# Capítulo 2. Variáveis Aleatórias e Distribuições de Probabilidade

#### Variáveis Aleatórias Unidimensionais e Variáveis Aleatórias Bidimensionais

#### 2.1 Variável Aleatória Unidimensional Real

Noção Geral de Variável Aleatória

Em muitas situações os resultados de um experimento aleatório são diretamente numéricos ou há interesse em associar um número a esses resultados. Isso conduz à introdução do conceito de variável aleatória.

Exemplo 1. Exemplos de variáveis aleatórias.

Exemplo 1a. Lança-se um dado e observa-se o número de pontos na face voltada para cima.

Exemplo 1b. Uma moeda é lançada duas vezes consecutivamente, observando-se a sequência de resultados e, a seguir, registrando-se o número de "caras" ocorridas nos dois lançamentos.

Exemplo 1c. Uma máquina produz peças de certo tipo. Uma peça é selecionada ao acaso da produção e examinada quanto à presença de defeitos. Se a peça não tiver defeito, é atribuído o número 0 (zero) e se tiver defeito é atribuído o número 1 (um).

Exemplo 1d. A demanda por certo tipo de produto em uma loja, durante uma semana.

Exemplo 1e. Suponha-se que todas as peças produzidas pela máquina considerada no exemplo 1c sejam examinadas, registrando-se o número eventual de peças fabricadas até ser encontrada a primeira peça defeituosa.

Exemplo 1f. Uma lâmpada é ensaiada quanto a sua duração, registrando-se o tempo de funcionamento até queimar (tempo de vida).

Definição de Variável Aleatória Unidimensional

Considere-se uma experiência aleatória  $\epsilon$  de espaço amostral s. Denomina-se Variável Aleatória Unidimensional Real (ou, simplesmente, Variável Aleatória Unidimensional) qualquer função que associa um número real s0 a cada elemento s1.

Define-se uma variável aleatória como uma função do espaço amostral S no conjunto dos reais R

$$X: S \rightarrow R$$
  
 $s \mapsto x = X(s)$ 

Onde S é o espaço amostral do experimento aleatório e  $R_X = \{x \in R \mid x = X(s)\}$  é o espaço amostral induzido em R pela aplicação X, também denominado espaço imagem de X.

## 2.1.1 Variável Aleatória Unidimensional do Tipo Discreto

Diz-se que uma variável aleatória unidimensional é do tipo discreto (ou é discreta) se o conjunto dos valores que ela pode assumir é finito ou infinito enumerável.

## 2.1.2 Variável Aleatória Unidimensional do Tipo Contínuo

Diz-se que uma variável aleatória unidimensional é do tipo contínuo (ou é contínua) se o conjunto dos valores que ela pode assumir é um intervalo ou uma reunião finita de intervalos de números reais.

Exemplo 1 (continuação). Considerando todas as variáveis aleatórias anteriormente apresentadas, tem-se os seguintes espaços amostrais — originais e induzidos pela definição de uma variável aleatória:

1a) 
$$S = R_X = S = \{1, 2, 3, 4, 5, 6\}$$

1b) 
$$S = \{CC, CK, KC, KK\} e R_X = \{0,1,2\}$$

1c) 
$$S = \{N, D\} e R_X = \{0,1\}$$

1d)  $S = R_X = \{0,1,2,3,...,m\}$  onde m é um número que representa o máximo possível de unidades que podem ser vendidas em uma semana.

1e) 
$$S = R_X = \{1, 2, 3, ...\}$$

1f) 
$$S = R_X = \{x \in R \mid x > 0\} = R_+$$

Portanto, tem-se a seguinte classificação:

- i) discretas: as variáveis aleatórias dos exemplos 1a até 1e, sendo que os espaços amostrais correspondentes aos casos 1a até 1d são finitos, enquanto aquele do caso 1e é infinito enumerável;
- ii) contínua: a variável aleatória do exemplo 1f, pois nesse caso o espaço amostral é infinito não enumerável.

## 2.2 Função de Distribuição de uma Variável Aleatória Unidimensional Real

A toda variável aleatória unidimensional X corresponde uma função real  $F_X(x)$ , denominada Função de Distribuição, definida por

$$F_{_{\!X}}\left(x\right) = P\left\{X \leq x\right\} \ -\infty < x < +\infty \ (\text{ou seja, definida para todo o conjunto dos reais, R}).$$

Uma função de distribuição também é denominada: Função de Distribuição Acumulada, Função de Distribuição Acumulativa ou Função de Repartição.

# **2.2.1** Propriedades de $F_x(x)$

## (I) Propriedades Características:

a) 
$$0 \le F_x(x) \le 1$$

b) 
$$F_{X}(-\infty) = \lim_{x \to -\infty} F_{X}(x) = 0$$
 e  $F_{X}(+\infty) = \lim_{x \to +\infty} F_{X}(x) = 1$ 

c) 
$$F_{X}\left(x\right)$$
 é monótona não decrescente:  $x_{0} < x_{1} \implies F_{X}\left(x_{0}\right) \le F_{X}\left(x_{1}\right)$ 

d) 
$$F_X(x)$$
 é contínua à direita:  $\lim_{x \to x_0^+} F_X(x) = F_X(x_0)$  para todo  $x_0 \in R$ 

## (II) Utilização no Cálculo de Probabilidades

a)  $P\{X = x_0\} = \lim_{x \to x_0^+} F_X(x) - \lim_{x \to x_0^-} F_X(x)$  para todo  $x_0 \in R$ ; o que corresponde ao salto de  $F_X(x)$  no ponto  $x_0$ .

b) 
$$P\{a < X \le b\} = F_X(b) - F_X(a)$$

#### 2.3 Função de Probabilidade de uma Variável Aleatória Real Discreta

A cada variável aleatória discreta X corresponde uma função  $p_X(x)$ , dita Função de Probabilidade, que associa a cada  $x \in R$  a probabilidade do evento  $P\{X = x\}$ :

$$p_{X}(x) = P\{X = x\} \quad x \in R$$

## 2.3.1 Suporte (ou domínio) de uma Variável Aleatória Real Discreta

Chama-se suporte de uma variável aleatória discreta X, e representa-se por  $S_X$ , ou por  $R_X$ , conjunto de números reais para os quais X possui probabilidade positiva:

$$S_{X} = R_{X} = \{x \in R | P\{X = x\} > 0\}$$

**Convenção:** Convenciona-se apresentar a expressão analítica de  $p_x(x)$  apenas para os valores  $x \in S_x$ . Assim, o suporte  $S_x = R_x$  é o domínio da função de probabilidade.

# 2.3.2 Propriedades da função de probabilidade $p_x(x)$

## (I) Propriedades Características:

a) 
$$p_x(x) \ge 0$$

b) 
$$\sum_{x \in S_x} p_x(x) = 1$$

# (II) Utilização no Cálculo de Probabilidades

$$\operatorname{Para} \operatorname{todo} A \subset R \;,\; P \big\{ X \in A \big\} = P \big\{ X \in AS_{_{\boldsymbol{X}}} \big\} = \sum_{_{\boldsymbol{X} \in AS_{_{\boldsymbol{X}}}}} p_{_{\boldsymbol{X}}} \big( \boldsymbol{x} \big)$$

#### Nota:

Para uma variável aleatória discreta X  $\underline{e}$  usual denominar-se distribuição de probabilidade a conjugação do seu domínio,  $R_X$ ,  $\underline{e}$  da sua função de probabilidade, p(x)- ou seja,  $\underline{o}$  par  $(R_X, p(x))$ .

# 2.3.3 Função de Distribuição de Variáveis Aleatórias Reais Discretas

Definam-se os conjuntos:  $A_x = \{ y \in S_x \mid y \le x \}$   $-\infty < x < +\infty$ 

Então,

$$F_{X}(x) = P\{X \le x\} = P\{X \in A_{x}\} = \sum_{y \in A_{x}} p_{X}(y) -\infty < x < +\infty$$

#### Nota:

Para cada  $x \in R$ , a função de distribuição está expressa como uma soma de probabilidades

positivas, as quais correspondem aos saltos de  $F_X(x)$  nesses pontos. Assim, a representação gráfica de  $F_X(x)$  é a de uma função em escada (*step function*).

