Arbbot Convergence

Stefan Loesch

Contents

- 1. General issues and choices with numeric algorithms and the practical implications thereof
- 2. Specific issues with the optimization algorithm used

General issues with numeric algorithms

Numerical algos don't have bugs...

- ... they are always wrong (but sometimes they are useful)
- Specific problem: asserting the domain of convergence is a lot of work, and usually not worth the effort ex-ante
 - Subtle effects, not all of which can be easily captured
 - Necessary preconditions not met (but close enough, so it mostly works)
 - Typically spending a lot of work dealing with constellations that are unlikely to become relevant in practice
- Often better solution: monitor algo performance, and have a plan when things go wrong
 - Monitor errors, especially convergence errors
 - Employ independent checks for monitoring (eg marginal prices; RedTeam NB)
 - Have a plan to manually fix the issue in the short run whilst the long run solution is developed
- The good news: it gets better over time the more issues have been found and addressed; but you are never safe!

Qualitative vs quantitative analysis

- Often we can and should qualitatively understand what situations can cause problems with our specific algorithm
 - Example: "large limit orders can be problematic"
- However meta parameter choices are compromises
 - **Epsilon** ("accuracy") impacts runtime and may prevent convergence
 - MaxIter backstop; too small and viable solution discarded; too big, and overall runtime can be excessive
 - **RP** ("regularization") too little has no impact, so no convergence; too much may distort the results beyond reasonable bounds
- Ex-ante meta parameter choice is hard, and may even be "NP hard" there may be no simplification available
- TLDR even if qualitatively we have solved everything, from time to time we WILL run into sub-optimal meta parameter choices

What does this mean for us specifically?

- What kind of "malfunction" is tolerable?
- Monitoring infrastructure
 - Logging
 - Analysis
 - Alerts
- Resolution protocol
 - Manual "quick-fix"
 - Ultimate
- Escalation procedures
 - Responsibilities, channels and timelines

Our specific optimization issue

The problem: find p for which f(p)=0

Newton Raphson: use linear approximation

Our problem is a bit tricky on narrow ranges...

...in fact, it even gets worse on limit orders

That's what can happen – the never ending story

Regularization: easier curve, same results

Regularization methods

- Minimum range width (required): use a very narrow Carbon Range (width 1e-3 to 1e-6) to represent a limit order
 - There is no other way representing a limit order in a xy=k framework (because a proper limit order has k=infty)
 - It's a good start, but unless the range is very wide (10%?) this seems not enough to ensure convergence
- **Sentinel curve**: add an unlevered ("v2") curve with the same parameters as the limit order (margp = limit price; volume scaled down by a factor of [50])
 - The sentinel curve guides the algo over the entire range and improves chances of convergence
 - If sentinel curve is too small convergence may still not happen
 - If too big then it will impact the other curves and post-processing will become harder to do (or yield suboptimal result)

December 2023 14

Regularization in practice

Interlude -- what is close enough?

16

Our problem with relative epsilon

What we are planning to do

- Better regularization
 - Allow for more control of the imputed width of limit orders
 - Add sentinel curves to the mix that guide the algorithm
- Better convergence assessment
 - Absolute epsilon, expressed in USD terms (requires USD prices!)
- Better post-processing
 - More sophisticated control over actual transaction amounts
 - Question: maximize profit or execution volume?
- Better monitoring
 - Monitor all non-convergence events
 - Triangulation systems (eg RedTeam, margp; unlevered optimization)

December 2023 18

Pipeline

Pre-processing

Optimization

Post-processing

- Identify suitable arbitrage candidates
- Add regularization where needed (curve width, sentinel curves)
- Feed triangulation pipelines

 Run optimization algorithm based on data and parameters provided

- Check convergence
- Check triangulation
- Fine tune transaction
- Submit transaction