ME 218 - Solid Mechanics Lab - 2023

Prof. Krishna Jonnalagadda

Mechanical Engineering, Indian Institute of Technology Bombay

<u>Contact Information</u>

Email: krishnajn@iitb.ac.in

Phone: 022-2576 7538 (extn. 7538) Office: S22, Mechanical Engineering

Laboratory Course - Preamble

Goal(s): Experimentally measure and evaluate:

- (a) Material properties
- (b) Structural response
- (c) Stress and Strain

to model or verify a model or discover new mechanics, etc.

Structured – Where we will teach and perform some experimental methods

- Some experiments in the lab will be conducted to study materials and structural testing
 - Constitutive response
 - Material properties
 - Stress and Strain measurement

Unstructured – Where you will will plan and execute and experiment with a goal

- Student Design Projects (SDP)
 - Students will design, perform and analyze the projects related to solid mechanics

Course Details

- When: Monday, Tuesday and Thursday
- (S1 on L1,S2 on L2 and S3 on L3) from 2:00 PM to 5:00 PM
- Office Hours: 5-6 PM on Thursday
- Where: Solid Mechanics Lab, Ground Floor, ME Building
- Number of Experiments:
 - 6 (split into 2 sets)
 - Student designed experiment
- Experiments and <u>Viva</u> on alternate weeks in the first half of the semester. Time given to work on reports.

Lab Policies

- Report to the lab on or before 2 PM. 2 X Late = 1 Absent
- Wearing shoes compulsory to enter the lab (Dept. rule)
- Use of safety gear wherever required as suggested by the TAs is compulsory
 - If you are found without safety gear during the lab session = absent
- It is important to follow the instructions of the TAs to ensure that the lab runs smoothly
- Read the manual before you come to lab. This way you are prepared to ask questions related to the experiment
- Pre-lab report compulsory.

Report Writing

- Reports should be written individually by every student, irrespective of whether they are done individually or in a group. Upload as PDF files on Moodle for grading.
- Report should contain
 - Objectives
 - Results from the experiments properly presented
 - Analysis, calculations, observations and conclusions from the experiment
- Plagiarism
 - Do not copy data or reports.
 - It is in your own interest to analyze data and report them.
 - It is more important to learn analysis of data these days

Uniaxial Tensile Experiment

Objectives:

- To extract stress vs. strain curves for two ductile materials, steel and aluminum, until fracture
- To calculate
 - Elastic Modulus Slope of linear portion of stress vs. strain curve,
 - Ultimate Tensile Strength (UTS) maximum stress the material can withstand before failure
 - Ductility strain to fracture and reduction in crosssectional area
- This is a very important experiment conducted to measure mechanical properties (elastic and plastic) and extract constitutive behavior of almost all material

Uniaxial Tensile Experiment

Uniaxial Compression Experiment

Objectives:

- To extract stress vs. strain curves of an aluminum cylinder in compression
- To calculate the machine compliance of the UTM
- To calculate the elastic modulus from the corrected stress vs. strain curve
- This is a very important experiment conducted to measure mechanical properties and large deformation constitutive behavior in metals

Torsion of Cylindrical Rod

Objectives: To find the torque vs. twist angle response of a material and to calculate the limiting torque.

The Torque (T) - twist (θ), for perfectly plastic material is given by,

$$T = (4/3) T_Y (1 - 0.25(\theta_Y/\theta)^3)$$

Limiting torque is given by:

$$T_Y = (J^* T_Y) / R$$
; $T_L = (4/3) T_Y$

Metals strain harden and this increases the limiting torque

In this experiment we want to know how much deviation is caused.

Curved Beam Bending and Strain Gage Experiment

Objectives:

- To understand the use of strain gages in measuring surface strains
- To understand and measure the stains in a circular ring subjected to combined axial and bending loads
- The circular ring loaded at two points in tension will be combined loads
- Also, the neutral axis location is not the centroid of the cross-sectional area
- Strain gage are used widely in all industries to measure strain at a point in certain orientations
- The state of strain can be obtained using a rosette configuration

Rockwell Hardness Experiment

Objectives:

- To measure Rockwell Hardness numbers for various metals
- Rockwell Hardness number depends on the depth of penetration of an indenter for an applied load. Higher the penetration depth the smaller the number
- This is a simple and minimally invasive experiment to know the relative increase in the strength of a material
- Used in industry to quickly ascertain the effect of various thermomechanical and manufacturing processes on metals
- The hardness number is used to ascertain the resistance to plastic (permanent deformation).
- The hardness numbers are sometimes empirically related to yield strength of the material

