Tarea 2 - Solución

Profesor: Luis Jesús Turcio Cuevas Ayudantes: Jesús Angel Cabrera Labastida, Hugo Víctor García Martínez

Ej 1. Muestra que el clasificador de subobjetos Ω es coseparador, es decir, dadas f, g: $A \to B$ si para cualquier $\phi \colon B \to \Omega$ el diagrama

$$A \xrightarrow{f} B \xrightarrow{\varphi} \Omega \tag{1}$$

conmuta, entonces f = g.

Demostración. Primero veamos que el enunciado es cierto cuando A = 1. Esto es, si suponemos que $b_1, b_2: 1 \to B$ son tales que

$$1 \xrightarrow{b_1} B \xrightarrow{\varphi} \Omega \tag{2}$$

conmuta, entonces veamos que $b_1 = b_2$.

Como toda flecha que sale del terminal es mono y Ω es clasificador de subobjetos, entonces b_1 tiene una característica, digamos $\phi \colon B \to \Omega$. Por la hipótesis en (2) y la propiedad universal del producto fibrado tenemos que el siguiente diagrama conmuta:

$$\begin{array}{ccc}
1 & \xrightarrow{id} & 1 \\
b_2 & \downarrow b_1 & \downarrow \nu \\
A & \xrightarrow{\varphi} & \Omega.
\end{array}$$

Como la única flecha del terminal a sí mismo es la identidad, entonces $b_1 = b_2$.

Ahora sea A arbitrario y supongamos que f, g: $A \to B$ son tales que para cualquier $\phi \colon B \to \Omega$ el diagrama (1) conmuta. Para ver que f = g usaremos que 1 es separador, es decir, veremos que para cualquier $\alpha \colon 1 \to A$ se satisface $f\alpha = g\alpha$. Por la hipótesis sobre f y g tenemos que el siguiente diagrama conmuta:

$$1 \xrightarrow{fa} B \xrightarrow{\varphi} \Omega.$$

Así, por lo que hicimos antes podemos concluir que fa = ga. Lo cual prueba que f = g.

Ej 2. Sean ev: $A \times \Omega^A \to \Omega$, $x: X \to A$ y m: $S \mapsto A$. Además, considera la característica de m y su nombre en la exponencial, $\lceil \chi_m \rceil : 1 \to \Omega^A$. Muestra que $x \in_A$ m si y sólo si ev $(x \times \lceil \chi_m \rceil) = \nu_{X \times 1}$.

Demostración. Primero consideramos el siguiente diagrama

$$\begin{array}{ccccc}
A \times \Omega^{A} & \xrightarrow{ev} & \Omega \\
\downarrow id \times \lceil \chi_{m} \rceil & 1 & \chi_{m} & \uparrow \\
A \times 1 & \xrightarrow{p_{A}} & A & \downarrow \nu \\
\downarrow x \times id & 2 & \chi & \downarrow \chi \\
X \times 1 & \xrightarrow{p_{X}} & \chi & \downarrow \chi
\end{array} \tag{3}$$

La parte 1 conmuta por la definición de $\lceil \chi_m \rceil$ y la parte 2 por definición de la flecha $x \times id$. Si el diagrama 3 conmuta, entonces el diagrama exterior es conmutativo. Viceversa, si el diagrama exterior es conmutativo, entonces el diagrama 3 conmuta. En efecto, para ver que 3 conmuta es suficiente ver que conmuta desde $X \times 1$, ya que p_X es iso. Si seguimos el diagrama podemos obtener la conmutatividad que queremos. Las ecuaciones que lo muestran son:

$$v!x p_X = ev(x \times \lceil \chi_m \rceil)(x \times id)$$
 diagrama exterior
$$= \chi_m p_A(x \times id)$$
 parte 1
$$= \chi_m x p_X$$
 parte 2.

Con esto hemos concluido que 3 conmuta si y sólo si el exterior conmuta.

Ahora, si suponemos que $x \in_A m$, entonces existe $h: X \to S$ que hace conmutar al siguiente diagrama

$$\begin{array}{ccc}
X & \xrightarrow{h} & & \\
& S & \xrightarrow{!_S} & 1 \\
& \downarrow \nu & & \downarrow \nu \\
& A & \xrightarrow{\chi_m} & \Omega.
\end{array}$$
(4)

De esto tenemos que la parte 3 de diagrama (3) conmuta. Así, el exterior conmuta. Por lo tanto $ev(x \times \lceil \chi_m \rceil) = v_{X \times 1}$.

