Package 'isolateR'

December 6, 2023

Type Package

Title Automated processing of Sanger sequencing data, taxonomic profiling, and generation of microbial strain libraries

Version 0.0.0.9000

Date 2023-11-20

Author Brendan Daisley, Sarah Vancuren, Dylan Brettingham, Jacob Wilde, Emma Allen-Vercoe.

Maintainer Brendan Daisley <bdaisley@uoguelph.ca>

Description isolateR aims to enhance microbial isolation workflows and support the identification of novel taxa. It addresses the challenges of manual Sanger sequencing data processing and limitations of conventional BLAST searches, crucial for identifying microorganisms and creating strain libraries. The package offers a streamlined three-step process that automates quality trimming Sanger sequence files, taxonomic classification via global alignment against type strain databases, and efficient strain library creation based on customizable sequence similarity thresholds. It features interactive HTML output tables for easy data exploration and optional tools for generating phylogenetic trees to visualize microbial diversity.

License GPL (>= 2)

Encoding UTF-8

LazyData true

Roxygen list(markdown = TRUE)

RoxygenNote 7.2.3

Suggests knitr,rmarkdown

VignetteBuilder knitr

biocViews

Imports ape, BiocManager, crosstalk, dataui, htmltools, LPSN, methods, pander, treedataverse, msa, R.utils, reactable, rentrez, sangerseqR, sangeranalyseR, scales, seqinr, stringr, svMisc, shiny, xmlconvert

Depends Biostrings, dplyr, reactablefmtr

Remotes timelyportfolio/dataui, glin/reactable, YuLab-SMU/treedataverse

Additional_repositories http://R-Forge.R-project.org

2 class-isoLIB

R topics documented:

class-isoLIB		isoLJB Class Object					
Index			2				
	varia_tax_cricck		20				
	_						
	-						
	•						
	=						
	•						
	class-isoLIB						

Description

S4 wrapper for isoLIB function. Access data via S4 slot functions.

Value

Returns an class-isoLIB object.

Slots

input Character string containing input directory information.

strain_group Character string containing list of group representative filenames.

date Character string containing run date from each of the input Sanger sequence .ab1 files ("YYYY_MM_DD" format).

filename Character string containing input filenames.

phred_trim Numeric string containing mean Phred scores after trimming.

Ns_trim Numeric string containing count of N's after trimming.

length_trim Numeric string containing sequence length after trimming.

seqs_trim Character string containing sequence after trimming.

closest_match Character string containing species + type strain no. of closest match from reference database.

class-isoQC 3

NCBI_acc Character string containing NCBI accession number associated with closest match from reference database.

- ID Numeric string containing pairwise similarity value for query vs database reference sequence. Calculation of ID is determined by isoTAX 'iddef' parameter (0-4, Default=2). See VSEARCH documentation for more details.
 - (0) CD-HIT definition: (matching columns) / (shortest sequence length).
 - (1) Edit distance: (matching columns) / (alignment length).
 - (2) Edit distance excluding terminal gaps (default definition).
 - (3) Marine Biological Lab definition counting each gap opening (internal or terminal) as a single mismatch, whether or not the gap was extended: 1.0- ((mismatches + gap openings)/(longest sequence length)).
 - (4) BLAST definition, equivalent to –iddef 1 for global pairwise alignments.

rank_phylum Character string containing Phylum rank taxonomy
rank_class Character string containing Class rank taxonomy
rank_order Character string containing Order rank taxonomy
rank_family Character string containing Family rank taxonomy
rank_genus Character string containing Genus rank taxonomy
rank_species Character string containing Species rank taxonomy
phylum_cutoff Numeric string containing Phylum-level cutoff threshold
class_cutoff Numeric string containing Class-level cutoff threshold
order_cutoff Numeric string containing Order-level cutoff threshold
family_cutoff Numeric string containing Family-level cutoff threshold
genus_cutoff Numeric string containing Genus-level cutoff threshold
species_cutoff Numeric string containing Species-level cutoff threshold

See Also

isoLIB

class-isoQC

isoQC Class Object

Description

S4 wrapper for isoQC function. Access data via S4 slot functions.

Value

Returns an class-isoQC object.

