

Высочайшее качество:

Подготовка сжатого воздуха Хранение сжатого воздуха Утилизация конденсата

Решение об улучшении качества сжатого воздуха

Руководство по подготовке сжатого воздуха

Сегодня сжатый воздух используется в самых разных отраслях промышленности. Диапазон применений сжатого воздуха простирается от общепромышленного воздуха без каких-либо специфических требований к качеству, до абсолютно сухого, не содержащего масла, и стерильного сжатого воздуха для фармацевтической и пищевой промышленности. Такой разброс требований означает, что очень важна специальная подготовка сжатого воздуха, в точности соответствующая требованиям конкретного применения.

Воздух, всасываемый компрессором, может содержать до 180 миллионов частиц пыли на 1м³. Кроме того, всасываемый воздух имеет влажность от 50 до 80% и содержит масло в виде несгораемых углеводов результат промышленных выбросов и выхлопа газов. Вдобавок к этому, наибольшие количества масла и частиц из компрессора могут попадать в систему сжатого воздуха. При сжатии, например, до 10 бар, концентрация загрязняющих примесей возрастет в 11 раз. т.е. в 1 м³ сжатого воздуха будет содержаться порядка 2 миллиардов частиц пыли. В зависимости от конкретного применения, загрязняющие примеси могут удаляться до степени абсолютно сухого, безмасляного и стерильного сжатого воздуха.

Таблица на стр. 3 обобщает уровни подготовки сжатого воздуха. Однако, это только обзор возможностей очистки. При выборе системы подготовки необходимо отталкиваться от конкретного применения, исходя из установленных требований для качества сжатого воздуха.

Общие затраты на систему подготовки сжатого воздуха включают:

- стоимость дополнительного оборудования
- стоимость работ по монтажу системы воздухоподготовки

Но грамотно подобранная система подготовки сжатого воздуха обеспечивает:

- увеличение продолжительности срока службы оборудования, использующего сжатый воздух
- повышение качества выпускаемой продукции
- 🌔 повышение конкурентоспособности
- 连 повышение прибыльности предприятия
- снижение рисков простоев на производстве
- снижение затрат на ремонт оборудования, использующего сжатый воздух
- 🌔 снижение стоимости трубопроводов

Содержание:

Осушители сжатого воздуха	4
Осушители рефрижераторного типа	5 – 7
Мембранные осушители	8 – 9
Адсорбционные осушители, с горячей регенерацией	10 – 13
Адсорбционные осушители, с холодной регенерацией	14

Утилизация конденсата	23 – 27
Воздухосборники	22
Оборудование для подготовки сжатого воздуха	21
Циклонные сепараторы	20
Фильтры	16 – 19
Адсорберы на основе активированного угля	15
	Стр.

Подготовка сжатого воздуха должна соответствовать Вашим требованиям

Не всякий сжатый воздух можно использовать

Общепромышленный сжатый воздух содержит парообразную влагу (атмосферная влажность), а также частицы пыли и масла. Эти примеси могут быть причиной поломок оборудования, использующего сжатый воздух, и, как результат, вызывать дорогостоящие простои, высокую стоимость ремонта и снижение качества продукции.

Преимущества использования технологий подготовки сжатого воздуха BOGE

Высокая надежность пневматических инструментов и оборудования

- работа без сбоев
- минимум обслуживания
- низкие эксплуатационные затраты

Высокое качество продукции

 надежная работа оборудования, использующего сжатый воздух, с продолжительным сроком эксплуатации

- экономичность работы
- повышение конкурентоспособности
- 🍃 увеличение прибыльности

Небольшие затраты на монтаж трубопроводов сжатого воздуха

- трубопроводы свободны от конденсата и не подвергаются ржавению
- 🥦 возможна прокладка труб горизонтально
- возможна прокладка линий непосредственно в рабочей зоне
- трубопроводы не нуждаются в установке коллекторов конденсата

Варианты подготовки сжатого воздуха в зависимости от его применения:

Применение сжатого воздуха	Кла	есс чистот	Ы***	Воздушный компрессор		, 200 M		d d	≥<	HblŇ	бой	АВИ-	а 4ВИ- 7ГЛЯ	Z(
лагого вордука	Пыль	Влага	Масло	Тонніроссор	Циклонный сепаратор*	Фильтр грубой очистки **	Осушитель рефрижера- торного типа	Микрофильтр	Мембранный осушитель	Адсорбционный осушитель	Фильтр грубой очистки	Фильтр на основе активи- рованного угля	Адсорбер на основе активи- рованного угля	Стерильный
Общепромышленный воздух Воздух для выдува	-	_	-											
Пескоструйная обработка Простые покрасочные работы	3	-	-		Ţ	Ů								
Воздух для транспортирования Общезаводской воздух Высококачественная пескоструйная обработка Простое распыление красок	3	4	5	винтовые	Ţ	Û								
Пневматический инструмент Пневматические системы регулирования Распыление красок Кондиционирование Распыление жидкостей Измерительные и регулирующие системы	1	4	1	ЫЕ ИЛИ ПОРШНЕВЫЕ	Ţ	ŧ		Ů						
Стоматология Фотографическая лаборатория	1	4	1	ОРШН	Ţ	Ů		Ů						
Пневматические системы регулирования Измерительное оборудование Пневматика Высококачественное	1	1-3	1	1 1	₩ или	İ		Ů		Ø	İ	1/		
распыление красок Финишная обработка поверхностей Воздух для дыхания				КОМПР	I	Ů		Ů	_			1/		
Медицинское оборудование Воздух для дыхания Высококачественный воздух	1	3-4	1	КОМПРЕССОРЫ	или	Ů		Ů				1/		Ī
для транспортирования Пищевая промышленность				^э Ы ВОСЕ	Ţ	Û		Ů	_			1/		
Пивоваренное производство Производство молочных продуктов	1	1-3	1	ĞE	или	İ		Ů			İ	1/		
Фармацевтическая промышленность					Ţ	Ů		Ů	-			1/	Ĭ	Ī

^{*} Только для компрессоров без ресивераТолько для компрессоров без ресивера

***ISO 8573-1:1991

^{**} Отделение грубых примесей продлевает срок службы микрофильтра

Полный диапазон качественных решений для осушения сжатого воздуха

Осушители сжатого воздуха **BOGE**

DR, DX = Осушитель рефрижераторного типа

DM = Мембранный осушитель

DAZ / DAU = Адсорбционный осушитель, с холодной регенерацией

DAV = Адсорбционный осушитель, с горячей регенерацией и вакуумным охлаждением

DACZ = Блок подготовки сжатого воздуха на основе адсорбционного осушителя с холодной регенерацией серии DAZ с адсорбером на основе активированного угля

Примеси и классы частоты в соответствии с ISO 8573-1:2001

Класс		Частицы тверд	цых включений		Влажность	Макс. содержание масла
		Макс. размер	частиц на m³		Макс. температура точки росы	MΓ/M³
		Макс. размер	частиц в мкм			
	< = 0,1	0,1 < d	0,5 < d	1,0 < d		
		< = 0,5				
0		Определяетс				
1	A/R	100	< = -70°C	< = 0,01 MΓ/M ³		
2	A/R	100.000	1.000	10	< = -40°C	< = 0,1 MΓ/M ³
3	A/R	A/R	10.000	500	< = -20°C	< = 1 MΓ/M ³
4	A/R	A/R	A/R	1.000	<=+ 3°C	< = 5 MΓ/M ³
5	A/R	A/R	A/R	20.000	<=+ 7°C	-
6	-	-	-	-	< = +10°C	-
	Классы 6 и 7 определяют	ся в соответствии с максим	альным		Классы 7-9 определяются	
	размером и максимальны	м содержанием твердых час	тиц.		в соответствии с остаточным	
	Класс 6: d < = 5 мкм и со	одержание < = 5 мг/м ³			содержанием влаги.	
	Класс 7: d < = 40 мкм и со	одержание < = 10 мг/м ³			Класс 7: С _w < = 5 мг/м ³	
					Класс 8: 0.5 г/м ³ < С _w < = 5 мг/м ³	
					Класс 9: 5 г/м ³ < С _w < = 10 мг/м ³	

Осушители рефрижераторного типа BOGE серии DR и DX

Производительность: 0.33 - 237.5 м³/мин., 12 - 8379 cfm

Макс. рабочее давление: 16 бар, 235 psig

Преимущества использования осушителей рефрижераторного типа BOGE

Температура точки росы +3°C

- 🥦 постоянно гарантированное высокое
- 朜 качество сжатого воздуха
- незначительная дифференциальная потеря давления при при минимальных эксплуатационных затратах

Даже при окружающей температуре +50°С и выходной температуре сжатого воздуха +70°С большая площадь поверхности теплообменника позволяет поддерживать температуру точки росы +15°С.

 Высокоэффективный теплообменник гарантирует работу даже в чрезвычайных температурных режимах

Регулирование процесса осушения в зависимости от производительности

- Конструкция, не допускающая излишних энергозатрат

Во всех моделях использован охлаждающий хладагент R 134a

- 🦲 безопасный для озонового слоя
- 堕 экологически безопасная работа
- 连 минимальный объем хладагента

Осушители **рефрижераторного** типа

Одним из самых экологических способов осушения сжатого воздуха является осушение с помощью осушителей рефрижераторного типа. В результате охлаждения сжатого воздуха практически до температуры замерзания воды из сжатого воздуха конденсируется влага вместе с примесями масла и пыли, а сухой сжатый воздух поступает в систему.

В большинстве случаев температура точки росы сжатого воздуха должна быть на несколько градусов ниже температуры окружающей среды, чтобы предотвратить образование влаги в трубопроводах.

Интеллектуальный подход к энергосбережению

Серии DR и DX оснащены микропроцессорной системой управления в зависимости от нагрузки. Серия DX может быть оборудована энергосберегающим регулятором всасывания или частотным регулированием.

Энергосбережение до 90%

Пониженный объем хладагента

R 134а является стандартным хладагентом, используемым в осушителях серии DR и DX. Количество хладагента на 70% меньше, чем у традиционных охлаждающих осушителей.

Технологии охлаждения BOGE безопасны для окружающей среды

Применение технологий охлаждения влечет за собой определенную ответственность. Поэтому при конструировании осушителей серии DR и DX изначально особое внимание уделялось вопросу безопасности для окружающей среды в процессе эксплуатации, а также удалению конденсата при работе охлаждающих осушителей.

