Formulario di Analisi Matematica 1

Indice degli argomenti

- Punti interni, isolati, di accumulazione e di frontiera
- Alcune costanti
- Proprietà delle potenze
- Proprietà degli esponenziali
- Proprietà dei logaritmi
- Proprietà del valore assoluto
- Progressioni
- <u>Trigonometria</u>
- <u>Disequazioni</u>
- Numeri complessi
- <u>Limiti</u>
- Derivate
- Rolle, Cauchy, Lagrange e de l'Hôpital
- Max e min per funzioni di 1 variabile
- Integrali
- Funzione inversa e retta tangente al grafico di funzione
- Serie numeriche

Punti interni, di frontiera, di accumulazione, isolati

Dato un insieme $X\subseteq \mathbb{R}$ e $x_0\in \mathbb{R}$

- x_0 è PUNTO INTERNO a X se e solo se ogni intorno del punto x_0 è tutto contenuto in X.
- x_0 è PUNTO DI FRONTIERA a X se e solo se in ogni intorno del punto x_0 cadono sia punti appartenenti a X sia punti non appartenenti a X.
- x_0 è PUNTO DI ACCUMULAZIONE per X se e solo se ogni intorno del punto x_0 contiene almeno un punto di X diverso da x_0 .
- x_0 è PUNTO ISOLATO per X se non è di accumulazione.

Inoltre, si definiscono i seguenti insiemi:

- INTERNO di X, $\overset{\circ}{X}$ è l'insieme dei punti interni ad X.
- FRONTIERA di X, FX è l'insieme dei punti di frontiera di X.
- DERIVATO di X, DX è l'insieme dei punti di accumulazione per X.
- CHIUSURA di X, $\overline{X} = X \cup FX = X \cup DX$.

Un insieme si dice APERTO $\Leftrightarrow \quad X = \overset{\circ}{X}.$

Un insieme si dice CHIUSO $\Leftrightarrow \quad X = \overline{X} \quad \Leftrightarrow \quad FX \subseteq X \quad \Leftrightarrow DX \subseteq X.$

Vale sempre la seguente relazione:

$$\overset{\circ}{X}\subseteq X\subseteq \overline{X}$$

Alcune costanti fondamentali

```
e=2,7182818285\dots \ \pi=3,1415926536\dots
```

Proprietà delle potenze ad esponente reale

$$(x,y\in\mathbb{R}^+)$$

$$1. \ \ x^0=1, \quad orall x\in \mathbb{R}\setminus \{0\}; \qquad 1^lpha=1, \quad orall lpha\in \mathbb{R};$$

2.
$$x^{lpha} \cdot x^{eta} = x^{lpha + eta}, \quad orall lpha, eta \in \mathbb{R};$$

3.
$$x^{lpha}\cdot y^{lpha}=(xy)^{lpha}, \quad orall lpha\in\mathbb{R};$$

4.
$$rac{x^{lpha}}{x^{eta}}=x^{lpha-eta}, \quad orall lpha, eta \in \mathbb{R};$$

5.
$$\frac{x^{\alpha}}{y^{\alpha}} = \left(\frac{x}{y}\right)^{\alpha} = \left(\frac{y}{x}\right)^{-\alpha}, \quad \forall \alpha \in \mathbb{R};$$

6.
$$(x^{lpha})^{eta}=x^{lphaeta}, \quad orall lpha,eta\in\mathbb{R};$$

7.
$$x^{rac{1}{n}}=\sqrt[n]{x}, \quad orall n\in \mathbb{N}, \quad orall x\in \mathbb{R}^+_0;$$

8.
$$x^{rac{m}{n}}=\sqrt[n]{x^m}=(\sqrt[n]{x})^m, \quad orall n,m\in\mathbb{N}, \quad orall x\in\mathbb{R}^+_0;$$

Proprietà degli esponenziali $(a,b\in\mathbb{R}^+,\quad a,b eq 1)$

1.
$$a^0 = 1;$$
 $a^1 = a;$

2.
$$a^x>0, \quad orall x\in \mathbb{R}; \quad a^x \left\{egin{array}{ll} <1, & ext{se } a<1\ >1, & ext{se } a>1 \end{array}, \quad orall x\in \mathbb{R}^+;
ight.$$

3.
$$a^x \cdot a^y = (a)^{x+y}, \quad \forall x \in \mathbb{R};$$

4.
$$a^x \cdot b^x = (ab)^x, \quad \forall x \in \mathbb{R};$$

5.
$$rac{a^x}{a^y}=a^{x-y}, \quad orall x,y\in \mathbb{R};$$

6.
$$rac{a^x}{b^x}=\left(rac{a}{b}
ight)^x, \quad orall x\in \mathbb{R};$$

7.
$$a^{-x}=rac{1}{a^x}=\left(rac{1}{a}
ight)^x, \quad orall x\in \mathbb{R};$$

8.
$$(a^x)^y=a^{xy}, \quad orall x,y\in \mathbb{R};$$

9.
$$se$$
 $x < y \Rightarrow a^x \begin{cases} < a^y, & \text{se } a > 1 \\ > a^y, & \text{se } a < 1 \end{cases}$;

10.
$$a \leq b \Rightarrow a^x \leq b^b, \quad \forall x \in \mathbb{R}^+;$$

Proprietà dei logaritmi $(x,y,a,b\in\mathbb{R}^+,\quad a,b eq 1)$

1.
$$a^{\log_a x} = x;$$

$$2. \ \log_a(a^x) = x;$$

3.
$$\log_a 1 = 0;$$

4.
$$\log_a xy = \log_a x + \log_a y;$$

5.
$$\log_a\left(\frac{x}{y}\right) = \log_a x - \log_a y;$$

6.
$$\log_a(x^{lpha}) = lpha \cdot \log_a x, \quad orall lpha \in \mathbb{R};$$

7.
$$\log_a x = \frac{1}{\log_x a} = -\log_{\frac{1}{a}} x, \quad x \neq 1;$$

8.
$$\log_b x = \frac{\log_a x}{\log_a b}$$
;

