MAP583

Jeremie Dentan – Ahmed Laftit – Dan Meller

Content

- I. Introduction
- 2. First discussion: stability: modify the dataset:
 - a) Presentation of the dataset
 - b) Changing the probability q
 - c) Changind the size of the dataset
- 3. Second discussion: performance: modify lap_pos_enc
 - a) Without positional embedding
 - b) Exponential factors
 - c) Absolute value
 - d) Homothety
 - e) Increasing the dimension of the embedding

Introduction

- Two discussions
 - **Stability**: train a network and test it on another dataset
 - => Generate new datasets on CPUs
 - **Performance**: modify the laplacian positional embedding (lap_pos_enc)
 - => Train new networks on GPUs

GPU	Our experiments	Paper's experiments
Material	1 Nvidia Quatro 4000 8Go (~1000€)	4 Nvidia 1080Ti 11Go (~4x1000€)
Epochs	80 max	1000 max
Computation time	5h max per experiment	24h max per experiment

Matériel CPU	Datasets created	Computation time/dataset
2 Intel Xeon E-2174 3.80GHz	5	5h

I-a\ Stability: the PATTERN dataset

- 5 communities are generated with the same probabilities for each block
- We add a 6th community with a different extra-link probability
- Communities' average size is 20
- The goal is to classify the dataset and find which individuals belong to the 6th community

PATTERN: The graph pattern recognition task, presented in [75], aims at finding a fixed graph pattern P embedded in larger graphs G of variable sizes. For all data, we generate graphs G with 5 communities with sizes randomly selected between [5,35]. The SBM of each community is p=0.5, q=0.35, and the node features on G are generated with a uniform random distribution with a vocabulary of size 3, i.e. $\{0,1,2\}$. We randomly generate 100 patterns P composed of 20 nodes with intra-probability $p_P=0.5$ and extra-probability $q_P=0.5$ (i.e., 50% of nodes in P are connected to G). The node features for P are also generated as a random signal with values $\{0,1,2\}$. The graphs are of sizes 44-188 nodes. The output node labels have value 1 if the node belongs to P and value 0 if it is in G.

I-b\ Stabilité: faire varier q

- When q < 0.35 , it's easier at first to find the different community
- However, when $|q_{extra} q|$ is big, the model starts to lose accuracy.
- The 20 epochs model seems to generalize better than the 80 epochs one.

q	Model 20 epochs	Model 80 epochs
0.15	<u>77.0046</u>	69.1981
0.25	<u>93.2172</u>	92.2461
0.35 (original model)	83.2934	<u>84.7762</u>
0.45	<u>52.1648</u>	51.5637
0.55	42.0210	41.8587

I-c\ Stability: size of the dataset

- As we could expect, the bigger the graph, the harder it is for the model
- The 20 epochs model seems to generalize better than the 80 epochs one

Communities sizes	Model 20 epochs	Model 80 epochs
Uniform between 5 and 35 (original)	83.2934	<u>84.7762</u>
Uniform between 35 and 65	<u>68.4562</u>	65.9456
Uniform between 65 and 95	<u>39.8145</u>	33.6427

2-a\ Performance – With or without embedding?

 Much faster and precise training with the embedding.

The gap is smaller and smaller with training

 About 20% accuracy gap for the first epoch.

2-b\ Performance — Exponential factors

• Exponential: give more weight to smaller eigenvalues :

$$(U_1, ..., U_n) \Leftarrow (U_1 \exp^{-|\lambda_1|}, ..., U_n \exp^{-|\lambda_n|})$$

Absolute value: increase sign symetry:

$$(U_1,...,U_n) \Leftarrow (|U_1|,...,|U_n|)$$

2-b\ Performance - Exponential factors

• Results:

2-c\ Performance - Homothety

Homothety:

$$(U_1, ..., U_n) \Leftarrow h \times (U_1, ..., U_n)$$

 In theory: no change due to the neural network

 In practice: difference since the signal is harder for the network to pick up information

2-d\ Performance - Dimension

train

• The code of the paper uses the k=2 smallest eigenvalues of the Laplacian by default.

 Better performances can be achieved with k=5 in the long run. Few changes for k>5.

Thank you!