FEDERATED LEARNING

Decentralized Intelligence for a Privacy-Preserving Future

Paula Raissa
INESC TEC, University of Porto

- Decentralized machine learning approach
- Training occurs on local devices
- Data remains on the user's device
- Local models are sent to a central server
- Global model is updated from local models

1 Concepts

FEDERATED LEARNING

Classic Machine Learning

- Before we begin to understand Federated Learning, let us recap how classic Machine Learning (ML) works.
- In ML, we have a model, and we have data. The model could be a simple linear regression.

Classic Machine Learning

- We train a model using the data to perform a useful task.
- A task could be to detect objects in images, find fraudsters in bank transactions, or recommend emojis in Gboard.

Training the model

Classic Machine Learning

 To use ML or any kind of data analysis, the approach that has been used is to collect all data on a central server.

Issues of Classical ML

- There are several reasons why the classic centralized machine learning approach is ineffective for many critical real-world use cases. These reasons include:
 - Regulations: GDPR (Europe), CCPA (California), CDPR (China), and others.
 - User preference
 - Data volume
- Examples where centralized ML does not work:
 - Sensitive healthcare records from multiple hospitals to train cancer detection models
 - Financial information from different organizations to detect fraud
 - Network traffic data from different providers to detect privacy attacks

Challenges of Classical ML

• With data protection regulations, user preference and volume:

8

Federated Learning

- FL seeks to solve the problem of building models when raw data can never leave its origin.
- Overcomes challenges of data storage and data sensibility.
- Characteristics: Collaboratively, distributed, privacy-preserving.
- First published work on FL: Federated Average algorithm to improve recommendation and automatic revision of texts
- Critical challenges:
 - Privacy-preserving aggregation is far from trivial;
 - Support for several types of machine learning algorithms.

McMahan, Brendan, et al. "Communication-efficient learning of deep networks from decentralized data." Artificial intelligence and statistics. PMLR, 2017.

FL Terminology

- Clients Compute nodes also holding local data, usually belonging to one entity:
 - IoT devices
 - Mobile devices
 - Data silos
 - Data centers in different geographic regions
- Server Additional compute nodes that coordinate the FL process but do not access raw data.
 - Usually not a single physical machine.

Example - Health

Cross-device Federated Learning

• **Definition**: decentralized approach where **multiple edge devices** (e.g., smartphones, IoT devices) collaboratively train a shared model while keeping the data localized on each device.

Cross-silo Federated Learning

 Definition: Collaborative approach where multiple organizations or institutions, referred to as silos, train a shared ML model without exchanging their individual datasets.

Horizontal FL

- The dataset is horizontally partitioned.
- Each node holds the same features, but different individuals.

Cross-device FL

Vertical FL

- Feature-based FL
- The dataset is vertically partitioned.
- Partial overlap on sample ID, but differ in feature space.

Federated Transfer Learning (FTL)

- Data shares neither sample space nor feature space.
- At least two datasets have a small intersection sharing only a small portion of feature space from both parties. Architecture is similar to Vertical FL.

Preservation Methods

Global Privacy:

- Model updates on the central server are private.
- Secure aggregation at the server-side.

Nodes

Local Privacy:

- Requires that individual model updates may be private.
- Privacy-preserving methods on the client side.

Nodes

- Communication between devices and server
- Data imbalance across devices
- Heterogeneous hardware and software
- Security and adversarial attacks
- Synchronization and latency

2 Challenges

FEDERATED LEARNING

Challenges

- Communication overhead
 - Frequent model updates can lead to significant communication costs and latency, especially in large-scale networks.
- Data heterogeneity
 - Variability in data distribution across different devices can impact model performance and convergence, making it difficult to train a robust global model.
- Privacy and security
 - Ensuring that data privacy is maintained while preventing potential security threats such as adversarial attacks and data poisoning
- Scalability
 - As the number of clients increases, managing and coordinating the training process becomes more complex and resource consuming.

Challenges

- Resource constraints
 - Devices participating in FL may have limited computational power, memory, and battery life, which can restrict their ability to perform intensive computations.
- Fault tolerance
 - Ensuring the robustness of the training process in the presence of device failures, dropouts, or unreliable connections.
- Evaluation metrics
 - Developing standardized evaluation metrics to assess the performance and fairness of FL models across diverse and distributed datasets.
- Adaptive learning algorithms
 - Developing algorithms that can dynamically adjust to varying data distributions, device capabilities, and network conditions.

- Data privacy preservation
- Reduced risk of sensitive data leakage
- Less data transfer required
- Improved local personalization
- Bandwidth efficiency

3 Advantages

FEDERATED LEARNING

- Text prediction on smartphones (e.g. Google Keyboard)
- Virtual assistants (e.g. Siri, Alexa)
- Healthcare (diagnostic models with local medical data)
- Finance (bank fraud detection)
- Automotive industry (connected cars)

4 Applications

FEDERATED LEARNING

Applications

Federated Learning for Heavy Hitter Detection

Findings:

 Detection of a higher quantity of distinct numbers compared to the centralized method.

Federated Very Fast Decision Tree

Findings:

Accuracy achieve similar performance compared to the centralized method.

- **Step 1**: Local training begins on multiple devices
- **Step 2:** Updates from local models are sent to the server
- Step 3: Aggregation of updates to form a global model
- **Step 4**: Updated global model is redistributed

Process repeats in cycles

5 How it works

FEDERATED LEARNING

Get Started with Flower Framework

Available at <u>GitHub</u>

Personalized Aggregation Strategy

Available at <u>GitHub</u>

Questions and Discussion S

THANK YOU!

