Modern Methods of Data Analysis Homework 2

Vitaliy Pozdnyakov

Let (Ω, \mathcal{A}, P) be a probability space. Recall that, for $1 \leq p \leq +\infty$, $\mathcal{L}^p(\Omega, A, P)$ denotes the space of all \mathbb{R} -valued random variables $X : \Omega \to \mathbb{R}$ such that $\mathbb{E}[|X|^p] < +\infty$. For $X \in \mathcal{L}^p(\Omega, A, P)$, we denote

$$||X||_p := E[|X|^p]^{1/p}$$

Recall that $\mathcal{L}^{\infty}(\Omega, A, P)$ denotes the space of all \mathbb{R} -valued random variables $X : \Omega \to \mathbb{R}$ for which there exists C > 0 such that P(|X| > C) = 0. For $X \in \mathcal{L}^{\infty}(\Omega, A, P)$, we denote

$$||X||_{\infty} := \inf\{C > 0 : P(|X| > C) = 0\}.$$

Task 2

Let $X \in \mathcal{L}^1(\Omega, \mathcal{A}, P)$ be such that $P(X \neq 0) > 0$. Consider the function $m: [1, +\infty) \to [0, +\infty]$ defined by $m(p) := E[|X|^p]$. Show that the set $\mathcal{J} := \{p \in [1, +\infty) : m(p) < +\infty\}$ is an interval.

Solution

Proof via contradiction:

 $m(1)<+\infty$ via definition of \mathcal{L}^1 . Now suppose that there exist a and b such that $1\leq a\leq b<+\infty$ and

$$\begin{cases} m(1) < +\infty \\ m(a) = +\infty \\ m(b) < +\infty \end{cases} \Leftrightarrow \begin{cases} X \in \mathcal{L}^1 \\ X \notin \mathcal{L}^a \\ X \in \mathcal{L}^b \end{cases}$$

Then $a \notin \mathcal{J}$ and \mathcal{J} is not an interval. From the previous task we know that if $a \leq b$ then $\mathcal{L}^b \subset \mathcal{L}^a$. So if $X \in \mathcal{L}^b$ then $X \in \mathcal{L}^a$, but this is contradiction. Therefore $a \in \mathcal{J}$ and \mathcal{J} is an interval.

Task 4

Suppose that $X \in L^{\infty}(\Omega, \mathcal{A}, P)$. Show that $\lim_{p \to +\infty} ||X||_p = ||X||_{\infty}$.

Solution

On the one side, $||X||_{\infty} = \inf\{C > 0 : P(|X| > C) = 0\}$ via defenition and then $|X(\omega)| \le ||X||_{\infty}$, P-a.e., so

$$\left(\int_{\Omega} |X|^p dP\right)^{1/p} \le \left(\int_{\Omega} ||X||_{\infty}^p dP\right)^{1/p}$$

$$\Rightarrow ||X||_p \le (||X||_{\infty}^p P(\Omega))^{1/p}$$

$$\Rightarrow ||X||_p \le ||X||_{\infty} P(\Omega)^{1/p}$$

Since $P(\Omega)^{1/p} = 1$ by definition of a probability space, we have

$$\limsup_{p \to +\infty} \|X\|_p \le \|X\|_{\infty}$$

On the other side, by defenition of \mathcal{L}^{∞} , for all $\varepsilon > 0$ there exists a probability value a such that

$$P(\{\omega : |X(\omega)| \ge ||X||_{\infty} - \varepsilon\}) \ge a$$

And then

$$\int_{\Omega} |X|^p dP \ge a(\|X\|_{\infty} - \varepsilon)^p$$

Therefore

$$\liminf_{p \to +\infty} \|X\|_p \ge \|X\|_{\infty} - \varepsilon$$

Since ε is arbitrary, consequently we proved that

$$\lim_{p \to +\infty} \|X\|_p = \|X\|_{\infty}$$

Task 6

Consider $X \sim \mathcal{N}(m, \sigma^2)$, for $m \in \mathbb{R}$ and $\sigma^2 > 0$. Show that $X \in \mathcal{L}^p(\Omega, \mathcal{A}, P)$, for all $p \in [1, +\infty)$, but that $X \notin \mathcal{L}^{\infty}(\Omega, \mathcal{A}, P)$.

