02.10.2019

prof. dr hab. inż. Zbigniew Lonc zblonc@mini.pw.edu.pl

pokój 558, konsultacje 12.15-13.00

http://pages.mini.pw.edu.pl/~loncz/www

username:student

pass:elitmxy

32 punkty na ćwiczeniach zwalnia z części egzaminu

1. Rachunek zdań

- (a) zdanie wyrażenie któremu można przypisać jednoznacznie wartość prawdy lub fałszu
- (b) zdania:
 - i. Paryż jest we Francji
 - ii. -1 > 0
- (c) nie zdania:
 - i. Niebieski to ładny kolor
- (d) Zmienne zdaniowe p,q,r,s zazwyczaj pod nie podstawiamy zdania
- (e) X zbiór zmiennych zdaniowych
- (f) Ze zdań prostych budujemy zdania złożone za pomocą operatorów (spójników) logicznych
 - i. Negacja, zaprzeczenie, $\neg p$ nieprawda że p,nie p (\neg / \sim)
 - ii. Alternatywa $p \vee q$ (p lub q)
 - iii. Koniunkcja $p \wedge q$ (p i q)
 - iv. <u>Implikacja</u> $p \implies q$ (jeśli p to q)
 - v. Równoważność $p \iff q(p \text{ jest równoważne } q)$
- (g) Budujemy "język legalnych" formuł rachunku zdań (synktatyka)
 - i. Def. Zbiór formuł rachunku zdań jest to najmniejszy zbiór Z taki, że
 - A. Każda zmienna zdaniowa należy do Z
 - B. Jeśli $\alpha, \beta \in Z$ to $\neg \alpha, \alpha \lor \beta, \alpha \land \beta, \alpha \implies \beta, \alpha \iff \beta \in Z$
 - ii. Konwencja:
 - A. Dla uproszczenia formuł przyjmujemy priorytet wykonywania operacji
 - $potem \land / \lor, potem \implies / \iff$
 - A. $(((\neg q) \land p) \implies p) \iff (p \lor q)$ sprowadza się do $(\neg q \land p \implies p) \iff p \lor q$
 - iii. X zbiór zmiennych zdaniowych
 - A. Def. Wartościowanie jest to funkcja V: $X \rightarrow \{0,1\}$ (prawda,fałsz) przypisuje zmiennym zdaniowym wartości

	р	¬р
В.	1	0
	0	1

	р	q	$p \lor q$	$p \wedge q$	$p \implies q$	$p \iff q$
	0	0	0	0	1	1
С.	1	0	1	0	0	0
	0	1	1	0	1	0
	1	1	1	1	1	1

- iv. Rozszerzamy wartościowanie na zbiór Z formuł rachunku zdań
 - A. $\alpha, \beta \in Z$
 - B. $V: X \to \{0, 1\}$
 - C. $V(\neg \alpha) = \neg V(\alpha)$
 - D. $V(\alpha \vee b) = V(\alpha) \vee V(\beta)$
 - E. $V(\alpha \wedge b) = V(\alpha) \wedge V(\beta)$
 - F. $V(\alpha \implies b) = V(\alpha) \implies V(\beta)$
 - G. $V(\alpha \iff b) = V(\alpha) \iff V(\beta)$
 - H. Przykład: $X = \{p, q\}, V(p) = 1, V(q) = 0$ $V((\neg q \land p \implies p) \iff p \lor q) = 1$

- (h) def. Tautologia rachunku zdań jest to formuła prawdziwa dla każdego wartościowania zmienych zdaniowych
 - i. $p \vee \neg p$ prawo wyłączonego środka
 - ii. $\neg(p \land \neg p)$ prawo sprzeczności
 - iii. $p \lor p \iff p$
 - iv. $p \wedge p \iff p$ idempotentność alternatywy i koniunkcji
 - v. $p \iff \neg(\neg p)$ podwójna negacja
 - vi. $(p \lor q) \land r \iff (p \land r) \lor (q \land r)$
 - vii. $(p \land q) \lor r \iff (p \lor r) \land (q \land r)$ prawo rozdzielności ^
 - viii. $(p \lor q) \lor r \iff p \lor (q \lor r)$
 - ix. $(p \land q) \land r \iff p \land (q \land r)$ łączność ^
 - x. $(p \implies q) \land (q \implies r) \implies (p \implies r)$ przechodniość implikacji
 - xi. $(p \implies q) \iff (\neg p \lor q)$ eliminacja implikacji
 - xii. $(p \iff q) \iff (p \implies q) \land (q \implies p)$ eliminacja równoważności
 - xiii. $\neg (p \lor q) \iff \neg p \land \neg q$
 - xiv. $\neg(p \land q) \iff \neg p \lor \neg q \text{ prawa de Morgana}^{\hat{}}$
 - xv. $\neg(p \implies q) \iff p \land \neg q$ negacja implikacji
 - xvi. $(p \implies q) \iff (\neg q \implies \neg p)$ kontrapozycja
 - xvii. $p \implies (\neg p \implies q)$

	р	q	$\neg p \implies q$	$p \implies (\neg p \implies q)$
	0	0	0	1
Α.	1	0	1	1
	0	1	1	1
	1	1	1	1

- B. Przypusćmy że przy pewnym wartościowaniu formuła jest fałszywa. Wtedy p musi być prawdziwe, a nastepnik fałszywy. Jeśli p jest prawdziwe, to następnik też jest prawdziwy, więc implikacja musi wartościować się do prawdy.
- (i) Podejście aksjomatyczne do rachunku zdań
 - i. Def. Aksjomat formuła rachunku zdań (
 $(\in Z)$ o której przyjmujemy, że jest prawdziwa
 - ii. Def. Dowód formalny formuły $\beta \in Z$ jest to ciąg formuł $\alpha_1, \alpha_2, ... \alpha_n \in Z$ taki, że
 - A. $\alpha_n = \beta$
 - B. dla każdego $i \in \{1, 2, ..., n\}$ α jest aksjomatem, lub istnieją $j, k \in 1, 2, ... i 1$ takie że j < k oraz $\alpha_k = (\alpha_j \implies \alpha_i)$
 - iii. Def. Formułę nazywamy twierdzeniem rachunku zdań jeśli istnieje jej dowód formalny
 - iv. Aksjomaty rachunku zdań (przykładowo) $(A, B, C \in Z)$ (nie trzeba pamiętać)
 - A. $(A \Longrightarrow (B \Longrightarrow A))$
 - B. $(A \Longrightarrow (B \Longrightarrow C)) \Longrightarrow ((A \Longrightarrow B) \Longrightarrow (A \Longrightarrow C))$
 - C. $(\neg A \Longrightarrow B) \Longrightarrow ((\neg A \Longrightarrow \neg B) \Longrightarrow A)$
 - v. Twierdzenie o pełności
 - A. Formuła rachunku zdań jest twierdzeniem \iff jest tautologią
 - vi. Przykład dowodu formalnego formuły $\alpha \implies \alpha \ (A=\alpha, B=\beta, C=\alpha)$:
 - A. $\alpha_1 = (\alpha \implies (\beta \implies \alpha) \implies \alpha)$ aksjomat 1
 - B. $\alpha_2 = (\alpha \implies (\beta \implies \alpha)) \implies ((\alpha \implies \beta) \implies (\alpha \implies \alpha))$ aksjomat 2
 - C. α_3
- (j) Tw. Każda formuła F zapisana w języku rachunku zdań sprowadza się do postaci dysjunktywno koniunktywnej (DNF). Czyli dla każdej F istnieje F' w DNF tak, że $F \iff F'$
 - i. DNF to drzewkowo alternatywy na samej górze, poziom niżej koniunkcja, dwa poziomy niżej zmienna lub jej negacja

