GENERATING EFFECTIVE TEST SUITE SIZE USING SIMILARITY BASED GREEDY APPROACH

A PROJECT REPORT

Submitted by

P.AMMU (810015205004)

M.BHARATHI (810015205015)

In partial fulfillment for the award of the degree of

BACHELOR OF TECHNOLOGY

IN

INFORMATION TECHNOLOGY

UNIVERSITY COLLEGE OF ENGINEERING

BIT CAMPUS

TIRUCHIRAPPALLI-620 024

APRIL-2019

UNIVERSITY COLLEGE OF ENGINEERING BIT CAMPUS

TIRUCHIRAPPALLI-620 024

BONAFIDE CERTIFICATE

Certified that this report titled "GENERATING EFFECTIVE TEST SUITE SIZE USING SIMILARITY BASED GREEDY APPROACH" is the bonafide work of Ms. P.AMMU (810015205004) and Ms. M.BHARATHI (810015205015) who carried out the work under my supervision. Certified further that to the best of my knowledge the work reported here in does not form part of any other thesis or dissertation on the basis of which a degree or award was conferred on an earlier occasion on this or any other candidate.

Dr.D.VENKATESAN	Dr.C.P.INDUMATHI
Head of the department	Assistant Professor
Department of CSE/IT	Department of IT
University College of Engineering	University College of Engineering
BIT Campus	BIT Campus
Tiruchirappalli-620 024	Tiruchirappalli-620 024
Submitted for the VIVA-VOCE examin	nation to be held on

Internal Examiner

External Examiner

DECLARATION

We hereby declare that the work entitled "GENERATING EFFECTIVE TEST SUITE SIZE USING SIMILARITY BASED GREEDY APPROACH" is submitted in partial fulfillment of the requirement for the award of the degree in B.E., University College of Engineering, BIT Campus, Anna University, Tiruchirappalli, is record of our own work carried out by us during the academic year 2018-2019 under the supervision and guidance of Dr.C.P.INDUMATHI, Assistant Professor, Department of Computer Science and Engineering, University College of Engineering, BIT Campus, University, Anna Tiruchirappalli. The extent and source of information are derived from the existing literature and have been indicated through the dissertation at the appropriate places. The matter embodied in this work is original and has not been submitted for the award of any degree, either in this or any other University.

P.AMMU (810015205004)

M.BHARATHI (810015205015)

I certify that the declaration made above by the candidates is true.

Signature of the Guide,

Dr.C.P.INDUMATHI, ASSISTANT PROFESSOR,

Department of Information Technology, University College of Engineering-BIT Campus, Tiruchirappalli-620 024.

ACKNOWLEDGEMENT

It is the great opportunity to express our sincere thanks to all the people who have contributed to the successful completion of our project work through their support encouragement and guidance.

Our first and foremost thanks to **Dr. T. SENTHIL KUMAR**, Dean, University College of Engineering, BIT Campus, Anna University, Tiruchirappalli for their support in doing this project.

It is our privilege to render our sincere thanks to **Dr. D.VENKATESAN**, Head of the department of Computer Science and Engineering, University College of Engineering, BIT Campus, Anna University, Tiruchirappalli for providing us with excellent lab facilitates and ideas.

We heartfelt record our gratitude to our esteemed guide Professor, Dr.C.P.INDUMATHI, Assistant Department of Information Technology, University College of Engineering, BIT Campus, Anna University, and Tiruchirappalli for his excellent guidance, enterprising and valuable suggestions, encouragement and inspiration offered throughout the project.

It is our responsibility to thank our project coordinator Mr. M.PRASANNA KUMAR, Teaching fellow, Department of Computer Science and Engineering, deserves a special vote of thanks for his constant inspiration that he has been all through the project period. I render my heartfelt thanks to our entire department teaching and non-teaching staff for their enthusiastic encouragement and support throughout this project.

I hearty thank to my friends for helping me in this project directly or indirectly helped me in making this project a complete success.

ABSTRACT

In Software development life cycle regression testing plays a major role for detecting faults. Testing has different levels to execute the software product prior to delivery to the customer. Testing a software product involves to testing the large number of test cases. As the software modified, new test cases are added to the test suite, the test suite grows and the cost of regression testing increases. This paper defines a technique to solve these problems and make the testing cost effective. We introduce a set of test case coverage metrics which will quantitatively calculate the diversity between any test case pair of an existing test suite. Here the procedure mainly focus on Block coverage, Control flow coverage, Def-use coverage, Date flow coverage values, Using these information signature values is calculated to find how much the test cases are diverse from each other. The similar test case values are considered as duplicate test cases and the remaining diverse test cases are passes through the Control Flow Graph (CFG) for minimization. Similarity Based Greedy Approach (SBGA) are used to done the minimization techniques. The next phase of path coverage is proposed for prioritization. The result of both minimization and prioritization used to find out the optimal test suite size. This approach can be beneficial for tester to solve the regression testing problems.

