Cellular Networks: Concepts and Theory

Overview of Telecommunication Systems

- 1G: Basic mobile telephony service
 - Based on analog cellular technology
 - e.g., American Mobile Phone (AMPS) and NMT in Europe
- 2G: Mobile telephony services for mass users with improved ciphering and efficient utilization of the radio spectrum
 - Digital cellular technology
 - e.g., GSM (Global System for Mobile communications) and CDMA
- 2.5G: Mobile Internet/data services together with voice services
 - Packet switching technology adding into 2G
 - Providing mobile data services over 2G networks
 - e.g., GPRS (General Packet Radio Service) and EDGE
- 3G: enhanced 2.5G services with improved mobile internet services and emerging new applications
 - e.g., CDMA2000 and UMTS (Universal Mobile Telecom System)

Overview of Telecommunication Systems

- 4G (LTE/WiMAX): IP-based voice, data, and multimedia phones
 - faster than 3G
- 5G: New Radio (NR) and LTE
 - millimeter wave bands (e.g., 26, 28, 38, 60 GHz)
 - OFDM, SCMA (Sparse Code MA), and NOMA (Non-Orthogonal MA) are candidates of standards
 - massive MIMO antennas (64 ~ 256 antennas) & beamforming
 - offering as high as 20 Gbps

Telecommunication Services

- TRADITIONALLY, a mobile phone is used for talking with another person: point-to-point voice service
- NOW, mobile phones are more than phones. They are computing devices with networking capabilities
- What can be done with them?

4

Telecommunication Services

- Emails
 - Emails may be sent to other mobile phone users
 - Instant messages (SMS), WeChat...
 - What are differences in communication technology between emails and voice?
- Web browsing
 - 2G provides limited text-based web browsing services with low-resolution graphics. 3G is better but has still many limitations
 - Trans-coding and adaptation of web contents to fit into handheld devices
- Location-dependent services
 - Identify subscriber locations based on the connection points (base stations) and GPS network
 - Location-specific web contents/services

Telecommunication Services

- Mobile game applications
 - Download and store a variety of dynamic applications and execute the applications in the mobile devices
 - Require a better operating environment and higher CPU power
- Video applications
 - 3G enables mobile users to obtain video contents
 - Real-time playback of videos (video stream data transmission)
- Other services
 - Tracking of mobile objects, vehicular networks, self-driving cars
 - Remote control and surveillance, e.g., home and field management
 - Shopping, marketing, logistic services, inventory control, IoT (Internet of Things)
 - • • • • •

Cellular Networks

- In a cellular network, service area is divided into a number of cells
 - Each cell has a BS that connects all MSs in the cell to the system
 - BS does channel allocation and management of MSs
 - One cell => one BS => multiple channels => many MSs
- Do you see the cell boundaries?
 - How to define the boundary of a cell?
 - No physical boundary, but there is a service boundary (no service signal)
- One particular location normally belongs to only one cell
 - Can it belong to more than one cell? Yes
 - Does it allow overlapping in cell area? Yes

Signal Coverage in Cellular Networks

Radio coverage, called a cell

 A MS may receive signals from more than one BS

Why Cellular?

- Why cellular?
 - A cell is allocated with a number of channels (each channel has a fixed bandwidth and frequency band).
 - A frequency band can be reused after a separation of distance
 - but "Near-by" cells should not use the same frequency band due to interference
 - For a given service area, smaller size cells => more channel reuse. Why?

Modeling of a Cell

Cells are modeled as polygons conceptually.

- Can it be circular?
 - Yes, the transmission range is more like a circle in open space, rather than a polygon.
- What is the distance from the center of the cell (location of the BS) to the edge (furthest MS in the cell)?
 - Transmission radius

Hexagonal cells cover all areas Circular cells have some gaps (uncovered areas)

Why triangles or squares are no good?

