Chapter 10

Rotation of a Rigid Object about a Fixed Axis

Outline for W10,D3

Finish center of mass (Ch. 9)

Rotation of a rigid solid (Ch. 10)

 θ , ω , and α

Relation between linear (s,v,a) and angular quantities

Torque

Homework

Ch. 10 P. 1,4-6,19-21,25,28-30,34,35,37,53,54,55,64,67,69 Do for Wed/Fri

Notes:

Lab this week is "2D Collisions" See "NEW STUFF" for Ch. 10.

Introduction

Center of Mass, Rod

Ex) Find the COM of a non-uniform rod of length 1.0 m if its linear mass distribution is $\lambda(x)=3x+1$ kg/m, where x=0 at the origin.

As before, rod is aligned with the x-axis, with one end on (0,0), and

 $y_{\text{COM}} = z_{\text{COM}} = 0.$

Do integral using $\lambda = 3x+1$

$$x_{COM} = \frac{1}{M} \int_{0}^{L} x \lambda \, dx$$

$$x_{COM} = \frac{1}{M} \int_{0}^{1.0} x (3x+1) \, dx$$

$$x_{COM} = \frac{1}{M} (x^3 + \frac{x^2}{2})^{1.0}$$

So $x_{com} = 1.5/M$, but what is M? M is the total mass.

M=
$$\int_{0}^{1.0} \lambda dx = \int_{0}^{1.0} (3x+1) dx = (\frac{3x^2}{2} + x) = \frac{5}{2} \frac{5}{2}$$
.
So $x_{com} = (\frac{3}{2})/(\frac{5}{2}) = \frac{3}{5} = 0.6 \text{ m}$

Rigid Object

- A rigid object is one that is nondeformable
 - The relative locations of all particles making up the object remain constant
 - All real objects are deformable to some extent, but the rigid object model is very useful in many situations where the deformation is negligible
- This simplification allows analysis of the motion of an extended object

Angular Position

- Axis of rotation runs through the center of the disc, ⊥ the disk.
- Choose a fixed reference line
- Point P is at a fixed distance r from the origin

© 2007 Thomson Higher Education

Angular Position, 2

Reference

line

- Point P will rotate about the origin in a circle of radius r
- Every point on the disc undergoes circular motion about the center.
- Specify the position of point P in polar coordinates (r, θ) where θ is the measured counterclockwise from the reference line.

Angular Position, 3

- As the particle moves through θ, it moves though an arc length s.
- The arc length and r are related:
 - $s = \theta r$
 - where θ is in radians

© 2007 Thomson Higher Education

The Radian

This can also be expressed as

$$\theta = \frac{s}{r}$$

- θ is dimensionless, but is expressed in units of radians (rad).
- Ex) How many radians are subtended by an arc length of 6 inches if the radius of the arc is 3 in?
- Ex) How many radians are subtended by an arclength of 3 in if the radius is 3 in?
 - Try to estimate how many degrees this is!

Conversions

Comparing degrees and radians

$$1 \, rad = \frac{360^{\circ}}{2 \, \pi} \simeq 57.3^{\circ}$$

Converting from degrees to radians

$$\theta(rad) = \frac{\pi}{180^{\circ}} \theta(degrees)$$

Angular Position, final

- So the *angular position* of a point P on an object is the angle θ , measured in radians or degrees.
- θ is the angle between a radial line running from the spin axis to P, and a reference line (usually the x-axis) also running through the spin axis.

DEMO: My CD has two points along the same radial line. How do their angular positions compare?

 The angular displacement is defined as the angle the object rotates through during some time interval

$$\Delta \theta = \theta_f - \theta_i$$

 This is the angle that the radial line of length r sweeps out.

DEMO: How do the angular displacements of the two dots on the CD compare?

