Objective 1: Increase the Dataset Size

- As we know that the PTB dataset has very few patient records, it contains 549 records from 290 subjects.
- If we create any DNNs, and try to train the model, it may happen that it will give very inaccurate readings.
- So taking 2.5 s data per record makes the dataset of size 549 only.
- So we increased the dataset by taking multiple 2.5 s slots from the same record. We will get dataset of size 20126 samples.

Result

- Now we have a dataset of 20126 records each of 2.5 seconds length (2500 samples).
- But the dataset was imbalanced:-
 - MI:- 16403 samples
 - HC:- 3723 samples
- So we further increased the dataset of HC class by use of overlapped samples.
 - e.g. Earlier we were using: [0, 2499], [2500, 4999],.... so on.
 - Now we are using: [0, 2499], [1250, 2649], [2500, 4999],.... so on.
- Now the dataset is of size: 29759 records each of 2.5 seconds length (2500 samples)
 - MI:- 15547 samples*
 - HC:- 14212 samples
 - * The reduction in size is due use of divides-&-store algorithm.

Challenges

- The dataset generated from 29k+ samples of length 2500 * 12 leads is using quite a lot of space(6+ GB), it was sampled as 1000 Hz.
- So we have down-sampled the data by 4 to 250 Hz and then created the dataset.
 - Old shape:- (29759, 2500, 12) --- 6+ GB
 - New shape:- (29759, 625, 12) --- 1.68 GB

Training and Evaluation

- We split the dataset into 2:-
 - Training split: 23807 samples (80%)
 - Testing split: 5952samples (20%)
- We created a DNN as shown.

```
Model: "functional 1"
-----
                       [(None, 625, 12)]
                       (None, 625, 128)
batch_normalization (BatchNo (None, 625, 128)
activation (Activation)
                       (None, 625, 128)
                       (None, 625, 256)
batch_normalization_1 (Batch (None, 625, 256)
                       (None, 625, 256)
                       (None, 625, 128)
batch_normalization_2 (Batch (None, 625, 128)
activation_2 (Activation) (None, 625, 128)
global_average_pooling1d (Gl (None, 128)
dense (Dense)
                       (None, 1)
                                            129
Total params: 277,121
Trainable params: 276,097
Non-trainable params: 1,024
```

Train the Model

```
batch size = 30
model.compile(loss = tf.keras.losses.BinaryCrossentropy(),
              optimizer = tf.keras.optimizers.Adam(learning rate=0.001),
              metrics = [tf.keras.metrics.BinaryAccuracy(name='Accuracy'),
                        tf.keras.metrics.Recall(name='Recall'),
                        tf.keras.metrics.Precision(name='Precision'),
                        tf.keras.metrics.AUC(name="AUC", multi label=True)])
reduce lr = tf.keras.callbacks.ReduceLROnPlateau(monitor='val AUC', factor=0.1,
                                                 patience=1, verbose=1, mode='max',
                                                 min delta=0.0001)
early stop = tf.keras.callbacks.EarlyStopping(monitor='val AUC', mode='max', verbose=1, patience=2)
model.fit(x = train X, y = train y,
          epochs = 100, validation split = 0.2,
          callbacks = [reduce lr,early stop],
          batch size = batch size)
```

5 fold Cross Validation

 Used 5 fold CV and calculated the average results as follows:-

Results:

Avg Accuracy: 0.9990591406822205

Avg Recall: 0.9990406036376953

Avg Precision: 0.9991685509681701

Avg AUC: 0.9999079465866089

Testing the Model

- This model has very high accuracy.
- To check it further, I will use other database in future.

Report & Con	fusion Matrix precision	recall	f1-score	support	
нс	1.00	1.00	1.00	2825	
MI	1.00	1.00	1.00	3127	
accuracy			1.00	5952	
macro avg	1.00	1.00	1.00	5952	
weighted avg	1.00	1.00	1.00	5952	

Use of SOTA paper[1] for Classification

Challenges:-

- The paper used 4 beats to classify MI & HC ECG. But we have data of 2.5 seconds ECG, we have used frame specific approach instead of beat specific approach.
- The data has very few sample points, so doing 6 level decomposition into sub-bands cause the problem of boundary effect.

[1] Multiscale Energy and Eigenspace Approach to Detection and Localization of Myocardial Infarction

https://ieeexplore.ieee.org/document/7047810

Tuning

- We implement the paper, find the Z feature vector, and using KNN, Linear SVM and RBF SVM we tried to classify the data.
- During tuning the above methods, we get the following results:-

KNN (n)	Accuracy	L-SVM (C)	Accuracy	RBF-SVM (C)	Accuracy
3	0.82452357	3	0.71568275	3	0.89011727
4	0.80153894	4	0.72008460	9	0.90456685
5	0.81457728	9	0.73288754	15	0.90859905
6	0.79827946	15	0.73893630	27	0.91387480
9	0.79700266	<mark>30</mark>	0.74743790	<mark>30</mark>	0.91881451

Results

After performing 5 fold Cross validation:-

```
KNN mean accuracy: 0.824691567153257
```

Linear SVM mean accuracy: 0.7474379080140141

RBF SVM mean accuracy: 0.9188145109342786

MI Localization using DNN

- As discussed in the first few slides, we created a balanced dataset of different MI types:-
 - ILMI 4906 samples
 - AMI 4096 samples
 - IPLMI 3680 samples
 - ASMI 3545 samples
 - IMI 4001 samples
 - ALMI 3894 samples

Results

 And then we tried to localize the MI using DNN, we used 5 fold CV, and got following results:-

```
Results:
Avg Accuracy: 0.9990949869155884
Avg Recall: 0.995854914188385
Avg Precision: 0.9987117052078247
Avg AUC: 0.9998951077461242
```

- This model has very high accuracy.
- To check it further, I will use other database in future.

Use of SOTA paper[1] for Localization

Following the same process as for Classification, we tried to tune the 3 ML algorithms.

KNN (n)	Accuracy	L-SVM (C)	Accuracy	RBF-SVM (C)	Accuracy
<u>1</u>	0.63025449			7	0.69612800
2	0.56670240			13	0.71395438
3	0.57076513			19	0.72058700
4	0.56098180			25	0.73157315
5	0.54307255	<mark>30</mark>	0.37024290	<mark>30</mark>	0.75474652

^[1] Multiscale Energy and Eigenspace Approach to Detection and Localization of Myocardial Infarction https://ieeexplore.ieee.org/document/7047810

Results

On 5 fold CV we get following results:-

```
KNN mean accuracy: 0.6014843141803933
Linear SVM mean accuracy: 0.3702429046477457
RBF SVM mean accuracy: 0.7547465264351816
```