${\bf Thesis Title}$

by

Daniel C. Cole

Other Degrees

A thesis submitted to the

Faculty of the Graduate School of the

University of Colorado in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Physics Physics

2018

This thesis entitled: ThesisTitle written by Daniel C. Cole has been approved for the Physics Physics

Reader1	
Reader2	
	Data

The final copy of this thesis has been examined by the signatories, and we find that both the content and the form meet acceptable presentation standards of scholarly work in the above mentioned discipline.

Cole, Daniel C. (Ph.D., Physics)

ThesisTitle

Thesis directed by Dr. Scott A. Diddams

Optical frequency combs have revolutionized precision metrology by enabling measurements of optical frequencies, with implications both for fundamental scientific questions and for applications such as fast, broadband spectroscopy. In this thesis, I describe the development of comb generation platforms with smaller footprints and higher repetition rates, with the ultimate goal of bringing frequency combs to new applications in a chip-integrated package. I present two new types of frequency combs: electro-optic modulation (EOM) combs and Kerr-microresonator-based frequency combs (microcombs). First I describe the EOM comb scheme and, in particular, techniques for mitigating noise in the comb generation process, and I present the results of a proof-of-principle metrology experiment and some possible applications. Then I discuss developments in microcomb technology. I present novel soliton crystal states, which have highly structured fingerprint optical spectra that correspond to ordered pulse trains exhibiting crystallographic defects. These pulse trains arise through interaction of the solitons with avoided mode-crossings in the resonator spectrum. Next, I describe the direct and deterministic generation of single microresonator solitons using a phase-modulated pump laser. This technique removes the dependence on initial conditions that was formerly a universal feature of these experiments, presenting a solution to a significant technical barrier to the practical application of microcombs. I also discuss generation of Kerr combs in the Fabry-Perot (FP) geometry. I introduce a nonlinear partial differential equation describing dynamics in an FP cavity and discuss the differences between the FP geometry and the ring cavity, which is the geometry used in previous Kerr-comb experiments. Finally, I discuss a technique for reducing the repetition rate of a high-repetition-rate frequency comb, which will be a necessary post-processing step for some applications. I conclude with a discussion of avenues for future research, including the chip-integration of Fabry-Perot Kerr resonators and the use of band-engineered photonic crystal cavities to further simplify soliton generation.

${\bf Acknowledgements}$

The work in this thesis would not have been possible...

- Acknowledgement line 1
- \bullet Acknowledgement line 2

Contents

1	PM Pumping			
	1.1	Theoretical investigation of soliton generation with a phase-modulated pump laser $% \left(1\right) =\left(1\right) \left(1\right)$	1	
	1.2	Spontaneous generation of single solitons using a phase-modulated pump laser	3	
	1.3	Soliton control using a phase-modulated pump laser	4	
Re	References			

Chapter 1

PM Pumping

This chapter discusses the direct generation and control of single solitons in optical microring resonators using a pump-laser phase modulated at a frequency near the resonator's free spectral range. Based on a proposal by Taheri, Eftekhar, and Adibi in 2015 [42], these experimental results represent a promising new method for simple and deterministic generation of single solitons.

To illustrate the utility of using a phase-modulated pump laser, we first present theoretical investigations into the effect of this phase modulation (PM), and then we present experimental results on the generation and control of single solitons.

1.1 Theoretical investigation of soliton generation with a phasemodulated pump laser

To theoretically explore the physics of soliton generation with PM pumping, we use the LLE with a modified driving term that incorporates the effect of phase modulation [42]:

$$\frac{\partial \psi}{\partial \tau} = -(1+i\alpha)\psi + i|\psi|^2\psi - i\frac{\beta}{2}\frac{\partial^2 \psi}{\partial \theta^2} + Fe^{i\delta_{PM}\cos\theta}.$$
 (1.1)

Here δ_{PM} represents the phase-modulation index, where the resonator is driven by a field $E_{PM} = E_0 e^{i\delta_{PM}\cos(2\pi f_{PM}t)}$; $f_{PM} \sim f_{FSR}$ is the frequency of the applied phase modulation.

