TECHNICAL NOTE

348

Infrared Reflectances of Metals at Cryogenic Temperatures - A Compilation From the Literature

P. F. DICKSON AND M. C. JONES

U.S. DEPARTMENT OF COMMERCE National Bureau of Standards

THE NATIONAL BUREAU OF STANDARDS

The National Bureau of Standards¹ provides measurement and technical information services essential to the efficiency and effectiveness of the work of the Nation's scientists and engineers. The Bureau serves also as a focal point in the Federal Government for assuring maximum application of the physical and engineering sciences to the advancement of technology in industry and commerce. To accomplish this mission, the Bureau is organized into three institutes covering broad program areas of research and services:

THE INSTITUTE FOR BASIC STANDARDS . . . provides the central basis within the United States for a complete and consistent system of physical measurements, coordinates that system with the measurement systems of other nations, and furnishes essential services leading to accurate and uniform physical measurements throughout the Nation's scientific community, industry, and commerce. This Institute comprises a series of divisions, each serving a classical subject matter area:

—Applied Mathematics—Electricity—Metrology—Mechanics—Heat—Atomic Physics—Physical Chemistry—Radiation Physics—Laboratory Astrophysics²—Radio Standards Laboratory,² which includes Radio Standards Physics and Radio Standards Engineering—Office of Standard Reference

ence Data.

THE INSTITUTE FOR MATERIALS RESEARCH ... conducts materials research and provides associated materials services including mainly reference materials and data on the properties of materials. Beyond its direct interest to the Nation's scientists and engineers, this Institute yields services which are essential to the advancement of technology in industry and commerce. This Institute is organized primarily by technical fields:

-Analytical Chemistry—Metallurgy—Reactor Radiations—Polymers—Inorganic Materials—Cry-

ogenics2—Materials Evaluation Laboratory—Office of Standard Reference Materials.

THE INSTITUTE FOR APPLIED TECHNOLOGY ... provides technical services to promote the use of available technology and to facilitate technological innovation in industry and government. The principal elements of this Institute are:

—Building Research—Electronic Instrumentation—Textile and Apparel Technology Center—Technical Analysis—Center for Computer Sciences and Technology—Office of Weights and Measures—Office of Engineering Standards Services—Office of Invention and Innovation—Clearinghouse for Federal Scientific and Technical Information.³

² Located at Boulder, Colorado, 80302.

¹ Headquarters and Laboratories at Gaithersburg, Maryland, unless otherwise noted; mailing address Washington, D. C., 20234.

³ Located at 5285 Port Royal Road, Springfield, Virginia, 22151.

INFRARED REFLECTANCES OF METALS AT CRYOGENIC TEMPERATURES—A COMPILATION FROM THE LITERATURE

P. F. DICKSON AND M. C. JONES

Cryogenics Division Institute for Materials Research Notional Bureou of Standards Boulder, Colorodo

NBS Technical Notes are designed to supplement the Bureau's regular publications program. They provide a means for making available scientific data that are of transient or limited interest. Technical Notes may be listed or referred to in the open literature.

CONTENTS

								P.	AGE
ABS	STRAC	ET .							1
1.	INTR	ODUCTION							1
2.	SPEC	TRAL REF	LECTANO	CE .		•			6
	2. 1	Aluminum				•			6
		Table 2.1	Spectral	Reflect	ance o	of Alumi	inum		7
		Figure 2.1	Spectral	Reflect	ance c	of Alumi	inum	•	9
	2.2	Antimony							
		Table 2.2	Spectral				_	•	10
		Figure 2.2	_				ony	•	11
	2.3	Bismuth an				_			
		Table 2.3	-						
			and Bisn			•		•	12
		Figure 2.3	-						
			and Bisn	nuth-Te	lluriu	m Alloy	S		13
	2.4	Copper				•	•		14
		Table 2.4	Spectral						15
		Figure 2.4	Spectral	Reflect	ance o	of Coppe	r		17
	2.5	Gold		•			•	•	18
		Table 2.5	Spectral	Reflect	ance o	of Gold	•		19
		Figure 2.5	Spectral	Reflect	ance	of Gold	•		20
	2.6	Lead							21
		Table 2.6	Spectral	Reflect	ance o	of Lead	•		22
		Figure 2.6	Spectral	Reflect	ance o	of Lead			23
	2.7	Nickel							
		Table 2.7	Spectral	Reflect	ance o	of Nicke	1		24
		Figure 2.7	Spectral	Reflect	ance o	of Nicke	1		25
	2.8	Silver					•		26
		Table 2.8	Spectral	Reflect	ance	of Silver			27
		Figure 2.8	Spectral	Reflect	ance o	of Silver	•		29
	2.9	Sodium					•		30
		Table 2.9	Spectral	Reflect	ance	of Sodiu	m		31
		Figure 2.9	Spectral	Reflect	ance o	of Sodiu	m		32
	2.10	Tin				•	•		33
		Table 2.10	Spectral	Reflect	ance o	of Tin			34
		Figure 2.1	OSpectral	Reflect	ance o	of Tin			35
	2.11	Brass							36
		Figure 2.1	1 Spectra	Reflec	tance	of α-Br	asses		37

3.	TOTAL RE	FLECTANCE		•	•		38
	Table 3.1	Total Reflectance	of	Aluminum			39
	Table 3.2	Total Reflectance	of	Copper			41
	Table 3.3	Total Reflectance	of	Gold .			43
	Table 3.4	Total Reflectance	of	Lead .			44
	Table 3.5	Total Reflectance	of	Nickel and N	ickel		
		Alloys .			•		45
	Table 3.6	Total Reflectance	of	Silver	•		47
	Table 3.7	Total Reflectance	of	Steel and Va	rious		
		Stainless Steels			•		48
	Table 3.8	Total Reflectance	of	Tin .	•		51
	Table 3.9	Total Reflectance	of	Various Bra	sses		52
	Table 3.10	Total Reflectance	of	Various Met	als		
		and Alloys .		•	•	•	53
4	REFERENC	EES					58

INFRARED REFLECTANCES OF METALS AT CRYOGENIC TEMPERATURES -- A COMPILATION FROM THE LITERATURE

P. F. Dickson and M. C. Jones

Spectral and total reflectances for metals at cryogenic temperatures in the infrared wavelength region are compiled from the literature. Information concerning sample preparation and purity, radiation source, and methods of reflectance measurement are also presented. Observations regarding the effects on reflectance of temperature, oxide layer, wavelength, and sample preparation are given.

Key Words: Compilation, cryogenic, infrared, metals, reflectance.

1. Introduction

Calculation of radiative heat transfer at cryogenic temperatures requires a knowledge of thermal radiative properties of materials at these temperatures. From the nature of thermal radiative processes at low temperatures it is evident that one needs data in the infrared, and in particular in the far infrared. This can be seen from Wien's displacement law for a black body (λ_{max} T = 2898 μ °K). The wavelength of maximum emitted radiative energy shifts from $\lambda \cong 9.8 \,\mu$ at room temperature (T = 295°K) to $\lambda \cong 725 \,\mu$ at 4°K. This survey comprises information, summarized here in graphical and tabular form, currently available in the infrared wavelength region (through mid-1966) on thermal radiative properties of metals, in particular, reflectances, at cryogenic temperatures.

The survey was undertaken as a preliminary to an experimental program. As will be evident, very little work has been done in the far

infrared, the only reported measurements beyond $14\,\mu$ being those of Aronson, et al. [1964] on stainless steel, an aluminum alloy, a magnesium alloy, and chromium. The $\pm 5\%$ error quoted by these authors serves to underline the difficulty of making reflectance measurements on highly reflecting materials in the far infrared by conventional spectrophotometric techniques.

Theoretical considerations and experimental techniques in determining optical constants of metals were reviewed by Givens [1958] and Ehrenreich [1965], and a review of the subject at low temperatures was given by Corruccini [1962]. Previous surveys on total emissivity data at low temperature have been given by Fulk and Reynolds [1957a] and Corruccini [1957].

Since the surveys of Fulk and Corruccini were published (containing no spectral data at low temperatures) several spectral studies have appeared in the literature. Along with this aspect there has also been an apparent realization by the same workers that the older data in the literature are of little more than qualitative interest due to their irreproducibility; the reflectance of a metallic surface depends strongly on the method by which it was prepared. Much effort has gone into producing surfaces of high purity with no work-hardened surface layer present. This has culminated in the highly reproducible pure metallic surfaces produced by ultra-high-vacuum vapor deposition (~ 10⁻¹⁰ mm Hg) by Bennett at the Michelson Laboratory. The room temperature reflectances of these surfaces are higher than what had previously been achieved. They are discussed and used below as a comparison with the work of other authors to illustrate the effects of both temperature and surface preparation. Such was the improvement in room temperature reflectances obtained by the use of ultra-high-vacuum vapor deposition that one can only regret, as yet, no similar measurements have been

reported at low temperature and longer wavelength where even higher reflectances are to be expected. Rate of deposition also has an effect on reflectance as indicated by Bennett, Silver, and Ashley [1963], with greater reflectance values obtained for increased deposition rates.

In view of this later work it has seemed desirable to present the results of this compilation in two sections. Section 2 consists of all spectral data reported and contains only one work published before 1959. Section 3 contains total reflectance data and is mostly older data, some of which were reviewed previously by Fulk and by Corruccini. However, original references are given where known. The word "total," as here applied to reflectance, means the value obtained by integration over all wavelengths. It should be remembered that this value is dependent on the wavelength distribution of incident flux.

