CSci 127: Introduction to Computer Science

hunter.cuny.edu/csci

From email

From email

Can I earn extra credit?

From email

Can I earn extra credit?

No. This course does not have extra credit. However, completing Quizzes and Participating in class will only help your grade!

From email

- Can I earn extra credit? No. This course does not have extra credit. However, completing Quizzes and Participating in class will only help your grade!
- What is pseudocode? Why do we use it?

From email

- Can I earn extra credit? No. This course does not have extra credit. However, completing Quizzes and Participating in class will only help your grade!
- What is pseudocode? Why do we use it?

 Pseudocode is the "informal high-level description of the operating principle of a computer program or other algorithm."

2 / 29

From email

- Can I earn extra credit?
 - No. This course does not have extra credit. However, completing Quizzes and Participating in class will only help your grade!
- What is pseudocode? Why do we use it? Pseudocode is the "informal high-level description of the operating principle of a computer program or other algorithm." We use it to write down the ideas, before getting deep into the details.

2 / 29

From email

- Can I earn extra credit?
 No. This course does not have extra credit. However, completing Quizzes and Participating in class will only help your grade!
- What is pseudocode? Why do we use it? Pseudocode is the "informal high-level description of the operating principle of a computer program or other algorithm." We use it to write down the ideas, before getting deep into the details.
- What are types of variables?

2 / 29

From email

Can I earn extra credit?

No. This course does not have extra credit. However, completing Quizzes and Participating in class will only help your grade!

What is pseudocode? Why do we use it?

Pseudocode is the "informal high-level description of the operating principle of a computer program or other algorithm."

We use it to write down the ideas, before getting deep into the details.

What are types of variables?

Different kinds of information takes different amounts of space.

Types we have seen so far: int, float, str and objects (e.g. turtles).

From email

- Can I earn extra credit?
 - No. This course does not have extra credit. However, completing Quizzes and Participating in class will only help your grade!
- What is pseudocode? Why do we use it? Pseudocode is the "informal high-level description of the operating principle of a computer program or other algorithm." We use it to write down the ideas, before getting deep into the details.
- What are types of variables?
 Different kinds of information takes different amounts of space.
 Types we have seen so far: int, float, str and objects (e.g. turtles).
- How can I tell strings from variables?

2 / 29

From email

Can I earn extra credit?

No. This course does not have extra credit. However, completing Quizzes and Participating in class will only help your grade!

• What is pseudocode? Why do we use it?

Pseudocode is the "informal high-level description of the operating principle of a computer program or other algorithm."

We use it to write down the ideas, before getting deep into the details.

What are types of variables?

Different kinds of information takes different amounts of space.

Types we have seen so far: int, float, str and objects (e.g. turtles).

• How can I tell strings from variables?

Strings are surrounded by quotes (either single or double).

June 2021

2 / 29

From email

Can I earn extra credit?

No. This course does not have extra credit. However, completing Quizzes and Participating in class will only help your grade!

What is pseudocode? Why do we use it?

Pseudocode is the "informal high-level description of the operating principle of a computer program or other algorithm."

We use it to write down the ideas, before getting deep into the details.

What are types of variables?

Different kinds of information takes different amounts of space.

Types we have seen so far: int. float, str. and chiects (e.g., t)

Types we have seen so far: int, float, str and objects (e.g. turtles).

• How can I tell strings from variables?

Strings are surrounded by quotes (either single or double).

Variables names (identifiers) for memory locations are not.

From email

Can I earn extra credit?

No. This course does not have extra credit. However, completing Quizzes and Participating in class will only help your grade!

What is pseudocode? Why do we use it?

Pseudocode is the "informal high-level description of the operating principle of a computer program or other algorithm."

We use it to write down the ideas, before getting deep into the details.

What are types of variables?

Different kinds of information takes different amounts of space.

Types we have seen so far: int. float, str. and chiects (e.g., t)

Types we have seen so far: int, float, str and objects (e.g. turtles).

• How can I tell strings from variables?

Strings are surrounded by quotes (either single or double).

Variables names (identifiers) for memory locations are not. Ex: 'num' vs. num.