Simulations of Eq.1.1 reveal that PM transforms the resonator excitation spectrum from a series of N = 0, 1, 2, ... up to N_{max} solitons to a single level N = 1 near threshold, eliminating degeneracy between these states as shown in Fig. ??. This occurs due to amplitude variations resulting from

the phase modulation, with dispersion and nonlinearity providing PM-to-AM conversion. We can gain some insight into the origin of this effect by inserting the ansatz $\psi(\theta,\tau) = \phi(\theta,\tau)e^{i\delta_{PM}\cos(\theta)}$ into Eq. 1.1 [40]. By expanding the second-derivative term and setting derivatives of ϕ to zero¹ we arrive at an equation for the quasi-CW background in the PM-pumped resonator:

$$F = (\gamma(\theta) + i\eta(\theta)) \phi + i|\phi|^2 \phi, \tag{1.2}$$

where effective local loss and detuning terms have been defined as:

$$\gamma(\theta) = 1 + \frac{\beta_2}{2} \delta_{PM} \cos \theta, \tag{1.3}$$

$$\eta(\theta) = \alpha - \frac{\beta_2}{2} \delta_{PM}^2 \sin^2 \theta. \tag{1.4}$$

This equation immediately yields an approximation for the stationary solution ψ_s :

$$\psi_s = \frac{Fe^{i\delta_{PM}\cos\theta}}{\gamma(\theta) + i\left(\eta(\theta) - \rho(\theta)\right)},\tag{1.5}$$

where $\rho(\theta) = |\phi(\theta)|^2$ is the (smallest real) solution to the cubic polynomial that results from taking the modulus-square of Eq. 1.2:

$$F^{2} = \left[\gamma(\theta)^{2} + (\eta(\theta) - \rho(\theta))^{2}\right]\rho(\theta). \tag{1.6}$$

In neglecting spatial derivatives of ϕ but retaining the derivatives of the phase term $e^{i\delta_{PM}\cos\theta}$ we have made the approximation that the dominant effect of dispersion comes from its action on the existing broadband phase-modulation spectrum. This model reveals that amplitude variations in the quasi-CW background can be expected as a result of the spatially-varying effective loss and detuning terms that arise from the periodically-chirped pump laser.

Fig. ?? compares the predictions of numerical LLE simulations (color) with the analytical model (black). The two agree quantitatively at small modulation depth ($\delta_{PM} = \pi/2$, blue) and qualitatively at larger depth ($\delta_{PM} = 4\pi$, green). Both the simulations and the approximate analytic solution indicate that the background has two peaks per round trip in the presence of phase modulation, which suggests a mechanism for spontaneous single-soliton generation: At threshold the larger peak

¹ We note the contribution of Miro Erkintalo in suggesting this approximation.

NPhot 6.

rate and de-

scription

becomes locally unstable, and a soliton is formed by local modulation instability [Ceoldo2016, 41]. Moreover, it is known that if solitons exist elsewhere they are pushed to the larger peak by the backgrounds modulated phase [40]. This makes superpositions of N > 1 solitons unstable and practically forbidden. Generation of single solitons then simply requires tuning the pump power and frequency to appropriate values, regardless of initial conditions.

The detuning for soliton generation can be estimated using Eq. 1.2 by calculating the value of α where $\rho(\theta = 0) = 1$. This comes with a further approximation, as simulations reveal that the critical detuning for soliton formation is near but not necessarily at $\rho = 1$ because the spatial interval over which threshold is exceeded must have some minimum width. However, this approach quantitatively captures the behavior shown in Fig. ??, predicting soliton generation at $\alpha = 2.737$.

