TP555 - Inteligência Artificial e Machine Learning: *Redes Neurais Artificiais (Parte II)*

Felipe Augusto Pereira de Figueiredo felipe.figueiredo@inatel.br

Cada ligação tem um peso

- Nó. unidade ou neurônio.
- Ligação entre i-ésimo e j-ésimo nó.

- Uma rede neural artificial (RNA) nada mais é do que uma combinação de neurônios conectados entre si através de ligações direcionadas (i.e., as conexões têm uma direção associada).
 - Neurônios também são chamados de nós ou unidades.
 - Cada ligação entre nós possui um peso (sináptico) associado.
- As RNAs são formadas por uma camada de entrada, zero ou mais camadas intermediárias e uma camada de saída.

- As camadas intermediárias são também chamadas de *ocultas* ou *escondidas*.
- Algumas das *limitações dos perceptrons* (e.g., classificação apenas de classes linearmente separáveis) podem ser
 y_Q superadas adicionando-se camadas intermediárias de perceptrons.
 - O primeiro tipo de rede neural proposto foi o perceptron de múltiplas camadas (do inglês, Multilayer Perceptron - MLP).

→ Ligação entre *i*-ésimo e *j*-ésimo nó.

Nó, unidade ou neurônio.

Cada ligação tem um peso (sináptico) associado.

- Nó, unidade ou neurônio.
- Ligação entre i-ésimo e j-ésimo nó.

- Ela também é chamada de *rede densamente conectada e de alimentação direta* (do inglês, *Dense Neural Network*
 DNN).
 - Cada uma das saídas de uma camada se conecta a todos os nós da camada seguinte através de pesos sinápticos.
 - Os dados fluem através da rede em uma única direção, da camada de entrada para a camada de saída, sem ciclos de realimentação.

Cada ligação tem um peso

- As *propriedades de uma rede neural* são determinadas por sua *arquitetura*,
 - como os neurônios estão conectados (forma direta ou recursiva),
 - quantidade neurônios,
 - quantidade de camadas escondidas,
 - função de ativação,
 - etc.

- Nó, unidade ou neurônio.
- Ligação entre i-ésimo e j-ésimo nó.

- Nó, unidade ou neurônio.
- Ligação entre i-ésimo e j-ésimo nó.

- As RNAs são o coração do deep learning ou aprendizado profundo.
- O termo "*profundo*" vem fato de que essas redes podem possuir *muitas* camadas ocultas.
- Em geral, quando uma RNA tem duas ou mais camadas ocultas, ela pode ser chamada de rede neural profunda (ou em inglês, Deep Neural Network - DNN).
- A rede MLP ao lado possui duas camadas ocultas e, portanto, poderia ser chamada de DNN.

- Em particular, uma MLP com uma camada oculta com dois nós e uma camada de saída com um nó pode resolver o problema da lógica XOR.
- Lembrem-se que um único *perceptron* não é capaz de realizar essa tarefa.
- Os dois nós da camada oculta aprendem separadores lineares que são combinados para obter a separação não linear resultante.

Os nós das redes neurais artificiais

- Cada nó tem a entrada x_0 (i.e., o atributo de bias) sempre com valor igual a 1 e um peso associado w_{0j} , chamado de peso de bias.
 - Ou seja, a entrada x_0 não está conectada a nenhum outro nó.
- O j-ésimo $n\acute{o}$ calcula a $soma\ ponderada$ de suas entradas, x_i

$$g(\mathbf{x}) = \sum_{i=0}^K w_{ij} x_i = \mathbf{w}^T \mathbf{x},$$

e, em seguida, aplica uma função de ativação (i.e., de limiar), f(.), à soma para gerar sua saída

$$y_i = f(g(\mathbf{x})).$$

As ligações do nós das redes neurais artificiais

- Nó, unidade ou neurônio.
- → Ligação entre *i*-ésimo e *j*-ésimo nó.
- $W_{i,j}$ Peso da ligação entre *i*-ésimo e *j*-ésimo nó.

- Considerando *qualquer dois nós da* rede, a ligação do i-ésimo $n\acute{o}$ da m-1-ésima camada para o j-ésimo $n\acute{o}$ da m-ésima é feita através do peso $w_{ij}^{(m)}$.
- A ligação propaga o sinal de saída do iésimo nó para o j-ésimo nó.
 - O *sinal de saída* do *i*-ésimo nó é denotado por x_i .
- O valor do *peso* determina a *força* e o *sinal* da *ligação*.
- A ligação pode ser excitatória ou inibitória dependendo dos sinais do peso e de saída do nó anterior.

Funções de ativação

- Nó, unidade ou neurônio.
- → Ligação entre i-ésimo e j-ésimo nó.
- W_{ij} Peso da ligação entre *i*-ésimo e *j*-ésimo nó.

- Existem vários tipos de *funções de ativação* que podem ser utilizadas pelos *nós* de uma rede neural.
- Cada camada pode usar funções de ativação diferentes.
- Porém, em geral, todos os nós de uma camada usam o mesmo tipo de função de ativação.

Funções de ativação

- Devido a suas características, não se utiliza a função degrau como função de ativação em redes neurais.
 - Derivada sempre igual a zero, exceto na origem, onde ela é indeterminada.
- Até o surgimento das redes neurais
 profundas, a regra era utilizar as funções
 logística ou tangente hiperbólica, que são
 versões suavizadas da função degrau.
 - Essas funções são contínuas e possuem derivada definida e diferente de 0 em todos os pontos.

Função de ativação logística

 A saída de um nó com função de ativação logística (ou sigmoide) tem a seguinte expressão

$$y_j = f(g(\mathbf{x})) = \frac{1}{1 + e^{-g(\mathbf{x})}},$$

onde g(x) é a combinação linear das entradas do nó.

• Sua derivada é dada por

$$\frac{dy_j}{dg(\mathbf{x})} = \frac{df(g(\mathbf{x}))}{dg(\mathbf{x})} = y_j(1 - y_j) \ge 0.$$

• A derivada será importante durante o processo de aprendizado da rede neural.

Função de ativação logística e sua derivada

• Percebam que o valor da derivada sempre será menor do que 1, sendo no máximo igual a 0.25 quando g(x) = 0.

Função de ativação tangente hiperbólica

 A saída de um nó com função de ativação tangente hiperbólica tem sua expressão dada por

$$y_j = f(g(\mathbf{x})) = \tanh(g(\mathbf{x})) = \frac{e^{g(\mathbf{x})} - e^{-g(\mathbf{x})}}{e^{g(\mathbf{x})} + e^{-g(\mathbf{x})}}.$$

onde g(x) é a combinação linear das entradas do nó.

• Sua derivada é dada por

$$\frac{dy_j}{dg(\mathbf{x})} = \frac{df(g(\mathbf{x}))}{dg(\mathbf{x})} = 1 - \tanh^2(g(\mathbf{x})) \ge 0.$$

Função de ativação tangente hiperbólica e sua derivada

• A derivada é no máximo igual a 1 exatamente quando quando g(x) = 0, sendo menor do que 1 para todos os outros valores de g(x).

Na sequência, veremos que esses valores de derivadas menores do que 1 causam um problema no aprendizado de redes com muitas camadas, i.e., redes profundas.

• É um problema encontrado quando treinamos *redes neurais profundas*, ou seja, com muitas camadas ocultas, com *métodos de aprendizado baseados no gradiente descendente* e nós usando *funções de ativação sigmoide ou tangente hiperbólica*.

- Ocorre devido à natureza do *algoritmo de retropropagação*, que é usado para treinar a rede neural.
 - Para atualizar os pesos de nós das camadas ocultas, calcula-se a derivada do erro de saída em relação àqueles pesos e, para isso, usamos a regra da cadeia.
 - Ou seja, o algoritmo propaga o erro de saída para as camadas ocultas usando a regra da cadeia.

• Em suma, problema da dissipação do gradiente faz com que os *elementos* do vetor gradiente se tornem cada vez menores conforme ele é calculado para as camadas próximas à entrada da rede, levando a uma atualização muito pequena ou até inexistente dos pesos destas camadas.

