Differential evolution algorithm

Generated by Doxygen 1.8.17

1 Namespace Index	1
1.1 Namespace List	1
2 Class Index	3
2.1 Class List	3
3 File Index	5
3.1 File List	5
4 Namespace Documentation	7
4.1 func Namespace Reference	7
4.1.1 Detailed Description	7
4.1.2 Function Documentation	7
4.1.2.1 ackleysOne()	7
4.1.2.2 ackleysTwo()	8
4.1.2.3 alpine()	8
4.1.2.4 eggHolder()	8
4.1.2.5 firstDeJong()	9
4.1.2.6 griewangk()	9
4.1.2.7 levy()	9
4.1.2.8 mastersCosineWave()	9
4.1.2.9 michalewicz()	10
4.1.2.10 pathological()	10
4.1.2.11 quartic()	10
4.1.2.12 rana()	11
4.1.2.13 rastrigin()	11
4.1.2.14 rosenbrock()	11
4.1.2.15 schwefel()	11
4.1.2.16 sineEnvelopeSineWave()	12
4.1.2.17 step()	12
4.1.2.18 stretchedVSineWave()	12
5 Class Documentation	13
5.1 DataStats Class Reference	13
5.2 DE Class Reference	13
5.2.1 Constructor & Destructor Documentation	14
5.2.1.1 DE()	14
5.2.2 Member Function Documentation	14
5.2.2.1 run()	14
5.3 DEStrategy Struct Reference	15
5.4 Population Class Reference	15
5.4.1 Detailed Description	15
5.4.2 Member Function Documentation	15
5.4.2.1 init()	15

6 File Documentation	17
6.1 src/data_stats.h File Reference	17
6.1.1 Detailed Description	17
6.2 src/differential_evolution.h File Reference	17
6.2.1 Detailed Description	18
6.3 src/func.h File Reference	18
6.3.1 Detailed Description	19
6.4 src/population.h File Reference	19
6.4.1 Detailed Description	19
6.5 src/run.h File Reference	20
6.5.1 Detailed Description	20
6.5.2 Function Documentation	20
6.5.2.1 output_all()	20
6.5.2.2 output_fHistory()	21
6.5.2.3 output_func()	21
6.5.2.4 runFunc()	21
6.5.2.5 runStrategy()	22
Index	25

Namespace Index

1.1 Namespace List

Here is a list of all documented namespaces with brief descriptions:	
func	

2 Namespace Index

Class Index

2.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

DataStats	13
DE	13
DEStrategy	15
Population	
Population for genetic algorithm	15

4 Class Index

File Index

3.1 File List

Here is a list of all documented files with brief descriptions:

src/data_stats.h	
Data analysis	7
src/differential_evolution.h	
Differential evolution algorithm	7
src/func.h	
Math functions	8
src/population.h	
Population generation	9
src/run.h	
Run	20

6 File Index

Namespace Documentation

4.1 func Namespace Reference

18 functions

Functions

- float schwefel (vector< float > &x)
- float firstDeJong (vector< float > &x)
- float rosenbrock (vector< float > &x)
- float rastrigin (vector< float > &x)
- float griewangk (vector< float > &x)
- float sineEnvelopeSineWave (vector< float > &x)
- float stretchedVSineWave (vector< float > &x)
- float ackleysOne (vector< float > &x)
- float ackleysTwo (vector< float > &x)
- float eggHolder (vector< float > &x)
- float rana (vector< float > &x)
- float pathological (vector< float > &x)
- float michalewicz (vector< float > &x)
- float mastersCosineWave (vector< float > &x)
- float quartic (vector< float > &x)
- float levy (vector< float > &x)
- float step (vector < float > &x)
- float alpine (vector< float > &x)

4.1.1 Detailed Description

18 functions

4.1.2 Function Documentation

4.1.2.1 ackleysOne()

```
float func::ackleysOne ( vector < float > & x)
```

Function 8, Implementation of Ackley's One function

Parameters

x descriptionx Vector of float

4.1.2.2 ackleysTwo()

```
float func::ackleysTwo ( \label{eq:vector} \mbox{vector} < \mbox{float} \ > \mbox{\&} \ x \ )
```

