Spazi Vettoriali - Sommario

Spazi e sottospazi vettoriali.

Spazi Vettoriali

Definizione di \mathbb{R} -spazio vettoriale, gli 8 assiomi dei spazi vettoriali. L'utilità di spazi vettoriali; esempi di spazi vettoriali.

1. Definizione di spazio vettoriale

Cerchiamo di astrarre quanto visto in Vettori Liberi e Operazioni sui vettori liberi.

DEF 1. Un \mathbb{R} -spazio vettoriale (o spazio vettoriale su \mathbb{R}) è un insieme V con 2 operazioni definiti come:

$$egin{aligned} +: V imes V &\longrightarrow V; \ (u,v) \mapsto u + v \ &\cdot : \mathbb{R} imes V &\longrightarrow V; \ (\lambda,v) \mapsto \lambda \cdot v \end{aligned}$$

tali per cui $orall \lambda, \mu \in \mathbb{R}$ e $orall u, v, w \in V$ sono soddisfatte le seguenti proprietà:

$$egin{aligned} & \mathrm{v}_1: (u+v) + w = u + (v+w) \ & \mathrm{v}_2: u+v = v+u \ & \mathrm{v}_3: \exists 0 \in V \mid 0+v = v+0 = v \ & \mathrm{v}_4: \exists -v \in V \mid v + (-v) = (-v) + v = 0 \ & \mathrm{v}_5: \lambda \cdot (u+v) = \lambda u + \lambda v \ & \mathrm{v}_6: (\lambda + \mu) \cdot u = \lambda \cdot u + \mu \cdot u \ & \mathrm{v}_7: (\lambda \cdot \mu) \cdot v = \lambda \cdot (\mu \cdot v) \ & \mathrm{v}_8: 1 \cdot v = v \end{aligned}$$

Inoltre uno **spazio vettoriale** può essere anche definito con la seguente *terna*:

$$(V,+,\cdot)$$

DEF 1.1. Chiamiamo l'elemento 0 della v_3 l'elemento neutro.

OSS 1.1. Notare che nella v_8 non chiameremo 1 *l'elemento neutro* per ragioni di convenzione, particolarmente per quanto riguarda l'algebra astratta.

PROP 1.1. Ciò che abbiamo visto fino ad ora ci mostra che V_2 (ovvero l'insieme dei vettori liberi nel piano) è un \mathbb{R} -spazio vettoriale.

DEF 1.1. Vettore

DEF 1.1. Sia V uno \mathbb{R} -spazio vettoriale; gli elementi $v \in V$ si dicono **vettore** ! **ATTENZIONE!** Si nota immediatamente che questa definizione del *vettore* non deve necessariamente corrispondere alla nostra idea di un *vettore libero*.

PROP 1.1. L'unicità del vettore neutro 0

L'assioma v_3 garantisce che *esiste* almeno un vettore neutro 0 tali che certe proprietà vengono soddisfatte; però ciò che *NON* garantisce è l'unicità del vettore neutro 0. Potrebbe esistere un altro vettore *neutro* che possiamo chiamare 0'.

Però 0' non esiste e lo dimostreremo.

DIMOSTRAZIONE. Voglio dimostrare che se V è un \mathbb{R} -spazio vettoriale, allora l'elemento neutro 0 è unico.

Supponiamo quindi che esistano due elementi neutri: 0 e 0'; mostreremo che con questa supposizione deve necessariamente valere 0=0', quindi da questo seguirà la tesi.

Per ipotesi, $\forall v \in V$,

$$A.\ 0 + v \stackrel{\mathrm{v}_3}{=} v + 0 = v$$
 $B.\ 0' + v \stackrel{\mathrm{v}_3}{=} v + 0' = v$

In A. scegliamo v=0'; allora

$$0 + 0' = 0' + 0 = 0'$$

In B. scegliamo invece v=0; allora

$$0' + 0 = 0 + 0' = 0$$

Quindi notiamo che

$$0 = 0 + 0' = 0'$$

per la proprietà transitiva dell'uguaglianza, 0 = 0'.

