2023학년도 11월 고1 전국연합학력평가 문제지

수학 영역

제 2 교시

5지선다형

1. 두 다항식

$$A = 2x^2 + 3y^2 - 2$$
, $B = x^2 - y^2$

에 대하여 A-B는? [2점]

- ① $-x^2+y^2-2$ ② $-x^2+4y^2$ ③ x^2+y^2

2. 두 집합

$$A = \{1, 4\}, B = \{1, 2, a\}$$

에 대하여 $A \subset B$ 가 되도록 하는 상수 a의 값은? [2점]

- ① 4 ② 5 ③ 6 ④ 7 ⑤ 8

3. 이차방정식 $x^2 - 2x + 5 = 0$ 의 두 근을 α , β 라 할 때,

$$\frac{1}{\alpha} + \frac{1}{\beta}$$
의 값은? [2점]

- ① $\frac{1}{10}$ ② $\frac{1}{5}$ ③ $\frac{3}{10}$ ④ $\frac{2}{5}$ ⑤ $\frac{1}{2}$

4. 연립부등식

$$\begin{cases} 3x \ge 2x + 3 \\ x - 10 \le -x \end{cases}$$

를 만족시키는 모든 정수 x의 값의 합은? [3점]

- ① 10 ② 12 ③ 14 ④ 16 ⑤ 18

수학 영역

5. 좌표평면에서 원 $(x-a)^2 + (y+4)^2 = 16$ 을 x축의 방향으로 2만큼, y축의 방향으로 5만큼 평행이동한 도형이 원 $(x-8)^2 + (y-b)^2 = 16$ 일 때, a+b의 값은? (단, a, b는 상수이다.) [3점]

① 5

② 6 ③ 7

(4) 8

(5) 9

 $oldsymbol{6}$. 실수 전체의 집합에서 정의된 두 함수 $f(x)=2x+1,\ g(x)$ 가 있다. 모든 실수 x에 대하여 $(g \circ g)(x)=3x-1$ 일 때, $((f \circ g) \circ g)(a) = a$ 를 만족시키는 실수 a의 값은? [3점]

① $\frac{1}{5}$ ② $\frac{3}{5}$ ③ 1 ④ $\frac{7}{5}$ ⑤ $\frac{9}{5}$

7. 좌표평면 위의 세 점 A(5, 1), B(-1, 4), C(a, b)에 대하여 선분 AB를 2:1로 내분하는 점의 좌표와 선분 AC를 2:1로 외분하는 점의 좌표가 서로 같을 때, a+b의 값은? [3점]

① 3

24

3 5

4 6

⑤ 7

- **8.** 실수부분이 1인 복소수 z에 대하여 $\dfrac{z}{2+i}+\dfrac{\overline{z}}{2-i}$ = 2일 때, $z\overline{z}$ 의 값은? (단, $i=\sqrt{-1}$ 이고, z는 z의 켤레복소수이다.) [3점]
 - ① 2
- ② 4 ③ 6
- 4 8
- ⑤ 10
- **10.** 다항식 $(x^2+4)^2-3x(x^2+4)-4x^2$ 이 $(x+a)^2(x^2+bx+c)$ 로 인수분해될 때, 세 정수 a, b, c에 대하여 a+b+c의 값은? [3점]
 - ① 3
- ② 5
- 3 7
- ④ 9
- ⑤ 11

- 9. 좌표평면 위에 두 점 A(2,4), B(5,1)이 있다. 직선 y=-x위의 점 P에 대하여 $\overline{AP} = \overline{BP}$ 일 때, 선분 OP의 길이는? (단, O는 원점이다.) [3점]

 - ① $\frac{\sqrt{2}}{4}$ ② $\frac{\sqrt{2}}{2}$ ③ $\sqrt{2}$ ④ $2\sqrt{2}$ ⑤ $4\sqrt{2}$

4

영역 수학

11. x에 대한 연립부등식

$$\begin{cases} |x-5| < 1 \\ x^2 - 4ax + 3a^2 > 0 \end{cases}$$

이 해를 갖지 않도록 하는 자연수 a의 개수는? [3점]

- ① 3 ② 4
- 3 5
- **4** 6 **5** 7
- **12.** 좌표평면 위의 두 점 A(1, 0), B(6, 5)와 직선 y = x 위의 점 P에 대하여 $\overline{AP} + \overline{BP}$ 의 값이 최소가 되도록 하는 점 P를 P_0 이라 하자. 직선 AP_0 을 직선 y=x에 대하여 대칭이동한 직선이 점 (9, a)를 지날 때, a의 값은? [3점]
 - 1 4

- ② 5 ③ 6 ④ 7 ⑤ 8

13. 실수 x에 대한 두 조건

p:(x+1)(x+2)(x-3)=0, $q: x^2 + kx + k - 1 = 0$

에 대하여 p가 q이기 위한 필요조건이 되도록 하는 모든 정수 k의 값의 곱은? [3점]

- $\bigcirc -18$ $\bigcirc -16$ $\bigcirc -14$ $\bigcirc -12$ $\bigcirc -10$
- **14.** 원 $C: x^2 + y^2 2x ay b = 0$ 에 대하여 좌표평면에서 원 C의 중심이 직선 y = 2x - 1 위에 있다.