Function 9, Implementation of Ackley's Two function

Parameters

x descriptionx Vector of float

4.1.2.3 alpine()

```
float func::alpine ( \label{eq:vector} \mbox{vector} < \mbox{float} \ > \mbox{\&} \ \mbox{$x$} \ )
```

Function 18, Implementation of Alpine function

Parameters

x descriptionx Vector of float

4.1.2.4 eggHolder()

```
float func::eggHolder ( \mbox{vector} < \mbox{float} > \mbox{\&} \ x \ )
```

Function 10, Implementation of Egg Holder function

Parameters

x descriptionx Vector of float

4.1.2.5 firstDeJong()

```
float func::firstDeJong ( \mbox{vector} < \mbox{float} > \mbox{\&} \mbox{ x )} \label{eq:vector}
```

Function 2, Implementation of 1st De Jong's function

Parameters

x descriptionx Vector of float

4.1.2.6 griewangk()

```
float func::griewangk ( \mbox{vector} < \mbox{float} > \mbox{\&} \ x \ )
```

Function 5, Implementation of Griewangk function

Parameters

x descriptionx Vector of float

4.1.2.7 levy()

```
float func::levy ( \label{eq:vector} \mbox{vector} < \mbox{float} \ > \mbox{\&} \ x \ )
```

Function 16, Implementation of Levy function

Parameters

x descriptionx Vector of float

4.1.2.8 mastersCosineWave()

```
float func::mastersCosineWave ( \label{eq:vector} \mbox{vector} < \mbox{float} \ > \mbox{\&} \ \mbox{x} \ )
```

Function 14, Implementation of Masters Cosine Wave function

Parameters

x descriptionx Vector of float

4.1.2.9 michalewicz()

```
float func::michalewicz ( \mbox{vector} < \mbox{float} \ > \mbox{\&} \ x \ )
```

Function 13, Implementation of Michalewicz function

Parameters

x descriptionx Vector of float

4.1.2.10 pathological()

```
float func::pathological ( \mbox{vector} < \mbox{float} \ > \mbox{\&} \ x \ )
```

Function 12, Implementation of Pathological function

Parameters

x descriptionx Vector of float

4.1.2.11 quartic()

```
float func::quartic ( \mbox{vector} < \mbox{float} > \mbox{\&} \mbox{ x )} \label{eq:vector}
```

Function 15, Implementation of Quartic function

Parameters

x descriptionx Vector of float

4.1.2.12 rana()

```
float func::rana ( \label{eq:vector} \mbox{vector} < \mbox{float} > \mbox{\&} \mbox{ x )}
```

Function 11, Implementation of Rana function

Parameters

x descriptionx Vector of float

4.1.2.13 rastrigin()

```
float func::rastrigin ( \mbox{vector} < \mbox{float} > \mbox{\&} \mbox{ x )} \label{eq:vector}
```

Function 4, Implementation of Rastrigin's function

Parameters

x descriptionx Vector of float

4.1.2.14 rosenbrock()

```
float func::rosenbrock ( \label{eq:vector} \mbox{vector} < \mbox{float} \ > \mbox{\&} \ x \ )
```

Function 3, Implementation of Rosenbrock's function

Parameters

x descriptionx Vector of float

4.1.2.15 schwefel()

```
float func::schwefel ( \label{eq:vector} \mbox{vector} < \mbox{float} \ > \mbox{\&} \ \mbox{x} \ )
```

Function 1, Implementation of Schwefel's function

Parameters

x descriptionx Vector of float

4.1.2.16 sineEnvelopeSineWave()

```
float func::sineEnvelopeSineWave ( \mbox{vector} < \mbox{float} \ > \mbox{\&} \ x \ )
```

Function 6, Implementation of Sine Envelope Sine Wave function

Parameters

x descriptionx Vector of float

4.1.2.17 step()

```
float func::step ( \label{eq:vector} \mbox{vector} < \mbox{float} \ > \mbox{\&} \ \mbox{$x$} \ )
```

Function 147 Implementation of Step function

Parameters

x descriptionx Vector of float

4.1.2.18 stretchedVSineWave()

```
float func::stretchedVSineWave ( \mbox{vector} < \mbox{float} \ > \mbox{\&} \ x \ )
```

Function 7, Implementation of Stretched V Sine Wave function

Parameters

x descriptionx Vector of float

Class Documentation

5.1 DataStats Class Reference

Public Member Functions

• void run ()

Generate analytical data.

