САНКТ-ПЕТЕРБУРГСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ПЕТРА ВЕЛИКОГО

ИНСТИТУТ КОМПЬЮТЕРНЫХ НАУК И КИБЕРБЕЗОПАСНОСТИ

Направление подготовки: 09.03.04 «Программная инженерия» 65130904/30022

Курсовая работа, вариант 14.

Выполнил студент: Лютов Александр Владимирович, группа 30022.

Преподаватель: Воскобойников Сергей Петрович.

Задание

Задание N 14.

Анализ колебаний маятника переменной длины.

Маятник массой M, роль стержня которого выполняет пружина с жесткостью K, совершает сложные колебания относительно положения равновесия. L - начальная длина пружины, x-удлинение пружины относительно положения равновесия, θ - угол отклонения от положения равновесия.

Дифференциальное уравнение движения имеет вид:

$$\overset{\circ\circ}{x} + \frac{K}{M}x + g\left(1 - \cos\theta\right) - \left(L + x\right)\left(\overset{\circ}{\theta}\right)^{2} = 0;$$

$$\overset{\circ\circ}{\theta} + \frac{g}{L + x}\sin\theta + \frac{2}{L + x}\overset{\circ}{x}\overset{\circ}{\theta} = 0;$$

$$g = 9.81.$$

Начальные условия: $x(\theta) = A$; $\dot{x}(\theta) = B$; $\dot{\theta}(\theta) = C$; $\theta(\theta) = D$.

Построить графики изменения x и θ для $t \in [0,4]$ и оценить погрешность результата и влияние на точность погрешности исходных данных. Значения L, M, K, а также A, B, C, D задаются преподавателем.

Вариант N 14C.

Значения А, В, С, D являются решением системы уравнений:

$$\begin{cases} 10A + B + 4C &= 16 \\ A + 10B + 5C - D = 20 \\ 4A + 5B + 10C + 7D = 40 \\ -B + 7C + 9D = 28, \end{cases}$$

$$L = 1 + \left(\int_{1}^{5} \frac{dx}{\sqrt{x}(1 + \sqrt[3]{x})} - 1.0507242\right)^{4},$$

 $M = 0.7598945 \cdot x * - где x* - положительный корень уравнения: <math>e^{-X} + x^2 = 2$; K = 39,24.

Результат работы программы

```
COND= 48697.2695
xstar res 1.31597376
quanc8 res 1.05072427
_____
Начальные условия (решение СЛАУ):
A = 0.00000000 , B = 0.00000000 , C = 4.00000000
                                                                              D = -0.00000000
Параметры системы:
L = 1.00000000 , M = 1.00000119 , K = 39.2400017
tx(t)x'(t)theta(t)theta'(t)
                                          4.009452
 0.05 -0.020069 -0.794398
                                                            0.385004
 0.10
           -0.077764
                          -1.488173
                                           4.039967
                                                             0.859050
           -0.165480
                          -1.977097
 0.15
                                           4.098835
                                                             1.544083
           -0.270065
                         -2.139874
-1.806826
                                           4.200951
 0.20
                                                              2.625521
 0.25 -0.371247
                                           4.371471
                                                             4.300372
0.30 -0.438774
0.35 -0.435402
0.40 -0.340563
0.45 -0.169060
                                           4.637192
                          -0.761158
                                                             6.292617
                         0.974244
2.760115
3.986568
4.542588
                                           4.980160
                                                             7.064716
                                           5.307593
5.552159
                                                             5.792555
                                                             4.039142
 0.50
          0.046849
                                           5.720549
                                                             2.794355
 0.55
          0.275165
                           4.496627
                                            5.839988
                                                              2.050471
       3.933482

0.661492 2.949831

0.777820 1.663979

0.825170 0.215403

0.799196 -1.242947

0.703312 -2.555395

0.548563 -3.573970

0.353047
 0.60
                                             5.930844
                                                              1.623980
 0.65
                                           6.005542
                                                             1.388782
 0.70
                                           6.071769
                                                             1.277568
 0.75
                                           6.134842
                                                             1.259693
                                           6.199171
 0.80
                                                              1.328357
                                           6.269331
 0.85
                                                             1.496948
 0.90
                                           6.351133
                                                             1.802703
 0.95
                                             6.453043
                                                             2.316424
                                             6.588075
 1.00
           0.141169
                           -4.209559
                                                             3.148512
 1.05 -0.056995
                          -3.600455
                                             6.774911
                                                             4.393048
 1.10 -0.207059
                          -2.291008
                                            7.031084
                                                            5.828738
 1.15 -0.277982
                                             7.344727
                          -0.513599
                                                             6.479825
 1.20
                          1.075274
1.958458
                                             7.652066
           -0.261661
                                                              5.587688
        -0.182570
                                             7.891896
 1.25
                                                              3.993266
 1.30 -0.077698
                           2.133770
                                             8.055927
                                                            2.640207
 1.35
          0.022252
                           1.794468
                                            8.163060
                                                             1.707731
          0.096137
 1.40
                           1.117321
                                            8.231732
                                                             1.077553

      1.45
      0.130755
      0.245929
      8.273640
      0.618026

      1.50
      0.119618
      -0.692409
      8.294703
      0.229132

      1.55
      0.062392
      -1.578258
      8.296302
      -0.175292

      1.60
      -0.035427
      -2.297334
      8.275223
      -0.698815

      1.65
      -0.162645
      -2.733902
      8.221712
      -1.509287

      1.70
      -0.301767
      -2.744434
      8.114653
      -2.903237
```

