Assignment 3: GPU (CUDA) Image Filters

[Item 1] - For the assignment, submit the .cu file

[Item 2] - Provide the execution time for the Sobel filter:

Input Size	GPU Execution	CPU Execution	Speedup
	Time	Time	
lena.bmp	0.189 ms	2.211000 ms	11.69X
dublin.bmp	1.837	57.187000 ms	31.12X

GPU Execution Output:

Lena

Dublin

Assignment 3: GPU (CUDA) Image Filters

We can see that the GPU execution is about 30 times faster than the CPU. This is because image processing algorithms constitute to performing same instructions on several pixels resulting in possibility of a high level of parallelism.

[Item 3] – Implement the Average Filter

Lena

Dublin

Assignment 3: GPU (CUDA) Image Filters

Boost Filter Image:

Lena

Dublin

Assignment 3: GPU (CUDA) Image Filters

[Item 4] - Graduate Students- Sobel filter 5x5

Input Size	3x3 GPU	5x5 GPU	Speedup
	Execution Time	Execution Time	·
lena.bmp	0.189	0.247	0.843x
dublin.bmp	1.837	1.895	0.96x

The Threshold Value used to obtain the images below were 1070 which was a lot greater than

the previous.

Lena

Dublin