IBM Research

Sieving for closest lattice vectors (with preprocessing)

Thijs Laarhoven

mail@thijs.com
http://www.thijs.com/

Lorentz Center 2016, Leiden, The Netherlands (August 24, 2016)

Ö

Shortest Vector Problem (SVP)

Closest Vector Problem (CVP)

Closest Vector Problem (CVP)

Outline

Sieving for SVP

Sieving for CVP

Sieving for CVPP

Conclusion

Outline

Sieving for SVP

Sieving for CVF

Sieving for CVPI

Conclusion

Generate random lattice vectors

The GaussSieve and Nguyen-Vidick sieve

Leveled sieving approaches

Locality-Sensitive Hashing (LSH)

Locality-Sensitive Filters (LSF)

Space complexity

Outline

Sieving for SVF

Sieving for CVP

Sieving for CVP

Conclusion

Space/time trade-offs

Space complexity

Space/time trade-offs

Space complexity

Outline

Sieving for SVF

Sieving for CVF

Sieving for CVPP

Conclusion

Run a GaussSieve as preprocessing

Run a GaussSieve as preprocessing

Relation with the Voronoi cell

•
•

• v₂

Relation with the Voronoi cell

Overview

• Blue region: Gauss cell &

- Blue region: Gauss cell &
 - Defined by 2^{0.21n+o(n)} short lattice vectors
 Volume: Vol(𝒢) = 2^{O(n)} · det(𝔾)

 - ► Reductions always land in 𝕞

- Blue region: Gauss cell &
 - Defined by 2^{0.21n+o(n)} short lattice vectors
 Volume: Vol(𝒢) = 2^{O(n)} · det(𝔾)

 - ► Reductions always land in 𝕞

- Blue region: Gauss cell &
 - ▶ Defined by $2^{0.21n+o(n)}$ short lattice vectors
 - Volume: $Vol(\mathscr{G}) = 2^{O(n)} \cdot det(\mathscr{L})$
 - ► Reductions always land in 𝕞
- Red region: Voronoi cell */
 - ▶ Defined by $2^{n+o(n)}$ short lattice vectors
 - ▶ Volume: $Vol(\mathscr{V}) = det(\mathscr{L})$
 - Reductions almost never land in \mathcal{V}

- Blue region: Gauss cell &
 - ▶ Defined by $2^{0.21n+o(n)}$ short lattice vectors
 - Volume: $Vol(\mathscr{G}) = 2^{O(n)} \cdot \det(\mathscr{L})$
 - ► Reductions always land in 𝕞
- Red region: **Voronoi cell** */
 - ▶ Defined by $2^{n+o(n)}$ short lattice vectors
 - ▶ Volume: $Vol(\mathscr{V}) = det(\mathscr{L})$
 - ► Reductions almost never land in 🎷
- Problems:

- Blue region: Gauss cell G
 - ▶ Defined by $2^{0.21n+o(n)}$ short lattice vectors
 - Volume: Vol(\mathscr{G}) = $2^{O(n)} \cdot \det(\mathscr{L})$
 - ► Reductions always land in 𝕞
- Red region: Voronoi cell */
 - ▶ Defined by $2^{n+o(n)}$ short lattice vectors
 - Volume: $Vol(\mathcal{V}) = det(\mathcal{L})$
 - Reductions almost never land in \(\psi \)
- Problems:
 - Exponentially small success probability $Vol(\mathcal{V})/Vol(\mathcal{G})$

- Blue region: Gauss cell &
 - ▶ Defined by $2^{0.21n+o(n)}$ short lattice vectors
 - Volume: $Vol(\mathscr{G}) = 2^{O(n)} \cdot \det(\mathscr{L})$
 - ► Reductions always land in 𝕞
- Red region: Voronoi cell */
 - ▶ Defined by $2^{n+o(n)}$ short lattice vectors
 - Volume: $Vol(\mathcal{V}) = det(\mathcal{L})$
 - Reductions almost never land in \(\psi \)
- Problems:
 - ► Exponentially small success probability Vol(𝒜)/Vol(𝔞)
 - Probability only over randomness of targets

Solving the problems

• Idea 1: Larger lists, weaker reductions

Solving the problems

- Idea 1: Larger lists, weaker reductions
 - ▶ Problem: Exponentially small success probability

Solving the problems

- Idea 1: Larger lists, weaker reductions
 - Problem: Exponentially small success probability
 - ► To guarantee Vol(\mathscr{G}) \approx Vol(\mathscr{V}), need $2^{n/2+o(n)}$ vectors
 - ▶ Preprocessing: reduce v_1 with v_2 iff $||v_1 v_2|| \ll ||v_1||$

