

Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

4-(2-Fluorobenzoyl)-1-[2-(4-hydroxy-phenyl)-2-oxoethyl]piperazin-1-ium trifluoroacetate

Fuyong Bian, Yi Jin, Shaoming Chi, Guojun Shi and Sichuan Xu*

College of Chemical Science and Technology, Yunnan University, Kunming City, People's Republic of China

Correspondence e-mail: sichuan@ynu.edu.cn

Received 5 September 2012; accepted 13 October 2012

Key indicators: single-crystal X-ray study; T = 298 K; mean $\sigma(C-C) = 0.007$ Å; R factor = 0.073; wR factor = 0.240; data-to-parameter ratio = 13.2.

In the crystal structure of the title compound, $C_{19}H_{20}FN_2O_3^+\cdot C_2F_3O_2^-$, $N-H\cdots O$ and $O-H\cdots O$ hydrogen bonds link two cations and two anions into a 22-atom ring. These rings are further linked into a three dimensional network by weak $C-H\cdots O$ contacts.

Related literature

For the preparation for the title compound, see: Hoff *et al.* (2005); Wallén *et al.* (2003); Stachulski *et al.* (2006). For similar structures, see: Luedtkea & Mach (2003); Rok *et al.* (2007); Friedel & Crafts (1932*a,b*). For the applications of similar compounds, see: Wise (1996).

Experimental

Crystal data

 $C_{19}H_{20}FN_2O_3^+ \cdot C_2F_3O_2^-$ a = 10.055 (3) Å $M_r = 456.39$ b = 9.601 (2) Å Monoclinic, $P2_1/n$ c = 21.946 (5) Å

 $β = 91.960 (4)^{\circ}$ $μ = 0.13 \text{ mm}^{-1}$ $V = 2117.4 (9) \text{ Å}^{3}$ T = 298 K Z = 4 $0.23 \times 0.20 \times 0.18 \text{ mm}$ Mo Kα radiation

Data collection

 $\begin{array}{lll} \text{Bruker SMART CCD area-detector} & 12540 \text{ measur} \\ \text{diffractometer} & 3824 \text{ indepen} \\ \text{Absorption correction: multi-scan} & 1534 \text{ reflectio} \\ \text{($SADABS$; Bruker, 2001)} & R_{\text{int}} = 0.070 \\ T_{\text{min}} = 0.956, \ T_{\text{max}} = 0.971 \\ \end{array}$

12540 measured reflections 3824 independent reflections 1534 reflections with $I > 2\sigma(I)$

Refinement

 $\begin{array}{ll} R[F^2 > 2\sigma(F^2)] = 0.073 & 289 \ {\rm parameters} \\ WR(F^2) = 0.240 & {\rm H-atom\ parameters\ constrained} \\ S = 1.03 & \Delta\rho_{\rm max} = 0.26\ {\rm e\ \mathring{A}^{-3}} \\ 3824\ {\rm reflections} & \Delta\rho_{\rm min} = -0.20\ {\rm e\ \mathring{A}^{-3}} \end{array}$

Table 1 Hydrogen-bond geometry (\mathring{A} , $^{\circ}$).

$D-H\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-\mathrm{H}\cdots A$
$N1-H1N\cdots O5^{i}$ $O1-H1\cdots O5^{ii}$	0.91 0.82	1.87 1.95	2.710 (5) 2.697 (5)	152 151
$C8-H8B\cdots O3^{i}$	0.97	2.22	2.996 (6)	136

Symmetry codes: (i) $-x + \frac{3}{2}$, $y + \frac{1}{2}$, $-z + \frac{1}{2}$; (ii) $x + \frac{1}{2}$, $-y + \frac{3}{2}$, $z - \frac{1}{2}$.

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

Support from the National Natural Science Foundation of China (21163024) is acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: QM2083).

References

Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Friedel, C. & Crafts, J. M. (1932a). Compt. Rend. 84, 1392-1395.