Por el lado contrario, si ev $(x \times \lceil \chi_m \rceil) = \nu_{X \times 1}$, entonces el exterior del diagrama (3) conmuta. Así, la parte 3 del mismo diagrama es conmutativa. Esta parte es el exterior del diagrama (4). Por lo que podemos usar la propiedad universal del producto fibrado para obtener la existencia de h: $X \to S$ que hace conmutar el diagrama (4). Por lo tanto, $x \in_A m$.

Ej 3. Sean (P,<) y (Q, \Box) conjuntos totalmente ordenados. Sea $X:=P\times Q$ y defínase la relación R en X como sigue:

$$(p,q) R(x,y)$$
 si y sólo si $((p < x) \lor (p = x \land q \sqsubseteq y))$

Demuestre que (X, R) es un conjunto totalmente ordenado.

Demostración. Se habrá de demostrar que R es antireflexiva, transitiva y que cualesquiera dos elementos de $P \times Q$ son R-comparables.

Para la primera parte, sea $(x,y) \in P \times Q$ cualquiera. Como < es antireflexiva (por ser orden parcial), entonces $x \not< x$; y similarmente, $y \not\sqsubset y$. De esto último, la proposición " $x = x \land y \sqsubseteq y$ " es

falsa. Por lo tanto, " $x < x \lor (x = x \land y \sqsubseteq y)$ " es falsa y con ello $(x,y) \not k (x,y)$, mostrando que R es antireflexiva

Ahora, supóngase que $(x,y), (a,b), (u,v) \in P \times Q$ satisfacen (x,y) R (a,b) y (a,b) R (u,v). Entonces las proposiciones " $x < a \lor (x = a \land y \sqsubseteq b)$ " y " $a < u \lor (a = u \land b \sqsubseteq v)$ " son verdaderas. Pruébese la proposición " $x < u \lor (x = u \land y \sqsubseteq v)$ " mediante los casos:

$$\text{ii)} \ \ x < u \land a < u. \\ \\ \text{iii)} \ \ (x = a \land y \sqsubset b) \land a < u.$$

II)
$$x < u \land (a = u \land b \sqsubset v)$$
. IV) $(x = a \land y \sqsubset b) \land (a = u \land b \sqsubset v)$.

En los casos (i)-(iii) se obtiene de la transitividad de < que x < u y con ello que (x,y) R (u,v). Por otro lado; si se cumple (iv), entonces x = u y de la transitividad de \sqsubseteq se sigue que $y \sqsubseteq v$, probando también que (x,y) R (u,v). En cualquier caso, se verifica que R es transitiva, y con ello, orden parcial en $P \times Q$.

Finalmente, sean (x,y), $(a,b) \in P \times Q$ distintos. Entonces por tricotomía del orden < se tiene que x < a, a < x o x = a. Si ocurren los dos primeros casos, entonces por definición de R, se obtiene (x,y) R (a,b) o (a,b) R (x,y). En el caso restante, x = a y aplicando la tricotomía de \Box se da y = b, $y \Box b$ o $b \Box y$. Nótese que el primer caso no ocurre pues por hipótesis $(x,y) \neq (a,b)$. Así que $y \Box b$ o $b \Box y$ como x = a, se obtiene de la definición de R que $y \Box b$ o $b \Box y$. Por lo tanto R es un orden parcial tricotómico, esto es, un orden total.

- Ej 4. Sean (P, <) y (Q, \Box) conjuntos parcialmente ordenados y $f : P \to Q$ tal que para cualesquiera $x, y \in P$: si x < y, entonces $f(x) \Box f(y)$ (estas funciones se llaman "morfismos de orden"). Demuestra; o refuta mediante un contraejemplo, las siguientes afirmaciones.
 - I) Si $p \in P$ es el mínimo de (P, <), entonces f(p) es el mínimo de (Q, \sqsubset) .
 - II) Si $p \in P$ es <-minimal de P, entonces f(p) es \sqsubseteq -minimal de Q.
 - III) Si f es biyectiva, entonces f^{-1} es un morfismo de orden.
 - (P, <) es un conjunto totalmente ordenado, entonces f es inyectiva.

Solución. (i) Es falso en general. Considere los conjuntos parcialmente ordenados (P,<) y (Q, \square) , con $P:=\{0\}, <:=\varnothing$, $Q:=\{0,1\}$ y $\square:=\{(0,1)\}$. Sea $f:P\to Q$ dada por f(0)=1 y nótese que vacuamente f es morfismo de orden. Además 0 es el es el mínimo de (P,<) pero f(0)=1 no es el mínimo de (Q,\square) . En efecto, nótese que existe un elemento $x_0:=0\in Q$ de modo que $1\not\sqsubset 0$. De lo contrario, la transitividad de \square obligaría a que $1\,\square$ 1, y esto contradiría su antireflexividad.

