UDP Header

Bit Number

1111111111222222222233

01234567890123456789012345678901

Source Port	Destination Port	
Length	Checksum	

UDP Header Information

Common UDP Well-Known Server Ports

7 echo 138 netbios-dam 19 chargen 161 snmp 37 time 162 snmp-trap 53 domain 500 isakmp 67 bootps (DHCP) 514 syslog 68 bootpc (DHCP) 520 rip 33434 traceroute 69 tftp 137 netbios-ns

Length

(Number of bytes in entire datagram including header; minimum value = 8)

Checksum

(Covers pseudo-header and entire UDP datagram)

ARP

Bit Number

1111111111222222222233 01234567890123456789012345678901

Hardware Address Type		Protocol Address Type	
H/w Addr Len Prot. Addr Len		Operation	
Source Hardware Address			
Source Hardware Addr (cont.)		Source Protocol Address	
Source Protocol Addr (cont.)		Target Hardware Address	
Target Hardware Address (cont.)			
Target Protocol Address			

ARP Parameters (for Ethernet and IPv4)

Hardware Address Type

- 1 Ethernet
- 6 IEEE 802 LAN

Protocol Address Type

2048 TPv4 (0x0800)

Hardware Address Length

6 for Ethernet/IEEE 802

Protocol Address Length

4 for TPv4

Operation

- 1 Request
- 2 Reply

DNS

Bit Number

1 1 1 1 1 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5

DNS Parameters

Query/Response

- 0 Ouery
- 1 Response

Opcode

- 0 Standard query (QUERY)
- 1 Inverse query (IQUERY)
- 2 Server status request (STATUS)

AA

(1 = Authoritative Answer)

TC

(1 = TrunCation)

RD

(1 = Recursion Desired)

RΑ

(1 = Recursion Available)

Z

(Reserved; set to 0)

Response code

- 0 No error
- 1 Format error
- 2 Server failure
- 3 Non-existant domain (NXDOMAIN)
- 4 Ouery type not implemented
- 5 Ouery refused

ODCOUNT

(No. of entries in Question section)

ANCOUNT

(No. of resource records in Answer section)

NSCOUNT

(No. of name server resource records in Authority section)

ARCOUNT

(No. of resource records in Additional Information section.

TCP/IP and tcpdump

Pocket Reference Guide

SANS Institute

incidents@sans.org +1 317.580.9756

http://www.sans.org http://www.incidents.org

tcpdump Usage

tcpdump [-aenStvx] [-F file] [-i int] [-r file] [-s snaplen] [-w file] ['filter expression']

- -e Display data link header.
- -F Filter expression in file.
- -i Listen on int interface.
- -n Don't resolve IP addresses.
- -r Read packets from file.
- -s Get snaplen bytes from each packet.
- -S Use absolute TCP sequence numbers.
- -t Don't print timestamp.
- -v Verbose mode.
- -w Write packets to file.
- -x Display in hex.

Interior Gateway Routing Protocol (Cisco)

Internet Protocol (RFC 791)

Internet Message Access Protocol (RFC 2060)

-X Display in hex and ASCII.

Acronyms

Authentication Header (RFC 2402) ISAKMP Internet Security Association & Key Management Address Resolution Protocol (RFC 826) Protocol (RFC 2408) Border Gateway Protocol (RFC 1771) Laver 2 Tunneling Protocol (RFC 2661) Congestion Window Reduced (RFC 2481) Network News Transfer Protocol (RFC 977) DF Open Shortest Path First (RFC 1583) Don't Fragment bit (IP) Dynamic Host Configuration Protocol (RFC 2131) Post Office Protocol v3 (RFC 1460) Domain Name System (RFC 1035) Request for Comments Explicit Congestion Notification (RFC 3168) Routing Information Protocol (RFC 2453) Extended IGRP (Cisco) Lightweight Directory Access Protocol (RFC 2251) Encapsulating Security Payload (RFC 2406) Simple Kev-Management for Internet Protocols File Transfer Protocol (RFC 959) Simple Mail Transfer Protocol (RFC 821) Generic Routing Encapsulation (RFC 2784) Simple Network Management Protocol (RFC 1157) Hypertext Transfer Protocol (RFC 1945) Secure Shell Internet Control Message Protocol (RFC 792) Secure Sockets Laver (Netscape) Transmission Control Protocol (RFC 793) Internet Group Management Protocol (RFC 2236) TCP

> UDP All RFCs can be found at http://www.rfc-editor.org ©SANS Institute May 2006

Trivial File Transfer Protocol (RFC 1350)

User Datagram Protocol (RFC 768)

Type of Service field (IP)

ICMP

Bit Number

111111111222222222233 01234567890123456789012345678901

Туре	Code	Checksum	
Other message-specific information			

Type Name/Codes (Code=0 unless otherwise specified)

