TRAVAUX DIRIGÉS: Séries entières

Rayon de convergence

Exercice 1: Rayon de convergence (Solution)

Déterminer le rayon de convergence des séries entières suivantes :

- 1. $\sum x^{n}$ 2. $\sum nx^{n}$ 3. $\sum \frac{1}{n^{3}}x^{n}$ 4. $\sum \frac{1}{n!}x^{n}$ 6. $\sum \frac{1}{n!}x^{n}$ 7. $\sum n:x$ 8. $\sum \frac{1}{n!}x^{n}$ 9. $\sum \frac{\cosh(n)}{\sinh^{2}(n)}x^{n}$ 9. $\sum \frac{\cosh(n)}{\sinh^{2}(n)}x^{n}$ 13. $\sum a_{n}x^{n}$ avec
 13. $\sum a_{n}x^{n}$ si n pair si n impair

- 4. $\sum \cos(n)x^{n}$ 10. $\sum \frac{(n!)^{2}}{(2n)!}x^{n}$ 14. $\sum \frac{n+\ln(n)}{n^{2}+2^{n}}x^{n}$ 5. $\sum \sin(n)x^{n}$ 11. $\sum n^{n}x^{n}$ 15. $\sum \left(\frac{n-1}{n}\right)^{n^{2}}x^{n}$ 16. $\sum \arctan(n^{\alpha})x^{n}$ 12. $\sum \frac{\cos(n\frac{\pi}{2})}{n}x^{n}$

Exercice 2: Rayon de convergence (Solution)

Déterminer le rayon de convergence des séries entières :

- 1. $\sum \frac{\cos n}{n} z^n$ 4. $\sum 5^n z^{2n+1}$
- 2. $\sum n! z^{2n}$ 3. $\sum \frac{z^{n!}}{n!}$ 5. $\sum a_n z^n$ avec $a_n = \sum_{k=n+1}^{+\infty} \frac{1}{k^2 + 1}$.

Exercice 3: Rayon de convergence (Solution)

- 1. On considère une série entière $\sum a_n z^n$ de rayon de convergence R > 0.
 - (a) Déterminer le rayon de convergence de la série entière $\sum a_n z^{2n}$.
 - (b) Déterminer le rayon de convergence de la série entière $\sum_{n=1}^{\infty} z^n$.
- 2. Soit $\sum u_n z^n$ une série entière complexe telle que pour tout $n \in \mathbb{N}$,

$$u_n = a_n + ib_n \text{ avec } (a_n, b_n) \in \mathbb{R}^2.$$

Comparer le rayon de convergence de la série $\sum u_n z^n$ avec le rayon de conver-

gence des séries
$$\sum a_n z^n$$
 et $\sum b_n z^n$.

Exercice 4: Étude au bord (Solution)

- 1. Déterminer le rayon de convergence de la série entière $\sum \frac{x^n}{\ln(n!)}$
- 2. Étudier la nature de la série entière pour x = 1 et x = -1.

Exercice 5: Rayon de convergence (Solution)

Déterminer le rayon de convergence des séries entières :

- 1. $\sum \arccos\left(1 \frac{1}{n^2}\right) z^n$ 2. $\sum \cos\left(\pi\sqrt{n^2 + n + 1}\right) z^n$ 4. $\sum \frac{\cosh(n)}{n} z^n$ 5. $\sum \frac{n^2}{3^n + n} z^n$

- 3. $\sum (\sqrt[n]{n+1} \sqrt[n]{n}) z^n$ 6. $\sum \left(\frac{1}{1+\sqrt{n}}\right)^n z^n$

Calcul de sommes

Exercice 6: Calcul de sommes. Séries géométriques 1. (Solution)

Déterminer le rayon de convergence R de chacune des séries entières suivantes et calculer leur somme pour $x \in]-R;R[.$

1. $\sum_{n>0} nx^n$.

 $4. \sum \frac{n^2+n+1}{n} x^n.$

 $2. \sum_{n \geqslant 0} n^2 x^n.$

5. $\sum_{n \ge 0} \frac{n^3 + n + 1}{n + 1} x^n$.

3. $\sum_{n\geq 1} \frac{1}{n} x^n$.

6. $\sum_{n>1} \frac{\operatorname{ch}(n)}{n} x^n.$

Exercice 7: Calcul de sommes. Séries géométriques 2. (Solution)

Déterminer le rayon de convergence R de chacune des séries entières suivantes et calculer leur somme pour $x \in]-R;R[.$

1.
$$\sum_{n \geqslant 0} \frac{n^3 + n + 3}{n + 1} x^n.$$

$$3. \sum_{n\geqslant 1} \frac{1}{n(n+2)} x^n.$$

2.
$$\sum_{n\geqslant 0} \frac{n^2+n+1}{2^n} x^n$$
.

4. (*)
$$\sum_{n\geqslant 0} \frac{2n+1}{2n+3} x^n$$
.

Exercice 8: Calcul de sommes. Séries exponentielles. (Solution)

Déterminer le rayon de convergence R de chacune des séries entières suivantes et calculer leur somme pour $x \in]-R;R[$.

$$1. \sum \frac{n^2 + n + 3}{n!} x^n.$$

3.
$$(*)\sum \frac{n}{(2n+1)!}x^n$$
.

$$2. \sum \frac{n^2 + 2n - 1}{(n+1)!} x^n.$$

$$4. \sum \frac{\operatorname{ch}(n)}{n!} x^n.$$

Exercice 9: Calcul de sommes. Mélange. (Solution)

Déterminer le rayon de convergence R et calculer la somme des séries entières suivantes.

1.
$$\sum_{n\geqslant 1} \left(n + \frac{1}{n}\right) x^{2n}.$$

3.
$$\sum_{n \ge 0} (-1)^{n+1} nx^{2n+1}.$$

$$2. \sum_{n \geqslant 0} \frac{x^{3n}}{(3n)!}.$$

4.
$$\sum_{n \ge 1} \frac{(-1)^n}{4n} x^{4n-1}.$$

Indication

calculer
$$\sum_{n=0}^{+\infty} \frac{(j^k x)^n}{n!}$$
 où $j = e^{\frac{2i\pi}{3}}$ et $k \in [0, 2]$

$$5. \sum_{n\geqslant 0} \cos\left(\frac{2n\pi}{3}\right) x^n.$$

Exercice 10: (Solution)

Soit $\theta \in \mathbb{R}$.

Donner le rayon de convergence et calculer la somme des séries entières :

$$\sum_{n\geqslant 0} \frac{x^n \cos(n\theta)}{n!} \text{ et } \sum_{n\geqslant 0} \frac{x^n \sin(n\theta)}{n!}$$

Exercice 11: (Solution)

1. Déterminer un équivalent de $a_n = \sum_{k=1}^n \frac{1}{k}$ lorsque $n \to +\infty$.

2. Déterminer le rayon de convergence ainsi que la somme de la série entière :

$$\sum_{n\geqslant 1} a_n x^n.$$

3 Continuité de la fonction somme

Exercice 12: (Solution)

On considère la série entière $\sum_{n>2} \frac{(-1)^n}{n(n-1)} x^n$ et on note f sa fonction somme.

- 1. Déterminer le rayon de convergence R de la série entière et l'ensemble de définition de f.
- 2. Calculer f(x) pour tout $x \in]-R; R[$.
- 3. En déduire la nature et la somme des série numériques :

$$\sum_{n=2}^{+\infty} \frac{1}{n(n-1)} \text{ et } \sum_{n=2}^{+\infty} \frac{(-1)^n}{n(n-1)}.$$

Exercice 13: (Solution)

On considère la série entière $\sum_{n=1}^{+\infty} \frac{x^{2n+1}}{2n(2n+1)}$ et on note f sa fonction somme.

- 1. Déterminer le rayon de convergence R de la série entière et l'ensemble de définition de f.
- 2. Calculer f(x) pour tout $x \in]-R;R[$. On pourra décomposer en éléments simples $\frac{1}{2n(2n+1)}$
- 3. Calculer f(1) et f(-1).

Exercice 14: Calcul de sommes par changement de variable. (Solution)

On considère la série entière $\sum \frac{x^n}{2n+1}$ et f sa fonction somme.

- 1. Déterminer le rayon de convergence R de la série entière et l'ensemble de définition de f.
- 2. Soit $x \in]0; R[$. Calculer f(x) à l'aide du changement de variable $x = t^2$.

3. Soit $x \in]-R;0[$. Calculer f(x) à l'aide du changment de variable $x=-t^2$.

4. Calculer
$$\sum_{n=0}^{+\infty} \frac{(-1)^n}{2n+1}.$$

4 Développement en série entière

Exercice 15: Somme, produit, dérivation, intégration (Solution)

Déterminer un développement en série entière des fonctions suivantes au voisinage de 0 et préciser de rayon de convergence de la série entière obtenue.

1.
$$f(x) = \ln(2 - x)$$

$$f(x) = \ln\left(\frac{1+x}{2-x}\right)$$

3.
$$f(x) = \frac{1}{(1-x)^2}$$

4.
$$f(x) = \frac{1}{x^2 - 3x + 2}$$

$$5. \ f(x) = \operatorname{sh}(x)\cos(x).$$

En déduire les égalités suivantes :

$$\sum_{k=0}^{2p} (-1)^k \binom{4p+1}{2k+1} = (-1)^p 4^p$$

$$\sum_{k=0}^{2p+1} (-1)^k \binom{4p+3}{2k+1} = 2(-1)^p 4^p.$$

6. $f(x) = \cos(x) \operatorname{ch}(x).$

7.
$$f(x) = \frac{\ln(1-x)}{x-1}$$

8.
$$f(x) = \frac{1}{x^2 + x + 1}$$

9.
$$f(x) = \arcsin(x)$$
.

10.
$$f(x) = \arctan\left(\frac{x\sqrt{2}}{1-x^2}\right)$$
.

11.
$$f(x) = \arctan \frac{1}{1+x}$$
.

$$12. \ f(x) = \int_0^x \frac{\sin(t)}{t} dt$$

13.
$$f(x) = \int_0^x \cos(t^2) dt$$

Exercice 16: Séries entières et équations différentielles (Solution)

En utilisant la technique de l'équation différentielle, trouver les développements en série entières des fonctions suivantes.

1.
$$f(x) = \frac{\arcsin(x)}{\sqrt{1 - x^2}}.$$

$$2. f(x) = \arcsin^2(x).$$

3.
$$f(x) = \cos(x) \operatorname{ch}(x)$$
.
 v érifier que f est solution de l'équation différentielle $y^{(4)} + 4y = 0$.

4.
$$f(x) = \cos(\alpha \arcsin x)$$
 avec $\alpha \in \mathbb{R}$.
vérifier que f est solution d'une équation différentielle d'ordre 2 .

5 Exercices de synthèse

Exercice 17: Équation différentielle et produit de Cauchy (Solution)

- 1. Déterminer le développement en série entière au voisinage de 0 de la fonction $f: x \mapsto e^{-x^2} \int_0^x e^{t^2} dt$:
- via la technique de l'équation différentielle,
- via un produit de Cauchy.
- 2. En déduire que pour tout $n \in \mathbb{N}$,

$$\sum_{k=0}^{n} \frac{(-1)^k}{2k+1} \binom{n}{k} \binom{2n}{n} = \frac{4^n}{2n+1}$$

Exercice 18: Prolongement \mathscr{C}^{∞} (Solution)

- 1. Montrer que la fonction $x\mapsto \frac{e^x-1}{x}$ peut-être prolongée en une fonction de classe \mathscr{C}^∞ sur \mathbb{R} .
- 2. Déterminer les dérivées successives de ce prolongement en 0.

Exercice 19: Théorème de cours? (Solution)

1. Montrer que pour tout $\alpha > 0$,

$$\int_0^1 \frac{dx}{1+x^{\alpha}} = \sum_{n=0}^{+\infty} \frac{(-1)^n}{n\alpha + 1}$$

- 2. En déduire la somme de la série $\sum_{n\geqslant 0} \frac{(-1)^n}{2n+1}$.
- 3. Montrer que pour tout $\alpha < 0$,

$$\int_0^1 \frac{x^{\alpha} dx}{1 + x^{\alpha}} = \sum_{n=0}^{+\infty} \frac{(-1)^n}{-n\alpha + 1}.$$

Exercice 20: (Solution)

Soit
$$\theta \in \mathbb{R}$$
 et $x \in]-1;1[$.

1. Montrer que la série entière $\sum \frac{\sin(n\theta)x^n}{n}$ converge.

2. Déterminer la somme $\sum_{n=1}^{+\infty} \frac{\sin(n\theta)}{n} x^n.$

Exercice 21: Suite récurrente (Solution)

Soit $(a_n)_{n\in\mathbb{N}}$ la suite définie par

$$\begin{cases} a_0 = a_1 = 1 \\ \forall n \geqslant 0, a_{n+2} = a_{n+1} + \frac{a_n}{n+2}. \end{cases}$$

On considère la série entière $\sum_{n>0} a_n x^n$.

- 1. (a) Montrer que pour tout $n \in \mathbb{N}$, $1 \leqslant a_n \leqslant n+2$.
 - (b) En déduire que la suite $(a_n)_{n\in\mathbb{N}}$ est monotone et déterminer le rayon de convergence de la série entière $\sum_{n\geq 0} a_n x^n$.

2. On pose
$$f(x) = \sum_{n=0}^{+\infty} a_n x^n$$
 et $g(x) = \sum_{n \geqslant 0} \frac{a_n}{n+2} x^{n+2}$.

- (a) Justifier que f et g sont de classe \mathscr{C}^{∞} sur]-1;1[.
- (b) Trouver une relation entre f et g.
- (c) Montrer que g est solution d'une équation différentielle linéaire d'ordre 1 que l'on résoudra explicitement.
- (d) Donner une expression de f(x).

Exercice 22: Équation différentielle du second ordre (Solution)

On considère l'équation différentielle linéaire homogène du second ordre :

$$16(x^2 - x)y'' + (16x - 8)y' - y = 0 (E).$$

On suppose que la série entière $\sum_{n\geqslant 0}a_nx^n$ est solution de (E) sur]0;R[où R est le

rayon de convergence de $\sum_{n\geq 0} a_n x^n$.

- 1. Montrer que pour tout $n \ge 1$, $a_n = \frac{(4n-3)(4n-5)}{8n(2n-1)}a_{n-1}$.
- 2. Déterminer le rayon de convergence de la série entière $\sum a_n x^n$.
- 3. On suppose que $a_0 = 1$. Déterminer a_n en fonction de n.

4. En utilisant la formule de Stirling, déterminer un équivalent de a_n lorsque $n \to +\infty$.

SOLUTIONS TRAVAUX DIRIGÉS : Séries entières

Solution Exercice I. On note R le rayon de convergence à déterminer dans chacune des questions.

- 1. La série entière $\sum x^n$ converge si et seulement si $x \in]-1;1[:R=1.$
- 2. La série $\sum nx^n$ a le même rayon de convergence que la série x^n par le cours :
- 3. La série $\sum \frac{1}{n^3} x^n$ a le même rayon de convergence que les séries $\sum \frac{n}{n^3} x^n, \sum \frac{n}{n^2} x^n, \sum \frac{n}{n} x^n : R = 1.$
- 4. La série $\sum \cos(n)x^n$ a pour rayon de convergence R=1 car
 - pour tout $n \in \mathbb{N}$, $|\cos(n)| \le 1$ donc $R \ge 1$ par comparaison car la série $\sum x^n$ qui a pour rayon de convergence R' = 1.
 - De plus la série diverge grossièrement pour x = 1 i.e. $\sum \cos(n)1^n$ diverge grossièrement.

En effet, la suite $(\cos(n))_{n\in\mathbb{N}}$ ne converge par vers 0 lorsque $n\to +\infty$ Sinon on obtiendrait:

- * d'une part $\cos(2n) \underset{n \to +\infty}{\longrightarrow} 0$ comme limite d'une sous-suite.
- * d'autre part $\cos(2n) = 2\cos^2(n) 1 \underset{n \to +\infty}{\longrightarrow} -1$.

D'où la contradiction 0 = -1.

La série $\sum \cos(n)1^n$ étant divergente, on a $R \leq 1$.

En conclusion : R = 1.

- 5. La série entière $\sum \sin(n)x^n$ a pour rayon de convergence R=1 car
 - $|\sin(n)| \le 1$ pour tout $n \in \mathbb{N}$. Donc par comparaison $R \ge R' = 1$ où R' est le rayon de convergence de la série entière $\sum 1x^n$.
 - La série entière $\sum \sin(n)1^n$ diverge grossièrement. En effet, la suite $(\sin(n))_{n\in\mathbb{N}}$ ne converge par vers 0 lorsque $n\to +\infty$. Sinon on obtiendrait : $*\cos(2n)=1-2\sin^2(n)\underset{n\to +\infty}{\longrightarrow} 1$, puis

 - * $\cos^2(n) = \frac{\cos(2n)+1}{2} \xrightarrow[n \to +\infty]{1} \frac{1}{2}$. * $\cos^2(n) = 1 \sin^2(n) \xrightarrow[n \to +\infty]{1} 1$.

D'où la contradiction $1 = \frac{1}{2}$.

La série $\sum \cos(n)1^n$ étant divergente, on a $R \leq 1$.

En conclusion : R = 1.

6. — Si $\alpha < 0$, $|\arctan(n^{\alpha})| = \underset{n \to +\infty}{\sim} |n^{\alpha}| \operatorname{car} n^{\alpha} \underset{n \to +\infty}{\longrightarrow} 0$.

Les séries $\sum \arctan(n^{\alpha})x^n$ et $\sum n^{\alpha}x^n$ ont le même rayon de convergence.

On utilise la règle de d'Alembert; pour $x \neq 0$:

$$\left| \frac{n^{\alpha}}{(n+1)^{\alpha}} \frac{x^{n+1}}{x^n} \right| \underset{n \to +\infty}{\longrightarrow} |x|.$$

- Si |x| < 1 la série entière $n^{\alpha}x^n$ est absolument convergente.
- Si |x| > 1 la série entière $n^{\alpha}x^n$ est divergente.

Ainsi, R=1.

Ainsi, R = e.

- Si $\alpha = 0$, $\arctan(n^0) = \arctan(1) = \frac{\pi}{4}$ on obtient la série entière $\sum_{n=1}^{\infty} \frac{\pi}{4} x^n$ qui a pour rayon de convergence R=1.
- Si $\alpha > 0$, on utilise la formule : $\arctan(n^{\alpha}) = \frac{\pi}{2} \arctan\left(\frac{1}{n^{\alpha}}\right) \longrightarrow \frac{\pi}{2}$. Les séries $\sum \arctan(n^{\alpha})x^n$ et $\sum \frac{\pi}{2}x^n$ ont le même rayon de convergence :
- 7. La série entière $\sum n!x^n$ a pour rayon de convergence R=0.

En effet, si $x \neq 0$, la règle de d'Alembert s'applique :

$$\left| \frac{(n+1)!x^{n+1}}{n!x^n} \right| = (n+1)|x| \underset{n \to +\infty}{\longrightarrow} +\infty.$$

La série entière est donc divergente pour tout $x \neq 0$: $\forall x \neq 0, R \leq |x| : R = 0$.

8. La série entière $\sum \frac{x^n}{n!}$ a pour rayon de convergence $R=+\infty$: il s'agit de la série exponentielle convergente sur \mathbb{R} .

On le retrouve via la règle de d'Alembert : pour tout $x \neq 0$:

$$\left| \frac{x^{n+1}}{(n+1)!} \frac{n!}{x^n} \right| = \frac{|x|}{n+1} \underset{n \to +\infty}{\longrightarrow} 0.$$

Ainsi, la série entière est convergente pour tout $x \in \mathbb{R}^*$ (également en x = 0): $\forall x \neq 0, |x| \leqslant R : R = +\infty.$

9. On raisonne par équivalence des valeurs absolues des termes généraux :

$$\left|\frac{\operatorname{ch}(n)}{\operatorname{sh}^2(n)}\right| = \frac{e^n + e^{-n}}{2} \left(\frac{2}{e^n - e^{-n}}\right)^2 \underset{n \to +\infty}{\sim} \frac{e^n}{2} \frac{4}{e^{2n}} = \frac{2}{e^n}.$$

La série entière $\sum \frac{\operatorname{ch}(n)}{\operatorname{sh}^2(n)} x^n$ a le même rayon de convergence que la série $\sum \frac{2}{n} x^n$.

On reconnait, au facteur 2 près, la série géométrique $\sum_{e} \left(\frac{x}{e}\right)^n$ qui converge si et seulement si $\left|\frac{x}{a}\right| < 1 \iff |x| < e$.

10. On utilise la règle de d'Alembert; pour tout $x \neq 0$,

$$\left| \frac{((n+1)!)^2 x^{n+1}}{(2(n+1))!} \frac{(2n)!}{(n!)^2 x^n} \right| = \frac{(n+1)^2}{(2n+2)(2n+1)} |x| \underset{n \to +\infty}{\longrightarrow} \frac{|x|}{4}.$$

- Si $\frac{|x|}{4} < 1 \iff |x| < 4$ la série est $\sum \frac{(n!)^2}{(2n)!} x^n$ est absolument convergente : $R \geqslant 4$.
- Si $\frac{|x|}{4} > 1 \iff |x| > 4$ la série est $\sum \frac{(n!)^2}{(2n)!} x^n$ est divergente : $R \leqslant 4$.

En conclusion : R = 4.

11. On utilise la règle de d'Alembert, pour tout $x \neq 0$,

$$\left|\frac{(n+1)^{n+1}}{n^n}\right| = (n+1)\left(1+\frac{1}{n}\right)^n \underset{n\to+\infty}{\longrightarrow} +\infty,$$

$$\operatorname{car}\left(1+\frac{1}{n}\right)^n \underset{n\to+\infty}{\longrightarrow} e.$$

Ainsi, la série $\sum n^n x^n$ est divergente pour tout $x \in \mathbb{R}^*$: R = 0.

