

Machine Learning Decal

Hosted by Machine Learning at Berkeley

Agenda

Background

Linear Algebra Perspective

Optimization via Gradient Descent

Probabilistic Perspective

Background

	Continuous	Discrete
Supervised	Regression	Classification
Unsupervised	Dimensionality Reduction	Clustering

• Suppose we have data

	Continuous	Discrete
Supervised	Regression	Classification
Unsupervised	Dimensionality Reduction	Clustering

- Suppose we have data
 - Want to model relationships and make **predictions**

	Continuous	Discrete
Supervised	Regression	Classification
Unsupervised	Dimensionality Reduction	Clustering

- Suppose we have data
 - Want to model relationships and make **predictions**
- ullet The data has **continuous** labels (y)

	Continuous	Discrete
Supervised	Regression	Classification
Unsupervised	Dimensionality Reduction	Clustering

- Suppose we have data
 - Want to model relationships and make **predictions**
- The data has **continuous** labels (y)
 - i.e. prices, heights, miles per gallon, etc.

	Continuous	Discrete
Supervised	Regression	Classification
Unsupervised	Dimensionality Reduction	Clustering

- Suppose we have data
 - Want to model relationships and make predictions
- The data has **continuous** labels (y)
 - i.e. prices, heights, miles per gallon, etc.
- The data has a set of **explanatory** variables (x_i)

	Continuous	Discrete
Supervised	Regression	Classification
Unsupervised	Dimensionality Reduction	Clustering

- Suppose we have data
 - Want to model relationships and make predictions
- The data has **continuous** labels (y)
 - i.e. prices, heights, miles per gallon, etc.
- The data has a set of **explanatory** variables (x_i)
 - i.e. sales, weights, engine power, etc.

	Continuous	Discrete
Supervised	Regression	Classification
Unsupervised	Dimensionality Reduction	Clustering

- Suppose we have data
 - Want to model relationships and make predictions
- The data has **continuous** labels (y)
 - i.e. prices, heights, miles per gallon, etc.
- The data has a set of **explanatory** variables (x_i)
 - i.e. sales, weights, engine power, etc.
- How does a computer make predictions?

 Regression is one of the most commonly used methods by data scientists

- Regression is one of the most commonly used methods by data scientists
- It is simple, fast, interpretable, and **powerful**

- Regression is one of the most commonly used methods by data scientists
- It is simple, fast, interpretable, and **powerful**
- The techniques we use here are widely applicable

- Regression is one of the most commonly used methods by data scientists
- It is simple, fast, interpretable, and **powerful**
- The techniques we use here are widely applicable
- It is practical!

- Regression is one of the most commonly used methods by data scientists
- It is simple, fast, interpretable, and **powerful**
- The techniques we use here are widely applicable
- It is practical!
 - (Physics) Ohm's law, Hooke's law, Charles's law

- Regression is one of the most commonly used methods by data scientists
- It is simple, fast, interpretable, and powerful
- The techniques we use here are widely applicable
- It is practical!
 - (Physics) Ohm's law, Hooke's law, Charles's law
 - (Economics) Okun's law

Example of Linear Regression

How exactly is this line calculated?

Example of Linear Regression

How exactly is this line calculated? Minimizing the sum of the square of those errors!

• Suppose we have p predictor variables x_1, x_2, \ldots, x_p

- Suppose we have p predictor variables x_1, x_2, \ldots, x_p
- We can approximate y as a linear function of the $x_i's$:

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \dots + \theta_p x_p$$

- Suppose we have p predictor variables x_1, x_2, \ldots, x_p
- We can approximate y as a linear function of the $x_i's$:

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \dots + \theta_p x_p$$

• θ_i 's are the **parameters** (also called **weights**) which we need to estimate

- Suppose we have p predictor variables x_1, x_2, \ldots, x_p
- We can approximate y as a linear function of the $x_i's$:

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \dots + \theta_p x_p$$

- θ_i 's are the **parameters** (also called **weights**) which we need to estimate
- We introduce $x_0 = 1$ for simplicity so that:

$$h_{\theta}(x) = \sum_{i=1}^{p} \theta_{i}^{T} x_{i} = \theta^{T} x$$

Warm-up: predicting house prices

• Suppose we have the following data about houses:

