# **ECE 269: Linear Algebra and Applications**

Lecture 1: Introduction

Behrouz Touri (email: btouri@ucsd.edu, office: EBU1 6408)

University of California San Diego

# Table of contents

- 1. Course Logistics
- 2. Intro to Linear Algebra

# Course Logistics

- Behrouz Touri (instructor)
  - Office: EBU1 (JH) 6408
  - Email: btouri@ucsd.edu
  - Office hours: Tuesdays 11:00 am to 12:00 pm (in-person)
  - Research interest: control theory, dynamics over networks, stochastic systems

- Behrouz Touri (instructor)
  - Office: EBU1 (JH) 6408
  - Email: btouri@ucsd.edu
  - Office hours: Tuesdays 11:00 am to 12:00 pm (in-person)
  - Research interest: control theory, dynamics over networks, stochastic systems
- Zhuqing Li (TA)
  - Email: zhl160@ucsd.edu
  - Office hours: Weds 11:00 am to 12:00 pm (through Zoom (link is available on Canvas))

- Behrouz Touri (instructor)
  - Office: EBU1 (JH) 6408
  - Email: btouri@ucsd.edu
  - Office hours: Tuesdays 11:00 am to 12:00 pm (in-person)
  - Research interest: control theory, dynamics over networks, stochastic systems
- Zhuqing Li (TA)
  - Email: zhl160@ucsd.edu
  - Office hours: Weds 11:00 am to 12:00 pm (through Zoom (link is available on Canvas))
- Minhong Zhou (TA)
  - Office: TBD
  - Email: miz152@ucsd.edu
  - Office hours: Fridays 11 am-12 pm (In person)

- Behrouz Touri (instructor)
  - Office: EBU1 (JH) 6408
  - Email: btouri@ucsd.edu
  - Office hours: Tuesdays 11:00 am to 12:00 pm (in-person)
  - Research interest: control theory, dynamics over networks, stochastic systems
- Zhuqing Li (TA)
  - Email: zhl160@ucsd.edu
  - Office hours: Weds 11:00 am to 12:00 pm (through Zoom (link is available on Canvas))
- Minhong Zhou (TA)
  - Office: TBD
  - Email: miz152@ucsd.edu
  - Office hours: Fridays 11 am-12 pm (In person)
- Anand Kumar (TA)
  - Office: Jacobs Hall (EBU1) 5101C
  - Email: ank029@ucsd.edu
  - Office hours: Thursdays 11:00 am to 12:00 pm (in-person)

• References:

- References:
  - 1. Prof. Young-Han Kim's lecture notes (available on Canvas)

- References:
  - 1. Prof. Young-Han Kim's lecture notes (available on Canvas)
  - 2. Carl D. Meyer, Matrix analysis and applied linear algebra, Siam, 2000.

#### • References:

- 1. Prof. Young-Han Kim's lecture notes (available on Canvas)
- 2. Carl D. Meyer, Matrix analysis and applied linear algebra, Siam, 2000.
- 3. Sheldon Axler, Linear Algebra Done Right, Springer, available online through UCSD network (Springerlink)

- References:
  - 1. Prof. Young-Han Kim's lecture notes (available on Canvas)
  - 2. Carl D. Meyer, Matrix analysis and applied linear algebra, Siam, 2000.
  - 3. Sheldon Axler, Linear Algebra Done Right, Springer, available online through UCSD network (Springerlink)
- Course material available on Canvas

- References:
  - 1. Prof. Young-Han Kim's lecture notes (available on Canvas)
  - 2. Carl D. Meyer, Matrix analysis and applied linear algebra, Siam, 2000.
  - 3. Sheldon Axler, Linear Algebra Done Right, Springer, available online through UCSD network (Springerlink)
- Course material available on Canvas
- Submit homework assignments only through Gradescope

• Assignments (%15 total grade): there will be weekly homework or lab assignments (collaboration is encouraged but submissions should be personal)

