

Introduction to Machine Learning

From DBA's to Data Scientists

Sandesh Rao

VP AIOps for the Autonomous Database

in https://www.linkedin.com/in/raosandesh/

https://www.slideshare.net/SandeshRao4

Traditionally DBAs are Responsible for:

Tasks Specific to Business and Innovation

- Architecture, planning, data modeling
- Data security and lifecycle management
- Application related tuning
- End-to-End service level management

Maintenance Tasks

- Configuration and tuning of systems, network, storage
- Database provisioning, patching
- Database backups, H/A, disaster recovery
- Database optimization

Mainter

Autonomous Database Removes Generic Tasks

Freedom from Drudgery for DBA: More Time to Innovate and Improve the Business

Tasks Specific to Business and Innovation

- · Architecture, planning, data modeling
- Data security and lifecycle management
- Application related tuning
- End-to-End service level management

Maintenance Tasks

- Configuration and tuning of systems, network, storage
- Database provisioning, patching
- Database backups, H/A, disaster recovery
- Database optimization

The Evolution of the DBA/Database Developer Role

Data Engineer

Architecture, "data wrangler"

Data Security

Data classification, Data life-cycle mgmt

Solving data-driven problems Discovering insights Making predictions

Application Tuning

SQL tuning, connection mgmt

Database Developer to Data Scientist Journey

You Are Probably Already Doing Most of This Work!

Data extraction

Data wrangling
Deriving new attributes

("feature engineering")

...

. . .

..

Import predictions & insights
Translate and deploy ML models
Automate

Typically 80% of the work

Most data scientists spend only 20 percent of their time on actual data analysis and 80 percent of their time finding, cleaning, and reorganizing huge amounts of data, which is an inefficient data strategy¹

Eliminated or minimized with Oracle

Data Management platform becomes combine/hybrid DM + machine learning platform

"If I had an hour to solve a problem I'd spend 55 minutes thinking about the problem and 5 minutes thinking about solutions."

Albert Einstein

Why Machine Learning is important

Lots of Data needs to be crunched

No time to manually sift through the data

Machine Learning has become accessible

- · Software and algorithms are available
- Frameworks allow for massive training with no coding
- CI/CD available for MLOps
- It's not the algorithm you need to know about !!

Business use cases

- Find the use cases for maximum impact

Database Developer to Data Scientist Journey

ML Project Workflow

Identify and extract features Once the training da (important columns) from imported data the algorithm are This helps us identify the efficiency of Set the business objectives combined we get a r the algorithm Gather compare and Take the input data which is also called the training clean data data and apply the algorithm to it

For the algorithm to function efficiently, it is

(algorithm input parameters to the algorithm)

Types of Machine Learning

Supervised Learning

Predict future outcomes with the help of training data provided by human experts

Semi-Supervised Learning

Discover patterns within raw data and make predictions, which are then reviewed by human experts, who provide feedback which is used to improve the model accuracy

Unsupervised Learning

Find patterns without any external input other than the raw data

Reinforcement Learning

Take decisions based on past rewards for this type of action

What is Machine Learning?

Algorithms *automatically* sift through large amounts of data to discover hidden patterns, new insights and make predictions

Identify most important factor (Attribute Importance)

Predict customer behavior (Classification)

Find profiles of targeted people or items (Classification

Predict or estimate a value (Regression)

Segment a population (Clustering)

Find fraudulent or "rare events" (Anomaly Detection)

Determine co-occurring items in a "basket" (Associations)

Machine Learning Algorithms

Clustering

 Hierarchical k-means, Orthogonal Partitioning Clustering, Expectation-Maximization

Feature Extraction/Attribute Importance / Component Analysis

Classification

 Decision Tree, Naive Bayes, Random Forest, Logistic Regression, Support Vector Machine

Regression

 Multiple Regression, Support Vector Machine, Linear Model, LASSO, Random Forest, Ridge Regression, Generalized Linear Model, Stepwise Linear Regression

Association & Collaborative Filtering

Reinforcement Learning - brute force, Monte Carlo, temporal difference....

