Lecture 10.

AC circuits and how to deal with them. Phasors. Impedance.

AC circuits

Text: 31.1-6

- Ch 30.1: Sinusoidal alternating v(t) and i(t), Phasors, RMS values
- Ch 31.2: AC circuits with *R*, *L*, *C*
- Ch 31.3: AC L-R-C series circuit:
- Ch 31.4: Power in AC circuits:
- Ch 31.5: Resonance in AC circuits

AC circuits

- The electrical voltage/current delivered to our houses oscillates at 60Hz
- In much of the rest of the world, electrical AC power is delivered at 50Hz

AC power for home or industrial use

NOTE: AC circuits are not limited to 60Hz (or 50Hz)!!

Examples: AM/FM radio stations (AM~500kHz, FM~100MHz);

Audio, Television, and all other telecommunications range from 100 Hz to 109 Hz

Voltage in an AC circuits: Root-Mean-Square average

AC source produces alternating voltage:

$$v(t) = V_{\max} \cos(\omega t)$$

• It's time average value is zero 🕾

• The time average of $v^2(t) = V_{\max}^2 \cos^2(\omega t)$ is not zero! \odot

•
$$\langle f(t) \rangle = \frac{1}{T} \int_0^T f(t) dt$$

•
$$V_{rms}^2 = \frac{V_{max}^2}{T} \int_0^T \cos^2(\omega t) = \frac{V_{max}^2}{T} \cdot \frac{T}{2} = \frac{V_{max}^2}{2}$$

 Physical meaning: in AC circuits, ammeter and voltmeter read RMS, not instantaneous or peak values

$$V_{rms} = \sqrt{\langle v^2(t) \rangle_t} = \frac{V_{\text{max}}}{\sqrt{2}}$$

Q: The figure shows the source voltage and current in an AC R-circuit. What is the frequency of the source EMF in Hz? (Pick the closest answer)

- A. 1000 Hz
- B. 320 Hz
- C. 250 Hz
- D. 100 Hz
- E. 60 Hz

$$f = \frac{1}{T}$$

Q: The figure shows the source voltage and current in an AC R-circuit. What is the frequency of the source EMF in Hz? (Pick the closest answer)

A. 1000 Hz

(B.) 320 Hz

C. 250 Hz

D. 100 Hz

E. 60 Hz

$$\frac{5T}{4} \approx 4 \ ms \Rightarrow \ T \approx 3.2 \ ms$$

$$f = \frac{1}{T} \approx \frac{1}{3.1ms} \approx 313 \, Hz$$

Q: The figure shows the source voltage and current in an AC R-circuit. What is the value of resistance R at t = 6 ms? (Pick the closest answer)

A. Instantaneously, at t = 6 ms, R is undefined

B. 0Ω

C. 5 Ω

D. 10 Ω

E. 20Ω

Q: The figure shows the source voltage and current in an AC R-circuit. What is the value of resistance R at t = 6 ms? (Pick the closest answer)

- A. Instantaneously, at t = 6 ms, R is undefined
- B. 0Ω
- C. 5 Ω
- D. 10 Ω
- (E.) 20 Ω

- No matter which moment of time we analyze, the resistance is always R=V/I.
- At max, we have: $R = 10 V/0.5 A = 20 \Omega$

AC circuit: purely "R" = Resistive

$$v(t) = V_{max} \cos(\omega t)$$

• Circuit analysis:

$$v(t) - i(t)R = 0$$

$$i(t) = \frac{v(t)}{R} = \left(\frac{V_{max}}{R}\right)\cos(\omega t)$$

• The current through the Resistor is "in phase" with the oscillating Voltage

AC circuit: purely "L" = Inductive

$$v(t) = V_{max} \cos(\omega t)$$

Circuit analysis:

$$v(t) - L \, di(t)/dt = 0$$

$$V_{max}\cos(\omega t) - L di(t)/dt = 0$$

$$di(t)/dt = (V_{max}/L)\cos(\omega t)$$

$$i(t) = \left(\frac{V_{max}}{\omega L}\right) \sin(\omega t) = \left(\frac{V_{max}}{\omega L}\right) \cos\left(\omega t - \frac{\pi}{2}\right)$$

• The current through the inductor is "by $\frac{\pi}{2}$ behind" the oscillating voltage

AC circuit: purely "L" = Inductive

• We say: the current i(t) lags behind the voltage, or "the voltage leads the current".

• Note: V_{max} and I_{max} occur at different times!

$$v(t) = V_{max} \cos(\omega t)$$

$$i(t) = \left(\frac{V_{max}}{X_L}\right) \cos\left(\omega t - \frac{\pi}{2}\right)$$

 $X_L = \omega L$

"Inductive resistance"

> Units: Ohm

AC circuit: purely "C" = Capacitive

$$v(t) = V_{max}\cos(\omega t)$$

Circuit analysis:

$$v(t) - q(t)/C = 0$$

$$i(t) = -(\omega C V_{max}) \sin(\omega t) = (\omega C V_{max}) \cos\left(\omega t + \frac{\pi}{2}\right)$$

$$V_{max}\cos(\omega t) - q(t)/C = 0$$

$$i(t) = \frac{dq(t)}{dt} = -(\omega CV_{max})\sin(\omega t)$$

• The current through the capacitor is "by $\frac{\pi}{2}$ ahead" the oscillating voltage