- Assignments (%15 total grade): there will be weekly homework or lab assignments (collaboration is encouraged but submissions should be personal)
- Midterm (%30 total grade): **Thursday Feb 13th** during the class

- Assignments (%15 total grade): there will be weekly homework or lab assignments (collaboration is encouraged but submissions should be personal)
- Midterm (%30 total grade): **Thursday Feb 13th** during the class
- Final exam (%50 total grade): **Tuesday March 18th** from 3:00p-5:59 pm, place TBD

- Assignments (%15 total grade): there will be weekly homework or lab assignments (collaboration is encouraged but submissions should be personal)
- Midterm (%30 total grade): **Thursday Feb 13th** during the class
- Final exam (%50 total grade): **Tuesday March 18th** from 3:00p-5:59 pm, place TBD
- Class participation (%5 total grade): through pop quizzes on Gradescope (%60 for participation and %40 for correct answers)

- Assignments (%15 total grade): there will be weekly homework or lab assignments (collaboration is encouraged but submissions should be personal)
- Midterm (%30 total grade): **Thursday Feb 13th** during the class
- Final exam (%50 total grade): **Tuesday March 18th** from 3:00p-5:59 pm, place TBD
- Class participation (%5 total grade): through pop quizzes on Gradescope (%60 for participation and %40 for correct answers)
- Disability: Contact Office for Students with Disabilities at 858-534-4382 for further
  accommodations needed for the exams. Please provide OSD documents at least two
  weeks prior to the midterm exam.

• There are four office hours throughout the week.

• There are four office hours throughout the week.

- There are four office hours throughout the week.
- No piazza or any other online forum. Interested?

- There are four office hours throughout the week.
- No piazza or any other online forum. Interested?
  - Read: A World Without Email: Reimagining Work in an Age of Communication Overload, by Cal Newport

- There are four office hours throughout the week.
- No piazza or any other online forum. Interested?
  - Read: A World Without Email: Reimagining Work in an Age of Communication Overload, by Cal Newport

- There are four office hours throughout the week.
- No piazza or any other online forum. Interested?
  - Read: A World Without Email: Reimagining Work in an Age of Communication Overload, by Cal Newport
  - Ten-Percent Happier Podcast interview with the author (Cal Newport): https://www.youtube.com/watch?v=I4bbicdwtZ0

- There are four office hours throughout the week.
- No piazza or any other online forum. Interested?
  - Read: A World Without Email: Reimagining Work in an Age of Communication Overload, by Cal Newport
  - Ten-Percent Happier Podcast interview with the author (Cal Newport): https://www.youtube.com/watch?v=I4bbicdwtZ0
  - Only on rare cases emails will be responded.

- There are four office hours throughout the week.
- No piazza or any other online forum. Interested?
  - Read: A World Without Email: Reimagining Work in an Age of Communication Overload, by Cal Newport
  - Ten-Percent Happier Podcast interview with the author (Cal Newport): https://www.youtube.com/watch?v=I4bbicdwtZ0
  - Only on rare cases emails will be responded.
- All communications with anyone in the course should be PR: Professional and Respectful.

# **Academic Integrity**

• Any cheating in any parts of the course leads to zero grade in the respective grade item.

# **Academic Integrity**

- Any cheating in any parts of the course leads to zero grade in the respective grade item.
- $\bullet$  Example: copying Problem 1 in HW 1 results in 0 out of 15% of HW grade for the course.

Intro to Linear Algebra

• The study of linear objects and structures

- The study of linear objects and structures
- What are linear objects and structures?

