STAT 8020 R Lab 12: Adavnced Topics II

Whitney

September 28, 2020

Contents

Regression Tree	1
Ridge Regression	4
Data Setup	4
Fit Ridge Regression over a grid of λ values	5
Ridge Regression Coefficents	5
Training/Testing	6
Cross-Validation (CV)	7
The Lasso	8

Regression Tree

Major League Baseball Hitters Data from the 1986–1987 season

```
library(rpart)
library(rpart.plot)
library(ISLR)
Hitters = na.omit(Hitters)
head(Hitters)
```

```
##
                       AtBat Hits HmRun Runs RBI Walks Years CAtBat CHits CHmRun
## -Alan Ashby
                         315
                               81
                                       7
                                            24
                                                38
                                                       39
                                                                   3449
                                                                          835
## -Alvin Davis
                         479
                              130
                                      18
                                            66
                                                72
                                                       76
                                                              3
                                                                   1624
                                                                           457
                                                                                   63
## -Andre Dawson
                         496
                              141
                                      20
                                            65
                                                78
                                                       37
                                                             11
                                                                   5628
                                                                         1575
                                                                                  225
## -Andres Galarraga
                         321
                               87
                                      10
                                            39
                                                42
                                                      30
                                                              2
                                                                    396
                                                                          101
                                                                                   12
## -Alfredo Griffin
                         594
                              169
                                       4
                                            74
                                                51
                                                       35
                                                             11
                                                                   4408
                                                                         1133
                                                                                   19
## -Al Newman
                         185
                               37
                                       1
                                            23
                                                 8
                                                       21
                                                              2
                                                                    214
                                                                           42
##
                       CRuns CRBI CWalks League Division PutOuts Assists Errors
## -Alan Ashby
                         321
                              414
                                      375
                                                N
                                                          W
                                                                 632
                                                                           43
                                                                                  10
## -Alvin Davis
                              266
                                      263
                                                          W
                                                                880
                                                                          82
                                                                                  14
                         224
                                                Α
                                                          Ε
                                                                200
## -Andre Dawson
                         828
                              838
                                      354
                                                N
                                                                           11
                                                                                   3
## -Andres Galarraga
                          48
                               46
                                       33
                                                N
                                                          Ε
                                                                805
                                                                           40
                                                                                   4
## -Alfredo Griffin
                         501
                              336
                                      194
                                                Α
                                                          W
                                                                282
                                                                         421
                                                                                  25
## -Al Newman
                          30
                                       24
                                                N
                                                          Ε
                                                                 76
                                                                         127
                                                                                   7
##
                       Salary NewLeague
                        475.0
## -Alan Ashby
                                       N
                        480.0
## -Alvin Davis
                                       Α
## -Andre Dawson
                        500.0
                                       N
## -Andres Galarraga
                         91.5
                                       N
## -Alfredo Griffin
                        750.0
                                       Α
## -Al Newman
                         70.0
                                       Α
```

summary(Hitters)

