Simplex Fase I: Variáveis Artificiais

Alexandre Checoli Choueiri

15/05/2025

- O Que Sabemos Fazer
- Que Não Sabemos Fazer
- 3 A Solução
- 4 Conclusões
- 6 Exercícios

O Que Sabemos Fazer

O Simplex

O que sabemos fazer

O algoritmo Simplex

O algoritmo Simplex requer uma solução básica factível para que possa ser iniciado. Quando temos um modelo somente com restrições do tipo \leq , sempre é possível criar uma SBF no início.

O que sabemos fazer

Considere o seguinte modelo de PL:

$$\max z = 5x_1 + 2x_2$$

$$10x_1 + 12x_2 \le 60$$

$$2x_1 + x_2 \le 6$$

$$x_1, x_2 \ge 0$$

O que sabemos fazer

Na forma padrão, temos (min z e inserindo variáveis de folga).

O que sabemos fazer

	x_1	x_2	x_3	x_4	-z
VB	-5	-2	0	0	0
x_3	10	12	1	0	60
x_4	2	1	0	1	6

Colocando os dados em forma tabular:

O que sabemos fazer

	x_1	x_2	x_3	x_4	-z
VB	-5	-2	0	0	0
x_3	10	12	1	0	60
x_4	2	1	0	1	6

Como temos 2 restrições, a presença de uma matriz identidade (\mathbf{I}_{2X2}) já fornece uma solução básica factível (lembre-se de que os coef. da função objetivo também devem ser zerados nas colunas das variáveis básicas).

O que sabemos fazer

	x_1	x_2	x_3	x_4	-z
VB	-5	-2	0	0	0
x_3	10	12	1	0	60
x_4	2	1	0	1	6

Temos a solução
$$x_B^T = (x_3, x_4) = (60, 6)$$
 e $x_N^T = (x_1, x_2) = (0, 0)$

O que sabemos fazer

	x_3	x_4	-Z
VB	0	0	0
x_3	1	0	60
x_4	0	1	6

De forma que o sistema é **canônico**, e equivalente ao mostrado abaixo, em que a solução é trivial.

O que sabemos fazer

Podemos ver graficamente que a solução básica $x_B^T = (x_3, x_4) = (60, 6)$ e $x_N^T = (x_1, x_2) = (0, 0)$ é factível.

O que sabemos fazer

Isso se conforma perfeitamente ao algoritmo previamente estudado (Fase II).

O que sabemos fazer

Mas isso só foi possível pois já tínhamos uma SBF inicial.

O Que Não Sabemos Fazer

Modelo com restrições ≥ ou =

O que não sabemos fazer

Restrições do tipo ≥ ou =

Mas o que acontece quando temos restrições do tipo " \geq " ou "=" no modelo? Considere o modelo abaixo.

$$\begin{array}{ccc} \max \, z = x_1 + x_2 & & \geq 20 \\ & 4x_1 + 2x_2 & & \geq 20 \\ & x_1 & & \leq 9 \\ & x_2 & & \leq 11 \\ & x_1, x_2 \geq 0 \end{array}$$

${\sf Modelo\ com\ restriç\~oes} \ge {\sf ou} =$

O problema

min
$$z = -x_1 + -x_2$$

 $4x_1 + 2x_2 - x_3 = 20$
 $x_1 + x_4 = 9$
 $x_2 + x_5 = 11$ (1)

Na forma padrão, temos:

Modelo com restrições \geq ou =

O problema

	x_1	x_2	x_3	x_4	x_5	-z
VB	-1	-1	0	0	0	0
???	4	2	-1	0	0	20
x_4	1	0	0	1	0	9
x_5	0	1	0	0	1	11

Na forma tabular:

${\sf Modelo\ com\ restriç\~oes} \ge {\sf ou} =$

 ${\sf O}\ {\sf problema}$

	x_1	x_2	x_3	x_4	x_5	-z
VB	-1	-1	0	0	0	0
???	4	2	(-1)	0	0	20
x_4	1	0	0	1	0	9
x_5	0	1	0	0	1	11

Note que com esse modelo, a sol. básica formada pelas variáveis de folgas/excessos **não é factível**, devido a negatividade de x_3 na linha 2.

${\sf Modelo\ com\ restriç\~oes} \ge {\sf ou} =$

O problema

	x_1	x_2	x_3	x_4	x_5	-Z
VB	-1	-1	0	0	0	0
???	4	2	(-1)	0	0	20
x_4	1	0	0	1	0	9
x_5	0	1	0	0	1	11

Essa solução implicaria $x_B^T=(x_3,x_4,x_5)=(-20,9,11)$, com $x_3<0 o ext{infactível}$

Modelo com restrições \geq ou = O problema

Podemos ver graficamente que a solução básica $x_B^T=(x_3,x_4,x_5)$ e $x_N^T=(x_1,x_2)=(0,0)$ não está na região factível.

A Solução

As duas Fases do Simplex

A solução

Método x Algoritmo Simplex

É por esse motivo que o **método** Simplex é composto por duas fases, chamadas **Fase I** e **Fase II**. Em ambas as fases o **algoritmo** Simplex é usado.

- 1. Método Simplex:
 - 1.1 **FASE I:** Verifica se o problema tem uma SBF inicial. Se não, tenta encontrar uma (pelo algoritmo Simplex e um modelo alterado).
 - 1.2 FASE II: Com uma SBF, inicia o algoritmo Simplex no modelo original.

As duas Fases do Simplex

A solução

As duas Fases do Simplex

A solução

Em Fluxograma, as duas Fases ficam da seguinte forma:

Como operar a Fase I?

A solução

- Existem 2 formas de operarmos a Fase I do método Simplex, a fim de encontrarmos uma SBF. O chamado **método do big-M** e o **método das variáveis artificiais.**
- Como seguimos o material do criador do Simplex (George B. Dantzig), usaremos a sua sugestão: método das variáveis artificiais. Porém ambos são equivalentes.

A lógica das Variáveis Artificiais

Este método insere novas variáveis no modelo para **artificialmente gerar uma matriz identidade** nos coeficientes da matriz. Como elas não fazem parte do sistema, uma **nova função objetivo** é inserida, que deve minimizar a soma destas variáveis, levando o simplex a removê-las da base. Quando (se) isso ocorre, uma SBF é encontrada e as variáveis artificiais podem ser retiradas do sistema.

