Maxwell Equations: t-Variation & Conservation Laws

We now attack Jackson's Chap. 6. Our order- of - battle includes ...

MAXWELL
$$@V \cdot D = 4\pi \rho^{\gamma}, @V \cdot B = 0,$$

EQUATIONS $@V \cdot E = -\frac{1}{c} \frac{\partial B}{\partial t}, @V \cdot H = +\frac{1}{c} \frac{\partial D}{\partial t} + \frac{4\pi}{c} J.$

$$\frac{\text{CONSERVATION}}{\text{of CHARGE}} \} \nabla \cdot \{ \text{Eq.} \oplus \}, \text{ and use of Eq.} \oplus \Rightarrow \boxed{\frac{\partial \rho}{\partial t} + \nabla \cdot \mathbf{J} = 0}. \tag{2}$$

TORENTZ |
$$F = q(E + \frac{1}{c}VxB)$$
, on single charge q;
FORCE LAW | $F = pE + \frac{1}{c}JxB$, force/vol. on distributions $p \notin J$. (3)

CONSTITUTIVE
$$D = E + 4\pi P \rightarrow \epsilon E$$
, $P = (bound)$ polarization field;
 $RELATIONS$ $B = H + 4\pi M \rightarrow \mu H$, $M = (bound)$ magnetization field. $A = \frac{1}{2} \left(\frac{4}{2} \right)$

Note... For vacuum (non-interacting):
$$e=1 \neq \mu=1$$
, $D=E$, $B=H$. (6)

FIELD

ENERGY

DENSITIES

| Electric [linear medium: E + fen(E)]:
$$U_E = \frac{1}{8\pi} E \cdot D;$$

DENSITIES

| Magnetic [linear medium: $\mu \neq fen(B)$]: $U_H = \frac{1}{8\pi} B \cdot H$.

REPRESENTATION

B =
$$\nabla \times A$$
, still OK by Max. \mathcal{E}_{0} . \mathcal{E}_{0} :

B = $\nabla \times A$, still OK by Max. \mathcal{E}_{0} . \mathcal{E}_{0} :

POTENTIALS

E = $-\nabla \phi - \frac{1}{C} \frac{\partial A}{\partial t}$, A turn regid by \mathcal{E}_{0} .

This is a powerful strike force. Virtually all of classical E&M appears here.

⁺ Um not actually derived until Jk = Sec. 6.2, Eq. (6.16).