www.ululu.in

CS-404:

THEORY OF COMPUTATION

Teaching Scheme			Credits	Marks			Duration End
L	Т	P/D	С	Sessional	End Semester Exam	Total	Semester Examination
3	1	0	4	40	60	100	3 hrs

COURSE CONTENT:

UNIT	CONTENT	No. of Hrs.		
I	Fundamentals: Automata Definition, applications, finite state machine, definitions, finite automaton model, acceptance of strings, deterministic finite automaton and non deterministic finite automaton, transition diagrams.			
	Finite Automata: NFA with A-transitions, significance, equivalence of NFA & DFA, equivalence between NFA with and without A-transitions, minimization of FSM, equivalence between two FSMs, finite automata with output- Moore and Melay machines.			
П	Regular Languages: Regular sets, regular expressions, identity rules, constructing finite automata for a given regular expressions, Arden's theorem, conversion of finite automata to regular expressions, pumping lemma of regular sets, closure properties of regular sets (proofs not required), Myhill-Nerode theorem and minimization of finite automata, minimization algorithm.	10		
Ш	Grammar Formalism: Regular grammars-right linear and left linear grammars, equivalence between regular linear grammar and FA, inter conversion, context free grammar, derivation trees, sentential forms, right most and leftmost derivation of strings.			
	Context Free Grammars: Ambiguity in context free grammars, minimization of context free grammars, Chomsky normal form, Greibach normal form.			
	Push Down Automata: Push down automata, definition, model, acceptance of CFL, acceptance by final state and acceptance by empty state and its equivalence, applications of push down machines.			
IV	Turing Machine: Turing Machine, definition, model, design of TM, types of turing machines (proofs not required), post correspondence problems and halting problem of turing machine.	9		
	Chomsky Hierarchies: Chomsky hierarchies of grammars, unrestricted grammars, context sensitive languages, relation between languages of classes.			

A Technical Ministership ample Papers amirpur - 177001 www.ululu.in - Downloa

www.ululu.in

Computability: Basic concepts, primitive recursive functions.	

Text Books:

- Hopcroft H. E. and Ullman J. D., "Introduction to Automata Theory Languages and Computation", Pearson Education.
- 2. Sipser, "Introduction to Theory of Computation" Thomson.

Reference Books:

- 1. Daniel I.A. Cohen, "Introduction to Computer Theory", John Wiley
- John C Martin, "Introduction to languages and the Theory of Computation", TMH
 Lewis H.P. and Papadimition C.H., "Elements of Theory of Computation", Pearson /PHI
 Mishra and Chandrashekaran, "Theory of Computer Science, Automata Languages and
- Computation", PHI

39