Конспект по матанализу I семестр (лекции Кислякова Сергея Витальевича)

December 11, 2019

Contents

1	Неп	Непрерывные функции		
	1.1	Определения, свойства		
	1.2	Теоремы		
		1.2.1 Теоремы Вейерштрасса		
		1.2.2 Теорема о промежуточном значении		
	1.3	Степени с рациональным показателем		
	1.4	Равномерная непрерывность		
		1.4.1 Теорема Кантора		
2	Дифференцирование			
	2.1	Определения		
	2.2	Правила дифф		
	2.3	Сходимость последовательностей		
	2.4	Первообразные		
	2.5	Интеграл		
		2.5.1 Интеграл Дарбу		
		2.5.2 Связь интеграла и производящей		
		2.5.3 Формула интегрирования по частям		
	2.6	Логарифм и экспонента		

[section]

Chapter 1

Непрерывные функции

- 1.1 Определения, свойства
- 1.2 Теоремы
- 1.2.1 Теоремы Вейерштрасса
- 1.2.2 Теорема о промежуточном значении
- 1.3 Степени с рациональным показателем
- 1.4 Равномерная непрерывность
- 1.4.1 Теорема Кантора

Chapter 2

Дифференцирование

- 2.1 Определения
- 2.2 Правила дифф
- 2.3 Сходимость последовательностей

Theorem 2.3.1. $f_n, f: A \to \mathbb{R}, f_n \to f$ Следующие условия эквивалентны:

1.
$$\exists M : |f_n(x)| \leq M \quad \forall n, x \longrightarrow |f(x)| \leq M$$

2.
$$f$$
 – ограничена: $|f(n)| \le M \forall x \to \exists N \exists A : |f_n(x)| \le A \quad \forall n \le N \forall x$

Proof. Очевидно

Theorem 2.3.2. $f_n \Rightarrow f, g_n \rightarrow g$ на A. Пусть $\exists M : \forall x \in A \forall n | f_n) x) | <math>\leq M$. Тогда $f_n g_n \Rightarrow fg$

Proof.

$$|f(x)g(x)-f_n(x)g_n(x)| \le |f(x)||g(x)-g_n(x)|+|g_n(x)||f(x)-f_n(x)| \le M|g(x)-f_n(x)|+|f(x)-f_n(x)|.$$

Theorem 2.3.3. Критерий Коши для равномерной сходимости Пусть f_n – последовательность функций на множестве A. Она равномерно сходится тогда и только тогда, когда

$$\forall \varepsilon > 0 \exists N \forall k, j > N \forall x : |f_k(x) - f_j(x)| < \varepsilon.$$

Proof. Необходимость.

Пусть $f_n \rightrightarrows f, \quad \varepsilon > 0$ найдем $N: \forall n > N \quad |f_n(x) - f(x)| < \varepsilon \forall x in A.$

$$\forall k, l > N \quad |(f_k(x) - f_l(x))| \le |f_k(x) - f(x)| + |f(x) - f_l(x)| < 2\varepsilon \forall x \in A.$$

Достаточность.

Пусть 2.3.3 выполнено. $x \in A$ - фиксировано. Тогда $\{f_n(x)\}_{n \in \mathbb{N}}$ есть последовательность Коши (см 2.3.3). Следовательно,

$$\forall x \exists \lim_{n \to \infty} f_n(x) \stackrel{def}{=} f(x).$$

 $\varepsilon>0$. Нашли $N:|f_k(x)-f_j(x)|<\varepsilon\quad \forall x\in A \forall k,j>N$ Зафиксируем k,x, перейдем к пределу по j :

$$|f_n(x) - f(x)| < \varepsilon.$$

Что верно для $\forall x \in A, \forall k > N$.

Example. Функция на \mathbb{R} , непрерывная всюду, но не дифференцируемая на в одной точке.

(Вейерштрасс):
$$f(x) = \sum_{j=1}^{\infty} b^j \cos l^j \pi x$$
, $|b| < 1$.

Theorem 2.3.4 (Вейерштрасс). Пусть f_n – функция на множестве A.

$$\forall x: |f_n(x)| \leq a_n$$
, где ряд $\sum a_n$ сходится.

Тогда $\sum_{0}^{\infty} f_n(x)$ сходится равномерно.

Note. Из этой теоремы следует, что функция из примера непрерывна.