Exemplo 2. Um dado equilibrado é lançado, observando-se o número de pontos eventualmente obtido na face voltada para cima. Determine a função de probabilidade dessa variável aleatória.

Solução

O espaço amostral correspondente a X é:  $R_X = \{1, 2, 3, 4, 5, 6\}$ 

Note-se que no caso s = x = X(s), ou seja a função que define a aplicação do espaço amostral original (do experimento aleatório) S no espaço amostral induzido da variável aleatória X, denotado por  $R_X$ , é a função identidade.

Como o dado é equilibrado, tem-se: 
$$p(x) = \frac{1}{6}$$
, para  $x = 1, 2, 3, ..., 6$ 

Exemplo 3. Uma máquina produz peças de determinado tipo. Cada peça que é fabricada tem uma probabilidade igual a 10% de ser defeituosa. Uma peça é selecionada ao acaso da produção da máquina e a seguir é examinada para verificar se é defeituosa. Seja X a variável aleatória definida a seguir:

$$X = \begin{cases} 0 \text{ , se a peça não \'e defeituosa} \\ 1 \text{ , se a peça \'e defeituosa} \end{cases}$$

Determine a função de probabilidade de X.

Solução

Seja X a variável aleatória definida a seguir:

$$X = \begin{cases} 0 \text{ , se a peça não \'e defeituosa} - N \\ 1 \text{ , se a peça \'e defeituosa} - D \end{cases}$$

Então, nesse caso,  $R_X = \{0, 1\}$  e a função de probabilidade de X é

$$p(x) = \begin{cases} 0.9 & \text{se } x = 0 \\ 0.1 & \text{se } x = 1 \end{cases}$$

Exemplo 4. Os clientes de uma locadora de filmes podem efetuar o pagamento do aluguel dos mesmos no dia ou posteriormente, no prazo de até três dias depois da data da locação. Considerando-se apenas os clientes que não pagam no dia mas que realizam efetivamente o

pagamento nos dias posteriores (sem atraso), seja X a variável aleatória que representa o número de dias decorridos desde a data do aluguel do filme até a data de pagamento. Admitase que a função de probabilidade de X é

$$p(x) = \frac{x}{6}$$
, para x = 1, 2, 3

Determinar P (X = 2 | X > 1)

Solução

A expressão analítica da função de probabilidade de X é

$$p(x) = \frac{x}{6}$$
, para  $x = 1, 2, 3$ 

Na forma de tabela, a função pode ser apresentada como mostrado a seguir

| X     | p(x) |
|-------|------|
| 1     | 1/6  |
| 2     | 2/6  |
| 3     | 3/6  |
| Total | 1    |

Portanto,

$$P(X=2|X>1) = \frac{P(X=2)}{P(X>1)} = \frac{P(X=2)}{P(X\geq2)} = \frac{P(X=2)}{P(X=2) + P(X=3)} = \frac{\frac{2}{6}}{\frac{2}{6} + \frac{3}{6}} = \frac{2}{5}$$

Exemplo 5. Determine a função de distribuição acumulada relativa à variável aleatória correspondente ao exemplo anterior (exemplo 6). Em seguida, verifique que a partir do conhecimento da função de distribuição é possível determinar a função de probabilidade.

Solução

Por definição, tem-se que 
$$F_X(x) = P(X \le x) = \sum_{t \le x} p(t)$$
 , com  $t \in R_X$ 

Então segue:

i) para x < 1

$$F_X(x) = P(X \le x) = \sum_{t \le x} p(t) = 0$$

ii) para  $1 \le x < 2$ 

$$F_X(x) = P(X \le x) = \sum_{t \le x} p(t) = p(1) = \frac{1}{6}$$

iii) para  $2 \le x < 3$ 

$$F_X(x) = P(X \le x) = \sum_{t \le x} p(t) = p(1) + p(2) = \frac{1}{6} + \frac{2}{6} = \frac{3}{6} = \frac{1}{2}$$

iv) para  $3 \le x$ 

$$F_X(x) = P(X \le x) = \sum_{t \le x} p(t) = p(1) + p(2) + p(3) = \frac{1}{6} + \frac{2}{6} + \frac{3}{6} = \frac{6}{6} = 1$$

Portanto, tem-se:

$$F(x) = \begin{cases} 0, & \text{para } x < 1 \\ \frac{1}{6}, & \text{para } 1 \le x < 2 \\ \frac{3}{6} = \frac{1}{2}, & \text{para } 2 \le x < 3 \\ \frac{6}{6} = 1, & \text{para } 3 \le x \end{cases}$$

O gráfico dessa função é mostrado a seguir.



Por outro lado, é fácil verificar que a partir do conhecimento da função de distribuição acima se torna possível obter a função de probabilidade, empregando a seguinte propriedade

$$p(x) = F(x) - \lim_{t \to x^{-}} F(t)$$

Com efeito, efetuando-se o cálculo acima indicado para cada valor x que coincide com um valor possível de X, tem-se:

$$p(1)=F(1)-\lim_{t\to 1^{-}} F(t)=\frac{1}{6}-0=\frac{1}{6}$$

$$p(2) = F(2) - \lim_{t \to 2^{-}} F(t) = \frac{3}{6} - \frac{1}{6} = \frac{2}{6} = \frac{1}{3}$$

$$p(3) = F(3) - \lim_{t \to 3^{-}} F(t) = \frac{6}{6} - \frac{3}{6} = \frac{3}{6} = \frac{1}{2}$$

que são os valores da função de probabilidade de X.

Exemplo 6. Seja X uma variável aleatória discreta com função de probabilidade expressa por

$$p(x) = \frac{1}{2^x}$$
, para  $x = 1, 2, 3, ...$ 

Calcular a probabilidade de X ser no máximo igual a 10.

Solução

A função de probabilidade de X é expressa por

$$p(x) = \frac{1}{2^x}$$
, para x = 1, 2, 3, ...

Então segue:

i) Primeira solução (direta)

$$P(X \le 10) = \sum_{x=1}^{10} p(x) = \sum_{x=1}^{10} \frac{1}{2^x} = \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \dots + \frac{1}{2^{10}} = \frac{\frac{1}{2^{10}} \cdot \frac{1}{2} - \frac{1}{2}}{\frac{1}{2} - 1} = \frac{\frac{1}{2} \left(\frac{1}{2^{10}} - 1\right)}{-\frac{1}{2}} = 1 - \frac{1}{2^{10}}$$

ii) Segunda solução, pelo teorema do evento complementar

$$P(X \le 10) = 1 - P(X > 10) = 1 - P(X \ge 11) = 1 - \sum_{x=11}^{\infty} \frac{1}{2^x} = 1 - \left(\frac{1}{2^{11}} + \frac{1}{2^{12}} + \frac{1}{2^{13}} + \dots\right) = 1 - \frac{\frac{1}{2^{11}}}{1 - \frac{1}{2}} = 1 - \frac{1}{2^{10}}$$

Exemplo 7. Certa loja possui em estoque cinco eixos defeituosos e três perfeitos. Foram vendidos dois eixos. Admita-se que os dois foram escolhidos ao acaso do estoque. Determinar a função de probabilidade do número de eixos defeituosos que foram vendidos.

