The group G is isomorphic to the group labelled by $[\ 32,\ 38\]$ in the Small Groups library.

Ordinary character table of $G \cong (C8 \times C2) : C2$:

	1a	8a	2a	2b	4a	2c	8b	8c	8d	8e	4b	4c	4d	4e	8f	8g	8h	8i	2d	8j
χ_1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
χ_2	1	-1	-1	-1	1	1	1	1	-1	-1	1	-1	-1	1	-1	1	1	-1	1	-1
χ_3	1	-1	-1	1	1	1	1	-1	-1	-1	-1	-1	1	1	1	1	-1	-1	-1	1
χ_4	1	-1	1	-1	1	1	-1	1	-1	-1	-1	1	-1	1	1	-1	1	-1	-1	1
χ_5	1	-1	1	1	1	1	-1	-1	-1	-1	1	1	1	1	-1	-1	-1	-1	1	-1
χ_6	1	1	-1	-1	1	1	-1	-1	1	1	1	-1	-1	1	1	-1	-1	1	1	1
χ_7	1	1	-1	1	1	1	-1	1	1	1	-1	-1	1	1	-1	-1	1	1	-1	-1
χ_8	1	1	1	-1	1	1	1	-1	1	1	-1	1	-1	1	-1	1	-1	1	-1	-1
χ_9	1	-E(4)	-1	-1	-1	1	E(4)	E(4)	E(4)	-E(4)	1	1	1	-1	-E(4)	-E(4)	-E(4)	E(4)	-1	E(4)
χ_{10}	1	E(4)	-1	-1	-1	1	-E(4)	-E(4)	-E(4)	E(4)	1	1	1	-1	E(4)	E(4)	E(4)	-E(4)	-1	-E(4)
χ_{11}	1	-E(4)	-1	1	-1	1	E(4)	-E(4)	E(4)	-E(4)	-1	1	-1	-1	E(4)	-E(4)	E(4)	E(4)	1	-E(4)
χ_{12}	1	E(4)	-1	1	-1	1	-E(4)	E(4)	-E(4)	E(4)	-1	1	-1	-1	-E(4)	E(4)	-E(4)	-E(4)	1	E(4)
χ_{13}	1	-E(4)	1	-1	-1	1	-E(4)	E(4)	E(4)	-E(4)	-1	-1	1	-1	E(4)	E(4)	-E(4)	E(4)	1	-E(4)
χ_{14}	1	E(4)	1	-1	-1	1	E(4)	-E(4)	-E(4)	E(4)	-1	-1	1	-1	-E(4)	-E(4)	E(4)	-E(4)	1	E(4)
χ_{15}	1	-E(4)	1	1	-1	1	-E(4)	-E(4)	E(4)	-E(4)	1	-1	-1	-1	-E(4)	E(4)	E(4)	E(4)	-1	E(4)
χ_{16}	1	E(4)	1	1	-1	1	E(4)	E(4)	-E(4)	E(4)	1	-1	-1	-1	E(4)	-E(4)	-E(4)	-E(4)	-1	-E(4)
χ_{17}	2	-2 * E(8)	0	0	2 * E(4)	-2	0	0	$-2*E(8)^3$	2 * E(8)	0	0	0	-2 * E(4)	0	0	0	$2*E(8)^3$	0	0
χ_{18}	2	$-2*E(8)^3$	0	0	-2 * E(4)	-2	0	0	-2 * E(8)	$2 * E(8)^3$	0	0	0	2 * E(4)	0	0	0	2 * E(8)	0	0
χ_{19}	2	$2*E(8)^3$	0	0	-2*E(4)	-2	0	0	2 * E(8)	$-2*E(8)^3$	0	0	0	2 * E(4)	0	0	0	-2*E(8)	0	0
χ_{20}	2	2 * E(8)	0	0	2 * E(4)	-2	0	0	$2*E(8)^3$	-2*E(8)	0	0	0	-2 * E(4)	0	0	0	$-2*E(8)^3$	0	0

Trivial source character table of $G \cong (C8 \times C2)$: C2 at p = 2:

Trivial source character table of $G \cong (C8 \times C2)$: C2 at $p = 2$:																										
Normalisers N_i	N_1	N_2	N_3 1	$N_4 \mid N_5$	N_6	N_7	$N_8 \mid I$	$V_9 \mid N_{10}$	N_{11}	N_{12}	N_{13}	$N_{14} \mid I$	$V_{15} \mid N_1$	$_{6}$ N_{17}	N_{18}	N_{19} .	$N_{20} \mid N$	$_{21}$ N_2	$_2 \mid N_{23}$	N_{24}	N_{25}	N_{26}	N_{27}	$N_{28} \mid I$	$V_{29} \mid N$	$_{30}$ N_{31}
p-subgroups of G up to conjugacy in G	P_1	P_2	$P_3 \mid I$	$P_4 \mid P_5$	P_6	$\mid P_7 \mid$	$P_8 \mid I$	$P_{9} \mid P_{10}$	P_{11}	P_{12}	P_{13}	$P_{14} \mid I$	$P_{15} \mid P_1$	P_{17}	P_{18}	P_{19}	$P_{20} \mid P$	$_{21} \mid P_2$	$_2 \mid P_{23}$	P_{24}	P_{25}	P_{26}	P_{27}	$P_{28} \mid I$	$P_{29} \mid P_{3}$	$P_{30} \mid P_{31}$
Representatives $n_j \in N_i$	1a	1a	1a	$1a \mid 1a$	1a	1a	$1a \mid 1$	$a \mid 1a$	1a	1a	1a	1a	$a \mid 1a$	1a	1a	1a	$1a \mid 1$	$a \mid 1a$	1a	1a	1a	1a	1a	1a	$1a \mid 1$	$a \mid 1a$
