Правила оформления домашних заданий

- 1. Домашние задания выполняются либо в отдельных (тонких, не более 18-ти листов) тетрадках, либо на отдельных листах (например, формата А4), которые обязательно должны быть либо упакованы в файл, либо скреплены степлером или канцелярской скрепкой. Разрозненные листы, а также листы, скрепленные путем загибания уголка, не принимаются;
- 2. каждая работа должна иметь титульный лист, на котором указаны фамилия автора, индекс его группы и номер выполненного варианта.

ДОМАШНЕЕ ЗАДАНИЕ № 1

Линейное программирование

- 1. Составить двойственную задачу¹ и решить ее графически;
- 2. решить исходную задачу с использованием симплекс-таблиц;
- 3. решить двойственную задачу с использованием симплекс-таблиц;
- 4. сравнить найденные решения.

1.
$$\begin{cases} 4x_1 - 10x_2 - 12.5x_3 - 6.5x_4 \rightarrow \max, \\ x_2 + 0.5x_3 - 1.5x_4 \geqslant 2, \\ -x_1 - 3x_3 + 2x_4 \geqslant 3, \\ x_i \geqslant 0, \quad i = \overline{1:4}. \end{cases}$$
2.
$$\begin{cases} -3x_1 + 2x_2 - x_3 \rightarrow \max, \\ -x_1 + 2x_2 + x_3 \leqslant 1, \\ x_1 - x_2 + x_3 \geqslant 2, \\ x_i \geqslant 0, \quad i = \overline{1:3}. \end{cases}$$
3.
$$\begin{cases} x_1 + 2x_2 + x_3 + 8x_4 \rightarrow \min, \\ 2x_1 + 3x_2 - x_3 - 2x_4 \geqslant 3, \\ -x_1 - 4x_2 + 3x_3 + 4x_4 \geqslant 1, \\ x_i \geqslant 0, \quad i = \overline{1:4}. \end{cases}$$
4.
$$\begin{cases} 6x_1 + 9x_2 + 8x_3 \rightarrow \min, \\ 3x_1 - 2x_2 - 4x_3 \leqslant -4, \\ 5x_1 + x_2 - 3x_3 \geqslant 1, \\ x_i \geqslant 0, \quad i = \overline{1:4}. \end{cases}$$
5.
$$\begin{cases} 6x_1 + 9x_2 + 8x_3 \rightarrow \min, \\ 3x_1 - 2x_2 - 4x_3 \leqslant -4, \\ 5x_1 + x_2 - 3x_3 \geqslant 1, \\ x_i \geqslant 0, \quad i = \overline{1:4}. \end{cases}$$
6.
$$\begin{cases} x_1 - 4x_2 + 6x_3 - 18x_4 \rightarrow \max, \\ -x_1 + 1.5x_3 + x_4 \geqslant 1, \\ x_2 - 5x_3 + 4x_4 \geqslant 3, \\ x_i \geqslant 0, \quad i = \overline{1:4}. \end{cases}$$
7.
$$\begin{cases} x_1 - 16x_2 - 4x_3 + 6x_4 \rightarrow \max, \\ x_1 - 4x_2 + 1.5x_4 \leqslant -1, \\ 2x_1 + 3x_2 - 3x_3 - 2x_4 \geqslant 3, \\ x_i \geqslant 0, \quad i = \overline{1:4}. \end{cases}$$
8.
$$\begin{cases} x_1 - 16x_2 - 4x_3 + 6x_4 \rightarrow \max, \\ x_1 - 4x_2 + 1.5x_4 \leqslant -1, \\ 2x_1 + 3x_2 - 3x_3 - 2x_4 \geqslant 2, \\ x_i \geqslant 0, \quad i = \overline{1:4}. \end{cases}$$
