TEMA 9: MODELO BAG OF WORDS ALGORITMO NAÏVE BAYES

- □ ¿Qué pasa si queremos aplicar técnicas de aprendizaje sobre documentos de texto?
 - Problema: los documentos de texto no tienen estructura
 - Número de palabras diferentes
 - Términos ambiguos
 - Falta de contexto
- □ Para realizar aprendizaje automático
 - Se necesita un conjunto de entrenamiento
 - Cada ejemplo es un documento
 - Cada documento estará caracterizado por sus palabras
- Necesidad de técnicas que extraigan información estructurada a partir de texto

- El modelo Bag of Words es una técnica para extraer información a partir de texto
 - □ Considera cada documento como una bolsa (conjunto) de palabras
 - Realiza dos suposiciones irreales
 - Las palabras son independientes
 - El orden de las palabras es irrelevante
- □ A pesar de su simpleza y de sus suposiciones
 - Es una técnica muy eficaz y que ha demostrado funcionar bien para realizar aprendizaje automático

- Al conjunto de documentos de texto disponibles para aprender el modelo Bag of Words se le llama corpus
- Cada documento del corpus se representa como un vector multi dimensional
 - Cada dimensión es un término único del corpus
 - Un término puede ser una palabra o un conjunto de palabras
 - El número de términos determina la dimensión del vector
 - El número de variables del problema
- Por tanto, cada documento es un vector con tantos elementos como términos del corpus
 - El valor de cada elemento representa el peso (relevancia) del término en el documento
 - Si un corpus tiene m términos $(t_i, i = \{1, ..., m\})$ el documento d del corpus estará representado por el vector $d = \{w_1, ..., w_m\}$
 - lacksquare Donde w_i es el peso asociado al término t_i

Ejemplo

aardvark	0				
about	2				
all	2				
Africa	1				
apple	0				
anxious	0				
gas	1				
oil	1				
Zaire	0				

- El modelo bag of Words se representa con una matriz de dimensiones número de documentos (N) por número de términos (m)
 - Cada fila representa un documento
 - Cada columna representa un término
 - La celda $\{i,j\}$ representa el peso del término j en el contexto del documento i

Documents

	complexity	algorithm	entropy	traffic	network
D1	2	3	1	0	0
D2	0	0	0	2	1
D3	3	0	0	3	4
D4	2	4	2	0	0
D5	3	4	0	0	0

- □ Antes de crear esta matriz se deben pre-procesar los documentos
 - □ Objetivo: reducir el número de términos del corpus
- Normalización: transformar varias formas del mismo término a un formato común
 - Ejemplo: Apple, apple, APPLE → apple
 - Ejemplo: Intelligent Systems, Intelligent-systems → intelligent systems
 - Proceso
 - Eliminación de signos de puntuación (puntos, guiones, comas, etc..)
 - Pasar el texto a minúsculas
 - Usar diccionarios de sinónimos (<u>WordNet</u>) para agrupar términos que sean sinónimos
 - \blacksquare Ejemplo: automobile, car \rightarrow vehicle

- □ Eliminación de términos con frecuencias muy altas o muy bajas
 - Los términos con frecuencias muy altas (aparecen muchas veces) componen una gran proporción del total de palabras pero no tienen mucha utilidad semántica
 - Ejemplos: the, a, an, we, do, to
 - Por contra, los términos con frecuencias muy bajas son ricos semánticamente pero son muy raros
 - Ejemplo: dextrosinistral
 - El resto de términos son los que mejor representan al corpus y, por tanto, deben ser incluidos en la matriz

- □ Eliminación de las llamadas stop-words
 - Las stop-words son palabras que probablemente sean irrelevantes para el análisis del corpus
 - Aquellas que por sí mismas no poseen información
 - Se estima que componen en torno al 20-30% del corpus
 - No hay listas de stop-words únicas
 - Unas de las más comunes se pueden encontrar en http://www.ranks.nl/stopwords
- Posibles problemas de eliminar las stop-words
 - Pérdida del significado original y la estructura del texto
 - Ejemplo: this is not a good option → option
 - Ejemplo: to be or not to be \rightarrow null