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 1 \cdot \chi_9 + 1 \cdot \chi_{10} + 1 \cdot \chi_{11} + 1 \cdot \chi_{12} + 1 \cdot \chi_{13} + 1 \cdot \chi_{14} + 1 \cdot \chi_{15} + 1 \cdot \chi_{16} + 2 \cdot \chi_{17} + 2 \cdot \chi_{18} + 2 \cdot \chi_{19} + 2 \cdot \chi_{20}$	32	0	0	0 0	0	0	0	0 0	0	0	0	0	0 0	0	0	0	0) 0	0	0	0	0	0	0	0 (0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 1 \cdot \chi_9 + 1 \cdot \chi_{10} + 1 \cdot \chi_{11} + 1 \cdot \chi_{12} + 1 \cdot \chi_{13} + 1 \cdot \chi_{14} + 1 \cdot \chi_{15} + 1 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20}$	16	16	0	0 0	0	0	0	0 0	0	0	0	0	0 0	0	0	0	0) 0	0	0	0	0	0	0	0 (0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 1 \cdot \chi_{12} + 1 \cdot \chi_{13} + 1 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 1 \cdot \chi_{17} + 1 \cdot \chi_{18} + 1 \cdot \chi_{19} + 1 \cdot \chi_{20}$	16	0	8	0 0	0	0	0	0 0	0	0	0	0	0 0	0	0	0	0) 0	0	0	0	0	0	0	0 (0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 1 \cdot \chi_{13} + 1 \cdot \chi_{14} + 1 \cdot \chi_{15} + 1 \cdot \chi_{16} + 1 \cdot \chi_{17} + 1 \cdot \chi_{18} + 1 \cdot \chi_{19} + 1 \cdot \chi_{20}$	16	0	0	8 0	0	0	0	0 0	0	0	0	0	0 0	0	0	0	0) 0	0	0	0	0	0	0	0 (0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 1 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 1 \cdot \chi_{15} + 1 \cdot \chi_{16} + 1 \cdot \chi_{17} + 1 \cdot \chi_{18} + 1 \cdot \chi_{19} + 1 \cdot \chi_{20}$	16	0	0	0 8	0	0	0	0 0	0	0	0	0	0 0	0	0	0	0) 0	0	0	0	0	0	0	0 () 0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 1 \cdot \chi_{13} + 1 \cdot \chi_{14} + 1 \cdot \chi_{15} + 1 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20}$	8	8	0	8 0	8	0	0	0 0	0	0	0	0	0 0	0	0	0	0) 0	0	0	0	0	0	0	0 (0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 1 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 1 \cdot \chi_{15} + 1 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20}$	8	8	0	0 8	0	8	0	0 0	0	0	0	0	0 0	0	0	0	0) 0	0	0	0	0	0	0	0 () 0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 1 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 1 \cdot \chi_{13} + 1 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20}$	8	8	0	0 0	0	0	8	0 0	0	0	0	0	0 0	0	0	0	0) 0	0	0	0	0	0	0	0 () 0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 1 \cdot \chi_9 + 1 \cdot \chi_{10} + 1 \cdot \chi_{11} + 1 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20}$	8	8	0	0 0	0	0	0	8 0	0	0	0	0	0 0	0	0	0	0) 0	0	0	0	0	0	0	0 (0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 1 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 1 \cdot \chi_{15} + 1 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20}$	8	8	0	0 0	0	0	0	0 8	0	0	0	0	0 0	0	0	0	0) 0	0	0	0	0	0	0	0 (0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 1 \cdot \chi_{12} + 1 \cdot \chi_{13} + 1 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20}$	8	8	8	0 0	0	0	0	0 0	8	0	0	0	0 0	0	0	0	0) 0	0	0	0	0	0	0	0 (0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20}$	8	8	0	0 0	0	0	0	0 0	0	8	0	0	0 0	0	0	0	0) 0	0	0	0	0	0	0	0 (0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20}$	4	4	0	4 0	4	0	0	4 0	0	4	4	0	0 0	0	0	0	0) 0	0	0	0	0	0	0	0 (0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20}$	4	4	0	0 4	0	4	4	0 0	0	4	0	4	0 0	0	0	0	0) 0	0	0	0	0	0	0	0 (0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20}$	4	4	4	0 0	0	0	0	0 4	4	4	0	0	4 0	0	0	0	0) 0	0	0	0	0	0	0	0 (0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 1 \cdot \chi_{15} + 1 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20}$	4	4	0	4 4	4	4	0	0 4	0	0	0	0	$0 \mid 4$	0	0	0	0) 0	0	0	0	0	0	0	0 (0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20}$	4	4	0	0 0	0	0	0	0 0	0	4	0	0	0 0	4	0	0	0) 0	0	0	0	0	0	0	0 (0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20}$	4	4	0	0 0	0	0	0	0 0	0	4	0	0	0 0	0	4	0	0) 0	0	0	0	0	0	0	0 (0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20}$	4	4	0	0 0	0	0	0	0 0	0	4	0	0	0 0	0	0	4	0) 0	0	0	0	0	0	0	0 (0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 1 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20}$	4	4	0	0 0	0	0	4	4 4	0	0	0	0	0 0	0	0	0	4) 0	0	0	0	0	0	0	0 (0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 1 \cdot \chi_{13} + 1 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20}$	4	4	4	4 0	4	0	4	0 0	4	0	0	0	0 0	0	0	0	0	4 0	0	0	0	0	0	0	0 (0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 1 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20}$	4	4	4	0 4	0	4	0	4 0	4	0	0	0	0 0	0	0	0	0) 4	0	0	0	0	0	0	0 (0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20}$	4	4	0	0 0	0	0	0	0 0	0	4	0	0	0 0	0	0	0	0) 0	4	0	0	0	0	0	0 (0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20}$	2	2	2	2 2	2	2	2	2 2	2	2	2	2	2 2	0	0	0	2	2 2	0	2	0	0	0	0	0 (0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20}$	2	2	2	0 0	0	0	0	0 2	2	2	0	0	2 0	0	0	2	0	0	2	0	2	0	0	0	0 (0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20}$	2	2	0	0 2	0	2	2	0 0	0	2	0	2	0 0	2	0	0	0	0	2	0	0	2	0	0	0 (0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20}$	2	2	0	2 0	2	0	0	2 0	0	2	2	0	0 0	0	2	0	0	0	2	0	0	0	2	0	0 (0
$1 \cdot \chi_{1} + 0 \cdot \chi_{2} + 0 \cdot \chi_{3} + 1 \cdot \chi_{4} + 0 \cdot \chi_{5} + 0 \cdot \chi_{6} + 0 \cdot \chi_{7} + 0 \cdot \chi_{8} + 0 \cdot \chi_{9} + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20}$	2	2	0	2 0	2	0	0	2 0	0	2	2	0	0 0	2	0	2	0) 0	0	0	0	0	0	2	0 (0
$1 \cdot \chi_{1} + 0 \cdot \chi_{2} + 1 \cdot \chi_{3} + 0 \cdot \chi_{4} + 0 \cdot \chi_{5} + 0 \cdot \chi_{6} + 0 \cdot \chi_{7} + 0 \cdot \chi_{8} + 0 \cdot \chi_{9} + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20}$	2	2	0	0 2	0	2	2	0 0	0	2	0	2	0	0	2	2	0) 0	0	0	0	0	0	0	2	0
$1 \cdot \chi_{1} + 1 \cdot \chi_{2} + 0 \cdot \chi_{3} + 0 \cdot \chi_{4} + 0 \cdot \chi_{5} + 0 \cdot \chi_{6} + 0 \cdot \chi_{7} + 0 \cdot \chi_{8} + 0 \cdot \chi_{9} + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20}$	2	2	2	0 0	0	0	0	0 2	2	2	0	0	2 0	2	2	0	0	$\overline{)}$ 0	0	0	0	0	0	0	0 2	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{19} + 0 \cdot \chi_{20}$	1	1	1	1 1	1	1	1	1 1	1	1	1	1	1 1	1	1	1	1	1 1	1	1	1	1	1	1	1 1	. 1

$P_1 = Group([()]) \cong 1$

- $P_2 = Group([(1,6)(2,10)(3,13)(4,15)(5,16)(7,19)(8,21)(9,22)(11,24)(12,25)(14,26)(17,28)(18,29)(20,30)(23,31)(27,32)]) \cong C2$
- $P_3 = Group([(1,31)(2,32)(3,26)(4,12)(5,11)(6,23)(7,30)(8,18)(9,17)(10,27)(13,14)(15,25)(16,24)(19,20)(21,29)(22,28)]) \cong C2$ $P_3 = Group([(1,3)(2,32)(3,26)(4,12)(5,12)(6,12)(9,28)(0,18)(10,10)(11,15)(14,21)(16,25)(17,21)(20,22)(22,26)(27,20)]) \cong C2$
- $P_4 = Group([(1,3)(2,7)(4,24)(5,12)(6,13)(8,28)(9,18)(10,19)(11,15)(14,31)(16,25)(17,21)(20,32)(22,29)(23,26)(27,30)]) \cong \mathbb{C}_2$ $P_7 = Group([(1,4)(2,8)(2,11)(5,14)(6,15)(7,17)(0,20)(10,21)(12,22)(12,24)(16,26)(18,27)(10,28)(22,20)(25,21)(20,22))) \approx \mathbb{C}_2$
