COMPUTING GRADIENTS OF TENCOR NETWORKS

I Jacobian and backpropagation

$$f:\mathbb{R}^{n}\to\mathbb{R}$$

Gradient
$$\nabla_{\mathcal{O}} f = \begin{pmatrix} \partial f/\partial \theta_i \\ \vdots \\ \partial f/\partial \theta_i \end{pmatrix}$$
 for each $\mathcal{O} \in \mathbb{R}^m$

$$fon each O \in IR^{n}$$

•
$$f: \mathbb{R}^n \to \mathbb{R}^n$$

•
$$f: \mathbb{R}^n \to \mathbb{R}^h$$
 Jacobian $\frac{\partial f}{\partial \theta} = \left(\begin{array}{c} \frac{\partial f(\theta)}{\partial \theta_j} \\ \end{array}\right)_{i,j} \in \mathbb{R}^h \times M$ for each $\theta \in \mathbb{R}^h$

· Back propayation / Automatic Differentiation (reverse mode).

Computational Graph

We want to compute 22.

Chain rule:
$$\frac{\partial \mathcal{L}}{\partial \Theta} = \frac{\partial \mathcal{L}}{\partial T_3} \frac{\partial T_3}{\partial T_2} \frac{\partial T_2}{\partial T_1} \frac{\partial T_1}{\partial \Theta}$$
 $\frac{\partial \mathcal{L}}{\partial \Theta} = \frac{\partial \mathcal{L}}{\partial T_3} \frac{\partial T_2}{\partial T_2} \frac{\partial T_3}{\partial T_1} \frac{\partial T_2}{\partial \Theta}$
 $\frac{\partial \mathcal{L}}{\partial \Theta} = \frac{\partial \mathcal{L}}{\partial T_3} \frac{\partial T_2}{\partial T_2} \frac{\partial T_3}{\partial T_1} \frac{\partial T_2}{\partial \Theta}$
 $\frac{\partial \mathcal{L}}{\partial \Theta} = \frac{\partial \mathcal{L}}{\partial T_3} \frac{\partial T_2}{\partial T_2} \frac{\partial T_3}{\partial T_1} \frac{\partial T_2}{\partial \Theta}$

We define the adjoint: $T = \partial d$

$$\overline{T_3} = \frac{32}{3T_3}$$

$$T_{3} = \frac{\partial \mathcal{L}}{\partial T_{3}}$$

$$T_{2} = \frac{\partial \mathcal{L}}{\partial T_{2}} = \frac{\partial \mathcal{L}}{\partial T_{3}} = \frac{\partial \mathcal{L}}{\partial T_{2}} = \frac{\partial T_{3}}{\partial T_{3}} = \frac{\partial T_{3}}{\partial T_{2}}$$

$$T_{1} = \frac{\partial \mathcal{L}}{\partial T_{1}} = \frac{\partial \mathcal{L}}{\partial T_{2}} = \frac{\partial T_{2}}{\partial T_{1}} = \frac{\partial T_{2}}{\partial T_{2}}$$

$$\overline{\Theta} = --- = T_{1} \frac{\partial T_{1}}{\partial \Theta}$$

$$\frac{1}{1} = \frac{1}{1}$$

Mere complex graphs:
$$0 \rightarrow T_1 \rightarrow T_2 \rightarrow T_3 \rightarrow T_4 \rightarrow T_5 \rightarrow T_5$$

ex:
$$T_1 = \frac{\partial d}{\partial T_1} = \frac{\partial d}{\partial T_2} \frac{\partial T_2}{\partial T_1} + \frac{\partial d}{\partial T_3} \frac{\partial T_3}{\partial T_1}$$

$$= T_2 \frac{\partial T_2}{\partial T_1} + T_3 \frac{\partial T_3}{\partial T_1}$$

$$\frac{\partial f(T)}{\partial T} = \left(\frac{\partial f(T)}{\partial T_{j_1} \cdots j_N}\right) \in \mathbb{R}^{h_1 \times \cdots \times h_p \times m_1 \times \cdots \times m_N}$$

