CO CW4

Zhiwei Ren 性治珠

SWJTH ID: 2016110227

LEEPS IP: 201089894

Problem 1

Now, we will explore X2 & 4 first.

LP2	X,	×5	53		LPZ	52	Χr	53	
λs	0	0		4	λ,	٥	0	١	4
\ 2	2/3	13	-1-3	13	=> X2	1	0	D	4
X4	73	1 3	$\frac{-S}{3}$	3	X4	72	3/2	크	7
52	7/3	-1 3	3	-13	×۱	73/2) 2	士	1 2
Z	wis	3	73	76	2	5/2	숰	3 2	49

	LP2	52	X4	53		
	X3	0	<u> </u>	(4	Now, $X_1 = \frac{7}{3}$
	X2	l	D	D	4	×2 - 4
	ХΣ	-7	<u>-2</u>	<u>,</u>	13	x = 4
=)	Χı	1/3	7	-2	1 3	73
	Z	1)	<u> </u>	43	73	2= 3

VVe would explore $X_1 \le 0$ first and then $X_1 \ge 1$. LB3 Sz X_{44} Sz X_{3} X_{3} X_{4} X_{5} $X_$
X ₃ 0 0 1 4 × ₃ 0 0 1 4
' · · · · · · · · · · · · · · · · · ·
$x_2 \mid 1 \mid 0 \mid 4 \mid 4 \mid x_2 \mid 1 \mid 0 \mid 0 \mid 4$
$x_{5} = \frac{-7}{3} = \frac{-2}{3} = \frac{1}{3} = \frac{1}$
$\chi_1 \frac{1}{3} \frac{1}{3} \frac{1}{3} \frac{1}{3} \chi_1 0 1 0 0$
$\frac{1}{3}$ $\frac{1}{3}$ $\frac{2}{3}$ $\frac{1}{3}$ $\frac{2}{3}$ $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{3}$
$\frac{1}{2} \frac{1}{3} \frac{1}{3} \frac{4}{3} \frac{73}{3} \frac{2}{3} \frac{4}{12} \frac{12}{4}$

No	w,	XIS	· 0 ,	×222	4, X3=	4, 2	2 = 20	4 M	Juh o's	the
hew	LB	. /	Ve n	oud	then e	explore	Xı	>1,		
<u>LP4</u>	52	X4	53		284	5	X4	5)		
Xş	0	0	J	4	X ₃	=	1/2	3 2	3	
X2	(0	0	4	χ ₂	1	D	D	4	
$\chi_{\mathcal{S}}$	$\frac{-7}{3}$	-2	13	7	=> 12	ام الم	7	7	0	
χ,	7	1/3	<u>-2</u>	7	×ı	0	0	-1	J	
51	1/3	-3	7	-2	53	7 2	7/2	<u>-3</u> 2)	
2	<u> 1)</u> 3	1/3	43	73,	2	3	١	2	23	

N_{TW} , $\chi_1 = 1$, $\chi_2 = 4$, $\chi_3 = 3$. Z = 23 < 24.

We	now	exp	lore	X 3 €	4 a	nd	X ?	27			
LP5		U				LPT	×۱	χъ	ζz		
λ_3	0	0	l	4		λ ₃	2)	3	2	
X 2	2 2	1/3	<u>-1</u>	13		χį	0	0	-1	5	
X 4	7		- <u>7</u>	2	=>	Хч	-1	-2	7	4	
52	3	3	1/3	-2		53	~)	-1	-3	2	
	5	43	<u>2</u>	76	_	7	3	۶	7	24	

Now, X120 X225, X322, 2324

\mathcal{N}	lows	We	woul	ld e	xplor	e	X3 2	Z §		
46	Xi	አ ፓ	X4		- 1	LP6		53 X4		
χ_{3}	7	15	3	24		χ_{ς}	0	-10	7	
Χı	7	2	-)	21	=>	Χı	}	2 1	3	
53	7	15	3	-3 -3		ZΧ	-7	-J -3	3	
2	13	6	2)	128		2	11	6 4	22	

Now, $\chi_1=0$, $\chi_2=3$, $\chi_3=J$. Z=22. So, max Z=24 when $\chi_1=0$, $\chi_2=4$, $\chi_3=4$. The whole search tree will be illustrated in the next page:

(a) According to property P, we cannot find a proper R, and R2. 50, no.

(b) R1 = { ww1, wn2, ww3. wn4)

(c) Ri= {10001, 10002, 20003, 20004} Rz = { bows, 2006}, it is unimodular.

Problem 3

(a) Awarding to the constraints, at most 2 products can be selected.

50, as for (1), due to 2120 >18.

50, 3x, +4x2+ 2x3 ≤ 21+20 ≤ 30+41/8 => M' >11

As for (2), 30 >28 >18

 $4x_1 + 6x_2 + 2x_3 \leq 30 + 28 \leq 40 + MS$ => M' > 18.

So, a smaller value of M' can be 18.

(b) M'<36 which is M'=18. It can reduce the search space by offering a smaller feasible region.