FÍSICA MATEMÁTICA II

Autor:

Pedro A. Contreras-Corral

Prefacio

Este documento ha sido preparado por Pedro Contreras Corral como material de apoyo para el curso Física Matemática II. En cuanto a su contenido, se han utilizado como base las notas de clase de las ocasiones en que el curso fue dictado por el profesor Guillermo Rubilar, y las profesoras Ariana Muñoz e Ivana Sebestova, además del apunte preparado por Alejandro Saavedra como ayudante de esta última, que también fue utilizado como base para el *template* de este documento.

Agradezco los aportes de Lixin Lai y Fernanda Mella al facilitarme sus notas de las clases de la profesora Ivana Sebestova, así como los de José Huenchual por sus notas del curso de la profesora Ariana Muñoz.

Índice general

1.	Anál	lisis de Fourier	4
	1.1.	Periodicidad y paridad de funciones	4
		1.1.1. Funciones periódicas	4
		1.1.2. Funciones pares e impares	6
	1.2.	Serie de Fourier trigonométrica	7
		1.2.1. Definición	7
		1.2.2. Series de senos y cosenos	9
		1.2.3. Ejemplos	9
	1.3.	Serie exponencial	13
	1.4.	Diferenciación e integración de las series de Fourier	15
	1.5.	Fenómeno de Gibbs	17
2.	Tran		21
	2.1.	Definiciones	21
	2.2.	Ejemplos	25
	2.3.	Propiedades de la transformada de Fourier	29
	2.4.	Convolución	32
	2.5.	Aplicación de la transformada de Fourier	37
3.	Ecua	aciones Diferenciales en Física	40
	3.1.	Algunas ecuaciones básicas	11
		3.1.1. Ecuación de Laplace	11
		3.1.2. Ecuación de Poisson	11
		3.1.3. Ecuación de Helmholtz	12
		3.1.4. Ecuación de difusión de calor dependiente del tiempo	12
		3.1.5. Ecuación de onda dependiente del tiempo	42

	3.1.6. Ecuación de Klein-Gordon	42
	3.1.7. Ecuación de Schrödinger dependiente del tiempo	43
	3.2. Condiciones de borde	43
	3.3. Encontrando soluciones para ecuaciones diferenciales parciales	44
	3.3.1. Método de la transformada de Fourier	44
4.	El Método de Separación de Variables	46
	4.1. Resolviendo la ecuación de Helmholtz	46
	4.1.1. Coordenadas cartesianas	47
	4.1.2. Coordenadas cilíndricas	49
5.	Funciones de Legendre	50
6.	Funciones de Bessel	51
7.	Funciones de Green	52
8.	Una breve introducción a los Tensores Cartesianos	53
A.	Un breve repaso: Espacios vectoriales y espacio de funciones	54
	A.1. Definiciones	54
	A.2. Proceso de ortonormalización de Gram-Schmidt	59
	A 3 Coeficientes de Fourier	61

Análisis de Fourier

En el curso Física Matemática I ya se discutió el estudio de la Serie de Fourier. En este curso, haremos un rápido resumen de dichos contenidos, pues son la base para introducir el concepto de la *transformada de Fourier*, que será de utilidad para la resolución de algunas ecuaciones diferenciales parciales cuyas condiciones de borde son periódicas.

1.1. Periodicidad y paridad de funciones

1.1.1. Funciones periódicas

Definición 1.1. Una función $f: \mathbb{R} \to \mathbb{C}$ se dice que es **periódica de período** T, con $T \neq 0$, si

$$f(t) = f(t+T), \quad \forall t \in \mathbb{R}.$$
 (1.1)

La constante T la tomaremos como la menor constante positiva que satisface la igualdad (1.1).

Observación: No es difícil de ver que se verifica:

1.

$$f(t) = f(t + nT), \quad n = 0, \pm 1, \pm 2, ...$$

2. Si f(t) y g(t) son funciones periódicas de período T, entonces la función

$$h(t) = \alpha f(t) + \beta g(t); \quad \alpha, \beta \in \mathbb{C},$$

tiene el mismo período T.

Ejemplo 1.1.1. Encontrar el período de la función $f(t) = \cos \frac{t}{3} + \cos \frac{t}{4}$.

Solución: Si la función f(t) es periódica con período T, entonces, de (1.1),

$$\cos\frac{1}{3}(t+T) + \cos\frac{1}{4}(t+T) = \cos\frac{t}{3} + \cos\frac{t}{4}.$$

Como $cos(\theta + 2\pi n) = cos \theta, n \in \mathbb{Z}$, obtenemos que

$$\frac{1}{3}T = 2\pi n, \quad \frac{1}{4}T = 2\pi m; \quad n, m \in \mathbb{Z}.$$

Por consiguiente $T=6\pi n=8\pi m$; cuando n=4 y m=3, se obtiene el mínimo valor de T. Así, $T=24\pi$.

En general, si la función

$$f(t) = \cos(\omega_1 t) + \cos(\omega_2 t)$$

es periódica de período T, entonces es posible encontrar dos enteros n y m tales que

$$\omega_1 T = 2\pi n,\tag{1.2}$$

$$\omega_2 T = 2\pi m. \tag{1.3}$$

El cociente de (1.2) y (1.3) es

$$\frac{\omega_1}{\omega_2} = \frac{n}{m},$$

es decir, la relación ω_1/ω_2 debe ser un número racional.

Proposición 1.1. Sea $f: \mathbb{R} \longrightarrow \mathbb{C}$ una función periódica de período T. Sea $a \in \mathbb{R}$, entonces

$$\int_{a-T/2}^{a+T/2} f(t) dt = \int_{-T/2}^{T/2} f(t) dt.$$

Demostración. Utilizando la propiedad de aditividad de la integral compleja:

$$\int_{a-T/2}^{a+T/2} f(t) dt = \int_{a-T/2}^{-T/2} f(t) dt + \int_{-T/2}^{a+T/2} f(t) dt.$$

Haciendo la sustitución $t = t' - T \implies dt = dt'$ en la primera integral, obtenemos

$$\int_{a-T/2}^{-T/2} f(t) dt + \int_{-T/2}^{a+T/2} f(t) dt = \int_{a+T/2}^{T/2} f(t'-T) dt' + \int_{-T/2}^{a+T/2} f(t) dt$$

$$= \int_{a+T/2}^{T/2} f(t'-T+T) dt' + \int_{-T/2}^{a+T/2} f(t) dt$$

$$= \int_{a+T/2}^{T/2} f(t') dt' + \int_{-T/2}^{a+T/2} f(t) dt$$

$$= \int_{-T/2}^{T/2} f(t) dt.$$

Definición 1.2. Sea $f:[a,b]\to\mathbb{R}$ seccionalmente continua, se llama **extensión periódica** de f a la función $f_e:\mathbb{R}\to\mathbb{R}$,

$$f_e(t) = f(t + k_0(b - a))$$

donde $k_0 \in \mathbb{Z}$ es el único entero que verifica $t + k_0(b - a) \in [a, b]$.

Ejemplo 1.1.2. La extensión periódica de $f \in \mathscr{C}[-\pi, \pi]$ real es

$$f_e(t) = f_e(t + 2\pi)$$

Figura 1.1: Extensión periódica de una función real seccionalmente continua en $[-\pi, \pi]$.

1.1.2. Funciones pares e impares

Definición 1.3. Sea $f:[-a,a] \longrightarrow \mathbb{R}$ perteneciente a $\mathscr{C}[-a,a]$.

$$f$$
 es par $\Leftrightarrow \forall x \in [-a, a] : f(-t) = f(t)$.
 f es impar $\Leftrightarrow \forall x \in [-a, a] : f(-t) = -f(t)$.

Proposición 1.2. Sea $f: [-a, a] \longrightarrow \mathbb{R}$ integrable,

$$f \text{ es par} \Rightarrow \int_{-a}^{a} f(t) dt = 2 \int_{0}^{a} f(t) dt.$$

$$f \text{ es impar} \Rightarrow \int_{-a}^{a} f(t) dt = 0.$$

Observación 2: Toda función $f:[-a,a] \longrightarrow \mathbb{R}$ puede expresarse como la suma de una función par más otra impar: $f=f_p+f_i$ con

$$f_p(t) = \frac{f(t) + f(-t)}{2}, \quad f_i(t) = \frac{f(t) - f(-t)}{2}.$$

Definición 1.4. Sea $f \in \mathcal{C}[0,a]$ real, entonces la **extensión par** y la **extensión impar** de f están definidas, respectivamente, por:

$$E_f(t) = \left\{ \begin{array}{ll} f(-t) & \text{si} & -a \le t < 0 \\ f(t) & \text{si} & 0 \le t \le a \end{array} \right., \ O_f(t) = \left\{ \begin{array}{ll} -f(-t) & \text{si} & -a \le t < 0 \\ f(t) & \text{si} & 0 \le t \le a \end{array} \right..$$

Figura 1.2: Extensión par e impar de una función real seccionalmente continua en [0, a].

1.2. Serie de Fourier trigonométrica

1.2.1. Definición

Proposición 1.3. En el espacio $\mathscr{C}[a,b]$, el conjunto formado por las funciones

$$\left\{1,\cos\left(\frac{2\pi}{L}x\right),\sin\left(\frac{2\pi}{L}x\right)\right\}_{n=1}^{\infty}$$

 \parallel es un conjunto ortogonal, con L=b-a.

Definición 1.5. Llamamos **sistema trigonométrico** al conjunto de funciones ortonormales en el espacio $\mathscr{C}[-\pi,\pi]$, definido como

$$\left\{\frac{1}{\sqrt{2\pi}}, \frac{\cos(nt)}{\sqrt{\pi}}, \frac{\sin(nt)}{\sqrt{\pi}}\right\}_{n=1}^{\infty}$$

Definición 1.6. Sea $f \in \mathcal{C}[a, a+2L]$, una función con un número finito de discontinuidades. Entonces, ella puede ser aproximada por la serie

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos\left(\frac{n\pi}{L}x\right) + b_n \sin\left(\frac{n\pi}{L}x\right) \right). \tag{1.4}$$

Esta expansión se denomina **serie trigonométrica de Fourier** o simplemente **serie de Fourier**, donde los *coeficientes de Fourier* están dados por:

$$a_0 = \frac{1}{L} \int_a^{a+2L} f(t) dt,$$

$$a_n = \frac{1}{L} \int_a^{a+2L} f(t) \cos\left(\frac{n\pi}{L}t\right) dt, \quad n = 1, 2, ...$$

$$b_n = \frac{1}{L} \int_a^{a+2L} f(t) \sin\left(\frac{n\pi}{L}t\right) dt, \quad n = 1, 2, ...$$

Observación: La serie de Fourier de f converge en media a f, o sea,

$$f(t) \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos(nt) + b_n \sin(nt)).$$

Sea $f = u + iv \in \mathscr{C}[-\pi, \pi]$, su serie de Fourier trigonométrica está dada por (1.4) con

$$a_{0} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) dt = \frac{1}{\pi} \int_{-\pi}^{\pi} u(t) dt + \frac{i}{\pi} \int_{-\pi}^{\pi} v(t) dt,$$

$$a_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cos(nt) dt = \frac{1}{\pi} \int_{-\pi}^{\pi} u(t) \cos(nt) dt + \frac{i}{\pi} \int_{-\pi}^{\pi} v(t) \cos(nt) dt, \quad n = 1, 2, ...$$

$$b_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \sin(nt) dt = \frac{1}{\pi} \int_{-\pi}^{\pi} u(t) \sin(nt) dt + \frac{i}{\pi} \int_{-\pi}^{\pi} v(t) \sin(nt) dt, \quad n = 1, 2, ...$$

Entonces, su serie de Fourier nos gueda

$$f(t) \sim \left\{ \frac{\operatorname{Re}(a_0)}{2} + \sum_{n=1}^{\infty} (\operatorname{Re}(a_n) \cos(nt) + \operatorname{Re}(b_n) \sin(nt)) \right\}$$

+ $i \left\{ \frac{\operatorname{Im}(a_0)}{2} + \sum_{n=1}^{\infty} (\operatorname{Im}(a_n) \cos(nt) + \operatorname{Im}(b_n) \sin(nt)) \right\},$

es decir, la serie de Fourier de f = u + iv es la de u(t) + i (la de v(t)).

1.2.2. Series de senos y cosenos

Sea $f:[0,\pi] \longrightarrow \mathbb{R}$ seccionalmente continua, entonces la extensión par e impar de f están definidas por:

$$E_f(t) = \left\{ \begin{array}{ll} f(-t) & \text{si} & -\pi \leq t < 0 \\ f(t) & \text{si} & 0 \leq t \leq \pi \end{array} \right., \ O_f(t) = \left\{ \begin{array}{ll} -f(-t) & \text{si} & -\pi \leq t < 0 \\ f(t) & \text{si} & 0 \leq t \leq \pi \end{array} \right..$$

Puesto que $E_f, O_f: [-\pi, \pi] \to \mathbb{R}$ son seccionalmente continuas, se puede obtener el desarrollo en serie de Fourier de éstas, los cuales están definidos por: ¹

$$E_f(t) \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos(nt)$$
, donde $a_n = \frac{2}{\pi} \int_0^{\pi} f(t) \cos(nt) dt$

У

$$O_f(t) \sim \sum_{n=1}^{\infty} b_n \sin(nt)$$
, donde $b_n = \frac{2}{\pi} \int_0^{\pi} f(t) \sin(nt) dt$.

Estos son llamados **desarrollos en serie de Fourier de coseno y de seno de** f, respectivamente.

1.2.3. Ejemplos

Ejemplo 1.2.1. Consideremos la función $f(x)=x^2$ definida para $x\in[-\pi,\pi]$, la cual es continua con derivada f'(x)=2x también continua, luego la serie de Fourier de f converge puntualmente a f para todo $x\in(-\pi,\pi)$. Para los extremos $x=\pm\pi$ vemos que $f(\pi)=f(-\pi)$, por lo tanto la serie converge puntualmente a f para todo $x\in[-\pi,\pi]$.

¹La forma de las series seno y coseno, con sus respectivos coeficientes, se obtienen al aplicar las propiedades vistas para las funciones pares e impares.

Sus coeficientes de Fourier están dados por:

$$a_{0} = \frac{1}{\pi} \int_{-\pi}^{\pi} x^{2} dx = \frac{x^{3}}{3\pi} \Big|_{-\pi}^{\pi} = \frac{2}{3}\pi^{2},$$

$$a_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} x^{2} \cos(nx) dx = \frac{1}{n\pi} x^{2} \sin(nx) \Big|_{-\pi}^{\pi} - \frac{2}{n\pi} \int_{-\pi}^{\pi} x \sin(nx) dx$$

$$= \frac{2}{n^{2}\pi} x \cos(nx) \Big|_{-\pi}^{\pi} - \frac{2}{n^{2}\pi} \int_{-\pi}^{\pi} \cos(nx) dx$$

$$= \frac{4}{n^{2}} \cos(n\pi) = (-1)^{n} \frac{4}{n^{2}}, \quad n = 1, 2, ...$$

$$b_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} x^{2} \sin(nx) dx = 0, \quad n = 1, 2, ...$$

Entonces, su serie de Fourier es

$$f(x) = \frac{\pi^2}{3} + \sum_{n=1}^{\infty} (-1)^n \frac{4}{n^2} \cos(nx), \qquad x \in [-\pi, \pi].$$
 (1.5)

Es claro que la serie de Fourier de $f(x) = x^2$ para todo $x \in \mathbb{R}$ representa la extensión periódica de los valores de f(x) en el intervalo $[-\pi, \pi]$.