10.
$$\begin{cases} 3x_1 + 7x_2 + 2.5x_3 + 1.5x_4 \rightarrow \min, \\ -2x_1 + x_2 + 2x_3 + 4x_4 \geqslant 3, \\ x_1 \geqslant 0, \quad i = \overline{1:4}. \end{cases}$$
11.
$$\begin{cases} 25x_1 - 20x_2 - 8x_3 + 13x_4 \rightarrow \min, \\ x_1 + 2x_2 - 3x_4 \geqslant 4, \\ 3x_2 + x_3 - 2x_4 \leqslant -3, \\ x_i \geqslant 0, \quad i = \overline{1:4}. \end{cases}$$
12.
$$\begin{cases} 3x_1 + 4x_2 + 4.5x_3 + 3x_4 \rightarrow \min, \\ -2x_1 + x_2 + 2x_3 + 3x_4 \Rightarrow -1, \\ x_i \geqslant 0, \quad i = \overline{1:4}. \end{cases}$$
13.
$$\begin{cases} x_1 - 15x_2 - 10x_3 + 6x_4 \rightarrow \max, \\ 5x_1 - 4x_2 + 2x_3 - 3x_4 \leqslant -6, \\ -x_1 - x_2 - 3x_3 + 5x_4 \leqslant 1, \\ x_i \geqslant 0, \quad i = \overline{1:4}. \end{cases}$$
14.
$$\begin{cases} -3x_1 + 2x_2 - x_3 \rightarrow 1.5x_4 \Rightarrow -1, \\ x_1 \geqslant 0, \quad i = \overline{1:4}. \end{cases}$$
15.
$$\begin{cases} x_1 - 15x_2 - 10x_3 + 6x_4 \rightarrow \max, \\ 5x_1 - 4x_2 + 2x_3 - 3x_4 \leqslant -6, \\ -x_1 - x_2 - 3x_3 + 5x_4 \leqslant 1, \\ x_i \geqslant 0, \quad i = \overline{1:4}. \end{cases}$$
16.
$$\begin{cases} -3x_1 + 2x_2 - x_3 \rightarrow 1.5x_4 \Rightarrow -1, \\ x_1 \geqslant 0, \quad i = \overline{1:4}. \end{cases}$$
17.
$$\begin{cases} -3x_1 + 2x_2 - x_3 \Rightarrow 1.5x_4 \leqslant -1, \\ x_1 \geqslant 0, \quad i = \overline{1:4}. \end{cases}$$
18.
$$\begin{cases} -3x_1 + 4x_2 + 6x_3 - 1x_4 \Rightarrow -1, \\ x_1 \geqslant 0, \quad i = \overline{1:4}. \end{cases}$$
19.
$$\begin{cases} -3x_1 + 2x_2 - x_3 \Rightarrow 1.5x_4 \leqslant -1, \\ x_1 \geqslant 0, \quad i = \overline{1:4}. \end{cases}$$
10.
$$\begin{cases} -3x_1 + 3x_2 - 2x_3 \Rightarrow 3x_4 \leqslant -1, \\ x_1 \geqslant 0, \quad i = \overline{1:4}. \end{cases}$$
11.
$$\begin{cases} -3x_1 + 3x_2 - 2x_3 \Rightarrow 3x_4 \leqslant -1, \\ x_1 \geqslant 0, \quad i = \overline{1:4}. \end{cases}$$
12.
$$\begin{cases} -3x_1 + 4x_2 + 3x_$$

15.
$$\begin{cases} -6x_1 + 4x_2 + 16x_3 - 4x_4 \to \min, \\ 3x_1 - 8x_3 + 2x_4 \leqslant -2, \\ -3x_1 + x_2 + 2x_3 \geqslant -4, \\ x_i \geqslant 0, \quad i = \overline{1:4}. \end{cases}$$
16.
$$\begin{cases} x_1 + 2x_2 + x_3 + 8x_4 \to \min, \\ x_1 + 4x_2 - 3x_3 - 4x_4 \leqslant -1, \\ 2x_1 + 3x_2 - x_3 - 2x_4 \geqslant 3, \\ x_i \geqslant 0, \quad i = \overline{1:4}. \end{cases}$$

