Experimental Workshop: Lecture 2

Covariates, Block Randomization, Cluster Design and Power

Raymond Duch

May 3, 2022

University of Oxford

Lecture 2 Road Map

- Randomization Inference
- Covariates
- Block Randomization
- Cluster Design
- Power

Randomization Inference

Observed Outcomes Local Budget

	Budget share if village head is male	Budget share if village head is female
Village 1	?	15
Village 2	15	?
Village 3	20	?
Village 4	20	?
Village 5	10	?
Village 6	15	?
Village 7	?	30

Potential Outcomes Local Budget

	Budget share if village head is male	Budget share if village head is female	Treatment Effect
Village 1	10	15	5
Village 2	15	15	0
Village 3	20	30	10
Village 4	20	15	-5
Village 5	10	20	10
Village 6	15	15	0
Village 7	15	30	15
Average	15	30	15

2 ways of thinking about statistical uncertainty

- Sampling-based inference (Neyman):
 - Experimental subjects are a random draw from some "super-population"
 - Realized ATE has a sampling distribution with reference to that superpopulation
 - ullet Different (random) experimental samples o different ATE's from draw to draw
 - Uncertainty arises from random sampling of subjects:
 How are ATE's distributed in the population?
 - Sampling distribution under the H0 is typically $X \sim \mathcal{N}(\mu, \sigma^2)$

Neyman's plan for inference

- 1. Define the estimand
- 2. Find unbiased estimator of the estimand
- 3. Calculate true sampling variance of the estimator
- 4. Find unbiased estimator of true sampling variance of estimator
- 5. Assume approximate normality to obtain p-value and confidence interval
- 6. Where $H0: E[Y_i(1)] E[Y_i(0)] = 0$

2 ways of thinking about statistical uncertainty

- Randomization-based inference (Fisher):
 - Treatment assignments are a random draw from the set of all possible assignment combinations → finite sample
 - Realized ATE has a distribution over those possible random assignments
 - ullet Different ways of assigning subjects to treatment ullet different ATE's from allocation to allocation
 - Uncertainty arises from random assignment and missing potential outcomes

This has implications for other methods: use the ones that are directly justified by randomization \rightarrow design instead of analysis for covariate adjustment; diff-in-group means estimator; reduce reliance on auxiliary modelling assumptions

Table 1: *

The goal of randomization inference is to derive a *sampling distribution* of estimated ATEs. In our application, generated when two of the seven villages listed in Table 2 are assigned to treatment

	treatment					
	Estimated ATE	Frequency with which an estimate occurs				
	-1	2				
	0	2				
	0.5	1				
	1	2				
	1.5	2				
	2.5	1				
	6.5	1				
	7.5	3				
	8.5	3				
	9	1				
	9.5	1				
	10	1				
	16	1				
Average	5					

21

Total

Potential Outcomes Local Budget

2 of 21 possible worlds:

World 1:

	Budget share if village head is male	Budget share if village head is female	Treatment Effect
Village 1		15	
Village 2		15	
Village 3	20		
Village 4	20		
Village 5	10		
Village 6	15		
Village 7	15		
Average	16	15	-1

Potential Outcomes Local Budget

World 2:

	Budget share if village head is male	Budget share if village head is female	Treatment Effect
Village 1	10		
Village 2	15		
Village 3	20		
Village 4	20		
Village 5	10		
Village 6		15	
Village 7		30	
Average	15	22.5	7.5

We can calculate the variation of these estimates:

Sum of squared deviations

$$= (-1-5)^2 + (-1-5)^2 + (0-5)^2 + (0-5)^2 + (0.5-5)^2 + (1-5)^2 + (1-5)^2 + (1-5)^2 + (1.5-5)^2 + (1.5-5)^2 + (2.5-5)^2 + (6.5-5)^2 + (7.5-5)^2 + (7.5-5)^2 + (7.5-5)^2 + (8.5-5)^2 + (8.5-5)^2 + (8.5-5)^2 + (9-5)^2 + (9.5-5)^2 + (10-5)^2 + (16-5)^2 = 445$$

