Sistemas de Visão e Percepção Industrial

Aula Prática nº 9

Reconhecimento de imagem por correspondência de modelos e padrões

Universidade de Aveiro Vitor Santos, 2022-2023

Sumário

- 1 Conceitos e terminologia
- Correlação Cruzada
- 3 Correspondência de padrões por distância Euclidiana
- 4 Correspondência de padrões por distância de Mahalanobis

2

Definições base

- Modelo (template)
 - Imagem de referência R que deve ser procurada numa outra imagem I, em geral de maiores dimensões.
 - Um modelo é, portanto, uma imagem (pixels).
- Padrão (pattern)
 - Conjunto ordenado de propriedades ou descritores de um determinado objeto ou imagem (vetor) que é usado para fazer o reconhecimento com outros objetos ou imagens. Em geral usa-se uma distância entre vetores para avaliar a similaridade entre pares de padrões.
 - Um padrão é, portanto, um vetor de números.

Operações para reconhecimento

- O reconhecimento faz-se pela avaliação de uma grandeza obtida por um processo de "comparação" entre o objeto conhecido e o desconhecido.
- No reconhecimento de modelos usa-se a correlação cruzada normalizada:
 - normxcorr2() em Matlab
- No reconhecimento de padrões podem usar-se, em geral, as distâncias Euclidiana e de Mahalanobis que se calculam respetivamente em Matlab por:
 - o norm()
 - mahal()

Ex. 1) Apresentação do problema de correlação

 Seja a imagem TP2_img_01_01b.png, onde se pretendem localizar na imagem as coordenadas dos centros dos objetos mais semelhantes aos modelos indicados, usando correlação cruzada.

tesoura_org_template.png

pa_org_template.png

Ex. 1a) Cálculo das matrizes de correlação

- Obter as matrizes de correlação cruzada normalizada para cada um dos dois modelos [função normxcorr2()].
- Assinalar em cada uma os pontos onde a correlação $\acute{e} > 0.9$.

Ex. 1b) Deteção do centro do "melhor" objeto

- Usando as coordenadas do ponto com o maior valor na matriz de correlação cruzada cc, obter e assinalar as coordenadas na imagem original do objeto detetado [find(cc==max(cc(:)))].
 - NB. Como o Matlab considera a correlação definida no canto inferior direito do modelo, as coordenadas do centro geométrico do objeto na imagem original, devem ser corrigidas subtraindo metade das dimensões respetivas a cada coordenada.

Ponto onde o Matlab "centra" a operação de correlação, correspondente à tesoura.

Ponto central do modelo. Calcula-se a partir do ponto dado pelo matlab.

7

Ex. 1c) Obtenção do número do "melhor" objeto

Em vez da distância ao centroide (azul) poder-se-ia usar a distância ao centro geométrico (vermelho), mas os resultados seriam os mesmos neste problema.

- Com base nas coordenadas obtidas atrás, determinar qual o objeto na imagem (em termos da operação de "bwlabel"), a que corresponde a máxima correlação. (será o nº 8 neste problema)
 - Sugestão: o objeto a encontrar é aquele cujo centróide está mais próximo do ponto com o maior valor da correlação cruzada.
- Obter o vetor das distâncias dos centróides de todos os objetos ao ponto do máximo da correlação cruzada.
- Determinar qual o número do menor elemento desse vetor: esse será o número do objeto!

Ex. 2) Correlação de objetos reorientados (opc.)

- Usando como modelo a pá do exercício 1, detetar as outras pás da imagem TP2_img_01_01b.png por correlação cruzada.
- Para a correlação dar resulatdos úteis, é preciso rodar todos os objetos (modelo e amostras da imagem) para uma posição de referência igual.

Passos sugeridos:

- Criar um modelo rodado da pá: T
- Obter os descritores necessários dos objetos da imagem ('Orientation', 'Image', 'BoundingBox')
- Para cada objeto extraído, corrigir a sua orientação e testar a correlação cruzada com T.
- Obter a lista dos objectos que tenham um ponto de correlação cruzada com T maior que 0.8.
- Desenhar as bounding box na imagem original em torno dos objetos que verificam a condição anterior.

