stations on the Konza Prairie and Part C is entitled Evaluation of Atmospheric Effects on Remotely Sensed Surface Temperatures

Four Surface Energy and Radiation Balance Systems (SERBS) were installed and operated for two weeks in Kansas during July of 1986. During the first week a comparative study of various equipment was conducted by five research groups. During the second week, surface energy and radiation balances were investigated on six sites (top of a ridge, bottom land, and east, west, south, and north facing slopes) on the Konza Prairie located about 3 km south of Manhattan, KS.

Measurements were made to allow the computation of the radiation components: total solar and diffuse radiation; reflected solar radiation; net radiation; longwave radiation upward and downward. In addition, measurements were made to allow the computation of the sensible and latent heat fluxes by the Bowen ratio method using differential psychrometers on automatic exchange mechanisms. Data were sampled at 30 s intervals with battery operated computer controlled data acquisition systems. A total of 64 sensors were monitored by 4 separate systems for a total of 64 system days.

This report includes a description of the experimental sites, data acquisition systems and sensors, data acquisition system operating instructions, and software used for data acquisition and analysis. In addition, data listings and plots of the energy balance components for all days and systems are given.

| LIST | OF TABLES                                                                                                                                                                                                                                                                                                                                                     | V                          |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| LIST | OF FIGURES                                                                                                                                                                                                                                                                                                                                                    | vi                         |
| 1.   | INTRODUCTION                                                                                                                                                                                                                                                                                                                                                  | 1                          |
| 2.   | THE ASHLAND EXPERIMENTAL FARM SITES                                                                                                                                                                                                                                                                                                                           | 2                          |
| з.   | THE KONZA PRAIRIE SITES                                                                                                                                                                                                                                                                                                                                       | 2                          |
| 4.   | THE WEATHER                                                                                                                                                                                                                                                                                                                                                   | 2                          |
| 5.   | DATA ACQUISITION                                                                                                                                                                                                                                                                                                                                              | 2                          |
|      | <ul> <li>5.1 Computer</li> <li>5.2 Data Acquisition System</li> <li>5.3 Auxiliary Module</li> <li>5.4 System calibration</li> <li>5.4.1 Pre-experimental calibration</li> <li>5.4.2 Previous calibration and temperature coefficient determination</li> </ul>                                                                                                 | 3<br>4<br>4<br>5<br>5<br>6 |
| 6.   | SENSORS                                                                                                                                                                                                                                                                                                                                                       | 6                          |
|      | 6.1 Solar Radiation 6.2 Diffuse Radiation 6.3 Net Radiation 6.4 Total Hemispherical Radiation 6.5 Soil Heat Flux Density 6.6 Air Temperature and Vapor Pressure 6.7 Wind Speed and Direction 6.8 Automatic Exchange Mechanism 6.9 Batteries 6.10 Sensor Calibration 6.10.1 Radiometers 6.10.2 Platinum Resistance thermometers 6.10.3 Soil heat flow          | 77778999999                |
| 7.   | SOFTWARE DESCRIPTION                                                                                                                                                                                                                                                                                                                                          | 11                         |
|      | <ul> <li>7.1 Data acquisition (SAMP.DO, INDATx.DO)</li> <li>7.2 Data transfer (READT2.BA)</li> <li>7.3 Test Programs (ADCTST.BA)</li> <li>7.4 Post Experimental Data Processing and Data Conversion From Raw to Engineering Units (SAMPE.BAS)</li> <li>7.5 Energy balance processing (SAMPK3.BAS)</li> <li>7.6 Data Plotting and 30 Minute Summary</li> </ul> | 11<br>17<br>17<br>17       |

| 8.  | RESUL   | TS                                                     | 19 |
|-----|---------|--------------------------------------------------------|----|
|     | 8.1     | History of Data Records                                | 19 |
|     |         | Energy Balance Data Plots                              | 19 |
|     | 8.3     | Plots of the Radiation Balance Data                    | 19 |
| 9.  | APPEN   | DICES                                                  | 19 |
|     | 9.1     | <b>3</b>                                               | 19 |
|     | 9.2     | AEM Wiring Diagram                                     | 22 |
|     | 9.3     | Auxiliary Module Description and Operation             | 22 |
|     |         | 9.3.1 Current Source and Offset Voltage Wiring Diagram | 22 |
|     |         | 9.3.2 Current Source and Offset Voltage                | 23 |
|     |         | Adjustment                                             | 23 |
|     | 9.4     | Operation of the Shadow Band                           | 26 |
|     |         | 9.4.1 Mounting the Shadow Band                         | 26 |
|     |         | 9.4.2 Shadow Band Adjustment                           | 26 |
|     |         | 9.4.2.1 Declination angle versus                       | 26 |
|     |         | time of year.                                          |    |
|     |         | 9.4.2.2 Shadow band adjustment versus                  | 27 |
|     |         | time of year and latitude                              |    |
|     |         | 9.4.3 Equation of Time and Time of Solar Noon          | 28 |
|     |         | 9.4.4 Data Reduction                                   | 29 |
|     | 9.5     |                                                        | 34 |
|     | 9.6     |                                                        | 39 |
|     | J.0     | Instructions                                           |    |
|     |         | 9.6.1 Sample Screen Display with                       | 39 |
|     |         | Channel ID's                                           |    |
|     |         | 9.6.2 Energy Balance Station Maintenance               | 39 |
|     |         | Checklist                                              |    |
|     |         | 9.6.3 Maintenance Equipment Checklist                  | 40 |
|     |         | 9.6.4 Operating the data acquisition                   | 41 |
|     |         | program SAMP.BA                                        |    |
|     |         | 9.6.5 Changing cassette tape                           | 42 |
|     |         | 9.6.6 Main battery maintenance                         | 43 |
|     |         | Reading Tape Cassettes                                 | 44 |
|     | 9.8     | Program Listings                                       | 45 |
|     |         | 9.8.1 SAMP.BAS                                         | 45 |
|     |         | 9.8.2 READT2.BA                                        | 45 |
|     |         | 9.8.3 ADCTST.BA                                        | 45 |
|     |         | 9.8.4 SAMPK2.BAS                                       | 45 |
|     |         | 9.8.5 SAMPK3.BAS                                       | 45 |
|     |         | 9.8.6 SUMMARYK.BAS                                     | 45 |
|     |         | 9.8.7 PLOT4.BAS                                        | 45 |
|     |         | 9.8.8 PLOT5.BAS                                        | 45 |
| 10. | REFE    | RENCES                                                 | 46 |
| Ann | andiv ' | 9 8 1 SAMDY RA A sampling program for the              | 47 |

NEC computer.

| Appendix 9.8.2 READT2.BAS, A program for the NEC which reads casette tape data into the editor of the SDS computer.                               | 56      |
|---------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| Appendix 9.8.3 ADCTST.BAS, A Test program for the ADC-1 using the NEC computer.                                                                   | 57      |
| Appendix 9.8.4 SAMPEE.BAS, a program for the AT computer which converts the raw data from the NEC computer into engineering units.                | 59      |
| Appendix 9.8.5 SAMPP.BAS, a program for the AT computer which converts the output of SAMPE.BAS into 6-minute energy and radiation balances.       | 66      |
| Appendix 9.8.6 SUMMARYE.BAS, a program for the AT computer which summarizes the the output of SAMPP.BAS (6-minute data) into 30-minute averages.  | 77      |
| Appendix 9.8.7 PLOTRE.BAS, a program for the AT computer which converts the output of SUMMARYE.BAS into line printer plots of radiation balances. | 84<br>5 |
| Appendix 9.8.8 PLOTEE.BAS, a program for the AT computer which converts the output of SUMMARYE.BAS into line printer plots of energy balances.    | 89<br>5 |
| ATTACHMENT 1. Listing of the data from the Ashland, KS site.                                                                                      | 94      |
| ATTACHMENT 2. Listing of the data from the Konza<br>Prairie, KS                                                                                   | 108     |
| site.                                                                                                                                             |         |
| ATTACHMENT 3. Graphs of energy balances from the Ashland, KS site.                                                                                | 128     |
| ATTACHMENT 4. Graphs of energy balances from the Konza Prairie, KS site.                                                                          | 133     |

#### LIST OF TABLES

| LIST OF TABLES                                                                                                                                                                                                                                                                               |    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Table 6.2. Platinum resistance element calibrations.  Air bath temperature was 21.80 °C for the calibration.                                                                                                                                                                                 | 10 |
| Table 7.1. Input file for station 1 (N).                                                                                                                                                                                                                                                     | 12 |
| Table 7.2. Input file for station 7 (E).                                                                                                                                                                                                                                                     | 13 |
| Table 7.3. Input file for station 8 (W).                                                                                                                                                                                                                                                     | 14 |
| Table 7.4. Input file for station 9 (S).                                                                                                                                                                                                                                                     | 15 |
| Table 7.5. Description of INDATx.DO control files used in program SAMP.BA.                                                                                                                                                                                                                   | 15 |
| Table 7.6. Sample contents of control file PDS.FIL.                                                                                                                                                                                                                                          | 18 |
| Table 9.1. Correction factors for solar radiation obstructed by the shadow band.                                                                                                                                                                                                             | 30 |
| Table 9.2. Power consumption of the data acquisition system from a 12 Vdc power source. Efficiencies of all regulators are included.                                                                                                                                                         | 43 |
| LIST OF FIGURES                                                                                                                                                                                                                                                                              |    |
| Figure 4.1. The location of the surface energy balance stations on the Konza Prairie near Manhattan, KS. The northeast corner is located at 4331000mN, 706000mE on the Swede Creek, Kans. SE/4 Manhattan 15' Quadrangle map. The sites are about 39° 05' N latitude and 96° 35' E longitude. | 3  |
| Figure 9.1. Energy balance station sensor wiring diagram (see following page)                                                                                                                                                                                                                | 20 |
| Figure 9.2. Automatic Exchange Mechaniam Wiring<br>Diagram.                                                                                                                                                                                                                                  | 24 |
| Figure 9.3. Current source and offset voltage wiring diagram.                                                                                                                                                                                                                                | 25 |

Figure 9.4. Spectral correction for the LI-200SB

are plotted on the y-axis.

pyranometer. Values of D1/G (%) are plotted on the x-axis and the corresponding values of D1/De (%)

- Figure 9.5. Plot of the corrected diffuse radiation 33 determined by the LI-COR pyranometer versus diffuse radiation determined with the Eppley PSP pyranometer.
- Figure 9.6. ADC-1 communications and analog to digital 34 conversion section.
- Figure 9.7. Overlay of offset voltage modifications 35 to ADC-1.
- Figure 9.8. ADC-1 analog multiplexer, digital 36 inputs and controlled outputs.
- Figure 9.9. ADC-1 line carrier (BSR) control logic. 37

## 1. INTRODUCTION

This report contains the results of two activities conducted during the summer of 1986. First, a comparative study of flux densities measured over a stubble surface was conducted for a period of one week by five research groups. Second, after the comparative study, Dr. Gay and I studied the energy and radiation balances on six sites on the Konza Prairie.

The comparison study was conducted during the period July 12 to July 19, 1987 on the Ashland Experimental Farm located about 10 km south of Manhattan, Kansas. The following groups participated:

| GROUP                                      | NUMBER AND TYPE OF EQUIPMENT USED                                         |
|--------------------------------------------|---------------------------------------------------------------------------|
| Lloyd Gay<br>University of Arizona         | 4-Bowen ratio energy balance<br>systems                                   |
| Edward Kanemasu<br>Kansas State University | 2-Bowen ratio energy balance systems                                      |
| Leo Fritschen<br>University of Washington  | 4-Bowen ratio energy balance systems                                      |
| Harrold Weaver<br>U. S. Geological Survey  | 2-Bowen ratio energy balance<br>systems and 2-eddy correlation<br>systems |
| Burt Tanner<br>Campbell Scientific         | 2-Bowen ratio energy balance<br>systems and 2-eddy correlation<br>systems |
|                                            |                                                                           |

The data I collected during this test are contained in this report. The results of the comparisons are being presented elsewhere.

Following the Ashland study, Dr. Gay and I moved our Surface Energy and Radiation Balance Systems (SERBS) to the same sites on the Konza (Figure 4.1.) that we studied during June of 1985. The Konza Prairie about 3 km south of Manhattan, KS. Data collection started on July 19, 1987 and terminated on July 26, 1987. The data collected during this period are reported hear. These studies, in addition to providing energy and radiation balance data, were also used to evaluate the systems in hot humid conditions with frequent and intense thunderstorms.

The unique instrumentation, the data acquisition systems, the method of analyses, and the data collected during the studies referred to above are presented in this report.

## 2. THE ASHLAND EXPERIMENTAL FARM SITES

The experimental equipment of the various groups was arrayed

from west to east at 10 m intervals across the north end of the lysimeter field on the Ashland Experimental Farm which is about 10 km south of Manhattan, Kansas. The field was covered with stubble which had been knocked down. In addition, some wheat sprouting was evident. The University of Washington SERBS were located on the western most 40 m of the equipment line.

## 3. THE KONZA PRAIRIE SITES

The locations of the SERBS on the Konza Prairie stations operated by the University of Washington are shown in Figure 4.1 as N, S, E and W. Two additional stations operated by the University of Arizona are shown by B and T. All heights are in m mal. The sites were chosen to represent the greatest variability in the energy balance components. That is N, S, E and W exposures at midslopes below the limestone outcrops. The T site was on top of the limestone outcrop while the B site was on the deep soil in the valley bottom. The systems were located on the slopes as follows: 1, north; 7, east; 8, west; and 9, south.

## 4. THE WEATHER

Two intense storms occurred during the installation of the SERBS at the Ashland Experimental Farm. The site was under water for one day after the second storm. The wind shifted to the south and blew at 3 to 6 m s<sup>-1</sup> for the rest of the week. Air temperatures increased exceeding 36 °C at 15 cm above the soil surface on the last two days of the first week. The relative humidity dropped with the increasing temperature and strong winds. The skies were very clear. The second week generally was dry. There were several cloudy days and a few showers.

## 5. DATA ACQUISITION

A small, inexpensive personal computer (NEC PC-8201A) was used at each site to control the psychrometer Automatic Exchange Mechanism (AEM) and to sample, process, and store the data via the data acquisition system. Model ADC-1 data acquisition systems (Remote Measurements Systems) were used for data These systems are modified so that the acquisition. instrumentation amplifier can be used with all 16 analog inputs (rather than just the first 8), and so that two separate offset voltages can be applied to the instrumentation amplifier input from an external source. The offset voltages were supplied by an auxiliary module attached to each system. These modules also supplied constant current sources, regulated output voltages and served as the interface between sensors and the ADC-1. consumption of the system is given in Appendix 9.6.6.



Figure 4.1. The location of the surface energy balance stations on the Konza Prairie near Manhattan, KS. The northeast corner is located at 4331000mN, 706000mE on the Swede Creek, Kans. SE/4 Manhattan 15' Quadrangle map. The sites are about 39005' N latitude and 960 35' E longitude.

# 5.1 Computer

The computer directed the ADC-1 to sample the data channels at 30-s intervals, with digital information being passed to the computer via an RS-232 port. The computer also activated the AEM every 6 minutes to interchange the psychrometers. After activation, the computer delayed sampling for two minutes to allow the psychrometers to attain equilibrium at their new

locations. Under computer control, raw data were averaged at 6 minute intervals and recorded at 30 minute intervals on the half hour on a cassette tape recorder (NEC PC-8200). The computer was programmed so that the field operator could review the instantaneous data (sampled at 30-s intervals) in raw form or in engineering units using a single a keyboard command. In addition, a third keyboard command displayed calculated values of the energy budget components, computed and updated at 6 minute intervals, and a fourth display contained the instantaneous, present 6-minute, past 6-minute and 12 minute averages of the temperatures and the temperature differences.

The computer, data system, tape recorder and two small batteries were housed in a 40 quart Coleman cooler which was covered with a space blanket. This was done to keep the computer at a reasonably constant temperature; in addition the space blanket was used to keep liquid water out of the cooler.

# 5.2 Data Acquisition System

The data acquisition system was connected to the RS-232 port of each computer. The ADC-1 contains 16 channels for analog inputs, 4 channels for digital inputs and 6 output functions. The basic millivolt ranges were + 400 (low gain) and + 20 mV (high gain, using the instrumentation amplifier). Schematic diagram of the system are shown in Appendix 9.5.

The basic systems were modified so that two offset voltages, nominally 140 and 270 mV, could be applied to the instrumentation amplifier signal input. Four possible gain/offset combinations resulted, randomly accessible to any of the 16 channels: low gain; high gain; high gain with 140 mV offset; and high gain with 270 mV offset. A schematic diagram of these modifications (Figure 9.8) is supplied as an overlay to the basic system schematic (Figure 9.7).

## 5.3 Auxiliary Module

Auxiliary modules were constructed for each system and attached underneath. These modules supplied the ADC-1 offset voltages through the use of one constant current source and a series string of precision resistors. Two other constant current sources supplied the various temperature sensors. A 5 V regulator supplied power to the data system while a 6 V regulator supplied power to the computer. The sensors were interfaced to the terminal strips supplied on the ADC-1 by means of seven plug connectors on the auxiliary module. Primary power was supplied by a 12 Vdc deep cycle RV battery.

A schematic of the sensor interface wiring is given in Appendix 9.1. Wiring diagrams, detailed descriptions and adjustment procedures for the constant current sources and the offset voltages are given in Appendix 9.3.2.

The potentiometers used for current source adjustment are accessible through the side of the auxiliary module. The current

source circuit is described in the National Semiconductor Application note "LN-334 3-Terminal Adjustable Current Source". The location and identification of these adjustments are shown in Figure 9.4. The offset voltage is adjusted with a ten turn potentiometer and ten turn dial located on the side of the auxiliary module. Wiring diagrams, detailed descriptions and adjustment procedure for the constant current sources and the offset voltages are given in Appendix 9.3. A schematic of the sensor interface wiring is given in Appendix 9.1.

## 5.4 System calibration

There are two basic adjustments for the analog input section of the ADC-1: the analog to digital converter (A/D) reference voltage via trimpot R1 and the instrumentation gain adjustment via trimpot R50 (see the ADC-1 Owner's Manual supplied by Remote Measurement Systems for component identification and details). Small holes were drilled in the side of the ADC-1 where the RS-232 connector is located to make these adjustments accessible with the ADC-1 completely assembled. R1 is accessible using a long, narrow screwdriver through the hole on the right hand side. R50 can be adjusted by inserting a small screwdriver into the flexible plastic tubing protruding slightly from the right-hand hole on the RS-232 connector.

# 5.4.1 Pre-experimental calibration

The ADC-1's and the offset voltages were calibrated using a precision potentiometric bridge with 1 microvolt resolution, and an absolute accuracy of ± 0.02% of the reading ± 1 digit (Electro Scientific Industries model 300PVB. The offset voltages were adjusted using potentiometers OS1 and OS2 (Figure 9.4) to adjust the voltage measured by the ESI. The ADC-1 low gain was calibrated using potentiometer R1 of the ADC-1 and the ESI as a precision voltage source set to 300 mV. All systems were adjusted to read 3000 raw A/D units. The standard deviation of 10 readings was 0 units. Once this was set, high gain was selected and calibrated with the input set at 15 mV. All systems were adjusted to read 3000 raw A/D units. The standard deviation of 10 readings was ± 0.7 units.

# 5.4.2 Previous calibration and temperature coefficient determination

A calibration performed after the 1984 ASCOT experiment gave results which agreed to within +\_ 1 digit of the pre-experimental calibrations. Temperature coefficients of the combined ADC-1/Auxiliary module package were then determined using a controlled-temperature chamber. To improve system stability over extremes of temperature, components U29, VR, R1, R33, R34, R50, R51 and R52 were upgraded to components with temperature coefficients of < 15 ppm OC--1 (See Appendix E-4, ADC-1 Owner's

# ORIGINAL PAGE IS OF POOR QUALITY

Manual for part identification). The Instrumentation amplifier (U34) supplied a standard system already meet this specification. The results of this test are shown in Table 5.1. The temperature coefficient (TC) was reduced significantly for the ADC-1 itself (Item 1). Item 2 included the TC of the current source being measured, while Item 3 included the TC of the constant voltage source used to offset the input in this case (270 mV). The smaller or negligible improvement in Items 2 and 3 are due to the temperature coefficients of the current sources/voltage reference circuits.

The constant current sources would reduced the latter two TC's. Post ASCOT 84 experimental calibration of the current sources indicated the Rset should be 293 ohms and R1 should be 2404 ohms. Using these values the current varied only 7.3 x  $10^{-9}$  A  $^{\circ}$ C<sup>-1</sup>, or 15 ppm  $^{\circ}$ C<sup>-1</sup>, over the temperature range from 0 to 55  $^{\circ}$ C, and 15 x  $10^{-9}$  A  $^{\circ}$ C<sup>-1</sup>, or 30 ppm  $^{\circ}$ C<sup>-1</sup>, over the temperature range from -25 to 55  $^{\circ}$ C.

Table 5.1. Data acquisition system temperature coefficients (TC's) in parts per million (ppm) over the range of -25 to +35 °C.

| Component |                                                           | ADC-1                      | TC (ppm oc-1) |        |
|-----------|-----------------------------------------------------------|----------------------------|---------------|--------|
|           |                                                           | range                      | standard      | Low TC |
| 1.        | Constant 10 mv input                                      | high                       | 40            | 8a     |
| 2.        | Constant current source                                   | high                       | 180           | 120    |
| з.        | Fixed resistance (simulates error in temperature sensors) | high<br>(270 mV<br>offset) | 300Ь          | 300Р   |

a 1 digit on the ADC-1 is the limit of resolution of the test, equivalent to 8 ppm.

# b Equivalent to 0.03 °C °C-1.

## 6. SENSORS

The instrumentation at each site consisted of: upward and downward facing pyranometers; pyranometer with shadow band; net radiometer; upward and downward facing total hemispherical radiometer; three soil heat flow transducer at 5 cm depth; three vertical soil temperature sensor, 0 to 5 cm; wind vane; three cup anemometer; and two psychrometers mounted on an automatic exchange mechanism (AEM). With these instruments all of the components of the radiation and energy balances were obtained. The signals from these sensors were measured and recorded by the battery operated data acquisition system.

The wiring connections between the sensors and the data

acquisition system are shown in Appendix 9.1.

#### 6.1 Solar Radiation

The pyranometers used to measure total and reflected radiation Kipp and Zonen CM2 pyranometers. The pyranometers were mounted horizontally, 150 cm above the soil surface, at all stations on the end of a horizontal pipe. The horizontal pipe was pointed true south. The Kipp sensors were mounted in an adapter consisting of a tee and two floor flanges (PVC). The flanges were turned to accept the sensors. This mount was threaded on the end of the horizontal pipe. The upper sensor was leveled with a bubble level placed on a plastic cylinder located around the glass dome of the sensor. A sun shade was used with the upper pyranometer.

#### 6.2 Diffuse Radiation

A silicon cell pyranometer manufactured by LiCor was used with a shadow band to measure diffuse radiation. The shadow band was specially fabricated in the shop to allow the sensor to be mounted parallel with the slope. The operation of the shadow band is given in Appendix 9.4.

## 6.3 Net Radiation

Net radiation was measured with high output miniature net radiometers (Micromet Systems). The net radiometers were oriented to the south at a height of 150 cm above the soil surface.

## 6.4 Total Hemispherical Radiation

The upward total hemispherical radiation was measured with specially built radiometers (Micromet Systems). The radiometer consists of two high output thermopiles mounted on either side of an aluminum heat sink. The temperature of the aluminum heat sink was measured with a 100 ohm RTD. The thermopiles were protected with polyethylene wind shields. The total hemspherical radiometers were mounted at 150 cm above the soil surface.

# 6.5 Soil Heat Flux Density

Soil heat flux density at the surface consisted of the sum of the change in energy storage of the 0 to 5 cm layer of soil and the soil heat flux measured at 5 cm. The soil heat flow was measured at 5 cm with three high output heat flow transducer (Nicromet Systems).

The change in energy storage of the 0 to 5 cm layer was calculated as the product of the soil heat capacity and the change of the mean soil temperature of the 0 to 5 cm layer. The mean temperature of the layer of soil above 5 cm was monitored

with three 10-cm platinum resistance temperature detector connected in series and inserted in the soil at a 45° angle.

## 6.6 Air Temperature and Vapor Pressure

Vertical temperature and vapor pressure gradients were measured at each station using a pair of fan-aspirated updraft psychrometers that could be interchanged at selected time intervals by means of an AEM. The bottom psychrometers were located 10 cm above the top of the vegetation while the upper psychrometer was 1 m above the lower psychrometer. Each psychrometer was aspirated with a small 12 Vdc fan (Micronel V581L). The intake of the psychrometer was pointed to the north and doward facing exhausts were installed on the psychrometer to reduce the effect of south winds on the ventilation rate. The fan drew 50 mA of current and provided 530 1/min air flow.

The psychrometer temperature sensors consisted of a 500 ohm platinum resistance element encased in a stainless steel tube. Each tube has a serial number located near the wire end of the tube. The four resistance elements were connected in series to a constant current source, as described by Fritschen and Simpson (1982). With this technique, the same current was flowing through all resistance elements. The voltage drop across each resistance element was determined after it was offset with the 270 mV offset voltage. This technique increased the recording sensitivity to 0.006 oC and allowed a 40 oC temperature range. Ceramic wicks were used for the wet bulbs. The wicks were one bar low flow ceramic with a constant head water supply of one cm.

## 6.7 Wind Speed and Direction

The wind vanes and anemometers used were manufactured by R. M. Young. The E and N stations has shop built anemometers.

# 6.8 Automatic Exchange Mechanism

The AEN utilized was similar in principle to that described by Gay and Fritschen (1982). The AEM's were plastic chain driven with a small 12 Vdc Brevel reversing motor which drew 450 mA for 30 s each 6 minutes. Two AEM's were designed to allow for a gradient distance to be adjusted from 0 to 100 cm while the other could be adjusted from 0 to 200 cm.

The wiring diagram for the AEM's is given in Appendix 9.2.

# 6.9 Batteries

Three batteries were required at each station. A 12 Vdc deep cycle RV battery was used to power the psychrometer fans, to operate the AEM and to power the three constant current sources. Two voltage regulators were operated from the 12 V battery. A 6 V regulator supplied the computer while a 5 V regulator supplied the power for the data acquisition system. A 6 V gel cell was

used to supply the voltage for the offset voltages. A 6 V lantern cell was used to power the tape recorder. These additional batteries were need because of ground loop problems and were large enough to last longer than the recording period. The 12 V battery voltage was monitored and the battery was replaced with a fully charged battery when the voltage dropped below 10 V. A 12 W solar panel was connected to the main battery to keep it fully charged.

## 6.10 Sensor Calibration

All sensors used were calibrated at the University of Washington (UW). These sensors include: platinum resistance elements; radiometers; soil heat flow transducers; soil temperature probes and anemometers.

## 6.10.1 Radiometers

All radiometers were calibrated against an Eppley PSP pyranometer SN 9030D2 on the roof of Bloedel Hall. The pyranometers were calibrated by correlation while the net and total hemispherical radiometers were calibrated using the shading technique.

## 6.10.2. Platinum Resistance thermometers

The 500 ohm platinum resistance temperature sensors were calibrated by comparing the resistance of the elements encased in the stainless steel tubes located in a constant temperature air bath (Delta Design MK2300) against the bath temperature as indicated by a 100 ohm platinum resistance element (Laboratory Standard). This was done to adjust the 0 °C resistance of the platinum elements. The universal resistance-temperature relation (line 1550 of SAMP.BA, Appendix 9.8.1) was used to compute other temperatures. Previous test indicate that the universal relation applies quite well (Fritschen and Simpson, 1982). The results from these calibrations are shown in Table 6.1.

## 6.10.3 Soil heat flow

The soil temperature probes were calibrated in the oven using the PLS as a standard.

The soil heat flow transducers were calibrated in a chamber at UW. The heat flow calibration chamber consists of two aluminum tanks (7.6 x 33.0 x 43.2 cm) spaced by 5.84 cm. The facing sides of the tanks consist of aluminum plates (0.635 x 35.6 x 45.7 cm). The plates are spaced by 1.27 x 5.84 cm pieces of plastic creating a void between the tanks of 5.84 x 33.0 x 43.2 cm. The void has a cross section of 1425.6 cm $^2$  and a volume

Table 6.2. Platinum resistance element calibrations. Air bath temperature was 21.80 °C for the calibration.

|        |        | ZERO       |
|--------|--------|------------|
| SERIAL | OUTPUT | RESISTANCE |
| NO.    | (mV)   | (chma)     |
|        |        |            |
| 1      | 270.80 | 499.209    |
| 2      | 270.92 | 499.430    |
| 3      | 270.68 | 498.987    |
| 4      | 270.92 | 499.430    |
| 5      | 271.09 | 499.743    |
| 6      | 271.08 | 499.725    |
| 7      | 271.19 | 499.928    |
| 8      | 271.17 | 499.891    |
| 9      | 271.12 | 499.798    |
| 10     | 271.05 | 499.669    |
| 11     | 271.15 | 499.854    |
| 12     | 271.14 | 499.835    |
| 13     | 271.09 | 499.743    |
| 14     | 271.04 | 499.651    |
| 15     | 271.10 | 499.762    |
| 16     | 271.12 | 499.798    |
| 17     | 271.13 | 499.817    |
| 18     | 271.21 | 499.964    |
| 19     | 271.15 | 499.854    |
| 20     | 271.22 | 499.983    |

of 8,325.5 cm $^3$ . The plastic spacers have a total cross section of 145.3 cm $^2$  and a volume of 848.5 cm $^3$ .

The void between the tanks is filled with glass beads 10 microns in diameter. The porosity of the beads is 36 percent. One junction of a thermocouple loop is cemented onto the surface of each aluminum plate so that the temperature difference between the inside surfaces of the aluminum plates (or the temperature difference across the glass beads) can be measured directly.

If water of temperature, T1, is circulated through tank one and water of temperature, T2, is circulated through tank two, then the heat flowing from tank one to tank two (T1 > T2) can be expressed by:

$$G = (k/1)(T1 - T2)$$

Where G is the heat flow in W  $m^{-2}$ , k is the thermal conductivity of the water glass bead mixture 0.94 W  $(m \text{ OK})^{-1}$  and 1 is the distance between the plates (5.04 cm).

The heat flow is related to the mV signal of the transducers placed in the glass bead water mixture.

## 7. SOFTWARE DESCRIPTION

Two categories of software will be considered. The first consists of programs written for the NEC personal computers that were used for field data acquisition, data transfer, and data acquisition system testing. The second consists of a series of programs used for post-experimental data processing, including energy and radiation balance calculations, plots and printed summaries used in this report.

Listings of the various programs are given in Appendix 9.8. All software is still in the development stages, and as such is not free from errors, nor have all the refinements been incorporated to make their operation "user friendly". This is especially true of the auxiliary, supporting software. However, based on the excellent field performance of the primary data acquisition and processing program SAMP.BA, it is felt that the software is basically sound.

## 7.1 Data acquisition (SAMP.DO, INDATx.DO)

Data acquisition and field procession was controlled by program SAMP.BA, a BASIC program written for the NEC portable computer. This program, listed in Appendix 9.8.1, is largely self documenting. Statements 1000 to 1192 constitute the main program, with control of subroutine calls routed through a jump table in lines 100 to 300.

The program is customized for a particular location, system, and set of sensors through the use of an input file named "INDATx.DO", where x was an identifier set equal to the particular system number. Files INDAT1.DO through INDAT9.DO for the four systems used in the present experiment are listed in Tables 7.1 to 7.4. Control parameters set by files INDATx.DO are partially identified in lines 1, 3 and 5, and the last two columns of the actual file, or by comparison with program lines 9110-9195 where the data is read by SAMP.BA. A decription of these identifiers is found in Table 7.5.

The psychrometer separation and site elevation are included in the INDAT files. A standard atmosphere (101.3 kPa) is assumed in the calculation of atmospheric pressure (P), which is then corrected for altitude using a lapse rate of -0.01055 kPa m<sup>-1</sup>.

Table 7.1. Input file for station 1 (W).

M N1 N2 N3 N4 N5 N8 GO M7 18, 30,30, 1,30, 3, 0, 2,16 HG HOME REF 01 02 RC NCRTD 9.997,200.7,7, 0,264.94,159.96,.4981466,9 DELZ ELEV CSOIL DZ REF HOME 1.00, 315, .27, 0.05, 0, 7 DESC. CN RG GAIN BIAS TYPE SER. NO. 1, 2, 30.742, 0, 4 G 16 22.36, ٥, Q **Q86004** 2, ٥, 4 Ο, З, 2, 82.13, 4 Kdn 3750 2, 4, 82.92, ٥, 4 Kup 3701 5, 2, 153.39, 4 D 1577 0, 6, 11.85, ٥, 4 Qdn THR86004 0, 7, 2, 1.00, ο, 6 Home ٥, 8, 3.488, 0, 3 DIR 1 GILL 1, 499.96, Ο, 9, 2 TAT 11 3/4 10, 1, 500.00, 2 TWB 11 5/6 0, Ο, 12 3/4 11, 1, 500.00, 2 TAT 12, 1, 500.01, Ο, 2 TWT 12 5/6 13, 3, 301.62, 2 TS 3000HW Ο, 14, 0, 100, 2 Tthr 86004 ٥, 15, 0, 0.2027, 0.7, 4 U GILL1 16, 0, 12.28, 0, Qup THR86004 INDAT7.DO 15:33 1/16/87 BASED ON INDAT8.DO OF 5/17/86

Table 7.2. Input file for station 7 (S).

M N1 N2 N3 N4 N5 N8 GO M7 18, 6,30, 1,30 3, 2, 2,16 LG HG HOME REF 01 02 RC NCRTD 10.0,193.3,7, 0, 264.67,160.54,.49829,9 REF DELZ ELEV CSOIL DZ HOME 1.00, 315, .15, 0.05, ο, RG GAIN BIAS TYPE DESC. SER. NO. CN 30.293, 0, 4 G 76 1, 2, ٥, Q 2, ٥, 22.81, 4 086021 2, Kdn 773743 З, 80.88, 0, 4 ٥, 773741 80.45, 4 Kup 4, 2, 2, 6712 5, 88.90, ٥, 4 D 6, ο, 16.63, ٥, 4 Qdn PYR86002 1.00, 6 Home 7, 2, ٥, 3 DIR 73 GILL 8, ٥, 3.837, 0, Ο, 2 71 3/4 9, 1, 499.89, TAB 10, 1, 500.10, 2 71 5/6 ٥, TWB 11, 1, 500.03, 2 TAT 72 3/4 0, 2 72 5/6 12, 1, 499.97, ٥, TWT .13, 3, 302.22, 2 0, TS 3000HW 14, 0, 100, 2 TQ PYR86002 ο, 0.1924, 0.7, 15, 0, 4 U 73 GILL QUP 16, 0, 15.19, 0, 4 PYR86002 INDAT7.DO 1541 11/04/86 BASED ON INDAT8.DO OF 5/17/86

Table 7.3. Input file for station 8 (E).

M N1 N2 N3 N4 N5 N8 G0 M7 18, 6,30, 1,30 3, 2, 2,16 RC NCRTD LG HG HOME REF 01 02 10.0,199.9,7, 0,264.55,160.40,.49877,9 DELZ ELEV CSOIL DZ REF HOME 1.00, 315, .27, ٥, 7 0.05, DESC. CN RG GAIN BIAS TYPE SER. NO. 2, 39.03, ٥, 4 G 86 1, 0, 4 **Q86022** 22.25, 2, Ο, Kdn 4 838771 2, 84.36, Ο, З, 838751 2, 4 Kup 4, 85.09, 0, 5, 2, 92.49, 0, 4 D 6710 Thr86003 6, 0, 4 Qdn Ο, 12.66, 6 Home 7, 2, 1.00, ٥, 1.340, 0, 3 DIR 83 GILL Ο, 8, 2 TAB 81 3/4 9, 1, 499.65, Ο, 81 5/6 10, 1, 499.71, 2 TWB 0, 2 82 3/4 TAT 11, 1, 500.31, 0, 2 82 5/6 12, 1, 500.23, 0, TWT 13, 3, 302.58, 2 TS 86 0, THR 86001 14, 0, 100, 2 TQ 0, 83 FRIT 0.2473,0.3, U 15, 0, 4 16, 0, 12.26, 0, QUP THR86003 1550 11/04/86 INDAT7.DO BASED ON INDAT8.DO OF 5/17/86

Table 7.4. Input file for station 9 (N)

M N1 N2 N3 N4 N5 N8 GO M7 18, 6,30, 1,30 3, 2, 2,16 HOME REF 01 02 RC NCRTD HG 10.0,200.0,7, 0,264.67,159.96,.49909,9 DELZ ELEV CSOIL DZ REF HOME 1.00, 315, .27, 0.05, 0, GAIN BIAS TYPE DESC. CN RG SER. NO. 30.516, 0, G 1, 2. 4 96 22.00, 0, 2. 4 0 **Q86023** 0. Ο, 4 Kdn 001 З, 2, 82.15, 4, 2, 82.55, 0, 4 Kup 60294 1579 5, 2, 167.90, 0, 4 D 12.89, 0, 4 .Qdn Thr6001 6, 0, 2, 7, 1.00, 0, 6 Home 0, 1.10, 0, 3 DIR 93 GILL 8, Ο, 2 TAB 71 3/4 1, 500.10, 9, Ο, 2 TWB 71 5/6 10, 1, 499.93, 11, 1, 499.88, Ο, 2 TAT 72 3/4 Ο, 2 TWT 12, 1, 500.06, 72 5/6 2 TS 13, 3, 301.38, 96 Ο, 14, 0, 100, Ο, 2 TQ THR 86001 15, 0, 0.0905, 0.3, 4 U 93 FRIT 12.24, 0, QUP 16, 0, 4 THR86001 INDAT7.DO 1554 11/04/86 BASED ON INDAT8.DO OF 5/17/86

Table 7.5. Description of INDATx.DO control files used in program SAMP.BA.

- M Total number of variables in each data record
- N1 Minutes in each averaging period (between Bowen ratio interchanges)
- N2 Number of seconds between samples (0 < N2 < 59)
- N3 Maximum number of records allowed in memory storage buffer (calculated in program line 9265)
- N4 Minutes between data output to cassette tape (Changed in the program into N4/N1, which is the number of data records written to the cassette each access.
- No Number of times each analog channel is sampled before the value is saved. This allows for a longer settling time for the A/D converter when sampling low level signals using the on board amplifier.
- N8 Number of minutes samples are not taken after the Bowen ratio interchange device has operated to allow temperatures

to come into equilibrium.

- GO Not used
- M7 Total number of analog and digital inputs being sampled (M7 = M - 2; 2 variables are used to store date and time).
- LG Gain of low range (mv/AD unit)
- HG Gain of high range (mv/AD unit). Selected by adding 32 to the channel number.

HOME Channel number of AEM Home signal.

- REF Channel thermocouple reference connected to (not currently in use)
- Of Offset #1 (mv). Selected by adding 16 to the channel number.
- 02 Offset #2 (mv). Selected by adding 48 to the channel number.
- RC(1) Value of constant current through dry and wet bulb resistance temperature elements (ma).
- NCRTD Channel number of the first resistance temperature element

CHAN C(K) Array of channel numbers

RANGE C1(K) 0 = Lo gain -adding 0 to chan. no.

1 = Hi gain, offset 1 -adding 16 to chan. no.

2 = Hi gain, no offset -adding 32 to chan. no.

3 = Hi gain, offset 2 -adding 48 to chan. no.

GAIN G(K) mv gain (eng. units/mv)

BIAS B(K) bias (eng. units)

TYPE N(K) 1 = type K thermocouple

2 = resistance temperature element

3 = wind direction

4 = linear calibration

5 = digital input

6 = Home signal

DESC. XS Used in data file for description only

In addition, the following quantities are calculated in connection with the above control parameters.

- G2(K) mv gain for each channel
- B1(K) offset for each channel (if used, otherwise zero)
- C1(K) This is converted to the actual channel number plus the offset for use in the A/D routine

NRTD The number of resistance temperature elements

NWD not used

NDIG number of digital channels

NANLG number of analog channels

## 7.2 Data transfer (READT2.BA)

The procedure used for reading cassette data tapes in the field used a combination of the ROM-resident communications program called TELCOM, and the BASIC program READT2.BA. TELCOM was used to initially set up the receiving computer, in this case a AT compatible microcomputer using DOS operating system. The NEC computer is configured as a terminal, and connected to the RS 232 port on the AT. Cross Talk software was used on the AT to capture the transmitted files. READT2.BA was then used to transmit the data.

## 7.3 Test Programs (ADCTST.BA)

A program was developed for use in testing the operation of the data acquisition system, ADCTST.BA. The ADCTST.BA (Appendix 9.8.6) uses the built-in serial port driver. Communication with the ADC-1 from a BASIC program via the standard serial port driver uses INP and OUT statements.

7.4 Post Experimental Data Processing and Data Conversion From Raw to Engineering Units (SAMPE.BAS)

The second series of programs were developed for initial post-experimental data processing, including energy and radiation balance calculations, plots and printed summaries used in this report. They are coded in Microsoft BASIC 5.2, and were intended to be compiled and run using the Microsoft BASIC compiler to reduce execution time. The data conversion (SAMPE.BAS) and energy/radiation balance processing (SAMPP.BAS) programs are based in part on the field sampling and analysis program SAMP.BA (Section 7.1.1). All programs are controlled by an input file named PDS.FIL which contains values of certain control parameters, an identification label, and a list of file names to be processed (Table 7.6). The meaning of the control parameters varies, depending on exact program involved.

Table 7.6. Sample contents of control file PDS.FIL.

0,4,0,B:,D:,.MF,P Energy balance, 6 minute data (SAMPP 1/12/85)S10929,S50929,S30929G,S40929T,S20929,END

The ASCII raw data files were edited using a text editor so that each contained one day's data for one data system, starting and ending at 0000 hours. Since an average was stored every 6 minutes during data collection, each file contains a maximum of 241 records. Using this data as input, SAMPE.BAS (Appendix 9.8.8) converts the raw data (in A/D units) to engineering units (e.g. oC, m s-1, etc.). System and time specific data is found in lines 9300 - 9400, lines 6300 - 6400 (analogous to lines 9000 - 9106 and 9110 to 9195 in SAMP.BA) and lines 6200 - 6300. The identical files used in the field analysis (Tables 7.1 to 7.5) are used with this program. The data is stored in a BASIC random file in compressed binary format.

# 7.5 Energy balance processing (SAMPP.BAS)

SAMPP.BAS (Appendix 9.8.9) uses the output from SAMPE.BAS to compute the radiation and energy balance. The same basic calculational algorithms as those in the field programs are used, with some minor additions. The most significant of these was the inclusion in the soil heat flux term of the energy storage in the layer of soil above the heat flow transducer. Others include the setting to zero of small amounts of spurious negative shortwave radiation which occasionally occurred at night, the shadow band correction for the diffuse radiometer, the processing of the AEM "home" signal, and a diagnostic routine in development to detect a drying wet bulb. These changes should be considered in any reanalyses of the data.

# 7.6 Data Plotting and 30 Minute Summary Listings

The resulting radiation and energy balance data were then averaged for 30 minute periods, and the results plotted were plotted and/or printed in summary listings. Examples of programs used for this purpose are included in Appendix 9.8.10.

SUMMARYE.BAS prints a table of 30 minute averages and totals for a 24 hour period. As input it uses either the 6 minute data created by SAMPP.BAS, in which case the 30 minute averages it creates are stored on a summary disk file, or it uses the 30 minute average created by a prior run of SUMMARYE.BAS to print the table only. This choice is determined from the value of the flag ICFLG (the first parameter in file PDS.FIL; Table 7.7). Sample programs which produce line printer plots of the radiation and energy balance data are reproduced in Appendices 9.8.11 and 9.8.12)

A spreadsheet called SMART was used to create the 30 minute

average files and the graphs included in this report.

# 8. RESULTS

# 8.1 History of Data Records

During the first week some equipment difficulty was experienced. They included: the data system board shorting against the chassic on system 1; a wire shorting the exchange mechanism on system 7 which burned out the input switch for the home signal; one of the fans stuck some time during the week on system 9; and a tape recorder battery connected in reverse during a battery change. These problems were solved by the end of the first week and all stations were operating properly during the second week. A rodent cut the wind vane wire on the south slope system some time during the second week.

## 8.2 Energy and Radiation Balance Data Listings

Listings of the 30 minute averages, and various totals or averages of the energy and radiation balance data plus other environmental data are present in Attachment 1 for the first week and in Attachment 2 for the second week. The time represents the preceding 30 minute period. All times are CDST.

# 8.3 Plots of Energy Balance Data

Plots of the 30 minute average energy balance data are present in Attachment 3 for the first week and in Attachment 4 for the second week. The averages are plotted at the time representing the preceding 30 minute period. All times are CDST.

## 9. APPENDICES

## 9.1 Sensor Wiring Diagram

The wiring of all sensors to and through the current housing box located below the data system to the data system is shown on the following page. The wires are color coded as follows:

B, black

Br, brown

Gr, green

Gy, gray

O, orange

R, red

T, tan

W, white

Y, yellow

Other codes or symbols are defined as:

Q\*, net radiation
THR, total hemispherical radiometer
THRT, temperature sensor of THR
K , global solar radiation
K , reflected solar radiation
cur, current

Figure 9.1. Energy balance station sensor wiring diagram (see following page)

- Gr

6 7

ORIGINAL PAGE IS

OF POOR QUALITY

## 9.2 AEM Wiring Diagram

The wiring for the automatic exchange mechanism is shown on the following page. The wires are color coded as follows:

B, black

Br, brown

Bu, blue

Gr, green

Gy, gray

O, orange

P, pink

R, red

T, tan

W, white

Y, yellow

Other symbols used are defined as:

P#, plug

R#, relay

S#, Switch

Switch 1 is used to turn on the power to the AEM. Relay 2 controls the direction of rotation of the drive motor by controlling the polarity of the applied voltage with S7 and S8. Relay 2 can be accuated automatically from the data system through R1 and S10 or manually with momentary S2. Switches 4 and 5 limit the length of travel by interrupting the power to the drive motor. A line fuse (2 amp) is located in the power line to the drive motor.

Switches 3 and 6, called the home switches, indicate the position of the AEM by reversing the polarity of the voltage drop across a 30 ohm (some AEM's have 10 ohm) resistor. Current 1 is applied to this resistor via pins 5 and 6 while the voltage is sensed via pins 1 and 2 of DE9P #7. The convention used is the signal is + when the right hand psychrometer (looking from the drive motor end) is down, - when it is up and 0 when neither psychrometer is in home position. NOTE: BE SURE TO CONNECT THE 12 VDC PROPERLY. THE RED WIRE IS + AND BLACK WIRE IS -. THE AEM WILL NOT FUNCTION AND THE FAN WILL RUN BACKWARDS IF THE VOLTAGE IS REVERSED.

# 9.3 Auxiliary Module Description and Operation

## 9.3.1 Current Source and Offset Voltage Wiring Diagram

The wiring of the current sources and the offset voltages is shown on the following page. The current sources and offset voltages are located on a board in the box under the data system. The wires are color coded as follows:

B, black

Br, brown

Gr, green

Gy, gray

O, orange

R, red

T, tan

W, white

Y, yellow

Three 0.5 mA current sources were utilized with each data system. Current source 1 supplied for the RTD's and the home signal. The output of this source is the brown wire attached to pin 24 which is connected to socket 1 pin 1. The return line is a tan wire attached from socket 7 pin 6 and is attached to pin 23. Pins 1 and 2 are tie points to monitor current 1. Current source 2 supplied the current for the wind vane and the vertical soil temperature probe. Its output (pin 22) is a yellow wire which is attached to socket 3 pin 3. The return line is a tan wire from socket 6 pin 2 and is attached to pin 21.

Pins 3 and 4 are tie points to monitor current 2. Current source 3 supplied the current for the offset voltages. The offset voltages are terminated on pins 16, 17, and 18. Pin 16 (red wire) is the plus side of the small offset voltage, pin 17 is the negative side. Pin 18 (white wire) is the plus side of the large offset voltage and pin 17 is the negative side of this offset voltage. The offset voltages can be monitored via pins 9 and 10 which are attached to channel 15. Voltage for current sources 1 and 2 was supplied by a 12 Vdc battery attached to pins 7 and 8 via a black jacketed cable. Voltage for the offset voltages was supplied through pins 11 and 12 via a orange jacketed cable attached to a 6 Vdc battery. Two voltage regulators are also located on this board. The 5 Vdc regulator supplied the voltage for the data acquisition system via pins 20 and 19. The 6 Vdc regulator supplied voltage to the computer via pins 5 and 6 which have a gray jacketed wire attached to them.

Two additional tie points provided voltage to the anemometer (socket 3 pins 7 and 8) and to the temperature sensor in the total hemispherical radiometer (socket 5 pins 3 and 4).

# 9.3.2 Current Source and Offset Voltage Adjustment

The current source circuit is described in the National Semiconductor Application note LM- 334 3-Terminal Adjustable Current Source. Each current source as two adjustments, Rset and R1. Rset is initially set using an ohmmeter to 285 ohms. This value is based on minimizing the temperature coefficient of the current source. R1 is then adjusted for each (about 2404 ohms) so that the current is 0.500 ma.



Figure 9.2. Automatic Exhange Mechanism Wiring Diagram.



Figure 9.3. Current source and offset voltage wiring diagram.

The nominal magnitude of the offset voltages are set by the precision resistors in series with potentiometers R3 and R4. These voltages can be adjusted +12.5 mV using these potentiometers.

- 9.4 Operation of the Shadow Band
- 9.4.1 Mounting the Shadow Band

The procedures for the operation of the shadow band are adapted from Publication 8105-22 from Li-Cor, Lincoln, NE. First one has to mount the base of the shadow band on a horizontal pipe with the clamp supplied. The horizontal pipe must be oriented true north and south. A slight error in orientation will cause the sun to shine on the sensor during the day. Next level the base using the three socket screws in the base. After the base is leveled lock it in place with the three bolts in the base.

The rod attaching the shadow band to the base is now adjusted for the latitude of the site. Latitude marks are scribed on the vertical curved surface attached to the base. The upper portion of the rod should be set at the correct latitude.

The sensor platform is mounted on a gimbal and should be leveled in both directions. After the sensor platform has been leveled, the shadow band should be adjusted for the solar declination (See 9.4.2). The upper surface of the block containing the thumb screw should be set on the proper declination angle which is scribed on the upper surface of the The declinations are marked every 5 degrees and labeled every 10 degrees. After these adjustments have been made, the shadow band should cast a shadow over the sensing element. this is not the case, check the latitude and declination angles. Also make sure that the horizontal pipe and rod are oriented true north and south. This can be done by observing the shadow cast be the pipe and rod. At solar noon (See 9.4.3) the shadow should be directly below the rod or pipe. A plumb bob attached to a piece of string will help to determine the location of the shadow.

- 9.4.2 Shadow Band Adjustment
- 9.4.2.1. Declination angle versus time of year.

The declination angle can be approximated as follows:

=  $sin[(360^{\circ}/365 \text{ days})(n-n_{ve})]$ 

where D = declination angle, E = obliquity of the ecliptic (=23.45°, n = day of year and  $n_{ve}$  = day of vernal equinox = 81. Then

= 23.45 sin [0.9863(n - 81)]

or

 $= 23.45 \sin [0.9863(n + 284)]$ 

Example 1:

Date: March 16, 1981 (n = 75)

- = 23.45 sin [0.9863(75 + 284)]
- = 23.45 sin [0.9863(359)]
- $= 23.45 \sin 354^{\circ}$
- = -2.40

9.4.2.2 Shadow band adjustment versus time of year and latitude

The shadow band projects a shadow of varying widths upon the sensor diffusing eye depending upon the time of year and latitude. In addition, the declination angle of the sum changes at different rates depending on the time of year. Both phenomena need to be considered when determining how ofter to adjust the band.

= Declination angle - 23.45 sin [0.9863 (n +284)]

Rate of declination angle change

d /dn = 23.45 cos [0.9863 (n +284)] (0.9863) 2Prad/360° = 0.404 cos [0.9863 (n +284)] degrees/day

The maximum rate of change is 0.404 degrees/day and occurs when n=81 (vernal equinox) and n=263 (autumnal equinox). The minimum rate of change is 0 degrees/day and occurs when n=172 (summer solstice) and n=355 (winter solstice).

The angle subtended by the shadow band on the sensor diffusing eye is

 $F = 2 \tan -1[(w \cos D - d \cos (F - D)/(2r/\cos D)]$ 

for  $(F - D) < 90^\circ$ 

where D = declination angle, w = width of shadow band, d = sensor diffusing eye diameter, r = band radius and F = latitude.

For a perfectly aligned shadow band, one should change the band as follows:

- 1. Determine the day of the year (n).
- 2. Determine the latitude (F).
- 3. Determine the declination angle (D).
- 4. Determine the rate of declination angle change dD/dn.
- Determine the sngle subtended by the band (F).
- 6. Determine the number of days shadowed (Ds) as follows:

Ds = (F - Fs)/(dD/dn)

where Fs = angle subtended by the sun  $(-0.5^{\circ})$ . However, let Fs =  $1^{\circ}$  as a safety factor.

## Example 2:

Date: March 16, 1981 (n = 75)

- 2. 0 = 410
- 3. =  $23.45 \sin [0.9863(75 + 284)] = -2.429$
- 4.  $dD/dn = 0.404 \cos [0.9863 (75 +284)] = 0.402 degrees/day$
- 5.  $F = 2 \tan -1 [(0.5 \cos (-2.42) 0.307 \cos (41-(2.42))]$ ((2)(3)/cos (-2.42))

 $F = 5.27^{\circ}$ 

6. Ds = 5.27° - 1° = 10 days (for a perfectly 0.402 deg/day aligned band)

A more realistic value for Ds in actual operation would be about 1/2 of Ds or 5 days.

9.4.3 Equation of Time and Time of Solar Noon

Example: Compute the time of solar noon at longitude 81° 38' West on September 22, 1980.

- 1. Determine the day of year (n).
  September 22, 1980 is day number 266.
- 2. Determine West longitude in hours (H).

H = 81° 38' West = 81.633° X 24 hours 360° = 5.4422 hours = 5 hours 27 min

 Determine time elapsed (t) in days since January O, O hour UT

t = n + (UT + H)/24

where UT = universal time = 12 for solar noon

t = 266 + (12 + 5.4422)/24 = 266.72676

4. Determine equation of time (EQT)

EQT =  $-7.64 \sin (0.9893t) + 0.56 \cos (0.9863t)$ -9.37 sin [2(0.9863t)] - 2.83 cos [2(0.9863t)] min.

EQT = -7.64 sin (0.9893(266.73)) + 0.56 cos (0.9863(266.73)) -9.37 sin [2(0.9863(266.73))] - 2.83 cos [863(266.73))] min. = 8.0 min.

The above example uses the EQT for the year 1980. This should provide adequate north-south alignment for any year. The current EQT can be obtained from the Almanac for Computers, 1980,

Nautical Almanac for computers, 1980, 34th and Massachusetts Avenue, N. W., Washington, DC 20390.

5. Determine local mean time (LMT)

LMT = 12 h 00 min - 8.0 min = 11 h 52 min

6. Determine universal time (UT)

UT = LMT + H = 11 h 52 min + 5 h 27 min = 17 h 19 min

7. Determine local time (LT)

LT = UT - dT

where dT is the difference in time zones between H and Greenwich, England.

= 17 h 19 min n (Eastern Daylit Time)

The time of solar noon on September 22, 1980, at a longitude of 81° 38' West is 1:19 pm (EDT).

## 9.4.4 Data Reduction

Use of a shadow band necessitates applying a correction factor to the data to allow for that part of the total diffuse radiation which is obstructed by the band. In addition, a correction may be necessary if the spectral response of the sensor is not ideal due to the variation of spectral irradiance between blue sky and various cloud conditions (as in the case only of the LI-200SB pyranometer).

The problem of correcting the data should be approached both theoretically and experimentally, although neither approach is entirely satisfactorly in itself because the diffuse radiation varies over the dome of the sky (International Energy Agency, 1980).

Table 9.1 contains theoretically derived correction factors for the band obstruction for isotropic sky conditions on the 16th of each month. An additional 4% additive correction is included in the table values to account for the effects of non-isotropic distribution of the radiance over the sky. It should be realized that these corrections are approximations for general sky conditions and are not a substitute for corrections derived experimentally at a given location. The measured values of diffuse radiation should be multiplied by the appropriate correction factor.

The correction factor for clear sky conditions can be determined experimentally by comparing the diffuse measurement (as measured when the shaddow band is in its normal position), to the diffuse measurement when a shadow disk is used to shadow the

sensor instead of the sadow band. The difference between these two measurements is the portion of diffuse radiation that is obstructed by the shadow band (International Energy Agency, 1980).

Table 9.1. Correction factors for solar radiation obstructed by the shadow band.

| Lat.º |      | Feb<br>Aug | Mar<br>Sep | Apr<br>Oct | May<br>Nov |      |      | Aug<br>Feb | •    | Oct<br>Apr | Nov<br>May | Dec<br>Jun |
|-------|------|------------|------------|------------|------------|------|------|------------|------|------------|------------|------------|
| 0     | 1.12 | 1.15       | 1.17       | 1.15       | 1.14       | 1.12 | 1.12 | 1.14       | 1.16 | 1.15       | 1.14       | 1.12       |
| 10    | 1.11 | 1.14       | 1.16       | 1.16       | 1.14       | 1.13 | 1.14 | 1.15       | 1.16 | 1.14       | 1.12       | 1.11       |
| 20    | 1.10 | 1.12       | 1.15       | 1.16       | 1.15       | 1.14 | 1.14 | 1.15       | 1.15 | 1.13       | 1.11       | 1.09       |
| 30    | 1.09 | 1.11       | 1.14       | 1.15       | 1.15       | 1.14 | 1.15 | 1.15       | 1.14 | 1.11       | 1.09       | 1.08       |
| 40    | 1.07 | 1.09       | 1.12       | 1.14       | 1.15       | 1.14 | 1.15 | 1.15       | 1.13 | 1.10       | 1.08       | 1.07       |
| 50    | 1.06 | 1.08       | 1.11       | 1.13       | 1.14       | 1.14 | 1.14 | 1.14       | 1.11 | 1.09       | 1.07       | 1.05       |
| 60    | 1.05 | 1.06       | 1.09       | 1.11       | 1.14       | 1.14 | 1.14 | 1.14       | 1.11 | 1.09       | 1.07       | 1.05       |
| 70    |      | 1.05       | 1.07       | 1.10       | 1.13       | 1.15 | 1.14 | 1.11       | 1.09 | 1.05       | 1.04       |            |
| 80    |      |            | 1.05       | 1.09       | 1.14       | 1.15 | 1.14 | 1.11       | 1.07 | 1.04       |            |            |
| 90    |      |            |            | 1.09       | 1.14       | 1.16 | 1.15 | 1.11       | 1.06 |            |            |            |

The LI-COR LI-200SB pyranometer sensor does not have an ideal spectral responsivity curve over the spectral irradiance range of blue sky and cloud coverrcf the following were known:

- 1) Spectral irradiance of the sky ceor calibration:
- 2) Spectral irradiance of the sky conditions at the time of data collection;
- 3) LI-200SB pyranometer relative spectral responsivity curve. In reality, this is not practical because of the difficulty and expense involved in obtaining spectral correction factor experimentally. This can be derived from these measurements:
- G: Global solar radiation (total sun plus sky radiation on a horizontal surface) using the LI-200SB pyranometer.
- D1: Diffuse solar radiation (sky radiation) using the LI-200SB and 2010S Miniature Shadow band (corrected for band obstruction).

De: Diffuse solar radiation using an Eppley Precision Spectral Pyranometer (PSP) and an Eppley shadow band

(corrected for band obstruction).

On Figure 9.5, values of D1/G (%) are plotted on the x-axis and the corresponding values of D1/De (%) are plotted on the y-axis. The following equation is used to make the spectral correction of the LI-200SB pyranometer. All measurements were made in W  $m^{-2}$ , although other units can be used since the correction factor is dimensionless.

Dc = 
$$\frac{D1}{1.17 - \frac{1}{1.2 + 11.8 (x)}}$$

where Dc is the corrected diffuse radiation and x = D1/G. The curve represented on Figure 9.4 is a plot of the denominator in the above equation.

This equation applies only to solar radiation measured out doors and not greenhouse, growth chamber, artificial lighting conditions or under a plant or tree canopy.

Example: Calculate the corrected diffuse solar radiation at a latitude of 30° N during March, where G=800~W~m-2 and the diffuse component measured by the LI-200SB and 201055 = 60  $W~m^{-2}$  (uncorrected for band obstruction).

1. Correction for band obstruction (Table 9.1):  $1.14(60) = 68.4 \text{ W m}^{-2}$ .

2. Spectral correction:

$$D_{C} = \frac{68.4}{1.17 - \frac{1}{1.2 + 11.8(68.4/800)}} = 95.4 \text{ w m}^{-2}$$

Corrected diffuse radiation  $(D_C) \approx 95 \text{ W m-2.}$ 

A plot of the corrected diffuse radiation determined by the LI-COR pyranometer versus diffuse radiation determined with the Eppley PSP pyranometer is given in Figure 9.5.

IMPORTANT: When using the LI-200SB Quantum Sensor or LI-200SB Photometric Sensor, only the band obstruction correction is needed since these ensors have spectral responsivity curves that match very closely their respective ideal response curves.



Figure 9.4. Spectral correction for the LI-200SB pyranometer. Values of D1/G (%) are plotted on the x-axis and the corresponding values of D1/De (%) are plotted on the y-axis.



Figure 9.5 Plot of the corrected diffuse radiation determined by the LI-COR pyranometer versus diffuse radiation determined with the Eppley PSP pyranometer.

## 9.5 ADC-1 Wiring Diagrams



Figure 9.6 ADC-1 communications and analog to digital conversion section.



Figure 9.7. Overlay of offset voltage modifications to ADC-1.

# ORIGINAL PAGE IS OF POOR QUALITY



Figure 9.8. ADC-1 analog multiplexer, digital inputs and controlled outputs.

<sup>3</sup>/<sub>3</sub>



Figure 9.9. ADC-1 line carrier (BSR) control logic.

## 9.6 Surface Energy Balance Station Operating Instructions

## 9.6.1 Sample Screen Display with Channel ID's

| == |      |       |      |      |      |      |   |
|----|------|-------|------|------|------|------|---|
| 1  | CHAN | ENG   | CHAN | ENG  | CHAN | ENG  | i |
| 1  | 1    | G     | 2    | Q×   | 3    | Kdn  | 1 |
| I  | 4    | Kup   | 5    | D    | 6    | THRt | 1 |
| 1  | 7    | Home  | 8    | Udir | 9    | Tar  | 1 |
| 1  | 10   | Twr   | 11   | Tal  | 12   | Twl  | 1 |
| ı  | 13   | Tsoil | 14   | Tthr | 15   | U    | i |
| 1_ | 16   | THRb  |      |      |      |      | 1 |

## Screen Display legend

| Chan | Abbr  | Description                          | Unita     |
|------|-------|--------------------------------------|-----------|
| 1    | G     | = soil heat flux                     | ₹₩ m-2)   |
| 2    | Q.#   | = net short and long wave radiation  | (W m-2)   |
| 3    | Kdn   | = downward shortwave radiation       | (W m-2)   |
| 4    | Kup   | = upward shortwave radiation         | (W m-2)   |
| 5    | D     | = downward diffuse (sky) radiation   | (W m-2)   |
| 6    | THRŁ  | = signal from top of total           |           |
|      |       | hemiapherical radiometer             | (₩ m-2)   |
| 7    | Home  | = AEM home signal                    | (RV)      |
| 8    | Udir  | = wind direction                     | (degrees) |
| 9    | Tar   | = air temperature, right side        | (Celsius) |
| 10   | Twr   | = wet bulb temperature, right side   | (Celsius) |
| 11   | Tal   | = air temperature, left side         | (Celsius) |
| 12   | Twl   | = wet bulb temperature, left side    | (Celsius) |
| 13   | Tsoil | = soil temperature, average top 5 cm | (Celsius) |
| 14   | Tthr  | = temperature of THR                 | (Celsius) |
| 15   | บ     | = wind speed                         | (m s-1)   |
| 16   | THRb  | = signal from bottom of total        |           |
|      |       | hemispherical radiometer             | (W m-2)   |

# 9.6.2 Energy Balance Station Maintenance Checklist

Daily maintenance and inspection is necessary in order to assure proper operation of the energy balance stations. The following checklist is designed to aid in systematic operation.

| 1. | <br>Observ | e aya | stem o | oper | ration | 1 |
|----|------------|-------|--------|------|--------|---|
|    | <br>Check  | compu | iter o | disp | olay   |   |
|    | <br>Check  | time  | (set   | to   | MST)   |   |

2. \_\_\_\_ Water psychrometers
\_\_\_\_ Note water level in psycrometer reservoir (e.g.
1/2 full, 2/3 full, etc.)

|                | Left hand psychrometer Right hand psychrometer Refill bottles Before replacing bottle, squeeze it in inverted position until water no longer runs out after squeeze pressure is removed. Check feed tube position with gauge Insert feed bottle into psychrometer. If properly seated, bottom of bottle will be below lip of holder |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                | Battery check V Main storage battery. Replace if less than 11.5 V. V Offset battery V Recorder battery)                                                                                                                                                                                                                             |
|                | Automatic exchange system (AEM) operation<br>Observe AEM operation for at least two cycles<br>Check belt tension                                                                                                                                                                                                                    |
| NOTE:          | If for any reason the AEM is not operational, note the separation distance and height of the psychrometer pair for use in later analysis.                                                                                                                                                                                           |
|                | Radiation sensors Check shadow band; is Licor sensor in shade? Check dessicant in net (Q) and total hemispherical (THR) radiometers Clean radiometer domes if they are dirty                                                                                                                                                        |
| 6              | Record sky/cloudiness conditions                                                                                                                                                                                                                                                                                                    |
| <b>_</b>       | Program changes; should only be entered immediately after the system has written to tape to minimize data loss.                                                                                                                                                                                                                     |
| 9.6.3 Maintena | nce Equipment Checklist                                                                                                                                                                                                                                                                                                             |
| 1              | Distilled water                                                                                                                                                                                                                                                                                                                     |
| 2              | Blank cassette tape                                                                                                                                                                                                                                                                                                                 |
| 3              | Voltmeter                                                                                                                                                                                                                                                                                                                           |
| 4              | Paychrometer gauge                                                                                                                                                                                                                                                                                                                  |
| 5              | Paper towels/kleenex                                                                                                                                                                                                                                                                                                                |
| 6              | Black tape                                                                                                                                                                                                                                                                                                                          |

7. \_\_\_\_ Two-way radio 8. \_\_\_\_ Ruler \_\_\_\_ First aid kit 10. \_\_\_\_ Emergency storm shelter kit 11. \_\_\_\_ Rain gear 12. \_\_\_ Record book (13. \_\_\_\_ RAM cartridge) (14. \_\_\_\_ NEC battery pack) 15. \_\_\_\_ Tools \_\_\_\_level "/P. \_\_\_\_ compass \_\_\_\_ scotch locks \_\_\_\_ straight blade screwdriver \_\_\_\_ phillips screwdriver \_\_\_\_ wire cutters \_\_\_\_ pliers \_\_\_\_ 3/8 - 7/16 and 1/2 - 9/16 wrenches \_\_\_\_ sandpaper strips \_\_\_\_ rubber cement

# 9.6.4 Operating the data acquisition program SAMP.BA

9.6.4.1 Move the cursor to SAMP.BA on the menu and hit the "RETURN" key to begin program execution. Basic program operation from this point on is automatic and requires no operator intervention.

H

- 9.6.4.2 Six single keystroke commands have been implemented to control various system functions without interruption to data collection. These are activated by simply typing the single key as defined below. Five of the six commands are implemented in the current version of SAMP.BA.
- "R": Shifts the display to raw data units. The display remains in this mode until changed by the operator. Data is from last instantaneous sample.
- "E": Shifts the display to engineering units. The display remains in this mode until changed by the operator. Data is from last instantaneous sample. This is the default display.

- "C": Shifts the display to show the most recently computed energy and radiation balance. The display reverts to the previously selected option after the next sample is completed.
- "G": Shifts the display to show the air and wetbulb temperatures and gradients of the 30-second sample, present 6-minute average, past 6-minute average and the 12-minute average.
- "P": Directs program output to the parallel printer port as well as to the NEC display screen. WARNING: IF THIS OPTION IS SELECTED AND A PRINTER IS EITHER NOT IN-STALLED OR NOT ON LINE, THE PROGRAM WILL STOP AND DATA COLLECTION WILL BE TERMINATED.
- "O": Cancels the "P" command, directing program output to NEC display only.

## 9.6.5 Changing cassette tape

Data is recorded on standard audio tape cassettes. Tapes of longer playing time than C-90 are not recommended.

- a. Wait until the system is not writing to the tape, and ensure that adequate time is available before the system is scheduled to write data to the tape. This currently occurs on every hour and half hour.
- b. Depress the STOP/EJECT button to release the SAVE/LOAD function keys, and then a second time to eject the old tape cassette.
- c. Write the tape counter reading on the sticker on the upper left corner of the cassette, along with the date and time the cassette was removed. Ensure that the system number or site name (1 = PNL, 2 = SKIN, 3 = ESIDE, 4 = WSIDE and 5 = WPL) is written on the cassette.
- d. After writing the system number or site name, and current date and time on the new cassette, insert it into the recorder and shut the cover.
- e. Rewind the new cassette (the full reel should be to the left as you face the recorder).
- f. Reset the tape counter by pushing the black button to the right of the counter.
- g. Advance the tape past the leader using the FF key. A reading of 2 on the tape counter is sufficient.
- h. Simultaneously depress the SAVE and LOAD key, and the recorder is ready to accept data.

i. It is recommented that time be allowed for the operator to observe correct operation of the recorder. The signal from the computer can be heard by use of the MONITOR button in the lower left hand corner of the cassette.

Tit.

#### 9.6.6 Main battery maintenance

Battery life. Average current consumption of a station can be estimated by summing the current consumption for each component, taking into account the variable duty cycle for the psychrometer blower and tape recorder. The resulting average current drain is about 233 ma (Table 9.2). A 12 V battery with an 125 Ampere-hour capacity could be expected to last a maximum of 536 hours (125 Amp-hours/.585 Amps), or about 23.4 days. It is recommended that the battery be replaced when about 25% of this capacity remains, or in the case of the above example, after 16.8 days.

Table 9.2. Power consumption of the data acquisition system from a 12 Vdc power source. Efficiences of all regulators are included.

| Component            | Current (ma) | Duty<br>Cycle<br>(%) | Average<br>Current<br>(ma) | Power |
|----------------------|--------------|----------------------|----------------------------|-------|
| ADC-1                | 8            | 100                  | 8                          | 96    |
| Auxiliary module     | 7            | 100                  | 7                          | 84    |
| Computer (32k RAM)   | 75           | 100                  | 75                         | 900   |
| Cassette recorder    | 65           | 5                    | 3                          | 36    |
| Psychrometer blowers | 100          | 100                  | 100                        | 1200  |
| AEM                  | 500          | 8                    | 40                         | 480   |
| Totals               | 705          |                      | 233                        | 2796  |

#### BATTERY REPLACEMENT PROCEDURE

- a. Remove the battery covers of both the old and replacement battery, and place the batteries side by side.
- b. One at a time, remove the insulating cover from the spade lug on extra set of battery cables. Connect the black cable to the negative (-) terminal of the new battery, and then the red cable to the positive (+) terminal.
- c. One at a time, remove the battery cables from the old battery, covering the terminating spade lugs with the insulating covers.
  - d. Remove the old battery, replace the covers.

NOTE: Minimize the time that the two batteries are

connected in parallel, since connecting them in such a manner will tend to discharge the new battery.

#### 9.7 Reading Tape Cassettes

Raw data is saved on cassette tape. These tapes can be read and transmitted via NEC computer's serial port to another computer for processing using the program READT2.BA and the following instructions. These instructions assume that the receiving computer is a Sierra Data Sciences model SBC-100 computer (SDS) operation under the CP/M operating system.

#### On NEC:

- 1. Connect NEC computer in place of the terminal to the SDS.
- Put the NEC into terminal mode.
- 3. Move the cursor to "TELCOM" on the menu and hit "RETURN".
- 4. Set the serial port protocol to "8N82XN" using the "STAT" command (f.4 key).
- 5. Select TERM mode (f5 key). NEC is now acting as a terminal.

On SDS (using NEC as terminal):

- 6. Set the SDS computer to use XON/XOFF protocol using the GENMOD program (item 32 in the menu).
- 7. Insert proper floppy to store data on.
- 8. Type control C
- 9. Type D:
- 10. Type A:ED fname (invokes CP/M editor on file fname)
- 11. Type I (insert mode)
- 12. Type shift f5 twice to return control to NEC menu

On NEC:

13. Move cursor to READT2.BA; type RETURN.

(data is now transmitted).

(When the transmitted data fills the data buffer of the receiving computer, or the date changes, data transmission will cease and the program will stop and issue a buffer full message. If so, return the NEC to the terminal mode in TELCOM, and flush the data buffer or close the file and open a new one to store the data using the following procedure.)

#### On NEC:

- 14. Type CONTROL C (STOP key) when "Buffer full message" occurs.
- 15. Return to menu (shift 5)
- 16. Run TELCOM and TERM: by repeating steps 3 and 5

On SDS: (To flush buffer and continue data transfer)

Type CONTROL Z then RETURN 17.

(exits insert mode)

Type #W then RETURN 18.

(flushes buffer to disk)

Type I then RETURN 19.

(re-enter insert mode)

Return to menu (type shift 5 twice) 20.

#### On NEC:

- Move cursor to READT2.BA; type RETURN. (restarts transfer) 21. (Ending cassette reading. Note that at the end of information on the tape, the cassette recorder will continue to run, but no new data will update the screen.)
- Note time and date of las data record on display. 22.
- Type SHIFT and STOP simultaneously. (Response: ?IO ERROR 23. OK

- Return to menu (type shift f5). 24.
- Run TELCOM and TERM: by repeating steps 3 and 5 25.
- Type CONTROL Z then RETURN (exits insert mode) 26.
- Type E, then RETURN 27.

(saves file on disk D:)

- Type A:PIP C:=D:filename (backs up file on the C: disk.) 28.
- Repeat process for another tape. 29.

To check for successful operation, enter "TYPE fname" and RETURN to list the data file. Editing may now be accomplished using ED.COM or Wordstar in the (N)ondocument mode.

#### 9.8 Program Listings

The following programs are listed in this Appendix:

- (with cross reference listing) 9.8.1 SAMP.BAS
- 9.8.2 READT2.BA
- 9.8.3 ADCTST.BA
- 9.8.4 SAMPE.BAS
- (with cross reference listing) 9.8.5 SAMPP.BAS
- 9.8.6 SUMMARYE.BAS
- 9.8.7 PLOT4.BAS
- 9.8.8 PLOT5.BAS

Cross reference listings, included for some programs, consist of two parts. The first gives line numbers referenced in program statements such as GOSUB's and GOTO's (first column), and the line number(s) in which those references occur in succeeding The second gives an alcal list of all variables used in the program, followed by a list of line number(s) in which those references occur.

The pages of each listing are numbered consecutively starting at page 1, with the name of each program or cross reference listing printed at the top of the page with the page Cross reference listings are distinguished by the number.

suffix "CRF" instead of the "BA" or "BAS" used for the program lisings.

#### 10. REFERENCES

Fritschen, L. J. and J. R. Simpson: 1982. An automatic system for measuring Bowen ratio gradients using platinum resistance elements. 739-742. In: Temperature, its Measurement and Control in Science and Industry. Am. Institute of Physics.

Gay, L. W. and L. J. Fritschen: 1979. An energy exchange system for precise measurements of temperature and humidity gradients in air near the ground. In: Proceedings, Hydrology and Water Resources of Arizona and the Southwest. 9:37-42.

