

PAT-NO: JP361043689A

DOCUMENT-IDENTIFIER: JP 61043689 A

TITLE: EL ELEMENT

PUBN-DATE: March 3, 1986

INVENTOR-INFORMATION:

NAME

EGUCHI, TAKESHI

KAWADA, HARUNORI

NISHIMURA, YUKIO

ASSIGNEE-INFORMATION:

NAME

CANON INC

COUNTRY

N/A

APPL-NO: JP59164238

APPL-DATE: August 7, 1984

INT-CL (IPC): C09K011/06

ABSTRACT:

PURPOSE: To provide an EL element emitting luminescence in high luminance even at a low voltage, and producible easily at a low cost, and composed of a luminescent layer having triple-layered structure, wherein each layer is composed of a thin film made of a highly oriented electroluminescent organic compound molecule having relatively different electronegativity from the other adjacent layer.

CONSTITUTION: The objective EL element is composed of a triple-layered luminescent layer 2 and a pair of electrode layers 1, 3

sandwiching said luminescent layer, wherein at least one of the electrode layers is transparent.

The first and the third luminescent layers are made of a monomolecular film (or its built-up film) composed of electroluminescent organic compounds 4, 6 having higher electron affinity than the second luminescent layer.

The second

luminescent layer is made of a monomolecular film (or its built-up film)

composed of an electroluminescent organic compound 5 having higher electron-donative property than the first and the third luminescent layers.

EFFECT: It can be produced easily.

COPYRIGHT: (C)1986,JPO&Japio

## ⑪ 公開特許公報 (A) 昭61-43689

⑤Int.Cl.

C 09 K 11/06

識別記号

府内整理番号

7215-4H

⑥公開 昭和61年(1986)3月3日

審査請求 未請求 発明の数 1 (全 8 頁)

⑦発明の名称 EL素子

⑧特 願 昭59-164238

⑨出 願 昭59(1984)8月7日

⑩発明者 江口 健 東京都大田区下丸子3丁目30番2号 キヤノン株式会社内  
 ⑪発明者 河田 春紀 東京都大田区下丸子3丁目30番2号 キヤノン株式会社内  
 ⑫発明者 西村 征生 東京都大田区下丸子3丁目30番2号 キヤノン株式会社内  
 ⑬出願人 キヤノン株式会社 東京都大田区下丸子3丁目30番2号  
 ⑭代理人 弁理士 吉田 勝廣

## 明細書

## 1. 発明の名称

EL素子

## 2. 特許請求の範囲

3層積層構造の発光層と、該発光層を挟持する少なくとも1層が透明である2層の電極層からなるEL素子において、上記の第1および第3の発光層が、第2の発光層に対して相対的に電子受容性の少なくとも1種の電気的発光性有機化合物からなる単分子膜またはその累積膜からなり、且つ第2の発光層が第1および第3の発光層に対して相対的に電子供与性の少なくとも1種の電気的発光性有機化合物からなる単分子膜またはその累積膜からなることを特徴とする上記EL素子。

## 3. 発明の詳細な説明

## (産業上の利用分野)

本発明は、電気的な発光、すなわちELを用いたEL素子に関し、更に詳しくは、発光層が3層構造からなり、各々の層が隣接する他の層に対して

て相対的に電気陰性度が異なる少なくとも1種の電気的発光性有機化合物を、高秩序の分子配向性をもって配列させた薄膜からなるEL素子に関する。

## (従来の技術)

従来のEL素子は、MnあるいはCuまたはReF<sub>3</sub>(Re:希土類イオン)等を付活剤として含むZnSを発光母材とする発光層からなるものであり、該発光層の基本構造の違いにより粉末型ELと薄膜型ELに大きく構造的に分類される。

実用化されている素子のうち、薄膜ELは、一般的に粉末型ELに比べ輝度が高いが、薄膜ELは発光母材を基板に蒸着して発光層を形成しているため、大面積素子の製造が難しく、また製造コストが非常に高くなる等の欠点を有していた。そのため、最も量産性に富み、コスト的に薄膜型素子の数十分の一程度ですむ有機バインダー中に発光母材、すなわち、ZnSを分散させた粉末型ELが注目されるようになった。一般的には、EL発光においては、発光層の厚さが薄い程発光

