Biostatistics 615 - Statistical Computing

Topic 4 Interpolation and Extrapolation

Hyun Min Kang

Topic Overview

- Linear interpolation and extrapolation
- Polynomial interpolation and piecewise interpolation
- Natural cubic spline

Topic Overview

- Linear interpolation and extrapolation
- Polynomial interpolation and piecewise interpolation
- Natural cubic spline

Interpolation and Extrapolation

Given a set of data points: $\{(x_i, y_i)\}_{i=1}^n$ where $x_i, y_i \in \mathbb{R}$.

- Interpolation: find the values of "missing data" in between known values.
- Extrapolation: extend the model outside of known data to "predict" new values for which no measure could have been taken.
- Curve fitting: find a function f(x) defined on R such that

$$y_i = \hat{f}(x_i).$$

- It depends on the model assumptions on the association between the outcome variable and predictors
 - Linear function
 - Polynomial function
 - Piecewise linear
 - Smoother curve

Linear Interpolation

- Start with only two observed points: (x_1, y_1) and (x_2, y_2) .
- Find a linear function

$$y = mx + b$$

such that it passes the two points, that is,

$$\begin{cases} y_1 = mx_1 + b \\ y_2 = mx_2 + b \end{cases}$$

The solution is

$$\begin{cases} m &= \frac{y_2 - y_1}{x_2 - x_1} \\ b &= y_1 - mx_1 = y_2 - mx_2 \end{cases}$$

Linear Interpolation based on two points

Hands-on Session

Visit https://bit.ly/615top04r

• Implementing linear interpolation

Potential problems with linear interpolation

- ullet True relationship between x and y are not necessarily linear
- More observation points are usually available
- When $x_1 = x_2$ or $|x_1 x_2|$ is very small. This approach is problematic.

Topic Overview

- Linear interpolation and extrapolation
- Polynomial interpolation and piecewise interpolation
- Natural cubic spline

Higher-Order Polynomial Interpolation

- Given two data points, a line, a polynomial of degree one, will always pass exactly through the two points, provided the two values of x are different.
- For any three points, it is usually that no such line is available, unless those points lie precisely on the same line, but a quadratic function, a polynomial of degree two, will always fit the three data points exactly.
- ullet In general, a polynomial of degree n-1 is necessary and sufficient to precisely fit the n data points.

Higher-Order Polynomial Interpolation

• Given a set of ordered pairs, $\{(x_i, y_i)\}_{i=1}^n$, the interpolating function $p_{n-1}(x)$ must meet the requirement,

$$p_{n-1}(x_i) = y_i,$$

for all $i = 1, \ldots, n$.

• The interpolating function is a polynomial of order n-1:

$$p_{n-1}(x) = \sum_{j=0}^{n-1} \beta_j x^j,$$

where β_i 's are the polynomial's coefficients.

$$\sum_{i=0}^{n-1} \beta_j x_i^j = y_i,$$

for each of the i interpolating points.

Higher Order Polynomial Interpolation

In matrix form

$$\begin{pmatrix} 1 & x_1 & \dots & x_1^{n-1} \\ 1 & x_2 & \dots & x_2^{n-1} \\ \dots & \dots & \dots & \dots \\ 1 & x_n & \dots & x_n^{n-1} \end{pmatrix} \begin{pmatrix} \beta_0 \\ \beta_1 \\ \dots \\ \beta_{n-1} \end{pmatrix} = \begin{pmatrix} y_1 \\ y_2 \\ \dots \\ y_n \end{pmatrix},$$

In the matrix form, we have

$$V(x)\beta = y$$

where

- The matrix V(x) is called the Vandermonde matrix and it contains successive columns of x to the ith power, where $i = 0, \dots, n-1$.
- We can solve the above linear system to obtain β for the polynomial interpolation.