 The average angular speed, ω_{avg}, of a rotating rigid object is the ratio of the angular displacement to the time interval

$$\omega_{\text{avg}} = \frac{\theta_f - \theta_i}{t_f - t_i} = \frac{\Delta \theta}{\Delta t}$$

 The instantaneous angular speed is defined as the limit of the average speed as the time interval approaches zero

$$\omega \equiv \lim_{\Delta t \to 0} \frac{\Delta \theta}{\Delta t} = \frac{d\theta}{dt}$$

Angular Speed, final

- Units of angular speed are radians/sec
 - rad/s or s-1 since radians have no dimensions
- Angular speed will be positive if θ is increasing (counterclockwise)
- Angular speed will be negative if θ is decreasing (clockwise)

• The average angular acceleration, α ,

of an object is defined as the ratio of the change in the angular speed to the time it takes for the object to undergo the change:

$$\alpha_{avg} = \frac{\omega_f - \omega_i}{t_f - t_i} = \frac{\Delta \omega}{\Delta t}$$

Instantaneous Angular Acceleration

 The instantaneous angular acceleration is defined as the limit of the average angular acceleration as the time goes to 0

$$\alpha \equiv \lim_{\Delta t \to 0} \frac{\Delta \omega}{\Delta t} = \frac{d\omega}{dt}$$

- Units of angular acceleration are rad/s² or s-2 since radians have no dimensions
- Angular acceleration will be positive if an object rotating counterclockwise is speeding up
- Angular acceleration will also be positive if an object rotating clockwise is slowing down

Angular Motion, mini-quiz

- T or F. The Δθ, ω, and α are the same for every point on a rigid solid.
- T or F. The θ, Δθ, ω, and α are the same for every point on a rigid solid.
- What is the ω_{avg} (in rad/sec) of a wheel that rotates 1 revolution in 2 seconds?
- If a CD spins up from 0 to 50 rad/s in 5 seconds, what is the α_{avq} ?

Directions, details

Strictly speaking, the angular speed and acceleration (ω, α) are the magnitudes of vectors

 The directions are actually given by the right-hand rule.

Rotational Kinematics

- Under constant angular acceleration, we can describe the motion of the rigid object using a set of kinematic equations
 - These are similar to the kinematic equations for linear motion
 - The rotational equations have the same mathematical form as the linear equations
- The new model is a rigid object under constant angular acceleration
 - Analogous to the particle under constant acceleration model

Rotational Kinematic Equations

$$\omega_{f} = \omega_{i} + \alpha t$$

$$\theta_{f} = \theta_{i} + \omega_{i} t + \frac{1}{2} \alpha t^{2}$$

$$\omega_{f}^{2} = \omega_{i}^{2} + 2\alpha (\theta_{f} - \theta_{i})$$

$$\theta_{f} = \theta_{i} + \frac{1}{2} (\omega_{i} + \omega_{f}) t$$

all with consant α

Comparison Between Rotational and Linear Equations

TABLE 10.1

Kinematic Equations for Rotational and Translational Motion Under Constant Acceleration

Rotational Motion About a Fixed Axis

$$\begin{split} & \omega_f = \omega_i + \alpha t \\ & \theta_f = \theta_i + \omega_i \, t + \frac{1}{2} \alpha t^2 \\ & \omega_f^2 = \omega_i^2 + 2 \alpha (\theta_f - \theta_i) \\ & \theta_f = \theta_i + \frac{1}{2} (\omega_i + \omega_f) \, t \end{split}$$

Translational Motion

$$\begin{aligned} v_f &= v_i + at \\ x_f &= x_i + v_i t + \frac{1}{2} a t^2 \\ v_f^2 &= v_i^2 + 2 a (x_f - x_i) \\ x_f &= x_i + \frac{1}{2} (v_i + v_f) t \end{aligned}$$

Outline for W11,D1

Rotation of a rigid solid (Ch. 10)

Relation between (s,v_{t},a_{t}) and (θ,ω,α)

Torque, $\tau = rF$

Rotational kinetic energy

Rotational inertia (or moment of inertia)

Homework

Ch. 10 P. 1,4-6,19-21,25,28-30,34,35,37,53,54,55,64,67,69 Do for Wed/Fri

Notes:

No lab this honors week.

No class Friday – activity instead.

See NEW "Exam-like" questions on Chs. 9-11.

