Inferência - Parte 4 Análise de Regressão Linear

Correlação de Spearmann.

Coeficiente de Correlação de Spearmann

 É um modelo substitutivo do Coeficiente de Pearson quando em alguma das variáveis em análise houver dados distorcidos.

Coeficiente de Spearmann *Modelo Matemático*

· É o mesmo que o de Pearson simplesmente que em vez de trabalhar com os valores obtidos, trabalham com seus postos, isto é, substitui cada valor em ambas as variáveis por sua colocação no grupo todo.

Coeficiente de Spearmann *Modelo Matemático*

· Forma Simplificada.

$$r = \frac{n.\sum_{i} x_{i}.y_{i} - (\sum_{i} x_{i}).(\sum_{i} y_{i})}{\sqrt{[n.\sum_{i} x_{i}^{2} - (\sum_{i} x_{i})^{2}] \times [n.\sum_{i} y_{i}^{2} - (\sum_{i} y_{i})^{2}]}}$$

- Apenas que aqui:
- X denota o posto da variável independente;
- ₹¥denota o posto da variável dependente;

Coeficiente de Spearmann * Posto *

 Posto é a posição pelo qual um número, dentro de um ról ocupa, quando os dados estão classificados em ordem crescente.

Coeficiente de Spearmann

- * Posto * Maneira de encontrar
- Para saber o Posto pelo qual cada número ocupa dentro de um ról, proceda:
- Disponha os dados em ordem crescente;
- Atribua valor de 1, 2, 3 etc. a cada número para os dados ordenados;

Coeficiente de Spearmann * Posto * Maneira de encontrar

- Continuação.
- Caso exista números repetidos (mesmo valor) proceda:
 - Calcule a média dos postos originais destes números:
 - Substitua cada um por esta média de postos.

Coeficiente de Spearmann * Posto * Exemplo

- Pesquisa: Avaliar a quantidade de Dentes perdidas em pessoas de um concurso. (Simulada)
- Amostra Forneceu:
- Cargo: Limpeza
 13 11 7 15 17 4 8 10 19 e 6.

Transforme cada valor para posto.

* Posto * Exemplo 1 - Solução

- Primeiro tem que dispor dos dados em ordem crescente.
- Procedendo assim ficou:

- Olhando da direita para a esquerda tem:
- Posto do 4 é 1; Posto do 6 é 2;
- Posto do 7 é 3;
 Posto do 8 é 4;
- Posto do 10 é 5; etc.;

* Posto * Exemplo 1 - Solução

Com este processo chega a equivalência:

Originais	4	6	7	8	10	11	13	15	17	19
Posto correspondente	1	2	3	4	5	6	7	8	9	10

 Como não houve números repetidos, os postos para serem trabalhados são os acima descritos.

- Desta mesma pesquisa, para o cargo de segurança, os dados forneceram:
- 8 12 11 15 12 10 16 15 e 12.
- Ordenando:
 - 8 10 11 12 12 12 15 15 16
- De forma similar à anterior, chega ao guadro de equivalência (folha seguinte):

· Quadro de equivalência:

Originais	8	10	11	12	12	12	15	15	16
Posto correspondente	1	2	3	4	5	6	7	8	9

 Aqui ocorreram números repetidos e devido a isto tem que achar a média dos postos dos números repetidos;

Achando a Média:

- Do Número 12: (4 + 5 + 6) / 6 = 5
 Significa:
 Cada posto do 12 será substituído por 5;
- Do número 15: (7 + 8) / 2 = 7,5
 Significa:

 Cada posto do 15 será 7,5;

 Com isto o quadro de equivalência para trabalhar é:

Originais	8	10	11.	12	12	12	15	15	16
Posto correspondente	1	2	3	5	5	5	7,5	7,5	9

Coeficiente de Spearmann * Exemplo *

Da Pesquisa:

Avaliar a capacidade de respiração máxima em pacientes obesos e submetidos à cirurgia de estomago e com o auxilio da fisioterapia.

