

Course > Unit 2: ... > Part B ... > 3. Fibo...

3. Fibonacci sequence

The **Fibonacci sequence** $1, 1, 2, 3, 5, 8, 13, \ldots$ is defined recursively by:

$$F_0 = 1, \quad F_1 = 1, \quad ext{ and } \quad F_{n+1} = F_n + F_{n-1} \quad ext{ for } n \ge 1.$$

In this problem, we'll use eigenvalues to compute an explicit formula for and describe the growth rate of F_n .

Fibonacci part (a)

1.0/1 point (graded)

Find a 2×2 matrix \mathbf{M} such that, for any $k \geq 1$,

$$\left(egin{array}{c} F_{k+1} \ F_k \end{array}
ight) = \mathbf{M} \left(egin{array}{c} F_k \ F_{k-1} \end{array}
ight).$$

(Enter a matrix in square brackets, entries in each row separated by commas, rows separated by semicolons: e.g. type [a, b; c, d] for the matrix $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$.)

Solution:

$$\left(egin{array}{c} F_{k+1} \ F_k \end{array}
ight) = \left(egin{array}{c} F_k + F_{k-1} \ F_k \end{array}
ight) = \left(egin{array}{c} 1 & 1 \ 1 & 0 \end{array}
ight) \left(egin{array}{c} F_k \ F_{k-1} \end{array}
ight),$$

so
$$\mathbf{M} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$$
.

Submit

You have used 1 of 5 attempts

1 Answers are displayed within the problem

We can compute F_n using a simple matrix expression:

$$\begin{pmatrix} F_n \\ F_{n-1} \end{pmatrix} = \mathbf{M} \begin{pmatrix} F_{n-1} \\ F_{n-2} \end{pmatrix} = \mathbf{M}^2 \begin{pmatrix} F_{n-2} \\ F_{n-3} \end{pmatrix} = \cdots = \mathbf{M}^{n-2} \begin{pmatrix} F_2 \\ F_1 \end{pmatrix} = \mathbf{M}^{n-1} \begin{pmatrix} F_1 \\ F_0 \end{pmatrix} = \mathbf{M}^{n-1} \begin{pmatrix} 1 \\ 1 \end{pmatrix}.$$

The goal of the rest of the problem will be to compute $\mathbf{M}^{n-1} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, and thus F_n .

Part (b)

2/2 points (graded)

Find the eigenvalues $\lambda_1 > \lambda_2$. (Enter the larger eigenvalue in the first answer box. Give an analytic expression rather than a numerical one.)

$$\lambda_1 = \underbrace{\begin{array}{c} (1+\operatorname{sqrt}(5))/2 \\ \hline \frac{1+\sqrt{5}}{2} \end{array}}$$
 Answer: $(1+\operatorname{sqrt}(5))/2$

$$\lambda_2 = \underbrace{\begin{array}{c} (1-\operatorname{sqrt}(5))/2 \\ \hline \frac{1-\sqrt{5}}{2} \end{array}}$$
 Answer: $(1-\operatorname{sqrt}(5))/2$

Solution:

The eigenvalues are the roots of the characteristic polynomial

$$\det(\lambda \mathbf{I} - \mathbf{M}) = \det\begin{pmatrix} \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} - \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \end{pmatrix} = \det\begin{pmatrix} \lambda - 1 & -1 \\ -1 & \lambda \end{pmatrix}$$
$$= (\lambda - 1)\lambda - (-1)(-1) = \lambda^2 - \lambda - 1.$$

Its roots are given by

$$\lambda_1=rac{1+\sqrt{5}}{2} \quad ext{ and } \quad \lambda_2=rac{1-\sqrt{5}}{2}.$$

Submit

You have used 1 of 5 attempts

1 Answers are displayed within the problem

Part (c)

2/2 points (graded)

Find the eigenvectors $\mathbf{v_1}, \mathbf{v_2}$ of \mathbf{M} corresponding to eigenvalues $\lambda_1 > \lambda_2$. In particular, find the numbers u and u so that

$$\mathbf{v}_1 = \left(egin{array}{c} u \ 1 \end{array}
ight) \quad \mathbf{v}_2 = \left(egin{array}{c} w \ 1 \end{array}
ight).$$

Hint: Use the fact that $\lambda^2 - \lambda - 1 = 0$ can be rearranged to show $\lambda - 1 = 1/\lambda$. Use this in your computations to simplify algebra.