Технические характеристики рефрижераторных осушителей BOGE серии DR Производительность 0.33 – 27.5 м³/мин., 12 – 972 cfm

BOGE Модель	Произв	одитель	ность	макс. давление	давления при з полной нагрузке з		элект	•	Элект питані В/Гц		Подсо- динения воздуха	Объем охлаж <i>д</i>	цающего	Габариты	Масса
DR	м³/мин	М³/Ч	cfm	бар	бар	psig	кВт	HP	50 Гц	60 Гц		М³/Ч	cfm	ДхШхВ (мм)	ΚГ
3	0,33	20	12	16	0,06	0,9	0,15	0,20	230	230	G ¹ / ₂	380	224	310x450x 450	25
6	0,58	35	21	16	0,15	2,1	0,16	0,22	230	230	G ¹ / ₂	380	224	310x450x 450	26
8	0,83	50	29	16	0,19	2,7	0,22	0,30	230	230	G ¹ / ₂	320	188	310x450x 450	27
11	1,08	65	38	16	0,22	3,1	0,24	0,33	230	230	G ¹ / ₂	320	188	310x450x 450	28
17	1,75	105	62	16	0,22	3,1	0,35	0,48	230	230	G ¹ / ₂	260	153	310x450x 450	31
21	2,08	125	74	16	0,28	4,0	0,44	0,60	230	230	G ¹ / ₂	260	153	310x450x 450	32
25	2,50	150	88	14	0,28	4,0	0,45	0,61	230	-	G1	650	383	500x710x 740	59
30	3,00	180	106	14	0,14	2,0	0,56	0,76	230	-	G1 ¹ / ₂	650	383	500x710x 740	60
50	5,00	300	177	14	0,28	4,0	0,90	1,22	230	-	G11/2	1300	765	500x710x 740	79
60	6,00	360	212	14	0,16	2,3	0,95	1,29	230	-	G1 ¹ / ₂	1300	765	500x710x 740	80
75	7,50	450	265	14	0,24	3,4	1,08	1,47	230	-	G11/2	900	530	500x710x 740	85
91	9,17	550	324	14	0,18	2,6	1,25	1,70	400	-	G2	2700	1589	500x850x 970	90
108	10,83	650	383	14	0,24	3,4	1,30	1,77	400	-	G2	2700	1589	500x850x 970	92
125	12,50	750	442	14	0,19	2,7	1,50	2,04	400	-	G2	2700	1589	500x850x 970	117
141	14,16	850	501	14	0,18	2,6	1,77	2,41	400	-	G2	2700	1589	500x850x 970	121
180	17,75	1065	627	16	0,30	4,3	2,56	3,48	400	-	G2 ¹ / ₂	3100	1825	900x800x1230	176
190	18,50	1110	654	16	0,28	4,0	2,80	3,81	400	_	G2 ¹ / ₂	2600	1530	900x800x1230	181
225	22,50	1350	795	16	0,16	2,3	2,95	4,01	400	-	G2 ¹ / ₂	2600	1530	900x800x1230	186
235	23,50	1410	830	16	0,19	2,7	3,10	4,22	400	-	G2 ¹ / ₂	2600	1530	900x800x1230	191
275	27,50	1650	972	16	0,31	4,4	3,25	4,42	400	-	G2 ¹ / ₂	2600	1530	900x800x1230	197

Требования при установке

Для стандартных моделей температура воздуха в рабочем помещении не должна превышать 50 или опускаться ниже 2°С. Со всех сторон осушителя необходимо предусмотреть достаточное пространство для обеспечения хорошей циркуляции охлаждающего воздуха. Также предусматривается подвод дренажного шланга необходимой длины для отвода конденсата.

Номинальные условия / Данные для установки

Производительность считается по условиям всасывания компрессора

连 (+20°С и 1 бар)

Температура сжатого воздуха +35°C

- (макс. +65°С, либо возможно +70°С)

 Рабочее давление 7 бар
- макс. возможно 14/16 бар)

Температура окружающей среды +25°C (макс. возможно +50°C)

Температура точки росы +3°С (возможна разница в температурах точки росы) на выходе из осушителя

Технические характеристики соответствуют DIN ISO 7183.

Для более высоких значений давлений и температуры, различных значений температур точки росы и производительности осушителей, отличных от DIN ISO 7183 возможны варианты исполнения по требованию.

Система охлаждения:

Полностью герметичная закрытая система охлаждения, охлаждающий компрессор.

Слив конденсата:

Электронное устройство автоматического слива Bekomat

Осушители оборудованы:

- 连 Выключатель (с подсветкой)
- Дополнительное устройство выключения, начиная с модели DR 91
- Индикатор температуры точки росы
- Е Крепление к стене (модели DR 3−DR 21)
- Разъем питания, до модели DR 75
- Терминальный блок, начиная с модели DR 91
- Теплообменник с защитой от запотевания
- Контроль энергосбережения, начиная с модели DR 25 и выше (энергосбережение до 90%)

Опции:

Для моделей DR 3-DR 275:

- Байпасная линия
- безпотенциальные контакты для сообщений об ошибках,
- Статуса сообщений и дистанционного включения/выключения
- Специальные напряжения
- Водяное охлаждение (начиная с модели DR 180 и выше)
- Встроенная защита от замерзания (до -10°C) начиная с модели DR 25 и выше

Поправочные коэффициенты

В соответствии с DIN ISO 7183 номинальными значениями при работе осушителей является рабочее давление 7бар, температура окружающей среды 25°С и температура поступающего воздуха 35°С. При других рабочих давлениях и температурах должны учитываться поправочные коэффициенты.

температуры окружающей среды/охлаждающей воды	(°C)	25		30	35		40	45		50						
Коэффициент	f_1	1		0,97	0,94	1	0,87	0,75	5 (0,62						
температуры на входе	(°C)	30		35	40		45	50		55	60		65	70		
Коэффициент	f_2	1,28		1	0,88	3	0,75	0,58	3 (0,48	0,44	1 (0,42	0,40)	
рабочего давления	(бар)	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Коэффициент	fo	0.6	0.7	0.8	0.88	0.94	1	1.04	1.06	1.09	1.1	1.12	1.14	1.15	1.16	1.17

Пример (для температуры точки росы +3°C)

Производительность	М³/Ч	750	Коэффициен	Т			
Температура окружающей среды (f ₁)	°C	40	= 0,87	_ V	_ 750	= 1008	DR 180
Температура на входе (f ₂)	°C	45	= 0,75	$=$ $\frac{1}{f_1 \times f_2 \times f_3}$	0,87 x 0,75 x 1,14	= 1006	DI 100
Превышение рабочего давления (f ₃)	бар	13	= 1,14				

Технические характеристики для осушителей рефрижераторного типа BOGE серии DX Производительность 30 – 237.5 м³/мин., 1059 – 8379 cfm

BOGE Модель	•	одительн	ость		ния при й	Потребле 100% полная нагрузка	ние электро 50% частичная нагрузка	энергии 0% без нагрузка	Электро- питание	Подсое- динения	Объем охлажд воздуха	ающего	даюш при в	м охлаж- ей воды, одяном кдении	Габариты Д х Ш х В	Macca
DX	м³/мин	М³/Ч	cfm	бар	psig	кВт	кВт	кВт	В/50 Гц	(DIN 2633)	м³/ч	cfm	M ³ /4	cfm	мм	ΚΓ
300	30,0	1800	1059	0,12	1,74	3,1	1,7	0,4	400	DN 100	4800	2823	1,0	0,588	900 x 1175 x 1725	412
330	33,3	2000	1176	0,14	2,03	3,2	1,9	0,4	400	DN 100	4800	2823	1,1	0,647	900 x 1175 x 1725	420
380	38,3	2300	1353	0,19	2,76	3,4	2,0	0,4	400	DN 100	4800	2823	1,3	0,765	900 x 1175 x 1725	425
465	46,6	2800	1647	0,24	3,48	3,9	2,3	0,5	400	DN 100	5200	3058	1,6	0,941	900 x 1175 x 1725	435
580	58,3	3500	2058	0,11	1,60	5,9	3,4	0,7	400	DN 150	9600	5645	2,0	1,176	1200 x 1200 x 1940	610
715	71,6	4300	2529	0,16	2,32	6,6	3,8	0,8	400	DN 150	9600	5645	2,5	1,470	1200 x 1200 x 1940	630
915	91,6	5500	3234	0,24	3,48	8,0	4,6	1,0	400	DN 150	10400	6115	2,9	1,710	1200 x 1200 x 1940	670
1165	116,7	7000	4116	0,19	2,76	9,9	5,6	1,2	400	DN 200	19200	11290	4,0	2,350	2225 x 1200 x 1970	995
1455	145,8	8750	5145	0,17	2,47	12,4	7,0	1,6	400	DN 200	19200	11290	5,2	3,060	2225 x 1200 x 1970	1165
1750	175,0	10500	6174	0,22	3,19	14,6	8,2	1,8	400	DN 200	20800	12231	6,4	3,760	2225 x 1200 x 1970	1225
2080	208,3	12500	7350	0,22	3,19	18,6	10,3	2,3	400	DN 250	23000	13524	7,5	4,410	3345 x 1200 x 2030	1710
2375	237,5	14250	8379	0,20	2,90	20,2	11,2	2,5	400	DN 250	23000	13524	8,5	5,000	3345 x 1200 x 2030	1940

Требования к установке

Для стандартных моделей температуры воздуха в рабочем помещении не должны превышать +50°С или опускаться ниже +2°С. Со всех сторон осушителя необходимо предусмотреть достаточное пространство для облегчения хорошей циркуляции охлаждающего воздуха.

Также предусматривается подвод дренажного шланга необходимой длины для отвода конденсата.

Номинальные условия/ Данные для установки

Производительность считается по условиям всасывания компрессором воздуха с температурой +20°С и давлением 1 бар.

- Температура сжатого воздуха +35°С (макс. возможно +70°С)
- Рабочее давление 7 бар (макс. возможно 16 бар)
- Температура окружающей среды +25°С (макс. возможно +50°С)

Температура точки росы +3°C:

Технические характеристики соответствуют DIN ISO 7183

Режим регулирования точки росы:

- стандартный, летний и автоматический режим
- Дисплей отображения значения точки росы
- Макс. рабочее давление до 16 бар
- Температура поступающего сжатого воздуха до 70°C
- Температура окружающей среды до 50°C

Энергосбережение:

Интеллектуальное управление осушителем в зависимости от нагрузки:

- Регулятор всасывания
- 塦 с DX 300 до DX 465
- Частотный преобразователь начиная с DX 580 и до DX 2375
- Стандартно экономия электроэнергии достигает 90%

Дисплей:

- Легко читаемое отображение всех основных эксплуатационных параметров
- 🗦 Работает в высококонтрастном режиме
- Отображает информацию об энергопотреблении

Подключения:

- Стандартный CAN Bus interface
- безпотенциальные контакты для отображения информации о состоянии работы
- безпотенциальные контакты для отображения информации об DTP- ошибках

Стандартная комплектация включает:

- Безопасный для окружающей среды хладагент R134a
- Электронный, управляемый по уровню конденсатоотводчик, обеспечивающий сброс конденсата без потерь давления в системе

Опционально:

- Байпасная линия для всех моделей серии DX
- Исполнение с водяным охлаждением, начиная с модели DX 300 и до DX 915
- Исполнение с воздушным охлаждением, начиная с модели DX 1165 и до DX 2375
- Встроенная защита от замерзания до –10°C

Поправочные коэффициенты

В соответствии с DIN ISO 7183 номинальными значениями при работе осушителей является рабочее давление 7бар, температура окружающей среды 25°С и температура поступающего воздуха 35°С. При других рабочих давлениях и температурах должны учитываться поправочные коэффициенты.

