Type Class: The Ultimate Ad Hoc

George Wilson

Data61/CSIRO

george.wilson@data61.csiro.au

August 3, 2017

Type classes are a language feature

- Haskell
- Eta
- Purescript
- Clean

Type classes are a language feature

- Haskell
- ► Eta

► Clean

- Purescript
- or sometimes a design pattern
- Scala
 - ▶ OCaml

Polymorphism

Polymorphism is good

- ▶ less duplication
- more reuse
- ▶ fewer possible implementations

Broadly speaking there are two major forms of polymorphism:

- parametric polymorphism
- ► ad-hoc polymorphism

A type is parametrically polymorphic iff it has at least one type parameter which can be instantiated to any type.

```
reverse :: [a] -> [a] id :: a -> a
```

 $(.) :: (b \rightarrow c) \rightarrow (a \rightarrow b) \rightarrow (a \rightarrow c)$

A type which is ad-hocly polymorphic can be instantiated to different types, and may behave differently at each type

Type Classes

class Equal a where

eq :: a -> a -> Bool

```
class Equal a where
  eq :: a -> a -> Bool

data Person = Person {
  age :: Int
```

, name :: String

```
class Equal a where
  eq :: a -> a -> Bool

data Person = Person {
  age :: Int
, name :: String
```

```
instance Equal Person where
```

eq p1 p2 = eq (age p1) (age p2) && eq (name p1) (name p2)

```
elementOf :: Equal a => a -> [a] -> Bool
elementOf a list =
  case list of
```

(h:t) -> eq a h || elementOf a t

[] -> False

Instances can be constrained

eq (x:xs) (y:ys) = eq x y && eq xs ys

eq [] (y:ys) = False

Instances can be constrained

eq [] (y:ys) = False

We can add type class instances for types we didn't write

eq (x:xs) (y:ys) = eq x y && eq xs ys

- Writing an instance for your type can unlock many functions
- Writing functions with typeclass constraints is easy
- You can write instances for types you did not write
 Instances can depend on other instances if necessary


```
interface Equal<A> {
   public boolean eq(A other);
}
```

```
interface Equal<A> {
  public boolean eq(A other);
class Person implements Equal<Person> {
  public int age;
  public String name;
  public boolean eq(Person other) {
    return this.age == other.age && this.name.equals(other.name);
```

```
static <A extends Equal<A>> boolean elementOf(A a, List<A> list) {
   for (A element : list) {
      if (a.eq(element)) return true;
}
```

return false;

```
class String {
  private char[] value;
  // other definitions
}
```

```
class String implements Equal<String> {
  private char[] value;
  // other definitions
```

```
class List<A> {
    // implementation details
```

```
class List<A> implements Equal<List<A>> {
   // implementation details
```

```
class List<A> implements Equal<List<A>> {
    // implementation details

public boolean eq(List<A> other) {
    // implementation...
```

```
class List<A> implements Equal<List<A>> {
    // implementation details

public boolean eq(List<A> other) {
```

// ... but how do we compare A for equality?

// implementation...

- ▶ Interface implementation can't be conditional
- ▶ We can only implement interfaces for types we control

I argue this makes type classes more modular and more flexible

ΓΟDO show why type classes aren't perfectly flexible
no custom local instances, maybe show newtypes for sum and product or something)

Implicits

case class Person(age: Int, name: String)

```
case class Person(age: Int, name: String)
```

```
trait Equal[A] {
  def eq(a: A, b: A): Boolean
```

```
case class Person(age: Int, name: String)
```

```
trait Equal[A] {
  def eq(a: A, b: A): Boolean
}
```

```
def eq(a: Person, b: Person): Boolean =
    a.age == b.age && a.name == b.name
}
```

implicit def equalPerson: Equal[Person] = new Equal[Person] {

```
implicit def equalList(implicit equalA: Equal[A]): Equal[List[A]] =
  new Equal[List[A]] {
    def eq(a: List[A], b: List[A]): Boolean = {
        (a,b) match {
        case (Nil, Nil) => true
        case (x::xs, Nil) => false
        case (Nil, y::ys) => false
        case (x::xs, y::ys) => equalA.eq(x,y) || eq(xs,ys)
```


▶ We can write implicits that depend on implicits

```
case object LT extends Ordering case object EQ extends Ordering case object GT extends Ordering
```

sealed trait Ordering

trait Order[A] {

```
def compare(a: A, b: A): Ordering
}
```

```
case object LT extends Ordering
case object EQ extends Ordering
case object GT extends Ordering
trait Order[A] {
  def compare(a: A, b: A): Ordering
implicit def orderPerson: Order[Person] = new Order[Person] {
  def compare(a: Person, b: Person): Ordering =
    intOrder.compare(a.age, b.age) match {
      case LT => LT
      case EQ => stringOrder.compare(a.name, b.name)
      case GT => GT
```

sealed trait Ordering