Verification using BAN Logic

Software Security

Steffen Helke

Chair of Software Engineering

23rd January 2019

General Remarks for Verification of Security Protocols

Objectives of today's lecture

- → Understanding what the general *objectives of a security* protocol analysis are
- → Getting to know the basic *syntax* and important *deduction* rules of the *BAN logic*
- → Being able to apply the *BAN logic for small examples* and to derive security properties

Motivation

→ How can the correctness of a security protocol be assured?

Reviews & Tests

- Experts analyze protocols informally
 - → Drawback: *undetected faults can still be included*, often only incomplete specifications are used

Formal Modeling and Verification

- Analysis based on mathematical methods
- e.g. modeling languages that are defined on a calculus
- Proof of correctness is possible
 - → Drawback: *often too much effort*, or specifications with too strong assumptions are used

Steffen Helke: Software Security, 23rd January 2019

Objectives of a Security Protocol Analysis

Assumptions

- Secure encryption algorithms will be used
- The secret key can't be guessed
- For a given key k there exists no key k', with $k \neq k'$ such that k' can also used for decryption

Objective 1: Correctness

- Which properties are guaranteed by the protocol?
- Is it possible to reduce assumptions made?

Objective 2: Performance

- Is it possible to omit protocol operations?
- Is unencrypted message communication possible in parts?

Steffen Helke: Software Security, 23rd January 2019

2

BAN Logic

General Remarks

- Logic of belief BAN is a modal logic
- First publication was in 1989
- Inventors are
 - Michael Burrows.
 - Martin Abadi,
 - Rodger Needham

A BAN model specifies ...

- all assumptions of a protocol, and
- the incremental increase in *belief* and *knowledge* by each protocol step

Introduction into BAN Logic

Modal Logic

Remarks

- The word *modal* ... is derived from mode (from Latin)
- A modal logic describes propositions for *several possible worlds*, not only for one real world
- A distinction is made between *possible* and *necessary true* propositions
- Possible propositions are fulfilled in at least one world, but necessary true propositions must be valid in all possible worlds

Example: German Football Championship

- It is possible that this year the FC Bayern München soccer team will be "Deutscher Meister"
- It is necessary for FC Bayern München to win the German championship on the last matchday with a four-point lead

Notation and Deduction Rules of the BAN Logic

How to model a key?

 $A \stackrel{K}{\longleftrightarrow} B$

K is a symmetric key for the communication between A and B.

 $\stackrel{\mathcal{K}}{\longmapsto} A$

K is public key of A and the corresponding private key K^{-1} is only known to A

 $A \stackrel{X}{\rightleftharpoons} B$

X is a shared secret of A and B, that can be used for identification, if it communicated in an encrypted manner

Basic Syntax of the BAN Logic

- A believes X

A is entitled to believe X

- S controls K

S is the authority on K and we can trust it

- A said X

A once said X, without indicating whether this statement is new or not

- **fresh**(*X*)

X is fresh, i.e. X has never been used before

- A sees X

Someone sent a message X to A in such a way that he can read it

Steffen Helke: Software Security, 23rd January 2019

5

How to encrypt messages?

 $\{X\}_K$

Message X is encrypted using the key K

 $\langle X \rangle_Y$

X is equipped with secret Y

Deduction Rules ¹

- → Message Meaning Rules
 - Testing using a public key

$$\frac{P \text{ believes} \overset{K}{\longmapsto} Q, P \text{ sees } \{X\}_{K-1}}{P \text{ believes } Q \text{ said } X}$$

- Decryption using a symmetric key

$$\frac{P \text{ believes } Q \stackrel{K}{\longleftrightarrow} P, P \text{ sees } \{X\}_K}{P \text{ believes } Q \text{ said } X}$$

- Rule for shared secrets

$$\frac{P \text{ believes } P \stackrel{Y}{\rightleftharpoons} Q, P \text{ sees } \langle X \rangle_Y}{P \text{ believes } Q \text{ said } X}$$

Steffen Helke: Software Security, 23rd January 2019

Deduction Rules (3)

- Rules for decomposing propositions

$$\frac{P \text{ believes } (X,Y)}{P \text{ believes } X}$$

$$\frac{P \text{ believes } X, P \text{ believes } Y}{P \text{ believes } (X, Y)}$$

$$\frac{P \text{ believes } Q \text{ believes } (X,Y)}{P \text{ believes } Q \text{ believes } X}$$

$$\frac{P \text{ believes } Q \text{ said } (X,Y)}{P \text{ believes } Q \text{ said } X}$$

Deduction Rules (2)

