5: Grundlagen der Teststatistik

Statistische Verfahren in der Geographie

Till Straube <straube@geo.uni-frankfurt.de>
Institut für Humangeographie
Goethe-Universität Frankfurt

1 Lernziele dieser Sitzung

Sie können...

- Hypothesen formulieren.
- einen z-Test durchführen.
- einen 1-Stichproben-t-Test durchführen.

2 Statistische Tests

Gemeinsam mit der Schätzstatistik bildet die Test- bzw. Prüfstatistik jenen Teil statistischer Verfahren, die ausgehend von einer Stichprobenverteilung Rückschlüsse auf die Beschaffenheit von Grundgesamtheiten anstreben (schließende Statistik).

Dabei haben Schätz- und Teststatistik jedoch grundlegend verschiedene Vorgehensweisen. Wie in Sitzung 4 besprochen ermöglicht die Schätzstatistik die Angabe statistischer Parameter einer Grundgesamtheit anhand von Stichprobenwerten, und unter Angabe von Wahrscheinlichkeiten.

Ziel statistischer Tests hingegen ist es, mit Hilfe von Stichproben Hypothesen (also Vermutungen) über die Grundgesamtheit zu prüfen. Geprüft wird dabei ein empirischer Sachverhalt gegen die Zufälligkeit seiner Realisierung. Ein statistischer Test fragt, ab welcher Größenordnung ein Stichprobenergebnis nicht mehr als zufällig, sondern als *signifikant* anzusehen ist.

Dabei folgt die grundsätzliche Vorgehensweise von (hier behandelten) statistischen Tests immer diesem Schema:

- 1. Test wählen und Voraussetzungen prüfen
- 2. Hypothesen formulieren
- 3. Signifikanzniveau entscheiden
- 4. Ablehnungsbereich bestimmen
- 5. Prüfgröße berechnen
- 6. Ergebnis interpretieren

Die einzelnen Schritte werden im Folgenden direkt anhand des z-Tests besprochen.

Stand: 20. Mai 2019 1/16

3 z-Test

Die mathematischen Grundlagen des z-Tests leiten sich direkt aus der in Sitzung 4 besprochenen Stichprobenverteilung für \bar{x} ab.

Ein illustrierendes Beispiel: Wir wissen, dass die Anzahl der täglichen Besucher*innen einer Eissporthalle annähernd normalverteilt ist, und zwar mit dem arithmetischen Mittel $\mu=94,2$ und der Standardabweichung $\sigma=11,8$. Wir vermuten, dass die Anzahl der Besucher*innen an bewölkten Tagen größer ist, weil an sonnigen Tagen andere Freizeitbeschäftigungen attraktiver sind.

An fünf zufälligen bewölkten Tagen zählen wir die Besucher*innen und kommen auf einen Mittelwert der Stichprobe von $\bar{x}=103,0$.

Dieser Wert ist höher als das arithmetische Mittel der Grundgesamtheit (μ). Aber heißt das auch, dass unsere Vermutung stimmt? Wir wissen aus Sitzung 4, dass die Stichprobenverteilung einem Standardfehler ($\sigma_{\bar{x}}$) unterliegt (s. Abbildung 1).

Ist das Ergebnis also nur zufällig zustande gekommen, oder liegt ein statistisch signifikantes Ergebnis vor? Mit anderen Worten: Ist die Stichprobe überhaupt der Verteilung x_0 um μ_0 entnommen, oder gibt es eine andere Verteilung (x um ein anderes μ) für bewölkte Tage, denen unser Stichprobenmittelwert \bar{x} entstammt? Genau diese Art von Frage versuchen statistische Tests zu beantworten.

Abbildung 1: Theoretische Stichprobenverteilung (unter Annahme der Nullhypothese)

3.1 Test wählen und Voraussetzungen prüfen

Je nachdem, was überprüft werden soll, was über die Grundgesamtheit bekannt ist und wie die Stichprobe beschaffen ist, müssen verschiedene Testverfahren angewendet werden.

Statistische Tests unterscheiden sich zunächst in Bezug auf ihre Prüfgröße (und sind auch nach ihrer Prüfgröße benannt). Wir werden zunächst den z-Test kennenlernen, der mit dem (uns seit Sitzung 3 bekannten) z-Wert als Prüfgröße arbeitet.

Der z-Test hat zum Ziel, den Mittelwert einer Stichprobe mit den zu erwartenden Werten bei einer bekannten Verteilung zu vergleichen.

Um den z-Test anwenden zu können, müssen also folgende Voraussetzungen gegeben sein: - Das Ziel der Untersuchung ist es, eine signifikante Abweichung des Mittelwerts festzustellen. - Das arithmetische Mittel μ und die Standardabweichung σ der (ursprünglichen) Grundgesamtheit müssen bekannt sein. -

Stand: 20. Mai 2019 2/16

Der Test muss anhand einer reinen Zufallsstichprobe erfolgen. - Die Stichprobenverteilung muss (annähernd) normalverteilt sein, das heißt: - entweder die Grundgesamtheit ist (annähernd) normalverteilt, - oder die Stichprobe hat die Größe $n \geq 30$.

