Response under 37 C.F.R. §1.116 dated April 11, 2005 Response to the Office Action of December 10, 2004

Amendments to the Claims

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims

Claim 1 (Currently Amended): A resist application method comprising the steps of:

thermal processing for evaporating water from [[the]] <u>a</u> surface of a substrate, <u>said</u> substrate containing amorphous silicon on the surface thereof;

making the surface of the substrate hydrophobic with a hydrophobic processing material; and

applying a resist onto the substrate,

the step of thermal processing to the step of making the substrate surface hydrophobic being performed in a dehumidified atmosphere, and

the step of applying the resist being performed in an atmosphere having a higher humidity than the dehumidified atmosphere.

Claim 2 (Original): A resist application method according to claim 1, wherein the hydrophobic processing material is hexamethyldisilazane.

Claim 3 (Original): A resist application method according to claim 1, wherein a humidity of the dehumidified atmosphere is below 20% including 20%.

Response under 37 C.F.R. §1.116 dated April 11, 2005 Response to the Office Action of December 10, 2004

Claim 4 (Original): A resist application method according to claim 2, wherein a humidity of the dehumidified atmosphere is below 20% including 20%.

Claim 5 (Original): A resist application method according to claim 1, wherein the dehumidified atmosphere is dehumidified air, nitrogen gas, a rare gas or a mixed gas of them.

Claim 6 (Original): A resist application method according to claim 2, wherein the dehumidified atmosphere is dehumidified air, nitrogen gas, a rare gas or a mixed gas of them.

Claim 7 (Original): A resist application method according to claim 3, wherein the dehumidified atmosphere is dehumidified air, nitrogen gas, a rare gas or a mixed gas of them.

Claim 8 (Original): A resist application method according to claim 1, wherein in the step of thermal processing, a temperature of the substrate is above 100°C including 100°C.

Response under 37 C.F.R. §1.116 dated April 11, 2005 Response to the Office Action of December 10, 2004

Claim 9 (Original): A resist application method according to claim 2, wherein in the step of thermal processing, a temperature of the substrate is above 100°C including 100°C.

Claim 10 (Original): A resist application method according to claim 3, wherein in the step of thermal processing, a temperature of the substrate is above 100°C including 100°C.

Claim 11 (Original): A resist application method according to claim 5, wherein in the step of thermal processing, a temperature of the substrate is above 100°C including 100°C.

Claim 12 (Original): A resist application method according to claim 1, wherein in the step of making the surface of a substrate hydrophobic, the substrate surface is made hydrophobic with a temperature of the substrate surface being above 100°C including 100°C.

Claim 13 (Original): A resist application method according to claim 2, wherein in the step of making the surface of a substrate hydrophobic, the substrate surface is made hydrophobic with a temperature of the substrate surface being above 100°C including 100°C.

Response under 37 C.F.R. §1.116 dated April 11, 2005 Response to the Office Action of December 10, 2004

Claim 14 (Original): A resist application method according to claim 3, wherein in the step of making the surface of a substrate hydrophobic, the substrate surface is made hydrophobic with a temperature of the substrate surface being above 100°C including 100°C.

Claim 15 (Original): A resist application method according to claim 5, wherein in the step of making the surface of a substrate hydrophobic, the substrate surface is made hydrophobic with a temperature of the substrate surface being above 100°C including 100°C.

Claims 16 – 17 (Canceled)

Claim 18 (Withdrawn): A resist application device comprising:

a thermal processing unit for performing thermal processing to evaporate water from the surface of a substrate in a dehumidified atmosphere;

a hydrophobic processing unit for making the substrate surface hydrophobic with a hydrophobic processing material, keeping the dehumidified atmosphere; and

a resist application unit for applying a resist onto the substrate.

Claim 19 (Withdrawn): A resist application device according to claim 18, wherein the hydrophobic processing unit further comprises a heating means.

Response under 37 C.F.R. §1.116 dated April 11, 2005 Response to the Office Action of December 10, 2004

Claim 20 (Currently Amended): A method for fabricating a semiconductor device comprising the steps of:

thermal processing for evaporating water from [[the]] <u>a</u> surface of a semiconductor substrate, said semiconductor substrate containing amorphous silicon on the surface thereof;

making the surface of the substrate hydrophobic with a hydrophobic processing material; and

applying a resist onto the semiconductor substrate,

the step of thermal processing to the step of making the substrate surface hydrophobic being performed in a dehumidified atmosphere, and

the step of applying the resist being performed in an atmosphere having a higher humidity than the dehumidified atmosphere.