Оглавление

1.	Открытые и замкнутые множества на числовой прямой.	1
2.	Измеримые множества. Мера Лебега.	3
3.	Измеримые функции	7
4.	Интеграл Лебега 4.1. Интеграл Лебега для ограниченных функций на измеримом множестве конечной меры	10 10 11 12 15
5.	Функциональные пространства. 5.1. Пространства $L^p, p \geqslant 1. \dots $	1 5 15
6.	Метрические и нормированные пространства.	18
7.	Линейные операторы.	21
8.	Обратные операторы	24
9.	Линейные функционалы	28
10.	Гильбертовы пространства 10.1. Свойства Гильбертова пространства	30 31
11.	Сопряженный оператор	34
12.	Вполне непрерывные операторы	35

Лекция 1.

§1. Открытые и замкнутые множества на числовой прямой.

Обозначения. R_1 — числовая прямая. CE — дополнение множества E до R_1 , то есть $R_1 \setminus E$. $O_{\varepsilon}(x)$ — ε -окрестность точки x.

Замечание. Здесь и далее под множествами понимаются множества на числовой прямой.

Определение. Предельной точкой множества E называется такая точка x_0 на числовой прямой, что любая ε -окрестность x_0 содержит точку множества E отличную от x_0 .

$$\forall \varepsilon > 0 \,\exists \, x_{\varepsilon} \in O_{\varepsilon}(x_0), x_{\varepsilon} \neq x_0. \tag{1}$$

Замечание. Предельная точка множества может ему не принадлежать.

Точка, принадлежащая множеству, но не являющаяся его предельной точкой, называется uзолированной mочкой.

Обозначение. E' — множество всех предельных точек множества E.

Возможны следующие соотношения между E и E':

- 1. $E' \subset E$, такое множество E называется *замкнутым*.
- 2. $E' \supset E$, такое множество E называется плотным в себе.
- 3. E' = E, такое множество E называется совершенным.

 \overline{E} — замыкание множества E.

Пример.

- $E = \bigcup_{n=1}^{\infty} \{\frac{1}{n}\}, \quad E' = \{0\} E$ и E' не пересекаются.
- $E = \{0\} \cup \left(\bigcup_{n=1}^{\infty} \left\{\frac{1}{n}\right\}\right) \Rightarrow E' \subset E, \quad E$ замкнутое множество.
- $E=(a,b)\Rightarrow E'=[a,b]\Rightarrow E$ не замкнутое, но плотное в себе множество

Утверждение 1.1. Объединение конечного числа замкнутых множеств есть замкнутое множество.

 \Box $E=\bigcup_{i=1}^n E_i, \quad E_i$ — замкнутые множества. Пусть x_0 — предельная точка множества $E,\,x_0\in E'$. Так как x_0 — предельная точка $E,\,$ то существует стягивающаяся система интервалов (a_i,b_i) и последовательность $\{x_i\}$ точек множества E такая, что

$$x_i \in (a_i, b_i), \quad x_i \notin (a_k, b_k), k > i.$$

Из последовательности $\{x_i\}$ можно выделить подпоследовательность, которая будет целиком принадлежать некоторому множеству E_m , в силу того, что множеств E_i , i=1..n лишь конечное число. Тогда, так как E_m замкнуто и x_0 — предельная точка множества E_m {в силу существования последовательности $\{x_{i_j}\}$ }, то $x_0 \in E_m \Rightarrow x_0 \in E$.

Замечание. Бесконечное объединение замкнутых множеств может не быть замкнутым множеством

Пример.
$$E_n = [0, 1 - \frac{1}{n}], E = \bigcup_{n=1}^{\infty} E_n = [0, 1).$$

Определение. Точка x называется внутренней точкой множества E, если она содержится в E вместе с некоторой своей окрестностью $O_{\varepsilon}(x)$.

Обозначение. int(E) — совокупность внутренних точек множества E.

Для открытого множества int(E) = E.

Утверждение 1.2. Пересечение конечного числа открытых множеств есть открытое множество.

 \square $E = \bigcap_{i=1}^n E_i, E_i$ —открытые множества . Пусть $x \in E \Rightarrow x \in E_i, i=1..n$ и в силу открытости E_i существует последовательность $\{\varepsilon_i\}_{i=1..n}: O_{\varepsilon_i}(x) \in E_i$ положим $\varepsilon = \min \varepsilon_i$, тогда $O_{\varepsilon}(x) \in E \Rightarrow x$ — внутренняя точка $E \Rightarrow E = int(E)$.

Утверждение 1.3. Если E — замкнутое множество, то CE — открытое множество.

 \square $x \in CE \Rightarrow x$ не является предельной точкой $E \Rightarrow \{$ по отрицанию определения предельной точки $\} \exists \varepsilon > 0 : O_{\varepsilon}(x) \notin E$ то есть $O_{\varepsilon}(x) \in CE \Rightarrow CE -$ открытое множество.

Утверждение 1.4.

- (a) Пусть $E_{\alpha}, \alpha \in \mathfrak{A}$ —замкнутые множества, тогда $\bigcap_{\alpha \in \mathfrak{A}} E_{\alpha}$ замкнутое множество
- (b) Пусть $E_{\alpha}, \alpha \in \mathfrak{A}$ открытые множества, тогда $\bigcup_{\alpha \in \mathfrak{A}} E_{\alpha}$ открытое множество

, где 🎗 может быть не только конечным, но и более чем счетным набором индексов.

(а) Пусть E_{α} , $\alpha \in \mathfrak{A}$ —замкнутые множества, x — предельная точка E следовательно $\forall \varepsilon > 0$ $O_{\varepsilon}(x)$ содержит некоторую точку x_{ε} из E, а следовательно и из любого E_{α} , а так как все E_{α} замкнуты, то x принадлежит всем E_{α} , а следовательно и E.

(b) Пусть $E_{\alpha}, \alpha \in \mathfrak{A}$ — открытые множества, тогда $CE = \bigcap_{\alpha \in \mathfrak{A}} CE_{\alpha}$ и из того, что дополнением открытого множества является замкнутое множество и из пункта (a) следует, что CE — замкнутое множество, следовательно E — открытое множество.

Теорема 1.1. Любое открытое множество E в R_1 есть объединение попарно непересекающихся интервалов $\bigcup_{n=1}^{\infty} (a_n, b_n), \quad -\infty \leqslant a_n < b_n \leqslant \infty.$

 \square [В доказательство с лекции полностью не воткнул, поэтому привожу похожее, но в которое воткнул] Введем на E отношение эквивалентности, считая, что $x \sim y$, если существует такой интервал $(\alpha, \beta) \subset E$, что $x, y \in (\alpha, \beta)$. Данное отношение рефлексивно, симметрично и транзитивно, так как если $x \sim y$ и $y \sim z$, то существуют такие интервалы (α, β) и (γ, δ) , что

$$x, y \in (\alpha, \beta), \quad y, z \in (\gamma, \delta).$$

Так как y принадлежит обоим интервалам, то $\gamma < \beta$ и интервал (α, δ) лежит целиком в E и содержит точки x и z. Таким образом E есть объединение непересекающихся классов эквивалентных между собой точек

$$E = \sqcup I_{\tau}$$
.

Докажем, что каждое I_{τ} есть интервал (a,b), где $a=\inf I_{\tau}$ и $b=\sup I_{\tau}$. Включение $I_{\tau}\subset (a,b)$ следует из того, как мы определили эти точки. С другой стороны, если $x,y\in I_{\tau}$, то по самому определению I_{τ} интервал (x,y) содержится в I_{τ} . Поэтому I_{τ} содержит любой интервал (a',b') концы которого содержатся в (a,b,). следовательно $I_{\tau}=(a,b)$. Система таких интервалов не более чем счетна, так как, выбрав в каждом из интервалов некоторое рациональную точку, мы установим взаимно однозначное соответствие между множеством классов I_{τ} и множеством рациональных чисел. [Доказательство на лекции строилось в обратном порядке мы построили интервалы и доказали. что они образуют непересекающиеся классы эквивалентности. Но что-то мне в моих записях не все ясно.][Доказательство взято из учебника Колмогорова, Фомина, в нем исправлена опечатка было $\gamma < \delta$, но это и так очевидно, имелось ввиду $\gamma < \beta$, чтобы показать, что существует интервал (α, δ)]

Следствие 1.1. Любое замкнутое множество на прямой получается удалением конечного или счетного числа попарно непересекающихся интервалов.

Следствие 1.2. Любое совершенное множество на прямой получается удалением из R конечного или счетного числа попарно непересекающихся интервалов, которые не имеют общих концов друг с другом.

Пример. Канторово множество. Множество мощности континуум, имеющее нулевую меру.

Построение: Пусть F_0 — отрезок [0,1]. Выбросим из него интервал $(\frac{1}{3},\frac{2}{3})$, а оставшееся замкнутое множество обозначим F_1 . Затем выброси из F_1 интервалы $(\frac{1}{9},\frac{2}{9})$ и $(\frac{7}{9},\frac{8}{9})$, а оставшееся замкнутое множество обозначим F_2 . В каждом из четырех отрезков, образующих F_2 , выбросим средний интервал длины $(\frac{1}{3})^3$ и т.д. Продолжая этот процесс, получим убывающую последовательность замкнутых множеств F_n . Положим

$$F = \bigcap_{n=0}^{\infty} F_n.$$

Множество F — замкнутое, как пересечение замкнутых множеств, оно получается из отрезка [0,1] выбрасыванием счетного числа интервалов. Точки отрезка [0,1], которые входят в множество F, можно охарактеризовать следующим образом. Запишем каждое число из [0,1] в троичной системе счисления

$$x = \frac{a_1}{3} + \frac{a_2}{3^2} + \frac{a_3}{3^3} + \dots,$$

где числа a_1, a_2, \ldots могут принимать значения 0, 1, 2. Множеству F принадлежат те и только те числа $x, 0 \leqslant x \leqslant 1$, которые могут быть записаны хотя бы одним способом в виде троичной дроби так, чтобы в последовательности a_1, a_2, \ldots ни разу не встретилась единица [проверьте руками !!!]. Совокупность таких последовательностей a_1, a_2, \ldots имеет мощность континуума (она эквивалентна совокупности всевозможных двоичных последовательностей, которая в свою очередь эквивалентна множеству двоичных дробей, а те эквивалентны совокупности чисел отрезка [0,1]). А сумма длин выброшенных интервалов $\frac{1}{3} + \frac{2}{9} + \frac{4}{27} + \ldots$ составляет единицу (как сумма убывающей геометрической прогрессии).

§2. Измеримые множества. Мера Лебега.

Обозначение. $\Delta = (a, b)$ — интервал, $|\Delta| = b - a$ — его мера (длина).

Определение. Покрытием s(E) множества E назовем конечную или счетную систему интервалов $\{\Delta_n\}_{n\geqslant 1}$:

$$\Delta_n = (a_n, b_n), \quad E \subset \bigcup_{n=1}^{\infty} \Delta_n.$$

Длиной покрытия $\sigma(\{\Delta_n\})$ назовем $\sum_{n=1}^{\infty} |\Delta_n|$.

Определение. Внешней мерой множества Е назовем

$$\inf_{s(E)} \sigma(s) = |E|^*. \tag{1}$$

Свойства внешней меры.

- 1. Если $E_1 \subset E_2$, то $|E_1|^* \leqslant |E_2|^*$.
 - \square Любое покрытие E_2 есть покрытие E_1 , следовательно inf по классу покрытий E_2 не меньше чем inf по классу покрытий E_1 .
- 2. Если $E = \sum_{n=1}^{\infty} E_n$, то $|E|^* \leqslant \sum_{n=1}^{\infty} |E_n|^*$.
 - $\square \quad \forall E_n \,\exists\, s(E_n)_{k\geqslant 1} \,=\, \{\Delta_n^k\}_{k\geqslant 1} \,:\, E_n \,\subset\, \bigcup_{k=1}^\infty \Delta_n^k \,\,\text{и по свойству} \,\, inf \,\, \sum_{k=1}^\infty |\Delta_n^k| \,<\, |E|^* + \frac{\varepsilon}{2^n}. \,\, \text{Тогда} \,\, s(E) \,=\, \bigcup_{n=1}^\infty s(E_n) \,\Rightarrow\, E \,\subset\, \bigcup_{n=1}^\infty \bigcup_{k=1}^\infty \Delta_n^k \,\Rightarrow\, |E|^* \leqslant \sum_{n=1}^\infty \sum_{k=1}^\infty |\Delta_n^k| \leqslant \sum_{n=1}^\infty \left(|E_n|^* + \frac{\varepsilon}{2^n}\right) = \sum_{n=1}^\infty |E_n|^* + \varepsilon, \quad \forall\, \varepsilon > 0 \,\,\blacksquare$
- 3. $\rho(E_1,E_2)=\inf_{x_1\in E_1,\,x_2\in E_2}\rho(x_1,x_2)=\delta$ расстояние между множествами. Если $\rho(E_1,E_2)>0$, то $|E_1\cup E_2|^*=|E_1|^*+|E_2|^*$
 - \Box $E=E_1\cup E_2,\ \exists\, s(E): E\subset \bigcup_{n=1}^\infty \Delta_n,\ \sum_{n=1}^\infty |\Delta_n|<|E|^*+arepsilon\, \forall arepsilon>0$, по определению $|E|^*$ и $|\Delta_n|<\delta/2,\ \forall n$. Такое покрытие можно получить разбиением элементов покрытия длины больше чем $\delta/2$, при этом выпадет не более чем счетное число точек, которые можно покрыть системой интервалов длины $\frac{\varepsilon}{2^n}$. Для указанного покрытия E любой элемент из покрытия E_1 не попадает на E_2 . Тогда $s(E_1\cup E_2)$ распадается на $S(E_1)$ и $s(E_2)$, следовательно $\sum_{n=1}^\infty |\Delta_n| = \sum_{k=1}^\infty |\Delta_{n_k}| + \sum_{i=1}^\infty |\Delta_{n_i}| = |E_1^* + |E_2|^* < |E|^* + \varepsilon$, с учетом свойства (2) получаем равенство. \blacksquare
- 4. $\forall E \exists G$ открытое множество, $G \supset E$:

$$|G|^* < |E|^* + \varepsilon, \quad \forall \, \varepsilon > 0.$$

 \square В качестве G можно рассмотреть покрытие s(E), покрытие, обладающее требуемым свойством, существует в силу определения $|E|^*$.

Определение. Множество $E \subseteq R_1$ назовем *измеримым*, если vneshmera

$$\forall \varepsilon > 0 \exists$$
 открытое множество $G, G \supset E : |G \setminus E|^* < \varepsilon u$ (2)

положим

$$\operatorname{mes}(E) = |E|^*.$$

Замечание. Для того чтобы mes E = 0 необходимо и достаточно чтобы $|E|^* = 0$.

 \square Необходимость: очевидно. Достаточность: $E\subset G, \quad G\setminus E\subset G\Rightarrow |G\setminus E|^*\leqslant |G|^*<|E|^*+arepsilon=arepsilon$

Лекция 2.

Теорема 2.1. Всякое открытое множество на прямой измеримо по Лебегу и его мера есть сумма длин (мер) попарно непересекающихся интервалов образующих его (см. Теорема 1.1 §1).

 \Box G — открытое, $G = \bigsqcup_{n=1}^{\infty} \Delta_n$. Для доказательства измеримости в качестве открытого множества из определения измеримости возьмем само G. (???? а дальше)

Теорема 2.2. Объединение конечного или счетного числа измеримых множеств есть измеримое множество.

 $\square \quad E = \bigcup_{n=1}^{\infty} E_n, \; \{E_n \; \text{измеримы} \; \} \to \forall \, \varepsilon > 0 \, \exists \, G_n \; \text{(открытое)} \; \supset E_n : |G_n \setminus E_n|^* < \tfrac{\varepsilon}{2^n} \; \text{и} \; G = \bigcup_{n=1}^{\infty} G_n, \; \text{тогда}$ $E \subset G, \; G \text{ - открытое.} \; G \setminus E \subset \bigcup_{n=1}^{\infty} (G_n \setminus E_n) \; \text{и по свойству 2 внешней меры} \; |G \setminus E|^* \leqslant \sum_{n=1}^{\infty} |G_n \setminus E_n|^* < \varepsilon + \sum_{n=1}^{\infty} \tfrac{1}{2^n} = \varepsilon$

Теорема 2.3. Всякое замкнутое множество на прямой измеримо по Лебегу.

(a) Пусть F – замкнутое **ограниченное** множество. По свойству 4 внешней меры $\exists G$ – открытое : $|G|^* < |F|^* + \varepsilon$, $G \setminus F$ – открытое множество и по Теореме 1.1 §1 $G \setminus F = \bigsqcup_{n=1}^{\infty} \Delta_n$.

$$\Delta^{\alpha} = \begin{cases} (a+\alpha,b-\alpha), & 0 < \alpha < \frac{b-a}{2}, \\ \emptyset, & \alpha \geqslant \frac{b-a}{2}, \end{cases}.$$

 $E_n = \bigsqcup_{k=1}^n \Delta_k, \ E_n^\alpha = \bigsqcup_{k=1}^n \Delta_k^\alpha, \ \overline{\Delta^\alpha} = \begin{cases} [a+\alpha,b-\alpha], & 0 < \alpha < \frac{b-a}{2}, \\ \emptyset, & \alpha \geqslant \frac{b-a}{2} \end{cases}, \ \overline{E_n^\alpha} = \bigsqcup_{k=1}^n \overline{\Delta_k^\alpha} - \text{расстояние между любыми}$ двумя множествами $\overline{\Delta_i^\alpha}$ и $\overline{\Delta_j^\alpha}$ строго больше нуля. $\overline{E_n^\alpha} \cup F \subset G$ и по свойству 3 внешней меры $|\overline{E_n^\alpha} \cup F|^* = |\overline{E_n^\alpha}|^* + |F|^* \leqslant |G|^* < |F|^* + \varepsilon$ Итак $|\overline{E_n^\alpha}|^* < \varepsilon$ перейдем к пределу при $\alpha \to 0$, получаем $|\overline{E_n}|^* \leqslant \varepsilon$, где $\overline{E_n} = \bigcup_{k=1}^n \overline{\Delta_k}$ перейдем к пределу при $n \to \infty$, получаем, что $|\overline{E}|^* \leqslant \varepsilon \Rightarrow |E|^* = \sum_{n=1}^\infty |\Delta_n| = |G \setminus F|^* \leqslant \varepsilon$.

