Geomentric intuition of Desivative:

There are many ways to think and understand Derivative first lets see at the geometric way

Now, we can define desirative as

$$\frac{df(x)}{dx}$$
 = Slope of T_4

Slope of
$$T_4 = Tan(\theta_4)$$

at Oxigin
$$x = 0$$
 and $\theta_0 = 0$

so, $\frac{df(x)}{dx} \Big|_{x=0}$ = sbpe of $\theta_0 = 0$

 $= \tan(\theta_0) = 0$

and for x = 6 we have

$$\frac{df(x)}{d(x)}\Big|_{x=6}$$
 = slope of T_6 = $T_{an}(\theta_6)$

the Slope

The Slope

Underlying function is
$$\Lambda$$
 $\theta_0 = 0 \implies slope = 0 \implies f(x)$ is constant (neither 1)

 $\theta_0 = 90^\circ - 180^\circ \longrightarrow -ve$ slope

Underlying function is $\sqrt{}$