Fire Detection with CNNs and Optical Flow

Adithya Palle CS 5330 April 6, 2025

Introduction

- 6,581 fire-related casualties recorded across forty-four cities over a four-year period (CTIF)
- Particle-based sensors are unreliable outdoors and slow
- Advances in digital camera technology and image processing opens the door for vision-based detection methods

Related Work

Classic Computer Vision methods for fire detection:

- Liu and Ahuja used shape and temporal features fires with a SVM classifier to classify fire images (2004)
- Chen et al. (2004) used color segmentation and region growth (over time) to detect early fires in video feeds

Optical Flow

- Farneback Optical Flow is a lightweight method that uses polynomial approximation to estimate flow
- Mueller et al. (2013) uses Optical Mass Transport to track fire mass and edge features across frames

Deep Learning Based Methods

- Muhammud et al. (2018) tuned GoogleNet for fire classification
- Frizzi et al. (2016) used trained AlexNet-like architecture from scratch to classify and segment fire and smoke

Proposed Solution - Deep Learning

- Train a lightweight CNN on fire and no-fire images to give a label to frames in a video feed
- Resize to 128x128 and normalize with ImageNet values
- ~9k fire images from Roboflow, ~9k non-fire images from Places 365
- 80/10/10 train, val, test split

Proposed Solution - Optical Flow

- Calculate Farneback Optical flow between consecutive frames in video feed
- Determine magnitude of flow in regions with flame-like color
 - o RGB values between (150,50,0) and (255,255,150) are considered flame-like
 - Generate mask from previous frame
- Calculate proportion of flow magnitude in flame regions out of the total flow magnitude

$$P_{ ext{fire}} = rac{\sum \|ec{v}\|_{ ext{fire-colored}}}{\sum \|ec{v}\|_{ ext{all pixels}}}$$

Results

CNN

Test Video Results

Model	Accuracy	Recall	FPR	Avg Time (ms)	FPS	t
CNN	0.9354	0.9997	0.1054	8.043	124.3	0.9
Optical Flow	0.9781	0.9478	0.0027	61.43	16.2	0.15

Demo + Extra Analysis

Demos of both models

First Layer of CNN

Optical Flow Field + Fire Masking

Conclusion

- We developed two frame-level models for real-time fire detection in live video streams
- The CNN-based model shows the most promise due to its high inference speed and strong generalizability across diverse fire patterns
- Optical Flow model excels at classifying large fires, but struggles to generalize to smaller fires
- Future Work
 - Temporal modeling with Recurrent or 3D CNNs
 - Optical Flow feature map in CNN
 - Reduce FPR or CNN