Handoff/Handover in Cellular Networks

- Handoff/handover
 - When a MS moves from one cell into another, handoff occurs where the MS is connected to a new BS
 - The new BS allocates a new channel to the MS and the connection is smoothly handed over to the new cell

Distribution of BSs in Cellular Networks

Fixed infrastructure of the telecommunication systems

Uneven distribution of BSs → Why?

4

Cell Sizes

- Cell size: 0.1 30 Km (radius). Not a constant. How to determine?
 - Determined according to connection load (density of users)
- Macro cell
 - Large cell for sparsely populated area (lesser users)
- Micro cell
 - Small cell for densely populated area (more users)
 - Smaller cells => lower transmission power => more channel reuse
 - What happens if macro cells are used for highly populated area?
- Umbrella cell (hierarchical cell)
 - Two (or more) levels: macro cell over multiple micro-cells
 - Macro cell for fast moving users, micro-cells for slow users
 - Reduce number of handoffs for fast moving users (in vehicles)
 - A tradeoff solution for channel reuse and frequent handoffs

Umbrella Cell

- Purpose of umbrella cells: support both users with high mobility and users with high density
- An Umbrella cell: A macro cell on top of 7 micro cells.
- The macro cell need to use different set of channels from micro cells, i.e., macro cell channels + micro cell channels
- When a new call arrives, should it be assigned to the micro cell channel or macro cell channel?

7 cells with similar size

a macro cell on top of 7 micro cells

Pros and Cons of Cellular Networks

- Advantages of cellular networks
 - Higher capacity: space division multiplexing to allow frequency reuses to support more users and higher bandwidth
 - Less transmission power: MSs are not far away from BSs. The power consumption of mobile device is minimized
 - Local interference: shorter distance between MS and BS leads to low transmission power => less interference
 - Robustness: Decentralized system with multiple BSs for connection with MSs => more fault tolerant
- Disadvantages of cellular networks
 - Infrastructure: require a complex infrastructure to have full coverage of the whole service area and connect all base stations
 - Handoff: moving from one cell into another

Area Planning & Frequency Assignment

- Goal: Min the number of call blocking, Max channel utilizations, Min handoffs (reduce ping-pong effect)
 - Call blocking: a call-request from a MS is rejected due to no free channel available
- Two directions to maximize system throughput at low cost:
 - 1) Divide the area into cells according to the distribution of users and traffic load
 - 2) Find the minimal channel-reuse distance, subject to the satisfactory signal quality (i.e., good SIR)

How to divide an area to cells?

- What is the right size of a cell?
 - Smaller cells => more cells => more BSs
 - More operational and management cost, but
 - More channel reuse and more users can be supported
 - Large cells => less BSs
 - Less operational cost of BSs, but
 - Poor channel utilization

Which cell division is better?

 f_1 f_2 f_3 f_4 f_5

Suppose frequency bands can be reused in non-neighboring cells:

- Which cell division has better usage of frequencies?
- Suppose there are 12 channels in total and all cells have the same number of users. How many users a cell division can support?

Frequency Assignment and Reuses

How to allocate frequency bands to a BS? Two basic ways to allocate frequencies to a BS, given the frequency bands of the system:

- Fixed frequency assignment:
 - Certain frequencies are assigned to a certain cell
 - Problem: Cells have different traffic load and this load changes from time to time
- Dynamic frequency assignment:
 - Any BS can assign the entire bands of frequencies that are currently free for use. (it needs to consider interference, i.e., frequencies currently used in neighbor cells.)
 - The cells with more traffic can use more frequencies
- How can a BS know the current free channels for assignment?
 - Coordination among BSs for assignment, or
 - A Central controller maintains a pool of free-channels

Dynamic Frequency Assignment

- A central controller maintains the pool of free frequencies
- Each BS needs to request the controller for assignment of a frequency for a newly arrived user
 - BS needs to interact with the controller for every new user, leading to longer time for handoff

Analysis of Channel Reuse in Cellular Networks

- Divide cells into clusters
 - Cells within a cluster all use different set of channels
 - The same set of channels are reused in cells in different clusters
- The size of the cluster (number of cells in a cluster), *K*, is called reuse factor
- The entire system only uses *K* sets of different channels
 - Given C, total number of channels in the system, the number of channels per cell is: C/K

Frequency Planning

Which one is better, K = 3 or 7?