Solution

Consider the moment-generating function for the random variable $|X|:\Omega\to\mathbb{R}_+$

$$M_{|X|}(t) = E[e^{t|X|}] = \int_{\mathbb{R}} e^{t|x|} \rho d\lambda_1 = \int_{-\infty}^{+\infty} e^{t|x|} \rho(x) dx$$

where

$$\rho(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-m)^2}{2\sigma^2}}$$

If $X \in \mathcal{L}^p(\Omega, \mathcal{A}, P)$ then $E[|X|^p] < +\infty$ via definition, and one of the property of the moment-generating function is $E[|X|^p] = \frac{d^p}{dt^p} M_{|X|}(t)$ where t = 0. So, the proof is complete provided we can show that

$$\frac{d^p}{dt^p}M_{|X|}(t)<+\infty$$

for all $p \in [1, +\infty)$ where t = 0.

Consider the case where m=0 and $\sigma^2=1$. Denote $Y \sim \mathcal{N}(0,1)$

$$M_{|Y|}(t) = \int_{-\infty}^{+\infty} e^{t|x|} \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx = \exp\left(\frac{t^2}{2}\right) \left(\operatorname{erf}\left(\frac{t}{\sqrt{2}}\right) + 1\right)$$

where $\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$ (the error function). Consider only integers p, denoted as n. And then

$$E[|Y|^n] = \frac{d^n}{dt^n} \left[\exp\left(\frac{t^2}{2}\right) \left(\operatorname{erf}\left(\frac{t}{\sqrt{2}}\right) + 1 \right) \right]$$

where t = 0.

We can observe that n-derivation of types of functions e^x , $\frac{x^m}{C}$, $\operatorname{erf}(x)$ and their compositions produces functions of the same types (and constants) for all n. So the values of these functions are less than $+\infty$ for all n with t=0 and consequency $E[|Y|^n] < +\infty$. Next, $E[|X|^n] < +\infty$ too because we can make the linear substitution $X = m + \sigma Y$ and get the same inequality. Moreover, for all $p \notin \mathbb{N}$ we can find n such that p < n, and from the Task 1 we know that if $X \in \mathcal{L}^n$ then $X \in \mathcal{L}^p$. Hence, $X \in \mathcal{L}^p(\Omega, \mathcal{A}, P)$, for all $p \in [1, +\infty)$. Finally, for $Y \sim \mathcal{N}(0,1)$ we can see that

$$\rho(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2} > 0$$

for all $x \in (-\infty, +\infty)$ and thereby there is no C > 0 such that P(|Y| > C) = 0and consequenly $Y \notin \mathcal{L}^{\infty}$. We can obtain the same result for X via linear substitution.

Task 8

Let X be a $(0,+\infty)$ -valued random variables such that $X \in \mathcal{L}^p(\Omega,\mathcal{A},P)$ for some p > 1. For $t \in [1, p]$, we define $\phi(t) := E[X^t] - E[X]^t$. Show that $\operatorname{Ent}[X] = \phi'(1+) := \lim_{p \downarrow 1} \frac{\phi(p) - \phi(1)}{p-1}.$

Solution

$$\phi'(1+) := \lim_{p \downarrow 1} \frac{\phi(p) - \phi(1)}{p - 1} = \lim_{\Delta p \downarrow 0} \frac{\phi(1 + \Delta p) - \phi(1)}{\Delta p}$$
$$= \lim_{\Delta p \downarrow 0} \frac{E[XX^{\Delta p}] - E[X]E[X]^{\Delta p} - E[X] + E[X]}{\Delta p}$$

$$\begin{split} &= \lim_{\Delta p \downarrow 0} \frac{E[XX^{\Delta p}] - E[X]E[X]^{\Delta p}}{\Delta p} \\ &= \left[\frac{E[XX^0] - E[X]E[X]^0}{0} = \frac{0}{0} \right] \end{split}$$

Apply L'Hopital's rule

$$\begin{split} &= \lim_{\Delta p \downarrow 0} \frac{\left(E[XX^{\Delta p}] - E[X]E[X]^{\Delta p}\right)'}{\Delta p'} \\ &= \lim_{\Delta p \downarrow 0} \left(E'[XX^{\Delta p}] - (E[X]E[X]^{\Delta p})'\right) \\ &= \lim_{\Delta p \downarrow 0} \left(E'[XX^{\Delta p}] - E[X]\ln E[X]\right) \end{split}$$

Apply the property of the expectation E'[X] = E[X']

$$\begin{split} &= \lim_{\Delta p \downarrow 0} \left(E\left[(XX^{\Delta p})' \right] - E[X] \ln E[X] \right) \\ &= \lim_{\Delta p \downarrow 0} \left(E[X \ln X] - E[X] \ln E[X] \right) \\ &= E[X \ln X] - E[X] \ln E[X] := \operatorname{Ent}[X] \end{split}$$