La gráfica de f en conjunto con diferentes sumas parciales de su serie de Fourier están representadas en la figura 1.3.

Figura 1.3: Serie de Fourier de la función $f(x) = x^2, -\pi \le x \le \pi$, truncada hasta n = 4.

El teorema visto para convergencia uniforme nos garantiza que esta serie converge uniformemente a $f(x) = x^2$ en $[-\pi, \pi]$, es más, al aplicar el criterio de M de Weierstrass a la serie, ésta

converge para todo $x \in \mathbb{R}$, pues

$$\forall x \in \mathbb{R} : \left| (-1)^n \frac{4}{n^2} \cos(nx) \right| \le \frac{4}{n^2} = M_n \text{ y } \sum_{n=1}^{\infty} M_n < \infty.$$

Podemos usar la expansión en serie de Fourier de $f(x) = x^2$ en $[-\pi, \pi]$ para probar que

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = 1 + \frac{1}{4} + \frac{1}{9} + \dots = \frac{\pi^2}{6}.$$

En efecto, al evaluar $x = \pi$ en (1.5), obtenemos que

$$f(\pi) = \frac{\pi^2}{3} + \sum_{n=1}^{\infty} (-1)^n \frac{4}{n^2} \cos(n\pi) = \frac{\pi^2}{3} + \sum_{n=1}^{\infty} (-1)^{2n} \frac{4}{n^2} = \frac{\pi^2}{3} + \sum_{n=1}^{\infty} \frac{4}{n^2}.$$

Así,

$$\pi^2 = \frac{\pi^2}{3} + 4 \sum_{n=1}^{\infty} \frac{1}{n^2} \Rightarrow \sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}.$$

Ejemplo 1.2.2. Consideremos la función signo definida por

$$f(x) := \begin{cases} -1, & -\pi \le x < 0 \\ 1, & 0 \le x \le \pi \end{cases}.$$

La función es seccionalmente continua con x=0 punto de discontinuidad de salto y las derivadas laterales existen para todo $x\in (-\pi,\pi)$, luego la serie de Fourier de f converge puntualmente a f en los puntos de continuidad y a

$$\frac{f(0^-) + f(0^+)}{2} = 0$$
, en $x = 0$ y

$$\frac{f(-\pi^+) + f(\pi^-)}{2} = 0$$
, en $x = \pm \pi$.

Sus coeficientes de Fourier están dados por:

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx = 0,$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(nx) dx = 0, \quad n = 1, 2, ...$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(nx) dx$$

$$= \frac{1}{\pi} \int_{-\pi}^{0} (-1) \sin(nx) dx + \frac{1}{\pi} \int_{0}^{\pi} (1) \sin(nx) dx$$

$$= \frac{1}{\pi n} \cos(nx) \Big|_{-\pi}^{0} - \frac{1}{\pi n} \cos(nx) \Big|_{0}^{\pi}$$

$$= \frac{2}{\pi n} [1 - (-1)^n]$$

$$= \begin{cases} 0, & n \text{ par} \\ \frac{4}{\pi n}, & n \text{ impar} \end{cases}$$

Entonces, su serie de Fourier es

$$f(x) = \sum_{n \text{ impar}} \frac{4}{\pi n} \sin(nx) = \sum_{k=1}^{\infty} \frac{4}{\pi} \frac{\sin[(2k-1)x]}{(2k-1)}.$$

Aclaración: Note que a pesar de haber escrito que la función f es igual a la serie, debemos tener en cuenta que en los punto x=0 y $x=\pm\pi$ converge al valor medio del salto de la discontinuidad.

Es claro que la serie de Fourier de f para todo $x \in \mathbb{R}$ representa la extensión periódica de los valores de f(x) en el intervalo $[-\pi, \pi]$.

La gráfica de f en conjunto con diferentes sumas parciales de su serie de Fourier están representadas en la figura 1.4.

Figura 1.4: Serie de Fourier de la función signo truncada hasta n = 4.

1.3. Serie exponencial

Proposición 1.4. En el espacio $\mathscr{C}[a, a+2L]$, el conjunto formado por las funciones

$$\left\{\frac{1}{\sqrt{2L}}e^{i\frac{n\pi}{L}x}\right\}_{n=-\infty}^{n=\infty} \tag{1.6}$$

es un conjunto ortonormal.

Definición 1.7. Llamamos **sistema exponencial** al conjunto de funciones ortonormales en el espacio $\mathscr{C}[-\pi,\pi]$, definido como

$$\left\{\frac{1}{\sqrt{2\pi}}e^{int}\right\}_{n=-\infty}^{n=\infty}$$

Definición 1.8. Sea $f \in \mathscr{C}[a, a+2L]$ una función con un número finito de discontinuidades. Entonces, ella puede ser aproximada por la serie

$$\sum_{n=-\infty}^{\infty} c_n e^{i\frac{n\pi}{L}x} \tag{1.7}$$

Esta expansión se denomina **serie exponencial de Fourier** donde los *coeficientes de Fourier* están dados por:

$$c_n = \frac{1}{2L} \int_a^{a+2L} f(t) e^{-i\frac{n\pi}{L}t} dt.$$

Observación: La serie de Fourier de f converge en media a f, o sea,

$$f(t) \sim \sum_{n=-\infty}^{\infty} c_n e^{int}.$$

Proposición 1.5. La n-ésima suma parcial de la serie de Fourier trigonométrica de una función (real o compleja) es igual a la n-ésima suma parcial de la serie exponencial.

Demostración. La *n*-ésima suma parcial de la serie exponencial es

$$s_n(t) = \sum_{k=-n}^n c_k e^{ikt}.$$

Separando la suma:

$$s_n(t) = \sum_{k=-n}^{-1} c_k e^{ikt} + c_0 + \sum_{k=1}^{n} c_k e^{ikt}$$
$$= c_0 + \sum_{k=1}^{n} c_k e^{ikt} + \sum_{k=1}^{n} c_{-k} e^{-ikt}$$
$$= c_0 + \sum_{k=1}^{n} [c_k e^{ikt} + c_{-k} e^{-ikt}].$$

Usando la identidad de Euler, $e^{i\theta} = \cos(\theta) + i\sin(\theta)$, encontramos que

$$s_n(t) = c_0 + \sum_{k=1}^n [(c_k + c_{-k})\cos(kt) + i(c_k - c_{-k})\sin(kt)].$$

Desarrollando los coeficientes de la serie exponencial de Fourier, tenemos que

$$c_{0} = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) dt,$$

$$c_{k} + c_{-k} = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t)e^{-ikt} dt + \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t)e^{ikt} dt$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t)[e^{ikt} + e^{-ikt}] dt$$

$$= \frac{1}{\pi} \int_{-\pi}^{\pi} f(t)\cos(kt) dt; \quad k = 1, 2, ...$$

$$i(c_{k} - c_{-k}) = \frac{i}{2\pi} \int_{-\pi}^{\pi} f(t)e^{-ikt} dt - \frac{i}{2\pi} \int_{-\pi}^{\pi} f(t)e^{ikt} dt$$

$$= -\frac{i}{2\pi} \int_{-\pi}^{\pi} f(t)[e^{ikt} - e^{-ikt}] dt$$

$$= \frac{1}{\pi} \int_{-\pi}^{\pi} f(t)\sin(kt) dt; \quad k = 1, 2, ...$$

Comparando las expresiones obtenidas con los coeficientes de la serie de Fourier trigonométrica, podemos concluir que

$$c_0 = \frac{a_0}{2}$$
, $c_k + c_{-k} = a_k$, $i(c_k - c_{-k}) = b_k$; $k = 1, 2, ...$

Por lo tanto,

$$s_n(t) = \sum_{k=-n}^n c_k e^{ikt} = \frac{a_0}{2} + \sum_{k=1}^n (a_k \cos(kt) + b_k \sin(kt)).$$

Observación 1: Una consecuencia inmediata de la proposición 1.5 es que todos los teoremas vistos para la serie de Fourier trigonométrica son aplicables a la serie de Fourier exponencial.

Observación 2: Los coeficientes de las series (1.4) y (1.7) están relacionados por

$$a_0 = 2c_0, \ a_n = c_n + c_{-n}, \ b_n = i(c_n - c_{-n}); \ n = 1, 2, ...$$
 (1.8)

o bien,

$$c_n = \begin{cases} \frac{1}{2}(a_n - ib_n), & n \ge 0\\ \frac{1}{2}(a_{-n} + ib_{-n}), & n \le -1 \end{cases}$$
 (1.9)

Si f(t) es una función real, entonces sus respectivos coeficientes complejos c_n satisfacen la relación:

 $c_n^* = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t)(e^{-int})^* dt = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t)e^{int} dt = c_{-n}.$

1.4. Diferenciación e integración de las series de Fourier

Supongamos que tenemos una serie de funciones

$$\sum_{n=1}^{\infty} f_n(t),$$

y queremos integrarla (o derivarla). Resulta tentador intercambiar la integral (o derivada) por la serie, es decir, integrar (o derivar) término a término. Sin embargo, este intercambio no es siempre posible porque puede romper la convergencia de la serie. Por ejemplo, las series de potencia se pueden integrar (o derivar) término a término en su región de convergencia sin problema. En nuestro caso, nos interesa saber que condiciones deben cumplirse para las series de Fourier.

Teorema 1.1 (Integración). Sea f una función seccionalmente continua en el intervalo $-\pi < t < \pi$. Independiente si la serie (1.4) converge, la siguiente ecuación es válida cuando $-\pi \le t \le \pi$:

$$\int_{-\pi}^{t} f(s) ds = \frac{a_0}{2} (t + \pi) + \sum_{n=1}^{\infty} \frac{1}{n} \left\{ a_n \sin(nt) - b_n [\cos(nt) + (-1)^{n+1}] \right\}.$$

Teorema 1.2 (Derivación). Sea f una función continua en $[-\pi, \pi]$, donde $f(-\pi) = f(\pi)$, y f' es seccionalmente continua en el intervalo $(-\pi, \pi)$. Entonces, la serie de Fourier

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos(nt) + b_n \sin(nt)), \quad t \in [-\pi, \pi],$$

donde

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cos(nt) dt, \quad b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \sin(nt) dt,$$

es derivable para todo $t \in (-\pi, \pi)$ en el cual f''(t) existe:

$$f'(t) = \sum_{n=1}^{\infty} (-na_n \sin(nt) + nb_n \cos(nt)).$$

Ejemplo 1.4.1. Obtener el desarrollo en serie de Fourier de la función x^3 en el intervalo $[-\pi, \pi]$.

Solución: Las funciones del tipo x^n , $n \in \mathbb{N}$ son continuas, derivables e integrables, por lo que podemos aplicar estas operaciones a las series de Fourier que se obtengan a partir de ellas. En nuestro caso obtendremos el desarrollo de x^3 por integración de x^2 , cuyo desarrollo en serie de Fourier ya obtuvimos en el ejemplo 1.2.1:

$$\forall x \in [-\pi, \pi] : \int_{-\pi}^{x} t^{2} dt = \int_{-\pi}^{x} \frac{\pi^{2}}{3} + \sum_{n=1}^{\infty} (-1)^{n} \frac{4}{n^{2}} \cos(nt) dt$$

$$\Rightarrow \frac{x^{3}}{3} + \frac{\pi^{3}}{3} = \frac{\pi^{2}}{3} (x + \pi) + \sum_{n=1}^{\infty} (-1)^{n} \frac{4}{n^{3}} \sin(nx)$$

$$\Rightarrow x^{3} = \pi^{2} x + 12 \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{3}} \sin(nx).$$

Lo que obtuvimos es el desarrollo en serie de $x^3 - \pi^2 x$. Para obtener el desarrollo de x^3 , encontremos la serie de Fourier de x, para ello utilicemos el desarrollo de x^2 , pero esta vez derivando:

$$\frac{d}{dx}[x^2] = \frac{d}{dx} \left[\frac{\pi^2}{3} + \sum_{n=1}^{\infty} (-1)^n \frac{4}{n^2} \cos(nx) \right]$$

$$\Rightarrow 2x = -\sum_{n=1}^{\infty} (-1)^n \frac{4}{n} \sin(nx)$$

$$\Rightarrow x = -2\sum_{n=1}^{\infty} \frac{(-1)^n}{n} \sin(nx).$$

Sustituyendo en x^3 :

$$x^{3} = -2\pi^{2} \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n} \sin(nx) + 12 \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{3}} \sin(nx)$$
$$= \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{3}} \left[12 - 2\pi^{2} n^{2} \right] \sin(nx).$$

1.5. Fenómeno de Gibbs

Cuando queremos aproximar una función f con las sumas parciales de su serie de Fourier, se puede observar un comportamiento particular cerca de los puntos de discontinuidad aislados, por ejemplo, al graficar la serie de Fourier de la función signo para un n alto, ver figura 1.5, se comete un error considerable en las cercanías al punto de discontinuidad, y además este error no disminuye si se incluyen más términos en la serie. Este efecto indeseado se denomina **fenómeno de Gibbs**.

Figura 1.5: Fenómeno de Gibbs en la función signo para n = 10, 30, 50.

Ilustremos este hecho con un análisis analítico de la función ya estudiada

$$f(x) = \begin{cases} -1, & -\pi \le x < 0 \\ 1, & 0 \le x \le \pi \end{cases}.$$

Su serie de Fourier está dada por

$$\sum_{n=1}^{\infty} \frac{4}{\pi} \frac{\sin[(2n-1)x]}{(2n-1)}.$$

Sea

$$s_n(x) = \frac{4}{\pi} \sum_{k=1}^n \frac{\sin[(2k-1)x]}{2k-1}$$

su n-ésima suma parcial. Derivando y multiplicando por $\pi \sin(x)$, encontramos que

$$\pi(\sin x)s'_n(x) = 4\sin(x)\sum_{k=1}^n \cos[(2k-1)x] = 4\sum_{k=1}^n \sin(x)\cos[(2k-1)x]$$

$$= 4\sum_{k=1}^n \frac{1}{2}[\sin(x+(2k-1)x) + \sin(x-(2k-1)x)]$$

$$= 2\sum_{k=1}^n [\sin(2kx) - \sin([2k-2]x)]$$

$$= 2\sin(2nx).$$

Luego,

$$2\sin(2nx_c) = 0 \iff x_c = \frac{m\pi}{2n}, \quad m \in \mathbb{Z}.$$

Nos interesa encontrar el primer máximo de $s_n(x)$, así que tomaremos los valores $m=\pm 1$ de prueba, pues en m=0 no se alcanza un máximo dado que $s_n(0)=0$. Como $\sin(x_c)\neq 0$, para estos valores de m, $s'_n(x_c)=0$ y, en consecuencia, x_c son los puntos críticos de s_n .

En la siguiente tabla se analizan los signos de $s'_n(x)$.

Figura 1.6: Tabla con el análisis de signos de $s'_n(x)$ asociada a la función signo.

