Trabalho Teórico 6 - Bruno Rodrigues Faria

• Resolva as equações abaixo:

a)
$$2^{10} = 1024$$

b) $lg(1024) = 10$
c) $lg(17) = 4,087$
d) $\overline{lg}(17) = 5$

• Plote um gráfico com todas as funções abaixo:

e)||g(17)|= 4

· Calcule o número de subtrações que o código abaixo realiza:

```
...

for (int i = 0; i < n; i++){

    if (i % 2 == 0){

        a=-;

        b--;

    } else {

        c--;

    }
}
```

Resposta: Melhor caso ele irá realizar n subtrações e no pior caso o código irá realizar 2n subtrações

· Calcule o número de subtrações que o código abaixo realiza:

· Calcule o número de multiplicações que o código abaixo realiza:

```
for (int i = n; i > 0; i /= 2)
a *= 2;
```

Resposta: Quando n é uma potência de 2 temos, que o código faz $\lg(n) + 1$ multiplicações. Mas quando n é um valor qualquer temos, que o código faz $[PISO]\lg(n) + 1$ multiplicações.

· Encontre o menor valor em um array de inteiros

```
1º) Qual é a operação relevante?
   int min = array[0];
  for (int i = 1; i < n; i++){
    if (min > array[i]){
                                                                                                                                                                          R: Comparação entre elementos do array
                                                                                                                                                          2º) Quantas vezes ela será executada?
                               min = array[i];
                                                                                                                                                                          R: Se tivermos n elementos: T(n) = n - 1
                                                                                                                                                                 3°) O nosso T(n) = n - 1 é para qual dos três
                                                                                                                                                                    Todos os casos
 int min = array[0];
                                                                                                                                                        1º) Qual é a operação relevante?
                                                                                                                                                                       R: Comparação entre elementos do array
for (int i = 1; i < n; i++){
               if (min > array[i]){
    min = array[i];
                                                                                                                                                        2º) Quantas vezes ela será executada?
                                                                                                                                                                       R: Se tivermos n elementos: T(n) = n - 1
                                                                                                                                                        3^{\circ}) O nosso T(n) = n - 1 é para qual dos três
                                                                                                                                                         casos?
R: Para os três casos
                                                                                                                                                        4º) O nosso algoritmo é ótimo? Por que?
                                                                                                                                                        Testa Lubo, pois assim ivà
                                                                                                                                                                                                garantiv
 boolean resp = false;

for (int i = 0; i < n; i++){
                                                                                                                                                    1°) Qual é a operação relevante?
                                                                                                                                                                   R: Comparação entre elementos do array
                  if (array[i] == x){
    resp = true;
    i = n;
                                                                                                                                                    2°) Quantas vezes ela será executada?
                                                                                                                                                   R: Melhor caso: f(n) = 1-3 1 pe \ = \times Pior caso: f(n) = n percordo todo Caso médio: f(n) = (n + 1)/2 caso do caso médio: f(n) = (n + 1)/2 caso do caso médio: f(n) = (n + 1)/2 caso do caso médio: f(n) = (n + 1)/2 caso do c
                                                                                                                                                                sin, puis tester tudo pura
garantir a respecta
```

 Encontre o maior e menor valores em um array de inteiros e, em seguida, encontre a função de complexidade de tempo para sua solução

```
maior = array[0];
menor = array[0];
for(int i=1;i<n;i++){
    if(array[i] > maior){
        maior = array[i];
    }
    if(array[i] < menor) {
        menor = array[i];
    }
}
f(n) = 2(n-1);
O(n), Θ(n), Ω(n);</pre>
```

 Um aluno deve procurar um valor em um array de números reais. Ele tem duas alternativas. Primeiro, executar uma pesquisa sequencial. Segundo, ordenar o array e, em seguida, aplicar uma pesquisa binária. O que fazer?

O aluno deve escolher a primeira opção pois tem custo n. A segunda tem custo (n * lg n). A terceira tem custo (lg n).