Regra da cadeia

- Durante o treinamento, para atualizar os pesos dos nós de cada camada da rede, o algoritmo de retropropagação calcula os vetores gradiente em relação aos pesos dessas camadas através da regra da cadeia.
- Vejamos o exemplo abaixo com 3 nós e pesos das ligações iguais a 1.
 - **OBS**.: As funções f(.), g(.), e(h(.)) podem ser interpretadas como sendo as funções de ativação dos nós.

$$x \longrightarrow h(.) \xrightarrow{h(x)} g(.) \xrightarrow{g(h(x))} f(.) \longrightarrow y = f(g(h(x)))$$

• Como calculamos a derivada de y em relação à x?

$$\frac{\partial y}{\partial x} = \frac{\partial f(g(h(x)))}{\partial x} = \frac{\partial f(g(h(x)))}{\partial g(h(x))} \frac{\partial g(h(x))}{\partial h(x)} \frac{\partial h(x)}{\partial x}.$$

Regra da cadeia

• Em outras palavras, devido à regra da cadeia, o vetor gradiente para a atualização dos pesos de uma dada camada da rede inclui o produto das derivadas das funções de ativação dos nós desde a camada de saída até a camada desejada.

$$\frac{\partial y}{\partial x} = \frac{\partial f(g(h(x)))}{\partial x} = \frac{\partial f(g(h(x)))}{\partial g(h(x))} \frac{\partial g(h(x))}{\partial h(x)} \frac{\partial h(x)}{\partial x}.$$

- Lembrem-se que as *funções de ativação*, como *tangente hiperbólica* ou *logística*, têm derivadas no intervalo de 0 até 1.
- Portanto, a multiplicação de vários termos menores do que 1 tende a 0 conforme o número de camadas da rede aumenta.

- Em uma rede com M camadas, a *retropropagação* tem o efeito de multiplicar até M valores pequenos (i.e., derivadas parciais das funções de ativação) para calcular os vetores gradiente das primeiras camadas.
- O que significa que o *gradiente diminui exponencialmente com M*.

- Assim, os nós das camadas iniciais aprendem muito mais lentamente do que os nós das camadas finais, pois o vetor gradiente daquelas camadas é muito pequeno, fazendo com que a atualização dos pesos também seja pequena.
- Vejamos um exemplo.

Dissipação do gradiente

Considerações:

- Problema de regressão.
- 2 x neurônios com função de ativação sigmoide, f(.).
- $g_1 = xw_1 \rightarrow \text{entrada}$ (i.e., ativação) do primeiro neurônio.
- $z_1 = f(xw_1) \rightarrow \text{saída do primeiro neurônio.}$
- $g_2 = z_1 w_2 = f(xw_1)w_2 \rightarrow \text{entrada (i.e., ativação) do segundo neurônio.}$
- $\hat{y} = f(f(xw_1)w_2) \rightarrow \text{saida do segundo neurônio.}$
- **Objetivo**: minimizar o erro quadrático médio, $J_e = \frac{1}{N} \sum_{i=1}^{N} (\hat{y}(i) y(i))^2$.

Dissipação do gradiente

• As *regras de atualização* dos dois pesos são dadas por

$$w_2 = w_2 - \alpha \frac{\partial J_e}{\partial w_2},$$

$$w_1 = w_1 - \alpha \frac{\partial J_e}{\partial w_1}.$$

• Usando a regra da cadeia, obtemos as derivadas $\frac{\partial J_e}{\partial w_1}$ e $\frac{\partial J_e}{\partial w_2}$

$$\frac{\partial J_e}{\partial w_2} = \frac{\partial J_e}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial g_2} \frac{\partial g_2}{\partial w_2},$$

$$\frac{\partial J_e}{\partial w_1} = \frac{\partial J_e}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial g_2} \frac{\partial g_2}{\partial z_1} \frac{\partial z_1}{\partial g_1} \frac{\partial g_1}{\partial w_1}.$$

Dissipação do gradiente

Derivada da função de ativação logística

- A derivada da função sigmoide é no máximo igual a 0.25.
- Assim, por exemplo, a primeira camada de uma rede neural com M camadas, terá as derivadas parciais da função de erro em relação a seus pesos compostas pela multiplicação de M termos no máximo iguais a 0.25.
- Isso faz com que as *primeiras camadas aprendam lentamente ou nem aprendam*, pois têm *derivadas muito pequenas, tendendo a zero*.

Como mitigar esse problema?

Função de ativação retificadora

$$\hat{y} = f(g(\mathbf{x})) = \max(0, g(\mathbf{x}))$$

- Com o surgimento das redes neurais profundas, e, consequentemente, do problema do desaparecimento do gradiente, uma outra função de ativação, conhecida como Rectified Linear Unit (ReLU), passou a ser a bastante utilizada.
- É também uma *função não-linear* onde sua saída é igual 0 quando $g(x) \le 0$ e o próprio g(x) quando g(x) > 0.
- É uma das funções mais amplamente utilizadas em redes neurais profundas.

Função de ativação retificadora

- Suas principais *vantagens* são a sua *simplicidade e eficiência computacional*.
 - Ela e sua derivada são mais rápidas de se calcular do que as funções logística e tangente hiperbólica.
- Além disso, ajuda a *minimizar o problema do* desaparecimento de gradiente, pois sua derivada é igual a 1 para g(x) > 0.
- Sua derivada é dada por

$$\frac{dy_j}{dg(\mathbf{x})} = \frac{df(g(\mathbf{x}))}{dg(\mathbf{x})} = \begin{cases} 0, \text{se } g(\mathbf{x}) < 0 \\ 1, \text{se } g(\mathbf{x}) > 0 \end{cases}.$$

• A derivada é indeterminada para g(x) = 0.

Função de ativação retificadora

- Uma desvantagem é que ela causa o problema conhecido como *ReLU agonizante*.
- Esse problema ocorre durante o treinamento da rede, quando a ativação do nó, g(x), é negativa.
- Isso faz com que sua saída e, consequentemente, a derivada parcial da função de ativação sejam iguais a 0.
- Quando isso ocorre, o *nó não tem seus pesos atualizados* durante o treinamento, *permanecendo inalterados*.

Variantes da função de ativação retificadora

- Para resolver o problema das *ReLUs* agonizantes, usa-se variantes da função *ReLU* que possuam derivada diferente de zero para g(x) < 0, como, por exemplo,
 - Leaky ReLU,
 - Parametric ReLU (PReLU),
 - Gaussian Error Linear Unit (GELU),
 - etc.

Explosão do gradiente

- Usando funções de ativação ReLU, reduzimos o problema do desaparecimento do gradiente.
- Porém, um outro problema surge quando as ativações são positivas e os pesos têm valores maiores do que 1.
- Caso os pesos sejam inicializados (em geral, de forma aleatória) com valores maiores do que 1, haverá a multiplicação de vários valores assim, resultando em valores de gradiente muito grandes nas camadas iniciais.

Explosão do gradiente

 Se os elementos do vetor gradiente tiverem magnitudes muito grandes, os pesos da rede podem sofrer atualizações extremamente grandes, o que leva a instabilidades numéricas e a um treinamento ineficaz ou até mesmo à divergência.

Formas de se minimizar a dissipação e a explosão do gradiente

- Além do uso de funções de ativação ReLU ou de suas variantes, outras formas de se minimizar esses problemas são:
 - Inicialização apropriada dos pesos: garante que a média seja zero e a variância das ativações permaneça a mesma ao longo de todas as camadas da rede. Isso garante que o gradiente retropropagado não tenha multiplicações com valores muito pequenos ou muito grandes em qualquer camada, ajudando a mitigar ambos os problemas.
 - Normalização de batch: padroniza as ativações das camadas da rede e, na sequência, as desloca e escalona, mantendo-as dentro de intervalos que minimizam ambos os problemas.
 - Poda do gradiente: *limita (poda) os valores dos gradientes* durante o treinamento para que eles não excedam algum limite pré-definido, *mitigando apenas o problema da explosão do gradiente*.

Conectando Neurônios

- Existem basicamente duas maneiras distintas para se conectar os nós de uma rede neural, direta e reversa.
- Na figura ao lado, os nós da rede têm conexões em apenas uma única direção.
- Esse tipo de rede é conhecida como *rede de alimentação direta* (do inglês, *feedforward*) ou *sem realimentação*.
- O sinal percorre a rede em uma única direção, da entrada para a saída.
- Os nós da mesma camada não são conectados entre si.
- Esse tipo de rede representa uma função de suas entradas atuais e, portanto, não possui um estado interno além dos próprios pesos.