(Note that $oldsymbol{v_1}$ is the eigenvector corresponding to the larger eigenvalue.)

$$u = \underbrace{\frac{(1+\operatorname{sqrt}(5))}{2}}$$

$$\frac{1+\sqrt{5}}{2}$$

$$w = \underbrace{\frac{(1-\operatorname{sqrt}(5))}{2}}$$

$$\frac{1-\sqrt{5}}{2}$$

$$\star \operatorname{Answer:} (1+\operatorname{sqrt}(5))/2$$

Solution:

With $\pmb{\lambda}$ equal to either $\pmb{\lambda_1}$ or $\pmb{\lambda_2}$ we have

$$\lambda - 1 = 1/\lambda$$
.

The eigenvectors are the elements in the nullspace of the matrix ${f \lambda}{f I}-{f M}.$

$$NS(\lambda I - M) = NS\begin{pmatrix} \lambda - 1 & -1 \\ -1 & \lambda \end{pmatrix} = NS\begin{pmatrix} 1/\lambda & -1 \\ -1 & \lambda \end{pmatrix}.$$

Subtracting a multiple of row 1 from row 2 does not change the nullspace, therefore

$$ext{NS} \left(egin{matrix} 1/\lambda & -1 \ -1 & \lambda \end{array}
ight) = ext{NS} \left(egin{matrix} 1/\lambda_i & -1 \ 0 & 0 \end{array}
ight).$$

Therefore $inom{\lambda}{1}$ is an eigenvector.

Submit

You have used 1 of 5 attempts

1 Answers are displayed within the problem

Part (d)

2/2 points (graded)

Write the vector $egin{pmatrix} 1 \\ 1 \end{pmatrix}$ as a linear combination $a\mathbf{v_1} + b\mathbf{v_2}$ of the eigenvectors.

$$a = \underbrace{(\text{sqrt}(5)+1)/(2*\text{sqrt}(5))}_{\text{(5+1)}}$$
 Answer: (1+sqrt(5))/(2*sqrt(5))

Solution:

We want

$$egin{pmatrix} 1 \ 1 \end{pmatrix} = a egin{pmatrix} \lambda_1 \ 1 \end{pmatrix} + b egin{pmatrix} \lambda_2 \ 1 \end{pmatrix},$$

so $m{a}$ and $m{b}$ satisfy the system of linear equations

$$a\lambda_1 + b\lambda_2 = 1$$

 $a+b = 1.$

Solving this gives

$$a=rac{1-\lambda_2}{\lambda_1-\lambda_2}=rac{1+\sqrt{5}}{2\sqrt{5}} \quad ext{and} \quad b=1-a=rac{-1+\sqrt{5}}{2\sqrt{5}}.$$

Submit

You have used 1 of 5 attempts

• Answers are displayed within the problem

Part (e)

1/1 point (graded)

Use your answers from parts (a)-(d) to find a formula for F_n . The formula should be something you can compute directly, not something that writes F_n in terms of other F_j .

$$F_n = \frac{(1/\sqrt{5})*(((1+\sqrt{5}))/2)^{n+1} - ((1-\sqrt{5}))/2)^{n+1})}{(1/\sqrt{5})}$$

Answer: (1/sqrt(5))*(((1+sqrt(5))/2)^(n+1) - ((1-sqrt(5))/2)^(n+1))

$$\left(rac{1}{\sqrt{5}}
ight)\cdot\left(\left(rac{1+\sqrt{5}}{2}
ight)^{n+1}-\left(rac{1-\sqrt{5}}{2}
ight)^{n+1}
ight)$$

