Baseline 1: Prediction of age-structured model for SARS-CoV-2 in Seoul and Gyeonggi

Yunjeong Lee 1 Jeongjoo Seok 2

¹School of Mathematics and Computing (Computational Science and Engineering)

 2 School of Mathematics and Computing (Mathematics)

October 25, 2021

Data

- 1. Daily confirmed cases in Seoul and Gyeonggi
- 2. Vaccine
 - ▶ Daily number of vaccination for 1st dose (by age)
 - ▶ Daily number of vaccination for 2nd dose (by age)
 - ► Vaccine efficacy
- 3. Proportion of δ variant

1. Daily number of vaccination for 1st dose (all ages)

Figure 1: The daily number vaccination for 1st dose and 2nd dose from 2021/02/15 to 2021/09/01

1. Daily number of vaccination for 1st dose (by age)

- ▶ The daily number of vaccination by age is generated by the ratio between ages of vaccinated people.
- ► The ratio is based on KDCA reports.

Figure 2: The daily number vaccination for 1st dose by age from 2021/02/15 to 2021/09/01

2. Daily number of vaccination for 2nd dose (by age)

- ▶ The daily number of vaccination by age is generated by the ratio between ages of vaccinated people.
- ► The ratio is based on KDCA reports.

Figure 3: The daily number vaccination for 2nd dose by age from 2021/02/15 to 2021/09/01

3. Vaccine efficacy

- ▶ The vaccine efficacies for α variant and δ variant are different.
- \triangleright We use weighted sum of vaccine efficacies where weights are based on proportion of δ variant

	Dose	Astrazeneca	Pfizer
α variant	1st dose 2nd dose	$48.7\% \\ 74.5\%$	47.5% $93.7%$
δ variant	1st dose 2nd dose	$30.0\% \\ 67\%$	35.6% $88%$

Table 1: The vaccine efficacies according to the vaccine type, variant and dose.

 $^{^1\}mathrm{Jamie}$ Lopez Bernal et al. (2021). "Effectiveness of Covid-19 vaccines against the B. 1.617. 2 (Delta) variant". In: New England Journal of Medicine

3. Vaccine efficacy

Figure 4: The estimated daily vaccine efficacy for 1st dose and 2nd dose.

4. Proportion of δ variant

Date	δ proportion (%)
6월 1주차	2.4
6월 2주차	1.4
6월 3주차	2.5
6월 4주차	3.3
6월 5주차	9.9
7월 1주차	23.3
7월 2주차	33.9
7월 3주차	48.0
7월 4주차	61.5
8월 1주차	73.1
8월 2주차	85.3
8월 3주차	89.6
8월 4주차	94.3
9월 1주차	97.0

Table 2: 질병관리청에서 보도된 검출된 델타 변이 비율

Figure 5: Estimates of proportion of δ variant.

Vaccine efficacy preventing deaths

	VE preventing deaths
1st dose	$85\%^{3}$
2nd dose	$96.1\%^{4}$

Table 3: Vaccine efficay preventing deaths for each dose.

³Jamie Lopez Bernal et al. (2021). "Effectiveness of Covid-19 vaccines against the B. 1.617. 2 (Delta) variant". In: New England Journal of Medicine

 $^{^4}$ kdca2021

Proportion of used beds

Figure 6: 준중증 및 중증 병상 가동률

Model

Figure 7: Diagram of age-structured model for SARS-CoV-2.

Model

Notation	Interpretation	
\overline{S}	Susceptibles	
E	Exposed	
I	Infectious	
H	Hospitalized	
R	Removed (or recovered)	
V_1	Vaccinated (1st dose)	
V_2	Vaccinated (2nd dose)	
λ	Force of infection	
κ	Latent period	
α	Infectious period	
γ	Hospitalization period	
e_1	Vaccine efficacy for 1st dose	
e_2	Vaccine efficacy for 2nd dose	

Table 4: Definition of states and parameters.

Social distancing

Social distance level

- ▶ 0.5단계 감소: transmission rate 전단계 대비 40% 증가
- ▶ 0.5단계 증가: transmission rate 전단계 대비 32% 감소

Date	Social distancing level	Change of transmission rate
2021/02/15-2021/06/30	2	
2021/07/01-2021/07/11	1.5	$\beta imes 1.4$
$2021/07/12-2021/12/31^2$	2	$\beta \times 1.4 \times 0.68$

Table 5: The change of transmission rate according to the social distancing level from 2021/02/15 to 2021/12/31.

 $^{^2\}mathrm{It}$ will be changed according to the experiments.

Definition of λ

Motivation

- ▶ In general, $\lambda(t)$ is defined by $W \times I(t)$ where W is the WAIFW matrix, and I(t) is the number of infectious at time t.
- \triangleright To reflect the non-pharmaceutical intervention, we consider time-dependent W(t).

Definition of WAIFW matrix

Let p(t) and SD(t) be the proportion of δ variant and proportionate of the corresponding social distancing level at time t. Let C(t) be the contact rate at time t.

$$W(t) = ((1 - p(t) + p(t)\delta) \times \beta \times SD(t) \times C(t)$$

Experiments

사회적 거리두기 (11월 이후)

- ▶ 현 상태 유지 (현 2단계 → 2단계)
- ▶ 1단계 완화 (현 2단계 → 1단계)

등교 수준

- ▶ 현 상태 유지
- ▶ 현 1단계 수준 완화
- ▶ 현 2단계 수준 완화
- ▶ 전면 등교 및 마스크 미착용

현 2단계 (구 2단계): 11월 이후 사회적 거리두기 완화 수준 same단계, 등교 완화 수준 same 단계

Figure 8: The model prediction and data for daily confirmed cases (top) and cumulative confirmed cases (bottom).

