Algebra II (ISIM), lista 5 (25.11.2020, deklaracje do 23.11.2020).

Teoria: Wyliczenie małych grup (do rzędu 8 włącznie). Ósemkowa grupa kwaternionów \mathbb{Q}_8 . Grupy abelowe: suma prosta grup abelowych. p-prymarna składowa. Część torsyjna. Grupa beztorsyjna. $G_t = \bigoplus_{p \in \mathbb{P}} G_p$. Wolna grupa abelowa. Podgrupa wolnej grupy abelowej rangi skończonej jest wolna. Skończona grupa abelowa jest sumą prostą grup cyklicznych (informacyjnie). Skończenie generowana grupa abelowa jest sumą prostą grup cyklicznych.

- 1. [–] Wyznaczyć wszystkie (z dokładnością do izomorfizmu) grupy abelowe rzędu 12, bez powtórzeń.
- 2. Załóżmy, że $f: G \to (\mathbb{Z}, +)$ jest epimorfizmem grup abelowych. Udowodnić, że $G \cong (\mathbb{Z}, +) \times Ker(f)$ (wsk: powtórzyć dowód z wykładu).
- 3. Udowodnić, że każda grupa abelowa jest homomorficznym obrazem wolnej grupy abelowej.
- 4. Dowieść, że jeśli H < Z(G) i G/H jest cykliczna, to G jest abelowa.
- 5. Załóżmy, że $G < (\mathbb{Z}^n, +)$. Niech $g_i \in G$ będzie takie, że współrzędne g_i o indeksach < i są zerowe, zaś (pod tym warunkiem) i-ta współrzędna g_i jest najmniejsza możliwa > 0. Jeśli takiego g_i nie ma, przyjmujemy $g_i = 0$. Udowodnić, że elementy g_1, \ldots, g_n generują grupę G.
- 6. (a) Czy $(\mathbb{Q}, +)$ jest wolną grupa abelową?
 - (b) Czy grupa S_{∞} (zespolonych pierwiastk Ałw z jedności) jest suma prostą grup cyklicznych?
 - (wsk: mówimy, że grupa abelowa G jest podzielna, gdy $(\forall x \in G)(\forall n > 0)(\exists y \in G)ny = x$. Rozważyć, czy grupy z zadania są podzielne.)
- 7. Załóżmy, że G jest grupą abelową i $G_1,\ldots,G_n < G$. Dowieść, że $G=G_1\oplus\cdots\oplus G_n\iff$
 - (1) $G = G_1 + \cdots + G_n$
 - (2) jeśli $x_1 \in G_1, \dots, x_n \in G_n$ i $x_1 + \dots + x_n = 0$, to $x_1 = \dots = x_n = 0$.
- 8. Załóżmy, że $\mathcal{B}, \mathcal{C} \subseteq \mathcal{G}$ są bazami wolnej grupy abelowej G. Udowodnić, że bazy te są równoliczne w następujący sposób: Niech p będzie ulubioną liczbą pierwszą. Rozważyć grupę ilorazową G/pG, która jest sumą prostą pewnej liczby grup cyklicznych rzędu p.
 - (a) Gdy \mathcal{B} lub \mathcal{C} jest skończona, obliczyć rząd grupy G/pG odwołując się do baz \mathcal{B} , \mathcal{C} .
 - (b)* gdy obie bazy są nieskończone, użyć algebry liniowej nad ciałem \mathbb{Z}_p .
- 9. Mówimy, że podgrupa H grupy G jest charakterystyczna, gdy f[H] = H dla każdego automorfizmu f grupy G. Udowodni \mathring{A}^{\ddagger} , że:
 - (a) jeśli H jest charakterystyczna w G, to $H \triangleleft G$.

- (b) Z(G) jest charakterystyczna w G. (c)* Jeśli w grupie G zachodzi równość $x^2=e$, to jedyne charakterystyczne podgrupy grupy G to sama G i podgrupa trywialna.
- 10. * Ile wynosi suma elementów skończonej grupy abelowej?