- The study of linear objects and structures
- What are linear objects and structures?
- Mathematically: these are **linear subsets** and **linear mappings**:

- The study of linear objects and structures
- What are linear objects and structures?
- Mathematically: these are **linear subsets** and **linear mappings**:
  - linear subsets: subsets X such that  $x_1 + x_2 \in X$  for all  $x_1, x_2 \in X$  and  $\alpha x \in X$  for all scalars  $\alpha$  and  $\alpha \in X$

- The study of linear objects and structures
- What are linear objects and structures?
- Mathematically: these are linear subsets and linear mappings:
  - linear subsets: subsets X such that  $x_1 + x_2 \in X$  for all  $x_1, x_2 \in X$  and  $\alpha x \in X$  for all scalars  $\alpha$  and  $x \in X$
  - linear mappings:  $T: U \to V$  is linear if  $T(x_1 + x_2) = T(x_1) + T(x_2)$  and  $T(\alpha x) = \alpha T(x)$  for all  $x_1, x_2 \in U$  and all scalars  $\alpha$

- The study of linear objects and structures
- What are linear objects and structures?
- Mathematically: these are linear subsets and linear mappings:
  - linear subsets: subsets X such that  $x_1 + x_2 \in X$  for all  $x_1, x_2 \in X$  and  $\alpha x \in X$  for all scalars  $\alpha$  and  $x \in X$
  - linear mappings:  $T: U \to V$  is linear if  $T(x_1 + x_2) = T(x_1) + T(x_2)$  and  $T(\alpha x) = \alpha T(x)$  for all  $x_1, x_2 \in U$  and all scalars  $\alpha$
- Example topics:

- The study of linear objects and structures
- What are linear objects and structures?
- Mathematically: these are linear subsets and linear mappings:
  - linear subsets: subsets X such that  $x_1 + x_2 \in X$  for all  $x_1, x_2 \in X$  and  $\alpha x \in X$  for all scalars  $\alpha$  and  $x \in X$
  - linear mappings:  $T: U \to V$  is linear if  $T(x_1 + x_2) = T(x_1) + T(x_2)$  and  $T(\alpha x) = \alpha T(x)$  for all  $x_1, x_2 \in U$  and all scalars  $\alpha$
- Example topics:
  - (i) What scalar, addition, scalar multiplication means?
  - (ii) Moving beyond Euclidean spaces
  - (iii) What vectors can be achieved by linear transformations?
  - (iv) What happens when we combine linear transformations?
  - (v) ...

• Machine Learning: classification problem

- Machine Learning: classification problem
- Control theory: controllability

- Machine Learning: classification problem
- Control theory: controllability
- Coding theory: introducing efficient redundant bits

- Machine Learning: classification problem
- Control theory: controllability
- Coding theory: introducing efficient redundant bits
- Probability theory: card shuffling

- Machine Learning: classification problem
- Control theory: controllability
- Coding theory: introducing efficient redundant bits
- Probability theory: card shuffling
- Optimization theory: pretty much anything! :-)

### Real-world problem:

• Given the movie ratings of a number of women and men and knowing their genders, can we determine the gender of users with unspecified gender based on their preferences?

### Real-world problem:

• Given the movie ratings of a number of women and men and knowing their genders, can we determine the gender of users with unspecified gender based on their preferences?

#### A Mathematical approach to this problem:

• Suppose we are given two sets of vectors  $A = \{x_1, \dots, x_n\}$  and  $B = \{y_1, \dots, y_m\}$  in  $\mathbb{R}^n$ , representing the ratings of the users in each group, where n is the selected number of movies.

### Real-world problem:

• Given the movie ratings of a number of women and men and knowing their genders, can we determine the gender of users with unspecified gender based on their preferences?

- Suppose we are given two sets of vectors  $A = \{x_1, \dots, x_n\}$  and  $B = \{y_1, \dots, y_m\}$  in  $\mathbb{R}^n$ , representing the ratings of the users in each group, where n is the selected number of movies.
- Can we find a linear subspace separating the two sets?

### Real-world problem:

• Given the movie ratings of a number of women and men and knowing their genders, can we determine the gender of users with unspecified gender based on their preferences?

#### A Mathematical approach to this problem:

• Suppose we are given two sets of vectors  $A = \{x_1, \dots, x_n\}$  and  $B = \{y_1, \dots, y_m\}$  in  $\mathbb{R}^n$ , representing the ratings of the users in each group, where n is the selected number of movies.

• Can we find a linear subspace separating the two sets?





