Curve Tracing

MANY sensor-based techniques, such as those in sections 2.3.3 and 5.2.5, are essentially curve-tracing algorithms. In both cases, the robot is, in a sense, "determining" the curve as it is being traced. Such techniques relied on two fundamental principles: the curve being traced exists and under the "right conditions," the curve can be traced with simple predictor-corrector techniques. These principles rested on two theorems, the implicit function theorem, and the Newton-Raphson convergence theorem, described below.

D.1 Implicit Function Theorem

Consider a smooth function of multiple variables, f(x, y), and consider the surface that is defined by the equation $f(x, y) = z_0$ for some fixed z_0 . Under certain conditions, this surface can be used to write a new function that defines the y variables in terms of the x variables, i.e., $y = g(x, z_0)$. The theorem that states these conditions is called the *implicit function theorem*.

THEOREM D.1.1 (Implicit Function Theorem) Let $f: \mathbb{R}^m \times \mathbb{R}^n \to \mathbb{R}^n$ be a smooth vector-valued function, f(x, y). Assume that $D_y f(x_0, y_0)$ is invertible for some $x_0 \in \mathbb{R}^m$, $y_0 \in \mathbb{R}^n$. Then there exist neighborhoods X_0 of x_0 and X_0 of x_0 and a unique, smooth map $x_0 \in \mathbb{R}^n$ such that

$$f(x, g(x, z)) = z$$
for all $x \in X_0, z \in Z_0$.

488 D Curve Tracing

D.2 Newton-Raphson Convergence Theorem

By numerically following the set of points where f(x, y) = 0, we can locally construct a curve. While there are a number of curve tracing techniques [232], consider an adaptation of a common predictor-corrector scheme. Moving in the tangent direction can serve as a prediction. However, if there is curvature, then the tangent prediction is not correct. Therefore, a correction method is used. The correction procedure occurs on a plane orthogonal to the tangent; this plane is called a correcting plane. The correction step finds the location where the curve being traced intersects the correcting plane and is an application of the Newton Convergence Theorem [232].

THEOREM D.2.1 (Newton-Raphson Convergence Theorem) Let $f: \mathbb{R}^n \to \mathbb{R}^n$ and $f(y^*) = 0$. For some $\rho > 0$, let f satisfy

- $Df(y^*)$ is nonsingular with bounded inverse, i.e., $||(Df(y^*))^{-1}|| \le \beta$

Now consider the sequence $\{y^h\}$ defined by

$$y^{h+1} = y^h - (Df(y^h))^{-1} f(y^h)$$

for any $y^0 \in B_\rho(y^*)$. Then $y^h \in B_\rho(y^*)$ for all h > 0, and the sequence $\{y^h\}$ quadratically converges onto y^* , i.e.,

$$||y^{h+1} - y^*|| \le a||y^h - y^*||^2$$

where
$$a = \frac{\beta \gamma}{2(1-\rho\beta\gamma)} < \frac{1}{\rho}$$
.