- Jurisdiction Rule (Take over someone else's beliefs)

$$\frac{P \text{ believes } Q \text{ controls } X, P \text{ believes } Q \text{ believes } X}{P \text{ believes } X}$$

- Freshness Rule

$$\frac{P \text{ believes fresh } X}{P \text{ believes fresh } (X,Y)}$$

- Nonce-Verification Rule

$$\frac{P \text{ believes fresh } X, P \text{ believes } Q \text{ said } X}{P \text{ believes } Q \text{ believes } X}$$

Steffen Helke: Software Security, 23rd January 2019

Deduction Rules (4)

- Rules for the visibility of messages

$$\frac{P \sec (X,Y)}{P \sec X} \qquad \frac{P \sec X}{P \sec X}$$

$$\frac{P \text{ believes } Q \stackrel{K}{\longleftrightarrow} P, P \text{ sees } \{X\}_K}{P \text{ sees } X}$$

$$\frac{P \text{ believes} \overset{K}{\longmapsto} P, P \text{ sees } \{X\}_{K}}{P \text{ sees } X}$$

$$\frac{P \operatorname{believes} \overset{K}{\longmapsto} Q, P \operatorname{sees} \left\{X\right\}_{K-1}}{P \operatorname{sees} X}$$

¹Note, we use so called *cut rules* to specify the deduction rules

Methodology and Critical Evaluation

Procedure

- I Idealize the protocol and then convert the steps of the idealized version into the BAN notation
- 2 Define assumptions for the initial state of the protocol
- 3 Derive new propositions for each protocol step using the given deduction rules

Criticisms

- Proof of correctness does not guarantee absolute security!
- There is a semantic gap between the original protocol and the idealized protocol variant
- Original version of the BAN logic has no semantics

Steffen Helke: Software Security, 23rd January 2019

Example: Wide Mouth Frog Protocol

- → Wide-Mouth Frog protocol were proposed by Michael Burrows in 1990
- → The protocol name was derived from Burrows nickname he had during his studies

Authentication Targets for the BAN Logic

What exactly is to be proven?

- There has been an intense debate about what propositions are required for successful authentication
- Two types of proposition goals where identified, but it remains unclear which type is more important

1. First-Order Goals

- A believes $A \stackrel{K}{\longleftrightarrow} B$
- B believes $A \stackrel{K}{\longleftrightarrow} B$

2. Second-Order Goals

- A believes B believes $A \stackrel{K}{\longleftrightarrow} B$
- B believes A believes $A \stackrel{K}{\longleftrightarrow} B$

Steffen Helke: Software Security, 23rd January 2019

13

Step 1: Specify an idealized protocol variant

Original Protocol

12

1
$$A \to S : A, \{T_A, K_{AB}, B\}_{K_{AS}}$$

$$2 S \rightarrow B : \{T_S, K_{AB}, A\}_{K_{BS}}$$

Idealized Protocol Variant

2
$$S \rightarrow B : \{T_S, A \text{ believes } A \xrightarrow{K_{AB}} B\}_{K_{BS}}$$

What exactly is to be proven?

$$B$$
 believes $A \stackrel{K}{\longleftrightarrow} B$

Step 2: Specify necessary assumptions

A1 A believes
$$A \stackrel{K_{AS}}{\longleftrightarrow} S$$

A2 S believes
$$A \stackrel{K_{AS}}{\longleftrightarrow} S$$

A3 B believes
$$B \stackrel{\mathcal{K}_{BS}}{\longleftrightarrow} S$$

A4 S believes
$$B \stackrel{K_{BS}}{\longleftrightarrow} S$$

A5 A believes
$$A \stackrel{K_{AB}}{\longleftrightarrow} B$$

A6 S believes fresh
$$T_A$$

A7
$$B$$
 believes fresh T_S

A8 B believes
$$(A \text{ controls } A \overset{K_{AB}}{\longleftrightarrow} B)$$

A9 B believes (S controls (A believes
$$A \stackrel{K_{AB}}{\longleftrightarrow} B$$
))

What are the deduction rules for this proof?

