DATA ENCRYPTION STANDARD

KULIAH KRIPTOGRAFI DAN KEAMANAN JARINGAN

DATA ENCRYPTION STANDARD

- Diperkenalkan pertama pada tahun 1977.
- Merupakan skema enkripsi yang paling banyak dipakai.
- Data dienkripsi dalam blok 64 bit menggunakan kunci 56 bit.
- Algoritma mentansformasi input menjadi output dengan sejumlah langkah.
- Dekripsi dilakukan dengan kunci yang sama dan langkah yang sama.
- Banyak digunakan pada aplikasi-aplikasi finansial.

SEJARAH

- IBM membangun Lucifer cipher
 - Tim diketuai oleh Feistel pada akhir 60-an.
 - Menggunakan 64-bit data blocks dengan 128-bit key
- Kemudian dibangun kembali menjadi cipher komersial dengan perbaikan dari masukan oleh NSA (National Security Agency) dan lainnya.
- Tahun 1973 NBS (National Bureau Standard) meminta proposal untuk standar cipher nasional.
- IBM membuat revisi dari Lucifer yang akhirnya diterima sebagai DES.
- Pada tahun 1994, NIST merekomendasikan bahwa DES hanya digunakan untuk aplikasi selain yang berkaitan dengan 'classified information'.
- Tahun 1999, menyarankan penggunaan 3DES sebagai pengganti DES.

DES

- Tiga fase pemrosesan plaintext:
 - Initial permutation
 - 16 tahap pemrosesan dengan fungsi sama yang meliputi permutasi dan substitusi. Hasil proses tahap terakhir dibalik.
 - Hasilnya dipermutasi yang merupakan invers dari permutasi awal.
- Hampir sama dengan Feistel cipher, kecuali adanya permutasi.

Tabel-tabel permutasi sudah didefinisikan:

- Tabel permutasi awal (IP) → permutasi pada awal proses
- Tabel invers dari permutasi awal (IP⁻¹) → permutasi setelah semua tahap selesai
- Permutasi ekspansi (E) → untuk mengekspansi 32 bit menjadi 48 bit (menjadi input pada fungsi F)
- Fungsi permutasi (P) → melakukan permutasi pada fungsi F
- Tabel-tabel S-boxes → mengubah 6 bit menjadi 4 bit
- Tabel-tabel PC-1 dan PC-2 untuk permutasi kunci

TABEL IP

58	50	42	34	26	18	10	2
60	52	44	36	28	20	12	4
62	54	46	38	30	22	14	6
64	56	48	40	32	24	16	8
57	49	41	33	25	17	9	1
59	51	43	35	27	19	11	3
61	53	45	37	29	21	13	5
63	55	47	39	31	23	15	7

TABEL IP-1

40	8	48	16	56	24	64	32
39	7	47	15	55	23	63	31
38	6	46	14	54	22	62	30
37	5	45	13	53	21	61	29
36	4	44	12	52	20	60	28
35	3	43	11	51	19	59	27
34	2	42	10	50	18	58	26
33	1	41	9	49	17	57	25

DETIL SETIAP ROUND

- Menggunakan dua 32-bit L & R.
- Dapat dideskripsikan seperti pada Feistel cipher :

$$L_i = R_{i-1}$$

$$R_i = L_{i-1} \oplus F(R_{i-1}, K_i)$$

Fungsi F: mengubah input (32 bit R_{i-1} dan 48 bit sub-key) menjadi 32 bit yang dikenai operasi XOR dengan L_{i-1} untuk mendapatkan R_i

Pemrosesan pada kunci:

- Untuk setiap tahap, sub-key K_i dihasilkan dengan kombinasi left circular shift dan permutasi.
- Permutasi sama, tetapi dihasilkan kunci yang berbeda karena adanya left shift.

PENGHITUNGAN F(R,K)

FUNGSIF

- F mendapatkan input 32-bit R dan 48-bit subkey:
- Ekspansi R menjadi 48-bits menggunakan tabel E
- Operasikan dengan subkey menggunakan operasi XOR
- Masukkan ke 8 S-boxes untuk mendapatkan hasil 32-bit
 - 48 bit dikelompokkan menjadi 8 buah 6 bit.
 - Tiap kelompok 6 bit menghasilkan 4 bit dengan cara:
 - Gunakan tabel yang bersesuaian (S₁ S₈)
 - Bit pertama dan terakhir digabung, menjadi 2 bit angka yang menunjukkan baris pada tabel.
 - 4 bit lainnya menunjukkan kolom pada tabel.
 - Angka pada baris dan kolom ybs adalah output dari S-boxes
- Setelah didapatkan 32 bit, permutasi menggunakan tabel P

TABEL E (EKSPANSI PERMUTASI)

32	1	2	3	4	5
4	5	6	7	8	9
8	9	10	11	12	13
12	13	14	15	16	17
16	17	18	19	20	21
20	21	22	23	24	25
24	25	26	27	28	29
28	29	30	31	32	1