Friedel, C. & Crafts, J. M. (1932b). Compt. Rend. 84, 1450-1450.

Hoff, B., Strandberg, E., Ulrich, A. S., Tieleman, D. P. & Posten, C. (2005). Biophys. J. 88, 1818–1827.

Luedtkea, R. R. & Mach, R. H. (2003). Curr. Pharm. Des. 9, 643-671.

Rok, F., Stanislav, G. & Danijel, K. (2007). Tetrahedron, 63, 10698-10708.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Stachulski, A. V., Berry, N. G., Low, A. C. L., Moores, S. L., Row, E., Warhurst,
D. C., Adagu, I. S. & Rossignol, J.-F. (2006). *J. Med. Chem.* 49, 1450–1454.
Wallén, E. A. A., Christiaans, J. A. M., Jarho, E. M., Forsberg, M. M.,
Venäläinen, J. I., Mannisto, P. T. & Gynther, J. (2003). *J. Med. Chem.* 46, 4543–4551

Wise, R. A. (1996). Curr Opin Neurobiol. 6, 243-251.

Acta Cryst. (2012). E68, o3243 [doi:10.1107/S1600536812042857]

4-(2-Fluorobenzoyl)-1-[2-(4-hydroxyphenyl)-2-oxoethyl]piperazin-1-ium trifluoroacetate

Fuyong Bian, Yi Jin, Shaoming Chi, Guojun Shi and Sichuan Xu

Experimental

The title compound was obtained through the following four steps: 2-fluorobenzoic acid (700 mg, 5 mmol) was dissolved into 3 ml of SOCl₂, the mixture stirred at 1033 K for 5 h and then slowly cooled to room temperature before removing excess SOCl₂. After preparing an ethanol solution (10 ml) of 2-fluorobenzoyl chloride (317 mg, 2 mmol) and 1-boc-piperazine (372 mg, 4 mmol), potassium carbonate (552 mg, 4 mmol) was added to the solution. The mixture was refluxed for 12 h and then cooled to room temperature; extraction and concentration were performed to obtain an oil. After mixing the oil (a dichloromethane solution, 10 ml) with TFA (1.5 ml) and stirring for 12 h to complete the reaction, the mixture was poured into water. The aqueous layer was extracted by ethyl acetate, and then the organic layer was separated, dried using sodium sulfate to obtain 4-(2-fluorobenzoyl)piperazin-1-ium trifluoroacetate. Potassium carbonate (276 mg, 2 mmol) was added to the prepared ethanol solution (10 ml) of (2-fluorophenyl)(piperazin-1-yl)methanone (208 mg, 1 mmol) and 2-chloro-1-(4-hydroxyphenyl)ethanone (341 mg, 2 mmol), which was refluxed for 5 h and mixed by adding water. Again the aqueous layer was extracted by ethyl acetate for the separation of the organic layer, washed using anhydrous ethyl acetate, and dried using sodium sulfate, filtered, and concentrated in vacuum. The purification of residue by using silica gel column chromatography and eluting with EtOAc-petroleum ether (1:1) produced the pale-yellow solid (yield: 164 mg, 48%) of 4-(2-fluorobenzoyl)-1-[2-(4-hydroxyphenyl)-2-oxoethyl]piperazin-1-ium trifluoroacetate.

Refinement

Hatomswereplacedincalculated positions [C—H=0.93 (aromatic) and O—H= 0.82 or 0.96 Å (methylgroup)] and refined using a riding model approximation with $U_{\rm iso}({\rm H})$ constrained to 1.2 (aromatic) or 1.5 (methyl, O—H) times $U_{\rm eq}$ of the respective parent atom.