Relationship Between Angular and Linear Quantities

Path length

$$s = \theta r$$

Tangential speed

$$v_t = \omega r$$

- Tangential acceleration $a_t = \alpha r$
- Centripetal acceleration $a_c = \omega^2 r$

- Every point on the rotating object has the same angular motion
- Every point on the rotating object does not have the same linear motion

Speed Comparison

- The tangential velocity is a tangent to the circular path
- The magnitude of the velocity of point P is the tangential speed, v_t

$$v_t = \frac{ds}{dt} = r \frac{d\theta}{dt} = r \omega$$

 The tangential acceleration is the derivative of the tangential speed

$$a_t = \frac{dv_t}{dt} = r\frac{d\omega}{dt} = r\alpha$$

Linear – angular relations. Examples.

A solid, rotating disk.

In Figure 2, suppose the black dots are at $r_1 = 1.2$ cm and $r_2 = 3.6$ cm. Then answer these questions ...

- 11. If dot 1 has a tangential speed of $v_{t1} = 3$ cm/sec, what is the angular frequency of dot 1?
- 12. If dot 1 has a tangential speed of $v_{t1} = 3$ cm/sec, what is the angular frequency of dot 2?
- 13. If dot 1 has a tangential speed of v_{t1} = 3 cm/sec, what is the tangential speed of dot 2?
- 14. If dot 1 has a tangential speed of v_{t1} = 3 cm/sec, what is the centripetal acceleration of dot 2?

Linear – angular relations. Examples.

A solid, rotating disk.

In Figure 2, suppose the black dots are at $r_1 = 1.2$ cm and $r_2 = 3.6$ cm. Then answer these questions ...

- 15. If dot 1 has a tangential speed of $v_{t1} = 3$ cm/sec, what is the centripetal acceleration of dot 1?
- 16. If a 0.002 kg bug is clinging on to the disk at dot 1, how much centripetal force must be exerted on the bug (by static friction)? (Recall F_c = ma_c.)
- 17. If a 0.002 kg bug is clinging on to the disk at dot 2, how much centripetal force must be exerted on the bug (by static friction)?

Rotational Motion Example

- For a compact disc player to read a CD, the angular speed must vary to keep the tangential speed constant $(v_t = \omega r)$
- At the inner sections, the angular speed is faster than at the outer sections

Ex) Find v_t at r=23mm if it spins at 500 RPM. v_t =52.4*.023=1.20m/s

Ex) Find v_t at r=58mm if it spins at 200 RPM. v_t =20.9*.058=1.21m/s

Torque

- Torque, τ , is a force times a distance which changes the rotation rate of an object
 - Torque is a vector, but we will deal with its magnitude first. (Cross products appear in Ch. 11)
 - $\tau = F r \sin \phi = F d$
 - F is the force
 - ϕ is the angle the force makes with the line extending from the axis to the point of application of F.
 - d is the moment arm (or lever arm) of the force

Outline for W11,D2

Torque Example ($\tau = rF_{\perp}$)

Rotational kinetic energy

Rotational inertia (or moment of inertia)

Homework

Ch. 10 P. 1,4-6,19-21,25,28-30,34,35,37,53,54,55,64,67,69
Do for Wed/Fri

Ch. 11 P. 1,2,3,5,36,42,48 Do before Exam II (4/23 or 4/25)

Notes:

No lab this honors week.

No class Friday – see email for activity instead.

See NEW lists of equations for Exam II and Ch. 11 links.

Introduction

Torque, cont

- The moment arm, d, is the perpendicular distance from the axis of rotation to a line drawn along the direction of the force
 - $d = r \sin \Phi$

Ex) A force of 10 N is applied 20 cm away from the nut it is tightening in a direction 60° away from the wrench arm. Find the torque.

Q: What if $\theta = 90^{\circ}$? Q: What if r=10 cm and $\theta = 90^{\circ}$?

Torque, direction

- The horizontal component of the force (F cos φ) has no tendency to produce a rotation
- Torque has a direction
 - If the turning tendency of the force is counterclockwise (CCW), the torque will be positive
 - If the turning tendency is clockwise (CW), the torque will be negative

Net Torque

- The force F₁ will tend to cause a counterclockwise rotation about O
- The force F₂ will tend to cause a clockwise rotation about O
- $\Sigma \tau = \tau_1 + \tau_2 = F_1 d_1 F_2 d_2$

© 2007 Thomson Higher Education

P. 30) Calculate the net torque about the axle of the wheel shown in Fig. 10-54. Assume that a friction torque of 0.60 Nm opposes the motion.