(b) Пусть F – произвольное замкнутое множество. $F_n = F \cup [-n, n]$, тогда $F = \bigcup_{n=1}^{\infty} F_n$, F_n – замкнутое ограниченное множество, применим пункт (a) и Теорему 2.2, получим, что F измеримо.

Теорема 2.4. Дополнение измеримого множества измеримо.

 \square $\forall n \in \mathbb{N} \exists G_n$ — открытое : $E \subset G_n$ и $|G_n \setminus E|^* < \frac{1}{n}$, тогда $F_n = C\{G_n\}$ — замкнутое множество , $CE \setminus F_n = C\{F_n\} \setminus E = G_n \setminus E \Rightarrow |CE \setminus F_n|^* < \frac{1}{n}$. Введем $F = \bigcup_{n=1}^{\infty} F_n \ CE \setminus F \subset CE \setminus F_n \quad \forall n \in \mathbb{N} |CE \setminus F| \leqslant |CE \setminus F_n|^* < \frac{1}{n} \Rightarrow |CE \setminus F|^* = 0 \ CE = (CE \setminus F) \cup F$, первое множество измеримо так как его внешняя мера 0, следовательно CE измеримо как конечное объединение измеримых множеств. \blacksquare

Следствие 2.1. Для того чтобы множество Е было измеримо необходимо и достаточно чтобы

$$\forall \varepsilon > 0 \exists$$
 замкнутое множество $G: G \subset E \ u \ |E \setminus G|^* < \varepsilon$.

Теорема 2.5. Пересечение конечного или счетного числа измеримых множеств измеримо.

 \square $E=\bigcap_{n=1}^{\infty}E_n$, тогда $CE=\bigcup_{n=1}^{\infty}CE_n$,так как E_n измеримы, то измеримы и CE_n , следовательно по Теореме 2.2 CE измеримо и по Теореме 2.4 измеримо и E.

Теорема 2.6. Разность двух измеримых множеств измерима.

 \square Воспользуемся представлением $A \setminus B = A \cap CB$ и Теоремами 2.4 и 2.5. \blacksquare

Теорема 2.7. *Мера Лебега* σ *-аддитивна.*

$$\square$$
 $E = \bigsqcup_{n=1}^{\infty} E_n$, покажем, что $|E| = \sum_{n=1}^{\infty} |E_n|$.

(а) E_n ограничены: $\forall \varepsilon > 0 \; \exists \; F_n \;$ замкнутое $: \; F_n \; \subset \; E_n, \; |E_n \setminus F_n| \; < \; \frac{\varepsilon}{2^n}. \; E_n \; = \; (E_n \setminus F_n) \cup F_n \; \Rightarrow \; |E_n| \; \leqslant \; |E_n \setminus F_n| + |F_n| = |F_n| + \frac{\varepsilon}{2^n} \; \Rightarrow \; \sum_{k=1}^n |E_k| < \sum_{k=1}^n |F_k| + \varepsilon = |\bigcup_{k=1}^n F_k| + \varepsilon, \; \bigcup_{k=1}^n F_k \subset E \; \Rightarrow \; \sum_{k=1}^n |E_k| < |E| + \varepsilon \;$ перейдем к пределам $\varepsilon \to 0, n \to \infty \; \Rightarrow \; \sum_{k=1}^\infty |E_k| \; \leqslant \; |E|, \;$ а обратное неравенство следует из свойств меры (внешней меры), следовательно верно равенство.

(b) E_n – произвольные измеримые непересекающиеся множества. $E_n^k = E_n \cup [n, n+1)$, тогда $E = \bigcup_{n=1}^{\infty} \bigcup_{k=1}^{\infty} E_n^k$, дважды применим пункт (a) и получим необходимое равенство.

Определение.

- (a) Множество G есть множество типа G_{δ} , если оно представимо в виде счетного пересечения открытых множеств.
- (b) Множество F есть множество типа F_{σ} , если оно представимо в виде счетного объединения замкнутых множеств.

Теорема 2.8. Пусть E – измеримое множество, тогда найдутся содержащееся в нем множество типа F_{σ} и содержащее его множество типа G_{δ} такие, что их меры равны.

 \square $\forall n \in \mathbb{N} \exists G_n$ открытое и F_n замкнутое $: G_n \supset E \supset F_n$ и $|G_n \setminus E| < \frac{1}{n}, |E \setminus F_n| < \frac{1}{n}$. Тогда положим $G = \bigcap_{n=1}^{\infty} G_n$ и $F = \bigcup_{n=1}^{\infty} F_n$. $G \setminus E \subset G_n \setminus E \Rightarrow |G \setminus E| < \frac{1}{n} \Rightarrow |G \setminus E| = 0$ и $E \setminus F \subset E \setminus F_n \Rightarrow |E \setminus F| < \frac{1}{n} \Rightarrow |E \setminus F| = 0$. $G = (G \setminus E) \cup E \Rightarrow |G| = |E|$ и $E = (E \setminus F) \cup F \Rightarrow |F| = |E|$

Теорема 2.9. Мера Лебега непрерывна

(a) Coepxy:
$$A_1\subset A_2\subset\ldots,A=igcup_{n=1}^\infty A_n$$
. Torda $|A_n| o |A|$

(b) Снизу:
$$B_1\supset B_2\supset\ldots, B=\bigcap_{n=1}^\infty B_n$$
. Тогда $|B_n|\to |B|,\ \exists\, j:|B_j|<\infty$

(c) В нуле:
$$C_1 \subset C_2 \subset \ldots, C = \bigcup_{n=1}^{\infty} C_n = \emptyset$$
. Тогда $|C_n| \to 0$

(a)
$$\bigcup_{n=1}^{\infty} A_n = A_1 \cup A_2 \setminus A_1 \cup A_3 \setminus A_2 \cup \ldots \Rightarrow |A| = |A_1| + (|A_2| - |A_1|) + (|A_3| - |A_2|) + \cdots = \lim_{n \to \infty} |A_n|.$$

- (b) $D_i = B_i \setminus B_{i+1}$, тогда $B_r = \bigsqcup_{i \geqslant r} D_i \bigsqcup_{i=1}^{\infty} B_i \Rightarrow |B_r| = |\bigsqcup_{i \geqslant r} D_i| + |\bigcap_{i=1}^{\infty} B_i| \to |\bigcap_{i=1}^{\infty} B_i|$, так как первое слагаемое при r > j есть "хвост" сходящегося ряда и следовательно $\to 0$.
- (с) Следует из (b).

Лекция 3.

Определение. Прямоугольником P в n-мерном пространстве R^n назовем множество точки которого удовлетворяют неравенствам $a_i < x_i < b_i$, или $a_i \leqslant x_i \leqslant b_i$, или $a_i \leqslant x_i \leqslant b_i$, или $a_i \leqslant x_i \leqslant b_i$, где i=1..n.

Определим меру прямоугольника P как $|P| = \prod_{i=1}^{n} (b_i - a_i)$

Определение. Элементарное множество – множество, представимое в виде $E = \bigsqcup_{i=1}^{m} P_i$.

Класс элементарных множеств замкнут относительно взятия конечного объединения и пересечения.

Положим $|E| = \sum_{i=1}^{m} |P_i|$. Чтобы обосновать корректность такого определения, надо проверить, что |E| не зависит от способа представления E в виде конкретного разбиения.

- (a) |E| не зависит от выбора конкретного разбиения E.
- (b) Аддитивность на классе элементарных множеств.

(!) Здесь мне не удалось восстановить логическую связь происходящего.

Лемма 2.10 (Гейне-Бореля). Из любого покрытия замкнутого ограниченного множества можно выделить его конечное подпокрытие.

Определение. Система множеств \Re — кольцо , если

- 1) $\forall A, B \in \Re A \cap B \in \Re$
- 2) $\forall A, B \in \Re A \triangle B \in \Re$

Из определения кольца легко получить, что $\forall A, B \in \Re$ и $\emptyset \in \Re$.

Как и ранее определим внешнюю меру множества E как $|E|^* = \inf_{E \subset \bigcup\limits_{i=1}^\infty P_i} \sum_{n=1}^\infty |P_i|$

Определение. A измеримо по Лебегу, если $\forall \varepsilon > 0 \; \exists$ элементарное множество $B: |A \triangle B|^* < \varepsilon$

Утверждение 2.1. Совокупность всех измеримых множеств есть σ -кольцо.

Произвольное множество на плоскости будем считать измеримым, если измеримы все его пересечения с единичными координатными квадратами, а его мерой будет сумма мер указанных пересечений.

Определение. Вещественнозначная функция F(x) называется обобщенной функцией распределения на прямой, если

- 1) F(x) не убывает,
- 2) F(x) непрерывна слева и имеет пределы справа в каждой точке $x \in R$

$$\begin{aligned} |[a,b]| &= F(b+0) - F(a) \\ |(a,b]| &= F(b+0) - F(a+0) \\ |[a,b)| &= F(b) - F(a) \\ |(a,b)| &= F(b) - F(a+0) \end{aligned}$$

Существует взаимно однозначное соответствие между мерами на R и функциями распределения на R. Мера Лебега — мера, порожденная функцией распределения F(x) = x. Меры, получаемые с помощью той или иной функции распределения F, называются мерами Лебега-Стилтьеса.

Определение. Система множеств $\mathfrak K$ называется полукольцом, если

- 1) $\emptyset \in \mathfrak{K}$,
- 2) $\forall A, B \in \mathfrak{K} A \cap B \in \mathfrak{K}$
- 3) $\forall A,B \in \mathfrak{K}$ таких что $A \supset B: A \setminus B = \bigsqcup_{i=1}^n A_i, \, A_i \in \mathfrak{K}.$

Определение. Мера – неотрицательная аддитивная функция множеств, заданная на кольце.

Известный пример аддитивной, но не счетно-аддитивной меры можно получить, рассмотрев пересечение системы рациональных точек $\mathbb Q$ с элементарными множествами отрезка [0,1], то есть множествами, являющимися конечными суммами непересекающихся прямоугольников. $P(Q \cap [a,b]) = b-a$, следовательно мера множества $\mathbb Q \cap [0,1]$ равна 1, причем это множество получается из счетного объединения множеств нулевой меры, что противоречит сигма-аддитивности.

§3. Измеримые функции

Обозначение. $E[f > a] = \{x \in E : f(x) > a\}.$

Определение. Функция f(x) называется измеримой на измеримом множестве E, если $\forall a$ множество $E[f\geqslant a]$ или любое из следующих множеств ($E[f\leqslant a], E[f>a], E[f< a]$) измеримо. (Докажите эквивалентность указанных определений).

Утверждение 3.1. Если f измеримо на измеримом множестве E, то f измеримо u на любом его измеримом подмножестве, $E_1 \subset E$, $E_1[f \geqslant a] = E_1 \cap E[f \geqslant a]$.

Утверждение 3.2. Если f измерима на E_1, \ldots, E_n , то она измерима u на ux объединении $E = \bigcup_{i=1}^n E_i, E[f \geqslant a] = \bigcup_{i=1}^n E_i[f \geqslant a].$

Утверждение 3.3. Любая функция измерима на множестве меры нуль.

Определение. Две функции f и g, определенные на множестве E называются эквивалентными на E, если $|E[f \neq g]| = 0$.

Эквивалентные на E функции либо обе измеримы, либо обе неизмеримы .

Определение. Говорят, что некоторое свойство выполнено на измеримом множестве E почти всюду (почти наверное), если |E[свойство не выполнено]|=0.

Утверждение 3.4. *Если F непрерывна почти всюду, то она измерима.*

По Теореме (2.8) существует замкнутое множество $F: F \subset E$ и |E| = |F|. Рассмотрим любую предельную точку множества $F[f \geqslant a]$, существует последовательность аргументов, к ней сходящаяся, и соответствующая последовательность значений функции f, сходящаяся к значению f в выбранной предельной точке, так как все указанные точки принадлежат множеству $F[f \geqslant a]$, то и значение в выбранной предельной точке удовлетворяет неравенству $f \geqslant a$, следовательно $F[f \geqslant a]$ замкнуто, а следовательно измеримо. Таким образом f измерима на F, следовательно и на E. ■

Утверждение 3.5. Измеримая функция от измеримой функции есть измеримая функция.

Теорема 3.1. Пусть f(x) и g(x) измеримы на измеримом множестве E, тогда $|f(x)|, f(x) + k, k \cdot f(x)$ также измеримы и множество E[f > g] измеримо.

1) $E[|f\geqslant a|]=E[f\geqslant a]\cup E[f\leqslant -a],$ если a>0 и равно E, если $a\leqslant 0.$

2)
$$E[f+c \geqslant a] = E[f \geqslant a-c]$$

3)
$$E[cf \geqslant a] = \begin{cases} E[f \leqslant \frac{a}{c}], & c < 0, \\ E[f \geqslant \frac{a}{c}], & c > 0, \\ E[0 \leqslant \frac{a}{c}], & c = 0. \end{cases}$$

4)
$$E[f > g] = \bigcup_{k=1}^{\infty} E[f > r_k] \cap E[g < r_k], r_k \in \mathbb{Q}.$$

Теорема 3.2. Пусть f(x) и g(x) измеримы на измеримом множестве E, тогда $f \pm g, f \cdot g$ и f/g, если g не обращается в нуль, измеримы.

1)
$$E[f \pm g \geqslant a] = E[f \geqslant a \mp g]$$

2) $fg = \frac{1}{4} \left[(f+g)^2 - (f-g)^2 \right]$, следовательно в силу предыдущего пункта и утверждения (3.5) fg измерима.

$$3) \ E[\frac{1}{g}\geqslant a] = \begin{cases} E[g>0]\cap E[g<\frac{1}{a}], & a>0,\\ E[g>0], & a=0,\\ E[g<\frac{1}{a}]\cup E[g>0], & a<0. \end{cases}$$

Теорема 3.3. Пусть $f_n(x)$ измеримы на измеримом множестве E, тогда $\overline{\lim} f_n$ и $\underline{\lim} f_n$ измеримы на E.

• $\varphi(x) = \inf_n f_n(x)$ и $\psi(x) = \sup_n f_n(x)$ измеримы.

$$E[\varphi(x) > a] = \bigcap_{k=1}^{n} E[f_n(x) > a], E[\psi(x) < a] = \bigcap_{k=1}^{n} E[f_n(x) < a]$$

• $\underline{\lim} f_n(x) = \sup_{n=1} \inf_{k \ge n} f_n(x)$, $\overline{\lim} f_n(x) = \inf_{n=1} \sup_{k \ge n} f_n(x)$

Теорема 3.4. Пусть $f_n(x) \to f(x)$ и $f_n(x)$ измеримы на измеримом множестве E, тогда f(x) измерима на E.

 \square Если $f_n(x) \to f(x)$, то $f(x) = \inf_n f_n(x) = \sup_x f_n(x)$, следовательно по предыдущей теореме f(x) измерима.

Определение. Пусть $f_n(x)$ и f(x) почти всюду конечны. $f_n(x) \stackrel{P}{\to} f(x)$, если $\forall \, \varepsilon > 0 \lim_{x \to \infty} |E[|f_n - f| \geqslant \varepsilon]| = 0$

Теорема 3.5. Пусть E – измеримое множество конечной меры и последовательность измеримых почти всюду конечных функций $f_n(x)$ сходится κ f(x) почти всюду, $|f(x)| < \infty(n.н.)$. Тогда $f_n(x) \stackrel{P}{\to} f(x)$. Утверждение теоремы неверно для множеств бесконечной меры.

$$\Box E_n = E[|f_n - f| \ge \varepsilon]$$

$$R_n = \bigcup_{k=n}^{\infty} E_k, |E_n| \le |R_n|.$$

Покажем, что $|R_n| \to 0$. $R = \bigcap_{n=1}^\infty R_n$. Покажем, что $|R_n| \to |R| = 0$.

 $R_n \setminus R = \bigsqcup_{k=n}^{\infty} (R_k \setminus R_{k+1}), \ |R_n \setminus R| = \sum_{k=n}^{\infty} |R_k \setminus R_{k+1}|, \ |R_1 \setminus R| = \sum_{k=1}^{\infty} |R_k \setminus R_{k+1}|.$ В силу конечности указанной меры ряд сходится, следовательно остаток ряда стремится к нулю. $|R_n \setminus R| \to 0$. $R_n = R_n \setminus R \cup R$, следовательно $|R_n| = |R_n \setminus R| + |R| \to |R|$. Покажем. что |R| = 0.

 $C=E[\exists n:|f_n(x)|=\infty$ или $|f(x)|=\infty$ или нет сходимости], |C|=0. Рассмотрим $E\setminus C$. Покажем, что $R\subset C$. Пусть $x_0\notin C$, тогда в $x_0f_n(x_0)\to f(x_0)$, то есть $\forall\,\varepsilon>0$ $\exists\,N_{\varepsilon,x_0}:\forall\,n\geqslant N|f_n(x_0)-f(x_0)|<\varepsilon\Rightarrow x_0\notin E_n\,\forall\,n\geqslant N\Rightarrow x_0\notin R_n\Rightarrow x_0\notin R\Rightarrow R\subset C\Rightarrow |R|=0$.

Замечание. Утверждение теоремы неверно при $|E| = \infty$.

Пример. E = R, $f_n(x) = I_{[n,n+1]}$. Последовательность сходится к нулю п.н., но $|E[f_n - f > \frac{1}{2}]| = 1 > 0 \forall n$

Замечание. Обратное утверждение неверно. Из сходимости по вероятности не следует даже сходимости в одной точке. Пример: "бегущий отрезок".

Теорема 3.6. Пусть E – измеримое множество конечной меры и последовательность измеримых почти всюду конечных функций $f_n(x)$ сходится κ f(x) по вероятности, $|f(x)| < \infty(n.н.)$. Тогда из $f_n(x)$ можно выделить подпоследовательность, сходящуюся κ f(x) почти всюду.

 \square Существует последовательность номеров $n_1, n_2, \dots : E_k = E[f_{n_k} - f] \geqslant \frac{1}{k}], |E_k| < \frac{1}{2^k}.$

 $R_n = \bigcup_{k=n}^{\infty} E_k, R = \bigcap_{n=1}^{\infty} R_n, |R_n| \leqslant \sum_{k=n}^{\infty} |E_k| \leqslant \sum_{k=n}^{\infty} \frac{1}{2^k} \leqslant \frac{1}{2^{n-1}} \to 0. |R_n| \to |R| \Rightarrow |R| = 0.$ Покажем, что вне R последовательность сходится (п.н.):

Рассмотрим множество на котором f_n конечны $x_0 \notin R \Rightarrow \exists n : x_0 \notin R_n \Rightarrow x_0 \notin E_k \forall k \geqslant n \Rightarrow \forall n_k, k \geqslant n \mid f_{n_k}(x_0) - f(x_0) \mid < \frac{1}{k}$, то есть последовательность сходится в точке x_0 .