- □ Reducción de palabras a su raíz
 - □ Objetivo: reducir la variabilidad de términos reduciéndolos a su forma básica (o raíz)
 - Técnicas:
 - Stemming: cortar las terminaciones de las palabras sin considerar las características lingüísticas de las palabras
 - Ejemplo: argue, argued, argues, arguing → argu
 - Lemmatization: reducir las palabras a su forma básica teniendo en cuenta el vocabulario y sus características morfológicas
 - Ejemplo: argue, argued, argues, arguing → argue

- Una vez pre-procesado el corpus se conoce la dimensión de los vectores que representan a los documentos
 - Se debe calcular el peso de cada término
 - Técnicas
 - Pesos binarios (Binary weights)
 - FT: Frecuencia de los Términos (Term Frequency)
 - IFD: Inversa de la Frecuencia en los Documentos (Inverse Document Frequency)
 - FT-IFD: en inglés este proceso se conoce como TF-IDF

Pesos binarios

■ Los pesos toman el valor 0 o 1 y representan la presencia o ausencia del término en el documento

Ejemplo

■ D1: Text mining is to identify useful information in the text

■ D2: Useful information is mined from text

■ D3: Apple is delicious

	text	information	identify	mining	mined	is	useful	to	from	apple	delicious	in	the
D1	1	1	1	1	0	1	1	1	0	0	0	1	1
D2	1	1	0	0	1	1	1	0	1	0	0	0	0
D3	0	0	0	0	0	1	0	0	0	1	1	0	0

□ Frecuencia de los términos

- Representa la frecuencia de un término en un documento
 - Ocurrencias: Número de apariciones (conteo)
- Idea: los términos con más apariciones serán más importantes en ese documento
- Problema: los documentos más largos tendrán conteos más grandes
 - Frecuencia: ocurrencias / número de palabras de un documento
- Ejemplo
 - D1: Text mining is to identify useful information in the text
 - D2: Useful information is mined from text
 - D3: Apple is delicious

	text	information	identify	mining	mined	is	useful	to	from	apple	delicious	in	the
D1	2/10	1/10	1/10	1/10	0	1/10	1/10	1/10	0	0	0	1/10	1/10
D2	1/6	1/6	0	0	1/6	1/6	1/6	0	1/6	0	0	0	0
D3	0	0	0	0	0	1/3	0	0	0	1/3	1/3	0	0

- Inversa de la frecuencia en los documentos
 - □ Idea: asignar pesos más grandes a términos no comunes en el corpus
 - Tienen más poder de diferenciación
 - Se calcula a partir de todo el corpus
 - Describe el corpus globalmente, no a los documentos individualmente
 - Ecuación

$$\blacksquare IFD(t) = 1 + \log\left(\frac{N}{df(t)}\right)$$

- lacktriangle t es el término para el que se calcula el valor
- lacksquare N es el número de documentos del corpus
- lacksquare df(t) es el número de documentos que contienen el término t

□ Inversa de la frecuencia en los documentos

- Ejemplo
 - D1: Text mining is to identify useful information in the text
 - D2: Useful information is mined from text
 - D3: Apple is delicious

	text	Information	identify	mining	mined	is	useful	to	from	apple	delicious	in	the
Ν	3	3	3	3	3	3	3	3	3	3	3	3	3
df(t)	2	2	1	1	1	3	2	1	1	1	1	1	1
IFD	1.41	1.41	2.10	2.10	2.10	1	1.41	2.10	2.10	2.10	2.10	2.10	2.10

□ FT-IFD

- □ Idea: valorar los términos que no son muy comunes en el corpus (IFD relativamente alto) pero que tienen un nivel de frecuencia razonable (FT relativamente alto)
- Es el método más habitual de asignar los pesos en el modelo Bag of Words
 - □ Fórmula general
 - $\blacksquare FT IDF(t) = FT(t) * IDF(t)$
 - □ Fórmula comúnmente utilizada
 - $FT IDF(t) = FT(t) * \log\left(\frac{N}{df(t)}\right)$

