

Zadanie: Nagroda

"Na krawędzi!" to nowy serial telewizyjny, którego docelową publicznością są miłośnicy teorii grafów. W każdym odcinku, gospodarz daje do rozwiązania uczestnikom nowe zadanie. Główną nagrodą za jego poprawne rozwiązanie są wakacje all inclusive na chorwackim wybrzeżu, w tym oczywiście spacer (eulerowski) z przewodnikiem po sławnych murach obronnych Dubrownika.

Tomisławowi udało się zakwalifikować do udziału jako uczestnik w następnym odcinku i oczywiście natychmiast rozpoczął przygotowania. Spędził niezliczone noce w bibliotece szukając informacji i czytając o najbardziej egzotycznych twierdzeniach. Pewnej nocy, zapadł w drzemkę i zaczął śnić o występie, do którego się przygotowywał. Po obudzeniu się wciąż jasno pamiętał przedstawione zadanie i to, że nie był go w stanie rozwiązać. Zadanie to brzmiało następująco.

Gospodarz narysował dwa ukorzenione $drzewa^1$, oba złożone z N wierzchołków poetykietowanych liczbami całkowitymi od 1 do N. Same drzewa są poetykietowane liczbami całkowitymi 1 oraz 2. Następnie gospodarz oznajmił, że oba drzewa są ważone, z dodatnimi wagi, ale wagi poszczególnych krawędzi są celowo utrzymywane w tajemnicy. Następnie Tomisław mógł wybrać dowolny podzbiór etykiet wierzchołków o mocy dokładnie K.

Gdy Tomisław wybrał już taki podzbiór, mógł zadać co najwyżej Q pytań postaci (a,b), gdzie a oraz b są etykietami wierzchołków. Gospodarz odpowiedział na każde takie pytanie podając uporządkowaną czwórkę $(d_1(l_1,a),d_1(l_1,b),d_2(l_2,a),d_2(l_2,b))$, gdzie $d_t(x,y)$ oznacza odległość między wierzchołkami o etykietach x oraz y w drzewie t, a l_t oznacza etykietę najniższego wspólnego przodka wierzchołków o etykietach a oraz b w drzewie t.

Aby wygrać główną nagrodę, Tomisław musiał odpowiedzieć na serię podobnych pytań zadanych przez gospodarza. Dokładniej, musiał odpowiedzieć na dokładnie T pytań postaci (p,q), gdzie p oraz q są etykietami wierzchołków **ze zbioru wybranego wcześniej przez Tomisława**. Dla każdego pytania, Tomisław musiał podać odległości między wierzchołkami o etykietach p oraz q w obu drzewach, to znaczy musiał podać uporządkowaną parę $(d_1(p,q),d_2(p,q))$.

Twoim zadaniem jest pomóc Tomisławowi w jego przygotowaniach pisząc program rozwiązujący zadanie z jego snu.

Interakcja

To zadanie jest interaktywne. Twój program musi komunikować się z programem przygotowanym przez organizatorów, który pełni rolę gospodarza. Rzecz jasna Twój program powinien pełnić rolę Tomisława i zagwarantować, że wygra on główną nagrodę.

Twój program powinien najpierw wczytać parametry N, K, Q oraz T z treści zadania. Są one podane jako cztery liczby całkowite oddzielone spacją w pierwszej linii standardowego wejścia.

Twój program powinien następnie wczytać opis obu drzew z treści zadania. Te opisy są podane w dwóch wierszach, pierwszy z nich opisuje pierwsze drzewo, a drugi to drugie.

Każde drzewo jest podane jako ciąg N liczb całkowitych oddzielonych spacjami p_1, p_2, \ldots, p_N , gdzie $p_i \in \{-1, 1, 2, \ldots, N\}$ oznacza rodzica wierzchołka o etykiecie i w drzewie lub jest równe -1 gdy drzewo jest ukorzenione w wierzchołku o etykiecie i.