- $P_{6} = Group([(1,6)(2,10)(3,13)(4,15)(5,16)(7,19)(8,21)(9,22)(11,24)(12,25)(14,26)(17,28)(18,29)(20,30)(23,31)(27,32), (1,3)(2,7)(4,24)(5,12)(6,13)(8,28)(9,18)(10,19)(11,15)(14,31)(16,25)(17,21)(20,32)(22,29)(23,26)(27,30)]) \cong C2 \times C2$
- $P_7 = Group([(1,6)(2,10)(3,13)(4,15)(5,16)(7,19)(8,21)(9,22)(11,24)(12,25)(14,26)(17,28)(13,24)(16,26)(17,28)(13,24)(16,26)(17,28)(18,29)(20,30)(23,31)(27,32), (1,4)(2,8)(3,11)(5,14)(6,15)(7,17)(9,20)(10,21)(12,23)(13,24)(16,26)(18,27)(19,28)(22,30)(25,31)(29,32)]) \cong C2 \times C2$
- $P_8 = Group([(1,6)(2,10)(3,13)(4,15)(5,16)(7,19)(8,21)(9,22)(11,24)(12,25)(14,26)(17,28)(18,29)(20,30)(23,31)(4,5,15,16)(7,27,19,32)(8,9,21,22)(11,12,24,25)(17,18,28,29)]) \cong C4$
- $P_9 = Group([(1,6)(2,10)(3,13)(4,15)(5,16)(7,19)(8,21)(9,22)(11,24)(12,25)(14,26)(17,28)(18,29)(20,30)(23,31)(27,32), (1,12,6,25)(2,18,10,29)(3,5,13,16)(4,31,15,23)(7,9,19,22)(8,32,21,27)(11,26,24,14)(17,30,28,20)]) \cong C4$ $P_{10} = Group([(1,6)(2,10)(3,13)(4,15)(5,16)(7,19)(8,21)(9,22)(11,24)(12,25)(14,26)(17,28)(18,29)(20,30)(23,31)(27,32), (1,24,6,11)(2,28,10,17)(3,15,13,4)(5,31,16,23)(7,21,19,8)(9,32,22,27)(12,26,25,14)(18,30,29,20)]) \cong C4$
- $P_{12} = Group([(1,6)(2,10)(3,13)(4,15)(5,16)(7,19)(8,21)(1,25)(11,26)(17,26)(21,26)$
- $P_{14} = Group([(1,6)(2,10)(3,13)(4,15)(5,16)(7,17)(9,20)(10,21)(12,23)(13,24)(16,26)(18,27)(19,28)(22,30)(23,31)(27,32), \\ (1,5,6,16)(2,9,10,22)(3,12,13,25)(4,14,15,26)(7,18,19,29)(8,20,21,30)(11,23,24,31)(17,27,28,32), \\ (1,4)(2,8)(3,11)(5,14)(6,15)(7,17)(9,20)(10,21)(12,23)(13,24)(16,26)(18,27)(19,28)(22,30)(25,31)(29,32)]) \cong C4 \times C2 \\ P_{15} = Group([(1,6)(2,10)(3,13)(4,15)(5,16)(7,19)(8,21)(9,22)(11,24)(12,25)(14,26)(17,28)(18,29)(20,30)(23,31)(27,32), \\ (1,5,6,16)(2,9,10,22)(3,12,13,25)(4,14,15,26)(7,18,19,29)(8,20,21,30)(11,23,24,31)(17,27,28,32), \\ (1,5,6,16)(2,9,10,22)(3,12,13,25)(4,14,15,26)(7,18,19,29)(8,20,21,30)(11,23,24,31)(17,27,28,32), \\ (1,5,6,16)(2,9,10,22)(3,12,13,25)(4,14,15,26)(7,18,19,29)(8,20,21,30)(11,23,24,31)(17,27,28,32), \\ (1,5,6,16)(2,9,10,22)(3,12,13,25)(4,14,15,26)(7,18,19,29)(8,20,21,30)(11,23,24,31)(17,27,28,32), \\ (1,5,6,16)(2,9,10,22)(3,12,13,25)(4,14,15,26)(7,18,19,29)(8,20,21,30)(11,23,24,31)(17,27,28,32), \\ (1,5,6,16)(2,9,10,22)(3,12,13,25)(4,14,15,26)(7,18,19,29)(8,20,21,30)(11,23,24,31)(17,27,28,32), \\ (1,5,6,16)(2,9,10,22)(3,12,13,25)(4,14,15,26)(7,18,19,29)(8,20,21,30)(11,23,24,31)(17,27,28,32), \\ (1,5,6,16)(2,9,10,22)(3,12,13,25)(4,14,15,26)(7,18,19,29)(8,20,21,30)(11,23,24,31)(17,27,28,32), \\ (1,5,6,16)(2,9,10,22)(3,12,13,25)(4,14,15,26)(7,18,19,29)(8,20,21,30)(11,23,24,31)(17,27,28,32), \\ (1,5,6,16)(2,9,10,22)(3,12,13,25)(4,14,15,26)(2,9,10,22)(3,12,13,25)(4,14,15,26)(2,9,10,22)(3,12,13,25)(4,14,15,26)(2,9,10,22)(3,12,13,25)(4,14,15,26)(2,9,10,22)(3,12,13,25)(4,14,15,26)(2,9,10,22)(3,12,13,25)(4,14,15,26)(2,9,10,22)(3,12,13,25)(4,14,15,26)(2,9,10,22)(3,12,13,25)(4,14,15,26)(2,9,10,22)(3,12,13,25)(4,14,15,26)(2,9,10,22)(3,12,13,25)(4,14,15,26)(2,13,12,13,25)(4,14,15,26)(2,13,12,13,25)(4,14,15,26)(2,13,12,13,25)(4,14,15,26)(2,13,12,13,25)(4,14,15,26)(2,13,12,13,25)(4,14,15,26)(2,13,12,13,25)(4,14,15,26)(2,13,12,13,25)(4,14,15,26)(2,13,12,13,25)(4,14,15,26)(2,13,12,13,25)(4,14,15,26)(2,13,12,13,25)(4,14,15,26)(2,13,12,13,25)(4,14,15,26)(2,13,12,13,25)(4,14,15,26)(2,13$
