RNA-seq解析パイプライン: Transcript-based pipeline

Shuji Shigenobu 重信 秀治

基礎生物学研究所 生物機能解析センター

Two Basic Pipelines

- Choice of reference
 - ► **Genome** standard for genome-known species
 - Transcript the only way for genome-unknown species
 -- can be used for genome-known species

RNA-seq workflow with reference genome

Millions of short reads pre-processing mapping Reads aligned to reference summarization by unit (gene, transcript, exon) Table of counts normalization DE testing List of DE gene systems biology GO enrichment multivariate analysis network analysis

Biological insights

RNA-seq workflow without reference genome

- I. Build reference
- 2. Characterize reference

A Pipeline: Transcript-based

Mapping – alignment software

- For mapping reads onto transcript reference short read mapper (unspliced read aligner) is used
 - ▶ **Bowtie2** basic mapping to reference sequence

http://bowtie-bio.sourceforge.net/bowtie2/index.shtml

bowtie2

Bowtie is an ultrafast, memory-efficient short read aligner.

http://bowtie-bio.sourceforge.net/bowtie2/index.shtml

```
(example)
```

\$ bowtie2 -x transcript.fa -U reads.fq -a -S out.sam

Output

▶ Alignment in SAM format: out.sam

(ex1) Let's Try Bowtie2

Align 75-bp Illumina reads with a transcript reference using Bowtie2.

Prepare reads and reference genome

Sequences for this exercise are stored in ~/data/SS/.

```
IlluminaReads1.fq — Illumina reads in fastq format minimouse_mRNA.fa — a set of transcript sequnences
```

Build index of reference sequence

```
$bowtie2-build minimouse_mRNA.fa myref
```

Align reads with reference

```
$bowtie2 -x myref -U IlluminaReads1.fq -a -S out.sam
```

Evaluation of mapping results

- ▶ Evaluation of SAM/BAM file
- Check statistics
- Visualization

```
(example)
$ samtools view bowtieout.bam
```

```
| Strong-hort-Name | 1.05 | Strong-hort-Nam
```

Count Reads by Transcript/gene

transcript-A	transcript-B	transcript-C					
reads	_						

- ▶ The simplest way: just count reads by contig. But...
- ▶ <u>Mapping ambiguity</u> should be taken into consideration.

Estimate Abundance

- Multimapping issues
 - ▶ Isoforms
 - Very similar paralogs
 - Repetitive sequences
 - > => cannot align reads uniquely
- ▶ Mapping ambiguity should be taken into consideration.

- Critical for RNA-seq de novo analysis
- Software: RSEM and eXpress (EM algorithm)

eXpress

eXpress is a streaming tool for quantifying the abundances of a set of target sequences from sampled subsequences.

http://bio.math.berkeley.edu/eXpress/

(example)

\$ express transcripts.fasta hits.bam

Output

Count estimation table: results.xprs

http://bio.math.berkeley.edu/eXpress/index.html

(ex1) Let's Try eXpress

Align 75-bp Illumina reads with a transcript reference using Bowtie2.

Prepare alignments and reference genome

Sequences for this exercise are stored in ~/data/SS/.

IlluminaReads1.fq - Illumina reads in fastq format
out.sam - this file should be generated in the previous bowtie practice