Square root of the average squared deviation
$$=\sqrt{\frac{1}{21}(445)}=4.60$$

Neyman variance estimator

Neyman quantifies the variance of our difference-in-means estimator with the Neyman variance estimator. Formally,

$$SE(\widehat{ATE}) = \sqrt{\frac{1}{N-1} \left\{ \frac{m \mathsf{Var}(Y_i(0))}{N-m} + \frac{(N-m) \mathsf{Var}(Y_i(1))}{m} + 2\mathsf{Cov}(Y_i(0), Y_i(1)) \right\}}$$

In our application,

$$SE(\widehat{ATE}) = \sqrt{\frac{1}{6} \left\{ \frac{(2)(14.29)}{5} + \frac{(5)(42.86)}{2} + (2)(7.14) \right\}} = 4.60$$

You can see that the covariance of the two potential outcomes is fundamentally unobservable, so we assume constant treatment effects, and the sample analog reduces to

$$\widehat{SE} = \sqrt{\frac{\widehat{Var}(Y_i(0))}{N-m} + \frac{\widehat{Var}(Y_1(1))}{m}}$$

Formal Randomization Inference

- Now, randomization inference is different. We only ever observe one particular realization of the randomized treatment assignment
- Yet, given m, N and a binary treatment, there is a set of all possible randomization realizations such that $\Omega = \frac{N!}{m!(N-m)!}$
- For the Abadie and Cattaneo (2018) example, we have $\Omega = \frac{8!}{4!(8-4)!} = 70$, and we are interested in the distribution of $\hat{\tau}(\omega)$, i.e. for each possible realization of the randomized assignment $\omega \in \Omega$, as in the following table

Abadie and Cattaneo 2018

Table 1 Randomization distribution of a difference in means

Panel A: Sample and sample statistic									
Y_i	12	4	6	10	6	0	1	1	
W_i	1	1	1	1	0	0	0	0	$\hat{\tau} = 6$
Panel B: R	Panel B: Randomization distribution							$\widehat{ au}(\omega)$	
$\omega = 1$	1	1	1	1	0	0	0	0	6
$\omega = 2$	1	1	1	0	1	0	0	0	4
$\omega = 3$	1	1	1	0	0	1	0	0	1
$\omega = 4$	1	1	1	0	0	0	1	0	1.5
$\omega = 70$	0	0	0	0	1	1	1	1	-6

Covariates

- Q. Why would you want to collect the same information twice, pre-treatment and post-treatment? Do you gain anything?
- A. Yes, precision!
- Instead of having a single outcome measure Y_i, redefine as change from pre-test to post-test
- We compare 2 quantities:
 - $(Y_i X_i)$ for $d_i = 1$
 - $(Y_i X_i)$ for $d_i = 0$
 - difference-in-differences estimator

Is this estimator unbiased?

$$E(\widehat{ATE}) = E[Y_i - X_i | D_i = 1] - E[Y_i - X_i | D_i = 0]$$

$$= E[Y_i | D_i = 1] - E[X_i | D_i = 1] - E[Y_i | D_i = 0] - E[X_i | D_i = 0]$$

$$= E[Y_i(1)] - E[Y_i(0)]$$

In general, difference-in-means and difference-in-differences generate unbiased estimates – but what if we also care about sampling variability of this estimator?

