# The Exponential Distribution in R versus the Central Limit Theorem (CLT) — Part 2

calaca

March 9th 2016

## Overview

Now in the second portion of the class, we're going to analyze the ToothGrowth data in the R datasets package.

# About the data

The response is the length of odontoblasts (cells responsible for tooth growth) in 60 guinea pigs. Each animal received one of three dose levels of vitamin C (0.5, 1, and 2 mg/day) by one of two delivery methods, (orange juice or ascorbic acid (a form of vitamin C and coded as VC).

A data frame with 60 observations on 3 variables.

- [,1] len numeric Tooth length
- [,2] supp factor Supplement type (VC or OJ)
- [,3] dose numeric Dose in milligrams/day

Source: C. I. Bliss (1952) The Statistics of Bioassay. Academic Press.

# Analysis

1. Load the ToothGrowth data and perform some basic exploratory data analyses

```
library(datasets)
data <- ToothGrowth
head(ToothGrowth) # Taking a look at the first parts of the dataset
##
     len supp dose
## 1 4.2
           VC 0.5
## 2 11.5
           VC 0.5
## 3 7.3
           VC 0.5
## 4 5.8
           VC 0.5
## 5 6.4
           VC 0.5
## 6 10.0
```

# Taking a look at how the data object is structured

## 2. Provide a basic summary of the data

theme\_economist()

```
summary(data) # Summary of the dataset
```

```
##
         len
                             dose
                    supp
          : 4.20
                    OJ:30
                            0.5:20
   Min.
                    VC:30
   1st Qu.:13.07
                            1 :20
##
## Median :19.25
                              :20
##
  Mean
          :18.81
   3rd Qu.:25.27
   Max.
           :33.90
##
library(ggplot2)
library(ggthemes)
ggplot(data, aes(x = dose, y = len, fill = supp)) + geom_bar(stat = "identity") +
  facet_grid(. ~ supp) + labs(x = expression("Dose"[mg/day])) + ylab("Tooth length") +
  guides(fill = guide_legend(title = "Supplement type (VC or OJ)\n")) +
  ggtitle("The Effect of Vitamin C on Tooth Growth in Guinea Pigs") +
```



Observing the plot, we see that the amount of supplement (OJ or VC) given to a guinea pig seems to make their teeth grow bigger.

3. Use confidence intervals and/or hypothesis tests to compare tooth growth by supp and dose. (Only use the techniques from class, even if there's other approaches worth considering)

```
##
## Welch Two Sample t-test
##
## data: len by supp
## t = 1.9153, df = 55.309, p-value = 0.06063
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.1710156 7.5710156
## sample estimates:
## mean in group OJ mean in group VC
## 20.66333 16.96333
```

 $H_0$  = supplement type affects tooth growth: P-value (0.06063) is greater than 0.05, therefore we cannot reject the null hypothesis ( $H_0$ ).

```
data <- ToothGrowth # Fetching the data again (now we need dosage as numeric)
t.test(data$len, data$dose)</pre>
```

```
##
## Welch Two Sample t-test
##
## data: data$len and data$dose
## t = 17.81, df = 59.798, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 15.66453 19.62881
## sample estimates:
## mean of x mean of y
## 18.813333 1.166667</pre>
```

## 4. State your conclusions and the assumptions needed for your conclusions

#### **Conclusions:**

 $H_0$  = supplement type affects tooth growth: This hypothesis cannot be rejected. Which means that there is not enough evidence to affirm that the a type of supplement is better than the other.

 $H_a = dosage$  affects tooth growth: This hypothesis can be rejected. Which means that the amount of supplement affects the tooth growth. Thus, when dosage is increased the guinea pig's tooth grows bigger. Assumptions:

- 1. The 60 guinea pigs used is the study represent the whole population of guinea pigs;
- 2. Variance is different for the sample and the theoritical group.