| SPRAWOZDANIE Z LABORATORIUM FIZYKI 3.1 |      |                         |                                   |  |
|----------------------------------------|------|-------------------------|-----------------------------------|--|
| Numer ćwiczenia                        | 100A | Temat ćwiczenia         | Wyznaczanie gęstości ciał stałych |  |
| Numer grupy                            | 6    | Termin zajęć            | 20.10.2016, 9:15                  |  |
| Skład grupy                            |      | Prowadzący              | Ocena                             |  |
| Iwo Bujkiewicz, 226203                 |      | Durini Curacaus Zaturda |                                   |  |
| Bartosz Rodziewicz, 226105             |      | Dr inż. Grzegorz Zatryb |                                   |  |

# 1. Cel ćwiczenia

- Zapoznanie się z podstawowymi narzędziami inżynierskimi (sposobem pomiaru oraz niedokładnościami przyrządów).
- Wyznaczenie gęstości badanego elementu.
- Analiza otrzymanych wyników i nauka pisania sprawozdań.

# 2. Spis przyrządów

- Śruba mikrometryczna dokł. 0.01 mm
- Suwmiarka dokł. 0.05 mm
- Waga dokł. 0.01 g
- Menzurka dokł. 1 cm³

# 3. Przebieg ćwiczenia

## 1. Kilkukrotny pomiar wymiarów mierzonego elementu

Pomiary wewnętrznej średnicy d i wysokości H zostały wykonane za pomocą suwmiarki, a pomiary zewnętrznej średnicy D zostały wykonane za pomocą śruby mikrometrycznej.

Wyniki pomiarów znajdują się w tabelce poniżej:

| L.p. | d     | Н     | D     |  |
|------|-------|-------|-------|--|
|      | [mm]  | [mm]  | [mm]  |  |
| 1    | 12.05 | 46.95 | 15.99 |  |
| 2    | 12.00 | 46.85 | 16.00 |  |
| 3    | 12.00 | 46.90 | 16.01 |  |
| 4    | 12.10 | 46.95 | 16.01 |  |
| 5    | 12.00 | 46.90 | 16.01 |  |

#### 2. Pomiar masy

Masa mierzonego elementu została zmierzona jeden raz i wynosiła 11.28 g.

### 3. Pomiar objętości

Objętość elementu została wyznaczona poprzez zanurzenie elementu w menzurce i z wodą i obliczenie ilości wypartej wody. Objętość wynosiła 5 cm³, a podziałka na menzurce była co 1 ml.



Rys.1 Szkic mierzonego elementu i oznaczenie jego wymiarów

## 4. Opracowanie wyników i niepewności pomiarowej

## 1. Pomiary bezpośrednie

#### a. Wartość średnia

| vvai tose si cama |       |       |        |  |
|-------------------|-------|-------|--------|--|
| L.p.              | d     | Н     | D      |  |
|                   | [mm]  | [mm]  | [mm]   |  |
| 1                 | 12.05 | 46.95 | 15.99  |  |
| 2                 | 12.00 | 46.85 | 16.00  |  |
| 3                 | 12.00 | 46.90 | 16.01  |  |
| 4                 | 12.10 | 46.95 | 16.01  |  |
| 5                 | 12.00 | 46.90 | 16.01  |  |
| Śr.               | 12.03 | 46.91 | 16.004 |  |

Wartość średnia policzona zgodnie z wzorem 1.

Przykładowe obliczenia:

$$\bar{\boldsymbol{d}} = \frac{1}{n} \sum_{i=1}^{n} d_i = \frac{1}{5} (12.05 + 12 + 12 + 12.1 + 12) = \mathbf{12.03}$$

### b. Niepewności pomiarowe

|                | wartość | $u_A$ | $U_B$ | и     |
|----------------|---------|-------|-------|-------|
|                | [mm]    | [mm]  | [mm]  | [mm]  |
| $\overline{d}$ | 12.03   | 0.02  | 0.03  | 0.04  |
| H              | 46.91   | 0.08  | 0.03  | 0.09  |
| D              | 16.004  | 0.018 | 0.006 | 0.019 |
| m              | 11.28   | 1     | 0.006 | 0.006 |
| ٧              | 5       | -     | 0.6   | 0.6   |

Przykładowe obliczenia

(odpowiednio wz. 3, 4 i 5):

$$u_A(\overline{d}) = \sqrt{\frac{\sum_{i=1}^n (d_i - \overline{d})^2}{n(n-1)}} =$$

$$\sqrt{\frac{(12.05-12.03)^2+(12-12.03)^2+(12-12.03)^2+(12.1-12.03)^2+(12.1-12.03)^2}{4*5}}$$

$$\sqrt{\frac{0.02^2 + (-0.03)^2 + (-0.03)^2 + 0.07^2 + (-0.03)^2}{20}} = \sqrt{\frac{0.0004 + 0.0009 + 0.0009 + 0.0049 + 0.0009}{20}} = \sqrt{\frac{0.0004 + 0.0009 + 0.0009 + 0.0049 + 0.0009}{20}}$$

$$\sqrt{\frac{0.008}{20}} = \sqrt{0.0004} = \mathbf{0.02}$$

$$u_B(d) = \frac{\Delta g}{\sqrt{3}} = \frac{0.05}{\sqrt{3}} \approx 0.0288675 \approx 0.03$$

$$u(\bar{d}) = \sqrt{u_A^2(\bar{d}) + u_B^2(\bar{d})} = \sqrt{0.02^2 + 0.03^2} \approx 0.036 \approx 0.04$$

Dla masy i objętości (jako że wykonaliśmy tylko jeden pomiar) liczymy tylko niepewność typu B i całkowita niepewność jest równa niepewności B.