- 0 Echo Reply
- 3 Destination Unreachable
 - 0 Net Unreachable
 - 1 Host Unreachable
 - 2 Protocol Unreachable
 - 3 Port Unreachable
 - 4 Fragmentation Needed & DF Set
 - 5 Source Route Failed
 - 6 Destination Network Unknown
 - 7 Destination Host Unknown
 - 8 Source Host Isolated
 - 9 Network Administratively Prohibited
 - 10 Host Administratively Prohibited
 - 11 Network Unreachable for TOS
 - 12 Host Unreachable for TOS
 - 13 Communication Administratively Prohibited
- 4 Source Quench
- 5 Redirect
 - O Redirect Datagram for the Network
 - 1 Redirect Datagram for the Host
 - 2 Redirect Datagram for the TOS & Network
- 3 Redirect Datagram for the TOS & Host
- 8 Echo
- 9 Router Advertisement
- 10 Router Selection
- 11 Time Exceeded
 - O Time to Live exceeded in Transit
 - 1 Fragment Reassembly Time Exceeded
- 12 Parameter Problem
 - O Pointer indicates the error
 - 1 Missing a Required Option
 - 2 Bad Length
- 13 Timestamp
- 14 Timestamp Reply
- 15 Information Request
- 16 Information Reply
- 17 Address Mask Request
- 18 Address Mask Reply
- 30 Traceroute

PING (Echo/Echo Reply)

Bit Number

1111111111222222222233

01234567890123456789012345678901

Type (8 or 0)	Code (0)	Checksum	
Identifier		Sequence Number	
Data			

IP Header

Bit Number

111111111122222222233

01234567890123456789012345678901

Version	IHL	Type of Service	Total Length		
	Identif	ication	Flags Fragment Offset		
Time 1	to Live	Protocol	Header Checksum		
Source Address					
Destination Address					
Options (optional)					

IP Header Contents

Version

4 IP version 4

Internet Header Length

Number of 32-bit words in IP header; minimum value = 5 (20 bytes) & maximum value = 15 (60 bytes)

Type of Service (PreDTRCx) --> Differentiated Services

Pre	eced	en	ce (000-1	11)	000
D	(1	=	minimize	delay)	0
T	(1	=	maximize	throughout)	0
R	(1	=	${\tt maximize}$	reliability)	0

C (1 = minimize cost) 1 = ECN capablex (reserved and set to 0) 1 = congestion experienced

Total Length

Number of bytes in packet; maximum length = 65,535

Flags (xDM)

x (reserved and set to 0)
D (1 = Don't Fragment)
M (1 = More Fragments)

Fragment Offset

Position of this fragment in the original datagram, in units of 8 bytes

Protocol

1	ICMP	17	UDP	57	SKIP
2	IGMP	47	GRE	88	EIGRE
6	TCP	50	ESP	89	OSPF
9	IGRP	51	AH	115	L2TP

Header Checksum

Covers IP header only

Addressing

NET_ID		RFC 1918 PRIVATE ADDRESSES
0-127	Class A	10.0.0.0-10.255.255.255
128-191	Class E	172.16.0.0-172.31.255.255
192-223	Class C	192.168.0.0-192.168.255.255
224-239	Class I	(multicast)
240-255	Class E	(experimental)
HOST_ID		
0	Network	value; broadcast (old)
255	Broadca	st

Options (0-40 bytes; padded to 4-byte boundary)

0 End of Options list 68 Timestamp

1 No operation (pad)
131 Loose source route
7 Record route
137 Strict source route

TCP Header

Bit Number

111111111122222222233

01234567890123456789012345678901

Source Port			Destination Port
	Sequence Number		
Acknowledge			nent Number
Offset (Header Length)	Reserved	Flags	Window
Checksum			Urgent Pointer
Options (optional)			

TCP Header Contents

Common TCP Well-Known Server Ports

./	echo	110	pop3
19	chargen	111	sunrpc
20	ftp-data	119	nntp
21	ftp-control	139	netbios-ssn
22	ssh	143	imap
23	telnet	179	bgp
25	smtp	389	ldap
53	domain	443	https (ssl)
79	finger	445	microsoft-d
80	http	1080	socks

)iiset

Number of 32-bit words in TCP header; minimum value = 5

Reserved

4 bits; set to 0

Flags (CEUAPRSF)

```
ECN bits (used when ECN employed; else 00)

CWR (1 = sender has cut congestion window in half)

ECN-Echo (1 = receiver cuts congestion window in half)
```

U (1 = Urgent pointer valid)

A (1 = Acknowledgement field value valid)

P (1 = Push data)

R (1 = Reset connection)

S (1 = Synchronize sequence numbers)

F (1 = no more data; Finish connection)

Checksum

Covers pseudoheader and entire TCP segment

Urgent Pointer

Points to the sequence number of the byte following urgent data. $% \left(1\right) =\left(1\right) \left(1\right)$

Options

0 End of Options list	3 Window scale
1 No operation (pad)	4 Selective ACK ok
2 Maximum segment size	8 Timestamp