Nó, unidade ou neurônio

→ Ligação entre i-ésimo e j-ésimo nó.

 w_{ij} Peso da ligação entre \emph{i} -ésimo e \emph{j} -ésimo nó.

$$\mathbf{y} = f(\mathbf{x}, \mathbf{W})$$

OBS.: A informação se move em apenas uma direção: da entrada, passando pelos nós ocultos indo em direção aos nós de saída. Não há ciclos ou loops neste tipo de rede.

Conectando Neurônios

- Na figura ao lado, os nós da rede têm conexões em 2 direções, desta forma, o sinal percorre a rede nas direções direta e reversa.
- Este tipo de rede é conhecida como *rede recorrente* ou *rede com realimentação*.
- Nessas redes, a saída dos nós alimentam nós da mesma camada (inclusive o próprio nó) ou de camadas anteriores.
- Isso significa que a rede forma um sistema dinâmico que pode atingir um estado estável, exibir oscilações ou mesmo um comportamento caótico, ou seja, divergir.
- Além disso, a saída da rede é função da entrada atual e de seu estado interno, ou seja, de entradas anteriores.
- Portanto, *redes recorrentes* possuem memória.
- Essas redes são úteis para o *processamento de dados sequenciais*, como séries temporais (e.g., sons, preços de ações, padrões cerebrais, etc.) ou linguagem natural (e.g., escrita e fala).

Regressão Não-Linear

escondida

saída

Entrada

A rede MLP ao lado tem sua saída definida por

$$y = f(\mathbf{w}^T f(\mathbf{W}^T \mathbf{x})),$$

 $y=fig(m{w}^T f(m{W}^T m{x}) ig),$ onde f(.) é a **função de ativação** escolhida, $m{W}=egin{bmatrix} w_{11} & w_{12} \ w_{21} & w_{22} \end{bmatrix}$ e $m{w}=m{w}_1 \ w_2 \end{bmatrix}.$

- Percebam que a saída da rede é dada pelo *aninhamento* das saídas de *funções de ativação* não-lineares.
- Sendo assim, as funções que uma rede neural pode representar podem ser *altamente não-lineares* dependendo da quantidade de camadas e nós.
- Portanto, redes neurais podem ser vistas como ferramentas para a realização de *regressão* não-linear, mas também podemos resolver problemas de classificação.
- Com uma única camada oculta suficientemente grande, é possível representar qualquer função contínua das entradas com uma precisão arbitrária (depende da topologia).
- Com duas camadas ocultas, até funções descontínuas podem ser representadas.
- Portanto, dizemos que as redes neurais possuem capacidade de aproximação universal de funções.
- Veremos alguns exemplos desta capacidade de aproximação a seguir.

Aproximação universal de funções

- Fig. 1: Um nó aproxima uma função de limiar suave.
- Fig. 2: Combinando duas funções de limiar suave com direções opostas, podemos obter uma função em formato de onda.
- Fig. 3: Combinando duas ondas perpendiculares, nós obtemos uma função em formato cilíndrico.

Exemplo: FunctionApproximationWithMLP.ipynb

Aproximação universal de funções

• Redes neurais podem ser usadas, para aproximar funções como as, mostradas abaixo:

$$f(x) = x^2, -1 \le x \le 1,$$

•
$$f(x) = \frac{1}{x}, 1 \le x \le 100,$$

•
$$f(x) = \sin(x)$$
, $1 \le x \le 2\pi$.

Exercício: usar as classes
 <u>MLPRegressor</u> e <u>GridSearchCV</u>
 da biblioteca SciKit-Learn para
 encontrar o número de nós
 necessários na camada
 escondida para que uma rede
 neural aproxime estas funções.

$$f(x) = \sin(x)$$

- Consideramos agora, o processo de otimização, ou seja, de atualização dos pesos sinápticos.
- Assim como vimos anteriormente, o processo de otimização corresponde a um problema de minimização de uma função de erro (ou de custo ou perda), J(w), com respeito a um vetor de pesos w.
- Portanto, o problema de aprendizado em redes neurais pode ser formulado como

$$\min_{\mathbf{w}} J(\mathbf{w})$$

- Normalmente, esse processo de otimização é conduzido de forma iterativa, o que dá um sentido mais natural à noção de aprendizado (i.e., um processo gradual).
- Existem *vários métodos de otimização* aplicáveis, mas, sem dúvida, *os mais utilizados são aqueles baseados nas derivadas da função custo*, J(w).

- Dentre esses métodos, existem os de *primeira ordem* e os de *segunda ordem*.
- Os métodos de primeira ordem são baseados nas derivadas parciais de primeira ordem da função custo, agrupadas no vetor gradiente:

$$\nabla J(\mathbf{w}) = \begin{bmatrix} \frac{\partial J(\mathbf{w})}{\partial w_1} \\ \frac{\partial J(\mathbf{w})}{\partial w_2} \\ \vdots \\ \frac{\partial J(\mathbf{w})}{\partial w_K} \end{bmatrix}$$

 Como já vimos, o gradiente aponta na direção de maior crescimento da função e portanto, caminhar em sentido contrário a ele é uma forma adequada de se buscar iterativamente a minimização da função de custo.

• Desta maneira, temos a seguinte equação de atualização dos pesos

$$\mathbf{w}(k+1) \leftarrow \mathbf{w}(k) - \alpha \nabla J(\mathbf{w}(k)),$$

onde α é o *passo de aprendizagem* e k é a iteração de atualização.

• Já os métodos de **segunda ordem**, são baseados na informação trazida pela **derivada parcial de segunda ordem da função custo**. Essa informação está contida na **matriz Hessiana**, **H**:

$$\boldsymbol{H}(\boldsymbol{w}) = \nabla^2 J(\boldsymbol{w}) = \begin{bmatrix} \frac{\partial^2 J(\boldsymbol{w})}{\partial w_1^2} & \frac{\partial^2 J(\boldsymbol{w})}{\partial w_1 \partial w_2} & \cdots & \frac{\partial^2 J(\boldsymbol{w})}{\partial w_1 \partial w_K} \\ \frac{\partial^2 J(\boldsymbol{w})}{\partial w_2 \partial w_1} & \frac{\partial^2 J(\boldsymbol{w})}{\partial w_2^2} & \cdots & \frac{\partial^2 J(\boldsymbol{w})}{\partial w_2 \partial w_K} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 J(\boldsymbol{w})}{\partial w_K \partial w_1} & \frac{\partial^2 J(\boldsymbol{w})}{\partial w_K \partial w_2} & \cdots & \frac{\partial^2 J(\boldsymbol{w})}{\partial w_K^2} \end{bmatrix}.$$

OBS.: A matriz Hessiana é uma matriz quadrada com dimensões $K \times K$.

• De posse da *matriz Hessiana*, é possível fazer uma *aproximação de Taylor de segunda ordem* da *função de custo*, o que leva à seguinte expressão para adaptação dos pesos:

$$\mathbf{w}(k+1) \leftarrow \mathbf{w}(k) - \alpha \mathbf{H}^{-1}(\mathbf{w}(k)) \nabla J(\mathbf{w}(k)).$$

- Essa expressão requer que a *matriz Hessiana* seja *inversível* e *definida positiva* a cada iteração, k, i.e., $\mathbf{z}^T H \mathbf{z} > 0$, $\forall \mathbf{z} \neq \mathbf{0}$ (vetor nulo).
- A aproximação de Taylor com informação de segunda ordem é mais precisa que a fornecida por métodos de primeira ordem.
- Portanto, a tendência é que métodos de segunda ordem convirjam em menos passos que métodos de primeira ordem.
- Entretanto, o cálculo exato da *matriz Hessiana* pode ser complicado em vários casos práticos.
 - Por exemplo, se tivermos 10 pesos para otimizar, a matriz Hessiana teria 10x10 elementos. Portanto, essa abordagem direta não é eficiente se o número de pesos for muito grande.
- Porém, há um conjunto de métodos de segunda ordem que evitam esse cálculo direto, como os métodos *quasi-Newton* ou os métodos de *gradiente escalonado*, os quais aproximam a matriz Hessiana.

