3. Понятие интерпретации формул логического языка первого порядка. Определение истинностного значения формул, примеры. Понятие структуры заданной сигнатуры. Основные понятия, связанные с интерпретацией: общезначимые, выполнимые и невыполнимые формулы, примеры; понятия логического следования, равносильных формул, примеры; понятие модели множества формул, примеры. Понятие изоморфизма структур, примеры и контрпримеры. Элементарно эквивалентные структуры, примеры и контрпримеры

Билеты 2, 16

Пусть изначально заданы $\sigma = \langle P_1, \dots P_k; f_1, \dots f_s \rangle$ - нелогическая сигнатура, $\tau = \langle \nu_1, \dots, \nu_k; \mu_1, \dots, \mu_s \rangle$ - тип сигнатуры σ . F - формула сигнатуры σ , V - множество переменных формулы F, имеющих в F свободное вхождение. Интерпретация формулы F называется отображение, определенное на множестве $\sigma \cup V$ в котором:

- 1. Каждому предикатному символу $P \in \sigma$ ставит в соответствие конкретное отношение соответствующей арности. Если P k-местный предикатный символ, то $P^{(I)} \subseteq U^k$
- 2. Каждому k-местному функциональному символу f ставит в соответствие конкретное отображение $f^{(l)}$: $U \to U^k$
- 3. Каждой свободной переменной $x \in V$ ставит в соответствие конкретный объект $x^{(I)} \in U$ Интерпретация термов и формул
- 1. Интерпретация термов

Если t — простейший терм (т.е. константа из U или символ свободной переменной), то его интерпретация совпадает с интерпретацией этой константы или переменной (т.е. непосредственно задается отображением I). Если t — сложный терм, т.е. $t = f(t_1, \dots, t_k)$, где t_1, \dots, t_k — термы, а f — функциональный символ, то $t^{(I)} = f^{(I)}(t_1^{(I)}, \dots, t_k^{(I)})$

- 2. Интерпретация формул
 - а. Пусть A атомарная формула, т.е. $A = P(t_1, ..., t_k)$, где $t_1, ..., t_k$ термы, а P предикат $A^{(I)} = \begin{cases} true = 1, \text{ если } \left(t_1^{(I)}, ..., t_k^{(I)}\right) \in P \\ false = 0, \text{ в противном случае} \end{cases}$
 - b. Пусть A и B формулы $[A \& B]^{(I)} \stackrel{\text{def}}{=} A^{(I)} \& B^{(I)}, \qquad [A \lor B]^{(I)} \stackrel{\text{def}}{=} A^{(I)} \lor B^{(I)}, \qquad [A \to B]^{(I)} \stackrel{\text{def}}{=} A^{(I)} \to B^{(I)}, \qquad \neg [A]^{(I)} \stackrel{\text{def}}{=} \neg A^{(I)}$
 - с. Формулы с кванторами

$$[\forall xA]^{(I)} \stackrel{\text{def}}{=} \underset{I' \in \psi(I)}{\&} A^{(I')}, \qquad [\exists xA]^{(I)} \stackrel{\text{def}}{=} \underset{I' \in \psi(I)}{\vee} A^{(I')}$$

 $\psi(I)$ – множество всех возможных интерпретаций, которые совпадают со всеми интерпретациями I, за исключением, может, самой переменной x. Возможно, что в правых частях формул & и V берутся по бесконечному множеству интерпретаций, которые соответствуют всевозможным переборам переменной x. Если формулы является предложением, то важно, как интерпретируются предикаты и функции и нет необходимости интерпретировать свободные переменные.

Алгебраической системой или структурой сигнатуры σ называется сужение интерпретации I на сигнатуру σ : $S = I_{\sigma} \stackrel{\text{def}}{=} \langle P_1^{(I)}, \dots, P_k^{(I)}; f_1^{(I)}, \dots, f_s^{(I)} \rangle$. Она называется содержательной, если в ней дополнительно проинтерпретировать объекты универса U и несодержательной в противном случае.