International Energy Agency. 1980. Task IV-Development of an insolation instrument package: An introduction to meteorological measurements and data handling for solar energy applications. DOE/ER-0084. pp.4-7 to 4-9.

```
Appendix 9.8.1 SAMPX.BA, A sampling program for the NEC computer.
10 ' PROGRAM SAMPX.BA FOR NEC 8201 AND ADC-1
                                                            6/8/84
2100
                                                101211/19/84
                       LAST MODIFIED (SAMP2)
15 '
                     LOWER VALLEY (PNL)
20 ′
      SYSTEM 1
25 ' USES CUSTOM INTP. SUBR. FOR COUNTERS
45 MAXFILES=3:CLEAR 100,61999!
50 CLS:SCREEN 0,0
55 DEFINT I-N
60 GOSUB 115:GOSUB 116
98
                                   TO START OF PROGRAM * *
99
        GOTO 1000
100 '
                         JUMP TABLE
105 '
110 '
                  ' INITIALIZE
115
      GOTO 9000
      GOTO 2100
                 ' MISC. CONSTANTS
116
                  ' CLOCK
                                                        1/21
      GOTO 500
120
                  ' SCREEN OUTPUT
125
      GOTO 300
                 ' E/RAD BALANCE OUTPUT
      GOTO 400
130
135
      GOTO 600
                 ' TC; MV TO C
      GOTO 700
                 ' SAMPLE A/D (3000)
140
                ' GET DIGITAL INPUTS
145
      GOTO 800
                 ' A/D TO MV CONVERSION
      GOTO 900
150
                 VECTOR WIND DIR.
      GOTO 1300
155
                 ' RTD, MV TO C
      GOTO 1500
160
                 ' DIGITAL OUTPUT
      GOTO 1600
165
                 ' BREB
      GOTO 1700
170
                 ' RADIATION BALANCE
175
      GOTO 1900
                 ' CONTROL PARAMETERS
180
      GOTO 9100
      GOTO 9200

    CALIBRATION FACTORS

185
                  ' MISC. FUNCTIONS
190
      GOTO 2000
                  ' A/D UNITS TO MV
195
      GOTO 950
      GOTO 12000 ' ERROR TRAPPING
200
205
      GOTO 1200
                  ' AUDIO CASSETTE DUMP

    PRINTER OUTPUT

210
      GOTO 2500
                  ' DIGITAL CASS. DUMP
      GOTO 1400
215
290 '
300 '
       DISPLAY SUMMARY
301
302 '
305 CLS:LOCATE 0,1
310 IF DSP THEN MCOL=4 ELSE MCOL=3
315 FOR I=1 TO MCOL
      IF DSP THEN PRINT "CHAN RAW "; ELSE PRINT"CHAN
                                                          ENG
317 NEXT:PRINT
320 FOR I=1 TO M7 STEP MCOL
      FOR K=I TO MCOL+I-1
322
        IF K>M7 THEN 335
323
        IF DSP THEN 326 ELSE 328
325
```

```
326
          PRINT USING "## ##### ";C(K);A(K);:GOTO 330
          PRINT USING "### #####.##";C(K);INT(1000*A1(K))/1000;
328
330
      NEXT:PRINT
335 NEXT
340 IF DSP THEN LOCATE 0,7:PRINT (C-OC)/N2;C-OC;C;
350 RETURN
400 '
401 '
          DISPLAY ENERGY, RAD BALANCE
402 '
405 CLS:GOSUB 120
407 LOCATE 0,2
410 PRINT "
                                              G"
                         E
                                В
                Н
415 PRINT USING F1s; H; E; B; Q; G
420 PRINT "
               KDN
                               LUP
                                              THR"
                        KUP
                                      LDN
430 PRINT USING F2s; KDN; KUP; LUP; LDN; THR
                TT
435 PRINT "
                                               DE"
                        TWT
                               E
450 PRINT USING F3s; T9; W9; E9; DT; DE;
455 LOCATE O,O:PRINT "
                                   DIR"
                           U
460 PRINT USING F1s; A1(17); A1(8);
465 RETURN
                      L
470 PRINT "
               CP
                              S
                                   GAMMA
                                           RHO HOME"
475 PRINT USING F4s; CP; XL/1E+06; S0*1000; G1*1000; RO; P1;
490 RETURN
499 '
500 CLOCK - HOURS/MINUTES/SECONDS (HR/MIN/SEC)
501 '
502 SEC=VAL(NIDs(TIMEs,7,2))
505 IF S8=59 AND SEC=0 THEN 570
510 IF S8<>SEC THEN 515 ELSE RETURN
515 LOCATE 23.0
520 PRINT TIMEs;" ";DATEs;
522 DSPs=INKEYs:IF DSPs="" THEN 545
525 IF DSP$=CHR$(27) THEN E2=1 ' ESC?
530 IF DSP$="T" THEN TPE=1
533 IF DSPS="R" THEN DSP=1:GOSUB 125
534 IF DSPS="E" THEN DSP=0:GOSUB 125
535 IF DSP$="C" THEN GOSUB 130
540 IF DSPS="P" THEN PRT=1
542 IF DSPS="O" THEN PRT=O
545 S8=SEC
550 HR=VAL(MIDs(TIMEs,1,2))
555 YR=VAL(MID$(DATE$,1,2)) : MO=VAL(MID$(DATE$,4,2)) :
DA=VAL(MID$(DATE$,7,2))
570 MIN=VAL(MID$(TIME$,4,2)):RETURN
600 '
         THIS SUBROUTINE CONVERTS READINGS FROM A THERMOCOUPLE
605 '
AND
610 '
         REFERENCE JUNCTION IN A/D UNITS TO DEG. C.
615 '
625
      V=A1(IC) + A1(REF)
627
      A1(IC)=B1*V+B2*V^2+B3*V^3+B4*V^4
640
      RETURN
```

```
700 '
704 '
        *** SAMPLE A/D (ADC-1); CONVERT TO DECIMAL ***
705 '
710 FOR K2=1 TO NANLG:CN=C1(K2)
715
    FOR J1=1 TO N5
                                               SELECT CHANNEL;
725
      POKE IOB, CN: POKE ITOB, 1:
START A/D
730
      X=PEEK(IB):'
                     GARBAGE CHARACTER
735
      POKE IOB, 161: POKE ITOB, 1
                                              GET ADC-1 HIGH
BYTE/STATUS
      HBYTE=PEEK(IB):
                        SAVE HIGH BYTE
750
      IF(HBYTE AND 128) <> 0 THEN 735
                                             CHECK STATUS FOR
A/D FINISHED
      POKE IOB, 145: POKE ITOB, 1:
755
                                               GET ADC-1 LOW BYTE
                          SAVE LOW BYTE
765
      LBYTE=PEEK(IB):'
770
     HMASK=HBYTE AND 15
                                              MASK 4 HIGH ORDER
BITS FROM A/D
                                               COMBINE ALL 12 BITS
775
      Y=LBYTE+256*HMASK
FROM A/D
     IF (HBYTE AND 16)=0 THEN Y=-Y
780
                                             FIX SIGN IF
NEGATIVE FLAG SET
      IF J1=N5 THEN 785 ELSE 787
782
785
      A(K2)=Y
787
   NEXT
790 NEXT:RETURN
008
801 ' *** SAMPLE & RESET COUNTERS ***
802 '
805 OC=C
810 C1=PEEK(I1):C2=PEEK(I2):C3=PEEK(I3)
820 C=C1+256*C2+65536!*C3
822 IF C9=1 THEN RETURN
825 A(M7)=C-OC
827 IF A(M7)<-1E+06 THEN A(M7)=A(M7)+1.6843E+07
830 A1(M7) = A(M7)/N2
880 RETURN
900 '
901 '
       A/D UNITS TO MV
905 '
910 FOR I=1 TO NANLG
915
   A1(I) = A(I) * G2(I) + B1(I)
925 NEXT
940 RETURN
949
    ' MV TO ENG. UNITS, LINEAR
950
951
960
    A1(IC)=A1(IC)*G(IC)*B(IC)
970 RETURN
1000 '
1005 ' MAIN SAMPLING LOOP
1010 '
1015 LOCATE O,O:PRINT "WAIT FOR SECONDS = 0 "
```

```
1020 GOSUB 120:IF SEC>2 THEN 1020
1025 GOSUB 120:IF SEC=0 THEN 1025
1030 LOCATE O,O:PRINT "SAMPLING INITIATED ":'ON ERROR GOTO
12000 '
              ????
1032 J9=0:POKE I1,0:POKE I2,0:POKE I3,0
1035 J9=J9+1:N6=0:H9=0:LOCATE 18,0:PRINT J9
       FOR K1=1 TO M : D(K1)=0 : A2(K1)=0 : NEXT
1040
       A1=0:A2=0 ' ZERO VECTOR COMPONENTS OF WIND DIRECTION
1045
       GOSUB 120:IF TPE THEN GOSUB 215
1050
       IF INT(SEC/N2) <> SEC/N2 THEN 1050 ' UPDATE CLOCK TILL
1052
TIME TO SAMPLE
         GOSUB 145 '
1055
                      SAMPLE COUNTERS
         GOSUB 140 '
                             SAMPLE A/D'S
1060
         IF INT((MIN+N1-1-N8)/N1)<>INT((MIN+N1-1)/N1) THEN LOCATE
1065
                                 ":GOTO 1050 ' SKIP 1ST N8 POINTS
O,O:PRINT "WAIT FOR EQUILI.
                        SKIP HOME CHECK
1068
         GOTO 1085 '
         IF ABS(A(HOME)) >400 THEN 1085
1070
        IF INT(MIN/N1)=MIN/N1 THEN 1085
1075
         H9=H9+1:IF H9<=2 THEN 1050
1080
1085
         N6=N6+1
         GOSUB 150 ' A/D UNITS TO MV
1087
         FOR IC=1 TO M7
1090
                               ' SUM RAW DATA
           D(IC)=D(IC)+A(IC)
1093
           ON N(IC) GOSUB 135,160,155,195,195
1095
           A2(IC)=A2(IC)+A1(IC) 'SUM ENG UNITS
1100
         NEXT
1110
                125 ' UPDATE DISPLAY
1120
         GOSUB
         LOCATE O.O:PRINT "SAMPLE BELOW SAVED"; J9;:LOCATE
1125
35,7:PRINT N6;
                         GET TIME
1130
         GOSUB
                120
         IF E2=1 THEN 1145 ' EXIT IF "ESCAPE" LAST KEY PRESSED
1135
         IF INT(MIN/N1)=MIN/N1 AND SEC+N2>59 THEN 1142 ELSE 1050
1140
       C9=1:C5=C4:GOSUB 145:C9=0 '
                                    COUNTER
1142
       C4=C:DC=C4-C5:IF DC<-1E+06 THEN DC=DC+1.6843E+07
1143
       DSx(J9,M7) = DC/N1:A2(M7) = DC*G(M7)/(N1*60) + B(M7)
1144
       IF N6<10 THEN I=N6 ELSE I=0
1145
       DS%(J9,M-1)=HR*1000!+MIN*10+I
1146
       DS%(J9,M)
                   = MO *100 + DA
1150
             165 ' REVERSE BOWEN RATIO DEVICE
1155
       GOSUB
1160
       FOR I=1 TO NANLG
         A2(I) = A2(I)/N6
1165
         IF N(1) <> 3 THEN DSx(J9,I) = D(1)/N6 ELSE DSx(J9,I) = D(1)
1170
1175
       NEXT
       J=NCRTD:K9=1:IF TPE <>1 THEN GOSUB 170 ' BREB
1180
       IF PRT=1 THEN GOSUB 210 ' PRINTER OUTPUT
1182
       IF E2=1 THEN STOP
1185
       IF MIN MOD N4*N1=O THEN GOSUB 205
1190
       IF J9>=N3 THEN J9=0
1191
1192 GOTO 1035
1195 ′
1200 ' SAVE RAW DATA ON CASSETTE TAPE
1205 '
```

```
1210 IS=J9-N4+1:IE=J9:TPE=0:IF IS<1 THEN IS=1
1220 OPEN "CAS:DATA" FOR OUTPUT AS #2
1225 CLS:LOCATE 0,0
1230 PRINT "WRITING TO TAPE
1235 FOR J1=IS TO IE
       FOR I=1 TO M
1240
1250
         PRINT #2,DS%(J1,I);
1260
       NEXT
1265
       LOCATE 23,0:PRINT TIMEs;" REC= ":J1;
1270 NEXT:CLOSE #2:RETURN
1300 '
1305 '
          VECTOR AVG WIND DIRECTION
1315 '
1330 A7=(A1(IC)*G(IC)+B(IC))/DPR
1340 A1 = A1 + COS(A7) : A2 = A2 + SIN(A7)
1345 IF A1<>0 THEN A3=ATN(A2/A1) ELSE A3=SGN(A2)*PI/2
1350 IF SGN(A1) <0 THEN A3=A3+PI
1360 IF SGN(A1)>0 AND SGN(A2)<0 THEN A3=A3+2*PI
1380 D(IC) = A3 * DPR: A1(IC) = D(IC)
1390 RETURN
                                                         1734
1400 '
                DIG CASSETTE DUMP
1410 IF IO>O THEN 1440
1420 POKE IP,201 'TURN OFF COUNTER
1425 OPEN "COM:6N82NN" FOR OUTPUT AS #3
1430 PRINT"DISC. ADC-1; CONN. DIG REC."
1432 INPUT"RECORDER ON; PRESS RETURN"
1435 IO=1:J8=0
1440 J8=J8+1
1445 LOCATE O,O:PRINT "DIG O/P IN PROG. "; J8;
1450 FOR I=1 TO M
1455
       PRINT #3,DS%(J8,I);
1460 NEXT
1475 IF J8>=N3 THEN 1480 ELSE 1440
1480 IO=0:TPE=0:CLOSE #3
1481 PRINT"DISC. DIG REC.; CONN. ADC-1"
1482 INPUT"RECORDER OFF; PRESS RETURN"
1500 '
1505 '
        CONVERT RTD READINGS TO DEG. C.
1510 '
       T=(A1(IC))/RC(1)/B2(IC)
1545
       A1(IC) = -245.665 + T * (235.476 + 10.189 * T)
1550
1565 RETURN
1600 '
1601 '
             PULSE BOWEN RATIO DEVICE
1605 ' CHANNEL:
                 1
                       2
                           3
                                   5
                                       6 ALL OFF
1607 '
1610 POKE IOB,65:POKE ITOB,1:X=PEEK(IB)
1615 FOR I=1 TO 500:NEXT
1620 POKE IOB,64:POKE ITOB,1:X=PEEK(IB)
1625 RETURN
1700 '
```

```
ONLINE CALCULATIONS
1705 '
1715 ' SUB5,6 = PRESENT VAL., SUB7,8 = PAST VAL., SUB9,0 =
RUNNING AVE.
1720 '
1725 Q5=A2(2):G5=A2(1)
1730 TAV5=(A2(J)+A2(J+2))/2:WAV5=(A2(J+1)+A2(J+3))/2
1735 P1=SGN(A(HOME)): IF P1=-1 THEN IALT=0 ELSE IALT=2
1740 T5=A2(J+IALT):T6=A2(J-IALT+2):W5=A2(J+IALT+1):W6=A2(J-
IALT+3)
1744 '
        *** FIND RUNNING AVERAGES ***
1745 '
1746 '
1750 Q=(Q7(K9)+Q5)/2:G=(G7(K9)+G5)/2
1755 T=(TAV5+TAV7(K9))/2:TW=(WAV5+WAV7(K9))/2
1760 T9=(T5+T7(K9))/2:T0=(T6+T8(K9))/2:W9=(W5+W7(K9))/2:
WO = (W6 + W8(K9))/2
1764 ′
        *** SAVE PRESENT VALUES ***
1765 '
1766 '
1770 G7(K9)=G5:Q7(K9)=Q5
1775 TAV7(K9)=TAV5:WAV7(K9)=WAV5
1780 T7(K9)=T5:T8(K9)=T6:W7(K9)=W5:W8(K9)=W6
1784 ′
        *** MISCELLANEOUS PARAMETERS ***
1785 ′
1786 '
1790 TT=T:W=TW:GOSUB 2015:EA=EFN
1792 CP=(239.9+440.9*.622*EA/(P-EA))/.2388
1795 XL=2.5013E+06-2366*TW:GOSUB 2030:SO=S
1800 G1=P*CP/(.622*XL):RO=3.4838*(P-.378*EA)/(T+273.16)
1805 S1=9.81/CP:TT=TW:GOSUB 2030
1810 S2=9.81*(1/CP+3.4857E-03*EA/(273.16+T)/G1)/(1+S/G1)
1815 S7=9.81*3.4857E-03*EA/(273.16+T)
1819 '
1820 '
        *** GRADIENTS ***
1821 '
1825 TT=T9:W=W9:GOSUB 2015:E9=EFN
1826 TT=TO:W=WO:GOSUB 2015:EO=EFN
1830 DT=T9-T0+S1*DELZ(K9)
1835 DE=E9-E0+S7*DELZ(K9)
1859 '
        *** BOWEN RATIO USING T, E ***
1860 '
1861 '
1865 B=G1*DT/DE
1870 H=(-Q-G)/(1+1/B):E=H/B
1872 '
        *** RADIATION BALANCE ***
1873 '
1874 '
1877 KUP=-A2(4):KDN=A2(3)
1880 IF KDN<=0 THEN A=0 ELSE A=-KUP/KDN ' ALBEDO
1890 THR=SIGMA*(A2(14)+273.16)^4+A2(6)
1895 LUP=-THR-KUP:LDN=Q5-KUP-KDN-LUP
1910 RETURN
```

```
1950/
2000 '
               MISCELLANEOUS FUNCTIONS
2005 '
2015
ESAT = (E(1) + W*(E(2) + W*(E(3) + W*(E(4) + W*(E(5) + W*(E(6) + W*(E(7)))))))
2020 EFN=ESAT-6.6E-04*(1+1.15E-03*W)*P*(TT-W)
2025 RETURN
2030
S=(S(1)+TT*(S(2)+TT*(S(3)+TT*(S(4)+TT*(S(5)+TT*(S(6)+TT*(S(7)))))
)))/10
2035 RETURN
2050 '
          * * MISCELLANEOUS CONSTANTS
2100 '
2105 '
2115 E(1)=6.1078
2116 E(2)=.44365185#
2117 E(3)=.014289458#
2118 E(4)=2.6506485D-04
2120 E(5)=3.031240400000003D-06
2121 E(6)=2.0340809D-08
                                                         1
2125 E(7)=6.136820900000027D-11
2126 '
2130 S(1)=.44381
2131 S(2)=.028570026#
2132 S(3)=7.93805E-04
2133 S(4)=1.2152151D-05
2135 S(5)=1.0365614D-07
2136 S(6)=3.532421800000003D-10
2140 S(7)=-7.090244800000048D-13
2141 '
2145 B1=25.661297#
2146 B2=-.619548690000003#
2147 B3=.022181644#
2148 B4=-3.5509E-04
2150 RETURN
2500 '
2505 '
        PRINT SUMMARY
2510 '
2515 LPRINT TIMEs;" ";DATES
2520 MCOL=4
2525 FOR I=1 TO MCOL
2530
       LPRINT "CHAN RAW
                               ENG ":
2535 NEXT:LPRINT
2540 FOR I=1 TO M7 STEP MCOL
2545
       FOR K=I TO MCOL+I-1
2550
         IF K>M7 THEN 2575
2565
         LPRINT USING "### #####
#######";C(K);DS%(J9,K);INT(1000*A2(K))/1000;
2570
       NEXT:LPRINT
2575 NEXT:LPRINT
2580 '
```

```
DISPLAY ENERGY, RAD BALANCE
2601 '
2605 LPRINT "
                  Н
                          Ε
                                  В
2610 LPRINT "
                                          LDN
                                                  THR"
                          KUP
                                 LUP
                  KDN
2615 LPRINT USING F1s;H;E;B;Q;G;
2620 LPRINT USING F2s; KDN; KUP; LUP; LDN; THR
                                                DE":
2625 LPRINT "
                  TT
                         TWT
                                 E
                                         DT
2630 LPRINT "
                  U
                         DIR"
2635 LPRINT USING F3s;T9;W9;E9;DT;DE;
2640 LPRINT USING F1s; A2(17); A1(8)
2645 FOR I=1 TO 10:LPRINT "- - - "::NEXT:LPRINT:RETURN
                              S
2650 LPRINT "
                CP
                       L
                                    GAMMA
                                             RHO HOME"
2655 LPRINT USING F4s;CP;XL/1E+06;S0*1000;G1*1000;R0;P1
2660 RETURN
9000 '
9005 ' * INITIALIZE CONTROL PARAMS •
9010 '
9020 OPEN "COM: 8N82NN" FOR INPUT AS #1
9030
       DPR=57.2958 ' DEGREES/RADIAN
                      PSYCHROM. SEP.
9050
       DELZ(1)=1!
       SIGMA=5.6697E-08' BOLTZMAN CONST
9055
                       SERIAL PORT DATA
9070
       PI = 3.14159
9080
                       TC REF CHANNEL
9095
       REF=0
                       HOME CHANNEL
       HOME=7
9100
                     ' ELEVATION, M
9105
       ELEV=1804
       P=101.3-.01055*ELEV ' ASSUME STD ATMOSPHERE
9106
9110 OPEN "INDAT1" FOR INPUT AS #2
                   ' SKIP LABEL
9112 INPUT #2,X$
9115 INPUT #2,M,N1,N2,N3,N4,N5,N8,G0,M7
9120 N4=N4/N1 ' SET N4=# OF RECORDS/DISK UPDATE
9125 DIM D(M), A(M7), A1(M7), A2(M)
9130 DIM C(M), C1(M), G(M7), B(M7), G2(M7)
9132 DIM B2(M7),N(M7),B1(M7)
9135 INPUT #2,X$ 'SKIP LABEL
9136 INPUT #2,LG,HG,HOME,REF,O1,O2,RC(1),NCRTD
9137 INPUT #2,X$ 'SKIP LABEL
9140 FOR K=1 TO M7
      INPUT \#2,C(K),C1(K),G(K),B(K),N(K),X$
9145
      IF C1(K)=0 THEN G2(K)=1/LG ELSE G2(K)=1/HG
9150
      IF C1(K)=1 THEN B1(K)=01
9155
      IF C1(K) = 3 THEN B1(K) = 02
9160
9165
      C1(K)=C1(K)*16+C(K)-1
9168
      IF N(K)=2 THEN NRTD=NRTD+1
      IF N(K)=3 THEN NWD =K
9170
9175
     IF N(K) = 5 THEN NDIG = NDIG + 1
9180 NEXT
9190 FOR K=NCRTD TO NCRTD+NRTD-1
9192
       INPUT#2,B2(K)
9193 NEXT:CLOSE#2
9195 NANLG=M7-NDIG
9235 F1s="#####.# #####.# ###.## #####.# #####.#"
```

```
9240 F2$="#####.# #####.# #####.# #####.# #####.# #####.#"
9245<sup>'</sup>F3$="###.### ###.### ##.### ##.#### ##.###"
9250 F4$="####.# ##.## ###.## ###.## ###.## ##.#"
9260 ' CALC DATA BUFFER SIZE
9265 N3=(FRE(0)-1600)/(2*(M+1))
9270 DIM DS%(N3,M)
9275 LOCATE 0,7:PRINT N3*N1/60;" HOURS OF DATA IN BUFFER";
9300 ' INIT UART INTERRUPT HANDLER
9310 IF PEEK(62000!)=51 AND PEEK(62115!)=201 THEN 9320 ELSE 9315
9315 PRINT "LOAD DIG IN ROUTINE":STOP
9320 I1=-3413:I2=I1+1:I3=I1+2
9325 IB=-3420:IOB=IB+1:ITOB=IB+3
9330 IP=-3188
9335 POKE IP,195:POKE IP+1,48:POKE IP+2,242
9340 OUT PN,129: START COUNTERS
9350 POKE IOB,64:POKE ITOB,1:'ALL DIG. O/P'S OFF
9500 RETURN
12000 ON ERROR GOTO O
12002 IF INKEYS=CHR$(27) THEN E2=1
12005 PRINT "ERROR "; ERR;" IN STATEMENT "; ERL
                                                        191
```

12020 RESUME 1015

Appendix 9.8.5 READT2.BAS, A program for the NEC which reads casette tape data into the editor of the SDS computer.

```
10 'READT2 READS SAMPX DATA FILE AND
15 'WRITES IT TO SERIAL PORT
                                 9/18/84
20 'LAST MODIFIED
                            1530 9/18/84
25 '
30
   MAXFILES=2:CLEAR 100,62335!
35
   POKE -3188,201
   M=19 '
50
                           FIELDS/RECORD
60 DIM DSx(M):SCREEN 0,0
100 OPEN "COM:8N82XN" FOR OUTPUT AS #2
120 CLS:LOCATE 0,0
130 N=0
140 OPEN "CAS:DATA" FOR INPUT AS #1
200 N=N+1
205 DATE=DS%(M):TIME=INT(DS%(M-1)/10)
210 PRINT N;
220 FOR I=1 TO M
      IF EOF(1) THEN GOTO 400
225
      INPUT #1,DS%(I)
230
250
      PRINT USING "#####"; DS%(I);
      PRINT #2, USING "#####"; DS%(I);
260
270 ' IF EOF(1) THEN GOTO 400
280 NEXT:PRINT""
285 PRINT #2,""
290 IF DATE<>DS%(M) AND N>1 THEN CLOSE #1:FOR I=1 TO 20:PRINT
CHR$(7);:NEXT:STOP
295 GOTO 200
400 PRINT""
405 PRINT #2,""
410 CLOSE #1
415 IF N>285 THEN FOR I=1 TO 20:PRINT CHR$(7);:NEXT:INPUT "ED
BUFFER FULL; USE #W ";X$
420 IF DATE<>DS%(M) AND N>1 THEN FOR I=1 TO 20:PRINT
CHR$(7);:NEXT:STOP
425 GOTO 140
```

Appendix 9.8.6 ADCTST.BAS, A Test program for the ADC-1 using the NEC computer. 10 ' ADCTST: TEST FOR ADC-1 6/7/84 15 ' LAST MODIFIED 3/ 6/85 20 ' 25 CLS: CN=16: POKE -3188,201 30 OPEN "COM:8N82NN" FOR INPUT AS 1 40 DIM C(16), M(16), N(16), A(16), OFST(16), Q(16), S(16) 90 :' SERIAL PORT DATA ADDRESS PN=192 :' CLEAR INPUT PORT OF OLD BYTES 105 X = INP(PN)107 OS=0:NO=1:N1=10:N3=1:C(1)=1:GOTO 170 110 INPUT "GAIN/OFFSET": OS 120 PRINT "A/D STABILITY AND CALIBRATION TEST" 130 INPUT "NO. OF CHANNELS TO TEST "; NO 140 INPUT "NO. OF CHANNELS TO AVERAGE"; N1 145 INPUT "NO. OF SCANS/SAMPLE "; N3 150 PRINT "SPECIFIY EACH CHANNEL TO TEST " 160 FOR K=1 TO NO:INPUT "?";C(K):NEXT 165 IF C(1)=0 THEN FOR I=1 TO 16:C(I)=I:NEXT 1/20 170 Y1=-1E+38:Y2=1E+38 180 PRINT 185 N2=10 190 FOR L=1 TO NO: M(L)=-10000:N(L)=10000:NEXT 200 FOR L=1 TO N1 225 GOSUB 800 228 FOR K=1 TO NO 229 IF L=1 THEN OFST(K)=A(K) 230  $S(K) = S(K) + A(K) - OFST(K) : Q(K) = Q(K) + (A(K) - OFST(K))^2$ 240 IF A(K)>M(K) THEN M(K)=A(K)245 IF A(K) < N(K) THEN N(K) = A(K)250 NEXT 260 NEXT 270 FOR L=1 TO NO 280  $Q(L) = SQR(ABS((Q(L) - S(L)^2/N1)/(N1-1)))$ 290 S(L)=S(L)/N1+OFST(L)300 NEXT 305 PRINT "CH NO. AVE STD DEV MAX MIN" 310 FOR L=1 TO NO PRINT USING "###";C(L), 320 330 PRINT USING "############";S(L),Q(L), PRINT USING "###### ######"; M(L), N(L) 335 340 Q(L)=0:S(L)=0 350 NEXT 355 PRINT 360 GOTO 190 800 ' 801 ' SAMPLE A/D (ADC-1); CONVERT TO DECIMAL 802 ' 805 FOR K2=1 TO NO X\$=INKEY\$:IF X\$<>""THEN C1=ASC(X\$) 810

IF X\$<>"" THEN IF C1>57 THEN C1=C1-7

811

```
815 IF C1>48 THEN C(1)=C1-48
816 CN=C(K2)+OS-1
818 FOR I1=1 TO N3
820
      OUT PN. CN
                                         :' SELECT CHANNEL: START
A/D
826
      Y = INP(PN)
                                         :' GARBAGE CHARACTER
      FOR K=1 TO 200:NEXT
827
830
      OUT PN.128+32
                                         :' GET ADC-1 HIGH
BYTE/STATUS
835 'OUT PN,129
                                         : ' SAVE HIGH BYTE FROM
      HBYTE=INP(PN)
840
A/D
      IF (HBYTE AND 128) <> 0 THEN 830
845
                                       :' CHECK STATUS FOR A/D
FINISHED
                                         :' GET ADC-1 LOW BYTE
      OUT PN,129+16
850
855 'OUT PN,129
860
      LBYTE=INP(PN)
                                         :' SAVE LOW BYTE FROM A/D
865
      HMASK=HBYTE AND 15
                                         :' MASK 4 HIGH ORDER BITS
FROM A/D
870
      Y=LBYTE+256*HMASK
                                         :' COMBINE ALL 12 BITS
FROM A/D
875
      IF (HBYTE AND 16)=0 THEN Y=-Y
                                        :' FIX SIGN IF NEGATIVE
FLAG SET
      IF I1=N3 THEN 880 ELSE 883
877
      A(K2)=Y:PRINT USING "#####":Y:
883 NEXT
885 NEXT:PRINT: ' HBYTE; HMASK; LBYTE
890 RETURN
1000 C1=VAL(INKEY$)
1010 IF C1<> OC1 THEN CN=C1
1015 OC1=C1
1020 PRINT CN:GOTO 1000
1050 GOTO 1000
```

Appendix 9.8.8 SAMPEE.BAS, a program for the AT computer which converts the raw data from the NEC computer into engineering units.

```
'note changed lines 4470-4485---removed
     ' SAMPE.BAS modified for AT computer and Epson LQ-1000
printer
6
06/25/86 0443
    ' SAMPB2.BAS RANDY data analysis program
06/13/85
          1130
     ' Based on PROGRAM SAMPC2.BAS
12/17/84 1143
     ' For Hanford Site study, Washington
20
    ' 3981 for thermal conductivity and 3892 for correct soil
heat flow.
120
                                             Last modified
5/7/86
140 DEFINT I-N : M=18
150 DIM T(50), IFLGO(30), IFLGO7(30)
     DIM N(25),D(25),F(17),A$(50),L(50),T$(13),C(50,4),B$(50)
155
     DIM A2(20),CH(20),C1(20),G(20),B(20),G2(20)
160
     DIM NT(20), B1(20), FL$(120), N$(9)
165
170
     DIM
DELZ(2),Q7(2),G7(2),TAV7(2),WAV7(2),T7(2),T8(2),W7(2),W8(2)
     DIM RC(2), E(9), S(7)
200
1000 GOSUB 9000:Fs=""
                                                ' Microstat init
1010 GOSUB 32000
                                                ' init clock
2000 '
2005 ' MAIN PROGRAM
2010 '
2030 M3=0:M2=0:M1=0:S4=0:S5=0:S7=0
2040 '
2045 ' read input file name
2050 '
2055 ICOUNT = ICOUNT + 1 : Ns=DXIs+FLs(ICOUNT) : N1s=Ns+"R"
2056
       N9$=N$+".DAT"
2065
       Q5=4
2070
       GOSUB 6200
                                                  ' set system
specific info
2100
2540
       L1=M :M1=L1
                           ' NOUT
2560
2565
       C=1 : D=1000
2605
       N3M=D-C+1
2608
2617
       N3$=DXO$+FL$(ICOUNT):Z$=N3$+FS$
2700
2870
       FOR L=1 TO L1
2880
        L(L)=L
2890
       NEXT
```

```
2900
       GOSUB 6300 '
                                          read data system
parameters
       PRINT FS:PRINT"FILE: " N3$ " IS NOW BEING OUTPUT...":J1=0
2990
2995 '
2996 '
        open input and output files
2997 '
3000
       OPEN "I",#1,N9$
                              OPEN "R",#1,N1$,Q5
3050 '
                              FIELD #1,Q5 AS TS
3060
       OPEN "R",#2,Z$,Q5
3080
       FIELD #2,Q5 AS US
3100 '
3105 '
        main computation loop
3110 '
3150
       FOR J=C TO D
3155 '
3160 '
         read data into T()
3165 '
3170
         FOR K=1 TO L1
3175
           INPUT #1,T(K) : IF EOF(1) THEN 3540
3210
         NEXT
3427
         GOSUB 3600
3440
         J1=J1+1:PRINT CHR$(13) J1 INT(T(M-1)/10) T(M) "
3450 '
3455 '
         write out full T() array
3456 '
3460
         FOR L=1 TO L1
3480
           IF Q5=4 THEN LSET U$=MKS$(T(L(L))) ELSE LSET
U$=MKD$(T(L(L)))
3510
           PUT #2,L+(L1*(J1-1))
3520
         NEXT
3530
       NEXT:PRINT F$
3540
       PRINT "END OF FILE OUTPUT": Ns=N1s
3570
       CLOSE #1:CLOSE #2:PRINT
3575
       GOSUB 6400
                                                   'create output
file directory
3580
       N$=N3$:GOSUB 8300
3590 IF ICOUNT<IFILES GOTO 2000
3595 CHAIN "SAMPP":END
3600 '
3605 ' MAIN SAMPLING LOOP
3610 '
3670 FOR I=1 TO M1
3675
       IF NT(I)=3 OR I>M1-2 THEN A2(I)=T(I):GOTO 3689 'No action
Time or Udir
3680
       IF NT(I)=3 AND T(M)<VDATE AND INT(T(M-1)/10)<VTIME THEN
A2(I)=T(I)+VANE:GOTO 3689
3685
       A2(I)=T(I)*G2(I)+B1(I) ' A/D UNITS TO MV
3689 NEXT
3690 FOR IC=1 TO M7
       ON NT(IC) GOSUB 6700,5000,6800,6700,6700
3695
3700 NEXT
3714 '
```

```
3775 \text{ TIME} = INT(A2(18)/10)
 3785 GOSUB 4400 '
                                                Home signal
processing
 3800 '
3898 FOR I=1 TO L1 : T(I)=A2(I) : NEXT
3982 TK=.64+1.63*CSOIL-(.64-.135)*EXP(-((17*CSOIL)^2)):'TK is
thermal conductivit
3983 PRINT "TK= ".TK
3984 T(1)=T(1)*(1-1.92*.138*(1-(TK/.48)))/(1-1.92*.138*(1-
 (.94/.48)))
3986 'Above is heat flow correction-see Fritschen and Gay
4300 '
4305 ' Checks: Tw < 0, dT or dTw < .005, Tw -> T and 4095 <
signal < -4095
4310 '
4330 IFLGW7=IFLGW: IF W5<0 OR W6<0 THEN IFLGW=1 ELSE IFLGW=0
4335 IF IFLGW<>IFLGW7 THEN IPFLG=1:PRINT USING
"#####";TIME;:PRINT TAB(13);:PRINT USING "##.##
##.##"; W5, W6; :PRINT CHR$(13);
4339 '
4340 IFLGDT7=IFLGDT:IF ABS(T9-T0)<.005 OR ABS(W9-W0)<.005 THEN
IFLGDT=1 ELSE IFLGDT=0
4345 IF IFLGDT<>IFLGDT7 AND J>C THEN IPFLG=1:PRINT USING
"#####";TIME;:PRINT TAB(39);:PRINT USING "##.#### ##.####";T9-
TO, W9-WO; :PRINT CHR$(13);
4346 '
4347 IFLGD7=IFLGD:IF ABS(T5-T6)<.02 OR ABS(W5-W6)<.02 THEN
IFLGD=1 ELSE IFLGD=0
4348 IF IFLGD<>IFLGD7 AND J>C THEN IPFLG=1:PRINT USING
"#####";TIME;:PRINT TAB(57);:PRINT USING "##.#### ##.####";T5-
T6, W5-W6; : PRINT CHR$(13);
4349 '
4355 I1=-1:FOR I=1 TO M1-3:IFLGO7(I)=IFLGO(I):IF ABS(T(I))>=4095
THEN IFLGO(I)=I ELSE IFLGO(I)=0
4360
       IF IFLGO(I) <> IFLGO7(I) AND J>C THEN IPFLG=1:I1=I1+1:PRINT
USING "####"; TIME; :PRINT TAB(100+I1*10); :PRINT USING "###
#####";I,T(I);:PRINT CHR$(13);
4362 NEXT
4365 TWD7=TWD : TWD=ABS((T5-W5)-(T6-W6)) : FLG=1.5
4370 IF TWD >FLG AND TWD7<=FLG THEN GOTO 4390
4375 IF TWD<=FLG AND TWD7 >FLG THEN GOTO 4390
4380 IF IPFLG=1 THEN PRINT
4385 RETURN
4390 PRINT USING "##### ##.## ##.## ##.## ##.##
##.###"; TIME, T5, W5, T6, W6, TWD
4395 RETURN
4400 '
4405 '
        Home signal processing: HM2-> t-2, HM1-> t-1, HM-> t
[HMO-> t+1]
4410 '
4415
HM2=HM1:HM1=HM:HMM2=HMM1:HMM1=HMM:JFLGHO=IFLGHO:JFLGH1=IFLGH1:JFL
```

```
GH2=IFLGH2
4420 HM=A2(HOME):HMM=HM
4425 IF ABS(HM) < HMAX1 THEN HMM=0
4430 IF ABS(HM1)>HMAX9 AND HMM=0 THEN HMM=-SGN(HM1)*HMAX
4432 '
4435 IF ABS(HMM)=HMAX AND ABS(HMM2)<>HMAX THEN IFLGH1=1
4437 IF ABS(HMM) <> HMAX AND ABS(HMM2) = HMAX THEN IFLGH1=0
4440 IF HMM=0 THEN IFLGHO=1 ELSE IFLGHO=0
4445 IF ABS(HM-HM1) < HMAX1 AND HM>HMAX9 THEN IFLGH2=1 ELSE
IFLGH2=0
4450 P1=SGN(HMM)
4455 IF J=C THEN PRINT:PRINT "SYSTEM "; ISYS
                                                A2(19):" 1984
",DATES,TIMES;"
                  ";N3M;" RECORDS"
4460 IF J=C THEN PRINT "
                                 Tw dryout / Tw < 0
dT or dTw < 0.02
                             HOME"
4465 IF J=C THEN PRINT " TIME
                                             T6
                                                  Tw6
                                                        dT-dTw
                                 T5
                                      Tw5
dTavg dTwavg
                   dT
                           dTw
                                      raw"
4470 ' IPFLG=0:I1=0
4475 'IF IFLGHO<>JFLGHO THEN IPFLG=1:PRINT USING
"#####";TIME;:PRINT TAB(74+I1*9);:PRINT USING "###
#####";P1,HM;:PRINT " intermed";CHR$(13);:I1=I1+1
4480 'IF IFLGH1<>JFLGH1 THEN IPFLG=1:PRINT USING
"#####";TIME;:PRINT TAB(74+11*9);:PRINT USING "###
#####":P1.HM::PRINT " bad sw ";CHR$(13);:I1=I1+1
4485 'IF IFLGH2<>JFLGH2 THEN IPFLG=1:PRINT USING
"#####"; TIME; : PRINT TAB(74+11*9); : PRINT USING "###
#####";P1,HM;:PRINT " Homed
                               ";CHR$(13);:I1=I1+1
4490 RETURN
5000 4
5005 '
        CONVERT RTD READINGS TO DEG. C.
5010 '
       T=(A2(IC))/RC(1)/G(CH(IC))
5045
5050
       A2(IC) = -245.665 + T*(235.476 + 10.189 * T)
       RETURN
5065
6200 '
6205 ' read system specific data
6207 '
      ISYS=VAL(MIDs(N1s,4,1)) : IF ISYS=9 THEN HMAX=3000 ELSE
6210
HMAX=1000
      HMAX9=.9*HMAX : HMAX1=.1*HMAX : HMAX=5000
6215
      JFLGHO=0:IFLGHO=0:JFLGH1=0:IFLGH1=0:JFLGH2=0:IFLGH2=0
6217
6218
IFLGW7=0:IFLGW=0:IFLGDT7=0:IFLGDT=0:IFLGD7=0:IFLGD=0:TWD7=0:TWD=0
      FOR I=1 TO M1:IFLGO(I)=0:IFLGO7(I)=0:NEXT
6219
      ON ISYS GOSUB 6230,6280,6280,6280,6280,6280,6245,6260,6275
6220
      PRES=101.3-.01055*ELEV ' ASSUME STD ATMOSPHERE, ELEV =
6222
ELEVATION (M)
      RETURN
6223
      VANE =
              8.3 : VDATE=919 : VTIME= 600
6230
6235
      RETURN
      VANE =
              5.2 : VDATE=915 : VTIME= 920
6245
      RETURN
6250
```

```
6260 VANE = 11.3 : VDATE=915 : VTIME= 1800
6265
      RETURN
6275
      VANE = 11.5 : VDATE=915 : VTIME= 1250
6280 RETURN
6300 '
6305 INFL="INDAT"+RIGHT=(STR=(ISYS).1)+".DO"
6310 OPEN "I", #1, INFLs: NDIG=0: NRTD=0
                   ' SKIP LABEL
6312 INPUT #1,X9$
6315 INPUT #1,M,N1,N2,N3,N4,N5,N8,G0,M7
6320 N4=N4/N1 ' SET N4=# OF RECORDS/DISK UPDATE
6335 INPUT #1, X9s ' SKIP LABEL
6336 INPUT #1,LG!,HG,HOME,REF,O1,O2,RC(1),NCRTD
6337 INPUT #1, X9$ 'SKIP LABEL
6338 INPUT #1, DELZ(1), ELEV, CSOIL, DZ, REF, HOME
6339 INPUT #1,X9s
                                       100
6340 FOR K8=1 TO M7
6345
      INPUT #1,CH(K8),C1(K8),G(K8),B(K8),NT(K8),X9$
      IF C1(K8)=0 THEN G2(K8)=1/LG! ELSE G2(K8)=1/HG
6350
6355
      IF C1(K8)=1 THEN B1(K8)=01
      IF C1(K8)=3 THEN B1(K8)=02
6360
                                                       1/9/
6365
      C1(K8)=C1(K8)*16+CH(K8)-1
6368
      IF NT(K8)=2 THEN NRTD=NRTD+1
      IF NT(K8)=3 THEN NWD =K8
6370
      IF NT(K8)=5 THEN NDIG=NDIG+1
6375
6380 NEXT
6395 NANLG=M7-NDIG
6399 CLOSE #1:RETURN
6400 '
6405 ' create output directory file
6408 '
6410 Q5=4 : N=J-1 : M=L1
6425 GOSUB 32100:D$="Manhattan"+TIME$+" "+DATE$
6430 OPEN "O",#1,N3$
6440 PRINT#1,Q5;",";N;",";M;",";D$;",";:FOR L=1 TO L1:PRINT
#1,A$(L(L)):NEXT
6450 PRINT #1,Z$ : CLOSE #1
6460 PRINT FS:NS=N3S:GOSUB 7100:PRINT
6495 RETURN
6700
6705
      ' MV TO ENG. UNITS, LINEAR
6710
     A2(IC)=A2(IC)*G(IC)+B(IC)
6715
     RETURN
6800
7000 '
7060 IF LEN(G$)=0 THEN G=1:PRINT G:RETURN
7070 G=VAL(G$):PRINT:RETURN
7090 '
7100 PRINT"HEADER DATA FOR: "; NS TAB(30) "LABEL: " D$
7110 PRINT"NUMBER OF CASES: " N TAB(30) "NUMBER OF VARIABLES: "
M:RETURN
7120 '
7200 ON ERROR GOTO 7250
```

```
7210 OPEN "I", #1, Ns: INPUT #1, Q5, N, M, Ds
7220 FOR J=1+M1 TO M+M1:INPUT #1,A$(J):RSET
SPS=AS(J):AS(J)=SPS:NEXT J:INPUT #1,Z$
7230 CLOSE #1:ON ERROR GOTO O:RETURN
7250 PRINT:IF ERR=53 THEN PRINT "FILE NOT FOUND":PRINT J$
7255 IF ERR<>53 THEN PRINT "ERROR # "; ERR;" IN LINE "; ERL
7260 INPUT "NEW FILE NAME:", Ns: Ns=Hs+Ns: CLOSE #1
7270 GOSUB 8300
7280 GOTO 7210
7300 '
7400 PRINT: INPUT: "ENTER BEGINNING CASE NUMBER: ",C
7410 INPUT", ENDING CASE NUMBER: ",D
7420 G=C:H1=1:H2=D:GOSUB 8200:IF W<>1 THEN 7440
7430 PRINT JS:GOTO 7400
7440 G=D:H1=C:H2=N:GOSUB 8200:IF W<>1 THEN RETURN ELSE 7430
2000 '
8010 ' *S-R*
8020 '
8030 PRINT
8035 PRINT"ENTER OPTION: ",:G$=INPUT$(1)
8040 IF ASC(G$)=13 THEN G$=MID$(T1$,1,1)
8050 G=ASC(G$)-64:PRINT G$;
8060 H1=ASC(LEFT$(T1$,1))-64:H2=ASC(MID$(T1$,2,1))-64:GOSUB 8200
8080 IF W<>1 THEN RETURN ELSE 8035
8090 '
8200 IF G>=H1 AND G<=H2 THEN W=O:RETURN
8210 PRINT Js; CHR$(13);: W=1:RETURN
8215 '
8300 OPEN "R", #1, "PARMD", 38
8310 FIELD #1,19 AS X$,9 AS NN$:GET #1,1:LSET X$=X$:LSET
NNS=NS:PUT #1,1
8320 CLOSE #1:RETURN
8325 '
8400 IF LEFT$(N$,6)="(NONE)" THEN 8430
8410 PRINT:PRINT"OPEN FILE: " CHR$(34) N$ CHR$(34);"
8420 PRINT"(PRESS " CHR$(34) "RETURN" CHR$(34) " TO USE OPEN
FILE)"
8430 PRINT"ENTER FILE NAME: ";:N95="":FOR J=1 TO 10
8432 XX$=INPUT$(1):IF XX$=CHR$(13) THEN 8438 ELSE PRINT XX$;
8434 N9$=N9$+XX$
8436 NEXT
8438 IF LEN(N9$)=0 THEN PRINT"
                                  " NS:PRINT:RETURN
8439 IF MIDs(N9s,2,1)=":" THEN Ns=N9s:GOTO 8450
8440 NS=HS+N9S
8450 GOSUB 8300:PRINT" ";NS:PRINT:RETURN
8455 '
8600 PRINT:PRINT TAB(10) "----VARIABLE NUMBERS AND NAMES----
":PRINT
8620 A=A+6:B=B+6:IF B>M THEN B=M
8630 FOR K=A TO B
8640 PRINT USING "###";K;:PRINT". " AS(K) " ";:NEXT K:PRINT:IF
```

B<M THEN 8620

```
8670 RETURN
8675 '
8900 D9="NO YES":IF D9=1 THEN D9=="YESNO ":PRINT
8910 PRINT Q1s;:Qs=INPUTs(1)
8920 IF Qs=MIDs(D9s,4,1) THEN PRINT RIGHTs(D9s,3):Q=1:RETURN
8930 PRINT LEFTs(D9s,3):Q=0:RETURN
8935 '
8950 PRINT:PRINT "
8960 FOR L=1 TO L1:PRINT "
                                " As(L(L));:NEXT
L:PRINT:PRINT:RETURN
8965 '
8970 PRINT:PRINT"PRESS 'RETURN' TO CONTINUE:
"::Qs=INPUTs(1):L3=1:PRINT F$
8980 RETURN
8985 '
8990 IF P=1 THEN RETURN
8992 PRINT:PRINT"PRESS ANY KEY TO CONTINUE: ";:Q==INPUT=(1)
8994 PRINT CHR$(13);:RETURN
9000 '
9010 '
         *INIT*
                                                        1/11
9020 '
9120 R$=CHR$(13)+"
9300 '
9305 ' * INITIALIZE CONTROL PARAMS *
9310 '
       DPR=57.2958 ' DEGREES/RADIAN
9330
9355
       SIGMA=5.6697E-08' BOLTZMAN CONST
       PI=3.14159
9370 OPEN "I",#1,"PDS.FIL"
9380 INPUT #1.PGs:IF PGs<>"SAMPE"THEN 9380
9517 INPUT #1, ICFLG, IS, IE, DXIs, DXOs, FSs, FTs, MSGs
9520 IFILES=0
9525 IFILES=IFILES+1 : INPUT #1,FL$(IFILES):IF EOF (1) THEN 9540
ELSE 9530
9530 IF FL$(IFILES)="END" THEN IFILES=IFILES-1:GOTO 9540
9535 PRINT IFILES; FL$ (IFILES),: GOTO 9525
9540 CLOSE #1:PRINT IFILES;FL$(IFILES)
9799 '
9800 ' Field (variable) names
9805 '
9810 FOR I=1 TO M: READ A$(I): NEXT
                                                 "."QDN
9820 DATA "G
                ","Q
                        ","KDN ","KUP ","D
","UDIR "
9830 DATA "TAR
               "."TWR
                        ","TAL ","TWL
                                         ","TSOIL","THAT ","U
","QUP
9850 DATA "TIMER", "DATE "
9890 RETURN
32000 '
32005 ' Time and date routine for SDS MV5.0c
10/15/84 11:40
32007 '
                                               last modified 11/
1/84 7:50
```

```
32010 ' init
32015 '
32020 DIM M(12)
32025 FOR I=1 TO 12:READ M(I):NEXT:IF INT(DATE/4)*4 = DATE THEN
M(2) = 29
32030 DATA 31,28,31,30,31,30,31,30,31,30,31
32035 ′
32040 ' main program
32045 '
32100 RETURN: '''DATE=PEEK(&H40): IF DATE=0 THEN GOSUB 32170
32105 DATEs="19"+RIGHTs(STR$(DATE),2)
32120
TIMEs=RIGHTs(STRs(PEEK(&H43)),2)+":"+RIGHTs(STRs(PEEK(&H44)),2)+"
:"+RIGHT$(STR$(PEEK(&H45)),2)
32125 DAY=PEEK(&H41)+256*(PEEK(&H42)) : MO=0
32135 FOR I=1 TO 12:MO=MO+M(I):IF MO>=DAY THEN MO=MO-M(I):GOTO
32145
32140 NEXT
32145 DAY=DAY-
MO:MO=I:DATES=RIGHTS(STRS(MO),2)+"/"+RIGHTS(STRS(DAY),2)+"/"+DATE
32150 PRINT DATES, TIMES
32160 RETURN
32165 '
32170 RETURN: set time
32175 '
32180 INPUT "MONTH, DAY, YEAR ", MO, DAY, YR : MO=MO-1
32185 INPUT "HOUR, MINUTE, SECOND ".HR.MIN.SEC
32190 JDAY=0:FOR I=1 TO MO:JDAY=JDAY+M(I):NEXT
32195 JDAY=JDAY+DAY:JDAYH=INT(JDAY/256):JDAYL=JDAY-JDAYH#256
32200 POKE &H41, JDAYL: POKE &H42, JDAYH
32205 POKE &H43, HR: POKE &H44, MIN: POKE &H45, SEC
32210 PRINT "depress <CR> to start clock ";:XC$=INPUT$(1)
32215 IF XCs<>CHR$(13) THEN GOTO 32185 ELSE POKE &H40, YR
32220 RETURN
Appendix 9.8.9 SAMPP.BAS, a program for the AT computer which
converts the output of SAMPE.BAS into 6-minute energy and
radiation balances.
6
6/25/86 0445
     ' SAMPB3.BAS RANDY data analysis program
     ' Based on PROGRAM SAMPC3
                                                              1/
7/85 2230
30
                                         Last modified
5/5/86
    ' For Hanford Site study, Washington
32
35
     ' Reduced soil heat capacity ala DeVries (1963)
40
     'CONVERT INDAT CSOIL IN *H2O(G/G) TO CSOI=HEAT CAPACITY,
```

```
BATTELLE 4/86
     'ICFLG = 0 -> include IS point running mean of G in top 10
CIR
50
               1 -> exclude G calculation in top 10 cm
55
     'IS
             = no. of points in soil heat storage running mean
60
     ′FS$
             = output file name extension (.MF or R)
65
     'FT$
             = not used
100
     S4=0:S5=0:S7=0
140
    DEFINT I,J,L-N: NS=19:NST=52:NOUT=34
150 DIM T(54), IFLGO(30), IFLGO7(30)
155
     DIM N(25),D(25),F(17),A$(53),L(53),T$(13),C(50,4),B$(51)
     DIM A2(20), CH(20), C1(20), G(20), B(20), G2(20)
165
     DIM NT(20), B1(20), FL$(120), N$(9)
170
     DIM
DELZ(2), Q7(2), G7(2), TAV7(2), WAV7(2), T7(2), T8(2), W7(2), W8(2)
     DIM RC(2),E(9),S(7),GP(10),RCC(250),RC2(100)
    RC2=0:RCC=0:'record counter for loop and the first three
180
records
315 GOSUB 6100
                                                 ' set constants
1000 GOSUB 9000:Fs=""
                                                 ' Microstat init
1010 'GOSUB 32000
                                                  ' init clock
2000 '
2005 ' MAIN PROGRAM
2010 '
2030 M3=0:M2=0:M1=0:S4=0:S5=0:S7=0:FOR I=1 TO IS:GP(I)=0:NEXT
2040 '
2045 ' read input file directory
2055 ICOUNT = ICOUNT + 1 : Ns=DXIs+FLs(ICOUNT) :
N1s=Ns+".MF":PRINT "Ns=",Ns
2060 GOSUB 7200:N1M=N:M1=M:PRINT Fs:GOSUB 7100:D1s=Ds
2070 'GOSUB 6200
                                                  ' set system
specific info
2100 '
2540 L1=NOUT
2565 '
2570 C=1 : D=N ' IF ICFLG=1 THEN D=N : PRINT "OUTPUT ALL CASES ("
N1M ")"
                ' IF ICFLG=0 THEN C=IS : D=IE : PRINT "OUTPUT
SUBSET OF CASES(" IS "TO" IE ")"
2605 N3M=D-C+1
2608 '
2617 N3s=DXOs+FLs(ICOUNT)+"P":Zs=N3s+FSs
2700 '
2870 FOR L=1 TO L1
2880
       L(L)=L+M1
2890 NEXT
2895 GOSUB 6300: 'READ INDAT? FILES
2900 GOSUB 6400 '
                                                  create output
file directory
2990 PRINT FS:PRINT"FILE: " N3$ " IS NOW BEING OUTPUT...":J1=0
2995 '
2996 ' open input and output files
```

```
2997 '
3000 OPEN "R",#1,N1$,Q5
3030 OPEN "R",#2,Z$,Q5
3050 FIELD #1,Q5 AS T$
3080 FIELD #2,Q5 AS U$
3100 '
3105 ' main computation loop
3150 FOR J=C TO D:ON ERROR GOTO 3205
3155 '
3160 ' read data into T()
3165 '
3170
       FOR I=1 TO M1:GET #1, I+(M1*(J-1))
3190
         A2(I)=CVS(T$)
3200
         GOTO 3210
3205
         PRINT "ERROR #" ERR " OCCURED IN LINE" ERL "
         ON ERROR GOTO O
3208
3210
       NEXT
3230
       TIME = INT(A2(NS-2)/10)
3427
       GOSUB 3600
3440
       J1=J1+1:PRINT CHR$(13) J1 TIME A2(NS-1) "
3450 '
3455 ' write out full T() array
3456 '
3460
       FOR L=1 TO L1
         LSET Us=MKSs(T(L(L)))
3480
3510
         PUT #2.L+(L1*(J1-1))
3520
       NEXT
3530 NEXT:PRINT F$
3540 PRINT "END OF FILE OUTPUT": Ns=N1s
3570 CLOSE #1:CLOSE #2:PRINT
3580 N$=N3$: ' GOSUB 8300
3590 IF ICOUNT<IFILES GOTO 2000
3595 ' IF ISTP=0 THEN CHAIN "SUMMARYE" ELSE CHAIN "SC"
3596 CHAIN "SUMMARYE": END
3600 '
3605 ' MAIN SAMPLING LOOP
3610 '
3785 P1=SGN(A2(HOME)): REM GOSUB 4400 '
                                                   Home signal
processing
3890 '
3895 J8=NCRTD : I9 = 1 : GOSUB 4000 '
                                               Energy and
radiation balance
3898 '
3900 T(NS)
             =TIME
                     : T(NS+1) = QSTAR : T(NS+2) = H
T(NS+3) = E
3910 T(NS+4) = GP
                     : T(NS+5) = KDN
                                        : T(NS+6) = KUP
T(NS+7) = A2(5)
3920 T(NS+8) =LDN
                     : T(NS+9) =LUP
                                        : T(NS+10)=A2(15) :
T(NS+11)=A2(8)
3930 T(NS+12)=T9
                     : T(NS+13)=W9
                                        : T(NS+14)=TO
T(NS+15)=W0
```

```
3940 \text{ T(NS+16)} = A2(13) : \text{T(NS+17)} = \text{E9} : T(NS+18) = E0
T(NS+19)=DT
3950 T(NS+20)=DE
                      : T(NS+21)=QDN
                                        : T(NS+22) = QUP
T(NS+23)=09-0N
3960 T(NS+24)=RHB
                      : T(NS+25)=P1
                                        : T(NS+26)=GS
T(NS+27)=A2(HOME)
3970 T(NS+28)=A2(NS-1):T(NS+29)=BR
                                       : T(NS+30)=HALT
T(NS+31)=EALT
3972 T(NS+32)=CV#
                    : T(NS+33) = RB
3980 RETURN
4000 '
4005 '
                   Bowen ratio energy balance - 2 point running
mean
4010 * SUB5,6 = PRESENT VAL., SUB7.8 = PAST VAL., SUB9.0 =
RUNNING AVE.
                                        7:50
4015 '
4020 Q9=A2(2):G5=A2(1)
4025 S4=S7:S7=S5:S5=A2(13) ' S7=Tsoil at TIME-6 mins: S4 at TIME-
12 mins
4030 TAV5=(A2(J8)+A2(J8+2))/2:WAV5=(A2(J8+1)+A2(J8+3)が第2
4035 IF P1=1 THEN IALT=0 ELSE IALT=2
4040 T5=A2(J8+IALT):T6=A2(J8-IALT+2):W5=A2(J8+IALT+1):W6=A2(J8-
IALT+3)
4051 '
4052 '
        *** FIND RUNNING AVERAGES ***
4053 '
4054 QSTAR=(Q7(19)+Q9)/2:GP=(G7(19)+G5)/2:QN9=(QN7+QN5)/2
4055 T=(TAV5+TAV7(I9))/2:TW=(WAV5+WAV7(I9))/2
4059
T9=(T5+T7(I9))/2:T0=(T6+T8(I9))/2:W9=(W5+W7(I9))/2:W0=(W6+W8(I9))
12
4060 IF 1 > RCC THEN GOSUB 5670: STARTUP AVERAGES
4061 IF QSTAR < O THEN QSTAR=1.0621*QSTAR
4062 IF ISYS=1 THEN QSTAR=QN9:'THR NET
4063 'GOSUB 4300
                                             ' wet bulb processing
4064 '
4065 '
        *** SAVE PRESENT VALUES ***
4066 '
4070 G7(19)=G5:Q7(19)=Q9:QN7=QN5:'THR NET
4075 TAV7(I9)=TAV5:WAV7(I9)=WAV5
4080 T7(19)=T5:T8(19)=T6:W7(19)=W5:W8(19)=W6
4084 '
4085 '
        *** MISCELLANEOUS PARAMETERS ***
4086 '
4090 TT=T:W1=TW:GOSUB 6015:EA=EFN
4092 CP=(239.9+440.9*.622*EA/(PRES-EA))/.2388
4095 XL=2501300!-2366*TW:GOSUB 6030:S0=S
4100 G4=PRES*CP/(.622*XL):RO=3.4838*(PRES-.378*EA)/(T+273.16)
4105 S1=9.810001/CP:TT=TW:GOSUB 6030
4110 S2=9.810001*(1/CP+.0034857*EA/(273.16+T)/G4)/(1+5/G4)
4115 S3=9.810001*.0034857*EA/(273.16+T)
4119 *
```

```
4120 '
       *** GRADIENTS ***
4121 '
4125 TT=T9:W1=W9:GOSUB 6015:E9=EFN:W1=T9:GOSUB
6015:RHT=100*E9/ESAT
4126 TT=TO:W1=WO:GOSUB 6015:E0=EFN:W1=TO:GOSUB
6015:RHB=100*E0/ESAT
4130 DT=T9-T0+S1*DELZ(I9)
4135 DE=E9-E0+S3*DELZ(I9)
4159 '
4160 '
        *** BOWEN RATIO USING T, E ***
4161 RCC=RCC+1
4162 'Convert %H2O(G/G) to volumetric and calc heat capacity.
4164 GS = -CSOI*DZ*(S5-S4)/(2*N1*60):IF RCC <3 THEN GS=0:'heat
storage.
4166 BR = G4*DT/DE:QAV = QSTAR+GP+GS
4168 H = (-QAV)/(1+1/BR):E = H/BR
4170 GOSUB 5005
4171 IF SGN (E) <> SGN (DE) THEN E=EALT:H=HALT
4172 IF (-.6 > BR) AND (BR > -1.25) THEN E=EALT:H=HALT
4174 '
        *** RADIATION BALANCE ***
4175 '
4177 KUP=-A2(4):KDN=A2(3)
4180 IF KDN<=0 THEN A=0 ELSE A=-KUP/KDN ' ALBEDO
4200 (
4205 ' Diffuse correction, per LI-COR 2010S shadow band manual
4210 'NOTE: Eppley and not LI-COR used for total solar radiation
4215 '
4220 IF KDN<=0 THEN 4245 ELSE A2(5)=A2(5)*1.13 '
4225 A2(5)=A2(5)/(1.17-(1/(1.2+11.8*(A2(5)/KDN))))
                                                         Spectral
correction
4235 '
4245 IF KDN<0 THEN KDN=0
4250 IF KUP>O THEN KUP=O
4255 IF A2(5)<0 THEN A2(5)=0
4257 QUP=-SIGMA*(A2(14)+273.16)^4-A2(16)
4260 QDN=SIGMA*(A2(14)+273.16)^4+A2(6)
4261 IF QDN > 3000 THEN QDN=3000:IF QUP < -3000 THEN QUP=-3000
4262 IF KDN = 0 THEN QUP = 1.062*QUP
4263 IF KDN = 0 THEN QDN = 1.062*QDN
4265 LUP=QUP-KUP:LDN=QDN-KDN:QN=QDN+QUP:QN5=QN
4270 IF ISYS=7 THEN GOSUB 5650
4280 RETURN
4300 '
4305 ' Checks: Tw < 0, dT or dTw < .005, Tw -> T and 4095 <
signal < -4095
4310 '
4330 IFLGW7=IFLGW:IF W5<0 OR W6<0 THEN IFLGW=1 ELSE IFLGW=0
4335 IF IFLGW<>IFLGW7 THEN IPFLG=1:LPRINT USING
"#####";TIME;:LPRINT TAB(13)::LPRINT USING "##.##
##.##"; W5, W6;: LPRINT CHR$(13);
4339 '
4340 IFLGDT7=IFLGDT:IF ABS(T9-T0)<.005 OR ABS(W9-W0)<.005 THEN
```

```
IFLGDT=1 ELSE IFLGDT=0
4345 IF IFLGDT <> IFLGDT7 AND J>C THEN IPFLG=1:LPRINT USING
"####";TIME;:LPRINT TAB(39);:LPRINT USING "##.#### ##.###";T9~
TO, W9-WO;:LPRINT CHR$(13);
4346 '
4347 IFLGD7=IFLGD:IF ABS(T5-T6)<.02 OR ABS(W5-W6)<.02 THEN
IFLGD=1 ELSE IFLGD=0
4348 IF IFLGD<>IFLGD7 AND J>C THEN IPFLG=1:LPRINT USING
"#####";TIME;:LPRINT TAB(57);:LPRINT USING "##.#### ##.####";T5-
T6.W5-W6::LPRINT CHR$(13);
4349 '
4355 I1=-1:FOR I=1 TO M1-3:IFLGO7(I)=IFLGO(I):IF ABS(A2(I))>=4095
THEN IFLGO(I)=I ELSE IFLGO(I)=0
       IF IFLGO(I) <> IFLGO7(I) AND J>C THEN IPFLG=1:I1=I1+1:LPRINT
4360
USING "####"; TIME; :LPRINT TAB(100+11*10); :LPRINT USING "###
#####";I,A2(I);:LPRINT CHR$(13);
4362 NEXT
4365 TWD7=TWD : TWD=ABS((T5-W5)-(T6-W6)) : FLG=1.5
4370 IF TWD >FLG AND TWD7<=FLG THEN GOTO 4390
                                                       1
4375 IF TWD<=FLG AND TWD7 >FLG THEN GOTO 4390
4380 IF IPFLG=1 THEN LPRINT
4385 RETURN
4390 LPRINT USING "##### ##.## ##.## ##.##
##.###"; TIME, T5, W5, T6, W6, TWD
4395 RETURN
4400 '
4410 '
4415
HM2=HM1:HM1=HM:HMM2=HMM1:HMM1=HMM:JFLGHO=IFLGHO:JFLGH1=IFLGH1:JFL
GH2=IFLGH2
4420 HM=A2(HOME):HMM=HM : GET #1,7+M1*J : HMO=CVS(Ts)
4425 IF ABS(HM) (HMAX1 THEN HMM=0
4430 IF ABS(HM1)>HMAX9 AND ABS(HMO)>HMAX9 AND HMM=0 THEN HMM=-
SGN(HM1)*HMAX
4432 '
4435 IF ABS(HMM)=HMAX AND ABS(HMM2) <> HMAX THEN IFLGH1=1
4437 IF ABS(HMM)<>HMAX AND ABS(HMM2)=HMAX THEN IFLGH1=0
4440 IF HMM=0 THEN IFLGHO=1 ELSE IFLGHO=0
4445 IF ABS(HM-HM1) < HMAX1 AND HM>HMAX9 THEN IFLGH2=1 ELSE
IFLGH2=0
4450 P1=SGN(HMM)
                                                A2(19);" 1984
4455 IF J=C THEN PRINT:PRINT "SYSTEM "; ISYS
",DATES,TIMES;"
                  ";N3M;" RECORDS"
                                 Tw dryout / Tw < 0
4460 IF J=C THEN PRINT "
                             HOME"
dT or dTw < 0.02
                                                        dT-dTw
                                                  Tw6
4465 IF J=C THEN PRINT " TIME
                                             T6
                                      Tw5
                                 T5
                   dΤ
                           dTw
                                  P1
dTavg dTwavg
4470 IPFLG=0:I1=0
4475 IF IFLGHO<>JFLGHO THEN IPFLG=1:PRINT USING
"#####";TIME;:PRINT TAB(74+11*9);:PRINT USING "###
#####":P1,HM;:PRINT " intermed";CHR$(13);:I1=I1+1
4480 IF IFLGH1<>JFLGH1 THEN IPFLG=1:PRINT USING
```

```
"#####";TIME;:PRINT TAB(74+I1*9);:PRINT USING "###
#####";P1,HM;:PRINT " bad aw ";CHR$(13);:I1=I1+1
4485 IF IFLGH2<>JFLGH2 THEN IPFLG=1:PRINT USING
"#####";TIME;:PRINT TAB(74+I1*9);:PRINT USING "###
#####";P1,HM;:PRINT " Homed
                              ";CHR$(13);:I1=I1+1
4490 RETURN
5005 'ALTERNATE CALCULATIONS OF H AND E
5006 WS=A2(15): 'PRINT "WS=", WS
5008 CV#=-(QAV)/((WS*CP*DT)+(WS*XL*.622*DE/PRES))
5501 RB=9.810001*DT*3.24/((TT+273)*WS^2):'3.24=(Z-Z0)^2
5506 PRINT "CV=",CV#,"RB=",RB
5508 IF RB > .006 THEN GOTO 5515
5510 CVA#=-2.567*RB + .0246:GOTO 5540
5515 CVA#=~.0123*RB + .0246
5540 HALT=CVA#*WS*CP*DT
5550 EALT=CVA#*XL*WS*.622*DE/PRES
5615 PRINT "HALT=", HALT, "EALT=", EALT
5634 RETURN
5650 QUP=A2(16):QDN=A2(6):LUP=O:LDN=O:'QUP AND QDN ARE
PRYANOMETERS
5660 RETURN
5670 'STARTUP AVERAGES
5671 QSTAR=Q9:GP=G5:QN9=QN5:T=TAV5:TW=WAV5
5672 T9=T5:T0=T6:W9=W5:W0=W6:RETURN
6000 '
          * * MISCELLANEOUS FUNCTIONS
6005 '
6010 '
6015
ESAT = (E(1) + W1 * (E(2) + W1 * (E(3) + W1 * (E(4) + W1 * (E(5) + W1 * (E(6) + W1 * (E(7))))
))))))/10
6020 EFN=ESAT-.00066*(1+.00115*W1)*PRES*(TT-W1)
6025 RETURN
6030
S=(S(1)+TT*(S(2)+TT*(S(3)+TT*(S(4)+TT*(S(5)+TT*(S(6)+TT*(S(7)))))
)))/10
6035 RETURN
6050 '
6100 '
              MISCELLANEOUS CONSTANTS
6105 '
6115 E(1)=6.1078
6116 E(2)=.44365185#
6117 E(3)=.014289458#
6118 E(4)=.00026506485#
6120 E(5)=3.031240400000003D-06
6121 E(6)=.000000020340809#
6125 E(7)=6.136820900000059D-11
6126 '
6130 S(1)=.44381
6131 S(2) = .028570026#
6132 S(3)=7.93805E-04
6133 S(4)=.000012152151#
6135 S(5)=.00000010365614#
```

```
6136 S(6)=3.532421800000003D-10
6140 S(7)=-7.090244800000164D-13
6150 RETURN
6200 '
6205 ' read system specific data
6207 '
6210 ' ISYS=VAL(MID$(N1$,4,1)) : 'IF ISYS=9 THEN HMAX=15 ELSE
HMAX=5
6215 ' HMAX9=.9*HMAX : HMAX1=.1*HMAX : HMAX=30
6217 ' JFLGHO=0:IFLGHO=0:JFLGH1=0:IFLGH1=0:JFLGH2=0:IFLGH2=0
6218 '
IFLGW7=0:IFLGDT0:IFLGDT7=0:IFLGDT=0:IFLGDT=0:TWD7=0:TWD0:TWD0
6219 ' FOR I=1 TO M1:IFLGO(I)=0:IFLGO7(I)=0:NEXT
6300 ISYS=VAL(MID$(N1$,4,1))
6305 INFLs="INDAT"+RIGHTs(STRs(ISYS),1)+3%.DO"
6310 OPEN "I", #1, INFLs: NDIG=0: NRTD=0
                   ' SKIP LABEL
6312 INPUT #1,X9$
6315 INPUT #1,MA,N1,N2,N3,N4,N5,N8,GO,M7
6320 N4=N4/N1 ' SET N4=# OF RECORDS/DISK UPDATE
                                                       1/31.
6335 INPUT #1,X9$ 'SKIP LABEL
6336 INPUT #1,LG,HG,HOME,REF,O1,O2,RC(1),NCRTD
6337 INPUT #1,X9$ ' SKIP LABEL
6338 INPUT #1, DELZ(1), ELEV, CSOIL, DZ, REF, HOME
6339 INPUT #1,X9$
6340 CLOSE #1
6342 CSOI=(.402*2+4.23*CSOIL)*10^6:'CONVERT %H20 TO HEAT CAPACITY
6344 PRES=101.3-.01055*ELEV: ASSUME STANDARD ATMOSPHERE
6395 RETURN
6400 '
6405 ' create output directory file
6408 '
6410 Q5=4 : N=N3M : M=L1
6425 GOSUB 32100:Ds="Manhattan "+TIMEs+" "+DATEs
6430 OPEN "O",#1,N3$
6440 PRINT#1,Q5;",";N;",";M;",";D$;",";:FOR L=1 TO L1:PRINT
#1.A$(L(L)):NEXT
6450 PRINT #1,2$ : CLOSE #1
6460 PRINT Fs:Ns=N3s:GOSUB 7100:PRINT
6495 RETURN
7000 '
7060 IF LEN(G$)=0 THEN G=1:PRINT G:RETURN
7070 G=VAL(G$):PRINT:RETURN
7090 1
7100 PRINT"HEADER DATA FOR: ":NS TAB(30) "LABEL: " DS
7110 PRINT"NUMBER OF CASES: " N TAB(30) "NUMBER OF VARIABLES: "
M:RETURN
7120 '
7200 ON ERROR GOTO 7250
7210 OPEN "I", #1, NS: INPUT #1,Q5, N, M, DS
7220 FOR J=1+M1 TO M+M1:INPUT #1,A$(J):RSET
SPs=As(J):As(J)=SPs:NEXT J:INPUT #1,Zs
7230 CLOSE #1:ON ERROR GOTO O:RETURN
```

```
7250 PRINT:IF ERR=53 THEN PRINT "FILE NOT FOUND":PRINT JS
7255 IF ERR<>53 THEN PRINT "ERROR # "; ERR;" IN LINE "; ERL
7260 INPUT "NEW FILE NAME:", Ns: Ns=Hs+Ns: CLOSE #1
7270 'GOSUB 8300
7280 GOTO 7210
7300 '
7400 PRINT: INPUT; "ENTER BEGINNING CASE NUMBER: ",C
7410 INPUT", ENDING CASE NUMBER: ",D
7420 G=C:H1=1:H2=D:GOSUB 8200:IF W<>1 THEN 7440
7430 PRINT JS:GOTO 7400
7440 G=D:H1=C:H2=N:GOSUB 8200:IF W<>1 THEN RETURN ELSE 7430
8000 '
8010 '
        *S-R*
8020 '
8030 PRINT
8035 PRINT"ENTER OPTION: ";:Gs=INPUT$(1)
8040 IF ASC(G$)=13 THEN G$=MID$(T1$,1,1)
8050 G=ASC(G$)-64:PRINT G$;
8060 H1=ASC(LEFTs(T1s,1))-64:H2=ASC(MIDs(T1s,2,1))-64:GOSUB 8200
8080 IF W<>1 THEN RETURN ELSE 8035
8090 1
8200 IF G>=H1 AND G<=H2 THEN W=O:RETURN
8210 PRINT Js; CHR$(13); :W=1:RETURN
8215 '
8300 OPEN "R",#1,"PARMD",38
8310 FIELD #1,19 AS Xs,9 AS NNs:GET #1,1:LSET Xs=Xs:LSET
NNS=NS:PUT #1,1
8320 CLOSE #1:RETURN
8325 '
8400 IF LEFTs(Ns,6)="(NONE)" THEN 8430
8410 PRINT:PRINT"OPEN FILE: " CHR$(34) N$ CHR$(34);"
8420 PRINT"(PRESS " CHR$(34) "RETURN" CHR$(34) " TO USE OPEN
FILE)"
8430 PRINT"ENTER FILE NAME: ";:N9$="":FOR J=1 TO 10
8432 XXs=INPUTs(1):IF XXs=CHRs(13) THEN 8438 ELSE PRINT XXs;
8434 N9$=N9$+XX$
8436 NEXT
8438 IF LEN(N9$)=0 THEN PRINT" " N$:PRINT:RETURN
8439 IF MIDs(N9s,2,1)=":" THEN Ns=N9s:GOTO 8450
8440 NS=HS+N9S
8450 GOSUB 8300:PRINT"
                          ";NS:PRINT:RETURN
8455 '
8600 PRINT: PRINT TAB(10) "----VARIABLE NUMBERS AND NAMES----
":PRINT
8620 A=A+6:B=B+6:IF B>M THEN B=M
8630 FOR I=A TO B
8640 PRINT USING "###"; I; :PRINT". " A$(I) " "; :NEXT I:PRINT: IF
B<M THEN 8620
8670 RETURN
8675 '
8900 D9$="NO YES":IF D9=1 THEN D9$="YESNO ":PRINT
8910 PRINT Q1s::Qs=INPUTs(1)
```

```
8920 IF Qs=MIDs(D9s,4,1) THEN PRINT RIGHTs(D9s,3):Q=1:RETURN
8930 PRINT LEFT$(D9$,3):Q=0:RETURN
8935 '
8950 PRINT:PRINT " ";
8960 FOR L=1 TO L1:PRINT "
                               " A$(L(L));:NEXT
L:PRINT:PRINT:RETURN
8965 '
8970 PRINT:PRINT"PRESS 'RETURN' TO CONTINUE:
";:Qs=INPUTs(1):L3=1:PRINT Fs
8980 RETURN
8985 '
8990 IF P=1 THEN RETURN
8992 PRINT:PRINT"PRESS ANY KEY TO CONTINUE: ";:Qs=INPUT$(1)
8994 PRINT CHR$(13); RETURN
9000 '
9010 '
        *INIT*
9020 '
9120 R$=CHR$(13)+"
9300 '
9305 ' * INITIALIZE CONTROL PARAMS *
                                                     1/1/
9310 '
9315 ' NCRTD=9
                         ' Channel number of 1st RTD
9320 ' N1=6
                         ' Basic data rate (min)
9330 DPR=57.2958
                          DEGREES/RADIAN
9355 SIGMA=5.6697E-08 ' BOLTZMAN CONST
9365
      PI=3.14159
9370
      ' DZ=.1
                            depth of Ts avq (m)
                         ' HOME CHANNEL
9380 ' HOME=7
9500 1
9505 ' Initialize
9510 '
9515 OPEN "I",#1,"PDS.FIL"
9516 INPUT #1.PGs:IF PGs<>"SAMPP" THEN 9516
9517 INPUT #1, ICFLG, IS, IE, DXIs, DXOs, FSs, FTs, MSGs
9520 IFILES=0
9525 IFILES=IFILES+1 : INPUT #1,FL$(IFILES):IF EOF (1) THEN 9540
ELSE 9530
9530 IF FL$(IFILES)="END" THEN IFILES=IFILES-1:GOTO 9540
9535 PRINT IFILES;FL$(IFILES),:GOTO 9525
9540 CLOSE #1:PRINT IFILES;FL$(IFILES)
9799 '
9800 ' Additional Field (variable) names
9805 '
9810 FOR I=NS TO NST:READ A$(I):NEXT
                                        ","GP ","KDN
                                                        ","KUP
9820 DATA "TIME ","Q
                      ","H ","E
","D
       ••
9830 DATA "LDN ","LUP ","U
                               "."UDIR
","TATOP","TWTOP","TABOT","TWBOT"
                                                        "."QUP
9840 DATA "TSOIL", "EATOP", "EABOT", "DT
                                       "."DE
                                                "."QDN
"."QERR "
                                                        ","HALT
9850 DATA "RHBOT","M
                                ","HMREC","DATE "," BR
                      ","GS
", "EALT "
```

```
9860 DATA "CV
                 "."RB
9890 RETURN
32000 '
32005 ' Time and date routine for SDS MV5.0c
10/15/84 11:40
32007 '
                                                last modified 11/
1/84
      7:50
32010 ' init
32015 '
32020 DIM M(12)
32025 FOR I=1 TO 12:READ M(I):NEXT:IF INT(DATE/4)*4 = DATE THEN
M(2) = 29
32030 DATA 31,28,31,30,31,30,31,30,31,30,31
32035 '
32040 ' main program
32045 RETURN
32100 DATE=PEEK(&H40):IF DATE=0 THEN GOSUB 32170
32105 RETURN: 'DATES="19"+RIGHTS(STRS(DATE).2)
32120
TIMEs=RIGHTs(STRs(PEEK(&H43)),2)+":"+RIGHTs(STRs(PEEK(&H44)),2)+"
:"+RIGHTs(STRs(PEEK(&H45)),2)
32125 DAY=PEEK(&H41)+256*(PEEK(&H42)) : MO=0
32135 FOR I=1 TO 12:MO=MO+M(I):IF MO>=DAY THEN MO=MO-M(I):GOTO
32145
32140 NEXT
32145 DAY=DAY-
MO:MO=I:DATEs=RIGHTs(STRs(MO),2)+"/"+RIGHTs(STRs(DAY),2)+"/"+DATE
32150 PRINT DATES, TIMES
32160 RETURN
32165 '
32170 ' set time
32175 RETURN
32180 INPUT "MONTH,
                      DAY, YEAR ", MO, DAY, YR : MO=MO-1
32185 INPUT "HOUR, MINUTE, SECOND ", HR, MIN, SEC
32190 JDAY=0:FOR I=1 TO MO:JDAY=JDAY+M(I):NEXT
32195 JDAY=JDAY+DAY:JDAYH=INT(JDAY/256):JDAYL=JDAY-JDAYH*256
32200 POKE &H41, JDAYL: POKE &H42, JDAYH
32205 POKE &H43, HR: POKE &H44, MIN: POKE &H45, SEC
32210 PRINT "depress <CR> to start clock ";:XCs=INPUTs(1)
32215 IF XCs<>CHRs(13) THEN GOTO 32185 ELSE POKE &H40, YR
```