Коэффициент температуры окружающей среды/охлаждающей воды	(°C)	25		30	35		40	45		50						
Коэффициент	f ₁	1		0,98	0,93	3	0,84	0,72	2 (0,56						
Коэффициент температуры на входе	(°C)	30		35	40		45	50		55	60		65	70		
Коэффициент	f ₂	1,20		1	0,82	2	0,67	0,55	5 (0,45	0,38	3 (0,34 (,30		
Коэффициент рабочего давления	(бар)	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Коэффиционт	f	0.6	0.7	ΛR	0.88	Λ 0.4	- 1	1 0/	1 06	1 00	1 1	1 12	1 1/	1 15	1 16	1 17

Пример (для температуры точки росы +3°C)

	,										
Производительность	М³/Ч	3500	Kc	эффициент	Γ						
Температура окружающей среды (f ₁)	°C	40	=	0,84	_	V	_	3500	= 6950	DX 1165	
Температура на входе (f ₂)	°C	50	=	0,55	_	$f_1 \times f_2 \times f_3$	_	0,84 x 0,55 x 1,09	- 0330	DX 1103	
Превышение рабочего давления (f _o)	баn	10	_	1.09							

Мембранные осушители BOGE серии DM...V

Производительность: 125 - 2150 л/мин., 4.41 - 75.90 cfm

Макс. рабочее давление: 12 бар, 175 psig

Осушение сжатого воздуха поможет сэкономить Ваши деньги!

Сжатый воздух всегда содержит влагу, частицы компрессорного масла и пыли. Все это может привести к серьезным проблемам.

Процесс коррозии или выпадение конденсата могут повреждать инструменты и пневматику, снижая эффективность производства и качество продукции.

Необходимость ремонтных работ приводит к дорогостоящим простоям.

Мембранные осушители применяются для понижения температуры точки росы. Предпочтительно устанавливаются между компрессором и ресивером сжатого воздуха.

Описание функционирования

- (1) Неподготовленный сжаты воздух поступает в корпус осушителя (A) и направляется в его центральный проход (D)
- (2) Небольшой внутренний фильтр (C) удаляет любые взвешенные аэрозоли и частицы в сливную часть нижней части корпуса. неподготовленный сжатый воздух, минуя фильтр, реверсивно меняет направление для прохождения через точно подогнанные мембраны.
- (3) Одновременно объем воздуха в камере осушения вновь устремляется вверх через систему мембран, очищаясь (4) между ними.
- (5) Осушаемый воздух оппозитно направляется вверх через мембраны, задерживающие молекулы воды. Задерживающие мембраны воды. в процессе очищения влага из осушенного воздуха направляется устремляется из осушителя (7) обратно в атмосферу.
- (6) осушенный сжатый воздух выходит из системы мембран.
- (7) Влага, отделяемая в процессе осушения, выбрасывается в атмосферу с частью осушенного воздуха.

Схема мембранного осушителя

- А: Верхняя часть (вход/выход)
- В: Корпус /Корпус фильтра
- С: Внутренний фильтр
- **D**: Мембранный элемент, включающий центральный проход
- Е: Сопло с адаптером
- **F**: Слив конденсата

Понижение температуры точки росы (Δt) от 20°C до 55°C

 широкий спектр областей применения мембранного осушителя

Предварительный фильтр со сливом конденсата в стандартной комплектации

 экологически приемлемый, безопасный для озона и окружающей среды способ осушения

Предварительный фильтр со сливом конденсата в стандартной комплектации

технически безмасляный сжатый воздух

Экологически безопасен

 экологически приемлемый, безопасный для озона и окружающей среды способ осушения

Нет движущихся механизмов, нет двигателей

экономияэнергоресурсов

Компактная конструкция

- 连 простота монтажа, экономия
- производственных площадей и средств на установку

BOGE	Макс.	рабочее	Пропуск	кная	Осуше	ние возд	цуха	Пропуск	ная способность	Подсоед.	Габариты	Macca
Модель	давле	ние	способн	ЮСТЬ				Выход о	сушителя	сжатого оздуха	ДхШхВ	
DMV	бар	psig	l/min	cfm	$\Delta \mathbf{t}$	l/min	cfm	л/мин (ис	сп.воздух) cfm	вход / выход	мм	КГ
05	7	100	300	10,59	20 K	30	1,06	270	9,53	G 3/8	167 x 60 x 522	3,0
05	9	130	420	14,83	20 K	38	1,34	382	13,49	G ³ / ₈	167 x 60 x 522	3,0
05	12	175	620	21,89	20 K	50	1,77	570	20,12	G 3/8	167 x 60 x 522	3,0
05	7	100	180	6,35	35 K	30	1,06	150	5,30	G 3/8	167 x 60 x 522	3,0
05	9	130	250	8,83	35 K	38	1,34	212	7,48	G 3/8	167 x 60 x 522	3,0
05	12	175	370	13,06	35 K	50	1,77	320	11,30	G 3/8	167 x 60 x 522	3,0
05	7	100	125	4,41	55 K	30	1,06	95	3,35	G 3/8	167 x 60 x 522	3,0
05	9	130	175	6,81	55 K	38	1,34	137	4,84	G 3/8	167 x 60 x 522	3,0
05	12	175	255	9,00	55 K	50	1,77	205	7,24	G 3/8	167 x 60 x 522	3,0
06	7	100	400	14,12	20 K	40	1,41	360	12,71	G 3/8	167 x 60 x 582	3,2
06	9	130	560	19,77	20 K	50	1,77	510	18,00	G 3/8	167 x 60 x 582	3,2
06	12	175	825	29,13	20 K	65	2,30	760	26,83	G 3/8	167 x 60 x 582	3,2
06	7	100	240	8,47	35 K	40	1,41	200	7,06	G 3/8	167 x 60 x 582	3,2
06	9	130	335	11,83	35 K	50	1,77	285	10,06	G 3/8	167 x 60 x 582	3,2
06	12	175	500	17,65	35 K	65	2,30	435	15,36	G 3/8	167 x 60 x 582	3,2
06	7	100	170	6,00	55 K	40	1,41	130	4,59	G 3/8	167 x 60 x 582	3,2
06	9	130	235	8,30	55 K	50	1,77	185	6,53	G 3/8	167 x 60 x 582	3,2
06	12	175	345	12,18	55 K	65	2,30	280	9,88	G 3/8	167 x 60 x 582	3,2
09	7	100	600	21,18	20 K	60	2,12	540	19,06	G ³ / ₄	210 x 80 x 592	4,5
09	9	130	835	29,48	20 K	75	2,65	760	26,83	G 3/4	210 x 80 x 592	4,5
09	12	175	1230	43,42	20 K	100	3,53	1130	39,89	G ³ / ₄	210 x 80 x 592	4,5
09	7	100	360	12,71	35 K	60	2,12	300	10,59	G 3/4	210 x 80 x 592	4,5
09	9	130	505	17,83	35 K	75	2,65	430	15,18	G ³ / ₄	210 x 80 x 592	4,5
09	12	175	750	26,48	35 K	100	3,53	650	22,95	G ³ / ₄	210 x 80 x 592	4,5
09	7	100	245	8,65	55 K	60	2,12	185	6,53	G ³ / ₄	210 x 80 x 592	4,5
09	9	130	345	12,18	55 K	75	2,65	270	9,53	G ³ / ₄	210 x 80 x 592	4,5
09	12	175	510	18,00	55 K	100	3,53	410	14,47	G ³ / ₄	210 x 80 x 592	4,5
13	7	100	800	28,24	20 K	80	2,82	720	25,42	G ³ / ₄	210 x 80 x 642	4,8
13	9	130	1110	39,18	20 K	105	3,71	1005	35,48	G ³ / ₄	210 x 80 x 642	4,8
13	12	175	1650	58,25	20 K	130	4,59	1520	53,66	G ³ / ₄	210 x 80 x 642	4,8
13	7	100	485	17,12	35 K	80	2,82	405	14,30	G ³ / ₄	210 x 80 x 642	4,8
13	9	130	675	23,82	35 K	105	3,71	570	20,12	G ³ / ₄	210 x 80 x 642	4,8
13	12	175	1000	35,30	35 K	130	4,59	870	30,71	G ³ / ₄	210 x 80 x 642	4,8
13	7	100	330	11,65	55 K	80	2,82	250	8,83	G ³ / ₄	210 x 80 x 642	4,8
13	9	130	465	16,42	55 K	105	3,71	360	12,71	G ³ / ₄	210 x 80 x 642	4,8
13	12	175	680	24,00	55 K	130	4,59	550	19,42	G ³ / ₄	210 x 80 x 642	4,8
14	7	100	1050	37,07	20 K	120	4,24	930	32,83	G ³ / ₄	210 x 80 x 712	5,1
14	9	130	1470	51,89	20 K	150	5,30	1320	46,60	G ³ / ₄	210 x 80 x 712	5,1
14	12	175	2150	75,90	20 K	200	7,06	1950	68,84	G ³ / ₄	210 x 80 x 712	5,1
14	7	100	710	25,06	35 K	120	4,24	590	20,83	G ³ / ₄	210 x 80 x 712	5,1
14	9	130	990	34,95	35 K	150	5,30	840	29,65	G ³ / ₄	210 x 80 x 712	5,1
14	12	175	1460	51,54	35 K	200	7,06	1260	44,48	G ³ / ₄	210 x 80 x 712	5,1
14	7	100	485	17,12	55 K	120	4,24	365	12,89	G ³ / ₄	210 x 80 x 712	5,1
14	9	130	680	24,00	55 K	150	5,30	530	18,71	G ³ / ₄	210 x 80 x 712	5,1
14	12	175	1000	35.30	55 K	200	7.06	800	28,24	G ³ / ₄	210 x 80 x 712	5.1

Адсорбционные осушители BOGE серии DAZ

холодная регенерация с предварительным и пост - фильтром

Производительность: 8-6100 м³/час Макс. рабочее давление: 10 и 16 бар

В тех областях, где охлаждающие осушители серии D с температурой точки росы от +3 до +7°C не удовлетворяют требованиям к качеству сжатого воздуха, используются адсорбционные осушители с холодной регенерацией с температурой точки росы до -70°C

Еще до осушения сжатый воздух проходит через стандартный микро-фильтр BOGE серии FP, в котором отделяются частицы примеси размером до 0,01 мм В адсорбционном резервуаре адсорбент впитывает влагу из воздуха, в результате чего получается чистый, осушенный сжатый воздух. Для стандартных моделей установленная температура точки росы составляет -40°C.

Параллельно с процессом адсорбции во втором резервуаре осушителя происходит регенерация (восстановление) адсорбента. В осушителях с холодной регенерацией серии DAZ часть осушенного воздуха направляется на восстановление адсорбента.

Система воздухоподготовки BOGE серии DACZ

Адсорбционный осушитель серии DAZ и адсорбер на основе активированного угля серии DCZ с предварительным и пост-фильтром Производительность 8-950 м³/час Макс. рабочее давление: 10 и 16 бар

Адсорбционные осушители с холодной регенерацией в комбинации с адсорберами на основе активированного угля устанавливаются при жестких требованиях к сжатому воздуху и обеспечивают остаточное содержание масла до 0,003 мг/м³ и температуру точки росы до – 70°C.