Por el criterio de la primera derivada, vemos que s_n tiene un máximo en $x_n = \frac{\pi}{2n}$. El valor de ese máximo es

$$s_n\left(\frac{\pi}{2n}\right) = \frac{4}{\pi} \sum_{k=1}^n \frac{\sin[(2k-1)\pi/2n]}{2k-1} = \frac{2}{\pi} \sum_{k=1}^n \frac{\sin[(2k-1)\pi/2n]}{(2k-1)\pi/2n} \left(\frac{\pi}{n}\right).$$

Notemos que la sumatoria

$$\sum_{k=1}^{n} \frac{\sin[(2k-1)\pi/2n]}{(2k-1)\pi/2n} \left(\frac{\pi}{n}\right)$$

es una suma de Riemann para la función $\sin y/y$ en $[0,\pi]$ para la partición regular $0=x_0 < x_1 < \cdots < x_n = \pi$ con $x_i = (\pi/n)i$, $i=0,1,\ldots,n$ y eligiendo el punto medio de cada intervalo $[x_{k-1},x_k]$,

$$\frac{x_{k-1} + x_k}{2} = (2k-1)\frac{\pi}{2n}, \quad k = 1, \dots, n,$$

para evaluar $\sin y/y$. Entonces,

$$\int_0^{\pi} \frac{\sin y}{y} \, dy \approx \frac{\pi}{2} s_n \left(\frac{\pi}{2n} \right).$$

Como

$$\int_0^\pi \frac{\sin y}{y} \, dy \text{ converge } \Rightarrow \lim_{n \to +\infty} s_n \left(\frac{\pi}{2n} \right) = \frac{2}{\pi} \int_0^\pi \frac{\sin y}{y} \, dy.$$

Usando un método numérico de integración (o su calculadora de integrales favorita),

$$\int_0^{\pi} \frac{\sin y}{y} \, dy \approx 1.85193 \dots$$

Por lo tanto,

$$\lim_{n\to+\infty} s_n\left(\frac{\pi}{2n}\right) \approx 1.179.$$

Así, las aproximaciones exceden el valor real de $f(0^+) = 1$ por 0.179 o 8.95 % del salto de $f(0^-)$ a $f(0^+)$.

En general, se puede demostrar el siguiente teorema, debido a M. Bôcher [5]:

Teorema 1.3. Sea f una función de variable real, con período 2π . Supongamos que f y f' son ambas continuas excepto para un número finito de discontinuidades de salto en el intervalo $[-\pi, \pi]$. Sea $s_n(x)$ la suma parcial de orden n de Fourier. Entonces, en un punto a de discontinuidad, las gráficas de las funciones $s_n(x)$ convergen al segmento vectical (ver figura 1.7) de longitud

$$L = \frac{2}{\pi} Si(\pi) |f(a^+) - f(a^-)| \approx 1.179 |f(a^+) - f(a^-)|$$

centrada en el punto

$$\left(a, \frac{f(a^+) + f(a^-)}{2}\right),\,$$

donde Si(x) es la función seno integral definida por

$$Si(x) = \int_0^x \frac{\sin t}{t} dt.$$

Figura 1.7: Fenómeno de Gibbs en un punto de discontinuidad. Adaptado de [20], pág. 202.

Transformada de Fourier

2.1. Definiciones

Aprendimos que la serie de Fourier de $f \in \mathcal{C}[-L/2, L/2]$ está dada por

$$f(x) = \sum_{n = -\infty}^{\infty} c_n e^{i\frac{2n\pi}{L}x},$$
(2.1)

donde

$$c_n = \frac{1}{L} \int_{-L/2}^{L/2} f(x) e^{-i\frac{2n\pi}{L}x} dx, \quad n \in \mathbb{Z}.$$
 (2.2)

Una consecuencia inmediata de la expansión en serie de Fourier es que la función f(x) representada por la serie resulta periódica, con período L. Por lo tanto, decimos que la serie de Fourier permite expandir funciones periódicas. Sin embargo, no todas las funciones son periódicas, y nos interesará expandirlas dentro de algún intervalo de validez. Necesitamos, entonces, algún modo de expandir, en una base ortonormal, funciones no periódicas.

Podemos decir que el conjunto de coeficientes $\{c_n\}$ también definen a f(x). Este conjunto de números c_n puede ser entendido como una función en la variable n, escrita como c(n), definida para un conjunto discreto de valores de la variable independiente (en lugar de un intervalo continuo). La función c(n) es a menudo llamada el **espectro de Fourier** de f(x) y puede ser graficado, asumiendo c(n) real, como sigue.

Figura 2.1: Espectro de Fourier.

En lugar de graficar c vs n, podemos graficar c vs el número de onda, que corresponde a la frecuencia asociada a la parte espacial:

$$k = \frac{2\pi n}{L}.$$

Si $L \to \infty$, entonces las frecuencias se encuentran estrechamente espaciadas debido a que la diferencia entre valores consecutivos de k es

$$\Delta k = \frac{2\pi\Delta n}{L} = \frac{2\pi}{L}, \quad \text{pues } \Delta n = 1.$$

En otras palabras, para $L \to \infty$, Δk es pequeño. Con este cambio de escala, el espectro de Fourier puede parecerse a lo mostrado en la figura 2.2.

Es natural especular sobre la posibilidad de un espectro continuo cuando L tiende al infinito de tal forma que todas las frecuencias están presentes. Puede ser instructivo considerar la siguiente derivación heurística: Sabemos que una función puede ser expandida como una serie de Fourier tal como se muestra en (2.1). Luego, la transición $L \to \infty$ puede resultar difícil de realizar directamente ya que c_n aparentemente tiende a cero. Seguimos entonces la idea de usar las frecuencias $k=2\pi n/L$ tal que $\Delta k=(2\pi/L)\Delta n=2\pi/L$ para valores de k adyacentes y definimos

$$c_L(k) = \frac{L}{2\pi}c_n.$$

Usando las definiciones anteriores en las ecuaciones (2.1) y (2.2), obtenemos que la función

Figura 2.2: Espectro de Fourier cuando $L \to +\infty$.

y sus coeficientes de Fourier se pueden escribir como:

$$f(x) = \sum_{Lk/2\pi = -\infty}^{\infty} rac{2\pi}{L} c_L(k) e^{ikx} \left(rac{\Delta k L}{2\pi}
ight) = \sum_{Lk/2\pi = -\infty}^{\infty} c_L(k) e^{ikx} \Delta k, \ c_L(k) = rac{L}{2\pi} rac{1}{L} \int_{-L/2}^{L/2} f(x) e^{-ikx} dx = rac{1}{2\pi} \int_{-L/2}^{L/2} f(x) e^{-ikx} dx.$$

Al hacer $L \to \infty$, la función f puede considerarse como una función no-periódica arbitraria definida en todo el intervalo $(-\infty,\infty)$, mientras que la primera suma "se convierte.^{en} una integral:

$$f(x) = \int_{-\infty}^{\infty} c(k)e^{ikx} dk,$$

$$c(k) = \lim_{L \to +\infty} c_L(k) = \frac{1}{2\pi} \int_{-\infty}^{\infty} f(x)e^{-ikx} dx.$$

De aquí, definimos la **transformada de Fourier** de la función f(x) como

$$\tilde{f}(k) := \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x)e^{-ikx} dx, \qquad (2.3)$$

de modo que la transformada inversa resulta ser

$$f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \tilde{f}(k)e^{ikx} dk.$$
 (2.4)

Note que la transformada de Fourier es la extensión natural del concepto de series de Fourier para funciones no periódicas. Además, al ser n una variable discreta, y k continua, podemos decir que la transformada de Fourier es la generalización del concepto de series de Fourier cuando las funciones pertenecen a un espacio vectorial de dimensión continua.

Observaciones:

- Otras notaciones usadas son: $\tilde{f}(k) = \hat{f}(x) = g(k) = \mathcal{F}\{f(x)\}(k)$.
- El factor $1/\sqrt{2\pi}$ en la definición (2.3) es convencional. Lo importante es que se cumpla la identidad

$$f(x) = \int_{-\infty}^{\infty} \left[\frac{1}{2\pi} \int_{-\infty}^{\infty} f(\xi) e^{-ik\xi} d\xi \right] e^{ikx} dk.$$
 (2.5)

- Al igual que el factor $1/\sqrt{2\pi}$ en la definición (2.3), la función e^{-ikx} es convencional y puede ser reemplazada por e^{ikx} , siempre y cuando se verifique (2.5) [7, 14].
- Es común en Física trabajar con funciones del tiempo, f = f(t). En este caso, se acostumbra usar la frecuencia ω en lugar del número de onda k, de modo que la integral de Fourier adopta a forma

$$f(t) = \int_{-\infty}^{\infty} \tilde{f}(\omega) e^{i\omega t} d\omega,$$

donde

$$\tilde{f}(\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} f(t)e^{-i\omega t} dt.$$

■ En 3 dimensiones, la integral de Fourier está dada por:

$$f(\vec{r}) := \int_{\mathbb{R}^3} \tilde{f}(\vec{k}) e^{i(\vec{k}\cdot\vec{r})} d^3k,$$

$$\tilde{f}(\vec{k}) := \frac{1}{(2\pi)^3} \int_{\mathbb{R}^3} f(\vec{r}) e^{-i(\vec{k}\cdot\vec{r})} d^3x.$$

En general, en *n* dimensiones:

$$f(\vec{r}) := \int_{\mathbb{R}^n} \tilde{f}(\vec{k}) e^{i(\vec{k}\cdot\vec{r})} d^n k,$$

$$\tilde{f}(\vec{k}) := \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} f(\vec{r}) e^{-i(\vec{k}\cdot\vec{r})} d^n x.$$

Definición 2.1. Si f(x) es tal que

$$\int_{-\infty}^{\infty} |f(x)| \, dx < \infty,$$

entonces se dice que $f \in L^1$ o que es **absolutamente integrable**.

Teorema 2.1. Si $f \in L^1$, entonces la transformada de Fourier $\tilde{f}(k) = \mathcal{F}\{f(x)\}(k)$ existe y $\lim_{k \to \pm \infty} \tilde{f}(k) = 0$.

Demostración. Demostraremos solo la primera parte del teorema.

Notemos que

$$e^{-ikx} = \cos(kx) - i\sin(kx) \Rightarrow |e^{-ikx}| = 1.$$

Luego,

$$\int_{-\infty}^{\infty} |f(x)e^{-ikx}| dx = \int_{-\infty}^{\infty} |f(x)| dx < \infty.$$

En consecuencia, $f(x)e^{-ikx}$ es absolutamente integral y

$$\frac{1}{2\pi} \int_{-\infty}^{\infty} f(x) e^{-ikx} dx$$

es finita, es decir, $\tilde{f}(k)$ existe.

Observación: La condición de que f sea absolutamente integrable es suficiente pero no necesaria para la existencia de la transformada de Fourier.

Teorema 2.2. Sea f(x) una función seccionalmente continua en cada intervalo finito del eje x, y supongamos que es absolutamente integrable en $(-\infty, +\infty)$. Entonces la **integral de Fourier**

$$\frac{1}{\pi} \int_{0}^{+\infty} \int_{-\infty}^{+\infty} f(\xi) \cos k(\xi - x) \, d\xi \, dk = \frac{f(x^{+}) + f(x^{-})}{2},$$

donde ambas derivadas laterales, $f'(x^+)$ y $f'(x^-)$, existen.

Demostración. Consulte el cápitulo 6 «Fourier Integrals and Applications» en [6].

2.2. Ejemplos

Ejemplo 2.2.1 (Pulso cuadrado). Consideremos la función

$$f(x) = \begin{cases} 1, & |x| < a \\ 0, & |x| > a \end{cases}.$$

Su transformada de Fourier es

$$\tilde{f}(k) = \frac{1}{2\pi} \int_{-\infty}^{\infty} f(x)e^{-ikx} dx = \frac{1}{2\pi} \int_{-a}^{a} (1)e^{-ikx} dx$$

$$= \frac{1}{2\pi} \left[-\frac{1}{ik} e^{-ikx} \right]_{-a}^{a}$$

$$= \frac{1}{2\pi ik} [e^{ika} - e^{-ika}]$$

$$= \frac{\sin(ka)}{\pi k}.$$
(2.6)

Figura 2.3: Pulso cuadrado y su transformada de Fourier, con a = 5.

Ejemplo 2.2.2 (Distribución gaussiana). Considere la gaussiana

$$f(x) = ne^{-\alpha x^2}, \quad \alpha > 0.$$

Su transformada de Fourier está dada por

$$\tilde{f}(k) = \frac{n}{2\pi} \int_{-\infty}^{\infty} e^{-\alpha x^2} e^{-ikx} dx = \frac{n}{2\pi} \int_{-\infty}^{\infty} e^{-\alpha x^2 - ikx} dx.$$

Notemos que

$$-\alpha x^{2} - ikx = -\alpha \left(x^{2} + \frac{ik}{\alpha}x\right)$$

$$= -\alpha \left(x^{2} + \frac{ik}{\alpha}x + \left(\frac{ik}{2\alpha}\right)^{2} - \left(\frac{ik}{2\alpha}\right)^{2}\right)$$

$$= -\alpha \left(x + \frac{ik}{2\alpha}\right)^{2} + \alpha \left(\frac{ik}{2\alpha}\right)^{2}$$

$$= -\alpha \left(x + \frac{ik}{2\alpha}\right)^{2} - \left(\frac{k^{2}}{4\alpha}\right).$$

Luego,

$$\tilde{f}(k) = \frac{n}{2\pi} \int_{-\infty}^{\infty} e^{-\alpha \left(x + \frac{ik}{2\alpha}\right)^2 - \left(\frac{k^2}{4\alpha}\right)} dx = \frac{n}{2\pi} e^{-\left(\frac{k^2}{4\alpha}\right)} \int_{-\infty}^{\infty} e^{-\alpha \left(x + \frac{ik}{2\alpha}\right)^2} dx.$$

Haciendo el cambio de variable $u=x+\frac{i\omega}{2\alpha}$, obtenemos que ¹

$$\hat{f}(\omega) = \frac{n}{\sqrt{2\pi}} e^{-\left(\frac{\omega^2}{4\alpha}\right)} \int_{-\infty}^{\infty} e^{-\alpha u^2} du.$$
 (2.7)

Como

$$\int_{-\infty}^{\infty} e^{-\alpha x^2} dx = \sqrt{\frac{\pi}{\alpha}}, \quad \alpha > 0,$$
(2.8)

obtenemos que

$$\hat{f}(\omega) = \frac{n}{\sqrt{2\alpha}} e^{-\left(\frac{\omega^2}{4\alpha}\right)}.$$
 (2.9)

² En estricto rigor se debería calcular una integral compleja, vea [4].

Figura 2.4: Distribución gaussiana y su transformada de Fourier para n=1 y $\alpha=1$.

Figura 2.5: Distribución gaussiana y su transformada de Fourier para n=1 y $\alpha=0.25$.