Ex. 2) Notas e observações

- Para a função normxcorr2() funcionar bem em matlab, a matriz de procura tem de ter dimensões maiores do que o modelo (T).
 - Se isso n\u00e3o acontecer pode-se fazer a correla\u00e7\u00e3o por ordem inversa: normxcorr2(A,T) em vez de normxcorr2(T,A)
 - Se houver uma situação em que uma das dimensões é maior e a outra menor entre as duas matrizes, e se isso for causa de erro de execução, pode-se fazer o padding com zeros da matriz de menor dimensão.
- A orientação dada pelo regionpropos() pode ter ambiguidade.
 - Para contornar essa situação, se a correlação não atingir o mínimo necessário para reconhecimento, pode-se rodar uma das imagens de 180° e voltar a testar a correlação.
- Em matlab pode-se desenhar rapidamente a *boundingbox* de um objeto *n* de uma lista obtida por regionpropos com o seguinte comando:
 - rectangle('position', s(n).BoundingBox);

Ex. 3) Padrões: apresentação do problema

- Recorrendo à distância Euclidiana entre padrões, pretende-se determinar quais os objetos da imagem TP2_img_01_01b.png que são pás (objeto de tipo A) e quais são serrotes (objeto de tipo B) usando padrões com os seguintes descritores:
 - Fator de forma (ffa)
 - Solidez (sol)
 - Excentricidade (ecc)

Ex. 3a) Obtenção dos padrões dos objetos

- Na imagem TP2_img_01_01b.png desprezar objetos com área menor que 200 pixels, e obter os seguintes descritores para os restantes:
 - 'Area'
 - 'Centroid'
 - 'Eccentricity' (ecc)
 - 'Solidity' (sol)
 - 'Perimeter'
 - 'Circularity' (ou Fator de forma ffa).
- Colocar os padrões num formato de vetores linha para todos os 19 objetos da imagem:
 - Patts=[ffa sol ecc] (19 linhas × 3 colunas)
 - NB. Embora os padrões sejam usados em geral como vetores coluna, para uso em Matlab (e especialmente para a função mahal), nestes exercícios, serão adotados os vetores linha para representar padrões.
- Mais adiante ilustram-se os valores esperados.

Ex. 3a) Ilustração dos valores a obter

Sugestões parciais de código Matlab para colocar na imagem indicações do género das ilustradas ao lado

```
for n=1:N
   mstr= num2str( Patts(n,:)', 3);
   text( s(n).Centroid(1)+10, s(n).Centroid(2), mstr, 'Color', [1 1 0], 'BackgroundColor', [0 0 0]);
   text( s(n).Centroid(1)-10, s(n).Centroid(2), num2str(n), 'Color', [0 1 0], 'BackgroundColor', [0 0 0]);
```

Ex. 3b) Distâncias aos padrões de referência

- Definir os padrões de referência como os seguintes:
 - Objeto A (pá) objeto nº1
 pA=[0.2163 0.5354 0.9871]
 Objeto B (Serrote) objeto nº4
 - pB=[0.4121 0.8289 0.9712]
- Usando a função norm() do Matlab, obter os dois vetores de distâncias Euclidianas (dA e dB) entre todos os padrões dos 19 objetos e cada um destes dois padrões de referência.
- Exemplos alternativos de código com os mesmos resultados:
 - variante 1:

```
for n=1:N
    A(n) = norm(Patts(n,:)-pA);
    B(n) = norm(Patts(n,:)-pB);
end
```

variante 2 (mais compacta):

```
dA=vecnorm(Patts-pA,2,2); %norm order 2, along dimension 2
dB=vecnorm(Patts-pB,2,2);
```

Confirmar tabela final de resultados no slide seguinte.

Ex. 3b) Distâncias Euclidianas aos padrões A e B

Obj	Ffactor	Solidity	Eccentr.	PattA	PattB
1	0.216	0.535	0.987	0.000	0.353
2	0.214	0.706	0.991	0.170	0.234
3	0.240	0.586	0.989	0.055	0.299
4	0.412	0.829	0.971	0.353	0.000
5	0.192	0.546	0.994	0.027	0.359
6	0.420	0.837	0.971	0.364	0.011
7	0.244	0.849	0.995	0.315	0.171
8	0.112	0.351	0.912	0.225	0.568
9	0.194	0.530	0.989	0.023	0.371
10	0.148	0.584	0.943	0.095	0.361
11	0.138	0.466	0.934	0.117	0.456
12	0.220	0.534	0.987	0.004	0.353
13	0.240	0.614	0.959	0.087	0.276
14	0.232	0.672	0.985	0.138	0.239
15	0.314	0.850	0.991	0.330	0.102
16	0.208	0.559	0.989	0.025	0.339
17	0.205	0.557	0.989	0.024	0.342
18	0.225	0.540	0.987	0.010	0.345
19	0.342	0.887	0.977	0.374	0.091

Os valores 0.000 confirmam que os objetos 1 e 4 foram usados como as referências para objetos do tipo A e B, respetivamente. Os valores 0.004 e 0.01 mostram uma grande proximidade entre os objetos e as referências indicando que serão muito similares, o que, de facto, se confirma por serem objetos to tipo certo.

