Claims

We claim:

l	1. A purified polynucleotide molecule, comprising a nucleotide sequence that encodes
2	an oxalyl-CoA decarboxylase polypeptide, or a fragment of said oxalyl-CoA decarboxylase
3	that retains functional enzymatic activity.
1	2. The polynucleotide molecule according to claim 1, wherein said nucleotide
2	sequence is derived from Oxalobacter formigenes.
ł	3. The polynucleotide molecule according to claim 1, wherein said nucleotide
2	sequence encodes a polypeptide comprising the amino acid sequence shown in SEQ ID NO.
3	4, or a fragment of said oxalyl-CoA decarboxylase that retains functional enzymatic activity.

- 4. The polynucleotide molecule according to claim 1, comprising the nucleotide sequence shown in SEQ ID NO. 3.
- 5. The polynucleotide molecule according to claim 1, wherein said polynucleotide molecule hybridizes under standard high-stringency conditions with a polynucleotide molecule comprising the nucleotide sequence shown in SEQ ID NO. 3, or the complementary sequence thereof.
- 6. The polynucleotide molecule according to claim 1, wherein said polynucleotide consists of a nucleotide sequence that encodes oxalyl-CoA decarboxylase comprising the amino acid sequence shown in SEQ ID NO. 4, or a fragment of said oxalyl-CoA decarboxylase that retains functional enzymatic activity.

7. The polynucleotide molecule according to claim 6, wherein said polynucleotide hybridizes under high stringency conditions with a nucleotide sequence comprising nucleotides 181 through 1884 of the nucleotide sequence shown in SEQ ID NO. 3 or the complementary sequence thereof.

- 8. The polynucleotide according to claim 6, wherein said nucleotide sequence consists of nucleotides 181 through 1884 of the nucleotide sequence shown in SEQ ID NO. 3 or the complementary sequence thereof.
- 9. A polynucleotide probe, comprising a nucleotide sequence that is substantially complementary with a polynucleotide sequence present in an *Oxalobacter formigenes* genome, wherein the polynucleotide sequence present in the *Oxalobacter formigenes* genome comprises a gene selected from the group consisting of the formyl-CoA transferase gene and the oxalyl-CoA decarboxylase gene.
- 10. A polynucleotide PCR primer, comprising a nucleotide sequence that is substantially complementary with a polynucleotide sequence present in an *Oxalobacter formigenes* genome, wherein said polynucleotide sequence present in said *Oxalobacter formigenes* genome comprises a gene selected from the group consisting of the formyl-CoA transferase gene and the oxalyl-CoA decarboxylase gene, and wherein said PCR primer is capable of priming PCR amplification of said polynucleotide sequence present in said *Oxalobacter formigenes* genome.
- 1 11. A method for detecting Oxalobacter formigenes in a sample, comprising the steps of:
 - (a) contacting said sample with a polynucleotide probe according to claim 9 under conditions sufficient for selective hybridization of said polynucleotide probe with a DNA fragment specific for *Oxalobacter formigenes*; and

6	(b) detecting said probe hybridized to said DNA fragment.
1	12. A polynucleotide vector comprising a polynucleotide molecule according to claim
2	1.
1	13. The polynucleotide vector according to claim 12, wherein said polynucleotide
2	molecule consists of a nucleotide sequence that encodes an oxalyl-CoA decarboxylase
3	polypeptide comprising the amino acid sequence shown in SEQ ID NO. 4, or a fragment of
4	said oxalyl-CoA decarboxylase that retains functional enzymatic activity.
1	14. The polynucleotide vector according to claim 12, wherein said polynucleotide
2	vector hybridizes under high stringency conditions with a nucleotide sequence consisting of
3	nucleotides 181 through 1884 of the nucleotide sequence shown in SEQ ID NO. 3 or the
4	complementary sequence thereof.
1	15. The polynucleotide vector according to claim 12, wherein said nucleotide
2	sequence of said polynucleotide molecule consists of nucleotides 181 through 1884 of the
3	nucleotide sequence shown in SEQ ID NO. 3 or the complementary sequence thereof.
1	16. A recombinant host cell which comprises the polynucleotide vector of claim 12,
2	and wherein said cell expresses said oxalyl-CoA decarboxylase or a fragment of said oxalyl-
3	CoA decarboxylase that retains enzymatic activity.
1	17. The cell according to claim 16, wherein said polynucleotide vector hybridizes
2	under high stringency conditions with a nucleotide sequence consisting of nucleotides 181
3	through 1884 of the nucleotide sequence shown in SEQ ID NO. 3 or the complementary
4	sequence thereof.

1	18. The cell according to claim 16, wherein said nucleotide sequence of said
2	polynucleotide molecule consists of nucleotides 181 through 1884 of the nucleotide sequence
3	shown in SEQ ID NO. 3 or the complementary sequence thereof.