Лекция 4.

Теорема 3.7. Пусть на измеримом множестве E определена последовательность измеримых функций $\{f_n(x)\}: |f_n| < \infty \ (n.e.), |f| < \infty, |g| < \infty \ (n.e.)$ и

$$f_n(x) \xrightarrow{P} g(x) \ u \ f_n(x) \xrightarrow{P} f(x).$$
 (1)

Тогда

$$f(x) = q(x)$$
 (n.e.).

 \Box $\forall \varepsilon > 0$ $E[|f-g| \geqslant \varepsilon] \subset E[|f-f_n| \geqslant \frac{\varepsilon}{2}] \cup E[|g-f_n| \geqslant \frac{\varepsilon}{2}]$ и в силу (1) мера событий стоящих справа стремится к нулю при $n \to \infty$. Возьмем меру от обеих частей и перейдем к пределу по n, получим, что $\forall \varepsilon > 0$ $|E[|f-g| \geqslant \varepsilon]| = 0$, в силу произвольности ε получаем, что f и g равны на E почти всюду. \blacksquare

Теорема 3.8 (Теорема Егорова). E – измеримое множество конечной меры, $\{f_n\}$ – последовательность измеримых почти всюду конечных функций и $f_n(x) \stackrel{(n.s.)}{\longrightarrow} f(x), |f(x)| < \infty$ (п.в.). Тогда $\forall \, \delta > 0 \, \exists \, E_\delta \subset E : |E| - |E_\delta| < \delta \, u \, f_n(x) \rightrightarrows f(x)$ на E_δ .

Теорема 3.9 (Теорема Лузина). Пусть f, заданная на измеримом множестве конечной меры E, измеримая, почти всюду ограниченная функция. Тогда $\forall \delta > 0 \; \exists \;$ непрерывная на E функция $\varphi(x)$:

$$|E[f(x) \neq \varphi(x)]| < \delta, \tag{2}$$

u если $|f(x)| \leq k$, то найдется такая непрерывная функция $\varphi(x)$, удовлетворяющая (2), что $|\varphi(x)| \leq k$.

§4. Интеграл Лебега

4.1. Интеграл Лебега для ограниченных функций на измеримом множестве конечной меры.

Определение.

T – разбиение. $T = \{E_k\}_{k=1}^n : \bigsqcup_{k=1}^n E_k = E;$

$$M_k = \sup_{E_k} f(x), m_k = \inf_{E_k} f(x);$$

 $S_T = \sum_{k=1}^n M_k |E_k|$ — верхняя сумма по разбиению, $s_T = \sum_{k=1}^n m_k |E_k|$ — нижняя сумма по разбиению;

 $\overline{I}=\inf_T S_T$ – верхний интеграл Лебега, $\underline{I}=\sup_T s_T$ – нижний интеграл Лебега.

Определение. Если для измеримой, ограниченной функции f, заданной на измеримом множестве конечной меры $\overline{I} = \underline{I}$, то говорят, что f интегрируема (суммируема) по Лебегу на E и

$$\overline{I} = \underline{I} = \int_{E} f(x)dx. \tag{1}$$

Определение. Измельчением разбиения T назовем разбиение $T^* = \{E_i^*\}_{i=1}^m, T = \{E_k\}_{k=1}^n,$ если $\forall i = 1..m \; \exists \, \mu(i) : E_i^* \subset E_{\mu(i)}$ и $E_k = \bigcup_{\mu(i)=k} E_i^*$

Определение. Произведением двух разбиений $T_1 = \{E_i^1\}_{i=1}^{n_1}$ и $T_2 = \{E_j^2\}_{j=1}^{n_2} l$ назовем разбиение $T, T_1 \cdot T_2 = T = \{E_i^1 \cap E_i^2\}$

Утверждение 4.1.

- При измельчении верхние интегральные суммы не увеличиваются, а нижние интегральные суммы не уменьшаются.
- Для любых разбиений T_1 и T_2 $s_{T_1} \leqslant S_{T_2}$, рассмотрим разбиение $T_1 \cdot T_2 = T$, оно является измельчением обоих разбиений и $s_{T_1} \leqslant s_T \leqslant S_{T_2}$

Теорема 4.1. Если функция f(x) интегрируема по Риману на [a,b], то она интегрируема по Лебегу на [a,b] и интегралы совпадают.

 \square $\underline{I}_R\leqslant \underline{I}_L\leqslant \overline{I}_L\leqslant \overline{I}_R$, так как Римановские разбиения являются частным случаем Лебеговских разбиений, следовательно, если $\underline{I}_R=\overline{I}_R$, то $\underline{I}_L=\overline{I}_L$ и $\underline{I}_R=\underline{I}_L=\overline{I}_L=\overline{I}_R$

Замечание. Существуют функции интегрируемые по Лебегу, но **не**интегрируемые по Риману. Например функция Дирихле.

Теорема 4.2. Если функция f(x) измерима на множестве E конечной меры и ограничена на нем, то f(x) интегрируема на E по Лебегу.

 \square $m,M\in R^1:m\leqslant f(x)\leqslant M\ \forall x\in E.$ Разобьем отрезок [m,M] на систему непересекающихся отрезков: $m=y_0< y_1<\cdots< y_n=M, \Delta y_k=y_k-y_{k-1}, \delta=\max_{1\leqslant k\leqslant n}\Delta y_k.\ E_1=E[y_0\leqslant f\leqslant y_1], E_k=E[y_{k-1}< f\leqslant y_k],\ k=2..n.\ y_{k-1}\leqslant m_k\leqslant M_k\leqslant y_k,$ умножим все части этого неравенства на $|E_k|$, просуммируем по k и вычтем из второй части неравенства первую: $S_T-s_T\leqslant \sum\limits_{k=1}^n\Delta y_k|E_k|\leqslant \delta|E|$, при этом $0\leqslant \overline{I}-\underline{I}\leqslant S_T-s_T$, получаем что $0\leqslant \overline{I}-\underline{I}\leqslant \delta|E|$, устремим δ к нулю и получим равенство верхнего и нижнего интегралов. \blacksquare

Свойства интеграла Лебега.

1.
$$\int_{E} 1 dx = |E|$$

$$\square \quad S_T = s_T = |E| \blacksquare$$

$$2. \int_{E} \alpha f dx = \alpha \int_{E} f dx$$

$$\square$$
 Достаточно учесть, что $S_T^{\alpha} = \begin{cases} \alpha S_T, & \alpha > 0 \\ \alpha s_T, & \alpha < 0. \end{cases}$

3.
$$f_1$$
 и f_2 интегрируемы $\Rightarrow f_1 + f_2$ также интегрируема, и $\int\limits_E (f_1 + f_2) dx = \int\limits_E f_1 dx + \int\limits_E f_2 dx$

$$\square \quad \sup_E (f_1+f_2) \leqslant \sup_E f_1 + \sup_E f_2, \, \underline{I}_{f_1} + \underline{I}_{f_2} \leqslant \underline{I}_{f_1+f_2} \leqslant \overline{I}_{f_1+f_2} \leqslant \overline{I}_{f_1} + \overline{I}_{f_2} \blacksquare$$

- 4. $E = E_1 \sqcup E_2$ и $E_{1,2}$ измеримы, f интегрируема на E_1 и $E_2 \Rightarrow f$ интегрируема на E и $\int\limits_E f dx = \int\limits_{E_1} f dx + \int\limits_{E_2} f dx$, для доказательства свойства заметим, что для любого разбиения T множества E существуют разбиения T_1 и T_2 множеств E_1 и E_2 соответственно, образующие разбиение совпадающее с T или для которых T является измельчением их объединения , $s_{T_1} + s_{T_2} \leqslant s_T \leqslant S_{T_1} + S_{T_2}$.
- 5. Если $f_1\geqslant f_2$ (п.в.) на E, то $\int\limits_E f_1 dx\geqslant \int\limits_E f_2 dx.$

4.2. Интеграл Лебега от неотрицательной измеримой функции на измеримом множестве конечной меры.

Определение. Срезкой f_N положительной функции f(x) назовем функцию $f_N(x) = \begin{cases} f(x), & f(x) \leq N \\ N, & f(x) > N. \end{cases}$, если функция измерима, то и любая ее срезка измерима.

Определение. Говорят, что неотрицательная измеримая функция f(x), определенная на множестве E конечной меры, суммируема по Лебегу на E, если

$$\exists \lim_{N \to \infty} \int_{E} f_N dx = I. \tag{2}$$

Теорема 4.3. Пусть $E=\bigsqcup_{k=1}^{\infty}E_k,\ E_k$ – измеримые множества. Тогда

- 1. если f(x) интегрируема на E, то она интегрируема и на E_k и $\int\limits_E f dx = \sum\limits_{k=1}^\infty \int\limits_{E_k} f dx$.
- 2. если f(x) интегрируема на $E_k, k \geqslant 1$, и ряд $\sum_{k=1}^{\infty} \int_{E_k} f dx$ сходится, то f(x) интегрируема на E и $\int_{E} f dx = \sum_{k=1}^{\infty} \int_{E_k} f dx$.

- 1. Пусть f ограничена $0 \leqslant f \leqslant M, \ R_n = \bigcup_{k=n+1}^{\infty} E_k, \ |R_n| \to 0, \ n \to \infty. \ |E| = \sum_{k=1}^{\infty} |E_k|. \ \int\limits_E f dx \sum_{k=1}^n \int\limits_{E_k} f dx = \int\limits_{R} f dx \leqslant M|R_n| \to 0, n \to \infty.$
 - Пусть f неограничена. $\int\limits_E f_N dx = \sum\limits_{k=1}^\infty \int\limits_{E_k} f_N dx \leqslant \sum\limits_{k=1}^\infty \int\limits_{E_k} f dx$, устремим N к бесконечности: $\int\limits_E f dx \leqslant \sum\limits_{k=1}^\infty \int\limits_{E_k} f dx$ $\int\limits_{E_k} f_N dx \leqslant \int\limits_E f_N dx \leqslant \int\limits_E f dx$ и $\int\limits_E f_N dx \geqslant \sum\limits_{k=1}^m \int\limits_{E_k} f_N dx$ устремим N к бесконечности $\int\limits_E f dx \geqslant \sum\limits_{k=1}^m \int\limits_{E_k} f dx$, теперь устремим m к бесконечности: $\int\limits_E f dx \geqslant \sum\limits_{k=1}^\infty \int\limits_{E_k} f dx$.
- 2. Интегрируемость на E следует из того, что $\int\limits_E f_N dx = \sum\limits_{k=1}^\infty \int\limits_{E_k} f_N dx.$

Теорема 4.4. $f(x)\geqslant 0$ и интегрируема на измеримом множестве E конечной меры, тогда $\forall \varepsilon>0$ \exists $\delta>0: E_{\delta}\subset E\,|E_{\delta}|<\delta\int\limits_{E_{\delta}}fdx<\varepsilon$

 \square Из (2) следует, что $\exists N: \forall n>N\int\limits_E f dx-\int\limits_E f_n dx<\frac{\varepsilon}{2}\Rightarrow\int\limits_{E_\delta}(f-f_n)dx<\frac{\varepsilon}{2}.\int\limits_{E_\delta}f_n dx\leqslant N|E_\delta|<\frac{\varepsilon}{2}$ при $\delta<\frac{\varepsilon}{2N}.\int\limits_{E_\delta}f dx=\int\limits_{E_\delta}(f-f_n)dx+\int\limits_{E_\delta}f_n dx<\varepsilon$

Теорема 4.5. $f(x) \geqslant 0$ и интегрируема на измеримом множестве E конечной меры, тогда из $\int\limits_E f dx = 0 \Rightarrow f = 0$ (n.e.).

$$\Box \quad \forall a > 0 \, E_a = E[f \geqslant a] \text{ if } 0 = \int\limits_E f dx \geqslant \int\limits_{E_a} f dx \geqslant a |E_a| \Rightarrow |E_a| = 0 \\ \forall a > 0. \ E[f > 0] = \bigcup_{n=1}^\infty E[f \geqslant \frac{1}{n}] \leqslant \sum_{n=1}^\infty |E[f \geqslant \frac{1}{n}]| = 0. \ \blacksquare$$

Лекция 5.

Теорема 4.6 (Мажорантный признак суммируемости). Пусть f_1, f_2 – измеримые функции и пусть f_2 суммируема и $0 \le f_1 \le f_2$. Тогда f_1 суммируема по Лебегу.

$$\square \quad (f_1)_{\scriptscriptstyle N} \leqslant (f_2)_{\scriptscriptstyle N} \Rightarrow I_{\scriptscriptstyle N} = \smallint_E (f_1)_{\scriptscriptstyle N} dx \leqslant \smallint_E (f_2)_{\scriptscriptstyle N} dx \leqslant \smallint_E f_2 dx \Rightarrow I_{\scriptscriptstyle N} \to I, N \to \infty. \ \blacksquare$$

4.3. Интеграл Лебега от функций произвольного знака.

Определение.

Пусть $f_+(x)=\frac{1}{2}(|f(x)|+f(x)), \quad f_-(x)=\frac{1}{2}(|f(x)|-f(x)).$ Тогда $f(x)=f_+(x)-f_-(x), \quad |f(x)|=f_+(x)+f_-(x).$ Измеримая на E функция f(x) суммируема на E, если $f_+(x)$ и $f_-(x)$ суммируемы на E и по определению

$$\int_{E} f(x)dx = \int_{E} f_{+}(x)dx - \int_{E} f_{-}(x)dx. \tag{3}$$

Замечание.

$$f(x) \in L_1(E) \Leftrightarrow |f(x)| \in L_1(E).$$
 (4)

Пример. Из (4) следует, что для интеграла Лебега не существует понятия условной сходимости. $\int_{1}^{+\infty} \frac{\sin(x)}{x} dx$ сходится по признаку Дирихле-Абеля, но $\int_{1}^{+\infty} \frac{|\sin(x)|}{x} dx \leqslant \int_{1}^{+\infty} \frac{\sin^{2}(x)}{x} dx = \frac{1}{2} \int_{1}^{+\infty} \frac{1-\cos(2x)}{x} dx$ расходится как разность сходящегося и расходящегося интегралов. И следовательно, после замены $x = \frac{1}{t}$, получаем что $\int_{0}^{1} \frac{\sin(\frac{1}{t})}{t} dt$ расходится по Лебегу.

Теорема 4.7 (Теорема о полной аддитивности). Пусть $E=\bigsqcup_{k=1}^{\infty}E_k$

1. $ecnu \ f(x) \in L_1(E), \ mo \ f(x) \in L_1(E_k) \ u$

$$\int_{E} f(x)dx = \sum_{k=1}^{\infty} \int_{E_k} f(x)dx \tag{5}$$

2. $ecnu \ f(x) \in L_1(E_k), \ k = 1, 2, \dots \ u \sum_{k=1}^{\infty} \int_{E_k} |f(x)| dx < \infty \quad \Rightarrow \quad f(x) \in L_1(E) \ u \int_{E} f(x) dx = \sum_{k=1}^{\infty} \int_{E_k} f(x) dx.$

1. $\int_{E} f(x)dx = \int_{E} f_{+}(x)dx - \int_{E} f_{-}(x)dx$ для каждого из интегралов применим теорему (4.3).

2. $f \in L_1(E_k) \Rightarrow |f(x)| \in L_1(E_k)$ и по теореме (4.3) $|f(x)| \in L_1(E) \Rightarrow f(x) \in L_1(E)$ по пункту 1 данной теоремы выполняется равенство (5).

Теорема 4.8 (Об абсолютной непрерывности). Пусть $f(x) \in L_1(E)$, тогда $\forall \varepsilon > 0 \; \exists \; \delta(\varepsilon) > 0 : \forall e \in E \; u \;$ такого что $|e| < \delta \quad |\int\limits_{\mathbb{R}} f(x) dx| < \varepsilon$.

 $f(x) \in L_1(E) \Rightarrow |f(x)| \in L_1(E) \Rightarrow \{\text{по теореме } (4.4)\} \forall \varepsilon > 0 \ \exists \delta :$

$$orall e\subset E$$
 и такого что $|e|<\delta$: $arepsilon>\int\limits_e|f(x)|dx\geqslant|\int\limits_ef(x)dx|.$

Определение. $\{f_n\}, f \in L_1(E).$ $f_n \xrightarrow{\text{в среднем}} f$, если $\int_E |f_n - f| dx \to 0, n \to \infty$.

$$|\int_{E} [f_n - f] dx| \leqslant \int_{E} |f_n - f| dx \Rightarrow \int_{E} f_n dx \to \int_{E} f dx$$
, если $f_n \xrightarrow{\text{в среднем}} f$.

Утверждение 4.2. Из сходимости в среднем следует сходимость по мере. $\forall \varepsilon \, E_n = E[|f_n - f| \geqslant \varepsilon] \, u \, \int\limits_E |f_n - f| dx \geqslant \int\limits_{E_n} |f_n - f| dx \geqslant \varepsilon |E_n| \to 0 \Rightarrow |E_n| \to 0, \, n \to \infty.$

Обратное утверждение неверно

Пример.
$$E=[0,1]$$
 $f_n(x)=\begin{cases} n, & 0\leqslant x\leqslant \frac{1}{n},\\ 0, & \frac{1}{n}< x\leqslant 1. \end{cases}$, $f_n(x)\xrightarrow{\lambda} 0$, но $\int\limits_E f_n dx=1$.

Теорема 4.9 (Лебег).

$$\{f_n(x)\}\in L_1(E), f_n(x)\xrightarrow{\lambda} f(x) \ u \ \exists F(x)\in L_1(E): |f_n(x)|\leqslant F(x). \ \text{Toeda} \ f_n(x)\xrightarrow{L_1(E)} f.$$

По теореме (3.6) $f_{n_k} \xrightarrow{n.s.} f$, следовательно $|f(x)| \leq F(x)$ (п.в.) и $\forall \varepsilon > 0$ $E_n = E[|f_n - f| \geqslant \varepsilon]$, тогда $\int\limits_E |f_n - f| dx = \int\limits_{E_n} |f_n - f| dx + \int\limits_{E \setminus E_n} |f_n - f| dx \leq \varepsilon |E \setminus E_n| + 2 \int\limits_{E_n} F(x) dx \to 0$ при $\varepsilon \to 0, n \to 0$, так как из сходимости по мере следует, что $|E_n| \to 0$ при $n \to 0$.

