Charakteristiky polohy

- Minimum
 - o =MIN(data)
- Maximum
 - =MAX(data)
- Medián (Středová hodnota)
 - \circ \tilde{X}
 - Lichý počet prvků
 - $1,2,3,4,5 \implies \tilde{x} = 3$
 - Sudý počet prvků ⇒ průměr dvou středových hodnot

$$1,2,3,4,5,6 \Longrightarrow \tilde{x} = \frac{3+4}{2} = 3.5$$

- =MEDIAN(data)
- Dolní kvartil
 - \circ \tilde{X}_{25}
 - o V podstatě středová hodnota mezi začátkem dat a mediánem
 - =QUARTIL.INC(data; 1)
- Horní kvartil

 - o V podstatě středová hodnota mezi mediánem a koncem dat
 - =QUARTIL.INC(data; 3)
- Modus
 - Nejčastěji se vyskytující hodnota

 - \circ 1,2,3,3,4,5 \Rightarrow $\hat{x} = 3$
 - =MODE.SNGL(data)
- Průměr

$$\circ \quad \overline{\mathbf{x}} = \frac{1}{n} \cdot \sum_{i=1}^{n} \mathbf{x}_i = \frac{1}{n} \cdot \sum_{j=1}^{n^*} \mathbf{x}_j \cdot \mathbf{n}_j$$

2.
$$\bar{\mathbf{x}} = \frac{1}{12} \cdot \sum_{j=1}^{6} \mathbf{x}_j \cdot \mathbf{n}_j = \frac{1 \cdot 2 + 2 \cdot 2 + 3 \cdot 2 + 4 \cdot 2 + 5 \cdot 2 + 6 \cdot 2}{12} = \frac{42}{12} = 3.5$$

- =PRŮMĚR(data)
- Geometrický průměr

$$\circ \quad \bar{x}_G = \sqrt[n]{\prod_{i=1}^n x_i}$$

1,1,2,2,3,3,4,4,5,5,6,6

$$\bar{\mathbf{x}}_{G} = \sqrt[12]{\prod_{i=1}^{12} \mathbf{x}_{i}} = \sqrt[12]{1 \cdot 1 \cdot 2 \cdot 2 \cdot 3 \cdot 3 \cdot 4 \cdot 4 \cdot 5 \cdot 5 \cdot 6 \cdot 6} = \sqrt[12]{518400} = 2.994$$

- =GEOMEAN(data)
- Ořezávaný průměr

 - o Ignoruji prvních a posledních $(\alpha \cdot 100)\% dat$

Charakteristiky variability

- Range
 - o Maximum-Minimum
- IQR

$$\circ \quad \tilde{\mathbf{x}}_{75} - \tilde{\mathbf{x}}_{25}$$

- Rozptyl

1.58974359

1.260850344

$$S_{x}^{2} = \frac{1}{12 \cdot 1} \cdot \sum_{i=1}^{6} (x_{i} - \bar{x})^{2} \cdot n_{i} = \frac{(1 \cdot 3.5)^{2} \cdot 2 + (2 \cdot 3.5)^{2} \cdot 2 + (3 \cdot 3.5)^{2} \cdot 2 + (4 \cdot 3.5)^{2} \cdot 2 + (5 \cdot 3.5)^{2} \cdot 2 + (6 \cdot 3.5)^{2} \cdot 2}{11} = \frac{12.5 + 4.5 + 0.5 + 4.5 + 12.5}{11} = \frac{35}{11} = 3.18$$

- o =VAR.S(data)
- Směrodatná odchylka SD
 - \circ $S_x = \sqrt{S_x^2}$
 - =STDEVA(data)

Příklad

1	2	Minimum	1
2	4	Maximum	6
3	5	Medián	4
4	12	D. Kvartil	3
5	15	H. Kvartil	5
6	2	Modus	5
		Průměr	4
		Geo. Prům.	3.72719803
		Range	5
		IQR	2

Rozptyl

SD