Électrocinétique et traitement du signal

Maillet Nathan MP*

1 Amplificateur opérationnel

Caractéristique d'un ampli-op idéal

${\bf 2} \quad {\bf Analyse} \; {\bf de} \; {\bf Fourier} \; {\bf d'un} \; {\bf signal} \; {\bf p\'eriodique}$

Théorème de Fourier

Toute fonction f périodique de pulsation $\omega = 2\pi/T$ peut s'écrire :

$$f(t) = a_0 + \sum_{n \ge 1} (a_n \cos(n\omega t) + b_n \sin(n\omega t))$$
$$= c_0 + \sum_{n \ge 1} c_n \cos(n\omega t + \varphi_n)$$

- $\bullet\,$ Suivant la parité de f, les a_n ou b_n peuvent être nuls
- Les fonctions rectangulaires (resp. triangulaires) ont un spectre en $\frac{1}{n}$ (resp. $\frac{1}{n^2}$)

3 Électronique numérique

Théorème de Nyquist-Shannon

Pour échantilloner un signal sans repliement du spectre, la fréquence d'échantillonage f_e doit vérifier : $f_e > 2f_{max}$

Pas de quantification

Le pas de quantification q est : $q = \frac{U_{max} - U_{min}}{2^n - 1}$

- Lors de l'échantillonage, le spectre de la sinusoïde présentera un pic en f, $f_e f$, $f_e + f$, $2f_e f$, $2f_e + f$...
- Pour un filtre numérique, on a : $\frac{\mathrm{d}y(t)}{\mathrm{d}t} = \frac{y_n y_{n-1}}{T_e}$