4 class-isoTAX

Slots

date Character string containing run date from each of the input Sanger sequence .ab1 files ("YYYY_MM_DD" format).

filename Character string containing input filenames.

trim.start.pos Numeric string containing trimming position start point.

trim.end.pos Numeric string containing trimming position end point.

phred_spark_raw List containing per nucleotide Phred score values for each sequence

phred_raw Numeric string containing mean Phred scores before trimming.

phred_trim Numeric string containing mean Phred scores after trimming.

Ns_raw Numeric string containing count of N's before trimming.

Ns_trim Numeric string containing count of N's after trimming.

length_raw Numeric string containing sequence length before trimming.

length_trim Numeric string containing sequence length after trimming.

seqs_raw Character string containing sequences before trimming.

seqs_trim Character string containing sequence after trimming.

decision Character string containing decision (PASS/FAIL) information based on isoQC 'min_phred_score' and 'min_length cutoffs'.

input Character string containing input directory information.

See Also

isoQC

class-isoTAX

isoTAX Class Object

Description

S4 wrapper for isoTAX function. Access data via S4 slot functions.

Value

Returns an class-isoTAX object.

Slots

input Character string containing input directory information.

warning Character string containing list filenames of sequences that had poor alignment during taxonomic classification step.

date Character string containing run date from each of the input Sanger sequence .ab1 files ("YYYY_MM_DD" format).

filename Character string containing input filenames.

phred_spark_raw List containing per nucleotide Phred score values for each sequence

phred_raw Numeric string containing mean Phred scores before trimming.

phred_trim Numeric string containing mean Phred scores after trimming.

class-isoTAX 5

Ns_raw Numeric string containing count of N's before trimming.

Ns_trim Numeric string containing count of N's after trimming.

length_raw Numeric string containing sequence length before trimming.

length_trim Numeric string containing sequence length after trimming.

seqs_raw Character string containing sequences before trimming.

seqs_trim Character string containing sequence after trimming.

closest_match Character string containing species + type strain no. of closest match from reference database.

NCBI_acc Character string containing NCBI accession number associated with closest match from reference database.

- ID Numeric string containing pairwise similarity value for query vs database reference sequence. Calculation of ID is determined by isoTAX 'iddef' parameter (0-4, Default=2). See VSEARCH documentation for more details.
 - (0) CD-HIT definition: (matching columns) / (shortest sequence length).
 - (1) Edit distance: (matching columns) / (alignment length).
 - (2) Edit distance excluding terminal gaps (default definition).
 - (3) Marine Biological Lab definition counting each gap opening (internal or terminal) as a single mismatch, whether or not the gap was extended: 1.0- ((mismatches + gap openings)/(longest sequence length)).
 - (4) BLAST definition, equivalent to –iddef 1 for global pairwise alignments.

rank_phylum Character string containing Phylum rank taxonomy

rank_class Character string containing Class rank taxonomy

rank_order Character string containing Order rank taxonomy

rank_family Character string containing Family rank taxonomy

rank_genus Character string containing Genus rank taxonomy

rank_species Character string containing Species rank taxonomy

phylum_cutoff Numeric string containing Phylum-level cutoff threshold

class_cutoff Numeric string containing Class-level cutoff threshold

order_cutoff Numeric string containing Order-level cutoff threshold

family_cutoff Numeric string containing Family-level cutoff threshold

genus_cutoff Numeric string containing Genus-level cutoff threshold

species_cutoff Numeric string containing Species-level cutoff threshold

See Also

isoTAX

6 df_to_isoTAX

df_to_isoLIB

Convert isoLIB .CSV output to isoLIB class object

Description

Helper function to convert isoLIB .CSV output to a class-isoLIB class object.

Usage

```
df_to_isoLIB(df)
```

Arguments

df

Dataframe in same format as .CSV output file from isoLIB step.

Value

Returns an S4 class-isoLIB object that can be used to generate interactive HTML output tables.

df_to_isoTAX

Convert isoTAX .CSV output to isoTAX class object

Description

Helper function to convert isoTAX .CSV output to a class-isoTAX class object.

Usage

```
df_to_isoTAX(df)
```

Arguments

df

Dataframe in same format as .CSV output file from isoTAX step.

