COHERENTLY STIMULATED BRILLOUIN SPECTROSCOPY

By Joel N. Johnson

A Dissertation

Submitted in Partial Fulfillment
of the Requirements for the Degree of
Doctor of Philosophy
in Applied Physics and Materials Science

Northern Arizona University

May 2025

Ryan O. Behunin, Ph.D., Co-Chair
Aaron R. Hawkins, Ph.D., Co-Chair
Inès Montaño, Ph.D.

Jennifer S. Martinez, Ph.D.

David Cole, Ph.D.

Table of Contents

Li	st of Tables	iv				
Li	List of Figures Dedication					
D						
Pı	reface	ix				
1	Introduction 1.1 Light Scattering 1.2 Spontaneous Brillouin Scattering 1.3 Stimulated Brillouin Scattering 1.4 Phase-matching 1.5 Brillouin Gain of Materials 1.6 Raman Scattering 1.7 Raman-like Brillouin Modes	1 4 4 5 5 6 6 7				
2	Foundational Experimental Techniques and Instrumentation 2.1 Photonic Experimental Techniques 2.1.1 Control of Light in Photonic Systems 2.1.2 Photonic Devices and Diagrams 2.1.3 Selection and Isolation of Signals 2.1.4 Heterodyne Detection and the Local Oscillator 2.1.5 Optical Loss in a Photonic Systems 2.1.6 Free Space Optics and Beam Alignment 2.1.7 Specialized Optical Fibers 2.2 Optical Instrumentation 2.3 Electronic Instrumentation 2.4 Noise and Background Handling 2.5 Custom Software 2.5.1 Description of Python Script for CABS Data Collection 2.5.2 Description of Plotting Data in Go Program	99 99 100 100 111 111 122 122 133 134				
3	Manuscript I: Laser cooling of traveling wave phonons in an optical fiber 3.1 Abstract	15 15 16 16 16 17 17 17				

	3.6	Results	18
		3.6.1 Main Experiment Results	19
		3.6.2 Pump-Probe Experiment Results	19
	3.7	Discussion	19
		3.7.1 Application to Ground State Cooling	20
		3.7.2 Standardized Cooling Metric	20
		3.7.3 Tapered chalcogenide Photonic Crystal Fiber: Max Plank Results	20
4		nuscript II: A coherently stimulated phonon spectrometer	23
	4.1	Abstract	23
	4.2	Introduction	23
	4.3	Instrument Design	24
		4.3.1 Design of instrument	24
		4.3.2 Sensitivity Measurements	25
	4.4	Theory	25
		4.4.1 Coupled Wave Equations	25
		4.4.2 Phase-matching bandwidth	26
	4.5	Results	26
		4.5.1 Fiber-Coupled: UHNA3	26
		4.5.2 Free-Space: CS_2	27
		4.5.3 Phase-Matching in Small L Regime	27
	4.6	Discussion	27
5	Маг	nuscript III: Brillouin-induced Raman modes	31
J	5.1	Abstract	31
	5.2	Introduction	31
	5.3	Methods	$\frac{31}{32}$
	5.4	Results	$\frac{32}{32}$
	$5.4 \\ 5.5$	Discussion	$\frac{32}{32}$
	0.0	Discussion	02
6	Disc	cussion & Future Work	35
\mathbf{A}	Acr	onyms	37
В	Cod	le	39
		Python Code for CABS Data Collection	39
	B.2	Plotting Data In Go Program	40
\mathbf{C}	C	planeantamy Information for Chapter 2. Manuscript I	11
C		plementary Information for Chapter 3: Manuscript I	41
	U.1	Data	41
D	Sup	plementary Information for Chapter 4: Manuscript II	43
	_	Equal Contribution of Pump, Stokes, and Probe Optical Fields	43
		Scattered Power Comparison to Traditional Brillouin Scattering Processes	44
		Data	48
	2.0	2000	10
${f E}$	Sup	plementary Information for Chapter 5: Manuscript III	49
	_	Data	49
Re	fere	nces	50

