# CSC 320 Foundations of Computer Science

Lecture 10

**Instructor:** Dr. Ulrike Stege

#### **Territory Acknowledgement**

We acknowledge and respect the ləkwəŋən peoples on whose traditional territory the university stands and the Songhees, Esquimalt and WSÁNEĆ peoples whose historical relationships with the land continue to this day.

#### This meeting will be recorded

"Please be aware our sessions are being screen-recorded to allow students who are not able to attend to watch later and will be posted in Brightspace."

### Deadlines; Assessment



Quiz 1-8: 1% each

Quiz 9: 2%



Assignment 1-5: 5% each



Final Exam

40%

Midterm 1: 10% Midterm 2: 15%







Timed quizzes (~30 min)
Review before starting quiz

### Last time ....

- Ambiguous grammars
- Inherently ambiguous languages
- Chomsky Normal Form
- Pushdown Automata

### **Chomsky Normal Form (CNF)**

- Restricted (simplified) constrains on grammar
- A context-free grammar  $G = (V, \Sigma, R, S)$  is in **CNF** if every rule is of the form
  - $A \rightarrow BC$  or  $A \rightarrow a$  where

Right hand side: two variables or one terminal; nothing else

- $a \in \Sigma$
- $A, B, C \in V$
- B, C may not be the start variable

Start variable not on right-hand side of rule

•  $S \rightarrow \epsilon$  is permitted where S is start variable

No other  $\epsilon$ -substitutions permitted

**Theorem**: Any context-free language is generated by a context-free grammar in CNF

## Up next in Context-Free Languages

- Context-free grammars
- Pushdown automata
- The set of languages recognized by pushdown automata is exactly the set of context-free languages

### **Definition**

- A pushdown automaton (PDA) is a 6-tuple  $(Q, \Sigma, \Gamma, \delta, q_0, F)$  with
  - *Q*: finite set of states
  - Σ: finite **input alphabet**
  - Γ: finite stack alphabet
  - $\delta$ :  $Q \times \Sigma_{\epsilon} \times \Gamma_{\epsilon} \rightarrow \mathcal{P}(Q \times \Gamma_{\epsilon})$  transition function

- $q_0 \in \mathcal{Q}$ : start state
- $F \subseteq Q$ : set of accept states



- $(r_{i+1}, b) \in \delta(r_i, w_{i+1}, a)$  means: when M is in state  $r_i$  reading  $w_{i+1}$  from input and top stack symbol is a, then M can do the following: move into state  $r_{i+1}$  and replace top stack symbol by b
- If  $a = \epsilon$  then top stack symbol is ignored and symbol b is pushed onto stack
- If  $b = \epsilon$  then top stack symbol a is removed from stack



### **Designing PDA for**

$$\{ww^R \mid w \in \{0,1\}^*\} \setminus \{\epsilon\}$$

Push \$-marker onto bottom of stack

Read input string and push onto stack



Only \$-marker left on stack

Compare remaining input with stack

### Designing PDA for

$$\{ww^R \mid w \in \{0,1\}^*\} \setminus \{\epsilon\}$$



**Note**: only strings accepted by the machine are of form  $ww^R$  However: not every possible computation branch will yield acceptance, and every string of form  $ww^R$  has accepting branch in computation tree

### Your turn



Accepting state sequence of computation for input w = 10100101?

- A. *q*<sub>1</sub> *q*<sub>2</sub> *q*<sub>2</sub> *q*<sub>3</sub> *q*<sub>4</sub>
- B.  $q_1 q_2 q_2 q_2 q_3 q_3 q_3 q_3 q_4$
- C. *q*<sub>1</sub> *q*<sub>2</sub> *q*<sub>2</sub> *q*<sub>2</sub> *q*<sub>2</sub> *q*<sub>3</sub> *q*<sub>3</sub> *q*<sub>3</sub> *q*<sub>3</sub> *q*<sub>4</sub>
- D. *q*<sub>1</sub> *q*<sub>2</sub> *q*<sub>2</sub> *q*<sub>2</sub> *q*<sub>2</sub> *q*<sub>2</sub> *q*<sub>3</sub> *q*<sub>3</sub> *q*<sub>3</sub> *q*<sub>3</sub> *q*<sub>3</sub> *q*<sub>4</sub>

E. None of the above

### Questions

- Are PDAs nondeterministic?
- Are context-free grammars nondeterministic?
- How can one prove that every regular language is also accepted by a pushdown automaton?

