PyTorch X Shape Bias

An implementation of adding biologically inspired shape bias to popular data sets, exploring the effects on common CNN architectures.

Instructions

The code is intended to run in Google Colab (Colab), although can be configured if you have your own GPU.

Open a Colab notebook (or alternatively see the link for a complete set up: https://colab.research.google.com/drive/1UWgWIGu0RCuGbANeQPRXZ_Ta4wYKlmZq)

There are a few key steps to get up and running in the Colab environment.

- 1. Connect to hosted GPU. (runtime -> change runtime type -> Hardware -> GPU)
- 2. Download the repository/source code (using git clone preferably)
- 3. Install requirements in the cloned repository
- 4. Choose dataset, architecture, transformations and other hyperparameters you wish to run & run command

Example of set up in Colab:

```
# Note: '!' in Colab is to run command line
# Clone Repository
!git clone https://github.com/Mikcl/ShapeBias.git
# Change Directory
%cd ./ShapeBias/
# Install Requirements
!pip install -r requirements.txt
# Run Experimenent - train a VGG-16 model on dataset 0 (CIFAR-10)
!python main.py -a vgg-16 --dataset 0
```

Usage

Ensure all requirements are installed before running experiments: pip install -r

requirements.txt

```
optional arguments:
                        show this help message and exit
  -h, --help
  -a ARCH, --arch ARCH model architecture: alexnet | densenet121 |
                        densenet161 | densenet169 | densenet201 | googlenet
                        inception_v3 | mnasnet0_5 | mnasnet0_75 |
mnasnet1_0 |
                        mnasnet1_3 | mobilenet_v2 | resnet101 | resnet152 |
                        resnet18 | resnet34 | resnet50 | resnext101_32x8d |
                        resnext50_32x4d | shufflenet_v2_x0_5 |
                        shufflenet_v2_x1_0 | shufflenet_v2_x1_5 |
                        shufflenet_v2_x2_0 | squeezenet1_0 | squeezenet1_1
                        vgg11 | vgg11_bn | vgg13 | vgg13_bn | vgg16 |
vgg16_bn
                        | vgg19 | vgg19_bn | wide_resnet101_2 |
                        wide_resnet50_2 (default: resnet18)
  -j N, --workers N
                        number of data loading workers (default: 4)
                        number of total epochs to run
  --epochs N
  --start-epoch N
                        manual epoch number (useful on restarts)
  -b N, --batch-size N mini-batch size (default: 256), this is the total
                        batch size of all GPUs on the current node when
using
                        Data Parallel or Distributed Data Parallel
  --lr LR, --learning-rate LR
                        initial learning rate
  --momentum M
                        momentum
  --wd W, --weight-decay W
                        weight decay (default: 1e-4)
 -p N, --print-freq N print frequency (default: 10)
                       evaluate model on validation set
  -e, --evaluate
 --pretrained
                       use pre-trained model
                        GPU id to use.
  --gpu GPU
  --own PATH
                        path to your own given model state dict (note arch
of
                        this model must match -a)
  -f, --finetune
                        fine-tune model fc layer on training set
  -1 LF, --loadfinetuned LF
                        use fintuned own model with defined number of
output
                        classes
  -c CHANNELS, --channels CHANNELS
                        number of channels (default: 3)
  --decay D
                        decay learning rate every D epochs by factor of 10
  -d DATASET, --dataset DATASET
                        which dataset to train on, default- None (define
                        custom path to directory), 0 - CIFAR10, 1 -
CIFAR100
  --data DATA
                        path to custom dataset and where output folder is
                        concat transformed data with original data
  --concat
  --same
                        train and validated on same (type of
transformation)
                        dataset, primarily used from custom transformations
  --DOG
                        DOG transformation, use --options for non default
```

```
hyper parameters, [sigma k]

-0 0 [0 ...], --options 0 [0 ...]

options (list) for the transformation, pass as: -0

s k

--gabor gabor 2D CWT

-s S [S ...], --scales S [S ...]

scales (list) for the 2D Gabor Wavelet: -s 2 2.5

-u U [U ...], --orientations U [U ...]

orientations (list) for the 2D Gabor Wavelet: -u 1

2 3

--savecsv save the csv to google drive [only in collab]

--savemodel save the model to google drive [only in collab]
```

Datasets

Can perform experiments on various datasets.

Custom

To utilise a custom dataset, use --data ./path/to/dataset, where . . ./dataset/ contains the directories /dataset/train and /dataset/val where images are grouped in directories (representing their class name).

Example:

```
...dataset/
...dataset/train
...dataset/train/dog/
...dataset/train/dog/bulldog.jpeg
...dataset/train/dog/poodle.jpeg
...dataset/train/car/
...dataset/train/car/hatchback.jpeg
...dataset/train/car/jeep.jpeg
...
...dataset/val
...dataset/val
...dataset/val/dog/
...dataset/val/dog/boxer.jpeg
...dataset/val/dog/boxer.jpeg
...dataset/val/car/
...dataset/val/car/
...dataset/val/car/limousine.jpeg
...
```

To download and format the Tiny ImageNet dataset, run ./scripts/prep.sh

Torch Vision

Support for CIFAR-10 and CIFAR-100 have been added thus far, which can be utilised by --dataset N

Data set	N
CIFAR-10	0
CIFAR-100	1

Examples

• Train vgg-16 (learning rate=0.01, weight_decay=0.0005) on CIFAR-10 and validate on CIFAR-10

```
python main.py -a vgg-16 --lr 0.01 --wd 0.0005 --dataset 0
```

• Train on CIFAR-10 **and** CIFAR-10 **transformed** by a Difference Of Gaussian and validate on CIFAR-10, and **save** the model into Google Drive with --savemodel

```
python main.py --dataset 0 --concat --DOG --savemodel
```

Train on only CIFAR-10 transformed by a 2D Gabor continuous wavelet transform (2D-CWT) and validate only on the same transform applied to CIFAR-10 validation, hyperparameter of orientation - u 2 is used for the wavelet.

(note: -u and -s can take multiple orientations and scales respectively for the --gabor 2D Wavelet)

```
python main.py --dataset 0 --same --gabor -u 2
```

• **Evaluate** a model ./path/to/model.pth.tar on a CIFAR-100 dataset.

(note: should be trained to have 100 classes as output)

```
python main.py --own ./path/to/model.pth.tar --dataset 1 -e
```

• Finetune a model ./path/to/model.pth.tar on a CIFAR-100 dataset

```
python main.py --own ./path/to/model.pth.tar --dataset 1 -f
```

• Evaluate a finetuned model ./path/finetuned/model.pth.tar on a CIFAR-100 dataset. Pass 100 because 100 classes.

```
python main.py --own ./path/finetuned/model.pth.tar --dataset 1 -l
100 -e
```

• Train on a custom dataset ./path/to/dataset/

```
python main.py --data ./path/to/dataset/
```

Google Collab

An example of experiments can be found in the following notebook: Connect to hosted GPU. (runtime -> change runtime type -> Hardware -> GPU)

https://colab.research.google.com/drive/1UWgWIGu0RCuGbANeQPRXZ_Ta4wYKlmZq

Inspired by PyTorch Image Net Example

Please see Image Net Example for details on Multi-processing Distributed Data Parallel Training if you wish to extend functionality

https://github.com/pytorch/examples/