Considere o sistema, com x_1 e x_2 sendo as var. originais e x_3 e x_4 folgas:

$$\begin{cases} x_1 & -2x_3 - x_4 = 3 \\ +x_2 & +x_3 + x_4 = 10 \end{cases}$$

Considere o sistema, com x_1 e x_2 sendo as var. originais e x_3 e x_4 folgas:

$$\begin{cases} x_1 & -2x_3 - x_4 = 3 \\ +x_2 & +x_3 + x_4 = 10 \end{cases}$$

Temos que s_1 com $x_b = [x_1, x_2]$ é factível para o sistema. Se adicionarmos **mais variáveis** (que não existem) ao sistema...

$$\begin{cases} x_1 & -2x_3 - x_4 + 5x_5 - x_6 = 3 \\ + x_2 & +x_3 + x_4 - 5x_5 + x_6 = 10 \end{cases}$$

Considere o sistema, com x_1 e x_2 sendo as var. originais e x_3 e x_4 folgas:

$$\begin{cases} x_1 & -2x_3 - x_4 = 3 \\ +x_2 & +x_3 + x_4 = 10 \end{cases}$$

Temos que s_1 com $x_b = [x_1, x_2]$ é factível para o sistema. Se adicionarmos **mais variáveis** (que não existem) ao sistema...

$$\begin{cases} x_1 & -2x_3 - x_4 + 5x_5 - x_6 = 3 \\ + x_2 & +x_3 + x_4 - 5x_5 + x_6 = 10 \end{cases}$$

A solução s_1 antiga **continua sendo factível**, e como as variáveis a mais são $x_N=0$, tudo ainda faz sentido. Mas e se as variáveis adicionadas forem as básicas?

$$\begin{cases} x_1 + 2x_2 - 2x_3 - x_4 + x_5 = 3\\ 2x_1 + x_2 + x_3 + x_4 + x_6 = 10 \end{cases}$$

$$\begin{cases} x_1 + 2x_2 - 2x_3 - x_4 + x_5 = 3 \\ 2x_1 + x_2 + x_3 + x_4 + x_6 = 10 \end{cases}$$

Essa solução não faz sentido real: as variáveis que possuem valor não fazem parte do problema original (nem variáveis e nem as folgas). No entanto, acabamos de ver que **se elas não possuíssem valor** (ou seja, fossem x_N), poderíamos remover as mesmas do conjunto.

$$\begin{cases} x_1 + 2x_2 - 2x_3 - x_4 + x_5 = 3 \\ 2x_1 + x_2 + x_3 + x_4 + x_6 = 10 \end{cases}$$

Essa solução não faz sentido real: as variáveis que possuem valor não fazem parte do problema original (nem variáveis e nem as folgas). No entanto, acabamos de ver que **se elas não possuíssem valor** (ou seja, fossem x_N), poderíamos remover as mesmas do conjunto.

Com essa intuição, podemos pensar na seguinte lógica para tentar encontrar uma solução básica factível para um PL:

Partindo de um PL que não tenha uma SBF aparente com as variáveis originais:

Partindo de um PL que não tenha uma SBF aparente com as variáveis originais:

$$\begin{cases} x_1 + 2x_2 - 2x_3 - x_4 = 3 \\ 2x_1 + x_2 + x_3 + x_4 = 10 \end{cases}$$

Partindo de um PL que não tenha uma SBF aparente com as variáveis originais:

$$\begin{cases} x_1 + 2x_2 - 2x_3 - x_4 = 3\\ 2x_1 + x_2 + x_3 + x_4 = 10 \end{cases}$$

Inserimos uma SBF artificialmente, com as variáveis artificiais sendo x_B :

$$\begin{cases} x_1 + 2x_2 - 2x_3 - x_4 + x_5 = 3\\ 2x_1 + x_2 + x_3 + x_4 + x_6 = 10 \end{cases}$$

Partindo de um PL que não tenha uma SBF aparente com as variáveis originais:

$$\begin{cases} x_1 + 2x_2 - 2x_3 - x_4 = 3\\ 2x_1 + x_2 + x_3 + x_4 = 10 \end{cases}$$

Inserimos uma SBF **artificialmente**, com as variáveis artificiais sendo x_B :

$$\begin{cases} x_1 + 2x_2 - 2x_3 - x_4 + x_5 &= 3\\ 2x_1 + x_2 + x_3 + x_4 &+ x_6 &= 10 \end{cases}$$

Como isso não faz sentido, tentamos encontrar outra solução, em que as variáveis inseridas passam a ser x_N , para que possamos removê-las do conjunto. Ou seja, queremos encontrar algo da forma:

Partindo de um PL que não tenha uma SBF aparente com as variáveis originais:

$$\begin{cases} x_1 + 2x_2 - 2x_3 - x_4 = 3\\ 2x_1 + x_2 + x_3 + x_4 = 10 \end{cases}$$

Inserimos uma SBF **artificialmente**, com as variáveis artificiais sendo x_B :

$$\begin{cases} x_1 + 2x_2 - 2x_3 - x_4 + x_5 = 3\\ 2x_1 + x_2 + x_3 + x_4 + x_6 = 10 \end{cases}$$

Como isso não faz sentido, tentamos encontrar outra solução, em que as variáveis inseridas passam a ser x_N , para que possamos removê-las do conjunto. Ou seja, queremos encontrar algo da forma:

$$\begin{cases} x_1 & -2x_3 - x_4 + 5x_5 - x_6 = 3 \\ + x_2 & +x_3 + x_4 - 5x_5 + x_6 = 10 \end{cases}$$

Pois essa solução tem como x_B as variáveis originais do problema.

Pensando bem, o que precisa ser feito então, é uma troca entre o conjunto de variávei	s
x_B e x_N , de tal forma que ao final, todas as variáveis inseridas artificialmente $\in x_N$.	

Pensando bem, o que precisa ser feito então, é uma **troca entre o conjunto de variáveis** x_B e x_N , de tal forma que ao final, todas as variáveis inseridas artificialmente $\in x_N$.

