#steps for regression model with csv

#import library
import pandas as pd

import numpy as np

#import csv as dataframe
df=pd.read_csv('/content/New_Fish_dataset.zip')

df

	Species	Weight	Length1	Length2	Length3	Height	Width	1
0	Bream	242.0	23.2	25.4	30.0	11.5200	4.0200	
1	Bream	290.0	24.0	26.3	31.2	12.4800	4.3056	
2	Bream	340.0	23.9	26.5	31.1	12.3778	4.6961	
3	Bream	363.0	26.3	29.0	33.5	12.7300	4.4555	
4	Bream	430.0	26.5	29.0	34.0	12.4440	5.1340	
154	Smelt	12.2	11.5	12.2	13.4	2.0904	1.3936	
155	Smelt	13.4	11.7	12.4	13.5	2.4300	1.2690	
156	Smelt	12.2	12.1	13.0	13.8	2.2770	1.2558	
157	Smelt	19.7	13.2	14.3	15.2	2.8728	2.0672	
158	Smelt	19.9	13.8	15.0	16.2	2.9322	1.8792	

159 rows × 7 columns

#get first five rows of dataset
df.head()

	Species	Weight	Length1	Length2	Length3	Height	Width	1
0	Bream	242.0	23.2	25.4	30.0	11.5200	4.0200	
1	Bream	290.0	24.0	26.3	31.2	12.4800	4.3056	
2	Bream	340.0	23.9	26.5	31.1	12.3778	4.6961	
3	Bream	363.0	26.3	29.0	33.5	12.7300	4.4555	
4	Bream	430.0	26.5	29.0	34.0	12.4440	5.1340	

df.head(5)

#get info about dataset
df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 159 entries, 0 to 158
Data columns (total 7 columns):

#	Column	Non-Null Count	Dtype
0	Species	159 non-null	object
1	Weight	159 non-null	float64
2	Length1	159 non-null	float64
3	Length2	159 non-null	float64
4	Length3	159 non-null	float64
5	Height	159 non-null	float64
6	Width	159 non-null	float64
1.0	C7 1	C4/C) 1	

dtypes: float64(6), object(1)

memory usage: 8.8+ KB

#Get summary statistics
df.describe()

	Weight	Length1	Length2	Length3	Height	Width
count	159.000000	159.000000	159.000000	159.000000	159.000000	159.000000
mean	398.326415	26.247170	28.415723	31.227044	8.970994	4.417486
std	357.978317	9.996441	10.716328	11.610246	4.286208	1.685804
min	0.000000	7.500000	8.400000	8.800000	1.728400	1.047600
25%	120.000000	19.050000	21.000000	23.150000	5.944800	3.385650
50%	273.000000	25.200000	27.300000	29.400000	7.786000	4.248500
75%	650.000000	32.700000	35.500000	39.650000	12.365900	5.584500
max	1650.000000	59.000000	63.400000	68.000000	18.957000	8.142000

#get shape of dataset
df.shape

(159, 7)

from sklearn.linear_model import LinearRegression

((111, 5), (48, 5), (111,), (48,))

#Get model train

from sklearn .model_selection import train_test_split

X_train.shape,X_test.shape,y_train.shape,y_test.shape

X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.3,random_state=2529)

```
model=LinearRegression()
model.fit(X_train,y_train)
     LinearRegression()
#Get Model Prediction
y_pred=model.predict(X_test)
y_pred=model.predict(X_test)
y_pred.shape
     (48,)
y_pred
     array([ 485.76826299, 502.24720857, 94.72381964, 876.5711712 ,
             184.0789176, 219.30130488, 322.32532246, 376.22325991,
             372.35730485, -182.67537078, -160.60486837, 454.33586185,
             159.59755829, 843.48525226, 587.21680573, 299.53521445,
             597.72950823, 197.14605397, 639.89046741, 91.20067876,
             150.95424753, -103.08320574, 627.19712753, 795.69176861,
             814.68732975, -204.1496511 , 329.98746856, 715.89288013,
             359.75634357, 792.3243925, 532.7036706, 552.00832342,
             433.48472727, 687.61750267, -204.76362537, 932.53668294,
             810.74234216, -80.06217174, 284.36287887, 907.08036021,
             642.5828335 , 959.33848223, 675.28792291, 718.86305458,
             623.89849226, 376.48346981, 530.83828119, -86.2357066 ])
#get model evaluation
from sklearn.metrics import mean_squared_error,mean_absolute_error,mean_absolute_percentag
mean_squared_error(y_test,y_pred)
     16397.344524411372
mean_absolute_error(y_test,y_pred)
     103.02952922678541
mean_absolute_percentage_error(y_test,y_pred)
     2.5082853471600246
r2_score(y_test,y_pred)
     0.8349141424416878
```

#Get future prediction

df_new=df.sample(1)

df_new

	Species	Weight	Length1	Length2	Length3	Height	Width	1
146	Smelt	7.5	10.0	10.5	11.6	1.972	1.16	

X_new=df_new[['Height','Width','Length1','Length2','Length3']]

X_new.shape

(1, 5)

y_pred_new=model.predict(X_new)

/usr/local/lib/python3.7/dist-packages/sklearn/base.py:493: FutureWarning: The feature names must be in the same order as they were in fit.

warnings.warn(message, FutureWarning)

→

y_pred_new

array([-416.07874204])

✓ 0s completed at 11:52 AM

×