Value

Returns an S4 class-isoTAX object that can be used to generate interactive HTML output tables.

export_html 7

export_html

Export HTML for isoQC > isoTAX > isoLIB class objects

Description

S4 wrapper functions to export interactive HTML tables from isoQC, isoTAX, or isoLIB class objects. Saves to HTML to current working directory and automatically opens.

Usage

```
## S4 method for signature 'isoQC'
export_html(obj)

## S4 method for signature 'isoTAX'
export_html(obj)

## S4 method for signature 'isoLIB'
export_html(obj)
```

Arguments

obj

An S4 class object generated from one of isoQC, isoTAX, or isoLIB steps

Value

HTML output file saved to working directory.

get_os

Determine user operating system.

Description

Determines the type of operating system being used.

Usage

```
get_os()
```

Value

Returns sysname as one of windows/osx-mac/linux

8 get_sanger_date

Examples

```
#Example 1 on a Windows-based operating system
os.index <- get_os()
print(os.index)

#Example 2 on a Mac operating system
os.index <- get_os()
print(os.index)

#Example 3 on a Linux operating system
os.index <- get_os()
print(os.index)</pre>
```

get_sanger_date

get_sanger_date function

Description

Helper function to automatically retrieve run date from Sanger sequencing .ab1 files.

Usage

```
get_sanger_date(file = NULL)
```

Arguments

file

The .ab1 file in from which to retrieve the date information. (Must be in S4 abif format)

Value

Returns date in "YYYY_MM_DD" format

Examples

isoLIB 9

isoLIB

Generate new strain library or add to existing one.

Description

This function creates a strain library by grouping closely related strains of interest based on sequence similarity. For adding new sequences to an already-established strain library, specify the .CSV file path of the older strain library using the 'old_lib_csv" parameter.

Usage

```
isoLIB(
  input = NULL,
  old_lib_csv = NULL,
  export_html = TRUE,
  export_csv = TRUE,
  include_warnings = FALSE,
  strain_group_cutoff = 0.995,
  phylum_cutoff = 75,
  class_cutoff = 78.5,
  order_cutoff = 82,
  family_cutoff = 86.5,
  genus_cutoff = 96.5,
  species_cutoff = 98.7
)
```

Arguments

input Path of CSV output file from isoTAX step.

old_lib_csv Optional: Path of CSV output isoLIB file or combined isoLIB file from previous run(s)

export_html (Default=TRUE) Output the results as an HTML file

export_csv (Default=TRUE) Output the results as a CSV file. include_warnings

(Default=FALSE) Whether or not to keep sequences with poor alignment warnings from Step 2 'isoTAX' function. Set TRUE to keep warning sequences, and FALSE to remove warning sequences.

strain_group_cutoff

(Default=0.995) Similarity cutoff (0-1) for delineating between strain groups. 1 = 100% identical/0.995=0.5% difference/0.95=5.0% difference/etc.

phylum_cutoff Percent cutoff for phylum rank demarcation class_cutoff Percent cutoff for class rank demarcation order_cutoff Percent cutoff for order rank demarcation family_cutoff Percent cutoff for family rank demarcation genus_cutoff Percent cutoff for genus rank demarcation species_cutoff Percent cutoff for species rank demarcation

10 isoQC

Value

Returns an isoLIB class object. Default taxonomic cutoffs for phylum (75.0), class (78.5), order (82.0), family (86.5), genus (96.5), and species (98.7) demarcation are based on Yarza et al. 2014, Nature Reviews Microbiology (DOI:10.1038/nrmicro3330)

See Also

```
isoTAX, isoLIB
```

Examples

```
#Set path to directory containing example .ab1 files
fpath1 <- system.file("extdata/abif_examples/rocket_salad", package = "isolateR")

#Step 1: Run isoQC function with default settings
isoQC.S4 <- isoQC(input=fpath1)

#Step 2: Run isoTAX function with default settings
fpath2 <- file.path(fpath1, "isolateR_output/01_isoQC_trimmed_sequences_PASS.csv")
isoTAX.S4 <- isoTAX(input=fpath2)

#Step 3: Run isoLIB function with default settings
fpath3 <- file.path(fpath1, "isolateR_output/02_isoTAX_results.csv")
isoLIB.S4 <- isoLIB(input=fpath3)

#Show summary statistics
isoLIB.S4</pre>
```

isoQC

Perform automated quality trimming of input .ab1 files

Description

This function loads in ABIF files (.ab1 extension) and performs automatic quality trimming in batch mode.

```
isoQC(
   input = NULL,
   export_html = TRUE,
   export_csv = TRUE,
   export_fasta = TRUE,
   export_fasta_revcomp = FALSE,
   verbose = FALSE,
   exclude = NULL,
   min_phred_score = 20,
   min_length = 200,
   sliding_window_cutoff = NULL,
   sliding_window_size = 15,
   date = NULL,
   files_manual = NULL
)
```

isoQC 11

Arguments

input Path to directory with .ab1 files.