Proof. Рассмотрим $\varepsilon>0.$ Найдем $N:\sum\limits_{n=k+1}^{l}a_{n}<\varepsilon\quad \forall k,l>N.$

$$S_j(x) = \sum_{n=0}^j f_n(x).$$

$$|S_j(x) - S_k(x)| = |f_{k+1} \dots + f_k(x)| \le |f_{k+1}(x)| + \dots + |f_l(x)| \le a_{k+1} + \dots + a_l < \varepsilon.$$

Example (Ван дер Варден). $f_1(x) = |x|, |x| < \frac{1}{2}$; продолжим с периодом 1. $f_n = \frac{1}{4^{n-1}} f(4^{n-1}x, g(x)) = \sum_{n=1}^{\infty} f_n$ – непрерывна, но нигде не дифференцируема, так как:

$$|f_n(x)| \le \frac{1}{2 \cdot 4^{n-1}}.$$

5

Figure 2.1: График функции Ван дер Вардена

$$h \neq 0, \ h_k = \pm \frac{1}{4^{n-1}}: \quad \frac{g(x+h) - g(x)}{h} = \sum_{j=1}^{\infty} (f_j(x+h_k) - f_j(x))h_k = \sum_{j=1}^{k-1} \frac{f_j(x+h_k) - f_j(x)}{h_k}.$$

Будем выбирать знак в h_k (\pm), чтобы во всех слагаемых значение лежал в одинаковых частях графика. Тогда при четном и нечетном j значение будет разных знаков.

Name. Ряд из функций $\sum_{n=1}^{\infty} h_n(x)$ – сходится обозначает, что функции $S_j(x) = h_1(x) \dots h_j(x)$ сходятся в соответствующем смысле.

Example.
$$f_n(x) = \sqrt{x^2 + \frac{1}{n}} \rightarrow |x|$$

$$\sqrt{x^2 + \frac{1}{n}} - |x| = \frac{x^2 + \frac{1}{n} - x^2}{\sqrt{x^2 + \frac{t}{n} + |x|}} = \frac{1}{n} \cdot \frac{1}{\sqrt{x^2 + \frac{1}{n} + |x|}} \le \frac{1}{n}, \quad \text{при } |x \ge 1|.$$

Theorem 2.3.5. $f_n, f, g_n: \langle a, b \rangle \to \mathbb{R}$ Предположим, что $f_n \to f$ поточечно. f_n дифференцируемы $u f_n \rightrightarrows g$ равномерно. Тогда f дифференцируемая на $\langle a, b \rangle$ u f' = g.

Proof. Запишем определение равномерной сходимости:

$$\forall eps > 0 \exists N : k, l > N \to \forall x \in \langle a, b \rangle : |f_k(x)' - f_l(x)'| < \varepsilon.$$
$$u_{k,l} - f_k(x) - f_l(x).$$

Теперь рассмотрим для $xy \in \langle a, b \rangle$:

$$\frac{u_{k,l}(x) - u_{k,l}(y)}{x - 1} = u'k, l(c), \quad c$$
 между $x, y...$

$$\forall x, y \in \langle a, b \rangle : \left| \frac{u_{k,l}(x) - u_{k,l}(y)}{x - y} \right| < \varepsilon \iff \forall x \in \langle a, b \rangle, \forall k, l > N : \left| \frac{f_k(x) - f_k(y)}{x - y} - \frac{f_l(x) - f_l(y)}{x - y} \right\rangle \right| < \varepsilon \right|.$$

Фиксируем $k, l \to \infty$.

$$\left| \frac{f_k(x) - f_k(y)}{x - y} - \frac{f(x) - f(y)}{x - 1} \right| < \varepsilon, \quad \forall x, y \in \langle a, b \rangle.$$

Оценим разность. Зафикируем x.

$$\exists \delta > 0 : |x - y| < \delta \land x \neq y \to \left| \frac{f_k(x) - f_k(y)}{x - y} f'_k(x) \right| < \varepsilon.$$

Объединяем неравенства: для данных k, x:

$$|y-x|<\delta, y\neq x \to |f_k'(x)-\frac{f(x)-f(y)}{x-y}|\leq 2\varepsilon.$$

Следовательно,

$$|x-y| < \delta \to |g(x) - \frac{f(x) - f(y)}{x - y}| \le 3\varepsilon.$$

2.4 Первообразные

Пусть все происходит на $\langle a,b \rangle$. $g:\langle a,b \rangle \to \mathbb{R}$

Def 1. Говорят, что f есть первообразная для g, если f дифференцируема на $\langle a,b\rangle y$ и f'=g всюду.

Theorem 2.4.1 (Ньютон, Лейбниц). Если g – непрерывна, то у нее есть первообразная.

Note. К этой теореме мы еще вернемся.

Statement. Если f'=g, то (f+c)'=g для любой константы c.

Theorem 2.4.2. Если f_1, f_2 – первообразные для $g, mo \ f_1 - f_2 = const$

Функция	Первообразная
x^{α}	$\frac{x^{\alpha+1}}{\alpha+1}, \ \alpha \neq -1$
$\frac{1}{x}$	$\log x + c, \ \alpha \neq -1$
$\sin x$	$-\cos x + c$
$\cos x$	$\sin x + c$
$\frac{1}{x^2+1}$	$\arctan x + c$
e^x	$e^x + c$

Name. Пишут:

$$f = \int g$$
 или $f(x) = \int g(x)dx$.

Statement. $\int f'(x) \cdot g' = f \circ g \pm C$

Def 2. Линейная функция – это функция вида $\varphi(h) = ch$.