##	AtBat	Hits	${\tt HmRun}$	Runs
##	Min. : 19.0	Min. : 1.0	Min. : 0.00	Min. : 0.00
##	1st Qu.:282.5	1st Qu.: 71.5	1st Qu.: 5.00	1st Qu.: 33.50
##	Median :413.0	Median :103.0	Median: 9.00	Median : 52.00

```
Mean :403.6
                  Mean :107.8
                                 Mean :11.62
                                                Mean : 54.75
   3rd Qu.:526.0
                  3rd Qu.:141.5
                                 3rd Qu.:18.00
                                                3rd Qu.: 73.00
                  Max. :238.0
                                                Max. :130.00
   Max. :687.0
                                 Max. :40.00
##
       RBI
                       Walks
                                       Years
                                                       CAtBat
   Min. : 0.00
                   Min. : 0.00
                                   Min. : 1.000
##
                                                   Min. : 19.0
##
   1st Qu.: 30.00
                   1st Qu.: 23.00
                                   1st Qu.: 4.000
                                                   1st Qu.: 842.5
   Median: 47.00
                   Median : 37.00
                                  Median : 6.000
                                                   Median: 1931.0
   Mean : 51.49
                   Mean : 41.11
                                   Mean : 7.312
                                                   Mean : 2657.5
##
##
   3rd Qu.: 71.00
                   3rd Qu.: 57.00
                                   3rd Qu.:10.000
                                                   3rd Qu.: 3890.5
   Max. :121.00
##
                   Max. :105.00
                                   Max. :24.000
                                                   Max. :14053.0
##
       CHits
                       CHmRun
                                       CRuns
                                                       CRBI
  Min. : 4.0
                   Min. : 0.00
                                   Min. : 2.0
                                                   Min. : 3.0
##
   1st Qu.: 212.0
                   1st Qu.: 15.00
                                   1st Qu.: 105.5
                                                   1st Qu.: 95.0
                   Median : 40.00
##
  Median : 516.0
                                   Median : 250.0
                                                   Median : 230.0
   Mean : 722.2
                   Mean : 69.24
                                   Mean : 361.2
                                                   Mean : 330.4
                   3rd Qu.: 92.50
##
   3rd Qu.:1054.0
                                   3rd Qu.: 497.5
                                                   3rd Qu.: 424.5
##
   Max. :4256.0
                   Max. :548.00
                                   Max. :2165.0
                                                   Max. :1659.0
                                      PutOuts
##
       CWalks
                   League Division
                                                   Assists
                                   Min. : 0.0
##
  Min. : 1.0
                   A:139 E:129
                                                   Min. : 0.0
   1st Qu.: 71.0
                   N:124 W:134
                                   1st Qu.: 113.5
                                                   1st Qu.: 8.0
##
##
   Median : 174.0
                                   Median : 224.0
                                                   Median: 45.0
   Mean : 260.3
                                   Mean : 290.7
                                                   Mean :118.8
   3rd Qu.: 328.5
                                   3rd Qu.: 322.5
                                                   3rd Qu.:192.0
##
##
   Max. :1566.0
                                   Max. :1377.0
                                                   Max. :492.0
##
       Errors
                                   NewLeague
                       Salary
## Min. : 0.000
                   Min. : 67.5
                                   A:141
## 1st Qu.: 3.000
                   1st Qu.: 190.0
                                   N:122
## Median : 7.000
                   Median: 425.0
## Mean : 8.593
                   Mean : 535.9
## 3rd Qu.:13.000
                   3rd Qu.: 750.0
## Max.
                        :2460.0
         :32.000
                   Max.
#Tree 1
reg.tree <- rpart(Salary ~ Years + Hits, data = Hitters)</pre>
rpart.plot(reg.tree, type = 4)
```


#Tree 2
reg.tree <- rpart(Salary ~ ., data = Hitters)
rpart.plot(reg.tree, type = 4)</pre>

Ridge Regression

The rest of this lab is largely based on the R lab: Ridge Regression and the Lasso of the book "Introduction to Statistical Learning with Applications in R" by *Gareth James, Daniela Witten, Trevor Hastie* and *Robert Tibshirani*. We will use the glmnet package to perform ridge regression and the lasso to predict Salary on the Hitters data.

Data Setup

```
library(glmnet)

## Loading required package: Matrix

## Loading required package: foreach

## Loaded glmnet 2.0-18

X <- model.matrix(Salary ~ ., data = Hitters)[, -1]

y <- Hitters$Salary</pre>
```

The glmnet() function has an alpha argument that determines what type of model is fit. If alpha = 0 then a ridge regression model is fit, and if alpha = 1 then a lasso model is fit. We first fit a ridge regression model, which minimizes

$$\sum_{i=1}^{n} (y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij})^2 + \lambda \sum_{j=1}^{p} \beta_j^2,$$

where $\lambda \geq 0$ is a tuning parameter to be determined.