List of Tables

5.1	Table caption	33
D.1	Power values for each source (Pump, Stokes, Probe) across the three measurements, with the	
	multiplicative total power for each setup.	43
D.2	Parameters relevant to the coherently stimulated backward Brillouin scattering process for	
	the example UHNA3 fiber. G_B is the effective Brillouin gain, P_P is the pump power, P_S is	
	the Stokes power, P_{Pr} is the probe power, and $\Delta\lambda$ is the wavelength detuning of the probe	
	from the pump	47
D.3	Parameters relevant to the spontaneous and/or stimulated backward Brillouin scattering pro-	
	cesses for the example UHNA3 fiber. G_B is the Brillouin gain coefficient, P_P is the pump	
	power, ω is the optical angular frequency, Γ_B is the acoustic damping rate, k_B is Boltzmann's	
	constant, T is the temperature, and Ω_B is the acoustic angular frequency	47

List of Figures

1.1	Relative domains of typical frequency smits for Rayleigh, Rayleigh-wing, Brinouin, and Raman	
	scattering	3
1.2		5
4.1	CABS measurement of 100um of CS2	29
D.1	Comparison of Signal power contributions with error bars representing one (a) and two (b)	
	standard deviations of the mean for each measurement	44
D.2	Comparison of scattered power from a spontaneous Brillouin scattering process and our co-	
	herently stimulated Brillouin spectrometer.	48

Dedication

Preface

Chapter 1

Introduction

Optomechanics is the study of light-matter interactions; it is the study of how the intangible (light) can affect change in the tangible (matter) and vice versa. Injecting light into a material under specific conditions allows for an exchange of energy to occur between the light and the mechanical oscillations of the material which changes the mechanical energy of the material. This interaction can be controlled to deposit or withdraw mechanical energy into/from a system and thus leave the system in a more, or less, mechanically energetic state respectively. The same interaction can also be harnessed for passive observation of material properties. Mechanical systems from bulk to atomic scales can be probed and characterized with light by retrieving the inelastically scattered light resulting from interaction with the material. This retrieved light contains embedded information about the energy exchange that occurred, which, when considered as part of a population of scattering events, reveals natural resonances of a mechanical system.

Optomechanics comprises a broad range of phenomena involving the interaction of optical and mechanical systems, from basic photothermal absorption to more complex nonlinear processes. Here I offer a brief overview of notable optomechanical phenomena then devote the remainder of this chapter to a more detailed description of the specific interactions that play a role in my research. Photothermal absorption is the process by which light is absorbed by a material, leading to an increase in temperature of the material and consequent changes in the material's dimensions (thermal expansion) or refractive index (thermo-optic effect). This effect has applications in optical switches, actuators, and sensors. Photothermal therapy in medicine is an emerging application of this effect, where light is used to target and heat specific areas, causing localized damage to diseased tissue. This technique becomes especially effective when combined with nanoparticle-enhanced absorption, allowing for dramatically increased absorption in ultra-localized zones within the body.

Light scattering, in its many forms, is also an optomechanical process as it involves the interaction of an optical field with the fluctuation, motion, or vibration of matter. Rayleigh scattering, perhaps the most well-known example, is the elastic scattering of light by particles much smaller than the wavelength of the incident light, leading to scattering in possibly a new direction but without a change in wavelength. It is responsible for the blue color of the sky because the efficiency of Rayleigh scattering is inversely proportional to the fourth power of the wavelength (λ) of the light ($\frac{1}{\lambda^4}$) and so shorter (blue) wavelengths are scattered much more than longer (red) wavelengths by the molecules in the atmosphere. ¹

Raman scattering is the interaction of light with vibrational and rotational modes within a material (often molecular), resulting in scattered light with frequencies that are shifted from the incident light. This inelastically scattered light provides insights into the material's molecular structure and properties. Raman scattering is widely used in chemical and material science for identifying chemical compounds, analyzing molecular structures, and studying molecular dynamics. It finds application in the characterization of pharmaceuticals, monitoring changes in biological tissues for medical diagnostics, and investigation of stress and temperature distributions in engineering materials, among others.

Brillouin scattering, around which much of my work is centered, is the scattering of light with acoustic phonons or coherent traveling density waves in a material, resulting in scattered light with a frequency that is slightly shifted from the incident light. This inelastically scattered light reveals mechanical properties of the material such as its bulk and elastic moduli. This phenomenon is used in materials science to measure elastic properties and viscoelasticity of materials, in fiber optic sensing to monitor temperature and strain over large distances, and in physics to study phase transitions and mechanical properties of crystals, liquids, and gases.

