Inference on heterogeneity aware estimand

川田恵介

Table of contents

1	Conditional Average Difference	2
1.1	Conditional Average Difference	2
1.2	Estimand: Weighted average difference	2
1.3	Estimand: Proportion weight	3
1.4	単純平均との比較	3
2	Estimation	3
2.1	Propensity score をめぐる混乱	3
2.2	推定手順	4
2.3	Moment condition	4
2.4	Argumented inverse propensity score (Robins and Rotnitzky 1995)	4
2.5	Psude-outcome	5
2.6	Estimator	5
2.7	Algorithm	5
2.8	Example	5
2.9	Example: R VS AIPW	6
2.10	R VS AIPW	6
2.11	Exmaple. Overlap weight	7
2.12	Example. Overlap weight	7
2.13	まとめ	8
2.14	補論: Marginal means	8
2.15	補論: Marginal means	8
2.16	Example	9
3	Best Lienar Projection for CATE	9
3.1	Algorithm	9
3.2	Best Linear projection	10
3.3	Example	10
9 1	描绘, Normalization	10

•	Proportional weight の問題点と対策	11
4.1	Assumption: Positivity for identification	11
4.2	Assumption: Positivity for estimation	11
4.3	Trouble with AIPW	11
4.4	Overlap weight	12
4.5	Propensity score weight	12
4.6	Average treatment effect on treated	12
4.7	Example: ATE VS Overlap VS ATTE	13
4.8	まとめ	13
4.9	まとめ	13
Refer	ence	14

1 Conditional Average Difference

- Conditional average difference $\tau(X) = \underbrace{\mu_Y(1,X)}_{=E[Y|1,X]} \underbrace{\mu_Y(0,X)}_{=E[Y|0,X]}$ の"特徴" として Estimand を定義
 - 因果推論では Conditional average treatment effect (CATE) と呼ばれる

1.1 Conditional Average Difference

- 一般に $D \in \{0,1\}$ 間での差は、他の変数 X に依存していると考えられる:
 - 自然な Estimand は

$$\tau(x) = \mu_Y(1,x) - \mu_Y(0,x)$$

- X=x を満たすサブサンプルサイズが十分にあれば、ただのサブサンプル平均差を推定値にできる
- ほとんどの応用で、大量のXを用いるので、サブサンプルサイズは不足する

1.2 Estimand: Weighted average difference

• 現実的な Estimand の第一候補は、 $\tau(X)$ の平均値:

$$\theta_0 = \int_X \tau(X) \times \omega(X) dX$$

- $\omega(X)=$ "研究者" が暗黙のうちに設定する集計用 Weight
- 重要ポイント: Estimand は Y, D, X のみならず、 $\omega(X)$ にも依存して定義される
 - かつてはそれほど意識されてこなかった

1.3 Estimand: Proportion weight

- $\omega(X) = f(X)$
 - 因果推論では Average Treatment Effect と呼ばれる

 $\theta_0 = \int \tau(X) \times f(X) dX$

1.4 単純平均との比較

•

$$\begin{aligned} \theta_0 &= \int_X \mu_Y(1,X) \times \omega(X) dX \\ &- \int_X \mu_Y(0,X) \times \omega(X) dX \end{aligned}$$

•

$$\begin{split} E[Y|1] - E[Y|0] &= \int_X \mu_Y(1,X) \times f(X|1) dX \\ - \int_X \mu_Y(0,X) \times f(X|0) dX \end{split}$$

2 Estimation

- $g_Y(d,X),g_D(X)$ が中心的な役割を果たす
 - $g_D(X)$ = Propensity score と呼ばれる

2.1 Propensity score をめぐる混乱

- 「Propensity score では因果効果を識別できない」
 - 正しいが identification の手法ではなく、estimation の手法であり、議論が噛み合っていない場合が多い
- OLS との違いがわからない
 - 本章の主要論点: OLS や R learner では proportion weight を用いた平均効果を推定できない

2.2 推定手順

2.3 Moment condition

• 複数存在する: $0 = E[m(\theta_0, O)]$ where

$$m(\theta_0,O)=\theta_0-\mu_Y(1,X)+\mu_Y(0,X)$$

 \ast g method, plugin method などと呼ばれる

$$m(\theta_0,O)=\theta_0-\frac{DY}{\mu_D(X)}+\frac{(1-D)Y}{1-\mu_D(X)}$$

* inverse propensity score などと呼ばれる

2.4 Argumented inverse propensity score (Robins and Rotnitzky 1995)

• おすすめの Moment condition

$$\begin{split} m(\theta_0,O) &= \theta_0 - \mu_Y(1,X) + \mu_Y(0,X) \\ &- \underbrace{\frac{D(Y-\mu_Y(1,X))}{\mu_D(X)} + \frac{(1-D)(Y-\mu_Y(0,X))}{1-\mu_D(X)}}_{Adjustment} \end{split}$$