R1
$$\frac{P \text{ believes } Q \stackrel{K}{\longleftrightarrow} P, P \text{ sees } \{X\}_K}{P \text{ believes } Q \text{ said } X}$$

R2
$$\frac{P \text{ believes fresh } X}{P \text{ believes fresh } (X,Y)}$$

R3
$$\frac{P \text{ believes fresh } X, P \text{ believes } Q \text{ said } X}{P \text{ believes } Q \text{ believes } X}$$

R4
$$\frac{P \text{ believes } (X,Y)}{P \text{ believes } X}$$

R5
$$\frac{P \text{ believes } Q \text{ controls } X, P \text{ believes } Q \text{ believes } X}{P \text{ believes } X}$$

Steffen Helke: Software Security, 23rd January 2019

Step 3: Proof for the first protocol step

$$S \operatorname{sees} \{ T_A, A \overset{K_{AB}}{\longleftrightarrow} B \}_{K_{AS}}$$

$$S \operatorname{believes} A \overset{K_{AS}}{\longleftrightarrow} S \quad (\mathbf{A1})$$

$$\Rightarrow \text{ (with } \mathbf{R1}, \text{ message meaning rule)}$$

$$S \text{ believes } A \text{ said } (T_A, A \overset{K_{AB}}{\longleftrightarrow} B)$$

S believes fresh
$$T_A$$
 (A6)

$$\Rightarrow$$
 (with R3, freshness nonce verification rule, before apply R2)
 S believes A believes $(T_A, A \overset{K_{AB}}{\longleftrightarrow} B)$

6: 2 D ff :1

Step 3: Proof for the second protocol step (1)

$$B \operatorname{sees} \{ T_S, A \operatorname{believes} A \overset{K_{AB}}{\longleftrightarrow} B \}_{K_{BS}}$$

$$B \operatorname{believes} B \overset{K_{BS}}{\longleftrightarrow} S \quad (A3)$$

Steffen Helke: Software Security, 23rd January 2019

$$\Rightarrow \text{ (with } \mathbf{R1}, \text{ message meaning rule)}$$

$$B \text{ believes } S \text{ said } (T_S, A \text{ believes } \stackrel{K_{AB}}{\longleftrightarrow} B)$$

$$B \text{ believes fresh } T_S \text{ (A7)}$$

$$\Rightarrow$$
 (with R3, freshness nonce verification rule, before apply R2)
 B believes S believes $(T_S, A \text{ believes } A \overset{K_{AB}}{\longleftrightarrow} B)$

$$\Rightarrow \text{ (with R4)}$$

$$B \text{ believes } S \text{ believes } (A \text{ believes } A \overset{K_{AB}}{\longleftrightarrow} B)$$

16

Step 3: Proof for the second protocol step (2)

$$B \text{ believes } S \text{ believes } (A \text{ believes } A \overset{K_{AB}}{\longleftrightarrow} B)$$

$$B \text{ believes } S \text{ controls } (A \text{ believes } A \overset{K_{AB}}{\longleftrightarrow} B) \text{ (A9)}$$

 \Rightarrow (with **R5**)

B believes *A* believes $A \stackrel{K_{AB}}{\longleftrightarrow} B$ *B* believes *A* controls $A \stackrel{K_{AB}}{\longleftrightarrow} B$ (A8)

 \Rightarrow (with **R5**)

B believes $A \stackrel{K_{AB}}{\longleftrightarrow} B$

Steffen Helke: Software Security, 23rd January 2019

19

Symmetric Variant of the Needham-Schroeder Protocol

1
$$A \rightarrow S : A, B, N_A$$

2
$$S \to A : \{N_A, B, K_{AB}, \{K_{AB}, A\}_{K_{BS}}\}_{K_{AS}}$$

$$\mathbf{3} \ A \to B : \{K_{AB}, A\}_{K_{BS}}$$

4
$$B \rightarrow A : \{N_B\}_{K_{AB}}$$

5
$$A \to B : \{N_B - 1\}_{K_{AB}}$$

Repetition: Needham-Schroeder Protocol

Step 1: Specify an idealized protocol variant

■ $A \rightarrow S : A, B, N_A$ Plain text messages are not necessary for idealization

 $2 S \rightarrow A : \{N_A, B, K_{AB}, \{K_{AB}, A\}_{K_{BS}}\}_{K_{AS}}$ $S \rightarrow A : \{N_A, A \overset{K_{AB}}{\longleftrightarrow} B, \mathbf{fresh}(A \overset{K_{AB}}{\longleftrightarrow} B), \{A \overset{K_{AB}}{\longleftrightarrow} B\}_{K_{BS}}\}_{K_{AS}}$

3
$$A \rightarrow B : \{K_{AB}, A\}_{K_{BS}}$$

 $A \rightarrow B : \{A \overset{K_{AB}}{\longleftrightarrow} B\}_{K_{BS}}$

4
$$B \rightarrow A : \{N_B\}_{K_{AB}}$$

$$B \to A : \{N_B, A \stackrel{\mathcal{K}_{AB}}{\longleftrightarrow} B\}_{\mathcal{K}_{AB}}$$