Run eXpress

\$ express minimouse mRNA.fa out.sam

Output : results.xprs, params.xprs

eXpress: output

results.xprs

	A	В	C	D	E	F	G	H		J	K	L	M	N
1 bun		target_id							ambig_distr_alpha		fpkm		fpkm_conf_high	
2		m.245853	621	398.1	807	15	86.2	134.4	9.83E+01		2.34E+01	1.88E+01	2.80E+01	
3		m.245856	660	442.0	991	199	919.8	1373.4	5.53E+01		2.25E+02	2.12E+02	2.38E+02	
4		m.42076	1959	1591.7	156	156	156.0	192.0	0.00E+00		1.06E+01	1.06E+01	1.06E+01	
5		m.60782	291	83.0	12	12	12.0	42.1	0.00E+00		1.57E+01	1.57E+01	1.57E+01	
6	4 r	m.158451	282	64.5	0	0	0.0	0.0	0		0.00E+00		0.00E+00	T
7		m.337354	219	39.4	0	0	0.0	0.0	0		0.00E+00		0.00E+00	
В	6 r	m.338934	261	82.3	0	0	0.0	0.0	0	0	0.00E+00	0.00E+00	0.00E+00	T
9	7 r	m.5973	822	719.9	4	4	4.0	4.6	0.00E+00	0.00E+00	6.01E-01	6.01E-01	6.01E-01	T
.0	8 r	m.337793	219	38.7	0	0	0.0	0.0	0	0	0.00E+00	0.00E+00	0.00E+00	T
1	9 r	m.340910	210	40.5	0	0	0.0	0.0	0	0	0.00E+00	0.00E+00	0.00E+00	T
2	10 r	m.289784	3177	2521.4	350	350	350.0	441.0	0.00E+00	0.00E+00	1.50E+01	1.50E+01	1.50E+01	T
3	11 r	m.248666	240	61.8	1	1	1.0	3.9	0.00E+00	0.00E+00	1.75E+00	1.75E+00	1.75E+00	T
4	12 r	m.90727	240	55.7	13	13	13.0	56.1	0.00E+00	0.00E+00	2.53E+01	2.53E+01	2.53E+01	T
5	13 r	m.338727	216	48.1	0	0	0.0	0.0	0	0	0.00E+00	0.00E+00	0.00E+00	T
.6	14 r	m.123519	225	43.2	0	0	0.0	0.0	0	0	0.00E+00	0.00E+00	0.00E+00	T
7	15 r	m.328661	251	50.8	1	1	1.0	4.9	0.00E+00	0.00E+00	2.13E+00	2.13E+00	2.13E+00	T
.8	16 r	m.26062	642	356.1	1	1	1.0	1.8	0.00E+00	0.00E+00	3.04E-01	3.04E-01	3.04E-01	T
9	17 r	m.1295	240	53.6	0	0	0.0	0.0	0	0	0.00E+00	0.00E+00	0.00E+00	T
0	18 r	m.307626	201	220.2	4	3	3.0	2.7	8.33E+00	4.07E+04	1.47E+00	1.46E+00	1.49E+00	T
1	18 r	m.307625	204	35.7	301	300	301.0	1718.3	1.02E+01	2.10E-03	9.12E+02	9.05E+02	9.18E+02	T
2	19 r	m.49789	237	51.9	3	3	3.0	13.7	0.00E+00	0.00E+00	6.26E+00	6.26E+00	6.26E+00	T
3	20 r	m.33508	162	151.3	1	1	1.0	1.1	0.00E+00	0.00E+00	7.15E-01	7.15E-01	7.15E-01	T
4	21 r	m.109341	183	286.3	2	2	2.0	1.3	0.00E+00	0.00E+00	7.56E-01	7.56E-01	7.56E-01	T
5	22 r	m.331919	564	277.3	0	0	0.0	0.0	0	0	0.00E+00	0.00E+00	0.00E+00	T
6	23 r	m.23766	303	98.5	3	3	3.0	9.2	0.00E+00	0.00E+00	3.30E+00	3.30E+00	3.30E+00	Т
7	24 r	m.246777	1149	1152.1	631	29	202.5	202.0	1.58E+02	3.90E+02	1.90E+01	1.65E+01	2.15E+01	T
8	24 r	m.246852	1323	1315.4	761	156	588.8	592.2	1.22E+02	4.85E+01	4.84E+01	4.50E+01	5.19E+01	T
9	24 r	m.246633	207	31.8	10	4	5.7	37.1	1.29E+04	3.27E+04	1.94E+01	1.05E+01	2.82E+01	T
0	24 1	m.246662	192	200.4	6	3	3.0	2.9	1.20E+01	3.22E+03	1.63E+00	1.51E+00	1.74E+00	T
1	25 r	m.99743	1641	1387.9	470	470	470.0	555.7	0.00E+00	0.00E+00	3.66E+01	3.66E+01	3.66E+01	T
2	26 r	m.335620	234	58.9	0	0	0.0	0.0	0	0	0.00E+00	0.00E+00	0.00E+00	T
3	27 r	m.16882	528	297.5	14	14	14.0	24.9	0.00E+00	0.00E+00	5.09E+00	5.09E+00	5.09E+00	T
4	28 r	m.77438	255	81.4	9	9	9.0	28.2	0.00E+00	0.00E+00	1.20E+01	1.20E+01	1.20E+01	T
5	29 r	m.131505	450	263.2	18	11	15.8	27.1	8.87E+00	3.95E+00	6.51E+00	4.68E+00	8.35E+00	T
6	29 r	m.131517	170	195.9	6	0	1.8	1.5	8.17E+00	1.96E+01	9.74E-01	0.00E+00	2.46E+00	T
7	29 r	m.131504	705	528.2	15	14	14.4	19.2	6.53E+01	1.01E+02	2.95E+00		3.21E+00	T