Public Attributes

- float mean
- · float median
- · float stand
- float range_low
- float range_high
- float time_avg
- vector < float > time
- vector< float > data

The documentation for this class was generated from the following files:

- src/data_stats.h
- src/data_stats.cpp

5.2 DE Class Reference

Public Member Functions

- DE (DEStrategy s, float(*f)(vector< float > &), float I, float u)
- vector< float > run ()

14 Class Documentation

5.2.1 Constructor & Destructor Documentation

5.2.1.1 DE()

Initialize differential evolution algorithm to run for one function

Parameters

f	function
1	low bound for x
и	high bound for x

5.2.2 Member Function Documentation

5.2.2.1 run()

```
vector< float > DE::run ( )
```

run differential evolution algorithm

Parameters

i	ith individual
j	jth element in individual

Returns

history values of best function value achieved

reset population

The documentation for this class was generated from the following files:

- src/differential_evolution.h
- src/differential_evolution.cpp

5.3 DEStrategy Struct Reference

Public Attributes

- string perturbed_vector
- · int difference_vector

x: string denoting the vector to be perturbed, choosing from best, rand or rand-to-best

string crossover_type

y: number of difference vector considered for perturbation of x, 1 or 2

The documentation for this struct was generated from the following file:

• src/differential_evolution.h

5.4 Population Class Reference

Population for genetic algorithm.

```
#include <population.h>
```

Public Member Functions

- void init (int s, int d, float(*f)(vector< float > &), float I, float u)
- void reset ()

reset the population for new run

Public Attributes

- vector< vector< float >> data
 Initialize a population.
- vector< float > cost
- · int cost best index
- · int cost best

5.4.1 Detailed Description

Population for genetic algorithm.

5.4.2 Member Function Documentation

5.4.2.1 init()

```
void Population::init (
    int s,
    int d,
    float(*)(vector< float > &) f,
    float 1,
    float u)
```

Initialize a population

16 Class Documentation

Parameters

s	population size
d	population dimension
low	x low bound
high	x high bound

The documentation for this class was generated from the following files:

- src/population.h
- src/population.cpp

File Documentation

6.1 src/data_stats.h File Reference

```
data analysis
#include <vector>
```

Classes

class DataStats

6.1.1 Detailed Description

```
data analysis

Author

Cheng Su ( csu@cwu.edu)

Version

1.0

Date

2020-02-11
```

6.2 src/differential_evolution.h File Reference

differential evolution algorithm

```
#include <string>
#include <vector>
#include "population.h"
```

18 File Documentation

Classes

- struct DEStrategy
- class DE

6.2.1 Detailed Description

```
differential evolution algorithm
```

Author

```
Cheng Su ( csu@cwu.edu)
```

Version

1.0

Date

2020-02-11

6.3 src/func.h File Reference

Math functions.

```
#include <stdio.h>
#include <vector>
```

Namespaces

• func

18 functions

Functions

- float func::schwefel (vector< float > &x)
- float func::firstDeJong (vector< float > &x)
- float func::rosenbrock (vector< float > &x)
- float func::rastrigin (vector< float > &x)
- float func::griewangk (vector < float > &x)
- float func::sineEnvelopeSineWave (vector< float > &x)
- float func::stretchedVSineWave (vector< float > &x)
- float func::ackleysOne (vector< float > &x)
- float func::ackleysTwo (vector< float > &x)
- float func::eggHolder (vector< float > &x)
- float func::rana (vector< float > &x)
- float func::pathological (vector< float > &x)
- float func::michalewicz (vector< float > &x)
- float func::mastersCosineWave (vector< float > &x)
- float func::quartic (vector< float > &x)
- float func::levy (vector< float > &x)
- float func::step (vector< float > &x)
- float func::alpine (vector< float > &x)

6.3.1 Detailed Description

```
Math functions.

Author

Cheng Su ( csu@cwu.edu)

Version

0.1
```

6.4 src/population.h File Reference

Population generation.

