Verteilte Systeme

TLS

by

Dr. Günter Kolousek

TLS

- Transport Layer Security
 - ightharpoonup ightharpoonup IETF
- Geschichte
 - SSL 1.0 (Secure Sockets Layer) von Netscape
 - ► SSL 3.1
 - ► TLS 1.0 (wie SSL 3.1)
 - TLS 1.1 (Detailverbesserungen)
 - TLS 1.2 (Detailverbesserungen, aktuell)
 - TLS 1.3 (Sicherheit und Performance)
- Implementierungen
 - OpenSSL, GnuTLS, LibreTLS, BoringSSL, mbed TLS, Botan, cryptlib, SChannel (Microsoft),...

Aufgaben und Verwendung

- Aufgaben
 - Authentifizierung
 - Geheimhaltung
 - ► Integrität
- Verwendung
 - ► https
 - ▶ imaps, pop3s
 - smtp mittels starttls
 - snmptls
 - ► (ftps)

Struktur

- Im Schichtenmodell zwischen Anwendungsschicht und Transportschicht
 - entspricht ISO/OSI Schicht 5
- ► Transportprotokoll: TCP
- Verwendung vieler kryptographischer Algorithmen

Struktur - 2

- ► TLS-Protokolle → 2 Schichten:
 - ► TLS Handshake Protocol, TLS Change Cipher Spec. Protocol, TLS Alert Protocol, TLS Application Data Protocol
 - ► TLS Record Protocol
- ► TLS Handshake Protocol
 - Authentifizierung der Kommunikationspartner auf Basis asymmetrischer Verschlüsselung
 - ▶ in der Regel nur Server, aber auch zweiseitig möglich
 - Schlüsselaustausch mittels DH
 - bevorzugt mittels elliptische Kurven (ECDHE)
 - bis TLS 1.2 auch mit RSA
- TLS Record Protocol
 - ► Ende-zu-Ende Verschlüsselung mittels symm. Verschlüsselung (z.B. AES)!!!
 - Sicherung der Integrität und Authentizität mittels MAC

Zertifikate

- ► → Foliensatz *security*
- Zertifikatstypen
 - selbst zertifiziert vs. zertifiziert durch CA
 - ► CA... Certificate Authority (Zertifikatsstelle)
 - ► → Validation Level
 - Secured Domain
 - single-name Zertifikate: beinhalten nur einen "Host" und die Root-Domäne
 - wildcard Zertifikate: beinhalten alle single-level Subdomänen und die Root-Domäne

Zertifikatstruktur

- Version, Seriennummer, Algorithmen-ID
- essentielle Daten
 - Zertifikatsinhaber (Subject)
 - öffentlicher Schlüssel (& Algorithmusinfo) des Zertifikatsinhabers (Subject Public Key Info)
 - Aussteller (Zertifikatsstelle, Issuer)
 - Ausstellungszeitraum (Validity)
- signiert mit privaten Schlüssel des Ausstellers (& Algorithmusinfo)
- Zertifikatsformate
 - cer, .crt, ... DER (Abstract Syntax Notation One, ASN.1) oder Base64 kodiertes Zertifikat
 - .der ... DER kodiertes Zertifikat
 - .pem... Base64 kodiertes Zertifikat
 - .csr... DER oder Base64 kodierte Zertifizierungsanfrage

CA

- trusted third party, für denjenigen
 - der Zertifikat ausgestellt bekommt
 - der Zertifikat überprüft
- strikte hierarchische Struktur der CAs
- ► durch CA ausgestellte Zertifikate → Browser!
 - Browser beinhalten eine Menge an Root-Zertifikaten
- X.509: Standard der ITU-T
 - ► ITU: Internationale Fernmeldeunion
 - -T: Telecommunication
 - z.B.: V.24 (serielle Schnittstelle, ähnlich wie RS-232), JPEG (Bildkompression), H.264 (Videokompression), E.164 (Telefonnummernschema)
- ► Beispiele:
 - Let's Encrypt, CAcert
 - Comodo, GlobalSign, GoDaddy, Verisign,...

Zertifikatskette

- certificate chain
- Zertifikate der zweiten Ebene durch Wurzel signiert
 - schon notwendig, da private Schlüssel der Root-CA nicht "online" (besonders Schutzbedürfnis!)
- ► Zertifikate der dritten Ebene durch zweite Ebene signiert
- ▶ ...
- Verifikation mittels gesamter Liste

Validation Levels

- Problem vieler "lax" ausgestellten "HTTPS-Zertifikate"
 - ► → Preisdruck...
- Validation levels für HTTPS-Websites
 - Domain validation (DV)
 - Organization validation (OV)
 - zusätzlich zur Domäne: Organisation muss rechtlich existieren
 - Extended validation (EV)
 - zusätzlich zur Domäne: Feststellung der Identität und Adresse sowie Sicherstellung, dass Person befugt ist (rechtlich bindende Dokumente werden vorgelegt)

Domain Validation

- ► → Let's Encrypt
- Zertifikat validiert Domäneneigentum (Zugriff)
 - Domäne ist registriert und Admin kann den Zertifikationsrequest bestätigen (z.B. per E-Mail oder, dass spezielle DNS Records gesetzt werden)
- Dauer zwischen einigen Minuten und einigen Stunden
- Anzeige: "Connection Not Secure" (oder ähnliches)

Organization Validation

- Zertifikat validiert Domäneneigentum + Organisationinformationen im Zertifikat wie Name, Stadt, Land
- Validierung ähnlich DV, jedoch müssen zusätzliche Dokumente bzgl. der Organisation vorgewiesen werden
- Dauer: einige Tage
- Anzeige der Organisationsinfos in den Details

Extended Validation

- Zertifikat validiert Domäneneigentum + Organisationsinformationen (wie OV)
 - die legale Existenz der Organisation
- Validierung ähnlich OV, jedoch werden zusätzliche Schritte und Überprüfungen
- Dauer: einige Tage bis einige Wochen
- Anzeige: Vollständiges Schloss

Alternativen?

- ► ETS
 - Enterprise Transport Security
 - ursprünglicher Name eTLS (auf Druck der IETF umbenannt)
 - standardisiert von ETSI (European Telecom Standards Institute)
 - unter Mitwirkung des GCHQ (britischer Geheimdienst)...
 - ▶ aber wer genau in der Arbeitsgruppe ist? → nicht bekannt!
 - kompatibel zu TLS 1.3
 - hebelt aber die Ende-zu-Ende Verschlüsselung aus!!!
 - Anwendungsfälle
 - für Unternehmen: Sicherheitsaudits, Schutz vor Schadsoftware und vor "ungesetzlicher Datenexfiltration" (Verlust)
 - für Regierungen: gesetzliche Datenexfiltration?!