CS1102: Lecture 12

Graphs

Chapter 14: pages 735 - 769

Linked list

NUS CS1102

Tree

NUS CS1102

Directed graph

vertex.
(node)

A directed graph consists of a set of vertices and a set of directed edges between the vertices.

In a **tree**, there is at most a **unique path** between any two nodes.

However, in a **graph**, there may be more than one path between two nodes.

Example: travel planning

Weighted directed graph

In a weighted graph, edges have a weight (or cost) associated with it.

Not all weights are labeled in this slides for simplicity.

Undirected graph

In an **undirected** graph, edges are **bidirectional**

Complete graph

A graph is **complete** if every pair of vertices has an edge between them.

The number of edges in a complete graph is n(n-1)/2, where n is the number of vertices.

So, the number of edges is $O(n^2)$.

A complete graph is also called a **clique**.

9

NUS CS1102

Path

A path between two vertices is a sequence of edges that begin at one vertex and end at another.

The **length** of a path p is the number of edges in p.

E.g. the length of the highlighted path is 4.

A **simple path** never visits the same vertex more than once.

Cycle

A cycle is a path that begins and ends at the same vertex.

A **simple cycle** is a simple path that is a cycle.

Note that the definitions of path and cycle apply to **directed graph** as well.

Disconnected graph

A graph is a **connected graph** if each pair of distinct vertices has a path between them.

A graph does not have to be connected.

This graph is a disconnected graph and has two or more connected components.

Applications

Travel Planning

Questions

What is the shortest way to travel between A and B?

"SHORTEST PATH PROBLEM"

How to minimize the cost of visiting n cities such that we visit each city exactly once, and finishing at the city where we start from?

"TRAVELING SALESMAN PROBLEM"

Internet

computer

What are the shortest routes to send a packet from node A to node B?

The connections are usually bidirectional.

Internet Graph

Question

What is the shortest route to send a packet from computer A to computer B? This is the same as

"SHORTEST PATH PROBLEM"

The Web

web page

Which web pages are important?

Which set of web pages are likely to be of the same topic?

Module Selection

Question

Find a sequence of modules to take that satisfy the prerequisite requirements of a given module.

"TOPOLOGICAL SORT"

Terrorist

Epidemic Studies

Other applications

- Biology
- VLSI layout
- Vehicle routing
- Job scheduling
- Facility location

.

Implementation

Formally

A graph G = (V, E, w), where

- V is the set of vertices
- E is the set of edges
- w is the weight function

Example

```
V = { a, b, c }
E = { (a,b), (c,b), (a,c) }
w = { ((a,b), 4), ((c, b), 1), ((a,c),-3) }
```


Adjacent vertices

adj(v) = set of vertices adjacent to v

 $\square \sum_{v} |adj(v)| = |E|$

- -3 4 c b
- adj(v): Neighbours of v

Note: Vertices adjacent to v are called neighbours or successors of v

Adjacency matrix

double vertex[][];

	То			
from		1	2	3
	1	8	4	-3
	2	8	8	8
	3	8	1	∞

- •This requires $O(N^2)$ memory, and is not suitable for sparse graph.
- •However, an edge can be accessed in O(1) time.
- •How about undirected graph? How would you represent it?

Adjacency list

EdgeList vertex[];

1

2

3

Adjacency list

EdgeList vertex[];

Vertex map

- Since vertices are usually identified by names (e.g. person, city), not integers, we can use a hash table (or lookup table) to map names to indices in our adjacency list/matrix.
- The indices in this case is NOT the bucket/slot number you get after hashing.
- We actually store the indices as data in the hash table.

Breadth-First Search (BFS)

Traversing a Graph

Breadth-first search (BFS)

- Given a source vertex, we like to start searching from that source.
- The idea of BFS is that we visit all vertices that are of distance i away from the source before we visit vertices that are of distance i+1 away from the source.
- The order of search is **not unique** and depends on the order of neighbours visited.

Breadth-first search (BFS)

Breadth-first search

Start searching from a given **source**, say A

Breadth-first search

- After BFS, we get a **tree** rooted at the source node. Edges in the tree are edges that we followed during searching. We call this a **BFS tree**.
- Vertices in the figure are labeled with their **distance** (or level) from the source.

 NUS CS1102

Recall

Level-Order on Binary Tree

```
if T is empty return
Q = new Queue
Q.enq(T)
while Q is not empty
  curr = Q.deq()
  print curr.element
  if T.left is not empty
     Q.enq(curr.left)
  if curr.right is not empty
     Q.enq(curr.right)
```


Note: Need to use a queue.