12. On considère la série entière $\sum \frac{\cos\left(n\frac{\pi}{2}\right)}{n} x^n$.

Elle a le même rayon de convergence que la série $\sum \frac{n\cos\left(n\frac{\pi}{2}\right)}{n}x^n$.

- On a $\forall n \in \mathbb{N}, \left|\cos\left(n\frac{\pi}{2}\right)\right| \leqslant 1.$ Le rayon de convergence R de la série $\sum \cos\left(n\frac{\pi}{2}\right)x^n$ vérifie donc $R \geqslant R' = 1$ où R' est le rayon de convergence de la série entière $\sum x^n$.
- De plus, pour x=1 la série entière $\sum \cos\left(n\frac{\pi}{2}\right)1^n$ est grossièrement divergente car $(\cos\left(n\frac{\pi}{2}\right))_{n\in\mathbb{N}}$ ne converge pas vers 0: en effet, $\cos(4n\frac{\pi}{2})=1$ $\underset{n\to+\infty}{\longrightarrow}1\neq0$. L'une de ses sous-suites ayant une limite non nulle, la suite $(\cos(n\frac{\pi}{2}))_{n\in\mathbb{N}}$ ne peut converger vers 0.
- 13. On revient à la définition : $R = \sup\{r \ge 0 : (a_n r^n)_n \text{ est bornée}\}.$

La suite $(a_n r^n)$ est bornée si et seulement si les sous-suites $(a_{2p} r^{2p})$ et $(a_{2p+1} r^{2p+1})$ sont bornées.

On constate que $a_{2p}r^{2p} \underset{p \to +\infty}{\sim} e^{-2}r^{2p}$:

 $(a_{2p}r^{2p})_p$ est bornée si et seulement si $r \leqslant 1$.

On constate que $a_{2p+1}r^{2p+1} = (3r)^{2p+1}$:

 $(a_{2p+1}r^{2p+1})$ est bornée si et seulement si $3r \leqslant 1 \iff r \leqslant \frac{1}{3}$.

Finalement, on en déduit que $R \leqslant \frac{1}{3}$.

De plus $\frac{1}{3} \in \{r \geqslant 0 : (a_n r^n)_n \text{ est born\'ee}\}$ donc $R = \max\{r \geqslant : (a_n r^n)_n \text{ est born\'ee}\} = \frac{1}{3}$.

14. On raisonne par équivalence :

$$\left| \frac{n + \ln(n)}{n^2 + 2^n} \right| \underset{n \to +\infty}{\sim} \frac{n}{2^n}.$$

La série entière $\sum \frac{n+\ln(n)}{n^2+2^n}$ a donc le même rayon de convergence que la série entière $\sum \frac{n}{2^n}x^n$ et par multiplication par n, le même rayon de convergence que la série entière $\sum \frac{1}{2^n}x^n$.

On reconnait une série géoémtrique de raison $\frac{x}{2}$ qui a pour rayon de convergence R=2.

15. On raisonne par équivalence :

$$\left(1 - \frac{1}{n}\right)^{n^2} = \exp\left[n^2 \ln\left(1 - \frac{1}{n}\right)\right] = \exp\left[n^2 \left(-\frac{1}{n} + o\left(\frac{1}{n}\right)\right)\right]$$
$$= \exp\left(-n + o\left(1\right)\right) = e^{-n} e^{o(1)} \underset{n \to +\infty}{\sim} e^{-n}.$$

La série entière $\sum \left(1-\frac{1}{n}\right)^{n^2}x^n$ a le même rayon de convergence que la série entière $\sum e^{-n}x^n$.

On reconnaît une série géométrique de raison $e^{-1}x$ dont le rayon de convergence est R=e.

Solution Exercice 2. On note R le rayon de convergence de chacune des séries entières étudiées dans les questions suivantes.

1. La série entière $\sum \frac{\cos(n)}{n} z^n$ a le même rayon de convergence que la série entière $\sum \cos(n) z^n$ par multiplication par n.

La majoration $|\cos(n)| \leqslant 1$ montre que $R \geqslant R' = 1$ où R' est le rayon de convergence de la série géométrique $\sum z^n$.

Pour z=1 la série $\sum \cos(n)1^n$ est grossièrement divergente : $R\leqslant 1$. En conclusion : R=1.

2. La série $\sum n!z^{2n}$ est la série entière $\sum a_nz^n$ avec $a_{2p}=p!$ et $a_{2p+1}=0$.

On applique la règle de d'Alembert à la série numérique $\sum n! z^{2n}$: pour tout $z \neq 0$,

$$\left|\frac{(n+1)!z^{2(n+1)}}{n!z^n}\right| = (n+1)|z|^2 \underset{n \to +\infty}{\longrightarrow} +\infty.$$

La série $\sum n!z^{2n}$ est donc divergente pour tout $z \neq 0$ ainsi, le rayon de convergence de la série entière $\sum a_n z^n$ est nul : R = 0.

3. La série $\sum \frac{z^{n!}}{n!}$ est la série entière $\sum a_n z^n$ avec

$$a_0 = 0, a_1 = \frac{1}{1!}, a_2 = \frac{1}{2!}, a_3 = a_4 = a_5 = 0, a_6 = a_{3!} = \frac{1}{3!}, \dots$$

c'est-à-dire en notant $\mathcal{N} = \left\{\prod_{k=1}^n k : n \in \mathbb{N} \right\}$:

$$a_n = \frac{1}{n!}$$
 si $n \in \mathcal{N}$ et $a_n = 0$ sinon.

On applique la règle de d'Alembert à la série numérique $\sum n!z^{n!}$:

$$\left| \frac{z^{(n+1)!}}{(n+1)!} \frac{n!}{z^{n!}} \right| = \left| \frac{1}{n+1} z^{n!(n+1-1)} \right| = \frac{1}{n+1} |z|^{n(n!)} \underset{n \to +\infty}{\longrightarrow} \left\{ \begin{array}{ccc} +\infty & \text{si} & |z| > 1 \\ 0 & \text{si} & |z| \leqslant 1 \end{array} \right.$$

On en déduit que R=1.

4. On applique la règle de d'Alembert à la série numérique $\sum 5^n z^{2n+1}$; pour tout $z \neq 0$:

$$\left| \frac{5^{n+1}z^{2n+3}}{5^n z^{2n+1}} \right| = 5|z|^2 \underset{n \to +\infty}{\longrightarrow} 5|z|^2$$

- Si $5|z|^2 < 1 \Longleftrightarrow |z| < \frac{1}{5}$ alors la série $\sum 5^n z^{2n+1}$ converge.
- Si $5|z|^2>1 \Longleftrightarrow |z|>\frac{1}{5}$ alors la série $\sum 5^n z^{2n+1}$ diverge.

En conclusion : $R = \frac{1}{5}$.

5. On cherche un équivalent de $a_n = \sum_{k=n+1}^{+\infty} \frac{1}{1+k^2}$ qui est le reste de rang n de la

série numérique $\sum \frac{1}{1+n^2}$ convergente car $\frac{1}{1+n^2} \underset{n \to +\infty}{\sim} \frac{1}{n^2} > 0$.

La fonction $f: t \mapsto \frac{1}{1+t^2}$ est décroissante, continue, positive sur \mathbb{R}_+ donc la série $\sum_{k} f(k)$ et l'intégrale $\int_0^{+\infty} f(t)dt$ sont de même nature. De plus, pour tout $k \geqslant 1$:

$$\int_{k}^{k+1} f(t)dt \leqslant \int_{k}^{k+1} f(k)dt = f(k) = \int_{k-1}^{k} f(k)dt \leqslant \int_{k-1}^{k} f(t)dt$$

ce qui donne après sommation pour $k\geqslant n+1$ avec $n\geqslant 0$, par convergence de la série et des intégrales en jeu :

$$\frac{\pi}{2} - \arctan(n+1) = \int_{n+1}^{+\infty} f(t)dt \leqslant \sum_{k=n+1}^{+\infty} f(k) \leqslant \int_{n}^{+\infty} f(t)dt = \frac{\pi}{2} - \arctan(n).$$

Cet encadrement fournit l'équivalent souhaité :

$$\sum_{k=n+1}^{+\infty} \frac{1}{1+k^2} \underset{n \to +\infty}{\sim} \arctan\left(\frac{1}{n}\right) \underset{n \to +\infty}{\sim} \frac{1}{n}.$$

Ainsi, $|a_n| \underset{n \to +\infty}{\sim} \frac{1}{n}$.

La série entière $\sum a_n z^n$ a donc le même rayon de convergence que la série entière $\sum \frac{z^n}{n}$ ou encore par multiplication par n, même rayon de convergence que la série entière $\sum z^n$, c'est à dire R=1.

Solution Exercice 3.

1. (a) La série $\sum a_n z^{2n}$ est la série entière $\sum b_n z^n$ avec $b_{2p} = a_p$ et $b_{2p+1} = 0$. Notons R' sont rayon de convergence.

Afin de déterminer le rayon de convergence R' de la série entière $\sum a_n z^{2n}$, on ne peut pas utiliser la règle de d'Alembert les termes de la suite $(a_n)_{n\in\mathbb{N}}$ n'étant pas explicites. On revient à la définition :

$$R' = \sup\{r \ge 0 : (b_n r^n)_{n \in \mathbb{N}} \text{ bornée}\} = \sup\{r \ge 0 : (a_n r^{2n})_{n \in \mathbb{N}} \text{ bornée}\}.$$

- Si $r \in [0; \sqrt{R}[$ alors $r^2 < R$ donc la suite $(a_n r^{2n})_{n \in \mathbb{N}}$ est bornée. Ainsi, $R' \geqslant \sqrt{R}$.
- Si $r > \sqrt{R}$ alors $r^2 > R$ donc la suite $(a_n r^{2n})_{n \in \mathbb{N}}$ n'est pas bornée. Ainsi, $R' \leq \sqrt{R}$.

En conclusion : $R' = \sqrt{R}$.

(b) Notons R' le rayon de convergence de la série entière $\sum_{n=1}^{\infty} z^n$.

Soit $r \geqslant 0$. La suite $\left(\frac{a_n}{n!}r^n\right)_{n\in\mathbb{N}}$ est bornée.

En effet pour tout $\rho \in]0; R[$, la suite $(a_n \rho^n)_{n \in \mathbb{N}}$ est bornée, notons M un majorant :

$$\left| \frac{a_n}{n!} r^n \right| = \left| a_n \rho^n \frac{1}{n!} \left(\frac{r}{\rho} \right)^n \right| = \left| a_n \rho^n \right| \times \left| \frac{1}{n!} \left(\frac{r}{\rho} \right)^n \right| \leqslant M \frac{1}{n!} \left(\frac{r}{\rho} \right)^n.$$

La série $\sum \frac{z^n}{n!}$ a un rayon de convergence infini. Ainsi,

$$\sum_{n=0}^{+\infty} \frac{1}{n!} \left(\frac{r}{\rho} \right)^n = e^{\frac{r}{\rho}}.$$

La suite $\left(\frac{1}{n!}\left(\frac{r}{\rho}\right)^n\right)$ est donc bornée et par suite $\left(\frac{a_n}{n!}r^n\right)_{n\in\mathbb{N}}$ aussi. On en déduit que $R'\geqslant r$ pour tout $r\geqslant 0$: $R'=+\infty$.

2. On note R_u le rayon de convergence de la série entière $\sum u_n z^n$.

On note également, R_a , R_b les rayons de convergence des séries entières $\sum a_n z^n$ et $\sum b_n z^n$.

- On a $|a_n| \leq |u_n|$ et $|b_n| \leq |u_n|$ donc $R_u \leq R_a$ et $R_u \leq R_b$. Ainsi $R_u \leq \min(R_a; R_b)$.
- Si $|z| < \min(R_a; R_b)$ les séries $\sum a_n z^n$ et $\sum b_n z^n$ convergent. Ainsi, la combinaison linéaire $\sum (a_n + ib_n)z^n$ est convergente : la série $\sum u_n a^n$ converge. Ainsi, $R_u \geqslant \min(R_a; R_b)$.

En conclusion : $R_u = \min(R_a; R_b)$.

Solution Exercice 4.

1. On utilise la règle de d'Alembert, pour $x \neq 0$:

$$\left| \frac{x^{n+1}}{\ln((n+1)!)} \frac{\ln(n!)}{x^n} \right| = |x| \frac{\ln(n!)}{\ln((n+1)n!)} = |x| \frac{\ln(n!)}{\ln(n+1) + \ln(n!)}$$
(1)
$$= |x| \left(1 - \frac{\ln(n+1)}{\ln(n+1) + \ln(n!)} \right)$$
(2)

On a $\ln(n!) = \sum_{k=1}^{n} \ln(k) \ge (n-1) \ln(2)$ donc $\ln(n+1) = o \ln(n!)$ car

$$0 \leqslant \frac{\ln(n+1)}{\ln(n!)} \leqslant \frac{\ln(n+1)}{(n-1)\ln(2)} \underset{n \to +\infty}{\longrightarrow} 0.$$

On obtient $\left| \frac{x^{n+1}}{\ln((n+1)!)} \frac{\ln(n!)}{x^n} \right| \underset{n \to +\infty}{\longrightarrow} |x|.$

La règle de d'Alembert permet de conclure :

- Si |x| < 1 alors la série entière $\sum \frac{x^n}{\ln(n!)}$ converge absolument : $R \geqslant 1$.
- Si |x| > 1 alors la série entière $\sum \frac{x^n}{\ln(n!)}$ diverge : $R \le 1$.

En conclusion : R = 1.

2. — Pour x = 1, la série $\sum \frac{1^n}{\ln(n!)}$ diverge.

En effet, pour tout $n \ge 2$, $\ln(n!) = \sum_{k=1}^{n} \ln(k) \le n \ln(n)$.

Par conséquent, $\frac{1}{\ln(n!)} \geqslant \frac{1}{n \ln(n)}$.

La série $\sum \frac{1}{n \ln(n)}$ est divergente par comparaison série-intégrale :

La fonction $x\mapsto \frac{1}{x\ln(x)}$ est décroissante, continue, positive sur $[2;+\infty[$ (dérivée $f'(x)=-\frac{\ln(x)+1}{x^2\ln^2(x)}\leqslant 0).$

L'intégrale $\int_1^{+\infty} \frac{1}{x \ln(x)} dx$ est divergente. Pour tout A > 1:

$$\int_{2}^{A} \frac{1}{x \ln(x)} dx = \left[\ln |\ln(x)|\right]_{2}^{A} \underset{A \to +\infty}{\longrightarrow} +\infty.$$

On en déduit qu'effectivement la série $\sum \frac{1}{n \ln(n)}$ diverge et par comparaison de série à termes positifs, la série $\sum \frac{1}{\ln(n!)}$ diverge.

— Pour x = -1, la série $\sum \frac{(-1)^n}{\ln(n!)}$ est convergente par le critère spécial des séries alternées.

Solution Exercice 5. On note R le rayon de convergence de chacune des séries entières étudiées dans cet exercice.

1. On détermine un équivalent de la suite des coefficients de la série entière $\sum \arccos\left(1-\frac{1}{n^2}\right)z^n.$

On a $\sin(x) \sim x$ et $\arccos\left(1 - \frac{1}{n^2}\right) \longrightarrow \arccos(1) = 0$ donc

$$\arccos\left(1 - \frac{1}{n^2}\right) \underset{n \to +\infty}{\sim} \sin\arccos\left(1 - \frac{1}{n^2}\right) = \sqrt{1 - \cos^2\arccos\left(1 - \frac{1}{n^2}\right)}$$
$$= \sqrt{\frac{2}{n^2} - \frac{1}{n^4}}$$
$$\underset{n \to +\infty}{\sim} \frac{\sqrt{2}}{n}$$

La série $\sum \arccos\left(1-\frac{1}{n^2}\right)z^n$ a donc par équivalence le même rayon de convergence que la série entière $\sum \frac{\sqrt{2}}{n}z^n$; donc par multiplication par n, même rayon de convergence que la série entière $\sum \sqrt{2}z^n$.

On reconnaît, au facteur $\sqrt{2}$ près, la série géométrique de raison x : R=1.

2. On détermine un équivalent, en moduke, de la suite des coefficients de la série entière $\sum \cos \left(\pi \sqrt{n^2+n+1}\right) z^n$.

$$\cos\left(\pi\sqrt{n^2+n+1}\right) = \cos\left(n\pi\sqrt{1+\frac{n+1}{n^2}}\right)$$

$$= \cos\left(n\pi\left[1+\frac{\epsilon_n}{2}-\frac{\epsilon_n^2}{8}+o(\epsilon_n^2)\right]\right)$$

$$= \cos\left(n\pi+\frac{n\pi\epsilon_n}{2}-\frac{n\pi\epsilon_n^2}{8}+o(n\epsilon_n^2)\right)$$

avec

$$\epsilon_n = \frac{n+1}{n^2} = \frac{1}{n} + \frac{1}{n^2} \Longrightarrow n\epsilon_n = 1 + \frac{1}{n}$$

$$\epsilon_n^2 = \frac{1}{n^2} + \frac{2}{n^3} + \frac{1}{n^4} \Longrightarrow n\epsilon_n^2 = \frac{1}{n} + \frac{2}{n^2} + \frac{1}{n^3} \underset{n \to +\infty}{\sim} \frac{1}{n}.$$

On obtient

$$\cos\left(\pi\sqrt{n^2+n+1}\right) = (-1)^n \cos\left(\frac{\pi}{2} + \frac{1}{n}\left(\frac{\pi}{2} - \frac{\pi}{8}\right) + o\left(\frac{1}{n}\right)\right)$$
$$= (-1)^{n+1} \sin\left(\frac{3\pi}{8n} + o\left(\frac{1}{n}\right)\right)$$

On obtient

$$|\cos(\pi\sqrt{n^2+n+1})| \underset{n\to+\infty}{\sim} \frac{3\pi}{8n}.$$

La série entière $\sum\cos\left(\pi\sqrt{n^2+n+1}\right)z^n$ a donc le même rayon de convergence que la série entière $\sum\frac{3\pi}{8n}z^n$ soit, après multiplication par n, le même rayon de convergence que la série entière $\sum\frac{3\pi}{8}z^n$: R=1.

3. On déterminer un équivalent, en module, de la suite des coefficients de la série entière $\sum \left(\sqrt[n]{n+1} - \sqrt[n]{n}\right) z^n$.

$$\sqrt[n]{n+1} - \sqrt[n]{n} = n^{\frac{1}{n}} \left(\left(1 + \frac{1}{n} \right)^{\frac{1}{n}} - 1 \right)$$

$$= n^{\frac{1}{n}} \left[\exp\left(\frac{1}{n} \ln\left(1 + \frac{1}{n} \right) \right) - 1 \right]$$

$$= n^{\frac{1}{n}} \left(\exp\left[\frac{1}{n^2} + o\left(\frac{1}{n^2} \right) \right] - 1 \right)$$

$$= n^{\frac{1}{n}} \left[\frac{1}{n^2} + o\left(\frac{1}{n^2} \right) \right]$$

Or $n^{\frac{1}{n}} = \exp\left(\frac{1}{n}\ln(n)\right) \underset{n \to +\infty}{\longrightarrow} 1$ par croissances comparées, on obtient :

$$\sqrt[n]{n+1} - \sqrt[n]{n} \underset{n \to +\infty}{\sim} \frac{1}{n^2}.$$

La série entière $\sum (\sqrt[n]{n+1} - \sqrt[n]{n})z^n$ a donc le même rayon de convergence que la série entière $\sum \frac{1}{n^2}z^n$ soit, par multiplications successives par n, le même rayon de convergence que les séries entières $\sum \frac{z^n}{n}$ et $\sum z^n$.

En conclusion : R = 1.

4. La série entière $\sum \frac{\operatorname{ch}(n)}{n} z^n$ a le même rayon de convergence que la série entière $\sum \operatorname{ch}(n) z^n$.

Or ch(n)
$$\sim \frac{e^n}{2}$$
.

La série entière $\sum \frac{\operatorname{ch}(n)}{n} z^n$ a le même rayon de convergence que la série entière $\sum \frac{e^n}{2} z^n$.

On reconnaît au facteur $\frac{1}{2}$ près, la série entière géométrique de raison $\frac{e}{2}$: $\sum (ez)^n$ converge si et seulement si $|ez| < 1 \Longleftrightarrow |z| < \frac{1}{e}$.

En conclusion : $R = \frac{1}{e}$.

5. On déterminer un équivalent, en module, de la suite des coefficients de la série entière $\sum \frac{n^2}{3^n + n} z^n$.

$$\frac{n^2}{3^n+n} \underset{n \to +\infty}{\sim} \frac{n^2}{3^n}.$$

La série entière $\sum \frac{n^2}{3^n+n}z^n$ a donc le même rayon de convergence que la série entière $\sum \frac{n^2}{3^n}z^n$ soit, par divisions successives par n, le même rayon de convergence que la série entière $\sum \frac{1}{3^n}z^n$.

 $\sum \frac{1}{3^n} z^n \text{ converge si et seulement si } \left| \frac{z}{3} \right| < 1 \Longleftrightarrow |z| < 3.$ En conclusion : R = 3.

6. Pour tout $z \neq 0$, la règle de d'Alembert donne :

$$\left| \left(\frac{1}{1 + \sqrt{n+1}} \right)^{n+1} z^{n+1} \right| \times \left| \frac{\left(1 + \sqrt{n} \right)^n}{z^n} \right| = \frac{|z|}{1 + \sqrt{n+1}} \underbrace{\left(\frac{1 + \sqrt{n}}{1 + \sqrt{n+1}} \right)^n}_{\leqslant 1}$$

$$\leqslant \frac{|z|}{1 + \sqrt{n+1}} \underset{n \to +\infty}{\longrightarrow} 0.$$

En conclusion : $R = +\infty$.

Solution Exercice 6.

1. La série entière $\sum_{n\geqslant 0}nx^n$, par multiplication par n, a le même rayon de convergence que la série entière $\sum x^n:R=1$.

