Álgebra

Ignacio Cordón Castillo

Álgebra conmutativa

Tema 1: Anillos e ideales

Tema 3: Bases de Groebner y algoritmos básicos

Definición. Sea R anillo. Un R módulo (izquierda) es un grupo abeliano M, junto a una operación externa $*RM\& \longrightarrow \&M$ $*RM\& \mapsto \&rx$

 $verificando, \forall x, y \in M, \forall r, s \in R$

- r(x+y) = rx + ry
- $\bullet \ (r+s)x = rx + sx$
- r(sx) = (rs)x
- 1x = x

Definición. Una R álgebra es un anillo S que tiene estructura de R módulo tal que $(rx)y = r(xy) = x(ry) \quad \forall r \in R, \quad \forall x,y \in S$

También puede caracterizarse una R álgebra como un anillo S junto a un homomorfismo de anillos $\lambda:R\longrightarrow S$. El homomorfismo λ se llama homomorfismo de estructura de la R álgebra S.

Si R=K cuerpo, λ es inyectiva, S es K álgebra que contiene a K como subanillo.

Como caso particular, todo anillo es una $\mathbb Z$ álgebra.

Definición. Dadas S_1, S_2 R álgebras. Un homomorfismo de \$R-\$álgebras de S_1 en S_2 es un homomorfismo de anillos $f: S_1 \longrightarrow S_2$ que es también homomorfismo de R módulos.

Proposición 1. Propiedad universal de $R[X_1, ... X_n]$

Sea S anillo, $f: R \longrightarrow S$ homomorfismo de anillos. Sean $s_1, \ldots s_n \in S$ elementos arbitrarios. Entonces $\exists f_{s_1, \ldots s_n} : R[X_1, \ldots X_n] \longrightarrow S$ homomorfismo de R álgebras verificando $f_{s_1, \ldots s_n}(X_i) = s_i \ y \ f_{s_1, \ldots s_n} \circ \lambda = f$ que además es único

Definición. Una R álgebra S se llama finitamente generada si existe un homomorfismo de R álgebras sobreyectivo $f: R[X_1, \dots X_n] \longrightarrow S$

Dado
$$F \in K[X_1, \dots X_n], \qquad F = \sum_{\alpha \in \mathbb{N}^n} a_{\alpha} X^{\alpha}$$

$$\{X^{\alpha}: \alpha \in \mathbb{N}^n\}$$
 es K base de $K[X_1, \dots, X_n]$

Cualquier orden en \mathbb{N}^n induce un orden en $\{X^\alpha : \alpha \in \mathbb{N}^n\}$

Definición. Un orden \leq en \mathbb{N}^n diremos que es **compatible** si siempre que $\alpha \geq \beta$ entonces $\alpha + \gamma \geq \beta + \gamma$ $\forall \gamma \in \mathbb{N}^n$.

Diremos que es **monótono** si 0 es mínimo en \mathbb{N}^n

Diremos que un orden es monomial si es compatible, total y monótono.

Proposición 2. $Si \leq es$ orden monomial en \mathbb{N}^n entonces se verifica que dados $\alpha, \beta \in \mathbb{N}^n$:

$$\alpha \leq_{pr} \beta \Longrightarrow \alpha \leq \beta$$

Ejercicios

Ejercicio 1.12

Demuestra que si un anillo verifica que cada elmento x verifica $x^n = x$ para

algún $n \geq 2$ (dependiente de x) entonces todo ideal primo es maximal.

Ejercicio 1.16

Un anillo R se dice anillo de Boole si $x^2 = x$ para todo $x \in R$. Probar que en un anillo de Boole se tiene:

- 1. 2x = 0 para todo $x \in R$
- 2. Cada ideal primo Π es maximal y R/Π es un cuerpo con dos elementos.
- 3. Cada ideal finitamente generado es principal.

1-

Se tiene:

$$2x^2 = 2x = (2x)^2 = 4x^2$$

Luego $2x^2 = 0$.

2-

Sea Π ideal primo. Entonces R/Π es dominio de integridad. Pero dado $x+\Pi\in R/\Pi,\ x$ no unidad, se tiene $(x+\Pi)+(x+\Pi)=(2x+\Pi)=\Pi$ que por ser dominio de integridad $x\in Pi$. Luego R/Π es cuerpo con dos elementos y Π maximal.

3-

Solución propuesta por M42

Por inducción, (a,b)=(a+b+ab) ya que $a(a+b+ab)=a^2=a$ y análogo b.

Y el paso de inducción es trivial.

Ejercicio 1.17

En un anillo R sea Σ el conjunto de todos los ideales en los que cada elemento es un divisor de cero. Probar que el conjunto Σ tiene elementos maximales y que cada elemento maximal de Σ es un ideal primo. Por tanto el conjunto de los divisores de cero en R es una unión de ideales primos.

Ejercicio 1.18

Sea K un cuerpo, demuestra que el ideal $(X^3 - Y^2) \subseteq K[X, Y]$ es un ideal primo del anillo K[X, Y].

Se puede probar, con una discusión de casos, escribiendo X^3-Y^2 como producto de dos polinomios en K[X,Y] que no puede ocurrir esta circunstancia, luego X^3-Y^2 es irreducible en K[X,Y] y por tanto, al ser K cuerpo, (X^3-Y^2) es primo.

Ejercicio 1.25

Sean α y β ideales de un anillo R

- 1. Demuestra que $\alpha+\beta=R$ si y sólo si $\alpha^n+\beta^n=R$ para cada natural n\$
- 2. Demuestra que si α, β son ideales comaximales propios entonces $\alpha, \beta \subsetneq J(R)$
- 3. Demuestra que si $\alpha_1, \ldots \alpha_t$ son ideales comaximales dos a dos, entonces $\alpha_1 + (\alpha_2, \cdots \alpha_t)^n = R$ para cada $n \in \mathbb{N}$.

1-

La implicación hacia la izquierda es trivial tomando n = 1.

Hacia la derecha, n=1 obvio

Por inducción, supuesto que se cumple hasta $n \in \mathbb{N}$

Existen u + v = 1, $u \in \alpha^n$, $v \in \beta^n$. Desarrollando $(u + v)^{n+1} = 1$ es fácil comprobar que pertenece a $\alpha^n + \beta^n$

2-

Supuesto sin pérdida de generalidad que $\alpha \subset J(R)$.

Como existen $x \in \alpha$, $y \in \beta$ verificando x+y=1 por ser comaximales, $y=1-x \in U(R)$ por caracterización de radical de Jacobson, luego $\beta=R$, contradicción.

3-

Si son primos dos a dos $\exists x_{i1} \in \alpha_1, y_i \in \alpha_i$ verificando $1 = x_i + y_i$ para todo $i \geq 2$. Luego:

$$\prod_{i=1}^{t} (1 - x_{i1}) = 1 + z = y_1 \cdots y_n \in \alpha_1, \dots \alpha_t$$

con $z \in \alpha_1$. Luego $1 \in \alpha_1 + (\alpha_1, \dots \alpha_t)$. Y la caracterización del apartado 1 acaba teniendo en cuenta que:

$$\alpha_1^n + (\alpha_1, \cdots \alpha_t)^n \subset \alpha_1 + (\alpha_1, \cdots \alpha_t)^n$$

Ejercicio 1.24

Sea R un anillo y $\mathcal N$ su nilradical. Demostrar que son equivalentes:

- 1. R tiene exactamente un ideal primo.
- 2. Cada elemento de R es o una unidad o nilpotente.
- 3. R/\mathcal{N} es un cuerpo.

 $1\Longrightarrow 2$. Entonces $\mathcal N$ es maximal en R, por existir los ideales maximales en un anillo, ser todo ideal maximal primo y ser $Nil(R)=\{x\in\mathbb R:\exists n,x^n=0\}=\bigcap_{\Pi\in Spec(R)}\Pi$ y en particular R es anillo local con maximal $\mathcal N\Longleftrightarrow R-\mathcal N\subseteq U(R)$ lo que nos da el resultado.

 $2 \Longrightarrow 3$. Trivialmente, ya que todo elemento no nulo es invertible.

 $3 \Longrightarrow 1$. Los ideales primos de R/\mathcal{N} son de la forma $\alpha + \mathcal{N}$ con α ideal primo de R. Pero como R/\mathcal{N} es cuerpo, se tiene que sus únicos ideales son el total y $\mathcal{N} \equiv 0$. Es decir $\alpha \subseteq \mathcal{N} \subseteq \alpha$ donde el último contenido viene dado por ser $\mathcal{N} \infty = \bigcap_{\Pi \in Spec(R)} \Pi$.

Luego $\alpha = \mathcal{N}$ único ideal primo de R.

Ejercicio 2.2

1. Tomamos:

$$F = X^2Y + XY^2 = XY(X+Y)$$

$$G = XY^4$$

mcd(F,G)=XY, pero sin embargo $XY\neq (F,G)$, luego no se verifica la identidad de Bezout. En general, dados dos polinomios cualesquiera, dicha identidad no se verifica

1. Queda como ejercicio.

TODO Ejercicio 2.15

Ejercicio 2.16

Sea \leq un orden en \mathbb{N}^n que es total y compatible. Haciendo usod e la teoría de ideales monoiales, probad que \leq es un buen orden sii es monótono.

Hacia la izquierda, como \leq es monomial, entonces es buen orden.

Hacia la derecha, si 0 no fuese mínimo, $\exists x \in \mathbb{N}^n$ verificando x < 0. Como el orden es compatible tendríamos que x + x < x, lo que es contradicción.

Ejercicio 2.17

Sean $I,J\subset K[X_1,\ldots X_n]$ ideales monomiales generados por $\{A_1,\ldots A_s\}$ y $\{B_1\ldots B_t\},\ A_i,B_j$ monomios:

1. Demuestra que $I \cap J$ es un ideal monomial.

2. Prueba que $\{M_{ij}: i=1\dots s, j=1\dots t\}$ donde $M_{ij}=mcm(A_i,B_j)$ es un sistema de generadores de $I\cap J$

1. Se tiene $F \in I$ sii todos los monomios de \$F \in I4.

Además $I \cap J = (F_1, \dots F_r)$, con $F_i = \sum_{j=1}^{n_i} a_{ij} R_i j$ monomios.

Si $F_i \in I \cap J$, entonces $F_i \in I$ y $F_i \in J$. Lueg $R_{ij} \in I$, $R_{ij} \in J$ y por tanto $R_{ij} \in I \cap J$

Por tanto $I \cap J = (R_{ij} : i = 1 \dots r, 1 \le j \le n_i)$, luego $I \cap J$ es monomial.

1. Es claro que $(M_{ij}) \subset I \cap J$

Para el otro contenido, si $X^{\alpha} \in I \cap J$ entonces $X\alpha \in I \implies X^{\alpha} = FA_i$ y análogo para $X^{\alpha} \in J$, luego $M_{ij}|X^{\alpha}$.

1.
$$I = (X = A_1, Y^2Z = A_2, YZ^2 = A_3)$$
, y por otor lado $J = (X^3YZ = B_1, X^2Y = B_2, Y^2Z^3 = B_3)$

Calculando $M_{11} = mcm(A_1, B_1), M_{12} = X^2Y.$

Al final
$$I \cap J = (X^2Y, Y^2Z^3)$$

Ejercicio 2.18

Sean I_1, I_2 ideales monomiales con sistema de generadores G_1, G_2 resp. Demuestra que:

 $1.I_1+I_2$ está generado por $G_1\cup G_2$ $2.I_1I_2$ está generado por $\{HL:H\in G_1,L\in G_2\}$

Hay que comprobar que si $I_1 = (G_1, \dots G_k), I_2 = (H_1, \dots H_s)$ entonces:

$$I_1 + I_2 = (G_1, \dots G_k, H_1, \dots H_s)$$

 $I_1 I_2 = (G_i H_i : i = 1 \dots k, j = 1 \dots s)$

Ejercicio 2.21

Demostrar que si I, J son dos ideales monomiales entonces (I:J) es un ideal monomial.

Definición. Llamo soporte de $F \in K[X_1, ... X_n]$ a $Sop(F) = \{X^{\alpha} : \alpha \in N(F)\}$

Dado $F \in (I:J) \implies FJ \subset I$. En particular $FX^{\beta} \forall X^{\beta} \in J$

Esto implica que $X\alpha X\beta \in I \forall \alpha \in N(F)X^{\alpha} \in J$. Entonces $X\alpha J \subset I \implies X^{\alpha} \in (I:J) \forall \alpha \in N(F)$. Luego (I:J) es monomial.

Ejercicio 2.22

1. Veamos la implicación hacia la izquierda:

$$I = (X_{i1}, \dots X_{is})$$
 para $\{X_{1i}, \dots X_{is}\} \subset \{X_1, \dots X_n\}$ Entonces $K[X_1 \dots X_n]/I \cong K[X_j : j \notin \{i_1, \dots i_s\}]$ es un DI. Luego I es primo.

Veamos la implicación hacia la derecha.

Sea I monomial y primo. $I = (X^{\alpha}(1), \dots X^{\alpha}(s)).$

 $X^{\alpha}(j) \in I$ luego $\exists i_j$ tal que $X_{ij} \in I$.

Todo esto nos da $(X_{i1}, \dots X_{is}) = I$

1. Queda como ejercicio.

2. $\mathcal{M} = (X_1 \dots X_n)$ es el único maximal que es monomial.

$$K[X_1 \dots X_n]/\mathcal{M} \cong K$$

Luego \mathcal{M} es maximal.

Es el único porque si tenemos $I=(A),\ I'=(A')$ entonces $A\subset A'\Leftrightarrow I\subset I'$

Álgebra III

Resumen

TODO

- TODO 10 de dónde sale?
- **TODO** ¿Qué es exactamente F?
- **TODO** 7 Demostrar el teorema de existencia de cuerpos de descomposición.
- **TODO** Ejemplo X^p-t, pág 52 apuntes de Miranda, ¿criterio de Eisenstein?
- TODO ¿Es toda extensión algebraica un cuerpo de descomposición?
- TODO Raíz de un polinomio con coeficientes algebraicos, entonces es algebraico
- TODO Mirarme demostraciones de cuerpos de descomposición
- TODO ¿Por qué en la resultante meto los coeficientes iniciales?
- TODO Mirar ejemplo de cuerpo normal no separable.
- TODO Teorema del grado, extensiones de cuerpos
- TODO Teorema de Kronecker

Polinomios simétricos, resultante, discriminante

• Polinomios simétricos

Definición. Polinomio simétrico

Un polinomio $f \in A[X_1, ... X_n]$ se llama simétrico si para toda $\sigma \in S_n$ se verifica $\sigma \cdot f = f$

Lema 1. El conjunto de polinomios simétricos es subanillo de $A[X_1, ... X_n]$ que contiene al anillo A.