• Neyman's orthogonal condition を満たす

2.5 Psude-outcome

• 以下のように書き換えられる: $\theta_0 = E[\phi(O)]$ where

$$\begin{split} \phi(O) &= \mu_Y(1,X) - \mu_Y(0,X) \\ + \frac{D(Y - \mu_Y(1,X))}{\mu_D(X)} - \frac{(1-D)(Y - \mu_Y(0,X))}{1 - \mu_D(X)} \end{split}$$

• $\phi(O) = Psude-outcome$ と呼ばれる

$$-\phi$$
 の平均 $=\tau$ の平均

2.6 Estimator

• $0 = \sum \phi(O, g)/N$ where

$$\begin{split} \phi(O,g) &= g_Y(1,X) - g_Y(0,X) \\ + \frac{D(Y - g_Y(1,X))}{g_D(X)} - \frac{(1-D)(Y - g_Y(0,X))}{1 - g_D(X)} \end{split}$$

2.7 Algorithm

- 1. データ分割 (auxiliary/main data)
- 2. μ_Y,μ_D を auxiliary data (+ 機械学習) で推定する
- 3. main data を用いて、 $\phi(O,g)$ の平均値を計算し、信頼区間とともに報告する

2.8 Example.

- Y = Price, D = Reform, X = Size, District, Tenure, Youseki, TradeQ
 - 2022 年の全データを使用

2.9 Example: R VS AIPW

2.10 R VS AIPW

• R learner も heterogeneity aware estimand として解釈できる

• 異なる集計用 Weight を用いた Estimand

– AIPW: $\omega(X) = f(X)$

– R: $\omega(X) = \frac{\mu_D(X)(1 - \mu_D(X))f(X)}{\int \mu_D(X)(1 - \mu_D(X))f(X)dX}$

* Overlap Weight

* $\mu_D(X)=0.5$ (バランスよく D=1,0 が混在しているサブグループ) の平均差をより強く反映している

6

2.11 Exmaple. Overlap weight

• 最大で 6 倍以上の格差が存在

2.12 Example. Overlap weight

 \bullet Lowest/Largest Overlap weight

A tibble: 6 x 5

	Size	${\tt Distance}$	Tenure	Youseki	Overlap
	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1	15	3	1	300	0.0399
2	15	3	1	300	0.0410
3	15	3	1	300	0.0418
4	20	6	1	500	0.0429
5	20	6	1	500	0.0432
6	20	7	1	300	0.0442

A tibble: 6 x 5

	Size	${\tt Distance}$	Tenure	Youseki	${\tt Overlap}$
	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1	55	15	29	300	0.250
2	55	2	44	400	0.250

3	50	5	43	500	0.250
4	50	5	44	400	0.250
5	60	5	37	300	0.250
6	50	8	43	500	0.250

2.13 まとめ

- R learner とは異なる Estimand (異なる集計用 Weight) を推定している
- 一般に、R learner よりも解釈しやすい
 - Overlap weight とは?
 - $-\tau(X),\mu_D(X)$ の異質性が大きい場合、乖離幅が大きくなる
- D がカテゴリカルであり、positivity の問題 (後述) がなければ、AIPW を用いることを推奨

2.14 補論: Marginal means

• X の分布をバランスさせた Y の平均値

$$\theta_0(d) = \int \mu_Y(d, X) \times f(X) dX$$

を D=1,0 ごとに提示することもできる

- 差 + 絶対水準を示すことができ、誤解が減らせる
- Average difference = $\theta_0(1) - \theta_0(0)$

2.15 補論: Marginal means

• Estimator は、

$$\theta(1) = E\left[g_Y(1, X) + D\frac{Y - g_Y(1, X)}{g_D(X)}\right]$$

$$\theta(0) = E \Bigg[g_Y(0,X) + (1-D) \frac{Y - g_Y(0,X)}{1 - g_D(X)} \Bigg]$$

2.16 Example

3 Best Lienar Projection for CATE

- 平均差では、X との関係性について、含意を持たない
 - 信頼区間もしっかり推定しつつ、CATE の持つ特徴を、もう少し理解することを目指す
- au(X) を近似するシンプルな線形近似モデル $g_{ au}(Z)=eta_0+eta_1Z_1+..$ を推定する

3.1 Algorithm

- 1. データ分割 (auxiliary/main data)
 - 交差推定も活用可能
- 2. μ_Y, μ_D を auxiliary data (+ 機械学習) で推定する
- 3. main data を持ちいて AIPW と同じ psude-outcome を回帰する: $\phi(O,g) \sim Z$ を OLS で推定、信頼区間とともに推定する

3.2 Best Linear projection

• Estimand:

$$\min_{\beta} E[(\tau(X) - g_{\tau}(Z))^2]$$

where $Z \subset X$ and

$$g_{\tau} = \beta_0 + \beta_1 Z_1 + \ldots + \beta_L Z_L$$

• 注: Average Difference は特殊ケース: $g_{\tau}(Z) = \beta_0$

3.3 Example

• 多重検定補正ずみ信頼区間を報告 (Benferroni 法 Chap 13 in ISRL)

