Somith Das

Assignment Problem_Set_2 due 01/28/2020 at 11:59pm PST

2019W2_ELEC_221_201

The continuous time system *S* is described by $y(t) = \frac{[x(t)]^2}{8x(6t-2)}$, where x(t) is the input and y(t) is the output of the system.

a) In the two diagrams below, find the outputs y_1 and y_2 in terms of the input x if $\alpha = 2$:

$$\times$$
 S $\longrightarrow \omega \longrightarrow 4_2$

$$y_1 = \underline{\hspace{1cm}} y_2 = \underline{\hspace{1cm}}$$

b) In the two diagrams below, find the outputs y_3 and y_4 in terms of the inputs x_1 and x_2 :

$$y_3 = \underline{\hspace{1cm}} y_4 = \underline{\hspace{1cm}}$$

Enter "x1" for x_1 and "x2" for x_2 .

- **c**) Is the system *S* additive? [?/Yes/No]
- **d**) Is the system *S* linear? [?/Yes/No]
- e) Is the system S causal? [?/Yes/No]
- **f)** Is the system *S* memoryless? [?/Yes/No]

Part **c** will only be marked correct if part **b** is correct. Parts **d** to **f** will only be marked correct if parts **a** and **b** are both correct._

Correct Answers:

- 2*[x(t)]^2/[8*x(6*t-2)]
- 2*[x(t)]^2/[8*x(6*t-2)]

- $[x1(t)+x2(t)]^2/(8*[x1(6*t-2)+x2(6*t-2)])$
- $[x1(t)]^2/[8*x1(6*t-2)]+[x2(t)]^2/[8*x2(6*t-2)]$
- No
- No
- No
- No

The continuous time system S is described by y(t) = x(t-2) + x(6-t), where x(t) is the input and y(t) is the output of the system.

a) In the two diagrams below, find the outputs y_1 and y_2 in terms of the input signal x. Here, D_{τ} shows a delay system that introduces a delay of τ .

$$X \longrightarrow S \longrightarrow D_{\tau} \longrightarrow Y_1$$

Use "T" to represent τ *in your solutions.*

- **b)** Is the system *S* time-invariant? [?/Yes/No]
- **c**) In the two diagrams below, find the outputs y_3 and y_4 in terms of the input signals x_1 and x_2 .

$$y_3 = \underline{\hspace{1cm}} y_4 = \underline{\hspace{1cm}}$$

Use "x1" to represent x_1 and "x2" to represent x_2 in your solutions.

- **d**) Is the system *S* linear? [?/Yes/No]
- **e**) Is the system *S* causal? [?/Yes/No]
- **f**) Is the system *S* memoryless? [?/Yes/No]

1

Part b will only be marked correct if part a is correct. Part d will only be marked correct if part c is correct. Parts e to f will only be marked correct if parts a and c are both correct.

Correct Answers:

- x(t-T-2)+x(6-t+T)
- x(t-T-2)+x(6-t-T)
- No
- A*[x1(t-2)+x1(6-t)]+B*[x2(t-2)+x2(6-t)]
- A* [x1(t-2)+x1(6-t)]+B* [x2(t-2)+x2(6-t)]
- Yes
- No
- No

Consider a continuous-time LTI system S where for the input signal $x_1(t)$, the output is $y_1(t)$ as shown in the figure below.

a) Find the output $y_2(t)$ for the input signal $x_2(t)$ defined as in the following graph. Enter your answer as an expression in terms of the Heaviside function, u(t). Assume a = 0.3.

$$y_2(t) = ____y_2'(t) = ____$$

b) Find the output $y_3(t)$ if this time the input signal $x_3(t)$ is defined as in the following graph. Enter your answer as an expression in terms of the Heaviside function, u(t). Assume b = 14.

$$y_3(t) = y_3'(t) =$$

c) What is the impulse response of this system? In your answers, use D(t) instead of $\delta(t)$.

$$h(t) = \underline{\qquad} h'(t) = \underline{\qquad}$$

Part c will only be marked correct if parts a and b are both correct.

Correct Answers:

- u(t)-u(t-0.3)-u(t-2)+u(t-2-0.3)
- u(t) u(t-0.3) + u(t-1) u(t-1-0.3)
- u(t) 2 u(t-14) + u(t-28) u(t-2) + 2 u(t-14-2) u(t-28-2)
- u(t)-2*u(t-14)+u(t-28)+u(t-1)-2*u(t-14-1)+u(t-28-1)
- D(t)-D(t-2)
- D(t) + D(t-1)

For each of the continuous-time systems 1 to 4 given below, determine the outputs y_1 , y_2 , y_3 , and y_4 in terms of the inputs x, x_1 and x_2 , and the other variables A, B and τ as obtained from the figure. D_{τ} is a delay system where if the input is x, the output $y = D_{\tau}(x)$ is given by $y(t) = x(t - \tau)$. In your answers, enter "T" for τ .

