Results are obtained with h_0^P estimated

CALIBRATED PARAMETERS ON WEDNESDAYS, h_0^Q IS CALIBRATED WITH RESPECT TO OPTIONS LIKELIHOOD									
θ	2010	2011	2012	2013	2014	2015	2016	2017	2018
	4.0550		0.0040	0.0404 05	1.054005		0.5050	0.0001	0.5501
ω	4.2779e - 09	3.2992e - 07	3.3648e - 08	3.8491e - 07	1.2743e - 07	4.4951e - 08	2.5272e - 08	3.9321e - 08	3.7781e - 08
std	(1.6791e - 08)	(1.5604e - 06)	(1.6574e - 07)	(1.3052e - 06)	(4.5655e - 07)	(2.0855e - 07)	(1.4770e - 07)	(1.7009e - 07)	(2.2443e - 07)
median	5.6987e - 10	1.1448e - 09	8.8539e - 10	1.3899e - 09	7.7997e - 10	1.5014e - 09	9.8128e - 10	4.0373e - 10	7.1023e - 10
α	1.8528e - 05	1.6271e - 05	9.0589e - 06	6.1070e - 06	7.6946e - 06	7.2374e - 06	5.1346e - 06	2.3951e - 06	1.3159e - 05
std	(1.9304e - 05)	(2.1985e - 05)	(1.2012e - 05)	(7.9519e - 06)	(9.6389e - 06)	(7.2754e - 06)	(5.8307e - 06)	(3.0938e - 06)	(1.6443e - 05)
median	1.0906e - 05	7.6580e - 06	4.5292e - 06	3.1281e - 06	3.2390e - 06	4.3350e - 06	2.9817e - 06	1.4483e - 06	4.5077e - 06
	1.0300e - 03	7.0500e – 00	4.02926 - 00	3.1281e – 00	3.23306 - 00	4.55506 - 00	2.90176 - 00	1.44036 - 00	4.50776 - 00
β	0.6378	0.5560	0.7245	0.7258	0.6358	0.5520	0.6269	0.7263	0.5387
\mathbf{std}	(0.2696)	(0.2971)	(0.2146)	(0.2478)	(0.2979)	(0.2466)	(0.2257)	(0.2586)	(0.3753)
median	0.7368	0.6567	0.8002	0.8149	0.7673	0.6572	0.6945	0.8054	0.7356
γ^*	134.9727	191.7168	186.9011	254.4028	276.4433	280.6426	298.3299	331.9039	243.3202
std	(47.8695)	(93.1766)	(76.3909)	(194.7410)	(232.3643)	(175.7277)	(157.3293)	(112.0556)	(122.2386)
median	128.3648	175.8916	175.0860	184.1932	222.8042	257.4585	297.1472	333.3806	221.0610
h_0^Q	1.9050 . 04	0.0460 04	0.4090 05	4.0001	4.005005	0.0001	7 5040 05	1.0040 05	1 9405 04
$n_0 \atop \mathbf{std}$	1.3056e - 04 (1.3959e - 04)	2.2460e - 04 (2.3120e - 04)	8.4830e - 05 (5.7765e - 05)	4.8801e - 05	4.8652e - 05 (5.7911e - 05)	(1.1307e - 04)	7.5242e - 05 (1.0294e - 04)	1.9048e - 05 (1.9023e - 05)	1.3485e - 04 (1.7128e - 04)
median	(1.3939e - 04) 9.1311e - 05	(2.3120e - 04) 1.1465e - 04	6.1522e - 05	(4.5932e - 05) 3.3426e - 05	(5.7911e - 05) 2.7470e - 05	(1.1307e - 04) 5.5238e - 05	(1.0294e - 04) 3.7873e - 05	(1.9023e - 05) 1.3922e - 05	(1.7128e - 04) 4.6996e - 05
median	9.1311e – 05	1.1465e - 04	0.1522e – U5	3.3420e – U5	2.1410e – 05	5.5238e – U5	3.1813e – U5	1.3922e - 05	4.0990e – 05
persistency	0.8865	0.9140	0.9172	0.9104	0.8914	0.9184	0.9374	0.9523	0.8261
std	(0.1325)	(0.0899)	(0.1260)	(0.1125)	(0.1276)	(0.0760)	(0.0690)	(0.0709)	(0.2077)
\mathbf{median}	0.9423	0.9529	0.9643	0.9574	0.9469	0.9499	0.9650	0.9764	0.9464
MSE	0.6499	1.0486	1.0785	0.7407	1.1260	1.2960	1.6303	1.7009	4.5699
IVRMSE	0.0565	0.0656	0.0812	0.0793	0.0798	0.0918	0.0991	0.0994	0.0797
MAPE	0.0672	0.0724	0.1105	0.1056	0.1224	0.1361	0.1324	0.1677	0.1248
OptLL	226.1068	234.9978	265.1968	365.6016	393.4111	469.1520	576.9261	651.9071	731.5026