Aprendizagem Automática

FICHA N. 4 **ENUNCIADO**

Tiago Miguel Da Silva Gil Nome:

Número: A46296

ATENÇÃO: Fixa de respostas múltiplas. Só uma única resposta em cada alínea está correta. Cada alínea vale 2 valores. Respostas erradas descontam 0.5 valores.

- 1. No ficheiro A46296_Q001_data.p encontra-se disponível uma variável independente x e uma variável dependente y. Pretende-se estimar a variável y através de uma regressão polinomial da variável x, minimizando o erro quadrático médio.
 - (a) Considere o conjunto de treino composto pelo "fold" 0, e o conjunto de teste composto pelo "fold" 1. Considere ainda que, através da minimização do erro quadrático médio do conjunto de treino, se estimou um modelo regressão polinomial de 4ª ordem: $\hat{y} = w_0 + w_1 x + w_2 x^2 + w_3 x^3 + w_4 x^4$.
 - i. No conjunto de treino, o erro absoluto médio é igual a 0.18.
 - ii. Arredondando a zero casas decimais, o valor de w_0 é 8.
 - iii. Todas as respostas anteriores.
 - iv. Nenhuma das respostas anteriores.
 - (b) Considere o conjunto de treino composto pelo "fold" 1, e o conjunto de teste composto pelo "fold" 0. Considere ainda que, através da minimização do erro quadrático médio do conjunto de treino, se estimou um modelo regressão polinomial de 3^a ordem: $\hat{y} = w_0 + w_1 x + w_2 x^2 + w_3 x^3$.
 - i. No conjunto de teste, o erro absoluto médio é igual a 48.83.
 - ii. No conjunto de treino, o erro absoluto médio é igual a 0.38.
 - iii. Todas as respostas anteriores.
 - iv. Nenhuma das respostas anteriores.
 - (c) Considere que \hat{y}_A é o modelo de regressão polinomial de 4^a ordem obtido minizando o erro quadrático médio com os primeiros 127 pontos do conjunto. Considere ainda que $\hat{y}_{\rm B}$ é modelo e regressão polinomial de 4ª ordem obtido minizando o erro quadrático médio com o "fold" 0. Finalmente, considere que o modelo \hat{y}_A é avaliado com os últimos 127 pontos do conjunto, e que $\hat{y}_{\rm B}$ é avaliado com os dados do "fold" 1.
 - i. Ambos os modelos obtêm resultados comparáveis.
 - ii. Os resultados do modelo $\hat{y}_{\rm B}$ são devidos à divisão sub-otima dos dados.
 - iii. O modelo $\hat{y}_{\rm B}$ apresenta melhores resultados que $\hat{y}_{\rm A}$.
 - iv. 4 é uma ordem polinomial demasiada elevada para modelar os dados.
- 2. Considere o conjunto "diabetes" disponível em sklearn. datasets (usar a função load_diabetes ()). Pretende-se estimar e avaliar modelos de regressão polinomial com os dados deste conjunto: use as primeiras 219 amostras para treino e as restantes para teste.

- (a) i. O número de coeficientes, incluindo w_0 , numa regressão polinomial de ordem 2, é igual a 72.
 - ii. O número de coeficientes, incluindo w_0 , numa regressão polinomial de ordem 3, é igual a 292.
 - iii. Todas as respostas anteriores.
 - iv. Nenhuma das respostas anteriores.
- (b) Considere que utiliza função Lasso (sub-módulo linear_model do sklearn) para uma regressão polinomial de 4ª ordem dos dados de treino. Instancie o regressor somente com os seguintes parâmetros:

Lasso (random_state=42, alpha=0.01)

- i. No conjunto de treino, o coeficiente de determinação, R^2 , é igual a 0.52.
- ii. Excluindo w_0 , o número de coeficientes do polinómio com valor absoluto maior que 253 é igual a 13.
- iii. Todas as respostas anteriores.
- iv. Nenhuma das respostas anteriores.
- (c) Considere o modelo de regressão polinomial de 2ª ordem que minimiza o erro quadrático médio no conjunto de treino.
 - i. No conjunto de teste, o coeficiente de determinação, R², é igual a 0.548.
 - ii. No conjunto de teste, o erro quadrático médio é igual a 3570.28.
 - iii. Todas as respostas anteriores.
 - iv. Nenhuma das respostas anteriores.
- 3. No ficheiro A46296_Q003_data.p, encontra-se um conjunto de dados bidimensionais divididos em duas classes Ω = {ω0, ω1} (negativos e positivos). Há duas variáveis num dicionário: X é uma matriz de dados, e y é um array com as classes dos dados. Considere o seguinte modelo linear de classificação:

 $\hat{y} = \mathbf{w}^{\top} \mathbf{x} = w_0 + w_1 x_1 + w_2 x_2$, com $\mathbf{x} \in \hat{\omega}_1$ para $\hat{y} \ge 0$, e para $\mathbf{w} = [w_0, w_1, w_2]^{\top}$ e $\mathbf{x} = [1, x_1, x_2]^{\top}$.

Considere ainda que o vetor $\mathbf{w}_{\mathrm{MSE}}$ é o vetor de pesos que minimiza o erro quadrático médio deste conjunto: $\mathcal{E} = \frac{1}{N} \sum_{n=1}^{N} \left(y[n] - \hat{y}[n]\right)^2$, onde N é o número total de pontos, e $n=1,\ldots,N$. As saídas desejadas são: y[n]=-1 para $\mathbf{x}[n]\in\varpi_0$ e y[n]=+1 para $\mathbf{x}[n]\in\varpi_1$.

- (a) Consider o classificador com o seguinte vetor de pesos $\mathbf{w} = [0.00, 0.29, 0.96]$.
 - i. O valor do recall é de 0.936.
 - ii. O número total de acertos é de 2094.
 - iii. O número de acertos na classe ϖ_0 é de 373.
 - iv. O valor da precisão é de 0.906.
- (b) Considere o classificador com vetor de pesos, \mathbf{w}_{MSE} , que minimiza o erro quadrático médio do conjunto.
 - i. O número de acertos na classe ϖ_0 é de 379.
 - ii. O vetor que minimiza o erro quadrático médio é $\mathbf{w}_{\text{MSE}} = [-0.764, -0.795, -0.841]$.
 - iii. Todas as respostas anteriores.

- iv. Nenhuma das respostas anteriores.
- (c) Consider o classificador com o seguinte vetor de pesos $\mathbf{w} = [0.00, 0.03, 1.00]$.
 - i. O valor do recall é de 0.872.
 - ii. O número de acertos na classe ϖ_1 é de 1601.
 - iii. Todas as respostas anteriores.
 - iv. Nenhuma das respostas anteriores.