### Real-world problem:

• Given the movie ratings of a number of women and men and knowing their genders, can we determine the gender of users with unspecified gender based on their preferences?

- Suppose we are given two sets of vectors  $A = \{x_1, \dots, x_p\}$  and  $B = \{y_1, \dots, y_q\}$  in  $\mathbb{R}^n$ , representing the ratings of the users in each group, where n is the selected number of movies.
- Can we find a linear subspace separating the two sets?
- Mathematically: can we find a vector u and an  $\alpha \in \mathbb{R}$  such that  $u^T x \leq \alpha$  for all  $x \in A$  and  $u^T y > \alpha$  for all  $y \in B$ ?

### Real-world problem:

• Given the movie ratings of a number of women and men and knowing their genders, can we determine the gender of users with unspecified gender based on their preferences?

- Suppose we are given two sets of vectors  $A = \{x_1, \dots, x_p\}$  and  $B = \{y_1, \dots, y_q\}$  in  $\mathbb{R}^n$ , representing the ratings of the users in each group, where n is the selected number of movies.
- Can we find a linear subspace separating the two sets?
- Mathematically: can we find a vector u and an  $\alpha \in \mathbb{R}$  such that  $u^T x \leq \alpha$  for all  $x \in A$  and  $u^T y > \alpha$  for all  $y \in B$ ?
- If so, then for a user with a known rating vector z if  $u^Tz \le \alpha$  we classify z to be a type A user and otherwise, we declare it as type B.

### Real-world problem:

• Given the movie ratings of a number of women and men and knowing their genders, can we determine the gender of users with unspecified gender based on their preferences?

- Suppose we are given two sets of vectors  $A = \{x_1, \dots, x_p\}$  and  $B = \{y_1, \dots, y_q\}$  in  $\mathbb{R}^n$ , representing the ratings of the users in each group, where n is the selected number of movies.
- Can we find a linear subspace separating the two sets?
- Mathematically: can we find a vector u and an  $\alpha \in \mathbb{R}$  such that  $u^T x \leq \alpha$  for all  $x \in A$  and  $u^T y > \alpha$  for all  $y \in B$ ?
- If so, then for a user with a known rating vector z if  $u^Tz \le \alpha$  we classify z to be a type A user and otherwise, we declare it as type B.
- This is called linear-classifier problem.

### Real-world problem:

• Given the movie ratings of a number of women and men and knowing their genders, can we determine the gender of users with unspecified gender based on their preferences?

- Suppose we are given two sets of vectors  $A = \{x_1, \dots, x_p\}$  and  $B = \{y_1, \dots, y_q\}$  in  $\mathbb{R}^n$ , representing the ratings of the users in each group, where n is the selected number of movies.
- Can we find a linear subspace separating the two sets?
- Mathematically: can we find a vector u and an  $\alpha \in \mathbb{R}$  such that  $u^T x \leq \alpha$  for all  $x \in A$  and  $u^T y > \alpha$  for all  $y \in B$ ?
- If so, then for a user with a known rating vector z if  $u^Tz \le \alpha$  we classify z to be a type A user and otherwise, we declare it as type B.
- This is called linear-classifier problem.
- Critical views here?

## Real-world problem:

ullet Given a space shuttle on the ground, is it possible to steer it to a given orbit with speed v?

### Real-world problem:

• Given a space shuttle on the ground, is it possible to steer it to a given orbit with speed v?

#### A Mathematical approach to this problem:

$$\frac{dx(t)}{dt}=f(x(t),u(t)).$$

### Real-world problem:

• Given a space shuttle on the ground, is it possible to steer it to a given orbit with speed v?

#### A Mathematical approach to this problem:

• We are given a dynamical system with control input u(t),

$$\frac{dx(t)}{dt}=f(x(t),u(t)).$$

• Here, x(t) represents the state of the shuttle (location, yaw, role, and pitch) at time t, and u(t) represents the control command (thrust commands, flap angles, etc.)

