Introduction to Stochastic Differential Equations: Quiz II

Pr. Jean-François Jabir

Fall 2017

First name: Last name:

Course question.

• Formulate the complete definition of a weak solution to a one-dimensional Stochastic Differential Equation of the form:

(*)
$$\begin{cases} dX_t = b(t, X_t) dt + \sigma(t, X_t) dW_t, \ 0 \le t \le T \\ X_0 = \xi \sim \mu_0, \end{cases}$$

for T a finite time horizon, μ_0 a given probability measure on \mathbb{R} such that $\int |x|\mu_0(dx) < \infty$, $b:[0,T]\times\mathbb{R}\to\mathbb{R}$ and $\sigma:[0,T]\times\mathbb{R}\to\mathbb{R}$ two given Borel functions. **Bonus**: Formulate the differences between a weak solution and a strong solution to (*).

Exercise 1. Let σ, b be two given real numbers and let $(W_t; t \ge 0)$ be a standard Brownian motion. Define the process:

$$X_t = bt + \sigma W_t, \ t \ge 0.$$

Apply the Itô formula to the following cases:

(a)
$$(X_t)^3$$
; (b) $\sin(X_t)$; (c) $\frac{1}{1+(X_t)^2}$.

Exercise 2. Consider the SDE

$$(**) dX_t = -X_t dt + dW_t, X_0 = 1.$$

- 1. Justify that (**) admits a unique strong solution $(X_t; t \ge 0)$.
- 2. Show that $Y_t = e^t X_t$ is a square integrable martingale given by

$$Y_t = 1 + \int_0^t e^s \, dW_s.$$

3. Deduce from the preceding question the expectation and variance of $(X_t; t \ge 0)$ and show that $\lim_{t\to\infty} \mathbb{E}[X_t] = 0$.