Ejemplo 2.2.3 (Paridad). Si $f(x) \in \mathbb{R}$ e impar, entonces

$$\tilde{f}(k) = \frac{1}{2\pi} \int_{-\infty}^{\infty} f(x)e^{-ikx} dx
= \frac{1}{2\pi} \int_{-\infty}^{0} f(x)e^{-ikx} dx + \frac{1}{2\pi} \int_{0}^{\infty} f(x)e^{-ikx} dx
= -\frac{1}{2\pi} \int_{\infty}^{0} f(-x)e^{ikx} dx + \frac{1}{2\pi} \int_{0}^{\infty} f(x)e^{-ikx} dx
= -\frac{1}{2\pi} \int_{0}^{\infty} f(x)e^{ikx} dx + \frac{1}{2\pi} \int_{0}^{\infty} f(x)e^{-ikx} dx
= -\frac{1}{2\pi} \int_{0}^{\infty} f(x)[e^{ikx} - e^{-ikx}] dx
= -\frac{2i}{2\pi} \int_{0}^{\infty} f(x)\sin(kx) dx = -i\tilde{f}_{S}(k),$$

donde \tilde{f}_S es conocida como la **transformada seno de Fourier** de la función f(x), y viene definida por [17]

$$\tilde{f_S}(k) = \frac{1}{\pi} \int_0^\infty f(x) \sin(kx) \, dx$$

Análogamente a la definición de la transformada seno de Fourier, si $f(x) \in \mathbb{R}$ y par, entonces

$$\tilde{f}(k) = \frac{1}{2\pi} \int_{-\infty}^{\infty} f(x)e^{-ikx} dx = \frac{1}{2\pi} \int_{-\infty}^{0} f(x)e^{-ikx} dx + \frac{1}{2\pi} \int_{0}^{\infty} f(x)e^{-ikx} dx
= -\frac{1}{2\pi} \int_{\infty}^{0} f(-x)e^{ikx} dx + \frac{1}{2\pi} \int_{0}^{\infty} f(x)e^{-ikx} dx
= \frac{1}{2\pi} \int_{0}^{\infty} f(x)e^{ikx} dx + \frac{1}{2\pi} \int_{0}^{\infty} f(x)e^{-ikx} dx
= \frac{1}{2\pi} \int_{0}^{\infty} f(x)[e^{ikx} + e^{-ikx}] dx
= \frac{2}{2\pi} \int_{0}^{\infty} f(x)\cos(kx) dx \equiv \tilde{f}_{C}(k),$$

donde \tilde{f}_C es conocida como la **transformada coseno de Fourier** de la función f(x), y viene definida por [17]

$$\tilde{f_C}(k) = \frac{1}{\pi} \int_0^\infty f(x) \cos(kx) \, dx$$

Observación: Esta forma de escribir la transformada seno y coseno de Fourier es convencional, por el factor $1/\pi$.

2.3. Propiedades de la transformada de Fourier

Proposición 2.1. Sean $f, g \in L^1$ y $\alpha, \beta \in \mathbb{C}$.

1. Linealidad:

$$\mathcal{F}\{\alpha f(x) + \beta g(x)\}(k) = \alpha \mathcal{F}\{f(x)\}(k) + \beta \mathcal{F}\{g(x)\}(k).$$

2. Si f es real, entonces

$$\tilde{f}(-k) = \tilde{f}^*(k).$$

3. Traslación:

$$\mathcal{F}\{f(x+a)\}(k) = e^{ika}\mathcal{F}\{f(x)\}(k), \quad a \in \mathbb{R}.$$

4. Cambio de escala:

$$\mathcal{F}{f(\alpha x)}(k) = \frac{1}{|\alpha|} \mathcal{F}{f(x)}\left(\frac{k}{\alpha}\right), \quad \alpha \neq 0.$$

5. Atenuación:

$$\mathcal{F}\{f(x)e^{-ax}\}(k) = \mathcal{F}\{f(x)\}(k-ia), \quad a \in \mathbb{C}.$$

- 6. Si f es una función par, entonces \tilde{f} es una función real.
- 7. Si f es una función impar, entonces \tilde{f} es una función puramente imaginaria, es decir, $\tilde{f}(k)=-\tilde{f}(-k)$.

Demostración. A modo de ejemplo, se demostrará los puntos 1. y 2., el resto se encontrará en el documento extra de las demostraciones del apunte.

1. Por la definición (2.3) de la transformada de Fourier y usando el hecho de que las funciones son absolutamente convergentes, tenemos

$$\mathcal{F}\{\alpha f(x) + \beta g(x)\}(k) = \frac{1}{2\pi} \int_{-\infty}^{\infty} [\alpha f(x) + \beta g(x)] e^{-ikx} dx$$

$$= \frac{\alpha}{2\pi} \int_{-\infty}^{\infty} f(x) e^{-ikx} dx + \frac{\beta}{2\pi} \int_{-\infty}^{\infty} g(x) e^{-ikx} dx$$

$$= \alpha \mathcal{F}\{f(x)\}(k) + \beta \mathcal{F}\{g(x)\}(k).$$

2. Por la definición (2.3) de la transformada de Fourier y suponiendo que f es real:

$$\mathcal{F}{f(x)}(-k) = \frac{1}{2\pi} \int_{-\infty}^{\infty} f(x)e^{-(-ikx)}dx$$
$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} f(x)(e^{-ikx})^* dx$$
$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} [f(x)e^{-ikx}]^* dx$$
$$= (\mathcal{F}{f(x)}(k))^*.$$

Proposición 2.2. Sea f(x) con transformada de Fourier $\mathcal{F}\{f(x)\}$ y $\lim_{x\to\pm\infty}f(x)=0$. Entonces,

$$\mathcal{F}{f'(x)} = ik\mathcal{F}{f(x)}$$

Demostración. Usando la definición (2.3) de la transformada de Fourier, tenemos que

$$\mathcal{F}{f'(x)} = \frac{1}{2\pi} \int_{-\infty}^{\infty} f'(x)e^{-ikx} dx$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} \left\{ \frac{d}{dx} \left[f(x)e^{-ikx} \right] - (-ik)f(x)e^{-ikx} \right\} dx$$

$$= \frac{1}{2\pi} \left[f(x)e^{-ikx} \right]_{-\infty}^{\infty} + \frac{ik}{2\pi} \int_{-\infty}^{\infty} f(x)e^{-ikx} dx$$

$$= ik\mathcal{F}{f(x)} + f(x)e^{-ikx} \Big|_{-\infty}^{\infty}.$$

Como $\lim_{x \to +\infty} f(x) = 0$, obtenemos

$$\mathcal{F}\{f'(x)\} = ik\mathcal{F}\{f(x)\}.$$

En general,

$$\mathcal{F}\{f^{(n)}(x)\} = (ik)^n \mathcal{F}\{f(x)\},\$$

siempre que todas las partes integradas se anulen cuando $x \to \pm \infty$.

Teorema 2.3 (de Parseval). Si f(x) y g(x) son funciones reales y si $\tilde{f}(k)$ y $\tilde{g}(k)$ son sus correspondientes transformadas de Fourier, entonces

(i) (Primer teorema)

$$\int_{-\infty}^{\infty} |\tilde{f}(k)|^2 dk = \frac{1}{2\pi} \int_{-\infty}^{\infty} |f(x)|^2 dx.$$

(ii) (Segundo teorema)

$$\int_{-\infty}^{\infty} \tilde{f}(k)\tilde{g}(-k) dk = \frac{1}{2\pi} \int_{-\infty}^{\infty} f(x)g(x) dx.$$

Demostración. Notemos que (i) es consecuencia de (ii) al tomar g(x) = f(x) real tal que $f^*(x) = f(x)$ y $\tilde{g}(-k) = \tilde{f}^*(k)$. Luego, nos bastará demostrar el segundo teorema de Parseval.

Usando la definición (2.3), tenemos que

$$\tilde{g}(-k) = \frac{1}{2\pi} \int_{-\infty}^{\infty} g(x)e^{ikx} dx.$$

Luego,

$$\int_{-\infty}^{\infty} \tilde{f}(k)\tilde{g}(-k) dk = \int_{-\infty}^{\infty} \tilde{f}(k) dk \int_{-\infty}^{\infty} \frac{1}{2\pi} g(x) e^{ikx} dx.$$

Supongamos que podemos intercambiar el orden de integración, por ejemplo, al suponer que las integrales

$$\int_{-\infty}^{\infty} \tilde{f}(k)e^{ikx} dk \text{ y } \int_{-\infty}^{\infty} g(x)e^{ikx} dx$$

son absolutamente integrables. Entonces,

$$\int_{-\infty}^{\infty} \tilde{f}(k)\tilde{g}(-k) dk = \frac{1}{2\pi} \int_{-\infty}^{\infty} g(x) \left(\int_{-\infty}^{\infty} \tilde{f}(k)e^{ikx} dk \right) dx.$$

Ahora, aplicando la transformada inversa de Fourier dada por (2.4), concluimos que

$$\int_{-\infty}^{\infty} \tilde{f}(k)\tilde{g}(-k) dk = \frac{1}{2\pi} \int_{-\infty}^{\infty} f(x)g(x) dx.$$

Ejemplo 2.3.1. Use el teorema de Parseval para evaluar

$$\int_{-\infty}^{\infty} \frac{\sin^2(x)}{x^2} \, dx.$$

Solución: Esta integral puede ser calculada usando el teorema del residuo. En nuestro caso, usaremos el primer teorema de Parseval, teniendo en cuenta el resultado de la transformada de Fourier del pulso cuadrado en el ejemplo 2.2.1.

Para a = 1 en la ecuación (2.6), tenemos que

$$\int_{-\infty}^{\infty} |\tilde{f}(k)|^2 dk = \int_{-\infty}^{\infty} \frac{\sin^2(k)}{\pi^2 k^2} dk = \frac{1}{\pi^2} \int_{-\infty}^{\infty} \frac{\sin^2(k)}{k^2} dk.$$

Por el primer teorema de Parseval,

$$\int_{-\infty}^{\infty} |\tilde{f}(k)|^2 dk = \frac{1}{2\pi} \int_{-\infty}^{\infty} |f(x)|^2 dx$$

$$\Rightarrow \frac{1}{\pi^2} \int_{-\infty}^{\infty} \frac{\sin^2(k)}{k^2} = \frac{1}{2\pi} \int_{-1}^{1} dx = \frac{1}{\pi}.$$

Por lo tanto,

$$\int_{-\infty}^{\infty} \frac{\sin^2(k)}{k^2} \, dk = \pi.$$

2.4. Convolución

Definición 2.2. Sean f(x) y g(x) dos funciones reales, se define la operación **convolución** de dos funciones f y g como

$$(f * g)(x) := \int_{-\infty}^{\infty} f(y)g(x - y) \, dy. \tag{2.10}$$

Idea física: Sea f(t) algún estímulo físico, como puede serlo una fuerza en el tiempo t, la densidad de carga en la posición x, etc. Sea g(x,t)=g(x-t) la respuesta en x a un estímulo en t. Si el sistema es lineal, la respuesta total en el punto x al estímulo global $\{f(t): t \in \mathbb{R}\}$ será la "suma"de todas las contribuciones $[dt\ f(t)]g(x,t)$, que es la convolución (f*g)(x).

Por ejemplo, el potencial electrostático debido a una densidad de carga $\rho(\vec{x})$ se puede es-

cribir como

$$\phi(\vec{x}) = \int_{V} \frac{\rho(\vec{x}')}{|\vec{x} - \vec{x}'|} dV' = \rho * f(\vec{x}),$$

donde $f(\vec{x}) = 1/|\vec{x}|$.

Figura 2.6: Distribución de carga de densidad $\rho(\vec{x})$.

Idea matemática: La interpretación matemática de la convolución está ilustrada en la figura 2.7.

Figura 2.7: Idea matemática de la convolución. En (a), se expresa cada función en términos de la variable de integración y. En (b), se refleja la gráfica de g(y) con respecto al eje vertical, es decir, $g(y) \to g(-y)$. En (c), se traslada la gráfica de g(-y), x unidades. Luego, se traslapan las gráficas de f(y) y f(x) de tal forma que el área sombreada corresponde al valor de f(y) para ese valor de f(y) es valor

Entonces, f * g mide el grado de traslape entre f(y) y g(-y), luego de trasladar g a una distancia x.

Proposición 2.3 (Propiedades de la convolución). Sean f(x), g(x) y h(x) funciones reales, se verifica:

1. Conmutatividad:

$$f(x) * g(x) = g(x) * f(x).$$

2. Asociatividad:

$$[f(x) * g(x)] * h(x) = f(x) * [g(x) * h(x)].$$

3. Distributividad:

$$f(x) * [g(x) + h(x)] = f(x) * g(x) + f(x) * h(x).$$

Teorema 2.4 (de convolución de Fourier). Sean f(x), g(x) y h(x) funciones reales y sean $\tilde{f}(k)$, $\tilde{g}(k)$ y $\tilde{h}(k)$ sus correspondientes transformadas de Fourier.

• Si $\tilde{h}(k) = \tilde{f}(k)\tilde{g}(k)$, entonces

$$h(x) = \frac{1}{2\pi} (f * g)(x) = \frac{1}{2\pi} (g * f)(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} f(y)g(x - y) \, dy.$$

• Si h(x) = f(x)g(x), entonces

$$\tilde{h}(k) = (\tilde{f} * \tilde{g})(k) = (\tilde{g} * \tilde{f})(k) = \int_{-\infty}^{\infty} \tilde{f}(y)\tilde{g}(k-y) \, dy.$$

Demostración.

