

SEQUENCE LISTING

<110> Liu, et al.

<120> Screens and Assays for Agents Useful in Controlling Parasitic Nematodes

<130> 2002630-0012

<140> 10/051,644

<141> 2002-01-18

<160> 8

<170> PatentIn Ver. 2.1

<210> 1

<211> 425

<212> PRT

<213> Artificial Sequence .

<220>

<223> Description of Artificial Sequence:VAP-1 Amino Acid Sequence

<400> 1

Met Ala Val Leu Ala Val Val Leu Leu Leu Ala Cys Leu Glu Arg Ala 1 5 10 15

Val Ala Gln Thr Phe Gly Cys Ser Asn Thr Lys Ile Asn Asp Gln Ala 20 25 30

Arg Lys Met Phe Tyr Asp Ala His Asn Asp Ala Arg Arg Ser Met Ala 35 40 45

Lys Gly Leu Glu Pro Asn Lys Cys Gly Leu Leu Ser Gly Gly Lys Asn 50 55 60

Val Tyr Glu Leu Asn Trp Asp Cys Glu Met Glu Ala Lys Ala Gln Glu 65 70 75 80

Trp Ala Asp Gly Cys Pro Ser Ser Phe Gln Thr Phe Asp Pro Thr Trp

85 90 95

Gly Gln Asn Tyr Ala Thr Tyr Met Gly Ser Ile Ala Asp Pro Leu Pro 100 105 110

Tyr Ala Ser Met Ala Val Asn Gly Trp Trp Ser Glu Ile Arg Thr Val

115 120 125

Gly	Leu 130	Thr	Asp	Pro	Asp	Asn 135	Lys	Tyr	Thr	Asn	Ser 140	Ala	Met	Phe	Arg
Phe 145	Ala	Asn	Met	Ala	Asn 150	Gly	Lys	Ala	Ser	Ala 155	Phe	Gly	Cys	Ala	Tyr 160
Ala	Leu	Cys	Ala	Gly 165	Lys	Leu	Ser	Ile	Asn 170	Cys	Ile	Tyr	Asn	Lys 175	Ile
Gly	Tyr	Met	Thr 180	Asn	Ala	Ile	Ile	Tyr 185	Glu	Lys	Gly	Asp	Ala 190	Cys	Thr
Ser	Asp	Ala 195	Glu	Cys	Thr	Thr	Tyr 200	Ser	Asp	Ser	Gln	Cys 205	Lys	Asn	Gly
Leu	Cys 210	Tyr	Lys	Ala	Pro	Gln 215	Ala	Pro	Val	Val	Glu 220	Thr	Phe	Thr	Met
Cys 225	Pro	Ser	Val	Thr	Asp 230	Gln	Ser	Asp	Gln	Ala 235	Arg	Gln	Asn	Phe	Leu 240
Asp	Thr	His	Asn	Lys 245	Leu	Arg	Thr	Ser	Leu 250	Ala	Lys	Gly	Leu	Glu 255	Ala
Asp	Gly	Ile	Ala 260	Ala	Gly	Ala	Phe	Ala 265	Pro	Met	Ala	Lys	Gln 270	Met	Pro
Lys	Leu	Val 275	Lys	Tyr	Ser	Cys	Thr 280	Val	Glu	Ala	Asn	Ala 285	Arg	Thr	Trp
Ala	Lys 290	Gly	Cys	Leu	Tyr	Gln 295	His	Ser	Thr	Ser	Ala 300	Gln	Arg	Pro	Gly
Leu 305	Gly	Glu	Asn	Leu	Tyr 310	Met	Ile	Ser	Ile	Asn 315	Asn	Met	Pro	Lys	Ile 320
Gln	Thr	Ala	Glu	Asp 325	Ser	Ser	Lys	Ala	Trp 330	Trp	Ser	Glu	Leu	Lys 335	Asp
Phe	Gly	Val	Gly 340	Ser	Asp	Asn	Ile	Leu 345	Thr	Gln	Ala	Val	Phe 350	Asp	Arg
Gly	Val	Gly 355	His	Tyr	Thr	Gln	Met 360	Ala	Trp	Glu	Gly	Thr 365	Thr	Glu	Ile
Gly	Cys	Phe	Val	Glu	Asn	Cys	Pro	Thr	Phe	Thr	Tyr	Ser	Val	Cys	Gln

