(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 14 February 2002 (14.02.2002)

PCT

(10) International Publication Number WO 02/13300 A1

- (51) International Patent Classification⁷: H01M 8/02, C25D 11/02, C25F 3/00
- (21) International Application Number: PCT/GB01/03319
- (22) International Filing Date: 24 July 2001 (24.07.2001)
- (25) Filing Language: English
- (26) Publication Language: English
- (30) Priority Data: 0019154.4 5 August 2000 (05.08.2000) GB 60/225,391 15 August 2000 (15.08.2000) US
- (71) Applicant (for all designated States except US): INEOS CHLOR LIMITED [GB/GB]; P.O. Box 14, The Heath, Runcorn, Cheshire WA7 4QG (GB).
- (72) Inventor; and
- (75) Inventor/Applicant (for US only): HODGSON, David, Ronald [GB/GB]; 58 Redwood, Westhoughton, Bolton BL5 2RU (GB).
- (74) Agents: MCNEIGHT, David, Leslie et al.; McNeight & Lawrence, Regent House, Heaton Lane, Stockport, Cheshire SK4 1BS (GB).

- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report
- entirely in electronic form (except for this front page) and available upon request from the International Bureau

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

 $^{\prime}13300$

(54) Title: STAINLESS STEEL SUBSTRATE TREATMENT

(57) Abstract: Stainless steel components to be used in electrochemical cells, e.g. fuel cells, are treated by an electrochemical and/or chemical oxidation treatment, e.g. cyclic voltammetry, in order to modify the surface characteristics, viz. surface composition and/or morphology, and thereby reduce the interfacial resistance associated with the surface of the component.

STAINLESS STEEL SUBSTRATE TREATMENT

This invention relates to substrate treatment, particularly treatment of stainless steel components to be incorporated in electrochemical cells. Although the invention will be described in the context of components for fuel cells, it is to be understood that the invention also finds application in other types of electrochemical cells, for example electrolytic cells as used for organic synthesis of chemicals and for production of chlorine.

A fuel cell is an electrochemical device in which electricity is produced without combustion of fossil fuel. In a fuel cell a fuel, which is typically hydrogen, is oxidised at a fuel electrode (anode) and oxygen, typically from air, is reduced at a cathode to produce an electric current and form byproduct water. An electrolyte is required which is in contact with both electrodes and which may be alkaline or acidic, liquid or solid. Heat and water are the only by-products of the electrochemical reaction in fuel cells wherein the fuel is hydrogen. Accordingly, the use of such cells in power generation offers potential environmental benefits compared with power generation from combustion of fossil fuels or by nuclear activity.

In proton-exchange membrane fuel cells, hereinafter referred to for convenience as "PEM" fuel cells, the electrolyte is a solid polymer membrane which allows transport of protons from the anode to the cathode and is typically based on perfluorosulphonic acid materials. The electrolyte must be maintained in a hydrated form during operation in order to prevent loss of ionic conduction through the electrolyte.

A PEM fuel cell typically comprises two electrodes, an anode and a cathode, separated by a proton-exchange membrane electrolyte. At the anode,

hydrogen fuel catalytically dissociates into free electrons and protons. The free electrons are conducted in the form of usable electric current through the external circuit with which the fuel cell is in electrical contact. The protons migrate through the membrane electrolyte to the cathode where they combine with oxygen from the air and electrons from the external circuit to form water and generate heat. Individual fuel cells may be combined into assemblies which are often referred to in the art as stacks to provide the amount of power required.

Electrochemical cells, such as fuel cells, often incorporate stainless steel components where possible for reasons of economy. In a fuel cell stack for instance, separator plates between adjacent fuel cells and/or current collecting end plates may comprise stainless steel. In electrolytical cells as used for example in the generation of chlorine, electrodes of the cell may comprise a stainless steel substrate.

An important factor in securing good cell efficiency is the interfacial resistance between the surfaces of stainless steel substrates and the surfaces of other components to which the steel substrates are directly or indirectly electroconductively coupled.

While the use of metal plates in fuel cells is seen as having many advantages over other materials, there are concerns over the issue of corrosion which can lead to increased cell resistances. Makkus et al (J. Power Sources, 86 (2000) 274) for instance has reported that the anode side of the fuel cell (i.e. the hydrogen side) containing stainless bipolar plates, gives rise to a greater corrosion of the plate than the cathode (i.e. air) side. Makkus et al also refers to metal passivation resulting in increased electrical as well as corrosion resistance.

The present invention seeks to secure improvements in efficiency of operation of electrochemical cells, particularly fuel cells.

According to one aspect of the present invention there is provided a method of manufacturing an electrochemical cell assembly in which at least one component, e.g. a plate, which is exposed to the chemical environment during operation of the cell comprises a stainless steel, said method comprising treating a surface of the stainless steel, prior to incorporation in the assembly, with an electrical current while contacted by an electrolyte, preferably an acidic electrolyte, under conditions which reduce the interfacial resistance associated with said surface.

The treatment is typically carried out with the stainless steel as the anode (anodic treatment) using dc current.

A feature of the invention is that it is possible to use a relatively inexpensive stainless steel. We have surprisingly found that it is possible to reduce the interfacial resistance associated with such a stainless steel by a process which would normally be expected to increase it. Conventional wisdom leads to an expectation that subjecting a stainless steel surface to anodic treatment would normally result in the growth of oxides on the surface and hence result in an increased interfacial resistance.

In this specification, interfacial resistance is measured by the method as described hereinbelow.

Reduction in interfacial resistance may be obtained by subjecting the stainless steel to an electrical potential or current of substantially constant or variable magnitude. For example, during at least major part of the treatment, the current density or applied voltage may be maintained substantially constant.

The treatment of the stainless steel surface may involve modification of the surface composition of the stainless steel and/or the surface morphology thereof.

The treatment may be such that the ratio of iron content to the chromium within the surface region of the stainless steel is reduced compared with the iron to chromium ratio prevailing prior to such treatment.

Prior to such treatment, the surface or surfaces of the stainless steel may be roughened by physical techniques which are known in the art, e.g. by grit blasting.