Mínimos Locais, Globais, Pontos de Sela e Platôs

- É importante ressaltarmos que todos esses métodos são métodos de *busca local*, ou seja, eles têm *convergência assegurada para mínimos locais*.
- Um *mínimo* (local ou global) sempre *atrai* o vetor de pesos quando este se encontra em sua vizinhança.
- Para relembrarmos o que é um mínimo local, vejamos a figura ao lado onde existem dois mínimos:
 - Um deles é uma solução ótima em relação apenas a seus vizinhos, ou seja, um mínimo local.
 - O outro também é uma solução ótima em relação a seus vizinhos (mínimo local), mas também em relação a todo o domínio da função de custo. Este é um mínimo global.
- Por serem formadas pela combinação de vários nós com funções de ativação não-lineares, as superfícies de erro de redes neurais não são convexas, ou seja, são altamente irregulares, podendo conter vários mínimos locais.

envolvendo redes neurais, quase todos os mínimos locais têm um valor muito semelhante ao do mínimo global e, portanto, encontrar um mínimo local já é bom o suficiente para um dada problema.

Mínimos Locais, Globais, Pontos de Sela e Platôs

- Outra irregularidade que podemos encontrar são os chamados pontos de sela:
 - Um ponto que é um mínimo ao longo de um eixo, mas um máximo ao longo de outro.
 - Em algumas direções são *atratores* (i.e., alta declividade), mas em outras não.
- O algoritmo de minimização da função de custo pode passar um longo período de tempo sendo atraído por eles, o que prejudica seu desempenho.
- Para escapar destes pontos, usa-se métodos de segunda ordem ou versões ruidosas do gradiente descendente, como, por exemplo, o Gradiente Descendente Estocástico.

Mínimos Locais, Globais, Pontos de Sela e Platôs

- Outro tipo de irregularidade são os platôs: regiões planas, mas com erro elevado.
 - Como a inclinação nesta região é próxima de zero (consequentemente o gradiente é próximo de zero) o algoritmo pode levar muito tempo para atravesá-la.
- Para se escapar destas regiões, usa-se métodos de aprendizado adaptativo como AdaGrad, RMSProp, Adam, etc.
- Portanto, como garantir que o mínimo encontrado é bom o suficiente?
 - Treina-se o modelo várias vezes, sempre inicializando os *pesos aleatoriamente*, com a esperança de que em alguma dessas vezes ele inicialize mais próximo do mínimo global ou de um bom mínimo local.

- Conforme nós discutimos anteriormente, os métodos fundamentais de aprendizado para redes neurais são baseados no cálculo das derivadas parciais da função de erro (ou de custo/perda) com relação aos pesos sinápticos.
- Esses métodos têm como objetivo encontrar o *conjunto de pesos sinápticos* que minimize a *métrica (função) de erro* escolhida.
- Para isso, é necessário encontrar uma maneira de se calcular o vetor gradiente da função de custo com respeito aos pesos sinápticos das várias camadas de uma rede neural.
- Essa tarefa pode parecer óbvia, mas não é o caso.
 - Como podemos calcular a influência dos pesos das camadas ocultas no erro da camada de saída?
- Foram necessários 17 anos desde a criação do Perceptron até que se "descobrisse" uma forma de treinar RNAs.

- Para que entendamos melhor o porquê de não ser uma tarefa trivial, nós iremos considerar a notação abaixo, a qual será muito útil a seguir.
 - O peso sináptico, $w_{i,j}^m$, corresponde ao j-ésimo peso do i-ésimo nó da m-ésima camada da rede neural e W^m é a matriz com todos os pesos da m-ésima camada.

 - A ativação, u_i^m , corresponde à combinação linear das entradas do i-ésimo nó da m-ésima camada da rede neural e u^m é o vetor de ativações com as combinações lineares das entradas de todos os nós da m-ésima camada.
 - $f^m(.)$ é a função de ativação da m-ésima camada da rede neural.
 - Com essa notação, obter o *vetor gradiente* significa calcular, de maneira genérica, $\frac{\partial J(w)}{\partial w_{i,i}^{m}}$, ou seja, calcular essa derivada para todos os pesos de todos os *nós*.

 A figura abaixo apresenta um exemplo de como uma rede MLP pode ser descrita segundo essa notação.

OBS.: Para facilitar nossa análise, não vamos considerar as entradas como uma camada, apenas as camadas ocultas e de saída.

• O mapeamento realizado pela rede MLP acima é dado por:

$$y^{3} = f^{3} \left(W^{3} f^{2} \left(W^{2} \underbrace{f^{1}(W^{1}x + b^{1})}_{y^{1}} + b^{2} \right) + b^{3} \right)$$

 Para facilitar nosso trabalho, iremos supor, sem nenhuma perda de generalidade, que a função de custo escolhida é o erro quadrático médio (MSE).

• Nós vamos assumir que a *última camada da rede MLP* (definida como a M-ésima camada) tenha uma quantidade genérica, N_M , de *nós*. Assim, o MSE é dado por

$$J(\mathbf{w}) = \frac{1}{N_{\text{dados}} N_M} \sum_{n=1}^{N_{\text{dados}}} \sum_{j=1}^{N_M} e_j^2(n)$$
$$= \frac{1}{N_{\text{dados}} N_M} \sum_{n=1}^{N_{\text{dados}}} \sum_{j=1}^{N_M} \left(d_j(n) - y_j^M(n) \right)^2,$$

onde $N_{\rm dados}$ é o número de exemplos, $d_j(n)$ e $y_j^M(n)$ são o valor desejado da j-ésima saída (i.e., rótulo) e a saída do j-ésimo nó da M-ésima camada, respectivamente, ambos correspondentes ao n-ésimo exemplo de entrada.

- Para treinar a rede (i.e., atualizar os pesos), devemos derivar a função custo com respeito aos pesos sinápticos.
- Porém, percebam que os *pesos das camadas ocultas não aparecem explícitamente* na expressão do erro, J(w), apenas os da camada de saída, como veremos a seguir.

- Para fazer com que a dependência dos pesos apareça de maneira clara na expressão do erro, nós precisamos recorrer a aplicações sucessivas da regra da cadeia.
- Usando a notação de *Leibniz*, essa regra nos mostra que:

$$\frac{\partial f(g(h(x)))}{\partial x} = \frac{\partial f(g(h(x)))}{\partial g(h(x))} \frac{\partial g(h(x))}{\partial h(x)} \frac{\partial h(x)}{\partial x}.$$

- Por exemplo, vamos considerar que $f(g(x)) = e^{x^2}$ e que queremos obter $\frac{\partial f(g(x))}{\partial x}$.
- Nós podemos fazer $g(x) = x^2$ e usar a *regra da cadeia*:

$$\frac{\partial f(g(x))}{\partial x} = \frac{\partial f(g(x))}{\partial g(x)} \frac{\partial g(x)}{\partial x} = e^{g(x)} 2x = 2xe^{x^2}.$$

$$J(\mathbf{w}) = \frac{1}{N_{\text{dados}} N_M} \sum_{n=1}^{N_{\text{dados}}} \sum_{j=1}^{N_M} \left(d_j(n) - y_j^M(n) \right)^2$$

- Agora voltamos à equação do MSE e vemos que as saídas da M-ésima camada (i.e., saída) da rede aparecem de maneira direta na equação.
- Isso significa que é *simples se obter as derivadas com respeito aos pesos desta camada*.
- Porém, quando precisamos avaliar as *derivadas com respeito aos pesos das camadas anteriores (i.e., ocultas)*, a situação fica mais complexa, pois não existe uma dependência direta.
- Portanto surge a pergunta, como podemos atribuir a cada **nó** de uma camada oculta da rede, e, consequentemente a seus pesos, sua devida influência na composição dos valores de saída e, consequentemente, do erro?
 - Propaga-se o erro calculado na saída da rede neural para suas camadas anteriores até a primeira camada oculta usando-se um algoritmo, baseado na regra da cadeia, conhecido como backpropagation ou retropropagação do erro.