Na elitmie $\mathbb{N} = \mathbb{N}_0$

- 1. Def: Wyrażenie $\phi(x)$, które po wstawieniu za x konkretnej wartości z ustalonego zbioru X nazywamy funkcją zdaniową
 - (a) X zakres zmiennej x
 - (b) Kwantyfikator ogólny (uniwersalny)
 - i. $(\forall_{x \in X}) \phi(x)$ oznacza, że dla każdego $x \in X$ zdanie $\phi(x)$ jest prawdziwe
 - ii. ^ taki napis jest zdaniem
 - (c) Kwantyfikator szczegółowy (egzystencjalny)
 - i. $(\exists_{x \in X}) \phi(x)$ oznacza, że istnieje takie $x \in X$, dla którego zdanie $\phi(x)$ jest prawdziwe
 - (d) Przykłady (b,c):
 - i. $\forall_{x \in \mathbb{R}} x^2 \ge 1$ zdanie fałszywe
 - ii. $\exists_{x \in \mathbb{R}} x^2 = x + 1$ zdanie prawdziwe
- 2. Def: $\phi(x)$ funkcja zdaniowa, X zakres zmiennej $x,\,A\subseteq X,\,\alpha(x)$ funkcja zdaniowa:
 - (a):
- i. $\forall_{x \in A} \phi(x) \iff def \forall_{x \in X} (x \in A \implies \phi(x))$
- ii. $\exists_{x \in A} \phi(x) \iff def \exists_{x \in X} (x \in A \land \phi(x))$
- (b) A więc generalniej:
 - i. $\forall_{x:\alpha(x)}\phi(x) \iff def\forall_{x\in X}(\alpha(x) \implies \phi(x))$
 - ii. $\exists_{x:\alpha(x)}\phi(x) \iff def \exists_{x\in X}(\alpha(x) \land \phi(x))$
- (c) Niech $A = \emptyset$
 - i. $\forall_{x \in \emptyset} \phi(x) \iff \forall_{x \in X} (x \in \emptyset \implies \phi(x))$ zdanie prawdziwe (zawsze)
 - ii. $\exists_{x \in \emptyset} \phi(x) \iff \exists_{x \in X} (x \in \emptyset \land \phi(x))$ zdanie fałszywe (zawsze)
- (d) Jeśli nie prowadzi to do nieporozumień, to będziemy pisać $\forall_x \phi(x)$ zamiast $\forall_{x \in X} \phi(x)$ oraz $\exists_x \phi(x)$ zamiast $\exists_{x \in X} \phi(x)$
- 3. Funkcje zdaniowe wielu zmiennych
 - (a) $\phi(x,y)$ staje się zdaniem po wstawieniu za x,y konkretnych wartości z zakresu x,y
 - (b) $\phi(x_1,...,x_n)$ funkcja zdaniowa n zmiennych
 - (c) Przykład:
 - i. $x \in \mathbb{R}, y \in \mathbb{Z}$: $\phi(x,y) = (x \neq y)$ funkcja zdaniowa 2 zmiennych
 - ii. $\forall_{x \in \mathbb{R}} x \neq y$ nie zdanie, lecz funkcja zdaniowa wartość zależy od y
 - iii. $\exists_{y \in \mathbb{Z}} \forall_{x \in \mathbb{R}} x \neq y$ zdanie fałszywe
- 4. $X = \{x_1, \dots, x_n\}$ zbiór skończony
 - (a) $\forall_{x \in X} \phi(x) \iff \phi(x_1) \land \cdots \land \phi(x_n)$
 - (b) $\exists_{x \in X} \phi(x) \iff \phi(x_1) \lor \cdots \lor \phi(x_n)$
- 5. Def: Zasięg kwantyfikatora to funkcja zdaniowa, której ten kwantyfikator dotyczy
 - (a) $\exists_{y \in \mathbb{Z}} \forall_{x \in \mathbb{R}} x \neq y$ zasięg kwantyfikatora $\exists_{y \in \mathbb{Z}}$
 - (b) Przykład: $\forall_x(\forall_y(x>y\implies (\exists_z)(x>z>y)))$ odpowiednie podkreślenia to zasięgi kwantyfikatorów na lewo od nich
 - (c) Notacja: Zamiast $\forall_x(\exists_y(\forall_z(\dots)))$ piszemy $\forall_x\exists_y\forall_z\dots$
- 6. Def: Zmienną x nazywamy **związaną** jeśli leży ona w zasięgu kwantyfikatora (w którym występuje!) dla \forall_x lub \exists_x . W przeciwnym wypadku x jest zmienną **wolną**
 - (a) Przykłady:
 - i. $\exists_y \forall_x (x+y>z)$ x,y zmienna związana, z zmienna wolna
 - ii. $z^{2}\neq 1 \wedge \forall_{u}x^{2}=y^{2}\text{-}\ y$ zmienna związana, x,z zmienne wolne
 - (b) $\phi(x) = \text{``x jest liczba pierwsza''} \text{funkcja zdaniowa o zakresie } \mathbb{N} \setminus \{0\}$
 - i. $\phi(x) = x > 1 \land \forall_{n \in \mathbb{N}} (n | x \implies n = x \lor n = 1)$ (n | x oznacza "n dzieli x")

7. Definicja rachunku predykatów

- (a) A alfabet: zbiór stałych, (np liczby rzeczywiste), symbole funkcyjne i symbole relacyjne (**predykaty**)
- (b) x, y, z symbole zmiennych
- (c) **Zbiór termów** T to najmniejszy zbiór taki, że
 - i. wszystkie stałe i zmienne należą do T
 - ii. jeśli $t_1, t_2, \ldots, t_n \in T$ oraz $\alpha \in A$ jest symbolem funkcji m-argumentowej, to $\alpha(t_1, \ldots, t_n) \in T$
 - iii. Elementy zbioru T nazywamy termami
- (d) **Predykat** to *m*-argumentowa funkcja, której wartościami jest prawda lub fałsz
 - i. Przykłady $x, y \in \mathbb{R}$:
 - A. $\beta(x,y) = (x < y)$ predykat 2-argumentowy
 - B. $p(x) = (x \text{ jest liczbą pierwszą}) \ x \in \mathbb{N} \setminus \{0\}$
- (e) t_1, \ldots, t_m termy, β symbol m-argumentowego predykatu wtedy wyrażenie $\beta(t_1, \ldots, t_m)$ nazywamy formułą atomową rachunku predykatów
- (f) **Zbiór formuł rachunku predykatów** jest to najmniejszy zbiór Z taki, że
 - i. Wszystkie formuły atomowe należą do Z
 - ii. Jeśli $A, B \in \mathbb{Z}$, to $(\neg A, A \lor B, A \land B, A \implies B, A \iff B) \in \mathbb{Z}$
 - iii. Jeśli $A \in Z$ i x jest zmienną wolną (nie związaną kwantyfikatorem) w A, to $\forall_x A \exists_x A \in Z$

8. Tautologie rachunku predykatów:

- (a) Def: Formułę rachunku predykatów nazywamy **tautologią** jeśli jest prawdziwa dla wszystkich interpretacji symboli funkcyjnych, predykatów, i dla wszystkich wartościowań zmiennych wolnych występujących w tej formule.
- (b) Przykłady:
 - i. Formuły powstałe z tautologii rachunku zdań przez zastąpienie zmiennych formami rachunku predykatów (X zakres $\mathbf{x})$

A.
$$\alpha \vee \neg \alpha \longrightarrow \forall_x \phi(x) \vee \neg \forall_x \phi(x)$$

- ii. $\forall_x \forall_y \phi(x,y) \iff \forall_y \forall_x \phi(x,y)$
- iii. $\exists_x \exists_y \phi(x,y) \iff \exists_y \exists_x \phi(x,y)$ ^ przemienność kwantyfikatorów tego samego rodzaju
- iv. $\exists_x \forall_y \phi(x,y) \implies \forall_y \exists_x \phi(x,y)$ ale nie w drugą stronę

Dowód:
$$X, Y$$
 - zakres zmiennych x, y

$$x_0 \in X$$
 będzie takie, że $\forall_y \phi(x_0, y)$ jest prawdą

Weźmy dowolne $y \in Y$. Prawdą jest, że dla tego y, $\phi(x_0, y)$ jest prawdą

Zatem rzeczywiście $\forall_y \exists_x \phi(x,y)$

Przykład: Przykład, że implikacja odwrotna nie zachodzi

$$X = Y = \mathbb{R}$$

$$\phi(x,y) = (x > y)$$

$$\exists_{x \in \mathbb{R}} \forall_{y \in \mathbb{R}} x > y$$
 - zdanie fałszywe

$$\forall_{y \in \mathbb{R}} \exists_{x \in \mathbb{R}} x > y$$
 - zdanie prawdziwe, więc

$$\forall_{y \in \mathbb{R}} \exists_{x \in \mathbb{R}} x > y \implies \exists_{x \in \mathbb{R}} \forall_{y \in \mathbb{R}} x > y \text{ jest falszywe}$$

- v. $\forall_x (\phi(x) \land \psi(x)) \iff \forall_x \phi(x) \land \forall_x \psi(x)$
- vi. $\exists_x (\phi(x) \lor \psi(x)) \iff \exists_x \phi(x) \lor \exists_x \psi(x)$ -forall-koniunkcja/ exists-alternatywa
- vii. $\exists_x (\phi(x) \land \psi(x)) \implies \exists_x \phi(x) \land \exists_x \psi(x)$
- viii. $\forall_x (\phi(x) \lor \psi(x)) \iff \forall_x \phi(x) \lor \forall_x \psi(x)$ forall-alternatywa/ exists-koniunkcja
- ix. $\forall_x \phi(x) \implies \phi(x_0)$ gdzie $x_0 \in X$
- $\mathbf{x}. \ \neg(\forall_x \phi(x)) \iff \exists_x \neg \phi(x)$
- xi. $\neg(\exists_x \phi(x)) \iff \forall_x \neg \phi(x)$
- xii. $(\forall_x (\phi(x) \implies \psi(x))) \implies ((\forall_x \phi(x)) \implies (\forall_x \psi(x)))$
- xiii. $\forall_x \phi(x) \lor \psi \iff (\forall_x \phi(x)) \lor \psi$ x nie jest zmienną wolną w ψ
- xiv. $\forall_x (\phi(x) \land \psi) \iff (\exists_x \phi(x)) \land \psi$
- xv. $(\phi \implies \forall_x \psi(x)) \iff \forall_x (\phi \implies \psi(x))$
- xvi. $(\phi \implies \exists_x \psi(x)) \iff \exists_x (\phi \implies \psi(x))$
- xvii. $((\forall_x \phi(x)) \implies \psi) \iff \exists_x (\phi(x) \implies \psi)$

D:
$$((\forall_x \psi(x)) \implies \phi) \iff \neg(\forall_x \psi(x)) \lor \phi \iff (\exists_x \neg \psi(x)) \lor \phi \iff \exists_x (\neg \psi(x) \lor \phi) \iff \exists_x (\psi(x) \implies \phi)$$
 xviii. $((\exists_x \phi(x)) \implies \psi) \iff \forall_x (\phi(x) \implies \psi)$

(c) Przykłady:

(vii)
$$\phi(x) = (x > 0), \psi(x) = (x < 0)$$

$$\exists_x \phi(x) \land \exists_x \psi(x) \iff \exists_x x > 0 \land \exists_x x < 0$$

: ^ fałsz - w (vii) implikacja odwrotna nie zachodzi

(viii)
$$\phi(x) = (x \ge 0), \ \psi(x) = (x < 0)$$

:
$$\forall_x (\phi(x) \lor \psi(x)) \iff \forall_x (x \ge 0 \lor x < 0)$$
 - prawda