Pour tout
$$x \in]-1;1[,\sum_{n=0}^{+\infty}nx^n=x\sum_{n=0}^{+\infty}nx^{n-1}=x\sum_{n=1}^{+\infty}nx^{n-1}.$$

On reconnait la dérivée de la série géométrique de raison $x\in]-1;1[$.

Par le théorème de dérivation terme à terme :

$$\sum_{n=1}^{+\infty} nx^{n-1} = \sum_{n=1}^{+\infty} \frac{d}{dx}(x^n) = \frac{d}{dx} \left(\sum_{n=0}^{+\infty} x^n\right)$$
$$= \frac{d}{dx} \left(\frac{1}{1-x}\right) = \frac{1}{(1-x)^2}$$

On en déduit que pour tout $x \in]-1;1[:$

$$\sum_{n=0}^{+\infty} x^n = \frac{x}{(1-x)^2}.$$

2. La série entière $\sum_{n\geqslant 0} n^2 x^n$, par multiplications successives par n, a le même rayon

de convergence que la série entière $\sum x^n : R = 1$.

Pour tout $x \in]-1;1[$,

$$\sum_{n=0}^{+\infty} n^2 x^n = \sum_{n=0}^{+\infty} (n(n-1) + n) x^n = \sum_{n=0}^{+\infty} n(n-1) x^n + \sum_{n=0}^{+\infty} n x^n$$

$$\text{CV cf.1.}$$

$$= x^{2} \sum_{n=0}^{+\infty} n(n-1)x^{n-2} + \underbrace{\frac{x}{(1-x)^{2}}}_{\text{cf. 1.}}$$

Le premier terme ci-dessus est, au facteur x^2 près, la dérivée seconde la série géométrique de raison x. Par le théorème de dérivation terme à terme, on a

$$\sum_{n=2}^{+\infty} n(n-1)x^{n-2} = \sum_{n=0}^{+\infty} \frac{d^2}{dx^2}(x^n) = \frac{d}{dx} \left(\sum_{n=0}^{+\infty} \frac{d}{dx}(x^n)\right)$$
$$= \frac{d^2}{dx^2} \sum_{n=0}^{+\infty} x^n = \frac{d^2}{dx^2} \left(\frac{1}{1-x}\right)$$
$$= \frac{2}{(1-x)^3}$$

On en déduit que

$$\sum_{n=0}^{+\infty} n^2 x^n = \frac{2x^2}{(1-x)^3} + \frac{x}{(1-x)^2}.$$

3. La série entière $\sum \frac{1}{n}x^n$ a le même rayon de convergence que la série $\sum x^n$: R=1.

Pour tout $x \in]-1;1[$, par le théorème de primitivation d'une série entière :

$$\sum_{n=1}^{\infty} \frac{1}{n} x^n = \sum_{n=0}^{+\infty} \frac{1}{n+1} x^{n+1} = \sum_{n=0}^{+\infty} \left(\int_0^x t^n dt \right) = \int_0^x \left(\sum_{n=0}^{+\infty} t^n \right) dt$$
$$= \int_0^x \frac{1}{1-t} dt = \left[-\ln(1-t) \right]_0^x = -\ln(1-x).$$

4. La série entière $\sum_{n\geqslant 1} \frac{n^2+n+1}{n} x^n$ a le même rayon de convergence que la série

$$\sum nx^n$$
 par équivalence : $\frac{n^2+n+1}{n} \underset{n \to +\infty}{\sim} n$.

Par multiplication par n, la série entière $\sum nx^n$ a le même rayon de convergence que la série $\sum x^n$.

La série entière $\sum \frac{n^2+n+1}{n}x^n$ a donc pour rayon de convergence R=1. Soit $x\in]-1;1[$:

$$\sum_{n=1}^{+\infty} \frac{n^2 + n + 1}{n} x^n = \sum_{n=1}^{+\infty} (n+1)x^n + \sum_{n=1}^{+\infty} \frac{x^n}{n} = \sum_{n=2}^{+\infty} nx^{n-1} - \ln(1-x)$$
$$= \sum_{n=1}^{+\infty} nx^{n-1} - 1 - \ln(1-x) = \frac{1}{(1-x)^2} - 1 - \ln(1-x)$$

5. La série entière $\sum_{n\geqslant 0} \frac{n^3+n+1}{n+1} x^n$ a le même rayon de convergence que la série entière $\sum n^2 x^n$ et, par multiplication successive par n, a le même rayon de convergence que la série entière $\sum x^n : R = 1$. Soit $x \in]-1;1[$.

Pour calculer la somme de la série entière $\sum_{n\geqslant 0} \frac{n^3+n+1}{n+1} x^n$, on fait apparaitre les dérivées successives ou les primitives de la série géométrique de raison $x\in]-1;1[$.

La division euclidienne de $n^3 + n + 1$ donne :

$$n^3 + n + 1 = (n^2 - n + 2)(n + 1) - 1,$$

donc pour tout $x \in]-1;1[\setminus \{0\}:$

$$\sum_{n=0}^{+\infty} \frac{n^3 + n + 1}{n+1} x^n = \sum_{n=0}^{+\infty} \frac{(n^2 - n + 2)(n+1) - 1}{n+1} x^n$$

$$= \sum_{n=0}^{+\infty} (n^2 - n + 2) x^n - \sum_{n=0}^{+\infty} \frac{1}{n+1} x^n$$

$$= \sum_{n=0}^{+\infty} n(n-1) x^n + 2 \sum_{n=0}^{+\infty} x^n - \sum_{n=0}^{+\infty} \frac{1}{n+1} x^n$$

$$= x^2 \sum_{n=2}^{+\infty} n(n-1) x^{n-2} + 2 \sum_{n=0}^{+\infty} x^n - \frac{1}{x} \sum_{n=0}^{+\infty} \frac{1}{n+1} x^{n+1}$$

$$= \frac{2x^2}{(1-x)^2} + \frac{2}{1-x} + \frac{1}{x} \ln(1-x)$$

Pour x=0, on trouve $\sum_{n=0}^{+\infty} \frac{n^3+n+1}{n+1} 0^n = 1.$

Remarques

En prolongeant la fonction $f: x \mapsto \frac{\ln(1-x)}{x}$ par continuité en 0 (en posant f(0) = -1), la formule établie ci-dessus est alors valable pour tout $x \in]-1;1[$.

6. La série entière $\sum_{n\geqslant 1} \frac{\operatorname{ch}(n)}{n} x^n$ a le même rayon de convergence que la série entière $\sum \frac{e^n}{2} x^n$ par multiplication par n et par équivalence :

$$\operatorname{ch}(n) = \frac{e^n + e^{-n}}{2} \underset{n \to +\infty}{\sim} \frac{e^n}{2}.$$

Au facteur $\frac{1}{2}$ près, on reconnait la série géométrique $\sum (ex)^n$ qui converge si et seulement si $|ex|<1 \Longleftrightarrow |x|<\frac{1}{e}$: $R=\frac{1}{e}$. Pour tout $x\in]-\frac{1}{e}$; $\frac{1}{e}[$: calcul à compléter

Solution Exercice 7.

1. La série entière $\sum \frac{n^3+n+3}{n+1}x^n$ a le même rayon de convergence que la série entière $\sum n^2x^n$ par équivalence $\frac{n^3+n+3}{n+1} \underset{n \to +\infty}{\sim} n^2$.

Par multiplications successives par n, la série entière $\sum n^2 x^n$ a le même rayon de convergence que la série entière $\sum x^n : R = 1$.

Soit $x \in]-1;1[$. Pour calculer la somme de la série entière $\sum \frac{n^3+n+3}{n+1}x^n$, on fait apparaître les dérivées successives et les primitives de la série géométrique de raison x.

La division euclidienne de $n^3 + n + 3$ par n + 1 donne :

$$n^3 + n + 3 = (n+1)(n^2 - n + 2) + 1.$$

Pour tout $x \in]-1;1[\setminus \{0\}:$

$$\sum_{n=0}^{+\infty} \frac{n^3 + n + 3}{n+1} x^n = \sum_{n=0}^{+\infty} (n^2 - n + 2) x^n + \sum_{n=0}^{+\infty} \frac{1}{n+1} x^n$$

$$= \sum_{n=0}^{+\infty} n(n-1) x^n + 2 \sum_{n=0}^{+\infty} x^n + \sum_{n=0}^{+\infty} \frac{1}{n+1} x^n$$

$$= x^2 \sum_{n=0}^{+\infty} n(n-1) x^{n-2} + \frac{2}{1-x} + \frac{1}{x} \sum_{n=0}^{+\infty} \frac{1}{n+1} x^{n+1}$$

Or

— par le théorème de dérivation terme à terme :

$$\sum_{n=0}^{+\infty} n(n-1)x^{n-2} = \sum_{n=0}^{+\infty} \frac{d^2}{dx^2} (x^n) = \frac{d^2}{dx^2} \left(\sum_{n=0}^{+\infty} x^n\right)$$
$$= \frac{d^2}{dx^2} \left(\frac{1}{1-x}\right) = \frac{2}{(1-x)^3}$$

— Par le théorème de primitivation d'une série entière :

$$\sum_{n=0}^{+\infty} \frac{1}{n+1} x^{n+1} = \sum_{n=0}^{+\infty} \left(\int_0^x t^n dt \right) = \int_0^x \left(\sum_{n=0}^{+\infty} t^n \right) dt$$
$$= \int_0^x \frac{1}{1-t} dt = -\ln(1-x)$$

On obtient alors

$$\sum_{n=0}^{+\infty} \frac{n^3 + n + 1}{n+1} x^n = \frac{2x^2}{(1-x)^3} + \frac{2}{1-x} - \frac{1}{x} \ln(1-x).$$

Formule encore valable en x=0 à condition de prolonger la fonction $f:x\mapsto \frac{\ln(1-x)}{x}$ par continuité en x=0, en posant f(0)=-1.

2. La série entière $\sum \frac{n^2+n+1}{2^n}x^n$ a le même rayon de convergence que la série entière $\sum \frac{n^2}{2^n}x^n$ par équivalence $\frac{n^2+n+1}{2^n} \underset{n \to +\infty}{\sim} \frac{n^2}{2^n}$.

Par multiplications successives par n, la série entière $\sum \frac{n^2}{2^n} x^n$ a le même rayon de convergence que la série entière $\sum \frac{1}{2^n} x^n$.

On reconnait la série géométrique de raison $\frac{x}{2}$ qui est convergente si et seulement si $\left|\frac{x}{2}\right| < 1 \Longleftrightarrow |x| < 2$.

Pour $x \in]-2; 2[$, on note $f(x) = \sum_{n=0}^{+\infty} \frac{n^2 + n + 1}{2^n} x^n$ la fonction somme.

Soit $x \in]-2; 2[$. On note $t = \frac{x}{2}$, et on calcule $f(x) = f(2t) = \sum_{n=0}^{+\infty} (n^2 + n + 1)t^n$.

Par le théorème de dérivation terme à terme :

$$f(2t) = \sum_{n=0}^{+\infty} (n^2 + n + 1)t^n = \sum_{n=0}^{+\infty} n(n-1)t^n + 2\sum_{n=0}^{+\infty} nt^n + \sum_{n=0}^{+\infty} t^n$$

$$= t^2 \sum_{n=2}^{+\infty} n(n-1)t^{n-2} + 2t \sum_{n=1}^{+\infty} nt^{n-1} + \frac{1}{1-t}$$

$$= t^2 \sum_{n=2}^{+\infty} \frac{d^2}{dt^2}(t^n) + 2t \sum_{n=1}^{+\infty} \frac{d}{dt}(t^n) + \frac{1}{1-t}$$

$$= t^2 \frac{d^2}{dt^2} \left(\sum_{n=0}^{+\infty} t^n\right) + 2t \frac{d}{dt} \left(\sum_{n=0}^{+\infty} t^n\right) + \frac{1}{1-t}$$

$$= t^2 \frac{d^2}{dt^2} \left(\frac{1}{1-t}\right) + 2t \frac{d}{dt} \left(\frac{1}{1-t}\right) + \frac{1}{1-t}$$

$$= \frac{2t^2}{(1-t)^3} + \frac{2t}{(1-t)^2} + \frac{1}{1-t}.$$

On obtient, puisque $x = 2t \Longleftrightarrow t = \frac{x}{2}$:

$$f(x) = \frac{x^2}{2} \frac{1}{(1 - \frac{x}{2})^3} + x \frac{1}{(1 - \frac{x}{2})^2} + \frac{1}{1 - \frac{x}{2}}.$$

3. La série entière $\sum \frac{1}{n(n+2)} x^n$ a le même rayon de convergence que la série entière $\sum \frac{1}{n^2} x^n$ par équivalence $\frac{1}{n(n+2)} \underset{n \to +\infty}{\sim} \frac{1}{n^2}$.

Par multiplications successives, la série entière $\sum \frac{1}{n^2} x^n$ a la même rayon de convergence que la série entière $\sum x^n : R = 1$. Soit $x \in]-1; 1[\setminus \{0\} :$

$$\sum_{n=1}^{+\infty} \frac{1}{n(n+2)} x^n = \sum_{n=1}^{+\infty} \frac{1}{2n} x^n - \sum_{n=1}^{+\infty} \frac{1}{2(n+2)} x^n$$

$$= \frac{1}{2} \sum_{n=1}^{+\infty} \frac{x^n}{n} - \frac{1}{2} \sum_{n=3} \frac{1}{n} x^{n-2}$$

$$= \frac{1}{2} \sum_{n=1}^{+\infty} \frac{x^n}{n} - \frac{1}{2x^2} \left(\sum_{n=1} \frac{1}{n} x^n - x - \frac{x^2}{2} \right)$$

$$= -\frac{1}{2} \ln(1-x) - \frac{1}{2x^2} (-\ln(1-x) - x - \frac{x^2}{2})$$

Pour x = 0, on trouve $\sum_{n=1}^{+\infty} 0^n = 0$.

4. La série entière $\sum_{n\geqslant 0} \frac{2n+1}{2n+3} x^n$ a le même rayon de convergence que la série entière $\sum x^n$ par équivalence $\frac{2n+1}{2n+3} \underset{n\to +\infty}{\sim} 1$.

— Soit $x\in]0;1[$:

$$\sum_{n=0}^{+\infty} \frac{2n+1}{2n+3} x^n = \sum_{n=0}^{+\infty} \frac{2n+3-2}{2n+3} x^n = \sum_{n=0}^{+\infty} x^n - 2 \sum_{n=0}^{+\infty} \frac{1}{2n+3} x^n$$
$$= \frac{1}{1-x} - \frac{2}{\sqrt{x^3}} \sum_{n=0}^{+\infty} \frac{1}{2n+3} \sqrt{x^{2n+3}}$$

$$= \frac{1}{1-x} - \frac{2}{\sqrt{x^3}} \sum_{n=0}^{+\infty} \left(\int_0^{\sqrt{x}} t^{2n+2} \right) dt,$$

On en déduit alors le par théorème de primitivation d'une série entière :

$$\sum_{n=0}^{+\infty} \frac{2n+1}{2n+3} x^n = \frac{1}{1-x} - \frac{2}{\sqrt{x^3}} \int_0^{\sqrt{x}} \left(\sum_{n=0}^{+\infty} t^{2n+2} \right) dt$$

$$= \frac{1}{1-x} - \frac{2}{\sqrt{x^3}} \int_0^{\sqrt{x}} \left(\sum_{n=0}^{+\infty} (t^2)^{n+1} \right) dt$$

$$= \frac{1}{1-x} - \frac{2}{\sqrt{x^3}} \int_0^{\sqrt{x}} \left(\sum_{n=1}^{+\infty} (t^2)^n \right) dt$$

$$= \frac{1}{1-x} - \frac{2}{\sqrt{x^3}} \int_0^{\sqrt{x}} \left(\frac{1}{1-t^2} - 1 \right) dt$$

$$= \frac{1}{1-x} - \frac{2}{\sqrt{x^3}} \int_0^{\sqrt{x}} \frac{1}{2} \left(\frac{1}{1+t} + \frac{1}{1-t} \right) dt + \frac{2}{x}$$

$$= \frac{1}{1-x} - \frac{1}{\sqrt{x^3}} \ln \left(\frac{1+\sqrt{x}}{1-\sqrt{x}} \right) + \frac{2}{x}.$$

Remarques

On peut expliciter plus encore le changement de variable

$$x = t^2 \in]0; 1[\iff t = \sqrt{x} \in]0; 1[$$

en posant pour tout $x \in]0;1[$,

$$f(x) = \sum_{n=0}^{+\infty} \frac{2n+1}{2n+3} x^n = \sum_{n=0}^{+\infty} \frac{2n+1}{2n+3} t^{2n} = f(t^2).$$

Le calcul de $f(t^2)$ se mène alors comme suit :

$$f(t^2) = \sum_{n=0}^{+\infty} \frac{2n+1}{2n+3} t^{2n} = \sum_{n=0}^{+\infty} t^{2n} - 2 \sum_{n=0}^{+\infty} \frac{t^{2n}}{2n+3}$$

$$= \frac{1}{1-t^2} - \frac{2}{t^3} \sum_{n=0}^{+\infty} \frac{t^{2n+3}}{2n+3} = \frac{1}{1-t^2} - \frac{2}{t^3} \sum_{n=0}^{+\infty} \int_0^t u^{2n+2} du$$

$$= \frac{1}{1-t^2} - \frac{2}{t^3} \int_0^t \sum_{n=0}^{+\infty} (u^2)^{n+1} du = \frac{1}{1-t^2} - \frac{2}{t^3} \int_0^t \sum_{n=1}^{+\infty} (u^2)^n du$$

$$= \frac{1}{1-t^2} - \frac{2}{t^3} \int_0^t \left(\frac{1}{1-u^2} - 1\right) du = \frac{1}{1-t^2} - \frac{1}{t^3} \ln\left(\frac{1+t}{1-t}\right) + \frac{2}{t^2}$$

On en déduit, comme ci-dessus, puisque $t = \sqrt{x} \iff x = t^2$:

$$f(x) = f(t^2) = \frac{1}{1-x} - \frac{1}{\sqrt{x^3}} \ln\left(\frac{1+\sqrt{x}}{1-\sqrt{x}}\right) + \frac{2}{x}.$$

— Soit maintenant $x \in]-1;0[$, on a $x=-(\sqrt{-x})^2$, donc $x^n=(-1)^n\sqrt{-x}^{2n}$

Remarques

On peut également expliciter plus encore le changement de variable $t=\sqrt{-x}\Longleftrightarrow t^2=-x$.

$$\sum_{n=0}^{+\infty} \frac{2n+1}{2n+3} x^n = \sum_{n=0}^{+\infty} \frac{2n+3-2}{2n+3} x^n = \sum_{n=0}^{+\infty} x^n - 2 \sum_{n=0}^{+\infty} \frac{1}{2n+3} x^n$$

$$= \frac{1}{1-x} - 2 \sum_{n=0}^{+\infty} \frac{1}{2n+3} (-1)^n \sqrt{-x^{2n}}$$

$$= \frac{1}{1-x} - 2 \sum_{n=0}^{+\infty} \frac{(-1)^n}{2n+3} \left(\frac{1}{\sqrt{-x^3}} \right) (\sqrt{-x})^{2n+3}$$

$$= \frac{1}{1-x} - \frac{2}{\sqrt{-x^3}} \sum_{n=0}^{+\infty} (-1)^n \left(\int_0^{\sqrt{-x}} t^{2n+2} \right) dt$$

$$= \frac{1}{1-x} + \frac{2}{\sqrt{-x^3}} \sum_{n=0}^{+\infty} (-1)^{n+1} \left(\int_0^{\sqrt{-x}} t^{2n+2} \right) dt$$

On en déduit alors par le théorème de primitivation d'une série entière :

$$\sum_{n=0}^{+\infty} \frac{2n+1}{2n+3} x^n = \frac{1}{1-x} + \frac{2}{\sqrt{-x^3}} \int_0^{\sqrt{-x}} \left(\sum_{n=0}^{+\infty} (-1)^{n+1} t^{2n+2} \right) dt$$

$$= \frac{1}{1-x} + \frac{2}{\sqrt{-x^3}} \int_0^{\sqrt{-x}} \left(\sum_{n=0}^{+\infty} (-t^2)^{n+1} \right) dt$$

$$= \frac{1}{1-x} + \frac{2}{\sqrt{-x^3}} \int_0^{\sqrt{-x}} \left(\sum_{n=1}^{+\infty} (-t^2)^n \right) dt$$

$$= \frac{1}{1-x} + \frac{2}{\sqrt{-x^3}} \int_0^{\sqrt{-x}} \left(\frac{1}{1+t^2} - 1 \right) dt$$

$$= \frac{1}{1-x} + \frac{2}{\sqrt{-x^3}} \arctan(\sqrt{-x}) + \frac{2}{x}$$

— Pour
$$x=0$$
 la série entière $\sum_{n=0}^{+\infty} \frac{2n+1}{2n+3} 0^n$ est égale à $\frac{1}{3}$.

Solution Exercice 8.