Neural network & deep Learning with Deep Neural Network

Many different use cases

The machine learning wants to know if we dozen wireless mice to Python book we just

What is Workload

Automatically check workload for past x mins

Calculated via machine learning

Optionally run on demand

Optionally snooze checking of a component

Highlight any abnormal workload issues

Decide if workload is abnormally high

Prediction (Every 5 minutes)

5 X 1 min metrics captured for each dimension & ASH report captured for later analysis Each anomaly is compared against the SME rules to determine which dimension it applies to

Any anomalies are ra along with recentl captured ASH repo

Metrics evaluated by the primary model to determine if there are anomalies

If there is no primary model
(i.e. <7 days of data or <=95% model confidence) then SME rules are used for anomaly detection

Oracle Machine Learning

G

Machine Learning Notebooks included in Autonomous Databases

Key Features:

- Collaborative UI for data scientist and analysts
- Packaged with Autonomous Databases
- Quick start Example notebooks
- Easy access to shared notebooks, templates, permissions, scheduler, etc.
- OML4SQL
- OML4Py coming soon
- Supports deployment of OML models

Statistical Functions

Simple SQL Syntax—Statistical Comparisons (t-tests)

Compare AVE Purchase Amounts Men vs. Women Grouped_By INCOME_LEVEL

```
SELECT SUBSTR(cust_income_level, 1, 22) income_level,
        AVG(DECODE(cust_gender, 'M', amount_sold, null)) sold_to_men,
        AVG(DECODE(cust_gender, 'F', amount_sold, null)) sold_to_women,
        STATS_T_TEST_INDEPU(cust_gender, amount_sold, 'STATISTIC', 'F') t_observed,
        STATS_T_TEST_INDEPU(cust_gender, amount_sold) two_sided_p_value
    FROM customers c, sales s
    WHERE c.cust_id = s.cust_id
    GROUP BY ROLLUP(cust_income_level)
    ORDER BY income_level, sold_to_men, sold_to_women, t_observed;
```


STATS_T_TEST_INDEPU (SQL) Example; P_Values < 05 show statistically significantly differences in the amounts purchased by men vs. women

Model Build and Real-time SQL Apply Prediction

Simple SQL Syntax—Attribute Importance - ML Model Build (PL/SQL)

Model Results (SQL query)

SELECT attribute_name, rank , attribute_value FROM BUY_INSURANCE_AI ORDER BY rank, attribute_name;

ATTRIBUTE_NAME	RANK	ATTRIBUTE_VALUE	
BANK_FUNDS	1	0.2161	
MONEY_MONTLY_OVERDRAWN	2	0.1489	
N TRANS ATM	3	0.1463	
N TRANS TELLER	4	0.1156	

Oracle Machine Leaning

Multiple Languages UIs Supported for End Users & Apps Development

R & Python Data Scientists

Notebook Users & DS Teams

"Citizen" Data Scientists

Feature Engineering - examples

Create New Derived Attributes or "Engineered Features"

-

Source Attribute		New Attribute/"Engineered Feature"
Date of Birth	→	AGE
Address	\longrightarrow	DISTANCE_TO_DESTINATION
		COMMUTE_TIME
Call detail records (CDRs)		#_DROPPED_CALLS
	\longrightarrow	PERCENT_INTERNATIONAL
Salary	\longrightarrow	PERCENT_VS_PEERS
Purchases	→	TOTALS_PER_CATEGORY (e.g. Food, Clothing)

Modeling and Machine Learning

First, Identify the Key Attributes That Most Influence the Target Attribute

Modeling and Machine Learning

Next, Build Predictive Models to Predict Customers who are Likely to Have Good_Credit

