• ORGANISATION MONDIALE DE LA PROPRIETE INTELLECTUELLE Bureau international

DEMANDE INTERNATIONALE PUBLIEE EN VERTU DU TRAITE DE COOPERATION EN MATIERE DE BREVETS (PCT)

(51) Classification internationale des brevets 7:

C09K 5/04, C11D 7/50, C23G 5/028,
G03C 11/00

(11) Numéro de publication internationale: WO 00/36046

(43) Date de publication internationale: 22 juin 2000 (22.06.00)

(21) Numéro de la demande internationale: PCT/EP99/09798

(22) Date de dépôt international: 10 décembre 1999 (10.12.99)

(30) Données relatives à la priorité:

PCT/EP98/08160 12 décembre 1998 (12.12.98) EP 99200762.5 12 mars 1999 (12.03.99) EP

(71) Déposant (pour tous les Etats désignés sauf US): SOLVAY (SOCIETE ANONYME) [BE/BE]; Rue Du Prince Albert 33, B-1050 Bruxelles (BE).

(72) Inventeurs; et

- (75) Inventeurs/Déposants (US seulement): DOURNEL, Pierre [FR/BE]; Rue Des Chevaliers 6, B-1050 Bruxelles (BE). BARTHELEMY, Pierre [BE/BE]; Rue Fond Du Village 23A, B-1315 Pietrebais (BE).
- (74) Mandataires: JACQUES, Philippe etc.; Département de la Propriété Industrielle, Rue De Ransbeek 310, B-1120 Bruxelles (BE).

(81) Etats désignés: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, IP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW, brevet ARIPO (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), brevet eurasien (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), brevet européen (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), brevet OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Publiée

Avec rapport de recherche internationale.

- (54) Title: COMPOSITIONS COMPRISING 1,1,1,3,3-PENTAFLUOROBUTANE AND USE OF SAID COMPOSITIONS
- (54) Titre: COMPOSITIONS COMPRENANT DU 1,1,1,3,3-PENTAFLUOROBUTANE ET UTILISATION DE CES COMPOSITIONS

(57) Abstract

The invention concerns compositions comprising 1,1,1,3,3-pentafluorobutane and more than 5 wt. % of at least a non-flammable fluorinated compound and use thereof.

(57) Abrégé

. Compositions comprenant du 1,1,1,3,3-pentafluorobutane et plus de 5 % en poids d'au moins un composé fluoré ininflammable et leur utilisation.

UNIQUEMENT A TITRE D'INFORMATION

Codes utilisés pour identifier les Etats parties au PCT, sur les pages de couverture des brochures publiant des demandes internationales en vertu du PCT.

AL	Albanie	ES	Espagne	LS	Lesotho	C.	a
AM	Arménie	FI	Finlande	LT	Lituanie	SI	Slovénie
AT	Autriche	FR	France			SK	Slovaquie
AU	Australie	GA	· · · · ·	LU	Luxembourg	SN	Sénégal
AZ			Gabon	LV	Lettonie	SZ	Swaziland
	Azerbaïdjan	GB	Royaume-Uni	MC	Monaco	TD	Tchad
BA	Bosnie-Herzégovine	GE	Géorgie	MD	République de Moldova	TG	Togo
BB	Barbade	GH	Ghana	MG	Madagascar	TJ	Tadjikistan
BE	Belgique	GN	Guinée	MK	Ex-République yougoslave	TM	Turkménistan
BF	Burkina Faso	GR	Grèce		de Macédoine	TR	Turquie
BG	Bulgarie	HU	Hongrie	ML	Mali	TT	Trinité-et-Tobago
ВЈ	Bénin	IE	Irlande	MN	Mongolie	UA	Ukraine
BR	Brésil	IL	Israël	MR	Mauritanie	UG	Ouganda
BY	Bélarus	IS	Islande	MW	Malawi	US	
CA	Canada	IT	Italic	MX	Mexique	UZ	Etats-Unis d'Amérique Ouzbékistan
CF	République centrafricaine	JP	Japon	NE	Niger	VN	
CG	Congo	KE	Kenya	NL	Pays-Bas		Viet Nam
CH	Suisse	KG	Kirghizistan	NO	•	YU	Yougoslavie
CI	Côte d'Ivoire	KP	République populaire	NZ.	Norvège	zw	Zimbabwe
CM	Cameroun	***	démocratique de Corée		Nouvelle-Zélande		
CN	Chine	KR		PL	Pologne		
CU	Cuba	KZ	République de Corée	PT	Portugal		
cz	République tchèque		Kazakstan	· RO	Roumanie		
		LC	Sainte-Lucie	RU	Fédération de Russie		
DE	Allemagne	Li	Liechtenstein	SD	Soudan .		
DK	Danemark	LK	Sri Lanka	SE	Suède		
EE	Estonie	LR	Libéria	SG	Singapour		
					-		

Compositions comprenant du 1,1.1,3.3-pentafluorobutane et utilisation de ces compositions

L'invention concerne des compositions comprenant du 1,1,1,3,3pentafluorobutane et leur utilisation, par exemple comme solvant notamment de séchage ou de dégraissage ou comme agent réfrigérant.

Des accords internationaux visant à protéger la couche d'ozone stratosphérique, imposent de diminuer voire arrêter progressivement l'utilisation de chlorofluorocarbures (CFC) et de hydrochlorofluorocarbures (HCFC). Ce genre de composés est utilisé entre autres, comme solvant ou comme agent réfrigérant. Le CFC-113 par exemple, est utilisé comme solvant de dégraissage ou nettoyage de surfaces. Plus récemment, le HCFC-141b a été utilisé pour ces applications. Ce dernier composé est utilisé également avec des agents tensioactifs, dans des agents de séchage. Le CFC-11 et le HCFC-123 sont utilisés par exemple comme agent réfrigérant dans des turbocompresseurs.

Il est connu d'utiliser du 1,1,1,3,3-pentafluorobutane (HFC-365mfc) comme produit de remplacement respectueux de la couche d'ozone dans des applications en tant que solvant. L'utilisation du 1,1,1,3,3-pentafluorobutane requiert cependant des précautions pour tenir compte du caractère inflammable du produit. Il a été proposé d'utiliser du 1,1,1,3,3-pentafluorobutane dans des compositions avec un agent tensioactif spécifique et du pentafluoropropanol ou du tridécafluorooctanol (EP – A - 863194). Ces compositions présentent cependant l'inconvénient d'être limitées quant à la polarité des mélanges possibles. Ceci limite leur capacité à solubiliser des agents tensioactifs. De plus avec le pentafluoropropanol on doit s'attendre à une solubilité accrue dans des milieux semi-aqueux qui n'est pas acceptable pour certaines applications. Le point d'ébullition élevé des alcools fluorés utilisés conduit en outre à un enrichissement de HFC-365mfc dans la phase gazeuse qui rend les vapeurs inflammables. En conséquence, les compositions proposées ne devraient pas être utilisées dans des machines de séchage.

L'invention vise à remédier à ces problèmes.

