Reference Data

If neither is operand a NaN and Value1 > Value2, FLAGS = 4'b0010; If an operand is a Nan, operands are unordered

ARITHMETIC CORE INSTRUCTION SET

municipal com	*****	00110			_
NAME, MNEMON	ıc	FOR-	OPCODE/ SHAMT (Hex)	OPERATION (in Verilog)	Notes
Floating-point ADD Single	FADDS	R	0F1/0A	S[Rd] = S[Rn] + S[Rm]	Notes
	FADDD				
Floating-point ADD Double	FADDD	R	0F3 / 0A	D[Rd] = D[Rn] + D[Rm]	
Floating-point CoMPare Single	FCMPS	R	0F1 / 08	FLAGS = (S[Rn] vs S[Rm])	(1,10)
Floating-point CoMPare Double	FCMPD	R	0F3 / 08	$FLAGS = (D[Rn] \ vs \ D[Rm])$	(1,10)
Floating-point DIVide Single	FDIVS	R.	0F1 / 06	S[Rd] = S[Rn] / S[Rm]	
Floating-point DIVide Double	FDIVD	R	0F3 / 06	D[Rd] = D[Rn] / D[Rm]	
Floating-point MULtiply Single	FMULS	R	0F1 / 02	S[Rd] = S[Rn] * S[Rm]	
Floating-point MULtiply Double	FMULD	R	0F3 / 02	D[Rd] = D[Rn] * D[Rm]	
Floating-point SUBtract Single	FSUBS	R	0F1 / 0E	S[Rd] = S[Rn] - S[Rm]	
Floating-point SUBtract Double	FSUBD	R	0F3 / 0E	$\mathbb{D}[Rd] = \mathbb{D}[Rn] - \mathbb{D}[Rm]$	
LoaD Single floating-point	LDURS	R.	7C2	S[Rt] = M[R[Rn] + DTAddr]	(5)
LoaD Double floating-point	LDURD	R	7C0	D[Rt] = M[R[Rn] + DTAddr]	(5)
MULtiply	MUL	R	4D8 / 1F	R[Rd] = (R[Rn] * R[Rm]) (63:0)	
Signed DIVide	SDIV	R	4D6 / 02	R[Rd] = R[Rn] / R[Rm]	
Signed MULtiply High	SMULH	R	4DA	R[Rd] = (R[Rn] * R[Rm]) (127:64)	
STore Single floating-point	STURS	R	7E2	M[R[Rn] + DTAddr] = S[Rt]	(5)
STore Double floating-point	STURD	R	7E0	M[R[Rn] + DTAddr] = D[Rt]	(5)
Unsigned DIVide	UDIV	R	4D6 / 03	R[Rd] = R[Rn] / R[Rm]	(8)
Unsigned MULtiply High	UMULH	R	4DE	R[Rd] = (R[Rn] * R[Rm]) (127:64)	(8)

CORE INSTRUCTION FORMATS

R	opcode		Rm	shamt		Rn		Rd	
	31	21	20 16	15	10	9	5 4		0
I	opcode		ALU_ir	nmediate		Rn		Rd	
	31	22 21			10	9	5.4		0
D	opcode		DT_ac	ldress	op	Rn		Rt	
	31	21	20	12	11 10	9	54		0
В	opcode			BR_ad	ldress				
	31 26	25							0
CB	Opcode		COND	BR_addre	:55			Rt	
	31 24	23					5 4		0
IW	opcode			MOV_imn	nediat	e		Rd	
	31	21	20				5 4		0

PSEUDOINSTRUCTION SET

NAME	MNEMONIC	OPERATION
CoMPare	CMP	FLAGS = R[Rn] - R[Rm]
CoMPare Immediate	CMPI	FLAGS = R[Rn] - ALUImm
LoaD Address	LDA	R[Rd] = R[Rn] + DTAddr
MOVe	MOV	R[Rd] = R[Rn]

REGISTER NAME, NUMBER, USE, CALL CONVENTION

NAME	NUMBER	USE	PRESERVED
NAME	NUMBER	OSE	ACROSS A CALL?
X0 - X7	0-7	Arguments / Results	No
X8	8	Indirect result location register	No
X9 - X15	9-15	Temporaries	No
X16 (IP0)	16	May be used by linker as a scratch register; other times used as temporary register	No
X17 (IP1)	17	May be used by linker as a scratch register; other times used as temporary register	No
X18	18	Platform register for platform independent code; otherwise a temporary register	No
X19-X27	19-27	Saved	Yes
X28 (SP)	28	Stack Pointer	Yes
X29 (FP)	29	Frame Pointer	Yes
X30 (LR)	30	Return Address	Yes
XZR	31	The Constant Value 0	N.A.

