EEG/ERP & Machine Learning Regression Models

-a project framework testing on ChongQing EEG studies

Yaozhong Li

PNAS paper on RandomForest & PET

Persistent metabolic youth in the aging female brain

Manu S. Goyal^{a,b,1}, Tyler M. Blazey^a, Yi Su^a, Lars E. Couture^a, Tony J. Durbin^a, Randall J. Bateman^b, Tammie L.-S. Benzinger^a, John C. Morris^b, Marcus E. Raichle^{a,b}, and Andrei G. Vlassenko^a

^aNeuroimaging Laboratories, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110; and ^bDepartment of Neurology, Washington University School of Medicine, St. Louis, MO 63110

Edited by Peter L. Strick, University of Pittsburgh, Pittsburgh, PA, and approved December 21, 2018 (received for review September 14, 2018)

Sex differences influence brain morphology and physiology during both development and aging. Here we apply a machine learning data to examine the influence of sex on brain aging in vivo. These

- 1. Collect PET data from 200+
- 2. Train on a RandomForest Regression Model
- 3. Predict age from PET (Brain Age)
- 4. Conclusion:
 - ✓ Find way to represent Brain Age
 - ✓ Women's brain aging slower

"Ten-fold cross-validation demonstrates that the predicted age based on this algorithm—defined as metabolic brain age—closely matches the actual chronological age of the participants (Pearson's r = 0.88-0.90 over 10 runs)"

PNAS paper on RandomForest & PET

- Not a traditional experiment
 - -Data driven, no hypothesis or manipulation
- Nor a traditional modeling
 - -Unknown 'HOW' and 'WHAT'
- Yet if strong enough … ?

Blueprint

Setting principles in during constructing and running

Constructing: Features—Models—Target

Features – Models – Target

- Features : sets of EEG/ERP data
- Models : regression models
- Target : questionnaire result

-Features

• 16 sets of features

Group	Feature Sets	Length	Contains
Pain_EEG	pain_eeg_norm	400	Pain(2) * Pic_gender(2) * TimeWindow(4) * Freq(5) * Channels(5)
	pain_eeg_norm_Pain_	200	
	pain_eeg_norm_Neutral_	200	
	pain_eeg_orig	400	
	pain_eeg_orig_Pain_	200	
	pain_eeg_orig_Neutral_	200	
	pain_erp_amplitude_norm	80	Pain(2) * Pic_gender(2) * TimeWindow(4) * Channels(5)
	pain_erp_amplitude_norm_Pain_	40	
Pain_ERP_amplitude	pain_erp_amplitude_norm_Neutral_	40	
Pain_ERP_amplitude	pain_erp_amplitude_orig	80	
	pain_erp_amplitude_orig_Pain_	40	
	pain_erp_amplitude_orig_Neutral_	40	
Pain_ERP_peak	pain_erp_peak	16	Pain(2) * Pic_gender(2) * TimeWindow(4)
Rest_EEG	rest_norm	25	Freq(5) * Channels(5)
	rest_orig	25	
*Test	test_X	50	25 informative + 25 noise

-Models

• 12 regression models

```
def model set 2():
   model dict = dict()
   model dict['linear'] = get linear()
   model dict['riged'] = get riged(alpha=0.1)
   model dict['lars'] = get lars(alpha=0.5)
   model dict['bayesian'] = get bayesian()
   model dict['svr rbf'] = get svm(C=10.0, gamma='scale')
   model dict['svr linear'] = get svm(kernel='linear', C=10.0, gamma='scale')
   model dict['svr poly'] = get svm(kernel='poly', C=10.0, gamma='scale')
   model dict['gaussian'] = get gaussian(alpha=0.001)
   model dict['kneighbors'] = get kneighbors(n neighbors=5)
   model_dict['random_forest'] = get_random_forest(max_depth=50, n_estimators=5000)
   model_dict['gradient_trees'] = get_gradient_trees(max_depth=5, n_estimators=1000)
   model dict['neural network'] = get neural network(hidden layer sizes=(100, 50,))
   return model dict
```

-Target

• 14 targets

Group	Target						
Age	age						
Race	race_identity						
Face recognition	face_recognition						
Day Dream	day_dream						
	IRI_FS						
IRI	IRI_EC						
IKI	IRI_PT						
	IRI_PD						
Self	Interdependent						
Sell	Independent						
Altruism	altruism						
Anxiety	anxiety						
Depression	depression						
*Test	Test_Y						

Constructing: Features-Models-Target

• 16 features * 12 models * 14 targets = 2688 train & test

Feature Sets
pain_eeg_norm
pain_eeg_norm_Pain_
pain_eeg_norm_Neutral_
pain_eeg_orig
pain_eeg_orig_Pain_
pain_eeg_orig_Neutral_
pain_erp_amplitude_norm
pain_erp_amplitude_norm_Pain_
pain_erp_amplitude_norm_Neutral_
pain_erp_amplitude_orig
pain_erp_amplitude_orig_Pain_
pain_erp_amplitude_orig_Neutral_
pain_erp_peak
rest_norm
rest_orig
test_X