特性が良くなる。しかし、該粉末型ELの場合は、発光母材が不燃焼の粉末であるため、発光層を薄くすると、発光層中にピンホールが生じ易く、層厚を薄くすることが困難であり、従って十分な輝度特性が得られないという大きな欠点を持っている。近時においても、該粉末型ELの発光層内にフッ化ビニリデン系重合体から成る中間誘電体層を配置した改良型電子素子が、特開昭58-172891号公報に示されているが、未だ発光輝度、消費電力等に十分な性能を得るにいたっていない。一方、最近、有機材料の化学構造や高次構造を制御して、新しくオプティカルおよびエレクトロニクス用材料とする研究開発が活発に行なわれ、EC電子、圧電性電子、焦電性電子、非線形光学電子、強誘電性液晶等、金属、無機材料に比肩し得るか、またはそれらを凌駕する有機材料が発表されている。このように、無機物を凌ぐ新しい機能素材としての機能性有機材料の開発が要望される中で、分子内に親水基と疎水基を持つアントラセン誘導体やビレン誘導体の単分子層の累

記第1および第3の発光層が、第2の発光層に対して相対的に電子受容性の少なくとも1種の電気的発光性有機化合物からなる単分子膜またはその累積膜からなり、且つ第2の発光層が第1および第3の発光層に対して相対的に電子供与性の少なくとも1種の電気的発光性有機化合物からなる単分子膜またはその累積膜からなることを特徴とする上記EL電子である。

本発明を詳細に説明すると、本発明において使用し、主として本発明を特徴づける電気的発光性有機化合物とは、高い発光量子効率を有し、更に外部振動を受け易いπ電子系を有し、電気的な励起が可能な化合物であり、例えば、基本的には、縮合多環芳香族炭化水素、p-ターフェニル、2,5-ジフェニルオキサゾール、1,4-ビス(2-メチルスチリル)-ベンゼン、キサンチン、クマリン、アクリジン、シアニン色素、ベンゾフェノン、フタロシアニンおよびその金属錯体、ポルフィリンおよびその金属錯体、8-ヒドロキシキノリンとその金属錯体、有機ルテニウム

積膜を電極基板上に形成したEL電子が特開昭52-35587号公報に提案されている。しかし、それらのEL電子は、その輝度、消費電力等、現実のEL電子として十分な性能を得るに至っておらず、更に、該有機EL電子の場合、キャリア電子あるいはホールの密度が非常に小さく、キャリアの再結合等による機能分子の励起確率が非常に小さくなり、効率の良い発光が期待できないものである。

#### (発明の開示)

従って、本発明の目的は、上述のような従来技術の欠点を解消して、低電圧駆動でも十分輝度の高い発光が得られ、安価で、且つ製造が容易なEL電子を提供することである。

上記本発明の目的は、EL電子の発光層を、特定の材料を組合せて、且つ特定の構成に形成することにより達成された。

すなわち、本発明は、3層積層構造の発光層と、該発光層を扶持する少なくとも1層が透明である2層の電極層からなるEL電子において、上

錯体、有機稀土類錯体およびこれらの化合物の誘導体等を挙げることができる。更に上記化合物に対して電子受容体または電子供与体となり得る化合物としては、前記以外の複素環式化合物およびそれらの誘導体、芳香族アミンおよび芳香族ポリアミン、キノン構造をもつ化合物、テトラシアノキノジメタンおよびテトラシアノエチレン等を挙げができる。

本発明において、特に有用な化合物は、上記の如き電気的発光性化合物を必要に応じて公知の方法で化学的に修飾し、その構造中に少なくとも1個の疎水性部分と少なくとも1個の親水性部分(これらはいずれも相対的な意味においてである。)を併有させるようにした化合物であり、例えば下記の一般式(I)で表わされる化合物およびその他の化合物を包含する。