 $\tau_{net} = \Sigma \tau = \tau_1 + \tau_2 + \tau_3 + \tau_{fric}$

and $\tau_{net} = -1.2 \text{ Nm}$

$$\tau_{\text{app}} = 28\text{N}(.24\text{m})-35\text{N}(.12\text{m})-18\text{N}(.24\text{m})$$
= 6.72 - 4.2 - 4.32
= -1.8 (- implies CW)
Thus, $\tau_{\text{fric}} = 0.60 \text{ Nm}$ (CCW)

Torque vs. Force

- Forces can cause a change in translational motion
 - Described by Newton's 2nd Law: F_{net}=ma
- Torques can cause a change in rotational motion
 - The Newton's 2nd law analog: $\tau_{net} = I \alpha$
 - Where I is <u>rotational inertia</u>

Torque Units

- The SI units of torque are N·m
 - Although torque is a force multiplied by a distance, it is very different from work and energy
 - The units for torque are reported in N·m and not changed to Joules

Torque and Angular Acceleration, Wheel Example

- Analyze:
- The wheel is rotating and so we apply

$$\Sigma \tau = I\alpha$$

- The tension supplies the tangential force
- The mass is moving in a straight line, so apply Newton's Second Law
 - $\Sigma F_y = ma_y = mg T$

Ex) Find the angular acceleration of the wheel if its R=12cm and its

- I=0.05 kg m2 and the hanging mass m=2 kg.
- Ex) Find the linear acceleration of the mass m.

Torque and Angular Acceleration

See link "Torque and rotational kinematics example" for another worked example of $\tau = I\alpha$.

This one applies to a grinding wheel.

Rotational Kinetic Energy

- An object rotating about some axis with an angular speed, ω , has rotational kinetic energy. Lets derive $K_{rot} = \frac{1}{2} I \omega^2$
- Each particle, m_i, (like the one at P) has a kinetic energy of
 - $K_i = \frac{1}{2} m_i V_i^2$
- The v_i is a tangential velocity at P and can be replaced by $v_i = \omega_i r$

Rotational Kinetic Energy, cont

 The total rotational kinetic energy of the rigid object is the sum of the energies of all its particles

$$K_{R} = \sum_{i} K_{i} = \sum_{i} \frac{1}{2} m_{i} r_{i}^{2} \omega^{2}$$

$$K_{R} = \frac{1}{2} \left(\sum_{i} m_{i} r_{i}^{2} \right) \omega^{2} = \frac{1}{2} I \omega^{2}$$

Where I is called the moment of inertia

Rotational Kinetic Energy, final

- There is an analogy between the kinetic energies associated with linear motion ($K = \frac{1}{2} mv^2$) and the kinetic energy associated with rotational motion ($K_R = \frac{1}{2} I\omega^2$)
- Rotational kinetic energy is not a new type of energy, the form is different because it is applied to a rotating object
- The units of rotational kinetic energy are Joules (J)

Example) Find the total KE of a baseball (mass m, radius R) with a speed v and a spin ω.

Ans: $K_{tot} = K_{rot} + K_{trans}$

Moment of Inertia

 The definition of moment of inertia (for a collection of discrete masses) is

$$I = \sum_{i} r_i^2 m_i$$

 The dimensions of moment of inertia are ML² and its SI units are kg·m²

We can calculate the moment of inertia of an extended object by assuming it is divided into small volume elements, Δm_i , and taking the limit towards zero size: $\Delta m_i = dm$

Moment of Inertia, cont

We can rewrite the expression for I in terms of Δm

$$I =_{\Delta m_i \to 0}^{\lim} \sum_{i} r_i^2 \Delta m_i = \int r^2 dm$$

With the small volume segment assumption,

$$I = \int \rho r^2 dV$$

• If ρ is constant, the integral can be evaluated with known geometry, otherwise its variation with position must be known

