Tutorial 10

- 1. [Submission Problems for Group 1] Problem 19.34 in LLM Book
- 2. [Submission Problems for Group 2] Problem 19.26 in LLM Book
- 3. [Submission Problems for Group 3] Problem 19.18 in LLM Book
- 4. [Submission Problems for Group 4] Problem 19.30 in LLM Book
- 5. [Bonus] Problem 19.8, 19.15, 19.19, 19.21, 19.24, 19.35, 19.37, in LLM Book
- 6. [Bonus] Let n be a random integer, chosen uniformly between 1 and N. What is the expected number of distinct prime divisors of n? Show that the result is asymptotically equal to $\ln \ln N$ (as $N \to \infty$).
- 7. [Bonus] For a permutation π of the set [n], let $c_k(\pi)$ denote the number of k-cycles¹ in the cycle decomposition of π . (For instance, if n=7 and $\pi=(18)(256)(3)(47)(9)$ then $c_1(\pi)=2, c_2(\pi)=2, c_3(\pi)=1$, and $c_k(\pi)=0$ for all $k\neq 1,2,3$.) Pick π at random from all permutations of [n].
 - (a) Calculate $E[c_k(\pi)]$. Your answer should be a very simple expression (no factorials, no binomial coefficients, no summation).
 - (b) Calculate the expected number of cycles (including cycles of length 1) in the cycle decomposition of a random permutation (This will be a simple sum, not a closed-from expression). Prove that this number is $\sim \ln n$.

 $^{^1\}mathrm{You}$ can read more about the cycle notation for a permutation here