

Data Mining

Lab - 1

Nandani Padsumbiya | 02-06-2025

Introduction to Pandas Library Function:

Step-1 Import the pandas Libraries

In [3]: import pandas as pd

Step-2 Import the dataset from this:....

In []:

Step-3 Read csv or excel File

In [11]: df=pd.read_csv('titanic.csv')
df

Out[11]:		Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticl
	0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	211
	1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	175
	2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	ST(31012
	3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	1138
	4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	3734
	886	887	0	2	Montvila, Rev. Juozas	male	27.0	0	0	2115
	887	888	1	1	Graham, Miss. Margaret Edith	female	19.0	0	0	112(
	888	889	0	3	Johnston, Miss. Catherine Helen "Carrie"	female	NaN	1	2	W 66
	889	890	1	1	Behr, Mr. Karl Howell	male	26.0	0	0	1113
	890	891	0	3	Dooley, Mr. Patrick	male	32.0	0	0	3703

891 rows \times 12 columns

Step-4 Print Data from csv or excel File

Out[13]:		PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticl
	0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	211
	1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	175
	2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	ST(31012
	3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	1138
	4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	3734
	886	887	0	2	Montvila, Rev. Juozas	male	27.0	0	0	2115
	887	888	1	1	Graham, Miss. Margaret Edith	female	19.0	0	0	112(
	888	889	0	3	Johnston, Miss. Catherine Helen "Carrie"	female	NaN	1	2	W 6€
	889	890	1	1	Behr, Mr. Karl Howell	male	26.0	0	0	1113
	890	891	0	3	Dooley, Mr. Patrick	male	32.0	0	0	3703

891 rows × 12 columns

Step-5 See the First 10 Rows

Out[15]:		PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket
	0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171
	1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599
	2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON, O2 3101282
	3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803
	4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450
	5	6	0	3	Moran, Mr. James	male	NaN	0	0	330877
	6	7	0	1	McCarthy, Mr. Timothy J	male	54.0	0	0	17463
	7	8	0	3	Palsson, Master. Gosta Leonard	male	2.0	3	1	349909
	8	9	1	3	Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)	female	27.0	0	2	347742
	9	10	1	2	Nasser, Mrs. Nicholas (Adele Achem)	female	14.0	1	0	23773€

Step-6 See the Last 10 Rows

Out[17]:		PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	т
	881	882	0	3	Markun, Mr. Johann	male	33.0	0	0	34
	882	883	0	3	Dahlberg, Miss. Gerda Ulrika	female	22.0	0	0	
	883	884	0	2	Banfield, Mr. Frederick James	male	28.0	0	0	C.A./S(
	884	885	0	3	Sutehall, Mr. Henry Jr	male	25.0	0	0	SOTO 39
	885	886	0	3	Rice, Mrs. William (Margaret Norton)	female	39.0	0	5	38
	886	887	0	2	Montvila, Rev. Juozas	male	27.0	0	0	21
	887	888	1	1	Graham, Miss. Margaret Edith	female	19.0	0	0	11
	888	889	0	3	Johnston, Miss. Catherine Helen "Carrie"	female	NaN	1	2	W./C.
	889	890	1	1	Behr, Mr. Karl Howell	male	26.0	0	0	11
	890	891	0	3	Dooley, Mr. Patrick	male	32.0	0	0	37

Step-7 Data type of each columns

In [51]: df.dtypes

```
Out[51]: PassengerId
                           int64
         Survived
                           int64
         Pclass
                          int64
         Name
                          object
         Sex
                          object
         Age
                         float64
         SibSp
                           int64
         Parch
                           int64
         Ticket
                          object
         Fare
                         float64
         Cabin
                          object
         Embarked
                          object
         isCabin
                            bool
         dtype: object
```

Step-8 Display Summary Information

```
In [25]: df.info()
       <class 'pandas.core.frame.DataFrame'>
       RangeIndex: 891 entries, 0 to 890
       Data columns (total 12 columns):
        #
            Column
                        Non-Null Count
                                        Dtype
                         -----
            PassengerId 891 non-null
                                        int64
        1
            Survived
                        891 non-null
                                        int64
        2
            Pclass
                        891 non-null
                                        int64
        3
                       891 non-null
            Name
                                        object
        4
            Sex
                       891 non-null
                                        object
        5
                       714 non-null
                                        float64
            Age
        6
            SibSp
                       891 non-null
                                        int64
        7
                        891 non-null
                                        int64
            Parch
        8
            Ticket
                       891 non-null
                                        object
        9
            Fare
                       891 non-null
                                        float64
        10 Cabin
                        204 non-null
                                        object
        11 Embarked
                        889 non-null
                                        object
       dtypes: float64(2), int64(5), object(5)
       memory usage: 83.7+ KB
```

Step-9 Access a specific column

```
In [53]: df['Name']
```

```
Out[53]: 0
                                           Braund, Mr. Owen Harris
                Cumings, Mrs. John Bradley (Florence Briggs Th...
         2
                                            Heikkinen, Miss. Laina
                     Futrelle, Mrs. Jacques Heath (Lily May Peel)
         3
         4
                                          Allen, Mr. William Henry
         886
                                             Montvila, Rev. Juozas
         887
                                      Graham, Miss. Margaret Edith
         888
                          Johnston, Miss. Catherine Helen "Carrie"
         889
                                             Behr, Mr. Karl Howell
         890
                                               Dooley, Mr. Patrick
         Name: Name, Length: 891, dtype: object
```

Step-10 Access rows by their integer location

```
In [29]: df.iloc[2]
                                               3
Out[29]: PassengerId
                                               1
         Survived
         Pclass
                                               3
         Name
                         Heikkinen, Miss. Laina
         Sex
                                          female
                                            26.0
         Age
         SibSp
                                               0
         Parch
         Ticket
                                STON/02. 3101282
         Fare
                                           7.925
         Cabin
                                             NaN
                                               S
          Embarked
         Name: 2, dtype: object
```

Step-11 Delete a specific Column

```
In [31]: df.drop('Parch', axis=1)
# for row axis=0
# df.drop('Embarked', axis=1 , inplace=True)
```

Out[31]:		Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Ticket	
	0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	A/5 21171	7.
	1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	PC 17599	71.
	2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	STON/ O2. 3101282	7.
	3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	113803	53.
	4	5	0	3	Allen, Mr. William Henry	male	35.0	0	373450	8.
	886	887	0	2	Montvila, Rev. Juozas	male	27.0	0	211536	13.
	887	888	1	1	Graham, Miss. Margaret Edith	female	19.0	0	112053	30.
	888	889	0	3	Johnston, Miss. Catherine Helen "Carrie"	female	NaN	1	W./C. 6607	23.
	889	890	1	1	Behr, Mr. Karl Howell	male	26.0	0	111369	30.
	890	891	0	3	Dooley, Mr. Patrick	male	32.0	0	370376	7.

891 rows \times 11 columns

Step-12 Create a new Column

		•
\sim	-	
u		

Out[39]:		PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticl
	0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	211
	1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	175
	2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	ST(31012
	3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	1138
	4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	3734
	886	887	0	2	Montvila, Rev. Juozas	male	27.0	0	0	2115
	887	888	1	1	Graham, Miss. Margaret Edith	female	19.0	0	0	112(
	888	889	0	3	Johnston, Miss. Catherine Helen "Carrie"	female	NaN	1	2	W 6€
	889	890	1	1	Behr, Mr. Karl Howell	male	26.0	0	0	1113
	890	891	0	3	Dooley, Mr. Patrick	male	32.0	0	0	3703

891 rows × 13 columns

Step-13 Perform Condition Selection on DataFrame

```
In [ ]: df[df['Sex']=='female']
```

Out[]:		PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticl
	1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	175
	2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	ST(31012
	3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	1138
	8	9	1	3	Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)	female	27.0	0	2	3477
	9	10	1	2	Nasser, Mrs. Nicholas (Adele Achem)	female	14.0	1	0	2377
,	880	881	1	2	Shelley, Mrs. William (Imanita Parrish Hall)	female	25.0	0	1	2304
	882	883	0	3	Dahlberg, Miss. Gerda Ulrika	female	22.0	0	0	75
:	885	886	0	3	Rice, Mrs. William (Margaret Norton)	female	39.0	0	5	3826
:	887	888	1	1	Graham, Miss. Margaret Edith	female	19.0	0	0	112(
;	888	889	0	3	Johnston, Miss. Catherine	female	NaN	1	2	W 6€

Helen "Carrie"

314 rows × 13 columns

```
In [89]: df[(df['Pclass']==1) & (df['Age']>25)]
```

Out[89]:		PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticl
	1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	175
	3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	1138
	6	7	0	1	McCarthy, Mr. Timothy J	male	54.0	0	0	174
	11	12	1	1	Bonnell, Miss. Elizabeth	female	58.0	0	0	1137
	23	24	1	1	Sloper, Mr. William Thompson	male	28.0	0	0	1137
	867	868	0	1	Roebling, Mr. Washington Augustus II	male	31.0	0	0	175
	871	872	1	1	Beckwith, Mrs. Richard Leonard (Sallie Monypeny)	female	47.0	1	1	117
	872	873	0	1	Carlsson, Mr. Frans Olof	male	33.0	0	0	E
	879	880	1	1	Potter, Mrs. Thomas Jr (Lily Alexenia Wilson)	female	56.0	0	1	117
	889	890	1	1	Behr, Mr. Karl Howell	male	26.0	0	0	1113