Замечание. В условии теоремы можно было заменить сходимость по мере сходимостью почти всюду.

Теорема 4.10 (Леви). Пусть $\{f_n(x)\}\in L_1(E), f_n\leqslant f_{n+1}(n.s.)$ на $E\ u\ |\int\limits_E f_n(x)dx|\leqslant M$. Тогда (n.s.) на $E\ \exists \lim f_n(x)=f(x)\ u$

$$\lim_{n \to \infty} \int_{E} f_n(x) dx = \int_{E} f(x) dx \tag{6}$$

Положим $f_n(x) \geqslant 0$ $\{g_n(x) = f_n(x) - f_1(x) \geqslant 0\}$, тогда (п.в.) существует конечный (А вот это надо бы показать!) предел f(x) для монотонной последовательности. Покажем, что $f(x) \in L_1(E)$: перейдем к последовательности срезок функций $f_n(x)$: $\{(f_n)_{_N}(x)\}$, $(f_n)_{_N}(x) \to (f)_{_N}(x)$. $(f_n)_{_N}(x) \leqslant f_n(x) \Rightarrow \int\limits_E (f_n)_{_N}(x) dx \leqslant \int\limits_E f_n(x) dx$ и по теореме Лебега получаем, что $\lim\limits_{n \to \infty} \int\limits_E (f_n)_{_N}(x) dx = \int\limits_E f_N(x) dx$ и $M \geqslant \int\limits_E f_n(dx) \geqslant \int\limits_E f_N dx \Rightarrow \int\limits_E f_N dx \leqslant M$, следовательно существует конечный предел неубывающей по N последовательности $\int\limits_E f_N dx$, следовательно $f(x) \in L_1(E)$.

Замечание. Можно сформулировать теорему Леви для функциональных рядов: Пусть $u_n(x)\geqslant 0$ и принадлежат $L_1(E)$ и $\sum\limits_{n=1}^{\infty}\int\limits_{E}u_n(x)dx<\infty$. Тогда $\exists\, S(x)=\sum\limits_{n=1}^{\infty}u_n(x)$ и $\int\limits_{E}S(x)dx=\sum\limits_{n=1}^{\infty}\int\limits_{E}u_n(x)dx$. Для доказательства утверждения применим Теорему Лебега к последовательности $f_n=S_n=\sum\limits_{k=1}^{n}u_n(x)$.

Теорема 4.11 (Фату). $\{f_n(x)\}\in L_1(E), f_n(x)\xrightarrow{(n.s.)} f(x)\ u\ \exists\ A: \int\limits_E |f_n(x)| dx\leqslant A,\ mor\partial a\lim_{n\to\infty} f_n(x)=f(x)$ $u\ f(x)$ – суммируемая функция, такая что $\int\limits_E |f(x)| dx\leqslant A$.

 \square $g_n(x)=\inf_{k\geqslant n}|f_k(x)|\ g_n(x)\geqslant 0,\ g_n(x)\uparrow,\ g_n(x)\in L_1(E)$ $\int\limits_Eg_n(x)dx\leqslant \int\limits_E|f(x)|dx\leqslant A\Rightarrow$ к последовательности $g_n(x)$ можно применить Теорему Леви.

Теорема 4.12 (Лебега). Пусть f(x) – ограниченная функция, тогда f(x) суммируема тогда и только тогда, когда f(x) измерима.

Лекция 6.

□ Доказательство достаточности составляет содержание теоремы (???), поэтому в доказательстве нуждается лишь необходимость.

Пусть функция f(x) ограничена и интегрируема по Лебегу на измеримом множестве Е. Это означает, что верхний и нижний интегралы Лебега от этой функции равны друг другу, и, стало быть, существует последовательность разбиений $T_n = \{E_k^{(n)}\}$ множества E такая, что соответствующие последовательности верхних $\{S_n\}$ и нижних $\{s_n\}$ сумм удовлетворяют условию $S_n^-s_n < \frac{1}{n}$, причем каждое последующее разбиение $T_n = \{E_k^{(n)}\}$ является измельчением предыдущего разбиения $T_{n-1} = E_k^{(n-1)}$. (Для построения такой последовательности разбиений достаточно там, где это необходимо, брать произведение вводимых разбиений.) По определению

$$S_n = \sum_k M_k^{(n)} |E_k^{(n)}|, s_n = \sum_k m_k^{(n)} |E_k^{(n)}|,$$

где $M_k^{(n)} = \sup_{E_k^{(n)}} f(x)$ и $m_k^{(n)} = \inf_{E_k^{(n)}} f(x)$. определим две последовательности функций $\{\overline{f}_n(x)\}$ и $\{\underline{f}_n(x)\}$.

$$\overline{f}_n(x) = \sum_k M_k^{(n)} \mathbb{I}\{E_k^{(n)}\},\tag{7}$$

$$\underline{f}_n(x) = \sum_k m_k^{(n)} \mathbb{I}\{E_k^{(n)}\} \tag{8}$$

Из определения разбиения и (7), (8) следует, что введенные выше функции являются измеримыми. Последовательность (7) не возрастает, а последовательность (8) не убывает, и для любого n

$$\underline{f}_n(x) \leqslant f(x) \leqslant \overline{f}_n(x). \tag{9}$$

Положим $\overline{f}(x)=\lim_{n\to\infty}\overline{f}_n(x)$ и $\underline{f}(x)=\lim_{n\to\infty}\underline{f}_n(x)$, введенные функции измеримы, так как являются пределами последовательностей измеримых функций. Тогда

$$\underline{f}_n(x) \leqslant f(x) \leqslant \underline{f}(x) \leqslant \overline{f}(x) \leqslant \overline{f}_n(x) \leqslant \overline{f}_n(x). \tag{10}$$

Из Теоремы Б. Леви получаем, что

$$\lim_{n \to \infty} \int_{E} [\overline{f}_n(x) - \underline{f}_n(x)] dx = \int_{E} [\overline{f}(x) - \underline{f}(x)] dx. \tag{11}$$

Из (7), (8) следует, что $\int_E [\overline{f}_n(x) - \underline{f}_n(x)] dx = S_n - s_n$. И так как $\lim_{n \to \infty} S_n - s_n = 0$, то $\int_E [\overline{f}(x) - \underline{f}(x)] dx = 0$. Следовательно из (10) получаем, что $\underline{f}(x) = f(x) = \overline{f}_n(x)$ почти всюду на E, получаем, что f(x) измерима на E.

Теорема 4.13 (Теорема Фубини для случая меры Лебега). Пусть $E = \{(x,y): a \leqslant x \leqslant b, c \leqslant y \leqslant d\}$ $u \ f(x)$ суммируема на E. Тогда для почти всех $x \in [a,b] \exists \int\limits_{c}^{d} f(x,y) dy \ u$ для почти всех $y \in [c,d] \exists \int\limits_{a}^{b} f(x,y) dx$ u эти функции суммируемы на соответствующих множествах u их повторные интегралы равны соответствующему двойному интегралу:

$$\int_{a}^{b} dx \int_{c}^{d} f(x,y)dy = \int_{c}^{d} dy \int_{a}^{b} f(x,y)dx = \int_{E} f(x,y)dxdy.$$

$$(12)$$

Замечание. Из существования повторных интегралов $\int\limits_a^b dx \int\limits_c^d f(x,y) dy$ и $\int\limits_c^d dy \int\limits_a^b f(x,y) dx$ не следуют, вообще говоря, ни равенства (12), ни интегрируемость функции f(x,y) на E. Однако, если существует хотя бы один из интегралов

$$\int_{a}^{b} dx \int_{c}^{d} |f(x,y)| dy \text{ u.u.} \int_{c}^{d} dy \int_{a}^{b} |f(x,y)| dx$$

$$\tag{13}$$

то f(x, y) интегрируема на E и справедливо равенство (12).

Действительно, пусть, например, первый из интегралов (13) существует и равен M. Функция $f_n(x,y) = min\{|f(x,y)|,n\}$ измерима, ограничена, а значит, и суммируема на E. По теореме Фубини

$$\int_{E} f_n(x,y)dxdy = \int_{c}^{d} dy \int_{a}^{b} f_n(x,y)dy \leqslant M.$$
(14)

Функции f_n образуют монотонно неубывающую последовательность, почти всюду сходящуюся к |f(x,y)|. По теореме Б. Леви отсюда и из неравенства (14) следует, что функция $f_n(x,y)$ суммируема на E. Но тогда и f(x,y) суммируема и для нее верна теорема Фубини.

Пример функции для которой существуют повторные интегралы, но равенство (12) не имеет места. $E = [-1,1] \times [-1,1]$ и

$$f(x,y) = \frac{xy}{(x^2 + y^2)^2}$$
 при $x^2 + y^2 > 0$ и $f(0,0) = 0$;

тогда

$$\int_{-1}^{1} f(x,y)dx = 0$$

при всех у и

$$\int_{-1}^{1} f(x,y)dy = 0$$

при всех х. Следовательно

$$\int_{-1}^{1} dy \int_{-1}^{1} f(x,y) dx = \int_{-1}^{1} dx \int_{-1}^{1} f(x,y) dy = 0,$$

но интеграл в смысле двойного интеграла Лебега по квадрату не существует, так как

$$\int\limits_{E} |f(x,y)| dx dy \geqslant \int\limits_{0}^{1} dr \int\limits_{0}^{2\pi} \frac{|\sin\varphi\cos\varphi|}{r} d\varphi = 2 \int\limits_{0}^{1} \frac{dr}{r} = \infty.$$

4.4. Интеграл Лебега от измеримой функции любого знака на измеримом множестве бесконечной меры.

Пусть $|E| = \infty$, будем говорить, что последовательность $\{E_n\}$ исчерпывает E, если E_n измеримы и $|E_n| < +\infty$, $E_n \subset E_{n+1}$, $E = \bigcup_{n=1}^{\infty} E_n$. Если f(x) измерима на любом E_n и существует конечный предел $\lim_{n \to \infty} \int\limits_{E_n} f(x) dx$, то f(x) суммируема на E и $\int\limits_{E} = \lim_{n \to \infty} \int\limits_{E_n} f(x) dx$, для корректности определения предел $\lim_{n \to \infty} \int\limits_{E_n} f(x) dx$ не должен зависеть от выбора конкретной исчерпывающей последовательности.

§5. Функциональные пространства.

5.1. Пространства $L^{p}, p \ge 1$.

Определение.Пространство $L^p(E)$ — множество всех классов эквивалентностей измеримых на E функций для которых $\exists \int_{\Sigma} |f(x)|^p dx$.

В указанном пространстве введем функцию

$$||f||_p = \left(\int_E |f(x)|^p dx\right)^{\frac{1}{p}}.$$
 (1)

Покажем, что функция (1) удовлетворяет аксиомам нормы в пространстве $L^p(E)$. Докажем для указанной нормы неравенство треугольника, то есть неравенство Минковского.

Теорема 5.1. Пусть f(x) и $g(x) \in L_p, p \geqslant 1$, тогда $f + g \in L_p$ и

$$||f+g||_p \le ||f||_p + ||g||_p. \tag{2}$$

- (a) Для p = 1 утверждение теоремы очевидно.
- (b) функция $|x|^p, p \geqslant 1$ выпукла вниз, следовательно $(\frac{|a+b|}{2})^p \leqslant \frac{|a|^p+|b|^p}{2} \Rightarrow \{$ подставим f(x) вместо a и g(x) вместо b, получим, что $|f(x)+g(x)|^p \leqslant 2^{p-1}(|f(x)|^p+|g(x)|^p)$, следовательно $f(x)+g(x) \in L_p$.
- (с) Докажем само неравенство (2)
 - (c1) Неравенство Юнга. Пусть a,b>0 и $p>1,\frac{1}{p}+\frac{1}{q}=1.$ Тогда

$$a^{\frac{1}{p}}b^{\frac{1}{q}} \leqslant \frac{a}{p} + \frac{b}{q}.\tag{3}$$

или

$$ab \leqslant \frac{a^p}{p} + \frac{b^q}{q}. (4)$$

Положим $\psi(x)=x^{\alpha}-\alpha x$ для $x\geqslant 0, \alpha\in(0,1).$ Тогда $\psi'(x)=\alpha x^{\alpha-1}-\alpha=\alpha(x^{\alpha-1}-1);$ следовательно $\psi'(x)>0$ при 1>x>0 и меньше нуля при x>1, следовательно $\psi(x)$ достигает максимума в точке x=1. То есть $\psi(x)\leqslant\psi(1)\Rightarrow x^{\alpha}-\alpha x\leqslant 1-\alpha\Rightarrow x^{\alpha}<\alpha x+1-\alpha.$ Пусть $x=\frac{a}{b}, a,b>0,$ тогда $\frac{a^{\alpha}}{b^{\alpha}}\leqslant\alpha\frac{a}{b}+(1-\alpha)\Rightarrow a^{\alpha}b^{1-\alpha}\leqslant\alpha a+(1-\alpha)b.$ Положим $\alpha=\frac{1}{p}$ и $1-\alpha=\frac{1}{q}.$ Следовательно $a^{\frac{1}{p}}b^{\frac{1}{q}}\leqslant\frac{a}{p}+\frac{b}{q}.$

(c2) Неравенство Гёльдера. Пусть $p>1,\ \frac{1}{p}+\frac{1}{q}=1$ и $f(x)\in L_p(E),$ а $g(x)\in L_q(E).$ Тогда их произведение суммируемо на E и

$$\int_{E} |f(x)g(x)|dx \leqslant ||f||_{p} \cdot ||g||_{q}. \tag{5}$$

 \square Пусть f(x) и g(x) не эквивалентны нулю. Положим

$$\varphi(x) = \frac{f(x)}{||f||_{L_p}} \ \text{и} \ \psi(x) = \frac{g(x)}{||g||_{L_q}}.$$

Тогда

$$\int\limits_E |\varphi(x)|^p dx = \int\limits_E |\psi(x)|^q dx = 1.$$

Положим

$$a = |\varphi(x)|^p$$
 и $b = |\psi(x)|^q$.

И из неравенства (3) получаем, что

$$|\varphi(x)\psi(x)| \leqslant \frac{|\varphi(x)|^p}{p} + \frac{|\psi(x)|^q}{q},\tag{6}$$

откуда следует суммируемость произведения f(x)g(x). Проинтегрируем обе части неравенства (6) по E.

$$\int_{E} |\varphi(x)\psi(x)|dx \leqslant \int_{E} \left(\frac{|\varphi(x)|^{p}}{p} + \frac{|\psi(x)|^{q}}{q}\right)dx = \frac{1}{p} + \frac{1}{q} = 1.$$
 (7)

Откуда следует неравенство Гёльдера. Отметим, что для множеств конечной меры из того, что $f \in L_p$ следует, что $f \in L_{p'}$ для $1 \leqslant p' \leqslant p$.

Теперь докажем само неравенство Минковского.

Если $f(x) + g(x) \in L_p$, то $|f + g|^{\frac{p}{q}} \in L_q$. Применим неравенство Гёльдера:

$$\int_{\mathbb{R}} |f(x)| \cdot |f(x) + g(x)|^{\frac{p}{q}} dx \le ||f||_{p} \cdot |||f(x) + g(x)|^{\frac{p}{q}} ||_{q} = ||f||_{p} \cdot ||f(x) + g(x)||_{p}^{\frac{p}{q}}$$
(8)

И

$$\int_{E} |g(x)| \cdot |f(x) + g(x)|^{\frac{p}{q}} dx \le ||g||_{p} \cdot ||f(x) + g(x)|^{\frac{p}{q}} ||_{q} = ||g||_{p} \cdot ||f(x) + g(x)||_{p}^{\frac{p}{q}}.$$
(9)

С учетом того, что

$$\int_{E} |f + g|^{p} dx = \int_{E} |f + g| \cdot |f + g|^{p-1} dx = \int_{E} |f + g| \cdot |f + g|^{\frac{p}{q}} dx$$

и неравенств (8),(9) получаем, что

$$||f+g||_p^p = \int_E |f+g|^p dx \leqslant \int_E (|f|+|g|)|f+g|^{\frac{p}{q}} dx \leqslant (||f||_p + ||g||_p)||f+g||_p^{\frac{p}{q}}. \tag{10}$$

И перенося сомножитель $||f+g||_p^{\frac{p}{q}}$ влево

$$||f+g||_p^{p-\frac{p}{q}} = ||f+g||_p \le ||f||_p + ||g||_p.$$

Определение. Если в нормированном пространстве $\lim_{n,m\to\infty}||x_n-x_m||=0$, то говорят, что последовательность $\{x_n\}$ фундаментальная.

Определение. В нормированном пространстве M последовательность называется сходящейся, если $\exists x \in M$: $\lim_{n \to \infty} ||x_n - x|| = 0$.

Определение. Нормированное пространство называется полным или Ба́наховым, если любая фундаментальная последовательность в нем сходится.

Определение. Последовательность $\{x_n\}$ называется сходящейся, если $\exists \, x : \lim_{n \to \infty} ||x_n - x|| = 0...$

Лекция 7.

Теорема 5.2. Пусть E — измеримое множество конечной меры, $p \geqslant 1$, тогда пространство $L_p(E)$ — полное или банахово.

