More on MLE; Bayes Estimators

Tiandong Wang

Department of Statistics Texas A&M University

The materials are copyrighted

Restricted MLE

Special attention is needed to make sure $\widehat{\theta} \in \Theta$

- Example: $X_1, \dots, X_n \stackrel{iid}{\sim} N(\theta, 1)$, where $\theta \geq 0$.
- Example: $X_1, \dots, X_n \stackrel{iid}{\sim} Bin(1, p)$, where $0 \le p \le 1$.
- Example: $X_1, \dots, X_n \stackrel{iid}{\sim} N(\mu, \sigma^2)$, where $\mu \geq 0$.

Other cases: monotone likelihood

- Example: $X_1, \dots, X_n \stackrel{iid}{\sim} \text{Unif}(0, \theta)$, where $\theta > 0$.
- Example: $X_1, \dots, X_n \stackrel{\textit{iid}}{\sim}$ exponential location family with pdf

$$f(x) = \exp^{-(x-\theta)}, \quad \text{if} \quad x \ge \theta$$

- Example: $X_1, \dots, X_n \stackrel{iid}{\sim} \text{Unif}(\theta 1/2, \theta + 1/2)$
- Example: Let X by a single observation taking values from $\{0,1,2\}$ according to P_{θ} , where $\theta=\theta_0$ or θ_1 . The probability of X is summarized

Practical issues with MLE

• Multimodality:

- Likelihood function can be multimodal, often have to use numerical techniques to try to maximize (no closed-form max).
- Can get stuck in local modes.
- Solutions:
 - **1** Choose models such that L is convex in θ .
 - Heuristic search, multiple starting points.
 - Satisfied with a local maximum.
- Flatness and sensitivity:
 - $L(\theta; \mathbf{x})$ can be pretty flat near the max.
 - So a slightly different sample x may give a very different MLE.

Remarks on the MLE:

- The MLE $\widehat{\theta}(\mathbf{x})$ is the value for which the observed sample \mathbf{x} is most likely; possess some optimal properties (Chapter 10)
- The MLE can be numerically sensitive to the variation in the data. Example: Bin(k, p).
- If T is (minimal) sufficient for θ , then the MLE $\widehat{\theta}$ must be a function of T. By factorization theorem, we have

$$L(\theta|\mathbf{x}) = f(\mathbf{x}|\theta) = g(T(\mathbf{x})|\theta)h(\mathbf{x}),$$

and the MLE $\widehat{\theta}$ should maximize $g(T(\mathbf{X})|\theta)$. Therefore, the MLE is a function of the (minimal) sufficient statistic.

Invariance Property of MLE

Theorem

If $\widehat{\theta}$ is the MLE of θ , then for any function $\tau(\theta)$, the MLE of $\tau(\theta)$ is $\tau(\widehat{\theta})$.

Examples:

- Example: $X_1, \dots, X_n \stackrel{iid}{\sim} Bin(1, p)$. Find the MLE of $\sqrt{p(1-p)}$
- Example: $X_1, \dots, X_n \stackrel{iid}{\sim} Poi(\lambda)$. Find the MLE of $P(X \le 1)$
- Example: $X_1, \dots, X_n \stackrel{\textit{iid}}{\sim} N(\mu, \sigma^2)$. Find the MLE of μ/σ
- Example: Find the MLE of the population median
- Find the MLE for c such that $P(\bar{X} > c) = 0.025$. (the 97.5% percentile of the distribution of \bar{X} .

Bayes Estimators

- Different from classical approaches, in the Bayesian approach θ is considered as a random quantity whose variation can be described by a probability distribution (called the prior distribution).
- A sample is then taken from a population indexed by θ and the prior distribution is updated with this sample information. The updated prior is called the posterior distribution.

Important Concepts in Bayes Estimation

- prior distribution of θ : $\theta \sim \pi(\theta)$
- sampling distribution of **y** given θ : $\mathbf{y}|\theta \sim f(\mathbf{y}|\theta)$
- posterior distribution of θ : $\pi(\theta|\mathbf{y}) = f(\mathbf{y}|\theta)\pi(\theta)/m(\mathbf{x})$
- marginal distribution of **y**: $m(\mathbf{y}) = \int f(\mathbf{y}|\theta)\pi(\theta)d\theta$
- posterior mean of θ : $E(\theta|\mathbf{y}) = \int \theta \pi(\theta|\mathbf{y}) d\theta$ (Bayes estimator of θ)

Bayes Estimation: Examples

- Example: Assume X_1, \dots, X_n iid Bin(1, p). Assume the prior distribution on p is $Beta(\alpha, \beta)$ with known parameters (α, β) . Find the posterior distribution of p and the Bayes estimator of p Special case: $\pi(p) \sim Unif(0, 1)$
- Remark: If $T(\mathbf{x})$ is a sufficient statistic, then the posterior density of θ is $\pi(\theta|\mathbf{x}) = \pi(\theta|T(\mathbf{x}))$

Bayes Estimation: Conjugate family

Let $\mathcal F$ denote the class of pdfs or pmfs $f(x|\theta)$. A class Π of prior distributions is a *conjugate family* for $\mathcal F$ if the posterior distribution is in the class Π for all $f\in \mathcal F$, all priors in Π , and all $x\in \mathcal X$

Examples:

- Example:(Beta-Binomial Conjugate)
- Example:(Gamma-Poisson Conjugate)
- Example: (Normal-Normal Conjugate) Let X_1, \dots, X_n be iid $\sim N(\theta, \sigma^2)$, with θ unknown and σ^2 known. Suppose that the prior distribution of θ is $N(\mu, \tau^2)$. Here we assume both μ and τ^2 are given. Find the posterior distribution of θ .

Bayesians vs.Frequentists

You are no good when sample is small

You give a different answer for different priors