144 rows × 13 columns

Step-14 Compute the sum of value

In [57]:	df.sum(numerio	c_only =True)
Out[57]:	PassengerId	397386.0000
	Survived	342.0000
	Pclass	2057.0000
	Age	21205.1700
	SibSp	466.0000
	Parch	340.0000
	Fare	28693.9493
	isCabin	204.0000
	dtype: float64	4

Step-15 Compute the mean of value

In [59]:	df.mean(numer	ic_only =True)
Out[59]:	PassengerId	446.000000
	Survived	0.383838
	Pclass	2.308642
	Age	29.699118
	SibSp	0.523008
	Parch	0.381594
	Fare	32.204208
	isCabin	0.228956
	dtype: float6	4

Step-16 Count non-null value (column)

```
In [61]: df.count()
Out[61]: PassengerId
                         891
         Survived
                         891
         Pclass
                         891
         Name
                         891
         Sex
                         891
         Age
                         714
         SibSp
                         891
         Parch
                         891
         Ticket
                         891
         Fare
                         891
         Cabin
                         204
         Embarked
                         889
         isCabin
                         891
         dtype: int64
```

Step-17 Find Minimun or Maximum values

```
In [63]: df.min(numeric_only=True)
Out[63]: PassengerId
                            1
         Survived
                            1
         Pclass
         Age
                         0.42
         SibSp
                            0
         Parch
                            0
         Fare
                          0.0
         isCabin
                        False
         dtype: object
In [69]: df.max(numeric_only=True)
Out[69]: PassengerId
                             891
         Survived
                               1
         Pclass
                               3
                            80.0
         Age
         SibSp
                               8
         Parch
                        512.3292
         Fare
         isCabin
                            True
         dtype: object
In [77]: # sort in descending order
         df.sort_values('Age',ascending=False)
```

Out[77]:		PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ti
	630	631	1	1	Barkworth, Mr. Algernon Henry Wilson	male	80.0	0	0	2
	851	852	0	3	Svensson, Mr. Johan	male	74.0	0	0	34
	493	494	0	1	Artagaveytia, Mr. Ramon	male	71.0	0	0	1
	96	97	0	1	Goldschmidt, Mr. George B	male	71.0	0	0	1
	116	117	0	3	Connors, Mr. Patrick	male	70.5	0	0	37
	859	860	0	3	Razi, Mr. Raihed	male	NaN	0	0	:
	863	864	0	3	Sage, Miss. Dorothy Edith "Dolly"	female	NaN	8	2	:
	868	869	0	3	van Melkebeke, Mr. Philemon	male	NaN	0	0	34.
	878	879	0	3	Laleff, Mr. Kristo	male	NaN	0	0	34
	888	889	0	3	Johnston, Miss. Catherine Helen "Carrie"	female	NaN	1	2	1

891 rows \times 13 columns

Data Mining - Lab - 2

Numpy & Perform Data Exploration with Pandas

Numpy

- 1. NumPy (Numerical Python) is a powerful open-source library in Python used for numerical and scientific computing.
- 2. It provides support for large, multi-dimensional arrays and matrices, along with a collection of mathematical functions to operate on them efficiently.
- 3. NumPy is highly optimized and written in C, making it much faster than using regular Python lists for numerical operations.
- 4. It serves as the foundation for many other Python libraries in data science and machine learning, like pandas, TensorFlow, and scikit-learn.
- 5. With features like broadcasting, vectorization, and integration with C/C++ code, NumPy allows for cleaner and faster code in numerical computations.

Step 1. Import the Numpy library

```
In [9]: import numpy as np
```

Step 2. Create a 1D array of numbers

```
In [16]: arr = np.array([1,2,3,4,5,6,7])
arr

Out[16]: array([1, 2, 3, 4, 5, 6, 7])

In [20]: type(arr)

Out[20]: numpy.ndarray

In [22]: arr1 = np.arange(10)
    arr1

Out[22]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
```

```
In [24]: #ndim uses for dimention
         arr1.ndim
Out[24]: 1
In [26]:
         #property size uses to get array size
         arrl.size
Out[26]: 10
        #uses to get datatype of individual element of array
In [28]:
         arr1.dtype
Out[28]: dtype('int32')
         arr2 = np.arange(101,201)
         arr2
Out[11]: array([101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113,
                114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126,
                127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139,
                140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152,
                153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165,
                166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178,
                179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191,
                192, 193, 194, 195, 196, 197, 198, 199, 200])
In [32]: arr3 = np.array([[1,2],[1,3]])
         arr3
Out[32]: array([[1, 2],
                [1, 3]])
         Step 3. Reshape 1D to 2D Array
In [42]:
         # arr2.reshape(number of row , number of column)
         arr4 = arr2.reshape(4,25)
         arr4
Out[42]: array([[101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113,
                 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125],
                [126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138,
                 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150],
                [151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163,
                 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175],
                [176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188,
                 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200]])
        arr5 = np.arange(12).reshape(3,4)
         arr5
```

```
Out[44]: array([[ 0, 1, 2, 3],
               [4, 5, 6, 7],
               [8, 9, 10, 11]])
In [46]: # aama error aavse kem ke arr pase data ma 10 element chhe ne row column thai
        arr6 = np.arange(10).reshape(3,4)
       ValueError
                                              Traceback (most recent call last)
       Cell In[46], line 1
       ---> 1 arr6 = np.arange(10).reshape(3,4)
       ValueError: cannot reshape array of size 10 into shape (3,4)
        Step 4. Create a Linspace array
In [52]: arr6 = np.linspace(1,10,3)
        arr6
Out[52]: array([ 1. , 5.5, 10. ])
        Step 5. Create a Random Numbered Array
In [54]: n = np.random.rand(5)
Out[54]: array([0.84100126, 0.26685111, 0.57066551, 0.74633546, 0.82257615])
In [ ]:
        Step 6. Create a Random Integer Array
In [60]: # arr = np.random.randint(start index , end index , number of element)
        arr = np.random.randint(1,50,3)
Out[60]: array([43, 41, 43])
In [ ]:
        Step 7. Create a 1D Array and get
        Max, Min, ArgMax, ArgMin
In [15]: arr2.min()
Out[15]: 101
In [17]: arr2.max()
```

```
Out[17]: 200
In [19]: #maximum array ni index return kare
         arr2.argmax()
Out[19]: 99
In [23]: #mininum array ni index return kare
         arr2.argmin()
Out[23]: 0
In [ ]:
         Step 8. Indexing in 1D Array
In [31]: # np.random.rand(start point , end point , number of element)
         arr= np.random.randint(1,20,11)
         arr
Out[31]: array([ 4, 16, 18, 9, 17, 10, 19, 5, 11, 8, 2])
In [33]: arr[6]
Out[33]: 19
In [37]: #slicing
         #arr[start:end:step]
         #arr[:6:] or...
         arr[:6]
Out[37]: array([ 4, 16, 18, 9, 17, 10])
In [39]: arr[7::] or arr[7:]
Out[39]: array([ 5, 11, 8, 2])
In [41]: #get alternet element
         arr[::2]
Out[41]: array([ 4, 18, 17, 19, 11, 2])
         Step 9. Indexing in 2D Array
In [43]: arr = np.arange(15).reshape(3,5)
         arr
```

```
Out[43]: array([[ 0, 1, 2, 3, 4],
               [5, 6, 7, 8, 9],
               [10, 11, 12, 13, 14]])
In [45]: arr[1][2]
Out[45]: 7
In [47]: arr[0][2]
Out[47]: 2
In [49]:
        arr[1::]
Out[49]: array([[ 5, 6, 7, 8, 9],
               [10, 11, 12, 13, 14]])
In [51]: arr[:1:]
Out[51]: array([[0, 1, 2, 3, 4]])
In [53]: arr[:2:]
Out[53]: array([[0, 1, 2, 3, 4],
               [5, 6, 7, 8, 9]])
In [55]: arr[::2]
Out[55]: array([[ 0, 1, 2, 3, 4],
               [10, 11, 12, 13, 14]])
In [57]: #arr[forrows, forcolumns]
         arr[::2,::2]
Out[57]: array([[ 0, 2, 4],
               [10, 12, 14]])
In [59]: arr[::,::2]
Out[59]: array([[ 0, 2, 4],
                [5, 7, 9],
                [10, 12, 14]])
In [61]: arr[1::,::2]
Out[61]: array([[ 5, 7, 9],
                [10, 12, 14]])
In [65]: arr[:2:,1::3]
Out[65]: array([[1, 4],
                [6, 9]])
```

Step 10. Conditional Selection

```
In [67]: arr = np.random.randint(1,20,10)
         arr
Out[67]: array([ 8, 1, 18, 11, 5, 16, 18, 4, 18, 11])
In [69]: arr[arr>10]
Out[69]: array([18, 11, 16, 18, 18, 11])
In [71]: arr1 = np.arange(15).reshape(3,5)
         arr1
Out[71]: array([[ 0, 1,
                         2,
                             3,
                [5, 6, 7, 8, 9],
                [10, 11, 12, 13, 14]])
In [73]: arr1[arr1>10]
Out[73]: array([11, 12, 13, 14])
In [75]: | arr1[(arr1>5)&(arr1<12)]</pre>
Out[75]: array([ 6, 7, 8, 9, 10, 11])
In [77]: arr1[(arr1==5)|(arr1==6)]
Out[77]: array([5, 6])
         ♦You did it! 10 exercises down — you're on fire! ♦
```

Pandas

Step 1. Import the necessary libraries

```
In [97]: import pandas as pd
```

Step 2. Import the dataset from this address.

