3. PRAKTIKA

1. ARIKETA

Izan bitez \mathbb{R}^3 -ko ondoko bektore sistema:

$$S = {\overline{u}_1 = (1,1,1), \overline{u}_2 = (1,2,0), \overline{u}_3 = (-1,-5,3), \overline{u}_4 = (1,0,2)}$$

Eta izan bedi $(\mathbb{R}^3,<,>)$ espazio bektorial euklidearra ohiko biderkadura eskalarrekin.

- a) Lortu W=L(S) azpiespazio bektorialaren B_W oinarri bat, W-ren ekuazio parametrikoak eta inplizituak eta W-ren dimentsioa.
- b) Osatu \mathbf{B}_W oinarria \mathbb{R}^3 -ko B oinarri bat lortu arte
- c) Kalkulatu \mathbf{B}_W oinarriarekiko $\overline{w} = (1, -1, 3)$ bektorearen koordenatuak
- d) Kalkulatu W-ren oinarri ortogonal bat
- e) Kalkulatu \overline{u}_2 eta \overline{u}_3 bektoreen arteko distantzia
- f) Kalkulatu \overline{u}_2 eta \overline{u}_3 bektoreen arteko angelua radianetan eta graduetan

2. ARIKETA

Izan bedi (\mathbb{R}^3 ,<,>) espazio euklidearra, ondoko biderkadura eskalarrarekin:

$$\langle \overline{x}, \overline{y} \rangle = x_1 y_1 + x_1 y_2 + x_2 y_1 + 2x_2 y_2 + x_3 y_3$$

$$\overline{x} = (x_1, x_2, x_3), \overline{y} = (y_1, y_2, y_3)$$
izanik

- a) Kalkulatu \overline{u}_2 eta \overline{u}_3 bektoreen arteko distantzia
- b) Kalkulatu \overline{u}_2 eta \overline{u}_3 bektoreen arteko angelua radianetan eta graduetan

3. ARIKETA

Izan bitez \mathbb{P}^2 -ko ondoko bektore sistema:

$$T = \left\{ p_1(x) = x^2 - 2, p_2(x) = x^2 + x + 1, p_3(x) = 3x^2 + 2x, p_4(x) = 2x^2 - x - 7 \right\}$$

Lortu U=L(T) azpiespazio bektorialaren B_U oinarri bat, U-ren ekuazio parametrikoak eta inplizituak eta U-ren dimentsioa.

4. ARIKETA

Izan bitez $\vec{u}_1 = (1,0,1,0)$, $\vec{u}_2 = (1,1,0,1)$, eta $\vec{v} = (1,2,3,4)$ bektoreak. Lortu sistema

bateraezin honen soluzio hurbildua: $x \cdot \vec{u}_1 + y \cdot \vec{u}_2 = \vec{v}$