$$u(V) = \sqrt{(\frac{\partial V}{\partial \overline{\mathbf{d}}} u_c(\overline{\mathbf{d}}))^2 + (\frac{\partial V}{\partial \overline{\mathbf{D}}} u_c(\overline{\mathbf{D}}))^2 + (\frac{\partial V}{\partial \overline{\mathbf{H}}} u_c(\overline{\mathbf{H}}))^2}$$

Wzór 6

Niepewność całkowita pomiaru pośredniego

### 2. Pomiary pośrednie

Poza bezpośrednim pomiarem objętości możemy objętość wyznaczyć również pośrednio ze wzoru  $V=\pi*\left(\frac{D}{2}\right)^2*H-\pi*\left(\frac{d}{2}\right)^2*H=\frac{1}{4}*\pi*H*(D^2-d^2).$ 

Wzór 1

Wartość najbardziej prawdopodobna (średnia)

$$u_A^{st}(d) = \sqrt{\frac{\sum_{i=1}^n (d_i - \bar{d})^2}{n-1}}$$

Wzór 2

Odchylenie standardowe (niepewność pojedynczego pomiaru z próby statystycznej)

$$u_A(d) = \sqrt{\frac{\sum_{i=1}^{n} (d_i - \bar{d})^2}{n(n-1)}}$$

Wzór 3

Odchylenie standardowe od wartości średniej

$$u_B(d) = \frac{\Delta g}{\sqrt{3}}$$

Wzór 4

Niepewność przyrządu pomiarowego

$$u(\bar{d}) = \sqrt{u_A^2(\bar{d}) + u_B^2(\bar{d})}$$

Wzór 5

Niepewność całkowita pomiaru bezpośredniego

| V     | $u(\overline{d})$ | $u(\overline{D})$ | $u(\overline{H})$ | u(V)  |
|-------|-------------------|-------------------|-------------------|-------|
| [cm³] | [cm]              | [cm]              | [cm]              | [cm³] |
| 4.105 | 0.004             | 0.009             | 0.0019            | 0.058 |

Obliczenia:

$$V(\overline{\mathbf{d}}, \overline{\mathbf{D}}, \overline{\mathbf{H}}) = \frac{1}{4} * \pi * \overline{\mathbf{H}} * (\overline{\mathbf{D}}^2 - \overline{\mathbf{d}}^2) = \frac{1}{4} * 46.91 * \pi * (256.128016 - 144.7209) = 0.25 * 111.407116 * 46.91 * \pi = 1306.52695289\pi \approx 4104.59 [mm^3] = \mathbf{4.105} [cm^3]$$

$$\frac{\partial V}{\partial \overline{\mathbf{d}}} = \frac{1}{4} * \pi * \mathbf{H} * (D^2 - 2d) \rightarrow 0.25 * \pi * 4.691 * (2.56128016 - 2.406) \approx 0.57$$

$$\frac{\partial V}{\partial \overline{\mathbf{D}}} = \frac{1}{4} * \pi * \mathbf{H} * (2D - d^2) \rightarrow \sim 6.48$$

$$\frac{\partial V}{\partial \overline{\mathbf{H}}} = \frac{1}{4} * \pi * (D^2 - d^2) \rightarrow \sim 0.87$$

$$u(V) = \sqrt{(\frac{\partial V}{\partial \overline{\mathbf{d}}} u_c(\overline{\mathbf{d}}))^2 + (\frac{\partial V}{\partial \overline{\mathbf{D}}} u_c(\overline{\mathbf{D}}))^2 + (\frac{\partial V}{\partial \overline{\mathbf{H}}} u_c(\overline{\mathbf{H}}))^2} = \sqrt{(0.57 * 0.004)^2 + (6.48 * 0.009)^2 + (0.87 * 0.0019)^2} = \sqrt{0.003409153209} \approx \mathbf{0.058} [cm^3]$$

## 3. Wyznaczenie gęstości

| Metoda      | ρ       | u(m)  | u(V)  | u(ρ)    |
|-------------|---------|-------|-------|---------|
|             | [g/cm³] | [g]   | [cm³] | [g/cm³] |
| V zm. bezp. | 2.26    | 0.006 | 0.6   | 0.27    |
| V zm. poś.  | 2.748   | 0.006 | 0.058 | 0.039   |

Przykładowe obliczenia:

$$\rho = \frac{m}{V} = \frac{11.28}{4.105} \approx 2.748 [g/cm^{3}]$$

$$\frac{\partial \rho}{\partial \overline{m}} = \frac{1}{V} \rightarrow 0.244$$

$$\frac{\partial \rho}{\partial \overline{V}} = \frac{-m}{V^{2}} \rightarrow \frac{-11.28}{16.851025} \approx -0.669$$

$$u(\rho) = \sqrt{(0.244 * 0.006)^{2} + (-0.669 * 0.058)^{2}} = \sqrt{0.0015077385} \approx 0.039$$

## 4. Wnioski

- Nasze badanie potwierdza poprawność wzoru na objętość.
- Z powodu bardzo niedokładnego pomiaru bezpośredniego objętości (błąd względny 20%) i w miarę dokładnego pomiaru wymiarów obiektu objętość wyznaczona pośrednio jest o wiele dokładniejsza niż wyznaczona bezpośrednio.
- Przy wyznaczaniu gęstości gęstość wyznaczona dwoma różnymi metodami się nie pokrywa i uważam, że jest to spowodowane dużą niedokładnością bezpośredniego wyznaczenia objętości, jak i nie uwzględnieniem w obliczeniach niedoskonałości figury (matematyczny wzór na objętość nie uwzględnia tego, że rzeczywisty walec nie jest walcem idealnym).
- Śruba mikrometryczna była niewygodna w użyciu w tym ćwiczeniu.