Step 3. Assign it to a variable called users and use the 'user_id' as index

```
In [103... users = pd.read_csv("https://raw.githubusercontent.com/justmarkham/DAT8/master
users
```

t[103		user_id age gender occupation zip_code
	0	1 24 M technician 85711
	1	2 53 F other 94043
	2	3 23 M writer 32067
	3	4 24 M technician 43537
	4	5 33 F other 15213
	938	939 26 F student 33319
	939	940 32 M administrator 02215
	940	941 20 M student 97229
	941	942 48 F librarian 78209
	942	943 22 M student 77841

943 rows × 1 columns

In [105... users = pd.read_csv("https://raw.githubusercontent.com/justmarkham/DAT8/master
users

U	u	L.	-	いり	.)	

				- -
user_id				
1	24	M	technician	85711
2	53	F	other	94043
3	23	M	writer	32067
4	24	М	technician	43537
5	33	F	other	15213
939	26	F	student	33319
940	32	М	administrator	02215
941	20	M	student	97229
942	48	F	librarian	78209
943	22	М	student	77841

age gender occupation zip_code

943 rows × 4 columns

Step 4. See the first 25 entries

In [106... users.head(25)

Out[106...

	age	gender	occupation	zip_code
user_id				
1	24	М	technician	85711
2	53	F	other	94043
3	23	М	writer	32067
4	24	М	technician	43537
5	33	F	other	15213
6	42	М	executive	98101
7	57	М	administrator	91344
8	36	М	administrator	05201
9	29	М	student	01002
10	53	М	lawyer	90703
11	39	F	other	30329
12	28	F	other	06405
13	47	М	educator	29206
14	45	М	scientist	55106
15	49	F	educator	97301
16	21	М	entertainment	10309
17	30	М	programmer	06355
18	35	F	other	37212
19	40	М	librarian	02138
20	42	F	homemaker	95660
21	26	М	writer	30068
22	25	М	writer	40206
23	30	F	artist	48197
24	21	F	artist	94533
25	39	М	engineer	55107

Step 5. See the last 10 entries

In [109	users.tail(10)							
Out[109		age	gender	occupation	zip_code			
	user_id							
	934	61	М	engineer	22902			
	935	42	М	doctor	66221			
	936	24	М	other	32789			
	937	48	М	educator	98072			
	938	38	F	technician	55038			
	939	26	F	student	33319			
	940	32	М	administrator	02215			
	941	20	М	student	97229			
	942	48	F	librarian	78209			
	943	22	М	student	77841			

Step 6. What is the number of observations in the dataset?

```
In [111... # 0 for rows and 1 for columns
users.shape[0]
```

Out[111... 943

Step 7. What is the number of columns in the dataset?

```
In [113... users.shape[1]
Out[113... 4
```

Step 8. Print the name of all the columns.

```
In [115... users.info()
```

```
<class 'pandas.core.frame.DataFrame'>
       Index: 943 entries, 1 to 943
       Data columns (total 4 columns):
             Column
                        Non-Null Count
                                        Dtype
         0
                        943 non-null
                                        int64
            age
         1
                        943 non-null
            gender
                                        object
         2
            occupation 943 non-null
                                        object
         3
            zip code
                        943 non-null
                                        object
        dtypes: int64(1), object(3)
       memory usage: 36.8+ KB
In [117... users.columns
Out[117... Index(['age', 'gender', 'occupation', 'zip code'], dtype='object')
         Step 9. How is the dataset indexed?
In [119...
         users.index
```

Step 10. What is the data type of each column?

5,

934, 935, 936, 937, 938, 939, 940, 941, 942, 943],

6,

7,

8,

9,

10,

Out[119... Index([1,

2,

3,

4,

dtype='int64', name='user_id', length=943)

```
In [121... users.dtypes

Out[121... age int64 gender object occupation object zip_code object dtype: object
```

Step 11. Print only the occupation column

```
In [123... users['occupation']
```

```
3
                        writer
          4
                    technician
          5
                         other
         939
                       student
         940
                administrator
         941
                       student
         942
                    librarian
         943
                       student
         Name: occupation, Length: 943, dtype: object
In [125... users.occupation
Out[125... user id
         1
                    technician
          2
                         other
          3
                        writer
         4
                    technician
          5
                         other
         939
                       student
         940
                administrator
         941
                       student
         942
                    librarian
         943
                       student
         Name: occupation, Length: 943, dtype: object
         Step 12. How many different occupations are in this
         dataset?
         users['occupation'].nunique()
In [129...
Out[129... 21
         users['occupation'].unique()
In [133...
Out[133... array(['technician', 'other', 'writer', 'executive', 'administrator',
                 'student', 'lawyer', 'educator', 'scientist', 'entertainment',
                 'programmer', 'librarian', 'homemaker', 'artist', 'engineer',
                 'marketing', 'none', 'healthcare', 'retired', 'salesman', 'doctor'],
                dtype=object)
         len(users['occupation'].unique())
Out[137... 21
```

Out[123... user_id 1

2

technician

other

Step 13. What is the most frequent occupation?

Step 14. Summarize the DataFrame.

In [143	users.	describe()
Out[143		age
	count	943.000000
	mean	34.051962
	std	12.192740
	min	7.000000
	25%	25.000000
	50%	31.000000
	75%	43.000000
	max	73.000000

Step 15. Summarize all the columns

```
In [145... users.describe(include='all')
```

Out[145		age	gender	occupation	zip_code
	count	943.000000	943	943	943
	unique	NaN	2	21	795
	top	NaN	М	student	55414
	freq	NaN	670	196	9
	mean	34.051962	NaN	NaN	NaN
	std	12.192740	NaN	NaN	NaN
	min	7.000000	NaN	NaN	NaN
	25%	25.000000	NaN	NaN	NaN
	50 %	31.000000	NaN	NaN	NaN
	75%	43.000000	NaN	NaN	NaN
	max	73.000000	NaN	NaN	NaN

Step 16. Summarize only the occupation column

```
In [147... users.occupation.describe()
                        943
Out[147... count
         unique
                         21
         top
                   student
                       196
         freq
         Name: occupation, dtype: object
In [149... users['occupation'].describe()
Out[149... count
                       943
         unique
                         21
         top
                   student
         freq
                        196
         Name: occupation, dtype: object
         Step 17. What is the mean age of users?
In [151... users['age'].mean(numeric only=True)
Out[151... 34.05196182396607
```

Step 18. What is the age with least occurrence?

```
In [153... users.age.value_counts().tail()
```

You're not just learning, you're mastering it. Keep aiming higher! �

```
In [ ]:
```


Data Mining

Lab - 3

Nandani padsumbiya | 2300101182 | 16/06/2025

```
In [7]: import numpy as np
import pandas as pd
```

1) First, you need to read the titanic dataset from local disk and display first five records

```
In [13]: dt = pd.read_csv("titanic.csv")
    dt
```

Out[13]:		PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticl
	0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	211
	1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	175
	2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	ST(31012
	3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	1138
	4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	3734
	886	887	0	2	Montvila, Rev. Juozas	male	27.0	0	0	2115
	887	888	1	1	Graham, Miss. Margaret Edith	female	19.0	0	0	112(
	888	889	0	3	Johnston, Miss. Catherine Helen "Carrie"	female	NaN	1	2	W 6€
	889	890	1	1	Behr, Mr. Karl Howell	male	26.0	0	0	1113
	890	891	0	3	Dooley, Mr. Patrick	male	32.0	0	0	3703

891 rows × 12 columns

Out[15]:		PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket
	0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171
	1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599
	2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON, O2 3101282
	3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803
	4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450

2) Identify Nominal, Ordinal, Binary and Numeric attributes from data sets and display all values.

```
In [10]: Nominal = ["Name", "Ticket", "cabin", "Embarket"]
    Ordinal = ["Pclass"]
    Binary = ["Sex", "Survived"]
    Numeric = ["Passengerid", "SibSp", "Fare", "Parch", "Age"]
    print("Nominal: ", Nominal)
    print("Ordinal: ", Ordinal)
    print("Binary: ", Binary)
    print("Numeric: ", Numeric)

Nominal: ['Name', 'Ticket', 'cabin', 'Embarket']
    Ordinal: ['Pclass']
    Binary: ['Sex', 'Survived']
    Numeric: ['Passengerid', 'SibSp', 'Fare', 'Parch', 'Age']
```