Линейная форма: $\langle a,b \rangle$; Φ – отображение отрезка $\langle a,b \rangle$ в множество линейных функций.

 $x \in \langle a, b \rangle, \ \Phi(x)$ – линейная функция.

$$\Phi(x)(h) = c(x)h.$$

Def 3 (дифференциал). f – дифференцируема на $\langle a,b \rangle$

$$df(u,h) = f'(u)h = df.$$

Example. $x: \langle a, b \rangle \to \langle a, b \rangle$ – тождественная. dx(u, h) = h

Statement. $\Phi = c \cdot dx$, $\partial e c - heras flyhruus ha <math>\langle a, b \rangle$

$$f' = g$$
$$df = f'dx = gdx$$

Задача первообразной: дана линейная форма $\varphi=gdx$; найти функцию $f:df=\varphi$

Statement.

$$d(f\circ g)=(f'\circ g)\cdot g:dx=f'\circ gdg.$$

Example.

$$\int \sqrt{1-x^2} dx, \quad x \in (-1,1).$$

Сделаем замену $x=\sin t$, пусть $t\in [-\pi,\pi]$

$$\int \sqrt{1 - \sin^2(t)} \cos t dt = \int \cos^2(t) dt =$$

$$\int \frac{1 + \cos 2t}{2} dt = \frac{1}{2} \int ((1 + \cos 2t) dt =$$

$$\frac{1}{2} (t + \frac{1}{2} \int \cos t d(2t)) = \frac{1}{2} (t + \frac{\sin 2t}{2})$$

Тогда $\int \sqrt{1-x^2} dx = \frac{1}{2}(\arcsin x + \frac{\sin 2 \arcsin x}{2})$

Statement (Формула интегрирования по частям). (fg)' = f'g + fg' Перепишем:

$$d(fg) = gdf + fdg.$$

$$gdf = -fdy + d(fg).$$

$$\int gdf = fg - \int fdg.$$

Example.

$$\int \log x dx = x \log x - \int x d \log x = x \log x - \int 1 dx = x \log x - x + C.$$

Example.

$$\int e^x \sin x dx = \int \sin x de^x = \sin x e^x - \int \cos x e^x dx.$$
$$= \sin x e^x - \int x \cos x de^x = \sin x e^x - \cos x e^x - \int \sin x e^x dx.$$

Теперь решим уравнение и получим:

$$\int e^x \sin x dx = \frac{e^x \sin x - e^x \cos x}{2} + c.$$

2.5 Интеграл

Def 4. A – множество произвольной природы. $\Phi: A \to \mathbb{R}$. Φ – функционал на A.

Def 5. Интеграл – функционал на множестве функций, заданных на отрезке [a,b]. $f \mapsto \Phi(f)$

$$\Phi(f+g) = \Phi(f) + \Phi(g).$$

$$\Phi(\alpha f) = \alpha \Phi.$$

$$f \ge 0 \Longrightarrow \Phi(f) \ge 0.$$

$$\langle c, d \rangle \subset \langle a, b \rangle, f = \Phi(\chi) \langle c, d \rangle = d - c.$$

Statement. Каким должен быть интеграл?

- 1. Функционал, заданный на каких-то функциях сопоставляет число $(f \mapsto I(\alpha))$
- 2. $I(\alpha f + \beta g) = \alpha I(f) = I(\beta)$ (Линейность)
- 3. $f \leq g \Longrightarrow I(f) \leq I(g)$
- 4. $\langle a, b \rangle : I(\chi_{\langle a, b \rangle}) = b a$

Def 6. Разбиение – ступенчатая функция на отрезке $(a, b), a, b \in \mathbb{R}$:

$$\langle a, b \rangle = \bigcup_{i=1}^{n} \langle \alpha_i, \beta_i \rangle, \quad \langle \alpha_i, \beta_i \rangle \cap \langle \alpha_j, \beta_j \rangle \neq \varnothing.$$

Def 7. g на $\langle a,b \rangle$ – ступенчатая, если при $i \neq j$ она постоянна на отрезках какого-то разиения нашего отрезка $\langle a,b \rangle$

Теперь можно зажать функцию между ступенчатыми. В этом состоит идея Дарбу.

2.5.1 Интеграл Дарбу

Def 8. J – конечный интервал, если его разбиение – это набор интервалов $\{J_k\}_{k=1}^N$, такой что J_k

 $capJ_s=\varnothing,\ k\neq s, \bigcup_{k=1}^N J_k=J_i.$ (ДОпускаются одноточечные и пустые множества.)

Def 9. Длина интервала $\langle a,b \rangle$ – это b-a Обозначается |J|=b-a, $|\varnothing|=0$

Lemma. Если $\{J_k\}_{k=1}^N$ – разбиение $J, \ mo \ |J| = \sum\limits_{k=1}^N |J_k|$

Def 10. e – множетсво, f – ограниченная функция на .