	<u> </u>		rence		
CORE INSTRUCT	TION SET			-	
NAME ANIE	MONTO		OPCODE (9		Notes
NAME, MNEN ADD	ADD	MAT R	(Hex) 458	OPERATION (in Verilog)	
ADD Immediate	ADDI	I	488-489	R[Rd] = R[Rn] + R[Rm] R[Rd] = R[Rn] + ALUImm	(2.0)
ADD Immediate &				R[Rd] - R[Rii] + ALOHimiR[Rd] , FLAGS = R[Rii] +	(2,9)
Set flags	ADDIS	I	588-589	ALUImm	(1,2,9)
ADD & Set flags	ADDS	R	558	R[Rd], $FLAGS = R[Rn] + R[Rm]$	(1)
AND	AND	R	450	R[Rd] = R[Rn] & R[Rm]	
AND Immediate	ANDI	I	490-491	R[Rd] = R[Rn] & ALUImm	(2,9)
AND Immediate &	ANDIS	I	790-791	R[Rd], FLAGS = R[Rn] & ALUImm	(1,2,9)
Set flags AND & Set flags	ANDS	R	750	R[Rd], FLAGS = R[Rn] & R[Rm]	(1)
Branch	В	В	0A0-0BF	PC = PC + BranchAddr	(3,9)
Branch				if(FLAGS==cond)	
conditionally	B.cond	CB	2A0-2A7	PC = PC + CondBranchAddr	(4,9)
Branch with Link	BL	В	4A0-4BF	R[30] = PC + 4;	(3,9)
				PC = PC + BranchAddr	(3,3)
Branch to Register	BR.	R	6B0	PC = R[Rt]	
Compare & Branch if Not Zero	CBNZ	CB	5A8-5AF	if(R[Rt]!=0)	(4,9)
Compare & Branch				PC = PC + CondBranchAddr if(R[Rt]==0)	
if Zero	CBZ	CB	5A0-5A7	PC = PC + CondBranchAddr	(4,9)
Exclusive OR	EOR	R	650	$R[Rd] = R[Rn] \wedge R[Rm]$	
Exclusive OR	EORI	I	690-691		(2.0)
Immediate	DORT		090-091	$R[Rd] = R[Rn] \wedge ALUImm$	(2,9)
LoaD Register Unscaled offset	LDUR	D	7C2	R[Rt] = M[R[Rn] + DTAddr]	(5)
LoaD Byte				R[Rt]={56'b0,	
Unscaled offset	LDURB	D	1C2	M[R[Rn] + DTAddr](7:0)}	(5)
.oaD Half	LDURH	D	202	R[Rt]={48*b0,	(4)
Inscaled offset	LDUKH	D	3C2	M[R[Rn] + DTAddr] (15:0)}	(5)
LoaD Signed Word			****	$R[Rt] = \{32\{M[R[Rn] + DTAddr]\}$	
Inscaled offset	LDURSW	D	5C4	[31]}, M[R[Rn] + DTAddr] (31:0)}	(5)
.oaD eXclusive					
Register	LDKR	D	642	R[Rd] = M[R[Rn] + DTAddr]	(5,7)
Logical Shift Left	LSL	R	69B	$R[Rd] = R[Rn] \le shamt$	
Logical Shift Right	LSR	R	69A	R[Rd] = R[Rn] >>> shamt	
MOVe wide with			00 t 000	R[Rd] (Instruction[22:21]*16:	
Keep	MOVK	IM	794-797	Instruction[22:21]*16-15) = MOVImm	(6,9)
MOVe wide with				R[Rd] = { MOVImm <<	
Zero	MOVZ	IM	694-697	(Instruction[22:21]*16) }	(6,9)
Inclusive OR	ORR	R	550	R[Rd] = R[Rn] R[Rm]	
Inclusive OR	ORRI	I	590-591	$R[Rd] = R[Rn] \mid ALUImm$	(2,9)
Immediate					
STore Register Unscaled offset	STUR	D	7C0	M[R[Rn] + DTAddr] = R[Rt]	(5)
STore Byte	STURB	D	100	M[R[Rn] + DTAddr](7:0) =	(4)
Unscaled offset	STURB	D	1C0	R[Rt](7:0)	(5)
STore Half	STURK	D	3C0	M[R[Rn] + DTAddr](15:0) =	(5)
Unscaled offset STore Word				R[Rt](15:0) M[R[Rn] + DTAddr](31:0) =	
Unscaled offset	STURW	D	5C0	R[Rt](31:0)	(5)
STore eXclusive	STXR	D	640	M[R[Rn] + DTAddr] = R[Rt];	(5.7)
Register	SIAR	D	640	R[Rm] = (atomic) ? 0 : 1	(5,7)
SUBtract	SUB	R	658	R[Rd] = R[Rn] - R[Rm]	
SUBtract	SUBI	I	688-689	R[Rd] = R[Rn] - ALUImm	(2,9)
mmediate SUBtract					
Immediate & Set	SUBIS	I	788-789	R[Rd], FLAGS = R[Rn] -	(1,2,9)
flags				ALUImm	
SUBtract & Set	SUBS	R	758	R[Rd], $FLAGS = R[Rn] - R[Rm]$	(1)
flags				U operation: Negative, Zero, oVerflow	

