Group Representation 3

白永乐

202011150087

202011150087@mail.bnu.edu.cn

2023年9月28日

ROBEM I Let ϕ is representation of $GL_n(K)$ over K^n . And $\phi(A)\alpha := A\alpha$. Prove: ϕ is faithful and irreducible and n-dimensional.

ROBEM II For $A \in GL_n(K)$, let $\psi(A)X = AX, \forall X \in M_n(K)$. Then:

- 1. ψ is n^2 -dimentional representation of $GL_n(K)$ over K.
- 2. For $j: 1 \leq j \leq n$, let $M_n^{(j)}(K) := \{(a_{ik})_{n \times n} : a_{ik} \neq 0 \to k = j\}$. Prove $M_n^{(j)}$ is invariant subspace of $GL_n(K)$. Let ψ is subrepresentation of ψ in $M_n^{(j)}$, prove ψ_j is irreducible and $\psi = \bigoplus_{j=1}^n \psi_j$.
- 3. Prove $\psi_i \cong \phi$, where $\phi = (\mathbb{R}^{OBEM} I).\phi$

ROBEM III Let $K = \mathbb{C}$ and n = 2 in (Group representation second homework).(Problem 3), prove the subrepresentation of ϕ over $M_2^n(\mathbb{C})$ is irreducible.

ROBEM IV Assume $n \geq 3$ and $n \nmid \operatorname{char} K$