Rayleigh-wing scattering is the broad, smooth extension of the Rayleigh scattering spectrum that results from interactions with low-frequency excitations in a material, providing insights into dynamic processes like rotational and translational diffusion of molecules that make up a material. This scattering is particularly useful in studying the dynamics of complex fluids, gases, and soft materials, where it can reveal information about molecular orientation, diffusion rates, and interactions within the medium. Applications include the analysis of atmospheric phenomena, characterization of liquid crystals, and investigations into the properties of polymers and biological materials, aiding in the understanding of their behavior at the molecular level.

Figure 1.1 shows the relative domains of typical frequency shifts for Rayleigh, Rayleigh-wing, Brillouin, and Raman scattering. Rayleigh-wing scattering is broad and shares part of its domain with Brillouin scattering. This makes sense because for any given molecule and within the timescale that it occurs, diffusive translational motion can be thought of as indistinguishable from motion caused by traveling density waves that host brillouin scattering. In this way, Rayleigh-wing scattering represents a sporadic distribution of fleeting, localized Brillouin scattering. Of course, the difference between incoherent diffusion of molecules and coherently traveling acoustic modes within a material is an important distinction. However, this thought experiment offers a perspective for bridging the gap between Rayleigh-wing and Brillouin scattering and for

Figure 1.1: Relative domains of typical frequency shifts for Rayleigh, Rayleigh-wing, Brillouin, and Raman scattering.

understanding their common frequency domains. Moreover, it serves as a reminder of the rich continuum of material behavior and responses that affect light scattering as opposed to the distinct categories we ascribe for convenience. This is a core concept of my work.

Returning to other optomechanical phenomena beyond scattering processes, the momentum of photons can exert forces on objects, leading to phenomena like radiation pressure, optical tweezing, and optical trapping. These effects are widely used in manipulating microscopic particles, biological cells, and atoms, enabling studies of single molecules, cold atoms, and quantum computing elements.

The final category of optomechanical interactions I will note here is that of nonlinear optical phenomena. Second harmonic generation, parametric oscillation, and four-wave mixing all feature the interaction between light and material nonlinearities that lead to the generation of new light frequencies. ² The Kerr effect is the change in the refractive index of a material in response to an applied electric field, which can be induced optically with sufficient intensities of light. In general, nonlinear optical responses of materials are often only accessible with the use of high intensity laser light. This is emphasized by the fact that the field of nonlinear optics can be traced back to the discovery of second-harmonic generation in 1961³, just one year after the first demonstration of the laser by American physicist Theodor Maiman. ⁴ These nonlinear effects provide the foundation for a range of technologies, including high-speed optical communication systems, frequency converters, and lasers for materials processing.

Also included within nonlinear optical phenomena is electrostriction. Electrostriction is a reversible material deformation induced by an electric field, which can be generated by light in electro-optic materials. This effect is quadratic, scaling with the square of the applied electric field, and hence a nonlinear optical effect. At sufficiently high intensities, electrostrictive forces serve to enhance Brillouin scattering whereby the scattered light electrostrictively reinforces the acoustic wave that caused its scattering, leading to a nonlinear positive feedback loop known as Stimulated Brillouin Scattering (SBS). Photostriction is a related phenomenon that occurs when light absorption causes a change in the lattice structure of a material, leading to mechanical strain. It combines photovoltaic and piezoelectric effects and can be seen as an optically induced strain. These effects are utilized in designing optical modulators, tunable photonic devices, and

smart materials that respond to light.

In the remainder of this chapter I further describe the specific optomechanical phenomena that pertain to the research presented in this document: Brillouin scattering, electrostriction as it pertains to the SBS process, and Raman scattering.

1.1 Light Scattering

Light scattering involves the redirection of light as a result of interactions with the constituent particles or molecules within a material medium. In every case, light scattering occurs because of variations in the material's optical properties. To understand why, envision a material with completely uniform particles—spatially and temporally consistent, or in other words, perfectly homogeneous. Figure 1.2 shows an incident optical plane wave encountering a segment of such a material, denoted δz , containing a volume element δV_1 . For any given incident wavelength λ and any non-zero scattering angle θ at volume δV_1 , there exists a corresponding volume element δV_2 , located a distance $\frac{\lambda}{2\sin\theta}$ apart, which scatters light at the same angle θ . The scattered waves from δV_1 and δV_2 would be out of phase by $\frac{\lambda}{2}$, leading to perfect destructive interference and no resultant scattered field. Thus, to achieve observable scattering, the material must possess inhomogeneities, allowing for variations in the optical properties between neighboring volumes. Fortunately, perfect homogeneity is not characteristic of real materials; all matter undergoes thermodynamic fluctuations at any temperature above absolute zero, and quantum fluctuations are inherent even at the ground state.