Solution:

We have

$$egin{pmatrix} 1 \ 1 \end{pmatrix} = a \mathbf{v}_1 + b \mathbf{v}_2,$$

and

$$egin{pmatrix} F_n \ F_{n-1} \end{pmatrix} = \mathbf{M}^{n-1} egin{pmatrix} 1 \ 1 \end{pmatrix}.$$

Expanding this out and using the fact that $\mathbf{M}^k \mathbf{v}_i = \lambda_i^k \mathbf{v}_i$, we get

$$\begin{pmatrix} F_n \\ F_{n-1} \end{pmatrix} = \mathbf{M}^{n-1}(a\mathbf{v}_1 + b\mathbf{v}_2)$$

$$= a\lambda_1^{n-1}\mathbf{v}_1 + b\lambda_2^{n-1}\mathbf{v}_2$$

$$= a\lambda_1^{n-1}\begin{pmatrix} \lambda_1 \\ 1 \end{pmatrix} + b\lambda_2^{n-1}\begin{pmatrix} \lambda_2 \\ 1 \end{pmatrix}$$

$$= \frac{\frac{1+\sqrt{5}}{2}}{\sqrt{5}}\begin{pmatrix} \lambda_1^n \\ \lambda_1^{n-1} \end{pmatrix} + \frac{\frac{-1+\sqrt{5}}{2}}{\sqrt{5}}\begin{pmatrix} \lambda_2^n \\ \lambda_2^{n-1} \end{pmatrix}$$

$$= \frac{\lambda_1}{\sqrt{5}}\begin{pmatrix} \lambda_1^n \\ \lambda_1^{n-1} \end{pmatrix} - \frac{\lambda_2}{\sqrt{5}}\begin{pmatrix} \lambda_2^n \\ \lambda_2^{n-1} \end{pmatrix}$$

$$= \frac{1}{\sqrt{5}}\begin{pmatrix} \lambda_1^{n+1} - \lambda_2^{n+1} \\ \lambda_1^n - \lambda_2^n \end{pmatrix} .$$

Taking the first coordinate gives our formula for F_n :

$$F_n = rac{1}{\sqrt{5}}(\lambda_1^{n+1} - \lambda_2^{n+1}) = rac{1}{\sqrt{5}} \Biggl[\left(rac{1+\sqrt{5}}{2}
ight)^{n+1} - \left(rac{1-\sqrt{5}}{2}
ight)^{n+1} \Biggr] \,.$$

Submit

You have used 1 of 15 attempts

1 Answers are displayed within the problem

Part (f)

1/1 point (graded)

Find $\ln F_{1,000,000}$ to 10 decimal places.

(Use <u>MATLAB online</u>. Note that in MATLAB, typing **log** gives the natural logarithm, not the base 10 logarithm. Observe that MATLAB typically only displays four decimal places, but stores a larger number. To see the larger number of decimal digits type **format long** before you display numbers of interest.)

481211.5015524723

✓ Answer: 481211.5015524723

Solution:

In the previous problem you found that

$$F_n=rac{1}{\sqrt{5}}(\lambda_1^{n+1}-\lambda_2^{n+1}).$$

The term $-\lambda_2^{n+1}$ is negligible for large n since $|\lambda_2| < 1$; therefore

$$\ln F_n pprox \ln rac{1}{\sqrt{5}} + (n+1) \ln (\lambda_1).$$

We compute this directly using MATLAB for $n=10^6$.

Note that if you try to compute $\ln F_{10^6}$ directly, MATLAB will output inf. Instead, you must first observe that only the term involving the larger eigenvalue will contribute most. If you omit the $\ln(1/\sqrt{5})$ term your answer will not be correct up to the desired number of decimal digits.

