Лабораторная работа XVI: The end

Задание №1: Движение по эллипсоиду

Опрделеите множители Лагранжа и уравнение движения точки, двигающейся по гладкому эллипсоиду с полуосями a,b,c под действием силы тяжести mg, направленной вдоль оси Oz.

Уравнение эллипсоида имеет вид $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$.

- Указания:
 - 1. Запишите систему уравнений для второго закона Ньютона, с учетом сил реакции связей;
 - 2. Определите функцию связей f(x, y, z);
 - 3. Определите первые производные функции связей f(x, y, z) по x, y и z;
 - 4. Определите первую и вторые производную функции связей f(x, y, z) по t;
 - 5. Используя закон сохранения полной механической энергии определите компоненты v_x , v_y и v_z скороси точки;
 - 6. Подставьте все необхордимые неизвестные переменные во вторую производную функции связи по t и определите иножитель Лагранжа;
 - 7. Окончательно запишите систему уравнений, описывающую динамику точки.

Замечание: для рассчета производных параметры a, b, c можно либо определить численно либо при помощи команды Symbol, например a = Symbol('a') и т. д.

Задание №2: Crazy pendulum

Плоский маятник длины l и массы m, точка подвеса которого движется по вертикальной окружности радиуса R с постоянной угловой скоростью ω (рис. 1), описывается функцией Лагранжа:

$$L = \frac{ml^2}{2}v_{\phi}^2 + mRl\omega^2\cos(\phi - \omega t) + mgl\cos(\phi)$$

где ϕ - обощенная координата, описывающая угол отклонения маятника в точке подвеса (рис. 1), а $v_{\phi}=\frac{d\phi}{dt}$ - первая производная координаты ϕ по времени t или скорость изменения координаты ϕ .

Рис. 1: Изображение условий задачи

Определите дифференциальное уравнение движения такого маятника в обобщенных координатах, исходя из следующих указаний:

- 1. Определите производную функции Лагранжа L по ϕ ;
- 2. Определите производную функции Лагранжа L по v_{ϕ} , после чего от полученного результата определите производную по t;
- 3. Подставьте полученные результаты в уравнение Лагранжа 2-го рода: $\frac{d}{dt}\left(\frac{dL}{dv_{\phi}}\right) \frac{dL}{d\phi} = 0$
- 4. Вывидите дифференциальное уравнение движения маятника.

Задание №3: Моделирование

Решите дифференциальное уравнение, полученное в предыдующей задаче, после чего выполните преобразование из обобщенных координат к декартовым и сделайте анимацию движения. Необходимые параметры задать произвольным образом.