1. La série entière $\sum \frac{n^2+n+3}{n!}x^n$ a le même rayon de convergence que la série entière $\sum \frac{n^2}{n!}x^n$ par équivalence

$$\frac{n^2 + n + 3}{n!} \underset{n \to +\infty}{\sim} \frac{n^2}{n!}.$$

Par multiplications successives par n, la série entière $\sum \frac{n^2}{n!} x^n$ a le même rayon de convergence que la série exponentielle $\sum \frac{x^n}{n!} : R = +\infty$. Soit $x \in \mathbb{R}$.

$$\sum_{n=0}^{+\infty} \frac{n^2 + n + 3}{n!} x^n = \sum_{n=0}^{+\infty} \frac{n(n+1)}{n!} x^n + 3 \sum_{n=0}^{+\infty} \frac{x^n}{n!}$$

$$= \sum_{n=1}^{+\infty} \frac{n+1}{(n-1)!} + 3e^x$$

$$= \sum_{n=1}^{+\infty} \frac{n-1}{(n-1)!} x^n + 2 \sum_{n=1}^{+\infty} \frac{x^n}{(n-1)!} + 3e^x$$

$$= \sum_{n=2}^{+\infty} \frac{n-1}{(n-1)!} x^n + 2x \sum_{n=1}^{+\infty} \frac{x^{n-1}}{(n-1)!} + 3e^x$$

$$= x^2 \sum_{n=2}^{+\infty} \frac{1}{(n-2)!} x^{n-2} + 2x \sum_{n=0}^{+\infty} \frac{x^n}{n!} + 3e^x$$

$$= x^2 \sum_{n=0}^{+\infty} \frac{1}{n!} x^n + 2x \sum_{n=0}^{+\infty} \frac{x^n}{n!} + 3e^x$$

$$= (x^2 + 2x + 3)e^x.$$

2. La série entière $\sum \frac{n^2+2n-1}{(n+1)!}x^n$ a le même rayon de convergence que les séries entières $\sum \frac{n^2}{(n+1)n!}x^n$ et $\sum \frac{n}{n!}x^n$ par équivalence :

$$\frac{n^2 + 2n - 1}{(n+1)!} \underset{n \to +\infty}{\sim} \frac{n^2}{(n+1)!} \underset{n \to +\infty}{\sim} \frac{n}{n!}.$$

Par multiplication par n, la série entière $\sum \frac{n}{n!}x^n$ a le même rayon de convergence que la série exponentielle $\sum \frac{x^n}{n!}: R=+\infty$. Soit $x\in\mathbb{R}^*$.

$$\sum_{n=0}^{+\infty} \frac{n^2 + 2n - 1}{(n+1)!} x^n = \sum_{n=0}^{+\infty} \frac{(n+1)^2 - 2}{(n+1)!} x^n = \sum_{n=0}^{+\infty} \frac{n+1}{n!} x^n - 2 \sum_{n=0}^{+\infty} \frac{x^n}{(n+1)!}$$

$$= \sum_{n=1}^{+\infty} \frac{n}{n!} x^n + \sum_{n=0}^{+\infty} \frac{x^n}{n!} - \frac{2}{x} \sum_{n=0}^{+\infty} \frac{x^{n+1}}{(n+1)!}$$

$$= x \sum_{n=1}^{+\infty} \frac{x^{n-1}}{(n-1)!} + e^x - \frac{2}{x} \sum_{n=1}^{+\infty} \frac{x^n}{n!} = x \sum_{n=0}^{+\infty} \frac{x^n}{n!} + e^x - \frac{2}{x} (e^x - 1)$$

$$= x e^x + e^x - \frac{2}{x} (e^x - 1)$$

Pour x = 0 la série entière vaut -1.

3. La série entière $\sum \frac{n}{(2n+1)!}x^n$ a le même rayon de convergence que la série $\sum \frac{1}{(2n+1)!}x^n$ par multiplication par n.

De plus, $0 \leqslant \frac{1}{(2n+1)!} \leqslant \frac{1}{n!}$ donc $R \geqslant R'$ où $R' = +\infty$ est le rayon de convergence de la série exponentielle $\sum \frac{x^n}{n!} : R = +\infty$.

— Soit $x \in \mathbb{R}_+^*$. Par le théorème de dérivation terme à terme :

$$\begin{split} \sum_{n=0}^{+\infty} \frac{nx^n}{(2n+1)!} &= x \sum_{n=0}^{+\infty} \frac{d}{dx} \left(\frac{x^n}{(2n+1)!} \right) = x \frac{d}{dx} \left(\sum_{n=0}^{+\infty} \frac{x^n}{(2n+1)!} \right) \\ &= x \frac{d}{dx} \left(\frac{1}{\sqrt{x}} \sum_{n=0}^{+\infty} \frac{\sqrt{x}^{2n+1}}{(2n+1)!} \right) = x \frac{d}{dx} \left(\frac{1}{\sqrt{x}} \operatorname{sh}(\sqrt{x}) \right) \\ &= x \left(-\frac{1}{2x^{\frac{3}{2}}} \operatorname{sh}(\sqrt{x}) + \frac{1}{\sqrt{x}} \frac{1}{2\sqrt{x}} \operatorname{ch}(\sqrt{x}) \right) \\ &= -\frac{1}{2\sqrt{x}} \operatorname{sh}(\sqrt{x}) + \frac{1}{2} \operatorname{ch}(\sqrt{x}). \end{split}$$

— Pour x = 0, la série entière est nulle.

— Si
$$x < 0$$
, on a $x = -\sqrt{-x^2}$ donc $x^n = (-1)^n \sqrt{-x^2}^{2n}$.

$$\sum_{n=0}^{+\infty} \frac{nx^n}{(2n+1)!} = x \sum_{n=0}^{+\infty} \frac{d}{dx} \left(\frac{x^n}{(2n+1)!} \right) = x \frac{d}{dx} \left(\sum_{n=0}^{+\infty} \frac{x^n}{(2n+1)!} \right)$$

$$= x \frac{d}{dx} \left(\sum_{n=0}^{+\infty} \frac{(-1)^n \sqrt{-x}^{2n}}{(2n+1)!} \right) = x \frac{d}{dx} \left(\sum_{n=0}^{+\infty} \frac{1}{\sqrt{-x}} \frac{(-1)^n \sqrt{-x}^{2n+1}}{(2n+1)!} \right)$$

$$= x \frac{d}{dx} \left(\frac{1}{\sqrt{-x}} \sin(\sqrt{-x}) \right)$$

$$= x \left(\frac{1}{2(-x)^{\frac{3}{2}}} \sin(\sqrt{-x}) + \frac{1}{\sqrt{-x}} \frac{-1}{2\sqrt{-x}} \cos(\sqrt{-x}) \right)$$

$$= -\frac{1}{2\sqrt{-x}} \sin(\sqrt{-x}) + \frac{1}{2} \cos(\sqrt{-x}).$$

4. La série entière $\sum \frac{\operatorname{ch}(n)}{n!} x^n$ a le même rayon de convergence que la série entière $\sum \frac{e^n}{2(n!)} x^n$.

La série entière exponentielle a pour rayon de convergence $R'=+\infty$ ainsi, la série entière $\sum \frac{(ex)^n}{2(n!)}$ converge pour tout $x\in\mathbb{R}:R=+\infty$. Soit $x\in\mathbb{R}$.

$$\sum_{n=0}^{+\infty} \frac{\operatorname{ch}(n)}{n!} x^n = \frac{1}{2} \sum_{n=0}^{+\infty} \frac{(ex)^n}{n!} + \frac{1}{2} \sum_{n=0}^{+\infty} \frac{(e^{-1}x)^n}{n!}$$
$$= \frac{1}{2} \left(e^{ex} + e^{e^{-1}x} \right)$$

Solution Exercice 9.

1. La série entière $\sum_{n\geqslant 1}\left(n+\frac{1}{n}\right)x^{2n}$ a le même rayon de convergence que la série entière $\sum_{n=1}^{+\infty}nx^{2n}$ par équivalence $\left|n+\frac{1}{n}\right|\underset{n\to+\infty}{\sim}n$.

Par multiplication par n, la série entière $\sum_{n=1}^{+\infty} nx^{2n}$ a le même rayon de convergence que la série géométrique $\sum_{n=1}^{+\infty} (x^2)^n : R=1$. Soit $x\in]-1;1[$.

On obtient par convergence des séries entières en jeu :

$$\sum_{n=1}^{+\infty} \left(n + \frac{1}{n} \right) x^{2n} = \sum_{n=1}^{+\infty} n x^{2n} + \sum_{n=1}^{+\infty} \frac{x^{2n}}{n}$$
$$= x^2 \sum_{n=1}^{+\infty} n (x^2)^{n-1} + \sum_{n=1}^{+\infty} \frac{(x^2)^n}{n}$$

— On pose $f(x) = \sum_{n=1}^{+\infty} n(x^2)^{n-1}$ et $t = x^2 \in [0; 1[$.

$$f(x) = \sum_{n=1}^{+\infty} nt^{n-1} = \sum_{n=1}^{+\infty} \frac{d}{dt}(t^n) = \sum_{n=0}^{+\infty} \frac{d}{dt}(t^n) = \frac{d}{dt} \left(\sum_{n=0}^{+\infty} t^n\right)$$
$$= \frac{d}{dt} \left(\frac{1}{1-t}\right) = \frac{1}{(1-t)^2} = \frac{1}{(1-x^2)^2}.$$

Ainsi,

$$x^{2} \sum_{n=1}^{+\infty} n(x^{2})^{n-1} = \frac{x^{2}}{(1-x^{2})^{2}}.$$

— D'autre part,

$$\sum_{n=1}^{+\infty} \frac{(x^2)^n}{n} = -\ln(1-x^2).$$

En conclusion, pour tout $x \in]-1;1[:$

$$\sum_{n=1}^{+\infty} \left(n + \frac{1}{n} \right) x^{2n} = \frac{x^2}{(1 - x^2)^2} - \ln(1 - x^2).$$

2. La série entière $\sum_{n=0}^{+\infty}$ a un rayon de convergence $R=+\infty$ car $\frac{1}{(3n)!}\leqslant \frac{1}{n!}:R\geqslant$

 $R' = +\infty$ où R' est le rayon de convergence de la série $\sum \frac{(x^3)^n}{n!}$. Soit $x \in \mathbb{R}$.

— Calcul avec $j^0 = 1$.

$$e^{x} = \sum_{n=0}^{+\infty} \frac{x^{n}}{n!}$$

$$= \sum_{n=0}^{+\infty} \frac{x^{3n}}{(3n)!} + \sum_{n=0}^{+\infty} \frac{x^{3n+1}}{(3n+1)!} + \sum_{n=0}^{+\infty} \frac{x^{3n+2}}{(3n+2)!}$$

— Calcul avec $j^1 = j$ vérifiant $j^3 = 1$:

$$e^{jx} = \sum_{n=0}^{+\infty} \frac{(jx)^n}{n!}$$

$$= \sum_{n=0}^{+\infty} \frac{j^{3n}x^{3n}}{(3n)!} + \sum_{n=0}^{+\infty} \frac{j^{3n+1}x^{3n+1}}{(3n+1)!} + \sum_{n=0}^{+\infty} \frac{j^{3n+2}x^{3n+2}}{(3n+2)!}$$

$$= \sum_{n=0}^{+\infty} \frac{x^{3n}}{(3n)!} + j\sum_{n=0}^{+\infty} \frac{x^{3n+1}}{(3n+1)!} + j^2\sum_{n=0}^{+\infty} \frac{x^{3n+2}}{(3n+2)!}$$

— Calcul avec j^2 vérifiant $(j^2)^2 = j^4 = j$:

$$e^{j^2x} = \sum_{n=0}^{+\infty} \frac{(j^2x)^n}{n!}$$

$$= \sum_{n=0}^{+\infty} \frac{j^{6n}x^{3n}}{(3n)!} + \sum_{n=0}^{+\infty} \frac{j^{6n+2}x^{3n+1}}{(3n+1)!} + \sum_{n=0}^{+\infty} \frac{j^{6n+4}x^{3n+2}}{(3n+2)!}$$

$$= \sum_{n=0}^{+\infty} \frac{x^{3n}}{(3n)!} + j^2 \sum_{n=0}^{+\infty} \frac{x^{3n+1}}{(3n+1)!} + j \sum_{n=0}^{+\infty} \frac{x^{3n+2}}{(3n+2)!}$$

En faisant la somme $e^x+e^{jx}+e^{j^2x}$, compte tenu du fait que $1+j+j^2=\frac{1-j^3}{1-j}=0$, on trouve

$$\sum_{n=0}^{+\infty} \frac{x^{3n}}{(3n)!} = \frac{1}{3} \left(e^x + e^{jx} + e^{j^2x} \right)$$

3. La série entière $\sum_{n\geqslant 0} (-1)^{n+1} n x^{2n+1}$ a le même rayon de convergence que la série entière $\sum_{n\geqslant 0} x^{2n+1}$ par équivalence et multiplication par n.

La série entière $\sum x^{2n}$ converge si et seulement si $x^2 < 1$. Au facteur x près on obtient le rayon de convergence de la série entière $\sum x^{2n+1}$: R=1.

Soit
$$x \in]-1;1[:\sum_{n=0}^{+\infty}(-1)^{n+1}nx^{2n+1}=-x\sum_{n=0}^{+\infty}(-1)^nnx^{2n}.$$

On pose $t = x^2 \in [0; 1]$ et on calcule par le théorème de dérivation terme à terme :

$$\sum_{n=0}^{+\infty} (-1)^n n x^{2n} = \sum_{n=0}^{+\infty} (-1)^n n t^n = t \sum_{n=0}^{+\infty} (-1)^n n t^{n-1}$$

$$= t \sum_{n=0}^{+\infty} \frac{d}{dt} \left((-1)^n t^n \right)$$

$$= t \frac{d}{dt} \left(\sum_{n=0}^{+\infty} (-t)^n \right) \text{ or } -t \in]-1;1[$$

$$= t \frac{d}{dt} \left(\frac{1}{1+t} \right) = -\frac{t}{(1+t)^2}$$

$$= -\frac{x^2}{(1+x^2)^2}$$

En conclusion: $\sum_{n=0}^{+\infty} (-1)^{n+1} nx^{2n+1} = \frac{x^3}{(1+x^2)^2}.$

4. La série entière $\sum_{n\geqslant 1} \frac{(-1)^n}{4n} x^{4n-1}$ a le même rayon de convergence que la série entière $\sum x^{4n}$ par équivalence, multiplication par n, au facteur $\frac{1}{x}$ près : R=1.

Soit
$$x \in]-1;1[$$
 non nul $:\sum_{n=1}^{+\infty} \frac{(-1)^n}{4n} x^{4n-1} = -\frac{1}{4x} \sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{n} x^{4n}$

On pose $t = x^4 \in [0; 1[$ et on calcule

$$\sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{n} x^{4n} = \sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{n} t^n = \ln(1+t) = \ln(1+x^4).$$

Ainsi,
$$\sum_{n=1}^{+\infty} \frac{(-1)^n}{4n} x^{4n-1} = -\frac{1}{4x} \ln(1+x^4).$$

5. La série entière $\sum_{n\geqslant 0}\cos\left(\frac{2n\pi}{3}\right)x^n$ a pour rayon de convergence R=1.

En effet, $\left|\cos\frac{2n\pi}{3}\right| \leqslant 1$ donc $R \geqslant R' = 1$ où R' est le rayon de convergence de la série entière $\sum_{n=0}^{+\infty} x^n$.

Pour x=1, la série entière $\sum_{n=0}^{+\infty}\cos\frac{2n\pi}{3}1^n$ diverge grossièrement car $\cos\left(\frac{2(3n)\pi}{3}\right)=\cos(2n\pi)=1$ $\underset{n\to+\infty}{\longrightarrow}1$.

La suite $\left(\cos\frac{2n\pi}{3}\right)_{n\in\mathbb{N}}$ ne peut donc converger vers 0 l'une de ses sous-suites convergeant vers 1.

Ainsi, $R \leq 1$ et finalement R = 1.

Soit $x \in]-1;1[$.

$$\sum_{n=0}^{+\infty} \cos\left(\frac{2n\pi}{3}\right) x^n = \frac{1}{2} \left(\sum_{n=0}^{+\infty} \left(e^{\frac{2in\pi}{3}} + e^{\frac{-2in\pi}{3}}\right) x^n\right)$$

$$= \frac{1}{2} \sum_{n=0}^{+\infty} \left(e^{\frac{2in\pi}{3}} x^n\right) + \frac{1}{2} \sum_{n=0}^{+\infty} \left(e^{\frac{2in\pi}{3}} x^n\right)$$

$$= \frac{1}{2} \sum_{n=0}^{+\infty} (jx)^n + \frac{1}{2} \sum_{n=0}^{+\infty} (\bar{j}x)^n$$

$$= \frac{1}{2} \frac{1}{1 - jx} + \frac{1}{2} \frac{1}{1 - \bar{j}x}$$

$$= \frac{1}{2} \frac{1 - \bar{j}x + 1 - jx}{(1 - jx)\bar{1} - jx}$$

$$= \frac{1}{2} \frac{2 + x}{x^2 + x + 1}$$

car |jx| < 1 et

$$(1 - jx)\overline{1 - jx} = |1 - jx|^2 = \left|1 - \left(-\frac{1}{2} + \frac{\sqrt{3}}{2}i\right)x\right|^2$$
$$= \left(1 + \frac{x}{2}\right)^2 + \frac{3}{4}x^2$$
$$= 1 + x + x^2.$$

Solution Exercice 10. On a $|\cos(n\theta)| \leqslant \frac{1}{n!}$ donc le rayon de R de la série entière $\sum \frac{\cos(n\theta)}{n!} x^n \text{ vérifie } R \geqslant R' = +\infty \text{ où } R' = +\infty \text{ est le rayon de convergence de la série exponentielle } \sum \frac{x^n}{n!}.$

De même, la série entière $\sum \frac{\sin(n\theta)}{n!} x^n$ a pour rayon de convergence $R = +\infty$. La combinaison linéaire $\sum \left(\frac{\cos(n\theta)}{n!} + i\frac{\sin(n\theta)}{n!}\right) x^n$ a un rayon de convergence $R'' \geqslant +\infty$ par le cours : $R'' = R = +\infty$.

$$\sum_{n=0}^{+\infty} \left(\frac{\cos(n\theta)}{n!} + i \frac{\sin(n\theta)}{n!} \right) x^n = \sum_{n=0}^{+\infty} \frac{\left(e^{i\theta} x \right)^n}{n!} = e^{e^{i\theta} x} = e^{x \cos \theta + ix \sin \theta}$$
$$= e^{x \cos \theta} (\cos(x \sin \theta) + i \sin(x \sin \theta))$$

Donc
$$\sum_{n=0}^{+\infty} \frac{\cos(n\theta)}{n!} x^n = e^{x\cos\theta} \cos(x\sin\theta) \text{ et } \sum_{n=0}^{+\infty} \frac{\sin(n\theta)}{n!} x^n = e^{x\cos\theta} \sin(x\sin\theta).$$

Solution Exercice 11.

1. On utilise les techniques de comparaisons série-intégrale.

La fonction $f: t \longmapsto \frac{1}{t}$ est décroissante sur $]0; +\infty[$.

Soit $k \geqslant 2$.

— Pour tout
$$t \in [k-1;k]$$
, $f(k) \leqslant f(t)$ donc $\int_{k-1}^k f(k)dt \leqslant \int_{k-1}^k f(t)dt$.

Ainsi,
$$\frac{1}{k} \leqslant \int_{k-1}^{k} \frac{1}{t} dt$$
.

— Pour tout
$$t \in [k, k+1], f(t) \leqslant f(k)$$
 donc $\int_k^{k+1} f(t)dt \leqslant \int_k^{k+1} f(k)dt$.

Ainsi
$$\int_{k}^{k+1} \frac{1}{t} dt \leqslant \frac{1}{k}$$
.

On somme cet encadrement pour tout $k \in [2, n]$ avec $n \ge 2$. On trouve :

$$\ln(n+1) - \ln(2) \int_{2}^{n+1} \frac{1}{t} dt \le \sum_{k=2}^{n} \frac{1}{k} \le \int_{1}^{n} \frac{1}{t} dt \ln(n).$$

En conclusion:

$$\ln(n+1) + 1 - \ln(2) \sum_{k=1}^{n} \frac{1}{k} \leqslant \ln(n) + 1 \Longrightarrow \sum_{k=1}^{n} \frac{1}{k} \underset{n \to +\infty}{\sim} \ln(n).$$

2. — Notons R le rayon de convergence de la série entière $\sum_{n\geq 1} a_n x^n$.

D'une part, la série entière $\sum a_n x^n$ a le même rayon de convergence que la série entière $\sum \ln(n)x^n$ par équivalence :

$$|a_n| \underset{n \to +\infty}{\sim} \ln(n).$$

D'autre part, pour tout $n \geqslant 3$, $1 \leqslant \ln(n) \leqslant n$ donc $R' \geqslant R \geqslant R''$ où R', R'' désignent les rayons de convergence des séries entières $\sum x^n, \sum nx^n$.

Classiquement, R' = R" = 1 donc R = 1.

— Soit x ∈] − 1; 1[.

La série entière $\sum_{n\geqslant 1}\left(\sum_{k=1}^n\frac{1}{k}\right)x^n$ est donc absolument convergente.

On reconnait le produit de Cauchy des séries entières absolument convergentes : $\sum_{p\geqslant 1} \frac{1}{p} x^p \text{ et } \sum_{q\geqslant 0} x^q :$

$$\left(\sum_{p=1}^{+\infty}\frac{1}{p}x^p\right)\left(\sum_{q=0}^{+\infty}x^q\right)=\sum_{n=1}^{+\infty}\left(\sum_{p+q=n}\frac{1}{p}\right)x^n=\sum_{n=1}^{+\infty}\left(\sum_{p=1}^{n}\frac{1}{p}\right)x^n.$$

$$- \text{En conclusion}: \sum_{n=1}^{+\infty} \left(\sum_{k=1}^n \frac{1}{k}\right) x^n = \left(\sum_{p=1}^{+\infty} \frac{1}{p} x^p\right) \left(\sum_{q=0}^{+\infty} x^q\right) = -\frac{\ln(1-x)}{1-x}.$$

Remarques

Ne pas omettre l'indice q=0 dans la somme $\sum_{}^{+\infty}x^{q}$.

