K-Means Clustering

In this exercise we will use KMeans clustering to create clusters in the iris dataset and then compare them with the original to see how accurate they are.

Importing Necessary Libraries

In [1]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

import warnings
warnings.filterwarnings('ignore')
executed in 2.16s, finished 18:14:02 2023-04-19
```

Data Preparation

In [2]:

```
iris = pd.read_csv('iris.csv')
iris.head()
executed in 34ms, finished 18:14:02 2023-04-19
```

Out[2]:

	sepallength	sepalwidth	petallength	petalwidth	class
0	5.1	3.5	1.4	0.2	Iris-setosa
1	4.9	3.0	1.4	0.2	Iris-setosa
2	4.7	3.2	1.3	0.2	Iris-setosa
3	4.6	3.1	1.5	0.2	Iris-setosa
4	5.0	3.6	1.4	0.2	Iris-setosa

In [3]:

```
iris.info()
executed in 22ms, finished 18:14:02 2023-04-19
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150 entries, 0 to 149
Data columns (total 5 columns):
#
     Column
                  Non-Null Count Dtype
                  -----
                                  float64
     sepallength 150 non-null
 0
                  150 non-null
                                  float64
 1
     sepalwidth
 2
     petallength 150 non-null
                                  float64
                  150 non-null
                                  float64
 3
     petalwidth
     class
                  150 non-null
                                  object
dtypes: float64(4), object(1)
memory usage: 6.0+ KB
In [4]:
```

We copy the iris dataset to perform our operations on it and compare it with the original dataset.

In [5]:

df = iris.copy()

executed in 11ms, finished 18:14:02 2023-04-19

```
df['class'].unique()
executed in 10ms, finished 18:14:02 2023-04-19
```

Out[5]:

```
array(['Iris-setosa', 'Iris-versicolor', 'Iris-virginica'], dtype=object)
```

We see that there are 3 unique species. Now we will check whether our clustering model predicts the same.

In [6]:

```
df.drop(['class'], axis = 1, inplace = True)
df.head()
executed in 31ms, finished 18:14:02 2023-04-19
```

Out[6]:

	sepallength	sepalwidth	petallength	petalwidth
0	5.1	3.5	1.4	0.2
1	4.9	3.0	1.4	0.2
2	4.7	3.2	1.3	0.2
3	4.6	3.1	1.5	0.2
4	5.0	3.6	1.4	0.2

We dropped the class column as it was redundant for our exercise.

Model Development

First we will run the Hopkin's Clustering Test on the dataset. We begin by defining the hopkins() function.

In [7]:

```
from sklearn.neighbors import NearestNeighbors
from random import sample
from numpy.random import uniform
from math import isnan
def hopkins(X):
    d = X.shape[1] # columns
    n = len(X) # rows
    m = int(0.1 * n)
    nbrs = NearestNeighbors(n_neighbors=1).fit(X.values)
    rand_X = sample(range(0, n, 1), m)
    ujd = []
    wjd = []
    for j in range(0, m):
        u_dist, _ = nbrs.kneighbors(uniform(np.amin(X,axis=0),np.amax(X,axis=0),d).reshape(
        ujd.append(u_dist[0][1])
        w_dist, _ = nbrs.kneighbors(X.iloc[rand_X[j]].values.reshape(1, -1), 2, return_dist
        wjd.append(w_dist[0][1])
    H = sum(ujd) / (sum(ujd) + sum(wjd))
    if isnan(H):
        print(ujd, wjd)
        H = 0
    return H
executed in 210ms. finished 18:14:02 2023-04-19
```

Since Hopkin's test produces a slightly different value each time we will iterate it for 1000 times and then take its mean.

In [8]:

```
hopkins_stat = []
for i in range(1000):
    hopkins_stat.append(hopkins(df))
sum(hopkins_stat)/len(hopkins_stat)
executed in 50.7s, finished 18:14:53 2023-04-19
```

Out[8]:

0.842680849830881

The mean value is 0.84 which means our dataset has a high tendency for clustering. Now we will train the model. We will use elbow curve method for determining the number of clusters.

In [9]:

```
from sklearn.cluster import KMeans
executed in 125ms, finished 18:14:53 2023-04-19
```

If we set number of clusters as 1 we will get an error so we will calculate it manually. For n_clusters = 1 the data will have a single centroid and we have to calculate the sum of the square of distance between the centroid and the remaining data points. First we will calculate the centroid.

In [10]:

```
centroid = np.mean(df, axis = 0)
centroid = centroid.values
centroid

executed in 28ms, finished 18:14:53 2023-04-19
```

Out[10]:

```
array([5.84333333, 3.054 , 3.75866667, 1.19866667])
```

Now we will create two UDFs to calculate the distance between 2 points and the sum of those distances.

In [11]:

