Методы оптимизации. Семинар 10. Условия оптимальности.

Александр Катруца

Московский физико-технический институт, Факультет Управления и Прикладной Математики

31 октября 2016 г.

Напоминание

- Конус возможных направлений
- Касательный конус
- Острый экстремум

Мотивация

Вопрос 0

Когда существует решение оптимизационной задачи?

Вопрос 1

Как проверить, что точка является решением оптимизационной задачи?

Вопрос 2

Из каких условий можно найти решение оптимизационной задачи?

Существование решения

Теорема Вейерштрасса

Пусть $X \subset R^n$ компактное множество и пусть f(x) непрерывная функция на X. Тогда точка глобального минимума функции f(x) на X существует.

Эта теорема гарантирует, что решение подавляющего большинства разумных задач существует.

Условия оптимальности

Определение

Условием оптимальности будем называть некоторое выражение, выполнимость которого даёт необходимое и (или) достаточное условие экстремума.

Классы задач:

- Общая задача минимизации
- Задача безусловной минимизации
- Задача минимизации с ограничениями типа равенств
- Задача минимизации с ограничениями типа равенств и неравенств

Общая задача минимизации

Задача

$$f(x) \to \min_{x \in X}$$

Критерий оптимальности

Пусть f(x) определена на множестве $X\subset \mathbb{R}^n$. Тогда

- ullet если x^* точка минимума f(x) на X, то $\partial_X f(x^*)
 eq \emptyset$ и $0 \in \partial_X f(x^*)$
- $m{2}$ если для некоторой точки $x^* \in X$ существует субдифференциал $\partial_X f(x^*)$ и $0 \in \partial_X f(x^*)$, то x^* точка минимума f(x) на X.

Какие недостатки у приведённого критерия?

$$\bullet \ \mathbf{x}^{\mathsf{T}}\mathbf{x} + \alpha \|\mathbf{x} - \mathbf{c}\|_{2} \to \min_{\mathbf{x} \in \mathbb{R}^{n}}, \ \alpha > 0$$

- $\mathbf{x}^{\mathsf{T}}\mathbf{x} + \alpha \|\mathbf{c}^{\mathsf{T}}\mathbf{x} b\|_2 \to \min_{\mathbf{x} \in \mathbb{R}^n}, \ \alpha > 0$
- Ограничение на допустимое множество

$$(x+2)^2 + |y+3| \to \min_{(x,y) \in \mathbb{R}^2}$$

s.t. $8 + 2x - y \le 0$

Задача безусловной минимизации

Задача: $f(x) \to \min_{x \in \mathbb{R}^n}$.

Критерий оптимальности для выпуклых функций

Пусть f(x) выпуклая функция на \mathbb{R}^n . Тогда точка x^* решение задачи безусловной минимизации $\Leftrightarrow 0 \in \partial f(x^*)$.

Следствие

Если f(x) выпукла и дифференцируема на \mathbb{R}^n . Тогда точка x^* решение задачи безусловной минимизации \Leftrightarrow $\nabla f(x^*) = 0$.

Достаточное условие для невыпуклых функций

Пусть f дважды дифференцируема на \mathbb{R}^n и x^* такая что $\nabla f(x^*)=0$. Тогда если $\nabla^2 f(x^*)\succ 0$, то x^* точка строгого локального минимума f(x) на \mathbb{R}^n .

- $x_1e^{x_1} (1 + e^{x_2})\cos x_2 \to \min$
- Функция Розенброка:

$$(1-x_1)^2 + \alpha \sum_{i=2}^n (x_i - x_{i-1})^2 \to \min, \ \alpha > 0$$

• $x_1^2 + x_2^2 - x_1x_2 + e^{x_1 + x_2} \rightarrow \min$

Задача минимизации с ограничениями типа равенств

Задача

$$f(x) o \min_{x \in \mathbb{R}^n}$$

s.t. $g_i(x) = 0, \ i = 1, \dots, m$

Лагранжиан

$$L(x, \lambda) = f(x) + \sum_{i=1}^{m} \lambda_i g_i(x)$$

Критерий оптимальности

Пусть f(x) и $g_i(x)$ дважды дифференцируемы в точке x^* и непрерывно дифференцируемы в некоторой окрестности x^* . Пусть также $\nabla_x L(x^*, \lambda) = 0$. Тогда если $\mathbf{h}^\mathsf{T} \nabla^2 L(x^*, \lambda) \mathbf{h} > 0$, где $\mathbf{h} \in \mathcal{T}(\mathbf{x}^*|\mathcal{G})$ — касательный конус, то x^* — точка локального минимума.

Возможные варианты

Pисунок взят из блога http://www.offconvex.org/2016/03/22/saddlepoints/

- $x_1 + 4x_2 + 9x_3 \to \text{extr}_{\mathbf{x} \in G}, \ G = \left\{ \frac{1}{x_1} + \frac{1}{x_2} + \frac{1}{x_3} = 1 \right\}$
- Примеры из задачника по матану на метод множителей Лагранжа

Задача

$$\min_{x \in \mathbb{R}^n} f(x)$$
s.t. $g_i(x) = 0, i = 1, ..., m$

$$h_j(x) \le 0, j = 1, ..., p$$

Лагранжиан

$$L(x, \boldsymbol{\lambda}, \boldsymbol{\mu}) = f(x) + \sum_{i=1}^{m} \lambda_i g_i(x) + \sum_{j=1}^{p} \mu_j h_j(x)$$

Условия оптимальности

Необходимое условие

Пусть x^* решение задачи математического программирования, и функции f,h_j,g_i дифференцирумы. Тогда найдутся такие μ^* и λ^* , что выполнены следующие условия:

- $g_i(x^*) = 0$
- $h_j(x^*) \leq 0$
- $\mu_i^* \geq 0$
- $\mu_i^* h_j(x^*) = 0$

Если задача выпуклая, то это же условие является достаточным.

Условия оптимальности (cont'd)

Если задача невыпуклая, то

Достаточное условие первого порядка

Если для стационарной точки (x^*, λ^*, μ^*) число активных неравенств |J| такое что n=m+|J| и $\mu_j>0,\ j\in J$, то эта точка является точкой минимума.

Достаточное условие второго порядка

Если в задаче математического программирования число активных ограничений меньше размерности задачи, то точка x^{*} яляется решением задачи, если выполнены условия

$$\mathbf{z}^{\mathsf{T}} \nabla_{xx}^2 L(x^*) \mathbf{z} > 0$$

для

- $\mathbf{z} \neq 0$ и $\nabla g_i^\mathsf{T}(x^*)\mathbf{z} = 0$
- ullet при $j\in J$ и $\mu_j>0$, $abla h_i^{\mathsf{T}}(x^*)\mathbf{z}=0$
- ullet при $j\in J$ и $\mu_j=0$, $abla h_i^\mathsf{T}(x^*)\mathbf{z}\leq 0$

Пример 1

$$extr(x_1-3)(x_2-2)$$

s.t.
$$x_1 + 2x_2 = 4$$

$$x_1^2 + x_2^2 \le 5$$

$$x_1\geq 0,\ x_2\geq 0$$

• Пример 2

$$\operatorname{extr} \sum_{i=1}^{n} \frac{c_i}{x_i}$$

s.t.
$$\sum_{i=1}^{n} a_i x_i \leq b$$

$$x_i > 0, \ b > 0, \ c_i > 0, \ a_i > 0$$

Пример 3

$$extr(x_1x_3 - 2x_2)$$

s.t.
$$2x_1 - x_2 - 3x_3 \le 10$$

$$3x_1 + 2x_2 + x_3 = 6$$

$$x_2 > 0$$

Резюме

- Существование решения оптимизационной задачи
- Условия оптимальности для
 - общей задачи оптимизации
 - задачи безусловной оптимизации
 - задачи оптимизации с ограничениями типа равенств
 - задачи оптимизации с ограничениями типа равенств и неравенств