1.2 Spontaneous generation of single solitons using a phase-modulated pump laser

We demonstrate deterministic generation of single solitons without condensation from an extended pattern in a 22-GHz FSR silica ring resonator with $\Delta\nu\sim 1.5$ MHz linewidth [Lee2012]. We generate a frequency-agile laser for pumping the resonator by passing a CW laser through a single-sideband modulator that is driven by a voltage-controlled oscillator [Stone2017]; the seed laser is extinguished in the modulator and the resulting sideband can be swept by . The pump laser is phase-modulated with index $\delta_{PM}\sim\pi$ and amplified to normalized power F^2 between 2 and 6. We are able to measure and control the pump-laser detuning in real time using an AOM-shifted probe beam as shown in Fig. ??, which allows thermal instabilities associated with the red detuning that is required for soliton generation to be overcome. To generate single solitons, we begin with large red detuning $\nu_0 - \nu_{pump} = 40$ MHz and decrease the detuning until a soliton is generated near $\nu_0 - \nu_{pump} \sim 5$ MHz detuning, where this value depends on the pump power and coupling condition. We measure the power converted by the Kerr nonlinearity to new frequencies by passing a portion of the resonator's output through an optical band-reject filter; this 'comb power' measurement reveals a step upon soliton formation, as shown in Fig. ??. After soliton generation, we observe that the

soliton can be preserved while the detuning is increased again up to a maximum value near, consistent with Fig. ??. Additionally, we observe that it is possible to turn off the phase modulation without loss of the soliton, in agreement with the simulations presented in Ref. [42].

get from
Jordan

Automating soliton generation by repeatedly scanning the laser into resonance ($\nu_0 - \nu_{pump} \sim 5$ MHz) and back out again ($\nu_0 - \nu_{pump} \sim 20$ MHz, far enough that the soliton is lost) has enabled reversible generation of 1000 solitons in 1000 trials over 100 seconds, with a measured 100 % success rate. Our probe beam allows measurement of the detuning at which soliton generation occurs, which changes little from run to run. We present a histogram of detuning measurements for the generation of 160 solitons in Fig. ??.

1.3 Soliton control using a phase-modulated pump laser

In addition to enabling deterministic generation of single solitons, phase modulation of the pump laser also facilitates timing and repetition-rate control of the resulting pulse train. Results demonstrating this control are presenting in Fig. ??. In our experiments, the repetition rate of the out-coupled pulse train (f_{rep}) remains locked to f_{PM} over a bandwidth of ± 40 kHz. This observation is consistent with an estimate of the locking range $\delta_{PM} \times D_2/2\pi \sim 44$ kHz that is presented in Ref. [40], where we have used the approximate value $D_2 = 14$ kHz/mode. Fig. ?? shows the measured repetition rate as f_{PM} is swept sinusoidally through a range of ± 50 kHz around the soliton's natural repetition rate; the repetition rate follows the PM except for glitches near the peaks of the sweep. In the inset of Fig. ?? we overlay the results of LLE simulations that qualitatively match the observed behavior. These simulations are conducted by introducing the term $+\beta_1 \frac{\partial \psi}{\partial \theta}$ to the right-hand side of Eq. 1.1, where $\beta_1 = -2(f_{FSR} - f_{PM})/\Delta\nu$ incorporates a difference between the modulation frequency and the FSR of the resonator into the model; β_1 may be varied in time to simulate the sweep of f_{PM} . These simulations indicate that the periodic nature of the glitches is due to the residual pulling of the phase modulation on the soliton when the latter periodically cycles through the pumps phase maximum.

To evaluate the utility of phase modulation for fast control of the soliton's properties, we

measure the repetition rate of the pulse train as f_{PM} is rapidly switched ± 40 kHz, within the soliton's locking range. This measurement is conducted by photodetecting the pulse train after removing the central spectral lines corresponding to the spectrum of the pump laser using an optical band-reject filter. In order to obtain a measurement trace of the repetition rate as a function of time, the photodetected signal is split and one path is sent through a reactive circuit element that induces a frequency-dependent phase shift. By comparing the phase between the two paths as a function of time, the time-dependent repetition rate can be determined.

