

Spaceflight Associated Neuro-ocular Syndrome (SANS)

Michael B. Stenger, Ph.D.

HHC Discipline Scientist
Manager, Cardiovascular & Vision Laboratory
Biomedical Sciences and Environmental Research Division (SK3)

Deep Space Gateway Symposium
4 Dec 2017

History

Hyperopic Shifts

-Up to +1.75 diopters

“Cotton wool” spots

Risk: Visual Impairment/Intracranial Pressure (VIIP)

Optic Disc Edema (swelling)

Choroidal Folds

Globe Flattening

Normal Globe

Flatten Globe

Ocular Findings through 2016*

*USOS astronauts only 3

Refractive Error

Change $\geq 0.75\text{D}$

Globe Flattening

Terrestrially: Globe flattening is associated with disc edema resulting from intracranial hypertension.

Pre-flight

Subjective call from
MRI, ultrasound

Globe Flattening

Terrestrially: Globe flattening is associated with disc edema resulting from intracranial hypertension.

6 days post-flight

Subjective call from
MRI, ultrasound

Globe Flattening

Terrestrially: Globe flattening is associated with disc edema resulting from intracranial hypertension.

1 year post-flight

Subjective call from
MRI, ultrasound

Quantify Globe Flattening

Collaboration with Dr. Bryn Martin, University of Idaho

Optic Disc Edema

- Observation of “fuzzy” optic disc on retinal fundus image.
- Score: 0-5
- 64 Pre/Post flight pairs of images
- Observed: Right > Left eye

OCT – Journey to the ISS

OCT on the ISS

Optical Coherence Tomography

Optic nerve head. Green lines are locations of OCT scans.

Preflight (top) and postflight (bottom) OCT scans through optic nerve head.

Reconstruct thickness map from 24 OCT images to quantify retinal thickness.

Engorgement of Optic Nerve Head

Preflight FD45 FD150 R-45 R+10 R+45 R+180

ONH Thickness Map

ONH Thickness Map

Preflight

FD45

FD150

R-45

R+10

R+45

R+180

Fundus Image vs. OCT

Fundus Imaging

Spaceflight Duration?

Frisen Grade	Pre-flight	4-6 mo missions			1 year missions		Post-flight
Eye	L-9/6mos	FD30	FD90	FD150	FD270	R-30	R+1/3
Left	0	1	1		1	1	2
Right	0	2	2		2	2	2
Left	0	0	0	0			
Right	0	0	0	0			

Choroidal Folds

Fundus Image

IR Image (OCT Camera)

No Choroidal Folds

Pre-flight: Seated

FD150

Choroidal Folds

Pre-flight: Seated

FD150

Choroidal Fold Progression

Choroidal/Retinal Folds

Cotton Wool Spot

Mader et al., J Neuro-Ophthalmol, 2016

OCT Angiography

Fundus Photograph

OCT Angiography

Visual Function (Threshold Visual Fields)

Humphrey Automated Perimetry

Normal

Abnormal

Potential Compact Visual Fields Device for ISS

ERG – Slide here

ERG can detect significant deficits in Retinal Ganglion Cell Function in population of mitochondrial DNA mutations (some may be associated with 1C pathway)

Karanjia R et al 2017

Moss H et al 2015

Ocular Findings through 2016*

Astronauts with Ocular Findings

*USOS astronauts only 27

ICP during Space Flight

- ICP has never been measured in humans during spaceflight
 - Russians measured ICP invasively in a Macaque monkey in 1992, during a 10-day Bion satellite flight, with an intracranial (epidural) probe
 - ICP increased as high as 30% compared with preflight measurements
 - CO₂ did not exceed 1mmHg, ISS mission average=3.56mmHg

Trambovetskiⁱⁱ et al. 1995. Intracranial pressure in monkeys during the flight of Cosmos-2229. [Aviakosm Ekolog Med.](#)

Intracranial Pressure

Idiopathic Intracranial Hypertension patients: optic disc edema and globe flattening

ICP after spaceflight may not be pathologically elevated.

What was ICP during spaceflight?

*USOS crew only

Publication	Postion	n
Eklund, Ann Neurol, (2016) 80:269-276	Supine	11
	Supine	11
Berdahl, IOVS, (2008) 49:5412-18	Supine	68
	Supine	39
Berdahl, Ophthalmology, (2008) 115:763-68	Supine	49
Ren, Ophthalmology, (2010) 117:259-66	Supine	71
Petersen, AJPR, (2015) 310:R100-4	Supine	9
Qvarlander, JAP, (2013) 115:1474-80	Supine	27
Edsbagge, AJPR, (2004) 287:R1450-5	Supine	34
Lawley, J Physiol, (2017) 15(595):2115-2127	Supine	8

Direct ICP Measures

Lawley JS et al 2017

CCFP & DPOAE

Tympanic Membrane Displacement: CCFP

(mean \pm standard deviation)

* p < .05 vs. Upright

† p < .05 vs. Supine

Name change: SANS

"I only have 2 concerns with the name VIIP. Crew members do not have "Vision Impairment" and it doesn't appear that "Intracranial Pressure" is pathologically elevated."

*- Dr. Bill Tarver, Flight Surgeon
NASA Human Systems Risk Board Presentation*

Spaceflight Associated Neuro-ocular Syndrome
(SANS)

Fluid Shifts

Internal Jugular Vein Area

Internal Jugular Vein Pressure

Fluid Shifts in the Eye

Fluid Shifts

Venous Outflow Restriction

Wilson MH 2016

Cerebrospinal Fluid (CSF) Glymphatics & Lymphatics

Kumar KN et al 2012

Ma Q et al 2017

Mathieu E et al 2017

Countermeasures Research

LBNP

Thigh Cuffs

B vitamins

AG

ITD

Carbon Dioxide

Carbon Dioxide

Pre-Bed Rest
14 Days
(BR-14 to BR-1)

Ambulatory +
Room Air

Bed Rest
30 Days
(BR1 to BR30)

6° HDT BR +
0.5% CO₂

Post-Bed Rest
14 Days
(BR+0 to BR+14)

Ambulatory +
Room Air

Genetics

Coupled eNOS

**Uncoupled
eNOS**

THE FASEB JOURNAL

The Journal of the Federation of American Societies for Experimental Biology • September 2017 • Volume 31 • Number 9

Multiple-hit hypothesis shows how genetics of the enzymes of the 1-carbon metabolic pathway are proposed to be associated with astronaut ophthalmic syndrome. See page 3746.

Summary

B vitamins