- ags
 (1) FLAGS are 4 condition codes set by the ALU operation: Negative, Zero, oVerflow, Carry
 (2) ALUImm = { 52°b0, ALU_immediate }
 (3) BranchAddr = { 36{BR_address [25]}, BR_address, 2°b0 }
 (4) CondBranchAddr = { 43{COND_BR_address [25]}, COND_BR_address, 2°b0 }
 (5) DTAddr = { 55{DT_address [8], DT_address }
 (6) MOVImm = { 48°b0, MOV_immediate }
 (7) Atomic test&set pair, R[Rm] = 0 if pair atomic, 1 if not atomic
 (8) Operands considered unsigned numbers (vs. 2°s complement)

O

PCODES	IN NUMI		3			
Instruc	tion	Ors	ode	Shamt	11-bit C Rang	
Mnemonic	Format		Binary	Binary	Start (Hex)	
	В	6	000101		0A0	0BF
MULS	R	11	00011110001	000010	0F	1

OI CODES	in nomi	KICAL OKI	PER BI OICO	DE	11-bit C	Incode
Instruc	tion	Or	ocode	Shamt	Rang	
Mnemonic	Format	Width (bits)	Binary	Binary	Start (Hex)	
В	В	6	000101	L7111till y	0A0	0BF
FMULS	R	11	00011110001	000010	0F	
FDIVS	R	11	00011110001	000110	0F	
FCMPS	R	11	00011110001	001000	0F	
FADDS	R	11	00011110001	001000	0F	
	R	11	00011110001	001010	OF	
FSUBS FMULD	R	11	00011110001	000010	OF	
	R	11	00011110011	000010	OF	
FDIVD	R	11	00011110011		OF	
FCMPD	R			001000	OF	
FADDD		11	00011110011	001010		
FSUBD	R	11	00011110011	001110	OF	
STURB	D	11	00111000000		10	
LDURB	D	11	00111000010		10	
B.cond	CB	8	01010100		2A0	2A7
STURH	D	11	01111000000		30	
LDURH	D	11	01111000010		30	
AND	R	11	10001010000		45	
ADD	R	11	10001011000		45	
ADDI	I	10	1001000100		488	489
ANDI	I	10	1001001000		490	491
BL	В	6	100101		4A0	4BF
SDIV	R	11	10011010110	000010	40	6
UDIV	R	11	10011010110	000011	4E	6
MUL	R	11	10011011000	011111	40	8
SMULH	R	11	10011011010		4D	Α
UMULH	R	11	10011011110		4D	E
ORR	R	11	10101010000		55	0
ADDS	R	11	10101011000		55	8
ADDIS	I	10	1011000100		588	589
ORRI	I	10	1011001000		590	591
CBZ	CB	8	10110100		5A0	5A7
CBNZ	CB	8	10110101		5A8	5AF
STURW	D	11	10111000000		50	0
LDURSW	D	11	10111000100		50	4
STURS	R	11	10111100000		5E	
LDURS	R	11	101111100010		5E	
STXR	D	11	11001000000		64	
LDXR	D	11	11001000000		64	
EOR	R	11	110010100010		65	
SUB	R	11	11001010000		65	
SUBI	I	10	1101000100		688	689
EORI	I	10	1101000100		690	691
MOVE	IM	9	1101001000		694	697
LSR	R	11	110100101		69	
	R	11	11010011010		69	
LSL	R		11010011011			
BR		11			6E	
ANDS	R	11	11101010000		75	
SUBS	R	11	11101011000		75	
SUBIS	I	10	1111000100		788	789
ANDIS	I	10	1111001000		790	791
MOVK	IM	9	111100101		794	797
STUR	D	11	111111000000		70	
LDUR	D	11	111111000010		70	
STURD	R	11	111111100000		7E	
T DUD D	D	11	111111100010		71	20

⁽¹⁾ Since I, B, and CB instruction formats have opcodes narrower than 11 bits, they occupy a range of 11-bit opcodes, e.g., the 6-bit B format occupies 32 (25) 11-bit opcodes.