In general,
$$SE(\widehat{ATE}') < SE(\widehat{ATE})$$
 if either holds

$$Cov(Y_i(0), X_i) + Cov(Y_i(1), X_i) > Var(X_i)$$

$$\frac{\textit{Cov}(\textit{Y}_i(0), \textit{X}_i)}{\textit{Var}(\textit{X}_i)} + \frac{\textit{Cov}(\textit{Y}_i(1), \textit{X}_i)}{\textit{Var}(\textit{X}_i)} > 1.$$

That is, when a covariate X_i strongly predicts potential outcomes

Sampling distribution of two estimators: difference-in-means and difference-in-differences

Block Random Assignment

Why Block Random Assignment: Practical Concerns

- Program requirements may restrict number of subjects allowed to receive treatment
- E.g. summer reading program concerned about students with low levels of preparedness: 60% of the admitted students must pass basic skills test
- If 50 students are admitted, randomly select 20 from the applicants that failed and 30 from those who passed
- Fairness concerns require each treatment of demographic groups
- Resource constraints mean you are only able to sample a certain number of subjects from certain groups

Why Block Random Assignment: Statistical Concerns

- Reduces sampling variability
- Subjects in blocks likely to have similar potential outcomes (those who fail and those who pass)
- Especially effective in small samples
- Ensures the ability to do subgroup analysis, e.g. women and men
- Complete random assignment may lead to imbalance

Potential Outcomes

V /:II	DI I	1/(0)	1/(1)
Village	Block	$Y_i(0)$	$Y_i(1)$
1	Α	0	0
2	Α	1	0
3	Α	2	1
4	Α	4	2
5	Α	4	0
6	Α	6	0
7	Α	6	2
8	Α	9	3
9	В	14	12
10	В	15	9
11	В	16	8
12	В	16	15
13	В	17	5
14	В	18	17
:	i	i	:

Schedule of potential outcomes for public works projects when audited (Y(1)) and not audited (Y(0))

Village	Block	All su Y(0)	bjects Y(1)	Block A Y(0)	subjects Y(1)	Block B Y(0)	S subjects $Y(1)$
1	А	0	0	0	0		
2	A	1	0	1	0		
3	A	2	1	2	1		
4	A	4	2	4	2		
5	A	4	0	4	0		
6	A	6	0	6	0		
7	A	6	2	6	2		
8	A	9	3	9	3		
9	В	14	12			14	12
10	В	15	9			15	9
11	В	16	8			16	8
12	В	16	15			16	15
13	В	17	5			17	5
14	В	18	17			18	17
	Mean	9.14	5.29	4.00	1.00	16.0	11.0
	Variance	40.41	32.49	7.75	1.25	1.67	17.0
	Cov(Y(0), Y(1))	31.03		2.13		1.00	

	All subjects		Block A		Block B	
	Y_i^c	Y_i^t	Y_i^c	Y_i^t	Y_i^c	Y_i^t
Mean	9.14	5.29	4.00	1.00	16.00	11.00
Variance	40.41	32.49	7.75	1.25	1.67	17.00
Covariance 31.03		.03	2.13		1.00	

Estimating ATE with Block Random Assignment

$$ATE = \sum_{j=1}^{J} \frac{N_j}{N} ATE_j$$

- Where J is the number of blocks and $\frac{N_j}{N}$ is the share of all subjects in block j
- Weighted average of the block-specific ATEs

Observed Outcomes

Village	Block	$Y_i(0)$	$Y_i(1)$
1	Α	0	?
2	Α	1	?
3	Α	?	1
4	Α	4	?
5	Α	4	?
6	Α	6	?
7	Α	6	?
8	Α	?	3
9	В	14	?
10	В	?	9
11	В	16	?
12	В	16	?
13	В	17	?
14	В	?	17
<u>:</u>	÷	÷	:

Estimating ATE with Block Random Assignment

$$\widehat{ATE} = (\widehat{ATE}_1) \left(\frac{N_1}{N}\right) + (\widehat{ATE}_2) \left(\frac{N_2}{N}\right)$$
$$= (-1.5) \left(\frac{8}{14}\right) + (-2.75) \left(\frac{6}{14}\right)$$
$$= -2.04$$

