1. Sample Solution

(a) If x > 100 then $\frac{100}{3-2x} > -1$.

 $\forall x \in \mathbb{R} : \text{if } x > 100 \text{ then } \frac{100}{3-2x} > -1.$

Let $x \in \mathbb{R}$.

Assume x > 100.

Then 2x > 200.

Then -2x < -200.

Then 3 - 2x < -197.

Then $\frac{1}{3-2x} > \frac{-1}{197}$. Then $\frac{100}{3-2x} > \frac{-100}{197} = -0.5076$. Then $\frac{100}{3-2x} > -1$.

Then if x > 100 then $\frac{100}{3-2x} > -1$.

Therefore, $\forall x \in \mathbb{R} : \text{if } x > 100 \text{ then } \frac{100}{3-2x} > -1.$

Converse Problem:

 $\forall x \in \mathbb{R} : \text{if } \frac{100}{3-2x} > -1 \text{ then } x > 100.$

False statement.

Prove the negated form: $\exists x \in \mathbb{R} : (\frac{100}{3-2x} > -1) \land \neg (x > 100).$

Let $x_0 = -100$.

Then $x_0 \in \mathbb{R}$.

Then $\frac{100}{3-2x_0} = 0.4926 > -1$.

However, $x_0 \ge 100$ (i.e., $\neg(x_0 > 100)$ is True). Then $(\frac{100}{3-2x_0} > -1) \land \neg(x_0 > 100)$.

Therefore, $\exists x \in \mathbb{R} : (\frac{100}{3-2x} > -1) \land \neg (x > 100).$

(b) If $\frac{3}{x^2-1} < \frac{1}{100}$ then $x \ge 20$.

 $\forall x \in \mathbb{R} : \text{if } \frac{3}{x^2 - 1} < \frac{1}{100} \text{ then } x \geqslant 20.$

False statement.

Prove the negated form: $\exists x \in \mathbb{R} : (\frac{3}{x^2-1} < \frac{1}{100}) \land \neg (x \ge 20).$

Let $x_0 = -20$.

Then $x_0 \in \mathbb{R}$. Then $\frac{3}{x_0^2 - 1} = 0.0075 < \frac{1}{100}$.

However, $x \not\ge 20$ (i.e., $\neg(x_0 \ge 20)$ is True). Then $(\frac{3}{x_0^2 - 1} < \frac{1}{100}) \land \neg(x_0 \ge 20)$.

Therefore, $\exists x \in \mathbb{R} : (\frac{3}{x^2 - 1} < \frac{1}{100}) \land \neg(x \geqslant 20).$

Converse Problem:

 $\forall x \in \mathbb{R} : \text{if } x \geqslant 20 \text{ then } \frac{3}{x^2 - 1} < \frac{1}{100}.$

Let $x \in \mathbb{R}$.

Assume $x \ge 20$.

Then $x^2 \geqslant 400$.

Then $x^2 - 1 \ge 399$.

Then $\frac{1}{x^2-1} \leqslant \frac{1}{399}$. Then $\frac{3}{x^2-1} \leqslant \frac{3}{399}$. Then $\frac{3}{x^2-1} < \frac{3}{300} = \frac{1}{100}$.

Then $\frac{3}{x^2-1} < \frac{1}{100}$.

Then if $x \ge 20$ then $\frac{3}{x^2 - 1} < \frac{1}{100}$.

Therefore, $\forall x \in \mathbb{R} : \text{if } x \geqslant 20 \text{ then } \frac{3}{x^2 - 1} < \frac{1}{100}$.

(c) x > 10 when $\frac{x^5 - 2}{3x^2 + 7} < 100$.

 $\forall x \in \mathbb{R} : \text{if } \frac{x^5 - 2}{3x^2 + 7} < 100 \text{ then } x > 10.$

Prove the negated form: $\exists x \in \mathbb{R} : (\frac{x^5-2}{3x^2+7} < 100) \land \neg(x > 10)$

Let $x_0 = 0$.

Then $x_0 \in \mathbb{R}$. Then $\frac{x_0^5 - 2}{3x_0^2 + 7} = \frac{-2}{7} < 100$.

However, $x \ge 10$ (i.e., $\neg(x_0 > 10)$ is True).

