Poliédricos

José Luis Seixas Junior

Ciência da Computação Universidade Estadual do Paraná

Computação Gráfica 2017

Índice

- Introdução
- 2 Regulares
- Não Regulares
- 4 Atividade

Introdução

Definição

- Figuras geométricas constituídas por três elementos:
 - Vértices;
 - Arestas;
 - Faces;

Introdução

Faces

Polígono de limitação dos poliédros.

Arestas

Encontro de dois polígonos.

Vértices

Encontro de duas ou mais arestas.

Introdução

Figuras parametrizadas

- Figuras parametrizadas;
- Loop de pontos;
 - Último ponto aponta para o primeiro;
- Construção por vértices;
- Desenho por linhas;

Características

- Formulação angular constante;
- Trata-se por linhas;
 - Não necessariamente todas à todas (Preenchimento);
- Devem ser fechados;

Angulação constante

Qual ângulo?

Princípio da formação angular

- Angulação constante;
- A soma dos ângulos internos do triângulo;
- Para qualquer triângulo é 180°;

Quadrado

 Podemos decompor um quadrado em dois triângulos:

Pentágono

 Podemos decompor um quadrado em dois triângulos:

Hexágono • Quatro triângulos:

Consequentemente

• Número de triângulos = Númeor de lados - 2;

Número de Lados (N)	4	5	6	7	N
Número de Triângulos (T)	2	3	4	5	N - 2

Consequentemente

- A soma dos ângulos internos é sempre 180;
- Assim, cada ângulo tem 180 divididos por 3, sendo 3, o número de lados do triângulo;

$$\alpha = \frac{180 * T}{N}$$

Consequentemente

- Sabendo que a soma dos ângulos internos é 180;
- E sabendo que é possível decompor qualquer a figura em triângulos;
- Número de triângulos é lados da figura subtraído 2;

$$\alpha = \frac{180 * (N-2)}{N}$$

Definições

- Sem formulação angular constante;
- Trata-se com linhas ou pontos;
- Não produzem figuras geométricas;
 - Necessariamente;
- Não necessariamente fechadas;
- Curvas;

Ponto à Ponto

- Todos os pontos da imagem com a respectiva cor;
- Para preto e branco:
 - Todos os pontos não brancos da imagem;

Exemplo

Exemplo

Por Linhas

- Pontos de início e fim de cada traço na imagem;
- Circular:
 - Número de retas;
 - Lista de vértices;

Exemplo

100 100 150 100 150 100 150 150 150 150 100 150 100 150 100 100

Exemplo

100 150

Por Polígonos

- Indicação do número de núcleos;
- Indicação do número de linhas;
- Coordenadas pontuais de limitantes lineares;

Exemplo

Traço e Loops

Traço e Loops

Atividade 04

Atividade 04/1

- Base:
 - Exercício 03/1;
- Tecla 's':
 - Salvar em arquivo o desenho gerado;
- Tecla 'o':
 - Abrir o arquivo salvo;

Data

31 de agosto de 2017

Atividade 04

Atividade 04/2

- Desenhar o conteúdo do arquivo "Dino.dat";
- Percurso por polígonos;

Data

31 de agosto de 2017

Referências I

Computer Graphics Using OpenGL.

Prentice Hall, 2013.

Shreiner, D.; Woo M.; Neider, J.; Davis, T.

OpenGL Programming Guide.

Addison Wesley, 4° edição, 2013.