上記式中におけるXは、水素原子、ハロゲン原子、アルコキシ基、アルキルエーテル基、ニトロ基;カルボキシル基、スルホン酸基、リン酸基、

ケイ酸基、第1～3アミノ基；これらの金属塩、  
 1～3級アミン塩、酸塩；エスチル基、スルホア  
 ミド基、アミド基、イミノ基、4級アミノ基およ  
 びそれらの塩、水酸基等であり；R<sub>1</sub>は炭素数4～  
 30、好ましくは10～25個のアルキル基、好  
 ましくは直鎖状アルキル基であり；mは1または  
 2、nは1～4の整数であり；Zは直接結合または  
 $-O-$ 、 $-S-$ 、 $-N\overset{+}{R}_3$ 、 $-C\overset{+}{H}_2N\overset{+}{R}_3-$ 、  
 $-SO_2NR_3$ 、 $-CO-$ 、 $-COO-$ 等の如き連結  
 基（R<sub>3</sub>は水素原子、アルキル基、アリール等の任  
 意の置換基である）であり；yは後に例示する如  
 き電場発光性化合物の残基であり；R<sub>2</sub>はXと同様  
 に、水素原子またはその他の任意の置換基であり  
 ；1個または複数のX、yおよびR<sub>2</sub>のうち少なくとも  
 1個は親水性部分であり、且つ少なくとも1個は疎水性部分である。

一般式(I)の化合物の中として好ましいものおよびその他の化合物を例示すれば、以下の通りである。

( 以 下 余 白 )





供与性基を有するもの、あるいは空素へテロ環化合物が主たるものであり、また電子受容性のものとしては、カルボニル基、スルホニル基、ニトロ基、第4級アミノ基等の電子吸引性基を有する化合物が主たるものである。このような発光性化合物は本発明において、それぞれの発光層においては単独または複数の混合物として使用することができる。

本発明のEL素子を形成する他の要素、すなわち2層の電極層は、発光層を挟持するものであって、従来公知のものはいずれも使用できるが、少なくともその1層は透明性である必要がある。透明電極としては、従来同様目的の透明電極層がいずれも使用でき、好ましいものとしては、例えばポリメチルメタクリレート、ポリエステル等の透明な合成樹脂、ガラス等の如き透明性フィルムあるいはシートの裏面に酸化インジウム、酸化錫、インジウム-チン-オキサイド(ITO)等の透明導電材料を全面にあるいはパターン状に被覆したものである。一方の面に不透明電極を使用する

以上の如き発光性化合物は、本発明における各々の発光層において単独でも混合物としても使用できる。なお、これらの化合物は好ましい化合物の例示であって、同一目的が達成される限り、他の誘導体または他の化合物でも良いのは当然である。

本発明においては、上記の如き発光性化合物をそれらの電気的陰性度に応じて、本発明のEL素子の第1～第3の発光層に分けて使用して発光層を3層の積層構造としたことを特徴としている。すなわち、上記の如き発光性化合物は、それぞれ電気陰性度が異なるから、1種のまたは複数の前記化合物を第1および第3の発光層を形成するための発光性化合物として採用したときには、これら採用した発光性化合物とは、その電気的陰性度の異なる前記発光性化合物を第2の発光層形成用化合物として選択すれば良い。このような発光性化合物のなかで、電子供与性のものとして特に好ましい化合物は、第1～第3級アミノ基、水酸基、アルコキシ基、アルキルエーテル基等の電子

場合は、これらの不透明電極も、従来公知のものでよく、一般的且つ好ましいものは、厚さが約0.1～0.3μmのアルミニウム、銀、金等の蒸着膜である。また透明電極あるいは不透明電極の形状は、板状、ベルト状、円筒状等任意の形状でよく、使用目的に応じて選択することができる。また、透明電極の厚さは、約0.01～0.2μm程度が好ましく、この範囲以下の厚さでは、素子自体の物理的強度や電気的性質が不十分となり、また上記範囲以上の厚さでは透明性や軽量性、小型性等に問題が生じるおそれがある。

本発明のEL素子は、上記の如き2層の電極層の間に、前述の如き相対的に電気陰性度の異なる電気的発光性化合物を別々に用いて3層からなる発光層を形成することにより得られるものであり、形成された3層構造の発光層を構成する分子が、それぞれ高秩序の分子配向性をもって配列した单分子膜あるいはその累積膜であることを特徴としている。