I now begin with a theoretical description of spontaneous light scattering as a result of thermodynamic fluctuations, presented in Boyd Nonlinear Optics. This foundation will serve as a framework for understanding light scattering as specifically resulting from pressure variations (Brillouin scattering) as opposed to density variations (Rayleigh scattering). Later I will treat the case of higher-intensity SBS. Ultimately I will build upon this theoretical basis to derive the coupled-wave equations of the Coherent Anti-Stokes Brillouin Spectrometer (CABS), a novel instrument which underpins many of my results. Let us build a theoretical description of light scattering considering thermodynamic fluctuations as the origin of the scattering process.

1.2 Spontaneous Brillouin Scattering

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna

fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim

rutrum.

1.3 Stimulated Brillouin Scattering

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

1.4 Phase-matching

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada

fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

1.5 Brillouin Gain of Materials

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

1.6 Raman Scattering

1.7 Raman-like Brillouin Modes

Chapter 2

Foundational Experimental Techniques and Instrumentation

This is an inline citation,². This is a parenthetical citation². This is a figure reference (Figure 1.1). This is a section reference §1.2. This is a chapter reference with chapter spelled out: chapter 3. This is an acronym definition **AGU!** (**AGU!**). This is the second time I use the acronym in this section **AGU!**. This is if I want to spell out the full acronym again **AGU!** (**AGU!**). Define new acronyms in the acronyms.tex file.

2.1 Photonic Experimental Techniques

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

2.1.1 Control of Light in Photonic Systems

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla,

malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

2.1.2 Photonic Devices and Diagrams

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

2.1.3 Selection and Isolation of Signals

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

2.1.4 Heterodyne Detection and the Local Oscillator

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium

quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

2.1.5 Optical Loss in a Photonic Systems

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

2.1.6 Free Space Optics and Beam Alignment

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

2.1.7 Specialized Optical Fibers

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna

fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

2.2 Optical Instrumentation

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

2.3 Electronic Instrumentation

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

2.4 Noise and Background Handling

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a,

magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

2.5 Custom Software

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

2.5.1 Description of Python Script for CABS Data Collection

2.5.2 Description of Plotting Data in Go Program

Chapter 3

Manuscript I: Laser cooling of traveling wave phonons in an optical fiber

3.1 Abstract

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

3.2 Optomechanical Cooling and Heating

3.3 Cooling Platform: CS₂-Liquid Core Optical Fiber

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

3.3.1 Optomechanical Properties

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

3.3.2 Fabrication

3.3.3 Fabrication Iterative Refinement

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

3.4 Intention of the Pump-Probe Experiment

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

3.5 Experimental Setup

rutrum.

3.5.1 Main Experiment

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

3.5.2 Pump-Probe Experiment

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

3.6 Results

Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

3.6.1 Main Experiment Results

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

3.6.2 Pump-Probe Experiment Results

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

3.7 Discussion

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla,

malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

3.7.1 Application to Ground State Cooling

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

3.7.2 Standardized Cooling Metric

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

3.7.3 Tapered chalcogenide Photonic Crystal Fiber: Max Plank Results

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium

quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Chapter 4

Manuscript II: A coherently stimulated phonon spectrometer

Joel N. Johnson^{1,2}, Nils T. Otterstrom³, Peter T. Rakich⁴, Ryan O. Behunin^{1,2}

This is the Accepted Manuscript version of an article accepted for publication in Nature Photonics. Wiley Inc is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at https://doi.org/.

