Equations et inéquations et systèmes partie1

Leçon: Equations et inéquations et systèmes partie I Présentation globale Chapitre nº 1

I) Les équations et les inéquations du premier degré a une inconnue.

- 1 Les équations du premier degré a une inconnue
- 2 Les inéquations du premier degré a une inconnue.

I) Les équations et les inéquations du premier degré a une inconnue.

1°) Les équations du premier degré a une inconnue.

Définition : On appelle équations du premier degré a une inconnue toute équation de la forme : ax + b = 0 où les coefficients a, b sont des réels donnés et x est l'inconnue Résoudre l'équations c'est déterminer l'ensemble de toutes

les solutions notées : S

Applications : Résoudre dans $\mathbb R$ les équations suivantes :

1)
$$-2x + 22 = 0$$

2)
$$3(2x+5)=6x-1$$

3)
$$4(x-2) = 6x - 2(x+4)$$

4)
$$2x + 3)^2 - (2x + 3)(x - 4) = 0$$
 5) $x^2 - 100 = 0$

6)
$$\frac{3}{x+2} - \frac{5}{x-2} = 0$$
 7) $\frac{(x-7)(x+3)}{x^2-9} = 0$

8)
$$\frac{4x+2}{x-3} = 5$$
 9) $|7x-10| = |6+3x|$ 10) $x^3 - 7x = 0$

Solution : 1)
$$-2x + 22 = 0$$
 ssi $-2x + 22 - 22 = -22$ ssi $-2x = -22$ ssi $_{-2x \times \left(\frac{1}{-2}\right) = -22 \times \left(\frac{1}{-2}\right)}$ ssi $x = 11$

Donc : $S = \{11\}$

2)
$$3(2x+5) = 6x-1$$
 ssi $6x+15=6x-1$ ssi

$$6x - 6x = -1 - 15$$

ssi 0x = -16 ssi 0 = -16 ceci est impossible

Donc l'ensemble de toutes les solutions est : $S = \emptyset$

3)
$$4(x-2) = 6x - 2(x+4)$$

ssi
$$4x-8=6x-2x-8$$
 ssi $4x-4x+8-8=0$

ssi 0=0 Donc l'ensemble de toutes les solutions est : $S=\mathbb{R}$

4)
$$(2x + 3)^2 - (2x + 3)(x - 4) = 0$$

ce qui est équivalent à :
$$(2x + 3)(2x + 3 - x + 4) = 0$$

ce qui est équivalent à : (2x + 3)(x + 7) = 0

Les solutions sont -3/2 ou -7.

Donc l'ensemble de toutes les solutions est : $S = \{-7, -3/2\}$

5)
$$x^2 - 100 = 0$$

$$x^2 - 100 = 0$$

PROF: ATMANI NAJIB

$$\iff x^2 - 10^2 = 0$$

C'est une identité remarquable de la forme :

$$a^2 - b^2 = (a - b) (a + b)$$
, donc

$$x^2 - 100 = 0$$

$$\iff$$
 $(x - 10)(x + 10) = 0$

$$:\iff x=10 \text{ ou } x=-10$$

D'où:
$$S = \{-10; 10\}$$

6)
$$\frac{3}{x+2} - \frac{5}{x-2} = 0$$

Cette équation n'existe pas

si x + 2 = 0 et si x - 2 = 0. Les valeurs interdites de cette équation sont -2 et 2. L'équation est donc définie sur $\mathbb{R}\setminus\{-2; 2\}$.

On commence par réduire au même dénominateur les deux fractions. Le dénominateur commun est (x+2)(x-2):

Donc: -2x - 16 = 0 car le dénominateur ne peut pas s'annuler.

$$\iff -2x = 16$$

$$\iff x = \frac{10}{2}$$

$$\iff x = -8$$

D'où : -8 appartient à l'ensemble de définition de

l'équation, donc : $S = \{-8\}$

$$7)\frac{(x-7)(x+3)}{x^2-9} = 0$$

Cette équation 'existe si $x^2 - 9 \neq 0$

$$|x^2-9=0|$$
 Équivalent à : $x^2-3^2=0$ équivalent à :

$$(x-3)(x+3)=0$$

Équivalent à
$$x+3=0$$
 ou $x-3=0$ équivalent à $x=-3$ ou $x=3$

Les valeurs interdites de cette équation sont -3 et 3.