**32220 RETURN** 

Appendix 9.8.10. SUMMARYE.BAS, a program for the AT computer which summarizes the the output of SAMPP.BAS (6-minute data) into 30-minute averages.

```
'SUMMARYE.BAS modified for AT computer and Epson LQ-1000
printer
06/25/86
10
     'Program SUMMARYB.BAS
06/14/85
11
     'Based on SUMMARY5.BAS of
                                                            1517
01/08/85
     'FT$ = "S"
                  -> 'output 30 min averages
12 :
13
          = ".MF" -> input 6 min averages --
14
     'ICFLG = 0
                  -> list data as is
15
                  -> recompute EB w/o soil heat storage, in top 10
CR
20
            = 2
                  -> recompute EB w/ modified Gs term
1/8/85
25
     'NASA Konza Prairie study
30
                                             last modified 0919
6/16/85
80
      ON ERROR GOTO 30000
    DEFINT I:WIDTH "LPT1:",255:Xs="":Gs="":Ns=""
100
      DIM B%(64),A$(100),A1$(100),D(53),FL$(53),B5%(53)
105
      DIM
AVG(34), AVG1(34), AVG2(34), SUM(34): T$=CHR$(27)+"S"+CHR$(0): V$=CHR$
         '----Superscript on/off
      DIM IQ(34),NQ(34)
110
120
      GOSUB 31000:GOSUB 32000
150
      ICOUNT=0
300
500
      ICOUNT=ICOUNT+1 : Gs=FLs(ICOUNT)+FTs
510
      N$=DXI$+G$:GOSUB 7200:B1%=N:B5%=M:GOSUB 7100
540
      GOSUB 32100
601 PI=3.1314159#:DPR=57.2958
602 LPRINT CHR$(27);"M";CHR$(27);"2";
                                       '-----12 cpi, 6 lpi
603 LPRINT TAB(5) DATES " " TIMES "
                                       file " N$ " label: " D$
604 LPRINT:LPRINT MSGs:LPRINT:LPRINT:LPRINT
605 LPRINT TAB(24) "UNIVERSITY OF WASHINGTON FOREST METEOROLOGY"
606 LPRINT
607 LPRINT TAB(24) "
                         ENERGY/RADIATION BALANCE SUMMARY "
608 LPRINT TAB(24) "
                              Konza Prairie - 1986"
609 LPRINT
610 SYS = VAL(MIDs(Gs,2,1)):ON SYS GOTO
611,618,618,618,618,613,615,616,617
611 LPRINT TAB(24) "
                           System 1: North Facing Slope":GOTO
618
613 LPRINT TAB(24) "
                             System 6: Tempe Az demo":GOTO 618
615 LPRINT TAB(24) "
                           System 7: East Facing Slope":GOTO 618
616 LPRINT TAB(24) "
                           System 8: West Facing Slope":GOTO 618
```

```
System 9: South Facing Slope":GOTO 618
617 LPRINT TAB(24) "
618 LPRINT TAB(43);
619 LPRINT USING "##/##/85"; VAL(MID$(G$,3,2)); VAL(MID$(G$,5,2))
620 LPRINT
                                                             D
621 LPRINT "
                   TIME
                                 Н
                                       E
                                            G
                                                 KDN
                                                      KUP
                     Udir"
            Ta
LDN
     LUP
622 LPRINT
                         Wm";T$;"-2";V$;" Wm";T$;"-2";V$;"
623 LPRINT "
Wm"; Ts; "-2"; Vs; " Wm"; Ts; "-2"; Vs; " Wm"; Ts; "-2"; Vs; " Wm"; Ts; "-
2"; V$;" Wm"; T$;"-2"; V$;,
624 LPRINT " Wm"; Ts; "-2"; Vs; " Wm"; Ts; "-2"; Vs; Ts; " o"; Vs; "C"; "
ms"; Ts; "-1"; Vs; " deg. ": LPRINT
625 LPRINT CHR$(27);"0"
                        '---- 8 lpi
627 IF FTs="S" THEN 720 ' create Mstat directory
628 N1=DXOS+MID=(G5,1,LEN(G5)-1)+"S" : Q5=4 : N=49 : M=B5% :
20$=N1$+"R"
629 Ds="KONZA "+TIMEs+" "+DATES
630 OPEN "O",#1,N1$ '
                       Create directory file
631 PRINT #1,Q5;",";N;",";M;",";D$;",";:FOR J=1 TO M:PRINT
#1,A$(J):NEXT J
632 PRINT #1,20$
633 CLOSE #1
634 OPEN "R",#1,N1$+"R",Q5:FIELD #1,Q5 AS T9$
     OPEN "R", #2, Z$, Q5:FIELD #2, Q5 AS N9$
720
     FOR R%=1 TO B1%
800
       FOR K%=1 TO M
802
         GET \#2,Kx+M*(Rx-1):D(Kx)=CVS(N9s)
805
2000 NEXT:GOSUB 10000
2003 NEXT:CLOSE:FOR I=1 TO 11:PRINT:NEXT
2004 GOSUB 33000
2005 IF ICOUNT<IFILES GOTO 500
2006 CHAIN "PLOTRE": END
2020 GOTO 30020
7090 '
7100 PRINT"HEADER DATA FOR: ";N$ TAB(30) "LABEL: " D$
7110 PRINT"NUMBER OF CASES: " N TAB(30) "NUMBER OF VARIABLES: "
M:RETURN
7120 '
7200 '
7210 OPEN "I", #1, N$: INPUT #1, Q5, N, M, D$
7220 FOR J=1 TO M:INPUT #1,A$(J):NEXT J:INPUT #1,Z$
7230 CLOSE #1:RETURN
7300 '
10000 '
                                           SUMMARY1.CMF
         30 min summary routine
                                           Last modified 0914
10001 '
         9/24/84
10/05/84
10002 '
10003 IF D(1)=0 AND R%=1 THEN RETURN
10004 FOR I=1 TO B5%
        AVG(I) = D(I) + AVG(I)
10005
```

```
10006 NEXT : IF FTS="S" THEN 10017
10007 '
10008 '
           VECTOR AVG WIND DIRECTION
10009 '
10010 A7=D(12)/DPR
10011 A1=A1+COS(A7):A2=A2+SIN(A7)
10012 IF A1<>0 THEN A3=ATN(A2/A1) ELSE A3=SGN(A2)*PI/2
10013 IF SGN(A1) <0 THEN A3=A3+PI
10014 IF SGN(A1)>O AND SGN(A2)<O THEN A3=A3+2*PI
10015 AVG(12) = A3*DPR
10016 IF D(1)=0 THEN D(1)=2400
10017 HR=INT(D( 1)/100)
10018 MIN=D( 1)-HR*100
10019 NR=NR+1
10020 IF MIN MOD 30 = 0 OR R%=B1% THEN GOTO 10023
10021 RETURN
10022 '
10023 X1=X9:X9=HR+MIN/60:XD=(X9-X1)*2 ' XD = # missing records +
10024 FOR I=1 TO B5%
                                                         1/11
        IF I<> 12 THEN AVG(I) = AVG(I)/NR
10026 NEXT
10027 IF AVG(6)<0 THEN AVG(6)=0
10028 IF AVG(8) <0 THEN AVG(8) =0
10029 IF AVG(7)>0 THEN AVG(7)=0
10030 FOR I=1 TO XD:XT=X1+.5*I
10031
        AVG(1)=40*INT(XT)+60*XT
10032
        AVG2(1) = AVG(1)
10033
        FOR J=2 TO B5%
10034
          AVG2(J) = AVG1(J) + (AVG(J) - AVG1(J)) / XD * I
10035 '
          IF AVG(1)>1830 AND AVG(1) <2030 THEN PRINT
AVG(J), AVG1(J), AVG2(J), XD
10036
        NEXT
        IF I<>XD THEN EFS=" *" ELSE EFS=""
10037
10038
        IF ICFLG > 1 THEN GOSUB 10100
        GOSUB 20000:ISUM=ISUM+1
10039
        FOR K=1 TO B5% : IF FTS="S" THEN 10043
10040
          IF Q5=4 THEN LSET T9s=MKSs(AVG2(K)) ELSE LSET
10041
T9$=MKD$(AVG2(K))
          PUT #1,K+(B5**(ISUM-1))
          IF K<11 OR K=27 THEN SUM(K)=SUM(K)+AVG2(K)*.0018 ELSE
10043
SUM(K) = SUM(K) + AVG2(K)
10044
        NEXT
10045 NEXT
10046 FOR K=1 TO B5%
10047
        AVG1(K) = AVG(K)
                                            ' previous averages
10048
        AVG(K)=0
10049 NEXT
10050 NR=0:A1=0:A2=0
10051 IF Rx<B1x THEN RETURN
10052 FOR K=11 TO B5%:IF K<>27 THEN SUM(K)=SUM(K)/ISUM
10053 NEXT
```

```
10054 GOSUB 20015
10055 GOSUB 20017
10056 GOSUB 20029
10057 GOSUB 20031
10058 GOSUB 20035
10059 GOSUB 20037
10060 ISUM=ISUM+1 : IF FT$="S" THEN 10065
10061 FOR K=1 TO B5%
10062
        LSET T9$=MKS$(SUM(K))
        PUT #1,K+(B5%*(ISUM-1))
10063
10064 NEXT
10065 FOR K=1 TO B5%:SUM(K)=0:NEXT:ISUM=0:X9=0
10066 CLOSE #1:RETURN
10104 IF ICFLG=1 THEN FACTOR=0:GOTO 10115
10105 ON SYS GOTO 10106,10107,10108,10109,10110
10106 FACTOR=.65:GOTO 10115
10107 FACTOR=.76:GOTO 10115
10108 FACTOR= 1 :GOTO 10115
10109 FACTOR= 1 :GOTO 10115
10110 FACTOR=.62
10115 AVG2(27)=FACTOR*AVG2(27)
10120 BETA=AVG2(3)/AVG2(4)
10125 AVG2(4) = - (AVG2(2) + AVG2(5) + AVG2(27))/(1+BETA)
10130 AVG2(3)=BETA*AVG2(4)
10180 RETURN
10190 '
20000 LPRINT USING "##########"; AVG(1),
20001 LPRINT USING "#####"; AVG2(2),
20002 LPRINT USING "######"; AVG2(3),
20003 LPRINT USING "######"; AVG2(4),
20004 LPRINT USING "#####"; AVG2(5)+AVG2(27),
20005 LPRINT USING "#####"; AVG2(6),
20006 LPRINT USING "#####"; AVG2(7),
20007 LPRINT USING "#####"; AVG2(8),
20008 LPRINT USING "#####"; AVG2(9),
20009 LPRINT USING "######"; AVG2(10),
20010 LPRINT USING "###.##"; AVG2(13),
20011 LPRINT USING "###.#"; AVG2(11),
20012 LPRINT USING "#####"; AVG2(12),
                                                  'removed:
20013 LPRINT
              FFS
20014 RETURN
20015 FL%= 14 :LPRINT "
          * removed ; RW
20016 RETURN
20017 FLx= 14 :LPRINT
                               Totals:";;
20018 FLx= 6 :LPRINT USING "###.##";SUM(2),
20019 FLx= 6 :LPRINT USING "###.##";SUM(3),
20020 FL%= 6 :LPRINT USING "###.##";SUM(4),
20021 FLx= 5 :LPRINT USING "##.##";SUM(5)+SUM(27),
20022 FLx= 6 :LPRINT USING "###.##";SUM(6),
```

```
20023 FL%= 6 :LPRINT USING "###.##";SUM(7),
20024 FLx= 5 :LPRINT USING "##.##";SUM(8),
20025 FL%= 6 :LPRINT USING "###.##":SUM(9).
20026 FLx= 6 :LPRINT USING "###.##";SUM(10),
20027 FL%= 14 :LPRINT " (MJ m";Ts;"-2";Vs;")"
removed ; -RW
20028 RETURN
20029 FL%= 14 :LPRINT
                                                 ' removed
20030 RETURN
20031 FL%= 14 :LPRINT
                              Averages (units as in column
headings):
                              ";;
20032 FL%= 6 :LPRINT USING "###.##":SUM(13).
20033 FL%= 5 :LPRINT USING "###.#";SUM(11) ,
20034 RETURN
20035 FL%= 14 :LPRINT :LPRINT
                                                 ' removed
                                                            : -RW
20036 RETURN
20037 FL%= 14 :LPRINT
                            (":
20038 FL%= 14 :LPRINT
                       CHR$(34);
20039 FLx= 14 :LPRINT "*";;
20040 FL%= 14 :LPRINT
                       CHR$(34);
20041 FL%= 14 :LPRINT
                       " indicates interpolated values inserted
for missing data)";
20042
LPRINT:LPRINT:LPRINT:LPRINT:LPRINT:LPRINT:LPRINT:LPRINT:LPRINT:LP
20043 RETURN
30000 '
30010 IF ERR<>51 THEN 30030
30020 CLOSE
30025 PRINT:PRINT:CHAIN "PLOT4"
30030 ON ERROR GOTO 0
30050 END
31000 '
31005 ' Initialize
31010 '
31015 OPEN "I",#1,"PDS.FIL"
31016 INPUT #1,PGs:IF PGs<>"SUMMARYE" THEN 31016
31017 INPUT #1, ICFLG, IS, IE, DXIs, DXOs, FSs, FTs, MSGs
31020 IFILES=0
31025 IFILES=IFILES+1 : INPUT #1.FL$(IFILES):IF EOF (1) THEN
31040 ELSE 31030
31030 IF FLs(IFILES)="END" THEN IFILES=IFILES-1:GOTO 31040
31035 PRINT IFILES; FLs (IFILES),: GOTO 31025
31040 CLOSE #1:PRINT IFILES;FL$(IFILES)
31050 RETURN
32000 '
32005 ' Time and date routine for SDS MV5.0c
10/15/84 11:40
32007 '
                                               last modified
11/30/84 18:02
32010 ' init
32015 '
```

```
32020 DIM M(12)
32025 FOR I=1 TO 12:READ M(I):NEXT:IF INT(DATE/4)*4 = DATE THEN
32030 DATA 31,28,31,30,31,30,31,30,31,30,31
32035 4
32040 ' main program
32045 '
32100 RETURN: 'DATE=PEEK(&H4O): IF DATE=0 THEN GOSUB 32170
32105 DATEs="19"+RIGHTs(STRs(DATE),2)
TIMES=RIGHTS(STRS(PEEK(&H43)),2)+":"+RIGHTS(STRS(PEEK(&H44)),2)+"
:"+RIGHT$(STR$(PEEK(&H45)),2)
32125 DAY=PEEK(&H41)+256*(PEEK(&H42)) : MO=O
32135 FOR I=1 TO 12:MO=MO+M(I):IF MO>=DAY THEN MO=MO-M(I):GOTO
32145
32140 NEXT
32145 DAY=DAY-
MO:MO=I:DATEs=RIGHTs(STRs(MO),2)+"/"+RIGHTs(STRs(DAY),2)+"/"+DATE
32150 PRINT DATES, TIMES
32160 RETURN
32165 '
32170 RETURN: ' set time
32175 '
32180 INPUT "MONTH,
                              YEAR ", MO, DAY, YR : MO=MO-1
                      DAY,
32185 INPUT "HOUR, MINUTE, SECOND ", HR, MIN, SEC
32190 JDAY=O:FOR I=1 TO MO:JDAY=JDAY+M(I):NEXT
32195 JDAY=JDAY+DAY:JDAYH=INT(JDAY/256):JDAYL=JDAY-JDAYH*256
32200 POKE &H41, JDAYL: POKE &H42, JDAYH
32205 POKE &H43, HR: POKE &H44, MIN: POKE &H45. SEC
32210 PRINT "depress <CR> to start clock ";:XCs=INPUTs(1)
32215 IF XC$<>CHR$(13) THEN GOTO 32185 ELSE POKE &H40,YR
32220 RETURN
33000 PRINT "STARTING TIME = ".TIMES
33010 OPEN "R",#1,DXI$+G$+".MF",4
33020 OPEN "0",#2,DXIs+Gs+".TXT"
33030 FIELD #1.4 AS NS
33050 FOR L = 1 TO 241
33060 FOR IQ = 1 TO 34
33070 GET #1
33080 NQ(IQ) = CVS(N$)
33130 NEXT IQ
33135 WRITE #2,
NQ(1),NQ(2),NQ(3),NQ(4),NQ(5),NQ(6),NQ(7),NQ(8),NQ(9),NQ(10),NQ(1
1), NQ(12), NQ(13), NQ(14), NQ(15), NQ(16), NQ(17), NQ(18), NQ(19), NQ(20)
,NQ(21),NQ(22),NQ(23),NQ(24),NQ(25),NQ(26),NQ(27),NQ(28),NQ(29),N
Q(30), NQ(31), NQ(32), NQ(33), NQ(34)
33140 NEXT L
33150 CLOSE #1:CLOSE #2:
33160 OPEN "R",#1,N1$+"R",4
33170 OPEN "O",#2,N1$+".TXT"
33180 FIELD #1,4 AS NS
```

33190 FOR L = 1 TO 49
33200 FOR IQ = 1 TO 34
33210 GET #1
33220 NQ(IQ) = CVS(N\$)
33230 NEXT IQ
33235 WRITE #2,
NQ(1),NQ(2),NQ(3),NQ(4),NQ(5),NQ(6),NQ(7),NQ(8),NQ(9),NQ(10),NQ(1
1),NQ(12),NQ(13),NQ(14),NQ(15),NQ(16),NQ(17),NQ(18),NQ(19),NQ(20),NQ(21),NQ(22),NQ(23),NQ(24),NQ(25),NQ(26),NQ(27),NQ(28),NQ(29),N
Q(30),NQ(31),NQ(32),NQ(33),NQ(34)
33240 NEXT L
33250 CLOSE #1:CLOSE #2:
33255 PRINT "ENDING TIME=",TIME\$
33260 RETURN

Appendix 9.8.11. PLOTRE.BAS, a program for the AT computer which converts the output of SUMMARYE.BAS into line printer plots of radiation balances.

```
PLOTRE.BAS modified for AT computer and Epson LQ-1000
printer
4 '
06/25/86
       PLOT4K Konza Prairie study
6/14/85
       PLOT4C removed refs to MOVE.COM for compilation
10/26/84
       PLOT4 combines EBPLOT.CMF (ASCOT) for multiple files
10/22/84
9 '
       PLOT1 1/12/84 minimum fixes to run on SDS
10 '
       from Program PLOT 1/13/82 (Northstar)
11 '
       Added SUBR 9100 to program Okidata 84 printer 1/12/83
12 ′
       Added plot vert. height as variable (HP) 11/82
20 '
                                             last edited 0946
6/16/85
80 '
90 DEFINT I:WIDTH "LPT1:",255:Xs="":Gs="":Ns=""
100 DIM A$(100),D(50),AVG(35),FL$(35),P$(145)
120 GOSUB 31000: 'GOSUB 32000 ' Initialization, Time of Day
routines
150 ICOUNT=0
250
275 VRES=5 ' Vert res. in 144ths of an inch
276 MARG=17 ' margin offset
280 WP=5.65:WP=INT(WP*17.1)+1
290 HP=5:HP=INT(HP*144/VRES)+1
305 '
500
      ICOUNT=ICOUNT+1 : Gs=FLs(ICOUNT)+"P" : As=Gs
505
      N$=DXI$+G$:GOSUB 8200:B1%=N:B5%=M:GOSUB 8100
510
      OPEN "I", #1, Ns: INPUT #1, Q5, N, M, Ds: CLOSE #1
515 ' GOSUB 32100
520 XMIN=1.1E+38:YMIN=XMIN:XMAX=XMIN:YMAX=XMIN
525 FOR I=1 TO HP:Ps(I)=SPACEs(WP):MIDs(Ps(I),1,1)="|"
526 MIDs(Ps(I), WP, 1) = "|":NEXT
530 FOR I=1 TO WP:MID$(P$(1),I,1)="-":MID$(P$(HP),I,1)="-":NEXT
535 OPEN "R", #2, DXI$+G$+".MF", Q5:FIELD #2, Q5 AS N9$
623 YMAX=1000:YMIN=-
1360:XMAX=24:XMIN=0:T$=CHR$(27)+CHR$(83)+CHR$(0):V$=CHR$(27)+CHR$
(84)
624 LPRINT CHR$(27)CHR$(50);CHR$(27)CHR$(80);CHR$(15);
625 LPRINT TAB(5) DATES " " TIMES " file " NS " label:
626 LPRINT:LPRINT:LPRINT:LPRINT:LPRINT:LPRINT
627 LPRINT TAB(MARG+27) "UNIVERSITY OF WASHINGTON FOREST
METEOROLOGY"
628 LPRINT TAB (MARG+27) "
                                 RADIATION BALANCE PLOT "
```

629 LPRINT "

```
630 LPRINT TAB(MARG+12) "Konza Prairie" TAB(MARG+62) "o = Net
radiation
                  [W m";Ts;"-2";Vs;"]"
631 LPRINT TAB(MARG+62) "* = Shortwave rad. down [W m";Ts;"-
2":V$:"]"
632 LPRINT TAB(MARG+17)::LPRINT USING
"##/##/85"; VAL(MID$(A$,3,2)); VAL(MID$(A$,5,2)); :LPRINT
TAB(MARG+62) "x = Shortwave rad. up
                                        [W m";Ts;"-2";Vs;"]"
633 LPRINT TAB(MARG+62) "= = Long wave rad. down [W m";T$;"-
2"; V$; "]"
634 SYS = VAL(MID$(A$,2,1)):LPRINT TAB(MARG);:ON SYS GOTO
635,642,642,642,642,636,639,640,641
635 LPRINT "
                      System 1: North Facing Slope":GOTO 642
637 LPRINT "
                         System 6: Tempe Az demo"
                                                    ;:GOTO 642
639 LPRINT "
                      System 7: East Facing Slope"::GOTO 642
640 LPRINT "
                       System 8: West Facing Slope"::GOTO 642
641 LPRINT "
                      System 9: South Facing Slope": GOTO 642
642 LPRINT TAB(MARG+62) "+ = Long wave rad. up
                                                   [W m^";T$;"~
2"; V$; "]"
643 LPRINT TAB(MARG+62) "# = Diffuse rad.
                                                    [W , T$; "-
2"; V$; "] "
644 LPRINT TAB(MARG+62) "t = Air temperature
[";T$;"o";V$;"C]"
645 LPRINT TAB(MARG+62) "w = Wet bulb temperature
[";T$;"o";V$:"C]"
646 LPRINT
783 SX=(WP-1)/(XMAX-XMIN):SY=(HP-1)/(YMAX-YMIN)
795 LPRINT TAB(MARG) "XMIN="; XMIN;" XMAX="; XMAX;" YMIN="; YMIN;"
YMAX=";YMAX
796 GOSUB 9100:LPRINT
798 COUNT=1
800 FOR R%=1 TO B1%
802
      FOR K \approx = 1 TO M
804
        GET #2, K*+M*(R*-1):D(K*)=CVS(N9$)
806
      NEXT:GOSUB 10000
810 NEXT
820 FOR I=HP TO 1 STEP -1
825 LPRINT TAB(MARG) P$(I)
830 NEXT
835 FOR I=1 TO 3:LPRINT:NEXT:GOSUB 9110
840 CLOSE :FOR I=1 TO 10:LPRINT:NEXT
850 IF ICOUNT<IFILES GOTO 500
855 CHAIN "PLOTEE": END
900 '
5000 GDTD 30020
7200 IF SW=1 THEN SW=0:RETURN
7201 IF SX=0 THEN 7250
7202 IX=(X-XMIN)*SX+1:IY=(Y-YMIN)*SY+1
7205 IF (IX<=0 OR IY<=0) THEN RETURN
7210 IF (IX>WP OR IY>HP) THEN RETURN
7215 MIDs(Ps(IY),IX,1)=PCs:RETURN
7250 IF X>EXMX THEN EXMX=X
7255 IF X<EXMN THEN EXMN=X
```

```
7260 IF Y>EYMX THEN EYMX=Y
7265 IF Y<EYMN THEN EYMN=Y
7270 RETURN
8090 '
8100 PRINT"HEADER DATA FOR: "; N$ TAB(30) "LABEL: " D$
8110 PRINT"NUMBER OF CASES: " N TAB(30) "NUMBER OF VARIABLES: "
M:RETURN
8120 '
8200 '
8210 OPEN "I", #1, N$: INPUT #1, Q5, N, M, D$
8220 FOR J=1+M1 TO M+M1:INPUT #1,A$(J):RSET
SPS=AS(J):AS(J)=SPS:NEXT J:INPUT #1,ZS
8230 CLOSE #1:RETURN
8300 '
9100 '
         Epson LQ-1000 printer set up
9105 LPRINT CHR$(15);:LPRINT CHR$(27)CHR$(51)CHR$(7);
9107 RETURN
9110 LPRINT CHR$(27)CHR$(80);CHR$(27)CHR$(50):RETURN
10000 ′
        Plotting/averaging routine
10001 '
         9/24/84
                                             Last modified 1629
10/034/84
10002 '
10003 IF D(1)=0 AND R%=1 THEN RETURN
10005 FOR I=1 TO B5%
10006
       AVG(I)=D(I)+AVG(I)
10007 NEXT
10008 HR=INT(D( 1)/100)
10009 IF D(1)=0 THEN D(1)=2400
10010 MIN=D( 1)-HR*100
10011 X=HR+MIN/60
10012 IF MIN=0 OR MIN=12 OR MIN=30 OR MIN=42 THEN Y=0:PC$="-
":GOSUB 7200:Y=-660:GOSUB 7200:Y=-1160:GOSUB 7200
10013 NR=NR+1
10014 IF MIN MOD 30 = 0 THEN GOTO 10017
10015 RETURN
10016 '
10017 FOR I=1 TO B5%
        AVG(I) = AVG(I)/NR
10018
10019 NEXT
10020 IF X=O AND RECORD%>2 THEN X=24
10021 Y=AVG(6):PC$="*":GOSUB 7200
10022 Y=AVG(7):PC$="x":GOSUB 7200
10023 Y=AVG(9):PC$="=":GOSUB 7200
10024 Y=AVG(10):PC$="+":GOSUB 7200
10025 Y=AVG(8):PC$="#":GOSUB 7200
10026 Y=AVG(2):PC$="o":GOSUB 7200
10027 Y=AVG(13) *20-1160:PC$="t":GOSUB 7200
10028 Y=AVG(14) *20-1160:PC$="w":GOSUB 7200
10029 FOR I=1 TO B5%
10030
        AVG(I)=0
10031 NEXT
10032 NR=0
```

```
10033 RETURN
30000 '
30020 CL0SE
30030 IF ISTP=0 THEN STOP ELSE CHAIN "SC"
30040 STOP
31000 '
31005 ' Initialize
31010 '
31015 OPEN "I".#1."PDS.FIL"
31016 INPUT #1,PGs:IF PGs<>"PLOTRE" THEN 31016
31017 INPUT #1, ICFLG, IS, IE, DXIs, DXOs, FSs, FTs, MSGs
31020 IFILES=0
31025 IFILES=IFILES+1,: INPUT #1.FL$(IFILES):IF EOF (1) THEN
31040 ELSE 31030
31030 IF FL$(IFILES)="END" THEN IFILES=IFILES-1:GOTO 31040
31035 PRINT IFILES; FL$ (IFILES),: GOTO 31025
31040 CLOSE #1:PRINT IFILES:FL$(IFILES)
31050 RETURN
32000 '
                                                       12
32005 ' Time and date routine for SDS MV5.0c
10/15/84 11:40
32007 '
                                               last modified 11/
1/84 7:50
32010 ' init
32015 '
32020 DIM M(12)
32025 FOR I=1 TO 12:READ M(I):NEXT:IF INT(DATE/4)*4 = DATE THEN
M(2) = 29
32030 DATA 31,28,31,30,31,30,31,31,30,31,30,31
32040 ' main program
32045 '
32100 DATE=PEEK(&H40):IF DATE=0 THEN GOSUB 32170
32105 DATEs="19"+RIGHTs(STRs(DATE),2)
32120
TIME==RIGHT=(STR=(PEEK(&H43)),2)+":"+RIGHT=(STR=(PEEK(&H44)),2)+"
:"+RIGHTs(STRs(PEEK(&H45)),2)
32125 DAY=PEEK(&H41)+256*(PEEK(&H42)) : MO=0
32135 FOR I=1 TO 12:MO=MO+M(I):IF MO>DAY THEN MO=MO-M(I):GOTO
32145
32140 NEXT
32145 DAY=DAY-
MO:MO=I:DATEs=RIGHTs(STRs(MO),2)+"/"+RIGHTs(STRs(DAY),2)+"/"+DATE
32150 PRINT DATES, TIMES
32160 RETURN
32165 '
32170 ' set time
32175 '
32180 INPUT "MONTH,
                            YEAR ", MO, DAY, YR : MO=MO-1
                      DAY,
32185 INPUT "HOUR, MINUTE, SECOND ", HR, MIN, SEC
32190 JDAY=0:FOR I=1 TO MO:JDAY=JDAY+M(I):NEXT
```

32195 JDAY=JDAY+DAY:JDAYH=INT(JDAY/256):JDAYL=JDAY-JDAYH\*256
32200 POKE &H41,JDAYL:POKE &H42,JDAYH
32205 POKE &H43,HR:POKE &H44,MIN:POKE &H45,SEC
32210 PRINT "depress <CR> to start clock ";:XCs=INPUTs(1)
32215 IF XCs<>CHRs(13) THEN GOTO 32185 ELSE POKE &H40,YR
32220 RETURN

Appendix 9.8.12. PLOTEE.BAS, a program for the AT computer which converts the output of SUMMARYE.BAS into line printer plots of energy balances.

```
PLOTRE.BAS modified for AT computer and Epson LQ-1000
printer
4
06/25/86
        PLOT5K Konza Prairie study
6/14/85
        PLOTSSC removes MOVE.COM references for compilation
12/18/84
        PLOTSS combines EBPLOT.CMF (ASCOT) for multiple files
10/22/84
        PLOT1 1/12/84 minimum fixes to run on SDS
9
10 '
        from Program PLOT 1/13/82 (Northstar)
11 '
        Added SUBR 9100 to program Okidata 84 printer 1/12/83
12 ′
        Added plot vert. height as variable (HP) 11/82
        ASCOT: uses already averaged data ("*S" files)
13 '
                                              last edited
14 '
                                                           1012
06/16/85
15 '
      'FT$ = "S"
                   -> input 30 min averages
20
      ' = ".MF" -> input 6 min averages
22
      'ICFLG = 0
                   -> plot data as is
24
26
               1
                   -> recompute EB w/o soil heat storage in top 10
CR
28
80 ON ERROR GOTO 30000
90 DEFINT I:WIDTH "LPT1:",255:X$="":G$="":N$=""
100 DIM B%(64),A$(100),B$(100),D(50),AVG(35),FL$(35),P$(145)
110 * OPEN "R", #3, "MOVE.COM":GET #3:GT=VARPTR(#3):PT=GT+11:CLOSE
#3
120 GOSUB 31000: GOSUB 32000 'Initialization, Time of Day
routines
150 ICOUNT=0
272 '
275 VRES=5 ' Vert res. in 144ths of an inch
276 MARG=17 ' margin offset
280 WP=5.65:WP=INT(WP*17.1)+1
290 HP=5:HP=INT(HP*144/VRES)+1
305 '
       ICOUNT=ICOUNT+1 : Gs=FLs(ICOUNT)+"P": As=Gs
500
      Ns=DXIs+Gs:GOSUB 8200:B1%=N:B5%=M:GOSUB 8100
505
       OPEN "I", #1, Ns: INPUT #1, Q5, N, M, Ds: CLOSE #1
515 ' GOSUB 32100
520 XMIN=1.1E+38:YMIN=XMIN:XMAX=XMIN:YMAX=XMIN
525 FOR I=1 TO
HP:P$(I)=SPACE$(WP):MID$(P$(I),1,1)="|":MID$(P$(I),WP,1)="|":NEXT
:530 FOR I=1 TO WP:MIDs(Ps(1),I,1)="-":MIDs(Ps(HP),I,1)="-":NEXT
610 OPEN "R", #2, DXIs+Gs+". MF", Q5: FIELD #2, Q5 AS N9$
```

```
624 YMAX=1000:YMIN=-1360:XMAX=24:XMIN=0:PI=3.14159:DPR=57.2958
625 LPRINT
CHR$(27)CHR$(50);CHR$(27)CHR$(80);CHR$(15);:T$=CHR$(27)+CHR$(83)+
CHR$(0):V$=CHR$(27)+CHR$(84)
626 LPRINT TAB(MARG) DATES " "TIMES " file " NS " label:
627 LPRINT:LPRINT:LPRINT:LPRINT
628 LPRINT TAB(MARG+27); "UNIVERSITY OF WASHINGTON FOREST
METEOROLOGY"
                                     ENERGY BALANCE PLOT " :
629 LPRINT TAB(MARG+27);"
LPRINT
630 LPRINT TAB(MARG+12) "Konza Prairie" TAB(MARG+62) "v = Net
                 [W m";T$;"-2";V$;"]"
radiation
631 LPRINT TAB(MARG+62)
                                 "* = Soil Heat Flux
                                                             ſΨ
m";T$;"-2";V$;"]"
632 LPRINT TAB (MARG+17)::LPRINT USING
"##/##/84"; VAL(MID$(A$,3,2)); VAL(MID$(A$,5,2)); :LPRINT
TAB(MARG+62) "o = Sensible Heat Flux [W m":T$:"-2":V$:"]
633 LPRINT TAB(MARG+62)
                                  "+ = Latent Heat Flux
                                                             [W
m";T$;"-2";V$;"]"
634 SYS = VAL(MID$(A$,2,1)):LPRINT TAB(MARG);:ON SYS GOTO
635,642,642,642,642,636,639,640,641
                   System 1: North Facing Slope":GOTO 642
635 LPRINT "
636 LPRINT "
                     System 6: Tempe Az demo"; :GOTO 642
639 LPRINT "
                   System 7: East Facing Slope":GOTO 642
640 LPRINT "
                   System 8: West Facing Slope":GOTO 642
641 LPRINT "
                   System 9: South Facing Slope":GOTO 642
642 LPRINT TAB(MARG+62) "x = Wind direction
                                                   [Degrees]"
643 LPRINT TAB(MARG+62) "# = Wind speed
                                                   [m s";T$;"-
1"; V$; "]"
644 LPRINT
783 SX=(WP-1)/(XMAX-XMIN):SY=(HP-1)/(YMAX-YMIN)
795 LPRINT TAB(MARG) "XMIN=":XMIN;" XMAX=";XMAX;" YMIN=";YMIN;"
YMAX=";YMAX
796 GOSUB 9100:LPRINT
798 COUNT=1
800 FOR R%=1 TO B1%
802
      FOR K%=1 TO M
805
        GET \#2,Kx+M*(Rx-1):D(Kx)=CVS(N95)
      NEXT:GOSUB 10000
810
815 NEXT
820 FOR I=HP TO 1 STEP -1
825 LPRINT TAB(MARG) P$(I)
830 NEXT
835 FOR I=1 TO 3:LPRINT:NEXT:GOSUB 9110
840 CLOSE: FOR I=1 TO 14:LPRINT:NEXT
850 IF ICOUNT<IFILES GOTO 500
900 4
5000 GOTO 30020
7200 IF SW=1 THEN SW=0:RETURN
7201 IF SX=0 THEN 7250
7202 IX = (X - XMIN) * SX + 1 : IY = (Y - YMIN) * SY + 1
```

```
7205 IF (IX<=0 OR IY<=0) THEN RETURN
7210 IF (IX)WP OR IY>HP) THEN RETURN
7211 Q1=Q1+1:S1=S1+X:S2=S2+Y:S3=S3+X*X:S4=S4+X*Y:S5=S5+Y*Y
7215 MIDs(Ps(IY), IX, 1) = PCs: RETURN
7250 IF X>EXMX THEN EXMX=X
7255 IF X<EXMN THEN EXMN=X
7260 IF Y>EYMX THEN EYMX=Y
7265 IF Y<EYMN THEN EYMN=Y
7270 RETURN
8090 '
8100 PRINT"HEADER DATA FOR: ";N$ TAB(30) "LABEL: " D$
8110 PRINT"NUMBER OF CASES: " N TAB(30) "NUMBER OF VARIABLES: "
M:RETURN
8120 '
8200 '
8210 OPEN "I", #1, N$: INPUT #1,Q5, N, M, D$
8220 FOR J=1+M1 TO M+M1:INPUT #1,A$(J):RSET
SPS=AS(J):AS(J)=SPS:NEXT J:INPUT #1,Z$
8230 CLOSE #1:RETURN
                                                       1/11.
8300 '
9100 4
         Okidata 84A printer set up
9105 LPRINT CHR$(15);:LPRINT CHR$(27)CHR$(51)CHR$(7)
9107 RETURN
9110 LPRINT CHR$(27)CHR$(80);CHR$(27)CHR$(50):RETURN
                                            EBPLOT.CMF
         Plotting/averaging routine
                                            Last modified 1525
10001 '
         9/23/84
                  1536
10/22/84
10002 '
10003 IF D(1)=0 AND R%=1 THEN RETURN
10004 IF FTS = "S" THEN GOTO 10018
10005 FOR I=1 TO B5%
10006
        AVG(I) = D(I) + AVG(I)
10007 NEXT
10008 '
           VECTOR AVG WIND DIRECTION
10009 '
10010 '
10011 A7=D(12)/DPR
10012 A1=A1+COS(A7):A2=A2+SIN(A7)
10013 IF A1<>O THEN A3=ATN(A2/A1) ELSE A3=SGN(A2)*PI/2
10014 IF SGN(A1) <0 THEN A3=A3+PI
10015 IF SGN(A1)>0 AND SGN(A2)<0 THEN A3=A3+2*PI
10016 AVG(12)=A3*DPR
10017 IF D(1)=0 THEN D(1)=24
10018 HR=INT(D( 1)/100)
10019 MIN=D( 1)-HR*100
10020 X=HR+MIN/60 : Y=0
10021 IF MIN MOD 15 = 0 THEN Y=0
                                   :PC$="-":GOSUB 7200
10022 IF MIN MOD 15 = 0 THEN Y=-500:PC$="-":GOSUB 7200
10023 IF MIN MOD 15 = 0 THEN Y=-860:PC$="-":GOSUB 7200
10024 IF FTS = "S" THEN GOTO 10031
10025 NR=NR+1:IF MIN MOD 30 = 0 THEN GOTO 10027
10026 RETURN
```

```
10027 '
10028 FOR I=1 TO B5%
        IF I<> 12 THEN D(I)=AVG(I)/NR
10030 NEXT
10031 IF ICFLG AND 1 THEN GOSUB 10100
10032 Y=D(5)+D(27):PC$="*":GOSUB 7200
10033 Y=D(3):PC$="o":GOSUB 7200
10034 Y=D(4):PC$="+":GOSUB 7200
10035 Y=D(12)-860:PC$="x":GOSUB 7200
10036 Y=D(11)*50-1360:PC$="#":GOSUB 7200
10037 Y=D(2):PC$="v":GOSUB 7200
10038 IF FTS = "S" THEN RETURN
10039 FOR I=1 TO B5%
10040
        AVG(I)=0
10041 NEXT
10042 NR=0:A1=0:A2=0
10043 RETURN
10100 '
10110 BETA=D(3)/D(4)
10120 D(4) = -(D(2) + D(5)) / (1 + BETA)
10130 D(3)=BETA*D(4)
10140 D(27)=0
10180 RETURN
10190 '
30000 '
30010 IF ERR<>51 THEN 30030
30020 CL05E
30025 PRINT:PRINT:STOP
30030 ON ERROR GOTO O
30050 STOP
31000
31005 'Initialize
31010 '
31015 OPEN "I", #1, "PDS.FIL"
31016 INPUT #1,PG$:IF PG$<>"PLOTEE" THEN 31016
31017 INPUT #1, ICFLG, IS, IE, DXIs, DXOs, FSs, FTs, MSGs
31020 IFILES=0
31025 IFILES=IFILES+1 : INPUT #1,FL$(IFILES):IF EOF (1) THEN
31040 ELSE 31030
31030 IF FL$(IFILES)="END" THEN IFILES=IFILES-1:GOTO 31040
31035 PRINT IFILES; FLs (IFILES), : GOTO 31025
31040 CLOSE #1:PRINT IFILES;FL$(IFILES)
31050 RETURN
32000 '
32005 ' Time and date routine for SDS MV5.0c
10/15/84 11:40
32007 '
                                                last modified 11/
1/84 7:50
32010 ' init
32015 '
32020 DIM M(12)
32025 FOR I=1 TO 12:READ M(I):NEXT:IF INT(DATE/4)*4 = DATE THEN
```

C-2

M(2)=29
32030 DATA 31,28,31,30,31,30,31,30,31,30,31,30,31
32035 RETURN '
32040 ' main program
32045 '
32100 DATE=PEEK(&H40):IF DATE=0 THEN GOSUB 32170
32105 DATE="19"+RIGHT\$(STR\$(DATE),2)

|                                     | GG<br>GG                                  | 1.07  | 5.7        | 2 0      | 2.20     | 2.21  | 2.16  | 8.        | 2.14         | 2.30       |              | 1.76  | 5.5   | 3.6          | 0.39       | -0.22 | -0.80 | 7.1.           | -1.27 | -1.25     | -1.32 | 8.1   | <del>.</del> . | 85            |            |       |              | 1.2            | -0.2  |
|-------------------------------------|-------------------------------------------|-------|------------|----------|----------|-------|-------|-----------|--------------|------------|--------------|-------|-------|--------------|------------|-------|-------|----------------|-------|-----------|-------|-------|----------------|---------------|------------|-------|--------------|----------------|-------|
|                                     | НИГЕС                                     |       |            |          | 0.99     |       |       |           |              |            |              |       |       |              |            |       |       |                |       |           |       | 0.99  | 5.0            | Kirec         | 0.0        | 9.6   | 8.0          |                |       |
|                                     |                                           | 7     | 7 :        | 7        | ÷        | ۴ ،   | ÷ ÷   |           | ÷            | ۰ ۵        | • •          | S     | 9     | <b>x</b> 0 ~ | •          | 2     | 2 9   | ~ 0            | - •   | S         | -     | •     | •              | 55 (5         | 5.         | 0.5   | 0.0          |                |       |
|                                     | -                                         | 0.2   | ۰ ،<br>د و | 7.0      | 0.2      | -0.5  | 2.0   | 0.2       | 0.5          | 9.5        | . ~          | -0.2  | 0.0   | 0.5          | 0.2        | -0.5  | 0.5   | 7.0            | 7 7   | 0.2       | -0.2  | 0.5   | <b>9</b> .     | *             | 0.0        | 0.0   | 0.0          |                |       |
|                                     | # # # # # # # # # # # # # # # # # # #     |       |            |          | 45.1     |       |       |           |              |            |              |       |       |              |            |       |       |                |       |           |       |       |                | RHbot         | •          |       |              | \$6.1          | 9.9   |
|                                     | W/a2 #                                    |       |            |          | -115     |       |       |           |              |            |              |       |       |              |            |       |       |                |       |           |       |       |                | g .           | -53.0      | -30.5 | -22.4        |                |       |
|                                     | 14/s2 -                                   | 1147  | 1206       | 22       | 107      | 926   | 950   | 1045      | 912          | \$ 64<br>6 | 88           | 211   | 743   | 869          | 574        | 233   | 9 5   | Ĉ Z            | 5     | <b>\$</b> | 3     | 73    | 424            | 0 da          | £8.5       | 12.1  | 26.5<br>26.5 |                |       |
|                                     | # K P P                                   | -0.04 | -0.05      | 8 9      | -0.05    | -0.05 | 9.0   | -0.05     | -0.04        | 0.05       | 500          | -0.04 | -0.03 | 9.62         | -0.03      | -0.03 | -0.02 | -0.02          | 0.05  | -0.02     | -0.02 | -0.02 | -0.02          | A 3           | •          |       |              | -0.04          | 0.00  |
|                                     | 20                                        | -1.35 | -1.46      | 2 65     | -1.61    | -1.63 | 2.1.5 | <b>\$</b> | -1.37        | -1.32      | 7            | -0.99 | -0.82 | 9.56         | -0.17      | 0.0   | 0.28  | 0.3            | 0.34  | 0.34      | 0.33  | 0.34  | 0.36           | 2,            | >          |       |              | -0.73          | 0.02  |
|                                     | 10de3                                     |       |            |          | 2.55     |       |       |           |              |            |              |       |       |              |            |       |       |                |       |           |       |       |                | Eabot         |            |       |              | 2.58           |       |
|                                     | R Pa                                      |       |            |          | 2.50     |       |       |           |              |            |              |       |       |              |            |       |       |                |       |           |       |       |                | Eatop         |            |       |              | 2.5426         |       |
|                                     | 1501                                      | 30.29 | 31.42      | 32.50    | 34.12    | 34.97 | 35.59 | 36.08     | 36.12        | 36.22      | 3 5          | 35.31 | 34.83 | 34.12        | 32.71      | 31.82 | 30.35 | 30.18          | 28.00 | 28.50     | 28.08 | 27.69 | 27.44          | Isoil         | •          |       |              | 32.13          |       |
|                                     | 1 5                                       |       |            |          | 25.51    |       |       |           |              |            |              |       |       |              |            |       |       |                |       |           |       |       |                | 1.60 t        | د          |       |              | 24.95          | 3.52  |
|                                     | 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2   |       |            |          | 36.31    |       |       |           |              |            |              |       |       |              |            |       |       |                |       |           |       |       |                | Tabot         | د          |       |              | 33.76<br>34.92 | 4.28  |
|                                     | G O O O O O O O O O O O O O O O O O O O   |       |            |          | 24.90    |       |       |           |              |            |              |       |       |              |            |       |       |                |       |           |       |       |                | Tatop         | ٠          |       |              | %.60<br>≥2.60  | 3.52  |
|                                     | Tatop C                                   | 2.15  | 2.97       | 3.5      | 34.69    | 15.08 | 5.43  | 25.69     | 18.31        | 35.92      | 20.02        | 35.17 | 34.91 | 34.27        | 32.87      | 32.00 | 30.91 | 29.99          | 20.72 | 28.93     | 28.52 | 28.08 | 27.84          | Latop         |            |       |              | 33.02          | 4.33  |
|                                     | deg deg                                   | 208 3 | 500        |          | ,<br>3 g | 200   | 50    | 761       | 203          | 2          | 26           | 681   | 185   | 183          | 2.2        | 178   | 176   | =              | ΞΞ    | 180       | 181   | 184   | 188            |               | ded        |       |              | 190            | 11    |
|                                     | B 5 5                                     | æ)    | 3.5        | 7.7      | 0.0      | 5.6   | 9:    | , e       | 3.3          |            | 9.7          | 2.7   | 3.2   | 2.5          |            | 7.    | ::    | <del>.</del> ; | .; -  |           | 7.    | 3.0   | 7.7            | <b>&gt;</b> ( | <b>2</b>   |       |              | 7.7.           | 0.5   |
| FARM                                | Wes -                                     | -483  | -493       | <u>چ</u> | -50.     | -504  | -512  | -518      | -511         | -525       | <u> </u>     | -516  | -516  | -516         | -508       | -508  | -438  | - 63           | B 3   | 7.79      | -462  | -465  | -459           | <u>و</u>      | 72/5       | -23.6 | -19.5        |                |       |
| ERTAL                               | π (γ ) (γ   |       |            |          | £ 3      |       |       |           |              |            |              |       |       |              |            |       |       |                |       |           |       |       |                | 5             | 2/c        | 12.6  | =            |                |       |
| XPERIN                              | ,                                         | 129   | 135        | 138      | : 9      | 155   | 121   | 5 2       | 191          | 162        | 191          | 35    | 911   | 6            | \$ 2       | *     | 21    | σ.             |       |           | •     | •     | \$             |               | ? .        | 2     | 2.5          |                |       |
| DATA FROM ASHLAND EXPERIMENTAL FARM | K / 9 Z                                   | -170  | -184       | -134     | -208     | -212  | -210  | -211      | -136         | -180       | 191-         | 13.   | Ę     | . 8          | ē <b>7</b> | -26   | -1    | 7              | ۲ ،   |           | 7     | -5    | ?              | Ş.            | 3 6        | 6.9   | -2.9         |                |       |
| #S. E.                              | K 43                                      |       |            |          | 921      |       |       |           |              |            |              |       |       |              |            |       |       |                |       |           |       |       |                | 5             | ~ ·        | 2     | 12.1         |                |       |
| ATA FR                              | 9 0                                       | -91   | -104       | 7        | # F      | -121  | ===   | 9         | <del>-</del> | -79        | <b>5</b> 9 5 | 2 4   | ż.    | -22          | ; ;        | • •   | 81    | 23             | 2 %   | 9 5       | =     | 32    | 32             | 3             | ~ ~        | ÷     | -0.7         |                |       |
| 1586. 1                             | 2 / 3                                     |       |            |          | - 5      | -15-  | -142  | 95 -      | -148         | -148       | = :          | 711-  | -85   | 69-          | 3.         | 7     | =     | Ŧ              | 7     | 3 5       | -26   | -33   | -19            | w :           | 29/C8<br>E | , ∿   | ~            |                |       |
| 16,                                 | K   2 T                                   |       |            | :        | - 23     | -139  | -32   | 925-      | ş            | -272       | -265         | 183   | . F.  | ę:           | 5 -        | : ~   | ~     | S.             | * 5   | 5 2       | *     | 28    | 38             | = :           | 21/00      | : :   | Ĺ,           |                |       |
| 1, JULY                             | x 2 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | \$75  | 517        |          | 610      |       |       |           |              |            |              |       |       |              |            |       |       |                |       |           |       |       |                |               |            | 61    |              |                |       |
| SYSTEM 1                            | 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1    | 10.5  | 11.0       | ::<br>:: | 12.5     | 13.0  | 13.5  | 0.71      | 15.0         | 15.5       | 16.0         | 2.0   | 17.5  | 18.0         | 18.5       | 19.5  | 20.0  | 20.5           | 21.0  | 23.0      | 22.5  | 23.0  | 23.5           | 11 M          | TSIN       | DSUM  | NSON         | TAVE           | HAVE. |

ORIGHTAL PAGE IS

| 85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ;     | 23       | -1.32      | -1.28      | -1.26       | 9.7   | -1.21          | -1.19         | -1.23    | -1.23        | -1.22 | -1.21             | -0.80      | -0.80    | -0.12      | <br>     | 77.        | 3 5         | 30.7  | 2.56  | 2.13  | 2.52  | 2.23             | 2.41       | 2.53       | ? :        | 7                | 1.59            | 1.32  | 1.88   | 5.06              | 8. 1  | <u> </u>         | 1.07       | 0.83         | 3 ×            | 90     | -1.22 | -1.22    | -1.21      | = =        | <u> </u>   | -1.26     | 3        |               |                |                |   | <br><br>s        | -0.7   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------|------------|------------|-------------|-------|----------------|---------------|----------|--------------|-------|-------------------|------------|----------|------------|----------|------------|-------------|-------|-------|-------|-------|------------------|------------|------------|------------|------------------|-----------------|-------|--------|-------------------|-------|------------------|------------|--------------|----------------|--------|-------|----------|------------|------------|------------|-----------|----------|---------------|----------------|----------------|---|------------------|--------|
| Hrec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | :     | 8        | 6. 3       | ÷ ;        | 66.0        | 3 8   | 8              | 0.99          | -1.00    | 8            | -1.00 | 1.00              | 0.99       | 0.33     | 9.0        | 10.1-    |            | 3.5         |       | 86.0  | -1.02 | 0.98  | -1.03            | -0.02      | - 3        | 2 5        | 20.0             | -1.02           | 0.98  | -1.03  | 8 5               | 3.6   | 0.98             | 5.0        | 8.6          | - S            | 10     | 0.99  | -1.00    | 6.0        | 8 8        |            | 99:       | Marec    |               | 8 8            | 8 8            |   |                  |        |
| 5 (e/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 77./  | <b>'</b> | · s        | -, ,       | ~ r         | ·     |                | ~             | ~        | ~            | ~     | ~                 | -          | -        | ٠ ٠        | 7        | ۰ م        | 7 :         | 7     | : 7   | ÷     | -     | -15              | <b>~</b> : | = 9        | 7          | • •              | -5              | -     | 0      | · ·               | • •   |                  | œ 1        | <b>=</b> > 0 | ~ =            | ~      |       | ~        | ۰ ت        | <i>~</i> • | ^ <b>-</b> | -         | ន        | 1/82          | 0.6            | 0.1<br>0.1     |   |                  |        |
| æ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •     | - 0      | 0.5        | 7.0        | 7.6         | , ,   | 6              | 0.7           | -0.2     | 0.7          | -0.2  | 0.2               | 0.2        | 0.5      | 0.0        | ~ ·      | ; ;        | 7.0-        | , ,   | . 7   | -0.7  | 0.5   | -0.2             | 0.0        | ۰. د<br>د  | , ,<br>,   | 7.0              | 0.0             | 0.5   | ې<br>9 | ° ;               | 7. 6  | 0.5              | -0.2       |              | , c            | ç<br>0 | 6.5   | -0.7     | 7.0        | 7.0        | , r        | 33        | =        |               | 9.6            | 0.0            |   |                  |        |
| HP .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | • •   | 5        | 68.2       | 3          | 3 3         | . 7   |                | 62.4          | 62.4     | 65.9         | 63.2  | 63.2              | 65.0       | 65.0     | 65.5       | 9. S     | 2 2        | 3 5         | ; ;   | 9.9   | =     | 42.1  | <del>-</del>     | 3.5        | E 2        | 2 2        | 8 8<br>8 8       | 38.8            | 36.7  | 37.6   | 8<br>8<br>8<br>8  | 5 5   | 9.               | 43.2       | ÷ :          | 2 2            | 19     | 62.0  | 63.8     | 65.        | 3          | 9 7        | 3.        | REDOC    | **            |                |                |   | 5.0              | 45.9   |
| 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ,     | £ :      | 9          | 3          | 9           | 2 5   | \$ 5           | \$            | ÷        | 5            | -446  | ÷                 | -430       | ş        | 7          | <b>B</b> | 3          | ÷ ;         | 9 5   | -633  | -655  | -611  | -693             | -702       |            | 97         | - 127            | -2              | E1:-  | 9      | (89-              | 279   | -622             | -603       | ŝ            | 35.            | \$     | Ę     | -468     | 2          | 7          | 9 4        | ÷         |          |               |                | -18.2          |   |                  |        |
| 5 G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ,     | 3        | 2          | € 5        | 3 :         | ? ?   | €              | <del>\$</del> | \$       | <del>+</del> | #13   | <b>\$</b>         | 446        | \$       | 22         | 3 5      | <b>3</b> 5 | 63.5        | 928   | 8     | 836   | 0001  | 920              | 6          | 33         | 7901       | 1066             | 932             | 1012  | 882    | 926               | 8 5   | . 55<br>55       | 663        | 3 3          | 3 5            | 465    | 3     | Ş        | ÷ :        | B 2        | ? ?        | <b>\$</b> | Oda      | <b>\$3/82</b> |                | 3 :            |   |                  |        |
| 4 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •     | 70.0-    | -0.02      | -0.02      | 3 5         | 3 6   | -0.02          | -0.0          | -0.02    | -0.02        | -0.03 | -0.02             | -0.05      | -0.02    | -0.0       | 20.0     | 70.07      | 70.05       | 3 6   | 6.0   | -0.04 | -0.04 | <del>-</del> 0.0 | -0.05      | 9 9        | 9 6        | 9 6              | 90.0            | -0.06 | -0.05  | <b>3</b> 3        | 5 0   | -0.0             | -0.04      | 3 3          | 3.5            | -0.02  | -0.02 | -0.05    | 9.6        | 9.02       | ÷ ÷        | -0.02     | #        | 3             |                |                | ! | 9 9              | -0.01  |
| = °                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | د     | 9.5      | 0.37       | 8 s        | 5.0         | 3 5   | 9              | 0.39          | 0.39     | 0.38         | 0.38  | 0.39              | 0.26       | 0.26     | 3.5        | 0.20     | 2.5        | ٠<br>۲<br>۲ | ? -   | 67.7  | -1.29 | -1.38 | -1.53            | 3.         | 2 -        | <b>4</b> 3 | -1.26            | 7.1-            | ·1.19 | -1.35  | -1.2              | 9 7   | -0.76            | -0.58      | 97.0         |                | 0.29   | 0.33  | 0.37     | 0.35       |            |            | 0.33      | ē        | u             |                |                |   | 6.35<br>2.35     | 0.22   |
| 19001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       | 5.43     | 2.63       | 9 :<br>:   | B7.7        | 3 -   | 2.12           | 2.08          | 5.06     | 2.05         | 2.04  | 2.02              | 2.04       | 7.04     | 2.07       | 2.5      | 71.7       | 7. Te       | 2 24. | 2.29  | 2.31  | 2.31  | 2.31             | 2.33       | 2.51       | 7.7        | 2.5              | 2.50            | 2.36  | 2.41   | 5.4<br>2.4<br>3.4 |       | 2.42             | 2.45       | 8.5          | 7.7            | 2.60   | 2.56  | 2.53     | 2.52       | Ç 5        | 2 2        | 2.40      | Eabot    | <u>3</u>      |                |                |   | 2.32             | 1.49   |
| 1.00 to 1.00 t | :     | 7.41     | 2.63       |            | 97.7        | 2.10  | 5.03           | 2.06          | 2.04     | 2.03         | 2.02  | 2.00              | 2.02       | 2.02     | 2.04       | 7.07     | 7.10       | 1.7         |       | 2.26  | 1.23  | 2.28  | 2.21             | 2.29       | 2.55       | 7.5        | 5 <del>5</del> 5 | 2.43            | 2.30  | 2.37   | 2.37              | 2 5   | 2.39             | 2.€        | 3.5          | 2 2            | 2.58   | 2.54  | 2.51     | 2.50       | 2.43       | e          | 2.38      | Eatop    | <b>1</b> 64   |                |                | : | 2.3491           | 1.4790 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |          |            |            |             |       |                |               |          |              |       |                   |            |          |            |          |            |             |       |       |       |       |                  |            |            |            |                  |                 |       |        |                   |       |                  | 34.62      |              |                |        |       |          |            |            |            |           | Isoil    | v             |                |                |   | 29.88<br>32.94 2 |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | , ;   | 3 :      | 3 3        | ٠;         | : :         | ; 8   | ខ              | 8             | <b>~</b> | 5            | 92    | =                 | ==         | =        | <b>=</b> : | 2 2      | 9 ;        | = =         | 3 2   | : =   | 83    | =     | 53               | 5 5        | 6 6        | 9 =        | 3 33             | 62              | 6     | 23     | ខ្ល               | 3     | 8                | 24.82      | 3 3          | * 5            | 8      | 2     |          |            |            |            |           | Iwbot    | ပ             |                |                | ; | 24.31            | 14.42  |
| 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2     | 61.13    | 27.12      | 21.12      | 16.68       | 26.13 | 25.98          | 25.84         | 25.70    | 25.51        | 25.32 | 25.16             | 24.95      | 24.85    | 25.62      | 9 5      | 90.77      | 2 S         | 10.12 | 32.56 | 33.70 | 34.58 | 35.49            | 35.91      | 25.55      | 37.76      | 37.48            | 37.46           | 37.45 | 37.40  | 25.25             | 34.35 | 35.65            | 35.12      | 7            | 37.32          | 29.97  | 29.50 | 28.84    | 28.42      | 28.14      | 3 2        | 27.66     | Tabot    | ပ             |                |                | ; | 30.72            | 17.88  |
| do -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ,     | 22.83    | 22.64      | 87.77      | 8 5         | : :   | 20.84          | 20.61         | 20.49    | 20.39        | 20.27 | 20.14             | 20.03      | 20.03    | 20.37      | 2        | 2 2        | 3 20        | 3 2   | 23.02 | 23.34 | 23.60 | 23.79            | 23.94      | 24.32      | 2 5        | 21.95            | 25.01           | 24.51 | 24.74  | ¥. ¥              | 75.02 | 24.50            | 24.52      | 24.78        | 23.58          | 24.05  | 23.76 | 23.48    | 23.32      | 22.4       | 20.73      | 22.60     | Tutop    | ပ             |                |                |   | 22.82            | 14.43  |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | , :   | 7.5      | <b>3</b> : | 2 2        | 9 5         | 71.7  | 26.37          | 26.22         | 26.08    | 25.87        | 53.69 | 25.54             | 25.10      | 22.10    | 23.65      | 2.5      | 2 2        | P. 7.       | 3 5   | 31.33 | 32.40 | 33.19 | 33.95            | 34.26      | 35.05      | 2 2 2      | 36.22            | 36.05           | 36.24 | 26.0   | 35.91             | 35.72 | 34.88            | 34.53      | 22.83        | 37.76          | 30.25  | 29.85 | 29.20    | 28.76      | 28.46      | 20.00      | 27.98     | Tatop    | ပ             |                |                |   | 33.25            |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |          |            |            |             |       |                |               |          |              |       |                   |            |          |            |          |            |             |       |       |       |       |                  |            |            |            |                  |                 |       |        |                   |       |                  | 88         |              |                |        |       |          |            |            |            |           | W) I W   | ge9           |                |                | , | ž <u>š</u>       | 3      |
| -<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |          | ٠,         | ·          |             | ; -   |                | 3.B           | <b>;</b> | 7.7          | <br>  | 3.0               | 7.5        | 3.2      |            | 9 6      |            | 9 -         |       |       |       |       |                  |            |            |            |                  |                 |       | 5.6    | 3.2               | , ,   |                  | 2.1        | 7:           |                | 5.5    | 8.    | 5.9      | 9 ;        | 3.5        | ; =        | 2.2       | >        | Ş             |                |                | : | 2.7              | 2.2    |
| 5 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       | ç s      | 5          | Ç Ş        |             | 3 4   | 7              | -452          | ÷        | -453         | 7     | <del>-</del> (\$) | []         | -        | ₽ 5        | <b>7</b> | 3 "        | 7 1         | 3     | 2     | -476  | -486- | - 490            | ₹ :        | Š.         | 7          |                  | -517            | -523  | -521   | 525               | ; £   | : <del>5</del> ; | -513       | <u> </u>     | g ş            | Ę      | -435  | 994-     | 837-       | 53         | ş ç        | 79        | Lup      | 6J/E2         | o :            | -75.2          |   |                  |        |
| E 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7 / 1 | 3        | Ş          | <b>?</b> : | 7           | =     | : ệ            | 417           | ₹        | ₽            | ₹     | <b>=</b>          | 90         | 90       | <b>\$</b>  | 2 5      | 2 0        | 9 5         | 244   | 222   | 75    | 183   | \$               | Z :        | ≅ 5        | <u> </u>   | ? E              | 2               | 202   | 23     | 248               | 38    | 3.5              | 352        | € 5          | \$ 5           | 5      | 3     | 428      | 3          | 2 5        | 9 5        | \$        | Lda      | 3/82          | 28.0           | 16.7           |   |                  |        |
| n (*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       | n ·      |            |            |             | ٠ -   | ۰ ۰            | ~             | <b>~</b> | m            | ~     | m                 | 9          | %        | <b>Ç</b> : | 2 2      | 2 6        | 2 5         | 3 =   | 2     | 23    | 132   | 82               | 2 3        | 2 :        | 3 3        | € 5              | <del>1</del> 91 | 163   | 165    | 25 65             | 2 2   | 6                | <b>≓</b> ; | = :          | 2 %            | =      | -     | S        | <b>-</b> . | ^ -        | • •        | •         |          | 7/07          | <u>ک</u> :     | <b>ਦ</b> ਼ਾ    |   |                  |        |
| -<br>2 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       | ? •      |            | , .        | 7 "         | ,     | ٠.             | -5            | ÷        | -            | -5    | 7                 | : :        | <b>:</b> | គុន        | 7.5      | ? 5        | 701.        | 9     | -162  | -178  | -161  | -203             | Ģ;         | -513       | 3 5        | 902              | -202            | -190  | -13    | 791-              | 5.5   | -102             | \$ 5       | 3 9          | 2 %            | ب      | -5    | ٠,       | ٠ ٠        | ? ;        | 7          | · ~       | gg<br>Gg | 3/07          | 9.             | ÷ ?            |   |                  |        |
| E C .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ,     | 7 .      | ·          |            | ٠.          | • -   | ۰ ~            | -             | ~        | -            | ~     | -                 | <b>\$</b>  | Ç        | = ;        | 3 5      | 3 5        | £ 5         | : :   | 683   | 755   | 817   | 831              | 838        | 62.6       | 3 5        | 588              | 980             | 810   | 72     | (g)               | 5 5   | 405              | 312        | ž:           | 3 2            | · 53   | ~     | ~        | •          | 7 -        | ٠.         |           |          |               | ₹.<br>?        | 9.0            |   |                  |        |
| 9 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1     | ; ;      | : :        | 5 :        | ទ ដ         | 3 %   | 2 25           | 33            | S        | 3¢           | 29    | ×                 | <b>⊼</b> ; | 3        | € :        | _ •      | • 7        | 7 =         | ÷     | : ≈   | 8     | -100  | <del>?</del>     | ÷ ;        | 2 -        |            | ; ;:             | 69              | -93   | -93    | ÷ 5               | 7     | .33              | -22        | ÷ .          | ŗ <del>-</del> | =      | 2     | χ.       | ≈ 8        | 2 2        | ; 2        | : ::      | 3        |               | <del>-</del> ; | 7.7            |   |                  |        |
| ر<br>14/9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ,     | 2 2      | ₽ 2        | Ç :        | 3 5         | 3 %   | 7.             | -38           | -16      | ÷            | -55   | ş                 | 3          | 3        | <b>;</b> ; | 6 6      | 9          | 5 8         | 3 7   | 66-   | -123  | -18   | <b>=</b>         | ÷ ;        | <b>2</b> 9 | £ 7        | -216             | ٠!.             | -168  | -13    | - 118             | 9 7   | E                | 21-        | ? ;          | 3 =            | =      | -54   | 8        | <b>;</b> ; | Ş 9        | 7          | Ģ         | w        |               | - ·            | , -<br>-       |   |                  |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |          |            |            |             |       |                |               |          |              |       |                   |            |          | <b>-</b> : | 200      |            |             |       |       |       |       |                  |            |            |            |                  |                 |       |        |                   |       |                  | 11-        |              |                |        | 23    |          |            |            |            |           | =        | 1/02          | <br>           | ; <del>-</del> |   |                  |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7     | ç        | <b>;</b> ; |            |             |       | : <del>'</del> |               |          |              | ş     | Ŧ                 | 2.         | -58      | <b>≖</b> 8 | 7 7      |            |             |       |       |       |       |                  |            |            |            |                  |                 |       |        |                   |       |                  | 164        |              |                | ec.    | ÷     | 7        | ;          | 7 7        | =          | ÷         | ٠        | 3/62          | 9.5            | <u>.</u>       |   |                  |        |
| -<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | •     | ٠.       | ٠,         | 2 :        | ب ج<br>- :- | ? =   |                | 9             | 2        | 0.0          | 5.5   | 9.                | ٠.<br>د ده | 0        | v, e       |          | 2 6        | - v         |       | .5    | 9.    | 5.    | 0.               | <br>       | ۰<br>      | ? =        |                  | 0.              | 5.5   | 0      | ر<br>د د          | . r   | 0.0              | 18.5       |              | , c            | S      | 0.1   | <u>.</u> | 0.6        | 5.5        | ,          | 2         | 1 HE     |               |                | ESUM<br>FISUM  |   | TAVE<br>DAVE     | 37.48  |

SISSEN 7, JULY 19, 1580, DATA FROM ACHLAND EAPERINEALL FASH

| os<br>es                                                                               | 1.73                                                                 | 0.85<br>0.93<br>0.93<br>0.80<br>0.50<br>0.50<br>0.04<br>-0.43<br>-1.13<br>-1.15<br>-1.15<br>-1.15<br>-1.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.2                                         |
|----------------------------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|
| HATEC                                                                                  | 1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03                 | 1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03<br>1.03                                                                                                                                                                                                                                                                                                                                                      | HMrec<br>0.00<br>0.00<br>0.00               |
|                                                                                        |                                                                      | 18<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>17<br>11<br>16<br>11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 68<br>3/62<br>0.7<br>0.1<br>0.6             |
| H 65                                                                                   |                                                                      | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | E 0.00                                      |
| 1 <b>2</b>                                                                             | 40.4<br>39.8<br>38.1                                                 | 40.5<br>41.1<br>44.0<br>47.8<br>48.9<br>52.8<br>54.0<br>55.0<br>55.0<br>55.2<br>55.3<br>55.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RHbot<br>46.1<br>43.3<br>9.6                |
| 4 4 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4                                                |                                                                      | 23 23 24 45 24 45 24 45 24 45 24 45 24 45 24 45 24 45 24 45 24 45 24 45 24 45 24 45 24 45 24 45 24 45 24 45 24 45 24 24 24 24 24 24 24 24 24 24 24 24 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0up<br>3/e2<br>7.6<br>6.1<br>1.5            |
| 7 m 2 m 7 m 7 m 7 m 7 m 7 m 7 m 7 m 7 m                                                | 1008<br>1020<br>1027<br>1017<br>1017<br>1012<br>985<br>941<br>834    | 745<br>644<br>627<br>412<br>294<br>180<br>43<br>6<br>6<br>6<br>-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0dn<br>a3/82<br>41.5<br>33.3<br>8.2         |
| 4 64 A                                                                                 | -0.07<br>-0.06<br>-0.07<br>-0.08                                     | -0.08<br>-0.05<br>-0.05<br>-0.04<br>-0.03<br>-0.03<br>-0.03<br>-0.03<br>-0.03<br>-0.03<br>-0.03<br>-0.03<br>-0.03<br>-0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4k kPa                                      |
| £ 0                                                                                    | -1.73<br>-1.69<br>-1.73<br>-1.55                                     | -0.88<br>-0.98<br>-0.75<br>-0.30<br>-0.02<br>0.19<br>0.40<br>0.45<br>0.45<br>0.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.04.0-0.76                                 |
| , 1 od 4                                                                               | 2,43<br>2,45<br>2,46<br>2,48                                         | 2.66<br>2.67<br>2.63<br>2.63<br>2.69<br>2.56<br>2.55<br>2.43<br>2.32<br>2.20<br>2.20<br>2.00<br>1.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Eabot<br>kPa<br>kPa<br>2.47<br>2.58<br>0.38 |
| 3 694<br>694                                                                           | 2.36<br>2.33<br>2.41<br>2.50<br>2.53<br>2.53<br>2.53                 | 2.59<br>2.62<br>2.62<br>2.63<br>2.65<br>2.65<br>2.65<br>2.49<br>2.41<br>2.29<br>2.29<br>2.29<br>2.20<br>2.11<br>2.11<br>2.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Eatop<br>kPa<br>2.41<br>2.5122<br>0.3709    |
| 3 0                                                                                    | 30.07<br>30.04<br>31.00<br>31.55<br>32.02<br>32.25<br>32.36<br>32.36 | 25.31<br>31.05<br>31.05<br>31.05<br>30.63<br>30.63<br>29.54<br>29.50<br>28.46<br>27.52<br>27.52<br>27.52<br>27.52<br>27.52<br>27.52<br>27.52<br>27.52<br>27.52<br>27.52<br>27.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 15011<br>C<br>29.95<br>30.95<br>4.74        |
| 20<br>20<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30<br>30 | 25.04<br>25.13<br>25.40<br>25.63<br>26.08<br>26.27<br>26.27          | 26.34<br>26.34<br>26.34<br>26.04<br>25.04<br>25.04<br>24.89<br>24.89<br>24.31<br>23.60<br>22.53<br>22.53<br>22.53<br>22.53<br>22.53<br>22.53<br>22.53<br>22.53<br>22.53<br>22.53<br>22.53<br>22.53<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60<br>23.60 | Tubot<br>C<br>24.61<br>25.57<br>3.82        |
| # S                                                                                    | 36.24<br>36.53<br>37.12<br>37.70<br>temp.<br>off                     | 37.87<br>37.82<br>37.21<br>35.17<br>35.13<br>35.13<br>35.13<br>30.83<br>30.83<br>30.83<br>30.19<br>29.82<br>29.25<br>29.45<br>27.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Tabot<br>c<br>c<br>34.27<br>36.15<br>5.03   |
| at 1000                                                                                | 24.32<br>24.43<br>24.43<br>24.93<br>25.39<br>25.53<br>25.63<br>25.85 | 25.69<br>25.84<br>25.65<br>25.65<br>25.55<br>25.55<br>27.51<br>24.73<br>27.95<br>27.95<br>27.95<br>27.19<br>27.10<br>27.10<br>27.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Thtop C 24.27 25.13 3.82                    |
| 2 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                | 4.84<br>4.84<br>5.38<br>56.14<br>56.55<br>56.96<br>57.13             | 37.45<br>36.23<br>36.23<br>36.62<br>36.62<br>34.72<br>31.22<br>31.22<br>30.65<br>30.26<br>29.70<br>28.24<br>28.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Fatop<br>C<br>33.81<br>35.37<br>5.11        |
| er on                                                                                  | 203 3 201 3 193 201 194 194 195 197 203                              | 196<br>196<br>188<br>186<br>184<br>184<br>188<br>188<br>198<br>208<br>208<br>208                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | UDIR<br>deg<br>194<br>192<br>35             |
| 19 6<br>3 8                                                                            | 4.8<br>4.3<br>5.3<br>8.3<br>8.3                                      | 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.4<br>4.4<br>4.6<br>0.7                    |
|                                                                                        | 0000000                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Lup ,<br>13/m2<br>0.0<br>0.0                |
| 7 K.4.2                                                                                | 0000000                                                              | 000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7/48<br>9.0<br>0.0<br>0.0                   |
| D tdn                                                                                  | 271<br>274<br>274<br>269<br>261<br>249                               | 213<br>190<br>1164<br>1177<br>20<br>20<br>20<br>11<br>11<br>10<br>6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0<br>11.3<br>8.8<br>2.5                     |
| 2                                                                                      |                                                                      | -157<br>-137<br>-93<br>-93<br>-157<br>-157<br>-178<br>-179<br>-179<br>-179<br>-179<br>-179<br>-179<br>-179<br>-179                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Kup<br>13/82<br>-8.0<br>-6.3<br>-1.6        |
| KJn Kup<br>K/a2 W/a2                                                                   | 894 -<br>904 -<br>909 -<br>897 -<br>876 -<br>792 -<br>735 -          | 586<br>492<br>389<br>296<br>206<br>123<br>123<br>10<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Kdn<br>13/42<br>34.6<br>27.6<br>7.0         |
| 25 Kdn 22 K/a2                                                                         |                                                                      | -77<br>-68<br>-55<br>-32<br>-13<br>-6<br>-6<br>-6<br>-13<br>-13<br>-13<br>-13<br>-13<br>-13<br>-13<br>-13<br>-13<br>-13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .3.6<br>-3.6<br>-3.1<br>-3.1                |
|                                                                                        | -159<br>-175<br>-175                                                 | -183<br>-124<br>-134<br>-13<br>-72<br>-72<br>-73<br>-73<br>-73<br>-73<br>-73<br>-73<br>-73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | E 10.3<br>-10.3<br>-7.6<br>-2.7             |
| W/a2 W/a2 W/o2                                                                         | 275 295 260                                                          | - 150<br>- 150<br>- 150<br>- 36<br>- 36<br>- 36<br>- 36<br>- 36<br>- 36<br>- 36<br>- 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | # 1.8 6.9 - 6.9                             |
| 12 M/#2                                                                                | 582<br>594<br>593<br>593<br>515<br>575<br>520<br>520                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0<br>27.8<br>27.8<br>18.0<br>9.9            |
| # # # # # # # # # # # # # # # # # # #                                                  |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                             |

: . .

|            |                    |            |          |           |                |                |          |              |           |           |      |         |       |          |       |            |            |                                                  |       |            |      |      |       |        |           |       |         |            |      |          |        |      |            |       |       |       |            | 7       |            |       |          |       |       |              |        |                 |       |      |       |         |                      |        |
|------------|--------------------|------------|----------|-----------|----------------|----------------|----------|--------------|-----------|-----------|------|---------|-------|----------|-------|------------|------------|--------------------------------------------------|-------|------------|------|------|-------|--------|-----------|-------|---------|------------|------|----------|--------|------|------------|-------|-------|-------|------------|---------|------------|-------|----------|-------|-------|--------------|--------|-----------------|-------|------|-------|---------|----------------------|--------|
| ar<br>ar   | 17                 |            | 70.0     | 0.39      | 0.32           | 3.45           | 2.28     | 61.1         | 3.28      | 9         | ; ;  | 77.     | 3 6   | 17.0.    | 17.0  | 70.0       |            | 9 6                                              | 2 0   | 0.23       | 0.78 | 29.0 | 0.91  | .33    | 7.7       | ::    | : 6     | 1.3        | 1.52 | <b>S</b> | 9:1    | 2 5  | .35        | ₩.    | 2:1   | 2. 5  | 2 5        | ٠<br>9. | -0.55      | -0.60 | -0.61    | 09.0  | 2.5   | 2 3          |        | 2               |       |      |       | :       | 0.5                  | ÷0.    |
| Nr.ec      | 10.1               | 5 5        | 3 6      |           |                |                |          |              |           |           |      |         |       |          |       |            |            | ֓֞֝֞֜֜֝֞֜֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֝֝֓֓֓֓֡֝֝֡֓֡֝֡֓֡ |       |            |      |      |       |        |           |       |         |            |      |          |        |      |            |       | 3.0   |       |            |         |            |       |          |       |       |              |        | Wirec           | 3     | 8 6  | 0.0   |         |                      |        |
| 65 H       | ֧֧֓֞֝֝֟<br>֭֭֓֞֓֓֞ | 3 2        | : :      | . ~       | ٠              | 9              | <b>£</b> | ~            | . ex      |           | , ,  | - •     | · ·   | ~        | 7     | 7 :        | ? ;        | 2 %                                              | ,     | • =        | ۶,   | ņ    |       |        | ş ;       |       |         | _          | -5   | ÷2       | -55    | , ~  | • •        | ~     |       | ≅ ₽   |            |         |            |       |          |       | ≛ :   | = 5          | 2      | 3               | 2/63  | 9 6  | . 0   |         |                      |        |
| =          | ٠,                 | , ,        | , ,      |           | 5              | 0.2            | 0.0      | 0.7          | . 0       | : :       | • •  | 7.0     | 7.5   | 0.5      | 2.0   |            | , ,        | , ,                                              | : -   | 2 7        | -0.2 | 0.5  | -0.2  | 0.5    | ۰.<br>و و | 7.6   | 7.0     | , ~        | 0.5  | -0.2     | 0.5    | 7.0  | 0.0        | -0.5  | 0.3   | -0.2  | 7 6        | 6.0     | -0.2       | 0,2   | 7.<br>9. | <br>  | 7.0   | 3 -          | ?      | =               | •     | 9 6  | 9.0   |         |                      |        |
| RHD of     |                    |            |          | 010       |                |                |          |              |           |           |      |         |       |          |       | 7.7        | 2 6        | 9.00                                             |       | 82 °       | 69.7 |      |       |        | 8. S      |       |         |            |      | S1.0     |        |      |            | 53.6  |       | 28.5  |            |         |            | 76.1  |          | 7.    | = :   | 7.18         | 2      | 훒               | ~     |      |       |         | 74.9                 | 57.9   |
| dno /      |                    | 9 3        | 3 5      | 3 2       | 2              | 8              | 7        | 5            | 629       | =         | 3 5  | Ş       | 3     | <b>2</b> | 9 9   | 2 :        | <b>3</b> 5 | 7                                                | 3 5   | 2          | -562 | -548 | -513  | -611   | 53        | 200   | 273     |            |      |          |        |      |            |       | 935-  |       |            |         |            |       |          | •     | =     | •            | •      | ON O            | 7/2   | 7.7  | - i-  |         |                      |        |
| 0gu        | *                  | 3 3        | 3 :      | 22        | 2              | 2              | 3        | 73           | : =       | ; ;       |      | ?       | 3     | 6        | =     | <b>3</b> 3 | ž :        | ž ž                                              | 3 5   | 788        | 951  | 685  | 1002  | 1278   | 338       | 900   | 1786    | 1237       | 1221 | 1198     | 1168   | 9/0  | 908        | 83    | 124   | 809   | ÷ 5        | 3       | 5          | 7     | 3        | £3.   | € :   | 2            | ç      | Ddn             | 3/07  | 8    | 18.0  |         |                      |        |
| # 6        |                    |            |          | 5 6       |                |                |          |              |           |           |      |         |       |          |       |            |            |                                                  |       |            |      |      |       |        |           |       | 9.0     |            |      |          |        |      |            |       | -0.04 |       | 9.6        |         |            |       |          |       |       |              |        | Ä               |       |      |       |         | 6.05<br>8.05<br>8.05 | -0.0   |
| ₽ ′        |                    |            |          |           |                |                |          |              |           |           |      |         |       |          |       |            |            |                                                  |       |            |      |      |       |        |           |       | ; ;     |            |      | -1.52    | -1.54  | 7.7  | 86.0       | -0.8% | -0.61 | 9.46  | 5.6        | 2, 0    | 0.23       | 0.23  | 0.30     | 0.17  | •     | 0.1          | 07.0   | Ą               | U     |      |       |         | -0.33<br>-0.76       | 0.13   |
| Eabot      | 2                  | 07.70      | 2 :      |           | ;;             | 7.7            | 2, 2     | 2 2          | ,,,       | 77.7      | 77.7 | 2.21    | 2.38  | 2.42     | 2.42  | 2.48       |            | 8.5                                              | 7.    | ,<br>2, 2, |      | 2.36 | 2.35  | 2.39   | 2.33      | 2.38  | 2.38    | 2.50       | 2.55 | 2.59     | 2.63   | 5.53 | 2.5A       | 2.63  | 5.64  | 2.73  | 2.80       | 2 76    | 2.72       | 2.68  | 2.66     | 2.59  | 2.53  | 2.52         | 7.7    | Eabot           | kP2   |      |       |         | 2.43                 | 3      |
| Eatop E    |                    |            |          |           |                |                |          |              |           |           |      |         |       |          |       |            |            |                                                  |       |            |      |      |       |        |           |       |         |            |      |          |        |      |            |       |       |       |            |         |            |       |          |       |       | 2.50         | 2.6    | Eatop           | k Pa  |      |       |         | 2.39                 | 1 5004 |
| Soil E     |                    |            |          |           |                |                |          |              |           |           |      |         |       |          |       |            |            |                                                  |       |            |      |      |       |        |           |       |         |            |      |          |        |      |            |       | 28.74 |       | 28.03      | 20.12   | 26.91      | 26.59 | 26.31    | 26.00 | 25.79 | 25.63        | 25.52  | Tsoil           | U     |      |       |         | 25.83                |        |
| T todal    |                    |            |          | 18.70 2   |                |                |          |              |           |           |      |         |       |          |       |            |            | 21.47                                            |       | 8 8        |      |      |       |        |           |       | 23.30   |            |      |          |        |      |            |       | 24.79 |       |            |         |            | 23.49 |          | 22.93 | 22.40 | 22.25        | 21.76  | Tutot           | U     |      |       |         | 22.07                |        |
|            |                    |            |          |           |                |                |          |              | 2 :       | 7         |      | 1.92    | .94   | . 59     | . 59  | 7.56       | ۰<br>چ     | <b>3</b> :                                       |       |            |      |      |       |        |           |       |         |            |      |          |        |      | -          |       | 32.04 |       |            |         | 2 6        | 26.2  | \$6.46   | 26.00 | 25.14 | 24.68        | 23.82  | Tabot           | ပ     |      |       |         | 25.91                |        |
| 69 .       | ٠<br>د             | .36<br>.50 | 66.      | 28.       | 5 2            | : :<br>: :     | : º      | 3 2          | 7 6       | 3.        | 3    | 72 27   | .81 2 | .92 2    | .92   | 23         | 2          | . 28                                             | 2 55. | - °        | 3 8  | , K  | . 22  | 2.58 3 | 2.53 3    | 2.87  | 23.16 3 | 2 6 7 6 7  | 6 6  | 4.19     | 4.45   | 3    | ., .       | 5 5   | 84.   | 7.    | 25.52      | - S     | 3          | 5     | 3,30     | 22.89 | 12.33 | 22.20        | 17.12  |                 | J     |      |       |         | 21.83                |        |
| / <u>s</u> | ٠.                 |            |          |           |                |                |          |              |           |           |      |         |       |          |       |            |            | 22.38 2                                          |       |            |      | 7 6  | 9 2   | .90    | .65 2     | .17   | 7. 5    | 3 -        | • •  | 3        | 2.00.7 | .87  | 9 9        | 72.   | 31.42 |       |            |         |            |       |          |       |       |              |        |                 | Ų     |      |       |         | 25.58                |        |
| P Istop    | <b>5</b>           | %<br>52    | ε.<br>Ε. | S. :      | <u>-</u> :     | <u> </u>       |          | 2 2          | 2 :       | 22        | 21   | 5<br>49 | 55    | 94 21    | 94 21 | 05 22      | Z<br>₹     | 86 22                                            | 22    | 2 2        | 7 7  | 3 X  | 38 28 | 113 28 | 209 29    | 36 36 | 239     | 622        | 2 2  | 235      | 239 33 | 247  | 246        | 3 6   | 259   | 224 3 | 2 081      | 165 2   | 184 2      | 68    | 193      | 192 2 | 203   | 227 2        | 226. 2 | UDIR            |       |      |       |         | 205 22               |        |
| u ubir     | s,                 | . 28       | <u>~</u> | - i       |                | <br>           | - :      | 4 :<br>4 :   | ~ i       |           |      |         |       |          |       |            |            |                                                  |       |            |      |      |       |        |           |       | : :     |            |      |          |        |      |            |       |       |       | <u>- :</u> |         |            | , ,   | 3.7      | 5.1   | 3     | 3.7          | 4.2    | a               |       |      |       |         | 3.8                  | ;      |
| tup.       | ~                  | 23         | 56       | 2         | 7. 5           | ?<br>?         | 7 5      | 3 6          | 9         |           |      |         |       |          |       |            |            |                                                  |       | -635       |      |      |       |        |           |       |         |            |      | •        |        |      |            |       | -503  |       | 66         | 2 5     | Ç.         | ÷     | 7        | -446  | =     | ÷            | - 418  | tup             | 3/07  | 33.2 | -21.8 | :       |                      |        |
| נמח ר      |                    |            | ?<br>[]  | 8 1       | 7<br>2: 3      | 7<br>3 2       | 3        | 7 °          | ₹<br>83 ( | 7<br>23 1 | 121  | ? 22    | 723   |          |       |            |            |                                                  |       |            |      |      |       | -      |           | -     |         |            |      |          |        |      |            |       | =     |       |            | 5       | 9 5        | 3 5   | \$       | 426   | 127   | 427          | 757    | up?             | 3/62  | 35.8 | 18.9  |         |                      |        |
| 9          | _                  |            | 0        | 0         | 0 .            | - ·            | <b>.</b> | <b>-</b>     | ·         | 0         | 0    | 0       | 0     | 82       | 92    |            |            |                                                  |       |            |      |      |       |        |           |       |         |            |      |          |        |      |            |       | 2 6   |       |            |         | ~ ه        | , p.  | ~        | . ~   | 2     | 2            | 2      | ٥               | 1/12  | 8.5  | 8.4   | 9       |                      |        |
| Kup        | <u> </u>           |            | 0        | ٥         | <del>,</del> . | <b>,</b> , ,   | ٠.       | <b>;</b> • • | ÷         | ÷         | -    | ÷       | -     | 7        | 7     | 7          | -13        | -28                                              | 큯     | ខ្ល        | ÷ :  | 21.5 | 3 5   | 18     | =         | 9     | -186    | <u> </u>   | 200  | 5 2      | 165    | -147 | <b>:</b> : | 5 6   | 7 9   | -36   | 6-         | ، ب     | ? :        | · -   | -7       | · -   | ·     | <del>-</del> | 7      | gr <sub>2</sub> |       | 6.4  | 7     | ?<br>•  |                      |        |
| 5          |                    | 0          | 0        | 0         | 0              |                | ۰ د      | ۰ م          | 0         | 0         | 0    | 0       | 0     | 6        | 61    | çş         | 103        | 148                                              | 122   | 10         |      |      |       |        |           |       |         |            |      |          |        |      |            |       | 3 6   | 186   | \$         | ≈ '     | n -        |       |          | -     |       |              | 0      | Edo             |       | 23.0 | 5.    | -       |                      |        |
| 3          | ₩<br>29            |            | =        | <b>\$</b> | ş              | <b>=</b> :     | e :      | 89           | 2         | 33        | 34   | z       | ň     | 53       | ۶,    | 23         | 91         | œ                                                | ~     | ~          | •    | 2,5  | 22-   | : 5    | 3 2       | -71   | -19     | នុ         | ڄ    | 2 2      | , ş    | 8-   | ş :        | 7. 9  | ę s   | -28   | -15        | ή,      | ~ c        | ` =   | =        | 2 2   | 25    | 22           | 22     |                 | 3/62  | -0   |       |         |                      |        |
| w          | /s2 ×              | _          | ~        | -         | -51            | <del>-</del> - | 0        | <b>≓</b> ∶   | 7         | -5        | -18  | 7       | •     | 7        | 7     | ÷          | ş          | 91-                                              | ۶     |            |      |      |       |        |           |       |         |            |      |          |        |      |            |       | 69-   |       |            |         |            |       |          |       |       |              |        | •               | 3/02  | .6.9 | 9 9   | ÷.      |                      |        |
| ×          | -                  |            | 7        | -         | ş              | S              | 0        | 2            | 80        | 7         | =    | 9       | 2     | S        |       | 12         | ٥          | ė                                                | -     | =          | 2    | 55.  |       | 2,28   | 991-      | 181   | -254    | -276       | -278 | 22.      | -23    | -555 | -195       | 5 5   | 5 5   | 7     | ٦,         |         | - ;        | 2 =   | : :=     | . ~   | 7     | 2            | ۲4     | =               | 33/82 | -6.2 | 6.2   |         |                      |        |
| •          | /82 1              | -53        | -2       | -31       | =              | <b>-</b>       | ÷        | ÷            | -11       | ≈         | -33  | 20      | 17.   | 7        | ÷     | =          | 83         | 175                                              | ş     | 35         | 3    | 403  | 228   | 2, 2,  | 23        | 425   | 390     | <b>628</b> | 28   | 2 3      | 515    | \$   | 384        | 306   | 2 2   | 10    | 2          | φ.      | <b>≓</b> : | 7 5   | 2 5      | : =   | ÷     | ÷            | 7      | a               | 53/62 | ¥.   | 14.5  | Э.<br>Э |                      |        |
| ¥1.        | _                  | 5.5        | 0        | <u>~:</u> | 2.0            | 5.5            | 3.0      | 3.5          | <u>.</u>  | ٠.<br>د.  | 5.0  | 5.5     | 0.9   | 5.5      | 0.    | 7.5        | 8.0        | 8.5                                              | 6.5   | 9.5        | 0.0  | 5.0  | e :   |        | 2.5       | 3.0   | 13.5    | 14.0       | 14.5 | 2.0      | 16.0   | 16.5 | 17.0       | 17.5  | 28.6  | 19.0  | 19.5       | 20.0    | 20.5       | 2.2   | ; ;      | 22.5  | 23.0  | 2            | 24.0   | 1186            |       |      | LSUM  |         | 1476                 | 741    |

