معماری افزارههای شبکه دکتر صبائی

دانشگاه صنعتی امیر کبیر (پلی تکنیک تهران) دانشکده مهندسی کامپیوتر

رضا آدینه پور ۴۰۲۱۳۱۰۵۵

تمرین سری ششم

۱ دی ۱۴۰۳

معماری افزارههای شبکه

رضا آدینه یور ۴۰۲۱۳۱۰۵۵

سوال اول

یک سوئیچ Shared Memory که قرار است به لینکهای ATM با ظرفیت 125 Mbps متصل شود و از حافظههای با زمان دسترسی 16 ns استفاده نماید، حداکثر چند پورت میتواند داشته باشد؟

$$t_{\text{mem}} = 16 \text{ ns}, \quad L = 53 \text{ byte} = 424 \text{ bit}$$

$$r = 125 \,\mathrm{Mbps}$$

در حافظههای Shared memory، N نوشتن در حافظه و N خواندن از حافظه در یک Cell Slot انجام می شود. بنابراین داریم:

$$(2N) \cdot t_{\text{mem}} \le \frac{L}{r} \to N \le \frac{L}{2r \cdot t_{\text{mem}}}$$

بنابراين:

$$N \le \frac{424}{2 \times 125 \times 10^6 \times 16 \times 10^{-9}} \to N \le 106$$

دكتر صبائي صفحه ۱ از ۲۳

---- سوال دوم

در یک سوئیچ Division-Time زمان دسترسی به حافظه ns 5 است. طول بستههای ورودی 200 بایت است و خطوط ورودی همگی Gbps هستند. در هر یک از موارد زیر بیشترین تعداد خطوط ورودی به این سوئیچ را مشخص کنید:

- Shared-Memory Switch
- Shared Medium Switch

پاسخ

$$t_{\mathrm{mem}} = 5 \,\mathrm{ns}$$

$$L = 200 \times 8 = 1600 \,\mathrm{bit}$$

$$r = 5 \times 10^9 \,\mathrm{bps}$$

Shared Medium:

$$(N+1)t_{\text{mem}} \le \frac{L}{r} \quad \Rightarrow \quad N+1 < \frac{1600}{5 \times 10^9 \times 5 \times 10^{-9}}$$

$$N+1 \le 64 \quad \Rightarrow \quad N \le 63$$

Shared Memory:

$$(2N)t_{\text{mem}} \le \frac{L}{r} \quad \Rightarrow \quad N \le \frac{1600}{2 \times 5 \times 10^9 \times 5 \times 10^{-9}}$$

$$N \le 32$$

—— سوال سوم

در شکل زیر یک سوئیچ 8×8 را نشان میدهد. همان طور که مشخص است این سوئیچ دارای ساختاری درختی است. تمام لینکها در هر شکل a ظرفیت عبور تنها یک بسته در هر برش زمانی را دارند.

شكل ١: ساختار سوئيچ سوال سوم

۱. الگوی ترافیکی را مثال بزنید که تمام پورتهای ورودی و خروجی اشغال باشند اما سوئیچ دچار Blocking نمی شود (فرض کنید الگویی که هر پورت ورودی به پورت خروجی همنام خودش p(in) به p(out) وصل شده باشد امکانپذیر نباشد).

پاسخ

- (a) $P_1(out)$ and $P_0(in)$
- (b) $P_3(out)$ and $P_2(in)$
- (c) $P_5(out)$ and $P_4(in)$
- (d) $P_7(out)$ and $P_6(in)$

الگوی ترافیکی را مثال بزنید که نشان دهد در شکل a سوئیچ دچار Internal Blocking می شود.

پاسخ

برای مثال اگر P_0 پورت ورودی و P_4 پورت خروجی باشد، با وجود اینکه پورت ورودی P_1 آزاد است و به غیر از پورتهای از P_4 تمام پورتهای خروجی نیز آزاد هستند، به علت internal blocking از P_4 به هیچیک از پورتهای P_5 ، P_6 ، P_7 ، P_8 ، P_9 و P_7 نمی توان بسته فرستاد.

۳. اگر در شکل b فرض کنیم خطوط پررنگ تر ظرفیت ارسال ۲ بسته در یک برش زمانی را دارند. آیا این تغییر سوئیچ شکل
b دچار Internal Blocking نمی شود؟

صفحه ۳ از ۲۳

پاسخ

بله، برای مثال دو انتقال زیر را درنظر بگیرید.

- ورودی و P_4 خروجی P_0
- ورودی و P_5 خروجی P_1

در این صورت، به دلیل internal blocking با وجود آزاد بودن پورت ورودی P_2 و پورت خروجی P_6 امکان انتقال بسته از P_6 به P_6 وجود ندارد، زیرا نیاز دارد از بالاترین خط همزمان P_6 بسته در یک برش زمانی ارسال شود که بیش از ظرفیت لینک (دو بسته) است.

۴. کمترین ظرفیتی که میتوان به سوئیچ قسمت a اضافه کرد که سوئیچ دچار Internal Blocking نشود چیست؟

ياسخ

اگر ظرفیت لینکهای قرمز ۲ بسته در یک برش زمانی و ظرفیت لینکهای بنفش ۴ بسته در یک برش زمانی باشد، internal blocking رخ نخواهد داد.

