[MT04] Assimilação de dados por aprendizado de máquina

Assimilação de Dados por Redes Neurais Artificiais

Haroldo F. de Campos Velho – INPE

Helaine C. M. Furtado – UFOPA

Juliana A. Anochi – INPE

Roberto P. Souto – LNCC

Gerônimo Lemos – INPE

Marcelo Paiva Ramos – INPE

Assimilação de Dados por RNA

- Assimilação de Dados
 - RNA
 - MPCA (Hiperparâmetros e treinamento)
- Modelo
 - Shallow Water 2D
- Processamento paralelo
 - Unidade de Processamento de Tensor (TPU)
- Artigo
 - RAMOS, Marcelo Paiva; CAMPOS VELHO, Haroldo Fraga de.; DIAS, Luiz Alberto Vieira. Data Assimilation for Ocean Dynamics by Neural Networks on TPUs. Em preparação, 2025.

Assimilação de Dados

Assimilação de Dados por RNA

Assimilação de Dados - Filtro de Kalman (FK)

1. Advance in time:

$$\mathbf{x}_{n+1}^f = \mathbf{F}_n \mathbf{x}_n$$
$$\mathbf{P}_{n+1}^f = \mathbf{F}_n \mathbf{P}_n^a \mathbf{F}_n^T + \mathbf{W}_n^b$$

4. Update error covariance

$$\mathbf{P}_{n+1}^{a} = \left[\mathbf{I} - \mathbf{G}_{n+1} \mathbf{H}_{n}^{T} \right] \mathbf{P}_{n+1}^{f}$$

$$\mathbf{G}_{n+1} = \mathbf{P}_{n+1}^f \mathbf{H}_{n+1}^T \left[\mathbf{W}_n^o + \mathbf{H}_{n+1} \mathbf{P}_n^f \mathbf{H}_n^T \right]^{-1}$$

3. Update estimation

$$\mathbf{x}_{n+1}^{a} = \mathbf{x}_{n+1}^{f} + \mathbf{G}_{n+1} \left[\mathbf{x}_{n+1}^{o} - \mathbf{H}_{n+1} \left(\mathbf{x}_{n+1}^{f} \right) \right]$$

Assimilação de Dados - RNA

Biological neuron

Artificial neuron

Multi-Particle Collision Algorithm (MPCA)

- Versão do PCA
- Nêutron viajando dentro de um reator nuclear
- Cada partícula é uma solução candidata (absorção e espalhamento)
- Multipartícula: várias partículas em cooperação

Modelo - Shallow Water 2D

$$\frac{\partial u}{\partial t} - fv + g \frac{\partial q}{\partial x} + r_u u = F_u$$

$$\frac{\partial v}{\partial t} + fu + g\frac{\partial q}{\partial v} + r_v v = F_v$$

$$\frac{\partial q}{\partial t} + H\left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}\right) + r_q q = 0$$

Where:

q - Surface disturbance

u - Speed in x direction

v - Velocity in y direction

Modelo - Shallow Water 2D

40						Ť.				•
35					٠			٠	٠	
30	•	٠				•		•		٠
25	•	•	•	٠	٠	•	•	٠	•	٠
	•	•	•	•	•	•	•	•	•	٠
20	•	•	•	•	۰	•	•	•	•	٠
15	•	٠	•	•	•	•	٠	•	•	٠
10	•	٠	•	•	•	•	•	•	•	٠
5	•	٠	•	•	•	•	•	•	•	٠
	•				•	•		•		•
		5	10	15	20		25	30	35	40

Parameter	Value	Parameter	Value
H	5000 m	r_u	$1.8 \times 10^4 \text{ s}^{-1}$
T	$1.8 \times 10^{4} \text{ s}$	r_v	$1.8 \times 10^4 \text{ s}^{-1}$
g	9.806 m s^{-2}	r_q	$1.8 \times 10^4 \text{ s}^{-1}$
f	$1.0 \times 10^{-4} \text{ s}^{-1}$	ρ_a	$1.275~{\rm kg}{\rm m}^{-3}$
C_d	$1.6 \times 10 - 3$	ρ_w	$1.0 \times 10^3 \text{ kg m}^{-3}$

Grade: 40 x 40

Computação: escalar, vetorial e tensorial

TPUs

TPU v1 (old)

TPU v2 (Colab)

TPU v3

TPU v4

Teste - MULTIPLY(A, v)

Teste - MATMUL(A, B)

Resultados - Experimento SW2D

- Modelo
 - SW2D
- Assimilação de Dados

 - RNA
- MPCA
 - Hiperparâmetros
 - Treinamento
- Computação
 - CPU
 - TPU

Verificação da qualidade

Verificação da qualidade

Desempenho

Data Assimilation with ANN

Value of N for the square matrix (NxN)

Assimilação de Dados por RNA (TPU)

Muito obrigado pela atenção!!

Questões?

Comentários?