Колебание f на e:

$$esc_{e}(f) = \sup_{x,y \in e} |f(x) - f(y)| =$$

$$= \sup_{y} \left(\sup_{x} (f(x) - f(y)) \right) = \sup_{x} \left(\sup_{y} (f(x) - f(y)) \right) =$$

$$= \sup_{x \in e} f(x) + \sup_{y \in e} (-f(x) = \sup_{x \in e} f(x) - \inf_{y \in e} f(y).$$

Figure 2.2: График функции

Пока предполагаем, что f ограничена. Просуммируем отрезки $J_1, \ldots J_N$ из разбиения отрезка J.

$$\sum_{k=1}^{N} |J_k| \inf_{x \in J_k} f(x) \underline{S}.$$

– нижняя сумма Дарбу для f и разбиения $J_1 \dots J_N$

$$\sum_{k=1}^{N} |J_k| \sup_{x \in J_k} f(x) = \overline{S}.$$

– верхняя сумма Дарбу для f и разбиения $J_1 \dots J_N$

Name. A – множество всех нижних сумм Дарбу для f по всевозможным разбиениям J_i

B — множество всех верхних сумм Дарбу для f по всевозможным разбиениям J_i

Statement. $\Pi ycmb$ $\{A, B\}$ – wenb. Torda

$$\underline{I}(f) = \sup A, \quad \overline{I}(f) = \inf(B).$$

Все числа, лежащие в этой щели – это $[\underline{I}(f),\overline{I}(f)]$ (верхний и нижний интегралы Римана-Дарбу от f)

Statement. $\{A, B\}$ – щель.

 $Proof. \ \ arepsilon$ – разбиение отрезка $J_i. \ \underline{S}_{\mathcal{E}}(f), \ \overline{S}_{\mathcal{E}}(f)$ – верхняя и нижняя сумма Дарбу. Очевидно, что $\underline{S}_{\mathcal{E}}(f) \leq \overline{S}(f)$

 \mathcal{E}, \mathcal{F} – разбиение $J_i : \mathcal{F}$ – измельчение $\mathcal{E},$ если $\forall a \in \mathcal{F} \exists b \in \mathcal{E} : a < b.$

Lemma. Если \mathcal{F} – измельчение для \mathcal{E} , то

$$\underline{S}_{\mathcal{F}}(f) \ge \underline{S}_{\mathcal{E}}, \quad \overline{S}_{\mathcal{F}} \le \overline{S}_{\mathcal{E}}.$$

Lemma. Рассмотрим \mathcal{E}_1 , \mathcal{E}_2 – разбиения отрезка J_i . Тогда у них есть общее измельчение. (Можем взять пересечение всех отрезков из первого и из второго)

Пусть $\mathcal{E}_1, \mathcal{E}_2$ – разбиения. \mathcal{F} – общее измельчение.

$$\underline{S}_{\mathcal{E}_1}(f) \leq \underline{S}_{\mathcal{F}}(f) \leq \overline{S}_{\mathcal{F}} \leq \overline{S}_{\mathcal{E}_2}.$$

Следовательно, $\{A, B\}$ – щель.

Note. Определенные величины $\overline{I}(f), \underline{I}(f)$ законны.

Def 11. f называется интегрируемой по Риману, если $\overline{I}(f) = \underline{I}(f)$

Example.

Все ступенчатые функции интегрируемы по Риману. φ — ступенчатая функция на J, Существует разбиение \underline{S} отрезка на J. $\mathcal{E} = \{e_1, \dots e_k\} : \varphi(x) = \sum i = 1^k c_i \chi_{e_i}$

$$\underline{S}_{\mathcal{E}}(\varphi) = \sum_{i=1}^{k} |e_i| c_i \overline{S}_{\mathcal{E}}(\varphi) = \sum_{i=1}^{k} |e_i| c_i$$

Тогда
$$\underline{I}(\varphi) - \overline{I}\varphi = I(\varphi) = \sum_{i=1}^k |e_i|c_i$$

Note. Пусть J – произвольный отрезок, f – ограниченная функция на J, \mathcal{E} – разбиение отрезка J на непустве отрезки $\{e_1, \dots e_n\}$.

.

Theorem 2.5.1. Критерий интегрируемости по Риману f – интегрируема по Риману на J тогда и только тогда, когда $\forall \varepsilon > 0 \exists$ разбиение $e_1, ...e_k$ Отрезка J, такое что $\sum_{i=1}^k |e_k| osc_{e_k} f < \varepsilon$.

Proof. Проверим, что f удовлетворяет условию 2.5.1

Property. 1. f – непрерывна на $\langle a,b\rangle \Rightarrow f$ – интегрируема.

2. Σ – разбиение,

$$\overline{S}_{\Omega}(-f) = -\underline{S}_{\Omega}(f).$$

3. Ecau $\alpha > 0$,

$$\bar{S}_{\Sigma}(\alpha f) = \alpha \bar{S}_{\Sigma}(f).$$

Аналогично с ниженей суммой.