export_html (Default=TRUE) Output the results as an HTML file export_csv (Default=TRUE) Output the results as a CSV file.

export_fasta (Default=TRUE) Output the sequences in a FASTA file.

export_fasta_revcomp

(Default=FALSE) Output the sequences in reverse complement form in a fasta file. This is useful in cases where sequencing was done using the reverse primer

and thus the orientation of input sequences needs reversing.

verbose (Default=FALSE) Output progress while script is running.

exclude (Default=NULL) For testing purposes only. Excludes files of interest from input

directory.

min_phred_score

(Default=20) Do not accept trimmed sequences with a mean Phred score below

this cutoff

min_length (Default=200) Do not accept trimmed sequences with sequence length below

this number

sliding_window_cutoff

(Default=NULL) Quality trimming parameter (M2) for wrapping SangerRead function in sangeranalyseR package. If NULL, implements auto cutoff for Phred

score (recommended), otherwise set between 1-60.

sliding_window_size

(Default=15) Quality trimming parameter (M2) for wrapping SangerRead func-

tion in sangeranalyseR package. Recommended range between 5-30.

date Set date "YYYY_MM_DD" format. If NULL, attempts to parse date from .ab1

file

files_manual (Default=NULL) For testing purposes only. Specify a list of files to run as file-

names without extensions, rather than the whole directory format. Primarily

used for testing, use at your own risk.

Value

Returns quality trimmed Sanger sequences in FASTA format.

See Also

```
isoTAX, isoLIB
```

Examples

```
#Set path to directory containing example .ab1 files
fpath1 <- system.file("extdata/abif_examples/rocket_salad", package = "isolateR")
#Step 1: Run isoQC function with default settings
isoQC.S4 <- isoQC(input=fpath1)
#Show summary statistics
isoOC.S4</pre>
```

12 *isoTAX*

isoTAX

Classify taxonomy of sequences after quality trimming steps.

Description

This function performs taxonomic classification steps by searching query Sanger sequences against specified database of interest. Takes CSV input files, extracts FASTA-formatted query sequences and performs global alignment against specified database of interest via Needleman-Wunsch algorithm by wrapping the -usearch_global command implemented in VSEARCH. Default taxonomic rank cutoffs for 16S rRNA gene sequences are based on Yarza et al. 2014, Nat Rev Microbiol.

Usage

```
isoTAX(
  input = NULL,
  export_html = TRUE,
  export_csv = TRUE,
  quick_search = TRUE,
  database = "16S",
  iddef = 2,
  phylum_cutoff = 75,
  class_cutoff = 78.5,
  order_cutoff = 82,
  family_cutoff = 86.5,
  genus_cutoff = 96.5,
  species_cutoff = 98.7
```

Arguments

quick_search

Path of CSV output file from isoQC step. input

(Default=TRUE) Output the results as an HTML file export_html export_csv (Default=TRUE) Output the results as a CSV file.

(Default=FALSE) Whether or not to perform a comprehensive database search (i.e. optimal global alignment). If TRUE, performs quick search equivalent to setting VSEARCH parameters "-maxaccepts 100 -maxrejects 100". If FALSE, performs comprehensive search equivalent to setting VSEARCH parameters "-

maxaccepts 0 -maxrejects 0"

(Default="16S") Select database option(s) including "16S" (for searching against database

> the NCBI Refseq targeted loci 16S rRNA database), "ITS" (for searching against the NCBI Refseq targeted loci ITS database. For combined databases in cases where input sequences are dervied from bacteria and fungi, select "16SITS".

