Análise de Séries Temporais com Pandas

Um breve introdução

Agenda

Parte 1: Fundamentos do Tempo no Pandas

- O que são séries temporais e por que usar o Pandas.
- Estruturas de dados essenciais: Timestamp, Period, DatetimeIndex.

Parte 2: Manipulação e Consulta de Dados

 Técnicas de indexação, fatiamento, tratamento de fusos horários e reamostragem.

Parte 3: Análise e Visualização para Insights

• Visualização, decomposição de séries e análise de autocorrelação.

Parte 4: Estudos de Caso Práticos

• Aplicações em finanças, ciência ambiental e e-commerce.

Parte 1

Tempo no Pandas

O que são Séries Temporais?

Dados de séries temporais são uma sequência de pontos de dados registrados em intervalos de tempo específicos. [1, 2]

- São utilizados em finanças, economia, ciência ambiental, engenharia e muito mais.
- A biblioteca **Pandas** oferece um kit de ferramentas para lidar com esses dados.

Objetos Temporais no Pandas

Imagine que você está planejando uma viagem:

- **Timestamp:** É um ponto no tempo. É o **momento exato** da sua partida. 15 de Outubro de 2023, às 08:00:00.
- Period: É um intervalo de tempo
 É o mês inteiro da sua viagem. O mês de Outubro de 2023.
- **Timedelta:** É uma quantidade de tempo. É a **duração** da sua viagem. 7 dias e 3 horas.
- **DateOffset:** É uma **regra de calendário** para encontrar outra data. "A primeira segunda-feira depois da sua chegada"

Timestamp: O Ponto Específico no Tempo

Analogia: O carimbo no passaporte ou o registro de ponto. Marca um instante único e preciso.

O que é?

Representa um único ponto no tempo, com precisão de nanossegundos. É a forma mais comum de representar datas em uma série temporal, como o índice de um DataFrame.

Aplicação na Vida Real:

- **Vendas no E-commerce:** Cada venda ocorre em um Timestamp exato. Você precisa saber o segundo em que a compra foi efetuada para analisar picos de tráfego, eficácia de promoções-relâmpago, etc.
- Logs de Servidor: Cada acesso, erro ou evento em um sistema é registrado com um Timestamp. Analistas de segurança e de sistemas usam isso para rastrear atividades.
- **Mercado Financeiro:** O preço de uma ação é registrado em Timestamps para capturar a volatilidade do mercado em tempo real.

Exemplo Prático em Pandas:

```
import pandas as pd
# Dados de vendas com o momento exato de cada transação
vendas = {
    'id_venda': [101, 102, 103],
    'momento_compra': ['2023-10-25 09:30:15', '2023-10-25 09:32:05', '2023-10-25 14:05:40']
df vendas = pd.DataFrame(vendas)
# Convertendo a coluna para o tipo Timestamp do Pandas
df vendas['momento compra'] = pd.to datetime(df vendas['momento compra'])
# Agora, a coluna é composta por objetos Timestamp
print(df_vendas.dtypes)
# Acessando o primeiro Timestamp
primeira_venda = df_vendas['momento_compra'].iloc[0]
print(f"A primeira venda ocorreu em: {primeira_venda}")
```

Period

Period: O Intervalo de Tempo

Analogia: A página de um calendário (o dia inteiro, o mês inteiro, o ano inteiro).

O que é?

Representa um intervalo ou um período de tempo, como um mês, um trimestre fiscal ou um ano inteiro. Ele não se importa com a hora ou o minuto, apenas com o intervalo que ele representa.

Aplicação na Vida Real:

- **Relatórios Financeiros:** Empresas reportam resultados por **trimestres** (ex: Q3 2023) ou por **mês** (ex: Outubro de 2023). Você não diz "vendemos X até as 17h do último dia do trimestre", mas sim "vendemos X no trimestre".
- **Dados Econômicos:** O IBGE divulga a inflação mensal (um Period de um mês) ou o PIB trimestral (um Period de um trimestre).
- Planejamento de Metas: Definir metas de vendas para o "mês de Dezembro" ou para o "segundo semestre do ano".

Exemplo Prático em Pandas:

Usamos Period principalmente para agregar dados que estão em Timestamp.

```
# Usando nosso DataFrame de vendas anterior
# Vamos agregar as vendas por hora

# Converter o indice para Periodo de Hora ('H')
df_vendas.set_index('momento_compra', inplace=True)
vendas_por_hora = df_vendas.to_period('H')

print(vendas_por_hora.index)

# Agora podemos contar quantas vendas ocorreram em cada período de uma hora
print(vendas_por_hora.groupby(vendas_por_hora.index).count())
```

Timedelta

Timedelta: A Duração Exata

Analogia: A duração da viagem ou o tempo de um cronômetro.