TABEL S-BOX

 S_1 :

14	4	13	1	2	15	11	8	3	10	6	12	5	9	0	7
0	15	7	4	14	2	13	1	10	6	12	11	9	5	3	8
4	1	14	8	13	6	2	11	15	12	9	7	3	10	5	0
15	12	8	2	4	9	1	7	5	11	3	14	10	0	6	13

 S_2 :

15	1	8	14	6	11	3	4	9	7	2	13	12	0	5	10
3	13	4	7	15	2	8	14	12	0	1	10	6	9	11	5
0	14	7	11	10	4	13	1	5	8	12	6	9	3	2	15
13	8	10	1	3	15	4	2	11	6	7	12	0	5	14	9

 S_3 :

10	0	9	14	6	3	15	5	1	13	12	7	11	4	2	8
13	7	0	9	3	4	6	10	2	8	5	14	12	11	15	1
13	6	4	9	8	15	3	0	11	1	2	12	5	10	14	7
1	10	13	0	6	9	8	7	4	15	14	3	11	5	2	12

 S_4 :

7	13	14	3	0	6	9	10	1	2	8	5	11	12	4	15
13	8	11	5	6	15	0	3	4	7	2	12	1	10	14	9
10	6	9	0	12	11	7	13	15	1	3	14	5	2	8	4
3	15	0	6	10	1	13	8	9	4	5	11	12	7	2	14

 S_5 :

2	12	4	1	7	10	11	6	8	5	3	15	13	0	14	9
14	11	2	12	4	7	13	1	5	0	15	10	3	9	8	16
4	2	1	11	10	13	7	8	15	9	12	5	6	3	0	14
11	8	12	7	1	14	2	13	6	15	0	9	10	4	5	3

 S_6 :

12	1	10	15	9	2	6	8	0	13	3	4	14	7	5	11
10	15	4	2	7	12	9	5	6	1	13	14	0	11	3	8
9	14	15	5	2	8	12	3	7	0	4	10	1	13	11	6
4	3	2	12	9	5	15	10	11	14	1	7	6	0	8	13

 S_7 :

4	11	2	14	15	0	8	13	3	12	9	7	5	10	6	1
13	0	11	7	4	9	1	10	14	3	5	12	2	15	8	6
1	4	11	13	12	3	7	14	10	15	6	8	0	5	9	2
6	11	13	8	1	4	10	7	9	5	0	15	14	2	3	12

*S*₈:

13	2	8	4	6	15	11	1	10	9	3	14	5	0	12	7
1	15	13	8	10	3	7	4	12	5	6	11	0	14	9	2
7	11	4	1	9	12	14	2	0	6	10	13	15	3	5	8
2	1	14	7	4	10	8	13	15	12	9	0	3	5	6	11

TABEL P (FUNGSI PERMUTASI)

16	7	20	2 1	29	12	28	17
1	15	23	26	5	18	31	10
2	8	24	14	32	27	3	9
19	13	30	6	22	11	4	25

PEMROSESAN KUNCI

Proses inisialisasi:

- Input: 64 bit
- Setiap bit ke-8 diabaikan \rightarrow 56 bits
- Key dikenai operasi permutasi dengan menggunakan tabel tertentu (tabel PC-1).

Proses setiap tahap:

- Dibagi menjadi 2 bagian, C₀ dan D₀ masing-masing terdiri dari 28-bit.
- Masing-masing bagian dikenai operasi circular left shift sebanyak 1 atau 2 bit (setiap round diatur dengan tabel) -> menjadi input untuk tahap berikutnya.
- Kunci dikenai operasi permutasi dengan tabel permutasi yang kedua (tabel PC-2) → menjadi input untuk F(R_{i-1}, K_i)

Tahap	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Jml bit	1	1	2	2	2	2	2	2	1	2	2	2	2	2	2	1

ILUSTRASI PEMROSESAN KUNCI

Matriks permutasi kompresi PC-1:

57	49	41	33	25	17	9	1	58	50	42	34	26	18
10	2	59	51	43	35	27	19	11	3	60	52	44	36
63	55	47	39	31	23	15	7	62	54	46	38	30	22
14	6	61	53	45	37	29	21	13	5	28	20	12	4

Matriks PC-2 berikut:

14	17	11	24	1	5	3	28	15	6	21	10
23	19	12	4	26	8	16	7	27	20	13	2
41	52	31	37	47	55	30	40	51	45	33	48
44	49	39	56	34	53	46	42	50	36	29	32

DEKRIPSI

- Menggunakan algoritma yang sama dengan enkripsi.
- Penggunaan sub-key dibalik.

