BÀI SỐ 2

XÁC ĐỊNH MÔ MEN QUÁN TÍNH CỦA VẬT RẮN ĐỐI XỨNG NGHIỆM LẠI ĐỊNH LÝ STEINER - HUYGHENS

	Xác nhận của giáo viên hướng dẫn		
Trường			
LớpNhóm			
Họ tên			

I. MỤC ĐÍCH THÍ NGHIỆM

Xác định mô men quán tính của vật rắn đối xứng. Nghiệm lại định lý S-H

II. KÉT QUẢ THÍ NGHIỆM

1. Xác định mô men quán tính 1/0 của vật rắn đối xứng

Bảng 1

- Mô men quán tính của đĩa đỡ khối trụ: $I_{\rm D}=0.00011\pm0.00001(kg.m^2)$ - Độ chính xác của bộ đếm thời gian: $(\Delta T)_{dc}=0.001(s)$								
Lần đo Thanh dài		h dài	Đĩa đặc		Trụ rỗng		Khối cầu	
Lando	$T_{TH}(s)$	$\Delta T(s)$	$T_{\rm DD}(s)$	$\Delta T(s)$	$T_{TR+D}(s)$	$\Delta T(s)$	$T_{\mathcal{C}}(s)$	$\Delta T(s)$
1	2.614	0.0008	2.070	0.0016	1.142	0.0012	2.105	0.0008
2	2.615	0.0002	2.069	0.0004	1.144	0.0008	2.104	0.0002
3	2.614	0.0008	2.068	0.0006	1.142	0.0012	2.105	0.0008
4	2.616	0.0012	2.069	0.0004	1.145	0.0018	2.103	0.0012
5	2.615	0.0002	2.067	0.0013	1.143	0.0002	2.104	0.0002
TB	2.6148	0.0006	2.0686	0.0009	1.1432	0.0010	2.1042	0.0006

2. Nghiệm lại định lý Steiner - Huygens

Bảng 2

$d(\times 10^{-3}m)$	T(s)	$x = d^2(\times 10^{-6}m^2)$	$I = D_z \left(\frac{T}{2\pi}\right)^2 (kg.m^2)$
0	2.620	0	0.0077
30	2.741	900	0.0084
60	3.019	3600	0.0102
90	3.446	8100	0.0132
120	3.921	14400	0.0171

III. XỬ LÝ SỐ LIÊU

- 1. Tính mô men quán tính của các vật rắn đối xứng
- **a. Thanh dài** (L = 620 mm, M = 240 g)
- Sai số tuyệt đối của phép đo chu kỳ T_{TH} (đo trực tiếp)

$$\Delta T_{TH} = (\Delta T)_{dc} + \overline{\Delta T_{TH}} = 0.001 + 0.0006 = 0.0016 (s)$$

- Mô men quán tính trung bình của thanh dài:

$$\bar{I}_{TH} = D_z \left(\frac{\bar{T}_{TH}}{2\pi}\right)^2 = 0.044. \left(\frac{2.6148}{2 \times 3.142}\right)^2 = 0.00762 (kg.m^2)$$

- Sai số tương đối trung bình của phép đo mô men quán tính của thanh dài:

$$\delta = \frac{\Delta I_{TH}}{\bar{I}_{TH}} = \frac{\Delta D_z}{D_z} + \frac{2\Delta T_{TH}}{\bar{T}_{TH}} + \frac{2\Delta \pi}{\pi} = \frac{0.001}{0.044} + \frac{2\times0.0016}{2.6148} + \frac{2\Delta \pi}{\pi} = 0.024 + \frac{2\times0.001}{3.142} = 0.025 = 2.5 \text{ (\%)}$$

Cách lấy số π và sai số của nó: Sai số tương đối của π không lớn hơn 1/10 tổng sai số tương đối của các đại lượng còn lại, tương tự cho các số π bên dưới.

- Sai số tuyệt đối của mô men quán tính ΔI_{TH} :

$$\Delta I_{TH} = \delta.\bar{I}_{TH} = \frac{2.5}{100} \times 0.00762 = 0.00019 (kg.m^2)$$

- Kết quả đo mô men quán tính của thanh dài:

$$I_{TH} = \bar{I}_{TH} \pm \Delta I_{TH} = 0.00762 \pm 0.00019 (kg.m^2)$$

- Mô men quán tính của thanh dài tính theo lý thuyết $(I_{TH})_{LT}$:

$$(I_{TH})_{LT} = \frac{1}{12}ML^2 = \frac{1}{12} \cdot \frac{240}{1000} \cdot \left(\frac{620}{1000}\right)^2 = 0.00769 (kg.m^2)$$

- Sai số tỷ đối:
$$\delta^* = \frac{|(I_{TH})_{LT} - I_{TH}|}{(I_{TH})_{LT}} = \frac{|0.00769 - 0.00762|}{0.00769} = 0.0091 = 0.91 \, (\%)$$

