Nor	n:	Note :	/ 21.5	
Pré	nom:	Note :	/ 20	
Numéro étudiant :				
1. Limites planétaires / 1				
1.1 aggravation du réchauffement climatique \rightarrow diminution de la biodiversité				
(et réciproquement par ex.)				
2. E	nergie potentielle des marrées		/ 12.5	
2.2	convertit l'énergie mécanique en énergie électrique		/ 0.5	
2.3	$E_{pp} = \frac{\rho_e S h^2 g}{2} \dots \dots$		/ 1	
2.4	même efficacité qu'un barrage hydroélectrique : environ		/ 1	
2.5	$P_{max} = \frac{4\eta E_{pp}}{2T} = \frac{\eta \rho_e S h^2 g}{T} \dots \dots$		/ 1	
2.6	$P_{max} = 295 \text{ MW} \dots$		/ 1	
2.6	très supérieure à une éolienne (de l'ordre de 5 MW) mais inférieure à un			
réact	eur nucléaire (de l'ordre de 1 GW)		/ 0.5	
2.7	$P_{PV} = \eta_{PV} E = 660$ MW et donc $P_{max}/P_{PV} = 0.45$		/ 1	
2.7	2.7 puissance produite par m^2 au sol est supérieure dans le cas du photovol-			
taïqu	e		/ 0.5	
2.8a	$D_v = \frac{\Delta V}{\tau} = \frac{hS\cos(\omega\tau/2)}{\tau} \dots$		/ 1	
	$P_e = \eta \rho_e g D_v (z_2 - z_1) \dots$		/ 1	
2.8c	$E_e = \int_{t=(T-\tau)/2}^{(T+\tau)/2} P_e(t) dt = \eta \rho_e g h^2 S \frac{\sin(\omega \tau/2) \cos(\omega \tau/2)}{\omega \tau} =$	$\eta \frac{\rho_e g h^2 S}{2} \times \frac{\text{si}}{2}$	$\frac{\ln(\omega au)}{\omega au}$.	

$/\ 2.5$
2.8d $\eta' = \eta \frac{\sin(\omega \tau)}{\omega \tau}$
2.8d graphe correct
3. Énergie cinétique des courants marins $_$ $/ 4.5$
3.9 $[P_{cin}] = [\rho_e S v^3] = M.L^2.T^{-3}$
3.10 $P_{cin} = 246 \text{ GW} \dots / 1$
3.10 consommation mondiale \sim 20 TW (en énergie primaire); P_{cin} représent
$\sim 1~\%$ de cette consommation
3.11 $C_P = \frac{P}{P_{cin}}$ / 0.5
3.11 C_P ne peut pas dépasser la limite de Betz
3.12 Puissance traversée par l'éolienne : $\frac{(2 \times \pi R^2)\rho_e v^3}{2} = 2,8$ MWi, soi
$C_P = 1, 2/2.8 = 0, 43$
4. Consommation d'énergie et effet de serre $_$ $/$ 3.5
4.13 $\mathcal{P}_h = \frac{6,72.10^{20}}{(3.14.10^7)} = 2,1.10^{13} \text{ W, soit 21 TW} \dots / 1$
(3, 14.10°) 4.13 80 % de cette énergie est fossile, et 3-4 % est nucléaire / 0.5
$\Delta \mathcal{P}_{GES} = \Delta p \times S_T = 2,3 \times 510.10^{12} = 1,17.10^{15} \; \mathrm{W} = 1170 \; \mathrm{TW}$
4.15 $\frac{\mathcal{P}_{GES}}{\mathcal{P}_h} = 1170/21 \sim 56$ / 0.5
4.15 $E_h = \frac{6,7.10^{20}}{10^{14}} \sim 6$ millions de bombes annuelles et $E_{GES} \sim 340$ million
de bombes annuelles