L'invention a donc pour objet des compositions comprenant du 1.1.1,3.3pentafluorobutane (HFC-365mfc) et plus de 5 % en poids d'au moins un composé fluoré ininflammable sélectionné parmi les perfluorocarbures. les

5

10

15

20

25

10

15

20

25

30

35

hydrofluorocarbures comprenant plus de 3 atomes de carbone, les amines fluorées et les éthers fluorés.

Il a été trouvé de manière surprenante que les compositions selon l'invention présentent des bonnes propriétés quant à leur inflammabilité et de bonnes propriétés techniques pour une large gamme d'applications. Le 1,1,1,3,3-pentafluorobutane présente l'avantage particulier d'être miscible avec les composés fluorés ininflammables et d'être compatible avec des additifs ou solvants habituellement utilisés dans des applications telles que mentionnées plus haut.

Par composé fluoré ininflammable ou composition ininflammable on entend désigner tout composé ou composition qui ne présente pas de point d'éclair déterminé selon la Norme ISO 1523.

Les hydrofluorocarbures (HFC) et les perfluorocarbures ininflammables utilisables dans les compositions selon l'invention peuvent être linéaires, ramifiés ou cycliques et contiennent généralement 4, 5, 6, 7, 8, 9 ou 10 atomes de carbone. Parmi les hydrofluorocarbures, ceux comprenant au moins 5 atomes de carbone conviennent bien. Le 1,1,1,2,3,4,4,5,5,5-décafluoropentane (HFC-43-10mee) est particulièrement préféré. Parmi les perfluorocarbures, ceux comprenant au moins 5 atomes de carbone conviennent bien. Le perfluoropentane et le perfluorohexane sont préférés. On met souvent en œuvre le perfluoropentane et le perfluorohexane sous la forme de mélanges techniques d'isomères tels que commercialisés par exemple par 3M sous les dénominations respectives de PF5050 pour le perfluoropentane et PF5060 pour le perfluorohexane.

Les éthers fluorés et les amines fluorées ininflammables utilisables dans les compositions selon l'invention peuvent être linéaires, ramifiés ou cycliques et contiennent généralement 3, 4, 5, 6, 7, 8, 9 ou 10 atomes de carbone. Parmi les éthers fluorés ceux comprenant au moins 4 atomes de carbone conviennent bien. Le perfluorobutyl-méthyléther est particulièrement préféré. Parmi les amines fluorées, celles comprenant au moins 4 atomes de carbone conviennent bien. La perfluorotriéthylamine est particulièrement préférée.

Généralement les composés fluorés ininflammables présentent un point d'ébullition à 101,3 kPa supérieur ou égal à 15°C. De préférence le point d'ébullition est supérieur ou égal à 20°C. Généralement le point d'ébullition est inférieur ou égal à 130°C à 101,3 kPa. Le plus souvent le point d'ébullition est inférieur ou égal à 100°C. De préférence le point d'ébullition est inférieur ou égal à 85°C.

5

10

15

20

-25

30

35

Le rapport numérique F/H (nombre d'atomes de fluor dans la molécule divisé par le nombre d'atomes d'hydrogène dans la molécule) des composés fluorés ininflammables est supérieur à 2. Un rapport numérique F/H supérieur ou égal à 2,5 convient bien. De préférence le rapport numérique F/H est supérieur ou égal à 3.

La quantité de composés fluorés ininflammables est supérieure à 5 % en poids par rapport au mélange constitué de 1,1,1,3,3-pentafluorobutane et de composés fluorés ininflammables. Souvent on met en œuvre une quantité supérieure ou égale à 10 % en poids. Une quantité supérieure ou égale à 20 % en poids est préférée. Une quantité supérieure ou égale à 25 % en poids convient bien. Une quantité supérieure ou égale à 30 % en poids donne de bons résultats. De façon particulièrement préférée on emploie une quantité efficace de composé fluoré ininflammable qui rend ininflammable la composition, c'est-à-dire que la composition ne présente pas de point d'éclair déterminé selon la norme ISO 1523. Généralement, la quantité de composés fluorés ininflammables dans les compositions selon l'invention est d'au plus 90 % en poids.

Des compositions préférées selon l'invention comprennent, au titre de composé ininflammable, au moins du perfluoropentane, du perfluorobexane, du perfluorobutyl-méthyléther ou un mélange de ceux-ci. Une variante préférée des compositions selon l'invention concerne des compositions comprenant du 1,1,1,3,3-pentafluorobutane et au moins un perfluorocarbure dans des proportions dans lesquelles ils forment un azéotrope ou un pseudo-azéotrope.

Fondamentalement, l'état thermodynamique d'un fluide est défini par quatre variables interdépendantes : la pression (P), la température (T), la composition de la phase liquide (X) et la composition de la phase gazeuse (Y). Un azéotrope vrai est un système particulier à 2 ou plusieurs composants pour lequel, à une température donnée et à une pression donnée, la composition de la phase liquide X est exactement égale à la composition de la phase gazeuse Y. Un pseudo-azéotrope est un système à 2 ou plusieurs composants pour lequel, à une température donnée et à une pression donnée, X est substantiellement égal à Y. En pratique, cela signifie que les constituants de tels systèmes azéotropiques et pseudo-azéotropiques ne peuvent pas être séparés facilement par distillation et dès lors on n'enrichit pas de composé inflammable dans la phase gazeuse.

Aux fins de la présente invention, on entend par mélange pseudoazéotropique, un mélange de deux constituants dont le point d'ébullition (à une pression donnée) diffère du point d'ébullition de l'azéotrope vrai de 0,5°C au

10

15

20

25

30

35

DNEDOCID: -WO MORNIER 1 .

maximum. Les mélanges dont le point d'ébullition diffère du point d'ébullition de l'azéotrope vrai de 0,2°C au maximum sont préférés. Les mélanges dont le point d'ébullition diffère du point d'ébullition de l'azéotrope vrai de 0,1°C au maximum sont particulièrement préférés.

Le 1,1,1,3,3-pentafluorobutane et le perfluoropentane forment un azéotrope ou un pseudo-azéotrope binaire lorsque leur mélange contient environ de 50 à 87 % en poids de perfluoropentane. Les compositions binaires contenant environ de 50 à 70 % en poids de perfluoropentane sont préférées. Les compositions binaires contenant environ de 50 à 60 % en poids sont particulièrement préférées. Les compositions binaires contenant environ de 65 à 80 % en poids de perfluoropentane sont également préférées. Les compositions binaires contenant environ de 70 à 78 % en poids sont particulièrement préférées. Sous une pression de 100,1 +- 0.2 kPa, la composition binaire constituée essentiellement d'environ 26 % en poids de 1,1,1,3,3-pentafluorobutane et d'environ 74 % en poids de perfluoropentane constitue un azéotrope vrai, dont le point d'ébullition est d'environ 24.4°C.