- When K = 3, only neighboring cells use different frequency sets (separated by one cell distance), but in practical, it requires larger separation distance
- With a strong transmission power, the separation distance should be larger (e.g., K = 7)

7 cell cluster

Reuse Factor K

- Consider a cluster with C duplex channels for K cells
 - $C = c \times K$, where c is the number channels for each cell
 - C is the total frequency bands used by the whole system (including guard space)
- The cluster is replicated across the space to cover the whole area
- K, the reuse factor, is the size (no. of cells) of each cluster
 - With a smaller K is (e.g., from 7 reduced to 3), more channels can be allocated to each cell
 - But, a smaller K leads to higher interference. Why?
 - C = 105: $K = 7 \Rightarrow c = 15$; $K = 3 \Rightarrow c = 35$

What is the right number of K?

Hexagon Cell Coordinate System

- A cell is denoted by coordinate (i, j). The center cell is (0,0)
- *i* and *j* are integers, called shift parameters, i.e., the number of cells being shifted from the center to the current cell
- *i*: number of cells moved horizontally
- *j*: number of cells moved vertically from the center cell
- Coordinate of cell A is (2,1), relative to the center cell

Distance between Cells in Hexagons

$$d = \sqrt{3}R$$

$$x = i \times d \cos 30^{\circ}$$

$$= i \sqrt{3} R \cos 30^{\circ} = 3/2 i R$$

$$y = i \sqrt{3} R \sin 30^{\circ} = \sqrt{3}/2 i R$$

$$D^{2} = x^{2} + (y + j)^{2} \qquad j \times d$$

$$= (3/2 i R)^{2} + (\sqrt{3}/2 i R + j \sqrt{3} R)^{2}$$

$$= 9/4 i^{2}R^{2} + 3R^{2} (i^{2}/4 + i j + j^{2})$$

$$= 3R^{2} (i^{2} + j^{2} + i j)$$

$$D = \sqrt{3R^{2} (i^{2} + j^{2} + i j)}$$

$$= R \sqrt{3(i^{2} + j^{2} + i j)}$$

Distance & Reuse Factor

$$D = \sqrt{3(i^2 + ij + j^2)}R$$
$$= \sqrt{3K}R$$

where

$$K = i^2 + ij + j^2$$

Reuse factor: number of cells in the cluster within distance from (0,0) to (i,j)

i and *j* are integers. The possible values for *i* and *j* are 0, 1, 2, 3, ... Then, K = 1, 3, 4, 7, 9,...

K and No. of Channels per Cell

K = 7

Each cell =
$$C/7$$

K = 3

Each cell =
$$C/3$$

C is a constant for the entire system. It is divided into K groups of channels separated by guard frequencies

4

Signal Quality

 The signal quality depends on the ratio between signal power and interference (noise) power

$$\frac{S}{I} = \frac{S}{\sum_{i} I_{i}}$$
 Interference from the *i*th BS

 This is called signal-to-interference ratio (SIR) or Signal-tonoise ratio (SNR)

Signal-to-Interference Ratio (SIR)

Signal-to-noise ratio (SNR, or SIR)

$$(SNR)_{dB} = 10 \log_{10} \frac{\text{signal power}}{\text{noise power}}$$

- SNR is typically measured at a receiver
- SNR sets the upper bound on achievable data rate
 - High SNR => high-quality signal, high data rate
 - Low SNR => low data rate (802.11 Auto Rate Fallback)

Calculation of SIR/SNR

- SIR is measured in dB (decibel).
- SIR in dB = $10*log_{10}(P_{Signal}/P_{Noise})$.
- Example: Given SIR = 20dB, what is ratio of P_{Signal}/P_{noise} ? $P_{Signal}/P_{Noise} = 10^2 = 100$

$SIR = 20 \sim 25 \text{ dB}$	Strong Signal
$SIR = 15 \sim 20 \text{ dB}$	Good Signal
SIR < 12 dB	Poor Signal

Signal Propagation Model

■ The received signal power depends on the distance between the transmitter and the receiver.

$$P_r = P_0 d^{-\alpha}$$

- ullet α is called the path loss exponent.
 - Typically, $2 \le \alpha \le 5$.