Then $\left(\frac{x_0^5-2}{3x_0^2+7} < 100\right) \land \neg (x_0 > 10).$

Therefore, $\exists x \in \mathbb{R} : (\frac{x^5 - 2}{3x^2 + 7} < 100) \land \neg (x > 10).$

Converse Problem:

 $\forall x \in \mathbb{R} : \text{if } x > 10 \text{ then } \frac{x^5 - 2}{3x^2 + 7} < 100.$

False statement.

Prove the negated form: $\exists x \in \mathbb{R} : (x > 10) \land \neg (\frac{x^5 - 2}{3x^2 + 7} < 100).$

Let $x_0 = 11$.

Then $x_0 \in \mathbb{R}$.

Then $x_0 > 10$.

However, $\frac{x_0^5-2}{3x_0^2+7} = 435.2676 \nleq 100$ (i.e., $\neg(\frac{x_0^5-2}{3x_0^2+7} < 100)$ is True).

Then $(x_0 > 10) \land \neg (\frac{x_0^5 - 2}{3x_0^2 + 7} < 100).$

Therefore, $\exists x \in \mathbb{R} : (x > 10) \land \neg (\frac{x^5 - 2}{3x^2 + 7} < 100).$

(d) $\frac{x^4+x^3+x+1}{x^2} > 200000$ implies that x > 100.

 $\forall x \in \mathbb{R} : \text{if } \frac{x^4 + x^3 + x + 1}{x^2} > 200000 \text{ then } x > 100.$

Prove the negated form: $\exists x \in \mathbb{R} : (\frac{x^4 + x^3 + x + 1}{x^2} > 200000) \land \neg (x > 100).$

Let $x_0 = -450$.

Then $x_0 \in \mathbb{R}$. Then $\frac{x_0^4 + x_0^3 + x_0 + 1}{x_0^2} = 202050 > 200000$.

However, $x_0 \neq 100$ (i.e., $\neg(x_0 > 100)$ is True).

Then $\left(\frac{x_0^4 + x_0^3 + x_0 + 1}{x_0^2} = 202050 > 200000\right) \land \neg(x_0 > 100).$

Therefore, $\exists x \in \mathbb{R} : (\frac{x^4 + x^3 + x + 1}{x^2} > 200000) \land \neg (x > 100).$

Converse Problem:

 $\forall x \in \mathbb{R} : \text{if } x > 100 \text{ then } \frac{x^4 + x^3 + x + 1}{x^2} > 200000.$

False statement.

Prove the negated form: $\exists x \in \mathbb{R} : (x > 100) \land \neg (\frac{x^4 + x^3 + x + 1}{x^2} > 200000).$

Let $x_0 = 150$.

Then $x_0 \in \mathbb{R}$.

Then $x_0 > 100$. However, $\frac{x_0^4 + x_0^3 + x_0 + 1}{x_0^2} = 22650 \not> 200000$. (i.e., $\neg(\frac{x_0^4 + x_0^3 + x_0 + 1}{x_0^2} > 200000)$ is True).

Then
$$(x_0 > 100) \land \neg(\frac{x_0^4 + x_0^3 + x_0 + 1}{x_0^2} > 200000)$$
.
Therefore, $\exists x \in \mathbb{R} : (x > 100) \land \neg(\frac{x^4 + x^3 + x + 1}{x^2} > 200000)$.

2. Sample Solution

(a) Let x be the length of the shorter leg. The other leg has length x + 4. Then by Pythagoras, we have

$$x^2 + (x+4)^2 = 20^2$$
.

(b)

Let x be a positive real number.

Assume $x^2 + (x+4)^2 = 20^2$.

Then $x^2 + 4x - 192 = 0$.

Then (x+16)(x-12)=0.

Then x = -16 or x = 12.

Then, if $x^2 + (x+4)^2 = 20^2$ then x = -16 or x = 12.

Therefore, for any positive number x, if $x^2 + (x+4)^2 = 20^2$ then x = -16 or x = 12.

Since x has to be positive real, then x = 12 cm.

Thus, $\forall x \in \mathbb{R}$, if $x^2 + (x+4)^2 = 20^2$, then x = 12.

Prove the converse $(\forall x \in \mathbb{R}, \text{ if } x = 12 \text{ then } x^2 + (x+4)^2 = 20^2).$

Let $x \in \mathbb{R}$.

Assume x = 12.

Then $x^2 + (x+4)^2 = 12^2 + 16^2 = 400 = 20^2$.

Then if x = 12 then $x^2 + (x+4)^2 = 20^2$.

Therefore, $\forall x \in \mathbb{R}$, if x = 12 then $x^2 + (x+4)^2 = 20^2$.