Nuclear Fuel Cycle

NUGN506 - Homework

By

GUILLAUME L'HER

Department of Nuclear Engineering COLORADO SCHOOL OF MINES

Homework submitted for the Nuclear Fuel Cycle class at the Colorado School of Mines.

FALL 2017

TABLE OF CONTENTS

]	Pag	e
1	Nuc	lear F	uel Fabric	ation	ì														1
	1.1	Proble	em 5-1			 	 												1
		1.1.1	Problem			 	 												1
		1.1.2	Solution			 	 												1
	1.2	Proble	em 5-2			 	 												2
		1.2.1	Problem			 	 												2
		1.2.2	Solution			 	 												2
		1.2.3	Problem			 	 												3
		1.2.4	Solution			 	 												3
Bi	bliog	graphy																	5

CHAPTER

NUCLEAR FUEL FABRICATION

everal problems related to the reactor flux and power are considered in this homework.

Problem 5-1

1.1.1 Problem

A cylindrical thermal reactor with a radius of 1.8 m and a height of 3.8 m operates at a power of 1100 MWe with a thermal conversion efficiency (MWth \rightarrow MWe) of 33%. The reactor is fueled with 95 tons of uranium enriched to 3.0 wt% U-235. Assume 200 MeV released per fission and a U-235 fission cross section of 470 b for the neutron spectrum in this reactor. What is the average neutron flux?

1.1.2 Solution

We can first obtain the number of fission needed to get 1 joule or 1 Watt-second, considering $E_f = 200~MeV$. One fission releases $200*1.602177\times10^{-13} = 3.2044\times10^{-11}$ Watt-seconds. That is, you need $1/3.2044\times10^{-11} = 3.1207\times10^{10}$ fission events to generate 1 Watt-second.

We can then link the reactor power P to the flux ϕ using:

(1.1)
$$P = \frac{\phi * \Sigma_f * V}{3.1207 \times 10^{10}}$$

And so, the flux is given by:

(1.2)
$$\phi = \frac{P * 3.1207 \times 10^{10}}{\Sigma_f * V}$$

The volume is $V = 3.868 \times 10^7 \ cm^3$. $P = 3.3 \times 10^9 \ Wth$.

The microscopic cross-section is $\sigma_f=470~b$. We can obtain the macroscopic cross-section using $\Sigma_f=\sigma_f*\rho$, where ρ is the atomic density in the fuel. We will consider here a classical reactor with a pin radius of 0.505 cm, a cladding with a width of 0.04 cm and a lattice size of 1.4 cm. Considering a 3% enriched UO2 fuel with a density of 10.1 $g.cm^{-3}$, water-moderated (0.8 $g.cm^{-3}$), HT9 cladding reactor (7.874 $g.cm^{-3}$), we can homogenize the reactor core (neglecting the absence of fuel in the control rods and some other geometric effects) and compute that we have $4.44\times10^{22}~atoms.cm^{-3}$ (full calculation details available upon request). Consequently, $\Sigma_f=470\times10^{-24}*4.44\times10^{22}=20.86cm^{-1}$.

Plugging all this in the previous equation, we can obtain:

$$\phi = \frac{3.3 \times 10^9 * 3.1207 \times 10^{10}}{20.86 * 3.868 \times 10^7} = 1.276 \times 10^{11} \ n.cm^{-2}.s^{-1}$$

I could also (probably should) have used the amount of UO2 present (95 tons) to compute the atomic density of UO2 within the given volume:

The atomic weight of UO2 is 270 g/mol. The density of the fuel in the active reactor core is $95\times 10^6/3.868\times 10^7=2.456$ g.cm⁻³. Consequently, the atomic density in the reactor is $\frac{\rho N_A}{M}=\frac{2.456*6.022\times 10^{23}}{270}=5.478\times 10^{21}$ atoms.cm⁻³. Using this value, we can obtain $\Sigma_f=470\times 10^{-24}*5.478\times 10^{21}=2.57cm^{-1}$, which eventually gives us a flux of $\phi=1.03\times 10^{12}$ n.cm⁻².s⁻¹.

