02 - Linguagem algébrica

Matemática

8° ano mar/2021

Material inspirado no livro "Matemática Atual 7ª série", Antônio José Lopes Bigode. São Paulo, Atual, 1994

A matemática se divide em vários ramos ou subáreas. A aritmética, por exemplo, é o ramo que estuda os números e as operações. A geometria estuda as formas. A álgebra trata das expressões matemáticas com letras, por exemplo, as fórmulas e as equações. A álgebra difere da aritmética pois faz uso da *abstração* ao usar letras para representar números desconhecidos ou que podem assumir muitos valores.

Vamos usar números, letras e sinais de operação para operações relações. Se expressar e quisermos número qualquer, representar um usaremos simplesmente uma letra, por exemplo, x. Se quisermos representar o dobro de um número qualquer, poderemos usar o número dois, que está associado à ideia de dobro, e multiplicá-lo por esse número qualquer escolhido anteriormente: 2x.

Lembrando que quando multiplicamos um número por uma letra, podemos omitir o sinal de multiplicação:

$$y \times 3 = y \cdot 3 = 3y$$

Nesse caso, prefere-se colocar o número antes da letra. Evita-se usar o sinal em cruz para a multiplicação (×) já que ele pode ser confundido com a letra x

Exercício 1. Complete as lacunas seguindo os exemplos:

um número qualquer:	Χ
outro número qualquer:	у
o dobro de um número:	2x
o sucessor de um número:	
o sucessor do dobro de um número:	
o triplo de um número:	
o quádruplo de um número:	
um número mais 5:	
a soma de dois números quaisquer:	
o quadrado de um número:	
o dobro do sucessor de um número:	

Chamamos expressões simbólicas como essas de **expressões algébricas**. Podemos relacionar duas ou mais expressões algébricas. Por exemplo, se quisermos dizer que um número é igual ao dobro de outro número,

poderemos lançar mão do símbolo da igualdade (=) e escrever a = 2b. Se quisermos dizer que um número é maior que outro, escreveremos m > n.

Exercício 2. Complete as lacunas seguindo os exemplos:

um número é igual ao dobro de outro: a = 2b
um número é maior que outro: m > n
um número é menor que seu dobro: x < 2x
um número é igual a outro número mais 5:
o sucessor de um número é igual a outro número:
o dobro de um número é menor ou igual ao triplo
de outro número:
um número é maior do que sete:
um número é menor que seu sucessor:

Compare agora as seguintes sentenças:

- i) 3 + 7 = 10
- ii) xy = 10
- iii) m > 7
- iv) 3 < 5
- v) 8 é primo
- $vi) 2 \cdot 3 = 5$

Você deve ter percebido que as sentenças i e iv são verdadeiras. As sentenças v e vi são falsas. E a ii e iii?

i) 3 + 7 = 10	verdadeiro
ii) xy = 10	?
iii) m > 7	?
iv) 3 < 5	verdadeiro
v) 8 é primo	falso
vi) 2 · 3 = 5	falso

Uma **sentença** matemática é uma expressão que afirma algo sobre alguma coisa. Por exemplo: 5 = 2 + 3 está afirmando que cinco **é** igual a dois mais três. Existem expressões que não são sentenças, por exemplo:

 $(3 + 5) \cdot 8$

Essa expressão não afirma nada, apenas apresenta uma conta.

Nesses casos, x, y, e m são letras que podem representar qualquer número. Chamamos esses números sem valor definido de **variáveis**. Por exemplo, se m for igual a 8, então a ii é verdadeira. Se m for igual a 100, também. Se, no entanto, m for igual a 5, então a ii é falsa. Dá pra entender por que chamamos m de uma variável: seu valor varia! Ou seja, se perguntarmos se a sentença m > 7 é verdadeira, a resposta é: depende do valor de m.

Sentenças sobre as quais não é possível afirmar se são verdadeiras ou falsas devido à presença de uma variável são chamadas de **sentenças abertas**.