The total or spectral reflectance (ρ_t or ρ_{λ}) of a surface may be obtained by a number of direct experimental techniques. It may also be obtained indirectly for an opaque surface from a measurement of the absorptance (α_t or α_{λ}), for then $\rho=1-\alpha$. A second indirect method is to calculate the normal reflectance (ρ_{λ} , 0) from measurements of the refractive index n_{λ} and the absorption coefficient k_{λ} by use of the Fresnel formula

$$\rho_{\lambda, 0} = \frac{(n_{\lambda} - 1)^{2} + k_{\lambda}^{2}}{(n_{\lambda} + 1)^{2} + k_{\lambda}^{2}}.$$

Measurements of the total or spectral emittance (ε_t or ε_λ) have also been used in the past by invoking Kirchoff's law: $\alpha_t = \varepsilon_t$ and $\alpha_\lambda = \varepsilon_\lambda$. Recently, however, a theoretical question has arisen as to the general applicability of Kirchoff's law [Ashby and Schocken, 1964], and this

seems to be particularly important at long wavelengths and low temperatures.

In the tables and graphs which follow, reflectances are reported as such when they are either from direct measurements or derived from measurements of α or n and k; reflectances are not derived from emittance measurements. Reflectances are normal (ρ_0) unless otherwise stated. It may be noted that in the limit of zero absorptance the ratio of hemispherical to normal absorptance approaches the value 4/3 for metals [Jakob, 1949].

The methods by which data were obtained are indicated in the tables below by the following general classification:

- Method 1. Direct measurement of normal reflectance by multiple reflection techniques.
- Method 2. Direct measurement of normal reflectance or absorptance by calorimetric techniques.
- Method 3. Calculation, by either the original authors or the present authors, of normal reflectance from optical constants n and k determined by:
 - (a) measurements of absorptance at oblique incidence for two polarization components (perpendicular and parallel to the plane of incidence) by a calorimetric technique, or
 - (b) measurement of the phase shift and relative magnitudes of the perpendicular and parallel components of a reflected beam at oblique incidence.
- Method 4. Measurement of absorptance or emittance by rate of boil-off of a cryogenic liquid. This method gives total hemispherical values.

Method 5. Direct measurement of normal emittance by comparison of emitted radiation with that emitted by a black body at the same temperature.

These general experimental techniques are referred to in the tables, and any variations, when applicable, are noted.

Information as to type of radiation source (e.g., monochromatic, wavelength band, total radiation from a source at a given temperature) accompanies the data. Techniques of surface preparation are also given.

The temperature region of primary interest was that below 100°K; therefore, only those metals for which data were available in this region are presented. However, for comparison and completeness, selected data on these materials at room temperature are also given if available.

Theory predicts that the reflectance of a metal in the infrared region will increase with decreasing temperature and increasing wavelength. Also, surface preparation is known to have a significant effect on reflectance values obtained. Results of this survey indicate that reflectance increases for preparation techniques in the following order: mechanical polishing, high vacuum vapor deposition, electropolishing, and ultra-high-vacuum deposition. Oxidation or impurities on the surface layer generally decrease reflectance, but the effect seems much smaller for oxidation than previously believed. Alloys have lower reflectances than pure metals. Although data available on any metal listed are not complete enough for a quantitative check, reflectances given tend to follow the aforementioned expectations.

2. Spectral Reflectance

Of particular current interest are data on reflectance as a function of wavelength (spectral reflectance, ρ_{λ}). Effects on reflectance of surface preparation, temperature, and alloy composition may also be observed in the graphs and tables which follow. Results show that, to obtain reproducible results, care must be taken to define surface preparation as well as other experimental techniques.

2.1 Aluminum

Variation of normal spectral reflectance ($\rho_{\lambda,0}$) with temperature, deposition vacuum, and wavelength is well illustrated for aluminum in figure 2.1. As is seen, reflectance of ultra-high vacuum ($\sim 10^{-10}$ mm Hg) evaporated films [Bennett, et al. 1963] is significantly higher than those values obtained using the usual high vacuum ($\sim 10^{-6}$ mm Hg) techniques. Room temperature reflectances of high-vacuum deposited films calculated from the optical constants of Golovashkin, et al. [1960] and measured directly by Bennet, et al. [1962] show excellent agreement.

Bennett, et al. [1962] state that, contrary to popular belief, the oxide layer formed on aluminum has almost no effect on the infrared reflectance. Calculations on oxide layers from 10 to 100 Å thick show the change in reflectance to be less than 0.1% for $\lambda > 1.5 \mu$. A 22 Å-thick film is reported formed after several weeks' exposure.

TABLE 2.1 SPECTRAL REFLECTANCE OF ALUMINUM

Reference		Golovashkin,	Motulevich,		and Shubin		[1960]									Bennett,	Silver, and		Ashley [1963]					-					
Method		3(b)														1													
Radiation Source		Monochromatic														Monochromatic													
Sample Preparation		Vacuum deposition (no magnitude Monochromatic	given)		Sample purity: 99.99%											uhv = vacuum deposition at	10	10 mm Hg		8000	Sample purity = 99.999%		I = Koom temperature						
	0 کې 0	T = 295°K	0.8	0.0	°	6.	6.	σ.	6.	0.9794	6.	0.9817	.981	0.9829	980	λ(μ) ρ _{λ, 0} (uhv)	0.980	0.982	0.984	0.985	0.986	0.987	0.987	10 0.9876	0.987	0.988	0.988	0.988	
Reflectance		T = 78°K	6	0.9424	0.9734	0.9791	6	6	6	0.9861	6	0.9875	6			ρ, 0(uhv)	0.9208	6	6	6	6	6	6	0.9057	∞	∞	∞	0.8676	
		η , γ								4.0						γ(π)		0.350			. 2	S	. 60	0.650	.70	S	.77	0	

Reference		Bennett,	Bennett, and Ashley [1962]					
Method		1						
Radiation Source		Monochromatic			-			
Sample Preparation		Vacuum deposition at	10 mm Hg. fresh = freshly deposited.	aged = aged in air for	several weeks.	Sample purity: 99.998% T = Room temperature		
	0.9892 0.9896 0.9907 0.9912 0.9918 0.9928 0.9933	$\lambda(\mu)$ $^{\rho}\lambda$, 0 $^{\rho}\lambda$, 0 (fresh) (aged)	0.9812 0.9823 0.9831	8 0.9837 0. 9 0.9841 0.	0 0.9845 1 0.9849 2 0.9854	3 0.9857 0.4 0.9861 0.6 0.9868 0.8 0.9873 0.	0000	8 0.98 0 0.98 2 0.98
Reflectance	0. 225 0. 8657 16 0. 850 0. 8677 18 0. 875 0. 8744 20 0. 900 0. 8908 22 0. 925 0. 9075 24 0. 950 0. 9243 26 1. 000 0. 9402 28 1. 200 0. 9637 30 1. 500 0. 9742 32 2. 000 0. 97779 32	$\lambda(\mu)$ $^{\rho}\lambda$, 0 $^{\rho}\lambda$, 0 (fresh) (aged)	0 0.9094 0.904 0 0.9048 0.902 0 0.8989 0.897	700 0.8900 0.888 750 0.8761 0.876	775 0.8678 0.867 800 0.8604 0.859 825 0.8569 0.855	850 0.8622 0.859 875 0.8759 0.873 900 0.8920 0.889 925 0.9072 0.903	0.950 0.9192 0.9154 1.000 0.9360 0.9324 1.200 0.9596 0.9585 1.500 0.9676 0.9658	2.000 0.9718 0.9699 3.000 0.9765 0.9736 4.000 0.9795 0.9758

Figure 2. 1 Spectral reflectance of aluminum

T = 78°K | Golovashkin, Motulevich, and Shubin (1960)
 T = 295°K | Golovashkin, Motulevich, and Shubin (1960)
 T = room temp (10-10 mm Hg deposition) Bennett, Silver, and Ashley (1963)
 T = room temp (fresh deposited)
 T = room (aged in air for several weeks)

TABLE 2.2 SPECTRAL REFLECTANCE OF ANTIMONY

Reference	Potapov	[1965]													Shklyarevskii,		Avdeenko, and	Dadalka [1959]	
Method	3(a)*														3(b)				
Radation Source	Monochromatic														Monochromatic				
Sample Preparation	Cast samplemechanically	polished.	Composition		Sb = 99.7%		Ca = .02%		7010	0/.10 · = 814					Vacuum precipitation on silver		plated glass surface.		
Reflectance	0 کې 0	$(T = 2.5^{\circ}K)$	0,6771	0,6488	0.6321	0.81/1	0.6132	0.0124	0.6108	0.6082	0.5963	0.6696	0.7647	0.8154	(See figure 2.2 for p _{2 0} .)	•	$(T = 110^{\circ} \text{K and } 290^{\circ} \text{K})$		
Ref	η •γ		1	2	w ×	4 г	n 4	0	2	∞	6	10	11	12	(See fig		(T = 110)		

"Direct measurement of $\rho_{\lambda,0}$, using normal incidence of light, was used by Potapov [1965] to check , o values calculated from optical constants. Excellent agreement was obtained.