O que é?

Representa a diferença entre dois Timestamps . É uma duração, uma quantidade de tempo (ex: 3 dias, 4 horas, 15 minutos).

Aplicação na Vida Real:

- Logística: Calcular o tempo de entrega de um produto (data de entrega data do pedido).
- Análise de Suporte ao Cliente: Medir o tempo de resolução de um ticket de suporte (data de fechamento data de abertura).
- Análise de Comportamento de Usuário: Calcular a duração da sessão de um usuário em um site ou app (hora de logout hora de login).

Exemplo Prático em Pandas:

```
# DataFrame de logística
logistica = {
    'pedido_feito': ['2023-10-20 11:00:00', '2023-10-22 15:20:00'],
    'pedido entregue': ['2023-10-23 14:30:00', '2023-10-25 18:00:00']
df_log = pd.DataFrame(logistica)
df_log['pedido_feito'] = pd.to_datetime(df_log['pedido_feito'])
df_log['pedido_entregue'] = pd.to_datetime(df_log['pedido_entregue'])
# Calculando a diferença entre dois Timestamps, o resultado é um Timedelta
df_log['tempo_entrega'] = df_log['pedido_entregue'] - df_log['pedido_feito']
print(df_log)
print(df_log.dtypes)
```

DateOffset

4. DateOffset : A Regra de Calendário Inteligente

Analogia: O lembrete inteligente no calendário ("próximo dia útil", "última sexta-feira do mês").

O que é?

É mais poderoso que um Timedelta. DateOffset representa uma regra de calendário. Ele entende conceitos como "dias úteis", "fim do mês", "início do trimestre", etc. Enquanto um Timedelta de "1 dia" é sempre 24 horas, um DateOffset de "1 dia útil" pode pular um fim de semana.

Aplicação na Vida Real:

• **Finanças:** Calcular a data de vencimento de um boleto.

"Vence em 5 dias úteis". Se hoje é quinta-feira, o vencimento será na próxima quinta, pulando sábado e domingo.

Recursos Humanos:

Agendar o pagamento de salários para a "último dia útil do mês".

Agendamento de Relatórios:

Gerar um relatório de performance todo "início de trimestre" (QS-OCT).

Exemplo Prático em Pandas:

```
from pandas.tseries.offsets import BDay, BMonthEnd
hoje = pd.Timestamp('2023-10-26') # Uma quinta-feira
# Adicionando um Timedelta de 3 dias (sempre 72 horas)
vencimento simples = hoje + pd.Timedelta(days=3)
# Cai no domingo
print(f"Vencimento com Timedelta: {vencimento_simples.date()}")
# Adicionando um DateOffset de 3 dias úteis (Business Days)
# Pula o fim de semana
vencimento util = hoje + BDay(3)
print(f"Vencimento com DateOffset (dias úteis): {vencimento_util.date()}")
# Fncontrando o último dia útil do mês atual
ultimo_dia_util_mes = hoje + BMonthEnd(0)
print(f"Data de pagamento (último dia útil): {ultimo_dia_util_mes.date()}")
```

Conceito	O que é	Exemplo	Objeto no Pandas
Timestamp	Um ponto exato no tempo	Momento de uma venda, log de sistema	pd.Timestamp
Period	Um intervalo de tempo	Mês de faturamento, trimestre fiscal	pd.Period
Timedelta	Uma duração de tempo	Tempo de entrega, duração de uma chamada	pd.Timedelta
DateOffset	Uma regra de calendário	"3 dias úteis", "fim do mês"	pd.tseries.offsets.*

A Espinha Dorsal: Objetos de Índice

A vantagem do Pandas para análise de séries temporais é a indexação temporal.

- **DatetimeIndex** : Consiste em uma sequência de objetos Timestamp .
- PeriodIndex e TimedeltaIndex: Sequências de objetos Period Ou Timedelta.

Atenção:

O ato de definir uma coluna como o índice via df.set_index() é o que eleva um DataFrame padrão a um objeto de série temporal, habilitando funcionalidades como .resample() e .rolling().

Ingestão e Parsing: Criando Séries Temporais

Antes da análise, os dados devem ser carregados e interpretados corretamente.

