True or False? Give a proof or a counterexample.

1. If $A \subseteq \mathbb{R}$ is non-empty and bounded and $\inf A = \sup A$ then A has exactly one element.

True.

Proof: We argue by contradiction. Suppose that $\inf A = \sup A$ but A has more than one elements. Take two of them, call them a and b and assume (without loss of generality) that a < b. Then $\inf A \le a$ (because $\inf A$ is a lower bound of A) and $b \le \sup A$ (because $\sup A$ is an upper bound of A). Therefore $\inf A < \sup A$; contradiction

2. If $A \subseteq \mathbb{R}$ has ten elements then $\sup A \in A$.

True.

Proof: If A has ten elements then A has a maximum element, call it a_0 . Then $\sup A$ is equal to a_0 therefore $\sup A \in A$.

3. If $A \subseteq \mathbb{R}$ is non-empty and bounded and every element of A is an integer then $\sup A \in A$.

True.

Proof: If $A \subseteq \mathbb{R}$ is non-empty and bounded and every element of A is an integer then A is a finite set. Working as in the last question we can show that $\sup A \in A$.

4. If $a_n^2 \to a^2$ then $a_n \to a$.

False.

Counterexample: $a_n = (-1)^n$, a = 1.

5. If $a_n^3 \to a^3$ then $a_n \to a$.

True.

Proof: (Now that we have developed all the theory we have more tools available than when this question was first asked several months ago)

Assume $a_n^3 \to a^3$. The function $f : \mathbb{R} \to \mathbb{R}$ given by $f(x) = \sqrt[3]{x}$ is continuous, therefore $f(a_n^3) \to f(a^3)$, i.e. $a_n \to a$.

6. If $a_n \to a$ then $|a_n| \to |a|$.

True. This is a well known property of limits.

7. If $|a_n| \to |a|$ then $a_n \to a$.

False. Counterexample: $a_n = (-1)^n$, a = 1.

8. If $a_n \to a$ then for every $\varepsilon > 0$ the interval $(a - \varepsilon, a + \varepsilon)$ contains infinitely many terms of (a_n) .

True.

Proof: If $a_n \to a$ and $\varepsilon > 0$ then there is an index N such that for all $n \ge N$ we have $a_n \in (a - \varepsilon, a + \varepsilon)$, therefore the interval $(a - \varepsilon, a + \varepsilon)$ contains infinitely many terms of the sequence.

9. If for every $\varepsilon > 0$ the interval $(a - \varepsilon, a + \varepsilon)$ contains infinitely many terms of (a_n) , then $a_n \to a$.

False.

Counterexample: $a_n = (-1)^n$, a = 1. For every $\varepsilon > 0$ the interval $(1 - \varepsilon, 1 + \varepsilon)$ contains infinitely many terms of the sequence, namely $a_2, a_4, a_6, ...$, but $a_n \not \to 1$.

10. Let $(a_n)_{n\in\mathbb{N}}$ be the sequence defined by

$$a_n = \frac{1}{n+1} + \frac{1}{n+2} + \frac{1}{n+3} + \dots + \frac{1}{2n}.$$
 (1)

Is the following proof that $a_n \to 0$ correct?

Proof: Since the limit of a sum is equal to the sum of the limits we have

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \left(\frac{1}{n+1} + \frac{1}{n+2} + \frac{1}{n+3} + \dots + \frac{1}{2n} \right)$$

$$= \lim_{n \to \infty} \frac{1}{n+1} + \lim_{n \to \infty} \frac{1}{n+2} + \lim_{n \to \infty} \frac{1}{n+3} + \dots + \lim_{n \to \infty} \frac{1}{2n}$$

$$= 0 + 0 + 0 + \dots + 0$$

$$= 0$$
(2)

Answer: The proof is wrong. The Theorem that says that the limit of a sum is equal to the sum of the limits talks about sums with a fixed number of terms. Here the number of terms varies with n.

11. If $f : \mathbb{R} \to \mathbb{R}$ is continuous and $g : \mathbb{R} \to \mathbb{R}$ is discontinuous then f + g is discontinuous. True.

Proof: If f+g were continuous then g=(f+g)-f would be continuous as the difference of two continuous function.

12. If $f: \mathbb{R} \to \mathbb{R}$ is continuous and $g: \mathbb{R} \to \mathbb{R}$ is discontinuous then fg is discontinuous. False.

Counterexample: Take f=0 and g any discontinuous functions. Then fg=0 is continuous.