4.1 Abstract

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

4.2 Introduction

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada

¹ Department of Applied Physics and Materials Science, Northern Arizona University, Flagstaff, AZ 86011, USA

² Center for Materials Interfaces in Research and Applications, Flagstaff, AZ 86011, USA

³ Sandia National Laboratory, 1515 Eubank Blvd SE, Albuquerque, NM 87123, USA

⁴ Department of Applied Physics, Yale University, New Haven, CT 06520, USA

fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum. State of brillouin microscopy Applications and usefulness Challenges: selection of backscattered signal conflated with Stokes field phase-matching requires probe wavelength to be exactly that of Stokes Wouldn't it be nice if we could break free of strict phase-matching requirements, therefore perfectly isolating the signal In this work

4.3 Instrument Design

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

4.3.1 Design of instrument

4.3.2 Sensitivity Measurements

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

4.4 Theory

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

4.4.1 Coupled Wave Equations

4.4.2 Phase-matching bandwidth

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum. phase-matching bandwidth theory

4.5 Results

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

4.5.1 Fiber-Coupled: UHNA3

4.5.2 Free-Space: CS_2

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum. figure: demonstration measurements 1mm uhna3 fiber 1mm CS2 bulk

comparison to stimulated brillouin and spontaneous brillouin?

4.5.3 Phase-Matching in Small L Regime

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum. figure: phase-matching peak vs pump-probe separation 1cm uhna3, CS2 peak vs pump-probe separation 1mm uhna3, CS2

4.6 Discussion

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus.

Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

100 μm CS2 CABS

Figure 4.1: CABS measurement of 100um of CS2.

Chapter 5

Manuscript III: Brillouin-induced Raman modes

5.1 Abstract

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

5.2 Introduction

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

5.3 Methods

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

5.4 Results

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

5.5 Discussion

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim

rutrum.

 Table 5.1:
 Table caption.

	Parameter	Value	Description		
	lat	-85°-85°	Latitude (35 bins in 5° increments)		
Lookup	ALBEDO	0.05 – 0.225	Bolometric albedo (6 bins in 0.035 increments)		
Variables	SLOPE	0°-90°	Surface slope (19 bins in 5° increments)		
	SLOAZI	$0^{\circ}360^{\circ}$	Surface azimuth (19 bins in 20° increments)		
	DELLS	4°	L_s step size (90 bins spanning 0°–360°)		
	EMISS	0.96	Emissivity		
	thick	0.05	Upper layer thickness [m]		
	DENSITY	1100	Upper layer density [kg/m ³]		
Thermal	DENS2	1800	Lower layer density [kg/m ³]		
Parameters	lbound	18	Interior heat flow $[mW/m^2]$		
	PhotoFunc	0.045/albedo	Photometric function (Keihm-style)		
	SphUp0/SphLo0	602.88098583			
	SphUp1/SphLo1	235.98988249	Specific heat capacity expressed as 4th-order		
	SphUp2/SphLo2	-29.59742178	polynomial $(c0 + c1 \cdot T + c2 \cdot T^2 + c3 \cdot T^3)$		
	${\rm SphUp3/SphLo3}$	-3.78707193			
Temperature-	ConUp0	0.00133644			
dependent	ConUp1	0.00073150	Upper layer conductivity expressed as		
parameters	ConUp2	0.00033250	4th-order polynomial		
	ConUp3	0.00005038	$(c0 + c1 \cdot T + c2 \cdot T^2 + c3 \cdot T^3)$		
	ConLo0	0.00634807			
	ConLo1	0.00347464	Lower layer conductivity expressed as		
	ConLo2	0.00157938	4th-order polynomial		
	ConLo3	0.00023930	$(c0 + c1 \cdot T + c2 \cdot T^2 + c3 \cdot T^3)$		
	body	Moon	Target body		
	k_style	Moon	Conductivity style (Moon for airless bodies)		
Model Setup	LKofT	${ m T}$	Temperature-dependent conductivity		
	FLAY	0.01	First layer thickness [m]		
Parameters	RLAY	1.3	Layer thickness multiplier		
	N1	26	Number of layers		
	N24	288	Timesteps per day (5 min steps)		
	DJUL	0	Start date		

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Chapter 6

Discussion & Future Work

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Appendix A

Acronyms

SBS Stimulated Brillouin Scattering

 ${\bf CABS}\,$ the Coherent Anti-Stokes Brillouin Spectrometer

Appendix B

 \mathbf{Code}

B.1 Python Code for CABS Data Collection

B.2 Plotting Data In Go Program

Appendix C

Supplementary Information for Chapter 3: Manuscript I

C.1 Data

Appendix D

Supplementary Information for Chapter 4: Manuscript II

D.1 Equal Contribution of Pump, Stokes, and Probe Optical Fields

Equation ?? gives the somewhat unintuitive result that the powers of the Pump, Stokes, and Probe waves contribute equally to the resulting scattered power of the Signal and invites verification with a miniexperiment. Initially, this experiment was motivated by a practical consideration: determination of whether the placement of a high power amplifier on any specific line of the setup (Pump, Stokes, or Probe) would offer any advantage over another.

