Homework 1 by Amarnath Patel

1. (10 points) Write in words how to read each of the following out loud:

(a) $\{x \in \mathbb{R}^+ \mid -1 < x < 1\}$

The set of all positive real numbers x such that -1 < x < 1.

(b) $\{x \in \mathbb{R} \mid x \le -3 \text{ or } x \ge 1\}$

The set of all real numbers x such that $x \leq -3$ or $x \geq 1$.

(c) $\{n \in \mathbb{Z} \mid n \text{ is a factor of } 3\}$

The set of all integers n such that n is a factor of 3.

(d) $\{n \in \mathbb{Z}^+ \mid n \text{ is a factor of 5}\}$

The set of all positive integers n such that n is a factor of 5.

- 2. (10 points)
 - (a) Is $3 \in \{3\}$? Yes.
 - (b) How many elements are in the set $\{2, 2, 2, 5\}$? Two elements.
 - (c) How many elements are in the set $\{0, 0, \{0\}\}$? Two elements.
 - (d) Is $\{0\} \in \{\{0\}, 0, \{1\}\}$? Yes.

- (e) Is $0 \in \{\{0\}, \{1\}\}$? No.
- 3. (10 points) Which of the following sets are equal?

$$A = \{0, 1, 2, 3\}$$

$$B = \{x \in \mathbb{R} \mid -1 \le x < 4\}$$

$$C = \{x \in \mathbb{R} \mid -1 < x < 4\}$$

$$D = \{x \in \mathbb{Z} \mid -1 < x < 4\}$$

$$E = \{x \in \mathbb{Z}^+ \mid -1 < x < 4\}$$

A = D and D = E

- 4. (10 points) Use the set-roster notation to indicate the elements in each of the following sets.
 - (a) $S = \{n \in \mathbb{Z} \mid n = (-1)^k, \text{ for some integer } k\}$ $S = \{-1, 1\}$
 - (b) $T = \{m \in \mathbb{Z} \mid m = 2 + (-1)^i, \text{ for some integer } i\}$ $T = \{1, 3\}$
 - (c) $U = \{r \in \mathbb{Z} \mid 3 \le r \le -3\}$ $U = \emptyset$
 - (d) $V = \{s \in \mathbb{Z} \mid s > 2 \text{ or } s < 3\}$ $V = \{\dots, -1, 0, 1, 2, 3, 4, \dots\}$
 - (e) $W = \{t \in \mathbb{Z} \mid -3 < t < 3\}$ $W = \{-2, -1, 0, 1, 2\}$

(f) $X = \{u \in \mathbb{Z} \mid u \le 4 \text{ or } u \ge 1\}$ $X = \{\dots, -2, -1, 0, 1, 2, 3, 4, 5, \dots\}$

- 5. (10 points)
 - (a) Is $3 \in \{1, 2, 3\}$? Yes.
 - (b) Is $1 \subseteq \{1\}$? No.
 - (c) Is $\{2\} \in \{1,2\}$? No.
 - (d) Is $\{3\} \in \{1, \{2\}, \{3\}\}$? Yes.
 - (e) Is $1 \in \{1\}$? Yes.
 - (f) Is $\{2\} \subseteq \{1, \{2\}, \{3\}\}$? No.
 - (g) Is $\{1\} \subseteq \{1,2\}$? Yes.
 - (h) Is $1 \in \{\{1\}, 2\}$? No.

(i) Is
$$\{1\} \subseteq \{1, \{2\}\}$$
?
No.

(j) Is
$$\{1\} \subseteq \{1\}$$
? Yes.

6. (10 points) Let $A = \{w, x, y, z\}$ and $B = \{e, f\}$. Use the set-roster notation to write each of the following sets, and indicate the number of elements that are in each set:

(a)
$$A \times B$$

 $A \times B = \{(w, e), (w, f), (x, e), (x, f), (y, e), (y, f), (z, e), (z, f)\}$

Number of elements: 8

(b)
$$B \times A$$

 $B \times A = \{(e, w), (e, x), (e, y), (e, z), (f, w), (f, x), (f, y), (f, z)\}$

Number of elements: 8

(c)
$$A \times A = \{(w, w), (w, z), (w, y), (w, z), (x, w), (x, x), (x, y), (x, z), (y, w), (y, x), (y, y), (y, z), (z, w), (z, x), (z, y), (z, z)\}$$

Number of elements: 16

(d)
$$B \times B$$

 $B \times B = \{(e, e), (e, f), (f, e), (f, f)\}$

Number of elements: 4

- 7. (10 points) Define the set using set-builder notation:
 - (a) $S = \{2, 4, 6, 8, 10, 12\}$ $S = \{n \in \mathbb{Z}^+ \mid n \text{ is an even number and } 2 \le n \le 12\}$

(b)
$$T = \{1, 4, 9, 16, 25, 36\}$$

 $T = \{n^2 \mid n \in \mathbb{Z}^+ \text{ and } 1 \le n \le 6\}$

- 8. (10 points) Let $A = \{1, 3, 4\}$ and $B = \{6, 8, 10\}$. Define a relation R from A to B as follows: For all $(x, y) \in A \times B$, $(x, y) \in R$ if and only if $\frac{y}{x}$ is an integer.
 - (a) Determine the validity of the following:
 - Is 4R6? No.
 - Is 4R8? Yes.
 - Is $(3,8) \in R$? No.
 - Is $(1,10) \in R$? Yes.
 - (b) Write R as a set of ordered pairs. $R = \{(1,6), (1,8), (1,10), (4,8)\}$
 - (c) Identify the domain and co-domain of R. Domain: $\{1, 3, 4\}$, Co-domain: $\{6, 8, 10\}$
 - (d) Draw an arrow diagram for R.

9. (10 points) Let $B = \{4, 5, 6\}$ and $A = \{5, 6, 7\}$ and define relations R, S, and T from A to B as follows:

6

- For all $(x, y) \in A \times B$, $(x, y) \in R$ means that $x \ge y$.
- $(x,y) \in S$ means that $\frac{x-y}{2}$ is an integer.
- $T = \{(7,4), (5,6), (7,6)\}.$
- (a) Draw arrow diagrams for R, S, and T.

5

(b) Indicate whether any of the relations $R,\,S,\,$ and T are functions. R is not a function.

S is not a function.

T is a function.

10. (10 points) Define a relation T from $\mathbb R$ to $\mathbb R$ as follows: For all real numbers x and y, $(x,y) \in T$ means that $y^2 - x^2 = 1$.

Is T a function? Explain.

No, T is not a function because for a given x, there can be two different values of y (one positive and one negative) that satisfy the equation $y^2 - x^2 = 1$.