DATA 442: Neural Networks & Deep Learning

Dan Runfola - danr@wm.edu

icss.wm.edu/data442/

def predict(image, W): W*image

nn.predict(image, W)

CENTER FOR ACCELERA

nal Effici	Probability
Bird OF EXC	0.2
Dog	0.1
	•••
Cat	0.15
Plane	0.19

<mark>0.2</mark>	-0.5	0.1	2.0	Cat
1.5	1.3	2.1	0.0	Bird
0	0.25	0.2	-0.3	Plane

Cat Score =
$$(56 * 0.2) + (231 * -0.5) + (24 * 0.1) + (2 * 2.0) = -97.9$$

def predict(image, W):

W*image

Cat Score = -97.9

Bird Score = 434.7

Plane Score = 63.15

Total Loss=
$$\frac{1}{N} \sum_{i}^{N} Loss_{i}(f(x_{i}, W), y_{i})$$

where **N** is the total number of images (i.e., 3), **i** is a unique index for each image, **x_i** is the image itself, **y_i** is the image label, **Loss_i** is the loss for that image, and **W** is the weights being tested.

f(image, W) = scores

		Perat <mark>32</mark> nal E		2.2
) I	v Gar and	SECURI <mark>51</mark> CENTER	of excelle 4.9 e	2.5
	Frog	-1.7	2.0	-3.1

J is the total number of classes, represented by index j. In the current example, j=1 would be "Cat", j=2 would be "Car", etc.

s is the score for a given category. For the first image (the Cat), s_1 would be 3.2, s_2 would be 5.1, and s_3 would be -1.7.

Epsilon (ε) is a tolerance term, essentially defining how sure the algorithm needs to be about a class before we call it right.

Multiclass SVM Loss

$y_i + c$		$max(0, s_j)$	$-s_{y_i} +$	$\varepsilon)$
-----------	--	---------------	--------------	----------------

 $j \neq y_i$

		perat <mark>ion al</mark>		2.2
X	v Gar and	SECURI <mark>5M</mark> CENTER	of excelle 4.9 e	2.5
	Frog	-1.7	2.0	-3.1

Probability the picture is a

Cat: 34% Car: 51% Frog: 15%

Softmax Function

		_CELERATING	
Cat	3.2	FFICIENC <mark>1</mark> y3	2.2
Car	5.1	of excelle 4.9	2.5
Frog	-1.7	2.0	-3.1

Assumption: These are really probabilities, just unnormalized!

Specific Assumption:

These are unnormalized log probabilities for each class.

Cat	3.2	CELERATING FFICIENC <mark>1</mark> 43	2.2
Car	5.1	of excelle 4.9	2.5
Frog	-1.7	2.0	-3.1

$$P(Y = k | X = X_i)$$

Assumption: These are really probabilities, just unnormalized!

Specific Assumption:

These are unnormalized log probabilities for each class.

Cat	3.2	CELEKAIING EEROREMANA	2.2
Car	5.1	of excelle 4.9 e	2.5
Frog	-1.7	2.0	-3.1

$$P(Y = k | X = X_i) =$$

 $\frac{e_k^s}{\sum_{j=1}^{J} e_j^s}$

This is the softmax function for class k.

Assumption: These are really probabilities, just unnormalized!

Specific Assumption:

These are unnormalized log probabilities for each class.

Cat	3.2	fficienc <mark>1</mark> /3	
Car	5.1	of excelle 4.9	
Frog	-1.7	2.0	

2.2

2.5

-3.1

In a perfect world for this example, the above function would result in 1 for cat, and 0 for both car and frog.

Cat	3.2	FFICIENC <mark>1</mark> 43	2.2
Car	5.1	of excelle 4.9	2.5
Frog	-1.7	2.0	-3.1

$$Loss_i = -1 * \frac{e_k^s}{\sum_{j=1}^{J} e_j^s}$$

Cat	3.2	FICIENC <mark>Y3</mark>	2.2
Car	5.1	of excelle 4.9	2.5
Frog	-1.7	2.0	-3.1

$$L_i = -log(\frac{e_k^s}{\sum_{j=1}^{J} e_j^s})$$

Class	Score	e^s
Cat	3.2	24.5
Car	5.1	164.0
Frog	-1.7	0.18

$I \cdot - 100$	$\gamma($	e_k^s)
$L_i = -log$	$\int \left(\frac{1}{2} \right)$	¬J -j=1	e_{j}^{s}

	enger err Ma I	CELERATING	
Cat	3.2	FFICIENC <mark>1</mark> 43	2.2
Car	5.1	of excelle 4.9	2.5
Frog	-1.7	2.0	-3.1

Class	Score	e^s	e^s/188.68
Cat	3.2	24.5	0.13
Car	5.1	164.0	0.87
Frog	-1.7	0.18	0.00