원 C와 직선 y=2x-1이 만나는 서로 다른 두 점을 A, B라 하자. 원 C 위의 점 P에 대하여 삼각형 ABP의 넓이의 최댓값이 4일 때, a+b의 값은? (단, a, b는 상수이고, 점 P는 점 A도 아니고 점 B도 아니다.) [4점]

- ① 1 ② 2 ③ 3

- 4 4
- **⑤** 5

15. 실수 전체의 집합에서 정의된 함수 f(x)가 역함수를 갖는다. 모든 실수 x에 대하여

$$f(x)=f^{-1}(x), f(x^2+1)=-2x^2+1$$

일 때, f(-2)의 값은? [4점]

- ① $\frac{3}{2}$ ② 2 ③ $\frac{5}{2}$ ④ 3 ⑤ $\frac{7}{2}$

- **16.** 유리함수 $f(x) = \frac{4}{x-a} 4(a > 1)$ 에 대하여 좌표평면에서

함수 y = f(x)의 그래프가 x축, y축과 만나는 점을 각각 A, B라 하고 함수 y = f(x)의 그래프의 두 점근선이 만나는 점을 C라 하자. 사각형 OBCA의 넓이가 24일 때, 상수 a의 값은? (단, O는 원점이다.) [4점]

- ① 3
- $2\frac{7}{2}$ 34 $4\frac{9}{2}$ 55

17. 양수 k에 대하여 이차함수 $f(x)=-x^2+4x+k+3$ 의 그래프와 직선 y = 2x + 3이 서로 다른 두 점 $(\alpha, f(\alpha)), (\beta, f(\beta))$ 에서 만난다. $\alpha \le x \le \beta$ 에서 함수 f(x)의 최댓값이 10일 때, $\alpha \le x \le \beta$ 에서 함수 f(x)의 최솟값은? (단, $\alpha < \beta$) [4점]

1

2 2

3 3

4

⑤ 5

18. 다항식 f(x)와 최고차항의 계수가 1인 삼차다항식 g(x)가 다음 조건을 만족시킨다.

다항식 f(x)+q(x)를 x로 나누었을 때의 나머지와 다항식 f(x)+g(x)를 x^2+2x-2 로 나누었을 때의 나머지가 $x^2 + 2x - \frac{1}{2}f(x)$ 로 같다.

g(1)=7일 때, f(3)의 값은? [4점]

① 20 ② 22 ③ 24

4026

5 28

수학 영역

19. 그림과 같이 함수 $f(x) = \sqrt{x-2}$ 와 그 역함수 $f^{-1}(x)$ 에 대하여 기울기가 -1인 직선 l이 곡선 y=f(x)와 점 P에서 만나고 직선 l이 곡선 $y = f^{-1}(x)$ 와 점 Q에서 만난다.

다음은 삼각형 OPQ의 외접원의 넓이가 $\frac{25}{2}\pi$ 일 때, 점 P의 y좌표를 구하는 과정이다. (단, O는 원점이다.)

점 P의 y좌표를 $a(a \ge 0)$ 이라 하면 점 P의 좌표는 ((7), a)이다.

두 곡선 y = f(x)와 $y = f^{-1}(x)$ 는 직선 y = x에 대하여 서로 대칭이고 두 직선 l과 y = x는 서로 수직이므로 두 점 P와 Q는 직선 y = x에 대하여 서로 대칭이다. 그러므로 삼각형 OPQ의 외접원의 중심을 C라 하면 점 C는 직선 y = x 위에 있다.

삼각형 OPQ의 외접원의 넓이가 $\frac{25}{2}\pi$ 일 때,

점 C의 좌표는 ((나) , (나))이고,

 $\overline{\text{CP}} = \overline{\text{CO}}$ 에서 $a = \overline{\text{CP}}$

따라서 점 P의 y좌표는 (다) 이다.

