Theorem (Natural Homomorphism)

Let

- ightharpoonup R be a congruence relation on a groupoid (G, *)

Then the function $f_R: G \to G/R$ defined by

$$f_R(a) = [a]$$

is an onto homomorphism, called the natural homomorphism.

Natural Homomorphism.

If $[a] \in G/R$, then

ightharpoonup So f_R is an onto function

If a and b are elements of G, then

$$f_R(a*b) = [a*b] = [a] \circledast [b] = f_R(a) \circledast f_R(b)$$

So f_R is a homomorphism.

Theorem (Fundamental Homomorphism Theorem)

Let

- ▶ $f: G \to G'$ be a homomorphism of the groupoid (G, *) onto the groupoid (G', *')
- ▶ R be the relation on G defined by, $\forall a,b \in G$
 - \blacksquare $a \ R \ b$ if and only if f(a) = f(b)

Then

- R is a congruence relation
- ig) (G', *') and the quotient groupoid $(G\!/\!R, \ \circledast)$ are isomorphic

Proof: R is an equivalence relation.

- ♪ if a R b, then f(a) = f(b), so bRa
- ightharpoonup if a R b and b R c

 - \bullet so f(a) = f(c) and a R c

Hence R is an equivalence relation.

Proof: R is a congruence relation.

- ightharpoonup Suppose that $a\ R\ a_1$ and $b\ R\ b_1$
- ♪ $f(a) = f(a_1)$ and $f(b) = f(b_1)$
- $f(a*b) = f(a)*'f(b) = f(a_1)*'f(b_1) = f(a_1*b_1)$
 - \bullet since f is a homomorphism

Hence
$$(a*b)$$
 R (a_1*b_1)

Proof: \overline{f} is a function.

$$\overline{f} \stackrel{\mathrm{def}}{=} \{([a],\ f(a))|[a] \in G\!/\!R\} \colon \text{a relation from } G\!/\!R \text{ to } G'$$

- ▶ Suppose that [a] = [a']
- ightharpoonup a R a', so f(a) = f(a'), which implies that \overline{f} is a function.
- lacksquare write $\overline{f}:G\!\!/\!\!R o G'$, where $\overline{f}([a])=f(a)$ for $[a]\in G\!\!/\!\!R.$

Proof: \overline{f} is a one to one function.

$$\overline{f}\stackrel{\mathrm{def}}{=}\{([a],\ f(a))|[a]\in G\!/\!R\}$$
: a relation from $G\!/\!R$ to G'

- \blacktriangleright Suppose that $\overline{f}([a])=\overline{f}([a'])$
- ightharpoonup f(a) = f(a'), so $a \ R \ a'$, which implies that [a] = [a'].
- ▶ Hence \overline{f} is one to one.

Proof: \overline{f} is an onto function.

$$\overline{f} \stackrel{\mathrm{def}}{=} \{([a],\ f(a))|[a] \in G\!/\!R\} \colon \text{a relation from } G\!/\!R \text{ to } G'$$

- ♪ Suppose that $b \in G'$
- ♪ f(a) = b for some element $a \in G$, since f is onto,
- $igcep \overline{f}([a]) = f(a) = b$, so \overline{f} is onto.

$$\overline{f}\stackrel{\mathrm{def}}{=}\{([a],\ f(a))|[a]\in G\!/\!R\}\!\colon \text{a relation from }G\!/\!R \text{ to }G'$$

$$\overline{f}([a] \circledast [b]) = \overline{f}([a * b])$$

$$= f(a * b)$$

$$= f(a) *' f(b)$$

$$= \overline{f}([a]) *' \overline{f}([b])$$

$$\overline{f}\stackrel{\mathrm{def}}{=}\{([a],\ f(a))|[a]\in G\!/\!R\}\!\colon \text{a relation from }G\!/\!R \text{ to }G'$$