Models
linear
riged
lars
bayesian
svr_rbf
svr_linear
svr_poly
gaussian
kneighbors
random_forest
gradient_trees
neural network

Target age race_identity face_recognition day_dream IRI_FS IRI_EC IRI PT IRI PD Interdependent Independent altruism anxiety depression Test Y

Running: Train-Test-Optimizing

- Test: 10%-fold, 10 run times
- How to optimize
 - Enhance data
 - Better preprocessing
 - Enhance Models
 - Tuning hyper-parameters
 - Speed up

Implementation

Preprocessing data, building models, testing, tuning parameters as well as self-checking

Two projects on Github

- EEG_CHONGQING
- Goal : EEG/ERP data pre-processing
- Packages
 - mne : Read cnt, ICA, Morlet, Epoch, Peak ···
 - numpy: custom (avg across channel area)
- https://github.com/MoonKuma/EEG_CHONGQING

- pandas_regression
- Goal : structuring and training regression models
- Packages
 - pandas: store and preprocess data(rating questionnaire, merging)
 - sklearn : machine learning models
- https://github.com/MoonKuma/pandas_regression

EEG/ERP preprocessing

- Raw -> Power/Amplitude Epochs -> Time Window averaged
 - https://github.com/MoonKuma/EEG_CHONGQING/blob/master/eeg_pre_processing/preprocessing_pipeline.md
- Common procedures

Load, down-sample, Filter, ICA, Baseline, Epoch, Morlet, Average across time-window

- Custom procedures
 - Events of resting states
 - 2s time window randomly separated in each 4s
 - Normalize (L2)
 - Average across channel areas
 - [F/C/T/P/O]

Preprocessed

Rest EEG across channels/freqs

0

Pain EEG across channels/time window

• Pain EEG across conditions (Pain vs. Neutral, Male vs. Female)

Pain ERP across channels/time window

• Pain ERP across conditions (Pain vs. Neutral, Male vs. Female)

Result of model sets

Model set 1

```
def model set 1():
   model dict = dict()
   model dict['linear'] = get linear()
   model dict['riged'] = get riged()
   model dict['lars'] = get lars()
   model dict['bayesian'] = get bayesian()
   model_dict['svr_rbf'] = get_svm()
   model dict['svr linear'] = get svm(kernel='linear')
   model dict['svr poly'] = get svm(kernel='poly')
   model dict['gaussian'] = get gaussian()
   model dict['kneighbors'] = get kneighbors(n neighbors=10)
   model dict['random forest'] = get random forest(max depth=10, n estimators=1000)
   model dict['gradient trees'] = get gradient trees(max depth=10, n estimators=1000)
   model dict['neural network'] = get neural network(hidden layer sizes=(50, 25, 10))
   return model dict
```

```
# test>0.5: o
# test>0.1: +
# train>0.5 and test<0.1: *
# train<0.5 : -
```

	age		face_recognitio n	day_drea m	IRI_FS	IRI_EC	IRI_PT	IRI_PD	Interdepende nt	Independe nt	altruism	anxiety	depressio n	test_Y
pain_eeg_norm	-***- **	-*** 	-***-*	-***- 	-** *	-** *	-***- **	-***- **	-**	-*** 	-** *	-** *	-***- 	-***
pain_eeg_norm_Pain_	-** *	-*** 	-**	-***- 	-** *	-** *	-** *	-** *	-**	-*** 	-** *	-** *	-***- 	-***
pain_eeg_norm_Neutral_	-** *	-*** 	-**	-***- 	-** *	-** *	-** *	-** *	-**	-*** 	-** *	-** *	-***- 	-***
pain_eeg_orig			*										*	
pain_eeg_orig_Pain_														
pain_eeg_orig_Neutral_														
pain_erp_amplitude_norm	-** *	-***	-**	-***-	-** *	-** *	-** *	-** *	-**	-***	-** *	-** *	-***-	-***
pain_erp_amplitude_norm_Pain_	-** *	-***	-**	-***-	-** *	-** *	-** *	-** *	-**	-**	-** *	-** *	-***-	-***
pain_erp_amplitude_norm_Neut ral_	-** *	-***	-**	-***-	-** *	-** *	-** *	-**	-**	-***	-** *	-**	-***-	-***
pain_erp_amplitude_orig	*	*	*	*	*	*	*	*	*	*	*	*	*	*
pain_erp_amplitude_orig_Pain_	*	*	*	*	*	*	*	*	*	*	*	*	*	*
pain_erp_amplitude_orig_Neutra	*	*	*	*	*	*	*	*	*	*	*	*	*	*
- pain_erp_peak	-** *	-***	-**	-***-	-** *	-** *	-** *	-** *	-**	-***	-** *	-** *	-***-	-***
rest_norm	-**	-***	-**	-***-	-**	-** *	-**		-**	-***	-**	-**	-***-	-***
rest_orig														
test_X	-**	-***	-**	-***-	-**	-**	-**	-** *	-**	-***	-**	-**	-***-	0*++-0-