3) Identify symmetric and asymmetric binary attributes from data sets and display all values.

```
In [19]: Symmetric = ["Sex"]
   Asymmetric = ["Survived"]
   print("symmentric:",Symmetric)
   print("Asymmetric:",Asymmetric)
   print("Sex (Binary Symmetric)")
   print(dt['Sex'].value_counts())
```

```
print(dt['Pclass'].value counts())
        symmentric: ['Sex']
       Asymmetric: ['Survived']
       Sex (Binary Symmetric)
       Sex
                  577
       male
       female
                  314
       Name: count, dtype: int64
       Pclass
            491
       1
            216
             184
       Name: count, dtype: int64
In [18]: print("Survived (Binary Asymmetric)")
         print(dt['Survived'].value_counts())
       Survived (Binary Asymmetric)
       Survived
             549
             342
       Name: count, dtype: int64
```

4) For each quantitative attribute, calculate its average, standard deviation, minimum, mode, range and maximum values.

```
In [26]: qua = ["PassengerId", "Survived", "Pclass", "Age", "SibSp", "Parch", "Fare"]
    for i in qua:
        print(i, "------")
        print('\t mean / average :',dt[i].mean(numeric_only=True))
        print('\t standerd deviation :',dt[i].std(numeric_only=True))
        print('\t minimum :',dt[i].min(numeric_only=True))
        print('\t maximum :',dt[i].max(numeric_only=True))
        print('\t mode :',dt[i].mode())
        print('\t range :',(dt[i].max(numeric_only=True)-dt[i].min(numeric_only=True))
```

```
PassengerId -----
        mean / average : 446.0
        standerd deviation : 257.3538420152301
        minimum : 1
        maximum : 891
                 1
        mode : 0
1
        2
2
       3
        4
3
       5
4
     . . .
886 887
887 888
888 889
889 890
890
      891
Name: PassengerId, Length: 891, dtype: int64
        range : 890
Survived -----
        mean / average : 0.3838383838383838
        standerd deviation : 0.4865924542648585
        minimum : 0
        maximum : 1
        mode : 0
Name: Survived, dtype: int64
       range : 1
Pclass -----
        mean / average : 2.308641975308642
        standerd deviation : 0.8360712409770513
        minimum : 1
        maximum : 3
        mode : 0
                  3
Name: Pclass, dtype: int64
        range : 2
Age -----
        mean / average : 29.69911764705882
        standerd deviation : 14.526497332334044
        minimum : 0.42
        maximum: 80.0
        mode: 0 24.0
Name: Age, dtype: float64
        range : 79.58
SibSp -----
        mean / average : 0.5230078563411896
        standerd deviation : 1.1027434322934275
        minimum : 0
        maximum : 8
        mode : 0
Name: SibSp, dtype: int64
        range: 8
Parch -----
        mean / average : 0.38159371492704824
        standerd deviation : 0.8060572211299559
        minimum : 0
```

maximum : 6 mode : 0 0 Name: Parch, dtype: int64 range : 6

Fare -----

mean / average : 32.204207968574636 standerd deviation : 49.693428597180905

minimum : 0.0 maximum : 512.3292 mode : 0 8.05 re. dtype: float64

Name: Fare, dtype: float64 range : 512.3292

6) For the qualitative attribute (class), count the frequency for each of its distinct values.

In [30]: dt['Pclass'].value_counts()

Out[30]: Pclass 3 49

3 4911 2162 184

Name: count, dtype: int64

7) It is also possible to display the summary for all the attributes simultaneously in a table using the describe() function. If an attribute is quantitative, it will display its mean, standard deviation and various quantiles (including minimum, median, and maximum) values. If an attribute is qualitative, it will display its number of unique values and the top (most frequent) values.

In [32]: dt.describe(include=['object'])

Out[32]:

	Name	Sex	Ticket	Cabin	Embarked
count	891	891	891	204	889
unique	891	2	681	147	3
top	Braund, Mr. Owen Harris	male	347082	B96 B98	S
freq	1	577	7	4	644

In [36]: dt.describe(include='all')

Sib	Age	Sex	Name	Pclass	Survived	PassengerId		Out[36]:
891.0000	714.000000	891	891	891.000000	891.000000	891.000000	count	
V	NaN	2	891	NaN	NaN	NaN	unique	
ľ	NaN	male	Braund, Mr. Owen Harris	NaN	NaN	NaN	top	
N	NaN	577	1	NaN	NaN	NaN	freq	
0.5230	29.699118	NaN	NaN	2.308642	0.383838	446.000000	mean	
1.1027	14.526497	NaN	NaN	0.836071	0.486592	257.353842	std	
0.0000	0.420000	NaN	NaN	1.000000	0.000000	1.000000	min	
0.0000	20.125000	NaN	NaN	2.000000	0.000000	223.500000	25%	
0.0000	28.000000	NaN	NaN	3.000000	0.000000	446.000000	50%	
1.0000	38.000000	NaN	NaN	3.000000	1.000000	668.500000	75%	
8.0000	80.000000	NaN	NaN	3.000000	1.000000	891.000000	max	

8) For multivariate statistics, you can compute the covariance and correlation between pairs of attributes.

In [38]:	dt.cov(numeri	ic_only= True)					
Out[38]:		PassengerId	Survived	Pclass	Age	SibSp	Par
	PassengerId	66231.000000	-0.626966	-7.561798	138.696504	-16.325843	-0.3426
	Survived	-0.626966	0.236772	-0.137703	-0.551296	-0.018954	0.0320
	Pclass	-7.561798	-0.137703	0.699015	-4.496004	0.076599	0.0124
	Age	138.696504	-0.551296	-4.496004	211.019125	-4.163334	-2.3441
	SibSp	-16.325843	-0.018954	0.076599	-4.163334	1.216043	0.3687
	Parch	-0.342697	0.032017	0.012429	-2.344191	0.368739	0.6497
	Fare	161.883369	6.221787	-22.830196	73.849030	8.748734	8.6610
In [40]:	dt.corr(nume	ric_only= True)					

Out[40]:		Passengerld	Survived	Pclass	Age	SibSp	Parch
	PassengerId	1.000000	-0.005007	-0.035144	0.036847	-0.057527	-0.001652
	Survived	-0.005007	1.000000	-0.338481	-0.077221	-0.035322	0.081629
	Pclass	-0.035144	-0.338481	1.000000	-0.369226	0.083081	0.018443
	Age	0.036847	-0.077221	-0.369226	1.000000	-0.308247	-0.189119
	SibSp	-0.057527	-0.035322	0.083081	-0.308247	1.000000	0.414838
	Parch	-0.001652	0.081629	0.018443	-0.189119	0.414838	1.000000
	Fare	0.012658	0.257307	-0.549500	0.096067	0.159651	0.216225

9) Display the histogram for Age attribute by discretizing it into 8 separate bins and counting the frequency for each bin.

```
In [44]: import matplotlib.pyplot as plt
In [48]: dt['Age'].dropna().hist(bins=8)
    plt.title("histogram of age")
    plt.xlabel("Age")
    plt.ylabel("frequency")
    plt.show()
```


10) A boxplot can also be used to show the distribution of values for each attribute.

```
In [52]: col = ['Age','Fare']
dt.boxplot(col)
#or dt.boxplot(['Age','Fare'])
```

Out[52]: <Axes: >

11) Display scatter plot for any 5 pair of attributes , we can use a scatter plot to visualize their joint distribution.

```
In [54]: dt.plot.scatter('Age','Fare')
Out[54]: <Axes: xlabel='Age', ylabel='Fare'>
```


In [56]: dt.plot.scatter('Age','SibSp')

Out[56]: <Axes: xlabel='Age', ylabel='SibSp'>

In [60]: dt.plot.scatter('SibSp','Fare')

Out[60]: <Axes: xlabel='SibSp', ylabel='Fare'>

In [62]: dt.plot.scatter('Survived','SibSp')

Out[62]: <Axes: xlabel='Survived', ylabel='SibSp'>

In [64]: dt.plot.scatter(x='Pclass',y='Age')

Out[64]: <Axes: xlabel='Pclass', ylabel='Age'>

Data Mining

Lab - 4

Nandani padsumbiya | 23010101182 | 23-06-2025

Step 1. Import the necessary libraries

```
In [3]: import numpy as np
In [5]: import pandas as pd
```

Step 2. Import the dataset from this address.