• pd.to_datetime(): A função para converter vários formatos de data/hora.

```
pd.to_datetime(['2024-01-01', '02/03/2024', '7/8/1952'])
# Resolvendo ambiguidade (formato dia/mês)
pd.to_datetime('7/8/1952', dayfirst=True)
```

• pd.date_range(): Gera um DatetimeIndex com uma frequência específica.

```
pd.date_range(start='2024-01-01', periods=5, freq='B') # 5 dias úteis
```

Parte 2

Manipulação e Consulta de Dados

Estudo de Caso: Vendas Diárias da "Loja Pynina"

Vamos analisar as vendas diárias de uma loja fictícia.

```
import pandas as pd
import numpy as np
# Criando nosso DataFrame de vendas diárias para 2024
datas = pd.date_range(start='2024-01-01', end='2024-03-31', freq='D')
np.random.seed(42) # Para resultados reproduzíveis
vendas_dados = np.random.randint(low=50, high=200, size=len(datas))
df_vendas = pd.DataFrame({'vendas': vendas_dados}, index=datas)
df_vendas.index.name = 'data'
print(df_vendas.head())
```

Pergunta 1: Como foram as vendas na terceira semana de Janeiro?

Para responder, usamos a **indexação por string** e o **fatiamento (slicing)**, que são recursos do DatetimeIndex .

• Indexação por String Parcial: Selecione por ano ou mês.

```
# Vendas de todo o mês de Janeiro de 2024
vendas_janeiro = df_vendas['2024-01']
```

• Fatiamento de Intervalos: Selecione um período específico.

```
# Vendas da terceira semana de Janeiro (dia 15 ao 21)
# O limite final é inclusivo
vendas_semana_3 = df_vendas['2024-01-15':'2024-01-21']
print(vendas_semana_3)
```

Pergunta 2: Existe um padrão de vendas por dia da semana?

Para descobrir, precisamos extrair componentes da data. O acessor .dt (para colunas) ou o próprio DatetimeIndex nos dão acesso a atributos como ano, mês e dia da semana.

```
# Adicionando uma coluna com o nome do dia da semana
df_vendas['dia_da_semana'] = df_vendas.index.day_name()
# Calculando a média de vendas para cada dia da semana
media_por_dia = df_vendas.groupby('dia_da_semana')['vendas']
                .mean().sort_values(ascending=False)
print(media_por_dia)
# dia da semana
# Tuesday 138.076923
# Saturday 129.615385
```

Pergunta 3: Qual foi o faturamento total em cada mês?

Nossos dados são diários, mas a pergunta é mensal. Precisamos mudar a frequência dos dados. Isso é **Resampling**.

• **Downsampling**: Reduzir a frequência (ex: de diário para mensal). Requer uma função de agregação (.sum() , .mean()).

```
# Agregando as vendas diárias para obter o total mensal
faturamento_mensal = df_vendas['vendas'].resample('M').sum()
# 'M' significa "Month End Frequency" (Fim do Mês)
print(faturamento_mensal)
```

Pergunta 4: Qual é a tendência de vendas, ignorando o ruído diário?

As vendas diárias variam muito. Para ver a tendência real, usamos uma **média móvel**, calculada com a função .rolling().

• Janelas Deslizantes (.rolling()): Calcula uma estatística (como a média) sobre uma janela de tamanho fixo que "desliza" pela série.

```
# Calculando a média móvel de 7 dias para suavizar o gráfico
df_vendas['media_movel_7d'] = df_vendas['vendas'].rolling(window=7).mean()

# Plotando para comparar (o código do plot foi omitido por simplicidade)
# df_vendas[['vendas', 'media_movel_7d']].plot(figsize=(12,6))
```

A linha azul (média móvel) mostra a tendência de forma muito mais clara que os dados brutos (laranja).

Um Desafio Real: Lidando com Fusos Horários

Imagine que os dados da "Loja Pynina" foram registrados num servidor em Londres (UTC), mas a loja opera em São Paulo.

Naive vs. Aware:

- Um objeto Naive (ingênuo) não tem fuso horário. Nossos dados atuais são assim.
- Um objeto Aware (ciente) sabe seu fuso horário e regras de horário de verão.

• O Fluxo de Trabalho Correto:

- i. **Localize primeiro (.tz_localize)**: Diga ao Pandas qual era o fuso horário original dos dados.
- ii. Converta depois (.tz_convert): Converta para o fuso horário desejado.

