

Differentiation

1

DERIVATIVE OF A FUNCTION

Derivative at a Point

The value of f'(x) obtained by putting x = a, is called the derivative of f(x) at x = a and it is denoted by f'(a) or $\left\{\frac{dy}{dx}\right\}_{x=a}$.

2.

Standard Derivatives

The following formulae can be applied directly for finding the derivative of a function:

1.
$$\frac{d}{dx}$$
 (sin x) = cos x

2.
$$\frac{d}{dx}(\cos x) = -\sin x$$

3.
$$\frac{d}{dx}$$
 (tan x) = sec² x

4.
$$\frac{d}{dx} (\cot x) = -\csc^2 x$$

5.
$$\frac{d}{dx}$$
 (sec x) = sec x tan x

6.
$$\frac{d}{dx}$$
 (cosec x) = -cosec x cot x

7.
$$\frac{d}{dx}(e^x) = e^x$$

8.
$$\frac{d}{dx}(a^x) = a^x \log_e a, a > 1$$

9.
$$\frac{d}{dx} (\log_e x) = \frac{1}{x}, x > 0$$

10.
$$\frac{d}{dx}(x^n) = nx^{n-1}$$

11.
$$\frac{d}{dx} (\sin^{-1} x) = \frac{1}{\sqrt{1-x^2}}, -1 < x < 1$$

12.
$$\frac{d}{dx} (\cos^{-1} x) = -\frac{1}{\sqrt{1-x^2}}, -1 < x < 1$$

13.
$$\frac{d}{dx} (\tan^{-1} x) = \frac{1}{1+x^2}, -\infty < x < \infty$$

14.
$$\frac{d}{dx} (\sec^{-1} x) = \frac{1}{|x| \sqrt{x^2 - 1}}, |x| > 1$$

15.
$$\frac{d}{dx} \left(\csc^{-1} x \right) = \frac{-1}{|x| \sqrt{x^2 - 1}}, |x| > 1$$

16.
$$\frac{d}{dx} \left(\cot^{-1} x \right) = -\frac{1}{1+x^2}, -\infty < x < \infty$$

17.
$$\frac{d}{dx}(|x|) = \frac{|x|}{x} \text{ or } \frac{|x|}{x}, x \neq 0.$$

3.

RULES FOR DIFFERENTIATION

- 1. The derivative of a constant function is zero, i.e., $\frac{d}{dx}$ (c) = 0.
- 2. The derivative of constant times a function is constant times the derivative of the function, i.e.,

$$\frac{d}{dx} \{c. f(x)\} = c \frac{d}{dx} \{f(x)\}.$$

3. The derivative of the sum or difference of two function is the sum or difference of their derivatives, i.e.,

$$\frac{d}{dx} \{f(x) \pm g(x)\} = \frac{d}{dx} \{f(x)\} \pm \frac{d}{dx} \{g(x)\}.$$

Note: In general, if $f_1(x)$, $f_2(x)$, ... $f_n(x)$ are n differentiable functions, then we have

$$\frac{d}{dx}\left[f_{1}\left(x\right)\pm f_{1}\left(x\right)\pm...\pm f_{n}\left(x\right)\right]=\frac{d}{dx}\left[f_{1}\left(x\right)\right]\pm\frac{d}{dx}\left[f_{2}\left(x\right)\right]\pm...\pm\frac{d}{dx}\left[f_{n}\left(x\right)\right]$$

PRODUCT RULE OF DIFFERENTIATION

If f(x) and g(x) are differentiable functions of x, then

$$\frac{d}{dx} [f(x) g(x)] = f(x) g'(x) + g(x) f'(x).$$

NOTE

 $\frac{d}{dx} [f(x) g(x) h(x)] = f(x) g(x) h'(x) + f(x) g'(x) h(x) + f'(x) g(x) h(x)$

Quotient Rule of Differentiation

If f(x) and g(x) are two differentiable functions of x, then

$$\frac{d}{dx}\left[\frac{f(x)}{g(x)}\right] = \frac{g(x)f'(x)-f(x)g'(x)}{\left\lceil g(x)\right\rceil^2}.$$

Differentiation of a Function (Chain Rule)

If y is a differentiable function of u and u is a differentiable function of x, then

$$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$$

Key Points on Chain Rule

1. The chain rule can be extended further as:
If y is a function of u, u is a function of v and v is a function of x, then

$$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dv} \times \frac{dv}{dx}$$
 and so on.

