Lecture 4: The Poisson Algebra of Observables

Yannis Bähni

University of Augsburg

yannis.baehni@math.uni-augsburg.de

May 6, 2021

Lie Algebras and Poisson Algebras

Definition (Lie Algebra)

A *real Lie algebra* is defined to be a real vector space g admitting a bilinear map

$$[\cdot,\cdot]:\mathfrak{g}\times\mathfrak{g}\to\mathfrak{g}$$

called a *Lie bracket*, satisfying the following conditions:

- $[\cdot, \cdot]$ is skew-symmetric.
- $[\cdot, \cdot]$ satisfies the *Jacobi identity*, that is

$$[X, [Y, Z]] + [Z, [X, Y]] + [Y, [Z, X]] = 0$$
 $\forall X, Y, Z \in \mathfrak{g}.$

Lemma

Let M be a smooth manifold. Then $(\mathfrak{X}(M), [\cdot, \cdot])$ is a Lie algebra.

Definition (Algebra of Classical Observables)

Let (M, ω) be a symplectic manifold. Then the commutative real algebra $C^{\infty}(M)$ of smooth functions on M is called the *algebra of classical observables*.

Definition (Poisson Algebra)

A *Poisson algebra* is defined to be a real commutative algebra \mathfrak{p} together with a Lie bracket $\{\cdot,\cdot\}$ on \mathfrak{p} satisfying the *Leibniz rule*

$$\{f,gh\}=h\{f,g\}+g\{f,h\} \qquad \forall\, f,g,h\in\mathfrak{p}.$$

Lemma

Let (M, ω) be a symplectic manifold. Then $(C^{\infty}(M), \{\cdot, \cdot\})$ is a Poisson algebra, where

$$\{f,g\} := \omega(X_f, X_g) \qquad \forall f, g \in C^{\infty}(M)$$

denotes the Poisson bracket of classical observables.

• $X_{\{f,g\}} = [X_f, X_g]$ for all $f, g \in C^{\infty}(M)$.

Lemma

Let (M, ω) be a symplectic manifold and $\varphi \in \operatorname{Symp}(M, \omega)$. Then

$$\varphi^* \{ f, g \} = \{ \varphi^* f, \varphi^* g \} \qquad \forall f, g \in C^{\infty}(M).$$

The Evolution Operator

Definition (Evolution Operator)

Let (M, ω, H) be a complete Hamiltonian system. Define the *evolution operator*

$$U_t: C^{\infty}(M) \to C^{\infty}(M), \qquad U_t(f) := f \circ \theta_t^{X_H}$$

for all $t \in \mathbb{R}$.

Theorem

Let (M, ω, H) be a complete Hamiltonian system. Then

$$\frac{d}{dt}U_t(f) = U_t\{H, f\} \qquad \forall f \in C^{\infty}(M).$$

Preservation of Energy

Definition (Integral of Motion)

Let (M, ω, H) be a Hamiltonian system. An *integral of motion* is defined to be a function $I \in C^{\infty}(M)$ such that $\{H, I\} = 0$.

The Lie Algebra of a Lie Group

Definition (Lie Group)

A *Lie group* is defined to be a group object in the category of finite-dimensional smooth manifolds.

Given a Lie group G, the tangent space $\mathfrak{g} := T_e G$ to the identity element $e \in G$ is a Lie algebra. Indeed, there is a canonical isomorphism

$$T_eG \cong \mathfrak{X}_L(G),$$

where $\mathfrak{X}_L(G) \subseteq \mathfrak{X}(G)$ denotes the Lie subalgebra of all left-invariant vector fields on G.

As every left-invariant vector field is complete, we can define the *exponential map*

$$\exp: \mathfrak{g} \to G, \qquad \xi \mapsto \gamma_{\xi}(1),$$

where $\gamma_{\xi}: \mathbb{R} \to G$ denotes the unique integral curve of $X_{\xi} \in \mathfrak{X}_L(G)$ with $X_{\xi}(e) = \xi$ such that $\gamma_{\xi}(0) = e$ and $\dot{\gamma}_{\xi}(0) = \xi$.