Proprietà del modulo o valore assoluto

$$|f(x)| = \left\{ egin{aligned} f(x), & ext{se } f(x) \geq 0 \ -f(x), & ext{se } f(x) < 0 \end{aligned}
ight.$$

1.
$$|x| \geq 0, \quad \forall x \in \mathbb{R};$$

$$2. |x| = 0 \Leftrightarrow x = 0;$$

3.
$$|-x|=|x|, \quad \forall x \in \mathbb{R};$$

4.
$$|x|=\sqrt{x^2}, \quad orall x\in \mathbb{R};$$

5.
$$|x\cdot y|=|x|\cdot |y|, \quad orall x,y\in \mathbb{R};$$

6.
$$\left| rac{x}{y}
ight| = rac{|x|}{|y|}, \quad orall x, y \in \mathbb{R}, y
eq 0;$$

7.
$$|x+y| \leq |x| + |y|, \quad \forall x,y \in \mathbb{R};$$

8.
$$||x|-|y||\leq |x-y|, \quad orall x,y\in \mathbb{R};$$

Progressioni

- 1. PROGRESSIONE ARITMETICA: $\sum\limits_{k=1}^{n}k=rac{n(n+1)}{2};$
- 2. PROGRESSIONE GEOMETRICA: $\sum\limits_{k=0}^{n}q^k=rac{1-q^{n+1}}{1-q},\quad q
 eq 1;$

Trigonometria

Per le formule di trigonometria clicca QUI.

Disequazioni

Disequazioni razionali di secondo grado

Sia $ax^2+bx+c=0,\ a>0$ l'equazione associata alla disequazione di secondo grado e siano x_1 e x_2 le eventuali radici di tale equazione con $x_1< x_2$. La soluzione della disequazione dipenderà dal suo verso e dal segno del Δ :

Δ	>	<u> </u>	<	<u> </u>
$\Delta>0$	$ig x < x_1 \lor x > x_2$	$ig x \leq x_1 ee x \geq x_2$	$oxed{x_1 < x < x_2}$	$ig x_1 \leq x \leq x_2$
$\Delta < 0$	$orall x \in \mathbb{R}$	$orall x \in \mathbb{R}$	$ otal x \in \mathbb{R}$	$ otal x \in \mathbb{R}$
$\Delta=0$	$x eq x_1$	$orall x \in \mathbb{R}$	$ ot \exists x \in \mathbb{R}$	$x=x_1$

Disequazioni fratte

1. Caso $\frac{A}{B} > 0$:

si trovano le soluzioni di $A>0\,$ (1) e $B>0\,$ (2), per poi fare il prodotto dei segni tra (1) e (2) prendendo la parte >0.

2. Caso $\frac{A}{B} \geq 0$:

si trovano le soluzioni di $A\geq 0$ (1) e B>0 (2), per poi fare il prodotto dei segni tra (1) e (2) prendendo la parte >0.

3. Caso $\frac{A}{B} < 0$:

si trovano le soluzioni di $A>0\,$ (1) e $B>0\,$ (2), per poi fare il prodotto dei segni tra (1) e (2) prendendo la parte <0.

4. Caso $\frac{A}{B} \leq 0$:

si trovano le soluzioni di $A\geq 0$ (1) e B>0 (2), per poi fare il prodotto dei segni tra (1) e (2) prendendo la parte <0.

Disequazioni irrazionali

1. Caso $\sqrt{A}>B$ (o \geq):

si risolvono i sistemi e si fa l'unione delle rispettive soluzioni trovate:

$$\left\{egin{array}{l} A\geq 0 \ B\geq 0 \ A>B^2 \end{array}
ight. egin{array}{l} A\geq 0 \ B<0 \end{array}$$

2. Caso
$$\sqrt{A} < B$$
 (o \leq):

si trovano le soluzioni dell'unico sistema:

$$\left\{egin{array}{l} A\geq 0 \ B\geq 0 \ A>B^2 \end{array}
ight.$$

Disequazioni con valore assoluto

1. Caso B non costante e |A|>B (oppure \geq , < , \leq):

si risolvono i sistemi e si fa l'unione delle rispettive soluzioni trovate:

$$\left\{egin{array}{l} A \geq 0 \ A > B \end{array}
ight. egin{array}{l} A < 0 \ -A > B \end{array}$$

2. Caso B costante e |A|>B (o \geq):

le soluzioni sono $A < -B \ \lor \ A > B$ (oppure $A \leq -B \ \lor \ A \geq B$)

3. Caso B costante e |A| < B (o \leq):

le soluzioni sono -B < A < B (oppure $-B \leq A \leq B$)

Numeri complessi

Forma algebrica

$$z=x+iy, orall x,y\in \mathbb{R}; \qquad \overline{z}=x+iy, \quad |z|=\sqrt{x^2+y^2}, \quad orall z\in \mathbb{C}$$

1.
$$\overline{(z\pm w)}=\overline{z}\pm\overline{w},\quad \forall z,w\in\mathbb{C};$$

2.
$$\overline{(zw)}=\overline{z}\cdot\overline{w},\quad \forall z,w\in\mathbb{C};$$

3.
$$\overline{(z/w)}=\overline{z}/\overline{w}, \quad \forall z,w\in\mathbb{C};$$

4.
$$z \cdot \overline{z} = |z|^2, \quad \forall z \in \mathbb{C};$$

5.
$$|z| \geq 0$$
, $\forall z \in \mathbb{C}$;

6.
$$|z| = 0 \Leftrightarrow z = 0$$
;