- 4. Если f интергируема и $\alpha \in \mathbb{R}$, то αf интегрируема и $I(\alpha f) = \alpha I(f)$
- 5. $f,g:\langle a,b\rangle \to \mathbb{R}$ ограничены. Σ разбиение.

$$\overline{S}_{\Sigma}(f+g) \leq \overline{iS}_{\Sigma}(f) + \overline{S}_{\Sigma}(g).$$

6.

$$\underline{S}_{\Sigma}(f+g) \ge \underline{S}_{\Sigma}(f) + \underline{S}_{\Sigma}(g).$$

7. Eсли f,g – интегрируемы на $\langle a,b \rangle$, то f+g – интегрируема и

$$I(f+g) = I(f) + I(g).$$

Можно рассмотреть общее подразбиение и применить критерий интегрируемости и прошлым свойством. Для второго утверждения: просто записываем неравенство.

8. f,g – интегрируемы, $\alpha,\beta\in\mathbb{R}$. Тогда $\alpha f+\beta g$ –интегрируема и

$$I(\alpha f + \beta g) = \alpha I(f) + \beta I(g).$$

- 9. Монотонность. $f \geq 0, f$ интегрируема по Дарбу. Тогда, $I(f) \geq 0.$
- 10. f,g интегрируемы на $\langle a,b \rangle$. Тогда $f \cdot g$ интегрируема.

Proof.

$$\exists C, D \in \mathbb{R} : |f| \leq C, |g| \leq D$$
 на $\langle a, b \rangle$.

Пусть J – отрезок. Оценим осцилляцию.

$$\forall x, y \in J : |f(x)g(x) - f(y)g(y)| = |f(x)g(x) - f(x)g(y)| + |f(x)g(y) - f(y)g(x)| =$$

$$\leq |f(x)g(x) - f(x)g(y)| + |f(x)g(y) - f(y)g(y)| =$$

$$= |f(x)| \cdot |g(x) - g(y)| + |g(x)| \cdot |f(x) - f(y)| \leq$$

$$\leq C \cdot osc_I q + D \cdot osc_I f.$$

f,g – интегрируемы, тогда $\forall \varepsilon \ \exists \Sigma : \overline{S}_{\Sigma}(f) \leq \underline{S}_{\Sigma}(f) + \varepsilon \wedge \overline{S}_{\Sigma}(g) \leq \underline{S}_{\Sigma}(g) + \varepsilon$.

Получаем

$$\sum_{J \in \Sigma} |J| osc_J f \le \varepsilon$$

$$\sum_{J \in \Sigma} |J| osc_J g \le \varepsilon$$

Тогда $\forall J \in \Sigma : osc_J(fg) \leq C \cdot osc_Jg + D \cdot osc_Jf$.

Следовательно,

$$\sum_{J \in \Sigma} |J| \cdot osc_J fg \le C \cdot \sum_J |J| \cdot osc_J g + D \cdot \sum_J |J| \cdot osc_J f \le (C + D)\varepsilon.$$

11. f – интегрируема на $\langle a,b \rangle$. $J \subset \langle a,b \rangle$. Тогда $f \cdot \chi_J$ – интегрируема. $(\chi_J$ равна единице на J и нулю на остальных точках)

Ecau $J = \{c\}$, mo $I(f\chi_J) = 0$.

12. J_1,J_2 – два подотрезка, такие что $J_1\cup J_2=J\wedge J\cap J_2=\varnothing$. Тогда

$$I(f\chi_{J_1\cup J_2}) = I(f\chi_{J_1}) + I(f\chi_{J_2}).$$

13. Основная оценка интеграла. f – интегрируема на $\langle a,b \rangle$. $|f| \leq M$ на $[c,d] \subset \langle a,b \rangle$

$$\left| \int_{c}^{d} f \right| \le M(d-c).$$

Name. $I(f\chi_J)$ не зависит от того, вклочает ли J концы.

$$\int_{c}^{d} f = \int_{c}^{d} f(x) dx \stackrel{def}{=} I(f\chi_{\langle c, d \rangle}).$$

Name. Если d < c:

$$\int_{c}^{d} f = -\int_{d}^{c} f.$$

Statement. f – интегрируема на $\langle a, b \rangle$.

$$\int_{c}^{e} f = \int_{c}^{d} f + \int_{d}^{e} f.$$

2.5.2 Связь интеграла и производящей

 $f:\langle a,b\rangle \to \mathbb{R},\ F:\langle a,b\rangle \to \mathbb{R}$ – первообразная функция f, если F – дифференцируема и F'=f.

Theorem 2.5.2 (Ньютон-Лейбниц). Пусть f интегрируема по Риману на $\langle a,b \rangle$ и непрерына в точке $t \in \langle a,b \rangle$. Пусть $t_0 \in \langle a,b \rangle$: $F(s) = \int_{t_0}^s f$. Тогда F – дифференцируема в точке tu F'(t) = f(t).