Attention, en général, aux indices dans les produits de Cauchy :

$$\left(\sum_{p=1}^{+\infty} a_p\right) \left(\sum_{q=0}^{+\infty} b_q\right) = (a_1 + a_2 + a_3 + \dots)(b_0 + b_1 + b_2 + \dots)$$

$$= \underbrace{(a_1b_0)}_{n=1} + \underbrace{(a_1b_1 + a_2b_0)}_{n=2} + \underbrace{(a_1b_2 + a_2b_1 + a_3b_0)}_{n=3} + \dots$$

$$= \sum_{n=1}^{+\infty} \left(\sum_{k=1}^{n} a_k b_{n-k}\right)$$

tandis que

$$\left(\sum_{p=1}^{+\infty} a_p\right) \left(\sum_{q=1}^{+\infty} b_q\right) = (a_1 + a_2 + a_3 + \dots)(b_1 + b_1 + b_2 + \dots)$$

$$= \underbrace{(a_1b_1)}_{n=2} + \underbrace{(a_1b_2 + a_2b_1)}_{n=3} + \underbrace{(a_1b_3 + a_2b_2 + a_3b_1)}_{n=4} + \dots$$

$$= \sum_{n=2}^{+\infty} \left(\sum_{k=1}^{n-1} a_k b_{n-k}\right) = \sum_{n=1}^{+\infty} \left(\sum_{k=1}^{n} a_k b_{n-k+1}\right)$$

Pour éviter les erreurs, on peut poser $a_0 = 0$ et calculer le produit de Cauchy classique $\sum_{n=0}^{+\infty} a_n \sum_{n=0}^{+\infty} b_n$

Solution Exercice 12.

1. La série entière $\sum_{n \ge 2} \frac{(-1)^n}{n(n-1)} x^n$ à le même rayon de convergence que la série entière $\sum \frac{x^n}{n^2}$ par équivalence :

$$\left| \frac{(-1)^n}{n(n-1)} \right| \underset{n \to +\infty}{\sim} \frac{1}{n^2}.$$

Par multiplications successives par n, la série entière $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2} x^n$ a le même rayon de convergence que la série géométrique $\sum x^n : R = 1$.

La fonction somme est définie en x = 1 et x = -1 car les séries numériques :

$$\sum_{n=2}^{+\infty} \frac{1}{2n(2n+1)} \text{ et } \sum_{n=2}^{+\infty} \frac{(-1)^n}{2n(2n+1)}$$

convergent absolument. Ainsi $\mathcal{D}_f = [-1; 1]$.

2. Soit $x \in]-1;1[$,

$$\sum_{n=2}^{+\infty} \frac{(-1)^n}{n(n-1)} x^n = \sum_{n=2}^{+\infty} (-1)^n x^n \left(\frac{1}{n-1} - \frac{1}{n} \right) = \sum_{n=2}^{+\infty} \frac{(-1)^n x^n}{n-1} - \sum_{n=2}^{+\infty} \frac{(-1)^n x^n}{n}$$

$$= \sum_{n=1}^{+\infty} \frac{(-1)^{n+1} x^{n+1}}{n} - \left(\sum_{n=1}^{+\infty} \frac{(-1)^n x^n}{n} + x \right)$$

$$= x \sum_{n=1}^{+\infty} \frac{(-1)^{n+1} x^n}{n} + \sum_{n=1}^{+\infty} \frac{(-1)^{n-1} x^n}{n} x^n - x$$

$$= (x+1) \ln(1+x) - x.$$

3. La fonction f est continue sur son ensemble de définition [-1;1]. Ainsi, en x=1:

$$f(1) = \sum_{n=2}^{+\infty} \frac{(-1)^n}{n(n-1)} = \lim_{x \to 1} f(x) = 2\ln(2) - 1.$$

En x = -1:

$$f(-1) = \sum_{n=2}^{+\infty} \frac{1}{n(n-1)} = \lim_{x \to -1} f(x) = 1 \text{ par c.c.}$$

Solution Exercice 13.

1. La série entière $\sum_{n\geqslant 1}^{+\infty} \frac{x^{2n+1}}{2n(2n+1)}$ a le même rayon de convergence que la série en-

tière
$$\sum_{n>1}^{+\infty} \frac{x^{2n+1}}{4n^2}$$
 par équivalence : $\frac{1}{2n(2n+1)} \underset{n \to +\infty}{\sim} \frac{1}{4n^2}$.

Par multiplications successives par n, la série entière $\sum_{n>1}^{+\infty} \frac{x^{2n+1}}{4n^2}$ a le même rayon

de convergence que la série entière $\sum_{n\geqslant 1}^{+\infty} x^{2n+1}$.

Au facteur x près, on reconnait la série géométrique $\sum (x^2)^n$ de raison x^2 qui converge si et seulement si $x^2 < 1$: R = 1.

La fonction f est définie en -1 et en 1 car les séries numériques :

$$\sum_{n=1}^{+\infty} \frac{(-1)^n}{2n(2n+1)} \text{ et } \sum_{n=1}^{+\infty} \frac{1}{2n(2n+1)}$$

convergent absolument : $\mathcal{D}_f = [-1; 1]$.

2. Soit $x \in]-1;1[$.

Par convergence des séries entières apparaissant dans le calcul, on a :

$$\sum_{n=1}^{+\infty} \frac{x^{2n+1}}{2n(2n+1)} = \sum_{n=1}^{+\infty} x^{2n+1} \left(\frac{1}{2n} - \frac{1}{2n+1} \right)$$

$$= \sum_{n=1}^{+\infty} \frac{x^{2n+1}}{2n} - \sum_{n=1}^{+\infty} \frac{x^{2n+1}}{2n+1}$$

$$= \frac{x}{2} \sum_{n=1}^{+\infty} \frac{(x^2)^n}{n} - \sum_{n=1}^{+\infty} \int_0^x t^{2n} dt$$

$$= -\frac{x}{2} \ln(1-x^2) - \int_0^x \left(\sum_{n=1}^{+\infty} t^{2n} \right) dt$$

$$= -\frac{x}{2} \ln(1-x^2) - \int_0^x \left(\frac{1}{1-t^2} - 1 \right) dt$$

$$= -\frac{x}{2} \ln(1-x^2) - \int_0^x \frac{1}{1-t^2} dt + x$$

où l'on a appliqué le théorème de primitivation d'une série entière.

On intègre $\int_0^x \frac{1}{1-t^2} dt$ en décomposant :

$$\int_0^x \frac{1}{1-t^2} dt = \int_0^x \frac{1}{2} \left(\frac{1}{1+t} + \frac{1}{1-t} \right) dt = \frac{1}{2} \ln \left(\frac{1+t}{1-t} \right)$$

En conclusion

$$\sum_{n=1}^{+\infty} \frac{x^{2n+1}}{2n(2n+1)} = x - \frac{x}{2}\ln(1-x^2) - \frac{1}{2}\ln\left(\frac{1+x}{1-x}\right).$$

3. Les séries numériques $\sum_{n\geqslant 1} \frac{1}{2n(2n+1)}$ et $\sum_{n\geqslant 1} \frac{(-1)^n}{2n(2n+1)}$ sont absolument convergentes par comparaison à une série de Riemann :

$$\frac{1}{2n(2n+1)} \underset{n \to +\infty}{\sim} \frac{1}{4n^2}.$$

Remarquons au passage, que la somme de l'une est l'opposée de l'autre.

Par le cours, on sait que la fonction somme $f: x \mapsto \sum_{n=1}^{+\infty} \frac{x^{2n+1}}{2n(2n+1)}$ d'une série entière est continue sur son ensemble de définition, ici [-1;1].

* En x = 1, on obtient :

$$f(1) = \sum_{n=1}^{+\infty} \frac{1}{2n(2n+1)} = \lim_{x \to 1} f(x).$$

Or: $\forall x \in]-1;1[:$

$$\begin{split} f(x) &= -\frac{x}{2} \ln(1-x^2) + x - \frac{1}{2} \ln\left(\frac{1+x}{1-x}\right) \\ &= x - \frac{x}{2} \ln(1-x) - \frac{x}{2} \ln(1+x) - \frac{1}{2} \ln(1+x) + \frac{1}{2} \ln(1-x) \\ &= x + \ln(1-x) \left(-\frac{x}{2} + \frac{1}{2}\right) + \ln(1+x) \left(-\frac{x}{2} - \frac{1}{2}\right) \\ &= x - \frac{1}{2} (x-1) \ln(1-x) - \frac{1}{2} (x+1) \ln(1+x) \xrightarrow[x \to 1]{} 1 - \ln(2) \text{ par c.c.} \end{split}$$

* En x = -1 on trouve :

$$f(-1) = \sum_{n=1}^{+\infty} \frac{(-1)^{2n+1}}{2n(2n+1)} = -f(1) = -1 + \ln(2).$$

Solution Exercice 14.

1. La série entière $\sum \frac{x^n}{2n+1}$ a le même rayon de convergence R que la série entière $\sum \frac{x^n}{2n}$ par équivalence $\frac{1}{2n+1} \underset{n \to +\infty}{\sim} \frac{1}{2n}$.

Par multiplication par n, et au facteur $\frac{1}{2}$ près, la série entière $\sum \frac{x^n}{2n}$ a le même rayon de convergence que la série entière $\sum x^n : R = 1$.

- De plus
- la série numérique $\sum_{n\geqslant 1} \frac{1}{2n+1}$ diverge par comparaison à une série de Riemann : $\frac{1}{2n+1} \sim \frac{1}{n\rightarrow +\infty} \frac{1}{2} \frac{1}{n} \geqslant 0$.
- la série numérique $\sum_{n\geqslant 1} \frac{(-1)^n}{2n+1}$ converge par le critère spécial des séries alternées car $\frac{1}{2n+1}\geqslant 0$ décroit vers 0.
- 2. Soit $x \in]0;1[$. On pose $f(x)=\sum_{n=0}^{+\infty}\frac{x^n}{2n+1}=\sum_{n=0}^{+\infty}\frac{t^{2n}}{2n+1}=f(t^2)$ via le changement de variable $x=t^2\in]0;1[\Longleftrightarrow t=\sqrt{x}\in]0;1[$. On calcule $f(t^2)$ pour $t\in]0;1[$.
 - **Première méthode :** Par le théorème de primitivation d'une série entière :

$$f(t^2) = \sum_{n=0}^{+\infty} \frac{1}{t} \frac{t^{2n+1}}{2n+1} = \frac{1}{t} \sum_{n=0}^{+\infty} \int_0^t u^{2n} du = \frac{1}{t} \int_0^t \left(\sum_{n=0}^{+\infty} (u^2)^n \right) du$$
$$= \frac{1}{t} \int_0^t \frac{1}{1-u^2} du = \frac{1}{t} \frac{1}{2} \int_0^t \frac{1}{1+u} + \frac{1}{1-u} du$$
$$= \frac{1}{2t} \ln|1+t| - \ln|1-t| = \frac{1}{2t} \ln\left(\frac{1+t}{1-t}\right)$$

On obtient, puisque $t = \sqrt{x}$:

$$f(x) = \frac{1}{2\sqrt{x}} \ln\left(\frac{1+\sqrt{x}}{1-\sqrt{x}}\right)$$

— **Seconde méthode :** Par le théorème de dérivation terme à terme. On a pour tout $t \in]0;1[$,

$$tf(t^2) = \sum_{n=0}^{+\infty} \frac{t^{2n+1}}{2n+1} \operatorname{donc} \frac{d}{dt}(tf(t^2)) = \sum_{n=0}^{+\infty} t^{2n} = \frac{1}{1-t^2},$$

$$car t^2 \in]0;1[\subset]-1;1[.$$

On intègre cette égalité sur [0;t], compte tenu du fait que la fonction $tf(t^2)$ est nulle en 0, on obtient :

$$tf(t^2) = \frac{1}{2} \ln \left(\frac{1+t}{1-t} \right)$$

On retrouve alors

$$f(x) = f(t^2) = \frac{1}{2\sqrt{x}} \ln\left(\frac{1+\sqrt{x}}{1-\sqrt{x}}\right)$$

- Si x = 0, on obtient $f(0) = \sum_{n=0}^{+\infty} \frac{1}{2n+1} x^0 = 1$.
- 3. Soit $x \in]-1;0[$. On pose $x=-t^2 \in]-1;0[\Longleftrightarrow t=-\sqrt{-x}.$ On obtient par le théorème de primitivation d'une série entière :

$$f(x) = f(-t^2) = \sum_{n=0}^{+\infty} \frac{(-t^2)^n}{2n+1} = \sum_{n=0}^{+\infty} \frac{(-1)^n t^{2n}}{2n+1}$$
$$= \frac{1}{t} \sum_{n=0}^{+\infty} (-1)^n \frac{t^{2n+1}}{2n+1} = \frac{1}{t} \sum_{n=0}^{+\infty} (-1)^n \int_0^t u^{2n} du$$
$$= \frac{1}{t} \int_0^t \left(\sum_{n=0}^{+\infty} (-u^2)^n \right) du = \frac{1}{t} \int_0^t \frac{1}{1+u^2} du$$

 $car - u^2 \in]-1;1[$. On obtient

$$f(x) = f(-t^2) = \frac{1}{t}\arctan(t) = \frac{1}{-\sqrt{-x}}\arctan(-\sqrt{-x})$$
$$= \frac{1}{\sqrt{-x}}\arctan(\sqrt{-x}),$$

par imparité de la fonction arctan.

4. La fonction f est continue sur son ensemble de définition [-1;1[. En particulier en x=-1, on a :

$$f(-1) = \sum_{n=0}^{+\infty} \frac{(-1)^n}{2n+1} = \lim_{x \to -1} f(x) = \lim_{x \to -1} \frac{1}{\sqrt{-x}} \arctan \sqrt{-x} = \frac{\pi}{4}$$

Solution Exercice 15.

1. – La fonction $x\mapsto f(x)=\ln(2-x)$ est définie sur $]-\infty;2[$. On cherche un développement en série entière sur un voisinage ouvert centré en 0. Soit $x\in]-2;2[$.

$$\ln(2-x) = \ln(2) + \ln\left(1 - \frac{x}{2}\right) = \ln(2) - \sum_{n=1}^{+\infty} \frac{x^n}{2^n n}$$

 $|\frac{x}{2}| < 1.$

– Cette série entière a pour rayon de convergence R=2.

En effet, la série entière $\sum_{n=1}^{+\infty} \frac{x^n}{2^n n}$ a le même rayon de convergence que la série

entière $\sum_{n=1}^{+\infty} \frac{x^n}{2^n}$ par multiplication par n.

La série géométrique $\sum_{n=1}^{+\infty} \left(\frac{x}{2}\right)^n$ a converge si et seulement si $\left|\frac{x}{2}\right| < 1 \Longleftrightarrow |x| < 2$.

2. La fonction $x\mapsto f(x)=\ln\left(\frac{1+x}{2-x}\right)$ est définie pour tout $x\in\mathbb{R}$ tel que

$$(1+x>0 \text{ et } 2-x>0) \Longleftrightarrow x>-1 \text{ et } x<2 \Longleftrightarrow x\in]-1;2[$$

et

$$(1+x<0 \text{ et } 2-x<0) \iff x<-1 \text{ et } x>2 \text{ ensemble vide}$$

Ainsi, f est définie sur]-1;2[.

On cherche un développement en série entière sur un voisinage ouvert centré en 0. Soit $x \in]-1;1[$.

$$f(x) = \ln\left(\frac{1+x}{2-x}\right) = \ln(1+x) - \ln(2-x)$$
$$= \sum_{n=1}^{+\infty} \frac{(-1)^{n-1}x^n}{n} - \ln(2) + \sum_{n=1}^{+\infty} \frac{x^n}{2^n n}$$
$$= -\ln(2) + \sum_{n=1}^{+\infty} \frac{(-1)^{n-1} + 2^{-n}}{n} x^n$$

Cette série entière a pour rayon de convergence $1 = \min(R_1; R_2)$ par somme de séries entières de rayon de convergence $R_1 = 1 \neq R_2 = 2$

3. La fonction $x \mapsto f(x) = \frac{1}{(1-x)^2}$ est définie sur $\mathbb{R} \setminus \{-1; 1\}$.

On cherche un développement en série entière sur un voisinage ouvert centré en 0. Soit $x \in]-1;1[$. Par le théorème de dérivation terme à terme.

$$\frac{1}{(1-x)^2} = \frac{d}{dx} \left(\frac{1}{1-x} \right) = \frac{d}{dx} \left(\sum_{n=0}^{+\infty} x^n \right) = \sum_{n=1}^{+\infty} nx^{n-1}$$

— Cette série entière a pour rayon de convergence R=1 par multiplication par n de la série géométrique $\sum x^n$.

4. - La fonction $x \mapsto f(x) = \frac{1}{x^2 - 3x + 2}$ est définie sur $\mathbb{R} \setminus \{1; 2\}$.

On cherche un développement en série entière sur un voisinage ouvert centré en 0. Soit $x \in]-1;1[$.

$$f(x) = \frac{1}{(x-1)(x-2)} = \frac{1}{x-2} - \frac{1}{x-1}$$
$$= -\frac{1}{2} \frac{1}{1 - \frac{x}{2}} + \frac{1}{1 - x}$$
$$= -\frac{1}{2} \sum_{n=0}^{+\infty} \frac{x^n}{2^n} + \sum_{n=0}^{+\infty} x^n.$$

- Cette série entière a pour rayon de convergence $1 = \min(R_1, R_2)$ avec $R_1 = 2$, $R_2 = 1$ rayons de convergence respectifs des séries entières $\sum_{n=0}^{+\infty} \frac{x^n}{2^n}$ et $\sum_{n=0}^{+\infty} x^n$.

5. La fonction $x \mapsto f(x) = \operatorname{sh}(x) \cos(x)$ est définie sur \mathbb{R} . Soit $x \in \mathbb{R}$.

$$\begin{split} f(x) &= \mathrm{sh}(x) \cos(x) = \frac{e^x - e^{-x}}{2} \frac{e^{ix} + e^{-ix}}{2} \\ &= \frac{1}{4} \left(e^{(i+1)x} + e^{(1-i)x} - e^{x(i-1)} - e^{-(i+1)x} \right) \\ &= \frac{1}{4} \sum_{n=0}^{+\infty} \frac{(1+i)^n + (1-i)^n - (-1+i)^n - (-1-i)^n}{n!} x^n \end{split}$$

Or $1+i=\sqrt{2}e^{i\frac{\pi}{4}}; \quad 1-i=\sqrt{2}e^{-i\frac{\pi}{4}}; \quad -1+i=\sqrt{2}e^{\frac{3i\pi}{4}}; \quad -1-i=\sqrt{2}e^{-\frac{3i\pi}{4}}.$ On obtient :

$$(1+i)^n + (1-i)^n - (-1+i)^n - (-1-i)^n$$

$$= \sqrt{2}^n \left[\left(e^{\frac{in\pi}{4}} + e^{\frac{-in\pi}{4}} \right) - \left(e^{\frac{3in\pi}{4}} + e^{-\frac{3in\pi}{4}} \right) \right]$$

$$= 2\sqrt{2}^n \left(\cos\left(\frac{n\pi}{4}\right) - \cos\left(\frac{3n\pi}{4}\right) \right)$$

$$= \begin{cases} 2\sqrt{2}^{4p} \left((-1)^p - (-1)^{3p} \right) & \text{si } n = 4p \\ 2\sqrt{2}^{4p+1} \left((-1)^p \sqrt{2} \right) & \text{si } n = 4p + 1 \\ 2\sqrt{2}^{4p+2} \left(-\sin(p\pi) - \sin(3p\pi) \right) & \text{si } n = 4p + 2 \\ 2\sqrt{2}^{4p+3} \left((-1)^p (-\sqrt{2}) \right) & \text{si } n = 4p + 3 \end{cases}$$

$$= \begin{cases} 0 & \text{si } n = 4p \\ (-1)^p 4\sqrt{2}^{4p} & \text{si } n = 4p + 1 \\ 0 & \text{si } n = 4p + 3 \end{cases}$$

$$= \begin{cases} 0 & \text{si } n = 4p + 3 \\ (-1)^{p+1} 8\sqrt{2}^{4p} & \text{si } n = 4p + 3 \end{cases}$$

$$= \begin{cases} 0 & \text{si } n = 4p + 1 \\ 0 & \text{si } n = 4p + 2 \\ (-1)^{p+1} 4^{p+1} & \text{si } n = 4p + 2 \\ 2(-1)^{p+1} 4^{p+1} & \text{si } n = 4p + 3 \end{cases}$$

En conclusion:

$$f(x) = \frac{1}{4} \sum_{p=0}^{+\infty} \frac{(-1)^p 4^{p+1}}{(4p+1)!} x^{4p+1} + \frac{1}{4} \sum_{p=0}^{+\infty} \frac{2(-1)^{p+1} 4^{p+1}}{(4p+3)!} x^{4p+3}$$
$$= \sum_{p=0}^{+\infty} \frac{(-1)^p 4^p}{(4p+1)!} x^{4p+1} + \sum_{p=0}^{+\infty} \frac{2(-1)^{p+1} 4^p}{(4p+3)!} x^{4p+3}$$

La règle de d'Alembert donne un rayon de convergence infini : $R = +\infty$.