Definición. En $A[X_1, ... X_n]$ se llaman polinomios simétricos a:

$$s_1 = X_1 + \dots + X_n$$

 $s_2 = X_1 X_2 + X_1 X_3 + \dots + X_{n-1} X_n$
 \vdots
 $s_n = X_1 \cdot X_2 \cdots X_n$

Definición. Peso de un monomio

Sea $aX_1^{e_1}\cdots X_n^{e_n}$ monomio no nulo. Se llama peso del monomio a $e_1+2e_2+\ldots+ne_n$

Esta definición del peso está justificada por el teorema 1 donde X_i lo sustituimos por s_i que es de grado i.

Definición. El peso de un polinomio es el mayor de los pesos de sus monomios.

Teorema 1. Teorema fundamental de polinomios simétricos

Sea A dominio de integridad y $f \in A[X_1, ... X_n]$ polinomio simétrico de grado d. Entonces existe un único $g \in A[X_1, ... X_n]$ de peso menor o igual que d, verificando:

$$f(X_1, \dots X_n) = g(s_1, \dots s_n)$$

Teorema 2. Sea $g \in A[X_1, ... X_n]$. Entonces $g(s_1, ... s_n) = 0$ si y solo si $g(X_1, ... X_n) = 0$

• Resultante

La motivación de la resultante son los problemas de eliminación de la forma:

Sean:

$$f = a_n x^n + a_{n-1} x^{n-1} + \dots a_0 \qquad a_0 \neq 0$$
$$g = b_m x^m + b_{m-1} x^{m-1} + \dots b_0 \qquad b_0 \neq 0$$

 ξ tienen alguna raíz común en una extensión (o clausura) de F? La resultante será una expresión que se anula cuando f y g tienen una raíz común, y calculable como función racional de los coeficientes de ambos polinomios.

Definición. Resultante

Sea K cuerpo de descomposición para fg. En K[X]:

$$f = a_n \prod_{i=1}^{n} (X - \alpha_i)$$
$$g = b_m \prod_{i=1}^{m} (X - \beta_i)$$

Definimos la resultante como:

$$R(f,g) = a_n^m b_m^n \prod_{i=1}^n \prod_{j=1}^m (\alpha_i - \beta_j)$$

Proposición 3. Se verifican las siguientes propiedades:

- 1. $R(f,g) = 0 \Leftrightarrow f,g$ tienen alguna raíz en común
- 2. $R(g,f) = (-1)^{nm} R(f,g)$

3.
$$R(f,g) = a_n^m \prod_{i=1}^n g(\alpha_i) = (-1)^{nm} b_m^n \prod_{j=1}^m f(\beta_j)$$

- 4. R(fg,h)=R(f,h)R(g,h). Análogamente, R(h,fg)=R(h,f)R(h,g)
- 5. $R(f,g) = b^n \text{ con } g = b \text{ escalar.}$
- 6. $R(X^k, f) = a_0^k \ y \ R(f, X^k) = (-1)^{nk} a_0^k$
- 7. g = fq + r, entonces $R(f,g) = a_n^{gr(g) gr(r)} R(f,r)$

- 8. R(f,g) es un polinomio simétrico en los α_i y las β_j
- 9. R(f,g) es un polinomio homogéneo en las b_j y en las a_i

Las demostraciones de 1,2,3,4,5 son obvias.

6 se demuestra desde haciendo $a_0 = f(0) = (-1)^n \prod_{i=1}^n \alpha_i y R(X^k, f) =$

 $a_n^k(\prod_{i=1}^n -\alpha_i)^k$ y sustituyendo. Para la segunda parte, basta aplicar el apartado 3.

Para probar 7:

$$R(f,g) = a_n^m \prod_{i=1}^n g(\alpha_i) = a_n^m \prod_{i=1}^n (f(\alpha_i)q(\alpha_i) + r(\alpha_i)) =$$

$$= a_n^m \prod_{i=1}^n r(\alpha_i) = a_n^{m-gr(r)} R(f,r)$$

• Discriminante

Cuando g = f'. En este caso $R(f, f') = 0 \Leftrightarrow f$ tiene raíces múltiples.

$$f = a_n \prod_{i=1}^{n} (X - \alpha_i)$$
$$f' = a_n \sum_{j=1}^{n} \prod_{i \neq j}^{n} (X - \alpha_i)$$

Entonces:

$$R(f, f') = a_n^{n-1} \prod_{j=1}^n f'(\alpha_j) = a_n^{2n-1} \prod_{j=1}^n \prod_{i \neq j}^n (\alpha_j - \alpha_i)$$

Definición. Discriminante

LLamamos discriminante de f a $D(f) = a_n^{2n-2} \prod_{i < j} (\alpha_i - \alpha_j)^2$.

Proposición 4. Relación entre discrimiannte y resultante Se verifica $R(f,f')=(-1)^{\frac{n(n-1)}{2}}a_nD(f)$.

Proposición 5.

$$R(f,g) = \begin{vmatrix} a_n & a_{n-1} & \dots & a_0 & 0 & \dots & 0 \\ 0 & a_n & a_{n-1} & \dots & a_0 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & a_n & a_{n-1} & \dots & a_0 \\ b_m & b_{m-1} & \dots & b_0 & 0 & \dots & 0 \\ 0 & b_m & b_{m-1} & \dots & b_0 & \dots & 0 \\ 0 & 0 & \dots & b_m & b_{m-1} & \dots & b_0 \end{vmatrix}$$

Extensiones de cuerpos

Definición. Una extensión de cuerpos F/K es un par de cuerpos F,K tales que K es un subcuerpo de F. K se llama cuerpo base y F cuerpo extensión .

Definición. Llamamos grado de la extensión F/K y lo representamos por [F:K] a la dimensión de F como K espacio vectorial. La extensión es finita si su grado es finito.

Definición. Una torre de cuerpos es una sucesión de subcuerpos:

$$F_n \supset F_{n-1} \supset \ldots \supset F_0$$

Proposición 6. Sea $E \supset F \supset K$ torre de inclusiones. Entonces:

Sean $\{u_i \in E : i \in I\}$ un sistema de generadores (linealmente independientes, base, resp.) de E como espacio vectorial sobre F y $\{v_j \in F : j \in J\}$ un sistema de generadores (linealmente independientes, base, resp.) de F como espacio vectorial sobre K. Entonces $\{u_iv_j : i, j \in I \times J\}$ es sistema de generadores (linealmente indep., base) de E como espacio vectorial sobre K.

Teorema 3. Teorema del grado: Sea $E \supset F \supset K$ torre de cuerpos. Entonces:

$$[E:F][F:K] = [E:K]$$

La demostración se puede deducir de la proposición anterior.

Corolario 1. Se cumple:

- 1. $E \supset F \supset K$ torre de cuerpos. La extensión E/K es finita sii las extensiones E/F y F/K son ambas finitas.
- 2. Sea F/K extensión tal que [F:K] = p es primo. Entonces no existe ningún cuerpo intermedio distinto de F o K.

Elementos algebraicos

Lema 2. Para todo anillo A existe un único homomorfismo $v : \mathbb{Z} \to A$ llamado homomorfismo unital.

Este homomorfismo se define por inducción como $1_{\mathbb{Z}} \mapsto 1_A$ y $n_{\mathbb{Z}} \mapsto 1 + \dots + 1_n$

Definición. Característica

Si el kernel del homomorfismo unital es $n\mathbb{Z}$, la característica del anillo A, se define como car(A) = n. Además n queda **caracterizado** por ser el menor número que verifica $na = 0 \quad \forall a \in A$

La demostración se hace basándonos en el primer teorema de isomorfía. Si su característica fuese $n \neq 0$, tendríamos que $\mathbb{Z}/n\mathbb{Z} = \mathbb{Z}_n \cong Img(v)$ y si n no es primo, tenemos un subanillo de A, Img(v) isomorfo a algo que no es dominio de integridad, por lo que la característica de un dominio de integridad siempre será siempre prima.

Proposición 7. La intersección de subanillos es subanillo. La intersección se subcuerpos es subcuerpo.

Definición. El menor subanillo de un anillo A es la intersección de todos sus subanillos propios. Se llama **anillo primo**.

Lema 3. Estructura del subanillo primo

El subanillo primo cumple:

- 1. Este subanillo es isomorfo a \mathbb{Z} si car(A) = 0 y a \mathbb{Z}_n si $car(A) = n \neq 0$.
- 2. Si A es dominio de integridad, entonces o bien car(A) = 0 o bien car(A) = p primo.

Definición. Subcuerpo primo

Al menor subcuerpo de de un cuerpo K lo llamamos **subcuerpo primo**, que es la intersección de todos los subcuerpos propios de K.

Lema 4. Estructura del subcuerpo primo

El subcuerpo primo de un cuerpo K es isomorfo a \mathbb{Q} cuando car(K) = 0 y a $\mathbb{Z}/p\mathbb{Z}$ cuando $car(K) = p \neq 0$ con p primo.

Se deduce del lema anterior sin más que pensar que un cuerpo es un anillo en el que hay una operación inversa. Y como K es dominio de integridad, la característica debe ser un primo.

Definición. Sea F/K extensión, S un subconjunto de F. LLamamos subanillo (resp. subcuerpo) generado por S sobre K y lo representamos por K[S] (resp. K(S)) a la intersección de todos los subanillos (resp. cuerpos) de F que contengan a K y a S.

Para el caso $S = \{u_1, \dots u_n\}$ notamos $K[u_1, \dots u_n]$ en lugar de $K[\{u_1, \dots u_n\}]$. Análogo para K(S)

Lema 5. Se verifica:

1.
$$K[S \cup T] = K[S][T] = K[T][S]$$

2.
$$K(S \cup T) = K(S)(T) = K(T)(S)$$

Definición. Subcuerpo compuesto.

Dados los cuerpos $L \supset E \supset K$ y $L \supset F \supset K$, llamamos compuesto de E y F al cuerpo EF = E(F) = F(E). Es decir, el menor subcuerpo de L que contiene a E y F.

Definición. Conjunto de generadores.

Sea F/K extensión, S subconjunto de F. Diremos que S es conjunto de generadores para F sobre K si F = K(S).

Definición. Extensión finitamente generada

F/K extensión se dice finitamente generada si existe un conjunto finito de generadores de F sobre K, es decir $S = \{u_1 \dots u_n\}$ con F = K(S)

Definición. Extensión simple, elemento primitivo

F/K exitesión se dice simple si existe un único elemento $u \in F$ tal que F = K(u). u se llama elemento primitivo para la extensión u.

Sea F/K extensión y $u \in F$. La **propiedad universal del anillo de polinomios** nos da un homomorfismo de anillos $\lambda : K[X] \to K[u]$ tal que conserva K y $\lambda(X) = u$. Por el primer teorema de isomorfía para anillos $K[u] \cong K[X]/ker(\lambda)$

- 1. Si $Ker(\lambda) = 0$, es decir, no existe ningún polinomio con coeficientes en K del que u es raíz, entonces existe un isomorfismo $K[X] \cong K[u]$. Entonces u se dirá **trascendente** sobre K. K(u) se llama cuerpo de fracciones de K[u] y es isomorfo a K(X) (cuerpo de fracciones de K[X]).
- 2. Si $Ker(\lambda) \neq 0$ se dice que u es **algebraico** sobre K y al ser K[X] dominio de ideales principales, se tendrá $Ker(\lambda) = (p(X))$ para algún polinomio que además podemos considerar mónico. Además p(X) = Irr(u, K) y por tanto $K[X]/Ker(\lambda)$ es dominio de integridad (tanto por ser p(X) irreducible y por tanto (p(X)) ideal primo, como por tenerse que K[u] es un subanillo de F, cuerpo).

Proposición 8. Sea F/K extensión de cuerpos y sea $u \in F$ elemento algebraico sobre K con polinomio mínimo p(X) = Irr(u, K). Entonces:

- 1. $K(u) = K[u] \cong K[X]/(p(X))$
- 2. $[K(u):K] = gr(p(X)) \equiv grado \ de \ u \ sobre \ K \ y \ una \ base \ de \ K[u] \ como \ K \ espacio vectorial es <math>\{1,u,u^2,\ldots u^{n-1}\}$
- 3. Para $f \in K[X]$ se verifica f(u) = 0 si y solo si p|f

La demostración de 1 viene dada por ser (p(X)) ideal maximal, y por tanto K[X]/(p(X)) cuerpo.

El segundo apartado se demuestra teniendo en cuenta que los elementos de K[X]/(p(X)) son las clases de equivalencia módulo p(X), y por tanto

una base es $\{1,X,X^2,\dots X^{gr(p)}\}$. Además hay un isomorfismo entre K[u] y K[X]/(p(X)) dado por $u\mapsto X+(p(X))$

Tres es trivial puesto que estamos en un dominio euclídeo y tenemos algoritmo de la división.

Lema 6. Elementos algebraicos en torres de cuerpos

Sea $F \supset E \supset K$ y sea $u \in F$ algebraico sobre K. Entonces u es algebraico sobre E y Irr(u, E) divide a Irr(u, K)

Proposición 9. Caracterización de elementos algebraicos

Sea F/K extensión. El elemento $\alpha \in F$ es algebraico sobre K si y solo si la extension $K(\alpha)/K$ es finita.

Se deduce a partir de 3 y 4 desde 8

Extensiones algebraicas

Definición. Extensión algebraica, extensión trascendente

Una extensión F/K se llama algebraica si todos los elementos de F son algebraicos sobre K Una extensión F/K se llama trascendente si existe algún elemento $u \in F$ que es trascendente sobre K.

Lema 7. Sea F/K extensión arbitraria y sea S un subconjunto de F.

- 1. Para todo $u \in K[S]$ existe un subconjunto finito $\{u_1, \ldots, u_n\} \subset S$ tal que $u \in K[u_1, \ldots, u_n]$
- 2. Para todo $u \in K(S)$ existe un subconjunto finito $\{u_1, \ldots, u_n\} \subset S$ tal que $u \in K(u_1 \ldots u_n)$.

Lema 8. Sean $L \supset E, F \supset K$. Entonces:

- 1. $Si\ F = K(S)\ entonces\ EF = E(S)$
- 2. $[EF:K] \le [E:K][F:K]$
- 3. Si[E:K] y[F:K] son primos relativos, se da la igualdad.