KEUNTUNGAN DES

- 56-bit kunci memiliki 2⁵⁶ = 7.2 x 10¹⁶ nilai
- Brute force search sulit, tetapi mungkin
 - Tahun 1997 selama beberapa bulan (menggunakan idle cycles dari ribuan komputer di Internet)
 - Tahun 1998 pada dedicated h/w perlu 5 hari (oleh *Electronic Frontier Foundation (EFE)*)
 - Tahun 1999 perlu kurang dari 1 hari.
- Tetapi harus dapat mengenali plaintext.

KRITISI TERHADAP DES

- Banyak yang mengkritisi keputusan dijadikannya DES sebagai standard.
- Alasan utama:
 - Ukuran kunci (56 bits) terlalu kecil untuk organisasi yang memiliki sumber daya yang mencukupi. Paling tidak, exhaustive keysearch dimungkinkan dengan panjang kunci seperti itu.
 - Kriteria desain untuk tabel yang digunakan pada fungsi f tidak diketahui. Tes statistik menunjukkan bahwa tabel ini tidak benar-benar random.
- Meskipun demikian, selama 20 tahun pertama sejak menjadi standar, tidak ada publikasi yang menjelaskan cara efektif untuk memecahkan DES.

LATIHAN

Gunakan 1 round DES dengan kunci: 0 1 0 1 0 1 0 1 0 1 0 1
 0 1 0 1_H

untuk mengenkripsi plaintext:

- \circ . \circ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
- b. 0101010101010101_H
- 1. Apakah kunci K1?
- 2. Tunjukkan hasil setelah permutasi awal untuk setiap plaintext.
- 3. Tunjukkan hasil setelah tahap 1 selesai untuk setiap plaintext.

BAGAIMANA PERKEMBANGAN DES?

DES dapat didekripsi:

- Pada Juli 1998, the Electronic Frontier Foundation (EFF) mengumumkan bahwa mereka berhasil memecahkan enkripsi DES.
- Sebuah mesin "pemecah DES" dibuat dengan dana kurang dari \$250,000.
- Waktu yang diperlukan kurang dari 3 hari.
- EFF mempublikasikan deskripsi detil tentang mesin tersebut.
- Untuk menghindari brute force analysis: gunakan kunci yang lebih panjang
 - Kunci 128 bit memerlukan waktu 10¹⁸ tahun untuk dipecahkan.

DOUBLE DES

- Dua tahap enkripsi dan 2 kunci.
- Algoritma enkripsi:
 - $C = E(K_2, E(K_1, P))$
 - P adalah plaintext, K₁ dan K₂ adalah kunci, C adalah chipertext.
- Algoritma dekripsi:
 - $P = D(K_1, D(K_2, C))$
- Panjang kunci: 56 x 2 = 112 bit

TRIPLE DES

- Distandarisasi untuk penggunaan pada aplikasi finansial dalam ANSI standard X9.17 pada tahun 1985.
- Menggunakan 3 kunci dan 3 eksekusi dari algoritma DES.
 - Fungsi menggunakan model sekuens encrypt-decrypt-encrypt (EDE): C = E(K3, D(K2, E(K1, P)))
 - C = ciphertext
 - P = plaintext
 - E[K, X] = enkripsi X menggunakan kunci K
 - D[K, Y] = dekripsi Y menggunakan kunci K
- Dekripsi merupakan operasi yang sama dengan urutan kunci dibalik:
 - P = D(K1, E(K2, D(K3, C)))

(b) Decryption

3DES AWAL

Kunci 3 = kunci 1

Triple DES

- Tidak ada peningkatan keamanan kriptografi yang signifikan dari sisi algoritma.
 - Keuntungannya adalah memungkinkan pengguna 3DES untuk mendekripsi data yang dienkripsi oleh pengguna versi lama DES (single DES):
 - C = E(K1, D(K1, E(K1, P))) = E[K, P]
- 3DES menggunakan panjang kunci 168 bit.
 - Dimungkinkan juga penggunaan $K_1 = K_3$ sehingga panjang kunci 112 bit.

GUIDELINE PENGGUNAAN 3DES

- Penggunaan 3DES menurut FIPS (Federal Information Processing Standard):
 - 3DES merupakan algoritma enkripsi simetris yang disetujui untuk digunakan.
 - Original DES (56 bit key) hanya diijinkan untuk sistem lama, sistem baru harus menggunakan 3DES.
 - Organisasi pemerintah didorong untuk melakukan transisi ke 3DES.
 - 3DES dan AES akan bersama-sama ada sebagai algoritma yang disetujui oleh FIPS, yang memungkinkan transisi gradual ke AES.

KEUNTUNGAN DAN KELEMAHAN 3DES

Keuntungan :

- Dengan kunci 168-bit, mencegah kelemahan DES dalam brute-force attack.
- Algoritma enkripsi sama dengan DES.

Kelemahan :

- Algoritma lambat > lebih lambat daripada DES.
- DES dan 3DES menggunakan blok 64-bit. Untuk alasan keamanan dan efisiensi, ukuran blok yang lebih besar lebih disukai.