- Ventajas
 - Intuitivo
 - Fácil de implementar
 - Ha probado empíricamente ser muy eficaz
- □ Inconvenientes
 - Está basado en suposiciones no realistas
 - Ajustar los parámetros del modelo es costoso (validación cruzada)
 - Stop-words a utilizar
 - Umbrales de eliminación de términos en base a frecuencias
 - Método de cálculo de pesos
 - Método de obtención de los términos
 - Palabra simple (unigrama)
 - Conjuntos de dos palabras (bigramas)
 - Etc...

- Un clasificador que se aplica habitualmente para resolver problemas de clasificación a partir de texto
- □ Clasificador Naïve Bayes
 - Basado en el teorema de Bayes (estadístico)
 - Clasifica el ejemplo en la clase asociada a la mayor probabilidad
 - Soporte multi-clase nativo

Thomas Bayes 1702 - 1761

Frontera de decisión: idea intuitiva

 \Box La frontera de decisión se traza donde las probabilidades a posteriori de cada clase $p(c_i|x)$ son iguales

Frontera de decisión: idea intuitiva

Método de clasificación MAP: Mayor probabilidad A Posteriori

$$c_{NB} = \arg \max_{c_j \in C} p(c_j) \prod_{i=1}^{n} p(x_i | c_j)$$

- $lue{C}$ es el conjunto de clases del problema
- n es el número de atributos del problema
- $\square X_i$ es el ejemplo a clasificar
- □ C_i es la clase j-ésima
- lacksquare $p(c_i)$ es la probabilidad de tener ejemplo de la clase j a priori
 - lacktriangle Número de ejemplos de la clase j entre en número total de ejemplos
- $\mathbf{p}(x_i|c_j)$ es la probabilidad de que el atributo i tenga el valor x_i para la clase c_i

- \Box Cálculo de $p(x_i|c_i)$
 - Si el atributo es categórico:
 - Frecuencia relativa: $\frac{n_{x_i \land c_j}}{n_{c_j}}$
 - Porcentaje de ejemplos cuya clase es c_i que tienen el valor x_i en el i-ésimo atributo
 - Problema: puede dar ceros
 - Ningún ejemplo de la clase C_i con valor x_i
 - Solución

$$\frac{n_{x_i \wedge c_j} + mp}{n_{c_i} + m}$$

 $p=rac{1}{k}$ siendo k el número de valores del atributo m: constante, normalmente se asigna a 1

- Si el atributo es continuo:
 - Estimación asumiendo una distribución Gaussiana para lo que se necesita la media (μ_{i,c_j}) y la desviación estándar (σ_{i,c_j}) de cada clase:

$$p(x_i|c_j) = \frac{1}{\sqrt{2 * \pi} * \sigma_{i,c_j}} * e^{-\frac{(x_i - \mu_{i,c_j})^2}{2 * \sigma_{i,c_j}^2}}$$

- Algoritmo de aprendizaje
 - □ Dado un conjunto de ejemplos S:
 - Para cada clase c_i
 - Calcular su probabilidad a priori en S $\rightarrow p(c_i)$
 - Para cada atributo k
 - lacksquare Si es numérico: calcular media y desviación de los valores: μ_{k,c_i} , σ_{k,c_i}
 - ullet Si es categórico: para cada valor i calcular su probabilidad ullet $p(x_{ik}|c_i)$
- □ Algoritmo de clasificación
 - □ Aplicar $c_{NB} = \arg \max_{c_j \in C} p(c_j) \prod_{i=1}^n p(x_i | c_j)$

- Muy rápido de entrenar
- Muy rápido al clasificar
- □ Rendimiento competitivo
- □ Aplicaciones exitosas: filtros spam