L'équation est donc définie sur $D_E = \mathbb{R} \setminus \{-3, 3\}$.

$$\frac{(x-7)(x+3)}{x^2-9} = 0 \text{ équivalent à } (x-7)(x+3) = 0$$

équivalent à x-7=0 ou x+3=0

Équivalent à $x = -7 \in D_E$ ou $x = -3 \notin D_E$:

donc : $S = \{7\}$

8)
$$\frac{4x+2}{x-3} = 5$$
 Cette équation n'existe pas si $x-3=0$

$$x-3=0$$
 équivalent à : $x=3$

La valeur interdite de cette équation est 3. L'équation est donc définie sur $D_F = \mathbb{R} \setminus \{3\}$.

$$\frac{4x+2}{x-3} = 5 \text{ équivalent à : } 4x+2=5(x-3) \text{ équivalent à :}$$

$$4x+2=5x-15$$

équivalent à : -x = -17 équivalent à : x = 17

donc : $S = \{17\}$

9)
$$|7x-10| = |6+3x|$$
 équivalent à $7x-10=6+3x$ ou

$$7x-10 = -(6+3x)$$

équivalent à 4x=16 ou 10x=4 équivalent à x=4 ou x=2/5

Donc l'ensemble de toutes les solutions est : $S = \{4, 2/5\}$

10)
$$x^3 - 7x = 0$$
 équivalent à : $x(x^2 - 7) = 0$ ssi

$$x = 0$$
 ou $x^2 - 7 = 0$

équivalent à x = 0 ou $x^2 = 7$ ssi x = 0 ou

$$x = \sqrt{7} \text{ ou } x = -\sqrt{7}$$

D'où:
$$S = \left\{-\sqrt{7}; 0; \sqrt{7}\right\}$$

Exercice : Résoudre dans \mathbb{R} les équations :

a)
$$\frac{3x+5}{x-1} = 0$$
 b) $\frac{(2x+1)(x-3)}{x-4} = 0$ c)

$$\frac{x^2 - 9}{x + 3} = 0 \text{ d) } 1 - \frac{x + 3}{x - 3} = \frac{2}{2 - x}$$

Solution :a) L'équation n'est pas définie pour x = 1.

Pour $x \ne 1$, l'équation $\frac{3x+5}{x-1} = 0$ équivaut à :

$$3x + 5 = 0$$
.

D'où
$$x = -\frac{5}{3}$$
. c a d : $S = \{-5/3\}$

b) L'équation n'est pas définie pour x = 4.

Pour
$$x \ne 4$$
, l'équation $\frac{(2x+1)(x-3)}{x-4} = 0$ équivaut à :

$$(2x+1)(x-3) = 0$$
 Soit: $2x+1=0$ ou $x-3=0$

Les solutions sont : $x = -\frac{1}{2}$ et x = 3.

c a d:
$$S = \{-1/2; 3\}$$

c) L'équation n'est pas définie pour x = -3.

Pour
$$x \neq -3$$
, l'équation $\frac{x^2 - 9}{x + 3} = 0$ équivaut à :

$$x^2 - 9 = 0$$
, soit $x^2 = 9$

Soit encore : x = 3 ou x = -3.

Comme $x \neq -3$, l'équation a pour unique solution : x = 3. c a d : $S = \{3\}$

d) L'équation n'est pas définie pour x = 2 et x = 3.

Pour
$$x \ne 2$$
 et $x \ne 3$, l'équation $1 - \frac{x+3}{x-3} = \frac{2}{2-x}$

équivaut à :1 -
$$\frac{x+3}{x-3}$$
 - $\frac{2}{2-x}$ = 0 On réduit au même

dénominateur dans le but de se ramener à une équationquotient : $\frac{(x-3)(2-x)}{(x-3)(2-x)} - \frac{(x+3)(2-x)}{(x-3)(2-x)} - \frac{2(x-3)}{(x-3)(2-x)} = 0$

$$\frac{(x-3)(2-x)}{(x-3)(2-x)} - \frac{(x-3)(2-x)}{(x-3)(2-x)} - \frac{(x-3)(2-x)}{(x-3)(2-x)} = 0$$

$$\frac{(x-3)(2-x) - (x+3)(2-x) - 2(x-3)}{(x-3)(2-x)} = 0$$
 On développe

$$\frac{2x - x^2 - 6 + 3x - 2x + x^2 - 6 + 3x - 2x + 6}{\left(x - 3\right)\left(2 - x\right)} = 0$$

$$\frac{4x-6}{(x-3)(2-x)} = 0$$
 Ce qui équivaut à $4x-6=0$ et
$$(x-3)(2-x) = 0$$