Today's Topics

- Recap: Decisions
- Logical Expressions
- Circuits
- Binary Numbers

Today's Topics

- Recap: Decisions
- Logical Expressions
- Circuits
- Binary Numbers

Challenge

Some challenges with types & decisions:

```
#What are the types:
v1 = 2017
v2 = "2018"
print(type(v1))
print(type("y1"))
print(type(2017))
print(type("2017"))
print(type(y2))
print(type(y1/4.0))
x = int(y2) - y1
if x < 0:
    print(y2)
else:
    print(y1)
```

```
cents = 432
dollars = cents // 100
change = cents % 100
if dollars > 0:
    print('$'+str(dollars))
if change > 0:
    quarters = change // 25
    pennies = change % 25
    print(quarters, "quarters")
    print("and", pennies, "pennies")
```

Python Tutor

```
#What are the types:
y1 = 2017
y2 = "2018"
print(type(y1))
print(type(y1/1"))
print(type(2017))
print(type(2017"))
print(type(y2))
print(type(y2))
x = int(y2) - y1
if x < 0:
print(y2)
else:
print(y1)
```

(Demo with pythonTutor)

June 2021

6 / 29

CSci 127 (Hunter) Lecture 5

Decisions

Fig: Operation of if...else statement

June 2021

Side Note: Reading Flow Charts

(xkcd/518)

8 / 29

Today's Topics

- Recap: Decisions
- Logical Expressions
- Circuits
- Binary Numbers

CSci 127 (Hunter)

Challenge

Predict what the code will do:

```
origin = "Indian Ocean"
winds = 100
if (winds > 74):
    print("Major storm, called a ", end="")
    if origin == "Indian Ocean" or origin == "South Pacific":
        print("cyclone.")
    elif origin == "North Pacific":
        print("typhoon.")
    else:
        print("hurricane.")
visibility = 0.2
winds = 40
conditions = "blowing snow"
if (winds > 35) and (visibility < 0.25) and \setminus
      (conditions == "blowing snow" or conditions == "heavy snow"):
    print("Blizzard!")
```

Python Tutor

```
origin - "Indian Occom"
india - 188
if certain - 188
if c
```

(Demo with pythonTutor)

Logical Operators

and

in1		in2	returns:
False	and	False	False
False	and	True	False
True	and	False	False
True	and	True	True

Logical Operators

and

in1		in2	returns:
False	and	False	False
False	and	True	False
True	and	False	False
True	and	True	True

or

in1		in2	returns:
False	or	False	False
False	or	True	True
True	or	False	True
True	or	True	True

Logical Operators

and

in1		in2	returns:
False	and	False	False
False	and	True	False
True	and	False	False
True	and	True	True
or			
in1		in2	returns:

in1		in2	returns:
False	or	False	False
False	or	True	True
True	or	False	True
True	or	True	True

not

	in1	returns:
not	False	True
not	True	False

Challenge

```
Predict what the code will do:
```

CSci 127 (Hunter)

```
semHours = 18
reaHours = 120
if semHours >= 12:
     print('Full Time')
else:
     print('Part Time')
pace = reqHours // semHours
if reqHours % semHours != 0:
     pace = pace + 1
print('At this pace, you will graduate in', pace, 'semesters,')
yrs = pace / 2
print('(or', yrs, 'years).')
for i in range(1,20):
     if (i > 10) and (i \% 2 == 1):
          print('oddly large')
     else:
          print(i)
```

Lecture 5

June 2021 13 / 29

90 Q

Python Tutor

(Demo with pythonTutor)

Today's Topics

- Recap: Decisions
- Logical Expressions
- Circuits
- Binary Numbers

Circuit Demo

 $({\sf Demo\ with\ circuitverse})$

Challenge

Predict when these expressions are true:

• in1 or not in1:

• not(in1 or in2):

• (in1 and in2) and in3:

Circuit Demo

(Demo with circuitverse)

Challenge

Draw a circuit that corresponds to each logical expression:

- in1 or in2
- (in1 or in2) and (in1 or in3)
- o (not(in1 and not in2)) or (in1 and (in2 and in3))

Circuit Demo

(Demo with circuitverse)

