Sterowanie tyrystorowe trójfazowe

Mostek jednorodny sześciopulsowy.

Prostownik sześciopulsowy mostkowy (rys. 1) stanowi szeregowe połączenie dwóch jednostek komutacyjnych trójpulsowych. Spośród układów sześciopulsowych układ mostkowy jest najbardziej ekonomiczny. Jest to najczęściej stosowany układ prostownikowy o mocach wyjściowych od kilku kilowatów do kilkuset megawatów (stosowany w układach napędowych prądu stałego, podstacjach sieci trakcyjnej, do przesyłania energii prądem stałym).

Rys. Prostownik sześciopulsowy mostkowy: a)schemat układu; b)przebiegi czasowe napięć i prądów oraz stanów przewodzenia zaworów przy obciążeniu rezystancyjno-indukcyjnym

Praca falownikowa mostka tyrystorowego

Przy pracy falownikowej energia przepływa z wyjścia mostka do sieci zasilającej. Ten rodzaj pracy jest możliwy jedynie gdy źródło napięcia jest po stronie DC. Pozwala to wykorzystać układ pokazany na rys. 1 do hamowania silników DC (praca prądnicowa) lub przyłączanie źródeł energii do sieci (baterie fotoogniw, elektrownie wiatrowe, małe turbiny

Sterowanie tyrystorowe silników komutatorowych prądu stałęgo(DC) - sterowanie tyrystorowe trójfazowe wodne).

Na rysunku 2 pokazano dla porównania i wyjaśnienia rysunki pracy mostka tyrystorowego dla kąta zapłonu tyrystorów α =45° (praca prostownikowa) i α =135° (praca falownikowa). Przyjmujemy założenie, że L_S =0 i prąd płynący na wyjściu jest ciągły. W całym przedziale zmienności α od 0° do 180° są warunki zapłonu tyrystorów (polaryzacja anody względem katody). Podstawowym założeniem pozwalającym na analizę układu jest postulat ciągłości prądu.

Jak wynika z przebiegów na rys.2.b dla α =135° rezultat różnicy napięć V_d = V_{Pn} - V_{Nn} jest ujemny i wartość średnia V_d jest ujemna. Kąt α =90° jest wartością graniczną pomiędzy pracą falownikową i prostownikową

 $0 < \alpha < 90^{\circ}$ V_d – dodatnie (prostownik) $90^{\circ} < \alpha < 180^{\circ}$ V_d – ujemne (falownik)

W praktyce α jest ograniczone od góry do wartości ok. 150÷160°. Ze względu na podobieństwo przebiegów wzory na V_d są identyczne.

Na rys.3. pokazano napięcie V_d jako funkcję średniego prądu. Dla małych wartości i_d jest nieciągły i charakterystyki wzrastają (obszar kreskowany).

Prostowniki podwójne (nawrotne i rewersyjne)

Prostowniki nawrotne umożliwiają bezprzerwową zmianę kierunku przepływu energii elektrycznej i prądu odbiornika prądu stałego. Składają się one z dwóch układów zaworowych wielopulsowych, połączonych odwrotnie równolegle i sterowanych symetrycznie lub niesymetrycznie, lub na przemian. Elementarne układy zaworowe wchodzące w skład prostownika nawrotnego są realizowane w postaci prostowników sterowanych trójpulsowych lub sześciopulsowych mostkowych.

Poniżej pokazano przykład nawrotnego prostownika trójpulsowego w dwóch wersjach połączeń jednostek komutujących.

Rys. Prostowniki nawrotne; a) układ trójpulsowy odwrotnie równoległy; b) układ trójpulsowy krzyżowy

Rys. Prostowniki nawrotne

a) układ sześciopulsowy odwrotnie równoległy; b) układ sześciopulsowy krzyżowy