Bayesian Statistics |

Lecture 8 - Markov Chain Monte Carlo. Metropolis-Hastings.

Mattias Villani

Department of Statistics Stockholm University

Department of Computer and Information Science Linköping University

Lecture overview

Markov Chain Monte Carlo

Metropolis-Hastings

■ MCMC - efficiency, burn-in and convergence

Markov chains

- Let $S = \{s_1, s_2, ..., s_k\}$ be a finite set of states.
 - ightharpoonup Weather: $S = \{\text{sunny}, \text{rain}\}$.
 - ▶ School grades: $S = \{A, B, C, D, E, F\}$
- Markov chain is a stochastic process $\{X_t\}_{t=1}^T$ with state transitions

$$p_{ij} = \Pr(X_{t+1} = s_j | X_t = s_i)$$

- School grades: $X_1 = C$, $X_2 = C$, $X_3 = B$, $X_4 = A$, $X_5 = B$.
- **Transition matrix** for weather example

$$P = \begin{pmatrix} p_{11} & p_{12} \\ p_{21} & p_{22} \end{pmatrix} = \begin{pmatrix} 0.9 & 0.1 \\ 0.7 & 0.3 \end{pmatrix}$$

Stationary distribution

■ *h*-step transition probabilities

$$P_{ij}^{(h)} = \Pr(X_{t+h} = s_j | X_t = s_i)$$

h-step transition matrix by matrix power

$$P^{(h)} = P^h$$

- Unique equilbrium distribution $\pi = (\pi_1, ..., \pi_k)$ if chain is
 - irreducible (possible to get to any state from any state)
 - ▶ aperiodic (does not get stuck in predictable cycles)
 - positive recurrent (expected time of returning is finite)
- Limiting long-run distribution

$$P^{t} \to \begin{pmatrix} \pi \\ \pi \\ \vdots \\ \pi \end{pmatrix} = \begin{pmatrix} \pi_{1} & \pi_{2} & \cdots & \pi_{k} \\ \pi_{1} & \pi_{2} & \cdots & \pi_{k} \\ \vdots & \vdots & & \vdots \\ \pi_{1} & \pi_{2} & \cdots & \pi_{k} \end{pmatrix} \text{ as } t \to \infty$$

Stationary distribution, cont.

Limiting long-run distribution

$$P^{t} \rightarrow \begin{pmatrix} \pi \\ \pi \\ \vdots \\ \pi \end{pmatrix} = \begin{pmatrix} \pi_{1} & \pi_{2} & \cdots & \pi_{k} \\ \pi_{1} & \pi_{2} & \cdots & \pi_{k} \\ \vdots & \vdots & & \vdots \\ \pi_{1} & \pi_{2} & \cdots & \pi_{k} \end{pmatrix} \text{ as } t \rightarrow \infty$$

■ Stationary distribution

$$\pi = \pi P$$

Example:

$$P = \left(\begin{array}{ccc} 0.8 & 0.1 & 0.1 \\ 0.2 & 0.6 & 0.2 \\ 0.3 & 0.3 & 0.4 \end{array}\right)$$

$$\pi = (0.545, 0.272, 0.181)$$

The basic MCMC idea

- Simulate from discrete distribution p(x) when $x \in \{s_1, ..., s_k\}$.
- MCMC simulate a Markov Chain with a stationary distribution that is exactly p(x)
- How to set up the transition matrix P? Metropolis-Hastings!

Rejection sampling

Random walk Metropolis algorithm

- Initialize $\theta^{(0)}$ and iterate for i = 1, 2, ...
 - **1** Sample proposal: $\theta_p | \theta^{(i-1)} \sim N\left(\theta^{(i-1)}, c \cdot \Sigma\right)$
 - 2 Compute the acceptance probability

$$\alpha = \min\left(1, \frac{p(\theta_p|\mathbf{y})}{p(\theta^{(i-1)}|\mathbf{y})}\right)$$

3 With probability α set $\theta^{(i)} = \theta_p$ and $\theta^{(i)} = \theta^{(i-1)}$ otherwise.

Random walk Metropolis, cont.

- Assumption: we can compute $p(\theta_p|y)$ for any θ .
- Proportionality constants in posterior cancel out in

$$\alpha = \min\left(1, \frac{p(\theta_p|y)}{p(\theta^{(i-1)}|y)}\right).$$

In particular:

$$\frac{p(\theta_p|y)}{p(\theta^{(i-1)}|y)} = \frac{p(y|\theta_p)p(\theta_p)/p(y)}{p(y|\theta^{(i-1)})p(\theta^{(i-1)})/p(y)} = \frac{p(y|\theta_p)p(\theta_p)}{p(y|\theta^{(i-1)})p(\theta^{(i-1)})}$$

Proportional form of posterior is enough!

$$\alpha = \min \left(1, \frac{p\left(\mathbf{y} \middle| \theta_{p}\right) p\left(\theta_{p}\right)}{p\left(\mathbf{y} \middle| \theta^{(i-1)}\right) p\left(\theta^{(i-1)}\right)}\right)$$

Random walk Metropolis, cont.

