Import the dataset and do usual exploratory analysis steps like checking the structure & characteristics of the dataset

- 1.1. The dataset given contains columns which include datatypes such as String, Integer, Float and Timestamp.
- 1.2. The time period for which the data is given ranges from 2016-09-04 to 2018-10-17.
- 1.3. SELECT DISTINCT customer_city, customer_state FROM `Target_case.customers_table` JOIN `Target_case.orders_table` USING (customer_id);

JOB IN	FORMATION	RESULTS	JSON	EXECUTION DETAILS
Row /	customer_state	11	customer_city	4
1	RN		acu	
2	CE		ico	
3	RS		ipe	
4	CE		ipu	
5	SC		ita	
6	SP		itu	
7	SP		jau	
8	MG		luz	
9	SP		noa	

SCHEMA	DETAILS	PREVIEW	I	LINEAGE	
∓ Fil	ter Enter property nan	ne or value			
	Field name		Туре	Mode	Key
	geolocation_zip_code	e_prefix	INTEGE	R NULLABLE	E
	geolocation_lat		FLOAT	NULLABL	E
	geolocation_lng		FLOAT	NULLABL	E
	geolocation_city		STRING	NULLABLE	Ε
	geolocation_state		STRING	NULLABLE	Ē
	r_items_table		JERY •		СОРУ
ordei	r_items_table	Q QI PREVIEW		+2SHARE	СОРУ
	DETAILS	PREVIEW	<i>I</i>		СОРУ
SCHEMA	DETAILS	PREVIEW	<i>I</i>		COPY Key Coll
SCHEMA	DETAILS ter Enter property nan	PREVIEW me or value	1	LINEAGE	
SCHEMA	DETAILS ter Enter property nan Field name	PREVIEW me or value Type		LINEAGE	
SCHEMA	DETAILS ter Enter property nan Field name order_id	PREVIEW me or value Type STRING	I I	Mode NULLABLE	
SCHEMA	DETAILS ter Enter property nan Field name order_id order_item_id	PREVIEW me or value Type STRING	I I	Mode NULLABLE NULLABLE	
SCHEMA	DETAILS ter Enter property nan Field name order_id order_item_id product_id	PREVIEW me or value Type STRING INTEGE	I I	Mode NULLABLE NULLABLE NULLABLE	
SCHEMA	DETAILS ter Enter property name Field name order_id order_item_id product_id seller_id	PREVIEW me or value Type STRING INTEGE STRING	I I	Mode NULLABLE NULLABLE NULLABLE NULLABLE	

= pay	/ments_table	Q QUERY -	+2SHARE
SCHEM	IA DETAILS	PREVIEW	LINEAGE
=	Filter Enter property r	name or value	
	Field name	Туре	Mode
	order_id	STRING	NULLABLE
	payment_sequentia	al INTEGER	NULLABLE
	payment_type	STRING	NULLABLE
	payment_installme	ints INTEGER	NULLABLE
	payment_value	FLOAT	NULLABLE

Is there a growing trend on e-commerce in Brazil? How can we describe a complete scenario? Can we see some seasonality with peaks at specific months? SELECT EXTRACT(YEAR FROM o.order_purchase_timestamp) AS order_year, EXTRACT(MONTH FROM o.order_purchase_timestamp) AS order_month, COUNT(DISTINCT o.order_id) AS order_count, round(sum(p.payment_value),3) as sales_value **FROM** `Target_case.orders_table` as o join `Target_case.payments_table` as p on o.order_id = p.order_id **GROUP BY** order_year, order_month ORDER BY order_year, order_month;

sales_value ▼	order_count ▼	order_month ▼	order_year ▼
252.24	3	9	2016
59090.48	324	10	2016
19.62	1	12	2016
138488.04	800	1	2017
291908.01	1780	2	2017
449863.6	2682	3	2017
417788.03	2404	4	2017
592918.82	3700	5	2017
511276.38	3245	6	2017
592382.92	4026	7	2017
674396.32	4331	8	2017

The above query and table represent the order_count and their corresponding payment_value across month on month. For the year 2017, there is gradual increase in count of orders month on month which peaks around the month of November. The payment_value is the highest as well in the month of November for the year 2017 which is in 7-figures.