Ú

| 6.76                                    | . O. C.          | -0.88 | 1 5.0-<br>1 5.0- | -0.93 | -0.91          | ÷ :           |       | 5.5      |      | 99 0       | 9:-        |     | 0.85       | 1.90  | <b>8</b> 5                              | 3 7      | 2           | 2.23  | 1.97  | 2.21  | 2.04       | 2.18  | 2.10     | 1.97    | <b>=</b> 5   |       | 1.23    | 0.99  | 9     | 0.53  | 2 5        | -0.9  | -0.62 | 8.6          | £ 5       | 3                                        | -0.86 | 35     |              |                         | 0.3   | : ° ;  | •         |  |
|-----------------------------------------|------------------|-------|------------------|-------|----------------|---------------|-------|----------|------|------------|------------|-----|------------|-------|-----------------------------------------|----------|-------------|-------|-------|-------|------------|-------|----------|---------|--------------|-------|---------|-------|-------|-------|------------|-------|-------|--------------|-----------|------------------------------------------|-------|--------|--------------|-------------------------|-------|--------|-----------|--|
|                                         | 2 2 2            |       |                  |       |                |               |       |          |      |            |            |     | -3.01      | 2.99  | 5. E                                    | 3 5      | 3 6         | -3.02 | 2.99  | -3.01 | 8.8        | 8 8   | -3.00    | 3.01    | 9 9          | 3 8   | -3.0    | 3.01  | -5.01 | 3.01  | 5 5        | -3.01 | 3.01  | 2.0          | 3 5       | 5.0                                      | -5.01 | KKrec  | ;            | 0.05                    |       |        |           |  |
| 65 W/62 -815                            | <u> </u>         | •     | ~ 0              | •     | ~              | ~ 1           | •     |          | • •  | . ~        | <b>~</b>   |     | 7          | -58   | ,<br>,                                  | 7 7      | 7 3         | . 5   | ₹.    | ř     | 75,        | 3 %   | •        | ş       | ۰ د          | 2     | : 82    | 17    | 2     | 23    | 3 5        | 33    | 22    | 22 5         | 2 2       | =                                        | 18    | 65     | ?            | -0.5<br>-2.6            |       |        |           |  |
|                                         | 222              | 2 2   | 0.0              | 2     | 0.1            | 9             | 2 :   | <u> </u> |      |            | 2          |     | -0.2       | 0.5   | 2.0                                     | 7 6      | 7.0         | -0.2  | 0.5   | -0.2  | ۰ ج<br>و و | 7.0   | -0.2     | 0.2     | ۰. ۶<br>۹. ۶ | . 0   | -0.2    | 0.2   | -0.3  | 6.5   | , ç        | -0.2  | 0.5   | -0.2         | , c       |                                          | -0.3  | *      | - ،          | 0.0                     |       |        |           |  |
| RHbot<br>\$<br>81.7                     | 84.2             | 83.2  | 74.2             | 69.3  | <b>9</b> 9.    | 63.5          | 8 5   | 2 2      | : :  |            | 29.1       |     |            |       |                                         |          |             |       |       |       | 5.5        |       |          |         |              |       |         |       |       |       |            |       |       |              |           |                                          |       | RHBot. | -            |                         | 9 85  | 49.6   | 4.0       |  |
| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0   |                  |       |                  |       |                |               |       |          |      |            |            |     | -518       | -557  | -612                                    | 3        | 2 4         | -671  | 999-  | 069-  | 969-       | 769-  | -688     | -611    | 799-         | 9 6 9 | -602    | -582  | -260  | -533  | 9          | -73   | -17   | 25           | ? ?       | 3                                        | -464  | ð,     | 7 (          | -28.2<br>-17.9          |       |        |           |  |
| 4 4 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | \$ \$ 5          | ₹ ₹   | 7.50             | 422   | <b>4</b> 51    | ₹ :           | \$    | 2 2      | ? ?  | 3 6        | 282        |     | 826        | 867   | 920                                     | 776      | 79.2        | 1133  | 1325  | 1335  | 131        | 1262  | 1217     | 1165    | 100          | 1701  | 834     | 142   | 642   | 25    | 3 3        | 3     | Ş     | ₹ 5          | \$ 5      | (2)                                      | 426   |        | 7            | 45.6<br>16.5            |       |        |           |  |
| 46.02<br>-0.02                          | 0.02             | -0.02 | -0.02            | -0.02 | -0.02          | -0.02         | -0.0  | -0.02    | 70.0 | 5 6        | 8.0        |     | -0.02      | -0.05 | -0.03                                   | 9.5      | 3 5         | 90.0  | -0.04 | -0.04 | 5 G        | 5 0   | -0.0     | -0.0-   | 0.0          | 9     | -0.0    | -0.04 | -0.02 | -0.02 | -0.02      | 9.0   | -0.03 | -0.02        | 0.07      | 9                                        | -0.03 | ₩.     | 2            |                         | 10.0- | 6.03   | 0.0-      |  |
| df<br>c<br>0.27                         |                  |       |                  |       |                |               |       |          |      |            |            |     | 0.49       | 0,71  | 6.9                                     | 2 5      | 2 9         | . 28  | 1.23  | 1.39  | ۲.<br>د د  | 2 2   |          | 1.13    | -1.02        | <br>  | 89.0    | -0.62 | -0.30 | -0.12 | 6.0        | 0.26  | 97.0  | 0.26         | 6.25      | 0.30                                     | 0.35  | ₽,     | د            |                         | 10    | -0.84  | 0.17      |  |
| kPa<br>1.01                             |                  |       |                  |       |                |               |       |          |      |            |            |     |            |       |                                         |          |             |       |       |       | 2.7        |       |          |         |              |       |         |       |       |       |            |       |       |              |           |                                          |       | Eabot  | 7            |                         | 8     | 5.50   | 28.0      |  |
| atop Es                                 |                  |       |                  |       |                |               |       |          |      |            |            |     |            |       |                                         |          |             |       |       |       | 2.69       |       |          |         |              |       |         |       |       |       |            |       |       |              |           |                                          |       | Eatop  | <b>7</b>     |                         | ž     | 2.4648 | 0.8104    |  |
| 1501] E                                 |                  |       |                  |       |                |               |       |          |      |            |            |     | 24.49      | 24.90 | 25.68                                   | 26.01    | 26.34       | 27.70 | 28.19 | 28.72 | 29.17      | 29.53 | 29.99    | . 30.07 | 30.01        | 24.75 | 39.65   | 29.20 | 18.82 | 28.44 | 27.99      | 27.02 | 19.92 | 26.25        | 25.94     | 25.55                                    | 25.24 | IsosI  |              |                         | 07 70 | 28.13  | 16.75     |  |
|                                         | 9.63             |       |                  |       |                |               |       |          |      |            |            |     | 19.81      | 23.03 | 23.87                                   | 23.88    | 24.24       | 25.76 | 25.35 | 25.87 | 26.02      | 26.15 | 25.60    | 25.52   | 24.70        | 24.55 | 23.97   | 24.39 | 24.54 | 24.72 | 23.86      | 22.64 | 22.31 | 22.19        | 22.93     | 20.02                                    | 20.44 | Tebot  | ပ            |                         |       | 24.42  |           |  |
| 12bot<br>c<br>10.06                     | 2 2 3            | 11.03 | 97:11            | 9     | ===            | 11.38         | 11.40 | <br>     | 20.6 | 3.6        | -2.53      |     | 25.55      | 29.46 | 30.93                                   | 30.5     | 31.5        | 2 6   | 34.23 | 35.12 | 35.44      | 35.54 | 35.55    | 35.80   | 35.39        | 25.42 | 34.68   | ×.43  | 33.65 | 32.39 | 30.73      | 27.40 | 27.03 | 26.86        | 26.39     | 25.50                                    | 25.78 | Tabot  | O            |                         | 71 90 | 33.05  | \$.<br>\$ |  |
|                                         | 5.69             |       |                  |       |                |               |       |          |      |            |            |     | 19.58      | 22.12 | 23.48                                   | 23.52    | 23.87       | 2. 2. | 24.85 | 25.35 | 25.52      | 23.65 | 25.13    | 25.06   | 24.27        | 23.91 | 23.62   | 24.05 | 24.38 | 24.63 | 23.80      | 22.60 | 22.24 | 22.17        | 21.95     | 20.70                                    | 20.42 | T∎t op | ပ            |                         | 67 61 | 2.08   | 7.22      |  |
| [atop ]<br>C<br>10.32                   | 28               | 2 8   | 1.75             | 29.11 | 87.11          | 11.68         | 11.69 | 1.63     | 2.5  | 9.5        | -2.65      |     | 25.04      | 28.74 | 30.01                                   | ۲.<br>۱۳ | 19.05       | 37 58 | 32.94 | 33.73 | = 1        | 27.20 | 34.31    | 34.62   | 34.36        | 3 5   | 3 6     | 33.80 | 33.34 | 32.26 | 30.81      | 23.52 | 27.29 | 27.11        | 26.63     | 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 | 26.12 | Latop  | ပ            |                         | 31 50 | 32.20  | 9.56      |  |
| UDIR<br>deg<br>227                      |                  |       |                  |       |                |               |       |          |      |            |            |     |            |       |                                         |          |             |       |       |       | 229        |       |          |         |              |       |         |       |       |       |            |       |       |              |           |                                          |       | UDIR   | deg          |                         | 331   | 228    | 3         |  |
| _                                       | ~ <del>~</del> ; |       |                  |       |                |               |       |          |      |            |            |     | ÷.         | 3.8   | 3.3                                     | ~ ·      | <br>        | . ·   | 8.    | 5.6   | 83 (       | <br>  | 9.0      | 7.9     | 6.2          | 2.5   |         | ] =   | 3.2   | 7.7   | 3.5        |       | 3.9   | 5.5          | ٠. د<br>د |                                          | 3.3   | ∍.     | Ş            |                         | ,     | . 4    | 5.9       |  |
| 923                                     | 55               | 3 5   | Ģ                | ;     | : <del>;</del> | 177-          | ₹     | 3        | 5    | 9          | 3 8        |     | 121        | ÷     | -500                                    | ¥        | <b>3</b> 9  | 2 6   | 997-  | -48   | -500       | 200   | -51      | -512    | 3.           | -513  | . S. S. | -512  | -513  | -508  | 5          | Ģ     | Ę     | 697-         | 2         | 9 9                                      |       |        |              | -40.4<br>-22.4<br>-18.0 |       |        |           |  |
| £3.5<br>£3.5                            | 7.57             | 2 2   | <b>4</b> 22      | 2 5   | 29             | 13            | 418   | 422      | 2.5  | 25         | 9 6        |     | ::         | 383   | ======================================= | 3        | <b>4</b> 22 | 9     | 7     | 5     | 427        | Ç :   | ; ;      | 124     | 417          | Ç :   |         | 5 7   | Ş     | 7.7   | 5          | : 5   | ij    | Ş            | ÷         | 3 5                                      | \$2   | 5      |              | 5.4.6.9                 |       |        |           |  |
| 3,42                                    |                  |       | n .              | 3 m   | , 10           | m             | m     | m :      | = :  | = :        | £ 56       |     | 203        | 131   | 310                                     | 305      | 3           | 5 2   | 127   | 2     | 128        | 121   | <b>=</b> | ě       | 6            | 23    | 2 5     | 5 5   | 35    | Ş     | <u>ج</u> : | 7 "   | ~     | 2            | ~ `       | , ,                                      | ~ ~   | ٥      | <b>63/62</b> | 8. 8. 0.                |       |        |           |  |
| m<br>27/12                              | 77               | ; ;   | ? ;              | ;     | , ,            | -5            | -5    | -,       | ŗ.   | ? :        | 7          |     | -94        | -104  | -111                                    | -115     | -123        | 697   | -200  | -202  | 961-       | -193  | 107      | -166    | -151         | 5     | : 6     | - 30  | 7     | -58   | <b>∓</b> ′ | ? 7   | 7     | <del>.</del> | → -       | 7                                        |       | Ž.     | 3/05         | 5.8<br>8.6<br>9.0       |       |        |           |  |
| Kdn<br>Kdn<br>1                         | - 2              |       | ۲.               |       | • -            | -             | -     | - :      | 9    | <b>=</b> ; | 2 2        |     | <b>\$1</b> | 468   | 207                                     | 275      | 260         | 12,6  | 90    | 910   | 884        | 872   | 300      | Ξ       | (1)          | 9 :   | 77.     | 323   | 222   | 136   | \$ :       | 2 9   |       | 0            | 0 (       | > =                                      | • •   |        | •            | 25.8<br>26.2<br>-0.4    |       |        |           |  |
| £ 55                                    | <b>5</b> 22      | 2 2   | 7 7              | 3 %   | 3 5            | %             | 23    | 28       | 22   | 33         | : :        |     | 7          | -19   | 7                                       | ÷        | ÷ :         | 9 8   | ÷ 5   | \$    | -98        | 6.    | ç %      | 8 8     | -68          | ċ;    | 2 7     | -28   | =     | -     | m ;        | = =   | 28 2  | 32           | 3         | 2 2                                      | 8 8   |        |              | -2.3                    |       |        |           |  |
| F 62                                    | -32              | -16   | <u>چ</u> :       | ? ?   | 3 25           | ş             | ÷     | ₽.       | -22  | -55        | -          |     |            |       |                                         |          |             |       |       |       | -163       |       |          |         |              |       |         |       |       |       |            |       |       |              |           |                                          |       | w      | 3/82         | 4.5.9<br>6.9.0.1        |       |        |           |  |
| H/82                                    | 28               | 2 2   | 33               | 2 :   | 3 2            | : <del></del> | 33    | 8        | 2    | 2 3        | ≼ ដ        |     |            |       |                                         |          |             |       |       |       | -332       |       |          |         |              |       |         |       |       |       |            |       |       |              |           |                                          |       |        |              | 8. 5.<br>5. 5. 5.       |       |        |           |  |
| 7, JOL<br>1/82<br>-15                   |                  |       |                  |       |                |               |       |          |      |            |            |     | 216        | 282   | 336                                     | =        | 83          | 626   | 979   | 3     | 929        | 709   | 2 5      | 6       | <b>4</b> 39  | 55    | 200     | 178   | : Ξ   | \$    | 7          | 3 5   | 9     | -45          | -45       | 7 9                                      | ?     |        |              | 15.3<br>16.8            |       |        |           |  |
| 11ME 0.5                                | 1.0              | 2.5   | 3.0              | , c   |                | 200           | 5.5   | 6.0      | 6.5  | 0.         | 8.0<br>8.0 | 8.5 | . 6        | 10.0  | 10.5                                    | °.       | ::5         | 12.0  | 2.7   | 13.5  | 0.         | €.    | <br>     | 16.0    | 16.5         | 2.0   | ? :     | 18.5  | 19.0  | 19.5  | 20.0       | 20.5  | 21.5  | 22.0         | 22.5      | 22.0                                     | 27.0  | 11%    |              | TSUM<br>DSUM<br>MSUM    |       | TAVE   | NAVE      |  |

SYSTEM 9, JULY 14, 1986, DATA FROM ASHLAND EXPERIMENTAL FARM

## ORIGINAL PAGE IS

| 25 25 25 25 25 25 25 25 25 25 25 25 25 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 88 4. b. o.                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| 88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | •                                            |
| 8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Hirec<br>0.01<br>0.00<br>0.00                |
| 13.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 68<br>-2.8<br>-0.5<br>-2.4                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | E 0.00                                       |
| RBD of the control of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | BHbot<br>\$<br>51.7<br>42.0<br>39.5          |
| 465 2<br>465 2<br>465 2<br>465 2<br>465 2<br>465 2<br>465 2<br>466 2<br>466 2<br>467 2 | 0up<br>mJ/m2<br>-46.5<br>-27.8<br>-18.7      |
| 423 423 423 423 423 423 423 423 423 423                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9dn<br>83/82<br>64.2<br>45.5<br>18.7         |
| # # # # # # # # # # # # # # # # # # #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6.00<br>-0.01<br>-0.01                       |
| 0.34<br>0.27<br>0.28<br>0.28<br>0.28<br>0.28<br>0.28<br>0.28<br>0.28<br>0.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 01.0<br>-0.30<br>0.15                        |
| 2.02<br>2.04<br>2.04<br>2.04<br>2.04<br>2.04<br>1.94<br>1.68<br>1.95<br>1.95<br>1.95<br>1.95<br>1.95<br>1.95<br>1.95<br>1.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Eabot<br>kPa<br>2.04<br>2.05<br>1.24         |
| 2.02<br>2.03<br>2.03<br>2.03<br>2.03<br>2.03<br>2.03<br>2.04<br>1.98<br>1.98<br>1.98<br>1.98<br>1.98<br>1.98<br>1.98<br>1.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | kPa<br>kPa<br>2.03<br>2.0451<br>1.2276       |
| 75011 E<br>24, 84<br>24, 84<br>24, 84<br>24, 84<br>24, 84<br>24, 84<br>24, 84<br>25, 31<br>25, 31<br>26, 30<br>27, 34<br>28, 34<br>28, 34<br>28, 34<br>28, 34<br>28, 34<br>28, 38<br>28, 38<br>38<br>38<br>38, 38<br>38, 38, 38<br>38, 38, 38, 38, 38, 38, 38, 38, 38, 38,                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 75011<br>C<br>25.91<br>27.24<br>14.69        |
| 14bot C C C C C C C C C C C C C C C C C C C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Tabot<br>C<br>C<br>21.49<br>22.56<br>12.22   |
| 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Tabot C C 29.45 32.89 15.14                  |
| 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Intop<br>C<br>C<br>21.35<br>22.32<br>12.21   |
| 25. 25. 25. 25. 25. 25. 25. 25. 25. 25.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 79.15 29.15 32.17 15.28                      |
| 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | UDIR<br>deg<br>236<br>239<br>142             |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.5<br>5.4<br>2.1                            |
| ### ### ##############################                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Lup<br>83/82<br>-33.8<br>-21.6<br>-18.2      |
| 7.10 m 4 4 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ldn<br>1,42<br>35.1<br>18.5<br>16.6          |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0<br>5.7<br>5.7<br>5.1<br>5.1<br>0.5         |
| (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2) 4 (1/2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Kup<br>1/m2<br>-6.7<br>-6.2<br>-0.5          |
| W/K5 N N N N N N N N N N N N N N N N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Kdn<br>2/42<br>29.1<br>27.0<br>2.1           |
| 76 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 65 77 65 65 65 65 65 65 65 65 65 65 65 65 65 |
| → 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | E 33/e2 s -1.7 -1.0 -0.7                     |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | H<br>13/82 8<br>-13.3<br>-13.0               |
| 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0<br>2)/42 m<br>16.3 -<br>-0.2               |
| ### 11.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                              |

SYSTEM 9, JULY 15, 1986, DATA FROM ASSIGNAD ENPERTMENTAL PART

| χ.<br>2    | :        | =              | F. 7           |          | 3 3      | 2 5            | -1.52     | -1.53        | .5.            | ÷          | <br>           | 7.5    |                |          | 70.   | -12.18   | -4.65    | 12.28      | -13.32   | ج<br>ا | 3 5   | 1 5      | 5.0-  | 16.28 | 2.23     | -5.59 | 19.56       | 3.33                                                                          | 를 :        | 2:3   | 77.7-          | -4.69      | 0.25  | ==            | 0.0       | <u>ج</u>   | 7.5                                     |       |          | -2.01 | 0.9        | 7              | <br>       | : | æ            |      |       |         | -     | -2.4   | •.<br>•      |   |
|------------|----------|----------------|----------------|----------|----------|----------------|-----------|--------------|----------------|------------|----------------|--------|----------------|----------|-------|----------|----------|------------|----------|--------|-------|----------|-------|-------|----------|-------|-------------|-------------------------------------------------------------------------------|------------|-------|----------------|------------|-------|---------------|-----------|------------|-----------------------------------------|-------|----------|-------|------------|----------------|------------|---|--------------|------|-------|---------|-------|--------|--------------|---|
| HArec      |          |                |                |          |          |                |           |              |                |            |                |        |                |          |       |          |          |            |          |        |       |          |       |       |          |       |             |                                                                               |            |       |                |            |       |               |           |            |                                         |       |          |       |            |                | ٠<br>ع ع   |   | AHL BC       | 9    | 6.0   | Ģ       |       |        |              |   |
| ي<br>:     | 7        | -680           | ≘ :            | ≅ :      | : =      | : ≥            | •         | =            | _              | •          | •              | ۰ م    | , ~            | • •      | , ÷   | -19      | -51      | -26        | <u>ج</u> | 5      | 3 5   | 3 =      | ;     | ÷     | -28      | -21   | -20         | <u> </u>                                                                      | ۰ ب        | •     | <del>,</del> , | , <u>-</u> | 2     | 22            | 11        | <b>8</b> 3 | 2 5                                     | ; ;   | =        | 91    | Ξ          | <u>"</u>       | 2 =        | : | \$ 65        | ,    | ė.    | -5.1    |       |        |              |   |
| =          |          | 7.0            | ٠. ٥           | 9 6      |          | -0.5           | 0.5       | -0.2         | 6.5            |            | ~;             | ? ?    | , ~            | 0        | 0.7   | -0.2     | 0.5      | -0.5       | 0.5      | 2.0    | , ,   | 7.0      | -0-   | 0.5   | -0.2     | 0.5   | -0,2        | 0.5                                                                           | 7.0        | 7 °   | , c            | 0.0        | -0.2  | 0.5           | -0.2      | ? .        | , c                                     | ,     | 6.5      | -0.2  | 0.5        | ، ہ            | , e        |   | = `          | -    | 3     | 0.0     |       |        |              |   |
| HPot.      |          |                |                |          |          |                |           |              |                |            |                |        |                |          |       |          |          |            |          |        |       |          |       |       |          |       |             |                                                                               |            |       |                |            |       |               |           |            |                                         |       |          |       |            |                | 7. 89      |   | <b>器</b>     | •    |       |         | 55.2  | 9.6    | 7.7          |   |
| 69         |          |                |                |          |          |                |           |              |                |            |                |        |                |          |       |          |          |            |          |        |       |          |       |       |          |       |             |                                                                               |            |       |                |            |       |               |           |            |                                         |       |          |       |            |                |            |   | da (*        |      | 27.9  | 18.7    |       |        |              |   |
| db.        | _        |                |                |          |          |                |           |              |                |            |                |        |                |          |       |          |          |            |          |        |       |          |       |       |          |       |             |                                                                               |            |       |                |            |       |               |           |            |                                         |       |          |       |            |                |            | į | 0gu          |      | 1.9   | 17.6    |       |        |              |   |
| ₩ 5        | _        |                |                |          |          |                |           |              |                |            |                |        |                |          |       |          |          |            |          |        |       |          |       |       |          |       |             |                                                                               |            | •     |                |            |       |               |           |            |                                         |       |          |       |            |                |            |   | A 2          |      |       |         | .0    | 0.0    | 0.0          |   |
| ₽,         |          |                |                |          |          |                |           |              |                |            |                |        |                |          |       |          |          |            |          |        |       |          |       |       |          |       |             |                                                                               |            |       |                |            |       |               |           |            |                                         |       |          |       | 20         | 22 23          | ; ;        | į | # ¢          | •    |       |         |       | 5.75   |              |   |
|            |          |                |                |          |          |                |           |              |                |            |                |        |                |          |       |          |          |            |          |        |       |          |       |       |          |       |             |                                                                               |            |       |                |            |       |               |           |            |                                         |       |          |       | o ·        | 0 6            | <b>.</b>   |   |              |      |       |         |       |        |              |   |
| Eabot      |          | 7.7            | 2.13           | 3 3      | 3        | 8              | . 98      | 1.98         | S :            | 2.03       | 2.0            | 3 -    | 7              | 2.16     | 2.20  | 2.22     | 2.25     | 2.29       | 2.53     | 2.5    | 2 6   | 2.35     | 2.34  | 2.42  | 2.43     | 2.33  | 2.6         | 2.58                                                                          | 2.25       | 7 -   | 2 3            | 2.32       | 2.4   | 2.42          | 2.48      | 2 :        | 3.5                                     |       | 2.50     | 2.51  | 2.46       | 7 :            | 3 7<br>7   | : | Eabot<br>494 | -    |       |         | 2.27  | 2.36   | ₽.           |   |
| Eatop      |          | 9              | 2.12           | 5 6      | 3 2      | 85             | 1.97      | 1.97         | . 5            | 2.01       | 5 6            | 5 6    | 2.03           | 2.15     | 2.19  | 2.22     | 2.25     | 2.29       | 2.34     | 2.36   | 10.7  | 2.36     | 2.34  | 2.40  | 2.43     | 2.34  | 2.42        | 2.23                                                                          | 2.25       | 75.7  | 2.39           | 2.31       | 2.41  | 2.41          | 2.47      | 2.42       | , 5<br>4<br>5                           | 3 2   | 2.49     | 5.49  | 2.46       | <b>3</b> .     | 5.48       |   | Eatop<br>163 | Ĺ    |       | •       | 1.11  | 2.3577 |              |   |
| 1501       | , ,      | 78.87          | 2.5            |          | ? ?      | 23.93          | 23.76     | 23.62        | 23.43          | 23.38      | 23.27          | 25.2   | 23.02          | 23.05    | 23.20 | 23.45    | 23.80    | 24.24      | 24.76    | 2 2    | 70.07 | 27.47    | 28.05 | 28.60 | 29.13    | 29.56 | 29.92       | 2 2                                                                           | 30.29      | 20.00 |                | 30.12      | 29.81 | 29.45         | 28.98     | 28. €      | 3.5                                     | 2 2   | 26.69    | 26.38 | 26.13      | 25.89          | 25.55      |   | Isoil        | •    |       |         | 26.34 | 27.97  | 9.30         | i |
| Tabot.     | , c      | 8. S           | 2. 5.<br>5. 5. |          | 2 2      | 19.95          | 19.82     | 19.84        | 89.5           | 2.5<br>5.5 | 6.5            | 2 2    | 20.08          | 20.62    | 21.25 | 21.80    | 22.24    | 22.67      | 23.09    | 3 5    | 2 7   | 24.29    | 24.39 | 24.79 | 34.96    | 24.58 | 24.95       | 2.5                                                                           | 24.33      | 6 5   | 74.57          | 24.29      | 24.51 | 24.36         | 24.41     | 2.5        | 2.5                                     | 7     | 23.19    | 23.09 | 22.83      | 3.5            | 22.33      |   | Tubbot<br>C  | •    |       |         | 22.61 | 23.98  |              |   |
| Tabot      | , 60     | 97.97          | 7. 7.          | 2 %      | : :<br>: | 23.10          | 24.73     | ₹.           | 29. ₹          | æ. :       | 24.02          | 3 5    | 23.72          | 2.73     | 26.18 | 27.68    | 28.76    | 29.68      | 30.58    | 32.00  | 11 60 | 34.63    | 35.17 | 35.48 | 35.98    | 36.05 | 36.35       | % . 26<br>. 26<br>. 36<br>. 36<br>. 36<br>. 36<br>. 36<br>. 36<br>. 36<br>. 3 | 36.4       | 2.62  | 35.5           | 35.08      | 37.75 | 33.79         | 33.06     | 31.59      | 10.05<br>20.01                          | 38    | 28.36    | 27.88 | 27.69      | 27.3           | 26.98      |   | Tabot        | >    |       |         | 29.91 | 33.36  | 9.5          |   |
| Tatop      | ء<br>ء د | 7.77           | 21.12          | 2 5      | 2 2      | 19.97          | 19.84     | 19.86        | 14.30          | 19.91      | 19.91          | 3 . 5  | 20.06          | 20.59    | 21.16 | 21.69    | 22.11    | 22.50      | F. 1     | 25.57  | 2 5   | 23.99    | 24.06 | 24.41 | 24.62    | 24.33 | 24.70       | 27.10                                                                         | 24.09      | 5 5   | 24.43          | 24.06      | 24.39 | 24.22         | 24.30     | 23.83      | 57.5                                    | 23.40 | 23.21    | 23.08 | 22.69      | 22.72          | 22.40      |   | Tatop<br>C   | >    |       |         | 22.51 | 23.73  | 9.           |   |
| do tel     | , ,      | 3 3            | 86.48<br>25.48 | 7. 7.    | ; ; ;    | 25.35          | 25.05     | 22.11        | 24.92          | 24.62      | 24.28          | 3 5    | 23.30          | 24.79    | 26.05 | 27.36    | 28.26    | 29.04      | S .      | 20.15  | 22    | 33.42    | 33.90 | 34.22 | 34.70    | 34.87 | 35.13       | 35.08                                                                         | 35.37      | 3 5   | 34.50          | ₹.         | 34.00 | 33.43         | 32.85     | 25.33      | 2 2                                     | 28.62 | 28.55    | 28.10 | 27.67      | 22.52          | 27.04      |   | Tatop<br>C   |      |       |         | 29.59 | 32.60  | <del>2</del> |   |
| a se       |          |                |                |          |          |                |           |              |                |            |                |        |                |          |       |          |          |            |          |        |       |          |       |       |          |       |             |                                                                               |            |       |                |            |       |               |           |            |                                         |       |          |       |            |                |            |   | 200          |      |       |         | 102   | 2 :    | 2            |   |
| -<br>-     | -        | <b>~</b> ·     | •              | ۰.       | ; =      | 20             | 9.4       | 7            | Ç:             | <u>ب</u>   | <del>-</del> : |        | 9              | <b>.</b> | 2.5   | 5.9      | 89       |            |          | 9 -    |       |          |       |       |          |       |             |                                                                               |            |       | 7. 7.          |            |       | 6.5           | 5.5       | <u>.</u>   | 7 5                                     |       | 5.3      | 5.2   | 9.6        |                |            |   | - Y          |      |       |         | 5.7   | 7.     |              |   |
| 33         | 7 7      | 9              | 5 5            | 3 7      | 3        | S              | • 55      | -£35         | <u> </u>       | 25 E       | ş              | 70     | 2 2            | 15.      | 9     | -403     | <b>=</b> | <b>Ģ</b> : | 3 :      | 7      | 237-  | 1 19     | -458  | 69)-  | -176     | 8     | 88          | <b>e</b> :                                                                    | <b>5</b> 5 | 705   | 005            | <b>8</b> 5 | 667-  | 86)-          | -(3)      | ÷ :        | <b>5</b> 5                              | - 480 | <b>€</b> | -438  | ş          | Ę              | 69         |   | Lup<br>(2)   | 0 0  | -21.5 | -18.4   |       |        |              |   |
| <b>6</b> 5 | ,        | 2              | 2 :            | <u> </u> | 3        | ₹              | <b>\$</b> | 7            | € :            | = :        | 3              | 9 5    | 89             | 383      | 383   | 381      | 383      | 387        | 38       | 9 6    | 3     | 3 2      | 403   | =     | <b>∓</b> | ;     | ₹           | <b>=</b> :                                                                    | € 3        | : :   | <b>;</b>       | 80         | =     | <del>\$</del> | <b>=</b>  | = :        | ======================================= |       | 3        | 53    | \$2        | 3              | 724        | • | Lds<br>1/62  |      | 8.8   | 9.9     |       |        |              |   |
| 6          |          | ٠.             | ٠,             | • •      | ٠,       | -              | -         | -            | <del></del> .  |            | <b>-</b> -     | - 5    | : :2           | 2        | 2     | 5        | 2        | <b>=</b> 5 | à 5      | 2 5    | : 5   | 6 6      | 103   | 501   | 105      | 101   | 20 3        | 50 5                                                                          | 8 2        | 3 5   | 3 %            | 8          | 퓹     | 7.            | <b>19</b> | <b>2</b> 5 | 2 5                                     | : ~   | 7        | ~     | ~          | ٠, د           | , ~        | ) |              |      | 6.    | 0.3     |       |        |              |   |
| d C        | 7        | <del>.</del> - | 7              |          |          | · <del>-</del> | ÷         | <del>.</del> | <del>,</del> , | 0 0        |                | -<br>- | : :            | <b>-</b> | -55   | ٠.       | -93      | 27:        | 5 5      | 7 7    | 2 2   | 8 5.     | -205  | -209  | -511     | -510  | -202        | <u>.</u>                                                                      | 88 -       |       | 2 -            |            | -93   | 7             | -52       | 7          | ۽ ۾                                     | · -   | 7        | 7     | ~          | <del>.</del> - | 7          | • | kup          | 9    | -6.3  | ٠.<br>م |       |        |              |   |
| £ 5        |          | <b>.</b>       | <b>&gt;</b> •  | > <      | •        |                | ٥         | 0            | o (            | o (        | 9 6            |        |                |          |       |          |          | 3          |          |        |       |          |       |       | _        |       |             |                                                                               |            |       | 019            | _          | _     | _             | 221       |            | _                                       |       | 0        | 0     | ۰ .        | ۰ د            | 9 9        |   | Kdh<br>1/2   |      | 27.3  | 6.0     |       |        |              |   |
| 9 3        | : :      | 3 :            | 3 2            | \$ #     | ; ≯      | : 5            | 33        | 23           | ×;             | £ ;        | 3 :            | 2 =    | ; =            | 56       | 82    | <b>∞</b> | 7        | ÷ :        | e :      | ş ş    | 5 5   | <b>8</b> | -93   | -61   | -103     | -100  | <u>چ</u>    | <u>-</u>                                                                      | ₩ F        |       | ? 7            | Ģ          | ž.    | -25           | -12       | , ·        | D <u>-</u>                              | 2     | 21       | 23    | <b>7</b> . | 2 2            | 3 2        |   | 9 2          |      | -2.   | Ξ       |       |        |              |   |
| ш (2)      |          | ;              | ? =            | ; ;      | ? 7      | 7              | 7         | 7            | ÷ :            | -:         | = =            | ; ;    | : 7            | Ş        | ÷     | æ        | 7        | % :        | 2 8      | ₹ 5    | 3 %   | 8 8      | =     | £.    | 9        | 138   | <u> </u>    | 3                                                                             | 85 Z       | 3 5   | 13.            | 3          | 3     | -58           | -53       | ~ 9        | ? ?                                     | . 7.  | -15      | -58   | 7 :        | 2.             | , <u>.</u> | : | ۳<br>۱/۳     | 9    | =     | -0.5    |       |        |              |   |
| <b>=</b> 9 |          |                | ~ :            | 2 2      | : ~      | =              | 2         | = :          | 22 :           | <u>~</u>   | £ ;            | 3 ≭    | 2 4            | 67       | જ     | 137      | Ξ.       | 3          | 2 5      | à F    | 6     | \$ 5     | -4B2  | 430   | 131      | -632  | <b>3</b> 59 | 422                                                                           | 8 3        | 9 4   |                | -223       | -313  | -146          | ŗ.        | Ç :        | 2 =                                     | . 5   | Ξ        | 2     | 2          | 2 5            | 7 2        | ! | H<br>67/64   |      | -15.1 | 0.5     |       |        |              |   |
| -          | •        |                | <b>-</b> 5     | 3 2      | ; 5      | <b>~</b>       | 9+-       | Į.           | <b>?</b> :     | <b>;</b> ; | ٠.<br>د        | 3 5    | ; <del>,</del> | =        |       |          |          | 273        |          |        |       |          |       |       |          |       |             |                                                                               |            |       |                |            |       |               |           |            | . ×                                     | 2     | 7        | Ŧ     | <b>;</b>   | <b>7</b> . 7   | <b>;</b>   |   | 7,a,         | 15.6 | 16.8  | -1.2    |       |        |              |   |
| 岩          |          |                | <u> </u>       |          | , ,      | 3.0            | 3.5       | 0.4          | <u>ج</u> :     | 9.0        | 5.5            | . v    | 0.7            | 7.5      | 8.0   | 8.5      | 9.0      | <b>5</b> 9 |          | 2 -    | : =   | 12.0     | 12.5  |       |          |       |             |                                                                               |            |       |                |            |       |               |           |            |                                         |       |          |       |            |                | 24.0       |   | iii          |      | DSUM  |         | TAVE  | BAVE   | ZHA C        |   |

# OF POOR QUALITY

| œ        | ;           | ÷ 5   | 2 2   | -0.70        | -0.74      | و.<br>د د | ÷ ÷         | 9     | -0,54 | -0.66    | -0.51 | -0.10      | -0.10     | -0.28    | -0.23         | 9.0         | 0.12       | 9 5   | 2.6   | 33    | 0.28        | 0.27         | 0.25                | 0.38       | 0.32     | 9 :                                                                                | 3 3   | 9        | 0.46  | 0.43  | 0.63  | 0.62           | 0.5              |           | 0.16     | -0.0       | 9.4          | 9 9      | -     | 2.44  | 1.86     | 9.0         |   | <b>3</b>   |               |       |           | 0.05           | 9.    |
|----------|-------------|-------|-------|--------------|------------|-----------|-------------|-------|-------|----------|-------|------------|-----------|----------|---------------|-------------|------------|-------|-------|-------|-------------|--------------|---------------------|------------|----------|------------------------------------------------------------------------------------|-------|----------|-------|-------|-------|----------------|------------------|-----------|----------|------------|--------------|----------|-------|-------|----------|-------------|---|------------|---------------|-------|-----------|----------------|-------|
| Arec     | :           | 3 8   | 0.00  | 8            | 8.         | 8 3       | 9 8         | 8 -   | 8     | 5.5      | -1.02 | -5.08      | -5.08     | -0.03    | 0.98          | -<br>3      | 98 5       | 7.07  | 2 -   | 8     | -1.0        | 8.           | 0.00                | 0.99       | 8        | 8 8                                                                                | 3 5   | 3 3      | 0.3   | -1.00 | 0.99  | 8 8            | 3 6              | 5         | 8.       | 8          | 6.3          | 3 8      | - 8   | 1.0   | ÷        | 99:1-       | • | KArec      | 6             | 00.00 | -0.02     |                |       |
| 3        | <b>78</b> : | 7 =   | 2 =   | =            | ^          | 2 :       | 2 2         | : =   | 8     | %        | ∞     | 12         | 2         | 2        | •             | ÷:          | ÷;         | 7 9   | 3 5   | -6-   | à           | -36          | 9                   | ٠.         | بة<br>ا  | ÷ 5                                                                                | ? ?   | -5       | ÷     | 7     | 1     | <b>%</b> \$    | <b>;</b> ;       | \$        | S        | ន          | 2 2          | 3 ¥      | 8     | 33    | ž        | Z 2         | : | S          | 3/6           | 6     | 1.0       |                |       |
| *        | :           | ; ;   |       | 0.7          | -0.2       | 2.0       | 7.0-        | -0.2  | 0.2   | -0.2     | -0.2  | ÷          | .i.       | 0.0      | 0             | ۰.<br>م     | 0.5        | 7.0   | , ,   | 6     | -0.2        | 0.5          | 0.0                 | 0.5        | ?<br>•   | ? ?                                                                                | 7.0.  | 7.0-     | 0.5   | -0.2  | 0.2   | 0.6            | 0.2              | -0.       | 0.5      | -0.2       | 7.5          | 6        | -0.2  | 0.5   | -0.2     |             | 3 | =          |               | 0     | 0.0       |                |       |
| Frot.    | - ;         | : ×   | :     | 7.           | 74.2       | S : 5     | 2 2         | 83.5  | 19.4  | 86.3     | 86.9  | 90.6       | 9.06      | 90.0     | 87.7          | - 98<br>- 1 | 4.5        | ? .   |       | 76.8  | 76.1        | 71.6         | 69.0                | 67.9       | 2        | 65.1                                                                               | 3 5   | 6.09     | 56.6  | 55.7  | 59.2  | 7.09           | 59.2             | 62.6      | 63.4     | 68.0       | 69.7         | 25.2     | 92.7  | 96.0  | 96.8     | 96.2        | : | RHbot      |               |       |           | 77.3           | \$6.5 |
| dng :    | ě           |       | \$9   | <del>.</del> | 69         | 9         | <b>;</b> ;  | 87    | 677   | Ŧ        | -448  | Ş          | ÷         | -413     | <del>\$</del> | ÷           | 6          |       | 5.9   | -667  | -652        | -638         | -605                | -684       | Ş        | 60/-                                                                               | 246   | -728     | -121  | -708  | -678  | 649-           | -586             | -\$62     | -533     | -503       | 2            | <b>Ş</b> | 2     | -403  | 80       | ÷ ÷         | 3 | 3          | 2 <b>/</b> 25 | -28   | <b>89</b> |                |       |
|          | -           |       |       |              |            |           |             |       |       |          |       |            |           |          |               |             |            |       | _     | _     | •           |              | 186                 | 978        | 201      | 1359                                                                               | 1271  | 1229     | 1175  | 0011  | 1026  | 8 5            | 739              | 65        | \$26     | 2          | <b>\$</b> \$ | 1        | 405   | 384   | 386      | 38 <b>8</b> |   | 5          |               | 7     |           |                |       |
| بار<br>د | 3           | 9.0   | 0.0   | -0.02        | -0.03      | -0.03     | 3.0         | -0.05 | -0.03 | -0.03    | -0.03 | -0.0       | -0.0      | -0.0     | -0.0<br>.0.   | S           | 9.9        | 9 9   | 9     | -0.15 | ÷           | ٠<br>1.0     | 9.10                | -0.10      | <u> </u> | 9 9                                                                                | 7     | 9.19     | -0.1  | -0.14 | -0.10 | 9.9            | 0.0              | -0.07     | -0.0     | -0.0       | 9.6          | 9        | -0.02 | 0.0   | 0.0      | 0.0         |   | ₩ :        |               |       |           | -0.07          | -0.03 |
| . e      |             |       |       |              | 0.24       |           |             |       |       |          |       |            |           |          |               |             |            |       |       |       |             |              | -0.37               | -0.5       | 9<br>9   | 2.5                                                                                | 8 -   | -0.96    | -0.91 | -0.91 | -0.83 | -0.78          | -0.5             | -0.34     | -0.16    | 6.0        | 0.53         | 7.0      | 0.31  | 0.48  | 0.33     | 8 5         |   |            | ပ             |       |           | -0.15<br>-0.48 | 0.17  |
| fatot    | , i         | 2 49  | 2.48  | 2.46         | 2.47       | 7.7       | 2.48        | 2.20  | 2.23  | 2.24     | 2.25  | 2.18       | 2.18      | 2.14     | 2.12          | 2.21        | 2.33       | 3,5   | 2 89  | 2.97  | 2.95        | 2.92         | 2.84                | 2.86       | 2.99     | <br>                                                                               |       | 2.75     | 2.60  | 2.56  | 2.71  | 2.69           | 2.50             | 2.54      | 2.44     | 2.45       | 2.34         | 2.38     | 2.42  | 2.42  | 2.34     | 2.31        |   | Eabot      | 2             |       |           | 2.52           |       |
| fatop    | , .         | 7 7   | 2.45  | 2.44         | 2.44       | 7.7       | 2.53        | 2.15  | 2.20  | 2.21     | 2.22  | 2.16       | 2.16      | 2.12     | 2.09          | 2.16        | 2.21       | 5.5   | 2.76  | 2.82  | 2.84        | 2.80         | 2.74                | 2.76       | 2.82     | 9.80                                                                               | 2 , 2 | 2.59     | 2.47  | 2.42  | 2.61  | 2.60           | 2.43             | 2.43      | 2.38     | 2.38       | 2.5          | 2.30     | 2.40  | 2.44  | 2.35     | 2.30        |   | Eatop      |               |       |           | 2.46           |       |
| 1501     | ء<br>ج د    | 7. 7. | 24.28 | 24.16        | 24.03      | 22.72     | 23.82       | 22.96 | 22.24 | 21.81    | 21.62 | 21.26      | 21.26     | 21.10    | 20.93         | 22.03       | 27.68      | 3.77  | 25.23 | 26.70 | 27.74       | 28.11        | ¥.<br>8.            | 29.51      | 20.00    | ÷ ;                                                                                | 2 5   | 31.95    | 32.23 | 32.31 | 32.23 | 25.2           | 30.05            | 29.99     | 29.18    | 28.43      | 29.12        | 26.07    | 25.47 | 24.93 | 7.7      | 24.03       |   | Isoil      | ų.            |       |           | 26.22          | 15.13 |
| 16031    | ָ<br>ק      | 22.45 | 22.38 | 22.30        | 22.33      | 27.72     | 21.86       | 19.96 | 19.82 | 20.02    | 20.12 | 19.40      | 19.40     | 19.16    | 19.12         | £ 5         | 20.72      | 3 2   | 24:56 | 25.11 | 25.03       | 25.14        | 24.87               | 25.06      | 23.62    | \$ 50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>5 | 25.25 | 24.97    | 24.47 | 24.29 | 24.85 | 24.65          | 23,63            | 23.60     | 22.93    | 22.67      | 13.12        | 21.13    | 20.92 | 20.77 | 20.19    | 19.38       |   | Tipot.     | ى             |       |           | 22.47          | 13.43 |
| Tabat    | برد         | 3 .5  | 25.83 | 25.80        | 25.81      | 77.77     | 22.78       | 21.94 | 21.06 | 21.68    | 21.68 | 20.48      | 20.48     | 20.30    | 20.55         | 5:5         | 22.49      | 80.77 | 27.43 | 28.39 | 28.43       | 29.32        | 29.47               | 29.90      | 20.03    | 5.5                                                                                | 30.93 | 31.12    | 31.46 | 31.42 | 31.51 | 30.92          | 26.62            | 29.22     | 28.32    | 27.20      | 27.36        | 22.96    | 21.78 | 21.23 | 20.55    | 20.4        |   | 100        | ပ             |       |           | 25.72<br>28.36 |       |
|          |             |       |       |              |            |           |             |       |       |          |       |            |           |          |               |             |            |       |       |       |             |              |                     |            |          |                                                                                    |       |          |       |       |       |                |                  |           |          |            |              |          |       |       |          | 20.06       |   | Tu top     | د             |       |           | 22.15          | 13.41 |
|          |             |       |       |              |            |           |             |       |       |          |       |            |           |          |               |             |            |       |       |       |             |              |                     |            |          |                                                                                    |       |          |       |       |       |                |                  |           |          |            |              |          |       |       |          | 20.70       |   | Tatop      | ن<br>د        |       |           | 25.55          | 14.64 |
| 0018     |             |       |       |              |            |           |             |       |       |          | ٠.    |            |           | ,        | ,             |             | ,          |       |       |       |             |              |                     |            |          | ,                                                                                  |       |          |       |       |       |                |                  |           |          |            |              |          |       |       |          |             |   | 00 X       | ge 3          |       |           |                |       |
| ə ·      | <u> </u>    | י יי  | ن ا   | <b>0</b> :   | 5.5        | ? .       | 2 7         | <br>  | ÷.    | 6.2      | 7     | <br>8.     | 3.8       | 5.5      | <u>.</u>      | •           | 7:7        | -     | 7.    | 2.2   | 1.9         | 2.2          | <b>∞</b> :          | 5.0        | ?:       | 4 ×                                                                                | 5.6   | .8       | 7.8   | 7     | 3.0   | 2.7            | 5.6              | 8.        | <b>-</b> | 9.6        |              | .5       | 9.0   | 0.3   | 9.5      | 0.0         |   | 5          | <b>S</b>      |       |           | 2.8            | 1.7   |
| 1,00     |             | 17    | -465  | -420         | 897-       |           | ? <b>\$</b> | -448  | 615-  | 97-      | +     | <b>715</b> | -4:5      | 807      | 3             | 3 5         | 3          | Ç     | 3     | -54   | 613-        | -533         | 803-                | -533       | <u> </u> |                                                                                    |       | <b>1</b> | -533  | 655-  | ;; ;  | <u> </u>       | 9 5              | -5:7      | -505     | 7.         | 7 7          | - 46     | -410  | 108   | 33       | ĢĢ          |   | 3          | 7/17          | .34.0 | -17.9     |                |       |
| 144      | 2           | 77    | \$    | 53           | Ş :        | ?         | \$          | 436   | 452   | \$       | \$    | 416        | <b>\$</b> | Ş        | 365           | 3 :         | <b>? ?</b> | 2     | \$2   | 426   | <b>\$</b> 1 | 462          | <b>4</b> 5 <b>4</b> | 55         | ₹ :      | 2 9                                                                                | 22    | 3        | 425   | 423   | 7.7   | 422            | \$ 50            | <b>61</b> | \$       | <b>6</b>   | ŠŠ           | 3        | \$0   | 383   | <b>3</b> | 393         |   | <u>ş</u> : | 36.5          | 19.6  | 16.9      |                |       |
| 9        | •           | • •   | 0     | 0            | ۰ -        | ٠ -       | •           | 0     | 0     | 0        | 0     | 2          | ~         | 2 3      | 27            | 3 3         | \$ 3       | 5     | 459   | 435   | 534         | 318          | 28                  | 88         | ₹ 5      | 2 5                                                                                | 25.   | : 5      | 535   | 215   | 488   | Ş Ş            | 5.3              | 63        | \$       | <b>E</b> 5 | <u>`</u>     | 0        | 0     | 7     | •        | m +n        | , | <u>،</u>   | 7.7           | 16.3  | 1.0       |                |       |
| g Ç      | •           | • •   | ÷     | 7            | 0 (        |           |             | 0     | 0     | 7        | 0     | 7          | ņ         | <b>ب</b> | ÷ :           | 7           | ? ?        | 3 %   | -108  | -123  | -12         | <del>.</del> | -93                 | 96-        | = =      | 5 5                                                                                | -163  | 9        | -152  | -139  | -126  | 807            | ; <del>8</del> 9 | -49       | -28      |            | 9 6          | •        | 0     | ∵ '   | ?-       |             | ' | 3          | 7 7           | -4.2  | -0.2      |                |       |
| <b>E</b> | •           | 0     | -     | .7           |            | • •       | · -         | 0     | 0     | 0        | 0     | n          | m         | <u>ج</u> | 2 :           | ÷ ;         | 3 5        | 3     | 619   | 705   | ₹           | 465          | 557                 | 245        | 9 8      | ç ş                                                                                | 3 4   | 800      | 149   | 611   | 602   | 2 2            | 318              | 226       | Ξ        | 3 :        | = -          | . 0      | 0     |       | 7        | 7 2         | • | Ę :        | 23.2          | 22.1  | Ξ         |                |       |
| 3        | ,           | 2 2   | :3    | 5            | 3 2        | 3 %       | 2 %         | 2     | ş     | <b>₩</b> | Ş     | 7          | Ţ         | <b>S</b> | <b>3</b> :    | 5 5         | ₹ °        | • -   | 9     | 69-   | -83         | Ľ.           | ٠,7                 | <b>æ</b> 3 | ? ?      | 761-                                                                               | -105  | 5-       | -93   | æ.    | ₹:    | 9 <del>7</del> | ÷ 5              | ÷         | 7        | ~ ;        | ? ?          | 38       | 23    | 82    | ₽:       | <b>=</b> #  |   | 3          | -0.9          | -2.1  | Ξ         |                |       |
| ۳ (و)    |             | <br>  | Ţ     | -58          | <b>∓</b> : | 3 5       | ş ş         | -163  | -138  | -65      | -8    | -53        | Ş         | -78      | 9             | 2 5         | 27.        | 188   | -225  | -287  | -148        | -183         | -546                | -163       | 797      |                                                                                    | -135  | -327     | -288  | -262  | -202  |                | ÷ ::             | -108      | ¥-       | -58        | 7.           | 7        | -5    | 0     | - '      | <b>-</b>    | • | ۽ س        | 7 7           | 1.    | -5.1      |                |       |
| = 3      | -           | 38    | S     | 20           | 2:         | 3 2       | 3 62        | 9     | 27    | 42       | Ç     | S          | S         | 22       | ₹ 5           | P :         |            | : 35  | -61   | -93   | Ŧ           | -53          | -62                 | Ģ          | 2 5      |                                                                                    | -15   | =        | -131  | -13   | -126  | . 20           | <b>;</b>         | -37       | -15      | - :        | = =          | ::       | 2     | -     |          | <b>-</b> -  |   | = {        | 7.6<br>7.6    | -3.2  | 0.7       |                |       |
| 9        | ,           | ÷ :   | ÷     | 7            | ÷:         | = =       | 4 6         | ٠     | -5    | -        | 7     | ÷          | 'n        | ~ ;      | 3 5           | 2 2         | ===        | 308   | ₹     | 35    | 326         | 354          | 393                 | 36         | 9        | 623                                                                                | 618   | 578      | 525   | 79    | 260   | 244            | 178              | Ξ         | ž.       | ÷ :        | ÷ 5          | \$       | #     | Ŧ:    | ? :      | ? <b>?</b>  |   | - Ş        | 15.1          | 15.2  | -<br>0.   |                |       |
| 311      | 9           | 2     | .5    | 5.0          | .; s       | , .       | ; ;         | ₹:    | 5.0   | 5.5      | 9.9   | 6.5        | 0.        | <br>     |               | 9           |            | 0.0   | 10.5  | 0.1   | 11.5        | 12.0         | 12.5                | 2 :        | ? :      |                                                                                    | 15.0  | 15.5     | 16.0  | 16.5  | 17.0  |                | 18.5             | 19.0      | 19.5     | 20.0       | 2.5          | 21.5     | 22.0  | 22.5  | 2.5      | 2 5.        | 1 | ¥          | L SUM         | SUM   | ¥20¥      | FAVE<br>DAVE   | 344   |

SISIEM 8, JULY 12, 1986, DATA FROM ASHLAND EXPERIMENTAL FAX

### OMPANAL FATE IS OF FOOR QUALITY

| 8           |       | 7 6   | -0.9     | -1.03       | 6.9         | 9, 9             | 8.       | 1.05  | 6.5         | S 5         | 20.00        | 2,         | .0.12      | 0.54  | 2 2              | 2.19            | 29.2  | 3.09             | 2.79  | 2.07        | 2.74     | 2.75                                      | 3.12  | 2.90     | 3.43  | 3.5   | 2.33     | 7.64       | 2.50       | 5.5   | . 8      | 0.85     | 2.50           | 2 6   | =         | 8 :      | 1.21     | ~     | 1.27              | 1.23          | 8               |      |      |     | 69.6   | 9      |
|-------------|-------|-------|----------|-------------|-------------|------------------|----------|-------|-------------|-------------|--------------|------------|------------|-------|------------------|-----------------|-------|------------------|-------|-------------|----------|-------------------------------------------|-------|----------|-------|-------|----------|------------|------------|-------|----------|----------|----------------|-------|-----------|----------|----------|-------|-------------------|---------------|-----------------|------|------|-----|--------|--------|
| Mrec        | 8     | 3 8   | 8        | -1.00       |             |                  |          |       |             |             |              |            |            |       | 3 5              |                 |       | -1.00            |       |             |          |                                           |       |          |       |       |          |            |            |       | 0.39     |          |                | 3 5   |           | 8:3      |          | 8     | 99.               | 9             | KArec           | 8    | 0.00 | 8   |        | •      |
| ន           |       | : 2   | 5        | 83 :        | 2 2         | : ::             | -        | 22    | ·<br>22 :   | = =         | ; m          | 'n         | ٠,         | 7     | ,<br>,<br>,<br>, | Ċ               |       |                  |       | 3 5         |          |                                           |       | ج<br>ج   |       |       |          |            | = :        | 2 %   | : ÷      | 23       | 8 :            | 3 3   | 7         | <b>:</b> | -<br>3 ≈ | ∵ ∵   | 2 :               | -<br>=        |                 | 0.0  |      | e.  |        |        |
| =           | ,     | 7 7.0 | 0.5      | -0.2        | , ,<br>,    | 0.5              | ~.<br>0- | 0.5   | ۰, ۶<br>و د | 7.6         | 7 7          | 0.2        | 0.0        | ~ ?   | 7 6              | 0.2             | 0.2   | 7.0              | 7.6   | 7.0         | 7.0      | 0.2                                       | 7.0   | 7.5      | 7.6   | . 7.  | 0.2      | 7.0        | 2.0        | 2 6   | 0.2      | 0.2      | ~ .            | 0.2   | 0.2       | 7.0      | 7.0      | 7.0   | 5.3               | 7.            | <u>.</u>        | 2    | 0.0  | 0.0 |        |        |
| Ribot       | . 9   |       | 66.3     | 66.3        | 9.9         | 51.1             |          | 59.3  |             |             |              |            | _          | _     |                  |                 |       |                  |       |             |          |                                           |       |          |       |       |          |            |            |       |          |          | 2:5            |       | 6.8       | B        | '<br>- ` | 3.2   | 2.0               | ·<br><u>:</u> | PHDot           |      |      |     | S1.3   | 17     |
| 0.0         | . **  | Ç Ç   | -461     | 097-        | è           | . <del>.</del> . | -466     | 197   | 3 5         |             | 3 5          |            |            |       |                  |                 |       |                  |       |             |          | _                                         |       |          |       |       |          |            |            |       |          | -        |                |       | -412      | 7        | į        | Ę     | 20,5              | 7/4           |                 | 47.4 | 28.6 | 9.6 | · ·    | •      |
| dup<br>E/a/ |       | . 2.  |          | <b>80</b> 2 |             | . =              | •        | ۰ م   |             | , r         | . ~          |            | ~ .        | 9 6   | • 6-             | _               |       | <b>~</b> .       | n •   |             | ~        | ~                                         | *7 (  |          | . ~   | . ~   | •        | ۰.         | <b>.</b> . |       |          | <b>~</b> | <b>.</b>       |       | _         |          |          |       | <b>-</b> .        | _             |                 | `    | •    |     |        |        |
| 0dn         | ٠     |       |          | £ 458       |             |                  |          |       |             |             |              |            |            |       |                  |                 |       |                  |       |             |          |                                           |       |          |       |       |          |            |            |       |          |          |                |       | Ş         | 2 5      | Ş        | 2     | 3                 | Ž             | 99              | 3    | 46.0 | 7.  |        |        |
| df<br>Eps   | 0     | -0.03 | -0.03    | -0.03       |             | -0.03            | 0.0      | 9.0   | 3 5         | 9 0         | -0.0         | -0.0       | -0.02      | -0.02 | -0.02            | -0.02           | -0.02 | 9 9              | 3 3   | -0.53       | -0.03    | -0.03                                     | 9.6   | -0.0     | 0.0   | -0.03 | -0.03    |            | -0.03      | -0.0  | -0.03    | -0.03    | -0.03          | -0.03 |           | 9.62     |          |       | -0.02             | 70.0          | ₩ <sup>5</sup>  |      |      |     | -0.03  | -0.02  |
| ۾ ج         | 0.49  | 9.    | 0.48     | 0.45        | 0           | 0.45             | 0.39     | 0.57  |             | 0.35        | 0.27         | 0.27       | 9.6        | 9 6   | -0.59            | -0.11           | -0.89 | ÷ ÷              | -1.19 | -1.23       | -1.33    | -1.30                                     | -1.26 | 77.7     | -1.36 | 7     | -1.05    | = 8<br>- 9 | .0.43      | -0.76 | -0.53    | -0.39    | 9.5            | 0.32  | 0.38      | 5.5      | 9 9      | 0.6   | 0.4               |               | ٤,              | >    |      |     | -0.29  | 0.25   |
| Eabot       | 1.96  | 1.99  | 2.01     | 2.03        | 1.30        | 1.8              | 1.82     | 1.82  | 3 2         | 1.85        | 1.9          | 1.91       | 1.96       | 2.6   | 2.06             | 2.05            | 2.05  | 2.02             | 1.96  | 1.92        | 1.94     | 1.95                                      | 1.92  | 1.98     | 1.95  | 1.89  | 1.86     | 28.5       | 5.5        | . 8   | 1.87     | 2.03     | 2.35           | 2.27  | 2.34      | 2.36     | 2.26     | 2.21  | 2.18              | 91:           | Eabot           | :    |      |     | 2.00   | 1.35   |
| Eatop       | 1.93  | 1.9   | 1.98     | 8.7         | 1.86        | 1.80             | 1.79     | 8.5   |             | 1.83        | 1.89         | 1.89       |            | 2 5   | 2.03             | 2.03            | 2.03  | 2.0              | 1.94  | 1.89        | 1.90     | 1.92                                      | 8.3   | . 69     | 1.92  | 1.86  | 1.84     | ₹ 6<br>8   | 1.80       | 1.86  | 1.84     | 2.00     | 2.32           | 2.25  | 2.32      | 2.3      | 2.2      | 2.19  | 2.16              | ?             | Eatop           | •    |      |     | 1.9702 | 1.3297 |
| 15011       | 24.69 | 24.31 | 23.97    | 23.66       | 23.13       | 22.90            | 22.69    | 27.48 | 22.08       | 21.89       | 21.62        | 21.62      | 21.22      | 22.50 | 23.24            | 24.18           | 25.38 | 28 30            | 29.39 | 30.55       | 31.67    | 32.68                                     | 33.46 | 34.55    | 35.01 | 35.29 | 35.07    | 34.92      | 77.45      | 33.89 | 33.25    | 32.34    | 31.50          | 29.36 | 28.40     | 19.17    | 26.37    | 25.90 | 25.57             |               | Tsoil<br>C      | •    |      |     | 30.92  | 15.93  |
| Tubot.      | 19.92 | 19.82 | 19.73    | 19.79       | 19.41       | 19.20            | ¥ 6      | 2.6   | 18.75       | 18.75       | 19.00        | 19.00      | 19.61      | 20.30 | 21.26            | 21.55           | 21.79 | 21.3             | 22.15 | 22.11       | 22.38    | 22.55                                     | 22.50 | 22.99    | 22.94 | 22.72 | 22.48    | 22.61      | 22.53      | 22.40 | 22.10    | 22.49    | 22.22          | 22.13 | 22.05     | 01.77    | 21.66    | 21.47 | 21.33             |               | Tubor           |      |      |     | 21.22  |        |
| 1001        |       |       |          |             | 24.81       | 25.07            | 24.82    | 24.48 | 23.69       | 23.48       | 23.32        | 23.32      | 24.47      | _     |                  |                 |       | 12.05            |       |             |          |                                           | 25.55 |          |       | 35.83 | 35.4     | 35.87      | 35.40      | 34.76 | 33.95    | 52.91    | 87.16          | 28.04 | 28.23     | 2 2      | 26.63    | 96.70 | 26.74             |               | 13pot<br>C      |      |      |     | 32.69  |        |
| Twtop 7     | 19.90 | 19.81 | 19.76    | 19.79       | 19.40       | 19.19            | 3.6      | 26.92 | 18.75       | 18.75       | 18.36        | 18.96      | 19.51      | 20.57 | 20.97            | 21.21           | 21.42 | 200              | 21.68 | 21.62       | 21.85    |                                           |       | 22.47    |       |       |          |            | 25.04      | 22.03 | 21.79    | 22.25    | 22.64          | 22.10 | 22.06     | 06.12    | 19.12    | 67.17 | 21.35             |               | 7#10p           |      |      |     | 21.01  |        |
| 35          | 25.89 | 23.13 | 24.72    | 24.73       | 25.29       | 25.51            | 22.52    | 2 2   | 24.05       | 23.82       | 23.58        | 23.58      | 3.5        | 26.78 | 27.76            | 28.60           | 29.30 | 20.03            |       |             |          |                                           |       |          |       |       |          |            |            |       |          |          |                |       |           | 6.87     | 7.02     | 7.09  | 7.14              |               | dot o           |      |      |     | 31.84  |        |
| UDIR        |       |       |          |             |             |                  |          |       |             |             |              | _          |            |       | ,                |                 |       |                  |       |             |          |                                           |       |          |       |       | -, -     |            | ,          | ,     | .,.      |          | , , ,          |       |           | • • •    |          |       |                   |               | - 2100<br>Geo   |      |      |     | ~ ~    | -      |
| . s         | ~     | 60    | ,        | 2.9         | <b>4</b> .2 | Ξ:               | 2 2      | . 6   | 3.0         | 3.4         | 5.9          | ~ 6        |            | : :   | ÷.               | <del>.</del> .5 | ÷.    | 9 6              | 6.2   | 5.7         | 6.5      | . s                                       | - ~   |          | 1.1   | 7.9   |          | - 2        | 6.8        | 5.7   | 5.7      | ~; ~     | , <del>,</del> | 3.2   | 2.9       | . 4      | 5.5      | . 1   | 0. <del>4</del> . | :             | » ×             |      |      |     | 5.9    | 5.6    |
| Lup<br>E/62 | -469  | -467  | 9 9      | \$ \$ \$    | -456        | 19               | 2        | -461  | -457        | -420        | -            | ÷ 5        | 7 5        | -429  | -436             | -44             | 83 5  | 8                | -487  | -493        | <u>s</u> | - 507                                     | 5     | -51      | -513  | -530  | 4 5      | 215-       | -522       | -519  | -516     | -517     | 2.5            | -436  | ? ?       | Ę        | -43      | Ş     | <u> </u>          |               | Ce (e           | 7    | 22.8 | ?   |        |        |
| Lda<br>W/m2 | 132   | \$    | 129      | 25          | 5           | ₹ 5              | \$ 5     | 2     | 423         | 917         | 39           | 29.        | € Ξ        | ₹     | 01               | € :             | 3 5   | 2<br>2<br>2<br>3 | 907   | <b>4</b> 03 | <u></u>  | 607                                       | 0.0   | <b>=</b> | 419   | 5     | 8 2      | 3 5        | 55         | 436   | <b>3</b> | 5 5      | 3 5            | 413   | 7.        | 3 5      | 436      | 135   | 3 5               |               | ر<br>ار         |      | . 6  | ?   |        |        |
| B/82        | 0     | 0 (   | ۰ ،      | • •         | 0           | 0 0              | > <      | 0     | 0           | 0           | 62 3         | 2 3        | 2 %        | \$    | 108              | £ :             | 9. 2  | 8 2              | 127   | 126         | ₹ :      | 2                                         | 120   | 122      | 126   | 3     | <u> </u> | 184        | 227        | 255   | 248      | 202      | 3 =            | 13    |           |          | 0        | 0 (   | - 0               | · · · .       | 0<br>/•5<br>/•5 | 6.7  | 4.0  | ?   |        |        |
| Kup<br>N/e2 | 0     | ۰ ۵   | ٥ ,      | •           | 0           | 0 0              | 9 6      | 0     | •           | 0           | <u>۽</u> ڊ   | 2 5        | ę <b>;</b> | 99-   | 88               | -108            | 121-  | -191             | -180  | -189        | -197     | 102-                                      | -202  | -198     | -193  | -180  | 200      | 178        | -118       | -93   | 21-      | ? ?      | 6-             | 7     | 9 0       |          | 0        | 0 (   | 90                |               | ¥6<br>7,€2      | -6.2 | -6.0 | ;   |        |        |
| Kdn<br> /=2 | 0     | 0 (   | <b>-</b> |             | 0           | 0 0              | •        | 0     | 0           | 0           | <b>\$</b> \$ | ? =        | 200        | 230   | 389              | 8 3             | 8 8   | 35               | 820   | 898         | 6 2      | 22.6                                      | 928   | 301      | 864   | 338   | 200      | 25.5       | 9.5        | 392   | 36       | 2 2      | <b>;</b>       | =     | <b></b> ⊂ |          | 0        | 0 0   | - 0               | 3             | 7 E2 B          | 27.5 | 26.7 | 2   |        |        |
| 69<br>#/    | \$    | 3:    | 2 5      | : =         | 7           | <b>:</b> :       | : :      | : =   | Ş           | Ş           | <b>;</b>     | <b>;</b> ; | 28 2       | =     | s i              | <u> </u>        | 7 7   | 69-              | -80   | <u>-</u>    | 2 3      | 9 2                                       | 5     | 101      | 86-   | 2 5   | ÷ ;      | 82         | <b>\$</b>  | -38   | -23      | £ 4      | ~              | =     | 22 (2     | 32       | 55       | 5     | 7 PS              | 4             | , tp            | 6.0  | 7.7  | :   |        |        |
| E<br>H/82   | ₽.    | ÷ ;   | î î      | . :         | -38<br>87   | 5.5              | -20      | =     | 7           | <b>8</b> 1- | <b>%</b> ?   | 9 5        | 3 9        | -65   | 89-              | <b>B</b> 9 9    | 5 -   | -9.              | - 86  | -107        | = =      | :<br>:::::::::::::::::::::::::::::::::::: | - 22  | -105     | -100  | -101  | 9 5      | 2          | -81        | -84   | 9 5      | 2 %      | ş              | -22   | 77        | Š        | -39      | 7 7   | ? <del>*</del>    |               | •J/82 €         | -5.1 |      |     |        |        |
| H /62       |       |       |          |             |             |                  |          |       |             |             |              |            |            |       |                  |                 |       |                  |       |             |          |                                           |       |          |       |       |          |            |            |       |          |          |                |       |           |          |          |       |                   |               | aJ/e2 e         | e.s  | 9.0  |     |        |        |
| 0 /         |       |       |          |             |             |                  |          |       |             |             |              |            |            |       |                  |                 |       |                  |       |             |          |                                           |       |          |       |       |          |            |            |       |          |          |                |       |           |          |          |       |                   |               | J/82 aJ         |      |      |     |        |        |
| 1,1KE       | 0.5   |       |          | 2.5         | 3.0         | 2.5              | 5.       | 2.0   | 5.5         | 6.0         | 6.5          | 2 ~        | 8.0        | 8.5   | 9.0              |                 | 10.5  | 11.0             | 11.5  | 12.0        | 17.5     | 13.5                                      | 14.0  | 14.5     | 15.0  | 15.5  | 2 9      | 17.0       | 17.5       | 18.0  | 28.5     | 19.5     | 20.0           | 20.5  | 21.5      | 22.0     | 22.5     | 2.5   | 3                 |               | -               |      | NSUM |     | DAVE   | KAVE   |