Standard Error of the Estimated *ATE*

$$\widehat{SE}(\widehat{ATE}) = \sqrt{\widehat{SE}_1^2 \left(\frac{N_1}{N}\right)^2 + \widehat{SE}_2^2 \left(\frac{N_2}{N}\right)^2}$$

where for each of the two blocks:

$$\widehat{SE} = \sqrt{\frac{\widehat{Var}(Y_i^c)}{N-m} + \frac{\widehat{Var}(Y_i^t)}{m}}$$

SE with Random Block Design

 $SE(\widehat{ATE})$ with complete random assignment

$$\begin{split} &=\sqrt{\frac{1}{k-1}\left\{\frac{mVar(\bar{Y}_{j}^{c})}{N-m}+\frac{(N-m)Var(\bar{Y}_{j}^{t})}{m}+2Cov(Y_{j}^{c},Y_{j}^{t})\right\}}\\ &=\sqrt{\frac{1}{13}\left\{\frac{4(40.41)}{10}+\frac{(10)(32.49)}{4}+2(31.03)\right\}}\\ &=3.50 \end{split}$$

 $SE(\widehat{ATE})$ with block random assignment

$$= \sqrt{SE_1^2 \left(\frac{N_1}{N}\right)^2 + SE_2^2 \left(\frac{N_2}{N}\right)^2}$$

$$= \sqrt{(1.23)^2 \left(\frac{8}{14}\right)^2 + (2.71)^2 \left(\frac{6}{14}\right)^2}$$

$$= 1.36$$

Regression Estimation in Block Design

$$Y_i = \beta_1 \alpha_{\mathsf{BR}} D_i + \beta_2 J_2 + \beta_3 J_3 + \dots + \beta_j J_j + \mu_i$$

where J_2, J_3, \ldots, J_i are dummy variables indicating each block.

- This regression estimator is valid if the treatment probability $p_j = \frac{m_j}{N_i}$ is the same in all blocks.
 - Regression weights each block specific ATE by $(\frac{N_j}{N_j})p_j(1-p_j)$
- If p_j varies across blocks, regression can lead to bias since treatment assignment is correlated with block characteristics.
- Need to use weighted regression with unit weights:

$$w_{ij} = (\frac{1}{p_{ii}})D_i + (\frac{1}{1 - p_{ii}})(1 - D_i) \tag{1}$$

Cluster Design

Unit of Random Assignment?

- Options:
 - Individual
 - Clusters or groups
- What is the level of random assignment?
- Considerations
 - What is the level of treatment?
 - What is the unit of analysis?

Random assignment at the level of the individual?

Random assignment at the level of the individual?

Cluster random assignment

- Cluster randomized experiments allocate treatments to groups
- But measure outcomes at the level of the individuals that compose the groups
- restricts the number of ways that the treatment and control groups can be composed, relative to randomization at the individual level
- leads to underestimating the variance in our estimator

Education: Level of the class.

Education: Level of the school.

