\Box

BARANGAY INFECTIOUS DISEASES INFORMATION MANAGEMENT WITH

GIS FOR MAPPING AND SIR MODEL FOR PREDICTION

An Undergraduate Thesis

Presented to the Faculty of the

College of Information and Communications Technology

West Visayas State University

La Paz, Iloilo City

In Partial Fulfillment
of the Requirements for the Degree
Information Systems

bу

Luvin B. Lara

Leslie Ann Grapes S. Novales

Emillen Joy M. Pascual

Mark Levi L. Sequio

Approval Sheet

BARANGAY INFECTIOUS DISEASES INFORMATION MANAGEMENT WITH GIS FOR MAPPING AND SIR MODEL FOR PREDICTION

An Undergraduate Thesis for the Degree
Information Systems

bу

Luvin B. Lara

Leslie Ann Grapes S. Novales

Emillen Joy M. Pascual

Mark Levi L. Sequio

Approved:

 \Box

Ma. Beth S. Concepcion, DIT Adviser

Regin A. Cabacas, D. Eng. Ma. Beth S. Concepcion, DIT Chair, Information Systems Dean

June 2023

Acknowledgment

Г

The researchers would like to take this opportunity to express their deepest gratitude to the following individuals, who in one way or another have made this work becomes a reality:

First and foremost, above all, the loving God, for the guidance, blessings, strength, faith, love, support, and courage bestowed upon the researchers to pursue the study despite adversities.

For Dean and their research adviser, Dr. Ma. Beth S. Concepcion, for the helpful suggestions, vision, sincerity, and motivation that have inspired them to make their research study to a better degree.

To all the Barangay Health Workers of Balabag, Santa Barbara, Iloilo who have been so generous and altruistic in helping them, making the historical infectious diseases data collection accessible.

To the panelists, Regin A. Cabacas, Shem Durst Elijah Sandig, Nikie Jo E. Deocampo, and Erwin D. Osorio for giving them significant and insightful feedback that helps them enhance their research study and turning it into reality.

To Sir Alexander J. Balsomo, who have been so openhanded in sharing his expertise and discerning recommendations upon validating the SIR model which the researchers used for higher level of data analysis generated in the system.

Г

Finally, the researchers would like to express their deepest appreciation to their families and friends for their unwavering support. The researchers would not have completed this paper without the assistance and guidance of all of the individuals and organizations indicated above, for which they express their great honor and privilege to work and study under their guidance.

From the bottom of their hearts, a heartwarming gratefulness to all of you who made and helped this research study a success.

Luvin B. Lara
Leslie Ann Grapes S. Novales
Emillen Joy M. Pascual
Mark Levi L. Sequio

June 2023

Г

Luvin B. Lara; Leslie Ann Grapes S. Novales; Emillen Joy M. Pascual; Mark Levi L. Sequio; "Barangay Infectious Diseases Information Management with GIS for Mapping and SIR Model for Prediction". Unpublished Undergraduate Thesis, Bachelor of Science in Information Systems, West Visayas State University, Iloilo City, Philippines, June 2023.

Abstract

The Disease Reporting Units in the Philippines were challenged due to the threat of rampant spread of infectious diseases over the last few years eradicating the potential of the country's objective in reversing outbreaks due to incomprehensive data management as part of the global health agenda. Accordingly, there was a need for improved infectious diseases information management that was an essential tool for data management and monitoring of affected populations in the Barangay Area. Since most of the current methods were heavily dependent on manual processes, this study aimed to develop a system that allowed collecting and managing of data, mapping of infectious diseases cases using geographic information system showing the households where the occurrences happened, allowed data visualization using heat maps showing the intensity of the infectious diseases and

Г

predicting the spread of the three (3) infectious diseases specifically in Covid-19, Dengue, and Tuberculosis by using SIR model. The main objective of this study was to support the Barangay Health Workers on their current manual processes of managing infectious diseases data which our system evaluation suggests that the study achieved an overall "Very Good" rating based on the ISO 25010 standard garnering an overall mean of 4.535. Since the SIR model was only applicable to broad geographic scales like countries and regions, it cannot effectively help the system in its process to anticipate the spread of three infectious diseases (Covid-19, Dengue, and Tuberculosis). On the other hand, a barangay's small scale indicates that it cannot support the demands to consistently provide the needs of the model.

