Feasibility study on using $\phi \to K^0 \overline{K}^0$ at LHCb to test for CPT invariance

Sonja Bartkowski Supervisors: Giulio Dujany & George Lafferty In collaboration with Lorenzo Capriotti, Jonathan Harrison, Wojciech Krzemien, Jeroen Van Tilburg, & Wojciech Wislicki

September 30, 2015

$$\ket{\phi}
ightarrow rac{1}{\sqrt{2}} \left(\left| \mathcal{K}^0
ight
angle \left| \overline{\mathcal{K}}^0
ight
angle - \left| \overline{\mathcal{K}}^0
ight
angle \left| \mathcal{K}^0
ight
angle
ight) = rac{\mathcal{N}}{\sqrt{2}} \left(\ket{\mathcal{K}_{\mathcal{S}}} \ket{\mathcal{K}_{\mathcal{L}}} - \ket{\mathcal{K}_{\mathcal{L}}} \ket{\mathcal{K}_{\mathcal{S}}} \right)$$

- \blacksquare K_S and K_L are not CP eigenstates
- $K_I \to \pi^+\pi^-$ as well as $K_S \to \pi^+\pi^-$
- Interference in decay intensity:

$$I(t_1, t_2) \propto e^{-\Gamma_L t_1 - \Gamma_S t_2} + e^{-\Gamma_S t_1 - \Gamma_L t_2} - 2e^{-\frac{1}{2}(\Gamma_S + \Gamma_L)(t_1 + t_2)} \cos(\Delta m (t_1 - t_2))$$

$$\left|\phi\right\rangle \rightarrow\frac{1}{\sqrt{2}}\left(\left|K^{0}\right\rangle \left|\overline{K}^{0}\right\rangle -\left|\overline{K}^{0}\right\rangle \left|K^{0}\right\rangle \right)=\frac{N}{\sqrt{2}}\left(\left|K_{\mathcal{S}}\right\rangle \left|K_{\mathcal{L}}\right\rangle -\left|K_{\mathcal{L}}\right\rangle \left|K_{\mathcal{S}}\right\rangle \right)$$

- \blacksquare K_S and K_L are not CP eigenstates
- $K_I \to \pi^+\pi^-$ as well as $K_S \to \pi^+\pi^-$
- Interference in decay intensity:

$$I(t_1, t_2) \propto e^{-\Gamma_L t_1 - \Gamma_S t_2} + e^{-\Gamma_S t_1 - \Gamma_L t_2} - 2e^{-\frac{1}{2}(\Gamma_S + \Gamma_L)(t_1 + t_2)} \cos(\Delta m (t_1 - t_2))$$

$$\left|\phi\right\rangle \rightarrow \frac{1}{\sqrt{2}}\left(\left|K^{0}\right\rangle \left|\overline{K}^{0}\right\rangle - \left|\overline{K}^{0}\right\rangle \left|K^{0}\right\rangle\right) = \frac{N}{\sqrt{2}}\left(\left|K_{S}\right\rangle \left|K_{L}\right\rangle - \left|K_{L}\right\rangle \left|K_{S}\right\rangle\right)$$

- \blacksquare K_S and K_L are not CP eigenstates
- $K_I \to \pi^+\pi^-$ as well as $K_S \to \pi^+\pi^-$
- Interference in decay intensity:

$$I(t_1, t_2) \propto e^{-\Gamma_L t_1 - \Gamma_S t_2} + e^{-\Gamma_S t_1 - \Gamma_L t_2} - 2(1 - \zeta_{SL})e^{-\frac{1}{2}(\Gamma_S + \Gamma_L)(t_1 + t_2)} \cos(\Delta m (t_1 - t_2))$$

3 / 24

Intrinsical violation of CPT introduces decoherence term.

Intrinsical violation of CPT introduces decoherence term.¹

$$I(t_1, t_2) \propto e^{-\Gamma_L t_1 - \Gamma_S t_2} + e^{-\Gamma_S t_1 - \Gamma_L t_2} \ - 2(1 - \zeta_{SL})e^{-\frac{1}{2}(\Gamma_S + \Gamma_L)(t_1 + t_2)}\cos{(\Delta m(t_1 - t_2))}$$

[CPT and Quantum Mechanics Tests with Kaons, J. Bernabeu et al., arXiv:hep-ph/0607322]

 $[\]Rightarrow$ Excess of 4π decays for small Δt

¹There are different decoherence models, but we will stick with this one for now for the sake of simplicity.

Comparison of two approaches

Prompt ϕ

high production cross section

- lower rate (\sim 1%)
- possibly better handle on background rejection

- First study on the prompt ϕ approach
- Compare with D_s approach

Terminology

Signal: Excess of $\phi \rightarrow$ 2 neutral kaons

 $\rightarrow \pi^+\pi^-\pi^+\pi^-$ for Δt small due to

CPT violation

SM background: Resulting from CPV,

 $\phi \rightarrow K_L K_S \rightarrow \pi^+ \pi^- \pi^+ \pi^-$

Regeneration background: Regeneration $K_L \to K_S$ in material

Combinatoric background: Prompt kaons and pions

Terminology

Selection

 \blacksquare Stripping for the prompt ϕ approach already existed

Selection

- Developed selection for $D_s \rightarrow \phi \pi$
 - Cuts on the mass regions of ϕ and D_s
 - Cuts on the χ^2 of the impact parameter of ϕ to exclude prompt ϕ

