

Enrico Ribiani 4AUB

Esperienza laboratoriale bipolo ohmico-capacitivo-induttivo serie

esperienza n°2

Indice

1	_	Scopo: Verificare il comportamento di un bipolo sperimentalmente confrontanto i valori reali con quelli teorici.						
	1.1	*	1					
	1.2		1					
		1.2.1 Schema	1					
2	Cen		2					
	2.1	Previsione comportamento	2					
3	Proc	cedimento	3					
	3.1		3					
	3.2		6					
	3.3	Calcoli	6					
4			6					
	4.1	Diagrammi vettoriali	6					
1.	1 N	Materiale						
	• B1	readboard						
	• Co	ondensatore da 100nF						
	• Re	0114411041014 444 1 0 0 114						
	_	esistenza da $2,2k\Omega$						
1.	• In							
		esistenza da $2,2k\Omega$						
	2 S	esistenza da $2,2k\Omega$ iduttore da $47mH$						
	2 S	esistenza da $2,2k\Omega$ duttore da $47mH$						
	2 S • Ge	esistenza da $2,2k\Omega$ iduttore da $47mH$ Strumenti eneratore di funzione						

1.2.1 Schema

Il primo circuito verrà utilizzato per effettuare le misure su R, il secondo per effettuare le misure su C e il terzo per le misure su L.

2. Cenni teorici

2.1 Previsione comportamento

Il bipolo RLC è un circuito formato da un induttore, un resistore e un capacitore che in un aregime alternato si comporta diversamente al variare della frequenza dal momento che X_L e X_C ne dipendono, ci sono tre scenari possibili:

1.
$$X_C > X_L$$

In questo caso il bipolo si comporterà come un bipolo RC quindi la tensione \vec{V} sarà in ritardo di 90° rispetto alla corrente \vec{I}

2. $X_L > X_C$

In questo caso il bipolo si comporterà come un bipolo RL quindi la tensione \vec{V} sarà in anticipo di 90° rispetto alla corrente \vec{I}

3. $X_L=X_C$

In questo caso il bipolo si comporterà come un bipolo puramente resistivo quindi \vec{V} sarà in fase con \vec{I} in quanto la parte immaginaria del vettore sarà completamente nulla.

In questa esperienza osserveremo sperimentalmente tutti i tre casi utilizzando tre diverse frequenze, mi aspetto che le sinusoidi si comportino in base alla frequenza come scritto precendentemente a meno di piccole variazioni dovuti agli srumenti di misura e a i vari errori.

3. Procedimento

Dopo aver controllato il materiale, calcolato fr, misurato R e R_{pind} che è la resistenza parassita dell'induttore abbiamo collegato il circuito al generatore di funzione e l'oscilloscopio, con un circuito montato abbiamo eseguito le misurazioni per tutte le frequenze prima su R, poi abbiamo collegato l'oscilloscopio ai capi di C e abbiamo preso le misure per tute le frequenze, idem per L.

Mentre cambiavamo frequenza dal generatore d'onda abbiamo scritto le misure sulla tabella e fatto le foto dell'oscilloscopio. una volta misurato il valore di tensione e tempo di ritardo t_r abbiamo calcolato lo sfasamento.

3.1 Foto

Figura 1: *V_R* 500Hz

Figura 2: V_L 500Hz

Figura 3: V_C 500Hz

Figura 4: V_R fr

Figura 5: V_L fr

Figura 6: V_C fr

Figura 7: V_R f=20kHz

Figura 8: V_L f=20kHz

Figura 9: V_C f=20kHz

3.2 Tabelle

f[Hz]	Comp-	V_{pp} [V]	$t_r [\mu s]$	φ°	φ rad
500	R	3,48	300	54	0,94
500	L	0,4	620	116,6	2,04
500	С	5,84	-216	-39	-0,68
fr	R	6,40	30	5,4	0,1
fr	L	2,2	100	83,52	1,46
fr	С	2,2	-102	-85	1,5
20k	R	2,64	-8,8	-63,4	1,12
20k	L	6,48	2,8	20,16	0,35
20k	С	0.1	-12	-86	-1,5

3.3 Calcoli

$$fr = \frac{1}{2\pi \cdot \sqrt{LC}}$$

$$\varphi : 2\pi = t : T$$

$$\varphi = \frac{2\pi \cdot t}{T}$$
calcolo analitico:
$$\varphi = arctg(\frac{X_L - X_C}{R})$$

4. Conclusioni

Osservando i risultati ottenuti possiamo notare che viene seguito il comportamento teorico del circuito a parte per lo sfasamento dato dalla resistenza parassita dell'induttore che risulta rilevante solo quando vengono paragonati i valori teorici e quelli misurati, per quanto riguarda i diagrammi vettoriali esso non presenta un problema. Lo sfasamento pratico della tensione sulla corrente è uguale a φ di R perhcè la tensione ai capi di R è in fase con la corrente e dal momento che per comodità abbiamo stabilito che \vec{V} è posizionato sull'asse delle X.

4.1 Diagrammi vettoriali

u=1V ma sono stati usati nel grafico i valori picco picco. f=500Hz u=1V

f=20kHz