$$\textbf{19.} \begin{cases} 3x_1 + 14x_2 + 5x_3 + 6x_4 \to \min, \\ x_1 + x_2 + 2x_3 - 2x_4 \geqslant 3, \\ 2x_1 - x_2 + 2x_3 - x_4 \leqslant -2, \\ x_i \geqslant 0, \quad i = \overline{1:4}. \end{cases} \qquad \textbf{20.} \begin{cases} x_1 - 16x_2 - 4x_3 + 6x_4 \to \max, \\ x_1 - 4x_2 + 1.5x_4 \leqslant -1, \\ 2x_2 + x_3 - 3x_4 \geqslant -4, \\ x_i \geqslant 0, \quad i = \overline{1:4}. \end{cases}$$

$$\mathbf{21.} \begin{cases} 3x_1 + 2.5x_2 + 7x_3 + 1.5x_4 \to \min, \\ x_1 - 2x_2 + x_3 - 2x_4 \geqslant 2, \\ 2x_1 - 2x_2 - x_3 - x_4 \leqslant -3, \\ x_i \geqslant 0, \quad i = \overline{1:4}. \end{cases} \qquad \mathbf{22.} \begin{cases} -x_1 + 4x_2 + 16x_3 \to \min, \\ x_1 - 4x_3 \leqslant -2, \\ -x_2 - 2x_3 \leqslant 1, \\ x_i \geqslant 0, \quad i = \overline{1:3}. \end{cases}$$

23.
$$\begin{cases} 8x_1 + 9x_2 + 6x_3 \to \min, \\ 4x_1 + 2x_2 - 3x_3 \geqslant 4, \\ -3x_1 + x_2 + 5x_3 \geqslant 1, \\ x_i \geqslant 0, \quad i = \overline{1:3}. \end{cases}$$
24.
$$\begin{cases} 3x_1 + 4.5x_2 + 4x_3 - 3x_4 \to \min, \\ -5x_1 - x_2 + 3x_3 + 3x_4 \leqslant -5, \\ 3x_1 - 2x_2 - 4x_3 + 3x_4 \leqslant -1, \\ x_i \geqslant 0, \quad i = \overline{1:4}. \end{cases}$$

25.
$$\begin{cases} 8x_1 + x_2 + 2x_3 + x_4 \to \min, \\ -4x_1 - 3x_2 + 4x_3 + x_4 \leqslant -1, \\ -2x_1 - x_2 + 3x_3 + 2x_4 \geqslant 3, \\ x_i \geqslant 0, \quad i = \overline{1:4}. \end{cases}$$
 26.
$$\begin{cases} 6x_1 + x_2 - 16x_3 - 4x_4 \to \max, \\ 3x_1 - 2x_2 - x_4 \leqslant 4, \\ 1.5x_1 + x_2 - 4x_3 \leqslant -1, \\ x_i \geqslant 0, \quad i = \overline{1:4}. \end{cases}$$

27.
$$\begin{cases} 7x_1 + 1.5x_2 + 3x_3 + 2.5x_4 \to \min, \\ x_1 - 2x_2 + x_3 - 2x_4 \geqslant 2, \\ -x_1 - x_2 + 2x_3 - 2x_4 \leqslant -3, \\ x_i \geqslant 0, \quad i = \overline{1:4}. \end{cases}$$
28.
$$\begin{cases} 13x_1 + 25x_2 - 20x_3 - 8x_4 \to \min, \\ 2x_1 - 3x_2 - x_4 \geqslant 3, \\ -3x_1 + x_2 + 2x_3 \geqslant 4, \\ x_i \geqslant 0, \quad i = \overline{1:4}. \end{cases}$$

22.
$$\begin{cases} -x_2 - 2x_3 \leqslant 1, \\ x_i \geqslant 0, & i = \overline{1:3}. \end{cases}$$
$$\begin{cases} 3x_1 + 4.5x_2 + 4x_3 - 3x_4 \to m \end{cases}$$