 \square Рассмотрим некоторую фундаментальную последовательность $\{f_n(x)\}$ из $L_p(E)$, то есть $\forall k \in N \,\exists\, n_k: ||f_n(x) - f_m(x)||_{L_p} < \frac{1}{2^k}$ при $n,m \geqslant n_k, \, \{n_k\}$ — монотонно возрастающая последовательность. И для любого k выполняется следующее соотношение $||f_{n_{k+1}} - f_{n_k}||_{L_p} < \frac{1}{2^k}$ так как $n_{k+1} > n_k$. Откуда следует, что

$$\int_{E} |f_{n_{k+1}} - f_{n_k}| dx \underset{\text{Неравенство Гельдера}}{ } ||f_{n_{k+1}} - f_{n_k}||_{L_p} \cdot |E|^{\frac{1}{q}} < \frac{|E|^{\frac{1}{q}}}{2^k}.$$
 (11)

Просуммируем (11) по k от 1 до ∞ , получим

$$\sum_{k=1}^{\infty} \int_{E} |f_{n_{k+1}} - f_{n_k}| dx < |E|^{\frac{1}{q}}.$$
(12)

Из (12) следует, что ряд, стоящий в левой части выражения сходится почти всюду на E , а значит сходится почти всюду на E и ряд $\sum\limits_{k=1}^{\infty} [f_{n_{k+1}}(x)-f_{n_k}(x)];$ чтобы из данного ряда получить элемент исходный последовательности, перейдем к сумме $f_{n_1}(x)+\sum\limits_{k=1}^{\infty} [f_{n_{k+1}}(x)-f_{n_k}(x)],$ положим, что она сходится почти всюду на E к f(x). Для этого ряда $S_m(x)=f_{n_1}(x)+\sum\limits_{k=1}^{m} [f_{n_{k+1}}(x)-f_{n_k}(x)]=f_{n_{m+1}}(x)\to f(x)$ почти всюду на E. Следовательно, при $k\to\infty$ $|f_{n_k}(x)-f_m(x)|^p\to |f(x)-f_m(x)|^p,$ а значит и $\int\limits_E |f_{n_k}(x)-f_m(x)|^p dx\to \int\limits_E |f(x)-f_m(x)|^p dx,$ по Лемме Фату $f(x)-f_m(x)$ суммируема, а следовательно суммируема и $f(x), f(x)\in L_p(E)$. Из определения фундаментальности последовательности получаем, что существует $N_\varepsilon: ||f(x)-f_m(x)||_{L_p}<\varepsilon$ при $m>N_\varepsilon$, а значит и $||f_n(x)-f(x)||_{L_p}\to 0, n\to\infty$.

Далее будет описан другой подход к введению интеграла Лебега.

Определение. Функция называется простой, если она принимает конечное или счетное число значений.

Лемма 5.3. Пусть $f(x) \geqslant 0$ – измеримая функция на E. Тогда \exists неубывающая последовательность неотрицательных измеримых простых функций сходящаяся κ f(x) равномерно на множестве ее конечных значений.

$$\square \quad E_k^n = E[\tfrac{k}{2^n} \leqslant f(x) \leqslant \tfrac{k+1}{2^n}], \ k = 0, 1, 2, \ldots, n = 1, 2, \ldots \ \text{и} \ E_\infty = E[f(x) = +\infty]. \ E = \bigcup_{k=0}^\infty E_k^n \cup E_\infty.$$
 Положим $f_n(x) = \begin{cases} \frac{k}{2^n}, & x \in E_k^n, \\ n, & x \in E_\infty. \end{cases}$ Тогда $0 \leqslant f(x) - f_n(x) < \frac{1}{2^n} \Rightarrow f_n(x) \Rightarrow f(x). \ E_k^n = E_{2k}^{n+1} \cup E_{2k+1}^{n+1}$ так

как
$$\left[\frac{k}{2^n},\frac{k+1}{2^n}\right)=\left[\frac{2k}{2^{n+1}},\frac{2k+1}{2^{n+1}}\right)\cup\left[\frac{2k+1}{2^{n+1}},\frac{2k+2}{2^{n+1}}\right)$$
, откуда следует, что $f_{n+1}(x)=\begin{cases}f_n(x),&x\in E_{2k}^{n+1},\\f_n(x)+\frac{1}{2^{n+1}},&x\in E_{2k+1}^{n+1}.\end{cases}$, а значит $f_n(x)\leqslant f_{n+1}(x)$.

Теорема 5.4. Пусть $p\geqslant 1$, $|E|<\infty$. Тогда C(E) – множество функций непрерывных на E плотно в $L_p(E)$, то есть $\forall f\in L_p(E), \ \forall \varepsilon>0\ \exists\ \varphi\in C(E): ||f-\varphi||_{L_p}<\varepsilon$.

 \square Не ограничивая общности рассуждений будем считать, что $f(x)\geqslant 0$ и E — ограниченное множество. Так как $f\in L_p(E)$, то $|E_\infty(f)|=0$ и можно перейти к рассмотрению множества $E\setminus E_\infty(f)$, таким образом можно считать, что f(x) конечна. Следовательно f(x) можно равномерно приблизить последовательностью простых функций. Если $\psi(x)$ — простая функция, $\psi(x)=\sum\limits_{k=1}^{\infty}C_k\mathbb{I}_{E_k}(x), \ E=cupsql[k=1][\infty]E_k$. Ряд $\sum\limits_{k=1}^{\infty}(C_k)^p|E_k|=\int\limits_{E}|\psi(x)|^pdx$ сходится, следовательно остаток ряда, то есть $\int\limits_{E}|\psi(x)-\psi_n(x)|^p\to 0$, где $\psi_n(x)=\sum\limits_{k=1}^{n}C_k\mathbb{I}_{E_k}(x)$, рассмотрим теперь индикатор $\mathbb{I}_{E_k}(x)$. По теореме (???) $\forall \varepsilon_k>0$ \exists $\underbrace{F_k}_{\text{замкнутое}}\subset E_k\subset\underbrace{G_k}_{\text{открытое}}:|G_k\setminus F_k|<\varepsilon_k$. Положим $\psi_k(x)=$

$$\frac{\rho(x,\overline{G_k})}{\rho(x,\overline{G_k})+\rho(x,F_k)},$$
 как легко убедиться $\psi_k(x)$ — непрерывная функция. Тогда $\psi(x)=\begin{cases} 0, & x\in\overline{G_k},\\ \alpha(x), & x\in G_k\mathbb{F}_k, 0<\alpha<1,\\ 1, & x\in F_k. \end{cases}$

$$\text{ и } |\mathbb{I}_{E_k}(x) - \psi_k(x)| = \begin{cases} 0, & x \in \overline{G_k} \cup F_k, \\ \beta(x), & x \in G_k \setminus F_k, \beta \leqslant 1. \end{cases} \Rightarrow \int\limits_E |\mathbb{I}_{E_k}(x) - \psi_k(x)| dx \leqslant |G_k \setminus F_k| < \varepsilon_k. \ \varphi(x) = \sum_{k=1}^n C_k \psi_k(x) - \lim_{k \to \infty} \|\varphi_k(x) - \varphi_k(x)\|_{L_p} = \|\sum_{k=1}^n C_k (\mathbb{I}_{E_k}(x) - \psi_k(x))\|_{L_p} \leqslant \sum_{k=1}^n |C_k| \cdot \|\mathbb{I}(x) - \lim_{k \to \infty} \|\varphi_k(x) - \varphi_k(x)\|_{L_p}$$

$$\psi_k(x)||_{L_p} \leqslant \sum_{k=1}^n |C_k| \varepsilon_k^{\frac{1}{p}} \underset{\varepsilon_k = (\frac{\varepsilon}{|C_k|2^{k+1}})^p}{<} \varepsilon. \blacksquare$$

Теорема 5.5 (О непрерывности в метрике L_p). Пусть $|E|<\infty, p\geqslant 1,\ f(x)\in L_p(E)\ u\ f(x)=0$ на \overline{E} . Тогда $\forall \varepsilon>0$ $\exists\ \delta>0$: $npu\ |h|<\delta\ ||f(x+h)-f(x)||_{L_p}<\varepsilon$.

§6. Метрические и нормированные пространства.

Определение. Множество M называется метрическим пространством, если на $M \times M$ определена вещественно значная функция $\rho(x,y)$:

- $\rho(x,y) \geqslant 0$ и $\rho(x,y) = 0 \Leftrightarrow x = y$.
- $\rho(x,y) \leqslant \rho(x,z) + \rho(z,y)$.

Пример. Метрика Хевисайда: $\rho(x,y) = \begin{cases} 1, & x=y, \\ 0, & x \neq y. \end{cases}$

Определение. Последовательность $\{x_n\}$ элементов метрического пространства называется фундаментальной, если $\lim_{n \to \infty} \rho(x_n, x_m) = 0$.

Определение. Последовательность $\{x_n\}$ элементов метрического пространства M называется сходящейся, если $\exists \, x \in M : \lim_{n \to \infty} \rho(x_n, x) = 0.$

• Если $x_n \to x$, то и любая подпоследовательность x_{n_k} сходится к x.

$$\square \quad \forall \varepsilon > 0 \,\exists \, N = N(\varepsilon) : \forall n > N \rho(x_n, x) < \varepsilon \Rightarrow \forall n_k > N \rho(x_{n_k}, x) < \varepsilon. \blacksquare$$

- Предел сходящейся последовательности единственен.
 - Пусть x, y два различных предела последовательности, тогда $\rho(x,y) \leqslant \underbrace{\rho(x_n,x)}_{\to 0} + \underbrace{\rho(x_n,y)}_{\to 0} \Rightarrow \rho(x,y) = 0 \Rightarrow x = y.$
- Сходящаяся последовательность ограничена.
 - \square $\rho(x_n,\theta) \leqslant \rho(x_n,x) + \rho(x,\theta), \forall \theta \in M \blacksquare$

Определение. Назовем шаром в метрическом пространстве M радиуса r с центром в точке $a \in M$ множество $B(a,r) = \{x : \rho(a,x) < r\}$, аналогично замкнутым шаром назовем множество $[B(a,r)] = \{x : \rho(a,x) \leqslant r\}$.

Определение. Множество в метрическом пространстве назовем ограниченным, если оно целиком содержится в некотором шаре.

Определение. Окрестность точки a — любой шар с центром в точке a.

Определение. Пусть $X\subset M, a$ — предельная точка множества X, если любая окрестность точки a содержит точку из X отличную от a .

Определение. Замыкание множества X — множество $[X] = X \cup \{$ множество предельных точек $X \}$.

- X называется замкнутым, если X = [X].
- X открытое множество, если $M \setminus X$ замкнутое.
- X всюду плотное множество в M, если [X] = M.
- \bullet X нигде не плотное множество, если каждый шар метрического пространства содержит подшар, не пересекающийся с X.

Определение. M — полное метрическое пространство, если любая фундаментальная последовательность в нем является сходящейся.

Теорема 6.1 (О вложенных шарах). Пусть M- полное метрическое пространство, $\{B_n\}-$ последовательность замкнутых вложенных друг в друга шаров $[B_1(a_1,\varepsilon_1)]\subset [B_2(a_2,\varepsilon_2)]\subset \ldots, \ \varepsilon_n\to 0$. Тогда $\exists !\ x\in M:\ x\in \bigcap_{i=1}^\infty [B_i]$. Условия полноты пространства M замкнутости шаров существенны.

□ Рассмотрим последовательность $\{a_n\}$, $a_n \in [B_n] \Rightarrow \rho(a_n, a_{n+p}) < \varepsilon_n \Rightarrow \{a_n\}$ — фундаментальная последовательность. И из полноты пространства следует, что $a_n \to a \in M$ и в силу замкнутости шаров $[B_n]$ получаем, что $a \in B_n \ \forall n$. Осталось показать единственность точки, обладающей указанным свойством. Пусть $a, b \in M$ и $a, b \in [B_n], \forall n \geqslant 1$, тогда $\rho(a, b) \leqslant \rho(a_n, a) + \rho(a_n, b)$, следовательно $\rho(a, b) = 0 \Rightarrow a = b$. ■

Определение. Множество $X \subset M$ называется множеством первой категории, если оно может быть представлено в виде счетного объединения нигде не плотных множеств. Все остальные множества называются множествами второй категории.

Теорема 6.2 (Теорема Бера о категориях). Полное метрическое пространство является множеством второй категории.

Пусть M — полное метрическое пространство и не является множеством второй категории, то есть M — множество первой категории. Тогда M можно представить в виде $M = \bigcup_{n=1}^{\infty} X_n$, где X_n — нигде не плотные множества. X_1 нигде не плотно, следовательно существует шар $[B_1(a_1,r_1)]$ радиуса меньше 1, содержащий подшар свободный от точек множества X_1 , в нем в свою очередь есть подшар радиуса $r_2 < \frac{1}{2}$ свободный от точек X_2 , а в нем есть подшар радиуса $r_3 < \frac{1}{3}$ свободный от точек X_3 . Продолжая данное рассуждение получим, что существует последовательность вложенных друг в друга замкнутых шаров, последовательность радиусов которых стремится к нулю, следовательно, по теореме о вложенных шарах, существует точка принадлежащая всем шарам в указанной последовательности, пришли к противоречию, так как все шары лежат в M, $M = \bigcup_{i=1}^{\infty} X_i$, но указанная точка не принадлежит ни одному X_i . \blacksquare

Определение. Отображение $A:M\to M$ называется сжимающим отображением, если $\forall x,y\in M\ \rho(Ax,Ay)\leqslant \alpha\rho(x,y),\ \alpha<1.$

Точка $x \in M$ называется неподвижной точкой отображения A, если Ax = x.

Теорема 6.3 (Принцип сжимающих отображений). Пусть M- полное метрическое пространство, A- сжимающее отображение. Тогда A имеет единственную неподвижную точку.

Пусть $x_0 \in M$, $x_1 = Ax_0$, $x_n = Ax_{n-1}$. Покажем, что существует $x = \lim_{n \to \infty} x_n$ и Ax = x. $\rho(x_2, x_1) = x_0$ $\rho(Ax_1, Ax_0) \leqslant \alpha \rho(x_1, x_0). \ \rho(x_3, x_2) = \rho(Ax_2, Ax_1) \leqslant \alpha \rho(x_2, x_1) \leqslant \alpha^2 \rho(x_1, x_0). \ \rho(x_{n+1}, x_n) \leqslant \alpha^n \rho(x_1, x_0).$

$$\rho(x_{n+p},x_n)\leqslant \rho(x_{n+p},x_{n+p-1})+\cdots+\rho(x_{n+1},x_n)\leqslant$$

$$\leqslant (\alpha^{n+p-1}+\alpha^{n+p-2}+\cdots+\alpha^n)\rho(x_1,x_0)=\alpha^n\frac{1-\alpha^p}{1-\alpha}\rho(x_1,x_0)\leqslant\underbrace{\frac{\alpha^n}{1-\alpha}\rho(x_1,x_0)}_{\text{не зависит от }p}\Rightarrow\text{ последовательность фундаментальна.}$$

И так как M – полное пространство, то $x_n \to x \in M$. Покажем, что Ax = x. $\rho(Ax, x) \leqslant \rho(Ax, x_n) + \rho(x, x_n) =$

 $\rho(Ax,Ax_{n-1})+\rho(x_n,x)\leqslant \alpha\underbrace{\rho(x_{n-1},x)}_{\to 0}+\underbrace{\rho(x_n,x)}_{\to 0}$. Покажем единственность точки, обладающей указанным свойством. Пусть существует две не подвижных точки отображения A:x и y, тогда $\rho(Ax,Ay)=\rho(x,y)$, но по определению сжимающего отображения $\rho(x,y)=\rho(Ax,Ay)\leqslant \alpha \rho(x,y)\Rightarrow \rho(x,y)=0$.

В нормированном пространстве можно ввести метрику $\rho(x,y) = ||x-y||.$

Рассмотрим пространство $L_2\{(a,b)\}$. Уравнение Фредгольма второго рода для $x(t) \in L_2$:

$$x(t) = \lambda \int\limits_a^b K(t,s) x(s) dx + \underbrace{f(s)}_{\text{некоторая известная функция}} Ax(t).$$

 $\Pi = (a, b) \times (a, b), K(t, s) \in L_2(\Pi).$

$$y^2(t) = \left(\int\limits_a^b K(t,s)x(s)ds\right)^2 \underset{\text{суммируема по s по теореме Фубини}}{\underbrace{\int\limits_a^b K^2(t,s)ds}} \int\limits_a^b x^2(s)ds \Rightarrow$$

$$\Rightarrow \int_{a}^{b} y^{2}(t)dt \leqslant \int_{a}^{b} dt \int_{a}^{b} K^{2}(t,s)ds \int_{a}^{b} x^{2}(s)ds$$

Следовательно y(t) суммируема по мажорантному признаку.

Существуют λ , при которых A — сжимающее отображение. Пусть $x(t), y(t) \in L_2$. Тогда

$$\rho(Ax, Ay) = ||Ax - Ay||_{L_{2}(a,b)} = \left(\int_{a}^{b} dt \left[\lambda \int_{a}^{b} K(t,s)x(s)ds - \lambda \int_{a}^{b} K(t,s)y(s)ds\right]^{2}\right)^{\frac{1}{2}} =$$

$$= |\lambda| \left(\int_{a}^{b} dt \left[\int_{a}^{b} K(t,s)[x(s) - y(s)]ds\right]^{2}\right)^{\frac{1}{2}} \le |\lambda| \left(\int_{a}^{b} dt \left[\int_{a}^{b} K^{2}(t,s)ds \int_{a}^{b} (x(s) - y(s))^{2}ds\right]\right)^{\frac{1}{2}} =$$

$$= |\lambda| \underbrace{\left(\int_{a}^{b} dt \int_{a}^{b} K^{2}(t,s)ds\right)^{\frac{1}{2}}}_{||K||_{L_{2}(\Pi)}} \rho(x,y).$$

Положим $|\lambda| < \frac{1}{||K||_{L_2(\Pi)}}$.

Определение. Линейное пространство над полем действительных или комплексных чисел называется нормированным, если существует отображение $||\cdot||: X \to R$ такое что

- 1. $||x|| \ge 0$ и $||x|| = 0 \Leftrightarrow x = 0$.
- $2. ||\lambda x|| = |\lambda|||x||.$
- 3. $||x+y|| \le ||x|| + ||y||$.

Отображение $||\cdot||$ называется нормой, сходимость по норме — сильная сходимость.

Пусть $x_n \to x$ в том смысле, что $||x_n - x|| \to 0$, тогда $||x_n|| \to ||x||$. $||x_n - x|| + ||x|| \geqslant ||x_n||$ и $||x_n - x|| \geqslant ||x_n||$ и $||x_n - x|| \geqslant ||x_n||$ откуда и следует приведённое выше утверждение.

Пример.

- 1. $R^n: ||x|| = \left(\sum_{k=1}^n x_k^2\right)^{\frac{1}{2}}$.
- 2. $C[0,1]:||f||_C=\max_{0\leqslant x\leqslant 1}|f(x)|$ норма, порождающая равномерную сходимость, таким образом определенное пространство является банаховым.
- 3. $C^2[0,1]: ||f||_C = \max_{0 \leqslant x \leqslant 1} |f(x)|$ пространство не является полным.

4.
$$L^p(E), p \ge 1, |E| < \infty : ||f|| = \left(\int_E f^p(x) dx \right)^{\frac{1}{p}}$$
.

- 5. $l_p, p \ge 1$.
- 6. $C^m[0,1]: ||f||_{C^m} = \sum_{i=0}^m \max_{0 \le x \le 1} |f^{(i)}(x)|$ полное пространство.