$$\overline{f}([a] \circledast [b]) = \overline{f}([a * b])$$

$$= f(a * b)$$

$$= f(a) *' f(b)$$

$$= \overline{f}([a]) *' \overline{f}([b])$$

$$\overline{f}\stackrel{\mathrm{def}}{=}\{([a],\ f(a))|[a]\in G\!/\!R\}\!\colon \text{a relation from }G\!/\!R \text{ to }G'$$

$$\overline{f}([a] \circledast [b]) = \overline{f}([a * b])$$

$$= f(a * b)$$

$$= f(a) *' f(b)$$

$$= \overline{f}([a]) *' \overline{f}([b])$$

$$\overline{f}\stackrel{\mathrm{def}}{=}\{([a],\ f(a))|[a]\in G\!/\!R\}\!\colon \text{a relation from }G\!/\!R \text{ to }G'$$

$$\overline{f}([a] \circledast [b]) = \overline{f}([a * b])$$

$$= f(a * b)$$

$$= f(a) *' f(b)$$

$$= \overline{f}([a]) *' \overline{f}([b])$$

Notice

- The Theorem can be described by the diagram on the right.
 - \bullet f_R is the natural homomorphism.
- \blacktriangleright It follows from the definitions of f_R and \overline{f} that

Since

$$(\overline{f} \circ f_R)(a) = \overline{f}(f_R(a)) = \overline{f}([a]) = f(a)$$

Definition (Normal Subgroup)

Let

- ightharpoonup H be a subgroup of a group G
- $A \in G$

The left and right coset of H in G determined by a is the set

- $\ \ \, \mathbf{h} a = \{ha | h \in H\}$

A subgroup H of G is normal if aH=Ha, for all $a\in G$

Warning

- ▶ If Ha = aH, it does not follow that, for $h \in H$ and $a \in G$, ha = ah.
- ightharpoonup But ha = ah', where h' is some other element in H.

Normal Subgroup

Example

Let

- ▲ G be the symmetric group S_3
- ↑ The subset $H = \{f_1, g_2\}$ is a subgroup of G

Compute all the distinct left cosets of H in G.

Solution: $H = \{f_1, g_2\}$

$$f_1H = g_2H = H$$

$$f_2H = \{f_2, g_1\}$$

$$f_3H = \{f_3, g_3\}$$

The distinct left cosets

▶
$$H$$
, f_2H , and f_3H .

$(S_3,$	*)
---------	----

*	f_1	f_2	f_3	g_1	g_2	g_3
f_1	f_1	f_2	f_3	g_1	g_2	g_3
f_2	f_2	f_3	f_1	g_3	g_1	g_2
f_3	f_3	f_1	f_2	g_2	g_3	g_1
g_1	g_1	g_2	g_3	f_1	f_2	f_3
g_2	g_2	g_3	g_1	f_3	f_1	f_2
g_3	g_3	g_1	g_2	f_2	g_2 g_1 g_3 f_2 f_1 f_3	f_1

Normal Subgroup

Theorem

If K is a finite subgroup of a group G, then every left coset of K in G has exactly as many elements as K.

Theorem (Lagrange's Group Theorem)

The order of a subgroup divides the order of the Group.

Normal Subgroup

Theorem

If K is a finite subgroup of a group G, then every left coset of K in G has exactly as many elements as K.

Theorem (Lagrange's Group Theorem)

The order of a subgroup divides the order of the Group.

- ♪ Let
 - \bullet aK be a left coset of K in G, where $a \in G$
 - $f: K \to aK$ be defined by f(k) = ak, for $k \in K$
- ightharpoonup f is one to one
- f is onto
- Therefore, f is bijection, K and aK have the same number of elements.

- ♪ Let
 - \bullet aK be a left coset of K in G, where $a \in G$
 - $f: K \to aK$ be defined by f(k) = ak, for $k \in K$
- ightharpoonup f is one to one
- f is onto
- Therefore, f is bijection, K and aK have the same number of elements.

