1

1 DecisionTree

通过找到最合适的 point 去把数据分为两个子数据 属性类集 \mathbf{C} , 第 i 个属性 $\mathbf{C}_i \in \mathbf{C}$, 第 i 个属性取值为 j, 记作 $\mathbf{C}_i = j$ 离散属性先转为多列的 0 和 1 看做多个连续属性

1.1 Classifier

数据 \mathbf{D} , 标签集 S 遍历所有的 point 数据集被 point 分为两份 \mathbf{A} 和 \mathbf{B} , 得到占比 $P(\mathbf{A}\mid\mathbf{D})$, $P(\mathbf{B}\mid\mathbf{D})$ 得到占比

A
$$P_A = [P(S = S_1 \mid \mathbf{A}), P(S = S_2 \mid \mathbf{A}) \dots P(S = S_n \mid \mathbf{A})]$$

B $P_B = [P(S = S_1 \mid \mathbf{B}), P(S = S_2 \mid \mathbf{B}) \dots P(S = S_n \mid \mathbf{B})]$

得到信息熵

$$En_{poitn} = P(\mathbf{A} \mid \mathbf{D})P_A^{\top} \log_2(P_A) + P(\mathbf{B} \mid \mathbf{D})P_B^{\top} \log_2(P_B)$$

找出信息熵最小即使最佳的 point

1.2 Regression

标签值 S 数据集被 point 分为两份 A 和 B,S_A S_B 计算 S_A S_B 平方误差。再相加得 E_{point} 取 E_{point} 最小时的 point