To test this, we conducted a controlled experiment with a 1 mm carbon disulfide (CS_2) sample. For each measurement, one of the three source powers (Pump, Stokes, or Probe) was systematically reduced by 75% while holding the others constant and ensuring consistent experimental conditions across trials. Table D.1 shows the respective powers for each source during the three measurements, along with the multiplicative total contribution of the three powers for each measurement towards the generation of scattered power of the Signal.

Measurement	Pump Power (mW)	Stokes Power (mW)	Probe Power (mW)	Total (mW^3)
Pump Lower	19.190	32.210	54.560	3.372×10^4
Stokes Lower	76.600	8.020	54.650	3.359×10^4
Probe Lower	76.600	32.530	13.480	3.359×10^4

Table D.1: Power values for each source (Pump, Stokes, Probe) across the three measurements, with the multiplicative total power for each setup.

Figure D.1a displays the average results from these three measurements, plotted with error bars representing one standard deviation of the mean. For increased certainty, Figure D.1b presents the same data with error bars extended to two standard deviations, providing additional confidence in the reproducibility of the results. This experiment confirms that the scattered Signal power indeed depends equally on each of the three contributing wave powers, as expected from the theoretical framework. Consequently, boosting the

power of any of the three sources affects the Signal power equally, allowing flexibility in pragmatic design across any of the three lines. Ultimately, this result reinforces the reliability of Equation ?? for predicting Signal power across a range of power distributions within practical settings.

Figure D.1: Comparison of Signal power contributions with error bars representing one (a) and two (b) standard deviations of the mean for each measurement.

D.2 Scattered Power Comparison to Traditional Brillouin Scattering Processes

This appendix provides a comparative analysis of the scattered power produced by our instrument to that of standard Brillouin scattering processes-that is, spontaneous and stimulated Brillouin scattering. The difference in behavior of our instrumdent from the traditional techniques arises due to the coherent stimulation of the acoustic mode by the pump and Stokes fields, producing a 4-wave-coupled-amplitude interaction that yields much higher scattered powers in smaller lengths. While our instrument is particularly well suited to small interaction lengths due to enhanced phase-matching relaxation, it maintains production of a significant amount of scattered power at greater lengths as well (greater than 1 meter). This is because the reduction in scattered power from the breakdown of phase-matching relaxation at greater lengths is perfectly counter-balanced by the quadradic dependence on length in the overall scattered power, as seen in Eq. ??. At very large lengths (greater than 1 km), the instrument is ultimately limited by the coherence length of the lasers employed, as the process relies on the coherent stimulation of the phonon mode and thus the mutual coherence of the pump and Stokes fields over the interaction length. Here we offer an exploration

into the respective performance of each technique across the entire meaningful length scale, from nanometers to kilometers.

Despite shared dependence on basic Brillouin scattering principles, the three techniques compared here (spontaneous-, stimulated-, and coherently stimulated Brillouin scattering) yield significantly different scattered power for identical experimental paramters. At small lengths, the high-gain threshold for optical stimulation of the material fluctuations is often not achievable without the use of extremely large optical powers. This prevents the system from entering a process of exponential growth of the scattered Stokes light indicative of stimulated Brillouin scattering. In this low-gain regime, any scattered Stokes light is spontaneously scattered from thermal fluctuations of the material, or from quantum-mechanical fluctuations of materials at the ground state. The low-gain regime is defined by an overall process gain factor, denoted by $G = G_P P_P L$, which is much less than unity $(G \ll 1)$. Here, G_B is the effective Brillouin gain in $W^{-1}m^{-1}$ ($G_B = \frac{g}{A_{eff}}$), P_P is the pump power, and L is the effective length. This spontaneous scattering process follows a linear growth trend described by Boyd et al in 1990? as

$$R = \frac{\langle |E_S|^2 \rangle}{\langle |E_P|^2 \rangle} = (\bar{n} + 1)g\hbar\omega_S \Gamma_B \frac{L}{4A_{eff}},\tag{D.1}$$