Remarques

Par produit de Cauchy de séries entières absolument convergentes sur leurs intervalles ouverts de convergence :

$$f(x) = \operatorname{sh}(x) \cos(x) = \sum_{n=0}^{+\infty} \frac{x^{2n+1}}{(2n+1)!} \sum_{n=0}^{+\infty} \frac{(-1)^n}{(2n)!} x^{2n}$$

$$= x \sum_{n=0}^{+\infty} \frac{x^{2n}}{(2n+1)!} \sum_{n=0}^{+\infty} \frac{(-1)^n}{(2n)!} x^{2n}$$

$$= x \sum_{n=0}^{+\infty} \left(\sum_{k=0}^n \frac{x^{2k}}{(2k+1)!} \frac{(-1)^{n-k}}{(2(n-k))!} x^{2(n-k)} \right)$$

$$= x \sum_{n=0}^{+\infty} \left(\sum_{k=0}^n \frac{1}{(2k+1)!} \frac{(-1)^{n-k}}{(2(n-k))!} \right) x^{2n}$$

$$= x \sum_{n=0}^{+\infty} \frac{1}{(2n)!} \left(\sum_{k=0}^n \frac{(-1)^{n-k}}{2n+1} \binom{2n+1}{2k+1} \right) x^{2n}$$

$$= \sum_{n=0}^{+\infty} \frac{(-1)^n}{(2n+1)!} \left(\sum_{k=0}^n (-1)^k \binom{2n+1}{2k+1} \right) x^{2n+1}$$

On en déduit que

— Si n = 2p, par unicité du développement en série entière :

$$\frac{(-1)^{2p}}{(4p+1)!} \sum_{k=0}^{2p} (-1)^k \binom{4p+1}{2k+1} = \frac{(-1)^p 4^p}{(4p+1)!}$$

$$\iff \sum_{k=0}^{2p} (-1)^k \binom{4p+1}{2k+1} = (-1)^p 4^p$$

— Si n=2p+1, par unicité du développement en série entière :

$$\frac{(-1)^{2p+1}}{(4p+3)!} \sum_{k=0}^{2p+1} (-1)^k \binom{4p+3}{2k+1} = \frac{2(-1)^{p+1}4^p}{(4p+3)!}$$

$$\iff \sum_{k=0}^{2p+1} (-1)^k \binom{4p+3}{2k+1} = 2(-1)^p 4^p.$$

6. La fonction $x \mapsto f(x) = \cos(x) \operatorname{ch}(x)$ est définie sur \mathbb{R} .

Soit $x \in \mathbb{R}$.

$$f(x) = \frac{e^{ix} + e^{-ix}}{2} \frac{e^x + e^{-x}}{2}$$

$$= \frac{e^{x(1+i)} + e^{(-1+i)x} + e^{x(1-i)} + e^{x(-1-i)}}{4}$$

$$= \frac{1}{4} \sum_{n=0}^{+\infty} \frac{(1+i)^n + (-1+i)^n + (1-i)^n + (-1-i)^n}{n!} x^n$$

$$= \frac{1}{4} \sum_{n=0}^{+\infty} \frac{\sqrt{2}^n}{n!} \left(\left(e^{\frac{in\pi}{4}} + e^{-\frac{in\pi}{4}} \right) + \left(e^{\frac{3in\pi}{4}} + e^{-\frac{3in\pi}{4}} \right) \right) x^n$$

$$= \frac{1}{4} \sum_{n=0}^{+\infty} 2 \frac{\sqrt{2}^n}{n!} \left(\cos \frac{n\pi}{4} + \cos \frac{3n\pi}{4} \right) x^n,$$

avec

$$\cos\left(\frac{n\pi}{4}\right) - \cos\left(\frac{3n\pi}{4}\right) \\ = \begin{cases} 2(-1)^p & \text{si } n = 4p \\ 0 & \text{si } n = 4p + 1 \\ 0 & \text{si } n = 4p + 2 \\ 0 & \text{si } n = 4p + 3 \end{cases}$$

En conclusion:

$$f(x) = \frac{1}{4} \sum_{p=0}^{+\infty} 2 \frac{\sqrt{2}^{4p}}{(4p)!} (2(-1)^p) x^{4p}$$
$$= \sum_{p=0}^{+\infty} \frac{(-1)^p 4^p}{(4p)!} x^{4p}$$

La règle de d'Alembert donne un rayon de convergence $R = +\infty$.

7. La fonction $x\mapsto \frac{\ln(1-x)}{1-x}$ est définie sur $]-\infty;1[$. On cherche un développement en série entière sur un voisinage ouvert centré en 0. Soit $x\in]-1;1[$. Par produit de Cauchy de séries entières absolument convergentes sur leurs intervalles ouverts de convergence :

$$f(x) = -\frac{\ln(1-x)}{1-x} = \left(\sum_{n=1}^{+\infty} \frac{x^n}{n}\right) \left(\sum_{n=0}^{+\infty} x^n\right) = \sum_{n=1}^{+\infty} \left(\sum_{k=1}^{n} \frac{1}{k} \times 1\right) x^n,$$

avec
$$\sum_{k=1}^{n} \frac{1}{k} \sim \ln(n)$$
.

Puisque pour $n \geqslant 3$, $1 \leqslant \ln(n) \leqslant n$ on obtient que $1 \leqslant R \leqslant 1$: la série entière $\sum_{n=1}^{+\infty} \left(\sum_{k=1}^{n} \frac{1}{k}\right) x^n$ a un rayon de convergence R=1.

8.
$$f(x) = \frac{1}{x^2 + x + 1} = \frac{1}{(x - j)(x - \overline{j})}$$
 avec $j = e^{\frac{2i\pi}{3}}$.

Ainsi, f est définie sur \mathbb{R} e

$$f(x) = \frac{1}{\sqrt{3}i(x-j)} - \frac{1}{\sqrt{3}i(x-\bar{j})}$$
$$= \frac{1}{\sqrt{3}i} \left(-\frac{1}{j} \frac{1}{1 - \frac{x}{\bar{j}}} + \frac{1}{\bar{j}} \frac{1}{1 - \frac{x}{\bar{j}}} \right)$$

La série entière $\sum z^n$ converge si et seulement si |z| < 1.

Ainsi, pour $|x| < 1 \Longrightarrow \left| \frac{x}{j} \right| < 1$, on trouve :

$$f(x) = \frac{1}{\sqrt{3}i} \left(-\frac{1}{j} \sum_{n=0}^{+\infty} \frac{x^n}{j^n} + \frac{1}{\bar{j}} \sum_{n=0}^{+\infty} \frac{x^n}{\bar{j}^n} \right)$$

$$= \frac{1}{\sqrt{3}i} \left(-\frac{1}{j} + \frac{1}{\bar{j}} \right) \sum_{n=0}^{+\infty} x^{3n}$$

$$+ \left(-\frac{1}{j^2} + \frac{1}{\bar{j}^2} \right) \sum_{n=0}^{+\infty} x^{3n+1}$$

$$+ \left(-\frac{1}{j^3} + \frac{1}{\bar{j}^3} \right) \sum_{n=0}^{+\infty} x^{3n+2}$$

$$= \sum_{n=0}^{+\infty} x^{3n} - \sum_{n=0}^{+\infty} x^{3n+1}$$

car

$$-\frac{1}{j} + \frac{1}{\bar{j}} = \frac{j - \bar{j}}{j\bar{j}} = \sqrt{3}i$$

$$-\frac{1}{j^2} + \frac{1}{\bar{j}^2} = \frac{j^2 - \bar{j}^2}{j^2\bar{j}^2} = \bar{j} - j = -\sqrt{3}i$$

$$-\frac{1}{j^3} + \frac{1}{\bar{j}^3} = -1 + 1 = 0.$$

Remarques

On retrouve plus rapidement le résultat en remarquant que pour tout $x \in]-1;1[$:

$$1 - x^3 = (1 - x)(1 + x + x^2) \Longrightarrow \frac{1}{1 + x + x^2} = \frac{1 - x}{1 - x^3}$$
$$\Longrightarrow \frac{1}{1 + x + x^2} = (1 - x) \sum_{n=0}^{+\infty} x^{3n}$$
$$\Longrightarrow \frac{1}{1 + x + x^2} = \sum_{n=0}^{+\infty} x^{3n} - \sum_{n=0}^{+\infty} x^{3n+1}.$$

Chaque calcul donne un rayon de convergence $R \geqslant 1$ par somme de séries entières de même de rayon de convergence R' = R'' = 1.

On montre que R=1 en revenant à la définition du rayon de convergence.

La série entière
$$\sum x^{3n} - \sum x^{3n+1}$$
 s'écrit $\sum a_n x^n$ avec
$$a_{3n} = 1; \quad a_{3n+1} = -1; \quad a_{3n+2} = 0.$$

Ainsi, $1 \leqslant R = \sup\{r \geqslant 0 : (a_n r^n)_{n \in \mathbb{N}} \text{ est bornée}\} \leqslant 1 \text{ car si } r > 1 \text{ la suite } (a_n r^n)_{n \in \mathbb{N}} \text{ n'est pas bornée. Il suffit, pour s'en convaincre de considérer par exemple la sous suite } (a_{3n} r^{3n})_{n \in \mathbb{N}} = (r^{3n})_{n \in \mathbb{N}} \text{ qui diverge vers } +\infty.$

La fonction f(x) = arcsin(x) est définie sur [-1; 1] à valeurs dans [-π/2; π/2].
 On utilise le théorème de primitivation d'une série entière après avoir développé en série entière sur] − 1; 1[, la dérivée de la fonction arcsin.
 Soit x ∈] − 1; 1[. Puisque x² ∈ [0; 1[⊂] − 1; 1[.

$$\arcsin'(x) = \frac{1}{\sqrt{1 - x^2}} = (1 - x^2)^{-\frac{1}{2}}$$

$$= 1 + \sum_{n=1}^{+\infty} \frac{(-\frac{1}{2})(-\frac{1}{2} - 1) \dots (-\frac{1}{2} - n + 1)}{n!} (-x^2)^n$$

$$= 1 + \sum_{n=1}^{+\infty} \frac{2^n}{2^n} \frac{(-\frac{1}{2})(-\frac{1}{2} - 1) \dots (-\frac{1}{2} - n + 1)}{n!} (-x^2)^n$$

$$= 1 + \sum_{n=1}^{+\infty} \frac{(-1)(-1 - 2) \dots (-1 - 2(n - 1))}{2^n n!} (-x^2)^n$$

$$= 1 + \sum_{n=1}^{+\infty} (-1)^{2n} \frac{1 \cdot 3 \cdot 5 \dots (2n - 1)}{2^n n!} (x^2)^n$$

En intégrant sur [0; x], compte tenu du fait que $\arcsin(0) = 0$:

$$\arcsin(x) = x + \sum_{n=1}^{+\infty} \frac{1 \cdot 3 \cdot 5 \cdots (2n-1)}{2^n n!} \int_0^x t^{2n} dt$$
$$= x + \sum_{n=1}^{+\infty} \frac{1 \cdot 3 \cdot 5 \cdots (2n-1)}{2^n n!} \frac{x^{2n+1}}{2n+1}$$

On "complète" au numérateur avec les facteurs pairs pour obtenir une expression plus compacte :

$$\arcsin(x) = x + \sum_{n=1}^{+\infty} \frac{1 \cdot 2 \cdot 3 \cdot 4 \cdot \dots \cdot (2n-1)(2n)}{[2 \cdot 4 \cdot \dots \cdot (2n)](2^n n!)} \frac{x^{2n+1}}{2n+1}$$
$$= x + \sum_{n=1}^{+\infty} \frac{(2n)!}{2^{2n}(n!)^2} \frac{x^{2n+1}}{2n+1}$$
$$= \sum_{n=0}^{+\infty} \frac{(2n)!}{2^{2n}(n!)^2} \frac{x^{2n+1}}{2n+1}$$

Pour $x \neq 0$, on applique la règle de d'Alembert :

$$\frac{\left| \frac{(2(n+1))!}{2^{2(n+1)}(n+1)!^2} \frac{x^{2(n+1)+1}}{2(n+1)+1} \frac{2^{2n}(n!)^2}{(2n)!} \frac{2n+1}{x^{2n+1}} \right|}{= \frac{(2n+2)(2n+2)}{2^2(n+1)^2} \frac{2n+1}{2n+3} |x|^2 \underset{n \to +\infty}{\sim} \frac{8n^3}{8n^3} |x|^2$$

- Si |x| < 1, la série entière est absolument convergente : $R \ge 1$.
- Si |x| > 1, la série entière est divergente : $R \le 1$.

En conclusion R=1.

10. La fonction $x \mapsto f(x) = \arctan\left(\frac{x\sqrt{2}}{1-x^2}\right)$ est définie sur $\mathbb{R} \setminus \{-1; 1\}$. Soit $x \in]-1; 1[$.

$$f'(x) = \frac{\frac{\sqrt{2}(1-x^2)+2\sqrt{2}x^2}{(1-x^2)^2}}{1+\left(\frac{2x^2}{(1-x^2)^2}\right)} = \frac{\sqrt{2}\left((1-x^2)+2x^2\right)}{(1-x^2)^2+2x^2} = \frac{\sqrt{2}(1+x^2)}{1+x^4}$$

Puisque $x^4 \in [0; 1[\subset] - 1; 1[$, on a

$$\frac{1}{1+x^4} = \frac{1}{1+x^4} = \sum_{n=0}^{+\infty} (-1)^n x^{4n},$$

donc par somme de séries convergentes :

$$f'(x) = \sqrt{2}(1+x^2) \sum_{n=0}^{+\infty} (-1)^n x^{4n}$$
$$= \sqrt{2} \sum_{n=0}^{+\infty} (-1)^n x^{4n} + \sqrt{2} \sum_{n=0}^{+\infty} (-1)^n x^{4n+2}.$$

Par théorème intégration terme à terme sur l'intervalle ouvert de convergence, on obtient :

$$\int_{0}^{x} f'(t)dt = \sqrt{2} \sum_{n=0}^{+\infty} (-1)^{n} \int_{0}^{x} t^{4n} dt + \sqrt{2} \sum_{n=0}^{+\infty} (-1)^{n} \int_{0}^{x} t^{4n+2} dt$$

$$f(x) - f(0) = \sqrt{2} \sum_{n=0}^{+\infty} (-1)^{n} \frac{x^{4n+1}}{4n+1} + \sqrt{2} \sum_{n=0}^{+\infty} (-1)^{n} \frac{x^{4n+3}}{4n+3}$$

$$f(x) - \arctan(0) = \sqrt{2} \sum_{n=0}^{+\infty} (-1)^{n} \frac{x^{4n+1}}{4n+1} + \sqrt{2} \sum_{n=0}^{+\infty} (-1)^{n} \frac{x^{4n+3}}{4n+3}$$

$$f(x) = \sqrt{2} \sum_{n=0}^{+\infty} (-1)^{n} \frac{x^{4n+1}}{4n+1} + \sqrt{2} \sum_{n=0}^{+\infty} (-1)^{n} \frac{x^{4n+3}}{4n+3}$$

Notons R le rayon de convergence de la série entière obtenue : c'est la somme de deux séries entières de rayon de convergence R'=R''=1 (classiquement : à un facteur près ce sont des primitives de séries géométriques de raison x^4).

On en déduit que $R \geqslant 1 = R' = R''$.

Notons la série entière obtenue $\sum a_n x^n$ avec

$$a_{4n} = 0;$$
 $a_{4n+1} = \frac{\sqrt{2}(-1)^n}{4n+1};$ $a_{4n+2} = 0;$ $a_{4n+3} = \frac{\sqrt{2}(-1)^n}{4n+3};$

De plus si r>1, la suite $(a_nr^n)_{n\in\mathbb{N}}$ n'est pas bornée : considérer par exemple la sous-suite $(a_{4n+1}r^{4n+1})_{n\in\mathbb{N}}$ qui diverge vers $-\infty$.

11. La fonction $f(x) = \arctan \frac{1}{1+x}$ est définie sur $\mathbb{R} \setminus \{-1\}$.

Soit $x \in]-1;1[$. On détermine le développement en série entière de f'(x) et on intègre :

$$f'(x) = -\frac{1}{(1+x)^2} \frac{1}{1 + \frac{1}{(1+x)^2}} = -\frac{1}{2 + 2x + x^2} = -\frac{1}{(x-a)(x-b)}$$

avec a = -1 + i; b = -1 - i.

On obtient

$$f'(x) = -\left(\frac{1}{a-b}\frac{1}{x-a} + \frac{1}{b-a}\frac{1}{x-b}\right) = \frac{1}{a-b}\frac{1}{a-x} + \frac{1}{b-a}\frac{1}{b-x}$$

soit

$$f'(x) = \frac{1}{2ia} \frac{1}{1 - \frac{x}{a}} - \frac{1}{2ib} \frac{1}{1 - \frac{x}{b}}$$

Puisque |x| < 1 et $|a| = |b| = |-1 + i| = \sqrt{2}$, on a $\left| \frac{x}{a} \right| < 1$ et $\left| \frac{x}{b} \right| < 1$:

$$f'(x) = \frac{1}{2ia} \sum_{n=0}^{+\infty} \frac{x^n}{a^n} - \frac{1}{2ib} \sum_{n=0}^{+\infty} \frac{x^n}{b^n}$$

$$= \frac{a}{4} \sum_{n=0}^{+\infty} \frac{x^n}{a^n} + \frac{b}{4} \sum_{n=0}^{+\infty} \frac{x^n}{b^n}$$

$$= \frac{a+b}{4} + \frac{x}{4} \left(\sum_{n=1}^{+\infty} \left(\frac{1}{a^{n-1}} + \frac{1}{b^{n-1}} \right) x^{n-1} \right)$$

$$= -\frac{1}{2} + \frac{x}{4} \left(\sum_{n=0}^{+\infty} \left(\frac{1}{a^n} + \frac{1}{b^n} \right) x^n \right)$$

$$= -\frac{1}{2} + \frac{x}{4} \left(\sum_{n=0}^{+\infty} \frac{2}{\sqrt{2}^n} \cos\left(\frac{3n\pi}{4} \right) x^n \right)$$

$$= -\frac{1}{2} + \frac{1}{2} \left(\sum_{n=0}^{+\infty} \frac{1}{\sqrt{2}^n} \cos\left(\frac{3n\pi}{4} \right) x^{n+1} \right)$$

$$= -\frac{1}{2} + \frac{1}{2} \left(\sum_{n=1}^{+\infty} \frac{1}{\sqrt{2}^{n-1}} \cos\left(\frac{3(n-1)\pi}{4} \right) x^n \right)$$

$$= \frac{1}{2} \sum_{n=0}^{+\infty} \frac{1}{\sqrt{2}^{n-1}} \cos\left(\frac{3(n-1)\pi}{4} \right) x^n$$

$$= \frac{\sqrt{2}}{2} \sum_{n=0}^{+\infty} \frac{1}{\sqrt{2}^n} \cos\left(\frac{3(n-1)\pi}{4} \right) x^n$$

En intégrant, compte tenu que $f(0) = \arctan(1) = \frac{\pi}{4}$, on obtient par intégration terme à terme :

$$f(x) - \frac{\pi}{4} = \frac{\sqrt{2}}{2} \sum_{n=0}^{+\infty} \frac{1}{\sqrt{2}^n} \cos\left(\frac{3(n-1)\pi}{4}\right) \frac{x^{n+1}}{n+1}.$$

La série entière $\sum \frac{1}{\sqrt{2}^n} \cos \left(\frac{3(n-1)\pi}{4}\right) \frac{x^{n+1}}{n+1}$ a le même rayon de convergence R que la série entière $\sum \frac{1}{\sqrt{2}^n} \cos \left(\frac{3(n-1)\pi}{4}\right) x^{n+1}$ par conservation du rayon de convergence par multiplication par n et l'équivalence $\frac{n}{n+1} \underset{n \to +\infty}{\sim} 1$. De plus la majoration :

$$\left| \frac{1}{\sqrt{2}^n} \cos \left(\frac{3(n-1)\pi}{4} \right) \right| \leqslant \frac{1}{\sqrt{2}^n}$$

implique $R\geqslant R'=\sqrt{2}$ où R' est le rayon de convergence de la série géométrique $\sum \frac{x^n}{\sqrt{2}^n}$ qui converge si et seulement si $\left|\frac{x}{\sqrt{2}}\right|<1\Longleftrightarrow |x|<\sqrt{2}$.

Notons enfin que la série entière $\sum \frac{1}{\sqrt{2}^n} \cos \left(\frac{3(n-1)\pi}{4}\right) \sqrt{2}^n$, pour $x=\sqrt{2}$ est la série $\sum \cos \left(\frac{3(n-1)\pi}{4}\right)$ qui diverge grossièrement : considérer par exemple la sous-suite $\left(\cos \left(\frac{3(4n+1-1)\pi}{4}\right)\right)_{n\in\mathbb{N}}=((-1)^n)_{n\in\mathbb{N}}$ ne converge pas vers 0. Ainsi, $R\leqslant \sqrt{2}$.

En conclusion $R = \sqrt{2}$

- 12. La fonction $g: t \mapsto \frac{\sin(t)}{t}$ est définie sur \mathbb{R}^* et $g(t) \underset{t \to 0}{\sim} \frac{t}{t} = 1$. On prolonge par continuité la fonction g en 0: g(0) = 1.
 - La fonction $f: x \mapsto \int_0^x \frac{\sin(t)}{t}$ est donc définie sur \mathbb{R} .

D'autre part pour tout $t \in \mathbb{R}^*$,

$$g(t) = \frac{1}{t} \sum_{n=0}^{+\infty} \frac{(-1)^n}{(2n+1)!} t^{2n+1} = \sum_{n=0}^{+\infty} \frac{(-1)^n}{(2n+1)!} t^{2n}$$

Formule encore valable en t = 0: g(0) = 0.

Cette série entière a pour rayon de convergence $R = +\infty$.

Le théorème de primitivation d'une série entière donne pour tout $x \in \mathbb{R}$:

$$f(x) = \int_0^x g(t)dt = \sum_{n=0}^{+\infty} \frac{(-1)^n}{(2n+1)!} \frac{x^{2n+1}}{2n+1}$$

La série entière obtenue a le même rayon de convergence que la série entière dérivée déterminée précédemment : $R=+\infty$.

13. La fonction $f: x \mapsto \int_0^x \cos(t^2) dt$ est définie sur \mathbb{R} .

Soit $x \in \mathbb{R}$.

$$\cos(t^2) = \sum_{n=0}^{+\infty} \frac{(-1)^n}{(2n)!} t^{4n}$$

série entière de rayon de convergence $R = +\infty$.

Par le théorème de primitivation d'une série entière, on obtient

$$f(x) = \sum_{n=0}^{+\infty} \frac{(-1)^n}{(2n)!} \int_0^x t^{4n} dt = \sum_{n=0}^{+\infty} \frac{(-1)^n}{(2n)!} \frac{x^{4n+1}}{4n+1}$$

Solution Exercice 16.