- (ii) Es también falsa en general. Basta considerar el ejemplo anterior, nótese que 0 es <-minimal de P (todo mínimo es minimal). Sin embargo f(0) = 1 no es \square -minimal de Q, pues el elemento $0 \in Q$ cumple $0 \subseteq 1 = f(0)$.
- (iii) De nuevo, esta afirmacion es falsa en general. Considere el conjunto $X := \{0,1,2\}$ y las relaciones binarias $\langle := \{(0,1),(0,2)\} \ y \ \sqsubseteq := \{(0,1),(1,2),(0,2)\}$, es calro que ambos son órdenes parciales en X. Sea $f: X \to X$ la identidad en X y nótese que f es morfismo de orden. Lo anterior, pues 0 < 1, $f(0) = 0 \ \sqsubseteq 1 = f(1) \ y \ 0 < 2$, $f(0) = 0 \ \sqsubseteq 2 = f(2)$. Sin embargo, f^{-1} no es morfismo de orden, pues f^{-1} es la identidad en X y $f \sqsubseteq 2$ pero $f^{-1}(1) = 1 \not< 2 = f^{-1}(2)$.
- (iv) Esta afirmación es verdadera. En efecto, si f no es inyectiva, entonces existen $x, y \in P$ distintos y tales que f(x) = f(y). De lo anterior, como < es orden total, se tiene que x < y o y < x. Sin

embargo, como f es morfismo de orden, se obtiene que $f(x) \sqsubset f(y)$ o $f(y) \sqsubset f(x)$, lo cual contradice la antireflexividad del orden \sqsubset . Por lo tanto, f es inyectiva.

Ej 5. Sea P un conjunto. Se dice que un orden parcial (antirreflexivo) R en P es fuertemente inductivo si y sólo si se satisface:

$$\forall A\subseteq P\left(\forall\alpha\in P\left(R^{-1}[\{\alpha\}]\subseteq A\rightarrow\alpha\in A\right)\rightarrow P=A\right)$$

Demuestra que para todo orden parcial (antirreflexivo) R en P son equivalentes:

- 1) R es total y fuertemente inductivo.
- II) R es buen orden.

Demostración. (i) \rightarrow (ii). Por contradiccion, supóngase que R es total, fuertemente inductivo y que no es buen orden, es decir, existe un subconjunto $A \subseteq P$ no vacío sin R-mínimo. Esto último significa que la proposición " $\forall p \in A \ \exists \alpha \in A \ \neg (p \ R \ \alpha \lor p = \alpha)$ " es verdadera, y como R es tricotómica, se tiene que entonces " $\forall p \in A \ \exists \alpha \in A \ (\alpha \ R \ p)$ " se satisface. Ahora, se afirma que se cumple:

$$\forall \alpha \in P\left(R^{-1}[\{\alpha\}] \subseteq P \setminus A \to \alpha \in P \setminus A\right)$$

Por contrapuesta, si $\alpha \in P$ y $\alpha \in A$, a consecuencia de que A no tiene R-mínimo, se garantiza la existencia de cierto $b \in A$ con α R b, probando que $R^{-1}[\{\alpha\}] \nsubseteq P \setminus A$. Por lo tanto la proposicion " $\forall \alpha \in P (R^{-1}[\{\alpha\}] \subseteq P \setminus A \to \alpha \in P \setminus A)$ " es verdadera y como R es fuertemente inductivo, se tiene que $P = P \setminus A$. Esto contradice la hipótesis de que A no es vacío. Por lo tanto R es buen orden.

(ii) \rightarrow (i). Supóngase que R es buen orden, claramente R es orden total, pues si $x,y \in P$ son cualesquiera, entonces existe el mínimo de $\{x,y\}$. Veamos que R es fuertemente inductivo. Sea $A \subseteq P$ cualquiera y supóngase que " $\forall \alpha \in P \ (R^{-1}[\{\alpha\}] \subseteq A \rightarrow \alpha \in A)$ " es verdadera.

Si $A \neq P$, entonces $P \setminus A$ es no vacío y por lo tanto tiene R-mínimo; a saber, cierto $m \in P \setminus A$. Por contrapuesta en " $\forall \alpha \in P \ (R^{-1}[\{\alpha\}] \subseteq A \to \alpha \in A)$ " se tiene que $R^{-1}[\{m\}] \not\subseteq A$, lo que significa que existe cierto $\alpha \in P$ tal que m R α y $\alpha \in P \setminus A$. Lo último contradice que m sea el mínimo de $P \setminus A$. Por lo tanto P = A y R es fuertemente inductivo.