PROP 1.2. $0 \cdot v = 0$

La proposizione

$$0 \cdot v = 0$$

sembra ovvia e banale, come ci suggerirebbe la notazione; però in realtà non lo è veramente, in quanto associamo due concetti *diversi*; da una parte abbiamo lo *scalamento* del vettore v per $\lambda=0$, dall'altra abbiamo il vettore neutro v.

Quindi vogliamo dimostrare che se V è un spazio vettoriale su \mathbb{R} , allora per ogni $v \in V$ sussiste la proposizione.

DIMOSTRAZIONE. Per dimostrare la tesi, supponiamo che $v \in V$ e quindi abbiamo che:

$$egin{aligned} 0 \cdot v &= (0+0) \cdot v \stackrel{\mathrm{v}_6}{=} 0 \cdot v + 0 \cdot v \ 0 \cdot v &= 0 \cdot v + 0 \cdot v \ (0 \cdot v) + (-(0 \cdot v)) &= (0 \cdot v) + (-(0 \cdot v)) + (0 \cdot v) \ 0 &= 0 \cdot v \ 0 \cdot v &= 0 \blacksquare \end{aligned}$$

OSS 1.2.1. Notare che in questi passaggi abbiamo fatto un *assunto* che non è dato per scontato; ovvero che il vettore opposto -v è unico ad ogni vettore v. Infatti questo assunto è ancora da *dimostrare* (che è necessario per non invalidare questa dimostrazione).

PROP 1.3.
$$(-1) \cdot v = -v$$

Anche la proposizione

$$(-1) \cdot v = -v$$

sembra intuitiva, ma in realtà non è dato *per scontato* secondo gli assiomi v; infatti da un lato abbiamo lo *scalamento* di un vettore, invece dall'altro abbiamo il *vettore opposto del vettore v*.

Quindi vogliamo dimostrare che se V è un spazio vettoriale su \mathbb{R} , allora per ogni vettore $v \in V$ vale la proposizione appena enunciata.

DIMOSTRAZIONE. Per dimostrare la tesi, utilizziamo la proprietà v_3 ,

$$v + (-v) = -v + v = 0$$

e dimostriamo la seconda uguaglianza, assumendo che $-v = (-1) \cdot v$;

$$(-1)\cdot v+(1)\cdot v\stackrel{\mathrm{v}_6}{=} (-1+1)\cdot v=0\cdot v=0$$

OSS 1.2. Il senso di studiare i campi vettoriali

Si nota che in questa pagina non abbiamo veramente imparato qualcosa di nuovo; come il filosofo F. Nietzsche criticherebbe l'uomo che produce la definizione di un mammifero poi per riconoscere un cammello come un $mammifero^{(1)}$, non abbiamo veramente scoperto nulla di nuovo: infatti abbiamo solo dato definizioni poi per riconoscerle, ad esempio abbiamo definito lo spazio vettoriale e abbiamo riconosciuto V_2 come uno spazio vettoriale.

In realtà il discorso del filosofo tedesco non varrebbe qui: abbiamo dato questa definizione di spazio vettoriale per un motivo ben preciso, ovvero quello di *astrarre, abs-trahĕre*. Astrarre nel senso che togliamo l'aspetto "accidentale" dei vettori geometrici, concentrandoci invece sull'aspetto "sostanziale".

Infatti dopo potremmo vedere che esistono molti insiemi che sono dei spazi vettoriali; se dimostro che un certo insieme A è uno spazio vettoriale, allora le proprietà \mathbf{v}_n saranno sicuramente vere.

(1) "Se io produco la definizione di un mammifero e poi dichiaro, alla vista di un cammello: guarda, un mammifero! certo con questo una verità viene portata alla luce, ma essa è di valore limitato, mi pare; in tutto e per tutto essa è antropomorfica e non contiene un solo singolo punto che sia «vero in sé», reale e universalmente valido, al di là della prospettiva dell'uomo." (Su verità e menzogna in senso extramorale, 1896, Friedrich Nietzsche)

2. Esempi di spazi vettoriali

Dopo il lungo preambolo enunciato in **OSS 1.2.**, andiamo a vedere qualche esempio di spazio vettoriale.