- $P_{16} = Group([(1,6)(2,10)(3,13)(4,15)(5,16)(7,19)(8,21)(9,22)(11,24)(12,25)(14,26)(17,28)(22,30)(23,31)(27,32), (1,4)(2,8)(3,11)(5,14)(6,15)(7,17)(9,20)(10,21)(12,23)(13,24)(16,26)(17,21)(20,32)(22,29)(23,26)(27,30)]) \cong D8$ $P_{17} = Group([(1,6)(2,10)(3,13)(4,15)(5,16)(7,19)(8,21)(9,22)(11,24)(12,25)(14,26)(17,28)(18,29)(20,30)(23,31)(27,32), (1,5,6,16)(2,9,10,22)(3,12,13,25)(4,14,15,26)(7,18,19,29)(8,20,21,30)(11,23,24,31)(17,27,28,32), (1,5,6,16)(2,9,10,22)(3,12,13,25)(4,14,15,26)(7,18,19,29)(8,20,21,30)(11,23,24,31)(17,27,28,32), (1,5,6,16)(2,9,10,22)(3,12,13,25)(4,14,15,26)(7,18,19,29)(8,20,21,30)(11,23,24,31)(17,27,28,32), (1,5,6,16)(2,9,10,22)(3,12,13,25)(4,14,15,26)(7,18,19,29)(8,20,21,30)(11,23,24,31)(17,27,28,32), (1,5,6,16)(2,9,10,22)(3,12,13,25)(4,14,15,26)(7,18,19,29)(8,20,21,30)(11,23,24,31)(17,27,28,32), (1,5,6,16)(2,9,10,22)(3,12,13,25)(4,14,15,26)(7,18,19,29)(8,20,21,30)(11,23,24,31)(17,27,28,32), (1,5,6,16)(2,9,10,22)(3,12,13,25)(4,14,15,26)(7,18,19,29)(8,20,21,30)(11,23,24,31)(17,27,28,32), (1,5,6,16)(2,9,10,22)(3,12,13,25)(4,14,15,26)(7,18,19,29)(8,20,21,30)(11,23,24,31)(17,27,28,32), (1,5,6,16)(2,9,10,22)(3,12,13,25)(4,14,15,26)(7,18,19,29)(8,20,21,30)(11,23,24,31)(17,27,28,32), (1,5,6,16)(2,9,10,22)(3,12,13,25)(4,14,15,26)(7,18,19,29)(8,20,21,30)(11,23,24,31)(17,27,28,32), (1,5,6,16)(2,9,10,22)(3,12,13,25)(4,14,15,26)(7,18,19,29)(8,20,21,30)(11,23,24,31)(17,27,28,32), (1,5,6,16)(2,9,10,22)(3,12,13,25)(4,14,15,26)(17,28,12,12), (1,5,6,16)(2,9,10,22)(3,12,13,25)(4,14,15,26)(17,12,12,12,12), (1,5,6,16)(2,9,10,22)(3,12,12,12), (1,5,6,16)(2,9,10,22)(3,12,12,12), (1,5,6,16)(2,9,10,22)(3,12,12)(3,12,12), (1,5,6,16)(2,9,10,22)(3,12,12)(3,12,12), (1,5,6,16)(2,9,10,22)(3,12,12)(3,12,12), (1,5,6,16)(2,9,10,22)(3,12,12)(3,12)(3,12)(3,12)(3,12)(3,12)(3,12)(3,12)(3,12)(3,12)(3,12)(3,12)($
- $P_{18} = Group([(1,6)(2,10)(3,13)(4,15)(5,16)(7,19)(8,21)(9,22)(11,24)(12,25)(14,26)(17,28)(23,24,31)(17,27,28,32), (1,5,6,16)(2,9,10,25)(23,12,16,26)(23,12,16$
- $P_{19} = Group([(1,6)(2,10)(3,13)(4,15)(5,16)(7,19)(8,21)(9,22)(11,24)(12,25)(14,26)(17,28)(18,29)(20,30)(23,31)(27,32), (1,5,6,16)(2,9,10,23)(3,12,24,10,23,9,11)(3,21,25,20,13,8,12,30)(4,7,26,29,15,19,14,18)]) \cong C8$ $P_{19} = Group([(1,6)(2,10)(3,13)(4,15)(5,16)(7,19)(8,21)(9,22)(11,24)(12,25)(14,26)(17,28)(18,29)(20,30)(23,31)(27,32), (1,14,6,26)(2,20,10,30)(3,31)(4,5,15,16)(7,19)(8,21)(9,22)(11,24)(12,25)(14,26)(17,28)(18,29)(20,30)(23,31)(27,32), (1,14,6,26)(2,20,10,30)(3,31)(4,5,15,16)(7,19)(8,21)(9,22)(11,24)(12,25)(14,26)(17,28)(18,29)(20,30)(23,31)(27,32), (1,14,6,26)(2,20,10,30)(3,31)(4,5,15,16)(7,19)(8,21)(9,22)(11,24)(12,25)(14,26)(17,28)(18,29)(20,30)(23,31)(27,32), (1,14,6,26)(2,20,10,30)(3,3$