370 375 380

Tyr Gly Pro Ala Gly Asn Tyr Met Asn Gln Leu Ile Tyr Thr Lys Gly 385 390 395 400

Ser Pro Cys Thr Ala Asp Ala Asp Cys Pro Gly Thr Gln Thr Cys Ser 405 410 415

Val Ala Glu Ala Leu Cys Val Ile Pro 420 425

<210> 2

<211> 1341

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:VAP-1 cDNA Nucleotide Sequence

<400> 2

atggcggtat tagcagtggt actacttcta gcatgcctgg agagagcggt tgcacagacg 60 ttcggctgct ctaacaccaa gatcaatgac caggctcgta agatgttcta tgatgctcac 120 aatqatqcaa qacqaaqcat qqctaaaqqq cttqaqccaa acaaqtqcqq actcttatct 180 ggtggaaaga atgtttatga attgaattgg gattgcgaga tggaagcaaa agctcaggaa 240 tgggcagacg gatgtcccag ctctttccag acatttgatc caacatgggg gcagaactac 300 gcgacgtaca tgggatcgat tgctgatccg cttccatacg cttccatggc tgttaatggg 360 tggtggtcgg aaattagaac cgtaggactt acggatcctg ataacaagta cactaacagt 420 gcaatgttcc gatttgctaa tatggcaaat ggtaaagctt cagcttttgg atgtgcatac 480 gcgttgtgcg caggaaaact atccatcaat tgcatttaca acaagatagg atacatgacc 540 aatgctatca tttatgaaaa aggagatgcc tgtaccagtg acgctgaatg caccacctac 600 tcagactcac aatgcaaaaa cggtctttgc tataaggcac ctcaagctcc agtcgttgag 660 actttcacaa tgtgcccttc ggtcacggac cagtcggatc aggcgcgtca aaacttcttg 720 qacacccata acaaattgcg tacaagcctt gccaagggac ttgaagctga tggaattgcc 780 gctggagcat ttgcaccaat ggccaagcaa atgccaaaac tggtaaaata cagctgcaca 840 gttgaagcaa acgccagaac atgggcaaaa ggatgccttt accagcattc aacaagcgca 900 cagagaccag gactcggtga aaatctttat atgatcagca ttaacaacat gcctaaaatt 960 caaaccqcqq aqqactcctc aaaqqcttqq tqqtccqaqt tqaaaqactt cqqaqtcggt 1020 tctgacaaca ttctgaccca agcagttttt gatcgtggcg ttggacatta cacacaaatg 1080 gcatgggaag gaactactga aattggatgt tttgtggaga attgtccaac attcacttat 1140 tccgtatgcc aatatggtcc agcgggaaac tacatgaacc aactaatcta taccaagggc 1200 tcaccatgca cagctgacgc cgattgccca ggaacccaga catgcagtgt cgctgaagca 1260 ttatgtqtta tcccttagta aattttctat gcaactcttt gaaagtcata ataaatatgc 1320 1341 aaaaattaaa aaaaaaaaaa a