The year 2018 shows a marginal increase in sales as each month reaches a payment_value in 7 figures compared to only 1 month from the year 2017 and the count of orders is above 6000+ for each month of 2018 up until month 9 which sees a sharp drop to almost 2 digit and a single digit order count for the month 10 (October).

The sales from September of 2016 to October of 2018 follows a curve with a slow and gradual increase in sales month on month with a sharp drop in the month of September and October in 2018.

What time do Brazilian customers tend to buy (Dawn, Morning, Afternoon or Night)?

```
SELECT
CASE
WHEN EXTRACT(HOUR FROM o.order_purchase_timestamp) >= 0 AND EXTRACT(HOUR FROM o.order_purchase_timestamp) < 6 THEN 'Dawn'
WHEN EXTRACT(HOUR FROM o.order_purchase_timestamp) >= 6 AND EXTRACT(HOUR FROM o.order_purchase_timestamp) >= 12 AND EXTRACT(HOUR FROM o.order_purchase_timestamp) >= 12 AND EXTRACT(HOUR FROM o.order_purchase_timestamp) >= 12 AND EXTRACT(HOUR FROM o.order_purchase_timestamp) < 18 THEN 'Afternoon'
ELSE 'Night'
END AS purchase_time_segment,
COUNT(DISTINCT o.order_id) AS order_count
FROM
'Target_case.orders_table' as o
GROUP BY
purchase_time_segment;
```

purchase_time_segment ▼	order_count ▼
Morning	22240
Dawn	4740
Afternoon	38361
Night	34100

Based on the order count, Brazilian customers tend to place the highest orders in the 'afternoon' between 4-5 PM.

Get month on month orders by states

SELECT EXTRACT(YEAR FROM o.order_purchase_timestamp) AS year, EXTRACT(MONTH FROM o.order_purchase_timestamp) AS month,

c.customer_state,

COUNT(*) AS order_count

FROM `Target_case.orders_table` as o join `Target_case.customers_table` as c on o.customer_id = c.customer_id

GROUP BY customer_state, year, month

ORDER BY customer_state, year, month;

year ▼	month ▼	11	customer_state ▼	order_count ▼
2017	,	1	AC	2
2017	7	2	AC	3
2017	7	3	AC	2
2017	7	4	AC	5
2017	,	5	AC	8
2017	7	6	AC	4
2017	7	7	AC	5
2017	,	8	AC	4
2017	7	9	AC	5
2017	7	10	AC	6

Distribution of customers across the states in Brazil

select customer_state , count(*) as count_customers from `Target_case.customers_table`
group by customer_state

customer_state ▼	count_customers 7
RN	485
CE	1336
RS	5466
SC	3637
SP	41746
MG	11635
BA	3380
RJ	12852
GO	2020
MA	747
PE	1652

