Lecture 33 MARTINGALE 2

MARTINGALE

Recall that a discrete-time random process $\{X_n, n \ge 0\}$ is called martingale process if for all $n \ge 1$,

- (i) $E|X_n| < \infty$, and
- (ii) $E(X_{n+1} / X_0, X_1, ..., X_n) = X_n$

If the equality sign in(ii) above is replaced by \leq , then $\{X_n, n \geq 0\}$ is called a supermartingale and if it is replaced by \geq , then $\{X_n, n \geq 0\}$ is a submartingale.

Doob-type martingale

Definition: Consider two discrete-time random processes $\{X_n, n \ge 0\}$ and $\{Y_n, n \ge 0\}$. Then $\{X_n, n \ge 0\}$ is called a Doob-type martingale process if for all $n \ge 0$

- (i) $E|X_n| < \infty$, and
- (ii) $E(X_{n+1} / Y_0, Y_1, ..., Y_n) = X_n$

Ex 4: Suppose the random process $\{Y_n, n \ge 0\}$ given by $Y_n = \sum_{i=1}^n Z_i, n \ge 1$ is a symmetrical random walk process and $Y_0 = 0$ is a martingale. Then the random process $X_n = Y_n^2 - n$ is also a martingale w.r.t. $\{Y_n, n \ge 0\}$.

Proof: We have

$$X_{n+1} = Y_{n+1}^{2} - (n+1)$$

$$= (Y_{n} + Z_{n+1})^{2} - (n+1)$$

$$= Y_{n}^{2} + Z_{n+1}^{2} + 2Y_{n}Z_{n+1} - (n+1)$$

$$\therefore EX_{n+1} / Y_{0}, Y_{1}, ..., Y_{n}$$

$$= E(Y_{n}^{2} + Z_{n+1}^{2} + 2Y_{n}Z_{n+1} - (n+1)) / Y_{0}, Y_{1}, ..., Y_{n}$$

$$= Y_{n}^{2} + EZ_{n+1}^{2} + 2Y_{n}EZ_{n+1} - (n+1)$$
(Using indepence of Z_{n+1} with each Y_{i} , $i = 0, 1, ..., n$)
$$= Y_{n}^{2} + 1 + 0 - (n+1)$$

$$= Y_{n}^{2} - n$$

$$= X_{n}$$

Therefore, $\{X_{\alpha}\}_{\alpha=0}^{\infty}$ is a Doob-typemartingale.

Example 5: Polya's urn process

An urn contains R red balls and B black balls. One ball is selected in random and replaced along with one more ball of the same color. Let Y_n be the number of red balls after the n^{th} draw. The fraction of red balls after the n^{th} draw be $X_n = \frac{Y_n}{n+R+B}$ Then $\{X_n, n \ge 0\}$ is a martingale w.r.t $\{Y_n\}$

Proof: We have

$$X_{n+1} = \begin{cases} \frac{Y_n + 1}{n + 1 + R + B} & \text{with probability} \quad \frac{Y_n}{n + R + B} \\ \frac{Y_n}{n + 1 + R + B} & \text{with probability} \quad 1 - \frac{Y_n}{n + R + B} \end{cases}$$

$$\therefore E(X_{n+1} / Y_0, Y_1, ..., Y_n)
= \frac{Y_n + 1}{n + 1 + R + B} \times \frac{Y_n}{n + R + B} + \frac{Y_n}{n + 1 + R + B} \times (1 - \frac{Y_n}{n + R + B})
= \frac{Y_n^2 + Y_n + Y_n (n + R + B) - Y_n^2}{(n + 1 + R + B)(n + R + B)}
= \frac{Y_n}{n + R + B}
= X_n$$

Properties of martingales

Martingale has constant mean

Proof: We have

$$E(X_{n+1} / X_0, X_1, ..., X_n) = X_n$$

Taking expectation with respect to the joint random variables $X_0, X_1, ..., X_n$ on both sides, we get

$$EE(X_{n+1} / X_0, X_1, ..., X_n) = EX_n$$

$$\Rightarrow EX_{n+1} = EX_n$$

Continuing in the similar manner, we can show that

$$EX_{n+1} = EX_n = \dots = EX_0 = \text{constant}$$

Properties of martingales

Martingale has constant mean

Proof: We have

$$E(X_{n+1} | X_0, X_1, ..., X_n) = X_n$$

Taking expectation with respect to the joint random variables $X_0, X_1, ..., X_n$ on both sides, we get