Proof. $x \neq t$.

$$\left| \frac{F(x) - f(t)}{x - t} - f(t) \right| = \left| \frac{\int_{t_0}^x f = \int_{t_0}^t f}{x - t} \right| = \left| \frac{\int_t^x}{x - t} - f(t) \right| = \frac{1}{|x - t|} \left| \int_t^x f(s) - f(t) ds \right| \le \sup_{s \in [t, \tau]} |f(s) = f(t)|.$$

f – непрерывна в t. Тогда $\forall \varepsilon>0$ $\exists \delta.$ Если $|s-t|<\delta,\,|f(t)-f(s)|<\varepsilon$

$$|x-t| < \delta \Longrightarrow \forall s \in [t,x] : |s-t| < \varepsilon \to |f(s)-f(t)| < \varepsilon.$$

Тогда

$$\sup s \in [t, x]|f(x) - f(t)| \le \varepsilon.$$

А значит

$$\lim_{x \to t} \left| \frac{F(x) - f(t)}{x - t} - f(t) \right| = 0 \Longrightarrow F'(t) = f(t).$$

Corollary. Если f дифференцируема на $\langle a,b\rangle$, то $\forall t_0\in[a,b]:F$ –первообразная f.

Corollary (Формула Ньютона-Лейбница). f – непрерывна на [a,b], F –первообразная f. Тогда

$$\int_{a}^{b} f = F(b) - F(a).$$

Def 12. $f \in C^k(a,b)$, $k \in \mathbb{N} \cap \{0,\infty\}$, если $f, f', \dots f^{(k)}$ – непрерывны.

Theorem 2.5.3. $Ecnu\ f,g \leq C^1(a,b)$, mo

$$\int_b^a fg' = f \cdot g \mid_a^b - \int_a^b f'g,$$

 $e \partial e \Phi \mid_a^b = \Phi(b) - \Phi(a)$

2.5.3 Формула интегрирования по частям

 $f,g:[a,b] o \mathbb{R},\, f,g$ – непрерывны на [a,b] и f,g,f',g' – непрерывны. Тогда

$$(fg)' = f'g + g'f.$$

Пусть Φ – первообразная для f'g. Запишем первообразную для fg'

$$\Psi(x) = \int_a^x f(t)g'(x)dt = f(x)g(x) - \Phi(x) + c.$$

$$\Phi(x) = f(x)g(x) \int_{a}^{x} f(t)g'(t)dt + c.$$

Обозначим $u|_y^x = u(x) - u(y)$.

$$\Phi(x) - \Phi(y) = fg|_y^x - \int_y^x f(t)g'(t)dt.$$

Получаем

$$\int_{y}^{x} f'(t)g(t)dt = fg|_{y}^{x} - \int f(t)g'(t)dt.$$

Theorem 2.5.4. $f_n, f - 3a \partial a н ы н a \langle a, b \rangle; n \in \mathbb{N}$ Пусть

- 1. все f_n интегрируемы по Риману на $\langle a,b \rangle$
- 2. $f_n \rightrightarrows f$. Тогда f интегрируема по Риману

$$\int_{a}^{b} f_{n}(x)dx \to \int_{a}^{b} f(x)dx.$$

Proof.

Lemma. E – множество, u,v – вещественные функции на E. $|u(x)-v(x)|\leq \lambda\ \forall E$. $Torda\ |ose_E(u)-ose_E(v)|\leq 2\lambda$

$$\varepsilon > 0: \exists n: |f_n(x) - f(x)| \le \varepsilon \ \forall x \in \langle a, b \rangle.$$
$$|ose_{\langle a, b \rangle} - ose_{\langle a, b \rangle(f)}| \le 2\varepsilon.$$

 $\exists \{I_1, \dots I_N\}$ – отрезки $\langle a, b \rangle$:

$$\sum_{j=1}^{N} |I_j| ose_{I_j} < \varepsilon.$$

$$\sum_{j=1}^{N} |I_j| osc_{I_j}(f) \le \varepsilon + \sum_{j=1}^{N} |I_j| (2\varepsilon) = \varepsilon (2(b-a)+1).$$

Следовательно, f – интегрируема.

$$\left| \int_{a}^{b} f_{n}(x) dx - \int_{a}^{b} f(x) dx \right| = \left| \int_{a}^{b} f_{1}(x) - f(x) dx \right| \le \varepsilon (b - a).$$

$$\varepsilon > 0 \ \exists M : \forall n \ge M \ \forall x \in \langle a, b \rangle : |f_{n}(x) - f(x)| \le \varepsilon.$$

Тем самым получили последнее неравенство в прошлой строке.

