15/19/1 Links
JAPIO
(c) 2005 JPO & JAPIO. All rights reserved.
02672746 **Image available**
PROGRAM MODULE MANAGING SYSTEM

Pub. No.: 63-289646 [JP 63289646 A] **Published:** November 28, 1988 (19881128)

Inventor: OKAMOTO KEISUKE

Applicant: NEC CORP [000423] (A Japanese Company or Corporation), JP (Japan)

Application No.: 62-125059 [JP 87125059]

Filed: May 22, 1987 (19870522)

International Class: [4] G06F-009/44; G06F-009/06

JAPIO Class: 45.1 (INFORMATION PROCESSING -- Arithmetic Sequence Units)

Journal: Section: P, Section No. 845, Vol. 13, No. 116, Pg. 31, March 22, 1989 (19890322)

ABSTRACT

PURPOSE: To highly efficiently execute processing corresponding to debugging by allowing a table forming means to form a control table in accordance with an input referring to a display menu and controlling an external storage device and a main storage device in accordance with addresses in the table.

CONSTITUTION: A menu is displayed on a display device 2 by a menu control part 3 in a processor 16 in accordance with start based upon an input device 1. In accordance with the operation of the device 1 based upon the display, the table forming part 4 forms a source module table, an object module table and a load module table corresponding to a specified program by successively referring to a file table, a module table and respective program module tables in a file control table 14 stored in a storage part 17. A program module corresponding to an address shown in these tables is stored in a hard disk device in the external storage device and read out from the device 12 to the main storage device. Consequently, a necessary address can be determined without executing complex and easily missed calculation and the debugging processing can be highly efficiently executed.

⑩日本国特許庁(JP)

⑫ 公 開 特 許 公 報 (A)

昭63 - 289646

(5) Int Cl.4

識別記号

广内整理番号

43公開 昭和63年(1988)11月28日

G 06 F

9/44 9/06 3 2 2 3 1 0

B-8724-5B B-7361-5B

発明の数 1 (全6頁) 未請求 審杳諳求

の発明の名称

プログラムモジユール管理方式

昭62-125059 阋 21)特

輔

昭62(1987)5月22日 頣 四出

惠 本 73発 眀 者 ①出

日本電気株式会社内 東京都港区芝5丁目33番1号

東京都港区芝5丁目33番1号

日本電気株式会社 願 人

弁理士 境 廣巳 79代 理

1.発明の名称

プログラムモジュール管理方式

2.特許請求の範囲

ソースモジュール,オプジェクトモジュール, ロードモジュールの各プログラムモジュールを外 郎記憶装置に格納する際の位置情報。前記外部記 憶装置に格納された各プログラムモジュールを読 出す主記憶装置の位置情報を指示する制御テーフ ルと、

該制御テーブルを作成するテーブル生成手段と、 該テープル生成手段による前記制御テーブルの 作成時に使用される処理メニューを入出力装置に 表示し、前記処理メニューに従って前記入出力装 置から入力される情報を前記テーブル生成手段に 渡して前記制御テーブルを作成させるメニュー制 御手段とを備え、

ソースモジュール, オブジェクトモジュール, ロードモジュールを前記外部記憶装置に格納する とき、および前記主記憶装置に読出すときには前 記制御テーブルに設定された位置情報に従わせる ことを特徴とするプログラムモジュール管理方式。 3.発明の詳細な説明

(産業上の利用分野)

本発明は、ソースモジュールなどのブログラム モジュールを外部記憶装置に格納し、或いは主記 憶装置に読出す際の格納位置を指示する制御テー プルをキーボード等の入力装置からの入力で作成 し、その制御テーブルの内容に従ってプログラム モジュールの外部記憶装置および主記位装置の格 納を制御するプログラムモジュール管理方式に関 する.

(従来の技術)

ソースモジュール これをコンパイルしたオブ ジェクトモジュール。複数のオブジェクトモジュ ールをリンクしたロードモジュールなどのプログ ラムモジュールを計算機システムの外部記憶装置 に格納し、その後何等かの処理を行なうために主 記憶装置に銃出す場合、従来は、JCL(ジョブ 制御言語)を使用して外部記憶装置への格納や主 記憶装置への統出し等の処理の実行を指示している。

(発明が解決しようとする問題点)

このような方法では、JCLに関する理解が必要であり、またJCLはカードリーダから入力されるのでカードリーダが備えられているソフトウェアセンタ等の場所に出向かなければならないという問題点がある。

