List of Course Standards

Last updated: 31 October 2016

		Relevant homework	
Sample path analysis			
A1	Sample path analysis. I can simulate a simple system by hand (e.g. the Darker Image case). I can compute performance measures using sample paths resulting from simulation and interpret their meaning.	2.1, 4.8	
Probability essentials			
B1	Computing with probability distributions. I can compute the probability that a random variable takes certain values based on its pmf/pdf or cdf. I can obtain the cdf of a random variable from its pmf/pdf and vice versa. I can compute the expected value and the variance of a random variable.	3.1, 3.2, 3.3ac, 3.5ab, 3.18abc, 3.19abc, 3.20abc	
B2	Interpreting probability distributions. I can describe in words the basic properties of a random variable given its definition, pmf/pdf or cdf (e.g. discrete or continuous, minimum and maximum values, relative likelihood of values).	3.3b, 3.5c	
В3	Joint probabilities. I can compute the probability that one or more random variables take certain values, given a joint probability distribution. I can interpret the meaning of these probabilities.	3.8, 3.9	
B4	Conditional probabilities. I can compute conditional probabilities using a joint probability distribution. I can compute probabilities using the law of total probability. I can interpret the meaning of these probabilities.	3.6, 3.8, 3.9, 3.31	
B5	Independence. I can explain in words why two random variables are independent or not independent.	3.9a	
Modeling stochastic processes algorithmically			
C1	Random variate generation. I can find a random variate generator for a discrete or continuous random variable. I can explain in words how it can be used to generate random variates.	3.17abc	
C2	Constructing and interpreting stochastic process models. I can construct and interpret stochastic process models using the algorithmic framework for simple systems.	4.4, 4.6	
Poisson arrival processes			
D1	Computing arrival probabilities for stationary Poisson processes. I can compute probabilities involving the number of arrivals in a given	5.1, 5.3abcd, 5.5, 5.6, 5.14 (also see problems for	

D3)

time interval and the time of the nth arrival for a stationary Poisson

process.

		Relevant homework
D2	Computing expected arrival values for stationary Poisson processes. I can compute the expected number of arrivals in a given time interval and the expected time of the <i>n</i> th arrival for a stationary Poisson process.	5.3bc (also see problems for D3)
D3	Decomposition and superposition. I can recognize and apply the decomposition and superposition of Poisson processes.	5.3ef, 5.10, 5.12, 5.13, 5.15, 5.17bcd
D4	Integrated rate functions. I can compute the integrated rate function of a nonstationary Poisson process given its arrival rate function. I can explain its meaning in words.	5.20a
D5	Computing arrival probabilities for nonstationary Poisson processes. I can compute probabilities involving the number of arrivals in a given time interval and the time of the <i>n</i> th arrival for a nonstationary Poisson process.	5.20bcde
D6	Properties of Poisson processes. I can describe in words the fundamental properties of stationary and nonstationary Poisson processes (e.g. independent increments, stationary increments, memorylessness). I can explain why these properties may or may not be satisfied in a given situation.	5.8, 5.15, 5.17a
Markov chains		
E1	Transition matrices and diagrams. I can construct and interpret the one-step transition matrix and transition probability diagram of a Markov chain.	6.2, 6.4ac, 6.5
E2	Finite-step probabilities. I can compute the probability that a Markov chain is in a particular state after a finite number of steps (i.e. <i>n</i> -step transition probabilities, <i>n</i> -step state probabilities, and first-passage probabilities). I can interpret the meaning of these probabilities. I can use these probabilities to compute related performance measures.	6.4b, 6.17b, 6.18
Е3	Irreducible sets, transient and recurrent states. I can identify irreducible sets of states of a Markov chain, and explain why. I can classify states of a Markov chain as transient or recurrent, and explain why.	6.5, 6.6, 6.17c
E4	Steady-state probabilities. I can compute the probability that a Markov chain is in a particular state in the long-run, including absorption probabilities. I can interpret the meaning of these probabilities. I can use these probabilities to compute related performance measures.	6.8, 6.11, 6.20b, 6.21bc
E5	Modeling with Markov chains. I can identify when a Markov chain is an appropriate model for a system and construct such a model.	6.17a, 6.20a, 6.21a
E6	Properties of Markov chains. I can describe in words the fundamental properties of a Markov chain (i.e. the Markov property, time stationarity). I can explain why they may or may not be satisfied in a given situation.	Justify why the properties of a Markov chain are satisfied in 6.17a, 6.20a, 6.21a

Markov processes and queueing systems

Generator matrices and transition rate diagrams. I can construct and interpret the generator matrix and the transition rate diagram of a Markov process.

Write the generator matrix and transition rate diagram for 7.10

F2 **Steady-state probabilities of a Markov process.** I can compute the probability that a Markov process is in a particular state in the long-run. I can interpret the meaning of these probabilities. I can use these probabilities to compute related performance measures.

7.10

Modeling with birth-death processes. I can identify when a birth-death process is an appropriate model for a system and construct such model. This includes modeling phenomena such as balking, queue capacity, and reneging.

8.6a, 8.10e, 8.11a, write the model for 8.4, 8.8d

F4 Steady-state probabilities of a birth-death process. I can compute the steady-state probability of the number of customers in the system of a birth-death process. I can interpret the meaning of these probabilities.

See problems for F5

Performance measures for birth-death processes. I can compute and interpret system-level and customer-level performance measures of a birth-death process using steady-state probabilities and Little's law. System-level measures include: expected number of customers in the system/queue, traffic intensity, expected number of busy servers. Customer-level measures include: effective arrival rate, expected waiting time, expected delay.

8.4abc, 8.6bcd, 8.10f, 8.11bcd

Classifying standard queueing models. I can recognize and classify F6 queueing systems using the standard queueing shorthand notation.

Determine appropriate standard queueing models for 8.5, 8.8, 8.10a

Performance measures for basic standard queueing models. I can compute and interpret steady-state probabilities and performance measures for M/M/s, $M/M/\infty$, and G/G/s queueing systems.

8.5ab, 8.8abc, 8.10bcd

Technical communication: writing a review of a research article

Understanding the stochastic process model and assumptions. I can describe how the article's authors model the real-world system they are studying as a stochastic process. I can describe the assumptions they make about the system, and discuss whether these assumptions are reasonable.

Project

Understanding the analysis of the stochastic process model. I can describe the insights and conclusions that the article's authors draw from studying their model. I can offer meaningful suggestions on how the authors' model can be improved.

Project

G3 **Technical writing.** I can write a review that is clear, concise, and well-organized.

Project