Figure 2.2 Spectral reflectance of antimony

O T = 110°K Shklyarevskii, Avdeenko,

A T = 290°K and Padalka (1959)

T = 2.5°K Potapov (1965)

TABLE 2.3 SPECTRAL REFLECTANCE OF BISMUTH AND BISMUTH-TELLURIUM ALLOYS

Reference	Potapov	[1965]										-					
Method	3(a)																
Radiation Source	Monochromatic																
Sample Preparation	Electropolished	(Spectroscopically pure	"Hilger" bismuth)	(.05% and .5% Te added to	nite Bil	pure pri)											
	th-		Bi + . 05% Te	0.5388	0.5408	0.5405	0.5426	0.5375	0.5465	0.5425	0.5343	0.5303	0.5240	0.5016	0.4457	0.3977	0.4371
tance	Bismuth and Bismuth- Tellurium Alloys	o at 2.5°K	Bi + . 5% Te	0. 5266	0.5249	0.5193	0.5240	0.5098	0.4720	0.4214	0.3757	0.3464	0.4570	0.6444	0.7924	1	1
Reflectance	Bismuth Telluri	٥, ٨, ٥	Bī	0,6260	0.5842	0.5902	0.5963	0.5902	0.5968	0,6085	0.6145	0,6358	0.6547	0.6377	0.6340	0.6440	
		γ, τ		1	2	<u>ო</u>	4	ις.	9	7	<u></u> ∞	6	10	11	12	13	14

Figure 2.3 Spectral reflectance of bismuth and bismuth-tellurium alloys

T = 2.5°K Potapov (1965)

Δ BismuthO Bismuth + .05% Te□ Bismuth + .5 % Te

2.4 Copper

Results of Roberts [1960], Biondi[1956], and Rayne [1959] for electropolished samples are seen to have significantly higher reflectances than those of Padalka and Shklyarevskii [1962] for high-vacuum deposited samples (fig. 2.4). Variations with temperature for a given preparation technique follow expectations. A correction for an oxide layer of 35-Å thickness was carried out by Padalka and Shklyarevskii [1962]. Although a significant effect on refractive index and absorption coefficient was found, the effect on reflectance was less than 0.2% at 1 \mu and .005% at 11 \mu (present authors' calculations). The 35-Åthickness correction followed Roberts' [1960] results which showed a 30-Å to 40-Å equilibrium oxide layer thickness after exposure to air.

TABLE 2.4 SPECTRAL REFLECTANCE OF COPPER

Reference	Padalka and	 Shklvarevskii		[1962]										Roberts	,	[1960]												
Method	3(b)													3(b)														1
Radiation Source	Monochromatic													Monochromatic														
Sample Preparation	Vacuum deposition at 10 ⁻⁵	mm Hg.	, r	Sample impurities $< 10^{-3}\%$										Electropolished and reduced	יני	in vacuum (2 x 10 mm Hg).		at 300 is remove oxide	#1000 00 /time of money of the	iiiiii. Sainpie purity 777,979 /								
eol	0,40	85°	571 .953	833 .980	986. 588	905 . 98	911 .988	916 .	919 . 989	921 . 989	923 .98	924 . 990	66. 926	٥,٨٥	0° K	62 0.500	7 0.549	35 0,585	14 0.652	72 0.701	119 0.871	682 0.950	811 0.97	873 0.983	914 0.988	935 0.990	941 0.991	944 0.9
Reflectance		#	6.	6.	6.	6.	6.	6.	6.	6.	6.	6.	6.		6	0.	0.	0.	0.	9.0	0.9	0.9	0.9	0.9	6.	6.	0.9	0.9
	λ, μ		-	2	3	4,	J.	9	7	∞	6		11	λ, μ		365	405	436	500	550			S	750	000	500	000	2.5000

TABLE 2.4 SPECTRAL REFLECTANCE OF COPPER (continued)

Reflectance	Sample Preparation	Radiation Source	Method	Method Reference
$\rho_0 = 1 - \alpha_0 = 0.9956$	Electropolished	Frequency	2	Rayne
(limiting value for T < 100°K)		band from		[1959]
(See figure 2.4.)		1.8 µ to 4.0 µ		
ρ _{λ,0} = 0.995	Electropolished	Monochromatic	2	Biondi
(limiting value for $\lambda > 1.5 \mu$)	Purity > 99.999%			[1956]
$(T = 4.2^{\circ}K)$ (See figure 2.4.)				

2.5 Gold

In view of the high reflectance values of gold obtained in the infrared at room temperature by Bennett and Ashley [1965] using ultrahigh-vacuum deposition, it would be interesting to make these measurements at cryogenic temperatures using the same sample preparation technique. Such a result would be extremely useful in view of the potential use of gold as a standard of reflectance and in view of the wide application of gold plating in dewar construction.

TABLE 2.5 SPECTRAL REFLECTANCE OF GOLD

nce ρλ, 0 Vacuum	~ 자	Sample Preparation Vacuum deposition at 10	25	Radiation Source Monochromatic	Method 3(b)	Reference Padalka
K 295° K 58 0.9623	5°K 9623	mm Hg.				and
. 9859 0. 983 . 9895 0. 986	. 9831	D				Shklyarevskii
9908 0.9881 9914 0.9887	. 9881	0/// // / 61110 1				[1961]
917 0.989	. 989					
. 9919	. 989 . 989					
923 0.989 924 0.989	989					
9925 0.990	.990					
(Room temperature) Ultra-high vacuum deposition		Ultra-high vacuum d	eposition	Monochromatic	1	Bennett
$\lambda(\mu)$ $\rho_{\lambda,0}$ at 10^{-9} mm Hg.	0	at 10 ⁻⁹ mm Hg.				and
9 0.993	93					0 b
10 0.993	. 9939	Purity > 99, 999+ %				Asiney
666 11	. 9940					[1965]
13 0.994	.994					
14 0.	994					
18 0.994	994					
20 0.994	.994					
22 0.99	. 994					
24 0.994	.994					
26 0.994	.994					
28 0.994	.994					
30 0.	.994					
32 0.994	.994					
9939						

△ T = room temperature (10-9 mm Hg deposited) Bennett and Ashley (1965)
○ T = 82°K
○ T = 295°K
(10-5 mm Hg deposited) Padalka and Shklyarevskii (1961)

2.6 Lead

Measurements of optical constants of lead made by Golovashkin [1965] immediately after deposition and after several days in vacuum gave identical results. No effect of oxidation on results was found after one day in air; although, after several days in air, noticeable changes in optical constants (of unstated magnitude) were observed by the original author.

TABLE 2.6 SPECTRAL REFLECTANCE OF LEAD

Reference	Golovashkin		[1965]					·																		
Method	3(b)																									
Radiation	Monochromatic																									
Sample Preparation	Vacuum deposition at	ų	5-8×10 mm Hg.		70 000 00 <	Furity 773:777 /0		**						-												
		293° K	0.6746	0.7512	0.8046	0.8387	0.8631			0.9030				0.9377	0.9424		0.9463	0.9495	0.9508	0.9523	0.9542	0.9552	0.9554	0.9563	0.9571	
e,	٥, ٨	78°K	!	78	0.8392	88	90	93	95	96	96	97	97	97	86	86	98	98	981	981		0.9835	984	984	0.9849	
Reflectance		4° K	!	! 1	85	90	0.9315	95	97	98	98	98	98	98	86	0.9892	98	98	66	66	66	66	66	66	66	
		1 6		0.8				•																11.0	•	

Figure 2.6 Spectral reflectance of lead

O T =
$$4^{\circ}$$
K
 Δ T = 78° K
 \Box T = 293° K
Golovashkin (1965)

TABLE 2.7 SPECTRAL REFLECTANCE OF NICKEL

Reference	Roberts		[6561]															
Method	3(b)	•																
Radiation Source	Monochromatic									•								
Sample Preparation	Electropolished nickel bar of		99.98% purity.															
	0,	298°K	0.4882	0.5739	0.6444	0.6678	0.6865	0.7068	0.7209	0.7433	0.7602	0.7827	0.8128	0.8377	0.8494	0.8651	0.8770	0.8899
Reflectance	0,4	T = 88°K	0.4766	0.5708	0.6452	0.6711	0.6886	0.7089	0.7195	0.7429	0.7585	0.7818	0.8135	0.8357	0.8507	0.8685	0.8826	0.8954
Ref		7 6	0.365	0.436	0.546	09.0	0.65	0.75	0.85	1.00	1. 10	1.25	1.50	1.75	1.95	2.20	2.40	2. 65

Figure 2.7 Spectral reflectance of nickel

$$O T = 88^{\circ}K$$

$$\Delta T = 298^{\circ}K$$
Roberts (1959)

2.8 Silver

Ultra-high-vacuum deposited silver is seen in figure 2.8 to have a reflectance significantly higher than that of a film deposited using the usual high-vacuum techniques. It is noteworthy that Biondi's results for electropolished samples at 4.2°K show even higher reflectance than ultra-high-vacuum room temperature values. As in the case of gold, the reflectance at cryogenic temperatures of ultra-high-vacuum deposited silver would be an extremely useful result.

