Y-DATA 3rd Research Seminar

2025

An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby (2021)

Vision Transformers / ViT (2021) Results

- **1. Finetune Accuracy** % After Pretraining on Different Datasets Comparing to 'State-of-the-Art'.
 - I. Top1 Finetune Accuracy % After Pretraining on Different Datasets
 - II. VTAB Breakdown
- 2. ImageNet Top1 Finetune Accuracy % After Pretraining on Various n_examples on JFT and different dataset sizes.
- 3. Accuracy % Relative to Compute for Various Models
- 4. Finetune Accuracy % for ResNet using Adam vs SGD Optimiser
- 5. Attention Map
- 6. Self Supervision
- 7. Position Embedding, its Dimensions & Where to Add
- 8. Position Embedding Trained With Different Hyperparameters
- 9. Attention Distance at Various Network Depths
- 10. Batch Size for Models at Various Input Sizes

1

Finetune Accuracy % After Pretraining on Different Datasets

Model	Pretrained On	Remarks
BiT-L ResNet152x4	ImageNet21k	Baseline for all image datasets BiT = "Big Transfer" architecture
Noisy Student EfficientNet-L2	ImageNet21k	Baseline for ImageNet
ViT-L/16 (Large model)	ImageNet21k	
ViT-L/16	JFT-300M (Google proprietary)	Test performance
ViT-H/14 (Huge model, bigger than Large model)	JFT-300M (Google proprietary)	ViT = Vision Transformer

Notes

- No information on what the models were finetuned on
- Assuming finetuning was performed on ImageNet21k dataset

	Ours-JFT (ViT-L/16)		BiT-L (ResNet152x4)	Noisy Student (EfficientNet-L2)
ImageNet	87.76 ± 0.03		87.54 ± 0.02	88.4/88.5*
ImageNet ReaL	90.54 ± 0.03	≈	90.54	90.55
CIFAR-10	99.42 ± 0.03		99.37 ± 0.06	_
CIFAR-100	93.90 ± 0.05		93.51 ± 0.08	_
Oxford-IIIT Pets	97.32 ± 0.11		96.62 ± 0.23	_
Oxford Flowers-102	99.74 ± 0.00		99.63 ± 0.03	_
VTAB (19 tasks)	76.28 ± 0.46		76.29 ± 1.70	_

	Ours-JFT (ViT-H/14)		BiT-L (ResNet152x4)	Noisy Student (EfficientNet-L2)
ImageNet	88.55 ± 0.04		87.54 ± 0.02	88.4/88.5*
ImageNet ReaL	90.72 ± 0.05	>	90.54	90.55
CIFAR-10	99.50 ± 0.06		99.37 ± 0.06	_
CIFAR-100	94.55 ± 0.04		93.51 ± 0.08	_
Oxford-IIIT Pets	97.56 ± 0.03		96.62 ± 0.23	_
Oxford Flowers-102	99.68 ± 0.02		99.63 ± 0.03	_
VTAB (19 tasks)	77.63 ± 0.23		76.29 ± 1.70	_

Comparison – Higher Accuracy using Less Compute

	Ours-JFT (ViT-H/14)			BiT-L (ResNet152x4)	Noisy Student (EfficientNet-L2
ImageNet	88.55 ± 0.04		;	87.54 ± 0.02	88.4/88.5*
ImageNet ReaL	90.72 ± 0.05		;	90.54	90.55
CIFAR-10	99.50 ± 0.06	>	;	99.37 ± 0.06	_
CIFAR-100	94.55 ± 0.04		;	93.51 ± 0.08	_
Oxford-IIIT Pets	97.56 ± 0.03		;	96.62 ± 0.23	_
Oxford Flowers-102	99.68 ± 0.02		;	99.63 ± 0.03	_
VTAB (19 tasks)	77.63 ± 0.23			76.29 ± 1.70	
TPUv3-core-days	2.5k	<		9.9k	12.3k

1. VTAB break-down

Model	Pretrained On	Remarks
ViT-B/16		Base model
ViT-B/32		Base model pretrained on lower resolution input images
ViT-L/16	ImageNet ImageNet21k	Large model
ViT-L/32	ImageNet21k JFT-300M (Google proprietary)	Large model pretrained on lower resolution input images
ViT-H/14		Huge model, bigger than Large model