1.2 **Problem 5-2**

1.2.1 Problem

Calculate the macroscopic (n,γ) cross section (Σ_{γ}) of natural uranium in the form of uranium metal (density = 18.95 g/cm 3) for reactions in the resonance region of the neutron spectrum.

1.2.2 Solution

We'll neglect the U-234 presence in the uranium metal, and consider natural uranium (0.711% U-235, 99.289% U-238). In the resonance region, $\sigma_{\gamma,U8} = 277 \ b$, while $\sigma_{\gamma,U5} = 140 \ b$.

We can calculate the total macroscopic cross-section using:

(1.4)
$$\Sigma_{\gamma} = \sigma_{\gamma,U8} * N_{U8} + \sigma_{\gamma,U5} * N_{U5}$$

 N_{U8} and N_{U5} can be obtained from the metal density:

(1.5)
$$N_{U5} = \frac{e * \rho N_A}{M} = \frac{e * \rho N_A}{(1 - e) * 238.0289 + e * 235.0439}$$

(1.6)
$$N_{U8} = \frac{(1-e)*\rho N_A}{M} = \frac{(1-e)*\rho N_A}{(1-e)*238.0289 + e*235.0439}$$

With a natural enrichement, M=(1-e)*238.0289+e*235.0439=238.0077~g/mol This gives us $N_{U8}=\frac{0.99289*18.95*N_A}{238.0077}=4.76\times10^{22}~atoms.cm^{-3}$ and $N_{U5}=\frac{0.00711*18.95*N_A}{238.0077}=3.41\times10^{20}~atoms.cm^{-3}$.

And consequently, $\Sigma_{\gamma} = 277 \times 10^{-24} * 4.76 \times 10^{22} + 140 \times 10^{-24} * 3.41 \times 10^{20} = 13.23 \ cm^{-1}$

1.2.3 Problem

Calculate the mass of Pu-239 produced in a reactor operating for one year with an average flux of $1.2 \times 10^{12}~n.cm^{-2}.s^{-1}$, loaded with 90 tons of uranium enriched to 3 wt% U-235. For cross sections, assume that for U-238 $\sigma_c = 2.1~b$ and $\sigma_a = 2.3~b$ and for Pu-239 $\sigma_a = 600b$ and the half-life of Pu-239 is 24,400 years.

1.2.4 Solution

Pu-239 is created by capture of a neutron on U-238 and beta decay of the resulting U-239 with a short half-life. Consequently, we can consider that every neutron capture by U-238 results in Pu-239. The reaction rate for the neutron capture by U-238 is $R = \phi * \sigma_c = 1.2 \times 10^{12} * 2.1 \times 10^{-24} = 2.52 \times 10^{-12} s^{-1}$. We can multiply by the number of U-238 atoms present in the fuel to compute the number of Pu-239 created per second.

$$N_{U8} = \frac{(1-e)*\rho V N_A}{M} = \frac{(1-e)*m*N_A}{(1-e)*238.0289 + e*235.0439} = \frac{0.97*90 \times 10^6*N_A}{237.94} = 2.21 \times 10^{29}$$

Consequently, every second, we will have created $N_{U8}*R=5.57\times10^{17}$ atoms of Pu-239 in the reactor. However, the Pu-239 would decay, with a half-life of 24,400 years, and it would also absorb neutrons.

These losses are given by $(\lambda + \sigma_{a,Pu239} * \phi) * N_{Pu-239}$. We can calculate the losses to be $(\frac{\ln(2)}{T_{1/2}} + \sigma_{a,Pu239} * \phi) * N_{Pu-239} = 4 \times 10^8$, the impact of the natural radioactive decay is negligible.

Consequently, the losses to capture and radioactive decay are negligible compared to the production of Pu-239, and we create 1.76×10^{25} atoms of Pu-239 after one year, that is $1.76\times10^{25}*239.05216*1.66054e-24$ g=6.99 kg.

BIBLIOGRAPHY