3.1.1 Beispiel

In unserem Beispiel (Besucherzahlen der Eissporthalle) sind diese Voraussetzungen gegeben. Wir können und wollen also einen z-Test durchführen.

3.2 Hypothesen formulieren

Es müssen immer zwei Hypothesen formuliert werden: die Nullhypothese und die Alternativhypothese. Die Nullhypothese geht immer davon aus, dass es keine Abweichung gibt, die Alternativhypothese formuliert eine Abweichung.

Dabei werden zwei Verteilungen konstruiert: Die bekannte Grundgesamtheit (in unserem Beispiel: Besucherzahlen insgesamt) x_0 mit Mittelwert μ_0 und eine neue Verteilung (Besucherzahlen an bewölkten Tagen) x mit Mittelwert μ .

Die Hypothesen sind theoriegeleitet (formulieren also eine begründete Vermutung) und stehen stets am Anfang der statistischen Untersuchung. Es ist unzulässig, sie im Nachhinein anzupassen.

3.2.1 Nullhypothese

Die Nullhypothese (engl. null hypothesis) geht immer davon aus, das die forscherische Vermutung nicht stimmt. Im z-Test besagt die Nullhypothese, dass es zwischen dem Mittelwert μ_0 und dem Mittelwert μ keinen Unterschied gibt. Generell heißt die Nullhypothese:

$$H_0: \mu = \mu_0 \tag{1}$$

3.2.2 Alternativhypothese

Die Alternativhypothese (engl. *alternative hypothesis*) stellt die Vermutung dar, die überprüft werden soll. Dabei gibt es zwei unterschiedliche Möglichkeiten: ungerichtete und gerichtete Alternativhypothesen.

3.2.2.1 Ungerichtete Alternativhypothese

Die ungerichtete Alternativhypothese besagt nur, dass es einen Unterschied zwischen μ und μ_0 gibt, aber nicht in welche Richtung (größer oder kleiner). Sie lautet daher:

$$H_1: \mu \neq \mu_0 \tag{2}$$

Stand: 20. Mai 2019 3/16

3.2.2.2 Gerichtete Alternativhypothese

Die gerichtete Alternativhyptothese gibt eine Richtung des vermuteten Unterschieds (nach oben oder unten) vor. Sie lautet entweder:

$$H_1: \mu < \mu_0 \quad \text{(abwärts gerichtet)}$$
 (3)

oder:

$$H_1: \mu > \mu_0$$
 (aufwärts gerichtet) (4)

3.2.3 Beispiel

In unserem Beispiel geben wir eine Richtung vor, denn wir vermuten ja, dass die Besucherzahlen an bewölkten Tagen *höher* sind. Wir schreiben also:

$$H_0: \mu = 94,2$$

$$H_1: \mu > 94,2$$

3.3 Signifikanzniveau entscheiden

Das Signifikanzniveau α (engl. $significance\ level$) entscheidet, wie unwahrscheinlich eine Prüfgröße unter Annahme der Nullhypothese sein muss, damit wir die Nullhypothese ablehnen können (und damit unsere Annahme bestätigen).

Übliche Werte für das Signifikanzniveau sind $\alpha = 0.05$ oder $\alpha = 0.01$.

Für die Wahl des Signifikanzniveaus ist jeweils der Kontext entscheidend: Wenn die irrtümliche Bestätigung der forscherischen Annahme gravierende Auswirkungen hat, möchte man das Signifikanzniveau besonders niedrig wählen um diese Art von Fehler auszuschließen.

Auch das Signifikanzniveau muss vor der statistischen Erhebung formuliert werden, und es ist unzulässig, es im Nachhinein an das Ergebnis anzupassen.

3.3.1 Beispiel

Ein Irrtum in der statistischen Signifikanz der Besucherzahl hat vermutlich keine gravierenden Folgen. Wir legen das Signifikanzniveau auf $\alpha=0.05$ fest.

3.4 Ablehnungsbereich bestimmen

Zusammen mit der (Un-)Gerichtetheit der Alternativhypothese bestimmt das Signifikanzniveau α den Ablehnungsbereich – also den Bereich für die zu errechnende Prüfgröße z, in dem die Nullhypothese abgelehnt würde.

