UFRJ / COPPE / PEE – Primeiro Período de 2010 CPE-723 – Otimização Natural (Parte II - Simulated Annealing)

Prova Parcial – 05 de maio de 2010

Todos os itens da prova têm o mesmo valor: 1.0 ponto cada (total de 10 pontos). Tempo de prova: 2 horas.

- 1. (Algoritmo de Metropolis) Considere uma variável aleatória $X \in \{1, 2, 3, 4, 5, 6, 7\}$ e uma função custo definida por $J(x) = -x^2 + 8x 7$. A temperatura é T = 1.
 - a) Calcule os fatores de Boltzmann $\exp(-J(x)/T)$, para x = 1, 2, 3, 4, 5, 6, 7.
 - b) Proponha um algoritmo para gerar uma distribuição de Boltzmann/Gibbs para a variável aleatória X, conforme os custos J(x).
 - c) Execute manualmente as três primeiras iterações do algoritmo proposto no item (b).
- 2. (Algoritmo de Metropolis) Considere um vetor aleatório X com duas dimensões: $X = [X_1 ; X_2]$, sendo que $X_1 \in \{0,1\}$ e $X_2 \in \{0,1\}$. A função custo é $J(\mathbf{x}) = 2 x_1 x_2$.
 - a) A aplicação do algoritmo de Metropolis ao vetor \mathbf{x} , alterando uma componente $(x_1 \text{ ou } x_2)$ de cada vez, define um processo de Markov com duas matrizes de transição: \mathbf{M}_1 e \mathbf{M}_2 . Calcule estas matrizes de transição. Considere T=1.0. Note que o número de estados possíveis é 4.
 - b) Calcule, para temperatura T=1.0, a distribuição de Boltzmann/Gibbs do vetor aleatório X. Mostre que este vetor de probabilidades é um vetor invariante para ambas as matrizes de transição do item (a).
- 3. (Simulated Annealing)
 - a) Explique, através de um pseudo-código, o uso do algoritmo S.A. básico para a solução do problema do caixeiro viajante com quatro cidades, localizadas nas coordenadas (0,0), (0,1), (1,0) e (1,1) do plano, considerando que a viagem sempre comece e termine pela cidade localizada em (0,0). Defina e use quaisquer parâmetros (por exemplo, temperatura inicial, método de resfriamento, número de iterações a temperatura fixa etc.) que possam ser necessários.
 - b) Calcule os custos de cada uma das soluções possíveis para este problema.
 - c) Com temperatura fixa T=1, calcule a probabilidade com que cada uma das possíveis soluções será gerada, após a convergência do algoritmo.
- 4. (Deterministic Annealing) São dados quatro vetores: $\mathbf{x}_1 = (0,0)$, $\mathbf{x}_2 = (0,1)$, $\mathbf{x}_3 = (1,0)$, $\mathbf{x}_4 = (1,1)$. Eles devem ser divididos em três conjuntos, conforme os centros de gravidade \mathbf{y}_1 , \mathbf{y}_2 , e \mathbf{y}_3 . Considere a configuração inicial $\mathbf{y}_1(0) = \mathbf{x}_1$, $\mathbf{y}_2(0) = \mathbf{x}_2$, $\mathbf{y}_3(0) = \mathbf{x}_3$. Considere também T = 0.1.
 - a) Calcule a matriz de probabilidades $p(\mathbf{y}|\mathbf{x})$ que minimiza J = D TH, sendo D e H dados por:

$$D = \sum_{\mathbf{x}} p(\mathbf{x}) \sum_{\mathbf{y}} p(\mathbf{y}|\mathbf{x}) ||\mathbf{x} - \mathbf{y}||^2$$

$$H = -\sum_{\mathbf{x}} \sum_{\mathbf{y}} p(\mathbf{x}, \mathbf{y}) \log p(\mathbf{x}, \mathbf{y})$$

b) Calcule as novas posições dos centróides, ou seja $\mathbf{y}_1(1)$, $\mathbf{y}_2(1)$ e $\mathbf{y}_3(1)$ a partir da matriz $p(\mathbf{y}|\mathbf{x})$ que foi calculada no item (b).