杭州电子科技大学学生考试卷 (A) 卷

考试课程	概率论与数理统计		考试日期		2011 年 06 月 日			成 绩				
课程号	A0702140	孝	处师号	·		任课教师姓名						
考生姓名	参考答案	学与	号(8位)			年级		4	手业			

题号	_	=	三	四	五.	六	七	八	九	+
得分										

- 一. 单项选择题,将正确答案填在括号内(每小题 3 分,共 15 分)
- 1. 设事件 A, B满足 P(A) > 0,且 P(AB) = P(A)P(B),则下列结论中正确的是(D)

 - A. P(A) = P(B|A) B. $P(A \cup B) = P(A) + P(B)$
 - C. *A*,*B*互不相容; D. *A*,*B*相互独立;
- 2. 设随机变量 $X \sim N(3,9)$ 且 $Y = aX + b \sim N(0,1)$,则(A)

 - A. a = 1/3, b = -1; B. a = -1/3, b = -1

 - C. a = 1/9, b = -1/3; D. a = -1/3, b = 1
- 3. 设样本 X_1, X_2, \dots, X_6 为来总体 N(0,1), $Y = \frac{1}{3}(X_1 + X_2 + X_3)^2 + \frac{1}{3}(X_4 + X_5 + X_6)^2$, 则Y服从的分布为(C)
 - A. t(2)

B. t(6)

C. $\chi^{2}(2)$

- D. $\chi^{2}(6)$
- 4. 设总体具有分布律:

X	1	2	3
p_{k}	θ^2	$2\theta(1-\theta)$	$(1-\theta)^2$

其中 $\theta(0 < \theta < 1)$ 为未知参数, X_1, X_2, \dots, X_n 为来自总体X的一个样本, \overline{X} , S^2 为样本

均值与样本方差,则 θ 的矩估计量 $\hat{\theta} = (C)$.

A.
$$\frac{1}{2}(3+\overline{X});$$
 B. $\frac{1}{3}(2-\overline{X})$

B.
$$\frac{1}{3}(2-\overline{X})$$

C.
$$\frac{1}{2}(3-\overline{X});$$
 D. $\frac{1}{3}(2+\overline{X})$

D.
$$\frac{1}{3}(2+\overline{X})$$

5. 设 $X \sim N(\mu, \sigma^2)$, 其中 σ^2 未知, X_1, X_2, \dots, X_n 为来自总体X的一个样本, X_1, X_2, \dots, X_n 为样本均值与样本方差,则 μ 的置信水平为 95%的单侧置信上限为 (B).

A.
$$\overline{X} + \frac{S}{\sqrt{n}} t_{0.05}(n)$$

A.
$$\overline{X} + \frac{S}{\sqrt{n}} t_{0.05}(n)$$
; B. $\overline{X} + \frac{S}{\sqrt{n}} t_{0.05}(n-1)$

C.
$$\overline{X} - \frac{S}{\sqrt{n}} t_{0.05}(n)$$

C.
$$\overline{X} - \frac{S}{\sqrt{n}} t_{0.05}(n)$$
 D. $\overline{X} - \frac{S}{\sqrt{n}} t_{0.05}(n-1)$

- 二. 填空题(每小题 3 分, 共 15 分)
- 1. 已知事件 A, B 互不相容, $P(A) = \frac{1}{4}$, $P(B) = \frac{1}{6}$,则 $P(A \cup B) = \underline{5/12}$
- 2. 一个口袋装有8个球,其中6个白球,2个红球,从袋中取球两次,每次随机地取一只,作 放回抽样,即第一次取一只球,观察其颜色后放回袋中,搅匀后再取一球。则取到的两只都 是白球的概率为 9/16 .
- 3. 设 $P\{X=k\} = \frac{b}{k+1}$ (k=1,2,3) 为离散型随机变量 X 的分布律,则常数 $b=\underline{12/13}$.
- 4. 设随机变量 X 服从 N(2, 9) 的正态分布, Y 服从 b(100, 0.8) 的二项分布,且 X 与 Y 的相互独立,

则
$$D(2X-Y+15) = ____52___$$
.

5. 设有一组容量为 16 的样本值如下(已经排序过): 122 126 133 140 145 149 150 157 162 166 175 177 183 188 199 212

则样本分位数
$$x_{0.3} = 145$$
.

| E (本题 12 分)设连续型随机变量 X的密度函数为 $f(x) = \begin{cases} kx(x-1), 1 < x < 2 \\ 0, 其他 \end{cases}$

- (1) 确定常数 k;
- (2) 求X的分布函数F(x);
- (3) E(X).