I Jacabian of Tenser Networks

Let W be a tensor given as a tensor network where G is a core tensor

aftering only once. Then and is simply obtained by deleting 6 in the tenser metwork.

$$\frac{E^{\times}}{d_1 d_2 d_3 d_4} = \frac{d_1}{d_2} \frac{A^{R_1}}{R_2} \frac{R_3}{d_4} \frac{\partial}{\partial R_2} = \frac{d_1}{d_4} \frac{A^{R_1}}{R_2} \frac{R_3}{d_4} \frac{\partial}{\partial R_2} \frac{\partial}{\partial R_2} \frac{\partial}{\partial R_2} \frac{\partial}{\partial R_3} \frac$$

$$\frac{\partial B}{\partial W} = \frac{d_1}{d_2} A \frac{R_1}{R_2} \frac{R_2}{d_3}$$

. Rederiving classical matrix / vector gradients:

$$\frac{3^{n}}{\sqrt{(n'n)}} = \sqrt{(n-n)/3^{n}} = -n = n$$

$$\frac{\partial Az}{\partial x} = \partial (-A-x)/\partial z = -A - = A$$

$$\frac{\partial x^{T}Ax}{\partial A} = \partial (x - A - x)/\partial A = x - -x = xx^{T}$$

$$\frac{\partial T_{\lambda}(A)}{\partial A} = \partial (\widehat{A})/\partial A = \square$$

If the care tensor Gaffears k times in the tensor network of W, then $\frac{\partial W}{\partial G}$ is given the sum of K copies of W where a different occurrence of G

$$\frac{E_{\times}}{\partial x} = \frac{\partial (x - A_{z}^{\times})}{\partial x} = -A_{z}^{\times} + x - A_{z}^{-} = (A + A^{\top}) x$$

TENSORIZING

$$\begin{array}{ccc}
h_1 & & & & & \\
h_2 & & & & \\
h_3 & & & & \\
h_4 & & & & \\
\end{array}$$

$$\begin{array}{ccc}
h_1 & & & & \\
h_2 & & & \\
h_3 & & & \\
\end{array}$$

$$\begin{array}{ccc}
h_2 & & & \\
h_3 & & & \\
\end{array}$$

$$\begin{array}{cccc}
h_2 & & & \\
\end{array}$$

high high some large depending

$$A_1 = A_2 = A_3 = A_4 = A_4 = A_5 = A_$$

$$\frac{\partial d}{\partial G^2} = \frac{\partial d}{\partial G^2} \left(\frac{\partial d}{\partial G^2} \right)$$

Some larg depending

No we want to compute $\frac{\partial d}{\partial G^2} = \frac{\partial d}{\partial G^2} \left(\frac{\partial y}{\partial G_2} \right) \left(\frac{\partial y}{\partial$

