김성수

[1] S. Ioffe and C. Szegedy, "Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift," in Proceedings of the 32nd International Conference on Machine Learning, Lille, France, Jul. 2015, vol. 37, pp. 448–456

[2] S. Santurkar, D. Tsipras, A. Ilyas, and A. Madry, "How Does Batch Normalization Help

Optimization?," in Advances in Neural Information Processing Systems, 2018, vol. 31

- Paper review
 - Batch Normalization : Accelerating Deep Network Training by Reducing Internal Covariate Shift[1]
 - How Does Batch Normalization Help Optimization?[2]

Normalization

- 목적: 데이터가 각 feature dimension(분포 상의 축)에 대해서 비슷한 값의 범위를 가지게 하는 것.
 - Weight의 update가 특정 feature에 치중되는 현상을 막음.
 - Training시 상대적으로 더 큰 learning rate를 사용할 수 있게 함.
- Ex) Two feature dimension data

초기 Input 레이어의 입력 데이터를 정규화 하는것은 상대적으로 간단함.

그러나 입력 데이터가 정규 분포를 띈다 해도 매 step에서 batch 데이터의 분포가 hidden layer를 거치면서 예측하기 힘든 형태로 변함.(Internal covariate shift)

그렇다면 hidden 레이어의 입력은 어떻게 normalize 할수있는가?

Batch normalization

- Covariate shift
 - 학습 시기와는 다르게 테스트 시기에 입력 데이터의 분포가 변경되는 현상

- Covariate shift
 - 학습 시기와는 다르게 테스트 시기에 입력 데이터의 분포가 변경되는 현상

Train data Test data

- Internal covariate shift (ICS)
 - Covariate shift가 네트워크 내부에서 발생하는 현상으로, Batch normalization 초창기 논문에서 해결하고자 한 문제점.

 θ_1 가 update됨에 따라 뒤쪽의 $hidden\ layer$ 의 $input\ distribution$ 이 변경됨. θ_2 의 입장에서는 매 step 마다 input distribution이 바뀌는 것과 동일함.

- Batch normalization
 - 학습 과정에서 이전 layer를 거침에 따라서 , 또는 batch의 데이터 분포가 변함에 따라서 다음 layer로의 입력이 다양한 분포를 가지는 것을 방지하기 위해 **batch의 평균과 분산을 이용해 layer의 출력을 정규화**하는 것. (mean = 0, std =1)

- Batch normalization
 - 학습 과정에서 이전 layer를 거침에 따라서, 또는 batch의 데이터 분포가 변함에 따라서 다음 layer로의 입력이 다양한 분포를 가지는 것을 방지하기 위해 **batch의 평균과 분산을 이용해 layer의 출력을 정규화**하는 것. (mean = 0, std =1)

Input: Values of x over a mini-batch: $\mathcal{B} = \{x_{1...m}\}$;

Parameters to be learned: γ , β Output: $\{y_i = \mathrm{BN}_{\gamma,\beta}(x_i)\}$ $\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^m x_i \qquad // \text{mini-batch mean}$ $\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2 \qquad // \text{mini-batch variance}$ $\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}} \qquad // \text{normalize}$ $y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv \mathrm{BN}_{\gamma,\beta}(x_i) \qquad // \text{scale and shift}$

Algorithm 1: Batch Normalizing Transform, applied to activation x over a mini-batch.

- \triangleright Batch normalization parameter γ , β
 - γ : Scaling factor
 - β : Translation factor
 - Learnable parameter를 두는 이유
 - : 각 layer를 단순히 N(0,1)로 normalize 할 경우, non-linear activation function의 영향력이 감소할 수 있기 때문.

Ex) Sigmoid activation function

Input data가 N(0,1)로 normalize 될 경우, 대부분의 입력에 대해 선형적인 activation output를 얻게 되어 network의 표현력이 감소.

 γ , β 를 학습하게 함으로써 network가 non-linearity를 유지할 수 있도록 해줌.

* Note

$$\gamma^{(k)} = \sqrt{\operatorname{Var}[x^{(k)}]}$$
$$\beta^{(k)} = \operatorname{E}[x^{(k)}]$$

Network가 parameter를 위와 같은 값으로 학습할 경우, 단순히 N(0,1)의 분포 또한 가질 수 있음.

[1] S. Ioffe and C. Szegedy, "Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift," in Proceedings of the 32nd International Conference on Machine Learning, Lille, France, Jul. 2015, vol. 37, pp. 448–456

This Week

\triangleright Dimension of γ , β

- Multi layer perceptron
- : Network가 multi layer perceptron 이라고 할 때, layer의 input dimension이 k라면 γ, β 의 dimension 또한 k임.
- Convolutional neural network
- : CNN의 경우 convolution의 성질을 유지시키고 싶기 때문에, 각 channel을 기준으로 각각의 γ , β 를 학습시킴. γ , β 의 dimension이 channel의 depth를 따르기 때문에 적은 개수의 parameter를 추가함으로써 성능을 비약적으로 올릴 수 있음.