2. ImageNet Top1 Finetune Accuracy % After Pretraining on Various n_examples on JFT

2. ImageNet Top1 Finetune Accuracy % After Pretraining on Various n_examples on JFT

2. ImageNet Top1 Finetune Accuracy % After Pretraining on Various n_examples on JFT

Model	Pretrained On	Remarks
ResNet (BiT)		
Vision Transformer (ViT)	Not Applicable	
Hybrid	TWO EAPPHEADIC	Hybrid model with ResNet CNN output feature map to ViT

Comparison 3

Similar increasing trend and pattern for Average-5 & ImageNet dataset Increasing trend might continue even beyond 1e4

Notes

- Average-5 might be referring to 5 non-ImageNet datasets: CIFAR-10, CIFAR-100, Oxford-IIIT Pets, Oxford Flowers-102, VTAB (19 tasks)

4

Finetune Accuracy % for ResNet using Adam vs SGD Optimiser

Model	Pretrained On	Finetuned on
ResNet50		ImageNet
ResNet152x2		CIFAR10
Nesivet132X2	Unknown Dataset	CIFAR100
		Oxford-IIIT Pets
		Oxford Flowers-102

ResNet50			
Dataset	Adam	SGD	
ImageNet	77.54	78.24	
CIFAR10	97.67	97.46	
CIFAR100	86.07	85.17	
Oxford-IIIT Pets	91.11	91.00	
Oxford Flowers-102	94.26	92.06	
Average	89.33	88.79	

Table 7: Fine-tuning ResNet models pre-trained with Adam and SGD.

	ResNet152x2		
Dataset	Adam	SGD	
ImageNet	84.97	84.3	
CIFAR10	99.06	99.0	
CIFAR100	92.05	91.0	
Oxford-IIIT Pets	95.37	94.7	
Oxford Flowers-102	98.62	99.3	
Average	94.01	93.7	

Table 7: Fine-tuning ResNet models pre-trained with Adam and SGD.

Dataset	ResNet5 Adam	0	ResNet152x2 Adam
ImageNet	77.54		84.97
CIFAR10	97.67		99.06
CIFAR100	86.07	<	92.05
Oxford-IIIT Pets	91.11		95.37
Oxford Flowers-102	94.26		98.62
Average	89.33		94.01

Table 7: Fine-tuning ResNet models pre-trained with Adam and SGD.

Attention Map

5. Attention Map

5. Attention Map

5. Attention Map

Self - Supervision

6. Self - Supervision

Model	Accuracy %	
	79.90	Self-Supervised Pre-training
ViT-B/16	77.9	Training from Scratch
	83.9	Supervised Pre-training

Position Embedding, its Dimensions & Where to Add

7. Position Embedding, its Dimensions & Where to Add

Pos. Emb.	Default/Stem	Every Layer	Every Layer-Shared		
No Pos. Emb. 1-D Pos. Emb.	0.61382 0.64206	N/A 0.63964	N/A 0.64292		
Position embedding increases accuracy					

Table 8: Results of the ablation study on positional embeddings with ViT-B/16 model evaluated on ImageNet 5-shot linear.

7. Position Embedding, its Dimensions & Where to Add

Table 8: Results of the ablation study on positional embeddings with ViT-B/16 model evaluated on ImageNet 5-shot linear.

Position Embedding Trained With Different Hyperparameters

8. Position Embedding Trained With Different Hyperparameters

8. Position Embedding Trained With Different Hyperparameters

8. Position Embedding Trained With Different Hyperparameters

Attention Distance at Various Network Depths

9. Attention Distance at Various Network Depths

9. Attention Distance at Various Network Depths

Comparison 2

Deeper layers – Attention heads focus on global attention

9. Attention Distance at Various Network Depths

Comparison 3

Similar phenomenon

10

Batch Size for Models at Various Input Sizes

Model	Pretrained On	Remarks
ResNet R50x1	Unknown	
ResNet R50x2		
ResNet R152x4		
ViT-B/16		Base model
ViT-B/32		Base model with lower resolution inputs
ViT-H/14		Huge model, bigger than Large model

Comparison 1

Between ResNets

Larger Model, Lower Batch Size

Other Results: Feel Free to Check Out From the Paper

TRANSFORMER SHAPE

HEAD TYPE AND CLASS TOKEN

AXIAL ATTENTION

OBJECTNET RESULTS