<211> 473 <212> PRT															
<213	<213> Artificial Sequence														
<220> <223> Description of Artificial Sequence:VAP-2 Amino Acid Sequence															
	0> 3 Asn	Val	Val	Leu 5	Ser	Ala	Val	Thr	Leu 10	Phe	Leu	Ile	Phe	Arg 15	Tyr
Ala	Gln	Thr	Val 20	Asn	Ile	Glu	Gly	Ser 25	Gly	Gly	Asn	Asp	Glu 30	Leu	Leu
Glu	Gln	Asn 35	Val	Trp	Asn	Asp	Val 40	Asp	Asp	Lys	Val	Val 45	Glu	Ala	Leu
Gly	Gly 50	Leu	Asp	Asp	Glu	Leu 55	Leu	Thr	Glu	His	Val 60	Cys	Asn	Lys	Ser
Thr 65	Ile	Thr	Gln	Leu	Gln 70	Gln	Glu	Ile	Ile	Leu 75	Thr	Thr	His	Asn	Glu 80
Leu	Arg	Arg	Ser	Leu 85	Ala	Phe	Gly	Lys	Gln 90	Arg	Asn	Lys	Arg	Gly 95	Leu
Met	Asn	Gly	Ala 100	Arg	Asn	Met	Tyr	Lys 105	Leu	Asp	Trp	Asp	Cys 110	Glu	Leu
Ala	Ser	Leu 115	Ala	Ala	Asn	Trp	Ser 120	Thr	Ser	Cys	Pro	Gln 125	His	Phe	Met
Pro	Gln 130	Ser	Val	Leu	Gly	Ser 135	Asn	Ala	Gln	Leu	Phe 140	Lys	Arg	Phe	Tyr
Phe 145	Tyr	Phe	Asp	Gly	His 150	Asp	Ser	Thr	Val	His 155	Met	Arg	Asn	Ala	Met 160
Lys	Tyr	Trp	Trp	Gln 165	Gln	Gly	Glu	Glu	Lys 170	Gly	Asn	Glu	Asp	Gln 175	Lys
Asn	Arg	Phe	Tyr 180	Ala	Arg	Arg	Asn	Tyr 185	Phe	Gly	Trp	Ala	Asn 190	Met	Ala
Lys	Gly	Lys 195	Thr	Tyr	Arg	Val	Gly 200	Cys	Ser	Tyr	Ile	Met 205	Cys	Gly	Asp

стх	210	Ser	Ala	Leu	Pne	215	Cys	Leu	Tyr	Asn	220	гуѕ	АІА	GIN	Cys
Glu 225	Lys	Glu	Met	Ile	Tyr 230	Glu	Asn	Gly	Lys	Pro 235	Cys	Cys	Glu	Asp	Lys 240
Asp	Cys	Phe	Thr	Tyr 245	Pro	Gly	Ser	Lys	Cys 250	Leu	Val	Pro	Glu	Gly 255	Leu
Cys	Gln	Ala	Pro 260	Ser	Met	Val	Lys	Asp 265	Asp	Gly	Gly	Ser	Phe 270	Gln	Cys
Asp	Asn	Ser 275	Leu	Val	Ser	Asp	Val 280	Thr	Arg	Asn	Phe	Thr 285	Leu	Glu	Gln
His	Asn 290	Phe	Tyr	Arg	Ser	Arg 295	Leu	Ala	Lys	Gly	Phe 300	Glu	Trp	Asn	Gly
Glu 305	Thr	Asn	Thr	Ser	Gln 310	Pro	Lys	Ala	Ser	Gln 315	Met	Ile	Lys	Met	Glu 320
Tyr	Asp	Cys	Met	Leu 325	Glu	Arg	Phe	Ala	Gln 330	Asn	Trp	Ala	Asn	Asn 335	Cys
Val	Phe	Ala	His 340	Ser	Ala	His	Tyr	Glu 345	Arg	Pro	Asn	Gln	Gly 350	Gln	Asn
Leu	Tyr	Met 355	Ser	Ser	Phe	Ser	Asn 360	Pro	Asp	Pro	Arg	Ser 365	Leu	Ile	His
Thr	Ala 370	Val	Glu	Lys	Trp	Trp 375	Gln	Glu	Leu	Glu	Glu 380	Phe	Gly	Thr	Pro
Ile 385	Asp	Asn	Val	Leu	Thr 390	Pro	Glu	Leu	Trp	Asp 395	Leu	Lys	Gly	Lys	Ala 400
Ile	Gly	His	Tyr	Thr 405	Gln	Met	Ala	Trp	Asp 410	Arg	Thi	Tyr	Arg	Leu 415	Gly
Cys	Gly	Ile	Ala 420	Asn	Cys	Pro	Lys	Met 425	Ser	Tyr	Val	Val	Cys 430	His	Tyr
Gly	Pro	Ala 435	Gly	Asn	Arg	Lys	Asn 440	Asn	Lys	Ile	Tyr	Glu 445	Ile	Gly	Asp
Pro	Cys	Glu	Val	Asp	Asp	Asp	Cys	Pro	Ile	Gly	Thr	Asp	Cys	Glu	Lys

