Machine Learning of Given Clause Selection in E

Jan Jakubův, Josef Urban

Automated Reasoning Group Czech Technical University in Prague

AITP16, Obergurgl, 4th April 2016

Terminology

- (FOL) Term (t): X, c, $f(t_1, \dots, t_n)$, \$true, \$false
- Predicate (p): basically a term
- Literal: $t_1 = t_2$ or $t_1 \neq t_2$ (spec. p(X) =\$true, $p(X) \neq$ \$true)
- Clause: a set of literals (implicitly OR-ed)
- Axioms: a set of clauses
- Conjecture: a clause

Saturation Based Theorem Proving

Basic variant without subsumption

```
P := \emptyset (processed)
U := \{ \text{clausified axioms and a negated conjecture} \} (unprocessed)
while (U \neq \emptyset) do
  if (\emptyset \in U \cup P) then return Unsatisfiable
  g := \text{select}(U)
  P := P \cup \{g\}
  U := U \setminus \{g\}
  U := U \cup \{ \text{clauses inferred with } g \text{ and one from } P \}
done
return Satisfiable
```

Basic Clause Selection Methods

Selecting the "right" clause is crucial:

- ullet pick the shortest clause from U
- ullet pick the oldest clause from U
- count symbols with different weights
 - $C = \{f(X) \neq a, p(a) \neq \$true\}$
 - sym(C) = [f, X, a, p, a, \$true]
 - $weight(C) = \sum_{s \in sym(C)} weight(s)$
- e.g. use lower weights for conjecture symbols
- various combinations

Clause Selection in E

How it is done in E

- Clause evaluation is done by selecting:
 - unparameterized priority function: prio: $Clause \rightarrow Long$
 - ullet parametrized weight function: weight: Clause imes args o Double
 - weight function parameters (args above)
- unprocessed clauses are pre-sorted by prio
- the smaller priority/weight the better
- clauses are stored in a priority queue
 - clause with the smallest (prio(C), weight(C)) is selected

Example Clause Selection Heuristic

A reference heuristic (SYM) for experiments

- A user can choose a heuristic by
 - combining built-in priority and weight functions, and
 - selecting weight function parameters.

```
ConjectureRelativeSymbolWeight( // weight function
   ConstPrio, // priority function
               // conjecture symbol weight multiplier
   0.1,
   100,
               // weight of function symbols
   100,
               // weight of constants
   100,
               // weight of predicate symbols
   100,
              // weight of variables
   1.5,
               // maximal term multiplier
   1.5,
               // maximal literal multiplier
   1.5)
               // positive equality multiplier
```

Combining Different Heuristics

A reference scheme (EXP) for experiments

A user can combine several heuristics:

6 Conjecture Weight Functions

- different ways of relating a clause to the conjecture
- each is determined by a term weight function
- term weight determines a similarity of a term with a conjecture
- all heuristics share some common parameters

Variable normalization

- controlled by parameter $v \in \{\star, \alpha\}$
 - (★) all variables unified
 - (α) α -normalized variables (in a term)

Related terms

- term weight measures a similarity of a term with some term from the set of related terms (RelatedTerms)
- controlled by parameter $r \in \{\text{ter}, \text{sub}, \text{top}, \text{gen}\}$
 - (ter) All conjecture terms
 - (sub) All conjecture subterms
 - (top) Subterms and top-level generalizations (for any conjecture symbol f add $f(X_1, \dots, X_n)$)
 - (gen) Generalizations of all conjecture subterms

Term weight extension

- each heuristic defines a simple term weight function weight₁
- this is extended to term weight "weight(t)"
- controlled by parameter $e \in \{1, \Sigma, \vee\}$
 - (1) use weight(t) = weight₁(t) directly
 - (Σ) sum weight₁(s) for each subterm

$$\mathsf{weight}(t) = \sum_{s \in \mathsf{subterms}(t)} \mathsf{weight}_1(s)$$

(∨) get maximum of all subterms

$$\mathsf{weight}(t) = \max_{s \in \mathsf{subterms}(t)} \mathsf{weight}_1(s)$$

Clause weight extension

- term weight is extended to clause weight
- weight(C) = weight($\{t_1 = t_2, t_3 \neq t_4, \cdots\}$) = \sum_i weight(t_i)
- appropriately multiplied by

```
(\gamma_{\text{maxl}}) maximal literal multiplier (\gamma_{\text{pos}}) positive equality multiplier (\gamma_{\text{maxt}}) maximal term multiplier
```

Term: Conjecture Subterm Weight

- favor related terms
- Term($P, v, r, \gamma_{\text{conj}}, \delta_{\text{f}}, \delta_{\text{c}}, \delta_{\text{p}}, \delta_{\text{v}}, e, \gamma_{\text{maxt}}, \gamma_{\text{maxl}}, \gamma_{\text{pos}}$)
- ullet weight $_1(t) = egin{cases} \gamma_{\mathsf{conj}} * \delta & \mathsf{iff} \ t \in \mathsf{RelatedTerms} \\ \delta & \mathsf{otherwise} \end{cases}$

where $\delta \in \{\delta_f, \delta_c, \delta_p, \delta_v\}$ accordingly to the top-level symbol of t