SYSIEM 8, JULY 15, 1986, DATA FROM ASHLAND EXPERIMENTAL FARM

| کو<br>دو<br>دو |            |            |            |            |               |            |          |        |             |          |              | 00 -1.40 |             |                                         |          |                                         |       |                                         |       |       |            |          |            |                 |       |            |              |       |       |                |       |                |          |       |       |          |       |        |            |       |        |       |          |          | 57.1- 66 | •   | ور<br>ده<br>د | 8              | 3 2   | 0.0            | -    | Ξ     |
|----------------|------------|------------|------------|------------|---------------|------------|----------|--------|-------------|----------|--------------|----------|-------------|-----------------------------------------|----------|-----------------------------------------|-------|-----------------------------------------|-------|-------|------------|----------|------------|-----------------|-------|------------|--------------|-------|-------|----------------|-------|----------------|----------|-------|-------|----------|-------|--------|------------|-------|--------|-------|----------|----------|----------|-----|---------------|----------------|-------|----------------|------|-------|
| HArec          |            |            |            |            |               |            |          |        |             |          | <del>-</del> | -        | -           | 7                                       | 7        | <u>ن</u>                                |       |                                         |       |       |            |          |            |                 |       |            |              |       |       |                |       | ة <del>-</del> |          |       | .i.   | · ·      | ÷ -   | -i -;  |            | -     | 9      | 2 -1. | <b>-</b> | ~· ·     |          |     | s Erec        |                |       |                |      |       |
| ડ ડે           | 70/1       | <u> </u>   | = :        | 2 :        |               | 7 5        |          |        |             |          | _            |          |             |                                         |          | 7                                       |       |                                         |       |       | ٠ <u>.</u> |          |            |                 |       |            |              | -32   |       |                |       |                | _        | ņ     |       | <b>.</b> |       | , i    |            | -     | m<br>~ | ··    | ~        | ~ .      | ~ ~      |     | 59 S          | 2              |       |                |      |       |
| E:             |            |            | •          | · ·        |               |            |          |        |             |          |              |          |             |                                         |          |                                         |       |                                         |       |       |            |          |            |                 |       |            |              |       |       |                |       |                |          |       |       |          |       |        |            |       | _      | 9     |          |          |          |     |               |                |       | 9.0            | _    |       |
| 100            |            | 7 :        |            |            |               | 3 :        |          | 70     |             |          |              | 68       |             |                                         |          | 68.5                                    |       |                                         |       |       | 22.4       |          |            |                 | 7. 9  |            |              |       |       |                |       | 39.6           |          |       |       |          |       | 2.5    |            | 9     |        | 63.3  |          |          | 6.0      |     | 욽             | *              |       |                | 5    | 2     |
| 450            | 7          | 3 !        | ? ?        | 713        |               |            | 70       | 3      | -62         | 94-      | 19           | -458     | -55         | 7.7                                     | -42      | -439                                    | 991-  | 967-                                    | -526  | -557  | -584       | -622     | 999        | 9-              | 202   | - 709      | -716         | -719  | -720  | 21.<br>21.     | 507-  | 089-           | 99-      | -636  | -611  | -584     | -56   | C 20 5 | -485       | -487  | -487   | -484  | -482     | 99       | 7        |     | 3             | 78/78          | -28.9 | -19.1          |      |       |
| E 6            | <b>7</b>   | 3 ;        | <b>3</b> 5 | ?          | •             | 9 5        | 3        | 3      | <b>\$</b> 3 | 423      | 454          | 12       | <b>4</b> 52 | 3                                       | ₹        | 522                                     | 619   | 77                                      | 807   | 668   | 98)        | 8        | 1169       | 0521            | 9/71  |            | 1338         | 1332  | 1313  | 280            | 1238  | 2 2            | 1031     | 939   | 840   | 35       | 653   | 60.    | <b>435</b> | 45    | 448    | 445   | 3        | ₹ :      | 3 5      |     |               | •              | 7.54  | . A.           |      |       |
| 9 5            | 2 6        | 70.0-      | 70.0       | 70.0       | 7 6           | 70.0       | 7 6      | )<br>( | -0.02       | -0.03    | -0.03        | -0.02    | -0.02       | -0.02                                   | -0.02    | -0.02                                   | -0.05 | -0.0                                    | -0.05 | -0.0  | -0.03      | -0.05    | -0.02      | 9.6             | 7 F   | 6.0        | -0.03        | -0.02 | -0.03 | 9.5            | 3 5   | 9.0            | -0.02    | -0.05 | -0.03 | -0.05    | 9.03  | 7 6    | -0.02      | -0.05 | -0.05  | -0.05 | -0.03    | -Q. Q.   | 0.00     | •   | ¥ 4           | 2              |       |                | 5    | 7.0.0 |
| 5 <b>-</b>     | <u>ء</u> د | 7 :        | <b>;</b> ; | 3 5        | 3 5           | 2 .        | 2 :      | ÷ :    | <b>.</b>    | 0.39     | 0.39         | 0.38     | 0.36        | 0.75                                    | 0.25     | 0.0                                     | -0.23 | -0.43                                   | -0.63 | -0.82 | -1.07      | -1.18    |            | <del>\$</del> : | ÷ 5   | 99         | -1.64        | 75.7  | -1.62 | <del>-</del> - | ¥ ₽   | 2              | 7        | -0.92 | -0.76 | -0.56    | S :   | 2.5    | 5.6        | 0.31  | 0.33   | 0.31  |          | 0.31     | 2 2      | ;   | ₹ '           |                |       |                | 9    | 7.0.  |
| 10091          |            | 2 5        | 6.6        | 5 5        | 3.5           | 2 2        |          |        | 1.95        | 1.93     | 1.99         | 10.2     | 2.03        | 2.08                                    | 5.08     | 2.12                                    | 2.16  | 2.19                                    | 2.21  | 2.25  | 2.29       | 2.31     | 2.53       | 25.5            | 67.7  | 2.34       | 2.36         | 2.26  | 2.32  | 2.21           | 7.7   | 2.5            | 2,28     | 2.22  | 2.29  | 2.29     | 2.32  | 7.7    | 2.22       | 2.36  | 2.34   | 2.33  | 2.36     | 2.36     | 2.5      |     | Eabot         | n h            |       |                | 5    | 29.3  |
| 10167          | •          | 7.7        | 5 6        | 70.7       | 2 3           | 2 2        | 2 6      | 7.1    | 93          | 1.95     | 1.97         | 5.00     | 2.01        | 5.06                                    | 5.06     | 2.10                                    | 2.15  | 2.17                                    | 2.20  | 2.23  | 2.27       | 2.29     | 2.3        | 67.7            | 7. to | 2.51       | 2.33         | 2.24  | 2.30  | 2.18           | 2.5   | 2.23           | 2.26     | 2.19  | 2.23  | 2.21     | 2.30  | 17.7   | 2.20       | 2.34  | 2.32   | 2.35  | 2.34     | 2.3      |          |     | Eatop         | XYX            |       |                | 91   | 7.15  |
| 100            | ָ<br>ק     | 3.5        | 97.70      | 3 :        | 3.5           | 27.50      | 22.23    | 2.6    | 3.04        | 22.86    | 22.69        | 22.53    | 22.38       | 22.14                                   | 22.14    | 22.22                                   | 22.52 | 23.01                                   | 23.72 | 24.68 | 25.90      | 27.75    | 29.08      | 700             | 21.38 | 31.76      | 34.71        | 35.38 | 36.01 | 36.35<br>5.35  | 36.38 | 36.35          | 36.05    | 35.47 | 34,80 | 34.05    | 33.13 | 7 7 2  | 30.01      | 29.15 | 28.42  | 21.82 | 27.78    | 26.81    | 26.36    |     | 1501          | د              |       |                | 9    |       |
| 2              | ج د<br>:   | 9 9        | 3 5        | 7 7        | 9 6           |            | 2 5      | 3      | 9.6         | 9.68     | 9.7          | 69.6     | 9.64        | 9.91                                    | 16.6     | 0.43                                    | 97.1  | 11.60                                   | 2.03  | 27.48 | 12.45      | 55.55    | 2.3        | 2.5             | 2.5   | 54.5       | 19.92        | 24.25 | 79.42 | 27.70          | 3 5   | 74.5           | 24.20    | 23.80 | 23,91 | 23.74    | 23.66 | 3 5    | 22.25      | 22.65 | 22.50  | 22.48 | 22.39    | 22.27    | 22.08    |     | 100           | د              |       |                | ç    | 36.37 |
| 1000           |            |            |            |            |               |            |          |        |             |          |              |          |             |                                         |          |                                         |       |                                         |       |       |            |          |            |                 |       |            |              |       |       | 36.02          |       |                |          |       |       |          |       |        | 36.5       |       |        |       |          |          | 26.92    |     | 1007          |                |       |                | 2    | 5     |
| do:=:          |            |            |            |            |               |            |          |        |             |          |              |          |             |                                         |          |                                         |       |                                         |       |       |            |          |            |                 |       |            |              |       |       |                |       |                |          |       |       |          |       |        |            |       |        |       |          |          | 22.08 2  |     | 9 4           |                |       |                | 5    |       |
|                |            |            |            |            |               |            |          |        |             |          |              |          |             |                                         |          |                                         |       |                                         |       |       |            |          |            |                 |       |            |              |       |       |                |       |                |          |       |       |          |       |        |            |       |        |       |          |          |          |     |               |                |       |                | , ,  |       |
| do 5           |            | 7 6        |            | 9 2        | ? ?           | 5 5        | 3 2      | S :    | 23.         | ×.       | 24.6         | 24.2     | 23.8        | 23                                      | 23.8     | 24.6                                    | 25.8  | 27.0                                    | 27.9  | 28.1  | ž.         | 2        | <b>=</b> 1 | 3               | 7 2   | ; ;        | 2            | ž     | ž     | 3              | 5 2   | 5 7            | ×        | 33.0  | 11.   | 32       | 22    | ÷ 5    | 2 8        | 28    | 89     | 89    | ::       | ; ;      | 27.72    |     | do181 ×       |                |       |                | 96   | Ċ     |
| 100            | 500        |            |            |            |               |            |          |        |             |          |              |          |             |                                         |          |                                         |       |                                         |       |       |            |          |            |                 |       |            |              |       |       |                |       |                |          |       |       |          |       |        |            |       |        |       |          |          |          |     | -             | 63             |       |                |      | •     |
| -              | •          | •          | • •        |            |               |            |          |        | 3           | <u>∵</u> | <u>~</u>     | Ĉ.       | 7.6         | -                                       | **       | 2.                                      | 2.    | 9.4                                     | 6.3   | 5.3   | •          | 6.2      | Z :        |                 |       |            | .5           | 9.1   | æ.    | 9.6            |       |                | ~        | 6.9   | 0     | -        |       | 2 6    |            | 6.3   | 6.3    | <br>  | -        |          | - 6      |     | <u>.</u> د    |                | • ~   | . ~            | -    | -     |
| 3              |            | 3 ;        | 3 5        | 7          |               |            | 9        | 3      | ÷23         | 99       | -460         | 857-     | -55         | ======================================= | 7        | =                                       | -418  | -475                                    | 7     | -445  | 75         | 69       | 2          | 9               |       |            |              |       |       |                |       | 3 5            |          |       |       |          |       |        |            | •     |        |       |          |          | 7 7      |     |               |                |       |                |      |       |
| E (2)          | 78/        | 3 :        | <b>7</b>   | 3 5        | 3             | 2          | 3 5      | 7      | 423         | 454      | <b>*</b>     | 422      | 422         | 8                                       | 3        | 60                                      | 21)   | ======================================= | Ş     | ₹     | ‡          | € :      | <b>S</b>   | 3               | 2 9   | 2          | 9            | 4:0   | 18    | 121            | 3 5   | 3              | ₹39      | 440   | 3     | #7       | ¥ :   | 3 5    | ? ?        | ₹     | =      | 445   | \$       | ₹ :      | 5 5      |     | 5 :           | 787            | 9 9   | : :<br>::      |      |       |
| ء<br>د         | 20 0       | <b>-</b>   | > <        | > <        | •             | > <        | •        | -      | 0           | 0        | 0            | 0        | 0           | 2                                       | 23       | ŝ                                       | 3     | 64                                      | 72    | 83    | ç          | 8        | <b>z</b> ( | 7 8             | 2 8   | ; <u>=</u> | <u> </u>     | 9     | 8     | ĭ01            | 8 2   | 2 6            | 5        | 308   | 331   | 262      | 513   | 3 5    | 3 2        | 0     | 0      | 0     | 0        | 0        | -        | • • | <u>.</u>      | 7 <b>0</b> /FI | 9.5   |                |      |       |
| 93             |            | <b>-</b>   | > <        | > <        | <b>&gt;</b> < | > <        | <b>-</b> | ٠ د    | 0           | 0        | 0            | 0        | 0           | · =                                     | =        | -3                                      | 89    | ~                                       | -65   | -115  | 8          | <u>.</u> | 89.        | 61.             | 6 7   | 90.        | -362<br>-362 | -202  | -138  | -192           | £ 5   | 2 5            | 9        | -120  | 96-   | ŗ        |       | ? ;    | ? ?        | • •   | 0      | 0     | 0        | 0        | 0 0      |     | 2             | 7              | ?     | . 0            |      |       |
| , E            |            | <b>-</b> • | > <        | <b>-</b>   | > <           | > <        | > <      | >      | 0           | 0        | 0            | 0        | 0           | =                                       | <b>=</b> | ======================================= | 207   | 301                                     |       |       |            |          |            |                 |       |            |              |       |       |                |       | 589            |          |       |       |          |       |        |            |       | -      | 0     | 0        | ۰ -      | 0 0      | , ; | 5             | 7 2            |       | ; <del>-</del> |      |       |
|                |            | 3 ;        | 2 :        | 9 5        | <b>5</b> 5    | 2 9        | ? \$     | ₽.     | \$          | 2        | 25           | ?        | 2           | : 52                                    | 33       | =                                       | *     | =                                       | 2     | -15   | ņ          | <u>ئ</u> | ξ;         | ę s             | 9 2   | 3 5        | =            | 60    | 108   | æ :            | # F   | . 9            | <u>ن</u> | =     | -29   | -18      | 5     | - :    | : =        | 22    | 2      | 8     | 22       | 7        | 3 3      | ,   | 3             | 7              | 7 -   | 7.             |      |       |
|                |            |            |            |            |               |            |          |        |             |          |              |          |             |                                         |          |                                         |       |                                         |       |       |            |          |            |                 |       |            |              |       |       |                |       |                |          |       |       |          |       |        |            |       |        |       |          |          | 7 7      |     | ا<br>د<br>د   | 78/5           |       | ; ;            |      |       |
| :<br>: :       |            |            |            |            |               |            |          |        |             |          |              |          |             |                                         |          |                                         |       |                                         |       |       |            |          |            |                 |       |            |              |       |       |                |       | 75-            |          |       |       |          |       |        |            | -     |        | -     | _        | <b>-</b> |          | . : | <b>=</b> 5    | 7 9            | ? ?   | .5             |      |       |
|                | <u>.</u>   | <b>:</b>   | <b>.</b>   | <b>;</b> ; | <u>ب</u>      | <b>;</b> ; | ÷ ;      | ç      | Ţ           | ≃        | 9            | 5        | 200         | 7.                                      | ₹.       | =                                       |       |                                         |       |       |            |          |            |                 |       |            |              |       |       |                |       |                |          |       |       |          |       |        |            | 7     | ÷      | 7     | 7        | ÷:       | 7 7      |     | :<br>و حو     | 2 .            | 2 0   | 9.0-           |      |       |
| ```<br>E       |            |            |            |            |               |            |          |        |             |          |              |          |             |                                         |          |                                         |       |                                         |       |       |            |          |            |                 |       |            |              |       |       |                |       |                |          |       |       |          |       |        |            |       |        |       |          |          | 2.5      |     | ¥ 7           | -              |       | E A            | TAVE | ž     |

ASHLAND EXPERINENTAL

ã

DATA

1986

106

| ,          | ×            | į.       | 1.53  | <br>S: :       | 3 7    | : <del>:</del> | ¥:       | = =       | : =       | <br>       | -1.36      | -0.95          | -0.95 | -0.0     | 9.9        | ? :        | 2.59      | 2.78       | 3.53  | 3.20  | 3.19  | 5.55       | 2 3   | 2.40           | 1.79      |       |       |            |            |       |            |          | 1.52    |            |          |            |            |       |            |       |       |       | 80<br>0X |          |                |               | 2.0 | 2.0                     |   |
|------------|--------------|----------|-------|----------------|--------|----------------|----------|-----------|-----------|------------|------------|----------------|-------|----------|------------|------------|-----------|------------|-------|-------|-------|------------|-------|----------------|-----------|-------|-------|------------|------------|-------|------------|----------|---------|------------|----------|------------|------------|-------|------------|-------|-------|-------|----------|----------|----------------|---------------|-----|-------------------------|---|
|            | 200          | 00.      | 80.   | 8 8            | 3 5    | 3 8            | 8:1      | 8 -       | 3 8       | 8 8        | -T.00      | -1.00          | -1.00 | 8        | 8 9        | 3.5        | 6 5       | 6          | -1.00 | 6.9   | 7.00  | 0.99       | 3 S   | 9 2            | 0.99      | -1.00 | 0.99  | 9.5        |            | 6     | 0.0        | -1.00    | 2.48    | 2.5        | 3 8      | 0.99       | .1.<br>80. | 6.0   | ÷ 8        |       | . 66  | -1.67 | HKrec    |          | 0.0            | 0.00          |     |                         |   |
|            | es /         |          |       |                | 2 2    | 2 2            | = :      | 2 5       | 2 2       | : =        | 01         | •              | ~     | 9        | ÷          | 3          | 7 9       |            | -73   | -84   | 89-   | £ ;        | 2.    | 9 %            | 82        | 7     | -18   | <i>د</i> ر | <b>,</b> , | 2 5   | 2 82       | 36       | 63      | 3 9        | 3 3      | 62         | 57         | 7     | <b>₹</b> : | 3 2   | 5 =   | 23    | 65       | -        | -1.0           |               |     |                         |   |
|            |              |          |       |                | 7.0    | 7 0            | 0.5      | 9.5       | 7.0       | 7.0        | 0.5        | 0.5            | -0.2  | 0.0      | 0.5        | 7.0-       | , ,       |            | -0.2  | 0.5   | -0.2  | 0.5        | 7.0-  | 7.0            | 0.2       | -0.2  | 0.5   | -0.5       | 7.6        | 7.0   | 0.0        | -0.2     | 0.5     | 9,7        | 7.0      | 0.5        | -0.3       | 0.2   | 9.5        | 7 6   |       | -0.3  | =        | •        | 0.0            | 0.0           |     |                         |   |
|            | <b>3</b> 201 |          |       |                |        |                |          |           |           |            |            |                |       |          |            |            |           |            |       |       |       |            |       |                |           |       |       |            |            |       | -          |          | 13.3    |            |          |            |            |       |            |       | 2 3   |       | RHbot    | -        |                |               | 5   | 4:3                     |   |
|            | 2<br>2<br>3  |          |       |                |        |                | -465     |           |           |            |            |                |       |          |            |            |           |            |       |       |       |            |       |                |           |       |       |            |            |       |            |          | 909-    | 28.        | 3 5      | -          | -498       | 967-  | ÷          | 9 6   | 476   | -478  | 9        | a3/a2    | -29            | 67            |     |                         |   |
|            | ر<br>د وط    |          |       |                |        |                |          |           |           |            |            |                |       |          |            |            |           |            |       |       |       |            |       |                |           |       |       |            |            |       |            |          |         |            |          |            |            |       | \$         | = =   | 38    | 13    | <b>g</b> | 3/02     | 3 <del>5</del> | ===           |     |                         |   |
|            |              | .00      | 10.   | 70             | 2 6    | 3 6            | 0.       | 7         | 7 6       | 20.0       | .02        | .02            | 70.0  | .02      | 7.03       | 20.0       | 3 6       | 3 6        | 20.0  | 50.0  | 0.03  | 0.03       | 0.03  | 20.0           | 90.0      |       |       |            |            |       |            | 0.04     | -0.03   | 0.03       | 3 6      | 0.02       | 0.05       | -0.02 | 0.05       | 0.03  | 0.0   | -0.03 | Ä        | r d'a    |                |               | 5   | -0.03                   |   |
|            | A 5          |          |       |                |        |                |          |           |           |            |            |                |       |          |            |            |           |            |       |       |       |            |       |                |           |       |       |            |            |       |            | -        | . 19.0- |            |          |            |            |       |            |       |       |       |          |          |                |               | ;   | -0.93<br>0.24           |   |
|            | Å,           | 0.3      | 0.3   | 0              | 0 0    | 5 6            |          | 0         | 9         |            |            | 6              | 0     | 0        | o          | o o        | ٠<br>ج    | , 7        | -     | ÷     | ÷     | ÷          | ᅻ .   | <del>-</del> - | -         |       |       |            |            |       |            | •        |         | -          |          |            |            |       |            |       |       |       | Ą        |          |                |               |     |                         |   |
|            | Eabot dT     | 2.26     | 2.26  | 2.25           | 2.23   | 2.13           | 1.99     | 1.98      | 1.9       | 2 2        | 5          |                | 1.68  | 1.30     | 1.95       | 1.98       | 2.09      | 3.5        | 2.12  | 2.15  | 2.13  | 2.20       | 2.2   | 2.33           | 2 39      |       |       |            |            |       |            | 2.5      | 2.54    | 2.5        | 7, 6     | 2.3        | 2.2        | 2.1   | 7.5        | 2.0   | ; =   | : 6:  | Eabot    | ğ        |                |               |     | 2.25                    |   |
|            |              |          | 2.24  | 2.23           | 2.21   | 3 5            | 1.97     | 1.96      | . 95      | 5 5        | 68         | .86            | 1.86  | 1.88     | 1.93       | 3.96       | 86.5      | 2 2        | 2.03  | 2.12  | 2.10  | 2.17       | 2.26  | 2.3            | 233       | 2.41  | 2.44  | 2.45       | 2.5        | 3.5   | 2.53       | 5        | 2.51    | 2.57       | 5 . 5    | 2,33       | 2.22       | 2.15  | 2.11       | 2.02  |       | 1.89  | Eatop    | k Pa     |                |               | 5   | 2.3001<br>1.3548        |   |
|            | Soil Eatop   | •        |       | 25.            |        |                | 24.27    |           |           |            |            |                |       |          |            |            |           |            |       |       |       |            |       |                | 18.02     |       |       | 39.60      |            |       | 27.50      |          |         | 6.05       | . E      | 2 45       | 11.35      | 20.41 | 19.63      | 28.91 | 2 20  | 27.46 |          | ပ        |                |               |     | 34.02                   | , |
|            | ot Ts        |          |       |                |        |                |          |           |           |            |            |                |       |          | 15 23      | 67         | ₹<br>13.5 | 8 2        | 78 27 | 23    |       |            |       |                |           |       |       |            |            |       | -          |          |         | .27        |          | 28.0       | 55.        | 2.14  |            | 1.22  | 2 5   | 20.10 |          | ပ        |                |               | ;   | 22.4                    | • |
|            | <u>2</u>     |          |       |                |        |                | 20.07    |           |           |            |            |                |       | _        |            |            |           |            |       |       |       |            |       |                |           |       |       |            |            |       |            |          |         |            |          |            |            |       |            |       |       |       |          | S        |                |               |     | 29.09<br>32.95<br>17.42 |   |
|            | 19por        |          |       |                |        |                |          |           |           |            |            |                |       |          |            |            |           |            |       |       |       |            |       |                | 2 3       | 9     | 0.0   |            | <u>.</u>   | 0 6   |            |          | 7 35.79 |            |          |            |            |       |            |       | 27.51 |       |          |          |                |               |     |                         |   |
|            | Tutop        | 21.63    | 21.53 | 21.43          | 21.20  | 20.82          | 20.1     | 19.96     | 19.82     | 19.69      | 2 2        | 19.15          | 19.15 | 19.4     | 19.91      | 20.42      | 20.85     | 21.6       | 27 29 | 22.67 | 22.74 | 23.22      | 23.67 | 2.0            |           |       |       |            |            |       |            |          |         |            |          |            |            |       |            |       |       | 20.13 |          | ပ        |                |               |     | 22.24                   |   |
|            | atop.        | 98.80    | 5.42  | 16.25          | 5.81   | 6 K            | 5.84     | 25.54     | 22.28     | 2.30       | 7 7 7      | 2 28           | 2.58  | 25.18    | 26.06      | 27.03      | 28.20     | 2.5        | 2.5   | 32.23 | 32.75 | 33.39      | 33.75 | E :            | 3.5       | 35,98 | 36.07 | 36.42      | 36.56      | 36.69 | 5 5<br>5 5 | 35.96    | 35.11   | 34.23      | 33.23    | 20.15      | 30.28      | 29.86 | 19.11      | 28.41 | 27.80 | 27.15 | Latos    | U        |                |               | ;   | 33.37                   |   |
|            | e ign        |          |       |                |        |                | • • •    |           |           |            |            |                |       |          |            |            |           |            |       |       |       |            |       |                |           |       |       |            |            |       |            |          |         |            |          |            |            |       |            |       |       |       | _        | deg      |                |               |     |                         |   |
|            | -<br>-       | 2 4      | •     | •              | 5:     | 2.5            |          | æ. :      | 5.3       |            | ::         |                | . ~   | 9.       | <b>8</b> . | ÷.         | 89.       | 23         | 2     |       | 5.9   | <b>9</b> . | 2.5   | 5.3            |           | =     | 5.6   | 5.5        | 5.0        | 3.    |            |          | 5.8     | <b>~</b> : | 9. 4     |            |            | 2.    | 7.         | 2.7   | 9.5   | 3.3   | Ð        | <b>\</b> |                |               |     | 5.1<br>5.2<br>3.2       |   |
| FAKE       | e S          | 2 5      | Ę     | 69             | 191    | 3              | \$ 59    | <b>19</b> | 163       | 797        | 5 5        | 9 4            | 9     | Ę        | -418       | -426       | 92        | <b>;</b> ; | ; ×   | 3 5   | -489  | -495       | -505  | -510           | 110.      | -535  | -538  | -538       | -543       | ≆ :   | ÷ 5        | 5.53     | S. S.   | -531       | -520     | 600        | 86         | -48   | -493       | -488  | -482  | £ 7   | CAT      |          | -41.9          | -18.8         |     |                         |   |
| <u> </u>   | الطها<br>الم | •        | •     |                | •      |                |          | 23        | 121       |            |            |                |       |          |            |            |           |            |       |       |       |            |       |                |           |       |       |            |            |       |            |          |         |            |          |            |            |       |            |       |       | 43.5  | 5        | 3/02     | 37.3           | 17.7          |     |                         |   |
| PCKIN      | - ;          | _        |       | 0              | 0      | 0 0            | •        | 0         | 0         | ۰ ،        |            | , č            | : =   | 3        | 9          | %          |           | 2 ;        |       |       |       |            |       |                |           |       |       |            |            |       |            |          | 569     |            |          |            | ; •        | 0     | 0          | 0     | 0 0   | 90    | -        | 1/62     | 5.6            | 0.5           |     |                         |   |
|            | ğ,           |          | , 0   |                | 0      | ۰ ،            | •        | 0         | 0         | 0 0        |            | • <del>-</del> | : =   | : 82     | <b>#</b>   | <u>-</u> - | £ :       | ₹ :        | 751-  | 9 5   | 183   | 191        | 198   | . 203          | 207       | 661   | 192   | <b>8</b> 2 | 112        | 5     | 2 :        | <u> </u> | ? =     | -50        | <u>ب</u> | ? ?        | , 0        | 0     | 0          | 0     | 0 (   | 9 0   | g        | 3/62     | -6.3           | ٠<br>ن        |     |                         |   |
| H ASH      | e g          |          |       | 0              | 0      | ۰ ،            | - 0      | 0         | 0         | ۰ د        | •          | > p            | 3 8   | 112      | 506        | 262        |           |            |       |       |       | •          | •     | •              |           |       |       |            |            |       |            |          | 383     |            | 122      | 3 5        | 2 =        |       | 0          | 0     | 0 0   | - 0   | Ş        | 3/02     | 27.3           | 6.5           |     |                         |   |
| TA FREE    | Δ,           | ٧.       |       | <b>. .</b>     | 29     | <b>\$</b> :    | 28       | 33        | <b>\$</b> | <b>=</b> : | <b>2</b> 2 | n ≥            | ۹ ×   |          |            |            |           |            |       |       |       |            |       |                |           |       |       |            |            |       |            |          |         |            |          |            |            | ន     | =          | ĸ     | e :   | 3 F3  | 3        | 1/87     | 7              | : :           |     |                         |   |
| 86, DAI    | w ;          |          | ; ន្ព | . <del></del>  | 23     | 2 2            | 22       | 53        | es :      | 8 8        | 5 3        | <b>.</b> .     | 3 2   | ķ        | ž          | .55        |           | . 62       | Ş ¥   | 2 5   | : &   | -83        | -83   | - 16-          | 2 5       | · ·   | •     | •          |            |       |            | 9        | 2 8     | 79-        | Ş        | ş, ;       | <b>*</b> * | £ 65  | <u>:</u>   | -53   | -5    | e =   | -        | 3/62     | ÷.             | . 6.<br>5. 6. |     |                         |   |
| 18, 1986   | = 1          | <u> </u> | 3     |                | =      | •<br>•         | ==       | - 2       | \$.       | '<br>2 :   | 3 :        | <br>3 =        | <br>  | ·<br>; ~ |            |            |           |            | = £   |       |       |            |       |                |           |       |       |            |            |       |            |          |         |            |          |            |            |       |            |       |       | 2 2   | =        | 7,5      | ÷              |               |     |                         |   |
| 8, JULY 18 |              | /<br>2   | : 5   | : <del>S</del> | 9      | Ç:             | 2 =      | =         | 7         | <b>:</b>   | 7 9        | \$ \$          | 5 2   | ; 2      | . 68       | . 29       | 121 -1    | ٠<br>ا     | 250   | 5 K   | 7     | 5.         | 573   | 588            | 285       | 1895  | 3     | 809        | 89         | Ξ.    | 362        | 33       | 128     | 35         | 88       | <b>≈</b> : | ? ;        | 7     | Ŧ          | Ţ     | ÷ :   | ÷ ÷   | -        | 3/10     | 15.0           | -1.3          |     |                         |   |
| ER 8,      |              | •        |       | نہ :<br>ب      | ،<br>ە | 'n.            | نہ:<br>ب | 0.        |           | ٠<br>      | · ·        | , ,            | , ,   | ٠,       |            | .5         | .0        | <br>       | 0.    |       |       | 0.         | 2.5   | 0.0            | ٠.<br>د د | 3 5   |       | 5.5        | 0.9        | 5.5   | 0.6        | ? •      | . S. S. | 9.0        | 9.5      | 0.9        | 0.0        |       | 12.0       | 22.5  | 23.0  | 24.0  | 1185     | •        |                | KSUM          |     | TAVE<br>DAVE<br>NAVE    |   |
| SYSTEM     | Ē            | •        | > -   |                | ~      | ~ .            | nn       | •         | ~         | · ·        | ^          | •              | - ه   | ^        | •          | ₩          | •         | -          | 2 5   | ==    | : =   | =          | ::    | <b>=</b>       | :         |       | • =-  | . <i>=</i> |            | -     |            |          |         | _          | -        |            | 4.0        |       |            | •     |       |       | -        | •        |                |               |     |                         |   |

SYSIEM 8, JULY 18, 1986, DATA FECH ASHLAND EXPERIMENTAL FARM

## Ø

|                              | 88 66 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 04<br>60                                                             | 6.6<br>6.3<br>8.9            |
|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------|
|                              | <ul><li>なる本地はなる本土をよるののののののは、十十分</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                    | 9 9 9                        |
|                              | HALEC C. 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Hirec<br>0.21<br>0.04                                                |                              |
|                              | 4 4 4 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 68<br>0.0<br>0.0<br>-0.1<br>0.1                                      |                              |
|                              | 2.2.2.2.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0.0<br>0.0. | E 0.0                                                                |                              |
|                              | Fifth of 80.4 (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (19.0) (1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | RHD ot                                                               | 78.1<br>61.4<br>42.6         |
|                              | 60 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0up<br>mJ/m2<br>-40.1<br>-25.2                                       |                              |
|                              | 004<br>4409<br>4409<br>4401<br>4401<br>4401<br>4401<br>4401<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0dn<br>47.9<br>37.6                                                  |                              |
|                              | φ φ φ φ φ φ φ φ φ φ φ φ φ φ φ φ φ φ φ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | . 44 44 44 44 44 44 44 44 44 44 44 44 44                             | -0.02<br>-0.06<br>0.00       |
|                              | 0.54<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55<br>0.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | £ 0                                                                  | 0.13<br>-0.83<br>0.27        |
|                              | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Eabot<br>RPa                                                         | 2.14<br>2.02<br>1.08         |
|                              | 2. 2. 3.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Eatop<br>KPa                                                         | 2.12<br>1.9569<br>1.0797     |
|                              | 26.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Tso11 C                                                              | 24.80<br>24.92 1<br>12.25 1  |
|                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | , Tubot 1                                                            | 19.92 2<br>20.29 2<br>9.76 1 |
|                              | 1 160 t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                      |                              |
|                              | 12b 0t 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Tabot 6                                                              | 22.84<br>5 25.82<br>5 10.61  |
|                              | 20. 20. 20. 20. 20. 20. 20. 20. 20. 20.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Tutop<br>C                                                           | 19.86<br>19.75<br>9.83       |
|                              | 11 0 0 12 12 12 12 12 12 12 12 12 12 12 12 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Tatop<br>C                                                           | 22.96<br>24.97<br>10.88      |
|                              | 465 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ubis<br>deg                                                          | × = \$                       |
|                              | 2 2 1 1 2 2 3 4 K 11 C C C C C C C C C C C C C C C C C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | u<br>s/•                                                             | 4.1<br>9.0<br>3.0            |
| 888343                       | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Lup<br>137.2<br>137.2<br>11.5<br>15.8                                |                              |
| RE, R                        | 1/40<br>1/40<br>406<br>406<br>407<br>409<br>409<br>409<br>331<br>331<br>331<br>331<br>340<br>340<br>340<br>340<br>340<br>340<br>340<br>340                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1dn<br>137.62<br>33.9<br>18.4                                        |                              |
| A FRAI                       | 20 2 2 2 2 2 2 2 3 3 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0<br>13/62<br>5.4<br>7.1                                             |                              |
| . KGN2                       | 28. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Kup<br>13/42<br>-2.8<br>-3.7                                         |                              |
| DATA FROM THE KONZA PRAIRIE, | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Kdn<br>mJ/a2 -<br>14.0<br>19.1                                       |                              |
| ATA FI                       | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 69<br>0.82<br>0.0                                                    |                              |
| 1986,                        | 1,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | E)/E7<br>-5<br>-5<br>-5                                              |                              |
|                              | 25.5 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | # 50 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5                             |                              |
| 1, JULY 20,                  | 2 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0 /kg   0   1   0   0   0   0   0   0   0   0                        |                              |
| rsten 1                      | H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 22.5<br>22.5<br>23.0<br>23.5<br>24.0<br>11#E<br>15#M<br>15#M<br>856# | TAVE<br>CAVE<br>NAVE         |

| es<br>es       |                                                              | -0.26 | <br>           | 1.32             | 2.5      | 3 7           | 9        | 1.51   | 1.65             |             | 19           |                |          |       |          |                |                |            |              |                    |            |       |                       |            |                |                | -3.21 | <b>8</b> 0 |                |                       |              | 0.0          |
|----------------|--------------------------------------------------------------|-------|----------------|------------------|----------|---------------|----------|--------|------------------|-------------|--------------|----------------|----------|-------|----------|----------------|----------------|------------|--------------|--------------------|------------|-------|-----------------------|------------|----------------|----------------|-------|------------|----------------|-----------------------|--------------|--------------|
| Hirec          |                                                              | -5.01 | 0. ya<br>-1.02 | 0.39             | -1.02    | 0.94<br>19.19 | 6.1      | -0.99  | 1.00             | 1.00        | 9,7          | 8 7<br>7 8     | 8        | 9.1-  | 1.8      | 9.7            | 8 8            | 1.00       | 8 S          | .1.6               | 1.00       | 8.5   | 3 8                   | 8          | 1.8            | 99.1           | -1.67 | Hirec      | 0.00           | 8.8                   | 0.00         |              |
| ∓<br>8 }       | 7<br>4                                                       |       | <sup>ب</sup> ب | ņ                | 7 7      | 7 9           | b ŵ      | ٠,     | ئ ب <sup>ر</sup> | , .         | د ک          | 7              | 7        | ~ -   | - m      | ю .            | <b>-</b>       | . ~        | <b>~</b> 7 ~ | n •0               | •          | ⊸ .   | M +7                  | • • • •    | ~              | ~ .            |       | S (2       | -              | ,<br>,                |              |              |
| =              | •                                                            |       |                |                  |          |               |          |        |                  |             | -0.2         |                |          |       |          |                |                |            |              |                    |            |       |                       |            |                |                |       | *          | 0.0            | 0.0                   | 0.0          |              |
| RHDot.         | <b>.</b>                                                     | 84.5  | 86.7<br>83.8   | 78.9             | 4.69     | 65.0          | 52.9     | 50.5   | 51.3             | <b>6</b> .5 | 3            | 45.0           | 43.6     | 47.9  | 52.9     | 56.8           | 52.4           | 52.4       | 26.0         | 8.79<br>69.7       | 76.2       | 80.2  | 85.4                  | 2.7        | 81.5           | 20.5           | 81.9  | RHDot      |                |                       |              | 62.4<br>56.8 |
| - Gg           | 7 6 /6                                                       | \$ 5  | ş, ş           | . <del>.</del> 5 | -52      | -559          |          | -132   | -678             | 5 E         | 96.          | -7 46<br>-786  | ž.       | -123  | -576     | -523           | ¥ 55           | ÷ 55       | -539         | 285                | ÷          | BT -  | 907                   | -103       | -399           | Ş.             | -398  | dag        | 1/82<br>-49.5  | -28.9                 | -20.7        |              |
| 00g            |                                                              |       |                |                  |          |               |          |        |                  |             | 60.          |                |          |       |          |                |                |            |              |                    |            |       |                       |            |                |                | 381   | e da       | 5/82<br>66.1   | 40.6                  | 25.3         |              |
| w a            |                                                              | 0,08  | -0.04<br>-0.03 | -0.02            | -0.05    | -0.05<br>A    | -0.06    | -0.07  | 9.05             | -0.05       | 0.01         | -0.08          | 0.08     | 6.0   |          |                |                |            |              |                    |            |       |                       | 9          | -0.01          | -0.01          |       | چ          |                |                       |              | -0.05        |
|                |                                                              | -0.32 | 0 -0<br>18 0   | -0.47            | -0.91    | 6.63          | 1.25     | -1.54  | 1.38             | 1.82        | 1.78         | 7.55           | -1.58    | -1.15 | -0.42    | -0.29          | 9 S            | -0.47      | -0.30        | 9.0                | 0.56       | 0.52  | 0.5                   | . 6        | 0.51           | 0.54           |       |            | ပ              |                       |              | -0.61        |
| bot di         | 7<br>0<br>4                                                  |       |                |                  |          |               |          |        |                  |             | <b>.</b>     |                |          |       |          | 90.2           | 2.02           | 8.         | 2.04         | 2.11               | 2.04       | 2.00  | 65.7                  | . z        | 3              | 1.93           | 8.    |            | *ba            |                       |              | 1.94         |
| æ              | * ************************************                       | 1.89  | 1.85           | 1.91             | %:       | 98.1          | 1.0.     | 1.78   | 1.83             | <br>        | 2 2          | 1.1            | . E      | 1.9   | 1.32     | 2.01           | £ 5            | 1.95       | 2.00         | 2.6<br>0<br>0<br>0 | 2,03       | 1.33  | 8.78                  | 5.5        | 1.32           | 1.92           | 1.89  | Eatop      | # <b>P</b> 1   |                       |              | 1.9882       |
| 01 E3          | <b>.</b>                                                     | 21.07 | 21.28<br>21.58 | 21.99            | 22.39    | 22.88         | 22.22    | 24.99  | 25.43            | 26.21       | 27.54        | 27.87<br>28.16 | 28.54    | 28.50 | 28.08    | 27.73          | 27.66          | 27.23      | 26.99        | 26.69              | 25.88      | 25.43 | 25.02                 | 24,00      | 24,12          | 23.91          | 23.77 | =          | ပ              |                       |              | 25.64        |
| 00 t           | မ                                                            | 16.90 | 17.37          | 18.26            | 19.02    | 19.15         | 19.82    | 19.99  | 20.19            | 20.62       | 20.51        | 20.39          | 21.03    | 21.30 | 20.13    | 20.99          | 27.72          | 20.87      | 68 02        |                    |            |       | 18.26                 | 13.57      | 18.11          | 17.83          | 11.79 | Twbot      | ပ              |                       |              | 19.75        |
| oot            | ပ                                                            |       |                |                  |          |               |          |        |                  |             | 29.43        |                |          | 29.58 | 27.86    | 27.33          | 28.35          | 28.03      | 27.33        | 26.29              | 22.23      | 21.08 | 19.92                 | 19.77      | 20.26          | -              |       | -          | ပ              |                       |              | 25.25        |
| Tutop          | ပ                                                            |       | 17.03          | 17.98            | 18,49    | 18.70         | 19.13    | 19.17  | 19.49            | 19.80       | 19.61        | 19.51          | 20.24    | 20.61 | 20.48    | 20.65          | 20.65          | 20.52      | 20.61        | 20.69              | 19.40      | 18.84 | 18.49                 |            |                | 17.96          |       | Tutop      | ပ              |                       |              | 19.34        |
| d <sub>o</sub> | မ                                                            | 18.28 | 18.43          | 20.28            | 22.02    | 3.08          | 25.16    | 78.27  | 26.09            | .6.86<br>28 | 27.64        | 27.57          | 28.75    | 28.41 | 28.21    | 27.03          | 27.78          | 27.59      | 27.06        | 26.22              | 22.81      | 21.60 | 36.45<br>5.45<br>5.83 | 2.2        | 20.76<br>70.76 | 20.03          | 20.34 | Tatop      | ű              |                       |              | 24.63        |
|                | ) 6ap                                                        |       |                |                  |          |               |          |        |                  |             | 12 2         |                |          |       |          |                |                |            |              |                    |            |       |                       |            |                |                |       | UDIR       | Çed            |                       |              | 113          |
| ກ<br>ກ         |                                                              | č:    |                | : :              | 1.2      | Ξ:            | 7.7      | : :    |                  | . c         | 3 7          | 5.5            | 2.7      | 6.1   | 2.3      | ::             | ; <del>,</del> | 7.7<br>5.5 | 1.6          | <u>.</u>           | 1.6<br>1.6 | 5.    | 9:                    | <u>.</u> . | <u>:</u>       | 1.2            | <br>  | <b>-</b>   | \$/8           |                       |              | 9:1          |
| 3              |                                                              | -393  | -397           | <u> </u>         | <b>.</b> | 436           | -5-23    | -614   | -555             | 0£4-        | . £3         | -626           | -641     | -625  | 703-     | -482           | 67             | 1. F.      | -483         | £;                 | £ 5        | Ŧ     | 104-                  | 375        | . 195.         | -462           | -394  | t up       | 11/62<br>-43.6 | -2.6<br>-2.8          | 18.8         |              |
| 5 5            |                                                              |       |                |                  |          | 328           | ≅ ≲      | 333    | 865              | 383         | 343          | 383            | 8 8<br>8 | 38    | = =      | <b>S</b>       | 605            | 392        | 392          |                    |            |       |                       |            |                |                |       | μ          | 3/62           | 17.0                  | = =          |              |
| :<br>و م       |                                                              |       |                |                  |          |               |          |        |                  |             | 704<br>758   |                |          |       |          |                |                |            |              |                    |            |       |                       |            |                |                |       | •          | 63/62<br>15.3  | 16.3                  | 5.1          |              |
| da :           |                                                              | -52   | ۲۶<br>۲۹       | ; <del>4</del>   | 8        | 9 !           | -10      | #<br># | -123             | 14.         | Ç 0.         | -120           | £ F      | -61   | -72      | ? <del>?</del> | ŗ              | 99-        | -5           | ដុះ                | 77-        | , 17  | ٺ.                    | ? "        | ? 7            | , <del>"</del> | 7     | <b>K</b> V | 21/B2          | 0<br>9 <del>-</del> 7 |              |              |
| Kdn            |                                                              | E     | 73             | ŝ ž              | 3        | £ :           | 652      | 3 69   | 25               | <b>3</b> 5  | 916          | 5.5            | <u> </u> | 363   | 8 %      | ::             | ₹              | 33         | 219          | 128                | Ç 2        | : -   | · ·                   | <b>→</b> ~ | ~ <del>~</del> | * **           | -     | Kd         | 24/2           | 3.7.                  |              |              |
| <u>.</u>       |                                                              |       |                |                  |          |               |          |        |                  |             | ? ?          |                |          |       |          |                |                |            |              |                    |            |       |                       |            |                |                |       | 3          | 1/02           |                       |              |              |
| w ;            |                                                              | -125  | 29 s           | ŕş               | -121     | -103          | -165     | -183   | 177-             | -213        | 927-<br>728- | -215           | -246     |       | -153     | -62            | -135           | -105       | : ភ          | £ '                | -20        | : ∓   | ٠.                    | 9 5        | <del>7</del> ° | ې مې           | 7     | ш          | 43/£2          | ŗ <del>•</del>        | دئد (        |              |
| = 1            |                                                              | ۶÷    | 154            |                  | 2        | = :           | <u> </u> | , S    | \$5.             | ŞŞ          | 757          | -319           | ÷ ÷      | -240  | <u> </u> | . 23           | = :            | 5 5        | ç            | ž, ;               | \$ \$      | 3 ₹   | 9                     | 29.        | <b>₽</b> 5     | ? \$           | ٠-    | Ŧ          | 3/a2           | ? ?                   | 7            |              |
| <b>-</b>       | 1/*3                                                         | 2     | 112            | 2 2              | 33.      | <u>څ</u>      | <b>:</b> | £ 6    | 8                | <b>79 7</b> | ₹ ₹          | 23             | S 5      | 28    | (S) 25   | 2 2            | 22             | <u> </u>   | . X          | <del>-</del> -     | ۽ ڊ        | Ş     | ÷ ;                   |            | r, r           | 3 9            | -21   | 9          | a3/e2          | 2 52                  | : •          |              |
| 11#E           | 2001<br>2002<br>2003<br>2003<br>2003<br>2003<br>2003<br>2003 | ə vi  | 0, 0           | n 9              | : 2:     | 0             |          | . v.   | 9                | ٠ <u>٠</u>  | 3 S.         | 0              | . o.     | 5.5   | 0.4      | : 2            | 2.5            | 0.8        | 0.6          | 5.6                | 0 5        | 0.    | 5.5                   | 2.0        | 2.5            | 23.5           | 2.0   | ¥          |                |                       | HSUN<br>HSUN | TAVE         |

| 0K<br>60      | 17    | -0.86 | -0.B6    | -0.96       | -1.15       | 5 2      | 7           | -1.4     | -1.73       | -1.7                         | 2.5   | 6 6   | -0.56      | -0.08          | 5.0            | 5     | =     | 1.18       | 1.1        | 0.99     | 26.1  | 5 6            | 1.02     | 1.0   | 0.95        | 9.86  | 8 8            | 0.67  | 0.75  | 0.51  | 0.31  | 2.6      | -0.52    | -0.81        | -1.72          | 2.70                                   | -2.04      | -1.97          | 66.7- | -3.01 | 9       |             |             |      | ÷0,   | -1.0           |
|---------------|-------|-------|----------|-------------|-------------|----------|-------------|----------|-------------|------------------------------|-------|-------|------------|----------------|----------------|-------|-------|------------|------------|----------|-------|----------------|----------|-------|-------------|-------|----------------|-------|-------|-------|-------|----------|----------|--------------|----------------|----------------------------------------|------------|----------------|-------|-------|---------|-------------|-------------|------|-------|----------------|
| Härec         | 00    | . 6   | 0.99     | 9.          | 8.9         | 3 8      | 9.7         | 0.99     | 9:1-        | 6.3                          | 8.5   | 8 8   | 0.00       | 9:1            | -1.00          | 3 8   | 8     | -1.00      | 1.00       | -1.00    | 8 8   | 8 8            | 8 7      | 1.00  | -1.00       | 8:    | 3 5            | 8 6   | 9.    | 0.00  | -1.00 | 8 9      | 0.93     | -1.00        | 6.9            | 3 5                                    | -1.<br>8.  | 2.49           | 3.1.  | -1.67 | Killing |             | 0.0         | 0.00 |       |                |
| 65            |       |       | -        | -           |             |          | ~           | -        |             | <b>-</b>                     | ~ c   | 0     | 0          | <del>,</del> . | <del>,</del> , | ? "   | , 7   | ٠.         | ċ          | <b>,</b> | 5- Y  | ģ              | 'n       | 7     | -5          | ۰.    | <del>,</del> - | • •   | -     | 2     | ю.    | · ·      | •        | ~            | m =            |                                        | ~          | <b>~</b> (     | ۰,    | ٠,    | ž       | 1/•2        | 0.0         | 0.1  |       |                |
|               | ç     | -0.   | 0.5      | -0.2        | 0.5         | 7.0      | -0.2        | 0.2      | -0.2        | 2.5                          | 2.6   | -0.2  | 0.0        | 0.2            | 7.0            | 7.0   | 0.2   | -0.2       | 0.5        | -0.2     | 7.0   | , ,            | -0.2     | 0.2   | -0.2        | 0.5   | 7.0            | 7 0   | 0.2   | 0.0   | ç.,   | 7.6      | 0.2      | -0.5         | 0.5            | 7.0                                    | 0.2        | 5.0            | 7 6   | 6.3   | _       |             | 0.0         |      |       |                |
| RHDOL         |       |       |          |             |             |          |             |          |             |                              |       |       |            |                |                |       |       |            |            |          |       |                |          |       |             |       |                |       |       |       |       |          |          |              |                |                                        |            |                |       |       | RHPot   | -           |             |      | 67.6  | 54.5           |
| Qub<br>4/a2   |       |       |          |             |             |          |             |          |             |                              |       |       |            |                |                |       |       |            |            |          |       |                |          |       |             |       |                |       |       |       |       |          |          |              |                |                                        |            |                |       |       |         | 1/12        | 9.92        | 2.2  |       |                |
| 03n<br>11/62  | ē     | 6     | \$       | <b>4</b> 05 | 80          | 9 8      | \$0         | \$0\$    | <b>4</b> 05 | 9 :                          | 507   | 2     | 439        | 98 :           | 3 5            | 820   | 88    | 1059       | 140        | 1201     | 0071  | 1312           | 1325     | 1300  | 1531        | 1182  | 22.2           | 1102  | 980   | 820   | 754   | 2 5      | £ 52     | <b>4</b> \$3 | £ 5            | ÷ ==================================== | <b>£</b> 3 | 017            |       | ₹     | 5       | 3/12        | 61.0 -      | 2 -  |       |                |
| ar<br>FPa     | -0.02 | -0.02 | -0.03    | -0.03       | 0.0         | 100      | 0.01        | -0.01    | 0.0         | 5.6                          | 9.0   | 600   | -0.03      | 0.03           | 20.0-          | 50.00 | -0.05 | -0.0       | -0.03      | 60.00    | 9 6   | -0.10          | -0.09    | -0.09 | -0.09       | -0.08 | 60.0           | 69.0  | -0.06 | 90.0  | 0.05  | 50.0     | -0.02    | -0.05        | 0.0            | 5 0                                    | -0.01      | 6.0            | 5 6   | 0.00  | ų       |             |             |      | -0.0  | -0.06          |
| 9             |       |       |          |             | 0.23        |          |             |          |             |                              |       |       |            |                |                |       |       |            |            |          |       |                |          |       |             |       |                |       |       |       |       |          |          |              |                |                                        |            |                |       |       | _       |             |             |      |       | 0.13           |
| ۾ ۾           | 0     | 9     | <u> </u> | ei<br>-     | 0 6         |          |             |          |             |                              |       |       |            |                |                |       |       |            |            |          |       |                |          |       |             |       |                |       |       |       |       |          |          |              |                |                                        |            |                |       |       | ₽       | 3           |             |      |       |                |
| Eabot<br>kPa  | -     | ~     | 1.98     | 1.97        | 9           |          | 1.97        | 1.97     | 1.38        | 3 6                          | - 5   | 6.    | 2.01       | 2.00           | 70.7           | 2.05  | 2.10  | 2.12       | 2.13       | 2.18     |       | 2.15           | 2.20     | 2.26  | 2.23        | 2.3   | 2.5            | 2.39  | 2.37  | 2.38  | 2.40  | 7 7      | 5.45     | 2.45         | 2.63           | 2.40                                   | 2.36       | 2.35           | 35.0  | 2.37  | Labot   | k Pa        |             |      | 2.18  | 2.27           |
| Eatop<br>kPa  | 1.89  | 1.93  | 1.95     | 1.95        | 1.95        | 1.95     |             |          |             |                              |       |       |            |                |                |       |       |            |            |          |       |                |          |       |             |       |                |       |       |       |       |          |          |              |                |                                        |            | 2.53           |       |       | Eatop   | KP3         |             |      |       | 2.2049         |
| 15011         | 23.64 | 23.55 | 23.44    | 23.35       | 23.28       | 23.12    | 23.04       | 22.96    | 22.88       | 8.33<br>5.50<br>5.50<br>5.50 | 22.50 | 22.60 | 22.59      | 22.67          | 27.00          | 23.46 | 23.88 | 24.63      | 25.21      | 75.87    | 2 68  | 28.29          | 28.82    | 29.35 | 29.68       | 29.78 | 29.89          | 29.83 | 29.84 | 29.64 | 29.31 | 28.50    | 28.08    | 27.68        | 27.28          | 26.52                                  | 26.23      | 25.95<br>25.95 | 25.55 | 25.40 | 1501    | ပ           |             |      | 25.80 | 27.45<br>15.84 |
| Twbot<br>C    | 17.91 | 18.16 | 18.24    | 18.22       | 18.32       | 18, 36   | 18.36       | 18.33    | 18.32       | 16.78                        | 18.23 | 18.27 | 18.81      | 18.77          | 17.70          | 20.38 | 21.00 | 21.46      | 21.78      | 22.24    | 2, 1, | 22.66          | 23.01    | 23.29 | 23.15       | 23.55 | 23.83          | 23.84 | 23.62 | 23.52 | 23.37 | 22.96    | 22.85    | 22.59        | 22.20          | 21.76                                  | 21.67      | 21.56          | 21.50 | 21.20 | Twbot   | ပ           |             |      | 20.95 | 22.46<br>12.11 |
| labot<br>C    | 20.06 | 20.34 | 19.98    | 20.02       | 20.50       | 20.60    | 20.55       | 20.47    | 20.17       | 19.61                        | 19.85 | 19.85 | 20.38      | 21.30          | 27.77          | 25.60 | 26.90 | 28.10      | 23.00      | 38.56    | 3 2   | 31.72          | 32.14    | 32.34 | 32.41       | 32.45 | 32.4           | 32.31 | 31.82 | 31.29 | 30.50 | 28.94    | 27.94    | 26.98        | 25.84          | 24.84                                  | 25.19      | 24.94          | 73.84 | 23.63 | Tabot   | ပ           |             |      | 25.75 | 29.37          |
| Twtcp<br>C    | 17.95 | 18.16 | 18.21    | 18.21       | 18.32       | 18.37    | 18.37       | 18.35    | 18.35       | 10.31                        | 18.27 | 18.27 | 18.48      | 18.69          | 10.01          | 19.93 | 20.46 | 20.87      | 21.10      | 21.46    | 21.17 | 21.83          | 22.22    | 22.50 | 22.44       | 22.89 | 23.26          | 23.25 | 23.16 | 23.14 | 23.08 | 22.84    | 22.79    | 22.57        | 22.23<br>21.86 | 21.81                                  | 21.70      | 21.56          | 5 7   | 21.24 | Twtop   | ü           |             |      | 20.70 | 21.98<br>12.71 |
| Tatop         | 0.42  | 95.0  | 9. 38    | 0.33        | 0.72        | 2.0      | 0.73        | 97.0     | 9.36        | 3 6                          | 20.00 | 0.0   | 0.48       | 2.5            | 77.7           | 88.   | 5.95  | 7.04       | 8, 2       | 2 5      | 3 3   | 50 23          | 7.0      | 10,93 | 8 :         | 8:1   |                | <br>  | =:    | 20.82 | 2.00  | 8.97     | 9.10     | 7.17         | 5 01           | 5.15                                   | 5.43       | 2.18           | 50    | 3.61  | a top   | U           |             |      |       | 28.64          |
| UBIR 1        |       |       |          |             |             |          |             |          |             |                              |       |       |            |                |                |       |       |            |            |          |       |                |          |       |             |       |                |       |       |       |       |          |          |              |                |                                        |            |                |       |       |         | deg         |             |      | • •   | 32 1           |
| ر<br>ا د      | -     | -     | -        | = :         |             | ; ;      | 9:          | 9.       | 3.          | : :                          | 3 =   | -:    | 9:         | 7.7            | ::             | 2.7   | 2.4   | 2.3        | <b>7</b> . | 2.5      |       | 2 2            | 8.       | 2.1   | 2.5         | 2.7   | . 6.2          | 2.5   | 2.9   | 2.6   | 2.5   | 5 .      | 2.1      | 6.           | 7.0            | : ::                                   | 2.1        | 2.2            |       | æ.    | _       | s/ <b>s</b> |             |      | 2.0   | 2.7            |
| Lup<br>M/m2   | -388  | 807-  | 9        | 00          | 807         | <b>;</b> | Ξ           | Ę.       | = 9         | 9 4                          | 40.4  | 3     | 103        | 90             | 5 6            | 1 =   | -431  | -534       | 55.        | 787      | 3 6   | ; <del>;</del> | -650     | 953-  | £3:         | £ 664 | 040            | -593  | -531  | -573  | 3,56  | 3 5      | -486     | £ :          | 7 5            | 3                                      | £ :        | -432           | 2 5   | -12   | Ę       | 3/02        | 1.74        | 6.3  |       |                |
| 1.dh<br>1/0.2 | 338   | 403   | 707      | 0           | Ş Ş         | 9        | <b>9</b> 0  | Ģ        | 398         | 5 6                          | 333   | 338   | 399        | 3 5            | 5 5            | 375   | 333   | 389        | 343        | 5 6      | 365   | 386            | <u>ē</u> | 00    | <b>4</b> 05 | 3 3   | 5 5            | ₹     | 405   | 3     | : :   | ; ;      | 403      | 607          | 107            |                                        | 420        | 6 6            | 60    | 00    | 5       |             |             |      |       |                |
| a ?           | •     | ^     | •        | _           | • •         | . ~      | •           | 9        | <b>∞</b> √  | o a                          | e 93  | =     | <b>3</b>   | <u> </u>       | 2 2            | 2 2   | 48    | = 1        | 82 :       | 2 3      | 2     | Ξ:             | 951      | 991   | 184         | 707   | 195            | 175   | 172   | 91    | 152   | 8        | 3        | € :          | ¥ "            | •                                      | S          |                | • •   | 1     | ۵       |             | 0. 4        |      |       |                |
| Kup<br>X/e2   | ŗ     | 7     | ŗ,       | 7.          | ئە ئ        | 7        | 7           | 'n.      | 7 7         | 7                            | ۰     | 4     | <b>;</b> ; | 2 7            | 5 5            | . 25  | -116  | -119       | 121-       | 3 5      | 35    | 8 2            | -133     | -133  | <u> </u>    | B 27  | <u> </u>       | Ξ     | -36   | ۶ :   | 7     | 7        | -15      | ÷.           |                | · ;                                    | ņ          | 7 7            |       | ÷     | ğ       | 83/82 B     | 5.7         | -0.3 |       |                |
| Kdn<br>W/e2   | ~     | ~     | ~        |             | ~ ·         |          | ~           | ٠,       |             | , -                          | . 2   | 2     | <b>Q</b>   | £ 3            | 2              | \$ \$ | 909   | 670        | ₹ 8        | 85.9     | 3 2   | 916            | 924      | 906   | 889         | 2 2   | 722            | 159   | \$78  | ÷:    | = ×   | 3 23     | 76       | s :          | 2 "            | ~                                      | ~          | - ~            | . ~   | m     | ş       |             | 7. 5. 5.    | 0.   |       |                |
| 6 c           | 12    | =     | 9        | ۹ :         | 2 °         | . ~      | •           | ~ (      | ~ 0         | ٠ د                          | •     | •     | ۰ ۰        | ~ ~            | ٠ -            |       | ۹     | <b>=</b> : | : :        | ? ?      | 3 7   | Ş              | -48      | -50   | ÷ ;         | 3, 5  | \$ 8           | %-    | ₹-    | ೭ :   | = =   | <b>:</b> | -        | 7 .          | 7.             | ~                                      | <b>*</b> 7 | m <b>-</b>     | -     | ~     | 9       | ~ .         |             | 0.5  |       |                |
| E<br>H/62     | ?     | ç     | ٠,       | 7           | 7 7         | 7        | ņ           | ٠ -;     | ? ;         | ٠,                           | ٠,    | -5    | <u>ب</u>   | ęş             | 12             | ₹     | -189  | -208       | 200        | 37.      | -282  | -301           | -534     | -287  | -38         | 117-  | -229           | -240  | -182  | -152  | - 17  | 3 7      | <u>:</u> | ŗ ;          | ç ç            | 7.                                     | -52        | -19            | : =   | ÷     | w       | 3/62        |             | -    |       |                |
| H/#           | ~     | ~     | m        | ٠,          | ^ •         | •        | -           | <b>.</b> | ·           | ·                            | ۰ ~   | ۲,    | 2          | 7              | ¥14.           | Ę     | -215  | -245       | 6 6        | 282      | .293  | -293           | -299     | -239  | -232        | 97.   | -222           | -161  | -137  | -79   | 5 5   | -        | S        | s.           | \$ 17          | 8                                      | Ţ:         | 2 9            | 7     | 7     | ×       | 3/02        |             | 0    |       |                |
| 0<br>H/m2     | -13   | ~     | •        | <u>?</u> '  | ?• <b>-</b> | 9        | -5          | -i-      | - 18        | ? ;                          | ۴     | 9     | œ ;        | 8 5            | 3 2            | 336   | ₹     | 217        | 2 2        | 970      | 53    | 949            | 949      | 630   | 213         | 2 2   | 205            | 423   | 342   | 3 3   | 3 =   | 7        | ∞ :      | 7 8          | ទូនុ           | 9                                      | 85 5       | 3. 35          | 12    | 7.    | •       | 1/82        | = =         | •    |       |                |
| 118           | 9.5   | 0.1   | <b>:</b> | 2.0         |             | 3.5      | <b>4</b> .0 | s; ;     | 0.0         |                              | 6.5   | 7.0   | 7.5        | 3. 8<br>3. 8   |                | 9.5   | 10.0  | 10.5       | 2 2        | 12.0     | 12.5  | 13.0           | 13.5     | 14.0  | 2.5         | 3.5   | 16.0           | 16.5  | 17.0  | 2.71  | 38.0  | 19.0     | 19.5     | 20.0         | 21.0           | 21.5                                   | 22.0       | 23.0           | 23.5  | 24.0  | Ħ.      | _           | 150<br>1050 | H3UN | TAVE  | DAVE           |

SPETEM 1, JULY 22, 1986, DATA FROM THE BUNGA FINISHS, PRICHA

| 8        |          | 3.84     | -6.84                                     | 3.E        | 9 .    | -21.67 | 3.52     | :          | 89.9          | 1.33 | 2.21            | 2.41       | 1.86           | 1.86       | 0.07      | 1.19   | 1.34       | 1.23  | 5.5     | ÷. 6   | . 6    | 0 B4   | 0.82       | 0.74       | 0.70       | 0.53           | 0.63  | 0.70  | 9.0       | 0.63    | 5.0       | 0.52       | 0.42       | 0.35     | 0.19     | S S      | 87.0-    |            | -3.62    | -3.05 | -2.92     | -3.27    | 2.93  | 77.77       | 16.2     | æ        |          |       |            | 8.5      |            | .16.  |  |
|----------|----------|----------|-------------------------------------------|------------|--------|--------|----------|------------|---------------|------|-----------------|------------|----------------|------------|-----------|--------|------------|-------|---------|--------|--------|--------|------------|------------|------------|----------------|-------|-------|-----------|---------|-----------|------------|------------|----------|----------|----------|----------|------------|----------|-------|-----------|----------|-------|-------------|----------|----------|----------|-------|------------|----------|------------|-------|--|
| Arec     |          | 90.1     | 1.00                                      | 8 3        | 3.5    | 8 6    | 3        | 8          | 1.00          | 8    | 8               | 00.        | 8              | 8          | 0.0       | 8.     | 9.1        | 9.1   | 9:1-    | 8 8    | 3 8    | 8 9    | 8          | -1.00      | 8.         | -1.00          | 8 :   | 9.1-  | 5 6       | 3 6     | 8.        | 0.99       | 0.0        | -1.00    | 0.99     | 9:       | 8.9      | 3 8        | 9        | 0.99  | -1.08     | 0.99     | - 8   | 9 .         | 9:       | HALEC    |          | 9.0   |            |          |            |       |  |
|          | W/82     |          | 7                                         | ~          |        | ٠,     |          |            |               |      |                 | -          | · <del>-</del> | -          | 0         | -5     | -7         | ۳-    | 7       | · ·    | ? "    | , 4    | ٠,         | ٠-         | ÷          | -5             | ş     |       | <b>-</b>  | 7 0     |           | 0          | 7          | 7        | ~        | ٠,       | · ·      | ? r        | . ~      | , 10  | ~         | ~        | ~     | ~ •         | 7        | \$       | 17/15    | 9 0   | 0.1        |          |            |       |  |
|          | *        | 0.2      | 0.2                                       | 0.5        | 7.0    | 7.6    | , ?      | , ,        | : :           |      |                 | . 6        | 7              | 0.5        | 9         | 7.0    | -0.2       | 0.2   | -0.2    | 0.5    | 7.0    | , ,    |            | -0.2       | 0.5        | -0.2           | 0.5   | -0.5  | 0.5       | 7.0     | -0.5      | 0.5        | 0.0        | -0.5     | 0.5      | -0.2     | 0.5      | ۲۰۰<br>د د | , ,      | 0.2   | -0.2      | 0.2      | -0.5  |             | 2.5      | =        | •        | 0.0   | 0.0        |          |            |       |  |
| Nibot    |          |          |                                           | 6.09       |        |        |          |            |               |      |                 |            |                |            |           |        |            |       | 67.0    | 63.7   | 2 2    | 2 5    | 9 9        | 69.5       | 47.6       | 6.8            | 45.3  | £5.8  | 16.       | · ·     | 9 9       | 45.8       | 48.7       | 50.2     | S1.8     | 54.6     | 8.95     | 67.4       | 3 5      | 2 7   | 73.3      | 75.5     | 7.7   | 7.0         | 7.       | RHbot    | ••       |       |            | 7 67     | 54.6       | 27.5  |  |
| on<br>on |          | 125 8    | 121 8                                     | 6 71       | = :    | 25     |          |            |               |      | 3 5             | 3          | 917            | 2          | 50        | 3      | ¥87        | \$25  | -575    | 919    | 1/9    | 9      | 2 1        | -195       | -805       | -168           | -113  | -792  | -785      | Y       | -738      | -708       | -658       | -631     | -596     | -555     | -\$26    | 6          | 6        | 197   | -65       | -461     | -425  | ÷           | 7        | g.       | 3/02     | -30.5 | -17.4      |          |            |       |  |
| 9        | 115 K    | 000      | 294                                       | 396        | 8      |        | 7 60 60  | 185        | ,<br>,        |      | 9 2             | 5          | : 2            | : 2        |           | . 683  | . 989      | 98    | 870     | 962    | 283    | 2 2    | 872        | 2 2        | 123        | 1074           | 1320  | 1259  | =         | 9611    | 200       | 1025       | 833        | 141      | 710      | 627      | 533      | 3          | Š        | 3 5   | 63        | <b>3</b> | 425   | <b>4</b> 23 | 433      | <b>P</b> | 3/82     | 2.5   | 17.0       |          |            |       |  |
| #        | KPa W    | 3.       | 8                                         | 8          | 8      | 8 8    | 3 8      | 3 8        | 3 8           | 3 8  | 3 3             | : 8        | 3 6            |            | ; =       | 10.0   | 0.02       | 0.03  | 0.0     | 0.0    | 50.05  | 9 6    | 3 5        | 0.0        | 0.07       | 90.0           | 0.07  | 90.0  | 9.00      | 90.0    | 3 6       | -0.05      | -0.03      | -0.0     | -0.03    | -0.02    | -0.02    | 20.0       | 5 6      | 5 6   | - 0       | 0.00     | -0.01 | -0.0        | -0.01    | A        |          |       |            | 4        | -0.0       | 0.00  |  |
| Ę        | د        | 19 0     | 23 0                                      | 21 0       | 8 :    | 2 2    | 7 6      | <br>       | 3.5           | ;;   |                 | : :        | =              | : =        |           | 2 2    | ,<br>25    | ₩.    |         | - 79.  |        | 2 5    |            | . %        | 2 2        |                | .65   | 79.   | S         | 6.59    |           | =          | 2.0        | 0.22     | 0.0      | 0.00     | 0.08     | 2 3        | 3 5      | 7, 0  | 25        | 0.23     | 0.23  | 0.23        | 0.23     | Þ        | ပ        |       |            |          | 9. F2      | 0.12  |  |
|          |          | 6        | 9                                         | 9          | .0     |        | <i>-</i> |            |               | ,    | , c             |            | 9 4            |            | 9 9       | 9      | ?<br>ت     | 5     | و<br>85 | و<br>د | 99     | 2 3    | 9 9        | 6 9        | , ,        | , <sub>ç</sub> | 9     | 62 -0 | ۲ .<br>تو | 2.67    | 2 2       | ; ;;       | 3 25       | 5        | 35.      | 55       | S:       | · 55       | <b>.</b> |       | <u>.</u>  | 19.      | .53   | .5          | <b>8</b> | Eabot    | k þ s    |       |            | 5        | 2.50       | 59    |  |
|          |          |          |                                           |            |        |        |          |            |               |      |                 |            |                |            |           |        |            |       |         |        |        |        |            |            |            |                |       |       |           |         |           |            |            |          |          |          |          |            |          |       |           |          |       |             |          |          |          |       |            |          |            |       |  |
| 9        | Ę,       | 2.36     | 2,33                                      | 2.33       | 2.3    | S .3   | 2.2      | 2.5        | 77.7          | 77.7 | 9 ?             |            |                |            |           |        |            |       |         |        |        |        |            |            |            |                |       |       |           | 5.6     |           |            |            |          |          |          |          |            |          |       |           |          |       |             | 7.       | Eatop    |          |       |            |          | 2.5621     |       |  |
| ~        | د ز      | 5.22     | 8.8                                       | 24.73      | 19.4   | 3 2    | 5.5      | 80.5       |               | 2 :  | 3 5             | 70.53      | 3 5            | 3 5        | 7.5       | 3 5    | 73 78      | 24.12 | 24.53   | 24.98  | 25.75  | 26.31  | 76.92      | 27.79      | 20.00      | 29.53          | 29.96 | 30.32 | 30.4      | 30.45   | 20.50     | 10.50      | 20.7       | 30.05    | 29.71    | 29.33    | 28.95    | 28.58      | 28.18    | 21.13 | 2         | 26.91    | 26.66 | 26.46       | 26.32    | 1501     |          |       |            |          | 26.71      |       |  |
| •        | د د      |          |                                           |            |        |        |          |            |               |      |                 |            |                |            |           |        |            |       |         |        | 24.59  |        |            |            |            |                | 25.48 | 25.54 | 25.52     | 25.71   | 22.22     | 25.58      | 24 85      | 24.83    | 24.64    | 24.43    | 24. 23   | 24.35      | 24.00    | 25.70 | 20.62     | 23.51    | 22.98 | 22.61       | 22.42    | Tubot    | ၁        |       |            | ;        | 23.04      | ¥.2   |  |
| ;        | :        | 70 20    | 20                                        | ¥.         | .64 20 | .57    | 10 2     | 2 :        | 7.5           | . 38 |                 |            | 9.5            | ? ;        | 3.5       | 7 6    | 2          | 7.72  | 8.33    | 9.44 2 | 1.08   | 2.08   | 9.09       |            |            |                |       |       |           | 35.27   |           |            |            |          |          |          |          |            |          |       |           |          |       |             |          | Tabot    | ပ        |       |            | ;        | 32.23      | 15.39 |  |
| :        | <u>.</u> | 12 22    | 22                                        | 7          | .57    | .37    | 22 2     | 22 52      | S. :          | 39.  | . 86.<br>22. 23 | 3 3        |                | ? :        | 4 :       | 7 6    | 5.2        | 7.    | 20.     | .64 2  | . 19 3 | <br>   | 29.        | 9.5        | 2 =        |                | 5.03  | 5.14  | 5.16      | 25.32   | 65.3      | 5 5        | 2 5        | 3 3      | 4        | 4.33     | 4.17     | 7.7        | .03      | 5.73  | 2 5       | 23.55    | 23.02 | 22.64       | 22.46    | Tutop    | ပ        |       |            | ;        | 22.89      | 14.15 |  |
|          | 4        | 21       | 25 20 20 20 20 20 20 20 20 20 20 20 20 20 | 2          | 81 20  | 76 20  | 2 :      | 2 3        | 92            | 88   | 61 2            | 2 2        | 2 £            | 2 2        | 2 2       | 2 2    | 2 2        | 73 22 | 2       | 18.    | 36 24  | ≈<br>≍ | 5.5        | 7          | 3 :<br>3 : | 7 7            | 2     | .66   | .50       | 34.67 2 | 3.        | <b>7</b> 5 | 7 64 7     | ; ;      | 2.62     | 8.       | 1.18     |            |          |       |           |          |       | 6.38        | ₽.14     |          | ပ        |       |            |          | 31.87      | 15.51 |  |
|          |          |          |                                           |            |        |        |          |            | <u>ب</u><br>د | 9    | 20.             | ;<br>;     | 2 2            | 5 5        | 9 21.     | 22.5   | 3 5        | 3 %   | 2 2     | 3 28   | 30     | 31     | 2 :<br>2 : | = :<br>= : | 3 2        | * =            | 3 23  | 27    | 78 34     | 178 34  | 2 2       | 2, 2       | 2 2        | 4 C      |          | 63       | 58 3     | 62 3       | 162 2    | 155 2 | 3 5       | 155 2    | 154 2 | 153 2       | 151      | UDIR     |          |       |            |          | 168<br>183 |       |  |
|          | -        |          |                                           | : €        |        | :      |          |            |               | Ξ.   | = :             | <b>=</b> : | = :            | - :        | <u> </u>  |        | 2 2        | , ,   | ~       | 8      | 9 2    | 6      | 2          | ٠.<br>د م  | 7 .        | - c            |       | -     | - 6       | 2.5     | ~; ·      |            |            | •        |          | ? ~      | 'n       | ₹.         | •        | = :   | ? .       | ? ^      | . =   | 0.          | 6.       |          | \$/      |       |            |          | 2.2        | 7.    |  |
|          |          |          |                                           | ~          |        |        |          |            |               | =    | <u></u>         |            | ۰ نہ<br>د      | ~ .        |           | ~;     | , .<br>, . | ;     | : ~:    | -      | 2 1.   | δ.<br> | د تم       |            | 2 6        | 2 5            | 3 8   | 2 2   | 74 2      | 32 2    | 32        | 31 2       | 7 6        | 2 5      |          | 96       | 3        | 55         | 991      | 19    | 2         | 5 2      | : :   | 3           | 3        | dn d     | 2        |       | -26.1      |          |            |       |  |
|          |          |          | 7                                         | Ŧ          | 7      | 9-     | Ş        | 9          | 9-            | ?    | 9               | ?          | 9:             | <b>?</b> : | 우 :<br>80 | 2 -3   | 2          | 7 7   | 9       | 2 -51  | \$ -56 | 2 -5   | م          | 9          | 9          | 3 9<br>3 9     | 9     | 9     | 55        | 18 -632 | 9 :       | 9 ;<br>9 ; | , ,<br>, , | 5 5      | ; ;      | , 53     | 7        | 7 80       | 23 -     | 23    | ?<br>99 9 | ; ;      |       | ·<br>5      | 2        | 90       |          |       | 19.7 -2    |          |            |       |  |
| ć .      | -        | _        | 5                                         | Š          | 36     | 38     | 38       | 38         | , M           | 22   | 23              | es :       | es :           | 88 S       |           | e :    | 2 4        |       | ; ;     |        | 2 42   | 2      | <b>∓</b>   | 9          | 2          |                | 2 9   |       | =         | 13 448  | =         | e :        | <b>.</b>   | 2 :      | 7 2      | 22.      | : 23     | 7 75       | =        | -     | m i       | ^ -      |       | , -         | ~        | 6        | mJ/m2 mJ |       | 7.2        |          |            |       |  |
| :        | 3        |          |                                           |            | Φ,     | •      | •        | ,-         |               | _    | =               | =          |                |            |           |        |            |       |         |        |        |        |            |            |            |                |       |       |           | 2 243   |           |            |            |          |          | 3 5      | 32       | 12         | ٠.       | -5    | ٠,        | 7 7      |       | ۰ -         | · +      | 9        | m3/m2 m3 | 9.    |            | ?        |            |       |  |
| 1414     | 9 3      | , ,      | 7 7                                       | ٺ د        | 7      | ņ      | 7        | 7          | ņ             | 7    | 7               | Ψ.         | Ψ.             | <b>T</b>   | ۳<br>     | ~ ·    | · ·        | - •   |         | - 10   | =      | 1 -12  | 21- 5      | 2          | = :        |                |       |       | -1        | 8 -122  | - 5       | = :        | =<br>= :   | ~ :      |          | 2 2      | ٠<br>: = | •          | •        | 2     | _         | ، ۲      | ٠.    | ٠ ،         |          | 5        | 03/a2 m3 | 25.7  | - 6.4      |          |            |       |  |
| E .      | 5        | 7        | 7 -                                       | , ,        | •      | ~      | •        | m          | -             | m    | •               | •          |                |            |           |        |            |       | _       | Ü      |        |        |            |            |            |                |       |       |           | 9 748   |           |            |            |          |          | • -      |          | جب ا       | <b>-</b> | -,    | 0         | ٠.       |       | ٠.          | . ~      | 5        |          |       |            | •        |            |       |  |
|          | 3        | <b>,</b> | ^ `                                       | o <b>v</b> | _      | -      | 60       | •          | •             |      |                 |            |                |            |           |        |            | ~ <   |         | ,      | ÷      | -      | -2         | 7          | 7          | Ŧ .            | 7 7   | 7     |           | 5.2     | -7        |            | · ·        | ,<br>,   |          | - a      |          |            | Š        | S     | <b>.</b>  | ~ 5      | 2 5   | . 5         | 22       |          |          | -9.   | ب د<br>ج د | •        |            |       |  |
| ž        | ب<br>:   | 70/      | <b>;</b> `                                | 0 0        | ۰      | -12    | ~        | ۴          | -5            | 0    | ٠.              | Ţ          | -              | ÷          | Ŧ         | 9      | ۍ<br>ن     | 8     | 2 3     | 8      | -221   | -258   | -27        | -296       | -3         | Ĕ, :           | 2 5   | 2 2   | , 29      | ξ.<br>  | 23        | 3 -22      | 9 - 20     | 7 7      | ;<br>;   | ۳ م<br>م |          |            | ~<br>~   | -     | ۳<br>=    | 9 6      | 2.5   | 2 2         | : 5      | *        |          | ٠.    | 9- 6       | ,        |            |       |  |
| 5        | Ŧ :      | 70/      | es :                                      | 9 X        | : =    | =      | 35       | n          | 23            | 26   | 2               | _          | =              | ~;         | ×         | ÷      | 7          | ≘ :   | 3 4     | 2 5    | ;≳     | ₹      | Ş          | ₹.         | ដ          | -53            | - S   | ? ?   | : =       | ÷       | ÷         | Ŧ          | ÷          | 7        | 7        | •        |          | •          |          |       |           |          |       |             |          |          | 7        |       |            |          |            |       |  |
| 23, 178B | •        | 79/8     | ;<br>;                                    | ទុំ ភុ     | - 78   | ę      | -42      | ٠ <u>.</u> | -33           | -37  | -58             | -58        |                | -53        | -55       | 8      | 8          | 3 3   | 2 2     | 3 5    | 3      | 530    | 582        | 622        | 645        | 671            | 5 5   | 3 5   | 2 2       | ; ₩     | <b>\$</b> | 5          | 36         | 2        | <b>2</b> | ž ř      |          | ٠.         | ņ        | 7     | 7         | 7.       | ,     | 7 7         | ; e,     |          | 1/1      |       | œ -        |          |            |       |  |
|          |          | 7        | <u>د</u> ي                                | 2 2        | 2 5    | : ::   | <b>2</b> | 6          | 22            | 6    | -               | 2          | 13             | ş          | ٠.        | 72     | 2          | 6     | 2 8     | 2 5    | 6 2    | 8      | 55         | 192        | 20         | 818            | 282   | 7/5   | 2 5       | , ş     | 397       | 95         | 320        | <b>8</b> | 8 5      | 22       | ₹        | 2 2        | ښ        | 85    | -53       | ç-<br>5  | 22.58 | ,           | -25      | -        | .1/e2    | 13.6  | 1.4        | <u>د</u> |            |       |  |
| -        | ٔ سِ     | `        | د د                                       | ر<br>د د   |        | . ~    |          | ئ<br>ب     |               | 2    |                 | ا          | 9              | ٠.         | 0         | ئ<br>د | -          | ~ ·   | ~ ·     | ? *    |        | -      | S          | 0          |            | 0.0            | v .   |       | ; ;       | 5.5     | 6.0       | 6.5        | 0.7        | <br>s    | 0.0      | <br>     | ) ·      | 0 0        | 5.0      | 1.0   | 2S        | 22.0     | 22.5  | 2.5         | 24.0     | 3        | _        |       |            |          | TAVE       | KAVE  |  |
| SISI     | Ξ        |          | 0                                         | <b>-</b>   | ٠,     |        | m        | mi         | -             | *    | ~               | ~          | •              | •          | -         | -      | 80         | φ (   | ~ (     | - =    | : 2    | =      | =          | ==         | =          | ==             |       |       | - =       |         | ā         | -          | _          |          |          | -        |          | ~ ~        | .7       |       | •         |          |       |             |          |          |          |       |            |          |            |       |  |

