## Informe del Trabajo Práctico Final

# Nombre del Alumno: Ing. José Roberto Castro

## 10 de diciembre de 2024

## Índice

| 1.         | Introducción                                                                | 2 |
|------------|-----------------------------------------------------------------------------|---|
| 2.         | Breve Explicación de lo Implementado  2.1. Descripción del Contador en VHDL |   |
| 3.         | Diagramas en Bloques del Circuito                                           | 4 |
| 4.         | Captura de Simulación                                                       | 4 |
| <b>5</b> . | Tabla de Uso de Recursos de la FPGA                                         | 4 |
| 6.         | Conclusión                                                                  | 5 |

#### 1. Introducción

El presente documento detalla la implementación de un bloque de hardware digital desarrollado como parte del trabajo práctico final de la materia Microarquitecturas y Softcores. El objetivo fue implementar un contador ascendente y descendente en VHDL, simular su comportamiento, sintetizarlo para una FPGA y establecer su conectividad con un microprocesador mediante una aplicación en lenguaje C.

### 2. Breve Explicación de lo Implementado

El sistema consta de dos componentes principales:

- Bloque VHDL: Un contador configurable para operar en modo ascendente o descendente.
- Aplicación en C: Un programa que interactúa con el bloque lógico a través del bus AXI, permitiendo configurar el modo de operación y leer el valor del contador.

#### 2.1. Descripción del Contador en VHDL

El siguiente fragmento muestra el código del contador implementado en VHDL. Este bloque incluye una señal de control para definir el modo (ascendente o descendente) y una señal de reset para inicializar el conteo.

```
library IEEE;
  use IEEE.STD_LOGIC_1164.ALL;
  use IEEE.STD_LOGIC_ARITH.ALL;
  use IEEE.STD_LOGIC_UNSIGNED.ALL;
  entity contador_asc_desc is
      Port (
           clk : in STD_LOGIC;
           reset : in STD_LOGIC;
           control : in STD_LOGIC; -- '0' para ascendente, '1' para
              descendente
           count_out : out STD_LOGIC_VECTOR(3 downto 0)
11
      );
12
  end contador_asc_desc;
13
14
  architecture Behavioral of contador_asc_desc is
15
      signal count : STD_LOGIC_VECTOR(3 downto 0) := "0000";
16
  begin
17
      process(clk, reset)
18
      begin
19
           if reset = '1' then
20
               count <= "0000";
21
           elsif rising_edge(clk) then
22
               if control = '0' then
23
                    count <= count + 1;</pre>
24
25
26
                    count <= count - 1;</pre>
               end if;
27
```

```
end if;
end process;

count_out <= count;
end Behavioral;</pre>
```

Listing 1: Código VHDL del contador ascendente/descendente

El comportamiento del contador está determinado por:

- Señal de reloj (clk): Sincroniza las operaciones del contador.
- Señal de reset: Reinicia el contador a cero.
- Señal de control: Define el modo de operación:
  - '0': Modo ascendente.
  - '1': Modo descendente.

#### 2.2. Aplicación en C

La aplicación en C interactúa con el bloque VHDL a través del bus AXI. Permite configurar el modo del contador y leer su valor en tiempo real.

```
#include "xparameters.h"
  #include "xil_io.h"
  #define CONTADOR_BASE_ADDR XPAR_CONTADORIP_O_SOO_AXI_BASEADDR
  #define REG_RESET_OFFSET 0x00
  #define REG_CONTROL_OFFSET 0x04
  #define REG_COUNT_OUT_OFFSET 0x08
  void Contador_SetReset(int reset) {
      Xil_Out32(CONTADOR_BASE_ADDR + REG_RESET_OFFSET, reset);
10
11
  }
12
  void Contador_SetControl(int control) {
13
      Xil_Out32(CONTADOR_BASE_ADDR + REG_CONTROL_OFFSET, control);
14
15
16
  int Contador_ReadCount() {
17
      return Xil_In32(CONTADOR_BASE_ADDR + REG_COUNT_OUT_OFFSET) & OxF;
18
19 }
```

Listing 2: Fragmento del código C para interactuar con el bloque VHDL

La funcionalidad de esta aplicación incluye:

- Configuración del modo (ascendente o descendente) del contador.
- Lectura del valor actual del contador.
- Generación de un retardo simulado para observar los cambios en el conteo.

## 3. Diagramas en Bloques del Circuito



Figura 1: Diagrama en bloques del sistema implementado.

## 4. Captura de Simulación

Control mode set to: Ascending Current count value: 0x00 Control mode set to: Descending Current count value: 0x00

Figura 2: Simulación del contador en modo ascendente y descendente.

#### 5. Tabla de Uso de Recursos de la FPGA

A continuación se presentan los recursos utilizados en la FPGA para el diseño implementado:

| Nombre                     | Slice LUTs | Slice Registers | Bonded IOPADs | BUFGCTRL |
|----------------------------|------------|-----------------|---------------|----------|
| ${\tt design\_1\_wrapper}$ | 608        | 809             | 130           | 1        |
| ${\tt design\_1\_i}$       | 608        | 809             | 0             | 1        |
| ${\tt contadorip\_0}$      | 57         | 169             | 0             | 0        |
| processing_system7_0       | 112        | 0               | 0             | 0        |
| ps7_0_axi_periph           | 420        | 600             | 0             | 0        |
| rst_ps7_0_50M              | 19         | 40              | 0             | 0        |

| Cuadro 2: Resumen de utilización de recursos |             |            |                           |  |  |  |  |  |
|----------------------------------------------|-------------|------------|---------------------------|--|--|--|--|--|
| Recurso                                      | Utilización | Disponible | Porcentaje de utilización |  |  |  |  |  |
| LUT                                          | 608         | 17600      | 3.45%                     |  |  |  |  |  |
| LUTRAM                                       | 66          | 6000       | 1.10%                     |  |  |  |  |  |
| $\operatorname{FF}$                          | 809         | 35200      | 2.30%                     |  |  |  |  |  |

## 6. Conclusión

El desarrollo del contador ascendente y descendente permitió comprender los conceptos fundamentales del diseño de hardware digital y la interacción entre bloques lógicos y sistemas embebidos. La implementación en FPGA y la conectividad con el Cortex demostraron ser efectivos para alcanzar los objetivos planteados.

## Referencias

• Código fuente VHDL y C: Anexado en la entrega.