- $P_{20} = Group([(1,6)(2,10)(3,13)(4,15)(5,16)(7,19)(8,21)(9,22)(11,24)(12,25)(14,26)(17,28)(18,29)(20,30)(23,31)(27,32), (1,14,6,26)(2,20,10,30)(3,23,13,31)(4,5,15,16)(7,27,19,32)(8,9,21,22)(11,12,24,25)(17,18,28,29), (1,12,6,25)(2,18,10,29)(3,5,13,16)(4,31,15,23)(7,9,19,22)(8,32,21,27)(11,26,24,14)(17,30,28,20)]) \cong Q8$ $P_{21} = Group([(1,6)(2,10)(3,13)(4,15)(5,16)(7,19)(8,21)(9,22)(11,24)(12,25)(14,26)(17,28)(18,29)(20,30)(23,31)(27,32), (1,14,6,26)(2,20,10,30)(3,31)(4,5,15,16)(7,27,19,32)(8,9,21,22)(11,12,24,25)(17,18,28,29), (1,14,6,26)(2,20,10,30)(3,31)(4,5,15,16)(7,27,19,32)(8,9,21,22)(11,12,24,25)(17,18,28,29), (1,14,6,26)(2,20,10,30)(3,31)(4,5,15,16)(7,27,19,32)(8,9,21,22)(11,12,24,25)(17,18,28,29), (1,14,6,26)(2,20,10,30)(3,31)(4,5,15,16)(7,27,19,32)(8,9,21,22)(11,12,24,25)(17,18,28,29), (1,14,6,26)(2,20,10,30)(3,31)(4,5,15,16)(7,27,19,32)(8,9,21,22)(11,12,24,25)(17,18,28,29), (1,14,6,26)(2,20,10,30)(3,31)(4,5,15,16)(7,27,19,32)(8,9,21,22)(11,12,24,25)(17,18,28,29), (1,14,6,26)(2,20,10,30)(3,31)(4,5,15,16)(7,27,19,32)(8,9,21,22)(11,12,24,25)(17,18,28,29), (1,14,6,26)(2,20,10,30)(3,31)(4,5,15,16)(4,31,15,23)(7,9,19,22)(8,9,21,22)(11,12,24,25)(17,18,28,29), (1,14,6,26)(2,20,10,30)(3,31)(4,5,15,16)(4,31,15,23)(4,5,15,16)(4,31,15,16)(4,$
- $P_{22} = Group([(1,6)(2,10)(3,13)(4,15)(5,16)(7,19)(8,21)(9,22)(11,24)(12,25)(14,26)(17,28)(25,36)$
- $P_{23} = Group([(1,6)(2,10)(3,13)(4,15)(5,16)(7,19)(8,21)(12,25)(14,26)(17,28)(17,26$
- $P_{24} = Group([(1,6)(2,10)(3,13)(4,15)(5,16)(7,19)(8,21)(1,25)(14,26)(17,28)(23,26)(27,30)]) \\ \cong (C4 \times C2) : C2$

- $P_{28} = Group([(1,6)(2,10)(3,13)(4,15)(5,16)(7,19)(8,25)(14,26)(17,26$
- $P_{29} = Group([(1,6)(2,10)(3,13)(4,15)(5,16)(7,19)(8,21)(1,23)(13,24)(14,25)(14,26)(17,28)(21,26)$
- $P_{30} = Group([(1,6)(2,10)(3,13)(4,15)(5,16)(7,19)(8,21)(9,22)(11,24)(12,25)(14,26)(17,28)(13,24)(17,27,28,32), (1,24,6,11)(2,28,10,17)(3,15,13,4)(5,31,16,23)(7,21,19,8)(9,32,22,27)(12,26,25,14)(18,30,29,20), (1,8,5,20,6,21,16,30)(2,14,9,15,10,26,22,4)(3,17,12,27,13,28,25,32)(7,23,18,24,19,31,29,11)]) \\ \cong C8: C2 \\ P_{31} = Group([(1,6)(2,10)(3,13)(4,15)(5,16)(7,19)(8,21)(9,22)(11,24)(12,25)(14,26)(17,28)(18,29)(20,30)(23,31)(27,32), (1,5,6,16)(2,9,10,22)(3,12,13,25)(4,14,15,26)(7,18,19,29)(8,20,21,30)(11,23,24,31)(17,27,28,32), (1,4)(2,8)(3,11)(5,14)(6,15)(7,17)(9,20)(10,21)(12,23)(13,24)(16,25)(17,21)(20,32)(22,29)(23,26)(27,30), (1,2,5,9,6,10,16,22)(3,7,12,18,13,19,25,29)(4,8,14,20,15,21,26,30)(11,17,23,27,24,28,31,32)] \\ \cong (C8 \times C2): C2 + (C4 \times C2): C4 \times (C4 \times C4): C4 \times (C4 \times C4):$
- $N_1 = Group([(1,2,5,9,6,10,16,22)(3,7,12,18,13,19,25,29)(4,8,14,20,15,21,26,30)(11,17,23,27,24,28,31,32),(1,3)(2,7)(4,24)(5,12)(6,13)(8,28)(9,18)(10,19)(11,15)(14,31)(16,25)(17,21)(20,32)(22,29)(23,26)(27,30),(1,4)(2,8)(3,11)(5,14)(6,15)(7,17)(9,20)(10,21)(12,23)(13,24)(16,26)(17,28)(18,29)(20,30)(23,31)(27,32)] \cong (C8 \times C2) : C2 \\ N_2 = Group([(1,2,5,9,6,10,16,22)(3,7,12,18,13,19,25,29)(4,8,14,20,15,21,26,30)(11,17,23,27,24,28,31,32),(1,5)(6,13)(8,28)(9,18)(10,19)(11,15)(14,31)(16,25)(17,21)(20,32)(22,29)(23,26)(27,30),(1,4)(2,8)(3,11)(5,14)(6,15)(7,17)(9,20)(10,21)(12,23)(13,24)(16,26)(18,27)(19,28)(23,29)(23,26)(27,30),(1,4)(2,8)(3,11)(5,14)(6,15)(7,17)(9,20)(10,21)(12,23)(13,24)(16,26)(18,27)(19,28)(23,29)(23,26)(27,30),(1,4)(2,8)(3,11)(5,14)(6,15)(7,17)(9,20)(10,21)(12,23)(13,24)(16,26)(17,28)(18,29)(20,30)(23,31)(27,32)] \cong (C8 \times C2) : C2 \\ N_3 = Group([(1,3)(2,32)(3,24)(16,24)(3,24)(3,24)(16,24)(17,28)(18,29)(20,30)(23,31)(27,32)] \cong (C8 \times C2) : C2 \\ N_4 = Group([(1,3)(2,32)(3,24)(16,24)(3,24)(17,27)(23,24)(18,24)(18$