Определение. Линейное многообразие в линейном нормированном пространстве называется подпространством, если оно замкнуто относительно сходимости по норме.

Теорема 6.4 (Теорема Рисса). Пусть в линейном нормированном пространстве X задано подпространство L, не совпадающее со всем пространством, тогда

$$\forall \varepsilon \in (0,1) \,\exists \, y \in X \setminus : ||y|| = 1, \, ||x - y|| > 1 - \varepsilon \forall x \in L.$$

 $\Box \quad y_0 \in X \setminus L, \ d = \inf_{x \in L} ||x - y_0||, \ \text{тогда} \ d > 0, \ \text{доказывается от противного, иначе} \ y_0 \in L. \ \text{По определению}$ точной нижней грани $\forall \varepsilon \in (0,1) \exists \ x_0 \in L: \ d \leqslant ||x_0 - y_0|| < d + d\varepsilon. \ \text{Положим} \ y = \frac{x_0 - y_0}{||x_0 - y_0||}, \ \text{тогда} \ ||x - y|| = \frac{||x||x_0 - y_0||}{||x_0 - y_0||} = \frac{||y_0 + \xi||}{||x_0 - y_0||}, \ \text{где} \ \xi = x_0 - x||x_0 - y_0|| \in L \ \text{и} \ \frac{||y_0 - \xi||}{||x_0 - y_0||} > \frac{d}{d + d\varepsilon} = \frac{1}{1 + \varepsilon} > 1 - \varepsilon.$

§7. Линейные операторы.

Определение. Пусть X, Y — линейные пространства оба либо над полем вещественных, либо комплексных чисел одновременно. Оператор $A: X \to Y$ называется линейным, если $\forall x, z \in X, \lambda \in \mathbb{R}(\mathbb{C})$:

- 1. A(x+z) = Ax + Az.
- 2. $A(\lambda x) = \lambda Ax$.

Определение. Оператор $A: X \to Y$ называется непрерывным, если

$$\forall \{x_n\}, x_n \in X, x_n \to x_0 \Rightarrow Ax_n \to Ax_0$$

или

$$\forall \varepsilon > 0 \,\exists \, \delta(\varepsilon) : ||x - x_0||_Y < \delta \Rightarrow ||Ax - Ax_0||_Y < \varepsilon$$

Теорема 7.1. Для непрерывности линейного оператора на всем пространстве необходимо и достаточно, чтобы он был непрерывен хотя бы в одной точке.

 \square Пусть $x_n \to x \Rightarrow x_n - x + x_0 \to x_0$. Пусть оператор A непрерывен в x_0 , тогда $A(x_n - x + x_0) \to Ax_0 \Rightarrow Ax_n - Ax + Ax_0 \to Ax_0 \Rightarrow Ax_n \to Ax$.

В обратную сторону утверждение очевидно.

Пример.

1. $f(x) \in C[0,1], ||f||_C = \max_{0 \le x \le 1} |f(x)|, Af(x) = f(0)$ и $f_n(x) \to 0$ (сходимость равномерная, по норме C), тогда $Af_n(x) = f_n(0) \to 0 = A0 \Rightarrow A$ — непрерывный оператор.

2.
$$f(x) \in C[0,1], ||f(x)||_{L_1} = \int\limits_0^1 |f(x)| dx$$
 и $f_n(x)_{n\geqslant 2} = \begin{cases} n, & x=0, \\ \text{линейна}, & x\in [0,\frac{2}{n^2}], \text{. Тогда } ||f_n(x)-0|| = \frac{1}{n} \to 0, \text{ но } \\ 0, & x\in [\frac{2}{n^2},1]. \end{cases}$ $Af_n(x) = f_n(0) = n \nleftrightarrow 0 \Rightarrow A$ не является непрерывным оператором.

Определение. Оператор $A: X \to Y$ называется ограниченным, если $\exists M = const: ||Ax||_Y \leqslant M||x||_X \forall x \in X$.

Теорема 7.2. Для непрерывности линейного оператора необходимо и достаточно его ограниченности.

Heoбxoдимость:

Пусть $\exists \{x_n\}, x_n \in X : x_n \neq 0$ и $||Ax_n|| > ||x_n||$. Тогда положим $\xi_n = \frac{x_n}{n||x_n||}, \xi_n \to 0$, так как $||x_n|| = \frac{1}{n} \to 0$, но $||A\xi_n|| = \frac{||Ax_n||}{n||x_n||>1}$, пришли к противоречию. Достаточность:

$$||Ax_n - Ax|| = ||A(x_n - x)|| \le M$$
 $||x_n - x||$ и при $||x_n - x|| < \delta(\varepsilon) = \frac{\varepsilon}{M}$ поучаем, что $||Ax_n - Ax|| < \varepsilon$.

Ограниченный оператор переводит ограниченное множество в ограниченное. Положим
$$||A||=\sup_{x\in X, x\neq 0}\frac{||Ax||_{Y}}{||x||_{X}}$$
 или $||A||=\sup_{||x||\leqslant 1}||Ax||_{y}.$

Докажем эквивалентность определений:

$$\forall x: ||x|| \leqslant 1||Ax|| \leqslant ||A||||x|| \leqslant ||A|| \Rightarrow \sup_{||x|| \leqslant 1} ||Ax|| \leqslant ||A||.$$

И в обратную сторону:

По определению точной верхней грани $\forall \varepsilon > 0 \, \exists \, \xi_\varepsilon \in X \, : \, ||A\xi_\varepsilon|| > (||A|| - \varepsilon)||\xi_\varepsilon||, \, \xi_n \neq 0.$ Положим $x_\varepsilon = 0$ $\frac{\xi_{\varepsilon}}{||\xi_{\varepsilon}||} \Rightarrow ||Ax_{\varepsilon}|| > (||A|| - \varepsilon) \Rightarrow \sup_{||x||le1} ||Ax|| \geqslant ||Ax_{\varepsilon}|| > ||A|| - \varepsilon$ откуда в силу произвольности ε получаем, что

$$\sup_{||x||\leqslant 1}||Ax||\geqslant ||A||,$$
 откуда следует, что $\sup_{||x||\leqslant 1}||Ax||=||A||$

Множество всех линейных ограниченных операторов над некоторым линейным нормированным пространством также образует линейное пространство.

Обозначение. $L(X \to Y)$ — множество линейных ограниченных операторов, $L = \{A | A : X \to Y\}$.

$$\Box \quad (A+B)x = Ax + Bx, (\lambda Ax) = \lambda Ax.$$

$$||A|| = 0 \Rightarrow ||Ax|| = 0 \Rightarrow Ax = 0 \Rightarrow A = 0.$$

$$||A + B|| = \sup_{||x|| \leqslant 1} ||(A + B)x|| \leqslant \sup_{||x|| \leqslant 1} ||Ax|| + \sup_{||x|| \leqslant 1} ||Bx|| = ||A|| + ||B||. \blacksquare$$

Определение. Линейным функционалом называется линейный ограниченный оператор $A:X o\mathbb{R}.$ Множество X^* всех линейных функционалов над X называется сопряженным пространством.

Теорема 7.3. Если X — линейное нормированное пространство, а Y — банахово,то $L(X \to Y)$ — полное пространство.

Пусть $\lim_{n,m\to\infty} ||A_m-A_n||=0, A_n\in L(X\to Y),$ тогда $\forall x\in X||A_mx-A_nx||\leqslant ||A_m-A_n||\cdot ||x||\to 0\Rightarrow 0$ последовательность $\{A_nx\}$ фундаментальна и $A_nx \to y = Ax$ из линейности операции предельного перехода следует линейность оператора A.

Покажем, что A ограниченный оператор.

 $\{||A_n||\}$ — фундаментальная последовательность, следовательно, ограниченная. $||A_nx|| \le ||A_n|| \cdot ||x|| \le M||x||$ и так как $||A_n x|| \to ||Ax||$, то $||Ax|| \le M||x||$.

 $\forall \varepsilon > 0 \,\exists \, N = N(\varepsilon) : \forall n > N, \forall p > 0, \forall x : ||x|| \leqslant 1$ выполнено $||A_{n+p}x - A_nx|| < \varepsilon$ и $||A_{n+p}x - A_nx|| \leqslant ||A_{n+p} - A_n|| \cdot ||x||$, устремив p к бесконечности, получим, что $||Ax - A_nx|| \leqslant \varepsilon \Rightarrow ||A - A_n|| \leqslant \varepsilon \Rightarrow A = \lim_{n \to \infty} A_n$.

Следствие 7.1. Сопряженное пространство является полным.

Теорема 7.4 (Теорема Банаха-Штейнгауза). Пусть X, Y -банаховы, $\{A_n\}: A_n \in L(X \to Y) \ u \ \forall x \in A_n \in L(X \to Y) \ u$ $X\{||A_nx||\}$ — ограниченная последовательность, тогда $\exists C: ||A_n|| \leqslant C$.

[От противного] Пусть mathsmaller $C: ||A_n|| \leq C$.

• Покажем, что тогда последовательность $\{||A_nx||\}$ является неограниченной на любом замкнутом шаре.

[От противного] Пусть существует такой замкнутый шар $B_1 = [B(\widetilde{x},\widetilde{\varepsilon})]$, на котором последовательность $\{||A_nx||\}$ ограничена: $\forall n$ и $\forall x \in B_1 \ ||A_nx|| \leqslant C$. Тогда $\forall \xi \in X$ элемент $x = \frac{\varepsilon}{||\xi||} \xi + \widetilde{x}$ принадлежит шару B_1 , следовательно

$$||A_n x|| \le C, \ n = 1, 2, 3, \dots$$

или

$$\frac{\varepsilon}{||\xi||}||A_n\xi|| - ||A_n\widetilde{x}|| \leqslant ||\frac{\varepsilon}{||\xi||}A_n\xi + A_n\widetilde{x}|| \leqslant C.$$

Откуда следует, что

$$||A_n\xi|| \leqslant \frac{c + ||A_n\widetilde{x}||}{\varepsilon} ||\xi||.$$

Последовательность $||\{A_n \widetilde{x}||\}$ ограничена, следовательно

$$||A_n\xi|| \leq C_1||\xi||, \ n=1,2,3,\dots$$

, а значит

$$||A_n|| \leqslant C_1$$
,

что противоречит сделанному предложению.

Пусть теперь $\overline{B}_0 = [B(x_0, \varepsilon_0)]$ — любой замкнутый шар в X; на нем последовательность $\{||A_n x||\}$ не ограничена и потому существует номер n_1 и элемент $x_1 \in \overline{B}_0$ такие, что

$$||A_{n_1}x_1|| > 1.$$

В силу непрерывности оператора A_{n_1} это неравенство выполняется в некотором замкнутом шаре $\overline{B}_1 = [B(x_1, \varepsilon_1)] \subset \overline{B}_0$. На \overline{B}_1 последовательность $\{||A_nx||\}$ не ограничена и потому существует номер $n_2 > n_1$ и элемент $x_2 \in \overline{B}_1$ такие, что

$$||A_{n_2}x_2|| > 2.$$

Продолжая эти рассуждения мы получим последовательность вложенных шаров с радиусами $\varepsilon_n \to 0$, а следовательно существует и точка принадлежащая всем шарам \overline{x} , в этой точке

$$||A_{n_k}\overline{x}|| \geqslant k,$$

что противоречит условию ограниченности последовательности $\{||A_n||\}$.

Следствие 7.2. Пусть

 $1. \, X \, u \, Y -$ банаховы

2. $A_n \in L(x \to Y)$

3.
$$x_n \in X : ||x_n|| = 1, ||A_n x_n|| \to \infty$$

Тогда $\exists x_0 \in X : ||x_0|| = 1 \ u \ ||A_n x_0|| \ - \$ неограниченная последовательность.

Пусть такого x_0 не существует, тогда $\forall x \in X: ||x|| = 1$ последовательность $\{||A_nx||\}$ — ограниченная. Рассмотрим произвольный элемент $\xi \in X: \xi \neq 0$, положим $x = \frac{\xi}{||\xi||}$. Тогда $||x|| = 1 \Rightarrow ||A_nx|| = ||A_nx|| = ||A_n\frac{\xi}{||\xi||}|| \leqslant M \Rightarrow ||A_n\xi|| = ||A_nx||||\xi|| \leqslant M||\xi||$, следовательно по теореме Банаха-Штейнгауза существует константа $C: ||A_n|| \leqslant C: ||A_n|| \leqslant C \Rightarrow ||A_nx_n|| \leqslant ||A_n||||x_n|| \leqslant C$, пришли к противоречию с условием (3) теоремы. ■

Пример. $\widetilde{C} = \{f(x)|f(x) \in C[-\pi,\pi], f(-\pi) = f(\pi)\}$. Покажем, что в классе \widetilde{C} существует функция, ряд Фурье которой расходится в нуле. Ряд Фурье функции f(x) имеет вид

$$\frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos(kx) + b_k \sin(kx),$$

где

$$a_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cos(kt) dt, \ k = 0, 1, 2, \dots$$

И

$$b_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \sin(kt) dt, \ k = 1, 2, \dots$$

$$S_n(f,x) = \frac{a_0}{2} + \sum_{k=1}^n a_k \cos(kx) + b_k \sin(kx) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t)dt + \frac{1}{\pi} \int_{-\pi}^{\pi} \left(\sum_{k=1}^n \cos(k(t-x)) \right) f(t)dt = \frac{1}{\pi} \int_{-\pi}^{\pi} \frac{\sin\left(n + \frac{1}{2}\right)(x-t)f(t)}{2\sin\frac{x-t}{t}} dt$$

Откуда получаем, что

$$S_n(f,0) = \frac{1}{\pi} \int_{-\pi}^{\pi} \frac{\sin(n + \frac{1}{2})tf(t)}{2\sin\frac{t}{2}} dt.$$

Положим

$$g(X) = \begin{cases} 0, & t = 0, \\ \frac{1}{2 \operatorname{tg} \frac{t}{2}} - \frac{1}{t}. \end{cases}$$

и тогда

$$\frac{\sin{(n+1)t}}{2\sin{\frac{t}{2}}} = \frac{\sin{nt}}{t} + \sin{nt} \cdot g(t) + \frac{\cos{nt}}{2}$$

отсюда следует,что

$$\frac{1}{\pi} \int_{-\pi}^{\pi} \frac{\sin{(n + \frac{1}{2})t}f(t)}{2\sin{\frac{t}{2}}} dt = \frac{1}{\pi} \int_{-\pi}^{\pi} \frac{\sin{nt}}{t} f(t) dt + o(1).$$

Последнее слагаемое стремится к нулю при n стремящемся к бесконечности. Далее рассмотрим

$$A_n: \widetilde{C} \to R, A_n f(t) = \frac{1}{\pi} \int_{-\pi}^{\pi} \frac{\sin nt}{t} f(t) dt$$

и пусть

$$f_n(t) = sgn(t)\sin nt, ||f_n(t)|| = 1.$$

$$A_{n}f_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} \frac{\sin^{2} nt}{|t|} dt = \frac{2}{\pi} \int_{0}^{\pi} \frac{\sin^{2} nt}{t} dt = \frac{2}{\pi} \int_{0}^{\pi n} \frac{\sin^{2} y}{y} dy >$$

$$> \frac{2}{\pi} \int_{1}^{\pi n} \frac{\sin^{2} y}{y} dy = I = \frac{1}{\pi} \int_{1}^{\pi n} \frac{dy}{y} - \frac{1}{\pi} \int_{1}^{\pi n} \frac{\cos 2y}{y} dy \to \infty.$$

Следовательно существует функция $f \in \widetilde{C}$, ряд Фурье которой расходится в точке ноль.

Лекция 8.

§8. Обратные операторы

Пусть X,Y — линейные нормированные пространства и $A:X\to Y$ и

 $D(A) \subset X$ — область определения A,

 $R(A) \subset Y$ — область значений A

Определение. Если

$$\forall x \in D(A) \,\exists\, ! y \in R(A) : Ax = y.$$

 $\forall y \in R(A) \exists ! x \in D(A) : Ax = y,$

то на R(A) задан обратный оператор

$$x = A^{-1}y.$$

Если для линейного оператора A существует обратный оператор, то выполнены следующие соотношения:

$$A^{-1}A = E$$
 в $X(D(A))$

 $AA^{-1} = E \text{ B } Y(R(A)).$

И

Оператор $B:Y\to D(B)$ для которого

$$By = x \in D(B), \quad AB = E \text{ B } Y,$$

называется правым обратным к A.

Рассмотрим уравнение

$$Ax = y$$
.

Для любого y существует решение, но так как область значений D(B) правого обратного оператора B является подмножеством X, то решение существует, но может быть не единственно. Аналогично введем левый обратный оператор $C:Y\to X$:

$$CA = E B X.$$

При условии существования левого обратного оператора уравнение Ax = y решение единственно, если оно существует, но может и не существовать. Условие существования обратного оператора равносильно условия существования и равенства правого и левого обратных операторов.

Утверждение 8.1. Если A — линейный оператор, то и обратный κ нему также является линейным.

$$x = A^{-1}(\alpha y_1 + \beta y_2) - \alpha A^{-1}y_1 - \beta A^{-1}y_2 \Rightarrow Ax = \alpha y_1 + \beta y_2 - \alpha y_1 - \beta y_2 = 0 \Rightarrow Ax = 0 \Rightarrow x = 0$$

Откуда непосредственно следует линейность обратного оператора.

Однако из непрерывности линейного оператора не следует непрерывность обратного к нему оператора.

Теорема 8.1. Пусть

- (1) X, Y линейные нормированные пространства.
- (2) $A: X \to Y$ линейный оператор.
- (3) $\exists m > 0 : \forall x \in X ||Ax||_Y \geqslant m||x||_X$. Тогда на $R(A) \subset Y$ существует обратный ограниченный оператор A^{-1} .
- \square Покажем, что из $y = Ax_1$ и $y = Ax_2$ следует, что $x_1 = x_2$:

$$0 = ||Ax_1 - Ax_2|| \geqslant m||x_1 - x_2|| \Rightarrow ||x_1 - x_2|| = 0 \Rightarrow \forall y \,\exists \,!x : y = Ax.$$

$$A^{-1}y\leqslant \frac{1}{m}||y||\Rightarrow A^{-1}(\cdot)$$
— ограниченный оператор.

