SA421 – Simulation Modeling Asst. Prof. Nelson Uhan Spring 2013

Lesson 19 / Quiz 6. Basic ProModel Review

Instructions. You have the entire class period to complete this quiz. You may use your notes, homework, textbook, and files during this quiz. You must work in teams of 2 or 3. Submit only 1 quiz sheet per team.

Problem 1. Passengers arrive at the main entrance of the Bellman Air terminal, according to an exponential interarrival-time distribution with mean 1.6 minutes. The travel time from the entrance to the check-in counter is distributed uniformly between 2 and 3 minutes. 80% of passengers are traveling economy class, 20% of passengers are traveling business class. At the check-in counter, economy class passengers have a service time (in minutes) following a gamma distribution with shape value $\alpha = 14.4$ and scale value $\beta = 0.42$, while business class passengers have a service time (also in minutes) following a gamma distribution with shape value $\alpha = 15.7$ and scale value $\beta = 0.54$. Bellman Air is trying to determine how many agents it should have at its check-in counter.

a.	Simulate the system for 16 hours with x check-in agents, for $x \in \{1, 2, 3, 4, 5, 6\}$. While doing these simulations, consider the two questions below.
b.	For each x , what fraction of the passengers served wait more than 20 minutes? (Start a passenger's waiting time at the moment he or she enters the check-in counter queue.)
c.	What is the minimum number of agents needed to ensure that no more than 20 passengers are waiting at the check-in counter at any time?

- d. For one member of your team: in the top level of your SA421 submission folder on Google Drive:
 - i. Create a folder called "Quiz 6".
 - ii. Upload your ProModel file for this quiz into this folder.
 - iii. Circle your name at the top of this sheet.
- e. If you're done early, think about the bonus questions on the back of this sheet.

Bonus 1. In w	words, how woul	ld you change	your model to	only simulate	e the first 200) passengers?	
class. Instead	pose that you di , suppose you h n words, how w	ad separate int	terarrival time	distributions			