현 2단계 (구 2단계): 11월 이후 사회적 거리두기 완화 수준 same단계, 등교 완화 수준 same 단계

Figure 9: The estimated reproduction number from 2021/02/15 to 2021/12/31.

현 2단계 (구 2단계): 11월 이후 사회적 거리두기 완화 수준 same단계, 등교 완화 수준 same 단계

Figure 10: The estimated proportion of beds usage from 2021/02/15 to 2021/12/31.

현 2단계 (구 2단계): 11월 이후 사회적 거리두기 완화 수준 same단계, 등교 완화 수준 1단계

Figure 11: The model prediction and data for daily confirmed cases (top) and cumulative confirmed cases (bottom).

현 2단계 (구 2단계): 11월 이후 사회적 거리두기 완화 수준 same단계, 등교 완화 수준 1단계

Figure 12: The estimated reproduction number from 2021/02/15 to 2021/12/31.

현 2단계 (구 2단계): 11월 이후 사회적 거리두기 완화 수준 same단계, 등교 완화 수준 1단계

Figure 13: The estimated proportion of beds usage from 2021/02/15 to 2021/12/31.

현 2단계 (구 2단계): 11월 이후 사회적 거리두기 완화 수준 same단계, 등교 완화 수준 2단계

Figure 14: The model prediction and data for daily confirmed cases (top) and cumulative confirmed cases (bottom).

현 2단계 (구 2단계): 11월 이후 사회적 거리두기 완화 수준 same단계, 등교 완화 수준 2단계

Figure 15: The estimated reproduction number from 2021/02/15 to 2021/12/31.

현 2단계 (구 2단계): 11월 이후 사회적 거리두기 완화 수준 same단계, 등교 완화 수준 2단계

Figure 16: The estimated proportion of beds usage from 2021/02/15 to 2021/12/31.

현 2단계 (구 2단계): 11월 이후 사회적 거리두기 완화 수준 same단계, 등교 완화 수준 max 단계

Figure 17: The model prediction and data for daily confirmed cases (top) and cumulative confirmed cases (bottom).

현 2단계 (구 2단계): 11월 이후 사회적 거리두기 완화 수준 same단계, 등교 완화 수준 max 단계

Figure 18: The estimated reproduction number from 2021/02/15 to 2021/12/31.

현 2단계 (구 2단계): 11월 이후 사회적 거리두기 완화 수준 same단계, 등교 완화 수준 max 단계

Figure 19: The estimated proportion of beds usage from 2021/02/15 to 2021/12/31.

현 2단계 (구 2단계): 11월 이후 사회적 거리두기 완화 수준 1단계, 등교 완화 수준 same단계

Figure 20: The model prediction and data for daily confirmed cases (top) and cumulative confirmed cases (bottom).

현 2단계 (구 2단계): 11월 이후 사회적 거리두기 완화 수준 1단계, 등교 완화 수준 same단계

Figure 21: The estimated reproduction number from 2021/02/15 to 2021/12/31.

현 2단계 (구 2단계): 11월 이후 사회적 거리두기 완화 수준 1단계, 등교 완화 수준 same단계

Figure 22: The estimated proportion of beds usage from 2021/02/15 to 2021/12/31.

현 2단계 (구 2단계): 11월 이후 사회적 거리두기 완화 수준 1단계, 등교 완화 수준 1단계

Figure 23: The model prediction and data for daily confirmed cases (top) and cumulative confirmed cases (bottom).

현 2단계 (구 2단계): 11월 이후 사회적 거리두기 완화 수준 1단계, 등교 완화 수준 1단계

Figure 24: The estimated reproduction number from 2021/02/15 to 2021/12/31.

현 2단계 (구 2단계): 11월 이후 사회적 거리두기 완화 수준 1단계, 등교 완화 수준 1단계

Figure 25: The estimated proportion of beds usage from 2021/02/15 to 2021/12/31.

현 2단계 (구 2단계): 11월 이후 사회적 거리두기 완화 수준 1단계, 등교 완화 수준 2단계

Figure 26: The model prediction and data for daily confirmed cases (top) and cumulative confirmed cases (bottom).

현 2단계 (구 2단계): 11월 이후 사회적 거리두기 완화 수준 1단계, 등교 완화 수준 2단계

Figure 27: The estimated reproduction number from 2021/02/15 to 2021/12/31.

현 2단계 (구 2단계): 11월 이후 사회적 거리두기 완화 수준 1단계, 등교 완화 수준 2단계

Figure 28: The estimated proportion of beds usage from 2021/02/15 to 2021/12/31.

현 2단계 (구 2단계): 11월 이후 사회적 거리두기 완화 수준 1단계, 등교 완화 수준 max단계

Figure 29: The model prediction and data for daily confirmed cases (top) and cumulative confirmed cases (bottom).

현 2단계 (구 2단계): 11월 이후 사회적 거리두기 완화 수준 1단계, 등교 완화 수준 max단계

Figure 30: The estimated reproduction number from 2021/02/15 to 2021/12/31.

현 2단계 (구 2단계): 11월 이후 사회적 거리두기 완화 수준 1단계, 등교 완화 수준 max단계

Figure 31: The estimated proportion of beds usage from 2021/02/15 to 2021/12/31.