Density operator evolution

Recall that a witary produces the following evolution

One can evaluate these in terms of Pauli operators.

Exercise: Suppose

$$\hat{\rho}_{0} = \frac{1}{2}(\hat{\mathbf{I}} + r\hat{\mathbf{o}}_{x})$$

$$\hat{\sigma}_{x}\hat{\mathbf{o}}_{y} = -\hat{\mathbf{o}}_{y}\hat{\mathbf{o}}_{x}$$
with $0 \le r \le 1$. Use Pauli eperators and algebra of these to evaluate $\hat{\rho}$ if

i) $\hat{\mathbf{u}} = e^{-i\alpha\hat{\mathbf{o}}_{x}/2} = (\cos^{4}/2\hat{\mathbf{I}} - i\hat{\mathbf{o}}_{x}\sin^{4}/\epsilon)$

2) $\hat{\mathbf{u}} = e^{-i\alpha\hat{\mathbf{o}}_{y}/2}$

Pive states

A system is in a pure state if the state of the system can be described by a ket 14>. The corresponding density operator is

In this case one can show $\hat{p}^2 = \hat{p}$. If a system is not in a pure state, then the density operator cannot be witten like this and $\hat{p}^2 \neq \hat{p}$.

In terms of measurements:

for any measurement

e either antcome is possible

- Exercises: a) For $|\Psi\rangle = \frac{1}{\sqrt{2}} \left(|a\rangle + |1\rangle\right)$ construct density up \hat{p} and show $\hat{p}^2 = \hat{p}$
 - b) For $\hat{p} = \frac{1}{2}(\hat{I} + r\hat{o}_y)$ find condition on r s.t. \hat{p} is pure.
 - c) For $\hat{p} = \frac{1}{2} \left(\hat{I} + \Gamma_{x} \hat{\sigma}_{x} + \Gamma_{y} \hat{\sigma}_{y} \right)$ find condition an Γ_{x} , Γ_{y} s.t \hat{p} is pure.

Density operators for multiple = particles

For two particles

B

B

State?

Density operator is 4×4 matrix \hat{p} that satisfies usual properties. If the states of the particles are prepared separately then A will be in state \hat{p}_A and B in state \hat{p}_B . Then

Quantum Fisher Information

We know that we can estimate via

Choose
$$\hat{\rho} = \frac{\hat{u}(\lambda)}{\hat{\rho}(\lambda)} = \frac{\hat{u}$$

The probabilities will depend on the measurement choice and thus so will F. Over all possible measurement choices is there an ophimal choice that gives biggest F.

General result - classical Fisher info bounded by quantum Fisher info

 $F \leq H$ independent of meas. Charice only depends on $\hat{\rho}(\lambda)$

where H is constructed via

$$\frac{\partial \hat{\rho}}{\partial \lambda} = \frac{1}{2} \left[\hat{L} \hat{\rho} + \hat{\rho} \hat{L} \right]$$

where \hat{L} is symmetric logarithmic derivative. Then if one can find \hat{L}

How to find î and H. If one can do eigenval decomposition

 $\hat{\rho}(\lambda)$ — $\hat{\rho}(\lambda)$ = eigenvals $\hat{\rho}(\lambda)$ - $\hat{\rho}(\lambda)$

$$\hat{L} = 2 \sum_{jk} \frac{\langle \alpha_{j} | \frac{\partial P}{\partial \lambda} | \langle \alpha_{k} \rangle}{P_{j} + P_{k}} | \alpha_{j} \times \alpha_{j} |$$

and then substitute.

if the state of the system is pure then one can show

$$\hat{L} = 2 \frac{\partial \hat{p}}{\partial \lambda}$$

$$= 2 \text{ Tr} \left[\frac{\partial \hat{p}}{\partial \lambda} \frac{\partial \hat{p}}{\partial \lambda} \right]$$

$$\frac{\partial \hat{\rho}}{\partial \lambda} = \frac{\partial |\Psi\rangle}{\partial \lambda} \langle \Psi | + \frac{\partial}{\partial \lambda} |\Psi\rangle \frac{\partial \langle \Psi |}{\partial \lambda}$$

$$H = 4 \left[\frac{\partial (4)}{\partial \lambda} \frac{\partial (4)}{\partial \lambda} + \left((4) \frac{\partial (4)}{\partial \lambda} \right)^{2} \right]$$

$$O = \frac{1}{14(\lambda)} - O$$

$$I4(\lambda)$$

Exercise: Single qubit phase shift $\hat{U}|_{a}=e^{-i\lambda\hat{\sigma}_{a}/2}$

estimate a

- a) Initial state 10>
- b) " " \(\frac{1}{\sqrt{2}} \left(10) + 11 \right)
- c) " \(\frac{1}{\nu_2}\left(\left(10)+ills\right)\)
- d) General initial state aclota, 11)

 What is aprimal?

 What

Exercise: Single qubit phase shift two powhiles

at this Get GFI for