Submit

You have used 1 of 10 attempts

1 Answers are displayed within the problem

Part (g)

2/2 points (graded)

Consider a generalized fibonacci G sequence $1, 1, 1, 3, 5, 9, 17, \ldots$ is created by summing the last 3 entries in the sequence together:

$$G_0 = 1, \quad G_1 = 1, \quad G_2 = 1, \quad ext{and} \ G_{n+1} = G_n + G_{n-1} + G_{n-2} ext{ for } n \geq 2.$$

Find a 3×3 matrix ${\bf M}$ such that, for any $k \geq 2$,

$$egin{pmatrix} G_{k+1} \ G_k \ G_{k-1} \end{pmatrix} = \mathbf{M} egin{pmatrix} G_k \ G_{k-1} \ G_{k-2} \end{pmatrix}.$$

Use MATLAB online to find a numerical value for G_{25} .

Find $\lim_{n\to\infty}\frac{\ln G_n}{n}$ to 10 decimal places.

Solution:

In this case
$$\mathbf{M}=egin{pmatrix}1&1&1\\1&0&0\\0&1&0\end{pmatrix}$$
 . Since

$$egin{pmatrix} G_3 \ G_2 \ G_1 \end{pmatrix} = \mathbf{M} egin{pmatrix} G_2 \ G_1 \ G_0 \end{pmatrix},$$

$$egin{pmatrix} G_4 \ G_3 \ G_2 \end{pmatrix} = \mathbf{M}^2 egin{pmatrix} G_2 \ G_1 \ G_0 \end{pmatrix},$$

it follows that G_{25} is the first entry in the vector given by $\mathbf{M}^{23} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$. Plugging into MATLAB for use as a calculator gives the answer directly.

To find $\lim_{n\to\infty}\frac{\ln G_n}{n}$, we use an approach analogous to what we did with the Fibonacci sequence. Let \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 be eigenvectors of \mathbf{M} so that λ_1 is the largest eigenvalue.

We start by expressing the vector representing the first three numbers as a linear combination of the eigenvectors

$$egin{pmatrix} G_2 \ G_1 \ G_0 \end{pmatrix} = egin{pmatrix} 1 \ 1 \ 1 \end{pmatrix} = a_1 \mathbf{v}_1 + a_2 \mathbf{v}_2 + a_3 \mathbf{v}_3.$$

We write

$$egin{array}{lll} egin{pmatrix} G_n \ G_{n-1} \ G_{n-2} \end{pmatrix} &=& \mathbf{M}^{n-2} egin{pmatrix} 1 \ 1 \ 1 \ \end{pmatrix} \ &=& \mathbf{M}^{n-2} (a_1 \mathbf{v}_1 + a_2 \mathbf{v}_2 + a_3 \mathbf{v}_3) \ &=& a_1 \lambda_1^{n-2} \mathbf{v}_1 + a_2 \lambda_2^{n-2} \mathbf{v}_2 + a_3 \lambda_3^{n-2} \mathbf{v}_3 \ &pprox & a_1 \lambda_1^{n-2} \mathbf{v}_1 \end{array}$$

The number $oldsymbol{G_n}$ is the first entry of this vector, which is

$$G_n = b_1 \lambda_1^{n-2},$$

where $b_1=a_1$ times the first entry of ${f v}_1$. Taking the natural logarithm and dividing by n we get

$$rac{\ln G_n}{n} = rac{\ln b_1 + (n+2) \ln(\lambda_1)}{n}.$$

As n tends to infinity, this tends to $\ln(\lambda_1)$, which we compute using MATLAB. (In this case the constant term $\ln b_1/n$ is zero in the limit.)

Submit

You have used 1 of 15 attempts

• Answers are displayed within the problem

3. Fibonacci sequence

Topic: Unit 2: Linear Algebra, Part 2 / 3. Fibonacci sequence

Hide Discussion

Add a Post

		Add a Post
Show all posts ▼		by recent activity ▼
There are no posts in this topic yet		
×		
	Lagra About Varified Cortificator	
	Learn About Verified Certificates	© All Rights Reserved