Notes on Various Densities

- Volumetric Mass Density → mass per unit volume: ρ = m / V
- Surface Mass Density → mass per unit thickness of a sheet of uniform thickness, t:
 σ = ρ t
- Linear Mass Density → mass per unit length of a rod of uniform cross-sectional area: λ = m / L = ρ A

Moment of Inertia of a Uniform Rigid Rod

- The shaded area has a mass
 - $dm = \lambda dx$
- For a uniform rod,
 λ=M/L
- Then the moment of inertia is

$$I_{y} = \int r^{2} dm = \int_{-L/2}^{L/2} x^{2} \frac{M}{L} dx$$

$$I_{y} = \frac{1}{12} M L^{2}$$

Q: What is $I_{y'}$ (relative to y')? Ans: $I_{y'} = \frac{4}{12} M L^2$

Moment of Inertia of a Uniform Solid Cylinder

- Divide the cylinder into concentric shells with radius r, thickness dr and length L
- $dm = \rho dV = \rho 2\pi r L dr$
- Then for I $I_z = \int r^2 dm = \int r^2 (2\pi \rho L r \ dr)$ $I_z = \frac{1}{2}MR^2$

Moments of Inertia of Various Rigid Objects

TABLE 10.2

Moments of Inertia of Homogeneous Rigid Objects with Different Geometries

Hoop or thin cylindrical shell $I_{CM} = MR^2$

Solid cylinder or disk

$$I_{\text{CM}} = \frac{1}{2} MR^2$$

Long, thin rod with rotation axis through center

$$I_{\rm CM} = \frac{1}{12} ML^2$$

Solid sphere

$$I_{\rm CM} = \frac{2}{5} MR^2$$

shell
$$I_{\text{CM}} = \frac{2}{3} MR^2$$

Parallel-Axis Theorem

- In the previous examples, the axis of rotation coincided with the axis of symmetry of the object
- For an arbitrary axis, the parallel-axis theorem often simplifies calculations
- The theorem states $I = I_{CM} + MD^2$
 - I is about any axis parallel to the axis through the center of mass of the object
 - I_{CM} is about the axis through the center of mass
 - D is the distance from the center of mass axis to the arbitrary axis

Parallel-Axis Theorem Example

- The axis of rotation goes through O
- The axis through the center of mass is shown
- The moment of inertia about the axis through O would be I_O = I_{CM} + MD²

(b)

Moment of Inertia for a Rod Rotating Around One End

 The moment of inertia of the rod about its center is

$$I_{CM} = \frac{1}{12}ML^2$$

- D is ½ L
- Therefore,

$$I = I_{CM} + MD^2$$

$$I = \frac{1}{12}ML^2 + M\left(\frac{L}{2}\right)^2 = \frac{1}{3}ML^2$$

Work in Rotational Motion

• Find the work done by Fon the object as it rotates through an infinitesimal distance $ds = r d\theta$

$$dW = \mathbf{F} \, \Box \, d\mathbf{s}$$
$$= (F \sin \varphi) r \, d\theta$$

 The radial component of the force does no work because it is perpendicular to the displacement

 The rate at which work is being done in a time interval dt is

Power =
$$\wp = \frac{dW}{dt} = \tau \frac{d\theta}{dt} = \tau \omega$$

 This is analogous to p = Fv in a linear system

Summary of Useful Equations

TABLE 10.3

Useful Equations in	Rotational and	Translational Motion
----------------------------	----------------	-----------------------------