- A seguir, veremos de maneira mais sistemática como a retropropagação do erro é realizada.
- Inicialmente, nós devemos observar um fato fundamental. O cálculo da derivada do MSE com respeito a um peso qualquer é dada por:

$$\frac{\partial J(w)}{\partial w_{i,j}^m} = \frac{\partial \sum_{n=1}^N \operatorname{dados} \sum_{k=1}^{N_M} e_k^2(n)}{\partial w_{i,j}^m} = \sum_{n=1}^N \operatorname{dados} \sum_{k=1}^{N_M} \frac{\partial e_k^2(n)}{\partial w_{i,j}^m}.$$
 OBS.: mudei o indice do erro de j para k .

- OBS.1: Operação da derivada parcial é *distributiva*.
- OBS.2: A divisão pelo número de amostras é omitida, pois não afeta a otimização.
- A equação acima mostra que é necessário se calcular a derivada parcial apenas do quadrado do erro associado ao n-ésimo exemplo de entrada da k-ésima saída, pois o gradiente será a média destes gradientes particulares (ou locais).

Retropropagação: Algumas noções básicas

• Considerando a derivada geral $\frac{\partial J(w)}{\partial w_{i,j}^m}$ (i.e., derivada para um peso genérico) e usando a **regra da cadeia**, podemos reescrevê-la como:

Ativação do nó ao Ativação do nó ao

$$\frac{\partial J(\mathbf{w})}{\partial w_{i,j}^m} = \frac{\partial J(\mathbf{w})}{\partial u_i^m} \frac{\partial u_i^m}{\partial w_{i,j}^m}.$$
 Ativação do nó ao qual o peso pertence.

- A primeira derivada após a igualdade é a derivada da **função de custo** com respeito à **ativação**, u_i^m , do i-ésimo **nó** da m-ésima camada.
- Essa grandeza será chamada de **sensibilidade** e é denotada pela letra grega δ . Desta forma:

$$\delta_i^m = rac{\partial J(w)}{\partial u_i^m}$$
. Sensibilidade do i -ésimo nó da m -ésima camada.

- O termo δ_i^m é único para cada **nó** da m-ésima camada.
- O outro termo, por sua vez, varia ao longo das entradas do $n\acute{o}$ em questão. Como adotamos nós do tipo perceptron, a ativação, u_i^m , é uma combinação linear das entradas:

$$u_i^m = \sum_{i \in \text{entradas}} w_{i,j}^m y_j^{m-1} + b_i^m.$$

Retropropagação: Algumas noções básicas

Assim

$$rac{\partial u_i^m}{\partial w_{i,j}^m} = y_j^{m-1}$$
 conectada ao i -ésimo nó da m -ésima camada através do peso $w_{i,j}^m$.

Saída da camada anterior

• Caso a derivada seja em relação ao termo de **bias**, b_i^m , teremos o seguinte resultado $\frac{\partial u_i^m}{\partial b_i^m}=1$.

• Desta forma, vemos que todas as derivadas da função de custo em relação aos pesos (sinápticos/bias) são produtos de uma sensibilidade, δ_i^m , por uma entrada do i-ésimo nó da rede (ou, no caso dos termos de bias, pela unidade). $\frac{\partial J(w)}{\partial w_{i,j}^m} = \frac{\partial J(w)}{\partial u_i^m} \frac{\partial u_i^m}{\partial w_{i,j}^m} = \delta_i^m y_j^{m-1},$

$$\frac{\partial J(\mathbf{w})}{\partial w_{i,j}^m} = \frac{\partial J(\mathbf{w})}{\partial u_i^m} \frac{\partial u_i^m}{\partial w_{i,j}^m} = \delta_i^m y_j^{m-1}$$

ou, para o peso de bias, b_i^m

$$\frac{\partial J(\mathbf{w})}{\partial b_i^m} = \frac{\partial J(\mathbf{w})}{\partial u_i^m} \frac{\partial u_i^m}{\partial b_i^m} = \delta_i^m.$$

• São os valores de *sensibilidade*, δ_i^m , que trazem mais dificuldades em seu cálculo, pois a derivada $\frac{\partial u_i^m}{\partial w_{i,j}^m}$ é trivial (ela é apenas o valor de uma entrada daquele nó).

Retropropagando o erro

- Portanto, a estratégia de otimização adotada para atualização dos pesos (sinápticos e de bias) da rede neural é a seguinte:
 - 1. Começa-se pela saída, onde o erro é calculado.
 - Etapa chamada de *direta*, pois aplica-se as entradas à rede e calcula-se o erro de saída.
 - 2. Encontra-se uma *regra recursiva* que gere os valores de *sensibilidade* para os *nós* das camadas anteriores até a primeira camada oculta.
 - Etapa chamada de reversa, pois calcula-se a contribuição de cada nó das camadas ocultas no erro de saída.
- Esse processo é chamado de retropropagação do erro ou backpropagation.
- Para facilitar a *retropropagação do erro*, nós vamos inicialmente agrupar todas as *sensibilidades* da m-ésima camada, δ_i^m , $\forall i$, em um vetor, δ^m .
- Em seguida, vamos encontrar uma regra que fará a transição $\boldsymbol{\delta}^m \to \boldsymbol{\delta}^{m-1}$.
- Ou seja, a partir da **sensibilidade** da camada m, iremos encontrar a **sensibilidade** da camada anterior, m-1.

Retropropagando o erro

- Em resumo, o processo de *retropropagação do erro* é iniciado calculando-se o **vetor de sensibilidades** da última camada, δ^M , e, de maneira **recursiva**, obtémse os **vetores de sensibilidades** de todas as camadas anteriores.
- Para calcular δ^M (vetor de sensibilidades da camada de saída) consideramos N_M saídas e, assim, temos que o j-ésimo elemento de δ^M é dado por:

$$\delta_{M}^{M}$$
 saídas e, assim, temos que o j -ésimo elemento de δ^{M} é dado por:
$$\delta_{j}^{M} = \frac{\partial e_{j}^{2}}{\partial u_{j}^{M}} = \frac{\partial \left(d_{j} - y_{j}^{M}\right)^{2}}{\partial u_{j}^{M}} \stackrel{\text{Regra da}}{=} \frac{\partial \left(d_{j} - y_{j}^{M}\right)^{2}}{\partial y_{j}^{M}} \frac{\partial y_{j}^{M}}{\partial u_{j}^{M}} = -2\left(d_{j} - y_{j}^{M}\right) \frac{\partial y_{j}^{M}}{\partial u_{j}^{M}} = -$$

onde

$$y_j^M = f^M(u_j^M),$$
$$f'^M(u_j^M) = \frac{\partial f^M(u_j^M)}{\partial u_i^M}$$

Função logistica
$$\frac{\partial f(u)}{\partial u} = f(u) (1 - f(u))$$

Função tangente hiperbólica $\frac{\partial f(u)}{\partial x^2} = (1 - \tanh^2(u))$

Retropropagando o erro

• Matricialmente nós podemos expressar δ^M como:

$$\boldsymbol{\delta}^{M} = -2\boldsymbol{F}^{\prime M}(\boldsymbol{u}^{M})(\boldsymbol{d} - \boldsymbol{y}),$$

onde a matriz
$$\mathbf{F}'^M(\mathbf{u}^M)$$
 é uma matriz diagonal com as derivadas das funções de ativação em relação às ativações dos N_M nós da M -ésima camada,
$$\mathbf{F}'^M(\mathbf{u}^M) = \begin{bmatrix} f'^M(u_1^M) & 0 & \cdots & 0 \\ 0 & f'^M(u_2^M) & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & f'^M(u_{N_M}^M) \end{bmatrix},$$

d e y são vetores de dimensão $N_M \times 1$ com os valores esperados e de saída da redé neural, respectivamente.

• Desta forma, a aplicação sucessiva da regra da cadeia leva a uma recursão que, em termos matriciais, é simples e dada por

$$\boldsymbol{\delta}^{m-1} = \boldsymbol{F}'^{m-1}(\boldsymbol{u}^{m-1})(\boldsymbol{W}^m)^T \boldsymbol{\delta}^m.$$

Tarefa

• Encontrem o vetor gradiente para todos os pesos do nó 1 (camada 1) da

rede neural do próximo slide.

$$\begin{vmatrix} \frac{\partial J(\mathbf{w})}{\partial w_{1,1}^{1}} \\ \frac{\partial J(\mathbf{w})}{\partial w_{1,2}^{1}} \\ \frac{\partial J(\mathbf{w})}{\partial b_{1}^{1}} \end{vmatrix} =$$

 OBS.: Podem deixar as derivadas da função de ativação em relação às ativações de forma genérica, ou seja, sem assumir um tipo específico de função de ativação.