Computing details

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT* (Bruker, 2001); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

Acta Cryst. (2012). E68, o3243 Sup-1

Figure 1Ellipsoid plot

4-(2-Fluorobenzoyl)-1-[2-(4-hydroxyphenyl)-2-oxoethyl]piperazin-1-ium trifluoroacetate

Crystal data

 $C_{19}H_{20}FN_2O_3^+\cdot C_2F_3O_2^-$ F(000) = 944 $M_r = 456.39$ $D_{\rm x} = 1.432 \; {\rm Mg \; m^{-3}}$ Monoclinic, $P2_1/n$ Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å a = 10.055 (3) Å Cell parameters from 892 reflections b = 9.601 (2) Å $\theta = 2.3 - 17.0^{\circ}$ $\mu = 0.13 \text{ mm}^{-1}$ c = 21.946 (5) ÅT = 298 K $\beta = 91.960 (4)^{\circ}$ $V = 2117.4 (9) \text{ Å}^3$ Parallelepiped, colourless $0.23 \times 0.20 \times 0.18 \text{ mm}$ Z = 4

Data collection

Bruker SMART CCD area-detector 12540 measured reflections diffractometer 3824 independent reflections Radiation source: fine-focus sealed tube 1534 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.070$ Graphite monochromator phi and ω scans $\theta_{\text{max}} = 25.4^{\circ}, \ \theta_{\text{min}} = 1.9^{\circ}$ $h = -12 \rightarrow 12$ Absorption correction: multi-scan $k = 0 \rightarrow 11$ (SADABS; Bruker, 2001) $T_{\min} = 0.956, T_{\max} = 0.971$ $l = 0 \to 16$

Refinement

direct methods

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.073$ $wR(F^2) = 0.240$ S = 1.033824 reflections 289 parameters 0 restraints Primary atom site location: structure-invariant Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.1P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta\rho_{\rm max} = 0.26 \ {\rm e} \ {\rm Å}^{-3}$ $\Delta\rho_{\rm min} = -0.20 \ {\rm e} \ {\rm Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

		1 1	1 1 1		
	х	у	Z	$U_{ m iso}*/U_{ m eq}$	
F1	0.6641 (4)	0.7921 (4)	0.35902 (18)	0.1420 (13)	
F2	-0.0352(4)	0.0629 (4)	0.3531 (2)	0.1733 (18)	
F3	-0.0010(4)	0.2786 (4)	0.35550 (19)	0.1465 (15)	
F4	-0.0132(4)	0.1720 (4)	0.27235 (19)	0.1558 (16)	
N1	0.9794(3)	0.7317(3)	0.17362 (14)	0.0623 (9)	
H1N	1.0634	0.7032	0.1657	0.081*	
N2	0.9521 (4)	0.6187 (4)	0.29247 (17)	0.0772 (10)	
O1	0.7573 (3)	0.9834(3)	-0.15804(14)	0.0945 (11)	
H1	0.7304	1.0632	-0.1533	0.123*	
O2	1.0042 (3)	0.6279(3)	0.05966 (14)	0.0850 (9)	
O3	0.7802 (4)	0.5059 (4)	0.33367 (18)	0.1197 (13)	
O4	0.2142 (4)	0.0147 (4)	0.3220(2)	0.1226 (14)	
O5	0.2540(3)	0.2358 (4)	0.34091 (16)	0.0951 (11)	
C1	0.7985 (4)	0.9296 (5)	-0.1033 (2)	0.0742 (12)	
C2	0.8442 (5)	0.7938 (5)	-0.1037 (2)	0.0813 (13)	
H2	0.8444	0.7442	-0.1401	0.106*	
C3	0.8891 (4)	0.7321 (4)	-0.0505 (2)	0.0753 (12)	
H3	0.9200	0.6409	-0.0512	0.098*	
C4	0.8891 (4)	0.8047 (4)	0.00491 (19)	0.0642 (11)	
C5	0.8382 (4)	0.9385 (4)	0.0040(2)	0.0720 (12)	
H5	0.8336	0.9874	0.0405	0.094*	
C6	0.7943 (4)	1.0014 (5)	-0.0493(2)	0.0766 (12)	
Н6	0.7618	1.0921	-0.0488	0.100*	
C7	0.9441 (4)	0.7384 (4)	0.06037 (19)	0.0653 (11)	
C8	0.9287 (5)	0.8139 (4)	0.12025 (18)	0.0711 (12)	
H8A	0.9763	0.9016	0.1190	0.092*	
H8B	0.8353	0.8346	0.1253	0.092*	
C9	0.8978 (5)	0.6055 (4)	0.1846 (2)	0.0846 (14)	
H9A	0.8992	0.5449	0.1493	0.110*	
H9B	0.8063	0.6325	0.1908	0.110*	
C10	0.9516 (5)	0.5284 (4)	0.2399 (2)	0.0872 (14)	
H10A	0.8969	0.4473	0.2472	0.113*	
H10B	1.0415	0.4968	0.2329	0.113*	
C11	1.0351 (5)	0.7411 (4)	0.28498 (18)	0.0728 (12)	
H11A	1.1268	0.7127	0.2803	0.095*	
H11B	1.0314	0.7994	0.3210	0.095*	
C12	0.9874 (4)	0.8226 (4)	0.22957 (18)	0.0684 (11)	
	* *	* *	• •	* *	