(xii)
$$\phi(x) = (x > 0), \ \psi(x) = (x > 1)$$

:
$$\forall_x(\phi(x) \implies \psi(x)) \iff \forall_x(x>0 \implies x>1)$$
- działa, bo weźmy $x=\frac{1}{2}$

... W (viii) oraz (xii) implikacje odwrotne nie są tautologiami

9. Tautologia dla formuł z kwantyfikatorami:

- (a) Logika pierwszego rzędu ma inną definicję tautologii dla wszystkich wartościowań zdanie jest prawdziwe
- (b) Dla rachunku predykatów tautologia jest formułą lub zdaniem (formuła bez zmiennych wolnych),
 - i. Zdanie jest tautologią jeśli jest prawdziwe w każdym modelu
- (c) W logice pierwszego rzędu też były modele, tylko nazywaliśmy je każdym możliwym wartościowaniem

10.
$$\forall_{x_{\alpha(x)}} \phi(x) \stackrel{def.}{=} \forall_x \alpha(x) \implies \phi(x)$$

11.
$$\exists_{x_{a(x)}} \phi(x) \stackrel{def.}{=} \exists_x \phi(x) \wedge \alpha(x)$$

- 1. Zbiory aksjomatyczna teoria zbiorów.
 - (a) Zbiór pojęcie pierwotne (nie definiujemy go)
 - (b) bycie elementem zbioru pojęcie pierwotne
 - (c) $A, B, C, \ldots X, \ldots$ zbiory
 - (d) $a \in A$ a jest elementem zboiru A (a należy do A)
 - (e) $a \notin A \iff \neg(a \in A)$ a nie należy do A
 - (f) Aksjomat ekstencjonalności
 - i. Zbiory A i B są równe wtedy i tylko wtedy gdy mają te same elementy, czyli
 - ii. $A = B \iff \forall_x (x \in A \iff x \in B)$
 - iii. **Uwaga** aby pokazać, że A = B wystarczy udowodnić dwie implikacje $\forall_x (x \in A \implies x \in B) \land (x \in B \implies x \in A)$
 - (g) Aksjomat zbioru pustego
 - i. Istnieje zbiór pusty czyli taki, który nie ma żadnego elementów
 - ii. \emptyset -zbiór pusty, $\forall_x x \notin \emptyset$
 - iii. Twierdzenie istnieje tylko jeden zbiór pusty
 - D: A, B zbiory puste, $\neg (A = B)$ czyli $A \neq B$
 - : Z aksjomatu ekstencjonalności zbiory są różne $\iff \exists_x \neg ((x \in A \implies x \in B) \land (x \in B \implies x \in A)) \iff \exists_x \neg (x \in A \implies x \in B) \lor \neg (x \in B \implies x \in A) \iff$
 - $\exists_x (x \in A \land x \notin B) \lor (x \in B \land a \notin B)$
 - : $x \in A \land x \notin B$ zdanie fałszywe, bo A jest zbiorem pustym
 - : $x \in B \land a \notin B$ zdanie fałszywe, bo B jest zbiorem pustym
 - : Sprzeczność istnieje tylko jeden zbiór pusty
 - (h) Aksjomat wyróżniania
 - i. Jeśli A jest zbiorem, a $\phi(x)$ funkcją zdaniową o zakresie A ($x \in A$), to istnieje zbiór $\{x: x \in A \land \phi(x)\} = \{x \in A: \phi(x)\}$
 - $Czyli \ a \in \{x \in A : \phi(x)\} \iff a \in A \land \phi(x)$
 - (i) Uwaga: nie istnieje zbiór wszystkich zbiorów
 - D: V- zbiór wszystkich zbiorów
 - $A = \{X \in V : X \notin X\}$ zbiór na mocy aksjomatu wyróżnienia
 - : $A \in A \implies A \notin A$ sprzeczność. Stąd $A \notin A \implies \neg \phi(A) \iff \neg (A \notin A) \implies A \in A$ też sprzeczność
 - : Stąd nie istnieje zbiór wszystkich zbiorów
 - (j) Antynomia (paradoks) Russella
 - $Z = \{X: X \notin X\}. Czy Z \in Z?$
 - : $Z \in Z = \{X : X \notin X\} \iff Z \notin Z$ sprzeczność
 - (k) Sposoby definiowania zbiorów
 - i. $A = \{1, 3, \sqrt{2}\}, \mathbb{N} = \{1, 2, 3, \dots\}$
 - ii. $\phi(x)$ funkcja zdaniowa $A = \{x: \phi(x)\}$ na przykład $P = \{x: x \text{ jest liczbą parzystą}\}$
 - A. $a \in \{x : \phi(x)\} \iff \phi(a)$
 - (l) $\mathbf{Def.}$ Zbiór A zawiera się w zbiorze B (A jest podzbiorem B) wtedy i tylko wtedy gdy każdy element z A jest elementem B
 - $A \subseteq B \iff \forall_x (x \in A \implies x \in B)$
 - (m) **Def.** A jest właściwym podzbiorem B jeśli $A \subseteq B \land A \neq B$ (oznaczenie $A \subseteq B$)
 - (n) Proste własności
 - i. A = A
 - ii. $(A = B \land B = C) \implies A = C$
 - iii. $A = B \iff B = A$
 - iv. $A \subseteq A$
 - v. $(A \subseteq B \land B \subseteq C) \implies A \subseteq C$
 - D: $A \subseteq B \land B \subseteq C$ (Z)

$$\begin{array}{ll} : & A \subseteq C? \\ : & x \in A \implies {}^?x \in C \\ : & x \in A \implies x \in B \implies x \in C \text{--} \text{z Z} \\ \text{vi. } A = B \iff A \subseteq B \land B \subseteq A \end{array}$$

- (o) Aksjomat sumy
 - i. Jeśli Ai Bsą zbiorami, to istnieje zbiór $A \cup B = \{x: x \in A \vee x \in B\}$
- (p) **Def.** Iloczyn (przecięcie) zbiorów to zbiór $A \cap B = \{x \in A : x \in B\}$ (jest to zbiór na mocy aksjomatu wyróżniania)
- (q) **Def.** Różnica zbiorów A i B to zbiór $A \setminus B = \{x \in A : x \notin B\}$
- (r) Prawa rachunku zbiorów A, B, C zbiory

i.
$$A \cup B = B \cup A$$

ii.
$$A \cap B = B \cap A$$

iii.
$$A \cup (B \cup C) = (A \cup B) \cup C$$

iv.
$$A \cap (B \cap C) = (A \cap B) \cap C$$

v.
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

vi.
$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

D: Trzeba pokazać, że implikacje zachodzą w obie strony. Aksjomat sumy, definicja iloczynu, rachunek zdań, aksjomat sumy

vii.
$$A \cap B \subseteq A$$

viii.
$$A \subseteq A \cup B$$

ix.
$$A \cap A = A = A \cup A$$

2.
$$A \div B = (A \cup B) \setminus (A \cap B)$$

X - zbiór (przestrzeń)

- 1. Def. Dopełnieniem zbioru A w przestrzeni X nazywamy zbiór $-A = \{x \in X : x \notin A\}$ na mocy aksjomatu wyróżniania
 - (a) Własności dopełnienia:

```
i. -(A \cup B) = -A \cap -B

D: x \in -(A \cap B) \stackrel{\text{def. dopelnienia}}{\Longleftrightarrow} x \notin (A \cap B) \stackrel{\text{def. } \notin}{\Longleftrightarrow} \neg x \in A \cap B \stackrel{\text{iloczynu}}{\Longleftrightarrow} \neg (x \in A \land x \in B) \stackrel{\text{prawo de Morgana}}{\Longleftrightarrow} / 
\iff x \notin A \lor x \notin B \iff x \in -A \cup -B
```

- ii. $-(A \cap B) = -A \cup -B$
- iii. $\emptyset \subset A$
- iv. $A \cup \emptyset = A$
- v. $A \cap \emptyset = \emptyset$
- vi. $A \setminus \emptyset = A$
- vii. $\emptyset \setminus A = \emptyset$
- viii. $-\emptyset = X$
- ix. $-X = \emptyset$
- 4... 4
- $x. A \cup -A = X$
- $xi. \ A \cap -A = \emptyset$
- xii. -(-A) = A
- xiii. $A \setminus B = A \cap -B$
- xiv. $A \cap X = A$
- xv. $A \cup X = X$
- xvi. $A \subseteq B \iff A \cap B = A \iff A \cup B = B$
- xvii. $A \subseteq C \land B \subseteq C \iff A \cup B \subseteq C$
- xviii. $C \subseteq A \land C \subseteq B \iff C \subseteq A \cap B$
- (b) Przykład:
 - i. $\emptyset \subseteq \{\emptyset\}$
 - ii. $\emptyset \in \{\emptyset\}$
 - iii. $\{\emptyset\} \subseteq \{\emptyset\}$
 - iv. $\{\emptyset\} \notin \{\emptyset\}$
 - v. $\emptyset \in \{\emptyset, \{\emptyset\}\}$
- (c) \emptyset jedyny element zbioru $\{\emptyset\}$, ale $\emptyset \neq \{\emptyset\}$
- 2. Aksjomat zbioru potegowego: Dla każdego zbioru istnieje zbiór (potegowy) wszystkich jego podzbiorów.