- Common choices of Σ in proposal $N\left(\theta^{(i-1)}, c \cdot \Sigma\right)$:
 - $ightharpoonup \Sigma = I$ (proposes 'off the cigar')
 - $\Sigma = J_{\hat{\theta}, \mathbf{v}}^{-1}$ (propose 'along the cigar')
 - **Adaptive**. Start with $\Sigma = I$. Update Σ from initial run.
- \blacksquare Set c so average acceptance probability is 25-30%.
- Good proposal:
 - ► Easy to sample
 - Easy to compute α
 - ightharpoonup Proposals should take reasonably large steps in θ -space
 - Proposals should not be reject too often.

The Metropolis-Hastings algorithm

- Generalization when the proposal density is not symmetric.
- Initialize $\theta^{(0)}$ and iterate for i=1,2,...
 - **1 Sample proposal**: $heta_{p} \sim q\left(\cdot | heta^{(i-1)}
 ight)$
 - 2 Compute the acceptance probability

$$\alpha = \min \left(1, \frac{p(\mathbf{y}|\theta_{p})p(\theta_{p})}{p(\mathbf{y}|\theta^{(i-1)})p(\theta^{(i-1)})} \frac{q\left(\theta^{(i-1)}|\theta_{p}\right)}{q\left(\theta_{p}|\theta^{(i-1)}\right)}\right)$$

3 With probability α set $\theta^{(i)} = \theta_p$ and $\theta^{(i)} = \theta^{(i-1)}$ otherwise

The independence sampler

- Independence sampler: $q\left(\theta_p|\theta^{(i-1)}\right) = q\left(\theta_p\right)$.
- Proposal is independent of previous draw.
- Example:

$$heta_{p} \sim t_{v} \left(\hat{ heta}, J_{\hat{ heta}, \mathsf{y}}^{-1}
ight)$$
 ,

where $\hat{ heta}$ and , $J_{\hat{ heta}, \mathbf{y}}$ are computed by numerical optimization.

- Can be very efficient, but has a tendency to get stuck.
- Make sure that $q(\theta_p)$ has heavier tails than $p(\theta|y)$.

Metropolis-Hastings within Gibbs

- **Gibbs sampling** from $p(\theta_1, \theta_2, \theta_3|y)$
 - ► Sample $p(\theta_1|\theta_2, \theta_3, y)$
 - ► Sample $p(\theta_2|\theta_1,\theta_3,y)$
 - ightharpoonup Sample $p(\theta_3|\theta_1,\theta_2,y)$
- When a full conditional is not easily sampled we can simulate from it using MH.
- Example: at *i*th iteration, propose θ_2 from $q(\theta_2|\theta_1,\theta_3,\theta_2^{(i-1)},y)$. Accept/reject.
- Gibbs sampling is a special case of MH when $q(\theta_2|\theta_1,\theta_3,\theta_2^{(i-1)},\mathbf{y})=p(\theta_2|\theta_1,\theta_3,\mathbf{y}),$ which gives $\alpha=1.$ Always accept.

The efficiency of MCMC

- How efficient is MCMC compared to iid sampling?
- If $\theta^{(1)}, \theta^{(2)}, ..., \theta^{(N)}$ are iid with variance σ^2 , then

$$\operatorname{Var}(\bar{\theta}) = \frac{\sigma^2}{N}.$$

Autocorrelated $\theta^{(1)}$, $\theta^{(2)}$, ..., $\theta^{(N)}$ generated by MCMC

$$\operatorname{Var}(\bar{\theta}) = \frac{\sigma^2}{N} \left(1 + 2 \sum_{k=1}^{\infty} \rho_k \right)$$

where $\rho_k = Corr(\theta^{(i)}, \theta^{(i+k)})$ is the autocorrelation at lag k.

■ Inefficiency factor

$$IF = 1 + 2\sum_{k=1}^{\infty} \rho_k$$

■ Effective sample size from MCMC

$$ESS = N/IF$$

Burn-in and convergence

- How long burn-in?
- How long to sample after burn-in?
- \blacksquare Thinning? Keeping every h draw reduces autocorrelation.
- Convergence diagnostics
 - Raw plots of simulated sequences (trajectories)
 - ► CUSUM plots
 - Potential scale reduction factor, R.

Burn-in and convergence