Price	# of Square Feet	# of Bedrooms
221,900	1180	3
538,000	2570	3
:	:	:
1,225,000	5420	4

Warm-up: predicting house prices

• Suppose we have the following data about houses:

Price	# of Square Feet	# of Bedrooms
221,900	1180	3
538,000	2570	3
:	i:	:
1,225,000	5420	4

• Let's predict the price of a house from the number of square feet it has

Warm-up: predicting house prices

• Suppose we have the following data about houses:

Price	# of Square Feet	# of Bedrooms
221,900	1180	3
538,000	2570	3
:	÷ ·	i
1,225,000	5420	4

- Let's predict the price of a house from the number of square feet it has
- Our linear model has the form:

$$h_{\theta}(sqft) = \theta_0 + \theta_1 sqft$$

 \bullet We are given labeled data in (x, y) pairs

- We are given labeled data in (x, y) pairs
- ullet We can construct our model $h_{ heta}(x)$ to predict y

- We are given labeled data in (x, y) pairs
- We can construct our model $h_{\theta}(x)$ to predict y
- TODO: how do we figure out how close $h_{\theta}(x)$ is to y?

- We are given labeled data in (x, y) pairs
- We can construct our model $h_{\theta}(x)$ to predict y
- TODO: how do we figure out how close $h_{\theta}(x)$ is to y?
- TODO: how do we optimize $h_{\theta}(x)$ to be as close as possible to y?

Linear Algebra Perspective

• **Goal**: have $h_{\theta}(x)$ be as close to y as possible

- **Goal**: have $h_{\theta}(x)$ be as close to y as possible
- Idea: measure how different each prediction is via squared error

- **Goal**: have $h_{\theta}(x)$ be as close to y as possible
- Idea: measure how different each prediction is via squared error
- We can express this mathematically:

$$L(\theta) = \sum_{i=1}^{n} (h_{\theta}(x^{i}) - y^{i})^{2}$$

- **Goal**: have $h_{\theta}(x)$ be as close to y as possible
- Idea: measure how different each prediction is via squared error
- We can express this mathematically:

$$L(\theta) = \sum_{i=1}^{n} (h_{\theta}(x^{i}) - y^{i})^{2}$$

• $L(\theta)$ sums the squared **residuals**

- **Goal**: have $h_{\theta}(x)$ be as close to y as possible
- Idea: measure how different each prediction is via squared error
- We can express this mathematically:

$$L(\theta) = \sum_{i=1}^{n} (h_{\theta}(x^{i}) - y^{i})^{2}$$

- $L(\theta)$ sums the squared **residuals**
- To have an accurate model, we want to **minimize** $L(\theta)$

Matrix Notation

Recall:

$$L(\theta) = \sum_{i=1}^{n} (h_{\theta}(x^{i}) - y^{i})^{2}$$

Recall:

$$L(\theta) = \sum_{i=1}^{n} (h_{\theta}(x^{i}) - y^{i})^{2}$$

Substituting in:

$$L(\theta) = \sum_{i=1}^{n} (y^{i} - \theta^{T} x^{i})^{2}$$

Recall:

$$L(\theta) = \sum_{i=1}^{n} (h_{\theta}(x^{i}) - y^{i})^{2}$$

Substituting in:

$$L(\theta) = \sum_{i=1}^{n} (y^{i} - \theta^{T} x^{i})^{2}$$

Supposing x^i was a row vector:

$$L(\theta) = \sum_{i=1}^{n} ||y^{i} - x^{i}\theta||^{2}$$

Recall:

$$L(\theta) = \sum_{i=1}^{n} (h_{\theta}(x^{i}) - y^{i})^{2}$$

Substituting in:

$$L(\theta) = \sum_{i=1}^{n} (y^{i} - \theta^{T} x^{i})^{2}$$

Supposing x^i was a row vector:

$$L(\theta) = \sum_{i=1}^{n} ||y^{i} - x^{i}\theta||^{2}$$

Now in matrix notation:

$$L(\theta) = ||Y - X\theta||^2$$

Recall:

$$L(\theta) = \sum_{i=1}^{n} (h_{\theta}(x^{i}) - y^{i})^{2}$$

Substituting in:

$$L(\theta) = \sum_{i=1}^{n} (y^{i} - \theta^{T} x^{i})^{2}$$

Supposing x^i was a row vector:

$$L(\theta) = \sum_{i=1}^{n} ||y^{i} - x^{i}\theta||^{2}$$

Now in matrix notation:

$$L(\theta) = ||Y - X\theta||^2$$

• The equation for a linear model:

$$h_{\theta}(x_i) = \theta_0 + \theta_1 x_{i1} + \dots + \theta_p x_{ip}$$

• The equation for a linear model:

$$h_{\theta}(x_i) = \theta_0 + \theta_1 x_{i1} + \dots + \theta_p x_{ip}$$

• The outcome, y, which we observe can be thought of as:

$$y_i = h_\theta(x_i) + \epsilon_i$$

where ϵ is some unobserved error

• The equation for a linear model:

$$h_{\theta}(x_i) = \theta_0 + \theta_1 x_{i1} + \dots + \theta_p x_{ip}$$

• The outcome, y, which we observe can be thought of as:

$$y_i = h_{\theta}(x_i) + \epsilon_i$$

where ϵ is some unobserved error

ullet We don't know the true heta is, so we estimate it with $\hat{ heta}$

• The equation for a linear model:

$$h_{\theta}(x_i) = \theta_0 + \theta_1 x_{i1} + \dots + \theta_p x_{ip}$$

• The outcome, y, which we observe can be thought of as:

$$y_i = h_{\theta}(x_i) + \epsilon_i$$

where ϵ is some unobserved error

- We don't know the true θ is, so we estimate it with $\hat{\theta}$
- Our predictions for test points are then

$$\hat{y} = h_{\hat{\theta}}(x)$$

Linear regression in matrix form

• We can rewrite linear regression as

$$\begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} 1 & x_{11} & x_{12} & \dots & x_{1p} \\ 1 & x_{21} & x_{22} & \dots & x_{2p} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n1} & x_{n2} & \dots & x_{np} \end{pmatrix} \begin{pmatrix} \theta_0 \\ \theta_1 \\ \vdots \\ \theta_p \end{pmatrix} + \begin{pmatrix} \epsilon_1 \\ \epsilon_2 \\ \vdots \\ \epsilon_n \end{pmatrix}$$

Linear regression in matrix form

• We can rewrite linear regression as

$$\begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} 1 & x_{11} & x_{12} & \dots & x_{1p} \\ 1 & x_{21} & x_{22} & \dots & x_{2p} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n1} & x_{n2} & \dots & x_{np} \end{pmatrix} \begin{pmatrix} \theta_0 \\ \theta_1 \\ \vdots \\ \theta_p \end{pmatrix} + \begin{pmatrix} \epsilon_1 \\ \epsilon_2 \\ \vdots \\ \epsilon_n \end{pmatrix}$$

• In compressed notation:

$$\vec{y} = X\vec{\theta} + \vec{\epsilon}$$

Linear regression in matrix form

• We can rewrite linear regression as

$$\begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} 1 & x_{11} & x_{12} & \dots & x_{1p} \\ 1 & x_{21} & x_{22} & \dots & x_{2p} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n1} & x_{n2} & \dots & x_{np} \end{pmatrix} \begin{pmatrix} \theta_0 \\ \theta_1 \\ \vdots \\ \theta_p \end{pmatrix} + \begin{pmatrix} \epsilon_1 \\ \epsilon_2 \\ \vdots \\ \epsilon_n \end{pmatrix}$$

• In compressed notation:

$$\vec{y} = X\vec{\theta} + \vec{\epsilon}$$

 Here, we're using capital letters to represent matrices, and arrows to represent vectors

 \bullet We want our estimate, $\hat{\theta}$ to be accurate

- ullet We want our estimate, $\hat{ heta}$ to be accurate
- We can be accurate by trying to minimize error

