Lecture 11: Hydraulic motors, transmission lines

- Hydraulic motors
- Hydraulic transmission lines
- (Electrical transmission lines)

Book: 4.1-4.6, (1.6)

Systems using hydraulics to produce motion

Excavators

- Robots, cranes, etc.
- To control motion of these systems, we need models of the hydraulic actuators

Hydraulic cylinder

Hydraulic system

©2000 How Stuff Works

Anna Konda – The fire fighting snake robot

Moody chart

- Circular pipe
- Darcy-Weisbach factor with Reynolds number and relative roughness

Figure 7.13 Moody diagram. (From L. F. Moody, Trans. ASME, Vol. 66, 1944.)

Hydraulic cylinder

Figure 4.9: Symmetric hydraulic cylinder

Figure 4.10: Single-rod hydraulic piston

Rotational hydraulic motor

Figure 4.7: Rotational hydraulic motor of the single vane type with limited travel.

Valves

- Device that regulates flow
- Many different types of valves exist
 - Globe valve, ball valve, butterfly valve, ...

End view of the disc within the butterfly valve at different stages of rotation

End view of the ball within the ball valve at different stages of rotation

Valve models

(book 4.2)

• Flow through a restriction is generally turbulent

Solution: Regularize by assuming laminar flow for small Δp

$$q = C_l \Delta p$$

Book: Make transition smooth

Pump Spool Valve Push Hydraulic Cylinder and Piston

©2000 How Stuff Works

Figure 4.2: A matched and symmetric four-way valve.

Four-way valve

Figure 4.1: Four-way valve

Modeling of four-way valve

Define load pressure

$$p_L = p_1 - p_2$$

Define load flow

$$q_L = \frac{q_1 + q_2}{2}$$

Figure 4.1: Four-way valve

Symmetric load assumption (motor)

$$q_1 = q_2$$

Symmetric valve and symmetric load

$$q_L = C_d b x_v \sqrt{\frac{1}{\rho} \left(p_s - \text{sign}(x_v) p_L \right)}$$

Characteristic of four-way valve

$$q_L = C_d b x_v \sqrt{\frac{1}{\rho} \left(p_s - \text{sign}(x_v) p_L \right)}$$

Figure 4.3: Valve characteristic

Linearized model:

$$|p_L| \le \frac{2}{3}p_s: \quad q_L = K_q x_v - K_c p_L$$

Gain uncertainty:

$$0.58K_{q0} \le K_q \le 1.29K_{q0}$$

Transfer function valve+motor

$$\theta_m(s) = \frac{\frac{K_q}{D_m} x_v(s) - \frac{K_{ce}}{D_m^2} \left(1 + \frac{s}{\omega_t}\right) T_L(s)}{s \left(1 + 2\zeta_h \frac{s}{\omega_h} + \frac{s^2}{\omega_h^2}\right)}$$

Electrical transmission lines

Telegrapher's equation (Wave equation)

Lossless:

Lossy:

• Model (Ch. 1.6):

$$\frac{\partial u(x,t)}{\partial x} = -Ri(x,t) - L\frac{\partial i(x,t)}{\partial t}$$
$$\frac{\partial i(x,t)}{\partial x} = -Gu(x,t) - C\frac{\partial u(x,t)}{\partial t}$$

• Laplace:

$$\frac{\partial u(x,s)}{\partial x} = -X(s)i(x,s)$$
$$\frac{\partial i(x,s)}{\partial x} = -Y(s)u(x,s)$$

Series impedance:

$$X(s) = R + Ls$$

Parallel admittance:

$$Y(s) = G + Cs$$

Characteristic impedance:

$$Z_c(s) = \sqrt{\frac{X(s)}{Y(s)}}$$

Same equations for electrical and fluid/hydraulical transmission lines

Electrical transmission lines:

$$\frac{\partial u(x,t)}{\partial x} = -Ri(x,t) - L\frac{\partial i(x,t)}{\partial t}$$

$$\frac{\partial i(x,t)}{\partial x} = -Gu(x,t) - C\frac{\partial u(x,t)}{\partial t}$$

Fluid transmission lines:

$$\frac{\partial p(x,t)}{\partial t} = -\frac{\beta}{A} \frac{\partial q(x,t)}{\partial x}$$
$$\frac{\partial q(x,t)}{\partial t} = -\frac{A}{\rho} \frac{\partial p(x,t)}{\partial x} - \frac{F[q(x,t)]}{\rho}$$

- Current and flow "same" variables, as is voltage and pressure
- In both cases, we can define line impedance, characteristic impedance, propagation operator, etc.
- Solution to equations have same structure/form: waves propagating back and forth

Solution: Waves

Solution:

$$u_{out}(s) = e^{-\Gamma(s)} u_{in}(s)$$

- Propagation operator $\Gamma(s) = L\sqrt{X(s)Y(s)}$
 - Attenuation factor ® = Re[¡ (j!)]: How much is wave reduced
 - Phase factor: $\bar{}$ = Im[$_i$ (j!)]: How long does it take
- Lossless (R = G = 0): f(s) = Ts
 - Attenuation factor: 0
 - Phase factor: Pure time-delay

When should we care?

Solution lossless case: Time delay

$$e^{-Ts}$$

 Rule-of-thumb from control theory: We can ignore time-delay for frequencies much less than 1/T

$$\omega \le \frac{1}{T} \implies 2\pi \frac{c}{\lambda} \le \frac{c}{L} \implies L \le \frac{\lambda}{2\pi}$$

- Rule-of-thumb for transmission lines: When L is larger than one tenth of wavelength, treat as transmission line
- Power lines, f = 50Hz: $\zeta = 6000$ km
- Personal computers, f = 10GHz: = 1.5cm

Impedance matching

 Suppose we have an imaginary joint at P in a very long transmission line.

The wave goes through the joint without reflection because there is actually no joint (just imagined).

• Now, let us terminate a resistance of value Z_c at the same position of this imaginary joint. The wave will go through without reflection too.

This is called a **matched load**.

http://cktse.eie.polyu.edu.hk/eie403/Transmissionline.pdf