Introdução

Pense nas ondas que se produzem quando uma pedra cai na água, ou em como se movimentam as ondas. Pense em como a eletricidade viaja através dos cabos (os quais têm forma de catenária quando se penduram, como sabe bem por artigos anteriores) e pense em como o som se transmite pelo ar até que chega ao seu ouvido. Mais ainda, pense em como a luz chega aos seus olhos e em como os sinais viajam ricocheteando entre satélites.

Pode ser que ainda não o saiba, mas em todos esses casos aparecem as funções periódicas, as quais são tratadas sob um quadro que se conhece como *Análise de Fourier*. Ao longo deste artigo e outros subsequentes vamos conhecer distintos aspetos desta teoria, e se tudo correr bem, chegaremos a um ponto em que poderemos apreciar a enorme influência que exerce nas nossas vidas.

Neste primeiro artigo veremos a parte mais teórica que vamos utilizar em posteriores artigos com aplicações em circuitos elétricos. O artigo presente está dividido como se segue: na secção 1 vamos estudar o que são as funções periódicas e o que são os harmónicos; na secção 2 vamos dar o teorema de representação de uma função como soma de harmónicos na sua versão real e na secção 3 faremos o mesmo, mas da perspetiva do campo complexo, o qual reduz a teoria e permite uma formulação mais simples.

1. Preliminares

1.1. Funções periódicas

A ideia é intuitiva, mas necessitamos uma definição rigorosa a que cingir-nos.

Definição. Consideremos uma função $f: \mathbb{R} \longrightarrow \mathbb{R}$. Dizemos que f é **periódica** se existir algum número T > 0 tal que:

(1.1)
$$f(x+T) = f(x) \qquad \forall x \in \mathbb{R}.$$

Assim, diremos que T é um **período** de f. Entre todos eles, o menor recebe o nome de **período fundamental**.

Este conceito pode ser visualizado muito facilmente, uma vez que a equação (l.l) significa que a gráfica se vai repetindo em intervalos de longitude T, como se vê na Figura 1.

É claro que se T é um período, então 2T é um outro período, uma vez que:

$$f(x+2T) = f((x+T) + T) = f(x+T) = f(x) \qquad \forall x \in \mathbb{R},$$

e se repetimos o argumento, é fácil ver que

$$(1.2) f(x+nT) = f(x) \forall x \in \mathbb{R}, \quad n \in \mathbb{N}.$$

Também nos interessará saber como estreitar ou esticar a gráfica de uma função para encurtar ou alongar o seu período. Nesse sentido, é importante a seguinte propriedade. Se f(x) é uma função de período T e a>0, podemos definir g(x)=f(ax), que terá período T'=T/a. Com efeito:

$$(1.3) q(x+T/a) = f(a(x+T/a)) = f(ax+T) = f(ax) = q(x) \forall x \in \mathbb{R}.$$

Finalmente, é interessante notar que podemos somar funções de período comum para obter uma outra função periódica. Isto é, se f(x) e g(x) têm período T, então h=f+g tem o mesmo período. Com efeito:

$$(1.4) h(x+T) = f(x+T) + g(x+T) = f(x) + g(x) = h(x).$$

Como veremos, combinaremos com frequência as propriedades anteriores quando tratarmos com harmónicos.

1.2. Harmónicos

Os harmónicos são um tipo de funções periódicas, mas são tão importantes que podemos dizer que constituem os blocos elementares da análise de Fourier.

Definição. Chamamos harmónico a toda a função da forma:

- $A \cdot \cos(\omega x + \phi)$
- $A \cdot \sin(\omega x + \phi)$

Em qualquer caso, diremos que A é a amplitude, ω é a frequência angular e ϕ é a fase.

É conhecido que as funções $\cos x$ e $\sin x$ têm período fundamental 2π , de modo que segundo (1.3) um harmónico de frequência angular ω terá período $\frac{2\pi}{\omega}$.