Acta Cryst. (2012). E68, o3243 Sup-3

H12A	0.9003	0.8614	0.2368	0.089*
H12B	1.0480	0.8993	0.2228	0.089*
C13	0.8623 (5)	0.6010 (6)	0.3364 (2)	0.0864 (14)
C14	0.8670 (5)	0.6952 (5)	0.3901 (2)	0.0782 (13)
C15	0.7657 (6)	0.7849 (6)	0.4023 (3)	0.0935 (15)
C16	0.7596 (7)	0.8661 (6)	0.4533 (3)	0.1098 (19)
H16	0.6881	0.9251	0.4598	0.143*
C17	0.8654 (8)	0.8552 (7)	0.4944 (3)	0.117 (2)
H17	0.8663	0.9095	0.5295	0.152*
C18	0.9690 (7)	0.7671 (8)	0.4851 (3)	0.133 (2)
H18	1.0400	0.7609	0.5133	0.173*
C19	0.9659 (6)	0.6875 (7)	0.4329 (3)	0.124 (2)
H19	1.0354	0.6255	0.4269	0.161*
C20	0.1836 (5)	0.1356 (6)	0.3310 (2)	0.0810 (14)
C21	0.0321 (5)	0.1635 (6)	0.3290 (3)	0.0932 (15)

