D1t4b. 简单难题练习题

时间限制: 1.0s 内存限制: 256.0MB

输入文件名:easyhard.in 输出文件名:easyhard.out

附加文件:

samples.rar (462B)

Description

「朝露」

蓬莱山辉夜向你打出了最后一张符卡

古老的力量开始涌动,静谧的夜幕不断翻滚

五色的琉璃弹幕交织在一起

似是宣告那黎明的到来——正如其名一般

在这无尽的永夜返中,你只看到了辉夜留给你的最终谜题:

盒子里有n个球,球的颜色有黑白两种,但是不知道初始状态

一共进行加次操作,每次会从盒子中取出一个球,然后放入黑白各一个球,然后再取出一个球

取出的2m个球会形成一个序列,你需要对所有初始状态计算本质不同的序列对p取模的结果

两个序列不同当且仅当存在一个位置,其所代表的球的颜色在两个序列中不同

这里的初始状态指的是盒子中两种颜色的球的个数

Input

一行三个数n, m, p

Output

一行一个数表示答案

Sample Input

1 | 1 2 114514

Sample Output

1 | 8

Data Constraint

对于100的数据 , $1 \leq n, m \leq 3*10^3, 1 \leq p \leq 10^9$

测试点	\boldsymbol{n}	m
1	≤ 10	≤ 10
2	≤ 30	≤ 30
3 - 4	≤ 60	≤ 60
5 - 6	≤ 300	≤ 300
7 - 10	< 3000	< 3000

Hint

样例解释:

令黑为1, 白为0

则8种不同的序列分别为1010, 1011, 1100, 1101, 0010, 0011, 0100, 0101

D5vto. 往事成风

时间限制:1.0s 内存限制:512.0MB 输入文件名:imperishable.in 输出文件名:imperishable.out 附加文件:

题目描述

几年之后全世界会刮起一场大风

我们会因这场风而各奔东西

但心却紧紧相系

定义一个可重集 S 的众数 f(S) 为集合中出现次数最多且编号最小的数字。 例如 , f(1,2,2,3)=2 , f(2,2,3,3)=2 。

定义一个可重集 S 的价值为 $2^{f(S)}$ 。

现在你有一个长度为 n 的序列 a_1,a_2,\cdots,a_n , 其中数字 a_z 表示可重集 S 中正整数 x 出现了 a_x 次。你需要将这个可重集 S 不重、不漏地划分成若干个可重集 ,使得这些可重集的价值之和最小。你只需要输出这个数值在模 998244353 意义下的结果。

接下来,会有 q次修改,每次修改会将 a_x 改为 y 。每次修改后你都要重新输出上面所描述的数值。

输入格式

从文件 imperishable.in 中读入数据。

第一行一个正整数 Num,表示测试点编号。你可能不需要这个数字。

接下来一行一个正整数 n , 表示序列的长度。

接下来一行 n 个正整数 , 分别表示 a_1, a_2, \ldots, a_n 。

接下来—个正整数 q , 表示修改次数。

接下来 q 行,每行两个正整数 x,y,表示将 a_x 改为 y_{\circ}

输出格式

输出到文件 imperishable.out 中。

答案对 998244353 取模。

在修改之前,先输出一个数值表示答案。

每次修改之后,都要输出一个数值表示答案。

样例输入1

```
1 | 0 | 2 | 4 | 4 | 3 | 4 | 1 | 2 | 3 | 4 | 2 | 5 | 1 | 1 | 6 | 1 | 2
```

样例输出1

```
1 | 2
2 | 10
3 | 6
```

样例1解释

刚开始,可重集为 1,1,1,1,2,3,3,4,4,4,可以划分为可重集 1,1,1,1,2,3,3,4,4,4,答案为 $2^1=2$ 。第一次修改后,可重集变为 1,2,3,3,4,4,4,可将其划分为 1,4 和 2,3,3,4,4, 答案为 $2^1+2^3=10$ 。第二次修改后,可重集变为 1,1,2,3,3,4,4,4,可将其划分为 1,1,3,4,4 和 2,3,4 ,答案为 $2^1+2^2=6$ 。

样例 2

见下发数据下的 imperishable2.in 和 imperishable2.ans 。

数据范围

对于所有数据,满足 $1\leq n\leq 2\times 10^5, 0\leq q\leq 2\times 10^5, 1\leq a_i, y\leq 2\times 10^5, 1\leq x\leq n$ 。数据有一定梯度。

测试点编号	n	q	$max\{a_i,y\}$	特殊性质
1	≤ 1	≤ 0	≤ 1	无
$2\sim 5$	≤ 5	≤ 2	≤ 10	$\sum a_i \leq 10$
6	≤ 15	≤ 2	≤ 10	无
$7\sim11$	≤ 60	≤ 50	≤ 10	无
$12\sim14$	≤ 3000	≤ 3000	≤ 4	无
15	≤ 3000	≤ 3000	$\leq 2 imes 10^5$	无
16	≤ 5000	≤ 5000	$\leq 2 imes 10^5$	无
17	≤ 10000	≤ 10000	$\leq 2 imes 10^5$	无
$18\sim 20$	$\leq 5\times 10^4$	$\leq 10^5$	$\leq 2 imes 10^5$	任意时刻 , a_i 互不相同
$21\sim22$	$\leq 5\times 10^4$	$\leq 5\times 10^4$	$\leq 2 imes 10^5$	无
$23\sim25$	$\leq 2 imes 10^5$	$\leq 2\times 10^5$	$\leq 2 imes 10^5$	无

Dhi1e. Ginger 的无向无环联通图

时间限制: 1.5s 内存限制: 2.0GB 代码提交间隔: 3分钟(现在可以提交)