Preparatory Steps, Automation of Model Build and Test and Clean up Findse D D II ⊞ ⊕ using PL/SQL script

```
Nacript

/* Build a classification model and then generate a lift test result and an apply result. Click on the arrow in the the upper right. */

DECLARE
v_sql varchar2(100);

SEGIN
/*

Split Data into Train and Test
/* Split the Data into NI_TRAIN_DATA and NI_TEST_DATA */
EXECUTE INVEDIATE 'CREATE OR REPLACE VIEW NI_TRAIN_DATA AS SELECT * FROM CREDIT_SCORING_100K_V SAMPLE
```

```
/* Split the Data into NI_TRAIN_DATA and NI_TEST_DATA */
EXECUTE INMEDIATE 'CREATE OR REPLACE VIEW NI_TRAIN_DATA AS SELECT * FROM CREDIT_SCORING_180K_v SAMPLI
(68) SEED (1)';
DBMS_OUTPUT.PUT_LINE ('Created NI_TRAIN_DATA');
EXECUTE IMMEDIATE 'CREATE OR REPLACE VIEW NI_TEST_DATA AS SELECT * FROM CREDIT_SCORING_180K_v MIMUS
SELECT * FROM NI_TRAIN_DATA';
DBMS_OUTPUT.PUT_LINE ('Created NI_TEST_DATA');
```

```
/* Create a Build Setting (DT) for Model Build */

EXECUTE IMMEDIATE 'INSERT INTO ni_build_settings (setting_name VARCHAR2(30), setting_value VARCHAR2 (4000))';

EXECUTE IMMEDIATE 'INSERT INTO ni_build_settings (setting_name, setting_value) VALUES (''ALGO_NAME'', ''ALGO_NAME'');

EXECUTE IMMEDIATE 'INSERT INTO ni_build_settings (setting_name, setting_value) VALUES (''PREP_AUTO'', ''ON'')';

DBMS_OUTPUT.PUT_LINE ('Created model build settings table: ni_build_settings ');

/*

-- Populate and Adjust Model Setting (DT) for Model Build 
EXECUTE IMMEDIATE 'INSERT INTO ni_build_settings VALUES (''TREE_TERM_MINDEC_SPLIT'', 20)';

EXECUTE IMMEDIATE 'INSERT INTO ni_build_settings VALUES (''TREE_TERM_MINDEC_SPLIT'', 1)';

EXECUTE IMMEDIATE 'INSERT INTO ni_build_settings VALUES (''TREE_TERM_MINDEC_SPLIT'', 1)';

EXECUTE IMMEDIATE 'INSERT INTO ni_build_settings VALUES (''TREE_TERM_MINDEC_SPLIT'', 10)';

EXECUTE IMMEDIATE 'INSERT INTO ni_build_settings VALUES (''TREE_TERM_MINDEC_NOOE'', 0.05)';
```

Build and Test Classification Mo

```
/* Build a Classification Model */
 EXECUTE IMMEDIATE 'CALL DBMS DATA MINING.CREATE MODEL(''NI CLASS MODEL'', ''CLASSIFICATION'',
     "NI TRAIN DATA", "CUSTOMER ID", " CREDIT SCORE BIN", "ni build settings")";
 DBMS CUTPUT. PUT LINE ('Created model: N1 CLASS MODEL '):
 /* Test the Model by generating a apply result and then create a lift result */
 EXECUTE IMMEDIATE 'CALL DBMS DATA MINING.APPLY(''N1 CLASS MODEL'', ''N1 TEST DATA'', ''CUSTOMER ID
     , ''N1 APPLY RESULT'')';
 DBMS OUTPUT.PUT LINE ('Created apply result: N1 APPLY RESULT');
 EXECUTE IMMEDIATE 'CALL DBMS DATA MINING.COMPUTE LIFT(''N1 APPLY RESULT'', ''N1 TEST DATA''
     "CUSTOMER_ID", "CREDIT_SCORE_BIN", "NI_LIFT_TABLE", "Good Credit", "PREDICTION"
      , "PROBABILITY", 188)";
 DBMS_OUTPUT.PUT_LINE ('Created lift result: N1_LIFT_TABLE ');
DROP TABLE nl build settings PURGE: drop unneccessary - no table exists
CALL DBMS DATA MINING DROP MODEL('NI CLASS MODEL'): drop unneccessary - no model
exists
OROP TABLE NI APPLY RESULT PURGE: drop unneccessary - no table exists
DROP TABLE NI LIFT TABLE PURGE: drop unneccessary - no table exists
Created NI TRAIN DATA
Created NI TEST DATA
Created model build settings table: nl build settings
Crested model: N1 CLASS MODEL
Created apply result: N1 APPLY RESULT
Created lift result: NI LIFT TABLE
PL/SQL procedure successfully completed.
Took 25 see: Last undertail by ADWC WIS2 at October 17 2016; 2 50 54 PM noutdated?
```

Model Evaluation (Machine Learning)

Next, Build Predictive Models to Predict Customers who are Likely to Have Good_Credit

Test the ML model's accuracy

- Randomly selected "hold out" sample of data that was used to train the ML model
- Compute Cumulative Gains, Lift, Accuracy, etc.
- Review the attributes used in the model and model coefficients
- Make sure the model makes sense

Deployment

Apply the Models to Predict "Best Customers"

Simple SQL Apply scripts run 100% inside the Database for immediate ML model deployment

Coming Soon! | AutoML - new with OML4Py

Increase data scientist productivity - reduce overall compute time

Auto Algorithm Selection

- Identify in-database algorithm that achieves highest model quality
- Find best algorithm faster than with exhaustive search

