

IT-Sicherheit und Schutz vor Malware im Automobil

Arne Beer, Stefan Grusche, Joshua Stock

Gliederung

1. Can Bus

- 2. Ausgewählte Angriffsvektoren
 - Mobilfunk
 - **■** WLAN
 - Bluetooth

CAN-Bus: Was ist der CAN-Bus?

- Electron control Units (ECU's)
- Zentrale Kommunikationsschnittstelle
- Controller Area Network (CAN)

CAN-Bus: Kommunikation am Can Bus

- Alle Geräte kommunizieren gleichzeitig.
- Jedes Gerät sendet an jeden.

CAN-Bus: Unsicherheiten

- Kompletter Verkehr ist unverschlüsselt
- Keine Verschlüsselung
- \Rightarrow Sniffing

Ein CAN-Bus Paket:

00 B4 08 00 00 00 00 3C 18 C0 FF

22 Hexadezimalstellen = 88 bit or 11 Byte

Ein CAN-Bus Paket:

00 B4 08 00 00 00 00 3C 18 C0 FF

Byte 1-2 Address

Ein CAN-Bus Paket:

00 B4 **08** 00 00 00 00 3C 18 C0 FF

Byte 1-2 Address Byte 3 Payload length

Ein CAN-Bus Paket:

00 B4 08 **00 00 00 00 3C 18 C0** FF

Byte 1-2 Address Byte 3 Payload length byte 4-10 Payload

Ein CAN-Bus Paket:

00 B4 08 **00 00 00 00 3C 18 C0** FF

```
Byte 1-2 Address

Byte 3 Payload length

Byte 4-10 Payload

Byte 11 Checksum

E.g.: (IDH + IDL + Len + Sum(Data[0] - Data[Len - 2]))&0xFF
```


Ein CAN-Bus Paket:

00 B4 08 **00 00 00 3C 18 C0** FF

Byte 1-2 Address Byte 3 Payload length byte 4-10 Payload

CAN-Bus: Building own packets

Wäre es nicht praktisch konstatt 100 km/h zu fahren?

AA BB 00 00 CC DD 00 00

CAN-Bus: Building own packets

Wäre es nicht praktisch konstatt 100 km/h zu fahren?

XX YY LL AA BB 00 00 CC DD 00 SS

CAN-Bus: Building own packets

Wäre es nicht praktisch konstatt 100 km/h zu fahren?

$$Speed(mph) = 0.0065 \cdot (CCDD) - 67$$

$$RPM = 0.25 \cdot (AABB) - 24$$

Angriffsvektoren: verwundbare Komponenten am CAN-Bus

Abbildung: Sedan Infiniti (2010) und Komponenten im CAN-Netzwerk

[?]

- (zu) offene Schnittstellen
- Redundanzen in der Implementierung
- Telematik-Modul bündelt ausgehende Verbindungen

Mobilfunk I

Abbildung: Mobilfunk-Einheit im Jeep Cherokee

[?]

- Funktionen:
 - Internetverbindung (3G)
 - Mobilfunk

Mobilfunk II

- Unbemerkte Anrufe an Telematik-Einheit sind möglich
 - Modem übersetzt akustische Töne in Bits
 - Verwundbarkeiten: Pufferüberlauf und Authentifizierung
- Beispiel für Angriff:
 - Automatisiertes Anrufen bis Authentifizierung erfolgt
 - Aufhebung der maximal erlaubten Anruflänge
 - Download von zusätzlichem Code über 3G-Modem

WLAN

• Bla

Bluetooth

Hack des 2014er Jeep Cherokees

Abbildung: Ziel des Angriffs: 2014 Jeep Cherokee

- veröffentlicht im Juli 2015
- durchgeführt von Charlie Miller und Chris Valasek

Jeep Cherokee: CAN-Netzwerk

Abbildung: Übersicht über CAN-Netze

- zwei CAN-Netzwerke
- Radio als Verbindungsstück

Fahrassistenzsysteme des Jeeps

Abbildung:

- adaptiver Tempomat
- Kollisionswarnsystem
- Spurhalteassistent
- Parkassistent

Angriffsvektoren des Jeeps

- Bluetooth
 - herkömmliche Angriffe möglich
- Radio
 - vermutlich keine Code-Ausführung zu erreichen
- WLAN
 - Auto fungiert als WLAN-Hotspot
- Mobilfunk / Mobiles Internet
 - Freisprechanlage, diverse Apps etc.
- ⇒ UConnect-Mediensystem verbindet sämtliche Faktoren