Problem Sheet 4

Henri Sota h.sota@jacobs-university.de Computer Science 2022

October 11, 2019

Problem 4.1

a) Let $\preceq \subseteq \Sigma^* \times \Sigma^*$ be a relation such that $p \preceq w$ for $p, w \in \Sigma^*$ if p is a prefix of w. Show that \preceq is a partial order.

In order to show that \leq is a partial order on Σ^* , \leq should have the following properties: reflexive, antisymmetric, transitive

- Reflexive: $\forall p, p \in \Sigma^*$. $(p, p) \in \Sigma^*$ because p can be a prefix to itself (p = w) i.e. p = ``foo''
- Antisymmetric: $\forall p, w \in \Sigma^*$. $((p, w) \in \Sigma^* \land (w, p) \in \Sigma^*) \implies p = w$ because if p is a prefix of w and w is a prefix of p when p = w from the definition of prefix then antisymmetric property is true
- Transitive:

```
\begin{array}{ll} \forall p,w\in \Sigma^*. & (p,w)\in \Sigma^*\ p \ \text{is a prefix of}\ w\\ \forall w,v\in \Sigma^*. & (w,v)\in \Sigma^*\ w \ \text{is a prefix of}\ v\\ \therefore \ p \ \text{is a prefix of}\ v \ (p,v)\in \Sigma^*\ (\text{including case when}\ p=w \ \text{and}\ w=v) \end{array}
```

b) Let $\prec \subseteq \Sigma^* \times \Sigma^*$ be a relation such that $p \prec w$ for $p, w \in \Sigma^*$ if p is a proper prefix of w. Show that \prec is a strict partial order.

In order to show that \prec is a strict partial order on Σ^* , \prec should have the following properties: irreflexive, asymmetric, transitive

- Irreflexive: $\forall p, p \in \Sigma^*$. $(p, p) \notin \Sigma^*$ because p can't be a proper prefix to itself $(p \neq w)$
- Asymmetric: $\forall p, w \in \Sigma^*$. $(p, w) \in \Sigma^* \implies (w, p) \notin \Sigma^*$ because if p is a prefix of w then w can't be a prefix of p when $p \neq w$ from the definition of proper prefix then asymmetric property is true
- Transitive:

```
\forall p, w \in \Sigma^*. (p, w) \in \Sigma^* p is a prefix of w

\forall w, v \in \Sigma^* (w, v) \in \Sigma^* w is a prefix of v

\therefore p is a prefix of v (p, v) \in \Sigma^* (excluding case when p = w and w = v)
```

c) Both order relations, \leq and \prec , are not total. Total property for \leq and \prec would be defined as:

$$\forall p, w \in \Sigma^*.(p, w) \in \Sigma^* \lor (w, p) \in \Sigma^*$$

I.e. if p = "abc" and w = "def", then $(p, w) \notin \Sigma^*$ and $(w, p) \notin \Sigma^*$ because p is not a prefix of w and neither w is a prefix of p.

Problem 4.2

a) If $g \circ f$ is bijective, then f is injective and g is surjective.

For f to be injective, every element of the codomain B of f should be mapped to by at most one element of the domain A: $\forall x, y \in A. f(x) = f(y) \implies x = y$

For g to be surjective, every element of the codomain C of g should be mapped to by at least one element of the domain $B: \forall y \in C. \exists x \in B. f(x) = y$

Let
$$A = \{x, y, z\}, B = \{m, n, o, p\}, C = \{a, b, c\}$$

- f in this case is prescribed by $x \mapsto m$, $y \mapsto n$ and $z \mapsto p$. (leaving o as an element of the codomain for which there is no value which maps to it) $\to f$ is injective because every element of the codomain has been mapped by at most one element of the domain
- g in this case is prescribed by $m \mapsto a$, $n \mapsto b$, $o \mapsto c$ and $p \mapsto c$. $\to g$ is surjective because every element of the codomain has been mapped by at least one element of the domain
- $g \circ f$ has domain $A = \{x, y, z\}$ and codomain $C = \{a, b, c\}$. $g \circ f$ is bijective because every element of the codomain C is mapped to by exactly only one element of the domain A. $g \circ f$ is prescribed by $x \mapsto a$, $y \mapsto b$ and $z \mapsto c$.
- b) Let $A = \{x, y, z\}, B = \{m, n, o\}, C = \{a, b\}$
 - f in this case is prescribed by $x \mapsto m$, $y \mapsto n$ and $z \mapsto o$. $\to f$ is injective because every element of the codomain has been mapped by at most one element of the domain
 - g in this case is prescribed by $m \mapsto a$, $n \mapsto a$ and $o \mapsto b$. $\to g$ is surjective because every element of the codomain has been mapped by at least one element of the domain
 - $g \circ f$ has domain $A = \{x, y, z\}$ and codomain $C = \{a, b\}$. $g \circ f$ is not bijective because one element of the codomain C has been mapped by more than element of domain A. $g \circ f$ is prescribed by $x \mapsto a$, $y \mapsto a$ and $z \mapsto b$.
- c) For f to be not surjective, there must at least one element of the codomain to which no element of the domain map to: $\exists y \in B \ s.t. \ \forall x \in A.f(x) \neq y$

For g to be not injective, there must be at least one 2 distinct elements of the domain which map to the same value in the codomain: $\exists x, y \in B, x \neq y : f(x) = f(y)$

Let
$$A = \{x, y\}, B = \{m, n, o\}, C = \{a, b\}$$

- f in this case is prescribed by $x \mapsto m$ and $y \mapsto n$. $\to f$ is not surjective because at least one element of the codomain is not mapped by any element of the domain (o).
- g in this case is prescribed by $m \mapsto a$, $n \mapsto b$ and $o \mapsto a$. $\to g$ is not injective because there are 2 distinct elements of the domain B which map to the same element of the codomain C.
- $g \circ f$ has domain $A = \{x, y\}$ and codomain $C = \{a, b\}$. $g \circ f$ is bijective because every element of the codomain C is mapped to by exactly only one element of the domain A. $g \circ f$ is prescribed by $x \mapsto a$ and $y \mapsto b$.

Problem 4.3

```
a) -- Guards used to check if input that is Integer is a special prime or not
  -- Integer is a special prime if it is prime and it is the sum of 2
     neighboring
  -- primes and 1
  -- Function outputs the result as a Boolean value
  isSpecialPrime :: Integer -> Bool
  isSpecialPrime num
     -- Comprehend a list made of all the primes smaller than num
    -- Call function checkSum to see if any neighboring primes and 1 equal to
    | isPrime num == True = checkSum num [x | x <- [1..num-2], isPrime x]
    | otherwise = False
  -- Pattern matching combined with guards to recursively iterate through our
  -- by taking 2 elements of our list and checking if their sum + 1 equals to
  -- In case that isn't True check the tail of our list with checkSum
  -- If we have arrived at the end of the list (calling checkSum with empty list
     )
  -- our num is not a special prime
  checkSum :: Integer -> [Integer] -> Bool
  checkSum num [] = False
  checkSum num 1st
    | ((head (take 2 lst)) + (last (take 2 lst)) + 1) == num = True
  | otherwise = checkSum num (tail lst)
```

Listing 1: isPrime is a function taken from Problem 3.3

In order to test this function, I've used multiple calls to this function with different input, given by a list comprehension, namely the list of numbers from 2 to 100, which yielded a result:

[13,19,31,37,43,53,61,79]