La primera parte se deduce de que EF = E(F) = E(K(S)) = E(S)

Para deducir la segunda parte: [EF:K] = [EF:F][F:K] por el teorema del grado. Además si tenemos B base de E como K espacio vectorial, y B' base de F como K espacio vectorial, tendremos que $B \cup B'$ es sistema de generadores de EF = F(E) sobre K y por tanto $[EF:F] \leq |B| = [E:K]$.

Además, del argumento hecho se deduce 3, ya que en dicho caso tendríamos, por ser:

$$[EF : F][F : K] = [EF : E][E : K]$$

Y por consiguiente $[E:K]|[EF:F] \implies [E:K] = [EF:F]$

Proposición 10. Sea $F = K(u_1, \dots u_n)$ una extensión finitamente generada por elementos u_i algebraicos. Entonces la extensión F/K es finita.

La demostración se deduce del aparatado 2 de la proposición 8 sin más que tener en cuenta que $K(u_1, \ldots u_n)$ estará contenido en $\prod_{i=1}^n K(u_i)$ y esa extensión es finita. El hecho de que los elementos sean algebraicos interviene en que $K(u_i)$ será finita en ese caso con $[K(u_i):K] = gr(Irr(u_i,K))$

Corolario 2. Caracterización de extensiones algebraicas

Sea F = K(S) con $S \subset F$ arbitrario. Entonces F/K es algebraica si y sólo si todo elemento $u \in S$ es algebraico sobre K

La implicación hacia la derecha es trivial. Para la implicación hacia la izquierda basta usar que dado $s \in K(S)$, existirán finitos $\{u_{1,s}, \ldots u_{n,s}\} \subset S$ algebraicos verificando $s \in K(u_{1,s}, \ldots u_{n,s}) \subset K(S)$ y la proposición anterior acaba, al tener una extensión finitamente generada por elementos algebraicos, lo que implica que la extensión es finita, y que s es algebraico sobre K.

Corolario 3. Relación de extensiones finitas y algebraicas

Se tiene:

1. Si la extensión F/K es finita, entonces es algebraica (y finitamente generada por ser finita).

2. Una extensión F/K es algebraica y finitamente generada, entonces es finita.

Se deduce trivialmente de las proposiciones y corolarios anteriores.

NOTA: Hay extensiones algebraicas no finitamente generadas, como por ejemplo la clausura algebraica de un cuerpo.

Corolario 4. Caracterización de elementos algebraicos

Sea $E \supset F \supset K$ torre de cuerpos.

Un elemento $u \in E$ es algebraico sobre K si y solo si existe un cuerpo intermedio F verificando que F/K es extensión finita y $u \in F$.

La implicación hacia la izquierda es trivial sin más que considerar K(u). La implicación hacia la derecha se deduce de ser E extensión finita, luego algebraica sobre K.

Corolario 5. Transitividad de algebraicidad en torres de cuerpos

Dada una torre de cuerpos $E \supset F \supset K$ la extensión E/K es algebraica si y solo las extensiones E/F y F/K son algebraicas.

Si E/K es algebraica, F/K es algebraica trivialmente, por tenerse $x \in F \implies x \in E$; y E/F también es algebraica por tenerse que si para todo $x \in E$ existe Irr(x, K), entonces $\exists Irr(x, F)$ por ser $K \subset F$ y de hecho el segundo polinomio divide al primero.

Una simple reducción al absurdo nos da la implicación contraria.

Cuerpos de descomposición

Teorema 4. Teorema de Kronecker

Sea f un polinomio de grado positivo sobre un cuerpo K. Entonces existe una extensión F/K y un $u \in F$ verificando f(u) = 0. Esta extensión viene dada por $K[X]/(f_1)$ con f_1 un factor irreducible del polinomio sobre K.

Definición. Extensión de homomorfismos

Sean F_i/K_i dos extensiones de cuerpos y sean $\tau: F_1 \to F_2$ y $\sigma: K_1 \to K_2$ homomorfismos verificando $\tau(a) = \sigma(a) \forall a \in A$. A τ lo llamamos **extensión** de σ . Si $\sigma = id$, lo llamamos **homomorfismo sobre** K

Proposición 11. Sea $\alpha: K_1 \to K_2$ un isomorfismo de cuerpos. Existe una única extensión a un isomorfismo $\sigma: K_1[X] \to K_2[X]$ definido por $\sigma(x) = x$

La demostración se basa en la propiedad universal del anillo de polinomios.

Proposición 12. En las condiciones de la proposición anterior si F_i/K_i son extensiones algebraicas, $\tau: F_1 \to F_2$ un homomorfismo sobre $\sigma: K_1 \to K_2$ $y \ u \in F_1$ una raíz de f_1 . Entonces $\tau(u)$ es una raíz de $f_2 = \sigma(f_1)$

Sea
$$f_1 = \sum_{i=1}^n a_i X^i$$

Entonces:

$$f_2(\tau(u)) = \sum_{i=1}^n \sigma(a_i)\tau(u)^i = \sum_{i=1}^n \tau(a_i)\tau(u)^i$$
$$= \tau(\sum_{i=1}^n a_i u^i) = \tau(0) = 0$$

Corolario 6. Sea F/K extensión algebraica y $\sigma: F \to F$ un homomorfismo sobre K. Entonces σ es un automorfismo.

Para demostrar esto, veamos que la aplicación es sobreyectiva (es inyectiva por ser homomorfismo de cuerpos). Consideramos $u \in F$. Tomo f = Irr(u, K), que puedo hacerlo por tratarse de una extensión algebraica, y se tiene que $\sigma(f) = f$. Tomo todas las raíces $\{u_1, \ldots u_k\}$ de f que hay en F. Tomo $F_1 = K(u_1 \ldots u_k)$ el subcuerpo de F generado por todas ellas. La extensión F_1/K es finita y para cualquier homomorfismo $\sigma : F \to F$ verifica que $\sigma(u_i)$ es raíz de f. Así, $\sigma|F_1$ e una aplicación lineal inyectiva, luego sobreyectiva y eso nos lleva a decir que $\exists v \in F_1$ verificando $\sigma(v) = u$.

Proposición 13. En las condiciones de la proposición anterior sea u_i raíz de f_i en alguna extensión F_i/K_i . Entonces existe un único isomorfismo $\tau: K_1(u_1) \to K_2(u_2)$ sobre σ tal que $\tau(u_1) = u_2$

Existen isomorfismos $\rho_i: K_i[X]/(f_i) \cong K_i(u_i)$ y vienen dados por $X+(f_i) \mapsto u_i$. $\bar{\sigma}$ lo obtenemos por la proposición anterior llevándonos (f_1) en (f_2) . La aplicación buscada será $\tau = \rho_2 \bar{\sigma} \rho_1^{-1}$

Definición. Cuerpo de descomposición de un polinomio

Una extensión $F \supset K$ se llama cuerpo de descomposición de f sobre K sii existen $u_1 \ldots u_n \in F$ tales que $f(X) = (X - u_1) \cdots (X - u_n)$, $a \in K$, $y \in F = K(u_1, \ldots u_n)$. Es decir, esta última condición nos dice que es el menor cuerpo en que descompone el polinomio.

Proposición 14. Cuerpo de descomposición sobre cuerpos intermedios

Sea $E \supset F \supset K$ torre de cuerpos tal que E es cuerpo de descomposición de un polinomio f sobre K. Entonces E es también cuerpo de descomposición de f sobre F.

Teorema 5. Grado del cuerpo de descomposición

Un cuerpo de descomposición F de un polinomio f de grado n sobre K es de grado como mucho n! sobre K. Si el grado es n! entonces el polinomio es irreducible. El recíproco no se verifica.

La demostración la hacemos por inducción sobre n. Para n=1, tenemos que el cuerpo de descomposición de f será el propio K.

Supuesto cierto para un polinomio de hasta grado n-1, y sea f polinomio de grado n sobre K. Sean $\{u_1, \ldots u_n\}$ raíces de f en F. Podemos tomar $K(u_1)$ extensión de K donde se verifica $f(u_1) = 0$. Descompongo $f = (X - u_1)g$ y por hipótesis de inducción el cuerpo de descomposición F de g sobre $K_1 = K(u_1)$ tiene grado menor o igual a (n-1)!.

Por tanto:
$$[F:K] = [F:K_1][K_1:K] \le (n-1)!n = n!$$

Si se tiene la igualdad, $[K_1:K] = gr(Irr(u_1,K)) = n = gr(f)$ y por tanto f debe ser irreducible, puesto que u_1 es raíz suya.

El recíproco no se verifica en el caso de $(X^2-2)(X^2-3)\in \mathbb{Q}(X)$ que es irreducible, pero su cuerpo de descomposición es $\mathbb{Q}(\sqrt{2},\sqrt{3})$ que tiene grado 4.

Teorema 6. Extensión a cuerpos de descomposición

Sea $\sigma: K_1 \to K_2$ isomorfismo de cuerpos, $f_1 \in K_1[X]$ y sea $f_2 = \sigma(f_1)$. Sea F_i cuerpo de descomposición de f_i sobre K_i . Entonces existe un isomorfismo $\tau: F_1 \to F_2$ que es una extensión de σ . De aquí se deduce que dos cuerpos de descomposición de un $f \in K[X]$ son isomorfos.

Por inducción sobre el grado de f_1 , que se conserva por σ , por ser este isomorfismo. Para $gr(f_1) = 1$ tomamos $\sigma = \tau$.

Suponemos el resultado cierto para un polinomio de grado hasta n-1, y sea $f=(X-u_1)\cdots(X-u_n)$ en F_1 . Tomamos $g=Irr(u_1,K)$ y existe $\tau:K_1(u_1)\to K_2(f(u_1))$ isomorfismo extensión de σ por la proposición 13. Aplicándole hipótesis de inducción a $f/(X-u_1)$ que es de grado n-1 sobre $K_1(u_1)$ y a τ llegamos al resultado buscado.

Definición. Cuerpo de descomposición de un conjunto de polinomios

Sea $\mathcal{F} \subset K[X]$ cualquier conjunto de polinomios no constantes. Una extensión E/K se llama cuerpo de descomposición de \mathcal{F} si es cuerpo de descomposición de cada uno de sus polinomios. Además $E = K(\{u \in F : \exists f \in \mathcal{F}, f(u) = 0\})$

Teorema 7. Existencia de cuerpo de descomposición

Para todo conjunto de polinomios no constantes $\mathcal{F} \subset K[X]$ existe un cuerpo de descomposición sobre K

Si el cardinal \mathcal{F} es finito, tomo el cuerpo de descomposición sobre K de $\prod_{f \in \mathcal{F}} f$ Caso opuesto, con $\mathcal{F} = \{f_i : i \in I\}$ tomamos comamos para cada

 $J \subset I$ finito F_J cuerpo de descomposición de $\{f_j : j \in J\}$. Ahora tomamos $\mathcal{F} = \bigcup_{J \subset I} finito F_J$ ya que un $f \in \mathcal{F}$ arbitrario, tomando el tamaño de I convenientemente grande, tendrá todas sus raíces en F_I .

También es claro en este último caso que $E = K(\{u \in F : \exists f \in \mathcal{F}, f(u) = 0\}$

Teorema 8. Isomorfía entre cuerpos de descomposición

Cualesquiera dos cuerpos de descomposición sobre K de un conjunto \mathcal{F} de polinomios son isomorfos por un isomorfismo sobre K.

Por teorema 6, en el caso \mathcal{F} finito, tenemos el resultado, tomando el producto de todos los polinomios de \mathcal{F} , del que el mismo es cuerpo de descomposición.

Sea \mathcal{F} arbitrario. Tomo $\sigma = id_K$

Tomamos $\epsilon = \{(E, \tau) : F_1 \supset E \supset K, \tau \text{ extensión de } \sigma \text{ a } F_1 \text{ y a } F_2 \text{ respectivamente } \}$

Ordenamos los pares $(E, \tau) \in \epsilon$ por inclusión del primer elemento y extensión del segundo, tomando como hipótesis que siempre extiendo igual.

Las extensiones E/K finitas están en ese conjunto, por tenerse que si $E=K(S), S=\{u_1,\ldots u_n\}$ conjunto finito, puedo tomar $f=\prod_{i=1}^n Irr(u_i,K)$ que existe por ser extensión finita luego algebraica, y tendría que E es cuerpo de descomposición de f y un isomorfismo $E\to E$ que extiende a id_K

Sea (F, σ) elemento maximal. Si $F \subsetneq F_1$, existiría una extensión de σ a algún F(u) con $u \in F_1 \setminus F$, lo que contradiría el carácter maximal del elemento.

Como $F_1 = K(\{u \in F_1 : f(u) = 0, f \in \mathcal{F}\})$, y σ se lleva raíces de un polinomio en raíces de ese mismo polinomio, tenemos que σ es sobreyectiva.

Clausura algebraica

Proposición 15. Caracterizaciones de cuerpos algebraicamente cerrados

Sea K un cuerpo. Los siguientes enunciados son equivalentes:

- 1. Todo polinomio no constante $f \in K[X]$ tiene una raíz en K.
- 2. Para todo $f \in K[X]$ existen $u_1, \ldots, u_n \in K$ tales que $f = a_n(X u_1) \cdots (X u_n)$
- 3. Un polinomio $f \in K[X]$ es irreducible si y sólo si gr(f) = 1.
- 4. Toda extensión algebraica de K es trivial. Es decir, K es la única extensión algebraica.

Para demostrar $1 \implies 2$ tenemos que podemos escribir $f = (X - u_1)f_1$ y $f_1 = a_{n-1}X^{n-1} + \ldots + a_0$. Basta demostrar que los coeficientes de f_1 están en K para aplicar inducción.

La implicación de 2 a 3 es trivial.

Veamos $3 \implies 4$. Sea E/K extensión algebraica $u \in K$. Entonces f = Irr(u, K) es de grado 1. Por tanto f = a(X - u) con \$a, au \in K, lo que implica \$\$u \in K\$.

Veamos $4 \implies 1$. Supongamos que existe un polinomio $f \in K[X]$ no constante. Por teorema de Kronecker, existe una extensión F/K en la que f tiene una raíz $u \in F$. Pero por hipótesis, K = F, luego $u \in K$.