A - zbiór,
$$P(A)$$
 (lub 2^A) - zbiór potegowy

- $P(A) = \{B : B \subseteq A\}$
- $\emptyset, A \in P(A)$ zawsze
- (a) Przykład: $A = \{a, b\}, P(A) = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}\$
- 3. **Aksjomat pary nieuporządkowanej:** Dla dowolnych zbiorów A i B istnieje zbiór, którego elementami są dokładnie zbiory A oraz B
 - ${A,B} = {x : x = A \lor x = B}$
 - $\{A\} = \{A, A\}$ Singleton, zbiór 1-elementowy
 - (a) Def. Para uporządkowaną $\langle a, b \rangle$ nazywamy zbiór $\{\{a\}, \{a, b\}\}$
 - i. $\langle a, a \rangle = \{\{a\}, \{a, a\}\} = \{\{a\}, \{a\}\} = \{\{a\}\}\}$
 - (b) Twierdzenie: $\langle a, b \rangle = \langle c, d \rangle \iff a = c \land b = d$
 - i. \Leftarrow : $a = c \land b = d$, wiec $\{\{a\}, \{a, b\}\} = \{\{c\}, \{c, d\}\}$ wiec $\{a, b\} = \{c, d\}$
 - ii. \implies : Dla $a=b, < a,b>= \{\{a\}\}, < c,d>= \{\{c\},\{c,d\}\}$ więc $\{\{a\}\}=\{\{c\}\},$ więc z tego wynika że $a=c \land b=d$
 - Dla $a \neq b$: $\{\{a\}, \{a,b\}\} = \{\{c\}, \{c,d\}\} \text{ tylko gdy } (\{a\} = \{c\} \lor \{a\} = \{c,d\}) \land (\{a,b\} = \{c,d\} \lor \{a,b\} = \{d\}).$ Ponieważ $\{a,b\}$ oraz $\{c,d\}$ są dwuelementowe, bo $a \neq b$, to $\{a\} = \{c\} \land \{a,b\} = \{c,d\}$ z czego a = b oraz c = d
 - iii. Implikacja zachodzi w dwie strony, więc jest równoważność
- 4. Def. **Iloczynem kartezjańskim** zbiorów A i B nazywamy zbiór $A \times B = \{ \langle a, b \rangle : a \in A \land b \in B \}$

(a) Przykłady

i.
$$\{1,2\} \times \{3,4\} = \{\langle 1,3 \rangle, \langle 1,4 \rangle, \langle 2,3 \rangle, \langle 2,4 \rangle\}$$

- ii. $\mathbb{R} \times \mathbb{R}$ płaszczyzna \mathbb{R}^2
- iii. $[1,3] \times [1,2]$ prostokat o wierzchołkach <1,1>,<1,2>,<3,1>,<3,2>
- 5. Def. Uporządkowaną trójką < a, b, c >nazywamy zbiór << a, b >, c >
- 6. Def. Uporządkowaną n-tką $\langle x_1, \dots, x_n \rangle$ nazywamy zbiór $\langle \langle x_1, \dots, x_{n-1} \rangle, x_n \rangle$
 - (a) Twierdzenie: Dla $n \geq 2, \langle x_1, \dots, x_n \rangle = \langle y_1, \dots, y_n \rangle \iff \forall_{i \in \{1, \dots, n\}} x_i = y_i$
 - i. Dowód indukcyjny: Dla n=2 prawda

Założenie indukcyjne:
$$\langle x_1, \dots, x_{n-1} \rangle = \langle y_1, \dots, y_{n-1} \rangle \iff \forall_{i \in \{1, \dots, n-1\}} x_i = y_i$$
.

$$a=< x_1,\ldots,x_{n-1}>,b=< y_1,\ldots,y_{n-1}>.$$
W
tedy z definicji uporządkowanej n-tki $< x_1,\ldots,x_n>=< a,x_n>$,
oraz $< y_1,\ldots,y_n>=< b,y_n>$

Z tego, że dla
$$n=2$$
, to $< a, x_n > = < b, y_n > \iff a=b \land x_n=y_n$

Z założenia indukcyjnego,
$$a = b \iff \forall_{i \in \{1, ..., n-1\}} x_i = y_i$$
, więc $\langle a, x_n \rangle = \langle b, y_n \rangle \iff \forall_{i \in \{1, ..., n\}} x_i = y_i$ co kończy dowód.

- 7. Aksjomat sumy zbiorów rodziny: A-rodzina zbiorów zbiór którego elementami są zbiory
 - (a) Dla dowolnej rodziny zbiorów A istnieje zbiór:

$$\bigcup \mathcal{A} := \{x : \exists_A (A \in \mathcal{A} \land x \in A)\}$$

do którego należą te elementy, które należa do co najmniej jednego zbioru rodziny ${\cal A}$

(b) Iloczynem (przecięciem) rodziny zbiorów ${\mathcal A}$ nazywamy zbiór

$$\bigcap \mathcal{A} := \{ x \in \bigcup \mathcal{A} : \forall_A (A \in \mathcal{A} \implies x \in A) \}$$

Istnieje na mocy aksjomatu wyróżniania i aksjomatu sumy rodziny zbiorów

8. I - zbiór indeksów, X-zbiór przestrzeni

Def. Funkcję $A: I \to P(X)$ i $\mapsto A(i) \subseteq X$ nazywamy **indeksowaną rodziną zbiorów** (będziemy pisać A_i zamiast A(i))

(a) ${\cal R}$ - zbiór wartości funkcji ${\cal A}$

$$R = \{ B \in P(X) : \exists_{i \in I} B = A(I) \} = \{ A_i : i \in I \}$$

9. Def. Sumą indeksowanej rodziny zbiorów $A:I\to P(X)$ nazywamy sumę rodziny R, czyli $\bigcup R=\bigcup\{A_i:i\in I\}$

Oznaczenie
$$\bigcup_{i \in I} A_i$$

$$x \in \bigcup_{i \in I} A_i \iff \exists_{i \in I} x \in A_i$$

10. Def. Iloczynem rodziny indeksowanej $A:I\to P(X)$ nazywamy zbiór $\bigcap R=\bigcap \{A_i:i\in I\}$

Oznaczamy
$$\bigcap_{i \in I} A_i$$
,

$$x \in \bigcap_{i \in I} A_i \iff \forall_{i \in I} x \in A_i$$

- 1. Własności dla X przestrzeń, $A:I\to P(X),\,B:I\to P(X),C-$ zbiór
 - (a) Jeśli $i_0 \in I$, to $A_{i_0} \subseteq \bigcup_{i \in I} A_i$
 - (b) Jeśli $i_0 \in I$, to $\bigcap_{i \in I} A_i \subseteq A_{i_0}$
 - (c) Jeżeli $\forall_{i \in I} A_i \subseteq C$,
to $\bigcup_{i \in I} A_i \subseteq C$
 - (d) Jeżeli $\forall_{i \in I} C \subseteq A_i$, to $C \subseteq \bigcap_{i \in I} A_i$
 - i. D: Niech $x \in C \implies \forall_{i \in I} x \in A_i \implies x \in \bigcap_{i \in I} A_i$
 - (e) $\bigcup_{i \in I} (A_i \cup B_i) = (\bigcup_{i \in I} A_i) \cup (\bigcup_{i \in I} B_i)$
 - (f) $\bigcap_{i \in I} (A_i \cap B_i) \subseteq (\bigcap_{i \in I} A_i) \cap (\bigcap_{i \in I} B_i)$
 - i. $D: x \in \bigcap_{i \in I} (A_i \cap B_i) \iff \forall_{i \in I} x \in A_i \cap B_i \iff \forall_{i \in I} (x \in A \land x \in B) \iff (x \in \bigcap_{i \in I} A_i) \land (x \in \bigcap_{i \in I} B_i) \iff x \in (\bigcap_{i \in I} A_i \cap \bigcap_{i \in I} B_i)$
 - (g) $\bigcup_{i \in I} (A_i \cap B_i) \subseteq (\bigcup_{i \in I} A_i) \cap (\bigcup_{i \in I} B_i)$
 - i. $D: x \in \bigcup_{i \in I} (A_i \cap B_i) \implies \exists_{i \in I} x \in A_i \cap B_i \implies \exists_{i \in I} (x \in A_i \wedge x \in B_i) \implies (\exists_{i \in I} a \in A_i) \wedge (\exists_{i \in I} x \in B_i) \implies x \in \bigcup_{i \in I} A_i \wedge x \in \bigcup_{i \in I} B_i \implies x \in (\bigcup_{i \in I} A_i) \cap (\bigcup_{i \in I} B_i)$
 - (h) $(\bigcap_{i\in I}A_i)\cup(\bigcap_{i\in I}B_I)\subseteq\bigcap_{i\in I}(A_i\cup B_i),$ Inkluzja przeciwna nie zachodzi
 - (i) $-\bigcup_{i\in I} A_i = \bigcap_{i\in I} -A_i$
 - i. D: $x \in -\bigcup_{i \in I} A_i \iff x \notin \bigcup_{i \in I} A_i \iff \neg(x \in \bigcup_{i \in I} A_i) \iff \neg(\exists_{i \in I} x \in A_i) \iff \forall_{i \in I} \neg(x \in A_i) \iff x \in \bigcap_{i \in I} -A_i$
 - $(j) \bigcap_{i \in I} A_i = \bigcup_{i \in I} -A$
 - (k) Jeżeli $\forall_{i\in I}A_i\subseteq B_i$ to $\bigcup_{i\in I}A_i\subseteq\bigcup_{i\in I}B_i$ oraz $\bigcap_{i\in I}A_i\subseteq\bigcap_{i\in I}B_i$
 - (1) $\bigcup_{i \in I} (C \cap A_i) = C \cap \bigcup_{i \in I} A_i$
 - i. D: $x \in \bigcup_{i \in I} (C \cap A_i) \iff \exists_{i \in I} x \in C \cap A_i \iff \exists_{i \in I} (x \in C \land x \in A_i) \iff x \in C \land \exists_{i \in I} x \in A_i \iff x \in C \land x \in A_i) \iff x \in C \land x \in A_i \implies x \in A$
 - (m) $\bigcap_{i \in I} (C \cup A_i) = C \cup (\bigcap_{i \in I} A_i)$
 - (n) Jeżeli $J \subseteq I$ to $\bigcup_{i \in J} A_i \subseteq \bigcup_{i \in I} A_i$ oraz $\bigcap_{i \in I} A_i \subseteq \bigcap_{j \in J} A_j$
 - i. D: $x \in \bigcap_{i \in I} A_i \implies \forall_{i \in I} x \in A_i \implies \forall_{j \in J} x \in A_j \implies x \in \bigcap_{j \in J} A_j$
 - (o) $\bigcup_{i \in \emptyset} A_i = \emptyset$
 - i. D: Przypuśćmy, że istnieje $x \in \bigcup_{i \in \emptyset} A_i$, to $\exists_{i \in \emptyset} x \in A_i \iff \exists_i i \in \emptyset \land x \in A_i$, ale $i \in \emptyset$ to zdanie fałszywe stąd sprzeczność
 - (p) $\bigcap_{i \in \emptyset} A_i = X$ D: $x \in \bigcap_{i \in I} A_i \iff \forall_{i \in \emptyset} x \in A_i \iff \forall_i i \in \emptyset \implies x \in A_i \iff x \in X$
- 2. Indeksowanie dwoma indeksami I, J zbiory indeksów $C: I \times J \to P(X), (i, j) \mapsto c_{ij} = C(i, j)$

