Course 1 Introduction to Automata Theory

What is Automata Theory?

- Study of abstract computing devices, or "machines"
- Automaton = an abstract computing device
 - Note: A "device" need not even be a physical hardware!
- A fundamental question in computer science:
 - Find out what different models of machines can do and cannot do
 - The theory of computation
- Computability vs. Complexity

(A pioneer of automata theory)

E H I N D

Alan Turing (1912-1954)

- Father of Modern Computer Science
- English mathematician
- Studied abstract machines called *Turing machines* even before computers existed

Heard of the Turing test?

Theory of Computation: A Historical Perspective

1930s	 Alan Turing studies Turing machines Decidability Halting problem 	
1940-1950s	 "Finite automata" machines studied Noam Chomsky proposes the "Chomsky Hierarchy" for formal languages 	
1969	Cook introduces "intractable" problems or "NP-Hard" problems	
1970-	Modern computer science: compilers, computational & complexity theory evolve	

Languages & Grammars

An alphabet is a set of symbols:

Or "words"

Sentences are strings of symbols:

A language is a set of sentences:

$$L = \{000,0100,0010,..\}$$

A grammar is a finite list of rules defining a language.

$$S \longrightarrow 0A$$
 $B \longrightarrow 1B$
 $A \longrightarrow 1A$ $B \longrightarrow 0F$
 $A \longrightarrow 0B$ $F \longrightarrow \epsilon$

- Languages: "A language is a collection of sentences of finite length all constructed from a finite alphabet of symbols"
- Grammars: "A grammar can be regarded as a device that enumerates the sentences of a language" - nothing more, nothing less
- N. Chomsky, Information and Control, Vol 2, 1959

The Chomsky Hierachy

A containment hierarchy of classes of formal languages

4

Alphabet

An alphabet is a finite, non-empty set of symbols

- We use the symbol ∑ (sigma) to denote an alphabet
- Examples:
 - Binary: $\sum = \{0,1\}$
 - All lower case letters: ∑ = {a,b,c,..z}
 - Alphanumeric: ∑ = {a-z, A-Z, 0-9}
 - DNA molecule letters: ∑ = {a,c,g,t}
 - **.** . . .

Strings

A string or word is a finite sequence of symbols chosen from ∑

- Empty string is ε (or "epsilon")
- Length of a string w, denoted by "|w|", is equal to the number of (non- ε) characters in the string

•
$$E.g., x = 010100$$
 $|x| = 6$

•
$$x = 01 \varepsilon 0 \varepsilon 1 \varepsilon 00 \varepsilon$$
 $|x| = ?$

• xy = concatentation of two strings x and y

Powers of an alphabet

Let \sum be an alphabet.

- \sum^{k} = the set of all strings of length k

4

Languages

L is a said to be a language over alphabet Σ , only if $L \subseteq \Sigma^*$

 \rightarrow this is because Σ^* is the set of all strings (of all possible length including 0) over the given alphabet Σ

Examples:

Let L be *the* language of <u>all strings consisting of *n* 0's followed by *n* 1's:</u>

$$L = \{\epsilon, 01, 0011, 000111,...\}$$

Let L be *the* language of <u>all strings of with equal number of</u> 0's and 1's:

$$L = \{ \varepsilon, 01, 10, 0011, 1100, 0101, 1010, 1001, \ldots \}$$

Canonical ordering of strings in the language

Definition: Ø denotes the Empty language

Let L = {ε}; Is L=Ø?

The Membership Problem

Given a string $w \in \Sigma^*$ and a language L over Σ , decide whether or not $w \in L$.

Example:

Let w = 100011

Q) Is $w \in \text{the language of strings with equal number of 0s and 1s?}$

Finite Automata

- Some Applications
 - Software for designing and checking the behavior of digital circuits
 - Lexical analyzer of a typical compiler
 - Software for scanning large bodies of text (e.g., web pages) for pattern finding
 - Software for verifying systems of all types that have a finite number of states (e.g., stock market transaction, communication/network protocol)

Finite Automata: Examples

On/Off switch

Push

Modeling recognition of the word "then"

Structural expressions

- Grammars
- Regular expressions
 - E.g., unix style to capture city names such as "Palo Alto CA":

Formal Proofs

Deductive Proofs

From the given statement(s) to a conclusion statement (what we want to prove)

Logical progression by direct implications

Example for parsing a statement:

• "If y≥4, then 2^y≥y²."

given

conclusion

(there are other ways of writing this).