Diagnostics: Scatter plot & MA plot

edgeR

- A Bioconductor package for differential expression analysis of digital gene expression data
- Model: An over dispersed Poisson model, negative binomial (NB) model, is used
- Normalization: TMM method (trimmed mean of M values) to deal with composition effects
- ▶ DE test: exact test and generalized linear models (GLM)

edgeR

- ▶ input: count data (not RPKM)
- output: gene table with DE significance statistics (FDR)

```
(example)
$ R
> library(edgeR)
                                              #load edgeR library
> dat <- read.delim("count_data.txt", ...) #import count table to R
> group <- c(rep("M", 3), rep("H", 3)) #assign groups
> D <- DGEList(dat, group=group) #import data to edgeR
> D <- calcNormFactors(D) #normalization (TMM)
> D <- estimateCommonDisp(D) #estimate common dispo</pre>
> D <- estimateCommonDisp(D)</pre>
                                             #estimate common dispersion
> D <- estimateCommonDisp(D) #estimate common dispersion
> D <- estimateTagwiseDisp(D, ...) #estimate tagwise dispersion
> de <- exactTest(D, pair=c("M", "H")) #DE test</pre>
> topTags(de)
Comparison of groups: H-M
               logConc logFC
                                         P.Value
AT5G48430 -15.36821 6.255498 9.919041e-12 2.600872e-07
AT5G31702 -15.88641 5.662522 3.637593e-10 4.083773e-06
AT3G55150 -17.01537 5.870635 4.672331e-10 4.083773e-06
```

RNA-seq analysis pipeline (de novo strategy)

de novo assemblers of RNA-seq

De novo assemblers use reads to assemble transcripts directly, which does not depend on a reference gnome.

- Trinity
- Oases
- TransAbyss
- ▶ EBARDenovo
- **...**

http://trinityrnaseq.sourceforge.net/

Trinity example

- ▶ Input: Illumina short reads in FASTQ | FASTA format
- Output: assembled contigs in FASTA format

```
# prepare input reads
$ cat *.R1.fastq > left_all.fq
$ cat *.R2.fastq > right_all.fq

# Run Trinity
$ Trinity --seqType fq --left left_all.fq --right right_all.fq --
CPU 8 --max_memory 20G
```

(Trinity is supported on only Linux)

optional

ORF prediction

- Special consideration in ORF prediction after de novo RNA-seq assembly
 - Sometimes partial: Start Met or terminal codon may be missing.
 - Ideally one ORF is present per contig, but erroneously joined contigs may include multiple ORFs.
 - Possible frame shifts.
 - Frame shifts do not occur so often in Illumina, while it happens very frequently in 454 and IonProton.

optional

Functional Annotation of Predicted ORFs

BLAST

- ► NCBI NR (or UniProt)
- species of interest (model organisms, close relatives etc)
- specific DB (SwissProt, rRNA DB, CEGMA etc)
- self (assembly v.s. assembly)

Motif search

- ▶ Pfam, SignalP etc.
- Ortholog analysis
 - vs model organism
 - ortholog database (OrthoDB, eggNOG, OrthoMCL etc)
 - close relatives
- Gene Ontology term assignment

optional

Quick annotation by BLASTX

Query: assembled contigs
 (nucleotide sequences in multi-fasta format)

▶ DB: Protein sequences of a model organism

Format DB

```
$ makeblastdb -in protein.fa -dbtype prot
```

Search

```
$ blastx -query trinity_contigs -db protein.fa \
   -num_threads 8 -evalue 1.0e-8 -outfmt 0 > blastxout.txt
```

optional

Let's try BLASTX

- Query: minimouse_mRNA.fa
- ▶ DB: human.protein.faa (human RefSeq protein)

I. Format DB

\$ makeblastdb -in human.protein.faa -dbtype prot -parse_seqids

2. Search

- \$ blastx -query minimouse_mRNA.fa -db human.protein.faa \
 -num_threads 8 -evalue 1.0e-8 -outfmt 0 > blastxout.txt
- \$ blastx -query minimouse_mRNA.fa -db human.protein.faa \
 -num_threads 8 -evalue 1.0e-8 -outfmt 7 > blastxout.tab