Candidate's Name:	 	
Signature:	 	
P525/1		
CHEMISTRY		
Paper 1		
April. /May. 2024		
2 ½ hrs.		

CHEMISTRY DEPARTMENT

SAYIDINA ABUBAKAR SECONDARY SCHOOL- KABASANDA S.6 END OF TERM ONE EXAMINATIONS 2024

CHEMISTRY

Paper 1

2 hours 45 minutes

INSTRUCTIONS TO CANDIDATES:

- Answer all questions in section A and six questions in section B.
- All question must be answered in the space provided.
- Illustrate your answers with equation(s) where applicable.

Where necessary, use the following:

Molar gas constant, $R = 8.31 \text{ JK}^{-1}\text{mol}^{-1}$

Molar volume of a gas at s.t.p is 22.4 litres

Standard temperature = 273K

Standard pressure = 101325NM⁻²

For examine	r's use only
Section A	
Section B	
Total	

SECTION A (46MARKS)

Answer all questions in this section.

1. The standard electrode potential of some half cells reactions are given below:

	Half cells	5		E ₆ (V)	
Sn ⁴⁺ (aq) + 2e	→ Sn²+ (aq)	+ 0.15	
PbO2(s)	+ 4H+ (aq) + 2e	Pb ²⁺ (aq) + 2H₂O (I)	+1.46	
	te the overall equat ed. (01½mks)	ion for the cell r	eaction that	occurs when the half	cells are
(b). <i>C</i> alc	culate the work done	e by the cell. (Fa	raday's consta	ant= 96500C) (03mks)
(c). Sta	te whether the cell	is feasible or no	t. Give a reaso	on for your answer. ((01mk)
2. Comp	lete the following e	quations and writ	e the accept	ed mechanism in each	case.
(a) CH	H₃CH2CH(OH)CH3 _	conc. H₂SO₄ 180°C			
					(02±mks)

(b) C_6H_6 conc. H_2SO_4	
Heat	
	(03mks)
- 4 > 4 > -	
3. (a) (i) Explain what is meant by	the order of chemical reaction. (01mks)
(ii) Name two methods used to de	termine order of reaction. (01mks)
	kinetics of the decomposition of nitrogen (V) oxide are
given in the table below.	
[N2O5] (moldm ⁻³)	Initial rate (moldm ⁻³ s ⁻¹)
1.6×10^{-3}	0.12
2.4×10^{-3}	0.18
3.2×10^{-3}	×
Calculate the value of x. $(03\frac{1}{2}$ mks))
calculate the value of X. (co gilling)	,

4. The table below shows the melting points of the oxides of group (II) elements.

Oxides	BeO	MgO	CaO	Sr0	BaO
Melting points of oxides (${}^{\circ}C$)	2530	2800	2580	2430	1928

Explain the trend in the melting points of these oxides. (04mks)
5. A compound Q contains 60% carbon, 13.3% hydrogen and the rest being oxygen. W 0.698g of Q was dissolved in 100g of a solvent, there was a 0.19°C depression in freezing point of a solvent. (Kf of the solvent = 1.63 °CKg $^{-1}$ mol $^{-1}$).
(a) Calculate the simplest formula of Q. (O2mks)
(b) Determine the molecular formula of Q. (03mks)

(c) Write the structural formula and the name of compound Q. (01mk)
6. (a) Explain what is meant by a diagonal relationship. (01mk)
(b) Write the electronic configuration of the following elements: (i) Beryllium. (01mk)
(ii) Aluminium. (01mk)
(c) State any two reasons as to why beryllium resembles aluminium in its properties. (02mks)
7. (a) Define the term activation energy. (01mk)
(b) X and Y react to form W and Z according to the following equation.
X(g) + Y(g) W(g) + Z(g) Heat of a reaction= +50KJmol ⁻¹
(i) Draw a fully labelled potential energy versus reaction coordinate diagram for the reaction of X and Y. $(02\frac{1}{2}$ mks)

	e activation energy of the backward readward readward readward reaction is +200KJmol ⁻¹) (01½mks)	<u>.</u> .
8. Complete the fol product in each cas	lowing equations and write the IUPAC no	imes of the main organic
(a) CH3CH2CH2COO	H NaOH(s)/ CaO(s)Heat	(01mk)
Name		. (0½mk)
(b) CH ₃ CH=CHCH ₃ _	1. O ₃ , CCl ₄ , < 20°C 2. H ₂ O, Zn, CH ₃ COOH.	(01mk)
Name		. (0½mk)
(c) CH ₃ COCH ₃	NaBH4H ₂ O	(01mk)
Name		. (0½mk)
9. (a) State the commo Periodic Table. (01mk)	n oxidation states exhibited by element	s in group (IV) of the
b). Discuss the reaction (i) Tin. (02mks)	on of the following group (IV) elements v	with dilute nitric acid.
(ii) Lead (02mk	s)	