Преимущества использования системы воздухоподготовки BOGE серии DAC

Полностью укомплектован и готов к эксплуатации

 экономия средств на монтаж и подключение пре- и постфильтров (до модели DAZ 160)

Клапаны на входе и выходе с высокой пропускной способностью

минимальное падение давления, энергосбережение

Синхронизация с компрессором

ЭКОНОМИЧНОСТЬ

Экономичный и безопасный принцип адсорбции

🥦 широкая область применения

Микропроцессорная система управления

Опциональная настойка температуры точки росы

Индикация функционирования на передней панели блока управления

Непрерывное отображение актуального состояния

Регенерация без внешнего энергопотребления

厚 экономичность, бесперебойная работа

10-тиминутный цикл

🦲 сбережение порядка 6% электроэнергии

Опциональное управление температурой точки росы

 энергосбережение за счет сокращения использования сжатого воздуха, в зависимости от давления, производительности и температуры

Удаление конденсата использованным воздухом

не требуется монтировать устройство отвода конденсата

Стандартная температура точки росы -40°C

отсутствует выпадение конденсата в трубопроводах

Экологически безопасен

Экологически приемлемый,
 безопасный для озона и
 окружающей среды способ осушения

DAZ 25-160

DAZ 200-1020

DACZ 4-14

BOGE	Произ	води-	Габариты	Подсое-	Macca**
Модель	тельн	ость*	Д/Ш/В	динение	
DAZ	М³/Ч	cfm	мм		кг
4	8	4	312/ 210/ 390	G1/4	9
5	15	8	312/ 210/ 565	G1/4	13
6	25	13	359/ 210/ 815	G1/4	17
8	35	21	359/ 210/1085	G1/4	25
9	56	30	436/ 300/1185	G ³ / ₈	52
11	72	40	436/ 300/1410	G ³ / ₈	65
14	86	50	436/ 300/1610	G ¹ / ₂	77
25	145	85	565/ 490/1730	G1	121
35	200	118	592/ 490/1740	G1	142
45	255	150	634/ 490/1810	G1	176
60	360	212	660/ 490/1840	G1	220
70	400	235	823/ 585/1930	G11/2	280
100	620	365	875/ 585/1925	G11/2	365
125	750	441	905/ 585/2000	G11/2	465
160	950	559	1020/ 780/2020	G2	560
200	1200	706	1060/ 840/2070	DN 50	640
260	1550	912	1270/ 900/2120	DN 65	830
340	2000	1176	1350/ 990/2160	DN 65	955
420	2500	1470	1530/1040/2210	DN 80	1075
500	3000	1764	1600/1100/2255	DN 80	1500
645	3800	2235	1875/1200/2385	DN 100	1990
810	4850	2852	1925/1250/2660	DN 100	2410
1020	6100	3587	2160/1150/3585	DN 125	2850

BOGE	Произ	20514	Габариты	Macca
	Произ		•	IVIacca
Модель			Д/Ш/В	
DACZ	М³/Ч	cfm	MM	КГ
4	8	4	445/ 210/ 390	12
5	15	8	445/ 210/ 565	17
6	25	13	445/ 210/ 815	24
8	35	21	445/ 210/1065	34
9	56	30	629/ 300/1185	72
11	72	40	629/ 300/1410	90
14	86	50	629/ 300/1610	107
25	145	85	770/ 490/1650	155
35	200	118	820/ 490/1665	186
45	255	150	885/ 490/1730	262
60	360	212	935/ 490/1765	324
70	400	235	1140/ 585/1815	369
100	620	365	1245/ 585/1815	485
125	750	441	1305/ 585/1935	629
160	950	559	1465/ 620/1950	720

По запросу

Макс. рабочее давление DAZ 4 – DAZ 160 16 бар

DAZ 200 – DAZ 1020 **10** 6ap

Raccordement Olectrique: 230 V; 50 Hz; 0,021 kW Электрическое подключение 230 B; 50 Гц; 0.021 кВт

(Габариты и масса для моделей DA/DAC 200 и выше не включают пре- и пост-фильтры)

Резервуар соответствует стандарту РЕD/СЕ

Поправочные коэффициенты установлены в соответствии со стандартом PDP для значения ниже -40°C

гемпературы		Значение бар												
°C	5	6	7	8	9	10	11	12	13	14	15	16		
35	0,75	0,89	1,00	1,08	1,26	1,31	1,36	1,49	1,62	1,70	1,79	1,90		
40	0,64	0,78	0,91	1,00	1,08	1,16	1,24	1,35	1,47	1,57	1,67	1,77		
45	0,61	0,73	0,82	0,94	1,03	1,07	1,10	1,22	1,35	1,46	1,57	1,66		
50	0,59	0,67	0,79	0,86	0,99	1,03	1,07	1,18	1,29	1,37	1,46	1,55		

Более высокое значение температуры возможно по запросу Возможны модификации

Пример расчёта:

Через осушитель проходит объем воздуха 380 м³/ч с давлением 8 бар и температурой на входе +35°C Необходимая температура точки росы: –40°C.

Пеобходиман Температура Точки росы. —40 С

а) Подобрать необходимую производительность осушителя:

необходимая производительность м³/ч коэффициент

 $\frac{380 \text{ m}^3/4}{1,08} = 352 \text{ m}^3/4$

Выбрана модель DAZ 60.

b) Рассчитать макс. производительность осушителя в м³/ч Номинальная производительность м³/ч х

номинальная производительность мүч х коэффициент

 $(DAZ 60) = 360 \text{ m}^3/\text{y} \times 1.08 = 389 \text{ m}^3/\text{y}$

^{*} Производительность в м³/ч при 1 бар в соотв. с DIN ISO 7183

^{**} начиная с DAZ 200 масса указана без фильтра

Адсорбционные осушители серии DAU...N

с холодной регенерацией

производительность: 5 - 2750 м³/ч, 3 - 1620 cfm

макс. рабочее давление: 16 бар, включительно до DAU 170 N макс. рабочее давление: 10 бар, начиная с DAU 225 N и выше

Адсорбционные осушители с холодной регенерацией с температурой точки росы до -70°C

Еще до осушения сжатый воздух проходит через стандартный микро-фильтр BOGE серии FU ...N, в котором отделяются частицы и примеси размером до 0,01 мкм.

В адсорбционном резервуаре адсорбент впитывает влагу из воздуха, в результате чего получается чистый, осушенный сжатый воздух. Для стандартных моделей установленная температура точки росы составляет – 40°C.

Параллельно с процессом адсорбции во втором резервуаре осушителя происходит регенерация (восстановление) адсорбента. В осушителях с холодной регенерацией серии DAU ... N часть осушенного воздуха направляется на восстановление адсорбента.

Ваши преимущества

Клапаны на выходе и входе с высокой пропускной способностью

минимальное падение давления, энергосбережение

Экономичный и безопасный принцип адсорбции

🧯 широкая область применения

Регенерация без внешнего энергопотребления

экономичность, бесперебойная работа

По запросу оснащается системой управления по температуре точки росы

 энергосбережение за счет сокращения использования сжатого воздуха, в зависимости от давления, производительности и температуры Удаление конденсата использованным воздухом

не требуется монтировать устройство отвода конденсата

Стандартная температура точки росы -40°C

отсутствует выпадение конденсата в трубопроводах

Экологически безопасен

 Экологически приемлемый, безопасный для озона и окружающей среды способ осушения

DAU 26 N -170 N

BOGE Модель	Произ	водите- ть*	Воздух Регенеј (1 бар,	рацию	мин.	д Воздуха Потеря Давле- ния Новые A/B/C , +20°C) Условия			Подсое- динение	Macca
DAUN	m³/h	cfm	м³/ч	cfm		cfm	мбар	мм	G	кг
1	5	3	0,85	0,5	4,1	2,4	65	300/121/343	1/2	7
2	10	6	1,70	1,0	8,1	4,8	95	300/121/591	1/2	11
3	15	9	2,55	1,5	12,2	7,2	115	300/121/853	1/2	15
5	25	15	4,25	2,5	20,3	11,9	250	300/121/1377	1/2	24
6	35	20	5,95	3,5	28,4	16,7	75	531/195/665	1	29
8	50	30	8,50	5,0	40,6	23,9	100	531/195/917	1	38
11	65	40	11,1	6,5	52,8	31,1	125	531/195/1169	1	48
13	80	45	13,6	8,0	65,0	38,2	170	531/195/1421	1	57
17	100	60	17,0	10,0	61,3	36,0	250	531/195/1673	1	67
26	150	90	23,0	13,5	122,0	71,7	170	745/500/2020	1	200
30	175	105	26,3	15,5	148,75	87,5	100	895/550/1890	1	255
38	225	130	34,0	20,0	182,51	107,3	125	915/550/1890	1½	277
51	300	175	45,0	26,5	242,98	142,9	160	965/600/1890	1½	321
71	375	220	56,0	32,9	303,46	178,4	190	1015/600/2205	1½	398
91	550	320	83,0	48,8	446,0	262,3	180	1240/650/2150	2	431
110	650	380	98,0	57,6	527,0	309,9	220	1240/750/2175	2	506
140	850	500	128,0	75,3	688,98	405,1	260	1290/750/2295	2	585
170	1000	590	150,0	88,2	809,94	476,2	180	1510/850/2390	2½	676
225	1350	795	202,5	119,1	1093,95	643,2	190	1500/950/2555	DN 80	870
275	1650	970	247,5	145,5	1336,93	786,1	230	1700/1050/2365	DN 80	1000
325	1950	1150	292,5	172,0	1579,91	929,0	160	1800/1163/2585	DN 100	1106
375	2250	1325	337,5	198,5	1822,89	1071,9	180	1900/1290/2605	DN 100	1350
460	2750	1620	412,5	242,6	2227,86	1310,0	240	2000/1340/2695	DN 100	1530

^{*}В соответствии с DIN ISO 7183 производительность указана при 1 бар

Модели DAU 1 N - 17 N, корректирующий коэффициент f

Рабочее давление бар (_)	4	5	6	7	8	9	10	11	12	13	14	15	16
25°C	0,69	0,82	0,96	1,10	1,24	1,38	1,50	1,50	1,50	1,50	1,50	1,50	1,50
30°C	0,69	0,82	0,96	1,10	1,24	1,38	1,50	1,50	1,50	1,50	1,50	1,50	1,50
35°C	0,63	0,75	0,88	1,00	1,13	1,26	1,38	1,50	1,50	1,50	1,50	1,50	1,50
40°C	0,48	0,58	0,68	0,77	0,87	0,96	1,06	1,16	1,25	1,35	1,45	1,50	1,50
45°C	0,38	0,45	0,53	0,60	0,68	0,75	0,83	0,90	0,98	1,05	1,13	1,20	1,28
50°C	0,30	0,36	0,42	0,48	0,54	0,60	0,66	0,72	0,78	0,84	0,90	0,96	1,02

 $V_{corr} = {V_{nom} \over F}$ Пример: $V_{nom} = 22$ м³/ч, температура на входе = 30°С, рабочее давление = 10 бар ()

 $V_{corr} = \frac{22 \; Nm^3/4}{1,50} = 14,66 \; m^3/4$. расчетная модель осушителя: DAU 3 N