- Considerem uma rede MLP com uma camada oculta com dois nós e uma camada de saída com um único nó, portanto M=2.
- Devemos começar calculando δ^2 .
- Percebam que essa sensibilidade é um escalar pois há apenas um nó na camada de saída.
- Vamos considerar um exemplo de entrada $x = [x_1, x_2]$ e saída desejada d.
- Supomos que os pesos de todos os nós têm uma certa configuração inicial (e.g., dist. normal).
- Assim, quando a entrada, x, é apresentada à rede, é possível calcular todos os valores de interesse ao longo dela até sua saída.
- Essa é a etapa *direta* (ou do inglês, *forward*).

- Portanto, temos então a saída y_1^2 , onde o erro pode ser calculado como $e=d-y_1^2$.
- De posse do erro, podemos calcular a sensibilidade do **nó** da camada de saída $\delta^2 = -2(d-y_1^2)f'^2(u_1^2).$
- Temos, portanto, nossa primeira *sensibilidade*. Agora, usamos a equação de recursão para *retropropagar* o erro até a camada anterior. A fórmula nos diz:

$$\boldsymbol{\delta}^1 = \boldsymbol{F}^{\prime 1}(\boldsymbol{u}^1)(\boldsymbol{W}^2)^T \delta^2,$$

onde
$$(\mathbf{W}^2)^T = [w_{1,1}^2, w_{1,2}^2]^T$$
e

$$\mathbf{F}^{\prime 1}(\mathbf{u}^1) = \begin{bmatrix} f^{\prime 1}(u_1^1) & 0 \\ 0 & f^{\prime 1}(u_2^1) \end{bmatrix}.$$

OBS.: Notem que $.^2$ aqui não significa "ao quadrado", mas sim a indicação de que se trata de uma saída da camada m=2.

Portanto,

$$\boldsymbol{\delta}^{1} = \begin{bmatrix} \delta_{1}^{1} \\ \delta_{2}^{1} \end{bmatrix} = \begin{bmatrix} w_{1,1}^{2} f'^{1}(u_{1}^{1}) \\ w_{1,2}^{2} f'^{1}(u_{2}^{1}) \end{bmatrix} \delta^{2}.$$

- Agora, para obtermos o vetor gradiente, multiplicamos as *sensibilidades* pelas entradas correspondentes.
- Por exemplo, as derivadas parciais com relação aos pesos do $\emph{n\'o}~i=1$ da camada m=1 são mostradas abaixo

$$\begin{bmatrix} \frac{\partial J(\boldsymbol{w})}{\partial w_{1,1}^1} \\ \frac{\partial J(\boldsymbol{w})}{\partial w_{1,2}^1} \\ \frac{\partial J(\boldsymbol{w})}{\partial b_1^1} \end{bmatrix} = \delta_1^1 \begin{bmatrix} x_1 \\ x_2 \\ 1 \end{bmatrix} = \delta^2 w_{1,1}^2 f'^1(u_1^1) \begin{bmatrix} x_1 \\ x_2 \\ 1 \end{bmatrix} = -2(d-y_1^2) f'^2(u_1^2) w_{1,1}^2 f'^1(u_1^1) \begin{bmatrix} x_1 \\ x_2 \\ 1 \end{bmatrix}.$$
Os pesos de **bias**
estão ligados a
entradas com valores
constantes iguais a 1.

 Se fôssemos calcular as derivadas aplicando a regra da cadeia diretamente, elas seriam calculadas como mostrado abaixo.

$$\frac{\partial J(\boldsymbol{w})}{\partial w_{1,1}^{1}} = \underbrace{\frac{\partial \left(d - f^{2}(u_{1}^{2})\right)^{2}}{\partial f^{2}(u_{1}^{2})} \frac{\partial f^{2}(u_{1}^{2})}{\partial u_{1}^{2}}}_{\delta^{2}} \underbrace{\frac{\partial u_{1}^{2}}{\partial f^{1}(u_{1}^{1})} \frac{\partial u_{1}^{1}}{\partial u_{1}^{1}}}_{\delta^{2}} \underbrace{\frac{\partial u_{1}^{1}}{\partial f^{1}(u_{1}^{1})} \frac{\partial u_{1}^{1}}{\partial u_{1}^{1}}}_{\delta^{2}} \underbrace{\frac{\partial u_{1}^{1}}{\partial u_{1}^{1}}}_{\delta^{1}}$$

• Resolvendo as derivadas parciais, temos

$$\frac{\partial J(\mathbf{w})}{\partial w_{1,1}^1} = \delta_1^1 x_1 = \delta^2 w_{1,1}^2 f'^1(u_1^1) x_1$$
$$= -2(d - y_1^2) f'^2(u_1^2) w_{1,1}^2 f'^1(u_1^1) x_1$$

Derivada com relação ao primeiro peso do nó 1 da camada 1.

 Se fôssemos calcular as derivadas aplicando a regra da cadeia diretamente, elas seriam calculadas como mostrado abaixo.

$$\frac{\partial J(\boldsymbol{w})}{\partial w_{1,1}^{1}} = \underbrace{\frac{\partial \left(d - f^{2}(u_{1}^{2})\right)^{2}}{\partial f^{2}(u_{1}^{2})} \frac{\partial f^{2}(u_{1}^{2})}{\partial u_{1}^{2}}}_{\delta_{1}^{2}} \underbrace{\frac{\partial u_{1}^{2}}{\partial f^{1}(u_{1}^{1})} \frac{\partial f^{1}(u_{1}^{1})}{\partial u_{1}^{1}}}_{\delta_{1}^{2}} \underbrace{\frac{\partial u_{1}^{1}}{\partial w_{1,1}^{1}}}_{X_{1}}$$

• Resolvendo as derivadas parciais, temos

$$\frac{\partial J(\mathbf{w})}{\partial w_{1,1}^1} = \delta_1^1 x_1 = \delta^2 w_{1,1}^2 f^{\prime 1}(u_1^1) x_1$$
$$= -2(d - y_1^2) f^{\prime 2}(u_1^2) w_{1,1}^2 f^{\prime 1}(u_1^1) x_1$$

Aplicando-se o mesmo procedimento aos outros pesos, temos:

$$\frac{\partial J(\mathbf{w})}{\partial w_{1,1}^{1}} = \frac{\partial e^{2}}{\partial w_{1,1}^{1}} = \frac{\partial \left(d - f^{2}(u_{1}^{2})\right)^{2}}{\partial f^{2}(u_{1}^{2})} \frac{\partial f^{2}(u_{1}^{2})}{\partial u_{1}^{2}} \frac{\partial u_{1}^{2}}{\partial f^{1}(u_{1}^{1})} \frac{\partial f^{1}(u_{1}^{1})}{\partial u_{1}^{1}} \frac{\partial u_{1}^{1}}{\partial w_{1,1}^{1}}
\frac{\partial J(\mathbf{w})}{\partial w_{1,2}^{1}} = \frac{\partial e^{2}}{\partial w_{1,2}^{1}} = \frac{\partial \left(d - f^{2}(u_{1}^{2})\right)^{2}}{\partial f^{2}(u_{1}^{2})} \frac{\partial f^{2}(u_{1}^{2})}{\partial u_{1}^{2}} \frac{\partial u_{1}^{2}}{\partial f^{1}(u_{1}^{1})} \frac{\partial f^{1}(u_{1}^{1})}{\partial u_{1}^{1}} \frac{\partial u_{1}^{1}}{\partial w_{1,2}^{1}}
\frac{\partial J(\mathbf{w})}{\partial b_{1}^{1}} = \frac{\partial e^{2}}{\partial b_{1}^{1}} = \frac{\partial \left(d - f^{2}(u_{1}^{2})\right)^{2}}{\partial f^{2}(u_{1}^{2})} \frac{\partial f^{2}(u_{1}^{2})}{\partial u_{1}^{2}} \frac{\partial u_{1}^{2}}{\partial f^{1}(u_{1}^{1})} \frac{\partial f^{1}(u_{1}^{1})}{\partial u_{1}^{1}} \frac{\partial u_{1}^{1}}{\partial b_{1}^{1}}$$

- Podemos dizer que os *elementos básicos do aprendizado de máquina* através de redes neurais foram apresentados até aqui.
- Porém, existem importantes aspectos práticos que devem ser comentados de modo que vocês fiquem mais familiarizados com as práticas atuais.
- Começamos falando da questão do cálculo do vetor gradiente.