· Responda se as afirmações são verdadeiras ou falsas:

```
a) 3n^2 + 5n + 1 \in O(n): Fulsa
b) 3n^2 + 5n + 1 \in O(n^2): Verdaduia
c) 3n^2 + 5n + 1 \in O(n^3): Verdaduia
d) 3n^2 + 5n + 1 \in O(n): Verdaduia
e) 3n^2 + 5n + 1 \in O(n^2): Verdaduia
f) 3n^2 + 5n + 1 \in O(n^3): Fulsa
g) 3n^2 + 5n + 1 \in O(n^3): Fulsa
h) 3n^2 + 5n + 1 \in O(n^3): Verdaduia
i) 3n^2 + 5n + 1 \in O(n^3): Fulsa
i) 3n^2 + 5n + 1 \in O(n^3): Fulsa
i) 3n^2 + 5n + 1 \in O(n^3): Fulsa
```

· Preencha verdadeiro ou falso na tabela abaixo:

	O(1)	O(lg n)	O(n)	O(n.lg(n))	O(n²)	O(n³)	O(n⁵)	O(n ²⁰)
f(n) = lg(n)		×						
$f(n) = n \cdot lg(n)$				X				
f(n) = 5n + 1			X		X	X	X	X
$f(n) = 7n^5 - 3n^2$							\times	×
$f(n) = 99n^3 - 1000n^2$						×	×	X
$f(n) = n^5 - 99999n^4$							X	X
D-2 PINK GUAR ARIA)								

· Preencha verdadeiro ou falso na tabela abaixo:

	Ω(1)	Ω(lg n)	Ω(n)	Ω(n.lg(n))	Ω(n²)	Ω(n³)	Ω(n ⁵)	Ω(n ²⁰)
f(n) = Ig(n)	X	X						
$f(n) = n \cdot lg(n)$	×	Х	X	×				
f(n) = 5n + 1	×	X	X					
$f(n) = 7n^5 - 3n^2$	又	×	X		λ	X	Y	
f(n) = 99n ³ - 1000n ²	×	X	X		×	×		
f(n) = n ⁵ - 99999n ⁴	X	X	X		Х	X	×	

· Preencha verdadeiro ou falso na tabela abaixo:

	Θ(1)	⊖(lg n)	Θ (n)	Θ(n.lg(n))	⊖ (n²)	⊖ (n³)	Θ (n ⁵)	Θ(n ²⁰)
f(n) = Ig(n)		×						
$f(n) = n \cdot lg(n)$				×				
f(n) = 5n + 1			X					
$f(n) = 7n^5 - 3n^2$							X	
$f(n) = 99n^3 - 1000n^2$						X		
$f(n) = n^5 - 99999n^4$							\rightarrow	

• Dado $f(n) = 3n^2 - 5n - 9$, g(n) = n*lg(n), $l(n) = n.lg^2(n)$ e $h(n) = 99n^8$, qual é a ordem de complexidade das operações:

a)
$$f(n) + g(n) - h(n)$$

b)
$$O(f(n) + O(g(n)) - O(h(n))$$

c)
$$f(n) x g(n)$$

d)
$$g(n) x l(n) + h(n)$$

e)
$$f(n) x g(n) x I(n)$$

f)
$$O(O(O(O(f(n)))))$$

```
a) f(n) + g(n) - h(n)
O(f(n)) + O(g(n)) - O(h(n))
O(maximo(f(n),g(n))) - O(h(n))
b) O(f(n) + O(g(n)) - O(h(n))
 O(f(n) + g(n) - h(n))
c) f(n) x g(n)
 O(f(n) \times g(n))
d) g(n) \times I(n) + h(n)
 O(g(n) \times I(n)) + O(h(n))
 O(maximo(g(n)xl(n) + h(n)))
e) f(n) x g(n) x l(n)
 O(f(n) \times g(n)) \times I(n)
 O(f(n) \times g(n) \times I(n))
f) O(O(O(O(f(n)))))
 O(O(O(f(n))))
 O(O(f(n)))
 O(f(n))
Dada a definição da notação O:
  Mostre um valor c e outro m tal que, para n \ge m, |3n2 + 5n +1| \le c x |n2|,
  provando que 3n^2 + 5n +1 é O(n2)
    3n^2 + 5n + 1 \in \Omega(n^2) pois para a análise de complexidade,
    o que vale é a maior potência.
  Mostre um valor c e outro m tal que, para n \ge m, |3n2 + 5n +1| \le c \times |n2|,
  provando que 3n^2 + 5n +1 é O(n^3)
   O indica o limite superior, ou seja, O(n^2) também será O(n^3)
  Prove que 3n^2 + 5n +1 não é O(n).
   O indica o limite superior, e como 3n^2 + 5n + 1 \notin O(n^2),
   ele nao pode ser O(n)
```

```
Dada a definição da notação Ω:
  Mostre um valor c e outro m tal que, para n \ge m, |3n2 + 5n + 1| \le c \times |n2|,
  provando que 3n^2 + 5n + 1 \in \Omega(n^2)
    3n^2 + 5n + 1 \in \Omega(n^2) pois para a análise de complexidade,
    o que vale é a maior potência.
  Mostre um valor c e outro m tal que, para n \ge m, |3n2 + 5n + 1| \le c \times |n2|,
  provando que 3n^2 + 5n + 1 \in \Omega(n)
    \Omega indica o limite inferior, logo, \Omega(n^2) também será \Omega(n)
  Prove que 3n^2 + 5n +1 não é O(n^3)
    Como \Omega indica o limite inferior, e já que 3n^2 + 5n +1 é \Omega(n^2),
    ele não pode ser Ω(n^3)
Dada a definição da notação Θ:
  Mostre um valor c e outro m tal que, para n \ge m, |3n2 + 5n + 1| \le c \times |n2|,
  provando que 3n^2 + 5n + 1 \in \Omega(n^2)
    3n^2 + 5n + 1 \in \Theta(n^2) pois para a análise de complexidade,
    o que vale é a maior potência.
  Prove que 3n2 + 5n +1 não é Θ(n)
    \Theta é o limite justo, e já que 3n^2 + 5n + 1 é \Theta(n^2),
    ele não pode ser Θ(n).
  Prove que 3n2 + 5n +1 não é Θ(n^3)
    \Theta é o limite justo, e já que 3n^2 + 5n + 1 é \Theta(n^2),
    ele não pode ser Θ(n^3).
```