$$\frac{\partial y}{\partial G_2} = \frac{1}{16} \left(\begin{array}{c} -G_1 \\ -G_2 \\ -G_3 \\ -G_4 \end{array} \right) \times \left(\begin{array}{c} -G_1 \\ -G_3 \\ -G_4 \end{array} \right) \times \left(\begin{array}{c} -G_1 \\ -G_3 \\ -G_4 \end{array} \right) \times \left(\begin{array}{c} -G_1 \\ -G_3 \\ -G_4 \end{array} \right) \times \left(\begin{array}{c} -G_1 \\ -G_3 \\ -G_4 \end{array} \right) \times \left(\begin{array}{c} -G_1 \\ -G_2 \\ -G_4 \end{array} \right) \times \left(\begin{array}{c} -G_1 \\ -G_4 \\ -G_4 \end{array} \right) \times \left(\begin{array}{c} -G_1 \\ -G_2 \\ -G_4 \end{array} \right) \times \left(\begin{array}{c} -G_1 \\ -G_2 \\ -G_4 \end{array} \right) \times \left(\begin{array}{c} -G_1 \\ -G_2 \\ -G_4 \end{array} \right) \times \left(\begin{array}{c} -G_1 \\ -G_2 \\ -G_4 \end{array} \right) \times \left(\begin{array}{c} -G_1 \\ -G_2 \\ -G_4 \end{array} \right) \times \left(\begin{array}{c} -G_1 \\ -G_4 \\ -G_4 \end{array} \right) \times \left(\begin{array}{c} -G_1 \\ -G_4 \\ -G_4 \end{array} \right) \times \left(\begin{array}{c} -G_1 \\ -G_4 \\ -G_4 \end{array} \right) \times \left(\begin{array}{c} -G_1 \\ -G_4 \\ -G_4 \end{array} \right) \times \left(\begin{array}{c} -G_1 \\ -G_4 \\ -G_4 \end{array} \right) \times \left(\begin{array}{c} -G_1 \\ -G_4 \\ -G_4 \end{array} \right) \times \left(\begin{array}{c} -G_1 \\ -G_4 \\ -G_4 \end{array} \right) \times \left(\begin{array}{c} -G_1 \\ -G_4 \\ -G_4 \end{array} \right) \times \left(\begin{array}{c} -G_1 \\ -G_4 \\ -G_4 \end{array} \right) \times \left(\begin{array}{c} -G_1 \\ -G_4 \\ -G_4 \end{array} \right) \times \left(\begin{array}{c} -G_1 \\ -G_4 \\ -G_4 \end{array} \right) \times \left(\begin{array}{c} -G_1 \\ -G_4 \\ -G_4 \end{array} \right) \times \left(\begin{array}{c} -G_1 \\ -G_4 \\ -G_4 \end{array} \right) \times \left(\begin{array}{c} -G_1 \\ -G_4 \\ -G_4 \end{array} \right) \times \left(\begin{array}{c} -G_1 \\ -G_4 \\ -G_4 \end{array} \right) \times \left(\begin{array}{c} -G_1 \\ -G_4 \\ -G_4 \end{array} \right) \times \left(\begin{array}{c} -G_1 \\ -G_4 \\ -G_4 \end{array} \right) \times \left(\begin{array}{c} -G_1 \\ -G_4 \\ -G_4 \end{array} \right) \times \left(\begin{array}{c} -G_1 \\ -G_4 \\ -G_4 \end{array} \right) \times \left(\begin{array}{c} -G_1 \\ -G_4 \\ -G_4 \end{array} \right) \times \left(\begin{array}{c} -G_1 \\ -G_4 \\ -G_4 \end{array} \right) \times \left(\begin{array}{c} -G_1 \\ -G_4 \\ -G_4 \end{array} \right) \times \left(\begin{array}{c} -G_1 \\ -G_4 \\ -G_4 \end{array} \right) \times \left(\begin{array}{c} -G_1 \\ -G_4 \\ -G_4 \end{array} \right) \times \left(\begin{array}{c} -G_1 \\ -G_4 \\ -G_4 \end{array} \right) \times \left(\begin{array}{c} -G_1 \\ -G_4 \\ -G_4 \end{array} \right) \times \left(\begin{array}{c} -G_1 \\ -G_4 \\ -G_4 \end{array} \right) \times \left(\begin{array}{c} -G_1 \\ -G_4 \\ -G_4 \end{array} \right) \times \left(\begin{array}{c} -G_1 \\ -G_4 \\ -G_4 \end{array} \right) \times \left(\begin{array}{c} -G_1 \\ -G_4 \\ -G_4 \end{array} \right) \times \left(\begin{array}{c} -G_1 \\ -G_4 \\ -G_4 \end{array} \right) \times \left(\begin{array}{c} -G_1 \\ -G_4 \\ -G_4 \end{array} \right) \times \left(\begin{array}{c} -G_1 \\ -G_4 \\ -G_4 \end{array} \right) \times \left(\begin{array}{c} -G_1 \\ -G_4 \\ -G_4 \end{array} \right) \times \left(\begin{array}{c} -G_1 \\ -G_4 \\ -G_4 \end{array} \right) \times \left(\begin{array}{c} -G_1 \\ -G_4 \\ -G_4 \end{array} \right) \times \left(\begin{array}{c} -G_1 \\ -G_4 \\ -G_4 \end{array} \right) \times \left(\begin{array}{c} -G_1 \\ -G_4 \\ -G_4 \end{array} \right) \times \left(\begin{array}{c} -G_1 \\ -G_4 \\ -G_4 \end{array} \right) \times \left(\begin{array}{c} -G_1 \\ -G_4 \\ -G_4 \end{array} \right) \times \left(\begin{array}{c} -G_1 \\ -G_4 \\ -G_4 \end{array} \right) \times \left(\begin{array}{c} -G_1 \\ -G_4 \\ -G_4 \end{array} \right) \times \left(\begin{array}{c} -G_1 \\ -G_4 \\ -G_4 \end{array} \right) \times \left(\begin{array}{c} -G_1 \\ -G_4 \\ -G_4 \end{array} \right) \times \left(\begin{array}{c} -G_1 \\ -G_4 \\ -G_4 \end{array} \right) \times \left(\begin{array}{c} -G_1 \\ -G_4 \\ -G_4 \end{array} \right) \times \left(\begin{array}{c} -G_1 \\ -G_4 \\ -G_4 \end{array} \right) \times \left(\begin{array}{c$$