또한, convolutional layer의 출력 (Wx+bias) 에서 bias 의 역할을 β 가 완벽히 대신 할 수 있기 때문에 batchnorm과 CNN을 함께 사용할 경우엔 convolutional layer에 bias parameter를 두지 않아도 됨.

- ▶ Batch normalization의 잘 알려진 장점
 - Model의 학습 속도(training speed)를 증가 시킴.
 - Weight initialization에 대한 model의 민감도를 감소 시킴.
 - Model의 hyperparameter setting에 대한 부담을 감소 시킴. (Ex: 더 큰 learning rate를 사용할 수 있음)

- ▶ "정말 Batch normalization의 성능 향상은 ICS의 감소로 부터 기인하는가? "
 - How Does Batch Normalization Help Optimization?[2]
 : 기존의 Batch normalization에 대한 해석이 잘못되었음을 실험적으로 입증하고 새로운 해석을 제시함.

- How Does Batch Normalization Help Optimization?[2]
 - 각 layer에서 ICS를 강제로 발생시켜도 일반 network보다 성능이 우수할 수 있다는 점과, Batch norm이 ICS를 감소시키지 못함을 실험적으로 입증함
- ▶ Batch norm layer 직후에 random noise를 삽입하여 ICS를 강제로 발생시킴

- > How Does Batch Normalization Help Optimization?[2]
 - Batch normalization의 성능 향상은 optimization landscape의 smoothing 효과로 부터 기인한다.
 - Optimization landscape : Weight에 따라 loss를 visualize 한 것.

Optimization landscape

- 현 시점에서 weight의 update 방향에 대해 step의 크기를 바꿔가며 update를 진행한 후 loss의 변화와 향후 weight의 update 방향을 측정.
 - Changes in gradient : Big differences imply less reliable gradient.
 - Loss variation: Large fluctuations make optimization hard.

Smoothing effect

Standard Standard + BatchNorm

150

0

0

5k

10k

15k

Steps

(a) loss landscape

(b) gradient predictiveness

- Gradient Predictiveness
 - 특정 시점에서 얻은 기울기에 대해 큰 step으로 weight update가 이루어져도, updat후의 gradien의 방향이 다르지 않다면 해당 gradien를 신뢰할 수 있고, 보다 안정적으로 학습을 진행 할 수 있음.
 - 즉, 현재의 기울기 방향으로 큰 스텝(step)만큼 이동 한 뒤에도 이동한 뒤의 기울기의 방향과 유사할 가능성에 따라 gradient predictiveness를 측정.
- Loss landscape
 - Smoothing effect로 인해 특정 시점에서 찾은 gradient의 방향대로 weight update가 많이 이루어진다고 해도 loss 값이 요동치지 않으며 일관성 있는 변화양상을 띔.

[1] S. loffe and C. Szegedy, "Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift," in Proceedings of the 32nd International Conference on Machine Learning, Lille, France, Jul. 2015, vol. 37, pp. 448–456

This week

[2] S. Santurkar, D. Tsipras, A. Ilyas, and A. Madry, "How Does Batch Normalization Help Optimization?," in Advances in Neural Information Processing Systems, 2018, vol. 31

▶ Batch normalization의 잘 알려진 장점

- Model의 학습 속도(training speed)를 증가 시킴
 - 1.Normalization: 각 feature가 weight update에 끼치는 영향이 치중되지 않게 함으로써 optimization을 도움.
 - 2.Smoothing effect : Reliable한 gradient에 따라 weight를 update하기 때문에 적은 수의 update 만으로도 빠르게 global minimum에 도달할 수 있음.
- Weight initialization에 대한 model의 민감도를 감소 시킴.
 - : 이전 출력 layer에 대한 dependency가 감소하므로, weight initialization이 network에 주는 영향력 또한 감소함.
- Model의 hyperparameter setting에 대한 부담을 감소 시킴. (Ex: 더 큰 learning rate를 사용할 수 있음)
 - : Smoothing effect로 인해 더 큰 step(=더 큰 learning rate)을 사용해도 loss가 fluctuate하지 않고 global minimum에 도달할 수 있음.

- Experimental result
 - Comparison between "Model with BN" and "Model without BN"
 - CIFAR10 classification
 - ResNet (ResNet-50), VGGnet (VGG11)

ResNet50

• epoch: 20, optimizer: SGD, loss: CE, learning rate: 0.01

VGGnet

• epoch: 50, optimizer: SGD, loss: CE, learning rate: 0.01

