CS4102 Algorithms

Spring 2020

Warm up:

Show that the sum of degrees of all nodes in any undirected graph is even

Show that for any graph G = (V, E), $\sum_{v \in V} \deg(v)$ is even

$$\sum_{v \in V} \deg(v)$$
 is always even

- $\deg(v)$ counts the number of edges incident v
- Consider any edge $e \in E$
- This edge is incident 2 vertices (on each end)
- This means $2 \cdot |E| = \sum_{v \in V} \deg(v)$
- Therefore $\sum_{v \in V} \deg(v)$ is even

ARPANET

Problem

We need to connect together all these places into a network We have feasible wires to run, plus the cost of each wire Find the cheapest set of wires to run to connect all places

Graphs

Definition: G = (V, E) w(e) = weight of edge e

Adjacency List Representation

Tradeoffs

Space: V + E

Time to list neighbors: Degree(A)

Time to check edge (A, B): Degree(A)

Adjacency Matrix Representation

	А	В	С	D	Е	F	G	Н	
Α		1	1						
В	1		1		1				
С	1	1		1		1			
D			1		1	1			
Е		1		1			1	1	
F			1	1			1		
G					1	1		1	1
Н					1		1		1
I							1	1	

Tradeoffs

Space: V^2

Time to list neighbors: V

Time to check edge (A, B):O(1)

Definition: Path

A sequence of nodes $(v_1, v_2, ..., v_k)$

Simple Path:

A path in which each node appears at most once

Cycle:

A path of > 2 nodes in which $v_1 = v_k$

Definition: Connected Graph

A Graph G = (V, E) s.t. for any pair of nodes $v_1, v_2 \in V$ there is a path from v_1 to v_2

Definition: Tree

A connected graph with no cycles

Definition: Spanning Tree

A Tree $T=(V_T,E_T)$ which connects ("spans") all the nodes in a graph G=(V,E)

How many edges does T have? V-1

Definition: Minimum Spanning Tree

A Tree $T=(V_T,E_T)$ which connects ("spans") all the nodes in a graph G=(V,E), that has minimal cost

$$Cost(T) = \sum_{e \in E_T} w(e)$$

How many edges does T have? V-1

Greedy Algorithms

- Require Optimal Substructure
 - Solution to larger problem contains the solution to a smaller one
 - Only one subproblem to consider!
- Idea:
 - 1. Identify a greedy choice property
 - How to make a choice guaranteed to be included in some optimal solution
 - 2. Repeatedly apply the choice property until no subproblems remain

Definition: Cut

A Cut of graph G = (V, E) is a partition of the nodes into two sets, S and V - S

Edge $(v_1, v_2) \in E$ crosses a cut if $v_1 \in S$ and $v_2 \in V - S$ (or opposite), e.g. (A, C)

A set of edges R Respects a cut if no edges cross the cut e.g. $R = \{(A, B), (E, G), (F, G)\}$

Exchange argument

- Shows correctness of a greedy algorithm
- Idea:
 - Show exchanging an item from an arbitrary optimal solution with your greedy choice makes the new solution no worse
 - How to show my sandwich is at least as good as yours:
 - Show: "I can remove any item from your sandwich, and it would be no worse by replacing it with the same item from my sandwich"

Cut Theorem

If a set of edges A is a subset of a minimum spanning tree T, let (S, V - S) be any cut which A respects. Let e be the least-weight edge which crosses (S, V - S). $A \cup \{e\}$ is also a subset of a minimum spanning tree.

Proof of Cut Theorem

Claim: If A is a subset of a MST T, and e is the least-weight edge which crosses cut (S, V - S) (which A respects) then $A \cup \{e\}$ is also a subset of a MST.

Proof of Cut Theorem

Claim: If A is a subset of a MST T, and e is the least-weight edge which crosses cut (S, V - S) (which A respects) then $A \cup \{e\}$ is also a subset of a MST.

Consider some MST *T*, Case 2:

Consider if $e = (v_1, v_2) \notin T$

Since T is a MST, there is some path from v_1 to v_2 .

Let e' be the first edge on this path which crosses the cut

Build tree T' by exchanging e' for e

Proof of Cut Theorem

Claim: If A is a subset of a MST T, and e is the least-weight edge which crosses cut (S, V - S) (which A respects) then $A \cup \{e\}$ is also a subset of a MST.

Start with an empty tree ARepeat V-1 times:

Add the min-weight edge that doesn't cause a cycle

Keep edges in a Disjoint-set data structure (very fancy) $O(E \log V)$

General MST Algorithm

Start with an empty tree A

Repeat V-1 times:

Pick a cut (S, V - S) which A respects

Add the min-weight edge which crosses (S, V - S)

Start with an empty tree ARepeat V-1 times:

> Pick a cut (S, V - S) which A respects Add the min-weight edge which crosses (S, V - S)

- S is all endpoint of edges in A
- e is the min-weight edge that grows the tree

Start with an empty tree A

Pick a start node

Repeat V-1 times:

Start with an empty tree A

Pick a start node

Repeat V-1 times:

Start with an empty tree A

Pick a start node

Repeat V-1 times:

Start with an empty tree A

Pick a start node

Repeat V-1 times:

Start with an empty tree *A*Pick a start node

Keep edges in a Heap $O(E \log V)$

Repeat V-1 times:

Summary of MST results

• Fredman-Tarjan '84: $\Theta(E + V \log V)$

• Gabow et al '86: $\Theta(E \log \log^* V)$

• Chazelle '00: $\Theta(E\alpha(V))$

Pettie-Ramachandran '02:Θ(?)(optimal)

• Karger-Klein-Tarjan '95: $\Theta(E)$ (randomized)

[read and summarize any/all for EC]