- **b.** Dia dăc (D = 220 mm, M = 795 g)
- Sai số tuyệt đối của phép đo chu kỳ $T_{\rm DD}$ (đo trực tiếp)

$$\Delta T_{\rm DD} = (\Delta T)_{dc} + \overline{\Delta T_{\rm DD}} = 0.001 + 0.0009 = 0.0019 (s)$$

- Mô men quán tính trung bình của đĩa đặc:

$$\bar{I}_{\text{DD}} = D_z \left(\frac{\bar{T}_{\text{DD}}}{2\pi}\right)^2 = 0.044. \left(\frac{2.0686}{2 \times 3.142}\right)^2 = 0.00477 (kg.m^2)$$

- Sai số tương đối trung bình của phép đo mô men quán tính của đĩa đặc:

$$\delta = \frac{\Delta I_{\text{DB}}}{\bar{I}_{\text{DB}}} = \frac{\Delta D_z}{D_z} + \frac{2\Delta T_{\text{DB}}}{\bar{T}_{\text{DB}}} + \frac{2\Delta \pi}{\pi} = \frac{0.001}{0.044} + \frac{2 \times 0.0019}{2.0686} + \frac{2\Delta \pi}{\pi} = 0.025 + \frac{2 \times 0.001}{3.142} = 0.026 = 2.6 \text{ (\%)}$$

- Sai số tuyệt đối của mô men quán tính $\Delta I_{\rm DD}$:

$$\Delta I_{\text{DD}} = \delta.\bar{I}_{\text{DD}} = \frac{2.6}{100} \times 0.00477 = 0.00012 (kg.m^2)$$

- Kết quả đo mô men quán tính của đĩa đặc:

$$I_{\text{DP}} = \bar{I}_{\text{DP}} \pm \Delta I_{\text{DP}} = 0.00477 \pm 0.00012 \ (kg.m^2)$$

- Mô men quán tính của đĩa đặc tính theo lý thuyết $(I_{\text{D} \text{D}})_{LT}$:

$$(I_{\text{DB}})_{LT} = \frac{1}{8}MD^2 = \frac{1}{8} \cdot \frac{795}{1000} \cdot \left(\frac{220}{1000}\right)^2 = 0.00481 \, (kg. \, m^2)$$

- Sai số tỷ đối: $\delta^* = \frac{|(I_{\rm DD})_{LT} I_{\rm DD}|}{(I_{\rm DD})_{LT}} = \frac{|0.00481 0.00477|}{0.00481} = 0.0083 = 0.83 \, (\%)$
- **c.** Tru $r\tilde{o}$ ng (D = 89 mm, M = 789 g)
- Sai số tuyệt đối của phép đo chu kỳ T_{TR+D} (đo trực tiếp)

$$\Delta T_{TR+D} = (\Delta T)_{dc} + \overline{\Delta T_{TR+D}} = 0.001 + 0.0010 = 0.0020 (s)$$

- Mô men quán tính trung bình của trụ rỗng và đĩa đỡ:

$$\bar{I}_{TR+D} = D_z \left(\frac{\bar{T}_{TR+D}}{2\pi}\right)^2 = 0.044 \cdot \left(\frac{1.1432}{2 \times 3.142}\right)^2 = 0.00146 (kg.m^2)$$

- Sai số tương đối trung bình của phép đo mô men quán tính của tru rỗng và đĩa đỡ:

$$\delta = \frac{\Delta I_{TR+D}}{\bar{I}_{TR+D}} = \frac{\Delta D_z}{D_z} + \frac{2\Delta T_{TR+D}}{\bar{T}_{TR+D}} + \frac{2\Delta \pi}{\pi} = \frac{0.001}{0.044} + \frac{2 \times 0.0020}{1.1432} + \frac{2\Delta \pi}{\pi} = 0.026 + \frac{2 \times 0.001}{3.142} = 0.027$$

$$= 2.7 \text{ (%)}$$

- Sai số tuyệt đối của mô men quán tính của trụ rỗng và đĩa đỡ ΔI_{TR+D} :

$$\Delta I_{TR+D} = \delta.\bar{I}_{TR+D} = \frac{2.7}{100} \times 0.00146 = 0.00004 (kg.m^2)$$

- Mô men quán tính trung bình của trụ rỗng \bar{I}_{TR} :

$$\bar{I}_{TR} = \bar{I}_{TR+D} - \bar{I}_{D} = 0.00146 - 0.00011 = 0.00135 (kg. m^2)$$

- Sai số tuyệt đối của mô men quán tính trụ rỗng ΔI_{TR} :

$$\Delta I_{TR} = \Delta I_{TR+D} + \Delta I_{D} = 0.0004 + 0.0001 = 0.0005 (kg.m^{2})$$

- Kết quả đo mô men quán tính của trụ rỗng:

$$I_{TR} = \bar{I}_{TR} \pm \Delta I_{TR} = 0.00135 \pm 0.00005 (kg.m^2)$$

- Mô men quán tính của đĩa đặc tính theo lý thuyết $(I_{TR})_{LT}$:

$$(I_{TR})_{LT} = \frac{1}{4}MD^2 = \frac{1}{4}.\frac{789}{1000}.\left(\frac{89}{1000}\right)^2 = 0.00156 (kg.m^2)$$