Fit Ridge Regression over a grid of λ values

```
grid <- 10^seq(10, -2, length = 100)
ridge.mod <- glmnet(X, y, alpha = 0, lambda = grid)</pre>
```

Ridge Regression Coefficents

```
dim(coef(ridge.mod))
```

```
## [1] 20 100
```

We expect the coefficient estimates to be much smaller, in terms of ℓ_2 norm, when a large value of λ is used. ridge.mod\$lambda[50] #Display 50th lambda value

```
## [1] 11497.57
```

```
coef(ridge.mod)[, 50] # Display coefficients associated with 50th lambda value
```

##	(Intercept)	AtBat	Hits	HmRun	Runs
##	407.356050200	0.036957182	0.138180344	0.524629976	0.230701523
##	RBI	Walks	Years	\mathtt{CAtBat}	CHits
##	0.239841459	0.289618741	1.107702929	0.003131815	0.011653637
##	CHmRun	CRuns	CRBI	CWalks	LeagueN
##	0.087545670	0.023379882	0.024138320	0.025015421	0.085028114
##	DivisionW	PutOuts	Assists	Errors	NewLeagueN
##	-6.215440973	0.016482577	0.002612988	-0.020502690	0.301433531

```
sqrt(sum(coef(ridge.mod)[-1, 50]^2)) # Calculate 12 norm
```

```
## [1] 6.360612
```

In contrast, here are the coefficients when $\lambda = 705$, along with their ℓ_2 norm. Note the much larger ℓ_2 norm of the coefficients associated with this smaller value of λ .

```
ridge.mod$lambda[60] #Display 60th lambda value
```

```
## [1] 705.4802
```

```
coef(ridge.mod)[, 60] # Display coefficients associated with 60th lambda value
```

```
##
    (Intercept)
                       AtBat
                                     Hits
                                                  HmRun
                                                                Runs
                                                                               RBI
##
   54.32519950
                  0.11211115
                               0.65622409
                                             1.17980910
                                                          0.93769713
                                                                        0.84718546
##
                                                              CHmRun
          Walks
                       Years
                                    CAtBat
                                                  CHits
                                                                             CRuns
     1.31987948
                  2.59640425
                               0.01083413
                                             0.04674557
                                                          0.33777318
                                                                        0.09355528
##
##
           CRBI
                      CWalks
                                   LeagueN
                                             DivisionW
                                                             PutOuts
                                                                           Assists
     0.09780402
                  0.07189612
                              13.68370191 -54.65877750
                                                          0.11852289
                                                                        0.01606037
##
##
         Errors
                  NewLeagueN
   -0.70358655
                  8.61181213
```

```
sqrt(sum(coef(ridge.mod)[-1, 60]^2)) # Calculate 12 norm
```

```
## [1] 57.11001
```

We can use the predict() function for a number of purposes. For instance, we can obtain the ridge regression coefficients for a new value of λ , say 50:

```
predict(ridge.mod, s = 50, type = "coefficients")[1:20, ]
##
     (Intercept)
                          AtBat
                                         Hits
                                                       HmRun
                                                                       Runs
    4.876610e+01 -3.580999e-01 1.969359e+00 -1.278248e+00 1.145892e+00
##
##
             R.B.I
                          Walks
                                        Years
                                                      CAtBat
                                                                      CHits
##
    8.038292e-01
                  2.716186e+00 -6.218319e+00 5.447837e-03 1.064895e-01
##
          CHmRun
                          CRuns
                                         CRBI
                                                      CWalks
                                                                    LeagueN
##
   6.244860e-01 2.214985e-01 2.186914e-01 -1.500245e-01 4.592589e+01
                        PutOuts
##
       DivisionW
                                      Assists
                                                      Errors
                                                                NewLeagueN
## -1.182011e+02 2.502322e-01 1.215665e-01 -3.278600e+00 -9.496680e+00
Training/Testing
We now split the samples into a training set and a test set in order to estimate the test error of ridge regression
and later on the lasso.
set.seed(1)
train <- sample(1:nrow(X), nrow(X) / 2)</pre>
test <- (-train)</pre>
y.test <- y[test]
# Fit Ridge regression to the training data
ridge.mod <- glmnet(X[train,], y[train], alpha = 0, lambda = grid, thresh = 1e-12)
# Predcit the salary to the testing data with lambda = 4
ridge.pred <- predict(ridge.mod, s = 4, newx = X[test,])</pre>
# Calculate the Root Mean Square Error (RMSE)
sqrt(mean((ridge.pred - y.test)^2))
## [1] 377.093
# Compute the RMSE for the intercept-only model
sqrt(mean((mean(y[train]) - y.test)^2))
## [1] 473.9936
# Change to a much larger lambda
ridge.pred <- predict(ridge.mod, s = 1e10, newx = X[test,])
sqrt(mean((ridge.pred - y.test)^2))
## [1] 473.9935
# Change lambda to O
ridge.pred <- predict(ridge.mod, s = 0, newx = X[test,])
sqrt(mean((ridge.pred - y.test)^2))
## [1] 409.6215
lm(y ~ X, subset = train)
##
## Call:
## lm(formula = y ~ X, subset = train)
##
## Coefficients:
                     XAtBat
                                    XHits
                                                 XHmRun
                                                               XRuns
                                                                              XRBI
## (Intercept)
##
      274.0145
                    -0.3521
                                  -1.6377
                                                 5.8145
                                                               1.5424
                                                                            1.1243
##
        XWalks
                     XYears
                                  XCAtBat
                                                 XCHits
                                                             XCHmRun
                                                                            XCRuns
```