Hands-on Session

Visit https://bit.ly/615top04r

• Higher-order Polynomial Interpolation

Approximation Errors

- Similar to the linear interpolation, the higher-order polynomial interpolation may have large numerical errors when x_i and $x_{i'}$ are too close for any $i \neq i' \in \{1, \ldots, n\}$. Or the Vandermonde matrix V(x) is close to a singular matrix.
- In addition to numerical errors, the higher-order polynomial interpolation also has the approximation errors. Suppose the true relationship between y and x is y = f(x), where f(x) is a smooth function whose the nth derivative exists. Then the approximation error is

$$p_{n-1}(x) - f(x) = \frac{\prod_{i=1}^{n} (x - x_i)}{n!} f^{(n)}(x)$$

Hands-on Session

Visit https://bit.ly/615top04r

• Approximation errors in polynomial interpolation

Limitations of higher-order polynomial interpolation

- The computational complexity is $O(n^3)$. It is computationally challenging when n is large.
- Diverge from true values at the endpoints in many cases, especially when n is large.
- While the higher-degreed polynomial pass through all observed points, it may fluctuate wildly between two points, a pattern known as Runge's phenomenon.

Hands-on Session

Visit https://bit.ly/615top04r

Runge's phenomenon

Piecewise Interpolation

- The true function may be complex and better approximated using two or more interpolations.
- Piecewise interpolation offers a solution: to use lower degreed polynomials for each part of a curve because we are able to efficiently fit those polynomials to approximately analyze the underlying data.

Piecewise Linear Interpolation

- A linear approach to interpolating between points: draw lines between points.
- The process for piecewise linear interpolation uses the same process as our linear interpolation model, except it repeats it for each consecutive pair of data points along the x-axis.
- Computational complexity is O(n).

Hands-on Session

Visit https://bit.ly/615top04r

- Piecewise linear interpolation
- Revisiting Runge's phenomenon

Topic Overview

- Linear interpolation and extrapolation
- Polynomial interpolation and piecewise interpolation
- Natural cubic spline

Cubic Spline Interpolation

Revisiting Piecewise Linear Interpolation

- If using a first-degree polynomial, a line over multiple intervals is an improvement over a single interpolating line.
- However, piecewise linear interpolation does not produce differentiable (or smooth) function at the joins.
- What if we use a higher-degree polynomial?

Cubic Spline Interpolation : A potential solution

- It constructs a differentiable, integrable and smooth curve, despite the joins.
- As each individual section is represented by a cubic curve, i.e. **polynomial of degree three**.

Cubic Spline Setup

- Denote by $\{(x_i, y_i)\}_{i=1}^n$ the data points to interpolate, where we assume that $x_i \leq x_{i+1}$ for $i = 1, \ldots, n-1$.
- For n data points, we construct n-1 interpolating cubic polynomials on $[x_1, x_2], \ldots, [x_{n-1}, x_n]$.
- Let $S_i(x)$ be a cubic polynomial function representing the curve over the domain $[x_i, x_{i+1}]$.
- We assume that

$$S_i(x) = \sum_{j=0}^{3} a_{j,i}(x - x_i)^j$$

= $a_{0,i} + a_{1,i}(x - x_i) + a_{2,i}(x - x_i)^2 + a_{3,i}(x - x_i)^3$

Then we have

$$S'_{i}(x) = a_{1,i} + 2a_{2,i}(x - x_{i}) + 3a_{3,i}(x - x_{i})^{2}$$

$$S'_{i}(x) = 2a_{2,i} + 6a_{3,i}(x - x_{i})$$

Equations to construct cubic splines

- The set of $\{S_i(x)\}$ has a total of 4(n-1) parameters.
- Continuity (2n-2): for $i=1,\ldots,n-1$,

$$S_i(x_i) = y_i, (1)$$

$$S_i(x_{i+1}) = y_{i+1}. (2)$$

• Smoothness (2n-4): for $i=1,\ldots,n-2$,

$$S_i'(x_{i+1}) = S_{i+1}'(x_{i+1}), (3)$$

$$S_i''(x_{i+1}) = S_{i+1}''(x_{i+1}).$$
(4)

- So far we establish 4n-6 equations, we need to two more constraints to solve all the parameters.
- Boundary conditions: $S_1''(x_1) = 0$ and $S_{n-1}'(x_n) = 0$. We refer to this type of spline as the **Natural Cubic Spline**.