■ Supongamos que $\tilde{h}(k) = \tilde{f}(k)\tilde{g}(k)$. Aplicando la transformada de Fourier inversa dada por (2.4), tenemos que

$$\begin{split} h(x) &= \mathcal{F}^{-1}\{\tilde{h}(k)\} = \mathcal{F}^{-1}\{\tilde{f}(k)\tilde{g}(k)\} \\ &= \int_{-\infty}^{\infty} \tilde{f}(k)\tilde{g}(k)e^{ikx} dk \\ &= \frac{1}{2\pi} \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} f(y)e^{-iky} dy \right) \tilde{g}(k)e^{ikx} dk. \end{split}$$

Si el intercambio de orden de integración es posible, entonces

$$h(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} f(y) \left(\int_{-\infty}^{\infty} \tilde{g}(k) e^{ikx} e^{-iky} dk \right) dy$$
$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} f(y) \left(\int_{-\infty}^{\infty} \tilde{g}(k) e^{ik(x-y)} dk \right) dy$$
$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} f(y) g(x-y) dy = \frac{1}{2\pi} (f * g)(x).$$

Como la convolución es conmutativa:

$$h(x) = \frac{1}{2\pi} (f * g)(x) = \frac{1}{2\pi} (g * f)(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} f(y)g(x - y) \, dy.$$

■ Supongamos que h(x) = f(x)g(x). Aplicando la transformada de Fourier dada por (2.3), tenemos que

$$\tilde{h}(k) = \mathcal{F}\{f(x)g(x)\}\$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} f(x)g(x)e^{-ikx} dx$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} \tilde{f}(y)e^{iyx} dy \right) g(x)e^{-ikx} dx.$$

Si el intercambio de orden de integración es posible, entonces

$$\begin{split} \tilde{h}(k) &= \frac{1}{2\pi} \int_{-\infty}^{\infty} \tilde{f}(y) \left(\int_{-\infty}^{\infty} g(x) e^{iyx} e^{-ikx} \, dx \right) \, dy \\ &= \int_{-\infty}^{\infty} \tilde{f}(y) \left(\frac{1}{2\pi} \int_{-\infty}^{\infty} g(x) e^{-i(k-y)x} \, dx \right) \, dy \\ &= \int_{-\infty}^{\infty} \tilde{f}(y) \tilde{g}(k-y) \, dy. \end{split}$$

Por lo tanto,

$$\tilde{h}(k) = (\tilde{f} * \tilde{g})(k) = (\tilde{g} * \tilde{f})(k) = \int_{-\infty}^{\infty} \tilde{f}(y)\tilde{g}(k-y) dy.$$

Ejemplo 2.4.1. Sabiendo que [17]

$$\mathcal{F}\left\{rac{2c}{x^2+c^2}
ight\}=e^{-c|k|},\quad \mathsf{para}\;c>0.$$

Podemos usar el teorema de convolución para encontrar la transformada de Fourier de

$$f(x) = \frac{1}{x^4 + 5x^2 + 4} = \frac{1}{(x^2 + 1)(x^2 + 4)}. (2.11)$$

En efecto,

$$\mathcal{F}{f(x)} = \mathcal{F}\left\{\frac{1}{8} \frac{2}{x^2 + 1} \frac{4}{x^2 + 4}\right\}$$

$$= \frac{1}{8} \left(\int_{-\infty}^{\infty} e^{-|y|} e^{-2|k-y|} dy \right)$$

$$= \frac{1}{8} \left(\int_{-\infty}^{0} e^{y} e^{-2|k-y|} dy + \int_{0}^{\infty} e^{-y} e^{-2|k-y|} dy \right).$$

Si k > 0,

$$\mathcal{F}{f(x)} = \frac{1}{8} \left(\int_{-\infty}^{0} e^{y} e^{-2(k-y)} dy + \int_{0}^{k} e^{-y} e^{-2(k-y)} dy + \int_{k}^{\infty} e^{-y} e^{2(k-y)} dy \right)$$

$$= \frac{1}{8} \left(\int_{-\infty}^{0} e^{-2k+3y} dy + \int_{0}^{k} e^{-2k+y} dy + \int_{k}^{+\infty} e^{2k-3y} dy \right)$$

$$= \frac{1}{8} \left(\frac{1}{3} e^{-2k} + e^{-k} - e^{-2k} + \frac{1}{3} e^{-k} \right)$$

$$= \frac{1}{6} e^{-k} - \frac{1}{12} e^{-2k}.$$

Si k < 0,

$$\mathcal{F}{f(x)} = \frac{1}{8} \left(\int_{-\infty}^{k} e^{y} e^{-2(k-y)} dy + \int_{k}^{0} e^{y} e^{2(k-y)} dy + \int_{0}^{\infty} e^{-y} e^{2(k-y)} dy \right)$$

$$= \frac{1}{8} \left(\int_{-\infty}^{k} e^{-2k+3y} dy + \int_{k}^{0} e^{2k-y} dy + \int_{0}^{\infty} e^{2k-3y} dy \right)$$

$$= \frac{1}{8} \left(\frac{1}{3} e^{k} - e^{2k} + e^{k} + \frac{1}{3} e^{2k} \right)$$

$$= \frac{1}{6} e^{k} - \frac{1}{12} e^{2k}.$$

Por lo tanto, para k positivo como negativo,

$$F\{f(x)\} = \frac{1}{6}e^{-|k|} - \frac{1}{12}e^{-2|k|}$$

Una mejor forma de encontrar la transformada de Fourier de (2.11) es, en primer lugar, descomponer la función en fracciones parciales,

$$f(x) = \frac{1}{3} \frac{1}{x^2 + 1} - \frac{1}{3} \frac{1}{x^2 + 4},$$

para luego hacer usar de la linealidad de la transformada.

$$\mathcal{F}{f(x)} = \frac{1}{6}\mathcal{F}\left{\frac{2}{x^2 + 1}\right} - \frac{1}{12}\mathcal{F}\left{\frac{4}{x^2 + 4}\right}$$
$$= \frac{1}{6}e^{-|k|} - \frac{1}{12}e^{-2|k|}.$$

2.5. Aplicación de la transformada de Fourier

La transformada de Fourier es útil para resolver ecuaciones diferenciales en el dominio $(-\infty, \infty)$ con condiciones de borde homogéneas en el infinito. En particular, en ecuaciones diferenciales <u>lineales</u> con <u>coeficientes constantes</u>, debido a la propiedad de linealidad de la transformada.

A continuación se ilustra el procedimiento a seguir mediante ejemplos.

Ejemplo 2.5.1. Encuentre la solución general de la ecuación diferencial

$$y''(x) - y(x) = e^{-\alpha|x|}, \quad y(\pm \infty) = 0, \quad \alpha > 0, \alpha \neq 1.$$

Solución: La solución del caso homogéneo

$$y''(x) - y(x) = 0,$$

está dada por

$$y_h(x) = c_1 e^x + c_2 e^{-x}, \quad c_1, c_2 \in \mathbb{R}.$$

Nos queda por encontrar la solución particular, para ello haremos uso de la transformada de Fourier.

Primero, determinemos

$$\begin{split} \mathcal{F}\left\{e^{-\alpha|x|}\right\} &= \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-\alpha|x|} e^{-ikx} dx \\ &= \frac{1}{2\pi} \left(\int_{-\infty}^{0} e^{x(\alpha - ikx)} dx + \int_{0}^{\infty} e^{-x(\alpha + ik)} dx \right) \\ &= \frac{1}{2\pi} \left(\frac{1}{\alpha - ik} + \frac{1}{\alpha + ik} \right) \\ &= \frac{\alpha/\pi}{\alpha^2 + k^2}. \end{split}$$

Luego, apliquemos la transformada de Fourier a la ecuación diferencial:

$$\mathcal{F}\{y''(x)\} - \mathcal{F}\{y(x) = \mathcal{F}\left\{e^{-\alpha|x|}\right\}$$
$$\Rightarrow -k^2 \mathcal{F}\{y(x)\} - \mathcal{F}\{y(x)\} = \frac{\alpha/\pi}{\alpha^2 + k^2}.$$

Despejando la transformada de Fourier de la solución.

$$\mathcal{F}{y(x)} = \frac{-\alpha/\pi}{(k^2 + \alpha^2)(k^2 + 1)}$$

$$= -\frac{\alpha}{\pi} \frac{1}{\alpha^2 - 1} \left(\frac{1}{k^2 + 1} - \frac{1}{k^2 + \alpha^2} \right)$$

$$= \frac{1}{\alpha^2 - 1} \left(\frac{\alpha/\pi}{k^2 + \alpha^2} - \alpha \frac{1/\pi}{k^2 + 1} \right)$$

Tomando la transformada inversa, obtenemos que

$$y(x) = \frac{e^{-\alpha|x| - \alpha e^{-|x|}}}{\alpha^2 - 1}.$$

Por lo tanto, la solución general es

$$y(x) = \frac{e^{-\alpha|x|-\alpha e^{-|x|}}}{\alpha^2 - 1} + c_1 e^x + c_2 e^{-x}, \quad c_1, c_2 \in \mathbb{R}$$

Ejemplo 2.5.2. Consideremos un oscilador armónico amortiguado sometido a una fuerza externa g(t). La ecuación de movimiento del oscilador está dada por

$$\ddot{x}(t) + 2\alpha \dot{x}(t) + \omega_0^2 x(t) = f(t), \tag{2.12}$$

donde f(t) = g(t)/m y α es una constante asociada al amortiguamiento del sistema. En los primeros cursos de Ecuaciones Diferenciales Ordinarias (EDO) se trabaja con f(t) sinusoidal, pero gracias a la transformada de Fourier, podemos extender este resultado para funciones f(t) arbitrarias.

Aplicando la transformada de Fourier en la variable temporal, a saber,

$$\mathcal{F}\{x(t)\} = \frac{1}{2\pi} \int_{-\infty}^{\infty} f(t)e^{-i\omega t}dt,$$

a ambos lados de la ecuación diferencial (2.12), obtenemos

$$\mathcal{F}\left\{\ddot{x}(t) + 2\alpha\dot{x}(t) + \omega_0^2 x(t)\right\} = \mathcal{F}\left\{f(t)\right\}$$

$$\Rightarrow \mathcal{F}\left\{\ddot{x}(t)\right\} + 2\alpha \mathcal{F}\left\{\dot{x}(t)\right\} + \omega_0^2 \mathcal{F}\left\{x(t)\right\} = \mathcal{F}\left\{f(t)\right\}. \tag{2.13}$$

Si asumimos que

$$\lim_{x \to \pm \infty} x(t) = \lim_{x \to \pm \infty} \dot{x}(t) = 0,$$

tenemos

$$\mathcal{F}\{\ddot{x}(t)\} = (i\omega)^2 \mathcal{F}\{x(t)\} = -\omega^2 \mathcal{F}\{x(t)\},$$

$$\mathcal{F}\{\dot{x}(t)\} = i\omega \mathcal{F}\{x(t)\}.$$

Además, si definimos $F(\omega) := \mathcal{F}\{f(t)\}$, la ecuación (2.13) nos queda

$$-\omega^2 \mathcal{F}\{x(t)\} + 2\alpha \omega i \mathcal{F}\{x(t)\} + \omega_0^2 \mathcal{F}\{x(t)\} = F(\omega).$$

Despejando la transformada de Fourier de la solución:

$$\mathcal{F}\{x(t)\} = \frac{F(\omega)}{-\omega^2 - 2\alpha i\omega + \omega_0^2}.$$

Tomando la transformada inversa, obtenemos la solución

$$x(t) = \int_{-\infty}^{\infty} \frac{F(\omega)}{(\omega_0^2 - \omega^2) - 2\alpha\omega i} e^{i\omega t} d\omega$$

Ecuaciones Diferenciales en Física

En física, es muy común que diversas situaciones sean modeladas no por ecuaciones que únicamente contengan potencias (enteras o semienteras) de alguna variable física, sino que incluyan derivadas de estas.

En sus cursos de Mecánica y de Ecuaciones Diferenciales, probablemente se familiarizaron con los casos del Oscilador Armónico y del Oscilador amortiguado, que son descritos por las ecuaciones (3.1) y (3.2), respectivamente.

$$\frac{d^2x}{dt^2} = -\omega^2 x \,, \tag{3.1}$$

$$\frac{d^2x}{dt^2} + 2\gamma \frac{dx}{dt} + \omega_0^2 x = 0.$$
 (3.2)

Ambas ecuaciones consisten en ecuaciones diferenciales *ordinarias*, debido a que la función a derivar, *x*, depende de una única variable, de modo que todas las derivadas en ella son totales.

Sin embargo, muchas otras situaciones físicas no pueden ser descritas únicamente en términos de funciones de una sola variable, incluso cuando dicha función solo dependa de la posición. Por ejemplo, podríamos querer describir el potencial eléctrico de una distribución de cargas esférica, cuya densidad dependa de qué tan alejados de su centro nos encontremos (variable r), así como también del ángulo que forma con respecto de su polo norte (variable θ), de modo que este potencial será una función tanto de r como de θ . Este tipo de sistemas serán descritos por ecuaciones diferenciales parciales (EDPs).

Hasta el día de hoy, el desarrollo de métodos para resolver EDPs es un área de investigación activa en matemáticas, por lo que en este curso nos limitaremos a algunos de los métodos más tradicionales y que son la base para la descripción de la física de los siglos XVIII y XIX, como lo son la mecánica hamiltoniana, la teoría clásica de campos o la electrodinámica clásica.

3.1. Algunas ecuaciones básicas

A continuación listamos algunos ejemplos de EDPs *lineales* en la función incógnita, y de *segundo orden*. Algunos puntos que mencionar antes de entrar en ellas, es que siempre que veamos una derivada respecto al tiempo, esto quiere decir que la función incógnita *tendrá una evolución temporal*.

También cabe mencionar que no todos los sistemas físicos pueden ser descritos por ecuaciones "bien portadas" como las que listaremos a continuación, ya que por ejemplo, en fenómenos que involucren turbulencias, como la física de plasmas o la física atmosférica, las ecuaciones son no lineales, lo que complica la posibilidad de resolverlas de forma analítica, y se encuentran fuera del alcance de este curso.

3.1.1. Ecuación de Laplace

Esta corresponde a la expresión

$$\nabla^2 \psi = 0 \,, \tag{3.3}$$

la que surge en el estudio de diferentes sistemas físicos, como por ejemplo:

- el **potencial electrostático** en una región sin cargas.
- un **fluido irrotacional incompresible** en un movimiento estacionario, cuyo campo de velocidades es descrito como $\vec{v} = -\nabla \psi$.
- el potencial gravitatorio.
- una distribución de temperatura estacionaria, donde en este caso $\psi = T(x, t)$ corresponde al campo de temperaturas de un material.

3.1.2. Ecuación de Poisson

Esta corresponde, por llamarlo de una manera, a la generalización de la ecuación de Laplace para cualquier sistema con una función fuente f conocida. Es dada por la expresión

$$\nabla^2 \psi = f(\vec{x}) \,. \tag{3.4}$$

Esta corresponde a una ecuación *inhomogénea*, cuyas soluciones generales pueden escribirse como $\psi = \psi_h + \psi_p$, donde el primer término corresponde a la solución de la *ecuación homogénea* donde f(x) = 0, que en este caso corresponde a la ecuación de Laplace, y el segundo término es una *solución particular* de la ecuación de Poisson.

Esta puede surgir en situaciones similares a la ecuación de Laplace, pero en las cuales existen fuentes para los respectivos campos. Por ejemplo, para el caso electrostático, puede existir una

fuente con densidad de carga $\rho(\vec{x})$, de modo que la ecuación que describe el potencial eléctrico en dicha región será

$$\nabla^2 \phi = -\frac{\rho(\vec{x})}{\varepsilon_0} \,. \tag{3.5}$$

3.1.3. Ecuación de Helmholtz

Es una ecuación que surge al aplicar el método de separación de variables a una ecuación de onda (siendo ambos términos explicados más abajo), de modo que es una especie de ecuación de onda independiente del tiempo, o en otros contextos, una ecuación de difusión independiente del tiempo. Se escribe como

$$\nabla^2 \psi \pm k^2 \psi = 0. \tag{3.6}$$

Esta ecuación aparece en el estudio de diversas áreas, como la radiación electromagnética, la sismología, la acústica o membranas.

3.1.4. Ecuación de difusión de calor dependiente del tiempo

BUSCAR QUÉ DECIR DE ESTA

$$\nabla^2 \psi - \frac{1}{\alpha} \frac{\partial \psi}{\partial t} = 0 \,, \tag{3.7}$$

donde α corresponde al coeficiente de difusión térmica.

