16 Settembre 2003

SOLUZIONI

Esercizio 1

1. Formulazione: per formulare il problema sono sufficienti 5 variabili, ogni variabile rappresenta il numero di bottiglie da produrre di ciascun vino: x_V ; x_B ; x_M ; x_O ; x_D . La formulazione diventa:

$$\max \quad 10x_V + 5x_B + 12x_M + 35x_O + 38x_D$$

$$\begin{cases} x_V + 8x_B + 3x_M & + 20x_D \le 50.000.000 \\ 3x_V + 2x_B + 4x_M + 6x_O + 15X_D \le 60.000.000 \\ x \ge 0 \end{cases}$$

2. Soluzione: portando il problema in forma standard è necessario aggiungere 2 variabili di scarto x_6 ; x_7 .

A questo punto la fase 1 non è necessaria in quanto le colonne A_6 , A_7 della matrice dei coefficienti individuano una base ammissibile. La base iniziale è quindi $B = [A_6, A_7]$. Al primo pivot entra A_1 ed esce A_7 . Al successivo pivot entra A_4 ed esce A_1 , la base $B = [A_6, A_4]$ risulta ottima. Le carry iniziale e finale sono:

3. Duale: Il problema duale avrà due variabili u_1, u_2 e 5 vincoli. Formulazione e regione ammissibile sono riportate in figura.

$$\begin{aligned} & \min \quad 50.000.000u_1 + 60.000.000u_2 \\ & \begin{cases} u_1 + 3u_2 \ge 10 \\ 8u_1 + 2u_2 \ge 5 \\ 3u_1 + 4u_2 \ge 12 \\ 6u_2 \ge 35 \\ 20u_1 + 15u_2 \ge 38 \\ x \ge 0 \end{aligned}$$

4. La soluzione ottima del duale è $u^T = [0, 35/6]$, coerentemente con quanto ottenuto nella riga 0 della carry finale al passo 2.

Esercizio 2

Applicando l'algoritmo di Dijkstra si settano ad 1 i flag dei nodi (nell'ordine) 1,2,3,5,6,7,4, ottenendo l'albero dei cammini minimi in figura.