-0.6412

3.1632

3.4008

-0.9739

3.7287

##

-16.3773

```
##
         XCRBI
                    XCWalks
                                XLeagueN
                                            XDivisionW
                                                           XPutOuts
                                                                         XAssists
                                119.1486
##
       -0.6005
                     0.3379
                                             -144.0831
                                                             0.1976
                                                                           0.6804
       XErrors XNewLeagueN
##
       -4.7128
                   -71.0951
##
predict(ridge.mod, s = 0, type = "coefficients")[1:20,]
##
    (Intercept)
                       AtBat
                                     Hits
                                                  HmRun
                                                                Runs
                                                                               RBI
   274.2089049
##
                  -0.3699455
                               -1.5370022
                                              5.9129307
                                                           1.4811980
                                                                         1.0772844
##
          Walks
                       Years
                                   CAtBat
                                                  CHits
                                                              CHmRun
                                                                             CRuns
                                                                        -0.9496641
##
      3.7577989 -16.5600387
                               -0.6313336
                                              3.1115575
                                                           3.3297885
##
           CRBI
                      CWalks
                                  LeagueN
                                              DivisionW
                                                             PutOuts
                                                                           Assists
##
     -0.5694414
                   0.3300136
                              118.4000592 -144.2867510
                                                           0.1971770
                                                                         0.6775088
##
                  NewLeagueN
         Errors
##
     -4.6833775
                -70.1616132
```

Instead of arbitrarily choosing $\lambda = 4$, it would be better to use cross-validation (CV) to choose the tuning parameter λ . We can do this using the built-in cross-validation function, cv.glmnet(). By default, the function performs 10-fold cross-validation, though this can be changed using the argument folds.

Cross-Validation (CV)

```
set.seed(1)
# Fit ridge regression model on training data
cv.out <- cv.glmnet(X[train,], y[train], alpha = 0)
# Select lamda that minimizes training MSE
bestLambda = cv.out$lambda.min
bestLambda
## [1] 326.0828
ridge.pred <- predict(ridge.mod, s = bestLambda, newx = X[test,])
sqrt(mean((ridge.pred - y.test)^2))
## [1] 373.9741
plot(cv.out) # Draw plot of training MSE as a function of lambda</pre>
```