Today's Topics

- Recap: Decisions
- Logical Expressions
- Circuits
- Binary Numbers

Binary Numbers

• Logic \rightarrow Circuits \rightarrow Numbers

Binary Numbers

- Logic \rightarrow Circuits \rightarrow Numbers
- Digital logic design allows for two states:

- Logic \rightarrow Circuits \rightarrow Numbers
- Digital logic design allows for two states:
 - ► True / False

- Logic \rightarrow Circuits \rightarrow Numbers
- Digital logic design allows for two states:
 - ► True / False
 - ► On / Off (two voltage levels)

- Logic \rightarrow Circuits \rightarrow Numbers
- Digital logic design allows for two states:
 - ► True / False
 - ► On / Off (two voltage levels)
 - **▶** 1 / 0

- Logic \rightarrow Circuits \rightarrow Numbers
- Digital logic design allows for two states:
 - ► True / False
 - ► On / Off (two voltage levels)
 - **▶** 1 / 0
- Computers store numbers using the Binary system (base 2)

- Logic \rightarrow Circuits \rightarrow Numbers
- Digital logic design allows for two states:
 - ► True / False
 - ► On / Off (two voltage levels)
 - ▶ 1 / 0
- Computers store numbers using the Binary system (base 2)
- A bit (binary digit) being 1 (on) or 0 (off)

Example: $1 \times 16 + 1 \times 8 + 1 \times 1 = 16 + 8 + 1 = 25$

 \bullet Two digits: $\boldsymbol{0}$ and $\boldsymbol{1}$

Example: $1 \times 16 + 1 \times 8 + 1 \times 1 = 16 + 8 + 1 = 25$

- Two digits: 0 and 1
- Each position is a power of two

Example: $1 \times 16 + 1 \times 8 + 1 \times 1 = 16 + 8 + 1 = 25$

- Two digits: 0 and 1
- Each position is a power of two
 - ► Decimal: the "ones", "tens", "hundreds" and so on (powers of 10)

Example: $1 \times 16 + 1 \times 8 + 1 \times 1 = 16 + 8 + 1 = 25$

- Two digits: 0 and 1
- Each position is a power of two
 - ▶ Decimal: the "ones", "tens", "hundreds" and so on (powers of 10)
 - ▶ Binary: the "ones", "twos", "fours", "sixteens" and so on (powers of 2)

Example: $1 \times 16 + 1 \times 8 + 1 \times 1 = 16 + 8 + 1 = 25$

- Two digits: 0 and 1
- Each position is a power of two
 - ▶ Decimal: the "ones", "tens", "hundreds" and so on (powers of 10)
 - ► Binary: the "ones", "twos", "fours", "sixteens" and so on (powers of 2)
- In each position the digit is either 0 or 1, so given a binary number we can obtain the decimal equivalent as follows:

CSci 127 (Hunter)

Example: $1 \times 16 + 1 \times 8 + 1 \times 1 = 16 + 8 + 1 = 25$

- Two digits: 0 and 1
- Each position is a power of two
 - ▶ Decimal: the "ones", "tens", "hundreds" and so on (powers of 10)
 - ▶ Binary: the "ones", "twos", "fours", "sixteens" and so on (powers of 2)
- In each position the digit is either 0 or 1, so given a binary number we can obtain the decimal equivalent as follows:
 - ▶ In the "ones" position we either have a 1 or not

CSci 127 (Hunter) Lecture 5

Example: $1 \times 16 + 1 \times 8 + 1 \times 1 = 16 + 8 + 1 = 25$

- ullet Two digits: $oldsymbol{0}$ and $oldsymbol{1}$
- Each position is a power of two
 - ▶ Decimal: the "ones", "tens", "hundreds" and so on (powers of 10)
 - ▶ Binary: the "ones", "twos", "fours", "sixteens" and so on (powers of 2)
- In each position the digit is either 0 or 1, so given a binary number we can obtain the decimal equivalent as follows:
 - ▶ In the "ones" position we either have a 1 or not
 - ▶ In the "twos" position we either have a 2 or not

Example: $1 \times 16 + 1 \times 8 + 1 \times 1 = 16 + 8 + 1 = 25$

- Two digits: 0 and 1
- Each position is a power of two
 - ▶ Decimal: the "ones", "tens", "hundreds" and so on (powers of 10)
 - ▶ Binary: the "ones", "twos", "fours", "sixteens" and so on (powers of 2)
- In each position the digit is either 0 or 1, so given a binary number we can obtain the decimal equivalent as follows:
 - ▶ In the "ones" position we either have a 1 or not
 - ► In the "twos" position we either have a 2 or not
 - ▶ In the "fours" position we either have a 4 or not ...