7.
$$|z| = |\overline{z}|, \quad \forall z \in \mathbb{C};$$

8.
$$|z\cdot w|=|z|\cdot |w|, \quad \forall z,w\in \mathbb{C};$$

9.
$$|z/w|=|z|/|w|, \quad orall z,w\in \mathbb{C},w
eq 0;$$

10.
$$|Re(z)| \leq |z|, \quad |Im(z)| \leq |z|, \quad |z| \leq |Re(z)| + |Im(z)|, \quad \forall z \in \mathbb{C};$$

11.
$$|z+w| \leq |z| + |w|, \quad \forall z, w \in \mathbb{C};$$

12.
$$||z|-|w||\leq |z+w|, \quad \forall z,w\in\mathbb{C};$$

Forma trigonometrica

$$z=
ho(\cos heta+i\sin heta),\quad
ho\in\mathbb{R}^+,\ heta\in[0,2\pi)\,,$$

dove
$$ho=\sqrt{x^2+y^2}, \quad \cos heta=rac{x}{\sqrt{x^2+y^2}}, \quad \sin heta=rac{y}{\sqrt{x^2+y^2}}$$

se
$$w=\eta(\cos\phi+i\sin\phi),\quad \eta\in\mathbb{R}^+,\ \phi\in[0,2\pi)$$
 allora:

1.
$$zw = \rho \eta \left[\cos(\theta + \phi) + i\sin(\theta + \phi)\right];$$

2.
$$\frac{z}{w} = \frac{\rho}{\eta} [\cos(\theta - \phi) + i\sin(\theta - \phi)];$$

3.
$$z^n =
ho^n \left[\cos(n heta) + i\sin(n heta)
ight],$$
 " $Formula\ di\ Moivre$ ";

4.
$$\sqrt[n]{z}=\sqrt[n]{
ho}\left[\cos\left(rac{ heta+2k\pi}{n}
ight)+i\sin\left(rac{ heta+2k\pi}{n}
ight)
ight],\quad k=0,1,2,\ldots,(n-1);$$

Forma esponenziale

$$z=
ho e^{i heta},\
ho\in\mathbb{R}^+,\ heta\in[0,2\pi)$$
 .

se
$$w=\eta e^{i\phi},\ \eta\in\mathbb{R}^+,\ \phi\in[0,2\pi)$$
 allora:

1.
$$zw=
ho\eta e^{i(\theta+\phi)};$$

2.
$$\frac{z}{w} = \frac{\rho}{\eta} e^{i(\theta - \phi)};$$

3.
$$z^n = \rho^n e^{i(n\theta)}$$
;

4.
$$\sqrt[n]{z}=\sqrt[n]{
ho}e^{rac{i(\theta+2k\pi)}{n}},\quad k=0,1,2,\ldots,(n-1);$$

Limiti

Forme indeterminate

$$0\cdot\infty, \qquad rac{0}{0}, \qquad rac{\infty}{\infty}, \qquad \infty-\infty, \qquad 1^\infty, \qquad 0^0, \qquad \infty^0$$

N.B.: 0^{∞} , $\frac{0}{\infty}$, $\frac{\infty}{0}$ non sono forme indeterminate!

Limiti notevoli di successioni

Scala di infiniti/infinitesimi

$$n^n, \quad n!, \quad a^n \; (a>1), \quad n^b \; (b>0), \quad \log n$$

Forma semplice	Forma generale
$\lim_{n o +\infty} n^b = egin{cases} +\infty & ext{se } b > 0 \ 1 & ext{se } b = 0 \ 0 & ext{se } b < 0 \end{cases}$	/
$\lim_{n o +\infty} a^n = egin{cases} +\infty & ext{se } a>1 \ 1 & ext{se } a=1 \ 0 & ext{se } -1 < a < 1 \ ext{ one } a \leq 1 \end{cases}$	/
$\lim_{n o +\infty} \sqrt[n]{a} = 1 orall a>0$	/
$\lim_{n o +\infty} \sqrt[n]{n^b} = 1 orall b \in \mathbb{R}$	/
$\lim_{n o +\infty}rac{\log n}{n^b}=0 orall b>0$	/
$\lim_{n o +\infty}rac{n^b}{a^n}=0 orall a>1,\ orall b>0$	/
$\lim_{n o +\infty}rac{a^n}{n!}=0 orall a>1$	/
$\lim_{n o +\infty}rac{n!}{n^n}=0$	/
$\lim_{n o +\infty} \sqrt[n]{n\log^2 n} = 1$	/
$\lim_{n o +\infty} \left(1+rac{1}{n} ight)^n = e$	$\lim_{a_n o +\infty} \left(1+rac{1}{a_n} ight)^{a_n} = e$
$\lim_{n o +\infty}rac{\sin n}{n}=1$	$\lim_{a_n o +\infty}rac{\sin a_n}{a_n}=1=1$
	14

$$\lim_{n o +\infty} \log_a n = egin{cases} -\infty & \sec 0 < a < 1 \ +\infty & \sec a > 1 \end{cases} \left| \lim_{a_n o +\infty} \log_a a_n = egin{cases} -\infty & \sec 0 < a < 1 \ +\infty & \sec a > 1 \end{cases}
ight|$$

Limiti notevoli di funzioni

Siano A(x) e B(x) due polinomi di grado n e m rispettivamente, ovvero del tipo:

$$A(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 \ B(x) = b_m x^m + b_{m-1} x^{m-1} + \dots + b_1 x + b_0$$

Allora si ha:

$$\lim_{x o \infty} rac{P(x)}{Q(x)} = egin{cases} \infty & ext{se } n > m \ 0 & ext{se } n < m \ rac{a_n}{b_m} & ext{se } n = m \end{cases}$$

