Creating Multi Processor Solutions

Course Workbook

Table of Contents

About this Workbook	Page 3

Pre-Lab: Workshop Pre-requisites Page 4

Lab 2: Creating Multi Processor Solutions Page 7

About this Workbook

The contents of this workbook are created by Adiuvo Engineering & Training, Ltd.

If you have any questions about the contents, or need assistance, please contact Adam Taylor at adam@adiuvoengineering.com.

Pre-LabCreating Multi Processor Solutions

Required Hardware

Ultra96V2 JTAG / USB Pod Ultra96V2 Power Supply

Downloads and Installations

Step 1 – Download and install the following at least 1 day prior to the workshop. This may take a significant amount of time and drive space.

Watch the video available <u>here</u> to show how to configure the installation

Vitis 2021.1	Download

Lab 2 Project creation & Flow

Step 1 – Open Vivado 2021.1 – Open the project from session one

Step 2 – From File->Project select save as and name it session two

Step 3 – From File->Project select save as and name it session two

Step 4 – Open the Block Diagram

Step 5 – Un dock the block diagram, and maximize it

Step 6 – Click on + and in the search bar, type microblaze – double click on the MicroBlaze IP to add it to IP Integrator

Step 7 – Click on Run Block Automation (this will help you configure the MicroBlaze), Select Local Memory 32KB, No ECC, No Cache, Debug only, AXI enabled, check Interrupt, Clock 100 MHz click

OK

Step 8 – Once the automation finishes, click on the + symbol

Step 9 - Type in Mailbox, double click and add it to the diagram

Step 10 – Click on Run Connection Automation, Check Mailbox. For S0_AXI set master interface to AXI HPM0 FPD on the Processing System

Step 11 – Click on S1_AXI and select the master interface to be the MicroBlaze system.

Step 12 – Click +

Step 13 – Type Concat and double click to add in the concatenation block

Step 14 – Connect the Concat Block to the PL_PS_IRQ input

Step 15 – Connect the interrupt one output from the mailbox to the concat block just added.

Step 16 – Connect the interrupt two output from the mailbox to the concat block for the MicroBlaze.

Step 17 – Click on + and type Mutex, double click to add it in to IP integrator.

Step 18 – Run the block automation, check the Mutex and for S0_AXI select the AXI HMP0 FPD.

Step 19 - Select MicroBlaze for the Master Interface on S1 AXI.

Step 20 – Hit the regenerate layout button to create the layout as below

Step 21 – Validate the design

Step 22 - The only warning messages should be those seen before

Step 23 – Re Dock the IP Integrator window

Step 24 – Save the design and then re generate the bit stream

Step 24 – Once the bitstream is complete, export the bit stream with the bit file to the project directory

Step 25 – From Tools select launch Vitis IDE

Step 26 – From Tools select launch Vitis IDE, create a new workspace inside the project directory.

Step 27 – Select Create Application Project

Step 28 – Click next

Step 29 - Click Select Create a new platform from hardware - select the XSA previously exported

Step 30 – Enter a project name and click next – This is for the MicroBlaze

Step 31 – Click on Next

Step 32 – Select Empty Application

Step 33 – From File select new application project and click next

Step 34 – Select the current platform and click next

Step 35 – Select the IPC System, ensure show all processors is selected, select processor A53_0 and enter a name IPC_ARM

Step 36 - Click on Next

Step 37 – Select the Hello World template and click finish

Step 38 – You should now see two application projects along with the platform

Step 39 - Click on the MB project SRC directory, right click and select new File.

Step 40 – Enter a name for the file

Step 41 – Open the newly created file

Step 42 – Copy the MB application, into the file and save the file.

Step 43 – Open the IPC_ARM hello world file and select and delete the entire contents

Step 44 – Copy across the Zynq Application code.

Step 45 - Open the Platform.spr file, select BSP for the A53 click Modify BSP Settings

Step 46 – On the Standalone tab change the stdin/stdout to PUS_UART 1

Step 47 – From the debug icon, click on the arrow and select debug configuration

Step 48 – Select System Project Debug and new

Step 49 – Click on Target Set up – This should be auto populated. Notice the PS is configured, followed by the PL before both applications are downloaded. Click Debug

Step 50 – Both applications will download and pause execution, click on the APU and hit run to start it

Step 51 – Select the MB application and start that executing

Step 52 – In a terminal window (114200, 1N8) you should see messages from the MB and ARM