Why Clustering Matters: Example

- same sample size and same participants could contain very different amounts of information depending on whether units are clustered
- 10 people: 5 assigned to treatment and 5 to control
- Version 1: treatment is assigned to individuals
- Version 2: 5 individuals with black hair and the 5 individuals with some other color of hair are assigned to treatment as a group
- 252 combinations versus 2 combinations

```
treatment_effect <- 1
# Define the individual ids (i)
                    < 1:10
person
# Define the cluster indicator (j)
hair_color <- c(rep("black",5), rep("brown
   ",5))
# Define the control outcome (Y0)
outcome_if_untreated <- rnorm(n = 10)
# Define the treatment outcome (Y1)
outcome_if_treated <- outcome_if_untreated +
   treatment effect
# Version 1 - Not cluster randomized
# Generate all possible non-clustered assignments
   of treatment (Z)
non_clustered_assignments <- combn(x = unique(</pre>
   person),m = 5)
```

```
# Estimate the treatment effect
treatment_effects_V1 <-
     apply(
          X = non\_clustered\_assignments,
          MARGIN = 2
          FUN = function(assignment) {
                treated_outcomes <- outcome_if_</pre>
                   treated [person %in% assignment]
                untreated_outcomes <- outcome_if_
                   untreated [!person %in%
                   assignment ]
                mean(treated_outcomes) - mean(
                   untreated _outcomes)
# Estimate the true standard error
standard_error_V1 <- sd(treatment_effects_V1)
# Plot the histogram of all possible estimates of
   the treatment effect
hist (treatment_effects_V1, xlim = c(-1, 2.5), breaks =
    20)
```

```
### Cluster
# Version 2 - Cluster randomized
# Generate all possible assignments of treatment
   when clustering by hair color (Z)
clustered_assignments <- combn(x = unique(hair_</pre>
   color), m = 1)
# Estimate the treatment effect
treatment_effects_V2 <-
  sapply (
    X = clustered_assignments,
    FUN = function(assignment) {
      treated_outcomes <- outcome_if_treated[
         person %in% person[hair_color=assignment
      untreated_outcomes <- outcome_if_untreated[
          person %in% person[!hair_color=
```

assignment 11

```
# Estimate the true standard error
standard_error_V2 <- sd(treatment_effects_V2)
# Plot the histogram of all possible estimates of
    the treatment effect
hist(treatment_effects_V2, xlim = c(-1,2.5), breaks =
    20)</pre>
```

Individual variation within and between clusters

- Two cluster randomized studies with J=10 villages and $n_j=100$ people per village may have different information about the treatment effect on individuals
- Version 1: differences between villages are much greater than the differences in outcomes within them
 - all individuals in any village acted exactly the same
 - different villages showed different outcomes
 - we have 10 pieces of information:
 - all info about causal effects would be at the village level
- Version 2: if individuals within a village acted independently of each other, then we have 10 * 100 = 1000 pieces of information.

Intracluster Correlation Coefficient

 indicates extent to which highly dependent clusters provide less information than the highly independent clusters

ICC =
$$\frac{\text{Variance between clusters in y}}{\text{Total variance in y}} = + \frac{\sigma_j^2}{\sigma_j^2 + \sigma_i^2}$$
 (2)

where:

- y is the outcome variable
- *j* clusters
- *i* units
- σ_j^2 is variation in outcomes defined at the cluster level
- σ_i^2 is variation between units within the population

Robust Clustered Standard Errors

$$Var\beta_{ols} = \frac{\sigma^2}{\sum_c \sum_i (T_{ic} - T)^2}$$
 (3)

$$Var\beta_{Clustered} = \frac{\sigma^2(1 + (\overline{n_c} - 1)\rho))}{\sum_c \sum_i (T_{ic} - T)^2}$$
(4)

where:

- T is a treatment variables
- ρ is the ICC
- c are clusters
- *n* is number of units in cluster

Power Analysis

Statistical Power

- What is the power of a statistical test? H₀: null hypothesis
- Apply estimator to test some alternative H_A
- Type I error: False positive
 - If the null is true, how likely does the estimated effect (or greater) occur by chance?
 - ullet Our tolerance for these errors is set by lpha
 - When $\alpha = 0.05$, 95% of the CIs we construct from repeated sampling will contain the true parameter

Statistical Power

- Type II error: False negative
 - If the null is not true, how often can we reject the null successfully?
 - Probability or rate of Type II error, β
- ullet Power of a test: probability that the test rejects $H_0, 1-eta$

Basic Inference Revisited

- What is the effect of losing Medicaid on infant mortality?
- $H_0 = 20$ deaths per 1,000 live births (assumed known without uncertainty here)
- True effect is an increase of 2 deaths per 1,000 live births
- Standard deviation in population is 4, we have N=44 observations; sampling distribution yields a standard error of 0.60
- \hat{x} is our estimate of the new infant mortality rate
- Let's say we get an estimate right at the true estimate, $\hat{x}=22$
- How unlikely is it we get this estimate, if the null is actually true?

