Beyond fast multiplication in $\bar{\mathbb{F}}_p$ the Artin-Schreier component

Luca De Feo

Department of Combinatorics and Optimization

August 5, 2011, Symbolic Computation Group, University of Waterloo

From my Magma 2.11 console

Why are these computations important?

- Geometrical algorithms over finite fields;
- Computations with number fields;
- Computations with extensions of \mathbb{Q}_p .

Nota: Sage is working its way to it.

An example from number theory

Elliptic curve: set of solutions in $\mathbb{P}^2(\bar{k})$ to $Y^2Z = X^3 + aXZ^2 + bZ^3$, $a, b \in k$.

Geometric addition law: given by algebraic formulas

Multiplication: write [m]P for $P + P + \cdots + P$

m times

Torsion: $E[m] \cong (\mathbb{Z}/m\mathbb{Z})^2$, its elements are solutions to algebraic equations of degree $\sim m^2$.

An example from number theory (cont'd)

Couveignes 1996 algorithm

Input: Curves E, E' over \mathbb{F}_p ,

Output: An algebraic morphism $E \to E'$.

- Compute $E[p^k]$ and $E'[p^k]$,
- Interpolate the algebraic map from $E[p^k]$ to $E'[p^k]$.

Complexity issues

- Number of operations in $\overline{\mathbb{F}}_p$ quadratic in the degree of the map.
- But what information does this really give on the actual running time?
- De Feo 2010 shows that the number of operations in \mathbb{F}_p can be made cubic. (It also improves this to quadratic, but we won't talk about this today)

So, what is an asymptotically good way of constructing $\bar{\mathbb{F}}_p$?

Constructing $\bar{\mathbb{F}}_p$

 $\bar{\mathbb{F}}_p$ is the inductive limit $\lim_{n \to \infty} \mathbb{F}_{p^n}$

Compatibility: Fix embeddings such that $\mathbb{F}_{p^{\ell}} \subset \mathbb{F}_{p^m} \subset \mathbb{F}_{p^n}$ whenever $\ell | m | n$, then

$$\bar{\mathbb{F}}_p = \bigcup_n \mathbb{F}_{p^n}.$$

Height: Let $x \in \bar{\mathbb{F}}_p$, its height h(x) is the degree of its minimal polynomial over \mathbb{F}_p ; equivalently h(x) is the degree of the smallest extension of \mathbb{F}_p containing x.

Size: A construction is space-optimal if any $x \in \overline{\mathbb{F}}_p$ can be represented using $O(h(x) \log p)$ bits;

Arithmetic: A construction is time-optimal (resp. quasi-optimal) if any field operation on $x, y \in \overline{\mathbb{F}}_p$ can be realized in

 $O(\operatorname{lcm}(h(x), h(y)) \log p)$ (resp. $\tilde{O}(\operatorname{lcm}(h(x), h(y)) \log p)$) binary operations.

5/21

Beyond multiplication in $\bar{\mathbb{F}}_n$

Beware! The representation of $x \in \overline{\mathbb{F}}_p$ need not be unique.

Membership: compute h(x);

compute a canonical form of size $O(h(x) \log p)$; Canonical form:

Traces: $\operatorname{Tr}_{\mathbb{F}_{n^n}/\mathbb{F}_{n^m}}(x);$

Minimal polynomials: over \mathbb{F}_p , over \mathbb{F}_{p^n} ;

compute x^{p^n} using a number of operations subexpo-Frobenius:

nential in $\log n$;

representing and realizing the action of $Gal(\bar{\mathbb{F}}_{n}/\mathbb{F}_{n^{n}})$ Galois groups:

and $Gal(\mathbb{F}_{n^n}/\mathbb{F}_{n^m})$.

Classical solutions

Factorization + linear algebra (Bosma, Cannon, and Steel 1997)

- For m|n, construct \mathbb{F}_{p^n} and \mathbb{F}_{p^m} using arbitrary irreducible polynomials f_n, f_m ;
- Factor f_m in \mathbb{F}_{p^n} , construct the embedding $\mathbb{F}_{p^m} \subset \mathbb{F}_{p^n}$ by linear algebra.

Conway polynomials (Parker 1990)

Fix the ordering $0 < 1 < \cdots < p-1$ and extend it lexicographically to $\mathbb{F}_p[-X]$. For any n, define the Conway polynomial $C_n \in \mathbb{F}_p[-X]$ as

Primitivity: C_n is primitive, i.e. any of its roots in $\overline{\mathbb{F}}_p$ generates $\mathbb{F}_{p^n}^*$;

Compatibility: For each m|n and each root α of C_n , $\alpha^{(p^n-1)/(p^m-1)}$ is a root of C_m ;

Uniqueness: C_n is the least antimonic polynomial satisfying these conditions.

Note: Sage drops uniqueness for large n.