Solução

No estoque há 8 eixos, sendo 5 defeituosos (D) e 3 não defeituosos (N). Então, tem-se:

$$P(X=x)=p(x)=\frac{C_5^x C_3^{2-x}}{C_8^2}$$
, para x=0,1,2

e assim, efetuando os cálculos combinatórios, segue

$$P(X=0) = p(0) = \frac{C_5^0 C_3^2}{C_8^2} = \frac{1.3}{8.7} = \frac{3}{28}$$

$$P(X=1)=p(1)=\frac{C_5^1C_3^1}{C_8^2}=\frac{5.3}{\frac{8.7}{2.1}}=\frac{15}{28}$$

$$P(X=2)=p(2)=\frac{C_5^2C_3^0}{C_8^2}=\frac{\frac{5.4}{2.1}}{\frac{8.7}{2.1}}=\frac{10}{28}$$

# 2.4 Função de Densidade de Probabilidade de uma Variável Aleatória Real Contínua

A cada variável aleatória contínua X corresponde uma função  $f_X(x)$ , dita função de densidade de probabilidade, com a seguinte definição:

$$f_{X}(x) = \frac{d}{dx} F_{X}(x)$$

## 2.4.1 Suporte (ou domínio) de uma variável aleatória real contínua X

Chama-se suporte de uma variável aleatória continua X, e representa-se por  $S_X$ , ou por  $R_X$ , o conjunto dos números reais tais que a função de densidade de X é positiva:

$$S_{X} = R_{X} = \left\{ x \in R \mid f_{X}(x) > 0 \right\}$$

**Convenção:** Convenciona-se apresentar a expressão da função de densidade de X apenas para os valores pertencentes a  $S_X = R_X$ . Assim, o suporte  $S_X = R_X$  é o domínio da função de densidade de probabilidade. Entretanto, em alguns casos, é útil estender a definição da função de densidade de probabilidade para todo o conjunto dos reais. A extensão é feita definindose essa função como sendo igual a f(x) para os valores de x que pertencem ao seu domínio (ou suporte)  $R_X$  e igual a zero (ou seja, identicamente nula) para todos os outros valores reais.

# 2.4.2 Propriedades da função de densidade de probabilidade $f_{x}(x)$

#### (I) Propriedades Características

a) 
$$f_x(x) \ge 0$$

b) 
$$\int_{-\infty}^{+\infty} f_{X}(x) dx = \int_{x \in S_{X}} f_{X}(x) dx = 1$$

Nota: a primeira integral representa a propriedade (b) no caso de empregar-se a definição da função de densidade estendida a todo o conjunto dos reais.

## (II) Utilização no Cálculo de Probabilidades

a) Para todo par de números reais (a,b) tal que  $a \le b$ , tem-se:

$$P\{a < X < b\} = P\{a < X \le b\} = P\{a \le X < b\} = P\{a \le X \le b\} = \int_{a}^{b} f_{X}(x) dx$$

$$b) P\{X = x_{0}\} = P\{x_{0} \le X \le x_{0}\} = \int_{x_{0}}^{x_{0}} f_{X}(x) dx = 0 \text{ para todo } x_{0} \in R$$

#### **Notas:**

- Para uma variável aleatória contínua X é usual denominar-se distribuição de probabilidade a conjugação do seu domínio,  $R_X$ , e da sua função de densidade de probabilidade, f(x) - ou seja, o par  $(R_X, f(x))$ .
- Diferentemente da função de probabilidade, a função de densidade de probabilidade não tem uma interpretação simples. Com efeito, f(x) não representa (ao contrário de p(x))

a probabilidade de ocorrência do evento X = x, isto é  $\underline{f(x)}$  não é igual a  $\underline{P(X = x)}$ . Entretanto, com base em conceitos do Cálculo Integral e Diferencial é possível obter-se uma interpretação para a função de densidade. O raciocínio é apresentado a seguir. Sendo a função f(x) contínua, pelo Teorema do Valor Médio (do Cálculo Integral) tem-se, para qualquer intervalo  $(x, x + \Delta x)$ , que

$$P(x \le X \le x + \Delta x) = \int_{x}^{x + \Delta x} f(x) dx = f(\theta) \Delta x \quad \text{para algum } \theta \text{ tal que } x \le \theta \le x + \Delta x$$

Então, se  $\Delta x$  for muito pequeno  $\theta$  será aproximadamente igual a x e, consequentemente,

$$f(x) \Delta x \simeq P(x \le X \le x + \Delta x)$$

Nessas condições, tem-se

$$f(x) \simeq \frac{P(x \le X \le x + \Delta x)}{\Delta x}$$

Portanto, em termos mais precisos tem-se

$$f(x) = \lim_{\Delta x \to 0} \frac{P(x \le X \le x + \Delta x)}{\Delta x}$$

Com efeito, lembrando a definição da função de distribuição acumulada, F(x), e, também, a de derivada de uma função, tem-se

$$f(x) = \lim_{\Delta x \to 0} \frac{P(x \le X \le x + \Delta x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{F(x + \Delta x) - F(x)}{\Delta x} = \frac{dF(x)}{dx}$$

como foi anteriormente estabelecido.

## 2.5 Função de Distribuição de Variáveis Aleatórias Reais Contínuas

Em decorrência do Teorema Fundamental do Cálculo, tem-se:

$$F_X(x) = \int_{-\infty}^{x} f_X(t) dt$$
  $-\infty < x < +\infty$ 

#### Nota 1:

Como  $P\{X = x_0\} = 0$  para todo  $x_0 \in R$ , a função  $F_X(x)$  não possui saltos. Logo, se X é do tipo contínuo,  $F_X(x)$  é contínua por toda parte no conjunto dos reais.

#### Nota 2:

Na determinação da função de distribuição de uma variável aleatória contínua X a partir de sua função de densidade de probabilidade, é frequentemente útil considerar a definição de sua função de densidade de forma estendida para todo o conjunto dos reais (ver o final de 2.4.1).

Exemplo 8. Seja X uma variável aleatória contínua com função de densidade de probabilidade expressa por

$$f(x) = 1$$
, para  $0 < x < 1$ 

- a) Determinar a probabilidade do evento X < 1/2.
- b) Qual é a probabilidade de X = 0.3?

Solução

A função de densidade de probabilidade de X é

$$f(x) = 1$$
, para  $0 < x < 1$ 

Então

a) 
$$P(X<1/2) = \int_{0}^{1/2} 1 dx = x \Big|_{0}^{1/2} = \frac{1}{2} - 0 = \frac{1}{2} = 0,5$$

b) Como a variável aleatória X é do tipo contínuo, a probabilidade de que ela venha a assumir qualquer valor particular é nula, ou seja, P(X = 0,3) = 0.

Exemplo 9. Seja X uma variável aleatória contínua com função de densidade de probabilidade expressa por

$$f(x) = 2x$$
, para  $0 < x < 1$ 

Determinar:

a) a probabilidade do evento X < 1/2;

b) a probabilidade do evento  $X \le \frac{1}{2}$  sabendo-se que ocorreu  $\frac{1}{3} < X \le \frac{2}{3}$ .

Solução

A função de densidade de probabilidade de X é

$$f(x) = 2x$$
, para  $0 < x < 1$ 

Então:

a) 
$$P(X<1/2) = \int_{0}^{1/2} 2x dx = x^{2} \Big|_{0}^{1/2} = \frac{1}{4} - 0 = \frac{1}{4} = 0,25$$

b) 
$$P(X<1/2|1/3< X \le 2/3) = \frac{P(1/3< X \le 1/2)}{P(1/3< X \le 2/3)} = \frac{\int_{1/3}^{1/2} 2x \, dx}{\int_{1/3}^{2/3} 2x \, dx} = \frac{x^2 \Big|_{1/3}^{1/2}}{x^2 \Big|_{1/3}^{2/3}} = \frac{\frac{1}{4} - \frac{1}{9}}{\frac{4}{9} - \frac{1}{9}} = \frac{\frac{9 - 4}{36}}{\frac{4 - 1}{9}} = \frac{\frac{5}{36}}{\frac{3}{9}} = \frac{5}{12}$$

Cabe ressaltar que <u>a comparação das probabilidades de ocorrência do evento</u> (X < 1/2) <u>calculadas nesse exemplo e no anterior permite uma melhor compreensão do conceito de densidade de probabilidade.</u>

Exemplo 10. A demanda mensal de certo produto, expressa em milhares de unidades, é uma variável aleatória X que tem a seguinte função de densidade de probabilidade

$$f(x) = \frac{a}{x^3}$$
, para  $x > 1$ 

- a) Determinar o valor da constante a;
- b) Calcular a probabilidade de que a demanda seja superior a 10.000 unidades.

