

LOUISIANA STATE UNIVERITY

College of Agriculture School of Plant. Environmental. and Soil Sciences AGRO 7075 Prediction-based Breeding

Multi-trait selection

Prof. Roberto Fritsche-Neto

rfneto@agcenter.lsu.edu

Baton Rouge. April 17th. 2023

Genetic correlation

- The linear relationship between two variables (p)
- Suggests the relationship's magnitude and direction
- The most common estimator is Pearson coefficient (r) normal distribution.

$$r_{xy} = \frac{Cov(x, y)}{\sqrt{\sigma_x^2 \cdot \sigma_y^2}} \qquad t_{calc} = \frac{r}{\sqrt{1 - r^2}} \sqrt{n - 2}$$

- Spearman non-normal distribution or rank
- Non-Dimensional. and its value does not exceed unity $-1 \le 0 \ge 1$
- Significance via test t
- r = 0 means the absence of a linear relationship

Importance

- We do not breed for isolated traits
- Changes caused by selection in one trait may change another
- Example: Grain yield and plant height in corn
- Genetic causes: pleiotropy and linked genes (transient)
- Indirect selection of characters that are difficult or costly to evaluate
- Distinguish and quantify the degree of genetic and environmental association between characters

Estimating correlations

• 10 popcorn lines. RCBD 3 rep. GY and EC

Line	Rep	GY	EC	GY + EC
1	1	249.75	404.48	654.23
1	2	227.56	414.52	642.08
1	3	368.18	490.14	858.32
2	1	615.42	359.91	975.33
2	2	756.11	363.74	1119.85
10	3	471.44	300.48	771.92

SV	DF	MS		E (MS)	MS_{x+y}	E (MS)
		GY	EC		GY + EC	
Block	2	-		-	-	-
Line	9	43978	14527	Ve+ b Vg	29006	$V_{px} + V_{py} + 2COV_{pxy}$
Residual	18	5630	2515	Ve	7203	$Ve_x + Ve_y + 2COVe_{xy}$
Total	29					
Vg		12783	4004			
Ve		5630	2515		rg = -0.66	
h ²		0.87	0.83			

•
$$E|V(X+Y)|=V_x+V_y+2COV_{xy}$$

•
$$COV_{Pxy} = (MSTx + y - MSTx - MSTy) / 2 = (29006 - 43978 - 14527) / 2 = -14749$$

•
$$COV_{Exy} = (MSRx + y - MSRx - MSRy) / 2 = (7203 - 5631 - 2515) / 2 = -471$$

•
$$COVg_{xy} = (COV_{Pxy} - COV_{Exy}) / b = -4759$$

$$r_g = \frac{COVg_{xy}}{\sqrt{Vg_x Vg_y}} = \frac{-4759}{\sqrt{12783.4004}} = -0,66$$

Cause and effect

- Correlation is not the same as cause and consequence
- Two variables can be highly correlated and not be cause and effect
- For example, ice cream consumption x corn growth
- Temperature
- Alternative break down into direct and indirect effects
- Partial correlations
- Canonical
- Path analysis

Indirect selection

Relationships may vary in magnitude and meaning

% 20 10 1 0.1 *i* 1.40 1.76 2.67 3.37

- Selection for one character can affect another
- Gains based on direct selection
- Gains based on indirect selection
- When is indirect selection advantageous?
- Cost and difficulty of evaluation

SV	DF	MS		E (MS)	MS_{x+y}	E (MS)
		GY EC			GY + EC	
Block	2	-		-	-	-
Line	9	43978	14527	Ve+ b Vg	29006	$V_{px} + V_{py} + 2COV_{pxy}$
Residual	18	5630	2515	Ve	7203	$Ve_x + Ve_y + 2COVe_{xy}$
Total	29					
Vg		12783	4004			
Ve		5630	2515		rg = -0.66	
h^2		0.87	0.83			

$$GS_{d} = i.\sigma_{g(x)}.h_{x}$$

$$GS_{i} = i.r_{g}.h_{x}.\sigma_{g(y)}$$

$$r_{g}.h_{x} > h_{y}$$

$$GSd = 1.76 x \sqrt{43978}x \sqrt{0.87} = 342$$

$$GSi = 1.76 x - 0.66 x \sqrt{0.83} x \sqrt{43978} = -221$$

$$-0.66 x \sqrt{0.83} > \sqrt{0.88}$$

$$-0.60 > 0.94$$

Multi-trait selection: Tandem and Independent culling levels

- In the first selection cycle for a trait
- The following cycle is based on another trait
- Sequential selection
- Works well for independent traits or positive correlates traits

- Set the minimum performance for each trait
- Selection cannot be too intense for one of the traits
- It tends to be more efficient than a Tandem
- Easy up to two traits two-dimensional

What are selection indices?