iddef Set pairwise identity definition as per VSEARCH definitions (Default=2, and is

recommended for highest taxonomic accuracy) (0) CD-HIT definition: (matching columns) / (shortest sequence length). (1) Edit distance: (matching columns) / (alignment length). (2) Edit distance excluding terminal gaps (default definition). (3) Marine Biological Lab definition counting each gap opening (internal or terminal) as a single mismatch, whether or not the gap was extended: 1.0-((mismatches + gap openings)/(longest sequence length)). (4) BLAST defini-

tion, equivalent to -iddef 1 for global pairwise alignments.

make_fasta 13

```
phylum_cutoff Percent cutoff for phylum rank demarcation
class_cutoff Percent cutoff for class rank demarcation
order_cutoff Percent cutoff for order rank demarcation
family_cutoff Percent cutoff for family rank demarcation
genus_cutoff Percent cutoff for genus rank demarcation
species_cutoff Percent cutoff for species rank demarcation
```

Value

Returns taxonomic classification table of class isoTAX. Default taxonomic cutoffs for phylum (75.0), class (78.5), order (82.0), family (86.5), genus (96.5), and species (98.7) demarcation are based on Yarza et al. 2014, Nature Reviews Microbiology (DOI:10.1038/nrmicro3330)

See Also

```
isoQC, isoLIB, search_db
```

Examples

```
#Set path to directory containing example .ab1 files
fpath1 <- system.file("extdata/abif_examples/rocket_salad", package = "isolateR")

#Step 1: Run isoQC function with default settings
isoQC.S4 <- isoQC(input=fpath1)

#Step 2: Run isoTAX function with default settings
fpath2 <- file.path(fpath1, "isolateR_output/01_isoQC_trimmed_sequences_PASS.csv")
isoTAX.S4 <- isoTAX(input=fpath2)
#Show summary statistics
isoTAX.S4</pre>
```

make_fasta

Convert CSV file containing sequences to FASTA format

Description

This function extracts sequences from a table in CSV format and converts them to FASTA format. Requires two columns, one with sequences and one with sequence names.

```
make_fasta(
  csv_file = NULL,
  col_names = "ID",
  col_seqs = "Sequence",
  output = "output.fasta"
)
```

14 make_tree

Arguments

csv_file	Filename (or path and filename if not in working directory) of the table from which you would like to generate a FASTA file.
col_names	Column name with the unique names/identifiers. (Default="ID")
col_seqs	Column name with the sequences. (Default="Sequence")
output	Desired filename for output FASTA file (Default = "output.fasta")

Value

Returns sequences in FASTA format.

Examples

```
#Set path to directory containing example .ab1 files
fpath1 <- system.file("extdata/abif_examples/rocket_salad", package = "isolateR")

#Run isoQC function with default settings to generate CSV file
isoQC.S4 <- isoQC(input=fpath1)

#Set path of CSV output file from isoQC step
csv.path <- file.path(fpath1, "isolateR_output/01_isoQC_trimmed_sequences_PASS.csv")

#Run make_fasta function
make_fasta(csv_file= csv.path, col_names="filename", col_seqs="seqs_trim", output="output.fasta")</pre>
```

make_tree

Generate a phylogenetic tree from an isoLIB output file

Description

This script will help the user make a simple phylogenetic tree from a strain library. It will allow the user to colour the tree by taxonomic rank only. See ggtree documentation for more information on customization options available.

Usage

```
make_tree(input = NULL)
```

Arguments

input

Full path to isoLIB strain library output file in .CSV format.

Value

Returns a ggtree class object

See Also

isoLIB

method-isoLIB 15

Examples

```
#Set path to directory containing example .ab1 files
fpath1 <- system.file("extdata/abif_examples/rocket_salad", package = "isolateR")

#Step 1: Run isoQC function with default settings
isoQC.S4 <- isoQC(input=fpath1)

#Step 2: Run isoTAX function with default settings
fpath2 <- file.path(fpath1, "isolateR_output/01_isoQC_trimmed_sequences_PASS.csv")
isoTAX.S4 <- isoTAX(input=fpath2)

#Step 3: Run isoLIB function with default settings
fpath3 <- file.path(fpath1, "isolateR_output/02_isoTAX_results.csv")
isoLIB.S4 <- isoLIB(input=fpath3)
#Step 4: Make a tree from isoLIB output CSV file
fpath4 <- file.path(fpath1, "isolateR_output/03_isoLIB_results.csv")
make_tree(input= fpath4)</pre>
```

method-isoLIB

setMethod functions for isoLIB

Description

Initiation of isoLIB functions.