Sabemos que o **algoritmo Simplex** opera exatamente dessa forma, trocando os elementos dos conjuntos x_B e x_N , então podemos usar o próprio algoritmo Simplex para realizar essa tarefa. A componente do Simplex que direciona as trocas, é a **função objetivo**, então podemos criar uma função objetivo artificial, que so vai servir ao propósito de transformar as variáveis artificias em x_N (ou seja, devem ter valor zero).

Pensando bem, o que precisa ser feito então, é uma **troca entre o conjunto de variáveis** x_B e x_N , de tal forma que ao final, todas as variáveis inseridas artificialmente $\in x_N$.

Sabemos que o **algoritmo Simplex** opera exatamente dessa forma, trocando os elementos dos conjuntos x_B e x_N , então podemos usar o próprio algoritmo Simplex para realizar essa tarefa. A componente do Simplex que direciona as trocas, é a **função objetivo**, então podemos criar uma função objetivo artificial, que so vai servir ao propósito de transformar as variáveis artificias em x_N (ou seja, devem ter valor zero).

Qual pode ser essa função objetivo (que tentar zerar x_5 e x_6)?

$$\begin{cases} x_1 + 2x_2 - 2x_3 - x_4 + x_5 = 3\\ 2x_1 + x_2 + x_3 + x_4 + x_6 = 10 \end{cases}$$

$$\begin{array}{ll} \min z = & x_5 + x_6 \\ x_1 + 2x_2 - 2x_3 - x_4 + x_5 & = 3 \\ 2x_1 + x_2 + x_3 + x_4 & +x_6 = 10 \end{array}$$

Assim, quando o Simplex terminar, como o objetivo é encontrar os menores valores para x_5 e x_6 , se ele conseguir zerar essas variáveis, quer dizer que elas estão em x_N , e que podemos remover essas colunas do problema. Teremos algo como:

$$\begin{cases} x_1 & -2x_3 - x_4 + 5x_5 - x_6 = 3 \\ +x_2 & +x_3 + x_4 - 5x_5 + x_6 = 10 \end{cases}$$

$$\begin{aligned} \min z &= & x_5 + x_6 \\ x_1 + 2x_2 - 2x_3 - x_4 + x_5 &= 3 \\ 2x_1 + x_2 + x_3 + x_4 &+ x_6 &= 10 \end{aligned}$$

Assim, quando o Simplex terminar, como o objetivo é encontrar os menores valores para x_5 e x_6 , se ele conseguir zerar essas variáveis, quer dizer que elas estão em x_N , e que podemos remover essas colunas do problema. Teremos algo como:

$$\begin{cases} x_1 & -2x_3 - x_4 + 5x_5 - x_6 = 3 \\ + x_2 & +x_3 + x_4 - 5x_5 + x_6 = 10 \end{cases}$$

E poderíamos remover as variáveis que foram adicionadas, ficando com:

$$\begin{cases} x_1 & -2x_3 - x_4 = 3 \\ + x_2 & +x_3 + x_4 = 10 \end{cases}$$
 Que é uma SBF para o problema original!

Como operar a Fase I?

A solução

A Lógica das Variáveis Artificiais

Ou seja, o método **cria uma solução inicial com variáveis que não existem** e tenta retirá-las do problema pelo próprio método Simplex e por uma alteração na função objetivo. Se o Simplex conseguir eliminar essas variáveis artificiais, quer dizer que ele encontrou uma SBF sem usá-las (somente com as originais).

Como operar a Fase I?

A solução

A Lógica das Variáveis Artificiais

Ou seja, o método **cria uma solução inicial com variáveis que não existem** e tenta retirá-las do problema pelo próprio método Simplex e por uma alteração na função objetivo. Se o Simplex conseguir eliminar essas variáveis artificiais, quer dizer que ele encontrou uma SBF sem usá-las (somente com as originais).

Em Fluxograma, a Fase I fica da seguinte forma:

Início

Como operar a Fase I?

A Solução

E o algoritmo um pouco mais detalhado, fica:

O método das variáveis artificiais

A Solução

O **método das variáveis artificiais** consiste dos seguintes passos (considerando o modelo já na forma padrão):

- 1. Torne todo b não negativo.
- 2. Adicione variáveis artificiais: para cada restrição adicione uma nova variável artificial positiva.

$$x_a = (\bar{x}_{n+1}, \bar{x}_{n+2}, ..., \bar{x}_{n+m})$$

3. Substitua a função objetivo original z pela minimização de w, que é a soma das variáveis artificiais adicionadas:

$$\min w = \sum_{j=n+1}^{n+m} \bar{x}_j$$

- 4. Faça as v. art. básicas (elimine os coef. das mesmas na f.o para deixar o sistema na forma canônica).
- 5. Aplique o método Simplex na tabela atual.

O método das variáveis artificiais

A Solução

Ao fim da otimização do novo sistema, faça:

- 1. Se min w > 0 no fim da Fase I PARE: o problema original é infactível.
- 2. Preparação para a Fase II:
 - 2.1 Elimine da tabela todas as variáveis artificiais não básicas (remova as colunas das variáveis artificiais).
 - 2.2 Elimine a fow e reinsira a função original z, realizando as operações para manter o sistema na forma canônica (deixando 0 todos os coef. da linha de z referentes as variáveis atualmente na base).
- 3. Aplique o Simplex Fase II utilizando a base atual.

O método das variáveis artificiais A Solução

Vamos executar o método das variáveis artificiais no problema anterior.

A solução

- 1. Torne todo b não negativo.
- 2. Adicione variáveis artificiais: para cada restrição adicione uma nova variável artificial positiva.

$$x_a = (\bar{x}_{n+1}, \bar{x}_{n+2}, ..., \bar{x}_{n+m})$$

3. Substitua a função objetivo original z pela minimização de w, que é a soma das variáveis artificiais adicionadas:

$$\min w = \sum_{j=n+1}^{n+m} \bar{x}_j$$

- **4.** Faça as v. art. básicas (elimine os coef. das mesmas na f.o para deixar o sistema na forma canônica).
- 5. Aplique o método Simplex na tabela atual.