2, Likelihood maximization & gueralized linear model.

Observations/Data: X EIR MIX --- X Md

×;...id ~ h(×;...id) Θi,...id) Promoterized PDF:

where ((0, ..., d) = Mi, ..., d

l: R > R is an invertible link function connecting the model parameters Mi,...id to the "natural" parameter of the distribution.

Model parameters: MERm, x --- x md

Goal: Find M that maximizes the likelihood of the observed entries of X 4 IL C[mi]x....x[mi]

 $\max_{M} \mathcal{L}(M; X, \Omega) = \prod_{(i_1, \dots, i_d) \in \Omega} \Lambda(X_{i_1, \dots, i_d} | \Theta_{i_1, \dots, i_d})$

where $\ell(\theta; ...; d) = M_{i_1...i_d}$

-> We only have (at most) one observation for each entry of X! We will assume a low rank structure of M (intendependence between the O. is Ly low of nanh of M.

Refermulation of optimization problem:

 $\begin{array}{lll} \text{min} & F(M;X,\Omega) = & \sum\limits_{(i,j=id)\in \Lambda} f(X;_{i=id},M;_{i=id}) \text{ s.t. } nank_{cp}(\Pi) \leqslant R \\ M & \text{where } f(x,m) = & -\log_{10} f(x \mid e^{-1}(m)) \end{array}$

~ loss function" (assumed differentiable)

@ Gaussian distribution

(Goussian MLF (Mean squared)

Xi,...id = Mi,...id + Ei,...id where Ei,...id ~ NO, oz)
Constant

Equivalently; Xi, ~ ef(O; ...id, o2) where Oi, ...id = Mi,...id the link function is the identity f(0) = 0

Simple derivation:

$$f(x, m) = -\log eP(x; m, \sigma^2) = \frac{(x-m)^2}{2\sigma^2} + \frac{1}{2}\log(2\pi\sigma^2)$$

4) ignoring σ^2 and constants $\left[f(x,m)=(x-m)^2\right]$

=) # is then equivalent to CP decomposition.

2 Berneulli distribution.

If Xi, ...id & foil (binary data), we can assume Xi, ...id & B(Oi, ...id) $h(x|\theta) = \theta^{2}(1-\theta)^{1-x} , x \in \{0,1\}, \theta \in [0,1]$

link function?

• identy m we need to constrain $m \in [0,1]$ • odds natio: $m = \ell(0) = \frac{0}{1-0}$

m) only need to enforce m > 0

· log odds ratio:
$$m = \ell(0) = \log \left(\frac{\Theta}{1-\Theta}\right)$$

$$C_{3} \Phi = \frac{e^{m}}{1 + e^{m}}, \quad I - \Phi = \frac{I}{1 + e^{m}}$$

 $-- = \int (x_1 m) = -\log h(x | \Theta) = -x \log \Theta - (1-x) \log (1-\Theta)$

f(x,m) = log(1+em) - xm

Other distributions

Table 1: Statistically-motivated loss functions. Parameters in blue are assumed to be constant. Numerical adjustments are indicated in red.