RESUMO DE COMPLEXIDADE

1- Introdução

Dada a definição de um algoritmo como uma sequência de passos para chegar a uma solução, sabe-se que podem existir diversas, entretanto, precisamos medir aquela que será a melhor de todas em uma determinada situação. Para isso, utilizamos a Complexidade de Algoritmos para projetar algoritmos eficientes e prever a quantidade de recursos que ele irá demandar a medida que o tamanho do problema cresce, principalmente o tempo de execução do algoritmo

2- Analise de Algoritmos

Conta-se o número de operações relevantes realizadas por um algoritmo e expressa-se esse número como uma função de n. Essas operações podem ser comparações, operações aritméticas, movimento de dados, etc. Sobre a quantidade de recursos utilizados no algoritmo, podemos destacar três casos:

a) Melhor caso:

E o menor custo possível na execução de um algoritmo, normalmente as funções de melhor caso podem ser delimitadas inferiormente usando a notação assintótica O.

b) Pior caso:

Indica o maior tempo de execução de um algoritmo qualquer. A ordem de crescimento da complexidade de pior caso normalmente 'e usada para compara a eficiência de dois algoritmos. O pior caso 'e comumente mais utilizado pois o tempo de execução dele estabelece um limite superior para o tempo de execução para qualquer entrada, conhecê-lo nos garante que o algoritmo nunca demorará mais do que esse tempo esperado.

c) Caso médio:

E a quantidade de algum recurso computacional utilizado pelo algoritmo, numa média sobre todas as entradas possíveis.

3- Notações O, Ω e Θ

As propriedades do somatório facilitam o desenvolvimento das expressões algébricas, com o objetivo de chegar `as somas simples ou somas de quadrados

a) Notação O:

Usamos a notação O para dar um limite superior a uma função, dentro de um fator constante. Para todos os valores n em n0 ou `a direita de n0, o valor da função f(n) está abaixo de cg(n). Com a notação O, podemos descrever frequentemente o tempo de execução de um algoritmo apenas inspecionando a estrutura global do algoritmo.

b) Notação Ω:

Da mesma maneira que a notação O fornece um limite assintótico superior para uma função, a notação Ω nos d´a um limite assintótico inferior.

c) Notação Θ:

A notação Θ fornece uma simbologia simplificada para representar um limite justo de desempenho para um algoritmo. Um limite exato de tempo que um algoritmo leva para ser executado. Ou seja, a notação Θ representa o ponto de encontro entre as notações Ω (limite inferior) e Big Θ (limite superior).