A Solução

O modelo na forma padrão não possui nenhum b < 0

$$\begin{array}{lll} \min \, z = -x_1 + -x_2 \\ & 4x_1 + 2x_2 - x_3 & = 20 \\ & x_1 & + x_4 & = 9 \\ & x_2 & + x_5 = 11 \end{array}$$

A Solução

- 1. Torne todo b não negativo. \checkmark
- 2. Adicione variáveis artificiais: para cada restrição adicione uma nova variável artificial positiva.

$$x_a = (\bar{x}_{n+1}, \bar{x}_{n+2}, ..., \bar{x}_{n+m})$$

3. Substitua a função objetivo original z pela minimização de w, que é a soma das variáveis artificiais adicionadas:

$$\min w = \sum_{j=n+1}^{n+m} \bar{x}_j$$

- **4.** Faça as v. art. básicas (elimine os coef. das mesmas na f.o para deixar o sistema na forma canônica).
- 5. Aplique o método Simplex na tabela atual.

A Solução

Adicionamos a cada restrição uma variável artificial.

A Solução

- 1. Torne todo b não negativo. \checkmark
- 2. Adicione variáveis artificiais: para cada restrição adicione uma nova variável artificial positiva. √

$$x_a = (\bar{x}_{n+1}, \bar{x}_{n+2}, ..., \bar{x}_{n+m}) \checkmark$$

3. Substitua a função objetivo original z pela minimização de w, que é a soma das variáveis artificiais adicionadas:

$$\min w = \sum_{j=n+1}^{n+m} \bar{x}_j$$

- **4.** Faça as v. art. básicas (elimine os coef. das mesmas na f.o para deixar o sistema na forma canônica).
- 5. Aplique o método Simplex na tabela atual.

A Solução

Adicionando a nova função objetivo w:

A Solução

- 1. Torne todo b não negativo. \checkmark
- 2. Adicione variáveis artificiais: para cada restrição adicione uma nova variável artificial positiva. ✓

$$x_a = (\bar{x}_{n+1}, \bar{x}_{n+2}, ..., \bar{x}_{n+m}) \checkmark$$

3. Substitua a função objetivo original z pela minimização de w, que é a soma das variáveis artificiais adicionadas: \checkmark

$$\min w = \sum_{j=n+1}^{n+m} \bar{x}_j \checkmark$$

- 4. Faça as v. art. básicas (elimine os coef. das mesmas na f.o para deixar o sistema na forma canônica).
- 5. Aplique o método Simplex na tabela atual.

A Solução

	x_1	x_2	x_3	x_4	x_5	\bar{x}_6	\bar{x}_7	\bar{x}_8	-W
VB	0	0	0	0	0	1	1	1	0
	4	2	-1	0	0	1	0	0	20
	1	0	0	1	0	0	1	0	9
	0	1	0	0	1	0	0	1	11

Colocando o problema na forma tabular.

A Solução

x_1	x_2	x_3	x_4	x_5	\bar{x}_6	\bar{x}_7	\bar{x}_8	-w
0	0	0	0	0	(1)	(1)	(1)	0
4	2	-1	0	0	1	0	0	20
1	0	0	1	0	0	1	0	9
0	1	0	0	1	0	0	1	11
	0 4 1	0 0 4 2 1 0	0 0 0 4 2 -1 1 0 0	0 0 0 0 4 2 -1 0 1 0 0 1	0 0 0 0 0 4 2 -1 0 0 1 0 0 1 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Para deixar na forma canônica em relação às variáveis $x_B^T=(\bar{x}_6,\bar{x}_7,\bar{x}_8)$ (colocá-las na base) é necessário zerar os coeficientes delas na função objetivo (marcados com 1). Essa é uma atualização comum a todos os problemas: atualizar a linha 1 com a subtração de todas as outras:

A Solução

x_1	x_2	x_3	x_4	x_5	\bar{x}_6	\bar{x}_7	\bar{x}_8	-w
0	0	0	0	0	(1)	(1)	(1)	0
4	2	-1	0	0	1	0	0	20
1	0	0	1	0	0	1	0	9
0	1	0	0	1	0	0	1	11
	0 4 1	0 0 4 2 1 0	0 0 0 4 2 -1 1 0 0	0 0 0 0 4 2 -1 0 1 0 0 1	0 0 0 0 0 4 2 -1 0 0 1 0 0 1 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Para deixar na forma canônica em relação às variáveis $x_B^T=(\bar{x}_6,\bar{x}_7,\bar{x}_8)$ (colocá-las na base) é necessário zerar os coeficientes delas na função objetivo (marcados com 1). Essa é uma atualização comum a todos os problemas: atualizar a linha 1 com a subtração de todas as outras:

1.
$$L_1 \leftarrow L_1 - L_2 - L_3 - L_4$$

A Solução

	x_1	x_2	x_3	x_4	x_5	\bar{x}_6	\bar{x}_7	\bar{x}_8	-w
VB	-5	-3	1	-1	-1	0	0	0	-40
\bar{x}_6	4	2	-1	0	0	1	0	0	20
\bar{x}_7	1	0	0	1	0	0	1	0	9
\bar{x}_8	0	1	0	0	1	0	0	1	11

Após as atualizações temos a tabela:

A Solução

	x_1	x_2	x_3	x_4	x_5	\bar{x}_6	\bar{x}_7	\bar{x}_8	-w
VB	-5	-3	1	-1	-1	0	0	0	-40
\bar{x}_6	4	2	-1	0	0	1	0	0	20
\bar{x}_7	1	0	0	1	0	0	1	0	9
\bar{x}_8	0	1	0	0	1	0	0	1	11

Com variáveis básicas $x_B^T=(\bar{x}_6,\bar{x}_7,\bar{x}_8)=(20,9,11)$ e não básicas $x_N^T=(x_1,x_2,x_3,x_4,x_5)=(0,0,0,0,0)$. De forma que podemos começar a aplicar o método Simplex.

A Solução

- 1. Torne todo b não negativo. \checkmark
- 2. Adicione variáveis artificiais: para cada restrição adicione uma nova variável artificial positiva. ✓

$$x_a = (\bar{x}_{n+1}, \bar{x}_{n+2}, ..., \bar{x}_{n+m}) \checkmark$$

3. Substitua a função objetivo original z pela minimização de w, que é a soma das variáveis artificiais adicionadas: \checkmark

$$\min w = \sum_{j=n+1}^{n+m} \bar{x}_j \checkmark$$

- 4. Faça as v. art. básicas (elimine os coef. das mesmas na f.o para deixar o sistema na forma canônica). √
- 5. Aplique o método Simplex na tabela atual.