['bayesian', 'gaussian', 'gradient_trees', 'kneighbors', 'lars', 'linear', 'neural_network', 'random_forest', 'riged', 'svr_linear', 'svr_poly', 'svr_rbf']

Result of model sets

Model set 2 (More penalty)

```
def model set 2():
   model dict = dict()
   model dict['linear'] = get linear()
   model dict['riged'] = get riged(alpha=0.1)
   model dict['lars'] = get lars(alpha=0.5)
   model dict['bayesian'] = get bayesian()
   model dict['svr rbf'] = get svm(C=10.0, gamma='scale')
   model dict['svr linear'] = get svm(kernel='linear', C=10.0, gamma='scale')
   model dict['svr poly'] = get svm(kernel='poly', C=10.0, gamma='scale')
   model dict['gaussian'] = get gaussian(alpha=0.001)
   model dict['kneighbors'] = get kneighbors(n neighbors=5)
   model dict['random forest'] = get random forest(max depth=50, n estimators=5000)
   model_dict['gradient_trees'] = get_gradient_trees(max_depth=5, n_estimators=1000)
   model dict['neural network'] = get neural network(hidden layer sizes=(100, 50,))
   return model dict
```

	age	race_identit y	face_recognition	day_drea m	IRI_FS	IRI_EC	IRI_PT	IRI_PD	Interdepende nt	Independe nt	altruism	anxiety	depressio n	test_Y
pain_eeg_norm	-***- **	-*** 	-***-**	-***- 	-** *		-***- **	-***- **	-**	-*** 	-** *	-** **	-***- 	-*****-
pain_eeg_norm_Pain_	-** *	-*** 	-**	-***- 	-** *	-** *	-** *	-** *	-**	-*** 	-** *	-** *	-***- 	-****
pain_eeg_norm_Neutral_	-** *	-*** 	-**	-***- 	-** *	-** *	-** *	-** *	-**	-*** 	-** *		-***- 	-****
pain_eeg_orig			*							*			*	*
pain_eeg_orig_Pain_														
pain_eeg_orig_Neutral_														
pain_erp_amplitude_norm	-** *	-***	-**	-***- 	-** *	-** *	-** *	-** *	-**	-*** 	-** *	-** *	-***- 	-***
pain_erp_amplitude_norm_Pain_	-**	-***	-**	-***- 	-** *	-** *	-** *	-** *	-**	-*** 	-** *	-** *	-***-	-***
pain_erp_amplitude_norm_Neut ral	-** *	-***	-**	-***- 	-** *	-** *	-** *	-** *	-**	-*** 	-** *	-** *	-***-	-***
pain_erp_amplitude_orig	* *	**	*	**- 	* *	* *	* *	* *	*	**		* *	**-	**
pain_erp_amplitude_orig_Pain_	* *	**	**	**- 	* *	* *	* *	* *	*	**	* *		**-	**
pain_erp_amplitude_orig_Neutra	*	**	**	**-	* *	* *	* *	* *	*	**	* *	* *	**-	**
pain_erp_peak	* *	**	*	**-	* *	* *	* *	* *	*	**	* *	* *	**-	**
rest_norm	* *	**	**	**-	* *	* *	* *	* *	*	**	* *	* *	**-	**
rest_orig														
test_X	-** *	-***	-**	-***-	-** *	-** *	-** *	-** *	-**	-***	-** *		-***-	0*0+-0-
['havesian' 'daussian' 'dra	dient tr	'ees' 'kneid	nhhore' 'lare'	'lingar' 'r	naural r	natwork	' 'rando	m fore	ct' 'riged' 'ex	ır lingar' '	syr nol	ı' 'cvr r	hf'l	

['bayesian', 'gaussian', 'gradient_trees', 'kneighbors', 'lars', 'linear', 'neural_network', 'random_forest', 'riged', 'svr_linear', 'svr_poly', 'svr_rbf']

Result of model sets

Model set 3 (More complicate, still running after 20 hours)

```
def model_set_3():
    model_dict = dict()
    model_dict['linear'] = get_linear()
    model_dict['riged'] = get_riged(alpha=0.1)
    model_dict['gaussian'] = get_gaussian(alpha=0.01)
    model_dict['kneighbors'] = get_kneighbors(n_neighbors=20)
    model_dict['random_forest'] = get_random_forest(max_depth=None, n_estimators=10000)
    model_dict['gradient_trees'] = get_gradient_trees(max_depth=200, n_estimators=10000)
    return model_dict
```

For future optimization

- Data: maybe remove outliers
- Models:
 - Squeeze down feature set size
 - Regression -> classification
 - Hyper-parameters searching