صفحه ۴ از ۲۳

سوال چهارم

. الگوریتم DRRM را بر روی شکل زیر اعمال کنید. این الگوریتم را تا دو مرحله اجرا کنید. هر مرحله شامل دو Iteration است.

شكل ٢: شكل مورد نظر

صفحه ۵ از ۲۳

Figure 4: Step 2

Figure 5: Step 1

صفحه ۶ از ۲۳

Figure 7: Step 1

صفحه ۷ از ۲۳

Figure 9: Step 1

صفحه ۸ از ۲۳

صفحه ۹ از ۲۳

سوال پنجم

الگوریتم EDRRM را بر روی شکل زیر اعمال کنید. این الگوریتم را تا دو مرحله اجرا کنید. هر مرحله شامل یک Iteration

شكل ١١: شكل مورد نظر

صفحه ۱۰ از ۲۳

Figure 13: Step 2

Figure 14: Step 1

صفحه ۱۱ از ۲۳

Figure 15: Step 2

Figure 16: Step 1

صفحه ۱۲ از ۲۳

Figure 17: Step 2

Figure 18: Step 1

صفحه ۱۳ از ۲۳

Figure 19: Step 2

Figure 20: Step 1

صفحه ۱۴ از ۲۳

صفحه ۱۵ از ۲۳

• (الف) مزایا و معایب سوئیچهای Banyan را شرح دهید.

پاسخ

١. مزايا:

- کارایی بالا: Banyan به دلیل طراحی چندمرحلهای، تأخیر کمتری نسبت به سوئیچهای تکمرحلهای دارد.
 - پیادهسازی ساده: معماری سادهای داشته و نیاز به اجزای پیچیده ندارد.
- قابلیت مقیاس پذیری: امکان گسترش اندازه سوئیچ با اضافه کردن مراحل یا گرهها وجود دارد.
- حداقل مسیریابی: ساختار مرتبشدهای دارد که مسیریابی را آسان و با حداقل تأخیر ممکن میسازد.

٢. معایب:

- بلاک شدن داخلی (Internal Blocking): اگر چند بسته بخواهند از یک لینک مشترک استفاده کنند، ممکن است بلاک شدن رخ دهد.
 - عدم تحمل خطا: خرابی یک گره یا لینک میتواند کل سیستم را مختل کند.
- الگوهای ترافیکی محدود: الگوهای خاص ترافیک ممکن است بهرهوری و عملکرد را کاهش دهند.
- پیچیدگی در کنترل ترافیک: برای جلوگیری از بلاک شدن داخلی، به کنترلکنندههای پیچیده نیاز است.
 - (ب) یک سوئیچ Banyan رسم کنید که شامل Shuffled و Unshuffled باشد.

پاسخ

سوئیچ Banyan با اندازه 16×16 شامل چهار مرحله است زیرا $4^2 = 16$ و هر مرحله از سوئیچهای 2×2 تشکیل شده است.

- است. $\log_2(16) = 4$ است.
- ۲. در هر مرحله، 8 سوئیچ 2×2 مورد نیاز است.
- ٣. اتصالات Shuffle و Unshuffle به این صورت انجام می شود:
- میشود. Shuffle: خروجی i خروجی وصل میشود. Shuffle: حروجی ایم خروجی درودی ایم خروجی ایم خروجی ایم میشود.
- ندووجی i به ورودی (i/2) یا i/2+8 (برای اندیسهای فرد) متصل می شود. Unshuffle: –

صفحه ۱۶ از ۲۳

صفحه ۱۷ از ۲۳

ـــــ سوال هفتم

به ازای حالتهای زیر نحوه خروج بستهها از سوئیچ را مشخص کنید.

- A) $001 \rightarrow 000, 100 \rightarrow 001$
- B) $110 \rightarrow 110, 100 \rightarrow 111$
- C) $010 \rightarrow 011, 110 \rightarrow 001$

شكل ۲۲: شكل مورد نظر

صفحه ۱۸ از ۲۳

— سوال هشتم

اجزای یک سوئیچ OpenFlow نسخه 5.1 را نشان دهید و هر کدام را شرح دهید.