D'où
$$x = \frac{3}{2}$$
. c a d : $S = \left\{ \frac{3}{2} \right\}$

2°) Les inéquations du premier degré a une inconnue.

a) Le signe du binôme ax+b $a\in\mathbb{R}^*$ et $b\in\mathbb{R}$

Exemples :1) étudions le signe de : 3x+6

(coefficient de x positif)

|3x+6| Équivalent à : x=-2

3x+6>0 Équivalent à : x>-2

3x+6<0 Équivalent à : x<-2

On résume ces résultats dans le tableau de signe suivant :

x	$-\infty$	-2	$+\infty$
3x + 6	_	Ò	+

2) étudions le signe de : -2x+12

(coefficient de x négatif)

|-2x+12| Équivalent à : x=6

-2x+12>0 Équivalent à : x<6

-2x+12 < 0 Équivalent à : x > 6

On résume ces résultats dans le tableau de signe suivant :

x	$-\infty$	6	$+\infty$
-2x+12	+	þ	_

Résumé: $a \in \mathbb{R}^*$ et $b \in \mathbb{R}$

	x	$-\infty$		$\frac{-b}{a}$		$+\infty$
	ax + b		signe de	0	signe de	
l			-a		\boldsymbol{a}	

b) Solution de l'inéquations du premier degré a une inconnue

Définition: On appelle inéquations du premier degré a une inconnue toute inéquation de la forme : $ax + b \ge 0$ ou $ax+b \le 0$ ou ax+b < 0 ou ax+b > 0 où les coefficients a, b sont des réels donnés et x est l'inconnue Résoudre l'inéquations c'est déterminer l'ensemble de toutes les solutions notées : S

Applications : Résoudre dans \mathbb{R} les inéquations suivantes :

1)
$$-2x+12>0$$
 2) $5x-15\leq 0$

2)
$$5x-15 < 0$$

3)
$$4x^2 - 9 > 0$$

3)
$$4x^2 - 9 \ge 0$$
 4) $(1-x)(2x+4) > 0$

$$5) \frac{5x-2}{1+3x} \ge 0 \qquad 6) \frac{(2x+1)(5x-10)}{2x-6} \le 0$$

Solution: 1) -2x+12>0

$$-2x+12=0$$
 équivalent à : $x=6$ $-2=a$ et $a<0$ coefficient de x négatif

On a le tableau de signe suivant :

x	$-\infty$	6	$+\infty$
-2x+12	+	þ	_

Donc: $S =]-\infty;6[$

2)
$$5x - 15 \le 0$$

$$5x-15=0$$
 Équivalent à : $x=3$ $5=a$ et $a>0$ est donc définie sur $D_1=\mathbb{R}-\left\{-\frac{1}{3}\right\}$ coefficient de x positif

On a le tableau de signe suivant :

x	$-\infty$	3	$+\infty$
5x - 15	_	Ò	+

Donc:
$$S =]-\infty;3[$$

3)
$$4x^2 - 9 \ge 0$$

$$4x^2 - 9 = 0$$
 équivalent à : $(2x)^2 - 3^2 = 0$ ssi

$$(2x-3)(2x+3)=0$$

équivalent à
$$2x+3=0$$
 ou $2x-3=0$

ssi
$$x = \frac{-3}{2}$$
 ou $x = \frac{3}{2}$

On a le tableau de signe suivant :

x	$-\infty$	-3/2		3/2		$+\infty$
2x-3	-		_	þ	+	
2x+3	-	þ	+		+	
(2x-3)(2x+3)	+	þ	_	þ	+	

Donc:
$$S = \left[-\infty; -\frac{3}{2} \right] \cup \left[\frac{3}{2}; +\infty \right]$$

4)
$$(1-x)(2x+4) > 0$$

$$(1-x)(2x+4)=0$$
 Équivalent à :

$$2x+4=0$$
 ou $1-x=0$ ssi $x=-2$ ou $x=1$
On a le tableau de signe suivant :

x	$-\infty$	-2		1	$+\infty$
2x+4	_	þ	+		+
1-x	+		+	þ	
(2x+4)(1-x)	_	þ	+	þ	_

Donc:
$$S =]-2;1[$$

5)
$$\frac{5x-2}{1+3x} \ge 0$$
 (Signe d'un quotient méthode)