TABLE 2.8 SPECTRAL REFLECTANCE OF SILVER

Reference	Padalka and	Shklyarevski		[1961]											Biondi	[1956]	
Method	3(b)														2		
Radiation Source	Monochromatic		•												Monochromatic		
Sample Preparation	Vacuum deposition at 10 ⁻⁵	mm of Ho	• • • • • • • • • • • • • • • • • • • •		Purity > 99.99%										Electropolished		
	0,	$T = 295^{\circ} K$	0.9791	0.9855	0.9868	0.9873	0.9875	0.9877	0.9880	0.9882	0.9885	0.9887	0.9890	0.9893	value		2.8)
Reflectance	ρ γ, ο	T = 82°K	0.9816	0.9878	0.9891	0.9895	0.9899	0.9901	0.9902	0.9903	0.9905	0.9907	0.9909		= 0.9956 (limiting value	for $\lambda > 1.5 \mu$)	= 4.2°K)(See figure 2.8)
Re		7) 6 (7)	-	2	8	4	ς,	9	7	∞	6	10	11	12	ρ λ, 0 = 0		(T = 4.2)

TABLE 2.8 SPECTRAL REFLECTANCE OF SILVER (continued)

Reference	Bennett	and		Ashley		[1965]											-		
Method	1																		
Radiation Source	Monochromatic																		
Sample Preparation	Ultra-high vacuum deposition	at 10 ⁻⁹ mm Hg.				Purity > 99.999+ %													
	rature)	0,4	0.9950	0.9951	0.9952	0.9953	0.9954	0.9954	0.9955	0.9955	0.9956	0.9956	0.9956	0.9956	0.9957	0.9957	0.9958	0.9958	0.9958
		γ(π)γ	2	∞	6	10	11	12	13	14	16	18	20	22	24	97	87	30	32
Reflectance	Room temperature	٥,٢٩	0.9564	0.9706	0.9786	0.9831	0.9860	0.9880	0.9894	0.9916	0.9929	0.9936	0.9938	0.9939	0.9940	0.9942	0.9944	0.9946	0.9948
	(F	γ(π)	0.400	0.450	0.500	0.550	0. 600	0.650	00.20	0.800	0.900	1,000	1.200	1.500	2.000	3.000	4.000	5.000	6.000

Figure 2.8 Spectral reflectance of silver

\[\Delta \text{T = 4.2°K Biondi (1956)} \]

\[\Delta \text{T = 82°K} \]

\[\Delta \text{T = 295°K} \]

Shklyarevskii [196]

2.9 Sodium

At the time this publication went to press, additional work of Mayer and Hietel [1966] on the alkali metals, potassium and cesium, became available. Wavelength range investigated was essentially that here reported for sodium. For details, consult the original reference.