Proposición 16. Todo cuerpo algebraicamente cerrado es infinito

Sea $K = \{u_1, \dots u_n\}$ cuerpo finito. Entonces K no puede ser algebraicamente cerrado puesto que el polinomio $f = (X - u_1) \cdots (X - u_n) + 1$ incumple la caracterización 2 de cuerpos algebraicos, por ser $f(u_i) = 1 \neq 0$

Proposición 17. Sea E/K extensión con E algebraicamente cerrado. Entonces el conjunto de elementos de E algebraicos sobre K forman un cuerpo algebraicamente cerrado.

(Esta proposición nos dice que podemos "reducir" el tamaño de la extensión algebraicamente cerrada)

Sea F el conjunto de elementos algebraicos sobre K de E. F es cuerpo. Sea $f \in F[X]$. Entonces existe $u \in E$ tal que f(u) = 0. Luego u es algebraico sobre F...

Definición. Clausura algebraica

Decimos que E es clausura algebraica de K si E/K es una extensión algebraica y E es algebraicamente cerrado.

Definición. Caracterización clausura algebraica

- 1. E es clausura algebraica de K.
- 2. La extensión E/K es algebraica y todo polinomio no constante $f \in K[X]$ descompone en factores lineales en E[X]

- 3. E es cuerpo de descomposición sobre K de los polinomios de K[X]
- 4. La extensión E/K es algebraica y todo polinomio no constante tiene una raíz en E.

1,2 y 4 equivalen por las proposiciones anteriores.

Para probar la equivalencia entre 2 y 3:

De 3 a 2 se prueba con 4 de la caracterización de cuerpos algebraicamente cerrados.

Veamos $2 \implies 3$. LLamando $S = \{u \in E : \exists f \in K[X] : f(u) = 0\}$. Como E/K es algebraica, S = E, y K(S) = E. Luego E es cuerpo de descomposición de los polinomios con coeficientes en K sobre K.

Proposición 18. Sea $E \supset F \supset K$ torre de cuerpos con F/K algebraica. Entonces E es clausura algebraica de F si y sólo si E es clausura algebraica de K.

E/F y F/K son extensiones algebraicas si y solo si E/K es extensión algebraica.

Si E/F es clausura algebraica, todo polinomio de F[X] descompone en E[X], y en particular todo polinomio de K[X], luego E/K es algebraicamente cerrada y algebraica, luego clausura algebraica.

Si E/K es clausura algebraica, supongamos que existe $f \in F[X]$ tal que f no tiene raíces en E, esto es E/F no es algebraicamente cerada, pero sí algebraica por un argumento anterior. Por teorema de Kronecker habría una extensión E' en la que f tendría una raíz u, y por tanto E(u) sería una extensión algebraica de K, lo que contradice que E/K sea clausura algebraica.

Teorema 9. Teorema de Steinitz

Para todo cuerpo K existe una clausura algebraica \bar{K}

Es consencuencia del teorema de existencia de cuerpos de descomposición 7

Teorema 10. Isomorfía entre clausuras algebraicas

Dos clausuras algebraicas E_1 y E_2 del mismo cuerpo K son isomorfas sobre K.

Consecuencia del teorema de isomorfía de cuerpos de descomposición.

Teorema 11. Extensión a una clausura algebraica Sea una torre de cuerpos $K \subset F \subset E$ con E/K algebraica y sea \bar{K} clausura algebraica de K. Entonces todo homomorfismo $\sigma: F \to \bar{K}$ sobre K tiene una extensión $\tau: E \to \bar{K}$

Tomamos:

$$S = \{ (E_i, \sigma_i) : F \subset E_i \subset E, \sigma_i : E_i \to \bar{K} \qquad \sigma_{i|F} = \sigma \}$$

S es no vacío y es inductivamente ordenado por inclusión, considerando como orden la inclusión y la igualdad en la restricción de aplicaciones.

Por lema de Zorn existe por tanto un elemento maximal (E_1, σ_1) . Supongamos $E_1 \subsetneq E$ existe un $u \in E, u \neq E_1$ del que podemos tomar f = Irr(u, K) (porque E/K es algebraica) y por la proposición 13, como todos los α_i mantienen K, llamando $f_1 = f_2 = f$ en dicha proposición, tengo que existen un a $\sigma_2 : E_1(u) \to (\sigma_1(E_1))(u)$ que extiende $\sigma'_1 : E_1 \mapsto \sigma(E_1)$ y el par $(E_1(u), \sigma_2)$ sería entonces maximal, contradicción, luego $E_1 = E$ y $\tau = \sigma_1$.

Proposición 19. Cardinal clausura algebraica Sea K cuerpo, \bar{K} su clausura algebraica.

- 1. Si K es finito, entonces su clausura es infinito numerable.
- 2. Si K es infinito, entonces su clausura tiene el mismo cardinal que K.

Extensiones normales y conjuntos separables

Proposición 20. Sean $u, v \in \overline{K}$. Los siguientes enunciados equivalen:

1.
$$Irr(u, K) = Irr(v, K)$$

- 2. Existe isomorfismo $\tau: K(u)/K \to K(v)/K$ tal que $\tau(u) = v$
- 3. Existe homomorfismo $\sigma: K(u)/K \to \bar{K}/K$ tal que $\sigma(u) = v$
- 4. Existe un automorfismo $\sigma: \bar{K}/K \to \bar{K}/K$ tal que $\sigma(u) = v$

 $1 \Rightarrow 2$ Por 1 se tiene que:

$$K(u) \cong K/(Irr(u, K)) = K/(Irr(v, K)) \cong K(v)$$

Donde llevamos $u \mapsto p(x)$ y $v \mapsto p(x)$ en los isomorfismos correspondientes.

 $2 \Rightarrow 3$ Componemos $i \circ \tau$

 $3 \Rightarrow 4$ por el teorema 11

 $4 \Rightarrow 1$ implica que si tenemos p(x) irreducible tal que p(u) = 0. Entonces $\sigma(p(x)) = p(x)$ y $p(v) = \sigma(p(v)) = 0$

Definición. Dos elementos $u, v \in \overline{K}$ se llaman conjugados sobre K si verifican las propiedades de la proposición anterior.

Proposición 21. Sean F_1/K , F_2/K dos extensiones algebraicas. Equivalen:

- 1. Existe un isomorfismo $\sigma: F_1 \to F_2$ sobre K.
- 2. Existe un homomorfismo $\sigma: F_1 \to \bar{K}$ sobre K tal que $\sigma(F_1) = F_2$
- 3. Existe un isomorfismo $\sigma: \bar{K} \to \bar{K}$ sobre K tal que $\sigma(F_1) = F_2$.

 $1\implies 2$ trivialmente, y $3\implies 1$, componiendo ien el primer caso, y restringiendo a F_1

La implicación $2 \implies 3$ viene dada por 11 y 6

Definición. Extensiones conjugadas

Dos extensiones F_1/K y F_2/K algebraicas se llaman conjugadas si verifican las propiedades de la proposición anterior.

Por la proposición anterior, deducimos que las raíces de un polinomio son conjugadas entre sí.

Teorema 12. Sea F/K una extensión algebraica, con F subcuerpo de \bar{K} . Equivalen.

- 1. Para todo $\sigma: F \to \bar{K}$ homomorfismo sobre K, entonces $\sigma(F) = F$
- 2. Todo polinomio irreducible de K[X] con una raíz en F descompone en factores lineales en F[X].
- 3. F es el cuerpo de descomposición sobre K de una familia de polinomios de K[X]

Para la implicación $1 \implies 2$, las raíces de un polinomio irreducible u, v son conjugadas con $u \in F$, luego existe un homomorfismo $\sigma_1 : K(u) \to \bar{K}$ verificando $\sigma_1(u) = v$, pero como por el primer punto, $\sigma_1(F) = F$, entonces $v \in F$

Para 2 \Longrightarrow 3 podemos tomar que F es el cuerpo de descomposición de la familia de polinomios $\{Irr(u,K): u \in F\}$

Para $3 \implies 1$, sea F = K(S) con $S \subset F$. Para $u \in S$, $\sigma(Irr(u,K)) = Irr(u,K)$. Es decir, los elementos de F se los lleva en elementos de F y $\sigma(F) \subset F$. Pero eso quiere decir que la familia de polinomios descompone en $\sigma(F)$, luego $F = \sigma(F)$

Definición. Una extensión F/K se llama normal si verifica las propiedades de la proposición anterior.

Nótese la diferencia con la definición dada en clase, donde se definía una extensión normal como una extensión finita. Con la definición que hemos dado aquí, $\mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5}, \dots, \sqrt{7}, \dots)$ es una extensión infinita y normal.

Proposición 22. Propiedades de las extensiones normales

- 1. Sea E/K extensión normal, F/K extensión algebraica arbitraria. Entonces la extensión EF/F es normal
- 2. Sea $K \subset F \subset E$ torre de cuerpos con E/K normal. Entonces E/F es extensión normal

- 3. Sean F_1/K , F_2/K extensiones normales. Entonces F_1F_2/K es extensión normal.
- 4. Sean F_{λ}/K , $\lambda \in \Delta$ una familia arbitraria de extensiones normales y $E = \bigcap_{\lambda} F_{\lambda}$. Entonces la extensión E/K es normal.
- 1. La extensión EF/F es normal ya que dado un homomorfismo σ : $EF/F\sigma\bar{K}/F$ puedo restringirlo a E y por ser E normal, como $\sigma_{|E}$ fija K, entonces debe fijar E (caracterización de normal). Luego σ fija E, F, y por tanto fija EF.
- 2. Cualquier homomorfismo que fija F fija también K y por ser E/K normal, fijará E, luego E/F es normal.
- 3. Dado un homomorfismo $F_1F_2/K \to \bar{K}/K$ al restringirlo a F_i , debe fijar F_i , por ser F_i/K normal, luego fija F_1F_2
- 4. Dado un homomorfismo $E/K \to \bar{K}/K$ lo puedo extender a \bar{K} y restringirlo a F_{λ} para todo λ y fijaría F_{λ} por ser F_{λ}/K normal, luego fijaría la intersección.

Definición. Clausura normal

Sea F/K extensión algebraica arbitraria. LLamamos clausura normal de F/K a la extensión E/K donde:

$$E = \cap \{F_1 : F_1 \supset F, F_1/K \quad normal\}$$

La estamos definiendo como la menor extensión normal y **existe** porque la clausura algebraica es normal.

NOTA: hay que percatarse que la definición es para una extensión, no para un cuerpo.

Teorema 13. Dos clausuras algebraicas E_1, E_2 del mismo cuerpo K son isomorfas sobre K.

Proposición 23. Sea $K \subset F \subset E$ una torre de cuerpos tal que la extensión E/K es normal. Entonces todo homomorfismo $\tau : F \to E$ se extiende a un automorfismo $\sigma : E \to E$

Tomo $\sigma_1 = i \circ \sigma : F \to \bar{K}$.

Extiendo por 11 a un isomorfismo $\sigma_2: E \to \bar{K}$ por ser E/K algebraica, y por tanto E/F algebraica.

Proposición 24. Clausura normal de una extensión finita

Sea $F = K(u_1, \ldots u_n)$ una extensión finita y sea $f_i = Irr(u_i, K)$ para $i = 1, \ldots n$. Entonces la clausura normal es E/K donde E es el cuerpo de descomposición de $f = f_1 \cdots f_n$ sobre K. Además E/K es finita.

E/K es normal por la caracterización 3 de extensiones normales (es cuerpo de descomposición de un polinomio). Veamos que es la mínima extensión normal.

Sea N/K clausura normal de F/K. Entonces debe contener a los u_i y por tanto las raíces de los f_i deberían estar en N/K, y descomponer ahí por segunda caracterización de extensión normal. Ello me dice que el cuerpo de decomposición debe ser $N \subset E$, que unido a lo anterior me da el resultado buscado.

Definición. Polinomio normal

Sea $f \in K[X]$ polinomio irreducible. Decimos que f es polinomio normal sobre K si para toda extensión algebraica F/K tal que en F exista una raíz de f el polinomio f descompone como producto de factores lineales.

Proposición 25. Caracterización de polinomios normales $Sea\ f$ un polinomio irreducible en K[X]. Los siguientes enunciados son equivalentes:

- 1. El polinomio f es normal sobre K.
- 2. El cuerpo de descomposición de f sobre K es K(u) donde u es raíz de f
- 3. Todas las raíces de f se expresan como polinomios en un K(u) con u raíz arbitraria de f.

 $1 \implies 2, 2 \implies 3$ son obvios.

Veamos $3 \implies 1$. Sea F/K extensión (no tiene porqué ser algebraica) en la que existe una raíz del polinomio f, u. Entonces $K(u) \subset F$ y por tanto todas las raíces de f están en F

Extensiones separables

Definición. Elemento separable

Un elemento algebraico u sobre un cuerpo K se llama separable si Irr(u, K) no tiene raíces múltiples.

Definición. Extensión separable

Una extensión algebraica F/K se llama separable si todo elemento de F es separable sobre K.

Proposición 26. Torres separables

Sea $E \supset F \supset K$ torre de cuerpos tal que E/K es extensión separable. Entonces E/F y F/K son extensiones separables.

F/K es separable, por tener menos elementos que E. E/F es separable porque Irr(u,F)|Irr(u,K) y Irr(u,K) no tiene raíces múltiples, pero Irr(u,F) sí.

NOTA: Pongamos un ejemplo de cuerpo normal no separable.

$$\mathbb{Z}_p(t^p)(t) \supset \mathbb{Z}_p(t^p)$$

con p primo y t trascendente sobre \mathbb{Z}_p

Definición. Grado separable

Sea una torre de cuerpos

$$\bar{K} \supset F \supset K$$

donde \bar{K} es una clausura algebraica de K

 $LLamamos \ grado \ separable \ de \ F \ sobre \ K \ al \ conjunto:$

$$[F:K]_s = |\{\sigma: F/K \to \bar{K}/K \mid homomorfismo\}|$$

Proposición 27. Grado separable de una torre de cuerpos

$$\bar{K} \supset E \supset F \supset K$$

donde \bar{K} es una clausura algebraica de K. Entonces:

$$[E:K]_s = [E:F]_s[F:K]_s$$

Proposición 28. Sea F/K extensión finita. Entonces $[F:K]_s$ divide a [F:K].

Proposición 29. Caracterización de separabilidad Sea E/K extensión finita. La extensión E/K es separable si y sólo si $[E:K]_s = [E:K]$

Proposición 30. Sea $E \supset F \supset K$ torre de cuerpos con E/K finita. Entonces $[E:K]_s = [E:K]$ si y solo si $[E:F]_s = [E:F]$ y $[F:K]_s = [F:K]$.