Tfldf: Conjecture Frequency Weight

- favor infrequent related terms
- TfIdf($P, v, r, \delta_{doc}, e, \gamma_{maxt}, \gamma_{maxl}, \gamma_{pos}$)
- tf(t) = "number of occurrences of t in RelatedTerms"
- df(t) = "number of Documents which contain t" where
 - Documents are axioms (if $\delta_{doc} = ax$)
 - ullet Documents are all processed clauses (if $\delta_{
 m doc} = {
 m pro}$)

$$\mathsf{tfidf}(t) = \mathsf{tf}(t) * \log \frac{1 + |\mathsf{Documents}|}{1 + \mathsf{df}(t)}$$
 weight₁ $(t) = \frac{1}{1 + \mathsf{tfidf}(t)}$

Pref: Conjecture Term Prefix Weight

- favor terms which share a prefix with a related term
- Pref $(P, v, r, \delta_{\mathsf{match}}, \delta_{\mathsf{miss}}, e, \gamma_{\mathsf{maxt}}, \gamma_{\mathsf{maxl}}, \gamma_{\mathsf{pos}})$
- max-pref(t) = "the longest prefix shared with RelatedTerms"
- $\bullet \ \mathsf{weight}_1(t) = \delta_{\mathsf{match}} * |\mathsf{max-pref}(t)| + \delta_{\mathsf{miss}} * (|t| |\mathsf{max-pref}(t)|)$

Lev: Conjecture Levenshtein Distance Weight

- measure the Levenshtein distance from related terms
- Lev $(P, v, r, \delta_{\mathsf{ins}}, \delta_{\mathsf{del}}, \delta_{\mathsf{ch}}, e, \gamma_{\mathsf{maxt}}, \gamma_{\mathsf{maxl}}, \gamma_{\mathsf{pos}})$
- variable costs of insert/delete/change operations
- ullet weight $_1(t) = \min_{s \in \mathsf{RelatedTerms}} \Delta_{\mathsf{Lev}}(t,s)$

Ted: Conjecture Tree Distance Weight

- measure the tree edit distance from related terms
- Ted $(P, v, r, \delta_{\text{ins}}, \delta_{\text{del}}, \delta_{\text{ch}}, e, \gamma_{\text{maxt}}, \gamma_{\text{maxl}}, \gamma_{\text{pos}})$
- Ref. Zhang, Shasha: Simple Fast Algorithms for the Editing Distance Between Trees and Related Problems, 1989.

Struc: Conjecture Structural Distance Weight

- Computes "structural" distance from related terms
- Struc $(P, v, r, \delta_{\text{miss}}, \gamma_{\text{inst}}, \gamma_{\text{gen}}, e, \gamma_{\text{maxt}}, \gamma_{\text{maxl}}, \gamma_{\text{pos}})$

$$\Delta_{\mathsf{Struc}}(x,y) = \begin{cases} 0 & \mathsf{iff} \ x = y \\ \delta_{\mathsf{miss}} & \mathsf{otherwise} \end{cases} \qquad \Delta_{\mathsf{Struc}}(x,t) = \gamma_{\mathsf{inst}} * |t| \\ \Delta_{\mathsf{Struc}}(t,x) = \gamma_{\mathsf{gen}} * |t| \end{cases}$$

$$\Delta_{\mathsf{Struc}}(f(t_1,\ldots,t_n),f(s_1,\ldots,s_n)) = \sum_{i=1}^n \Delta_{\mathsf{Struc}}(t_i,s_i)$$

$$\Delta_{\mathsf{Struc}}(t,s) = \gamma_{\mathsf{gen}} * |t| + \gamma_{\mathsf{inst}} * |s|$$
 (otherwise)

Experimental Evaluation

- Evaluation on 2078 MPTP bushy problems (Mizar)
- SYM heuristic is used as a reference
- EXP heuristic scheme is used to measure diversity (2*EXP+)
- ullet All the experiments were run with $\gamma_{\mathsf{maxt}} = \gamma_{\mathsf{maxl}} = \gamma_{\mathsf{pos}} = 1.5$
- ... with a constant priority function
- ... with 5 seconds time limit
- ... manually chosen parameters

Bests on 2078 MPTP Problems (by solved)

heuristic	δ	solved	speed	%SYM+
Lev	⋆-gen-1	841	2.4	18.3
Struc	⋆-ter-1	833	3.9	17.2
Ted	lpha-gen- 1	797	1.2	12.1
Pref	$lpha$ -gen- Σ	788	4.0	10.8
Term	∗-gen-Σ	749	5.6	5.3
Tfldf	$lpha$ -gen- Σ	738	3.1	3.8
SYM		711	3.4	0.0

Bests on 2078 MPTP Problems (by 2*EXP+)

heuristic	δ	2*EXP+	speed	%SYM+
Lev	⋆-gen-1	41	2.4	18.3
Ted	lpha-gen- 1	33	1.3	12.1
Struc	∗-sub-Σ	32	2.9	17.0
Pref	$lpha$ -gen- Σ	21	4.0	10.8
Term	lpha-gen- 1	20	4.4	-0.7
Tfldf	∗-sub-Σ	17	3.5	0.3
SYM		7	3.4	0.0

Conclusions

- Lev and Struc work best
- ullet in many case unified variables equal to lpha-normalization
- "exact match" heuristics perform best with $e=\Sigma$
- different parameters (e.g. costs) matter
- ullet often r= gen is best but not always

Future Work

- Apply machine learning (ParamILS, BliStr) to find
- ... best parameters for each heuristic
- ... best combinations with priority functions
- ... "orthogonal" heuristics with maximal coverage
- Incorporate machine learning directly into given clause selection