Stand: 20. Mai 2019 4/16

Der Ablehnungsbereich für die ungerichtete Alternativhypothese ist $\frac{\alpha}{2}$ auf beiden Seiten (s. Abbildung 2). Die kritischen Werte sind dann die Schwellen des Ablehnungsbereich auf beiden Seiten:

$$z \le z_{\alpha/2}$$
 und $z \ge z_{(1-\alpha/2)}$ für $H_1: \mu \ne \mu_0$ (5)

Abbildung 2: Kritische Werte für z bei ungerichteter Alternativhypothese und $\alpha=0.05$

Bei den gerichteten Alternativhypothesen ist der Ablehnungsbereich jeweils nur auf einer Seite (s. Abbildungen 3 und 4). Die kritischen Werte ergeben sich aus:

$$z \le z_{\alpha} \quad \text{für} \quad H_1: \mu < \mu_0 \tag{6}$$

$$z \ge z_{(1-\alpha)} \quad \text{für} \quad H_1: \mu > \mu_0 \tag{7}$$

Abbildung 3: Kritischer Wert für z bei gerichteter Alternativhypothese nach unten und $\alpha=0.05$

3.4.1 Beispiel

In unserem Beispiel haben wir eine gerichtete Alternativhypothese nach oben und ein Signifikanzniveau von $\alpha=0.05$ verwendet. Der kritische Wert (bei dessen Überschreitung wir die Nullhypothese ablehnen und unsere Vermutung bestätigt sehen) lautet also:

$$z \ge z_{95\%} \approx 1.65$$

Der Mittelwert unserer Stichprobe fällt höher aus als μ . Aber übersteigt er auch den kritischen Wert (und ist damit statistisch signifikant)?

Stand: 20. Mai 2019 5/16

Abbildung 4: Kritischer Wert für z bei gerichteter Alternativhypothese nach oben und $\alpha=0.05$

3.5 Prüfgröße berechnen

Für den z-Test ist die Prüfgröße der z-Wert der Stichprobe, und zwar standardisiert in Bezug auf μ_0 und den Standardfehler $(\sigma_{\bar{x}})$:

$$z = \frac{\bar{x} - \mu_0}{\sigma_{\bar{x}}} \tag{8}$$

Wie wir bereits wissen, ergibt sich der Standardfehler ($\sigma_{\bar{x}}$) wiederum aus der Stichprobengröße (n) und der Standardabweichung der Grundgesamtheit (σ):

$$\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}} \tag{9}$$

Durch einsetzen ergibt sich die generelle Formel für die Prüfgröße des z-Tests:

$$z = \sqrt{n} \cdot \frac{\bar{x} - \mu_0}{\sigma} \tag{10}$$

Das grundsätzliche Schema dieser Formel werden wir in anderen Tests wiedererkennen.

3.5.1 Beispiel

An dieser Stelle (also *nachdem* wir uns für einen Test und ein Signifikanzniveau entschieden und den kritischen Wert berechnet haben) dürften wir streng genommen erst die Stichprobe erheben.

Diese ergibt bei n=5 den Mittelwert $\bar{x}=103,0$. Die Verteilung x_0 (also unter Annahme der Nullhypothese) hatte die Kennwerte $\mu_0=94,2$ und $\sigma=11,8$.

Wir setzen ein in die Formel aus Gleichung 10:

$$z = \sqrt{n} \cdot \frac{\bar{x} - \mu_0}{\sigma}$$

$$\approx \sqrt{5} \cdot \frac{103,0 - 94,2}{11,8}$$

$$\approx 1.67$$

Stand: 20. Mai 2019 6/16

3.6 Ergebnis inerpretieren

Je nachdem, ob die Prüfgröße in den Ablehnungsbereich fällt (ob der kritische Wert also unter- bzw. überschritten wird), können wir die Nullhypothese ablehnen (und damit unsere Alternativhypothese bestätigen) oder nicht.

Eine Ablehnung der Nullhypothese bedeutet, dass wir ein *statistisch signifikantes Ergebnis zugunsten unserer Vermutung* vorliegen haben.

Diese Art von Ergebnis wird oft falsch interpretiert. Bei einem Signifikanzniveau von $\alpha=0.01$ heißt das zum Beispiel, dass die beobachteten Werte nur mit 1% Wahrscheinlichkeit vorkommen, wenn unsere Vermutung *nicht* stimmt. Wichtig dabei: Das ist etwas ganz anderes als zu behaupten, dass unsere Vermutung zu 99% stimme. Über die Wahrscheinlichkeit, dass eine Hypothese stimmt (oder nicht) können wir mit den Methoden der klassischen Statistik keine Aussage machen!

3.6.1 Beispiel

In unserem Beispiel liegt der z-Wert knapp über dem kritischen Wert von 1,65. Wir können also die Nullhypothese ablehnen und unsere Alternativhypothese annehmen. Unsere statistische Untersuchung hat gezeigt, dass die Eissporthalle an bewölkten Tagen besser besucht ist als an sonnigen (und zwar mit Signifikanzniveau $\alpha=0.05$).