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
F1	0.138 (3)	0.151(3)	0.135 (3)	0.049(2)	-0.022 (2)	0.000(2)
F2	0.103(3)	0.157(3)	0.262 (5)	-0.037(2)	0.036(3)	0.053(3)
F3	0.120(3)	0.135(3)	0.185 (4)	0.039(2)	0.010(3)	-0.046(3)
F4	0.137(3)	0.195 (4)	0.131(3)	0.028(3)	-0.059(3)	-0.024(3)
N1	0.068(2)	0.0591 (19)	0.060(2)	-0.0027 (16)	0.0064 (16)	0.0012 (15)
N2	0.089(3)	0.071(2)	0.073(2)	-0.011 (2)	0.016(2)	0.0063 (19)
O1	0.112(3)	0.094(2)	0.076(2)	-0.0032(18)	-0.0173 (19)	0.0037 (17)
O2	0.099(2)	0.075(2)	0.081(2)	0.0236 (17)	0.0098 (17)	-0.0025 (16)
O3	0.113(3)	0.121(3)	0.127(3)	-0.045(2)	0.034(2)	0.004(2)
O4	0.106(3)	0.093(3)	0.169 (4)	0.002(2)	0.004(3)	-0.007(3)
O5	0.088(2)	0.093(2)	0.104(3)	-0.0177(19)	0.0044 (19)	-0.0028 (19)
C1	0.072(3)	0.071 (3)	0.079(3)	-0.004(2)	-0.009(2)	0.008(2)
C2	0.092(3)	0.086(3)	0.066(3)	0.002(3)	-0.008(3)	-0.006(2)
C3	0.078(3)	0.067(3)	0.082(3)	-0.001(2)	0.013(2)	-0.009(2)
C4	0.067(3)	0.059(2)	0.067(3)	-0.003(2)	0.003(2)	-0.011(2)
C5	0.079(3)	0.064(3)	0.072(3)	0.000(2)	0.001(2)	-0.009(2)
C6	0.076(3)	0.073 (3)	0.080(3)	-0.001 (2)	-0.002(2)	0.000(2)
C7	0.065(3)	0.060(3)	0.072(3)	-0.005(2)	0.011(2)	-0.005(2)
C8	0.087(3)	0.063(2)	0.063(3)	0.012(2)	-0.001(2)	-0.003(2)
C9	0.097(3)	0.068 (3)	0.088(3)	-0.030(3)	0.010(3)	-0.002(2)
C10	0.104 (4)	0.062(3)	0.096 (4)	-0.016 (2)	0.017(3)	0.010(3)
C11	0.081(3)	0.077(3)	0.061(3)	-0.016 (2)	0.001(2)	0.010(2)
C12	0.077(3)	0.064(2)	0.064(3)	-0.004(2)	0.004(2)	-0.004(2)
C13	0.083(3)	0.085(3)	0.092 (4)	-0.005(3)	0.012(3)	0.019(3)
C14	0.068(3)	0.095(3)	0.073(3)	-0.007(3)	0.013(2)	0.026(3)
C15	0.090(4)	0.099 (4)	0.091 (4)	0.010(3)	0.003(3)	0.029(3)
C16	0.148 (6)	0.087 (4)	0.097 (4)	0.010 (4)	0.034 (4)	0.014(3)
C17	0.140 (6)	0.142 (6)	0.070 (4)	-0.021(5)	0.015 (4)	0.003(3)
C18	0.095 (5)	0.203 (7)	0.102 (5)	0.026 (5)	0.004 (4)	0.006 (5)
C19	0.095 (4)	0.185 (6)	0.092 (4)	0.025 (4)	0.014 (4)	-0.026(4)
C20	0.105 (4)	0.070(3)	0.067(3)	-0.012(3)	0.000(3)	0.003(2)

