Числовые ряды

Опр. числового ряда: пусть дана последовательность $\{a_n\}_{n=1}^{\infty}$. Тогда выражение вида $\sum_{n=1}^{\infty} a_n = a_1 + a_2 + \dots$ называется числовым рядом.

 a_n называется общим членом ряда.

$$S_N = \sum_{n=1}^N a_n = a_1 + \ldots + a_N$$
 называется N -й частичной суммой.

$$r_N = \sum_{n=N+1}^{\infty} a_n = a_{N+1} + a_{N+2} + \dots$$
 называется N -м остатком ряда.

Опр. сходимости ряда: ряд $\sum\limits_{n=1}^{\infty}a_n$ называется сходящимся, если существует $\lim\limits_{N \to \infty}S_N=S \in \mathbb{R}$. В этом случае число S называют суммой этого ряда.

Ряд $\sum\limits_{n=1}^{\infty}a_n$ называется расходящимся, если предел $\lim\limits_{N\to\infty}S_N$ не существует (в том числе бесконечный предел).

Критерий Коши: ряд $\sum\limits_{n=1}^{\infty}a_n$ сходится тогда и только тогда, когда

$$\forall \varepsilon > 0 \quad \exists N \in \mathbb{N} \quad \forall n > N, \ p \ge 1 \quad \left| \sum_{k=n+1}^{n+p} a_k \right| < \varepsilon$$

Доказательство. Ряд $\sum\limits_{n=1}^{\infty}a_n$ сходится \Longleftrightarrow $\exists\lim_{n\to\infty}S_n=S$

//Кр. Коши для последовательностей// \Longleftrightarrow

$$\forall \varepsilon > 0 \quad \exists N \in \mathbb{N} \quad \forall n > N, \ p \ge 1 \quad |S_{n+p} - S_n| < \varepsilon$$

a
$$S_{n+p} - S_n = \sum_{k=n+1}^{n+p} a_k$$
.

Необходимое условие сходимости ряда: если ряд $\sum_{n=1}^{\infty} a_n$ сходится, то $\lim_{n \to \infty} a_n = 0$.

Доказательство. Следует из Критерия Коши при p=1:

$$\forall \varepsilon > 0 \quad \exists N \in \mathbb{N} \quad \forall n > N \quad |a_{n+1}| < \varepsilon$$

Утверждение (арифм.свойства). Пусть $\sum\limits_{n=1}^{\infty}a_n=A, \sum\limits_{n=1}^{\infty}b_n=B$ – сходящиеся ряды. Тогда для любых чисел $\alpha,\beta\in\mathbb{R}$ ряд $\sum\limits_{n=1}^{\infty}(\alpha a_n+\beta b_n)$ сходится и его сумма равна $\alpha A+\beta B$.

Доказательство. упражнение

Опр. абсолютно и условно сходящегося ряда. Ряд $\sum_{n=1}^{\infty} a_n$ называется абсолютно сходящимся, если $\sum_{n=1}^{\infty} |a_n|$ сходится. Ряд $\sum_{n=1}^{\infty} a_n$ называется условно сходящимся, если он сходится, но ряд $\sum_{n=1}^{\infty} |a_n|$ расходится.

Утверждение об абсолютной сходимости ряда. Если ряд сходится абсолютно, то он сходится.

Доказательство. Т.к. ряд $\sum\limits_{n=1}^{\infty}|a_n|$ сходится, то по Критерию Коши:

$$\forall \varepsilon > 0 \quad \exists N \in \mathbb{N} \quad \forall n > N, \ p \ge 1 \quad \sum_{k=n+1}^{n+p} |a_k| < \varepsilon$$

По неравенству треугольника:

$$\left| \sum_{k=n+1}^{n+p} a_k \right| \le \sum_{k=n+1}^{n+p} |a_k| < \varepsilon$$

а значит выполнен Критерий Коши для ряда $\sum\limits_{n=1}^{\infty}a_n$ и, следовательно, он сходится.

Теорема (о группировке членов ряда без изменения порядка). Пусть дан ряд $\sum_{n=1}^{\infty} a_n$ и строго возрастающая последовательность $\{k_n\}_{n=1}^{\infty}$, причем $k_1=1$. Обозначим $b_n=a_{k_n}+\ldots+a_{k_{n+1}-1}$, ряд $\sum_{n=1}^{\infty} b_n$ – ряд, полученный группировкой членов ряда $\sum_{n=1}^{\infty} a_n$. Тогда

- 1) если $\sum\limits_{n=1}^{\infty}a_n=A,$ то $\sum\limits_{n=1}^{\infty}b_n=A,$ т.е. группировка сходящегося ряда не меняет сумму.
- 2) если $\sum_{n=1}^{\infty} b_n = B$, $\lim_{n \to \infty} a_n = 0$ и существует $m: k_{n+1} k_n < m \ \forall n \in \mathbb{N}$ (т.е. группируем не более, чем по m членов), то $\sum_{n=1}^{\infty} a_n = B$.

Доказательство. 1) Частичная сумма сгруппированного ряда $B_N = \sum_{n=1}^N b_n = a_1 + a_2 + \ldots + a_{k_{N+1}-1} = A_{k_{N+1}-1}$ – частичная сумма исходного ряда. Если исходный ряд сходится, то существует предел $A_{k_{N+1}-1} \to A$, и частичные суммы сгруппированного ряда сходятся к тому же числу.

2) Частичная сумма исходного ряда:

 $A_N=a_1+\ldots+a_N=a_1+\ldots+a_{k_s-1}+a_{k_s}+\ldots+a_N=b_1+\ldots+b_{s-1}+a_{k_s}+\ldots+a_N=B_{s-1}+a_{k_s}+\ldots+a_N$ Обозначим $\alpha_s=\max\{|a_{k_s}|,|a_{k_s+1}|,\ldots,|a_{k_{s+1}-1}|\}.$ Тогда

$$B_{s-1} - m\alpha_s \le A_N \le B_{s-1} + m\alpha_s$$

Переходим к пределу (заметим, что из $N \to \infty$ следует $s \to \infty$, и из $a_n \to 0$ следует $\alpha_s \to 0$):

$$B \le \lim_{N \to \infty} A_N \le B$$

Следовательно, по определению ряд $\sum_{n=1}^{\infty} a_n$ сходится, причем его сумма равна B.