Формула называется общезначимой или тождественно истинной, если она истинна в любой интерпретации.

Формула называется невыполнимой или тождественно ложной, если она ложна в любой интерпретации.

Формула называется выполнимой, если существует интерпретация, в которой она истинна.

Интерпретация, в которой формула истинна называется моделью формулы, а в которой ложна — контрмоделью формулы. $A \models B - \text{из}$ формулы A логически следует формула B, т.е. любая модель формула A - это модель и формулы B.

 $A \equiv B$ – формулы A и B логически равносильны, если из $A \vDash B$ и $B \vDash A$.

Изоморфизм между структурами

 $\sigma = \langle P_1, \dots P_k; f_1, \dots f_s \rangle$ - нелогическая сигнатура, I_1 и I_2 - содержательные интерпретации σ , $S_1 = \sigma^{(l_1)} = \langle P_1^{(l_1)}, \dots, P_k^{(l_1)}; f_1^{(l_1)}, \dots, f_s^{(l_1)} \rangle$, $S_2 = \sigma^{(l_2)} = \langle P_1^{(l_2)}, \dots, P_k^{(l_2)}; f_1^{(l_2)}, \dots, f_s^{(l_2)} \rangle$. Изоморфизм φ между S_1 и S_2 - такое взаимно-однозначное отображение между универсами $U^{(l_1)} \leftrightarrow U^{(l_1)}$, что

1. Для любого k-местного предикатного символа $P \in \sigma$ и любого набора $a_1, \dots a_k \in U^{(l_1)}$ имеем

$$(a_1, \dots a_k) \in P^{(l_1)} \Leftrightarrow (\varphi(a_1), \dots, \varphi(a_k)) \in P^{(l_2)}$$

2. Для любого k-местного функционального символа f и любого набора $a_1, \ldots a_k \in U^{(I_1)}$ имеем

$$\varphi(f^{(l_1)}(a_1,...a_k)) \in P^{(l_1)} = f^{(l_2)}(\varphi(a_1),...,\varphi(a_k))$$

Если структуры S_1 и S_2 изоморфны, то $S_1\cong S_2$. По теореме о факторизации множество структур разделяются на классы эквивалентности. Структуры из одного класса изоморфны, из разных классов – нет. На изоморфных структурах будут истинны одни и те же предложения. Обратное не верно. К примеру: $S_1=\langle \mathbb{Q};=;+,0,1\rangle$ и $S_2=\langle \mathbb{R};=;+,0,1\rangle$ – теория равенства линейных форм. $S_1\ncong S_2$, т.к. по теореме Кантора \mathbb{Q} – счетно, а \mathbb{R} – несчетно, соответственно между ними нет биекции. Иногда изоморфные структуры называют эквивалентными. Пример приводит к понятию слабой эквивалентности $S_1\simeq S_2$, когда множество их истинных предложений совпадает. Из эквивалентности следует слабая эквивалентность, но не наоборот.

Пример. Изоморфизм отношения эквивалентности.

- 1. $S \cong S$ свойство рефлексивности
- 2. $S_1 \cong S_2 \Rightarrow S_2 \cong S_1^{-1}$ свойство симметричности, т.к. φ взаимно-однозначное и φ изоморфизм между S_1 и S_2 , то $\exists \varphi^{-1}$ взаимно-однозначное и φ^{-1} изоморфизм между S_1 и S_2
- 3. $S_1 \cong S_2, S_2 \cong S_3 \Rightarrow S_1 \cong S_3$ свойство транзитивности, т.к. φ изоморфизм между S_1 и S_2 , ψ изоморфизм между S_2 и S_3 , то $\zeta \stackrel{\text{def}}{=} \varphi \circ \psi \left(\zeta(x) \stackrel{\text{def}}{=} \varphi(\psi(x)) \right)$ изоморфизм между S_1 и S_3 .