Fusos Horários na Prática

```
# 1. Nossos dados são 'naive'. Vamos dizer que foram registrados em UTC.
vendas_utc = df_vendas.tz_localize('UTC')
print(vendas_utc.head(1))
                             vendas dia_da_semana media_movel_7d
# data
# 2024-01-01 00:00:00+00:00 152
                                        Tuesday
                                                            NaN
# 2. Agora que são 'aware', podemos converter para o fuso de São Paulo.
vendas_sp = vendas_utc.tz_convert('America/Sao_Paulo')
print(vendas_sp.head(1))
                             vendas dia_da_semana media_movel_7d
#
# data
# 2023-12-31 21:00:00-03:00 152
                                        Tuesday
                                                            NaN
# Tentar .tz_convert() em dados 'naive' causa um erro!
```

Atenção: Observe como a data e hora mudaram para refletir a conversão correta.

Preparando para Previsão: Criando Features com .shift()

Para modelos de Machine Learning, uma feature comum é o valor do dia anterior. Chamamos isso de **lag**.

• .shift(n): Desloca os dados por n períodos. Essencial para criar features de "valor anterior".

```
# Criando uma feature com as vendas do dia anterior (lag de 1 dia)
df_vendas['vendas_ontem'] = df_vendas['vendas'].shift(1)
print(df_vendas[['vendas', 'vendas_ontem']].head(3))
```

Esta simples operação é a base para transformar um problema de série temporal em um problema de aprendizado supervisionado.

Parte 3: Análise e Visualização para Insights

Visualizando Padrões Temporais

A visualização eficaz permite ver tendências, sazonalidade e anomalias que não são aparentes em números brutos.

- Gráficos de Linha: A visualização fundamental para dados de séries temporais, fornecendo uma visão geral imediata do comportamento dos dados.
- **Gráficos Sazonais (Box Plots)**: Para investigar a sazonalidade, use box plots agrupados por um período sazonal (ex: mês ou dia da semana). Isso mostra claramente as mudanças na mediana, variância e outliers entre os períodos.
- **Heatmaps**: Poderosos para visualizar a interação entre duas unidades baseadas no tempo (ex: mês vs. ano). Revelam padrões complexos, como se as tendências de vendas de fim de semana diferem no verão versus no inverno.

Análise de Decomposição

A decomposição fornece uma maneira estruturada de pensar sobre uma série temporal, dividindo-a em seus componentes. O modelo clássico assume que uma série temporal (Y) pode ser decomposta em:

- Tendência (T): A direção de longo prazo da série.
- Sazonalidade (S): Um padrão periódico e repetitivo.
- Resíduo (R): O ruído irregular e aleatório que resta.

Isso pode ser modelado como aditivo (Y = T + S + R) ou multiplicativo (Y = T + S + R).

A biblioteca statsmodels fornece uma implementação direta com seasonal_decompose.

Correlação no Tempo: ACF e PACF

Para quantificar as dependências temporais dentro de uma série, usamos gráficos de autocorrelação.

- Função de Autocorrelação (ACF): Mede a correlação de uma série temporal com uma versão defasada de si mesma. Um pico significativo no lag k significa que o valor no tempo t está fortemente correlacionado com o valor no tempo t-k.
- **Função de Autocorrelação Parcial (PACF)**: Mede a correlação entre uma série temporal e seu lag, mas *após* remover os efeitos lineares dos lags intervenientes mais curtos.

Esses gráficos são ferramentas de diagnóstico prescritivas, formando a ponte crítica entre a exploração de uma série temporal e a especificação de um modelo de previsão estatística adequado, como o ARIMA.

Estudo de Caso 1: Análise de Mercado Financeiro

- **Objetivo**: Analisar os movimentos diários de preços de uma ação de tecnologia para identificar tendências de longo prazo usando médias móveis e quantificar a volatilidade de curto prazo.
- Dataset: Preços diários históricos de uma ação da NASDAQ (ex: do Kaggle).
- Análise:
 - i. Carregar e Preparar Dados: read_csv , parse_dates , set_index .
 - ii. **Análise de Tendência com Médias Móveis**: Calcular e plotar as médias móveis de 50 e 200 dias do preço de fechamento.
 - iii. **Análise de Volatilidade**: Calcular o desvio padrão dos retornos percentuais diários, reamostrados para uma frequência mensal.