Утверждение 8.2. Рассмотрим два линейных ограниченных оператора A u B, отображающих линейное нормированное пространство X s само себя. Тогда имеет смысл произведение AB u

$$||AB|| \leqslant ||A|| \cdot ||B||.$$

 \square Длю любого $x \in X$ выполняется соотношение

$$||ABx|| \le ||A|| \cdot ||Bx|| \le ||A|| \cdot ||B|| \cdot ||x||,$$

откуда и следует данное утверждение.

Утверждение 8.3. Пусть $A_n, A, B_n, B \in (X \to X)$ и $A_n \to A, B_n \to B$ в смысле равномерной сходимости. Тогда

$$A_nB_n \to AB$$
.

 $||A_n B_n - AB|| \le ||A_n B_n - A_n B|| + ||A_n B - AB|| \le ||A_n B_n - AB|| \le ||A_n B_n$

$$\leq ||A_n|| \cdot ||B_n - B|| + ||B|| \cdot ||A_n - A||.$$

Последовательность $||A_n||$ ограничена в силу сходимости, а

$$||A_n - A|| \to 0 \text{ M} ||B_n - B|| \to 0.$$

Откуда и следует, что

П

$$||A_nB_n - AB|| \to 0.$$

Теорема 8.2 (Неймана). Пусть

- (1) X банахово,
- (2) $A: X \to X$ линейный ограниченный оператор,
- (3) $||A|| \leqslant q < 1$.

Тогда существует оператор

$$(E-A)^{-1} u ||(E-A)^{-1}|| \le \frac{1}{1-q}.$$

□ Рассмотрим последовательность операторов

$$A^0 = A, A^1 = A(A), \dots, A^n = A^n(A).$$

 $||A^n|| \leq q^n$, так как $||AB|| \leq ||A|| \cdot ||B||$.

$$(E-A)\sum_{k=0}^{n}A^{k}=E-A^{n+1}\to E\Rightarrow (E-A)^{-1}=\sum_{k=0}^{\infty}A^{k},$$
 и

$$||(E-A)^{-1}|| \le \sum_{k=0}^{\infty} ||A^k|| \le \frac{1}{1-q}$$

Аналогично теорему можно доказать для оператора E+A, учитывая, что

$$(E+A)^{-1} = \sum_{k=0}^{\infty} (-1)^k A^k.$$

Теорема 8.3.

 $\Pi y c m b$

- (1) X -банахово,
- (2) A линейный ограниченный оператор, $A: X \to X$,
- (3) $\exists A^{-1}$,
- (4) ΔA линейный ограниченный оператор и

$$||\Delta A|| \leqslant \frac{1}{||A^{-1}||}.$$

 $Torda\ onepamop\ B$,

$$B = A + \Delta A$$

имеет обратный оператор и

$$||B^{-1} - A - 1|| \le \frac{||\Delta A|| \cdot ||A^{-1}||^2}{1 - ||A^{-1}|| \cdot ||\Delta A||}.$$

 $\square \quad B = A + \Delta A = (E + \Delta A \cdot A^{-1})A, \text{ и } ||\Delta A \cdot A^{-1}|| \leqslant ||A^{-1}|| \cdot ||\Delta A|| \leqslant q < 1, \text{ откуда следует существование обратного оператора}$

$$(E + \Delta A \cdot A - 1)^{-1} = \sum_{n=0}^{\infty} (\Delta A \cdot A^{-1})^n.$$

Тогда оператор $A^{-1}(E+\Delta A\cdot A^{-1})^{-1}$ есть обратный к оператору $(E+\Delta A\cdot A^{-1})A=B$. Далее

$$\begin{split} ||B^{-1}-A^{-1}|| &= ||A^{-1}(E+\Delta A\cdot A^{-1})^{-1}-A^{-1}|| = ||A^{-1}\left[(E+\Delta A\cdot A^{-1})^{-1}-E\right]|| \leqslant \\ &\leqslant ||A^{-1}||\cdot||\sum_{n=0}^{\infty}\left((-1)^n(\Delta A\cdot A^{-1})^n\right)-E|| = ||A^{-1}||\cdot||\sum_{n=1}^{\infty}((-1)(\Delta A\cdot A^{-1}))^n|| \leqslant ||A^{-1}||\cdot\sum_{n=1}^{\infty}||\Delta A\cdot A^{-1}||^n = \\ &= \frac{||\Delta A\cdot A^{-1}||}{1-||\Delta A\cdot A^{-1}||}||A^{-1}|| \leqslant \frac{||\Delta A||\cdot||A^{-1}||^2}{1-||\Delta A||\cdot||A^{-1}||}. \end{split}$$

Теорема 8.4 (Банаха об обратном операторе). $\Pi ycmb$

- (1) X, Y -банаховы,
- (2) $A: X \to Y$ линейный ограниченный оператор, осуществляющий взаимно однозначное отображение всего пространства X на все пространство Y.

Тогда существует обратный оператор являющийся ограниченным и отображающий Y на X.

 \square Необходимо доказать лишь ограниченность, так как существование обратного следует из того, что A осуществляет взаимно однозначное отображение.

$$\forall n: Y_n = \{ y \in Y: ||A^{-1}y|| \le n||y|| \},\$$

каждое из указанных множеств непусто, так как в нем содержится ноль.

Пусть $y \neq 0$ и

$$\left\lceil \frac{||A^{-1}y||}{||y||} \right\rceil = N,$$

Тогда $y \in Y_{N+1} \Rightarrow Y = \bigcup_{n=1}^{\infty} Y_n$. По теореме Бэра о категориях Y_{n_0} не является нигде не плотным множеством (Y — множество второй категории), значит в Y существует шар B:

для любого подшара B' выполняется $B' \cap Y_{n_0} \neq \emptyset$.

Рассмотрим шар B(y,r):

$$\overline{B(y,r)\cap Y_{n_0}}=B(y,r),$$

в нем возьмем $\overline{B}_1(y_1,r_1), \overline{B}_1 \subset B, y_1 \in Y_{n_0}$ и $\forall y: ||y|| = r_1$ выполняется условие

$$y_1 + y \in \overline{B}_1$$
.

Откуда следует существование последовательности $z^{(k)} \in Y_{n_0}$:

$$z^{(k)} \rightarrow y_1 + y$$
.

Положим $y^{(k)}=z^{(k)}-y_1 \to y \Rightarrow ||y^{(k)}|| \to ||y||,$ пусть $\frac{r_1}{2}\leqslant ||y^{(k)}||\leqslant r_1$

$$||A^{-1}y^{(k)}|| = ||A^{-1}z^{(k)} - A^{-1}y_1|| \le n_0 \left(||z^{(k)}|| + ||y_1|| \right) \le$$

$$\le n_0 \left(||y^{(k)}|| + 2||y_1|| \right) \le n_0 (r_1 + 2||y_1||) \le \underbrace{\frac{2}{r_1} n_0 (r_1 + 2||y_1||)}_{G} ||y^{(k)}||.$$

$$y^{(k)} \in Y_N = [C] + 1,$$

Пусть $y \neq 0, y \in Y$ $z = \frac{y}{||y||} r_1, ||z|| = r_1$. и $z^{(k)} \rightarrow z, z^{(k)} \in Y_N, y^{(k)} = \frac{z^{(k)}}{r_1} ||y|| \rightarrow y$; и

$$||A^{-1}y^{(k)}|| = \frac{||A^{-1}z^{(k)}||}{r_1}||y|| \leqslant \frac{N||z^{(k)}||}{r_1}||y|| = N||y^{(k)}|| \Rightarrow y^{(k)} \in Y_N.$$

Возьмем $y \neq 0, ||y|| = l$, тогда

$$\exists y_1 \in Y_N : ||y_1|| \leqslant l \text{ if } ||y - y_1|| \leqslant \frac{l}{2}$$

$$\exists y_2 \in Y_N : ||y_2|| \leqslant \frac{l}{2} \text{ if } ||y - (y_1 + y_2)|| \leqslant \frac{l}{2^2}$$

$$\dots$$

$$y_n \in Y_N : ||y_n|| \leqslant \frac{l}{2^{n-1}} \text{ if } ||y - (y_1 + \dots + y_n)|| \leqslant \frac{l}{2^n}$$

И положим

$$x_k = A^{-1}y_k$$

$$y = \lim_{n \to \infty} \sum_{k=1}^n y_k \text{ и } x = \lim_{n \to \infty} \sum_{k=1}^n x_k$$

$$x = A^{-1}y$$

и покажем сходимость соответствующего ряда.

$$||\sum_{k=n+1}^{\infty} x_k|| \leqslant \sum_{k=n+1}^{\infty} ||x_k|| = \sum_{k=n+1}^{\infty} ||A^{-1}y_k|| \leqslant \sum_{k=n+1}^{\infty} N||y_k|| \leqslant \sum_{k=n+1}^{\infty} N \frac{l}{2^{k-1}} \leqslant \frac{Nl}{2^{n-1}} \to 0$$

 $||A^{-1}y|| = ||x|| = ||\sum_{k=1}^{\infty} x_k|| \leqslant 2Nl = 2N||y|| \Rightarrow y \in Y_{2N}$, в силу произвольности y получаем ограниченность оператора A^{-1} .

Пример.

$$\frac{\partial}{\partial x} \left(p(x) \frac{\partial}{\partial x} y(x) \right) + q(x)y(x) = f(x), \quad p \in C[0, 1], q \in C[0, 1], f \in C[0, 1]$$

$$\tag{1}$$

$$y(0) = y(1) = 0; (2)$$

Указанный дифференциальный оператор, действующий из $C^2[0,1]$ в C[0,1], не является ограниченным. Оператор обратный к нему, действующий из C[0,1] в C[0,1], записывается с помощью функции Грина:

$$y(x) = \int_{0}^{1} G(x;t)f(t)dt.$$

§9. Линейные функционалы

Определение. Линейный функционал — линейный ограниченный оператор отображающий пространство в множество вещественных чисел.

Пространство линейных функционалов над X обозначается X^* .

Теорема 9.1 (Хана-Банаха).

 $\Pi y cm b$

- (1) X сепарабельное линейное нормированное пространство,
- (2) L линейное многообразие в X,

Tогда любой функционал, заданный на L можно продолжить на X с сохранением нормы:

- 1. $F(x) = f(x), \forall x \in L$
- 2. $||F||_X = ||f||_L$.
- \square Возьмем $x_0 \in X \setminus L$ и $L_0 = (L, x_0)$,

$$u(x,t) = x + tx_0, \quad x \in L$$

u однозначно определяется по x и t, действительно

$$x_1 + t_1 x_0 = x_2 + t_2 x_0 \Rightarrow x_0 (t_2 - t_1) = x_1 - x_2 \Rightarrow x_1 = x_2$$
 и $t_1 = t_2$,

так как выражение слева, не принадлежит L, если оно отлично от нуля, а выражение справа принадлежит L. Пусть $x_1, x_2 \in L$, $f(x_1) - f(x_2) = f(x_1 - x_2) \le ||f|| \cdot ||x_1 - x_2|| \le ||f|| \cdot (||x_1 + x_0|| + ||x_2 + x_0||)$, откуда получаем, что

$$\underbrace{f(x_1) - ||f|| \cdot ||x_1 + x_0||}_{\text{sup no } x_1} \leq \underbrace{||f|| \cdot ||x_2 + x_0|| + f(x_2)}_{\text{inf no } x_2},$$

и получается, что должна существовать константа C, "разделяющая" левую и правую части неравенства, то есть

$$f(x_1) - ||f|| \cdot ||x_1 + x_0|| \le C \le ||f|| \cdot ||x_2 + x_0|| + f(x_2), \quad \forall x_1, x_2 \in L.$$

Откуда для $\forall x \in L$

$$|f(x) - C| \le ||f|| \cdot ||x + x_0||.$$

Положим

$$\psi(u) = f(x) - tC,$$

 $\psi(u)$ совпадает с f(x) на L, и для $t \neq 0$

$$|\psi(u)| = |f(x) - tC| = |t| \cdot |f(\frac{x}{t}) - C| \leqslant |t| \cdot ||f|| \cdot ||\frac{x}{t} + x_0|| =$$

$$= ||f|| \cdot ||x + tx_0|| = ||f|| \cdot ||u|| \Rightarrow ||\psi|| \leqslant ||f|| \Rightarrow ||\psi|| = ||f||.$$

Так как обратное неравенство верно всегда.

В силу сепарабельности пространства X в нем существует счетное всюду плотное множество, выкинем из него точки, попадающие в L, получим множество $\{x_n\}$ и

$$L_1 = (L_0, x_1), \dots, L_n = (L_{n-1}, x_n)$$

$$\widehat{L} = \bigcup_{n=0}^{\infty} L_n : \psi$$
 задан на $\widehat{L}, ||\psi||_{\widehat{L}} = ||f||$

$$\psi(x) = f(x)$$
 на $L, \forall x \in X \exists \{x_n\}, x_n \in \widehat{L} : x_n \to x.$

$$F(x) = \lim_{n \to \infty} \psi(x_n)$$

$$|\psi(x_n)| \le ||\psi|| \cdot ||x_n|| = ||f|| \cdot ||x_n||$$

, и, перейдя к пределу по n, получим что $|F(x)| \leq ||f|| \cdot ||x_n|| \Rightarrow ||F|| \leq ||f|| \Rightarrow ||F|| = ||f||$.

Следствие 9.1.

Пусть X — линейное нормированное пространство и $x_0 \in X, x_0 \neq 0$, тогда существует линейный функционал f(x):

$$f(x_0) = ||x_0|| \ u \ ||f|| = 1.$$

 \square Рассмотрим линейное подпространство $L=tx_0$, и пусть $x\in L$, тогда

$$f(x) = t||x_0|| = ||tx_0|| = ||x|| \Rightarrow ||f|| = 1.$$

И по теореме Хана-Банаха f(x) можно продолжить с сохранением нормы на все пространство X.

Теорема 9.2.

 $\Pi ycmb$

- (1) X банахово,
- (2) $x_n \in X \ u$

$$\forall f \in X^* \,\exists \, C_f : |f(x_n)| \leqslant C_f$$

Тогда

$$\exists C : ||x_n|| \leqslant C.$$

□ Докажите сами.

Лекция 9.

Следствие 9.2.

 $\Pi ycmb$

- (1) X -банахово,
- (2) $x_1, x_2 \in X, x_1 \neq x_2,$

Тогда существует функционал f:

$$f(x_1) \neq f(x_2).$$

Следствие 9.3.

 $\Pi y cm b$

(1) X -банахово,

$$(2) \ \forall x \in X \quad f(x) = 0,$$

 $Tor \partial a \ f = 0.$

Определение. Пусть (X — линейное нормированное пространство) X — банахово. Будем говорить, что

$$x_n \stackrel{\mathrm{w}}{\longrightarrow} x \in X$$
,

если $\forall f \in X^*$

$$f(x_n) \to f(x)$$
.

Слабо сходящаяся последовательность имеет только один предел. Слабо сходящаяся последовательность является ограниченной. Из сильной сходимости следует слабая, так как

$$|f(x_n) - f(x)| \le ||f(x_n)|| \cdot ||x_n - x||.$$

В конечномерном пространстве сильная и слабая сходимость эквивалентны, что , конечно, не верно в бесконечномерном пространстве.

Теорема 9.3. Для банахова пространства X

$$x_n \xrightarrow{w} x \Leftrightarrow f(x_n) \rightrightarrows f(x) \text{ на шаре } ||f|| \leqslant 1.$$

Необходимость:

$$f(x_n) - f(x) \le ||f|| \cdot ||x_n - x|| \le ||x_n - x||$$

Достаточность:

$$\forall \varepsilon > 0 \,\exists \, N(\varepsilon) : \forall n \geqslant N |f(x_n) - f(x)| < \varepsilon \forall f : ||f|| \leqslant 1 \Rightarrow \sup_{||f|| \leqslant 1} |f(x_n) - f(x)| \leqslant \varepsilon.$$

§10. Гильбертовы пространства

Определение. Линейное пространство над полем комплексных или вещественных чисел называется гильбертовым, если

1. На нем определено скалярное произведение

2. Пространство является полным относительно нормы

$$||x|| = \sqrt{(x,x)},$$

3. Пространство является бесконечномерным.

Покажем, что функция $f(x) = \sqrt{(x,x)}$ действительно задает норму на X:

- 1. $f(x) \ge 0$ и, если f(x) = 0, то $(x, x) = 0 \Rightarrow x = 0$,
- 2. $f(\alpha x) = \sqrt{\alpha \overline{\alpha}(x, x)} = |\alpha| f(x),$
- 3. Докажем неравенство треугольника

$$f(x+y) = \sqrt{(x+y, x+y)} \leqslant f(x) + f(y)$$

для этого достаточно доказать неравенство Коши-Буняковского:

$$(x,x)(y,y) \geqslant |(x,y)|^2.$$

$$(x - \lambda y, x - \lambda y) = (x, x) - \lambda(y, x) - \overline{\lambda}(x, y) + |\lambda|^2(y, y) \geqslant 0 \forall \lambda \Rightarrow (x, x) - \frac{|(x, y)|^2}{(y, y)} \geqslant 0.$$

Для указанной нормы также выполняется и тождество параллелограмма:

$$||x - y||^2 + ||x + y||^2 = 2||x||^2 + 2||y||^2$$

$$(x-y,x-y) = ||x||^2 + ||y||^2 - 2Re(x,y), (x+y,x+y) = ||x||^2 + ||y||^2 + 2Re(x,y)$$

Пространство непрерывных функций не является гильбертовым. $X=C[0,\frac{\pi}{2}]:x(t)=\sin t,y(t)=\cos t$ и $||x||=\sup_{t\in[0,\frac{\pi}{2}]}x(t)=1,||y||=1,||x-y||=1,||x+y||=\sqrt{2}$ и тождество параллелограмма не выполняется. Из

пространств L_p только пространство L_2 является гильбертовым.

