generate_simulated_samples_byConf.py -

Detailed Guide

Automated generator for GSV-benchmarking bash scripts

1. Purpose

Genomic Sequence Variant (**GSV**) benchmarking evaluates how well different classifier settings distinguish closely related genomes.

This script clusters reference genomes from a target species into GSVs, simulates metagenomic samples from those references, and tests multiple Kraken2 and mSWEEP configurations **to maximise recall and precision**. Off-target genomes from other species in the same family are processed in parallel to measure **false-positive rates**, allowing the pipeline to pinpoint the best combination of:

- Number of GSV clusters
- Kraken2 classifier confidence thresholds
- Count filtration to account for false positive classification

2. Quick Usage

Follow the GSV_benchmarking_tutorial.md document for detailed instructions. In short, you prepare a bunch of files and databases. Then you run the benchmarking script to take that information and create a series of 3 scripts which will make simulated samples and take them through our VARIANT++ classification workflow.

3. What the Script Generates

Bash Script	Stage	Key Tasks	
script_build_readssh	Sample generation	 Concatenate target / off-target genomes Simulate reads with ISS Merge reads with FLASH Standardise filenames & headers Produce one merged FASTQ per iteration 	
script_kraken_extract_splitsh	Taxonomic classification	 Classify merged FASTQs at eachconfidence Extract target reads with extract_kraken_reads.py Split merged vs unmerged read sets 	
script_themisto_msweepsh	GSV quantification	Pseudo-align extracted reads with Themisto Run mSWEEP (merged & unmerged) to estimate GSV abundances	

4. Workflow Breakdown

1. **Parse configuration** (params.txt): key/value file with paths, iteration counts, GSV list, Kraken confidences, etc.

2. Create directories:

```
<PREFIX>_cat_reads/  # merged FASTQs
<PREFIX>_split_reads/  # unmerged FASTQs
<PREFIX>_merged_reads/  # extracted merged reads
<PREFIX>_results/  # reports and outputs
```

- 3. **Generate mSWEEP annotation files** (k_#,msweep.txt) from the metadata TSV.
- 4. Write script_build_reads loops over num_GSV_list × num_iters × k_columns.
 - o numGSV == 0 → simulate off-target samples.
 - o numGSV > 0 → select N GSVs, concatenate genomes per GSV, simulate reads.
- 5. **Write** script_kraken_extract_split classify each merged FASTQ for every confidence value, then extract & split reads.
- 6. **Write** script_themisto_msweep pseudo-align reads and run mSWEEP (all k-columns for off-target, single column for on-target).
- 7. **Finish** print a summary of the three generated bash scripts.

5. Key Parameters (params.txt)

Кеу	Type	Example	Description
target_genome_dir	str	/data/targets/	.fna[.gz] of target species
nontarget_genome_dir	str	/data/offtarget/	Off-target family genomes
input_file	str	ani_clusters.tsv	TSV with genome filenames + GSV codes per k_col
bin_dir	str	/usr/local/bin/	Path to helper scripts (rename_*, split scripts)
themisto_index	str	/indices/themisto/	Prefix of existing Themisto index
krakendb	str	/databases/kraken2/	Kraken2 database directory
kraken_confidence	list / int	[0,0.1,0.5]	Confidence thresholds to test
num_iters	int	100	Iterations per numGSV setting
num_GSV_list	list[int]	[0,1,3,5,7,9]	GSV counts to test
num_reads_options	list[int]	[10000,20000]	Possible read counts per sample
threads	int	48	CPU threads for all tools
tmp_build	str	\$TMPDIR	Scratch directory (can use environment variable)

6. Expected Outputs

```
<PREFIX>_cat_reads/  # merged FASTQs for Kraken2
<PREFIX>_split_reads/  # unmerged FASTQs for Themisto/mSWEEP
<PREFIX>_merged_reads/  # merged extracted reads by confidence
<PREFIX>_results/  # Kraken reports, Themisto outputs, mSWEEP tables
script_build_reads_<PREFIX>.sh
script_kraken_extract_split_<PREFIX>.sh
script_themisto_msweep_<PREFIX>.sh
```

7. Dependencies

- Python ≥3.6
- ISS (read simulator)
- FLASH (read merger)
- Kraken2 ≥2.1
- extract_kraken_reads.py (KrakenTools)
- **Themisto** ≥2.5
- mSWEEP ≥ 1.9
- Helper scripts in bin_dir (rename_sample_files.py, rename_headers.py, split_extracted_reads_by_conf.py)

8. Troubleshooting Tips

- **Empty output?** Verify num_GSV_list values exist in your TSV.
- **File-not-found errors**: Check all paths in params.txt.
- Kraken2 memory issues: Add --memory-mapping to reduce memory, but request a lot more time.
- mSWEEP annotation errors: Ensure each k_#.msweep.txt has one entry per genome.