Геометрия-2

- 1. а) Вписанная окружность треугольника ABC касается стороны AC в точке $D,\,DM$ её диаметр. Прямая BM пересекает сторону AC в точке K. Докажите, что AK=DC.
- б) В треугольнике ABC через середину M стороны BC и центр I вписанной в этот треугольник окружности проведена прямая MI, которая пересекает высоту AH в точке E. Докажите, что отрезок AE равен радиусу вписанной окружности.
- **2.** а) Вписанная окружность $\triangle ABC$ касается стороны BC в точке A_0 . I_a центр вневписанной окружности; M середина стороны BC. Докажите, что $AA_0||MI_a$.
- б) I_a , I_b , I_c центры вневписанных окружностей; A_0 , B_0 , C_0 середины сторон $\triangle ABC$. Докажите, что прямые I_aA_0 , I_bB_0 , I_cC_0 конкурентны.
- **3.** Докажите, что точка пересечения медиан, точка Нагеля и инцентр $\triangle ABC$ лежат на одной прямой.
- 4. Постройте треугольник, если даны центр вписанной в него окружности, середина одной из сторон и оснвание опущенной на эту сторону высоты.
- **5.** Вневписанная окружность касается стороны BC в точке A_1 . Прямая AA_1 второй раз пересекает вписанную окружность в точке P. M середина стороны BC. Докажите, что PM касается вписанной окружности.
- **6.** Дана трапеция ABCD с основаниями AD и BC. Окружность ω_1 касается основания BC в точке M и продолжений сторон AB и CD за точки B и C; окружность ω_2 касается основания AD в точке N и продолжений сторон AB и CD за точки A и B. Докажите, что отрезок MN проходит через точку пересечения диагоналей трапеции.
- 7. Пусть A_1, B_1, C_1 середины сторон треугольника ABC, I центр вписанной в него окружности. C_2 точка пересечения прямых C_1I и A_1B_1, C_3 точка пересечения прямых CC_2 и AB. Докажите, что прямая IC_3 перпендикулярна прямой AB.