The treatment may be applied to two or more surfaces of the stainless steel. The same treatment may be applied at least to each major surface of the stainless steel or the treatment applied to one surface of the stainless steel may be different from that applied to one or more other surfaces of the stainless steel.

The cell assembly may comprise two or more stainless steel components, e.g. plates, treated as aforesaid.

The assembly may include bipolar plates, separator plates, flow field plates and/or current collecting plates, at least one of which comprises stainless steel treated as aforesaid.

The acid(s) present in the electrolyte may be selected from one or more of the group comprising sulphuric acid, hydrochloric acid, nitric acid, chromic acid, oxalic acid and phosphoric acid. The acid may for example be sulphuric acid.

The treatment may be carried out at ambient temperature (e.g. with the electrolyte initially at substantially room temperature). Nevertheless, we do not exclude the possibility of the treatment being carried out out at elevated temperatures. Usually, however, the temperature at least initially will not be greater than about 100°C, typically not greater than about 90°C and more usually not greater than about 70°C.

The electrolyte may typically have a pH of up to about 6 or less, e.g. less than 5.

The treatment may be such that the interfacial resistance of the stainless steel is reduced by a factor of at least 5%, preferably at least 10% and more preferably at least 15%, less than would otherwise prevail in the case of the untreated surface.

Typically said factor is at least 25%, e.g. at least 40% or even at least 50%, less than would otherwise prevail would otherwise prevail in the case of the untreated surface.

The so treated surface of the stainless steel may be coated with an electrically conductive material following treatment to reduce its interfacial resistance, e.g. with a coating of titanium nitride or chromium nitride or an electrocatalytically active material.

Examples of the electrocatalytical coating treatment that may be applied are disclosed in our prior International Patent Application No. WO 00/22689, the entire contents of which are where the context admits incorporated herein by this reference. For example, the electrocatalytically-active material may be selected from the group comprising: one or more platinum group metals or oxides thereof, cerium or or an oxide thereof; ruthenium or an oxide thereof; ruthenium oxide and a non-noble metal oxide; mixtures of RuO₂ with at least one of TiO₂, SnO₂, IrO₂, PtO, Sb₂O₃, Ta₂O₅, PdO, CeO₂, Co₃O₄.

The stainless steel is preferably an austenitic stainless steel.

The stainless steel may be a 300 series stainless steel such as 316 or 316L stainless steel.

The treatment may be carried out while the stainless steel is in the form of a sheet, the treated sheet subsequently being divided to form a number of plates for incorporation in one or more electrochemical cell assemblies.

Alternatively, the stainless steel may initially be in the form of a sheet which is then divided to form a number of plates before the treatment is applied to the individual plates.

Fluid flow channels may be formed in the sheet before such division into plates is effected. Alternatively the fluid flow channels may be formed after division, has been effected.

The electrochemical cell may comprise a fuel cell, e.g. a PEM fuel cell, an alkaline fuel cell, a phosphoric acid fuel cell, a direct methanol fuel cell, a molten carbonate fuel cell or a solid oxide fuel cell.

According to another aspect of the present invention there is provided a fuel cell stack comprising: a) a plurality of fuel cell units each of which contains a proton-exchange membrane separating the cell into anolyte and catholyte chambers and provided with an anode and a cathode on opposite sides thereof; b) a separator plate, flow field plate or bipolar plate disposed between adjacent cell units; c) current-collecting means comprising a pair of plates located one at each end of the stack; d) means for feeding fuel, e.g. hydrogen or methanol, to the anolyte chambers of the stack; and e) means for feeding an oxygen-containing gas to the catholyte chambers of the stack; at least one of said plates being a stainless steel plate, e.g. a 316 or 316 stainless steel plate, a surface of which has been treated with an electrical current

while contacted by an acidic electrolyte under conditions which reduce the interfacial resistance associated with said surface.

The invention will now be described further with reference to the accompanying drawings in which:

Figure 1 illustrates schematically a system for measuring interfacial resistance;

Figure 2 is a graph illustrating the variation of interfacial resistance with loading, obtained using the system of Figure 1, for treated and untreated samples of stainless steel;

Figure 3 is a graphical representation of corrosion potential and corrosion current against treatment time for samples of stainless steel treated at the same current density;

Figure 4 is a graph illustrating the proportions of iron, chromium, nickel and molybdenum constituents present at the surface of an untreated specimen, an untreated and grit blasted specimen, a treated specimen treated in accordance with the invention and the bulk composition, all specimens being composed of the same 316 stainless steel;

Figure 5 is a graphical representation comparing the long term operation of a single cell fuel cell provided with stainless steel plates treated in accordance with the present invention and a corresponding fuel cell provided with untreated plates of the stainless steel;

Figure 6 is a graph illustrating the variation of interfacial resistance with loading, obtained using the system of Figure 1, for a sample of stainless steel treated at constant voltage; and

Figure 7 is a schematic exploded perspective view illustrating by way of example only a fuel cell stack of the ion exchange membrane type with only a limited number of cell units illustrated for simplicity, the stack incorporating stainless steel components which have been treated by a process in accordance with the present invention.

Interfacial resistance as referred to in this specification is measured using the measurement system illustrated in, and the following procedure described with reference to, Figure 1.

Referring to Figure 1, the system comprises of a tensometer (Lloyd Instruments LRX plus, AMETEK Inc.) which is shown in Figure 1 as a fixed press plate 6 and a moveable press plate 1. The stainless steel sample 4 having an area of about 50×50 mm is sandwiched between two pieces of carbon diffuser 5 which may comprise for example carbon paper, made by Toray, or Carbel carbon cloth manufactured by W L Gore and Associates. This composite is then sandwiched between two gold plated copper plates 3 (50x50 mm) with the carbon diffuser layers in contact with the gold plated faces. The copper plates 3 have two sets of leads connected to them, one for use in measuring the voltage drop across the plates 3 and the second set for use in passing current through the system. A constant 5 Amps is applied using a Hewlett Packard HP 6008A DC power supply (not shown). The above assembly 3, 4, 5 is isolated from the tensometer itself using two blocks of insulating material 2, for example PTFE. Before the tensometer is operated to apply compressive forces to the assembly, the leads from the gold / copper plates are connected to a voltmeter (e.g.a FLUKE 73 III Multimeter, not shown), and to the Hewlett Packard power supply. The power supply is set to 5Amps and an ammeter (Beckman Industrial T100B) is used to precisely measure the current.