Proposición 31. Sea F/K extensión algebraica y $S \subset F$ tal que F = K(S). Entonces la extensión F/K es separable sii todo elemento es separable sobre K

- Proposición 32. 1. Sea $E \supset F \supset K$ torre de cuerpos con E/K algebraica. La extensión E/K es separable sii lo son las extensiones E/F y F/K
 - 2. Sean E/K extensión algebraica separable y F/K extensión arbitraria. Etnocnes EF/F es separable.
 - 3. Sean E/K, F/K dos extensiones algebraicas separables. Entonces EF/K es separable.

Corolario 7. La clausura normal de una extensión separable es separable

Definición. Definimos como clausura separable de K cuerpo, y lo notamos como K^{sep} al subcuerpo formado por todos los elementos de \bar{K} separables sobre K forman un subcuerpo de \bar{K}

Teorema 14. Teorema del elemento primitivo Sea F/K extensión finita. La extensión es **simple** sii el conjunto de cuerpos intermedios $\{E: F \supset E \supset K\}$ es finito.

Si una extensión F/K es finita y separable, entonces es simple.

Definición. Endomorfismo de Frobenius Sea K un cuerpo de característica p. El homomorfismo $\phi: K \to K$ definido por $\phi(u) = u^p$ se llama endomorfismo de Frobenius del cuerpo K.

Teorema 15. Caracterizaciones de cuerpos perfectos

Para un cuerpo K son equivalentes:

- 1. Todo polinomio $f \in K[X]$ irreducible tiene sólo raíces simples.
- 2. Toda extensión algebraica es separable.
- 3. Toda extensión finita es separable.
- 4. car(K) = 0 o car(K) = p y el endomorfismo de Frobenius es sobreyectivo.

En este caso el cuerpo se llama cuerpo perfecto

Las implicaciones $1 \Longrightarrow 2 \Longrightarrow 3$ son claras. Para la implicación $3 \Longrightarrow 1$, dado $f \in K[X]$ polinomio irreducible, con raíces $\alpha_1, \ldots \alpha_n$ en una extensión algebraica, $K(\alpha_1, \ldots \alpha_n)$ es finita, y 3 acaba.

Como ejemplos: cuerpos de característica 0, cuerpos finitos, cuerpos algebraicamente cerrados.

• Derivada y raíces multiples

Definición. Multiplicidad de raíces

Sea $f \in F[X]$ polinomio, $u \in F$ es raíz de f de multiplicidad k si $f = (X - u)^k f_1$ con $f_1(u) \neq 0$.

El elemento u es una raíz simple si k = 1 y es una raíz múltiple si k > 1.

Definición. Derivada de un polinomio en un cuerpo K

Dado $f = \sum_{i=0}^{n} a_i X^i$ definimos la derivada de f como:

$$f' = \sum_{i=0}^{n} i a_i X^{i-1}$$

Proposición 33. 1. (f+g)' = f' + g'

$$2. (fg)' = f'g + fg'$$

$$3. (f^m)' = mf^{m-1}f'$$

Corolario 8. Condiciones para que las raíces sean simples

- 1. f irreducible, $f' \neq 0$. Entonces las raíces de f son simples.
- 2. car(K) = 0 y f irreducible sobre K. Entonces las raíces de f son simples.
- 3. car(K) = p > 0. El polinomio f irreducible tiene raíces múltiples $sii\ f(X) = g(X^p)$

Definición. Polinomio separable

Un polinomio $f \in K[X]$ se llama separable sobre K si sus factores irreducibles tienen solo raíces múltiples.

Teoría de Galois

Lema 9. Dados n homomorfismos $\sigma_1 \dots \sigma_n$ de G grupo al grupo multiplicativo de un cuerpo F, entonces son linealmente independientes.

Supongamos una combinación de longitud mínima s de homomorfismos independientes de entre esos n. Podemos suponer s.p.g. que son los s primeros.

$$\sum_{i=1}^{s} a_i \sigma_i = 0$$

Entonces, podemos despejar $\sigma_s = \sum_{i=1}^{s-1} a_i / a_s \sigma_i$.

Sea $y \in G$ fijo tal que $\sigma_1(y) \neq \sigma_s(y)$ (existe por ser homomorfismos distintos).

Entonces:

$$\sigma_s(xy) = \sigma_s(x)\sigma_s(y) = \sum_{i=1}^{s-1} a_i/a_s\sigma_i(x)\sigma_i(y)$$

Y multiplicando por $\sigma_s(y)$:

$$\sigma_s(x)\sigma_s(y) = \sum_{i=1}^{s-1} a_i/a_s\sigma_i(x)\sigma_s(y)$$

Restando ambas igualdades llegamos a una combinación lineal finita nula y con el primer coeficiente no cero de longitud s-1, contradicción.

A partir del lema anterior deducimos:

Lema 10. Lema de Dedekind Dados n homomorfismos distintos de F_1 a F_2 , con F_i cuerpos, entonces son linealmente independientes sobre F_2

Corolario 9. Si $[F_1:K]=n$ existen a lo sumo n homomorfismos distintos de F_1 a F_2 que fijan K. Es decir $|Hom(F_1/K,F_2/K)| \leq n$

Sea una base de F_1 sobre K $\{u_1, \ldots u_n\}$. Supongamos que existen (n+1) homomorfismos distintos $\alpha_i : F_i \to F_2$ sobre K. El sistema de ecuaciones:

$$\sum_{i=1}^{n+1} x_i \sigma_i(u_j) = 0 \qquad j = 1 \dots n$$

tiene una solución no trivial (ninguna columna contiene el elemento 0 por tener homomorfismos de cuerpos y podemos triangular por Gauss, luego hay una solución $c_1 \dots c_{n+1} \in F_2$ al sistema.

Y por tanto al conseguir la misma combinación lineal que anula a todos los elementos por separado de la base, tenemos que $\forall u \in F_1$:

$$\sum_{i=1}^{n+1} c_i \sigma_i(u) = 0$$

Lo que entra en contradicción con el corolario anteriormente probado.

Definición. Para toda extensión finita F/K llamamos grupo de la extensión al grupo:

$$G(F/K) = \{ \sigma \in Aut(F) | \forall u \in F\sigma(u) = u \}$$

Corolario 10. Para toda extensión finita F/K se verifica $|G(F/K)| \leq [F:K]$

Trivial a partir del corolario anterior.

Definición. Sea E cuerpo arbitrario y G < Aut(E) subgrupo del grupo de automorfismos de E. Llamamos subcuerpo de E fijo por G.

$$E^G = \{ u \in E | \forall \sigma \in G\sigma(u) = u \}$$

Teorema 16. Teorema de Artin Sea G subgrupo finito de Aut(E). Entonces $[E:E^G]=|G|$

Llamo $K = E^G$. Por el corolario anterior sabemos que $|Aut(E/K)| \leq [E:K]$ y $G \subseteq |Aut(E/K)|$, luego $n = |G| \leq [E:E^G]$.

LLamamos $G = \{\alpha_1, \dots \alpha_n\}$

Supongamos la desigualdad estricta. Tomamos n+1 elementos linealmente independientes sobre E^G . Formamos el sistema:

$$\sum_{i=1}^{n+1} x_i \sigma_j(u_i) = 0 \qquad j = 1, \dots n$$

Sea $a_1, \ldots a_{n+1} \in E$ solución con el mínimo número de elementos no nulos. Sea Un automorfismo $\sigma \in Aut(K)$ decimos que fija un elemento $\alpha \in K$ si $\sigma \alpha = \alpha$. Fija K si fija todos sus elementos.

Definición. Una extensión E/K se llama extensión de Galois si existe un grupo G < Aut(E) tal que $E^G = K$. En este caso, el grupo se representa por Gal(E/K) y se llama grupo de Galois de la extensión E/K

Proposición 34. Una extensión finita E/K es de Galois si y sólo si es normal y separable.

Por ser de Galois, $K = E^G$ para algún grupo G. Cada automorfismo $\sigma \in G$ se extiende a un homomorfismo $\sigma : E \to \bar{K}$, luego $[E : K]_S \ge |G| = [E : K] \ge [E : K]_S$

Por tanto $[E:K]_S = [E:K] = |G|$ (Por Artin)

Como para cada homomorfismo $\tau:E\to K$ puedo tomarme $i\circ \tau$ extensión a $\bar K$

Hacia el lado opuesto. Sea E/K extensión normal y separable. Existen $n = [E:K]_S = [E:K]$ homomorfismos $\tau: E \to \bar{K}$ sobre K y para todos ellos $\tau(E) = E$. Por ello G = G(E/K) tiene orden n. Por el teorema de Artin $[E:E^G] = [E:K]$.

Además tenemos la torre de cuerpos $K\subset E^G\subset E$, lo que sumado a lo anterior da $[E^G:K]=1$ y por tanto $E^G=K$ y la extensión E/K es de Galois.

• Correspondencia de Galois

Sea E/K extensión finita de Galois, G = Gal(E/K). Definimos una correspondencia entre el conjunto $\mathcal{S}(G)$ de subgrupos de G y el conjunto $\mathcal{F}(E/K)$ de cuerpos intermedios de E/K. Para H < G definimos $E^H = H^*$. A cada cuerpo intermedio F entre E y K le hacemos corresponder el grupo de Galois de la extensión E/F y llamamos $G^F = F^*$ A $F \mapsto F^*$, $H \mapsto H^*$ las denominamos correspondencia de Galois para la extensión E/K

Proposición 35. Sean F, F_1, F_2 cuerpos intermedios de E/K y H, H_1, H_2 subgrupos de G = Gal(E/K). Entonces:

- 1. $F_1 \subset F_2 \implies F_2^* \subset F_1^*$; $H_1 \subset H_2 \implies H_2^* \subset H_1^*$
- 2. $F \subset F^{**}$; $H < H^{**}$
- 3. $F^* = F^{***}$: $H^* = H^{***}$

Teorema 17. Teorema fundamental Sea E/K una extensión de Galois finita con grupo G = Gal(E/K)

- 1. La correspondencia de Galois establece una biyección $\mathcal{F}(E/K) \cong \mathcal{S}(G)$ dada por $F = H^* \leftrightarrow H = F^*$. Además $F_1 \subset F_2$ si y solo si $H_1 \subset H_2$
- 2. Dicha biyección es antiisomorfismo de retículos: $(F_1 \cdot F_2)^* = F_1^* \cap F_2^* \ y \ (F_1 \cap F_2)^* = F_1 * \vee F_2^*$
- 3. F_1/K , F_2/K son conjugadas si y sólo si los subgrupos F_1^* y F_2^* son conjugados en G.

- 4. F/K es normal sii F^* es un subgrupo normal de G. En este caso $Gal(F/K) \cong G/F^*$
- 5. Para todo subgrupo H < G se tiene $|H| = [E:H^*]$ y $[G:H] = [H^*:K]$. Para todo $F \in \mathcal{F}(E/K)$ se verifica $[E:F] = |F^*|$ y $[F:K] = [G:F^*]$

Demostración de 5.

 $|G| = [E:E^G] = [E:K]$ y $|H| = [E:E^H] = [E:H^*]$ por tereoma de Artin.

Por Lagrange |G| = [G:H]|H|. Simplificando factores $[F:K] = [G:F^*]$

Por el grado de las extensiones: $[E:K] = [E:H^*][H^*:K]$

Demostración de 1.

Tenemos la torre $G > H^{**} > H$ y:

$$[G:H^{**}] = [H^{***}:K] = [H^*:K] = [G:H]$$

Tenemos la torre $E \supset F^{**} \supset F$ y:

$$[E:F] = |F^*| = |F^{***}| = [E:F^{**}]$$

La segunda parte sale de la proposición anterior y de haber probado que la conexión de Galois nos da una biyección.

Demostración de 2.

Por ser antiisomorfismos de conjuntos ordenados (son biyecciones de conjuntos que invierten el orden).

Demostración de 3.

Sea $f: E/K \to E/K$ isomorfismo que conjuga F_2 y F_1 (esto es $f(F_1) = F_2$. Sea $u = f(v) \in F_2; v \in F_1$. Así, dado $\tau \in F_1^*$ automorfismo, se tiene $f\tau f^{-1}(u) = f\tau(v) = f(v)$, luego $fF_1^*f^{-1} \subset F_2^*$

El otro contenido es igual.

Demostración de 4.

Desde 3.

Para demostrar la isomorfía: $\Phi: G=Gal(E/K) \to Gal(F/K)$ dado por restricción. Aplicando primer teorema de isomorfía:

$$Img(\Phi) = Gal(F/K) \cong Gal(E/K)/Ker(\Phi)$$

Y $Ker(\Phi) = F^*$. Estamos usando 20 y que E es normal por ser de Galois.

• Propiedades de extesniones de Galois

Proposición 36. Sea $K \subset F \subset E$ una torre de cuerpos tal que E/K es una extensión de Galois finita. Entonces la extensión E/F es de Galois finita y el grupo Gal(E/F) es un subgrupo de Gal(E/K)

Definición. Una extensión finita E/K de Galois se dice:

- 1. **Abeliana** si el qupo G = Gal(E/K) es abeliano.
- 2. **Cíclica** si G = Gal(E/K) es cíclica.
- 3 Soluble si G es soluble

???

Denotamos Aut(K/F) los automorfismos de K que fijan F. Si F=(1) entonces Aut(K/F)=Aut(K).

Proposición 37. Aut(K) es grupo bajo la composición y Aut(K/F) es un subgrupo.

Proposición 38. Dado un polinomio con coeficientes en K, $\sigma \in K$, si α es raíz del polinomio, entonces $\sigma \alpha$ es raíz del polinomio.

Proposición 39. Si H es un subgrupo del grupo de automorfismos de K, los elementos de K fijos por H son subcuerpo de K, con K cuerpo.

Proposición 40. 1. $F_1 \subseteq F_2 \subseteq K$ son dos subcuerpos de K entonces $Aut(K/F_2) \le Aut(K/F_1)$

2. $H_1 \leq H_2 \leq Aut(K)$ son dos subgrupos de automorfismos con cuerpos fijos asociados F_1 y F_2 , resp. entonces $F_2 \subseteq F_1$

Esto último establecerá una relación entre los subgrupos del grupo de Galois y los subcuerpos de una extensión.

Proposición 41. Sea E el cuerpo de descomposición sobre F del polinomio $f(x) \in F[x]$. Entonces:

$$|Aut(E/F)| \leq [E:F]$$

con iqualdad si f(x) es separable sobre F

Nótese que este número da la cantidad de diagramas de la forma que se detalla a continuación que pueden construirse.