Get % increase in cost of orders from 2017 to 2018 (include months between Jan to Aug only) - You can use "payment_value" column in payments table

```
WITH orders_2017 AS (
SELECT
 SUM(p.payment_value) AS total_payment_2017
FROM
  `Target case.orders table` o
 JOIN `Target_case.payments_table` p ON o.order_id = p.order_id
 EXTRACT(YEAR FROM o.order_purchase_timestamp) = 2017
 AND EXTRACT(MONTH FROM o.order purchase timestamp) BETWEEN 1 AND 8
orders 2018 AS (
SELECT
 SUM(p.payment_value) AS total_payment_2018
 `Target_case.orders_table` o
 JOIN `Target_case.payments_table` p ON o.order_id = p.order_id
WHERE
 EXTRACT(YEAR FROM o.order_purchase_timestamp) = 2018
 AND EXTRACT(MONTH FROM o.order purchase timestamp) BETWEEN 1 AND 8
SELECT
2018 AS year,
((o18.total_payment_2018 - o17.total_payment_2017) / o17.total_payment_2017) * 100 AS
percentage_increase
FROM
orders 2018 o18,
```

```
Group Data by state, take mean of freight_value, time_to_delivery, diff_estimated_delivery
SELECT
customer_state AS state,
round(AVG(freight_value),2) AS mean_freight_value,
round(AVG(time_to_delivery),2) AS mean_time_to_delivery,
round(AVG(diff_estimated_delivery),2) AS mean_diff_estimated_delivery
FROM (
SELECT
 o.order_id,
 c.customer_state,
 TIMESTAMP_DIFF(o.order_delivered_customer_date, o.order_purchase_timestamp, DAY) AS
time_to_delivery,
 TIMESTAMP_DIFF(o.order_estimated_delivery_date, o.order_delivered_customer_date, DAY)
AS diff_estimated_delivery,
 oi.freight_value
FROM
  `Target_case.orders_table` AS o
  `Target_case.customers_table` AS c ON o.customer_id = c.customer_id
  `Target_case.order_items_table` AS oi ON o.order_id = oi.order_id
) AS subquery
GROUP BY
state;
```

state ▼	11	mean_freight_value	mean_time_to_delive	mean_diff_estimated
MT		28.17	17.51	13.64
MA		38.26	21.2	9.11
AL		35.84	23.99	7.98
SP		15.15	8.26	10.27
MG		20.63	11.52	12.4
PE		32.92	17.79	12.55
RJ		20.96	14.69	11.14
DF		21.04	12.5	11.27
RS		21.74	14.71	13.2
SE		36.65	20.98	9.17
PR		20.53	11.48	12.53

Mean & Sum of price and freight value by customer state

```
select round(sum(oi.price),2) as sum_price, round(avg(oi.price),2) as mean_price, round(sum(oi.freight_value),2) as sum_freight, round(avg(oi.freight_value),2) as mean_freight,c.customer_state
from `Target_case.order_items_table` as oi
join `Target_case.orders_table` as o on oi.order_id = o.order_id
join `Target_case.customers_table` as c on o.customer_id=c.customer_id
group by c.customer_state
```

customer_state	mean_freight ▼	sum_freight ▼	mean_price ▼	sum_price ▼
SP	15.15	718723.07	109.65	5202955.05
RJ	20.96	305589.31	125.12	1824092.67
PR	20.53	117851.68	119.0	683083.76
sc	21.47	89660.26	124.65	520553.34
DF	21.04	50625.5	125.77	302603.94
MG	20.63	270853.46	120.75	1585308.03
PA	35.83	38699.3	165.69	178947.81
BA	26.36	100156.68	134.6	511349.99
GO	22.77	53114.98	126.27	294591.95
RS	21.74	135522.74	120.34	750304.02
ТО	37.25	11732.68	157.53	49621.74

Calculate days between purchasing, delivering and estimated delivery

select order id,

 $ifnull (date_diff(order_delivered_customer_date\ ,\ order_purchase_timestamp\ ,\ DAY), \begin{picture}(0) as \\ delivery_timeline,\ date_diff(order_estimated_delivery_date, order_purchase_timestamp\ ,\ day)\ as \\ estimated_delivery_timeline \end{picture}$

from `Target_case.orders_table` order by 2 desc;

order_id ▼	delivery_timeline	estimated_delivery_t
ca07593549f1816d26a572e	209	28
1b3190b2dfa9d789e1f14c0	208	19
440d0d17af552815d15a9e4	195	30
0f4519c5f1c541ddec9f21b3	194	32
285ab9426d6982034523a8	194	28
2fb597c2f772eca01b1f5c56	194	39
47b40429ed8cce3aee91997	191	15
2fe324febf907e3ea3f2aa96	189	22
2d7561026d542c8dbd8f0da	188	28
437222e3fd1b07396f1d9ba	187	42
c27815f7e3dd0b926b58552	187	25

