Linear Regression Case Study Report

Projects: Salary Prediction & Housing Price Prediction

Objective

This case study focuses on applying **Linear Regression**, one of the foundational algorithms in supervised machine learning, to solve two real-world regression problems:

- 1. **Predict the salary** of an employee based on their years of experience.
- 2. **Predict the price of a house** based on various property attributes.

The study involves:

- Performing Exploratory Data Analysis (EDA) to understand patterns and relationships.
- Building regression models.
- Interpreting results using metrics like R² score and Mean Squared Error (MSE).
- Drawing business-level insights from the outcomes.

Dataset 1: Salary Prediction Based on Experience

Dataset Information

• File: data.csv

• Records: 30

- Features:
 - YearsExperience (numeric)
 - Salary (numeric)

Exploratory Data Analysis (EDA)

1. Data Summary

data.describe()

Statistic Years Experience Salary

Count	30	30
Mean	5.313	76003.0
Std Dev	2.837	27414.4
Min	1.1	37731.0

Statistic Years Experience Salary

Max 10.5 122391.0

2. Distribution Plots

- Years of Experience:
 - Slightly right-skewed.
 - Most employees fall between 3 to 8 years of experience.
- Salary:
 - o Right-skewed distribution.
 - Salaries cluster between ₹40,000 and ₹80,000, with a few high-earners above ₹100.000.

3. Correlation Matrix

data.corr()

Feature Correlation with Salary

YearsExperience 0.978

Inference: Extremely strong positive correlation between experience and salary.

4. Boxplot Analysis

- A few salary values are outliers, but overall, no extreme anomalies.
- Data spread is moderate and interpretable.

Model Development: Simple Linear Regression

Features:

- X: Years of Experience (2D array)
- y: Salary

Model Code:

model = LinearRegression()

model.fit(X_train, y_train)

Evaluation:

• Train-Test Split: 80:20

R² Score on Test Data: 0.71

• MSE on Test Data: ~39.7 billion

Plot:

A regression line overlaid on the scatter plot of actual salaries shows the linear trend clearly.

Insights:

- As years of experience increase, salary increases linearly.
- The model explains about 71% of variance in salary for unseen data.
- The prediction is quite accurate given the small dataset size.
- Model generalizes well with a small performance drop from training to testing.

Project 2: House Price Prediction Using Multiple Features

Dataset Information

• File: housing.csv

• **Records:** 21,613

• Features: 21

o Target: price

o Predictors: sqft_living, grade, bathrooms, sqft_above, view, etc.

Exploratory Data Analysis (EDA)

1. Data Cleaning

housing.drop(['id', 'date'], axis=1, inplace=True)

• Removed uninformative columns like ID and date.

2. Descriptive Statistics

• Mean price: ₹540,000

• Range: ₹75,000 to ₹7,700,000

• Most houses fall within ₹200,000 to ₹500,000.

3. Price Distribution

- Strong right skew, indicating presence of high-value outliers.
- Not normally distributed, impacting model residuals.

4. Correlation Matrix

housing.corr()['price'].sort_values(ascending=False)

FeatureCorrelationsqft_living0.70grade0.67sqft_above0.61sqft_living150.59bathrooms0.53view0.40waterfront0.27lat0.31

Inference: Price is most strongly influenced by square footage and grading.

5. Boxplots

- Price increases with bedroom count up to a point.
- Anomalies like 33-bedroom houses suggest data entry issues or outliers.

6. Scatter Plots

- Price vs. sqft_living:
 Shows a positive, non-linear trend with sharp increase post-3000 sqft.
- Most homes lie between 1000–2000 sqft, suitable for mid-range buyers.

Model Development: Multiple Linear Regression

Features:

- X: All numeric columns excluding price
- y: Price

Model Code:

house_model = LinearRegression()

house_model.fit(X_train, y_train)

Evaluation:

• Train-Test Split: 80:20

• R² Score: 0.71

• MSE: ~39.7 billion

Visual:

- Actual vs Predicted Price plot.
- Most predictions are close to the ideal line, especially in the mid-price range.
- Higher spread in luxury house predictions.

Insights:

- The model captures 71% variance in housing prices.
- Performs well in **predicting mid-range properties**, struggles slightly with luxury houses due to outliers and sparse representation.
- Square footage, grade, and bathrooms are the most influential features.

Business Questions Answered

Salary Dataset

- 1. How many employees with >5 years experience earn >₹60,000?
 - → 16 employees
- 2. Employees earning between ₹50,000-₹80,000?
 - → 13 employees

Housing Dataset

1. Houses with a waterfront: 163

2. **Houses with 2 floors:** 8,241

3. Houses built before 1960 with waterfront: 80

4. Most expensive house with >4 bathrooms: ₹7,700,000

Conclusion

Model	R ² Score	MSE (Approx.)	Key Feature(s)	Suitability
Salary Prediction	0.71	₹39.7 Billion	YearsExperience	Excellent for HR Planning
Housing Price	0.71	₹39.7 Billion	sqft_living, grade, bathrooms	Useful for real estate pricing