Math 475: Partial Differential Equations

Shereen Elaidi

Fall 2019 Term

Contents

1	Intro	oduction	1
	1.1	Domains and Boundary Conditions	2
		1.1.1 What are the main boundary conditions?	2
	1.2	Classification of PDEs	2

1 Introduction

Q: Where do PDE's come from? PDEs are used in all types of math modelling; they translate phenomena coming from physics, biology, chemistry, etc. into mathematical terms.

Q: What goes into a PDE model?

Math model = General Physical Laws (balancing forces and conservation of quantities) + Constitutive Relations (Laws specific to the environment, e.g. Fick's Law of Diffusion)

A PDE \leftrightarrow a physical description of a system.

Definition 1 (PDE). A <u>PDE</u> is a mathematical relation involving partial derivatives, i.e., if \mathbf{u} : $\mathbb{R}^n \to \mathbb{R}$, $\mathbf{x} = (x_1, ..., x_n)$ a real-valued function of several variables, then any kth order PDE can be expressed as:

$$F(D^{k}\mathbf{u}, D^{k-1}\mathbf{u}, ..., D\mathbf{u}, \mathbf{u}, \mathbf{x}) = 0 \text{ in } \Omega$$
(1)

where $\Omega \subseteq \mathbb{R}^n$ is the domain or region where the PDE holds, and F is a function of the placeholders.

Definition 2 $(C^k \text{ and } C^k(\Omega))$. A function $\mathbf{u} : \mathbb{R}^n \to \mathbb{R}$ is C^k at a point $\mathbf{x} \in \mathbb{R}^n$ if every kth-order partial derivative is continuous as a function of \mathbb{R}^n at x. If $u \in C^2(\mathbb{R}^n)$, then in advanced calculus it was proven that D^2u is a symmetric matrix.

Example 1 (Examples of PDEs). 1. Heat Equation:

$$u_t - k\Delta u = u_t - k\sum_{i=1}^{n} u_{x_i x_i} = 0$$
 (2)

where k > 0 is a constant. Then the solution has a space- and time- component:

$$u(\mathbf{x},t) = u : \mathbb{R}^{n+1} \to \mathbb{R} \tag{3}$$

2. Laplace's Equation:

$$-\Delta u = 0 \tag{4}$$

u(x) is the steady state of a solution to the heat equation, since $u_t = 0 \Rightarrow$ "constant in time." The solution u is a function $u : \mathbb{R}^n \to \mathbb{R}$.

3. Wave Equation:

$$u_{tt} - \Delta u = 0$$
$$u : \mathbb{R}^{n+1} \to \mathbb{R}$$

u(x,t) is the displacement of an object with wave-like behaviour at location **x** and time t. Ex: position of a guitar string.

4. Transport Equation:

$$u_t + cu_x = 0, \ c \in \mathbb{R}, u : \mathbb{R}^2 \to \mathbb{R} \text{ (space, time)}$$

u(x,t) can be the density of a pollutant at location **x** and time t.

5. Reaction-Diffusion:

$$u_t - k\Delta u = f(u)$$
$$u : \mathbb{R}^{n+1} \to \mathbb{R}$$
$$f : \mathbb{R} \to \mathbb{R}$$

 $u(\mathbf{x},t)$ can be the temperature at location (\mathbf{x},t) subject to enhancement by f(u) (for example, fire spreading).

6. Burger's Equation:

$$u_t - uu_x = vu_{xx} \tag{5}$$

v>0 represents the viscosity. $u:\mathbb{R}^2\to\mathbb{R},\ u(x,t)$ is the concentration of a material in a fluid flow with convection.

1.1 Domains and Boundary Conditions

Definition 3 (C^1 domain). $\Omega \subseteq \mathbb{R}^n$ is a $\underline{C^1}$ domain if $\partial\Omega$ can locally be expressed as a graph of a C^1 function. This means...

- 1. $\partial\Omega$ has no corners \Rightarrow smooth.
- 2. $\forall p \in \partial \Omega$, there exists a well-defined and unique tangent plane (whose slope is given by the derivative), which implies that there exists a well-defined inward and outward normal vector.
- 3. Inward and outward normal vectors move continuously along $\partial\Omega$.

1.1.1 What are the main boundary conditions?

- 1. Dirichlet Boundary Conditions: these prescribe what u is on $\partial\Omega$. We assume that $u \in C^k(\Omega) \cap C(\partial\Omega)$.
- 2. Neumann Boundary Conditions: these prescribe what the normal derivative of u on $\partial\Omega$ is. The meaning behind this is: how does u change along the boundary? It is specifying:

$$\frac{\partial u}{\partial n} = \nabla u \cdot n(x) = X \text{ on } \partial\Omega$$
 (6)

3. Robin boundary conditions: a combination of the above:

$$\frac{\partial u}{\partial n} + \alpha u = X \text{ on } \partial\Omega \tag{7}$$

In general, in PDEs, we will not be able to identify an explicit solution. Thus, we care about the following four fundamental issues. The first three ensure that we have a *well-posed problem*, and the final one is important when we cannot obtain an explicit solution.

- 1. Existence: is there a solution?
- 2. Uniqueness: is there exactly one solution to the PDE?
- 3. Stability: does the solution depend continuously on the data?
- 4. Qualitative Properties: If I cannot find an explicit solution, but I know that it exists, what else can I tell you about the solution? Some questions we are interested in studying are:
 - a) Does $u(\mathbf{x},t) \to 0$ as $t \to \infty$?
 - b) What is $\max_{\Omega} |u(\mathbf{x})|$?

1.2 Classification of PDEs

To do: draw out the chart