Universität Potsdam - Wintersemester 2023/24

Stoffdidaktik Mathematik

Kapitel 14 – Didaktik der Stochastik

Stoffdidaktik Mathematik

Kapitel 14 – Didaktik der Stochastik

- Sie wissen um die Bedeutung des Modellierens bei stochastischen Situationen.
- Sie kennen verschiedene Möglichkeiten, stochastische Begriffe oder Verfahren zu visualisieren, insbesondere zu allgemeinen stochastischen Vorgängen (z. B. Zufallsexperimente), zur Kombinatorik und zu bedingten Wahrscheinlichkeiten.

Stochastik

- Bedeutung und
 Besonderheiten des
 Stochastikunterrichts
- 2. Konzeptionelle Grundlagen
- 3. Stochastikunterricht in den Jahrgangsstufen 5 und 6
- 4. Stochastikunterricht in den Jahrgangsstufen 7 und 8
- 5. Stochastikunterricht in den Jahrgangsstufen 9 und 10
- 6. Aspekte grundlegender Begriffe, Methoden und Betrachtungsweisen

Warum ist Stochastik so »merkwürdig«?

Stochastik heißt Modellieren!

(Krüger et al., 2015)

Laplace-Versuch,
$$p = \frac{1}{6}$$

Welche Eigenschaften muss der Würfel haben, damit du so rechnen darfst?

sechs gleich große Seiten; vollkommen symmetrisch; Masse homogen verteilt

Welche Annahmen triffst du?

(Krüger et al., 2015, S. 13)

Prozessbetrachtung

Bedingungen

interessierendes Merkmal

- 1. Welcher Vorgang läuft mit welchen Objekten oder Personen ab?
- 2. Welches Merkmal interessiert mich? Wie kann ich das Merkmal erfassen?
- 3. Welche Ergebnisse sind möglich?
- 4. Welche Bedingungen beeinflussen den Vorgang?

(Krüger et al., 2015, S. 14 ff.)

interessierendes Merkmal

Prozessbetrachtung

Auf welche Seite fällt sie?

Es wird geguckt, welche Seite oben liegt.

gesprungene Weite

Messung mit Maßband vom

Absprungstelle bis Landung

Münze bleibt nicht auf Rand stehen; beide Seiten sind gleich schwer

- 1. Welcher Vorgang läuft mit welchen Objekten oder Personen ab?
- 2. Welches Merkmal interessiert mich? Wie kann ich das Merkmal erfassen?
- 3. Welche Ergebnisse sind möglich?
- 4. Welche Bedingungen beeinflussen den Vorgang?

Weitsprung 2,00 m
2,10 m

Beinkraft, Beinlänge, Absprungstelle, Trainingserfahrung, Wind, ...

(Krüger et al., 2015, S. 14 ff.)

Kombinatorik

	n Optionen mit Wiederholen/Zurücklegen	n Optionen ohne Wiederholen/Zurücklegen
Auswahl von k Elementen mit Beachtung der Reihenfolge (»Variation«)	n^k	$\frac{n!}{(n-k)!}$
Auswahl von k Elementem ohne Beachtung der Reihenfolge (»Kombination«)	$\frac{(n+k-1)!}{k!(n-1)!}$	$\frac{n!}{k!(n-k)!}$

Herausforderungen

- Gültigkeit der Gleichungen nachvollziehen
- Sachsituation korrekter
 Zelle zuordnen
- n und k identifizierer

anschauliche Orientierungshilfe bieten

Wie viele Möglichkeiten gibt es, ...

- ... einen Obstsalat aus 5 Früchten zu machen, wenn ich 4 Obstsorten zur Verfügung habe?
- ... in einem Bücherregal 5 Bücher anzuordnen, wenn ich insgesamt 20 Bücher zur Verfügung habe?
- ... für ein Zahlenschloss mit 3 Rädern, wobei für jedes Rad die Ziffern 0 bis 9 zur Verfügung stehen.
- ... aus einer Spielesammlung mit 10 Spielen vier verschiedene Spiele auszuwählen?

n Optionenmit Wiederholen/Zurücklegen

n Optionenohne Wiederholen/Zurücklegen

Auswahl von

k Elementen

mit Beachtung

der Reihenfolge

(»Variation«)

 n^k ; Zahlenschloss

$$\bigcirc \rightarrow \bigcirc \rightarrow \bigcirc \rightarrow \bigcirc$$

 $\frac{n!}{(n-k)!}$; Bücherregal

Auswahl von

k Elementen

ohne Beachtung

der Reihenfolge

(»Kombination«)

 $\frac{(n+k-1)!}{k!(n-1)!}$; Obstsalat

 $\frac{n!}{k!(n-k)!}$; Spielesammlung

Boxplot

Tageswerte in Bad Lippspringe im März 2013

zunächst:
»doppelt ungerade«
Anzahl an Daten

(Krüger et al., 2015, S. 123)

C = »an Corona erkrankt«

T = »positives Testergebnis«

Prävalenz: P(C) = 1%

Wahrscheinlichkeit der Erkrankung

Sensitivität: $P_C(T) = 90\%$

Wahrscheinlichkeit für positives Testergebnis, wenn Erkrankung vorliegt

Spezifität: $P_{\neg C}(\neg T) = 95\%$

Wahrscheinlichkeit für negatives Testergebnis, wenn keine Erkrankung vorliegt

gesucht: $P_{\tau}(C)$

Mögliche Visualisierungen

Vierfeldertafel/ Einheitsquadrat

Baumdiagramm

Doppelbaum

Häufigkeitsnetz

Einheitsquadrat

P(C)

 $P_C(T)$

 $P_{T}(C)$

Häufigkeitsnetz

$$P(C) = 1\%$$

$$P_C(T) = 90\%$$

$$P_{\neg C}(\neg T) = 95\%$$

$$P_C(T) = \frac{P(C \cap T)}{P(C)}$$

$$P_T(C) = ?$$

Häufigkeitsnetz

$$P(C) = 1\%$$

$$P_C(T) = 90\%$$

$$P_{\neg C}(\neg T) = 95\%$$

$$P_C(T) = \frac{P(C \cap T)}{P(C)}$$

$$P_T(C) = ?$$

Häufigkeitsnetz

Bestimmung der bedingten Wahrscheinlichkeit

Bestimmung der Schnittwahrscheinlichkeit

(Binder et al., 2020)

Mögliche Visualisierungen

Baumdiagramm

Doppelbaum

Häufigkeitsnetz

Weitere Unterstützungen

- Vernetzung der Darstellungen
- absolute Häufigkeiten statt
 Wahrscheinlichkeiten

Literatur

Binder, K., Krauss, S., & Wiesner, P. (2020). A New Visualization for Probabilistic Situations Containing Two Binary Events: The Frequency Net. Frontiers in Psychology, 11, 750. https://doi.org/10.3389/fpsyg.2020.00750

Krüger, K., Sill, H.-D., & Sikora, C. (2015). *Didaktik der Stochastik in der Sekundarstufe I*. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-43355-3