Step 3. Assign it to a variable called chipo.

```
In [7]: # url = 'https://raw.githubusercontent.com/justmarkham/DAT8/master/data/chipot
In [7]: chipo = pd.read_csv("https://raw.githubusercontent.com/justmarkham/DAT8/master chipo
```

Out[7]:		order_id	quantity	item_name	choice_description	item_price	
	0	1	1	Chips and Fresh Tomato Salsa	NaN	\$2.39	
	1	1	1	Izze	[Clementine]	\$3.39	
	2	1	1	Nantucket Nectar	[Apple]	\$3.39	
	3	1	1	Chips and Tomatillo-Green Chili Salsa	NaN	\$2.39	
	4 2		2	Chicken Bowl	[Tomatillo-Red Chili Salsa (Hot), [Black Beans	\$16.98	
	4617	1833	1	Steak Burrito	[Fresh Tomato Salsa, [Rice, Black Beans, Sour 	\$11.75	
	4618	1833	1	Steak Burrito	[Fresh Tomato Salsa, [Rice, Sour Cream, Cheese	\$11.75	
	4619	1834 1		Chicken Salad Bowl	[Fresh Tomato Salsa, [Fajita Vegetables, Pinto	\$11.25	
	4620	1834	1	Chicken Salad Bowl	[Fresh Tomato Salsa, [Fajita Vegetables, Lettu	\$8.75	
	4621	1834	1	Chicken Salad Bowl	[Fresh Tomato Salsa, [Fajita Vegetables, Pinto	\$8.75	

4622 rows × 5 columns

Step 4. See the first 10 entries

In [18]: chipo.head(10)

[18]:		order_id	quantity	item_name	choice_description	item_price
	0	1	1	Chips and Fresh Tomato Salsa	NaN	\$2.39
	1	1	1	Izze	[Clementine]	\$3.39
	2	1	1	Nantucket Nectar	[Apple]	\$3.39
	3	1	1	Chips and Tomatillo- Green Chili Salsa	NaN	\$2.39
	4	2	2	Chicken Bowl	[Tomatillo-Red Chili Salsa (Hot), [Black Beans	\$16.98
	5	3	1	Chicken Bowl	[Fresh Tomato Salsa (Mild), [Rice, Cheese, Sou	\$10.98
	6	3	1	Side of Chips	NaN	\$1.69
	7	4	1	Steak Burrito	[Tomatillo Red Chili Salsa, [Fajita Vegetables	\$11.75
	8	4	1	Steak Soft Tacos	[Tomatillo Green Chili Salsa, [Pinto Beans, Ch	\$9.25
	9	5	1	Steak Burrito	[Fresh Tomato Salsa, [Rice, Black Beans, Pinto	\$9.25

Step 5. What is the number of observations in the dataset?

```
In [20]: # Solution 1
    chipo.shape[0]
```

Out[20]: 4622

In [22]: # Solution 2
chipo.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4622 entries, 0 to 4621
Data columns (total 5 columns):

#	Column	Non-Null Count	Dtype
0	order_id	4622 non-null	int64
1	quantity	4622 non-null	int64
2	item_name	4622 non-null	object
3	choice_description	3376 non-null	object
4	item_price	4622 non-null	object

dtypes: int64(2), object(3)
memory usage: 180.7+ KB

Step 6. What is the number of columns in the dataset?

```
In [24]: chipo.shape[1]
Out[24]: 5
```

Step 7. Print the name of all the columns.

Step 8. How is the dataset indexed?

```
In [30]: chipo.index
Out[30]: RangeIndex(start=0, stop=4622, step=1)
```

Step 9. Number of Unique Items?

```
In [36]: chipo.item_name.nunique()
Out[36]: 50
```

Step 10. Which was the most-ordered item?

```
In [42]: c = chipo.groupby('item_name')
c = c.sum()
c = c.sort_values(['quantity'],ascending=False)
c.head(1)
```

```
        Out [42]:
        order_id
        quantity
        choice_description
        item_price

        Chicken Bowl
        713926
        761
        [Tomatillo-Red Chili Salsa (Hot), [Black Beans...]
        $16.98 $10.98 $11.25 $8.75 $8.49 $11.25 $8.75 $8.75 $8.49 $11.25 $8.75 $8.75 $8.49 $11.25 $8.75 $8.75 $8.49 $11.25 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $8.75 $
```

```
In [44]: c = chipo.groupby('item_name')
c.get_group("Chicken Bowl")
```

Out[44]:		order_id	quantity	item_name	choice_description	item_price
	4	2	2	Chicken Bowl	[Tomatillo-Red Chili Salsa (Hot), [Black Beans	\$16.98
	5	3	1	Chicken Bowl	[Fresh Tomato Salsa (Mild), [Rice, Cheese, Sou	\$10.98
	13	7	1	Chicken Bowl	[Fresh Tomato Salsa, [Fajita Vegetables, Rice,	\$11.25
	19	10	1	Chicken Bowl	[Tomatillo Red Chili Salsa, [Fajita Vegetables	\$8.75
	26	13	1	Chicken Bowl	[Roasted Chili Corn Salsa (Medium), [Pinto Bea	\$8.49
	4590	1825	1	Chicken Bowl	[Roasted Chili Corn Salsa, [Rice, Black Beans,	\$11.25
	4591	1825	1	Chicken Bowl	[Tomatillo Red Chili Salsa, [Rice, Black Beans	\$8.75
	4595	1826	1	Chicken Bowl	[Tomatillo Green Chili Salsa, [Rice, Black Bea	\$8.75
	4599	1827	1	Chicken Bowl	[Roasted Chili Corn Salsa, [Cheese, Lettuce]]	\$8.75
	4604	1828	1	Chicken Bowl	[Fresh Tomato Salsa, [Rice, Black Beans, Chees	\$8.75

726 rows × 5 columns

Step 11. How many items were orderd in total?

In [46]: chipo.quantity.sum()

Out[46]: 4972

Step 12. Turn the item price into a float

Step 12.a. Check the item price type

In [52]: chipo['item_price'].dtype
#or chipo.item_price.dtypes

Out[52]: dtype('0')

Step 12.b. Create a lambda function and change the type of item price

In [20]: #dollarize = lambda x : float(x[1:-1]) -1 for till the last
 #.apply is for applyig all rows
dollarize = lambda x : float(x[1:])
chipo.item_price = chipo.item_price.apply(dollarize)

In [22]: chipo

order_id quantity item_name choice_description item_price revenue Out[22]: Chips and Fresh 0 1 1 NaN 2.39 \$2.39 Tomato Salsa [Clementine] 1 1 1 Izze 3.39 \$3.39 Nantucket 2 1 1 [Apple] 3.39 \$3.39 Nectar Chips and Tomatillo-3 1 1 NaN 2.39 \$2.39 Green Chili Salsa [Tomatillo-Red Chili Chicken \$16.98 2 2 4 Salsa (Hot), [Black 16.98 Bowl \$16.98 Beans... [Fresh Tomato Salsa, Steak 4617 1833 1 [Rice, Black Beans, 11.75 \$11.75 Burrito Sour ... [Fresh Tomato Salsa, Steak 1 [Rice, Sour Cream, 4618 1833 11.75 \$11.75 Burrito Cheese... [Fresh Tomato Salsa, Chicken 4619 1 [Fajita Vegetables, 1834 11.25 \$11.25 Salad Bowl Pinto... [Fresh Tomato Salsa, Chicken 4620 1834 1 [Fajita Vegetables, 8.75 \$8.75 Salad Bowl Lettu... [Fresh Tomato Salsa, Chicken 1 4621 1834 [Fajita Vegetables, 8.75 \$8.75 Salad Bowl Pinto...

 $4622 \text{ rows} \times 6 \text{ columns}$

Step 12.c. Check the item price type

```
In [24]: chipo.item_price.dtype
Out[24]: dtype('float64')
```

Step 14. How much was the revenue for the period in the dataset?

```
In [26]: chipo['revenue'] = (chipo['quantity']*chipo['item_price'])
    chipo['revenue'].sum()
```

Out[26]: 39237.02

Step 15. How many orders were made?

```
In [69]: chipo.order_id.nunique()
Out[69]: 1834
In [71]: orders = chipo.order_id.value_counts().count()
orders
```

Out[71]: 1834

Step 17. How many different choice descriptions are there?

```
In [73]: chipo.choice_description.nunique()
Out[73]: 1043
```

Step 18. What items have been ordered more than 100 times?

```
In [89]: df = chipo.groupby('item_name').quantity.sum()
df
```