5
$$A \rightarrow B : \{N_B - 1\}_{K_{AB}}$$

 $A \rightarrow B : \{N_B, A \overset{K_{AB}}{\longleftrightarrow} B\}_{K_{AB}}$

Step 2: Specify necessary assumptions

- **A1** A believes $A \stackrel{K_{AS}}{\longleftrightarrow} S$
- **A2** B believes $B \stackrel{K_{BS}}{\longleftrightarrow} S$
- **A3** A believes S controls $A \stackrel{K_{AB}}{\longleftrightarrow} B$
- **A4** *B* believes *S* controls $A \stackrel{K_{AB}}{\longleftrightarrow} B$
- **A5** A believes S controls fresh $A \stackrel{K_{AB}}{\longleftrightarrow} B$
- **A6** A believes fresh N_A
- A7 B believes fresh N_B
- **A8** B believes fresh $A \stackrel{K_{AB}}{\longleftrightarrow} B$
- → Note that the assumption **A8** is too strong (cf. replay attack for the symmetric variant of NSP, slides from 10.1.2018)

Steffen Helke: Software Security, 23rd January 2019

How to prove the correctness of the symmetric Needham-Schroeder protocol variant?

What are the deduction rules for this proof?

R1
$$\frac{P \text{ believes } Q \stackrel{K}{\longleftrightarrow} P, P \text{ sees } \{X\}_K}{P \text{ believes } Q \text{ said } X}$$

R2
$$\frac{P \text{ believes fresh } X}{P \text{ believes fresh } (X,Y)}$$

R3
$$\frac{P \text{ believes fresh } X, P \text{ believes } Q \text{ said } X}{P \text{ believes } Q \text{ believes } X}$$

R4
$$\frac{P \text{ believes } (X,Y)}{P \text{ believes } X}$$

22

R5
$$\frac{P \text{ believes } Q \text{ controls } X, P \text{ believes } Q \text{ believes } X}{P \text{ believes } X}$$

Steffen Helke: Software Security, 23rd January 2019

23

Step 3: Proof for the second protocol step (1)

$$A \operatorname{sees} \{ N_A, A \overset{K_{AB}}{\longleftrightarrow} B, \operatorname{fresh} A \overset{K_{AB}}{\longleftrightarrow} B, \{ A \overset{K_{AB}}{\longleftrightarrow} B \}_{K_{BS}} \}_{K_{AS}}$$

$$A \operatorname{believes} A \overset{K_{AS}}{\longleftrightarrow} S \quad (\mathbf{A1})$$

$$\Rightarrow \text{ (with } \textbf{R1}, \text{ message meaning rule)}$$

$$A \text{ believes } S \text{ said } \{N_A, A \overset{K_{AB}}{\longleftrightarrow} B, \text{ fresh } A \overset{K_{AB}}{\longleftrightarrow} B, \{A \overset{K_{AB}}{\longleftrightarrow} B\}_{K_{BS}}\}$$

$$A \text{ believes fresh } N_A \text{ (A6)}$$

$$\Rightarrow$$
 (with R3, freshness nonce verification rule, before apply R2)
$$A \text{ believes } S \text{ believes } \{N_A, A \overset{K_{AB}}{\longleftrightarrow} B, \text{ fresh } A \overset{K_{AB}}{\longleftrightarrow} B, \{A \overset{K_{AB}}{\longleftrightarrow} B\}_{K_{BS}}\}$$

Step 3: Proof for the second protocol step (2)

 $\Rightarrow \text{ (decompose with R4)}$ $A \text{ believes } S \text{ believes } A \overset{K_{AB}}{\longleftrightarrow} B$ $A \text{ believes } S \text{ believes fresh } A \overset{K_{AB}}{\longleftrightarrow} B$ $A \text{ believes } S \text{ controls } A \overset{K_{AB}}{\longleftrightarrow} B \text{ (A3)}$ $A \text{ believes } S \text{ controls fresh } A \overset{K_{AB}}{\longleftrightarrow} B \text{ (A5)}$ $\Rightarrow \text{ (with R5, jurisdiction rule)}$ $A \text{ believes } A \overset{K_{AB}}{\longleftrightarrow} B$ $A \text{ believes fresh } A \overset{K_{AB}}{\longleftrightarrow} B$

Step 3: Proof for the third protocol step

$$B \operatorname{sees} \{ A \overset{K_{AB}}{\longleftrightarrow} B \}_{K_{BS}}$$

$$B \operatorname{believes} B \overset{K_{BS}}{\longleftrightarrow} S \quad (A2)$$

