MATH 2301

- * Assignment 1 due tomorron on Gradescope!
- * Last time: Modular arithmetic
- * Posets (preview)
- ** Def: A relation R on a set S is called a partial order if it is reflexive, anti-symmetric and transitive.
- ** Notation: Let R be a partial order on a set S

 1 We'll say that S is a poset with

 respect to R-
 - ② If (a,b) ∈R, we'll say that a ≤ b

 If a ≤ b & a ≠ b, we'll say a ≺ b or

 If a ≤ b then we can write b ≥ a

- ** Examples [Checles left as an exercise]
- ① $\frac{1}{2}(x,y) \in IN \times IN \mid z \leq y \frac{3}{2}$ Eg in this case $1 \leq 3$ because $1 \leq 3$.
- ② $\{(x,y) \in N \times N \mid z \ge y\}$ In this case, $3 \le 1$ because $3 \ge 1$
- ③ S a fixed set. $\{(A_1B) \in P(S) \times P(S) \mid A \subseteq B\}$ E.g. $S = \{1, 2\} : \phi \preceq \{i\}, \phi \preceq \{2\}, \phi \preceq \{i, 2\}$ $\{i\} \preceq \{i, 2\}, \{2\} \preceq \{i, 2\}, \phi \preceq \phi, \{i\} \preceq \{i\}, etc.$
- 4) S = { Sneezy, sleepy, happy, doc, grumpy, dopey, bashful }
 - $\frac{7}{2}(w_1, w_2) \in S \times S \mid \text{length}(w_1) \leq \text{length}(w_2)$ and w_1 is alphabetically $\leq w_2$?

doc 3 sneezy

sleepy & bashful are unrelated.

bashful is only related to itself.

" a divides b"

(5) \(\frac{7}{6} \) (a,b) \(\in \text{N_1} \times \text{N_1} \) \(\alpha \) is a factor of b\(\frac{3}{6} \) including zero \(\alpha \) including zero

2 ½ 22 because 2 \ 22 3 ½ 57 because 3 \ 57

** Total orders

Let (P, \preceq) be a poset. Then (P, \preceq) is a total order if whenever $a, b \in P$, either $a \preceq b$ or $b \preceq a$.

[In Huis case, P is sometimes called a toset]

*** Notation:

Let a, b be elements of a poset. We say that a & b are comparable if either a < b or b < a - Otherwise they are incomparable.

** Hasse diagram

E.g. S= {1,2,3,4,5,6}

R= {(a,b) e SxS | a is a factor of b}

Graph

Hasse diagram

- ** Graph Hasse diagram?
- 1) Delete self-loops
- Delete "shortcut" awows (anything implied by transitivity)
- (3) All edges are assumed to be oriented upwards, and so we remove anowheads.

** Hasse diagram - & Graph drawing?

- 1) Draw amons (upwards)
- 2) Fill in transitive amous
- 3 Draw self-100ps.

(1)
$$S = \{1, 2, 3, 4\}$$

 $\{(a, b) \in S \times S \mid a \leq b\}$
(4)

 $S = \{1, 2, 3\}$ $\{(A, B) \in P(S) \times P(S) \mid A \in B\}$ $\{1, 2, 3\}$

** Topological sort Let (P, J) be a finite poset. A topological sorting of P is an ordening on all elements of P: (P1, P2, ---, pn), such that: whenever pi 3 pj, we have i \le j. E.g. Subset poset of $\{1,2\}$: $P = \{\emptyset, \{1,3,\{2\}\}, \{1,2\}\}$ 21,23 Two possible topological sorts: $(\phi, \overline{1}, \overline{1}, \overline{1}, \overline{2}, \overline{1}, \overline{2})$ E13 [23] $(\phi, \{23, \{13, \{1, 23\}\})$

*** Theorem: Every finite poset has at least one topological sort.

Sketch of
Proof: Let (P, 3) be a finite poset.

The first element of the ordering should be some a EP such that for any b EP, - either a 3 b, or 7 by finite-

- a is not comparable with b.

Once you have the first element, forget about it and do the same procedure to find the second elt...