Conway's On₂

- In On Numbers and Games Conway defines surreal numbers, a very large really closed Field containing every ordinal.
- One chapter of the book is devoted to On₂ the characteristic 2 analog of surreal numbers.
- On₂ can be seen as the simplest way of imposing a field structure on ordinals. Starting from 0 and going upwards:
 - ▶ If the ordinal α is not a group, then $\alpha = \beta + \gamma$, where β and γ are the smallest ordinals not having a sum yet;
 - If α is not a ring, $\alpha = \beta \gamma$, where . . . ;
 - If α is not a field, $\alpha = \beta^{-1}$, where ...;
 - ▶ If α is not algebraically closed, α is a root of the lexicographically smallest polynomial not having a root in α ;
 - ▶ If α is algebraically closed, then it is transcendental.
- This construction identifies ω with $\varinjlim \mathbb{F}_{2^{2^n}}$ and $\omega^{\omega^{\omega}}$ with $\overline{\mathbb{F}}_2$.
- The polynomials defining the successive algebraic extensions have nothing to do with Conway polynomials.

Cantor's construction of $\varinjlim \mathbb{F}_{p^{p^n}}$

Theorem (Cantor 1989)

Let $x_1, x_2 \dots$ be a sequence of elements in $\overline{\mathbb{F}}_p$ such that

$$x_n^p - x_n = (x_1 x_2 \cdots x_{n-1})^{p-1} + [\text{terms of lower degree}],$$

then $\mathbb{F}_p[x_n] = \mathbb{F}_{p^{p^n}}$.

- Conway's construction takes $x_n^2 x_n = x_1 \cdots x_{n-1}$, I believe;
- Cantor suggests taking $x_n^p x_n = x_{n-1}^{2p-1}$, because there are nice formulas to compute the minimal polynomial of x_n over \mathbb{F}_p .
- Cantor gives no efficient way of multiplying.

Our modest contribution (De Feo and Schost 2009)

- Simplified Cantor's proof;
- Generalized to construct $\lim_{q \to \infty} \mathbb{F}_{q^{p^n}}$ for any $q = p^m$;
- Given a fast multiplication algorithm and other gimmicks.

Change of representation

Triangular ideals

Cantor's construction may as well be written in terms of reduction modulo a triangular ideal:

$$\mathbb{F}_{p^{p^n}} \cong \mathbb{F}_p[X_1, \dots, X_n]/I_n$$
 where
$$I_n = \begin{cases} X_n^p - X_n - X_{n-1}^{2p-1} \\ & \vdots \\ & X_2^p - X_2 - X_1^{2p-1} \\ & X_1^p - X_1 - 1 \end{cases}$$

This representation is very handy to express the embeddings.

Univariate representation

By Cantor's theorem $\mathbb{F}_p[x_n] = \mathbb{F}_{p^{p^n}}$, thus there is an univariate polynomial Q_n of degree p^n such that

$$\mathbb{F}_{p^{p^n}} \cong \mathbb{F}_p[X_n]/Q_n(X_n).$$

This representation is good for multiplication.

Goal

Express a zero-dimensional ideal in the form

$$f(T) = 0,$$
 $X_1 = \frac{g_1(T)}{g(T)},$ \cdots $X_n = \frac{g_n(T)}{g(T)}$

$$\begin{cases} Y + aX^2 + b \\ X^2 + cXY + dY^2 + eX + fY + g \end{cases}$$

Goal

Express a zero-dimensional ideal in the form

$$f(T) = 0,$$
 $X_1 = \frac{g_1(T)}{g(T)},$ \cdots $X_n = \frac{g_n(T)}{g(T)}$

*p*₁ ●

 p_2

 $p_4 \\ p_3$

A zero-dimensional ideal is just a set of points in the algebraic closure

$$\begin{cases} Y + aX^2 + b \\ X^2 + cXY + dY^2 + eX + fY + g \end{cases}$$

Goal

Express a zero-dimensional ideal in the form

$$f(T) = 0,$$
 $X_1 = \frac{g_1(T)}{g(T)},$ \cdots $X_n = \frac{g_n(T)}{g(T)}$

Project on some separating form, compute the minimal polynomial

$$\left\{egin{array}{l} \prod_{i=1}^4 (X-x_i) \end{array}
ight.$$

Goal

Express a zero-dimensional ideal in the form

$$f(T) = 0,$$
 $X_1 = \frac{g_1(T)}{g(T)},$ \cdots $X_n = \frac{g_n(T)}{g(T)}$

Interpolate

$$\left\{egin{array}{l} \prod_{i=1}^4 (X-x_i) \ & \ Y-\sum_{i=1}^4 y_i \prod_{j
eq i} rac{X-x_i}{x_i-x_j} \end{array}
ight.$$

Goal

Express a zero-dimensional ideal in the form

$$f(T) = 0,$$
 $X_1 = \frac{g_1(T)}{g(T)},$ \cdots $X_n = \frac{g_n(T)}{g(T)}$

Problem: the points may not be rational

Goal

Express a zero-dimensional ideal in the form

$$f(T) = 0,$$
 $X_1 = \frac{g_1(T)}{g(T)},$ \cdots $X_n = \frac{g_n(T)}{g(T)}$

By the CRT

$$\bar{\mathbb{K}}[X,\,Y]/I\cong \bigoplus_i \bar{\mathbb{K}}[X,\,Y]/\mathfrak{m}_i$$

where \mathfrak{m}_i is the maximal ideal at p_i .