Forma semplice	Forma generale
$\lim_{x o\infty}rac{k}{x}=0, orall k\in\mathbb{R}$	$\lim_{f(x) o\infty}rac{k}{f(x)}=0, orall k\in\mathbb{R}$
$\lim_{x o 0}rac{k}{x}=\infty, orall k\in \mathbb{R}-\{0\}$	$\lim_{f(x) o 0}rac{k}{f(x)}=\infty, orall k\in \mathbb{R}-\{0\}$
$\lim_{x o +\infty} a^x = egin{cases} +\infty & ext{se } a > 1 \ 1 & ext{se } a = 1 \ 0 & ext{se } -1 < a < 1 \ ot ot \ \exists & ext{se } a \leq 1 \end{cases}$	$\lim_{f(x) o +\infty} a^{f(x)} = egin{cases} +\infty & ext{se } a > 1 \ 1 & ext{se } a = 1 \ 0 & ext{se } -1 < a < 1 \ ot ot \ $
$\lim_{x o -\infty} a^x = egin{cases} 0 & ext{se } a>1 \ 1 & ext{se } a=1 \ +\infty & ext{se } -1 < a < 1 \ ext{} & ext{se } a \leq 1 \end{cases}$	$\lim_{f(x) o -\infty} a^{f(x)} = egin{cases} 0 & ext{se } a>1 \ 1 & ext{se } a=1 \ +\infty & ext{se } -1 < a < 1 \ ext{} & ext{se } a \leq 1 \end{cases}$
$egin{aligned} \lim_{x o 0^+} \log_a x = egin{cases} +\infty & \sec 0 < a < 1 \ -\infty & \sec a > 1 \end{cases} \end{aligned}$	$\left \lim_{f(x) o 0^+} \log_a f(x) = egin{cases} +\infty & ext{se } 0 < a < 1 \ -\infty & ext{se } a > 1 \end{cases} ight.$
$\lim_{x o +\infty} \log_a x = egin{cases} -\infty & ext{se } 0 < a < 1 \ +\infty & ext{se } a > 1 \end{cases}$	$\lim_{f(x) o +\infty} \log_a f(x) = egin{cases} -\infty & ext{se } 0 < a < 1 \ +\infty & ext{se } a > 1 \end{cases}$
$\lim_{x o \infty} \left(1 + \frac{1}{x}\right)^x = e$	$\lim_{f(x) o\infty}\left(1+rac{1}{f(x)} ight)^{f(x)}=e$
$\lim_{x o\infty}x^{rac{1}{x}}=1$	$\lim_{f(x) o\infty}\left[f(x) ight]^{rac{1}{f(x)}}=1$
$\lim_{x o 0}(1+x)^{rac{1}{x}}=e$	$\lim_{f(x) o 0}\left[1+f(x) ight]^{rac{1}{f(x)}}=e$
	www.webtutordimatematica.it

$\left \lim_{x o 0}rac{\ln(1+x)}{x} ight.=1$	$\left \lim_{f(x) o 0}rac{\ln[1+f(x)]}{f(x)} ight.=1$
$\lim_{x o 0}rac{\log_a(1+x)}{x}=\log_a e orall a>0,\ a eq 1$	$\lim_{f(x) ightarrow 0}rac{\log_a[1+f(x)]}{f(x)}=\log_a e orall a>0,\ a eq 1$
$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$	$\lim_{f(x) o 0}rac{e^{f(x)}-1}{f(x)}=1$
$\lim_{x o 0}rac{lpha^x-1}{x}=\lnlphaoralllpha>0$	$\left \lim_{f(x) o 0}rac{lpha^{f(x)}-1}{f(x)} ight =\lnlphaoralllpha>0$
$\lim_{x o 0}rac{(1+x)^lpha-1}{x}=lphaoralllpha\in\mathbb{R}$	$\lim_{f(x) o 0}rac{\left[1+f(x) ight]^lpha-1}{f(x)}=lphaoralllpha\in\mathbb{R}$
$\lim_{x o 0^+} x^lpha \log_a x = 0 orall lpha > 0, \ a > 1$	$\lim_{f(x) o 0^+} \left[f(x) ight]^lpha \log_a f(x) = 0 orall lpha > 0, \ a > 1$
$\lim_{x o 0} rac{\sin x}{x} = 1$	$\lim_{f(x) o 0}rac{\sin f(x)}{f(x)}=1$
$\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \frac{1}{2}$	$\lim_{f(x)\to 0} \frac{1-\cos f(x)}{\left[f(x)\right]^2} = \frac{1}{2}$
$\lim_{x \to 0} \frac{1 - \cos x}{x} = 0$	$\lim_{f(x)\to 0} \frac{1-\cos f(x)}{f(x)} = 0$
$\lim_{x o 0} rac{ an x}{x} = 1$	$\lim_{f(x) o 0}rac{ an f(x)}{f(x)}=1$
$\lim_{x o 0} rac{rcsin x}{x} = 1$	$\lim_{f(x) o 0}rac{rcsin f(x)}{f(x)}=1$
$\lim_{x \to 0} \frac{\arctan x}{x} = 1$	$\lim_{f(x) o 0}rac{rctan f(x)}{f(x)}=1$
$\lim_{x o 0} rac{\sinh x}{x} = 1$	$\lim_{f(x) o 0}rac{\sinh f(x)}{f(x)}=1$
$\lim_{x\to 0} \frac{\cosh x - 1}{x^2} = \frac{1}{2}$	$\lim_{f(x)\to 0}\frac{\cosh f(x)-1}{\left[f(x)\right]^2}=\frac{1}{2}$
$\lim_{x o 0} rac{ anh x}{x} = 1$	$\lim_{f(x)\to 0} \frac{\tanh f(x)}{f(x)} = 1$