- Idea 1: Larger lists, weaker reductions
 - Problem: Exponentially small success probability
 - ► To guarantee Vol(\mathscr{G}) \approx Vol(\mathscr{V}), need $2^{n/2+o(n)}$ vectors
 - ▶ Preprocessing: reduce v_1 with v_2 iff $||v_1 v_2|| \ll ||v_1||$

- Idea 1: Larger lists, weaker reductions
 - ▶ Problem: Exponentially small success probability
 - ► To guarantee Vol(\mathscr{G}) \approx Vol(\mathscr{V}), need $2^{n/2+o(n)}$ vectors
 - ▶ Preprocessing: reduce v_1 with v_2 iff $||v_1 v_2|| \ll ||v_1||$
- Idea 2: Rerandomizations

- Idea 1: Larger lists, weaker reductions
 - ▶ Problem: Exponentially small success probability
 - ► To guarantee Vol(\mathscr{G}) \approx Vol(\mathscr{V}), need $2^{n/2+o(n)}$ vectors
 - ▶ Preprocessing: reduce v_1 with v_2 iff $||v_1 v_2|| \ll ||v_1||$
- Idea 2: Rerandomizations
 - Problem: Probability only over randomness of targets

- Idea 1: Larger lists, weaker reductions
 - Problem: Exponentially small success probability
 - ► To guarantee Vol(\mathscr{G}) \approx Vol(\mathscr{V}), need $2^{n/2+o(n)}$ vectors
 - ▶ Preprocessing: reduce v_1 with v_2 iff $||v_1 v_2|| \ll ||v_1||$
- Idea 2: Rerandomizations
 - ► Problem: Probability only over randomness of targets
 - ▶ Randomize target t before reducing $(t' \in_R t + \mathcal{L})$
 - Randomness now over algorithm, independently of target

Trade-offs

Preliminary experiments (n = 50, HashSieve)

• Sieving for CVP same complexity as SVP

- Sieving for CVP same complexity as SVP
- Sieving for CVPP much easier than SVP

- Sieving for CVP same complexity as SVP
- Sieving for CVPP much easier than SVP
 - ► Preliminary experiments: 2000× faster in dimension 50

- Sieving for CVP same complexity as SVP
- Sieving for CVPP much easier than SVP
 - ► Preliminary experiments: 2000× faster in dimension 50
 - Competitive with enumeration for CVP(?)

- Sieving for CVP same complexity as SVP
- Sieving for CVPP much easier than SVP
 - ► Preliminary experiments: 2000× faster in dimension 50
 - Competitive with enumeration for CVP(?)
- Better complexities for approximate CVP and BDD

- Sieving for CVP same complexity as SVP
- Sieving for CVPP much easier than SVP
 - ► Preliminary experiments: 2000× faster in dimension 50
 - ► Competitive with enumeration for CVP(?)
- Better complexities for approximate CVP and BDD
- Open problem: hybrid enumeration with sieving

- Sieving for CVP same complexity as SVP
- Sieving for CVPP much easier than SVP
 - ► Preliminary experiments: 2000× faster in dimension 50
 - ► Competitive with enumeration for CVP(?)
- Better complexities for approximate CVP and BDD
- Open problem: hybrid enumeration with sieving
 - Bottom part of enumeration tree corresponds to batch-CVP

- Sieving for CVP same complexity as SVP
- Sieving for CVPP much easier than SVP
 - ► Preliminary experiments: 2000× faster in dimension 50
 - ► Competitive with enumeration for CVP(?)
- Better complexities for approximate CVP and BDD
- Open problem: hybrid enumeration with sieving
 - ► Bottom part of enumeration tree corresponds to batch-CVP
 - ► An efficient CVPP algorithm would speed up enumeration

- Sieving for CVP same complexity as SVP
- Sieving for CVPP much easier than SVP
 - ► Preliminary experiments: 2000× faster in dimension 50
 - Competitive with enumeration for CVP(?)
- Better complexities for approximate CVP and BDD
- Open problem: hybrid enumeration with sieving
 - ▶ Bottom part of enumeration tree corresponds to batch-CVP
 - ► An efficient CVPP algorithm would speed up enumeration
 - ightharpoonup CVPP in lower dimension \implies no memory issues

- Sieving for CVP same complexity as SVP
- Sieving for CVPP much easier than SVP
 - ► Preliminary experiments: 2000× faster in dimension 50
 - ► Competitive with enumeration for CVP(?)
- Better complexities for approximate CVP and BDD
- Open problem: hybrid enumeration with sieving
 - ▶ Bottom part of enumeration tree corresponds to batch-CVP
 - ▶ An efficient CVPP algorithm would speed up enumeration
 - ightharpoonup CVPP in lower dimension \implies no memory issues
 - ► Randomized CVPP ⇒ embarrassingly parallel