Le 1,1,1,3,3-pentafluorobutane et le perfluorohexane forment un azéotrope ou un pseudo-azéotrope binaire lorsque leur mélange contient environ de 20 à 60 % en poids de perfluorohexane. Les compositions binaires contenant environ de 25 à 45 % en poids de perfluorohexane sont préférées. Les compositions binaires contenant environ de 32 à 42 % en poids de perfluorohexane sont particulièrement préférées. Les compositions binaires contenant environ de 35 à 40 % en poids de perfluorohexane sont tout particulièrement préférées. Sous une pression de 101,2 +- 0.5 kPa, la composition binaire constituée essentiellement d'environ 64 % en poids de 1,1,1,3,3-pentafluorobutane et d'environ 36 % en poids de perfluorohexane constitue un azéotrope vrai, dont le point d'ébullition est d'environ 36.4 °C. Cette composition est tout particulièrement préférée.

L'invention concerne aussi des compositions comprenant du 1,1,1,3,3-pentafluorobutane, au moins un composé fluoré ininflammable et au moins un solvant organique non fluoré. A titre de composé fluoré ininflammable sont préférés les composés fluorés ininflammables mentionnés plus haut.

A titre de solvant organique non fluoré conviennent bien, par exemple, les hydrocarbures, les hydrocarbures chlorés, les alcools, les esters ou cétones ou les éthers.

.)

5

10

15

20

25

30

35

Les hydrocarbures utilisables dans les compositions selon l'invention peuvent être linéaires, ramifiés ou cycliques et contiennent généralement 3, 4, 5, 6, 7, 8, 9, 10, 11 ou 12 atomes de carbone. Les hydrocarbures comprenant au moins 5 atomes de carbone conviennent bien. De préférence les hydrocarbures comprennent au moins 6 atomes de carbone. Parmi les alcanes ou alcènes, les composés comprenant de 5 à 12 atomes de carbone sont préférés. Le n-hexane ou le n-heptane ou le n-octane conviennent bien. Parmi les hydrocarbures aromatiques sont préférés ceux qui comprennent au moins un substituant alkyl sur un noyau benzénique. Le toluène, le 1,2-xylène, le 1,3-xylène, le 1,4-xylène ou leurs mélanges sont tout particulièrement préférés.

Les hydrocarbures chlorés utilisables dans les compositions selon l'invention peuvent être linéaires, ramifiés ou cycliques et contiennent généralement 1, 2, 3, 4, 5, 6, 7, 8, 9 ou 10 atomes de carbone. Les hydrocarbures chlorés comprenant 1, 2, 3 ou 4 atomes de carbone conviennent bien. De préférence, les hydrocarbures chlorés comprennent 1 ou 2 atomes de carbone. Parmi les alcanes chlorés, le dichlorométhane, le trichlorométhane et le 1,2-dichloréthane sont préférés. Parmi les alcènes chlorés le perchloréthylène et le 1,2-dichloréthylène sont préférés. Le trans-1,2-dichloréthylène est tout particulièrement préféré.

Le 1,2-dichloréthylène présente la propriété de former des mélanges azéotropiques ou pseudo-azéotropiques avec le 1,1,1,3,3-pentafluorobutane, ce qui peut présenter des avantages pour certaines applications. Les mélanges azéotropiques ou pseudo-azéotropiques ainsi que des mélanges azéotropiques ou pseudo-azéotropiques ternaires comprenant en outre un alcanol sont décrits dans le brevet US 5478492 au nom de la demanderesse, dont le contenu est incorporé par référence dans la présente demande.

Les alcools utilisables dans les compositions selon l'invention peuvent être linéaires, ramifiés ou cycliques et contiennent généralement 1, 2, 3, 4, 5, 6, 7, 8, 9 ou 10 atomes de carbone. Les alcools comprenant 1, 2, 3, 4 ou 5 atomes de carbone conviennent bien. De préférence les alcools comprennent 1, 2, 3 ou 4 atomes de carbone. Parmi les alcanols, le méthanol, l'éthanol, le n-propanol. l'isopropanol, le n-butanol, l'isobutanol et le tert.-butanol sont préférés. Le méthanol, l'éthanol, l'isopropanol et l'isobutanol donnent de bons résultats. L'isobutanol est tout particulièrement préféré.

Le méthanol présente la propriété de former des mélanges azéotropiques ou pseudo-azéotropiques avec le 1,1,1,3,3-pentafluorobutane, ce qui peut

10

15

20

25

30

35

PRISOCCIO: -WO MORRAGA 1 1 >

présenter des avantages pour certaines applications. Les mélanges azéotropiques ou pseudo-azéotropiques contiennent de 93 à 99 % en poids de 1,1,1,3,3-pentafluorobutane et de 1 à 7 % de méthanol. L'azéotrope vrai contient environ 96.2 % en poids de 1,1,1,3,3-pentafluorobutane et environ 3.8 % en poids de méthanol.

L'éthanol présente la propriété de former des mélanges azéotropiques ou pseudo-azéotropiques avec le 1,1,1,3,3-pentafluorobutane, ce qui peut présenter des avantages pour certaines applications. Les mélanges azéotropiques ou pseudo-azéotropiques sont décrits dans le brevet US 5445757 au nom de la demanderesse, dont le contenu est incorporé par référence dans la présente demande.

Les esters utilisables dans les compositions selon l'invention peuvent être linéaires, ramifiés ou cycliques et contiennent généralement 2, 3, 4, 5, 6, 7, 8, 9 ou 10 atomes de carbone. Les esters comprenant 4, 5, 6, 7, 8 ou 9 atomes de carbone conviennent bien. De préférence les esters sont dérivés d'un acide carboxylique comprenant au moins 2 atomes de carbone. De préférence les esters sont dérivés d'un alcanol sélectionné parmi le groupe constitué de méthanol, éthanol, n-propanol, isopropanol, n-butanol, isobutanol et tert.-butanol. L'acétate d'éthyle, le butyrate d'éthyle et le caproate d'éthyle conviennent bien.

Les cétones utilisables dans les compositions selon l'invention peuvent être linéaires, ramifiés ou cycliques et contiennent généralement 3, 4, 5, 6, 7, 8, 9 ou 10 atomes de carbone. Les cétones comprenant 3, 4, 5, 6, 7 ou 8 atomes de carbone conviennent bien. Parmi les cétones l'acétone, la 2-butanone, les 2- ou 3- pentanones, la méthylisobutylcétone, la diisopropylcétone, la cyclohexanone et l'acétophénone sont préférées. La méthylisobutylcétone est particulièrement préférée.

Les éthers utilisables dans les compositions selon l'invention peuvent être linéaires, ramifiés ou cycliques et contiennent généralement 2, 3, 4, 5, 6, 7, 8, 9 ou 10 atomes de carbone. Les éthers comprenant 4, 5, 6, 7, 8 ou 9 atomes de carbone conviennent bien. Parmi les éthers aliphatiques ou alicycliques, le diéthyléther, le méthyl-isopropyléther, le monométhyléther de diéthylèneglycol, le diméthyléther de diéthylèneglycol, le tétrahydrofuranne et le 1,4-dioxanne sont préférés.