Sampling Distribution Under Null

- Say for our test $\alpha = 0.05$
- Can rescale via Z-transformation
- What does this graphic mean?
- For $\hat{x} = 22$,
- *t*-stat=3.32, *p* < 0.01

Sampling Distribution of \hat{x}

- Interpret this graphic
- $1-\beta$ is fraction of estimates that reject null hypothesis
- Power of the test
- What x_t rue yields $1 \beta = 0.5$?
- What parameters are needed?

The Relationship Between α and β

Sample Size Increases Power

- Of primary interest because it can be manipulated
- Law of large numbers: for independent data, statistical precision of estimates increases with the square root of the sample size, \sqrt{n}
- ullet Test statistics often have the form $T=\hat{ heta}/\!\!\!\sqrt{\hat{V}(\hat{ heta})}$
- Example: Mean of normal distribution θ , data $y = (y_1, ..., y_n)$, iid

$$\hat{\theta} = n^{-1} \sum_{i=1}^{n} y_i = \bar{y}$$

$$\hat{V}(\hat{\theta}) = V(y)/n \text{ and } \sqrt{\hat{V}(\hat{\theta})} = s_y / \sqrt{n}$$

$$T = \bar{y}/(s_y / \sqrt{n})$$

 This logic extends to two-sample case (e.g., treated vs control in an experiment), regression, logistic regression, etc.

Reverse Engineer T to Determine Sample Size

- How much sample do I need to give myself a "reasonable" chance of rejecting H₀, given expectations as to the magnitude of the "effect"
- Example:

A proportion
$$\theta \in [0,1]$$
 estimated as $\hat{\theta}$ Variance is $\theta(1-\theta)/n$, maxes at 0.5 A 95% CI at $\theta=0.5$ is $0.5\pm 2\sqrt{0.25/n}$ Width of that interval is $W=4\sqrt{0.25/n} \rightarrow n=4/W^2$

- Typical use: how big must a poll be to get reasonable MOE?
- For researchers, how big must a poll be to detect a campaign effect?
 - Answer depends on beliefs about likely magnitude of campaign effects

Calculating Power (β)

$$\beta = \Phi(\frac{|\mu_t - \mu_c|\sqrt{N}}{2\alpha} - \Phi^{-1}(1 - \frac{\alpha}{2}))$$

where:

- β = Power [0,1]
- $\Phi = \mathsf{CDF}$ of normal and Φ^{-1} is its inverse
- ullet μ_t is average outcome treatment assume 65
- μ_c is average outcome treatment assume 60
- treatment effect $\mu_t \mu_c = 5$
- need an assumption for standard deviation of the outcome, σ say σ = 20
- assume $\alpha = 0.05$ and N=500

Cohen's D

Cohen's D Definition

Cohen's d =
$$\frac{(M_1 - M_2)}{\text{Pooled SD}}$$

where

Pooled SD =
$$\sqrt{\frac{(sd_1^2 + sd_2^2)}{2}}$$

assume that group 1 as rnorm(n, 1,2) assuming equal variance (t distribution assumption)

Pooled SD =
$$\sqrt{\frac{(2^2 + 2^2)}{2}} = 2$$

Cohen's D: Estimating

Cohen's
$$d = \frac{(1-0)}{2} = .5$$

Solving for the Pooled Standard Deviation

$$0.5 = \frac{(1-0)}{\text{(pooled SD)}}$$

R code: solve(0.5,1) cohens d of .5

R result: [1] 2

Simulations in R

- Simulated t-test and power
- Simulating necessary N for t-test power
- Simulating necessary N for bi-variate regression

Assignment 2

- Generate similar power simulations for a multi-variate regression
- Illustrate the effect that covariates can have on Power