CSci 127 (Hunter) Lecture 5

Example: $1 \times 16 + 1 \times 8 + 1 \times 1 = 16 + 8 + 1 = 25$

- Two digits: 0 and 1
- Each position is a power of two
 - ▶ Decimal: the "ones", "tens", "hundreds" and so on (powers of 10)
 - ▶ Binary: the "ones", "twos", "fours", "sixteens" and so on (powers of 2)
- In each position the digit is either 0 or 1, so given a binary number we can obtain the decimal equivalent as follows:
 - ▶ In the "ones" position we either have a 1 or not
 - ► In the "twos" position we either have a 2 or not
 - ▶ In the "fours" position we either have a 4 or not ...
- Example:

$$11001_{base2} = 16 + 8 + 1 = 25_{base10}$$

 Write a program that prints the numbers from 1 to 100. But for multiples of three print "Fizz" instead of the number and for the multiples of five print "Buzz". For numbers which are multiples of both three and five print "FizzBuzz".

- Write a program that prints the numbers from 1 to 100. But for multiples of three print "Fizz" instead of the number and for the multiples of five print "Buzz". For numbers which are multiples of both three and five print "FizzBuzz".
- Write down the output to see the pattern:

- Write a program that prints the numbers from 1 to 100. But for multiples of three print "Fizz" instead of the number and for the multiples of five print "Buzz". For numbers which are multiples of both three and five print "FizzBuzz".
- Write down the output to see the pattern:

- Write a program that prints the numbers from 1 to 100. But for multiples of three print "Fizz" instead of the number and for the multiples of five print "Buzz". For numbers which are multiples of both three and five print "FizzBuzz".
- Write down the output to see the pattern:

1

2

- Write a program that prints the numbers from 1 to 100. But for multiples of three print "Fizz" instead of the number and for the multiples of five print "Buzz". For numbers which are multiples of both three and five print "FizzBuzz".
- Write down the output to see the pattern:

1

2

Fizz

- Write a program that prints the numbers from 1 to 100. But for multiples of three print "Fizz" instead of the number and for the multiples of five print "Buzz". For numbers which are multiples of both three and five print "FizzBuzz".
- Write down the output to see the pattern:

1

1

Fizz

4

- Write a program that prints the numbers from 1 to 100. But for multiples of three print "Fizz" instead of the number and for the multiples of five print "Buzz". For numbers which are multiples of both three and five print "FizzBuzz".
- Write down the output to see the pattern:

1

1

Fizz

4

B1177

- Write a program that prints the numbers from 1 to 100. But for multiples of three print "Fizz" instead of the number and for the multiples of five print "Buzz". For numbers which are multiples of both three and five print "FizzBuzz".
- Write down the output to see the pattern:

1

1

Fizz

4

Buzz

Fizz

- Write a program that prints the numbers from 1 to 100. But for multiples of three print "Fizz" instead of the number and for the multiples of five print "Buzz". For numbers which are multiples of both three and five print "FizzBuzz".
- Write down the output to see the pattern:

1

1

Fizz

4

Вилл

Fizz

7

- Write a program that prints the numbers from 1 to 100. But for multiples of three print "Fizz" instead of the number and for the multiples of five print "Buzz". For numbers which are multiples of both three and five print "FizzBuzz".
- Write down the output to see the pattern:

1

2

Fizz

4

Вида

Fizz

7

. . .

14

24 / 29

- Write a program that prints the numbers from 1 to 100. But for multiples of three print "Fizz" instead of the number and for the multiples of five print "Buzz". For numbers which are multiples of both three and five print "FizzBuzz".
- Write down the output to see the pattern:

1

-

Fizz

Δ

_

Buzz

Fizz

7

. . .