Il a été trouvé que les compositions selon l'invention comprenant au moins un solvant organique non fluoré conviennent particulièrement bien pour des applications en tant que solvant de séchage ou dégraissage. Par solvant de

-**1**

:

5

10

15

20

25

30

35

séchage on entend les applications dans lesquelles les compositions selon l'invention sont utilisées pour éliminer l'eau présente à la surface d'articles solides. En effet on peut atteindre une grande variété de polarités de solvants différents tout en conservant des avantages quant à l'ininflammabilité des compositions. Tout particulièrement ces compositions permettent d'atteindre des bonnes propriétés de solubilisation d'agents tensioactifs requises, par exemple, pour les solvants de séchage.

On peut mettre en œuvre des solvants inflammables ou ininflammables. Dans le cas d'un solvant inflammable, on préfère mettre en œuvre un solvant présentant un point d'éclair supérieur ou égal à 0°C. Plus particulièrement, on préfère un point d'éclair supérieur ou égal à 10°C. Les solvants présentant un point d'éclair supérieur ou égal à 20°C sont tout particulièrement préférés.

Dans le cas d'un solvant organique non fluoré inflammable, on met de préférence en œuvre une quantité efficace de composé fluoré ininflammable de manière à obtenir une composition selon l'invention ininflammable.

Pour les solvants non fluorés ininflammables, le point d'ébullition à 101,3 kPa n'est pas critique. Généralement, les solvants ininflammables présentent un point d'ébullition à 101,3 kPa supérieur ou égal à 15°C. De préférence le point d'ébullition est supérieur ou égal à 20°C. Généralement, le point d'ébullition est inférieur ou égal à 250°C à 101,3 kPa. Le plus souvent, le point d'ébullition est inférieur ou égal à 200°C.

Quand on met en œuvre un solvant organique non fluoré inflammable, on utilise généralement un solvant présentant un point d'ébullition supérieur ou égal à 30°C. Plus souvent, le point d'ébullition est supérieur ou égal à 40°C. De préférence, le point d'ébullition est supérieur ou égal à 50°C. De façon particulièrement préférée, le point d'ébullition est supérieur ou égal à 60°C. En effet, on évite de la sorte un enrichissement de solvant organique non fluoré inflammable dans la phase gazeuse et en conséquence on évite la formation de mélanges gazeux inflammables.

Selon l'application visée, on peut mettre en œuvre un solvant organique non fluoré miscible ou non miscible avec l'eau. Conviennent bien par exemple pour une application séchage les solvants essentiellement non miscibles avec l'eau.

La teneur de solvant organique non fluoré dans une composition selon l'invention comprenant du 1,1,1,3,3-pentafluorobutane, au moins un composé fluoré ininflammable et au moins un solvant organique non fluoré peut être

10

15

20

25

30

choisie en fonction de la polarité et l'inflammabilité souhaitées de la composition. Généralement cette teneur est d'au plus 20 % en poids. De préférence elle est d'au plus 10 % en poids. Lorsqu'un solvant organique non fluoré est présent, sa teneur est généralement d'au moins 1 % en poids. De préférence elle est d'au moins 2 % en poids.

Les compositions selon l'invention contiennent éventuellement un agent tensioactif. Tout agent tensioactif bien connu en soi et compatible avec les compositions selon l'invention peut être utilisé. Avantageusement on met en œuvre l'agent tensioactif avec des compositions selon l'invention comprenant au moins un solvant organique non fluoré, telles que décrites plus haut. En effet ces compositions conviennent particulièrement bien pour atteindre une bonne solubilité de l'agent tensioactif tout en conservant de bonnes propriétés quant à l'ininflammabilité des compositions.

Quelques agents tensioactifs utilisables dans les compositions selon l'invention sont décrits, par exemple dans ULLMANN'S Encyclopedia of Industrial Chemistry, 5th ed., 1987, vol. A8, p. 338-350. On peut mettre en œuvre des agents tensioactifs cationiques, anioniques, non-ioniques et amphotères. On peut utiliser par exemple des acides gras, des esters gras, des alkylbenzènesulfonates, des alkanesulfonates, des sulfonates d'α-oléfine, des esters d'acides gras α-sulfonés (SES), des sulfates d'alkyle, des sulfates d'éther alkyle, des composés quaternaires d'ammonium, des éthers d'alkyle de polyéthylèneglycol, des éthers phényle de polyéthylèneglycol, les alcanolamides d'acide gras, les éthers polyglycol d'alcool gras, des copolymères-bloc d'oxyde d'éthylène et d'oxyde de propylène, des alkylbétaïnes, des alkylsulfobétaïnes, des sels de tétralkylammonium d'acides mono- ou dialkylphosphoriques ou les agents tensioactifs comprenant au moins un groupement imidazoline. On peut également mettre en œuvre des agents tensioactifs tels que décrits plus haut contenant au moins un substituant fluor. Plus spécifiquement on peut mettre en œuvre des agents tensioactifs comprenant au moins une chaîne alkyle polyfluorée ou un substituant aromatique polyfluoré.

Dans des compositions selon l'invention utilisables notamment comme agent de séchage, on met en œuvre, de préférence un agent tensioactif de type imidazoline. De façon particulièrement préférée, l'imidazoline répond à la formule :

10

15

20

25

$$\begin{array}{c|c} R & C & CH_2 \\ \hline & N & CH_2 \\ \hline & H_2C \\ \hline & X \end{array}$$

dans laquelle R représente une chaîne alkyle ou alcényle comprenant de 2 à 25 atomes de carbone, Y présente un groupement hydroxyle ou amino et x est un nombre entier de 1 à 20. De préférence x est de 1 à 12. De préférence la chaîne R comprend de 10 à 20 atomes de carbone. Les imidazolines dans lesquelles R représente une chaîne comprenant 11 ou 17 atomes de carbone et x est égal à 2 sont tout particulièrement préférées.

L'imidazoline peut être sous la forme de base libre ou sous la forme de sel, de préférence de mono- ou de di-carboxylate. La partie carboxylate est de préférence dérivée d'un acide gras saturé ou insaturé comprenant de 4 à 22 atomes de carbone. On préfère mettre en œuvre l'imidazoline sous forme libre ou sous forme de sel de monocarboxylate.

Convient particulièrement bien aussi un agent tensioactif de type alkylbenzènesulfonate. Souvent cet agent tensioactif comprend une chaîne alkyle comprenant de 4 à 22, de préférence de 10 à 14 atomes de carbone. Les sels de dodécylbenzènesulfonate, en particulier les sels d'une amine quaternaire. donnent de bons résultats. Le dodécylbenzènesulfonate d'isopropylammonium est particulièrement préféré.

Lorsqu'un agent tensioactif est présent dans une composition selon l'invention, sa teneur est généralement d'au moins 100 ppm (mg/kg). Souvent elle est d'au moins 500 ppm. De préférence elle est d'au moins 1000 ppm. Généralement, la teneur en agent tensioactif est d'au plus 5000 ppm. Souvent elle est d'au plus 4000 ppm, De préférence elle est d'au plus 3000 ppm. Lorsqu'on met en œuvre un agent tensioactif de type imidazoline tel que décrit plus haut, sa teneur particulièrement préférée est d'environ 2000 ppm. Le tableau ci-après reprend de manière non limitative quelques compositions préférées selon l'invention.

