

▲ 대구가톨릭대학교 从量时以(jot)\$P\$咖啡特别的时

빅데이터 회귀 분석

Scikit Learn API 사용법

Scikit Learn API 장점

Scikit Learn 기본 사용법

간단한 회귀 분석

• 데이터로부터 모델을 만드는 학습 과정

1) 개요

"데이터 표현 방법"

1) 개요

"데이터 표현 방법"

대구가톨릭대학교

人量.时以(IOT)\$中部州后 4时的时

"데이터 표현 방법"

import seaborn as sns
iris = sns.load_dataset('iris')
iris.head(4)

	sepal_length	sepal_width	petal_length	petal_width	species
1	5.1	3.5	1.4	0.2	setosa
2	4.9	3.0	1.4	0.2	setosa
3	4.7	3.2	1.3	0.2	setosa
4	4.6	3.1	1.5	0.2	setosa

"데이터 표현 방법"

import seaborn as sns
iris = sns.load_dataset('iris')
iris.head(4)

	sepal_length	sepal_width	petal_length	petal_width	species
-	5.1	3.5	1.4	0.2	setosa
2	4.9	3.0	1.4	0.2	setosa
3	4.7	3.2	1.3	0.2	setosa
4	4.6	3.1	1.5	0.2	setosa

꽃 한 개체

"데이터 표현 방법"

import seaborn as sns iris = sns.load_dataset('iris') iris.head(4)

	sepal_length	sepal_width	petal_length	petal_width	species
-	5.1	3.5	1.4	0.2	setosa
2	4.9	3.0	1.4	0.2	setosa
3	4.7	3.2	1.3	0.2	setosa
4	4.6	3.1	1.5	0.2	setosa

꽃 한 개체

1) 개요

"데이터 표현 방법"

import seaborn as sns iris = sns.load_dataset('iris') iris.head(4)

	sepal_length	sepal_width	petal_length	petal_width	spe	ies
1	5.1	3.5	1.4	0.2	set	osa
2	4.9	3.0	1.4	0.2	set	osa
3	4.7	3.2	1.3	0.2	set	osa
4	4.6	3.1	1.5	0.2	set	osa
\					1	1
꽃 한 개체					꽃의	품종

1) 개요

"데이터 표현 방법"

import seaborn as sns iris = sns.load_dataset('iris') iris.head(4)

-	+	sepal_length	sepal_width	petal_length	petal_width	species	->[종속 변수
	-	5.1	3.5	1.4	0.2	setosa		
	2	4.9	3.0	1.4	0.2	setosa		
	3	4.7	3.2	1.3	0.2	setosa		
	4	4.6	3.1	1.5	0.2	setosa		
	\					\		
꽃	한 개체				1	꽃의 품종	5	

1) 개요

"Scikit Learn API 설계 기본 원칙"

일관성	모든 객체는 사용법이 일관된 공통 인터페이스를 공유
검사	모든 파라미터 값은 외부에서 확인 가능한 공개 속성임
제한된 계층 구조	알고리즘만 파이썬 클래스로 표현되고, 데이터는 표준 포맷 사용
구성	머신러닝 작업은 기본적으로 제공되는 기본 알고리즘의 시퀀스로 구성됨
합리적 기본	사용자 지정이 필요한 파라미터는 적절한 기본값으로 설정

서로 다른 API를 사용해도 공통 인터페이스를 사용

넘파이, 판다스와 같은 파이썬 표준 포맷을 사용

배우기 쉽고 응용이 편리하도록 개발

사물년((bif))와함께하는 박네이터

1. Scikit Learn

1) 개요

"Scikit Learn API 사용 단계"

- 1 Scikit Learn API에서 적절한 추정기 클래스를 임포트 해서 사용하고자 하는 모델을 선택한다.
- 2 클래스로부터 인스턴스를 생성하고 초모수(Hyper-parameter)를 설정한다.
- 3 데이터를 특징 배열과 대상 배열로 준비한다.
- 4 모델 인스턴스의 fit() 메소드를 호출해서 데이터를 학습한다.
- 5 정확도를 확인하고 새로운 데이터에 모델을 적용한다.

2) Scikit Learn 기본 사용법

"간단한 회귀 분석"

import matplotlib.pyplot as plt import numpy as np

rng=np.random.RandomState(42) x=10*rng.rand(50) y=2*x-1+rng.randn(50) plt.scatter(x, y);

"간단한 회귀 분석"

import matplotlib.pyplot as plt import numpy as np

rng=np.random.RandomState(42) x=10 * rng.rand(50) y=2 * x-1+rng.randn(50) plt.scatter(x, y);

"간단한 회귀 분석"

import matplotlib.pyplot as plt import numpy as np

rng=np.random.RandomState(42) x=10*rng.rand(50) y=2*x-1+rng.randn(50) plt.scatter(x, y);

"간단한 회귀 분석"

import matplotlib.pyplot as plt import numpy as np

rng=np.random.RandomState(42) x=10*rng.rand(50) y=2*x-1+rng.randn(50) plt.scatter(x, y);

"간단한 회귀 분석"

import matplotlib.pyplot as plt import numpy as np

rng = np.random.RandomState(42)

x = 10 * rng.rand(50)

y=2*x-1+rng.randn(50)

plt.scatter(x, y);

"간단한 회귀 분석"

y=ax+b

선형 회귀 분석의 결과가 예상대로 나오는지 확인 필수

3) 회귀 분석 과정

"모델 클래스 선택"

from sklearn.linear_model import LinearRegression

3) 회귀 분석 과정

"모델 초모수 선택"

model = LinearRegression(fit_intercept=True)

3) 회귀 분석 과정

- "모델 초모수 선택"
- model = LinearRegression(fit_intercept=True)
 - 절편 사용 여부 결정
 - 절편 사용 OK
- LinearRegression 클래스에 절편 옵션을 사용하는 model 인스턴스를 생성하는 과정

3) 회귀 분석 과정

"데이터 차원 변경"

X = x[:, np.newaxis]X.shape

X = x.reshape(50, 1)X.shape

사물년네(iot)와함께하는 박네이터

3) 회귀 분석 과정

"모델에 데이터 적용"

model.fit(X, y)

3) 회귀 분석 과정

- "모델에 데이터 적용"
- model.fit(X, y)
 - 모델에 따라 결정된 여러 가지 내부 계산
 - 계산 결과는 모델 인스턴스 속성에 저장

- "모델확인"
- print(model.coef_) → [1.9776566]
- print(model.intercept_) → -0.9033107255311146

3) 회귀 분석 과정

"모델 정확도 확인"

model.score(X, y)

0.97 정도의 R²(결정 계수)값 산출

1에 가까운 값을 나타낼 수록 정확도가 높다고 판단

3) 회귀 분석 과정

"모델 시각화"

xfit = np.linspace(-1, 11)
 plt.scatter(x, y)
 plt.plot(xfit, model.coef_ * xfit + model.intercept_, '-r');

2 Scikit Learn API 사용법

Scikit Learn API 장점

Scikit Learn 기본 사용법

간단한 회귀 분석

사물년(()()() 사람에 하는 박네 () 터

이번 시간에는

실습 참고 자료

- · Colab 노트북 파일
- · Matplotlib 공식 사이트
 - → https://matplotlib.org/tutorials/index.html

사물되네(阿)와함께하는 백세에

다음 시간에는

3 빅데이터 회귀 분석 심화

최적의 모델 선택

Scikit Learn 다항식 회귀 모델

학습 곡선