Algorytmiczna teoria gier - zadanie 41

Gabriel Budziński

December 24, 2023

(a)

Weźmy dwa zbiory zwarte X i Y oraz ciągi w tych zbiorach, odpowiednio (x_n) i (y_n) . Wiemy, że (x_n,y_n) jest zbieżny do (x,y) wtedy i tylko wtedy, gdy $x_n \to x$ i $y_n \to y$. Zatem jeśli (x_n) mapodciąg zbieżny (x_{n_k}) i (y_{n_k}) mapodciąg zbieżny $(y_{n_{k_l}})$, to $(x_{n_{k_l}},y_{n_{k_l}})$ jest zbieżnym podciągiem ciągu (x_n,y_n) . Rozszeżenie tego wniosku na produkt zkończonej liczby zbiorów zwartych jest jasne.

(b)

Weźmy zbiory wypukłe A i B oraz dowolne $x_A, y_A \in A$ oraz $x_B, y_B \in B$. Oznaczmy $\{\lambda x + (1-\lambda)y : \lambda \in [0,1]\}$ jako [x,y]. Wiemy, że $[x_A,y_A] \subset A$ oraz $[x_B,y_B] \subset B$, w takim razie $([x_A,y_A],[x_B,y_B]) \subset A \times B$. Z tego mamy $A \times B$ - wypukły. Rozszeżenie tego wniosku na produkt zkończonej liczby zbiorów zwartych jest jasne.

(c)

W przestrzeni dyskretnej każdy zbiór jest otwarty i domknięty, więc każdy przeciwobraz zbioru $B \subset I$, zbiór $A = f^{-1}[B] = x \in S : f(x) = B$ jest zbiorem otwartym.

(d)

Natarczywy adorator:

s_k	S	G	
S	-1	1	p
G	1	-1	1-p
	q	1-q	

Gra ta nie ma czystych równowa Nasha (bo się kręcimy w kółko próbując je znaleźć, nie wiem jak dodać strzałki w tablicy).

Policzmy dla s_k :

$$(-1)q + 1(1-q) = 1q + (-1)(1-q)$$

 $1 - 2q = 2q - 1$

$$q = \frac{1}{2}$$

Analogicznie dla s_a .

Dostajemy MNE $((\frac{1}{2}, \frac{1}{2}), (\frac{1}{2}, \frac{1}{2})).$

(e)

Spełniają one warunek wklęsłości przez równość (są jednocześnie wklęsłe i wypukłe).

(f)

Z twierdzenia Nasha z wykładu (4.1) mamy, że F(s) jest domknięty.

(g)

Ponieważ używając metody z uprzedniego dowodu daje kręcenie się w kółko.