TrafficML

UNIVERSITÀ DEGLISTUDI DI BARI ALDO MORO

RILEVAMENTO DI ATTACCHI SULLA RETE CON MACHINE LEARNING

A cura di: Mongelli Antonio

Docenti: Casalino Gabriella Zaza Gianluca

Introduzione

Obiettivo: rilevare automaticamente attacchi informatici tramite ML.

Strumenti utilizzati:

- · Dataset principale: CIC-IDS2017.
- · Strumento di raccolta traffico: Suricata (IDS).
- · Piattaforma da monitorare: T-pot (Honeypot).

Contesto

- Necessità di automatizzare la rilevazione di minacce.
- Superare i limiti dei sistemi basati su firme.
- Applicabilità anche su traffico cifrato o variabile.

Obiettivi del Sistema

- Rilevamento in tempo reale.
- Spiegabilità delle predizioni (SHAP).
- Automazione delle risposte (logging, allarmi, blocchi IP).

Scelta dell'Algoritmo

- Approccio supervisionato.
- Classificazione vs clustering.
- Vantaggi: precisione, spiegabilità, integrazione operativa.

Data Preparation

- Preparazione del dataset
- Pulizia: rimozione duplicati, normalizzazione etichette.
- Feature engineering: encoding, imputazione, normalizzazione, selezione feature.

Addestramento del modello

- Bilanciamento con RandomUnderSampler.
- Divisione dei dati: 20% test set
- Algoritmo: Random Forest (100 alberi, max depth 20).
- Addestramento su dati originali e bilanciati.

Importanza delle Features

Testing e Metriche

- Due strategie: test su set sbilanciato e bilanciato.
- Metriche: Accuracy, Precision, Recall, F1 Score.
- Matrice di confusione per analisi dettagliata.

Testing e Metriche

TEST SU TEST-SET SBILANCIATO

--- Test Set (Sbilanciato) ---Accuracy: 0.9859646023951673

F1 Score: 0.9858148822759902

Precision: 0.	9865337275516	5963							
Recall: 0.9859646023951673									
	precision	recall	f1-score	support					
0	0.99	0.99	0.99	454620					
1	0.90	0.42	0.58	393					
2	1.00	0.79	0.88	2767					
3	1.00	1.00	1.00	25606					
4	0.91	0.97	0.94	50532					
5	0.99	1.00	1.00	31786					
6	0.99	0.21	0.35	436					
accuracy			0.99	566140					
macro avg	0.97	0.77	0.82	566140					
weighted avg	0.99	0.99	0.99	566140					

TEST SU TEST-SET BILANCIATO

--- Test Set (Bilanciato) ---

Accuracy: 0.965103598691385 F1 Score: 0.9648331730445453 Precision: 0.9653567315656155

Recall: 0.9	965103598	691385			
	precision		recall	f1-score	support
	0 (0.96	0.88	0.92	393
	1	0.97	0.99	0.98	393
	2	0.92	0.97	0.94	393
	3	1.00	1.00	1.00	393
	4	0.96	0.99	0.98	393
	5	1.00	1.00	1.00	393
	6	0.96	0.93	0.94	393
accurac	СУ			0.97	2751
macro av	7g (0.97	0.97	0.96	2751
weighted av	7g (0.97	0.97	0.96	2751

Spiegabilità con SHAP

CONTRIBUZIONE DELLE FEATURE SULLA PREDIZIONE (DATI SBILANCIATI)

CONTRIBUZIONE DELLE FEATURE SULLA PREDIZIONE (DATI BILANCIATI)

Salvataggio del Modello

- Serializzazione con joblib.
- Oggetti salvati: modello, scaler, encoder, imputer, feature selezionate.
- Vantaggi: riutilizzabilità, portabilità, coerenza.

Conclusioni e Futuri Sviluppi

- Sistema robusto, interpretabile, pronto per l'uso reale.
- Miglioramenti futuri:
 - Notifiche mobile.
 - Dashboard interattiva con SHAP in tempo reale.