Remember long division and finding remainders? It's going to be important for us...

7 (0)

Definition:

The **quotient** of two integers n and m is found by division of n by m and is the number of times m can fully "go into" n. (Division by m=0 is not defined.) The **remainder** is an integer value r, where $0 \le r < |m|$ that is "leftover" when n is divided by m. If the remainder of the division of n by m is 0, then n is **division** n or n divides n. Using the **division** algorithm, we can write n in terms of m, its quotient, and remainder: n = qm + r, where $0 \le r < |m|$.

Note: the "division algorithm" is not an algorithm in the way we will normally talk about algorithms in this class. Rather than giving us a procedure to follow (which is what we normally mean by an algorithm), it gives us an existence proof of the fact that we can always write a number in this format.

Example: Suppose you want to divide n by m. Find the quotient and remainder for the given n and m. Use the division algorithm to write n in terms of m, the quotient, and the remainder.

- (a) n = 15, m = 7
- (b) n = 67, m = 5
- (c) n = 78, m = 3
- (d) n = -72, m = 13

- 9=2 [=1
 - 15 = 7(2) +1
 - 9=13 r=2
 - 67=5(13)+2
 - -6
 - 19/-72 -48
 - -7.2 = 13(-C)+(

In this chapter we will often be just as (if not more) interested in the remainder than the quotient.

In particular:

-9) -85 -90 Definition:

モータロノ土1, 土て,土ろ

Let m be an integer greater than 1. If x and y are integers, we say that x is $\underline{\mathsf{Congruent}}$ to $y \, \underline{\mathsf{ModUlo}} \, m$ if x-y is divisible by m. If x is congruent to y modulo m, we write <u>vey (mod m)</u>; otherwise, we write zty (mod m). We call this relation on the set of integers congruence modulo M

Example: Find two (or more) integers that are congruent to each other modulo m for each modulus in (a)-(d).

(a)
$$n = 15, m = 7$$

(b)
$$n = 67, m = 5$$

(b)
$$n = 67, m = 5$$

$$(c) \quad n = 78, m = 3$$

(c) n = 78, m = 3

(d)
$$n = -72, m = 13$$

$$\chi = 1$$

$$\sqrt{4 = 1}$$

$$R$$

$$x = 67$$
 $m = 5$

Example: We skipped the prior (e) as an example. Why should we have done so?

Example: Determine whether $p \equiv q \pmod{m}$:

(a)
$$p = 15, q = 29, m = 7$$

(b)
$$p = 94, q = -22, m = 5$$

(c)
$$p = -14$$
, $q = 37$, $m = 3$

$$37 - (-14) = 51 = 17$$

Theorem 3.1:
$$\overset{\smile}{>}$$

29=15(mod 7)

Congruence modulo m is an equivalence relation.

Definition:

The equivalence classes for congruence modulo m are called $\underline{Congrue Qn} \underline{Classes}$ modulo m. The set of all congruence classes modulo m will be denoted \mathbb{Z}_m (or \mathbb{Z}_m).

Example: Determine the distinct congruence classes in \mathbb{Z}_4 .

Example: Determine the distinct congruence classes in \mathbb{Z}_7 .

Example: Determine which congruence class of \mathbb{Z}_m p and q are in for each example and relate this to congruence (or lack of congruence) mod m.

(a)
$$p = 15, q = 29, m = 7$$

(b)
$$p = 94, q = -22, m = 5$$

(c)
$$p = -14$$
, $q = 37$, $m = 3$

Theorem 3.2

If $x \equiv x' \pmod{m}$ and $y \equiv y' \pmod{m}$, then

(a)
$$x + y \equiv x' + y' \pmod{m}$$
 and

(b)
$$xy \equiv x'y' \pmod{m}$$
.

Implication:

Based on Theorem 3.2, we can safely define addition and multiplication in \mathbb{Z}_m as follows:

$$[x] + [y] = [x + y]$$
 and $[x] [y] = [xy]$.