Goal

Express a zero-dimensional ideal in the form

$$f(T) = 0,$$
 $X_1 = \frac{g_1(T)}{g(T)},$ \cdots $X_n = \frac{g_n(T)}{g(T)}$

•

•

Reduction modulo \mathfrak{m}_i is equivalent to evaluating polynomials in $\bar{\mathbb{K}}[X, Y]$ at p_i :

$$\zeta_i: \bar{\mathbb{K}}[X,\,Y]/I o \bar{\mathbb{K}}[X,\,Y]/\mathfrak{m}_i \ a\mapsto a(p_i).$$

The ζ_i are linear forms on $\bar{\mathbb{K}}[X, Y]$

Goal

Express a zero-dimensional ideal in the form

$$f(T) = 0,$$
 $X_1 = \frac{g_1(T)}{g(T)},$ \cdots $X_n = \frac{g_n(T)}{g(T)}$

The form

$$\mathrm{Tr} = \sum_i \zeta_i$$

is also linear on $\bar{\mathbb{K}}[X,Y]$, but its restriction to $\mathbb{K}[X,Y]$ is \mathbb{K} -linear.

Goal

Express a zero-dimensional ideal in the form

$$f(T) = 0,$$
 $X_1 = \frac{g_1(T)}{g(T)},$ \cdots $X_n = \frac{g_n(T)}{g(T)}$

We have the formula on formal power series

$$\displaystyle \exp \int \sum_{j>0} rac{{
m Tr}(X^j)}{T^{j+1}} = \prod_{i=1}^4 (\, T-x_i)$$

Analogous to Newton formulas.

Goal

Express a zero-dimensional ideal in the form

$$f(T) = 0,$$
 $X_1 = \frac{g_1(T)}{g(T)},$ \cdots $X_n = \frac{g_n(T)}{g(T)}$

And analogously to Lagrange interpolation, we have

$$\sum_{j>0} \frac{\text{Tr}(YX^{j})}{T^{j+1}} = \sum_{i=1}^{4} \frac{y_{i}}{T - x_{i}}.$$

Computing many traces at once

We are left with the problem of efficiently computing

$$\sum_{j>0} \frac{\operatorname{Tr}(X^j)}{T^{j+1}}$$

Power projection (Shoup 1999; Bostan, Salvy, and Schost 2003)

Given a linear form $\ell \in (\mathbb{K}[X,Y]/I)^*$, compute $\ell(X^j)$ for many j's

$$\operatorname{proj}: (\mathbb{K}[X, Y]/I)^* \to \mathbb{K}[[1/T]]$$

$$\ell \mapsto \sum_{j>0} \frac{\ell(X^j)}{T^j}$$

By taking duals:

$$ext{proj}^*: \mathbb{K}[T] o \mathbb{K}[X, Y]/I$$
 $f \mapsto f \mod I$

and this latter problem is easy in our case, since *I* has a nice form.

Algebraic complexity and transposed circuits

Transposition principle (De Feo 2010; Fiduccia 1973)

From any family $(C_n)_{n\in\mathbb{N}}$ of linear arithmetic circuits with sizes $|C_n|$, one can deduce a family $(C_n^*)_{n\in\mathbb{N}}$ computing the dual problems with the sizes $|C_n^*| = |C_n|$.

- This principle carries over to straight-line programs, preserving space and time algebraic complexity.
- It carries over to more general programs, preserving time complexity and with precise bounds on space complexity.
- It can be fully automatized (De Feo and Schost 2010).
- In particular, transposing the algorithm for reduction from univariate to multivariate representation gives an algorithm for power projection with the same complexity.