10.1. Свойства Гильбертова пространства

Лемма 10.1. Пусть $W \subset H$, W - выпуклое и замкнутое множество, тогда

$$\exists \, ! w \in W : ||w|| = \inf_{\widetilde{w} \in W} ||\widetilde{w}||.$$

$$\inf_{x \in W} ||x|| = d, ||x_n|| \to d, \frac{x_n + x_m}{2} \in W \Rightarrow \frac{||x_n + x_m||}{2} \geqslant d \Rightarrow$$

$$\Rightarrow ||x_n + x_m||^2 \geqslant 4d^2 \text{ if } ||x_n - x_m||^2 = \underbrace{2||x_n||^2 + 2||x_m||^2}_{\to 4d^2} - \underbrace{||x_n + x_m||^2}_{\geqslant 4d^2} \to 0, \quad m, n \to \infty$$

 \Rightarrow последовательность $\{x_n\}$ является фундаментальной $\Rightarrow x_n \to x_0 \in W, ||x_0|| = d$ так как $||x_n - x_0|| \to 0$. Покажем единственность: пусть $||x_0|| = ||\widetilde{x}_0|| = d$, тогда $\frac{||x_0 + \widetilde{x}_0||}{2} \geqslant d \Rightarrow ||x_0 + \widetilde{x}_0||^2 \geqslant 4d^2$ по тождеству параллелограмма

$$||x_0 - \widetilde{x}_0||^2 = 2||x_0||^2 + 2||\widetilde{x}_0||^2 - ||x_0 + \widetilde{x}_0||^2 \leqslant 0 \Rightarrow ||x_0 - \widetilde{x}_0|| = 0.$$

Теорема 10.2 (Леви). Пусть L- замкнутое линейное многообразие, $L \subset H$, тогда любой элемент $x \in H$ можно представить в виде

$$x = y + z, y \in L, z \perp L.$$

$$\square$$
 $||x-y|| = \inf_{u \in L} ||x-u||, W = \{x-u, u \in L\}$ Возьмем

$$z = x - y$$

 $\forall v \in L, v \neq 0, z - \alpha v \in W$ и

$$\begin{aligned} ||z||^2 \leqslant ||z - \alpha v||^2 &= ||z||^2 - \alpha(v, z) - \overline{\alpha}(z, v) + |\alpha|^2(v, v) = \left\{\alpha = \frac{(z, v)}{(v, v)}\right\} = \\ &= ||z||^2 - \frac{|(z, v)|^2}{(v, v)} \Rightarrow 0 \leqslant -\frac{|(z, v)|^2}{(v, v)} \Rightarrow (z, v) = 0. \end{aligned}$$

Теперь покажем единственность разложения.

$$y_1 + z_1 = y_2 + z_2 \Rightarrow \underbrace{y_1 - y_2}_{\in L} = \underbrace{z_2 - z_1}_{\in \bot L} \Rightarrow y_1 - y_2 = z_2 - z_1 = 0$$

 ${z}$ — ортогональное дополнение.

$$H = L \bigoplus L^{\perp}$$
.

Определение. Ядром оператора f(x) называется множество

$$\operatorname{Ker} f(x) = \{x : f(x) = 0\}.$$

Лемма 10.3.

$$dim(\operatorname{Ker} f(x))^{\perp}) = 1$$

 \square Рассмотрим $x_1, x_2 \in (\operatorname{Ker} f(x))^{\perp}$ и положим

$$x = x_1 f(x_2) - x_2 f(x_1) \in (\text{Ker } f)^{\perp},$$

тогда

$$f(x) = 0 \Rightarrow x \in \operatorname{Ker} f \Rightarrow x = 0 \Rightarrow$$
 любые два элемента линейно зависимы.

l

Теорема 10.4 (Рисса-Фреше). Пусть $x \in H, f : H \to R$. Тогда

$$\exists ! y \in H : f(x) = (x, y), ||f|| = ||y||$$

 \square Разложим x:

$$x = y + z, z = P_x \in \operatorname{Ker} f$$

 $x=P_x+(x,e)e,\,H=({\rm Ker}\,f)\bigoplus({\rm Ker}\,f)^\perp$ и $f(x)=f(P_x)+(x,e)f(e)=(x,\overline{f(e)}e),$ в качестве y возьмем

$$y = \overline{f(e)}e.$$

Покажем равенство ||f|| = ||y|| . По неравенству Коши-Буняковского

$$(x,y)\leqslant \sqrt{(x,x)}\sqrt{(y,y)}\Rightarrow |f(x)|\leqslant ||x||\cdot ||y||\Rightarrow \frac{|f(x)|}{||x||}\leqslant ||y||\Rightarrow ||f||\leqslant ||y||$$

и по определению

$$||f|| \geqslant \frac{||f(y)||}{||y||} = ||y||$$

откуда сразу же следует требуемое равенство.

Лемма 10.5. Пусть линейное многообразие $M \subset H$, тогда

 $[M]=H\Leftrightarrow
etta$ отличного от нуля элемента ортогонального M

Процесс ортогонализации по Шмидту.

Пусть дана система элементов

$$h_1, h_2, \ldots \in H$$

Далее описывается способ построения по ней системы $\{e_i\}$:

$$(e_i, e_j) = \delta_{ij}$$

1.
$$e_1 = \frac{h_1}{||h||}$$

2.
$$g_2 = h_2 - c_{21}e_1, c_{21} = (h_2, e_1), e_2 = \frac{g_2}{||g_2||}$$

3.
$$g_k = h_k - \sum_{n=1}^{k-1} c_{kn} e_n, c_{kn} = (h_k, e_n)$$

Примеры ортогональных систем в пространстве

$$L_{2\rho}: (x(t), y(t)) = \int_{a}^{b} \rho(t)x(t)y(t)dt$$

 $1, t, t^2, \dots$

- 1. Полиномы Лежандра: $a = -1, b = 1, \rho(t) = 1$.
- 2. Полиномы Чебышева-Эрмита: $a = -\infty, b = \infty, \rho(t) = e^{-t^2}$.
- 3. Полиномы Чебышева-Лакерта: $a = 0, b = \infty, \rho(t) = e^{-t}$.

Определение. В нормированном пространстве система $\{\psi_n\}$ называется замкнутой, если

$$\forall \varepsilon > 0 \forall x \in X \,\exists \, \{c_k\}_{1 \leqslant k \leqslant n}, \{\psi_k\}_{1 \leqslant k \leqslant n} : ||x - \sum_{i=1}^n c_i \psi_i|| \leqslant \varepsilon.$$

Определение.В нормированном пространстве система $\{\psi_n\}$ называется полной, если не существует элемента ей ортогонального кроме нулевого.

В Гильбертовом пространстве полнота и замкнутость совпадают.

Лекция 10.

Пусть L — пространство, порожденное ортонормированной системой (e_1, e_2, \ldots) . H — гильбертово пространство и

$$\forall x \in H, \forall \varepsilon > 0 \,\exists \, \alpha_1, \dots, \alpha_n : ||x - \sum_{i=1}^n \alpha_i e_i||_H^2 < \varepsilon,$$

тогда $||x||^2 - \sum_{i=1}^n \alpha_i \underbrace{(x,e_i)}_{c_i} - \sum_{i=1}^n \alpha_i(e_i,x) + \sum_{i=1}^n |\alpha_i|^2 = ||x||^2 - \sum_{i=1}^n |c_i|^2 + \sum_{i=1}^n |\alpha_i - c_i|^2 < \varepsilon$ Откуда, положив $\alpha_i = c_i$, в

силу произвольности ε получим равенство Парсеваля:

$$||x||^2 = \sum_{i=1}^{\infty} |c_i|^2$$

$$x = \sum_{i=1}^{\infty} c_i e_i.$$

Числа c_i называются коэффициентами Фурье разложения x по ортонормированной системе (e_1, e_2, \ldots) . Пусть $x \in H$ $L \neq H$ $x = |y| + |z| (x |e_i| + 0)$

Пусть
$$x \in H, L \neq H, x = \underbrace{y}_{L} + \underbrace{z}_{L}, (x, e_i) = (y, e_i) + 0,$$

$$||x||^2=\underbrace{||y||^2}_{\sum\limits_{i=1}^{\infty}|c_i|^2}+||z||^2\Rightarrow\sum\limits_{i=1}^{\infty}|c_i|^2\leqslant ||x||^2$$
— неравенство Бесселя

Определение. Ортонормированная система в гильбертовом пространстве называется базисом, если подпространство порожденное этой системой совпадает с H

Лемма 10.6. B сепарабельном гильбертовом пространстве H полная система является замкнутой и наоборот.

Пусть система полна, тогда для L — линейного многообразия, порожденного системой не существует элемента ортогонального ему и отличного от нуля, откуда следует замкнутость системы.

Пусть система замкнута, тогда любой элемент пространства раскладывается в ряд Фурье $x = \sum_{i=1}^{\infty} c_i e_i$, если элемент ортогонален всем e_i , то $c_i = 0 \Rightarrow ||x|| = 0 \Rightarrow x = 0$.

Теорема 10.7. B любом сепарабельном гильбертовом пространстве существует ортонормированный базис.

Произведем построение базиса, используя процесс ортогонализации Шмидта. Возьмем некоторое счетное всюду плотное множество $\{g_i\}$ и

$$e_1 = \frac{g_1}{||g_1||}.$$

 g_{n_2} — элемент системы с наименьшим номером линейно независимый с $g_1.$ $g_{n_2} = \underbrace{p_{n_2}}_{\in L(e_1)} + \underbrace{h_{n_2}}_{\perp L(e_1)}$

$$e_2 = \frac{h_{n_2}}{||h_{n_2}||}$$

$$g_{n_3} \notin L(e_1, e_2)g_{n_3} = \underbrace{p_{n_3}}_{\in L(e_1, e_2)} + \underbrace{h_{n_3}}_{\perp L(e_1, e_2)}$$

$$e_3 = \frac{h_{n_3}}{||h_{n_3}||}$$

$$L(e_1, e_2, \ldots) = L(g_1, g_2, \ldots) = H. \blacksquare$$

Теорема 10.8. Всякое сепарабельное гильбертово пространство над полем (комплексных) вещественных чисел изометрично и изоморфно (комплексному) вещественному пространству l_2 , следовательно все сепарабельные (комплексные) вещественные гильбертовы пространства изометричны и изоморфны между собой.

 \square $x \in H$, в H существует ортонормированный базис $\{e_i\}$ и $\widetilde{x} = (c_1, \dots), x \in l_2$ — коэффициенты Фурье. Каждому элементу $x \in H$ поставим в соответствие набор его коэффициентов Фурье, который будет элементом пространства l_2 .

$$\underbrace{||\widetilde{x}||^2}_{\sum_{i=1}^{\infty} |c_i|^2} = ||x||^2$$

Построим изоморфизм $\alpha x + \beta y \to \alpha \widetilde{x} + \beta \widetilde{y}$ — изоморфность $||x-y||_H = ||\widetilde{x}-\widetilde{y}||_{l^2}$ — изометричность. Рассмотрим теперь элемент $\xi = (\xi_1, \ldots) \in l_2$ и

$$z_n = \sum_{i=1}^n \xi_i e_i \in H$$

для них $||z_n - z_m||_H^2 = \sum_{i=m+1}^n |\xi_i|^2| \to 0$ $n, m \to \infty$, следовательно в силу полноты пространства последовательность сходится к некоторому его элементу

$$z_n \to z \in H$$

и положив

$$c_i = (z_i, e_i) \rightarrow (z, e_i) = \xi_i,$$

получим, что каждому элементу ξ поставлен в соответствие единственный элемент, для которого ξ — его набор коэффициентов Фурье.

Теорема 10.9 (Рисса-Фишера). Пространство $L_2(E)$ и l_2 изоморфны и изометричны между собой.

□ Теорема является следствием предыдущей. ■

$$(x(t), y(t))_{L_2(E)} = \int_{E}^{x} (t)\overline{y}(t)dt = \sum_{i=1}^{\infty} c_i \overline{d}_i,$$

 $\{e_i(t)\}$ — ортонормированный базис в $L_2(E)$ и $c_i=(x(t),e_i(t))_{L_2(E)},\,d_i=(y(t),e_i(t))_{L_2(E)}.$

Теорема 10.10 (О слабой компактности последовательности ограниченной в гильбертовом пространстве). Пусть H — сепарабельное гильбертово пространство, из любой ограниченной последовательности элементов пространства можно выделить слабо сходящуюся подпоследовательность.

 \Box $x_n \in H, ||x_n|| \leqslant C, H$ —сепарабельное $\Rightarrow \exists \{e_i\}$ — ортонормированный базис. $|(x_n, e_1)| \leqslant ||x_n|| \cdot ||e_i|| \leqslant C \Rightarrow$ можно выделить сходящуюся подпоследовательность:

$$x_{1_k}:(x_{1_k},e_i)$$
 сходится.

Перейдем к элементу e_2 , повторяя приведенные выше рассуждения получим подпоследовательность

$$\{x_{2k}\}:(x_{2k},e_2),(x_{2k},e_1)$$
 сходятся.

Повторяя процесс получим семейство подпоследовательностей

$$\{x_{n_n}\}.$$

Из них построим последовательность

$$x_n = x_{n_n} : (x_n, e_i)$$
 сходится $\forall i$.

$$\forall \varepsilon > o \forall z \in H \exists \sum_{i=1}^{n} \alpha_i e_i = \psi : ||\psi - z|| \leqslant \frac{\varepsilon}{3C}, (x_m - x_n, z) = (x_m - x_n, psi) + (x_m - x_n, z - \psi)$$
 и

$$|(x_m - x_n, z)| \leq \underbrace{|(x_m - x_n, \psi)|}_{\leqslant \frac{\varepsilon}{3}} + \underbrace{(||x_m|| + ||x_n||)}_{\leqslant 2C} \underbrace{||z - \psi||}_{\leqslant \frac{\varepsilon}{3C}} < \varepsilon$$

 (x_n, z) сходится $\forall z \in H$. И по Теореме Рисса-Фреше любой линейный функционал f(x) можно представить как (x, z), что вместе со сходимостью скалярных произведений дает слабую сходимость:

$$f(x_n) = (x_n, z) \to (x, z) = f(x, z).$$

§11. Сопряженный оператор

Пусть $A:X\to Y$ — линейный ограниченный оператор. Пусть $\varphi(y)\in Y^*$:

$$\varphi(y) = \varphi(Ax) = f(x)$$

Таким образом для каждого оператора $A: X \to Y$ получаем оператор $A^*: Y^* \to X^*$ и равенство $\varphi(y) = f(x)$ записывается в виде

$$A^*\varphi = f$$

 $(\alpha A + \beta B)^* = \overline{\alpha} A^* + \overline{\beta} B^*$

Теорема 11.1 (О существовании). $\Pi y cmbA \in L(X \to Y), mor \partial a \; \exists \, A^* - max$ $\Rightarrow c$ $\Rightarrow n$ $\Rightarrow d$ $\Rightarrow d$

$$||A|| = ||A^*||$$

□ Линейность сопряженного оператора проверяется непосредственно.

$$|f(x)| = |\varphi(Ax)| \leqslant ||\varphi|| \cdot ||A|| \cdot ||x|| \Rightarrow ||f|| \leqslant ||\varphi|| \cdot ||A||,$$

и по определению $||A^*||=\sup_{\varphi\neq 0}\frac{||f||}{||\varphi||},$ следовательно

$$||A^*|| \leqslant ||A||$$

 $\forall x \in X \exists \varphi_0 : \varphi_0(Ax) = ||Ax||, ||\varphi_0|| = 1,$ тогда $||Ax|| = \varphi_0(Ax) = f_0(x) \leqslant ||f_0|| \cdot ||x|| \leqslant ||A^*|| \cdot ||\varphi_0|| \cdot ||x|| \Rightarrow ||A|| \leqslant ||A^*||,$ откуда сразу же следует равенство $||A|| = ||A^*||$.

Пусть $A: H \to H$, A^* сопряженный к A, если

$$\forall x, y(Ax, y) = (x, A^*y)$$

то есть $\forall y f(x) = (x, y^*).$

Теорема 11.2. Im $A = \{y : \exists x \in Xy = Ax\} \ u \ \forall H \ выполняется равенство<math>H = \overline{\operatorname{Im} A} \bigoplus (\operatorname{Ker} A^*)$

□ Покажем, что

$$(\overline{\operatorname{Im} A})^{\perp} = \operatorname{Ker} A^*$$

 Π усть $x \in \text{Ker } A^*$, то есть $A^*x = 0$, тогда $\forall y \in H(y, A^*x) = (Ay, x) = 0 \Rightarrow x \perp \text{Im } A \Rightarrow x \perp \overline{\text{Im } A}$, откуда следует, что

$$\operatorname{Ker} A^* \subseteq (\operatorname{Im} A)^{\perp}$$

Пусть $x \perp \overline{\text{Im } A}$, тогда $x \perp \text{Im } A \Rightarrow \forall y \in H(Ay, x) = (y, A^*x) \Longrightarrow ||A^*x|| = 0 \Rightarrow A^*x = 0 \Rightarrow x \in \text{Ker } A^*$.

$$\Rightarrow \operatorname{Ker} A^* = (\operatorname{Im} A^*)^{\perp}$$

§12. Вполне непрерывные операторы

Определение. $X \subset L, L$ — линейное нормированное пространство, Будет говорить, что множество X компактно, если любая последовательность элементов этого множества содержит подпоследовательность сходящуюся к элементу пространства L.

Определение. Линейный оператор $A: X \to Y$ называется вполне непрерывным, если он отображает всякое ограниченное множество в компактное.

Лемма 12.1. Пусть X — гильбертово пространство, $\{x_n\}$ — компактная слабо сходящаяся последовательность, тогда $\{x_n\}$ сходится сильно.

 \square От противного: пусть $\{x_n\}$ не является сильно сходящейся, то есть $\exists \, \varepsilon > 0$ и неограниченно возрастающая последовательность индексов $n_1, n_2, \ldots : ||x_{n_k} - x|| \geqslant \varepsilon$; как подпоследовательность компактной последовательности $\{x_{n_k}\}$, а значит она содержит сильно сходящуюся подпоследовательность $\{x_{n_{k_l}}\}$, а значит и сходящуюся слабо. И с одной стороны

$$||x_{n_{k_{1}}}-x||\geqslant \varepsilon$$

, а с другой

$$||x_{n_{k_1}} - x|| \to 0.$$

Пришли к противоречию. ■

Лемма 12.2. $A \in L(X \to Y)$, X -банахово, пусть A -вполне непрерывный, тогда A переводит слабо сходящиеся последовательности в сильно сходящиеся:

$$x_n \xrightarrow{\mathbf{w}} x, Ax_n \to Ax.$$

\square Пусть последовательность слабо сходится к x_0 . Тогда нормы элементов этой последовательности огра
ничены и $\{x_n\}$, как ограниченная последовательность, оператором A переводится в компактную последовательность
тельность $\{y_n\}$, где $y_n = Ax_n$.

$$\forall \varphi \in Y^* \quad \varphi(Ax_n) = f(x_n) \xrightarrow{\mathbf{w}} f(x_0)\varphi(Ax_0)$$

и по предыдущей лемме получаем, что Ax_n сходится сильно. \blacksquare