

Department of Pathology and Laboratory Medicine No.201, Sec. 2, Shipai Rd., Beitou District, Taipei City, Taiwan 11217, R.O.C.

Tel: 02-2875-7449

Date: 17 Dec 2021 1 of 6

Sample Information

Patient Name: 吳德卿 Gender: Male ID No.: F101709768 History No.: 47876255

Age: 68

Ordering Doctor: DOC5390F 高冠鈞

Ordering REQ.: 0BPRKQX Signing in Date: 2021/12/17

Path No.: S110-94848 **MP No.:** F21107

Assay: Oncomine Focus Assay

Sample Type: FFPE Block No.: S110-36096A Percentage of tumor cells: 20%

Reporting Doctor: DOC5466K 葉奕成 (Phone: 8#5466)

Note:

Sample Cancer Type: Other Solid Tumor

Table of Contents	Page
Variants (Exclude variant in Taiwan BioBank with >1% allele frequency)	2
Biomarker Descriptions	2
Relevant Therapy Summary	2
Relevant Therapy Details	3
Clinical Trials Summary	4
Alert Details	4

Report Highlights

- 1 Relevant Biomarkers
- 1 Therapies Available
- 1 Clinical Trials

Relevant Biomarkers

Tier	Genomic Alteration	Relevant Therapies (In this cancer type)	Relevant Therapies (In other cancer type)	Clinical Trials
IIC	HRAS p.(G13D) c.38G>A HRas proto-oncogene, GTPase Allele Frequency: 5.55%	None	cabozantinib	1
	Prognostic significance: None Diagnostic significance: None			

Public data sources included in relevant therapies: FDA1, NCCN, EMA2, ESMO

Public data sources included in prognostic and diagnostic significance: NCCN, ESMO

Tier Reference: Li et al. Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists. J Mol Diagn. 2017 Jan;19(1):4-23.

Date: 17 Dec 2021 2 of 6

Variants (Exclude variant in Taiwan BioBank with >1% allele frequency)

DNA Sequence Variants

			Allele					
Gene	Amino Acid Change	Coding	Variant ID	Locus	Frequency	Transcript	Variant Effect	Coverage
HRAS	p.(G13D)	c.38G>A	COSM490	chr11:534285	5.55%	NM_001130442.2	missense	2000

Biomarker Descriptions

HRAS (HRas proto-oncogene, GTPase)

Background: The HRAS proto-oncogene encodes a GTPase that functions in signal transduction and is a member of the RAS superfamily which also includes KRAS and NRAS. RAS proteins mediate the transmission of growth signals from the cell surface to the nucleus via the PI3K/AKT/MTOR and RAS/RAF/MEK/ERK pathways that control the regulation of cell division, differentiation, and survival^{1,2,3}. RAS proteins require the covalent attachment of a hydrophobic group to their C-terminus (prenylation) for membrane localization and downstream signaling⁴. Whereas KRAS and NRAS are subject to prenylation by farnesyl transferase or geranylgeranyl transferase, HRAS is completely dependent on farnesylation.

Alterations and prevalence: Recurrent mutations in RAS oncogenes cause constitutive activation and are found in 20-30% of cancers. HRAS mutations are observed in 4-10% of pheochromocytoma and paraganglioma, thymoma, bladder, and head and neck cancers^{5,6}. The majority of HRAS mutations consist of point mutations at G12, G13, and Q61^{5,7,8}.

Potential relevance: Currently, no therapies are approved for HRAS aberrations. However, the farnesyl transferase inhibitor, tipifarnib^{9,10}, was granted fast-track (2019) and breakthrough therapy (2021) designation by the FDA for the treatment of HRAS mutant head and neck squamous cell carcinomas (HNSCC) after disease progression on platinum chemotherapy.

Relevant Therapy Summary

In this cancer type	pe O In other cancer type In this cancer type and other cancer types			X No evidence		
HRAS p.(G13D)	c.38G>A					
Relevant Therapy		FDA	NCCN	EMA	ESMO	Clinical Trials*
cabozantinib		×	×	×	0	×
tipifarnib		×	×	×	×	O (II)

^{*} Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

Date: 17 Dec 2021 3 of 6

Relevant Therapy Details

Current ESMO Information

In this cancer type

O In other cancer type

In this cancer type and other cancer types

ESMO information is current as of 2021-10-01. For the most up-to-date information, search www.esmo.org.