~			*				•
Т	2	h	1	ρ	2	11	- 1
1	а	u	1	u	ч	u	

10

15

20

140	leau I				
No.	Teneur en	Teneur en	Teneur en	Teneur en	Solvant organique
	HFC-365mfc	perfluoro-	HFC-43-10mee	HFE-7100	non fluoré
	(% en poids)	hexane	(% en poids)	(% en poids)	(% en poids)
		(% en poids)			
1	30-60	-	40-70	-	-
2	15-45	-	-	55-85	-
3	30-49	49-60	-	-	Acétate d'éthyle
					2-10
4	30-49	-	49-60	_	Acétate d'éthyle
					2-10
5	25-38	, <u>-</u>	-	60-68	Isopropanol
	25 30				2-5
6	55-63	35-45	, -	-	Acétate d'éthyle
	33 03				2-10
7	40-50	-	_	50-60	-

Les compositions selon l'invention peuvent être utilisées, par exemple, dans des applications solvant, comme agent de séchage, comme solvant de dégraissage ou comme agent de fixation de toners. On peut aussi utiliser les compositions selon l'invention comme réfrigérant ou fluide caloporteur.

Un agent de séchage est mis en œuvre, par exemple, en industrie électronique, électromécanique ou éventuellement cosmétique lorsqu'on veut éliminer l'eau adsorbée sur une surface solide d'un objet après un traitement aqueux. Le traitement aqueux peut consister, par exemple en une opération de nettoyage, éventuellement en présence d'un surfactant. Généralement on immerge l'objet après le traitement aqueux dans un agent de séchage à l'état d'ébullition comprenant un agent tensioactif, puis on élimine l'agent tensioactif qui adhère à la surface de l'objet dans un bain de lavage. Les compositions selon l'invention comprenant un agent tensioactif conviennent bien pour l'opération de séchage. Les compositions selon l'invention exemptes d'agent tensioactif conviennent bien pour le bain de layage destiné à éliminer l'agent tensioactif.

Un solvant de dégraissage est utilisé, par exemple, en industrie électronique ou électromécanique pour éliminer la graisse adsorbée notamment sur des pièces métalliques usinées avec de la graisse. Généralement, on immerge une pièce à dégraisser dans un bain de solvant de dégraissage à l'état d'ébullition. Conviennent particulièrement bien à titre de solvant de dégraissage, les

5

15

20

25

compositions selon l'invention comprenant un solvant organique non fluoré de polarité élevée, tels que les alcanols, en particulier le méthanol ou l'éthanol et/ou celles qui comprennent un hydrocarbure chloré.

Un agent de fixation de toner sert à fixer des particules de toner sur un support. Des particules de toner comprennent généralement un polymère et un pigment. Lors d'une impression électrophotographique, les particules sont attirées sur l'image électrostatique imprimée sur le support par des forces électrostatiques. L'agent de fixation de toner sert à ramollir le polymère, qui assure dès lors une adhésion permanente des particules sur le support. On met en œuvre l'agent de fixation de toners sous la forme de vapeurs, générées habituellement par vaporisation de gouttes de solvant sur, par exemple une plaque chauffante. Conviennent bien pour cette application les compositions ininflammables selon l'invention présentant un bon pouvoir de solvant de polymère.

Les compositions ininflammables selon l'invention peuvent être utilisées avantageusement comme agent de séchage dans une machine de séchage ou comme agent de fixation de toner dans une imprimante laser industrielle.

Les compositions selon l'invention conviennent bien également comme fluide réfrigérant, en particulier comme produit de remplacement du CFC-11 (trichlorofluorométhane) ou comme produit de remplacement du CFC-113 (1,1,2-trichlorotrifluoroéthane), notamment pour les applications avec un turbocompresseur. Les turbocompresseurs sont utilisés surtout lorsque l'on veut disposer de productions frigorifiques importantes pour des installations de conditionnement d'air par exemple ou pour l'industrie de procédés. Des informations concernant l'application réfrigération, fluide caloporteur et la réfrigération avec un turbocompresseur sont contenues, par exemple, dans ULLMANN'S Encyclopedia of Industrial Chemistry, 5th ed., 1988, vol. B3, p. 19-2 à 19-39. Conviennent particulièrement bien pour cette application les compositions constituées essentiellement de 1,1,1,3,3-pentafluorobutane et d'un ou plusieurs composés fluorés ininflammables sélectionnés parmi le perfluorohexane, le perfluoropentane et le perfluorobutyl-méthyléther. spécialement si ces compositions sont azéotropiques ou pseudo-azéotropiques.

Conviennent bien pour l'utilisation comme produit de remplacement du CFC-11 dans les applications réfrigérant ou fluide caloporteur les compositions selon l'invention comprenant du 1,1,1,3,3-pentafluorobutane et du perfluoropentane, en particulier celles contenant ou étant constituées de 10 à

35

WO 00/36046

PCT/EP99/09798

90 % en poids de HFC-365mfc et de 90 à 10 % en poids de perfluoropentane. Une composition préférée pour cette application est constituée de 25 à 30 % en poids de HFC-365mfc et de 75 à 70 % en poids de perfluoropentane. Une composition contenant de 27,0 à 27,2 % en poids de 1,1,1,3,3-pentafluorobutane et de 72,8 à 73,0 % de perfluoropentane est tout particulièrement préférée.

- 12 -

Conviennent bien pour l'utilisation comme produit de remplacement du CFC-113 dans les applications réfrigérant ou fluide caloporteur les compositions selon l'invention comprenant du 1,1,1,3,3-pentafluorobutane et du perfluorohexane, en particulier celles contenant ou étant constituées de 10 à 90 % en poids de HFC-365mfc et de 90 à 10 % en poids de perfluorohexane; celles comprenant du 1,1,1,3,3-pentafluorobutane et du perfluorobutyl-méthyléther, en particulier celles contenant ou étant constituées de 10 à 90 % en poids de HFC-365mfc et de 90 à 10 % en poids de perfluorobutyl-méthyléther; et celles comprenant du 1,1,1,3,3-pentafluorobutane, du perfluorohexane et du perfluorobutyl-méthyléther. Une composition préférée pour cette application est constituée de 60 à 65 % en poids de HFC-365mfc et de 40 à 35 % en poids de perfluorohexane. Une composition contenant de 61,0 à 62,0 % en poids de 1,1,1,3,3-pentafluorobutane et de 38,0 à 39,0 % de perfluorohexane convient particulièrement bien pour cette application. Une autre composition préférée pour cette application est constituée de 40 à 60 % en poids de HFC-365mfc et de 60 à 40 % en poids de perfluorobutyl-méthyléther.

Les exemples donnés ci-après entendent illustrer l'invention sans toutefois la limiter.

Exemples 1 et 2

5

10

15

20

25

30

35

DESCRIPTION AND AMERICAN I -

Azéotropes HFC-365mfc/perfluorohexane, HFC-365mfc/perfluoropentane.