C21	0.078 (3)	0.098 (4)	0.104 (4)	0.001 (3)	-0.001 (3)	0.000(3)	
Geometr	ic parameters ((Å, °)					
F1—C15	5	1.372 (6)	С6—Н6		0.9300	
F2—C21		1.301 (6		C7—C8		1.513 (5)	
F3—C21		1.298 (6		C8—H8A		0.9700	
F4—C21		1.312 (6	•	C8—H8B		0.9700	
N1—C8		1.488 (5		C9—C10		1.505 (6)	
N1—C9		1.488 (5	<i>'</i>	C9—H9A		0.9700	
N1—C1		1.506 (5		C9—H9B		0.9700	
N1—H1		0.9100	,	C10—H10A		0.9700	
N2—C1		1.353 (6)	C10—H10B		0.9700	
N2—C1		1.443 (5	*	C11—C12		1.510 (5)	
N2—C1		1.454 (5		C11—H11A		0.9700	
O1—C1		1.360 (5	•	C11—H11B		0.9700	
O1—H1		0.8200	,	C12—H12A		0.9700	
O2—C7		1.221 (4)	C12—H12B		0.9700	
O3—C1		1.231 (5	*	C13—C14		1.486 (7)	
O4—C2		1.219 (5	•	C14—C19		1.346 (7)	
O5—C2		1.209 (5	•	C14—C15		1.368 (7)	
C1—C6		1.373 (6	•	C15—C16		1.367 (7)	
C1—C2		1.382 (6		C16—C17		1.375 (8)	
C2—C3		1.372 (6		C16—H16		0.9300	
C2—H2		0.9300	,	C17—C18		1.363 (8)	
C3—C4		1.402 (6)	C17—H17		0.9300	
С3—Н3		0.9300	,	C18—C19		1.377 (8)	
C4—C5		1.383 (5)	C18—H18		0.9300	
C4—C7		1.465 (6		C19—H19		0.9300	
C5—C6		1.376 (6		C20—C21		1.546 (7)	
C5—H5		0.9300	,			-10 10 (1)	
C8—N1-	—С9	112.6 (3)	N2—C10—H10)B	109.7	
C8—N1-	—C12	110.0 (3)	C9—C10—H10)B	109.7	
C9—N1-	—C12	110.7 (3		H10A—C10—I	H10B	108.2	
C8—N1-	—H1N	107.8		N2—C11—C12		110.0(3)	
C9—N1-	—H1N	107.8		N2—C11—H11	lA	109.7	
C12—N	1—H1N	107.8		C12—C11—H1	1A	109.7	
C13—N	2—C10	120.7 (4)	N2—C11—H11	lB	109.7	
C13—N:	2—C11	125.5 (4)	C12—C11—H1	1B	109.7	
C10—N:	2—C11	112.4 (3)	H11A—C11—I	H11B	108.2	
C1—O1-	—H1	109.5		N1—C12—C11	[111.3 (3)	
D1—C1-	—С6	123.7 (4)	N1—C12—H12	2A	109.4	
D1—C1	—C2	116.3 (4)	C11—C12—H1	12A	109.4	
C6—C1-	—C2	120.0 (4)	N1—C12—H12	2B	109.4	
C3—C2-	—С1	120.1 (4	•	C11—C12—H1	12B	109.4	
C3—C2-	—H2	120.0		H12A—C12—I	H12B	108.0	
C1—C2-		120.0		O3—C13—N2		121.4 (5)	
C2—C3-		121.0 (4)	O3—C13—C14	1	119.5 (5)	
	—Н3	119.5		N2—C13—C14		119.0 (5)	

