$12n_{0599} (K12n_{0599})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle 2.08585 \times 10^{97} u^{41} + 7.14533 \times 10^{97} u^{40} + \dots + 2.87929 \times 10^{99} b + 1.73918 \times 10^{99}, \\ &5.30575 \times 10^{95} u^{41} + 1.71743 \times 10^{97} u^{40} + \dots + 1.43964 \times 10^{99} a - 9.16089 \times 10^{98}, \ u^{42} + 3u^{41} + \dots + 64u + 10^{10} \\ &I_2^u &= \langle 4075773832297 u^{14} - 2172521972436 u^{13} + \dots + 11315912876891 b - 9436584195071, \\ &12204692706877 u^{14} - 2379455879777 u^{13} + \dots + 11315912876891 a - 25876335477767, \\ &u^{15} - 5u^{13} - 10u^{12} - 23u^{11} - 49u^{10} - 54u^9 - 6u^8 - 42u^7 - 27u^6 - 4u^5 + 12u^4 + 20u^3 + 11u^2 + 2u + 1 \rangle \end{split}$$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 57 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$\begin{matrix} \text{I. } I_1^u = \\ \langle 2.09 \times 10^{97} u^{41} + 7.15 \times 10^{97} u^{40} + \dots + 2.88 \times 10^{99} b + 1.74 \times 10^{99}, \ 5.31 \times 10^{95} u^{41} + \\ 1.72 \times 10^{97} u^{40} + \dots + 1.44 \times 10^{99} a - 9.16 \times 10^{98}, \ u^{42} + 3u^{41} + \dots + 64u + 32 \rangle \end{matrix}$$

