CSE601 Project 1: Data Warehouse/OLAP System

Due: Oct. 8, 2016 (report and demo must be given)

In this project, you are asked to implement a clinical and genomic data warehouse based on your schema design using the Oracle system. A good data warehouse should satisfy the following requirements: 1) support regular and statistical OLAP operations; 2) be robust to potential changes in the future; and 3) support knowledge discovery.

The original data will be provided in the plain text files under the directory /projects/azhang/cse601/Data_For_Project1/. A detailed description of the file format is attached at the end. The information related to Oracle system can be found at:

```
https://wiki.cse.buffalo.edu/services/content/oracle
https://wiki.cse.buffalo.edu/services/content/how-create-oracle-table
https://wiki.cse.buffalo.edu/services/content/how-drop-oracle-table
https://wiki.cse.buffalo.edu/services/content/how-use-jdbc-oracle
```

Part I:

You are required to implement your data warehouse schema in the Oracle system. Then populate your data warehouse with the provided data sets.

Part II:

Your data warehouse is supposed to support the regular OLAP operations (e.g., roll-up, drill down, slice, dice and pivot), as well as some statistical operations (e.g., t-test, ANOVA, and correlation). In the following are some typical queries by users. You may use either SQL, PL/SQL, or external programs (e.g. in Java) to answer the queries. Notice that you should retrieve the data from the Oracle system instead of the original plain text files. Report your approach and the results returned by your data warehouse.

- List the number of patients who had "tumor" (disease description), "leukemia" (disease type) and "ALL" (disease name), separately.
- List the types of drugs which have been applied to patients with "tumor".
- For each sample of patients with "ALL", list the mRNA values (expression) of probes in cluster id "00002" for each experiment with measure unit id = "001". (Note: measure unit id corresponds to mu_id in microarray_fact.txt, cluster id corresponds to cl_id in gene_fact.txt, mRNA expression value corresponds to exp in microarray_fact.txt, UID in probe.txt is a foreign key referring to gene_fact.txt)
- For probes belonging to GO with id = "0012502", calculate the t statistics of the expression values between patients with "ALL" and patients without "ALL". (**Note:** Assume the expression values of patients in both groups have equal variance, use the t test for unequal sample size, equal variance)
- For probes belonging to GO with id="0007154", calculate the F statistics of the expression values among patients with "ALL", "AML", "colon tumor" and "breast tumor". (**Note:** Assume the variances of expression values of all four patient groups are equal.)
- For probes belonging to GO with id="0007154", calculate the average correlation of the expression values between two patients with "ALL", and calculate the average correlation of the expression values between one "ALL" patient and one "AML" patient. (Note: For each patient, there is a list of gene expression values belonging to GO with id="0007154". Suppose you get N_1 "ALL" patients and N_2 "AML" patient. For the average correlation of the expression values between two patients with "ALL", you need first calculate $N_1 \times (N_1 1)/2$ Person Correlations

then calculate the average value. For the average correlation of the expression values between one "ALL" patient and one "AML" patient, you need first calculate $N_1 \times N_2$ Person Correlations then calculate the average value.)

Part III:

Use your data warehouse and the OLAP operations to support knowledge discovery. (**Note:** Please read the README.txt in the data file folder carefully)

1. Given a specific disease, find the informative genes.

For example, suppose we are interested in the cancer "ALL".

- 1) Find all the patients with "ALL" (group A), while the other patients serve as the control (group B).
- 2) For each gene, calculate the t-statistics for the expression values between group A and group B.
- 3) If the p-value of the t-test is smaller than 0.01, this gene is regarded as an "informative" gene.
- 2. Use informative genes to classify a new patient (five test cases in test_samples.txt are given in the data).

For example, given a new patient P_N, we want to predict whether he/she has "ALL".

- 1) Find the informative genes w.r.t. "ALL".
- 2) Find all the patients with "ALL" (group A).
- 3) For each patient P_A in group A, calculate the correlation r_A of the expression values of the informative genes between P_N and P_A .
- 4) Patients without "ALL" serve as the control (group B).
- 5) For each patient P_B in group B, calculate the correlation r_B of the expression values of the informative genes between P_N and P_B .
- 6) Apply t-test on r_A and r_B, if the p-value is smaller than 0.01, the patient is classified as "ALL".

Appendix: Descriptions of Data File Format

The data file with respect to each entity will start with a row describing the fields of the entity. Then each following row in the file corresponds to one instance of the entity.

1. Clinical data space

Entities: patient, disease, drug, test and sample

Fact table: clinical_fact

File: patient.txt

p_id	ssn	name	gender	DOB	
File: dis ease.txt					
ds_id	name	type	descri	ption	
File: drug.txt					
dr_id	name	type	descri	ption	
	name	type	descri	ption	

File: clinical_	_fact.txt
-----------------	-----------

Ī	n id	ds id	sympton	ds from	ds to	dr id	dosage	dr from	dr to	tt id	result	tt date	s id
	p_ru	us_ru	Sympton	us_nom	us_to	ui_iu	uosage	ui_iioiii	ա_ա	tt_Itt	resurt	ii_date	

2. Sample data space

Entities: sample, marker, assay, term

Fact table: sample_fact

File: sample.txt

	s_id	source	amount	sp_date
--	------	--------	--------	---------

File: marker

mk id name type locus description				
	mk_id		locus	description

File: as say.txt

File: term.txt

tm_id name type setting

File: sample_fact.txt

	_								
s_i	mk_i	mk_resul	mk_dat	as_i	as_resul	as_dat	tm_i	tm_descriptio	ĺ
d	d	t	e	d	t	e	d	n	ĺ

3. Microarray and proteomic data space

Entities: probe, measureUnit Fact table: microarray_fact

File: probe.txt

pb id	UID	name	description	is QC
1 -			1	

File: measureUnit.txt

mu id	name	type	description
_		7 1	<u> </u>

File: microarray fact.txt

the inter-our and inter-our an								
s_id	e_id	pb_id	mu_id	expression				

4. Gene data space

Entites: gene, go, cluster, domain, promoter

Fact table: gene_fact

File: gene.txt

UID	seqType	accession	version	seqDataset	species ID	status

File: go.txt

go_id	accession	type	name	definition

File: cluster.txt

cl_id num pattern tool	tSetting description
------------------------	----------------------

File: domain.txt

dm_id type	db	accession	title	length	description
------------	----	-----------	-------	--------	-------------

File: promoter.txt

•				
pm_id	type	sequence	length	description

File: gene_fact.txt

UID go_id	cl_id	dm_id	pm_id	UID2
-----------	-------	-------	-------	------

5. Experiment data space

Entities: experiment, project, platform, norm, person, protocal, publication

Fact table: experiment_fact

File: experiment.txt

e id	name	type
	name	t j p c

File: project.txt

The projection			
pj_id	name	investigator	description

File: platform.txt

	pf_id	hardware	software	settings	description
--	-------	----------	----------	----------	-------------

File: norm.txt

1 11 0 1 11 0 111111 ti 2				
nm_id	type	software	parameters	description

File: person.txt

pn_id	name	labName	contact

File: protocal.txt

r me. protocumen			
pt_id	name	text	createdBy

File: publication.txt

pu_id	pub_med_id	title	authors	abstract	pubDate

File: experiment_fact.txt

e_id nm_id pj_id pn_id pf_id pt_id pu_id		nm_id	p i iu	pn_id	n 10	nt 10	pu_id
--	--	-------	--------	-------	------	-------	-------