

ECE M202A (11/25/2019) Mid Term Presentation

MREarable: Integrating Spatial Audio in a Mixed Reality Environment through Earable Sensor Modalities

Team Members: Swapnil Sayan Saha, Vivek Jain and Siyou Pei

Presenter: Swapnil Sayan Saha

Overall Project Goals and Specific Aims

Deliverables:

- Use trained head-pose estimator to generate spatial audio from a stationary sound source in real time (ongoing)
- Integration of VR platform with eSense earables for perceptionprocessing-feedback loop.

Technical Approach

Two types of head-motion: 1. O-T-O 2. O-T1-T2-O

27 targets; 34 (13 + 21) distinct head-poses; 15 subjects; 9 activities

Range: +- 2g and +- 500 deg/S; Adv. & Conn. Intv: 45-55 & 20-30 mS; $F_s = 100 \text{ Hz}$, LPF: 5 Hz.

Ground truth /
Measurements: Optitrack,
earable audio, Leica Disto
X3 & video camera

Technical Approach (cont.)

1266 inertial frames: 356 O-T-O, 607 O-T1 and T2-O, 303 T1-T2

Two types of head-motion: 1. O-T-O 2. O-T1-T2-O

Technical Approach (cont.)

Extracted 37 features

Integration_Acc,	Integration_Acc _y	Integration_Acc _z
Integration_Gyr _x	Integration_Gyr _y	Integration_Gyr _z
Variation_Acc _x	Variation_Acc _y	Variation_Acc _z
Variation_Gyr _x	Variation_Gyr _y	Variation_Gyr _z
Skew_Acc _x	Skew_Acc _y	Skew_Accz
Skew_Gyr _x	Skew_Gyr _y	Skew_Gyr _z
Kurtosis_Acc _x	Kurtosis_Acc _y	Kurtosis_Acc _z
Kurtosis_Gyr _x	Kurtosis_Gyr _y	Kurtosis_Gyr _z
Norm_Accx	Norm_Acc _y	Norm_Acc _z
Norm_Gyr _x	Norm_Gyr _y	Norm_Gyr _z
SumOT_Acc _x	SumOT_Acc _x	SumOT_Acc _x
SumOT_Gyr _x	SumOT_Gyr _x	SumOT_Gyr _x
TimeWindow		

734 out of 1266 frames grouped into bins of 20 degrees (noisy data)

Elevation: [-140, 180] Azimuth: [-140, 140]

Validation: 3-fold CV, Holdout ratio: 90:10

Classifier - CNN: 32%, DNN: 40.5% (only on elevation)

Classifier - XGBoost: 74.57% (42.3% without grid search hyperparameter optimization) (only on elevation)

Technical Approach (cont.)

Current Status and Next Steps

Dataset has been built, cleaned, sliced and published.

Preliminary training on elevation classifier is complete.

Software developed to mine eSense data on computer (and track head-pose using complementary Kalman Filter).

Developed a spatial sound test system based on the 3D kart template on Unity platform (inputs: keyboard)

Next Steps

Complete training of elevation and azimuth classifier with all data; training on HAR dataset.

Improve classification performance of head-pose estimator

Integration of headpose estimator with COTS VR platform (Unity).

THANK YOU