1. La fonction $f: x \mapsto \frac{\arcsin(x)}{\sqrt{1-x^2}}$ est dérivable sur]-1;1[et pour tout $x \in]-1;1[$,

$$f'(x) = \frac{1}{1 - x^2} + \arcsin(x) \frac{\frac{2x}{2\sqrt{1 - x^2}}}{1 - x^2}$$
$$= \frac{1}{1 - x^2} + \frac{x}{(1 - x^2)^{\frac{3}{2}}} \arcsin(x)$$

Ainsi, pour tout $x \in]-1;1[:$

$$f'(x) = \frac{1}{1 - x^2} + \frac{x}{1 - x^2} f(x) \iff (1 - x^2) f'(x) - x f(x) = 1.$$

Ainsi, f est solution de l'équation différentielle (E): $(1-x^2)y'(x)-xy(x)=1$. C'est même l'unique solution sur]-1;1[du problème de Cauchy:

$$\begin{cases} (1-x^2)y'(x) - xy(x) = 1\\ y(0) = 0 \end{cases}$$

Analyse.

Supposons qu'il existe une fonction y:

- développable en série entière sur un intervalle ouvert]-r;r[centré en 0,
- solution de (E) et telle que y(0) = 0.

Soit
$$x \in]-r; r[$$
. On a $y(x) = \sum_{n=0}^{+\infty} a_n x^n$.

Par le théorème de dérivation terme à terme, on a $y'(x) = \sum_{n=1}^{+\infty} na_n x^{n-1}$.

Ainsi, y est solution de (E) sur]-1;1[si et seulement si

$$(1-x^2) \sum_{n=1}^{+\infty} n a_n x^{n-1} = 1 + x \sum_{n=0}^{+\infty} a_n x^n$$

$$\iff \sum_{n=1}^{+\infty} n a_n x^{n-1} - \sum_{n=1}^{+\infty} n a_n x^{n+1} = 1 + \sum_{n=0}^{+\infty} a_n x^{n+1}$$

$$\iff \sum_{n=0}^{+\infty} (n+1) a_{n+1} x^n - \sum_{n=2}^{+\infty} (n-1) a_{n-1} x^n = 1 + \sum_{n=1}^{+\infty} a_{n-1} x^n$$

Par unicité du développement en série entière, y est solution de (E) sur]-1;1[si et seulement si

$$-\forall n \geqslant 2, (n+1)a_{n+1} - (n-1)a_{n-1} = a_{n-1} \iff a_{n+1} = \frac{n}{n+1}a_{n-1}(*).$$

— Pour
$$n = 0$$
: $(0+1)a_{0+1} = 1 \iff a_1 = 1$.

— Pour
$$n = 1$$
: $(1+1)a_{1+1} = a_{1-1} \iff 2a_2 = a_0$.

On montre alors par récurrence que pour tout $n \in \mathbb{N}$, $a_{2n} = 0$.

Cette propriété est vraie au rang n = 0 car y(0) = 0 (et au rang 2 car $2a_2 = a_0 = 0$).

Si $a_{2n} = 0$ pour un certain entier naturel n, on obtient alors par (*)

$$a_{2(n+1)} = a_{2n+2} = a_{(2n+1)+1} = \frac{2n+1}{(2n+1)+1} a_{(2n+1)-1} = \frac{2n}{2n+1} a_{2n} = 0.$$

On conclut par récurrence.

On détermine explicitement les coefficients a_{2n+1} de rangs impairs.

On commence par conjecturer la formule grâce à (*):

$$a_{2n+1} = \frac{2n}{2n+1} a_{2n-1} = \frac{2n}{2n+1} \frac{2n-2}{2n-1} a_{2n-3}$$

$$= \dots \text{ conjecture}$$

$$= \frac{2n}{2n+1} \frac{2n-2}{2n-1} \dots \frac{2}{3} a_1$$

$$= \frac{[(2n)(2n-2) \dots 2]^2}{(2n+1)(2n)(2n-1) \dots (4)(3)(2)}$$

$$= \frac{2^{2n}(n!)^2}{(2n+1)!},$$

que l'on démontre par récurrence.

Elle est vraie au rang n = 0 car $a_1 = 1$.

Si
$$a_{2n+1} = \frac{2^{2n}(n!)^2}{(2n+1)!}$$
 alors par $(*)$

$$a_{2n+3} = a_{(2n+2)+1} = \frac{2n+2}{2n+3}a_{2n+1} = \frac{2n+2}{2n+3}\frac{2^{2n}(n!)^2}{(2n+1)!}$$

On obtient bien en multipliant numérateur et dénominateur par 2n + 2:

$$a_{2n+3} = \frac{2^{2(n+1)}((n+1)!)^2}{(2n+3)!}.$$

On en déduit que pour tout $x \in]-r;r[$,

$$y(x) = \sum_{n=0}^{+\infty} \frac{2^{2n} (n!)^2}{(2n+1)!} x^{2n+1}.$$

Synthèse. On pose
$$y(x) = \sum_{n=0}^{+\infty} \frac{2^{2n} (n!)^2}{(2n+1)!} x^{2n+1}$$
.

On détermine le rayon de convergence R de la série entière $\sum a_n x^n$ avec la règle de d'Alembert. Pour tout $x \neq 0$ et $n \in \mathbb{N}$:

$$\left| \frac{2^{2(n+1)}((n+1)!)^2}{(2(n+1))!} \frac{(2n)!}{2^{2n}(n!)^2} \frac{x^{2n+3}}{x^{2n+1}} \right| = \frac{2^2(n+1)^2}{(2n+2)(2n+1)} |x|^2 \underset{n \to +\infty}{\sim} |x|^2$$

Ainsi,

— Si
$$|x| < 1$$
, $\sum_{n=0}^{+\infty} \frac{2^{2n} (n!)^2}{(2n+1)!} x^{2n+1}$ converge absolument : $R \geqslant 1$.

— Si
$$|x|>1,$$
 $\sum_{n=0}^{+\infty}\frac{2^{2n}(n!)^2}{(2n+1)!}x^{2n+1}$ diverge grossièrement. : $R\leqslant 1$.

En conclusion R = 1.

On a montré:

- y est développable en série entière sur]-1;1[
- --y(0)=0
- y est solution de (E) d'après les équivalences écrites dans la partie analyse.

Conclusion.

Les fonctions $f: x \mapsto \frac{\arcsin(x)}{\sqrt{1-x^2}}$ et $y: x \mapsto \sum_{n=0}^{+\infty} \frac{2^{2n}(n!)^2}{(2n+1)!} x^{2n+1}$ sont toutes deux

solution sur]-1;1[du problème de Cauchy :

$$\begin{cases} (1-x^2)y(x) - xy(x) = 1\\ y(0) = 0 \end{cases}$$

Par unicité de la solution ce problème de Cauchy sur] -1; 1[, intervalle où $1-x^2 \neq 0$, on en déduit que f et y coïncident.

On en déduit que f est développable en série entière sur le voisinage ouvert]-1;1[de 0 et que

$$\forall x \in]-1; 1[, f(x) = \sum_{n=0}^{+\infty} \frac{2^{2n} (n!)^2}{(2n+1)!} x^{2n+1}.$$

2. La fonction $f: x \mapsto \arcsin^2(x)$ est dérivable sur]-1;1[et pour tout $x \in]-1;1[$: $f'(x) = \frac{2}{\sqrt{1-x^2}}\arcsin(x)$.

Au facteur 2 près, on a obtenu le développement en série entière de la fonction f' sur]-1;1[à la question précédente :

$$f'(x) = 2\sum_{n=0}^{+\infty} \frac{2^{2n}(n!)^2}{(2n+1)!} x^{2n+1}.$$

Par le théorème de primitivation d'une série entière, on en déduit, compte tenu que f(0) = 0; que pour tout $x \in]-1;1[$:

$$f(x) - f(0) = \int_0^x f'(t)dt = \int_0^x 2\left(\sum_{n=0}^{+\infty} \frac{2^{2n}(n!)^2}{(2n+1)!}t^{2n+1}\right)dt$$

$$f(x) = 2\sum_{n=0}^{+\infty} \frac{2^{2n}(n!)^2}{(2n+1)!} \int_0^x t^{2n+1}dt$$

$$f(x) = 2\sum_{n=0}^{+\infty} \frac{2^{2n}(n!)^2}{(2n+1)!} \frac{x^{2n+2}}{2n+1}$$

$$f(x) = 2\sum_{n=0}^{+\infty} \frac{2^{2n}(n!)^2}{(2n+2)!} x^{2n+2}$$

$$f(x) = \sum_{n=0}^{+\infty} \frac{2^{2n+1}(n!)^2}{(2n+2)!} x^{2n+2}$$

3. La fonction $f: x \mapsto \cos(x) \operatorname{ch}(x)$ est quatre fois dérivable sur $\mathbb R$ avec, par la formule de Leibniz

$$f^{(4)}(x) = \sum_{k=0}^{4} {4 \choose k} \cos^{(k)}(x) \operatorname{ch}^{(4-k)}(x)$$

= \cos(x) \ch(x) - 4 \sin(x) \sh(x) - 6 \cos(x) \ch(x)
+ 4 \sin(x) \sh(x) + \cos(x) \ch(x)

Ainsi, $f^{(4)} + 4f = 0$.

La fonction f est donc solution de l'équation différentielle $(E): y^{(4)} + 4y = 0$.

C'est même l'unique solution du problème de Cauchy sur $\mathbb R$:

$$\begin{cases}
\begin{pmatrix} y \\ y' \\ y'' \\ y''' \end{pmatrix}' = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -4 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} y \\ y' \\ y'' \\ y''' \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \\
X(0) = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

Analyse.

On suppose qu'il existe une fonction y:

- développable en série entière sur un voisinage]-r;r[de 0,
- solution de (E) et vérifiant y(0) = 1, $y^{(i)} = 0$ pour $i \in [1, 3]$.

Soit $x \in]-r; r[$. Par le théorème de dérivation terme à terme, on a

$$y^{(4)}(x) = \sum_{n=4}^{+\infty} n(n-1)(n-2)(n-3)a_n x^{n-4}$$

Ainsi, y est solution de (E) si et seulement si

$$\sum_{n=0}^{+\infty} (n+4)(n+3)(n+2)(n+1)a_{n+4}x^n + 4\sum_{n=0}^{+\infty} a_n x^n = 0.$$

On obtient par unicité du développement en série entière pour tout $n \in \mathbb{N}$:

$$(n+4)(n+3)(n+2)(n+1)a_{n+4} + 4a_n = 0$$

$$\iff a_{n+4} = -\frac{4}{(n+4)(n+3)(n+2)(n+1)}a_n$$

On obtient par récurrence que $a_{4p+1}=a_1=0, a_{4p+2}=0, a_{4p+3}=0$ et pour tout $p \in \mathbb{N}$,

$$a_{4p} = \frac{(-1)^p 4^p}{(4p)!}$$

Ainsi, pour tout $x \in]-r:r[$,

$$y(x) = \sum_{p=0}^{+\infty} \frac{(-1)^p 4^p}{(4p)!} x^{4p}.$$

Synthèse.

On détermine le rayon de convergence de la série entière $\sum \frac{(-1)^p 4^p}{(4p)!} x^{4p}$.

On utilise la règle de d'Alembert, pour $x \neq 0$:

$$\left| \frac{(-1)^{p+1} 4^{p+1}}{(4(p+1))!} \frac{(4p)!}{(-1)^p 4^p} \frac{x^{4(p+1)}}{x^{4p}} \right| = \frac{4}{(4p+4)(4p+3)(4p+2)(4p+1)} |x|^4 \underset{n \to +\infty}{\longrightarrow} 0$$

On en déduit que la série converge pour tout $x \in \mathbb{R}$, $R = +\infty$.

On a montré:

- y est développable en série entière sur \mathbb{R}
- $-y(0) = 1, y^{(i)}(0) = 0$ pour tout $i \in [1, 3]$
- y est solution de (E) d'après les équivalences écrites dans la partie analyse.

Conclusion.

Les fonctions $f: x \mapsto \cos(x) \operatorname{ch}(x)$ et $y: x \mapsto \sum_{p=0}^{+\infty} \frac{(-1)^p 4^p}{(4p)!} x^{4p}$ sont toutes deux

solution sur]-1;1[du même problème de Cauchy.

Par unicité de la solution de ce problème de Cauchy sur \mathbb{R} , on en déduit que f et y coı̈ncident.

On en déduit que f est développable en série entière sur $\mathbb R$ et que

$$\forall x \in \mathbb{R}, f(x) = \sum_{n=0}^{+\infty} \frac{(-1)^p 4^p}{(4p)!} x^{4p}.$$

4. La fonction $f: x \mapsto \cos(\alpha \arcsin(x))$ est dérivable deux fois sur]-1;1[. Pour tout $x \in]-1;1[$:

$$f'(x) = -\frac{\alpha}{\sqrt{1-x^2}}\sin(\alpha\arcsin(x)) = -\alpha(1-x^2)^{-\frac{1}{2}}\sin(\alpha\arcsin(x))$$

$$f''(x) = \frac{-\alpha(-\frac{1}{2})(-2x)}{(1-x^2)^{\frac{3}{2}}}\sin(\alpha\arcsin(x)) - \frac{\alpha^2}{1-x^2}\cos(\alpha\arcsin(x))$$
$$= \frac{xf'(x)}{1-x^2} - \frac{\alpha^2}{1-x^2}f(x)$$

Ainsi, f est solution de l'équation différentielle $(E): (1-x^2)y''-xy'+\alpha^2y=0$. C'est même l'unique solution sur]-1;1[du problème de Cauchy :

$$\begin{cases} (1-x^2)y'' - xy' + \alpha^2 y = 0\\ y(0) = 1\\ y'(0) = 0 \end{cases}$$

$$\operatorname{car} f(0) = \cos(\alpha \arcsin(0)) = \cos(0) = 1 \text{ et } f'(0) = -\frac{\alpha \sin(\alpha \arcsin(0))}{\sqrt{1 - 0^2}} = 0.$$

Analyse.

On suppose qu'il existe une fonction y:

— développable en série entière sur un intervalle ouvert]-r;r[centré en 0,

— solution de (E) et telle que y(0) = 1, y'(0) = 0.

Soit
$$x \in]-r;r[$$
.

On a
$$y(x) = \sum_{n=0}^{+\infty} a_n x^n$$

Par le théorème de dérivation terme à terme, $y'(x) = \sum_{n=1}^{+\infty} na_n x^{n-1}$,

et
$$y''(x) = \sum_{n=2}^{+\infty} n(n-1)a_n x^{n-2}$$
.

Ainsi, y est solution de (E) sur]-1;1[si et seulement si

$$(1-x^2)\sum_{n=2}^{+\infty}n(n-1)a_nx^{n-2} - x\sum_{n=1}^{+\infty}na_nx^{n-1} + \alpha^2\sum_{n=0}^{+\infty}a_nx^n = 0$$

$$\iff \sum_{n=2}^{+\infty}n(n-1)a_nx^{n-2} - \sum_{n=2}^{+\infty}n(n-1)a_nx^n - \sum_{n=1}^{+\infty}na_nx^n + \alpha^2\sum_{n=0}^{+\infty}a_nx^n = 0$$

$$\iff \sum_{n=0}^{+\infty}(n+2)(n+1)a_{n+2}x^n - \sum_{n=2}^{+\infty}n(n-1)a_nx^n$$

$$-\sum_{n=1}^{+\infty}na_nx^n + \alpha^2\sum_{n=0}^{+\infty}a_nx^n = 0$$

On obtient par unicité du développement en série entière (de la série nulle) :

— Pour n = 0: $(0+2)(0+1)a_{0+2} + \alpha^2 a_0 = 0 \iff a_2 = -\alpha^2 a_0$

— Pour n = 1: $(1+2)(1+1)a_{1+2} - 1a_1 + \alpha^2 a_1 = 0 \iff 6a_3 = (1-\alpha^2)a_1$

— Pour $n \ge 2$: $(n+2)(n+1)a_{n+2} - n(n-1)a_n - na_n + \alpha^2 a_n = 0$ ou encore:

$$a_{n+2} = \frac{n^2 - \alpha^2}{(n+2)(n+1)} a_n$$

On a $a_0 = 1$ et $a_1 = 0$ car y(0) = 1 et y'(0) = 0.

Il vient par récurrence que pour tout $p \in \mathbb{N}$: $a_{2p+1} = 0$ d'une part et d'autre part :

$$a_{2p} = \frac{4p^2 - \alpha^2}{(2p)(2p-1)} a_{2p-2}$$

$$= \frac{(2p)^2 - \alpha^2}{(2p)(2p-1)} \frac{(2p-2)^2 - \alpha^2}{(2p-2)(2p-3)}$$

$$= \dots$$

$$= \frac{((2p)^2 - \alpha^2) \dots (2^2 - \alpha^2)}{(2p)!}.$$

Synthèse. On pose $y(x) = \sum_{p=0}^{+\infty} a_{2p} x^{2p}$.

On détermine le rayon de convergence R de la série entière $\sum a_{2p}x^{2p}$

- Si α est un entier pair, les termes a_{2p} sont nuls à partir d'un certain rang : la série a donc un rayon de convergence infini (il s'agit d'un polynôme).
- Si α n'est pas un entier pair, on utilise la règle de d'Alembert. Pour tout $x \neq 0$ et $p \in \mathbb{N}$:

$$\left| \frac{(2(p+1))^2 - \alpha^2)(2p)^2 - \alpha^2)\dots(2^2 - \alpha^2)}{(2(p+1))!} \frac{(2p)!}{((2p)^2 - \alpha^2)\dots(2^2 - \alpha^2)} \cdot \frac{x^{2p+3}}{x^{2p+1}} \right|$$

$$= \frac{(2(p+1))^2 - \alpha^2}{(2p+2)(2p+1)} |x|^2 \sim 4p^2 |x|^2 \longrightarrow |x|^2$$

Ainsi.

— Si
$$|x| < 1$$
, $\sum a_{2p}x^{2p}$ converge absolument : $R \geqslant 1$.

— Si
$$|x| > 1$$
, $\sum a_{2p}x^{2p}$ diverge grossièrement. : $R \le 1$.

En conclusion R=1.

Dans les deux cas, la série entière converge pour tout $x \in]-1;1[$.

On a montré:

—
$$y$$
 est développable en série entière sur $]-1;1[$

$$-y(0) = 1, y'(0) = 0.$$

—
$$y$$
 est solution de (E) d'après les équivalences écrites dans la partie analyse.

Conclusion.

Les fonctions $f:x\mapsto\cos(\alpha\arcsin(x))$ et $y:x\mapsto\sum_{p=0}^{+\infty}a_{2p}x^{2p}$ sont toutes deux

solution sur]-1;1[du problème de Cauchy :

$$\begin{cases} (1-x^2)y'' - xy' + \alpha^2 y = 0\\ y(0) = 1\\ y'(0) = 0 \end{cases}$$

Par unicité de la solution ce problème de Cauchy sur]-1;1[, intervalle où $1-x^2\neq 0$, on en déduit que f et y coïncident.

On en déduit que f est développable en série entière sur le voisinage ouvert]-1;1[de 0 et que

$$\forall x \in]-1; 1[, f(x) = \sum_{p=0}^{+\infty} a_{2p} x^{2p}.$$

Solution Exercice 17.

1. Première méthode : équation différentielle.

La fonction $f: x \mapsto e^{-x^2} \int_0^x e^{t^2} dt$ est de classe \mathscr{C}^1 par produit de telles fonctions. Pour tout $x \in \mathbb{R}$,

$$f'(x) = -2xe^{-x^2} \int_0^x e^{t^2} dt + e^{x^2} e^{-x^2}$$
$$= -2xf(x) + 1.$$

La fonction f est donc solution de l'équation différentielle

$$(E): y' = -2xy + 1.$$

C'est même l'unique solution du problème de Cauchy :

$$\begin{cases} y' = -2xy + 1\\ y(0) = 0 \end{cases}$$

Analyse.

Supposons qu'il existe une fonction y:

- développable en série entière sur un voisinage]-r;r[ouvert centré en 0,
- solution de l'équation différentielle (E) et telle que y(0) = 0.

Soit
$$x \in]-r;r[$$
.

On a
$$y(x) = \sum_{n=0}^{+\infty} a_n x^n$$
.

Par le théorème de dérivation terme à terme $y'(x) = \sum_{n=1}^{+\infty} na_n x^{n-1}$.

Ainsi, y est solution de (E) si et seulement si

$$\sum_{n=1}^{+\infty} n a_n x^{n-1} = -2x \sum_{n=0}^{+\infty} a_n x^n + 1$$

$$\iff \sum_{n=0}^{+\infty} (n+1) a_{n+1} x^n = -2 \sum_{n=0}^{+\infty} a_n x^{n+1} + 1$$

$$\iff \sum_{n=0}^{+\infty} (n+1) a_{n+1} x^n = -2 \sum_{n=1}^{+\infty} a_{n-1} x^n + 1.$$

Par unicité du développement en série entière, la fonction y est solution de (E) si et seulement si

— Pour
$$n = 0$$
, $(0+1)a_{0+1} = 1 \iff a_1 = 1$.

— Pour
$$n \ge 1$$
, $(n+1)a_{n+1} = -2a_{n-1}$

Il vient alors par récurrence : pour tout $p \in \mathbb{N}$

$$a_{2p} = a_0 = 0 \text{ car } y(0) = 0$$

et

$$a_{2p+1} = -\frac{2}{2p+1} a_{2p-1}$$

$$= \left(-\frac{2}{2p+1}\right) \left(-\frac{2}{2p-1}\right) a_{2p-3}$$

$$= \dots$$

$$= \frac{(-2)^p}{(2p+1)(2p-1)\dots(3)(1)} a_1$$

$$= \frac{(-2)^p 2^p p!}{(2p+1)!}$$

$$= \frac{(-1)^p 4^p p!}{(2p+1)!}$$

car $a_1 = y'(0) = 1$. On en déduit que pour tout $x \in]-r; r[$,

$$y(x) = \sum_{p=0}^{+\infty} \frac{(-1)^p 4^p p!}{(2p+1)!} x^{2p+1}.$$

Synthèse.