위의 (7)에 알맞은 식을 g(a)라 하고, (나), (다)에 알맞은 수를 각각 m, n이라 할 때, m+g(n)의 값은? [4점]

1 8

 $2\frac{33}{4}$ $3\frac{17}{2}$ $4\frac{35}{4}$

⑤ 9

20. 실수 t(t > 0)에 대하여 좌표평면 위에 네 점 A(1, 4), B(5, 4), C(2t, 0), D(0, t)가 있다. 선분 CD 위에 \angle APB = 90 $^{\circ}$ 인 점 P가 존재하도록 하는 t의 최댓값을 M, 최솟값을 m이라 할 때, M-m의 값은? [4점]

 $\textcircled{1} \ 2 \sqrt{5} \qquad \textcircled{2} \ \frac{5 \sqrt{5}}{2} \qquad \textcircled{3} \ 3 \sqrt{5} \qquad \textcircled{4} \ \frac{7 \sqrt{5}}{2} \qquad \textcircled{5} \ 4 \sqrt{5}$

 $21. \ n(U) = 5$ 인 전체집합 U의 세 부분집합 A, B, C에 대하여 $n(B \cap C) = 2, \ n(B-A) = 1, \ n(C-A) = 2$

일 때, <보기>에서 옳은 것만을 있는 대로 고른 것은? [4점]

── 보기 >---

 $\neg . n(A \cap B \cap C) \neq 0$

L. $n(A \cap B \cap C) = 2$ 이면 n(C) = 4이다.

ㄷ. $n(A) \times n(B) \times n(C)$ 의 최댓값과 최솟값의 합은 42이다.

① ¬

② ¬. ∟

③ ¬. ⊏

④ ∟, ⊏

⑤ ᄀ, ㄴ, ㄷ

단답형

22. x에 대한 이차방정식 $x^2 + 10x + a = 0$ 이 중근을 갖도록 하는 상수 a의 값을 구하시오. [3점]

23. 다항식 $x^3 + ax^2 - 7$ 을 x - 2로 나눈 나머지가 17일 때, 상수 a의 값을 구하시오. [3점]

10

수학 영역

24. 연립방정식

$$\begin{cases} x - y = 3 \\ x^2 - 3xy + 2y^2 = 6 \end{cases}$$

의 해가 $x=\alpha, y=\beta$ 일 때, $\alpha+\beta$ 의 값을 구하시오. [3점]

25. 정수 k에 대한 두 조건 p, q가 모두 참인 명제가 되도록 하는 모든 k의 값의 합을 구하시오. [3점]

p: 모든 실수 x에 대하여 $x^2 + 2kx + 4k + 5 > 0$ 이다.

q: 어떤 실수 x에 대하여 $x^2 = k - 2$ 이다.

26. 좌표평면에서 점 (a, a)를 지나고 곡선 $y = x^2 - 4x + 10$ 에 접하는 두 직선이 서로 수직일 때, 이 두 직선의 기울기의 합을 구하시오. [4점]

- 27. 삼차방정식 $x^3-3x^2+4x-2=0$ 의 한 허근을 ω 라 할 때, $\left\{\omega\left(\overline{\omega}-1\right)\right\}^n=256$ 을 만족시키는 자연수 n의 값을 구하시오. (단, $\overline{\omega}$ 는 ω 의 켤레복소수이다.) [4점]
- 28. 그림과 같이 직육면체 ABCD-EFGH에서 단면 AFC가생기도록 사면체 F-ABC를 잘라내었다. 입체도형 ACD-EFGH의 모든 모서리의 길이의 합을 l_1 , 겉넓이를 S_1 이라 하고, 사면체 F-ABC의 모든 모서리의 길이의 합을 l_2 , 겉넓이를 S_2 라 하자. $l_1-l_2=28$, $S_1-S_2=61$ 일 때, $\overline{AC}^2+\overline{CF}^2+\overline{FA}^2$ 의 값을 구하시오. [4점]

29. 집합 $X = \{-3, -2, -1, 0, 1, 2\}$ 에서 실수 전체의 집합으로의 일대일함수 f(x)가 다음 조건을 만족시킨다.

(가) 집합 X의 모든 원소 x에 대하여 $\{f(x) + x^2 - 5\} \times \{f(x) + 4x\} = 0$ 이다.

(나) $f(0) \times f(1) \times f(2) < 0$

f(-3)+f(-2)+f(-1)+f(0)+f(1)+f(2)의 값을 구하시오.

[4점]

30. 양수 m에 대하여 두 함수 f(x), g(x)는

$$f(x)=x^2+2x, g(x)=(x-m)^2+m$$

이다. 실수 t(t>-1)에 대하여 집합

$$\{x|f(x)=t$$
 또는 $g(x)=t$, x 는 실수 $\}$

의 모든 원소의 합을 h(t)라 하자. 함수 h(t)의 치역의 모든 원소의 합이 19일 때, m의 값을 구하시오. [4점]

※ 확인 사항

○ 답안지의 해당란에 필요한 내용을 정확히 기입(표기)했는지 확인 하시오.