មេវៀនទី៣

Signal

1. Overview of Signal

Signal គឺជាទំរង់មួយនៃថាមពលអគ្គីសនី រឺ ថាមពល អេឡិចត្រូម៉ាញេទិច ដែលត្រូវបានតាងអោយ Data រឺ Information ធ្វើដំណើរឆ្លងកាត់ Transmission Medium ពីឧបករណ៍បញ្ជូន ទៅឧបករណ៍ទទូល ។

1. Overview of Signal

- ជាទូទៅព័ត៌មានដែលប្រើប្រាស់ដោយមនុស្ស រឺ ម៉ាស៊ីន គឺមិនមែននៅក្នុងទំរង់ដែលអាចបញ្ហូនឆ្លង កាត់ តាមបណ្តាញបាននោះទេ ។
- ឧទាហរណ៍ អ្នកមិនអាច មូររូបថតមួយសន្លឹករួចស៊ក ចូលខ្សែចំលង បញ្ជូនឆ្លងកាត់ទីក្រុង រឺ ជនបទបាន នោះទេ ។

1. Overview of Signal

អ្នកអាចបញ្ជូនបាន លុះត្រាតែបំលែងកូដនៃរូបថត នោះទៅជា ១ និង ០ ។ហើយធ្វើការបំលែង ១ និង ០ ទាំងនោះទៅជាទំរង់ Signal ដែលអាចអោយ Transmission Meduim ធ្វើការចំលងបាន ។

2. Analog & Digital Data

- ទិន្នន័យអាចមានទំរង់ជា Analog និង Digital
- > ឧទាហរណ៍ ទិន្នន័យជាទំរង់ Analog គឺជាសំលេង បេស់មនុស្ស នៅពេលអ្នកណាម្នាក់បាននិយាយ លេក Analog ត្រូវបានបង្កើតឡើងនៅក្នុងខ្យល់ ។
- > ឧទាហរណ៍ ទិន្នន័យជាទំរង់Digital គឺទិន្នន័យដែល បានផ្ទុកនៅក្នុងអង្គចងចាំរបស់ Computer ក្នុងទំរង់ 1 និង 0

3. Analog Signal

- > លេកសញ្ញា Analog មានច្រើនកំរិតនៃ អាំឯតង់ស៊ីតេ លើខ្នាតពេល ។
- > លេកសញ្ញាជ្លាស់ទីពីតំលៃ A ទៅតំលៃ B វាឆ្លងកាត់ លើតំលៃជាច្រើនទៀតនៃតំលៃ Analog

4. Digital Signal

- > លេកសញ្ញា Digital អ័ក្សឈរតាងអោយតំលៃនៃ លេកសញ្ញា អ័ក្សដេកតាងអោយរយៈពេល
- > ខ្សែដេកនៃរលកសញ្ញា Digital បង្ហាញអោយឃើញ ការលោតភ្លាមៗនៃរលកសញ្ញា

5. Simple Analog (Sine Wave)

- Sine Wave គឺជាទំរង់មួយមានមូលដ្ឋានជាច្រើននៃ analog signal
- ដូចជាការយោលជាខ្សែកោងធម្មតាមួយ វាប្រែប្រូល នៃការតំរង់ទិសនៅលើខូប មួយដែលមានចលនាស្មើ និងថេរ ហើយចេះតែបន្តនៃលំយោលនេះ

5. Simple Analog (Sine Wave)

- > ខូបនីមួយៗមានតំលៃថេរ, Sine Wave មាន លក្ខណៈពិសេស ៣យ៉ាងគឺ
 - អំព្លីទុត (Amplitude)
 - ប្រែកិង់ (Frequency)
 - ជាស (Phase)

5. Simple Analog (Sine Wave)

5.1. Amplitude

- អំព្លីទុតមានតំលៃស្មើទៅនិងរយៈពេល កំពស់លេកពី ចំនុចណាមួយ នៅលើទំរង់នៃរលក ទៅអ័ក្សអាប់ ស៊ីស ។
- > ខ្នាតរង្វាស់របស់អំព្លីទុត គឺ វ៉ុល (V), អំពែ (A) និង វ៉ាត់ (W)

5.2. Frequency

- > Frequency គឺជាចំនួនខូប ដែលកើតមានឡើងក្នុង មួយវិនាទី
- > ខ្លបមានកំពូលមួយ និង ជ្រលងមួយ រឺ គេអាចហៅ ថាអ៊ែក (Hertz) សរសេរកាត់ (Hz)។
- > ខ្នាតរង្វាស់របស់ប្រេកង់ គិតជា Hertz (Hz)