输入文件名:treeq.in 输出文件名:treeq.out

试题来源:姜锐漳

附加文件:

🗅 ex_treeq.ans (6B) 🕒 ex_treeq.in (178.9MB)

题目描述

有一棵 n 个节点的有根树 , 一条树边可以记为 $\left(F_{i},w_{i}\right)$, 表示连接点 F_{i} 和点 i 权为 $w_{i\circ}$

对于边 i , a_{ij} 的定义如下:令 $c_{j,i}$ 为点 j 与其他 n-1 个点之间的简单路径中经过边 i 的路径数 , 那么 $a_{ij}=c_{j,i}w_i$ 。

一条边 i 在点 j 是优的 , 当且仅当不存在有另一条边 k 使得 $a_{kj}>a_{ij}$ (可能有多条边在同一个点是优的) 。

令 f(i) 表示边 i 在多少个点上是优的 , 现在要求 f(i)。

输入格式

第一行,一个正整数 n。

接下来 n-1 行,第 i 行两个正整数 F_{i+1}, w_{i+1} 表示一条边的信息。

输出格式

为减少输出量,共输出一行,一个整数,表示所有f(i)的异或和。

样例输入 🕹

1 | 5

1 3 2

3 2 1

4 3 1 5 3 1

样例输出 🕹

1 2

数据范围

数据点编号	数据范围	特殊性质
1,2	$n \le 5~000$	
3, 4	$n \leq 10^6$	$w_i = 1$
5,6	$n \leq 10^6$	$F_i = i - 1$
7,8	$n \leq 10^6$	$F_i = 1$
$9\sim15$	$n \leq 10^6$	
$16\sim 20$	$n \le 10^7$	

对于所有数据, $n \leq 10^7, w_i \leq 10^9, F_i < i$ 。

请选手注意常数。

样例解释

各条边的 f 分别为 3,1,1,1。

Dp9jc. 走廊

时间限制: <u>1.5s</u> 内存限制: <u>1.0GB</u> 輸入文件名: corridor.in 輸出文件名: corridor.out	
附加文件:	
corridor1.ans (20B)	Ch corridor 2 in (118.9KB)

题目描述

GreenDuck 买到了最新的扫地机器人——RobotDuck。为了更高效地清扫房间,GreenDuck 决定分析一下房间的布局和 RobotDuck 的清扫机制。

GreenDuck的房间可以看成是 n 行 m 列的网格,每个格子中要么是空的,要么放了一件家具。同时他惊奇地发现,每个家具都很薄何以看成是一条线段),两个端点分别占据了一个格子的西北角和东南角!

RobotDuck 在清扫时会采取这样一种机制:刚开始,可以给它设定一个方向(向南或向东),接着它将一直沿着直线行进。如果碰到一个家具,那么会反弹。具体方式如下图所示。

GreenDuck — 开始得知,在自己的房间里有 k 件家具,第 i 件家具在第 x_i 行, y_i 列。接下来,他会进行 Q 次测试。

第一种测试,是在一个没有家具的格子上放上一件家具(方向保持一致)。这种测试后,他不会拿走任何家具。

第二种测试,是将 RobotDuck 贴着墙壁然后释放。具体来说,如果 RobotDuck 放在北面(对应了图中矩形的上边界),那么它会从第一行某个恪子的上边界的中心出发,面向南面行进。如果 RobotDuck 放在西面(对应了图中矩形的左边界),那么它会从第一列某个恪子的左边界的中心出发,面向东面行进。在行进过程中,它遵守清扫的机制。

GreenDuck 想知道,在每次第二种测试时,RobotDuck 在反弹恰好 q次后会在哪个格子里。请你告诉他。

输入格式

第一行四个数字,type, n, m, k,分别表示数据类型(你可能不需要),行数,列数,一开始有的家具件数。

接下来 k 行,每行两个整数 x_i, y_i ,分别表示这件家具的行数和列数。

接下来一行一个整数 Q , 表示测试的次数。

接下来 Q 行,首先输入一个数字 w。

若 w 为 1 , 则会有两个数字 x,y ,分别表示新添的家具的行数和列数。

若w为2,则会有三个数字x,y,q。若x=0,表示 RobotDuck 从第一行第y列格子的上边界的中心面向南行进。否则y=0,表示 RobotDuck 从第一列第x行格子的左边界的中心面向东行进。q表示反弹的次数。

输出格式

对于每个 w=2 的操作,输出一行两个数字 x 和 y 分别表示所在格子的行数和列数。

特别地,若 RobotDuck 在第 q次反弹之前就碰到了墙壁,若墙壁是第 n 行格子的下边界,输出"n+1 列数",否则输出"行数 m+1"。

样例输入1

```
0 4 4 1
2 2
5
2 2 0 3
1 3 2
2 2 0 2
2 2 0 3
2 2 0 4
```

样例输出 1

```
5 2
3 2
3 5
3 5
```

样例 1 解释

下图中紫色的圆圈表示最终所到达的格子。

样例 2

见下发文件下的 corridor2.in 和 corridor2.ans 。

数据范围

对于所有数据,家具的坐标不会重复,每次第二种操作要么 x=0 要么 y=0。 $1 \leq q \leq 200000$ 。

测试点编号	type	n, m	k + Q	特殊性质
$1\sim 5$	= 0	≤ 100	≤ 2000	无
$6\sim11$	= 1	≤ 20000	≤ 150000	询问中不会出现1号操作
$12\sim17$	= 2	≤ 50000	≤ 150000	反弹次数之和不超过 10^7 (不是 q 之和)
$18\sim25$	= 3	≤ 50000	≤ 150000	无