- $N_7 = Group([(1,4)(2,8)(3,11)(5,14)(6,25)(2,20)(3,23)(2,25)(4,26)(17,25)(17,2$
- $N_{10} = Group([(1,24,6,11)(2,28,10,17)(3,15,13,4)(5,31,16,23)(7,21,19,8)(9,32,22,7)(12,26,25,14)(18,29)(20,30)(23,31)(27,32), (1,2,5,9,6,10,16,22)(3,7,12,18,13,19,25,29)(4,8,14,20,15,21,26,30)(11,17,23,27,24,28,31,32), (1,3)(2,7)(4,24)(5,12)(6,13)(8,28)(9,18)(10,19)(11,15)(14,31)(16,25)(17,21)(20,32)(22,29)(23,26)(27,30)]) \cong (C8 \times C2) : C2 \\ N_{11} = Group([(1,31)(2,32)(3,26)(4,12)(5,11)(6,23)(7,30)(8,18)(9,17)(10,27)(13,14)(15,25)(14,26)(17,28)(18,29)(20,30)(23,31)(27,32), (1,2,5,9,6,10,16,22)(3,7,12,18,13,19,25,29)(4,8,14,20,15,21,26,30)(11,17,23,27,24,28,31,32), (1,3)(2,7)(4,24)(5,12)(6,13)(8,28)(9,18)(10,19)(11,15)(14,31)(16,25)(17,21)(20,32)(22,29)(23,26)(27,30)]) \cong (C8 \times C2) : C2 \\ N_{12} = Group([(1,5,6,16)(2,9,10,22)(3,12,13,25)(4,14,15,26)(7,18,19,29)(8,20,21,30)(11,17,23,27,24,28,31,32), (1,3)(2,7)(4,24)(5,12)(6,13)(8,28)(9,18)(10,19)(11,15)(14,31)(16,25)(17,21)(20,32)(22,29)(23,26)(27,30)]) \cong (C8 \times C2) : C2 \\ N_{12} = Group([(1,5,6,16)(2,9,10,22)(3,12,13,25)(4,14,15,26)(7,19)(8,21)(9,22)(11,24)(12,25)(14,26)(17,21)(20,32)(22,29)(23,26)(27,30), (1,2,5,9,6,10,16,22)(3,7,12,18,13,19,25,29)(4,8,14,20,15,21,26,30)(11,17,23,27,24,28,31,32), (1,3)(2,7)(4,24)(5,12)(6,13)(8,28)(9,18)(10,19)(11,15)(14,31)(16,25)(17,21)(20,32)(22,29)(23,26)(27,30)(23,31)(27,32), (1,2,5,9,6,10,16,22)(3,7,12,18,13,19,25,29)(4,8,14,20,15,21,26,30)(11,17,23,27,24,28,31,32), (1,3)(2,7)(4,24)(5,12)(6,13)(8,28)(9,18)(10,19)(11,15)(14,31)(16,25)(17,21)(20,32)(22,29)(23,26)(27,30)(23,31)(27,32), (1,2,5,9,6,10,16,22)(3,7,12,18,13,19,25,29)(4,8,14,20,15,24)(4,20,15$
- $N_{12} = Group([(1,5,6,16)(2,9,10,22)(3,12,13,25)(4,14,15,26)(7,18,19,29)(23,26)(27,30)(11,23,24,31)(17,27,28,32), (1,6)(2,10)(3,13)(4,15)(5,16)(7,19)(8,21)(9,22)(11,24)(12,25)(14,26)(17,21)(20,32)(22,29)(23,26)(27,30)(11,17,23,27,24,28,31,32), (1,6)(2,10)(3,13)(4,15)(5,16)(7,19)(8,21)(9,22)(11,24)(12,25)(14,26)(17,21)(20,32)(22,29)(23,26)(27,30), (1,5)(4,14,15,26)(7,18,19,29)(23,26)(27,30), (1,5)(4,14,15,26)(7,18,19,29)(23,26)(27,30), (1,5)(4,24)(5,12)(6,13)(8,28)(9,18)(10,19)(11,15)(14,31)(16,25)(17,21)(20,32)(22,29)(23,26)(27,30), (1,5)(4,24)(5,12)(6,13)(8,28)(9,18)(10,19)(11,15)(14,31)(16,25)(17,21)(20,32)(22,29)(23,26)(27,30), (1,5)(4,14,15,26)(7,18,19,29)(23,20)(23,21)(23,21)(23,23)(23$
- $N_{18} = Group([(1,7,5,18,6,19,(2,3),(1,2,3)$