- ♪ Let

 - $f: K \to aK$ be defined by f(k) = ak, for $k \in K$
- ightharpoonup f is one to one
 - Assume that $f(k_1) = f(k_2)$, for $k_1, k_2 \in K$
 - $ak_1 = ak_2$
 - $k_1 = k_2$, by left multiplying a^{-1}
 - f is one to one
- f is onto
- lacksquare Therefore, f is bijection, K and aK have the same number of elements.

- ♪ Let

 - $f: K \to aK$ be defined by f(k) = ak, for $k \in K$
- ightharpoonup f is one to one
 - Assume that $f(k_1) = f(k_2)$, for $k_1, k_2 \in K$
 - $ak_1 = ak_2$
 - $k_1 = k_2$, by left multiplying a^{-1}
 - I f is one to one
- f is onto
- ▶ Therefore, f is bijection, K and aK have the same number of elements.

- ♪ Let

 - $f: K \to aK$ be defined by f(k) = ak, for $k \in K$
- ightharpoonup f is one to one
 - Assume that $f(k_1) = f(k_2)$, for $k_1, k_2 \in K$
 - $ak_1 = ak_2$
 - λ $k_1 = k_2$, by left multiplying a^{-1}
 - f is one to one
- f is onto
- ▶ Therefore, f is bijection, K and aK have the same number of elements.

- ♪ Let

 - $f: K \to aK$ be defined by f(k) = ak, for $k \in K$
- ightharpoonup f is one to one
 - Assume that $f(k_1) = f(k_2)$, for $k_1, k_2 \in K$
 - $ak_1 = ak_2$
 - λ $k_1 = k_2$, by left multiplying a^{-1}
 - \bullet f is one to one
- f is onto
- ▶ Therefore, f is bijection, K and aK have the same number of elements.

- ♪ Let
 - \bullet aK be a left coset of K in G, where $a \in G$
 - $f: K \to aK$ be defined by f(k) = ak, for $k \in K$
- ightharpoonup f is one to one
- ightharpoonup f is onto
- Therefore, f is bijection, K and aK have the same number of elements.

- ♪ Let
 - \bullet aK be a left coset of K in G, where $a \in G$
 - $f: K \to aK$ be defined by f(k) = ak, for $k \in K$
- ightharpoonup f is one to one
- ightharpoonup f is onto
 - lacktriangle Let b be an arbitrary element in aK
 - $b = ak \text{ for some } k \in K$
 - f(k) = ak = b
 - f is onto.
- lacksquare Therefore, f is bijection, K and aK have the same number of elements.

- ♪ Let
 - \bullet aK be a left coset of K in G, where $a \in G$
 - $f: K \to aK$ be defined by f(k) = ak, for $k \in K$
- ightharpoonup f is one to one
- ightharpoonup f is onto
 - lacktriangle Let b be an arbitrary element in aK
 - b = ak for some $k \in K$
 - f(k) = ak = b
 - f is onto.
- ▶ Therefore, f is bijection, K and aK have the same number of elements.

- ♪ Let
 - \bullet aK be a left coset of K in G, where $a \in G$
 - $f: K \to aK$ be defined by f(k) = ak, for $k \in K$
- ightharpoonup f is one to one
- ightharpoonup f is onto
 - lacktriangle Let b be an arbitrary element in aK
 - $b = ak \text{ for some } k \in K$
 - f(k) = ak = b
 - f is onto.
- ▶ Therefore, f is bijection, K and aK have the same number of elements.

- ♪ Let
 - \bullet aK be a left coset of K in G, where $a \in G$
 - $f: K \to aK$ be defined by f(k) = ak, for $k \in K$
- ightharpoonup f is one to one
- ightharpoonup f is onto
 - lacktriangle Let b be an arbitrary element in aK
 - b = ak for some $k \in K$
 - f(k) = ak = b
 - \bullet f is onto.
- lacksquare Therefore, f is bijection, K and aK have the same number of elements.