A Solução

	x_1	x_2	x_3	x_4	x_5	\bar{x}_6	\bar{x}_7	\bar{x}_8	-W
VB	-5	-3	1	-1	-1	0	0	0	-40
	4								
\bar{x}_7	1	0	0	1	0	0	1	0	9
\bar{x}_8	0	1	0	0	1	0	0	1	11

A Solução

	x_1	x_2	x_3	x_4	x_5	\bar{x}_6	\bar{x}_7	\bar{x}_8	-w
VB	-5	-3	1	-1	-1	0	0	0	-40
\bar{x}_6	4	2	-1	0	0	1	0	0	20
\bar{x}_7	1	0	0	1	0	0	1	0	9
\bar{x}_8	0	1	0	0	1	0	0	1	11

Selecionando min $\{-5, -3, -1, -1\} = -5$ com x_1 entrando na base.

A Solução

	x_1	x_2	x_3	x_4	x_5	\bar{x}_6	\bar{x}_7	\bar{x}_8	-W
VB	-5	-3	1	-1	-1	0	0	0	-40
\bar{x}_6	4	2	-1	0	0	1	0	0	20
\bar{x}_7	1	0	0	1	0	0	1	0	9
\bar{x}_8	0	1	0	0	1	0	0	1	11

A Solução

	x_1	x_2	x_3	x_4	x_5	\bar{x}_6	\bar{x}_7	\bar{x}_8	-W
VB	-5	-3	1	-1	-1	0	0	0	-40
\bar{x}_6	4	2	-1	0	0	1	0	0	20
\bar{x}_7	1	0	0	1	0	0	1	0	9
\bar{x}_8	0	1	0	0	1	0	0	1	11

Selecionando min $\{\frac{20}{4},\frac{9}{1}\}=\frac{20}{4}=\bar{x}_6$ saindo da base.

A Solução

	x_1	x_2	x_3	x_4	x_5	\bar{x}_6	\bar{x}_7	\bar{x}_8	-W
VB	-5	-3	1	-1	-1	0	0	0	-40
\bar{x}_6	(4)	2	-1	0	0	1	0	0	20
\bar{x}_7	1	0	0	1	0	0	1	0	9
\bar{x}_8									

Temos o elemento pivo $a_{2,1}=4$). Realizando o pivoteamento da tabela:

A Solução

	x_1	x_2	x_3	x_4	x_5	\bar{x}_6	\bar{x}_7	\bar{x}_8	-W
VB	-5	-3	1	-1	-1	0	0	0	-40
\bar{x}_6	4	2	-1	0	0	1	0	0	20
\bar{x}_7	1	0	0	1	0	0	1	0	9
\bar{x}_8	0	1	0	0	1	0	0	1	11

Temos o elemento pivo $a_{2,1}=4$). Realizando o pivoteamento da tabela:

1.
$$L_2 \leftarrow L_2/4$$

A Solução

	x_1	x_2	x_3	x_4	x_5	\bar{x}_6	\bar{x}_7	\bar{x}_8	-w
VB	-5	-3	1	-1	-1	0	0	0	-40
\bar{x}_6	4	2	-1	0	0	1	0	0	20
\bar{x}_7	1	0	0	1	0	0	1	0	9
\bar{x}_8	0	1	0	0	1	0	0	1	11

Temos o elemento pivo $a_{2,1} = 4$. Realizando o pivoteamento da tabela:

- 1. $L_2 \leftarrow L_2/4$ 2. $L_1 \leftarrow L_1 + 5L_2$

A Solução

	x_1	x_2	x_3	x_4	x_5	\bar{x}_6	\bar{x}_7	\bar{x}_8	-w
VB		-3	1	-1	-1	0	0	0	-40
\bar{x}_6	4	2	-1	0	0	1	0	0	20
\bar{x}_7	1	0	0	1	0	0	1	0	9
\bar{x}_8	0	1	0	0	1	0	0	1	11

Temos o elemento pivo $a_{2,1} = 4$. Realizando o pivoteamento da tabela:

- 1. $L_2 \leftarrow L_2/4$ 2. $L_1 \leftarrow L_1 + 5L_2$ 3. $L_3 \leftarrow L_3 L_2$

A Solução

	x_1	x_2	x_3	x_4	x_5	\bar{x}_6	\bar{x}_7	\bar{x}_8	-w
VB	0	-1/2	-1/4	-1	-1	5/4	0	0	-15
x_1	1	1/2	-1/4	0	0	1/4	0	0	5
\bar{x}_7	0	-1/2	1/4	1	0	-1/4	1	0	4
\bar{x}_8	0	1	0	0	1	0	0	1	11

Temos a tabela atualizada com variáveis básicas $x_B^T = (x_1, \bar{x}_7, \bar{x}_8) = (5, 4, 11)$ e não básicas $x_N^T = (\bar{x}_6, x_2, x_3, x_4, x_5) = (0, 0, 0, 0, 0)$.

A Solução

	x_1	x_2	x_3	x_4	x_5	\bar{x}_6	\bar{x}_7	\bar{x}_8	-w
VB	0	-1/2	-1/4	-1	-1	5/4	0	0	-15
(x_1)	1	1/2	-1/4	0	0	1/4	0	0	5
						-1/4			
\bar{x}_8	0	1	0	0	1	0	0	1	11

OBS: Note que já conseguimos remover uma variável artificial da base (removemos \bar{x}_6 e inserimos x_1).

AA Solução

	x_1	x_2	x_3	x_4	x_5	\bar{x}_6	\bar{x}_7	\bar{x}_8	-w
VB	0	-1/2	-1/4	-1	-1	5/4	0	0	-15
x_1	1	1/2	-1/4	0	0	1/4	0	0	5
\bar{x}_7	0	-1/2	1/4	1	0	-1/4	1	0	4
\bar{x}_8	0	1	0	0	1	0	0	1	11

AA Solução

	x_1	x_2	x_3	x_4	x_5	\bar{x}_6	\bar{x}_7	\bar{x}_8	-w
VB	0	-1/2	-1/4	-1	-1	5/4	0	0	-15
x_1	1	1/2	-1/4	0	0	1/4	0	0	5
\bar{x}_7	0	-1/2	1/4	1	0	-1/4	1	0	4
\bar{x}_8	0	1	0	0	1	0	0	1	11

Selecionando min $\{-\frac{1}{2}, -\frac{1}{4}, -1, -1\} = -1$ com x_4 entrando na base.

