Benchmarking
the Novel CMA-ES Restart Strategy
Using the Search History
on the BBOB Noiseless Testbed

Takahiro Yamaguchi Youhei Akimoto

Shinshu University, Japan

Introduction: CMA-ES with Restart Strategy

Covariance Matrix Adaptation Evolution Strategy (CMA-ES)

- 1. Generate candidate solutions $(x_i^{(t)})_{i=1,2,...,\lambda}$ from $\mathcal{N}(m^{(t)},(\sigma^{(t)})^2\mathbf{C}^{(t)})$
- 2. Evaluate $f(x_i^{(t)})$ and sort them, $f(x_{1:\lambda}) < \cdots < f(x_{\lambda:\lambda})$.
- 3. Update the distribution parameters $\theta^{(t)} = (m^{(t)}, (\sigma^{(t)})^2 \mathbf{C}^{(t)})$ using the ranking of candidate solutions.

Restart strategies: almost necessities for multimodal black-box functions.

- increasing the population size: helpful for multimodal functions with well global structure
- decreasing the initial step-size: helpful for multimodal functions with weak global structure

Introduction: CMA-ES with Restart Strategy

Existing (successful) restart strategies:

IPOP: Doubles the population size every restart
effective on well-structured multimodal functions

BIPOP: IPOP regime + LS regime (start with a smaller step-size)
effective on well-structured multimodal functions (IPOP regime)
effective on weak-structured multimodal functions (LS regime)

Our Proposal: Utilizing the Search History

- to early stop overlapping restarts (new termination criterion)
- · to shrink the initial step-size to prevent overlapping restarts

Search History

record the distribution parameters

History of Normalized Parameters

History of Normalized Distribution Parameters (m, ∑)

m: the mean vector

 Σ : the normalized covariance matrix σ^2C / α (α : normalization factor)

When to Record the Parameters?

- predefined target of $\det(\Sigma)^{1/2N}$: $T_{\sigma} = \det(\Sigma^{(0)})^{1/2N} \times [1, 10^{-1}, ..., 1]$
- · every time det(Σ)^{1/2N} crosses T_{σ}[i] from above

History of Normalized Parameters

After J restarts

#Restart	Τσ[0]	$T_{\sigma}[1]$		$T_{\sigma}[k]$	$T_{\sigma}[k+1]$	 $T_{\sigma}[n_{\sigma}-1]$
1	(m, Σ)	(m, ∑)		(m, ∑)	(m, Σ)	(m, ∑)
2	(m, Σ)	(m, Σ)		(m, Σ)	_	-
:						
J	(m, Σ)	(m, Σ)		(m, Σ)	(m, Σ)	(m, ∑)
• at most J entries for each target $T_{\sigma}[k]$						

some entries are missing due to early termination

Termination Criterion Using Search History

detect and stop overlapping restarts

Termination Criterion: Basic Idea

After J restarts

#Restart	$T_{\sigma}[O]$	$T_{\sigma}[1]$	T <i>o</i>	[k]	$T_{\sigma}[k+1]$	 $T_{\sigma}[n_{\sigma}-1]$
1	(m, Σ)	(m, Σ)	(m,	Σ)	(m, Σ)	(m, Σ)
2	(m, Σ)	(m, Σ)	(m,	Σ)	-	-
:						
J	(m, Σ)	(m, Σ)	(m,	Σ)	(m, Σ)	(m, Σ)
J+1st	‡	‡				
Restart	(m, Σ)	(m, Σ)	terminate!			

#Restart	Τσ[0]	$T_{\sigma}[1]$	 $T_{\sigma}[k]$	$T_{\sigma}[k+1]$	 $T_{\sigma}[n_{\sigma}-1]$
1	close	far			
2	far	close			
:					
J	far	close			

- check if the current distribution is sufficiently close to the history
- terminate if they are regarded as close to the history $n_{
 m KL}^{
 m check}$ times in a row

Termination Criterion: Similarity Check by KL-divergence

KL-divergence

$$D_{\mathrm{KL}}(\mathcal{N}_0 \parallel \mathcal{N}_1) = \frac{1}{2} \{ (m_1 - m_0)^{\mathrm{T}} \Sigma_1^{-1} (m_1 - m_0) + \mathrm{Tr}(\Sigma_0^{-1} \Sigma_1) - N + \ln \det(\Sigma_0^{-1} \Sigma_1) \}$$

Threshold for KL-divergence

· We want to detect if two distributions are optimizing the same Sphere

KL-divergence on Sphere

Optimal Step-Size Case

$$D_{\text{KL}}(\mathcal{N}_0 \parallel \mathcal{N}_1) = \frac{1}{2} (m_1 - m_0)^{\text{T}} \Sigma_1^{-1} (m_1 - m_0)$$

$$= \frac{N^2 \alpha^2 \|m_1 - m_0\|^2}{2\beta^2 \mu_w^2 f(m_1)} = \frac{2N^2 \alpha^2 f(m_1)}{\beta^2 \mu_w^2 f(m_1)} = \frac{2}{\beta^2} \frac{N^2 \alpha^2}{\mu_w^2} \approx \frac{4}{\pi}$$
: current distribution

Based on this derivation, we set $\delta_{\mathrm{KL}}^{\mathrm{thre}} = 2$.

