Práctico 1 Matemática Discreta I – Año 2024/1 FAMAF

- (1) Demostrar las siguientes afirmaciones, donde *a*, *b* son siempre números enteros. Justificar cada uno de los pasos en cada demostración indicando el axioma o resultado que utiliza.
 - a) a + a = a implica que a = 0.
 - *b*) $0 \cdot a = 0$.
 - c) $-a = (-1) \cdot a$.
 - *d*) -(-a) = a.
 - e) a = b si y sólo si -a = -b.
- (2) Sea $a, b, c \in \mathbb{Z}$. Demostrar las siguientes afirmaciones.
 - a) c < 0 implica que 0 < -c.
 - b) a + c < b + c implica que a < b.
 - c) $0 < a \neq 0 < b$ implican $0 < a \cdot b$
 - d) a < b y c < 0 implican $b \cdot c < a \cdot c$
- (3) Sean $a, b \in \mathbb{Z}$. Probar las siguientes afirmaciones, justificando los pasos que realiza.
 - a) Si 0 < a y 0 < b entonces a < b si y sólo si $a^2 < b^2$.
 - b) Si $a \neq 0$ entonces $a^2 > 0$.
 - c) Si $a \neq b$ entonces $a^2 + b^2 > 0$.
- (4) Sean $a, b, c \in \mathbb{Z}$ arbitrarios. Decidir si las siguientes afirmaciones son verdaderas o falsas. Justifique apropiadamente.
 - a) Si 0 < a.b entonces 0 < a y 0 < b.
 - b) Si 0 < a.b entonces 0 < a ó 0 < b.
 - c) Si a.c < b.c entonces a < b.
 - d) Si $a^2 < b^2$ entonces a < b.
- (5) Calcular, evaluando, las siguientes expresiones:
 - $a) \qquad \sum_{r=0}^{4} r$

 $b) \qquad \prod_{i=1}^{5} i$

1

c) $\sum_{k=-3}^{-1} \frac{1}{k(k+4)}$

 $d) \quad \prod_{n=2}^{7} \frac{n}{n-1}$

(6) Usando las propiedades de las potencias, calcular:

a)
$$2^{10} - 2^9$$

b)
$$3^22^5 - 3^52^2$$

c)
$$(2^2)^n - (2^n)^2$$

d)
$$(2^{2^n}+1)(2^{2^n}-1)$$

(7) Analizar la validez de las siguientes afirmaciones:

a)
$$(2^{2^n})^{2^k} = 2^{2^{n+k}}, n, k \in \mathbb{N}.$$

b)
$$(2^n)^2 = 4^n, n \in \mathbb{N}$$
.

c)
$$2^{7+11} = 2^7 + 2^{11}$$
.

- (8) Probar que $\sum_{i=0}^{n} 2^i = 2^{n+1} 1$, para todo $n \in \mathbb{N}_0$.
- (9) Demostrar por inducción las siguientes igualdades:

a)
$$\sum_{j=1}^{n} j = \frac{n(n+1)}{2}$$
, $n \in \mathbb{N}$.

b)
$$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}, n \in \mathbb{N}.$$

c)
$$\sum_{k=0}^{n} (2k+1) = (n+1)^2, n \in \mathbb{N}_0.$$

d)
$$\sum_{i=1}^{n} i^3 = \left(\frac{n(n+1)}{2}\right)^2, \quad n \in \mathbb{N}.$$

e)
$$\sum_{k=0}^{n} a^{k} = \frac{a^{n+1}-1}{a-1}$$
, donde $a \in \mathbb{R}$, $a \neq 0$, $a \neq 1$, $n \in \mathbb{N}_{0}$.

$$f) \sum_{i=1}^{n} (i^2 + 1)i! = n(n+1)!, \ n \in \mathbb{N}.$$

g)
$$\prod_{i=1}^{n} (4i-2) = \frac{(2n)!}{n!}, n \in \mathbb{N}.$$

- (10) Hallar $n_0 \in \mathbb{N}$ tal que $\forall n \geq n_0$ se cumpla que $n^2 \geq 11n + 3$, y usar el principio de inducción para probar dicha desigualdad.
- (11) Sea $\{u_n\}_{n\in\mathbb{N}_0}$ la sucesión definida por recurrencia como sigue: $u_0=2$, $u_1=4$ y $u_n=4u_{n-1}-3u_{n-2}$ con $n\in\mathbb{N}$, $n\geq 2$. Probar que $u_n=3^n+1$, para todo $n\in\mathbb{N}_0$.
- (12) Sea $\{u_n\}_{n\in\mathbb{N}}$ la sucesión definida por recurrencia como sigue: $u_1=9$, $u_2=33$, $u_n=7u_{n-1}-10u_{n-2}$, $\forall n\geq 3$. Probar que $u_n=2^{n+1}+5^n$, para todo $n\in\mathbb{N}$.

(13) Sea $\{a_n\}_{n\in\mathbb{N}_0}$ la sucesión definida recursivamente por

$$\begin{cases} a_0 = 1, \\ a_1 = 1, \\ a_n = 3a_{n-1} + (n-1)(n-3)a_{n-2}, \text{ para } n \ge 2. \end{cases}$$
where $a_n = n!$ para todo $n \in \mathbb{N}_0$

Probar que $a_n = n!$ para todo $n \in \mathbb{N}_0$.