Conviene tener presente siempre el diagrama:

$$\sigma: \quad E \quad \xrightarrow{\sim} \quad E'$$

$$\tau: \quad F(\alpha) \quad \xrightarrow{\sim} \quad F'(\beta)$$

$$\downarrow \qquad \qquad \downarrow$$

$$\phi: \quad F \quad \xrightarrow{\sim} \quad F'$$

donde la anterior proposición es un caso particular con F = F', y E = E'

Definición. K/F extensión finita. Entonces K se llama de Galois sobre F y K/F es una extensión de Galois si |Aut(K/F)| = [K:F]. Si K/F es de Galois el grupo de automorfismos Aut(K/F) es llamada grupo de Galois de K/F, denominada Gal(K/F).

Corolario 11. Si K es el cuerpo de descomposición sobre F de un polinomio separable f(x) entonces K/F es de Galois.

Esto motiva la siguiente definición:

Definición. Si f(x) es un polinomio separable sobre F, entonces se llama grupo de Galois de f(x) sobre F a E/F con E cuerpo de descomposición de f sobre F

Como ejemplo,

1. $\mathbb{Q}(\sqrt{2})/\mathbb{Q}$ es extensión de Galois con grupo de Galois $Gal(\mathbb{Q}(\sqrt{2})/\mathbb{Q})=\{1,\sigma\}\equiv\mathbb{Z}_2$

- 2. $\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q}$ no es de Galois ya que dado un $\sigma \in Aut(\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q})$, debe conservar raíces del polinomio $Irr(\sqrt[3]{2},\mathbb{Q})=x^3-2$, pero dos de ellas son complejas, luego no pertenecientes a $\mathbb{Q}\sqrt[3]{2}$ por tanto, y no podemos construir más que un elemento de $Aut(\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q})$, la identidad. Nótese que aunque todas las raíces de x^3-2 estuviesen en $\mathbb{Q}(\sqrt[3]{2})$, ello no nos garantiza que podamos construir siempre "suficientes" automorfismos (por ejempo si el polinomio no tiene factores lineales de grado 1 sobre la extensión).
- 3. El cuerpo de descomposición de cualquier polinomio sobre $\mathbb Q$ es de Galois según el corolario anterior. Por ejemplo , $\mathbb Q(\sqrt{2},\sqrt{3})$ donde como sabemos que el grupo de Galois tiene dimensión 4 (la de $\mathbb Q(\sqrt{2},\sqrt{3})$, cuerpo de descomposición del polinomio $(x^2-2)(x^2-3)$), y los únicos automorfismos posibles se obtienen de asignar $\sqrt{2}\mapsto \pm \sqrt{2}$ y $\sqrt{3}\mapsto \pm \sqrt{3}$
- 4. El cuerpo de descomposición de x^3-2 sobre $\mathbb Q$ es Galois de grado 6. Las raíces de esta ecuación son $\sqrt[3]{2}$, $\rho\sqrt[3]{2}$, $\rho^2\sqrt[3]{2}$, y esto da 9 combinaciones distintas de raíces para formar automorfismos, pero como el grupo de Galois tiene orden 6, no todos ellos serán realmente automorfismos.

5.

$$\mathbb{Q} \subset \mathbb{Q}(\sqrt{2}) \subset \mathbb{Q}(\sqrt[4]{2})$$

muestra que no toda extensión de Galois de una extensión de Galois lo es (ya que tenemos **una extensión de grado 2, es de Galois por tanto**), pero las raíces de $x^4-2=Irr(\sqrt[4]{2},\mathbb{Q})$ son $\{\pm\sqrt[4]{2},\pm i\sqrt[4]{2}\}$ y de esas 4 raíces hay 2 que no están en $\mathbb{Q}\sqrt[4]{2}$

6. Automorfismo de Frobenius

NOTA: Conveniente para efectuar demostraciones de estructura de subgrupos de Galois:

$$<\sigma, \tau : \sigma^2 = 1, \tau^2 = 1, \sigma\tau = \tau\sigma >= K_4$$

 $<\sigma, \tau : \sigma\tau = \tau\sigma^2, \tau^2 = 1, \sigma^3 = 1 >= S_3$

Ejercicios

Ejercicio 1.24

Dado un término $X_1^{e_1} \cdots X_n^{e_n}$ con $e_1 \geq \ldots \geq e_n$, el polinomio simétrico mínimo que contiene a $X_1^{e_1} \cdots X_n^{e_n}$ lo representamos por $(X_1^{e_1} \cdots X_n^{e_n})$, y podemos escribirlo fácilmente como

$$(X_1^{e_1} \cdots X_n^{e_n}) = \frac{1}{k} \sum_{\sigma \in S_n} X_{\sigma(1)}^{e_1} \cdots X_{\sigma(n)}^{e_n}$$

donde k es el número de términos $X^{e_1}_{\sigma(1)}\cdots X^{e_n}_{\sigma(n)}$ que son iguales a $X^{e_1}_1\cdots X^{e_n}_n$. Calcula el valor de k, y el número de monomios de $(X^{e_1}_1\cdots X^{e_n}_n)$.

Notamos $d_1, \ldots d_m, d_1 > \ldots > d_m$, donde $d_1, \ldots d_m \in \{e_1, \ldots e_n\}$ y $k_i = card(\{e_i : e_i = d_i\})$

Por combinatoria, sabemos por tanto que $k = \prod k_i!$ y que tendremos un número $\frac{k}{n}$ de monomios de tipo $(X_1^{e_1} \cdots X_n^{e_n})$.

Ejercicio 1.25

Se considera el polinomio $p(x) = x^3 - 5x - 5$ con raíces α, β, γ . Calcula el valor de $\left(\frac{1}{\alpha+1}\right)^3 + \left(\frac{1}{\beta+1}\right)^3 + \left(\frac{1}{\gamma+1}\right)^3$

 $\frac{1}{\alpha+1}, \frac{1}{\beta+1}, \frac{1}{\gamma+1}$ anulan a $p(\frac{1}{x}-1)$ donde:

$$p\left(\frac{1}{x} - 1\right) = \frac{-1}{x^3} \cdot (x^3 + 2x^2 + 3x - 1)$$

Luego
$$a=\frac{1}{\alpha+1}, b=\frac{1}{\beta+1}, c=\frac{1}{\gamma+1}$$
 son raíces de:

$$q(x) = x^{3} + 2x^{2} + 3x - 1 = (x - a)(x - b)(x - c)$$

Definimos:

$$e_1 = a + b + c$$

$$e_2 = ab + ac + bc$$

$$e_3 = abc$$

Por un teorema visto en clase, podemos expresar de forma única $a^3 + b^3 + c^3$ (que es lo pedido por el enunciado, y un polinomio simétrico en las variables a, b, c) como un polinomio de grado 3 en función de e_1, e_2, e_3

Se comprueba fácilmente que $a^3+b^3+c^3=e_1^3-3e_1e_2+3e_3$ Por otro lado, igualando los coeficientes de q factorizado y sin factorizar:

$$e_1 = -2$$

$$e_2 = 3$$

$$e_3 = 1$$

Así
$$a^3 + b^3 + c^3 = 13$$

Ejercicio 2.14

Sea A un anillo y $\phi:A[X]\to A[X]$ un homomorfismo tal que $\phi(a)=a$ para cada $a\in A$. Supongamos que $\phi(X)=f(X)\in A[X]$.

- 1. Si A es un dominio de integridad (DI), ¿qué condición tiene que verificar f(X) para que ϕ sea un isomorfismo?*
- 2. ¿Qué ocurre cuando A no es un DI?

1-

Se tiene
$$\phi(\sum_{i=0}^n a_i X^i) = \sum_{i=0}^n a_i f(X)^i$$
, si $f(X) = ux + a$ con u unidad en A .

Para $g(x) = u^{-1}(x - a)$ se tiene $f \circ g = id = g \circ f$ y por tanto definiendo $\gamma(\sum_{i=0}^n a_i X^i) = \sum_{i=0}^n a_i g(X)^i$ se cumple que $\gamma \circ \phi = id = \phi \circ \gamma$

Claramente, f(X) no puede ser constante, ya que entonces tendríamos $Img(\phi) \subseteq A$.

Si $gr(f(X)) = m \ge 2$, puesto que al ser dominio de integridad, no se anula el coeficiente del término de mayor grado, tendríamos que:

$$gr(\phi(p(x))) = gr(p(X)) \cdot m$$

Y por tanto la función ϕ no podría ser sobreyectiva, ya que en $Img(\phi)$ sólo estarían contenidos los polinomios de grado un múltiplo de m. También se verifica que en f(X) = ux + a, u no puede ser no unidad, puesto que en dicho caso tendríamos que el término líder de un polinomio $\phi(p(x))$ debería estar en el ideal generado por u, que sería todo A si y solo si u es unidad.

2-

Podría ocurrir que si el coeficiente líder de f(X) es nilpotente, ϕ fuera isomorfismo, como por ejemplo con $f(X) = 2X^2 + X$ en \mathbb{Z}_4 . Con dicho f, tendríamos $\phi(X^2 + 2X) = X$, lo que asegura sobreyectividad, y como $gr(\phi(x)) \geq gr(p(x))$, el kernel de ϕ debería ser $\{0\}$, lo que asegura inyectividad.

Ejercicio 2.15

Consideramos $\mathbb{Z} \subset \mathbb{Q}$

- 1. Si $f(X) \in \mathbb{Z}[X]$ es irreducible, prueba que f(X) es irreducible sobre \mathbb{Q}
- 2. Si $f(X) \in \mathbb{Z}[X]$ es irreducible, entonces $F = \frac{\mathbb{Q}[X]}{(f(X))}$ es un cuerpo y tenemos inclusiones $\mathbb{Z} \subset \mathbb{Q} \subset F$.
- 3. Si llamamos $x = X + (f(X)) \in F$, prueba que x es una raíz de $f(X) \in F[X]$

Supongamos que f(X) es reducible sobre \mathbb{Q} . Entonces:

$$f(X) = p_1(X) \cdot p_2(X), \qquad gr(p_1) \ge 1, gr(p_2) \ge 1$$

Tomamos el menor $n \in \mathbb{N}$ verificando $nP = (b_l + b_{l-1}x^{l-1} + \cdots + b_0) \cdot (c_m x^m + c_{m-1}x^{m-1} + \cdots + c_0)$ donde todos los b_i y todos los c_j son enteros.

Si tuviéramos n = 1, ya habríamos acabado. Suponemos n > 1. Sea p divisor primo de n. Entonces no todos los b_i ni todos los c_j son divisibles por p, puesto que n es mínimo.

Sean k, t los índices de los primeros b_i, c_j verificando que $p \nmid b_i, p \nmid c_j$

Así,
$$n_{k+t} = b_{k+t}c_0 + b_{k+t-1}c_1 + \cdots + b_kc_t + \cdots + b_0c_{k+t}$$

Pero como $p \mid b_{k+t}c_0, p \mid b_{k+t-1}c_1, \dots b_{k+1}c_{t-1}, b_{k-1}c_{t+1}, \dots b_0c_{k+l}$ necesariamente debe tenerse, por $p \mid n$ que $p \mid b_kc_t$, lo cual es contradicción.

Por tanto n = 1.

2-

Sabemos que A/I con A anillo, I ideal, es cuerpo si y solo si I es maximal.

I = (f(X)) es maximal en $\mathbb{Q}[X]$, ya que dado otro ideal $(f(X)) \subseteq M$, como $\mathbb{Q}[X]$ es DIP, M = (g(X)), con $g(X) \in \mathbb{Q}[X]$, pero eso quiere decir que

 $f(X) = a(x) \cdot g(X)$ con a(X) no constante, ya que en caso opuesto, los dos ideales serían iguales, pero esto entra en contradicción con el hecho de que f(X) es irreducible.

Luego (f(X)) es maximal y F cuerpo.

Además, a cada elemento $q \in \mathbb{Q}$ podemos asignarle un elemento q + (f(X)). Dados $q, q' \in \mathbb{Q}$, se tiene que $q + \mathbb{Q} \neq q' + \mathbb{Q}$, ya que caso opuesto tendríamos $q - q' \in (f(X))$, lo que es imposible, puesto que $q - q' \neq 0$ y es una constante.

3-

Sea $f(X) = \sum a_i X^i$ en $\mathbb{Q}[X]$. Entonces tenemos que en F[X]:

$$f(x) = \sum (a_i + (f(X)) \cdot (X^i + (f(X)))) = \sum (a_i \cdot X^i + (f(X))) = \sum$$

Luego es una raíz del polinomio.

Ejercicio 2.16

Describe los elementos del cuerpo $\frac{\mathbb{F}_2[X]}{(X^3 + X + 1)}$, completando las tablas de la suma y el producto.