We construct eye-diagrams out of the resulting data; these are shown in Fig. ??. In Fig. ??, m f_{PM} is switched with 200 μ s period and 10 μ s transition time; in Fig. ?? it is switched with 100 μ s period and 60 ns transition time.

References

- T. Udem, R Holzwarth, and T. W. Hänsch. Optical frequency metrology. *Nature*, 416 (6877),
 2002, 233–237. DOI: 10.1038/416233a.
- [2] J. L. Hall. Nobel lecture: Defining and measuring optical frequencies. *Reviews of Modern Physics*, 78 (4), **2006**, 1279–1295. DOI: 10.1103/RevModPhys.78.1279.
- [3] T. W. Hänsch. Nobel lecture: Passion for precision. Reviews of Modern Physics, 78 (4), 2006, 1297–1309. DOI: 10.1103/RevModPhys.78.1297.
- [4] J. K. Ranka, R. S. Windeler, and A. J. Stentz. Visible continuum generation in airsilica microstructure optical fibers with anomalous dispersion at 800 nm. Optics Letters, 25 (1), 2000, 25. DOI: 10.1364/OL.25.000025.
- [5] T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D'Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem. Laser frequency combs for astronomical observations. *Science*, 321 (5894), 2008, 1335–7. DOI: 10.1126/science.1161030.
- [6] D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, T. J. Kippenberg, E. Norberg, L. Theogarajan, M.-g. Suh, K. Y. Yang, H. P. Martin, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, and S. B. Papp. An optical-frequency synthesizer using integrated photonics. *Nature*, 557, 2018, 81–85. DOI: 10.1038/s41586-018-0065-7.
- [7] R. W. Boyd. **Nonlinear Optics**. San Diego, CA: Elsevier, 2003.
- [8] E. Obrzud, S. Lecomte, and T. Herr. Temporal solitons in microresonators driven by optical pulses. *Nature Photonics*, 11 (August), 2017, 600–607. DOI: 10.1038/nphoton.2017.140. arXiv: 1612.08993.
- [9] P. Del'Haye, S. A. Diddams, and S. B. Papp. Laser-machined ultra-high-Q microrod resonators for nonlinear optics. *Applied Physics Letters*, 102, **2013**, 221119.
- [10] A. N. Oraevsky. Whispering-gallery waves. Quantum Electronics, 32 (42), 2002, 377–400. DOI: 10.1070/QE2001v031n05ABEH002205. arXiv: arXiv:1011.1669v3.
- [11] H. A. Haus. Waves and Fields in Optoelectronics. Englewood Cliffs: Prentice-Hall, 1984.

