EE 238

Power Engineering - II

Power Electronics

Lecture 2

Instructor: Prof. Anshuman Shukla

Email: ashukla@ee.iitb.ac.in

Conversion of electric power

Electric
Power
input
Converter

Control
input

Power Electronics Converters

Other names for electric power converter:

- Power converter
- Converter
- Switching converter
- Power electronic circuit
- Power electronic converter

Two types of electric power

Changeable properties in conversion

DC(Direct Current)

Magnitude

AC (Alternating Current)

Frequency, magnitude, number of phases

Classification of power converters

Power Conversion concept: example #1

• Supply: 50Hz, 240V RMS (340V peak).

Customer needs DC voltage for welding purpose, say.

• The sine-wave supply gives zero DC component!

• We can use simple half-wave rectifier. A fixed DC voltage is now obtained. This is a simple PE system.

Average output voltage:

$$V_o = \frac{V_m}{\pi}$$

Conversion Concept

More complex circuit using SCR is required.

SCR: Silicon Controlled Rectifier

Thyristor.

Average output voltage:

$$V_o = \frac{1}{2\pi} \int_{\alpha}^{\pi} V_m \sin(\omega t) d\omega t = \frac{V_m}{2\pi} [1 + \cos\alpha]$$

By controlling the firing angle, α , the output DC voltage (after conversion) can be varied.

Diviously this needs a complicated electronic system to set the firing current pulses for the SCR.

A simple example #2

A dc-dc converter example

Input source: 100V

Output load: 50V, 10A, 500W

How can this converter be realized?

Dissipative realization

Dissipative realization

The transistor is controlled to absorb the voltage difference between Vg and V, thus providing a regulated output. The transistor operates in its active region as an adjustable output.

Saturation Region (mA) (transistor "fully-ON") When VCE = 0 50 Q-point (active region) 40 Cut-off Region 30 (transistor "fully-OFF") 20 10 When Ic = 0 VCE = VCC

Transistor operates in active region

- Excellent regulation, control Low noise, ripple at the output

Problems with linear electronics approach

Input voltage : 10V to 14V DC Output voltage : 5V DC +/- 0.1%

Output current : 1A max.

Efficiency =
$$\frac{P_o}{P_{in}} = \frac{V_o I_o}{V_{in} I_{in}} = \frac{5 \times 1}{14 \times 1}$$

= 35.7%

Power lost in transistor = $v_T I_o$

$$= (14-5) \times 1 = 9W$$

- ↓ Impact on power density

Use of a SPDT switch

Switch mode approach Uses a bi-positional switch

✓ By controlling the duration of ON interval (time when switch is in ✓ ★ Position 1), the *average* output can be continuously controlled.

Switch in position 1 $v_A = V_{in}$ Switch in position 2 $v_A = 0$

Simple step-down converter

Addition of low pass filter

Addition of (ideally lossless) L-C low-pass filter, for removal of switching harmonics:

- Choose filter cutoff frequency f0 much smaller than switching frequency fs
- This circuit is known as the "buck converter"

- High frequency content in vA filtered using LC filter
- Filter size and cost very small with high frequency