本発明において、このような单分子膜あるいは

その累積膜を形成する方法として、特に好ましい方法は、ラングミュア・プロジェクト法(LB法)である。このLB法は、分子内に親水性基と疎水性基とを有する構造の分子において、両者のバランス(両親媒性のバランス)が適度に保たれているとき、分子は水面上で、親水性基を下に向けて単分子の層になることを利用して、単分子膜またはその累積膜を形成する方法である。具体的には水層上に展開した単分子膜が、水相上を自由に拡散して広がりすぎないように、仕切板(または浮子)を設けて展開面積を制限して膜物質の集合状態を制御し、表面圧を徐々に上昇させ、単分子膜あるいはその累積膜の製造に適する表面圧を設定する。この表面圧を維持しながら静かに清浄な基板を垂直に上昇または降下させることにより、単分子膜が基板上に移しとられる。単分子膜は以上で製造されるが、単分子膜の累積膜は前記の操作を繰り返すことにより所望の累積度の累積膜として形成される。

単分子膜を基板上に移すには、上述した垂直浸

側に向いた累積膜はZ型膜と呼ばれる。回転円筒法は、円筒法の基体水面上を回転させて単分子膜を基体表面に移しとる方法である。単分子膜を基板上に移す方法は、これらに限定されるわけではなく、即ち、大面積基板を用いる時には、基板ロールから水層中に基板を押し出していく方法などもとり得る。また、前述した親水性基、疎水性基の基板への向きは原則であり、基板の表面処理等によって変えることができる。

本発明のEL素子は、前述の如き発光層形成用材料を好ましくは上述の如きLB法により、前述の如き2層の電極層の間にそれぞれ電気絶縁性度の異なる化合物から、3層構造として形成することによって得られるものである。

従来の技術の項で述べた通り、LB法によりEL素子を形成することは公知であるが、該公知の方法では、十分な性能のEL素子が得られず、本発明者は、種々研究の結果、発光層を3層構造とし、それぞれの発光層を前述の如き電気絶縁性度の異なる化合物を用いて単分子膜あるいはその累

積膜の他、水平付着法、回転円筒法などの方法によっても可能である。水平付着法は基板を水面に水平に接触させて移しとる方法で、回転円筒法は、円筒型の基体を水面上を回転させて単分子膜を基体表面に移しとる方法である。前述した垂直浸漬法では、表面が親水性の基板を水面を横切る方向に水中から引き上げると分子の親水性基が基板側に向いた単分子膜が基板上に形成される。前述のように基板を上下させると、各行程ごとに1枚ずつ単分子膜が重なっていく。成膜分子の向きが引き上げ行程と浸漬行程で逆になるので、この方法によると各層間は分子の親水性基と親水性基、分子の疎水性基と疎水性基が向かい合うY型膜が形成される。それに対し、水平付着法は、基板を水面に水平に接着させて移しとる方法で、分子の疎水性基が基板側に向いた単分子膜が基板上に形成される。この方法では、単分子膜を累積しても、成膜分子の向きの交代はなく、全ての層において、疎水性基が基板側に向いたX型膜が形成される。反対に全ての層において親水性基が基板

積膜として形成することにより、従来技術のEL素子の性能が著しく向上することを知見したものである。

本発明の1つの重要な態様は、各々の発光層が前記発光性材料からなる単分子膜である態様である。この態様のEL素子は、まず最初に、中間層として形成すべき第2層に対して相対的に電子受容性である材料を、適当な有機溶剤、例えばクロロホルム、ジクロロメタン、ジクロロエタン等中に約 $1\text{ }0^4\sim 1\text{ }0^5\text{ mg/dL}$ 程度の濃度に溶解し、該溶液を、各種の金属イオンを含有してもよい適当なpH(例えば、pH約1~8)の水相上に展開させ、溶剤を蒸発除去して単分子膜を形成し、前述の如くのLB法で、一方の電極基板上に移し取って第1層とし、十分に乾燥し、次いで、このように形成した第1層に対して相対的に電子供与性である材料を、同様にして単分子膜として、その第1の発光層の表面に移しとめて第2層とし、該第2層の表面に、上記と同様にして第2層に対して相対的に電子受容性の化合物から第3層を形成