Derivate

Funzione (forma semplice)	Derivata	Funzione (forma generale)	Derivata
$k, k \in \mathbb{R}$	0		
$x^{lpha}, lpha\in\mathbb{R}$	$lpha x^{lpha-1}$	$ig \left[f(x) ight]^lpha$	$\Big lpha[f(x)]^{lpha-1} \cdot f'(x) \Big $
\sqrt{x}	$\frac{1}{2\sqrt{x}}$	$\sqrt{f(x)}$	$\left rac{1}{2\sqrt{f(x)}} \cdot f'(x) ight $
e^x	e^x	$e^{f(x)}$	$e^{f(x)} \cdot f'(x)$
a^x	$a^x \cdot \ln a$	$a^{f(x)}$	$a^{f(x)} \cdot \ln a \cdot f'(x)$
$\ln x$	$\frac{1}{x}$	$\ln f(x)$	$rac{1}{f(x)} \cdot f'(x)$
$\log_a x$	$\frac{1}{x \ln a}$	$\log_a f(x)$	$\left rac{1}{f(x) \ln a} \cdot f'(x) ight $
$\sin x$	$\cos x$	$\sin f(x)$	$\cos f(x) \cdot f'(x)$
$\cos x$	$-\sin x$	$\cos f(x)$	$-\sin f(x)\cdot f'(x)$
$\tan x$	$\frac{1}{\cos^2 x}$	$\tan f(x)$	$\frac{f'(x)}{\cos^2 f(x)}$
$\cot x$	$-\frac{1}{\sin^2 x}$	$\cot f(x)$	$-\frac{f'(x)}{\sin^2 f(x)}$
$\arcsin x$	$\frac{1}{\sqrt{1-x^2}}$	$\arcsin f(x)$ \$	$\left rac{1}{\sqrt{1-\left[f(x) ight]^{2}}}\cdot f'(x) ight $
$\arccos x$	$-\frac{1}{\sqrt{1-x^2}}$	$\arccos f(x)$	$-rac{1}{\sqrt{1-\left[f(x) ight]^2}}\cdot f'(x)$
$\arctan x$	$\frac{1}{1+x^2}$	$\arctan f(x)$	$rac{1}{1+\left[f(x) ight]^2}\cdot f'(x)$
arccot x	$-rac{1}{1+x^2}$	$arccot \ f(x)$	$-rac{1}{1+[f(x)]^2}\cdot f'(x)$
$\sinh x$	$\cosh x$	$\sinh f(x)$	$\cosh f(x) \cdot f'(x)$
$\cosh x$	$\sinh x$	$\cosh f(x)$	$\sinh f(x) \cdot f'(x)$
$\tanh x$	$\frac{1}{\cosh^2 x}$	$\tanh f(x)$	$\frac{f'(x)}{\cosh^2 f(x)}$
$\coth x$	$\frac{1}{\sinh^2 x}$	$\coth f(x)$	$\frac{f'(x)}{\sinh^2 f(x)}$

Derivata della funzione composta esponenziale $y=[f(x)]^{g(x)}$

$$y' = [f(x)]^{g(x)} \left[g'(x) \displaystyle \ln f(x) + rac{g(x)f'(x)}{f(x)}
ight]$$

Teoremi sul calcolo delle derivate

• DERIVATA DEL PRODOTTO DI UNA COSTANTE k PER UNA FUNZIONE f:

$$D[k \cdot f(x)] = k \cdot f'(x)$$

- DERIVATA DELLA SOMMA DI DUE FUNZIONI f e g:

$$D[f(x) + g(x)] = f'(x) + g'(x)$$

- DERIVATA DEL PRODOTTO DI DUE FUNZIONI f e g:

$$D[f(x)\cdot g(x)] = f'(x)\cdot g(x) + f(x)\cdot g'(x)$$

- DERIVATA DEL QUOZIENTE DI DUE FUNZIONI f e g:

$$D\left[rac{f(x)}{g(x)}
ight] = rac{f'(x)\cdot g(x) - f(x)\cdot g'(x)}{[g(x)]^2}$$

Teoremi di Rolle, Cauchy, Lagrange e de l'Hôpital

• TEOREMA DI ROLLE:

Sia $f:[a,b] o \mathbb{R}$ continua in [a,b] , derivabile in [a,b[e tale che f(a)=f(b) . Si ha:

$$\exists c \in]a,b[:f'(c)=0$$

• TEOREMA DI CAUCHY:

Siano $f,g:[a,b] o\mathbb{R}$ continue in [a,b], derivabili in]a,b[e tali che $g(a)\neq g(b)$ e $otin x\in]a,b[:f'(x)=g'(x)=0$. Si ha:

$$\exists \ c \in]a,b[: rac{f(b)-f(a)}{g(b)-g(a)} = rac{f'(c)}{g'(c)}$$

• TEOREMA DI LAGRANGE:

Sia $f:[a,b] o \mathbb{R}$ continua in [a,b], derivabile in]a,b[. Si ha:

$$\exists \ c \in]a,b[:f'(c)=rac{f(b)-f(a)}{b-a}$$

• TEOREMA DI DE L'HÔPITAL (utile per il calcolo dei limiti del tipo $\frac{0}{0}, \frac{\infty}{\infty}$):

Sia $f,g:(a,b) o \mathbb{R}$ e sia x_* o un punto di accumulazione $x_0\in (a,b)$ oppure $\pm\infty$. Si ha:

$$\left\{egin{aligned} &\lim_{x o x_*} f(x) = \lim_{x o x_*} g(x) = 0 ext{ oppure } \pm \infty \ &f,g ext{ derivabili } orall x
eq x_0 \ &g'(x)
eq 0 \ orall x ext{ appartenente ad un intorno di } x_* \ &\exists \lim_{x o x_*} rac{f'(x)}{g'(x)} \end{aligned}
ight\} \Rightarrow \lim_{x o x_*} rac{f(x)}{g(x)} = \lim_{x o x_*} rac{f'(x)}{g'(x)}$$

