Supervised model comparison

Linus Sjöbro 2020-03-10

Business understanding

- The problem
 - What properties decides the quality of a wine?
- Project goals
 - Evaluate datamining models
 - Accuracy of the models

Data understanding

- Wine quality dataset for red wines
 - 11 inputs
 - 1 output
 - Quality

Data preparation

- Remove weak correlations
 - Residual sugar
 - pH
 - Free sulfur dioxide

Modelling

- Decision tree
- KNN
- Hold out
 - 30% training data
 - 70 % test data

Evaluation

- Confusion Matrix
- Decision tree
 - Accuracy: 85.5 %
- KNN
 - Accuracy: 87.0 %
 - \bullet With K = 12

87.0 885.0 886

Figur 2: K value distribution

Figur 1: Decision tree

Deployment

- Good and useful result
- Decision tree might be better