- ♪ Let

 - $f: K \to aK$ be defined by f(k) = ak, for $k \in K$
- ightharpoonup f is one to one
- ightharpoonup f is onto
- ▶ Therefore, f is bijection, K and aK have the same number of elements.

Equivalence Class vs. Coset

Theorem

Let

- ightharpoonup R be a congruence relation on a group G
- ightharpoonup H=[e], the equivalence class containing the identity

Then

- ♪ H is a normal subgroup of G
- ightharpoonup [a] = aH = Ha, for each $a \in G$

- ↑ b ∈ [a]
- ▶ iff [b] = [a], for R is an equivalence relation
- ♪ iff $[e] = [a]^{-1}[b] = [a^{-1}b]$, for G/R is a group
- ♪ iff $H = [e] = [a^{-1}b]$
- ♪ So [a] = aH for every $a \in G$

Question

- ↑ b ∈ [a]
- ♪ iff [b] = [a], for R is an equivalence relation
- ♪ iff $[e] = [a]^{-1}[b] = [a^{-1}b]$, for $G\!/\!R$ is a group
- ♪ iff $H = [e] = [a^{-1}b]$
- ♪ So [a] = aH for every $a \in G$

Question

- ♪ $b \in [a]$
- ▶ iff [b] = [a], for R is an equivalence relation
- ♪ iff $[e] = [a]^{-1}[b] = [a^{-1}b]$, for G/R is a group
- ♪ iff $H = [e] = [a^{-1}b]$
- ♪ iff $a^{-1}b \in H$ or $b \in aH$

Question

- ▶ iff [b] = [a], for R is an equivalence relation
- ♪ iff $[e] = [a]^{-1}[b] = [a^{-1}b]$, for G/R is a group
- ♪ iff $H = [e] = [a^{-1}b]$
- ♪ iff $a^{-1}b \in H$ or $b \in aH$
- ♪ So [a] = aH for every $a \in G$

Question

- ♪ iff [b] = [a], for R is an equivalence relation
- ♪ iff $[e] = [a]^{-1}[b] = [a^{-1}b]$, for G/R is a group
- ♪ iff $H = [e] = [a^{-1}b]$
- ♪ So [a] = aH for every $a \in G$

Question

- ♪ iff [b] = [a], for R is an equivalence relation
- ♪ iff $[e] = [a]^{-1}[b] = [a^{-1}b]$, for G/R is a group
- ♪ iff $H = [e] = [a^{-1}b]$
- ♪ iff $a^{-1}b \in H$ or $b \in aH$
- $\red{\red} \mbox{So } [a] = aH \mbox{ for every } a \in G$

Question

Similarly

$$Arr$$
 iff $H = [e] = [b][a]^{-1} = [ba^{-1}]$

Thus [a] = aH = Ha, and H is normal.

Question

Similarly

$$I = [e] = [b][a]^{-1} = [ba^{-1}]$$

Thus [a] = aH = Ha, and H is normal.

Question

Similarly

$$I = [e] = [b][a]^{-1} = [ba^{-1}]$$

$$[a] = Ha$$

Thus [a] = aH = Ha, and H is normal.

Question

Similarly

$$ightharpoonup$$
 iff $H = [e] = [b][a]^{-1} = [ba^{-1}]$

$$[a] = Ha$$

Thus [a] = aH = Ha, and H is normal.

Question

Notice - Equivalence Class vs. Coset

The quotient group $G\!/\!R$ consists of all the left cosets of N=[e]. The operation in $G\!/\!R$ is given by

and the function $f_R:G\to G\!/\!R$, defined by

$$f_R(a) = aN$$

is a homomorphism from G onto $G\!/\!R$. For this reason, we will often write $G\!/\!R$ as $G\!/\!N$.