Table of Contents

 Γ

	Page
Title Page	i
Approval Sheet	ii
Acknowledgment	iii
Abstract	V
Table of Contents	vii
List of Figures	Х
List of Tables	xii
List of Appendices	xiii
Chapter	
1 Introduction of the Study	1
Background of the Study	1
and Theoretical Framework	
Objectives of the Study	13
Significance of the Study	14
Definition of Terms	17
Delimitation of the Study	22
2 Review of Related Studies	24
Review of Related and Existing Studies	24
3 Research Design and Methodology	31
Description of the Proposed Study	31

vii

Table of Contents

 Γ

		Page
	Methods and Proposed Enhancements	32
	Components and Design	38
	System Architecture	38
	Database Design	40
	Procedural Design	41
	Process Design	54
	Methodology	65
	System Development Life Cycle	66
4	Results and Discussion	68
	Implementation	68
	Software Specifications	69
	Hardware Specifications	70
	User Specifications	70
	Inputs and Outputs	70
	Results Interpretation and Analysis	79
	System Evaluation Results	83
5	Summary, Conclusions, and Recommendations	93
	Summary of the Proposed Study Design	93
	and Implementation	
	Summary of Findings	95

viii

Table of Contents

 Γ

	Page
Conclusions	97
Recommendations	99
References	101

List of Figures

 Γ

Figure	Page
1 Conceptual Framework of the Study	11
2 SIR Model for Spread of Infectious Diseases	34
3 System Architecture of the Proposed System	38
4 Entity Relationship Diagram	40
5 Procedural Design of the Proposed System	41
6 UML Class Diagram of the Proposed System	53
7 Context Diagram of the Proposed System	54
8 Level O Diagram of the Proposed System	55
9 Level 1 DFD (Log-in)	56
10 Level 1 DFD (Input Households)	57
11 Level 1 DFD (Input Population)	58
12 Level 1 DFD (Input Cases)	59
13 Level 1 DFD (Search)	60
14 Level 1 DFD (Manage Cases)	61
15 Level 1 DFD (Generate Infectious Diseases	62
Prediction Using SIR Model)	
16 Level 1 DFD (Generate Infectious Diseases	63
Heatmap)	
17 Level 1 DFD (Generate Infectious Diseases	64
Dashboard)	

List of Figures

Figure	
19 User and Admin Log-in Interface	71
20 User Dashboard Interface	72
21 User Households Interface	73
22 User Population Interface	74
23 User Cases Interface	75
24 User Statistics interface	76
25 User Mapping Interface	77

List of Tables

 Γ

Table		Page
1	ISO 25010 - Functional Stability	84
2	ISO 25010 - Reliability	85
3	ISO 25010 - Portability	86
4	ISO 25010 - Usability	87
5	ISO 25010 - Performance Efficiency	88
6	ISO 25010 - Security	89
7	ISO 25010 - Compatibility	90
8	ISO 25010 - Maintainability	91
9	Summary of ISO 25010	92

List of Appendices

Appendix		Page
А	Letter to the Adviser	115
В	Request Letter for Interview	116
С	Request Letter for Historical Data	117
D	Request Letter for Data Gathering	118
E	Letter of Request to the Epidemiologist	119
F	Endorsement Letter to the Technical Editor	120
G	Endorsement Letter to the English Editor	121
Н	Endorsement Letter to the Thesis Format Editor	122
I	Gantt Chart	123
J	Entity Relationship Diagram	126
K	Data Dictionary	127
L	Sample Program Codes	129
M	Software Quality Evaluation	132
N	Disclaimer	138