Breath First Search

BFS(v)

where v is the given source

```
Q = new Queue
Q.eng(v)
mark v as visited // Why needed?
                                 B
while Q is not empty
  curr = Q.deq()
  print curr
  foreach w in adj(curr) // w is a neighbour of curr
     if w is not visited //why needed?
           Q.enq(w)
           mark w as visited //why needed?
```

BFS(v)

(cont.)

- If the graph is a connected graph, then BFS(v) will visit all the vertices. why?
- If the graph is a **disconnected** graph with **k** connected components, then we need to call BFS **k** times for one node in each of the connected components. why?

Building the BFS Tree

```
Q = new Queue
Q.enq (v)
mark v as visited
while Q is not empty
  curr = Q.deq()
  print curr
  foreach w in adj(curr)
      if w is not visited
            Q.enq(w)
            W.parent = Curr // need to remember the parent
            mark w as visited
```


47 NUS CS1102

Calculating Level

```
Q = new Queue
Q.enq (v)
mark v as visited
                                    B
v.level = 0
while Q is not empty
  curr = Q.deq()
  print curr
  foreach w in adj(curr)
      if w is not visited
           Q.enq(w)
            w.level = curr.level + 1
           mark w as visited
```

Search all vertices of a graph

```
Search(G)
foreach vertex v
    mark v as not visited // initialization
foreach vertex v
```

if v is not visited

BFS(V)

Note: we need to call BFS more than one time if the graph is a **disconnected graph.**

Running time

```
Q = new Queue
Q.eng(v)
mark v as visited
while Q is not empty
  curr = Q.deq()
  print curr
  foreach w in adj(curr)
     if w is not visited
        Q.enq(w)
        mark w as visited
```

Initialization

Where V means the no. of vertices.

Main Loop

$$O(\sum_{curr \in V} adj(curr)) = O(E)$$

where E means the no. of edges.

Each vertex is enqueued exactly **once**. The for loop runs through all vertices in the adjacency list. Therefore the running time is $O(\Sigma_{\mathbf{v}} \operatorname{adj}(\mathbf{v})) = O(E)$.

Total Running Time

$$O(V+E)$$

Depth-First Search (DFS)

Traversing a Graph

Idea for **DFS** is to go **as deep as possible**. Whenever there is an outgoing edge, we follow it.

Q: Is it similar to pre-order, in-order, or postorder of binary tree traversal?

Depth-first search (DFS)

Start searching from a given source, say A

DFS(v)

- use a stack to remember where to backtrack to

```
S = new Stack
S.push (v)
print and mark v as visited
while S is not empty
  curr = S.top()
  if every vertex in adj(curr)
    is visited
      S.pop()
  else
```


let w be an unvisited vertex in adj(curr)
S.push(w)
print and mark w as visited

Recursive version: DFS(v)

print v

marked v as visited
foreach w in adj(v)
 if w is not visited
 DFS(w)

Search all vertices of a graph

```
Search(G)
foreach vertex v
mark v as not visited
foreach vertex v
if v is not visited

DFS(v)
```

Note: Just like BFS, we need to call DFS() from multiple vertices in order to search all the vertices if the graph is a **disconnected graph**.

Running time of DFS

□ DFS: O(V + E)

Topological Sort

Module selection

Definition

- Directed Acyclic Graph (DAG): A directed graph with no cycle.
- Question: Are the below 2 directed graphs directed acyclic graphs?

Definitions

- in-degree of a vertex
 - number of incoming edges to the vertex
- **out-degree** of a vertex
 - number of outgoing edges from the vertex

Topological sort

- Goal: Order the vertices, such that if there is a path from u to v, then u appears before v in the output.
- Topological sort output is not unique. Why?
- We perform topological sort by repeatedly enqueueing vertices with in-degree 0 into a queue, output the vertex dequeued from the queue and remove the edges from that vertex.
- Since the order where we enqueued vertices with 0 in-degree into the queue is not unique, the output is not unique.

Topological sort

There are more than one solution:

ACBEFD

ACBEDF

Note: ACDBEF is **not** topologically sorted. Why?

Pseudocode for Toposort

```
q = new Queue()
put all vertices with in-degree 0 into q
while q is not empty
  v = q.dequeue()
  print v
  remove v together with its edges from G
     (i.e. need to re-compute the in-degrees of all the neighbours of v)
  enqueue neighbours of v with in-degree 0
```

Q: What is the running time for Toposort?

Topological sort

Example

Q: Which nodes have in-degree 0? D! The Queue contains D initially.

We dequeue D, print it and update the in-degrees of its neighbours.

Output: D

- Both nodes B and C now have in-degree 0, the order to enqueue them into the queue will affect the their output order.
- In this example, we enqueue B then C.