- Donner l'ensemble de définition.
- Rechercher les valeurs de x annulant chacun des facteurs et Dresser un tableau de signes :

Le quotient de deux nombres de même signe est positif (+). Le quotient de deux nombres de signes différents est négatif

Cette inéquation existe si $1+3x \neq 0$

$$1+3x=0$$
 équivalent à : $x=-\frac{1}{3}$

La valeur interdite de cette inéquation est $-\frac{1}{2}$. L'inéquation

est donc définie sur
$$D_I = \mathbb{R} - \left\{ -\frac{1}{3} \right\}$$

$$5x-2=0$$
 Équivalent à : $x=\frac{2}{5}$

On a le tableau de signe suivant :

x	$-\infty =$	$\frac{\cdot 1}{3}$	$\frac{2}{5}$ $+\infty$
5x-2	_	_ (+
1+3x	- (+	+
$\frac{5x-2}{1+3x}$	+	_	+

Attention à ne pas oublier la double barre pour la valeur

interdite donc:
$$S = \left] -\infty; -\frac{1}{3} \left[\cup \left[\frac{2}{5}; +\infty \right[\right] \right]$$

6)
$$\frac{(2x+1)(5x-10)}{2x-6} \le 0$$

Cette inéquation existe si $2x - 6 \neq 0$

$$2x-6 \neq 0$$
 équivalent à : $x = -\frac{1}{3}$

La valeur interdite de cette inéquation est $-\frac{1}{2}$. l'inéquation

est donc définie sur
$$D_I = \mathbb{R} - \left\{ -\frac{1}{3} \right\}$$

$$2x-6 \neq 0$$
 Équivalent à : $x \neq 3$

On a le tableau de signe suivant : $D_I = \mathbb{R} - \{3\}$

$$2x+1=0$$
 équivalent à : $x=-\frac{1}{2}$

$$5x-10=0$$
 équivalent à : $x=2$

x	$-\infty$	-1/2	:	2	3 +∞
2x+1	_	Ŷ	+	+	+
5x-10	_		-	+	+
2x-6	_		_	-	0 +
$\frac{(2x+1)(5x-10)}{(2x-6)}$	_	Ŷ	+) –	+

Donc:
$$S = \left[-\infty; -\frac{1}{2}\right] \cup \left[2; 3\right[$$

Exercice : Résoudre dans \mathbb{R} les inéquations suivantes :

1)
$$(3-6x)(x+2) > 0$$
 2) $\frac{2-6x}{3x-2} \pm 0$

$$=$$
 2)

$$\frac{2-6x}{3x-2} \neq 0$$

Solution :1)Le signe de (3-6x)(x+2) dépend du

signe de chaque facteur

$$3 - 6x$$
 et $x + 2$.

$$3 - 6x = 0$$
 ou $x + 2 = 0$

$$6x = 3$$
 ou $x = -2$

$$x = \frac{3}{6} = \frac{1}{2}$$
 ou $x = -2$

Résumons dans un même tableau de signes les résultats pour les deux facteurs.

En appliquant la règle des signes, on en déduit le signe du produit (3-6x)(x+2).

x	-∞		-2		$\frac{1}{2}$		+∞
3 – 6 <i>x</i>		+		+	0	-	
x + 2		-	0	+		+	
(3-6x)(x+2)		-	0	+	0	-	

On en déduit que
$$(3-6x)(x+2) > 0$$
 pour $x \in \left[-2; \frac{1}{2}\right]$.

L'ensemble des solutions de l'inéquation

$$(3-6x)(x+2) > 0$$
 est $\left[-2; \frac{1}{2}\right]$.

2)
$$\frac{2-6x}{3x-2} \pm 0$$
.

L'inéquation n'est pas définie pour 3x - 2 = 0, soit $x = \frac{2}{3}$.

Il faudra éventuellement exclure cette valeur de l'ensemble des solutions.