where R is the reflectivity, or the ratio of scattered Stokes intensity to incident pump intensity, and $\bar{n} = (e^{\frac{\hbar\Omega_B}{k_bT}} - 1)^{-1}$ is the mean number of phonons occupying the mode due to thermal fluctuations of the material. Rearranging this equation and converting to effective Brillouin gain, G_B , and power by applying the effective area, we arrive at the scattered power of the Stokes spontaneous Brillouin scattering process,

$$P_S = \frac{1}{4} G_B P_P L \hbar \omega_S \Gamma_B(\bar{n} + 1). \tag{D.2}$$

At room temperature and typical Brillouin frequencies in the GHz range, the quantity $k_bT\gg\hbar\Omega_B$, allowing

$$e^{\frac{\hbar\Omega_B}{k_bT}} \approx 1 + \frac{\hbar\Omega_B}{k_bT}$$
 (D.3)

to be a good approximation. We thus find that

$$(\bar{n}+1) \approx \bar{n} \approx \frac{k_b T}{\hbar \Omega_B}.$$
 (D.4)

Inserting this reduced quantity into Eq. D.2, we arrive at a convenient expression for the scattered power of the Stokes spontaneous Brillouin scattering process,

$$P_{S, SponBS} = \frac{G_B P_P L \omega_S \Gamma_B k_b T}{4\Omega_B}.$$
 (D.5)

It may be noted that the derived expression for the low-gain spontaneous regime here matches the form reported by Kharel et al. in 2016⁵ for the complementary forward scattering processe. While the two scenarios—our backward scattering geometry versus the forward scattering geometry discussed by Kharel et al.—differ in directionality, the underlying physics of light coupling to thermally excited acoustic modes is the same and reflects the fundamental similarity in how thermal phonons mediate the interaction between optical fields in the low-gain (spontaneous) regime.

Next we turn to the high-gain regime leading to a stimulated Brillouin scattering process. This regime is defined by an overall process gain factor, $G = G_P P_P L$, that is much greater than unity $(G \gg 1)$. For organic liquids, this crossover threshold from spontaneous to stimulated regimes occurs in the range of 20 < G < 25, whereas for typical lengths of single mode fiber it can be lower? owing to the small effective area compared to longer effective lengths of fiber typically used.

The reflectivity of a stimulated Brillouin scattering process in the high-gain regime is given by?

$$R = \frac{\langle |E_S|^2 \rangle}{\langle |E_P|^2 \rangle} = \frac{Y}{\sqrt{\pi}} \frac{e^G}{G^{\frac{3}{2}}},\tag{D.6}$$

where Y is the reflectivity of the low-gain (spontaneous) regime given above and G is the overall process gain factor, $G = G_P P_P L$. Again, converting to the effective Brillouin gain, G_B , and power by applying the effective area, we solve for the scattered power of the Stokes field,

$$P_{S, StimBS} = \frac{G_B P_P L \omega_S \Gamma_B k_b T}{4\sqrt{\pi}\Omega_B} \frac{e^G}{G^{\frac{3}{2}}}$$
 (D.7)

This expression captures the exponential growth in scattered power as any parameter within the overall process gain factor, $G = G_B P_P L$, increases. However, this exponential growth can only continue while the pump is not significantly undepleted. Once the scattered power described by Eq. D.7 grows to a significant fraction of the driving pump power, the exponential increase in scattered Stokes power asymptotically approaches the pump power. For very large G, virtually all of the pump energy is converted to scattered Stokes energy in a complete transfer process. To account for pump depletion, we numerically solve the transendental equation derived in Boyd's Nonlinear Optics which describes the effects of pump depletion, given here in terms of power as

$$P_S(L) = \frac{P_S(0)x(1-x)}{e^{G_B P_P(0)L(1-x)} - x},$$
(D.8)

where $x = P_S(0)/P_P(0)$, or the ratio of the unknown Stokes power at the end of its journey through the medium (z = 0) to the known pump power at the beginning (also z = 0). This solution for x, specific to system parameters such as length, offers via its definition the solution to the unknown power of the scattered Stokes light at the end of its traversal through the effective length, given as

$$P_S(0) = xP_P(0).$$
 (D.9)

The solution to this numeric approach to scattered power in the high-gain (stimulated) Brillouin scattering regime with pump depletion effects at large G is plotted for varying effective lengths in Fig. D.2, along with the analytical solutions derived previously for the low-gain (spontaneous) regime and our coherently stimulated Brillouin spectrometer given by Eq. ??. System parameters used to generate the plot for each of the three processes are provided in Tables D.2 and D.3. Wherever possible, the parameters shared by all three Brillouin scattering processes were kept consistent, while quantities unique to each process were assigned their respective values.