Solução

A função de densidade de probabilidade da variável aleatória X é a seguinte

$$f(x) = \frac{a}{x^3}$$
, para  $x > 1$ 

Portanto, segue que

a) O valor da constante a pode ser determinado impondo-se a condição  $\int_{R_X} f(x) dx = 1$ . De fato,

$$\int_{1}^{\infty} \frac{a}{x^{3}} dx = 1 \text{ donde } a \int_{1}^{\infty} x^{-3} dx = a \frac{x^{-2}}{(-2)} \Big|_{1}^{\infty} = \frac{a}{2} \left( \frac{1}{x^{2}} \right) \Big|_{\infty}^{1} = \frac{a}{2} \left( 1 - \lim_{x \to \infty} \frac{1}{x^{2}} \right) = \frac{a}{2} (1 - 0) = \frac{a}{2} = 1$$

e assim a = 2

b) Considerando que a demanda X está expressa em 1.000 unidades, então o evento

A = "a demanda é superior a 10.000 unidades" equivale a X > 10. Logo

$$P(A) = P(X > 10) = \int_{10}^{\infty} \frac{2}{x^3} dx = 2 \int_{10}^{\infty} x^{-3} dx = 2 \frac{x^{-2}}{(-2)} \Big|_{10}^{\infty} = \frac{1}{x^2} \Big|_{\infty}^{10} = \frac{1}{100} = 0,01$$

Exemplo 11. Determinar a função de distribuição acumulada da variável aleatória considerada no exemplo 8.

Solução

A variável aleatória contínua X tem a seguinte função de densidade de probabilidade

$$f(x)=1$$
, para  $0 < x < 1$ 

Para efeito de determinação da função de distribuição, convém empregar a extensão da definição da função de densidade para todo o conjunto dos números reais, que é mostrada a seguir

$$f(x) = \begin{cases} 1, \text{ para } 0 < x < 1 \\ 0, \text{ para outros valores} \end{cases}$$

Como a variável X é do tipo contínuo, na determinação da função de distribuição empregase a definição

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(t) dt , \forall x \in R$$

A seguir, na avaliação da expressão acima, deve-se levar em conta todos os intervalos com definições distintas da expressão da função de densidade (estendida), o que é feito na sequência:

i) para x < 0

Nesse caso, tem-se

$$F(x) = \int_{-\infty}^{x} f(t) dt = 0 \text{ pois o integrando, } f(t), \text{ \'e identicamente nulo for a do intervalo } (0, 1)$$

ii) para  $0 \le x < 1$ , tem-se

$$F(x) = \int_{-\infty}^{x} f(t) dt = \int_{-\infty}^{0} f(t) dt + \int_{0}^{x} f(t) dt = 0 + \int_{0}^{x} 1 dt = t \Big|_{0}^{x} = x$$
, onde, como se pode verificar, a inte-

gral inicial foi decomposta em duas de modo a considerar-se, explicitamente, as duas definições distintas da função de densidade de probabilidade no intervalo  $(-\infty, x)$ , com  $0 \le x < 1$ , a saber:  $(-\infty, 0)$ , onde f(t) = 0 e (0, 1), onde f(t) = 1

iii) para 1≤x, tem-se

$$F(x) = \int_{-\infty}^{x} f(t) dt = \int_{-\infty}^{0} f(t) dt + \int_{0}^{1} f(t) dt + \int_{1}^{x} f(t) dt = 0 + \int_{0}^{1} dt + 0 = t \Big|_{0}^{1} = 1$$

Aqui, novamente, a integral foi decomposta, agora em três integrais, de modo a considera-se explicitamente as três definições distintas da função de densidade abrangidas no intervalo  $(-\infty, x)$ , com  $1 \le x$ , a saber:

$$(-\infty,0)$$
, onde  $f(t)=0$ ;  $[0,1)$ , onde  $f(t)=1$ ;  $[1,\infty)$ , onde  $f(t)=0$ 

Portanto, em resumo, a função de distribuição é

$$F(x) = \begin{cases} 0 & \text{, para } x < 0 \\ x & \text{, para } 0 \le x < 1 \\ 1 & \text{, para } x \ge 1 \end{cases}$$

Por outro lado, é fácil verificar que a partir dessa função é possível obter-se a função de densidade de probabilidade de X, pois

$$f(x) \ = \ \frac{d \, F(x)}{dx} = \begin{cases} 0 \text{ , para } x < 0 \\ 1 \text{ , para } 0 < x < 1 \\ 0 \text{ , para } x > 1 \end{cases}$$

Ou seja,

$$f(x) = \begin{cases} 1 \text{ , para } 0 < x < 1 \\ 0 \text{ , para outros valores} \end{cases}$$

Exemplo 12. Considerando a variável aleatória referente ao exemplo 9, pede-se:

- a) determinar a sua função de distribuição acumulada;
- b) calcular as probabilidades dos seguintes eventos:
  - i)  $P(X \le 0,2)$
  - ii) P(0,3 < X < 0.9)
  - iii) P(X > 0.7)

Solução

Nesse caso, a função de densidade de probabilidade foi definida por

$$f(x) = 2 x$$
, para  $0 < x < 1$ 

Analogamente ao que foi feito no exemplo anterior, é conveniente considerar a definição da função de densidade estendida para R, mostrada a seguir:

$$f(x) = \begin{cases} 2x, & \text{para } 0 < x < 1 \\ 0, & \text{para outros valores} \end{cases}$$

Então segue

a) considerando a definição de função de distribuição, tem-se

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(t) dt , \forall x \in R$$

Logo

i) para x < 0, tem-se

$$F(x) = \int_{-\infty}^{x} f(t) dt = 0 \text{ pois o integrando, } f(t), \text{ \'e identicamente nulo for a do intervalo } (0, 1)$$

ii) para  $0 \le x < 1$ , tem-se

$$F(x) = \int_{-\infty}^{x} f(t) dt = \int_{-\infty}^{0} f(t) dt + \int_{0}^{x} f(t) dt = 0 + \int_{0}^{x} 2t dt = t^{2} \Big|_{0}^{x} = x^{2}, \text{ onde a integral inicial foi}$$

decomposta em duas e consideradas, explicitamente, as duas expressões distintas da função de densidade de probabilidade estendida no intervalo  $(-\infty, x)$ , com $0 \le x < 1$ , a saber:  $(-\infty, 0)$ , onde f(t)=0 e [0,1), onde f(t)=2 t

iii) para 1≤x, tem-se

$$F(x) = \int_{-\infty}^{x} f(t) dt = \int_{-\infty}^{0} f(t) dt + \int_{0}^{1} f(t) dt + \int_{1}^{x} f(t) dt = 0 + \int_{0}^{1} 2t dt + 0 = t^{2} \Big|_{0}^{1} = 1$$

Aqui a integral inicial foi dividida em três, de modo a considerar-se explicitamente todas as três definições distintas que a função de densidade de probabilidade estendida apresenta no intervalo  $(-\infty, x)$ , com  $1 \le x$ , a saber:

$$(-\infty,0)$$
, onde  $f(t)=0$ ;  $[0,1)$ , onde  $f(t)=2t$ ;  $[1,\infty)$ , onde  $f(t)=0$ 

Portanto, a função de distribuição de X é

$$F(x) = \begin{cases} 0, \text{ para } x < 0 \\ x^2, \text{ para } 0 \le x < 1 \\ 1, \text{ para } x \ge 1 \end{cases}$$

Note-se que, assim como no exemplo anterior, a derivada dessa função é a função de densidade de probabilidade. Com efeito, a derivada da função de distribuição é nula fora do intervalo (0,1) e é igual a f(x)=2x, para 0 < x < 1.

b) A função de distribuição acumulada pode ser empregada no cálculo das probabilidades, como mostrado a seguir:

b-i) 
$$P(X \le 0.2) = F(0.2) = 0.2^2 = 0.04$$

b-ii) 
$$P(0,3 < X < 0.9) = F(0.9) - F(0.3) = 0.9^2 - 0.3^2 = 0.81 - 0.09 = 0.72$$

b-iii) 
$$P(X > 0.7) = 1 - P(X \le 0.7) = 1 - F(0.7) = 1 - 0.7^2 = 1 - 0.49 = 0.51$$

Deve-se notar que a função de distribuição acumulada constitui uma ferramenta (alternativa à função de densidade) para cálculo da probabilidade de eventos relacionados à variável aleatória X.

