Digitális technika

X. Kódolók, dekódolók Aritmetikai áramkörök Komparátorok

igazságtáblázata

Kódoló: általában 1 az N-ből kódból készít bináris vagy BCD kódot

- a bemenetek száma alapján, illetve hogy milyen kódot állít elő sok típus lehetséges
- néhány alaptípus:

4 bemenetű bináris kódoló: a kimeneten megadja annak a bemenetnek a kódját, amelyre 1-es érkezett

A kimenetek logikai függvényei:

$$Q_0 = D_1 + D_3 \qquad Q_1 = D_2 + D_3$$

$$\mathsf{V} = \overline{\mathsf{D}}_{3} {}^{*} \overline{\mathsf{D}}_{2} {}^{*} \overline{\mathsf{D}}_{1} {}^{*} \mathsf{D}_{0} + \overline{\mathsf{D}}_{3} {}^{*} \overline{\mathsf{D}}_{2} {}^{*} \overline{\mathsf{D}}_{1} {}^{*} \overline{\mathsf{D}}_{0} + \overline{\mathsf{D}}_{3} {}^{*} \mathsf{D}_{2} {}^{*} \overline{\mathsf{D}}_{1} {}^{*} \overline{\mathsf{D}}_{0} + \mathsf{D}_{3} {}^{*} \overline{\mathsf{D}}_{2} {}^{*} \overline{\mathsf{D}}_{1} {}^{*} \overline{\mathsf{D}}_{0}$$

Feladat: Az igazságtáblázat alapján végezd el az egyszerűsítéseket, ellenőrizd valóban ezek jönnek-e ki

D_3	D ₂	D ₁	D ₀	Q ₁	Q ₀	V
0	0	0	0	X	Х	0
0	0	0	1	0	0	1
0	0	1	0	0	1	1
0	0	1	1	X	X	0
0	1	0	0	1	0	1
0	1	0	1	X	Х	0
0	1	1	0	Х	Х	0
0	1	1	1	Х	Х	0
1	0	0	0	1	1	1
1	0	0	1	Х	Х	0
1	0	1	0	Х	Х	0
1	0	1	1	Х	Х	0
1	1	0	0	X	X	0
1	1	0	1	Х	Х	0
1	1	1	0	X	X	0
1	1	1	1	X	X	0

0. bem.

1. bem.

2. bem.

3. bem.

<u>prioritás kódoló</u>: több bemenet lehet egyszerre aktív, közülük a legnagyobb prioritású (fontosságú) kódját adja meg a kimeneten

Feladat: Tervezzünk 4 bemenetű prioritás kódolót! Az igazságtáblázat alapján végezd el az egyszerűsítéseket, és írd fel a kimeneti függvényeket, majd valósítsd meg a kapcsolást!

	V	Q_0	Q ₁	D ₀	D ₁	D ₂	D_3
	0	Х	Х	0	0	0	0
0. bem.	1	0	0	1	0	0	0
1. bem.	1	1	0	0	1	0	0
1. bem.	1	1	0	1	1	0	0
2. bem.	1	0	1	0	0	1	0
2. bem.	1	0	1	1	0	1	0
2. bem.	1	0	1	0	1	1	0
2. bem.	1	0	1	1	1	1	0
3. bem.	1	1	1	0	0	0	1
3. bem.	1	1	1	1	0	0	1
3. bem.	1	1	1	0	1	0	1
3. bem.	1	1	1	1	1	0	1
3. bem.	1	1	1	0	0	1	1
3. bem.	1	1	1	1	0	1	1
3. bem.	1	1	1	0	1	1	1
3. bem.	1	1	1	1	1	1	1

4 bemenetű prioritás kódoló tervezése

megoldás

Kimeneti függvényének egyszerűsítése (V, Q1, Q0)

Konjunktív alak kiolvasása egyből

$$V = D_3 + D_2 + D_1 + D_0$$

4 bemenetű prioritás kódoló tervezése

Kapcsolási rajz

<u>megoldás</u>

 $Q_1 = D_3 + D_2$

 $Q_0 = D_3 + D_1 * \overline{D}_2$

 $V = D_3 + D_2 + D_1 + D_0$

BCD kódoló

10 bemenetű kódoló: a kimeneten megadja annak a bemenetnek a kódját, amelyre 1-es érkezett

Dekódoló: bináris vagy BCD kódból általában 1 az N-ből kódot készít

- egyszerre mindig egy kimenet aktív, az aktív szint lehet 1 vagy 0 is
- az aktív kimenet megadása a címbemenetekkel történik
- felhasználása: áramkörök kiválasztása → egyszerre csak egy engedélyezése pl. címdekódolók
- nagyság szerint (kimenetek/bemenetek száma) több típus lehet