72

Output: DB

Output: DBC

Output: DBCE

Output: DBCEA

Output: DBCEAF

Output: DBCEAFG

Output: DBCEAFGH

Pseudocode for Toposort

```
q = new Queue()
put all vertices with in-degree 0 into q
while q is not empty
v = q.dequeue()
print v
remove v together with its edges from G
```

(i.e. need to re-compute the in-degrees of all neighbours of v)

enqueue neighbours of v with in-degree 0

Question: What is the complexity of toposort?

Shortest Path

Note: This topic on shortest path (slides 81 to 112) is not covered in the examination.

Definitions

- A path on a graph G is a sequence of vertices v_0 , v_1 , v_2 , ... v_n where $(v_i, v_{i+1}) \in E$
- The cost of a path is the sum of the cost of all edges in the path.

• In single-source shortest path problem, we are given a vertex v, and we want to find the path with minimum cost to **every** other vertices.

Unweighted shortest path

If a graph is unweighted, we can treat the cost of each edge as 1.

ShortestPath(s)

- The shortest path for an unweighted graph can be found using BFS.
- \square Run BFS(S) where s is the chosen source node
 - W. eve : shortest distance from s
 - W.parent: shortest path from s by tracing back the parent pointer from w back to s.

Question: Why does BFS guarantee shortest paths?

Positive weighted shortest path

BFS(s) does not work

- Must keep track of shortest distance from the source node so far for each node
- Observation 1: If we found a new shorter path, update the distance.

Observation 1

Observation 2 (for positive costs only)

are positive! 88 NUS CS1102

Definitions

distance(v) : shortest distance so far from
s to v

parent(v) : previous node on the shortest
 path so far from s to v

weight(u, v) : the weight (cost) of edge
from u to v

Example

distance(w) = 8 weight(v,w) = 2parent(w) = v

Relax(v,w)

- based on observation 1.

```
d = distance(v) + weight(v,w)
if distance(w) > d then // found a new shorter distance
  distance(w) = d // update the distance and parent
  parent(w) = v
```


- shortest path algorithm for graphs with positive weights

Change from infinite to 10

color all vertices yellow

```
// yellow nodes are those not yet processed
```

```
foreach vertex w
  distance(w) = INFINITY

distance(s) = 0  //source node distance is 0
```

while there are yellow vertices //unprocessed nodes are yellow
v = yellow vertex with min distance(v)

color v red

// red vertices are vertices with shortest distances from s found

foreach yellow neighbour w of v

relax(V,W) // relax algorithm from **observation 1** slides

E.g. The **shortest paths** from the source node A

ACEBDF

						4		2
step	node	S (nodes processed)	Α	В	С	D	Е	F
1	Α	Α	0	∞	5	∞	∞	∞
2	С	AC	0	8	5	10	6	∞
3	Е	ACE	0	8	5	8	6	10
4	В	ACEB	0	8	5	8	6	10
5	D	ACEBD	0	8	5	8	6	10

5

6

Running time $O(V^2 + E)$

```
color all vertices yellow
foreach vertex w
 distance(w) = INFINITY
distance(s) = 0
while there are yellow vertices
 v = yellow vertex with min distance(v)
 color v red
 foreach yellow neighbour w of v
     relax(v,w)
```

Running time $O(V^2 + E)$

- □ Initialization takes O(V) time. // V = no of nodes
- Picking the vertex with minimum distance(v) can take O(V) time, and relaxing the neighbours take O(adj(v)) time. // adj(v) = adjacent nodes of v
- □ The sum of these over all vertices is $O(V^2+E)$.

 // Because sum adj(v) = E where E is the no of edges
- We can improve this if we can improve the running time for picking the minimum distance(). Yes, use priority queue to pick the minimum.

Using priority queue

```
foreach vertex w
  distance(w) = INFINITY
distance(s) = 0
pq = new PriorityQueue(V) // minimum heap
           //with all vertices and their distances (as keys)
while pq is not empty
  v = pq.deleteMin() // O(log V)
  foreach neighbour w of v
     relax(v,w)
```

Initialization O(V)

Main loop

```
while pq is not empty
v = pq.deleteMin()
foreach neighbour w of v
relax(v,w)
```

Note: Need to expand the relax(v,w) using priority queue

Main loop - O((V+E) log V)

```
Note: complexity = sum (O(log V) + adj(v) * O(log V)) over all vertices = O(V log V + E * log V) = O((V+E) log V) since the total number of adjacent nodes of all nodes is the total number of edges.
```

Main loop - O((V+E) log V) (con

- If we expand the code for relax(), we will see that we cannot simply update distance(v), since distance(v) is a key in the priority queue.
- Here, we use an operation called decreaseKey() that updates the key value of distance(v) in the priority queue.
- decreaseKey() can be done in O(log V) time.
 How?
- The running time for this new version of Dijkstra algorithm takes O((V+E)log V) time.