TABLE 2.9 SPECTRAL REFLECTANCE OF SODIUM

λ, μ ρ, ρ Monochromatic 3(b) Hietel [19] 0.2126 0.905 0.912 0.924 Monochromatic 3(b) Hietel [19] 0.2126 0.905 0.912 0.924 0.909 0.910 0.909 0.342 0.907 0.91 0.909 0.910 0.910 0.910 0.348 0.907 0.91 0.910	I	Reflectance			Sample Preparation	Radiation Source	Method	Reference
7.1 M 90°TK 195°K 293°K Monochromatic 2968 0.905 0.912 0.924 Monochromatic 3(b) 2968 0.905 0.912 0.924 Monochromatic 3.242 0.905 0.912 0.909 Monochromatic 3.242 0.907 0.921 0.909 0.909 0.900 0.930 0.944 0.910 0.910 0.910 0.910 0.924 0.924 0.924 0.924 0.925 0.924 0.925 0			· ^					
2968 0.905 0.912 0.924 3126 0.902 0.909 3342 0.907 0.921 0.909 3655 0.904 0.910 0.910 4047 0.908 0.924 0.930 4916 0.920 0.932 0.944 4916 0.939 0.945 0.944 4916 0.983 0.945 0.944 6000 0.983 0.945 0.944 6000 0.983 0.945 0.948 6000 0.983 0.975 0.948 6000 0.995 0.974 0.974 7500 0.995 0.986 0.974 8000 0.995 0.995 0.995 1000 0.997 0.995 0.995 1000 0.998 0.995 0.993 2000 0.998 0.995 0.993 2000 0.998 0.996 0.993 2000 0.998 0	٦, ۴	90°K	5	93		Monochromatic	3(b)	Hietel [1965]
3126 0.902 0.909 3342 0.907 0.921 0.905 3655 0.904 0.910 0.910 4047 0.908 0.924 0.930 4348 0.920 0.932 0.944 4916 0.939 0.945 0.957 5460 0.960 0.965 0.974 6000 0.993 0.975 0.976 8000 0.995 0.995 0.976 8000 0.997 0.995 0.981 9000 0.999 0.995 0.993 2000 0.998 0.995 0.993 4000 0.998 0.995 0.993 5000 0.998 0.996 0.993 6000 0.998 0.996 0.993 6000 0.998 0.996 0.993 6000 0.998 0.996 0.993 6000 0.998 0.996 0.993 6000 0.998 0.996 0.993 6000 0.998 0.996 0.993 6000 0.998 0.996 0.993 6000 0.998 0.996 0.993 6000 0.998 0.996 0.993 6000 0.998 0.996 0.993 6000 0.998 0.996 0.993 6000 0.998 0.996 0.993 6000 0.998 0.996 0.993 6000 0.998 0.996 0.993 6000 0.998 0.996 0.993 6000 0.998 0.996 0.993 6000 0.998 0.995 0.993	0.2968	0.905	6	6.				
3342 0.907 0.921 0.905 3655 0.904 0.910 0.910 4047 0.908 0.924 0.910 4348 0.920 0.932 0.944 4916 0.939 0.945 0.957 5460 0.960 0.965 0.974 6000 0.983 0.975 0.968 6000 0.995 0.974 0.974 7000 0.995 0.996 0.974 7000 0.995 0.995 0.974 8000 0.997 0.995 0.993 1000 0.998 0.995 0.993 2000 0.998 0.995 0.993 4000 0.998 0.995 0.993 4000 0.998 0.996 0.993 5000 0.998 0.996 0.993 6000 0.998 0.996 0.993 7000 0.998 0.996 0.993 8000 0.998 0.996 0.993 1000 0.998 0.996 0.993	0.3126	0.902		6				
3655 0.904 0.910 0.910 4047 0.908 0.924 0.930 4348 0.920 0.932 0.944 4916 0.939 0.945 0.957 5460 0.960 0.965 0.974 6000 0.993 0.975 0.974 6000 0.995 0.974 0.974 7500 0.995 0.974 0.974 7500 0.995 0.974 0.974 7500 0.995 0.974 0.974 7500 0.995 0.995 0.995 8000 0.997 0.995 0.993 1000 0.998 0.995 0.993 4000 0.998 0.996 0.993 5000 0.998 0.996 0.993 6000 0.998 0.996 0.993 7000 0.998 0.996 0.993 8000 0.998 0.996 0.993 1000 0.998 0.996 0.993 2000 0.998 0.996 0.993	0.3342	0.907	.92	6.				
4047 0.908 0.924 0.930 4348 0.920 0.932 0.944 4916 0.939 0.945 0.944 4916 0.960 0.945 0.944 5460 0.960 0.945 0.974 6500 0.993 0.975 0.974 7500 0.995 0.986 0.974 7500 0.995 0.986 0.974 7500 0.995 0.995 0.974 7500 0.997 0.995 0.995 8000 0.997 0.995 0.993 7000 0.998 0.995 0.993 7000 0.998 0.996 0.993 7000 0.998 0.996 0.993 8000 0.998 0.996 0.993 9000 0.998 0.996 0.993 1000 0.998 0.996 0.993 2000 0.998 0.996 0.993 2000 0.998 0.996 0.993 2000 0.998 0.996 0.993	0.3655	0.904	.91	6.				
4348 0.920 0.932 0.944 4916 0.939 0.945 0.957 5460 0.960 0.965 0.974 6000 0.983 0.975 0.968 6500 0.995 0.986 0.974 7000 0.995 0.986 0.974 7500 0.995 0.986 0.974 7500 0.997 0.995 0.995 1000 0.997 0.995 0.995 1000 0.998 0.995 0.993 2000 0.998 0.996 0.993 4000 0.998 0.996 0.993 7000 0.998 0.996 0.993 8000 0.998 0.996 0.993 9000 0.998 0.996 0.993 1000 0.998 0.996 0.993 2000 0.998 0.996 0.993 2000 0.998 0.996 0.993 2000 0.998 0.996 0.993 2000 0.998 0.996 0.993	0.4047	0.908	.92	6.				
4916 0.939 0.945 0.957 5460 0.960 0.965 0.974 6000 0.983 0.975 0.968 6500 0.995 0.974 7500 0.995 0.974 7500 0.995 0.974 7500 0.995 0.976 8000 0.997 0.993 0.981 9000 0.999 0.995 0.995 1000 0.998 0.995 0.993 2000 0.998 0.995 0.993 4000 0.998 0.995 0.993 4000 0.998 0.996 0.993 5000 0.998 0.996 0.993 6000 0.998 0.996 0.993 7000 0.998 0.996 0.993 9000 0.998 0.996 0.993 1000 0.998 0.996 0.993 1000 0.998 0.996 0.993 1000 0.998 0.996 0.993 1000 0.998 0.996 <	0.4348	0.920	.93	6.				
5460 0.966 0.975 0.974 6000 0.983 0.975 0.968 6500 0.995 0.986 0.974 7000 0.995 0.986 0.974 7500 0.995 0.993 0.976 8000 0.997 0.993 0.981 9000 0.997 0.995 0.995 1000 0.997 0.995 0.993 2000 0.998 0.995 0.993 4000 0.998 0.996 0.993 4000 0.998 0.996 0.993 5000 0.998 0.996 0.993 6000 0.998 0.996 0.993 7000 0.998 0.996 0.993 8000 0.998 0.996 0.993 1000 0.998 0.996 0.993 1000 0.998 0.996 0.993 2000 0.998 0.996 0.993 1000 0.998 0.996 0.993 2000 0.998 0.996 0.993	0.4916	0.939	.94	6.				
60000 0.983 0.975 0.968 6500 0.996 0.970 7000 0.995 0.986 0.974 7500 0.995 0.990 0.976 8000 0.997 0.993 0.989 0000 0.999 0.995 0.993 1000 0.998 0.995 0.993 2000 0.998 0.995 0.993 4000 0.998 0.996 0.993 6000 0.998 0.996 0.993 7000 0.998 0.996 0.993 8000 0.998 0.996 0.993 1000 0.998 0.996 0.993 1000 0.998 0.996 0.993 1000 0.998 0.996 0.993 2000 0.998 0.996 0.993 1000 0.998 0.996 0.993 2000 0.998 0.996 0.993 4000 0.998 0.996 0.993	0.5460	096.0	96.	6.				
6500 0.990 0.970 7000 0.995 0.986 0.974 7500 0.995 0.976 8000 0.997 0.993 0.981 9000 0.999 0.993 0.989 1000 0.999 0.995 0.995 1000 0.998 0.995 0.993 2000 0.998 0.995 0.993 4000 0.998 0.995 0.993 5000 0.998 0.996 0.993 6000 0.998 0.996 0.993 7000 0.998 0.996 0.993 8000 0.998 0.996 0.993 1000 0.998 0.996 0.993 1000 0.998 0.996 0.993 1000 0.998 0.996 0.993 1000 0.998 0.996 0.993 2000 0.993 0.993 4000 0.995 0.993 <t< td=""><td>0009.0</td><td>0,983</td><td>. 97</td><td>0</td><td></td><td></td><td></td><td></td></t<>	0009.0	0,983	. 97	0				
7000 0.995 0.986 0.974 7500 0.995 0.976 8000 0.997 0.993 0.981 9000 0.999 0.995 0.995 1000 0.997 0.995 0.995 1000 0.998 0.995 0.993 2000 0.998 0.995 0.993 4000 0.998 0.996 0.993 6000 0.998 0.996 0.993 6000 0.998 0.996 0.993 7000 0.998 0.996 0.993 8000 0.998 0.996 0.993 1000 0.998 0.996 0.993 1000 0.998 0.996 0.993 1000 0.998 0.996 0.993 2000 0.998 0.996 0.993 2000 0.998 0.996 0.993 3000 0.995 0.993 0.995 0.993 4000 0.995 0.993	0.6500	0.990	1	6.				
7500 0.995 0.976 8000 0.997 0.993 0.981 9000 0.999 0.995 0.992 1000 0.997 0.995 0.993 1000 0.997 0.995 0.993 2000 0.998 0.995 0.993 4000 0.998 0.996 0.993 6000 0.998 0.996 0.993 7000 0.998 0.996 0.993 8000 0.998 0.996 0.993 9000 0.998 0.996 0.993 1000 0.998 0.996 0.993 1000 0.998 0.996 0.993 1000 0.998 0.996 0.993 2000 0.998 0.996 0.993 2000 0.998 0.996 0.993 4000 0.996 0.993 0.995 0.993 0.995 0.993 0.995 0.993 0.995 0.993	0.7000	0.995	. 98	6.				
80000 0.997 0.990 0.981 90000 0.999 0.993 0.989 00000 0.999 0.995 0.992 1000 0.998 0.995 0.993 2000 0.998 0.995 0.993 4000 0.998 0.996 0.993 6000 0.998 0.996 0.993 7000 0.998 0.996 0.993 8000 0.998 0.996 0.993 9000 0.998 0.996 0.993 1000 0.998 0.996 0.993 1000 0.998 0.996 0.993 2000 0.998 0.996 0.993 2000 0.998 0.996 0.993 4000 0.998 0.996 0.993 4000 0.998 0.996 0.993 4000 0.995 0.995 0.993 0.995 0.993 0.995 0.993 0.995 0.993 0.995 0.	0.7500	0.995		6.				
9000 0.999 0.993 0.989 0000 0.999 0.995 0.995 1000 0.997 0.995 0.993 2000 0.998 0.995 0.993 4000 0.998 0.996 0.993 5000 0.998 0.996 0.993 6000 0.998 0.996 0.993 8000 0.998 0.996 0.993 1000 0.998 0.996 0.993 2000 0.998 0.996 0.993 3000 0.998 0.996 0.993 4000 0.995 0.993 2000 0.998 0.996 0.993 3000 0.995 0.993	0.8000	0.997	66.	6.				
00000 0.999 0.995 0.992 1000 0.997 0.995 0.993 2000 0.998 0.995 0.993 4000 0.998 0.995 0.993 4000 0.998 0.996 0.993 6000 0.998 0.996 0.993 6000 0.998 0.996 0.993 8000 0.998 0.996 0.993 9000 0.998 0.996 0.993 1000 0.998 0.996 0.993 2000 0.998 0.996 0.993 2000 0.998 0.996 0.993 4000 0.998 0.996 0.993 4000 0.998 0.996 0.993 4000 0.996 0.993 0.995 0.993 5000 0.995 0.993	0.9000	0.999	66.	6.				
1000 0.997 0.995 0.993 2000 0.998 0.995 0.993 3000 0.998 0.995 0.993 4000 0.998 0.996 0.993 6000 0.998 0.996 0.993 7000 0.998 0.996 0.993 8000 0.998 0.996 0.993 9000 0.998 0.996 0.993 1000 0.996 0.993 2000 0.998 0.996 0.993 3000 0.996 0.993 4000 0.995 0.993 5000 0.995 0.993 600 0.995 0.993 700 0.995 0.993 800 0.995 0.993 800 0.995 0.993 800 0.995 0.993 800 0.995 0.993 800 0.995 0.993 800	1.0000	0.999	66.	6.				
2000 0.998 0.995 0.99 3000 0.997 0.995 0.99 4000 0.998 0.996 0.99 6000 0.998 0.996 0.99 7000 0.998 0.996 0.99 8000 0.998 0.996 0.99 9000 0.998 0.996 0.99 1000 0.996 0.99 2000 0.998 0.996 0.99 4000 0.996 0.99 4000 0.995 0.99 5000 0.995 0.99 600 0.995 0.99 700 0.995 0.99 800 0.995 0.99 800 0.995 0.99 800 0.995 0.99 800 0.995 0.99 800 0.995 0.99 800 0.995 0.99	1.1000	0.997	66.	6.	٠,			
3000 0.997 0.995 0.9 4000 0.998 0.995 0.9 5000 0.998 0.996 0.9 6000 0.998 0.996 0.9 7000 0.998 0.996 0.9 8000 0.998 0.996 0.9 9000 0.998 0.995 0.9 1000 0.996 0.9 2000 0.998 0.996 0.9 3000 0.995 0.9 4000 0.995 0.9 5000 0.995 0.9 600 0.995 0.9 700 0.995 0.9 800 0.995 0.9 800 0.995 0.9 800 0.995 0.9 800 0.995 0.9 800 0.995 0.9 800 0.995 0.9 800 0.995 0.9 800 0.995 0.9 800 0.995 0.9 800 0.995 0.9	1.2000	0.998	66.	6.				
4000 0.998 0.995 0.99 5000 0.998 0.996 0.99 7000 0.998 0.996 0.99 8000 0.998 0.996 0.99 9000 0.998 0.995 0.99 1000 0.998 0.996 0.99 2000 0.998 0.996 0.99 2000 0.998 0.996 0.99 4000 0.995 0.99 5000 0.995 0.99 600 0.995 0.99 700 0.995 0.99 800 0.995 0.99 800 0.995 0.99 800 0.995 0.99 800 0.995 0.99	1.3000	0.997	66.	6.				
50000 0.998 0.996 0.99 60000 0.998 0.996 0.99 7000 0.998 0.996 0.99 9000 0.998 0.996 0.99 1000 0.998 0.996 0.99 2000 0.998 0.996 0.99 3000 0.996 0.99 4000 0.995 0.99 5000 0.995 0.99 5000 0.995 0.99	1.4000	0.998	66.	6.				
60000 0.998 0.996 0.99 70000 0.998 0.996 0.99 80000 0.998 0.995 0.99 90000 0.998 0.996 0.99 10000 0.996 0.99 2000 0.998 0.996 0.99 3000 0.995 0.99 4000 0.995 0.99 5000 0.995 0.99	1.5000	0.998	66.	6.				
7000 0.998 0.996 0.99 8000 0.998 0.995 0.99 9000 0.998 0.995 0.99 1000 0.996 0.9 2000 0.998 0.996 0.9 3000 0.995 0.9 4000 0.995 0.9 5000 0.995 0.9	1.6000	0.998	66.	6.				
8000 0.998 0.996 0.99 0.9900 0.998 0.995 0.9 0.9 0.996 0.996 0.996 0.996 0.996 0.996 0.998 0.996 0.996 0.996 0.996 0.995	1.7000	0.998	66.	σ.				
9000 0.998 0.995 0.9 0000 0.998 0.996 0.9 1000 0.996 0.9 2000 0.998 0.996 0.9 3000 0.995 0.9 4000 0.995 0.9	1.8000	0.998	66.	σ.				
00000 0.998 0.996 0.9 1000 0.996 0.9 2000 0.998 0.996 0.9 3000 0.995 0.9 4000 0.995 0.9 5000 0.995 0.9	1.9000	•	66.	6.				
1000 0.996 0.9 2000 0.998 0.996 0.9 3000 0.995 0.9 4000 0.995 0.9 5000 0.995 0.9	2,0000		66.	6.				
2000 0.998 0.996 0.9 3000 0.995 0.9 4000 0.995 0.9 5000 0.995 0.9	2, 1000	1	66.	6.				
3000 0.995 0.9 4000 0.995 0.9 5000 0.995 0.9	7	.99	.99	6.				
.4000 0.995 0.9 .5000 0.995 0.9	S	1	66.	6.				
.5000 0.995 0.9	.40		.99	6.				
	. 50		66.	6.				

Figure 2.9 Spectral reflectance of sodium

T = 90°K T = 195°K T = 293°K Hietel (1965)

2.10 Tin

Optical constants of tin were measured by Golovashkin and Motulevich [1965] immediately after vapor deposition and after one day in vacuum with identical results. After a 48-hour exposure to atmosphere, the change in n was 2 to 3% and k < 1%. This variation in optical constants affected the reflectance by less than 0.002% for $\lambda > 5 \mu$ (present authors calculation).

