Lista Vetores e Matriz

- 1. Faça as funções abaixo. Construa uma função main para testá-las
 - a. Captura os valores do teclado e armazenando-os em um vetor
 - b. Mostre o produto interno dos dois vetores. Esta função deve preencher dois vetores X e Y com os dados do teclado.
 - a. Exemplo para vetores que possuem 4 elementos Exemplo:

$$X = (1,2,3,4) Y = (4,3,2,1)$$
 \Rightarrow $X.Y = 1*4 + 2*3 + 3*2 + 4*1 = 20$

- c. Exiba um vetor recebido na ordem inversa
- d. Exiba os elementos de um vetor recebido das posições pares seguidos das posições ímpares
- e. Recebe um vetor, perguntar ao usuário o número de posição desejada e exibir o valor da posição. Término: valor de posição inválida
- f. Mostrar o maior valor armazenado de um vetor recebido
- g. Somar os elementos de um vetor recebido
- h. Contar quantos números ímpares tem em um vetor recebido
- Mostra quais valores são menores que o valor armazenado na última posição do vetor recebido
- j. Mostrar a média dos valores armazenados no vetor recebido
- k. Mostrar quantos valores do vetor recebido são menores que a média
- I. Mostrar quais valores do vetor recebido são maiores que a média
- m. Retornar o número da posição do vetor recebido que armazena um valor rambém recebido
- 2. Construa as funções a seguir que recebem uma matriz (criada com dados aleatórios) e uma função *main* para testá-las:
 - a. Também recebe um vetor vazio e preenche-o com a soma dos valores de cada linha da matriz
 - b. Também recebe um vetor vazio e preenche-o com a soma dos valores de cada coluna da matriz
 - c. Mostra os elementos da diagonal principal da matriz
 - d. Mostra os elementos da diagonal secundária
 - e. Mostra tudo, exceto a diagonal principal
 - f. Multiplica uma matriz por um número inteiro recebido
 - g. Mostra o resultado da soma entre duas matrizes recebidas.
 - h. Altera para 0 todos os valores da matriz que são múltiplos de sua posição(de se sua linha ou coluna)
 - i. Verifica se uma matriz é <u>simétrica</u>: retorna 1 se TRUE e 0 se FALSE:
 - j. Calcula a transposta de uma matriz:
- 3. Faça um programa que construa uma matriz 6x6 onde os índices da matriz representarão as cidades e os valores da matriz, criados randomicamente, representarão as distâncias entre as cidades. Somente os valores da diagonal inferior da matriz devem ser aleatoriamente gerados (pois a matriz será simétrica e sua diagonal principal é 0).

Exemplo da matriz segue abaixo:

	1.(Cáceres)	2.(BBugres)	3.(Cuiabá)	4.(VGrande)	5.(Tangará)	6.(PLacerda)
1.(Cáceres)	0	63	210	190	300	190
2.(BBugres)	63	0	160	150	95	70
3.(Cuiabá)	210	160	0	10	120	60
4.(VGrande)	190	150	10	0	110	30
5.(Tangará)	300	95	120	110	0	80
6.(PLacerda)	190	70	60	30	80	0

Receba agora um vetor de 6 elementos que representará a sequência que o usuário irá percorrer, começando do índice 1 e seguindo para o índice 2 e assim sucessivamente, o vetor só poderá ter valores entre 1 e 6.

Exemplo:

Indice	1	2	3	4	5	6
Cidade	3	4	2	5	6	1

Seu programa deverá mostrar a distância percorrida pelo usuário.

Nesse exemplo: 10 + 150 + 95 + 80 + 190 = 525