

OpenJAUS Meeting Columbus, Ohio

Prepared by: Gregory Garcia

CIMAR JAUS Implementation

- Before OpenJAUS
 - JAUS R.A. 3.2 Message Set
 - Proprietary set of libraries and component structure
 - JAVA Node Manager
 - System validation at DARPA Grand and Urban Challenges
 - Demonstrated interoperability at OPC experiments

Gator Nation Software Architecture

What we use from the JAUS R.A.

Dynamic Registry, Message Routing, Service Connections

Components

- Command and Control
 - Subsystem commander
- Platform Components
 - Global Pose Sensor
 - Velocity State Sensor
 - Primitive Driver

Messages

- Command Class Messages
 - Core Subgroup
 - Standby, Resume, SC (Create, Confirm, Terminate) Component Control (Request, Release, Confirm, Reject)
 - Platform Subgroup
 - Set Wrench Effort, Discrete Devices, Travel Speed
- Query Class Messages
 - Core Subgroup
 - Query Component Authority, Component Status
- Inform Class Messages
 - Core Subgroup
 - Report Component Authority, Component Status
 - Platform
 - Report Global Pose, Velocity State, Wrench Effort, Discrete Devices

R.A. Supplements

- High Level Planner: Heuristic based Mission Planning/re-Planning based on Urban Challenge MDF and RNDF formats
- Local World Model: Consumes Mission plan segments, Moving Object List, Lane offset corrections, outputs specialists findings as MetaData to SSC and grid map to planner
- Roadway Navigator: Simultaneous Planning and Control, converts motion profile into wrench efforts to be sent to PD
- Lane Finder: Lines or road edge detection with correction data
- Moving Object Sensor: Identify and track objects of interest
- Laser Smart Sensor: Laser Fusion and service provider, behavior based control of articulated sensors

Messages

- MetaData to support Adaptive Planning Framework
- Moving Object List (multipoint object, velocity x-y, position x-y)
- Lane Offset Correction
- Report Road Network Message
- Report Sensor Grid Map Message

Why OpenJAUS?

- Stay Current with Reference
 Architectures
- Mulitple OS Support
- Reduce software development time
- Facilitates compatibility between different vendors
- Extensive software debugging
- Focus on developing/enhancing vehicle performance and capabilities

How Open JAUS is it used?

- Replace CIMAR Java NodeManager with OpenJAUS NodeManager.
 - Software still built on proprietary libraries using templates
- Successfully Tested Full vehicle autonomous operation through OJNM
 - No noticeable performance anomalies

Message Traffic Through NM

Service Connections: 57 total

- 18-GPOS 30 bytes @ 50 Hz
- 18-VSS 30 bytes @50 Hz
- 7- Grid Map 14656 bytes @ 1-5 Hz
- 5-Report cmpt Status 5 bytes @ 20 Hz
- 2- Report Wrench Effort 20 bytes @40 Hz
- 2 –Report Discrete Devices 5 bytes @ 10 Hz
- 5 —Proprietary Msgs 2-97 and up bytes @5-40 Hz Approx. Service Connection Bandwidth: 299630 bytes/sec or 2133 messages/sec

Future of OpenJAUS and CIMAR

- •Complete Software Migration Libraries to reference OJ 3.3.0 release
 - •Supplemented with proprietary libraries as needed

Future of OpenJAUS and CIMAR

- August/September '08
 - High speed autonomous navigation with Obstacle Avoidance DEMO Using software architecture above
 - Upgrade Perception and Planning elements with maintaining current DUC capabilities