COSC 290 Discrete Structures

Lecture 7: Argument Checking

Prof. Michael Hay Monday, Sep. 13, 2017

Colgate University

Plan for today

- 1. Entailment and tautologies
- 2. Proving a sentence is a tautology
- 3. Converting to CNF

Entailment and tautologies

Wumpus World

An logical agent would like to use its

KB = wumpus-world rules + observations

to safely navigate the world and gather the gold.

Example from Wumpus World

Let

- φ₁ := b₁,₁ ⇔ (p₁,₂ ∨ p₂,₁)
 ("A square is breezy iff there is an adjacent pit.")
- $\varphi_2 := \neg b_{1,1}$ ("No breeze in [1,1]")
- $KB := \varphi_1 \wedge \varphi_2$
- $\alpha := \neg p_{1,2}$ ("[1,2] has no pit")

If $KB \models \alpha$, then agent is 100% certain that [1,2] is safe.

(Recall from Lecture 6) Entailment

Entailment means that one thing follows from another:

$$KB \models \alpha$$

Knowledge base KB entails sentence α if and only if α is true in all worlds where KB is true.

Ex: the KB containing "the Patriots lost" entails "Either the Patriots lost or the Seahawks won."

Ex: the KB containing rules of algebra and the fact x + y = 4 entails y = 4 - x.

(Recall from Lecture 6) Tautology

A proposition ψ is a tautology if it is true under every assignment of its variables. In other words, ψ is a tautology if $\psi \equiv \textit{true}$.

Examples:

- p ∨ ¬p
- $q \implies q$
- $p \land (p \implies q) \implies q \text{ (modus ponens)}$
- $(p \implies q) \land \neg q \implies \neg p \text{ (modus tollens)}$

5

Entailment and propositional logic

Let KB be a sentence in propositional logic.

Let α be a sentence in propositional logic.

The deduction theorem states that

 $\mathit{KB} \models \alpha \text{ if and only if } (\mathit{KB} \implies \alpha) \text{ is a tautology.}$

The agent needs an inference algorithm to show that ($KB \implies \alpha$) is a tautology.

Today's lecture: a look at algorithms for proving tautologies

Lab 2: implementing a specific algorithm

Proving a sentence is a tautology

Ways to prove a sentence is a tautology

There are basically two ways to show $\psi \implies \varphi$ is a tautology:

Ways to prove a sentence is a tautology

There are basically two ways to show $\psi \implies \varphi$ is a tautology:

- 1. Using a truth table.
 - Make a truth table with columns for ψ and φ .
 - Check that whenever ψ is true, φ is also true. (What about when ψ is false?)

Ways to prove a sentence is a tautology

There are basically two ways to show $\psi \implies \varphi$ is a tautology:

- 1. Using a truth table.
 - Make a truth table with columns for ψ and φ .
 - Check that whenever ψ is true, φ is also true. (What about when ψ is false?)
- 2. Using known logical equivalences.
 - · Step-by-step approach, resembling a proof.
 - Start with this sentence $\psi \Longrightarrow \varphi$ and gradually transform it into simpler but equivalent sentence until eventually the sentence reduces to *True*.

Today: we will focus on approach 2.

Our Approach

- 1. Given sentence $S_1 := (\psi \implies \varphi)$, convert S_1 into an equivalent sentence S_2 where S_2 is in conjunctive normal form.
- 2. Check whether S₂ is a tautology. (This step is easy.)

Conjunctive Normal Form

A proposition is in conjunctive normal form (CNF) if it is the conjunction of one or more clauses where each clause is the disjunction of one or more *literals*.

A literal is an atomic proposition or the negation of an atomic proposition (i.e. it's either p or $\neg p$ for some variable p).

Which of these propositions is *not* in CNF?