26.
$$\begin{cases} 6x_1 + x_2 - 16x_3 - 4x_4 \to \max, \\ 3x_1 - 2x_2 - x_4 \leqslant 4, \\ 1.5x_1 + x_2 - 4x_3 \leqslant -1, \end{cases}$$

28.
$$\begin{cases} 13x_1 + 25x_2 - 20x_3 - 8x_4 \to \min\\ 2x_1 - 3x_2 - x_4 \ge 3,\\ -3x_1 + x_2 + 2x_3 \ge 4,\\ x_i \ge 0, \qquad i = \overline{1:4}. \end{cases}$$

¹В случае, когда исходная задача является задачей минимизации, ее следует привести к стандартной форме двойственной задачи, а двойственную задачу записать в стандартной форме прямой.

Правила оформления и защиты лабораторных работ

- 1. Все алгоритмы должны быть реализованы с использованием системы MatLAB;
- Реализованные алгоритмы должны работать для любого набора допустимых входных данных, в том числе и для матриц различного порядка;
- 3. приступая к защите лабораторной работы, студент должен иметь при себе готовый отчет, содержание которого определяется заданием на конкретную лабораторную работу.

ЛАБОРАТОРНАЯ РАБОТА№ 1

Венгерский метод решения задачи о назначениях

Цель работы: изучение венгерского метода решения задачи о назначениях.

Содержание работы

- 1. реализовать венгерский метод решения задачи о назначениях в виде программы на ЭВМ²;
- провести решение задачи с матрицей стоимостей, заданной в индивидуальном варианте, рассмотрев два случая:
 - а) задача о назначениях является задачей минимизации,
 - б) задача о назначениях является задачей максимизации.

Содержание отчета

- содержательная и математическая постановки задачи о назаначениях, а также исходные данные конкретного варианта;
- 2. краткое описание венгерского метода (можно в "псевдокодах");
- 3. текст программы;
- 4. результаты расчетов для задач из индивидуального варианта.