Gut, dass wir eine gerichtete Alternativhypothese aufgestellt haben. Hätten wir nur vermutet, dass sich die Besucherzahlen je nach Wetter unterscheiden (ohne Angabe einer Richtung), dann wäre der kritische Wert nicht erreicht worden und wir hätten die Nullhypothese beibehalten müssen. Hinterher die Hypothesen anzupassen ist natürlich nicht zulässig!

Softwarehinweis

R hat in der Grundversion keinen dezidierten Befehl für einen z-Test. Mit der Funktion $\mathtt{qnorm}()$ können kritische Werte jedoch einfach bestimmt werden.

4 Die t-Verteilung

Wenn die Standardabweichung σ eines Merkmals in der Grundgesamtheit *unbekannt* ist, kann sie durch die Standardabweichung s der Stichprobe geschätzt werden (s. Sitzung 4). Dann ist die Stichprobenverteilung für \bar{x} jedoch nicht mehr normalverteilt, sondern sie folgt einer t-Verteilung.

Im Gegensatz zur Standardnormalverteilung (die wir für den z-Test benutzen) gibt es aber nicht nur eine t-Verteilung, sondern die Form der t-Verteilung hängt von so genannten Freiheitsgraden (engl. degrees of freedom) ab. Mit steigender Zahl der Freiheitsgrade nähert sich die t-Verteilung einer Standardnormalverteilung an (s. Abbildung 5).

Stand: 20. Mai 2019 7/16

Abbildung 5: t-Verteilungen mit verschiedenen Freiheitsgraden

4.1 Freiheitsgrade

In Anlehnung an Bortz und Schuster (2010) kürzen wir Freiheitsgrade mit df ab. Dort findet sich auch eine brauchbare Erklärung dieses Phänomens:

"Die Freiheitsgrade, welche mit einem Kennwert verbunden sind, entsprechen der Anzahl der Werte, die bei seiner Berechnung frei variieren können. Der Mittelwert \bar{x} besitzt beispielsweise n Freiheitsgrade, weil es keinerlei Bedingung gibt, der die n Werte genügen müssen. Dies ist für die Varianz $s^2 = QS/(n-1)$ nicht der Fall. Nur n-1 Abweichungen, welche in die Berechnung der Quadratsumme $QS = \sum_i (x_i - \bar{x})^2$ eingehen, können frei variieren. [D]ie Summe der Abweichungen von ihrem Mittelwert [ist] null, d.h. $\sum_i (x_i - \bar{x}) = 0$. Von n Abweichungen können deshalb nur n-1 frei variieren. Ergeben sich beispielsweise bei einer Stichprobe aus drei Werten die Abweichungen $x_1 - \bar{x} = -4$ und $x_2 - \bar{x} = 0$, muss zwangsläufig $x_3 - \bar{x} = 4$ sein, damit die Summe aller Abweichungen null ergibt. Bei der Varianzberechnung ist eine der n Abweichungen festgelegt, d.h. die Varianz hat nur n-1 Freiheitsgrade. Man schreibt die Stichprobenvarianz deshalb gelegentlich auch als $s^2 = QS/df$. Da die Varianz mit n-1 Freiheitsgraden verbunden ist, gilt dies auch für die Standardabweichung s." (Bortz und Schuster 2010: 121)

5 1-Stichproben-t-Test

Der 1-Stichproben-t-Test vergleicht (wie der z-Test) die Werte einer Stichprobe mit der Grundgesamtheit. Das Vorgehen ist dabei analog zum z-Test, mit dem einzigen Unterschied, dass eine t-Verteilung mit (n-1) Freiheitsgraden herangezogen wird.

Wir besprechen den 1-Stichproben-t-Test direkt an einem Beispiel:

Beim Frankfurter Amt für Wohnungswesen betrage die durchschnittliche Bearbeitungsdauer von Anträgen auf Wohngeld 30,2 Tage und sei normalverteilt. Wir vermuten, dass die Bearbeitungszeit zu Anfang des Wintersemesters höher ist als im Jahresdurchschnitt und planen eine zufällige Stichprobe von 12 Anträgen mit Einreichungsdatum im Oktober.

5.1 Test wählen und Voraussetzungen prüfen

Um den 1-Stichproben-t-Test durzuführen müssen folgende Voraussetzungen erfüllt sein:

Stand: 20. Mai 2019 8/16

- Das Ziel der Untersuchung ist es, eine statistisch signifikante Abweichung des Mittelwerts einer Stichprobe im Vergleich zu einer Grundgesamtheit festzustellen.
- Das zu untersuchende Merkmal ist in der Grundgesamtheit normalverteilt.
- Das arithmetische Mittel (μ) des Merkmals in der Grundgesamtheit ist bekannt. (Im Gegensatz zum z-Test ist σ hier unbekannt!)
- Der Test erfolgt anhand einer reinen Zufallsstichprobe.