Find time_to_delivery & diff_estimated_delivery

SELECT

order_id,

TIMESTAMP_DIFF(order_delivered_customer_date, order_purchase_timestamp, DAY) AS time_to_delivery,

TIMESTAMP_DIFF(order_estimated_delivery_date, order_delivered_customer_date, DAY) AS diff estimated delivery

FROM

`Target_case.orders_table`;

order_id ▼	time_to_delivery 🔻	diff_estimated_delive
1950d777989f6a877539f5379	30	-12
2c45c33d2f9cb8ff8b1c86cc28	30	28
65d1e226dfaeb8cdc42f66542	35	16
635c894d068ac37e6e03dc54e	30	1
3b97562c3aee8bdedcb5c2e45	32	0
68f47f50f04c4cb6774570cfde	29	1
276e9ec344d3bf029ff83a161c	43	-4
54e1a3c2b97fb0809da548a59	40	-4
fd04fa4105ee8045f6a0139ca5	37	-1
302bb8109d097a9fc6e9cefc5	33	-5
66057d37308e787052a32828	38	-6

Top 5 states with highest/lowest average freight value - sort in desc/asc limit 5

Descending

```
SELECT
```

 $customer_state \ {\color{red} AS} \ state,$

round(AVG(freight_value),2) AS mean_freight_value,

round(AVG(time_to_delivery),2) AS mean_time_to_delivery,

round(AVG(diff_estimated_delivery),2) AS mean_diff_estimated_delivery

FROM (

SELECT

o.order_id,

c.customer_state,

TIMESTAMP_DIFF(o.order_delivered_customer_date, o.order_purchase_timestamp, DAY) AS time_to_delivery,

TIMESTAMP_DIFF(o.order_estimated_delivery_date, o.order_delivered_customer_date, DAY) AS diff_estimated_delivery,

oi.freight value

FROM

`Target_case.orders_table` AS o

```
JOIN

`Target_case.customers_table` AS c ON o.customer_id = c.customer_id

JOIN

`Target_case.order_items_table` AS oi ON o.order_id = oi.order_id

) AS subquery

GROUP BY

state

order by

mean_freight_value desc

limit 5
```

state ▼	mean_freight_value	mean_time_to_delive	mean_diff_estimated
RR	42.98	27.83	17.43
PB	42.72	20.12	12.15
RO	41.07	19.28	19.08
AC	40.07	20.33	20.01
PI	39.15	18.93	10.68

Ascending

```
SELECT
customer_state AS state,
 round(AVG(freight value),2) AS mean freight value,
 round(AVG(time_to_delivery),2) AS mean_time_to_delivery,
 round(AVG(diff_estimated_delivery),2) AS mean_diff_estimated_delivery
FROM (
SELECT
 o.order_id,
 c.customer state,
  TIMESTAMP_DIFF(o.order_delivered_customer_date, o.order_purchase_timestamp, DAY) AS
time_to_delivery,
  TIMESTAMP DIFF(o.order estimated delivery date, o.order delivered customer date, DAY) AS
diff estimated delivery,
 oi.freight_value
 FROM
  `Target_case.orders_table` AS o
 JOIN
  `Target_case.customers_table` AS c ON o.customer_id = c.customer_id
  `Target case.order items table` AS oi ON o.order id = oi.order id
) AS subquery
GROUP BY
state
order by
mean_freight_value asc
limit 5
```

