Fish Species Detection

Using Convolutional Neural Networks

Group 12: Anna Girerd (leader), Brian Stoss, Natalie Assaad

DS 4002

Outline

BACKGROUND

Our motivation, hypothesis, and data origin

ANALYSIS

Our model, processes, tricky decisions, and difficulties encountered

RESULTS

Our findings and conclusions from the data analysis

NEXT STEPS

Future research and improvements

Motivation & Prediction

Problem

• Overfishing = fishing vessels fish at faster rate than stocks can reproduce

How Data Science can Help

 CNNs can extract features of fish from onboard video footage, helping to monitor and prevent overfishing by fisheries

Hypothesis

Using a CNN trained on labeled onboard footage, we aim to identify fish species with at least 50% Mean Average Precision (@0.5), enabling effective fish detection and supporting sustainable fisheries.

Our Data & Model

Fishnet Dataset

- 2,001 JPEGs from longline tuna vessel footage in Pacific
- CSV file (159,119 rows) with bounding box annotations labeling fish as "yellowtail," "rockfish," etc.
- From the Nature Conservancy

YOLOv8

- Object detection models by Ultralytics
- Pretrained on COCO
- Mean Average Precision (mAP) included

Column	Description
img_id	Unique identifier for each image.
label	Label for the object within the bounding box, including the 4 types of tuna as well as 25 additional species names.
center_x	Center point of the X coordinates of the bounding box.
center_y	Center point of the Y coordinates of the bounding box.
width	The width of the bounding box.
height	The height of the bounding box.

Back to the Research Question

Can a YOLOv8-based CNN trained on the Fishnet image dataset achieve 50% mAP@0.5 in detecting and classifying fish species from onboard surveillance footage to support sustainable fishing?

Analysis Plan

Preprocessing

Convert CSV to YOLO format, normalize pixel values

EDA

Modeling

Use YOLOv8 trained on COCO dataset

Define species within the bounding boxes, use transfer learning to fine-tune model

Training iterations (batch training, tuning hyperparameters)

Evaluation

Split 70% train, 15% validation, 15% test

Evaluate precision and mean average precision

Analyze false positives and false negatives

Deploy k-fold validation

Tricky Analysis Decision

- Originally 35,000 jpegs → too large
- 159,119 rows in labeling CSV

Dilemma:

Do we delete images, labels, or both?

Critical insight:

YOLOv8 skips missing images in label file automatically

Solution:

- Kept ~2,200 images
- Uploaded reduced dataset to GitHub for group access
- Kept label file as is w/no training crashes

Trade-offs:

Faster training, easier collaboration but less image diversity

Bias & Uncertainty

Biases:

- Reduced dataset → common species are overrepresented
- Many images are blurry or partially cropped → lowering detection accuracy

Biases Addressed:

- Deleted images randomly to retain images diversity
- Tracked class distribution in EDA \rightarrow use class weights

Uncertainties:

• mAP measures both precision and classification

Results & Conclusions

- Training completed in ~15 min over 50 epochs
- mAP@0.5: 25% \rightarrow improving, but still below target (50%)
 - Recall is solid; precision improves slightly but remains low
- Confusion matrix: steady performance on common species but misclassifications on rare classes

Next steps

Although our model ran successfully and resulted in mAP@0.5 of 25%, we discovered various avenues for future research and potential improvements in our modeling approach.

- 1 Add **more images** for underrepresented species
- Use **image augmentation** to improve model generalization
- Experiment with learning rates, batch sizes, and **epochs**

References

- "Description: Overview of the Fishnet Open Images Database," The Nature Conservancy, https://www.fishnet.ai/description (accessed Apr. 3, 2025).
- J. Kay and M. Merrifield, "The Fishnet Open Images Database: A Dataset for Fish Detection and Fine-Grained Categorization in Fisheries," Arxiv, https://arxiv.org/pdf/2106.09178 (accessed Apr. 10, 2025).
- "What is overfishing? facts, effects and overfishing solutions," World Wildlife Fund, https://www.worldwildlife.org/threats/overfishing (accessed Apr. 3, 2025).
- T. Puchner, "Roter Thun, Bluefin Tuna (Thunnus thynnus) in thunfischmast," Flickr, https://www.flickr.com/photos/tom_puchner/3362791138 (accessed Apr. 22, 2025).

GitHub: https://github.com/bmstoss13/DSProject3

Thank You!