Le signe de $\frac{2-6x}{3x-2}$ dépend du signe des expressions

$$2 - 6x$$
 et $3x - 2$.

$$2 - 6x = 0 \text{ équivaut à } x = \frac{1}{3}.$$

Résumons dans un même tableau de signes les résultats pour les deux expressions.

x	$-\infty$ =	<u>-1</u>	$\frac{2}{3} + \infty$
2-6x	+ (-	_
3x-2	_	_ (+
$\frac{2-6x}{3x-2}$	- (+	_

La double-barre dans le tableau signifie que le quotient n'est

pas défini pour
$$x = \frac{2}{3}$$
.

On en déduit que
$$\frac{2-6x}{3x-2} \neq 0$$
 pour $x \in \left[-\infty; \frac{1}{3}\right] \cup \left[\frac{2}{3}; +\infty\right]$.

L'ensemble des solutions de l'inéquation $\frac{2-6x}{3x-2} \not\in 0$ est

$$\left| -\infty; \frac{1}{3} \right| \cup \left| \frac{2}{3}; +\infty \right|.$$

II) Les équations et les inéquations du premier degré avec deux inconnues.

1)les équations du premier degré avec deux inconnues. **Définition :** On appelle équations du premier degré a deux inconnues toute équation de la forme : ax + by + c = 0 où les coefficients a, b et c sont des réels donnés et le couple

$$(x; y)$$
 est l'inconnue dans \mathbb{R}^2

Résoudre l'équations dans \mathbb{R}^2 c'est déterminer l'ensemble S des couples solutions de l'équations

Remarques:

• L'équations ax + by + c = 0 a une infinité de solutions

• On peut Résoudre l'équations ax + by + c = 0 graphiquement ou algébriquement

Applications : 1) Résolvons dans \mathbb{R}^2

1'équation :: 2x - y + 4 = 0

On a 2x - y + 4 = 0 équivalent à : y = 2x + 4

Donc: $S = \{(x; 2x+4) \mid x \in \mathbb{R}\}$

2) Résolvons dans \mathbb{R}^2 l'équation : x - 2y + 1 = 0

On a x-2y+1=0 équivalent à : x=2y-1

Donc: $S = \{(2y-1; y) / y \in \mathbb{R}\}$

3)Résolvons graphiquement dans \mathbb{R}^2

l'équation: x - y - 2 = 0

Le plan est rapporté au Repère orthonormé $\left(O; \vec{i}; \vec{j}\right)$

On trace la droite (D)d'équation cartésienne :

$$x - y - 2 = 0$$

$$S = \left\{ (x; y) \in \mathbb{R}^2 / M(x; y) \in (D) \right\}$$

Pour tracer la droite (D) il suffit de trouver deux points qui appartiennent à $\big(D\big)$

Si x=1 alors : 1-y-2=0 c a d y=-1 donc $A(1;-1) \in (D)$

Si y = 0 alors : x - 0 - 2 = 0 c ad x = 2

donc $B(2;0) \in (D)$

EXERCICE: 1) Résoudre dans \mathbb{R}^2 les équations suivantes :

1)
$$2x - y + 1 = 2y - 2x + 5$$
 2) $x + 5 = y + 5$

3)
$$3x+2y-2=2y-2$$
 4) $x+y=2x-1$

Solution :1) On a 2x - y + 1 = 2y - 2x + 5 équivalent (0;0) appartient à la zone « y -2x + 1 > 0 » ou à la zone

a: 4x-3y-4=0

Équivalent à : 4x = 3y + 4 équivalent à : $x = \frac{3}{4}y + 1$

Donc:
$$S = \left\{ \left(\frac{3}{4} y + 1; y \right) / y \in \mathbb{R} \right\}$$

2) On a x+5=y+5 équivalent à : y=x

Donc: $S = \{(x; x) / x \in \mathbb{R}\}$

3) On a 3x + 2y - 2 = 2y - 2 équivalent à : 3x = 0

ssi
$$x = 0$$
 Donc: $S = \{(0; y) / y \in \mathbb{R}\}$

4) On a x + y = 2x - 1 équivalent à : -x + y + 1 = 0

ssi
$$y = x - 1$$
 Donc: $S = \{(x; x - 1) / x \in \mathbb{R}\}$

2)les inéquations du premier degré avec deux inconnues.

Activité : résoudre dans \mathbb{R}^2 l'inéquation : y -2x + 1 > 0 Soit l'équation y -2x + 1 = 0

on trace de la droite d'équation y = 2x - 1.

Cette droite partage le plan en deux demi- plans.