- Genotypic aggregate (H)
- Genotypic values weighted by economic values

$$H = a_1 g_1 + a_2 g_2 + ... + a_n g_n$$

• Selection index (I) - linear combination of traits

$$I = b_1 X_1 + b_2 X_2 + ... + b_n X_n$$

• The weighting coefficients (b's) maximize the correlation between the index and the genotypic aggregate or the desired genetic gain

Economic weights

- It's challenging to determine the economic values of trait genetic gain
- Let's assume that highly skilled economists have established the economic values (\$ per unit increased) of some traits
- Making a base index is simple. For each individual. each trait value is multiplied by the weight
- Then the trait values are summed. Selection on the index maximizes profit.

Trait	Example Trait Weight	Example Ind.1 Value	Example Ind.2 Value
Height (cm)	\$1 / cm	180	160
Grain Yield (g)	\$5 / g	60	40
Disease Resistance (points)	\$0.50 / point	1020	1000
Beta Carotene Content (g)	\$10/g	0.002	0.007
Net Merit		(180*1) + (60*5) + (1020*0.50) + (0.002*10) = 990	(160*1) + (40*5) + (1000*0.50) + (0.007*10) = 860

Why are selection indices useful?

- Allow making multi-trait decisions faster and more systematically
- Translates a mental index into data. Helps make complex decisions that are hard to visualize at once
- Can prevent "selecting in a circle" on negatively correlated traits
- It can help control trade-offs among traits if they exist
- Weights are easier to set correctly than optimal levels of independent culling
- Behave as one big trait as long as all traits included are quantitative
- It's not recommended to put non-quantitative traits into a quantitative index
- It's not recommended to put more than four traits into an index

Smith-Hazel index

- The goal is to adjust economic weights to account for trait heritability and genetic correlations
- The adjusted weights are used instead of the raw economic weights
- Putting weight on a high heritability trait than a low heritability trait, we can indirectly select the low heritability trait if they are positively correlated
- Equivalent to a multivariate BLUP when single phenotypic records are used

Desired Gains Index – Pasek-Baker

- Another framework to set weights based on desired gains per trait
- Desired gain weights also do well for traits with non-linear weights
- Economic weights do correspond to an amount of desired gain per trait
- In a base index. economic weights also assume how much we value gain per trait is not influenced by the genetic difficulty (heritability. correlations) of obtaining that gain
- Whereas desired gains can consider this influence (as would economic weights in a Smith-Hazel index)
- The desired gains index uses the inverse of genetic covariance (G-) and our desired gains (d) in genetic standard deviations as input

Desired Gains Index – Pasek-Baker

- Imagine that we want make gains of **one genetic standard deviation** in each of four traits.
- How can we set weights to target **one genetic standard deviation** of desired gain per trait?
- $b = G^{-1} d$ to target desired gains. d. in genetic standard deviations
- given the inverse of the genetic variance-covariances in our set. G^{-1} . we can set weights b

	Genetic Mean (μ)	Genetic Variance (σ_g^2)	Genetic Standard Deviation(σ_g)	Heritability
Trait A	1	0.5	0.70	1
Trait B	5	2.5	1.58	1
Trait C	100	50	7.07	1
Trait D	30	15	3.87	1

Trait A	[1.40]
Trait B	0.63
Trait C	0.14
Trait D	0.26
	weights (L

		0.5	0	0	0]	0.70
=		0	2.5	0	0	1.58
		0	0	50	0	7.07
		Lo	0	0	15]	3.87
inverse of genetic variance covariances G-1						desired gain

Scaled Desired Gains Index - Pasek-Baker

- How can we set weights to target **one genetic standard deviation** of desired gain per scaled trait?
- Traits are scaled first
- Subtract the mean from each observation and divide by the standard deviation
- $b = G^{-1} d$

- Weights must be re-estimated every cycle
- Do not attempt to interpret weights. When taking into account genetic (co)variance and heritability. their meaning is difficult to interpret
- Their purpose is to drive selection in the direction set by the breeder.