Na prática, junto dos harmónicos aparecem funções constantes. Portanto, é um abuso de notação, vamos referir-nos também a elas como um caso particular de harmónicos. Também estaremos interessados em trabalhar com sucessões de harmónicos. Um exemplo típico seria:

$$\sin(x)$$
, $\sin(2x)$, $\sin(3x)$, ..., $\sin(kx)$,

Nesta sucessão, os períodos fundamentais são

$$2\pi$$
, $2\pi/2$, $2\pi/3$, ..., $2\pi/k$,

E de acordo com o precisado anteriormente (ver (1.2)), podemos dizer que todos os termos da sucessão têm período 2π . Em geral, podemos conseguir harmónicos de período 2T alterando a frequência angular (ver (1.3)). Assim, uma outra

sucessão típica poderia ser:

1,
$$\cos\left(\frac{\pi}{T}x\right)$$
, $\cos\left(\frac{2\pi}{T}x\right)$, $\cos\left(\frac{3\pi}{T}x\right)$, ..., $\cos\left(\frac{k\pi}{T}x\right)$, ...

. De qualquer forma, podemos simplificar a notação escrevendo simplesmente

$$\sin(\omega_k x)$$
 ou $\cos(\omega_k x)$,

para denotar ao k-éssimo elemento da sucessão. Com certeza, a frequência ω_k deve ficar clara de acordo com o contexto.

2. Séries de Fourier

Nesta secção vamos estudar um *teorema de representação*. O que é que significa isto? Quer dizer que vamos considerar funções que se podem representar de uma forma especial. Em particular, vão interessar-nos funções que são somas infinitas de senos e cossenos, isto é, somas de harmónicos.

2.1. Um exemplo simples

Vamos começar por dar uma pequena ideia da classe de problemas que vamos poder abordar mais tarde. Seja $f: \mathbb{R} \longrightarrow \mathbb{R}$ a função dada por:

$$f(x) = 10\cos(x) + \sin(20x).$$

De acordo com o explicado anteriormente, está claro que esta função (cuja representação gráfica podemos observar na Figura 2) é soma de harmónicos com períodos fundamentais 2π e $2\pi/20$, de modo que podemos dizer que quer os dois harmónicos quer a função f(x) têm período 2π .

Poderíamos dizer que f(x) é um sinal com um pequeno nível de ruído. De um ponto de vista prático, é útil poder eliminar o ruído para ficar com a parte de sinal que nos interessa. Uma forma de o fazer seria transformar a função fazendo-a passar por um *filtro* que elimine as frequências não pretendidas.

2.2. Teorema de Fourier

No ano de 1807, Joseph Fourier publicou o seu trabalho sobre a propagação do calor. Até então, o problema apenas se sabia resolver quando a fonte de calor se comportava de forma simples (como um harmónico), em cujo caso as soluções se chamavam funções próprias. A ideia de Fourier foi descompor uma excitação qualquer como uma superposição de harmónicos, de modo que a solução é a correspondente superposição de funções próprias.

O teorema que se segue a continuação dá-nos as condições em que é lícito supor que podemos descompor uma função como soma de outras mais simples, harmónicos neste caso.

Teorema de Fourier (caso particular). Seja $f: \mathbb{R} \to \mathbb{R}$ uma função derivável a pedaços de período 2π . Então existe uma soma de harmónicos que coincide com f(x) naqueles pontos em que f é contínua. Mais explicitamente: Existem uns únicos coeficientes (a_k) e (b_k) tais que:

(2.1)
$$f(x) = a_0 + \sum_{k=1}^{\infty} [a_k \cdot \cos(k \cdot x) + b_k \cdot \sin(k \cdot x)],$$

salvo nos pontos de descontinuidade.

Se x é um ponto em que f não é contínua, a equação (2.1) poderia não ser certa. De facto, neste caso, a soma de harmónicos vale precisamente

$$\frac{f(x^-) + f(x^+)}{2},$$

em que $f(x^-)$ e $f(x^+)$ se denotam os limites de f em x pela esquerda e à direita respetivamente. Por exemplo, podemos considerar o sinal quadrado da Figura 3:

Figura 3: Um sinal quadrado

Este sinal pode ser modelado pela função:

$$f(x) = \begin{cases} -1 & \text{si } x \in [k\pi, (k+1)\pi) & \text{para algum } k \in \mathbb{Z} \text{ impar} \\ +1 & \text{si } x \in [k\pi, (k+1)\pi) & \text{para algum } k \in \mathbb{Z} \text{ par.} \end{cases}$$

É fácil comprovar que esta função tem período 2π . Portanto, o teorema de Fourier (2.1) permite-nos escrever f(x) como soma de harmónicos. O único problema é saber calcular os coeficientes que aparecem na equação (2.1), portanto vamos procurar uma solução.

