Course 1 - Week 2 - Visualization

Explore Numerical Variables

- 1. Describe scatter plots (motivation, how to use it)
 - a. Scatter plots are used to explore the correlation (not causation!) of numerical paired data
 - b. X axis is explanatory variable while Y axis is response variable
 - c. To evaluate the relationship between the two variables, we draw a curve to fit the data pairs and then focus on the following four characteristics of the curve: **direction**, **shape**, **strength**, **outliers**
- 2. Describe histograms (motivation, characteristics, how to use it)
 - a. Histograms are used to present the data density of numerical variables
 - b. Skewness
 - i. left skewed
 - 1. long tail on the left (data is "pulled" towards the left side)
 - 2. mean < median < peak
 - ii. right skewed
 - 1. long tail on the right (data is "pulled" towards the right side)
 - 2. peak < median < mean
 - iii. symmetric
 - 1. mean = median = peak
 - c. Modality
 - i. Number of peaks
 - ii. Unimodal, bimodal, uniform, multimodal
 - d. Bin width
 - i. Too small: missing overall trend
 - ii. Too large: missing important details
- 3. When do we use dotplot?
 - a. It is useful when individual values are of interest
 - b. Doesn't work well when sample size increases
- 4. Describe box plots (motivation, characteristics, how to use it)
 - a. It is useful for outlier detection
 - b. We have median (50%) and Interquartile range (IQR, 25%, 75%) in the plot
 - c. Illustration of box plots and histogram together

- 5. Why do we use square difference in the variance calculation?
 - a. In pure difference calculation, positive difference and negative difference might cancel out
 - b. Compared to absolute value difference, square difference gives more weights to large deviations
- 6. What's the difference between variability and diversity?
 - a. Variability relates to the measure of centre and depends on how far each point is away from the centre (mean, mode, median)
 - b. Diversity relates to how many different types of objects are there in the sample.
 - c. In the figure below, set 1 has more diversity while set 2 has more variability

- 7. What is robust statistics?
 - a. Measures (such as mean, variance, median, etc) on which extreme values have little effect
 - b. Robust measures: median, IQR
 - c. Non-robust measures: mean, SD, range
- 8. Why do we use data transformations?
 - a. To see the data structure from a different way
 - b. To reduce skewness (log transformation applies to data where a lot of points are close to 0)
 - c. Straighten non-linear relationships to scatter plots

Explore Numerical Variables

- 9. What do we use to describe the distribution of a single categorical variable?
 - a. Use bar plot (different from histogram!)

10. What do we use to evaluate the relationship between two categorical variable

- 11. What do we use to evaluate the relationship between a categorical variable and a numerical variable
 - a. side-by-side boxplot