```
def euclidean_distance(point1, point2):
    """Calculate the Euclidean distance between two points."""
    return np.sqrt(np.sum((point1 - point2)**2))

def sum_euclidean_distance(centroid, data_points):
    """Calculate the sum of Euclidean distances between the centroid and all data points.""
    sum_distance = 0
    for point in data_points:
        sum_distance += euclidean_distance(centroid, point)
    return sum_distance

executed in 24ms, finished 18:14:53 2023-04-19
```

In [12]:

```
sum_euclidean_distance(centroid, df.values)
executed in 34ms, finished 18:14:53 2023-04-19
```

Out[12]:

```
291.4551238555539
```

The inertia for $n_{clusters} = 1$ is 291.45. We will insert that value in the list of inertias.

In [13]:

```
# Define a list of number of clusters to try
n_clusters = range(2, 11)
# Initialize an list with inertia value for n = 1 to store the inertia values for other n
inertias = [291.45]
# Perform K-means clustering for different number of clusters
for n in n_clusters:
    kmeans = KMeans(n_clusters=n, init='k-means++', max_iter=300, random_state=0)
    kmeans.fit(df)
    inertias.append(kmeans.inertia_)
# Plot the inertia values vs. number of clusters
plt.figure(figsize = (10,5))
plt.plot(range(1,11), inertias, marker='o')
plt.xlabel('Number of Clusters')
plt.ylabel('Inertia')
plt.title('Elbow Method for K-means Clustering on Iris Dataset')
plt.show()
executed in 1.25s, finished 18:14:54 2023-04-19
```


The elbow point is at n = 3 which is in accordance with our dataset. We will now train the model for 3 clusters and then compare the results with original dataset.

In [14]:

```
kmeans_3 = KMeans(n_clusters = 3, init='k-means++', max_iter=300, random_state=0)
kmeans_3.fit(df)
executed in 113ms, finished 18:14:54 2023-04-19
```

Out[14]:

KMeans(n clusters=3, random state=0)

In [15]:

```
kmeans_3.labels_
executed in 18ms, finished 18:14:54 2023-04-19
```

Out[15]:

In [16]:

```
kmeans_3.cluster_centers_
executed in 19ms, finished 18:14:54 2023-04-19
```

Out[16]:

These are the cluster centroids.

In [17]:

```
df['cluster'] = kmeans_3.labels_
df.head()
executed in 41ms, finished 18:14:54 2023-04-19
```

Out[17]:

	sepallength	sepalwidth	petallength	petalwidth	cluster
0	5.1	3.5	1.4	0.2	1
1	4.9	3.0	1.4	0.2	1
2	4.7	3.2	1.3	0.2	1
3	4.6	3.1	1.5	0.2	1
4	5.0	3.6	1.4	0.2	1

Result Verification

First we will plot the scatterplot of sepallength vs sepalwidth of both datasets side by side with hue as class.

In [18]:

```
plt.figure(figsize=(30,8))

plt.subplot(1,2,1)
sns.scatterplot(x = 'sepallength', y = 'sepalwidth', data = iris, hue = 'class', palette =
plt.title('Iris Dataset', fontsize = 14)
plt.legend(title = 'class', bbox_to_anchor=(1, 1), loc = 0)

plt.subplot(1,2,2)
sns.scatterplot(x = 'sepallength', y = 'sepalwidth', data = df, hue = 'cluster', palette =
plt.title('KMeans Model', fontsize = 14)
plt.legend(title = 'cluster', bbox_to_anchor=(1, 1), loc = 0)

plt.suptitle("Sepallength vs Sepalwidth", fontsize = 20)
plt.show()

executed in 1.29s, finished 18:14:56 2023-04-19
```


Our model did a great job at creating the clusters. Now we will check the petallength vs petalwidth graph.

In [19]:

```
plt.figure(figsize=(30,8))

plt.subplot(1,2,1)
sns.scatterplot(x = 'petallength', y = 'petalwidth', data = iris, hue = 'class', palette =
plt.title('Iris Dataset', fontsize = 14)
plt.legend(title = 'class', bbox_to_anchor=(1, 1))

plt.subplot(1,2,2)
sns.scatterplot(x = 'petallength', y = 'petalwidth', data = df, hue = 'cluster', palette =
plt.title('KMeans Model', fontsize = 14)
plt.legend(title = 'cluster', bbox_to_anchor=(1, 1))

plt.suptitle("Petalength vs Petalwidth", fontsize = 20)
plt.show()

executed in 1.16s, finished 18:14:57 2023-04-19
```


From both the plots, even though there were some mistakes, we can conclude that our model did a great job of creating the clusters for our data. We observe that cluster 1 represents setosa, cluster 0 represents versicolor and cluster 2 represents virginica.