Electromagnetismo aplicado TB069

Guía de ejercicios Nº 2

M=MrMa

Buen conductor

Ejercicio 1

Calcular la constante de propagación γ para un material que tiene $\mu_r=1, \varepsilon_r=8 \text{ y}$ $\sigma=2,5.10^{-13} \text{ S/m}, \text{ si la frecuencia de la onda es 1,6 MHz.}$

Ejercicio 2

~ d8 = 10 log (P = / P2) = 2 Np = ln (= 2/P2)

Obtener el factor de conversión entre Np y dB = $10 \frac{\sqrt{p_1/p_1}}{\sqrt{p_1/p_1}} \Rightarrow 20 = 4,343 2 =$

Ejercicio 3

¿A qué frecuencia puede considerarse la tierra un dieléctrico perfecto, si $\sigma = 5.10^{-3}$ S/m, $\mu_r = 1$ y $\varepsilon_r = 8$? ¿Puede suponrse $\alpha = 0$ a dicha frecuencia?

Ejercicio 4

Calcular la constante de propagación γ a una frecuencia de 500 kHz para un medio en el cual $\mu_r=1,\, \varepsilon_r=15$ y $\sigma = 0$. ¿A qué velocidad se propagará una onda eletromagnética en este medio?

Ejercicio 5

Calcular la constante de propagación γ a una frecuencia de 400 MHz para un medio en el cual $\varepsilon_r = 16$, $\mu_r = 4,5$ y $\sigma = 0, 6$ S/m. Obtener la relación entre la velocidad de propagación en el medio y la velocidad de propagación en el vacío.

Ejercicio 6

En un medio parcialmente conductor, $\varepsilon_r=18,5,\,\mu_r=800$ y $\sigma=1$ S/m. Obtener $\alpha,\,\beta,\,\eta$ y la velocidad de propagación para una frecuencia de 1 GHz. Determinar H, dado $\mathbf{E} = 50e^{-\alpha z}e^{j(\omega t - \beta z)}$ V/m $\mathbf{\hat{x}}$.

Ejercicio 7

Una onda plana se propaga por un medio no magnético. Determinar la constante dieléctrica del medio si:

- 1) La impedancia intrínseca es 200 Ω .
- 2) La longitud de onda a 10 GHz es 1,5 cm.

Ejercicio 8

Calcular la profundidad de penetración δ a una frecuencia de 1,6 MHz en el aluminio, cuya conductividad es $\sigma = 3.82.10^7$ S/m y su permeabilidad relativa $\mu_r = 1$. Calcular también el factor de propagación γ y la velocidad de propagación.

Ejercicio 9

Calcular la impedancia intrínseca η , la constante de propagación γ y la velocidad de propagación v en un medio conductor en el que $\sigma = 5, 8.10^7$ S/m y $\mu_r = 1$, a una frecuencia de 100 MHz.

Ejercicio 10

Para la plata, $\sigma = 3.10^6$ S/m. ¿A qué frecuencia la profundidad de penetración δ será de 1 mm?

Ejercicio 11

Para el cobre, $\sigma = 5, 8.10^7$ S/m. ¿A qué frecuencia la constante de fase $\beta = 3, 71, 10^5$ rad/m?

Ejercicio 12

La amplitud del campo eléctrico E dentro de un líquido es 10 V/m y las constantes son: $\mu_r = 1$, $\varepsilon_r = 20$ y $\sigma = 0, 5$ S/m. Calcular la amplitud de E a una distancia de 10 cm dentro del medio para las frecuencias:

- 5 MHz.
- 50 MHz.
- 500 MHz.

Ejercicio 13

Determinar las pérdidas en dB/km de una onda que se propaga en tierra seca a una frecuencia de 500 kHz. Los parámetros de la tierra seca a dicha frecuencia son $\sigma=1.10^{-3}$ S/m, $\mu_r=1$ y $\varepsilon_r=10$.