O exemplo a seguir ilustra uma aplicação dos conceitos em um problema que apresenta interesse no campo da Economia, envolvendo um problema de tomada de decisão.

Exemplo 13. Uma bomba de gasolina é abastecida uma única vez em cada semana, às segundas-feiras, antes do início do expediente. O volume da demanda semanal de gasolina no posto possui a seguinte função de densidade de probabilidade, expressa em dezena de milhares de litros:

$$f(x) = 5(1-x)^4$$
  $0 < x < 1$ 

Qual deve ser a capacidade de armazenamento da gasolina para que o posto possa atender à demanda semanal, com probabilidade 0,99?

Solução

A função de densidade de probabilidade de X (expressa em milhares de litros) é

$$f(x)=5(1-x)^4$$
, para  $0 < x < 1$ 

Seja c a capacidade do tanque a ser determinada. Então, deve-se ter

$$P(X \le c) = 0.99$$

Mas 
$$P(X \le c) = \int_{0}^{c} 5(1-x)^{4} dx = -(1-x)^{5} \Big|_{0}^{c} = (1-x)^{5} \Big|_{c}^{0} = 1 - (1-c)^{5}$$
 logo

$$1-(1-c)^5=0.99$$
 donde  $(1-c)^5=0.01$  e assim  $1-c=\sqrt[5]{0.01}=0.3981$ 

Portanto, c=1-0,3981=0,6019 (em unidade de 10.000 litros).

Ou seja, a capacidade do tanque deve ser c = 6.019 litros.

#### 2.6 Variáveis Aleatórias Bidimensionais

Considere-se uma experiência aleatória de espaço amostral S. Sejam X=X(s) e Y=Y(s) funções que associam, cada uma, um número real a cada elemento  $s \in S$ . O par ordenado (X,Y) denomina-se variável aleatória bidimensional associada a S.

**Nota:** X e Y são variáveis aleatórias unidimensionais, denominadas componentes marginais de (X,Y).

# 2.7 Variáveis Aleatórias Bidimensionais do Tipo Discreto

# 2.7.1 Definição

Uma variável aleatória bidimensional (X,Y) é do tipo discreto (ou é discreta) se as suas componentes marginais  $X \in Y$  são do tipo discreto.

## 2.7.2 Função de Probabilidade Conjunta

Seja (X,Y)uma variável aleatória bidimensional do tipo discreto. Denomina-se Função de Probabilidade Conjunta associada à variável bidimensional (X,Y) a função definida por

$$p_{XY}(x,y) = P\{X = x; Y = y\}$$

O conjunto  $R^2_{XY} = \{(x,y) \in R^2 \mid p_{XY}(x,y) > 0\}$  denomina-se suporte da distribuição conjunta de (X,Y).

#### 2.7.3 Propriedades da Função de Probabilidade Conjunta

Toda função de probabilidade conjunta possui as seguintes propriedades:

a) 
$$p_{XY}(x,y) \ge 0$$

b) 
$$\sum_{(x,y)\in\mathbb{R}^2,yy} p_{XY}(x,y) = 1$$

$$c) \quad \text{Para todo } A \subset R^2_{\text{ XY}} \quad P \big\{ \big( X, Y \big) \in A \big\} \ = \sum_{(x,y)} \sum_{\in A} p_{XY} \left( x, y \right)$$

**Nota:** Uma função real definida no  $R_{XY}^2$  é função de probabilidade de alguma variável aleatória bidimensional se e somente se satisfaz as duas primeiras propriedades anteriores, ditas Propriedades Características.

**2.7.4 Determinação das Distribuições Marginais** A partir do conhecimento da função de probabilidade conjunta de (X,Y), as funções de probabilidade marginais das variáveis aleatórias componentes X e Y podem ser determinadas como segue:

$$p_{X}(x) = \sum_{y} p_{XY}(x,y) \quad x \in R_{X} \qquad p_{Y}(y) = \sum_{x} p_{XY}(x,y) \quad y \in R_{Y}$$

## 2.7.5 Distribuições Condicionadas

Para cada variável aleatória bidimensional do tipo discreto definem-se duas famílias de variáveis aleatórias condicionadas:

$$i)\{X|Y=y\}$$
 onde  $x \in R_{X|y}$  e  $y \in R_Y$ 

e

ii) 
$$\{Y | X = x\}$$
 onde  $y \in R_{Y|x}$  e  $x \in R_x$ ,

cujas funções de probabilidade são denotadas, respectivamente, por  $p_{X|Y}(x|y)$  ou

$$p_{X|y}(x)$$
 e por  $p_{Y|X}(y|x)$  ou  $p_{Y|x}(y)$ .

Os conjuntos

$$R_{X|y} = \{x \in R \mid p_{X|Y}(x \mid y) > 0\} \ e \ R_{Y|x} = \{y \in R \mid p_{Y|X}(y \mid x) > 0\}$$

são denominados suportes de  $\left\{X|Y=y\right\}e$  de  $\left\{Y|X=x\right\}$  , respectivamente.

As funções de probabilidades condicionadas são obtidas da seguinte maneira:

$$p_{X|Y}(x|y) = P\{X = x|Y = y\} = \frac{P\{X = x; Y = y\}}{P\{Y = y\}} = \frac{p_{XY}(x,y)}{p_{Y}(y)} \quad x \in R_{X|y}$$

para todo  $y \in R_y$ .

$$p_{\scriptscriptstyle Y|X}\left(\left.y\right|x\right) = P\left\{Y = y \,|\, X = x\right\} = \frac{P\left\{Y = y \,; X = x\right\}}{P\left\{X = x\right\}} = \frac{p_{\scriptscriptstyle XY}\left(x,y\right)}{p_{\scriptscriptstyle X}\left(x\right)} \quad y \in R_{\scriptscriptstyle Y|X}$$

para todo  $x \in R_X$ .

Dessas expressões resulta:

$$p_{XY}(x,y) = p_{Y}(y)p_{X|Y}(x|y) = p_{X}(x)p_{Y|X}(y|x)$$

### 2.7.6 Independência de Variáveis Aleatórias Discretas

As variáveis aleatórias discretas X e Y são ditas independentes se e somente se

$$p_{XY}(x,y) = p_X(x)p_Y(y)$$

ou, equivalentemente, se e somente se

$$p_{Y}(y) = p_{Y|X}(y|x)$$

ou, ainda, se e somente se

$$p_X(x) = p_{X|Y}(x|y)$$

Exemplos de distribuições conjuntas discretas e de determinação das distribuições marginais Exemplo 14. Seja (X,Y) uma variável aleatória bidimensional do tipo discreto, com a seguinte função de probabilidade conjunta:

|   | Y   |     |     |
|---|-----|-----|-----|
| X | 1   | 2   | 3   |
| 1 | 0,0 | 0,1 | 0,1 |
| 2 | 0,1 | 0,2 | 0,1 |
| 3 | 0,2 | 0,1 | 0,1 |

- a) Verificar que essa função atende as condições para ser uma função de probabilidade conjunta;
- b) Determinar P(X=1,Y=2), P(X=2,Y<3) e P(Y=2);
- c) Determinar as funções de probabilidade marginais de X e de Y.