- A) ¬*p*
- B) $p \vee q$
- C) $(p \lor q) \land (r \lor s)$
- D) $(p \wedge q) \vee (r \wedge \neg p)$
- E) More than one is *not* CNF / All are in CNF

(Definition restated here) A proposition is in CNF if it is the conjunction of one or more clauses where each clause is the disjunction of one or more literals.

A literal is an atomic proposition or the negation of an atomic proposition (i.e. it's either p or $\neg p$ for some variable p).

Checking a CNF sentence for tautology

If S is a proposition in CNF. Then checking for a tautology is easy.

- S is a tautology if and only if each clause is a tautology.
- A clause from a CNF is a tautology if and only if it contains a literal and its opposite.

illustrate this on the board

Poll: is this CNF a tautology?

Consider

$$\varphi := (p \lor q \lor \neg p) \land (r \lor p \lor q \lor \neg q) \land \neg r$$

Is φ in CNF? Is φ a tautology?

- A) CNF: yes, tautology: yes
- B) CNF: yes, tautology: no
- C) CNF: no, tautology: yes
- D) CNF: no, tautology: no

Converting to CNF

Conversion process

Given φ not in CNF, we can convert to an equivalent proposition in CNF by following these steps:

- Replace "unnecessary" operators like ⇔, ⇒, ⊕ with a logically equivalent expression.
 Result: φ has only { ∨, ∧, ¬ } connectives.
- 2. Push negations down to obtain negation normal form. Result: the *only* places where \neg appears in φ is on a literal.
- 3. Distribute Or over And. Result: φ is in CNF.

Let's apply steps to: $(p \land (p \implies q)) \implies q$.

ReplaceIf

Last lecture we looked closely at operators \iff , \implies , \oplus and showed each operator is logically equivalent to some expression involving only $\{\vee,\wedge,\neg\}$.

Example: $\varphi \implies \psi \equiv \neg \varphi \lor \psi$

Let's think about how we could write a *recursive* algorithm for replacing every "if" statement (i.e., \implies operator).

Shown on board

Negation Normal Form

A sentence is in negation normal form if the negation connective is applied only to atomic propositions (i.e. variables) and not to more complex expressions. Furthermore, the only connectives allowed are \land , \lor , and \neg .

Yes:
$$(\neg p \land (\neg p \lor q)) \lor \neg q$$

No:
$$\neg (p \land (\neg p \lor q)) \lor q$$

Exercise: Negation Normal Form

Given

$$\varphi := \neg(p \land (\neg p \lor q)) \lor q$$

let's write it in negation-normal form by "pushing negations down." Hint: double negation and De Morgan's laws are useful.

$$\begin{array}{lll} \neg(\neg\alpha) & \equiv & \alpha & \text{double-negation elimination} \\ \neg(\alpha \wedge \beta) & \equiv & (\neg\alpha \vee \neg\beta) & \text{De Morgan's law #1} \\ \neg(\alpha \vee \beta) & \equiv & (\neg\alpha \wedge \neg\beta) & \text{De Morgan's law #2} \end{array}$$

Distributing OR over AND

The last step is to distribute OR over AND

$$(\alpha \lor (\beta \land \gamma)) \equiv ((\alpha \lor \beta) \land (\alpha \lor \gamma))$$
 distributivity of \lor over \land

Example shown on board.

Poll: thinking recursively

Imagine we are defining a recursive function DistOrOverAnd that takes in a sentence φ that is in negation-normal form and returns a sentences in CNF. In other words, the function distributes ORs over ANDs.

Suppose $\varphi \coloneqq \varphi_1 \vee \varphi_2$ and we make recursive calls

- $S_1 = DistOrOverAnd(\varphi_1)$
- $S_2 = {\sf DistOrOverAnd}(arphi_2)$

Suppose you inspect the *returned* propositions S_1 and S_2 , and it turns out that...

- S_1 is of the form $S_{11} \vee S_{12}$
- S_2 is of the form $S_{21} \vee S_{22}$

Then is $\varphi = S_1 \vee S_2$ in CNF?

- A) Yes
- B) Not necessarily