Exercises from Chapter #1

1 Equivalence exercises

- 1. **(b)** $\lambda xy.xz \equiv \lambda mn.mz$
- 2. (c) $\lambda xy.xxy \equiv \lambda a.(\lambda b.aab)$
- 3. (b) $\lambda xyz.zx \equiv \lambda tos.st$

2 Combinators

- 1. **Yes,** $\lambda x.xxx$ is a combinator.
- 2. No, $\lambda xy.zx$ is not a combinator since z is a free variable.
- 3. Yes, $\lambda xyz.xy(zx)$ is a combinator.
- 4. Yes, $\lambda xyz.xy(zxy)$ is a combinator.
- 5. No, $\lambda xy.xy(zxy)$ is not a combinator since z is a free variable.

3 Normal form or diverge?

- 1. **Normal form,** $\lambda x.xxx$ is already fully reduced.
- 2. **Diverge**, $(\lambda z.zz)(\lambda y.yy)$ diverges.
- 3. Normal form, $(\lambda x.xxx)z$ reduces to zzz.

4 Beta reduce

- 1. $(\lambda abc.cba)zz(\lambda wv.w) \equiv z$
- 2. $(\lambda xy.xyy)(\lambda a.a)b \equiv bb$
- 3. $(\lambda y.y)(\lambda x.xx)(\lambda z.zq) \equiv qq$
- 4. $(\lambda z.z)(\lambda z.zz)(\lambda z.zy) \equiv yy$
- 5. $(\lambda xy.xyy)(\lambda y.y)y \equiv yy$
- 6. $(\lambda a.aa)(\lambda b.ba)c \equiv aac$
- 7. $(\lambda xyz.xz(yz))(\lambda x.z)(\lambda x.a) \equiv \lambda \beta.za$