Solução

a) Verificação

A função  $p_{XY}(x,y)$  definida na tabela acima atende as duas seguintes condições:

i) 
$$p_{XY}(x,y) \ge 0$$
, para  $todo(x,y) \in R_{XY}^2$ 

ii) 
$$\sum_{y=1}^{3} \sum_{y=1}^{3} p_{XY}(x,y) = 1$$

b) Cálculos das probabilidades

As probabilidades a serem determinadas são:

$$P(X=1,Y=2) = p_{XY}(1,2) = 0,1;$$

$$P(X = 2, Y < 3) = P(X = 2, Y \le 2) = p_{XY}(2,1) + p_{XY}(2,2) = 0,1+0,2=0,3;$$

$$P(Y=2)=P(X=1,Y=2)+P(X=2,Y=2)+P(X=3,Y=2)$$

$$P(Y=2)=p_{XY}(1,2)+p_{XY}(2,2)+p_{XY}(3,2)=0,1+0,2+0,1=0,4$$

c) As distribuições marginais de X e de Y são apresentadas a seguir

$$p_{X}(x) = \begin{cases} 0.2 \text{ se } x = 1 \\ 0.4 \text{ se } x = 2 \\ 0.4 \text{ se } x = 3 \end{cases} \qquad \text{e} \qquad p_{Y}(y) = \begin{cases} 0.3 \text{ se } y = 1 \\ 0.4 \text{ se } y = 2 \\ 0.3 \text{ se } y = 3 \end{cases}$$

O mesmo resultado pode ser obtido diretamente pela tabela, efetuando-se as somas dos valores de probabilidades nas células, por linha e por coluna, como indicado a seguir.

|            | Y   |     |     | $p_{X}(x)$ |
|------------|-----|-----|-----|------------|
| X          | 1   | 2   | 3   |            |
| 1          | 0,0 | 0,1 | 0,1 | 0,2        |
| 2          | 0,1 | 0,2 | 0,1 | 0,4        |
| 3          | 0,2 | 0,1 | 0,1 | 0,4        |
| $p_{Y}(y)$ | 0,3 | 0,4 | 0,3 | 1,0        |

Exemplo 15. Seja (X, Y) uma variável aleatória bidimensional do tipo discreto com a seguinte função de probabilidade conjunta:

$$p(x,y) = \frac{x - y}{4}$$
, para  $x = 1,2$  e  $y = 0,1$ 

Determinar as funções de probabilidade marginais de X e de Y:

- a) algebricamente, por meio das expressões analíticas das funções de probabilidade marginais;
- b) numericamente, por meio de somas de probabilidades de linhas e de colunas na tabela da distribuição conjunta.

Solução

a) determinação das expressões analíticas das funções de probabilidade marginais.

$$p_X(x) = \sum_{y=0}^{1} \frac{x-y}{4} = \frac{1}{4} \left( \sum_{y=0}^{1} x - \sum_{y=0}^{1} y \right) = \frac{1}{4} (2x-1) = \frac{2x-1}{4}, \text{ para } x = 1, 2$$

$$p_Y(y) = \sum_{x=1}^2 \frac{x-y}{4} = \frac{1}{4} \left( \sum_{x=1}^2 x - \sum_{x=1}^2 y \right) = \frac{1}{4} (3-2y) = \frac{3-2y}{4}, \text{ para } y = 0, 1$$

b) determinação numérica, por meio de somas de probabilidades de linhas e colunas na tabela da distribuição conjunta.

Um exame da expressão analítica da distribuição conjunta de (X,Y) permite calcular facilmente as probabilidades associadas a cada par de valores possíveis, (x,y), das variáveis X e Y, que são (1,0), (1,1), (2,0) e (2,1). Com efeito, tem-se:

$$\begin{aligned} p_{XY}(1,0) &= \frac{1-0}{4} = \frac{1}{4} & e & p_{XY}(1,1) &= \frac{1-1}{4} = 0; & p_{XY}(2,0) &= \frac{2-0}{4} = \frac{2}{4} & e \\ p_{XY}(2,1) &= \frac{2-1}{4} = \frac{1}{4} & e & e \end{aligned}$$

Portanto, tem-se a seguinte tabela para a distribuição conjunta e para as distribuições marginais.

|            | Y   |     |            |
|------------|-----|-----|------------|
| X          | 0   | 1   | $p_{X}(x)$ |
| 1          | 1/4 | 0   | 1/4        |
| 2          | 2/4 | 1/4 | 3/4        |
| $p_{Y}(y)$ | 3/4 | 1/4 | 1          |

Também é fácil verificar que as expressões analíticas das distribuições marginais obtidas no item anterior fornecem esses mesmos valores de probabilidades obtidos na solução numérica apresentada.

# 2. 8 Variáveis Aleatórias Bidimensionais do Tipo Contínuo

## 2.8.1 Definição

Uma variável aleatória bidimensional (X,Y) é do tipo contínuo (ou é contínua) se as suas componentes marginais  $X \in Y$  são do tipo contínuo.

# 2.8.2 Função de Densidade de Probabilidade Conjunta e Propriedades

A toda variável aleatória bidimensional do tipo contínuo corresponde uma função,  $f_{XY}(x,y)$  dita Função de Densidade de Probabilidade Conjunta, com as seguintes propriedades:

a) 
$$f_{XY}(x,y) \ge 0$$

b) 
$$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f_{xy}(x,y) dy dx = \int_{(x,y) \in \mathbb{R}^2_{xy}} f_{xy}(x,y) dy dx = 1$$

onde o conjunto  $R_{XY}^2 = \{(x,y) \in R^2 | f_{XY}(x,y) > 0\} \notin o \text{ suporte de } (X,Y).$ 

c) para todo 
$$A \subset R_{XY}^2$$
,  $P\{(X,Y) \in A\} = \int_{(x,y)\in A} f_{XY}(x,y) dy dx$ 

#### **Notas:**

- Uma função real definida no R<sup>2</sup><sub>XY</sub> é função de densidade de probabilidade de alguma variável aleatória bidimensional (X,Y) se e somente se satisfaz as duas primeiras propriedades, ditas Propriedades Características.
- Para todo  $(a,b) \in R_{XY}^2$ ,  $P\{X = a ; Y = b\} = P\{a \le X \le a ; b \le Y \le b\} =$   $= \int_{-\infty}^{a} \int_{-\infty}^{b} f_{XY}(x,y) dy dx = 0$
- Convenciona-se representar analiticamente as funções de densidade conjunta apenas nos pontos pertencentes ao suporte de (X,Y).

#### 2.8.3 Determinação das Densidades Marginais

A partir do conhecimento da função de densidade conjunta de (X,Y), as funções de densidade marginais das componentes  $X \in Y$  podem ser determinadas como segue:

$$f_{X}(x) = \int_{-\infty}^{+\infty} f_{XY}(x,y) dy \quad x \in R_{X} \quad e \quad f_{Y}(y) = \int_{-\infty}^{+\infty} f_{XY}(x,y) dx \quad y \in R_{Y}$$

## 2.8.4 Distribuições Condicionadas (ou Condicionais)

Para cada variável aleatória bidimensional do tipo contínuo definem-se duas famílias de variáveis aleatórias condicionadas, a saber:

i) 
$$\{X | Y = y\}$$
 onde  $y \in R_Y$ 

e

ii) 
$$\{Y | X = x\}$$
 onde  $x \in R_X$ 

cujas funções de densidade de probabilidade são denotadas respectivamente por

$$f_{X|Y}(x|y)$$
 ou  $f_{X|y}(x)$  e  $f_{Y|X}(y|x)$  ou  $f_{Y|x}(y)$ .

Os conjuntos

$$R_{x|y} = \left\{ x \in R \, | \, f_{x|y} \left( x \, | \, y \right) > 0 \right\} \quad e \quad R_{y|x} = \left\{ y \in R \, | \, f_{y|x} \left( y \, | \, x \right) > 0 \right\}$$

são denominados suportes de  $\left\{ X|Y=y\right\} e$  de  $\left\{ Y|X=x\right\} ,$  respectivamente.