Once the stainless steel sample plate 4 has been prepared and assembled as described above, the tensometer is operated in stepwise fashion to apply increasing pressures ranging from 40 to 200Ncm⁻². Voltage drops, E, are measured from the voltmeter each time the tensometer reaches a set value stored by the machine. Because this method records the voltage drop over two interfaces, only half the voltage drop is used to calculate the interfacial resistance, R_I using the formula:

$$R_I = (E/2 \times A) / I$$

where I is the applied current (5Amps) and A is the area of overlap between the sample 4 and the carbon diffuser, (typically 25cm²).

Figure 2 represents a typical plot in which curve B represents the results obtained using a stainless steel plate which has been treated in accordance with the process of the invention. The anodic treatment in this instance involved a current density of 25 mA.cm⁻² for 30 minutes with the plate immersed in an aqueous electrolyte of 0.5M sulphuric acid, initially at room temperature. Curve A represents results obtained using the system and procedure described above in relation to Figure 1 but with an untreated piece of the stainless steel. From Figure 2, it will be seen that curves A and B approach values for R_I which remain substantially constant at pressures of the order of 200Ncm⁻² and higher. As used in the specification, interfacial resistance corresponds to the value obtained at a loading of 200Ncm⁻². It will be observed that the interfacial resistance for the treated sample is significantly less than that for the untreated sample, i.e. about $12 \text{ m}\Omega\text{cm}^2$ compared to about $65 \text{ m}\Omega\text{cm}^2$.

Typically stainless steel plates to be treated for use in an electrochemical cell in accordance with the invention are subjected to the following treatment steps.

The stainless steel workpiece is degreased using a suitable solvent (e.g. acetone,

isopropyl alcohol, trichloroethylene, caustic agents etc.) and immersed in a bath of electrolyte. The electrolyte is acid based containing one or more of the following: sulphuric acid, hydrochloric acid, nitric acid, chromic acid, oxalic acid and phosphoric acid. Using appropriate counter electrodes (e.g. platinised Ti), a dc current is passed between the workpiece (as the anode) and the counter electrodes (as the cathode). This current is calculated as a current density and may be from 0.01 mA/cm² to 500 mA/cm², preferably in the range 1 to 50 mA/cm². The current is controlled at the required level for a time between 0.5 and 180 minutes, preferably between 1 and 60 minutes and more preferably between 2 and 7 minutes. At the start of the anodic treatment, the electrolyte is at room temperature (and may increases during the course of the treatment). The particular conditions necessary to secure a reduction in interfacial resistance while maintaining the corrosion resistance properties of the stainless steel substantially unchanged or enhancing the same may be determined experimentally.

The workpiece is removed and rinsed in deionised water or deionised water made slightly alkaline to remove excess acid, and dried, e.g. in air or by passing a warm air current over the workpiece. The workpiece is then installed as a bipolar plate, separator plate, flow field plate and/or a current collecting plate in the electrochemical cell, e.g. a fuel cell.

Optimised conditions appropriate for anodic treatment of the stainless steel in order to reduce interfacial resistance may be established for a given electrolyte and temperature by configuring the sample of the stainless steel to be treated as the anode in a bath of electrolyte, establishing a potential difference between the anode and a counter electrode (as cathode) so as to pass a dc current of substantially constant current density through the electrolyte between the anode and electrode and using a range of current densities and treatment times. From

WO 02/13300 PCT/GB01/03319

measurements of the interfacial resistance, the corrosion potential Ecorr and corrosion current Icorr, a suitable operating regime can be determined. In practice, a suitable current density can be established by conducting experiments to determine current densities at which the interfacial resistance (as measured using the technique described above) is significantly reduced. For 316 stainless steel for instance, we have found that a marked reduction in interfacial resistance can be achieved using current densities of 20 mA.cm⁻² and upwards. For efficient energy usage, it is of course desirable to carry out the treatment at as low a current density as can be achieved while securing a significant reduction in interfacial resistance.

For a given electrolyte and temperature, a suitable treatment time may be be established by reference to graphical representations such as that illustrated in Figure 3 which illustrates treatment time against Ecorr and Icorr for treatment of 316 stainless steel carried out at room temperature using a current density of 25 mA.cm⁻² and an electrolyte comprising a 0.5M solution of sulphuric acid. The data for the curves in Figure 3 corresponds to that tabulated in Table 1 below in which the samples subjected to a current density of 25 mA.cm⁻² are identified by SS316(25).

Table 1 also includes measurements for the following samples of the same stainless steel:

SS316(U) - an untreated sample;

SS316(UG) - a sample which has been grit-blasted using 60/80 alumina but otherwise untreated;

SS316(TG) - a sample which has been grit-blasted using 60/80 alumina and has also been subjected to a current density of the specified magnitude and time;

SS316(100) - a sample which has been subjected to a current density of 100 mA.cm⁻² for 20 minutes.

Ecorr and Icorr were determined by a DC polarisation technique using the following procedure:

Polarisation was carried out in an EG&G (Elmer Perkin) flat cell containing 1N (0.5 mol) H₂SO₄ electrolyte and equipped with a SCE reference electrode and Pt/Rh counter electrode. With the working electrode in place, the cell temperature was set at 60°C and gently sparged with nitrogen gas and allowed to equilibriate for at least 15 minutes. The voltage drop between the working and counter electrode (open circuit potential) was measured every few minutes until the potential stabilises (± 2mV between successive readings). Potential scanning was effected from -0.5 to 1.0 V vs SCE at a sweep rate of 0.1mV.s⁻¹. From the data obtained, a plot of log current density vs potential, commonly referred to as a Tafel plot, yields the well-known "spiked" polarisation curve, the centre of the spike being the location at which the anodic and cathodic curves meet. This point is treated as the corrosion potential Ecorr. By extrapolation along each part of the curve at a potential not more than 30mV either side of Ecorr, a value for Icorr can be determined from the point of intersection of the tangents - see Principles and Prevention of Corrosion by Denny A Jones, 2nd Edition, published by Prentice Hall, Page 95 for details of the determination of Icorr.

