

# ECM253 – Linguagens Formais, Autômatos e Compiladores

## Trabalho 01

Marco Furlan

Abril/2021

## Instruções

- Esta atividade deverá ser resolvida em equipe a mesma formada em sala de aula;
- **Responder** todas as **questões na ordem apresentada** em um arquivo Word ou LATEX e depois **exportar** para **PDF**;
- Identificar claramente no início do documento o nome e RA dos integrantes da equipes;
- Enviar o PDF criado para o link do trabalho no MyOpenLMS da disciplina;
- Apenas um integrante da equipe precisa enviar;
- Esta atividade estará disponível a partir de 15/04/2020;
- A solução deverá ser enviada até o dia 22/04/2020.

- (1) (até 3,0 pontos) Responder as questões a seguir sobre lógica de predicados.
  - (a) (até 1,5 ponto) Provar a validade, utilizando regras de inferência e de equivalência, do argumento a seguir:

$$(\forall x)[P(x) \lor Q(x)] \land (\forall x)[\neg P(x) \land Q(x) \to R(x)]$$
$$\to (\forall x)[\neg R(x) \to P(x)]$$

(b) (até 1,5 ponto) Transformar o argumento a seguir em uma fórmula bem formada da logica de predicados e, depois, provar sua validade:

Alguns elefantes tem medo de todos os ratos. Alguns ratos são pequenos. Portanto, existe algum elefante que tem medo de alguma coisa pequena.

**Usar os símbolos** E(x) (x é um elefante), M(x) (x é um rato), A(x,y) (x tem medo de y) e S(x) (x é pequeno).

**Dica**: após fazer a formulação, se for utilizada a identidade  $A \land B \land C \rightarrow D \rightarrow E \equiv A \land B \land C \land D \rightarrow E$ , ela facilitará significativamente a prova (ela foi provada em aula!). Esta identidade vale para lógica proposicional ou de predicados.

- (2) (até 2,0 pontos) Provar as seguintes identidades com conjuntos. Exemplo de prova. Para provar que  $B \bar{A} = B \cap A$ , pode-se proceder assim: se x pertence à  $B \bar{A}$  é porque  $x \in B$  e  $x \notin \bar{A}$ . Mas se  $x \notin \bar{A}$  é porque  $x \in A$ . Então, sendo que  $x \in B$  e  $x \in A$  isso é o mesmo que dizer que  $x \in B \cap A$ , que é o que se queria provar.
  - (a) (até 1,0 pontos)  $B A \subseteq \bar{A}$ .
  - (b) (até 1,0 pontos)  $(A \cap B) \cup C = A \cap (B \cup C)$  se e somente se  $C \subseteq A$ .
- (3) (até 3,0 pontos) Utilizar o princípio da inclusão e exclusão para resolver os problemas a seguir.
  - (a) (até 1,5 pontos) Uma faculdade possui 300 alunos em seu curso de Computação. Sabe-se que 180 alunos estudam Python, 120 estudam Java, 30 estudam Matlab, 12 estudam Python e Matlab, 18 estudam Java e Matlab, 12 estudam Python e Java e 6 estudam as três linguagens. **Pergunta-se**: Quantos alunos estudam exatamente duas linguagens?
  - (b) (até 1,5 pontos) Uma pesquisa realizada com 150 alunos de uma faculdade revelou que 83 deles possuem automóvel, 97 possuem bicicleta, 28 possuem motocicleta, 53 possuem automóvel e bicicleta, 14 possuem automóvel e motocicleta, 7 possuem bicicleta e motocicleta e 2 possuem os três. **Responder**:
    - (i) Quantos alunos possuem apenas bicicleta e nada mais?
    - (ii) Quantos alunos não possuem nenhum dos meios de transporte pesquisados?
- (4) (até 2,0 pontos) Da teoria de logica proposicional, tem-se as seguintes definições de fórmula bem-formada (fbf):
  - V e F são fbfs;
  - Um símbolo proposicional (*A*, *B*, ..., *Z*) é uma fbf;
  - Se *A* é uma fbf, então ¬*A* também é uma fbf;
  - Se A e B são fbfs, então também são  $A \land B$ ,  $A \lor B$ ,  $A \to B$ ,  $A \leftrightarrow B$ ; Se A é uma fbf, então também é (A).