111111100010

7E2

R

11

IEEE 754 FLOATING-POINT STANDARD

4 IEEE 754 Symbols

(-1)^s × (1 + Fraction) × 2^(Exponent - Bins) where Single Precision Bias = 127, Double Precision Bias = 1023

IEEE 754 Symbols								
Exponent	Fraction	Object						
0	0	± 0						
0	≠ 0	± Denorm						
1 to MAX - 1	anything	± F1. Pt. Num.						
MAX	0	± 00						
MAX	≠ 0	NaN						
S.P. MAX = 2	55. D.P. MAX =	= 2047						

IEEE Single Precision and **Double Precision Formats:**

c r reci	SIOH A	ormats.	3.F. MAA = 233, D.F. MAA = 2	O-67			
S		Exponent	Fraction				
31	30	23 22		0			
S		Exponent	Fraction				
63	62		52 51	0			

DATA ALIGNMENT

Double Word							
Word				Word			
Half	Halfword		Halfword		Halfword		word
Byte	Byte	Byte	Byte	Byte	Byte	Byte	Byte
0	1	2	3	4	5	6	7

Value of three least significant bits of byte address (Big Endian)

EXCEPTION SYNDROME REGISTER (ESR)

Exception Class (EC)	Instruction Length (IL)		Instruction Specific Syndrome field (ISS)	
31 26	25	24		- 0

EXCEPTION CLASS

ACEI I	TONCLAS				
EC	Class	Cause of Exception	Number	Name	Cause of Exception
0	Unknown	Unknown	34	PC	Misaligned PC exception
7	SIMD	SIMD/FP registers disabled	36	Data	Data Abort
14	FPE	Illegal Execution State	40	FPE	Floating-point exception
17	Sys	Supervisor Call Exception	52	WPT	Data Breakpoint exception
32	Instr	Instruction Abort	56	BKPT	SW Breakpoint Exception

SIZE PREFIXES AND SYMBOLS

SIZE	PREFIX	SYMBOL	SIZE	PREFIX	SYMBOL
10^{3}	Kilo-	K	210	Kibi-	Ki
10 ⁶	Mega-	M	220	Mebi-	Mi
10 ⁹	Giga-	G	230	Gibi-	Gi
10^{12}	Tera-	T	240	Tebi-	Ti
10 ¹⁵	Peta-	P	250	Pebi-	Pi
10^{18}	Exa-	E	260	Exbi-	Ei
10^{21}	Zetta-	Z	270	Zebi-	Zi
10^{24}	Yotta-	Y	280	Yobi-	Yi
10 ⁻³	milli-	m	10.15	femto-	f
10-6	micro-	μ	10 ⁻¹⁸	atto-	a
10-9	nano-	n	10-21	zepto-	z
10-12	pico-	р	10-24	yocto-	у
	10 ³ 10 ⁶ 10 ⁹ 10 ¹² 10 ¹⁵ 10 ¹⁸ 10 ²¹ 10 ²⁴ 10 ⁻³ 10 ⁻⁶	10 ³ Kilo- 10 ⁶ Mega- 10 ⁹ Giga- 10 ¹² Tera- 10 ¹⁵ Peta- 10 ¹⁸ Exa- 10 ²¹ Zetta- 10 ²⁴ Yotta- 10 ⁻⁶ milli- 10 ⁻⁶ micro- 10 ⁻⁹ nano-	10 ³ Kilo- K 10 ⁶ Mega- M 10 ⁹ Giga- G 10 ¹² Tera- T 10 ¹⁵ Peta- P 10 ¹⁸ Exa- E 10 ²¹ Zetta- Z 10 ²⁴ Yotta- Y 10 ¹⁵ milli- m 10 ¹⁶ micro- μ 10 ¹⁹ nano- n	10 ³ Kilo- K 2 ¹⁰ 10 ⁶ Mega- M 2 ²⁰ 10 ⁹ Giga- G 2 ³⁰ 10 ¹² Tera- T 2 ⁴⁰ 10 ¹⁵ Peta- P 2 ⁵⁰ 10 ¹⁸ Exa- E 2 ⁶⁰ 10 ²¹ Zetta- Z 2 ⁷⁰ 10 ²⁴ Yotta- Y 2 ⁸⁰ 10 ⁻³ milli- m 10 ⁻¹⁵ 10 ⁻⁶ micro- μ 10 ⁻¹⁸ 10 ⁻⁹ nano- n 10 ⁻²¹	10³ Kilo- K 2¹0 Kibi- 10⁶ Mega- M 2²0 Mebi- 10⁶ Giga- G 2³0 Gibi- 10¹² Tera- T 2⁴0 Tebi- 10¹⁵ Peta- P 2⁵0 Pebi- 10¹8 Exa- E 2⁶0 Exbi- 10²¹ Zetta- Z 2²0 Zebi- 10²⁴ Yotta- Y 2³0 Yobi- 10⁻³ milli- m 10⁻¹⁵ femto- 10⁻⁰ mano- n 10⁻²¹ zepto-