2.两个测度之间的距离.md 2025-03-04

2.两个测度之间的距离

(E,d) 完备可分的度量空间

d 是 E 上使 E 是一个完备可分的空间的度量。

E上的 σ -field \mathcal{E} 假设为 Borel σ -field $\mathcal{B}(E)$

 $\mathcal{P}(E)$ 是 E 上的概率测度

Lévy-Prokhorov Distance

E 上概率测度的弱收敛表现为所谓在 $\mathcal{P}(E)$ 上Lévy-Prokhorov Distance d_{LP} 意义上的收敛。

\begin{array}{l}

=\inf \left(\epsilon>0: \forall A \in \mathcal{B}(E), \mu(A) \leqslant \nu\left(A^{\epsilon}\right)+\epsilon, \text { and } \nu(A) \leqslant \mu\left(A^{\epsilon}\right)+\epsilon\right), \end{array}

其中 $A^{\varepsilon}=x\in E\ |\ \exists y\in A, d(x,y)<\varepsilon\ \$ 是 A 的 ε -neighborhood

通过Strassen定理,两个测度 μ 和 ν 之间的Lévy-Prokhorov距离可以用 μ 和 ν 之间的耦合*(couplings)* 等价表示为:

\$\$ d_{\mathrm{LP}}(\mu, \nu)=\inf \left{\epsilon>0: \inf {\pi \in \Pi(\mu, \nu)} \int{E \times E} \mathbf{1}_{{d(x, y)>\epsilon}} d \pi(x, y)<\epsilon\right}, \$\$ 其中 $\Pi(\mu, \nu)$ 表示 $E \times E \perp \mu$ 和 ν 的所有耦合(即联合分布,边缘分布为 μ 和 ν)的集合。