Los elementos del cuerpo citado son de la forma $p(X) + (X^3 + X + 1)$ con p(X) un polinomio producto de irreducibles en $\mathbb{F}_2[X]$. Así, los elementos de este cuerpo son:

$$0 = 0 + (X^{3} + X + 1)$$
$$1 = 1 + (X^{3} + X + 1)$$
$$a = X + (X^{3} + X + 1)$$
$$b = X + 1 + (X^{3} + X + 1)$$

$$c = X^{2} + X + 1 + (X^{3} + X + 1)$$

$$d = X^{2} + X + (X^{3} + X + 1)$$

$$e = X^{2} + (X^{3} + X + 1)$$

$$f = X^{2} + 1 + (X^{3} + X + 1)$$

• Tabla del producto

•	0	1	a	b	c	d	e	f
0	0	0	0	0	0	0	0	0
1	0	1	a	b	c	d	e	f
a	0	a	e	d	f	c	b	1
b	0	b	d	f	a	1	c	e
c	0	c	f	a	b		-	d
d	0	d	c	1	e	a	f	b
e	0	e	b			f	d	a
f	0	f	1	e	d	b	a	c

• Tabla de la suma

Ejercicio 2.17

Se considera
$$\alpha = \sqrt{2} + \sqrt{3} + \sqrt{5} \in F = \mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5})$$

- 1. Prueba que $[\mathbb{Q}(\sqrt{2},\sqrt{3},\sqrt{5}):\mathbb{Q}]=8$
- 2. Prueba que $F = \mathbb{Q}(\alpha)$
- 3. Calcula $Irr(\alpha, \mathbb{Q})$

4. Encuentra elementos $\beta \in F$, de grado cuatro sobre \mathbb{Q}

1-

Tenemos la torre de cuerpos:

$$\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{2}) \subseteq \mathbb{Q}(\sqrt{2})(\sqrt{3}) \subseteq \mathbb{Q}(\sqrt{2})(\sqrt{3})(\sqrt{5})$$

Y por tanto se cumple:

$$\begin{split} & [\mathbb{Q}(\sqrt{2})(\sqrt{3})(\sqrt{5}) : \mathbb{Q}] = \\ & = [\mathbb{Q}(\sqrt{2}) : \mathbb{Q}] \cdot [\mathbb{Q}(\sqrt{2})(\sqrt{3}) : \mathbb{Q}(\sqrt{2})] \cdot [\mathbb{Q}(\sqrt{2})(\sqrt{3})(\sqrt{5}) : \mathbb{Q}(\sqrt{2})(\sqrt{3})] \end{split}$$

Se verifica:

$$[\mathbb{Q}(\sqrt{2}):\mathbb{Q}]=2$$

$$[\mathbb{Q}(\sqrt{2})(\sqrt{3}):\mathbb{Q}(\sqrt{2})]=2$$

$$[\mathbb{Q}(\sqrt{2})(\sqrt{3})(\sqrt{5}):\mathbb{Q}(\sqrt{2})(\sqrt{3})]=2$$

ya que es conocido que $[\mathbb{Q}(\sqrt{2}):\mathbb{Q}]=2$, y además se tienen las otras dos igualdades, al no poder expresar $\sqrt{2}=a+b\sqrt{3}, \quad a,b\in\mathbb{Q}$ ni $\sqrt{2}=a+b\sqrt{2}+c\sqrt{3}+d\sqrt{6}, \quad a,b,c,d\in\mathbb{Q}$

2-

Claramente $\mathbb{Q}(\alpha) \subseteq \mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5})$ Se tiene que:

$$(\sqrt{2} + \sqrt{3} + \sqrt{5})^2 = 2\sqrt{15} + 2\sqrt{10} + 2\sqrt{6} + 10$$

Por tanto
$$\beta = \sqrt{15} + \sqrt{10} + \sqrt{6} \in F$$

Además
$$\beta^2 = 4\sqrt{15} + 6\sqrt{10} + 10\sqrt{6} + 31$$

Y por tanto $\gamma = 4\sqrt{15} + 6\sqrt{10} + 10\sqrt{6} \in F$

Además:

$$\delta = \frac{1}{2}(\gamma - 4\beta) = \sqrt{10} + 3\sqrt{6}$$

$$\theta = \frac{1}{2}(6\beta - \gamma) = \sqrt{15} - 2\sqrt{6}$$

$$\delta^2 = 10 + 9 \cdot 6 + 4\sqrt{15}$$

$$\theta^2 = 15 + 4 \cdot 6 - 12\sqrt{10}$$

Juntando toda esta información con que $\{1,\sqrt{2},\sqrt{3},\sqrt{5},\sqrt{6},\sqrt{10},\sqrt{15},\sqrt{30}\}$ es base de $\mathbb{Q}(\sqrt{2},\sqrt{3},\sqrt{5})$ deducimos que $1,\sqrt{15},\sqrt{10},\sqrt{6},\sqrt{2}+\sqrt{3}+\sqrt{5}\in F$, 5 elementos linealmente independientes, y F sólo puede tener grado 8,4 o 2 luego debe ser 8.

3-

$$\beta = \sqrt{5} + \sqrt{2} + \sqrt{3} \Leftrightarrow (\beta - \sqrt{5})^2 - (\sqrt{2} + \sqrt{3})^2 = 0 \Leftrightarrow \beta^2 - 2\sqrt{5}\beta - 2\sqrt{6} = 0 \Leftrightarrow (\beta^2 - 2\sqrt{6})^2 = 4 \cdot 5\beta^2 \Leftrightarrow \beta^4 - 4\sqrt{6}\beta^2 - 20\beta^2 + 24 = 0 \Leftrightarrow (\beta^4 - 20\beta^2 + 24)^2 - 16 \cdot 6 \cdot \beta^4 = 0 \Leftrightarrow \beta^8 - 40\beta^6 + 352\beta^4 - 960\beta^2 + 576 = 0$$

Por tanto $X^8-40X^6+352X^4-960X^2+576$, al ser polinomio de grado 8, que es el grado de la extensión, debe ser irreducible, $Irr(\alpha,\mathbb{Q})$

4-

Nos basta demostrar que $\mathbb{Q}(\sqrt{2})(\sqrt{3}) = \mathbb{Q}(\sqrt{2}+\sqrt{3})$ y por tanto $\sqrt{2}+\sqrt{3}=\omega$ sería elemento de grado 4.

Claramente $\mathbb{Q}(\omega)\subseteq\mathbb{Q}(\sqrt{2},\sqrt{3})$, y como $\sqrt{2}+\sqrt{3}\notin\mathbb{Q}$, $\mathbb{Q}(\omega)$ tendrá grado 4 o 2 sobre \mathbb{Q} . Además:

$$\omega^2 = 2 + 3 + \sqrt{6}$$

,

$$\omega^3 = 9\sqrt{3} + 11\sqrt{2}$$

y podemos obtener a partir de combinaciones de $\omega, \omega^2, \omega^3$ los elementos $\sqrt{2}, \sqrt{3}, \sqrt{6}$, que pertenecen a $\mathbb{Q}(\omega)$, y que están en la base $\{1, \sqrt{2}, \sqrt{3}, \sqrt{6}\}$ de $\mathbb{Q}(\sqrt{2}, \sqrt{3})$. Por tanto ω es elemento de grado 4.

Ejercicio 3.11

Sea K una extensión de \mathbb{F}_2 de grado n>1, y $f(X)\in\mathbb{F}_2[X]$ un polinomio no constante*

- 1. Prueba que si $\alpha \in K$ es una raíz de f(X), entonces $\{\alpha^2, \alpha^4, \alpha^{2n-1}\}$ son raíces de f(X) en K
- 2. Prueba que en general $\{\alpha,\alpha^2,\alpha^4,\alpha^{2n-1}\}$ no son todas las raíces de f(X)
- 3. Prueba que si β es una raíz primitiva de K, que es raíz de f(X), entonces el grado de f(X) es mayor o igual que n

1-

Trivialmente, en
$$\mathbb{F}_2$$
 tenemos que: $\left(\sum_{i=1}^k a_i\right)^2 = \sum_{i=1}^k a_i^2$

Por inducción:
$$\left(\sum_{i=1}^k a_i\right)^{2n} = \sum_{i=1}^k a_i^{2n}$$

Así:

$$f(\alpha^{2n}) = \sum_{i=1}^{m} \alpha^{2ni} = \left(\sum_{i=1}^{m} \alpha^{i}\right)^{2n} = f(\alpha)^{2n} = 0$$

2-

Tenemos el caso trivial x(x+1), en el que las raíces 0, 1 están en $\mathbb{F}_2 \subseteq K$, pero 0 no es potencia de 1 (entendiendo como 0 y como 1 los del cuerpo K que cojamos como extensión, que puede ser por ejemplo $\frac{\mathbb{F}_2[X]}{x^2+x+1}$ con x^2+x+1 irreducible en $\mathbb{F}_2[X]$)

3-

Si β es raíz primitiva de K, se tiene que $\{1, \beta, \dots, \beta^{n-1}\}$ es base de K sobre \mathbb{F}_2 .

Si el grado de f(X) fuese menor que n, tendríamos que $f(\beta) = 0$ es una combinación lineal de los elementos de la base que vale 0, y esto entra en contradicción con que sea base.

Ejercicio 4.17

Sea $K \subseteq E \subseteq F$ una torre de cuerpos y supongamos que $\alpha_1, \ldots \alpha_r$ son algunas de las raíces de $f(X) \in K[X]$ y $E = K(\alpha_1, \ldots, \alpha_r)$. Demuestra que F es el cuerpo de descomposición de f(X) sobre K si, y sólo si, F es el cuerpo de descomposición de f(X) sobre E

Sean $\alpha_1, \ldots, \alpha_n$ todas las raíces de f(X) con n > r

Basta con afirmar que el cuerpo de descomposición de f(X) sobre K es:

$$G = K(\alpha_1, \ldots, \alpha_n)$$

Y el de f(X) sobre E:

$$G' = E(\alpha_1, \dots, \alpha_n) = K(\alpha_1, \dots, \alpha_r)(\alpha_1, \dots, \alpha_n) = K(\alpha_1, \dots, \alpha_n) = G$$

Ejercicio 4.18

Sea $a \in \mathbb{Q}$ y n un número entero positivo impar tal que $\sqrt[n]{a} \in \mathbb{R} \setminus \mathbb{Q}$. Demuestra que la extensión $\mathbb{Q}(\sqrt[n]{(a)})/\mathbb{Q}$ no es normal

La extensión no es normal ya que si lo fuese, como x^n-a es un polinomio que divide a $p(X)=Irr(\alpha,K)$ sobre $\mathbb{Q}[X]$, y como n es impar, x^n-a sólo puede tener una raíz real, por ser sus raíces de la forma $\omega^k\sqrt[n]{a}$, con ω raíz n- oésima de la unidad. Luego todas las raíces de p(X) deberían estar en la extensión $E=\mathbb{Q}(\sqrt[n]{a})/\mathbb{Q}$. Además $E\subseteq\mathbb{R}$, luego $\sqrt[n]{a}\in\mathbb{Q}$, es decir, el polinomio debería ser forzosamente $x-\sqrt[n]{a}$, que implica que $\sqrt[n]{a}\in\mathbb{Q}$, icontradicción!

Ejercicio 4.19

Sea E/K una extensión normal y $f(X) \in K[X]$ un polinomio(mónico) irreducible. Si f(X) se factoriza en E como producto de dos polinomios(mónicos) irreducibles $f_1(X)$ y $f_2(X)$. Demuestra que existe un homomorfismo $\sigma: E/K \longrightarrow E/K$ tal que $f_1^{\sigma}(X) = f_2(X)$

Sea α raíz de f_1 y β raíz de f_2 en una clausura de K. Como $f = Irr(\alpha, K)$, $f = Irr(\beta, K)$, tenemos que existe un isomorfismo $\sigma : \overline{K}/K \longrightarrow \overline{K}/K$ verificando $\sigma(\alpha) = \beta$.

Por ser E extensión normal, luego finita, \overline{K} es también su clausura algebraica, y por tanto $E\subseteq \overline{K}$. Así $E^{\sigma}=E$, luego $\sigma_{|E}$ es isomorfismo. Y

como $f_1^{\sigma}(\beta) = f_1(\alpha) = 0$, tenemos que $f_1^{\sigma}|f_2$, pero un isomorfismo se lleva polinomios irreducibles en irreducibles, luego $f_1^{\sigma} = f_2$

Ejercicio 5.10

Sea K un cuerpo de característica $p \neq 0$ y t una indeterminada sobre K. Prueba que el polinomio $X^p - t^p \in K(t^p)[X]$ es irreducible.

En una extensión K' = K(t) de K tenemos $X^p - t^p = (X - t)^p$, ya que los términos intermedios del desarrollo valen 0, al ser p la característica de K.

Como $K(t^p) \subseteq K'$, tenemos que los únicos factores que pueden dividir a X^p-t^p son de la forma $(X-t)^m$. Supongamos que alguno tuviese coeficientes en $K(t^p)$. Entonces tendríamos que sus coeficientes también están en K', y por tanto podríamos reescribir t^m como raíz de un polinomio con coeficientes en K, pero t era trascendente.

Ejercicio 5.11

Estudiar si son o no ciertas las siguientes afirmaciones:

- 1. $\sqrt[3]{-1}$ es separable sobre \mathbb{F}_9
- 2. $\sqrt[3]{-1}$ es separable sobre \mathbb{F}_{49}
- 3. $\sqrt[7]{5}$ es separable sobre \mathbb{F}_{77}
- 4. t es separable sobre $\mathbb{F}_{p^2}(t^p)$, siendo p un número entero positivo y t una indeterminada sobre \mathbb{F}_{p^2}

1-

 \mathbb{F}_3 es cuerpo perfecto por ser finito. Luego por ser \mathbb{F}_9 extensión finita de \mathbb{F}_3 tenemos que es separable, y todo elemento suyo es separable.

 $^{2,3-}$

Se resuelven de manera análoga al primer apartado, ya que \mathbb{F}_7 es cuerpo perfecto por ser finito, y \mathbb{F}_{7^7} es extensión finita, luego todo elemento es separable.

4-

El cuerpo \mathbb{F}_p tiene característica p y su extensión \mathbb{F}_{p^2} tiene también por tanto característica p.

Por el primer ejercicio $X^p-t^p=(X-t)^p=Irr(t,\mathbb{F}_{p^2}(t^p)),$ luego t no es separable.

Ejercicio 5.12

Sea E un cuerpo y $\{\phi_1, \ldots, \phi_n\}$ un conjunto de n automorfismos distintos de E. llamamos $K = \{e \in e | \phi_i(e) = e, 1 \le i \le n\}$. demuestra que $[E : K] \ge n$

El teorema de Artin nos afirma que [E:K]=n

Ejercicio 7.25

Sea $f \in K[X]$ un polinomio no constante sin raíces múltiples y G = Gal(f/K). Prueba que son equivalentes: list-style-type: lower-roman

- 1. f(X) es irreducible
- 2. G actúa transitivamente sobre las raíces de f

Llamamos E al cuerpo de descomposición de f sobre K. Se tiene Gal(f/K) = Gal(E/K). Sabemos que E/K es de Galois $\iff E/K$ es normal y separable, luego:

$$f(x) = \alpha(x - \alpha_i) \cdots (x - \alpha_n)$$
 $\alpha, \alpha_i \in E,$ $\alpha_i \neq \alpha_j \quad i \neq j$

 $2 \implies 1.$

Supongamos que f no es irreducible.

Entonces $f(x) = p(x) \cdot q(x)$ con $p(x), q(x) \in K[x]$ no constantes.

Podemos suponer, sin pérdida de generalidad:

$$p(x) = \alpha \prod_{i=1}^{m} (x - \alpha_i)$$

$$q(x) = \prod_{i=m+1}^{n} (x - \alpha_i)$$

Dadas $\alpha_i \neq \alpha_j$ raíces de f, $\exists \varphi_{i,j} \in G : \varphi(\alpha_i) = \alpha_j$

Tomo $\varphi_{1,n}$. Se tiene que $\varphi_{1,n}(p) = p$, $\varphi_{1,n}(q) = q$, ya que $\varphi_{1,n}$ conserva K.