 $x \in \bigcup_{j \in J} \bigcap_{i \in I} C_{ij} \iff \exists_{j \in J} x \in \bigcap_{i \in I} C_{ij} \iff \exists_{j \in J} \forall_{i \in I} x \in C_{ij}$

Analogicznie definiujemy $\bigcap_{j \in J} \bigcup_{i \in I} C_{ij}$ oraz $\bigcup_{j \in J} \bigcup_{i \in I} C_{ij}$ oraz $\bigcap_{j \in J} \bigcap_{i \in I} C_{ij}$

Własności: $C: I \times J \to P(X)$

- (a) $\bigcup_{j \in J} \bigcup_{i \in I} C_{ij} = \bigcup_{i \in I} \bigcup_{j \in J} C_{ij} \stackrel{\text{def.}}{=} \bigcup_{\substack{i \in I \\ j \in J}} C_{ij}$
- (b) $\bigcap_{j \in J} \bigcap_{i \in I} C_{ij} = \bigcap_{i \in I} \bigcap_{j \in J} C_{ij} \stackrel{\text{def.}}{=} \bigcap_{\substack{i \in I \\ j \in J}} C_{ij}$
- (c) $\bigcup_{i \in I} \bigcap_{j \in J} C_{ij} \subseteq \bigcap_{j \in J} \bigcup_{i \in I} C_{ij}$ i. $x \in \bigcup_{i \in I} \bigcap_{j \in J} C_{ij} \iff \exists_{i \in I} \forall_{j \in J} x \in C_{ij} \implies \forall_{j \in J} \exists_{i \in I} x \in C_{ij} \iff x \in \bigcap_{i \in J} \bigcup_{i \in I} C_{ij}$
- 3. Nieskończone rodziny indeksowane. $I=J=\mathbb{R}, X=\mathbb{R}^2$
 - (a) Dla każdego $a, b \in \mathbb{R}$, niech $C_{ab} = \{\langle x, y \rangle \in \mathbb{R}^2 : y \leq ax + b\}$

$$\underbrace{\bigcup_{a \in \mathbb{R}} C_{ab} = \mathbb{R}^2 \setminus \{0\} \times (b, +\infty)}_{b \in \mathbb{R}} C_{ab} = \mathbb{R}^2$$

 $\bigcap_{a\in\mathbb{R}} C_{ab} = \{0\} \times (-\infty, b)$

$$\bigcap_{b\in\mathbb{R}} C_{ab} = \emptyset$$

 $\bigcap_{b\in\mathbb{R}}\bigcup_{a\in\mathbb{R}}C_{ab}=\bigcap_{b\in\mathbb{R}}(\mathbb{R}^2\setminus\{0\}\times(b,+\infty))=\mathbb{R}^2\setminus\{0\}\times\mathbb{R}$

 $\bigcup_{b\in\mathbb{R}} \bigcap_{a\in\mathbb{R}} C_{ab} = \bigcup_{b\in\mathbb{R}} (\{0\} \times (-\infty, b)) = \{0\} \times \mathbb{R}$

Relacje

1. X, Y - zbiory

Def: Relacją dwuargumentową nazywamy podzbiór iloczynu kartezjańskiego $X \times Y$ Zamiast $\langle x, y \rangle \in R$ piszemy x R y

2. Def: $R \subseteq X \times Y$

Zbiór $D_R = \{x \in X : \exists_{y \in Y} < x, y > \in R\}$ nazywammy dziedziną relacji R Na przykład $R = \{< x, y > \in \mathbb{R}^2 : x^2 + y^2 < 1\}$ to koło

- 3. Jeśli X=Y, to mówimy, że relacja $R\subseteq X^2$ jest **określona** na zbiorze X
- 4. Relacja R jest **pusta** jeśli jest zbiorem pustym **pełna**, jeśli $R = X \times Y$
- 5. Def: Relacja **odwrotna** do relacji $R \subseteq X \times Y$ to relacja $R^{-1} = \{ \langle y, x \rangle \in Y \times X : \langle x, y \rangle \in R \}$
- 6. Def: **Złożeniem** relacji $R \subseteq X \times Y$ oraz relacji $S \subseteq Y \times Z$ nazywamy relację $S \circ R = \{ \langle x, z \rangle \in X \times Z : \exists_{y \in Y} \langle x, y \rangle \in \mathbb{R} \land \langle y, z \rangle \in S \}$
- 7. Def:
 - (a) R jest **zwrotna**, jeśli $\forall_{x \in X} x R x$
 - (b) R jest **symetryczna**, jeśli $\forall_{x,y\in X} x R y \implies y R x$
 - (c) R jest **przechodnia**, jeśli $\forall_{x,y,z,\in X}(x\,R\,y\,\wedge\,y\,R\,z) \implies x\,R\,z$
 - (d) R jest antysymetryczna, jeśli $\forall_{x,y \in X} (x R y \land y R x) \implies x = y$
 - (e) R jest **przeciwzwrotna**, jeśli $\forall_{x \in X} \neg (x R x)$
 - (f) R jest **przeciwsymetryczna**, jeśli $\forall_{x,y \in X} x \, R \, y \implies \neg (y \, R \, x)$
 - (g) R jest **spójna**, jeśli $\forall_{x,y \in X} x R y \land y R x \lor x = y$
- 8. Def: Relację $R \subseteq X^2$ nazywamy relację **równoważności** jeśli R jest zwrotna, symetryczna i przechodnia, na przykład Relacja równości

Relacja równoległości

Relacja pełna $R = X^2$ dla dowolnego zbioru x

Relacja \equiv_n - przystawanie modulo

Relacja $R \subseteq \mathbb{R}^2$, $x R y \iff \exists_{q \in \mathbb{Q}} x + q = y$

Relacja dla par wektorów R taka że < a, b > R < c, d > gdy b - a = d - c

Relacja \iff , relacja $a R b := a \implies b \wedge b \implies a$

9. Def: Niech $\sim \subseteq X \times X$ będzie relacją równoważności i $a \in X$

Zbiór $[a]_{\sim} = \{x \in X : x \sim a\}$ nazywamy klasą **abstrakcji (równoważności)** dla elementu a Element a nazywamy reprezentantem klasy abstrakcji $[a]_{\sim}$

- 10. Własności klas abstrakcji
 - (a) $\forall_{a \in X} a \in [a]_{\sim}$
 - (b) $\forall_{a,b\in X}b\in[a]_{\sim}\implies a\in[b]_{\sim}$
 - (c) $\forall_{a,b\in X}[a]_{\sim} = [b]_{\sim} \iff a \sim b$
 - (d) $\forall_{a,b\in X}([a]_{\sim}=[b]_{\sim})\vee[a]_{\sim}\cap[b]_{\sim}=\emptyset$
 - (e) $\bigcup_{a \in X} [a]_{\sim} = X$
- 11. **Podziałem zbioru** X nazywamy rodzinę $\{A_i : i \in I\}$ taką, że

$$\forall_{i \in I} A_i \neq \emptyset$$

$$\forall_{i,j \in I} (i \neq j \implies A_j \cap A_i = \emptyset)$$

$$\bigcup_{i \in I} A_i = X$$

- (a) Wniosek : Rodzina klas abstrakcji relacji równoważności $\sim\subseteq X^2$ jest podziałem x
- 12. Def: \sim relacja równoważności na X

Zbiór klas abstrakcji relacji \sim nazywamy **zbiorem ilorazowym** i oznaczamy $X_{/\sim}$

13. Twierdzenie: Niech $\{A_i:i\in I\}$ będzie podziałem zbioru X. Wtedy istineje relacja równoważności \sim na X taka, że $X_{/\sim}=\{A_i:i\in I\}$

