Question Number	Answer		Mark
6(a)	Use of $\frac{1}{2}$ mv ² and mgh (do not credit use of $v^2 = 2as$ since a not constant, scores 0/2) velocity = 0.77 (m s ⁻¹)	(1) (1)	2
6(b)	Use of mv Correct momentum conservation statement Speed = 0.53 m s ⁻¹ (accept 0.56 m s ⁻¹ from use of show that value)	(1) (1) (1)	
	Assumption: no external forces/ no air resistance/ no force on pivot/negligible resistance Example of calculation $320 \text{ g} \times 0.77 \text{ m s}^{-1} = (320 \text{ g} \times \text{v}) + (55 \text{g} \times 1.4 \text{ m s}^{-1})$ Speed of bat = 0.53 m s ⁻¹	(1)	4
6(c)	Use of $E_k = \frac{1}{2} mv^2$ (allow mass in g or kg) Correct calculation of E_k before and after (95, 45, 54 to any power of ten (see below) (If 0.8 m s ⁻¹ and 0.56 m s ⁻¹ , values are 102, 50 and 54) Elastic.	(1) (1) (1)	3
	Example of calculation Before impact $E_k \text{ bat} = \frac{1}{2} 0.320 \text{ kg } 0.77^2 \text{ (m s}^{-1})^2 = 0.095 \text{ J}$ After impact $E_k \text{ bat} = \frac{1}{2} 0.320 \text{ kg } 0.53^2 \text{ (m s}^{-1})^2 = 0.045 \text{ J}$ $E_k \text{ ball} = \frac{1}{2} 0.055 \text{ kg } 1.4^2 \text{ (m s}^{-1})^2 = 0.054 \text{ J}$		
6(d)	Max 2 x measured to nearest cm uncertainty in x gives an uncertainty in GPE / speed (of ball) difficulty of measuring a moving object some energy to sound comments on $E_{(k)}$ after > before relates uncertainty to conclusion made in (c)	(1) (1) (1) (1) (1) (1)	2
	Total for Question		11

Q5.

Question Number	Acceptable answers	Additional guidance	Mark
	The only correct answer is B A is not correct because this is not dimensionally correct		Ţ
	C is not correct because $\frac{E_k}{2n} = \frac{v}{4}$		
	D is not correct because this is not dimensionally correct		

Q6.

Question Number	Answer	Mark	
	В	1	

Q7.

Question Number		Acceptable answers		Additional guidance	Mark
(i)		II	(1)	Example of calculation:	
	•	Use of momentum = mv		$7.1(g)u = 7.1(g) \times 0.9(ms^{-1}) \times cos 8$	
	•	See component(s) in x direction	(1)	$+ 3.6(g) \times 1.4(ms^{-1})$ × cos 1 0	
	•	Uses momentum conservation	(1)	$u = \frac{(6.33 + 4.96)}{7.1}$	
	•	$u = 1.6 \text{ (m s}^{-1}\text{)}$	(1)	$u = 1.59 ms^{-1}$	(4)

Question Number		Acceptable answers		Additional guidance	Mark
(ii)	•	Use of $E_k = \frac{1}{2} mv^2$ Value of Initial $E_k = 9.0 \times 10^{-3}$ (J) and Final $E_k = 6.4 \times 10^{-3}$ (J) (Show that value gives Initial $E_k = 1.42 \times 10^{-2}$ (J) allow ecf from (b)(i))	(1)	Allow ecf from b(i) Example of calculation: Initial $E_k = \frac{1}{2} \times 7.1 \times 10^{-3} (kg) \times 1.59^2 (ms^{-1})^2 = 9.0 \times 10^{-3} J$ Final $E_k = \frac{1}{2} \times 7.1 \times 10^{-3} \times 0.9^2 + \frac{1}{2} \times 3.6 \times 10^{-3} \times 1.4^2 = 6.4 \times 10^{-3} J$	(2)

MCQ Answers:

1)B

2)B

12)C

17)C

18)B