Finally, we refit our ridge regression model on the full data set, using the value of λ chosen by cross-validation, and examine the coefficient estimates.

```
# Fit ridge regression model on full dataset
out <- glmnet(X, y, alpha = 0)</pre>
# Display coefficients using lambda chosen by CV
predict(out, type = "coefficients", s = bestLambda)[1:20,]
##
    (Intercept)
                        AtBat
                                       Hits
                                                    HmRun
                                                                   Runs
                                                                                  RBI
##
    15.44383135
                   0.07715547
                                 0.85911581
                                               0.60103107
                                                             1.06369007
                                                                           0.87936105
##
          Walks
                                     CAtBat
                                                    CHits
                                                                 CHmRun
                                                                                CRuns
                        Years
                                 0.01134999
                                               0.05746654
                                                             0.40680157
##
     1.62444616
                   1.35254780
                                                                           0.11456224
##
           CRBI
                       CWalks
                                    LeagueN
                                                DivisionW
                                                                PutOuts
                                                                              Assists
                                                             0.16619903
                                22.09143189 -79.04032637
##
     0.12116504
                   0.05299202
                                                                           0.02941950
##
         Errors
                   NewLeagueN
    -1.36092945
                   9.12487767
```

The Lasso

We saw that ridge regression with a wise choice of λ can outperform least squares as well as the null model on the Hitters data set. We now ask whether the lasso, which minimizes

$$\sum_{i=1}^{n} (y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij})^2 + \lambda \sum_{j=1}^{p} |\beta_j|$$

can yield either a more accurate or a more interpretable model than ridge regression. In order to fit a lasso model, we once again use the glmnet() function; however, this time we use the argument alpha=1.

```
# Fit lasso model on training data
lasso.mod <- glmnet(X[train,], y[train], alpha = 1, lambda = grid)
# Draw plot of coefficients
plot(lasso.mod, las = 1)</pre>
```

Warning in regularize.values(x, y, ties, missing(ties)): collapsing to unique
'x' values

Notice that in the coefficient plot that depending on the choice of tuning parameter, some of the coefficients are exactly equal to zero. We now perform cross-validation and compute the associated test error:

```
set.seed(1)
# Fit lasso model on training data
cv.out <- cv.glmnet(X[train,], y[train], alpha = 1)
# Draw plot of training MSE as a function of lambda
plot(cv.out)</pre>
```



```
# Select lamda that minimizes training MSE
bestLambda <- cv.out$lambda.min
# Use best lambda to predict test data
lasso.pred <- predict(lasso.mod, s = bestLambda, newx = X[test,])
# Calculate test RMSE
sqrt(mean((lasso.pred - y[test])^2))</pre>
```

[1] 379.043

This is substantially lower than the test set RMSE of the null model and of least squares, and very similar to the test RMSE of ridge regression with λ chosen by cross-validation.

However, the lasso has a substantial advantage over ridge regression in that the resulting coefficient estimates are sparse. Here we see that 8 of the 19 coefficient estimates are exactly zero:

```
# Fit lasso model on full dataset
out <- glmnet(X, y, alpha = 1, lambda = grid)</pre>
# Display coefficients using lambda chosen by CV
lasso.coef <- predict(out, type = "coefficients", s = bestLambda)[1:20,]</pre>
lasso.coef
##
     (Intercept)
                          AtBat
                                          Hits
                                                        HmRun
                                                                        Runs
##
      1.27479059
                    -0.05497143
                                    2.18034583
                                                   0.0000000
                                                                  0.0000000
##
                          Walks
                                         Years
                                                       CAtBat
                                                                       CHits
##
      0.00000000
                     2.29192406
                                   -0.33806109
                                                   0.00000000
                                                                  0.00000000
##
          CHmRun
                          CRuns
                                          CRBI
                                                       CWalks
                                                                     LeagueN
      0.02825013
                     0.21628385
                                    0.41712537
                                                   0.00000000
                                                                 20.28615023
##
```

DivisionW PutOuts Assists Errors NewLeagueN ## -116.16755870 0.23752385 0.00000000 -0.85629148 0.00000000 lasso.coef[lasso.coef != 0] # Display only non-zero coefficients ## (Intercept) AtBat Hits Walks Years 1.27479059 2.29192406 -0.33806109 ## -0.05497143 2.18034583 ## CHmRun CRuns CRBI LeagueN ${\tt DivisionW}$ ## 0.02825013 0.21628385 0.41712537 20.28615023 -116.16755870 ## PutOuts Errors -0.85629148 0.23752385