Versões Online, Batch e Minibatch

- Conforme vimos anteriormente, a base para o aprendizado em redes MLP é a obtenção do vetor gradiente e o estabelecimento de um processo iterativo de busca dos pesos (sinápticos e de bias) que minmizem a função de custo.
- Vimos que a obtenção do *vetor gradiente* se dá através de um processo de *retropropagação do erro*, o qual é dividido em duas etapas:
 - Etapa direta (*forward*) onde se apresenta um exemplo de entrada, x, e obtém-se a resposta da rede e, consequentemente, o *erro de saída*.
 - Etapa reversa (*retropropagação/backpropagation*) em que se calculam as derivadas parciais necessárias ao longo das camadas anteriores da rede.

Versões Online, Batch e Minibatch

 Vimos também que se calcula o gradiente associado a cada exemplo de entrada e que a média de todos esses gradientes locais leva ao gradiente para o conjunto total de exemplos.

$$\frac{\partial J(\mathbf{X} \mid \mathbf{W})}{\partial w_{i,j}^{m}} = \frac{1}{N_{\text{dados}} N_{M}} \sum_{n=1}^{N_{\text{dados}}} \sum_{j=1}^{N_{M}} \frac{\partial e_{j}^{2}(n)}{\partial w_{i,j}^{m}} = \frac{1}{N_{\text{dados}}} \sum_{n=1}^{N_{\text{dados}}} \nabla J_{n}(\mathbf{W})$$

- O *gradiente local*, é a derivada parcial do erro da j-ésima saída da rede neural para o n-ésimo exemplo de entrada em relação ao peso, $w_{i,j}^m$.
- $\nabla J_n(\mathbf{W})$ é a média dos N_M gradientes locais para o n-ésimo exemplo de entrada.
- No entanto, surge aqui um questionamento interessante: o que é melhor, usar o gradiente local e já dar um passo de otimização, ou seja, atualizar os pesos, reunir o gradiente completo e então dar um passo único e mais preciso ou um meio termo?

Versões Online, Batch e Minibatch

- Nesse questionamento, existem três abordagens: o cálculo *online* do gradiente (ou seja, exemplo-a-exemplo), o cálculo em batelada e um meio termo.
- Vejamos inicialmente a noção geral de adaptação dos pesos com o cálculo online do gradiente, como expressa o algoritmo abaixo (considerando um método de primeira ordem).
 - ightharpoonup Defina valores iniciais para a matriz de pesos W e um passo de aprendizagem α pequeno.
 - Faça k=0 (épocas), t=0 (iterações) e calcule J(W(k)).
 - > Enquanto o critério de parada não for atendido, faça:
 - o Ordene aleatoriamente os exemplos de entrada e saídas correspondentes.
 - Para *n* variando de 1 até *N*, faça:
 - Apresente o *n*-ésimo exemplo de entrada à rede.
 - Calcule $J_n(\mathbf{W}(t))$ e $\nabla J_n(\mathbf{W}(t))$.
 - $\mathbf{W}(t+1) = \mathbf{W}(t) \alpha \nabla J_n(\mathbf{W}(t)).$
 - t = t + 1.
 - o k = k + 1.
 - \circ Calcule $J(\mathbf{W}(k))$.

OBS.: $J_n(W)$ é a média do erro para as N_M saídas e n-ésimo exemplo.

Versões Online, Batch e Minibatch

- O outro extremo seria utilizar todo o conjunto de dados para calcular o gradiente antes de atualizar os pesos.
- Essa é a ideia por trás da abordagem em *batelada* (*batch*). O algoritmo abaixo ilustra a operação correspondente.
 - ightharpoonup Defina valores iniciais para a matriz de pesos W e um passo de aprendizagem lpha pequeno.
 - Faça k = 0 (épocas) e calcule J(W(k)).
 - > Enquanto o critério de parada não for atendido, faça:
 - \circ Para n variando de 1 até N, faça:
 - Apresente o *n*-ésimo exemplo de entrada à rede.
 - Calcule $J_n(\mathbf{W}(k))$ e calcule e armazene $\nabla J_n(\mathbf{W}(k))$.
 - $\circ W(k+1) = W(k) \frac{\alpha}{N} \sum_{n=1}^{N} \nabla J_n(W(k)).$
 - o k = k + 1.
 - o Calcule $J(\mathbf{W}(k))$.

Versões Online, Batch e Minibatch

- Nas redes neurais profundas (ou deep learning), usadas com muita frequência em problemas com enormes conjuntos de dados, a regra é adotar o caminho do meio, usando a abordagem com mini-batches.
- Nesse caso, a adaptação dos *pesos* é realizada com um gradiente calculado a partir de um meio-termo entre um exemplo e o número total de exemplos (em geral, este é um valor relativamente pequeno em métodos de *primeira ordem*).
- OBS.: As amostras que compõem um mini-batch são aleatoriamente tomadas do conjunto de dados. O algoritmo abaixo ilustra isso.
- \triangleright Defina valores iniciais para a matriz de pesos W, um passo de aprendizagem α pequeno e o tamanho, m, do mini-batch.
- Faça k = 0 (época) e calcule $J(\mathbf{W}(k))$.
- Enquanto o critério de parada não for atendido, faça:
 - \circ Para n variando de 1 até m, faça:
 - Apresente o n-ésimo exemplo de entrada, amostrado aleatóriamente sem reposição do conjunto de treinamento, à rede.
 - Calcule $J_n(\mathbf{W}(k))$ e calcule e armazene $\nabla J_n(\mathbf{W}(k))$.
 - $\circ W(k+1) = W(k) \frac{\alpha}{m} \sum_{n=1}^{m} \nabla J_{l}(W(k)).$
 - o k = k + 1.
 - \circ Calcule J(W(k)).

Variações dos algoritmos de otimização dos pesos

- Existem vários algoritmos baseados no *gradiente* que podem ser empregados para otimizar os *pesos* de uma rede neural.
- Aqui, vamos nos ater a alguns métodos mais usuais na literatura moderna, que se encontra bastante focada no apredizado profundo.
- ➤ Métodos do Gradiente Descendente Estocástico (GDE) e Mini-batch
 - Sabemos que o métodos do GDE e mini-batch utilizam, respectivamente, um único exemplo e um subconjunto de exemplos tomados aleatoriamente para estimar o gradiente da função custo.
 - Este tipo de estimador é o que gera a noção de gradiente estocástico: atualizações não seguem a direção de máxima declividade da superfície de erro e, se o conjunto de treinamento contiver ruído, não convergem para o ponto de mínimo.
 - Porém, eles são amplamente empregados em aprendizado profundo devido à utilização reduzida e configurável de amostras, resultando em menor complexidade computacional.
 - Além disso, existem algumas variações em cima deles que melhoram a convergência.

- ➤ Redução programada do passo de aprendizagem
 - A escolha do passo de aprendizagem, α, é complicada e exige um compromisso entre velocidade de convergência e estabilidade/precisão.
 - Pode-se usar α com um valor fixo, mas, geralmente, se adota uma variação decrescente de um valor α_0 a um valor α_{τ} (i.e., da iteração 0 à τ -ésima iteração):

$$\alpha_j = \left(1 - \frac{j}{\tau}\right)\alpha_0 + \frac{j}{\tau}\alpha_\tau,$$

onde j é o número da iteração de treinamento.

- Após a τ -ésima iteração, pode-se deixar o valor do passo de aprendizagem fixo, como mostrado na figura ao lado.
- Porém, a definição dos hiperparâmetros, α_0 e α_τ , é mais um *problema de otimização de hiperparâmetros*.