Distribution	Link function	Loss function	Constraints
$\mathcal{N}(\mu, \sigma)$	$m = \mu$	$(x-m)^2$	$x, m \in \mathbb{R}$
$\operatorname{Gamma}(k,\sigma)$	$m = k\sigma$	$x/(m+\epsilon) + \log(m+\epsilon)$	$x > 0, m \ge 0$
$Rayleigh(\theta)$	$m = \sqrt{\pi/2} \theta$	$2\log(m+\epsilon) + (\pi/4)(x/(m+\epsilon))^2$	$x > 0, m \ge 0$
$Poisson(\lambda)$	$m = \lambda$	$m - x \log(m + \epsilon)$	$x \in \mathbb{N}, m \ge 0$
	$m = \log \lambda$	$e^m - xm$	$x \in \mathbb{N}, m \in \mathbb{R}$
$Bernoulli(\rho)$	$m = \rho / (1 - \rho)$	$\log(m+1) - x \log(m + \epsilon)$	$x \in \left\{0,1\right\}, m \geq 0$
	$m = \log(\rho / (1 - \rho))$	$\log(1+e^m) - xm$	$x\in\{0,1\},m\in\mathbb{R}$
$NegBinom(r, \rho)$	$m = \rho / (1 - \rho)$	$(r+x)\log(1+m) - x\log(m+\epsilon)$	$x \in \mathbb{N}, \ m \ge 0$

Gradient based optimization

(if Λ is the set of deserved entries;

($W_{i_1...i_d} = \Lambda$ if $(i_{i_1...i_d}) \in \Lambda$ and $0 \circ w$)

A:

min $F(M; X, W) \equiv \Sigma$ Wi...i. $f(X_{i_1...i_d}, M_{i_1...i_d})$

s.t. M = [A, A, ..., A]

$$\begin{array}{ccc}
A_1 & & \times \\
A_2 & \rightarrow & M & \rightarrow & F(M; \times, w) \\
\vdots & & & & & & & \\
A_A & & & & & & & \\
\end{array}$$

We want to show

$$\frac{\partial F(M; X, W)}{\partial A_{K}} = \frac{1}{M_{K}} \underbrace{\int A_{K-1} \int R}_{A_{K+1}} Where Y \in \mathbb{R}^{M_{1} \times \dots \times M_{d}}$$

$$\frac{\partial F(M; X, W)}{\partial A_{K}} = \frac{1}{M_{K}} \underbrace{\int A_{K-1} \int R}_{A_{K+1}} Where Y \in \mathbb{R}^{M_{1} \times \dots \times M_{d}}$$

$$= \underbrace{\int (K) \left(A_{d} \circ \cdots \circ A_{K+1} \circ A_{K-1} \circ \cdots \circ A_{1}\right)}_{i + i \leq s \text{ share } i \neq W \text{ is } s \text{ share } .$$

$$\frac{\partial F(M; X, W)}{\partial A_{K}} = \frac{\partial F(M; X, \Pi)}{\partial M} \frac{\partial M}{\partial A_{K}}$$

$$\frac{\partial F(M; X, \Pi)}{\partial M} = \frac{\partial \left(\sum_{j=1}^{N} W_{j} - i_{d}}{\partial x_{j}} f(X_{j} - i_{d}), M_{j} - i_{d}}\right) / \partial M_{i_{1} - i_{d}}$$

$$= W_{i_{1} - i_{d}} \frac{\partial f(X_{i_{1} - i_{d}}, M_{i_{1} - i_{d}})}{\partial M_{i_{1} - i_{d}}} = 3(\frac{\partial A_{K}}{\partial A_{K}}) / \partial A_{K} = \frac{M_{K-1}}{M_{K}} \frac{A_{K-1}}{A_{K-1}}$$