TABLE 2.10 SPECTRAL REFLECTANCE OF TIN

Reference		Golovashkin	, 1	מוות	Motulerrich	IMPORTISE VICTO	[1065]	[6041]														
Method		3(b)																				
Radiation		Monochromatic																-				
Sample Preparation		Vacuum deposition at	9-01-0	9 - 0 x 10 mm ng.			B 00 00 /	Furity / 99: 99%														
		293°K	.8205	.8130	.8140	.8330	.8587	8068.	.9205	9386	.9490	.9541	.9580	. 9623	. 9645	.9654	0996.	8996.	.9671	9296.	.9681	
	٥٨,٥	78°K	8908.	. 7833	. 7727	.8247	.8858	. 9254	N	69	. 9773	81	. 9835	. 9834	∞	∞	. 9857	85	4	. 9837	3	
Reflectance		4.2°K	8398	8767.	99	.8200	.8859	. 9355	. 9592	. 9745	8086.	. 9828	.9856	. 9879	. 9885	6886.	. 9894	. 9891	∞	0886.	.9871	
	1	⊐ • ∨	. 93	66.	1.2	1.35	1.5	_	2.0	2.5					_	_		9.0	10.0	11.0	12.0	

$$\begin{array}{l} \triangle \quad T = 4.2^{\circ} K \\ \bigcirc \quad T = 78^{\circ} K \\ \square \quad T = 293^{\circ} K \end{array} \right\} \mbox{Golovashkin and Motulevich (1965)}$$

2.11 Brass

Results of spectral reflectance measurements on various electropolished α-brasses at 4.2°K by Biondi and Rayne [1959] using Method 2 are presented in figure 2.11 compared with pure copper.

3. Total Reflectance

Until recently, nearly all the reflectance data reported in the literature were total normal reflectance ($\rho_{t,0}$) or total hemispherical reflectance (ρ_{t}). For this reason, many of the results below have been presented in previous surveys but are given here for completeness. Results of Betz, Olson, Schurin, and Morris [1958] are for total normal emittance ($\epsilon_{t,0}$) and are reported as such.

TABLE 3.1 TOTAL REFLECTANCE OF ALUMINUM

Reference	Fulk and	Reynolds	[1957b]											~~										
Method	4																							
Radiation Source	Source at	300° K																						
Sample Preparation	0.001 in Kaiser foil unannealed	0.0015 in. Cuckron nome foil	mat side 0.0015 in. Hurwich home foil	bright side	0.020 in. cold acid cleaned	0.020 in. hot acid cleaned,	Alcoa process	0.020 in. Alcoa No. 2 reflector	plate	0.020 in. Alcoa No. 2 reflector	plate sanded with fine emery	0.020 in. Alcoa No. 2 reflector	plate cleaned with alkali	0.020 in. wire brush, emery	paper, steel wool, cold acid	0.020 in. wire brush	0.020 in. Liquid honed	Aluminum vaporized onto both	sides of 0.0005 in. plastic	Mylar	Aluminum sprayed onto stainless	steel	Aluminum sprayed onto stainless	steel and wire brushed
Reflectance or Emittance	$p_t = 0.982$	0.979	$(T = 76^{\circ}K)$ 0.978		0.972	0.971		0.974		0.968		0.965		0.955		0.94	0.986	96.0			0.93		0.94	

TABLE 3.1 TOTAL REFLECTANCE OF ALUMINUM (continued)

Reference	Ziegler and	Cheung [1956]	Ramanathan	[1952]		Blackman,	Truten [1948]				Betz, Olson,	Schurin, and	Morris [1956]	
Method	4	,	2			4					ın			
Radiation	Source at	273°K	Source at room	temperature	$(\lambda_{\mathrm{mean}} \approx 14\mu)$	Source at	293°K				1			
Sample Preparation	Foil		Electropolished	Sample impurities < . 01%		Foil (dry buffed)					as received from the supplier.	cleaned with a liquid detergent.	polished mechanically.	30 minutes
Reflectance or Emittance	p = 0.957	$(T = 77^{\circ}K)$	р, _п = 0.9889	$(T = 2.0 \text{ to } 4.2^{\circ}\text{K})$		g = 0.945	(T = 90°K)	Aluminum Alloy 24-ST	ىش 0	T = 83.3°K T = 422.2°K			0.022 0.006	

TABLE 3.2 TOTAL REFLECTANCE OF COPPER

Reference	Betz, Olson, Schurin, and Morris [1958]	Fulk and Reynolds (1957b)
Method	ഹ	44
Radiation Source	1	Source at 300°K
Sample Preparation	Electrolytic copper, Federal Specification QQ-C-576 or QQ-C-502. as received from supplier. cleaned with liquid detergent. mechanically polished. oxidized in air at red heat for 30 min.	0.005 in. Millrun sheet (annealed) 0.005 in. dilute chromic acid dipl 0.005 in. wet polished with pumice 0.005 in. dry polished with plastic polishing wax abrasive 0.005 in. electrolytically cleaned 0.020 in. liquid honed 0.005 in. fine emery Commercial copper sphere polished Commercial copper sphere Alleghany silver sphere Alleghany silver sphere tinned
Reflectance or Emittance	C, 0 T = 83.3°K T = 422.2°K 0.066 0.005 0.025 0.065 0.165	p = 0.985 0.983 0.981 0.983 0.912 0.977 0.97 0.97 0.99

TABLE 3.2 TOTAL REFLECTANCE OF COPPER (continued)

Reference	Zimmerman [1955]	Ramanathan [1952]	Weiss [1948]	Blackman, Egerton and Truten [1948]
Method	4	. 2	2	4
Radiation	Source at 300°K	Source at room temperature (λ mean 14μ)	Frequency band: λ=2 to 18 μ	Source at 293°K
Sample Preparation	Polished copper (solid copper sheet)	(1) Electropolished K) (2) Mechanically polished	Pure copper (carefully prepared)	 Polished (reduced) Matt (reduced) Polished
Reflectance or Emittance	$\rho_{t} = 0.985$ (T = 77.3°K)	(1) $\rho_0 = 0.9938$ (2) $\rho_1 = 0.9853$ (T = 2.0 to 4.2°K)	$\rho_{t} = 0.992$ (T = 90°K)	(1) $\rho_t = 0.981$ (2) = 0.968 (3) = 0.965 (T = 90°K)

TABLE 3.3 TOTAL REFLECTANCE OF GOLD

Reference	Fulk and	Reynolds [1957b]	Zimmerman [1955]	Blackman, Egerton, and Truten [1948]
Method	4		4'	4
Radiation Source	Source at	300° K	Source at 300°K	Source at 293°K
Sample Preparation		Gold - 0.0015 in. Foil 0.0005 in. Foil 0.000040 in. Foil 0.00001 in. Leaf Gold plate - 0.0002 in. on stain- less steel 1% silver in gold 0.0001 in. on stainless steel 1% silver in gold 0.00005 in. on stainless steel 1% silver in gold 0.0002 in. on stainless steel 24K gold plate on stainless steel Gold vaporized onto both sides of 0.0005 in. Mylar plastic	 (1) Electroplated (unbuffed) (2) Gold wash (3) Dry buffed (4) Polished (kerosene buff) 	Foll (equivalent to buffed surface)
Reflectance	$(T = 76^{\circ}K)$	(1) $\rho_{\mathbf{t}} = 0.990$ (2) $\rho_{\mathbf{t}} = 0.984$ (3) $\rho_{\mathbf{t}} = 0.984$ (4) $\rho_{\mathbf{t}} = 0.977$ (5) $\rho_{\mathbf{t}} = 0.975$ (6) $\rho_{\mathbf{t}} = 0.972$ (7) $\rho_{\mathbf{t}} = 0.972$ (8) $\rho_{\mathbf{t}} = 0.975$ (9) $\rho_{\mathbf{t}} = 0.983$ (10) $\rho_{\mathbf{t}} = 0.980$	$(T = 77.3^{\circ}K)$ $(1) R = 0.986$ $(2) R = 0.985$ $(3) R = 0.984$ $(4) R = 0.982$	$ \rho_{t} = 0.974 $ (T = 90°K)

TABLE 3.4 TOTAL REFLECTANCE OF LEAD

Reference	Fulk and	Reynolds	[1957b]	Ramanathan	[1952]
Method	4			4	
Radiation	Source at	300° K		Black body	temperature $(\lambda_{ m mean} \approx 14 \mu)$
Sample Preparation	0.004 inch foil	(commercial sheet)		Electropolished	Impurities < 0.005%
Reflectance	pt= 0.964	$(T = 76^{\circ}K)$		p _{t,0} = 0.9885	$(T = 2.0 \text{ to } 4.2^{\circ}\text{K})$

TABLE 3.5 TOTAL REFLECTANCE OF NICKEL AND NICKEL ALLOYS

Reference	Fulk and Reynolds [1957b]	Betz, Olson, Schurin, and	Morris [1958]	Betz, Olson, Schurin, and Morris [1958]
Method	4	īΩ		ιΛ
Radiation Source	Source at 300°K	-		1 , 1
Sample Preparation	(1) .004 inch foil(2) Plated on copper.(3) Plated on copper.	Commercial Grade A	as received from supplier. cleaned with liquid detergent. mechanically polished. oxidized in air at red heat for 30 min.	Aircraft grade, annealed condition finish with RMS rating of 15 microinches. finish with RMS rating of 2 microinches.
Reflectance or Emittance	Nickel (1) $\rho_t = 0.978$ (2) $\rho_t = 0.967$ (3) $\rho_t = 0.973$ (T = 20°K)	Nickel t, 0 T = 83.3°K T = 422.2°K	0. 153 0. 088 0. 055 0. 036 0. 174 0. 070	Hastelloy B c (T = 83.3°K) 0.065 0.032