Momentum

- O termo momento é adicionado à equação de atualização dos pesos para incorporar informação do histórico de gradientes anteriores.
- Esse termo tem o potencial de aumentar a velocidade de convergência das versões GDE e em mini-lotes e deixá-las mais estáveis.
- A *atualização dos pesos* com o *termo momento* é dada por

$$\boldsymbol{w} \leftarrow \boldsymbol{w} - \alpha \boldsymbol{v}$$

onde w são os pesos, v é a velocidade, a qual é atualizada da seguinte forma $v \leftarrow \mu v + (1-\mu)\nabla J(w)$, Média móvel exponencialmente decrescente.

onde, $\nabla J(w)$ é o *vetor gradiente*, α é o *passo de aprendizagem* e $\mu \in [0,1)$ é o *coeficiente de momento* e determina com que rapidez as contribuições de gradientes anteriores decaem (ou seja, μ é um termo que dita a quantidade de memória).

- Quanto maior for μ, maior será a influência de gradientes anteriores na direção atual e quanto menor, menor a influência de gradientes anteriores.
- lacktriangledown v dá a direção e a velocidade na qual os pesos se movem pelo espaço de pesos.

≻Momentum

- Em física, *momento* é igual a *massa de uma partícula vezes sua velocidade*.
- Neste caso, a partícula é o vetor de pesos, w.
- No algoritmo do momento, assumimos que a massa é unitária, então o vetor velocidade, v, também pode ser considerado como o momento da partícula.
- O termo momento adiciona uma média dos gradientes anteriores à atualização corrente, assim:
 - Quando o gradiente aponta na mesma direção por várias iterações, o termo aumenta o tamanho dos passos dados naquela direção.
 - Quando o gradiente muda de direção a cada nova iteração, o termo momento suaviza as variações (figura ao lado).
 - Como resultado, temos convergência mais rápida e oscilação reduzida.

➤ Momento de Nesterov

- O método do momento de Nesterov é uma variação do método do momento em que o cálculo do vetor gradiente não é feito em relação ao vetor de pesos w, mas em relação a $w + \mu v$.
- Essa mudança no cálculo do gradiente faz com que o momento de Nesterov apresente convergência mais rápida e ajustes mais precisos dos pesos do que o momento clássico.

➤ Modelos com Passo de Aprendizagem Adaptativo

- O passo de aprendizagem é um hiperparâmetro difícil de ser ajustado de forma ótima e bastante relevante para o sucesso do treinamento de uma rede neural.
- Isso motivou o surgimento de métodos capazes de ajustá-lo *dinamicamente*.
- Esses métodos ajustam o passo de acordo com informações dos gradientes passados.
- Além disso, pode-se ter passos diferentes para cada peso do modelo, os quais são atualizados de forma independente.
- Portanto, esses métodos são adequados para redes neurais, onde a superfície de erro é bastante irregular e diferente em diferentes dimensões, tornando a atualização dos pesos mais efetiva.
- Dentre as técnicas mais populares dessa classe estão AdaGrad, RMSProp e Adam.

Inicialização dos Pesos

- Uma vez que os métodos de treinamento de *redes neurais MLP* são iterativos, eles dependem de uma *inicialização dos pesos*.
- Como os métodos são de busca local, a inicialização pode afetar drasticamente a qualidade da solução obtida.
- O ponto de inicialização pode determinar se o algoritmo converge, sendo alguns pontos iniciais tão instáveis que o algoritmo encontra dificuldades numéricas (representações numéricas: underflow e overflow) e falha completamente em convergir (e.g., desaparecimento e explosão dos gradientes).
- O ponto de inicialização também pode fazer com que ocorram variações expressivas na *velocidade de convergência* (e.g., platôs, pontos de sela).
- Uma questão importante da inicialização dos pesos é "quebrar a simetria" entre os nós, ou seja, nós com a mesma função de ativação e conectados às mesmas entradas, devem ter pesos iniciais diferentes, caso contrário, eles terão os mesmos pesos ao longo do treinamento.
- Isso, portanto, sugere uma abordagem de inicialização aleatória.

Inicialização dos Pesos

- Os pesos iniciais são tipicamente obtidos a partir de *distribuições gaussianas* ou *uniformes*, não importando muito qual é usada.
- No entanto, o intervalo de valores da distribuição usada para iniciar os pesos tem um efeito significativo tanto no resultado da otimização quanto na capacidade de generalização da rede.
- A ordem de grandeza desses pesos levanta algumas discussões:
 - Pesos de maior magnitude criam uma maior distinção entre nós (i.e., a quebra de simetria). Por outro lado, isso pode causar problemas de instabilidade.
 - Pesos de maior magnitude favorecem a propagação de informação, porém, por outro lado, causam preocupações do ponto de vista de regularização (*overfitting*).
 - Pesos de magnitude elevada podem levar os nós com funções de ativação do tipo sigmóide a operarem na região de saturação, comprometendo a convergência do algoritmo (desaparecimento do gradiente).
 - Pesos de magnitude elevada podem levar os nós com funções de ativação do tipo RELU à explosão do gradiente ou dos valores de saída, deixando a rede muito sensível a mudanças dos valores de entrada.
- Portanto, na sequência listamos algumas heurísticas para inicialização dos pesos.

Inicialização dos Pesos

- A ideia por trás destas heurísticas é manter a média das ativações igual a zero e suas variâncias constantes ao longo das várias camadas da rede, pois desta forma evita-se o desaparecimento ou a explosão do gradiente.
- Considerando uma camada com m entradas e n saídas, temos as seguintes **heurísticas** para inicializar os **pesos sinápticos** de seus nós.

Inicialização	Funções de ativação	Distribuição Uniforme $U(-r,r)$	Distribuição Normal $N(0,\sigma^2)$
Xavier/Glorot	Linear (i.e., nenhuma), Tanh, Logística, Softmax	$r = \sqrt{\frac{6}{m+n}}$	$\sigma^2 = \frac{2}{m+n}$
He	ReLU e suas variantes	$r = \sqrt{\frac{6}{m}}$	$\sigma^2 = \frac{2}{m}$
LeCun	SELU	$r = \sqrt{\frac{3}{m}}$	$\sigma^2 = \frac{1}{m}$

• Uma heurística para a inicialização dos *pesos de bias* é inicializá-los com *valores nulos*. Esta heurística é usada pois se mostra bastante eficiente na maioria dos casos.

Redes Neurais MLP com SciKit-Learn

- Como vimos anteriormente, a biblioteca *SciKit-Learn* disponibiliza algumas classes para o treinamento de redes neurais *multi-layer perceptron*.
- Entretanto, suas implementações *não são flexíveis e não se destinam a aplicações de larga escala*.
 - A biblioteca SciKit-Learn não oferece suporte a GPUs.
- Para implementações de *modelos de aprendizado profundo* escaláveis, muito mais rápidos, flexíveis e baseados em GPU, devemos utilizar bibliotecas como:
 - *Tensorflow*: criada pela equipe *Google Brain* do *Google*.
 - **PyTorch**: criada pela *Meta AI* (antigo *Facebook*).
 - *MXNet*: criada pela *Apache*.
 - *Theano*: criada pela Universidade de Montreal (primeira versão) e mantida posteriormente pela equipe de desenvolvedores do pacote PyMC sob o nome de Aesara.
 - Entre outras: https://scikit-learn.org/stable/related-projects.html#related-projects

Classificação com MLPClassifier

Classificação de dígitos escritos à mão com uma rede MLP.

Regressão com MLPRegressor

Aproximação de função com descontinuidades com uma rede MLP.

Avisos

- Vocês já podem resolver os exercícios da lista #12.
- Apresentação dos trabalhos finais: XX/YY/2024 a partir das 08:00.
- Horários das apresentações:

Dia	Horário do Início	Número do Grupo	Nome
	8:00		
	8:20		
	8:40		
	9:00		
	9:20		

Obrigado!

People with no idea about AI, telling me my AI will destroy the world Me wondering why my neural network is classifying a cat as a dog...

Figuras

$$y = f(g(x)) = \begin{cases} 1 \text{ se } g(x) \ge \theta \\ 0 \text{ se } g(x) < \theta \end{cases}$$

onde θ é o limiar de decisão.

Nó, unidade ou neurônio.

→ Ligação entre *i*-ésimo e *j*-ésimo nó.

 w_{ij} Peso da ligação entre *i*-ésimo e *j*-ésimo nó.