TABLE OF CONTENTS

CHAPTER NO	TITLE	PAGE NO
	ABSTRACT	v
	LIST OF TABLES	ix
	LIST OF FIGURES	X
	LIST OF ABBREVIATIONS	xi
1.	INTRODUCTION	
	1.1 SOFTWARE TESTING	1
	1.2 WHITE BOX TESTING	3
	1.2.1 COVERAGE METRICS	3
	1.3 REGRESSION TESTING	3
	1.3.1 TEST CASE	5
	1.3.2 TEST SUITE	6
	1.3.3 TEST CASE SELECTION	7
	1.3.4 TEST CASE MINIMIZATION	7
	1.3.5 TEST CASE PRIORITIZATION	9
	1.4 ORGANIZATION OF THE CHAPTER	10
2	LITERATURE REVIEW	
	2.1 A STATEMENT COVERAGE BASED	11
	TESTCASE REDUCTION TECHNIQUE	
	2.2 A CODE COVERAGE TECHNIQUE TO FIND	12
	DIVERSE TESTCASES	
	2.3 EXTRACTING TESTCASES BY USING DATA	14
	MINING	
	2.4 DATA FLOW COVERAGE TESTING TOOL	15

FOR C 2.5 REGRESSION TESTING SELECTION, 16 MINIMIZATION AND PRIORITIZATION 2.6 MECHANISM FOR IDENTIFICATION OF 17 **DUPLICATE TESTCASES** 2.7 A SURVEY ON TEST SUITE REDUCTION 19 FRAMEWORK AND TOOLS 2.8 SIMILARITY BASED TESTCASE 21 **PRIORITITION** 2.9 SIMILARITY BASED TESTSUITE 23 REDUCTION 2.10 LIMITATION OF EXISTING SYSTEM 24 3 **COVERAGE METRIC TECHNIQUES** 3.1 WHITE BOX TESTING 25 3.2 UNIT TESTING 25 3.3 CODE COVERAGE 26 3.3.1 STATEMENT COVERAGE 26 3.3.2 BLOCK COVERAGE 27 3.3.3 CONTROL FLOW COVERAGE 28 3.3.4 DEF-USE COVERAGE 28 3.3.5 DATA FLOW COVERAGE 29 3.3.6 PATH COVERAGE 30 3.3.7 MODIFIED CONDITION COVERAGE 30 3.4 CODE COVERAGE METRIC 31 3.4.1 BLOCK COVERAGE EQUIVALENCE 31

3.4.2 CONTROL FLOW COVERAGE

32

	DIVERGENCE	
	3.4.3 DEF-USE COVERAGE EQUIVALENCE	32
	3.4.4 DATA FLOW COVERAGE DIVERGENCE	33
4	SYSTEM ANALYSIS	
	4.1 DATA FLOW DIAGRAM	34
	4.2 SYSTEM ARCHITECTURE	37
5	PROPOSED TECHNIQUE	
	5.1 IDENTIFY THE DUPLICATE TESTCASES	42
	5.1.1 COVERAGE METRIC VALUES	
	5.1.2 EQUIVALENCE SIGNATURE VALUE	44
	5.1.3 DIVERGENCE SIGNATURE VALUE	45
	5.1.4 SIGNATURE VALUE PAIRS	45
	5.2 SIMILARITY BASED GREEDY APPROACH	47
	5.2.1 CONTROL FLOW GRAPH	48
	5.2.2 GENARATE MINIMIZED TESTCASES	51
	5.2.3 PRIORITISE MINIMIZED TESTCASES	51
	5.3 PERFORMANCE METRICS	54
6	DISCUSSION ON EXPERIMENTAL RESULTS	
	6.1 EFFECTIVENESS OF COMBINED	55
	APPROACH	
	6.2 COMPARATIVE STUDY	56
7	CONCLUSION	58
	REFERENCES	59
	DUDI ICATION DETAILS	63

LIST OF TABLES

TABLE NO	TABLE NAME	PAGE NO
5.2	SAMPLE PROGRAM	41
5.2	TESTCASES FOR THE SAMPLE	42
	PROGRAM	
5.3	COVERAGE METRIC VALUES	43
5.4	SIGNATURE VALUE PAIRS	46
5.5	MINIMIZED TESTCASES	51
5.6	PATH COVERAGE FOR EACH	52
	TESTCASE	
5.7	UNIQUE PATH COVERAGE	52
6.1	PROPOSED RESULTS OF OTHER	56
	PROGRAM	

LIST OF FIGURES

FIGURE NO	FIGURE NAME	PAGE NO
1.1	FLOW DIAGRAM FOR SOFTWARE TESTING	2
1.2	REGRESSION TESTING TYPES	4
1.3	FLOW DIAGRAM FOR REGRESSION	5
	TESTING	
2.1	TEST CASE BASED REASONING PROCESS	15
4.1	CONTEXT LEVEL DIAGRAM	36
4.2	DIAGRAM FOR OPTIMAL TEST SUITE SIZE	36
4.3	DIAGRAM FOR PROCESS OF MINIMIZATION	37
	AND PRIORITIZATION	
4.4	ARCHITECTURE FOR OPTIMAL TEST SUITE	38
	SIZE	
5.1	CONTROL FLOW GRAPH	49
5.2	CFG IN VISUSTIN TOOL	50
5.3	RESULT OF OPTIMIZED TEST SUITE SIZE	53
6.1	FDL FOR FINDING THE DAYS IN THE	56
	MONTH PROGRAM GRAPH	
6.2	SUITE SIZE REDUCTION FOR ALL	57
	PROGRAM	

LIST OF ABBREVIATIONS

1	ART	ADAPTIVE RANDOM TESTING
2	ATAC	AUTOMATIC TEST ANALYSIS FOR C
3	CBR	CASE BASED REASONING
4	CFG	CONTROL FLOW GRAPH
5	DFD	DATA FLOW DIAGRAM
6	DSDM	DIANAMIC SYSTEM DEVELOPMENT
		METHOD
7	FDL	FAULT DETECTION LOSS
8	ILP	INTEGER LINEAR PROGRAMMING
9	MBT	MODEL BASED TESTING
10	OOAD	OBJECT ORIENTED ANALYSIS AND DESIGN
11	SBGA	SIMILARITY BASED GREEDY APPROACH
12	SSR	SUITE SIZE REDUCTION
13	SSADM	STRUCTURED SYSTEM ANALYSIS AND
		DESIGN METHOD
14	SUT	SYSTEM UNDER TEST
15	TCS	TEST CASE SELECTION