Usage

```
## S4 method for signature 'missing'
isoLIB(
   input = NULL,
   old_lib_csv = NULL,
   export_html = TRUE,
   export_csv = TRUE,
   include_warnings = FALSE,
   strain_group_cutoff = 0.995,
   phylum_cutoff = 75,
   class_cutoff = 78.5,
   order_cutoff = 82,
   family_cutoff = 86.5,
   genus_cutoff = 96.5,
   species_cutoff = 98.7
)
```

method-isoQC

setMethod functions for isoQC

Description

Initiation of isoQC functions.

method-isoTAX

Usage

```
## S4 method for signature 'missing'
isoQC(
  input = NULL,
  export_html = TRUE,
  export_csv = TRUE,
  export_fasta = TRUE,
  export_fasta_revcomp = FALSE,
  verbose = FALSE,
  exclude = NULL,
  min_phred_score = 20,
  min_length = 200,
  sliding_window_cutoff = NULL,
  sliding_window_size = 15,
  date = NULL,
  files_manual = NULL
)
```

 ${\tt method-isoTAX}$

setMethod functions for isoTAX

Description

Initiation of isoTAX functions.

```
## S4 method for signature 'missing'
isoTAX(
   input = NULL,
   export_html = TRUE,
   export_csv = TRUE,
   quick_search = TRUE,
   database = "16S",
   iddef = 2,
   phylum_cutoff = 75,
   class_cutoff = 78.5,
   order_cutoff = 82,
   family_cutoff = 86.5,
   genus_cutoff = 96.5,
   species_cutoff = 98.7
)
```

S4_to_dataframe 17

S4_to_dataframe

Converts S4 objects (isoQC, isoTAX, or isoLIB) to dataframe

Description

Helper function to convert S4 class objects (isoQC, isoTAX, or isoLIB) to dataframe

Usage

```
S4_to_dataframe(s4obj)
```

Arguments

s4obj

object generated from isoQC, isoTAX, or isoLIB steps

Value

Returns a dataframe containing sequence information in columns.

search_db

Perform global alignment pairwise identity search using VSEARCH and type strain database of interest.

Description

Performs global alignment between FASTA-formatted query sequences and the specified database of interest. Uses the Needleman-Wunsch algorithm by wrapping the –usearch_global command implemented in VSEARCH.

```
search_db(
  query.path = NULL,
  uc.out = "VSEARCH_output.uc",
  b6.out = "VSEARCH_output.b6o",
  path = getwd(),
  quick_search = FALSE,
  db.path = NULL,
  database = NULL,
  keep_temp_files = FALSE,
  iddef = 2
)
```

18 search_db

Arguments

query.path Path of FASTA-formatted query sequence file.

uc.out Path of UC-formatted results output table.

b6.out Path of blast6-formatted results output table.

path Working path directory (Default is set to current working directory via 'getwd()'

quick_search (Default=FALSE) Whether or not to perform a comprehensive database search

(i.e. optimal global alignment). If TRUE, performs quick search equivalent to setting VSEARCH parameters "-maxaccepts 100 -maxrejects 100". If FALSE, performs comprehensive search equivalent to setting VSEARCH parameters "-maxaccepts 0 -maxrejects 0" Note: This option is provided for convenience and rough approximation of taxonomy only, set to FALSE for accurate % pairwise

identity results.

db.path Path of FASTA-formatted database sequence file. Ignored if 'database' parame-

ter is set to anything other than NULL

database Optional: Select any of the standard database option(s) including "16S" (for

searching against the NCBI Refseq targeted loci 16S rRNA database), "ITS" (for searching against the NCBI Refseq targeted loci ITS database. For combined databases in cases where input sequences are dervied from bacteria and fungi, select "16SITS". Setting to anything other than NULL causes 'db.path'

parameter to be ignored.

keep_temp_files

Toggle (TRUE/FALSE). If TRUE, temporary .uc and .b6o output files are kept from VSEARCH –uc and –blast6out commands, respectively. If FALSE, tem-

porary files are removed.

iddef Set pairwise identity definition as per VSEARCH definitions (Default=2, and is

recommended for highest taxonomic accuracy) (0) CD-HIT definition: (matching columns) / (shortest sequence length). (1) Edit distance: (matching columns) / (alignment length). (2) Edit distance excluding terminal gaps (default definition). (3) Marine Biological Lab definition counting each gap opening (internal or terminal) as a single mismatch, whether or not the gap was extended: 1.0-((mismatches + gap openings)/(longest sequence length)). (4) BLAST defini-

tion, equivalent to –iddef 1 for global pairwise alignments.