- Sai số tỷ đối:
$$\delta^* = \frac{|(I_{TR})_{LT} - I_{TR}|}{(I_{TR})_{LT}} = \frac{|0.00156 - 0.00135|}{0.00156} = 0.14 = 14 (\%)$$

- **d. Khối cầu đặc** (D = 146 mm, M = 2290 g)
- Sai số tuyệt đối của phép đo chu kỳ $T_{\mathcal{C}}$ (đo trực tiếp)

$$\Delta T_C = (\Delta T)_{dc} + \overline{\Delta T_C} = 0.001 + 0.0006 = 0.0016 (s)$$

- Mô men quán tính trung bình của khối cầu đặc:

$$\bar{I}_C = D_z \left(\frac{\bar{T}_C}{2\pi}\right)^2 = 0.044. \left(\frac{2.1042}{2 \times 3.142}\right)^2 = 0.00494 (kg.m^2)$$

- Sai số tương đối trung bình của phép đo mô men quán tính của đĩa đặc:

$$\delta = \frac{\Delta I_C}{\bar{I}_C} = \frac{\Delta D_Z}{D_Z} + \frac{2\Delta T_C}{\bar{T}_C} + \frac{2\Delta \pi}{\pi} = \frac{0.001}{0.044} + \frac{2 \times 0.0016}{2.10426} + \frac{2\Delta \pi}{\pi} = 0.024 + \frac{2 \times 0.001}{3.142} = 0.025 = 2.5 \text{ (\%)}$$

Sai số tuyệt đối của mô men quán tính ΔI_C:

$$\Delta I_C = \delta.\bar{I}_C = \frac{2.5}{100} \times 0.00494 = 0.00012 (kg.m^2)$$

- Kết quả đo mô men quán tính của khối cầu đặc:

$$I_C = \bar{I}_C \pm \Delta I_C = 0.00494 \pm 0.00012 (kg.m^2)$$

- Mô men quán tính của khối cầu đặc tính theo lý thuyết $(I_{\text{D}\text{D}})_{LT}$:

$$(I_C)_{LT} = \frac{1}{10}MD^2 = \frac{1}{10}.\frac{2290}{1000}.\left(\frac{146}{1000}\right)^2 = 0.00488 (kg.m^2)$$

- Sai số tỷ đối:
$$\delta^* = \frac{|(I_C)_{LT} - I_C|}{(I_C)_{LT}} = \frac{|0.00488 - 0.00494|}{0.00488} = 0.012 = 1.2 (\%)$$

3. Kiếm nghiệm định lý Steiner - Huygens

Đồ thị
$$I = Mx + I_o$$
 $(x = d^2)$

Bảng 3. Nghiệm lại định lý Steiner - Huygens (Kẻ ra mặt sau tờ báo cáo)

I	ΔI	х	Δx
0.0077	0.0002	0	0
0.0084	0.0002	0.0009	0.00006
0.0102	0.0003	0.0036	0.00012
0.0130	0.0003	0.0081	0.00018
0.0171	0.0004	0.0144	0.00024

Cách xác định ΔI và Δx :

- Sai số tuyệt đối ΔI được xác định dựa vào giá trị I và sai số tương đối δ của I tương ứng ($\delta = \frac{\Delta I}{I}$)

Ví du tính cho I = 0.0077, Ta có:

$$\delta = \frac{\Delta I}{I} = \frac{\Delta D_z}{D_z} + \frac{2\Delta T}{T} + \frac{2\Delta \pi}{\pi} = \frac{0.001}{0.044} + \frac{2\times0.001}{2.2620} + \frac{2\Delta \pi}{\pi} = 0.024 + \frac{2\Delta \pi}{\pi} = 0.024 + \frac{2\times0.001}{3.142} = 0.025 = 0.25 \, (\%)$$

$$\rightarrow \Delta I = \delta. \, I = \frac{0.25}{100} \times 0.0077 = 0.0002 \, (kg.m^2)$$

- Sai số tuyệt đối $\Delta x = 2d$. Δd (do $x = d^2$), với $\Delta d = 0.001$ (m)

Ví du tính cho $x = 0.0009 \, m^2$, Ta có: $\Delta x = 2 \times 30 \times 10^{-3} \times 0.001 = 0.00006 \, (m^2)$

Cách xác định ô sai số: Thực tế đối với đồ thị này, ứng với mỗi điểm giá trị sẽ có một ô sai số với kích thước khác nhau (như bảng 3). Tuy nhiên, để đơn giản hóa thì ta có thể coi sai số tuyệt đối của từng giá trị I và X chính bằng sai số tuyệt đối lớn nhất của nó. Tức là $\Delta X = 0.0004$ và $\Delta I = 0.0008$.

- Đánh giá kết quả thu được từ thực nghiệm: **Dựa vào đồ thị thu được, ta thấy dạng đồ thị thỏa mãn** đúng cho phương trình $I=Mx+I_o$ $(x=d^2)$ là đồ thị của hàm số bậc nhất. Như vậy, định lý Steiner - Huygens được nghiệm đúng.