Pour mettre en évidence l'existence de compositions azéotropiques ou pseudo-azéotropiques selon l'invention entre le 1,1,1,3,3 pentafluorobutane et le perfluoropentane ou le perfluorohexane, on a utilisé un appareillage en verre constitué d'un flacon bouilleur de 50 ml surmonté d'un condenseur à reflux. La température du liquide a été mesurée au moyen d'un thermomètre plongeant dans le flacon.

Une quantité de 1,1,1,3,3 pentafluorobutane pur déterminée avec précision a été chauffée sous une pression connue jusqu'à ébullition, puis de petites quantités de perfluorocarbure, pesées avec précision, ont été progressivement introduites dans le flacon au moyen d'une seringue, via une tubulure latérale.

Ş

5

10

La détermination des compositions pseudo-azéotropiques a été réalisée par un relevé de l'évolution de la température d'ébullition du mélange en fonction de sa composition.

Ces mesures ont été réalisées pour des mélanges contenant du 1,1,1,3,3pentafluorobutane et des quantités croissantes de perfluorohexane (exemple 1), de ou de perfluoropentane (exemple 2)

La pression à laquelle les mesures ont été prises est mentionnée. L'évolution de la température d'ébullition des différentes compositions en fonction de leur teneur en perfluorocarbure, exprimée en % poids, est présentée dans le tableau 2.

Tableau 2

Pression: 100,1 +- 0,2 kPa

HFC-365mfc	Perfluoropentane PF5050	Température
% en poids	% en poids	°C
100.00 %	0.00 %	39.8
93.77 %	6.23 %	34
91.93 %	8.07 %	32.2
90.05 %	9.95 %	31
88.20 %	11.80 %	30
86.40 %	13.60 %	29.6
83.54 %	16.46 %	29
80.75 %	19.25 %	28.4
78.14 %	21.86 %	28
74.70 %	25.30 %	27.6
71.38 %	28.62 %	27.2
67.70 %	32.30 %	26.6
62.95 %	37.05 %	26
57.25 %	42.75 %	25.6
52.57 %	47.43 %	25.2
50.63 %	49.37 %	25.2
45.07 %	54.93 %	25
40.19 %	59.81 %	24.8
38.46 %	61.54 %	24.6
31.07 %	68.93 %	24.4
25.99 %	74.01 %	24.4

HFC-365mfc	Perfluoropentane PF5050	Température
% en poids	% en poids	°C
22.92 %	77.08 %	24.4
20.18 %	79.82 %	24.4
17.61 %	82.39 %	24.8
15.44 %	84.56 %	24.8
13.28 %	86.72 %	24.8
11.31 %	88.69 %	25.2
9.41 %	90.59 %	25.8
7.31 %	92.69 %	26.4
5.28 %	94.72 %	27.4
3.49 %	96.51 %	28.4
2.45 %	97.55 %	29.2
0.00 %	100.00 %	29.6

Tableau 3

Pression: 101,2 +- 0.5 kPa

HFC-365mfc	Perfluorohexane PF5060	Température
% en poids	% en poids	°C
100.00 %	0.00 %	40
94.61 %.	5.39 %	38.8
93.31 %	6.69 %	38.6
91.81 %	8.19 %	38.4
90.23 %	9.77 %	38
88.33 %	11.67 %	37.8
86.06 %	13.94 %	37.6
83.69 %	16.31 %	37.4
80.81 %	19.19 %	37
76.52 %	23.48 %	36.8
71.60 %	28.40 %	36.6
66.96 %	33.04 %	36.4
60.88 %	39.12 %	36.4
53.48 %	46.52 %	36.4
47.09 %	52.91 %	36.6
43.65 %	56.35 %	37

HFC-365mfc	Perfluorohexane PF5060	Température
% en poids	% en poids	°C
42.05 %	57.95 %	36.8
36.42 %	63.58 %	37.6
29.55 %	70.45 %	38.2
26.12 %	73.88 %	38.8
23.01 %	76.99 %	39.2
20.59 %	79.41 %	39.8
18.56 %	81.44 %	40.4
16.61 %	83.39 %	41.2
14.77 %	85.23 %	42.4
13.09 %	86.91 %	43.6
11.43 %	88.57 %	44.4
9.80 %	90.20 %	45.6
8.43 %	91.57 %	46.8
7.18 %	92.82 %	48
5.90 %	94.10 %	49.6
4.63 %	95.37 %	51.2
3.44 %	96.56 %	53.2
2.32 %	97.68 %	54.4
1.16 %	98.84 %	56.4
0.00 %	100.00 %	57.2

Les mélanges azéotropiques ou pseudo-azéotropiques HFC-365mfc/perfluorohexane ou HFC-365mfc/perfluoropentane sont ininflammables. Exemple 3

On a préparé une composition selon l'invention contenant 50 parts en poids de HFC-365mfc, 50 parts en poids de perfluorohexane PF-5060 et 10 parts en poids d'acétate d'éthyle. La composition a été homogène. Elle a été soumise au test selon la norme ISO 1523. La composition n'a pas présenté de point d'éclair.

Exemple 4

Une composition selon l'invention contenant 40 parts en poids de HFC-365mfc, 60 parts en poids de perfluorobutyléther HFE-7100 et 5 parts en poids d'isopropanol, a été soumise au test selon la norme ISO 1523. La composition n'a pas présenté de point d'éclair.

5

Exemple 5

Solubilité de l'agent tensioactif IMIDAZOLINE 18NH (N-(2-aminoéthyl)-2-n-octadécylimidazoline) dans des mélanges ternaires

On a dissous 0.026g de IMIDAZOLINE 18NH dans 2 g de Xylène (mélange technique d'isomères) et on a ajouté 20 g d'un mélange contenant 13 g de HFC-365mfc et 7 g de perfluorohexane. La solution homogène obtenue contient 1182ppm de IMIDAZOLINE 18NH. On a soumis cette solution à un test rapide d'inflammabilité en essayant de mettre le feu à la solution à température ambiante à l'aide d'une allumette. La solution n'a pas pris feu.

10 Exemple 6

5

20

25

30

35

On a procédé comme dans l'exemple 5 en remplaçant le xylène par la même quantité de toluène. La solution homogène obtenue contient 1182ppm de IMIDAZOLINE 18NH. La solution n'a pas pris feu dans le test décrit dans l'exemple 5.

15 Exemple 7

On a dissous 0.022 g de IMIDAZOLINE 18NH dans 1 g de Isobutanol et on a ajouté 20 g d'un mélange contenant 13 g de HFC-365mfc et 7 g de perfluorohexane. La solution homogène obtenue contient 1048 ppm de IMIDAZOLINE 18NH. La solution n'a pas pris feu dans le test décrit dans l'exemple 5.

Exemple 8

Une plaque en PVDF de géométrie rectilinéaire avec une hauteur de 10 cm, une largeur de 2 cm et une épaisseur de 1 cm percée en direction de l'épaisseur de 20 trous de diamètre de 2 mm a été immergée dans de l'eau afin de boucher tous les trous.