解: (1) 因为
$$\int_{-\infty}^{+\infty} f(x) dx = 1$$

.....1分

所以
$$\int_{1}^{2} kx(x-1)dx = 1$$
 得 $k = \frac{6}{5}$

.....4 分

(2)
$$X$$
的分布函数 $F(x) = \int_{-\infty}^{x} f(t)dt$

......5 分

......8 分

$$= \begin{cases} \int_{1}^{x} \frac{6}{5} x(x-1) dx, 1 < x < 2 \\ 1, x \ge 2 \end{cases}$$

$$= \begin{cases} 0, x \le 1 \\ 0, x \le 1 \end{cases}$$

$$= \begin{cases} \frac{1}{5} (2x^{3} - 3x^{2} + 1), 1 < x < 2 \\ 1, x \ge 2 \end{cases}$$

$$= \begin{cases} 0, x \le 1 \\ \frac{1}{5} (2x^3 - 3x^2 + 1), 1 < x < 2 \\ 1, x \ge 2 \end{cases}$$

.....9分

(3)
$$E(X) = \int_{-\infty}^{+\infty} x f(x) dx$$

.....10 分

(3)
$$E(X) = \int_{-\infty}^{+\infty} xf(x)dx$$

= $\int_{1}^{2} x \cdot \frac{6}{5} x(x-1) dx = \frac{17}{10}$

.....12 分

四. (本题 18 分)设二维随机变量(X,Y)的概率密度为 $f(x,y) = \begin{cases} Cx^2y, 0 < x < 1, 0 < y < 1 \\ 0, 其它 \end{cases}$

- (1) 求常数C;
- (2) 求关于 X和关于 Y的边缘概率密度 $f_{\nu}(x)$ 和 $f_{\nu}(y)$; 并问 X与 Y是否相互独立?
- (3) 求概率 P(X+Y<1);
- (4) E(XY).

$$\mathfrak{M}$$
: (1) :: $\int_{-\infty}^{+\infty} dx \int_{-\infty}^{+\infty} f(x, y) dy = 1$

.....2 分

即
$$\int_0^1 dx \int_0^1 Cx^2 y dy = 1$$
,得 $C = 6$

.....4 分

(2) 关于
$$X$$
 的边缘概率密度: $f_X(x) = \int_{-\infty}^{\infty} f(x, y) dy$

.....5 分

$$= \begin{cases} \int_0^1 6x^2 y dy, & 0 < x < 1 \\ 0, \text{ #} \dot{\Sigma} \end{cases} = \begin{cases} 3x^2, & 0 < x < 1 \\ 0, \text{ #} \dot{\Sigma} \end{cases}$$

.....7 分

关于 Y的边缘概率密度: $f_Y(y) = \int_{-\infty}^{\infty} f(x,y) dx$

$$= \begin{cases} \int_0^1 6x^2 y dx, 0 < y < 1 \\ 0, \text{ #} \dot{\text{ }} \dot{\text{ }} \dot{\text{ }} \dot{\text{ }} \end{cases} = \begin{cases} 2y, 0 < y < 1 \\ 0, \text{ #} \dot{\text{ }} \dot{\text{ }} \dot{\text{ }} \dot{\text{ }} \end{cases}$$

.....10分

显然 $f(x, y) = f_X(x) f_Y(y)$

所以X与Y相互独立.

.....12 分

(3)
$$P{X+Y<1} = \iint_{x+y<1} f(x,y) dxdy$$

......13 分

$$= \int_0^1 dx \int_0^{1-x} 6x^2 y dy = \frac{1}{10}$$

.....15 分

(4)
$$E(XY) = \int_{-\infty}^{+\infty} dx \int_{-\infty}^{+\infty} xy f(x, y) dy$$

.....16分

$$= \int_0^1 dx \int_0^1 xy \cdot 6x^2 y dy = \frac{1}{2}$$

.....18 分

五. (本题 6 分) 一公司有 50 张签约保险单,各张保险单的索赔金额为 X_i (i = 1,2,…,50) (以千美元计) 服从韦布尔分布,均值 $E(X_i)$ = 5,方差 $D(X_i)$ = 6,求 50 张保险单的索赔的合计金额大于 300 的概率的近似值(设各保险单的索赔金额是相互独立. 结果用标准正态分布函数 $\Phi(x)$ 表示)

解: 由题意所求概率
$$P\{\sum_{i=1}^{50} X_i > 300\} = 1 - P\{\sum_{i=1}^{50} X_i \le 300\}$$
 ······2 分

$$=1-P\{\left(\frac{\sum_{i=1}^{50} X_i - 50 \times 5}{\sqrt{50 \times 6}} \le \frac{300 - 50 \times 5}{\sqrt{50 \times 6}}\}$$
4

$$\approx 1 - \Phi(\frac{5\sqrt{3}}{3}) \qquad \dots 6$$

六. (本题 8 分) 设总体 X 具有密度 $f(x) = \begin{cases} (\theta + 1)x^{-\theta}, & x > 1 \\ 0, & 其它 \end{cases}$, x_1, \dots, x_n 为 X 的一组样本

观察值,求参数 θ 的最大似然估计值 $\hat{\theta}$.

$$= (\theta + 1)^n \left(\prod_{i=1}^n x_i\right)^{-\theta} \qquad \cdots 3 \, \mathcal{D}$$

取对数
$$\ln L(x_1, \dots, x_n) = n \ln(\theta + 1) - \theta \sum_{i=1}^n \ln x_i$$
 ·········· 4 分

$$\theta = \frac{n}{\sum_{i=1}^{n} \ln x_i} - 1$$
 ···········8 分

所以,参数 θ 的最大似然估计值为 $\hat{\theta} = \frac{n}{\sum_{i=1}^{n} \ln x_i} - 1$

七. (本题 6 分)设某种清漆的干燥时间(以 h 计)服从正态分布 $X \sim N(\mu, \sigma^2)$,现随机地抽取 9 个样品,测得干燥时间的均值 x = 6.1 (小时),样本均方差 s = 0.6, σ^2 为未知,求 μ 的置信水平为 95%的置信区间. ($t_{0.025}(8) = 2.3060$, $t_{0.025}(9) = 2.2622$, $t_{0.05}(8) = 1.8595$,精确到第二位小数).