STSTEM 1. JULY 23, 1986, DATA FROM THE KCHIA FRAIRIE, RANSAS

|          |            |           |           |            |          |          |                |                |            |          |            |            |            |                |               |                |                                         |            |             |                |             |           |                  |      |            |       |            |          |                          |                |                |              |            |                |               |          |        |            |                           |            | _          | ~        |             |        |                |          | 6     | o <del>-</del>  |           |    |
|----------|------------|-----------|-----------|------------|----------|----------|----------------|----------------|------------|----------|------------|------------|------------|----------------|---------------|----------------|-----------------------------------------|------------|-------------|----------------|-------------|-----------|------------------|------|------------|-------|------------|----------|--------------------------|----------------|----------------|--------------|------------|----------------|---------------|----------|--------|------------|---------------------------|------------|------------|----------|-------------|--------|----------------|----------|-------|-----------------|-----------|----|
| <u>م</u> |            | 23        | Ξ         | <b>8</b> 9 | 82       | 53       | 9 5            | 2 2            | 2 <b>5</b> | 2 29     | ន          | 2          | 66         | <u>چ</u> و     | £ :           | : =            | . 3                                     | 39.        | <u>چ</u>    | ž              | 3           | .65       | .63              | 9 :  | - 6        | 0.01  | 0.0        | 0.01     | 9 -0.01                  | 0.0            | 9.18           | 2.5          | 9.0        | - 08           | <u>-</u> .3   | 2 8      | -2.22  | -2.51      | e                         |            | 6.0        | •        | •           |        |                |          | ٠ نې  | o. <del>-</del> |           |    |
|          | •          | ?         | ?         | ÷          | -5       | ÷        | ، نې           | ۽ ن            | , י        | ,        | · ~ ·      |            | デ          | 7 '            | ې د<br>د      | >              |                                         | 0          | o .         | 96             | , ,         |           | 2                | e :  | 2 2        |       | 5          | ,<br>8:  | ,<br>2                   | 5              | 2 :            | 8 8          | 2 8        | 5              | 8 9           | ÷ 8      | 8      | 8          | <u>6</u> 8                | 3          | 19.        | ٩        | בו פר       | 0.0    | 3 6            | 3        |       |                 |           |    |
| SOLUTION | 3          | 0.99      | 8         | 0.3        | -1.00    | 96.0     | 8.5            | 6.6            | 3 8        |          | . 6        | -<br>-     | -1.0       | 7              | 0 9           | 5 -            | . 6                                     | -          | 0           | <del>-</del> - | : -         | 6         | ÷                | 0    | ء -        | ; -   | 6          | ÷        | 0.99                     | : o            | 6              | ۰<br>۰۰۰     | -<br>-     |                | -             | <br>     | , 0    | 7 ~        | ~ ~                       | , -        | , m        |          |             | ٠.     | <del>-</del> - | •        |       |                 |           |    |
|          |            |           | ~         |            | _        | _        | <b>-</b> •     |                |            |          |            | -          | -          | -              | 0.            | 7 ?            | 7 "                                     | ٠,         | 7           | Ÿ, "           | , ,         | · ~       | 7                | •    | •          | •     |            |          |                          |                |                |              |            |                |               |          |        |            |                           |            |            |          | 3           | 0.0    | ء د<br>ه د     | •        |       |                 |           |    |
| ,        |            | ٠ ~       | . ~       | . ~        | ~        | ۲.       | ۰.             | ٠ ب            | ۰ ج        | ٠, د     | •          | : ~        | 7.         | 7.5            | 2             | 2.5            | 7.0                                     | 0.2        | 0.2         | 2.5            | , ,         | 2.0       | 0.7              | 0.5  |            | , ?   | 0.7        | -0.2     | 2 0.2                    | 2.0            | 0.0            | -6.2         | - 0.2      | 0.2            | -0.2          | 0.5      | , ,    | Ģ          | 0.0                       |            | Ģ          |          | _           | 0.0    | <u>.</u> .     | <i>-</i> |       |                 |           |    |
| •        | . ي        | . ~       | 9         |            | ۰<br>د   | 0        | -0             |                | ۰          | - q      | ,  —       | , 0        | 7          | 7              | ٠.            | <u> </u>       | ن.<br>ب                                 | ٠,         | 9.          | -              | ? ~         |           | 0.               | 6.0  | ~ .        | ? 0   | : :        | 5:       | 42.2                     | 3.5            | :2:            | 8.           | 5.5        | 49.2           | 48.8          | 8. 8     | 25     | 5.7.       | 57.2                      | 22.3       | . 8        | į        | 19 <b>~</b> |        |                |          | \$6.6 | 46.3<br>46.5    | •         |    |
| į        | CHX<br>CHX | 13        | =         | 75         | 9        | 2        | ž              | Ξ.             | ≓ ;        | =        | 3 5        | : 2        | 2          | 2              | 2 30          | 3 :<br>-       | 25                                      | . 52       | 52          | S :            | 2 2         | 2 =       | 8                | 12 4 | 22 40.7    | 0 %   | C =        | 90       | 68                       | 2 g            | 3              | 253          | 223        |                | 88            | æ :      | 200    |            | 8                         | * *        | ş ş        |          | 90p<br>1/62 | 6.8    | Z. :           | <u>.</u> |       |                 |           |    |
|          | 3 3        | 3         |           | . 55       | \$       | -435     | -63            | ÷              | £ :        | =        | 7 5        | 2 17       | 7          | Ţ              | 7             | ÷ ;            | S :                                     | ٠<br>چ     | -63         | φ;             | 7           | 7         | <b>~</b>         | 8- 6 | <u>م</u>   | , e   | - G<br>    | . 8      | 9 -789                   | 7 7            |                | 7 2          | 7 :        | នគ             | . 59          | ₹.       | 3 3    | . 23       | 23                        | 22 3       | 2 2        |          |             | 63.4   |                |          |       |                 |           |    |
|          | 5 5        | 1 5       | ; ;       | ? =        | 2        | =        | 423            | 5              | ÷          | = :      | \$ ;       | 3 3        | 52         | \$3            | 5             | 28             | 5                                       | . 60       | 980         | 6              | 9 3         | 2 5       | =                | 23   | ž          | ž :   | 129        | 22       | 8 1189                   | - 0            | . <del></del>  | eg.          | ~ ·        | o <del>~</del> |               |          | - :    | = =        | -                         | = 8        | 3 8        |          | ₩ 5         |        | •              | _        | 8     | \$0.0           | ā.        |    |
| ,        | ₩ 4        | . a       | 5 Z       | ; S        | 3 2      | ; 8      | 3              | 5              | =          | 5        | 5 5        | <u> </u>   | 5 6        | 5              | 9.0           | 0.02           | 2 3                                     | 5 6        | 0.0         | .0.<br>.0.     | 9 5         | 3 6       | 9 8              | -0.0 | 9.0        | -0.0g | -0.09      | -0.0     | -0.08                    | 9              | 0.0            | 9.0          | 0.0        | 0.0            | 9             | 0        | ,<br>, | 7          | ė.                        | ، ب        | 9          |          |             |        |                |          | ڄ     | ې د             | ?         |    |
|          |            | ٠,        | ? ?       | 2          | 9 6      | ,        | 9              | 7              | ٠<br>-     | ۲.<br>-  | · ·        | 7 7<br>    | 7          |                | 40            | <u>'</u>       |                                         |            | . =         |                | ·<br>:= :   | 2 5       | i 5              | s    | 20         | 3 3   | 5 5        | ; =      | 6                        | ۳<br>ا         | 5 2            | .0           | 8          | e ×            | 2 %           | 8        | .78    | 2 2        | 2.2                       | 9:         | 2 2        | <b>:</b> | £ ,         | د      |                |          | 0.01  | 9 :             | <u>.</u>  |    |
|          | ₽,         | 2 2       | 77.0      | 9.5        |          | 3 5      |                | 9.18           | 0.20       | 0.20     | 0.2        | 0.0        | , ,        | 0.7            | 3             | 0.0            | -0.2                                    | 7.0        | Ģ           | ė              | ۰           | 9         | 9                | ė    | ڼ          | ، نې  | <i>o</i>   | . 0      | 0.01                     | ٠<br>ب         | 7              | 9            | •          | 0 0            |               | _        |        |            |                           | _          | , c        | •        | ر بد        | -      |                |          | =     | : 53 :          | 3         |    |
|          |            | <b>.</b>  | ؛ و       | <u>.</u>   | 2 5      | 2 5      | 2 \$           | \$             | \$         | 9        | :<br>پ     | <b>2</b>   | ភ្ន        | 3 8            | ×.            | .36            | ₩.                                      | <b>3</b> 4 | 2           | ä              | .53         | <u>بر</u> | 2 5              | 2.61 | 2.62       | 5.66  | 2.3        | 2.67     | 2.12                     | 2.69           | 2.63           | 2.59         | 2.60       | 2.58           | . 2           | ₹.       | 2.3    |            | ~                         | ~          | 2.5        | ;        | Eabot       | ž      |                |          | ~     | 2.57            | <u> -</u> |    |
|          | Eabot      | ₹ ,       | ~;        | ~; ‹       | ٠,٠      | , ·      | ; ~;           | ~              | ~          | ~        | ~          | ~ (        | •          | , ~            | . ~           | ~              | ~                                       |            |             |                | •           |           |                  |      | -          | -     | <u></u> .  | 2 9      | : 3                      | 22             | 8 5<br>8 5     | 28           | 35         | :S 3           | : <b>:</b>    | =        | ×      | <b>e</b> 5 | : ≃                       | ₹.         | 37. P      | ?        | Eatop       | Z.     |                |          | 87    | 2.5165          | 6357      |    |
|          | atch       | d ;       | 5.45      | 2.65       | 2.43     | \$ 5     | 2.48           | 2.48           | 2.45       | 2.45     | 2.44       | 5.±        | 5.5        | 2.5            | 2.35          | 2.34           | 2.39                                    | 2.38       | , ,         | ~              | <b>7.</b> ₹ | 7.        | <br>             |      |            | 5.5   | 2.6        | ; ,      | 2.64                     | 7.             | ۰, د           | : ~          | ~          | ۰ ن            | ; ~           | ~        | 7      | ~ ~        | . ~                       | 7          |            | •        |             |        |                |          |       |                 |           | (d |
|          |            | ٠.        | ~         | <b>5</b> 6 | <u>,</u> | <b>.</b> | > 05           |                | : 2        | =        | =          | <b></b>    | <b>=</b> 5 | 2 5            | 3 52          | 2              | 25                                      | = =        | ž a         | : 53           | .21         | 88.       | zi t             | , ş  | 2 23       | 8     | <b>4</b> : | 3 5      | 31.57                    | <del>=</del> : | 7.7            |              | 0.50       | 0.15           | 2 8           | 8.87     | 28.51  | 38.21      | 21.12                     | 27.46      | 27.32      | •        | 1501        | _      |                |          | ;     | 29.19           | 7.        | 11 |
|          | Isoil      | _         | %<br>78.1 | 25.9       | 22       | 23.5     | 3 %            |                | 8          | 25.      | ξ.         | ₹ :        | ₹ :        | ÷ 7            | . ≂           | 7              |                                         | ដូ         | -<br>4 %    | 3 %            | 1 27        | 7 23      | 9 29             | , ,  | . s        | 5     | æ :        | 5 F      | i m<br>C =               | 27 3           | 2 2            | , m          | , m        | 88             | 3 8           | ; E      | 23     | 3;         | 2 25                      | 8.         | æ ;        | લ        | Intol       | ပ      |                |          | 3     | 74.01<br>25.23  | 5.17      |    |
|          | 10QM       | ပ         | 2.2       | 2.28       | 7.4      | 2.39     | 4 S            | 7 7            | 2 . 4      | 22.45    | 22.31      | 22.14      | 22.02      | 21.83<br>28.15 | 21.92         | 22.3           | 2.1                                     | 23.2       | 2 2         | : 2            | 25.0        | 22.5      | χ;<br>Σ.         | 5 5  | 2 %        | 28.   | 200        | 9, 7     | 7 26.47                  | 26.            | ×; ×           | ÷ :          | : ::i      | 52.5           | <b>7</b> 7    | 2 2      | 3 23   | 2 :        | 2 23                      | 3 22       | 2 2        | 7.7<br>• |             |        |                |          | ;     | 25 25           | <b>=</b>  |    |
|          |            | ပ         | =         | =          | 2        | =        | 9 %            | 2 3            | : 9        | : 3      | \$         | 2          | 8          | ₹ :            | : 5           | 3              | 3                                       | 3          | ≂ የ         | 7              | 3,          | ~         | 3.               | · -  | ? ~        |       | -:         | -        | -                        | =              | 20.0           | : ≥          | · 8        | 55.            | ri :          | į        | Ħ      | <u>=</u> : | 3 8                       | 8          | 28         | \$       | Tabot       |        |                |          |       | = =             | 81        |    |
|          | Labot      |           | 23.       | 25.        | 23       |          | χi κ           | ָ<br>קַּג      | 2 2        | 26       | 5 25       | 8 25       | 52         | 8 2            | 85 8<br>52 52 | 3 2            | 22                                      | 33         | e e         | 2 M            | . 59        | 85 3      | 21 :             | 9 t  | 2 12       | 8     | ន          | ន់ខ      | <b>?</b> =               | .03            | 9 :            | 5            | 3 5        | 97.58          | <u>د</u> و    | 3 8      | 3.56   | 3.63       | . E                       | 2.99       | 3.50       | 2.34     | Intop       | ပ      |                |          | ;     | 23.88<br>24.98  | 15.18     |    |
|          | let op     | ပ         | 22.33     | 22.31      | 22.43    | 22.43    | 22.3           | 77 5           | 22.        | 22.4     | 2          | 22.1       | 22.0       | 22.8           | 23.5          | 2 2            | 22                                      | 22.        | : 23        | 3 2            | ₹           | 24.       | £ 1              | e i  | d 12       | 22    | 25         | 92 5     | 19 25.98 3<br>19 26.17 3 | %<br>9         | 52.5           | 2 5<br>2 5   | ; ;;       | <del> </del>   | 2 2           | ۰ ۲<br>۲ | 2 2    | 36 2       | 7 F                       | ; 8        | 8          | <u>.</u> |             | ပ      |                |          | ;     | 34.32           | 1.21      |    |
|          | latop      | ပ         | 3         | 5          | 8        | 2        | 3 3            | 3 :            | = 5        | 3 2      | 5 =        | =          | å          | 3              | \$ 5          | <b>5</b> =     | ~                                       | Ä          | ĕ.          | ₩<br>          |             | 3         | S                | 3    | 9 5        | -     | Ē          | Š:       | 5 5                      | , E            | 36.            | ÷ ;          | ė s        | 23             | : i           | 3 8      | : =    | Ħ          | 8 8                       | ន្តន       | 38         | 7        |             |        |                |          |       | 2 E E           |           |    |
|          | ~          | _         |           | _          | •        | 0        | •              | <b>-</b> .     | _          | • =      | 2 2        | 900        | 2          | 2              | 20 3          | 23             | 6 6                                     | 8          | ٣.          | 5 6            | . 2         | ∞ .       | 2                | 9 1  | <u> </u>   | : =   | : ==       | =        | = =                      |                | -              |              |            |                |               |          |        |            |                           |            |            |          |             | eab    |                |          |       |                 | _         |    |
|          | alon (     | ĕ         | <u> </u>  | - m        | -        | 2        | 9              |                | ~ ·        |          |            | · -        | 0          | ٠              | ه به          | -, -           | - «                                     | ~          | =           | ~ "            | ] [         | . 9       | 0.               |      | 5.5        | -     | 5.3        | 2.8      | 2.5<br>2.4               | 2.5            | 2.1            | 2.5          | ~ ·        | 2.5            | 2.3           |          |        | 7.         | 5.6                       | ;;         | 5.         | 2.4      |             | s/•    |                |          |       | 2.5             |           |    |
|          | _          | ~         | •         |            |          | ~;       | ~              | ~ .            | ~i ~       |          | ; <u>-</u> | -          | 3          | -              |               |                | , -                                     | -          | 2           | ~ ·            | 2 2         | : ::      | Ţ                | 79   | <b>≠</b> 3 | 5 6   | . e        | 88       | 6 -678                   | 2 5            | = 1            | 523          | 25         | 3 8            | <del>\$</del> | 3        | 7 %    | 8          | <del>2</del> <del>5</del> | 27.        | -463       | -406     | Lug<br>g    | a3/a2  | ÷5.2           | 18.2     |       |                 |           |    |
|          | 9          | 1/82      | - 52      | \$         | -453     | -438     | -432           | S .            | 7          | 7        | 2 1        | 7          | 7          | 7              | 7             | <del>;</del> ; | ? =                                     | 7          | 7           |                | r 7         | ەپ<br>دە  | 9                | 9-5  | ې ب<br>- د |       | . 2        | 7- 91    | 9 :                      | , .            | នេះ            | Σ:           | នេះ        | , <del>,</del> | ·<br>-        | 2 5      | 2 5    | 2 2        | 3                         | 22.52      | : 3        | 421      | ep -        | 7 / 2  |                | 2 5      | :     |                 |           |    |
| ?        | 45         | 7.        | 2         | 3          | 432      | =        | ₹              | <del>1</del> 3 | = :        | \$ :     | 3 3        | ; ₹        | ₹          | \$6            | \$0           | <b>3</b> :     | ======================================= | : ≅        | <b>#</b> 53 | Ş :            | 2 3         | : 3       | ₩.               | 2    | 2:         | : :   | : =        | <b>∓</b> | 446                      |                |                | 9            | <b>~</b> ~ | . <del>.</del> | •             | o. 4     | · ·    | . ~        | ,<br>,                    | ~3 F       | , ~,       | 9        | ۰           | -      | 0.5            |          |       |                 |           |    |
| :        | -          | _         |           | •          |          | ~        | •              | •              | ~ '        | ۰ ۵۰     | n 4        | • •        | -          | 2              | 20            | 7              | 3 8                                     | 5 8        | 113         | E :            | 2 3         | 161       | 155              | 123  | <b>Ξ</b> : | 2 2   | 2 =        | Ξ        | 129                      | 2 -            | 2 €            | 22           | o- 0       |                | _             |          | ~ c    | <b>.</b>   | _                         | <b>.</b> . | , ~        | m        | ءِ          | 3      |                |          |       |                 |           |    |
| 0.1.0    | •          |           | •         | • •        | ٠,       |          | ŗ              | ÷              | 7          | ή,       | , .        | 7 17       | , 7        | •              | 7             | -55            | -25                                     | 3 7        | 4           | 103            | ₹ :         | 121-      | Ę                | -137 | <u>ج</u>   | 3 5   | 5 5        | -13      | -129                     |                | 3              | <del>2</del> | ۳:         | ÷ ÷            | 7             | Ϋ,       | 7 1    |            | •                         | •          |            |          | 9           |        | 4.6            |          |       |                 |           |    |
| 1        |            |           |           | ٠,         |          |          | . ~            | 4              | ~          | <b>.</b> | ~ -        | , c        |            | , ຂ            | 23            | 69             | ස ;                                     |            | 9           | :<br>:         | 53 3        | ? 2       | . <del>.</del> . | 879  | <u>6</u>   | 808   | 878        | 846      | 199                      | 33             | ē [3           | <b>\$</b> 28 | 389        | 26.            | =             | ₩.       |        |            | _                         |            | - ~        | •        | Š           | )[0]   | 26.0           | ξ -      | š     |                 |           |    |
| j        |            | 3         |           |            |          |          |                |                | _          | _        |            |            |            |                |               | -              | - ·                                     | - C        |             | <del>د</del> ې | <u>-</u> .  | 2 2       | ; H              | =    | . څ        | ş:    | <b>;</b>   | : 25     | ភុ                       | ន              | -23            | -19          | ÷:         | ÷ ÷            | ۲:            | م        | 7 '    | 7 -        | 7                         | <b>→</b> • |            | . 0      | 5           | 1/102  | 6.0            |          |       |                 |           |    |
| 4.1.4    | 3          | 3         | ,         | ~ ~        | · •      |          | ~              | _              | •          | •        | •          |            |            |                |               |                |                                         |            |             |                |             |           |                  |      |            |       |            |          |                          |                |                |              |            |                |               |          | 7 .    | ب<br>م     | ?                         | ٠,         | 7 7        | φ        |             | )/a2 t | 7              | Ξ.       | -     |                 |           |    |
| 1,55     | •          | ه بد<br>: | 78/       | 3 2        | 9 7      | ,        | : <del>*</del> | -18            | -24        | -28      | <u>۾</u>   | 7          | 7 5        | - 22           | -7.           | 9-             | 9                                       | -          |             |                |             |           |                  |      |            |       |            | • •      | 4 -487                   | 7 1            | - <del>-</del> | 7            | λ.         | ∵ .            | . 00          | 12       | ~      | <u>.</u>   | . ~                       | ~          | œ <b>~</b> | - æ      | 3           |        | ٠,٠            | -, -     | -     |                 |           |    |
| ž        |            | = {       | 7         | <b>£</b> 5 | 3 5      | 2 5      | ; =            | S              | \$         | 8        | <b>\$</b>  | <b>=</b> : | 2 2        | e 2            | 2             | 33             |                                         | 8 4        | 9 =         | : 2            | -13         | -189      | -2.4             | -2   | -20        | Ť     |            | . •      | -                        |                |                | •            | •          |                | . ~           |          | •      | ~ •        | ·                         | <u>53</u>  | ب و        | 2 5      |             | 10 P)  | 9              | 9 9      | 9     |                 |           |    |
| 1, 3W.   |            | ·         | =         | <u>ب</u>   | <b>ş</b> | ÷ :      | 5 =            | : 2            | ې<br>د چې  | ×,       | ÷          | <u>ج</u> : | ÷ 8        | 2 ×            | ; ;           | =              | Ξ                                       | 183        | € 3         | 11             | \$          | 3 3       | 7 8              | 9    | \$3        | 622   | 603        | e S      | 3 3                      | 456            | 276            | 2            | 197        | 77             |               | 7        | ņ      | · ·        |                           | .5         | 77         |          |             | 3      |                |          |       | w ,             | w w       |    |
| Sien 1,  |            |           | =         |            |          |          | , .<br>, .     |                |            |          |            | ۰.         | ه ب        | ٠,٠            | . 0           | د              | 0.                                      | ٠, ٠       | . c         | : 0:           | 0.5         | 9         |                  | , ,  | 0          | 13.5  | 2          | 7        | 5.5                      | 16.0           | 5.5            | 2.5          | 18.0       | 28.5           | 2.5           | 2        | 20.5   | 21.0       | 22.0                      | 22.5       | 2. 5       | 24.0     | :           | Ë      | 150M           | 25       | Š     | <b>£</b>        | DAVE      |    |
| :5       |            | 뿔         |           | <b>。</b> . | ∸.       | ٠ نــ    | ٠,             | •              | , ~;       | •        | 4          | ٠.         | ς.         | •              | -             | _              | -                                       | _ `        |             | =              | -           | -         |                  | -    | _          | _     |            |          |                          |                |                |              |            |                |               |          |        |            |                           |            |            |          |             |        |                |          |       |                 |           |    |

| HKrec      | 10         | 3 5      | 3 2        | 3 5      | 3 2        | 10.1-      | 1.03             | -1.03  | 1.03  | -1.03 | 1.03  | -1.03          | -1.03 | -1.03 | 0.0        | 7.03     | -1.03 | 1.03       | 3:             | 3 5   | 3 5                                     | -1.03    | 1.03  | -1.03 | 1.03  | -1.03 | 1.03  | -1.03 | 1.03  | 5 .        | 2.1      | 3 5      | 3 6        | -1.03      | 90                                    | 1.03  | -1.03      | 1.03  | -1.03 | 1.03     | <br>  | 3 3   | 3 2      | 3 5   | 7 2            | 2    | 5                                       |          |      |          | 0.0          | 0.0            |          |    |
|------------|------------|----------|------------|----------|------------|------------|------------------|--------|-------|-------|-------|----------------|-------|-------|------------|----------|-------|------------|----------------|-------|-----------------------------------------|----------|-------|-------|-------|-------|-------|-------|-------|------------|----------|----------|------------|------------|---------------------------------------|-------|------------|-------|-------|----------|-------|-------|----------|-------|----------------|------|-----------------------------------------|----------|------|----------|--------------|----------------|----------|----|
|            | : =        | 2 9      | 2 3        | 3 5      | 3 2        | . 9        | 6.37             | ٤.     | 2.    | 2     | .33   | 3.             | 59:   | .65   | . 22       | .02      | 7.    | <b>2</b> 5 | 70.            |       | =                                       |          | ::    | ::    | =     | 5.73  | .23   | 99:   | .95   | <u>=</u> : | = 5      | 2 2      | 3 3        | à =        | <u>-</u>                              | . 2   | 2.         | 9.30  |       | .0<br>.0 | ٤.    | 5.5   |          | 2 5   | 19.01          | N.   | 2                                       | 7.14     | 0.15 | 97.58    |              |                |          |    |
| <i>E</i>   |            |          |            | , -      |            |            | . 0              | 9      | 0     | 0     |       | 0              | 0     | 0     | 0          | 0        |       | 0 1        |                | <br>  |                                         |          | . 0   | -     | 0     | 0     | 0     | 0     | -     | 0          | - ·      | , c      | <b>5</b>   |            | , =                                   |       | 0          | 0     | 0     | 0        | •     |       | <b>-</b> | 3 6   |                |      | 7/82                                    |          |      |          |              |                |          |    |
| RHbot      |            |          | 2 2        |          | 2 2        |            | 8.3              | 35.5   | 86.1  | 89.4  | 91.9  | æ.             | 93.8  | 93.8  | <br>       | 70.9     | 2.5   | 20.5       | - ·            | 7.19  |                                         | 2        |       | 41.7  | 37.2  | 35.7  | 37.2  | 38.0  | 27.7  | 9.9        | 27.0     | ÷ .      | 7 2        |            |                                       |       | 53.1       | \$6.2 | 58.9  | 62.7     | 7.    | • · · | 2.5      | 9.5   | 75.5<br>75.5   |      | •                                       |          | 2.3  |          |              |                |          |    |
| 0 co/a     |            |          |            | - 7      |            | ې ۲        | - φ              | 9      |       |       |       |                |       |       |            |          |       |            |                |       |                                         |          |       |       |       |       |       |       |       |            |          |          |            |            |                                       |       |            |       |       |          |       |       |          |       | <del>:</del> ? | å    | 3/82                                    | 28.6     | 28.4 | 0.3      |              |                |          |    |
|            |            |          |            |          | ٠ ،        | ۰,         | . ~              | 0      | 64    | 7     | 7     | -              | 22    | 22    | 3          | = :      | 2     | 2          | s ;            | ٥ ٥   | : 6                                     | , ç      | 8     | 88    | 5     | 68    | Z     | 7     | 23    | Ζ :        | 2 :      | 2 2      | 9 3        | 3          | : ::                                  | 7     | •          | 80    | ₹     | 7        | ۰ د   | ۰ ،   | ~ •      | · •   | ~ ~            |      | 3/62                                    |          |      |          |              |                |          |    |
| Æ          | •          | 70.0     | 5 6        | 5 6      | 5 5        | 10.0-      | -0.0             | -0.01  | -0.01 | 0.00  | 0.02  | 0.04           | -0.01 | -0.01 | -0.05      | -0.0     | -0.03 | 0.0        | -0.0<br>60.0   | 80.0  | 6.0                                     | -0.07    | -0.08 | -0.03 | -0.03 | -0.07 | -0.07 | -0.08 | -0.03 | -0.63      | 5.0      | 70.0     | 9 6        | 9 6        | 6 0                                   | 0.0   | 0.04       | 0.04  | 0.05  | 0.03     | 0.03  | 0.05  | 0.02     | 7.6   | 10.0           | ¥    | , 64<br>25                              |          |      |          | -0.02        | 0.00           |          |    |
| ₽ .        | •          | . O. C.  | 8 5        | 7.0      | 5 6        | 3.0        | 0.55             | 67.0   | 0.54  | 19.0  | 0.75  | 1.16           | 0.33  | 0.37  | -0.33      | -0.53    | -0.16 | -0.22      | -0.43          | 7     | ======================================= | 98       | 7.7   | -1.27 | -1.08 | -1.09 | -0.95 | -0.91 | -0.87 | -0.89      | 7 S      |          | 20.07      | -0.27      | 1,0                                   | -0.04 | -0.42      | -0.51 | -0.59 | -0.79    |       | -0.37 | 6.65     | .0.07 | -0.71          | ŧ    | ; 0                                     |          |      |          | -0.31        | -6.71<br>0.11  |          |    |
| Eabot.     |            |          |            |          |            |            |                  |        |       |       |       |                |       |       |            |          |       |            |                |       |                                         |          |       |       |       |       |       |       |       |            |          |          |            |            |                                       |       |            |       |       |          |       |       |          |       | 1.62           | 4    | 1 6 X                                   |          |      |          | 98           | 22.5           |          |    |
| Eatop (    | 2 .        | 7.7      | 2.5        | 17.7     | 2, 5       | 97.7       | 2.16             | 2.14   | 2.10  | 2.01  | 2.05  | 10.7           | 1.97  | 1.93  | 5.05       | 1.92     | 1.93  | 6.         | <del>.</del> . | 2.03  | 8 -<br>2 -                              |          | 2.79  | 1.67  | 8     | 1.6   | 1.51  | 1.53  | 1.53  | . 58       | 3 5      | 2.5      | 7 7        | 5 5        | 5 -                                   | 1.69  | 1.75       | 1.11  | 1.75  | 1.72     | 69.   | 1.65  | 3.       | 3.5   | 7 59.          | 40   | KP3                                     |          |      |          | <del>*</del> | 1.6864         |          |    |
| 1501]      | ٠ <u>-</u> | 2.5      | 7.0        | 5.55     | 3 5        | 22.62      | 24.91            | 24.76  | 24.59 | 24.41 | 24.21 | 24.01          | 23.70 | 23.70 | 23.82      | 24.10    | 24.17 | 24.23      | 24.32          | 24.75 | 25.57                                   | 75.97    | 26.30 | 26.63 | 26.95 | 27.15 | 27.27 | 27.37 | 27.40 | 27.43      | 27.38    | 5. 5     | 24.93      | 24.02      | 24.48                                 | 26.31 | 26.06      | 25.79 | 25.54 | 25.24    | 25.00 | 24.85 | 24.65    | 7.    | 23.95          | [10] | )<br> <br>                              |          |      |          | 20           | 26.21<br>16.56 | 3        | f* |
| Tubot      |            |          |            |          |            |            |                  |        |       |       |       |                |       |       |            |          |       |            |                |       |                                         |          |       |       |       |       |       |       |       |            |          |          |            |            |                                       |       |            |       |       |          |       |       |          |       | 15.89          | 43   | 3                                       |          |      |          |              | 19.49          |          |    |
| labot      | ء<br>:     | 5        | 2 2        | 7. 7.    | 7 . 2      | 3.5        | 9                | 7      | 20.72 | 19.83 | 19.12 | 18.11          | 8.43  | 18.43 | 21.00      | 57.69    | 22.30 | 22.82      | 23.58          | 2. €  | 20.77                                   | 7.87     | 26.36 | 29.83 | 29.96 | 30.18 | 30.00 | 30.04 | 30.09 | 30.21      | 29.72    | 2.5      | 20.00      | 79.97      | 2 %                                   | 76.27 | 25.28      | 24.55 | 23.66 | 22.33    | 21.83 | 22.23 | 21.4     | 20.11 | 19.20          | 3    | C                                       | •        |      |          | 19 76        | 27.56          |          |    |
| Tw top     |            |          |            |          |            |            |                  |        |       |       |       |                |       |       |            |          |       |            |                |       |                                         |          |       |       |       |       |       |       |       | 19.32      |          |          |            |            |                                       |       |            |       |       |          |       |       |          |       | 15.67          |      | د<br>1                                  | •        |      |          | 16 91        | 19.04          | :        |    |
| Tatop      |            |          |            |          |            |            |                  |        |       |       |       |                |       |       |            |          |       |            |                |       |                                         |          |       |       |       |       |       |       |       |            |          |          |            |            |                                       |       |            |       |       |          |       |       |          |       | 17.94          | 3    | ر<br>ا                                  | •        |      |          | 24 17        | 26.84          | :        |    |
| M S        |            |          |            |          |            |            |                  |        |       |       |       |                |       |       |            |          |       |            |                |       |                                         |          |       |       |       |       |       |       |       |            |          |          |            |            |                                       |       |            |       |       |          |       |       |          |       |                |      | 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | î        |      |          |              |                |          |    |
| <b>a</b> ; | •          | ~ •      | ~ 0        | ٠,       | 9 0        | 9 -        | ; -              | 2.2    | ~     | =     | 0.7   | 0.)            | 0.7   | 0.7   | Ξ          | 2.7      | 2.3   | 2.3        | 9 :            | 2.0   | 4 -                                     |          | M     | ; =   | : 3   | 9.    | 7     | 7     | ₹.    | 7.7        | -        | 2        | •          | ? -        | ; ;                                   | ; ~   | -          | =     | 7.7   | <u> </u> |       | 5.5   | 5.5      | 6.0   | . 6            | =    | 2                                       | ì        |      |          | 3 6          | 3.5            | :        |    |
| 9          | <u> </u>   | <b>-</b> | - •        |          | > 9        | > <        | •                | 0      | 0     | 0     | 0     | 0              | •     | 0     | 0          | 0        | 0     | 0          | 0 1            | - 4   | > <                                     | <b>-</b> | · c   | • •   |       | 0     | 0     | 0     | 0     | 0          | 0        | 0 0      | <b>-</b>   | - <        | - د                                   | ء د   | •          | 0     | 0     | 0        | 0     | 0     | ۰ ،      | ۰ ۰   | - 0            |      | (a) [                                   | 0.0      | 0.0  | 0.0      |              |                |          |    |
| 5          | 2          | <b>-</b> |            | <b>.</b> | > <        |            | <b>-</b>         | •      | 0     | 0     | 0     | 0              | 0     | 0     | 0          | 0        | 0     | 0          | ۰ ،            | ۰ ،   | <b>&gt;</b> <                           | •        | •     |       |       | 0     | 0     | 0     | 0     | 0          | ۰ د      | 9 4      | <b>5</b> 6 | <b>-</b> - | -                                     | · c   | 0          | 0     | 0     | 0        | 0     | 0     | ۰ ۰      | ۰ ،   | - 0            | 3    | 5 C                                     |          | 0.0  | 0.0      |              |                |          |    |
| ے          | -<br>-     | <u>.</u> | •          | • •      | · •        | ? r        | , c              | ٠,     | ~     | -     | 0     | ٥              | =     | =     | Ξ          | 8        | F     | 3          | 6              | = :   | 2 2                                     | 3 7      | 86    | 92    | 202   | 202   | Ξ     | 172   | 189   | -          | <u> </u> | 621      | 9 3        | 9 8        | 8 5                                   | 3 =   | ==         | =     | ~     | ~        | ~     | ~     | ~ `      | 0     |                | •    | 9/67                                    | ?        | 5.9  | 0.3      |              |                |          |    |
| g.         | -<br>-     | ٠.       | ۵ ،        | <b>5</b> | <b>.</b>   | <b>-</b>   | <b>-</b>         |        | 0     | 0     | 0     | a              | -13   | ÷     | ÷5         | ş        | -33   | ą.         | 79             | 92 :  | 9 :                                     | 3 5      | : ×   | ¥ .   | : ::  | -136  | =     | -116  | -128  | Ę          | E        | ş        | 7 5        | 7 5        | 5 5                                   |       | ; <b>;</b> | 9-    | 0     | 0        | 0     | 7     | 0        | 0     |                |      | 4 / E                                   | ?        | Ţ    | ٠.<br>ت  |              |                |          |    |
| 5          | _          | 9        | ۰ ،        | <b>-</b> | > •        | <b>-</b>   | -                | •      | 0     | 0     | 0     | 0              | 3     | _     | 8          | _        | Ξ     | 991        |                |       |                                         |          |       |       |       |       |       |       |       | 8          |          |          |            |            |                                       |       |            | 7     | ~     | 0        | 0     | 0     | •        | 0 '   | 9 0            |      | *dn                                     |          | 25.1 | 0.5      |              |                |          |    |
| 3          | 7          | ~        | •          | 2 5      | 2 :        | 2 9        | 2 =              | 2 :    | : =   | =     | 91    | -              | -     | =     | 12         | <b>~</b> | m     | m          | ~              | ٠:    | ÷ ;                                     | 7        | ? ?   | ; ×   | , 2   | -5    | -20   | -13   | 7     | -13        | ٠ -      | ,        | ? ?        | ? -        |                                       | •     | . ~>       | •     | •     | =        | 13    | 13    | = :      | 2 :   | £ £            | å    | 2 °                                     | •        | ÷.   |          |              |                |          |    |
|            | 2 3        | -53      | e :        | <b>;</b> | 7 8        | 77-        | <u> </u>         | -10    | 2     | : =   | 12    | <del>(2)</del> | •     | ?     | -51        | ş        | 65-   | ŗ          | -65            | -192  | 917-                                    | 200      | 306   | -32   | 250   | 7     | -317  | -341  | -349  | -325       | ÷ :      | -279     | 7          | 1 6        | ֓֞֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓ | 7     | , <u>ż</u> | 두     |       |          |       |       |          |       |                | ٠    | 7 / 1/2                                 | 8.7      | -9.1 | <u>-</u> |              |                |          |    |
| =          | 70/        | <b>:</b> | ۶ ;        | 7 b      | 3          | <b>ያ</b> ፡ | ឧ                | :<br>: | , es  | 7     | -     | ~              |       | ų,    | <u>-</u> - | င့       | 65-   | -58        | 7              | 20.   | ÷ :                                     | 7000     | -11   | ; ;   | 3 25  | 3     | -288  | -257  | -269  | -32        | =        | 191-     | 2 3        | i i        | , K                                   | 3 =   | • -        | 7     |       |          |       |       |          |       |                |      | £ (4).                                  | 0.0      | -7.8 | 7.1      |              |                |          |    |
|            | 78/1       | 3        | <u>ن</u> : | ភូ ខ     | <b>₹</b> 8 | <b>?</b>   | ş 2              | ; 7    | !     |       |       |                | ~     | ≃     | 23         | 2        | 2     | 907        | 2              | 2     | 2 5                                     | 70       | 3 5   | 3 5   | 3 2   | 121   | 8     | 618   | 635   | 231        | <b>F</b> | <b>;</b> | E E        | 25.5       | 3 7                                   | e 5   | . 0        | ÷     |       |          |       | ç     | 7        | Ş :   | <u> </u>       |      | ,                                       | <b>?</b> | 17.9 | -30.4    |              |                |          |    |
| 1111       | ,          | 0.5      | 0.         | ? :      | 0.7        | 5.5        | -<br>-<br>-<br>- | ; =    | ÷.    | 5.0   | 5.5   | 9              | 6.5   | 7.0   | 7.5        | 8.0      | 8.5   | 0.6        | 9.5            | 0.01  | 2.5                                     | 9 5      | 2.5   | 2 5   | 13.0  | 13.5  | 0.4   | 14.5  | 15.0  | 15.5       | 9.0      | 16.5     | 17.0       | 7.7        | 2.01                                  | 9     | 19.5       | 20.0  | 29.5  | 21.0     | 21.5  | 22.0  | 22.5     | 23.0  | 23.5           | ;    | 36.5                                    | ISUM     | DSUM | NSON     | 1 AVE        | DAVE           | <u>{</u> |    |

SYSTEM 7, JULY 20, 1986, DATA FROM THE KONZA FRAIRIE, KANZAS

| :         | × ×          | 2                   | <b>.</b> | <b>.</b> . | • •   |            | 5.5        | 9.5   |            | . v.  |            | 0.5         | 0.2   | ₹.0        | ~ .        | = :      | 7.         | . 89       | =              | =    | = :        | 0.1   | ~ -        | 1.2      | 1.0          | 1.2   | - ·   | . 9            | ₹.0   | 0.3        |            | 0.3              | 0.0          | ٠.<br>       | 7.7           | -2.9       | <del>-</del> |            | -5.1  | -2.2    | -2.1                 | es<br>es      | •                  | 2.0      | 0.0      | ?       |         |       |
|-----------|--------------|---------------------|----------|------------|-------|------------|------------|-------|------------|-------|------------|-------------|-------|------------|------------|----------|------------|------------|----------------|------|------------|-------|------------|----------|--------------|-------|-------|----------------|-------|------------|------------|------------------|--------------|--------------|---------------|------------|--------------|------------|-------|---------|----------------------|---------------|--------------------|----------|----------|---------|---------|-------|
|           | 2            |                     |          |            |       |            |            |       |            | 3 23  | 50         | 3           |       | 0.00       |            |          |            |            |                |      | -1.03      |       |            |          |              |       |       |                |       | 1.03       |            |                  | 1.03         | 6.5          | 3 5           | 1.12       | 1.03         | 5.03       | 50.   | 1.72    | -1.72                | HArec         |                    |          |          |         | 0.0     | 77 77 |
|           | S HATE       |                     |          |            | -     |            | 7 1.03     |       |            |       |            | ; ;;<br>, o | 0 -1. |            |            |          |            |            |                |      |            |       | -22        |          |              | ٠.    |       | , <del>-</del> | 7 -1  | · ·        | 2 0        | , 60             | æ            | æ 6          | - 0           | . 21       | ٠            | ۲,         |       | •       | ٠.                   |               |                    | 0 1      | 0 9      | >       |         |       |
| ,         | 6s<br>W/ 0.2 | -                   | _        |            |       |            |            |       | <b>,</b>   |       |            | , 0         | 0     |            | -          |          |            |            |                |      |            | 0     | 0 4        | , ,      |              | ۵.    | •     | <b>5</b> 0     | 0     | 0          | <b>-</b> < | , 0              | o            | 0 0          | <b>&gt;</b> = |            | 0            | 0 (        |       | , 0     | 0                    | *             |                    | 0.0      | 0.0      | o. o    |         |       |
|           | =<br>        | _                   | _        |            |       |            | _          |       | , ,        |       |            | . 60        | en en |            |            |          |            |            |                |      |            | ~     | مفو        | r        |              | ٠.    | 0.5   | , c            | -     | 6.         | ~ 0        | . 0              | <b>4</b>     | ~ :          |               | . ~        | 9.0          | <u></u>    |       | 9.      | 5.6                  | RHbot         |                    | 6.1      | 2.7      | •       |         |       |
|           | # # P        |                     |          |            |       |            |            | 2 2   | 2 5        | ; ;   |            | 5 2         | 5 92. | 2 91.      | 3 84.      | 0 82.    | e :        | 5 4        | 3 8            | 22   | 33 51      | 26 52 | ۳ :<br>د ت | 9 4      | : =          | 35 43 | 5. t  | 69             | 22    | 37 54.9    | 25 5       | 381              | 5 89         | 53 6         | <b>.</b>      | ن.<br>ب    | -9<br>8      | e .        |       | . 6     | 89                   |               |                    | 2.8      | 25.1     | - 0     |         |       |
|           | onb<br>N     |                     |          | ÷:         | 7 7   | : =        | 7          |       |            |       | -          |             |       | 7 15       | 1 23       | 9 59     |            |            | , 99           |      | 55         | 88    | 83         | 6 2      | 3 55         | 67 10 | 53    | 25<br>7<br>7   | 59 2  | 27 237     | Ç :        |                  | 7            | Z            | 2 -           | ı ~        | -            | 0          |       | , 0     | 0                    |               | 3/62               |          |          |         |         |       |
|           | 0da<br>/     |                     | 7        |            | _     |            | ~          |       |            |       |            |             |       |            |            |          |            |            |                |      |            |       |            |          |              |       |       |                |       |            |            |                  |              |              |               | : 3        | 10           | 5          | 2 5   |         | 05                   |               | . g                |          |          |         | -0.03   |       |
|           | 9 7<br>9 6   | 00.0                | 0.0      | -0.0       | 8 2   | 2 6        | 0.0        | 0.0   | 0          | 5 6   | 9 6        | 9 0         | 0     | 0.0-       | -0.0       | 0.0      | Ó.         | 9          | 9 9            | 9    | 9.0        | -0.0  | 9          | 9 9      | 9            | 9     | ، ہ   | <u>ڄ</u>       | 9     | Ģ          | ، نې       | نې نې<br>-       | نې           | ، نې         | ٠<br>-        |            | ج د          | ۰          | 9 9   | 7 9     | , ,                  |               | , u                |          |          |         |         |       |
|           | £ 6          | , 2                 | 69.0     | 0.83       | 1.23  | 3.5        | 1.29       | 1.36  | 2.01       | 3 3   | £ :        | 7.19        | 0.76  | -0.26      | -0.55      | -0.63    | -0.58      | 6.9        | 70.39          | 8    | -1.42      | -1.27 | -1.64      | 2        | - 1.3        | -1.42 | -1.32 | -0.53          | -0.32 | -0.18      | -0.39      | 2.0              | -0.0         | 0.1          | 0 0           | , q        | 0            | 0.5        | 0 0   | 0 0     | 0.5                  | •             | •                  |          |          |         | 0.02    |       |
|           | Eabot        | • :                 | ; 9      | 23         | 25 25 | នដ         | 52.        | 5     | ج<br>ج     | × 5   | <b>3</b> : | 7. 2        | : 3   |            | .92        | .93      | <b>5</b> . | <b>z</b> . | <del>.</del> 8 | ? ?  | 8          | 83.   | 69.        | <u>ت</u> | 2.2          | 1.73  | 1.78  | 28.1           | 6 8   | 1.93       | 1.93       | . 8              | 1.92         | 2.01         | 2.05          | 5 5        | . 35         | 5.         | 89 2  | . 63    | 1.83                 | , and         | kPa<br>KPa         |          |          |         | 1.78    |       |
|           | 3            | -                   |          |            |       |            |            |       |            |       |            |             |       |            |            |          | _          | <u> </u>   | 9 5            | 2 5  | . =        | 200   | 2          | 25 55    | 2 3          | 6 6   | 20    | ٤ ۶            | 0 7   | <b>.</b> & | 83         | 2 2              | 5 65         | 85           | .02           | <b>.</b> 5 | . 2.         | .92        | (6)   | :<br>:  | 1.65                 | 4             | ratop<br>RPa       |          |          |         | 1.75    |       |
|           | Eatop        | × .                 | 1.60     | 1.58       | 5     |            | .55        | .5    | 1.6        |       |            |             | : :   | : ::       | : :        | 1.83     |            |            |                |      |            |       |            |          |              |       |       |                |       |            |            |                  |              |              |               |            |              |            |       |         |                      |               |                    |          |          |         |         |       |
|           | 5011         |                     | 2 20     | 3.29       | 3.09  | 2.87       | 22.44      | 22.31 | 22.15      | 21.97 | 21.81      | 21.67       | 21.48 | 27 62      | 21.83      | 22.12    | 22.37      | 22.68      | 23.00          | 2.5  | 24.39      | 24.68 | 25.26      | 25.67    | 25.93        | 26.33 | 26.47 | 26.48          | 26.42 | 26.03      | 25.96      | 25.77            | 25.3         | 25.1         | 24.9          | 24.7       | 2 2          | 24.0       | 23.9  | 23.7    | 23.57                |               | 18011              |          |          |         | 7 23.97 |       |
|           | Tubot T      | ٠,                  | 7. 6     | 22         | 3     | ຂ:         | 8 8        | 87    | .93        | £ :   | 35         | 2.5         | 2 5   | 3 5        | 1.1        | 8.05     | 8.37       | 9.00       |                | 2.2  | 19.19      | 20.09 | 20.53      | 20.35    | 20.16        | 20.21 | 20.39 | 20.44          | 20.30 | 20.21      | 20.48      | 19.91            | 20.07        | 20.14        | 19.86         | 18.93      | 18.18        | 18.CB      | 17.94 | 17.97   | 17.70                |               | 10341              |          |          |         | 17.73   |       |
|           | 10 to        | :<br>و د            | 8 2      | 23         | 93 14 | 2 :        | 3 69       | 83    | 58         | 23.   | . 63       | _ :<br>:::  | 77    |            | 3.5        | =        | . 96       | 16.        | 83             | 7 8  | 9 8        | 92    | 4.         | 3.64     | 8.82         | 9.32  | 9.62  | 8.69           | 8.29  | 15.7       | 17.76      | 27.64            | 27.5         | 25.46        | 23.93         | 22.45      | 27.17        | 20.26      | 20.52 | 20.45   | 36 20.19<br>79 20.10 |               | Tabot              | •        |          |         | 21.0    | :     |
|           | da d         | : د                 | 9 Y      | : ::       | 15.   | 2 :<br>0 : | : :<br>: : | 32 14 | 98 14      | 96 14 | 22 13      | 80          | 3:    | 3 5        | 43 19      | 32 : 59  | 00 20      | 45 23      | 68             | F. 1 | 4 E        | . 2   | 55         | . 38 Z   | 2.5          | 39. 2 | .58   | .84            | 5. 5  | 2 6        | 60.0       | 63.6             |              | .00          | 9.83          | 5.0        | 2.5          | 8.20       | 2.03  | 8.05    | 56 17.96             |               | Tw top             | •        |          |         | 67 (1   |       |
|           | 1 to         | :                   | 3 5      | 3          | 15.0  | 22         | ==         | × ×   | 3 14       | 7     | 7          | 7           | = :   | <u>.</u> . |            | 2 2      | 7 18.      | 0 18.      | 89             | E 18 | 2 2<br>2 5 | 2 2   | 6 6        | 99 19    | 51 12        | 61 68 | 29 19 | 80 19          | 61 63 | 85 82      | 36 20      | 22               | 200          | ; ×          | 9             | 88         | 9 8          | 5 2        | 66    | 95.     | 99.9                 |               | Tatop              |          |          |         | 10 10   |       |
|           | Tatop        | ن<br>:              | 17.66    | 18.12      | 17.21 | 17.45      | 16.63      | 16.18 | 16.5       | 16.0  | 15.8       | 15.3        | 2     | 2 2        | 0.6        |          | 20.3       | 22.0       | 23.0           | 24.2 | 2. 2.      | 3 %   | 38.        | 56.      | 23.          | 27.   | 28.   | 27.            | ₩.    | % %<br>%   | 27.        | 27.              | 2 7          | € ₩          | 7.            | 22         | 77 57        | 2 2        | 20    | 20      | 20.66                |               | 1018<br>100<br>100 |          |          |         | •       | •     |
|           | UDIR         | 6ap                 |          |            |       |            |            |       |            |       |            |             |       |            |            |          | _          |            | _              |      |            |       |            |          | so o         | m v   |       | 90             | 0     | v, k       | . ~        | ٠                | <b>~</b> ? ° | ٠, ٥,        | . ~.          | œ.         | ao           | . 0        | ۲.    | <u></u> | o «                  |               | 5 ·                |          |          |         |         |       |
|           | Ð            | <b>s</b> / <b>s</b> |          |            | 0.7   | 9.8        | 0.0        | 0.7   | 0.7        | 0.7   | 6.7        | 0.7         | G)    | 9.0        | 5 -        |          | 6.         | =          | Ξ              |      | -          | -     |            |          | .;           | , r.  |       | 0 2.           | . v   | 9 6        |            | 0                |              | ,            |               | 0          | 0 4          |            |       | 0       | 0 0                  | •             | 1.09               | · ·      | 0.0      | 0.0     |         |       |
| RANGAS    | Ę            | <b>≡/≡</b>          | 0 0      | •          | 0     | •          | 00         | 0     | . 0        | ٥     | 0          | 0           | 0     | 0 9        | 9 6        |          |            |            |                | _    |            |       |            |          |              |       |       |                | 0     | 0 0        |            | 0                | 0 4          | <b>,</b> c   |               | 0          | 0 (          | > c        | . 0   | 0       | 00                   | >             |                    | 78/6     | 0.0      |         |         |       |
| PRAIRIE,  | Ę            | M/ 82               | 0 0      | 9 0        |       | •          | 00         | •     |            | 0     | 0          | •           | ⇔     | 0 (        | 9 6        | 9 0      | . 0        |            |                |      |            |       |            |          |              |       |       |                |       |            |            |                  | ٠.           | <del>-</del> | . ~           | -          | ٠ 5          | <b>~</b> ~ | ,     | ~       | ۰ -                  | -             |                    | 3        | 0, 2     |         |         |       |
| ZA PRA    | ۵            | ¥/∎5                | - '      | ~ ~        | . 0   | •          | 00         | •     | . 0        | Ф     | 0          |             |       |            |            |          |            |            |                |      |            |       |            |          |              |       |       |                |       | 9 5        |            |                  |              |              |               | 0          | 0            | 0 0        | , 0   |         | 0 0                  | >             | dny.               |          | ,        |         |         |       |
| THE KONZA | 9            | 4/a2                | 0 1      | -          | 0     | 0          | 0          | •     | . 0        | 0     | 0          | 0           | -33   | -73        | <b>7</b> 5 | 7 5      | 3 7        | <b>=</b>   | 5.             | -102 | <u>=</u> : | = =   | 77         |          | -13          | 7 -1  |       | , B            | 9-    | 9 1        | · ·        | . 20             |              | Z 2          |               | _          | 0            |            | . 0   |         | ۰ د                  | >             |                    | _        | 23.1     |         |         |       |
| FROM      | ž,           | 7.07                | 0        |            | 0     | 0          | 0 0        | •     | , 0        | •     | 0          | 0           | 3     | \$         | ₹ 5        | 2 20     | 2 2        |            |                |      |            |       |            |          |              |       |       |                |       | 0 238      |            | , iv             | 7            |              | ,             | ~          | ~            | r <u>s</u> | 2 2   | 2       | 2 :                  | =             | 3                  | •        |          |         |         |       |
| DATA      | 3            | M/ 82               | 20       | ≂ ະ        | 3 22  | 23         | ₹.7        | 5 5   | 3 2        | 2     | ~          | ⊼           | 22    |            |            | <b>.</b> |            |            |                |      |            |       |            |          |              |       |       |                |       | 2.         |            |                  |              | = 5          | 3.5           | . •        | =            | r :        | : =   | : 22    | 6. 5                 | 7.            |                    | á        |          | 6.5     |         |       |
| 1986,     | w            | 1/62                | -5       | - 4        | , 0   | . –        | ~ -        | ٠,    | <b>,</b> ~ | ۰ ۷   | . –        | -           | ÷     | ٣          | <u>ئ</u> ڊ | 22       | 7          | 5          | -10            | -184 | -205       | -234  | -23        |          | <u>۾</u><br> | 1 -27 | 25.   | 22             | 1 -20 | -121       | 21.        | : <del>-</del> - | 1- 61        | ÷ ÷          | 3.5           | ٦<br>2     | 33           | = :        | 3 2   |         | 2:                   | `<br><b>:</b> | = :                | •        |          | 0.5 -0  |         |       |
| 7 23.     | =            | 78/                 | 22       | 2 2        | 2 2   | : =        | = "        | ^ -   | o «        | •     |            | . ~         | ~     |            |            |          |            |            |                |      |            | -268  | -251       | 2        | -372         | -28   | 87-   | 2.5            | 2     | 7          |            | 4 49             | 7            |              | 2 %           | 2 5        | 2            | 2 9        | 2     | : 5     | 40 42                | <b>E</b> 5    |                    | J/62 6J/ | <u> </u> | . 0.1-  |         |       |
| 7, JULY   | 9            | M/82                | <b>*</b> | န္ :       | ÷ ÷   | 2          | ş          | 7     | 9 5        | 2 22  | ?          | ; ភុ        | 5.    | -36        | 7          | 2        | 2 5        | 2 %        | 7.7            | 419  | 464        | 3     | 228        | 689      | 121          | 586   | 2 6   | 9              | 33    | 5 17       |            | : £              | \$ 19        | Ξ.           | - ;           |            | 7            |            | · ·   |         | 9- 5:                | 0             |                    | _        |          | CI WISH |         | •     |
| STER      | JE N         |                     | 9.5      | <u>.</u>   |       | 2.5        | 3.0        | :: ·  | . ·        |       | : 5        | . 0         | 6.5   | 7.0        | 7.5        | 8.0      | . o        |            | 10.0           | 10.5 | 11.0       | =: S  | 12.0       | 17.0     | 13.5         | =     | 7     | 2.5            | 16.0  | 32         | = :        | . 8              | 18           | 5. 5         | 3 5           | 2 8        | :            | ≂ :        | 3 6   | 1 23    | 23.5                 | 74            | 1111               |          | ខ្ម      | 2 ¥     |         | :     |

14

|                         |            | _          | _     | _        |          |                  |            |            |          | _     | _          |            |            |            |       |            | _         |       | _         | _         | _       | <b></b> . | <u>.</u>    |       | <b>.</b> .            | <b>.</b> .    |                    |       | _          |         | <b></b> . |            | <b>.</b>       | 5 6          | · -                   |       | -     | ~     | e-a       | ~                                       | ۰ ۰        | ~ 4       | ٠,            | بر د.          |     |        | •          |          | ; <del>.</del> . |   |                |       |  |
|-------------------------|------------|------------|-------|----------|----------|------------------|------------|------------|----------|-------|------------|------------|------------|------------|-------|------------|-----------|-------|-----------|-----------|---------|-----------|-------------|-------|-----------------------|---------------|--------------------|-------|------------|---------|-----------|------------|----------------|--------------|-----------------------|-------|-------|-------|-----------|-----------------------------------------|------------|-----------|---------------|----------------|-----|--------|------------|----------|------------------|---|----------------|-------|--|
|                         | 55<br>55   |            |       |          | 7        |                  |            |            |          |       |            |            | • •        |            |       |            |           |       |           |           |         |           |             |       |                       | _             |                    | _     |            |         |           |            |                |              | _                     |       |       |       |           |                                         |            |           |               |                | 8   |        | •          | <i>.</i> |                  |   |                | _     |  |
|                         | HKrec      | 1.03       | -1.03 | 1.03     | 2.03     | 3 5              | .03        | -1.03      | 1.03     | -1.03 | 23.        | -1.03      | 3 6        | 3 6        | 0.0   | -1.0       | 1.03      | -1.03 | 1.03      | 03        | 1.03    | 7         | - 6         | 7     | 3 3                   | 3 5           | 3 6                | .0.   | -1.03      | 1.03    | 5.0       | .03        | 8 8            | 3.5          | 3 2                   | 1.03  | -1.03 | 1.03  | -1.03     | ======================================= | 7.0        | 3 3       |               | 1.72           | 30  |        |            |          |                  |   | 0.0.6          | J. D  |  |
|                         | 65         | •          | 7     | ~        | ~ .      | ٧,               | ٠ ~        | ~          | 2        | ~     | m          | m -        |            |            | ٠,    | 7          | 7         | -     | -11       | -1        | -18     | ຂ :       | <u>-</u>    | ÷ :   | 3:                    | ≓ °           | , ,                | 7     | 7          | -3      | ~         | -          | •              | n 0          | ` =                   | . ~   | σ     | •     | •         | <b>~</b>                                | ~ -        |           | •             | • ~            |     | 3 6    | , °        |          | . 0              |   |                |       |  |
|                         | £          | 0          | 0     | •        | 0 (      | <b>&gt;</b>      | • •        | 0          | 0        | 0     | 0          | 0 9        | <b>5</b> 6 | <b>,</b>   | •     | . 0        | 0         | •     | 0         | 0         | 0       | 0         | 0           |       | <b>&gt;</b> <         | <b>&gt;</b> c | 9 69               | 0     | 0          | 0       | ۵.        | 0          |                | 9 6          | , ,                   |       | 0     | 0     | 0         | 0                                       | 0 0        | 9 6       | <b>&gt;</b> • | - 0            | 470 | -      | • •        |          |                  |   |                |       |  |
|                         | RHbot      | , <u>r</u> | 78.3  | 81.7     | 81.6     | 2<br>2<br>2<br>3 | 80.2       | 9.08       | ₩.       | 83.1  | 85.0       | 85.5       | 9.7        | 3 6        | 28.5  | Z.         | 67.3      | 61.3  | SB. S     | 55.3      | 25.₹    | 51.0      |             |       | ë :                   |               |                    | 46.7  |            |         | 48.6      |            | <del>-</del> 5 |              |                       | 3     |       | 71.8  | 75.B      | 23.6                                    | 2.5        | 2.5       | 2 9           | . 6.           | •   | =      | ,          |          | : ::             |   |                |       |  |
|                         | dr.        | . 4        | 7     | ۲        | 7,       | ? ~              | , 7        |            | 7        | 7     | ú          | 'n,        | ٠ ،        | ۲ ۵        | 3 2   | 163        | 428       | 23    | 707       | 119       | 852     | Š         | <u>ک</u> ز  | 36.   | 2 5                   | 000           | 6,69               | 892   | 90         | 832     | 21.       | 678        | £ 55           | 2 5          | 3 5                   | . Z   | 8     | œ     | ÷         | Ÿ                                       | Ļ.         | γ.        | ŗ,            | ኒ ጥ            |     | ,      | ?          | 28.5     | -                |   |                |       |  |
|                         | 000        | ,          | •     | 0        | Ţ ·      | <b>&gt;</b>      |            | 0          | 0        | 0     | 0          | 0          | <b>-</b>   | - ·        |       | . 53       | \$        | 7.    | 8         | 86        | 8       | ~ :       | 2           | 3 :   | 3 ?                   | <b>=</b> F    | : 2                | 69    | 93         | 67      | \$3       | <b>5</b> 5 | 2 9            | ⊋ ₹          | ; ;                   | : ::  | •     | ~     | _         | 0                                       | ÷          | > -       |               | - ~            | Š   |        |            | 7        | : ::             |   |                |       |  |
|                         | ₩ <b>4</b> | -0.02      | -0.05 | -0.03    | -0.03    | 5 6<br>9 6       | 0.0        | -<br>0.0   | -0.0     | -0.01 | -0.01      |            | 5 6<br>9 6 | 5 6        | 20.0  | ,<br>50.0  | -0.05     | -0.05 | -0.07     | -0.08     | -0.09   | -0.08     | -0.03       | -0.10 | 1.0-                  | 9 9           | 0.0                | -0.09 | -0.09      | -0.0B   | -0.08     | 9.0        | 9 9            | 9 6          | . 0                   | -0.53 | -0.05 | -0.01 | -0.01     | -0.0                                    | ,<br>0.0   | 10.0-     | 500           | 0.0            | ¥   | , d    |            |          |                  |   | -0.0           |       |  |
|                         | £,         | 9.3        | 0.28  | 0.49     | 0.38     | 2 5              | 0.19       | . 5        | 0.24     | 0.25  | 0.21       | 0.30       | 3 6        | 0.70       |       | -0.11      | -0.<br>S. | -0.72 | -1.03     | -1.16     | -1.26   | -1.24     | -1.28       | 85. T | -<br>-<br>-<br>-<br>- | 7.7           | -0.33              | -0.92 | -0.93      | -0.73   | -0.61     | 20.5       | 7.0            | 6. 6<br>9. 6 | 7.                    | 9.5   | 0.25  | 0.28  | 0.33      | 0.28                                    | 7. 6       | 2.5       | 97.0          | -0.22          | Ę   | 5      |            |          |                  | ; | -0.25<br>-0.65 | 0.13  |  |
|                         | Eabot      | . 8        | 1.89  | 1.93     | 7.3      | ž 5              | 2 2        | 1.95       | 1.95     | 1.93  | 1.99       | æ :        | ÷ ;        | · ·        |       | 2.02       | 2.05      | 2.04  | 2.11      | 2.08      | 2.03    | 2.09      | 2.11        | 2.10  | 2.04                  | 2.0           | 2.08               | 2.18  | 2.24       | 2.24    | 2.22      | 2.24       | 2.26           | 97.7         | 2.40                  | 2,34  | 2.35  | 2.33  | 2.33      | 2.32                                    | 2.28       | 77.7      | 7.3           | 2.31           | 47  | 103    | P. 4       |          |                  |   | 2.17           | - S   |  |
|                         | Eatop E    | 1.85       | 1.87  | 1.90     | 5.5      | 2. 2             |            | 1.9        | 1.94     | 1.96  | 1.98       | 1.97       | 9. 3       | 6 5        |       | 6          | 5.00      | 1.98  | 2.04      | 2.01      | 1.33    | 2.00      | 2.05        | 2.00  | <u>.</u>              |               | 66.                | 2.09  | 2.15       | 2.16    | 2.15      | 2.17       | 2.19           | 17.7         | <br>                  | 2.32  | 2.33  | 2.32  | 2.32      | 2.31                                    | 2.27       | 7.7       | 2.5           | 2.32           | 5   | 40.40  | 2          |          |                  |   | 2.1047         | 1.355 |  |
|                         | 1501 E4    | 23,48      | 23.41 | 23.35    | 23.29    | 27.53            | 23.13      | 23.07      | 23.01    | 22.94 | 22.87      | 22.80      | 22.11      | 11.77      | 22.23 | 22.83      | 23.09     | 23.45 | 23.86     | 24.45     | 24.88   | 25.36     | 25.86       | 26.33 | 26.69                 | 26.97         | 27.13              | 27.50 | 27.57      | 27.66   | 27.63     | 27.56      | 27.39          | 27.73        | 25. 72<br>27. 22. 22. | 26.51 | 26.29 | 26.07 | 25.83     | 25.61                                   | 25.44      | 22.52     | 23.13         | 24.33          |     | 100    |            |          |                  |   | 24.93          |       |  |
|                         | Two t      | 7.85       | 8.0   | 8.09     | 8.12     | 2 2              | 28         | 8.29       | 8.30     | 8.30  | 8.29       | 18.23      | 9.78       | 97.0       | , ×   | 6          | 19.58     | 20.40 |           | 21.28     | 2.5     | 2.7       | 22.03       | 2.2   | 2.5                   | 2.71          | 2 2                | 22.75 | 23.05      | 23.01   | 22.86     | 22.87      | 22.80          | 27.60        | 3 5                   | 22.22 | 21.97 | 21.64 | 21.32     | 21.27                                   | 21.29      | 21.13     | 21.22         | 20.83          | 1   |        |            |          |                  |   | 20.58          | 12.67 |  |
|                         | Tabot      |            |       |          |          |                  |            |            |          |       |            |            | 9 79       | 4 3        | 3 3   | 22.32      | 2         | ₩.    | <u>ee</u> | 8.        | 82      |           | -:          |       |                       | 31.27         |                    |       |            |         | 31.32     |            |                | 20.05        |                       |       |       |       | 4.43      |                                         | 24.73      | 2.5       | 27 72         | 3.27           | 3   | 1000   | د          |          |                  |   | 28.89          | 14.24 |  |
|                         | iktop 1    |            |       |          | 18.10    |                  |            |            |          |       |            |            |            |            | -     |            | 19.58     |       |           |           | -       |           |             |       |                       |               |                    |       | 22.40      |         |           |            |                |              |                       |       |       |       | 21.38     |                                         |            | Ξ.        | 2 2           | 5 6            |     | 401    |            |          |                  |   | 20.32          | 12.67 |  |
|                         | latop I    |            |       |          |          |                  |            |            |          |       |            |            |            |            |       |            |           |       |           |           |         |           |             |       |                       |               |                    |       |            |         |           |            |                |              |                       |       |       |       |           |                                         | 24.96      | S :       | 4.4           | 3.06           |     | 201    |            |          |                  |   | 28.23          |       |  |
|                         | UDIR 13    |            | ∺     | ×        | × ;      | ≈ ≈              | <b>3</b> × | . ×        | 7        | ×     | 22         | ≈ :        | × 7        | 3 7        | 3 2   | . ~        | . ~1      | ~     | ~         | ~         | 7       | ~         | ~           | ~     | 2 4                   | 7             | 3 <del>~</del> 7   | . ~   |            | -       | י כיא     | •••        | י הי           | , ,          | 4 (                   | ~     | ~     | 2     | ~         | ~                                       | ~ 6        |           | ~ •           | ~ ~            |     | - 41 A |            |          |                  |   |                |       |  |
|                         | n •/•      | , m        |       |          | <b>.</b> | a -              |            | 2          | 64       |       |            | 0.4        |            | 7.5        | , 0   | 5.5        |           | r;    |           |           | ۲.<br>ن | en;       | <b>-</b>    | 5.7   | ~ .                   | <br>          | . <b>.</b>         | 1 67  |            | ٠;<br>د | -; ·      | ٠. ١       | ,,,,,          |              | , .                   | 2.5   | · :   |       | <u>5.</u> | <del>.</del> ;                          | 47 F       | م<br>د رد |               | 2 .2           |     |        | \$/8       |          |                  |   | 77.7           | -     |  |
| KANSAS                  | Lub<br>Cal |            | 0     | 0        | 0        | ء د              | , ,        | 0          | 0        | 0     | 0          | 0          | <b>5</b> C | <b>5</b> C |       |            | 0         | 0     | 0         | 0         | 0       | 0         | 0           | ۵.    | ۰ ،                   |               | <b>,</b>           | . 0   | 0          | 0       | 0         | 0          | ۰ د            | <b>-</b>     | > <                   | , 0   | 0     | 0     | ري        | 0                                       | 9          | . د       | ۰ د           | ဗ              | 1   | 3      | 78/2       |          | 0.0              |   |                |       |  |
| 1£, KÁ                  | £ 5        |            | 0     | 0        | 0        | <b>-</b>         | , .        | . 0        | 0        | 0     | 0          | 0          | <b>-</b> < | - c        | •     |            | 0         | 0     | 0         | 0         | 0       | 0         | 0           | ۰ ،   | - 4                   | <b>-</b>      | <b>,</b> c         | • •   | 0          | 0       | 0         | 0          | 0 (            | 9 0          | , ,                   |       | 0     | 0     | 0         | 0                                       | 9 (        | ۰ ،       | <i>-</i>      | 0 0            |     |        |            |          | 0.0              |   |                |       |  |
| PRAIR                   | 2,0        |            | -     | -        | _        |                  |            | ۰ ۵        | 0        | 0     | 0          | ۰ ،        | ٠,         |            | . 5   | =          | ~         | 126   | 163       | 170       | 183     | 161       | 197         | £ :   | 503                   | 5 63          | 2 5                | 136   | 18         | 169     | 129       | <u> </u>   | <u>8</u> :     | = 3          | 2 =                   | ; ;   | -     | •     | •         | ~                                       | · œ        | ۰ م       | Δ,            | ^ <del>+</del> | 4   | 2      | - '<br>- ' | ? .      | 0.0              |   |                |       |  |
| FROM THE KONZA PRAIRIE, | d S        |            | 0     | 0        | 0        | 0 0              |            | . 0        | 0        | 0     | <b>c</b> ) | 0 (        | ? ;        | 7 4        | . =   | ۶,         | -83       | -93   | -118      | -121      | -129    | 12        | -136        | 25 5  | <u> </u>              | 5             | 3 =                | 3 =   | -123       | -13     | -101      | ခု         | e :            | ? ?          | , ,                   | 9     | ~     | ç     | 0         | 0                                       | ÷ ,        | ۵ ،       | -             | 9 0            | į   | do 2   | 70/5       | ? -      |                  |   |                |       |  |
| 201 THE                 | Kdh<br>(c) |            | 0     | 0        | ۰.       | <b>5</b>         | 9 0        |            | 0        | 0     | 0          | ۰:         | 2 9        | 2 ≥        | 9 8   | 155        | 368       | 3     | 703       | 089<br>89 | 990     | 817       | <b>8</b> 64 |       |                       | 431           | 5 g                | 3 2   | 803        | 330     | 678       | 295        | 9 9            | e 2          | <b>3</b> 3            | 2     | Ş     | =     | ٥         | 0                                       | ۰ م        | ۰ د       | ۰ م           | <b>-</b>       | 3   | E .    | 78/1       | - K      | 8.0              |   |                |       |  |
| DATA FI                 | 3.5        |            | 2     | ۰        | σ.       | 90 9             | o ec       | 9 00       | <b>6</b> | ∞     | •••        | <b>~</b>   | <b></b>    | <b>-</b>   |       | ,          | -2        | ÷     | -15       | ۶۶        | -25     | <u>-</u>  | ņ           | ÷,    | ;;                    | F 8           | ; ;                | 7.    | ; <b>;</b> | 61-     | ÷         | <b>=</b>   | <b>≓</b> '     | ٠,           | 7                     | ,     | -     | 0     | ~         | ~                                       | •          | -         | •             | * 50           | ž   |        |            | , ė      | 0                |   |                |       |  |
| 1986,                   | w          | y -        | ?     | 9        | ÷        | ج ج              | 3 4        | ; z        | *        | -19   | <b>:</b>   | <b>∵</b> . | ٠,         | ָרְ לְּ    | 3 7   | 3          | 3-        | -126  | -180      | -211      | -548    | -213      | -306        | -3.5  | 55.                   | 197           | אָלָי.<br>פּאָלָי. | 4 F   | ;          | -340    | -316      | -33        | -242           |              | 31.                   | : 5   | 7     | -23   | ÷         | ÷                                       | <u>ن</u> : | <u>ب</u>  | <u> </u>      | ÷ **           |     |        | 78/        | 11.1     | 0.0              |   |                |       |  |
|                         | æ Ş        |            |       |          | =        |                  |            |            |          |       |            |            |            |            |       |            | =         | -113  | -178      | -513      | -545    | -230      | -280        | - 296 | -285                  | 500           | 2 6                | .246  | E          | -218    | -169      | -154       | ۶ :            | ÷.           | • :                   | 3 8   | 12    | 33    | 11        | Ç                                       | \$         | \$        | ₽ :           | £ 7            | 3   | = {    | 76.        | ? ?      |                  |   |                |       |  |
| 7, JULY 22,             | 9          |            |       | <b>=</b> | -15      | ÷ ÷              | ? ÷        | :: <u></u> | ÷        | ÷     | ₽.         | ÷'         | 7 9        | ,          | ء ۵   | <b>6</b> 6 |           |       |           |           |         |           |             |       |                       |               |                    |       |            |         |           |            |                |              |                       |       |       |       |           |                                         |            |           |               | 7 5            | •   | - 3    | ·          |          | -0.2             |   |                |       |  |
| SYSTEM                  | 1146       | 5 0        | 9:    | 1.5      | 2.0      | 2.5              |            | 9          | ₹.       | 5.0   | 5.5        | 0.3        | <br>       | 0.4        |       | . 63       | 9.0       | 9.5   | 10.0      | 10.5      | 11.0    | 11.5      | 12.0        | 12.5  | 13.0                  | 13.5          | 2.5                | 15.0  | 15.5       | 16.0    | 16.5      | 17.0       | 17.5           | 18.0         | 9                     | 5.67  | 20.0  | 20.5  | 21.0      | 21.5                                    | 22.0       | 22.5      | 23.0          | 2.5            |     | 1      |            |          | NSUM             |   | TAVE<br>DAVE   | NAVE  |  |

## G)

# ORIGINAL PAGE IS OF POOR QUALITY

| _             |      |            | _        |             | _        | _        |              |       |       |     | _        |            | _     | _     |       |       |          |            |          |       |            |       |       |            |            |       |          | _     | _               | _          | _                | _     |          | <b>.</b> |          |       | _            | _     | _     | _          | _              | _              |               | _ ,   |             | ٠,    | · -   |     |            |        |        |        |     | ~              |
|---------------|------|------------|----------|-------------|----------|----------|--------------|-------|-------|-----|----------|------------|-------|-------|-------|-------|----------|------------|----------|-------|------------|-------|-------|------------|------------|-------|----------|-------|-----------------|------------|------------------|-------|----------|----------|----------|-------|--------------|-------|-------|------------|----------------|----------------|---------------|-------|-------------|-------|-------|-----|------------|--------|--------|--------|-----|----------------|
| ٩             | ;    | -5.2       | 7        | -2.5        | ~        | 7        | - 2          |       |       |     |          |            |       |       |       |       |          |            |          |       | 9 6        |       |       |            |            |       | 0.5      | 0.3   | 9.              | 0.         | <del>4</del> .0  | 0     |          | 0.55     | ; -      | 0     | 9            | -0.3  | 9.0   | -1.2       | ÷              | -5.5           | 7.            | -2.2  | ~           | 7     |       | •   | 95<br>95   |        |        |        |     |                |
| 7             | 3 :  | .03        | -1.03    | 1.0         | -1.03    | 1,03     | -1.03        | -     | 3 7   | 3 : | .03      | 63         | 10.   | 3 2   |       | 3 6   | 3 5      | 3:         | 3 2      | 3 5   | 3 5        | 3 6   | 3 5   | 3 2        |            | 1.03  | -1.63    | 1.03  | -1.03           | 1.03       | -1.03            | 1.03  | 3.5      | 2 5      | 2 5      | 10.2  | -1.03        | 1.03  | -1.03 | .03        | 03             | 2              |               | 2 5   | 3 :         | 3 .   | 7.7   |     | Kirec      |        | 8.6    | 9.6    |     |                |
| M/82          | ٠ ٥  | <b>6</b> 0 | æ        | •           | ~        | ~        | •            | 1     |       | •   | -        | m          | -     | •     | ۰ ۳   | , ,   | ? \$     | ?:         | 3 =      | 2 5   |            |       | ; ;   | ;          | ; ;        | 7.    | 81       | 7     | -15             | -          | ~                | 7     | `        |          | 9 2      | ? =   | 13           | =     | =     | =          | 2              | = :            | 2 9           | ~ •   | <b>20</b> ( |       | ~ «   | ' ' | <b>S</b> : | 3/82   | ÷ ;    |        |     |                |
| ç             | ,    | 0.5        | -0.2     | 0.5         | -0.2     | 0.5      | -0.2         | 0     | ,     | 7.0 | 0.2      | -0.2       | 0.2   | 0     |       |       | ء ڊ<br>و | 7 6        | 9 6      | 7.0   | 7 6        | , ,   | ,     | 6          | . 0        | 0.2   | -0.2     | 0.5   | -0.2            | 0.3        | -0.2             | 0.5   | 7.0      | 9 6      | , ,      | 0.2   | -0.2         | 0.2   | -0.5  | 0.5        | -0.5           | 0.5            | -0.2          | 7.0   | 7.0-        | 7.6   | , c   |     | *C         |        | 9.6    | 0      |     |                |
| <b>*</b> 6    | 6.79 | 83.0       | 88.2     | 88.2        | 86.9     | 89.5     | 87.6         | 88    |       | 6   | 7        | 89.5       | 88.3  | 86.2  |       | 2 2   | 5 5      |            | 7.5      | : ;   |            |       | 2 3   | 0          | 3          | 19.7  | 47.8     | 48.4  | <del>5</del> .1 | 45.8       | 45.3             | 6.0   | <u>.</u> | Ç ;      |          | 4.6   | 49.9         | 53.0  | 55.0  | 103        | 63.3           | 67.0           | 2.5           | 9.6   | 7.5         | 2 :   | 7.7   |     | RHBot      | ••     |        |        |     | 54.1           |
| #/m2          | 17   | 753        | ş        | -419        | <b>₽</b> | -413     | -416         | 917-  | 1     |     | Ŧ        | 67         | -420  | ξ     | 3     | ;     |          | 6          | 070      | 1046  |            | 101   | 13.   | -1455      | -1507      | -1540 | -1554    | -1292 | -1518           | 1481       | -1377            | 9 :   | 151-     | 1217     | 1000     | -38   | -865         | -,51  | -645  | -534       | =              | <u>چ</u>       | ĝ:            | ç     | <u> </u>    | ;     | 3     |     | 3          | 2/82   | ?      | -18.2  |     |                |
| M/02          | 3 9  | \$3        | \$       | 424         | ₹        | 124      | 423          | 100   | 5     | 2   | \$       | 423        | 424   | €     | =     | 3     | į        | 2 3        | 3        | 9     | 3          | 5     | 929   | 644        | 653        | 099   | 199      | 623   |                 | 655        | 638              | 3     | 3        | 200      | 283      | 28    | 562          | 3     | 254   | 493        | 112            | 9              | 19 5          | Ç Y   | £ :         | 3 5   | 3 2   |     | ē :        | 57/F   | ?<br>? | 2.7    |     |                |
| <b>k</b> P2   | 5 6  | 9.0        | 0.0      | 0.01        | 0.01     | 0.0      | 0.01         | 90    | 8     | 3 : | 0.00     | 0.01       | 0.01  | 0     | 2     | 5 6   | 5 6      | 70.0       | 3 3      | 5 6   | 0.0        | 5 6   | 00.0  | 0.08       | 0.09       | 01.0  | 01.0     | 0.08  | 0.09            | 0.08       | 0.07             | 0.08  | 0.0      | 3 6      | 0.00     | 0.03  | 0.04         | 0.03  | 0.05  | 0.05       | 0.01           | 0.01           | 9.0           | 0.0   | 10.0        | 5 6   | 3 6   | :   | ₩ ;        | Z .    |        |        |     | 0.04           |
|               | 77.0 | -0.28      | -0.25    | -0.20       | -0.23    | -0.23    | -0.23        | -0.76 | 70    |     | -0.17    | -0.17      | -0.13 | -0.15 | 51 0- |       | = =      | 3          | 97.0     | 3 6   |            |       | 98.0  | 0.76       | 0.84       | 0.82  | 6.76     | 0.47  | 09.0            | 0.58       | 0.48             | 0.53  | 60.0     | 3.0      | 60.0     | 0.02  | -0.09        | -0.17 | -0.24 | -0.27      | -0.29          | -0.3<br>E. 6   | 2 6           | 77.0- | 77.0-       | 97.0  | -0.26 | ,   | ; ·        | ت      |        |        | :   | 0.40           |
| *Pa           | ; ;  | 2.28       | 2.29     | 2.30        | 2.28     | 2.26     | 2.23         | 2.20  |       | 77. | 2.2      | 2.25       | 2.26  | 2.24  | 2 24  | ; ;   | 77.7     | 15.7       | 9.0      | 2,7   | , ,<br>, , | 3 5   | 2.60  | 2.57       | 2.55       | 2.54  | 2.51     | 2.45  | 2.39            | 2.42       | 2.41             | 2.42  | 76.7     | 2.39     | 3 2      | 2.33  | 2.37         | 2.41  | 2.41  | 2.52       | 2.51           | 2.52           | 5.53          | 9.7   | 6.5         | 9.    | 7.7   |     | Eabot      |        |        |        | ;   | 2.39           |
| kPa<br>2 31   |      |            | 5.29     | 2.30        | 2.23     | 2.26     | 2.23         | 2.20  | 2 2   | 7.7 | 2.23     | 2.26       | 2.27  | 2.25  | 2,7   | 2 6   | 97.7     | 3 :        |          | 3 6   | 64.6       | 7 68  | 2.69  | 2.65       | 2.64       | 2.63  | 2.61     | 2.53  | 2.48            | 2.50       | 2.48             | 2.50  | ;;       | 2.5      | 6        | 2.41  | 2.41         | 2.43  | 2.44  | 5.54       | 2.52           | 2.53           | 7.5           | 75.7  | 50.0        | ;     | 2.40  |     | _          | e.     |        |        |     | 2.43           |
| 2 %<br>24 73  |      | 24.65      | 24.48    | 24.36       | 24.24    | 24.11    | 23.98        | 23.86 | 7, 7, | 3 : | 23.66    | 23.59      | 23.53 | 23.42 | 23.42 | ;;    | 3 5      | 23.00      | 3.5      | 5 7 7 | 7.7        | 3, 3, | 25.82 | 26.31      | 26.79      | 27.23 | 27.60    | 27.75 | 27.92           | 28.08      | 28.17            | 28.24 | 07.07    | 28.20    | 27.93    | 27.80 | 27.58        | 27.34 | 27.12 | 26.91      | 26.69          | 26.48          | 77.67         | 76.12 | 2.02        | 10.01 | 25.60 |     | 11051      | ن<br>د |        |        |     | 25.77<br>26.85 |
| ၁<br>၇        | 2 5  | 20.42      | 20.23    | 20.35       | 20.13    | 20.01    | 19.30        | 19.68 | 77 01 |     | 5        | 20.03      | 20.03 | 20.11 | 5     | 20.00 | 2.53     | 2.5        |          | 24.21 | 3.5        | 24 24 | 24.46 | 24.57      | 24.64      | 24.68 | 24.70    | 24.29 | 24.28           | 24.36      | 24.27            | 24.37 | 24.13    | 23.80    | 23.68    | 23.79 | 23.68        | 23.59 | 23.46 | 23.66      | 23.37          | 23.15          | 21.22         | 3.5   | 23.07       |       | 22.03 |     | IMDOL      | د      |        |        | :   | 22.45          |
| 22.83         |      | 27.24      | 21.69    | 21.75       | 21.73    | 21.24    | 21.36        | 21.08 | 20 84 |     | 20.83    | 21.38      | 21.47 | 21.76 | 21.76 | 2 2   | 33.55    | 35.00      | 37 77    | 27 84 | 28 84      | 30    | 31.40 | 32.33      | 32.87      | 33.26 | 33.77    | 33.11 | 33.93           | 33.86      | 33.62            | 33.83 | 22.72    | 3 2      | 32.71    | 32.50 | 32.00        | 31.19 | 30.59 | 29.72      | 28.83          | 27.91          | 27.63         | 27.73 | 7.07        | 24.07 | 25.92 |     | labot      | د      |        |        |     | 31.42          |
| ر<br>20 و     | 3 5  | 20.55      | 20.22    | 20.33       | 20.13    | 19.95    | 19.85        | 19.62 | 10 53 |     | 14.7     | 20.00      | 20.03 | 20.03 | 20 00 | 20.00 | 2. 2.    | 22.04      | 27.0     | 37.7  | 2. 2.      | 24 77 | 25.01 | 25.08      | 25.21      | 25.28 | 25.29    | 24.74 | 24.80           | 24.83      | 59.5             | 27.80 | 26.32    | 2.5      | 23.91    | 23.99 | 23.80        | 23.66 | 23.49 | 23.65      | 23.33          | 23.10          | 73.07         | 23.10 | 20.00       | 3     | 21.99 |     | do N       |        |        |        |     | 22.63          |
| 2<br>20<br>60 | 3    | 5.5        | 2.€      | 77.2        | 21.49    | 21.00    | 21.11        | 20.82 | 20 59 |     | 3.5      | 21.20      | 21.29 | 21.60 | 21.60 | ,     | 3 2      | 25.50      | 2        | 28.5  | 200        |       | 32.25 | 33.09      | 33.70      | 34.07 | 34.52    | 33.56 | 34.52           | ₩.         | 2<br>2<br>3<br>3 | 7     | ? =      | 3 2      | 32.79    | 32.51 | 31.91        | 31.02 | 30.34 | 29.4       | 28.52          | 27.59          | 5.5           | 5     | 2 2         | 2 2   | 25.65 |     | do e       | د      |        |        | ;   | 31.81          |
| 9 ×3          | 3 9  | <u> </u>   | 191      | 951         | 163      | 162      | 157          | 155   | 3     |     | 3        | 162        | 158   | 9     | 9     | 2     | 3 9      | 2          | =        | ž     | : š        | 5     | 202   | 210        | 208        | 195   | 195      | 130   | 185             | 22         | £ :              | 3 9   | 2        | : :      | : =      | 99    | 173          | 112   | 169   | 168        | 3              | 9              | 2 2           | 9 5   | 2 2         | 3 3   | 5 3   | 2   | ž ;        | de)    |        |        | 3   | 2 28           |
| s/*           | • •  | ~ •        | -        | 2.9         | ÷.       | ٠.<br>۲. | 3.7          | 2.8   | ,     | : : | 7.       | œ;         | 3.9   | 7     | 7     | : :   | ; =      |            | ; ;      |       | -          | 2     | 2.6   | 2.9        | 3.7        | 3.6   | 3.6      | J. 3  | ۳.<br>۲         | <b>4</b> . | 9 9              | -     |          | -        | 7        | 7     | <b>\$</b> .5 | 0.    | 4,2   |            | •              | S .            | · -           |       | - ·         | ? :   | -     | =   | <b>-</b> 1 | S/     |        |        | ;   | 3.6.           |
| 2 (2          | ;    | 3 :        | <u>6</u> | 617-        | =        | -417     | <b>9</b> [7- | -415  | -413  | :   | -        | ÷          | -420  | 3     | 140   | 3     | , ,<br>, | 3 5        | 5        | 3.5   | 2          | -118  | -1257 | -1325      | -1374      | -1404 | -1418    | -1189 | -1382           | -135       | -1266            | 200   | 7071     | 1 1 2    |          | -321  | -816         | 716   | -627  | - 238      | Ę:             | Ş :            | ç             | 75.   | Ç           | 2     | į     |     | 9          | 74/13  |        | 18.0   |     |                |
| <u>~</u> €    | 2    | Ş          | 2        | <b>4</b> 24 | ₹        | 423      | 422          | 422   | 420   | :   |          |            |       |       |       |       |          |            |          |       |            |       |       |            |            |       |          |       |                 |            |                  |       |          | ==       |          |       |              | 353   | ₹     | ÷ 52       | 3              | 3              | 3 9           | ĝ     | 9 5         | 3 5   | 3 3   |     |            | 7 90   | 3. F   | 16.9   |     |                |
| 7 <b>8</b> /  |      | ٠,         | 0        | 0           | 0        | 0        | •            | 0     | a     | •   | - •      | <b>C</b> ) | 0     | ~     | ~     | 4     | ? :      | 3          | =        | 2     | 2          | 172   | 183   | 192        | 158        | 200   | 202      | :28   | 202             | 194        | 99               | 2 2   | 2 2      | 7        | 103      | 85    | 8∼           | 2     | 36    | = :        | 21 :           | 2 9            | 2 °           |       | ^ 0         |       | ~     | •   | - :        | 70/58  |        |        |     |                |
| ~ -<br>*      |      | > •        | -        | •           | 0        | 0        | 0            | •     | -     | • • | <b>-</b> | 0          | 0     | 7     | 7     | *     | 3 5      | ;          | <b>Ģ</b> | ; ;   | 801-       | =     | -124  | 5.         | -13        | -135  | 2F<br> - | -133  | -136            | =          | Ξ:               | 27    | 1 5      | 3 6      | 3        | Ş     |              | Ħ,    | -19   | ۰          | 7              | <del>,</del> - | , ,           |       | 7           |       |       |     | 3          |        |        | ;<br>; |     |                |
| ~ °           |      | <b>-</b>   | 9        | 0           | 0        | 0        | 0            | 0     | 0     | • < | > <      | 0          | 0     | =     | 13    | 7     | 5        | 28.        | 3        | 3     | 553        | 199   | 133   | 385        | 840        | 878   | 883      | 659   | 875             | 633        | ē ;              | 9 5   | 3 5      | 5.28     | 392      | 356   | 569          | 188   | =     | <b>∵</b> ' | ~ «            | <b>&gt;</b> <  | <b>&gt;</b> < | > <   | > <         | •     | • •   | Ş   |            |        | 9      | 0      |     |                |
| M/82<br>5     |      | ۰,         | •        | •           | •        | ~        | ^            | ^     | œ     | •   |          | ^          | ^     | •     | ٠     | •     | - ۱      |            | •        | -10   | 7          | -30   | ₹     | -28        | <u>.</u> 5 | .13   | ÷        | -29   | \$2.            | ₹ :        | ; ;              | 7 9   | 7        | = =      | <b>=</b> | ?     | 99           | ۰     | Ŧ '   | ņ.         | <del>.</del> • | o -            |               |       | ٠,          | 4 (   | • •   |     | 3          | ,<br>, |        | 0.5    |     |                |
| 7 <b>8</b> /  |      |            |          |             |          |          |              |       |       |     |          |            |       |       |       |       |          |            |          |       |            |       |       |            |            |       |          |       |                 |            |                  |       |          |          |          |       |              |       |       |            |                |                |               |       |             |       |       |     | ي<br>ج     | 7 (7   | 2 -    | -1.0   |     |                |
| 7 m/m2        |      |            |          |             |          |          |              |       |       |     |          |            |       |       |       |       |          |            |          |       |            |       |       |            |            |       |          |       |                 |            |                  |       |          |          |          |       |              |       |       |            |                |                |               |       |             |       |       | 5   | - 3        | 7 7    | 7      | -      |     |                |
| % ₽<br>•      | 2    | ? ?        | £ ;      | <b>9</b> 7- | <b>?</b> | 5.       | -36          | 7.    | F-    | ,   | Ģ        | 97         | -25   | -55   | -22   | 7     | . 2      | , <u>e</u> | 212      | 23    | 368        | 2     | 533   | <b>288</b> | 632        | 999   | 979      | 89    | 8               | \$3        | ž 3              | e s   | ; ;      | 3        | 230      | 264   | 78           | 6     | : :   | <b>:</b>   | , ·            | 2              | 3 5           | ? ?   | ;           | ; ;   | ; ×,  | -   | • 5        |        |        | -0.8   |     |                |
| 0.5           | : -  | <u> </u>   | ?        | 7.0         | 5.5      | 3.0      | 3.5          | 0.4   | 5.5   | 4   |          | S.         | 6.0   | 6.5   | 7.0   | 1.5   |          |            | 0.6      | 5     | 10.0       | 10.5  | 11.0  | 11.5       | 12.0       | 12.5  | 13.0     | 13.5  | 7.0             | 5          | 0.51             | 2.5.5 | . ×      | 17.0     | 17.5     | 18.0  | 18.5         | 13.0  | 5.61  | 20.0       | 2.5            | 2.1.2          | 3 5           | 22.5  | 2, 2,       | 3 5   | 24.0  |     |            |        |        | NSUR   | 100 | DAVE           |

