Class 11

Shikhar Saxena

February 14, 2023

Contents

Policy Iteration Algorithm	1
Contraction Mappings	1
Optimality Operator T_{α}	

Policy Iteration Algorithm

- 1. Set n=0 and pick an arbitrary stationary policy π^0 .
- 2. (Policy Evaluation) Obtain V^{π_n} by repeatedly applying T_{π_n} on arbitrary u. Or alternatively,

$$V^{\pi_n} = [I - \alpha P^{\pi_n}]^{-1} r^{\pi_n}$$

- 3. (Policy Improvement) Find policy π^{n+1} that improves upon policy π^n by being greedy on V^{π_n} .
- 4. If $\pi^{n+1} = \pi^n$ then stop else update the policy and n and repeat step two onwards.

Corollary 1. If f is not α -optimal, I can always improve it or if you cannot improve a policy for atleast one state, then it is already α -optimal.

Contraction Mappings

For any function $u \in B(\mathcal{S})$ let $||u|| = \sup_{i \geq 0} |u(i)|$

Note. sup used when the set is unbounded for example $u(i) = 1 - \frac{1}{i}$. Here max doesn't make sense as we never reach 1 (only closer to it).

Definition 1. A mapping $T: B(S) \to B(S)$ is said to be a **contraction mapping** if

$$\|Tu-Tv\|\leq \beta\|u-v\|$$

for some $\beta < 1, \ \forall u, v \in B(\mathcal{S})$.

Called contraction as the vectors we get after appling the operator are closer than they were before. (norm decreases).

Theorem 1. If $T: B(\mathcal{S}) \to B(\mathcal{S})$ is a contraction mapping then there exists a unique function $g \in B(\mathcal{S})$ such that Tg = g. Furthermore $\forall u \in B(\mathcal{S}), T^nu \to g$ as $n \to \infty$.

Proof. Check slides.
$$\Box$$

This theorem is a special case of Banach fixed-point theorem. Other fixed-point theorems are Brouwer and Kakutani.

Optimality Operator T_{α}

Theorem 2. The optimality operator T_{α}

$$(T_{\alpha}u)(i) = \max_{a} \left\{ r(i,a) + \alpha \sum_{j} P_{ij}(a)u(j) \right\}$$

is a contraction mapping.

Proof. Check slides. \Box