CORRIGÉ DU DEUXIÈME DEVOIR COMMUN

EXERCICE 1

1. a. Le coût de fabrication de 25 m^3 de ce produit est égal à C(25) euros.

$$C(25) = 2 \times 25^2 + 10 \times 25 + 800$$
$$= 2300$$

- **b.** En ramenant le coût à l'unité, le m^3 revient à $\frac{2300}{25} = 92$ euros.
- **2.** Soit $x \in [1;30]$.

$$C'_{M}(x) = 2 + 0 - \frac{800}{x^{2}}$$
$$= \frac{2x^{2}}{x^{2}} - \frac{800}{x^{2}}$$
$$= \frac{2x^{2} - 800}{x^{2}}$$

3. Factorisons, pour commencer, le polynôme $2x^2 - 800$.

$$2x^2 - 800 = 0 \Leftrightarrow x^2 - 400 = 0$$
$$\Leftrightarrow x = 20 \text{ ou } x = -20$$

Les racines de $2x^2 - 800$ sont 20 et -20 et son coefficient dominant est 2. C'est-à-dire, $2x^2 - 800 = 2(x - 20)(x + 20)$ et on a son tableau de signes sur \mathbb{R} :

x	$-\infty$		-20		20		$+\infty$
$2x^2 - 800$		+	0	-	0	+	

On peut désormais construire le tableau de signes et de variations de C_M^\prime sur [1;30].

x	1		20		30
$2x^2 - 800$		_	0	+	
x^2		+		+	
$C_{M}^{\prime}(x)$		_	0	+	
$C_M(x)$			\		

4. La quantité à fabriquée pour minimiser le coût moyen est, d'après le tableau de variations de C_M , $20m^3$, pour un coût moyen de $C_M(20) = 90$ euros.

EXERCICE 2

1. Soit $x \neq 1$. On dérive un quotient et ainsi:

$$f'(x) = \frac{(-2x+2)(x-1) - 1(-x^2 + 2x)}{(x-1)^2}$$
$$= \frac{-2x^2 + 2x + 2x - 2 + x^2 - 2x}{(x-1)^2}$$
$$= \frac{-x^2 + 2x - 2}{(x-1)^2}.$$

2. Cherchons les racines de $-x^2 + 2x - 2$ pour connaître son signe. Son discriminant Δ est égal à $2^2 - 4 \times (-1) \times (-2) = -4$ donc pas de racines! On peut conclure en donnant tableau de signes et de variations.

x	$-\infty$	1 +∞
$-x^2 + 2x - 2$	_	_
$(x-1)^2$	+ (0 +
f'(x)	_	_
f(x)		

- **3.** (T_2) a pour équation y = f'(2)(x-2) + f(2). Après application numérique, f(2) = 0 et f'(2) = -2. Ainsi, (T_2) : y = -2x + 4.
- **4.** (T_0) admet comme coefficient directeur f'(0). Après calcul, f'(0) = -2. (T_0) et (T_2) ont le même coefficient directeur donc sont parallèles.

EXERCICE 3

- 1. Seules les réponses correctes seront indiquées.
 - **a.** Soit $a \in \mathbb{R}$. Si $\cos(a) = \frac{1}{\sqrt{6}}$, alors:

- $cos(-a) = \frac{1}{\sqrt{6}}$ $cos(\pi a) = -\frac{1}{\sqrt{6}}$

b. Soit $x \in \mathbb{R}$. La somme $\sin(-x) - \sin(\pi - x) + \sin(x) + \sin(x + \pi)$ est égale à :

• $\sin(-x) - \sin(\pi - x) + \sin(x) + \sin(x + \pi)$ $= -\sin(x) - \sin(x) + \sin(x) - \sin(x)$ $=-2\sin(x)$

c. Soit $a \in [0; \frac{\pi}{3}]$, alors:

- $\cos(a) \ge \frac{1}{2}$
- $\sin(a) \le \frac{\sqrt{3}}{2}$ $\sin(-a) \ge -\frac{\sqrt{3}}{2}$
- **d.** Soit $a \in \left[\frac{\pi}{2}; \pi\right]$ tel que $\sin(a) = \frac{\sqrt{3}}{3}$, alors:

• $\cos(a) < 0$

- **e.** Les nombres réels $\frac{\pi}{6}$ et $\frac{23\pi}{6}$ sont associés au même point sur le cercle trigonométrique.
 - C'est faux. $\frac{23\pi}{6} = \frac{24\pi}{6} \frac{\pi}{6} = 4\pi \frac{\pi}{6}$.
- **f.** Si cos(x) > 0 et si sin(x) < 0 alors x peut appartenir à l'intervalle :

-] $\frac{3\pi}{2}$; 2π] et plus précisément,] $\frac{3\pi}{2}$; 2π [convient aussi.
- 2. **a.** Appelons M_k le point associé au réel $\frac{\pi}{6} + k \frac{\pi}{2}$.

b. Il est possible de placer seulement quatre points distincts, y compris si on considère $k \in \mathbb{N}$.