Charpy Impact Experiment

Objectives:

To study the impact resistance of metals using Charpy type specimens

To determine the variation of impact strength of a material with change

Digital Image Correlation

Objectives: Non-contact strain measurement in 2D using a speckle pattern on the sample and image processing

Photoelasticity Experiment

Objectives:

To measure the stress concentration around a circular hole in a plate subjected to tensile loading

- ∆ is phase difference
- λ is wavelength of the light
- *t* is thickness of the specimen
- *N* is fringe order
- F_{σ} is model fringe constant
- C stress optic coefficient

$$\Delta \propto \sigma_1 - \sigma_2$$

$$\Delta \propto 1/\lambda$$

$$\frac{\Delta}{2\pi} = \frac{Ct}{\lambda} (\sigma_1 - \sigma_2) = N$$

$$(\sigma_1 - \sigma_2) = Nf_{\sigma}$$

$$\Delta \propto t$$

Rotating Beam Bending Experiment

Objectives:

- To measure the endurance strength of a material subjected fully reversed cyclic loading
- A cantilever type specimen is used with a transverse load at one end
- The cantilever is rotated about its axis under transverse loading causing fully reversed tension-compression state of stress at a material point

Rotating Bending

Test Specimen

Reciprocal Theorem and Superposition Principle

- Objectives:
 - To verify Reciprocal Theorem and Superposition Principle for simply supported beam
- Based on the principle of minimum potential energy

Large Deflection of a Cantilever Beam

Objectives:

- To study large deflection of cantilever beams
- To measure load vs. deflection (vertical and horizontal curves
- To compare the results with elementary beam theory and large deflection beam theory

Small Deflection Theory (EB):

$$\delta_{v} = \frac{Pl^{3}}{3EI}$$

Large Deflection Theory (EB):

$$\frac{\delta_{v}}{L} = 1 - \frac{2}{\alpha} \left[E(K, \pi/2) - E(K, \theta_{1}) \right]$$

$$\frac{L - \delta_h}{L} = \sqrt{\frac{2\sin\phi_o}{\alpha^2}}$$

Student Design Experiment

Objective: Design, plan and execute a solid mechanics related experiment using instruments available in the lab (or institute with permission) to:

- a. Material property, e.g., modulus, Poisson's ratio, etc.
- b. Stress or strain distribution in a specimen geometry, e.g., stress or strain concentration.
- c. Structural behavior validating a theoretical result, e.g., beam bending.

SDE – Proposal Stage 1

Stage 1

- Propose a project addressing one or more of (a), (b) or (c) with,
- i. Objective
- ii. Experimental plan
- iii. Analysis to be performed, and
- iv. expected outcomes.

Submissions required:

- A 1-page summary of your proposal to be submitted on Moodle
- A 5-minute presentation with 1-slide on each of the above aspects, with the title slide containing your title and group member names

SDE – Proposal Stage 2

Stage 2

- Details of the project plan and execution
- i. Method
- ii. Materials and their availability
- iii. Instruments, including their access
- iv. Data collection and analysis.

Submissions required:

- A 1-page summary of your plan to be submitted on Moodle
- A 5-minute presentation with 1-slide on each of the above aspects, with the title slide containing your title and group member names

SDE – Review(s)

Review(s) of your project

- All projects will be reviewed at least twice before the final presentation.
- i. Progress in the stated objectives
- ii. Execution of the plan
- iii. Analysis done
- iv. Changes if any, due to unforeseen circumstances

Submissions required:

- A 1-page summary of your progress to be submitted on Moodle
- A 5-minute presentation with 1-slide on each of the above aspects, with the title slide containing your title and group member names

SDE – Final Presentation

Final Presentation – In the last week of instruction

- Propose a project addressing one or more of (a), (b) or (c) with,
- i. Objective
- ii. Experimental Method
- iii. Results and analysis
- iv. Summary and conclusion

Submissions required:

- A 3-page report of project to be submitted on Moodle
- A 5-minute presentation with 1-slide on each of the above aspects, with the title slide containing your title and group member names

Assessment

- Lab Reports + Viva + Quiz = 40%
- SDE Project = 40%
- Attendance = 20%

Relative or Scale Score = Your Marks x 100 / Class highest

Relative Scor	e duit	Grade 9
>=90		AA A
>82		自 詳語 AB S
>74		BB 5
>65		ВС
>56	ज्ञानम् प	रमम् ध्येयम् СС
>48	-	,CD/
>=40		DD
<40		FR