3.1.5. Ecuación de onda dependiente del tiempo

Describe la propagación de una onda ψ tanto espacial como temporalmente. Suele escribirse como

$$\nabla^2 \psi - \frac{1}{v^2} \frac{\partial^2 \psi}{\partial t^2} = 0 \,, \tag{3.8}$$

o bien, definiendo el operador *d'Alembertiano* (comúnmente pronunciado como *box*) como $\Box \equiv \frac{1}{v^2} \frac{\partial^2}{\partial t^2} - \nabla^2$,

$$\Box \psi = 0. \tag{3.9}$$

3.1.6. Ecuación de Klein-Gordon

Corresponde a una generalización de la ecuación de onda para trabajar con sistemas cuánticos relativistas, como es el trabajo de la física de partículas. Esta incorpora las constantes \hbar y c, que corresponden respectivamente a la constante de Planck reducida, y que es una de las

constantes que nos indicará que estamos trabajando con un sistema cuántico; y a la velocidad de la luz, que nos indica que trabajamos con un sistema relativista. Es dada por

$$\Box \psi - \frac{m^2 c^2}{\hbar^2} \psi = 0. {(3.10)}$$

3.1.7. Ecuación de Schrödinger dependiente del tiempo

Esta corresponde al límite no relativista de la ecuación de Klein-Gordon (es decir, cuando $c \sim \infty$) y es la que describe la evolución de un sistema en Mecánica Cuántica. Es dada por

$$i\hbar \frac{\partial \psi}{\partial t}(x,t) = -\frac{\hbar^2}{2m} \nabla^2 \psi(x,t) + V(x)\psi(x,t) = \hat{H}\psi(x,t). \tag{3.11}$$

3.2. Condiciones de borde

Para una EDP dada, las soluciones dependerán del dominio Ω en que queramos trabajar, pues no es lo mismo trabajar. Por ejemplo, un potencial electrostático debe cumplir la ecuación de Laplace, pero será distinto en una esfera de radio r que en un cilindro de largo ℓ y radio ρ .

Por ello, debemos entregar información adicional a nuestro problema para poder resolver el problema. Esta información suele denominarse **condiciones de borde**, **de frontera** o **de contorno**, ya que tradicionalmente dan información del comportamiento de la función en los límites o bordes $\partial\Omega$ del sistema (véase figura x).

Puede ser útil clasificar las condiciones de contorno en tres tipos, aplicables a EDPs de segundo orden.

- Tenemos condiciones de tipo **Dirichlet** cuando nos dan información del comportamiento de la función en la frontera $\partial\Omega$ de la región en que trabajamos.
- Tenemos condiciones de tipo **Neumann** cuando tenemos información de la *derivada normal de la función*, es decir $\partial \Phi / \partial n := \hat{n} \cdot \nabla \Phi$, en la frontera $\partial \Omega$.
- Tenemos condiciones de tipo Cauchy cuando tenemos a la vez condiciones de tipo Dirichlet y de tipo Neumann.

¿Cómo sabemos qué tipo de condición de borde es apropiada para nuestro problema? Es una discusión un tanto complicada que considero que escapa a los contenidos del curso, pero que puede revisar en los capítulos X de X y X de X. La idea, sin embargo, es que esto dependerá tanto del tipo de EDP como de la definición del dominio, es decir, si este es acotado por una superficie (o curva, en el caso de dos variables independientes) abierta o cerrada.

3.3. Encontrando soluciones para ecuaciones diferenciales parciales

Como se mencionó al inicio de este capítulo, las EDPs siguen siendo un área de investigación activa en matemáticas, por lo que no todas ellas tendrán soluciones exactas, o analíticas. Un ejemplo de esto son las *ecuaciones de Navier-Stokes*, que describen el comportamiento de un fluido viscoso, y surgen en el estudio de sistemas como la atmósfera terrestre o las corrientes oceánicas. Estas ecuaciones son particularmente conocidas por ser uno de los *problemas del milenio*, de modo que existe una recompensa monetaria para quien pueda demostrar la existencia (o inexistencia) de soluciones analíticas para cualquier conjunto de condiciones de borde.

Sin embargo, las ecuaciones que listamos en secciones previas sí puden ser resueltas de forma analítica mediante uno de tres métodos que estudiaremos en el curso. Dos de ellos, el método de separación de variables y el método de las funciones de Green los veremos en capítulos siguientes del curso. El tercero corresponde al **método de las transformadas integrales**, donde diferentes transformadas son útiles para diferentes condiciones de contorno. En este curso, analizaremos únicamente a la transformada de Fourier.

3.3.1. Método de la transformada de Fourier

Como se discutió anteriormente, la transformada de Fourier puede aplicarse sobre una derivada n-ésima de una función sobre, por ejemplo, la variable temporal, de modo que se cumple la propiedad

$$\mathcal{F}\left\{\frac{d^n f}{dt^n}\right\} = (i\omega)^n \mathcal{F}\{f(t)\}. \tag{3.12}$$

Es posible que esta idea les sea familiar de su curso de Ecuaciones Diferenciales, al menos a quienes cursaron Ecuaciones Diferenciales Ordinarias, donde se plantea un método similar para EDOs mediante la transformada de Laplace.

¿Para qué tipo de problemas puede ser útil trabajar con transformada de Fourier? Principalmente para resolver ecuaciones diferenciales en el dominio $(-\infty,\infty)$ con condiciones de borde homogéneas en el infinito. Particularmente, se recomienda utilizarla en ecuaciones diferenciales lineales con coeficientes constantes, pues en ambos casos podemos hacer uso de la propiedad de la linealidad de la transformada de Fourier.

¿En qué momento esto es útil para resolver EDPs? Supongamos que tenemos una función de dos variables, por ejemplo, de la posición x y del tiempo t. Al calcular la transformada de Fourier, lo hacemos **respecto de una sola variable**, ya sea de la posición, gracias a la cual pasamos al dominio del número de onda, o respecto del tiempo, caso en el que pasamos al dominio de las frecuencias. Por ello, si tenemos una ecuación diferencial que involucra tanto derivadas respecto a la posición como derivadas respecto al tiempo, podemos aplicar la transformada de

Fourier respecto de una de las variables, de modo que la segunda actúe como una "constante" en el sistema.

Para hacer más clara esta idea, consideremos el siguiente ejemplo.

Ejemplo 3.3.1. Sea la ecuación diferencial dada por

$$\frac{\partial u}{\partial t}(x,t) - \frac{\partial^2 u}{\partial x^2}(x,t) = 0, x \in \mathbb{R}, t > 0,$$
(3.13)

con condiciones de contorno dadas por $u(x,0) = \sin(x), x \in \mathbb{R}$. Mediante el método de la transformada de Fourier, encuentre la solución al problema.

Solución. Aplicamos la transformada de Fourier respecto a la coordenada x, de modo que la ecuación (3.13) se transformará en

$$\mathcal{F}\left\{\frac{\partial u}{\partial t} - \frac{\partial^2 u}{\partial x^2}\right\}(k, t) = \mathcal{F}\{0\}(k, t)$$
(3.14)

$$\mathcal{F}\left\{\frac{\partial u}{\partial t}\right\}(k,t) - \mathcal{F}\left\{\frac{\partial^2 u}{\partial x^2}\right\}(k,t) = 0.$$
 (3.15)

Al hacer uso de la propiedad de la derivada *respecto de la variable de la transformada*, tenemos que

$$\mathcal{F}\left\{\frac{\partial^2 u}{\partial x^2}\right\}(k,t) = (ik)^2 \mathcal{F}\{u\}(k,t) = -k^2 \hat{u}(k,t). \tag{3.16}$$

El Método de Separación de Variables

Ya observamos que podemos hacer uso del método de la transformada de Fourier para reducir una ecuación diferencial en dos variables diferentes a una EDO en una sola variable. Sin embargo, no siempre será cómodo calcular la transformada de Fourier de una función, por lo que sería agradable tener una forma más general de hacer funcionar esta idea.

Para ello, hacemos uso del **método de separación de variables**, gracias al cual podemos reducir una EDP lineal de n variables en un conjunto de n EDOs para n funciones auxiliares, cada una asociada a una variable independiente de la EDP. Esto lo podemos hacer al proponer que nuestro sistema puede ser descrito mediante una solución separable, que consiste en el producto de todas las funciones auxiliares que encontremos mediante la solución de las EDOs.

Para realizar la separación de las variables, haremos uso de (n-1) constantes de separación, las que son escogidas, en primera instancia, de forma arbitraria para luego determinarlas gracias a las condiciones de contorno del sistema.

Finalmente, una vez hallamos las soluciones de cada una de las EDOs y planteamos la solución separable del sistema, consideraremos que la solución más general consiste en la superposición o combinación lineal de todas las posibles soluciones separables del sistema.

Como ejemplo bastante ilustrativo, durante el capítulo resolveremos la ecuación de Helmholtz en diferentes sistemas coordenados, dando origen a diferentes funciones especiales, que serán discutidas en mayor profundidad en los capítulos siguientes.

Resolviendo la ecuación de Helmholtz 4.1.

Recordemos que la ecuación de Helmholtz es dada por la expresión

$$\nabla^2 \psi + k^2 \psi = 0 \,, \tag{4.1}$$

donde k es una constante asociada al sistema.

4.1.1. Coordenadas cartesianas

En un sistema cartesiano, el operador laplaciano se define simplemente como

$$\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} \,. \tag{4.2}$$

De esta forma, dado que nuestra ecuación posee tres variables independientes, podremos reducirla a un sistema de 3 EDOs en las variables x, y y z. Antes de realizar este procedimiento, plantearemos una solución de la forma

$$\psi(x, y, z) = X(x)Y(y)Z(z). \tag{4.3}$$

Una duda totalmente razonable es por qué considerar una solución de este estilo. La verdad no hay una respuesta directa a esto, más allá de "esperemos que funcione". Si no fuera el caso, y nuestro sistema comienza a complicarse, puede que sea una mejor idea utilizar algún método alternativo. Sin embargo, cabe mencionar que si los operadores diferenciales (derivadas n-ésimas) son aditivos, es decir, no tenemos combinaciones de las variables, una solución de este estilo suele funcionar.

Evaluando la expresión (4.3) en la ecuación (4.1), podemos escribirla como

$$YZ\frac{d^{2}X}{dx^{2}} + XZ\frac{d^{2}Y}{dv^{2}} + XY\frac{d^{2}Z}{dz^{2}} + k^{2}XYZ = 0,$$
(4.4)

donde ahora utilizamos derivadas totales en lugar de parciales, puesto que cada una de las funciones depende únicamente de una variable.

Dividimos ahora por la solución XYZ, donde hemos asumido que $\psi(x,y,z)\neq 0$, de modo que, luego de reordenar los términos, la ecuación resulta en

$$\frac{1}{X}\frac{d^2X}{dx^2} = -k^2 - \frac{1}{Y}\frac{d^2Y}{dy^2} - \frac{1}{Z}\frac{d^2Z}{dz^2}.$$
 (4.5)

Hemos llegado al paso en donde se aprecia esta separación de variables. Notemos que el lado izquierdo de la ecuación (4.5) contiene únicamente términos asociados a la variable x, mientras que el lado derecho aún tiene dependencia en y y en z. La única posibilidad de que ambos lados sean iguales, dado que dependen de variables distintas, es que ambos son a su vez iguales a una constante de separación, que en este caso asumiremos real y llamaremos λ_1 ,

$$\frac{1}{X}\frac{d^2X}{dx^2} = \lambda_1 \,, \tag{4.6}$$

$$-k^2 - \frac{1}{Y}\frac{d^2Y}{dv^2} - \frac{1}{Z}\frac{d^2Z}{dz^2} = \lambda_1.$$
 (4.7)

Notemos que, reordenando términos en la ecuación (4.7), podemos nuevamente separar las variables mediante una constante λ_2 , de modo que hemos dividido la EDP original, dependiente de tres variables, en un sistema de tres EDOs,

$$\frac{d^2X}{dx^2} - \lambda_1 X = 0 , \qquad (4.8)$$

$$\frac{d^2Y}{dy^2} - \lambda_2 Y = 0 , \qquad (4.9)$$

$$\frac{d^2Z}{dz^2} + (k^2 + \lambda_1 + \lambda_2)Z = 0. {(4.10)}$$

Cada una de estas EDOs son resolubles mediante los métodos vistos en su primer curso de ecuaciones diferenciales, y las soluciones dependerán del valor y del signo de las constantes de separación. Analicemos las posibles soluciones de la ecuación (4.8):

$$X_{\lambda_{1}}(x) = \begin{cases} c_{1} \sinh(\sqrt{\lambda_{1}}x) + c_{2} \cosh(-\sqrt{\lambda_{1}}x), & \text{si } \lambda_{1} > 0, \\ c_{1} + c_{2}x, & \text{si } \lambda_{1} = 0, \\ c_{1} \cos(\sqrt{-\lambda_{1}}x) + c_{2} \sin(\sqrt{-\lambda_{1}}x), & \text{si } \lambda_{1} < 0. \end{cases}$$
(4.11)

Aquí es importante no olvidar que tenemos una motivación física para realizar estos cálculos, lo que nos ayudará a determinar el signo de la constante de separación. Para la mayoría de los problemas físicos, la solución para X(x) que tiene sentido es aquella en que λ_1 es negativo, de modo que la solución es una oscilación en la coordenada x. Así mismo, podemos hacer un análisis análogo para cada una de las otras ecuaciones, obteniendo soluciones denotadas por $Y_{\lambda_2}(y)$ y $Z_{\lambda_1\lambda_2}(z)$, donde es importante indicar el subíndice, ya que esta solución es válida para un valor particular de las constantes de separación.

De esta forma, una solución particular a nuestra EDP es dada por

$$\psi_{\lambda_1 \lambda_2}(x, y, z) = X_{\lambda_1}(x) Y_{\lambda_2}(y) Z_{\lambda_1 \lambda_2}(z), \qquad (4.12)$$

y la solución general corresponderá a una combinación lineal de la solución (??), correspondiendo a una suma sobre todos los valores posibles de λ_1 y λ_2 , es decir,

$$\psi(x, y, z) = \sum_{\lambda_1 \lambda_2} C_{\lambda_1 \lambda_2} \psi_{\lambda_1 \lambda_2}(x, y, z), \qquad (4.13)$$

donde los coeficientes $C_{\lambda_1\lambda_2}$ serán obtenidos al imponer las condiciones de contorno del problema, que por lo general nos llevará a un conjunto finito de valores para λ_1 y λ_2 .