As funções de densidade de probabilidades condicionadas são obtidas da seguinte maneira:

$$f_{X|Y}(x|y) = \frac{f_{XY}(x,y)}{f_{Y}(y)}$$
  $x \in R_{X|y}$  para todo  $y \in R_{Y}$ 

$$f_{Y|X}(y|x) = \frac{f_{XY}(x,y)}{f_{X}(x)}$$
  $y \in R_{Y|x}$  para todo  $x \in R_{X}$ 

Dessas expressões resulta:

$$f_{xy}(x,y) = f_y(y)f_{x|y}(x|y) = f_x(x)f_{y|x}(y|x)$$

# 2.8.5 Independência de Variáveis Aleatórias Contínuas

As variáveis aleatórias contínuas X e Y são ditas independentes se e somente se

$$f_{XY}(x,y) = f_Y(y)f_X(x)$$

ou, equivalentemente, se e somente se

$$f_{Y}(y) = f_{Y|X}(y|x)$$

ou, ainda, se e somente se

$$f_X(x) = f_{X|Y}(x|y)$$

Exemplos de distribuições conjuntas contínuas e de determinação das distribuições marginais

Exemplo 16. Seja (X, Y) uma variável aleatória do tipo contínuo com a seguinte função de densidade de probabilidade:

$$f_{xy}(x,\!y) = 2-x-y$$
 , para  $0 < x < 1 \ e \ 0 < y < 1$ 

- a) Verificar que a função acima satisfaz as condições necessárias para ser uma função de densidade de probabilidade conjunta;
- b) Determinar as funções de densidade marginais de X e de Y.

Solução

- a) verificação
- a-i) A função atende a condição de que  $\,f_{XY}^{}(x,\!y)\geq 0$  , para  $(x,\!y)\!\in\!R_{XY}^{2}$

e

a-ii) verifica-se também que a integral da função de densidade conjunta em  $R_{XY}^2$  é 1

$$\int_{0}^{1} \int_{0}^{1} (2 - x - y) \, dy \, dx = \int_{0}^{1} \left( 2 \int_{0}^{1} dy - x \int_{0}^{1} dy - \int_{0}^{1} y \, dy \right) dx =$$

$$= \int_{0}^{1} \left( 2 y \Big|_{0}^{1} - x y \Big|_{0}^{1} - \frac{1}{2} y^{2} \Big|_{0}^{1} \right) dx = \int_{0}^{1} \left( 2 - x - \frac{1}{2} \right) dx = \int_{0}^{1} \left( \frac{3}{2} - x \right) dx =$$

$$= \int_{0}^{1} \frac{3}{2} dx - \int_{0}^{1} x \, dx = \frac{3}{2} x \Big|_{0}^{1} - \frac{1}{2} x^{2} \Big|_{0}^{1} = \frac{3}{2} - \frac{1}{2} = 1$$

b) as distribuições marginais são

b-i)

$$f_{X}(x) = \int_{0}^{1} (2 - x - y) dy = 2 \int_{0}^{1} dy - x \int_{0}^{1} dy - \int_{0}^{1} y dy = 2 y \Big|_{0}^{1} - x y \Big|_{0}^{1} - \frac{1}{2} y^{2} \Big|_{0}^{1} =$$

$$= 2 - x - \frac{1}{2} \quad \text{donde } f_{X}(x) = \frac{3}{2} - x, \text{ para } 0 < x < 1$$

e

b-ii)

$$\begin{split} f_{Y}(y) &= \int_{0}^{1} (2 - x - y) dx = 2 \int_{0}^{1} dx - \int_{0}^{1} x dx - y \int_{0}^{1} dx = 2 x \Big|_{0}^{1} - \frac{1}{2} x^{2} \Big|_{0}^{1} - y x \Big|_{0}^{1} = \\ 2 - \frac{1}{2} - y \quad donde \ f_{Y}(y) &= \frac{3}{2} - y, \ para \ 0 < y < 1 \end{split}$$

Exemplo 17. Seja (X, Y) uma variável aleatória do tipo contínuo com a seguinte função de densidade de probabilidade:

$$f_{XY}(x,y) = \frac{3x}{8}$$
, para  $0 < y < x < 2$ 

- a) Calcular P (X > 0.5 e Y < 1);
- b) Determinar as funções de densidade de probabilidade marginais de X e de Y.

Solução

a) Cálculo da probabilidade do evento (X > 0.5; Y < 1)

$$P(X>0,5;Y<1) = \int_{0,5}^{1} \int_{8}^{x} \frac{3}{8} x \, dy \, dx + \int_{1}^{2} \int_{0}^{1} \frac{3}{8} x \, dy \, dx = \frac{3}{8} \left[ \int_{0,5}^{1} x \int_{0}^{x} dy \, dx + \int_{1}^{2} x \int_{0}^{1} dy \, dx \right] =$$

$$= \frac{3}{8} \left[ \int_{0,5}^{1} x \left( y \Big|_{0}^{x} \right) dx + \int_{1}^{2} x \left( y \Big|_{0}^{1} \right) dx \right] = \frac{3}{8} \left[ \int_{0,5}^{1} x^{2} \, dx + \int_{1}^{2} x \, dx \right] =$$

$$= \frac{3}{8} \left[ \frac{1}{3} x^{3} \Big|_{0,5}^{1} + \frac{1}{2} x^{2} \Big|_{1}^{2} \right] = \frac{3}{8} \left[ \frac{1}{3} \left( 1 - \frac{1}{8} \right) + \frac{1}{2} (4 - 1) \right] = \frac{3}{8} \left( \frac{1}{3} \cdot \frac{7}{8} + \frac{1}{2} 3 \right)$$

$$= \frac{3}{8} \left( \frac{7}{24} + \frac{3}{2} \right) = \frac{3}{8} \cdot \frac{7 + 36}{24} = \frac{3}{8} \cdot \frac{43}{24} = \frac{43}{64}$$

b) Determinação das funções de densidade marginais de X e de Y

b-i) 
$$f_X(x) = \int_0^x \frac{3}{8} x \, dy = \frac{3}{8} x \int_0^x dy = \frac{3}{8} x \left( y \Big|_0^x \right) = \frac{3}{8} x x = \frac{3}{8} x^2$$
, para  $0 < x < 2$ 

b-ii) 
$$f_Y(y) = \int_y^2 \frac{3}{8} x \, dx = \frac{3}{8} \int_y^2 x \, dx = \frac{3}{8} \frac{1}{2} \left( x^2 \Big|_y^2 \right) = \frac{3}{16} (4 - y^2)$$
, para  $0 < y < 2$ 

Exemplos de distribuições condicionadas e de independência

Variáveis aleatórias bidimensionais discretas

Exemplo 18. Para a distribuição de probabilidade da variável aleatória bidimensional do exemplo 15, anteriormente apresentado, pede-se:

- a) determinar as distribuições condicionadas associadas a (X, Y);
- b) verificar se as variáveis X e Y são independentes.

Solução

A função de probabilidade conjunta de X e de Y no referido exemplo é

$$p_{XY}(x,y) = \frac{x - y}{4}$$
, para  $x = 1,2$  e  $y = 0,1$ 

a-i) A partir da tabela com os valores numéricos das distribuições conjunta e marginais, temse a determinação numérica das distribuições condicionadas, apresentada a seguir.

|            | Y   |     |            |
|------------|-----|-----|------------|
| X          | 0   | 1   | $p_{X}(x)$ |
| 1          | 1/4 | 0   | 1/4        |
| 2          | 2/4 | 1/4 | 3/4        |
| $p_{Y}(y)$ | 3/4 | 1/4 | 1          |