2/4-es dekódoló egy lehetséges megvalósítása

Feladat: - igazságtáblázatot felvenni és ellenőrizni - kapcsolási rajzát elkészíteni

BCD dekódoló

- lehet nem teljesen dekódolt → egyszerűbb felépítés, de tiltott bemenet esetén is van aktív kimenet
- lehet teljesen dekódolt → tiltott bemenet esetén nincs aktív kimenet
- az aktív kimeneti szint lehet 0 és 1 is

SN7442 BCD dekódoló teljesen dekódolt, aktív 0 kimenetekkel

A kimenetek logikai függvényei:

$$\overline{Q}_0 = \overline{D} * \overline{C} * \overline{B} * \overline{A} \qquad \overline{Q}_1 = \overline{D} * \overline{C} * \overline{B} * A$$

$$\overline{Q}_2 = \overline{D} * \overline{C} * B * \overline{A} \qquad \dots$$

Mivel teljesen dekódolt ha C=D=1 → minden kimenet 1-es és C, D bemeneteket felhasználva '0' aktív szintű engedélyező bemenet kialakítása lehetséges

Dekódoló/demultiplexer

- több olyan konkrét áramköri megvalósítás van, amely demultiplexerként és bináris dekódolóként is használható
- pl. SN74LS138 vagy CD4555

SN74LS138 1/8-as DMX vagy 3/8-as bináris dekódoló

Dekódolók összekapcsolása

- pl. 4/16-os dekódoló kialakítása 2db 3/8-as dekódolóból
- egy engedélyező bemenetet használunk plusz címbemenetnek → 0 esetén az első, 1 esetén a második dekódoló működik

1.mintafeladat

Tervezzünk kódátalakító kombinációs hálózatot, amely a bemenetére érkező Aiken kódból N-BCD kódot hoz létre

<u>megoldás</u>

- 1. lépés Igazságtáblázat elkészítése
- 2. lépés Az 5db kimenet függvényének egyszerűsítése (W, X, Y, Z, V)
- 3. lépés A kimeneti függvényének alapján a kapcsolási rajz elkészítése

2	4	2	1	8	4	2	1	
Α	В	С	D	W	X	Υ	Z	V
0	0	0	0	0	0	0	0	1
0	0	0	1	0	0	0	1	1
0	0	1	0	0	0	1	0	1
0	0	1	1	0	0	1	1	1
0	1	0	0	0	1	0	0	1
0	1	0	1	Х	Х	Х	Х	0
0	1	1	0	Х	Х	Х	Х	0
0	1	1	1	Х	Х	Х	Х	0
1	0	0	0	X	X	Х	X	0
1	0	0	1	X	Х	Х	X	0
1	0	1	0	X	Х	Х	X	0
1	0	1	1	0	1	0	1	1
1	1	0	0	0	1	1	0	1
1	1	0	1	0	1	1	1	1
1	1	1	0	1	0	0	0	1
1	1	1	1	1	0	0	1	1

1.mintafeladat

2. lépés Kimeneti függvényének egyszerűsítése (W, X, Y)

$$W = B*C$$

1.mintafeladat

2. lépés Kimeneti függvények egyszerűsítése (Z, V)

2.mintafeladat

 Tervezzünk kódátalakító kombinációs hálózatot, amely a bemenetére érkező

Gray kódból (7-14)

N-BCD kódot hoz létre (7-14)

Két decimális számjegy!!

ι,	8	4	2	1	1	8	4	2	1	
	Α	В	С	D	V	W	X	Y	Z	K
(0	0	0	0	X	X	X	X	X	0
(0	0	0	1	X	Х	X	Х	X	0
(0	0	1	1	X	X	X	X	X	0
(0	0	1	0	Х	Х	Х	Х	X	0
(0	1	1	0	Х	Х	Х	Х	Х	0
(0	1	1	1	Х	Х	Х	Х	Х	0
(0	1	0	1	Х	Х	Х	Х	Х	0
(0	1	0	0	0	0	1	1	1	1
-	1	1	0	0	0	1	0	0	0	1
	1	1	0	1	0	1	0	0	1	1
	1	1	1	1	1	0	0	0	0	1
	1	1	1	0	1	0	0	0	1	1
	1	0	1	0	1	0	0	1	0	1
	1	0	1	1	1	0	0	1	1	1
	1	0	0	1	1	0	1	0	0	1
-	1	0	0	0	Х	Х	Х	Х	X	0

1.feladat

Írd fel az alábbi áramkörök kimeneteire a felvett logikai értéket, ha a bemenetekre a rajzokon látható logikai szinteket adjuk!