Funkcje

- 1. Def: Relację $R \subseteq X \times Y$ nazywamy funkcją, jeśli $\forall_{x \in X} \forall_{y_1, y_2 \in Y} x R y_1 \wedge x R y_2 \implies y_1 = y_2$ Gdy relacja jest funkcją często zamiasy x R y piszemy y = R(x). Element x nazywamy argumentem funkcji R, zaś y wartością R dla argumentu x
- 2. Def: Zbiór $D_r = \{x \in X : \exists_{y \in Y} R(x) = y\}$ nazywamy dziedziną funkcji R. Jeśli $D_R = X$, to oznaczamy $R : X \to Y$
- 3. Def: Jeśli przeciwdziedzina jest równa zbiorowi wartosci, to mówimy, że funkcja jest "na", lub że jest surjekcją
- 4. Twiedzenie Złożenie dwóch funkcji jest funkcją
- 5. Uwaga: Relacja odwrotna do funkcji nie musi być funkcja
- 6. Def: Funkcję $f: X \to Y$ nazywamy **różnowartościową**, lub **iniekcją**, jeśli $\forall_{x_1, x_2 \in X} x_1 \neq x_2 \implies f(x_1) \neq f(x_2)$
- 7. Twierdzenie: Jeśli $f:X\to Y$ jest iniekcją to jej relacja odwrotna jest funkcją
- 8. Uwaga: Jeśli funkcja f jest **na** zbiór Y, to piszemy $f^{-1}:Y\to X$
- 9. Twierdzenie: Niech $f: X \to Y$ oraz $f^{-1}: Y \to X$. Wtedy $f \circ f^{-1} = id_Y = \{(y,y): y \in Y\}, f^{-1} \circ f = id_X = \{(x,x): x \in X\}$
- 10. Funkcja która jest iniekcją i surjekcją nazywamy bijekcją
- 11. Niech $f:X\to Y$ oraz $Z\subseteq X$. Funkcję $g=f_{/Z}=f\cap Z\times Y$ nazywamy obcięciem funkcji f do zbioru Z
- 12. Niech $f_i: X_i \to Y$ dla $i \in I$ oraz dla każdego $i \neq j \in I$ $X_i \cap X_j = \emptyset$. Wtedy $f = f_1 \cup \cdots \cup f_n$ jest funkcją i $f: \bigcap_{i \in I} X_i \to Y$
- 13. Niech X, Y, Z, T zbiory oraz $f: X \to Y, g: Y \to Zh: Z \to T$ funkcje
 - (a) $f: X \stackrel{1-1}{\to} Y, g: Y \stackrel{1-1}{\to} Z \implies g \circ f: X \stackrel{1-1}{\to} Z (1-1)$ różnowartościowe
 - (b) $f: X \stackrel{na}{\to} Y, g: Y \stackrel{na}{\to} Z \implies g \circ f: X \stackrel{na}{\to} Z$
 - (c) $f: X \stackrel{bijekcja}{\rightarrow} Y, q: Y \stackrel{bijekcja}{\rightarrow} Z \implies q \circ f: X \stackrel{bijekcja}{\rightarrow} Z$
 - (d) $h \circ (g \circ f) = (h \circ g) \circ f$
 - (e) Składanie funkcji nie jest przemienne
 - (f) $f \circ id_x = f$, $id_y \circ f = f$
 - (g) $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$
- 14. Def: Niech $f: X \to Y$, $A \subseteq X$, $B \subseteq Y$. Zbiór $f[A] = \{y \in Y : \exists_{x \in A} y = f(x)\} = \{f(x) : x \in A\} \subseteq Y$ nazywamy **obrazem** zbioru A funkcji f Zbiór $f^{-1}[B] = \{x \in X : f(x) \in B\} \subseteq X$ nazywamy **przeciwobrazem** funkcji f
- 15. Twierdzenie: $f: X \to Y$ $A_1, A_2 \subseteq X$ $A: I \to P(X)$ (rodzina indeksowana). Wtedy:
 - (a) $f[\emptyset] = \emptyset$
 - (b) $A_1 \subseteq A_2 \implies f[A_1] \subseteq f[A_2]$
 - (c) $f[\bigcup_{i \in I} A_i] = \bigcup_{i \in I} f[A_i]$
 - (d) $f[\bigcap_{i \in I} A_i] \subseteq \bigcap_{i \in I} f[A_i]$
 - (e) Jeśli f jest iniekcją to we własności (d) mamy równość
- 16. Twierdzenie: $f: X \to Y, B_1, B_2 \subseteq Y, B: I \to P(Y)$ (rodzina indeksowana). Wtedy:
 - (a) $f^{-1}[\emptyset] = \emptyset$
 - (b) $B_1 \subseteq B_2 \implies f^{-1}[B_1] \subseteq f^{-1}[B_2]$
 - (c) $f^{-1}[\bigcup_{i \in I} B_i] = \bigcup_{i \in I} f^{-1}[B_i]$
 - (d) $f^{-1}[\bigcap_{i \in I} B_i] = \bigcap_{i \in I} f^{-1}[B_i]$
- 17. Twierdzenie: $f: X \to Y, A \subseteq X, B \subseteq Y$
 - (a) $A \subseteq f^{-1}[f[A]]$
 - (b) $f[f^{-1}[B]] \subseteq B$
 - (c) Jeśli f jest iniekcją to w 1 zachodzi równość
 - (d) Jeśli f jest surjekcją to w 2 zachodzi równość 2

Zbiory częściowo uporządkowane

- 1. Def: Relację $R\subseteq X\times X$ $(X\neq\emptyset)$ nazywamy **relacją częściowego porządku** "jeśli R jest zwrotna, przechodnia i antysymetryczna.
- 2. **Zbiór częściowo uporządkowany** jest to para (X,R) gdzie X jest niepustym zbiorem a $R\subseteq X^2$ jest relacją częściowego porządku

Przykłady:

- (a) $(\mathbb{R}, \leq), (P(X), \subseteq)$ dla niepustego X
- (b) $(\mathbb{N}, |)$ a|b a jest podzielne przez b
- (c) (\mathbb{R}^X, \preceq) $\mathbb{R}^X = \{f : f : X \to \mathbb{R}\}, f \preceq g \iff \forall_{x \in X} f(x) \leq g(x)$
- (d) (\mathbb{R}^2, \preceq) $\forall_{x_1, x_2, y_1, y_2 \in \mathbb{R}}(x_1, y_1) \preceq (x_2, y_2) \iff x_1 \leq x_2 \land y_1 \leq y_2$
- (e) (P, \preceq) zbiór częściowo uporządkowany

Definiujemy relację $\prec \subseteq P \times P$ i $\prec_{\bullet} \subseteq P \times P$ następująco

$$x \prec y \iff x \leq y \land x \neq y$$

$$x \prec_{\bullet} y \iff x \prec y \land \neg (\exists_{z \in P} x \prec z \prec y)$$

Jeśli $x \prec_{\bullet} y$ to mówimy, że x jest poprzednikiem y, oraz y jest następnikiem x

Na przykład $(\mathbb{N}, \leq), n \in \mathbb{N}, n <_{\bullet} n + 1$

3. Def: **Diagramem Hassego** zbioru częsciowo uporządkowanego (P, \preceq) nazywamy graf, którego wierzchołakmi są elementy zbioru P. Jeśli dla $x,y \in P$ zachodzi $x \prec y$, to x rysujemy niżej niż y. Ponadto dwa wierzchołki $x,y \in P$ są połączone krawędzią wtedy i tylko wtedy, gdy $x <_{\bullet} y$

- 4. Def: Niech (P, \preceq) będzie zbiorem częściowo uporządkowanym Element $a \in p$ nazywamy:
 - (a) **maksymalnym**, jeśli $\neg(\exists_{x \in P} a \prec x)$
 - (b) minimalnym, jeśli $\neg(\exists_{x \in P} x \prec a)$
 - (c) **największym**, jeśli $\forall_{x \in P} x \leq a$
 - (d) **najmniejszym**, jeśli $\forall_{x \in P} a \leq x$
 - (e) Maksymalne elementy to wierzchołki diagramu Hassego bez połączeń z góry

Minimalne - wierzchołki bez połączeń w dół

Największy \implies jedyny element maksymalny (równoważność dla skończonych zbiorów)

Najmniejszy \implies jedyny element minimalny

(f) Dowód (e): a - element najmniejszy. Pokażemy, że a jest minimalny. Załóżmy, że a nie jest minimalny. Stąd $\exists_{u \in P} y \prec a$. Wtedy nieprawdą jest, że $\forall_{x \in \mathbb{R}} a \preceq x$ (bo $y \prec a$)

Załóżmy, że w P jest inny element $b \neq a$, który jest minimalny. a- najmniejszy, $\begin{cases} a \leq b \\ a \neq b \end{cases} \implies a \prec b \implies \exists_{x \in P} x \prec b$

 $b \implies b$ nie jest minimalny

(g) W
$$(P, \preceq)$$
 istnieje co najwyżej jeden element najmniejszy D(nie wprost): a, b elemeny najmniejsze, $a \neq b$
$$\begin{cases} \forall_{x \in P} a \preceq x \implies a \preceq b \\ \forall_{x \in P} b \preceq x \implies b \preceq a \end{cases} \quad a \neq b, \text{ sprzeczność}$$

- 5. Def: (P, \preceq) zbiór częściowo uporządkowany, $X \subseteq P$ Element $a \in P$ jest **ograniczeniem górnym** zbioru X, jeśli $\forall_{x \in X} x \preceq a$ Element $a \in P$ jest **ograniczeniem dolnym** zbioru X, jeśli $\forall_{x \in X} a \preceq x$ $X^* \stackrel{\text{def.}}{=} \{a \in P : \forall_{x \in X} x \preceq a\}$ zbiór wszystkich ograniczeń górnych zbioru X $X_* \stackrel{\text{def.}}{=} \{a \in P : \forall_{x \in X} a \preceq X\}$ zbiór wszystkich ograniczeń dolnych zbioru X
- 6. Def: (P, \preceq) zbiór częsciowo uporządko
any, $X \subseteq P$ Element $a \in P$ jest **kresem górnym** zbioru X jeśli jest najmniejszym ograniczeniem górnym dla X (tzn. jest elementem

najmniejszym w X^*) Oznaczenie: sup X

Element $a \in P$ jest **kresem dolnym** zbioru X jeśli jest największym ograniczeniem dolnemy dla X (tzn. jest elementem największym w X_*)