Thr Thr Ser Leu Cys Val Ile Ser Lys 465 470 <210> 4 <211> 1422 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: VAP-2 cDNA Nucleotide Sequence <400> 4 atgaacgtgg tecttteege tgteactett tttettattt ttegatatge geagactgtg 60 aatatagaag gcagtggagg aaatgatgag cttcttgagc agaacgtgtg gaacgatgta 120 gacgacaagg ttgtagaagc acttggtggt cttgatgatg aactgctaac cgaacatgtg 180 tgtaacaaat caacgatcac tcagctacag caggagatca tcttgacaac ccacaatgaa 240 ttacgaagat cattggcttt cggaaagcaa agaaacaaga gaggtctcat gaacggtgcg 300 agaaatatgt ataaactgga ttgggattgt gaactggcat cacttgcagc caattggtca 360 acctcctgcc ctcagcactt tatgccgcaa tcggtacttg gctccaacgc tcagcttttt 420 aagcgtttct atttttattt tgatgggcac gactctactg tacatatgcg aaacgcgatg 480 aagtattggt ggcagcaagg tgaagaaaaa ggcaatgagg atcagaaaaa tagattctat 540 gccagacgaa attattttgg atgggcaaac atggcaaaag gaaaaacata tcgagttgga 600 tgctcgtata ttatgtgcgg cgacggtgaa tctgcacttt tcacttgtct ttataacgaa 660 aaagcccaat gcgaaaaaga aatgatttac gaaaatggaa aaccctgctg tgaggataaa 720 gactgtttca catatccagg atcaaaatgt ttagtacctg aaggattatg tcaagcacct 780 tctatggtaa aggatgatgg aggaagtttc caatgtgata actcccttgt gtcagatgtc 840 accegeaatt teaetttgga geaacacaat ttttatagat etegtettge aaaaggtttt 900 gaatggaatg gagaaacaaa cacttcccag ccaaaggcta gtcaaatgat caaaatggag 960 tatgactgca tgttggaacg gtttgcacaa aactgggcaa ataattgcgt ttttgcacac 1020 teggeacatt acgaaagace gaatcagggt cagaatetet acatgagtte ttteteaaac 1080 cctgatccta gaagccttat acatacggcc gtcgagaagt ggtggcagga attggaggag 1140 ttcggtactc caattgataa cgttctgaca cccgaattgt gggatttgaa agggaaagcg 1200 ataggacatt acactcagat ggcctgggat cgtacttacc gtcttggttg tggaatcgca 1260 aactgtccga agatgtcgta cgtggtttgt cactatgggc cagcaggcaa cagaaagaac 1320 aataaaatct atgaaatcgg ggatccttgc gaagtcgatg atgattgccc gattggaaca 1380 gattgtgaaa agacaacttc tttatgtgtg atctcaaaat aa 1422 <210> 5 <211> 218 <212> PRT <213> Artificial Sequence <220>

Alignment of VAP-1, VAP-2, and Selected Other

<223> Description of Artificial Sequence:Clustal W

Nematode VA Proteins.