Out[89]:	item name	
040[05]:	6 Pack Soft Drink	55
	Barbacoa Bowl	66
	Barbacoa Burrito	91
	Barbacoa Crispy Tacos	12
	Barbacoa Salad Bowl	10
	Barbacoa Soft Tacos	25
	Bottled Water	211
	Bowl	4
	Burrito	6
	Canned Soda	126
	Canned Soft Drink	351
	Carnitas Bowl	71
	Carnitas Burrito	60
	Carnitas Crispy Tacos	8
	Carnitas Salad	1
	Carnitas Salad Bowl	6
	Carnitas Soft Tacos	40
	Chicken Bowl	761
	Chicken Burrito	591
	Chicken Crispy Tacos	50
	Chicken Salad Royl	122
	Chicken Salad Bowl Chicken Soft Tacos	123
		120 230
	Chips Chips and Fresh Tomato Salsa	130
	Chips and Guacamole	506
	Chips and Mild Fresh Tomato Salsa	1
	Chips and Roasted Chili Corn Salsa	23
	Chips and Roasted Chili-Corn Salsa	18
	Chips and Tomatillo Green Chili Salsa	45
	Chips and Tomatillo Red Chili Salsa	50
	Chips and Tomatillo-Green Chili Salsa	33
	Chips and Tomatillo-Red Chili Salsa	25
	Crispy Tacos	2
	Izze	20
	Nantucket Nectar	29
	Salad	2
	Side of Chips	110
	Steak Bowl	221
	Steak Burrito	386
	Steak Crispy Tacos	36
	Steak Salad	4
	Steak Salad Bowl	31
	Steak Soft Tacos	56
	Veggie Bowl	87
	Veggie Burrito	97
	Veggie Crispy Tacos	1
	Veggie Salad	6
	Veggie Salad Bowl	18
	Veggie Soft Tacos	8
	Name: quantity, dtype: int64	

```
In [91]: df[df>100]
Out[91]: item name
         Bottled Water
                                        211
         Canned Soda
                                        126
         Canned Soft Drink
                                        351
         Chicken Bowl
                                        761
         Chicken Burrito
                                        591
         Chicken Salad Bowl
                                        123
         Chicken Soft Tacos
                                        120
         Chips
                                        230
         Chips and Fresh Tomato Salsa
                                        130
         Chips and Guacamole
                                        506
         Side of Chips
                                        110
         Steak Bowl
                                        221
         Steak Burrito
                                        386
         Name: quantity, dtype: int64
         Step 19. What is the average revenue amount per order?
```

```
In [30]: # Solution 1
# Grouping by order_id and summing the revenue per order
df = chipo.groupby('order_id').revenue.sum()
average_revenue = df.mean()
print("Average revenue per order:", average_revenue)

Average revenue per order: 21.39423118865867

In [95]: # Solution 2
avg_revenue = chipo['revenue'].sum()/chipo['order_id'].nunique()
avg_revenue

Out[95]: 21.39423118865867

In []:
```


Lab - 4 - Data Preprocessing

1) First, you need to read the titanic dataset from local disk and display Last five records

```
In [3]: import pandas as pd
In [4]: df = pd.read_csv("titanic.csv")
df
```

Out[4]:		PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticl
	0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	211
	1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	175
	2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	ST(31012
	3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	1138
	4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	3734
	886	887	0	2	Montvila, Rev. Juozas	male	27.0	0	0	2115
	887	888	1	1	Graham, Miss. Margaret Edith	female	19.0	0	0	112(
	888	889	0	3	Johnston, Miss. Catherine Helen "Carrie"	female	NaN	1	2	W 6€
	889	890	1	1	Behr, Mr. Karl Howell	male	26.0	0	0	1113
	890	891	0	3	Dooley, Mr. Patrick	male	32.0	0	0	3703

891 rows × 12 columns

In [5]: df.tail(5)

Out[5]:		PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticke
	886	887	0	2	Montvila, Rev. Juozas	male	27.0	0	0	21153
	887	888	1	1	Graham, Miss. Margaret Edith	female	19.0	0	0	11205
	888	889	0	3	Johnston, Miss. Catherine Helen "Carrie"	female	NaN	1	2	W./C 660
	889	890	1	1	Behr, Mr. Karl Howell	male	26.0	0	0	11136
	890	891	0	3	Dooley, Mr. Patrick	male	32.0	0	0	37037

2) Handle Missing Values in data set [use dropna(), fillna(), and interpolate]

Out[7]:		Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Tick
	1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	175
	3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	1138
	6	7	0	1	McCarthy, Mr. Timothy J	male	54.0	0	0	174
	10	11	1	3	Sandstrom, Miss. Marguerite Rut	female	4.0	1	1	95
	11	12	1	1	Bonnell, Miss. Elizabeth	female	58.0	0	0	1137
	871	872	1	1	Beckwith, Mrs. Richard Leonard (Sallie Monypeny)	female	47.0	1	1	117
	872	873	0	1	Carlsson, Mr. Frans Olof	male	33.0	0	0	6
	879	880	1	1	Potter, Mrs. Thomas Jr (Lily Alexenia Wilson)	female	56.0	0	1	117
	887	888	1	1	Graham, Miss. Margaret Edith	female	19.0	0	0	1120
	889	890	1	1	Behr, Mr. Karl Howell	male	26.0	0	0	1113

183 rows × 12 columns

data_withdropna = data_withdropna.dropna(how='any',axis=1)
data withdropna

Passengerld Survived Pclass Name Sex SibSp Parch **Ticket** Out[8]: Braund, A/5 1 0 3 0 Mr. Owen 1 0 male 21171 Harris Cumings, Mrs. John Bradley PC 1 2 1 female 0 1 1 (Florence 17599 **Briggs** Th... Heikkinen, STON/ 3 3 2 1 0 0 Miss. female 02. Laina 3101282 Futrelle, Mrs. Jacques 3 4 1 1 female 1 0 113803 5 Heath (Lily May Peel) Allen, Mr. 4 5 0 3 William 0 0 373450 male Henry Montvila, 2 886 887 0 0 0 Rev. 211536 1 male Juozas Graham. Miss. 887 888 1 1 female 0 0 112053 3 Margaret Edith Johnston, Miss. W./C. 888 889 0 3 Catherine female 1 2 2 6607 Helen "Carrie" Behr, Mr. 889 890 1 Karl 0 0 1 male 111369 3 Howell Dooley, 890 891 0 3 0 0 male 370376 Mr. Patrick

 $891 \text{ rows} \times 9 \text{ columns}$

data_withdropna = data_withdropna.dropna(how='all',axis=1)
data_withdropna

Out[9]:		PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticl
	0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	211
	1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	175
	2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	ST(31012
	3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	1138
	4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	3734
	886	887	0	2	Montvila, Rev. Juozas	male	27.0	0	0	2115
	887	888	1	1	Graham, Miss. Margaret Edith	female	19.0	0	0	112(
	888	889	0	3	Johnston, Miss. Catherine Helen "Carrie"	female	NaN	1	2	W 6€
	889	890	1	1	Behr, Mr. Karl Howell	male	26.0	0	0	1113
	890	891	0	3	Dooley, Mr. Patrick	male	32.0	0	0	3703

891 rows \times 12 columns

data_withfillna = df.copy()
data_withfillna = data_withfillna.fillna(1000) #---->insert 1000 where value
data withfillna

Out[10]:		PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Т
	0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	2
	1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0]
	2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	310
	3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	11
	4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	37
	886	887	0	2	Montvila, Rev. Juozas	male	27.0	0	0	21
	887	888	1	1	Graham, Miss. Margaret Edith	female	19.0	0	0	11
	888	889	0	3	Johnston, Miss. Catherine Helen "Carrie"	female	1000.0	1	2	
	889	890	1	1	Behr, Mr. Karl Howell	male	26.0	0	0	11
	890	891	0	3	Dooley, Mr. Patrick	male	32.0	0	0	37

891 rows \times 12 columns

```
data_withfillna = df.copy()
data_withfillna = data_withfillna.fillna({'Age':100,'Cabin':'Not Available'})
data_withfillna
```

Out[11]:		PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Tic
	0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	21
	1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	17
	2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	S1 3101
	3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113
	4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373
	886	887	0	2	Montvila, Rev. Juozas	male	27.0	0	0	21]
	887	888	1	1	Graham, Miss. Margaret Edith	female	19.0	0	0	112
	888	889	0	3	Johnston, Miss. Catherine Helen "Carrie"	female	100.0	1	2	\ 6
	889	890	1	1	Behr, Mr. Karl Howell	male	26.0	0	0	111
	890	891	0	3	Dooley, Mr. Patrick	male	32.0	0	0	37(

891 rows \times 12 columns

```
meanAge = data_withfillna.Age.mean()
print(meanAge)
data_withfillna = data_withfillna.fillna({'Age':meanAge,'Cabin':'Not Available
data_withfillna
```

29.69911764705882

Out[12]:		PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch
	0	1	0	3	Braund, Mr. Owen Harris	male	22.000000	1	0
	1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.000000	1	0
	2	3	1	3	Heikkinen, Miss. Laina	female	26.000000	0	0
	3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.000000	1	0
	4	5	0	3	Allen, Mr. William Henry	male	35.000000	0	0
	886	887	0	2	Montvila, Rev. Juozas	male	27.000000	0	0
	887	888	1	1	Graham, Miss. Margaret Edith	female	19.000000	0	0
	888	889	0	3	Johnston, Miss. Catherine Helen "Carrie"	female	29.699118	1	2
	889	890	1	1	Behr, Mr. Karl Howell	male	26.000000	0	0
	890	891	0	3	Dooley, Mr. Patrick	male	32.000000	0	0

```
In [13]: data_withfillna = df.copy()
  meanAge = data_withfillna.Age.mean()
  modeCabin = data_withfillna.Cabin.mode()[0] #mode can be multible but we will
  print(meanAge)
  print(modeCabin)
  data_withfillna = data_withfillna.fillna({'Age':meanAge,'Cabin':modeCabin})
  data_withfillna
```

29.69911764705882 B96 B98

Out[13]:		Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch
	0	1	0	3	Braund, Mr. Owen Harris	male	22.000000	1	0
	1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.000000	1	0
	2	3	1	3	Heikkinen, Miss. Laina	female	26.000000	0	0
	3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.000000	1	0
	4	5	0	3	Allen, Mr. William Henry	male	35.000000	0	0
	886	887	0	2	Montvila, Rev. Juozas	male	27.000000	0	0
	887	888	1	1	Graham, Miss. Margaret Edith	female	19.000000	0	0
	888	889	0	3	Johnston, Miss. Catherine Helen "Carrie"	female	29.699118	1	2
	889	890	1	1	Behr, Mr. Karl Howell	male	26.000000	0	0
	890	891	0	3	Dooley, Mr. Patrick	male	32.000000	0	0