Table 1

Electrolyte: 0.5M sulphuric acid aqueous solution

Sample	Current Density (mA.cm ⁻²)	Time (mins)	RI (mΩ.cm ²⁾	Ecorr (mV vs SCE)	Log [Icorr] (A.cm ⁻²)
SS316(25)	25	1	13	-0.2710	-6.032
SS316(25)	25	2	12	-0.0277	-6.458
SS316(25)	25	4	13	0.0342	-6.4884
SS316(25)	25	5	12	0.0685	-6.2735
SS316(25)	25	6	15	0.1303	-6.3196
SS316(25)	25	8	14	-0.1598	-5.9433
SS316(25)	· 25	10	13	-0.3102	-5.7863
SS316(25)	25	30	12	-0.2379	-5.855
SS316(25)	25	60	10	-0.2674	-5.7149
SS316(U)	-	-	64	-0.316	-4.946
SS316(UG)	-	-	19	-3.299	-5.7149
SS316(TG)	60	25	13	-0.2893	-6.136
SS316(100)	100	20	10	NM ·	NM

Comparing the SS316(25) and SS316(100) samples with SS316(U), it will be seen that the treatment results in a marked reduction in interfacial resistance R_I . Likewise, there is a marked reduction in interfacial resistance R_I for the samples which have been grit-blasted but the difference in R_I for SS316(UG) and SS316(TG) is only marginal. Also, it will be observed that the R_I for SS316(25) when treated for 60 minutes is slightly superior to that for SS316(TG). This suggests that there is nothing to be gained from mechanically roughening the stainless steel surface;

however, we do not exclude the possibility of carrying out such roughening from the scope of the present invention.

Also, from Table 1, it will be seen that the interfacial resistance R_I measured for SS316(100) is only marginally better than that obtained for the same sample when treated for 5 minutes at 25 mA.cm⁻². However, it will be noted that Ecorr and Icorr values obtained within a window of relatively short treatment times correspond to better corrosion resistance properties than for significantly longer treatment times - cf. SS316(25) when treated for 10 minutes with SS316(25) when treated for between 4 and 6 minutes.

Table 2 gives similar data to that of Figure 1 for the same stainless steel but using different electrolytes.

Table 2

Electrolyte	Current Density (mA.cm ⁻²)	Time (mins)	RI (mΩ.cm ²⁾	Ecorr (mV vs SCE)	Log [Icorr] (A.cm ⁻²)
H ₃ PO ₄ (M)	100	20	41	-0.3162	-6.0904
HCl (M)	100	20	17	-0.3451	-4.826
HNO ₃ (M)	100	20	15	-0.03121	-6.123
HNO ₃ (M)	25	2	24	-	-
HNO ₃ (M)	25	4	33	-	· -
HNO ₃ (M)	25	6	27	-	-
HNO ₃ (M)	25	8	24	-	-
H ₃ PO ₄ / H ₂ SO ₄	100	20	19	-	-

All electrolytes specified in Table 2 are 1M aqueous solutions of the acid specified. The mixed acid electrolyte (H₃PO₄/H₂SO₄) comprises 1M aqueous solutions of each acid. Although HCl exhibits a reduction in interfacial resistance, it is not a preferred acid because of corrosion pitting issues.

As previously mentioned, the use of metal bipolar plates in fuel cells is seen as having many advantages over other materials, for instance: thin plates leading to low volume stacks; ease of pressing a flow field into the plate; and low cost metals and alloys are readily available in large quantities. One concern over the use of metals plates however is the issue of corrosion which can result in metal ions from the metal plates blocking active sites in the membrane in a PEM type fuel cell leading to increased cell resistances. Makkus et al (J. Power Sources, 86 (2000) 274) reported that the anode side of the fuel cell (i.e. the hydrogen side) containing metal bipolar plates, gives rise to a greater corrosion of the plate than the cathode (i.e. air) side. Makkus et al also refers to passivation resulting in increased electrical as well as corrosion resistance.

To examine the effect of treating stainless steel in accordance with the present invention, operation of a PEM fuel cell was simulated by using an electrolyte of 1 mol dm⁻³ sulphuric acid at 60 °C and polarising a stainless steel test piece at the extremes of the fuel cell operation i.e. 0V vs SHE for the anode side. The simulation was carried out for treated and untreated test samples of the same 316 stainless steel and was operated for a number of hours. After such operation using each sample, the electrolyte was collected for chemical analysis. The treatment used in preparing the one sample for the simulation involved subjecting the sample to a current density of 25 mA.cm⁻² for 6 minutes in an aqueous electrolyte of 0.5 mole sulphuric acid per

dm³ initially at room temperature. The data from the anode side simulation is shown in Table 3 for the untreated sample (Sample 1) and the treated sample (Sample 2).

Table 3

G 1.#	Treatment	Cr	Fe	Mn	Mo	Ni
Sample #	time (hours)	mg/litre	mg/litre	mg/litre	mg/litre	mg/litre
1	50	1.8	4.3	0.14	0.3	2.1
2	72	0.06	0.49	0.02	< 0.05	0.1

From Table 3, it will be seen that for the simulated cell using the treated sample there is a substantial reduction in the extent of corrosion, as evidenced by the much lower metal ion presence in the electrolyte.