C4—C3—H3	119.5	C19—C14—C15	115.9 (5)
C5—C4—C3	117.4 (4)	C19—C14—C13	121.5 (5)
C5—C4—C7	123.0 (4)	C15—C14—C13	122.3 (5)
C3—C4—C7	119.6 (4)	C16—C15—C14	125.0 (6)
C6—C5—C4	121.9 (4)	C16—C15—F1	119.0 (6)
C6—C5—H5	119.1	C14—C15—F1	116.0 (5)
C4—C5—H5	119.1	C15—C16—C17	116.0 (6)
C1—C6—C5	119.7 (4)	C15—C16—H16	122.0
C1—C6—H6	120.2	C17—C16—H16	122.0
C5—C6—H6	120.2	C18—C17—C16	121.8 (6)
O2—C7—C4	122.7 (4)	C18—C17—H17	119.1
O2—C7—C8	119.5 (4)	C16—C17—H17	119.1
C4—C7—C8	117.8 (4)	C17—C18—C19	118.2 (6)
N1—C8—C7	112.8 (3)	C17—C18—H18	120.9
N1—C8—H8A	109.0	C19—C18—H18	120.9
C7—C8—H8A	109.0	C14—C19—C18	123.0 (6)
N1—C8—H8B	109.0	C14—C19—H19	118.5
C7—C8—H8B	109.0	C18—C19—H19	118.5
H8A—C8—H8B	107.8	O5—C20—O4	129.6 (6)
N1—C9—C10	110.3 (4)	O5—C20—C21	116.0 (5)
N1—C9—H9A	109.6	O4—C20—C21	114.5 (5)
C10—C9—H9A	109.6	F3—C21—F2	107.8 (5)
N1—C9—H9B	109.6	F3—C21—F4	106.6 (5)
C10—C9—H9B	109.6	F2—C21—F4	105.3 (5)
H9A—C9—H9B	108.1	F3—C21—C20	113.7 (5)
N2—C10—C9	109.9 (4)	F2—C21—C20	112.7 (5)
N2—C10—H10A	109.7	F4—C21—C20	110.3 (5)
C9—C10—H10A	109.7	1. 621 620	110.0 (0)
	105.7		
O1—C1—C2—C3	179.2 (4)	N2—C11—C12—N1	-54.0(5)
C6—C1—C2—C3	-2.0 (7)	C10—N2—C13—O3	1.8 (7)
C1—C2—C3—C4	0.3 (7)	C11—N2—C13—O3	167.4 (4)
C2—C3—C4—C5	2.1 (6)	C10—N2—C13—C14	179.3 (4)
C2—C3—C4—C7	-176.9 (4)	C11—N2—C13—C14	-15.1 (7)
C3—C4—C5—C6	-2.8 (6)	O3—C13—C14—C19	106.7 (6)
C7—C4—C5—C6	176.1 (4)	N2—C13—C14—C19	-70.8 (6)
O1—C1—C6—C5	-180.0 (4)	O3—C13—C14—C15	-66.8 (7)
C2—C1—C6—C5	1.4 (7)	N2—C13—C14—C15	115.7 (5)
C4—C5—C6—C1	1.1 (7)	C19—C14—C15—C16	0.8 (8)
C5—C4—C7—O2	-170.3 (4)	C13—C14—C15—C16	174.7 (5)
C3—C4—C7—O2	8.6 (6)	C19—C14—C15—F1	-179.4 (5)
C5—C4—C7—C8	7.6 (6)	C13—C14—C15—F1	-5.6 (7)
C3—C4—C7—C8	-173.5 (4)	C14—C15—C16—C17	0.6 (8)
C9—N1—C8—C7	-67.6 (4)	F1—C15—C16—C17	-179.1 (5)
C12—N1—C8—C7	168.4 (3)	C15—C16—C17—C18	-1.0 (9)
O2—C7—C8—N1	-6.2 (6)	C16—C17—C18—C19	0.0 (10)
C4—C7—C8—N1	175.8 (3)	C15—C14—C19—C18	-1.9 (9)
C8—N1—C9—C10	-178.6 (4)	C13—C14—C19—C18	-175.8 (6)
C12—N1—C9—C10	-55.1 (5)	C17—C18—C19—C18	1.6 (11)
C12—1V1—C9—C1U	55.1 (5)	C1/C10	1.0 (11)

C13—N2—C10—C9	106.7 (5)	O5—C20—C21—F3	-19.3 (7)
C11—N2—C10—C9	-60.7(5)	O4—C20—C21—F3	160.9 (5)
N1—C9—C10—N2	58.3 (5)	O5—C20—C21—F2	-142.4(5)
C13—N2—C11—C12	-108.2(5)	O4—C20—C21—F2	37.8 (7)
C10—N2—C11—C12	58.4 (5)	O5—C20—C21—F4	100.3 (5)
C8—N1—C12—C11	178.4 (3)	O4—C20—C21—F4	-79.5 (6)
C9—N1—C12—C11	53.4 (5)		

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	<i>D</i> —Н	\mathbf{H} ··· A	D··· A	D— H ··· A
N1—H1 <i>N</i> ···O5 ⁱ	0.91	1.87	2.710 (5)	152
O1—H1···O5 ⁱⁱ	0.82	1.95	2.697 (5)	151
C8—H8 <i>B</i> ···O3 ⁱ	0.97	2.22	2.996 (6)	136

Symmetry codes: (i) -x+3/2, y+1/2, -z+1/2; (ii) x+1/2, -y+3/2, z-1/2.

Acta Cryst. (2012). E68, o3243 sup-7