Индвидуальные варианты матрицы стоимостей

1. $\begin{bmatrix} 4 & 2 & 1 & 3 & 7 \\ 1 & 5 & 4 & 6 & 3 \\ 5 & 4 & 8 & 7 & 2 \\ 9 & 9 & 3 & 2 & 5 \\ 3 & 4 & 7 & 8 & 2 \end{bmatrix}$.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3. $\begin{bmatrix} 1 & 4 & 7 & 9 & 4 \\ 9 & 3 & 8 & 7 & 4 \\ 3 & 4 & 6 & 8 & 2 \\ 8 & 2 & 4 & 6 & 7 \\ 7 & 6 & 9 & 8 & 5 \end{bmatrix}.$	$4. \begin{bmatrix} 3 & 5 & 2 & 4 & 8 \\ 10 & 10 & 4 & 3 & 6 \\ 5 & 6 & 9 & 8 & 3 \\ 6 & 2 & 5 & 8 & 4 \\ 5 & 4 & 8 & 9 & 3 \end{bmatrix}.$
5. $\begin{bmatrix} 9 & 11 & 3 & 6 & 6 \\ 10 & 9 & 11 & 5 & 6 \\ 8 & 10 & 5 & 6 & 4 \\ 6 & 8 & 10 & 4 & 9 \\ 11 & 10 & 9 & 8 & 7 \end{bmatrix}$. 6.	$5. \begin{bmatrix} 10 & 8 & 6 & 4 & 9 \\ 11 & 9 & 10 & 5 & 6 \\ 5 & 10 & 8 & 6 & 4 \\ 3 & 11 & 9 & 6 & 6 \\ 8 & 10 & 11 & 8 & 7 \end{bmatrix}.$	7. $\begin{bmatrix} 11 & 4 & 11 & 6 & 11 \\ 7 & 5 & 6 & 7 & 12 \\ 9 & 7 & 8 & 10 & 10 \\ 9 & 11 & 6 & 10 & 9 \\ 7 & 10 & 4 & 8 & 8 \end{bmatrix}.$	8. $\begin{bmatrix} 7 & 4 & 3 & 8 & 2 \\ 4 & 5 & 1 & 6 & 3 \\ 8 & 4 & 5 & 7 & 2 \\ 1 & 2 & 4 & 7 & 2 \\ 3 & 9 & 9 & 2 & 5 \end{bmatrix}.$
$9. \begin{bmatrix} 4 & 7 & 1 & 5 & 5 \\ 6 & 8 & 3 & 7 & 6 \\ 6 & 4 & 5 & 7 & 7 \\ 4 & 2 & 3 & 4 & 9 \\ 8 & 1 & 8 & 3 & 8 \end{bmatrix}.$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11. $\begin{bmatrix} 5 & 6 & 8 & 2 & 7 \\ 7 & 9 & 1 & 4 & 4 \\ 6 & 8 & 3 & 4 & 2 \\ 8 & 7 & 9 & 3 & 4 \\ 9 & 8 & 7 & 6 & 5 \end{bmatrix}.$	$ \textbf{12.} \begin{bmatrix} 6 & 10 & 4 & 5 & 8 \\ 8 & 10 & 7 & 9 & 11 \\ 4 & 8 & 9 & 10 & 6 \\ 5 & 9 & 6 & 11 & 10 \\ 6 & 11 & 6 & 3 & 9 \end{bmatrix}. $
13. $\begin{bmatrix} 10 & 4 & 9 & 8 & 5 \\ 9 & 3 & 5 & 7 & 8 \\ 2 & 5 & 8 & 10 & 5 \\ 4 & 5 & 7 & 9 & 3 \\ 8 & 7 & 10 & 9 & 6 \end{bmatrix}.$	$ \begin{bmatrix} 8 & 4 & 5 & 7 & 2 \\ 7 & 4 & 3 & 8 & 2 \\ 1 & 2 & 4 & 7 & 2 \\ 3 & 9 & 9 & 2 & 5 \\ 4 & 5 & 1 & 6 & 3 \end{bmatrix} . $	$ \textbf{15.} \begin{bmatrix} 10 & 12 & 7 & 11 & 10 \\ 12 & 5 & 12 & 7 & 12 \\ 8 & 6 & 7 & 8 & 13 \\ 8 & 11 & 5 & 9 & 9 \\ 10 & 8 & 9 & 11 & 11 \end{bmatrix} . $	$ \textbf{16.} \begin{bmatrix} 7 & 7 & 9 & 6 & 3 \\ 9 & 9 & 6 & 8 & 7 \\ 6 & 11 & 4 & 6 & 5 \\ 5 & 10 & 3 & 10 & 10 \\ 9 & 8 & 10 & 8 & 5 \end{bmatrix}. $

²В программе необходимо предусмотреть два режима работы: "итоговый", когда программа печатает только матрицу назначений, и "отладочный", когда на каждой итерации на экран выводится текущая матрица эквивалентной задачи с отмеченной (например, цветом или шрифтом) системой независимых нулей.

17.	10	10 10 8 9 11	11	5	4 7 9 6 6	18.	6 10	9 11	5 10	6 4 3	5	. 1	9.	8 7	5 8 5 3 6	9 2 4	3 5 5	-	2 9	2 5 2 5 3	1 3	7 2	5 3 4 9	
21.	$\begin{bmatrix} 11 \\ 7 \\ 8 \\ 9 \\ 11 \end{bmatrix}$	10 12 8	10 12 13 9 11	7 12 7 5 9	$\begin{bmatrix} 12 \\ 5 \\ 6 \end{bmatrix}$.	_	5 9	10 6 5 3	10 2 6	3 7 8 4	6 4 3 8	. 2	23.	1 9 3 8	4 3 4 2	7 8 6 4	9 4 7 4 8 5 6 7	1 2 .	$\begin{bmatrix} 3 \\ 10 \\ 5 \end{bmatrix}$	5	2 4 9 5	4 3 8 8	8 6 3 4	