(14) Sea $\{a_n\}_{n\in\mathbb{N}_0}$ la sucesión definida recursivamente por

$$\begin{cases} a_0 = 0, \\ a_1 = 7, \\ a_n = 5a_{n-1} + 6a_{n-2}, \text{ para } n \ge 2. \end{cases}$$

$$= 6^n + (-1)^{n+1} \text{ para todo } n \in \mathbb{N}_0$$

Probar que $a_n = 6^n + (-1)^{n+1}$ para todo $n \in \mathbb{N}_0$

- (15) Sea u_n definida recursivamente por: $u_1 = 2$, $u_n = 2 + \sum_{i=1}^{n-1} 2^{n-2i} u_i \ \forall \ n > 1$.
 - a) Calcule u_2 y u_3 .
 - b) Proponga una fórmula para el término general u_n y pruébela por inducción.
- (16) Las siguientes proposiciones no son válidas para todo $n \in \mathbb{N}$. Indicar en qué paso del principio de inducción falla la demostración:

a)
$$n = n^2$$
,

b)
$$n = n + 1$$
,

c)
$$3^n = 3^{n+2}$$

c)
$$3^n = 3^{n+2}$$
, d) $3^{3n} = 3^{n+2}$.

§ **Ejercicios de repaso.** Los ejercicios marcados con (*) son de mayor dificultad.

(17) Demostrar las siguientes igualdades:

a)
$$\prod_{i=1}^{n} \frac{i+1}{i} = n+1, \ n \in \mathbb{N}.$$

b)
$$\sum_{i=1}^{n} \frac{1}{4i^2 - 1} = \frac{n}{2n+1}, n \in \mathbb{N}.$$

c)
$$\prod_{i=2}^{n} \left(1 - \frac{1}{i^2} \right) = \frac{n+1}{2n}, \ n \in \mathbb{N} \ \text{y} \ n \ge 2.$$

d) Si $a \in \mathbb{R}$ y $a \ge -1$, entonces $(1+a)^n \ge 1 + n \cdot a$, $\forall n \in \mathbb{N}$.

e) Si
$$a_1, \ldots, a_n \in \mathbb{R}$$
, entonces $\sum_{k=1}^n a_k^2 \le \left(\sum_{k=1}^n |a_k|\right)^2$, $n \in \mathbb{N}$.

f) Si
$$a_1, \ldots, a_n \in \mathbb{R}$$
 y $0 < a_i < 1 \,\forall i$, entonces $\forall n \in \mathbb{N}$, $(1 - a_1) \cdots (1 - a_n) > 1 - a_1 - \cdots - a_n$.

(18) Sea $\{a_n\}_{n\in\mathbb{N}}$ la sucesión definida recursivamente por

$$\begin{cases} a_1 = 1, \\ a_2 = 2, \\ a_n = (n-2)a_{n-1} + 2(n-1)a_{n-2}, \text{ para } n \ge 3. \end{cases}$$

Probar que $a_n = n!$ para todo $n \in \mathbb{N}$.

(19) Sea $\{a_n\}_{n\in\mathbb{N}_0}$ la sucesión definida recursivamente por

$$\begin{cases} a_0 = 0, \\ a_1 = 5, \\ a_n = a_{n-1} + 6a_{n-2}, \text{ para } n \ge 2. \end{cases}$$

Probar que $a_n = 3^n + (-1)^{n+1} 2^n$ para todo $n \in \mathbb{N}_0$.

- (20) (*) Encuentre el error en los siguientes argumentos de inducción.
 - a) Demostraremos que 5n+3 es múltiplo de 5 para todo $n \in \mathbb{N}$. Supongamos que 5k+3 es múltiplo de 5, siendo $k \in \mathbb{N}$. Entonces existe $p \in \mathbb{N}$ tal que 5k+3=5p. Probemos que 5(k+1)+3 es múltiplo de 5: Como

$$5(k+1) + 3 = (5k+5) + 3 = (5k+3) + 5 = 5p + 5 = 5(p+1),$$

entonces obtenemos que 5(k+1)+3 es múltiplo de 5. Por lo tanto, por el principio de inducción, demostramos que 5n+3 es múltiplo de 5 para todo $n \in \mathbb{N}$.

b) Sea $a \in \mathbb{R}$, con $a \neq 0$. Vamos a demostrar que para todo entero no negativo n, $a^n = 1$.

Como $a^0=1$ por definición, la proposición es verdadera para n=0. Supongamos que para un entero k, $a^m=1$ para $0 \le m \le k$. Entonces $a^{k+1}=\frac{a^ka^k}{a^{k-1}}=\frac{1\cdot 1}{1}=1$. Por lo tanto, el principio de inducción fuerte implica que $a^n=1$ para todo $n\in\mathbb{N}$.

(21) (*) La sucesión de Fibonacci se define recursivamente de la siguiente manera:

$$u_1 = 1$$
, $u_2 = 1$, $u_{n+1} = u_n + u_{n-1}$, $n \ge 2$.

Los primeros términos de esta sucesión son: 1, 1, 2, 3, 5, 8, 13, ...

Demostrar por inducción que el término general de esta sucesión se puede calcular mediante la fórmula

$$u_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1 + \sqrt{5}}{2} \right)^n - \left(\frac{1 - \sqrt{5}}{2} \right)^n \right].$$

Ayuda: usar que $\frac{1+\sqrt{5}}{2}$ y $\frac{1-\sqrt{5}}{2}$ son las raíces de la ecuación cuadrática $x^2-x-1=0$ y por lo tanto $\left(\frac{1\pm\sqrt{5}}{2}\right)^{n+1}=\left(\frac{1\pm\sqrt{5}}{2}\right)^n+\left(\frac{1\pm\sqrt{5}}{2}\right)^{n-1}$.

- (22) Probar las siguientes afirmaciones usando inducción en n:
 - a) $2n + 1 < 2^n$ para todo $n \in \mathbb{N}$, n > 2.
 - b) $n^2 \le 2^n$ para todo $n \in \mathbb{N}$, n > 3.
 - c) $\forall n \in \mathbb{N}, 3^n \ge 1 + 2^n$.