La plaque a été plongée pendant 15 s dans une solution de séchage à l'état d'ébullition, contenant du HFC-365mfc (65 parts en poids), du perfluorohexane PF-5060 (35 parts en poids), de l'isobutanol (5 parts en poids) et 1610 ppm de IMIDAZOLINE 18NH obtenue de manière analogue à l'exemple 5. La plaque est retirée et séchée pendant 2 min à l'air. L'opération plongée/séchage est répétée 4 fois correspondant à une durée totale de plongée de 60 s. A la fin de ce traitement tous les trous étaient exempts d'eau.

Exemple 9

On a procédé comme dans l'exemple 8 en utilisant une solution de séchage contenant 40 parts en poids de HFC365mfc, 60 parts en poids de perfluorobutyléther HFE-7100, 5 parts en poids d'isobutanol et 2000 ppm de

IMIDAZOLINE 18NH. Après une durée de plongée totale de 60 s, 19 sur 20 trous étaient exempts d'eau.

Exemple 10

5

On a procédé comme dans l'exemple 8 en utilisant une solution de séchage contenant 36.4 parts en poids de HFC365mfc, 54.5 parts en poids de perfluorobutyléther HFE-7100, 9.1 parts en poids d'isobutanol et 2500 ppm de dodécylbenzènesulfonate d'isopropylammonium. Après une durée de plongée totale de 60 s, tous les trous étaient exempts d'eau.

15

25

REVENDICATIONS

- l Compositions comprenant du 1,1,1,3,3-pentafluorobutane et plus de 5 % en poids d'au moins un composé fluoré ininflammable sélectionné parmi les hydrofluorocarbures comprenant plus de 3 atomes de carbone, les perfluorocarbures, les amines fluorées et les éthers fluorés.
- 2 Compositions comprenant du 1,1,1,3,3-pentafluorobutane, plus de 5 % en poids d'au moins un composé fluoré ininflammable et au moins un solvant organique non fluoré.
- 3 Compositions selon la revendication 2 dans lesquelles le solvant
 10 organique non fluoré est sélectionné parmi les hydrocarbures, les hydrocarbures halogénés, les esters ou cétones aliphatiques, alicycliques ou aromatiques, les alcools ou les éthers.
 - 4 Compositions selon la revendication 2 ou 3, dans lesquelles le solvant organique non fluoré est l'acétate d'éthyle, le 1,2-dichloréthylène, le méthanol, l'éthanol, l'isopropanol ou l'isobutanol.
 - 5 Compositions selon l'une quelconque des revendications 2 à 4 comprenant du 1,1,1,3,3-pentafluorobutane et un solvant organique non fluoré dans des proportions dans lesquelles ils forment un azéotrope ou un pseudo-azéotrope.
- 6 Compositions selon l'une quelconque des revendications 1 à 5 comprenant un agent tensioactif, de préférence de type imidazoline ou alkylbenzènesulfonate.
 - 7 Compositions selon l'une quelconque des revendications 1 à 6 dans lesquelles le composé fluoré ininflammable est le 2,3-dihydrodécafluoropentane (HFC-43-10mee), la perfluorotriéthylamine, le perfluorobutyl-méthyléther, le perfluoropentane ou le perfluorohexane.
 - 8 Compositions selon l'une quelconque des revendications 1 à 7 comprenant du 1,1,1,3,3-pentafluorobutane et au moins un perfluorocarbure dans des proportions dans lesquelles ils forment un azéotrope ou un pseudo-azéotrope.

- 9 Composition selon la revendication 8 comprenant un mélange azéotropique ou pseudo-azéotropique, constitué essentiellement de 40 à 80 % en poids de 1,1,1,3,3-pentafluorobutane et de 20 à 60 % en poids de perfluorohexane ou comprenant un mélange azéotropique ou pseudo-azéotropique constitué essentiellement de 13 à 50 % en poids de 1,1,1,3,3-pentafluorobutane et de 50 à 87 % en poids de perfluoropentane
- 10 Utilisation des compositions selon l'une quelconque des revendications 1 à 9, dans des applications solvant, agent de séchage, solvant de dégraissage, agent de fixation de toners, réfrigérant ou fluide caloporteur.
- 11 Utilisation selon la revendication 10 comme produit de remplacement du CFC-11 (trichlorofluorométhane) ou comme produit de remplacement du CFC-113 (1,1,2-trichlorotrifluoroéthane).

INTERNATIONAL SEARCH REPORT

Inte² onal Application No PCT/EP 99/09798

A. CLASSIFICATION OF SUBJECT MATTER IPC 7 C09K5/04 C110 C11D7/50 C23G5/028 G03C11/00 According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) IPC 7. CO9K C11D C23G G03C Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Category Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. χ US 5 688 431 A (MINOR BARBARA HAVILAND) 1,10 18 November 1997 (1997-11-18) column 2, line 17 - line 30 column 3, line 43 - line 47 column 10, line 14 - line 19 figure 20; examples DE 197 25 360 A (SOLVAY FLUOR & DERIVATE) Α 1.10 25 June 1998 (1998-06-25) the whole document Α BE 1 007 543 A (SOLVAY) 1,10 1 August 1995 (1995-08-01) the whole document Further documents are listed in the continuation of box C. Patent family members are listed in annex. ° Special categories of cited documents: "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the "A" document defining the general state of the art which is not considered to be of particular relevance invention "E" earlier document but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone filing date document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such docu-"O" document referring to an oral disclosure, use, exhibition or other means ments, such combination being obvious to a person skilled document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 2 March 2000 09/03/2000 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk Tel. (+31–70) 340–2040, Tx. 31 651 epo nl, Fax: (+31–70) 340–3016 Puetz, C

Form PCT/ISA/210 (second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

inté ional Application No PCT/EP 99/09798

		PC1/EP 99/09/98			
C.(Continu	(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT				
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.			
A	WO 96 30487 A (SOLVAY ;BARTHELEMY PIERRE (BE); PAULUS MIREILLE (BE); PUTTEMAN ROB) 3 October 1996 (1996-10-03) claims; example 1	1-4,6,10			
A	EP 0 863 194 A (ATOCHEM ELF SA) 9 September 1998 (1998-09-09) cited in the application the whole document	1,10,11			
Α .	EP 0 784 238 A (SOLVAY) 16 July 1997 (1997-07-16) claims 1-6; examples	1-4,10,			
Α .	EP 0 851 016 A (AEROSPATIALE ;ATOCHEM ELF SA (FR)) 1 July 1998 (1998-07-01) the whole document	1			
	·				
	ę)				
•					
-					

INTERNATIONAL SEARCH REPORT

information on patent family members

Inte onal Application No PCT/EP 99/09798

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
US 5688431 A	18-11-1997	US 5654264 A US 5562855 A CA 2197553 A EP 0783554 A JP 10506889 T WO 9610061 A	05-08-1997 08-10-1996 04-04-1996 16-07-1997 07-07-1998 04-04-1997
DE 19725360 A	25-06-1998	WO 9827145 A EP 0946630 A	25-06-1998 06-10-1999
BE 1007543 A	01-08-1995	NONE	-
WO 9630487 A	03-10-1996	FR 2732356 A AU 5272896 A CA 2214844 A EP 0817830 A JP 11503066 T US 5948174 A	04-10-1996 16-10-1996 03-10-1996 14-01-1998 23-03-1999 07-09-1999
EP 0863194 A	09-09-1998	FR 2760463 A AU 5640098 A CN 1199765 A JP 10249104 A	11-09-1998 10-09-1998 25-11-1998 22-09-1998
EP 0784238 A	16-07-1997	BE 1009964 A AU 7654596 A CA 2195232 A JP 9197723 A US 5714298 A	04-11-1997 24-07-1997 16-07-1997 31-07-1997 03-02-1998
EP 0851016 A	01-07-1998	FR 2757871 A CA 2225789 A JP 10195424 A US 5973055 A	03-07-1998 27-06-1998 28-07-1998 26-10-1999