2 feladat

- Tervezzünk kombinációs hálózatot, amely a bemenetére (4 bemenet) érkező normál BCD kódból Aiken kódot hoz létre (4 kimenet)

3.feladat

 Tervezzünk kombinációs hálózatot, amely a bemenetére (4 bemenet) érkező Stibitz kódból N-BCD kódot hoz létre (4 kimenet)

4.feladat

- Tervezzünk kombinációs hálózatot, amely a bemenetére (4 bemenet) érkező normál BCD kódból 5 bites Johnson kódot hoz létre (5 kimenet)

- bináris műveletvégző áramkörök
 bináris vagy BCD kódú operandusok
- a műveletek mind visszavezethetők összeadások, komplemens képzések és léptetések sorozatára
 - pl. balra léptetés 1 bittel \rightarrow szorzás 2-vel jobbra léptetés 1 bittel \rightarrow osztás 2-vel szám 2-es komplemens képzése (A_{2K}) \rightarrow szorzás (-1)-el \rightarrow -A A + B_{2K} \rightarrow A-B
- léptetés → regiszterekkel
 összeadás, kivonás → összeadó áramkörrel

Fél összeadó

Nem veszi figyelembe az előző helyi értéken keletkező átvitelt

pl. 1 bites fél összeadó

Α	В	S	С
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

A kimenetek logikai függvényei:

$$S = \overline{A}*B + A*\overline{B}$$

 $C = A*B$

1bites teljes összeadó

Figyelembe veszi az előző helyi értéken keletkező átvitelt

Α	В	Cn	S	C _{n+1}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

A kimenetek logikai függvényei:

$$S = \overline{A} * \overline{B} * C_n + \overline{A} * B * \overline{C}_n + A * \overline{B} * \overline{C}_n + A * B * C_n$$

$$C_{n+1} = A * \overline{B} * C_n + \overline{A} * B * C_n + A * B * \overline{C}_n + A * B * \overline{C}_n$$

1 bites teljes összeadó megvalósítása félösszeadókkal

4 bites teljes összeadó megvalósítása 1 bites összeadókkal

Az átvitel sorosan terjed! → lassító tényező!!! → átvitel gyorsító áramkör

4 bites teljes összeadó

Átvitel gyorsító áramkör: az operandus bitjeiből egy kombinációs hálózat egyszerre meghatározza az egyes helyi értékekhez tartozó átviteleket, és ezeket a megfelelő bemenetekre juttatja (párhuzamosan)

pl. SN7482, SN7483, CD4008 átvitel gyorsítás nélküli összeadók, de az SN74283 átvitel gyorsítással rendelkezik

<u>Kivonás</u>

Kivonó áramkör külön nincs, összeadásra vezethető vissza ! $S = A - B = A + (-B) = A + B_{2K}$ (2-es komplemens !)

4 bites összeadó-kivonó áramkör

Komparátor

- két szám (x,y) összehasonlítását végzi
- összehasonlítási feltételek: x=y x<y x>y

Azonosság komparátor

- két szám egyenlőségét vizsgálja

több bites

- minden helyi értéken egyezni kell a biteknek!

Nagyság komparátor

- vagy amplitúdó komparátor
- mindhárom viszony kijelzése (x=y x<y x>y)

1 bites

Χ	Υ	$Q_{x>y}$	$Q_{x=y}$	$Q_{x \le y}$	
0	0	0	1	0	x=y
0	1	0	0	1	x <y< td=""></y<>
1	0	1	0	0	x>y
1	1	0	1	0	x=y

$$Q_{x>y} = X*\overline{Y}$$

$$Q_{x=y} = X*Y + \overline{X}*\overline{Y}$$

$$Q_{x$$

Minta feladat

Tervezzünk 2 bites nagyság komparátort! Az igazságtáblázat alapján végezd el az egyszerűsítéseket, írd fel a kimeneti függvényeket, majd valósítsd meg a kapcsolást!

Minta feladat

Tervezzünk 2 bites nagyság komparátort! megoldás

Kimeneti függvényének egyszerűsítése

$$Q_{x < y} = \overline{X}_1 * Y_1 + \overline{X}_0 * Y_1 * Y_0 + \overline{X}_1 * \overline{X}_0 * Y_0$$

$$Q_{x=y} = \overline{X}1^{*}\overline{X}0^{*}\overline{Y}1^{*}\overline{Y}0 + \overline{X}1^{*}X0^{*}\overline{Y}1^{*}Y0 + X1^{*}X0^{*}Y1^{*}Y0 + X1^{*}\overline{X}0^{*}Y1^{*}\overline{Y}0$$

10.6. Komparátorok

1. feladat

Tervezzünk 2 bites szorzó áramkört! Az igazságtáblázat alapján végezd el az egyszerűsítéseket, írd fel a kimeneti függvényeket, majd valósítsd meg a kapcsolást!

2. feladat

Tervezzünk 2 bites fél összeadót! Az igazságtáblázat alapján végezd el az egyszerűsítéseket, írd fel a kimeneti függvényeket, majd valósítsd meg a kapcsolást!