- ullet We want our estimate, $\hat{ heta}$ to be accurate
- We can be accurate by trying to minimize error
- We can be accurate by minimizing our residuals

$$e_i = y_i - \vec{\theta}^T x_i$$

- ullet We want our estimate, $\hat{ heta}$ to be accurate
- We can be accurate by trying to minimize error
- We can be accurate by minimizing our residuals

$$e_i = y_i - \vec{\theta}^T x_i$$

• More mathematically convenient to minimize squared residuals

- We want our estimate, $\hat{\theta}$ to be accurate
- We can be accurate by trying to minimize error
- We can be accurate by minimizing our residuals

$$e_i = y_i - \vec{\theta}^T x_i$$

- More mathematically convenient to minimize squared residuals
- That is,

$$\hat{\theta} = \operatorname{argmin}_{\vec{\theta}} L(\theta) = \operatorname{argmin}_{\vec{\theta}} ||\vec{y} - X\vec{\theta}||_2^2$$

Geometric Interpretation

Projection of y on the features of X

Estimation (least squares) via vector calculus

$$\hat{\theta} = (X^T X)^{-1} X^T \vec{y}$$

Estimation (least squares) via vector calculus

$$\hat{\theta} = (X^T X)^{-1} X^T \vec{y}$$

$$\begin{split} \hat{\theta} &= \operatorname{argmin}_{\vec{\theta}} L(\theta) = \operatorname{argmin}_{\vec{\theta}} ||\vec{y} - X\vec{\theta}||_{2}^{2} \\ &= \operatorname{argmin}_{\vec{\theta}} (\vec{y} - X\vec{\theta})^{T} (\vec{y} - X\vec{\theta}) \\ &= \operatorname{argmin}_{\vec{\theta}} \vec{y}^{T} \vec{y} - 2\vec{y}X\vec{\theta} + \vec{\theta}^{T} X^{T} X\vec{\theta} \end{split}$$

How to minimize a function? Take the derivative!

$$\frac{\partial L}{\partial \vec{\theta}} = 2X^T X \vec{\theta} - 2X^T \vec{y} = 0$$
$$\hat{\theta} = (X^T X)^{-1} X^T \vec{y}$$

ullet $\hat{ heta}$ is indeed a minimizer (the second derivative is negative)

- $\hat{\theta}$ is indeed a minimizer (the second derivative is negative)
- Recall, once we have our estimate $\hat{\theta}$, we can predict new x's using:

$$\hat{y}_i = \hat{\theta}_0 + \hat{\theta}_1 x_{i1} + \dots + \hat{\theta}_p x_{ip}$$

- $\hat{\theta}$ is indeed a minimizer (the second derivative is negative)
- Recall, once we have our estimate $\hat{\theta}$, we can predict new x's using:

$$\hat{y}_i = \hat{\theta}_0 + \hat{\theta}_1 x_{i1} + \dots + \hat{\theta}_p x_{ip}$$

• In matrix notation:

$$\hat{\vec{y}} = X \hat{\vec{\theta}} = X (X^T X)^{-1} X^T Y$$

- $\hat{\theta}$ is indeed a minimizer (the second derivative is negative)
- Recall, once we have our estimate $\hat{\theta}$, we can predict new x's using:

$$\hat{y}_i = \hat{\theta}_0 + \hat{\theta}_1 x_{i1} + \dots + \hat{\theta}_p x_{ip}$$

• In matrix notation:

$$\hat{\vec{y}} = X\hat{\vec{\theta}} = X(X^TX)^{-1}X^TY$$

• For a one unit increase in x_{ik} , we expect y_i to, **on average** increase by $\hat{\theta}_k$

Optimization via Gradient Descent

• **Goal**: have $h_{\theta}(x)$ be as close to y as possible

- **Goal**: have $h_{\theta}(x)$ be as close to y as possible
- We've seen how to do this by solving some equations

- **Goal**: have $h_{\theta}(x)$ be as close to y as possible
- We've seen how to do this by solving some equations
- Let's now look at a more general purpose algorithm to see if we can still reach the same answer (will allow us to optimize more complex models)