- $N_{22} = Group([(1,12,6,25)(2,18,10,29)(3,5,13,16)(4,31,15,23)(7,9,19,22)(8,32,21,27)(11,26,24,14)(17,30,28,20),(1,4)(2,8)(3,11)(5,14)(6,15)(7,17)(9,20)(10,21)(12,23)(13,24)(16,26)(18,27)(19,22)(3,13,14)(16,26)(18,27)(19,22)(3,13,14)(16,26)(18,27)(19,22)(3,13,14)(16,26)(18,27)(19,22)(3,13,14)(16,26)(18,27)(19,22)(3,13,14)(16,26)(18,27)(19,22)(3,13,14)(16,26)(18,27)(19,22)(3,13,14)(16,26)(18,27)(19,22)(3,13,14)(16,26)(18,27)(19,22)(3,13,14)(16,26)(18,27)(19,22)(3,13,14)(16,26)(18,27)(19,22)(3,13,14)(16,26)(18,27)(19,22)(3,13,14)(16,26)(18,27)(19,22)(11,24)(12,25)(14,26)(17,21)(20,32)(22,29)(23,26)(27,30),(1,4)(2,8)(3,11)(5,14)(6,15)(7,17)(9,20)(10,21)(12,23)(13,24)(16,26)(18,27)(19,22)(21,29)(23,26)(27,30),(1,4)(2,8)(3,11)(5,14)(6,15)(7,17)(9,20)(10,21)(12,23)(13,24)(16,26)(18,27)(19,22)(21,29)(23,26)(27,30),(1,4)(2,8)(3,11)(5,14)(6,15)(7,17)(9,20)(10,21)(12,23)(13,24)(16,26)(18,27)(19,28)(22,30)(25,31)(29,32),(1,5,6,16)(2,9,10,22)(3,12,13,25)(4,14,15,26)(7,18,19,29)(20,30)(23,31)(27,32),(1,5,6,16)(2,9,10,22)(3,12,13,25)(4,14,15,26)(7,18,19,29)(20,30)(23,31)(27,32),(1,5,6,16)(2,9,10,22)(3,12,13,25)(4,14,15,26)(7,18,19,29)(20,30)(23,31)(27,32),(1,5,6,16)(2,9,10,22)(3,12,13,25)(4,14,15,26)(7,18,19,29)(20,30)(23,31)(27,32),(1,5,6,16)(2,9,10,22)(3,12,13,25)(4,14,15,26)(7,18,19,29)(20,30)(23,31)(27,32),(1,5,6,16)(2,9,10,22)(3,12,13,25)(4,14,15,26)(7,18,19,29)(20,30)(23,31)(27,32),(1,5,6,16)(2,9,10,22)(3,12,13,25)(4,14,15,26)(7,18,19,29)(20,30)(23,31)(27,32),(1,5,6,16)(2,9,10,22)(3,12,13,25)(4,14,15,26)(7,18,13,19,25,29)(4,14,15,26)(7,18,19,29)(20,30)(23,31)(27,32),(1,5,6,16)(23,13,13,25)(23,13,$
- $N_{25} = Group([(1,2,5,9,6,10,16,22)(3,7,12,18,13,19,25,29)(4,8,14,20,15,21,26,30)(11,17,23,27,24,28,31,32),(1,24,6,11)(2,28,10,17)(3,15,13,4)(5,31,16,23)(7,21,19,8)(9,32,22,7)(12,26,25,14)(18,30,29,20),(1,5,6,16)(2,9,10,22)(3,12,13,25)(4,14,15,26)(7,18,19,29)(8,20,21,30)(11,23,24,31)(17,27,28,32),(1,6)(2,10)(3,13)(4,15)(5,16)(7,19)(8,21)(9,22)(11,24)(12,25)(14,26)(17,21)(20,32)(22,29)(23,26)(27,30)] \\ = Group([(1,2,5,9,6,10,16,22)(3,7,12,18,13,19,25,29)(4,8,14,20,15,21)(20,32)(22,29)(23,26)(27,30)]) \\ = (C8 \times C2) : C2 \\ N_{26} = Group([(1,2,5,9,6,10,16,22)(3,7,12,18,13,19,25,29)(4,8,14,20,15,21)(20,32)(22,29)(23,26)(27,30)]) \\ = (C8 \times C2) : C2 \\ N_{26} = Group([(1,2,5,9,6,10,16,22)(3,7,12,18,13,19,25,29)(4,8,14,20,15,21)(20,32)(22,29)(23,26)(27,30)]) \\ = (C8 \times C2) : C2 \\ N_{27} = Group([(1,2,5,9,6,10,16,22)(3,7,12,18,13,19,25,29)(4,8,14,20,15,21)(20,32)(22,29)(23,26)(27,30)]) \\ = (C8 \times C2) : C2 \\ N_{27} = Group([(1,2,5,9,6,10,16,22)(3,7,12,18,13,19,25,29)(4,8,14,20,15,21)(20,32)(22,29)(23,26)(27,30)) \\ = (C8 \times C2) : C2 \\ N_{27} = Group([(1,2,5,9,6,10,16,22)(3,7,12,18,13,19,25,29)(4,8,14,20,15,24)(21,28$
- $N_{30} = Group([(1,8,5,20,6,21,16,30)(2,14,9,15,10,26,22,4)(3,17,12,27,13,28,25,32)(7,23,18,24,19,31,29,11),(1,24,6,11)(2,28,10,17)(3,15,13,4)(5,31,16,23)(7,21,19,8)(9,32,22,7)(12,26,25,14)(18,30,29,20),(1,5,6,16)(2,9,10,22)(3,12,13,25)(4,14,15,26)(7,18,19,29)(8,20,21,30)(11,17,23,27,24,28,31,32)]) \\ = (C_8 \times C_2) : C_2 \\ N_{31} = Group([(1,2,5,9,6,10,16,22)(3,7,12,18,13,19,25,29)(4,8,14,20,15,21,26,30)(11,17,23,27,24,28,31,32)]) \\ = (C_8 \times C_2) : C_2 \\ N_{31} = Group([(1,2,5,9,6,10,16,22)(3,7,12,18,13,19,25,29)(4,8,14,20,15,21,26,30)(11,17,23,27,24,28,31,32)]) \\ = (C_8 \times C_2) : C_8 \times C_9 : C_8 \times C_9 : C_9 \\ N_{31} = Group([(1,2,5,9,6,10,16,22)(3,7,12,18,13,19,25,29)(4,8,14,20,15,21,26,30)(11,17,23,27,24,28,31,32)) \\ = (C_8 \times C_9) : C_9 \times C_9 : C_9 \times$