4.1.2. Coordenadas cilíndricas

En este caso, el laplaciano debe definirse de una forma diferente, dada por

$$\nabla^2 = \frac{1}{\rho} \frac{\partial}{\partial \rho} \left(\rho \frac{\partial}{\partial \rho} \right) + \frac{1}{\rho^2} \frac{\partial^2}{\partial \phi^2} + \frac{\partial^2}{\partial z^2} \,, \tag{4.14}$$

de modo que la ecuación de Helmholtz (4.1) se podrá escribir como

$$\frac{1}{\rho} \frac{\partial}{\partial \rho} \left(\rho \frac{\partial \psi}{\partial \rho} \right) + \frac{1}{\rho^2} \frac{\partial^2 \psi}{\partial \phi^2} + \frac{\partial^2 \psi}{\partial z^2} + k^2 \psi = 0.$$
 (4.15)

Nuevamente plantearemos una solución que sea producto de tres funciones, cada una dependiente de una de las variables del problema, es decir

$$\psi(\rho, \phi, z) = P(\rho)\Phi(\phi)Z(z), \tag{4.16}$$

que al sustituirlas en la expresión (4.15) resultará en

$$\frac{\Phi Z}{\rho} \frac{d}{d\rho} \left(\rho \frac{dP}{d\rho} \right) + \frac{PZ}{\rho^2} \frac{d^2 \Phi}{d\phi^2} + P \Phi \frac{d^2 Z}{dz^2} + k^2 P \Phi Z = 0, \qquad (4.17)$$

y dividiendo por $P\Phi Z$, junto a un reordenamiento de los términos, llegamos a la expresión

$$\frac{1}{\rho P} \frac{d}{d\rho} \left(\rho \frac{dP}{d\rho} \right) + \frac{1}{\rho^2 \Phi} \frac{d^2 \Phi}{d\phi^2} + k^2 = -\frac{1}{Z} \frac{d^2 Z}{dz^2} \,. \tag{4.18}$$

Funciones de Legendre

Funciones de Bessel

Funciones de Green

8

Una breve introducción a los Tensores Cartesianos

Un breve repaso: Espacios vectoriales y espacio de funciones

A.1. Definiciones

Definición A.1. Un *espacio vectorial* sobre un cuerpo $\mathbb K$ es una terna $(V,+,\cdot)$ formada por un **conjunto no vacío** V, una **operación de suma** $+:V\times V\to V$ y una **operación de producto escalar** $\cdot:\mathbb K\times V\to V$, que satisface ocho propiedades:

EV1 (Asociatividad) $\vec{x} + (\vec{y} + \vec{z}) = (\vec{x} + \vec{y}) + \vec{z}$. **EV5** $a(b\vec{x}) = (ab)\vec{x}$.

EV2 (Elemento neutro) $\vec{x} + \vec{0} = \vec{0} + \vec{x} = \vec{x}$. **EV6** (Distributividad) $a(\vec{x} + \vec{y}) = a\vec{x} + a\vec{y}$.

EV3 (Elemento opuesto) $\vec{x} + (-\vec{x}) = \vec{0}$. **EV7** (Distributividad) $(a + b)\vec{x} = a\vec{x} + b\vec{x}$.

EV4 (Conmutatividad) $\vec{x} + \vec{y} = \vec{y} + \vec{x}$. **EV8** $1\vec{x} = \vec{x}$.

Denotemos por $\mathcal{C}_0[a, b]$ al conjunto de funciones complejas continuas de una variable real $t \in [a, b]$.

Notemos que claramente se cumple:

$$f, g \in \mathcal{C}_0[a, b] \Rightarrow f + g \in \mathcal{C}_0[a, b]$$

У

$$f\in \mathscr{C}_0[a,b] \, \mathsf{y} \, \lambda \in \mathbb{C} \, \Rightarrow \, \lambda f \in \mathscr{C}_0[a,b].$$

Definición A.2. Una función $f:[a,b] \longrightarrow \mathbb{C}$ es **seccionalmente continua** si [a,b] tiene una partición finita $a=t_0 < t_1 < \cdots < t_n = b$ tal que f es continua y acotada en cada intervalo

Figura A.1: En (a) una función de la forma $f:[a,b]\to\mathbb{R}$ y en (b) una función de la forma $f:[a,b]\to\mathbb{C}$, ambas seccionalmente continuas.

abierto $(t_i, t_{i+1}), i = 0, ..., n-1$.

Denotaremos por $\mathscr{C}[a,b]$ al conjunto de las funciones complejas seccionalmente continuas.

Geométricamente, $f:[a,b] \to \mathbb{C}$ es una curva en el plano complejo y la condición de seccionalmente continua se puede apreciar en la figura A.1.

Podemos afirmar que los conjuntos $\mathscr{C}_0[a,b]$ y $\mathscr{C}[a,b]$ forman espacios vectoriales sobre el cuerpo de los complejos. Además, $\mathscr{C}_0[a,b] \subset \mathscr{C}[a,b]$.

Definición A.3. Consideremos dos funciones $f, g \in \mathcal{C}[a, b]$. Definimos su **producto escalar**¹ como

$$\langle f, g \rangle = \int_a^b f(t)g^*(t) dt$$

Proposición A.1 (Propiedades del producto escalar). Sean $f, g, h \in \mathcal{C}[a, b]$ y $\lambda \in \mathbb{C}$.

- $\langle f, g + h \rangle = \langle f, g \rangle + \langle f, h \rangle$

- Si $f \not\equiv 0$, entonces $\langle f, f \rangle > 0$

Definición A.4. Sea $f \in \mathcal{C}[a, b]$. Definimos su **norma** como

$$||f|| = \sqrt{\langle f, f \rangle} \in \mathbb{R}.$$

Proposición A.2. Sean $f, g \in \mathscr{C}[a, b]$ y $\lambda \in \mathbb{C}$.

- - Si $f \not\equiv 0$, entonces ||f|| > 0.

Demostración. Demostraremos solo la desigualdad de Cauchy-Schwarz y la triangular.

Desigualdad de Cauchy-Schwarz:

Sea $\lambda \in \mathbb{C}$ arbitrario,

$$\begin{split} 0 &\leq \|\lambda f + g\|^2 = \langle \lambda f + g, \lambda f + g \rangle = \langle \lambda f, \lambda f \rangle + \langle \lambda f, g \rangle + \langle g, \lambda f \rangle + \langle g, g \rangle \\ &= \lambda \lambda^* \|f\|^2 + \lambda \langle f, g \rangle + \lambda^* \langle g, f \rangle + \|g\|^2. \end{split}$$

Siendo λ arbitrario, consideremos entonces

$$\lambda = -\frac{\langle g, f \rangle}{\|f\|^2} \implies \lambda^* = -\frac{\langle f, g \rangle}{\|f\|^2}, \quad \|f\| \neq 0.$$

Luego,

$$0 \leq \frac{|\langle f,g \rangle|^2}{\|f\|^4} \|f\|^2 - 2 \frac{|\langle f,g \rangle|^2}{\|f\|^2} + \|g\|^2 = -\frac{|\langle f,g \rangle|^2}{\|f\|^2} + \|g\|^2.$$

Lo que implica

$$|\langle f, g \rangle|^2 \le \|f\|^2 \cdot \|g\|^2 \Rightarrow \overline{|\langle f, g \rangle| \le \|f\| \cdot \|g\|}$$

Si suponemos que ||f|| = 0, $f \equiv 0$ y la desigualdad se demuestra trivialmente.

Desigualdad triangular: De la definición de norma

$$\begin{split} \|f \pm g\|^2 &= \langle f \pm g, f \pm g \rangle = \langle f \pm g, f \rangle \pm \langle f \pm g, g \rangle \\ &= \langle f, f \rangle \pm \langle f, g \rangle^* \pm \langle f, g \rangle + \langle g, g \rangle \\ &= \|f\|^2 \pm 2 \operatorname{Re}(\langle f, g \rangle) + \|g\|^2. \end{split}$$

Como $\pm \operatorname{Re}(z) \leq |z|$ para todo $z \in \mathbb{C}$, obtenemos que

$$||f \pm g||^2 \le ||f||^2 + 2|\langle f, g \rangle| + ||g||^2.$$

Por la desigualdad de Cauchy-Shwarz:

$$||f \pm g||^2 \le ||f||^2 + 2||f|| \cdot ||g|| + ||g||^2 = (||f|| + ||g||)^2 \Rightarrow \boxed{||f \pm g|| \le ||f|| + ||g||}$$

Definición A.5. El conjunto de funciones $\{\varphi_n(t)\}_{n=0,\pm 1,\pm 2,...}$ se dice **ortogonal** si

$$\langle \varphi_n, \varphi_m \rangle = 0$$
, para $n \neq m$.

Si además, $\|\varphi_n\|=1$ para cada $n\in\mathbb{Z}$, se dice que es un conjunto **ortonormal**, entonces podemos escribir

$$\langle \varphi_n, \varphi_m \rangle = \delta_{nm}, \quad \forall n, m.$$

Ejemplo A.1.1. Como ejemplo de funciones ortonormales tenemos las $c_n(t) \in \mathscr{C}_0[-\pi, \pi]$ con $n = 0, \pm 1, \pm 2, ...$ que se definen como

$$c_n(t) = \frac{1}{\sqrt{2\pi}}e^{int}.$$

En efecto, para $n \neq m$, se tiene que

$$\langle c_n, c_m \rangle = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{i(n-m)t} dt = \frac{1}{2\pi} \left[-\frac{i}{n-m} e^{i(n-m)t} \right]_{-\pi}^{\pi}$$

$$= \frac{i}{2\pi (m-n)} \left[e^{in\pi} + e^{-im\pi} - e^{-in\pi} - e^{im\pi} \right]$$

$$= 0.$$

Por otro lado, para n = m:

$$\langle c_n, c_n \rangle = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{i(n-n)t} dt = \frac{1}{2\pi} \int_{-\pi}^{\pi} 1 dt = 1.$$

$$\therefore \langle c_n, c_m \rangle = \delta_{nm}.$$

Ejemplo A.1.2. Pruebe que el conjunto de funciones

$$\left\{\frac{1}{\sqrt{2\pi}}, \frac{\cos(nt)}{\sqrt{\pi}}, \frac{\sin(nt)}{\sqrt{\pi}}\right\}_{n=1}^{\infty}$$

es ortonormal en $\mathscr{C}[-\pi,\pi]$.

Solución: Probemos primero la normalización.

$$\int_{-\pi}^{\pi} \left(\frac{1}{\sqrt{2\pi}}\right)^{2} dt = 1,$$

$$\int_{-\pi}^{\pi} \frac{\cos^{2}(nt)}{\pi} dt = \frac{1}{\pi} \int_{-\pi}^{\pi} \frac{1}{2} + \frac{1}{2} \cos(2nt) dt = 1,$$

$$\int_{-\pi}^{\pi} \frac{\sin^{2}(nt)}{\pi} dt = \frac{1}{\pi} \int_{-\pi}^{\pi} \frac{1}{2} - \frac{1}{2} \cos(2nt) dt = 1.$$

Para la ortogonalidad, tengamos en cuenta las siguientes identidades trigonométricas:

$$\sin \alpha \sin \beta = \frac{1}{2} [\cos(\alpha - \beta) - \cos(\alpha + \beta)],$$

$$\cos \alpha \cos \beta = \frac{1}{2} [\cos(\alpha - \beta) + \cos(\alpha + \beta)],$$

$$\sin \alpha \cos \beta = \frac{1}{2} [\sin(\alpha + \beta) + \sin(\alpha - \beta)].$$

Entonces,

$$\int_{-\pi}^{\pi} \frac{1}{\sqrt{2\pi}} \cos(nt) dt = \frac{1}{\sqrt{2\pi}n} \sin(nt) \Big|_{-\pi}^{\pi} = 0,$$

$$\int_{-\pi}^{\pi} \frac{1}{\sqrt{2\pi}} \sin(nt) dt = -\frac{1}{\sqrt{2\pi}n} \cos(nt) \Big|_{-\pi}^{\pi} = 0,$$

$$\int_{-\pi}^{\pi} \frac{1}{\pi} \cos(nt) \sin(mt) dt = \frac{1}{2\pi} \int_{-\pi}^{\pi} \sin(m+n)t + \sin(m-n)t dt = 0; \quad n, m \in \mathbb{N}.$$

Para todo $n, m \in \mathbb{N}, m \neq n$, se tiene que

$$\int_{-\pi}^{\pi} \frac{1}{\pi} \cos(nt) \cos(mt) dt = \frac{1}{2\pi} \int_{-\pi}^{\pi} \cos(n-m)t + \cos(n+m)t dt$$

$$= \frac{1}{2\pi} \left[\frac{1}{n-m} \sin(n-m)t + \frac{1}{n+m} \sin(n+m)t \right]_{-\pi}^{\pi} = 0.$$

$$\int_{-\pi}^{\pi} \frac{1}{\pi} \sin(nt) \sin(mt) dt = \frac{1}{2\pi} \int_{-\pi}^{\pi} \cos(n-m)t - \cos(n+m)t dt$$

$$= \frac{1}{2\pi} \left[\frac{1}{n-m} \sin(n-m)t - \frac{1}{n+m} \sin(n+m)t \right]_{-\pi}^{\pi} = 0.$$

Por lo tanto,

$$\left\{\frac{1}{\sqrt{2\pi}}, \frac{\cos(nt)}{\sqrt{\pi}}, \frac{\sin(nt)}{\sqrt{\pi}}\right\}_{n=1}^{\infty}$$

es ortonormal en $\mathscr{C}[-\pi,\pi]$.

Definición A.6. Sea $S = \{\varphi_n(t)\}_{n=0,\pm 1,\pm 2,...}$. Se dice que S es **linealmente independiente** (l.i.) si todo subconjunto finito de S también lo es.

Proposición A.3. Todo conjunto ortogonal en $\mathscr{C}[a,b]$ que no contenga al vector nulo es linealmente independiente.

Demostración. Sea $S = \{\varphi_n(t)\}_{n=0,\pm 1,\pm 2,\dots}$ ortogonal tal que $\varphi_n \neq 0, \forall n$. Consideremos el subconjunto finito de $S, S' = \{\varphi_i, \dots, \varphi_{i_n}\}$ y además la combinación lineal

$$\alpha_1 \varphi_{i_1} + \alpha_2 \varphi_{i_2} + \dots + \alpha_n \varphi_{i_n} \equiv 0.$$

Entonces, para un cierto φ_{i_m} , se tiene que

$$\langle \alpha_1 \varphi_{i_1} + \alpha_2 \varphi_{i_2} + \dots + \alpha_n \varphi_{i_n}, \varphi_{i_m} \rangle = \alpha_m \underbrace{\| \varphi_{i_m} \|^2}_{\neq 0} = 0.$$

Por lo tanto,

$$\alpha_m = 0, \quad m = 1, 2, \dots, n$$

probando así que S' es linealmente independiente y en consecuencia S es l.i.

A.2. Proceso de ortonormalización de Gram-Schmidt

Sea $\{v_n\}_{n=1,2,...}$ un conjunto linealmente independiente de funciones en $\mathscr{C}[a,b]$. Para construir un conjunto ortonormal debemos seguir los siguientes pasos:

1. Construimos

$$\varphi_1 = \frac{v_1}{\|v_1\|}$$

tal que $\langle \varphi_1, \varphi_1 \rangle = 1$.

2. Consideramos

$$\overline{\varphi}_2 = v_2 - \langle v_2, \varphi_1 \rangle \varphi_1.$$

Entonces,

$$\langle \overline{\varphi}_2, \varphi_1 \rangle = \langle v_2, \varphi_1 \rangle - \langle v_2, \varphi_1 \rangle \langle \varphi_1, \varphi_1 \rangle = \langle v_2, \varphi_1 \rangle - \langle v_2, \varphi_1 \rangle = 0.$$

Normalizando,

$$\varphi_2 = \frac{\overline{\varphi}_2}{\|\overline{\varphi}_2\|}.$$

3. En general para un cierto $n \ge 2$, consideremos

$$\overline{\varphi}_n = v_n - \sum_{j=1}^{n-1} \langle v_n, \varphi_j \rangle \varphi_j.$$

Entonces, para $1 \le i \le n-1$, tenemos que

$$\langle \bar{\varphi}_n, \varphi_i \rangle = \langle v_n, \varphi_i \rangle - \sum_{j=1}^{n-1} \langle v_n, \varphi_j \rangle \langle \varphi_j, \varphi_i \rangle$$

$$= \langle v_n, \varphi_i \rangle - \sum_{j=1}^{n-1} \langle v_n, \varphi_j \rangle \delta_{ji}$$

$$= \langle v_n, \varphi_i \rangle - \langle v_n, \varphi_i \rangle = 0.$$

Finalmente, normalizando

$$\varphi_n = \frac{\overline{\varphi}_n}{\|\overline{\varphi}_n\|}.$$

El conjunto de funciones $\{\varphi_n\}_{n=1,2,\dots}$ construido de la manera anterior es un conjunto ortonormal.