Estudo de Caso 2: Ciência Ambiental e Mudanças Climáticas

- **Objetivo**: Analisar dados históricos de temperatura diária de uma estação meteorológica para identificar e visualizar a tendência de aquecimento de longo prazo.
- **Dataset**: NOAA Global Historical Climatology Network (GHCN-D).
- Análise:
 - i. **Carregar e Preparar Dados**: Lidar com unidades (ex: décimos de grau Celsius) e valores ausentes.
 - ii. **Agregar para Análise de Tendência**: Reamostrar os dados diários para médias anuais usando .resample().
 - iii. **Calcular e Visualizar Anomalias de Temperatura**: Plotar o desvio da temperatura de uma linha de base histórica (ex: 1951-1980) para destacar a tendência subjacente.

Estudo de Caso 3: Análise de Vendas de E-commerce

- **Objetivo**: Analisar dados transacionais de e-commerce para descobrir padrões de vendas semanais e mensais, fornecendo insights acionáveis.
- Dataset: Um dataset transacional como o "Online Retail" do Kaggle.
- Análise:
 - i. **Carregar e Preparar Dados**: Limpar dados, calcular o total de vendas por transação e definir o InvoiceDate como índice.
 - ii. **Agregar para Vendas Diárias**: Reamostrar os dados transacionais para uma frequência diária regular.
 - iii. **Visualizar Padrões Semanais e Mensais**: Usar box plots para comparar as distribuições de vendas entre diferentes dias da semana ou meses.
 - iv. **Criar um Heatmap de Vendas**: Visualizar a intensidade das vendas em duas dimensões de tempo, como mês e ano.

Conclusão

- Pandas é Indispensável: Oferece um framework robusto e de alta performance para análise de séries temporais.
- Estruturas de Dados são a Chave: O DatetimeIndex transforma um DataFrame padrão em um potente motor analítico.
- Entendimento Conceitual é Crucial: Dominar a distinção entre Timestamp e Period, o fluxo de trabalho de fuso horário (localize -> convert), e a natureza interpretativa do resample é fundamental.
- Fluxo de Trabalho Sistemático: A análise de séries temporais permite passar sistematicamente da ingestão de dados brutos à descoberta de padrões profundos e à engenharia de features para modelagem preditiva.
- **Versatilidade**: As mesmas funcionalidades do Pandas podem ser aplicadas a diversos domínios para extrair insights acionáveis e baseados em dados.

Perguntas?

Referências

https://pandas.pydata.org/docs/user_guide/timeseries.html https://fastercapital.com/topics/applications-of-time-series-analysis.html/1 https://pandas.pydata.org/docs/user_guide/timeseries.html https://www.dataquest.io/blog/tutorial-time-series-analysis-with-pandas/ https://www.geeksforgeeks.org/python/python-pandas-dataframe-resample/ https://pandas.pydata.org/docs/user_guide/indexing.html https://datacarpentry.github.io/python-ecology-lesson/03-index-slice-subset.html https://pandas.pydata.org/docs/reference/api/pandas.DatetimeIndex.html https://pvlib-python.readthedocs.io/en/v0.3.1/timetimezones.html

https://pandas.pydata.org/docs/reference/api/pandas.Series.tz_localize.html https://towardsdatascience.com/resample-function-of-pandas-79b17ec82a78 https://www.datacamp.com/tutorial/pandas-resample-asfreq https://www.geeksforgeeks.org/python/python-pandas-dataframe-resample/ https://pandas.pydata.org/docs/user_guide/window.html https://llego.dev/posts/pandas-rolling-expanding-transformations/ https://llego.dev/posts/pandas-resampling-shifting-lagging-data-python/ https://docs.kanaries.net/topics/Pandas/pandas-shift https://www.sparkcodehub.com/pandas/data-analysis/shift-data https://python-graph-gallery.com/timeseries/ https://www.kaggle.com/code/youssef19/time-series-data-visualization-in-python https://python-graph-gallery.com/heatmap-for-timeseries-matplotlib/ https://www.codecademy.com/article/visualizing-time-series-data-with-python

https://machinelearningmastery.com/decompose-time-series-data-trend-seasonality/

https://www.numberanalytics.com/blog/master-time-series-env-econ-swift-primer https://gist.github.com/balzer82/5cec6ad7adc1b550e7ee

https://www.geeksforgeeks.org/how-to-calculate-autocorrelation-in-python/

https://www.kaggle.com/datasets/jacksoncrow/stock-market-dataset

https://docs.dominodatalab.com/en/cloud/user_guide/0927f7/understand-the-

data/

https://projectpythia.org/dask-cookbook/notebooks/02-dask-dataframe.html https://www.kaggle.com/code/amirmotefaker/predicting-sales-e-commerce https://www.kaggle.com/code/allunia/e-commerce-sales-forecast