AC circuit: purely "C" = Capacitive

leads

• We say: the current i(t) lags behind the voltage, or "the voltage leads the current".

lags behind

• Note: V_{max} and I_{max} occur at different times!

$$V(t) = V_{max} \cos(\omega t)$$

$$i(t) = \left(\frac{V_{max}}{X_C}\right) \cos\left(\omega t + \frac{\pi}{2}\right)$$

$$X_C = \frac{1}{\omega C}$$

"Capacitive resistance"

> Units: Ohm

R-circuit

$$i(t) = \left(\frac{V_{max}}{X_R}\right)\cos(\omega t)$$

$$X_L = R$$

Current in phase with voltage

L-circuit

$$i(t) = \left(\frac{V_{max}}{X_L}\right) \cos\left(\omega t - \frac{\pi}{2}\right)$$

$$X_L = \omega L$$

• Current lags behind voltage by $\frac{\pi}{2}$ (voltage leads current)

C-circuit

$$i(t) = \left(\frac{V_{max}}{X_C}\right) \cos\left(\omega t + \frac{\pi}{2}\right)$$

$$X_C = \frac{1}{\omega C}$$

• Voltage lags behind current by $\frac{\pi}{2}$ (current leads voltage)

R-circuit

$$i(t) = \left(\frac{V_{max}}{X_R}\right)\cos(\omega t)$$

$$X_L = R$$
 V_R

 Current is in phase with voltage

L-circuit

$$i(t) = \left(\frac{V_{max}}{X_L}\right) \cos\left(\omega t - \frac{\pi}{2}\right)$$

$$X_L = \omega L$$

• Current lags behind voltage by $\frac{\pi}{2}$ (voltage leads current)

C-circuit

$$i(t) = \left(\frac{V_{max}}{X_C}\right) \cos\left(\omega t + \frac{\pi}{2}\right)$$

• Voltage lags behind current by $\frac{\pi}{2}$ (current leads voltage)

Phasors

• AC current is represented by a vector performing CCW rotation $i(t) = I_{max} \cos \omega t$

Phasors

- Here comes the idea of phasors abstract vectors, that help us to account for the phases (= delays) for voltages and currents in AC circuits.
 - AC current is represented by a vector performing CCW rotation

- \triangleright Its length is equal to maximum current, I_{max}
- ightharpoonup It rotates with the angular frequency ω of the source voltage
- ➤ Its projection onto the horizontal axis at time t is equal to the current at that instant:

$$i(t) = I_{max} \cos \omega t$$

Phasors

- We can also invent phasors for the voltages: \vec{V}_R , \vec{V}_L , \vec{V}_C
- Their projections on the horizontal axis will represent instantaneous voltages across R, L, and C in the direction opposite to the current.

- Resistor voltage phasor:
 - In phase with I_R
 - $V_R = I_R R$

- Inductor voltage phasor:
 - $\pi/2$ ahead of I_L
 - $V_L = I_L X_L \quad (X_L = \omega L)$

- Capacitor voltage phasor:
 - $\pi/2$ behind I_C
 - $V_C = I_C X_C \quad (X_C = 1/\omega C)$

AC RLC series circuit

• Phasors help us to add up voltages when combining different elements in an AC circuit

- ➤ Q: What is common for all these elements?
- > A: They have the same current!

• Let's combine all the voltage phasors in one diagram:

- ➤ Q: How can we find the relationship between source voltage and the current?
- ightharpoonup A: $\vec{V} = \vec{V}_L + \vec{V}_C + \vec{V}_R$ \odot

Q: What is the magnitude of the source voltage phasor, $\vec{V} = \vec{V}_L + \vec{V}_C + \vec{V}_R$?

$$A. \quad V = V_R + V_L + V_C$$

B.
$$V = V_R + (V_L - V_C)$$

C.
$$V = \sqrt{V_R^2 + (V_L + V_C)^2}$$

C.
$$V = \sqrt{V_R^2 + (V_L + V_C)^2}$$
D. $V = \sqrt{V_R^2 + (V_L - V_C)^2}$

AC RLC series circuit: Impedance

$$\overrightarrow{V}_L$$
 \overrightarrow{V}_R
 \overrightarrow{V}_R

$$\vec{V} = \vec{V}_L + \vec{V}_C + \vec{V}_R$$

$$V_R = \chi_R \Gamma_{max}$$

$$= \sqrt{(X_R I_{max})^2 + (X_L I_{max} - X_C I_{max})^2} \quad V_C = \chi_C \Gamma_{max}$$

$$= I_{max} \sqrt{X_R^2 + (X_L - X_C)^2} \quad \equiv I_{max} Z$$

$$\vec{u}_L(V_L - V_C)$$

Note that the direction of \vec{V}_L

- $Z = \sqrt{X_R^2 + (X_L X_C)^2}$ is called the impedance.
- $tan(\phi) = \frac{X_L X_C}{X_R}$ is the phase between the <u>current</u> and the <u>source voltage</u>
 - So: if $i(t) = I_{max} \cos \omega t$, then $v(t) = (I_{max} Z) \cos(\omega t + \phi)$.