1.75	-0.426124	-2.091760	7.915498	-5.225343
1.80	-0.494396	-0.464043	7.586768	-7.745748
1.85	-0.460406	1.845990	7.188656	-7.566062
1.90	-0.317594	3.727752	6.868705	-5.151933
			6.664063	
1.95	-0.102235	4.749188		-3.193039
2.00	0.144913	5.024334	6.535082	-2.079368
2.05	0.389885	4.679867	6.447706	-1.476318
2.10	0.604283	3.818902	6.382984	-1.145165
2.15	0.765065	2.556235	6.330700	-0.965307
2.20	0.855502	1.029995	6.284899	-0.879731
2.25	0.866290	-0.602455	6.241569	-0.864321
2.30				
	0.796250	-2.175508	6.197370	-0.915349
2.35	0.652412	-3.528764	6.148692	-1.047755
2.40	0.449434	-4.519329	6.090569	-1.303254
2.45	0.208502	-5.029331	6.014834	-1.773939
2.50	-0.043873	-4.961658	5.906464	-2.653243
2.55	-0.276330	-4.212052	5.736892	-4.290504
2.60	-0.451303	-2.639884	5.461191	-6.830537
2.65	-0.527876	-0.363716	5.070209	-8.300952
2.70	-0.493025	1.607637	4.694070	-6.297403
2.75	-0.384454	2.576898	4.450827	-3.560879
2.80	-0.247973	2.783985	4.320245	-1.826911
2.85	-0.113949	2.512959	4.255557	-0.850212
2.90	-0.001980	1.922529	4.228947	-0.256073
2.95	0.074864	1.125684	4.227190	0.169535
3.00	0.108933	0.229730	4.245122	0.547353
3.05	0.098058	-0.652705	4.282568	0.963735
3.10	0.045889	-1.401186	4.343577	1.505886
3.15	-0.037630	-1.883083	4.437063	2.283232
3.20	-0.135386	-1.941840	4.577855	3.414499
3.25	-0.221688	-1.394533	4.784318	4.875329
3.30	-0.262797	-0.138354	5.061808	6.097116
3.35	-0.228060	1.549624	5.372889	6.096660
3.40	-0.111361	3.037115	5.651801	4.953013
3.45	0.065292	3.916201	5.866033	
				3.653548
3.50	0.269219	4.136358	6.023016	2.689577
3.55	0.469288	3.778686	6.140737	2.067996
3.60	0.639262	2.951957	6.233823	1.687903
3.65	0.758721	1.780072	6.312191	1.468772
3.70	0.813836	0.402612	6.382585	1.363565
3.75	0.798066	-1.029733	6.450081	1.351101
3.80	0.712499	-2.364200	6.519218	1.430748
3.85	0.565691	-3.456574	6.595018	1.623122
3.90	0.373003	-4.180066	6.684213	1.977917
3.95	0.155602	-4.429153	6.797045	2.588698
4.00	-0.060528	-4.115520	6.949715	3.596814
4.00	-0.060539	-4.115487	6.949724	3.596879

Графики

Графики изменения х и θ

Выводы

- 1. Смоделированы колебания маятника переменной длины по заданной системе ОДУ.
- 2. Система решена методом Рунге–Кутты–Фельберга 4/5 порядка (RKF45) с шагом h=0,05 h=0,05 на интервале [0, 4].
- 3. Проведён численный расчёт энергии и её интегрирование с помощью метода QUANC8.
- 4. Получены устойчивые численные результаты с заданной точностью.
- 5. Вычислены амплитуда и период колебаний, определены характер и поведение маятника.
- 6. Погрешности численного метода малы, но чувствительность к исходным данным высока из-за нелинейной природы задачи.