また、各プログラムモジュールを外部記憶装置のどの場所に格納するのか及び外部記憶装置のら 説出したプログラムモジュールを主記憶装置のの との場所に格納するのかは、従来、オペレーティ行とがのメモリ割付場所を簡単ににより自動が高端ににいまれており、それらのメモリ割付場所を簡単にに知ることができなかったことかです。デバングは対象では、アドレスないと対象ができまれる。

本発明はこのような従来の問題点を解決したも

渡して前記制御テーブルを作成させるメニュー制 御手段とを備え、

ソースモジュール、オブジェクトモジュール、ロードモジュールを前記外部記憶装置に格納するとき、および前記主記憶装置に読出すときには前記制御テーブルに設定された位置情報に従わせる構成を有する。

(作用)

各プログラムモジュールの外部記憶装置および 主記憶装置上での格納位置を指示する制御テーブ ルがキーボードなどの入力装置からの操作によっ て作成できるので、従来のようなJCLを使用す る必要がなくなり、また、プログラムモジュール の格納位置を任意に設定できるので、デバッグ時 の効率を高めることができる。

(実施例)

次に本発明の実施例について図面を参照して説 明する。

第1図は本発明の実施例のブロック図であり、 キーボードなどの入力装置1と、CRTなどの表 のであり、その目的は、プログラムモジュールを 格納する外部記憶装置および主記憶装置の場所を 指示する格納情報を持つ制御テーブルをキーボー ドなどの入力装置からの操作で作成することがで き、各プログラムモジュールの外部記憶装置およ び主記憶装置上での格納位置を指示可能としたプ ログラムモジュール管理方式を提供することにあ る。

(問題点を解決するための手段)

本発明は上記目的を達成するために、ソースモジュール、オブジェクトモジュール、ロードモジュールの各プログラムモジュールを外部記憶装置に格納する際の位置情報、前記外部記憶装置に格納された各プログラムモジュールを読出す主記憶装置の位置情報を指示する制御テーブルと、

該制御テーブルを作成するテーブル生成手段と、 該テーブル生成手段による前記制御テーブルの 作成時に使用される処理メニューを入出力装置に 妻示し、前記処理メニューに従って前記入出力装 置から入力される情報を前記テーブル生成手段に

示装置2と、処理装置16と、フロッピーディスク 装置などの補助記憶装置5と、プログラムファイ ル15を格納するハードディスク装置12とで構成さ れている。また処理装置16には、テーブル処理メ ニュー画面の表示入力制御を行なうメニュー制御 部3と、テープル生成部4と、プログラム読込部 6と、コンパイラ7と、リンカ8と、ローダ等の 転送部9と、主記憶装置10と、実行部11と、記憶 部17とを含む。この記憶部17は主記憶の一部を構 成し、サプコマンドテーブル13. ファイル制御テ ーブル14が格納される。ハードディスク装置12の プログラムファイル15にはファイル制御テーブル 14の内容に従って、ソースモジュール (以下SM と称す)、オプジェクトモジュール(以下OMと 称す), ロードモジュール (以下LMと称す) の 各プログラムモジュールが格納される。

第2図はファイル制御テーブル14の構成例を示す。このような構成のファイル制御テーブル14を本実施例では入力装置1からの入力により生成するものである。同図に示すファイル制御テーブル

14は、ファイルテーブル140,モジュールテーブル 141, 141, SMテープル143, OMテープル144, L Mテープル145 とで構成される。ファイルテープ ル140 の各エントリにはファイル名 (ABCD等) とモジュールテーブル 141」, 1412へのポインタ (MP, 等) とが格納され、そのポインタによっ て各モジュールテーブル141、1412 がファイルテ ープル140 にチェーンされる。また、各モジュー ルテーブルにはモジュールテーブル141,に例示す るように、SMテーブル143 へのポインタ (SM P, 等), OMテープル144 へのポインタ (OM P, 等), LMテープル145 へのポインタ (LM P, 等) が格納され、モジュールテープル141,に チェーンされている。SMテープル143,OMテー ブル144. LMテーブル145 には、更新日, 更新回 数、予約サイズ、現在サイズ、ハードディスク装 置の格納先頭アドレス (HDアドレス).ローディ ング時の主記憶先頭アドレス(MMアドレス)等 が格納される。