Summary - equations to construct cubic splines

$$S_{i}(x) = a_{0,i} + a_{1,i}(x - x_{i}) + a_{2,i}(x - x_{i})^{2} + a_{3,i}(x - x_{i})^{3}$$

$$S'_{i}(x) = a_{1,i} + 2a_{2,i}(x - x_{i}) + 3a_{3,i}(x - x_{i})^{2}$$

$$S'_{i}(x) = 2a_{2,i} + 6a_{3,i}(x - x_{i})$$

Equations for natural cubic spline

$$S_{i}(x_{i}) = y_{i} i = 1, ..., n-1$$

$$S_{i}(x_{i+1}) = y_{i+1} i = 1, ..., n-1$$

$$S'_{i}(x_{i+1}) = S'_{i+1}(x_{i+1}) i = 1, ..., n-2$$

$$S''_{i}(x_{i+1}) = S''_{i+1}(x_{i+1}) i = 1, ..., n-2$$

$$S''_{1}(x_{1}) = 0$$

$$S''_{n-1}(x_{n}) = 0$$

Solve the natural cubic spline - Definitions

• For $i = 2, \ldots, n$, let

$$h_i = x_i - x_{i-1}, \quad \delta_i = \frac{y_i - y_{i-1}}{h_i}.$$

• For $i=2,\ldots,n-1$, let

$$g_i = h_{i+1} + h_i, \quad v_i = \delta_{i+1} - \delta_i.$$

Solve the natural cubic spline - Continuity

$$ullet$$
 From $S_i(x_i)=y_i,\,i=1,\ldots,n-1$, $a_{0,i}=y_i$

$$ullet$$
 From $S_i(x_{i+1})=y_{i+1}, i=1,\ldots,n-1,$
$$a_{0,i}+a_{1,i}h_{i+1}+a_{2,i}h_{i+1}^2+a_{3,i}h_{i+1}^3=y_{i+1}$$

• Then for i = 1, ..., n - 1,

$$a_{1,i} + a_{2,i}h_{i+1} + a_{3,i}h_{i+1}^2 = \frac{y_{i+1} - y_i}{h_{i+1}} = \delta_{i+1}.$$
 (5)

Hyun Min Kang Bio

Solve the natural cubic spline - Smoothness

• From $S'_{i}(x_{i+1}) = S'_{i+1}(x_{i+1}), i = 1, \dots, n-2,$ $a_{1,i+1} = a_{1,i} + 2a_{2,i}h_{i+1} + 3a_{3,i}h_{i+1}^{2}.$ (6)

• From
$$S_i''(x_{i+1}) = S_{i+1}''(x_{i+1}), i = 1, \dots, n-2,$$

$$a_{2,i+1} = a_{2,i} + 3a_{3,i}h_{i+1}. \tag{7}$$

• From (7), for i = 1, ..., n-2,

$$a_{3,i} = \frac{a_{2,i+1} - a_{2,i}}{3h_{i+1}}. (8)$$

• From (6), for i = 1, ..., n-2,

$$a_{1,i+1} - a_{1,i} = (a_{2,i} + a_{2,i+1})h_{i+1}$$

Solve the natural cubic spline - Putting Together

• From (5), for i = 1, ..., n-2,

$$3a_{1,i} + (2a_{2,i} + a_{2,i+1})h_{i+1} = 3\delta_{i+1}$$
(9)

• Then for i = 2, ..., n-1

$$3a_{1,i-1} + (2a_{2,i-1} + a_{2,i})h_i = 3\delta_i$$
 (10)

• For i = 2, ..., n - 2, we get this key equation from (9)-(10):

$$h_i a_{2,i-1} + 2g_i a_{2,i} + h_{i+1} a_{2,i+1} = 3v_i$$
 (11)

Remember:

$$a_{1,i+1} - a_{1,i} = (a_{2,i} + a_{2,i+1})h_{i+1}, g_i = h_{i+1} + h_i, v_i = \delta_{i+1} - \delta_i.$$