5.2. Frequency

- $KHz = 10^3 Hz$
- $MHz = 10^6 Hz$
- $GHz = 10^9 Hz$
- THz = 10^{12} Hz

$$f = 1/T$$

5.2. Frequency

- Milliseconds(ms) = 10^{-3} s
- Microseconds(μ s) = 10^{-6} s
- Nanoseconds(ns) = 10^{-9} s
- Picoseconds (ps) = 10^{-12} s

5.3. Phase

- Phase គឺជាមុំដើមនៃអនុគមន៍លេកពេលចាប់ចេញ ពីខណ:ពេលសូន្យ
- > វាមាន លក្ខណៈសំគាល់នៅលើខូបទីមួយ
- > ខ្នាតរបស់ជាស គឺគិតជា ដឺក្រេ រឺ រ៉ាដ្យង់(rad)
 - Degree= $\frac{radians * 360}{2\pi}$
 - Radians= $\frac{degree * 2\pi}{360}$

6. Digital Signal

- Digital Signal គឺជា Signal ដែលមានទំរង់រលកមាន តំលៃ ដាច់ៗពីគ្នា ហើយមាន ចំនូនកំនត់ជា Binary Number 0 និង 1 ។
- > ឧទាហរណ៍ ចំពោះតង់ស្យុងអគ្គសនី គេអាចតាង 1 ជា Positive Voltage និង 0 ជា Negative Voltage

6. Digital Signal

a. A digital signal with two levels

6.1. Bit Interval & Bit Rate

- Bit Interval (Bit Duration) គឺជាពេលដែលតំរូវក្នុង ការបញ្ជូន One Signal Bit ។
- Bit Rate គឺជាចំនូន Bit Interval រឺ ចំនូន Bit ទាំងឡាយណាដែលបានបញ្ជូនក្នុងមួយវិនាទី ។
- > ជាទូទៅ៖ Bit Rate គិតជា bps (bit per second)

Bit Interval =
$$\frac{1}{Bit \ Rate}$$
 => Bit Rate = $\frac{1}{Bit \ Interval}$

7. Transmission Digital Signal

ដើម្បីអោយ Digital Signal រក្សាទ្រង់ទ្រាយដើមលុះ ត្រាតែ Component ទាំងអស់របស់ Frequency ត្រវ តែផ្លាស់ទីកន្លែងកាត់ Transmission Medium ដោយ ត្រឹមត្រវ ។ បើសិនមាន Component ខ្លះមិនបានឆ្លង កាត់នោះធ្វើអោយ Signal ខុសពីភាពដើម នៅខាង Receiver

7. Transmission Digital Signal

7.1. Baseband Transmission

Baseband Transmission គឺជាការបញ្ហូន Digital Signal អោយឆ្លងកាត់ Channel មួយដោយមិនមាន ការផ្លាស់ប្តូរ Digital Signal ទៅជា Analog Signal

7.2. Medium Bandwidth

> បើ Digital Signal មួយត្រូវបានបញ្ជូនអោយឆ្លងកាត់
Transmission Medium ដែលមាន Bandwidth តូច
ដាង Significant Bandwidth របស់ Signal នោះវា
អាច Distortion

7.2. Medium Bandwidth

- > ដើម្បីអោយការបញ្ហូន Data បានលឿនសំរាប់ Bit Rate នៅលើ Channel មួយនោះ Data Rate របស់វា អាស្រ័យលើកត្តាបីគឺ៖
 - Bandwidth ប្រស់ Channel អាចមានកន្លែងទំនេរ
 - កំរិតរលករបស់ Signal ដែលប្រើ
 - គុណភាពនៃ Channel (សំរាប់កំរិតរបស់ Noise)

- ២ ប៉ាះ Channel មានលក្ខណៈពីរគឺ
 Noiseless Channel និង Noisy Channel
- ដើម្បីគណនារក សំរាប់ គេមានរូបមន្តពីរគឺ
 - Nyquist for a noiseless channel
 - Shannon for a noisy channel

ចំពោះ Noiseless Channel គេប្រើ Nyquist Bite
Rate ដែលមានរូបមន្ត Bit Rate អតិបរមាគឺ

Bit Rate = $2 \times Bandwidth \times log_2^L$

- Bandwidth ជា Bandwidth របស់ Channel
- L ចំនូនកំរិត Signal ដែលគេប្រើ
- Bit Rate គិតជា bit per second

🕨 ចំពោះ Noisy Channel គេប្រើ Shannon Capacity ដែលមានរូបមន្ត Capacity (C) នៃ Channel គឺ

 $C = Bandwidth \times log_2^{(1+SNR)}$

- C ជា Capacity នៃ Channel គិតជា bit per second
- Bandwidth ជា Bandwidth នៃ Channel
- SNR ជា Signal-to-noise rate

Q&A???