AA Solução

	x_1	x_2	x_3	x_4	x_5	\bar{x}_6	\bar{x}_7	\bar{x}_8	-w
VB	0	-1/2	-1/4	-1	-1	5/4	0	0	-15
x_1	1	1/2	-1/4	0	0	1/4	0	0	5
\bar{x}_7	0	-1/2	1/4	1	0	-1/4	1	0	4
\bar{x}_8	0	1	0	0	1	0	0	1	11

Selecionando min $\{-\frac{1}{2}, -\frac{1}{4}, -1, -1\} = -1$ com x_4 entrando na base. **OBS**: Aqui seria possível escolher outra variável para entrar na base (x_5) . Teria alguma diferença?

A Solução

	x_1	x_2	x_3	x_4	x_5	\bar{x}_6	\bar{x}_7	\bar{x}_8	-w
VB	0	-1/2	-1/4	-1	-1	5/4	0	0	-15
x_1	1	1/2	-1/4	0	0	1/4	0	0	5
\bar{x}_7	0	-1/2	1/4	1	0	-1/4	1	0	4
\bar{x}_8	0	1	0	0	1	0	0	1	11

Selecionando min $\{-\frac{1}{2},-\frac{1}{4},-1,-1\}=-1$ com x_4 entrando na base. O nosso objetivo é **remover as variáveis artificiais da base.** Selecionando tanto x_4 quanto x_5 para entrar, forçaria uma artificial a sair (\bar{x}_7 ou \bar{x}_8), de forma que podemos escolher arbitrariamente.

A Solução

	x_1	x_2	x_3	x_4	x_5	\bar{x}_6	\bar{x}_7	\bar{x}_8	-W
VB	0	-1/2	-1/4	-1	-1	5/4	0	0	-15
						1/4			
\bar{x}_7	0	-1/2	1/4	(1)	0	-1/4	1	0	4
\bar{x}_8	0	1	0	0	1	0	0	1	11

Selecionando min $\{\frac{4}{1}\}=4$ com \bar{x}_7 saindo da base.

A Solução

	x_1	x_2	x_3	x_4	x_5	\bar{x}_6	\bar{x}_7	\bar{x}_8	-W
VB	0	-1/2	-1/4	-1	-1	5/4	0	0	-15
x_1	1	1/2	-1/4	0	0	1/4	0	0	5
\bar{x}_7	0	-1/2	1/4	(1)	0	-1/4	1	0	4
\bar{x}_8	0	1	0	0	1	0	0	1	11

Temos o elemento pivo $a_{3,4} = 1$. Pivoteamento da tabela:

A Solução

	x_1	x_2	x_3	x_4	x_5	\bar{x}_6	\bar{x}_7	\bar{x}_8	-W
VB	0	-1/2	-1/4	-1	-1	5/4	0	0	-15
x_1	1	1/2	-1/4	0	0	1/4	0	0	5
\bar{x}_7	0	-1/2	1/4	(1)	0	-1/4	1	0	4
\bar{x}_8	0	1	0	0	1	0	0	1	11

Temos o elemento pivo $a_{3,4} = 1$. Pivoteamento da tabela:

1.
$$L_1 \leftarrow L_1 + L_3$$

A Solução

	x_1	x_2	x_3	x_4	x_5	\bar{x}_6	\bar{x}_7	\bar{x}_8	-w
VB	0	-1	0	0	-1	1	1	0	-11
x_1	1	1/2	-1/4	0	0	1/4	0	0	5
x_4	0	-1/2	1/4	1	0	-1/4	1	0	4
\bar{x}_8	0	1	0	0	1	0	0	1	11

Temos a tabela atualizada com a nova base $x_B^T = (x_1, x_4, \bar{x}_8,) = (5, 4, 11)$ e não básicas $x_N^T = (\bar{x}_6, x_2, x_3, \bar{x}_7, x_5) = (0, 0, 0, 0, 0).$

A Solução

	x_1	x_2	x_3	x_4	x_5	\bar{x}_6	\bar{x}_7	\bar{x}_8	-w
VB	0	-1	0	0	-1	1	1	0	-11
x_1	1	1/2	-1/4	0	0	1/4	0	0	5
(x_4)	0	-1/2	1/4	1	0	-1/4	1	0	4
$\overset{\smile}{\bar{x}_8}$	0	1	0	0	1	0	0	1	11

OBS: Note que já conseguimos remover duas variáveis artificiais da base (agora inserimos x_4).

A Solução

	x_1	x_2	x_3	x_4	x_5	\bar{x}_6	\bar{x}_7	\bar{x}_8	-w
VB	0	-1	0	0	-1	1	1	0	-11
x_1	1	1/2	-1/4	0	0	1/4	0	0	5
x_4	0	-1/2	1/4	1	0	-1/4	1	0	4
\bar{x}_8	0	1	0	0	1	0	0	1	11

A Solução

	x_1	x_2	x_3	x_4	x_5	\bar{x}_6	\bar{x}_7	\bar{x}_8	-W
VB	0	-1	0	0	-1	1	1	0	-11
x_1	1	1/2	-1/4	0	0	1/4	0	0	5
x_4	0	-1/2	1/4	1	0	-1/4	1	0	4
\bar{x}_8	0	1	0	0	1	0	0	1	11

OBS: Novamente, aqui seria possível escolher entre x_2 e x_5 . Teria alguma diferença?

A Solução

	x_1	x_2	x_3	x_4	x_5	\bar{x}_6	\bar{x}_7	\bar{x}_8	-W
VB	0	-1	0	0	-1	1	1	0	-11
x_1	1	1/2	-1/4	0	0	1/4	0	0	5
x_4	0	-1/2	1/4	1	0	-1/4	1	0	4
\bar{x}_8	0	1	0	0	1	0	0	1	11

OBS: Novamente, aqui seria possível escolher entre x_2 e x_5 . Teria alguma diferença? Nesse caso sim! Se escolhermos x_2 , a variável que sairia da base é x_1 (uma não artificial). Já escolhendo x_5 quem sai é \bar{x}_8 (uma artificial), de forma que devemos dar preferência a escolha de x_5 .