Oznaczenie: $\inf X$

7. Zbiór częściowo uporządkowany (P, \preceq) jest **kratą**, jeśli $\forall_{x,y \in P} \sup\{x,y\}$ i $\forall_{x,y \in P} \inf\{x,y\}$ istnieją

Zbiory częściowo uporządkowane

 $(P, \preceq), x, y \in P, x, y$ są porównywalne jeśli $x \preceq y$ lub $y \preceq x$, nieporównywalne jeśli ¬porównywalne, $(x \parallel y)$

- 1. Łańcuchem w zbiorze częściowo uporządkowanym jest każdy podzbiór parami porównywalnych elementów
- 2. Antyłańcuchem jest każdy podzbiór parami nieporównywalnych elementów
- 3. Twierdzenie(Lemat Kuratowskiego- Zorna):

Jeśli w zbiorze częściowo uporządkowanym każdy łańcuch ma ograniczenie górne (dolne), to na (P, \preceq) istnieje element maksymalny (minimalny)

Wniosek: W dowolnym zbiorze częściowo uporządkowanym każdy łańcuch można rozszerzyć do łańuccha maksymalnego (w sensie inkluzji)

Dowód: (P, \preceq) - zbiór częsciowo uporządkowany. C_0 -łańcuch w (P, \preceq) , \mathcal{P} - zbiór łańcuchów w (P, \preceq) rozszerzających C_0 (\mathcal{P}, \subseteq) - zbiór częsciowo uporządkowany

 \mathcal{C} - łańcuch w (\mathcal{P},\subseteq)

Skoro \mathcal{C} jest łańcuchem,to $C_1, C_2 \in \mathcal{C}$, więc $C_1 \subseteq C_2$ lub $C_2 \subseteq C_1$.

 $\bigcup \mathcal{C} = \{x \in P : \exists_{c \in \mathcal{C}} x \in C\} = \{x \in P : \exists_{c} c \in \mathcal{C} \land x \in C\} \text{ Powiemy, } \text{\'e} \bigcup \mathcal{C} \in \mathcal{P} \text{ i \'e} \bigcup \mathcal{C} \text{ jest ograniczeniem g\'ornym dla zbioru } \mathcal{C}$

 $x,y\in\mathcal{C}\Longrightarrow \exists_{C_1\in\mathcal{C}}x\in C_1\wedge\exists_{C_2\in\mathcal{C}}y\in C_2$. $C_1\subseteq C_2$ lub $C_2\subseteq C_2$ ponieważ $C_1,C_2\in\mathcal{C}$

Stad $\bigcup \mathcal{C} \in \mathcal{P}$.

 $\forall_{C \in \mathcal{C}} c \subseteq \bigcup \mathcal{C} = \bigcup_{C \in \mathcal{C}}$

Stad $\bigcup \mathcal{C}$ jest ograniczeniem górnym zbioru \mathcal{C} w (\mathcal{P},\subseteq) . Stosujemy Lemat Kuratowskiego-Zorna dla (\mathcal{P},\subseteq)

W zbiorze (\mathcal{P},\subseteq) istnieje element maksymalny, czyli maksymalny w sensie inkluzji łańcuch w (P,\preceq) rozszerzający C_0

- 4. def: Zbiór częściowo uporządkowany (P, \preceq) jest liniowo uporządkowany, jeśli $\forall_{x,y \in P} x \preceq y$ lub $y \preceq x$
- 5. **def:** Zbiór liniowo uporządkowany jest dobrze uporządkowany jeśli w każdym niepustym jego podzbiorze jest element najmniejszy

Konstrukcja von Neumanna liczb naturalnych.

Definicja 1 $0 := \emptyset$ - liczba naturalna zero.

Jeżeli n jest liczbą naturalną, to następną po niej jest liczba

$$n' := \{n\} \cup n.$$

Istnienie liczb naturalnych gwarantują: Aksjomat zbioru pustego, Aksjomat pary nieuporządkowanej oraz Aksjomat sumy.

Przykład 2
$$1 := 0' = \emptyset \cup \{\emptyset\} = \{\emptyset\}$$

$$2 := 1' = 1 \cup \{1\} = \{\emptyset\} \cup \{\{\emptyset\}\} = \{\emptyset, \{\emptyset\}\}\$$

$$3 := 2' = 2 \cup \{2\} = \{\emptyset, \{\emptyset\}\} \cup \{\{\emptyset, \{\emptyset\}\}\}\} = \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}\}$$

Uwaga 1 $n \in n'$ oraz $n \subseteq n'$.

Aksjomat nieskończoności. Istnieje zbiór X (tzw. zbiór induktywny) taki, że:

- 1. $\emptyset \in X$
- 2. $\forall y \ (y \in X \Rightarrow y \cup \{y\} \in X)$.

Aksjomat nieskończoności gwarantuje istnienie zbioru ℕ wszystkich liczb naturalnych.

Zbiór liczb naturalnych N jest najmniejszym (ze względu na inkluzję) zbiorem induktywnym.

Fakt 3
$$\forall x \ x \in \mathbb{N} \Rightarrow (x = \emptyset \lor \exists y \ (y \in \mathbb{N} \land y' = x)).$$

Twierdzenie 4 (O indukcji matematycznej.)

Dla dowolnego zbioru P, jeśli

- $P \subseteq \mathbb{N}$
- $\emptyset \in P$
- $\forall n \ n \in P \Rightarrow n' \in P$

to $P = \mathbb{N}$.

Fakt 5 Dla dowolnej liczby naturalnej n i dowolnego zbioru Y:

$$Y \in n \Rightarrow Y \subseteq n$$
.

Własności liczb naturalnych. Niech $n, m \in \mathbb{N}$. Wtedy

- 1. $m' = n' \implies m = n$
- $2. \ m \subseteq n \ \land \ m \neq n \ \Rightarrow \ m \in n$
- 3. $m \subseteq n \lor n \subseteq m$

4. $m \in n$ albo m = n albo $n \in m$

Porządek w zbiorze liczb naturalnych. Niech $k, n, m \in \mathbb{N}$. Wtedy

$$m \leqslant n \stackrel{def}{\Leftrightarrow} m \subseteq n$$
$$m < n \stackrel{def}{\Leftrightarrow} m \in n.$$

Własności relacji \leq oraz <. Niech $k, n, m \in \mathbb{N}$. Wtedy

- 1. $m < n \implies m \leqslant n$
- $2. (m \leqslant n \land m \neq n) \Rightarrow m < n$
- 3. $m \leqslant n \lor n \leqslant m$
- 4. m < n albo m = n albo n < m
- 5. $m = n \Leftrightarrow (m \leqslant n \land n \leqslant m)$
- 6. $\sim (n < n)$
- 7. $k \leq m \land m \leq n \Rightarrow k \leq n$
- 8. $k < m \land m \leqslant n \Rightarrow k < n$
- 9. $k \le m \land m < n \Rightarrow k < n$
- 10. $k < m \land m < n \Rightarrow k < n$

Działania w zbiorze liczb naturalnych.

Definicja 6 Funkcję $+: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ zdefiniowaną następująco

$$+(0,m) \stackrel{ozn}{=} 0 + m := m$$
$$+(n',m) \stackrel{ozn}{=} n' + m := (n+m)'$$

nazywamy dodawaniem liczb naturalnych.

Definicja 7 Funkcję $\cdot: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ zdefiniowaną następująco

$$\cdot (0, m) \stackrel{ozn}{=} 0 \cdot m := 0$$

$$\cdot (n', m) \stackrel{ozn}{=} n' \cdot m := (n \cdot m) + m$$

nazywamy mnożeniem liczb naturalnych.

Własności działań w zbiorze liczb naturalnych. Niech $k, n, m \in \mathbb{N}$. Wtedy

1.
$$k + (m+n) = (k+m) + n$$

$$2. n + 0 = n$$

3.
$$k' + m = k + m'$$

4.
$$k + m = m + k$$

5.
$$k \cdot 1 = k$$

6.
$$k \cdot (m+n) = k \cdot m + k \cdot n$$

7.
$$k \cdot (m \cdot n) = (k \cdot m) \cdot n$$

8.
$$k \cdot 0 = 0$$

9.
$$k \cdot m = m \cdot k$$

10.
$$k+n=k+m \Rightarrow n=m$$

Konstrukcja zbioru liczb całkowitych.

Niech $\sim \subseteq \mathbb{N}^2 \times \mathbb{N}^2$ będzie relacją określoną następująco:

$$(p,q) \sim (k,l) \Leftrightarrow p+l = q+k.$$

 \sim jest relacją równoważności.

Definicja 8 Zbiorem liczb całkowitych nazywamy zbiór ilorazowy relacji ~:

$$\mathbb{Z} := \mathbb{N} \times \mathbb{N}/_{\sim}$$

Przykład 9 Niech $n \in \mathbb{N}$.

$$[(0,0)]_{\sim} = \{(x,y) \in \mathbb{N} \times \mathbb{N} \mid x+0=y+0\} = \{(x,x) \mid x \in \mathbb{N}\}$$
$$[(n,0)]_{\sim} = \{(x,y) \in \mathbb{N} \times \mathbb{N} \mid x+0=y+n\} = \{(y+n,y) \mid y \in \mathbb{N}\}$$
$$[(0,n)]_{\sim} = \{(x,y) \in \mathbb{N} \times \mathbb{N} \mid x+n=y+0\} = \{(x,x+n) \mid x \in \mathbb{N}\}$$

Działania w zbiorze liczb całkowitych. Niech $(p,q), (k,l) \in \mathbb{N} \times \mathbb{N}$.