- **Goal**: have $h_{\theta}(x)$ be as close to y as possible
- We've seen how to do this by solving some equations
- Let's now look at a more general purpose algorithm to see if we can still reach the same answer (will allow us to optimize more complex models)
- Remember our cost function:

$$L(\theta) = \frac{1}{2} \sum_{i=1}^{n} (h_{\theta}(x^{i}) - y^{i})^{2}$$

- **Goal**: have $h_{\theta}(x)$ be as close to y as possible
- We've seen how to do this by solving some equations
- Let's now look at a more general purpose algorithm to see if we can still reach the same answer (will allow us to optimize more complex models)
- Remember our **cost function**:

$$L(\theta) = \frac{1}{2} \sum_{i=1}^{n} (h_{\theta}(x^{i}) - y^{i})^{2}$$

• $L(\theta)$ sums the squared **residuals**

- **Goal**: have $h_{\theta}(x)$ be as close to y as possible
- We've seen how to do this by solving some equations
- Let's now look at a more general purpose algorithm to see if we can still reach the same answer (will allow us to optimize more complex models)
- Remember our **cost function**:

$$L(\theta) = \frac{1}{2} \sum_{i=1}^{n} (h_{\theta}(x^{i}) - y^{i})^{2}$$

- $L(\theta)$ sums the squared **residuals**
- To have an accurate model, we want to **minimize** $L(\theta)$

• **Idea**: choose θ to minimize $L(\theta)$

- **Idea**: choose θ to minimize $L(\theta)$
- We can use a search algorithm that follows the scheme:

- **Idea**: choose θ to minimize $L(\theta)$
- We can use a search algorithm that follows the scheme:
 - ullet Choose an initial guess for heta

- **Idea**: choose θ to minimize $L(\theta)$
- We can use a search algorithm that follows the scheme:
 - ullet Choose an initial guess for heta
 - Repeatedly update θ to make $L(\theta)$ smaller

- **Idea**: choose θ to minimize $L(\theta)$
- We can use a search algorithm that follows the scheme:
 - ullet Choose an initial guess for heta
 - Repeatedly update θ to make $L(\theta)$ smaller
 - Keep doing this until $L(\theta)$ reaches its minimum

Updating θ **to minimize** $L(\theta)$

• Note: $L(\theta)$ is a convex quadratic function (has nice properties)

- Note: $L(\theta)$ is a convex quadratic function (has nice properties)
- From Math 53: the direction of greatest increase is the same direction of the gradient vector

- Note: L(θ) is a convex quadratic function (has nice properties)
- From Math 53: the direction of greatest increase is the same direction of the gradient vector
- **Idea**: let's update θ by traversing the opposite direction instead

- Note: L(θ) is a convex quadratic function (has nice properties)
- From Math 53: the direction of greatest increase is the same direction of the gradient vector
- **Idea**: let's update θ by traversing the opposite direction instead
- This scheme is known as gradient descent

$$\theta \leftarrow \theta - \epsilon \nabla_{\theta} L(\theta)$$

- Note: L(θ) is a convex quadratic function (has nice properties)
- From Math 53: the direction of greatest increase is the same direction of the gradient vector
- **Idea**: let's update θ by traversing the opposite direction instead
- This scheme is known as gradient descent

$$\theta \leftarrow \theta - \epsilon \nabla_{\theta} L(\theta)$$

 \bullet is called the **learning rate**

Visualizing gradient descent

Deriving the update rule

 Let's start with the case where we only have one training example (x, y)

$$\nabla_{\theta} L(\theta) = \nabla_{\theta} \frac{1}{2} (h_{\theta}(x) - y)^{2}$$

$$= 2(\frac{1}{2})(h_{\theta}(x) - y)\nabla_{\theta}(h_{\theta}(x) - y)$$

$$= (h_{\theta}(x) - y)\nabla_{\theta}(\theta^{T}x - y)$$

$$= (h_{\theta}(x) - y)x$$

Deriving the update rule

 Let's start with the case where we only have one training example (x, y)