Модели DAU 26 N - 460 N

Рабочее давле бар (_)	4	5	6	7	8	9	10	11	12	13	14	15	16	
Корректирующ коэффициент (0,63	0,75	0,88	1,0	1,12	1,25	1,38	1,50	1,63	1,75	1,88	2,0	2,13
Температура точки росы	Остаточное			Температура на входе °C				20	25	30	35	40	45	50
-40°C	0,11 g/м³		Te	Корректирующий коэффициент Температура (f _T) Температура точки росы (°C)			1,2 -40	1,2 -40	1,1 -40	1,0 -40		-	-	

 $V_{corr} = \frac{V_{nom}}{f_p \cdot f_T}$; Пример: $V_{nom} = 200 \text{ м}^3/\text{ч}$, температура на входе = 30°C, рабочее давление = 10 бар (s), PRP –40°C

 $m V_{corr} = \frac{200 \ M^3/4}{1.38 \cdot 1.1} = 131.8 \ M^3/4.$ расчетная модель осушителя: DAU 225 N

Адсорбционные осушители BOGE серии DAV С внешней горячей регенерацией и вакуумным охлаждением серии, в комплектации с

пре- и пост-фильтрами

Производительность: 420 - 14500 м³/ч, 247 - 8526 cfm Макс. рабочее давление: 10 бар, 150 psig

Примеры:

а) Рассчитать модель осушителя для следующего потока осушаемого

воздуха: м³/час 5 бар() Мин. рабочее давление: Макс. температура на входе: +30°C -25°C Температура точки росы : Табличный коэффициент:

эффективная производительность табличный коэффициент

3000 м3/ч = 3750 м³/ч 0.80

Расчетная модель: DAV 685

b) Рассчитать максимальную производительность осушителя: Номинальная произволительность х коэффициент из таблицы $4100 \times 0.80 = 3280 \text{ M}^3/\text{4}$

с) Запас производительности осушителя: Макс. производительность осушителя объем воздуха $3280 \text{ m}^3/\text{4} - 3000 \text{ m}^3/\text{4} = 280 \text{ m}^3/\text{4}$

Адсорбционное осушение вакуумной регенерацией - это энергоэффективное решение для осушения больших объемов сжатого воздуха. Возможна температура точки росы до -70°C!

Влажный сжатый воздух поступает в один из адсорбционных резервуаров через микро-фильтр предварительной очистки серии Г фильтрацией до 0,01 мг/м³. Проходя через адсорбционный резервуар, заполненный адсорбентом, впитывающим влагу, сжатый воздух осушается до установленной температуры точки росы -40°C (для стандартных моделей).

В это время в другом резервуаре происходит регенерация (восстановление) адсорбента. Для регенерации используется окружающий атмосферный воздух, подогреваемый внешним электрическим нагревателем и втягиваемый вакуумным насосом. Вакуум, образующийся в резервуаре, и горячий воздух, всасываемый вакуумным насосом, высушивает адсорбент, унося влагу, накопленную адсорбентом. После насыщения адсорбента влагой в одном из резервуаров и одновременным восстановлением адсорбента в другом, происходит переключение резервуаров. Таким образом, обеспечивается непрерывный процесс осушения сжатого воздуха.

Преимущества использования адсорбционных осушителей **BOGE** серии DAV

Низкое энергопотребление всей системы Сбережение до 25% энергии по сравнению с традиционными аналогами

- 2-х ступенчатый процесс осушения Оптимизированное распределение поступающего потока Саморегулируемая система, сокращающая Δр и увеличивающая отделение влаги
- Низкая температура регенерации Вакуумная регенерация обеспечивает энергосберегающий эффективный отбор влаги из адсорбента при более низких температурах, чем традиционная регенерация с подогревом
- Вакуумное охлаждение После адсорбции нагреватель выключается и вакуумный насос снизу высасывает окружающий воздух для охлаждения
- На стороне регенерации нет перепадов давления Регенерация происходит при атмосферном давлении. Вентилятор не перегружается
- Устойчивое поддержание температуры точки росы в процессе работы Управление потоком осущаемого воздуха на входе
- Переключение без перепадов температуры точки росы
- Давление сжатого воздуха заново повышается
- Достигается температура точки росы до
 - Стандартная температура точки росы -25°C или -40°C
- Функциональный дисплей Давление, температура, режим нагрева, вакуумный насос и переключение
- Использование альтернативных источников энергии Опционально возможно исполнение с

использованием для регенерации пара, горячей воды или других источников

Дополнительная оснастка: Байпас, тиристорное управление нагревателем, частотное управление вакуумным насосом

BOGE	Произ	водительн	ость*	Подсое-	Ширина	Высота	Длина	Масса без	Потреб.
Модель				динение				фильтра	мощнос.
DAV	м³/мин	М³/Ч	cfm	DN	(мм)	(мм)	(мм)	КГ	kWh/h
75	7,0	420	241	40	1215	1955	992	460	3,1
85	8,5	510	293	40	1214	2204	992	560	3,8
105	10,7	640	370	50	1306	2247	1082	750	5,2
145	14,2	850	487	50	1360	2271	1120	800	6,7
200	19,7	1180	681	80	1560	2664	1264	1150	10,9
250	25,0	1500	863	80	1610	2680	1279	1350	12,8
330	33,0	1980	1141	80	1700	2730	1585	1720	16,3
390	39,2	2350	1353	100	2020	2845	1447	1880	18,1
455	48,8	2930	1688	100	2080	2870	1580	2350	22,5
555	59,2	3550	2047	100	2170	2940	1740	2850	27,8
685	68,3	4100	2365	150	2450	3190	1780	4000	32,2
790	79,0	4740	2735	150	2550	3210	2110	4100	38,9
875	87,5	5250	3029	150	2550	3230	1955	4200	44,9
1035	103,5	6210	3582	150	2600	3500	1910	4950	52,3
1185	118,3	7100	4094	150	2650	3520	1940	5700	56,4
1335	133,3	8000	4611	200	3100	3585	2180	6400	67,1
1535	153,3	9200	5306	200	3150	3605	2300	7400	75,6
1800	180,0	10800	6224	200	3250	3670	2355	8700	85,3
2050	205,0	12300	7088	250	3500	3855	2515	11500	98,9
2415	241,7	14500	8359	250	3600	3895	2570	13500	111,4

* м³/час при давлении 1 бар в соответствии с DIN 7183.

По требованию возможна более высокая

производительность и значение температуры точки росы – 70°C Резервуар соответствует PED/ CE

Корректирующие коэффициенты, зависящие от давления и температуры

бар (Ps.) / t °C	4	5	6	7	8	9	10					
30	0,69	0,80	0,90	1,02	1,06	1,17	1,29					
35	0,44	0,62	0,80	1,00	1,05	1,16	1,28					
40	0,28	0,42	0,59	0,70	0,79	0,88	0,96					

Возможны модификации

Адсорберы BOGE на основе активированного угля серии DCZ

Производительность: 8 – 950 м³/ч, 4 – 559 cfm Макс. рабочее давление: 16 бар, 230 psig

Примеры:

Необходима воздухоподготовка сжатого воздуха:

Производительность 150 м³/ч Мин. рабочее давление 8 бар(_) Коэффициент Р из таблицы 1,08 Коэффициент Т из таблицы 0,85 Макс. температура на входе $+40^{\circ}$ С

 $\frac{\text{зфф. производительность}}{\text{Facteur P + T}} : \frac{150 \text{ m}^3/\text{h}}{1.08 \cdot 0.85} = 163.4 \text{ м}^3/\text{ч}$

Расчетная модель: DCZ 35

Адсорберы на основе активированного угля рекомендованы для установки после осушителей сжатого воздуха вместе с фильтрами, для удаления запахов и остаточного содержания масла в сжатом воздухе до 0,003 мг/м³.

Даже после фильтрации жидких и твердых включений размерами до 0,01 мм и установки осушителей сжатый воздух может все еще содержать пары масла. Пары масла могут появляться в процессе работы компрессора или всасываться с атмосферным воздухом. Масляные включения могут содержать различные виды масел с различными температурными режимами

Адсорберы BOGE DC на основе активированного угля используются везде, где требуется сжатый воздух самого высокого качества. Поток сжатого воздуха, поступая вверху адсорбера, проходит вниз через специальный наполнитель из активированного угля. Оптимальное врем прохождения, скорость потока, толщина слоя и качество активированного угля обеспечивает высококачественный сжатый воздух.

Преимущества использования адсорберов BOGE DC на основе активированного угля

Значительный слой активированного угля

Технически' безмасляный, пригодный для дыхания воздух с остаточным содержанием масла не более 0,003 мг/м³

Оптимальная конструкция

высококачественный сжатый воздух

Индикатор загрязненности в стандартной комплектации

обеспечивает соответствующее качество сжатого воздуха

Опционально предварительно устанавливается фильтр серии FP (пылевой)

повышение срока службы активированного угля

С точки зрения защиты оборудования рекомендуется также предварительно (опционально) устанавливать фильтр серии V для фильтрации частиц крупных размеров, способных повреждать активированный уголь и снижать этим качество сжатого воздуха.

BOGE	Проои	3BO-	Габариты	Подсо-	Макс	Poids
Модель	дителі	ность*	L/P/H	единение	Давление	
DCZ	m³/h	cfm	mm		bars	КГ
4	8	4	214/ 210/ 390	G1/4	16	2,9
5	15	8	214/ 210/ 565	G1/4	16	4,4
6	25	13	214/ 210/ 815	G1/4	16	6,0
8	35	21	214/ 210/1065	G1/4	16	9,0
9	56	30	313/ 300/1185	G ³ / ₈	16	23,0
11	72	40	313/ 300/1410	G³/8	16	28,0
14	86	50	313/ 300/1610	G ¹ / ₂	15	33,0
25	145	85	265/ 280/1650	G1	16	45
35	200	118	290/ 280/1680	G1	16	54
45	255	150	340/ 340/1730	G1	16	75
60	360	212	367/ 340/1750	G1	16	92
70	400	235	395/ 420/1795	G11/2	16	103
100	620	365	440/ 420/1800	G11/2	16	134
125	750	441	485/ 420/1914	G11/2	16	177
160	950	559	520/ 500/1950	G2	16	209

Более высокая производительность возможна по требованию *м³/ч давление 1 бар в соответствии с DIN ISO 7183

Резервуар соответствует РЕD/ СЕ

Корректирующий коэффициент : Давление

бар	4	5	6	7	8	9	10	12	14	16
коэффициент Р	0,62	0,75	0,89	1,00	1,08	1,26	1,36	1,62	1,79	2,14

бар°С	20	25	30	35	40	45	50
коэффициент Т	1,01	1,01	1,01	1,0	0,85	0,75	0,5

Возможны модификации

У 10 - V 250 вместе с дифференциаль ным манометром VF 250 - VF 490 вместе с дифференциальным манометром

Фильтры предварительной очистки BOGE серии V

Фильтры предварительной очистки отфильтровывают из сжатого воздуха частицы крупных размеров.