891 rows \times 12 columns

In [14]: #interpolate only works on numeric not on strings and objects
 #interpolate uses for replace columns null value according their up and down r
 data_interpolate = df.copy()
 data_interpolate = data_interpolate.interpolate()
 data_interpolate

C:\Users\DELL\AppData\Local\Temp\ipykernel_14212\2271286748.py:4: FutureWarnin
g: DataFrame.interpolate with object dtype is deprecated and will raise in a fu
ture version. Call obj.infer_objects(copy=False) before interpolating instead.
 data_interpolate = data_interpolate.interpolate()

Out[14]:		Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticl
	0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	211
	1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	175
	2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	ST(31012
	3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	1138
	4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	3734
	886	887	0	2	Montvila, Rev. Juozas	male	27.0	0	0	2115
	887	888	1	1	Graham, Miss. Margaret Edith	female	19.0	0	0	1120
	888	889	0	3	Johnston, Miss. Catherine Helen "Carrie"	female	22.5	1	2	W 6(
	889	890	1	1	Behr, Mr. Karl Howell	male	26.0	0	0	1113
	890	891	0	3	Dooley, Mr. Patrick	male	32.0	0	0	3703

3) Apply Scaling to AGE attribute with min max, decimal scaling and z score.

```
In [16]: #With min-max
data = df.copy()

minAge = int(data.Age.min())
maxAge = int(data.Age.max())

print('Min Age =', minAge) # 0
print('Max Age =', maxAge) # 80

Ages = data.Age

data['MinMaxAge'] = (Ages - minAge) / (maxAge - minAge)
data
Min Age = 0
```

Min Age = 0Max Age = 80

Out[16]:		Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticl
	0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	211
	1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	175
	2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	ST((31012
	3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	1138
	4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	3734
	886	887	0	2	Montvila, Rev. Juozas	male	27.0	0	0	2115
	887	888	1	1	Graham, Miss. Margaret Edith	female	19.0	0	0	112(
	888	889	0	3	Johnston, Miss. Catherine Helen "Carrie"	female	NaN	1	2	W 6€
	889	890	1	1	Behr, Mr. Karl Howell	male	26.0	0	0	1113
	890	891	0	3	Dooley, Mr. Patrick	male	32.0	0	0	3703

891 rows \times 13 columns

```
In [37]: # with decimal scaling
  data = df.copy()
  maxAge = data.Age.max()
  noOfDigits = len(str(int(maxAge)))
  Ages = data.Age
```

print(no0fDigits)
data['DecimalScalingAge'] = Ages/(10**no0fDigits)
data

2

Out[37]:	-	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticl
	0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	211
	1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	175
	2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	ST(31012
	3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	1138
	4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	3734
	886	887	0	2	Montvila, Rev. Juozas	male	27.0	0	0	2115
	887	888	1	1	Graham, Miss. Margaret Edith	female	19.0	0	0	112(
	888	889	0	3	Johnston, Miss. Catherine Helen "Carrie"	female	NaN	1	2	W 6(
	889	890	1	1	Behr, Mr. Karl Howell	male	26.0	0	0	1113
	890	891	0	3	Dooley, Mr. Patrick	male	32.0	0	0	3703

891 rows × 13 columns

```
In [18]: len('sdfghj')
Out[18]: 6
In [19]: data_original = df.copy()
    data_original = data_original.interpolate()
    meanAge = data_original['Age'].mean()
    stdAge = data_original['Age'].std()
    data_original['AgeByZScore'] = (data_original['Age']-meanAge)/stdAge
    data_original
```

C:\Users\DELL\AppData\Local\Temp\ipykernel_14212\2574547447.py:2: FutureWarnin
g: DataFrame.interpolate with object dtype is deprecated and will raise in a fu
ture version. Call obj.infer_objects(copy=False) before interpolating instead.
 data_original = data_original.interpolate()

Out[19]:		PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticl
	0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	21
	1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	175
	2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	ST(31012
	3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	1138
	4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	3734
	886	887	0	2	Montvila, Rev. Juozas	male	27.0	0	0	2115
	887	888	1	1	Graham, Miss. Margaret Edith	female	19.0	0	0	112(
	888	889	0	3	Johnston, Miss. Catherine Helen "Carrie"	female	22.5	1	2	W 6€
	889	890	1	1	Behr, Mr. Karl Howell	male	26.0	0	0	1113
	890	891	0	3	Dooley, Mr. Patrick	male	32.0	0	0	3703

891 rows × 13 columns

In []:	
In []:	

Data Mining

Lab - 6

Nandani padsumbiya| 23010101182 | 07-07-2025

Dimensionality Reduction using NumPy

What is Data Reduction?

Data reduction refers to the process of reducing the amount of data that needs to be processed and stored, while preserving the essential patterns in the data.

Why do we reduce data?

- To reduce computational cost.
- To remove noise and redundant features.
- To improve model performance and training time.
- To visualize high-dimensional data in 2D or 3D.

Common data reduction techniques include:

- Principal Component Analysis (PCA)
- Feature selection
- Sampling

What is Principal Component Analysis (PCA)?

PCA is a **dimensionality reduction technique** that transforms a dataset into a new coordinate system. It identifies the **directions (principal components)** where the variance of the data is maximized.

Key Concepts:

- **Principal Components**: New features (linear combinations of original features) capturing most variance.
- Eigenvectors & Eigenvalues: Used to compute these principal directions.
- Covariance Matrix: Measures how features vary with each other.

PCA helps in visualizing high-dimensional data, noise reduction, and speeding up algorithms.

NumPy Functions Summary for PCA

Function	Purpose
<pre>np.mean(X, axis=0)</pre>	Compute mean of each column (feature-wise mean).
<pre>X - np.mean(X, axis=0)</pre>	Centering the data (zero mean).
<pre>np.cov(X, rowvar=False)</pre>	Compute covariance matrix for features.
<pre>np.linalg.eigh(cov_mat)</pre>	Get eigenvalues and eigenvectors (for symmetric matrices).
<pre>np.argsort(values)[::-1]</pre>	Sort values in descending order.
<pre>np.dot(X, eigenvectors)</pre>	Project original data onto new axes.

```
In [25]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
```

Step 1: Load the Iris Dataset

```
In [17]: iris = pd.read_csv('iris.csv')
   iris
```

Out[17]:		sepal_length	sepal_width	petal_length	petal_width	species
	0	5.1	3.5	1.4	0.2	setosa
	1	4.9	3.0	1.4	0.2	setosa
	2	4.7	3.2	1.3	0.2	setosa
	3	4.6	3.1	1.5	0.2	setosa
	4	5.0	3.6	1.4	0.2	setosa
	145	6.7	3.0	5.2	2.3	virginica
	146	6.3	2.5	5.0	1.9	virginica
	147	6.5	3.0	5.2	2.0	virginica
	148	6.2	3.4	5.4	2.3	virginica
	149	5.9	3.0	5.1	1.8	virginica

150 rows × 5 columns

```
In [27]: print('Shape :',iris.shape)
    Shape : (150, 5)

In [33]: #map() is used to transform or remap a column's values easily (set other value
    X = iris.drop(columns="species")
    Y = iris['species'].map({
        'setosa':0,
        'versicolor':1,
        'virginica':2
    })
    print('Original Shape :',X.shape)

Original Shape : (150, 4)
```

Step 2: Standardize the data (zero mean)

```
In [39]: X_{meaned} = X - np.mean(X, axis=0)
         print('Data after mean(first 5 rows) :\n',X meaned.head(5))
       Data after mean(first 5 rows) :
           sepal length sepal width petal length petal width
       0
             -0.743333
                           0.442667
                                           -2.358
                                                    -0.999333
             -0.943333
                         -0.057333
                                           -2.358
       1
                                                    -0.999333
       2
             -1.143333
                          0.142667
                                           -2.458
                                                    -0.999333
       3
             -1.243333
                           0.042667
                                           -2.258
                                                    -0.999333
             -0.843333
                           0.542667
                                           -2.358
                                                    -0.999333
```

Step 3: Compute the Covariance Matrix

Step 4: Compute eigenvalues and eigenvectors

```
In [67]: #linalg = linear algebra
#this fun returns two values 1st is eigenvalue and 2nd is eigenvector
eigen_values , eigen_vectors = np.linalg.eigh(cov_mat)

print('Eigenvalues :\n',eigen_values)
print('Eigenvectors (first 2) :\n',eigen_vectors[:, :2])

Eigenvalues :
    [0.02383509 0.0782095  0.24267075 4.22824171]
Eigenvectors (first 2) :
    [[ 0.31548719  0.58202985]
    [-0.3197231  -0.59791083]
    [-0.47983899  -0.07623608]
    [ 0.75365743  -0.54583143]]
```