RAPPORT DE RECHERCHE INTERNATIONALE

De: .e Internationale No PCT/EP 99/09798

A. CLASSEMENT DE L'OBJET DE LA DEMANDE CIB 7 CO9K5/04 C11D7/ C11D7/50 C23G5/028 G03C11/00 Selon la classification internationale des brevets (CIB) ou à la fois selon la classification nationale et la CIB B. DOMAINES SUR LESQUELS LA RECHERCHE À PORTE Documentation minimale consultée (système de classification suivi des symboles de classement) CO9K C11D C23G G03C CIB 7 Documentation consultée autre que la documentation minimale dans la mesure où ces documents relèvent des domaines sur lesquels a porté la recherche Base de données électronique consultée au cours de la recherche internationale (nom de la base de données, et si réalisable, termes de recherche utilisés) C. DOCUMENTS CONSIDERES COMME PERTINENTS no, des revendications visées Identification des documents cités, avec, le cas échéant, l'indication des passages pertinents Catégorie 1 US 5 688 431 A (MINOR BARBARA HAVILAND) 1,10 X 18 novembre 1997 (1997-11-18) colonne 2, ligne 17 - ligne 30 colonne 3, ligne 43 - ligne 47 colonne 10, ligne 14 - ligne 19 figure 20; exemples DE 197 25 360 A (SOLVAY FLUOR & DERIVATE) 1,10 Α 25 juin 1998 (1998-06-25) le document en entier BE 1 007 543 A (SOLVAY) 1,10 Α 1 août 1995 (1995-08-01) le document en entier -/--Voir la suite du cadre C pour la fin de la liste des documents X Les documents de familles de brevets sont indiqués en annexe Χ ° Catégories spéciales de documents cités: "T" document ultérieur publié après la date de dépôt international ou la date de priorité et n'appartenenant pas à l'état de la technique pertinent, mais cité pour comprendre le principe "A" document définissant l'état général de la technique, non considéré comme particulièrement pertinent ou la théorie constituant la base de l'invention "F" document antérieur, mais publié à la date de dépôt international document particulièrement pertinent; l'inven tion revendiquée ne peut être considérée comme nouvelle ou comme impliquant une activité ou après cette date "L" document pouvant jeter un doute sur une revendication de inventive par rapport au document considéré isolément priorité ou cité pour déterminer la date de publication d'une autre citation ou pour une raison spéciale (telle qu'indiquée) document particulièrement pertinent; l'inven tion revendiquée ne peut être considérée comme impliquant une activité inventive lorsque le document est associé à un ou plusieurs autres documents de même nature, cette combinaison étant évidente "O" document se référant à une divulgation orale, à un usage, à une exposition ou tous autres moyens pour une personne du métier "P" document publié avant la date de dépôt international, mais postérieurement à la date de priorité revendiquée "&" document qui fait partie de la même famille de brevets Date à laquelle la recherche internationale a été effectivement achevée Date d'expédition du présent rapport de recherche internationale

Formulaire PCT/ISA/210 (deuxième feuille) (juillet 1992)

Nom et adresse postale de l'administration chargée de la recherche internationale Office Européen des Brevets, P.B. 5818 Patentlaan 2

Office European des Prévets, F.B. 3516 Fai NL – 2280 HV Rijswijk Tel. (+31–70) 340–2040, Tx. 31 651 epo nl, Fax: (+31–70) 340–3016

2 mars 2000

09/03/2000

Fonctionnaire autorisé

Puetz, C

RAPPORT DE RECHERCHE INTERNATIONALE

Der ie Internationale No PCT/EP 99/09798

		PCT/EP 99/09798
C.(suite) D	OCUMENTS CONSIDERES COMME PERTINENTS	
Catégorie *	Identification des documents cités, avec.le cas échéant, l'indicationdes passages perti	nents no. des revendications visées
A	WO 96 30487 A (SOLVAY ;BARTHELEMY PIERRE (BE); PAULUS MIREILLE (BE); PUTTEMAN ROB) 3 octobre 1996 (1996-10-03) revendications; exemple 1	1-4,6,10
1	EP 0 863 194 A (ATOCHEM ELF SA) 9 septembre 1998 (1998-09-09) cité dans la demande le document en entier	1,10,11
\	EP 0 784 238 A (SOLVAY) 16 juillet 1997 (1997-07-16) revendications 1-6; exemples	1-4,10,
1	EP 0 851 016 A (AEROSPATIALE ;ATOCHEM ELF SA (FR)) 1 juillet 1998 (1998-07-01) le document en entier	1
		,
	·	

1

Formulaire PCT/ISA/210 (suite de la deuxième feuille) (juillet 1992)

RAPPORT DE RECHERCHE INTERNATIONALE

Renseignements relatifs aux membres de familles de brevets

Dei Je Internationale No
PCT/EP 99/09798

Document brevet cité au rapport de recherch		Date de publication	Membre(s) de la Date de famille de brevet(s) publication
US 5688431	А	18-11-1997	US 5654264 A 05-08-1997 US 5562855 A 08-10-1996 CA 2197553 A 04-04-1996 EP 0783554 A 16-07-1997 JP 10506889 T 07-07-1998 WO 9610061 A 04-04-1997
DE 19725360	Ą	25-06-1998	WO 9827145 A 25-06-1998 EP 0946630 A 06-10-1999
BE 1007543	Α	01-08-1995	AUCUN
WO 9630487	Α	03-10-1996	FR 2732356 A 04-10-1996 AU 5272896 A 16-10-1996 CA 2214844 A 03-10-1996 EP 0817830 A 14-01-1998 JP 11503066 T 23-03-1999 US 5948174 A 07-09-1999
EP 0863194	Α	09-09-1998 	FR 2760463 A 11-09-1998 AU 5640098 A 10-09-1998 CN 1199765 A 25-11-1998 JP 10249104 A 22-09-1998
EP 0784238	Α	16-07-1997	BE 1009964 A 04-11-1997 AU 7654596 A 24-07-1997 CA 2195232 A 16-07-1997 JP 9197723 A 31-07-1997 US 5714298 A 03-02-1998
EP 0851016	A	01-07-1998	FR 2757871 A 03-07-1998 CA 2225789 A 27-06-1998 JP 10195424 A 28-07-1998 US 5973055 A 26-10-1999

Formulaire PCT/ISA/210 (annexe familles de brevets) (juillet 1992)

THIS PAGE BLANK (USPTO)