SIR Analysis in Cellular Networks

Assumption:

- The user is located at the corner of a cell, i.e., d = R
- Interference from all other
 BSs using the same channel
- All BSs use the same power

$$\frac{S}{I} = \frac{P_0 R^{-\alpha}}{\sum_{i} P_0 D_i^{-\alpha}} = \frac{R^{-\alpha}}{\sum_{i} D_i^{-\alpha}}$$

 D_i is the distance between the centers of the reference cell and the i-th interfering cell

$$S = P_0 R^{-a}$$

Reuse Factor K = 7

SIR Calculation for K = 7

- Consider only the 1st tier of interfering cells
- Note: in real cases, more factors need to be considered. What are these factors?

$$S/I = R^{-\alpha}/6D^{-\alpha}$$

$$\frac{S}{I} = \frac{1}{6} \left(\frac{D}{R}\right)^{\alpha}$$

Calculate K for a Required SIR Value

- Suppose at least SIR = 18 dB.
- What is the minimum reuse factor? (assume $\alpha = 4$)
- We need to find the minimum distance D from the 1st tier of interfering BSs...

What is the right K?

$$10log_{10}S/I \ge 18dB$$

$$\frac{S}{I} = \frac{1}{6} \left(\frac{D}{R}\right)^{\alpha} \ge 10^{18 \text{dB/10}} = 10^{1.8} \approx 63$$

$$D \ge 4.4R$$

$$D = \sqrt{3K} R$$

$$K \ge 6.5$$

Choose
$$i = 2, j = 1$$
 or $i = 1, j = 2$

Ans: K = 7

Cellular System Infrastructure

VLR/HLR/AUC/EIR

- VLR contains information about all visiting MSs in the particular area of MSC
 - VLR has pointers to the HLR's of visiting MS
 - VLR helps in billing and access permission to the visiting MS
- AUC provides authentication and encryption parameters
- EIR contains identity of equipment that prevents service to unauthorized MSs

Automatic Location Update

Automatic Call Forwarding using HLR-VLR

- Wireless system needs to know whether MS is currently located in its home area or some other area (for routing incoming calls)
 - This is done by periodically exchanging signals between BS and MS known as beacons
- BS periodically broadcasts beacon signal (e.g., 1 per second) to detect the MS around
- Each MS listens to beacons, when it hears signal from a new BS, it adds it to the active beacon kernel table
 - This information is used by the MS to locate the nearest BS
- Information carried by beacon signal: cell ID, gateway ID of the paging area, timestamp, etc.

Steps for MS moving to a new MSC

- When MS decides that it needs to connect to a new BS

 (a new subscription area), it initiates the handoff process
- The new BS performs the user level processing by contacting the home MSC of the MS to find:
 - Who is the user?
 - What are its access permissions?
 - Keeping track of billing

(no need of this operation if the MS is within the same MSC)

- The home MSC sends appropriate authentication response to the current serving BS (visiting MSC)
- The visiting MSC (via the visiting BS) approves/ disapproves the user access

a

a MS moving outside its subscription area

Summary

- Cells are modelled as Hexagons
 - Channel reuse
 - Umbrella cells
- Cell size and density of users
 - Frequency assignment
- Channel reuse factor
 - Calculating interference distance in hexagon model
 - SIR in hexagon model
 - Calculating reuse factor K to meet required SIR
- Cellular system infrastructure
 - Keeping track of users and handoff

Exercise

■ Suppose the system requires SIR \geq 20 dB. What is the minimum reuse factor? Assume $\alpha = 3$.