Max e min relativi e assoluti

• TEOREMA DI FERMAT:

Sia $f:X o\mathbb{R}$, $x_0\in \overset{\circ}{X}$ punto di max o min relativo tale che $\exists~f'(x_0).$ Si ha:

$$f'(x_0)=0$$

ullet Sia $f:X o\mathbb{R}$ una funzione continua in x_0 e derivabile in un suo intorno. Allora:

a.
$$egin{array}{ccc} f'(x)>0 & orall x\in I_-(x_0) \ f'(x)<0 & orall \in I_+(x_0) \ \end{array}
ight\} \Rightarrow & x_0 ext{ max relativo per } f$$

b.
$$egin{array}{ccc} f'(x) < 0 & orall x \in I_-(x_0) \ f'(x) > 0 & orall x \in I_+(x_0) \ \end{array} \} \Rightarrow \quad x_0 ext{ min relativo per } f$$

ullet Sia $f:X o\mathbb{R}$ derivabile n volte e sia x_0 tale che

$$f'(x_0) = f''(x_0) = \dots = f^{(n-1)}(x_0) = 0 \quad ext{ e} \quad f^{(n)}(x_0)
eq 0,$$

allora

a.
$$n$$
 pari e $f^{(n)}(x_0) < 0 \quad \Rightarrow \quad x_0$ max relativo

b.
$$n$$
 pari e $f^{(n)}(x_0)>0$ \Rightarrow x_0 min relativo

c.
$$n$$
 dispari e $f^{(n)}(x_0)>0$ \Rightarrow f crescente in x_0

d.
$$n$$
 dispari e $f^{(n)}(x_0) < 0 \quad \Rightarrow \quad f$ decrescente in x_0

Ricerca dei max e min relativi

- Se $f:X o\mathbb{R}$ è derivabile nell'interno di X allora
 - 1. si risolve l'equazione $f^\prime(x)=0$ per determinare i punti critici
 - 2. si applica il teorema 2) o 3) (visti sopra) per decidere se si tratta di max o min relativi.
- Se $f:X o\mathbb{R}$ non è derivabile nell'interno di X allora occorre esaminare due tipi di

punti:

- 1. punti critici (vedi caso precedente)
- 2. i punti $x_0 \in \overset{\circ}{X}$ tali che $ot\equiv f'(x_0)$: in questo caso bisogna verificare se si tratta di minimo o di massimo relativo applicando la definizione.

Ricerca dei max e min assoluti

ullet Confrontare i valori che $f:X o\mathbb{R}$ assume nei punti dei seguenti insiemi:

1.
$$\left\{x\in \overset{\circ}{X} \ : \ f'(x)=0
ight\}$$

3.
$$\{x \in FX \cup X\}$$

 $\bullet\,$ Scegliere il più grande M e il più piccolo m per trovare rispettivamente il massimo e il minimo della funzione

Integrali

Integrale (forma semplice)	Primitive	Integrale (forma generale)	Primitive
$\int 0 \ dx$	0		
$\int k \ dx, \ k \in \mathbb{R}$	kx + c		
$\int x^lpha \ dx, lpha \in \mathbb{R} \setminus \{-1\}$	$\left rac{x^{lpha+1}}{lpha+1}+c ight $	$igg \int \left[f(x) ight]^{lpha}\cdot f'(x)\;dx, lpha\in\mathbb{R}\setminus\{-1\}$	$rac{\left[f(x) ight]^{lpha+1}}{lpha+1}$
$\int rac{1}{2\sqrt{x}} \; dx$	$\sqrt{x} + c$	$\int rac{1}{2\sqrt{f(x)}} \cdot f'(x) \; dx$	$\boxed{\sqrt{f(x)} + c}$
$\int e^x \ dx$	$e^x + c$	$\int e^{f(x)} \cdot f'(x) \; dx$	$e^{f(x)} + c$
$\int a^x \ dx$	$\left rac{a^x}{\ln a} + c ight $	$\int a^{f(x)} \cdot f'(x) \; dx$	$\left rac{a^{f(x)}}{\ln a}+c ight $
$\int rac{1}{x} \ dx$	$\left \ln x + c ight $	$\int rac{1}{f(x)} \cdot f'(x) \; dx$	$\Big \ln f(x) + c$
$\int \cos x \ dx$	$\sin x + c$	$\int \cos[f(x)] \cdot f'(x) \ dx$	$\sin f(x) + c$
$\int \sin x \ dx$	$-\cos x + c$	$\int \sin[f(x)] \cdot f'(x) \ dx$	$-\cos f(x) + c$
$\int rac{1}{\cos^2 x} \; dx$	$\int an x + c$	$\int rac{f'(x)}{\cos^2 f(x)} \; dx$	$oxed{\tan f(x) + c}$
$\int -rac{1}{\sin^2 x} \ dx$	$\cot x + c$	$\int -rac{f'(x)}{\sin^2 f(x)} \; dx$	$\cot f(x) + c$
$\int rac{1}{\sqrt{1-x^2}} \; dx$	$\arcsin x + c$	$\int rac{1}{\sqrt{1-[f(x)]^2}} \cdot f'(x) \; dx$	$\arcsin f(x) + c$
$\int -rac{1}{\sqrt{1-x^2}}\;dx$	$\arccos x + c$	$\int -rac{1}{\sqrt{1-[f(x)]^2}}\cdot f'(x)\; dx$	$\left \arccos f(x) + c \right $
$\int rac{1}{1+x^2} \; dx$	$\arctan x + c$	$\int rac{1}{1+[f(x)]^2} \cdot f'(x) \; dx$	$\arctan f(x) + c$
$\int -rac{1}{1+x^2}\;dx$	$arccot \ x + c$	$\int -rac{1}{1+[f(x)]^2}\cdot f'(x)\; dx$	$arccot \ f(x) + c$
$\int \cosh x \ dx$	$\sinh x + c$	$\int \cosh[f(x)] \cdot f'(x) \ dx$	$\sinh f(x) + c$
$\int \sinh x \ dx$	$\cosh x + c$	$\int \sinh[f(x)] \cdot f'(x) \ dx$	$\cosh f(x) + c$
$\int rac{1}{\cosh^2 x} \ dx$	anh x + c	$\int rac{f'(x)}{\cosh^2 f(x)} \; dx$	$= \tanh f(x) + c$
$\int rac{1}{\sinh^2 x} \; dx$	$\coth x + c$	$\int rac{f'(x)}{\sinh^2 f(x)} \; dx$	$\coth f(x) + c$