14

FizzBuzz

- Write a program that prints the numbers from 1 to 100. But for multiples of three print "Fizz" instead of the number and for the multiples of five print "Buzz". For numbers which are multiples of both three and five print "FizzBuzz".
- Write down the output to see the pattern:

1

2

Fizz

4

Ь

Buzz

Fizz

•

1 1

14

FizzBuzz

• Write the **algorithm** then, if time, write the code.

 Write a program that prints the numbers from 1 to 100. But for multiples of three print "Fizz" instead of the number and for the multiples of five print "Buzz". For numbers which are multiples of both three and five print "FizzBuzz".

- Write a program that prints the numbers from 1 to 100. But for multiples of three print "Fizz" instead of the number and for the multiples of five print "Buzz". For numbers which are multiples of both three and five print "FizzBuzz".
- To Do List:

- Write a program that prints the numbers from 1 to 100. But for multiples of three print "Fizz" instead of the number and for the multiples of five print "Buzz". For numbers which are multiples of both three and five print "FizzBuzz".
- To Do List:
 - ► Create a loop that goes from 1 to 100.

- Write a program that prints the numbers from 1 to 100. But for multiples of three print "Fizz" instead of the number and for the multiples of five print "Buzz". For numbers which are multiples of both three and five print "FizzBuzz".
- To Do List:
 - ► Create a loop that goes from 1 to 100.
 - ▶ If the number is divisible by 3, print "Fizz".

- Write a program that prints the numbers from 1 to 100. But for multiples of three print "Fizz" instead of the number and for the multiples of five print "Buzz". For numbers which are multiples of both three and five print "FizzBuzz".
- To Do List:
 - ► Create a loop that goes from 1 to 100.
 - ▶ If the number is divisible by 3, print "Fizz".
 - ▶ If the number is divisible by 5, print "Buzz".

- Write a program that prints the numbers from 1 to 100. But for multiples of three print "Fizz" instead of the number and for the multiples of five print "Buzz". For numbers which are multiples of both three and five print "FizzBuzz".
- To Do List:
 - ► Create a loop that goes from 1 to 100.
 - ▶ If the number is divisible by 3, print "Fizz".
 - ▶ If the number is divisible by 5, print "Buzz".
 - ▶ If divisible by both, print "FizzBuzz".

- Write a program that prints the numbers from 1 to 100. But for multiples of three print "Fizz" instead of the number and for the multiples of five print "Buzz". For numbers which are multiples of both three and five print "FizzBuzz".
- To Do List:
 - ► Create a loop that goes from 1 to 100.
 - ▶ If the number is divisible by 3, print "Fizz".
 - ▶ If the number is divisible by 5, print "Buzz".
 - ► If divisible by both, print "FizzBuzz".
 - ► Otherwise print the number.

- Write a program that prints the numbers from 1 to 100. But for multiples of three print "Fizz" instead of the number and for the multiples of five print "Buzz". For numbers which are multiples of both three and five print "FizzBuzz".
- To Do List:
 - ► Create a loop that goes from 1 to 100.
 - ▶ If the number is divisible by 3, print "Fizz".
 - ▶ If the number is divisible by 5, print "Buzz".
 - ► If divisible by both, print "FizzBuzz".
 - ► Otherwise print the number.

 Order matters!!! To print FizzBuzz when i is divisible by both it should be checked first, otherwise it will never get to this case!

- Write a program that prints the numbers from 1 to 100. But for multiples of three print "Fizz" instead of the number and for the multiples of five print "Buzz". For numbers which are multiples of both three and five print "FizzBuzz".
- To Do List (Reordered):

- Write a program that prints the numbers from 1 to 100. But for multiples of three print "Fizz" instead of the number and for the multiples of five print "Buzz". For numbers which are multiples of both three and five print "FizzBuzz".
- To Do List (Reordered):
 - ► Create a loop that goes from 1 to 100.
 - ► If divisible by both 3 and 5, print "FizzBuzz".