解: 这里 $\alpha = 0.05$, n = 9, 故 μ 的置信水平为95%的置信区间为:

$$(\bar{x} - t_{\alpha/2}(n-1)\frac{s}{\sqrt{n}}, \bar{x} + t_{\alpha/2}(n-1)\frac{s}{\sqrt{n}})$$
3 $\%$

$$= (6.1 - 2.306 \cdot \frac{0.6}{3}, 6.1 + 2.306 \cdot \frac{0.6}{3})$$
 5 $\%$

八.(本题 8 分)某种导线,要求其电阻标准差不超过 0.005Ω .今在一批导线中取样品 26 根,测得样本标准差 $s=0.007\Omega$,设总体为正态分布,问在显著性水平 $\alpha=0.05$ 下能认为这批导线电阻的标准差显著地偏大吗?

$$(\chi_{0.05}^2(26) = 38.885, \chi_{0.05}^2(25) = 37.652, \chi_{0.025}^2(26) = 41.923, \chi_{0.025}^2(25) = 40.646)$$

解: 检验假设
$$H_0$$
: $\sigma^2 \le 0.005^2$, 备择假设 H_1 : $\sigma^2 > 0.005^2$ 1 分

拒绝域为
$$\frac{(n-1)s^2}{\sigma_0^2} \ge \chi_\alpha^2(n-1) \qquad \cdots 4$$
分

$$=\chi_{0.05}^{2}(25)=37.652$$

而
$$\chi^2 = \frac{(n-1)s^2}{\sigma_0^2} = \frac{25 \times 0.007^2}{0.005^2} = 49 > 37.652$$
6 分

落在拒绝域内, 故能认为这批导线电阻的标准差显著地偏大.8 分

·····7 分

九. (本题 8 分) 设总体 X 服从指数分布,其概率密度为: $f(x,\theta) = \begin{cases} \frac{1}{\theta} e^{-x/\theta}, x > 0 \\ 0, 其他 \end{cases}$

其中 $\theta > 0$ 为未知参数,又设 X_1, X_2, \dots, X_n 为来自总体X的一个样本,

- (1) 求函数 $Z = \min\{X_1, X_2, \dots, X_n\}$ 的分布函数 $F_Z(z)$ 和概率密度函数 $f_Z(z)$;
- (2) 问统计量 $Z = \min\{X_1, X_2, \dots, X_n\}$ 是否为 θ 的无偏估计量?

解: (1) 设Z的分布函数 $F_z(z)$,则 $F_z(z) = P\{Z \le z\}$

由 X_1, X_2, \dots, X_n 的独立性,且与总体同分布,故

当
$$z > 0$$
 时, $F_Z(z) = 1 - (1 - F_X(z))^n = 1 - (1 - (1 - e^{-z/\theta}))^n$
$$= 1 - e^{-nz/\theta} \qquad \cdots 3 分$$

得:
$$Z$$
的分布函数为 $F_Z(z) = \begin{cases} 1 - e^{-nz/\theta}, z > 0 \\ 0, 其他 \end{cases}$ 4 分

所以:
$$Z$$
的概率密度函数 $f_Z(z) = \begin{cases} \frac{n}{\theta} e^{-nz/\theta}, z > 0 \\ 0, 其他 \end{cases}$ 5 分

(2)
$$\boxtimes E(Z) = \int_{-\infty}^{+\infty} z f(z) dz$$

= $\int_{0}^{+\infty} z \cdot \frac{n}{\theta} e^{-nz/\theta} dz = \frac{\theta}{n}$

(或直接用指数分布的期望公式)

十. (本题 4 分) 设随机变量 X的方差 D(X) = 0,

证明: $P{X = E(X)} = 1$, 即 X 以概率 1 取常数 E(X).

证明:用反证法,假设 $P(X = E(X)) \neq 1$,即P(X = E(X)) < 1

也即
$$P\{X \neq E(X)\} > 0$$
,1 分

则对于某一个数
$$\varepsilon > 0$$
, $P\{|X - E(X)| \ge \varepsilon\} > 0$ ······2 分

但由切比雪夫不等式,对任意 $\varepsilon > 0$,

有
$$P\{|X - E(X)| \ge \varepsilon\} \le \frac{D(X)}{\varepsilon^2} = 0$$
 ······4 分

矛盾,于是
$$P{X = E(X)} = 1$$