<400)> 5														
Met 1	Phe	Ser	Pro	Val 5	Ile	Val	Ser	Val	Ile 10	Phe	Thr	Ile	Ala	Phe 15	Cys
Asp	Ala	Ser	Pro 20	Ala	Arg	Asp	Gly	Phe 25	Gly	Cys	Ser	Asn	Ser 30	Gly	Ile
Thr	Asp	Lys 35	Asp	Arg	Gln	Ala	Phe 40	Leu	Asp	Phe	His	Asn 45	Asn	Ala	Arg
Arg	Arg 50	Val	Ala	Lys	Gly	Val 55	Glu	Asp	Ser	Asn	Ser 60	Gly	Lys	Leu	Asn
Pro 65	Ala	Lys	Asn	Met	Tyr 70	Lys	Leu	Ser	Trp	Asp 75	Cys	Ala	Met	Glu	Gln 80
Gln	Leu	Gln	Asp	Ala 85	Ile	Gln	Ser	Cys	Pro 90	Ser	Ala	Phe	Ala	Gly 95	Ile
Gln	Gly	Val	Ala 100	Gln	Asn	Val	Met	Ser 105	Trp	Ser	Ser	Ser	Gly 110	Gly	Phe
Pro	Asp	Pro 115	Ser	Val	Lys	Ile	Glu 120	Gln	Thr	Leu	Ser	Gly 125	Trp	Trp	Ser
Gly	Ala 130	Lys	Lys	Asn	Gly	Val 135	Gly	Pro	Asp	Asn	Lys 140	Tyr	Asn	Gly	Gly
Gly 145	Leu	Phe	Ala	Phe	Ser 150	Asn	Met	Val	Tyr	Ser 155	Glu	Thr	Thr	Lys	Leu 160
Gly	Cys	Ala	Tyr	Lys 165	Val	Cys	Gly	Thr	Lys 170	Leu	Ala	Val	Ser	Cys 175	Ile
Tyr	Asn	Gly	Val 180	Gly	Tyr	Ile	Thr	Asn 185	Gln	Pro	Met	Trp	Glu 190	Thr	Gly
Gln	Ala	Cys 195	Lys	Thr	Gly	Ala	Asp 200	Cys	Ser	Thr	Tyr	Lys 205	Asn	Ser	Gly
Cys	Glu	Asp	Gly	Leu	Cys	Thr	Lys	Gly	Pro						

<210> 6 <211> 205

210

215

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:Clustal W
 Alignment of VAP-1, VAP-2, and selected other
 nematode VA Proteins.

<400> 6

Asp Val Pro Glu Thr Asn Gln Gln Cys Pro Ser Asn Thr Gly Met Thr 1 5 10 15

Asp Ser Val Arg Asp Thr Phe Leu Val His Asn Glu Phe Arg Ser Ser 20 25 30

Val Ala Arg Gly Leu Glu Pro Asp Ala Leu Gly Gly Asn Ala Pro Lys 35 40 45

Ala Ala Lys Met Leu Lys Met Val Tyr Asp Cys Glu Val Glu Ala Ser 50 55 60

Ala Ile Arg His Gly Asn Lys Cys Val Tyr Gln His Ser His Gly Glu 65 70 75 80

Asp Arg Pro Gly Leu Gly Glu Asn Ile Tyr Lys Thr Ser Val Leu Lys
85 90 95

Phe Asp Lys Asn Lys Ala Ala Lys Gln Ala Ser Gln Leu Trp Trp Asn 100 105 110

Glu Leu Lys Glu Phe Gly Val Gly Pro Ser Asn Val Leu Thr Thr Ala 115 120 125

Leu Trp Asn Arg Pro Gly Met Gln Ile Gly His Tyr Thr Gln Met Ala 130 135 140

Trp Asp Thr Thr Tyr Lys Leu Gly Cys Ala Val Val Phe Cys Asn Asp 145 150 155 160

Phe Thr Phe Gly Val Cys Gln Tyr Gly Pro Gly Gly Asn Tyr Met Gly 165 170 175

His Val Ile Tyr Thr Met Gly Gln Pro Cys Ser Gln Cys Ser Pro Gly
180 185 190

Ala Thr Cys Ser Val Thr Glu Gly Leu Cys Ser Ala Pro 195 200 205 <210> 7

<211> 207

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:Clustal W Alignment of VAP-1, VAP-2, and selected other nematode VA proteins.