### Real-world problem:

• Given a space shuttle on the ground, is it possible to steer it to a given orbit with speed v?

#### A Mathematical approach to this problem:

$$\frac{dx(t)}{dt}=f(x(t),u(t)).$$

- Here, x(t) represents the state of the shuttle (location, yaw, role, and pitch) at time t, and u(t) represents the control command (thrust commands, flap angles, etc.)
- Given an initial condition  $x_0$  at time  $t_0$ , can we reach a set S at any time T using a control command?

### Real-world problem:

• Given a space shuttle on the ground, is it possible to steer it to a given orbit with speed v?

#### A Mathematical approach to this problem:

$$\frac{dx(t)}{dt}=f(x(t),u(t)).$$

- Here, x(t) represents the state of the shuttle (location, yaw, role, and pitch) at time t, and u(t) represents the control command (thrust commands, flap angles, etc.)
- Given an initial condition  $x_0$  at time  $t_0$ , can we reach a set S at any time T using a control command?
- In general, it is a hard problem, however, it is easy when f is linear.

### Real-world problem:

• Given a space shuttle on the ground, is it possible to steer it to a given orbit with speed v?

#### A Mathematical approach to this problem:

$$\frac{dx(t)}{dt} = f(x(t), u(t)). = Axco + B wco)$$

- Here, x(t) represents the state of the shuttle (location, yaw, role, and pitch) at time t, and u(t) represents the control command (thrust commands, flap angles, etc.)
- Given an initial condition  $x_0$  at time  $t_0$ , can we reach a set S at any time T using a control command?
- In general, it is a hard problem, however, it is easy when f is linear.
- Any critical views?

### Real-world problem:

• Suppose that we have an imperfect communication channel. How to send information over this channel *reliably* by introducing redundant information.

### Real-world problem:

• Suppose that we have an imperfect communication channel. How to send information over this channel *reliably* by introducing redundant information.

#### A Mathematical approach to this problem:

• Suppose that *u* is a binary vector of length *k* representing the information to be transformed.



### Real-world problem:

• Suppose that we have an imperfect communication channel. How to send information over this channel *reliably* by introducing redundant information.

- Suppose that *u* is a binary vector of length *k* representing the information to be transformed.
- The question is how to transform u to a length n > k) vector to be transmitted over the communication channel.

### Real-world problem:

• Suppose that we have an imperfect communication channel. How to send information over this channel *reliably* by introducing redundant information.

- Suppose that *u* is a binary vector of length *k* representing the information to be transformed.
- The question is how to transform u to a length n (i) vector to be transmitted over the communication channel.
- Mathematically, the problem is to find an *efficient* mapping  $f: \mathbb{Z}_2^k \to \mathbb{Z}_2^n$ .

#### Real-world problem:

 Suppose that we have an imperfect communication channel. How to send information over this channel *reliably* by introducing redundant information.

- Suppose that *u* is a binary vector of length *k* representing the information to be transformed.
- The question is how to transform u to a length n (i) vector to be transmitted over the communication channel.
- ullet Mathematically, the problem is to find an *efficient* mapping  $f:\mathbb{Z}_2^k o \mathbb{Z}_2^n$ .
- In fact, it can be shown that **linear** functions f, are as good as any complicated functions for reasonable channels.

### Real-world problem:

• Suppose that we have an imperfect communication channel. How to send information over this channel *reliably* by introducing redundant information.

- Suppose that *u* is a binary vector of length *k* representing the information to be transformed.
- The question is how to transform u to a length n (i) vector to be transmitted over the communication channel.
- Mathematically, the problem is to find an *efficient* mapping  $f: \mathbb{Z}_2^k \to \mathbb{Z}_2^n$ .
- In fact, it can be shown that **linear** functions f, are as good as any complicated functions for reasonable channels.
- Any critical views?

# Applications of Linear Algebra: Markov Chains

### Real-world problem:

• How many times should a card dealer shuffle the cards in a casino to be sure of having a random deck?