TOTAL REFLECTANCE OF NICKEL AND NICKEL ALLOYS (continued) TABLE 3.5

Betz, Olson, Schurin, and Morris [1958]	Betz, Olson, Schurin, and Morris [1958]
τĊ	ហេ
!	! !
Grade AMS 5530C, annealed condition finish with RMS rating of 15 microinches. finish with RMS rating of 2 microinches.	as received from supplier. cleaned with liquid detergent. mechanically polished. oxidized in air at red heat for 30 min.
Et, 0 T = 422.2°K 0.120 0.078	t,0 T = 422.2°K 0.110 0.110
Hastelloy C T = 83.3°K 0.111 0.043	Inconel X T = 83.3°K 0.055 0.055 0.067 0.067

TABLE 3.6 TOTAL REFLECTANCE OF SILVER

£ .	Sample	Radiation	Method	Roference
Keilectance	Preparation	Source	TATERIOR	iverer ence
	Electroplated	Black body at	4	Cline
(1) $\rho_t = 0.9916$ (2) $\rho_t = 0.9918$ (T = 75.8°K) (3) $\rho_t = 0.9922$		temperature: (1) 268°K (2) 300°K (3) 325°K		[19 07]
Pt.		(4) 367°K		
= †d	(1) Sheet	Source at	4,	Fulk and
$((2) p_t = 0.991)$	(2) Silver plate (careful prepara-	7000		D carro
	steel	4		110) 110 110
$(T = 76^{\circ} K)$ (3) $\rho_t = 0.993$	(3) Silver plate (careful prepara-			(1957b)
	tion) nickel and copper strike on stainless steel			
$(4) p_t = 0.991$	(4) Allegheny Silver Spray Process	80		
	on stainless steel			
$(T = 20^{\circ} \text{K})$ (6) $\rho_t = 0.983$	(5) Flated on copper (6) Plated on copper			
$(T = 77.3^{\circ}K)$		Source at	4	Zimmerman
	(1) Silver-lume	300° K		[1955]
(2) $\rho_t = 0.988$	(2) Electroplate (unbuffed)			
- 11	(3) Dry buffed			
(1) $\rho_t = 0.977$	(1) Chemically deposited	Source at	4	Blackman,
(2) $\rho_t = 0.964$	(2) Foil-polished	293°K		Truten [1948]

TABLE 3.7 TOTAL REFLECTANCE OF STEEL AND VARIOUS STAINLESS STEELS

Reference	Blackman, Egerton, and Truten [1948]	Fulk and Reynolds [1957b]	Betz, Olson, Schurin, and Morris [1958]
Method	4'	4	
Radiation	Source at 293°K	Source at 300°K	, 1 1
Sample Preparation	Foil-dry, mechanically polished.	(1) 0.005 inch type 302 sheet (2) commercial ball type 302	Grade MIL-S-6721A, annealed condition bright dull, finish of RMS = 6 micro- inches dull, oxidized in air at red heat for 30 minutes finish with RMS rating of 2 microinches
Reflectance or Emittance	Steel Pt = 0.904 (T = 90°K)	Stainless Steel (1) $\rho_{t} = 0.952$ (2) $\rho_{t} = 0.93$ T = 76°K	Stainless Steel Type 321 ### ### ############################

TABLE 3.7 TOTAL REFLECTANCE OF STEEL AND VARIOUS STAINLESS STEELS (continued)

Reference	Betz, Olson, Schurin, and Morris [1958]	Betz, Olson, Schurin, and Morris [1958]	Betz, Olson, Schurin, and Morris [1958]
Method	W	ιΛ	ເດ
Radiation	t t		
Sample Preparation	Grade MIL-S-5059A, annealed condition finish with RMS rating of 15 microinches finish with RMS rating of 2 microinches	Aircraft grade, subzero cooled and tempered. finish with RMS rating of 2 microinches cleaned with liquid detergent	Grade QQ-5-763A, annealed condition. finish with RMS rating of 15 micrinches finish with RMS rating of 2 microinches
Reflectance or Emittance	Stainless Steel Type 316 t, 0 T = 83.3°K T = 422.2°K 0.045 0.100 0.027 0.080	Stainless Steel Type AM 350 t, 0 T = 83.3°K T = 422.2°K 0.161 0.110 0.111	Stainless Steel Type 446 t, 0 T = 83.3°K T = 422.2°K 0.167 0.155 0.158

TABLE 3.7 TOTAL REFLECTANCE OF STEEL AND VARIOUS STAINLESS STEELS (continued)

Reference	Betz, Olson, Schurin, and Morris [1958]	Betz, Olson, Schurin, and Morris [1958]
Method	ις	ហ
Radiation	1	!
Sample Preparation	Grade MIL-S-25043A, annealed condition finish with RMS rating of 15 microinches. finish with RMS rating of 2 microinches.	RH950 condition finish with RMS rating of 15 microinches. finish with RMS rating of 2 microinches.
Reflectance or Emittance	Stainless Steel Type 17-7PH t. 0 T = 83.3°K 0.044 0.022 0.048	Stainless Steel Type PH15-7MO r = 83.3°K

TABLE 3.8 TOTAL REFLECTANCE OF TIN

Reference	Fulk and	Reynolds	(1957b)	Ramanathan [1952] Blackman, Egerton, and Truten [1948]
Method	4			4 . 4
Radiation	Source at	300° K		Black body at room temperature $(\lambda_{mean} \approx 14\mu)$ Source at 293° K
Sample Preparation		(1) 0.001 inch foil	(2) Tinned copper ball	Electropolished. Inpurities in tin < .004% Indium: chemically pure Foil (0.0025 cm'thick) Approximately equivalent to buffed surface.
Reflectance	$(T = 76^{\circ}K)$	(1) $A_{\rm c} = 0.987$	(2) $\rho_{\rm t} = 0.98$	(1) Tin: $\rho_{t,0} = 0.9876$) (2) Tin + 1% Indium:) T = $\rho_{t,0} = 0.9875$) 2.0 to to $\rho_{t,0} = 0.9875$) 4.2°K $\rho_{t,0} = 0.9826$) 4.2°K $\rho_{t,0} = 0.9826$) $\rho_{t,0} = 0.962$ (T = 90°K)

TABLE 3.9 TOTAL REFLECTANCE OF VARIOUS BRASSES

Reference	Fulk and Reynolds [1957b]	Ziegler and Cheung [1956]	Ramanathan [1952]	Blackman, Egerton, and Truten [1948]
Method	4	4	7	4
Radiation	Source at	Source at 273°K	Black body at room temperature $(\lambda_{mean} \approx 14\mu)$	Source at 293°K
Sample	Yellow brass, 0.001 inch Shim stock (65% Cu, 35% Zn)	(1) Hand polished, some scratches(2) Partly oxidized, with gas flame	Electropolished ("commercial" stock)	Mechanically polished (64% Cu)
Reflectance	$\rho_{t} = 0.971$ (T = 76°K)	(1) $\rho_t = 0.90$ (2) $\rho_t = 0.89$ $T = 77.4^{\circ}K$	β _{t0} = 0.9822 (T = 2.0 to 4.2°K)	ρ _t = 0.954 (T = 90°K)

TABLE 3.10 TOTAL REFLECTANCE OF VARIOUS METALS AND ALLOYS

Reference	Betz, Olson, Schurin, and Morris [1958]	Betz, Olson, Schurin, and Morris [1958]	Fulk and Reynolds [1957b]
Method	ហ	ιΛ	4
Radiation Source	!		Source at 300°K
Sample Preparation	Federal specifications QQ-B-667, Composition: Copper = 92-96% Aluminum = 4-7% Iron = < 0.5% as received from supplier. cleaned with liquid detergent. mechanically polished. oxidized in air at red heat for 30 min.	Federal specifications QQ-B-667, Composition: Copper = 88-92.5% Aluminum = 6-8% Iron = <3.5% Manganese = < 1% as received from supplier. cleaned with liquid detergent. mechanically polished. oxidized in air at red heat for 30 min.	Very mossy and smeared-looking plated surface
Reflectance or Emittance	Aluminum Bronze (4-7%) \$\begin{align*} \epsilon \text{t}, 0 \\ \text{T} = 83.3 \cdot \text{K} \text{T} = 422.2 \cdot \text{K} \\ 0.041 \text{0.041} \\ 0.038 \text{0.030} \\ 0.058 \text{0.080}	Aluminum Bronze (6-8%) T = 83.3°K T = 422.2°K 0.104 0.060 0.067 0.065 0.241 0.062	Cadmium At = 0.97 (T = 76°K)

TABLE 3.10 TOTAL REFLECTANCE OF VARIOUS METALS AND ALLOYS (continued)

Radiation Method Reference Source	(1) Source 4 (1) Fulk and at 300°K Reynolds [1957b]	(2) Source at 273°K and Cheung [1956]	Schurin, and Morris [1958] 5 Betz, Olson, Schurin, and	Morris [1958]
Ra	(1)	(2)		
Sample Preparation	(1) Chromium plate on copper	(2) Bright, plated on monel cylinder	as received from supplier. cleaned with liquid detergent. mechanically polished. oxidized in air at red heat for 30 min. Finishing with RMS rating of	2 microinches oxidized in air at"red heat for 30 min.
Reflectance or Emmittance	$\frac{\text{Chromium}}{(1) \rho_{\text{t}}^{2} = 0.92 \text{ (T = 76°K)}}$	(2) $\rho_t = 0.916 (T = 77.4^{\circ} K)$	Cobalt Alloy N-155 \$\begin{align*} \epsilon \text{\$\epsilon\$} & \epsilon	©t, 0 T = 83.3°K T = 422.2°K 0.010 0.222 0.465