$$\nabla_{\theta} L(\theta) = \nabla_{\theta} \frac{1}{2} (h_{\theta}(x) - y)^{2}$$

$$= 2(\frac{1}{2})(h_{\theta}(x) - y)\nabla_{\theta}(h_{\theta}(x) - y)$$

$$= (h_{\theta}(x) - y)\nabla_{\theta}(\theta^{T}x - y)$$

$$= (h_{\theta}(x) - y)x$$

• For a single training example, the update rule is:

$$\theta \leftarrow \theta - \epsilon(y^1 - h_\theta(x^1))x^1$$

• For *n* training examples:

$$\theta_j \leftarrow \theta_j - \epsilon \sum_{i}^{n} (h_{\theta}(x^i) - y^i) x_j^i$$

for
$$j = 1, \ldots, p$$
 and $i = 1, \ldots, n$

• For *n* training examples:

$$\theta_j \leftarrow \theta_j - \epsilon \sum_{i}^{n} (h_{\theta}(x^i) - y^i) x_j^i$$

for
$$j = 1, \ldots, p$$
 and $i = 1, \ldots, n$

 This rule is also called the LMS update rule ("least mean squares")

• For *n* training examples:

$$\theta_j \leftarrow \theta_j - \epsilon \sum_{i}^{n} (h_{\theta}(x^i) - y^i) x_j^i$$

for
$$j = 1, ..., p$$
 and $i = 1, ..., n$

- This rule is also called the LMS update rule ("least mean squares")
- Size of update is proportional to the residual term $(y^i h_{\theta}(x^i))$

• For *n* training examples:

$$\theta_j \leftarrow \theta_j - \epsilon \sum_{i}^{n} (h_{\theta}(x^i) - y^i) x_j^i$$

for
$$j = 1, ..., p$$
 and $i = 1, ..., n$

- This rule is also called the LMS update rule ("least mean squares")
- Size of update is proportional to the residual term $(y^i h_{\theta}(x^i))$
- If the prediction $h_{\theta}(x^i)$ is close the actual y^i then the parameters θ shouldn't need much changing

Stochastic gradient descent for linear regression

While $L(\theta)$ is not minimized:

For
$$i=i,\ldots,n$$
:
$$\theta_j \leftarrow \theta_j - \epsilon(h_\theta(x^i) - y^i)x^i_j \quad \text{(for each j)}$$

Choosing the learning rate

• SGD is the basis for many optimization algorithms

- SGD is the basis for many optimization algorithms
- Not necessary for linear regression, as there exists a closed form solution

- SGD is the basis for many optimization algorithms
- Not necessary for linear regression, as there exists a closed form solution
- Useful when derivatives are easy to calculate, but there is no closed form solution

- SGD is the basis for many optimization algorithms
- Not necessary for linear regression, as there exists a closed form solution
- Useful when derivatives are easy to calculate, but there is no closed form solution
- ullet We can find the optimal heta by solving the **normal equations** as covered previously

Probabilistic Perspective

Assumptions

 Regression is a good summary of data, assuming the data has some key properties

Assumptions

- Regression is a good summary of data, assuming the data has some key properties
- We need to know what those assumptions are, where they come from, and what to do when they fall apart

Linearity

- Linearity
- Normality of errors

$$\epsilon_i \sim N(0, \sigma^2)$$

- Linearity
- Normality of errors

$$\epsilon_i \sim N(0, \sigma^2)$$

• Homoscedasticity (constant variance)

$$Var(\epsilon_i) = Var(\epsilon_j)$$

- Linearity
- Normality of errors

$$\epsilon_i \sim N(0, \sigma^2)$$

Homoscedasticity (constant variance)

$$Var(\epsilon_i) = Var(\epsilon_j)$$

Independence of errors

$$\epsilon_i \perp \!\!\! \perp \epsilon_j \qquad \forall i \neq j$$

 The real world has natural processes. These processes can be collected/observed as data

- The real world has natural processes. These processes can be collected/observed as data
- We try to build a model that mimics the real world model as close as possible