Cálculo dos coeficientes

Partimos de uma função f(x) com período 2π que cumpre todos os pré-requisitos do Teorema de representação dado anteriormente. Assim, podemos escrever:

$$f(x) = a_0 + \sum_{k=1}^{\infty} a_k \cos(kx) + b_k \sin(kx),$$

e vamos calcular a seguinte integral:

$$\int_{-\pi}^{\pi} f(x) dx = \int_{-\pi}^{\pi} \left[a_0 + \sum_{k=1}^{\infty} a_k \cos(kx) + b_k \sin(kx) \right] dx$$

$$= a_0 \int_{-\pi}^{\pi} dx + \sum_{k=1}^{\infty} a_k \int_{-\pi}^{\pi} \cos(kx) dx + \sum_{k=1}^{\infty} b_k \int_{-\pi}^{\pi} \sin(kx) dx$$

$$= a_0 \cdot 2\pi.$$

Em que foi utilizado que

$$\int_{-\pi}^{\pi} \cos(kx) = 0 = \int_{-\pi}^{\pi} \sin(kx) \qquad \forall k \in \mathbb{N},$$

para obter

$$a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) \, \mathrm{d}x.$$

Com a mesma ideia na mente, podemos fazer outras integrais para deduzir o resto de coeficientes:

$$\int_{-\pi}^{\pi} f(x) \cdot \cos(kx) dx = \dots = \pi a_k \qquad e \qquad \int_{-\pi}^{\pi} f(x) \cdot \sin(kx) dx = \dots = \pi b_k,$$

donde

$$a_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cdot \cos(kx) dx$$
 e
$$b_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cdot \sin(kx) dx.$$

Agora que temos uma fórmula para tirar os coeficientes, podemos seguir com o exemplo do sinal quadrado. É um exercício simples demonstrar que neste caso:

$$a_0 = a_k = 0, \qquad b_k = \begin{cases} \frac{4}{\pi k} & \text{se } k \text{ for impar} \\ 0 & \text{se } k \text{ for par.} \end{cases}$$

De modo que a soma de harmónicos que representa a (2.2) é precisamente:

(2.3)
$$f(x) = \frac{4}{\pi} \left[\sin x + \frac{1}{3} \sin(3x) + \frac{1}{5} \sin(5x) + \frac{1}{7} \sin(7x) + \frac{1}{9} \sin(9x) + \dots \right]$$

Às vezes é complicado compreender como é que se comporta uma soma infinita. Ainda, na prática apenas podemos somar um número finito de coisas, portanto é necessário comprovar que uma soma finita é uma boa aproximação da função. Esta comparação podemos observá-la na Figura 4.

Tudo o anterior pode ser generalizado a funções de período 2T em vez de 2π , só que nesse caso vamos ter que esticar ou encolher os harmónicos para que tenham esse mesmo período.

Teorema de Fourier. Seja $f: \mathbb{R} \to \mathbb{R}$ uma função derivável a pedaços de período 2T. Então existe uma soma de harmónicos que coincide com f(x) naqueles pontos em que f é contínua. Mais explicitamente: Existem uns únicos coeficientes (a_k) e (b_k) tais que:

$$(2.4) f(x) = a_0 + \sum_{k=1}^{\infty} a_k \cos(\omega_k x) + b_k \sin(\omega_k x) \quad \text{ sendo } \quad \omega_k = \frac{k\pi}{T},$$

salvo nos pontos de descontinuidade.

O cálculo dos coeficientes muda um pouco, mas qualitativamente a situação é a mesma. Um desenvolvimento mais detalhado pode-se encontrar em [2].

2.3. Uma aplicação rápida

Como já foi mencionado, a Figura 4 mostra que a aproximação se aproxima rápido à função¹. Vamos pensar um bocado como aproveitar isso.

