Homework Week 6

Part 1 - Classification Trees

You will need the following image for a decision trees

Image form Machine Learning with Python

- 1) What is the depth of this Decision Trees?
 - A. 1
 - B. 2
 - C. 3
 - D. 4
- 2) How many leaf nodes are in the following Decision Tree?

- A. 1
- B. 2
- C. 3
- D. 4
- 3) What is the class of the following feature x = [young, male]
 - A. Drug-A
 - B. Drug-B
- 4) You can use categorical features in a Decision Tree
 - A. True
 - B. False
- 5) You can use categorical features in a Decision Tree without sklearn without pre-processing
 - A. True
 - B. False

Part 2: Bagging

- 6) Bagging can improve the generalization error of
 - A. only trees
 - B. any classifier
 - C. classifiers that work well on the training data but not on the test data
 - D. None above
- 7) You use Bagging for a classification problem, your training error is 0% your test error is 50% what should you do
 - A. Increase the depth of the tree
 - B. Increase the number of predictors
 - C. decrease the number of predictors
- 8) When you are performing Bagging if you add more predictors it will lead to overfitting
 - A. Always
 - B. Rarely -if the dataset has lots of noise
 - C. Never

Part 2: Random Forest

9) Consider the following each column is a different tree constructed from a Random Forest algorithm

Tree 1	Tree 2	Tree 3	Tree 4	Tree 4
1	3	1	1	2

- A. 1
- B. 2
- C. 3
- 10) The main difference between Bagging with Trees and Random Forest is
 - A. Only Bagging randomly samples data samples to build trees
 - B. Only Random Forest randomly samples data samples to build trees
 - C. Only Bagging randomly samples data features to build trees
 - D. Only Random Forest randomly samples data features to build trees
- 11) What is the main reason we randomly construct trees?
 - A. Prevent underfitting
 - B. By making each tree a little different they are less likely all to make the same mistake
 - C. If you don't have enough samples
 - D. To preprocess data
- 12) Random Forest and Bagging are the best performing and most popular ensemble methods
 - A. True, although there are other ensemble methods Random Forest and Bagging usually perform best
 - B. False, Gradient Boosting is another popular ensemble method that performs comparable or even better, but it's more difficult to train due to overfitting

Solutions

- 1. B
- 2. D
- 3. B
- 4. A
- 5. B
- 6. C
- 7. B

8. B 9. A

10. D

11. B

12.B