Pero $\varphi_{1,n}(p(\alpha(n))) = p(\varphi_{1,n}(\alpha(n))) = p(\alpha(1)) = 0$, lo que es contradición, ya que α_1 no era raíz de p. Luego f es irreducible.

 $1 \implies 2$.

Si f es irreducible, ninguna de sus raíces puede estar en K, ya que en ese caso $f(x)/(x-\alpha_i)$ estaría en K[x] y eso entra en contradicción con que sea irreducible.

En esas condiciones es claro que $\exists \varphi: K(\alpha_i)/K \longrightarrow K(\alpha_j)/K$ isomorfismo verificando $\varphi(\alpha_i) = \alpha_j$ y podemos extenderlo a un isomorfismo $\sigma: K(\alpha_1, \ldots \alpha_n) \longrightarrow K(\alpha_1, \alpha_n)$ sobre φ .

Por tanto σ es automorfismo sobre E que conserva K y cumple $\sigma(\alpha_i) = \varphi(\alpha_i) = \alpha_j$

Ejercicio 7.27

Prueba que los subgrupos transitivos de S_4 son los subgrupos siguientes:

1. S_4 , que es normal.

- 2. A_4 , que es normal.
- 3. $D_4 = <(1234), (13) > y \text{ todos sus conjugados.}$
- 4. $C_4 = \langle (1234) \rangle$, y todos son conjugados.
- 5. $V = \{1, (12)(34), (13)(24), (14)(23)\}$ que es normal.

Como consecuencia, si $f(X) \in \mathbb{Q}[X]$ es un polinomio irreducibbe de grado cuatro, el grupo de Galois de $\mathbb{Q}(f)/\mathbb{Q}$ es isomorfo a uno de estos.

- 1. Es claro que S_4 es transitivo, ya que $E = (12)(34), (13)(24), (14)(24), id \subseteq S_4$ y con alguno de estos elementos, dado $x, y \in \{1, 2, 3, 4\}$ puedo tomar un $\tau \in E$ verificando $\tau(x) = y$.
- 2. A_4 es transitivo, ya que dado $x, y \in \{1, 2, 3, 4\}$, si $x \neq y$, siempre me puedo tomar $z, u \in \{1, 2, 3, 4\} \setminus \{x, y\}$ con $z \neq u$ y la permutación $\tau = (xy)(zu)$ está en A_4 , y cumple $\tau(x) = y$
- 3. D_4 es transitivo porque contiene a C_4 que lo es, ya que uno de sus generadores es (1234).
- 4. C_4 es transitivo porque:

$$\tau_0 = (1234)$$

$$\tau_1 = (1234)^2 = (13)(24)$$

$$\tau_2 = (1234)^3 = (1234)(13)(24) = (1432)$$

$$\tau_3 = (1234)^4 = id$$

Estos elementos pertenecen a C_4 y se tiene:

$$\tau_0(1) = 2, \tau_0(2) = 3, \tau_0(3) = 4, \tau_0(4) = 1$$

$$\tau_1(1) = 3, \tau_1(2) = 4, \tau_1(3) = 1, \tau_1(4) = 2$$

$$\tau_2(1) = 4, \tau_2(2) = 1, \tau_2(3) = 2, \tau_2(4) = 3$$

$$\tau_3(x) = x \qquad \forall x \in \{1, 2, 3, 4\}$$

1.
$$V = {\sigma_0 = 1, \sigma_1 = (12)(34), \sigma_2 = (13)(24), \sigma_3 = (14)(23)}$$

$$\sigma_0(x) = x \qquad \forall x \in \{1, 2, 3, 4\}$$

$$\sigma_1(1) = 2, \sigma_1(2) = 1, \sigma_1(3) = 4, \sigma_1(4) = 3$$

$$\sigma_2(1) = 3, \sigma_2(2) = 4, \sigma_2(3) = 1, \sigma_2(4) = 2$$

$$\sigma_3(1) = 4, \sigma_3(2) = 3, \sigma_3(3) = 2, \sigma_3(4) = 1$$

Veamos por otro lado que el conjugado de un subgrupo transitivo, es transitivo, ya que si tengo $H < S_4$ subgrupo transitivo, $\sigma \in S_4$, $A = \sigma^{-1}H\sigma$, y dados $x, y \in \{1, 2, 3, 4\}$.

Si $\sigma(y)=z\neq y$, tomo $\tau\in H$ verificando $\tau(\sigma(x))=z$, que existe por ser H transitivo y se tendrá que $\sigma^{-1}\tau\sigma(x)=\sigma^{-1}(z)=y$

Veamos ahora que son los únicos subgrupos transitivos. El orden de un subgrupo H < G debe dividir a |G|. Además, un subgrupo transitivo debe tener necesariamente 4 o más elementos, ya que hay 4 posibles mapeos $x \mapsto y$ con $x,y \in \{1,2,3,4\}$ y 3 elementos sólo pueden darme 12 mapeos diferentes (4 cada uno).

Los posibles subgrupos, salvo conjugación e isomorfismo, de S_4 son:

Subgrupo
A_4
D_4
S_3
C_4
V
$V_4 = \{1, (12), (34), (12)(34)\}$
$\{1, (123), (132)\}$
$\{1, (12)\}$
$\{1, (12), (34)\}$
$\{1\}$

Claramente, S_3 es intransitivo, puesto que $\sigma(4)=4, \forall \sigma \in S_3; V_4$ también es

intransitivo, puesto que $\sigma(1) \neq 3, \forall \sigma \in V_4$. Y el resto de subgrupos tienen menos de 4 elementos.

Ejercicio 7.28

Sea $f(X) \in K[X]$ un polinomio separable y g un factor irreducible de f. Actúa transitivamente G = Gal(f/K) sobre las raíces de g?

Sean u,v raíces de g en E cuerpo de descomposición de f. Entonces como $K[X]/(Irr(u,K)) = K[X]/(g) \cong K(u)$ y $K[X]/(Irr(v,K)) = K[X]/(g) \cong K(v)$ dados por $X+(g)\mapsto u$ y $X+(g)\mapsto v$ respectivamente. Entonces existe un isomorfismo $\tau:K(u)\to K(v)$ verificando $\tau(u)=v$. Este isomorfismo puede extenderse a un automorfismo $\sigma:E\to E$ y por tanto tenemos un automorfismo que fija K y que lleva una raíz en otra. Pero la elección de las raíces la hemos hecho arbitrariamente.

Ejercicio 7.29

Sea $f(X) = X^4 + bX^2 + c \in \mathbb{Q}[X]$ un polinomio bicuadrático irreducible.

- 1. Prueba que $Gal(\mathbb{Q}(f)/\mathbb{Q})$ es isomorfo a V, C_4 o D_4
- 2. Se considera $n, m \in \mathbb{Q}$ tales que n, m, nm no son cuadrados. Prueba que $Gal(\mathbb{Q}(\sqrt{n}, \sqrt{m})/\mathbb{Q})$ es isomorfo a V.
- 3. Determina el polinomio $Irr(\sqrt{n}+\sqrt{m},\mathbb{Q})$ y prueba que es un polinomio bicuadrático.
- 4. (Opcional) Prueba que si $Gal(F/\mathbb{Q}) \cong V$ entonces existen n,m como en (1) verificando $F = \mathbb{Q}(\sqrt{n},\sqrt{m})$
- 5. Da ejemplos de polinomios bicuadráticos $f_i \in \mathbb{Q}[X]$ tales que:

$$Gal(\mathbb{Q}(f_1)/\mathbb{Q}) \cong V$$
, $Gal(\mathbb{Q}(f_2)/\mathbb{Q}) \cong C_4$, $Gal(\mathbb{Q}(f_3)/\mathbb{Q}) \cong D_4$

.

- 6. Prueba que si $\sqrt{c} \in \mathbb{Q}$ entonces $Gal(\mathbb{Q}(f)/\mathbb{Q}) \cong V$
- 7. Prueba que si $\sqrt{b^2 4c}\sqrt{c} \in \mathbb{Q}$, entonces $Gal(\mathbb{Q}(f)/\mathbb{Q}) \cong C_4$ (estos dos casos son excluyentes, ya que $\sqrt{b^2 4c} \notin \mathbb{Q}$).
- 1. Por el ejercicio de la semana anterior, $G = Gal(\mathbb{Q}(f))/\mathbb{Q}$ es isomorfo a S_4, A_4, V, C_4 o D_4

Podemos identificar por tanto G con uno de esos subgrupos. Además el polinomio será de la forma $f=(x^2-\alpha^2)(x^2-\beta^2)$ y tendrá por raíces $\{\alpha, -\alpha, \beta, -\beta\}$.

Dado $\sigma \in G$ se cumplirá $\sigma(-\alpha) = -\sigma(\alpha), \sigma(-\beta) = -\sigma(\beta)$. S_4, A_4 no verifican esta propiedad ya que $\sigma = (\alpha, \beta) \in S_4, A_4$, y se tendría por tanto $-\beta = \sigma(-\beta) = -\sigma(\beta) = -\alpha$, que contradiría el hecho del que f es irreducible al tenerse $\alpha = \beta$ y por tanto $f = X^4 - 2\alpha^2 x^2 + \alpha^4 = (x^2 - \alpha^2)^2$ con $\alpha^2 \in \mathbb{Q}$. Luego solo podemos tener isomorfía a V, C_4 , o D_4

2. Por las hipótesis $\mathbb{Q}(\sqrt{n},\sqrt{m})$ es cuerpo de descomposición sobre \mathbb{Q} del polinomio

$$(x^{2} - n)(x^{2} - m) = x^{4} - (n + m)x^{2} + nm = f$$

Por el apartado 1, Q(f) es isomorfo a V, C_4 o D_4

Como nm no es cuadrado tenemos $n \neq m$. Luego $\sigma = (\alpha - \alpha \beta - \beta) \in C_4, D_4$ no puede estar en el grupo de Galois de $\mathbb{Q}(f)$ porque $\sigma(-\alpha) = \beta \neq -\sigma(\alpha) = \alpha$

Forzosamente $Gal(\mathbb{Q}(f)/\mathbb{Q}) = V$

3. $\sqrt{n} + \sqrt{m}$ es raíz de $x^4 - 2(n+m)x^2 + (n-m)^2$ ya que:

$$x = \sqrt{m} + \sqrt{n} \implies x^2 = n + m + 2\sqrt{n}\sqrt{m} \implies (x^2 - n - m)^2 = 4nm \implies$$
$$\implies x^4 - 2(n + m)x^2 + (n - m)^2 = 0$$

El polinomio es irreducible ya que es de la forma $(x^2 - (\sqrt{n} + \sqrt{m})^2)(x^2 - a^2)$ y si tuviésemos $a^2 \in \mathbb{Q}$ se tendría $a^2(m+n+2\sqrt{nm}) = (n-m)^2$, es decir:

$$2\sqrt{nm} = \frac{(n-m)^2}{a^2} - m - n$$

Lo que es contradicción porque \sqrt{nm} es irracional.

4.

5. Por el apartado 2, podemos tomar $f_1 = (x^2 - 2)(x^2 - 3) = x^4 - 5x^2 + 6$ Por el apartado 7, podemos tomar $f_2 = x^4 + 5x^2 + 5$, que es irreducible por criterio de Eisenstein y verifica $\sqrt{5^2 - 4 \cdot 5}\sqrt{5} = 5 \in \mathbb{Q}$ Podemos tomar $f_3 = x^4 + 3$, irreducible por criterio de Eisenstein. Expresando $f_3 = (x^2 - \alpha^2)(x^2 - \beta^2)$, como $\sqrt{3}$, $\sqrt{-12}\sqrt{3} \notin \mathbb{Q}$ no estamos pi en el caso 6 pi 7. Estas elementas pa queden fijos por tados los

presando $f_3 = (x^2 - \alpha^2)(x^2 - \beta^2)$, como $\sqrt{3}$, $\sqrt{-12}\sqrt{3} \notin \mathbb{Q}$ no estamos ni en el caso 6 ni 7. Estos elementos no quedan fijos por todos los automorfismos de $G = Gal(\mathbb{Q}(f_3)/\mathbb{Q})$, y la única posibilidad entonces es que $G \cong D_4$

6. El polinomio bicuadrático lo podemos expresar de la forma $f = (x^2 - \alpha^2)(x^2 - \beta^2)$ con $\{\alpha, -\alpha, \beta, -\beta\}$ sus raíces.

Como $\sqrt{c} = \alpha\beta \in \mathbb{Q}$ $\sigma = (\alpha - \alpha \beta - \beta) \in C_4, D_4$ no puede estar en el grupo de Galois de $\mathbb{Q}(f)$ porque $\sigma(\alpha)^2 = \sigma(\alpha\alpha) = \alpha^2 = -\sigma(\alpha)\sigma(-\alpha) = \alpha\beta$. Pero esto implicaría que $\alpha^2 \in \mathbb{Q}$, y análogamente $\beta^2 \in \mathbb{Q}$ y que f no es irreducible.

For zosamente $Gal(\mathbb{Q}(f)/\mathbb{Q}) = V$

7. Como se tiene $\sqrt{b^2 - 4c} \notin \mathbb{Q}$ y $\sqrt{b^2 - 4c}\sqrt{c} \in \mathbb{Q}$ se deduce $\sqrt{c} \notin \mathbb{Q}$ y no estamos en el caso 6.

Si tenemos $f = x^4 + bx^2 + c$ y llamamos $x^2 = y$, tenemos $f = (x^2 - \alpha^2)(x^2 - \beta^2)$ $y = \frac{-b \pm \sqrt{b^2 - 4c}}{2}$, por tanto $\alpha^2 - \beta^2 = \sqrt{b^2 - 4c}$, con α, β tomados convenientemente.

Por otro lado es obvio $\alpha^2 \beta^2 = c$ mirando las dos expresiones de f.

Como $\sigma = (\alpha\beta)(-\alpha-\beta) \in V, D_4$, y $\omega = \sqrt{c}\sqrt{b^2-4c} = \alpha\beta(\alpha^2-\beta^2) \in \mathbb{Q}$, tendríamos que $\sigma(\omega) = -\omega$ que es contradicción por estar ω en el cuerpo base, y no poder anularse, porque en ese caso $\sqrt{c} = 0$ o $\sqrt{b^2-4c} = 0$ y eso es contradicción con que ninguno es racional y σ automorfismo del grupo de Galois que mantiene el cuerpo base.