Do Now: Regents exponent problems

1.

When b > 0 and d is a positive integer, the expression $(3b)^{\frac{2}{d}}$ is equivalent to

 $(1) \ \frac{1}{\left(\sqrt[d]{3b}\right)^2}$

 $(3) \ \frac{1}{\sqrt{3b^d}}$

 $(2) \left(\sqrt{3b}\right)^d$

 $(4) \left(\sqrt[d]{3b}\right)^2$

2.

The solution set for the equation $\sqrt{56-x} = x$ is

 $(1) \{-8,7\}$

 $(3) \{7\}$

 $(2) \{-7,8\}$

(4) {}

3.

Which function represents exponential decay?

(1) $y = 2^{0.3t}$

 $(3) \quad y = \left(\frac{1}{2}\right)^{-t}$

(2) $y = 1.2^{3t}$

(4) $y = 5^{-t}$

4.

Last year, the total revenue for Home Style, a national restaurant chain, increased 5.25% over the previous year. If this trend were to continue, which expression could the company's chief financial officer use to approximate their monthly percent increase in revenue? [Let m represent months.]

 $(1) (1.0525)^m$

 $(3) (1.00427)^m$

 $(2)\ \ (1.0525)^{\frac{12}{m}}$

 $(4) \ (1.00427)^{\frac{m}{12}}$

Do Now: Regents exponent problems

Name:

High School Math Reference Sheet

1 inch = 2.54 centimeters 1 kilometer = 0.62 mile 1 cup = 8 fluid ounces 1 meter = 39.37 inches 1 pound = 16 ounces 1 pint = 2 cups 1 mile = 5280 feet 1 pound = 0.454 kilogram 1 quart = 2 pints

1 mile = 3280 feet 1 pound = 0.434 knogram 1 quart = 2 pints 1 mile = 1760 yards 1 kilogram = 2.2 pounds 1 gallon = 4 quarts

1 mile = 1.609 kilometers 1 ton = 2000 pounds 1 gallon = 3.785 liters 1 liter = 0.264 gallon

1 liter = 1000 cubic centimeters

Triangle	$A = \frac{1}{2}bh$
Parallelogram	A = bh
Circle	$A=\pi r^2$
Circle	$C = \pi d \text{ or } C = 2\pi r$
General Prisms	V = Bh
Cylinder	$V = \pi r^2 h$
Sphere	$V = \frac{4}{3}\pi r^3$
Cone	$V = \frac{1}{3}\pi r^2 h$
Pyramid	$V = \frac{1}{3}Bh$

Pythagorean Theorem	$a^2 + b^2 = c^2$
Quadratic Formula	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
Arithmetic Sequence	$a_n = a_1 + (n-1)d$
Geometric Sequence	$a_n = a_1 r^{n-1}$
Geometric Series	$S_n = \frac{a_1 - a_1 r^n}{1 - r} \text{ where } r \neq 1$
Radians	$1 \text{ radian} = \frac{180}{\pi} \text{ degrees}$
Degrees	$1 \text{ degree} = \frac{\pi}{180} \text{ radians}$
Exponential Growth/Decay	$A = A_0 e^{k(t - t_0)} + B_0$