- [12] S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala. Ideality in a Fiber-Taper-Coupled Microresonator System for Application to Cavity Quantum Electrodynamics. *Physical review letters*, 91 (4), 2003, 043902. DOI: 10.1103/PhysRevLett.91.043902.
- [13] V. S. Il'chenko and M. L. Gorodetskii. Thermal nonlinear effects in optical whispering gallery microresonators.pdf. Laser Physics, 2 (6), 1992, 1004–1009.
- [14] T. Carmon, L. Yang, and K. J. Vahala. Dynamical thermal behavior and thermal self-stability of microcavities. *Optics Express*, 12 (20), **2004**, 4742–4750. URL: http://www.ncbi.nlm.nih.gov/pubmed/19484026http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-12-20-4742.
- [15] G. P. Agrawal. Nonlinear Fiber Optics. 4th. Burlington, MA: Elsevier, 2007.
- [16] R. del Coso and J. Solis. Relation between nonlinear refractive index and third-order susceptibility in absorbing media. *Journal of the Optical Society of America B*, 21 (3), 2004, 640. DOI: 10.1364/JOSAB.21.000640.
- [17] P Del'Haye, A Schliesser, O Arcizet, T Wilken, R Holzwarth, and T. J. Kippenberg. Optical frequency comb generation from a monolithic microresonator. *Nature*, 450 (7173), 2007, 1214– 1217. DOI: 10.1038/nature06401.
- [18] T. Kippenberg, S. Spillane, and K. Vahala. Kerr-Nonlinearity Optical Parametric Oscillation in an Ultrahigh-Q Toroid Microcavity. *Physical Review Letters*, 93 (8), 2004, 083904. DOI: 10.1103/PhysRevLett.93.083904.
- [19] A. A. Savchenkov, A. B. Matsko, D. Strekalov, M. Mohageg, V. S. Ilchenko, and L. Maleki. Low threshold optical oscillations in a whispering gallery mode CaF 2 resonator. *Physical Review Letters*, 93 (24), 2004, 2–5. DOI: 10.1103/PhysRevLett.93.243905.
- [20] I. H. Agha, Y. Okawachi, M. A. Foster, J. E. Sharping, and A. L. Gaeta. Four-wave-mixing parametric oscillations in dispersion-compensated high- Q silica microspheres. *Physical Review A Atomic, Molecular, and Optical Physics*, 76 (4), 2007, 1–4. DOI: 10.1103/PhysRevA.76.043837.
- [21] F. Leo, S. Coen, P. Kockaert, S.-P. Gorza, P. Emplit, and M. Haelterman. Temporal cavity solitons in one-dimensional Kerr media as bits in an all-optical buffer. *Nature Photonics*, 4 (7), 2010, 471–476. DOI: 10.1038/nphoton.2010.120.
- [22] T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg. Universal formation dynamics and noise of Kerr-frequency combs in microresonators. *Nature Photonics*, 6 (7), 2012, 480–487. DOI: 10.1038/nphoton. 2012.127.
- [23] Y. K. Chembo and C. R. Menyuk. Spatiotemporal Lugiato-Lefever formalism for Kerr-comb generation in whispering-gallery-mode resonators. *Physical Review A*, 87, **2013**, 053852. DOI: 10.1103/PhysRevA.87.053852.

