Kennesaw State University

CS 7357 Neutral Nets and Deep Learning

Project 1

Description

In this project, we will implement KNN using Python. You are given three data sets:

data type	have a label	function		
training	Yes	Used to train the model or determine the model parameters,		
set		such as the determination of the weights in KNN		
validation	Yes	Used to determine the network structure/parameter or control		
set		the complexity of the model and modify the model.		
test set	No	Used to test the performance of the optimal model.		

A typical division is that the training set accounts for 50% of the total sample, and the others account for 25%, and all of them are randomly selected from the sample.

Dataset:

Document number	The sentence words	Emotion
Train 1	I buy an apple phone	happy
Train 2	I eat the gig apple	happy
Train 3	The Apple products are too expensive	sad
Train 4	My friend has an apple	?

1, use KNN for classification problems. You can use one-hot matrix to represent the sentences. On the verification set, adjusting the K value and selecting different distances (Manhattan distance vs. Euclidean distance) to get a model with the best accuracy. Write the process in the experimental report. Use verification set and evaluation metrics (sensitivity, precision, etc.) to evaluate your model.

Example:

```
k = 5 Validation set correct rate: 0.4212218649517685
k = 6 Validation set correct rate: 0.40836012861736337
k = 7 Validation set correct rate: 0.40836012861736337
k = 8 Validation set correct rate: 0.40836012861736337
```

P.S., Distance formula:

Manhattan distance: In a plane with p1 at (x1, y1) and p2 at (x2, y2), it is $|x_1 - x_2| + |y_1 - y_2|$. Euclidean distance: In a plane with p1 at (x1, y1) and p2 at (x2, y2), it is $\sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2}$.

2, apply the model parameters (K, distance type, etc.) obtained in step 1 on the test set, and save the output result as "my_result.csv".

Example:

my_result

Words (split by space)	label	
senator carl krueger thinks ipods can kill you		
who is prince frederic von anhalt		
prestige has magic touch	joy	
study female seals picky about mates	joy	
no e book for harry potter vii		
blair apologises over friendly fire inquest	fear	

Submission

You have to submit the followings to D2L:

- 1. MS word file
 - Describe what you have done for the homework assignment.
- 2. Python source code file(s)
 - Must be well organized (comments, indentation, ...)
 - You need to upload the "original python file (*.py)" and also its "PDF" version. o For the PDF file, you can just convert the source file to PDF. One way is to print the source file and save to "PDF".

You have to submit the files SEPERATELY. DO NOT compress into a ZIP file.