Teoremi sul calcolo integrale

- INTEGRALE DEL PRODOTTO DI UNA COSTANTE k PER UNA FUNZIONE f:

$$\int k \cdot f(x) \; dx = k \cdot \int f(x) \; dx$$

• INTEGRALE DELLA SOMMA DI DUE FUNZIONI f e g:

$$\int f(x) + g(x) \; dx = \int f(x) \; dx + \int g(x) \; dx$$

METODO DI INTEGRAZIONE PER PARTI:

$$\int f'(x) \cdot g(x) \; dx = f(x) \cdot g(x) - \int f(x) \cdot g'(x) \; dx$$

ESTENSIONE DEL CONCETTO DI INTEGRALE:

$$\int_a^b f(x) \ dx = -\int_b^a f(x) \ dx$$

• PROPRIETA' ADDITIVA DELL'INTEGRALE ($c \in [a,b]$):

$$\int_a^b f(x) \ dx = \int_a^c f(x) \ dx + \int_c^b f(x) \ dx$$

• TEOREMA FONDAMENTALE DEL CALCOLO INTEGRALE:

Se $f(x):[a,b] o \mathbb{R}$ è continua in [a,b], allora, per ogni $x\in [a,b]$ si ha:

$$F(x) = \int_a^x f(x) \ dx \quad \Rightarrow \quad F'(x) = f(x)$$

• TEOREMA DELLA MEDIA:

Se $f(x):[a,b] o \mathbb{R}$ è continua in [a,b], esiste $c\in [a,b]$ tale che:

$$\int_a^b f(x) \ dx = (b-a) \cdot f(c)$$

Integrali impropri

• Se $f(x):(a,b) o\mathbb{R}$ è continua in]a,b], si ha:

$$\int_a^b f(x) \ dx = \lim_{x_0 o a^+} \int_{x_0}^b f(x) \ dx$$

• Se $f(x):(a,b) o\mathbb{R}$ è continua in [a,b[, si ha:

$$\int_a^b f(x) \ dx = \lim_{x_0 o b^-} \int_a^{x_0} f(x) \ dx$$

• Se $f(x):(a,b) o\mathbb{R}$ è continua in $[a,b]\setminus\{c\}$ con $c\in]a,b[$, si ha:

$$\int_a^b f(x) \; dx = \lim_{x_0 o c^-} \int_a^{x_0} f(x) \; dx + \lim_{x_0 o c^+} \int_{x_0}^b f(x) \; dx \; .$$

• Se $f(x):[a,+\infty[
ightarrow\mathbb{R}$ è integrabile in $[a,+\infty[$, si ha:

$$\int_a^{+\infty} f(x) \ dx = \lim_{x_0 o +\infty} \int_a^{x_0} f(x) \ dx$$

• Se $f(x):]-\infty,b] o\mathbb{R}$ è integrabile in $]-\infty,b]$, si ha:

$$\int_{-\infty}^b f(x) \; dx = \lim_{x_0 o -\infty} \int_{x_0}^b f(x) \; dx$$

• Se $f(x):]-\infty,+\infty[o\mathbb{R}$ è integrabile in $]-\infty,+\infty[$, si ha:

$$\int_{-\infty}^{+\infty} f(x) \; dx = \lim_{\substack{x_1 o -\infty \ x_2 o +\infty}} \int_{x_1}^{x_2} f(x) \; dx$$

Criteri di integrabilità

Se f(x) è una funzione continua in [a,b] e se

$$\lim_{x o b^-}(b-x)^pf(x) = egin{cases} 0 & ext{con } p < 1, ext{ allora } \int_a^b f(x) \ dx ext{ converge} \ & ext{con } p \geq 1, ext{ allora } \int_a^b f(x) \ dx ext{ diverge} \ & l \in \mathbb{R} \setminus \{0\} & ext{ allora } \int_a^b f(x) \ dx ext{ converge se e solo se } p < 1 \end{cases}$$

Se f(x) è una funzione continua in a,b e se

$$\lim_{x o a^+}(x-a)^pf(x)= egin{cases} 0 & ext{con }p<1, ext{ allora }\int_a^bf(x)\ dx ext{ converge} \ & ext{con }p\geq 1, ext{ allora }\int_a^bf(x)\ dx ext{ diverge} \ & l\in\mathbb{R}\setminus\{0\} & ext{ allora }\int_a^bf(x)\ dx ext{ converge se e solo se }p<1 \end{cases}$$

Se f(x) è una funzione continua in $[a,+\infty[$ e se

$$\lim_{x o +\infty} x^p f(x) = egin{cases} 0 & ext{con } p>1, ext{ allora } \int_a^{+\infty} f(x) \ dx ext{ converge} \ \infty & ext{con } p\leq 1, ext{ allora } \int_a^{+\infty} f(x) \ dx ext{ diverge} \ l\in \mathbb{R}\setminus\{0\} & ext{ allora } \int_a^{+\infty} f(x) \ dx ext{ converge se e solo se } p>1 \end{cases}$$

Funzione inversa e retta tangente

Una funzione strettamente monotona (crescente o decrescente) è invertibile.