Value

Returns a dataframe matching the UC-formatted output table from VSEARCH. Query sequences are automatically added to the final column. Summary of column information. See VSEARCH documentation for more details.

- V1 = Record type of hit (H) or no hit (N)
- V2 = Ordinal number of the target sequence (based on input order, starting from zero). Set to '*' for N.
- V3 = Sequence length. Set to '*' for N.
- V4 = Percentage of similarity with the target sequence. Set to '*' for N.
- V5 = Match orientation + or -... Set to '.' for N.
- V6 = Not used, always set to zero for H, or '*' for N.
- V7 = Not used, always set to zero for H, or '*' for N.

show 19

• V8 = Compact representation of the pairwise alignment using the CIGAR format (Compact Idiosyncratic Gapped Alignment Report): M (match/mismatch), D (deletion) and I (insertion). The equal sign '=' indicates that the query is identical to the centroid sequence. Set to '*' for N.

- V9 = Label of the query sequence. Equivalent to 'filename' slot of isolateR class objects (e.g. isoQC, isoTAX, isoLIB).
- V10 = Label of the target centroid sequence. Set to '*' for N.

See Also

isoTAX

Examples

```
#Set path to directory containing example .ab1 files
fpath1 <- system.file("extdata/abif_examples/rocket_salad", package = "isolateR")

#Run isoQC function with default settings
isoQC.S4 <- isoQC(input=fpath1)

#Set path of CSV output file containing PASS sequences from isoQC step
fasta.path <- "01_isoQC_trimmed_sequences_PASS.fasta"

#Set paths
output.path <- file.path(fpath1, "isolateR_output")

#Run search_db function
uc.df <- search_db(query.path=fasta.path, path=output.path, quick_search=TRUE, database="16S")

#Inspect results
uc.df[1:10,1:10]</pre>
```

show

Generic show method for S4 class objects

Description

Generic show method for S4 class objects.

```
## S4 method for signature 'isoQC'
show(object)

## S4 method for signature 'isoTAX'
show(object)

## S4 method for signature 'isoLIB'
show(object)
```

20 valid_tax_check

varia_tax_check vaniante species name via Al I chem of El Siv	valid_tax_check	Validate species name via API client of LPSN	
---	-----------------	--	--

Description

This function will determine if each species in a CSV file is validly published or not. Result file will be a CSV with the results appended to the input data. This function requires the user to have an LPSN API account setup. For more details and to register, see here: https://api.lpsn.dsmz.de/)

Usage

```
valid_tax_check(input = NULL, col_species = "species", export_csv = TRUE)
```

Arguments

input	CSV file path. Expects full path if CSV file is not in the current working directory.
col_species	Specify the column containing the binomial species names (e.g. "Akkermansia muciniphila")
export_csv	Toggle (TRUE/FALSE). Set TRUE to automatically write .CSV file of results to current directory. (Default=TRUE)

Value

Returns a dataframe containing

Index

```
class-isoLIB, 2
class-isoQC, 3
class-isoTAX, 4
df_to_isoLIB, 6
df_to_isoTAX, 6
export_html, 7
export_html-isoLIB (export_html), 7
export_html-isoQC (export_html), 7
export_html-isoTAX (export_html), 7
get_os, 7
{\tt get\_sanger\_date}, \\ 8
ggtree, 14
isoLIB, 2, 3, 6, 7, 9, 10, 11, 13, 14, 17
isoQC, 3, 4, 7, 10, 13, 17
isoTAX, 4–7, 10, 11, 12, 17, 19
make_fasta, 13
make_tree, 14
method-isoLIB, 15
method-isoQC, 15
method-isoTAX, 16
S4_to_dataframe, 17
search_db, 13, 17
show, 19
valid_tax_check, 20
```