(i) Arc colorings

$$a_{4} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -0.000368546u^{41} - 0.0119295u^{40} + \dots + 10.1776u + 0.636330 \\ -0.00724434u^{41} - 0.0248163u^{40} + \dots + 5.49278u - 0.604030 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 0.00215244u^{41} + 0.000734500u^{40} + \dots + 3.98031u + 0.893995 \\ -0.00639184u^{41} - 0.0228879u^{40} + \dots + 5.89992u - 0.440795 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 0.00520650u^{41} + 0.0133533u^{40} + \dots + 5.05203u + 1.97585 \\ 0.0108948u^{41} + 0.0265127u^{40} + \dots + 3.13035u + 0.813921 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0.00687579u^{41} + 0.0128868u^{40} + \dots + 4.68483u + 1.24036 \\ -0.00724434u^{41} - 0.0248163u^{40} + \dots + 5.49278u - 0.604030 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0.0284111u^{41} - 0.0802538u^{40} + \dots + 5.73043u + 0.660082 \\ 0.00297602u^{41} + 0.0148436u^{40} + \dots + 6.80600u + 0.842424 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0.00358475u^{41} + 0.0184991u^{40} + \dots - 1.07592u + 1.21549 \\ 0.0129804u^{41} + 0.0337132u^{40} + \dots + 2.17091u + 1.68243 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 0.0241930u^{41} + 0.0654847u^{40} + \dots + 11.3542u + 2.32053 \\ -0.00534000u^{41} - 0.0268669u^{40} + \dots + 8.37009u - 1.59602 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -0.0377424u^{41} - 0.120931u^{40} + \dots + 1.19694u - 1.53872 \\ -0.0110412u^{41} - 0.0237259u^{40} + \dots + 8.14332u + 1.94601 \\ -0.00917113u^{41} - 0.0293322u^{40} + \dots + 8.14332u + 1.94601 \\ -0.00917113u^{41} - 0.0293322u^{40} + \dots + 2.00016u - 1.60632 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-0.0471714u^{41} 0.112106u^{40} + \cdots 28.6268u 3.86134$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{42} + 64u^{41} + \dots - 161335u + 1849$
c_2, c_6	$u^{42} + 2u^{41} + \dots - 601u + 43$
c_3	$u^{42} - 6u^{41} + \dots + 16u - 1$
c_4	$u^{42} + 12u^{41} + \dots + 3596u + 676$
c_5,c_{10}	$u^{42} - u^{41} + \dots - 190u - 43$
c_7, c_{11}	$u^{42} - 3u^{41} + \dots - 11u - 1$
c_8	$u^{42} - 3u^{41} + \dots - 64u + 32$
<i>c</i> ₉	$u^{42} - u^{41} + \dots - 2006840u + 356879$
c_{12}	$u^{42} - 29u^{40} + \dots - 342u - 76$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{42} - 192y^{41} + \dots - 7743629545y + 3418801$
c_{2}, c_{6}	$y^{42} - 64y^{41} + \dots + 161335y + 1849$
c_3	$y^{42} + 6y^{41} + \dots - 180y + 1$
c_4	$y^{42} + 2y^{41} + \dots - 1564952y + 456976$
c_5, c_{10}	$y^{42} + 3y^{41} + \dots - 31284y + 1849$
c_7, c_{11}	$y^{42} - 37y^{41} + \dots - 245y + 1$
c_8	$y^{42} + y^{41} + \dots - 27136y + 1024$
<i>c</i> ₉	$y^{42} - 109y^{41} + \dots - 1736409911214y + 127362620641$
c_{12}	$y^{42} - 58y^{41} + \dots + 99636y + 5776$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.648045 + 0.762828I		
a = -0.199463 - 1.026950I	-2.26225 + 2.79311I	-8.37862 - 3.97835I
b = 0.000607 - 0.888637I		
u = 0.648045 - 0.762828I		
a = -0.199463 + 1.026950I	-2.26225 - 2.79311I	-8.37862 + 3.97835I
b = 0.000607 + 0.888637I		
u = 0.462736 + 0.870276I		
a = 1.082390 + 0.631958I	7.99084 - 2.22911I	4.00956 + 3.14309I
b = 1.380710 - 0.068283I		
u = 0.462736 - 0.870276I		
a = 1.082390 - 0.631958I	7.99084 + 2.22911I	4.00956 - 3.14309I
b = 1.380710 + 0.068283I		
u = -0.371673 + 0.796152I		
a = 0.020113 + 0.557804I	-0.17172 - 1.89179I	-2.28677 + 1.75619I
b = -0.222389 + 0.704830I		
u = -0.371673 - 0.796152I		
a = 0.020113 - 0.557804I	-0.17172 + 1.89179I	-2.28677 - 1.75619I
b = -0.222389 - 0.704830I		
u = -0.314772 + 0.773309I		
a = -0.38000 + 1.41391I	-10.09930 - 2.74341I	-5.66707 + 2.17488I
b = 1.093270 + 0.667135I		
u = -0.314772 - 0.773309I		
a = -0.38000 - 1.41391I	-10.09930 + 2.74341I	-5.66707 - 2.17488I