2020-02-05

```
#include <stdio.h>
#include <vector>
```

Classes

• class Population

Population for genetic algorithm.

6.4.1 Detailed Description

```
Population generation.

Author
```

Cheng Su (csu@cwu.edu)

Version

1.0

Date

2020-02-1

20 File Documentation

6.5 src/run.h File Reference

run

```
#include <vector>
#include "data_stats.h"
#include "differential_evolution.h"
```

Functions

void setSeed ()

Set seed for Mersenne Twister

- DataStats runFunc (int experiment, string func_name, float(*f)(vector< float > &), float I, float u)
- DataStats runStrategy (string func_name, string strategy_number, DEStrategy strat, int experiment, float(*f)(vector< float > &), float I, float u)

Run genetic algorithm for a certain function.

- void output_fHistory (string func_name, string strategy_number, vector< vector< float >> f_bests_history)
- void output_func (string func_name, vector< DataStats > result)
- void output_all (vector < DataStats > result_best)

6.5.1 Detailed Description

run

Author

```
Cheng Su ( csu@cwu.edu)
```

Version

1.0

Date

2020-02-11

6.5.2 Function Documentation

6.5.2.1 output_all()

Write best result for every function

Parameters

result_best bes	at result for each function
-----------------	-----------------------------

6.5.2.2 output_fHistory()

Write best result history for each strategy for each function

Parameters

func_name	function name
strategy_number	strategy number
f_bests_history	history of best function value achived

6.5.2.3 output_func()

write result for one function for all strategies

Parameters

func_name	function name
result	result of all strategies

6.5.2.4 runFunc()

Run genetic algorithm for a certain function

22 File Documentation

Parameters

experiment	experiment size
func_name	function name
min	low bound for x
max	high bound for x

Returns

best result among 10 strategies

```
strategy 1 best/1/exp
strategy 2 rand/1/exp
strategy 3 rand-to-best/1/exp
strategy 4 best/2/exp
strategy 5 rand/2/exp
strategy 6 best/1/bin
strategy 7 rand/1/bin
strategy 8 rand-to-best/1/bin
strategy 9 best/2/bin
strategy 10 rand/2/bin
```

6.5.2.5 runStrategy()

Run genetic algorithm for a certain function.

run one strategy for a function

Parameters

strat	strategy
experiment	number of experiment
f	function
1	low x bound
и	up x bound

Returns

return result analysis

24 File Documentation

Index

func, 10

ackleysOne func, 7 ackleysTwo func, 8 alpine func, 8	output_all run.h, 20 output_fHistory run.h, 21 output_func run.h, 21
DataStats, 13 DE, 13 DE, 14 run, 14	pathological func, 10 Population, 15 init, 15
DEStrategy, 15 eggHolder func, 8	quartic func, 10
firstDeJong func, 8 func, 7 ackleysOne, 7 ackleysTwo, 8 alpine, 8 eggHolder, 8 firstDeJong, 8 griewangk, 9 levy, 9 mastersCosineWave, 9 michalewicz, 10	rana func, 10 rastrigin func, 11 rosenbrock func, 11 run DE, 14 run.h output_all, 20 output_fHistory, 21 output_func, 21 runFunc, 21
pathological, 10 quartic, 10 rana, 10 rastrigin, 11 rosenbrock, 11 schwefel, 11 sineEnvelopeSineWave, 12 step, 12	runStrategy, 22 runFunc run.h, 21 runStrategy run.h, 22 schwefel func, 11
stretchedVSineWave, 12 griewangk func, 9	sineEnvelopeSineWave func, 12 src/data_stats.h, 17 src/differential_evolution.h, 17
init Population, 15	src/func.h, 18 src/population.h, 19 src/run.h, 20
levy func, 9	step func, 12 stretchedVSineWave
mastersCosineWave func, 9 michalewicz	func, 12