The anodic treatment of the stainless steel usually involves enrichment of the surface layer of the stainless steel in such a way that the iron to chromium content in the surface region of the treated steel (as measured using X ray photoelectron spectroscopy) is reduced. This is illustrated in Figure 4 for a number of samples of the same 316 stainless steel. Sample 4 represents the bulk composition of the 316 steel in terms of its iron, chromium, nickel and molybdenum constituents. Sample 1 represents a degreased specimen from which it will be seen that the iron content is substantially greater than the chromium content. Sample 2 represents a specimen which has been degreased and surface roughened by grit blasting. In this case, the iron content is even greater compared with the chromium content and is substantially representative of the bulk composition of the stainless steel corresponding to Sample 4. Sample 3 corresponds to a specimen subjected to anodic treatment in accordance with the invention and will be seen to have a surface composition in which the chromium content significant exceeds the iron content.

Figure 5 illustrates the benefits derived from the use of anodically treated stainless steel plates in a fuel cell. This Figure is a graphical representation comparing the longer term performance of a single cell PEM fuel cell equipped with treated stainless steel plates and one equipped with untreated stainless steel plates (graphs T and U respectively in Figure 5), the stainless steel plates in both cases being configured as field flow plates located on opposite sides (anode and cathode sides) of the membrane. The treatment applied to the plates involved subjecting them to a current density of 25 mA/cm² in a solution of 0.5 M sulphuric acid electrolyte for 6 minutes in the case of the anode-side plate and for 60 minutes in the case of the cathode-side plate. In the long term test of Figure 5, the following conditions were used:

hydrogen pressure 3 bar (g)
air pressure 3 bar (g)
hydrogen utilisation 70%
air utilisation 35%
cell temperature 50°C
humidification 50°C
compaction force 220 N/cm²
current density 0.7 A/cm²

The comparative long term data for untreated stainless steel comes from D. P. Davies, P. L. Adcock, M. Turpin and S. J. Rowen, J. Power Sources, 86 (2000) 237.

From Figure 5, it can be seen that significant improvement is secured in voltage output by using treated stainless steel plates without sacrificing durability.

The treatment of the stainless steel may be carried out at constant current or at constant voltage. Figure 6 illustrates interfacial resistance data obtained using the procedure described with reference to Figure 1 for a sample of the same 316 stainless steel as that referred to in Table 2 but treated in 0.5M sulphuric acid electrolyte for 10 minutes at an applied voltage of 1.8V vs SCE, i.e. substantially constant voltage against the reference electrode. At an applied pressure of 200 Ncm⁻², the interfacial resistance is approximately 12.5 m Ω .cm² compared with 64 m Ω .cm² for the untreated sample (see SS316(U) in Table 2).

In a typical production process, a number of sheets of stainless steel, e.g. 316 or 316L stainless steel, each has sets of features introduced into one or both major surfaces (e.g. by etching or pressing) in such a way that each set of the features serve as flow distribution channels for fluids in an electrochemical cell assembly such as a fuel cell stack. The fluids may be (but are not limited to) hydrogen, air, oxygen, water and/or methanol. An example of such a flow pattern is shown in Figure 7 to be described below. Once the sheet has been treated in accordance with the invention, it can be cut into smaller pieces each forming a plate provided with a set of fluid flow channels on one or each major face, each plate being dimensioned and configured for use in the fuel cell. In accordance with the invention, the stainless steel sheet is treated in such a way as to enhance the surface conductivity, preferably without reducing the corrosion resistance and, in some cases, increasing the corrosion resistance of the metal.

The treatment process usually comprises the following steps:

- 1. The sheet to be treated is first 'cleaned' using a degreasing solvent such as acetone, iso-propanol, trichloroethylene, or an alkaline based aqueous system.
- 2. The sheet is introduced into an aqueous treatment bath containing sulphuric acid, e.g. 1 mol dm⁻³, at room temperature or other desired temperature. The treatment bath is equipped with counter electrodes made of suitable material

WO 02/13300 PCT/GB01/03319

- (e.g. titanium coated with iridium dioxide or platinum) which may be in sheet or mesh form and the sheet to be treated is located between the two counter electrodes.
- 3. Electrical connections are made with both the stainless steel sheet workpiece and to the counter electrodes and a substantially constant dc current is passed between the counter electrodes and the workpiece. The current density is usually between 1 and 100 mA cm⁻² and is applied for a suitable time (usually between 1 minute to 2 hours), the current density and the time of application being determined experimentally in the light of treating samples of the stainless steel in the manner described previously.
- 4. After the current has been applied for the required time, the workpiece is disconnected from the electrical circuitry, removed from the bath and excess acid removed for example by suspending the workpiece over the bath for a time to allow excess acid to drain from the surface into the bath.
- 5. The treated sheet is then transported to a rinse bath containing deionised water, or deionised water made slightly alkaline with sodium carbonate or sodium hydroxide and after rinsing the sheet is dried in a clean environment. Drying may be performed by natural evaporation or by circulation of air at room or elevated temperature.
- 6. The dried sheet is cut into smaller plates compatible in size with the dimensions and configuration of the fuel stack into which the plates are to be incorporated as flow field plates and/or bipolar plates for instance.

In an alternative method, instead of dividing the stainless steel sheet into the individual plates after the treatment process, after being formed with the sets of fluid flow channel features, the stainless steel sheet may instead initially be separated (e.g. by cutting or etching) into plates of suitable dimensions and configuration for

incorporation in the electrochemical cell. The individual plates so formed can then be individually treated in accordance with steps 1 to 5 above.

In another variation, the opposite faces of the stainless steel sheet or individual plates may be subjected to the treatment to differing extents. For example, each face may be treated with regard to the conditions to which it will be exposed in operation of the electrochemical cell. For example, in the case of a bipolar plate for a fuel cell, one face might be exposed to a fluid comprising hydrogen or methanol (the anode side) and the opposite face may be exposed to a fluid comprising oxygen (the cathode side). By treating the two faces differently, e.g. for different lengths of time, each face may be optimised according to the conditions that it will be exposed to in operation of the fuel cell. Thus, the above process may be modified at step 4 by terminating current flow between one face and the associated counter electrode after a first predetermined time interval appropriate for that face (e.g. the hydrogen or anode side). At that point, that side is disconnected and isolated whilst currrent flow between the opposite face and its associated counter electrode is continued until lapse of a second predetermined time interval.

