問題 1 男の子が生まれる確率と女の子が生まれる確率は、ほぼ等しく 1/2 である。さて, 男の子を欲しがる家が多いと女の子がふえる」という説がある。なぜならば「最初に女の子が生まれると、もう一人欲しくなる。次も女の子だと、どうしても男の子が欲しいので、また一人、もう一人と, 男の子が生まれるまで頑張る。 だから当然女の子の方が多くなる。」

家	第	第	第	第	第	
	_	=	Ξ	兀	五	
庭	子	子	子	子	子	
1	•					
2	0	•				
3	0	0	•			
4	0	0	0	•		
5	0	0	0	0	•	

この説は正しいか。確率計算を行なって真偽のほどを確かめてみよう。

(1) x 番目に初めて男の子が生まれる確率 p(x) を求めよ。

男の子の生まれる確率を p=1/2 , 女の子の生まれる確率を q=1/2 とすると、x 番目に初めて男の子が生まれるので、 $p(x)=pq^{x-1}$ となる。これに p=q=1/2 を代入すると、 $p(x)=\frac{1}{2x}$. これは、p=q=1/2 の幾何分布である。

(2) 一つの家庭に生まれる男児の数は何人か。

仮定により各家庭は、男の子が生まれると、もはや、子どもをもうけないので、1人

(3) 一つの家庭に生まれる女児の数は平均すると何人か。

x人の子どものいる家庭の女の子の数は、(x-1) である。そして、その確率は、p(x)なので、 $\mu_{f g}=\sum^{\infty}(x-1)p(x)=\mu-1=1$ 人. μ の値は、(4) を参照のこと。

(4) 一つの家庭に生まれる子供の数の平均を求めよ。

$$\mu = \frac{1}{n}$$
に、 $p = 1/2$ を代入すると、 $\mu = 2$ 人

(5) 一つの家庭に生まれる子供の数の分散を求めよ。 $\sigma^2 = \frac{q}{r^2} \text{Lr} \ p = q = 1/2 \ \text{を代入すると}, \sigma^2 = 2 \ \text{人}^2$

(6) 「男の子を欲しがる家が多いと女の子がふえる。」という説は正しいか。

(2) と(3) より、各家庭の男の子の数は1、女の子の数の平均は1 である。ゆえに、この説は間違いである。

この説が誤りであることは、次のようにしても理解できる。

男の子と女の子の生まれる確率は、ともに 1/2 なので、一番目が男の子の家庭と女の子の家庭は同数となる。一番目が女の子の家庭には、 2 番目の子どもが生まれるが、それが男の子である家庭と女の子である家庭の数は、再び、同数となる。このように、何番目に生まれてくる子ともの場合でも、男女は、同数になる。したがって、子ども全体として見た場合も、男女の数に偏りは起こらない。以下に、全世帯の数が 16 の場合の例を示す。

家庭	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
1番目の子	•	•	•	•	•	•	•	•	0	0	0	0	0	0	0	0
2番目の子									•	•	•	•	0	0	0	0
3番目の子													•	•	0	0
4番目の子															•	0

表 1: 16 家族の場合における子どもの生まれ方 $\bullet =$ 男の子 , $\circ =$ 女の子