پاسخ

- ۱. Flow Table (**جدول جریان**): این جدول، قوانین مربوط به جریانها را ذخیره کرده و تصمیمگیریهای لازم برای بستههای ورودی را انجام میدهد.
 - Match Fields: فیلدهای تطبیق مانند آدرس IP و شماره پورت.
 - Actions: اقداماتی مانند ارسال به پورت مشخص یا حذف بسته.
 - Counters: شمارنده هایی برای ثبت تعداد و حجم بسته های پردازش شده.
- د. Load Balancing یا Multicast برای انجام عملیات پیشرفته تر مانند Multicast یا Group Table و برای انجام عملیات پیشرفته تر مانند
 - تعریف گروههایی از اقدامات.
 - ارسال بسته به چندین مقصد به صورت همزمان.
 - ۳. Meter Table (جدول اندازهگیری): مدیریت پهنای باند و اعمال سیاستهای QoS.
 - اندازهگیری نرخ جریان داده.
 - اولویت بندی جریانها.
- ۴. Packet Buffer (بافر بسته): ذخیره موقت بسته هایی که در انتظار پردازش یا ارسال به کنترلکننده هستند.
 - ۵. OpenFlow Channel (کانال ارتباطی): ارتباط بین سوئیچ و کنترلکننده SDN
 - ارسال و دریافت پیامهای کنترل.
 - تضمین ارتباط امن.
 - ۶. Pipeline (پایپلاین): مجموعهای از جدولهای جریان که به صورت متوالی پردازش میشوند.
- ۷. Statistics Collection (جمع آوری آمار): جمع آوری آمار مربوط به جریان ها، پورت ها و پهنای باند.
 - ۸. Secure Channel (کانال امن): ارتباط امن بین کنترلکننده و سوئیچ با استفاده از رمزنگاری.

صفحه ۱۹ از ۲۳

سوال نهم

معیارهای ارزیابی سوئیچهای کنونی و سوئیچهای نسل جدید SDN را با هم مقایسه کنید.

پاسخ

۱. معماری سوئیچینگ

- سوئیچهای سنتی: از معماری سختافزاری ثابت و اختصاصی استفاده میکنند. تصمیمگیریها در سطح سوئیچ و توسط سختافزارهای داخلی انجام میشود. انعطافپذیری کمی دارند.
- سوئیچهای SDN: دارای معماری نرمافزارمحور هستند. تصمیمگیریها توسط کنترلکننده مرکزی انجام می شود. انعطافپذیری بسیار بالایی دارند، چرا که قوانین و سیاستها به صورت داینامیک توسط نرمافزار تنظیم می شوند.

۲. مدیریت و کنترل

- سوئیچهای سنتی: مدیریت و کنترل به صورت توزیع شده انجام می شود. نیازمند پیکربندی دستی و زمان بر هستند. تغییرات در مقیاس بزرگ دشوار است.
- سوئیچهای SDN: مدیریت و کنترل از طریق کنترلکننده مرکزی انجام میشود. پیکربندی بهصورت خودکار و از طریق رابطهای برنامهنویسی (API) صورت میگیرد. تغییرات و بروزرسانیها سریع و کارآمد است.

۳. عملکرد و مقیاسپذیری

- سوئیچهای سنتی: عملکرد به سختافزار وابسته است. برای مدیریت ترافیک بالا نیازمند سختافزارهای گرانقیمت هستند. مقیاس پذیری محدود است.
- سوئیچهای SDN: امکان مدیریت ترافیک بهینه از طریق نرمافزار وجود دارد. مقیاسپذیری بالا به دلیل کنترل مرکزی. نیاز به سختافزارهای پیچیده کمتری دارند.

۴. انعطافپذیری و قابلیت برنامهریزی

- سوئیچهای سنتی: قوانین و سیاستها ثابت و سختافزاری هستند. برنامهریزی و تغییرات محدود است.
- سوئیچهای SDN: بسیار انعطافپذیر و قابلبرنامهریزی از طریق نرمافزار. امکان تعریف و اجرای قوانین جدید بدون تغییر در سختافزار.

۵. امنىت

- سوئیچهای سنتی: امنیت به صورت محلی و در سطح هر سوئیچ مدیریت می شود. آسیب پذیری بیشتر در برابر حملات پیچیده.
- سوئیچهای SDN: امنیت به صورت متمرکز و توسط کنترلکننده مدیریت می شود. قابلیت به روزرسانی سریع قوانین امنیتی.

صفحه ۲۰ از ۲۳

پاسخ

۶. هزينه

- سوئیچهای سنتی: هزینه بالای سختافزار. هزینههای عملیاتی و نگهداری بیشتر.
- سوئیچهای SDN: کاهش هزینه به دلیل استفاده از سختافزارهای عمومی (Hardware). کاهش هزینههای عملیاتی با مدیریت سادهتر.

۷. جمع آوری و تحلیل داده

- سوئیچهای سنتی: جمعآوری دادهها محدود و زمانبر است. تحلیل دادهها نیازمند ابزارهای جداگانه است.
- سوئیچهای SDN: جمعآوری دادهها بهصورت متمرکز و در زمان واقعی انجام میشود. تحلیل دادهها سادهتر و کارآمدتر است.

صفحه ۲۱ از ۲۳

—— سوال دهم

معماری سوئیچهای نسل جدید Huawei و Intel را بررسی کرده و نوع پیادهسازی و ویژگیهای سوئیچهای OpenFlow مانند عملیات Pipelining را شرح دهید.

صفحه ۲۲ از ۲۳

سوال يازدهم

معماری سوئیچهای مبتنی بر چارچوب ForCES را بررسی کنید و ویژگیهای این چارچوب را شرح دهید.

صفحه ۲۳ از ۲۳

سوال دوازدهم

تفاوتهای چارچوب ForCES و OpenFlow را شرح دهید.

صفحه ۲۴ از ۲۳