し、最後に、例えばアルミニウム、銀、金等の電極材料を、好ましくは蒸着等により蒸着させて背面電極層を形成することによって得られる。

このようにして得られたEL素子の3層の単分子膜からなる発光層の厚さは、使用した材料の種類によって異なるが、一般的には約0.01~1μmの厚さが好適である。

また、別の重要な態様は、本発明のEL素子の発光層を構成する3層のうち少なくとも一層、好ましくは3層ともが、上記の単分子膜の累積膜である態様である。該態様は、前記のLB法を用いることにより、上記の如き単分子膜を種々の方法で必要な層数まで累積することによって得られる。

このようにして得られるEL素子の発光層の厚さ、すなわち単分子膜の累積数は、任意に変更することができるが、本発明においては、3層の合計で約4~400の累積数が好適である。

なお、基板として使用する一方の電極層あるいは両方の電極層と発光層との接着は、LB法にお

できるため、比較的耐熱性のない発光機能材料も使用することができるという利点がある。

更に、本発明のEL素子の発光層は、第1図に図解的に示すように、従来技術の單一層からなる発光層とは異なり、第2図に図解的に示すように、第1~第3の発光層とが均一な界面を有して夫々積層されているので、それらの電気陰性度の異なる3層間での各種相互作用が極めて容易であり、従来技術では達成しえない程度の優れた発光性能を發揮するものである。すなわち、第1~第3の発光層との電気陰性度の差等を種々変更することによって、発光強度を向上させたり、あるいは発光色を任意に変更でき、また、その耐用寿命も著しく延長させることができる。

更に、従来技術では、発光性が優れているが、成膜性や膜強度が不十分な材料は実質上使用できなかつたが、本発明においては、このような成膜性や膜強度が劣るが、発光性に優れた材料でも、少なくとも1層に成膜性に優れた材料を使用することによって、発光性、成膜性および膜強度のい

いては十分に強固なものであり、発光層が剥離したり剥落したりすることはないと、接着力を強化する目的で、基板表面をあらかじめ処理しておいたり、あるいは基板と発光層との間に適当な接着剤層を設けてもよい。更に、発光層の形成用材料や使用する水層のpH、イオン種、水温、単分子膜の転移速度あるいは単分子膜の表面圧等の種々の条件を調節によっても接着力を強化することができる。

以上の如くして形成されたEL素子は、そのままでは空気中の湿気や酸素の影響でその性能が劣化があるので、従来公知の手段で耐湿、耐酸素性の密封構造とするのが望ましい。

以上の如き本発明のEL素子は、その発光層の構造が、超薄膜であり、且つEL素子の作動上必要な高度の分子秩序性と機能を有しており、優れた発光性能を有するものである。また、製造面では、大面積にわたって、発光層の厚さが均一で、欠陥のないEL素子とができる、また常温、常圧またはそれに近い条件で作成することが

それものが優れた発光層を得ることができる。

以上の本発明のEL素子は、その発光層に好適な電界等の電気エネルギーが作用するよう、電極層間に、交流またはパルスあるいは直流電流等の電気エネルギーを印加することにより、優れたEL発光を示すものである。

次に実施例をあげて本発明を更に具体的に説明する。なお、文中部とあるのは重量基準である。  
実施例1

5°0mm角のガラス板の表面上にスピッタリング法により膜厚1500ÅのITO層を蒸着して、透明電極を形成した。この成膜基板を充分洗浄後、Joyce - Loebel社製のLangmuir-Trough 4のpH 6.5に調整された水相中に浸漬した。次に、



A



B

上記化合物AおよびBを1:1のモル比で、クロロホルムに溶かした(10<sup>-3</sup> mol/l)後、上記

水相上に展開させた。溶媒のクロロホルムを蒸発除去後、表面圧を高めて(30 dyne/cm)、上記の混合分子を膜状に析出させた。その後、表面圧を一定に保ちながら、該成膜基板を、水面を横切る方向に静かに上下させ(上下速度2cm/min)、混合单分子膜を基板上に移し取り、单分子膜のみ、3、5、10および15層に累積した单分子累積膜を作成した。この累積行程において、該基板を水槽から引きあげる都度、30分間以上放置して基板に付着している水分を蒸発除去した。