- The real world has natural processes. These processes can be collected/observed as data
- We try to build a model that mimics the real world model as close as possible
- Problem: there are some factors we can directly observe, and others that we can't

- The real world has natural processes. These processes can be collected/observed as data
- We try to build a model that mimics the real world model as close as possible
- Problem: there are some factors we can directly observe, and others that we can't
- Problem: we don't know what model the world uses

- The real world has natural processes. These processes can be collected/observed as data
- We try to build a model that mimics the real world model as close as possible
- Problem: there are some factors we can directly observe, and others that we can't
- Problem: we don't know what model the world uses
- In order to reason this process more rigorously, we can construct a "toy universe" to analyze our models

In our toy universe, data is generated through a linear model:

$$Y = X\theta$$

In our toy universe, data is generated through a linear model:

$$Y = X\theta$$

We can observe these Y values, but our observations have some noise in them. So our collected data looks like this:

$$Y = X\theta + Z$$
 where $Z \sim \mathcal{N}(0, \sigma^2)$

In our toy universe, data is generated through a linear model:

$$Y = X\theta$$

We can observe these Y values, but our observations have some noise in them. So our collected data looks like this:

$$Y = X\theta + Z$$
 where $Z \sim \mathcal{N}(0, \sigma^2)$

So we have our noisy data:

$$Y = X\theta + Z$$

So we have our noisy data:

$$Y = X\theta + Z$$

 \bullet We want to find the θ that can best replicate the data we've already observed

So we have our noisy data:

$$Y = X\theta + Z$$

- \bullet We want to find the θ that can best replicate the data we've already observed
- Aka we want to increase the likelihood of the observed data being generated by the model

So we have our noisy data:

$$Y = X\theta + Z$$

- \bullet We want to find the θ that can best replicate the data we've already observed
- Aka we want to increase the likelihood of the observed data being generated by the model

Data Generation Process

So we have our noisy data:

$$Y = X\theta + Z$$

- \bullet We want to find the θ that can best replicate the data we've already observed
- Aka we want to increase the likelihood of the observed data being generated by the model

$$\hat{\theta} = argmax_{\theta}P(y_1, y_2, ..., y_n | \theta, x_1, x_2, ..., x_n)$$

$$\hat{\theta} = argmax_{\theta}P(y_1, y_2, ..., y_n | \theta, x_1, x_2, ..., x_n)$$

$$\hat{\theta} = argmax_{\theta} P(y_1, y_2, ..., y_n | \theta, x_1, x_2, ..., x_n)$$

$$\hat{\theta} = argmax_{\theta} \prod_{i} P(y_{i}|\theta, x_{i}) = argmax_{\theta} \sum_{i} \log P(y_{i}|\theta, x_{i})$$

$$\hat{\theta} = \operatorname{argmax}_{\theta} P(y_1, y_2, ..., y_n | \theta, x_1, x_2, ..., x_n)$$

$$\hat{\theta} = \operatorname{argmax}_{\theta} \prod_{i} P(y_i | \theta, x_i) = \operatorname{argmax}_{\theta} \sum_{i} \log P(y_i | \theta, x_i)$$

$$\hat{\theta} = argmax_{\theta}P(y_1, y_2, ..., y_n | \theta, x_1, x_2, ..., x_n)$$

$$\hat{\theta} = argmax_{\theta} \prod_{i} P(y_{i}|\theta, x_{i}) = argmax_{\theta} \sum_{i} \log P(y_{i}|\theta, x_{i})$$

$$\hat{\theta} = \operatorname{argmax}_{\theta} \sum_{i} \log \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(y_i - \theta x_i)^2}{2\sigma^2}}$$

$$\hat{\theta} = argmax_{\theta}P(y_1, y_2, ..., y_n | \theta, x_1, x_2, ..., x_n)$$

$$\hat{\theta} = argmax_{\theta} \prod_{i} P(y_{i}|\theta, x_{i}) = argmax_{\theta} \sum_{i} \log P(y_{i}|\theta, x_{i})$$

$$\hat{\theta} = \operatorname{argmax}_{\theta} \sum_{i} \log \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(y_i - \theta x_i)^2}{2\sigma^2}}$$