2. If $y = u^n$, where u is a function of x, then

$$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx} = nu^{n-1} \times \frac{du}{dx}.$$

$$\left[\because \frac{dy}{du} = nu^{n-1} \right]$$

DERIVATIVE OF PARAMETRIC FUNCTIONS

If x = f(t) and y = g(t), then

$$\frac{dy}{dx} = \frac{dy / dt}{dx / dt} = \frac{f'(t)}{g'(t)}.$$

And
$$\frac{d^2y}{dx^2} = \frac{d}{dx} \left(\frac{dy}{dx} \right) = \frac{d}{dt} \left(\frac{dy}{dx} \right) \times \frac{dt}{dx} = \frac{d}{dt} \left(\frac{dy}{dx} \right) / \frac{dx}{dt}$$

5.

DIFFERENTIATION OF A FUNCTION WITH RESPECT TO ANOTHER FUNCTION

If y = f(x) and z = g(x), then in order to find the derivative of f(x)w.r.t. g(x), we use the formula

$$\frac{dy}{dz} = \frac{dy / dx}{dz / dx} = \frac{f'(x)}{g'(x)}$$

LOGARITHMIC DIFFERENTIATION

Properties of Logarithms

1.
$$\log_e(mn) = \log_e m + \log_e n$$

2..
$$\log_{e} \left(\frac{m}{n} \right) = \log_{e} m - \log_{e} n$$

3.
$$\log_{e}(m)^{n} = n \log_{e}|m|$$

4.
$$\log_{e} e = 1$$

5.
$$\log_n m = \frac{\log_e m}{\log_e n}$$

6.
$$\log_{n} m \cdot \log_{m} n = 1$$
.

Shorter Methods of Finding the Derivative of a **Logarithmic Function**

If $y = [f(x)]^{g(x)}$, then to find $\frac{dy}{dx}$, in addition to the method discussed above, we can also apply any of the following two methods:

Method 1

Step 1. Express
$$y = [f(x)]g(x) = e^{g(x) \log f(x)}$$

 $[\because a^x = e^{x \log a}]$

Step 2. Differentiate w.r.t. x to obtain
$$\frac{dy}{dx}$$

Method 2

Step 1. Evaluate

A = Differential coefficient of y treating f(x) as constant.

Step 2. Evaluate

B = Differential coefficient of y treating g(x) as constant.

Step 3.
$$\frac{dy}{dx} = A + B$$
.

DIFFERENTIATION OF INVERSE TRIGONOMETRIC FUNCTIONS

Important Substitutions to Reduce the Function to a Simpler Form

Expressions

Substitutions

$$\sqrt{a^2 - x^2}$$
 Put $x = a \sin \theta$ or $x = a \cos \theta$

$$\sqrt{x^2 - a^2}$$
 Put $x = a \sec \theta \text{ or } x = a \csc \theta$
$$\sqrt{a^2 + x^2}$$
 Put $x = a \tan \theta \text{ or } x = a \cot \theta$

$$\frac{a-x}{a+x}$$
 or $\frac{a+x}{a-x}$

$$\sqrt{\frac{a-x}{a+x}}$$
 or $\sqrt{\frac{a+x}{a-x}}$

$$\sqrt{\frac{a^2 - x^2}{a^2 + x^2}}$$
 or $\sqrt{\frac{a^2 + x^2}{a^2 + x^2}}$ Put $x^2 = a^2 \cos \theta$

If
$$y = \begin{vmatrix} f(x) & g(x) & h(x) \\ p(x) & q(x) & r(x) \\ u(x) & v(x) & w(x) \end{vmatrix}$$
, then

$$\frac{dy}{dx} = \begin{vmatrix} f'(x) & g'(x) & h'(x) \\ p(x) & q(x) & r(x) \\ u(x) & v(x) & w(x) \end{vmatrix} + \begin{vmatrix} f(x) & g(x) & h(x) \\ p'(x) & q'(x) & r'(x) \\ u(x) & v(x) & w(x) \end{vmatrix} + \begin{vmatrix} f(x) & g(x) & h(x) \\ p'(x) & q'(x) & r'(x) \\ u(x) & v(x) & w'(x) \end{vmatrix}$$

Note: The differentiation of a determinant can be done in columns also.