Calcule o coeficiente de correlação de Spearmann

O Banco de Dados originais é:

	Dados								
Pré-operatório	150	150	120	150	80	200	120	120	120
Pós-operatório	56	88	50	150	28	128	100	120	75
Pré-operatório	140	140	120	92	120	40	120	120	180
Pós-operatório	130	40	116	68	100	52	80	80	120

Exemplo *Postos Correspondentes

 Procedendo da forma ilustrada acima chega que os postos correspondentes são:

De x	15	15	7,5	15	2	18
De y	5	10	3	18	1	16
De x	7,5	7,5	7,5	12,5	12,5	7,5
De y	11,5	14,5	7	17	2	13
De x	3	7,5	1	7,5	7,5	17
De y	6	11,5	4	8,5	8,5	14,5

 Para o Coeficiente de Correlação de Spearman utiliza o modelo:

$$r = \frac{\pi.\sum_{i} x_{i}.y_{i} - (\sum_{i} x_{i}).(\sum_{i} y_{i})}{\sqrt{[\pi.\sum_{i} x_{i}^{2} - (\sum_{i} x_{i})^{2}] \times [\pi.\sum_{i} y_{i}^{2} - (\sum_{i} y_{i})^{2}]}}$$

Usando não os valores, mas sim os postos:

Usando os dados dos postos abaixo vem:

Dex	15	15	7,5	15	2	18
De y	15 5	10	3	18	1	16
Dex	7,5	7,5	7,5	12,5	12,5	7,5
De y	7,5 11,5	14,5	7	17	2	13
Dex	3	7,5	- 6	7,5	7,5	17
De y	3 6	11,5	- 4	8,5	8,5	14,5

$$\sum_{i} x_{i}.y_{i} = 15.5 + 15.10 + 7.5.3 + 15.18 + \dots + 17.14.5 = 1872.25$$

$$\sum x_i = 15 + 15 + 7.5 + 15 + \dots + 17 = 171,00$$

Continuando

Dex	15	15	7,5	15	2	18
De y	S	15 10	3	18	1	16
De x	7.5	7,5	7,5	12,5	12,5	7,5
De y	11,5	7,5 14,5	7	Π	2	13
De x	3	7,5	- 6	7,5	7,5	17
Dey	6	11,5	4		8,5	14,5

$$\sum x_i^2 = 15^2 + 15^2 + 7.5^2 + 15^2 + ... + 17^2 = 2064.50$$

$$\sum y_1^2 = 5^2 + 10^2 + 3^2 + 18^2 + ... + 14.5^2 = 2107.50$$

Exemplo *Somas Obtidas

· O valor de cada soma (dos postos) foi:

Soma dos Postos							
n = 18	$\sum x_i = 171,00$	$\sum x_i^2 = 2064,50$					
$\sum x_i.y_i = 1872,25$	$\sum y_i = 171,00$	$\sum y_i^2 = 2107,50$					

· Que na fórmula:

$$r = \frac{n.\sum_{i} x_{i}.y_{i} - (\sum_{i} x_{i}).(\sum_{i} y_{i})}{\sqrt{[n.\sum_{i} x_{i}^{2} - (\sum_{i} x_{i})^{2}] \times [n.\sum_{i} y_{i}^{2} - (\sum_{i} y_{i})^{2}]}}$$

* Exemplo * Valor de r

$$r = \frac{n.\sum_{i} x_{i}.y_{i} - (\sum_{i} x_{i}).(\sum_{i} y_{i})}{\sqrt{[n.\sum_{i} x_{i}^{2} - (\sum_{i} x_{i})^{2}] \times [n.\sum_{i} y_{i}^{2} - (\sum_{i} y_{i})^{2}]}}$$

Soma dos Postos							
n = 18	$\sum x_i = 171,00$	$\sum x_i^2 = 2064,50$					
$\sum x_i, y_i = 1872,25$	$\sum \gamma_i = 171,00$	$\sum y_i^2 = 2107,50$					

$$\Gamma_{\text{posto}} = \frac{18 \times 1872,25 - 171,00 \times 171,00}{\sqrt{(18 \times 2064,50 - 171,00^{2}) \times (18 \times 2107,50 - 171,00^{2})}}$$

· Chega a

$$r_{\text{posto}} = 0.5374$$

Correlação Linear.

Coeficiente de Speamann

FIM

Prof. Gercino Monteiro Filho

