Midterm

29th of March 2015

Question1

1. (1 mark) Prove that $(P \lor Q) \land (R \lor P) \land (\neg Q \lor \neg R \lor P) \equiv P$

Solution (it is OK if students prove by using the truth table):

$$\begin{array}{l} (P \lor Q) \land (R \lor P) \land (\neg Q \lor \neg R \lor P) \equiv \\ [\neg Q \land (P \lor Q) \land (R \lor P)] \lor [\neg R \land (P \lor Q) \land (R \lor P)] \lor [P \land (P \lor Q) \land (R \lor P)] \equiv \\ P \lor P \lor P \equiv P \end{array}$$

2. (1 mark) Given the premises $(\exists x)P(x)$ and $(\forall x)[P(x) \Rightarrow Q(x)]$ give a series of steps concluding that $(\exists x)Q(x)$.

Solution

- 1) $(\exists x)P(x)$ (premise)
- 2) P(a) for some a from the domain (from 1 using Existential Specification **skolem** i. **constant**)
- 3) $(\forall x)[P(x) \rightarrow Q(x)]$ (premise)
- 4) $P(a) \rightarrow Q(a)$ for some a from the domain (from 3 using Universal Specification)
- 5) Q(a) for some a from the domain (from 2 and 4 using Modus Ponens)
- 6) $(\exists x)Q(x)$ (from 5 using Existential Generalization).
- 3. In the domain of people, consider the following sentences:
 - Mona is a Professor
 - Mohamed is the Dean.
 - Deans are professors.
 - All professors consider the dean a friend or don't know him.
 - Everyone is a friend of someone.
 - People only criticize people that are not their friends.
 - Mona criticized Mohamed.
 - a) (1 marks) Translate these sentences into Predicate Logic.
 - b) (1 mark) Transform the above Predicate Logic sentences to CNF.
 - c) (1 mark) Prove by resolution, the following statement: Mona is not friend of Mohamed
 - d) (1 mark) Prove, by using contradiction, the following statement: Mona is not friend of Mohamed.

Solution:

- a) FOPL:
 - 1. Professor(Mona).
 - 2. Dean(Mohamed).
 - 3. $\forall x (Dean(x) \rightarrow Professor(x))$
 - 4. $\forall x \ \forall y \ \text{Professor}(x) \land \text{Dean}(y) \rightarrow \text{Friend}(x, y) \lor \neg \text{Know}(x, y)$
 - 5. $\forall x \exists y \text{ Friend}(x, y)$
 - 6. $\forall x \ \forall y \ \text{Critize}(x, y) \rightarrow \neg \ \text{Friend}(x, y)$
 - 7. Critize(Mona, Mohamed)
- b) Transform to CNF:
 - 1. Professor(Mona).
 - 2. Dean(Mohamed).
 - 3. \neg Dean(x) \vee Professor(x)
 - 4. \neg Professor(x) $\lor \neg$ Dean(y) \lor Friend(x, y) $\lor \neg$ Know(x, y)
 - 5. \neg Critize(x, y) $\lor \neg$ Friend(x, y)
 - 6. Critize(Mona, Mohamed)
- c) The proof by resolution:

```
5+6=7 { y/Mohamed, x/Mona}: ¬ Friend(Mona, Mohamd)
```

d) The proof by contradiction:

```
Assume: 7. Friend(Mona, Mohamed).
```

```
5+7=8 {y/Mohamed, x/Mona}: \neg Criticize(Mona, Mohamed) 6+8=9: nil (contradiction)
```

→ ¬ Friend(Mona, Mohamed)

Question2

(1 marks) X=[b,d,f].

(1 marks) It should b like that: max(X,Y,X) := X >= Y, !. max(X,Y,Y).

Question3

class precedence list:

Mohamed –Director-manager -sales –technical-permenant- employee 1/2 marks Mohamed salary = 10000 L.E 1/2 marks

class precedence list

Ahmed- consultant – temporary –manager- sales-employee 1/2 marks

Ahmed salary = 200*15=30,00 1/2 marks