Model Formalisms for Seabird Trajectory Simulation

March 2021

Amédée Roy

Dataset

Foraging Trips of SV

- 1 species
- 7 fieldworks
- 179 deployments
- 560 trips

Data Formatting

- round trips only
- no night-long resting
- 15s re-interpolation
- diving probabilities estimation

Ecological question

- inter-annual variability

Environmental data

Satellital data

- Daily satellital observations
- Daily models for interp.

Introduction

CHL - MODIS (0.04°) Wind - ASCAT (0.12°)

Acoustic data

- Yearly survey data

Acoutic survey data (raw + kriged)

Social interactions

Introduction

Simultanate deployments

- Few simultanate trips (max \sim 5)
- Very low proportion of real observable birds..
- Yet patterns in directions

Problem formulation

1. Agent-based formulation

Behaviour Cloning (supervized learning on state/actions pairs)

Introduction

GAIL (GAN for simulation of state/actions pairs)

noise
$$\rightarrow$$
 G \longrightarrow dx/dt \longrightarrow D \longrightarrow 0,17

Problem formulation

2. Global formulation

noise
$$\rightarrow$$
 G \rightarrow x(1), ..., x(t) \rightarrow **D** \rightarrow 0,17

Latent Representation

- State x(t): time-series of with window n
- Environmental conditions **E** fixed for a trajectory
- Positions coordinates Xt

$$x(t) = ((Xt-n, Yt-n), ..., (Xt, Yt))$$

Latent Representation

- State x(t): time-series of with window n
- Environmental conditions **E** fixed for a trajectory
- Positions coordinates Xt

$$x(t) = ((Xt-n, Yt-n), ..., (Xt, Yt))$$

Results

Discussion