- [24] S. Coen, H. G. Randle, T. Sylvestre, and M. Erkintalo. Modeling of octave-spanning Kerr frequency combs using a generalized mean-field Lugiato-Lefever model. *Optics letters*, 38 (1), 2013, 37–39. URL: http://www.ncbi.nlm.nih.gov/pubmed/23282830.
- [25] M. Haelterman, S. Trillo, and S. Wabnitz. Dissipative modulation instability in a nonlinear dispersive ring cavity. *Optics Communications*, 91 (5-6), 1992, 401–407. DOI: 10.1016/0030– 4018(92)90367-Z.
- [26] T Hansson, M Bernard, and S Wabnitz. Modulational Instability of Nonlinear Polarization Mode Coupling in Microresonators. 35 (4), 2018. URL: https://arxiv.org/pdf/1802. 04535.pdf. arXiv: arXiv:1802.04535v1.
- [27] T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg. Temporal solitons in optical microresonators. *Nature Photonics*, 8 (2), 2014, 145–152. DOI: 10.1109/CLEOE-IQEC.2013.6801769. arXiv: 1211.0733.
- [28] Y. K. Chembo, I. S. Grudinin, and N Yu. Spatiotemporal dynamics of Kerr-Raman optical frequency combs. *Physical Review A*, 92 (4), **2015**, 4. DOI: 10.1103/PhysRevA.92.043818.
- [29] C. Godey, I. V. Balakireva, A. Coillet, and Y. K. Chembo. Stability analysis of the spatiotemporal Lugiato-Lefever model for Kerr optical frequency combs in the anomalous and normal dispersion regimes. *Physical Review A*, 89 (6), 2014, 063814. DOI: 10.1103/PhysRevA.89.063814.
- [30] I. V. Barashenkov and Y. S. Smirnov. Existence and stability chart for the ac-driven, damped nonlinear Schrödinger solitons. Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 54 (5), 1996, 5707-5725. DOI: 10.1103/PhysRevE.54.5707.
- [31] A Coillet and Y. K. Chembo. Routes to spatiotemporal chaos in Kerr optical frequency combs. *Chaos*, 24 (1), **2014**, 5. DOI: 10.1063/1.4863298. arXiv: arXiv:1401.0927v1.
- [32] L. A. Lugiato and R Lefever. Spatial Dissipative Structures in Passive Optical Systems. Physical Review Letters, 58 (21), 1987, 2209–2211.
- [33] L. Lugiato and R Lefever. Diffraction stationary patterns in passive optical systems. *Interaction of Radiation with Matter*, **1987**.
- [34] W. H. Renninger and P. T. Rakich. Closed-form solutions and scaling laws for Kerr frequency combs. *Scientific Reports*, 6 (1), **2016**, 24742. DOI: 10.1038/srep24742. arXiv: 1412.4164.
- [35] X. Yi, Q.-F. Yang, K. Y. Yang, M.-G. Suh, and K. Vahala. Soliton frequency comb at microwave rates in a high-Q silica microresonator. *Optica*, 2 (12), **2015**, 1078–1085.
- [36] S. Coen and M. Erkintalo. Universal scaling laws of Kerr frequency combs. *Optics letters*, 38 (11), 2013, 1790–1792. DOI: 10.1364/OL.38.001790. arXiv: arXiv:1303.7078v1.
- [37] V. Brasch, T. Herr, M. Geiselmann, G. Lihachev, M. H. P. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg. Photonic chip-based optical frequency comb using soliton Cherenkov radiation. Science, 351 (6271), 2016, 357. DOI: 10.1364/CLEO_SI.2015.STh4N.1. arXiv: 1410.8598.
- [38] V. E. Lobanov, G. V. Lihachev, N. G. Pavlov, A. V. Cherenkov, T. J. Kippenberg, and M. L. Gorodetsky. Harmonization of chaos into a soliton in Kerr frequency combs. *Optics Express*, 24 (24), 2016, 27382. DOI: 10.1126/science.aah4243. arXiv: 1607.08222.

- [39] J. K. Jang, M. Erkintalo, S. G. Murdoch, and S. Coen. Writing and erasing of temporal cavity solitons by direct phase modulation of the cavity driving field. *Optics Letters*, 40 (20), 2015, 4755–4758. DOI: 10.1364/OL.40.004755. arXiv: 1501.05289.
- [40] J. K. Jang, M. Erkintalo, S. Coen, and S. G. Murdoch. Temporal tweezing of light through the trapping and manipulation of temporal cavity solitons. *Nature Communications*, 6, **2015**, 7370. DOI: 10.1038/ncomms8370. arXiv: 1410.4836 (cited on pages 2–4).
- [41] Y. Wang, B. Garbin, F. Leo, S. Coen, M. Erkintalo, and S. G. Murdoch. Writing and Erasure of Temporal Cavity Solitons via Intensity Modulation of the Cavity Driving Field. *arXiv*, **2018**, 1802.07428. arXiv: 1802.07428 (cited on page 3).
- [42] H. Taheri, A. A. Eftekhar, K. Wiesenfeld, and A. Adibi. Soliton formation in whispering-gallery-mode resonators via input phase modulation. *IEEE Photonics Journal*, 7 (2), **2015**, 2200309. DOI: 10.1109/JPHOT.2015.2416121 (cited on pages 1, 4).
- [43] S. B. Papp, K. Beha, P. Del'Haye, F. Quinlan, H. Lee, K. J. Vahala, and S. A. Diddams. Microresonator frequency comb optical clock. *Optica*, 1 (1), 2014, 10–14. DOI: 10.1364/ OPTICA.1.000010. arXiv: 1309.3525.