Apresente a função e a complexidade para os números de comparações e movimentações de registros para o pior e melhor caso:

```
void imprimirMaxMin( int [] array, int n){
    int maximo, minimo;

if (array[0] > array[1]){
        maximo = array[0];
        minimo = array[1];
    } else {
        maximo = array[1];
        minimo = array[0];
    }

for (int i = 2; i < n; i++){
        if (array[i] > maximo){
            maximo = array[i];
        } else if (array[i] < minimo){
            minimo = array[i];
        }
    }
}</pre>
```

Função de complexidade

PIOR
$$f(n) = 2 + (n-2)$$
 $f(n) = 1 + 2(n-2)$

MELHOR
$$f(n) = 2 + (n-2) \times 0$$
 $f(n) = 1 + (n-2)$

Complexidade

PIOR
$$O(n)$$
, $\Omega(n) \in \Theta(n)$ $O(n)$, $\Omega(n) \in \Theta(n)$

MELHOR
$$O(1)$$
, $\Omega(1) \in \Theta(1)$ $O(n)$, $\Omega(n) \in \Theta(n)$

 Apresente a função e a complexidade para o número de subtrações para o pior e melhor caso

Função Complexidade

PIOR
$$f(n) = n + 2$$
 $O(n)$, $\Omega(n) \in \Theta(n)$

MELHOR
$$f(n) = n + 1$$
 $O(n)$, $\Omega(n) \in \Theta(n)$

 Apresente a função e a complexidade para o número de subtrações para o pior e melhor caso

TODOS
$$f(n) = (2n + 1)n$$
 $O(n2)$, $\Omega(n2) \in \Theta(n2)$

 Apresente a função e a complexidade para o número de subtrações para o pior e melhor caso

```
for (i = 0; i < n; i++) {
    for (j = 1; j <= n; j *= 2) {
        b--;
    }
}
```

Função

Complexidade

```
TODOS f(n) = (\lg(n) + 1) * n = n * \lg(n) + n O(n \times \lg(n)), \Omega(n \times \lg(n)) \in \Theta(n \times \lg(n))
```

 Apresente um código, defina duas operações relevantes e apresente a função e a complexidade para as operações escolhidas no pior e melhor caso

 Apresente o tipo de crescimento que melhor caracteriza as funções abaixo (Khan Academy, adaptado)

	Constante	Linear	Polinomial	Exponencial
3n		\		
1	\			
(3/2)n		\		
2n ³			/	
2 ⁿ				✓
3n ²			/	
1000	✓			
(3/2) ⁿ				/

• Classifique as funções $f_1(n) = n^2$, $f_2(n) = n$, $f_3(n) = 2^n$, $f_4(n) = (3/2)^n$, $f_5(n) = n^3$ e $f_6(n) = 1$ de acordo com o crescimento, do mais lento para o mais rápido (Khan Academy, adaptado)

$$f_{6}(n) = 1$$

$$f_{2}(n) = n$$

$$f_{1}(n) = n^{2}$$

$$f_{5}(n) = n^{3}$$

$$f_{4}(n) = (3/2)^{n}$$

$$f_{3}(n) = 2^{n}$$

• Classifique as funções $f_1(n) = n.log_6(n)$, $f_2(n) = lg(n)$, $f_3(n) = log_8(n)$, $f_4(n) = 8n^2$, $f_5(n) = n.lg(n)$, $f_6(n) = 64$, $f_7(n) = 6n^3$, $f_8(n) = 8^{2n}$ e $f_9(n) = 4n$ de acordo com o crescimento, do mais lento para o mais rápido (Khan Academy, adaptado)

$$\begin{split} &f_{6}(n) = 64 \\ &f_{3}(n) = \log_{8}(n) \\ &f_{2}(n) = \lg(n) \\ &f_{9}(n) = 4n \\ &f_{1}(n) = n.\log_{6}(n) \\ &f_{5}(n) = n.\lg(n) \\ &f_{4}(n) = 8n^{2} \\ &f_{7}(n) = 8^{2n} \end{split}$$

• Faça a correspondência entre cada função f(n) com sua g(n) equivalente, em termos de Θ . Essa correspondência acontece quando $f(n) = \Theta(g(n))$ (Khan Academy, adaptado)

f(n)	g(n)
n + 30 •	→ n ⁴
n ² + 2n - 10	3n - 1
n ³ . 3n	lg(2n)
lg(n) ●	n² + 3n

· No Exercício Resolvido (10), verificamos que quando desejamos pesquisar a existência de um elemento em um array de números reais é adequado executar uma pesquisa sequencial cujo custo é $\Theta(n)$. Nesse caso, o custo de ordenar o array e, em seguida, aplicar uma pesquisa binária é mais elevado, $\Theta(n * lg(n)) + \Theta(lg(n)) = \Theta(n * lg(n))$. Agora, supondo que desejamos efetuar n pesquisas, responda qual das duas soluções é mais eficiente

Nesse caso, a solução mais eficiente é ordenar e fazer pesquisa binária, pois com n pesquisas, a sequencial fica $O(n^2)$, enquanto ordenar e pesquisar continua $O(n^* \lg n) + O(\lg n)$.