$$\frac{\partial M}{\partial A_{K}} = \frac{\partial \left(-\frac{A_{1}}{A_{2}}\right)}{\partial A_{K}} / \partial A_{K} = \frac{M_{K-1}}{M_{K}} \frac{A_{K-1}}{A_{K-1}}$$

$$\frac{\partial M}{\partial A_{K}} = \frac{\partial \left(-\frac{A_{1}}{A_{2}}\right)}{\partial A_{K}} / \partial A_{K} = \frac{M_{K-1}}{M_{K}} \frac{A_{K-1}}{A_{K-1}}$$

$$\frac{\partial M}{\partial A_{K}} = \frac{\partial \left(-\frac{A_{1}}{A_{2}}\right)}{\partial A_{K}} / \partial A_{K} = \frac{M_{K-1}}{M_{K}} \frac{A_{K-1}}{A_{K-1}}$$

$$\frac{\partial M}{\partial A_{K}} = \frac{\partial \left(-\frac{A_{1}}{A_{2}}\right)}{\partial A_{K}} / \partial A_{K} = \frac{M_{K-1}}{M_{K}} \frac{A_{K-1}}{A_{K-1}} / \partial A_{K} = \frac{M_{K-1}}{M_{K}} \frac{A_{K-1}}{M_{K}} + \frac{M_{K-1}}{M_{K}} \frac{A_{K-1}}{M_{K}} + \frac{M_{K-1}}{M_{K}} + \frac{M_{K-1}}{M_{K}} + \frac{M_{K-1}}{M_{K}} + \frac{M_{K-1}}{M_{K}} + \frac{M_{K-1}}{M_{K}} + \frac{M_{K-1}}{M_{K}} + \frac{M_{K-1}}{$$

$$\frac{\partial F(M; X, W)}{\partial A_{R}} = \frac{\partial F(M; X, \Pi)}{\partial M} \frac{\partial M}{\partial A_{R}}$$

$$= \frac{\partial F(M; X, W)}{\partial A_{R}} = \frac{\partial F(M; X, \Pi)}{\partial A_{R}} \frac{\partial M}{\partial A_{R}}$$

$$= \frac{\partial F(M; X, W)}{\partial A_{R}} = \frac{\partial F(M; X, \Pi)}{\partial A_{R}} \frac{\partial M}{\partial A_{R}}$$

$$= \frac{\partial F(M; X, W)}{\partial A_{R}} = \frac{\partial F(M; X, \Pi)}{\partial A_{R}} \frac{\partial M}{\partial A_{R}}$$

$$= \frac{\partial F(M; X, W)}{\partial A_{R}} = \frac{\partial F(M; X, \Pi)}{\partial A_{R}} \frac{\partial M}{\partial A_{R}}$$

$$= \frac{\partial F(M; X, W)}{\partial A_{R}} = \frac{\partial F(M; X, \Pi)}{\partial A_{R}} \frac{\partial M}{\partial A_{R}}$$

$$= \frac{\partial F(M; X, W)}{\partial A_{R}} = \frac{\partial F(M; X, \Pi)}{\partial A_{R}} \frac{\partial M}{\partial A_{R}}$$

$$= \frac{\partial F(M; X, W)}{\partial A_{R}} = \frac{\partial F(M; X, \Pi)}{\partial A_{R}} \frac{\partial M}{\partial A_{R}}$$

$$= \frac{\partial F(M; X, W)}{\partial A_{R}} = \frac{\partial F(M; X, \Pi)}{\partial A_{R}} \frac{\partial M}{\partial A_{R}}$$

$$= \frac{\partial F(M; X, W)}{\partial A_{R}} = \frac{\partial F(M; X, \Pi)}{\partial A_{R}} \frac{\partial M}{\partial A_{R}}$$

Follow whe happe: Stochastic Gradients for Large-Scale Tensor Decomposition*

Tamara G. Kolda[†] and David Hong[‡]