Boundary conditions for natural cubic splines

• By $S_1'(x_1) = 0$, we have $a_{2,1} = 0$, so from (11),

$$2g_2a_{2,2} + h_3a_{2,3} = 3v_2$$

- By $S'_{n-1}(x_n) = 0$, we have $a_{2,n-1} + 3a_{3,n-1}h_n = 0$
- From (5),

$$3a_{1,n-1} + 2a_{2,n-1}h_n = 3\delta_n$$

Also,

$$3a_{1,n-2} + (2a_{2,n-2} + a_{2,n-1})h_{n-1} = 3\delta_{n-1}$$

$$a_{1,n-1} - a_{1,n-2} = (a_{2,n-2} + a_{2,n-1})h_{n-1}$$

Therefore, we also have

$$h_{n-1}a_{2,n-2} + 2g_{n-1}a_{2,n-1} = 3v_{n-1}$$

Matrix representation of cublic spline solutions

Thus

$$\begin{pmatrix} 2g_2 & h_3 & 0 & \dots & \dots & \dots \\ h_3 & 2g_3 & h_4 & 0 & \dots & \dots & \dots \\ 0 & h_4 & 2g_4 & h_5 & 0 & \dots \\ \dots & 0 & \dots & \dots & \dots & 0 \\ \dots & \dots & 0 & h_{n-2} & 2g_{n-2} & h_{n-1} \\ \dots & \dots & \dots & 0 & h_{n-1} & 2g_{n-1} \end{pmatrix} \begin{pmatrix} a_{2,2} \\ a_{2,3} \\ \dots \\ a_{2,n-2} \\ a_{2,n-1} \end{pmatrix} = 3 \begin{pmatrix} v_2 \\ v_3 \\ \dots \\ v_{n-2} \\ v_{n-1} \end{pmatrix}$$

This implies that we can apply tridiagonal matrix algorithm to obtain $a_{2,i}$ for $i=2,\ldots,n-1$.

Defining the remaining variables

Recall that $a_{2,1} = 0$, and also $a_{2,n} = 0$ holds.

Then for $i = 1, \ldots, n-1$, from (8) and (9), we have

$$a_{3,i} = \frac{a_{2,i+1} - a_{2,i}}{3h_{i+1}},$$

$$a_{1,i} = \delta_{i+1} - \frac{2a_{2,i} + a_{2,i+1}}{3}h_{i+1},$$

Recall that

$$a_{0,i} = y_i$$

This completes that the natural cubic spline fitting.

Tridiagonal Matrix Algorithm

For linear system Ax = b, A is a general tridiagonal matrix

$$A = \begin{pmatrix} d_1 & u_1 & 0 & \dots & \dots & \\ l_1 & d_2 & u_2 & 0 & \dots & \dots \\ 0 & l_2 & d_3 & u_3 & 0 & \dots \\ \dots & 0 & \dots & \dots & \dots & u_{n-1} \\ \dots & \dots & \dots & 0 & l_{n-1} & d_n \end{pmatrix}$$

which is determined by three vectors $\mathbf{d} = (d_1, \dots, d_n)$, $\mathbf{u} = (u_1, \dots, u_{n-1})$ and $\mathbf{l} = (l_1, \dots, l_{n-1}).$

What would happen if we solve this linear system with typical linear algebraic solution?

Can you think of more efficient way to solve this equation?

Forward Sweep: Step 1

$$\begin{pmatrix} d_1 & u_1 & 0 & \dots & \dots & \dots \\ l_1 & d_2 & u_2 & 0 & \dots & \dots \\ 0 & l_2 & d_3 & u_3 & 0 & \dots \\ \dots & 0 & \dots & \dots & \dots & u_{n-1} \\ \dots & \dots & \dots & 0 & l_{n-1} & d_n \end{pmatrix} \mathbf{x} = \begin{pmatrix} b_1 \\ b_2 \\ \dots \\ b_{n-1} \\ b_n \end{pmatrix}$$

$$\rightarrow \left(\begin{array}{ccccccc} 1 & u_1/d_1 & 0 & \dots & \dots & \dots \\ l_1 & d_2 & u_2 & 0 & \dots & \dots \\ 0 & l_2 & d_3 & u_3 & 0 & \dots \\ \dots & 0 & \dots & \dots & \dots & u_{n-1} \\ \dots & \dots & \dots & 0 & l_{n-1} & d_n \end{array} \right) \mathbf{x} = \left(\begin{array}{c} b_1/d_1 \\ b_2 \\ \dots \\ b_{n-1} \\ b_n \end{array} \right)$$

Set $u_1^* = u_1/d_1$ and $b_1^* = b_1/d_1$.