### Quiz 4—Question 6

Let  $\Sigma=\{0,1\}$ , and let  $L_5$  be a language over  $\Sigma$  with  $L_5=\emptyset$ . Then for DFA M with  $L(M)=L_5$ , and for NFA N with  $L(N)=L_5$ :

- M has at least one accept and one reject state.
- $oldsymbol{N}$  has at least one accept and one reject state.
- N can be a DFA with  $Q = \emptyset$ .
- igwedge N must have a non-accept state, but cannot have an accept state.
- none of the above

# Back to context-free languages, pushdown automata and context-free grammars

### Next

**Theorem:** A language is context-free if and only if some PDA recognizes it

#### Proof idea

**if:** Since every context free language L can be produced by a context-free grammar G, L = L(G), convert G into PDA M with L(M) = L(G) = L

**only if:** Given pushdown automaton M, create context free grammar G with L(G) = L(M)

## If: If language is context free then some PDA recognizes it

 $G = (V, \Sigma, R, S)$  context-free, L = L(G); design PDA  $M = (Q, \Sigma, \Gamma, \delta, q_0, F)$ 

- Idea: if *G* generates *w* build *M* such that it accepts *w* by determining whether there is a derivation (sequence of substitutions) in *G* for *w* 
  - Each step of derivation yields intermediate string of variables and terminals

## PDA representing derived intermediate string 01A1A0



**Note**: PDA simulates G's leftmost derivation

## If: If language is context-free then some PDA recognizes it

 $G = (V, \Sigma, R, S)$  context-free, L = L(G), design PDA  $M = (Q, \Sigma, \Gamma, \delta, q_0, F)$ 

- Idea: if G generates w build M such that it accepts w by determining whether there is a derivation (sequence of substitutions) in G for w
  - Each step of derivation yields intermediate string of variables and terminals
  - M nondeterministically checks for substitutions from G for w: ie,  $S \Rightarrow w$ 
    - First: *M* puts *S* on stack
    - Replace top variable symbol by intermediate string
    - Pop top terminal symbol if corresponds to current symbol in w

## If: If language is context free then some PDA recognizes it

 $G = (V, \Sigma, R, S)$  context-free, L = L(G), design PDA  $M = (Q, \Sigma, \Gamma, \delta, q_0, F)$ 

- Places marker symbol (\$) and start variable S onto (empty) stack
- For each top stack symbol
  - If variable, A, then choose from G some rule  $A \to u$ ,  $u = \alpha_1 \alpha_2 \dots \alpha_k$ ,  $\alpha_i \in \Gamma$ : substitute A with  $\alpha_1 \alpha_2 \dots \alpha_k$  ( $\alpha_1$  is new top symbol)
  - If terminal, a, read next input symbol  $w_i$  pop top if  $w_i = a$ ; (reject if  $w_i \neq a$ )
  - If \$ go to accept state



### Detailed description of M

For  $G = (V, \Sigma, R, S)$  context-free design  $M = (Q, \Sigma, \Gamma, \delta, q_0, F)$  with

- $Q = \{q_{\text{start}}, q_{\text{loop}}, q_{\text{accept}}\} \cup \text{set of auxiliary states to push right}$ hands of rules in R onto stack
- $\Gamma = V \cup \Sigma \cup \{\$\}$
- $q_0 = q_{\text{start}}$
- $F = \{q_{\text{accept}}\}$

### M's transitions

- In  $q_{\text{start}}$  when reading  $\epsilon$  and top symbol  $\epsilon$ : push first \$ and then S onto stack and move into  $q_{\text{loop}}$
- For each rule  $A \to \alpha_1 \alpha_2 \dots \alpha_k$ , in R: In  $q_{loop}$  for top stack symbol A: replace A by  $\alpha_1 \alpha_2 \dots \alpha_k$  and remain in  $q_{loop}$
- For each terminal  $a \in \Sigma$ : If a is top stack symbol then pop a and remain in  $q_{loop}$
- If \$ is top stack symbol then pop \$ and move into  $q_{\text{accept}}$

### Example



## Context free languages

**Theorem:** A language is context free if and only if some PDA recognizes it

#### Proof idea

**if:** Since every context free language L can be produced by context free grammar G, L = L(G), convert G into PDA M with L(M) = L(G) = L

**only if:** Given pushdown automaton M, create context free grammar G with L(G) = L(M)

### If a PDA recognizes some language then it is context-free (Proof idea only)

#### Step 1: Simplify PDA

- Single accept state
- \$ always popped exactly before moving into accept state
- Transition: either push or pop, not both at the same time

#### Step 2: Design grammar

### If a PDA recognizes some language then it is context-free (Proof idea only)

### **Step 1:** Simplify PDA M

Single accept state

Add new state, ε-transition (don't read, pop \$) from each (original) accept state to new state

Make new state only accept state

- \$ always popped exactly before moving into accept state
   Only transition from start state: push \$ onto empty stack
- Transition: either push or pop, not both at the same time

Every transition that replaces top stack symbol replace by two transitions: first one pop's the symbol and a second following directly after pushing the (original) replacement into stack

Step 2: Design grammar

## Your turn: Is this language regular? Context-free?

$$B = \{a^n b^n c^n \mid n \ge 0\}$$

## Next: Pumping Lemma for context-free languages