• regarded as close if KL(N₀ || N₁) $\leq \delta_{\rm KL}^{\rm thre} = 2$

: optimal point

: distribution in the History

Normalization Factor a

Comparing two distributions with different population size?

- optimal step-size depends on the population size
- distributions won't be close
 even if they are searching the same local minimum

Normalized Parameter

$$\Sigma = \frac{\sigma^2}{\alpha^2} \mathbf{C}$$
 where $\alpha = \frac{\mu_w}{N - 1 + \mu_w}$

- reflect $\sigma^* \propto \mu_w = 1/\sum_{I=1}^{\lambda} w_i^2$ if $\mu_w \leq N$
- reflect σ^* tends to constant if $\mu_w \ge N$

Initial Step-Size Selection Using Search History

shrink the initial step-size to prevent the overlapping search

Initial Normalized Step-Size Selection

Initial Step-Size Selection in BIPOP

- first run: $\sigma^{(0)}$
- IPOP regime: $\sigma^{(0)}$
- LS regime: $\sigma^{(0)} \times r$, r: random in (0.01, 1)

When to shrink the initial (normalized) step-size?

- overlapping restarts observed n_{σ}^{dec} times in a row
 - the current initial step-size is regarded as too large to escape from already searched big valley

How to shrink the initial (normalized) step-size?

- first run: $\sigma^{(0)} = \alpha \times T_{\sigma}[0]$
- Jth run: $\sigma^{(0)} = \alpha \times T_{\sigma}[i]$
 - if overlapping restarts observed n_{σ}^{dec} times in a row: $\sigma^{(0)} = \alpha \times T_{\sigma}[i+1]$
 - if not: $\sigma^{(0)} = \alpha \times T_{\sigma}[i]$

Demonstration on Double-Sphere

$$f(x) = \min(a^2 ||x_o||^2, ||x_l||^2 + 1.0)$$

$$a = 1.5, x_o = x - [2.5, \dots, 2.5] \text{ and } x_l = x + [2.5, \dots, 2.5]$$

smaller basin of attraction for global optimum

BBOB Results

Termination Criteria

Termination Condition (Convergence Criteria)

```
tolf: median(fiqr\_hist) < 10^{-11}
```

tolfrel: $median(fiqr_hist) < 10^{-12} * abs(median(fmin_hist))$

▶ the objective function value differences are too small to sort them without being affected by numerical errors.

tolx: $median(xiqr_hist) < 10^{-11}$

tolxrel: $median(xiqr_hist) < 10^{-12} * abs(median(xmin_hist))$

▶ the coordinate value differences are too small to update parameters without being affected by numerical errors.

Restart Scheme

	KL-Restart	KL-IPOP	KL-BIPOP	IPOP	BIPOP
Pop. Size	fixed $\lambda^{rac{2}{ ext{def}}}$	IPOP	BIPOP	IPOP	BIPOP
lnit. σ	proposed	proposed	proposed	fixed	BIPOP
termination	convergence +proposed	convergence +proposed	convergence +proposed	convergence	convergence

Maximum pop. size is $2^8 \times \lambda_{def}$ for IPOP regime

For each (re-)start of the algorithm, we initialize the mean vector $m \sim \mathcal{U}[-4,4]^D$ and the covariance matrix $C=2^2I$. The maximum #f-call set to 10^6D .

Data for IPOP and BIPOP are downloaded from the web page

Results on 5D and 20D

5D

KL-Restart vs KL-IPOP vs KL-BIPOP

- KL-Restart: more FEs on unimodal functions due to the pop. size.
- f₁₃, f₁₇ and f₁₈: KL-IPOP and KL-BIPOP suffered from early termination, while KL-Restart often finds the target function value at the first (re-)start, hence it works better than KL-IPOP and KL-BIPOP.

KL-IPOP vs **IPOP**

- KL-IPOP solved f₂₂, and f₂₄ for N ≤ 5 with fewer number of FEs than IPOP
- IPOP is significantly better on f₁₃, f₁₇ and f₁₈ than KL-IPOP
 - due to too early stopping

KL-BIPOP vs **BIPOP**

- difference between KL-BIPOP and BIPOP is similar to the difference between KL-IPOP and IPOP
- on f₂₃ and f₂₄, BIPOP is superior to KL-BIPOP

KL-BIPOP vs **BIPOP**

KL-stdBIPOP: BIPOP + proposed termination mechanism

- KL-stdBIPOP performs better than KL-BIPOP on f₂₃ and f₂₄
 - problem of KL-BIPOP on f_{23} and f_{24} is due to init. σ selection mechanism

Conclusion

Advantage

 promising performance on f₂₂ (21 peak): weak global structure with a relatively small number of local minima

Disadvantage

- too early stopping on f₁₃(sharp ridge), f₁₇, f₁₈ (Schaffer)
 - termination criterion needs to be improved
- initial step-size control mechanism not properly working for f23 and f24
 - initial step-size control mechanism needs to be improved