- $\Rightarrow \text{ (with } \mathbf{R1}, \text{ message meaning rule)}$ $B \text{ believes } S \text{ said } A \overset{K_{AB}}{\longleftrightarrow} B$ $B \text{ believes fresh } A \overset{K_{AB}}{\longleftrightarrow} B \text{ (A8)}$
- $\Rightarrow \text{ (with$ **R3** $, freshness verification rule)}$ $B \text{ believes } S \text{ believes } A \overset{K_{AB}}{\longleftrightarrow} B$ $B \text{ believes } S \text{ controls } A \overset{K_{AB}}{\longleftrightarrow} B \text{ (A4)}$
- $\Rightarrow \text{ (with } \mathbf{R5}, \text{ jurisdiction rule)}$ $B \text{ believes } A \overset{K_{AB}}{\longleftrightarrow} B$

Steffen Helke: Software Security, 23rd January 2019

Steffen Helke: Software Security, 23rd January 2019

26

Step 3: Proof for the fourth protocol step

$A \operatorname{sees} \{ N_B, A \overset{K_{AB}}{\longleftrightarrow} B \}_{K_{AB}}$ $A \operatorname{believes} A \overset{K_{AB}}{\longleftrightarrow} B \quad (\text{cf. proof of the second protocol step})$

- $\Rightarrow \text{ (with R1, message meaning rule)}$ $A \text{ believes } B \text{ said } \{N_B, A \overset{K_{AB}}{\longleftrightarrow} B\}$ $A \text{ believes fresh } A \overset{K_{AB}}{\longleftrightarrow} B \text{ (cf. proof of the second protocol step)}$
- \Rightarrow (with **R2**, **R4** and **R3**, freshness verification rule) A believes B believes $A \stackrel{K_{AB}}{\leftarrow} B$

Step 3: Proof for the fifth protocol step

$$B \operatorname{sees} \{N_B, A \overset{K_{AB}}{\longleftrightarrow} B\}_{K_{AB}}$$

$$B \operatorname{believes} A \overset{K_{AB}}{\longleftrightarrow} B \quad (\operatorname{cf. proof of the third protocol step})$$

$$\Rightarrow (\operatorname{with} \mathbf{R1}, \operatorname{message meaning rule})$$

$$B \operatorname{believes} A \operatorname{said} \{N_B, A \overset{K_{AB}}{\longleftrightarrow} B\}$$

$$B \operatorname{believes fresh} N_B \quad (\mathbf{A7})$$

$$\Rightarrow (\operatorname{with} \mathbf{R2}, \mathbf{R4} \operatorname{and} \mathbf{R3}, \operatorname{freshness verification rule})$$

$$B \operatorname{believes} A \operatorname{believes} A \overset{K_{AB}}{\longleftrightarrow} B$$

Result of the Verification

- **1** Abelieves $A \stackrel{K_{AB}}{\longleftrightarrow} B$ (derived from the second protocol step)
- 2 B believes $A \stackrel{K_{AB}}{\longleftrightarrow} B$ (derived from the third protocol step)
- 3 A believes B believes $A \stackrel{K_{AB}}{\longleftrightarrow} B$ (derived from the fourth protocol step)
- 4 B believes A believes $A \stackrel{K_{AB}}{\longleftrightarrow} B$ (derived from the fifth protocol step)

Annotation Rule

In order to get the first proposition, the annotation rule has to be applied

$$\{X\}$$

$$P \longrightarrow Q : Y$$

$$\{X, Q \operatorname{sees} Y\}$$

For reasons of simplicity, we have omitted this rule application in our example

Steffen Helke: Software Security, 23rd January 2019

29

31

Steffen Helke: Software Security, 23rd January 2019

30

Summary and Conclusions

- BAN logic is a modal logic for analyzing security protocols
- The main source of errors is the idealization step of the real protocol
- Semantics for the BAN logic now exist, but does not solve the problem of idealization
- Various improvements have been proposed for BAN logic
- Very important: BAN logic is decideable
 - ⇒ Therefore, the development of practical verification tools is feasible

References

- M. Burrows, M. Abadi, R.M. Needham: A Logic of Authentication. In Proceeding of the Royal Society of London A, volume 426, 1989.
- M. Abadi, M. Tuttle: A Semantics for a Logic of Authentication. In Proceeding of the Symposium on Principles of Distributed Computing, 1991.
- D. Heuzeroth: Formale Methoden zur Analyse von Authentisierungsprotokollen. Universität Karlsruhe, Fakultät Informatik, Seminararbeit 1996.