Beyond multiplication in $\bar{\mathbb{F}}_n$

Summarizing, given inputs of size $p^n \log p$

Multiplication:	$O(p^{n+1})$	
-----------------	--------------	--

Membership: compute
$$h(x)$$
; $\tilde{O}(p^{n+1})$

Canonical form: of size
$$O(h(x) \log p)$$
; $\tilde{O}(p^{n+1})$

Traces:
$$\operatorname{Tr}_{\mathbb{F}_{p^{p^n}}/\mathbb{F}_{p^{p^m}}}(x);$$
 $\tilde{O}(p^{n+1})$

Minimal polynomials: over
$$\mathbb{F}_p$$
, over $\mathbb{F}_{p^p}^n$; $\tilde{O}(p^{n+1})$

Frobenius: compute
$$x^{p^{p^m}}$$
 for $m < n$; $\tilde{O}(p^{n+2})$

Implementations

- FAAST (Fast Arithmetic in Artin-Schreier towers): C++ with NTL implementation (~ 6000 lines) released under GPL: http://www.lix.polytechnique.fr/~defeo/FAAST/
- C++ benchmarks of Couveignes' algorithm, built on top of FAAST.
- Including FAAST and algorithms for isogenies in Sage.
- Writing a compiler for automatic transposition http://transalpyne.gforge.inria.fr/

Implementations

Figure: Build time (left) and isomorphism time (right) with respect to tower height. Plot is in logarithmic scale.

Fast Artin-Schreier vs Normal bases

Fast normal bases for the extension $\mathbb{F}_{q^m}/\mathbb{F}_q$

Normal bases allow fast computation of the Frobenius morphism. Fast multiplication in such bases is an active research field.

Low complexity normal bases

 $O(m^2)$

• Gauss periods (Gao, Gathen, Panario, and Shoup 2000)

 $\tilde{O}(m)$

• Elliptic bases (Couveignes and Lercier 2009)

 $\tilde{O}(m)$

Each of the above has limitations and requires a search for feasible parameters (q, m).

Fast Frobenius using Artin-Schreier towers

Restricted to $m = p^k$, but:

- Efficiency: quasi-optimal and fast in practice;
- Instantaneous: very limited precomputations, no search;
- Scalability: infinite family of parameters (q, p^k) for any k;
- Especially interesting for coding theory: $(2, 2^k)$.

Gabidulin codes

Gabidulin codes

Let $[i] \equiv q^i$, a linearized polynomial is one of the form

$$L_f = f_0 X + f_1 X^{[1]} + \dots + f_{k-1} X^{[k-1]}.$$

An (n, k)-Gabidulin code is

$$C = \{(L_f(lpha_0), \dots, L_f(lpha_{n-1}) \mid \deg_{\sigma} L_f < k\} \subset F_{q^m}^n.$$

Gabidulin codes are MRD. They are the rank-distance equivalent of Reed-Solomon codes.

18 / 21

Decoding of Gabidulin codes

Symbolic product

Given two linearized polynomials L_f , L_g , their symbolic product (or skew product) is

$$L_f \otimes L_g = L_f(L_g)$$

When L_f , L_g have coefficients in \mathbb{F}_q , this is equivalent to the ordinary product.

Wachter, Afanassiev, and Sidorenko 2011

- Gabidulin codes can be decoding using the linearized equivalent of the extended Euclidean algorithm;
- The complexity of the algorithm is $O(S(m) \log m)$, where S(m) is the cost of performing symbolic product modulo $X^{[m]} X$.
- Using low-complexity normal bases, $S(m) = O(m^3)$.

Fast symbolic product using low-complexity normal bases

q-transforms

• Let β be \mathbb{F}_q -normal. The q-transform of L_f w.r.t. β is

$$\left(L_f(\pmb{\beta}^{[0]}),\ldots,L_f(\pmb{\beta}^{[m-1]})\right);$$

• If $\tilde{\beta}$ is the dual normal element to β , the q-transform w.r.t. $\tilde{\beta}$ is the inverse q-transform w.r.t. β .

Evaluation-Interpolation strategy

•	Compute ($(G_0,\ldots,$	G_{m-1}	, the	q-transf	orm of	L_g ;
---	-----------	----------------	-----------	-------	----------	--------	---------

$$O(m^3)$$

• Compute
$$H = (L_f(G_0), \ldots, L_f(G_{m-1}));$$

$$O(m^3)$$

• Compute the inverse *q*-transform of *H*.

 $O(m^3)$

Faster symbolic product using Artin-Schreier towers

Key observations

- The q-transform is an ordinary modular product of polynomials;
- An \mathbb{F}_q -normal element is available for free in our Artin-Schreier construction;
- Computing the whole normal basis only costs $\tilde{O}(mM(m))$.

Evaluation-Interpolation strategy

• Compute (G_0, \ldots, G_{m-1}) , the q -transform of L_g ;	$O(M(m^2))$
--	-------------

• Compute
$$H = (L_f(G_0), \ldots, L_f(G_{m-1}));$$
 $O(m^{\omega})$

• Compute the inverse *q*-transform of H. $O(M(m^2))$

Remarks

- Not practical, because m^{ω} is in practice very close to m^3 ;
- Similar complexities can be obtained using elliptic bases (and probably Gauss periods too).