Rotational Motion About a Fixed Axis	Translational Motion
Angular speed $\omega = d\theta/dt$	Translational speed $v = dx/dt$
Angular acceleration $\alpha = d\omega/dt$	Translational acceleration $a = dv/dt$
Net torque $\Sigma \tau = I\alpha$	Net force $\Sigma F = ma$
$ \begin{aligned} &\text{If} \\ &\alpha = \text{constant} \; \left\{ \begin{array}{l} \omega_f = \omega_i + \alpha t \\ &\theta_f = \theta_i + \omega_i t + \frac{1}{2} \alpha t^2 \\ &\omega_f^2 = \omega_i^2 + 2 \alpha (\theta_f - \theta_i) \end{array} \right. \\ &\text{Work} \; W = \; \left[\begin{array}{l} \theta_f \\ &\tau \; d\theta \end{array} \right. \end{aligned} $	If $a = \text{constant} \begin{cases} v_f = v_i + at \\ x_f = x_i + v_i t + \frac{1}{2} a t^2 \\ v_f^2 = v_i^2 + 2a(x_f - x_i) \end{cases}$ Work $W = \int_{-x_f}^{x_f} F_x dx$
Rotational kinetic energy $K_R = \frac{1}{2}I\omega^2$ Power $\mathcal{P} = \tau\omega$ Angular momentum $L = I\omega$ Net torque $\Sigma \tau = dL/dt$	Kinetic energy $K = \frac{1}{2}mv^2$ Power $\mathcal{P} = Fv$ Linear momentum $p = mv$ Net force $\Sigma F = dp/dt$

Energy in an Atwood Machine, Example

- The blocks undergo changes in translational kinetic energy and gravitational potential energy
- The pulley undergoes a change in rotational kinetic energy
- Use the active figure to change the masses and the pulley characteristics

Rolling Object

- The red curve shows the path moved by a point on the rim of the object
 - This path is called a cycloid
- The green line shows the path of the center of mass of the object

Pure Rolling Motion

- In pure rolling motion, an object rolls without slipping
- In such a case, there is a simple relationship between its rotational and translational motions

Rolling Object, Center of Mass

 The velocity of the center of mass is

$$v_{\rm CM} = \frac{ds}{dt} = R \frac{d\theta}{dt} = R\omega$$

The acceleration of the center of mass is

$$a_{\text{CM}} = \frac{dv_{\text{CM}}}{dt} = R\frac{d\omega}{dt} = R\alpha$$

© 2007 Thomson Higher Education

- Rolling motion can be modeled as a combination of pure translational motion and pure rotational motion
- The contact point between the surface and the cylinder has a translational speed of zero (c)

© 2007 Thomson Higher Education

Total Kinetic Energy of a Rolling Object

- The total kinetic energy of a rolling object is the sum of the translational energy of its center of mass and the rotational kinetic energy about its center of mass
 - $K = \frac{1}{2} I_{\text{CM}} \omega^2 + \frac{1}{2} M V_{\text{CM}}^2$
 - The $\frac{1}{2} I_{CM} \omega^2$ represents the rotational kinetic energy of the cylinder about its center of mass
 - The ½ Mv² represents the translational kinetic energy of the cylinder about its center of mass

Total Kinetic Energy, Example

- Accelerated rolling motion is possible only if friction is present between the sphere and the incline
 - The friction produces the net torque required for rotation
 - No loss of mechanical energy occurs because the contact point is at rest relative to the surface at any instant
 - Use the active figure to vary the objects and compare their speeds at the bottom

Total Kinetic Energy, Example cont

- Apply Conservation of Mechanical Energy
 - Let U = 0 at the bottom of the plane
 - $K_f + U_f = K_i + U_i$
 - $K_f = \frac{1}{2} (I_{\text{CM}} / R^2) V_{\text{CM}}^2 + \frac{1}{2} M V_{\text{CM}}^2 = \frac{1}{2} \left(\frac{I_{\text{CM}}}{R^2} + M \right) V_{\text{CM}}^2$
 - $U_i = Mgh$
 - $U_f = K_i = 0$
- Solving for v

$$v = \begin{bmatrix} 2gh \\ 1 + \begin{pmatrix} I_{CM} \\ MR^2 \end{bmatrix} \end{bmatrix}$$

Sphere Rolling Down an Incline, Example

Conceptualize

A sphere is rolling down an incline

Categorize

- Model the sphere and the Earth as an isolated system
- No nonconservative forces are acting

Analyze

- Use Conservation of Mechanical Energy to find v
 - See previous result

Sphere Rolling Down an Incline, Example cont

- Analyze, cont
 - Solve for the acceleration of the center of mass

Finalize

 Both the speed and the acceleration of the center of mass are independent of the mass and the radius of the sphere

Generalization

- All homogeneous solid spheres experience the same speed and acceleration on a given incline
 - Similar results could be obtained for other shapes