state ▼	11	mean_freight_value	mean_time_to_delive	mean_diff_estimate
SP		15.15	8.26	10.27
PR		20.53	11.48	12.53
MG		20.63	11.52	12.4
RJ		20.96	14.69	11.14
DF		21.04	12.5	11.27

```
Top 5 states with highest/lowest average time to delivery
Highest-
SELECT
customer state AS state,
round(AVG(freight_value),2) AS mean_freight_value,
round(AVG(time_to_delivery),2) AS mean_time_to_delivery,
round(AVG(diff_estimated_delivery),2) AS mean_diff_estimated_delivery
FROM (
SELECT
 o.order_id,
 c.customer_state,
  TIMESTAMP_DIFF(o.order_delivered_customer_date, o.order_purchase_timestamp, DAY) AS
time to delivery,
  TIMESTAMP_DIFF(o.order_estimated_delivery_date, o.order_delivered_customer_date, DAY)
AS diff_estimated_delivery,
 oi.freight_value
FROM
  `Target_case.orders_table` AS o
JOIN
  `Target_case.customers_table` AS c ON o.customer_id = c.customer_id
  `Target_case.order_items_table` AS oi ON o.order_id = oi.order_id
) AS subquery
GROUP BY
state
order by
mean_time_to_delivery desc
```

state ▼	mean_freight_value	mean_time_to_delive
RR	42.98	27.83
AP	34.01	27.75
AM	33.21	25.96
AL	35.84	23.99
PA	35.83	23.3

Lowest-

```
SELECT
customer_state AS state,
round(AVG(freight_value),2) AS mean_freight_value,
round(AVG(time_to_delivery),2) AS mean_time_to_delivery,
round(AVG(diff_estimated_delivery),2) AS mean_diff_estimated_delivery
FROM (
SELECT
 o.order_id,
 c.customer state,
 TIMESTAMP_DIFF(o.order_delivered_customer_date, o.order_purchase_timestamp, DAY) AS
time_to_delivery,
 {\color{blue} \textbf{TIMESTAMP\_DIFF} (o. order\_estimated\_delivery\_date, o. order\_delivered\_customer\_date, DAY)}
AS diff_estimated_delivery,
 oi.freight_value
FROM
  `Target_case.orders_table` AS o
  `Target_case.customers_table` AS c ON o.customer_id = c.customer_id
JOIN
  `Target_case.order_items_table` AS oi ON o.order_id = oi.order_id
) AS subquery
GROUP BY
state
order by
mean_time_to_delivery asc
```

state ▼	mean_freight_value	mean_time_to_delive
SP	15.15	8.26
PR	20.53	11.48
MG	20.63	11.52
DF	21.04	12.5
SC	21.47	14.52

Top 5 states where delivery is really fast/ not so fast compared to estimated date

Not so fast-

```
SELECT
customer state AS state,
round(AVG(diff_estimated_delivery),2) AS mean_diff_estimated_delivery
FROM (
SELECT
 o.order id,
 c.customer state,
  TIMESTAMP DIFF(o.order delivered customer date, o.order purchase timestamp, DAY) AS
time to delivery,
  TIMESTAMP_DIFF(o.order_estimated_delivery_date, o.order_delivered_customer_date, DAY)
AS diff estimated delivery,
 oi.freight_value
FROM
  `Target_case.orders_table` AS o
  `Target_case.customers_table` AS c ON o.customer_id = c.customer_id
  `Target_case.order_items_table` AS oi ON o.order_id = oi.order_id
) AS subquery
GROUP BY
state
order by
mean_diff_estimated_delivery desc
```

state ▼	mean_diff_estimated
AC	20.01
RO	19.08
AM	18.98
AP	17.44
RR	17.43

Really Fast

SELECT

```
customer_state AS state,
round(AVG(diff_estimated_delivery),2) AS mean_diff_estimated_delivery
FROM (
SELECT
```

