AV312 - Lecture 3

Vineeth B. S.

Department of Avionics, Indian Institute of Space Science and Technology.

Figures from "Communication Systems" by Simon Haykin

August 2, 2016

Announcements

- ▶ Class test for 10 mins on Friday 5th
- ▶ 5 MCQs + a problem for 10 marks (no negative marking)
- ► Tested on portions covered till and including today's

Review

- Modulation and demodulation process
- ► Amplitude modulation and demodulation
 - Remember the first example? $(s(t) = A_c m(t) cos(2\pi f_c t))$
 - ► Remember AM? $(s(t) = A_c(1 + k_a m(t))cos(2\pi f_c t))$

Today's plan

- Amplitude modulation and demodulation
 - DSBSC
 - SSB
 - VSB
- Scribes are Al Saj and Pavan Kumar Reddy

Double sideband suppressed carrier (DSBSC)

- $ightharpoonup s(t) = A_c m(t) cos(2\pi f_c t)$ vs $s(t) = A_c (1 + k_a m(t)) cos(2\pi f_c t)$
- What are the similarities?
- ▶ What are the differences?

Double sideband suppressed carrier (DSBSC)

- $ightharpoonup s(t) = A_c m(t) cos(2\pi f_c t)$ vs $s(t) = A_c (1 + k_a m(t)) cos(2\pi f_c t)$
- What are the similarities?
- What are the differences?
 - Carrier needs carrier recovery
 - Complexity is higher!
- Carrier/phase recovery
 - Pilot tone (separate band)
 - ► Phase locked loop (PLL)
 - Costas receiver for DSBSC

Quadrature carrier multiplexing

▶ Bandwidth conservation using two DSBSC signals for $m_1(t)$ and $m_2(t)$

Quadrature carrier multiplexing (Receiver)

Single sideband modulation

- ightharpoonup Suppose m(t) is a real-valued CT signal
- ▶ What is the relationship between M(f) and M(-f)?

Single sideband modulation

- ▶ Suppose m(t) is a real-valued CT signal
- ▶ What is the relationship between M(f) and M(-f)?

$$M(f) = \int_{-\infty}^{\infty} m(t)e^{-j2\pi ft}dt$$

$$M^*(f) = \int_{-\infty}^{\infty} m^*(t)e^{j2\pi ft}dt$$

$$= \int_{-\infty}^{\infty} m(t)e^{j2\pi ft}dt$$

$$= M(-f)$$

Single sideband modulation

- An intuitive approach frequency discrimination
- Applicable to speech signals, $f_a \approx 100 Hz$

- See the Appendix of your textbook
- ▶ CT signal g(t) with FT G(f)
- ▶ The Hilbert transform (HT) $\hat{g}(t)$ is

- See the Appendix of your textbook
- ▶ CT signal g(t) with FT G(f)
- ▶ The Hilbert transform (HT) $\hat{g}(t)$ is

$$\hat{g}(t) = rac{1}{\pi} \int_{-\infty}^{\infty} rac{g(au)}{t- au} d au$$

► The inverse HT is

$$g(t) = -\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{\hat{g}(\tau)}{t - \tau} d\tau$$

- See the Appendix of your textbook
- ▶ CT signal g(t) with FT G(f)
- ▶ The Hilbert transform (HT) $\hat{g}(t)$ is

$$\hat{g}(t) = rac{1}{\pi} \int_{-\infty}^{\infty} rac{g(au)}{t- au} d au$$

► The inverse HT is

$$g(t) = -\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{\hat{g}(\tau)}{t - \tau} d\tau$$

▶ Interpret HT as a LTI system

- See the Appendix of your textbook
- ▶ CT signal g(t) with FT G(f)
- ▶ The Hilbert transform (HT) $\hat{g}(t)$ is

$$\hat{g}(t) = rac{1}{\pi} \int_{-\infty}^{\infty} rac{g(au)}{t- au} d au$$

► The inverse HT is

$$g(t) = -rac{1}{\pi} \int_{-\infty}^{\infty} rac{\hat{g}(au)}{t- au} d au$$

- Interpret HT as a LTI system
- ▶ Verify that FT of $\frac{1}{\pi t}$ is $-j \times \text{sgn}(f)$

Properties of Hilbert transform

- ▶ Show that $|G(f)| = |\hat{G}(f)|$
- ▶ Show that HT(HT(g(t))) = -g(t)
- ▶ Show that $\int_{-\infty}^{\infty} g(t)\hat{g}(t) = 0$
- ▶ Why is HT useful in the context of SSB ?