Dodawanie :
$$[(p,q)]_{\sim} \oplus [(k,l)]_{\sim} := [(p+k,q+l)]_{\sim}$$

Mnożenie : $[(p,q)]_{\sim} \odot [(k,l)]_{\sim} := [(pk+ql,qk+pl)]_{\sim}$
Odejmowanie : $[(p,q)]_{\sim} \ominus [(k,l)]_{\sim} := [(p+l,q+k)]_{\sim}$

Twierdzenie 10 Działania dodawania, mnożenia oraz odejmowania zdefiniowane w zbiorze liczb całkowitych są dobrze określone (tzn. klasy będące wynikiem działań nie zależą od wyboru reprezentantów).

Dowód (dla działania dodawania i mnożenia):

Dowód poprawności definicji polega na wykazaniu, że wynik działania nie zależy od wyboru reprezentantów klas na których wykonujemy działanie. Dla dodawania oznacza to, że jeśli

$$[(p,q)]_{\sim} = [(s,t)]_{\sim} \text{ i } [(k,l)]_{\sim} = [(a,b)]_{\sim} \text{ to } [(p,q)]_{\sim} \oplus [(k,l)]_{\sim} = [(s,t)]_{\sim} \oplus [(a,b)]_{\sim}.$$

Równoważnie, jeśli $(p,q) \sim (s,t)$ i $(k,l) \sim (a,b)$ to $(p+k,q+l) \sim (s+a,t+b)$.

Z definicji relacji założenie jest równoważne warunkowi: p+t=s+q i k+b=a+l. Dodając stronami otrzymujemy p+k+t+b=q+l+s+a, co oznacza, że $(p+k,q+l)\sim (s+a,t+b)$. Podobnie, aby udowodnić poprawność definicji mnożenia wystarczy wykazać, że jeśli $(p,q)\sim (s,t)$ i $(k,l)\sim (a,b)$ to $(pk+ql,qk+pl)\sim (sa+tb,sb+at)$.

Z definicji relacji założenie jest równoważne warunkowi: p + t = s + q i k + b = a + l. Mnożymy pierwsze równanie przez k, drugie przez s, następnie pierwsze zapisane w odwrotnej kolejności mnożymy przez l a drugie (również w odwróconej kolejności) przez t. Dodając wszystkie cztery równania stronami otrzymujemy:

pk + tk + sk + sb + ta + tl + sl + ql = sk + kq + sa + sl + tk + tb + pl + lt. Po zredukowaniu mamy pk + ql + sb + at = sa + tb + qk + pl, co po skorzystaniu z definicji relacji \sim kończy dowód.

Uwaga 2 Dla dowolnych $p, q \in \mathbb{N}$,

$$[(p,q)]_{\sim} \oplus [(q,p)]_{\sim} = [(p+q,q+p)]_{\sim} = [(0,0)]_{\sim}.$$

 $W \ szczególności, \ [(p,0)]_{\sim} \oplus [(0,p)]_{\sim} = [(0,0)]_{\sim}.$

Własności działań w zbiorze liczb całkowitych. Niech $x, y, z \in \mathbb{Z}$. Wtedy

- 1. $x \oplus (y \oplus z) = (x \oplus y) \oplus z$
- 2. $x \odot (y \odot z) = (x \odot y) \odot z$
- 3. $x \oplus y = y \oplus x$
- 4. $x \odot y = y \odot x$
- 5. $x \odot (y \oplus z) = (x \odot y) \oplus (x \odot z)$

Porządek w zbiorze liczb całkowitych. Niech $k, n, p, q \in \mathbb{N}$. Wtedy

$$[(p,q)]_{\sim} \preceq [(k,n)]_{\sim} \Leftrightarrow p+n \leqslant q+k.$$

Uwaga 3 Zbiór (\mathbb{Z}, \preceq) jest uporządkowany liniowo. Ponadto, dla $n \in \mathbb{N}$

$$[(0,0)]_{\sim} \leq [(n,0)]_{\sim}$$

 $[(0,n)]_{\sim} \leq [(0,0)]_{\sim}$

Funkcja $i: \mathbb{N} \to \mathbb{Z}, n \mapsto [(n,0)]_{\sim}$ jest naturalnym włożeniem zbioru liczb naturalnych w zbiór liczb całkowitych. Dla $n,m \in \mathbb{N}$

$$i(n+m) = i(n) \oplus i(m)$$

 $i(n \cdot m) = i(n) \odot i(m)$

$$i(n) \preceq i(m) \iff n \leqslant m$$

Dzięki temu możemy utożsamiać liczbę całkowitą $[(n,0)]_{\sim}=i(n)$ z odpowiadającą jej liczbą naturalną n oraz liczbę $-n:=[(0,n)]_{\sim}$ z liczbą przeciwną do $[(n,0)]_{\sim}$. Przy takich oznaczeniach

$$\mathbb{Z} := \mathbb{N} \cup \{-n \mid n \in \mathbb{N}\}.$$

Konstrukcja zbioru liczb wymiernych.

Niech $\mathbb{Z}^* := \mathbb{Z} \setminus \{0\}$ i niech $\varrho \subseteq (\mathbb{Z} \times \mathbb{Z}^*) \times (\mathbb{Z} \times \mathbb{Z}^*)$ będzie relacją określoną następująco:

$$(p,q)\varrho(k,l) \Leftrightarrow pl = qk.$$

 ϱ jest relacją równoważności.

Definicja 11 Zbiorem liczb wymiernych nazywamy zbiór ilorazowy relacji o:

$$\mathbb{Q} := \mathbb{Z} \times \mathbb{Z}^* / \varrho.$$

Klasę pary $(p,q) \in \mathbb{Z} \times \mathbb{Z}^*$ będziemy oznaczać jako ułamek $\frac{p}{q} := [(p,q)]_{\varrho}$.

Przykład 12 Niech $p \in \mathbb{Z}$.

$$\begin{array}{l} \frac{0}{1} = [(0,1)]_{\varrho} = \{(k,l) \in \mathbb{Z} \times \mathbb{Z}^* \mid k \cdot 1 = l \cdot 0\} = \{(0,l) \mid l \in \mathbb{Z}^*\} \\ \frac{1}{1} = [(1,1)]_{\varrho} = \{(k,l) \in \mathbb{Z} \times \mathbb{Z}^* \mid k \cdot 1 = l \cdot 1\} = \{(k,k) \mid k \in \mathbb{Z}^*\} \\ \frac{p}{1} = [(p,1)]_{\varrho} = \{(k,l) \in \mathbb{Z} \times \mathbb{Z}^* \mid k \cdot 1 = p \cdot l\} = \{(pl,l) \mid l \in \mathbb{Z}^*\} \end{array}$$

Działania w zbiorze liczb wymiernych. Niech $p, k \in \mathbb{Z}, q, l \in \mathbb{Z}^*$:

Dodawanie :
$$\frac{p}{q} \oplus \frac{k}{l} := \frac{pl + kq}{ql}$$
Odejmowanie : $\frac{p}{q} \ominus \frac{k}{l} := \frac{pl - kq}{ql}$
Mnożenie : $\frac{p}{q} \odot \frac{k}{l} := \frac{pk}{ql}$
Dzielenie : $\frac{p}{q} \oslash \frac{k}{l} := \frac{pl}{kq}$, dla $\frac{k}{l} \neq \frac{0}{1}$

Twierdzenie 13 Działania dodawania, mnożenia, odejmowania oraz dzielenia zdefiniowane w zbiorze liczb wymiernych są dobrze określone (tzn. klasy będące wynikiem działań nie zależą od wyboru reprezentantów).

Uwaga 4 $Dla \ p \in \mathbb{Z} \ i \ q \in \mathbb{Z}^*$

$$\frac{p}{1} \oslash \frac{q}{1} = \frac{p \cdot 1}{q \cdot 1} = \frac{p \cdot 1}{1 \cdot q} = \frac{p}{1} \odot \frac{1}{q} = \frac{p}{q}.$$

Porządek w zbiorze liczb wymiernych. Niech $p, k \in \mathbb{Z}, q, l \in \mathbb{Z}^*$. Wtedy

$$\frac{p}{q} \preceq \frac{k}{l} \iff pl \leqslant kq \ \land \ q, l > 0.$$

Funkcja $j:\mathbb{Z}\to\mathbb{Q},\,k\mapsto[(k,1)]_\varrho=\frac{k}{1}$ jest naturalnym włożeniem zbioru liczb całkowitych w zbiór liczb wymiernych. Dla $k,l\in\mathbb{Z}$

$$j(k+l) = j(k) \oplus j(l)$$
$$j(k \cdot l) = j(k) \odot j(l)$$
$$k \le l \implies j(k) \le j(l)$$

Dzięki temu możemy utożsamiać liczbę wymierną $\frac{k}{1} = [(k,1)]_{\varrho} = j(k)$ z odpowiadającą jej liczbą całkowitą k oraz liczbę $l^{-1} := \frac{1}{l}$, dla $l \in \mathbb{Z}^*$, z liczbą odwrotną do $\frac{l}{1}$. Przy takich oznaczeniach

$$\mathbb{Q} := \{ pq^{-1} \mid p \in \mathbb{Z}, q \in \mathbb{Z}^* \}.$$

Twierdzenie 14 Relacja \leq jest gęstym porządkiem liniowym zbioru \mathbb{Q} .