Geométricamente, el método se encuentra ilustrado en la figura A.2, donde se ha considerado las funciones como vectores y solo el proceso de ortogonalización.

Figura A.2: Proceso de ortogonalización (sin la normalización) de Gram-Schmidt para tres funciones $\{v_1, v_2, v_3\}$.

A.3. Coeficientes de Fourier

Ahora, definiremos un espacio de funciones más general que $\mathscr{C}[a,b]$, las funciones cuadrado integrables. ²

Definición A.7. Definimos $\mathcal{L}^2[a,b]$ como el espacio de funciones $f:[a,b]\to\mathbb{C}$, tales que

$$\int_a^b |f(t)|^2 dt < \infty.$$

Teorema A.1. El espacio $\mathcal{L}^2[a,b]$ es un espacio vectorial con producto interno

$$\langle f, g \rangle = \int_a^b f(t)g^*(t) dt$$

y norma

$$||f|| = \left(\int_a^b |f(t)|^2 dt\right)^{1/2}.$$

La demostración requiere verificar las propiedades del producto interno (escalar) dadas por A.1, la cual está fuera de los alcances de los contenidos de este apunte. ³

Observación: Las funciones seccionalmente continuas son funciones cuadrado integrables.

Sea $\{\varphi_{\nu}(t)\}_{\nu\in\mathbb{N}}$ un conjunto ortonormal de funciones tales que $\varphi_{\nu}\in\mathscr{C}[a,b]$ para todo $\nu\in\mathbb{N}$. Sea f(t) una función cuadrado integrable en [a,b]. Deseamos aproximar f(t) por una suma finita

$$S_n(t) = \sum_{\nu=1}^n C_{\nu} \varphi_{\nu}(t),$$

de manera que $\|f-S_n\|$ sea mínimo. Es decir, el objetivo es encontrar los coeficientes C_{ν} de modo que el **error cuadrático medio**

$$M_n(f) = \|f - S_n\|^2 = \int_a^b \left| f(t) - \sum_{\nu=1}^n C_{\nu} \varphi_{\nu}(t) \right|^2 dt,$$

²La condición de cuadrado integrable es usada, por ejemplo, en Mecánica Cuántica, pues constituye la base para que las funciones de onda describan el comportamiento de los sistemas físicos, consecuencia de la interpretación de Copenhague (probabilística) de la mecánica cuántica.

³Para más información puede consultar bibliografía relacionada a la integral de Lebesgue.

sea mínimo. Evaluemos el error cuadrático medio

$$M_{n}(f) = \int_{a}^{b} \left(f(t) - \sum_{\nu=1}^{n} C_{\nu} \varphi_{\nu}(t) \right) \left(f(t) - \sum_{\nu=1}^{n} C_{\nu} \varphi_{\nu}(t) \right)^{*} dt$$

$$= \int_{a}^{b} |f(t)|^{2} dt + \sum_{\nu=1}^{n} |C_{\nu}|^{2} \int_{a}^{b} |\varphi_{\nu}(t)|^{2} dt - \sum_{\nu=1}^{n} C_{\nu}^{*} \int_{a}^{b} f(t) \varphi_{\nu}^{*}(t) dt$$

$$- \sum_{\nu=1}^{n} C_{\nu} \int_{a}^{b} f^{*}(t) \varphi_{\nu}(t) dt$$

$$= \|f\|^{2} + \sum_{\nu=1}^{n} |C_{\nu}|^{2} - \sum_{\nu=1}^{n} C_{\nu}^{*} \langle f, \varphi_{\nu} \rangle - \sum_{\nu=1}^{n} C_{\nu} \langle f, \varphi_{\nu} \rangle^{*} + \sum_{\nu=1}^{n} |\langle f, \varphi_{\nu} \rangle|^{2} - \sum_{\nu=1}^{n} |\langle f, \varphi_{\nu} \rangle|^{2}$$

$$= \|f\|^{2} - \sum_{\nu=1}^{n} |\langle f, \varphi_{\nu} \rangle|^{2} + \sum_{\nu=1}^{n} |C_{\nu} - \langle f, \varphi_{\nu} \rangle|^{2} \ge 0, \tag{A.1}$$

ya que la norma es mayor o igual a cero siempre. Claramente el mínimo se obtiene cuando $C_{\nu} = \langle f, \varphi_{\nu} \rangle$.

De lo anterior se desprende:

$$\sum_{\nu=1}^{n} |C_{\nu}|^2 = \sum_{\nu=1}^{n} |\langle f, \varphi_{\nu} \rangle|^2 \le \|f\|^2 \qquad \text{Desigualdad de Bessel.} \tag{A.2}$$

Como el número a la derecha de la desigualdad es independiente de n, la suma está acotada superiormente. Siendo todos sus términos no negativos, tenemos que

$$\sum_{\nu=1}^{\infty} |C_{\nu}|^2 < \infty \implies \lim_{\nu \to +\infty} |C_{\nu}|^2 = 0 \implies \lim_{\nu \to +\infty} \langle f, \varphi_{\nu} \rangle = 0.$$

Luego,

$$\sum_{\nu=1}^{\infty} |C_{\nu}|^2 = \sum_{\nu=1}^{\infty} |\langle f, \varphi_{\nu} \rangle|^2 \le ||f||^2.$$

Definición A.8. Los coeficientes $\langle f, \varphi_{\nu} \rangle$ son llamados los **coeficientes de Fourier** de f respecto al sistema ortonormal $\{\varphi_{\nu}\}_{\nu=1,2,\dots}$. La serie $\sum_{\nu=1}^{\infty} C_{\nu} \varphi_{\nu}(t)$ se llama **serie generalizada de Fourier** de f relativa al sistema ortonormal $\{\varphi_{\nu}\}_{\nu=1,2,\dots}$.

Definición A.9. Si un conjunto de funciones $\{\varphi_{\nu}\}$ en cierto espacio permite aproximar en la norma (en media), con sus combinaciones lineales, cualquier función f del espacio tan bien como se quiera, es decir,

$$\left\| f - \sum_{\nu} C_{\nu} \varphi_{\nu} \right\| < \varepsilon, \quad \text{para } \varepsilon \text{ arbitrario},$$

se dice que es un conjunto completo respecto a este espacio.

Sean $C_{\nu} = \langle f, \varphi_{\nu} \rangle$ los coeficientes de Fourier de f respecto del conjunto ortonormal $\{\varphi_{\nu}\}$, entonces la completitud de este conjunto se puede expresar por

$$\lim_{n\to+\infty}\left\|f-\sum_{\nu=1}^nC_\nu\varphi_\nu\right\|=0,$$

es decir,

$$f \sim \sum_{\nu=1}^{\infty} C_{\nu} \varphi_{\nu}.$$

Lo anterior NO implica que $f(t)=\sum_{\nu=1}^{\infty}C_{\nu}\varphi_{\nu}(t)$ en algún otro sentido (convergencia puntual o uniforme). Si

$$f \sim \sum_{\nu=1}^{\infty} C_{\nu} \varphi_{\nu},$$

entonces de la relación (A.1), tenemos

$$\lim_{n \to +\infty} \left\| f - \sum_{\nu=1}^n C_{\nu} \varphi_{\nu} \right\|^2 = \lim_{n \to +\infty} \left\{ \|f\|^2 - \sum_{\nu=1}^n |C_n|^2 \right\} = \|f\|^2 - \sum_{\nu=1}^\infty |C_n|^2 = 0.$$

Lo que implica que

$$||f||^2 = \sum_{\nu=1}^{\infty} |C_{\nu}|^2$$
 Igualdad de Parseval (A.3)

Observación: El conjunto ortogonal completo $\{\varphi_v\}$ se le conoce también como **base ortogonal** del espacio de funciones en cuestión.

Ejemplo A.3.1. El conjunto $\left\{\frac{1}{\sqrt{2\pi}}e^{int}\right\}_{n\in\mathbb{Z}}$ es ortonormal completo respecto a $[-\pi,\pi]$.

$$f(t) \sim \sum_{n=-\infty}^{\infty} C_n \frac{e^{int}}{\sqrt{2\pi}} \implies \int_{-\pi}^{\pi} |f|^2 dt = \sum_{n=-\infty}^{\infty} |C_n|^2 = ||f||^2.$$

Teorema A.2. Si el conjunto ortonormal $\{\phi_{\nu}\}$ es completo respecto a $\mathscr{C}[a,b]$, entonces en $\mathscr{C}[a,b]$ la única función ortonormal a todo φ_{ν} es $f(t)\equiv 0$.

Demostración. Sea f una función ortonormal a todo φ_v , si $f(t_0) \neq 0$ para algún $t_0 \in [a, b]$, la función también es no nula en una vecindad en torno a t_0 (por continuidad), por lo tanto

$$\int_{a}^{b} |f(t)|^{2} dt = ||f||^{2} > 0,$$

pero usando la igualdad de Parseval, tenemos para la norma de f que

$$||f||^2 = \sum_{\nu} |C_{\nu}|^2 = \sum_{\nu} |\langle f, \varphi_{\nu} \rangle|^2 > 0,$$

es decir, f no es ortogonal a todos los φ_{ν} , lo cual es una contradicción. Luego, f debe ser idénticamente nula.

Teorema A.3. Sea $\{S_n(t) \in \mathscr{C}_0[a,b]\}$; si existe F(t) tal que la sucesión $S_n(t) = \sum_{\nu=1}^n C_{\nu} \varphi_{\nu}(t)$ converge uniformemente a F(t), entonces F(t) es continua, es decir, $F(t) \in \mathscr{C}_0[a,b]$.

Demostración. Por convergencia uniforme, dado $\varepsilon > 0$, $\exists N \in \mathbb{N}$ tal que

$$n \ge N \land \forall t \in [a, b] \implies |S_n(t) - F(t)| < \frac{\varepsilon}{3}.$$

Además, por la continuidad de S_n para todo $t_0 \in [a, b]$, existe $\delta(\varepsilon, N, t_0)$ tal que

$$\forall t \in [a, b] : 0 < |t - t_0| < \delta \implies |S_N(t) - S_N(t_0)| < \frac{\varepsilon}{3}.$$

Por lo tanto,

$$\forall t \in [a, b] : 0 < |t - t_0| < \delta \Rightarrow |F(t) - F(t_0)|$$

$$= |F(t) - S_n(t) + S_n(t) - S_n(t_0) + S_n(t_0) - f(t_0)|$$

$$\leq |F(t) - S_n(t)| + |S_n(t) - S_n(t_0)| + |S_n(t_0) - F(t_0)|$$

$$\leq \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon.$$

Este teorema nos asegura que una función discontinua no puede ser aproximada uniformemente por una familia de funciones continuas (por ejemplo, las funciones sinusoidales).

Teorema A.4. Si dos funciones $f, g \in \mathcal{C}[a, b]$ tienen igual expansión en base completa (en el sentido de aproximación en la norma), entonces f(t) = g(t).

Demostración. Sea

$$S(t) = \sum_{\nu=1}^{\infty} \langle f, \varphi_{\nu} \rangle \varphi_{\nu}(t)$$

la aproximación en la norma para f y g. Luego,

$$||f - S|| = ||g - S|| = 0.$$

Así,

$$\|f-g\| = \|f-S+S-g\| \leq \|f-S\| + \|S-g\| = 0 + 0 = 0 \implies f = g.$$

Referencias

- [1] R. P. Agarwal y D. O'Regan. *Ordinary and Partial Differential Equations: With Special Functions, Fourier Series, and Boundary Value Problems*. Springer, 2009.
- [2] T. M. Apostol. *Análisis matemático*. 2.ª ed. Editorial Reverté, 1996.
- [3] T. M. Apostol. Calculus. 2.^a ed. Vol. 2. Editorial Reverté, 1985.
- [4] G. Arfken y H. Weber. *Mathematical methods for physicists*. 6.^a ed. Elsevier Academic Press, 2005.
- [5] M. Bôcher. «On Gibb's Phenomenon». En: *Math* 1914.144 (1914), págs. 41-47. DOI: https://doi.org/10.1515/crll.1914.144.41.
- [6] J. W. Brown y R. V. Churchill. *Fourier series and boundary value problems*. 5.^a ed. McGraw-Hill, 1993.
- [7] E. Butkov. *Mathematical Physics*. 1.^a ed. Addison-Wesley, 1968.
- [8] E. A. Coddington. *An Introduction to Ordinary Differential Equations*. 5.^a ed. Dover Publications, 1961.
- [9] R. Courant y D. Hilbert. *Methods of mathematical physics*. 1.^a ed. Vol. 1. Interscience Publishers, 1937.
- [10] M. Recarte F. Andino y M. Spilsbury. «La función delta de Dirac». En: Revista de la escuela de física 2.1 (2014), págs. 60-61. URL: https://pdfs.semanticscholar.org/648b/67463802aae055392666c8f305a2b23c5977.pdf.
- [11] S. Hassani. *Mathematical physics: a modern introduction to its foundations*. Springer, 1999.
- [12] H. Hochstadt. *The functions of mathematical physics*. Dover Publications, 1986.
- [13] H. P. Hsu. *Análisis de Fourier*. Addison-Wesley Iberoamericana, 1987.
- [14] M.P. Hobson K. F. Riley y S. J. Bence. *Mathematical Methods for Physics and Engineering*. Cambridge University Press, 2006.
- [15] Serge Lang. Analyis I. Addison-Wesley, 1968. Cap. 10 y 13.
- [16] J. E. Marsden y M. J. Hoffman. *Análisis clásico elemental*. 2.ª ed. Addison-Wesley Ibero-americana, 1998.
- [17] Sean Mauch. Introduction to Methods of Applied Mathematics or Advanced Mathematical Methods for Scientists and Engineers. 2004. URL: http://www.its.caltech.edu/~sean.

- [18] V. Muñoz y J. Rogan. *Métodos de la física matemática II*. Departamento de Física, Facultad de Ciencias, Universidad de Chile, 2009.
- [19] E. D. Rainville. Special functions. The Macmillan company, 1960.
- [20] R. Rodríguez del Río y E. Zuazua. «Series de Fourier y fenómeno de Gibbs». En: *CUBO, A Mathematical Journal* 5.2 (2003), págs. 185-224. URL: http://revistas.ufro.cl/ojs/index.php/cubo/article/view/1695.
- [21] G. F. Rubilar. *Física matemática II*. Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Concepción, 2019. URL: https://github.com/gfrubi/FM2.
- [22] J. Ruiz. Series de Fourier. Departamento de Matemática, Facultad de Ciencias Físicas y Matemáticas, Universidad de Concepción, 2012.
- [23] G. P. Tolstov. Fourier Series. Dover Publications, 1962.