O problema de guardar uma função

Vamos supor que queremos guardar uma canção num arquivo. O som gravado pode ser representado por um sinal, que não deixa de ser uma função que chamaremos f(t). Uma solução simples seria guardar muitíssimos pares da

¹Salvo pelas oscilações que se produzem nos pontos de descontinuidade, o que é conhecido como fenómeno de Gibbs.

forma (t, f(t)). De facto, deveríamos guardar infinitos pares desta forma para conhecer a função na sua totalidade. Ora bem, como podem imaginar, guardar infinitos valores não parece muito eficiente.

O que é que acontece se encontramos o desenvolvimento de Fourier? A situação não parece mudar muito, uma vez que um conhecimento completo da função nos exigiria guardar os infinitos pares de coeficientes (a_k, b_k) . No entanto, a situação sim mudou radicalmente. Agora podemos decidir que vamos ficar (por exemplo) com os 100 primeiros pares de coeficientes, isso é muito mais acessível.

Evidentemente, a função que reconstruamos a partir destes coeficientes não vai ser igual, dado que não temos toda a informação, mas se a série de Fourier converger rapidamente, deveria ser enormemente parecida com a original. Por outras palavras, o nosso ouvido não será capaz de distinguir a diferença, e ao mesmo tempo estaremos a poupar muitíssimo espaço. Em ideias semelhantes são baseados os algoritmos de compressão de arquivos que se utilizam nos computadores, como o mp3.

Para acabar, vamos ver uma das pequenas maravilhas que aparecem quando estudamos as séries de Fourier. Se avaliarmos em $x=\frac{\pi}{2}$ na equação (2.3) e despejarmos, encontramos a bonita identidade:

$$\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots$$

3. Enfoque complexo

Até agora temos trabalhado com números reais, combinando engenhosamente senos e cossenos para chegar ao resultado pretendido. No entanto, resulta que os números complexos possuem certas peculiaridades que facilitam todos os cálculos descritos até agora.

3.1. Números complexos

Fazemos um breve resumo (para ampliar, consultar [1]). Recordemos que é comum expressar um número complexo $z \in \mathbb{C}$ em forma binómica, isto é:

$$z = a + ib$$
,

em que i se conhece como unidade imaginária (que satisfaz $i^2 = -1$), no entanto a e b são números reais que recebem o nome de parte real e imaginária de z respetivamente, isso escreve-se habitualmente como:

$$Re(z) = a, \quad Im(z) = b.$$

Um conceito que aparece com frequência é o conjugado de um número complexo $z=a+ib\in\mathbb{C}$, que se denota habitualmente como $\overline{z}\in\mathbb{C}$, e é definido por

$$\overline{z} = a - ib.$$

O seguinte que vamos revisar será o análogo complexo da função exponencial.

3.2. Exponencial complexa

A forma mais rápida de construir este conceito é recorrer às séries de potências. Numa clara analogia com a exponencial real, podemos apresentar a exponencial complexa como a função exp : $\mathbb{C} \longrightarrow \mathbb{C}$ definida por:

(3.2)
$$\exp(z) = 1 + z + \frac{z^2}{2!} + \frac{z^3}{3!} + \dots = \sum_{n=0}^{\infty} \frac{z^n}{n!}.$$

Matemática em engenharia: Análise harmónica clássica, Parte I

Na prática, é comum escrever simplesmente e^z em vez de $\exp(z)$. Esta função tem muitíssimas propriedades interessantes. Nós, por enquanto, vamos destacar que para qualquer par de números complexos $z, w \in \mathbb{C}$ temos:

$$(3.3) e^{z+w} = e^z e^w,$$

bem como

$$(3.4) e^{\overline{z}} = \overline{e^z}.$$

Em particular, se considerarmos um número complexo na sua forma binómica podemos utilizar (3.3):

$$e^z = e^{a+ib} = e^a e^{ib},$$

e agora pode estudar-se o desenvolvimento em série de potências (3.2) da exponencial que envolve a parte imaginária para demonstrar finalmente:

$$e^{a+ib} = e^a \left[\cos b + i\sin b\right].$$

Aqui deveríamos começar a ver o potencial do que estamos a fazer. Começámos a trabalhar com números complexos, e resulta que ao fazer exponenciais encontramos senos e cossenos. Isso significa que podemos aproveitar todo o nosso conhecimento sobre exponenciais e utilizá-lo na altura de trabalhar com harmónicos.

