Ejercicios adicionales

- 1. Sea $A\subset \mathbb{R}$ tal que $A\neq \emptyset$ y acotado inferiormente.
 - a) Demostrar que

$$-Inf(A) = Sup(-A)$$

b) Demostrar que si k < 0 y $kA = \{c \in \mathbb{R} \mid \exists a \in A \text{ tal que } c = ka\}$ entonces

$$kInf(A) = Sup(kA)$$

- 2. Sea $A \subset \mathbb{R}$ tal que $A \neq \emptyset$, acotado y k > 0 entonces
 - a) Demostrar que Sup(kA) = kSup(A)
 - b) Demostrar que Inf(kA) = kInf(A)
- 3. Dar un ejemplo de una función $f:[a,b]\to\mathbb{R}$ integrable en [a,b] que satisfaga lo siguiente:
 - a) $\forall P$ partición de [a,b] se tiene que $L(f,P)=\int_a^b f(x)dx=U(f,P)$ (Justificar detalladamente porque pasa esto).
 - b) $\forall P$ partición de [a,b] se tiene que $L(f,P)<\int_a^bf(x)dx=U(f,P)$ (Justificar detalladamente porque pasa esto).
 - c) $\forall P$ partición de [a,b] se tiene que $L(f,P)=\int_a^b f(x)dx < U(f,P)$ (Justificar detalladamente porque pasa esto).