# **Applications of Linear Algebra: Markov Chains**

### Real-world problem:

 How many times should a card dealer shuffle the cards in a casino to be sure of having a random deck?

#### A Mathematical approach to this problem:

• Suppose that we are given a non-negative matrix *P* such that rows and columns of *P* add to 1.

## Applications of Linear Algebra: Markov Chains



#### Real-world problem:

 How many times should a card dealer shuffle the cards in a casino to be sure of having a random deck?

- Suppose that we are given a non-negative matrix P such that rows and columns of P add to 1.
- The above question is very closely related to the following problem: Suppose that  $P^k \to A$  as  $k \to \infty$ . Then, what can we say about the speed of convergence.

• In this course, all vectors are considered to be column vectors.

- In this course, all vectors are considered to be column vectors.
- Notations:

- In this course, all vectors are considered to be column vectors.
- Notations:
  - a.  $\underline{\mathbb{Z}}$  : the set of integers  $\ldots, -2, -1, 0, 1, 2, \ldots$

- In this course, all vectors are considered to be column vectors.
- Notations:



- In this course, all vectors are considered to be column vectors.
- Notations:
  - a.  $\mathbb{Z}$ : the set of integers ...,  $-2, -1, 0, 1, 2, \ldots$
  - b.  $\mathbb{Z}_p : \{0, 1, \dots, p-1\}$
  - c.  $\mathbb{R}$  : the set of real numbers

- In this course, all vectors are considered to be column vectors.
- Notations:
  - a.  $\mathbb{Z}$ : the set of integers ..., -2, -1, 0, 1, 2, ...
  - b.  $\mathbb{Z}_p : \{0, 1, \dots, p-1\}$
  - c.  $\mathbb{R}$ : the set of real numbers
  - d.  $\underline{\mathbb{C}} := \{(a+bj) \mid a,b \in \mathbb{R}\}$  the set of complex numbers

$$\frac{1}{2} = \frac{1}{4} \cos \frac{1}{2} \cos \frac{1}{2} = \frac{1}{2} (a_1b_1) a_2b_2 + \frac{1}{2} \cos \frac{1}{2}$$

notation: 
$$|c| = \sqrt{Re^2 c}$$
, we define  $c^* = c := a - hj$ 

- In this course, all vectors are considered to be column vectors.
- Notations:
  - a.  $\mathbb{Z}$ : the set of integers ..., -2, -1, 0, 1, 2, ...
  - b.  $\mathbb{Z}_p : \{0, 1, \dots, p-1\}$
  - c.  $\mathbb{R}$ : the set of real numbers
  - d.  $\mathbb{C}:=\{(a+bj)\mid a,b\in\mathbb{R}\}$  the set of complex numbers
- We use capital letters  $A, B, \Gamma$ , etc., to denote matrices (most often).

- In this course, all vectors are considered to be column vectors.
- Notations:
  - a.  $\mathbb{Z}$ : the set of integers ...,  $-2, -1, 0, 1, 2, \ldots$
  - b.  $\mathbb{Z}_p : \{0, 1, \dots, p-1\}$
  - c.  $\mathbb{R}$ : the set of real numbers
  - d.  $\mathbb{C}:=\{(a+bj)\mid a,b\in\mathbb{R}\}$  the set of complex numbers
- We use capital letters  $A, B, \Gamma$ , etc., to denote matrices (most often).
- For a set  $\mathcal{X}$ , the set of  $m \times n$  matrices with entries in  $\mathcal{X}$  is denoted by  $\mathcal{X}^{m \times n}$ .