On peut observer sur le graphe ci-contre :

- Tous les points de la zone « bleu » ont les coordonnées qui vérifient y > 2x - 1

- Tous les points de la zone « rouge » ont les coordonnées qui vérifient y < 2x - 1

Si y -2x + 1 = 0 (1)

Soit un point A (1; 4) (choisi au hasard, à la gauche de la droite ") on remplace ces valeurs dans l'équation (1)

Alors: 4 - 2 fois 1 + 1 = 1; cela signifie que le point A est dans la zone y -2x + 1 > 0

Soit un point B (2; 1) (choisi au hasard, à la droite de la droite ") on remplace ces valeurs dans l'équation (1)

Alors : 1 - 2 fois 2 + 1 = -3 ; cela signifie que le point B est dans la zone y -2x + 1 < 0

On peut essayer de savoir si le point d'origine O (0;0) appartient à la zone « y -2x + 1 > 0 » ou à la zone « y -2x + 1 < 0 » en remplaçant y=0 et x=0 dans l'équation « y -2x + 1 = 0 »;

Le résultat donne « 1 » ; donc le point O appartient à la zone « y - 2x + 1 > 0 »

Donc les solution de l'inéquation y -2x + 1 > 0 est l'ensemble des couple (x; y) des points M(x; y) du demi- plan (la zone « bleu ») qui contient le point O(0;0)privé de la droite (D)

autre point bien choisi.

Si l'inégalité est au sens large, on doit « ajouter » aux points du demi -plan les points de la droite « frontière ».

Application: Exemple1:

Résoudre Dans \mathbb{R}^2 l'inéquation : 2x - y - 2 < 0Dans un premier temps : De l'inéquation précédente on en déduit

L'équation de la droite (D): 2x - y - 2 = 0

Cette droite passe par les points A(0,-2) et B(1,0) détermine

Deux demi-plans P_1 et P_2

(Il nous reste à trouver lequel des deux demi plans qui est la solution de l'inéquation.)

(Nous choisissons un point pris dans l'un des demi-plans, relevons ses coordonnées et nous contrôlons si ce point vérifie l'inéquation.

Conseil: On choisit, de référence, le point « O » de coordonnées (0; 0); c'est-à-dire x = 0 et y = 0. Les calculs sont donc simplifiés. (Si la droite passe par « O », on prendra un autre point...)

Soit
$$O(0;0)$$
 On a $2 \times 0 - 0 - 2 < 0$

Donc : les coordonnes (0;0) vérifie l'inéquation.

Donc les solution de l'inéquation 2x - y - 2 < 0 est

l'ensemble des couple (x; y) des points M(x; y) du

demi- plan P_1 hachuré qui contient le point $\mathit{O}\left(0;0\right)$ privé

de la droite (D)

Exemple2: d'application:

Résoudre Dans \mathbb{R}^2 l'inéquation : $x - y - 3 \ge 0$

Dans un premier temps : De l'inéquation précédente on en déduit

L'équation de la droite (D) :: x-y-3=0 détermine Deux demi-plans P_1 et P_2

Remarques: Si la droite passe par l'origine, on 'essaie » un Cette droite passe par les points A(0;-3) et B(1;-2)

On a $0-0-3 \ge 0$ c ad $-3 \ge 0$ on constate que le résultat est impossible

donc : les coordonnes (0;0) ne vérifie pas l'inéquation. Donc les solutions de l'inéquation $x - y - 3 \ge 0$ est

l'ensemble des couple (x; y) des points M(x; y) du

demi- plan P_1 hachuré qui ne contient pas le point O(0;0)

Exemple3: d'application:

Résoudre Dans \mathbb{R}^2 l'inéquation : 2x - y < 0

Dans un premier temps : De l'inéquation précédente on en déduit

L'équation de la droite (D) :: 2x - y = 0

Cette droite passe par les points O(0;0) et

A(1;2) détermine Deux demi-plans P_1 et P_2

on prendra un autre point B(1;1)

On a $2 \times 1 - 1 < 0$ c and 1 < 0 on constate que le résultat est impossible

Donc : les coordonnes (1;1) ne vérifie pas l'inéquation.