Twój program powinien następnie wypisać K różnych liczb całkowitych oddzielonych spacjami x_1, x_2, \ldots, x_k $(1 \le x_i \le N)$, które oznaczają podzbiór etykiet wierzchołków, który powinien wybrać Tomisław, a następnie wykonać operacje flush na wyjściu standardowym.

¹proste, spójne, acykliczne grafy

 $^{^2 \}mathrm{sum}$ ę wag krawędzi na unikalnej ścieżce między dwoma wierzchołkami

 $^{^3}$ najbardziej oddalony od korzenia wierzchołek, który ma zarówno ajak i b wśród swoich (niekoniecznie bezpośrednich) potomków

Twój program może następnie zadać do Q pytań wypisując '? a b' $(1 \le a, b \le N)$ na standardowe wyjście. Gdy Twój program zakończy już zadawanie pytań, powinien wypisać pojedynczy znak '!' w jednym wierszu, a następnie wykonać operację flush na wyjściu standardowym.

Twój program następnie uzyskuje odpowiedzi na zadanie pytania. Odpowiedź na każde zadane pytanie to cztery liczby całkowite oddzielone spacjami $d_1(l_1, a)$, $d_1(l_1, b)$, $d_2(l_2, a)$ oraz $d_2(l_2, b)$ zgodnie z opisem w treści zadania.

Twój program powinien następnie wczytać wszystkie T pytań gospodarza ze standardowego wejścia. Każde pytanie jest podane w pojedynczym wierszu jako dwie liczby całkowite oddzielone spacją p oraz q (gdzie $p, q \in \{x_1, x_2, \ldots, x_K\}$) zgodnie z opisem w treści zadania.

Gdy Twój program wczyta już wszystkie T pytań, powinien odpowiedzieć na każde z nich wypisując dwie liczby całkowite oddzielone spacją $d_1(p,q)$ oraz $d_2(p,q)$ w pojedynczym wierszu. Po wypisaniu wszystkich odpowiedzi Twój program powinien wykonać operację flush na wyjściu standardowym.

Uwaga: Możesz pobrać z systemu sprawdzającego przykładowy kod źródłowy, który w poprawny sposób komunikuje się z programem przygotowanym przez organizatorów (włącznie z operacją *flush*) i rozwiązuje pierwszy test przykładowy.

Punktacja

Możesz założyć, że ukryte wagi krawędzi są dodatnimi liczbami całkowitymi nie przekraczającymi 2 000. Dodatkowo, we wszystkich podzadaniach zachodzi $2 \le K \le 100\,000$ oraz $1 \le T \le \min(K^2, 100\,000)$.

Podzadanie	Punkty	Ograniczenia
1	10	N=500000,Q=K-1,drzewa są identyczne (włącznie z ukrytymi wagami krawędzi)
2	25	$N = 500000,\ Q = 2K - 2$
3	19	N = 500000, K = 200, Q = K - 1
4	22	$N = 1000000,\ K = 1000,\ Q = K - 1$
5	24	N = 1000000, Q = K - 1

Testy przykładowe

Wyjaśnienie: W tym przykładzie, program wybrał podzbiór $\{1,5,7\}$. Następnie, zadał pytania (1,5) oraz

(1,7). Dla pierwszego pytania, najniżsi wspólni przodkowie 1 oraz 5 to $l_1=1$ oraz $l_2=7$, a odpowiedź to $(d_1(1,1)=0,d_1(1,5)=2,d_2(7,1)=5,d_2(7,5)=3)$. Dla drugiego pytania, najniżsi wspólni przodkowie 1 oraz 7 to $l_1=1$ oraz $l_2=7$, a odpowiedź to $(d_1(1,1)=0,d_1(1,7)=3,d_2(7,1)=5,d_2(7,7)=0)$. Następnie, program otrzymał pytania (1,7), (7,5) oraz (5,1). Odpowiedzi na te pytania to $(d_1(1,7)=3,d_2(1,7)=5), (d_1(7,5)=5,d_2(7,5)=3)$ oraz $(d_1(5,1)=2,d_2(5,1)=8)$.