- In this course, all vectors are considered to be column vectors.
- Notations:
  - a.  $\mathbb{Z}$ : the set of integers ...,  $-2, -1, 0, 1, 2, \ldots$
  - b.  $\mathbb{Z}_p : \{0, 1, \dots, p-1\}$
  - c.  $\mathbb{R}$ : the set of real numbers
  - d.  $\mathbb{C}:=\{(a+bj)\mid a,b\in\mathbb{R}\}$  the set of complex numbers
- We use capital letters  $A, B, \Gamma$ , etc., to denote matrices (most often).
- For a set  $\mathcal{X}$ , the set of  $m \times n$  matrices with entries in  $\mathcal{X}$  is denoted by  $\mathcal{X}^{m \times n}$ .
- We use capital letters  $A, B, \Gamma$ , etc., to denote matrices (most often)

- In this course, all vectors are considered to be column vectors.
- Notations:
  - a.  $\mathbb{Z}$ : the set of integers ...,  $-2, -1, 0, 1, 2, \ldots$
  - b.  $\mathbb{Z}_p : \{0, 1, \dots, p-1\}$
  - c.  $\mathbb{R}$ : the set of real numbers
  - d.  $\mathbb{C}:=\{(a+bj)\mid a,b\in\mathbb{R}\}$  the set of complex numbers
- We use capital letters  $A, B, \Gamma$ , etc., to denote matrices (most often).
- For a set  $\mathcal{X}$ , the set of  $m \times n$  matrices with entries in  $\mathcal{X}$  is denoted by  $\mathcal{X}^{m \times n}$ .
- We use capital letters  $A, B, \Gamma$ , etc., to denote matrices (most often)
- We use  $A_{ij}$  to denote the (i,j)th entry of matrix A.

- In this course, all vectors are considered to be column vectors.
- Notations:
  - a.  $\mathbb{Z}$ : the set of integers ...,  $-2, -1, 0, 1, 2, \ldots$
  - b.  $\mathbb{Z}_p : \{0, 1, \dots, p-1\}$
  - c.  $\mathbb{R}$ : the set of real numbers
  - d.  $\mathbb{C}:=\{(a+bj)\mid a,b\in\mathbb{R}\}$  the set of complex numbers
- We use capital letters  $A, B, \Gamma$ , etc., to denote matrices (most often).
- For a set  $\mathcal{X}$ , the set of  $m \times n$  matrices with entries in  $\mathcal{X}$  is denoted by  $\mathcal{X}^{m \times n}$ .
- We use capital letters  $A, B, \Gamma$ , etc., to denote matrices (most often)
- We use  $A_{ij}$  to denote the (i,j)th entry of matrix A.
- For a matrix A, we denote its transpose by A' or  $A^T$ .

Fields: A field 
$$(F, +, 0)$$
 such that

 $(A) = A + B + B + A$ 
 $(A) = A + B + B + A$ 
 $(A) = A + B + B + A$ 
 $(A) = A + B + B + A$ 
 $(A) = A + B + B + A$ 
 $(A) = A + B + B + A$ 
 $(A) = A + B + B + A$ 
 $(A) = A + B + B + A$ 
 $(A) = A + B + B + A$ 
 $(A) = A + B + B + A$ 
 $(A) = A + B + B + A$ 
 $(A) = A + B + B + A$ 
 $(A) = A + B + B + A$ 
 $(A) = A + B + B + A$ 
 $(A) = A + B + B + A$ 
 $(A) = A + B + B + A$ 
 $(A) = A + B + B + A$ 
 $(A) = A + B + B + A$ 
 $(A) = A + B + B + A$ 
 $(A) = A + B + B + A$ 
 $(A) = A + B + B + A$ 
 $(A) = A + B + B + A$ 
 $(A) = A + B + B + A$ 
 $(A) = A + B + B + A$ 
 $(A) = A + B + B + A$ 
 $(A) = A + B + B + A$ 
 $(A) = A + B + B + A$ 
 $(A) = A + B + B + A$ 
 $(A) = A + B + B + A$ 
 $(A) = A + B + B + A$ 
 $(A) = A + B + B + A$ 
 $(A) = A + B + B + A$ 
 $(A) = A + B + B + A$ 
 $(A) = A + B + B + A$ 
 $(A) = A + B + B + A$ 
 $(A) = A + B + B$ 
 $(A) = A + B + B$ 
 $(A) = A + B + B$ 
 $(A) = A + B$ 
 $(A)$