Exercício 3. Considere as sentenças abaixo. Para cada uma, decida se é verdadeira, falsa, ou aberta. Se for aberta, ache um ou mais valores para as variáveis que tornem a sentença verdadeira. Os três primeiros itens são exemplos.

x)
$$3 \cdot 4 = 7$$
 Sentença falsa.

y)
$$5 + 2 \le 7$$
 Sentença verdadeira.

z)
$$4x = 8$$
 Sentença aberta. Ela torna-se verdadeira se $x = 2$

a)
$$0, 6 \cdot 4 = 24 \div 10$$
 ...

b)
$$x + y = 17$$

c)
$$5a = 10$$

d)
$$3^3 = 81$$

e)
$$5 + t = 35$$

f)
$$\frac{x}{y} = 1$$

Valor numérico de uma expressão

Dizemos que o **valor numérico** de uma expressão algébrica (ou seja, uma expressão com letras, números e operações) é o valor obtido pelo seguinte procedimento:

- 1) substituir todas as variáveis da expressão por números;
- 2) efetuar todas as operações.

Os números pelos quais as variáveis vão ser substituídas são dados. Por exemplo, considere a expressão algébrica correspondente a "o antecessor do triplo de um número":

$$3n - 1$$

Vamos descobrir qual é o valor numérico dessa expressão **quando o n é igual a 15**.

$$3n-1$$
 Expressão inicial

$$3 \cdot 15 - 1$$

1) substituímos a variável pelo número correspondente (15)

$$45 - 1$$

2) efetuamos as operações

44

Pronto! Quando n=15, O valor numérico de 3n-1 é 44. Podemos expressar essa ideia, em português, da seguinte maneira:

"qual é o valor do antecessor do triplo de um número se esse número é o 15?"

Para outros valores de n, o valor numérico da mesma expressão seria diferente. Verifique que, por exemplo, quando n=5 o valor numérico da expressão é 14.

Exercício 4. Encontre o valor numérico das expressões abaixo:

i)
$$2z + 1$$
, para $z = 3$

vi)
$$t^2 - 1$$
, para $t = -2$

ii)
$$2z + 1$$
, para $z = 2$

vii)
$$t^2 - 1$$
, para $t = -1$

iii)
$$2z + 1$$
, para $z = 1$

viii)
$$t^2 - 1$$
, para $t = 0$

iv)
$$2z + 1$$
, para $z = 0$

ix)
$$t^2 - 1$$
, para $t = 2$

v)
$$2z + 1$$
, para $z = -1$

x)
$$t^2 - 1$$
, para $t = 5$

Exercício 5. Complete a tabela:

а	b	С	a + b	2(a+b)	3 <i>c</i>	2(a+b)-3c
1	-3	-2	-2	-4	-6	2
2	-2	-1	0	0	-3	3
3	-1	0				
4	0	1				
5	1	2				
6	2	3				

7	3	4		
8	4	5		

Antes de continuar lendo, certifique-se de que você tem claro o significado dos seguintes conceitos:

- Expressão algébrica
- Valor numérico de uma expressão algébrica
- Sentença matemática
- Variáve

Equações

O termo **equação** provém etimologicamente da palavra latina æquatĭo, que significa igualação ou igualdade. Uma equação é uma sentença matemática com uma ou mais variáveis e que afirma uma **igualdade**. Em outras palavras, é uma expressão matemática com letras, números, operadores e um símbolo de igual (=). Note que uma equação é uma sentença com uma ou mais variáveis e, portanto, é sempre uma sentença aberta.

Exercício 6. Complete tabela abaixo, cujas linhas dizem respeito a uma lista de sentenças matemáticas e cujas colunas indiquem, a respeito dessas sentenças, o seguinte:

- Se a sentença é uma equação ou não;
- Exemplos de valores para as variáveis que tornam a sentença verdadeira;
- Quantas combinações de valores para as variáveis tornam a sentença verdadeira: uma, duas, muitas ou nenhuma?

Use as primeiras três linhas como exemplo.

sentença	é equação?	exemplos de valores para as variáveis que tornam a sentença verdadeira	quantos valores tornam a sentença verdadeira: um, muitos ou nenhum?
4x = 8	sim	x = 2	um
m < 7	não	m = 6 $m = 5$ $m = 4$ $m = -1000$	muitos
i = j	sim	i = 1 e j = 1 i = 2 e j = 2 i = 3 e j = 3 i = 15 e j = 15 	muitos
5x - 3 = 42			
2(a+b)=0			
$0 \cdot t = 15$			
z + 3 > 100			
x = 2y			
c = c + 3			
3y - 4 = 11			
4(x + 2) = 36			
$7k \le 28$			

Em seguida, analise a tabela e responda:

- i) Que características deve ter uma sentença matemática para haja no máximo uma combinação de valores para as variáveis que a tornem verdadeira? Ou seja, que características têm as sentenças com "nenhum" ou "um" na última coluna?
- ii) Que características têm as sentenças com ou "muitos" na última coluna?