Ejercicio 14

La nieve recién caída tiene una $\tan{(\delta)}=0,02$ y una constante dieléctrica $\varepsilon_r=1,2$ a una frecuencia de 1 MHz. Calcular la pérdida en dB/km para una onda plana que se propaga en la nieve recién caída a una frecuencia de 1 MHz.

Ejercicio 15

Un submarino con su antena justo debajo de la superficie del agua recibe una señal de 1 kHz que registra 20 dB por encima del nivel de ruido.

- 1) ¿Cuanto puede sumergirse el submarino antes de que pierda la señal?
- 2) ¿Qué longitud es la de su antena dipolar $\lambda/2$?

Ejercicio 16

Calcular la atenuación en dB para una distancia de 5 veces la profundidad de penetración.

Ejercicio 17

Una onda plana de 3 GHz se propaga en un medio no magnético con $\tan{(\delta)}=0,05$ y una constante dieléctrica $\varepsilon_r=2,5$.

- 1) Calcular la distancia a la cual se reducirá a la mitad la amplitud de la onda.
- 2) Calcular la impedancia intrínseca, la longitud de onda y la velocidad de propagación.

Ejercicio 18

En el espacio libre, una onda que se propaga en el sentido positivo de z tiene un campo eléctrico ${\bf E}=50e^{j(\omega t-\beta z)}$ V/m $\hat{\bf x}$. Calcular la potencia media que cruza un área circular de radio 2,5 m.

Ejercicio 19

En el espacio libre, $\mathbf{E} = 150e^{j(\omega t - \beta z)}$ V/m $\mathbf{\hat{x}}$. Demostrar que la potencia total que atraviesa un disco circular de radio 10 cm en un plano z= constante es 1 W.

Ejercicio 20

En coordenadas esféricas, la onda esférica

$$\mathbf{E} = \frac{100}{r} \sin(\theta) e^{j(\omega t - \beta z)} \text{ V/m } \hat{\boldsymbol{\theta}} \qquad \mathbf{H} = \frac{0,265}{r} \sin(\theta) e^{j(\omega t - \beta z)} \text{ A/m } \hat{\boldsymbol{\phi}}$$

representa el campo a grandes distancias de un dipolo en el espacio libre. Calcular la potencia media que atraviesa un cascarón hemisférico de r=1 km, $0 < \theta < \pi$.

Ejercicio 21

En el espacio libre, $\mathbf{E}=150e^{j(\omega t-\beta z)}$ V/m $\mathbf{\hat{x}}$. Calcular la potencia media que atraviesa un área rectangular de lados 30 mm y 15 mm, en un plano z=0.

Ejercicio 22

Una onda plana se propaga en el espacio libre con una amplitud del campo eléctrico $E=10~\mathrm{V/m}$. Calcular:

- 1) El valor máximo del vector de Poynting.
- 2) El valor medio del vector de Poynting.
- 3) La amplitud del campo magnético.

Ejercicio 23

Una onda plana en el espacio libre, de frecuencia 10 MHz, tiene un vector de Poynting de valor medio 2 W/m². Calcular:

- 1) La longitud de onda y la velocidad de propagación de la onda.
- 2) La amplitud del campo eléctrico y del campo magnético.

Ejercicio 24

La densidad de potencia de toda la radiación electromagnética del sol en la superficie terrestre es 1400 W/m².

- 1) Calcular el valor cuadrático medio del campo eléctrico E en la Tierra, suponiendo que toda la luz solar se concentra en una sola frecuencia.
- 2) Suponiendo que el sol irradia isotrópicamente, ¿cual es la potencia que emerge del sol? La distancia entre el sol y la Tierra es de 1,49.10⁸ km.
- 3) Calcular la potencia total recibida por la Tierra. El radio de la Tierra es de 6,37.10³ km.

Ejercicio 25

Un transmisor de 11 GHz irradia su potencia isotrópicamente en el espacio libre. Asumiendo que la potencia irradiada es 50 mW, a una distancia de 3 km, calcular:

- 1) Densidad de potencia media.
- 2) Amplitudes y valores eficaces de los campos eléctrico y magnético.