Ej 6 Sea (P, <) un conjunto parcialmente ordenado con $P \neq \emptyset$. Supóngase que f y g son funciones con dominio P de modo que para cada $p \in P$ el conjunto g(p) es orden parcial en f(p) y que $f(p) \neq \emptyset$. En el conjunto $X := \bigcup \{f(p) \times \{p\} \mid p \in P\}$ defínase \square como la relacion:

$$(x,p) \sqsubset (y,q)$$
 si y sólo si $(p < q \lor (p = q \land x g(p) y))$

- I) Demuestre que \square es una relación de orden parcial en X.
- II) Demuestre que \sqsubseteq es un orden total en X y sólo si (P, <) es un conjunto totalmente ordenado y para cada $p \in P$, q(p) es orden total en f(p).

Demostración. (i) Se mostrará que \square es antireflexiva y transitiva. Para la primera parte, si $(x,p) \in X$, entonces $p \not< p$ dado que < es antireflexiva. Por otra parte, g(p) es un órden parcial en f(p) y $x \in f(p)$, por lo que x g(p) x. Por lo tanto, la proposición " $p " es falsa y con ello <math>(x,p) \not\sqsubset (x,p)$. Para la transitividad, sean $(x,p), (y,q), (u,v) \in X$ tales que $(x,p) \sqsubseteq (y,q) \ y$ $(y,q) \sqsubseteq (u,v)$. Entonces las proposiciones " $p < q \lor (p = q \land x \ g(p) \ y)$ " y " $q < v \lor (q = v \land y \ g(q) \ u)$ " son verdaderas. Se probará la proposición " $p < v \lor (p = v \land x \ g(p) \ u)$ " mediante los casos:

I)
$$p < q \land q < v$$
.

III)
$$(p = q \land x \ q(p) \ y) \land q < v$$
.

II)
$$p < q \land (q = v \land y \ g(q) \ u)$$
.

iv)
$$(p = q \land x \ g(p) \ y) \land (q = v \land y \ g(q) \ u)$$
.

En los casos (i)-(iii) se obtiene de la transitividad de < que p < v y con ello que $(x,p) \sqsubset (u,v)$. Por otro lado; si se cumple (iv), entonces p = v y además x g(p) u (por la transitividad del órden parcial g(p) = g(q) = g(u)). Por lo tanto, se obtiene que $(x,p) \sqsubset (u,v)$. En cualquier caso, se verifica que \sqsubset es transitiva, y con ello, orden parcial en X.

(ii) (\rightarrow) Supóngase que \sqsubseteq es orden total. En primer lugar, si $p,q\in P$ son cualesquiera entonces existen $x_0\in f(p)$ y $y_0\in f(q)$ pues tales conjuntos son no vacíos. Por lo tanto, como \sqsubseteq es relación tricotómica, se tiene que $(x_0,p)\sqsubseteq (y_0,q), (y_0,p)\sqsubseteq (x_0,q)$ o $(x_0,p)=(y_0,q)$. Pero por definición de \sqsubseteq se tiene que entonces que p< q, q< p o p=q. Por lo tanto, P es tricotómica.

Ahora, sea $p \in P$ cualquier elemento. Si $x, y \in f(p)$ son cualesquiera, entonces por ser \sqsubseteq tricotómico, se tiene que x = y, $x \sqsubseteq y$ o $y \sqsubseteq x$. Dada la definicion de \sqsubseteq resulta que x = y, x g(p) y o y g(p) x. En cualquier caso, se concluye que g(p) es un orden total en f(p). Por lo tanto, g(p) es un orden total en f(p) para cada $p \in P$.

(\leftarrow) Supóngase que < es orden total y que para cada $p \in P$, g(p) es un orden total en f(p). Ahora, supóngase que $(x,p), (y,q) \in X$ son distintos, entonces $p \neq q$ o $x \neq y$. Si $p \neq q$, entonces por ser < tricotómico, se tiene que p < q, q < p. En el primer caso, se obtiene que $(x,p) \sqsubset (y,q) y$ en el segundo caso, se obtiene que $(y,q) \sqsubset (x,p)$. Ahora, si p = q, es necesario que $x \neq y$. Por lo tanto, como g(p) = g(q) es un orden total en $f(p) = f(q) y x, y \in f(p)$, se tiene que $x \neq y$. Por lo tanto, cual muestra por definicion de $x \neq y$ que $x \neq y$ que $x \neq y$. En cualquier caso, se concluye que $x \neq y$ en tricotómico; $x \neq y$ por lo tanto, es orden total.