E a prioridade dos operadores relacionais está representada pela tabela a seguir:

| Ordem | Operador          |  |
|-------|-------------------|--|
| 1     | 0                 |  |
| 2     |                   |  |
| 3     | ۸, ۷              |  |
| 4     | $\rightarrow$     |  |
| 5     | $\leftrightarrow$ |  |

A precedência decresce de cima para baixo na tabela. Todos os operadores são binários, com exceção da negação.

A linguagem **Prolog** permite a **redefinição e criação de operadores**. Um **operador** em Prolog é assim **criado**:

```
:- op(prec, tipo, func).
```

Onde op é um **predicado Prolog** que permite **criar um operador**, prec é um **número inteiro entre 0 e 1200** que indica a **precedência** do operador (quanto menor o valor, maior será a precedência) e tipo indica a **associatividade do operador**, especificado pela tabela a seguir:

| Notação de tipo | Significado                              |  |
|-----------------|------------------------------------------|--|
| xfx             | Operador infixo não-associativo          |  |
| xfy             | Operador infixo associativo à direita    |  |
| yfx             | Operador infixo associativo à esquerda   |  |
| fx              | Operador prefixo não associativo         |  |
| fy              | Operador prefixo associativo à direita   |  |
| xf              | Operador pós-fixo não associativo        |  |
| yf              | Operador pós-fixo associativo à esquerda |  |

Por fim, func é o **símbolo do operador** (pode ter vários caracteres de extensão). **Exemplo** da criação de um operador em Prolog:

```
:- op(501, fy, ~).
```

Neste exemplo, o nome do operador é "~", sua precedência é 501 e sua associatividade é "fy", que representa "operador prefixo associativo à direita". Ou seja este operador poderá ser utilizado em expressões como "~X".

Pode-se utilizar este operador para definir que a negação de uma fórmula bem formada (fbf) também é uma fórmula bem formada (teste no Prolog):

```
% definição de operadores
:- op(501, fy, ~).
% símbolos constantes são fbf's
fbf(a).
% regras
% se X é uma fbf, então ~X é uma fbf
fbf(~X):-
    fbf(X).
```

Então, a consulta a seguir é verdadeira:

```
4 ?- fbf(~a).
true.
```

#### Tarefa:

- Elaborar em Prolog uma base de dados contendo regras que permita verificar se expressões são fbfs da lógica proposicional;
- Não é para interpretar as expressões deve-se apenas verificar se uma fórmula é bem-formada ou não;
- Para tanto, **definir** em **Prolog** um **conjunto de operadores lógicos**, bem como suas **precedências**, conforme descrito na tabela a seguir (notar que os operadores em Prolog foram adaptados para representar os mesmos da Lógica Proposicional):

| Operador<br>matemático | Operador em Prolog                                          | Precedência | Associatividade               |
|------------------------|-------------------------------------------------------------|-------------|-------------------------------|
| ()                     | Não precisa definir –<br>utilizar a definição ori-<br>ginal | -           | -                             |
| ٦                      | ~                                                           | 501         | Prefixo associativo à direita |
| Λ, V                   | &, \/                                                       | 502         | Infixo associativo à esquerda |
| <b>→</b>               | ==>                                                         | 503         | Infixo associativo à esquerda |
| $\leftrightarrow$      | <==>                                                        | 504         | Infixo associativo à esquerda |

Então, para **resolver o problema**, crie uma base de dados Prolog seguindo a **sequência apresentada** a seguir:

- Definir os operadores;
- Uma fbf pode ser true e false;
- Definir fbf's básicas literais letras constantes de "a" à "z";
- Definir regras para especificar fbfs válidas, conforme apresentado anteriormente.

Por fim, testar a base de dados criada com fbfs corretas e incorretas. Por exemplo, a fbf a seguir é bem-formada:

```
5 ?- fbf((a \/ b) ==> ~c).
true .
```

### Mas a fbf a seguir não é:

Na base de dados desenvolvida, adicionar cinco exemplos de fbf corretas e cinco exemplos de fbf incorretas em comentários dentro do arquivo de solução desenvolvido.