Donc les solution de l'inéquation $x - y - 3 \ge 0$ est

l'ensemble des couple (x; y) des points M(x; y) du

demi- plan P_1 hachuré qui ne contient pas le point (1;1)

Exemple4: Résoudre Dans \mathbb{R}^2

l'inéquation : 3x + 2y < 2x + 2y - 1

Solution:

$$3x + 2y < 2x + 2y - 1$$
 ssi

$$3x-2x+2y-2y+1<0$$

ssi
$$x+1<0$$

Dans un premier temps : De l'inéquation précédente on en déduit

L'équation de la droite (D): x+1=0 SSI x=-1

Cette droite est parallèle à l'axe des ordonnée passant par le point (-1;0) et détermine Deux demi-plans P_1 et P_2

Soit
$$O(0;0)$$
 On a $0+1<0$ ssi $1<0$

On constate que le résultat est impossible

Donc : les coordonnes O(0;0) ne vérifie pas l'inéquation.

Donc les solutions de l'inéquation x+1 < 0 est l'ensemble

des couple (x; y) des points M(x; y) du demi- plan P_1

hachuré qui ne contient pas le point O(0;0)

Exemple5 : Résoudre Dans \mathbb{R}^2 le système d'inéquations

suivant:
$$(S)$$

$$\begin{cases} x+y-1 \ge 0 \\ -x+2y+2 \le 0 \end{cases}$$

L'équation de la droite (D_1) : x + y - 1 = 0

L'équation de la droite (D_2) : -x+2y+2=0

Soit O(0;0) On a $0+0-1\geq 0$ ssi $-1\geq 0$ Donc:

les coordonnes O(0;0) ne vérifie pas l'inéquation.

$$x + y - 1 \ge 0$$

$$Soit O(0;0) On a -0+2\times0+2\leq 0 ssi 2\leq 0$$

Donc: les coordonnes O(0;0) ne vérifie pas l'inéquation. $-x+2y+2 \le 0$

Donc les solutions du système est l'ensemble des couple

(x; y) des points M(x; y) du plan colorés

Exemple6 : Résoudre Dans \mathbb{R}^2 le système d'inéquations

suivant:
$$(S)$$

$$\begin{cases} 2x + y - 3 \ge 0 \\ -x + y + 5 \le 0 \\ x \le 4 \end{cases}$$

L'équation de la droite (D_1) : 2x + y - 3 = 0

L'équation de la droite (D_2) : -x + y + 5 = 0

L'équation de la droite (D_3) : x-4=0

Soit O(0;0) On a $2\times0+0-3\geq0$ ssi $-3\geq0$

Donc: les coordonnes O(0;0) ne vérifie pas l'inéquation. $2x + y - 3 \ge 0$

Soit O(0;0) On a $-0+0+5 \le 0$ ssi $5 \le 0$ Donc:

les coordonnes O(0;0) ne vérifie pas l'inéquation.

 $-x + y + 5 \le 0$

Soit O(0;0) On a $0 \le 4$ Donc: les

coordonnes O(0;0) vérifie l'inéquation. $x \le 4$

Donc les solutions du système est l'ensemble des couple (x; y) des points M(x; y) du plan colorés

Exemple7: Résoudre le système :

$$[3x+2y-6<0]$$

$$\{x-2y+2<0\}$$

$$4x - 3y + 12 > 0$$

(3)

Etant donnés deux axes de coordonnées « O x » et « O y » nous allons déterminer dans quelle région du plan se trouvent les points « M » dont les coordonnées satisfont à ces trois inéquations.

Pour cela construisons les droites qui ont respectivement pour équations :

(1)
$$3x + 2y - 6 = 0$$
 (D)

(2)
$$x - 2y + 2 = 0$$
 (D')

(3)
$$4x - 3y + 12 = 0$$
 (D'')

Pour que l'inéquation (2) soit satisfaite il faut et il suffit que « M » soit dans la région qui ne contient pas l'origine (car pour « x » = 0; « y » = 0 l'inéquation n'est pas satisfaite). Enfin pour que l'inéquation (3) soit satisfaite il faut et il suffit que « M » soit dans la égion qui contient l'origine (car pour « x » = 0; « y » = 0 l'inéquation est satisfaite).

Finalement, on voit que « M » doit être à l'intérieur du triangle ABC formé par les 3 droites (D); (D'); (D'').

« C'est en forgeant que l'on devient forgeron » Dit un proverbe.

C'est en s'entraînant régulièrement aux calculs et exercices

Que l'on devient un mathématicien