<400> 7

Met Asn Tyr Leu Leu Leu Val Val Ala Leu Ala Val Gly Cys Ser Ala 1 5 10 15

Asp Phe Gly Ser Ser Gly Gln Asn Gly Ile Ile Asn Ala His Asn Thr $20 \hspace{1cm} 25 \hspace{1cm} 30$

Leu Arg Ser Lys Ile Ala Lys Gly Thr Tyr Val Ala Lys Gly Thr Gln
35 40 45

Lys Ser Pro Gly Thr Asn Leu Leu Lys Met Lys Trp Asp Ser Ala Val 50 55 60

Ala Ala Ser Ala Gln Asn Tyr Ala Asn Gly Cys Pro Thr Gly His Ser 65 70 75 80

Gly Asp Ala Gly Leu Gly Glu Asn Leu Tyr Trp Tyr Trp Thr Ser Gly
85 90 95

Ser Leu Gly Asp Leu Asn Gln Tyr Gly Ser Ala Ala Ser Ala Ser Trp 100 105 110

Glu Lys Glu Phe Gln Asp Tyr Gly Trp Lys Ser Asn Leu Met Thr Ile 115 120 125

Asp Leu Phe Asn Thr Gly Ile Gly His Ala Thr Gln Met Ala Trp Ala 130 135 140

Lys Ser Asn Leu Ile Gly Cys Gly Val Lys Asp Cys Gly Arg Asp Ser 145 150 155 160

Asn Gly Leu Asn Lys Val Thr Val Val Cys Gln Tyr Lys Pro Gln Gly
165 170 175

Asn Phe Ile Asn Gln Tyr Ile Tyr Val Ser Gly Ala Thr Cys Ser Gly
180 185 190

Cys Pro Ser Gly Thr Ser Cys Glu Thr Ser Thr Gly Leu Cys Val 195 200 205 <210> 8 <211> 231 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence:Clustal W Alignment of VAP-1, VAP-2, and selected other nematode VA proteins. <400> 8 Met Ser Asn Lys Leu Ile Ile Ser Ile Leu Ile Leu Thr Ile Ile Tyr 1 5 10 15 Thr Val Val Asn Ser Leu Thr Val Pro Glu Gln Asn Ala Val Val Asp 20 25 30 Cys Ile Asn Lys Tyr Arg Ser Gln Leu Ala Asn Gly Lys Thr Lys Asn 35 40 45 Lys Asn Gly Gly Asn Phe Pro Ser Gly Lys Asp Ile Leu Glu Val Ser 50 55 60 Tyr Ser Lys Asp Leu Glu Lys Ser Ala Gln Arg Trp Ala Asn Lys Cys 65 70 75 Ile Phe Asp His Asn Gly Thr Asp Leu Tyr Ser Gly Gly Lys Phe Tyr 90 85 Gly Glu Asn Leu Tyr Leu Asp Gly Asp Phe Glu His Lys Asn Ile Thr 100 105 110

115 120 125
Asp Gly Val Pro Pro Ser Trp Ile Asn Asn Phe Leu Pro Thr Asp Asn

135

130

Gln Leu Met Ile Asp Ala Cys Asn Ala Trp Trp Gly Glu Ser Thr Thr

Lys Glu Asn Asp Glu Lys Phe Glu Ala Val Gly His Trp Thr Gln Met 145 150 155 160

140

Ala Trp Ala Lys Thr Tyr Gln Ile Gly Cys Ala Leu Lys Val Cys His 165 170 175 Lys Pro Asp Cys Asn Gly Asn Leu Ile Asp Cys Arg Tyr Tyr Pro Gly
180 185 190

Gly Asn Gly Met Gly Ser Pro Ile Tyr Gln Gln Gly Lys Pro Ala Ser 195 200 205

Gly Cys Gly Lys Ala Gly Pro Ser Thr Lys Tyr Ser Gly Leu Cys Lys 210 215 220

Pro Asp Pro His Gln Asn Asn 225 230