 $L_i = -log(\frac{e_k}{\sum_{j=1}^{J} e_j^s})$

188.68

2.0	-3.1
of excelle 4.9 e	2.5
fficienc <mark>iy3</mark>	2.2
CELERATING	

-log(0.13) = 0.89

Multinomial Logistic Regression - Softmax

Class	Score	•	e^s/188.68
Class	Score	e^s	e-5/100.00
Cat	3.2	24.5	0.13
Car	5.1	164.0	0.87
Frog	-1.7	0.18	0.00

<i>T</i> . —	_10a(_	e_k°	`
$L_i =$	$-log(\frac{-}{\sum}$	$J_{j=1}$	$\frac{1}{2}s'$

188.68

	enser err Ma	CELERATING	
Cat	3.2	fficienc <mark>i</mark> y3	2.2
Car	5.1	of excelle 4.9 e	2.5
Frog	-1.7	2.0	-3.1

$$L_{i} = -log(\frac{e_{k}^{s}}{\sum_{j=1}^{J} e_{j}^{s}})$$

Loss_i	0.89	0.034	2.67
Cat ①	PERAT 32 NAL E	EFFICIENC <mark>1</mark> 43	2.2
v Gar and	SECURI <mark>5Y</mark> CENTER	of excelle 4.9	2.5
Frog	-1.7	2.0	-3.1

Multiclass SVM Loss

$$\sum_{j \neq y_i}^{J} \max(0, s_j - s_{y_i} + \varepsilon) \quad L_i = -log(\frac{e_k^s}{\sum_{j=1}^{J} e_j^s})$$

SVM	2.9	0	12.9
Softmax	0.89	0.034	2.67
Cat	3.2	1.3	2.2
Car	5.1	4.9	2.5
Frog	-1.7	2.0	-3.1

Pixel Value 1

Pixel Value 1

$$\frac{1}{N}\sum_{i}^{N}Loss_{i}(f(x_{i},W),y_{i})$$

Total Loss
(Data Loss) operational Efficiency

Operational Efficiency

$$\frac{1}{N}\sum_{i}^{N}Loss_{i}(f(x_{i},W),y_{i})+\lambda R(W)$$

Data Loss

Regularization Loss

$$\frac{1}{N} \sum_{i}^{N} Loss_{i}(f(x_{i}, W), y_{i}) + \lambda R(W)$$

Data Loss

Regularization Loss

$$\frac{1}{N}\sum_{i}^{N}Loss_{i}(f(x_{i},W),y_{i})+\lambda R(W)$$

$$\frac{1}{N}\sum_{i}^{N}Loss_{i}(f(x_{i},W),y_{i})+\lambda R(W)$$

L1 Regularization
$$R_{\ell}$$

$$k=1$$

$$\frac{1}{N}\sum_{i}^{N}Loss_{i}(f(x_{i},W),y_{i})+\lambda R(W)$$

Elastic Net - Combination of L1 and L2

Max Norm Regularization, Batch Normalization, Stochastic Depths, Dropout Networks, ... many more.

$$\sum_{i=1}^{N=3} \{(x_i, y_i)\}$$

CAOE | CENTER FOR ACCELERATING OPERATIONAL EFFICIENCY

$$\sum_{i=1}^{N=3} \{(x_i, y_i)\}$$

def predict(image, W):

return(W*image)

CAOE | CENTER FOR ACCELERATING
OPERATIONAL EFFICIENCY

$$\sum_{i=1}^{N=3} \{(x_i, y_i)\}$$

def predict(image, W):

Cat	3.2	1.3	2.2
	▼		
	1		

Cat	3.2	1.3 A DEPARTMENT OF HON	2.2 ELAND SECURITY CENTER	of excellenc
Car	5.1	4.9	2.5	
Frog	-1.7	2.0	-3.1	

$$\sum_{i=1}^{N=3} \{(x_i, y_i)\}$$

def predict(image, W):

	▼		I (A)DERATIONAL E	
Cot	2.2	1 2		
Cat	3.2	A DEPARTMENT OF HOW	ELAND SECURITY CENTER	0
Car	5.1	4.9	2.5	
				-
Frog	-1.7	2.0	-3.1	

$$L_i = -log(\frac{e_k}{\sum_{j=1}^{J} e_j^s})$$

Total Loss=

$$\sum_{i=1}^{N=3} \{(x_i, y_i)\}$$

$$\frac{1}{N}\sum_{i}^{N}Loss_{i}(f(x_{i},W),y_{i})$$

def predict(image, W):

Cat	3.2	1.3 A DEPARTMENT OF HOM	2.2 IELAND SECURITY CENTER
Car	5.1	4.9	2.5
Frog	-1.7	2.0	-3.1

Total Loss=

$$\sum_{i=1}^{N=3} \{(x_i, y_i)\}$$

$$\frac{1}{N}\sum_{i}^{N}Loss_{i}(f(x_{i},W),y_{i})+\lambda R(W)$$

def predict(image, W):

	<u> </u>		<u> </u>
Cat	3.2	1.3 A DEPARTMENT OF HOM	2.2 IELAND SECURITY CENTER
Car	5.1	4.9	2.5
Frog	-1.7	2.0	-3.1

