Material Summary: Introduction to Machine Learning

1. The Scientific Method

1.1 The Scientific Method Steps

- Ask a question
- Do a research
- Form a hypothesis
- Test the hypothesis with an experiment
 - Experiment works ⇒ Analyze the data
 - Experiment doesn't work ⇒ Fix experiment
- Results align with hypothesis ⇒ OK
- Results don't align with hypothesis ⇒ new question, new hypothesis
- Communicate the results

- Some guidelines on the process to extract meaningful information from data
 - Very similar to the scientific method
 - Can be viewed as a sequential process
 - Or just as some guidelines on how to do research
 - Read as "awesome"
 - Obtain data
 - Scrub data
 - Explore data
 - Model data
 - iNterpret the results

1.3 Applied Machine Learning Process

- This allows us to do our job faster and more reliably
 - 1. Problem definition
 - Make sure the problem is well-defined and that you're solving the right problem
 - 2. Data analysis
 - Get familiar with the available data
 - 3. Data preparation
 - Get the data ready for modelling
 - 4. Algorithm evaluation
 - Test and compare algorithms
 - 5. Result improvement
 - Use results to create better models (e.g. fine-tuning, ensembles)
 - 6. Result presentation
 - Describe the problem and solution to non-specialists

Ask a Question

2. Machine Learning

2.1 Machine Learning

- We described a general process
 - We didn't explain ML in detail
- "A computer program is said to learn from experience E with respect to some task T and some performance measure P, if its performance on T, as measured by P, improves with experience E." Tom Mitchell, Carnegie Mellon University
- More simply, making computers learn from data
 - And observing them getting better and better
 - Results: computers do things that they weren't explicitly told
- The field is vast (and expanding)
 - There are many sub-fields, variations and algorithms
 - ... but the basis is still the same

2.2 Types of Machine Learning Algorithms

- Supervised learning
 - We train the program on previously known (labelled) data
 - After training, we expect it to make predictions on new data
 - Examples: regression, classification
- Unsupervised learning
 - We leave the program to find patterns in data
 - Examples: clustering analysis, dimensionality reduction
- Reinforcement learning
 - A form of unsupervised learning
 - The program learns continuously
 - Examples: learning to play a game by observing other players, learning to drive a car

2.3 Algorithms by Task

- Statistical algorithms
- Regression predicting a continuous variable
- Classification predicting class labels
- Clustering finding compact groups of data points
- Dimensionality reduction simplifying the input data
- Recommendation suggest items for users
- Optimization minimize / maximize a target function
- Testing and improvement algorithms helper algorithms to select, fine-tune and optimize other ML algorithms
- ... and more :)

3. Getting and Preparing Data

3.1 Common Libraries

- In Python, we use libraries to perform common operations
- scikit-learn machine learning models
- pandas working with data
 - Reading, tidying, cleaning, preparation

- numpy and scipy numerical and scientific libraries
 - Contain a ton of useful functions for performing research
- matplotlib plotting and data visualization
- There are many more we'd like to use but these are the most commonly used ones

3.2 Getting and Preparing Data

- 10 Minutes to pandas
- Pandas Cheat Sheet
- Full docs
- Tidy up the data
- Preprocess the data w.r.t. the task at hand
- Explore the data
 - Exploratory data analysis
 - Don't forget to make graphs
- Create meaningful features
 - Feature {selection, extraction, engineering}
- Example: Titanic dataset

3.3 Example: Preparing Data for Modelling

- Most models require two additional steps
 - Convert categorical variables into indicator variables
 - Normalize values if needed (e.g., scale all variables from 0 to 1 using min-max scaling, or use Z-scores)
- Perform other model-specific transformations
 - E.g., your model may not work well with highly imbalanced data (when you look for anomalies)
- If possible, prepare several versions of the dataset
 - To see how a transformation affects model performance
- Describe and document the entire process!
 - Don't forget the rules for reproducible research

 $@ SoftUni-\underline{about.softuni.bg}. \ Copyrighted \ document. \ Unauthorized \ copy, \ reproduction \ or \ use \ is \ not \ permitted.$