§11. Взаимное расположение прямой и плоскости

Прямая и плоскость в пространстве могут быть параллельными, прямая может принадлежать плоскости, а также может пересекать её в некоторой точке. Пусть плоскость P задана общим уравнением

$$P: Ax + By + Cz + D = 0, A^2 + B^2 + C^2 \neq 0,$$

а прямая L – каноническими уравнениями:

$$L: \frac{x - x_0}{l} = \frac{y - y_0}{m} = \frac{z - z_0}{n}.$$

Тогда $\vec{n}(A,B,C)$ — вектор нормали к P, вектор $\vec{q}(l,m,n)$ — направляющий вектор прямой L, а точка $M_0(x_0,y_0,z_0)$ принадлежит L.

Рис. 11.1. Прямая L параллельна плоскости P

Рис. 11.2. Прямая *L* перпендикулярна плоскости *P*

Рис. 11.3. Прямая L образует угол φ с плоскостью P

Условие параллельности прямой L плоскости P эквивалентно условию ортогональности векторов \vec{n} и \vec{q} (рис. 11.1) или равенству нулю их скалярного произведения: $\vec{n} \cdot \vec{q} = 0$, что, в свою очередь, приводит к равенству

$$Al + Bm + Cn = 0. (11.1)$$

Если к равенству (11.1) присоединить условие принадлежности точки $M_0(x_0, y_0, z_0)$ прямой L плоскости P, т.е. равенство

$$Ax_0 + By_0 + Cz_0 + D = 0, (11.2)$$

то система равенств (11.1) и (11.2) выражает условие принадлежности прямой L плоскости P.

Условие перпендикулярности прямой L и плоскости P равносильно условию коллинеарности векторов \vec{n} и \vec{q} (рис.11.2), выражаемому равенством:

$$\frac{A}{l} = \frac{B}{m} = \frac{C}{n}.\tag{11.3}$$

Пример 11.1. Найти значение параметра λ , при котором прямая $L: \frac{x-1}{2} = \frac{y+1}{3} = \frac{z-2}{\lambda}$ и плоскость P: 2x-y+z+5=0 параллельны.

► Обозначим через \vec{q} направляющий вектор прямой L, $\vec{q} = (2,3,\lambda)$, а через \vec{n} – вектор нормали к плоскости P, $\vec{n} = (1,-1,1)$. Прямая L и плоскость P будут параллельны, если векторы \vec{q} и \vec{n} будут ортогональны (рис. 11.1).

Поскольку последнее условие эквивалентно равенству $(\vec{q}, \vec{n}) = 0$, то для λ получаем уравнение $2 \cdot 2 + 3 \cdot (-1) + \lambda = 0$, откуда находим $\lambda = -1$.

Пример 11.2. Найти значения параметров λ и μ , при которых прямая $L: \frac{x+2}{1} = \frac{y-1}{3} = \frac{z+1}{2}$ и плоскость $P: 2x + \lambda y + \mu z + 5 = 0$ перпендикулярны.

►Пусть \vec{q} — направляющий вектор прямой L, $\vec{q} = (1,3,2)$, а \vec{n} — вектор нормали к плоскости P, $\vec{n} = (2,\lambda,\mu)$. Прямая L и плоскость P будут перпендикулярны, если векторы \vec{q} и \vec{n} будут коллинеарны (рис. 11.2). Из (11.3) имеем соотношения $\frac{1}{2} = \frac{3}{\lambda} = \frac{2}{\mu}$, откуда находим: $\lambda = \frac{3}{2}$, $\mu = 4$.

За yгол ϕ между прямой L и плоскостью P, неперпендикулярной L, примем,

как в стереометрии, угол между L и её проекцией на плоскость P (рис. 11.3). Очевидно, $\varphi = 0$, если прямая L принадлежит плоскости P. В случае, когда L перпендикулярна P, будем считать $\varphi = \pi/2$. Имеем

$$\sin \varphi = |\cos(\vec{n}, \vec{q})| = \frac{|\vec{n} \cdot \vec{q}|}{|\vec{n}| \cdot |\vec{q}|} = \frac{|Al + Bm + Cn|}{\sqrt{A^2 + B^2 + C^2} \cdot \sqrt{l^2 + m^2 + n^2}}.$$
 (11.4)

Пример 11.3. Найти угол между прямой $L: \frac{x+2}{2} = \frac{y-1}{-1} = \frac{z+2}{-2}$ и плоскостью P: 4x + y - z - 5 = 0.

> Вектор $\vec{n} = (4, 1, -1)$ — вектор нормали к плоскости P, а $\vec{q} = (2, -1, -2)$ —

направляющий вектор прямой L. Понимая угол ϕ между L и P в вышеописанном смысле, из формулы (11.4) имеем

$$\sin \varphi = |\cos(\vec{n}, \vec{q})| = \frac{|4 \cdot 2 + 1 \cdot (-1) + (-1) \cdot (-2)|}{\sqrt{(-4)^2 + 1^2 + (-1)^2} \cdot \sqrt{2^2 + (-1)^2 + (-2)^2}} = \frac{1}{\sqrt{2}} \Rightarrow \varphi = \frac{\pi}{4}. \blacktriangleleft$$