Se una funzione f(x) è invertibile e derivabile in x_0 con $y_0=f(x_0)$, allora la sua derivata prima nel punto sarà:

$$Df^{-1}(y_0) = rac{1}{f'(x_0)}$$

L'equazione della retta tangente al grafico della funzione y=f(x) nel punto x_0 è

$$y - f(x_0) = f'(x_0)(x - x_0)$$

dove $f^{\prime}(x_{0})$ è la derivata della funzione f calcolata nel punto $x=x_{0}.$

Serie numeriche

Serie a termini non negativi

Condizione necessaria affinchè una serie a termini non negativi $\sum\limits_{n=1}^{+\infty}a_n$ converga è che

$$\lim_{n o +\infty} a_n = 0$$

Criteri per la determinazione del carattere di una serie numerica

• CRITERIO DEL RAPPORTO:

$$\lim_{n o +\infty}rac{a_{n+1}}{a_n}=legin{cases} <1 & ext{la serie converge} \ >1 & ext{la serie diverge} \ =1 & ext{nulla si può dire} \end{cases}$$

• CRITERIO DELLA RADICE:

$$\lim_{n o +\infty} \sqrt[n]{a_n} = l egin{cases} < 1 & ext{la serie converge} \ > 1 & ext{la serie diverge} \ = 1 & ext{nulla si può dire} \end{cases}$$

• CRITERIO DI RAABE:

CRITERIO DI CONDENSAZIONE DI CAUCHY:

Se a_n è non crescente ($a_{n+1} \leq a_n \ \forall n \in \mathbb{N}$), la serie è convergente se e solo se lo è anche:

$$\sum_{n=0}^{+\infty} 2^n a_{2^n}$$

• CRITERIO DEL CONFRONTO:

Siano
$$\sum\limits_{n=1}^{+\infty}a_n,\quad \sum\limits_{n=1}^{+\infty}b_n$$
 due serie a termini non negativi con $a_n\leq b_n\ orall n\in\mathbb{N}$, allora:

1. Se $\sum\limits_{n=1}^{+\infty}b_n$ è convergente con somma B, anche $\sum\limits_{n=1}^{+\infty}a_n$ è convergente con somma $A\leq B$.

2. Se
$$\sum_{n=1}^{+\infty} a_n$$
 è divergente, anche $\sum_{n=1}^{+\infty} b_n$ è divergente.

• CRITERIO DEL CONFRONTO CON LA SERIE ARMONICA GENERALIZZATA:

La serie armonica generalizzata è data da:

$$\sum_{n=1}^{+\infty} rac{1}{n^p} = egin{cases} +\infty & ext{se } p \leq 1 \ < +\infty & ext{se } p > 1 \end{cases}$$

- a. Se $\exists \ p>1: \lim_{n o +\infty} a_n \cdot n^p < +\infty$, allora la serie converge
- b. Se $\exists~p \leq 1: \lim_{n o +\infty} a_n \cdot n^p \in ~]0,+\infty]$, allora la serie diverge

Serie a termini alterni e serie oscillanti

Indichiamo con S la somma della serie e con S_n la somma parziale dei primi n termini.

• TEOREMA DI LEIBENITS:

Se
$$\sum\limits_{n=1}^{+\infty}(-1)^na_n,\ a_n\geq 0\ orall n\in\mathbb{N}$$
, a_n monotona non crescente ($a_{n+1}\leq a_n\ orall n\in\mathbb{N}$) e $\lim\limits_{n\to+\infty}a_n=0$ allora la serie converge ed inoltre $|S-S_n|\leq a_{n+1}$.

TEOREMA DELLE SERIE OSCILLANTI:

Se
$$\sum\limits_{n=1}^{+\infty}(-1)^na_n,\ a_n\geq 0\ orall n\in\mathbb{N}$$
, a_n monotona non decrescente ($a_{n+1}\geq a_n\ orall n\in\mathbb{N}$) e $\lim\limits_{n\to+\infty}a_n
eq 0$ allora la serie oscilla.

Serie numeriche assolutamente convergenti

Una serie numerica $\sum\limits_{n=1}^{+\infty}a_n$ si dice ASSOLUTAMENTE CONVERGENTE se $\sum\limits_{n=1}^{+\infty}|a_n|$ è convergente.

Se una serie numerica è assolutamente convergente allora è convergente.

Somma e prodotto di serie

La somma di due serie numeriche

$$\sum_{n=1}^{+\infty} a_n + \sum_{n=1}^{+\infty} b_n = \sum_{n=1}^{+\infty} (a_n + b_n) \left\{ egin{array}{l} ext{converge se entrambi convergono} \ ext{diverge se almeno una delle due diverge} \end{array}
ight.$$

Il prodotto di due serie numeriche

$$\sum_{n=1}^{+\infty}a_n*\sum_{n=1}^{+\infty}b_n=\sum_{n=1}^{+\infty}(c_n)$$

è convergente solo se entrambe le serie sono convergenti e almeno una delle due è assolutamente convergente

Alcune serie numeriche notevoli

• SERIE GEOMETRICA DI RAGIONE q:

$$\sum_{n=1}^{+\infty} q^{n-1} = egin{cases} rac{1}{1-q} & ext{se } -1 < q < 1 \ +\infty & ext{se } q \geq 1 \
ot
ot \qquad & ext{se } q \leq -1 \end{cases}$$

• SERIE TELESCOPICA (DI MENGOLI):

$$\sum_{n=1}^{+\infty} \frac{1}{n(n+1)} = 1$$