Coherently Stimulated Brillouin Scattering Process Model System Parameters

G_B	P_P	P_S	P_{Pr}	$\Delta \lambda$	
$0.6 \ W^{-1}m^{-1}$	1 W	1 W	1 W	20 pm	

Table D.2: Parameters relevant to the coherently stimulated backward Brillouin scattering process for the example UHNA3 fiber. G_B is the effective Brillouin gain, P_P is the pump power, P_S is the Stokes power, P_{Pr} is the probe power, and $\Delta\lambda$ is the wavelength detuning of the probe from the pump.

Spontaneous and Stimulated Scattering Process Model System Parameters

G_B	P_P	$P_{S,seed}$	n	λ_P	Γ_B	k_B	T	Ω_B
$0.6~W^{-1}m^{-1}$	1 W	1 pW	1.48	$1549~\mathrm{nm}$	$2\pi \cdot 80 \text{ MHz}$	$1.38 \times 10^{-23} \text{ J/K}$	295 K	$2\pi \cdot 9.18 \text{ GHz}$

Table D.3: Parameters relevant to the spontaneous and/or stimulated backward Brillouin scattering processes for the example UHNA3 fiber. G_B is the Brillouin gain coefficient, P_P is the pump power, ω is the optical angular frequency, Γ_B is the acoustic damping rate, k_B is Boltzmann's constant, T is the temperature, and Ω_B is the acoustic angular frequency.

At lengths beyond a centimeter, the phase-matching relaxation of the coherently stimulated process begins to break down, and the specific choice in pump and probe detuning becomes critical. This corresponds to a narrowing of the $sinc^2$ function given in Eq. ??. The scattered power beyond this length rises and falls according to the oscillations of the $sinc^2$ function far from the origin. As length increases continuously beyond 1 meter, the scattered power oscillates with increasing frequency and ceases to offer practical significance. To better visualize the scattered power offered by the instrument in this region, we have computed the envelope of scattered power. In a laboratory setting, the appropriate pump and probe detuning would be selected for

Figure D.2: Comparison of scattered power from a spontaneous Brillouin scattering process and our coherently stimulated Brillouin spectrometer.

the specific sample length being measured such that the scattered power function lies on a local peak of the $sinc^2$ function.

Fig. D.2 shows the advantage that our coherently stimulated Brillouin spectrometer offers compared to the traditional Brillouin processes for the example medium of UHNA3 fiber. For lengths up to about 50 meters and down to as low as 100 nanometers, the coherently stimulated process employed by our instrument offers superior scattered power, with the relative advantage peaking for a length just under 1 cm. At this length, the gain factor G places the traditional process within the low-gain (spontaneous) regime, and thus the scattered power generated is only on the order of 10s of picoWatts. In contrast, the scattered power for the same system offered by our instrument is on the order of 10s of microWatts, exceeding that of the spontenous process by a factor of a million. This is, of course, the most ideal case for this system, however it can be seen from Fig. D.2 that the coherently stimulated process offers orders of magnitude more scattered power than either traditional process through a wide range of lengths.

D.3 Data

Appendix E

Supplementary Information for Chapter 5: Manuscript III

E.1 Data

References

- [1] Lord Rayleigh. On the light from the sky, its polarization and colour. Phil Mag, 41:274, 1871.
- [2] Robert W Boyd. Nonlinear optics. Academic press, 2020.
- [3] eg PA Franken, Alan E Hill, CW el Peters, and Gabriel Weinreich. Generation of optical harmonics. *Physical review letters*, 7(4):118, 1961.
- [4] Theodore H Maiman et al. Stimulated optical radiation in ruby. 1960.
- [5] Prashanta Kharel, Ryan O Behunin, William H Renninger, and Peter T Rakich. Noise and dynamics in forward brillouin interactions. *Physical Review A*, 93(6):063806, 2016.