次にファイル制御テーブル14の作成処理につい

とモジュール識別情報とをテーブル生成部4へ渡す (ステップ S 13) 。 テーブル生成部4はこれに応答して第2図のファイルテーブル140 の指定されたエントリにファイル名ABCDを登録し、且つ、対応するモジュールテーブル141」とSMテーブル143 の枠組みが作成されていなければそれらを作成し、ポインタMP」ポインタSMP、をファイルテーブル140、モジュールテーブル141」の対応する部分に格納する。

次に入力装置1からリターンのメッセージが受信されると、ステップS12の処理で判別され、第3図のステップS1へ戻り、表示装置2の画面に再び第4図に示すテーブル処理メニューが表示される。

次に入力装置1よりメニュー番号2のファイル 制御テーブル表示・更新を選択するメッセージが 受信されると(ステップS2)、メニュー制御部 3 はメニュー番号2の処理を行なう(ステップS 4)。

第6図はメニュー番号2の処理を行なうステッ

て説明する。

提作者が入力装置1から起動信号を入力すると、メニュー制御部3が起動され、メニュー制御部3 は例えば第3図に示す処理を開始し、例えば第4 図に示すようなテーブル処理メニューを表示装置 2の画面に表示する(ステップS1)。

次に入力装置1よりメニュー番号1のファイル名更新を選択するメッセージが受信されると (ステップS2)、メニュー制御部3 はメニュー番号1の処理へ移行する (ステップS3)。

第 5 図はメニュー番号 1 の処理を行なうステップ S 3 の処理例であり、先ず、記憶部17のファイル制御テーブル14における第 2 図に示したファイルテーブル140 を読込んでこれを表示装置 2 の画面に表示する(ステップ S 10)。

次に入力装置 1 からファイル名として例えば A B C D を示すメッセージとモジュール機別情報と して S M を示すメッセージとが受信されると (ス テップ S 11) 、ステップ S 12を軽てメニュー制御 部 3 は受信したメッセージつまりファイル名情報

プS 4 の処理例であり、先ず、メニュー制御部 3 はファイル名とモジュール識別名のメッセージ受信待ちとなる(ステップ S 20)。 入力装置 1 より 例えばファイル名 A B C D 、モジュール識別名 S M のメッセージが与えられると、メニュー制御部 3 はこれを識別し、ステップ S 21、 S 22を経てステップ S 23 へ進み、記憶部17中のファイル制御テーブル14における第 2 図の S M テーブル143 を 例えば第 7 図に示す形式で衷示装置 2 の画面に表示する(ステップ S 23)。

操作者は第7図に示された内容の表示画面を見ながら、後で入力するSMの予約サイズ、格納先となるハードディスク装置12上のアドレス(HDアドレス)と、ローディング時の主記憶装置10上のアドレス(MMアドレス)とを入力する。この入力されたHDアドレスなどは第6図のステップS20で受信され、メニュー制御部3はステップS20で受信され、メニュー制御部3はステップS20で受信され、メニュー制御部3はステップS21、S22を経てステップS24によりHDアドレスなどの入力情報をテーブル生成部4へ渡す。テーブル生成部4はこの入力情報を記憶部17のファイ

ル制御テーブル14に審込む。なお、更新日、更新回数、現在サイズは自動的に設定される。操作者が必要な情報を設定し終えるとリターンのメッセージを入力装置1から入力することにより、処理を終える。

さて、以上のようにして第2図のSMテーブル143 の作成を行なった後、例えば入力装置1からファイル名ABCD・モジュール種類がSMであることを指示して、作成したSMの各ステートメントを入力装置1或いは補助記憶装置5から入力すると、これらはプログラム読込部6に与えられる。そして、プログラム読込部6はファイル制御テーブル14のSMテーブル143 のHDアドレスを参照し、ハードディスク装置12の対応部分では、カウはたSMを記憶し、SMテーブル143 の現在サイズを設定する。これによって、ハードディスク装置12の記憶域のうち提作者が事前に指定された。アドレス部分にSMを格納することが可能となる。

操作者はSMテーブル143 を作成したと同様の 操作を行なうことにより、第2図のOMテーブル

置1からファイル名ABCD,モジュールの種別 LMを指定すると、転送部9が起動され、転送部 9はファイル制御テーブル14からLMテーブル145 を参照し、そのHDアドレスで指示されたハード デバッグ装置12の領域からLMを読込んでそのL Mテープル145 のMMアドレスの位置から順に主 記憶装置10ヘロードしていく。そしてロード完了 後、そのLMは実行部11によって実行される。