Пре- фильтры BOGE удаляют твердые частицы до 3 мкм с эффективностью 99.99%

Пре- фильтры BOGE помогут сэкономить Ваши деньги

- 🥦 Используются в системе сжатого воздуха до осушителей и микрофильтров в случаях с
- высокой запыленностью всасываемого воздуха при работе компрессоров с большой потерей масла

BOGE Модель¹)	Произво- дительность	Подсо- единение	Габари	ты		Macca	Фильтро- вальный элемент	
	[M³/4] ²)		[мм] А	В	С	D	[кг]	Количество/ марка
Алюмини	евый корпус с	резьбовым	и соеди	нениям	и в соо	тветств	вии с DIN	2999
V 5	30	G¼	60	167	14	60	0,8	1/5 V
V 10	50	G¼	87	209	21	75	1,5	1/10 V
V 12	70	G%	87	209	21	90	1,5	1/12 V
V 20	100	G½	87	279	21	160	1,7	1/20 V
V 30	180	G¾	130	315	43	135	4,3	1/30 V
V 50	300	G1	130	415	43	235	5	1/50 V
V 80	470	G1½	130	515	43	335	5,5	1/80 V
V 120	700	G1½	130	715	43	525	6,9	1/120 V
V 160	940	G2	164	823	48	520	9,6	1/160 V
V 250	1450	G2	164	1073	48	770	17,9	1/250 V
Стальной	корпус с флан	нцевыми со	единені	иями в о	соответ	ствии с	DIN 2633	3
VF 250	1850	DN 80	380	1260	175	530	54	1/250 V
VF 400	2920	DN 80	440	1310	205	530	80	1/400 V
VF 490	3700	DN 100	500	1440	230	550	108	2/250 V

Макс. рабочее давление 16 бар

- 1) вкл. автоматический слив конденсата, начиная с модели V 10 и выше
- 2) нормативно при температуре окружающей среды до 20°С и давлении 1 бар и рабочем давлении 7 бар

Корректирующий коэффициент f для других рабочих давлений

Давление в бар	1	2	3	4	5	6	7	8	9	10
f =	0,25	0,38	0,5	0,63	0,75	0,88	1	1,13	1,25	1,38

Потеря давления и эффективность фильтрации

Потеря давления в незагрязненной среде	$\Delta\Delta$ p 0,02 бар	
Эффективность	99.99 % от 3 µm	

Возможно использование для более высокого давления и производительности по требованию

VU 6 N - VU 725 N с дифференциальным манометром

VFU 320 N - VFU 720 N с дифференциальным манометром

Фильтры предварительной очистки BOGE серии VU ... N

Фильтры предварительной очистки отфильтровывают из сжатого воздуха частицы крупных размеров

Пре- фильтры BOGE удаляют твердые частицы до 25 мкм с эффективностью 100%.

Пре- фильтры BOGE помогут сэкономить Ваши деньги

Используются в системе сжатого воздуха до осушителей и микрофильтров в случаях с

- 连 высокой запыленностью всасываемого воздуха.
- 🥦 при работе компрессоров с большой потерей масла.

BOGE Модель¹)	Произво- дительность при давлении	Подсо- единение	Габарит	гы			Macca ³)	Фильтро- вальный элемент
	7 бар [м³/ч] ²)		[мм] А	В	С	D	[кг]	Количество/ марка
Алюмини	евый корпус с	резьбовым	и соеди	нениям	и			
VU 6 N	35	G¼	70	285	190	90	1,0	1/6 VU
VU 15 N	80	G%	80	285	190	90	1,0	1/15 VU
VU 19 N	125	G½	80	335	220	120	1,0	1/19 VU
VU 29 N	175	G¾	95	360	245	150	1,9	1/29 VU
VU 60 N	450	G1	110	430	310	200	2,2	1/60 VU
VU 110 N	650	G1½	150	585	415	280	6,5	1/110 VU
VU 180 N	850	G2	150	585	415	280	6,5	1/180 VU
VU 240 N	1175	G2	160	795	625	450	10,0	1/240 VU
VU 320 N	1350	G2½	180	935	755	580	12,6	1/320 VU
VU 450 N	1650	G2½	180	1185	1005	850	13,7	1/450 VU
VU 465 N	1950	G3	180	1185	1005	850	13,7	1/465 VU
VU 480 N	2250	G3	210	1195	1015	850	20,0	1/480 VU
Стальной	корпус с флан	цевыми со	единени	іями в с	оответс	твии с	DIN 2633	
VELL 000 N	1050	DNIFO	000	4045	000	F00	00	4 /000 \ \/F

VFU 320 N 1350	DN 50	280	1015	830	580	28	1/320 VF	
VFU 480 N 1650	DN 65	320	1315	1120	850	36	1/480 VF	
VFU 700 N 2250	DN 80	360	1350	1135	850	64	1/700 VF	
VFU 720 N 3500	DN 100	410	1370	1140	850	86	1/720 VF	

Макс. рабочее давление: 16 бар

- 1) Вкл. автоматический слив конденсата
- 2) Нормативно при температуре окружающей среды до 20°С и давлении 1 бар и рабочем давлении 7 бар
- 3) Вес без учета фильтровального элемента

Корректирующие коэффициенты f для других рабочих давлений

Давление в бар	1	2	3	4	5	6	7	8	9	10
f =	0,25	0,38	0,5	0,65	0,75	0,88	1	1,13	1,25	1,38

Потеря давления и эффективность фильтрации

Потеря давления в незагрязненной среде Δ p 0,03 бар

Эффективность 100% от номин. размера

Возможно использование для более высокого давления и производительности по требованию

FP 10 - FP 250 с дифференциальным манометром

FFP 250 to FFP 490 с дифференциальным манометром

Комбинация фильтров серии FP и A 10-250 с дифференциальным манометром

фильтров серии FFP и AF 250-490 с дифференциальным манометром

Микрофильтры BOGE серии FP

Микрофильтры удаляют даже самые мелкие примеси из сжатого воздуха.

Микрофильтры с эффективностью 99.99999% удаляют частицы до 0,01 мкм и обеспечивают уровень остаточного содержания масла в сжатом воздухе не более 0,01 мг/м³

Микрофильтры BOGE помогают сэкономить ваши деньги

Используются как основные фильтры в

магистрали сжатого воздуха или как финишные фильтры перед пневматическим оборудованием.

Адсорбционные фильтры BOGE серии A

Фильтры на основе активированного угля удаляют из сжатого воздуха пары масла и посторонние запахи.

Адсорбционные фильтры BOGE в комбинации с микрофильтрами предназначены для удаления частиц до 0.01 мкм с эффективностью 99.99999% и остаточным содержанием масла в сжатом воздухе до 0.005 мг/м³.

Адсорбционные фильтры BOGE помогут сэкономить Ваши деньги

Используются после осушителей, в комбинации с микрофильтрами для получения чистого технически безмасляного воздуха

BOGE Модель¹)	Произво- ²) дительность	Подсо- единение		ариты			Комби- нация FP/A	Macca	Масса Комби- нация	Фильтро. элемент Количес./
	[M³/4]		[мі А	и] В	С	D	Α	F/PA [ĸr]	[кг]	марка FP или A
Алюминиевы	й корпус с р	езьбовым	и с	един	ения	мив	соответ	ствии с	DIN 299	99
FP5/A5	30	G1/4	60	165	14	60	120	0,8	1,6	1/5 FP/A
FP10/A10	50	G¼	87	215	21	75	174	1,5	3	1/10 FP/A
FP12/A12	70	G%	87	215	21	90	174	1,5	3	1/12 FP/A
FP20/A20	100	G½	87	285	21	160	174	1,7	3,4	1/20 FP/A
FP30/A30	180	G¾	130	325	43	135	260	4,3	8,9	1/30 FP/A
FP50/A50	300	G1	130	425	43	235	260	5	10,7	1/50 FP/A
FP80/A80	470	G1½	130	525	43	335	260	5,5	11,6	1/80 FP/A
FP120/A120	700	G1½	130	725	43	525	260	6,9	14,2	1/120 FP/A
FP160/A160	940	G2	164	825	48	520	340	9,6	19,7	1/160 FP/A
FP250/A250	1450	G2	164	1075	48	770	340	17,9	25,8	1/250 FP/A
Стальной кор	пус с фланц	евыми со	еди	нения	ми в	соот	ветстви	исDIN	2633	
FFP250/AF250	1850	DN 80	380	1280	175	530	760	54	108	1/250 FP/A
FFP400/AF400	2920	DN 80	440	1320	205	530	880	80	160	1/400 FP/A
FFP490/AF490	3700	DN 100	500	1440	230	550	1000	108	215	2/250 FP/A

Макс. рабочее давление 16 бар

- Вкл. автоматический слив конденсата, начиная с модели FP 5 и дифференциальным манометром, начиная с модели FP 10
- ²) При температуре окружающей среды до 20°C и давлении 1 бар и рабочем давлении 7 бар, технические данные серии FP и A идентичны

Корректирующие коэффициенты f для других рабочих давлений

Давление в бар	1	2	3	4	5	6	7	8	9	10
f =	0,25	0,38	0,5	0,63	0,75	0,88	1	1,13	1,25	1,38

Потеря давления и эффективность фильтрации

	Серия FP					
Потеря давления в незагрязненной среде Эффективность	Др 0,06 бар 99.99999% для 0,01 мкм Остаточное содержание масла в сжатом воздухе, макс. 0.01 мг/м³					
	Серия А	Серия FP/A				
Потеря давления в незагрязненной среде Эффективность	Δр 0,03 бар Остаточное содержание масла в сжатом воздухе = 0.003 мг/м³	Δр 0,2 бар 99.99999 % для 0,01 мкм				

Возможно исполнение для более высокого давления и производительности по требованию

Микрофильтры BOGE серии FU...N

Микрофильтры удаляют даже самые мелкие примеси из сжатого воздуха Микрофильтры BOGE предназначены для удаления частиц до 0.01 мкм с эффективностью 99.99999%, с остаточным содержанием масла в сжатом воздухе до 0,01 мг/м³.

Микрофильтры BOGE помогут сэкономить Ваши деньги

Используются как основные фильтры в системе сжатого воздуха или как финишные фильтры перед пневматическим оборудованием.

Адсорбционные фильтры BOGE серии AU... N на основе активированного угля

Фильтры на основе активированного угля удаляют из сжатого воздуха пары масла и посторонние запахи.

Адсорбционные фильтры BOGE в комбинации с микрофильтрами предназначены для удаления частиц до 0.01 мкм с эффективностью 99.99999% и остаточным содержанием масла в сжатом воздухе до 0.003 мг/м³.

Адсорбционные фильтры BOGE помогут сэкономить Ваши деньги

Подсо-

дительность единение

Произво-

Используются после осушителей, в комбинации с микрофильтрами для получения 🥦 чистого технически безмасляного воздуха

Габариты

Macca³)

Фильтро.