Forward Sweep: Step 2

$$\rightarrow \left(\begin{array}{ccccccc} 1 & u_1^* & 0 & \dots & \dots & \dots \\ 0 & d_2 - u_1^* * l_1 & u_2 & 0 & \dots & \dots \\ 0 & l_2 & d_3 & u_3 & 0 & \dots \\ \dots & 0 & \dots & \dots & \dots & u_{n-1} \\ \dots & \dots & \dots & \dots & 0 & l_{n-1} & d_n \end{array} \right) \mathbf{x} = \left(\begin{array}{c} b_1^* \\ b_2 - b_1^* * l_1 \\ \dots \\ b_{n-1} \\ b_n \end{array} \right)$$

$$\rightarrow \left(\begin{array}{ccccc} 1 & u_1^* & 0 & \dots & \dots & \dots \\ 0 & 1 & \frac{u_2}{d_2 - u_1^* * l_1} & 0 & \dots & \dots \\ 0 & l_2 & d_3 & u_3 & 0 & \dots \\ \dots & 0 & \dots & \dots & \dots & u_{n-1} \\ \dots & \dots & \dots & \dots & 0 & l_{n-1} & d_n \end{array} \right) \mathbf{x} = \left(\begin{array}{c} b_1^* \\ \frac{b_2 - b_1^* * l_1}{d_2 - u_1^* * l_1} \\ b_3 \\ \dots \\ b_n \end{array} \right)$$

Set
$$u_2^* = \frac{u_2}{d_2 - u_1^* * l_1}$$
 and $b_2^* = \frac{b_2 - b_1^* * l_1}{d_2 - u_1^* * l_1}$.

Forward Sweep: Step i

For $i = 2, \ldots, n-1$, set

$$\begin{split} u_i^* &= \frac{u_i}{d_i - u_{i-1}^* * l_{i-1}}, \\ b_i^* &= \frac{b_i - b_{i-1}^* * l_{i-1}}{d_i - u_{i-1}^* * l_{i-1}}. \end{split}$$

And

$$b_n^* = \frac{b_n - b_{n-1}^* * l_{n-1}}{d_n - u_{n-1}^* * l_{n-1}}$$

Backward Sweep:

$$\begin{pmatrix} 1 & u_1^* & 0 & \dots & \dots & \dots \\ 0 & 1 & u_2^* & 0 & \dots & \dots \\ 0 & 0 & 1 & u_3^* & 0 & \dots \\ \dots & 0 & \dots & \dots & \dots & u_{n-1}^* \\ \dots & \dots & \dots & 0 & 0 & 1 \end{pmatrix} \mathbf{x} = \begin{pmatrix} b_1^* \\ b_2^* \\ \dots \\ b_{n-1}^* \\ b_n^* \end{pmatrix}$$

Then

$$x_n = b_n^*$$

For
$$i = n - 1, n - 2, \dots, 1$$
,

$$x_i = b_i^* - u_i^* * x_{i+1}$$

Hands-on Session

Visit https://bit.ly/615top04r

- Implementing natural cubic spline
- Testing natural cubic spline
- Revisiting Runge's phenomenon

Discussion

- What are the advantages and disadvantages of each interpolation method?
 - Linear interpolation
 - Higher-order polynomial interpolation
 - Piecewise linear interpolation
 - Natural cubic spline
- Can you explain the time complexity of computing natural cubic spline?
- Why is natural cubic spline useful? If we implement similar splines with quadratic (2nd-order) or quartic (4th-order) functions, what are the advantages and disadvantages?