Evolving Architecture of the Net Zero Power System

Speaker: Luciano Martini, RSE/ISGAN Chair, Ricerca sul Sistema Energetico — RSE S.p.A., Italy

ISGAN International Smart Grid Action Network

Luciano Martini, Chair

Evolving Architecture of the Net Zero Power System

1 March 2023, New Delhi

Evolving Architectureof the Net Zero Power System

Discussion points:

- 1. Emerging Integrated Grid with DER and Two-Way Power Flows
- 2. Grid-Edge and Behind-the-Meter Resources and its Management
- 3. Evolving Grid Architecture with Two Buses
 - a) Standardized and Open Interfaces
 - b) Standardized Tools and APIs
 - c) Standards-based and Standardized Models
 - d) Self-registration of Devices, Applications and Systems
 - e) Roadmap for New Architecture for the Grid

Energy System Transformation

- Information and Communication Technology (ICT) enables better monitoring, operation, decision making and control
 - Strong coupling among systems
- Challenges in energy systems
 - Uncertainty due to integration of distributed energy resources
 - Complexity due to increase in the number of active actors

Electromobility impact on power system

ISGAN Working Group 6 Power transmission & Distribution Systems

Objective: To establish a **long-term vision** for the development of future sustainable power systems

Addressing **system-related challenges** in the development of the future power system:

- Technologies
- Market solutions
- Policies

Structure:

- The activity in Working Group 6 is carried out by a global network of experts
- Managed within 4 Focus Areas

Overview focus area

Expansion Planning and Market Analysis

Lead: Gianluigi Migliavacca (RSE), IT

- Studying the functioning of electricity markets (day-ahead and real time)
- Analyse the evolution of the transmission and distribution networks and their planning modalities

Technology Trends and Deployment

Lead: Emil Hillberg (RISE), SE

- Identify potential and feasibility of innovative solutions supporting grid operation and capacity
- Make recommendations and support demonstration, promotion and deployment of promising technology

System Operation and Security

Lead: Kjetil Uhlen (NTNU), NO

- Assess available methods and tools for operational monitoring and control
- Identify needs for new tools and methods to manage future challenges in balancing control

Transmission and Distribution System Interaction

Lead: Antony Zegers (AIT), AT

 Study how distribution and transmission networks could interact in the future, ensuring stable grid operation under high levels of renewables

micro vs MEGA Grids

ISGAN Working Group 6 activity results

micro vs MEGA grids

Spawning from the aim to enable very high penetration of renewables, two trends are emerging with significant impact on the grid evolution:

micro & MEGA perspectives

Intermediate results: <u>iea-isgan.org/micro-vs-mega-grids</u>

micro vs MEGA grids Characteristics, Drivers & Challenges

	micro perspective	MEGA perspective
Characteristics	Bottom-up & Small scale	Top-down & Utility scale / bulk-scale transfer and gen
	Short-term / agile / alternative grid development	Long-term / slow / traditional grid development
	Many actors (inter-sectoral development)	Few actors (mainly power and energy sector)
Drivers	Close vicinity of the demand	Exploit complementarities of load/prod across regions
	Self-sufficiency / energy independency	Maintain the long-term system adequacy
	Innovative markets / user-centric perspectives	Facilitate international trading / market integration
Challenges	Cost parity	Long-term financial commitment
	Concentrated demand sites	Long lead-time decision-to-commissioning
	Interoperability & standardisation	Justify socio-economic value of investments

micro vs MEGA grids

 Whole-system coordination between micro and MEGA perspectives are needed to provide the most value of investments, larges socio-economic welfare & optimal use of resources

Final activity report under development, publications planned during 2020

Thank you for your kind attention

Contact:

Luciano Martini
ISGAN Chair
RSE, Italy
Luciano.Martini@rse-web.it

For more information on ISGAN: www.iea-isgan.org

Thank You

For discussions/suggestions/queries email: isuw@isuw.in www.isuw.in www.iea-isgan.org