- Write a program that prints the numbers from 1 to 100. But for multiples of three print "Fizz" instead of the number and for the multiples of five print "Buzz". For numbers which are multiples of both three and five print "FizzBuzz".
- To Do List (Reordered):
 - ► Create a loop that goes from 1 to 100.
 - ► If divisible by both 3 and 5, print "FizzBuzz".
 - ▶ If the number is divisible by 3, print "Fizz".
 - ▶ If the number is divisible by 5, print "Buzz".
 - Otherwise print the number.
 - ▶ Also should print a new line (so each entry is on its own line).

CSci 127 (Hunter) Lecture 5

- To Do List:
 - ► Create a loop that goes from 1 to 100.
 - ▶ If divisible by both 3 and 5, print "FizzBuzz".
 - ▶ If the number is divisible by 3, print "Fizz".
 - ▶ If the number is divisible by 5, print "Buzz".
 - ► Otherwise print the number.
 - ► Also should print a new line (so each entry is on its own line).

- To Do List:
 - ► Create a loop that goes from 1 to 100.
 - ▶ If divisible by both 3 and 5, print "FizzBuzz".
 - ▶ If the number is divisible by 3, print "Fizz".
 - ▶ If the number is divisible by 5, print "Buzz".
 - ► Otherwise print the number.
 - ▶ Also should print a new line (so each entry is on its own line).

for i in range(1,101):

- To Do List:
 - ► Create a loop that goes from 1 to 100.
 - ▶ If divisible by both 3 and 5, print "FizzBuzz".
 - ▶ If the number is divisible by 3, print "Fizz".
 - ▶ If the number is divisible by 5, print "Buzz".
 - ► Otherwise print the number.
 - ▶ Also should print a new line (so each entry is on its own line).

```
for i in range(1,101):
    if i%3 == 0 and i%5 == 0:
        print("FizzBuzz")
```

- To Do List:
 - Create a loop that goes from 1 to 100.
 - ▶ If divisible by both 3 and 5, print "FizzBuzz".
 - ▶ If the number is divisible by 3, print "Fizz".
 - ▶ If the number is divisible by 5, print "Buzz".
 - ► Otherwise print the number.
 - ► Also should print a new line (so each entry is on its own line).

```
for i in range(1,101):
    if i%3 == 0 and i%5 == 0:
        print("FizzBuzz")
    elif i%3 == 0:
        print("Fizz")
```

- To Do List:
 - Create a loop that goes from 1 to 100.
 - ▶ If divisible by both 3 and 5, print "FizzBuzz".
 - ▶ If the number is divisible by 3, print "Fizz".
 - ▶ If the number is divisible by 5, print "Buzz".
 - ► Otherwise print the number.
 - ▶ Also should print a new line (so each entry is on its own line).

```
for i in range(1,101):
    if i%3 == 0 and i%5 == 0:
        print("FizzBuzz")
    elif i%3 == 0:
        print("Fizz")
    elif i%5 == 0:
        print("Buzz")
```

- To Do List:
 - Create a loop that goes from 1 to 100.
 - ▶ If divisible by both 3 and 5, print "FizzBuzz".
 - ▶ If the number is divisible by 3, print "Fizz".
 - ▶ If the number is divisible by 5, print "Buzz".
 - ► Otherwise print the number.
 - ▶ Also should print a new line (so each entry is on its own line).

```
for i in range(1,101):
    if i%3 == 0 and i%5 == 0:
        print("FizzBuzz")
    elif i%3 == 0:
        print("Fizz")
    elif i%5 == 0:
        print("Buzz")
    else:
        print(i)
```

Recap

• In Python, we introduced:

Recap

- In Python, we introduced:
 - Decisions
 - ► Logical Expressions
 - ► Circuits
 - ► Binary Numbers

Reminders!

Before next class, don't forget to:

Review this class's Lecture and Lab

Reminders!

Before next class, don't forget to:

- Review this class's Lecture and Lab
- Take the Lab Quiz on Gradescope by 9pm Today

Reminders!

Before next class, don't forget to:

- Review this class's Lecture and Lab
- Take the Lab Quiz on Gradescope by 9pm Today
- Submit this class's 5 programming assignments (programs 21-25)