NASA TECH BRIEF

NASA Tech Briefs are issued to summarize specific innovations derived from the U. S. space program and to encourage their commercial application. Copies are available to the public from the Clearinghouse for Federal Scientific and Technical Information, Springfield, Virginia 22151.

Phase Inverter Provides Variable Reference Push-Pull Output

The problem:

To design a circuit that will provide a push-pull output referenced to a dc potential which can be varied without affecting the signal levels.

The solution:

A dual-transistor difference amplifier which provides the push-pull output, coupled with a feedback circuit which can vary the operating points of the transistors by equal amounts to provide variable reference potentials.

How it's done:

The difference amplifier consists of Q_1 and Q_2 and their associated components. The output signals, E_1 and E_2 , appear at the collectors of the respective transistors and are 180° out of phase. The operating points of Q_1 and Q_2 with respect to either +V or -V

are varied by varying R_1 . If R_1 is varied in a direction that increases the positive bias on the base of Q_2 , it will make Q_2 conduct less and cause E_2 to become more negative. Moving R_1 in this direction also increases the emitter resistance of Q_3 which causes Q_3 to conduct less, and decreases the current flow through the common resistor R_2 . The voltage drop across R_2 and R_3 will therefore decrease, and E_1 will become more negative. The reference potentials, E_1 and E_2 , have therefore varied in the same direction with respect to +V or -V, but the gains of Q_1 and Q_2 have not changed.

Notes:

1. This circuit was designed to drive a dc-coupled push-pull deflection amplifier, using R₁ as a centering control.

(continued overleaf)

2. Inquiries concerning this invention may be directed to:

Technology Utilization Officer NASA Headquarters 400 Maryland Avenue, SW Washington, D.C. 20546. Reference: B66-10344

Patent status:

Inquiries about obtaining rights for the commercial use of this invention may be made to NASA, Code GP, Washington, D.C. 20546.

Source: Radio Corporation of America under contract to NASA Headquarters (HQ-23)