элемент

·	при давлени 7 бар [м³/ч] ²)	И		[мм] A	В	С	D	[кг]	Количество/ марка FU или AU
Алюминиевый корп	ус с резьбо	выми под	цсоеді	инени	ями				
FU 6 N/AU 6 N	35	G1/4	70	210	285	190	90	1.0	1/6 FU/AU
FU 15 N/AU 15 N	80	G%	80	210	285	190	90	1.0	1/15 FU/AU
FU 19 N/AU 19 N	125	G½	80	260	335	220	120	1.5	1/19 FU/AU
FU 29 N/AU 29 N	175	G¾	95	280	360	245	150	1.9	1/29 FU/AU
FU 60 N/AU 60 N	450	G1	110	355	430	310	200	2.2	1/60 FU/AU
FU 110 N/AU 110 N	650	G1½	150	470	585	415	280	6.5	1/110 FU/AU
FU 180 N/AU 180 N	850	G2	150	470	585	415	280	6.5	1/180 FU/AU
FU 240 N/AU 240 N	1175	G2	160	610	795	625	450	10.0	1/240 FU/AU
FU 320 N/AU 320 N	1350	G2½	180	750	935	755	580	12.6	1/320 FU/AU
FU 450 N/AU 450 N	1650	G2½	180	1000	1185	1005	850	13.7	1/450 FU/AU
FU 465 N/AU 465 N	1950	G3	180	1000	1185	1005	850	13.7	1/465 FU/AU
FU 480 N/AU 480 N	2250	G3	210	1010	1195	1015	850	20.0	1/480 FU/AU
Стальной корпус с	рланцевым	и соедин	ениям	и в сс	ответ	ствии	ı c DI	N 2633	
FFU 320 N/AFU 320 N	1350	DN 50	280	1015		830	580	28	1/320 FU/AU
FFU 480 N/AFU 480 N	1650	DN 65	320	1315		1120	850	36	1/480 FU/AU
FFU 700 N/AFU 700 N	2250	DN 80	360	1350		1135	850	64	1/700 FU/AU
FFU 720 N/AFU 720 N	3500	DN 100	410	1370		1140	850	86	1/720 FU/AU
Макс рабочее давля	ыио 16 ба п								

Макс, рабочее давление 16 бар

BOGE

Модель¹)

1) включая автоматический слив конденсата, начиная с модели FU 6 N

Корректирующий коэффициент f для других рабочих давлений

Давление бар	1	2	3	4	5	6	7	8	9	10
f =	0,25	0,38	0,5	0,65	0,75	0,88	1	1,13	1,25	1,38

1 =	0,25	0,30	0,5	0,05	0,75	0,00		1,10	1,20	1,30
Потеря давления і	и эффе	ктивно	сть фі	ільтраці	ии		c	ерии FU	N	
Потеря давления в і Эффективность	незагряз	зненной	среде	Др 0.12 99.99999 Остаточ сжатом	9% для ное сод	ержани	е масла			
				серии А	UN			серии	FUN/A	UN
Потеря давления в і Эффективность	незагряз	зненной	среде	Δр 0.08 остаточ в сжато	ное соде	•	е масла		бар ктивнос 99 % дл	

 $0.003 \text{ M}\text{F/M}^3$ Возможно исполнение для более высокого давления и производительности по требованию

0.01 MKM

²⁾ при температуре окружающей среды 20°C и абсолютном давлении 1 бар и рабочем давлении

⁷ бар с нормативными параметрами, технические характеристики для серии FU...N и AU...N идентичны 3) масса без фильтровального элемента

Циклонные сепараторы BOGE

Высокоэффективные циклонные сепараторы BOGE

Циклонные сепараторы предназначены для удаления из сжатого воздуха жидкостей, аэрозолей и твердых частиц

Циклонные сепараторы BOGE помогут сэкономить Ваши деньги

Устанавливается после компрессора

- 🥦 если ресивер сжатого воздуха небольшого объема
- 🦲 если ресивер сжатого воздуха находиться на большом расстоянии
- если имеются вертикальные участки трубопровода

BOGE Модель	Произв м³/мин.	одительно при	ость*	Подсоединение сжатого воздуха	Макс. рабочее давление	Габариты		
	8 бар	10 бар	13 бар	Боодуха	бар	Α	В	
Z 20	2.28	2.91	3.64	G ½	16	80	260	
Z 40	4.13	5.25	6.56	G ¾	16	95	280	
Z 65	6.88	8.75	10.93	G 1	16	110	355	
Z 90	10.08	12.84	16.03	G 1¼	16	110	355	
Z 125	13.75	17.50	21.88	G 1½	16	150	470	
Z 170	18.26	23.24	29.05	G 2	16	150	470	
Z 275	30.25	38.50	48.13	G 2½	16	180	580	
Z 375	41.25	52.92	65.63	G 3	16	180	580	

^{*} по условиям всасывания компрессора (+20°C, 1 бар)

Опционально циклонный сепаратор может быть укомплектован электронным устройством слива конденсата с управлением по уровню BEKOMAT.

Вспомогательное оборудование BOGE

Фильтры/ водо- сепараторы (макс. 16 бар)

в компактном блочном исполнении. Другое оборудование может подсоединяться с обеих сторон. Слив конденсата ручной или в автоматическом режиме.

Размер подсоединения	G¼	G%	G½	G ¾
Габариты: длина (ширина) мм	40	48	70	70
Высота мм	120	158	202	202
Производительность при давлении 6 бар (р ₁)	м3/мин.			
etu снижении давления Δp = 1 bar	1,8	2,0	3,2	3,5

в компактном блочном исполнении. Другое оборудование может подсоединяться с обеих сторон. Оснащен удобной ручной регулировкой.

Лубрикаторы (макс. 16 бар)

Автоматическая работа, в компактном блочном исполнении. Другое оборудование может подсоединяться с обеих сторон.

Размер подсоединения	G¼	G%	G½	G¾
Габариты: Длина (ширина) мм	40	48	70	70
Высота мм	140	171	224	224
Производительность при давлении 6 бар (р1)	м3/мин.			
и падении давления $\Delta p = 1$ бар	3,4	4,4	4,6	7,5

Комбинированная система (фильтр/регулятор давления) в комплекте с манометром (макс. 16 бар)

Фильтр и регулятор давления в одном компактном модуле.

Слив конденсата ручной или с использованием автоматического.

Регулятор давления с продувкой.

Оснащен удобной ручной регулировкой.

Размер подсоединения	G¼	G%	G½	G¾
Габариты: Длина (ширина) мм	40	48	70	70
Высота мм	175	203	273	273
Производительность при давлении 10 бар (р1),	м3/мин.			
Вторичное давление 6 bar и снижение	2,0	3,0	5,5	6,5
давления Δp = 1 бар в соответствии с DIN ISO	6953			

Аксессуары: кронштейн (настенное крепление) Установка фильтров 5 мкм

Установка сцеплений

Установка фильтры 30 мкм

Установка фильтры / регуляторы 30 мкм Установка фильтры / регуляторы 5 мкм

Воздухосборники BOGE

BOGE Объем	Разм	DA DA						Macca	Вход	Выход	Инспекц
литров		ØВ	С	D	E	F	ØG	кг	возд.	возд.	люки
Горизо	нталы	ные р	есиве	ры							
50	780	300	380	380	400	320	14	30	G ½	G %	0 v 1 moure
90	995	350	390	500	550	330	14	37	G ¾	G %	2 х 1 лючка
150	1360	400	410	480	800	350	14	66	G ½	G ½	сзади
270	1540	500	570	625	800	500	19	100	G ½	G ½	
350	1610	550	620	660	900	550	19	125	G ¾	G ¾,	1 отверст
500	1730	600	670	705	1100	600	24	150	G 11/4	G 1	для рук
750	1828	750	730	856	1100	660	24	220	G 11/4	G 1	
1000	2070	800	790	885	1200	720	24	285	G 1¼	G 1¼	2 отверст. для
2000	2170	1150	1200	1325	1300	1100	23	555	G 1½	G 2	рук или 1 люк
3000	2675	1250	1350	1450	1500	1250	23	765	G 1½	G 2	(опция)
5000	3500	1400	1500	1600	2200	1400	23	1170	G 1½	G 2	4
10000	5370	1600	1600	1700	3700	1550	18	2100	DN 100	DN 100	1 люк
						высо	та пр	И			
	Α	ØB	С	F	ØG	устан	овке				
Вертин	сальнь	ые рес	ивер	ol							
270	1765	500	500	460	13	1780		100	G 1	G ½	
350	1835	550	550	510	13	1845		125	G 1	G ¾	1 отверст.
500	1980	600	655	525	22	2070		150	G 1½	G 1½	для рук
750	2084	750	750	620	22	2130		220	G 1½	G 1½	
1000	2340	800	800	670	22	2400		285	G 1½	G 2	2 отверст. для
2000	2390	1150	1000	1000	23	2510		555	G 2½	G 2½	рук или 1 люк
3000	2790	1250	1250	1150	23	2865		765	G 2½	G 2½	(опция)
F000	3730	1400	1400	1300	23	3800		1170	G 2½	G 2½	
5000	0100	1-100	1400	1000		0000		1110	G 2/2	G 2/2	
5000	3730	1400	1400	1300	23	3800		1180	DN 100	DN 100	1 люк

Объем питров	Разм	. мм ØВ	С	D	E	F	ØG	Вход кг	Вход возд.	Выход возд.	Инспекц люки
Горизо						Г	ØG	NI .	возд.	возд.	ЛЮКИ
50	780	300	380	380	400	320	14	37	G ½	G %	2 х 1 лючка
150	1310	400	410	480	800	350	14	74	G ½	G ½	сзади
250	1380	500	570	625	800	500	19	113	G ¾	G ½	
350	1600	550	620	660	900	550	19	145	G ¾	G ¾	1 отверст.
500	1780	600	670	705	1100	600	24	180	G 11/4	G 1	для рук
750	1860	750	730	856	1100	660	24	275	G 1¼	G 1	
1000	2100	800	790	885	1200	720	24	355	G 11/4	G 1¼	2 отверст. для
2000	2170	1150	1200	1325	1300	1100	23	720	G 1½	G 2	рук или 1 люк
3000	2675	1250	1350	1450	1500	1250	23	935	G 1½	G 2	(опция)
5000	3270	1400	1500	1600	2200	1400	23	1340	G 1½	G 2	
0000	5370	1600	1600	1700	3700	1550	18	2940	DN 100	DN 100	1 люк
						высо	та пр	И			
	Α	ØB	С	F	ØG	устан	овке				
Вертикальные ресиверы											
Вертин	сальнь	ые рес	сивері	ы							
Еертин 250	кальнь 1605	500	500		13	1615		113	G 1	G ½	
					13 13	1615 1845		113 145	G 1 G 1	G ½ G ¾	1 отверст.
250	1605	500	500	380							1 отверст. для рук
250 350	1605 1835	500 550	500 550	380 510	13	1845		145	G 1	G ¾	
250 350 500 750	1605 1835 1995	500 550 600	500 550 600	380 510 525	13 22	1845 2100		145 180	G 1 G 1½	G ¾ G 1½	для рук
250 350 500 750	1605 1835 1995 2110	500 550 600 750	500 550 600 750	380 510 525 620	13 22 22	1845 2100 2155		145 180 275	G 1 G 1½ G 1½	G ¾ G 1½ G 1½	для рук
250 350 500 750 1000 2000	1605 1835 1995 2110 2340	500 550 600 750 800	500 550 600 750 800	380 510 525 620 670	13 22 22 22	1845 2100 2155 2400		145 180 275 355	G 1 G 1½ G 1½ G 1½	G ¾ G 1½ G 1½ G 2	для рук
250 350 500 750 1000 2000 3000	1605 1835 1995 2110 2340 2410	500 550 600 750 800 1150	500 550 600 750 800 1150	380 510 525 620 670 1000	13 22 22 22 22 23	1845 2100 2155 2400 2510		145 180 275 355 720	G 1 G 1½ G 1½ G 1½ G 2½	G ¾ G 1½ G 1½ G 2 G 2½	для рук 2 отверст. для рук или 1 люк
250 350 500 750	1605 1835 1995 2110 2340 2410 2790	500 550 600 750 800 1150 1250	500 550 600 750 800 1150 1250	380 510 525 620 670 1000 1150	13 22 22 22 23 23 23	1845 2100 2155 2400 2510 2865		145 180 275 355 720 935	G 1 G 1½ G 1½ G 1½ G 2½ G 2½	G % G 1½ G 1½ G 2 G 2½ G 2½	для рук 2 отверст. для рук или 1 люк

Возможно исполнение ресиверов более высокого рабочего давления по требованию.