On Theorems, Lemmas and Corollaries

We typically refer to:

- A major result as a "theorem"
- An intermediate result that we show to prove a larger result as a "lemma"
- A result that follows from an already proven result as a "corollary"

An example:

Theorem: The height of an n-node binary tree is at least floor(lg n)

Lemma: Level i of a perfect binary tree has 2ⁱ nodes.

Corollary: A perfect binary tree of height h has 2^{h+1}-1 nodes.

Quantifiers

"For all" or "For every"

- Universal proofs
- Notation=

"There exists"

- Used in existential proofs
- Notation= —

Implication is denoted by =>

E.g., "IF A THEN B" can also be written as "A=>B"

Proving techniques

- By contradiction
 - Start with the statement contradictory to the given statement
 - E.g., To prove (A => B), we start with:
 - (A and ~B)
 - ... and then show that could never happen

What if you want to prove that "(A and B => C or D)"?

- By induction
 - (3 steps) Basis, inductive hypothesis, inductive step
- By contrapositive statement
 - If A then $B \equiv \text{If } \sim B \text{ then } \sim A$

Proving techniques...

- By counter-example
 - Show an example that disproves the claim
- Note: There is no such thing called a "proof by example"!
 - So when asked to prove a claim, an example that satisfied that claim is *not* a proof

Different ways of saying the same thing

- "If H then C":
 - i. H implies C
 - H => C
 - iii. C if H
 - iv. H only if C
 - w. Whenever H holds, C follows

•

"If-and-Only-If" statements

- "A if and only if B" (A <==> B)
 - (if part) if B then A (<=)</p>
 - (only if part) A only if B (=>)(same as "if A then B")
- "If and only if" is abbreviated as "iff"
 - i.e., "A iff B"
- Example:
 - Theorem: Let x be a real number. Then floor of x = ceiling of x if and only if x is an integer.
- Proofs for iff have two parts
 - One for the "if part" & another for the "only if part"

The Chomsky Hierarchy

The Chomsky Hierarchy

Regular

Contextfree

Contextsensitive

Recursivelyenumerable

Grammar	Languages	Automaton	Production Rules
Type-0	Recursively enumerable \mathcal{L}_0	Turing machine	$\alpha \rightarrow \beta$
Type-1	Context sensitive \mathcal{L}_1	Linear-bounded non-deterministic Turing machine	$\alpha A\beta \to \alpha \gamma \beta$
Type-2	Context-free \mathcal{L}_2	Non- deterministic push down automaton	$A o \gamma$
Type-3	Regular \mathcal{L}_3	Finite state automaton	$A \rightarrow a$ and $A \rightarrow aB$

The Chomsky Hierarchy (cont'd)

Classification using the structure of their rules:

- Type-0 grammars: there are no restriction on the rules;
- Type-1 grammars/Context sensitive grammars: the rules for this type have the next form:

$$uAv \rightarrow upv, u, p, v \in V_G^*, p \neq \lambda, A \in V_N$$

Type-2 grammars/Context free grammars: the rules for this type are of the form:

$$A \to p, p \in V_G^*, A \in V_N$$

Type-3 grammars/regular grammars: the rules for this type have one of the next two forms:

Cat. I rules
$$A \rightarrow Bp$$

Cat. II rules $C \rightarrow a$

$$A \to Bp$$
$$C \to q$$

or

$$A \rightarrow pB$$

 $C \rightarrow q$

$$A, B, C \in V_N, p, q \in V_T^*$$

Summary

- Automata theory & a historical perspective
- Chomsky hierarchy
- Finite automata
- Alphabets, strings/words/sentences, languages
- Membership problem
- Proofs:
 - Deductive, induction, contrapositive, contradiction, counterexample
 - If and only if
- Chomsky hierarchy