Referring now to Figure 7, one application of the present invention is in the production of a fuel cell stack comprising ion-permeable membranes 31 and 32 which have cathode electrodes 33 and 34 respectively and anode electrodes (not shown), bonded to each of their major surfaces. Each membrane 31, 32 and its associated anode and cathode forms a fuel cell unit. A bipolar separator plate 35, provided with surface features 36, is disposed between ion-permeable membranes 31 and 32 in contact with the electrode surfaces thereof. Terminal plates 37 and 38, provided with tabs 39 and 40 for delivering electric current generated in the cell stack to an external circuit, are disposed adjacent membranes 31 and 32 respectively. In the illustrated embodiment, only one bipolar separator plate 35 is shown. In practice, there will

WO 02/13300 PCT/GB01/03319

- 22 -

usually be a plurality of bipolar separator plates each associated with adjacent pairs of fuel cell units.

In the stack, membrane 31 is held firmly between terminal plate 37 and bipolar plate 35 so as to form an oxidant gas chamber 41 and a fuel gas chamber 42. In like manner, membrane 32 is held firmly between terminal plate 38 and bipolar plate 35 so as to form an oxidant gas chamber 43 and a fuel gas chamber 44. Hydrogen fuel is supplied to the anodes in the fuel gas chambers 42 and 44 via fuel gas inlet conduit 45 and by-products removed via conduit 46. Oxidant gas is supplied to cathodes 33 and 34 in the oxidant gas chambers 41 and 43 via oxidant gas inlet conduit 47 and by-products removed via conduit 48. Openings 49 and 50 located in opposite corners of membranes 31 and 32 are aligned with hydrogen gas inlet and outlet conduits 45 and 46 and with openings 51 and 52 in bipolar plate 35 to facilitate passage of hydrogen fuel gas into the fuel chambers 42 and 44 and to remove by-products therefrom.

Openings, not shown, and openings 53 located in opposite corners of membranes 31 and 32 are aligned with oxidant inlet and outlet conduits 47 and 48 and with opening 54 and another not shown in bipolar plate 35 to facilitate passage of oxidant gas into the oxidant chambers 41 and 43 and to remove by-products therefrom.

End plates 37 and 38, membranes 31 and 32 and bipolar plate 35 are each provided with a plurality of openings 55 through which assembly tie-rods 56 (one only of which is illustrated in part) pass and engage with nuts 56A so that the fuel cell units and bipolar separator plates are clamped between the end plates 37 and 38. Though not illustrated, sealing gaskets will be interleaved with the membrane

carrying plates 31 and 32, the bipolar plates 35 and the end plates 37 and 38 to seal the active interior of the fuel cell stack.

The end plates 37, 38 and/or the bipolar plate 35 are made of stainless steel which has been treated in accordance with the process of the invention so that the interfacial resistance between these plates and the adjacent membranes 31 is significantly reduced. In addition, the conduits and also the tabs 39 and 40 may be made of stainless steel treated in this way. In the case of the end plates 37, 38 only those faces which are presented towards the interior of the fuel cell stack need be treated in practice. However, for simplicity of treatment, the entire surface of the end plates may be so treated, including the borders which are not actually directly exposed to the interior of the fuel cell stack, and hence the strongly reducing/oxidising and high temperature conditions prevailing during operation of the fuel cell stack.

Although not shown, the stack is desirably provided with cooling means for dissipating at least part of the heat generated during operation. Such cooling means may be implemented by adapting one or more of the separator plates or inclusion of suitable elements within the stack so as to incorporate coolant passageways which are in heat exchange relation with the active interior of the fuel cell stack and through which a coolant fluid such as water or air can be passed, the interiors of the fluid coolant passageways being isolated from the interior of the fuel cell stack.

In a further embodiment of the present invention, a layer of diffusion material which is electrically conducting and porous, for example a carbon-coated paper or a graphite-impregnated polymer film, is disposed in the oxidant gas chambers 41 and 43 and/or in the fuel gas chambers 42 and 44. For example, the layer of diffusion material may be disposed between bipolar plate 35 and the adjacent electrode surfaces

of membranes 31 and 32 and/or between the terminal plates 37 and 38 and the adjacent electrode surfaces of membranes 31 and 32.

SDOCID: <WO_____0213300A1_I_>

CLAIMS

- 1. A method of manufacturing an electrochemical cell assembly in which at least one component which is exposed to the chemical environment during operation of the cell comprises a stainless steel component, said method comprising treating a surface of the stainless steel, prior to incorporation in the assembly, with an electrical current while contacted by an electrolyte under conditions which reduce the interfacial resistance associated with said surface.
- 2. A method as claimed in Claim 1 in which the treatment is effective to reduce the ratio of iron to chromium content within the surface region of the stainless steel compared with the iron to chromium ratio prevailing prior to such treatment.
- 3. A method as claimed in Claim 1 in which the current density to which the stainless steel surface is subjected during at least a major part of said treatment is substantially constant.
- 4. A method as claimed in any one of Claims 1 to 3 in which the stainless steel is an austenitic steel.
- 5. A method as claimed in any one of Claims 1 to 3 in which the substrate comprises a 300 series stainless steel.
- A method as claimed in Claim 5 in which the substrate comprises a 316 stainless steel.
- 7. A method as claimed in Claim 5 in which the substrate comprises a 316L stainless steel.

- 8. A method as claimed in any one of the preceding claims in which the electrolyte includes at least one acid selected from the group comprising sulphuric acid, hydrochloric acid, nitric acid, chromic acid, oxalic acid and phosphoric acid.
- 9. A method as claimed in any one of Claims 1 to 7 in which the acid comprises sulphuric acid.
- 10. A method as claimed in Claim 9 in which the interfacial resistance of the stainless steel is reduced by a factor of at least 5% compared with the interfacial resistance prevailing prior to said treatment.
- 11. A method as claimed in Claim 9 in which the interfacial resistance of the stainless steel is reduced by a factor of at least 15% compared with the interfacial resistance prevailing prior to said treatment.
- 12. A method as claimed in Claim 9 in which the interfacial resistance of the stainless steel is reduced by a factor of at least 25% compared with the interfacial resistance prevailing prior to said treatment.
- 13. A method as claimed in Claim 9 in which the interfacial resistance of the stainless steel is reduced by a factor of at least 40% compared with the interfacial resistance prevailing prior to said treatment.
- 14. A method as claimed in any one of the preceding claims in which the treated surface of the stainless steel is coated with an electrically conductivity enhancing material following said treatment and prior to incorporation in the electrochemical cell assembly.