SECTION B (54 MARKS) Answer six question from this section
10. Name one functional group that can be identified using each of the following reagents.
In each case state what would be observed and write equation for the reaction that would take place
(a) Bromine water:
Functional group. (01mk)
Observation. (01mk)
Equation. (01mk)
(b) 2, 4-dinitrophenyl hydrazine:
Functional group. (01mk)
Observation. (01mk)
Equation. (01mk)

(c) Sodium carbonate:
Functional group. (01mk)
Observation. (01mk)
Equation. (01mk)
11. (a) Define the term boiling point constant of a substance. (01mk)
(1) (1 + 1) (2 + 1)
(b) State any two colligative properties of a solution. (O2mks)
(c) 2.00g of phosphorus raise the boiling point of 37.4g carbon disulphide by $1.003^{\circ}C$. (i) Calculate the molar mass of phosphorus in carbon disulphide. (Kb for carbon disulphide is $2.35^{\circ}C$ mol $^{-1}$ Kg $^{-1}$) (03mks)
(ii). Hence determine the molecular formula of phosphorous in carbon disulphide. (P= 31) (02mks)
(iii) Comment on the results in c (iii) above. (01mk)

12. Write equations to show how the following conversion can be effected.
(a) CH_4 from $H_2C=CH_2$ (03mks)
(b) CH_3CH_2COOH from $CH_3CH=CH_2$ (03mks)
(c) Benzene to Benzoic acid. (03mks)
13. (a) (i) Sketch a graph to show the pH change when hydrochloric acid is titrated with ammonia solution. (01 $\frac{1}{2}$ mks)
(ii) Explain the shape of your sketch graph in (a) (i). $(03\frac{1}{2}\text{mks})$

nydroxide is added to 2 Dissociation constant o				⁻³) (04mks)
• • • • • • • • • • • • • • • • • • • •				
4. The table below sho	ws the ioniz	zation energie	es of Group VII el	lements.
	ws the ioniz	zation energie	es of Group VII el	lements.
Element Atomic radius(nm)		_		
Element Atomic radius(nm)	F	Cl	Br	I
Element Atomic radius(nm) Ionic radius (nm)	F 0.072 0.136	Cl 0.099 0.181	Br 0.114	I 0.133
Element Atomic radius(nm) Ionic radius (nm)	F 0.072 0.136	Cl 0.099 0.181	Br 0.114	I 0.133
Element Atomic radius(nm) Ionic radius (nm) (a) Define the term ato (b) State and explain the	F 0.072 0.136 mic radius.	CI 0.099 0.181 (02mks)	Br 0.114 0.195	0.133 0.216

(c) Explain why the ionic radius is larger than the atomic radius of the corresponding neutral atom for each element. (O3mks)				
	hen 0.1g of aluminium chloride was vaporized at 350°C and pressure of 1 ere, 19.2cm³ of vapour was formed.			
(i) Calculo	ate the relative molecular mass of aluminium. (02mks)			
	the molecular formula of aluminium chloride in the gaseous state at 350° c. Cl =35.5). (02mks)			
(b) Alumii	nium chloride is normally contaminated by traces of iron (III) chloride.			
	me one reagent that can be used to detect the presence of iron (III) ion in a ated solution of aluminium chloride. (01mk)			
` '	tate what would be observed if the contaminated aluminium chloride solution ed with the reagent you have named in b (i). $(0\frac{1}{2}mk)$			
(c). Wate	r was added dropwise to aluminium chloride.			
(i)	State what was observed. (0½mk)			
(ii)	Write equation for the reaction that took place. (01 $\frac{1}{2}$ mks)			

(d)	State one use of aluminium chloride in organic synthesis. (01½mks)
 16. (c	a) Explain the term partition coefficient. (O2mks)
(b) S	tate two conditions under which partition coefficient is valid. (02mks)
solut	solute Q is three times as soluble in ethoxyethane as in water. An aqueous ion containing 4.5g of Q per litre of a solution was shaken by ethoxyethane in a rating funnel. Calculate the mass of Q that was extracted when the solution was en:
(i) 	With 100cm³ of ethoxyethane. (02mks)
(ii)	Twice with 50cm³ of ethoxyethane. (02mks)

(d) Com	ment on your results in (c) (above. (01mk)				
17. Sodium, alı Table.	ıminium, silicon and phospho	rous are the elements in per	iod 3 of the Periodic			
(a) For each el	ement, write the formula ar	nd name the structure of the	oxide (04½mks)			
Element	Formula of oxide	Structure				
Sodium						
Aluminium						
Silicon						
Phosphorous						
•	ition for the reaction betwe					
(iii) Excess sodium hydroxide. (01½mks)						
(c) Write equo (01½mks)	tion of a reaction between ·	the oxide of silicon and sodiu	ım hydroxide.			

END.