b = 1.093270 - 0.667135I		
u = -1.000680 + 0.665007I		
a = -0.077148 + 0.584959I	2.61996 - 1.17635I	-6 - 1.021926 + 0.10I
b = -1.209930 + 0.230150I		
u = -1.000680 - 0.665007I		
a = -0.077148 - 0.584959I	2.61996 + 1.17635I	-6 - 1.021926 + 0.10I
b = -1.209930 - 0.230150I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.629318 + 0.386672I		
a = -1.66190 - 0.25886I	-0.311934 - 0.851962I	-4.13073 + 4.38646I
b = 1.123620 - 0.203923I		
u = -0.629318 - 0.386672I		
a = -1.66190 + 0.25886I	-0.311934 + 0.851962I	-4.13073 - 4.38646I
b = 1.123620 + 0.203923I		
u = -0.205200 + 1.287660I		
a = 0.412852 - 0.718154I	-2.91171 - 2.40047I	-9.33804 + 3.58482I
b = 0.200970 - 0.672153I		
u = -0.205200 - 1.287660I		
a = 0.412852 + 0.718154I	-2.91171 + 2.40047I	-9.33804 - 3.58482I
b = 0.200970 + 0.672153I		
u = -0.317104 + 1.341020I		
a = -0.596540 + 0.932678I	-12.43750 + 0.62091I	0
b = 0.024355 + 0.846164I		
u = -0.317104 - 1.341020I		
a = -0.596540 - 0.932678I	-12.43750 - 0.62091I	0
b = 0.024355 - 0.846164I		
u = -0.443573 + 0.327558I		
a = 0.77751 - 1.87015I	2.48884 - 1.59471I	3.72664 + 4.36571I
b = -0.326610 + 0.038977I		
u = -0.443573 - 0.327558I		
a = 0.77751 + 1.87015I	2.48884 + 1.59471I	3.72664 - 4.36571I
b = -0.326610 - 0.038977I		
u = -0.049515 + 0.529296I		
a = 2.04051 + 2.26722I	-8.30711 - 5.04057I	-3.92081 + 3.17900I
b = -1.299150 + 0.384278I		
u = -0.049515 - 0.529296I		
a = 2.04051 - 2.26722I	-8.30711 + 5.04057I	-3.92081 - 3.17900I
b = -1.299150 - 0.384278I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.23414 + 0.89196I		
a = -0.182278 + 0.535254I	4.93779 + 5.55158I	0
b = 1.38820 + 0.29236I		
u = 1.23414 - 0.89196I		
a = -0.182278 - 0.535254I	4.93779 - 5.55158I	0
b = 1.38820 - 0.29236I		
u = 0.74924 + 1.34147I		
a = 0.230039 + 0.931808I	-12.6753 + 8.4287I	0
b = 0.230395 + 0.978898I		
u = 0.74924 - 1.34147I		
a = 0.230039 - 0.931808I	-12.6753 - 8.4287I	0
b = 0.230395 - 0.978898I		
u = 0.384683 + 0.031619I		
a = 1.34403 + 0.53921I	1.63611 - 2.57651I	-5.00070 + 6.84199I
b = -1.109290 + 0.500907I		
u = 0.384683 - 0.031619I		
a = 1.34403 - 0.53921I	1.63611 + 2.57651I	-5.00070 - 6.84199I
b = -1.109290 - 0.500907I		
u = -1.28548 + 1.06224I		
a = 0.087304 - 0.822069I	1.80773 - 7.39822I	0
b = 1.298780 - 0.402243I		
u = -1.28548 - 1.06224I		
a = 0.087304 + 0.822069I	1.80773 + 7.39822I	0
b = 1.298780 + 0.402243I		
u = 0.81695 + 1.45625I		
a = -0.614121 - 0.644235I	5.03473 + 1.74643I	0
b = -1.177860 - 0.025942I		
u = 0.81695 - 1.45625I		
a = -0.614121 + 0.644235I	5.03473 - 1.74643I	0
b = -1.177860 + 0.025942I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.270533 + 0.172470I		
a = -1.27279 + 1.50644I	2.32167 - 2.06853I	2.16490 - 4.78895I
b = -1.50571 + 0.35734I		
u = -0.270533 - 0.172470I		
a = -1.27279 - 1.50644I	2.32167 + 2.06853I	2.16490 + 4.78895I
b = -1.50571 - 0.35734I		
u = 0.253217		
a = 2.52423	-0.948564	-10.7560
b = 0.315009		
u = -1.33409 + 1.57582I		
a = -0.115373 + 0.761660I	-7.4115 - 13.4268I	0
b = -1.43288 + 0.41746I		
u = -1.33409 - 1.57582I		
a = -0.115373 - 0.761660I	-7.4115 + 13.4268I	0
b = -1.43288 - 0.41746I		
u = 1.13096 + 1.81862I		
a = -0.140526 - 0.505969I	2.17544 + 5.80065I	0
b = -1.38971 - 0.26319I		
u = 1.13096 - 1.81862I		
a = -0.140526 + 0.505969I	2.17544 - 5.80065I	0
b = -1.38971 + 0.26319I		
u = -2.19471		
a = 0.570796	-3.13160	0
b = -1.33714		
u = 0.90971 + 2.03841I		
a = 0.349021 + 0.532377I	-8.60268 + 3.81146I	0
b = 1.261520 + 0.388603I		
u = 0.90971 - 2.03841I		
a = 0.349021 - 0.532377I	-8.60268 - 3.81146I	0
b = 1.261520 - 0.388603I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 2.24585		
a = -0.323672	-7.70072	0
b = 0.0679481		
u = -3.53341		
a = 0.0214051	-3.75495	0
b = 1.29639		