a) System 1: y(t) = -8[x(t) + x(t-13)]

Is System 1:

Linear?	[?/Yes/No]
Time-invariant?	[?/Yes/No]
Causal?	[?/Yes/No]
Memoryless?	[?/Yes/No]

b) System 2: y(t) = x(t-6) + x(12-t)

$$y_1(t) = \underline{\hspace{1cm}} y_2(t) = \underline{\hspace{1cm}} y_3(t) = \underline{\hspace{1cm}} y_4(t) = \underline{\hspace{1cm}}$$

Is System 2:

Linear?	[?/Yes/No]
Time-invariant?	[?/Yes/No]
Causal?	[?/Yes/No]
Memoryless?	[?/Yes/No]

c) System 3: y(t) = x(t)cos(22t)

$$y_1(t) = \underline{\hspace{1cm}} y_2(t) = \underline{\hspace{1cm}} y_3(t) = \underline{\hspace{1cm}} y_4(t) = \underline{\hspace{1cm}}$$

Is System 3:

Linear?	[?/Yes/No]
Time-invariant?	[?/Yes/No]
Causal?	[?/Yes/No]
Memoryless?	[?/Yes/No]

d) System 4: y(t) = [3x(t) + 9x(-t)]u(t)

$$y_1(t) =$$
______ $y_2(t) =$ ______ $y_3(t) =$ ______ $y_4(t) =$

Is System 4:

Linear?	[?/Yes/No]
Time-invariant?	[?/Yes/No]
Causal?	[?/Yes/No]
Memoryless?	[?/Yes/No]

Correct Answers:

- -8*[x(t-T)+x(t-13-T)]
- -8*[x(t-T)+x(t-13-T)]
- A* (-8) * [x1(t)+x1(t-13)]+B* (-8) * [x2(t)+x2(t-13)]
- A*(-8)*[x1(t)+x1(t-13)]+B*(-8)*[x2(t)+x2(t-13)]
- Yes
- Yes
- Yes
- No
- x(t-T-6)+x(12-t+T)
- x(t-T-6) + x(12-t-T)
- A*[x1(t-6)+x1(12-t)]+B*[x2(t-6)+x2(12-t)]
- A*[x1(t-6)+x1(12-t)]+B*[x2(t-6)+x2(12-t)]
- Yes
- No
- No
- No
- x(t-T)*cos(22*(t-T))
- x(t-T)*cos(22*t)
- A*x1(t)*cos(22*t)+B*x2(t)*cos(22*t)
- A*x1(t)*cos(22*t)+B*x2(t)*cos(22*t)
- Yes
- No

- Yes
- Yes
- [3*x(t-T)+9*x(-t+T)]*u(t-T)
- [3*x(t-T)+9*x(-t-T)]*u(t)
- A*[3*x1(t)+9*x1(-t)]*u(t)+B*[3*x2(t)+9*x2(-t)]*u(t)
- A*[3*x1(t)+9*x1(-t)]*u(t)+B*[3*x2(t)+9*x2(-t)]*u(t)
- Yes
- No
- Yes
- No

The impulse response of an LTI system is given by: h(t) = 3[u(t) - u(t-7)]

a) Express the output of the system y(t) as a single integral where the integrand is a function of $v = t - \tau$. Express f(v) in terms of x(v). Enter v as "v".

$$\int_{b_0}^{b_1} f(\mathbf{v}) d\mathbf{v} = \int \quad \underline{\qquad} \quad d\mathbf{v}$$

b) Find the unit-step response s(t) of the system and express this piecewise function as a combination of ramp functions, r(t).

$$s(t) = \underline{\hspace{1cm}}$$

Correct Answers:

- t
- t-7
- 3*x(v)
- 3*[r(t)-r(t-7)]

The impulse response of an LTI system is given by: $h(t) = e^{qt}u(t)$, where q is a real number.

a) What is the condition on parameter q so that the system is BIBO stable?

$$q = [?//=/<=/>=]$$

b) Now suppose that q = -6. Calculate the output of the system $y_1(t)$ at t = 6.5 and t = 12 when the input is given by x(t) = u(t-3) - u(t-8).

$$y_1(6.5) = \underline{\hspace{1cm}} y_1(12) = \underline{\hspace{1cm}}$$

c) Find the expression that describes the output of the system $y_2(t)$ for 0 < t < 4 when q = -6 and the input is

$$x(t) = \sum_{k=-\infty}^{\infty} \delta(t - 4k).$$

$$y_2(t) =$$
___ for $0 \le t < 4$

Hint: Use the shifting property of the delta function and the geometric series.

Correct Answers:

- <
- 0

- 0.166666666540291
- 6.29189090713125E-12
- e^(-6*t)/[1-e^(-24)]

Generated by ©WeBWorK, http://webwork.maa.org, Mathematical Association of America