AMS Théorème de Weierstrass

Samy Amara, Guillaume Salloum

Avignon Université L3 Mathématiques

Plan

- Théorème de Stone-Weierstrass
 - Rappels
 - Application directe aux séries de Fourier

Preuve constructive à l'aide du noyau de Poisson

Rappels

D'après le cours de *Topologie et Analyse Hilbertienne*, nous avons vu que pour $(E, \|.\|)$ un espace vectoriel normé et $K \subseteq E$ compacte, alors :

- $C(K,\mathbb{R})$ l'ensemble des fonctions continues de K dans \mathbb{R} a une structure d'algèbre sur \mathbb{R} .
- $A \subset \mathcal{C}(K, \mathbb{R})$ est une sous-algèbre si elle est stable pour les opérations définies sur $\mathcal{C}(K, \mathbb{R})$.
- En considérant la norme de la convergence uniforme sur $\mathcal{C}(K,\mathbb{R})$ définie par $\|f\|_{\infty} = \sup_{x \in K} |f(x)|$, alors $\mathcal{C}(K,\mathbb{R})$ est une algèbre de Banach.
- $A \subset C(K, \mathbb{R})$ sépare les points de K si pour $x \neq y$ dans K, alors il existe une fonction $f \in A$ telle que $f(x) \neq f(y)$.

Théorème (Stone-Weierstrass, cas réel)

Soit $(E, \|.\|)$, $K \subseteq E$ compacte et $A \subseteq \mathcal{C}(K, \mathbb{R})$ une sous-algèbre vérifiant :

- A contient les constantes,
- A sépare les points,
- $\overline{A} = \mathcal{C}(K, \mathbb{R})$

Alors toute fonction $f: K \to \mathbb{R}$ est limite d'une suite de A.

Schéma de la preuve.

- **1** On montre d'abord que $t \mapsto \sqrt(t)$ est limite uniforme sur [0, 1] d'une suite de polynômes de A.
- 2 Ensuite on prouve que A est clos sous le passage à la valeur absolue, au sup et à l'inf d'une famille de fonctions de A.
- ③ On procède par interpolation à montrer l'existence d'un "élargissement" : pour $f \in A, \forall x, y \in K, \forall \epsilon > 0, \exists g \in \overline{A}$ telle que $g_x(x) = f(x)$ et $g_x(y) < f(y) + \epsilon$.
- ① On en déduit que $\forall \epsilon > 0, \exists g \in \overline{A}$ telle que $\|f g\|_{\infty} \le \epsilon$, ce qui implique que $f \in \overline{\overline{A}} = \overline{A}$.

Preuve du cas complexe

Dans le cas où l'on se place sur $A \subset \mathcal{C}(K,\mathbb{C})$:

- Les étapes (1) et (2) restent identiques.
- Si $f \in A$, alors son conjugué $\overline{f} \in A$, ce qui permet de décomposer f en $f = \Re(f) + i\Im(f)$ avec $\Re(f) = \frac{f + \overline{f}}{2} \in A|_{\mathcal{C}(K,\mathbb{R})}, \Im(f) = \frac{f \overline{f}}{2I} \in A|_{\mathcal{C}(K,\mathbb{R})}$ et d'apliquer le cas réel du théorème à $\Re(f)$ et $\Im(f)$.
- Puisque A est clos par addition et multiplication par un scalaire *complexe*, on peut combiner $g = \Re(f) + i\Im(f)$ et avoir g dans A. Ce g approxime bien f uniformément i.e. A est dense dans $\mathcal{C}(K,\mathbb{C}) = \mathcal{C}(K,\mathbb{R}) + i\mathcal{C}(K,\mathbb{R})$. [2]

Application directe aux séries de Fourier

Soit $E=\mathbb{T}=[0,2\pi]$ le cercle unité compact de \mathbb{R} , $A=Vect(\{e^{inx}\}_{n\in\mathbb{Z}})$ est une base orthonormale de $\mathcal{C}(\mathbb{T},\mathbb{C})$. Montrons que A vérifie les hypothèses du théorème :

- A clos par $+, \times, .$ donc est une sous-algèbre de $\mathcal{C}(\mathbb{T}, \mathbb{C})$
- A contient les constantes ($e^{i.0.x} = 1$)
- $\overline{e^{inx}} = e^{-inx} \in A \text{ car } n \in \mathbb{Z}$
- Pour $x1, x2 \in A$ distincts, il existe $n \in \mathbb{Z}$ tel que $e^{inx1} \neq e^{inx2}$.

On en déduit le théorème de Weierstrass trigonométrique : A est dense dans $\mathcal{C}(\mathbb{T},\mathbb{C})$.

Preuve constructive à l'aide du noyau de Poisson

Picard démontre dans son *Traité d'Analyse* (1891) le théorème de Weierstrass en utilisant le noyau de Poisson. [1]

Définition (Noyau de Poisson)

Soit f continue et 2π périodique sur $\mathbb R$ (donc uniformément continue). Pour $0 \le r \le 1$, on définit l'intégrale de Poisson de f par :

$$P(r,\theta) = \frac{1}{2\pi} \int_0^{2\pi} \frac{1 - r^2}{1 - 2r\cos(x - \theta) + r^2} f(x) dx$$

C'est un opérateur intégral sur l'espace fonctionnel $\mathcal{C}([0,2\pi],\mathbb{R})$.

Références L

- Allan Pinkus. "Weierstrass and Approximation Theory". [1] In: Journal of Approximation Theory 107.1 (2000), pp. 1-66. DOI: 10.1006/jath.2000.3508.
- RM Stephenson. "Spaces for which the [2] Stone-Weierstrass theorem holds". In: Transactions of the American Mathematical Society 133.2 (1968), pp. 537-546. DOI: https://doi.org/10.2307/1994995.