$$II. \\ I_2^u = \langle 4.08 \times 10^{12} u^{14} - 2.17 \times 10^{12} u^{13} + \dots + 1.13 \times 10^{13} b - 9.44 \times 10^{12}, \ 1.22 \times 10^{13} u^{14} - 2.38 \times 10^{12} u^{13} + \dots + 1.13 \times 10^{13} a - 2.59 \times 10^{13}, \ u^{15} - 5u^{13} + \dots + 2u + 1 \rangle$$

(i) Arc colorings

$$a_{4} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -1.07854u^{14} + 0.210275u^{13} + \dots - 6.56711u + 2.28672 \\ -0.360181u^{14} + 0.191988u^{13} + \dots + 0.0721482u + 0.833922 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -0.806967u^{14} + 0.0658041u^{13} + \dots - 7.29725u + 1.66307 \\ -0.308908u^{14} + 0.126579u^{13} + \dots + 0.0547816u + 0.689450 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 0.426151u^{14} + 0.510477u^{13} + \dots + 15.5167u + 6.16385 \\ 0.467779u^{14} + 0.114972u^{13} + \dots + 7.73906u + 1.62977 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -0.718362u^{14} + 0.0182870u^{13} + \dots + 0.0721482u + 0.833922 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -1.47573u^{14} + 0.316511u^{13} + \dots - 8.51856u + 2.54844 \\ -0.154046u^{14} + 0.151268u^{13} + \dots + 0.936513u + 1.93108 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0.420096u^{14} + 0.903948u^{13} + \dots + 23.2129u + 9.22115 \\ 0.610929u^{14} + 0.339885u^{13} + \dots + 12.1399u + 2.27431 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -1.10086u^{14} + 0.660424u^{13} + \dots + 4.24610u + 8.58306 \\ -0.103998u^{14} + 0.391996u^{13} + \dots + 7.60146u + 2.75811 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0.394864u^{14} - 0.515063u^{13} + \dots + 7.60146u + 2.75811 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0.394864u^{14} - 0.515063u^{13} + \dots + 7.27332u - 5.30627 \\ -0.411913u^{14} - 0.0161825u^{13} + \dots + 6.23025u - 2.14792 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 3.56778u^{14} - 0.0378933u^{13} + \dots + 31.8302u - 0.00774955 \\ 0.910294u^{14} - 0.145683u^{13} + \dots + 4.90300u - 2.39025 \end{pmatrix}$$

(ii) Obstruction class = 1

(iii) Cusp Shapes

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{15} - 15u^{14} + \dots + 7u - 1$
c_2	$u^{15} - 3u^{14} + \dots + 3u - 1$
<i>c</i> ₃	$u^{15} + 5u^{14} + \dots + 2u + 1$
c_4	$u^{15} + u^{14} + \dots - 4u - 1$
<i>C</i> ₅	$u^{15} + 6u^{13} + \dots - 2u - 1$
c_6	$u^{15} + 3u^{14} + \dots + 3u + 1$
c_7	$u^{15} - 8u^{13} + \dots - u + 1$
c_8	$u^{15} - 5u^{13} + \dots + 2u + 1$
<i>C</i> 9	$u^{15} - 14u^{13} + \dots - 4u + 1$
c_{10}	$u^{15} + 6u^{13} + \dots - 2u + 1$
c_{11}	$u^{15} - 8u^{13} + \dots - u - 1$
c_{12}	$u^{15} - u^{14} + \dots - 3u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{15} - 51y^{14} + \dots - 5y - 1$
c_2, c_6	$y^{15} - 15y^{14} + \dots + 7y - 1$
c_3	$y^{15} + 7y^{14} + \dots - 6y - 1$
c_4	$y^{15} - 13y^{14} + \dots - 24y - 1$
c_5, c_{10}	$y^{15} + 12y^{14} + \dots + 2y - 1$
c_7, c_{11}	$y^{15} - 16y^{14} + \dots - 5y - 1$
c_8	$y^{15} - 10y^{14} + \dots - 18y - 1$
<i>c</i> ₉	$y^{15} - 28y^{14} + \dots - 16y - 1$
c_{12}	$y^{15} - 13y^{14} + \dots + 19y - 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.596659 + 0.827825I		
a = -0.045120 - 0.883234I	-0.66784 + 2.86329I	-4.86388 - 6.69106I
b = -0.238789 - 0.780455I		
u = 0.596659 - 0.827825I		
a = -0.045120 + 0.883234I	-0.66784 - 2.86329I	-4.86388 + 6.69106I
b = -0.238789 + 0.780455I		
u = 0.755283		
a = 1.45281	0.321895	0.516880
b = -1.12652		
u = -0.184311 + 0.678178I		
a = 1.60231 - 0.96713I	1.84141 - 1.47317I	-9.34491 + 1.31525I
b = -0.042454 - 0.389554I		
u = -0.184311 - 0.678178I		
a = 1.60231 + 0.96713I	1.84141 + 1.47317I	-9.34491 - 1.31525I
b = -0.042454 + 0.389554I		
u = -0.604205 + 0.216942I		
a = -0.229198 + 0.703203I	2.36544 - 2.52653I	5.67594 + 10.87302I
b = -1.41923 + 0.52118I		
u = -0.604205 - 0.216942I		
a = -0.229198 - 0.703203I	2.36544 + 2.52653I	5.67594 - 10.87302I
b = -1.41923 - 0.52118I		
u = 0.004697 + 0.321783I		
a = 4.20961 - 1.65523I	6.44360 + 0.56743I	-0.903335 - 0.669018I
b = 1.356600 + 0.159175I		
u = 0.004697 - 0.321783I		
a = 4.20961 + 1.65523I	6.44360 - 0.56743I	-0.903335 + 0.669018I
b = 1.356600 - 0.159175I		
u = -1.32947 + 1.11212I		
a = -0.095911 - 0.699773I	4.46896 - 6.63905I	-0.81267 + 7.15016I
b = 1.38775 - 0.28744I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.32947 - 1.11212I		
a = -0.095911 + 0.699773I	4.46896 + 6.63905I	-0.81267 - 7.15016I
b = 1.38775 + 0.28744I		
u = 0.37677 + 1.72909I		
a = -0.714436 - 0.247634I	6.08786 + 3.33489I	0.87409 - 4.16417I
b = -1.335870 - 0.137594I		
u = 0.37677 - 1.72909I		
a = -0.714436 + 0.247634I	6.08786 - 3.33489I	0.87409 + 4.16417I
b = -1.335870 + 0.137594I		
u = -1.88197		
a = 0.330680	-7.37862	3.59810
b = 0.443370		
u = 3.40639		
a = -0.237996	-4.41331	-11.3650
b = 1.26711		

III. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$ (u^{15} - 15u^{14} + \dots + 7u - 1)(u^{42} + 64u^{41} + \dots - 161335u + 1849) $
c_2	$ (u^{15} - 3u^{14} + \dots + 3u - 1)(u^{42} + 2u^{41} + \dots - 601u + 43) $
c_3	$(u^{15} + 5u^{14} + \dots + 2u + 1)(u^{42} - 6u^{41} + \dots + 16u - 1)$
c_4	$ (u^{15} + u^{14} + \dots - 4u - 1)(u^{42} + 12u^{41} + \dots + 3596u + 676) $
c_5	$ (u^{15} + 6u^{13} + \dots - 2u - 1)(u^{42} - u^{41} + \dots - 190u - 43) $
c_6	$(u^{15} + 3u^{14} + \dots + 3u + 1)(u^{42} + 2u^{41} + \dots - 601u + 43)$
	$(u^{15} - 8u^{13} + \dots - u + 1)(u^{42} - 3u^{41} + \dots - 11u - 1)$
<i>c</i> ₈	$ (u^{15} - 5u^{13} + \dots + 2u + 1)(u^{42} - 3u^{41} + \dots - 64u + 32) $
<i>c</i> 9	$(u^{15} - 14u^{13} + \dots - 4u + 1)(u^{42} - u^{41} + \dots - 2006840u + 356879)$
c_{10}	$(u^{15} + 6u^{13} + \dots - 2u + 1)(u^{42} - u^{41} + \dots - 190u - 43)$
c_{11}	$(u^{15} - 8u^{13} + \dots - u - 1)(u^{42} - 3u^{41} + \dots - 11u - 1)$
c_{12}	$(u^{15} - u^{14} + \dots - 3u + 1)(u^{42} - 29u^{40} + \dots - 342u - 76)$ 17

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$(y^{15} - 51y^{14} + \dots - 5y - 1)$ $\cdot (y^{42} - 192y^{41} + \dots - 7743629545y + 3418801)$
c_2, c_6	$(y^{15} - 15y^{14} + \dots + 7y - 1)(y^{42} - 64y^{41} + \dots + 161335y + 1849)$
c_3	$(y^{15} + 7y^{14} + \dots - 6y - 1)(y^{42} + 6y^{41} + \dots - 180y + 1)$
C ₄	$(y^{15} - 13y^{14} + \dots - 24y - 1)(y^{42} + 2y^{41} + \dots - 1564952y + 456976)$
c_5, c_{10}	$(y^{15} + 12y^{14} + \dots + 2y - 1)(y^{42} + 3y^{41} + \dots - 31284y + 1849)$
c_7, c_{11}	$(y^{15} - 16y^{14} + \dots - 5y - 1)(y^{42} - 37y^{41} + \dots - 245y + 1)$
<i>C</i> ₈	$(y^{15} - 10y^{14} + \dots - 18y - 1)(y^{42} + y^{41} + \dots - 27136y + 1024)$
<i>C</i> 9	$(y^{15} - 28y^{14} + \dots - 16y - 1)$ $\cdot (y^{42} - 109y^{41} + \dots - 1736409911214y + 127362620641)$
c_{12}	$(y^{15} - 13y^{14} + \dots + 19y - 1)(y^{42} - 58y^{41} + \dots + 99636y + 5776)$