EXERCICE 4

1. Par la relation de récurrence définissant (a_n) , on a :

$$a_1 = a_{0+1} = \frac{2a_0 + b_0}{3} = \frac{2 \times 2 + 10}{3} = \frac{14}{3}.$$

De même,

$$b_1 = b_{0+1} = \frac{a_0 + 3b_0}{4} = \frac{2 + 3 \times 10}{4} = \frac{32}{4} = 8.$$

2. Soit $n \in \mathbb{N}$.

$$b_{n+1} - a_{n+1} = \frac{a_n + 3b_n}{4} - \frac{2a_n + b_n}{3}$$

$$= \frac{3a_n + 9b_n}{12} - \frac{8a_n + 4b_n}{12}$$

$$= \frac{5b_n - 5a_n}{12}$$

$$= \frac{5}{12}(b_n - a_n)$$

3. a. Soit $n \in \mathbb{N}$.

$$w_{n+1} - w_n = (b_{n+1} - a_{n+1}) - (b_n - a_n)$$

$$= \frac{5}{12}(b_n - a_n) - (b_n - a_n) \text{ d'après la question 2}$$

$$= \left(\frac{5}{12} - 1\right)(b_n - a_n)$$

$$= -\frac{7}{12}(b_n - a_n)$$

b. Soit $n \in \mathbb{N}$.

$$w_{n+1} - w_n = -\frac{7}{12}(b_n - a_n)$$
$$= -\frac{7}{12}w_n$$

Ainsi,
$$w_{n+1} = w_n - \frac{7}{12}w_n = \frac{5}{12}w_n$$
.

- c. La suite (w_n) vérifie pour tout $n \in \mathbb{N}$, d'après la question 3. b., la relation de récurrence $w_{n+1} = \frac{5}{12}w_n$. C'est la définition d'une suite géométrique de raison $q = \frac{5}{12}$. Enfin, son premier terme est $w_0 = b_0 - a_0 = 10 - 2 = 8$.
- **d.** Pour tout $n \in \mathbb{N}$,

$$w_n = w_0 q^n = 8 \times \left(\frac{5}{12}\right)^n.$$

4

- **e.** Soit $n \in \mathbb{N}$. $w_n = 8 \times \left(\frac{5}{12}\right)^n$, d'après la question précédente, est un produit de n+1 termes strictement positifs donc $w_n > 0$.
- **f.** Soit $n \in \mathbb{N}$.

$$w_n > 0$$

 $\Leftrightarrow b_n - a_n > 0$
 $\Leftrightarrow b_n > a_n$

En particulier, on a bien $a_n \le b_n$.

4. a. • (a_n) est croissante sur $\mathbb N$ si, et seulement si, pour tout $n \in \mathbb N$, $a_{n+1} - a_n \ge 0$. Soit $n \in \mathbb N$.

$$a_{n+1} - a_n = \frac{2a_n + b_n}{3} - a_n$$

$$= \frac{2a_n + b_n - 3a_n}{3}$$

$$= \frac{b_n - a_n}{3}$$

$$\ge 0 \text{ d'après la question 3. f.}$$

• (b_n) est décroissante sur \mathbb{N} si, et seulement si, pour tout $n \in \mathbb{N}$, $b_{n+1} - b_n \le 0$. Soit $n \in \mathbb{N}$.

$$b_{n+1} - b_n = \frac{a_n + 3b_n}{4} - b_n$$

$$= \frac{a_n + 3b_n - 4b_n}{4}$$

$$= \frac{a_n - b_n}{4}$$

$$\leq 0 \text{ d'après la question 3. f.}$$

b. D'après la question précédente, pour tout $n \in \mathbb{N}$, par décroissance $b_n \le b_0$ et par croissance $a_n \ge a_0$, c'est-à-dire, $b_n \le 10$ et $a_n \ge 2$.

La question 4. f. nous dit de plus que $a_n \le b_n$.

Ainsi,

- $b_n \ge a_n \ge 2$ donc $b_n \ge 2$;
- $a_n \le b_n \le 10 \text{ donc } a_n \le 10.$
- **c.** En rentrant les suites dans la calculatrice, on peut afficher des tableaux de valeurs pour (a_n) et (b_n) et il semble que, à 10^{-4} près :

$$\lim_{n \to +\infty} a_n \approx 6,5714$$
$$\lim_{n \to +\infty} b_n \approx 6,5714.$$