Veetor; Any ordered n-typle of numbers is called an $\times = (x_1, x_2, --- x_n)$ Linear dependence of veetors

A set of γ n-vectory X_1 , X_2 , --- X_γ is said to be linearly dependent if there exist γ such that C numbers j K_1 , K_2 , --- K_γ , not all zero, such that K_1 , K_2 , K_3 , K_4 , K_5 , --- K_7 , K_7 = O where, O, denote the N vector whom components are all zero.

Finear Independent set of Vertory

A set of γ is said to be linearly independent it every relation of the type $K_1 \times 1 + K_2 \times 2 + - - + K_7 \times 7 = 0$ implies $K_1 = K_2 = K_3 = - - = K_7 = 0$