TABLE 3.10 TOTAL REFLECTANCE OF VARIOUS METALS AND ALLOYS (continued)

Reference	Weiss [1948]	Betz, Olson, Schurin, and Morris [1958]	Ziegler and Cheung [1956]	Fulk and Reynolds [1957a]	Fulk and Reynolds [1957b]
Method	. 2	ហ	4	1	4
Radiation Source	Frequency band from 2 to 18 µ	1 1	Source at 273°K	Source at 290°K	Source at 300°E.
Sample Preparation	Electrolytic	Arc melted, unalloyed (Climax Molybdenum Co.) as received from supplier. cleaned with liquid detergent. mechanically polished. oxidized in air at red heat for 30 min.	Hand polishedsome scratches.	1	Rhodium plated on stainless steel.
Reflectance or Emittance	$\frac{\text{Iron}}{\rho_{\mathbf{t}} = 0.903 \ (\mathbf{T} = 90^{\circ} \text{K})}$	Molybdenum \$\begin{align*} \epsilon \text{t, 0} & \\ \epsilon \text{T = 83.3°K} & \epsilon \text{T = 422.2°K} \\ 0.033 & 0.025 & 0.010 \\ 0.041 & 0.020 & 0.079 & \end{align*}	Monel $(T = 77.4^{\circ}K)$ $\rho_{t} = 0.89$	<u>Platinum</u> p _t = 0.904 (T = 85°K)	$\frac{\text{Rhodium}}{\rho_{\text{t}}=0.922\;(\text{T}=76^{\circ}\text{K})}$

TABLE 3.10 TOTAL REFLECTANCE OF VARIOUS METALS AND ALLOYS (continued)

od Reference	(1) Fulk and Reynolds [1957b] (2) Ziegler and Cheung [1956]	Betz, Olson, Schurin, and Morris [1958]	Betz, Olson, Schurin, and Morris [1958]
Method	44	ιν .	ហ
Radiation Source	(1) Source at 300° K (2) Source at 273° K	1	1 1
Sample Preparation	 (1) 50% Sn - 50% Pb, 0.002 inch surface on .005 in copper plate (2) 40% Sn - 60% Pb, surface applied with air-gas torch 	Pure metal. as received from supplier. cleaned with liquid detergent. mechanically polished. oxidized in air at red heat for 30 min.	as received from supplier. cleaned with liquid detergent. mechanically polished. oxidized in air at red heat for 30 min.
Reflectance or Emittance	Solder (1) $\rho_t = 0.97 \text{ (T = 76°K)}$ (2) $\rho_t = 0.953 \text{ (T = 77.4°K)}$	Tantalum t, 0 T = 83.3°K T = 422.2°K 0.030 0.030 0.028 0.025 0.030 0.192 0.420	Titanium Alloy C-110M t, 0 T = 83.3°K T = 422.2°K 0.014 0.082 0.014' 0.082 0.014 0.082 0.018 0.082

TABLE 3.10 TOTAL REFLECTANCE OF VARIOUS METALS AND ALLOYS (continued)

Reference	Fulk and Reynolds [1957a]	Ziegler and Cheung [1956]	Fulk and Reynolds [1957b]
Method	-	4	4
Radiation Source	Source at	Source at 273°K	Source at 300°K
Sample Preparation	Filament	Surface applied with air-gas torch.	0.0065 inch foil
Reflectance or Emittance	Tungsten p, = 0.901 (T = 85°K)	Wood's metal (T = 77.4°K ρ_t = 0.84	Zinc pt= 0.98 (T = 76°K)

4. References

- Aronson, J. R. and H. G. McLinden (March 1964), Far-infrared spectra of solids, Symposium on Thermal Radiation of Solids, NASA SP-55, 29-38.
- Ashby, Neil and Klaus Schocken (March 1964), Theory of emissivity of metals, Symposium on Thermal Radiation of Solids, NASA SP-55, 63-71.
- Bennett, H. E., J. M. Bennett, and E. J. Ashley (1962), Infrared reflectance of evaporated aluminum films, Journal of the Optical Society of America 52, No. 11, 1245-1250.
- Bennett, H. E., M. Silver, and E. J. Ashley (1963), Infrared reflectance of aluminum evaporated in ultra-high vacuum, Journal of the Optical Society of America 53, No. 9, 1089-1095.
- Bennett, J. M. and E. J. Ashley (1965), Infrared reflectance and emittance of silver and gold evaporated in ultrahigh vacuum, Applied Optics 4, 221-224.
- Betz, H. T., O. H. Olson, B. D. Schurin, and J. C. Morris (1958), Determination of emissivity and reflectivity data on aircraft structural materials, Part II. WADC Technical Report 56-222, Part II, ASTIA Document No. 202493.
- Biondi, M. A. (1956), Optical properties of copper and silver at 4.2°K, Physical Review 102, No. 4, 964-967.
- Biondi, M. A. and J. A. Rayne (1959), Band structure of noble metal alloys: optical absorption in α -brasses at 4.2°K, Physical Review 115, No. 6, 1522-1530.
- Blackman, M., A. Egerton, and E. V. Truter (1948), Heat transfer by radiation to surfaces at low temperatures, Proc. Roy. Soc. (London) A194, 147-169.
- Cline, David (1962), Infrared wavelength dependence of the total absorptivity of electroplated silver, Journal of Applied Physics 33, No. 7, 2310-2311.

- Corruccini, R. J. (1962), Thermal radiation properties of solids at low temperatures, Measurement of Thermal Radiation Properties of Solids, NASA SP-31, 33-37.
- Corruccini, R. J. (1957), Properties of materials at low temperature, Chemical Engineering Progress 53, No. 8, 397-402.
- Ehrenreich, H. (1965), The optical properties of metals, I.E.E.E. Spectrum 2, No. 3, 162-170.
- Fulk, M. M. and M. M. Reynolds (1957a), American Institute of Physics Handbook (ed. D. E. Gray), 6-68 to 6-72 (McGraw Hill, New York, N. Y.).
- Fulk, M. M. and M. M. Reynolds (1957b), Emissivities of metallic surfaces at 76°K, Journal of Applied Physics 28, No. 12, 1464-1467.
- Givens, M. P. (1958), Optical properties of metals, Solid State Physics 6, 313-352 (ed. F. Seitz and D. Turnbull) (Academic Press, New York).
- Golovashkin, A. I. (1965), Optical properties of lead at low temperatures, Soviet Physics JETP 21, No. 3, 548-553.
- Golovashkin, A. I. and G. P. Motulevich (1965), Optical properties of tin at helium temperatures, Soviet Physics JETP 20, No. 1, 44-49.
- Golovashkin, A. I., G. P. Motulevich and A. A. Shubin (1960), Determination of microscopic parameters of aluminum from its optical constants and electrical conductivity, Soviet Physics JETP 11, No. 1, 38-41.
- Hietel, B. (1965), Die optischen eigenschaften des alkalimetalle natrium, thesis submitted for the degree of Doctors der Naturwissenschaften, Bergakademie, Clausthal, Germany.
- Jakob, Max (1949), Heat Transfer, Vol. I, p. 51 (John Wiley and Sons, New York, N. Y.).
- Mayer, H. and B. Hietel (1966), Experimental results on the optical properties of the alkali metals, Proceedings of the International Colloquium on Optical Properties and Electronic Structure of Metals and Alloys (John Wiley and Sons, Inc., New York, N. Y.)

- Padalka, V. G. and I. N. Shklyarevskii (1962), Determination of the microcharacteristics of copper from its infrared optical constants and its conductivity at 82 and 295°K, Optics and Spectroscopy 12, No. 2, 158-162.
- Padalka, V. G. and I. N. Shklyarevskii (1961), Determination of the microcharacteristics of silver and gold from the infrared optical constants and the conductivity at 82 and 295°K, Optics and Spectroscopy 11, No. 4, 285-288.
- Potapov, E. V. (1965), Optical properties of bismuth and antimony in the infrared region of the spectrum at low temperatures, Soviet Physics JETP 20, No. 2, 307-312.
- Ramanathan, K. G. (1952), Infrared absorption by metals at low temperature, Proc. Phy. Soc. A65, 532-540.
- Rayne, J. A. (1959), Temperature dependence of the absorptivity of copper in the near infrared, Physical Review Letters 3, No. 11, 512-514.
- Roberts, S. (1959), Optical properties of nickel and tungsten and their interpretation according to Drude's formula, Physical Review 114, No. 1, 104-115.
- Roberts, S. (1960), Optical properties of copper, Physical Review 118, No. 6, 1509-1518.
- Shklyarevskii, I. N., A. A. Avdeenko, and V. G. Padalka (1959), Measurements of the optical constants of antimony in the infrared region of the spectrum at temperatures of 290° and 110°K, Optics and Spectroscopy 6, No. 4, 336-338.
- Weiss, K. (1948), Das ultrarot-absorption-vermögen einiger metalle bei zimmertemperatur und -183°C, Annalen Der Physik 6, No. 2, 1-18.
- Ziegler, W. T. and H. Cheung (1956), Total emissivity of some surfaces at 77°K, Advances in Cryogenic Engineering 2, 100-103 (ed. K. D. Timmerhaus) (Plenum Press, Inc., New York, N. Y.).
- Zimmerman, F. G. (1955), Total emissivities and absorptivities of some commercial surfaces at room and liquid-nitrogen temperatures, Journal of Applied Physics 26, No. 12, 1483-1488.

GPO 831-291

U.S. DEPARTMENT OF COMMERCE WASHINGTON, D.C. 20230

OFFICIAL BUSINESS

POSTAGE AND FEES PAID
U.S. DEPARTMENT OF COMMERCE