SYSTEM 7, JULY 23, 1986, DATA FROM KONZA PRAIRIE, KANSAS

|                                     |             |              |              |       |                   |        |                |            |                 |                |          |          |           |       |          |       |               |            |          |                    |           |       |              |            |            |                  |       |       |       |       |          |              |      |      |      |       |      |      |      |      |      |     |          |              |       |                                                              |   |            | *          |   |
|-------------------------------------|-------------|--------------|--------------|-------|-------------------|--------|----------------|------------|-----------------|----------------|----------|----------|-----------|-------|----------|-------|---------------|------------|----------|--------------------|-----------|-------|--------------|------------|------------|------------------|-------|-------|-------|-------|----------|--------------|------|------|------|-------|------|------|------|------|------|-----|----------|--------------|-------|--------------------------------------------------------------|---|------------|------------|---|
|                                     | œ           | -2 22        | -2.4         | -2.24 | -2.18             | -2.IB  | -2.02          | -1.98      | -2.04           | -2.14          | ÷.3      | 2.5      | -1.7      | 63.   | 0.14     | 0.32  | 0.3           | 5.5        |          | 0.51               | 0.50      | 0.50  | 0.49         | 0.45       | 0.40       | 0.35             | 2 6   | 0.28  | 0.23  | -0.01 | -0.16    | -0.10        |      |      |      |       |      |      |      |      |      |     | œ        |              |       |                                                              |   | -0.7       | 6.9        |   |
|                                     | Hirec       | 101          | . 5          | 1.03  | -1.03             | 3 5    | 3 7            | -1.03      | 1.03            | -1.03          | 3 5      | 3 5      | - 1.03    | 0.0   | 1.03     | -1.63 | 2.5           | 5.5        | 3 2      | 100                | -<br>20.1 | 1.03  | -1.03        | 1.03       | -1.03      | 3 5              | 3 5   | 3 3   | 1.03  | -1.03 | 1.03     | 0.00         |      |      |      |       |      |      |      |      |      |     | Mrec     |              | 8:    | 8 8                                                          |   |            |            |   |
|                                     | \$ 6        | 7 Y          | ~            | -     | -                 | • •    | ~ ~            | ~          | ~               | ~              | , n      | · ·      | · ~       | 7     | <u>`</u> | ۴     | ٠:            | 7          | -        | ÷                  | -11       | 81-   | -<br>-<br>-  | -12        | <u> </u>   | ? ?              | ۰ ۳   | ب     | -     | 'n    | æ        | •            |      |      |      |       |      |      |      |      |      |     | ęş       | 7.0          | ن     | <del>,</del> 0                                               | • |            |            |   |
|                                     | £           |              |              |       | 7.0               | . ·    | 7.0            | 7.0        | 0.5             | 0.5            | 7.6      | , ç      | , ?;<br>; | 0.0   | 0.2      | 0.5   | 0.5           | ~ c        | , ,      | . ~                | 0.5       | 0.2   | 0.5          | 0.2        | ې چ        | , ,              | , ,   | 2.6   | 0.2   | 0.2   | 0.2      | 0.0          |      |      |      |       |      |      |      |      |      |     | =        | -            | 0.0   | 0 0                                                          | : |            |            |   |
|                                     | to d        |              |              |       |                   |        | . 9            |            |                 |                |          |          |           |       |          |       |               |            |          |                    |           |       |              |            |            |                  |       |       |       |       |          |              |      |      |      |       |      |      |      |      |      |     | tbot     | ••           |       |                                                              |   |            | 36.1       |   |
|                                     |             |              |              |       |                   |        | 6 W            |            |                 |                |          |          |           |       |          |       |               |            |          |                    |           |       |              |            |            |                  |       |       |       |       |          |              |      |      |      |       |      |      |      |      |      |     |          |              | ۰,    | ~ •                                                          | : | 37 5       | ÷ %        |   |
|                                     | 5 S         |              |              |       |                   |        | · -            |            |                 |                |          |          |           |       |          |       |               | •          |          |                    |           |       |              |            |            |                  |       |       |       |       |          |              |      |      |      |       |      |      |      |      |      |     | 5        | 12 6.3/      | <br>  | 3.9 33.2<br>0.5 3.8                                          | ! |            |            |   |
|                                     |             | _            |              |       |                   |        | 5 5            |            |                 |                |          |          |           |       |          |       |               |            |          |                    |           |       |              |            |            |                  |       |       |       |       |          |              |      |      |      |       |      |      |      |      |      |     | ¥        | -            | ₹,    | m 0                                                          |   | <b>-</b> - |            |   |
|                                     | ٠:          | 2 9          | Ģ            | ģ     | ٠<br>٩            | ب<br>ج | ÷ ÷            | Ģ          | 9.0             | 9              | Ģ ;      | 9        | Ģ         | 0     | Ģ        | Ģ     | ٠<br>،        | 9 9        | 9        | Ģ                  | 9.0       | Ģ.    | Ģ.           | ò          | ٠<br>٩     | 5 5              |       | 9     | 9.    | ģ     | ė        | ٥.           |      |      |      |       |      |      |      |      |      |     | ٠        | 2            |       |                                                              |   | 0.0        | Ş          |   |
|                                     | ₩.          | 2 (          | 0.24         | 0.20  | 0.23              | 3.5    | 0.22           | 0.25       | 0.25            | 0.27           | 0.23     | 2 0      | 6.7       | 0.18  | -0.09    | -0.25 | -0.53<br>5.53 | 2 9<br>9 9 | 2.0      | -0.62              | -0.59     | -0.58 | -0.60        | 0          | <b>⊕</b> : | 9 9              | 5 6   | 6.5   | -0.24 | 0.00  | 0.13     | 0.09         |      |      |      |       |      |      |      |      |      |     | ₽        | ပ            |       |                                                              |   | -0.09      | ? =<br>•   |   |
|                                     | Eabot       | 2 3B         | 2.38         | 2.43  | 2.4               |        | ; ;<br>;       | 2.41       | 2.41            | 2.41           | 2.5      | 2.35     | 2.35      | 2.33  | 2.34     | 2.38  | 2.33          | 3.5        | 2.45     | 2.43               | 2.40      | 2.42  | 2.46         | 2.42       |            | <br>5            |       | 2.33  | 2.37  | 2.36  | 2.35     | 2.38         |      |      |      |       |      |      |      |      |      |     | Eabot    | £92          |       |                                                              |   | 2.39       | 1.19       |   |
|                                     | Estop       | 2.37         | 2.38         | 2.42  | 2.43              | ;;     |                | 2.40       | 2.41            | 2.40           | 5.5      | 7.7      | 2.        | 2.31  | 2.30     | 2.32  | 2.33          | 2.5        | 2.38     | 2.35               | 2.32      | 2.34  | 2.37         | 2.34       | 2.32       | 3.5              | 2,7   | 2.25  | 2.30  | 2.30  | 2.29     | 2.32         |      |      |      |       |      |      |      |      |      |     | Eatop    | ¥P3          |       |                                                              |   | 2.35       | . 1851     |   |
|                                     | Soil        | . 48<br>. 48 | 5.34         | 25.24 | 25.13             | 30.0   | 24.88          | 24.81      | 34.75           | 1.68           | 3 S      | 7 2      | 2.38      | 24.36 | 24.49    | 17.72 | 2.5           | <u>.</u> : | 98.08    | 26.49              | 26.92     | 27.36 | 77.81        | 91.82      | 78.41      | 28.67<br>8.67    | 96    | 29.02 | 79.62 | 9.00  | 18.81    | 28.70        |      |      |      |       |      |      |      |      |      |     | Tso11    |              |       |                                                              |   | 26.24      |            | 1 |
|                                     | Tubot       |              |              |       |                   |        |                |            |                 |                |          |          |           |       |          |       |               |            |          |                    |           |       |              |            |            |                  |       |       |       |       |          |              |      |      |      |       |      |      |      |      |      |     | Inbot    |              |       |                                                              |   | 23.39      | 2 2        | • |
|                                     |             |              |              |       |                   |        | 25.76          |            |                 |                |          |          |           |       |          |       |               |            |          |                    |           |       |              |            |            |                  |       |       |       |       |          |              |      |      |      |       |      |      |      |      |      |     | Tabot    |              |       |                                                              |   | 30.75      | 12.73      |   |
|                                     | Tutop       | 21.92        | 21.94        | 22.09 | 22.11             | 22 10  | 22.22          | 22.23      | 22.21           | 22.08          | 2.5      | 21.66    | 21.66     | 21.67 | 22.06    | 22.49 | 22.80         | 3.5        | 22.55    | 24.01              | 24.09     | 24.38 | 24.70        | 24.72      | ₹.         | %<br>%<br>%<br>% | 24.71 | 24.63 | 24.86 | 24.63 | 24.43    | 24.62        |      |      |      |       |      |      |      |      |      |     | Tutop    |              |       |                                                              |   | 23.19      | 10.94      |   |
|                                     | Tatop       | 25.81        | 25.80        | 25.64 | 25.55             | 35.90  | 25.96          | 26.42      | 26.30           | 25.95          | 25.55    | 25.48    | 25.48     | 25.94 | 27.44    | 28.54 | 29.46         | 9 S        | 32.84    | 33.62              | 34.31     | 35.09 | 35.79        | 36.29      | <br>       | 2.8              | 37.46 | 37.4  | 37.45 | 36.69 | 36.00    | 36.26        |      |      |      |       |      |      |      |      |      |     | Tatop    | ပ            |       |                                                              |   | 30.65      | 12.68      |   |
|                                     | S S         | 20           |              |       |                   |        |                |            |                 |                |          |          |           |       |          |       |               |            |          |                    |           |       |              |            |            |                  |       |       |       |       |          |              |      |      |      |       |      |      |      |      |      |     | UDIR     | deg          |       |                                                              |   |            |            |   |
|                                     | <b>&gt;</b> | ^ <b>+</b>   | v            | ۰.    | ٠. ن <sup>د</sup> | ? ;    | : ;;           | <b>?</b> ; | 3.6             | m :            | 7.6      |          | 2.8       | 2.8   | 3.3      | 3.2   | ٠. ٠          | o          | - 60     | 65<br><del>4</del> | 5.4       | æ.    | <u>-</u>     | 7          | <br>       |                  |       | 7     | 5     | 6.3   | 7        | <b>.</b> .3  |      |      |      |       |      |      |      |      |      |     | >        |              |       |                                                              |   | ?;         | : <u>:</u> |   |
| SASM                                | 9 5         | 0            | 0            | 0     | 0 0               | • •    |                | 0          | 0               | ۰ ،            | <b>-</b> |          | 0         | ٥     | •        | ۰.    | 0 0           |            | 0        | 0                  | 0         | 0     | 0            | ۰ ،        | >          |                  |       | 0     | 0     | 0     | 0        | 0            |      |      |      |       |      |      |      |      |      |     | ę        | 787          | 0.0   | 0.0                                                          |   |            |            |   |
| 1E, K                               | ٠<br>چ رو   |              | 0            | 0     | 0 0               | •      |                | 0          | 0               |                |          |          | 0         | 0     | 0        |       | 0 0           | <b>-</b>   |          | 0                  | 0         | 0     | 0            | ۰ ،        | >          | 00               |       |       | 0     | 0     | 0        | 0            |      |      |      |       |      |      |      |      |      |     | ų,       | /#2 #.       | 9.0   | 0.0                                                          |   |            |            |   |
| DATA FROM THE KONZA PRAIRIE, KANSAS | 9 7         | -            | 1            | ~     | ~ ~               | - 4    | •              | •          | •               | ۰ د            | ۰ ،      | 2        | 2         | n     | 2        | s :   | 2 2           | 5 5        | 3 =      | 981                | 186       | 138   | 705          | ž          | e .        | 33               | 961   | 28    | 7     | Ξ     | 35       | 121          |      |      |      |       |      |      |      |      |      |     |          | •            |       | : :                                                          |   |            |            |   |
| KON 3                               | Kup<br>(4)  | 17           | <del>-</del> | 7     | → -               | ٠,     | · <del>-</del> | 7          | 7               | ۰.             |          | ۳,       | ņ         | -23   | .\$¢     | ÷ :   | <b>P</b>      | £ 5        | 27.      | -128               | -135      | 138   | -139         | <u> </u>   | 3          | 25               | =     | -125  | Ξ     | ۲٠-   | -59      | <del>.</del> |      |      |      |       |      |      |      |      |      |     | ₫.       | 3/82         | 9 9   | , 9<br>,                                                     |   |            |            |   |
| KO# TH                              | E KG        |              | 0            | 0     | 0 0               | • -    |                | 0          | 0               | 0 (            | <b>-</b> | 2        | 2         | 89    | 8        | 382   | 7             | 9 5        | <b>§</b> | 7                  | 908       | 825   | 988          | <b>=</b> : | 9          | 200              | 9     | 162   | 23    | Ξ     | 321      | £3           |      |      |      |       |      |      |      |      |      |     | £        | 3/82         | 32.5  | 3.5                                                          |   |            |            |   |
| PATA F                              | 9           | 7 ~          | m            | m     | m #               | , -    | , m            | ~          | 7               | ~ •            | n -      | . "      | ~         | 7     | 0        |       | ٠,            |            | : =      | ភ                  | -26       | -58   | <del>.</del> | ۶, ۶       | ?          | 5,7              | -2    | :     | -50   | 97    | <b>;</b> | 7            |      |      |      |       |      |      |      |      |      |     | 3        | 3/82         | 80. q | 9 0                                                          |   |            |            |   |
| 1886,                               | ₩ (4/2      | ÷            | 97-          | 유 :   | 우 =               | : =    | :              | ╤          | ٠,              | <del>ه</del> د | P 4      | <u>ٺ</u> | •         | -19   | 25       | £ :   | 2 2           | 2 2        | 5.5      | 332                | 368       | 396   | <b>#</b>     | 3 :        | 3          | 25               | 485   | 99    | ¥     | Ę.    | -322     | -350         |      |      |      |       |      |      |      |      |      |     | <b></b>  | 3/2          |       | -2.1                                                         |   |            |            |   |
| ζ,                                  | ± 6         |              |              |       |                   |        |                |            |                 |                |          |          |           |       |          |       | ភូទ           |            |          |                    |           |       |              |            |            |                  |       |       |       |       |          |              |      |      |      |       |      |      |      |      |      |     | <b>=</b> | )/a2         | · ·   |                                                              |   |            |            |   |
| 7, JULY                             | 9 7         |              |              |       |                   |        |                |            |                 |                |          |          |           |       |          |       | 213           |            | -        | -                  | •         | •     | -            | •          |            |                  | -     |       | •     |       |          |              |      |      |      |       |      |      |      |      |      |     | •        | <br> -<br> - |       | <br>                                                         |   |            |            |   |
| SYSTEM 7                            | Ħ.          | _            | 1.0          | 5     | 2.0<br>2.5        |        | 3.5            | 0.4        | <del>.</del> .5 | 0.5            | ? 4      | .5       | 7.0       | 7.5   |          |       |               |            |          |                    |           |       |              |            |            |                  |       |       |       |       |          |              | 18.0 | 19.0 | 19.5 | 20.02 | 21.0 | 21.5 | 22.5 | 23.0 | 23.5 | 9.5 | 111      | •            |       | NSUM<br>NSUM<br>NSUM<br>NSUM<br>NSUM<br>NSUM<br>NSUM<br>NSUM | i | TAVE       | MAVE       |   |
|                                     |             |              |              |       |                   |        |                |            |                 |                |          |          |           |       |          |       |               |            |          |                    |           |       |              |            |            |                  |       |       |       |       |          |              |      |      |      |       |      |      |      |      |      |     |          |              |       |                                                              |   |            |            |   |

## 18

## ORIGINAL PAGE IS OF POOR QUALITY.

| ex<br>ex       |             | -2.38      | 50.7          | -3.80       | -2.40       | -1.75 | -2.47     | -6.          | 11.34    |          | 3 : | 3        | 1.40   | 1.22         | 0.72  | 0.72      | -0.18     | 0          | -     | 0.29  | 7     | 0.96   | 0.95     | 0.92  | 0.92     | 8.           | 0.99         | 6.87  | 5.0        | 2.0   | 0 %   | 0.93   | 0.74        | 0.08    | 3 :     | 2 5   | 2 2   | 0.10  | -0.55      | -0.40<br>- | -1.67      | 2.5      | 2.5        | 7     | . Y   | 18    | 15.29 | 9    | Š      |      |       |              | 5.5   | 7.0          |
|----------------|-------------|------------|---------------|-------------|-------------|-------|-----------|--------------|----------|----------|-----|----------|--------|--------------|-------|-----------|-----------|------------|-------|-------|-------|--------|----------|-------|----------|--------------|--------------|-------|------------|-------|-------|--------|-------------|---------|---------|-------|-------|-------|------------|------------|------------|----------|------------|-------|-------|-------|-------|------|--------|------|-------|--------------|-------|--------------|
| Hirec          |             |            |               |             |             |       |           |              |          |          |     |          |        |              |       |           |           |            |       |       |       |        |          |       |          |              |              |       |            |       |       |        |             |         |         |       |       |       |            |            |            |          |            |       |       |       | -1.67 | 3    | 2      | 0.00 | 8.    | 0.00         |       |              |
| 3              | 70/1        | σ.         | =             | •           | •           | S     | œ         | 읔            | Ξ        | 2 :      | 3 : | 71       | 12     | 2            | ~     | n         | 9         | 7          | 7     | -10   | ځ.    | -33    | 7        | -18   | -53      | -53          | -34          | ÷.    | <b>?</b> ? | , ,   | ; =   | : =    | 12          | 9       | 23      | 2 =   | : :   | 77    | 22         | 23         | <b>5</b>   | % :      | ≥ 5        | ? 9   | : :   | 2 :   | 2     | 3    |        | 7    | -0.3  | 0.5          |       |              |
| =              |             | 0.2        | -0.2          | 0.3         | -0.5        | 0.2   | -0.2      | 0.5          | -0.2     | : :      |     | 7.0      | 0.7    | -0.5         | -0.2  | -0.2      | 0.0       | 0.2        | -0.2  | G     | -0.2  | 0      | -0.2     | 0.5   | -0.2     | 0.5          | -0.2         | 0.5   | 7.0        | 7.6   | . 0   | -0.2   | 0.2         | -0.2    | 0.5     |       | . 0   | -0.2  | 0.5        | -0.2       | 0.2        | 7.0      | 9 6        | 7.0   | -0.7  |       | -0.3  |      | :      |      | 0.0   | 0.0          |       |              |
| 100H3          | •           | 79.8       | 84.7          | 85.5        | 83.9        | 80.4  | 82.2      | 86.7         | 90.0     | 6        |     | 5.5      | 37.5   | 97.6         | 97.4  | 97.4      | <b>3₹</b> | 75.3       | 73.3  | 70.3  | 70.5  | 9.09   | 50.3     | 46.6  | 41.9     | ₹:5          | <b>4</b> 0.2 | 37.7  |            | , ×   | 36.0  | 36.8   | 38.7        | 38.6    | . S. S. | 9.97  | 9     | 48.2  | 57.0       | 61.7       | 5.7        | 2 :      | 7 5        | 3 5   | 83.0  | 15.7  | 88.2  | 420  | 2      | •    |       |              | 65.4  | 4.6          |
| 3              | 7           | -450       | -445          | -131        | -128        | Ŧ     | -445      | 75           | -418     | 7        | ;   | <u>.</u> | Ş      | -397         | -387  | -387      | -400      | -475       | 7.7   | -475  | Ę     | -568   | -670     | -682  | -649     | -114         | -73          | ÷ ;   | - 743      | 124   | 769-  | -117   | -670        | -673    | 503     | 203   | -578  | -501  | -487       | -45        | £33        | ÷ :      | = 5        | 3 =   | .0    | 78.   | -387  | ä    | 3      | ₹    | -28.2 | -16.9        |       |              |
| 5 °            | _           |            |               |             |             |       |           |              |          |          |     |          |        |              |       |           |           |            |       |       |       |        |          |       |          |              |              |       |            |       |       |        |             |         |         |       |       |       |            |            |            |          |            |       |       |       |       | ć    | ,      | 29.0 | 42.9  | 16.2         |       |              |
| ج<br>ع         | 2           | -0.02      | -0.01         | -0.0        | -0.01       | -0.01 | -0.01     | -0.01        | 0.0      | 6        | 3 3 | 5 6      | 9.03   | 0.0          | 0.0   | 0.0       | -0.05     | -0.05      | -0.04 | -0.05 | -0.06 | -0.10  | -0.10    | -0.10 | -0.11    | -0.13        | -0.13        | -0.12 | -0.12      | 2 2   | -0.12 | -<br>- | -0.10       | -0.10   | -0.03   | 5 9   | -0.06 | -0.06 | -0.05      | -0.06      |            | -0.03    | 2 6        | 9 6   | 0.0-  | -0.01 | 0.0   | ų    | , ĉ    | •    |       |              | -0.05 | -0.09        |
| = -            | :<br>د د    | 0.53       | 0.80          | 0.67        | 0.46        | 0.38  | 0.51      | 0.73         | 0.65     | 0 75     | : - | 7        | 5      | 0.7          | 0.36  | 0.36      | 0.10      | -0.08      | -0.10 | -0.21 | -5.47 | -1.51  | -1.51    | -1.4  | -1.56    | -1.97        | -1.9         | 9 :   | 0,1.       | 2 2   | - 50  | 1.51   | -1.11       | -1.05   | 7.5     | 7.6   | -0.06 | -0.08 | 0.41       | 0.34       | 0.71       | 77.1     | 9 6        | 6.0   | 5.5   | 1.92  | 2.21  | Ę    | ,      | •    |       |              | -0.13 | 98.0         |
| rabot<br>FBs   |             | 2.28       | 2.28          | 2.27        | 2.23        | 2.23  | 2.16      | 2.13         | 5.09     | 2 04     |     | 6        | 8      |              | 1.86  | 1.86      | 2.06      | 1.95       | 1.94  | . 93  | 16.2  | 2.06   | 1.91     | 1.80  | 1.69     | 1.76         | 1.7          | 19:1  | <u> </u>   | (5.1  | 1.57  | 1.65   | 1.65        | 1.65    | 2 :     | 5.7   | 1.62  | 1.66  | 1.72       | 1.78       | 1.72       | 7 .      | 7 :        | 70.1  | 5.    | 1.58  | 1.57  | 1040 | 100    | •    |       |              | .83   | 2.3          |
| Faich          | , .         | 2.21       | 2.26          | 2.26        | 2.26        | 2.23  | 2.15      | 2.12         | 5.09     | 2 06     | 3 2 | 5.       | 3      |              | 1.87  | 1.87      | 2.00      | 1.90       | 1.93  | .83   | 1.95  | 1.96   | 1.81     | 1.70  | 1.58     | 1.63         | 1.62         | . 49  |            |       | 5     | 1.54   | 1.55        | 5.5     |         | 5     | . 56  | 1.61  | 1.68       | 2.7        | 2 :        | 2.       | à 9        | 9 9   | 85    | 5     | 1.58  | 9    | 101    | •    |       |              | 1.78  | 1.6371       |
| 200            | ; د         | 26.35      | 26.05         | 25.78       | 25.57       | 25.43 | 25.22     | 24.95        | 24.63    | 24.33    | 5 6 | 2 :      | 29.67  | 23.32        | 22.79 | 22.79     | 22.98     | 23.40      | 23.69 | 23,99 | 24,30 | 24.93  | 25.60    | 56.06 | 26.67    | 27.44        | 28.36        | 29.57 | 20.72      | 22.60 | 32.81 | 33.40  | 33.09       | 32.97   | 32.38   | 31.78 | 30.57 | 29.94 | 29.19      | 28.43      | 27.75      | 76.79    | 76.43      | 25.50 | 24.94 | 24.42 | 24.08 | 1001 |        | ,    |       |              | 27.05 | 28.98        |
| 10.2           | ; د         | 20.78      | 20.41         | 20.36       | 20.45       | 20.38 | 19.78     | 19.27        | 18.80    | 18 27    |     |          | 10.69  | 9 9          | 16.51 | 16.51     | 18.44     | 18.64      | 18.73 | 18.88 | 13,49 | \$9.02 | 20.53    | 20.10 | 19.80    | 20.40        | 20.44        | 19.82 | 5 5<br>5 5 | 3 : 5 | 19.61 | 20.18  | 19.92       | 8.6     | 3.6     | 13.77 | 18.65 | 18.80 | 18.38      | 18.4       | 19.2       | 10.82    | 20.97      | 16.07 | 15.05 | 14.77 | 14.48 | 43   |        | ,    |       |              | 18.77 | 19.45        |
| 1900           | ;<br>;<br>• | 23.31      | 22.26         | 22.11       | 22.42       | 22.81 | 21.93     | 20.83        | 19.93    | =        |     | 3 3      | 9      | 9.9          | 16.77 | 16.77     | 19.41     | 21.66      | 22.04 | 22.63 | 23.30 | 26.22  | 28.11    | 28.41 | 29.13    | 29.99        | 28           | 30.42 | 20.2       | 20.00 | 30.52 | 30.97  | 30.11       | 30.15   | 2 . 6   | 23.5  | 26.65 | 26.45 | 24.23      | 23.47      | ¥ 55. E    | 24.42    | 37.00      | 19.20 | 15.85 | 16.25 | 15.67 | 1345 |        | •    |       |              | 23.94 | 27.54        |
| 01             | ,           | 20.88      | 20.60         | 20.51       | 20.53       | 20.43 | 19.87     | 19.46        | 19.01    | 18.58    | 2   | 17:01    | 7.7    | 17.08        | 16.68 | 16.68     | 18.20     | 18.35      | 19.48 | 18.56 | 19.05 | 13.61  | 19.36    | 19.14 | 18.75    | 19.15        | 19.21        | 7.5   | 2 2        | 98.98 | 18.56 | 19.18  | 19.08       | 1.61    | 9 9     | 18.85 | 18.35 | 18.49 | 18.27      | 18.23      | 17.76      | 9 5      | 20.01      | 2 2 2 | 15.59 | 15.42 | 15.36 | 12.0 |        |      |       |              | 18.49 | 18.73        |
| de 19          | . :         | 23.89      | 23.06         | 22.11       | 22.87       | 23.18 | 22.43     | 21.55        | 20.57    | 19.85    | 2   |          |        | 17.58        | 17.13 | 17.13     | 19.50     | 21.57      | 21.93 | 22.41 | 22.82 | 24.71  | 26.59    | 26.96 | 27.56    | 28.01        | 28.43        | 8.8   | 3 . 5      | 29.20 | 29.01 | 29.44  | 28.99       | 23.03   | 3.5     | 28.17 | 26.57 | 26.36 | 24.67      | 23.80      | 22.6       | 5 5      | 3 6        | 5 7   | 18.42 | 18.16 | 17.87 | 1    |        |      |       |              | 23.80 | 26.65        |
| 3 0            | r<br>S      |            |               |             |             |       |           |              |          |          |     |          |        |              |       |           |           |            |       |       |       |        |          |       |          |              |              |       |            |       |       |        |             |         |         |       |       |       |            |            |            |          |            |       |       |       |       | 6141 | 3      | ì    |       |              |       |              |
| , <del>`</del> |             | -          | <del></del> ' | ~           | 2.2         | 2.5   | .8        | -:           | 0.7      | 5.0      | 2   | ; ;      | •<br>• |              | 9.5   | 0.5       | 6.0       | 2.4        | 2.3   | 0     |       | C 4    | .;<br>.; | 7     | 5.1      | S. C.        | ٠ <u>٠</u>   |       |            | 3     | 5.7   | 7      |             | -       |         | , .,  |       | 2.    | 1.6        | Ξ.         |            | ÷ .      |            | • · · |       | 0     | 2.5   | =    |        | ì    |       |              |       | 49.6         |
| 3              | •           | •          | •             | •           | •           | •     | •         | •            | •        | •        | •   |          | •      | •            | •     | •         | •         | •          | •     | •     | •     |        | •        | •     | •        | •            | •            | •     |            | •     |       |        |             |         | •       |       |       | •     |            |            |            |          |            |       |       |       |       | -    | 1/1/2  |      | -24.1 |              |       |              |
| , LGI          |             | 07         | 7             | <b>4</b> 05 | €           | 428   | 412       | 388          | 384      | 383      | 133 | 7 2      | 5      | 5/5          | 386   | 386       | 407       | ê          | 399   | 45    | 356   | 3      | 35       | 57    | 383      | 288          | 383          | 2 S   | 707        | 363   | 395   | 405    | <b>4</b> 55 | 82 £    | , ,     | 617   | 83    | =     | 386        | <u> </u>   | 3.6        | 5 5      | <b>;</b> ; | 3     | 352   | 54.5  | 358   | -    | 3.1/22 |      | 18.6  |              |       |              |
| ,              |             | -          | -             | ~           | 7           | -     | -         | -            | S        | -        | •   | •        | ۰,     | - ;          | 8     | <b>58</b> | \$        | ŝ          | 128   | ?     | 223   | ਵ੍ਹੇ   | 77       | 5.    | 433      | 32           | 92           | Ç è   | 8 2        | 382   | 376   | 580    | 355         | 50.     | 3 5     | 2 :53 | 8     | 119   | ₹.         | , S        | ~ .        | 7 (      | 7 -        | • •   | ٠ ~   | **3   | 2     | ~    | 63/62  | 17.6 | 13.1  | 0.4          |       |              |
| , ve           | 7           | 0          | •             | -           | ·           | 7     | •         | <del>.</del> | ₹        | 7        | . ; | ,        | 7 (    | 7.           | -     | -         | Ę         | ٠ <u>٠</u> | -25   | - 38  | -52   | -103   | Ξ        | -133  | 3        | <del>-</del> | Ę.           | ÷ ;   | 7 1        | 3 2   | -132  | -134   | Ξ,          | <u></u> | 70      | 3 %   | ¥7-   | 7     | ۰          | ~          | <b>∵</b> ' | <b>-</b> | > -        |       | 0     | 0     | 0     | 3    | 1/12   | 7    | 7     | -0.1         |       |              |
| , ver          |             | -          | -             | ~           | -           |       | -         | 2            | ~        | ~        |     | . ~      | ٠.     | - ;          | 38    | 82        | 163       | 221        | Ξ     | 166   | 303   | 636    | 853      | 164   | 822      | 838          | ē :          | 17,   | 5.75       | 8     | 808   | 779    | 620         | 25.5    |         | 2     | 182   | 157   | ස<br>ද     | ÷ '        |            |          |            | , –   | ٠     | 7     | -     | 5    | 3/12   | 24.9 | 24.3  | 9.6          |       |              |
| 3 2            | :           | =          | ≏             | 9           | =           | 15    | ≃         | <b>≘</b>     | 2        | 20       |     | 3 2      | •      | <b>.</b> 9 ; | 2     | 56        | 2         | ∷          | æ     | ~     | -     | 5.     | -13      | ÷     | 0.7      | 9            | <b>?</b> :   | ñ     | 9 5        | ; ;   | 9     | -55    | <u>.</u>    | ÷ :     | 7 5     | .2    | 61-   | -12   | •          |            | • 5        | : :      | 3 3        | : =   | 2     | 7.    | 56    |      | 3/62   | Υ,   | -     | 0.7          |       |              |
| , Z            | į `         | •          | ?             | ņ           | 7           | Ŧ     | •         | ņ            | 0        | -        | •   | •        | • •    | 7            | œ     | æ         | ÷106      | -121       | -63   | -12   | -109  | -201   | -232     | ÷.    | -360     | -38          | -289         | 2 6   | 200        | -266  | -264  | -244   | -227        | -220    | 7 7     | 5.5   | 93-   | 11-   | ÷;         | ? :        | <u>-</u>   |          | -          | ?     | 0     | 0     | •     | •    | 1/82   | 6.8  | 8.5   | -0.3         |       |              |
| #/#5           |             | <b>≘</b> ∶ | 2             | =           | œ           | 8     | 2         | 2            | _        | -        | •   | •        | ٠,     | ,            | -     | ~         | 2         | Ť          | ۴     | -51   | :5    | -136   | -221     | . 238 | -258     | -281         | -286         | 9 6   | 2,47       | -232  | -208  | -228   | -168        | -       | ? ?     | 7     | œ     | ŗ     | = '        | ٠,         | z :        | -        | - =        | 2     | -     | 0     | 2     | =    | 3/62   | .5   | ÷.    | 0.3          |       |              |
| 7 /R           | :           | 7          | ÷             | ÷           | <b>8</b> 2- | -58   | -33       | ş            | នុ       | ņ        | έ.  | : ;      | 3 :    | 97.          | 0     | 0         | =         | 136        | 25    | \$    | 191   | Ģ      | 485      | 3     | 33       | ဗ္ဗ          | 83 F         | 200   | 9          | 583   | 543   | 3.     | <b>:</b>    | - ·     | j ĝ     | ::    | 83    | 5     | <b>~</b> : | = :        | 7 7        | ?        | ; 5        | 7     | ÷     | 9     | SŦ-   | a    | 1/22   | 15.7 | 16.6  | 6.0-         |       |              |
| ¥              |             | 3          | 2             | 5           | 5.0         | 5.5   | 3.0<br>.0 | <br>         | <u>.</u> | <b>.</b> | 5   |          | ;      | ب د<br>د د   | 6.5   | 0.7       | 7.5       | 8.0        | a.5   | 9.0   | 5.    | 0.0    | 10.5     | 0.    | .:<br>.: |              | 5.5          | <br>  | 2 2        |       | 15.0  | 15.5   | 9           | 7 .     |         | 8     | 18.5  | 19.0  | 5.5        | 9 6        | 7.00       |          | 2          | 32.5  | 73.0  | 23.5  | 24.0  | ¥    | !      | NOS. | E051  | <b>M</b> SOM | TAVE  | EAVE<br>NGVE |

SYSTEM 8, JULY 20, 1986, DATA FROM THE AUNZA PRAIRIE, KANSAS

|          | œ        | 7.65            | 2 8      | 7.40      | 5.12     | 3.03       | 2.18       | 2.99   | 17.7   | 11.7    |        | <b>9</b>    | 3.51       | 3.51   | 10.1       | 0.15       | 0.05    | 0.47       | 1.16       | 0.86  | 6.9      | 90    | 0.95 | 1.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.18  | 1.28 | 1.19  | 3 4   | 1.16        | 0.92      | 0.49  | 0.35       | 0.77       | 6.83   | 79.0      | 6.0      | -0.18      | -1.79      | -4.76      | -5.10 | 3.5   | -2.86    | -3.12 | -3.31            | 8       |       |      |              |      | 5.6   | 9.6          |                |   |
|----------|----------|-----------------|----------|-----------|----------|------------|------------|--------|--------|---------|--------|-------------|------------|--------|------------|------------|---------|------------|------------|-------|----------|-------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------|-------|-------|-------------|-----------|-------|------------|------------|--------|-----------|----------|------------|------------|------------|-------|-------|----------|-------|------------------|---------|-------|------|--------------|------|-------|--------------|----------------|---|
|          | Frec     | 00              | 9        | 8         | 8        | 8          | 8          | 8.8    | 3 3    | 3 8     | 3 8    | 3 8         | 3 8        | 3 8    | 00.0       | 8          | 1.00    | 90.        | 9 :        | 8 8   | 3 8      | 8 8   | 66.0 | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 96.0  | 1.00 | 6. 6  | 3 5   | 8 9         | 1.0       | 9.1-  | 8          | 8 :        | 3 5    | 3 8       | 00       | -1.8       | 8          | -1.0       | 8 8   | 3 8   | 8 -      | 1.66  | -1.67            | Wirec   | 5     | 8 8  | 3 6          | ;    |       |              |                |   |
|          | E 5      |                 | : ∓      | : =       | =        | ==         | - 21       | ω.     | ,<br>, | 2 5     | 2 4    | 20 +        |            |        | . 7        | - 15       |         |            |            |       |          |       |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |      |       |       |             | 2 2       |       |            | <b>ب</b> د |        | 3 5       | 2 2      | 23         | 23         | 52         | 2 :   | 2 =   | : =      | =     | =                | S C     | ;     | 9 6  |              | ;    |       |              |                |   |
|          | <b>.</b> | ,               | • •      | • ~       | . 2.     | 7          | .2         | 7.     | 7.     | ٠. ٠    | ~ •    | ٠, ‹        | 7.0        | , ~    |            | . ~        |         |            |            |       |          |       |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |      |       |       |             | 0.5       |       |            | 0.0        | 2.0    | , c       | 7.0      | 0.5        | 0.2        | -0.2       | 0.5   | 7,6   | . ?      | 0.3   | -0.3             | = '     |       | 9 6  |              | ;    |       |              |                |   |
|          | RHDot    | ,               | , ,      |           | 9        | 9.         | ?          | 7.     | P '    | ·       | - °    | - ·         | 7 ?<br>7 S | 5 6    |            | 9          | 6.8     | 3.7        | 6.6        | 5.    | E .      |       |      | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.6   | 4.4  | 2.7   | 7.0   |             | 45.5      | 9.00  | 94.B       | 4.         | ·<br>• |           |          | 9.19       | 19.1       | 91.6       | 83.5  | 2.29  | 0.08     | 80.0  | 19.6             | RHBot   | •     |      |              |      | 12.0  | 86.0         | :              |   |
|          | E GE     | 81 80           | 3 6      | 2 2       | 89 93    | 56 69      | 6 9        | 96 89  | 28 3   | 92.     | 3      | 3 3         | 2 2 2      | 20     | 2 8 8 1    | 25.        | 439 E   | 477 8      | 9 905      | 554 6 | 93       | 25.   | 2 3  | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 350   | 167  | 92    | 2 2   | 2 5         | 2 7 7 7 9 | 512   | -520       | 533        | 325    | i i       | 1 6      | : =        | -450       | -          | 6     | 1 5   | 707      | -     | -415             | à       | 7     | 2 5  | 9. 5         | 2    |       |              |                |   |
|          | o upo    | 1 Y             | ? 5      | 7 4       | 5 65     | 39         | F 6        | 19     | 89     | 5 :     | 7 ·    | 9 3         | 200        | , .    | 7 7 6      | 683        | 530     | · 909      | 916        | = :   | 7 6      | 3 3   | 3 5  | 25<br>25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 297 - | 315  | . 25  |       | 3 5         | . 198     | . 859 | . 189      | 824        | . 282  | 3 8       | 6 5      | 3          | 383        | 376        | 31,   | 23.0  | 3 8      | 33    | 388              | ē.      | 7/1   | 9 6  | . ·          | ?    |       |              |                |   |
|          | ₩ ;      | _               |          |           |          |            |            |        |        |         |        |             |            | 20.00  |            |            |         |            |            |       |          |       |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |      |       |       |             | 01.0      |       |            | -0.08      |        | 0.03      |          |            |            |            |       |       |          |       |                  | ₩ (     |       |      |              |      | 0.04  | 90.09        |                |   |
|          |          |                 |          |           |          |            |            |        |        |         |        |             |            |        |            |            |         |            |            |       |          |       |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |      |       |       |             |           |       |            |            |        |           |          |            |            |            |       |       |          |       |                  | ₽,      | ت     |      |              | •    |       | 11.5         |                |   |
|          | . e.     | -               |          | 6.7       |          |            | 1.48       | 0.5    | =      | =       | 1.2    | -           |            | 5 6    | 9 6        | 2.6        | -0-     | 9          | -6.7       | -0.6  | 7        | 7     |      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ş     | -2.7 | -5.1  | 7.    | ;           | 97        | 9     | ė          | ڣ          | 7      | ÷ ;       | 9        | 9          | 6          | 6          | ပ     | e (   | ء د      |       | <i>.</i> .       |         | _     |      |              |      |       |              |                |   |
|          | [abot    | Z :             | 2 :      | 2 5       | ? ?      | \$         | =          | 1.45   | 1.48   | -<br>\$ | 1.42   | 1.39        | 2 :        | 3.5    | 3 5        | 2 4        | 98      | 1.97       | 1.99       | 1.3   | 8 :      | 6/ :  | 3.1  | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | . 7   | 1.78 | 1.72  |       | - 3         | 1.80      | 1.86  | 7          | 1.91       | .85    | 2.3       |          | 20.        | 1.33       | 1.83       | 1.89  | 2 .   |          | 8     | 1.82             | Eabot   | ž     |      |              |      | 1.7   | 1.87         | ?              |   |
|          | Eatop    | 4 S             | 2.2      | 8 :       |          | 1.48       | 1.45       | 1.48   | 1.5    | 1.50    | 1.46   |             | <b>3</b> 5 | 25.5   | 77.7       | 1.59       | 3 5     | 1.52       | 1.85       | 1.82  | <br>80.  | 2 :   | 1.68 | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.66  | 1.66 | 1.60  | 39.5  | 3.5         | 97.       | 1.7   | 28.1       | 1.82       | 1.76   | 02.       | 8        | 2 0.7      | 16.1       | 1.88       | 1.89  | 1.89  | 20.      | 1.84  | 1.80             | Eatop   | KPA   |      |              |      |       | 1.7915       |                |   |
|          | 110      | ٠,              | 2 3      | ξ.        | 5 5      | 2 8        | =          | 7      | . 23   | 2.      | .75    | 95.         | 5.3        | 8.8    | 3 5        | 0.10       | 9 9     | 3          | 2.15       | 2.83  | 3.81     | 2.    | 2.5  | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 38    | 69.6 | 10.44 | 21.75 | 2.91        | 33.03     | 2     | 30.35      | 29.99      | 29.81  | 29.61     | 29.17    | 27 98      | 27.23      | 26.50      | 25.89 | 25.40 | 10.62    | 2 2   | 24.25            | 15011   | د     |      |              |      | 25.31 | 27.78        | . <del>`</del> | 7 |
|          | 10t 7s   | :<br>و د        | 25       | 23        | 9 5      | 1 2        | 22 21      | .75 21 | 05 23  | .81     | .29 2( | .11         | .19        | ج<br>ج | ₹. f       | 2 86 .     | 3 4     | 2 2        | .64        | .84   | .58      | 23    | 19.0 | 2 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7 7   | 7.38 | 16.6  | 9.66  | 89.6        | 20.82     | =     | 0.28       | 0.57       | 0.48   | 0.57      | 7.5      | 20.0       |            | 1.76       | 7.66  | 57.7  | 2.5      | 2 2   | 17.29            | Twbot   | ပ     |      |              |      | 17.35 | 19.79        | 7.64           |   |
|          | of Tubo  |                 |          |           |          | 2 2        | 12 24      | 10 12  | 34 13  | 02 12   | 46 12  | 39 12       | 46 12      | = :    | 2 :<br>≈ : | 8 2        | 2 2     | 60         | =          | £.    | 27       | 26.   |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       | .38  | .27   | • • • |             | 29.84 2   | • • • |            |            |        |           |          |            |            |            |       |       |          |       | 9.63             | Tabot   | Ų     |      |              |      | 1.38  | 26.40        | 52.01          |   |
|          | [sqr]    | 1               | <u>.</u> | si :      | ₫:       | <u>:</u> = | 2          | =      |        | 5       | 6 12.  | 6 12.       | 0 12.      |        | :::        | = :        | 200     | 20.        | 7 22       | 18 23 | 22       | 22    | 92 2 | 3 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2 6   | 23   | 74 29 | 2 3   | នខ          | 23        |       | 75 25      | 88 28      | 67 28  | 22        | 88 27    | 2 2        | 2 63 81    | 2          | .82   | .87   | 7 79.    | 9 9   | . <del>.</del> . | Tutop   | ပ     |      |              |      |       | 19.04        |                |   |
|          | Into     |                 |          |           |          |            |            |        |        |         |        |             |            |        |            |            |         |            | 18.        | 18    | 18.      | B .   | 8 S  | 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2     | . 65 | 6 18. | . 19  | <u>.</u>    | 19.84     | 2     | . 6        | 9 19.      | 0 19.  | <u>6</u>  | <u> </u> | 2 2        | : =        |            | 14 13 | 26 17 | 2 2      | 3 2   | 2 2 2            |         |       |      |              |      |       | 25.27        |                |   |
|          | Tatop    | د               | 17.31    | 17.35     | 16.61    | 2.67       | 1 6        | 14.03  | 14.50  | 14.17   | 13.68  | 13,86       | 13.68      | ¥ :    | 43         | 15.25      |         |            |            |       |          |       |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |      |       |       |             |           |       |            |            |        |           |          |            |            |            |       |       |          |       | 20.30            | R Tatop |       |      |              |      |       | 52 901       |                |   |
|          | UDIR     | ge3             | 2        | 9         | £ :      | 2 5        | 3          | 148    | 118    | 65      | æ      | 65          | 160        | 139    | 3          | 9 5        | 6       | 2 2        | 136        | 156   | ₹        | 80    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |      |       |       |             |           |       |            |            |        |           |          |            |            |            |       |       |          |       |                  | u ubir  | s deg |      |              |      |       |              |                |   |
|          | Þ        | \$/8            | -        | 0         |          |            |            | 9.     |        |         |        | <b>9</b> .0 | 0.4        | 6.0    | ٠.<br>د    | 9.0        | 9       |            | . 8        | 0.7   | Ξ        | _     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |      |       |       |             | 2.6       |       |            |            |        |           |          |            |            |            |       |       |          |       |                  |         | ~     |      | <b>an</b>    | _    | -     |              | 9              |   |
| CHO      | Lup      | /•2             | 383      | 379       | 27.5     | 263        | 9 5        | -366   | -311   | -375    | -373   | -372        | -392       | 97:-   | -766       | -33        | 1594    | 0,7        | - 536      | -502  | -501     | -540  | -596 | -5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58<br>-5.58 | 545   | -623 | -610  | -610  | -619        | 5         | 900   | 3 5        | 453        | -111   | - 480     | -464     | ÷ ;        | 70         | 7          | - 102 | 7     | 9        | 9 9   | 117-             |         | _     |      |              |      |       |              |                |   |
| <u>.</u> | Ldn      | 787             | 355      | 349       | E        | 200        | 3 5        | 33     | 363    | 359     | 361    | 364         | 385        | 365    | 365        | 381        | 0 20    | 6 5        | 398        | 403   | <b>‡</b> | ₹     | 0    | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7 5   | 5 2  | 69    | 403   | <b>4</b> 03 | £3        | •     | 3 5        | \$2        | 404    | <b>\$</b> | Ç        | 395        |            | , ,        | 375   | 389   | 382      | 380   | 197              | 140     | 3/62  |      |              |      |       |              |                |   |
| PKAIK    | ۵        | # 2 <b>#</b> /# | ~        | ~         | <b>~</b> | <b>-</b> , | • •        | , 0    | -      | 5       | S      | v           | 0          | 61     | 13         | =          | 2 5     | 3 7        | 284        | 268   | 453      | 513   | 252  | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5 5   | 2 6  | =     | 363   | 396         | ž         | 3 6   | 3 5        | 213        | 75     | 19        | 3        | <b>≓</b> } | 0 5        | 3 🔻        | 'n    | 2     | <b>ب</b> | m •   | s ~              | 4       | 3/02  |      |              |      |       |              |                |   |
| 4710Y    | dny      | K/82 K          | -        | -         | ÷        | ۰.         |            | ,      | , ?    | 7       | 7      | 7           | 0          | 7      | 7          | <b>=</b> : | န္က :   | 7 5        | 5 =        | -52   | -88      | -103  | ¥.   | Ξ:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2 9   | 140  | : :-  | -148  | -14         | 8.        | ; ;   | 7 8        | . 8        | -85    | -75       | 97       | <b>;</b>   | ÷          | - 0        | 7     | ~     | 7        |       |                  | Kup     | a)/a  |      | -3.8         |      |       |              |                |   |
| ¥<br>5   |          | W/82 W          |          | -         | -        |            | ٠,         | ٠, د   | ٠ ،    | ~       | ~      | ~           | ٥          | 28     |            |            |         |            |            |       |          |       |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |      |       |       |             | 584       |       | 25.5       | 399        | 375    | 232       | 203      | 120        | <b>3</b> 5 | 2 -        |       | -     | _        | ٠.    |                  | Kđ      | a3/e2 | 22.6 | 21.9         | 9.0  |       |              |                |   |
| DATA FR  | 9        | . Zu            | 2        | 53        | 30       | 53         | 32         | 3 2    | 5 =    | : ≈     | : ::   |             |            |        |            |            |         |            |            |       |          |       |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |      |       |       |             | 69-       |       |            |            |        |           |          |            |            | - ~        | =     | 12    | Ξ        | 2:    | 2 2              | 3       | 3/02  | ?    | <del>-</del> | 6.0  |       |              |                |   |
| 1985, Di | •        | ~               | 0        | 0         | ô        | 0          | ۰ -        | ٦,     | • 0    | 0       | . 0    | -           | ~          | ~      | 7          | ş          | 3       | = =        | ? =        | . 6   | £        | 197   | 221  | 221                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3     | Č.   | 2     | 2     | 233         | 35        | € :   | 2 9        |            | 9      | 7         | Ŧ        | Ŧ          | -,         | ? "        |       | 7     | •        | ÷.    | 8                | ų       | 3/62  | 8.0  | -6.6         | -0.2 |       |              |                |   |
| 21, 19   | #        | 82 W            | 'n       | _         | _        | 0          | <b>-</b> . |        | - ~    |         | . –    | . 2         | ~          | •      | 9          | 25         | ·<br>=: | 2, 2       | ,<br>2 5   |       | . E      | . 61  | 236  | . 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 323   | 9 5  | 246   | 316   | 309         | -193      | €:    | <u>ج</u> ڊ | 7 6        | 26.    | 3         | -32      | -11        | r:         | 2          | =     | 9     | 11       | 77    | 18               | ×       | 1/62  | -6.2 | ₹.9          | 9.   |       |              |                |   |
| )nr.     |          | B2 W            |          | <b>\$</b> | 7        | <b>;</b> ; | e, :       | 25 6   | 3 5    | : 2     | 2 =    | . 9         | : <u>=</u> | ?      | ?          | 35         | 112     | <b>7</b> ? | 170<br>176 | 3 4   | 6        | - 911 | 236  | 203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 983   | 199  |       | . 889 | 638         | 415       | 326   | 157        | 171        | : ::   | 35        | 38       | -          | ÷ :        | <b>;</b> ; | ? 9   | ę     | -3       | 65 :  | 2                | 9       | 31/82 | 13.9 | 7.8          | -0.9 |       |              |                |   |
| YSTEM 8, | y I      | *               |          | ٠         |          | 0          | · .        | 0.4    |        |         |        |             |            | .s.    | 3.6        | 7.5        | 0.0     | د د        | 2 0        |       | . S.     | 0.1   | 2.   | 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.5   | 0.5  | 2 -   |       | 15.0        | 15.5      | 0.9   | 5.5        | 2 2        |        | 18.5      | 19.0     | 19.5       | 20.0       | 50.5       | 21.5  | 22.0  | 22.5     | 23.0  | 23.5             |         |       |      |              | NSUN | :     | TAVE<br>DAVE | NAVE           |   |
| ۲,       | Ξ        | :               | -        | _         | _        |            |            |        |        | •       |        |             |            | -      |            |            |         |            |            | _     | . ~      | _     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |      |       |       | -           |           |       |            |            |        |           |          |            |            |            |       |       |          |       |                  |         |       |      |              |      |       |              |                |   |

STEM 8, JULY 21, 1985, DATA FROM THE KONZA PRAIRIE, KANSAS

| M Gs HMrec 88        | 7 1 00     | 3 -1.60     | 1.00      | 4 -1.00   | 3 1.00    | 4 -1.00   | 3 1.00                                  | 00 1- 7   | 90 -         | 20.7       | 3 .   | 00.1       | 20-1-00        | 7 -1.00  | 7 - 1.00      | 5.        | -10 -1.00 | -13 1.00  | -15 -1.00  | -55       | -17 -1.00  | -25 1.00  | -32 -1.00  | -34 0.99 | -34 -1.00 | -49 -1 00 | -46 1.00    | -36 -1.60 | -26 1.00  | -10 -1.00 | 00.7      | 9:1-<br>- 2:   | 22 0.00    | 23 -1.00  | 25 1.00   | 29 -1.00    | 30.1       | 26 -1.00   | 24 - 1.00 | 8         | 15 -1.00    | 14 1.00      | 13 -1.00     | 0.3 13 1.66 -3.28         | 12 -1.67    | N 6s WHrec BR | aJ/a2         | <          | <br>       | 0.0 -0.1 0.00 |
|----------------------|------------|-------------|-----------|-----------|-----------|-----------|-----------------------------------------|-----------|--------------|------------|-------|------------|----------------|----------|---------------|-----------|-----------|-----------|------------|-----------|------------|-----------|------------|----------|-----------|-----------|-------------|-----------|-----------|-----------|-----------|----------------|------------|-----------|-----------|-------------|------------|------------|-----------|-----------|-------------|--------------|--------------|---------------------------|-------------|---------------|---------------|------------|------------|---------------|
| Odn Oup Rhbot        | 3 08 SUF-  | -425 80.3   | -434 83.7 | -414 82.0 | -423 78.6 | -430 80.3 | -418 81.5                               | -427 81.4 | -415 80.6    | -424 82 1  | 1.70  | 412 84.8   | -410 83.2      | 412 60.0 | -416 90 5     | -425 77 2 | -441 73.7 | +177 67.4 | -546 62.5  | -590 58.6 | -647 54.1  | -677 51.2 | -707 49.3  | 8.45 67. | -740 45.8 | 2 27 292- | -764 43.0   | -744 41.8 | -756 42.9 | -720      | -736 44.2 | 9.44 689-      | -632 47.6  | -595 51.0 | -545 53.5 | -523 56.6   | -501 62.4  | -467 67.7  | 10. T     | -179 75 9 | -429 70.1   | -433 72.4    | -432 76.8    | -428 80.8                 | -426 83.1   | Odn Oup RHD   | m3/m2 m3/m2 % | -46.2      |            | 44.2 -29.0    |
| # ¢                  | 0.72       | 0.57        | 0.41      | 0.35      | 0.22      | 0.23      | 0.19                                    | 0.22      | 0.21         | 22         | : :   | 3 6        | 9 5            |          | 0.09          | -0.02     | -0.15     | -0.43     | -0.56      | -0.86     | 91.1       | 92 :      | -1.36      | 7 5      | 2.1.      | 15.1      | -1.57       | -1.41     | -1.38     | -1.37     | ¥         | 50.7           | -0.73      | -0.50     | -0.35     | -0.13       | 0.05       | B . 6      | 7.0       | 0.26      | 0.18        | 61.0         | 0.24         | 0.24                      | 0.22        | dT dE         |               |            |            |               |
| Eatop Eabot          |            |             |           |           |           |           |                                         |           |              |            |       |            |                |          |               |           |           |           |            |           |            |           |            |          |           |           |             |           |           |           |           |                |            |           |           |             |            |            |           |           |             |              |              |                           |             | fatop Eabot   |               |            |            |               |
| Tsoil                | 24.06      | 23.94       | 23.83     | 23.72     | 23.63     | 23.53     | 23.42                                   | 23.32     | 23.22        | 23.17      | 24 65 | 30.65      | 24.32<br>Lt 62 | 77 77    | 22.11         | 22.88     | 23.12     | 23.45     | 23.87      | 24.43     | 25.19      | 25.84     | 26.69      | 90.77    | 20.02     | 31.15     | 32.48       | 33.53     | 34.50     | 34.82     | 35.00     | 33.07<br>74 KK | 34.00      | 33.31     | 32.58     | 31.82       | 30.98      | 30.20      | 78.74     | 28.15     | 27.69       | 27.29        | 26.92        | 26.63                     | 26.42       | Isoil         | ပ             |            |            |               |
| Tabot Tubol          |            |             |           |           |           |           |                                         |           |              |            |       |            |                |          |               |           |           |           |            |           |            |           |            |          |           |           | 32.10 22.35 |           |           |           |           |                |            |           |           | 28.54 21.98 |            |            |           |           |             |              |              | 22.91 20.53               |             | Tabot Twbot   | ပ             |            |            |               |
| Tatop Twtop          | 0.28 17.48 | 20.62 17.75 |           |           |           |           |                                         |           |              | 0.22 17.97 |       | 7.16 17.30 | -              |          | -             |           |           |           |            |           | 5.56 20.29 |           | 8.03 20.19 |          |           |           | 30.51 21.61 |           |           |           |           |                |            |           |           |             |            |            |           |           | 14.99 20.85 |              | 13.97 20.82  | ຂູ່ :                     | 22.63 20.41 | Tatop Intop   |               |            |            |               |
| U UDIS 1             | 6          |             | 691       | 123       | Ξ         | 105       | 112                                     | 106       | 127          | 3          | 2     | 5 5        |                | 14       | 151           |           | 152       | 142       | 72         | 125       | 3 3        | <u> </u>  | 2 5        | 2 2      | 2 %       | 55        | 123         | 3         | 153       | 3         | = 5       | 2 5            | 139        | 139       | 9         | 7           | 124        | 2 9        | 201       | : °       | 136         |              |              | 2.6 195                   |             | UD 18         |               |            |            |               |
| ldn lup<br>W/a? W/a? | •          | •           | •         | •         | •         | 419 -430  | •                                       | 417 -426  | •            | 411 -423   | •     | •          | 402 -404       | •        | •             | 403 -409  | •         | •         | •          | •         |            |           |            |          | •         | •         | 418 -625    |           |           |           |           |                |            |           |           |             |            |            |           |           | •           | •            | •            | 82 <b>7</b> - 00 <b>7</b> | •           | ldn tup       | 2)/22 2]/r2   | 35.5 -41.8 | 14 7 - 7 K | 11.1.1.1      |
| Kup D<br>W/m2 W/m2   |            | -1          | -         | ~<br>-    | -1 5      | -<br>-    | -1 5                                    |           | -1 2         | -          | -     | · ·        | -3 -2          | -3       | . <del></del> | -16 73    | -28 131   | -63 230   |            |           |            |           |            |          |           |           | -139 421    |           |           |           |           |                |            |           |           |             |            |            |           |           | 7           | <del>-</del> | <del>-</del> | ·                         | -           | ۵.            | 3/82          | 2.5        | ~          |               |
| 6p Kdn               | <u>-</u>   | - =         | 11 0      | 13 1      | -<br>=    | - 01      | ======================================= | - 01      | <del>-</del> | -<br>-     | 12    |            | 11 12          | 11 12    | : ::          | 8 81      | 4 155     | -1 362    | 434        | 8         | 200        | 44        | 5 5        | 2 6      | § §       | 919       | -85 891     | 83        | 69.       | <b>2</b>  | 7 8       | § 5            | <b>6</b> 2 | 305       | 243       | € ;         | 2 9        | 2 9        |           | . ~       | ~<br>•      | 2            | - 9          |                           | -           | # d           | 3/82          | 1.7 25.7   |            |               |
| H E (1/102 H/102     | 7          |             | 1 -2      | ş-<br>-   |           | 9-        |                                         |           |              |            |       | •          |                |          | ~             | ~         | ÷Ż        | æ-        | <b>=</b> : | -218      | Ç Ş        | 67.       | 2.         |          | .05       | -328      | -329        | -325      | នុំ       | 9.7       | 2,75      | -<br>-         | -128       | -78       | -48       | ÷ .         | <b>⊸</b> ເ | <u>ب</u> ب | 2 2       | 2         | 82          | 23           | 82           | 2 :                       | =           | ¥ :           | 3/82 83/82    | 4.6        |            | 9.6           |
| 117E 0               |            |             |           |           |           |           |                                         |           |              |            |       |            |                |          |               |           |           |           |            |           |            |           |            |          |           |           |             |           |           |           |           |                |            |           |           |             |            |            |           |           |             |              |              | 23.5 -35                  |             | TIME 0        | •             | 15UN 16.8  |            |               |

|            |            |             |      |            |       |          |            |       |                |          |            |       |            |        |          |        |        |        |          |       |         |       |       |          |            | _        |            | _           |       |        |                |      |             | . ~         | <b>v</b> o | _     | <b>~</b> | <b>6</b> 0 | _     | ۰ م         | o •   |             |              |            | - 00 |             | 9            |      | ee .     |                        |       |       |              | <del>-</del> : | 6.5     | •     |
|------------|------------|-------------|------|------------|-------|----------|------------|-------|----------------|----------|------------|-------|------------|--------|----------|--------|--------|--------|----------|-------|---------|-------|-------|----------|------------|----------|------------|-------------|-------|--------|----------------|------|-------------|-------------|------------|-------|----------|------------|-------|-------------|-------|-------------|--------------|------------|------|-------------|--------------|------|----------|------------------------|-------|-------|--------------|----------------|---------|-------|
| ;          | -5.15      | -1.19       | 3.89 | 1.7        | -3.60 | 15.91    | -4.83      | 33.16 | 15.57          | -1.06    | -2 B.      | 3 5   | 6.6        | 7.7    | -2.5     | -0.20  | 0.7    | . 58   | 0.97     | -1.5  | 5       | 3.    | 1.0   | 1.05     |            | 1.3      | 1.2        | Ξ.          |       | -      | 3.5            | : :  |             |             | 1.0        |       | 6.9      | 9.0        | 0.5   | ę i         | -2.0  |             | : :          |            | 7    | 7           | -2.1         |      |          | _                      |       |       |              | 7              |         | ,     |
|            | 8.         | 00.1        | 1.00 | 1.00       | 8.    | 8        | 9.         | 8     | 90.1           | -1.00    | 2          | 3 6   | 3 8        | 3 5    | 3        | 0.0    | 8:     | 9      | 66.      | -1.00 | 9.      | -1.00 | 0.99  | -1.00    | 0.99       | -1.00    | 0.99       | -1.00       | 0.99  | e :    | 6.6            | 3 8  |             | 6           | 0.0        | -1.00 | 0.9      | - 8        | 9.    | ÷ :         |       | 5.6         | 5 -          |            | -    | 79          | 0.0          |      | Hrec     |                        |       | 3 8   |              |                |         |       |
| M/82       |            | 22          | =    | 00         | •     | ٥        | æ          | 80    | -              | -        | •          |       | ٠.         | · ·    | · ·      | 7      |        | æ      | Ŧ        | -23   | -20     | -18   | -25   | -30      | -35        | -32      | -39        | -16         | -45   | 7      | ÷.             | 7 7  | ,           |             | 16         |       | 61       | 23         | 23    | 22 3        | ₹ 8   | 2 .         | 3 2          | : =        | : =  | : ::        | : =          |      | \$ 5     |                        |       | 7     |              |                |         |       |
| •          | 0.5        | -0.2        | 0.5  | -0.5       | 0.2   | -0.2     | 0.2        | -0.2  | 0.2            | -0.2     | ;          | 7.0   | 7.0        | 7.0-   | -0.2     | 0.     | 0.5    | 0.0    | <u>.</u> | -0.2  | 0.5     | -0.5  | 0.2   | -0.2     | 0.5        | -0.2     | 0.5        | -0.2        | 0.2   | -0.2   | 0.5            | 7.0  | ; ;         | 2 6         | 0.0        | -0.2  | 0.2      | -0.2       | 0.5   | -0.2        | 0.5   | -0.2        | , ,          | ,          | Ş    |             | 0.0          |      | <b>-</b> |                        | 3 6   | 9 9   | 3            | _              |         |       |
| -          | 86.0       | 87.7        | 91.9 | 1.7        | ₩.    | 30.7     | 90.1       | 91.6  | 93.2           | ~        |            | 2 6   | 2.5        | 2.78   | 87.2     |        | 80.2   | 75.6   | 11.9     | 68.5  | 9.49    | 59.7  | 56.1  | \$2.5    | 9.6        | 47.2     | 45.2       | <b>45.9</b> | 1.7   | =      | = :            | 42.0 |             | 9           | =          | =     | 46.9     | 50.5       | 53.3  | 59.6        | 3     | 68.5        | 2 5          | ;          | =    | : =         | 2            |      | Ego.     |                        |       |       |              | 66.5           | 5.2     |       |
| 2          | 422        | 416         | 412  | 403        | 90    | -409     | 0 <b>!</b> | -403  | -405           | 497      |            | 3 :   | <b>=</b> : | € :    | <b>÷</b> | 7      | 3      | 487    | Ξ        | -\$62 | .598    | -648  | -680  | -767     | -730       | -743     | -152       | -735        | -120  | -<br>5 | <del>2</del> ; | 02/- | , ,         | 6 7         | -633       | -60   | -574     | -538       | -516  | - 497       | =     | 9           | 2            | 9          | 1    |             | \$ 5         |      | ĝ        | 7/2                    | 9 9   | 2.5   |              |                |         |       |
| 7          | 397        | 392         | 391  | 397        | 386   | 182      | 383        | 382   | 182            | 902      | 2          | 9 9   | 6          | ₽ :    | 9        | \$2\$  | 286    | 673    | 818      | 870   | 996     | 1087  | 1159  | 1222     | 1272       | 1298     | 1347       | 1046        | 1323  | 1294   | 1239           | 3    | 777         | 201         | 860        | 788   | Ξ        | 625        | 555   | \$          | ₹ :   | <b>1</b> 24 | 97           | 2          | =    |             | \$           |      | <b>8</b> |                        | 62.0  | 9     |              |                |         | _     |
| 3          | 8          | 00.0        | 0.0  | 0.0        | 0.0   | 0.03     | 0.00       | 0.00  | 00 0           | 0        | 3 6        | 3.0   | 0.00       | 0.0    | 0.00     | 6.0    | 0.0    | 0.01   | 0.03     | 0.03  | 0.04    | -0.05 | -0.05 | 90.0     | 0.0        | -0.05    | -0.06      | -0.05       | -0.06 | -0.05  | -0.05          | 9.05 | 2 4         | 20.00       | -0.0       | -0.0  | -0.03    | -0.03      | -0.02 | -6.01       | -0.01 | 9.0         | 5.0          | 5 6        | 5 5  |             | -0.0         |      | ₩ .      | KPA                    |       |       |              | -0.02          | -0.0    | 3.5   |
| ; 0        |            |             |      |            |       |          |            |       |                |          |            |       |            |        |          |        |        |        |          |       |         |       |       |          |            |          |            |             |       |        |                |      |             |             |            |       |          |            |       |             |       |             |              |            |      |             |              |      | ₽,       | Ų                      |       |       |              | -0.28          | -0.69   | 0.13  |
|            |            | 0           | 0    |            | -     | <i>-</i> | 0          | 9     |                |          |            | o (   | 0          | 6      | 0        | 2      | ٥<br>د | ?<br>_ | ٠<br>8   | 9     | ٠,<br>د | 0-    | 9     |          | -          | ~        | 7          | 23          | 7 8   | - 25   | 2              |      | 3 8         | 3 5         | : :        | . 62  | 33       | 33         | 35    | ç           | Ξ     | :<br>چ      | <b>e</b> 9   | ÷:         | , s  | 7 5         | 7 7          | :    | Eabot    | k Pa                   |       |       |              | 2              | 2.37    | ę.    |
| x Pa       |            |             |      |            |       |          |            |       |                |          |            |       |            |        |          |        |        |        |          |       |         |       |       |          |            |          |            |             |       |        |                |      |             |             |            |       |          |            |       |             |       |             |              |            |      |             |              |      |          |                        |       |       |              |                |         |       |
| KPa<br>KPa | 2.24       | 2 22        | 2 21 | 2.23       | 2.20  | 2.21     | 2.17       | 3 16  | ¥              | 2 0      | 4.13       | 2.20  | 2.21       | 5.19   | 5.19     | 2.21   | 2.24   | 2.30   | 2.35     | 2.40  | 2.43    | 2.45  | 2.45  | 2        | 2          | 7 36     | 2.35       | 2.30        | 2.24  | 2.21   | 2.27           | 2.29 | 9.5         | 3.5         | , ,        | 2.25  | 2.23     | 2.32       | 2.33  | <b>5</b> .4 | 2.43  | 2.4         | 2.45         | 7.48       | , ,  | 7 .         | 2.3          |      | Eatop    | A.                     |       |       |              | 2.3            | 2.3327  | ₹:    |
| 11051      |            |             |      |            |       |          |            |       |                |          |            |       |            |        |          |        |        |        |          |       |         |       |       |          |            |          |            |             |       |        | 33.77          |      |             |             |            |       |          |            | 11.19 |             |       | 23.54       | _            |            | 8:5  | 2.5         | 27.13        |      | Tsoil    | ပ                      |       |       |              | 28.09          | 30.25   | 16.27 |
|            |            |             |      |            |       |          |            |       |                |          | 3 :<br>3 : | 57 23 | 65 23      | 70 23  | 70 23    | 22     | 51 23  | 22     | 25       | 48 24 | 90      | 57 25 | 83    | 5 6      |            |          |            | 96          | .00   | ≈.     | 24.27 3        | E. : | <u>≈</u> :  | 2 2         | 9 9        |       | 3 79     | 5.<br>5    | 1.27  | 5.32        | 2.30  | 5.61        | 2.55         | 2.60       | 2 5  | 2 :         | 2 9          | 3    | 1mpot    | ပ                      |       |       |              | 22.15          | 23.62   | 3.04  |
|            | 200        |             | 2    | 19.72      | 7 19. | 9 19.    | 13.        | 2     | ٠.             | ċ        | <u>.</u>   | ć.    | 2 29.      | 6<br>5 | 0 29     | 2      | æ<br>8 | ≈<br>8 | ₹ 52     | 30 22 | 16 23   | 76 23 |       |          | : :        |          | ; ;<br>; ; | 36 23       | 62 24 | 95 24  | 34 24          | 84   | 88          | 2:          | 3 5        | 5 6   | 2 2      | 59         | 74 2  | 49 2        | .18   | .05         | 2            | 75         | ~ ·  | 7 6         | 7 0          | •    | T poot   |                        |       |       |              |                | 31.83   |       |
|            | 7          | 2           | 20   | 20.6       | 2:0   | 20.6     | 20.5       | 5     |                | 2.5      | 2          | 20.6  | 20.8       | 2.2.2  | 21.7     | 3 23.8 | 22.    | ₹.     | 0 25.    | 1 26. | 7 28.   | 6 29. | 5     | ; =      | : :        | ; ;      |            |             | 3.    | Ξ.     | 3.34.          | 34.  | ਲ<br>ਵ      | ج<br>ا      | * = =      | 3 5   | 3 23     | 27 33      | 22    | 28 29       | 93 28 | 67 27       | 66 26<br>69  | \$2<br>\$2 | 8 2  | 2 i         | 17.62        | 3    | Tutop Ta |                        |       |       |              |                | 23.26 3 |       |
| 3          | , 2        | 2 6         | 7    | 19.77      | 19.7  | 19.68    | 19.43      | 9     | 3 2            |          | 2.5        | 19.60 | 19.69      | 19.7   | 19.7     | 19.9   | .¥.    | 2.0    | 21.7     | 22.2  | 22.6    | 2     |       | 3 5      | 2.5        | ; ;      | 2.5        | 23.5        | 23.5  |        | 23.75          |      |             |             |            |       |          | 2          |       |             |       | 5 22.67     |              |            |      |             |              | ;    |          |                        |       |       |              |                |         |       |
| 2          | , 2        | 3 5         | 37 % | 20.B6      | 21.28 | 20.90    | 20 74      | 32 00 |                | 5 5      | 20.60      | 20.86 | 20.93      | 21.35  | 21.35    | 21.84  | 22.85  | 24.10  | 25.33    | 26.45 | 27.55   | 20.00 | 2     | 3 5      | 3 5        |          | 12.15      | 3.50        | 33.48 | 33.75  | 33.71          | 33.7 | 33.8        | 23.         | 2 5        | 2 5   | 12.7     | 31.3       | 30.6  | 29.5        | 28.4  | 27.3        | 26.9         | 26.6       | 29.5 | 23.         | 25.53        | Ġ    | Tatop    |                        |       |       |              |                | 31.13   |       |
| ×100       | ; <u>=</u> |             | 707  | 180        | =     | 169      | 7          |       | 3 :            | 3 :      | 9          | 178   | 380        | 175    | 175      | 180    | 188    | 197    | 203      | 215   | 212     | 22    | 2 4   | 331      | 3 5        | 200      | 200        | 2 6         | 2     | 18     | 198            | 13   | 5           | 2 3         | 2 3        |       | 2        | 18         | =     | 3           | 18    | =           | 20           | =          | 59   | =           | 2 5          | 2    | ubia     |                        |       |       |              |                | 2 2     |       |
| ٠ ×        |            | ٠,          | • -  | . 9        | 7.    | 2.9      | 2.7        | ;     | ;;             | 3 ;      |            |       |            |        |          |        |        |        |          |       |         |       |       |          |            |          |            |             |       |        | 5.8            |      |             |             |            |       |          |            |       |             |       |             |              |            | ~;   | <br>B       | , .          | 2    |          | ò                      |       |       | _            | -              | 5.0     | -     |
| ١<br>١     | 15         | 2 5         | } ;  |            | 5     | 403      | 607        |       | 3 3            | <b>.</b> | 50         | 6     | -403       | Ę      | Ę        | -415   | -451   | 13     | -468     | -482  | -505    | 5     | 25    | 700      |            |          | 3 9        | 2 4         | -578  | -583   | -613           | -602 | -572        | -576        | ?          | 200   | 5 5      | · 8        | -476  | .479        | -472  | -463        | ÷            | -467       | 7    | Ŧ           | <b>8</b>     | 5    |          | <b>a</b> 3/ <b>a</b> 2 | -42.2 | -25.2 | -17.0        |                |         |       |
| ر<br>د د   | <br>       | 9 5         | 2 6  | 38         | 383   | 381      | 188        | 3 5   | 7              | 5        | 28         | Ş     | 397        | 391    | 391      | 395    | 386    | 60     | 604      | (1)   | =       | 5     | 3 5   | ;        | 3 5        | 2        | ? :        | ž           | 3 5   | \$     | 9              | 19   | \$          | £ ;         | ÷ :        | Ç :   | 3        | 4.36       | 2     | 128         | 423   | 423         | <b>\$</b> 13 | 438        | 42   | 418         | € 3          | 97   | Ę        | 3/82                   |       | 20.3  |              |                |         |       |
| 2,00       |            | ٠.          |      | n 🕶        | -     | -        | -          | , -   | • •            | •        | -          | 2     | ~          | -      | =        | 89     | 10     | 159    | 8        | 96    | 105     | =     | ::    | ? ?      | 771        | 9 3      | 3 5        | 711         | 224   | 5      | 183            | 200  | 191         | 55          | = 3        | 502   | 1 2      | 163        | 116   | S           | 2     | m           | ~            | _          | -    | <b>-</b> -3 | ٠,           | •    | 4        | <b>3</b> 3/ <b>8</b> 2 |       | 6.9   | 9.5          |                |         |       |
| Kup<br>Kab |            | 7           |      | ;          | ٠,    |          | ٠ -        | • •   | <del>.</del> . | 7        | -5         | 7     | -5         | 7      | 7        | -21    | -32    |        | -12      | - 30  | 6-      | 19    | 2 5   | = =      | 2 :        | 7        | 3 3        | 2 0         | -143  | =      | -13            | -113 | -122        | -138        | = :        | နှ န  | ָרְ בְּ  | ?          | 9     | =           | ?     | ~           | ·            | 0          | 7    | ~           | <del>.</del> | 7    | ď        | 3                      | 4.6   | -     | 9            |                |         |       |
| FG 7       |            | ~ •         | ٠,   | <b>,</b> - |       | . –      |            | ٠.    | <b>-</b> .     |          |            | -     | 7          | 2      | 2        | 22     | 130    | 274    | 60       | 85    | 3       | 3     | 20 6  | 87/      | 9          | 2 5      | 200        | 3 8         | 2 2   | 848    | 178            | 179  | 670         | 626         | 284        | 2 :   | 240      | 8          | 2 2   | : ≎         | . 60  |             | -            | 0          | -    | ~           | - •          | •    | Xda      | 43/82                  |       | 25.6  |              |                |         |       |
| 3          |            | <b>20</b> ( | •    | = =        | : =   | : 2      | : :        | : :   | 2 :            | =        | =          | =     | 13         | 2      | : =      | : =    | ~      | . •    |          | • •   | . :     | : ?   | 5 :   | ş :      | <b>;</b> : | <u>ئ</u> | 3 9        | 77.         |       |        | : :            |      |             |             |            |       |          |            |       |             |       |             |              |            |      | ~           | · ·          | ~    |          | 1/12                   | •     | •     |              |                |         |       |
| <u>س</u> ج | ÷ ,        | , .         | , .  | ۰,         | ۰ ۹   | ۳,       | 7 4        | ٠,    | · .            | •        | 7          | ဇာ    | -          | ې      | 4        | . 25   | Ş      | ; 5    | ş &      | : 2   | . ×     | 3 5   | 9 5   | 2 3      | 63.        | ī ;      | 5.5        | 70.         | 101   | -202   | -188           | 791- | -175        | -151        | =          | = =   | P 9      | 3 9        | -     | ; ;         | -33   | -12         | -13          | -13        | ÷    | ÷           | ÷ ;          | -13  | ₩        | 13/02                  | -7.3  | -7.0  | -0.3         |                |         |       |
| <b>=</b> 3 | 2 :        | 2 :         | ≥ '  | ° :        | : \$  | ; ;      | ; ;        | ;     | 2              | 2        | 2          | 7     | 2          | 2      | 2 :      | : =    | ; =    | : 4    | ş        | : 5   | 3 2     | 1     | 3 3   | 3        | 25         | . 38¢    | <u> </u>   | 3 8         | 3 5   | 3      | -23            | -245 | -23         | -216        | <u>ج</u>   | -12   | ē.       | ,          | ,     |             | ~     | . 10        | •            | ۴,         | -    | •           | .,           | •    | ==       | .J/a2                  | 7     | 8     | 0.1          |                |         |       |
| <b>a</b>   | -<br>2:    | <b>3</b> 2  | 3 ;  | 7 8        | 3 5   | 2 5      | 2 2        | 2     | ES 1           | ş        | -28        | -28   | -51        | . ?    | ;        | : 5    | : 8    | 2 9    | 5        | 3 5   | , ,     | ; ;   | 3 :   | S        | 285        | 229      | £ ;        | ; ;         | à E   | 3 5    | 578            | 48   | <b>4</b> 80 | <b>†</b> 33 | 346        | 269   | 203      | 3 ×        | 2 2   |             | : 5   | Ŧ           | 9            | 9          | ş    | ş           | 65.          | - 38 | 9        | 43/e2                  | 16.4  | 17.8  | <del>-</del> |                |         |       |
| 71.        | ₹,         | ت.<br>ب     | ٠    |            |       |          |            |       | 0.             | ·        | 0.5        |       | 0.5        |        |          |        | : =    | , ,    |          | , ,   | ? <     |       | n 4   | <u>.</u> | 2          | 2.0      |            | 9 .         | 2 -   |        | 0.0            | 5.5  | 0.91        | 16.5        | 0.7        | 2.5   | 9.9      | 0.0        | 2.6   | 200         | 20.2  | 21.0        | 21.5         | 22.0       | 22.5 | 23.0        | 23.5         | 24.0 | 311      |                        | 130   | 13U3  | NSUN         | 1406           | DAVE    | NAVE  |

