MATLAB Examples 2 (covering Statistics Lectures 3 and 4)

Contents

- Example 1: Fit a linearized regression model
- Example 2: Fit a parametric nonlinear model
- Example 3: Another optimization example

Example 1: Fit a linearized regression model

```
% generate some random data
x = -20:20;
y = 1.5*x.^2 - 60*x + 10 + 30*randn(size(x));
% given these data, we will now try to fit a model
% to the data. we assume we know what model to use,
% namely, y = ax^2 + bx + c where a, b, and c are
% free parameters. notice that this was the model
% we used to generate the data.
% since our model is a linearized model, we can express
% it using simple matrix notation.
% construct the regressor matrix
X = [x(:).^2 x(:) ones(length(x),1)];
% estimate the free parameters of the model
% using ordinary least-squares (OLS) estimation
w = inv(X'*X)*X'*y(:);
% what are the estimated weights?
W
```

```
w =

1.5368275257135
-60.638944801903
8.15661270608602
```

```
% what is the model fit?
modelfit = X*w;

% what is the squared error achieved by this model fit?
squarederror = sum((y(:)-modelfit).^2);

% visualize
figure;
hold on;
scatter(x,y,'r.');
ax = axis;
```

```
xx = linspace(ax(1),ax(2),100)';
yy = [xx.^2 xx ones(length(xx),1)]*w;
plot(xx,yy,'k-');
xlabel('x');
ylabel('y');
title(sprintf('squared error = %.1f',squarederror));
```


Example 2: Fit a parametric nonlinear model

```
% generate some random data
x = 0:.05:3;
y = 5*x.^3.5 + 5*randn(size(x));
% given these data, we will now try to fit a model
% to the data. we assume we know what model to use,
% namely, y = ax^n where a and n are free parameters.
% notice that this was the model we used to generate the data.
% define optimization options
options = optimset('Display','iter','FunValCheck','on', ...
                   'MaxFunEvals', Inf, 'MaxIter', Inf, ...
                   'TolFun', 1e-6, 'TolX', 1e-6);
% define bounds for the parameters
                    n
paramslb = [-Inf]
                    0]; % lower bound
paramsub = [ Inf Inf]; % upper bound
% define the initial seed
             а
```

			Norm of	First-order	
Iteration	Func-count	f(x)	step	optimality	CG-iterations
0	3	431921		7.93e+03	
1	6	431921	10	7.93e+03	0
2	9	247013	2.5	8.3e+04	0
3	12	247013	2.81299	8.3e+04	0
4	15	98286.2	0.703246	1.09e+05	0
5	18	17315.7	1.40649	3.78e+05	0
6	21	1894.05	0.327179	2.46e+04	0
7	24	1482.46	0.939262	9.09e+03	0
8	27	1241.08	0.422605	1.33e+03	0
9	30	1237.01	0.00758631	5.5	0
10	33	1237.01	1.29563e-05	7.82e-05	0

Local minimum possible.

lsqcurvefit stopped because the final change in the sum of squares relative to its initial value is less than the selected value of the function tolerance.

```
% what are the estimated parameters?
params
```

```
params = 5.4338041940236 3.42528833322854
```

```
% what is the model fit?
modelfit = modelfun(params,x);

% what is the squared error achieved by this model fit?
squarederror = sum((y(:)-modelfit(:)).^2);
% (note that the 'resnorm' output also provides the squared error.)

% visualize
figure;
hold on;
scatter(x,y,'r.');
```

```
ax = axis;
xx = linspace(ax(1),ax(2),100)';
yy = modelfun(params,xx);
plot(xx,yy,'k-');
xlabel('x');
ylabel('y');
title(sprintf('squared error = %.1f',squarederror));
```


Example 3: Another optimization example

```
% generate some random data
x = rand(1,1000).^2;
% we want to determine the value that minimizes the sum of the
% absolute differences between the value and the data points
% define some stuff
options = optimset('Display','iter','FunValCheck','on', ...
                   'MaxFunEvals', Inf, 'MaxIter', Inf, ...
                    'TolFun', 1e-6, 'TolX', 1e-6);
paramslb = [];
               % [] means no bounds
paramsub = [];
params0 = [0];
% perform the optimization
  % hint: here we have to apply a square-root transformation so that when
  % Isqnonlin squares the output of costfun, we will be back to absolute error.
costfun = @(pp) sqrt(abs(x-pp));
[params, resnorm, residual, exitflag, output] = lsqnonlin(costfun, params0, paramslb, paramsub, option
s);
```

			Norm of	First-order	
Iteration	Func-count	f(x)	step	optimality	CG-iterations
0	2	346.47		500	
1	4	346.385	8.61928e-05	490	0
2	6	341.862	0.00491093	440	0
3	8	333.538	0.0101418	387	0
4	10	315.811	0.0259447	306	0
5	12	308.364	0.0129775	271	0
6	14	292.776	0.0324211	215	0
7	16	279.22	0.035143	170	0
8	18	270.08	0.0314543	118	0
9	20	263.724	0.031138	88	0
10	22	259.555	0.0265819	67	0
11	24	258.266	0.0107348	52	0
12	26	257.181	0.012298	35	0
13	28	256.649	0.00864949	25	0
14	30	256.518	0.00310659	19	0
15	32	256.401	0.00335775	15	0
16	34	256.317	0.00312291	12	0
17	36	256.252	0.00307883	7	0
18	38	256.245	0.000546973	6	0
19	40	256.236	0.000864426	5	0
20	42	256.227	0.0010377	4	0
21	44	256.224	0.000510969	3	0
22	46	256.22	0.000677599	3	0
23	48	256.218	0.000404828	1	0
24	50	256.218	0.000140253	1	0
25	52	256.217	0.000193302	1	0
26	54	256.217	0.00021431	1	0
27	56	256.217	0.000205629	1	0
28	58	256.216	9.93736e-05	5.88e-05	0

Local minimum possible.

lsqnonlin stopped because the final change in the sum of squares relative to its initial value is less than the selected value of the function tolerance.

% what is the solution? params

params =

0.260043242623885

% what is the median of the data? median(x)

0.260365029783367

- $\mbox{\ensuremath{\$}}$ notice that the solution is nearly identical to the median of the data.
- $\ensuremath{\text{%}}$ (the slop comes from the tolerance used in the optimization and
- % from the interpolation used in the calculation of the median.)

Published with MATLAB® R2012b