Оглавление

Лабораторная работа 1. Решение задач с использованием генетическог
алгоритма
Лабораторная работа 2. Использование линейных моделей для решения зада
регресии и классификации с использованием библиотек машинного обучения.
Лабораторная работа 3. Деревья решений и случайный лес. Сравнени
методов для решения задачи классификации
Лабораторная работа 4. Реализация простейших алгоритмов кластеризации
задачах технического зрения
Лабораторная работа 5. Построение нейронных сетей (с использование
библиотек машинного обучения) для задачи распознавания образов
Лабораторная работа 6. Построение нейронных сетей для зада
классификации
Лабораторная работа 7 Реализация байесовского подхода для зада
фильтрации спама1
Лабораторная работа 8 Классификация текстов
Список литературы:

Лабораторная работа 1.

Решение задач с использованием генетического алгоритма.

Цель работы: Ознакомить студентов с базовыми понятиями и параметрами генетического алгоритма.

Задание: Найти решение транспортной задачи. Имеем К поставщиков, у каждого 1 единица товара, p_i и s_i - цена товара и стоимость доставки у і-го поставщика. (сгенерировать массивы случайно p_i от 100 до 1000 s_i от 10 до 100). Сформировать поставку не менее М единиц товара.

Варианты:

Размер начальной популяции *MAX_ENT* = 10 у всех.

Критерий останова:

- 1. Выполнение заданного числа итераций
- 2. Выполнение заданного числа итераций без изменения целевой функции
- 3. Достижение заданного значения целевой функции.

Оператор скрещивания:

- 1. Одноточечное скрещивание
- 2. Двухточечное скрещивание
- 3. Однородное скрещивание

Мутация:

- 1. Изменение случайно выбранных битов
- 2. Перестановка случайно выбранных битов местами.

Виды селекции:

- 1. Отбор усечением
- 2. Схема пропорционального отбора
- 3. Турнирная схема

Вариант	Критерий	Скрещивание	Мутация	Селекция
1	1	3	1	1
2	2	1	2 1	3
3	3	2		
4	1	3	2	1
5	2	1	1	3
6	3	2	2	3
7	1	3	1	1
8	2	1	2	2
9	3	2	1	3
10	1	3	2	1
11	2	1	1	3
12	3	2	2	
13	1	3	1	1
14	2	1	2	3
15	2 3	2	1	3
16	1	3	2	1
17	2	1	1	2
18	3	2	2	3
19	1	3	1	1
20	2	1	2	2

Формирование начальной популяции решений. Генерация начальной популяции может происходить как случайным образом, так и с помощью некоторого алгоритма.

Целевая функция позволяет оценить степень приспособленности данной особи в популяции и характеризует качество получаемого решения. В данной задаче целевая функция — это значение многочлена в точке, соответствующей данной особи. Во время

генетического процесса вычисление целевой функции осуществляется над элементами всей популяции решений. Нужно отметить, что достаточно часто сложность генетических алгоритмов оценивается по количеству вычислений целевой функции.

Критерий останова. В качестве критерия останова генетического алгоритма могут выступать следующие условия:

- Выполнение алгоритмом априорно заданного числа итераций.
- Выполнение алгоритмом априорно заданного числа итераций без улучшения целевой функции.
- Достижение некоторого априорно заданного значения целевой функции.

Оператор селекции. Выбор решений для следующей популяции (оператор селекции) предназначен для улучшения качества решений в новой популяции, а именно сохранение разнообразия популяции, сохранение лучших решений и удаление из нее недопустимых решений. Обычно выбираются элементы с наибольшей приспособленностью.

Возможны различные варианты операции селекции, основанные на разных схемах отбора:

Схема пропорционального отбора.

В данной схеме отбора вычисляется значение целевой функции для каждого решения F_i и определяется среднее значение целевой функции в популяции F_{cp} . Затем для каждого решения вычисляется отношение F_i/F_{cp} . Например, если отношение равно 2.36, то данное решение имеет двойной шанс на скрещивание, и будет иметь вероятность равную 0.36 третьего скрещивания. Если же приспособленность равна 0.54, то решение примет участие в единственном скрещивании с вероятностью 0.54.

• Схема отбора на основе рулетки.

Каждому решению выделяется сектор рулетки $2\pi \cdot F_i / \sum_{j=1}^{N} F_j$

Решение попадает в новую популяцию, если случайным образом сгенерированное число попадает в этот сектор.

Турнирный отбор.

Схему турнирного отбора можно описать следующим образом: из популяции, содержащей N решений, выбирается случайным образом 2 решения и между выбранными решениями проводится турнир. Победившее решение используется для скрещивания.

 Отбор усечением. Данная стратегия использует отсортированную по возрастанию популяцию. Число решений для скрещивания выбирается в соответствии с порогом Т ∈ [0; 1]. Порог определяет, какая доля особей, начиная с самой первой (самой приспособленной) будет принимать участие в отборе. Порог можно задавать числом, большим единицы, тогда он будет равен числу решений из текущей популяции, допущенных к отбору.

Оператор скрещивания:

Оператор скрещивания используется для передачи родительских признаков потомкам. Пары для скрещивания выбираются на основе одной из схем селекции, описанных выше. Возможны следующие варианты оператора скрещивания (рис. 2):

Одноточечное скрещивание.

Выбирается одна точка, и относительно неё решения обмениваются своими частями.

• Двухточечное скрещивание.

Аналогично предыдущему, но точек скрещивания выбирается две.

• Универсальное скрещивание.

С некоторой вероятностью выбирается бит либо одного, либо другого родителя.

Однородное скрещивание.

Каждый ген в потомстве создается посредством копирования соответствующего гена от одного или другого родителя, выбранного согласно случайно сгенерированной маске скрещивания. Если в маске скрещивания стоит 1, то ген копируется от первого родителя, если в маске стоит 0, то ген копируется от второго родителя. Процесс повторяется с новыми родителями для создания второго потомства. Новая маска скрещивания случайно генерируется для каждой пары родителей.

После операции скрещивания новые решения занимают места своих родителей в популяции.

Оператор мутации

Оператор мутации используется для внесения в решение некоторых новых признаков. Некоторые варианты реализации операции мутации представлены на рисунке 3. Все варианты изменяют биты битовой строки с некоторой вероятностью.

- Изменение случайно выбранного бита.
- Перестановка случайно выбранных битов местами.
- Реверс битовой строки, начиная со случайно выбранного бита.

Рис. 2 Варианты оператора скрещивания.

Рисунок 3. Варианты операции мутации