A Solução

	x_1	x_2	x_3	x_4	x_5	\bar{x}_6	\bar{x}_7	\bar{x}_8	-w
VB	0	-1	0	0	-1	1	1	0	-11
x_1	1	1/2	-1/4	0	0	1/4	0	0	5
x_4	0	-1/2	1/4	1	0	-1/4	1	0	4
\bar{x}_8	0	1	0	0	1	0	0	1	11

Selecionando min $\{\frac{11}{1}\}=1$ com \bar{x}_8 saindo da base.

A Solução

	x_1	x_2	x_3	x_4	x_5	\bar{x}_6	\bar{x}_7	\bar{x}_8	-W
VB	0	-1	0	0	-1	1	1	0	-11
x_1	1	1/2	-1/4	0	0	1/4	0	0	5
x_4	0	-1/2	1/4	1	0	-1/4	1	0	4
\bar{x}_8	0	1	0	0	1	0	0	1	11

Temos o elemento pivô $a_{4,5} = 1$. Pivoteamento da tabela:

A Solução

	x_1	x_2	x_3	x_4	x_5	\bar{x}_6	\bar{x}_7	\bar{x}_8	-w
VB	0	-1	0	0	-1	1	1	0	-11
x_1	1	1/2	-1/4	0	0	1/4	0	0	5
x_4	0	-1/2	1/4	1	0	-1/4	1	0	4
\bar{x}_8	0	1	0	0	1	0	0	1	11

Temos o elemento pivô $a_{4,5} = 1$. Pivoteamento da tabela:

1.
$$L_1 \leftarrow L_1 + L_4$$

A Solução

A tabela atualizada fica:

	x_1	x_2	x_3	x_4	x_5	\bar{x}_6	\bar{x}_7	\bar{x}_8	-w
VB	0	0	0	0	0	1	1	1	0
x_1	1	1/2	-1/4	0	0	1/4	0	0	5
x_4	0	-1/2	1/4	1	0	-1/4	1	0	4
x_5	0	1	0	0	1	0	0	1	11

A Solução

- 1. Torne todo b não negativo. \checkmark
- 2. Adicione variáveis artificiais: para cada restrição adicione uma nova variável artificial positiva. ✓

$$x_a = (\bar{x}_{n+1}, \bar{x}_{n+2}, ..., \bar{x}_{n+m}) \checkmark$$

3. Substitua a função objetivo original z pela minimização de w, que é a soma das variáveis artificiais adicionadas: \checkmark

$$\min w = \sum_{j=n+1}^{n+m} \bar{x}_j \checkmark$$

- 4. Faça as v. art. básicas (elimine os coef. das mesmas na f.o para deixar o sistema na forma canônica). √
- 5. Aplique o método Simplex na tabela atual. ✓

Fim da otimização Fase I

A Solução

Verificação de factibilidade

Com isso chegamos ao fim da otimização na Fase I. Agora verificamos se podemos continuar (se o problema original é factível), adaptando a tabela novamente (removendo colunas extras e trocando a função objetivo).

O método das variáveis artificiais

A Solução

- 1. Se min w > 0 no fim da Fase I PARE: o problema original é infactível.
- 2. Preparação para a Fase II:
 - 2.1 Elimine da tabela todas as variáveis artificiais não básicas (remova as colunas das variáveis artificiais).
 - 2.2 Elimine a fow e reinsira a função original z, realizando as operações para manter o sistema na forma canônica (deixando 0 todos os coef. da linha de z referentes as variáveis atualmente na base).
- 3. Aplique o Simplex Fase II utilizando a base atual.

A Solução

	x_1	x_2	x_3	x_4	x_5	\bar{x}_6	\bar{x}_7	\bar{x}_8	-w
VB	0	0	0	0	0	1	1	1	(0)
						1/4			
x_4	0	-1/2	1/4	1	0	-1/4	1	0	4
x_5	0	1	0	0	1	0	0	1	11

• Vemos que o valor w=0, ou seja, o problema original é factível.

O método das variáveis artificiais

A Solução

- 1. Se min w > 0 no fim da Fase I PARE: o problema original é infactível. \checkmark
- 2. Preparação para a Fase II:
 - 2.1 Elimine da tabela **todas as variáveis artificiais não básicas** (remova as colunas das variáveis artificiais).
 - 2.2 Elimine a fo w e reinsira a função original z, realizando as operações para manter o sistema na forma canônica (deixando 0 todos os coef. da linha de z referentes as variáveis atualmente na base).
- 3. Aplique o Simplex Fase II utilizando a base atual.

A Solução

	x_1	x_2	x_3	x_4	x_5	\bar{x}_6	\bar{x}_7	\bar{x}_8	-w
VB	0	0	0	0	0	1	1	1	0
x_1	1	1/2	-1/4	0	0	1/4	0	0	5
x_4	0	-1/2	1/4	1	0	-1/4	1	0	4
x_5	0	1	0	0	1	0	0	1	11

■ Todas as variáveis artificiais são não básicas, de forma que podemos remover todas essas colunas da tabela:

A Solução

	x_1	x_2	x_3	x_4	x_5	-w
VB	0	0	0	0	0	0
x_1	1	1/2	-1/4	0	0	5
x_4	0	-1/2	1/4	1	0	4
x_5	0	1	0	0	1	11

Ficamos com:

O método das variáveis artificiais

A Solução

- 1. Se min w > 0 no fim da Fase I PARE: o problema original é infactível. \checkmark
- 2. Preparação para a Fase II:
 - 2.1 Elimine da tabela **todas as variáveis artificiais não básicas** (remova as colunas das variáveis artificiais). ✓
 - 2.2 Elimine a fo w e reinsira a função original z, realizando as operações para manter o sistema na forma canônica (deixando 0 todos os coef. da linha de z referentes as variáveis atualmente na base).
- 3. Aplique o Simplex Fase II utilizando a base atual.