Com base nessa tabela tem-se:

$$p_{X|Y}(x|0) = \begin{cases} \frac{1/4}{3/4} = \frac{1}{3} & \text{se } x = 1 \\ \frac{2/4}{3/4} = \frac{2}{3} & \text{se } x = 2 \end{cases} \qquad \text{e} \qquad p_{X|Y}(x|1) = \begin{cases} \frac{0}{1/4} = 0 & \text{se } x = 1 \\ \frac{1/4}{1/4} = 1 & \text{se } x = 2 \end{cases}$$

$$p_{Y|X}(y|1) = \begin{cases} \frac{1/4}{1/4} = 1 \text{ se } y = 0\\ \frac{0}{1/4} = 0 \text{ se } y = 1 \end{cases}$$
 e  $p_{Y|X}(y|2) = \begin{cases} \frac{2/4}{3/4} = \frac{2}{3} \text{ se } y = 0\\ \frac{1/4}{3/4} = \frac{1}{3} \text{ se } y = 1 \end{cases}$ 

a-ii) a partir das expressões analíticas das distribuições marginais, tem-se diretamente:

$$p_{XY}(x,y) = \frac{x-y}{4} e p_Y(y) = \frac{3-2y}{4}$$
, para y = 0, 1 logo

$$p_{X|Y}(x|y) = \frac{p_{XY}(x,y)}{p_{Y}(y)} = \frac{x-y}{3-2y}$$
, para  $x = 1,2$ ; com  $y = 0,1$ 

$$p_{XY}(x,y) = \frac{x-y}{4} e p_X(x) = \frac{2x-1}{4}$$
, para  $x = 1, 2 \log 0$ 

$$p_{Y|X}(y|x) = \frac{p_{XY}(x,y)}{p_{X}(x)} = \frac{x-y}{2x-1}$$
, para  $y = 0,1$ ; com  $x = 1,2$ 

b) Em qualquer dos casos é fácil verificar que X e Y não são independentes pois a função de probabilidade conjunta não é igual ao produto das funções marginais.

Variáveis aleatórias bidimensionais contínuas

Exemplo 19. Seja (X, Y) uma variável aleatória bidimensional do tipo contínuo, com a seguinte função de densidade de probabilidade conjunta:

$$f_{XY}(x,y) = \frac{1}{4}x$$
, para  $0 < x < 2$  e  $1 < y < 3$ 

- a) Determinar as funções de densidade marginais de X e de Y;
- b) determinar as funções de densidade condicionais associadas a X e Y;
- c) verificar se X e Y são independentes.

Solução

A função de densidade de probabilidade conjunta de (X, Y) é:

$$f(x,y) = \frac{1}{4}x$$
 para  $0 < x < 2$  e  $1 < y < 3$ 

Então:

a) as distribuições marginais são:

a-i)

$$f_X(x) = (x/4) \int_1^3 dy = \frac{x}{2}$$
 0 < x < 2

a-ii)

$$f_Y(y) = (1/4) \int_0^2 x \, dx = (1/4) (x^2/2) \Big|_0^2 = \frac{1}{2} \quad 1 < y < 3$$

b) as distribuições condicionadas são:

b-i) 
$$f_{X|Y}(x) = \frac{x/4}{1/2} = \frac{x}{2}$$
, para  $0 < x < 2$ 

b-ii) 
$$f_{Y|X}(y) = \frac{x/4}{x/2} = \frac{1}{2}$$
, para  $1 < y < 3$ 

c) Inicialmente, verifica-se que o domínio da função de densidade é

$$R_{XY}^2 = \{(x, y) \in \mathbb{R}^2 \mid 0 < x < 2 \text{ e } 1 < y < 3\}$$

o qual é da forma retangular de lados paralelos aos eixos coordenados.

Além disso,  $f_{X|Y}(x) = f_X(x)$ , logo X e Y são independentes.

Alternativamente, também se verifica que

$$f_{XY}(x,y) = \frac{1}{4}x = \frac{1}{2}x \cdot \frac{1}{2} = f_X(x) \cdot f_Y(y)$$
 portanto X e Y são independentes.

Exemplo 20. Considerando a variável aleatória bidimensional contínua do exemplo 16, anteriormente apresentado, determinar as funções de densidade de probabilidades das distribuições condicionadas associadas à (X, Y) e verificar se X e Y são independentes.

Solução

A função de densidade de probabilidade conjunta de X e de Y do exemplo é

$$f_{xy}(x,y) = 2 - x - y$$
, para  $0 < x < 1$  e  $0 < y < 1$ 

Na solução do exemplo 16 foi visto que as funções de densidade marginais de X e de Y são:

i) 
$$f_X(x) = \frac{3}{2} - x$$
, para  $0 < x < 1$ 

e

ii) 
$$f_{Y}(y) = \frac{3}{2} - y$$
, para  $0 < y < 1$ 

Então as distribuições condicionadas são:

i) 
$$f_{X|Y}(x|y) = \frac{f_{XY}(x,y)}{f_{Y}(y)} = \frac{2-x-y}{\frac{3}{2}-y} = \frac{2(2-x-y)}{3-2y}$$
, para  $0 < x < 1$ , com  $0 < y < 1$ 

ii) 
$$f_{Y|X}(y|x) = \frac{f_{XY}(x,y)}{f_X(x)} = \frac{2-x-y}{\frac{3}{2}-x} = \frac{2(2-x-y)}{3-2x}$$
, para  $0 < y < 1$ , com  $0 < x < 1$ 

Também se verifica que nesse caso o domínio é da forma retangular (de lados paralelos aos eixos coordenados) pois corresponde ao conjunto definido a seguir

$$R_{XY}^2 = \{(x,y) \in R^2 \mid 0 < x < 1 \text{ e } 0 < y < 1\}$$

Porém, a expressão da função de densidade conjunta de X e de Y não é igual ao produto das funções de densidade marginais de X e de Y. Com efeito, tem-se

$$f_{XY}(x,y) \neq f_X(x) \cdot f_Y(y)$$
 pois  $2 - x - y \neq \left(\frac{3}{2} - x\right) \left(\frac{3}{2} - y\right)$ 

Logo X e Y não são independentes.

Exemplo 21. Seja (X, Y) uma variável aleatória bidimensional do tipo contínuo, com a seguinte densidade de probabilidade:

$$f_{xy}(x,y) = 2$$
, para  $0 < x < 1$  e  $0 < y < x$ 

- a) Determinar as distribuições condicionadas associadas a (X, Y);
- b) verificar se X e Y são independentes.

Solução

A função de densidade de probabilidade conjunta de (X, Y) é:

$$f_{yy}(x,y) = 2$$
 para  $0 < x < 1$  e  $0 < y < x$ 

Portanto:

a) As funções de densidade marginais de X e de Y são:

a-i) 
$$f_x(x) = 2 \int_0^x dy = 2x \quad 0 < x < 1$$

a-ii) 
$$f_Y(y) = 2 \int_y^1 dx = 2(1-y) \quad 0 < y < 1$$

As funções de densidade condicionadas associadas a (X, Y) são:

a-iii) 
$$f_{X|Y}(x|y) = \frac{f_{XY}(x,y)}{f_{Y}(y)} = \frac{2}{2(1-y)} = \frac{1}{1-y}$$
 para  $y < x < 1$  com  $0 < y < 1$ 

$$\text{a-iv) } f_{Y|X}\left(y|x\right) = \frac{f_{XY}\left(x,y\right)}{f_{X}\left(x\right)} = \frac{2}{2x} = \frac{1}{x} \quad \text{ para } \ 0 < y < x \ \text{ com } 0 < x < 1$$

Finalmente, deve-se observar que as duas funções de densidade acima são constantes, pois tanto o valor y de Y na primeira quanto o valor x de X na segunda são fixados. Diz-se que uma variável aleatória T possui distribuição Uniforme no intervalo (a, b) se a sua função de densidade de probabilidade for uma constante, expressa na seguinte forma

$$f_T(t) = \frac{1}{b-a}$$
, para a < t < b.

Portanto, nesse caso as duas distribuições condicionadas têm distribuições do tipo Uniforme:  $\{X|Y=y\}$  possui distribuição Uniforme no intervalo (y,1) e  $\{Y\mid X=x\}$  possui distribuição Uniforme no intervalo (0,x).

b) Verificação da independência

Como 
$$f_x(x)f_y(y) = 4x(1-y)$$
 então

$$f_X(x)f_Y(y) \neq f_{XY}(x,y)$$
 portanto X e Y não são independentes.