Efficiencies

	Prompt ϕ	$D_{\mathtt{S}} o \phi \pi$
Cross section (14 TeV), LHCb acceptance	3516 µb	388 µb
Branching fractions	34.2%	4.5% · 34.2%
Fiducial cuts efficiency	2.5%	7.0%
Prob. $K_sK_s \rightarrow 4\pi$,		
exactly 1 (2) decays inside bp	15.1% (2.8%)	
Prob. $K_sK_L \rightarrow 4\pi$ (CPV),		
exactly 1 (2) decays inside bp	$3.98 \cdot 10^{-7} \ (\ 4.99 \cdot 10^{-10}\)$	
Upper limit KLOE prob. $K_sK_L \rightarrow 4\pi$ (CPV		
+ CPTV), exactly 1 (2) decays inside bp	$5.13 \cdot 10^{-7} \ (\ 1.64 \cdot 10^{-8}\)$	
Reconstruction & selection efficiency	7.9% (7.6%)	1.4% (3.9%)
L0 efficiency	16.1% (18.6%)	23.0% (19.5%)
HLT1 efficiency	13.7% (16.7%)	35.6% (25.0%)
HLT2 efficiency	65.6% (100.0%)	68.8% (100.0%)
Total efficiency SM background	$4.39 \cdot 10^{-5} (5.85 \cdot 10^{-5})$	$8.18 \cdot 10^{-5} (1.32 \cdot 10^{-4})$
Expected events SM background / fb ⁻¹	21 (3.51 · 10 ⁻²)	$1.94 \cdot 10^{-1} (3.94 \cdot 10^{-4})$
Upper limit for signal (KLOE)	27 (1.15)	$2.5 \cdot 10^{-1} (1.29 \cdot 10^{-2})$
Background (data 2012) / fb ⁻¹	163110 (29120)	450 (2030)

Efficiencies

Conclusion:

- Background dominates over signal for both approaches
- For the D_s approach, both signal and background rate go down by two orders of magnitude compared to the prompt ϕ approach
 - There is no big improvement in the signal to background ratio (factor 4)

DecayTreeFitter - Long tracks

$$t(reconstructed) - t(true) \ge -t(true),$$

Sonja Bartkowski CPTV in $\phi \to K^0 \overline{K}^0$ September 30, 2015 12 / 24

DecayTreeFitter - Long tracks

$$N(\delta t) = \frac{a}{(\delta t - \mu)^2 - \Gamma^2/4},$$

$$\delta t = t(\text{reconstructed}) - t(\text{true})$$

13 / 24

Sonja Bartkowski CPTV in $\phi o K^0 \overline{K}^0$ September 30, 2015

DecayTreeFitter - Downstream tracks

Bias towards short decay times, maybe due to a lack of information.

Sonja Bartkowski CPTV in $\phi \to K^0 \overline{K}^0$ September 30, 2015 14 / 24

TupleToolPropertime

TupleToolPropertime

Resolution Δt for LLLL and LLDD

Correlation due to common "vertex"

Sonja Bartkowski CPTV in $\phi o K^0 \overline{K}^0$ September 30, 2015 18 / 24

Backgrounds

Estimates from minimum bias MC (42 M events). The number in brackets is the number of background events with physical K_s .

Background category	prompt ϕ	$D_{\mathcal{S}} ightarrow \phi \pi$
light flavour	17(17)	0
$b\overline{b}$	1(1)	0
different PV	3(2)	0
physical bkg, partl. reconstructed	1(1)	1(1)
ghosts	0	1(0)
total	21(20)	2(1)

Remaining background for prompt ϕ is mostly irreducible.

Feasibility study for prompt ϕ

Studies of minimum bias Monte Carlo suggest that 80% background is prompt K_S

- this background is irreducible
- $I(t_1,t_2) \propto e^{-\Gamma_S t_1} e^{-\Gamma_S t_2}$

Toy study with RooFit!

- decay intensity
- momentum distribution
- 1 kaon decaying inside beampipe
- regeneration not taken into account

But first: Studying resolution for toy study

Feasibility study for prompt ϕ

Toy study

- Generated toy data as the weighted sum of two distributions in decay times:
 - 1. Combinatoric background of prompt K_S with decay intensity

$$I(t_1, t_2) \propto e^{-\Gamma_S t_1} e^{-\Gamma_S t_2}$$

2. SM background with decay intensity

$$I(t_1, t_2) \propto e^{-\Gamma_L t_1 - \Gamma_S t_2} + e^{-\Gamma_S t_1 - \Gamma_L t_2} - 2e^{-\frac{1}{2}(\Gamma_S + \Gamma_L)(t_1 + t_2)} \cos(\Delta m (t_1 - t_2))$$

- Ratio of SM background to combinatoric background from efficiency study
- Fitted to

$$I(t_1, t_2) \propto e^{-\Gamma_L t_1 - \Gamma_S t_2} + e^{-\Gamma_S t_1 - \Gamma_L t_2} - 2(1 - \zeta_{SL})e^{-\frac{1}{2}(\Gamma_S + \Gamma_L)(t_1 + t_2)}\cos(\Delta m(t_1 - t_2))$$

Derived limit on ζ_{SI} from fit result

Feasibility study for prompt ϕ

- Using optimistic signal to background ratio of 4 · 10⁻⁴
- RooStats profile likelihood calculator
- Fitted with square root of luminosity

For KLOE limit $\zeta_{SL} = 0.098$ $\downarrow \downarrow$ $\int L \ dt \approx 275 \ \text{fb}^{-1},$ extrapolated from fit

Summary

- Selection for $D_s \rightarrow \phi \pi$ implemented
- Compared the prompt ϕ and the D_s approach
 - For both strategies, the background dominates.
- The time resolution is a few ps
- Performed a toy study for the prompt ϕ approach to estimate limits we can set on CPTV

After my studies, the prospects for this analysis look bleak.