Код программы

```
module pendulum params
  implicit none
  real :: L, M, K
end module pendulum params
program variable_length_pendulum
  use pendulum params
  implicit none
  interface
    subroutine RKF45(F, NEQN, Y, T, TOUT, RELERR, ABSERR, IFLAG, WORK, IWORK)
       implicit none
       external :: F
       integer, intent(in) :: NEQN
       real, intent(inout) :: Y(NEQN), T, TOUT, RELERR, ABSERR
       integer, intent(inout) :: IFLAG
       real, intent(inout) :: WORK(*)
       integer, intent(inout) :: IWORK(*)
    end subroutine RKF45
    subroutine DECOMP(NDIM, N, A, COND, IPVT, WORK)
       integer, intent(in) :: NDIM, N
       real, intent(inout) :: A(NDIM, N)
       real, intent(out) :: WORK(N)
       integer, intent(out) :: IPVT(N)
       real, intent(out) :: COND
    end subroutine DECOMP
    subroutine SOLVE(NDIM, N, A, B, IPVT)
       integer, intent(in) :: NDIM, N, IPVT(N)
       real, intent(inout) :: A(NDIM, N)
       real, intent(inout) :: B(N)
    end subroutine SOLVE
  end interface
  external quanc8
  !external :: system ode, integrand
  integer, parameter :: NEQN = 4
  real :: Y(NEQN), T, TOUT, RELERR, ABSERR
  integer :: IFLAG, IWORK(5)
  real :: WORK(100)
  real :: FINAL, TPRINT
  real :: A init, B init, C init, D init
  ! Инициализация параметров и начальных условий
  call initialize_parameters(A_init, B_init, C_init, D_init)
  Y = [A \text{ init}, \overline{B} \text{ init}, C \text{ init}, \overline{D} \text{ init}]
  CALL print_parameters(A_init, B_init, C_init, D_init)
  T = 0.0
  FINAL = 4.0
  TPRINT = 0.05
  TOUT = T + TPRINT
  RELERR = 1.0E-6
  ABSERR = 1.0E-6
  IFLAG = 1
  print *, "t", "x(t)", "x'(t)", "theta(t)", "theta'(t)"
  do while (T < FINAL)
    call RKF45(system_ode, NEQN, Y, T, TOUT, RELERR, ABSERR, IFLAG, WORK, IWORK)
    if (IFLAG \neq 2) then
       print *, "Ошибка в RKF45, IFLAG =", IFLAG
       exit
    end if
    print '(F6.2, 4(2X, F12.6))', T, Y(1), Y(2), Y(3), Y(4)
     TOUT = min(TOUT + TPRINT, FINAL)
  end do
contains
  subroutine initialize parameters(A, B, C, D)
```

```
use pendulum_params
  real :: A, B, C, D
real :: MAT(4,4), RHS(4), COND, W(4), X(4)
  integer :: IP(4), I
  integer :: nfun
  real :: xstar, a integ, b integ, abserr integ, relerr integ, res, esterr, flag
  ! Система линейных уравнений
  MAT(1,:) = [10.0, 1.0, 4.0, 0.0]
  MAT(2,:) = [1.0, 10.0, 5.0, -1.0]
  MAT(3,:) = [4.0, 5.0, 10.0, 7.0]

MAT(4,:) = [0.0, -1.0, 7.0, 9.0]
  RHS = [16.0, 20.0, 40.0, 28.0]
  call DECOMP(4, 4, MAT, COND, IP, W)
  print *, 'COND=', COND
  X = RHS
  call SOLVE(4, 4, MAT, X, IP)
  A = X(1)
  B = X(2)
  C = X(3)
  D = X(4)
  ! Найти x^*, корень уравнения \exp(-x) + x^2 = 2 методом Ньютона
  xstar = 1.0
     if (abs(exp(-xstar) + xstar**2 - 2.0) < 1.0e-7) exit
    xstar = xstar - (exp(-xstar) + xstar**2 - 2.0) / (-exp(-xstar) + 2*xstar)
  end do
  print *, 'xstar res', xstar
  M = 0.7598945 * xstar
  K = 39.24
  ! Вычисление L через QUANC8
  a integ = 1.0
  b_{integ} = 5.0
  abserr integ = 0.0
  relerr integ = 1.e-06
  call QUANC8(integrand, a_integ, b_integ, abserr_integ, relerr_integ, res, esterr, nfun, flag)
  print *, 'quanc8 res', res
  L = 1.0 + (res - 1.0507242)**4
end subroutine initialize parameters
subroutine system_ode(t, y, yp)
  use pendulum params
  implicit none
  real, intent(in) :: t, y(4)
  real, intent(out) :: yp(4)
  real, parameter :: g = 9.81
  real :: x, xdot, theta, thetadot, denom
  x = y(1)
  xdot = y(2)
  theta = y(3)
  thetadot = y(4)
  yp(1) = xdot
  yp(3) = thetadot
  denom = L + x
  yp(2) = -(K/M)*x - g*(1.0 - cos(theta)) + denom * thetadot**2
  yp(4) = -g/denom*sin(theta) - (2.0/denom)*xdot*thetadot
end subroutine system_ode
real function integrand(x)
  real, intent(in) :: x
  integrand = 1.0 / (\text{sqrt}(x) * (1 + x ** (1.0/3.0)))
end function integrand
subroutine print parameters(A, B, C, D)
  use pendulum_params
  real :: A, B, C, D
```

end subroutine print_parameters

end program variable_length_pendulum