また本実施例では、表示装置 2 の画面に L Mテーブル145 の内容を表示させることにより、操作者は実行中の L M の先頭アドレス (M M アドレス)を簡単に知ることができるので、L M の任意のアドレスを指定した L M の実行が複雑なアドレス計算無しに容易に行なうことができ、デバックのないできる。とができ、L M のパッチによかできる。更に、転送部 9 に S M、O M の主記憶装置 10 への読込みを入力装置 1 から指示した定された M M テーブル143、O M テーブル144 に設定された M M アドレスに従った位置に読込まれるので、S M、

144 を作成し、そのOMテーブル144 のHDアドレス、MMアドレスに所望の値を設定した後、入力装置 1 からコンパイラ 7 にファイル名 ABCDのSMをコンパイルすべき指示を与えると、コンパイラ 7 はSMテーブル143 のHDアドレス、現在サイズを参照して SMを読出し、これを翻訳してOMテーブル144 に設定された HDアドレスに従ってハードディスク装置12の領域にOMを格納し、また現在サイズを設定する。

更に操作者が、HDアドレス、MMアドレスに所望の値を設定したLMテーブル145を作成し、リンクすべき複数のOMを指定してリンカ8に指示を与えると、リンカ8は対応するOMテーブルを参照してリンクすべきOMをハードディスク装置12から読取ってリンク処理を行ない、これを指定されたLMテーブル145に設定されたHDアドレスに従ってハードディスク装置12の領域に格納し、現在サイズを設定する。

次に、デバッグを行なうために、ファイル名 A BCDのLMを実行させる場合、操作者が入力装

OMのデバッグも容易に行なうことができる。

なお、メニュー制御部3は、第4図のメニュー番号3のファイル一覧表表示が選択されれば、ファイルテーブル140,各モジュールテーブル141...
141*の内容を表示装置2の画面に表示する。また、メニュー番号4のサブコマンドテーブル13が選択されれば、記憶部17に格納されたサブコマンドテーブル13の内容を表示装置2の画面に表示する。ここで、サブコマンドテープル13は、リンカ8の起動時等に使用するサブコマンドを格納する為のものであり、操作者はそのサブコマンドを使用してリンカ8等に与えるコマンドを選択することができる。

(発明の効果)

以上説明したように、本発明によれば、メニュー制御手段によってCRT等の出力装置に表示されるテーブル処理メニュー画面に従ってキーボード等の入力装置から必要なデータを入力していくことで、プログラムモジュールの外部記憶装置および主記憶装置上での格納位置を指示するSMテ

ーブル等の制御テーブルを、JCLを使用することなく作成することができるので、オペレーティングシステムの専門知識がない提作者も容易にだログラムモジュールの管理を行なうことが可能となり、且つ、SM、OM、LMを外部記憶装置になり、且つ、SM、OM、LMを外部記憶装置には納するとき、および主記憶装置に続出せるものであるから、プログラムモジュールの格納場所を操作者が制御テーブルに設定した場所通りとすることができ、デバッグ時の効率を高めることが可能となる。

4. 図面の簡単な説明

第1図は本発明の実施例のプロック図、

第2図はファイル制御テープル14の構成例を示す図、

第3図はメニュー制御部3の処理例の流れ図、 第4図はテーブル処理メニュー画面の内容例を 示す図、

第5図はメニュー番号1の処理例の流れ図、 第6図はメニュー番号2の処理例の流れ図およ び、

第7図はSMチープル表示画面の内容例を示す 図である。

図において、

1 … 入力装置 10 … 主配位装置

2 … 表示装置 11 … 実行部

3 …メニュー制御部 12…ハードディスク装置

4…テーブル生成部 13…サブコマンドテーブル

5 …補助記憶装置 14…ファイル制御テーブル

6…プログラム読込部 15…プログラムファイル

1…コンパイラ

16…処理装置

8 … リンカ

17…記憶部

9 … 転送部

特許出願人 日本電気株式会社 代理人 弁理士 境 廣 巳

本発明の実施例のブロック図 第 1 図

ファイル制御テーブル14の構成例を示す図 第 2 図

メニュー制御部3の処理例の流れ図 第3図

テーブル処理メニュー画面の内容例を示す図 第 4 図

メニュー番号1 の処理例の流れ図 第 5 図

メニュー番号2の処理例の流れ図 第 6 図

```
FILEA: ABCD
  SM TABLE
  更新日
              10/2
  更新回数
               2
                    )
  予約サイズ
              38400
  現在サイズ
              3840
                    )
  HD アドレス (002000000)
  MM アドレス(
6
              5000
                    )
  リターン
```

SM テーブル表示画面の内容例を示す図 第 7 図