$$\hat{\theta} = \operatorname{argmax}_{\theta} \sum_{i} \log e^{-\frac{(y_i - \theta x_i)^2}{2\sigma^2}} = \operatorname{argmax}_{\theta} \sum_{i} -\frac{(y_i - \theta x_i)^2}{2\sigma^2}$$

$$\hat{\theta} = argmax_{\theta}P(y_1, y_2, ..., y_n | \theta, x_1, x_2, ..., x_n)$$

$$\hat{\theta} = argmax_{\theta} \prod_{i} P(y_{i}|\theta, x_{i}) = argmax_{\theta} \sum_{i} \log P(y_{i}|\theta, x_{i})$$

$$\hat{\theta} = \operatorname{argmax}_{\theta} \sum_{i} \log \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(y_i - \theta x_i)^2}{2\sigma^2}}$$

$$\hat{\theta} = \operatorname{argmax}_{\theta} \sum_{i} \log e^{-\frac{(y_i - \theta x_i)^2}{2\sigma^2}} = \operatorname{argmax}_{\theta} \sum_{i} -\frac{(y_i - \theta x_i)^2}{2\sigma^2}$$

$$\hat{\theta} = \operatorname{argmin}_{\theta} \sum_{i} (y_i - \theta^T x_i)^2$$

$$\hat{\theta} = argmax_{\theta}P(y_1, y_2, ..., y_n | \theta, x_1, x_2, ..., x_n)$$

$$\hat{\theta} = argmax_{\theta} \prod_{i} P(y_{i}|\theta, x_{i}) = argmax_{\theta} \sum_{i} \log P(y_{i}|\theta, x_{i})$$

$$\hat{\theta} = \operatorname{argmax}_{\theta} \sum_{i} \log \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(y_i - \theta x_i)^2}{2\sigma^2}}$$

$$\hat{\theta} = \operatorname{argmax}_{\theta} \sum_{i} \log e^{-\frac{(y_i - \theta x_i)^2}{2\sigma^2}} = \operatorname{argmax}_{\theta} \sum_{i} -\frac{(y_i - \theta x_i)^2}{2\sigma^2}$$

$$\hat{\theta} = \operatorname{argmin}_{\theta} \sum_{i} (y_i - \theta^T x_i)^2$$

• If the data is nonlinear...

- If the data is nonlinear...
 - Try performing a transformation on the independent or dependent variables such as squaring it, taking the log or square root, or ...

- If the data is nonlinear...
 - Try performing a transformation on the independent or dependent variables such as squaring it, taking the log or square root, or ...
- If the errors are not normal...

- If the data is nonlinear...
 - Try performing a transformation on the independent or dependent variables such as squaring it, taking the log or square root, or ...
- If the errors are not normal...
 - Often, this isn't a big problem

- If the data is nonlinear...
 - Try performing a transformation on the independent or dependent variables such as squaring it, taking the log or square root, or ...
- If the errors are not normal...
 - Often, this isn't a big problem
 - Transformations help here too

- If the data is nonlinear...
 - Try performing a transformation on the independent or dependent variables such as squaring it, taking the log or square root, or ...
- If the errors are not normal...
 - Often, this isn't a big problem
 - Transformations help here too
 - Maybe subsets of the data are more normal than the overall set

- If the data is nonlinear...
 - Try performing a transformation on the independent or dependent variables such as squaring it, taking the log or square root, or ...
- If the errors are not normal...
 - Often, this isn't a big problem
 - Transformations help here too
 - Maybe subsets of the data are more normal than the overall set
 - Outliers and/or high leverage points may contribute to this issue

Example of the beauty of a log transform

• Introduced linear regression

- Introduced linear regression
- Used linear algebra to derive a closed form solution

- Introduced linear regression
- Used linear algebra to derive a closed form solution
- Used gradient descent to iteratively optimize to a solution

- Introduced linear regression
- Used linear algebra to derive a closed form solution
- Used gradient descent to iteratively optimize to a solution
- Constructed a universe in which to better understand our model and the assumptions behind it

Questions?