5.1.1 Beispiel

In unserem Beispiel (Bearbeitungszeit Wohngeldanträge) sind diese Bedingungen erfüllt und wir können einen 1-Stichproben-t-Test durchführen.

5.2 Hypothesen formulieren

Die Hypothesen werden genauso wie beim z-Test formuliert:

5.2.1 Nullhypothese

$$H_0: \mu = \mu_0 \tag{11}$$

5.2.2 Alternativhypothese

$$H_1: \mu \neq \mu_0 \quad \text{(ungerichtet)}$$

oder

$$H_1: \mu < \mu_0$$
 (abwärts gerichtet) (13)

oder

$$H_1: \mu > \mu_0$$
 (aufwärts gerichtet) (14)

5.2.3 Beispiel

In unserem Beispiel geben wir eine Richtung vor, denn wir vermuten ja, dass die Bearbeitungsdauer zu Semesteranfang *höher* ist. Wir schreiben also:

$$H_0: \mu = 30,2$$

 $H_1: \mu > 30,2$

Stand: 20. Mai 2019 9/16

5.3 Signifikanzniveau entscheiden

Wie beim z-Test entscheidet das Signifikanzniveau α , wie *unwahrscheinlich* eine Prüfgröße unter Annahme der Nullhypothese sein muss, damit wir die Nullhypothese ablehnen können (und damit unsere Annahme bestätigen).

Übliche Werte für das Signifikanzniveau sind auch beim t-Test $\alpha = 0.05$ oder $\alpha = 0.01$.

5.3.1 Beispiel

Ein Irrtum zugunsten der Alternativhypothese hat bei unserer Untersuchung keine gravierenden Folgen. Angenommen, wir wollen uns in der Analyse trotzdem ganz sicher sein. Dann entscheiden wir uns für das Signifikanzniveau $\alpha=0.01$.

5.4 Ablehnungsbereich bestimmen

Genau wie beim z-Test bestimmt das Signifikanzniveau α den Ablehnungsbereich – also den Bereich für die zu errechnende Prüfgröße t, in dem die Nullhypothese abgelehnt würde.

Der Ablehnungsbereich für die ungerichtete Alternativhypothese ist $\frac{\alpha}{2}$ auf beiden Seiten. Die kritischen Werte sind dann die Schwellen des Ablehnungsbereich auf beiden Seiten:

$$t \le t_{df:\alpha/2}$$
 und $t \ge t_{df:(1-\alpha/2)}$ für $H_1: \mu \ne \mu_0$ (15)

Bei den gerichteten Alternativhypothesen ist der Ablehnungsbereich jeweils nur auf einer Seite. Die kritischen Werte ergeben sich aus:

$$t \le t_{df;\alpha} \quad \text{für} \quad H_1: \mu < \mu_0 \tag{16}$$

$$t \ge t_{df:(1-\alpha)}$$
 für $H_1: \mu > \mu_0$ (17)

Die kritischen Werte für t bei gegebenem Freiheitsgrad (n-1) und Flächenabschnitt lassen sich aus der Tabelle im Anhang ablesen. Dabei ist zu beachten, dass aufgrund der Symmetrie die Werte für Flächenanteile unter 50% nicht in der Tabelle verzeichnet sind. Es gilt die Formel:

$$P(-t_{df}) = 1 - P(t_{df}) \tag{18}$$

So ist zum Beispiel der Wert für $t_{5;1\%} = -t_{5;99\%} = -3,365$.

5.4.1 Beispiel

In unserem Beispiel haben wir eine gerichtete Alternativhypothese nach oben und ein Signifikanzniveau von $\alpha=0.01$ verwendet. Wir haben uns zudem für eine Stichprobengröße von n=12 entschieden, woraus der Freiheitsgrad df=n-1=11 resultiert.

Der kritische Wert (bei dessen Überschreitung wir die Nullhypothese ablehnen und unsere Vermutung bestätigt sehen) lautet also:

Stand: 20. Mai 2019 10/16

$$t \ge t_{df;(1-\alpha)}$$

 $t \ge t_{11;99\%}$
 $t > 2,718$

Graphisch ist der Ablehnungsbereich für unser Beispiel in Abbildung 6 dargestellt.