#### oi Oi

# ORIGINAL PAGE IS OF POOR QUALITY,

| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         |                          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------|
| 88 4 88 4 8 8 4 8 8 8 8 8 8 8 8 8 8 8 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ox<br>es                                | 0.7<br>1.4               |
| ### ### ##############################                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Mrec<br>0.00<br>0.00<br>0.00            |                          |
| 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 68<br>-0.1<br>-0.4<br>-0.3              |                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0                                     |                          |
| ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 #### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575 ### 757575                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RMbot<br>t                              | 53.1<br>42.1<br>43.8     |
| 60 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0up<br>m3/m2<br>-48.8<br>-30.2<br>-18.7 |                          |
| Para 4114 4114 4114 4117 4117 4117 4117 411                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0dn<br>3/62<br>64.1<br>45.8<br>18.3     |                          |
| A A A A A A A A A A A A A A A A A A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | # <b>Q</b>                              | -0.03<br>-0.05<br>-0.01  |
| 61.24<br>61.24<br>61.25<br>61.26<br>61.27<br>61.28<br>61.28<br>61.28<br>61.29<br>61.29<br>61.29<br>61.29<br>61.29<br>61.29<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61.20<br>61 | £ o                                     | -0.03<br>-0.27<br>0.17   |
| 2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Eabot<br>kPa                            | 2.25                     |
| E1 2 2 3 3 5 2 2 3 3 5 2 2 3 3 5 2 2 3 3 5 2 3 3 5 3 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Eatop<br>kPa                            | 2.21<br>2.1694<br>1.4839 |
| 26. 15. 17. 17. 17. 17. 17. 17. 17. 17. 17. 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | [501]<br>C                              | 29.01<br>30.99<br>17.34  |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Two of C                                | 22.75<br>23.62<br>14.17  |
| 25. 25. 25. 25. 25. 25. 25. 25. 25. 25.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Tabbt<br>C                              | 30.69<br>34.14<br>17.24  |
| ## 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Twtep<br>C                              | 22.60<br>23.34<br>14.19  |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Tatop                                   | 30.65<br>33.87<br>17.41  |
| 55 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | U618<br>de 3                            | 77 105                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | u                                       | 5.5<br>6.1<br>3.1        |
| 441<br>441<br>441<br>441<br>441<br>441<br>441<br>441<br>441<br>441                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | tup<br>83/62<br>44.2<br>-25.3<br>-13.4  |                          |
| Ld. 2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Lda<br>63/42<br>38.1<br>20.8<br>17.3    |                          |
| 7<br>6<br>6<br>7<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2/2/<br>4.4<br>0.3                      |                          |
| ESE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Kup<br>BJ/B2<br>-4.6<br>-4.4<br>-0.2    |                          |
| Kdn<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Kdn<br>11/s2<br>26.1<br>25.0<br>1.1     |                          |
| 96. 22. 24. 25. 25. 25. 25. 25. 25. 25. 25. 25. 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 69<br>1.9<br>-1.9<br>-1.9               |                          |
| ### F   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1.15   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | E 93/82<br>-11.8<br>-10.6<br>-1.2       |                          |
| 25 24 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | H<br>-3.0<br>-4.5<br>1.5                |                          |
| 2. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0<br>a3/a2<br>16.8<br>17.3<br>-0.6      |                          |
| 11.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TINE<br>ISUM<br>DSUM<br>NSUM            | TAVE<br>DAVE<br>NAVE     |

SYSIEM 8. JULY 24, 1986, DATA FROM THE KONZA PRAIRIE, KANSAS

|                              | æ       | 3        | 9 8    |        | 71.1       | 2.5   | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 91.0 | 5.38    | -2.24    | 3.5        |          | 2.5   | 25.0     | 0.13  | 0.13     | 0.08     | 22    | 0.28     | 57 0   | 98 0         | 0 78   |        |             | 2,0   | 7.0    | 0.53  |        |   |   |     |   |      |   |     |     |    |     |     |     |      |      | 8     |            |            |         | -  | 0.5        | ?        |   |
|------------------------------|---------|----------|--------|--------|------------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|----------|------------|----------|-------|----------|-------|----------|----------|-------|----------|--------|--------------|--------|--------|-------------|-------|--------|-------|--------|---|---|-----|---|------|---|-----|-----|----|-----|-----|-----|------|------|-------|------------|------------|---------|----|------------|----------|---|
|                              | Hirec   |          | 8 8    | 7 7    | 7 2<br>3 2 | : ``  | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 99.  | ë.<br>≅ | 9.0      | 3 3        | 5 6      | ; a   | ; a      | ; 8   | 8        | =        | 5 8   | =        | : 8    | =            | : =    | 3      |             | 5 5   | 5 8    | 8     |        |   |   |     |   |      |   |     |     |    |     |     |     |      |      | Hirec |            | 8.6        | -0.01   |    |            |          |   |
|                              |         |          |        |        |            |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |         |          |            |          |       |          |       | =        |          |       |          |        |              |        |        |             |       |        |       |        |   |   |     |   |      |   |     |     |    |     |     |     |      |      | Ş     | 7          | <b>4</b> . | 7.      |    |            |          |   |
|                              | 59      | •        |        |        |            |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |         |          |            |          |       |          |       |          |          |       |          |        |              |        |        |             |       |        |       |        |   |   |     |   |      |   |     |     |    |     |     |     |      |      | *     | •          | 0.0        |         |    |            |          |   |
|                              |         |          | 0.5    | 9.0    | 9 6        | 9 6   | Ģ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0    | Ģ       | 0.5      | <u>ه</u> ، | 5        | 9 9   | ,        | 5 6   |          | 9        | · -   | , ,      | , .    | ; ç          |        | 9      |             |       | ,<br>, |       |        |   |   |     |   |      |   |     |     |    |     |     |     |      |      | RHbot |            |            |         | 0  | 55.3       | o.       |   |
|                              | 8H<br>1 |          | 62.9   | 85.7   | 9.0        |       | 85.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 88.5 | 92.2    | 92.3     | 7          | 9 9      | 2.5   |          |       |          |          |       | :        | : :    | 5 5          | ,      | 2      |             |       | 2 0    | 5 5   | 5      |   |   |     |   |      |   |     |     |    |     |     |     |      |      |       |            | mc         |         | 76 | 8          | \$       |   |
|                              | 9 5     | <b>6</b> | ÷ 5    | = :    | ?          | 9     | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -    | -429    | -42      | ÷ :        | 7        | Ç     | 9 2      | 0     | ,        | 3        |       |          |        | ,            | ,      | 2      | 100         |       | 77.    | 7.0   | 2      |   |   |     |   |      |   |     |     |    |     |     |     |      |      | 3     | ?          | 7          | 1 -16.3 |    |            |          |   |
|                              | g .     | <b>2</b> | 52     | 62     | = 3        | 124   | 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | £03  | 397     | 330      | 389        | 28       | 290   | ;        | 3     | 2 5      | 3 5      | 000   |          | 6      | 200          | 7001   | 200    | 677         | 600   | 697    | 123   | 27.    |   |   |     |   |      |   |     |     |    |     |     |     |      |      | ğ     | 3/         | 2.         | 12      |    |            |          |   |
|                              | ₩ ;     |          |        |        |            |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |         |          |            |          |       |          |       |          |          |       |          |        |              |        |        |             |       |        |       |        |   |   |     |   |      |   |     |     |    |     |     |     |      |      |       | кРа        |            |         |    | -0.08      |          |   |
|                              | ₽,      |          |        |        |            |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |         |          |            |          |       |          |       |          |          |       |          |        |              |        |        |             |       |        |       |        |   |   |     |   |      |   |     |     |    |     |     |     |      |      | Ą     | ပ          |            |         |    | -0.7       |          |   |
|                              | Sabot   | ĸ ba     | 2.33   | 2.31   | 2.30       | 2.31  | 87.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.16 | 2.12    | 2.07     | 2.01       | 1.97     | .93   | 9:1      | 1.8   | 90.7     | 60.7     | 7.    | 2.5      | 7.07   | 77.7         | 9.7    | ç ;    | 3.5         | F :   | 1.30   | 9.7   | ?      |   |   |     |   |      |   |     |     |    |     |     |     |      |      | Eabot | r Pa       |            |         |    | 1.97       |          |   |
|                              |         |          |        |        |            |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |         | 2.07     |            |          |       |          |       |          |          |       |          |        |              |        |        |             |       |        |       |        |   |   |     |   |      |   |     |     |    |     |     |     |      |      | Eatop | K Pa       |            |         | 5  | 1.8878     | 1,0425   |   |
|                              |         |          |        |        |            |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |         | 23.65    |            |          |       |          |       |          |          |       |          |        |              |        |        |             |       |        |       |        |   |   |     |   |      |   |     |     |    |     |     |     |      |      |       | ٥          |            |         |    | 25.04      |          | 1 |
|                              | woot    | ပ        | 0.88   | 0.57   | 6.43       | 6.39  | 27.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2 0  | 8.67    | 18.49    | 7.93       | 7.43     | 10.   | 6.67     | 6.67  | 82.5     | 2.5      | 7.0   | 13.21    | 9.79   | ¥ :          | 27.30  | 20.99  | 20.54       | 27.74 | 21.23  | 20.40 | 70.47  |   |   |     |   |      |   |     |     |    |     |     |     |      |      |       | ٥          |            |         | 9  | 20.57      | •        |   |
|                              | bot I   | ပ        | .00    | .30    | .08        | 2     | . 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7 -  | -       | 19.35    | .53        | .8.<br>_ | 61.   | <u>.</u> | e. :  | 7.7      |          | 2.21  | 2.8      | 3.32   | 9.49         | 8<br>S | 9.0    | 9.43        | 6.19  | 0.59   | 8 :   | 7      |   |   |     |   |      |   |     |     |    |     |     |     |      |      | Tabot | ٥          |            |         | ;  | 27.45      | 9.91     |   |
|                              | el qo   | ပ        | 22     | 67 22  | 58 22      | 20 5  | 52 54<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10<br>14:10 | 2 2  | 10      | 18.67    | 33.        | .85      | Z.    | . 62     | .62   | <u>-</u> | 5 5      | 2     | . 23     | . 52   | . 86         | .63    | ~<br>~ | .83 2       | <br>  | 36     | 90.0  | 35.    |   |   |     |   |      |   |     |     |    |     |     |     |      |      | at oo |            | •          |         | •  | 19.40      | 9.41     |   |
|                              | op 1st  | ပ        | 46 20. | 87 20. | 63 20      | 17 20 | 65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9 5  | 2 62    | 19.95 18 | 51 18      | 78 17    | 65 17 | 2 12     | 12 16 | e :      | 92 :     | 19 18 | 89 18    | .16 19 | .80 20       | .57    | . 36   | <b>69</b> . | 8.    | ≅.     | e :   | -<br>  |   |   |     |   |      |   |     |     |    |     |     |     |      |      |       |            |            |         | ;  | 25.03      | 10.14    |   |
|                              |         |          | 23.    | 22.    | 22.        | 22.   | 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ; ;  | 2 5     | .61      | 5.         | 18       | Ξ.    | = :      | = :   | 5        | 22       | 22    | 7 22     | 9 23   | 6 25         | 3 27   | 7 27   | 38          | 23    | ۶<br>ج | S :   | 유<br>= |   |   |     |   |      |   |     |     |    |     |     |     |      |      |       |            |            |         |    | 3 %        |          |   |
|                              |         |          |        |        |            |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |         | 3        |            |          |       |          |       |          |          |       |          |        |              |        |        |             |       |        |       |        |   |   |     |   |      |   |     |     |    |     |     |     |      |      |       | •          |            |         |    | 5.2        | ₹.       |   |
|                              |         |          |        |        |            |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |         | 6.       |            |          |       |          |       |          |          |       |          |        |              |        |        |             |       |        |       |        |   |   |     |   |      |   |     |     |    |     |     |     |      |      |       |            |            | wi ee   |    | - ~        |          |   |
| KANSAS                       | Ę       | 1,02     | ÷      | - 448  | -442       | -440  | ÷                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | į    | ,       | Ş        | -420       | -416     | ÷     | -379     | -319  | -35      | \$       | ÷     | -445     | -408   | -13          | -518   | -529   | -533        | ş     | -567   | -586  | -59    |   |   |     |   |      |   |     |     |    |     |     |     |      |      |       | 1          | 1 -39      | 9 -22.5 |    |            |          |   |
| , J                          | ē       | K/07     | 425    | 420    | £          | 428   | <b>4</b> 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3    | 3 %     | 8 8      | 389        | 350      | 390   | 378      | 378   | 333      | 389      | 393   | 38       | 379    | 392          | 375    | 381    | 384         | 393   | 392    | 395   | 393    |   |   |     |   |      |   |     |     |    |     |     |     |      |      |       |            | , z        | 11.9    |    |            |          |   |
| FRAI                         |         |          |        |        |            |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |         | 0        |            | 0        | 0     | 22       | 23    | 35       | =        | 124   | 142      | 178    | 208          | 115    | 181    | 289         | 365   | 422    | 461   | Ç      |   |   |     |   |      |   |     |     |    |     |     |     |      |      |       |            | , 0        | 9.01    | :  |            |          |   |
| K0N2A                        | 9       | 7        |        |        | 0          | 0     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0 (  | > <     | , 0      |            | 0        | 0     | Ģ        | 9-    | ÷        | <b>9</b> | ₹.    | 8        | -55    | Ξ            | 126    | 135    | -145        | -145  | -145   | -145  | -145   |   |   |     |   |      |   |     |     |    |     |     |     |      |      | 3     | 2          |            | \$; \$  | ;  |            |          |   |
| DATA FROM THE KONZA FRAIRIE, |         | /42      |        |        |            |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |         | •        |            |          |       |          |       |          |          |       |          |        |              |        |        |             |       |        |       |        |   |   |     |   |      |   |     |     |    |     |     |     |      |      | 3     | e :        | 2.5        | 26.3    | :  |            |          |   |
| A FRO                        |         |          |        |        |            | •     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |         | ~ @      |            |          |       |          |       |          |          | -     | ~        | _      | <del>-</del> |        |        |             |       |        | 61-   |        |   |   |     |   |      |   |     |     |    |     |     |     |      |      |       | 3          | 7.0        | -0.2    | ;  |            |          |   |
|                              |         | 3        | ï      | . ~    |            | 'n    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |         |          |            |          |       |          |       |          |          | 83    | 39       | ŝ      | 35           | ಽ      |        | •           | •     | •      | •     |        |   |   |     |   |      |   |     |     |    |     |     |     |      |      |       |            | 9.3        | -10.1   |    |            |          |   |
| 20, 1986,                    |         |          |        |        |            |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |         | 7 7      |            |          |       |          |       |          |          |       |          |        |              |        |        |             |       |        |       |        |   |   |     |   |      |   |     |     |    |     |     |     |      |      |       | <b>=</b> 9 | 2 0        | - 9.9-  |    |            |          |   |
| JLY 20                       |         | 7        |        |        |            |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |         | 2 %      |            |          |       |          |       |          |          |       |          |        |              |        | -      |             |       |        |       |        |   |   |     |   |      |   |     |     |    |     |     |     |      |      |       |            |            | 17.6    |    |            |          |   |
| 9, 30LY                      | a       | ,        | 7      | 2 5    | , ,        | -5    | ₹.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ÷.   | ÷ ;     | 3 5      | 3 %        | Ģ        | -5    | 0        | 9     | 3        | 132      | 2     | <u>0</u> | 3      | 39           | 9      | 22     | 88          | 62    | 59     | 68    | . 68   | _ |   |     |   | , co | æ | v c | , v |    | , o | v 0 | ~ 0 | v, e | ~; ¢ |       |            | ? =<br>=   | DSUN 17 | 5  | TAVE       | <u> </u> |   |
| SIER                         |         | -        | -      | 3 5    | . "        | 2     | 3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.0  | 5       |          | : :        |          | , 0   | 5.       | .0    | 7.5      | 8<br>0.  | 8.5   | 9.0      | 5.     | 0.0          | 0.5    | =      | 11.5        | 12.0  | 12.5   | 13.0  | 5.5    | = | = | 5.5 | 2 | 9    | 7 | 7 8 | . 8 | 6. | 2 2 | 2 % | ≈ ≈ | 22.5 | 2 2  | :     | H          | 52         | 2       | 2  | <b>±</b> 2 | 5 2      |   |

| The color   The  | 2.55<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>-0.25<br>- |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 65 7 7 7 7 7 7 7 7 7 7 7 9 65 65 65 65 65 65 65 65 65 65 65 65 65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Color   Colo |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| No. 1,  | 193<br>396<br>396<br>399<br>393<br>394<br>394<br>394<br>15.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Mar.   With    | 0.45<br>0.45<br>0.45<br>0.45<br>0.43<br>0.43<br>0.43<br>0.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Eabot MPa 1.94 1.94 1.94 1.94 1.94 1.94 1.94 1.87 1.87 1.87 1.87 1.98 1.99 1.99 1.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Quee         Visc         Visc <th< td=""><td>1.95<br/>1.95<br/>1.89<br/>1.86<br/>1.86<br/>1.86<br/>1.86<br/>1.96<br/>1.99</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.95<br>1.95<br>1.89<br>1.86<br>1.86<br>1.86<br>1.86<br>1.96<br>1.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| WARE WARE WARE WARE WARE WARE WARE WARE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 23.72<br>23.73<br>23.73<br>23.73<br>23.74<br>23.27<br>23.17<br>15011<br>15011<br>15.01<br>14.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Vyke         Vyke <th< td=""><td>17.71<br/>17.82<br/>17.82<br/>17.82<br/>17.44<br/>17.18<br/>17.18<br/>17.14<br/>20.45</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 17.71<br>17.82<br>17.82<br>17.82<br>17.44<br>17.18<br>17.18<br>17.14<br>20.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42 <th< td=""><td>19.36<br/>19.36<br/>19.03<br/>19.04<br/>18.98<br/>18.55<br/>18.55<br/>21.22<br/>22.22<br/>26.31</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 19.36<br>19.36<br>19.03<br>19.04<br>18.98<br>18.55<br>18.55<br>21.22<br>22.22<br>26.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| W/S         W/S <td>17.93<br/>17.93<br/>17.93<br/>17.93<br/>17.24<br/>17.27<br/>17.28<br/>19.96<br/>9.93</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 17.93<br>17.93<br>17.93<br>17.93<br>17.24<br>17.27<br>17.28<br>19.96<br>9.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| W/AZ         W/AZ <th< td=""><td>19.74<br/>19.74<br/>19.74<br/>19.74<br/>19.50<br/>18.97<br/>18.97<br/>10.61</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 19.74<br>19.74<br>19.74<br>19.74<br>19.50<br>18.97<br>18.97<br>10.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 4/12         M/12         M/12 <th< td=""><td></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| W/82         W/82 <th< td=""><td>2.0<br/>2.0<br/>2.0<br/>2.0<br/>2.0<br/>2.0<br/>2.0<br/>3.0<br/>3.0<br/>4.0<br/>1.5<br/>6.0<br/>1.5<br/>6.0<br/>1.5<br/>6.0<br/>6.0<br/>6.0<br/>6.0<br/>6.0<br/>6.0<br/>7.0<br/>7.0<br/>7.0<br/>7.0<br/>7.0<br/>7.0<br/>7.0<br/>7.0<br/>7.0<br/>7</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>2.0<br>3.0<br>3.0<br>4.0<br>1.5<br>6.0<br>1.5<br>6.0<br>1.5<br>6.0<br>6.0<br>6.0<br>6.0<br>6.0<br>6.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7.0<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42         4/42 <th< td=""><td></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| W/62         W/82         W/82 <th< td=""><td>393<br/>396<br/>399<br/>393<br/>393<br/>391<br/>115.0</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 393<br>396<br>399<br>393<br>393<br>391<br>115.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| W/RZ         W/RZ <th< td=""><td>000000 <u>00</u>0000</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 000000 <u>00</u> 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| W/RZ         W/RZ <th< td=""><td>1,4,8 to 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1,4,8 to 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 4, 17, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| W/2 W/2 W/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 66 43/82<br>0.2 0.3 0.5 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| (4) (4) (4) (4) (4) (4) (4) (4) (4) (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -37<br>-37<br>-32<br>-34<br>-34<br>-34<br>-34<br>-34<br>-34<br>-34<br>-34<br>-34<br>-34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

SISTEM 9, JULY 21, 1986, DATA FROM THE KONZA PRAIRIE, KANCES

124

|           |          |         |           |          |          |     |                |            |            |                   |         |         |                 |                |          |            |        |              |                   |              |            |        |         |        |      |       |       |        |                  |          |       |                |        |           |       |                |       |        |             |        |             |       | _             | _         | ~      |         |       |       |         | _     | ~                                        |       |      |
|-----------|----------|---------|-----------|----------|----------|-----|----------------|------------|------------|-------------------|---------|---------|-----------------|----------------|----------|------------|--------|--------------|-------------------|--------------|------------|--------|---------|--------|------|-------|-------|--------|------------------|----------|-------|----------------|--------|-----------|-------|----------------|-------|--------|-------------|--------|-------------|-------|---------------|-----------|--------|---------|-------|-------|---------|-------|------------------------------------------|-------|------|
| ;         | *        | 7 77    | 9         | 1.23     | 0.33     | -:- | -0.81          | -1.08      | 20.1-      |                   | 7. 3    | 5. 5.   | 2 4             | 2 4            | 200      | -0.32      | 0.04   | 0.37         | 0.43              | 0.45         | 5 5        | 19 0   | 0.79    | 0.45   | 0.79 | 0.58  | 9.0   | 7.0    | 0.48             | 0.57     | 0.23  | 0.35           |        | 9 6       | -0.15 | -0.30          | -0.56 | ×.     | 2.5         | 6.79   | 1.0         | -1.0  | 0             | 7.7       | æ      |         |       |       |         | 0.0   | 0.7                                      | ;     |      |
|           | firec    |         |           |          |          |     |                | 3.00       |            |                   |         |         |                 |                |          |            |        |              |                   |              |            |        |         |        |      |       |       |        |                  | 3.01     |       | 2.0            |        |           | 2 5   | 3.01           | -3.01 | 3.01   | 2.5         | 20.5   | 3.0         | -3.03 | 5.01          | -5.01     | HATEC  | 4       | 5 6   | 0.00  |         |       |                                          |       |      |
|           | £<br>8.5 |         |           |          | m)       | -   | ٠,             | -          | ٠,         | - •               | ٠.      | • •     |                 |                |          | ٠,         | Ļ      | 6-           |                   |              |            |        |         |        |      |       |       |        |                  | -        |       | <b>≍</b> :     | 2 :    | 2 =       | 2 22  | Ξ              | 23    | =      | 2 5         | ? ~    | . ~         | •     | ∞             | 7         | S      | 2/2     | , e   | 0.2   | :       |       |                                          |       |      |
|           | 2<br>22  | ,       |           | 0.2      | 0.2      | 0.2 | 0.2            | 0.5        | 0.5        | 0.5               | 6.5     | 0 6     | 7.6             | 7 6            | 7 0      | 2.0        | -0.2   | 0.5          | -0.2              | 0.5          | 7.0        | ; ;    | 0.5     | -0.2   | 0.5  | -0.5  | 0.5   | 7.0    | -0.2             | 0.5      | -0.2  | 0.5            | 0.6    | 7.0.      | 9 0   | 0.2            | -0.2  | 0.7    | -0.2<br>2.0 | - 0.   | 0.2         | -0.2  | 0.5           | -0.<br>2. | =      |         | 9 6   | 9 0   | ;       |       |                                          |       |      |
|           | RED .    |         |           | 5.2      | 9.1      | 0.7 | 8.9            | 6.2        | 2.         | 22.7              | 22.1    |         | 7.78            | 9 5            | 9 .      | 19.9       | 77.0   | 11.2         | 65.4              | 61.7         | 28.5       | 3 3    | 51.7    | 51.5   | 48.9 | 48.9  | 49.0  | 0.0    | 50.1             | 5.3      | 51.2  | 52.3           | 52.6   | 2.6       | 9.00  | 67.6           | 72.9  | 76.0   | 9. 6        | 7.     | =           | 79.B  | 83.7          | 85.0      | RHDot  |         |       |       |         | 9.69  | 28.2                                     | ;     |      |
|           | a (      |         | ; ;       | 132      | 428      | 428 | ₹3             | 434        | \$35       | 3                 | 음<br>구  | 3       | 25              |                | 2 4      |            | Ę      | -458         | -517              | -557         | 013-       | -      | -688    | -769   | -731 | -732  | -733  | 71.    | -101             | -710     | -661  | -640           | 919-   | . 283     | 5.5   | 64-            | -464  | ÷      | 9           |        | \$          | 45    | -425          | -450      | à      | 2/6     | 2.5   | 2.07  | :       |       |                                          |       |      |
|           | 500      |         | 2         | 2 5      | 413      | 83  | 613            | 426        | 423        | 424               | 410     | 5       | 7               | 3              | 717      | 2 5        | 549    | 147          | 814               | 916          | 100        | 7 5    | 1249    | 1292   | 1312 | 1328  | 131   | 1294   | 1251             | 3 =      | 1102  | 856            | 845    | 52        | 2 2   | 481            | 459   | ₽<br>7 | ₹ :         | 7 5    | ? 3         | 425   | 422           | 421       | Dd     |         | 19    | 2 =   | -       |       | _                                        | _     |      |
|           | ₩ ş      | 2 2     | 5 6       | 20.0     | 0.01     | 0.0 | 0.02           | 0.01       | 0.01       | 0.0               | 0.0     | 0.06    | 0.0             | -0.03<br>-0.03 | 5 6      | 20.05      | -0.03  | -0.05        | -0.05             | -0.08        | 9.0        | 2 8    | 0.0     | .0.13  | -0.0 | -0.10 | -0.10 | 9.5    |                  | -0.10    | 0.03  | -0.03          | -0.03  | 90.0      | 9 9   | -0.03          | -0.02 | -0.02  | 9.0-        | 2 5    | -0.02       | -0.02 | -0.01         | -0.01     | A      | 2       |       |       |         | -0.0  | -0.07                                    |       |      |
|           | ₽'       | ٠,      | 3 5       |          | . 82     | 7.  | 25             | . 20       | . 20       | ·<br><del>-</del> | 83      | Ξ.      | `<br><u>:</u> : | -<br>          | ٠<br>ج ج | 7 80       | 20     | . 27         | .29               | .57          | = =        | 2 2    | 6.6     | 2      | 6 6  | 0.50  | 69.0  | 16.0   |                  | 0.82     | 0.30  | 0.47           | 0.18   | 0.08      | 0.0   | 6.6            | 0.18  | 0.21   | 0.22        | 27.0   | 0.17        | 9. 50 | 0.17          | 0.21      | ₽      | Ç       |       |       |         | -0.15 | -0.44                                    | 2.5   |      |
|           |          | ٠       |           | ; c      |          |     |                | 0          | 0 6        | 9                 | 0 8     | 5       | 0 0             | -              |          | <b>5</b> 6 | 2 12   | 9            | ۰<br>۲            | )-<br> 6     | ۲ :<br>≵ : | 2 2    | c x     | : =    | 3 25 | 3     | 30    | 2 2    | · ·              | : =      | . 03  | · 2#           | ٠<br>9 | ٠<br>دي و | e, e  | ; <b>4</b>     | 7     | ₽.     | <b>Q</b> :  | 3, 6   | ; s         | ÷     | 85.           | 35.       | Eabot  | 1 P 3   |       |       |         | .21   | 2.32                                     | 92.   |      |
|           | Eabot    |         |           |          |          |     |                |            |            |                   |         |         |                 |                |          |            |        |              |                   |              |            |        |         |        |      |       |       |        |                  | 7.7      |       |                |        |           |       |                |       |        |             |        |             |       |               |           |        |         |       |       |         |       |                                          |       |      |
|           | totop.   | ¥ 74    | 8 6       | 1, 1     | 6        | 6   | 6              | 1.97       | 1.97       | 1.97              | 1.97    | 1.96    | 1.93            | .98            | 2 3      | 2 8        | 2 . 6  | 2.05         | 2.03              | 2.11         | 2.13       | 2.5    | 7.10    | ,      | 2.17 | 2.21  | 2.20  | 2.18   | 2.6              | 2.34     | 2.3   | 2.34           | 2.3    | 2.3       | 2. 5  |                | 7.    | 7.     | 2.3         | 2.5    | 3,6         |       | 23            | 2.3       | Eatop  |         |       |       |         |       | 2.2410                                   |       |      |
|           | 011      | ٠.      | 2.3       | 5 8      |          | 2   | - <del>-</del> | 22.81      | 11.        | 2.74              | 2.30    | 2.65    | 7.61            | 2.55           | 2.55     | 2.57       | 2 6    | 90.5         | 3.22              | 3,53         | 1.03       | æ :    | 3.5     | 37.70  | 91.5 | 28.12 | 28.53 | 29.05  | 75.57            | 23.13    | 28.97 | 28.62          | 29.24  | 27.83     | 27.43 | 40.74<br>70.74 | 26.36 | 26.05  | 25.74       | 25.48  | 22.23       | 24.92 | 24.77         | 24.66     | I so I | Ç       |       |       |         | 25.16 | 26.57                                    | 15.30 | S.C. |
|           | 10t 15   |         |           |          |          |     |                | 18.21 27   |            |                   |         |         |                 |                |          |            | 7 6    |              | 69.               | 2            | 2.03       |        |         |        |      |       |       |        |                  | 24.04    |       |                |        |           | 20.00 | 2 2            | 7 7   | 27.00  | 11.62       | 21.36  | 2.2         | 7 7   | 21.17         | 20.94     | Tubot  | Ų       |       |       |         | 20.99 | 22.59                                    | 12.43 |      |
|           | ot 1st   | ب       | 25        | 2 5      | 90 70    | 5 5 | 3 5            | 78 18      | 94 18      | 94 18             | %<br>18 | 56 18   | 63              | 18 18          | 82       | 85.5       | 85. 58 |              | 43 2              | .92          | .21        | 2      | 5.5     | •      | , ,  | 68    | .78   | 90.    | 2 5              | 32.38 2  | 7     | . 52           | . 98 . |           | 27.   | : :            | 5.13  | 5.17   | 4.37        | 2.63   | 2 2         | 9 6   | 3.25          | 2.78      | Tabot  |         |       |       |         | 25.45 | 29.08                                    | 13.72 |      |
|           | del q    | ی       | 5 18      | 5.5      | 2 2      |     |                | 6          | 7 19.      | 25 29.            | 26 19.  | 33 19   | 19.             | 26 20.         | 200      | 2 3        | 29 57  | 3 5          | 37 25             | 88 26        | 35 28      | ۶<br>چ | 86 29   | 2 5    | 7 F  |       | 1.    | .62 33 | = :              | 23.38 33 | 2.5   | 28             | .13    | .95<br>E. | 18:   | 3 5            | 78 7  | .99    | .62 2       | 5      | 27 27       | 35    | . 16 2        | .95       |        | ပ       |       |       |         |       | 22.14                                    |       |      |
|           | Juto     |         |           |          | _        |     |                | 2 2        | 28.7       | 8.                | 38      | 8 18    | 6 18.           | 3 18           | E.       | 8. 5       | 9 6    |              | 70.               | 29           | 19 21.     | ≈<br>≈ | 2 2     | 3 2    | 3 3  | 22    | 22 60 | 14 22  | 2<br>2<br>2<br>3 | 59 23    | 43 23 | 2 2            | 78 23  | 02 22     | 35 22 | 22 22          | 30 22 | 37 21  | 58 21       | Z :    | 2 2         | 5 5   | : ~<br>: ₹    | .97       |        | ບ       |       |       |         |       | 28.63 2                                  |       |      |
|           | latop    | 3       | 19.14     | 20.26    | 19.42    |     | 0 0            | 19.9       | 20.1       | 20.02             | 28.     | 19.6    | 19.7            | 20.3           | 20.3     | 20.6       | 2.2.2  |              |                   | 28           | 9 27.4     | 23     | 28.5    | 2      | 9 6  |       | 31.0  | 2 31.  |                  | 5 31.59  |       | . z            | 30.    | 30.       | 23    | ei 5           | 3 2   | 25     | 30 24       | 39 24. | 2.<br>2. 2. | 2 5   | 33 23         | 71 22     |        | de9     |       |       |         |       | 33 23 23 23 23 23 23 23 23 23 23 23 23 2 |       |      |
|           | 100      | deg     | ~         | <u> </u> |          |     | 2 8            |            |            |                   |         |         |                 |                |          |            |        |              |                   |              |            |        |         |        |      |       | =     | 0.     | 9                | 5 115    | - ~   |                | =      | 0         | 8.    | = =<br>= :     |       |        | 5.8         |        |             |       |               |           | 5      |         |       |       |         | 6     | 3. 7                                     | 1.6   |      |
| un.       | =        | \$ / 8  | 7         |          |          |     |                |            |            |                   |         |         |                 |                |          |            |        |              |                   |              |            |        | 3.5     |        |      |       | i mi  | 5      | mi.              | m =      |       | , <del>-</del> | 35     | 7         | £.    | e e            |       |        |             |        |             |       |               |           | 9      | 83/a2   | 1.2   | -23.6 | 7.¢     |       |                                          |       |      |
| KANSA     |          |         |           |          |          |     |                |            |            |                   |         |         |                 |                | -40,     | 9-0        | 9      | 7 2          | 9 5               | ,            | 3 -48      | 55-52  | - 22    | ٠<br>- | 5    | 2 2   | : 4i  | 5-     | 35 -50           | 25       | 7     | 5 =            | 07 -5  | 3- 30     | - 10  | 7 ·            | 7 7   | : 2    | ਂ ਜ<br>: ਲ  | 7 5    | 7           | 7 7   | 7 7<br>2 2    | 421 -453  | 5      |         |       | •     | 16.8 -1 |       |                                          |       |      |
| PRAIRIE,  |          | N,82    | \$        | Ş:       | = :      | € 5 | 3 3            | 2 4        |            | 2                 |         | . 0     | 0 42            | <b>♀</b>       | 9 ~      | _          |        |              |                   |              |            |        |         |        |      |       |       |        |                  | 307      |       |                |        |           |       |                |       | , «    |             | 0      |             | - 4   | - c           | • •       | ۵      | /a. a.] | *     | 9.0   |         |       |                                          |       |      |
| KONZA PI  | ~        |         | ۰         | _        |          |     |                | <b>5</b> 6 | • =        | , =               |         | • •     |                 | <u>.</u>       | _        | 9          | 9 :    | 92 :         |                   |              |            |        | -140 2  |        |      |       |       |        |                  | E :      |       |                |        |           |       |                |       |        | . 0         | 0      | 0           | 0     | <b>&gt;</b> • | • •       | 9      | 3/62 63 |       | 7.    | -0.2    |       |                                          |       |      |
| 뿔         |          | 2 N/#2  | •         |          |          |     |                | 0 9        | <b>,</b> c | , ,               |         | . 0     |                 |                | e        | 92         |        | <b>9</b> 2 2 |                   | •            |            |        |         |        |      |       |       |        |                  | 627 -1   |       |                |        |           |       |                |       | ; °    | . ~         | 0      | 0           | 0     |               | . 0       | 2      |         |       |       |         |       |                                          |       |      |
| A FROM    |          | 2 W/02  |           | _        | 7        | _   | _              | · ·        | ۰ ،        | ۰ ،               | o 4     |         | • •             | 'n             | S        | v          | -      | - ·          |                   |              | φ<br>•     | -      | .:<br>B | =      |      |       |       |        |                  | 17-      |       |                |        |           |       |                |       |        | ,           | -      | 7           | m .   | ~ ×           | , m       | 5      |         | -     | -0.5  |         |       |                                          |       |      |
| 36. DAT   | و<br>س   | 12 11/0 | ·<br>     | -        | <u>.</u> |     | =              | φŗ         |            |                   | 7 7     | . 0     | ; <b>4</b>      | , 2            | 2        | 13         | 3.     | <b>≭</b> :   | 8 ;               | * *          | 662        | 325    | 333     | 323    |      |       |       |        |                  |          |       |                |        |           |       |                |       | 2 5    | 2 =         | ÷      | ä           | -58   | 21.           | 2 7       | •      | 1/02    | -12.1 |       |         |       |                                          |       |      |
| 22, 1986, |          | 92 W/I  |           | <u>د</u> | _        | ~   | -              | · .        | <b>2</b> 2 | 3 -               | ء -     | ,<br>2° |                 |                |          | ٠          | 81     |              | 7 7<br><b>;</b> ; | ? ?          | : 52       | 591    | 203     | 548    | 188  | 212   | 97.   | 62     | 183              | - 161    | 98 3  | ខ្ល            | 3 15   | ; ;       | . 2   | ::<br>:::      | £ :   | 2 5    | 2 2         | 2      | 33          | 2     | <b>=</b> 7    | 9 9       | 3      | 7       | ÷     | -5.0  | 9.5     |       |                                          |       |      |
| JE.       |          | 32 H/   | ·<br>: == |          |          |     |                | ÷:         |            |                   |         |         |                 |                |          | 9          | 33     | ≅ ;          | 192               | 7 7 7        | 35         | 517    | 573     | - 913  | 653  |       |       | 65.    | - 13             | . 009    | 5     | \$ \frac{1}{2} | 230    | 213       | 22    | 23             | 2     | •      | 95.         | -53    | ę.          | Ş.    | Ģ.            | ? F       | c      | 1/2     | 17.5  | 17.5  | 0.0     |       |                                          |       |      |
| SYSTER 9, | ų.       | 3       |           | ٠        | . s.     | 0.  |                | 9.5        | 2 4        | 3                 |         |         |                 | , 2            | 0.       | 7.5        | 8.0    | .5.          | 9                 | ٠. و<br>د. و |            | 0.1    | 1.5     | 12.0   | 12.5 | 2.0   | 5.5   | 2.5    | 15.0             | 15.5     | 16.0  | 2              | 2.7.   | 0.5       | 18.5  | 3.0            | 19.5  | 9 9    | 21.0        | 21.5   | 22.0        | 22.5  | 23.0          | 2.0       |        |         |       | DSUM  |         |       | LAVE                                     | NAVE  |      |
| 55        | =        |         | 9         |          | _        | •   | •              | -, •       |            | •                 | •       |         | •               |                |          |            |        |              |                   |              |            |        |         |        |      |       |       |        |                  |          |       |                |        |           |       |                |       |        |             |        |             |       |               |           |        |         |       |       |         |       |                                          |       |      |

SYSTEM 9, JULY 22, 1986, DATA FROM THE KONZA PRAIRIE, KANSAS

| œ     | •    | -46.34  |       | -8.99 | 26.71 | -1.32           | -15.75 | -3.84 | =      | -2.12 | 2     | 2 4    | 8 1    | <br>       | 3 6   | 2 6   | 0.36  | 09.0   | 99.0  | 89.1  | 0.72  | 0.11  | 0.63   | 0.74  | 0.78    | 0.63         | 0.87        | 8:       | -6.3  | 3.26  | 0.8   | -97.20   | -0.5<br>50.5 | 86.7                                                                                                                              |      |      |      |      |      | æ     |             |          | • | -5.0<br>-8.7             |
|-------|------|---------|-------|-------|-------|-----------------|--------|-------|--------|-------|-------|--------|--------|------------|-------|-------|-------|--------|-------|-------|-------|-------|--------|-------|---------|--------------|-------------|----------|-------|-------|-------|----------|--------------|-----------------------------------------------------------------------------------------------------------------------------------|------|------|------|------|------|-------|-------------|----------|---|--------------------------|
| Hirec | :    | 3.00    | -3.01 | 3.00  |       |                 |        |       |        |       |       |        |        |            |       |       |       |        |       |       | -3.01 |       |        |       |         |              |             |          |       |       |       |          |              |                                                                                                                                   |      |      |      |      |      | KArec | 0.01        | 0.0      |   |                          |
| Ş     | 7    | -       | •     | •     | •     | S               | · •    | · •   |        | ٠ -   | • ~   | ٠,     | • -    | <b>-</b> ⊂ | · c   | ۰ ۳   | , 4   | · 5    | Ŧ     | ÷     | -51   | -24   | -53    | -33   | -53     | ÷            | ÷           | -23      | 7     | 2     | 2     | n        | ~ :          | 2                                                                                                                                 |      |      |      |      |      | Ŝ     | 1/82        | 0.0      |   |                          |
| =     | :    |         | 6     | 6     | -0.5  | 0.2             | -0.2   | 0     |        |       | ;     | : :    | , ,    | , ,        | , ,   | , ,   | 2     | 6      | -0-   | 0.0   | -0.2  | °.    | -0.2   | 0.5   | -0.2    | 0.5          | -0.2        | 0.5      | -0.7  | 0.5   | -0.5  | 7.0      | ~ ·          | 7.                                                                                                                                |      |      |      |      |      | =     | 0           | 0.0      |   |                          |
| RHbot | **   |         |       |       |       |                 |        |       |        |       |       |        |        |            |       |       |       |        |       |       | 59.0  |       |        |       |         |              |             |          |       |       |       |          | : :          |                                                                                                                                   |      |      |      |      |      | RHbot | **          |          | 5 | 79.7<br>44.6             |
|       |      | :       |       |       |       |                 |        |       |        |       |       |        |        |            |       |       |       |        |       |       |       |       |        |       |         |              |             |          |       |       |       | 06.9     | 999          | £79-                                                                                                                              |      |      |      |      | •    | 9     | 3/62        | -30.0    |   |                          |
| og o  | 7    | . =     | 7     | 17    | =     | 9               | Ş      | 50    | 403    | 3 3   | =     | =      | 3 5    | 3          | 3 5   | 3 3   | (5)   | 846    | 938   | 1028  | 1109  | 1202  | 1257   | 1295  | 315     | 1073         | 1341        | 1274     | 1215  | 1179  | 27    | 1072     | 103/         | ĝ                                                                                                                                 |      |      |      |      |      | g g   | 3/12        | 19.7     |   |                          |
| ₩     | KP3  | 00.0    | -0.01 | -0.01 | 0.00  | -0.01           | -0.01  | -0.01 | 10 0-  | 0.0-  | -0.01 | 5 6    | 5 6    | 10.0-      | 70.0  | 20.00 | -0.0  | 0.00   | -0.05 | -0.03 | -0.07 | -0.08 | -0.10  | -0.03 | -0.03   | -0.03        | -0.07       | -0.07    | -0.03 | -0.04 | -0.06 | 9.00     | -0.02        | 70.0                                                                                                                              |      |      |      |      |      | A     | k Pa        |          | 2 | -0.03<br>-0.05<br>-0.01  |
|       |      | 0.24    |       |       |       |                 |        |       |        |       |       |        |        |            |       |       |       |        |       |       |       |       |        |       |         |              |             |          |       |       |       |          |              |                                                                                                                                   |      |      |      |      |      | Ą     | <b>ن</b>    |          |   | -0.26<br>-0.67<br>0.09   |
|       |      | 2,35    |       |       |       |                 |        |       |        |       |       |        |        |            |       |       |       |        |       |       |       |       |        |       |         |              |             |          |       |       |       |          |              |                                                                                                                                   |      |      |      |      |      | Eabot | k Pa        |          | ; | 2.42<br>2.55<br>1.13     |
| Eaton | 64   | 2.34    | 2.31  | 2.29  | 2.30  | 2.26            | 2.26   | 2.22  | 2 21   | 2 22  | 2.2   | , ,    | 77.    | 97.7       | 5.7   | 5 2   | 2 38  | 2.49   | 2.50  | 2.56  | 2.53  | 2.54  | 2.51   | 2.53  | 5.50    | 2.53         | 2.46        | 2.45     | 2.50  | 2.50  | 2.48  | 2.48     | 7.5          | <del>-</del> |      |      |      |      |      | Eatop | k P.a       |          | , | 2.39<br>2.4940<br>1.1237 |
| [501] | ی    | 24.52   | 24.32 | 24.18 | 24.07 | 23.95           | 23.84  | 23.71 | 23 50  | 23.42 | 23.38 | 31 22  | 31.75  | 22.53      | 77.57 | 23.62 | 23.41 | 23.89  | 24.22 | 24.62 | 25.10 | 25.88 | 26.53  | 27.18 | 27.79   | 28.30        | 28.58       | 29.11    | 29.63 | 29.23 | 29.50 | 29.12    | 28.83        | RC . 97                                                                                                                           |      |      |      |      |      | 1501  | J           |          |   | 25.51<br>27.32<br>11.33  |
| Mpot  | ی    | 20.70   |       |       |       |                 |        |       |        |       |       |        |        |            |       |       |       |        |       |       |       |       |        |       |         |              |             |          |       |       |       |          |              |                                                                                                                                   |      |      |      |      |      | Tubot | ပ           |          | ; | 24.54<br>24.54<br>9.98   |
| Tabot |      | 22.13   |       |       |       |                 |        |       |        |       |       |        |        |            |       |       |       |        |       |       |       |       |        |       |         |              |             |          |       |       |       |          |              |                                                                                                                                   |      |      |      |      |      |       | ပ           |          | ; | 27.23<br>32.60<br>10.58  |
|       |      | 20.76 2 |       |       |       |                 |        |       |        |       |       |        |        |            |       |       |       |        |       |       |       |       |        |       |         |              |             |          |       |       |       |          |              |                                                                                                                                   |      |      |      |      |      |       | Ų           |          |   | 24.14<br>24.14<br>9.99   |
|       |      | 22.36 2 |       |       |       |                 |        |       |        |       |       |        |        |            |       |       |       |        |       |       |       |       |        |       |         |              |             |          |       |       |       |          |              |                                                                                                                                   |      |      |      |      |      |       | ပ           |          |   | 26.96<br>31.92<br>10.61  |
|       |      | ş 3     |       |       |       |                 |        |       |        |       |       |        |        |            |       |       |       |        |       |       |       |       |        |       |         |              |             |          |       |       |       |          |              |                                                                                                                                   |      |      |      |      |      | 2100  | deg         |          | : | 85<br>85<br>83           |
|       | · /• |         |       |       |       |                 |        |       |        |       |       |        |        |            |       |       |       |        |       |       |       |       |        |       |         |              |             |          |       |       |       |          |              |                                                                                                                                   |      |      |      |      |      |       | <b>s</b> /• |          |   |                          |
| 9     | ;    | 1       | 2     | 5     | 3     | 52              | 23     | 027   | 2      | Ş     | 3     | : =    | 3 5    | 7 6        | 2 2   | 5 5   | 3 5   | Ę      | 19    | -483  | -510  | ₹.    | -560   | -574  | -586    | <b>8</b> 09- | -539        | -554     | 909-  | -576  | -563  | \$       | <u> </u>     | Š                                                                                                                                 |      |      |      |      |      | Ę     | 3/62        | 24.7     | : |                          |
|       | -    |         |       |       |       |                 |        |       |        |       |       |        |        |            |       |       |       |        |       |       |       |       |        |       |         |              |             |          |       |       |       |          |              |                                                                                                                                   |      |      |      |      |      | Ę     | 3/ 2        | 19.4     |   |                          |
| 6     | . Ç  |         | •     | • •   | • 0   | -               |        | 0     |        | . –   | ٠.    |        | •      | > 2        | ; e   | ; 5   | 23    | : 63   | 201   | 101   | 135   | 213   | 213    | 323   | 370     | 346          | <b>4</b> 28 | 373      | 325   | 30    | 23    | £ :      | 62.5         | TO                                                                                                                                |      |      |      |      |      | ۵     | 3/12        | 10.1     | ; |                          |
| on Y  | 7    |         | •     |       | • =   | 0               | 0      | 0     | -      |       |       |        | , <    | 7          |       | : 5   | ; 59  | ج<br>د | 0     | -115  | -123  | -132  | 23     | -142  | Ξ       | -103         | -<br>52     | £ :      | =     | -128  | -123  | = :      | 21.          | ¥9-                                                                                                                               |      |      |      |      |      | Kup   | 3/62        | 2 5 3    | : |                          |
|       | 7.0  |         | •     | • •   | • •   |                 |        | 0     | · c    | •     |       |        |        |            |       |       |       |        |       |       | 92    |       |        |       |         |              |             |          |       |       |       |          |              |                                                                                                                                   |      |      |      |      |      | Ą     | 32.9        | 20.3     |   |                          |
|       | ?    |         | . ~   | -     |       |                 |        | •     | ی د    | , «   |       |        | ٠.     | ^ -        |       |       | ~     | ٠ ٦    | 7     | 'n    | -     | -13   | ÷      | ÷     | -<br>20 | -53          | ç,          | <u>~</u> | ភុ    | ÷     | ÷     | <b>;</b> | <b>≓</b> '   | 7                                                                                                                                 |      |      |      |      |      | 3     | 17.0        | 6.5      |   |                          |
|       |      |         | -20   | : =   | : =   | <u> </u>        | : =    | 7     |        | 3 =   | : =   |        | 15     | ខុក        | ? "   | . 6   | ج     | : =    | -196  | -156  | -268  | -305  | :<br>: | 55    | -343    | 504          | -367        | -533     | 991-  | 23    | -275  | -202     | - :          | <u>3</u>                                                                                                                          |      |      |      |      |      | u     | 3/e2        | <u>.</u> |   |                          |
|       |      |         |       |       |       |                 |        |       |        |       |       |        |        |            |       |       |       |        |       |       | - 88  |       |        |       |         |              |             |          |       |       |       |          |              |                                                                                                                                   |      |      |      |      |      | I     | 1/82        | 8 0      | ; |                          |
| -     |      | ļ       | .33   | ; =   | ;     | ر<br>دون<br>دون | ę      | 19    | ۲<br>ج | : 17  | į.    | ;<br>; | ָ<br>ק | 7 7        | ? "   | . 2   |       |        |       |       |       |       |        |       |         |              |             |          |       |       |       |          |              |                                                                                                                                   |      |      |      |      |      | •     | 22.0        | 21.3     | ; |                          |
| ts.   |      |         |       |       |       |                 |        |       |        |       |       |        |        |            |       |       |       |        |       |       |       |       |        |       |         |              |             |          |       |       |       |          |              | 17.0<br>17.0<br>17.5<br>18.0                                                                                                      | 19.0 | 20.5 | 21.0 | 22.5 | 23.5 | 3411  | 1Stoff      | NS G     |   | TAVE<br>DAVE<br>NAVE     |

| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       | -     | N/82 N/<br>2<br>2 | U/e2 U/e2<br>0 0 | 7, C | 2 Hei             | 459               | s/• | 9 5 2 2    | 25.36          | 22.08   | Tabot 1<br>C<br>25.11 2<br>25.14 2 | C C C C C C C C C C C C C C C C C C C |   |          | 41<br>6.25  | 4 A G        | 0dn<br>11/82<br>433 | 68<br>- 459                             |         | •      | GS 指<br>B2<br>S 3. | E 0.  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|-------------------|------------------|------|-------------------|-------------------|-----|------------|----------------|---------|------------------------------------|---------------------------------------|---|----------|-------------|--------------|---------------------|-----------------------------------------|---------|--------|--------------------|-------|
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ÷ ÷ ; |       | ~ ~ .             | 00               | 00   | 2 2               | 55 - 458<br>- 459 |     | 163        | 25.33          | 22.12   | 25.13 2<br>25.00 2                 | 2.08 2 2.12                           |   |          | 0.23        | 0.0          | \$ E                | 954-                                    |         | ~ ~ .  |                    | - 0   |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ÷ ÷ : |       | ~ m (             |                  | -0   | 2 ±               | ÷ ÷               |     | 177<br>176 | 25.12<br>25.38 | 22.12   | 24.92 2                            | 2.08 2                                |   |          | 0.21        | 0.00         | 3 4 5               | 5 4 4                                   |         | , 0, 0 |                    | - 0   |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | = =   |       | ~ ~               | 0                |      | - <del>1</del> 35 | -456              |     | 172        | 25.57          | 22.30   | 25.39 2                            | 2.16 2                                |   |          | 0.20        | 0.02         | 5 5                 | - 55                                    | 5.7     | 7 7    | 3.6                | - 0   |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ٠ -   |       | ~ ~               | •                | 0.   | 436               | -465              |     | 961        | 26.06          | 22.17   | 25.88 2                            | 2.08                                  |   |          | 0.21        | 0.02         | 438                 | -462 7                                  | 2.4 -0  | ~ ~    | 3.0                |       |
| 2 15 2 10 601 421 441 141 141 141 141 141 141 141 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | : =   |       | . ~               |                  |      | 2 2               | Ç <del>Ş</del>    |     | 200        | 25.80          | 22.02   | 5.58 2                             | 2.6.1                                 |   |          | 0.23        | 0.00         | 435                 | -465 7                                  | 3.2     | . ~    | , 5,<br>0, 5,      |       |
| 1   2   10   401 - 401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   401   | ~ `   |       | 7                 | 0                | _    | 5                 | -462              |     | 210        | 25.91          | 21.70   | 5.65                               | 2 5 2                                 |   |          | 0.26        | 0.01         | 432                 | -461 7                                  | 1.6 0   | ~      | 3.0                | 2     |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |       | ~ ~               | <u>.</u> .       | = :  | ÷                 | <b>F</b>          |     | 661        | 25.25          | 21.64   | 5.01                               | .53                                   |   |          | 0.25        | 0.0          | 4.5                 | 7 52                                    | 9.9     | ۰. د   | 5.0                | ~; <  |
| 2 187 - 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •     | . ~   | , ~               | 1 93             | 3 25 | 9 5               | ÷ 5               |     | 567        | 25.25          | 23.64   | 5.01                               | .57                                   |   |          | 0.25        | 0.00         | 2 ≅                 | 15                                      |         | 4 ~    | 2.5.0              | 9 9   |
| 1 138 - 41 60 319 - 429                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ş     | 9     | 2                 | 75 -4            | 8    | 397               | Ţ                 |     | 212        | 26.79          | 7 60 7  | 2.5/                               | 2. 8                                  |   |          | 0.22        | 0.0          | 467                 |                                         |         |        | 0.0                |       |
| 1, 2, 42, 43, 44, 46, 44, 44, 44, 44, 44, 44, 44, 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | = :   | ខ្ល   |                   |                  | 9 1  | 293               | -459              |     | 208        | 27.78          | 2.11    | 7.73                               | 2 22                                  |   |          | 0.00        | 9.0          | 583                 |                                         |         | ~ .    | 3.0                | æ .   |
| 1, 2, 243   106   27   477   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471   471     | - ~   | 2 3   | 2 ÷               |                  | 2 %  |                   | ¥ ;               |     | ž:         | 28.63          | 22.37   | 8.74 22                            | .49 24                                |   |          | -0.10       | -0.02        | 785                 |                                         |         | , 4    | 2.0                |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . ~:  | : ::2 | i iù              |                  | 82   |                   | 187               |     | 2 5        | 25.82          | 72.39   | 9.79                               | 22.5                                  |   |          | -0.26       | -0.06        | 283                 |                                         |         | 2 -10  | -3.0               |       |
| 1. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | m     |       |                   |                  |      | 418               | -518              |     | . ₹        | 2.95           | 5.5     | 2.50 22                            | 2 2                                   |   |          | ه<br>م<br>م | -0.07        | 976                 |                                         |         | -14    | 3.0                | 0     |
| 18   18   19   19   19   19   19   19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7 -   |       |                   |                  |      | 453               | -541              |     | 500        | 12.89          | 3.21    | 3.66 23                            | .81 26                                |   |          | 9.79        | 9 6          | 7691                |                                         |         | -18    | -3.0               | 0 0   |
| 1.19 819 1415 279 442 -591 15 35.05 24.03 24.03 25.0 1.03 -1.03 -1.03 11 1346 -715 31.5 0.2 -55 -510 11 1346 -715 31.5 0.2 -55 -510 11 1346 -715 31.5 0.2 -55 -510 11 1346 -715 31.5 0.2 -55 -510 11 1346 -715 31.5 0.2 -55 -510 11 1346 -715 31.5 0.2 -55 -510 11 1346 -715 31.5 0.2 -55 -510 11 1346 -715 31.5 0.2 -55 -510 11 1346 -715 31.5 0.2 -55 -510 11 1346 -715 31.5 0.2 -55 -510 11 1346 -715 31.5 0.2 -55 -510 11 1346 -715 31.5 0.2 -55 -510 11 1346 -715 31.5 0.2 -55 -510 11 1346 -715 31.5 0.2 -55 -510 11 1346 -715 31.5 0.2 -51 -510 11 1346 -715 31.5 0.2 -51 -510 11 1346 -715 31.5 0.2 -51 -510 11 1346 -715 31.5 0.2 -51 -510 11 1346 -715 31.5 0.2 -51 -510 11 1346 -715 31.5 0.2 -51 -510 11 1346 -715 31.5 0.2 -51 -510 11 1346 -715 31.5 0.2 -51 -510 11 1346 -715 31.5 0.2 -51 -510 11 1346 -715 31.5 0.2 -51 -510 11 1346 -715 31.5 0.2 -51 -510 11 1346 -715 31.5 0.2 -51 -510 11 1346 -715 31.5 0.2 -51 -510 11 1346 -715 31.5 0.2 -51 -510 11 1346 -715 31.5 0.2 -51 -510 11 1346 -715 31.5 0.2 -51 -510 11 1346 -715 31.5 0.2 -51 -510 11 1346 -715 31.5 0.2 -51 -510 11 1346 -715 31.5 0.2 -51 -510 11 1346 -715 31.5 0.2 -51 -510 11 1346 -715 31.5 0.2 -51 -510 11 1346 -715 31.5 0.2 -51 -510 11 1346 -715 31.5 0.2 -51 -510 11 1346 -715 31.5 0.2 -51 -510 11 1346 -715 31.5 0.2 -51 -510 11 1346 -715 31.5 0.2 -51 -510 11 1346 -715 31.5 0.2 -51 -510 11 1346 -715 31.5 0.2 -51 -510 11 1346 -715 31.5 0.2 -51 -510 11 1346 -715 31.5 0.2 -51 -510 11 1346 -715 31.5 0.2 -51 -510 11 1346 -715 31.5 0.2 -51 -510 11 1346 -715 31.5 0.2 -51 -510 11 1346 -715 31.5 0.2 -51 -510 11 1346 -715 31.5 0.2 -51 -510 11 1346 -715 31.5 0.2 -51 -510 11 1346 -715 31.5 0.2 -51 -510 11 1346 -715 31.5 0.2 -51 -510 11 1346 -715 31.5 0.2 -51 -510 11 1346 -715 31.5 0.2 -51 -510 11 1346 -715 31.5 0.2 -51 -510 11 1346 -715 31.5 0.2 -51 -510 11 1346 -715 31.5 0.2 -51 -510 11 1346 -715 31.5 0.2 -51 -510 11 1346 -715 31.5 0.2 -51 -510 11 1346 -715 31.5 0.2 -51 -510 11 1346 -715 31.5 0.2 -51 -510 11 1346 -715 31.5 0.2 -51 -510 11 1346 -715 31.5 0.2 -51 -510 11 1346 -715 31.5 0.2 - | ,     |       |                   |                  |      | 432               | 7 2               |     | 26.        | 23.68          | 3.33    | 5.59                               | .98 26                                |   |          |             |              | 1232                | 697                                     |         |        |                    | 9.0   |
| 20 899 -145 20 447 -048                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | m :   |       |                   |                  |      | <b>\$</b>         | -591              |     | 2 2        | 5.05           | 3 12 13 | 6.03                               | 2 2                                   |   |          |             |              | 1283                | 716 39                                  |         |        |                    | 9.    |
| -21 697 -143 273 451 -612                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ==    |       |                   |                  |      | ÷ :               | 109-              |     | ē :        | 5.78 2         | 3.99 3  | 5.60 24                            | .65 28                                |   |          |             |              | 1346                | 35 25                                   |         |        |                    | 9.0   |
| 22 877 -143 213 451 -615 195 34.67 24.03 35.77 24.03 24.17 24.27 0.01 0.015 1289 -759 713 5 0.2 11 3.01 148 779 -137 189 451 -609 185 35.73 24.13 35.71 24.25 30.05 2.17 2.39 0.01 0.015 1289 -759 713 1.0 0.2 1 1.0 1.1 1.0 0.01 141 171 712 712 712 0.0 0.015 1289 714 1.0 0.2 1 1.0 1.1 1.0 0.01 141 171 712 712 712 0.0 0.01 0.014 1191 712 712 712 0.0 0.0 0.01 141 171 712 712 0.0 0.0 0.01 0.014 1191 712 712 712 0.0 0.0 0.01 0.014 1191 712 712 712 0.0 0.0 0.014 1191 712 712 712 0.0 0.0 0.014 1191 712 712 712 0.0 0.0 0.014 1191 712 712 712 0.0 0.0 0.0 0.014 1191 712 712 712 0.0 0.0 0.0 0.014 1191 712 712 712 0.0 0.0 0.0 0.014 1191 712 712 712 0.0 0.0 0.0 0.014 1191 712 712 712 0.0 0.0 0.0 0.0 0.014 1191 712 712 712 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | : 25  |       |                   |                  |      | \$ 5              | -612              |     | 201        | 6.16 2         | 10.4    | 5.71 24                            | 52 29                                 |   |          |             |              | 1352 -              | 753 33                                  |         |        |                    | 0     |
| -18 779 - 1137 1 428 452 - 643                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3 -   |       |                   |                  |      | 15                | -615              |     | 196        | 6.67           | 80.     | 5.71 24                            | S 59                                  |   |          |             |              | 1328                | 75, 37                                  |         |        |                    | 0.0   |
| -16 738 -129 147 452 -603 155 54.44 24.03 36.73 24.48 29.79 21.7 2.30 0.01 -0.14 1919 -732 37.2 0.2 1 3.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7 ≔   |       |                   |                  |      | \$ 52             | -613              |     | 196        | 6.71 2         | 4.13    | 5.71 24                            | 7.                                    |   |          |             |              | - 8621              | 754 37                                  |         |        |                    | 0.0   |
| -14 473 -88 165 462 -603 165 36.44 24.07 36.59 24.07 24.77 24.75 -0.05 -0.010 4 197 1-34 31.2 0.2 1 1.3 0.1 4 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -     |       |                   |                  |      | \$2               | -603              |     | . 2        | 6.71 2         | 2 7     | 27 17 28                           | 3, 59                                 |   |          |             |              | - 520               | 745 36                                  |         |        |                    | 0.0   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |       |                   |                  | - '  |                   | -603              |     | 165 3      | 6.44 2         | 10.     | .50                                | 23 23                                 |   |          |             |              | 161                 | 732 37                                  |         | 7:     | 3.01               | 0.0   |
| - 302 - 61 62 442 - 537                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |       |                   |                  |      |                   | -586              |     | . 631      | 5.97 2         | 3.85    | . 98 24                            | .17 29.                               |   |          |             |              | 135                 | 543 37                                  |         | 2 5    | 2 6                | 9 6   |
| -6 302 -61 62 442 -537 181 35.48 24.00 24.00 64.18 2.10 0.00 641 -623 36.9 -0.2 14 3.00 14 1-528 118 34.91 23.55 34.61 23.62 28.44 2.19 0.13 0.05 64 559 38.9 0.2 14 3.00 14 1-528 118 34.91 23.55 34.61 23.62 28.13 2.15 2.15 2.19 0.13 0.05 64 559 38.9 0.2 15 3.00 1-5 141 -528 118 34.91 23.55 34.61 23.62 28.13 2.15 2.13 0.13 0.05 64 559 38.9 0.2 15 15.01 14 3.00 14 14 14 14 14 14 14 14 14 14 14 14 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | : >   |       |                   |                  | _    |                   | -545              |     | 5 5        | 5 27 2         | 5.91    | ₹ ?<br>\$                          | 2,2                                   |   |          |             |              | 932                 | 513 36                                  |         | 2 2    | 9.0                | 0.1   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ~     |       |                   |                  | 62   |                   | -537              |     | 1 1 1      | 5.48 2         | 3 (9)   | 3 29                               | 9 %<br>8 %                            |   |          |             |              | 841                 | 523 36                                  |         | =      | -3.01              | 0.0   |
| -4 45 -5 22 433 -531 116 33.41 22.34 32.91 23.33 77.80 2.20 2.23 0.51 0.03 476 -536 44.6 0.2 15.50 1.0   -2 39 -6 21 437 -438 114 32.34 22.43 12.91 23.35 77.80 2.20 2.33 0.51 0.03 476 -536 44.6 0.2 15.50 1.0   -1 0 0 470 -501 115 31.57 22.44 31.29 22.40 2.39 2.30 0.51 0.03 476 -494 46.4 0.2 12 -3.01   -1 0 0 0 470 -501 115 31.57 22.44 31.00 22.00 2.94 2.00 2.00 0.02 479 -494 46.4 0.2 12 -3.01   -1 0 0 0 146 -499 113 30.81 22.28 30.41 22.23 26.75 2.39 2.00 2.2 0.02 479 -501 45.7 0.2 9 -3.01   -1 0 0 0 163 -496 113 30.81 22.28 30.41 22.23 26.75 2.39 2.40 2.20 2.00 2.49 -494 46.4 0.2 12 3.01   -1 0 0 0 163 -496 113 30.81 22.28 30.41 22.23 26.75 2.39 2.40 2.20 2.00 2.49 -499 41.2 0.0 2 1.0   -1 0 0 0 164 -491 23 30.81 22.28 30.41 22.33 26.75 2.39 0.01 463 -496 53.4 0.0 2 7 -3.01   -1 0 0 0 164 -491 23 30.81 22.28 30.41 22.3 26.73 2.30 0.02 0.01 461 -491 22.0 0.2   -2 37 27.95 22.40 27.74 22.39 26.14 2.34 2.35 0.22 0.01 461 -491 22.0 0.2   -2 4.6 6.8 37.7 43.8   -2 5.7 27.9 2.40 27.74 22.39 26.14 2.34 2.35 0.2   -2 4.6 6.8 37.7 43.8   -2 5.6 6.7 6.8 37.7 43.8   -2 5.6 6.7 6.8 37.7 43.8   -2 5.7 6.7 6.7 6.9   -2 5.7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ~     |       |                   |                  | ?    |                   | -528              |     | 178 3      | 4.91 2         | 3.55 34 | .61 23                             | 28, 28                                |   |          |             |              | ¥ 3                 | 88 38                                   |         | ≃ ;    | 3.01               | -0    |
| 5 45 - 45 447 - 488                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |       |                   |                  | 23   |                   |                   |     | 93         | 3.41 2         | 3.34 32 | .91 23                             | 33 27.                                |   |          |             |              | 9.0                 | 6 7 7 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 |         | 21     | 5.0                | 0 -   |
| 1 0 0 0 1 469 -499 113 32.47 31.29 22.40 27.19 2.10 0.57 -0.02 449 -494 46.4 0.2 12 3.01 0.00 0 1 469 -499 113 30.28 12.23 26.39 2.34 2.54 2.54 2.55 0.02 10.02 170 -501 65.7 -0.2 9 -5.01 0.00 0 1 469 -499 113 30.28 22.56 26.39 2.24 2.25 0.09 0 0 1 459 -499 113 30.28 22.56 26.39 2.24 2.25 0.09 0 0 1 459 -499 113 30.28 22.56 26.39 2.24 2.25 0.09 0 0 1 459 -499 113 30.28 22.56 26.39 2.24 2.25 0.09 0 0 1 459 -499 113 20.28 22.55 22.43 22.20 26.41 2.18 2.20 0.42 -0.02 146 -491 2.35 22.50 27.74 22.39 26.19 2.30 0.39 -0.01 146 -491 2.30 2.24 -491 2.35 22.40 27.74 22.39 26.19 2.30 0.39 -0.01 146 -491 2.20 2.24 -491 2.35 22.40 27.74 22.39 26.19 2.30 0.22 -0.01 146 -491 2.20 0.0 0 1 443 -492 2.56 22.21 26 25.72 21.29 26.99 2.20 0.22 1.00 0.39 -0.01 146 -491 2.20 0.0 0 1 443 -492 2.30 2.77 2.30 2.77 2.39 22.40 2.31 0.39 0.22 1.00 0.39 -0.01 146 -491 2.20 0.0 0 1 443 -492 2.30 2.77 2.30 2.30 147 2.39 2.30 0.22 1.00 0.39 0.20 1.00 1 441 -491 2.30 2.30 2.30 2.30 0.30 0.39 0.30 0.39 0.30 0.39 0.30 0.39 0.30 0.39 0.30 0.39 0.30 0.39 0.30 0.39 0.30 0.39 0.30 0.39 0.30 0.39 0.30 0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | , ,   |       |                   | ,                | ₹ 5  |                   | -488              |     | 7          | 2.74           | 7.80 32 | .16 22.                            | 75 27.                                |   |          |             |              | 25                  | 3                                       | 9       | 2 2    | 5 5                | 7 7   |
| 0 0 0 1 459 -499 173 2018 122.78 10.41 27.23 26.74 2.06 0.52 -0.02 470 -501 45.7 -0.2 9 -3.01 0.00 0 1 459 -499 173 2018 122.78 10.41 27.23 26.75 2.12 2.14 0.42 -0.02 469 -499 97.2 0.2 7 3.01 0.00 0 1 459 -499 173 2018 122.85 26.58 26.58 27.24 2.25 0.01 464 -491 273 27.25 29.43 27.20 26.41 2.18 2.20 0.42 -0.02 469 -499 97.2 0.2 7 3.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | •     |       |                   | , .              | • 0  |                   | - 501             |     | 2 2        | 22.2           |         | 5; 53<br>5; 53<br>5; 53            | \$ 5.<br>\$ 5.                        |   |          |             |              | 6++                 | 94 46                                   |         | 12     | 3.01               | 7.7   |
| 0 0 0 0 65 -496                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ~,    |       | _                 | 0                | -    |                   | 64                |     | 3 22       |                |         | . v6<br>22 . 24                    | , te                                  |   |          |             |              |                     |                                         |         | 6      | -3.01              | -1.69 |
| 0 0 0 1 459 -488                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |       |                   | 0                | 0    |                   | 967-              |     | 210 33     | .26 27         | .61 29  | . 88                               | 56 28                                 |   |          |             |              |                     |                                         | ٠.      | ~      | 3.0                | -1.8  |
| 1 0 0 0 464 -491 233 72-35 21.74 29-15 21.69 26.23 2.09 2.10 0.39 -0.01 464 -491 52.0 -0.2 7 -3.00 0 0 467 -495 25.20 27.74 22.39 26.14 2.34 2.35 0.22 -0.01 467 -495 52.0 -0.2 7 -3.01 467 -495 52.0 0 0 0 443 -492 21.26 21.26 21.29 28.99 2.20 2.24 0.51 -0.04 443 -492 63.2 0.3 4 5.01 467 -495 63.2 0.3 4 5.01 467 -495 63.2 0.3 4 5.01 467 -495 63.2 0.3 4 5.01 467 -495 63.2 0.3 4 5.01 467 -495 63.2 0.3 4 5.01 467 -495 63.2 0.3 4 5.01 467 -495 63.2 0.3 4 5.01 467 -495 63.2 0.3 4 5.01 467 -495 63.2 0.3 4 5.01 467 -495 63.2 0.3 4 5.01 467 -495 63.2 0.3 4 5.01 467 -495 63.2 0.3 4 5.01 467 -495 63.2 0.3 4 5.01 467 -495 63.2 0.3 4 5.01 467 -495 63.2 0.3 4 5.01 467 -495 63.2 0.3 4 5.01 467 -495 63.2 0.3 4 5.01 467 -495 63.2 0.3 4 5.01 467 -495 63.2 0.3 4 5.01 467 -495 63.2 0.3 4 5.01 467 -495 63.2 0.3 4 5.01 467 -495 63.2 0.3 4 5.01 467 -495 63.2 0.3 4 5.01 467 -495 63.2 0.3 4 5.01 467 -495 63.2 0.3 4 5.01 467 -495 63.2 0.3 4 5.3 4 5.01 467 -495 63.2 0.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6.3 4 6 | 7 .   |       |                   | 0 (              | - •  | _                 | -488              |     | 205 27     | .85 22         | . 25 29 | \$                                 | 20 26.                                |   |          |             |              |                     |                                         |         | - •    | .5.0               | -5.   |
| 6 Mon Kup D Ldn Lup U UIR Tatop Tato |       |       |                   |                  | > <  |                   | 164-              |     | 2 2        | 55.5           | 2.5     | .15 21.                            | 69 26.                                |   |          |             |              | •                   |                                         |         |        | -1.0               | -2.0  |
| 6p Kdn Kup D Ldn Lup U UIR Tatop Tat | _     |       | _                 |                  | 0    |                   | - 63              |     | 2 63       | 5.5            | 2 × ×   |                                    | 39 26.                                |   |          |             |              | •                   |                                         |         | •      | 5.01               | -39   |
| 13/47 a 1/42 a 1 |       |       | 2                 | 3                | •    |                   |                   |     |            |                |         |                                    | 9                                     |   |          |             |              | •                   |                                         |         | 13     | -5.01              | -0.81 |
| -0.4 26.1 -4.6 6.8 31.7 -43.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | · ~   | 3/2   |                   |                  | 3/12 | Lda<br>13/62 m    |                   |     |            |                |         |                                    |                                       |   | o t      | ₽.          |              | upo                 |                                         | ot<br>m | 65     | HMrec              | 83    |
| -0.5 25.6 -4.5 6.6 20.2 -25.0  0.0 0.5 -0.1 0.2 17.6 -18.8  134 30.62 22.77 30.60 22.96 26.55 2.25 2.30 0.03 -0.05  194 35.97 23.41 34.15 23.79 27.78 2.178 2.178 2.106 0.03 -0.05  131 17.94 14.82 17.77 14.78 16.86 1.5741 15.8 0.18 0.00  40.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ۰,    | 0     |                   |                  |      | 31.1              |                   |     |            |                | >       |                                    | د                                     | ٠ | <b>7</b> | ပ           |              | /e2 e3/             |                                         |         | _      |                    |       |
| 30.62 22.77 30.60 22.96 26.55 2.25 2.30 0.03 -0.05 54.7 54.7 53.41 54.15 23.79 27.78 2.1768 2.26 -0.18 -0.08 42.8 17.77 14.78 16.86 1.5741 1.58 0.18 0.00 46.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | × 80  | 9 9   |                   |                  | 9.9  | 20.2 -<br>17.6 -  | 25.0<br>18.8      |     |            |                |         |                                    |                                       |   |          |             | 2 <b>4</b> E | 5.7 -29             | د من ه                                  | 9 0 0   |        | 0.0                |       |
| 33.97 23.41 34.15 23.79 27.78 2.178 2.26 - 0.18 - 0.09 42.8 17.94 14.82 17.77 14.78 16.86 1.5741 1.58 0.18 0.00 46.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |       |                   |                  |      |                   |                   | -   |            |                |         |                                    |                                       |   |          |             |              | :                   |                                         |         |        | 9.                 |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |       |                   |                  |      |                   |                   |     |            |                |         |                                    |                                       |   |          |             | 888          |                     | x & x                                   |         |        |                    | - 0 6 |

ENERGY BALANCE at Ashland, KS., Sys. 8 Matted wheat stubble, July 12, 1986



ENERGY BALANCE at Ashland, KS., Sys. 8 Matted wheat stubble, July 13, 1986



ENERGY BALANCE at Ashland, KS., Sys. 8 Matted wheat stubble, July 14, 1986



ENERGY BALANCE at Ashland, KS., Sys. 8 Matted wheat stubble, July 15, 1986



ENERGY BALANCE at Ashland, KS., Sys. 8 Matted wheat stubble, July 16, 1986



ENERGY BALANCE at Ashland, KS., Sys. 8 Matted wheat stubble, July 17, 1986



ENERGY BALANCE at Ashland, KS., Sys. 8 Matted wheat stubble, July 18, 1986



ENERGY BALANCE at Ashland, KS., Sys. 7 Matted wheat stubble, July 18, 1986



ENERGY BALANCE at Ashland, KS., Sys. 9 Matted wheat stubble, July 14, 1986



ENERGY BALANCE on the Konza Prairie, KS. Grass, Sys. 1, July 20, 1986



ENERGY BALANCE on the Konza Prairie, KS. Grass, Sys. 1, July 21, 1986



ENERGY BALANCE on the Konza Prairie, KS. Grass, Sys. 1, July 22, 1986



ENERGY BALANCE on the Konza Prairie, KS. Grass, Sys. 1, July 23, 1986



ENERGY BALANCE on the Konza Prairie, KS. Grass, Sys. 1, July 24, 1986



ENERGY BALANCE on the Konza Prairie, KS. Grass, Sys. 7, July 20, 1986



ENERGY BALANCE on the Konza Prairie, KS. Grass, Sys. 7, July 21, 1986



ENERGY BALANCE on the Konza Prairie, KS. Grass, Sys. 7, July 22, 1986



ENERGY BALANCE on the Konza Prairie, KS. Grass, Sys. 7, July 23, 1986



ENERGY BALANCE on the Konza Prairie, KS. Grass, Sys. 7, July 24, 1986



ENERGY BALANCE on the Konza Prairie, KS. Grass, Sys. 8, July 20, 1986



ENERGY BALANCE on the Konza Prairie, KS. Grass, Sys. 8, July 21, 1986



ENERGY BALANCE on the Konza Prairie, KS. Grass, Sys. 8, July 22, 1986



ENERGY BALANCE on the Konza Prairie, KS. Grass, Sys. 8, July 23, 1986



ENERGY BALANCE on the Konza Prairie, KS. Grass, Sys. 8, July 24, 1986



ENERGY BALANCE on the Konza Prairie, KS. Grass, Sys. 9, July 20, 1986



ENERGY BALANCE on the Konza Prairie, KS. Grass, Sys. 9, July 21, 1968



ENERGY BALANCE on the Konza Prairie, KS. Grass, Sys. 9, July 22, 1986



ENERGY BALANCE on the Konza Prairie, KS. Grass, Sys. 9, July 23, 1986



ENERGY BALANCE on the Konza Prairie, KS. Grass, Sys. 9, July 24, 1986