Step 5: Sort eigenvalues and eigenvectors in descending order

```
In [69]: sorted_index = np.argsort(eigen_value)[::-1]
    sorted_eigenvalues = eigen_values[sorted_index]
    sorted_eigenvactors = eigen_vectors[:,sorted_index]

    print(sorted_index)
    print(sorted_eigenvalues)
    print(sorted_eigenvactors)
```

```
[3 2 1 0]

[4.22824171 0.24267075 0.0782095 0.02383509]

[[-0.36138659 0.65658877 0.58202985 0.31548719]

[ 0.08452251 0.73016143 -0.59791083 -0.3197231 ]

[-0.85667061 -0.17337266 -0.07623608 -0.47983899]

[-0.3582892 -0.07548102 -0.54583143 0.75365743]]
```

Step 6: Select the top k eigenvectors (top 2)

```
In [82]: k = 2
    eigenvector_subset = sorted_eigenvactors[:,0:k]
    print(eigenvector_subset)

[[-0.36138659    0.65658877]
    [ 0.08452251    0.73016143]
    [-0.85667061   -0.17337266]
    [-0.3582892    -0.07548102]]
```

Step 7: Project the data onto the top k eigenvectors

```
In [84]: X_reduced = np.dot(X_meaned,eigenvector_subset)
    print('Reduced data shape :',X_reduced.shape)

Reduced data shape : (150, 2)
```

Step 8: Plot the PCA-Reduced Data

```
In [92]: plt.figure(figsize=(8,6))
   plt.scatter(X_reduced[:, 0],X_reduced[:, 1],c = Y)
   plt.xlabel('Principal Component 1')
   plt.ylabel('Principal Component 2')
   plt.title('PCA - IRIS Dataset')
   plt.grid(True)
   plt.show()
```


Extra - Bining Method

-3

-2

-1.0

5,10,11,13,15,35,50,55,72,92,204,215.

 $^{-1}$

Principal Component 1

2

3

Partition them into three bins by each of the following methods: (a) equal-frequency (equal-depth) partitioning (b) equal-width partitioning

Bin 1: [5, 10, 11, 13, 15, 35, 50, 55, 72] Bin 2: [92] Bin 3: [204, 215]

Data Mining

Lab - 7 (Part 2)

Nandani padsumbiya | 23010101182

Step 1: Load the Dataset

Load the Tdata.csv file and display the first few rows.

```
In [41]: import pandas as pd
    df = pd.read_csv('Tdata.csv')
    df.head()
```

Out[41]:		Transaction	bread	butter	coffee	eggs	jam	milk
	0	T1	1	1	0	0	0	1
	1	T2	1	1	0	0	1	0
	2	T3	1	0	0	1	0	1
	3	T4	1	1	0	0	0	1
	4	T5	1	0	1	0	0	0

Step 2: Drop the 'Transaction' Column

We're only interested in the items (not the transaction IDs).

```
In [49]: data = df.copy()
   data_items = data.drop('Transaction',axis=1) #data.drop(column = ['Transaction'
   data_items
```

Out[49]:		bread	butter	coffee	eggs	jam	milk
	0	1	1	0	0	0	1
	1	1	1	0	0	1	0
	2	1	0	0	1	0	1
	3	1	1	0	0	0	1
	4	1	0	1	0	0	0
	5	0	0	1	1	1	0

Step 3: Count Single Items

See how many transactions include each item.

```
In [51]: data_items.sum()

Out[51]: bread 5
butter 3
coffee 2
eggs 2
jam 2
milk 3
dtype: int64
```

Step 4: Define Apriori Function

This function finds frequent itemsets of size 1, 2, and 3 with minimum support.

```
In [80]: from itertools import combinations

def find_frequent_itemsets(data,min_support):
    n = len(data)
    result = []

    for k in [1,2,3]:
        for items in combinations(data.columns,k):
            mask = data[list(items)].all(axis=1)
            print("items",items,"mask",mask.sum())
            support = mask.sum() / n
            if support >= min_support:
                 result.append((frozenset(items),round(support,2)))
    return result
```

Step 5: Run Apriori

Set min support = 0.6 and display the frequent itemsets.

```
In [94]: frequent itemsets = find frequent itemsets(data items, min support = 0.6)
           for itemset, support in frequent itemsets:
                print(f"{set(itemset)} support: {support}")
         items ('bread',) mask 5
         items ('butter',) mask 3
         items ('coffee',) mask 2
         items ('eggs',) mask 2
         items ('jam',) mask 2
         items ('milk',) mask 3
         items ('bread', 'butter') mask 3
         items ('bread', 'coffee') mask 1
         items ('bread', 'eggs') mask 1
         items ('bread', 'jam') mask 1
         items ('bread', 'milk') mask 3
         items ('butter', 'coffee') mask \theta
         items ('butter', 'eggs') mask 0
         items ('butter', 'jam') mask 1
         items ('butter', 'milk') mask 2
items ('coffee', 'eggs') mask 1
         items ('coffee', 'jam') mask 1
items ('coffee', 'milk') mask 0
         items ('eggs', 'jam') mask 1
         items ('eggs', 'milk') mask 1
         items ('jam', 'milk') mask \theta
         items ('bread', 'butter', 'coffee') mask 0
         items ('bread', 'butter', 'eggs') mask 0
         items ('bread', 'butter', 'jam') mask 1
items ('bread', 'butter', 'milk') mask 2
items ('bread', 'coffee', 'eggs') mask 0
         items ('bread', 'coffee', 'jam') mask 0
         items ('bread', 'coffee', 'milk') mask 0
         items ('bread', 'eggs', 'jam') mask 0 items ('bread', 'eggs', 'milk') mask 1
         items ('bread', 'jam', 'milk') mask 0
         items ('butter', 'coffee', 'eggs') mask 0
items ('butter', 'coffee', 'jam') mask 0
         items ('butter', 'coffee', 'milk') mask 0
items ('butter', 'eggs', 'jam') mask 0
         items ('butter', 'eggs', 'milk') mask 0
         items ('butter', 'jam', 'milk') mask 0
         items ('coffee', 'eggs', 'jam') mask 1
         items ('coffee', 'eggs', 'milk') mask 0
items ('coffee', 'jam', 'milk') mask 0
         items ('eggs', 'jam', 'milk') mask 0
         {'bread'} support: 0.83
```

Step 6 Display as a DataFrame

```
In [96]: result_data = pd.DataFrame(frequent_itemsets,columns = ['Itemset','Support'])
    result_data
```

```
Out[96]: Itemset Support

O (bread) 0.83
```

Orange Tool : - > Generate Same Frequent Patterns in Orange tools

```
In [ ]:
```

Extra: - > Define Apriori Function without itertools

```
In [104...
import pandas as pd

# Recreate your dataset
data = pd.DataFrame({
    'bread': [1, 1, 1, 1, 0],
    'butter': [1, 1, 0, 1, 0, 0],
    'coffee': [0, 0, 0, 0, 1, 1],
    'eggs': [0, 0, 1, 0, 0, 1],
    'jam': [0, 1, 0, 0, 0, 1],
    'milk': [1, 0, 1, 1, 0, 0]# guessing the last column is juice
})

min_support = 0.6 # for example, at least 30% of baskets

frequent_itemsets = find_frequent_itemsets(data, min_support)

for itemset, support in frequent_itemsets:
    print(f"{set(itemset)}: {support}")
```

```
items ('bread',) mask 5
items ('butter',) mask 3
items ('coffee',) mask 2
items ('eggs',) mask 2
items ('jam',) mask 2
items ('milk',) mask 3
items ('bread', 'butter') mask 3
items ('bread', 'coffee') mask 1
items ('bread', 'eggs') mask 1
items ('bread', 'jam') mask 1
items ('bread', 'milk') mask 3
items ('butter', 'coffee') mask 0
items ('butter', 'eggs') mask 0
items ('butter', 'jam') mask 1
items ('butter', 'milk') mask 2
items ('coffee', 'eggs') mask 1
items ('coffee', 'jam') mask 1
items ('coffee', 'milk') mask 0
items ('eggs', 'jam') mask 1
items ('eggs', 'milk') mask 1
items ('jam', 'milk') mask 0
items ('bread', 'butter', 'coffee') mask 0
items ('bread', 'butter', 'eggs') mask 0
items ('bread', 'butter', 'jam') mask 1
items ('bread', 'butter', 'milk') mask 2
items ('bread', 'coffee', 'eggs') mask 0
items ('bread', 'coffee', 'jam') mask 0
items ('bread', 'coffee', 'milk') mask 0
items ('bread', 'eggs', 'jam') mask 0
items ('bread', 'eggs', 'milk') mask 1
items ('bread', 'jam', 'milk') mask 0
items ('butter', 'coffee', 'eggs') mask 0
items ('butter', 'coffee', 'jam') mask 0
items ('butter', 'coffee', 'milk') mask 0
items ('butter', 'eggs', 'jam') mask 0
items ('butter', 'eggs', 'milk') mask 0
items ('butter', 'jam', 'milk') mask 0
items ('coffee', 'eggs', 'jam') mask 1
items ('coffee', 'eggs', 'milk') mask 0
items ('coffee', 'jam', 'milk') mask 0
items ('eggs', 'jam', 'milk') mask \theta
{'bread'}: 0.83
```