ESEMPIO 2.1. Numeri reali

Consideriamo $V = \mathbb{R}$; con l'usuale definizione di *somma* + e *moltiplicazione* ·, si verifica che anche \mathbb{R} è uno \mathbb{R} -spazio vettoriale.

ESEMPIO 2.1. Coppie ordinate V_2

Consideriamo $V = \mathbb{R} \times \mathbb{R}$, ovvero

$$V = \{(a,b): a \in \mathbb{R}, b \in \mathbb{R}\}$$

con le operazioni

$$(a,b)+(c,d):=(a+c,b+d) \ \lambda\cdot(a,b):=(\lambda\cdot a,\lambda\cdot b)$$

allora $V = \mathbb{R}^2$ è uno *spazio vettoriale*.

ESEMPIO 2.2. \mathbb{R}^n

Generalizziamo ESEMPIO 2.1. Coppie ordinate \$V_2\$; ovvero definiamo

$$V=\mathbb{R}^n=\{(a_1,a_2,\ldots,a_n):a_1,a_2,\ldots,a_n\in\mathbb{R}\}$$

V è l'insieme delle n-uple ordinate dei numeri reali, con le operazioni

$$egin{aligned} +: V imes V &\longrightarrow V; \ &((a_1, a_2, \ldots, a_n), (b_1, b_2, \ldots, b_n)) \mapsto (a_1 + b_1, \ldots, a_n + b_n) \ &\cdot : \mathbb{R} imes V &\longrightarrow V; \ &\lambda \cdot (a_1, a_2, \ldots, a_n) \mapsto (\lambda \cdot v_1, \lambda \cdot v_2, \ldots, \lambda \cdot v_n) \end{aligned}$$

 $(V,+,\cdot)$ è uno spazio vettoriale su $\mathbb{R}.$

ESEMPIO 2.3. Insieme delle funzioni in variabile reale.

Consideriamo l'insieme delle funzioni di variabile reale (DEF 1.1.), ovvero

$$V = \{ ext{funzioni } f: \mathbb{R} \longrightarrow \mathbb{R} \}$$

con le operazioni

$$+: V \times V \longrightarrow V; \ (f,g) \mapsto f + g$$

 $\cdot: \mathbb{R} \times V \longrightarrow V; \ (\lambda,f) \mapsto \lambda \cdot f$

OSS 2.3.1. Qui è importante chiarire il comportamento della somma, in

quanto per noi non risulta immediatamente intuibile. Siano f,g funzioni, quindi

$$f + q = h$$

ove

$$h:\mathbb{R}\longrightarrow\mathbb{R}$$

data dalla seguente: se $a \in \mathbb{R}$, allora

$$h(a) = (f + g)(a) := f(a) + g(a)$$

OSS 2.3.2. Stesso discorso vale per lo scalamento;

$$\lambda \cdot f = F$$
 $F : \mathbb{R} \longrightarrow \mathbb{R}$

ove per ogni a reale,

$$F := \lambda \cdot (f(a))$$

OSS 2.3.3. Vogliamo trovare la *funzione nulla*, ovvero la *funzione* che appartiene a V e gioca lo stesso ruolo di 0. La funzione la chiamiamo O e si definisce come

$$O:\mathbb{R}\longrightarrow~\mathbb{R},~x\mapsto 0$$

infatti, se definiamo $f:\mathbb{R}\longrightarrow\mathbb{R}$, allora

$$(f+O):\mathbb{R}\longrightarrow\mathbb{R},\ x\mapsto f(x)+0=f(x)$$

Abbiamo visto che $\forall x \in \mathbb{R}$,

$$(f+O)(x) = f(x)$$

pertanto

$$O + f = f; f + O = f$$

quindi abbiamo verificato che O è l'elemento neutro dello spazio vettoriale $(V, +, \cdot)$.