Ex. 4) Variante com distância de Malahanobis

- Adaptar o exercício anterior recorrendo agora à distância de Mahalanobis entre padrões.
- Usar os mesmos descritores e objetos de referência:
 - Fator de forma (ffa)
 - Solidez (sol)
 - Excentricidade (ecc)

Ex. 4a) Elementos para usar Mahalanobis

- Para se usar a distância de Mahalanobis, é preciso a matriz de co-variâncias.
- Para isso é preciso informação estatística sobre os descritores, o que só é possível se houver múltiplas amostras (sempre mais do que o número de descritores).
- Em Matlab, a distância de Mahalanobis obtém-se por D=mahal (Y, X) que retorna a distância de Mahalanobis (ao quadrado) de cada observação (linha) em Y, a partir dos dados de referência em X (cada linha é uma amostra de referência).
 - Esta operação calcula automaticamente a matriz de co-variância e o padrão de referência com base nas amostras em X, e calcula a respetiva distância de Mahalanobis com cada amostra de Y.
- Neste caso podemos usar o que temos disponível para obter X que será, em cada caso, o seguinte:
 - 6 objetos do tipo A pás (embora um deles um pouco diferente dos restantes) (X é matriz 3×6)
 - 3 objetos do tipo B serrotes (embora um deles um pouco diferente dos restantes) (X é matrix de 3×3)

Ex. 4a) Referências para Mahalanobis

- Obter automaticamente da imagem e das suas propriedades (e usando os números dos objetos indicados) os valores a usar para criar os padrões de referência.
- Os objetos indicados para defenir as referências são estes:

```
• pás: 1,12,14,16,17,18 \rightarrow PattsA=Patts([1 12 14 16 17 18],:);
```

• serrotes: $4,6,19 \rightarrow PattsB=Patts([4 6 19],:);$

• Que têm os seguintes descritores:

	Obj	Ffactor	Solidity	Eccentr.
pa	1	0.2163	0.5354	0.9871
pa	12	0.2195	0.5336	0.9871
pa	14	0.2318	0.6723	0.9846
pa	16	0.2080	0.5587	0.9888
pa	17	0.2053	0.5568	0.9888
pa	18	0.2248	0.5400	0.9870
serrote	4	0.4121	0.8289	0.9712
serrote	6	0.4196	0.8372	0.9711
serrote	19	0.3423	0.8869	0.9774

Definem X para o caso do padrão A

Definem X para o caso do padrão B

Ex. 4b) Obtenção das distâncias de Mahalanobis

- Obter a lista das distâncias de Mahalanobis de todos os 19 objetos aos objetos de referência do tipo A e tipo B
- Nota: na tabela, a distância foi normalizada pelo máximo em cada um dos dois casos.
 - Todos os valores de cada uma das duas colunas PattAMaha e PattBMaha foram divididos pelo máximo da respetiva coluna (normalizados).

Obj	Ffactor	Solidity	Eccentr.	PattAMaha	PattBMaha
1	0.2163	0.5354	0.9871	0.0000	0.0556
2	0.2140	0.7058	0.9914	0.0031	0.0434
3	0.2398	0.5855	0.9887	0.0025	0.0664
4	0.4121	0.8289	0.9712	0.0197	0.0000
5	0.1922	0.5458	0.9935	0.0012	0.0979
6	0.4196	0.8372	0.9711	0.0225	0.0000
7	0.2442	0.8493	0.9954	0.0234	0.0490
8	0.1119	0.3508	0.9118	1.0000	1.0000
9	0.1938	0.5296	0.9890	0.0004	0.0621
10	0.1479	0.5840	0.9425	0.3491	0.3515
11	0.1378	0.4664	0.9340	0.5016	0.4552
12	0.2195	0.5336	0.9871	0.0000	0.0579
13	0.2397	0.6142	0.9585	0.0807	0.0659
14	0.2318	0.6723	0.9846	0.0001	0.0174
15	0.3142	0.8504	0.9913	0.0426	0.0494
16	0.2080	0.5587	0.9888	0.0000	0.0587
17	0.2053	0.5568	0.9888	0.0000	0.0587
18	0.2248	0.5400	0.9870	0.0001	0.0581
19	0.3423	0.8869	0.9774	0.0107	0.0000