3.4 補論: Normalization

- $g_{ au}$ は"記述"のために推定する
 - 全ての Zを事前に標準化 (Z-mean(Z))/sd(Z) することがおすすめ
- β_0 は通常、解釈を持たない
 - -全てのZが0における τ の近似値
 - * 通常、そのような事例がないので、近似モデルを作る際に無視されるサブグループ

• 標準化すれば、 $\beta_0=$ 全ての Zが平均値であった時の τ の近似値と解釈できる

4 Proportional weight の問題点と対策

• 比較研究 (含む格差、因果) における根本的な仮定は、Positivity:

$$1 > E[D=d,X] > 0$$

- 実践においては、しばしば満たされない
 - 推定、識別に対して、解決困難な問題をもたらす

4.1 Assumption: Positivity for identification

• 任意の d について

$$1 > \Pr[D = d|X] > 0$$

- 直感: X の中での比較研究をしているので、D=1または 0 のサブグループが存在する場合、比較不可能
- 因果推論であれば、Positivity + 因果効果の識別用の仮定 (Conditional independence, No interference など)

4.2 Assumption: Positivity for estimation

• 任意の d について 0 ないし 1 に非常に近い

$$\Pr[D = d|X]$$

が存在する場合、推定が難しくなる

— "推定が上手くいっているのであれば"、 $g_D(X)$ が 1 ないし 0 に近いサブグループが出てくる

4.3 Trouble with AIPW

• $\theta = \sum m(O, g)/N$ where

$$\begin{split} & m(O,g) = g_Y(1,X) - g_Y(0,X) \\ & + \frac{D(Y - g_Y(1,X))}{g_D(X)} - \frac{(1-D)(Y - g_Y(0,X))}{1 - g_D(X)} \end{split}$$

- Adjust term の分母が"0" に近づく事例が出てくる
 - 推定誤差が非常に大きくなる

4.4 Overlap weight

• R learner $\mathcal{C}\mathcal{B}\mathcal{A}\mathcal{A}\mathcal{S}$, estimand $\mathcal{A}\mathcal{S}$ $\mathcal{S}(X)\times \mathcal{A}\mathcal{S}\mathcal{A}\mathcal{S}$ where

$$\omega(X) = \frac{\mu_D(X)(1-\mu_D(X))f(X)}{\int \mu_D(X)(1-\mu_D(X))f(X)dX}$$

- 定義上、 $\mu_D(X)$ が 1 または 0 に近いグループは、"無視" する
 - より安定的な推定が可能
 - Average Difference との乖離が大きくなり、より解釈が難しくなる...

4.5 Propensity score weight

- $\mu_D(X)$ が 0 に近いグループが存在すること**のみ**が問題であれば、解釈と推定を両立する Estimand が存在
- Propensity score weight $\int \tau(X) \times \omega(X) dX$ where

$$\omega(X) = \frac{\mu_D(X) f(X)}{\int \mu_D(X) f(X) dX}$$

• 推定が難しい $g_D(X) \simeq 0$ となるサブグループは、定義上、無視する

4.6 Average treatment effect on treated

- 以下のように書き換えられる $\int \tau(X) \times f(X|1) dX$
- 解釈が容易
 - 男女間格差研究: D=1 が女性であれば、X の分布を男女ともに女性と揃えた時の、男女間格差
 - 因果推論: D=1 における平均因果効果
 - * Average Treatment Effect on Treated と呼ばれる

4.7 Example: ATE VS Overlap VS ATTE

4.8 まとめ

- 平均差を estimand とする場合は、どのような集計用 weight を用いるかも定義する必要がある
- proportion weight が最も直感的なので、(D がカテゴリカルであれば)、最有力候補
 - $-\mu_D(X)$ が 0 や 1 に近いグループが存在する (positivity に問題がある) 場合、推定困難

4.9 まとめ

- D=1 が少ないことが問題であれば、propensity score weight が解釈も容易な解決策
 - -D=0 の場合は、"ひっくり返せば良い"だけ
- $\mu_D(X) \simeq 0$ と $\simeq 1$ が両方存在する場合は?
 - overlap weight は有力だが、au(X) が同質でない限り、解釈が難しい
 - 他には Trimming (Yang and Ding 2018) や Balancing weight (Ben-Michael et al. 2021), Targetted learning (Van der Laan and Rose 2011) などを活用する提案もあるが、万能薬は現状ない

Reference

- Ben-Michael, Eli, Avi Feller, David A Hirshberg, and José R Zubizarreta. 2021. "The Balancing Act in Causal Inference." arXiv Preprint arXiv:2110.14831.
- Robins, James M, and Andrea Rotnitzky. 1995. "Semiparametric Efficiency in Multivariate Regression Models with Missing Data." Journal of the American Statistical Association 90 (429): 122–29.
- Van der Laan, Mark J, and Sherri Rose. 2011. Targeted Learning. Vol. 1. 3. Springer.
- Yang, Shu, and Peng Ding. 2018. "Asymptotic Inference of Causal Effects with Observational Studies Trimmed by the Estimated Propensity Scores." *Biometrika* 105 (2): 487–93.