WELCOME TO

Matrices

Matrices

Matrix is a rectangular array of real-valued scalars arranged in m horizontal rows and n vertical column.

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

Each element (a_{ij}) belongs to the (i^{th}) row and (j^{th}) column

Matrices Algebra I

Matrix Addition or Subtraction

$$(\mathbf{A} \pm \mathbf{B})_{i,j} = \mathbf{A}_{i,j} \pm \mathbf{B}_{i,j}$$

$$\begin{bmatrix} 1 & 3 & 1 \\ 1 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 & 5 \\ 7 & 5 & 0 \end{bmatrix} = \begin{bmatrix} 1+0 & 3+0 & 1+5 \\ 1+7 & 0+5 & 0+0 \end{bmatrix} = \begin{bmatrix} 1 & 3 & 6 \\ 8 & 5 & 0 \end{bmatrix}$$

Scalar multiplication

$$(c\mathbf{A})_{i,j} = c \cdot \mathbf{A}_{i,j}$$

Matrix Multiplication

$$(\mathbf{A}\mathbf{B})_{i,j} = \mathbf{A}_{i,1}\mathbf{B}_{1,j} + \mathbf{A}_{i,2}\mathbf{B}_{2,j} + \dots + \mathbf{A}_{i,n}\mathbf{B}_{n,j}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

Matrices Algebra II

Matrices Algebra III

=15

Linear Independence & Matrix Rank

 $\sum_{i=1}^{k} a_i \mathbf{v_i} = 0$

For a column vector $\mathbf{v} = (\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_k)$, \mathbf{v}_i are linearly independent if given condition is <u>not true</u>.

Rank of Matrix:

Rank of the matrix is the <u>largest number of linearly</u> independent columns.

$$\mathbf{C} = \begin{bmatrix} 1 & 3 & 0 & -1 & 0 \\ -1 & 0 & 1 & 1 & -1 \\ 0 & -3 & 1 & 0 & -1 \\ 2 & 3 & -1 & -2 & 1 \end{bmatrix} -$$

$$\mathbf{c}_{4} = -1 \cdot \mathbf{c}_{1}, \ \mathbf{c}_{5} = -1 \cdot \mathbf{c}_{3}, \ \mathbf{c}_{2} = 3 \cdot \mathbf{c}_{1} + 3 \cdot \mathbf{c}_{3}$$

$$rank(\mathbf{C}) = 2$$

Inverse of a Matrix

For a square matrix A, its inverse matrix A^{-1} is given by:

$$\mathbf{A}^{-1} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

Example:

$$F = \begin{bmatrix} 4 & -10 \\ 3 & 2 \end{bmatrix}$$

$$F^{-1} = \frac{1}{4(2) - 3(-10)} \begin{bmatrix} 2 & 10 \\ -3 & 4 \end{bmatrix} = \begin{bmatrix} \frac{1}{19} & \frac{5}{19} \\ \frac{3}{38} & \frac{2}{19} \end{bmatrix}$$

Eigen Decomposition

Eigen decomposition is decomposing a matrix A into a set of eigenvalues and eigenvectors.

Eigenvalues of a matrix A are Scalars λ

Eigenvectors of a matrix A are non-zero vectors v

Such that they satisfy the following equation:

Example - Eigen Decomposition

Scalar λ and vector ν are eigenvalues and eigenvectors of Matrix A:

Use Case: Eigen Decomposition

Eigenvalues and Eigenvectors allow us stretch the linear space in specific directions.

BEFORE v^1, v^2

AFTER
$$(v^1, v^2) * (\lambda^1, \lambda^2)$$

Eigenvalues & Eigenvectors used with PCA (principal component analysis) Technique for extracting the most important data.

Used in Data Compression.

Much obliged.

TECH I.S.