Abbildung 6: Ablehnungsbereich bei gerichteter Alternativhypothese nach oben, n=12 und $\alpha=0.01$

5.5 Prüfgröße berechnen

Die Formel für die Berechnung der Prüfgröße t im 1-Stichproben-t-Test lautet ganz ähnlich wie die für die Prüfgröße z im z-Test – mit dem Unterschied, dass statt der (hier unbekannten) Standardabweichung der Grundgesamtheit (σ) die Standardabweichung der Stichprobe (s) eingesetzt wird:

$$t = \sqrt{n} \cdot \frac{\bar{x} - \mu_0}{s} \tag{19}$$

Zum direkten Vergleich noch einmal die Prüfgröße im z-Test:

$$z = \sqrt{n} \cdot \frac{\bar{x} - \mu_0}{\sigma}$$

5.5.1 Beispiel (ausführlich)

Wir erheben die Stichprobe von n=12 Anträgen im Oktober und erhalten folgende Werte für die Bearbeitungsdauer (in Tagen):

Wir errechnen zunächst das arithmetische Mittel \bar{x} (s. Sitzung 2):

Stand: 20. Mai 2019 11/16

$$\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n}$$

$$= \frac{45 + 41 + 37 + 41 + 35 + 44 + 34 + 44 + 38 + 41 + 39 + 36}{12}$$

$$\approx 39.58$$

Damit können wir die Standardabweichung s berechnen:

$$s = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n - 1}}$$

$$\approx \sqrt{\frac{29,38 + 2,02 + 6,66 + 2,02 + 20,98 + 19,54 + 31,14 + 19,54 + 2,5 + 2,02 + 0,34 + 12,82}{11}}$$

$$\approx 3,67$$

Schließlich setzen wir diese Werte in die Formel für die Prüfgröße t (Gleichung 19) ein:

$$t = \sqrt{n} \cdot \frac{\bar{x} - \mu_0}{s}$$
$$\approx \sqrt{12} \cdot \frac{39,58 - 30,2}{3,67}$$
$$\approx 8,854$$

5.6 Ergebnis interpretieren

Genau wie beim z-Test kommt es darauf an, ob die Prüfgröße in den Ablehnungsbereich fällt (ob der kritische Wert also unter- bzw. überschritten wird). Wenn dies der Fall ist, können wir die Nullhypothese ablehnen (und damit unsere Alternativhypothese bestätigen). Wenn nicht, müssen wir die Nullhypothese beibehalten.

5.6.1 Beispiel

In unserem Beispiel liegt der t-Wert deutlich über dem kritischen Wert von 2,718. Wir können also die Nullhypothese ablehnen und unsere Alternativhypothese annehmen. Unsere statistische Untersuchung hat gezeigt, dass die Bearbeitungsdauer von Anträgen, die im Oktober eingehen, länger ist als im Jahresdurchschnitt (und zwar mit Signifikanzniveau $\alpha=0.01$).

Softwarehinweis

In R kann ein t-Test mit dem Befehl t. test () durchgeführt werden. Neben der Prüfgröße t gibt der Befehl einen p-Wert aus – ist dieser kleiner als α , so liegt eine signifikante Abweichung vor.

Stand: 20. Mai 2019 12/16

6 Aufgaben

6.1 Aufgabe 1

Sie interessieren sich für die durchschnittliche Haushaltsgröße in Frankfurt im europäischen Vergleich. In der EU sei die durchschnittliche Haushaltsgröße 2,30 Personen mit einer Standardabweichung von 1,42.

Sie vermuten, dass Frankfurter Haushalte sich in ihrer Größe vom europäischen Durchschnitt unterscheiden, können aber nicht sagen, in welche Richtung.

- a) Welche Stichprobengröße ist für einen z-Test in diesem Fall nötig und warum?
- b) Formulieren Sie Null- und Alternativhypothese.
- c) Sie entscheiden Sich für ein Signifikanzniveau von $\alpha = 0.05$. Notieren Sie die kritischen Werte.
- d) Eine Stichprobe von 40 Frankfurter Haushalten ergibt eine durchschnittliche Größe von 1,82. Berechnen Sie die Prüfgröße z.
- e) Wie bewerten Sie das Ergebnis?

6.2 Aufgabe 2

Bestimmen Sie die folgenden kritischen Werte:

- a) $t_{4:0.5\%}$
- b) $t_{19;0,1\%}$
- c) $t_{7;2,5\%}$
- d) $t_{13;5\%}$
- e) $t_{11:97.5\%}$
- f) $t_{3:95\%}$
- g) $t_{6:99.5\%}$
- h) $t_{16,99,9\%}$
- i) $t_{5;99\%}$
- j) $t_{20;1\%}$

6.3 Aufgabe 3

Die Prüfungsergebnisse für eine Klausur im Geographiestudium seien normalverteilt mit einer mittleren Punktzahl von 61,5 und einer Standardabweichung von 10,3. Sie vermuten, dass berufstätige Studierende im Durchschnitt schlechter abschneiden, weil ihnen die Vorbereitungszeit fehlt. Eine Zufallsstichprobe berufstätiger Studierender ergibt die Prüfungsergebnisse: 42 78 46 65

Prüfen Sie Ihre Vermutung. Begründen Sie die Wahl des Tests und des Signifikanzniveaus.