- 15. A method as claimed in any one of Claims 1 to 13 in which the treated surface of the stainless steel is coated with titanium nitride, chromium nitride or an electrocatalytically active material.
- 16. A method as claimed in any one of the preceding claims in which two or more surfaces of the stainless steel are so treated.
- 17. A method as claimed in Claim 16 in which the same treatment is applied at least to each major surface of the stainless steel.
- 18. A method as claimed in Claim 16 or 17 in which the treatment applied to one surface of the stainless steel is different from that applied to one or more other surfaces of the stainless steel.
- 20. A method as claimed in any one of the preceding claims in which the cell assembly comprises two or more stainless steel components treated as aforesaid.
- 21. A method as claimed in any one of the preceding claims, the assembly comprising bipolar plates, separator plates, flow field plates and/or current collecting plates, at least one of which comprises stainless steel plate treated as aforesaid.
- 22. A method as claimed in any one of the preceding claims in which the treatment is carried out using a current density in the range from about 1 to about 100 mA.cm⁻².
- 23. A method as claimed in any one of the preceding claims in which the treatment is carried out using a current density of at least about 20 mA.cm⁻².

- 24. A method as claimed in any one of the preceding claims in which the treatment is carried out using a current density of up to about 50 mA.cm⁻².
- 25. A method as claimed in any one of the preceding claims in which the treatment is carried out for a time interval of between 0.5 and 180 minutes.
- 26. A method as claimed in any one of the preceding claims in which the treatment is carried out for a time interval of at least about 1 minute, preferably at least about 2 minutes.
- 27. A method as claimed in any one of the preceding claims in which the treatment is carried out for a time interval of up to about 60 minutes, e.g. up to about 10 minutes.
- 28. A method as claimed in any one of the preceding claims in which the treatment is carried out for a time interval of between about 3 and about 7 minutes.
- 29. A method as claimed in any one of the preceding claims in which the treatment is carried out while the stainless steel is in the form of a sheet and in which the treated sheet is subsequently divided to form a number of plates for incorporation in one or more electrochemical cell assemblies.
- 30. A method as claimed in any one of Claims 1 to 29 in which the stainless steel is initially in the form of a sheet and in which the sheet is divided to form a number of plates before the treatment is applied to the individual plates.
- 31. A method as claimed in Claim 29 or 30 in which fluid flow channels are formed in the sheet before such division into plates is effected.

- 32. A method of manufacturing an electrochemical cell assembly in which at least one plate which is exposed to the chemical environment during operation of the cell comprises an austenitic stainless steel plate, optionally of 316 or 316L stainless steel, said method comprising treating a surface of the stainless steel, prior to incorporation in the assembly, with an electrical current having a current density in the range of about 20 mA.cm⁻² to about 100 mA.cm⁻², preferably in the range from about 20 mA.cm⁻² to about 50 mA.cm⁻², for a time interval of about 1 to about 10 minutes, preferably from about 3 to about 7 minutes, while in contact with an electrolyte containing sulphuric acid under conditions which reduce the interfacial resistance associated with said surface and reduce the ratio of iron content to chromium content at the surface of the stainless steel, the stainless steel thereafter being incorporated in the cell assembly in the form of a plate.
- 33. A method as claimed in Claim 32 in which prior to treatment the chromium content at the surface of the stainless steel is less than than the iron content and in which following treatment the chromium content at the surface of the stainless steel exceeds the iron content.
- 34. An electrochemical cell assembly manufactured by the method of any one of Claims 1 to 33.
- 35. A fuel cell assembly manufactured by the method of any one of Claims 1 to 33.
- 36. A fuel cell assembly as claimed in Claim 35, being a PEM fuel cell, an alkaline fuel cell, a phosphoric acid fuel cell, a direct methanol fuel cell, a molten carbonate fuel cell or a solid oxide fuel cell.

- 37. An electrochemical cell including bipolar plates, separator plates, flow field plates and/or current collecting plates, at least one of which is constituted by an anodically treated plate of stainless steel, preferably austenitic stainless steel such as 316 or 316L, having reduced interfacial resistance.
- 38. A fuel cell plate formed with fluid flow channels, the plate comprising a stainless steel which, prior to incorporation in the fuel cell, has been treated with an electrical current while in contact with an electrolyte to reduce the interfacial resistance associated with the surface.
- 39. A fuel cell stack comprising:
- a) a plurality of fuel cell units each of which contains a proton-exchange membrane separating the cell into anolyte and catholyte chambers and provided with an anode and a cathode on opposite sides thereof;
- b) a separator plate, flow field plate or bipolar plate disposed between adjacent cell units;
- c) current-collecting means comprising a pair of plates located one at each end of the stack;
- d) means for feeding fuel to the anolyte chambers of the stack; and
- e) means for feeding an oxygen-containing gas to the catholyte chambers of the stack; at least one of said plates being a stainless steel plate a surface of which has been treated with an electrical current while contacted by an acidic electrolyte under conditions which reduce the interfacial resistance associated with said surface.