$\mathsf{Theorem}$

Let

- ightharpoonup N be a normal subgroup of a group G
- ightharpoonup R be the following relation on G
 - \bullet a R b if and only if $a^{-1}b \in N$

Then

- ▶ R is a congruence relation on G
- ightharpoonup N is the equivalence class [e] relative to R, where e is the identity of G

Proof. R is an equivalence relation.

Let $a \in G$

ightharpoonup a R a, since $a^{-1}a = e \in N$

ightharpoonup R is reflexive

Proof. R is an equivalence relation.

Suppose that a R b

$$a^{-1}b \in N$$

$$N \ni (a^{-1}b)^{-1} = b^{-1}a$$

ightharpoonup R is symmetric.

Proof. R is an equivalence relation.

Suppose that $a\ R\ b$ and $b\ R\ c$

$$\ \, \mathbf{A}^{-1}b \in N \text{ and } b^{-1}c \in N$$

$$N \ni (a^{-1}b)(b^{-1}c) = a^{-1}c$$

ightharpoonup R is transitive.

Proof. R is a congruence relation on G.

Suppose that $a\ R\ b$ and $c\ R\ d$

- $\ \, \mathbf{A}^{-1}b \in N \text{ and } c^{-1}d \in N$
- ♪ Since N is normal, Nd = dN
- ♪ Since $a^{-1}b \in N$, then $a^{-1}bd = dn$ for some $n \in N$.
- $^{ \backprime } (ac)^{-1}bd = (c^{-1}a^{-1})(bd) = c^{-1}(a^{-1}b)d = (c^{-1}d)n \in N$
- ightharpoonup So $ac \ R \ bd$.
- ▶ Hence *R* is a congruence relation on *G*.

 ${\sf Proof.}\ N=[e]$

$$N \subseteq [e]$$

$$ightharpoonup$$
 Hence $N = [e]$

 ${\sf Proof.}\ N=[e]$

$$N \subseteq [e]$$

lacktriangle Suppose that $x \in N$

$$x^{-1}e = x^{-1} \in N$$

$$A$$
 $x R e$

$$x \in [e]$$

$$N \subseteq [e]$$

♪ Hence
$$N = [e]$$

Proof. N = [e]

$$N \subseteq [e]$$

$$ightharpoonup [e] \subseteq N$$

lacktriangle Conversely, if $x \in [e]$

$$\lambda x R e$$

$$x^{-1}e = x^{-1} \in N$$

$$x \in N$$

♪ Hence
$$N = [e]$$

Proof. N = [e]

$$N \subseteq [e]$$

$$\ragain {\bf Hence} \ N = [e]$$

Corollary

Let

- ▶ f be a homomorphism from a group (G, *) onto a group (G', *')
- ▶ The kernel of f, ker(f), be defined by

Then

- ightharpoonup ker(f) is a normal subgroup of G
- ▶ The quotient group G | ker(f) is isomorphic to G'

Example

Consider the homomorphism $f: \mathbb{Z} \to \mathbb{Z}_n$ defined by f(m) = [r], where r is the remainder when m is divided by n.

♪ Find ker(f)

Solution.

- ▶ An integer m in \mathbb{Z} belongs to ker(f)
 - if and only if
- - if and only if
- ightharpoonup m is a multiple of n
- ▶ Hence $ker(f) = n\mathbb{Z}$.

Normal Subgroup and Fundamental Homomorphism Theorem

The conclusion is . . .

Following four are equivalent

- ightharpoonup a congruence relation R on G
- ightharpoonup a normal subgroup H of G
- ightharpoonup a homomorphism from G to G/R or G'
- ightharpoonup the kernel of a homomorphism from G to G'

Homework

- ♪ 22,28 @page 331
- ♪ 28,32 @page 349
- ♪ 24@338
- **4**,18,39@353-354
- ♪ Let G be a group, and let N and H be subgroups of G such that N is normal in G. Prove that
 - \bullet HN is a subgroup of G.
 - $oldsymbol{2}$ N is a normal subgroup of HN.