6.4 Aufgabe 4

Sie vermuten, dass Angestellte mit Migrationshintergrund in einem bestimmten Betrieb weniger als das Durchschnittsgehalt verdienen. Die Personalabteilung bestätigt Ihnen gegenüber die annähernde Normalverteilung der Bruttogehälter mit Mittelwert $\mu=3042,\!43$ (in EUR). Sie planen, das Bruttogehalt von sechs zufälligen Angestellten mit Migrationshintergrund direkt zu ermitteln.

Stand: 20. Mai 2019 13/16

- a) Welchen Test führen Sie durch?
- b) Formulieren Sie die Hypothesen.
- c) Bestimmen Sie den kritischen Wert bei Signifikanzniveau $\alpha=0.01$.

6.5 Aufgabe 5

(Fortführung von Aufgabe 4)

Sie ermitteln die folgenden Werte (in EUR):

```
2927,35 2930,68 2903,58 3032,59 3013,37 2979,4
```

- a) Berechnen Sie die Prüfgröße.
- b) Welche Schlüsse ziehen Sie aus der Untersuchung?

7 Tipps zur Vertiefung

- YouTube-Kanal "Kurzes Tutorium Statistik": p-Wert, Nullhypothese, Signifikanzniveau die Idee erklärt
- YouTube-Kanal "Benedict K": p-Wert: einseitiger und beidseitiger Hypothesentest / Signifikanztest erklärt
- YouTube-Kanal "Kurzes Tutorium Statistik": Einstichproben t-Test
- Kapitel 7, 8.1 in Bortz und Schuster (2010)
- Kapitel 5.5.2 in Bahrenberg, Giese und Nipper (2010)
- Kapitel 9 in Klemm (2002)