PCT/GB01/03319 WO 02/13300

PCT/GB01/03319

int al Application No Pullus 01/03319

a classifi IPC 7	CATION OF SUBJECT MATTER H01M8/02 C25D11/02 C25F3/00		
	alion (IPC) or to both national classification	and IPC	
	Alfica is	mbols	
	on searched other than minimum documentation to the extent that such		rched
Electronic da	ta base consulted during the international search (name of data base a	nd, where practical, search terms used)	
EPO-Int	ernal, PAJ, WPI Data		
C. DOCUM	INTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of the releva	nt passages	Relevant to claim No.
X	DATABASE WPI Section Ch, Week 198742 Derwent Publications Ltd., London, Class M11, AN 1987-294634	GB;	1,2,4,8, 9,26
	XP002151768 & JP 62 205300 A (JAPAN STEEL WORK 9 September 1987 (1987-09-09)	S LTD),	
A	abstract		5-7, 10-13, 32,37-39
	-/	/	
χFu	ther documents are listed in the continuation of box C.	Patent family members are listed	I in annex.
"A" documents on the constant of the constant	nent defining the general state of the art which is not idered to be of particular relevance or document but published on or after the international date	T* later document published after the int or priority date and not in conflict with cited to understand the principle or the invention X* document of particular relevance; the cannot be considered novel or cannot be the cannot be step when the desired the cannot be considered to the cannot be can	n the application but neary underlying the claimed invention of he considered to
O docu	ion or other special reason (as specified) ment referring to an oral disclosure, use, exhibition or Ir means	"Y" document of particular relevance; the cannot be considered to involve an document is combined with one or nments, such combination being obvi in the art.	claimed invention nventive step when the nore other such docu-
P docu	ment published prior to the international filing date but r than the priority date claimed	& document member of the same pater	
Date of the	ne actual completion of the international search	Date of mailing of the international s	earch report
	30 October 2001	07/11/2001	
Name ar	d mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Authorized officer Zech, N	

Form PCT/ISA/210 (second sheet) (July 1992)

Ini al Application No
PUI768 01/03319

ategory °	Citation of document, with indication, where appropriate, of the relevant passages	Dolar - · · ·
	Sprip and, or the relevant passages	Relevant to claim No.
X	WO 00 22689 A (ICI PLC ;MAY BARRETT (GB); HODGSON DAVID RONALD (GB)) 20 April 2000 (2000-04-20) cited in the application	1,4-8, 14,15, 17,20, 21, 25-27, 34-36, 38,39
	page 8, line 8,9 examples 2,5,6	31,32
	PATENT ABSTRACTS OF JAPAN vol. 006, no. 035 (C-093), 3 March 1982 (1982-03-03) & JP 56 153000 A (SANYO VENDING MACH MFG CO LTD), 26 November 1981 (1981-11-26) abstract	1,4,8,9
		3,5-7, 32,39
	PATENT ABSTRACTS OF JAPAN vol. 2000, no. 14, 5 March 2001 (2001-03-05) & JP 2000 328205 A (SUMITOMO METAL IND LTD), 28 November 2000 (2000-11-28) abstract	1,2
	MAKKUS R C ET AL: "Use of stainless steel for cost competitive bipolar plates in the SPFC" JOURNAL OF POWER SOURCES, ELSEVIER SEQUOIA S.A. LAUSANNE, CH, vol. 86, no. 1-2, March 2000 (2000-03), pages 274-282, XP004194130 ISSN: 0378-7753 cited in the application the whole document	1,4-7, 20,21, 31,34-39
	KUWARA ET AL: "Separators for solid electrolyte fuel cells" STN CHEMICAL ABSTRAC, XP002131291 abstract	1,4-7, 14,15, 20,21, 31,32
	US 6 030 718 A (FUGLEVAND WILLIAM A ET AL) 29 February 2000 (2000-02-29)	1,4,5, 14,15, 20,21, 34-36, 38,39
	column 20, line 48-50,61 -column 21, line 56; claims 80,91,100	, , , ,
	-/	

al Application No inte PCIA 3 01/03319

	INTERNATIONAL SEARCH REPORT	PC1/03 01/0	03319
	tion) DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages	Į.	televant to claim No.
ategory °	US 5 624 769 A (LI YANG ET AL) 29 April 1997 (1997-04-29)		1,14-17, 20,21, 34-36, 38,39
	abstract column 2, line 6 - line 19 column 3, line 17 - line 62 column 4, line 9,10,20,21,39-53 column 6, line 42 - line 46 column 6, line 60 -column 7, line 3 figure 2 claims 1,2,5-7		1,14,15
A	DE 195 23 637 A (MOTOREN TURBINEN UNION) 4 July 1996 (1996-07-04) column 3 claims 1,14,17-21,29,32-36,41,44-46		1,14,13
A	DAVIES D P ET AL: "Stainless steel as a bipolar plate material for solid polymer fuel cells" JOURNAL OF POWER SOURCES, ELSEVIER SEQUOIA S.A. LAUSANNE, CH, vol. 86, no. 1-2, March 2000 (2000-03), pages 237-242, XP004194124 ISSN: 0378-7753 page 5, paragraph 2 Conclusions		

formation on patent family members

Int al Application No PC 1768 01/03319

					<u>_</u>		
	atent document d in search report		Publication date		Patent family member(s)		Publication date
JP	62205300	Α	09-09-1987	NONE			
WO	0022689	A	20-04-2000	AU	6105799	Α	01-05-2000
				BR	9914341	Α	26-06-2001
				ΕP	1129501	A 1	05-09-2001
				WO	0022689		20-04-2000
				NO	20011685	Α	04-04-2001
				US	2001021470	A1	13-09-2001
JP	56153000	Α	26-11-1981	JP	1264046	C	16-05-1985
				JP	59041520	В	08-10-1984
JP	2000328205	Α	28-11-2000	CN	1271027	———— А	25-10-2000
				EP	1046723	A1	25-10-2000
US	6030718	Α	29-02-2000	AU	1088999	Α	15-06-1999
				BR	9814617	Α	03-10-2000
				ΕP	1040529	A1	04-10-2000
				WO	9927599	A1	03-06-1999
				US	6096449	Α	01-08-2000
			·	US	6218035	B1	17-04-2001
US	5624769	Α	29-04-1997	DE	69603938	D1	30-09-1999
				DE	69603938	T2	20-01-2000
				EP		A1	25-06-1997
				US	RE37284	E1	17-07-2001
DE	19523637	Α	04-07-1996	DE	19523637	A1	04-07-1996

Form PCT/ISA/210 (patent family annex) (July 1992)

THIS PAGE BLANK (USPTO)