Auto Feature Selection

- Reduce # of features by identifying most predictive
- Improve performance and accuracy

Auto Tune Hyperparamete

- Significantly improve model accuracy
- Avoid manual or exhaustive search techniques

Enables non-expert users to leverage Machine Learning

Coming Soon! | OML AutoML User Interface

"Code-free" user interface supporting automated end-to-end machine learning

Automate production and deployment of ML models

- Enhance Data Scientist productivity and user-experience
- · Enable non-expert users to leverage ML
- Unify model deployment and monitoring
- Support model management

Features

- Minimal user input: data, target
- Model leaderboard
- Model deployment via REST

Naive Bayes

Status

Running

Queued

Fe	atures											Q Search
	Name		Histogram	Importance +	Туре	Percent NULLs	Distinct	Average	Mode	Median	Min	Std devi
Z	GENDER	۲			VARCHAR2	0.000	2					
Z	AGE	٠	tilani		NUMBER	0.000	70	XXX.XX	XXX.XX	XXX.XX	XXX.XX	XXXXX
Ø	BANK_FUNDS	٠	tilani		NUMBER	0.000	23456	XXX.XX	XXX.XXX	X005.XX	X00.XX	XXX.XX
Z	LTV	٠	tilani		NUMBER	0.000	3678	XXX.XX	XXX.XXX	X00X.XX	XXX.XX	XX,XX
¥	SALARY	٠	tilani		NUMBER	0.000	23478	XXX.XX	XX.XXX	X001.XX	X001.XX	XX.XX
Z	MTG_AMOUNT	٠	tiliani	-	NUMBER	0.000	23456	XX.XX	XXX.XX	XXX.XX	XXX.XX	XXX.XX

Coming Soon! | Algorithms for Database 20c

Two major new ML algorithms

Gradient Boosted Trees (XGBoost)

- Highly popular and powerful algorithm Kaggle winners
- Classification, regression, ranking, survival analysis

MSET-SPRT

- Multivariate State Estimation Technique Sequential Probability Ratio Test (MSET-SPRT)
- Nonlinear, nonparametric anomaly detection algorithm designed to monitor critical processes.
- Detects subtle anomalies while also producing minimal false alarms.

Oracle Data Miner UI

Drag and Drop, Workflows, Easy to Use UI for "Citizen Data Scientist"

Easy to use to define analytical methodologies that can be shared SQL Developer Extension

Workflow API and generates SQL code for immediate deployment

Congratulations! Almost there ©

LOREM IPSUM DOLOR SIT AMET

Obtain a signed certificate. Obtaining a signed certificate involves creating a certificate signing request (CSR) and sending it to a CA in accordance with the CA's enrolment process. After conducting some checks on your company, the CA signs your request, encrypts it with a private key, and sends you a validated certificate. See the instructions provided by the CA for more information.

DATE PROPERTY DELANGE

SIGNATURE

Oracle Cloud Data Science Platform

Oracle Cloud Infrastructure Data Science

AutoML

- Automated algorithm selection and tuning
- Automates the process of running tests against multiple algorithms and hyperparameter configurations
- Checks results for accuracy and confirms that the optimal model and configuration are selected for use.
- This saves significant time for data scientists

Feature Selection

 Automated predictive feature selection simplifies feature engineering by automatically identifying key predictive features from larger datasets.

Model Evaluation

- Measure model performance against new data,
- Rank models over time to enable optimal behavior in production

Model Explanation

Explanation of the relative weighting and importance of the factors that go into generating a prediction

Oracle Cloud Data Science Platform

Oracle Cloud Infrastructure Data Science

Notebook Sessions

 Built-in cloud-hosted JupyterLab notebook sessions enable teams to build and train models using Python.

Visualization Tools

 Use popular open source visualization tools like plotly, matplotlib, and bokeh to visualize and explore data.

Open Source Machine Learning Frameworks

 Launch notebook sessions with popular machine learning frameworks like TensorFlow, Jupyter, Dask, Keras, XGboost, and scikit-learn, or bring your own packages.

ML and Al are just "Algorithms"

Algorithms Operate on Data

$$P(c \mid X) = P(x_1 \mid c) \times P(x_2 \mid c) \times \dots \times P(x_n \mid c) \times P(c)$$

Move the Algorithms; Not the Data!;

Sandesh Rao

VP AIOps for the Autonomous Database

@sandeshr

https://www.linkedin.com/in/raosandesh/ https://www.slideshare.net/SandeshRao4