A Solução

	x_1	x_2	x_3	x_4	x_5	-z
VB	(-1)	-1	0	0	0	0
x_1	$\widetilde{1}$	1/2	-1/4	0	0	5
x_4	0	-1/2	1/4	1	0	4
x_5	0	1	0	0	1	11

• Ao substituirmos novamente a função objetivo original (min $z=-x_1-x_2$), nota-se que o sistema não se mantém na forma canônica.

A Solução

	x_1	x_2	x_3	x_4	x_5	-z
VB	(-1)	-1	0	0	0	0
x_1	$\widetilde{1}$	1/2	-1/4	0	0	5
x_4	0	-1/2	1/4	1	0	4
x_5	0	1	0	0	1	11

A Solução

	x_1	x_2	x_3	x_4	x_5	-z
VB	(-1)	-1	0	0	0	0
x_1	$\widecheck{1}$	1/2		0	0	5
x_4	0	-1/2	1/4	1	0	4
x_5	0	1	0	0	1	11

1.
$$L_1 \leftarrow L_1 + L_2$$

A Solução

	x_1	x_2	x_3	x_4	x_5	-z
VB	0	-1/2	-1/4	0	0	5
x_1	1	1/2	-1/4	0	0	5
x_4	0	-1/2	1/4	1	0	4
x_5	0	1	0	0	1	11

A nova tabela atualizada fica:

OBS: Note que conseguimos uma solução básica factível (SBF) somente com as variáveis originais.

A solução

Podemos verificar isso graficamente, com $x_B^T = (x_1, x_4, x_5) = (5, 4, 11)$

O método das variáveis artificiais

A Solução

- 1. Se min w>0 no fim da Fase I PARE: o problema original é infactível. \checkmark
- 2. Preparação para a Fase II:
 - 2.1 Se alguma variável não-básica não-artificial tem coef. >0 na função objetivo w, elimineas da tabela. \checkmark
 - 2.2 Elimine da tabela todas as variáveis artificiais não básicas. ✓
 - 2.3 Elimine a fo w e reinsira a função original z, realizando as operações para manter o sistema na forma canônica (deixando 0 todos os coef. da linha de z referentes as variáveis atualmente na base) \checkmark .
- 3. Aplique o Simplex Fase II utilizando a base atual.

A Solução

	x_1	x_2	x_3	x_4	x_5	-z
VB	0	-1/2	-1/4	0	0	5
x_1	1	1/2	-1/4	0	0	5
x_4	0	-1/2	1/4	1	0	4
x_5	0	1	0	0	1	11

Aplicando o simplex:

- 1. $L_1 \leftarrow L_1 + L_2$
- 2. $L_3 \leftarrow L_3 + L_2$
- 3. $L_2 \leftarrow 2L_2$
- 4. $L_4 \leftarrow L_4 L_2$

A Solução

	x_1	x_2	x_3	x_4	x_5	-z
VB	1	0	-1/2	0	0	10
x_2	2	1	-1/2	0	0	10
x_4	1	0	0	1	0	9
x_5	-2	0	1/2	0	1	1

Aplicando o simplex:

- 1. $L_1 \leftarrow L_1 + L_4$ 2. $L_2 \leftarrow L_2 + L_4$ 3. $L_4 \leftarrow 2L_4$

A Solução

	x_1	x_2	x_3	x_4	x_5	-z
VB	-1	0	0	0	1	11
x_2	0	1	0	0	1	11
x_4	1	0	0	1	0	9
x_3	-4	0	1	0	2	2

Aplicando o simplex:

- 1. $L_1 \leftarrow L_1 + L_3$ 2. $L_4 \leftarrow L_4 + 3L_2$

A Solução

	x_1	x_2	x_3	x_4	x_5	-z
VB	0	0	0	1	1	20
x_2	0	1	0	0	1	11
x_1	1	0	0	1	0	9
x_3	0	0	1	4	2	38

Solução ótima

Solução ótima com
$$\boldsymbol{x}_B^T = (x_2, x_1, x_3) = (11, 9, 38)$$
 e $\boldsymbol{x}_N^T = (x_4, x_5) = (0, 0)$

A Solução

Podemos verificar isso graficamente, com $x_B^T=(x_2,x_1,x_3)=(11,9,38)$ e $x_N^T=(x_4,x_5)=(0,0)$.

1. Quando temos um modelo com restrições do tipo \geq ou = não conseguimos uma solução básica factível (SBF) de forma automática (não existe uma submatriz identidade em **A**).

- Quando temos um modelo com restrições do tipo ≥ ou = não conseguimos uma solução básica factível (SBF) de forma automática (não existe uma submatriz identidade em A).
- 2. Nesses casos precisamos de um método para primeiro encontrar uma SBF, e somente em seguida aplicar o algoritmo Simplex no modelo original.

- 1. Quando temos um modelo com restrições do tipo ≥ ou = não conseguimos uma solução básica factível (SBF) de forma automática (não existe uma submatriz identidade em **A**).
- 2. Nesses casos precisamos de um método para primeiro encontrar uma SBF, e somente em seguida aplicar o algoritmo Simplex no modelo original.
- Essa busca por uma SBF é chamada Fase I do Método Simplex. Existem duas técnicas para aplicar a Fase I: método do Big-M e método das variáveis artificiais (o que usamos).

- Quando temos um modelo com restrições do tipo ≥ ou = não conseguimos uma solução básica factível (SBF) de forma automática (não existe uma submatriz identidade em A).
- 2. Nesses casos precisamos de um método para primeiro encontrar uma SBF, e somente em seguida aplicar o algoritmo Simplex no modelo original.
- Essa busca por uma SBF é chamada Fase I do Método Simplex. Existem duas técnicas para aplicar a Fase I: método do Big-M e método das variáveis artificiais (o que usamos).
- 4. Após o fim da Fase 1 existem duas possibilidades:
 - 4.1 $w > 0 \rightarrow$ problema original infactível.
 - 4.2 w=0 o problema original **factível**, base atual é factível para o problema original.

Exercícios

Exercícios

Encontre a solução do seguinte modelo de PL. Represente o caminho Simplex a partir da primeira solução básica factível.

$$\max z = 6x_1 - x_2$$

$$4x_1 + x_2 \le 21$$

$$2x_1 + 3x_2 \ge 13$$

$$x_1 - x_2 = -1$$

$$x_1, x_2 \ge 0$$