Stand: 20. Mai 2019 14/16

8 Anhang: Tabelle t-Verteilungen

$$P(-t_{df}) = 1 - P(t_{df})$$

		Fläche													
df	0,55	0,6	0,65	0,7	0,75	0,8	0,85	0,9	0,95	0,975	0,99	0,995	0,999	0,9995	0,9999
1	0,158	0,325	0,510	0,727	1,000	1,376	1,963	3,078	6,314	12,706	31,821	63,657	318,309	636,619	3183,099
2	0,142	0,289	0,445	0,617	0,816	1,061	1,386	1,886	2,920	4,303	6,965	9,925	22,327	31,599	70,700
3	0,137	0,277	0,424	0,584	0,765	0,978	1,250	1,638	2,353	3,182	4,541	5,841	10,215	12,924	22,204
4	0,134	0,271	0,414	0,569	0,741	0,941	1,190	1,533	2,132	2,776	3,747	4,604	7,173	8,610	13,034
5	0,132	0,267	0,408	0,559	0,727	0,920	1,156	1,476	2,015	2,571	3,365	4,032	5,893	6,869	9,678
6	0,131	0,265	0,404	0,553	0,718	0,906	1,134	1,440	1,943	2,447	3,143	3,707	5,208	5,959	8,025
7	0,130	0,263	0,402	0,549	0,711	0,896	1,119	1,415	1,895	2,365	2,998	3,499	4,785	5,408	7,063
8	0,130	0,262	0,399	0,546	0,706	0,889	1,108	1,397	1,860	2,306	2,896	3,355	4,501	5,041	6,442
9	0,129	0,261	0,398	0,543	0,703	0,883	1,100	1,383	1,833	2,262	2,821	3,250	4,297	4,781	6,010
10	0,129	0,260	0,397	0,542	0,700	0,879	1,093	1,372	1,812	2,228	2,764	3,169	4,144	4,587	5,694
11	0,129	0,260	0,396	0,540	0,697	0,876	1,088	1,363	1,796	2,201	2,718	3,106	4,025	4,437	5,453
12	0,128	0,259	0,395	0,539	0,695	0,873	1,083	1,356	1,782	2,179	2,681	3,055	3,930	4,318	5,263
13	0,128	0,259	0,394	0,538	0,694	0,870	1,079	1,350	1,771	2,160	2,650	3,012	3,852	4,221	5,111
14	0,128	0,258	0,393	0,537	0,692	0,868	1,076	1,345	1,761	2,145	2,624	2,977	3,787	4,140	4,985
15	0,128	0,258	0,393	0,536	0,691	0,866	1,074	1,341	1,753	2,131	2,602	2,947	3,733	4,073	4,880
16	0,128	0,258	0,392	0,535	0,690	0,865	1,071	1,337	1,746	2,120	2,583	2,921	3,686	4,015	4,791
17	0,128	0,257	0,392	0,534	0,689	0,863	1,069	1,333	1,740	2,110	2,567	2,898	3,646	3,965	4,714
18	0,127	0,257	0,392	0,534	0,688	0,862	1,067	1,330	1,734	2,101	2,552	2,878	3,610	3,922	4,648
19	0,127	0,257	0,391	0,533	0,688	0,861	1,066	1,328	1,729	2,093	2,539	2,861	3,579	3,883	4,590
20	0,127	0,257	0,391	0,533	0,687	0,860	1,064	1,325	1,725	2,086	2,528	2,845	3,552	3,850	4,539
25	0,127	0,256	0,390	0,531	0,684	0,856	1,058	1,316	1,708	2,060	2,485	2,787	3,450	3,725	4,352
30	0,127	0,256	0,389	0,530	0,683	0,854	1,055	1,310	1,697	2,042	2,457	2,750	3,385	3,646	4,234
35	0,127	0,255	0,388	0,529	0,682	0,852	1,052	1,306	1,690	2,030	2,438	2,724	3,340	3,591	4,153
40	0,126	0,255	0,388	0,529	0,681	0,851	1,050	1,303	1,684	2,021	2,423	2,704	3,307	3,551	4,094
45	0,126	0,255	0,388	0,528	0,680	0,850	1,049	1,301	1,679	2,014	2,412	2,690	3,281	3,520	4,049
50	0,126	0,255	0,388	0,528	0,679	0,849	1,047	1,299	1,676	2,009	2,403	2,678	3,261	3,496	4,014
55	0,126	0,255	0,387	0,527	0,679	0,848	1,046	1,297	1,673	2,004	2,396	2,668	3,245	3,476	3,986
60	0,126	0,254	0,387	0,527	0,679	0,848	1,045	1,296	1,671	2,000	2,390	2,660	3,232	3,460	3,962
65	0,126	0,254	0,387	0,527	0,678	0,847	1,045	1,295	1,669	1,997	2,385	2,654	3,220	3,447	3,942
70	0,126	0,254	0,387	0,527	0,678	0,847	1,044	1,294	1,667	1,994	2,381	2,648	3,211	3,435	3,926
75	0,126	0,254	0,387	0,527	0,678	0,846	1,044	1,293	1,665	1,992	2,377	2,643	3,202	3,425	3,911
80	0,126	0,254	0,387	0,526	0,678	0,846	1,043	1,292	1,664	1,990	2,374	2,639	3,195	3,416	3,899
90	0,126	0,254	0,387	0,526	0,677	0,846	1,042	1,291	1,662	1,987	2,368	2,632	3,183	3,402	3,878
100	0,126	0,254	0,386	0,526	0,677	0,845	1,042	1,290	1,660	1,984	2,364	2,626	3,174	3,390	3,862
110	0,126	0,254	0,386	0,526	0,677	0,845	1,041	1,289	1,659	1,982	2,361	2,621	3,166	3,381	3,848
120	0,126	0,254	0,386	0,526	0,677	0,845	1,041	1,289	1,658	1,980	2,358	2,617	3,160	3,373	3,837
130	0,126	0,254	0,386	0,526	0,676	0,844	1,041	1,288	1,657	1,978	2,355	2,614	3,154	3,367	3,828
140	0,126	0,254	0,386	0,526	0,676	0,844	1,040	1,288	1,656	1,977	2,353	2,611	3,149	3,361	3,820
150	0,126	0,254	0,386	0,526	0,676	0,844	1,040	1,287	1,655	1,976	2,351	2,609	3,145	3,357	3,813
200	0,126	0,254	0,386	0,525	0,676	0,843	1,039	1,286	1,653	1,972	2,345	2,601	3,131	3,340	3,789
300	0,126	0,254	0,386	0,525	0,675	0,843	1,038	1,284	1,650	1,968	2,339	2,592	3,118	3,323	3,765
400	0,126	0,254	0,386	0,525	0,675	0,843	1,038	1,284	1,649	1,966	2,336	2,588	3,111	3,315	3,754
500	0,126	0,253	0,386	0,525	0,675	0,842	1,038	1,283	1,648	1,965	2,334	2,586	3,107	3,310	3,747
1000	0,126	0,253	0,385	0,525	0,675	0,842	1,037	1,282	1,646	1,962	2,330	2,581	3,098	3,300	3,733
z	0,126	0,253	0,385	0,524	0,674	0,842	1,036	1,282	1,645	1,960	2,326	2,576	3,090	3,291	3,719

Stand: 20. Mai 2019 15/16

Quellen

Bahrenberg, Gerhard, Ernst Giese und Josef Nipper. 2010. *Statistische Methoden in der Geographie*. 5. Aufl. Bd. 1. Univariate und bivariate Statistik. Stuttgart: Bornträger.

Bortz, Jürgen und Christof Schuster. 2010. *Statistik für Human- und Sozialwissenschaftler*. 7. Aufl. Berlin: Springer.

Klemm, Elmar. 2002. Einführung in die Statistik. Für die Sozialwissenschaften. Wiesbaden: Westdeutscher Verlag.

Stand: 20. Mai 2019 16/16