HRAS p.(G13D) c.38G>A

O cabozantinib

Cancer type: Thyroid Gland Medullary Carcinoma Variant class: RAS mutation

ESMO Level of Evidence/Grade of Recommendation: II / C

Population segment (Line of therapy):

Metastatic (First-line therapy)

Reference: ESMO Clinical Practice Guidelines - ESMO-Thyroid Cancer [Annals of Oncology 30: 1856–1883, 2019 doi:10.1093/annonc/mdz400]

Date: 17 Dec 2021 4 of 6

Clinical Trials in Taiwan region:

Clinical Trials Summary

HRAS p.(G13D) c.38G>A

NCT ID	Title	Phase
NCT03719690	A Two Cohort, Non-comparative, Pivotal Study Evaluating the Efficacy of Tipifarnib in Patients with Head and Neck Squamous Cell Carcinoma (HNSCC) With HRAS Mutations (AIM-HN) and the Impact of HRAS Mutations on Response to First Line Systemic Therapies for HNSCC (SEQ-HN).	II

Alerts Informed By Public Data Sources

Current FDA Information

Contraindicated

Not recommended

FDA information is current as of 2021-10-13. For the most up-to-date information, search www.fda.gov.

HRAS p.(G13D) c.38G>A

tipifarnib

Cancer type: Head and Neck Cancer

Variant class: HRAS mutation

Supporting Statement:

The FDA has granted Breakthrough Therapy Designation to the small molecule inhibitor, tipifarnib, for HRAS mutations with variant allele frequency ≥ 20% in head and neck squamous cell carcinomas (HNSCC) after disease progression on platinum-based chemotherapy

Reference:

https://ir.kuraoncology.com/news-releases/news-release-details/kura-oncology-receives-fda-breakthrough-therapy-designation

tipifarnib

Cancer type: Head and Neck Cancer

Variant class: HRAS mutation

Supporting Statement:

The FDA has granted Fast Track Designation to the farnesyltransferase inhibitor, tipifarnib, for HRAS mutant recurrent or metastatic head and neck squamous cell carcinoma (HNSCC) after disease progression on platinum-based chemotherapy.

Reference:

https://ir.kuraoncology.com/news-releases/news-release-details/kura-oncology-receives-fast-track-designation-tipifarnib-hras

Date: 17 Dec 2021 5 of 6

Signatures

Testing Personnel:

Laboratory Supervisor:

Pathologist:

Date: 17 Dec 2021

6 of 6

References

1. Pylayeva-Gupta et al. RAS oncogenes: weaving a tumorigenic web. Nat. Rev. Cancer. 2011 Oct 13;11(11):761-74. PMID: 21993244

- 2. Karnoub et al. Ras oncogenes: split personalities. Nat. Rev. Mol. Cell Biol. 2008 Jul;9(7):517-31. PMID: 18568040
- Scott et al. Therapeutic Approaches to RAS Mutation. Cancer J. 2016 May-Jun;22(3):165-74. doi: 10.1097/ PPO.0000000000187. PMID: 27341593
- 4. Cox et al. Targeting RAS Membrane Association: Back to the Future for Anti-RAS Drug Discovery?. Clin. Cancer Res. 2015 Apr 15;21(8):1819-27. PMID: 25878363
- 5. Weinstein et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat. Genet. 2013 Oct;45(10):1113-20. PMID: 24071849
- 6. Kato et al. Genomic landscape of salivary gland tumors. Oncotarget. 2015 Sep 22;6(28):25631-45. PMID: 26247885
- 7. Grünewald et al. Targeted next generation sequencing of parotid gland cancer uncovers genetic heterogeneity. Oncotarget. 2015 Jul 20;6(20):18224-37. PMID: 26053092
- 8. Moura et al. High prevalence of RAS mutations in RET-negative sporadic medullary thyroid carcinomas. J. Clin. Endocrinol. Metab. 2011 May;96(5):E863-8. PMID: 21325462
- 9. https://ir.kuraoncology.com/news-releases/news-release-details/kura-oncology-receives-fda-breakthrough-therapy-designation
- 10. https://ir.kuraoncology.com/news-releases/news-release-details/kura-oncology-receives-fast-track-designation-tipifarnib-hras