o.order_id,
c.customer_state,

TIMESTAMP_DIFF(o.order_delivered_customer_date, o.order_purchase_timestamp, DAY) AS time_to_delivery,

```
TIMESTAMP_DIFF(o.order_estimated_delivery_date, o.order_delivered_customer_date, DAY)

AS diff_estimated_delivery,
    oi.freight_value

FROM
    `Target_case.orders_table` AS o

JOIN
    `Target_case.customers_table` AS c ON o.customer_id = c.customer_id

JOIN
    `Target_case.order_items_table` AS oi ON o.order_id = oi.order_id
) AS subquery

GROUP BY

state
    order by
    mean_diff_estimated_delivery asc
```

state ▼	1.	mean_diff_estimated
AL		7.98
MA		9.11
SE		9.17
ES		9.77
BA		10.12

1. Month over Month count of orders for different payment types

```
SELECT

EXTRACT(YEAR FROM o.order_purchase_timestamp) AS year,

EXTRACT(MONTH FROM o.order_purchase_timestamp) AS month,

p.payment_type,

COUNT(o.order_id) AS order_count

FROM

'Target_case.orders_table` AS o

JOIN

'Target_case.payments_table` AS p ON o.order_id = p.order_id

GROUP BY

year,month,

p.payment_type

ORDER BY

year,month,

p.payment_type;
```

year ▼	month ▼	payment_type ▼	order_count ▼
2016	9	credit_card	3
2016	10	UPI	63
2016	10	credit_card	254
2016	10	debit_card	2
2016	10	voucher	23
2016	12	credit_card	1
2017	1	UPI	197
2017	1	credit_card	583
2017	1	debit_card	9
2017	1	voucher	61
2017	2	UPI	398

2. Count of orders based on the no. of payment instalments

select payment_installments, count(distinct order_id) as count_installments from
`Target_case.payments_table`
group by payment_installments
order by 1;

payment_installment	count_installments
0	2
1	49060
2	12389
3	10443
4	7088
5	5234
6	3916
7	1623
8	4253
9	644
10	5315

Actionable Insights.

- Growing Trend in E-commerce The month-on-month analysis shows that the order count and payment_value are showing a steady incline reaching peaks in the last quarters for the respective years. The increase in order count also indicates an adoption of online purchasing with the consumers especially towards the end of the year for each given year. This in-turn can motivate the company to invest more in marketing the company and services to it's consumers leading to further increase in revenue.
- Seasonality From the data formatted, we can conclude that there are certain times of the year where the value of orders and sales is larger than the rest of the year. For this dataset that time would be in the last quarter i.e November (11th Month) in 2017 and September (9th Month) in 2018. Seasonality can in turn help the company to decide what time of the year to run their promotional and marketing campaigns vigorously.
- We have also concluded that the greatest number of orders are placed by the
 customers in the 'afternoon' time of day. This information can be used for targeted
 marketing efforts, localized promotions, and optimizing logistics and delivery networks
 to serve customers more efficiently.
- This in turn has a net positive impact on the Economy as more money is flowing through different channels. The growth in order_count and payment_value month on month indicates a net growth rate on the economy.
- A section which would need improving would be the order fulfilment once the order is placed. In some states it has been observed that the time difference between the estimated delivery time and the actual delivery time is almost 10x times more.
 Improvement in the logistics infrastructure can help retain order cancellations.

Recommendations

- Improvements can be made in the logistics infrastructure which has been setup and can be targeted state-wise where delivery times are much higher compared to the estimated delivery times.
- Marketing campaigns can be setup based on the observance of seasonality in trends i.e during the last quarter of the year. This can in turn more customers and increase profits.
- Based on the time of day where sales are at the highest i.e 'Afternoon', customer support availability can be organised to ensure support channels are available and responsive to address customer queries.
- Utilizing the information from customer reviews areas of improvement can be identified and help enhance overall customer experience.
- Having an analytical approach to the data can help derive deeper insights about the business and in-turn promote data driven decision making.
- Adopt a continuous improvement mindset as a business by constantly reviewing the available data, monitoring the key performance indicators (KPIs) and making changes according to the current deductions from the dataset.