$$EE(X_{n+1} / X_0, X_1, ..., X_n) = EX_n$$

$$\Rightarrow EX_{n+1} = EX_n$$

Continuing in the similar manner, we can show that

$$EX_{n+1} = EX_n = \dots = EX_0 = \text{constant}$$

Martingale Inequalities

Maximal Inequality- If $\{X_n, n \ge 0\}$ is a non-negative martingalle,

then
$$P(max_{n\geq 0}(X_n)\geq a)\leq \frac{EX_0}{a}$$

Proof Using Markov inequality

$$P(X_{n} \ge a) \le \frac{EX_{n}}{a}, n \ge 0$$

$$= \frac{EX_{0}}{a}$$

$$\therefore P(\max_{n \ge 0} (X_{n}) \ge a) \le \frac{EX_{0}}{a}$$

Kolmogorov Inequality

Suppose $X_0 = 0$. Clearly, $EX_n = 0$, n = 0,1,...Then by applying Chebyshev inequality

$$P(|X_n| \ge a) \le \frac{EX_n^2}{a^2}, n=0,1,...,n$$

m-step prediction

We have observed that for a martingale process $\{X_n, n \ge 0\}$,

$$E(X_{n+1}/X_0,X_1,...X_n)=X_n$$
 (one-step prediction)

The following theorem says about the m-step prediction

Theorem: For a Martingale process $\{X_n\}$,

$$E(X_{n+m} / X_0, X_1, ..., X_n) = X_n$$

Proof Recall the property of the conditional expectation:

$$E(EY/X,Z)/X = EY/X$$

Therefore,

$$LHS = E\{E(X_{n+m} / X_0, X_1, ..., X_n, ..., X_{n+m-1})\} / X_0, X_1, ... X_n$$

= $E(X_{n+m-1} / X_0, X_1, ... X_n)$

Repeating this we get

=
$$E(X_{n+1} / X_0, X_1, ..., X_n)$$

$$=X_n$$

Corollary 1 For a Martingale process $\{X_n\}$,

$$E(X_nX_{n+m})=EX_n^2, m\geq 0$$

Proof

$$E(X_{n}X_{n+m}) = EE(X_{n}X_{n+m} / X_{0}, X_{1},..., X_{n})$$

$$= EX_{n}E(X_{n+m} / X_{0}, X_{1},..., X_{n})$$

$$= EX_{n}X_{n}$$

$$= EX_{n}^{2}$$

$$= EX_{n}^{2}$$

Corollary 2 A martingale $\{X_n\}$ is an orthogonal increment process, i.e.

for
$$n_1 < n_2 < n_3 < n_4$$
 $E(X_{n_2} - X_{n_1})(X_{n_4} - X_{n_3}) = 0$

Proof

$$E(X_{n_{2}} - X_{n_{1}})(X_{n_{4}} - X_{n_{3}})$$

$$= EX_{n_{2}}X_{n_{4}} - EX_{n_{2}}X_{n_{3}} - EX_{n_{1}}X_{n_{4}} + EX_{n_{1}}X_{n_{3}}$$

$$= EX_{n_{2}}^{2} - EX_{n_{2}}^{2} - EX_{n_{1}}^{2} + EX_{n_{1}}^{2}$$

$$= 0$$

Corollary 3 For a martingale process $\{X_n\}$, EX_n^2 is a monotonically increasing sequence.

Proof We have

$$0 \le E (X_{n+1} - X_n)^2$$

$$= EX_{n+1}^2 + EX_n^2 - 2EX_n X_{n+1}$$

$$= EX_{n+1}^2 + EX_n^2 - 2EX_n^2$$

$$= EX_{n+1}^2 - EX_n^2$$

 $\therefore EX_n^2$ is a monotonically increasing sequence.

To summarise

- \triangleright A discrete-time random process $\{X_n, n \ge 0\}$ is called martingale process if for all $n \ge 1$,
- (i) $E|X_n| < \infty$, and
- (ii) $E(X_{n+1} / X_0, X_1, ..., X_n) = X_n$

If the equality sign in(ii) above is replaced by \leq , then $\{X_n, n \geq 0\}$ is called a *supermartingale* and if it is replaced by \geq , then $\{X_n, n \geq 0\}$ is a *submartingale*.

- ➤ A martingale has constant mean
 - For a Martingale process $\{X_n\}$,

$$E(X_{n+m} / X_0, X_1, ..., X_n) = X_n$$

To summarise...

- For a Martingale process $\{X_n\}$, $E(X_nX_{n+m}) = EX_n^2$, $m \ge 0$
- \triangleright A martingale $\{X_n\}$ is an orthogonal increment process, i.e. for

$$n_1 < n_2 < n_3 < n_4$$

 $E(X_{n_2} - X_{n_1})(X_{n_4} - X_{n_3}) = 0$

For a martingale process $\{X_n\}$, EX_n^2 is a monotonically increasing sequence.