Statement. Ecau f интегрируема по Риману на $\langle a,b\rangle$, то |f| тоже интегрируема u

$$\left| \int_{a}^{b} f(x) dx \right| \leq \int_{a}^{b} |f(x)| dx.$$

2.6 Логарифм и экспонента

Пусть функция l удовлетворяет соотношению

$$l(xy) = l(x) + l(y),$$

и ноль лежит в ее области определения.

$$l(0) = l(0, a) = l(0) + l(a) \Longrightarrow l(0) = 0.$$

Будем искать l, заданную на \mathbb{R}_+ .

$$l(x^2) = l((-x)^2).$$

$$2l(x) = 2l(-x).$$

То есть

$$l(x) = l(|x|).$$

Def 13. Логарифм – строго монотонная функция, заданная на \mathbb{R}_+ , такая что

$$f(xy) = l(x) + l(y) \quad x, y > 0.$$

Statement. $\mathcal{A}_{\mathcal{A}\mathcal{A}} n \in \mathbb{N}$:

$$l(x^n) = n \cdot l(x),$$

$$l(x^{\frac{1}{n}}) = \frac{1}{n}l(x).$$

$$l(1) = l(1^2) = 2l(1) \Longrightarrow l(1) = 0.$$

Statement. Ecnu l – логарифм, $c \neq 0$, то cl – тоже логарифм.

Lemma. Eсли l – логарифм, то l – непрерывна на всей области определения.

Proof. Пусть l – логарифм. Считаем, что fстрого возрастает.

$$t = \lim_{x \to 1+0} f(x).$$

Покажем, что t = l(1) = 0. Пусть t > 0.

$$l((1+x)^2) = 1l(1+x).$$

При xto1+ получаем, что t=0. Если $x\to 1-$, получаем тое самое. Значит l- непрерывна в 1. И равна нулю в этой точке.

Lemma. Eсли l – логарифм, то функция l – дифференцируема.

Proof.

$$\Phi(x) - \int_{1}^{x} l(t)dt \quad x \in (0, +\infty).$$

Ф дифференцируема.

$$\Phi(2x) = \int_{1}^{2x} l(t)dt = \int_{1}^{x} l(t)dt + \int_{x}^{2x} l(t)dt = \Phi(x) = x \int_{x}^{2x} l(x \cdot \frac{t}{x})d(\frac{t}{x}) = \Phi(x) + x \int_{1}^{2} l(x \cdot y)dy = \Phi(x) + x \int_{1}^{2} l(y)dy$$

 $l(x)=\frac{\Phi(2x)-\Phi(x)}{x}-C.$ А Φ дифференцируема, следовательно, f тоже дифференцируема.

Theorem 2.6.1 (Производная логарифма).

l(xy) = l(x) + l(y). Зафиксируем у и возъмем производную:

$$yl'(xy) = l'(x)$$
 $x, y \in \mathbb{R}_+.$
 $l'(x) = \frac{C}{x}, \quad C = l'(y).$

Theorem 2.6.2. Ecau l логарифм, то

$$\exists C \neq 0 : l(x) = C \int_{1}^{x} \frac{dt}{t}.$$

Proof. Только что доказали.

Theorem 2.6.3. $\Phi(x) = \int_1^x \frac{C}{t} dt$ – логарифм. Cама $l(x) = C \cdot \int_1^x \frac{dt}{t}$

Theorem 2.6.4. Ecau $C \neq 0$, mo

$$\varphi(x) = C \int_1^x \frac{dt}{t} - ecm v$$
 логарифм.

Proof. Достаточно доказать теорему для C=1.

$$\varphi(x) = \int_1^x, \quad x > 0.$$

Если $x_1 > x$,

$$\varphi(x_1) - \varphi(x) = \int_1^{x_1} \frac{dt}{t} \ge \frac{1}{x_1} (x_1 - x) > 0.$$

Следовательно, φ строго возрастает.

Проверим:

$$\varphi(xy) = \varphi(x) + \varphi(y).$$

$$\in t_1^x \frac{dt}{t} + \int_x^y \frac{dt}{t} = \varphi(x) + \frac{1}{x} \int_x^{xy} \frac{d(\frac{t}{x})}{t} \frac{t}{x}.$$

$$\varphi(x) + \int_1^y \frac{d\mu}{\mu} = \varphi(x) - \varphi(y).$$

Name. Натуральный логарифм –

$$\int_{1}^{x} \frac{dt}{t} = \log t.$$

Property. $(\log x)' = \frac{1}{x}$

$$\frac{\log(x+1) - \log 1}{x} \xrightarrow{x \to 0} \log'(1) = 1.$$

$$\frac{\log(1+x)}{x} \to 1, \quad x \to 0.$$

Statement. Образ функции log есть все вещественные числа.

Proof. При $x_1 > x$, $\log(x_1) - \log(x) > \frac{x_1 - x}{x_1}$. Рассмотрим $x_1 = 2^{n+1}, x = 2^n$:

$$\log 2^{n+1} - \log 2^n \ge \frac{2^n}{2^{n+1}} \ge \frac{1}{2}.$$

Тогда $\lim_{x\to\infty}\log x = +\infty$.