Отделение конденсата BOGE

Содержание атмосферного воздуха

Кроме азота и кислорода атмосферный воздух также содержит влагу в форме воды (аэрозоли) или водяного пара (относительная влажность)

Примеси в атмосферном воздухе

В зависимости от местности, атмосферный воздух содержит различные примеси, невидимые для невооруженного глаза. При недостаточной воздухоподготовке они могут значительно снизить качество продукции выпускаемой с использованием такого сжатого воздуха.

Что происходит с примесями при сжатии воздуха

В процессе сжатия воздуха концентрация примесей возрастает.

Примеси и влага, всасываемые с атмосферным воздухом, в системе сжатого воздуха превращаются в конденсат; концентрация этих побочных веществ может образовать маслянистую, жирную и/ или агрессивную среду.

Местораспол	пожение	Диапазо [мг/м³		Среднее значени [мг/м³]		
		в атмосфере	при 10 бар	в атмосфере	при 10 ба	
	Сельская местность	5 - 50	55 - 550	15	165	
	Города	10 - 100	110-1100	30	330	
	Промышленные зоны	20 - 500	220 - 5500	100	1100	
	Крупные производства	50 - 900	550 - 9900	200	2200	

Концентрация частиц в атмосферном воздухе

Содержание влаги и выпадение конденсата

Выпадение конденсата в системе сжатого воздуха

Примеси в системе сжатого воздуха осаждаются в форме конденсата.

Выпадение конденсата из сжатого воздуха

Объем конденсата в сжатом воздухе зависит от влажности всасываемого воздуха, его температуры и объема.

Количество выпадаемого конденсата варьируется в различных частях системы сжатого воздуха и трубопровода.

Конденсат выпадает, когда температура сжатого воздуха падает ниже температуры точки росы. Температурой точки росы является температура, до которой сжатый воздух может быть охлажден без осаждения конденсата.

Конденсат осаждается в доохладителе, ресивере сжатого воздуха, осушителе рефрижераторного типа и адсорбционном осушителе.

Конденсат также может выпадать в последующем трубопроводе, если сжатый воздух охладился значительно ниже отметки температуры точки росы, в данном примере – 40°C.

Конденсат после маслосмазываемых компрессоров состоит из атмосферной влаги с добавлением масла в форме аэрозолей и паров системы смазки компрессора.

Только надлежащая сепарация, слив и утилизация конденсата и подготовка сжатого воздуха обеспечивают экологически безопасное производство.

Отвод конденсата

Механические поплавковые устройства

Поплавковые устройства отвода конденсата должны иметь производительность, соответствующую расчетному объему конденсата.

Достоинством поплавковых устройств является то, что они открываются только тогда, когда происходит действительное накопление конденсата. Благодаря этому нет потерь сжатого воздуха.

Поплавковые устройства отвода конденсата требуют интенсивного обслуживания. Проблемы с ними могут возникать при загрязненном, липком, либо содержащем твердые включения конденсате.

Параметры поплавковых устройств

Поплавковый слив: 85 мм Ø, Д = 185 мм Подсоединение: Вход G $^{1}/_{2}$, Выход G $^{3}/_{8}$

Электромагнитное устройство отвода конденсата с управлением по уровню, без потерь давления; самое комплексное решение

Срабатывание конденсатоотводчика по достижению установленного уровня обеспечивает отвод конденсата без потерь сжатого воздуха, адаптированный к реальной скорости его образования. Большие внутренние поперечные сечения исключают проблемы даже при очень загрязненном конденсате.

Специальная интеллектуальная управляющая электроника гарантирует надежную работу. Она также контролирует состояние оборудования. Неисправности индицируются светодиодом на устройстве отвода конденсата, а информация о них может передаваться на центральный компьютер с помощью безпотенциальной контактной пары (кроме Bekomat 31).

Электронный слив, управляемый по уровню, без потерь давления

	7.7 1	,				
BOGE	Макс. производительность	Макс. производительность	использование для	Габариты, мм	Подсоединение	
Модель	компрессора	осушителя				
	м³/мин	м³/мин 100% загрязненность	a, b	Д/Ш/В	Вход/Выход	
Bekomat 31	2,5	5	a, b	164/ 65/118	G ½/G ¼	
Bekomat 32	5	10	a, b	179/ 74/127	G ½/G ¼	
Bekomat 12	6,3	12,6	а	65/150/141	G ½/G %	
Bekomat 13	28	56	а	93/212/162	G ½/G ½	
Bekomat 14	126	252	а	120/252/180	G ¾/G ½	
Bekomat 16 CO	1400	2800	a, b	280/280/280	G ¾/G ½	

Информация в части производительности соответствует центрально европейским климатическим условиям.

а = конденсат с содержанием масла

b = без масла, агрессивный конденсат

Очистка и утилизация конденсата

Почему конденсат маслосмазываемых компрессоров необходимо очищать?

При непрерывном обращении или непрерывной обработке конденсат, представляет серьезную угрозу для окружающей среды. Всего лишь 1 литр конденсата может загрязнить 1.000.000 воды!

Большинство промышленно развитых странах запрещают слив конденсата маслосмазываемых компрессоров в общую канализацию. Теперь законы требуют экологически безопасную утилизацию конденсата, что делает важной технологию разделения масла и воды.

В безмасляных компрессорах сжатый воздух не соприкасается с маслом. Соответственно, их конденсат не содержит масла. Единственные следы масла можно обнаружить как результат всасывания атмосферных масляных аэрозолей, что полностью обуславливается местом установки компрессора и преобладающими атмосферными условиями.

Виды конденсата

Конденсат маслосмазываемых компрессоров может быть в виде:

- эмульсий
- диспергированных смесей

Только анализ конденсата может дать необходимую информацию о требуемой технологии разделения. Можно ли обойтись простым сепаратором масла и воды, или же для утилизации конденсата необходимо воспользоваться услугами специализированной компании?

Эмульсии

Эмульсии (молочные смеси) дают такой вид связи масла и воды, что их нельзя разделить с помощью силы тяжести. Эмульсии можно очистить только с помощью специального дорогостоящего оборудования.

Диспергированные смеси

В отличие от эмульсий диспергированные смеси можно очистить с помощью силы тяжести, используя недорогие сепараторы масла и воды.

Тестирование конденсата

Существует простой тест для определения, является ли конденсат эмульсией или диспергированной смесью.

Заполните конденсатом чистый стакан. Встряхните жидкость, и спустя короткое время масло отделиться от воды. Масло поднимается на поверхность. Вода остается чистой. Такую диспергированную смесь можно разделять, используя сепаратор масла и воды.

Если конденсат после встряхивания представляет собой непрозрачную воду под слоем масла, то можно предположить, что это эмульсия, которую можно разделить только с использованием устройства разделения эмульсий.

Для сокращения излишних расходов на утилизацию, весь объем конденсата, по сути состоящий на 99% из воды и только на 1% из масла, может быть эффективно разделен при помощи масло/водо-сепаратора ВОGE.

Принцип работы:

Загрязненный маслом конденсат течет под давлением в отсек сброса давления ①,

Здесь давление сбрасывается, не создавая турбулентности в нижестоящем ② отсеке разделения.

Любые твердые частицы задерживаются в съемном улавливателе ③.

В резервуаре сепарации масло остается на поверхности в результате действия силы тяжести. Затем при переполнении оно вытекает в резервуар масла 4.

Предварительно очищенный конденсат фильтруется. Предварительный фильтр ⑤ идеально убирает остатки масла. Он также задерживает любые остатки масла из отсеков сепаратора.

Остатки масляных включений надежно задерживаются и остаются в картридже фильтра ⑥.

Конечным результатом очистки является вода, пригодная для сброса непосредственно в канализационную систему. Благодаря технологии сменяемых картриджей замена фильтра производится быстро и чисто.

Сепаратор BOGE для разделения конденсата на масло и воду

- Исключается попадание масла в общую канализацию
- Отсутствует масляный остаток на фильтре
- Двойной контроль фильтрации: предупреждение по уровню и оптический контроль (тест мутности для сравнения проб)

Экономические показатели

- Устройства подходят для любого производства, энергия не расходуется
- Низкие затраты на обслуживание
- Оптимальное использование фильтров

Оптимальное разделение

Для поддержания нормального качества очистки конденсата необходимо время от времени менять предварительный фильтр и адсорбционный фильтр. Тест на мутность покажет, есть ли необходимость в более частой замене.

Объем конденсата

BOGE	Поршневые компрессоры (VDL 150)	Поршневые компрессоры (Syprem 8000 K)	Винтовые компрессоры	Габариты, мм
Модель	Макс. производительность	Макс. производительность	Макс. производительность	ДхШхВ
	компрессора в м³/мин	компрессора в м³/мин	компрессора в м³/мин	
ÖWAMAT 10	1,7	1,7	1,9	220/222/ 528
ÖWAMAT 12	5,1	4,9	5,6	560/350/ 702
ÖWAMAT 14	10,1	9,7	11,3	594/410/ 872
ÖWAMAT 15	20,3	19,4	22,5	764/520/1090
ÖWAMAT 16	40,5	38,8	45,0	939/650/1160

Данные соответствуют центральноевропейским климатическим условиям

Завод BOGE KOMPRESSOREN в г. Бельфельд . Современные производственные мощности гарантируют самое высокое качество продукции

Качество: Сделано в Германии

Компания BOGE

Компания BOGE планирует, конструирует, производит, продает и обслуживает компрессорное оборудование для предприятий всех отраслей промышленности.

Номенклатура оборудования и услуг включает:

- Планирование и разработка систем сжатого воздуха
- Безмасляные поршневые, винтовые и турбокомпрессоры.
- Маслосмазываемые поршневые и винтовые компрессоры
- Системы очистки сжатого воздуха
- Системы подачи и хранения сжатого воздуха
- Аксессуары
- 🥦 Обслуживание систем сжатого воздуха
- Системы управления и контроля.

В Германии и в мире мы – одна из ведущих компанийпроизводителей компрессорного оборудования. Мы представлены во всем мире нашими офисами и представительствами, дистрибьютерами и сервисными службами.

P.O. Box 10 0713 · 33507 Bielefeld Otto-Boge-Straße 1-7 · 33739 Bielefeld Fon (+49) (52 06) 601-0 Fax (+49) (52 06) 601-200 info@boge.com · www.boge.com