次に、該水相表面に残った上記混合单分子膜を完全に取り除き、新たにクロロホルムに溶解( $10^{-3}$  mol/l)した



を該水相上に展開した。上記と同じ方法により、すでに作成された单分子膜および单分子累積膜表

上記の本発明のEL素子は、従来例のZnSを発光母体としたEL素子と比較し、駆動電圧が低く、発光輝度特性の良いEL素子であった。

#### 比較例1

実施例1において、発光性化合物として化合物Aのみを使用し、且つ单一層にしたことを除いて、他は実施例1と同様にして比較用のEL素子を得、且つ実施例1と同様に評価した。評価結果は第1表に示した。

第1表

#### 実施例1

| 累積度 | 駆動電圧 | 輝度 | 電流密度       |                       |
|-----|------|----|------------|-----------------------|
| 1層  | 2層   | 3層 | (Ft-L)     | (mA/cm <sup>2</sup> ) |
| 1   | 1    | 1  | 5V, 400Hz  | 3                     |
| 3   | 2    | 3  | 10V, 400Hz | 11                    |
| 5   | 2    | 5  | 10V, 400Hz | 20                    |
| 10  | 2    | 10 | 10V, 400Hz | 18                    |
| 15  | 2    | 15 | 10V, 400Hz | 17                    |

#### 比較例1

#### 累積度

面上に新しい機能性单分子膜のみおよび2層を累積した累積膜を形成した。

再度、上記水相表面の单分子膜を完全に除去し、上記第1層の形成に使用した同一材料を同一濃度で同様な方法で上記第2層の表面に1層の单分子膜および3、5、10、15層に累積して单分子累積膜とし、第3層とした。

最後に、上記のように形成された薄膜を有する基板を蒸着槽に入れて、該槽を一度 $10^4$ Torrの真空中まで減圧した後、真空度 $10^5$ Torrに調整して蒸着速度 $20\text{ \AA/sec}$ で、 $1500\text{ \AA}$ の膜厚でA1を該薄膜上に蒸着して背面電極とした。作成されたEL素子を図3に例示したように、シールガラスでシールしたのち、従来方法に従って、精製および脱気、脱水されたシリコンオイルをシール中に注入して、本発明の4個のEL発光セルを形成した。これらのEL発光セルに5V、50Hzの交流電圧を印加したところ、使用した材料特有の色を有するEL発光を得た。評価結果を表1に示す。

|    |            |     |      |
|----|------------|-----|------|
| 3  | 10V, 400Hz | 1以下 | 0.21 |
| 8  | 10V, 400Hz | 1以下 | 0.1  |
| 12 | 10V, 400Hz | 1以下 | 0.1  |
| 22 | 10V, 400Hz | 1以下 | 0.09 |
| 32 | 10V, 400Hz | 1以下 | 0.08 |

#### 実施例2

実施例1における化合物A、BおよびCに代えて、下記化合物D、EおよびFを使用し、



他は実施例1と同様にして、本発明のEL素子(但し、各々の累積数は5、2、5)を得、実施例1と同一条件で評価したところ、電流密度0.13mA/cm<sup>2</sup>で、輝度(Ft-L)は1.8であった。

#### 4. 図面の簡単な説明

第1図は、従来技術のLB法によるEL素子を図解的に示したものであり、第2図は、本発明のEL素子を図解的に示したものであり、第3図は

本発明のEL素子の断面を図解的に示したものである。

|            |             |
|------------|-------------|
| 1 ; 透明電極   | 2 ; 発光層     |
| 3 ; 背面電極   | 4 ; 発光性化合物  |
| 5 ; 発光性化合物 | 6 ; 発光性化合物  |
| 7 ; シールガラス | 8 ; シリコン絶縁油 |
| 9 ; ガラス板   |             |

第1図



第2図



第3図

