

Learning Degradation Representation for Image Deblurring

TEL AVIV 2022

Dasong Li, Yi Zhang, Ka Chun Cheung, Xiaogang Wang, Hongwei Qin, Hongsheng Li Github: https://github.com/dasongli1/Learning degradation

Motivation & Contributions

Blur in Dynamic Scenes: 1) Camera Shake 2) Scene Motion 3) Depth defocus 4) lens imperfection. Conventional methods: Insufficient in describing the clean images and blur kernels.

$$(k, x) = \arg \max \mathbb{P}(y|x, k)\mathbb{P}(x)\mathbb{P}(k)$$

Kernel-based Deblurring: 1) Not practical in real-world. 2) incorrect kernels -> artifacts. 3) Huge computation. Kernel-free Deblurring: 1) Learning the mapping from blur to sharp. 2) Not consider prior of blur kernel. 3) limited in extreme blur (unknown blurring patterns).

→ We incorporate degradation prior into deblurring.

Our contributions:

- A novel framework for reblurring and deblurring to adaptive encode spatially varying degradations, which benefits the deblurring performance.
- Our framework achieves SOTA performance on widely used GOPRO and RealBLur datasets.

Framework Overview

Learning Degradation Representations: We Learn explicit representations with a joint sharp-to-blurry reblurring and blurry-to-sharp deblurring. Adversarial training is applied to help reblurring process and improve the expressiveness of degradation representations.

Multi-scale Degradation Injection Network:

1) Multi-scale Modulation 2) Modulate skip-connections 3) Aware of different blurring patterns.

Properties: 1) Aware of spatially varying degradations. 2) Interpolating blurry images with controllable levels. 3) Decoupleness: content-independent representation.

Qualitative Comparison

Visual Comparisons on GOPRO dataset

Interpolation: generating blurry images with controllable blurry levels

Visual Comparisons on RealBlur dataset

Decoupleness

Quantitative Comparison

MPRNet-patch256	<u>32.96</u>	0.961
HINet	32.71	0.959
MPRNet	32.66	0.959
MIMO-UNet	32.45	0.957
Suin et al.	31.85	0.948
DMPHN	31.20	0.940
MT-RNN	31.15	0.945
DBGAN	31.10	0.942
Gao et al.	30.90	0.935
SRN	30.26	0.934
DeblurGAN-v2	29.55	0.934
DeblurGAN	28.70	0.858
Method	PSNR	SSIM

Ours	32.35	0.923
HINet	32.12	
MIMO-UNet	32.05	0.921
MPRNet	31.76	
SRN	31.38	0.909
DeblurGAN-v2		
Method	PSNR	SSIM

Results on RealBlur dataset

Model	PSNR
Ours w/o degradation	32.81
Ours w/o reblurring	33.09
Ours	33.28

Results on GoPro dataset

Ablation on Degradation

Model	Blurriest 10%	Sharpest 10%	All	MACs (G)
MPRNet-patch256 [47]	29.31	35.52	32.96	760.11
Ours	29.65	35.58	33.28	336.43

Detailed Comparison with MPRNet