Def 14 (Обратная функция к логарифму). У функции log есть обратная функция, называющаяся экспонентой:

$$\exp: \mathbb{R} \to \mathbb{R}^+.$$

Property. 1. exp cmporo возрастает

2.

$$\lim_{x \to +\infty} \exp = +\infty.$$

$$\lim_{x \to -\infty} \exp = 0.$$

4.

$$\log 1 = 0 \Leftrightarrow \exp 0 = 1.$$

5.

$$\exp x \exp y = \exp(x + y).$$

Statement. Экспонента дифференцируема:

$$\exp'(x) = \frac{1}{\log'(\exp x)} = \exp x.$$

Statement.

$$f(x) = \sum_{j=0}^{n} \frac{f^{(j)}j!}{x}^{j} + \frac{f^{(n+1)}(c)}{(n+1)!}x^{n+1}$$
 с между 0 и x .

Пусть f имеет производную любого порядка

$$f(x) = \sum_{j=0}^{n} \frac{f^{(j)}(x_0)}{j!} (x - x_0)^j + \frac{f^{(n+1)}(c)}{(n+1)!} (x - x_0)^{(n+1)}.$$

Pяд Tейлора для f в окрестности точки x :

$$\sum_{j=0}^{\infty} = \frac{f^{(j)}(x_0)}{j!} (x - x_0)^j.$$

Theorem 2.6.5. Ряд Тейлора для экспоненты, $x_0 = 0$:

$$\exp(x) = \sum_{j=0}^{\infty} \frac{x^j}{j!}.$$

Для любого x этот ряд сходится $\kappa \exp(x)$, сходимость равномерна на каждом конечном отрезке.

Proof.

$$\left| \exp x - \sum_{j=0}^{n} \frac{x^{j}}{j!} \right| = \frac{\exp c}{(n+1)!} |x|^{n+1}, \quad c$$
 между 0 и x .

Выберем R > 0, пусть $|x| \le R$ Применим:

$$\leq \exp\frac{R^{n+1}}{(n+1)!}.$$

Проверим, что полученное выражена стремиться к нулю.

Lemma. Пусть $a_0, a_1, a_2 \ldots$ – положительные числа $u \; \exists N : a_j < \eta < 1 \; \forall j > N$. Тогда $a_0 a_1 \ldots a_j \to 0 \quad j \to \infty$

Corollary. Если $a_j \geq 0, \ a_j \rightarrow 0, \text{ то } a_0 \dots a_j \rightarrow 0$

По лемме $\frac{R}{1} \cdot \frac{R}{2} \dots \frac{R}{n+1}$ стремиться к нулю. Доказали равномерную сходимость. \square Note.

$$\exp 1 = \sum_{n=0}^{\infty} n! = e.$$

Corollary (быстрый рост экспоненты).

$$\forall n \in \mathbb{N} : \lim_{x \to \infty} \frac{x^n}{\exp x} = 0.$$

Proof.

$$\exp x = \sum_{k=0}^{\infty} \frac{x^k}{k!} \ge \frac{x^{n+1}}{(n+1)!}.$$
$$\frac{x^n}{\exp x} \le (n+1)! \frac{1}{x} \longrightarrow 0 \qquad x \to \infty.$$

Note.

$$\exp(-x) = \frac{1}{\exp x}.$$
$$\lim_{x \to -\infty} x^n \exp(-x) = 0.$$

Corollary.

$$\frac{\log x}{x^k} \stackrel{x \to +\infty}{\longrightarrow} 0 \qquad k \in \mathbb{N}.$$

Example (Полезный пример).

$$g(x) = \begin{cases} 0 & x = 0 \\ \exp(-\frac{1}{x^2} & x \neq 0 \end{cases}.$$

q непрерывна на \mathbb{R} .

Если $x \neq 0$,

$$g'(x) = \exp(-\frac{1}{x^2})(2\frac{1}{x^3}).$$
$$\lim_{x \to 0} g'(x) = 0.$$

g дифференцируема а нуле и g'(0) = 0.

$$g^{(j)}(x) = \exp(-\frac{1}{x^2})p_j(\frac{1}{x}), \quad p_j$$
 – полином.

Значит, g бесконечно дифференцируемая функция и $g^{(j)}(0)=0$. Напишем полином Тейлора:

$$T_n(x) = \sum_{j=0}^n \frac{g^{(j)}(0)}{j!} x^j \cong 0.$$

Нулевой, но не сходится к g.

$$h(x) = \begin{cases} g(x) & x \ge 0 \\ 0 & x \le 0 \end{cases}.$$

h – бесконечно дифференцируема.

$$u(x) = h(x-a)h(b-x), \quad a < b.$$

Corollary. Пусть $I=(a,b),\ a < b.$ Существует бесконечно дифференцируемая функция u :

$$u(x) > 0$$
 $x \in (a, b)$

$$u(x) = 0 \quad x \not\in (a, b) \quad .$$