Como apontamento histórico, se considerarmos um número que apenas tem parte imaginária encontramos a bonita igualdade

$$(3.5) e^{i\theta} = \cos\theta + i\sin\theta,$$

conhecida como fórmula de Euler, que no caso particular $\theta=\pi$ nos leva à famosa identidade de Euler

$$e^{i\pi} + 1 = 0.$$

3.3. Aplicação às séries de Fourier

Como já dissemos, utilizaremos as exponenciais complexas para expressar as somas de harmónicos, para o que convém recordar todas as relações entre estes dois conceitos. Por um lado temos a fórmula de Euler (3.5) e por outro:

(3.6)
$$\cos x = \frac{e^{ix} + e^{-ix}}{2}, \qquad \sin x = \frac{e^{ix} - e^{-ix}}{2i}.$$

Portanto, vamos considerar uma função $f:\mathbb{R} \longrightarrow \mathbb{R}$ de período 2π a que aplicar o teorema de Fourier. Se agora substituirmos (3.6) no k-éssimo termo do desenvolvimento descrito em (2.1) encontramos:

$$a_k \cos(kx) + b_k \sin(kx) = a_k \frac{e^{ikx} + e^{-ikx}}{2} + b_k \frac{e^{ikx} - e^{-ikx}}{2i} = \frac{1}{2}(a_k - ib_k)e^{ikx} + \frac{1}{2}(a_k + ib_k)e^{-ikx}.$$

E portanto, passámos de uma combinação de harmónicos para uma combinação de exponenciais, que podemos reescrever como:

(3.7)
$$a_k \cos(kx) + b_k \sin(kx) = c_k e^{ikx} + c_{-k} e^{-ikx} \qquad \text{com} \quad c_{\pm k} = \frac{1}{2} (a_k \mp ib_k).$$

Para ganhar generalidade, claramente devemos definir $c_0 = a_0$ e por fim podemos dar uma formulação alternativa do desenvolvimento de Fourier (2.1):

$$f(x) = \sum_{k=-\infty}^{\infty} c_k e^{ikx}.$$

Para terminar de arredondar o resultado, vamos dar uma vista de olhos aos coeficientes. Estaria muito bem poder ter uma fórmula que não nos obrigue a calcular primeiro os coeficientes reais e depois os complexos, e com efeito, basta comprovar que

$$c_k = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x)e^{-ikx} dx$$

nos leva diretamente aos coeficientes complexos².

No caso em que as funções tenham período 2T, temos um resultado similar, mas de novo mudam levemente as fórmulas para calcular os coeficientes. A formulação alternativa do teorema de Fourier neste caso é:

Teorema de Fourier (formulação complexa). Seja $f: \mathbb{R} \to \mathbb{R}$ uma função derivável a pedaços de período 2T. Então existe uma soma de harmónicos que coincide com f(x) naqueles pontos em que f é contínua. Mais explicitamente:

Existem uns únicos coeficientes (c_k) tais que:

(3.9)
$$f(x) = \sum_{k=-\infty}^{\infty} c_k e^{i\omega_k x} \quad \text{sendo} \quad \omega_k = \frac{k\pi}{T},$$

salvo nos pontos de descontinuidade.

Criamos uma aplicação web, onde você pode entender geometricamente os conceitos neste artigo. O link é: http://fourieranalysis.github.io/series.html.

Referencias

- [1] Agarwal, Ravi P., Perera, Kanishka, Pinelas, and Sandra. An Introduction to Complex Analysis. Springer, 2011.
- [2] Nakhle H. Asmar. Partial Differential Equations and Boundary Value Problems with Fourier Series. Prentice Hall, 2004.

²Para isso haveria que definir cuidadosamente como integrar funções complexas, mas é suficiente que separemos a parte real e imaginária usando (3.5) e integremos cada uma por separado, sendo assim o resultado imediato.