Sottospazi Vettoriali

1. Sottospazio Vettoriale

DEF 1. Sia V un \mathbb{R} -spazio vettoriale; un sottoinsieme $W \subseteq V$ si dice un sottospazio vettoriale se valgono le seguenti:

- 1. Il vettore nullo di V appartiene a W
- 2. $\forall v, w \in W$; vale che $v + w \in W$ (chiusura rispetto alla somma)
- 3. $\forall \lambda \in \mathbb{R}$, $\forall v \in W$, vale che $\lambda \cdot v \in W$ (chiusura rispetto allo scalamento)

Consideriamo ora l' \mathbb{R} -spazio vettoriale V_2 , ovvero

$$V_2:(\mathbb{R}^2,+,\cdot)$$

introdotto in precedenza (ESEMPIO 2.1.).

Ora consideriamo il seguente sottoinsieme $W \subseteq V_2$;

$$W := \{(x, y) \in V_2 : x - 3y = 0\}$$

Facciamo le seguenti osservazioni.

OSS 1.1. In V_2 esiste il vettore nullo (0,0); in questo caso il vettore nullo (0,0) vale anche in W.

OSS 1.2. In V_2 è definita una somma + . Se v, w sono due elementi di W, allora sono in particolare elementi di V_2 ; dunque $v + w \in V_2$. In aggiunta vale che $v + w \in W$. Infatti: se $v = (v_1, v_2)$ $w = (w_1, w_2)$ allora

$$egin{aligned} v \in W \implies v_1 - 3v_2 &= 0 \ w \in W \implies w_1 - 3w_2 &= 0 \end{aligned}$$

quindi

$$(v_1-3v_2)+(w_1-3w_2)=0=0+0=0$$

ovvero

$$(v_1+w_1)-3(v_2+w_2)=0$$

ovvero $(v+w)\in W$

OSS 1.3. Infine consideriamo $v \in W$ e $\lambda \in \mathbb{R}$. Se

$$\lambda \cdot v \in V_2$$

allora vale anche

$$\lambda \cdot v \in W$$

Infatti se $v=(v_1,v_2)$, allora $\lambda \cdot v=(\lambda \cdot v_1,\lambda \cdot v_2)$;

$$egin{aligned} v \in W \implies v_1 - 3v_2 = 0 \ ext{allora} \ \lambda \cdot (v_1 - 3v_2) = \lambda \cdot 0 = 0 \ ext{quindi} \ (\lambda \cdot v_1) - 3(\lambda \cdot v_2) = 0 \ ext{ovvero} \ \lambda \cdot v \in W \end{aligned}$$

2. Interpretazione geometrica

ESEMPIO 2.1. Consideriamo \mathbb{R}^2 come l'insieme dei *punti nel piano*, ovvero il classico *piano cartesiano* π Definiamo il sottoinsieme

$$W := \{(x,y) \in \mathbb{R}^2 : x - 3y = 0\}$$

Ovviamente W è uno sottospazio vettoriale di \mathbb{R}^2 ; notiamo che se rappresentiamo \mathbb{R}^2 come l'insieme dei punti nel piano, allora si può rappresentare W come l'insieme dei punti nella retta r, ove $r: x-3y=0 \iff y=\frac{1}{3}x$

ESEMPIO 2.2. In \mathbb{R}^2 consideriamo il seguente:

$$C := \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$$

Osserviamo subito che la *proprietà caratterizzante di C* non è un'*equazione lineare*; infatti si tratta di un'equazione di secondo grado.

Precisamente nel contesto della $geometria\ analitica,\ C$ rappresenterebbe la circonferenza

$$(x-\alpha)^2 + (y-\beta)^2 = \gamma^2$$

ove (α,β) , quindi (0,0), rappresentano le coordinate dell'origine del cerchio e γ , quindi 1, il raggio.

Vediamo subito che C non è un sottospazio vettoriale di \mathbb{R}^2 , in quanto (0,0) non appartiene a C.

