Name: Section (time):

Math 340 Quiz 6

- 1.) Give an example of two vectors in \mathbb{R}^2 that are equal and have different tails.
- 2.) Let \vec{PQ} have tail (1,0) and head (2,1).

Let \vec{PS} have tail (1,0) and head (2,-1).

Draw these vectors in a graph and argue they are not equal.

Not Quiz 6

a.) Let \mathbb{R}_{++} be the set of all strictly positive real numbers and define, for $x,y\in\mathbb{R}_{++}$ a vector sum by

$$x \oplus y = x \cdot y,$$

where the product on the right is the usual product of numbers. If a is a real number and $x \in \mathbb{R}_{++}$ define

$$a \odot x = x^a$$
.

Is this a vector space?

- b.) Which of the following are subspaces?
 - 1. $\{(x_1, x_2, x_3) \in \mathbb{R}^3 \mid x_1 = 0\}$
 - 2. $\{(x_1, x_2, x_3) \in \mathbb{R}^3 \mid x_2 = 0\}$
 - 3. $\{(x_1, x_2, x_3) \in \mathbb{R}^3 \mid x_1 + x_2 = 0\}$
 - 4. $\{(x_1, x_2, x_3) \in \mathbb{R}^3 \mid x_1 + x_2 = 1\}$
 - 5. $\{(x_1, x_2) \in \mathbb{R}^2 \mid x_1 \ge 0\}$
- c.) Consider $\mathcal{U} \in \mathbb{R}^n$, the subset consisting of all vectors a with the property $a_1 + a_2 + \dots + a_n = 0$. Define \oplus and \cdot as the usual vector addition and scalar multiplication:

$$a \oplus b = (a_1 + b_1, \dots, a_n + b_n),$$

$$c \odot a = (ca_1, \dots ca_n).$$

Show this is a subspace of \mathbb{R}^n .

d.) (4.3 HW37) Which of the following points are on the line

$$x = 4 - 2t$$

$$y = -3 + 2t$$

$$z = 4 - 5t$$

- i(0,1,-6)
- ii (1,2,3)
- iii (4,-3,4)
- iv (0,1,-1)
- e.) What is the span of $\{1-x, 1+x\}$ in the set of polynomials of degree one?

Solution sketches to Not Quiz 6

- a.) Yes.
 - 1. \oplus is commutative because the normal multiplication \cdot is.
 - 2. \oplus is associative because multiplication \cdot is.
 - 3. Here the additive identity is 1, $x \oplus 1 = x$.
 - 4. The additive inverse of x is $\frac{1}{x}$. $x \oplus 1/x = 1$ =the additive identity.
 - 5. $c \odot (x \oplus y) = (x\dot{y})^c = x^c y^c = c \odot x \oplus c \odot y$
 - 6. $(c+d) \odot x = x^{c+d} = x^c \cdot x^d = c \odot x \oplus d \odot x$
 - 7. $c \odot (d \odot x) = (x^d)^c = x^{cd} = (cd) \odot x$
 - 8. $1 \odot x = x^1 = x$.

We've now verified the eight properties of a vector space.

- b.) We check closure of addition and multiplication by a scalar. We assume the normal addition and multiplication operations.
 - 1. yes
 - 2. yes
 - 3. Yes. Observe $c(x_1 + x_2) = c0 = 0$, so $c\vec{x}$ is in the proposed set for any $c \in \mathbb{R}$. If we add two vectors, x and y, then $(x_1 + y + 1) + (x_2 + y_2) = (x_1 + x_2) + (y_1 + y_2) = 0 + 0$, so the set is closed under addition.
 - 4. No, this is not closed under scalar multiplication.
 - 5. No, the set is not closed under scalar multiplication (of a negative).
- c.) As before, we check closure under addition and scalar multiplication.
 - 1. Let $u=a\oplus b=(a_1+b_1,\ldots,a_n+b_n)$ Then $u_i=a_i+b_i$ for $i=1,2,\ldots,n$. Now we check if $\sum_{i=1}^n u_i=0$. Observe $\sum_{i=1}^n u_i=\sum_{i=1}^n a_i+b_i=\sum_{i=1}^n a_i+\sum_{i=1}^n b_i=0+0$. Thus, this space is closed under addition.
 - 2. For $c \odot a$, We have to check if $\sum_{i=1}^{n} ca_i$ is equal to zero. $\sum_{i=1}^{n} ca_i = c \sum_{i=1}^{n} a_i = c0 = 0$. So, the space is closed under multiplication.

We now know that this is a subspace.

- d.) HW
- e.) The span is the set of all polynomials of degree one. Observe that the coefficient vectors are $\begin{pmatrix} -1\\1 \end{pmatrix}$ and $\begin{pmatrix} 1\\1 \end{pmatrix}$. These are linearly independent, so

they would span the entire space of \mathbb{R}^2 . This means we can pick any coefficient vector $\begin{pmatrix} \alpha \\ \beta \end{pmatrix}$ in \mathbb{R}^2 we want and produce it as a linear combination of $\begin{pmatrix} -1 \\ 1 \end{pmatrix}$ and $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$. This corresponds to saying we can pick any polynomial $\alpha x + \beta$ and represent it as a linear combination of 1 - x and 1 + x.