Arquímedes y el cálculo de π

E. Girondo, D. Ortega y F. Quirós Laboratorio UAM, 1º de Matemáticas

Con lo que sabemos sobre las funciones trigonométricas, podemos razonar fácilmente que el perímetro p_n de un poligono regular de n lados inscrito en la circunferencia unidad, y el perímetro P_n del circunscrito regular de n lados, serán

$$p_n = 2n \operatorname{sen}(\pi/n) < 2\pi < P_n = 2n \operatorname{tan}(\pi/n).$$

Calcular p_n y P_n permite obtener estimaciones de 2π , que serán mejores cuanto mayor sea el número n de lados. Arquímedes (S. III a.C.) no disponía de las funciones trigonométricas, ni, claro está, del valor de π , de forma que lo que hizo fue construir un procedimiento recursivo que relacionaba perímetros de polígonos regulares inscrito y circunscrito de n lados con los de los poligonos regulares inscrito y circunscrito de 2n lados. Veamos a continuación cómo puede hacerse esto.

Partimos de dos polígonos (regulares), inscrito y circunscrito, de n lados. Giramos uno de ellos de forma que los lados queden paralelos y a partir de ellos se construyen los polígonos inscrito y circunscrito de 2n lados:

Vamos a denotar por PQ a la longitud del segmento determinado por dos puntos P y Q dados, y vamos a denotar por SI_m y SC_m al semilado (es decir, la mitad de la longitud del lado) del polígono regular de m lados inscrito y circunscrito a la circunferencia respectivamente.

Vemos que:

- 1. $SI_{2n} := CG$ es la mitad de la longitud del lado del polígono regular de 2n lados inscrito en la circunferencia.
- 2. $SI_n := CB$ es la mitad de la longitud del lado del polígono regular de n lados inscrito en la circunferencia.
- 3. $SC_{2n} := CF = FD$ es la mitad de la longitud del lado del polígono regular de 2n lados circunscrito a la circunferencia.
- 4. $SC_n := ED$ es la mitad de la longitud del lado del polígono regular de n lados circunscrito a la circunferencia.

Observa que con esta notación los perímetros con n lados, que nos van a servir para acotar π inferior y superiormente, son $p_n = 2nSI_n$ y $P_n = 2nSC_n$ respectivamente.

1) El Teorema de Tales, aplicado a los triángulos $\triangle CBA$ y $\triangle EDA$ muestra que

$$\frac{BC}{DE} = \frac{AB}{AD}$$

y, por otra parte,

$$\frac{AB}{AD} = \frac{AB}{AC}$$

puesto que que los triángulos $\triangle ACF$ y $\triangle ADF$ son iguales. Además, $\triangle ECF$ es un triángulo semejante a $\triangle CBA$ y $\triangle EDA$ (la razón es que ambos son rectángulos, y además el ángulo en E de $\triangle ECF$ es igual al ángulo en C de $\triangle CBA$), de lo que se deduce que

$$\frac{AB}{AC} = \frac{CF}{EF} = \frac{CF}{ED-FD}$$

de modo que, juntando las tres igualdades se llega a

$$\frac{SI_n}{SC_n} = \frac{SC_{2n}}{SC_n - SC_{2n}}.$$

Operando obtenemos

$$SC_{2n} = \frac{1}{\frac{1}{SC_n} + \frac{1}{SI_n}}.$$

2) Por otra parte, $\triangle CGF$ y $\triangle CBD$ son triángulos semejantes (ambos son rectángulos, y el ángulo en F del primero y el ángulo en D del segundo son iguales, puesto que coinciden con la mitad del ángulo del polígono). Por lo tanto

$$\frac{CB}{CD} = \frac{CG}{CF},$$

y, por tanto,

$$\frac{SI_n}{2SI_{2n}} = \frac{SI_{2n}}{SC_{2n}},$$

de donde

$$SI_{2n} = \sqrt{\frac{SC_{2n}SI_n}{2}}.$$

Estas fórmulas permiten entonces calcular (SI_{2n}, SC_{2n}) supuesto que conocemos (SI_n, SC_n) .

Si partimos del caso inicial, conocido, de $(SI_6,SC_6)=(1/2,1/\sqrt{3})$, podemos calcular los perímetros de los polígonos regulares inscrito y circunscrito con número de lados de la forma $6\cdot 2^k$, y así aproximar la longitud de la circunferencia 2π como

$$\lim_{k \to \infty} 2(6 \cdot 2^k) SI_{6 \cdot 2^k} = 2\pi = \lim_{k \to \infty} 2(6 \cdot 2^k) SC_{6 \cdot 2^k}.$$