On pose
$$y(x) = \sum_{p=0}^{+\infty} \frac{(-1)^p 4^p p!}{(2p+1)!} x^{2p+1}$$
.

La série entière $\sum_{p=0}^{+\infty} \frac{(-1)^p 4^p p!}{(2p+1)!} x^{2p+1}$ a pour rayon de convergence $R=+\infty$ par la

règle de d'Alembert; pour tout $x \neq 0$

$$\left| \frac{(-1)^{p+1}4^{p+1}(p+1)!}{(2p+3)!} \frac{(2p+1)!}{(-1)^p 4^p p!} \frac{x^{2p+3}}{x^{2p+1}} \right|$$

$$= \left| \frac{4(p+1)}{(2p+3)(2p+2)} \right| |x|^2 \underset{n \to +\infty}{\longrightarrow} 0.$$

Ainsi, la série entière $\sum_{p=0}^{+\infty} \frac{(-1)^p 4^p p!}{(2p+1)!} x^{2p+1}$ converge pour tout $x \in \mathbb{R}$.

En conclusion : $R = +\infty$.

On a montré:

— y est développable en série entière sur $\mathbb R$

--y(0) = 0

— y est solution de (E) d'après les équivalences écrites dans la partie analyse.

Conclusion.

Les fonctions f et $x\mapsto \sum_{p=0}^{+\infty}\frac{(-1)^p4^pp!}{(2p+1)!}x^{2p+1}$ sont solution du même problème de

Cauchy. Par unicité de la solution d'un tel problème, on en déduit que ces fonctions coı̈ncident :

$$\forall x \in \mathbb{R}, f(x) = \sum_{p=0}^{+\infty} \frac{(-1)^p 4^p p!}{(2p+1)!} x^{2p+1}.$$

Seconde méthode

 $x\mapsto f(x)=e^{-x^2}\int_0^x e^{t^2}dt$ est le produit de deux fonctions que l'on peut développer en série entière sur $\mathbb R$, via le théorème de primitivation d'une série entière et par produit de Cauchy :

$$f(x) = \sum_{n=0}^{+\infty} \frac{(-x^2)^n}{n!} \times \int_0^x \sum_{n=0}^{+\infty} \frac{(t^2)^n}{n!}$$

$$= \sum_{n=0}^{+\infty} \frac{(-x^2)^n}{n!} \times \sum_{n=0}^{+\infty} \frac{1}{n!} \int_0^x t^{2n}$$

$$= \sum_{n=0}^{+\infty} \frac{(-1)^n x^{2n}}{n!} \times \sum_{n=0}^{+\infty} \frac{1}{n!} \frac{x^{2n+1}}{2n+1}$$

$$= x \sum_{n=0}^{+\infty} \left(\sum_{k=0}^n \frac{(-1)^{n-k}}{(n-k)!} \frac{1}{k!(2k+1)} \right) x^{2n}$$

$$= \sum_{n=0}^{+\infty} \left(\sum_{k=0}^n \frac{(-1)^{n-k}}{(n-k)!} \frac{1}{k!(2k+1)} \right) x^{2n+1}$$

2. Par unicité du développement en série entière de la fonction f, on en déduit que

pour tout $n \in \mathbb{N}$,

$$\sum_{k=0}^{n} \frac{(-1)^{n-k}}{(n-k)!} \frac{1}{k!(2k+1)} = \frac{(-1)^n 4^n n!}{(2n+1)!}$$

$$\iff \sum_{k=0}^{n} \frac{(-1)^k}{(n-k)!} \frac{1}{k!(2k+1)} = \frac{4^n n!}{(2n)!(2n+1)}$$

$$\iff \sum_{k=0}^{n} \frac{(-1)^k}{(2k+1)} \frac{1}{(n-k)!k!} \frac{(2n)!}{n!} = \frac{4^n}{2n+1}$$

$$\iff \sum_{k=0}^{n} \frac{(-1)^k}{(2k+1)} \frac{n!}{(n-k)!k!} \frac{(2n)!}{n!n!} = \frac{4^n}{2n+1}$$

$$\iff \sum_{k=0}^{n} \frac{(-1)^k}{2k+1} \binom{n}{k} \binom{2n}{n} = \frac{4^n}{2n+1}$$

Solution Exercice 18.

- 1. La fonction $x \mapsto \frac{e^x 1}{x}$ est de classe \mathscr{C}^{∞} sur \mathbb{R}^* par quotient de telles fonctions, le dénominateur ne s'annulant pas sur \mathbb{R}^* .
 - On peut prolonger la fonction f par continuité en 0, car $f(x) = \frac{e^x 1}{x} \sim \frac{x}{x \to 0} = 1$.

On pose g(x) = f(x) pour x non nul et g(0) = 1.

– Pour tout $x \in \mathbb{R}^*$.

$$g(x) = \frac{1}{x} \left(\sum_{n=0}^{+\infty} \frac{x^n}{n!} - 1 \right) = \sum_{n=1}^{+\infty} \frac{x^{n-1}}{n!} = \sum_{n=0}^{+\infty} \frac{x^n}{(n+1)!},$$

formule encore valable si x = 0.

Ainsi, pour tout $x \in \mathbb{R}$,

$$g(x) = \sum_{n=0}^{+\infty} \frac{x^n}{(n+1)!}.$$

La fonction g est donc développable en série entière sur $\mathbb R$ donc en particulier est de classe $\mathscr C^\infty$ sur $\mathbb R$ par le théorème de dérivation terme à terme.

2. La fonction g est dérivable en série entière sur \mathbb{R} .

Le développement en série entière de la fonction g sur $\mathbb R$ coı̈ncide avec la série de Taylor en 0 :

$$g(x) = \sum_{n=0}^{+\infty} \frac{g^{(n)}(0)}{n!} x^n = \sum_{n=0}^{+\infty} \frac{1}{(n+1)!} x^n.$$

On en déduit que pour tout $n \in \mathbb{N}$,

$$g^{(n)}(0) = \frac{n!}{(n+1)!} = \frac{1}{n+1}.$$

Solution Exercice 19.

1. Pour tout $N \in \mathbb{N}$:

$$\sum_{n=0}^{N} (-1)^n x^{\alpha n} = \sum_{n=0}^{N} (-x^{\alpha})^n = \frac{1 - (-x^{\alpha})^{N+1}}{1 + x^{\alpha}}$$

On intègre sur [0;1], ce qui est licite puisque $\alpha > 0$, on obtient :

$$\sum_{n=0}^{N} (-1)^n \int_0^1 t^{\alpha n} dt = \int_0^1 \frac{1}{1+t^{\alpha}} dt - \int_0^1 \frac{(-t^{\alpha})^{N+1}}{1+t^{\alpha}} dt$$

$$\iff \sum_{n=0}^{N} \frac{(-1)^n}{1+n\alpha} = \int_0^1 \frac{1}{1+t^{\alpha}} dt - \int_0^1 \frac{(-t^{\alpha})^{N+1}}{1+t^{\alpha}} dt$$

Or:

$$\left| \int_0^1 \frac{(-t^{\alpha})^{N+1}}{1+t^{\alpha}} dt \right| \leqslant \int_0^1 t^{\alpha(N+1)} dt = \frac{1}{\alpha(N+1)+1} \underset{N \to +\infty}{\longrightarrow} 0.$$

On en conclut que

$$\sum_{n=0}^{+\infty} \frac{(-1)^n}{n\alpha + 1} = \int_0^1 \frac{1}{1 + t^{\alpha}} dt.$$

2. On obtient pour $\alpha = 2$:

$$\sum_{n=0}^{+\infty} \frac{(-1)^n}{2n+1} = \int_0^1 \frac{1}{1+t^2} dt = \left[\arctan(t)\right]_0^1 = \frac{\pi}{4}.$$

3. Soit $\alpha < 0$.

Pour tout $N \in \mathbb{N}$:

$$\sum_{n=0}^{N} (-1)^n x^{-\alpha n} = \sum_{n=0}^{N} (-x^{-\alpha})^n = \frac{1 - (-x^{-\alpha})^{N+1}}{1 + x^{-\alpha}}$$

On intègre sur [0;1] ce qui est licite car $\alpha < 0$, on obtient

$$\sum_{n=0}^{N} (-1)^n \int_0^1 t^{-\alpha n} dt = \int_0^1 \frac{1}{1+t^{-\alpha}} dt - \int_0^1 \frac{(-t^{-\alpha})^{N+1}}{1+t^{-\alpha}} dt$$

$$\iff \sum_{n=0}^{N} \frac{(-1)^n}{-\alpha n+1} = \int_0^1 \frac{1}{1+t^{-\alpha}} dt - \int_0^1 \frac{(-t^{-\alpha})^{N+1}}{1+t^{\alpha}} dt$$

Or:

$$\left|\int_0^1 \frac{(-t^{-\alpha})^{N+1}}{1+t^{-\alpha}} dt\right| \leqslant \int_0^1 t^{-\alpha(N+1)} dt = \frac{1}{-\alpha(N+1)+1} \underset{N \to +\infty}{\longrightarrow} 0.$$

On en conclut que

$$\sum_{n=0}^{+\infty} \frac{(-1)^n}{-n\alpha+1} = \int_0^1 \frac{1}{1+t^{-\alpha}} dt = \int_0^1 \frac{t^{\alpha}}{1+t^{\alpha}} dt.$$

Solution Exercice 20.

- 1. La série entière $\sum \frac{\sin(n\theta)}{n} x^n$ a le même rayon de convergence R que la série entière $\sum \sin(n\theta) x^n$ par multiplication par n.
 - De plus, pour tout $n \in \mathbb{N}$, $|\sin(n\theta)| \le 1$ donc $R \ge R' = 1$ où R' est le rayon de convergence de la série géométrique $\sum x^n$.
 - Ainsi pour tout $x \in]-1;1[$, et $\theta \in \mathbb{R}$, la série $\sum \frac{\sin(n\theta)}{n} x^n$ converge absolument.
- 2. Notons $x \mapsto f(x) = \sum_{n=1}^{+\infty} \frac{\sin(n\theta)}{n} x^n$, la fonction somme.
 - Si $\theta \in \pi\mathbb{Z}$, f(x) = 0 car $\sin(n\theta) = 0$ pour tout $n \in \mathbb{N}^*$. Dans la suite, on suppose que $\theta \notin \pi\mathbb{Z}$
 - Pour tout $x \in]-1;1[\setminus \{0\},$ le théorème de dérivation terme à terme donne

$$f'(x) = \sum_{n=1}^{+\infty} \frac{n}{n} \sin(n\theta) x^{n-1} = \frac{1}{x} \sum_{n=1}^{+\infty} \sin(n\theta) x^n = \frac{1}{x} \operatorname{Im} \left(\sum_{n=1}^{+\infty} e^{in\theta} x^n \right).$$

La convergence de la dernière série est assurée car $|e^{i\theta}x|=|x|<1$. Calculons dans un premier temps

$$\operatorname{Im}\left(\sum_{n=0}^{+\infty} e^{in\theta} x^n\right) = \operatorname{Im}\left(\frac{1}{1 - e^{i\theta} x}\right) = \operatorname{Im}\left(\frac{1 - e^{-i\theta} x}{(1 - x\cos\theta)^2 + x^2\sin^2\theta}\right)$$
$$= \frac{x\sin\theta}{1 - 2x\cos\theta + x^2}$$

On en déduit :

$$\forall x \in]-1; 1[\setminus\{0\}, f'(x) = \frac{\sin \theta}{1 - 2x \cos \theta + x^2}$$

Notons qu'on a aussi obtenu $f'(x) = \sum_{n=1}^{+\infty} \frac{n}{n} \sin(n\theta) x^{n-1}$ donc $f'(0) = \sin(\theta)$.

Finalement, pour tout $x \in]-1;1[$,

$$f'(x) = \frac{\sin \theta}{1 - 2x \cos \theta + x^2}.$$

On intègre sur entre 0 et $x \in]-1;1[$, on obtient compte tenu du fait que f(0)=0

$$f(x) - f(0) = \int_0^x \frac{\sin \theta}{1 - 2t \cos \theta + t^2}$$

$$f(x) = \int_0^x \frac{\sin \theta}{(t - \cos \theta)^2 + \sin^2 \theta} d\theta$$

$$f(x) = \int_{-\cos \theta}^{x - \cos \theta} \frac{\sin \theta}{(u)^2 + \sin^2 \theta} du \qquad u = t - \cos \theta$$

$$f(x) = \int_{-\cos \theta}^{x - \cos \theta} \frac{1}{\sin \theta} \frac{1}{\left(\frac{u}{\sin \theta}\right)^2 + 1} du$$

$$= \left[\arctan \frac{u}{\sin \theta}\right]_{-\cos \theta}^{x - \cos \theta}$$

$$= \arctan \frac{x - \cos \theta}{\sin \theta} - \arctan \frac{-\cos \theta}{\sin \theta}$$

Solution Exercice 21.

- 1. (a) On montre par récurrence double que pour tout $n \in \mathbb{N}$, $1 \leq a_n \leq n+2$.
 - Cet encadrement est vrai aux rangs 0 et 1 car $1 \leqslant a_0 = 1 \leqslant 0 + 2 = 2$ et $1 \leqslant a_1 = 1 \leqslant 1 + 2 = 3$.

Si
$$1 \leqslant a_n \leqslant n+2$$
 et $1 \leqslant a_{n+1} \leqslant n+3$ alors

$$1 \leqslant a_{n+2} = a_{n+1} + \frac{a_n}{n+2} \leqslant n+3 + \frac{n+2}{n+2} = n+4$$

- (b) Puisque pour tout $n \ge 0$, $a_{n+2} = a_{n+1} + \frac{a_n}{n+2} \ge a_{n+1} + \frac{1}{n+2} \ge a_{n+1}$, on en déduit que la suite $(a_n)_{n \in \mathbb{N}^*}$ est croissante.
 - Mais $a_0 = a_1 = 1$ donc la suite $(a_n)_{n \in \mathbb{N}}$ est croissante.
 - De plus les séries entières $\sum x^n$ et $\sum (n+2)x^n$ on le même rayon de convergence R'=1.
 - L'encadrement $1 \leqslant a_n \leqslant n+2$ donne $1=R' \geqslant R \geqslant R'=1$ où R est le rayon de convergence de la série entière $\sum a_n x^n$.

Ainsi,
$$R = 1$$
.

2. On pose $f(x) = \sum_{n=0}^{+\infty} a_n x^n$ et $g(x) = \sum_{n \ge 0} \frac{a_n}{n+2} x^{n+2}$.

(a) Les fonctions f et g sont les sommes de séries entières de séries entières de même rayon de convergence R=1.

Elles sont donc en particulier de classe \mathscr{C}^{∞} sur l'intervalle ouvert de convergence]-1;1[par le théorème de dérivation terme à terme.

(b) Par le théorème de dérivation terme à terme, on a pour tout $x \in]-1;1[$:

$$g'(x) = \frac{d}{dx} \left(\sum_{n=0}^{+\infty} \frac{a_n}{n+2} x^{n+2} \right) = \sum_{n=0}^{+\infty} a_n x^{n+1} = x f(x).$$

(c) – En utilisant la relation de récurrence vérifiée par la suite $(a_n)_{n\in\mathbb{N}}$, on trouve

$$g(x) = \sum_{n=0}^{+\infty} \frac{a_n}{n+2} x^{n+2} = \sum_{n=0}^{+\infty} (a_{n+2} - a_{n+1}) x^{n+2}$$

$$= \sum_{n=0}^{+\infty} a_{n+2} x^{n+2} - \sum_{n=0}^{+\infty} a_{n+1} x^{n+2}$$

$$= \sum_{n=2}^{+\infty} a_n x^n - \sum_{n=1}^{+\infty} a_n x^{n+1} = \sum_{n=2}^{+\infty} a_n x^n - x \sum_{n=1}^{+\infty} a_n x^n$$

$$= (f(x) - a_0 - a_1 x) - x (f(x) - a_0)$$

$$= f(x) - 1 - x - x f(x) + x \qquad (a_0 = a_1 = 1)$$

$$= f(x)(1 - x) - 1$$

On en déduit que pour tout $x \in]-1;1[\setminus \{0\},$

$$g(x) = \frac{xf(x)}{x}(1-x) - 1 \Longleftrightarrow xg(x) = g'(x)(1-x) - x$$
$$\iff g'(x) = \frac{x}{1-x}g(x) + \frac{x}{1-x},$$

formule encore valable en 0 car q'(0) = 0 f(0) = 0.

- Résolvons l'équation différentielle du premier ordre :

$$(E): y'(x) = \frac{x}{1-x}y(x) + \frac{x}{1-x}.$$

– L'équation homogène associée $(H): y'(x) = \frac{x}{1-x}y(x)$ admet pour solutions l'ensemble des fonctions $Ke^{\int_0^x \frac{t}{1-t}dt}$ avec $K \in \mathbb{R}$ et

$$\int_0^x \frac{t}{1-t} dt = \int_0^x \left(-1 + \frac{1}{1-t}\right) dt$$
$$= -x - \ln(1-x)$$

Ainsi, l'ensemble des solutions de l'équation homogène (H) est décrit par

$$Ke^{-x-\ln(1-x)} = Ke^{-x}e^{-\ln(1-x)} = \frac{Ke^{-x}}{1-x}, K \in \mathbb{R}.$$

– La fonction constante $x\mapsto -1$ est solution particulière de l'équation différentielle (E) :

$$y'(x) = \frac{x}{1-x}y(x) + \frac{x}{1-x}.$$

- L'ensemble des fonctions solution de (E) est donc décrit par

$$y(x) = \frac{Ke^{-x}}{1-x} - 1, K \in \mathbb{R}$$

et puisque g(0) = 1 le problème de Cauchy sur] - 1; 1[:

$$y'(x) = \frac{x}{1-x}y(x) + \frac{x}{1-x}; \quad y(0) = 0$$

admet pour unique solution la fonction g, ce qui nous permet de déterminer la valeur de la constante K dans ce cas :

$$q(0) = 0 \iff K = 1.$$

Au final $g(x) = \frac{e^{-x}}{1 - x} - 1$ pour tout $x \in]-1; 1[$.

(d) On a montré que g'(x) = xf(x) ainsi, pour tout $x \in]-1;1[$, puisque g est solution de (E) (inutile donc de re-calculer g'(x)...)

$$f(x) = \frac{g'(x)}{x} = \frac{1}{x} \left[\frac{x}{1-x} \left(\frac{e^{-x}}{1-x} - 1 \right) + \frac{x}{1-x} \right]$$
$$= \frac{1}{x} \frac{xe^{-x}}{(1-x)^2}$$
$$= \frac{e^{-x}}{(1-x)^2},$$

Formule encore valable en 0 car $f(0) = a_0 = 1$.

Solution Exercice 22.

1. On suppose que la série entière $y(x) = \sum a_n x^n$ est solution de l'équation différentielle $16(x^2 - x)y'' + (16x - 8)y' - y = 0$ (E) sur]0; R[.

Soit
$$x \in]0; R[. y(x) = \sum_{n=0}^{+\infty} a_n x^n.$$

Par le théorème de dérivation terme à terme,

$$y'(x) = \sum_{n=1}^{+\infty} n a_n x^{n-1}$$

$$y''(x) = \sum_{n=2}^{+\infty} n(n-1) a_n x^{n-2}$$

Ainsi, y est solution de l'équation différentielle (E) si et seulement si

$$16(x^{2} - x) \sum_{n=2}^{+\infty} n(n-1)a_{n}x^{n-2} + (16x - 8) \sum_{n=1}^{+\infty} na_{n}x^{n-1} - \sum_{n=0}^{+\infty} a_{n}x^{n} = 0$$

$$\iff 16 \sum_{n=2}^{+\infty} n(n-1)a_{n}x^{n} - 16 \sum_{n=2}^{+\infty} n(n-1)a_{n}x^{n-1} + 16 \sum_{n=1}^{+\infty} na_{n}x^{n}$$

$$- 8 \sum_{n=1}^{+\infty} na_{n}x^{n-1} - \sum_{n=0}^{+\infty} a_{n}x^{n} = 0$$

$$\iff 16 \sum_{n=2}^{+\infty} n(n-1)a_{n}x^{n} - 16 \sum_{n=1}^{+\infty} n(n+1)a_{n+1}x^{n} + 16 \sum_{n=1}^{+\infty} na_{n}x^{n}$$

$$- 8 \sum_{n=0}^{+\infty} (n+1)a_{n+1}x^{n} - \sum_{n=0}^{+\infty} a_{n}x^{n} = 0$$

donc si et seulement si

- Pour
$$n = 0$$
: $-8(0+1)a_{0+1} - a_0 = 0 \iff -8a_1 = a_0$

— Pour
$$n = 1 : -16(1)(1+1)a_{1+1} + 16(1)a_1 - 8(1+1)a_{1+1} - a_1 = 0$$

soit $-48a_2 + 15a_1 = 0 \iff a_2 = \frac{5}{16}a_1$.

— Pour tout $n \geqslant 2$:

$$16n(n-1)a_n - 16n(n+1)a_{n+1} + 16na_n - 8(n+1)a_{n+1} - a_n = 0$$

$$\iff a_{n+1} = \frac{(4n-1)(4n+1)}{8(n+1)(2n+1)}a_n,$$

formule encore valable pour n = 0, n = 1.

On obtient en décalant l'indice n, pour tout $n \ge 1$,

$$a_n = \frac{(4n-3)(4n-5)}{8n(2n-1)}a_{n-1}.$$

2. La règle de d'Alembert donne pour tout $x \neq 0$,

$$\left| \frac{a_n}{a_{n-1}} \right| \frac{x^n}{x^{n-1}} \underset{n \to +\infty}{\sim} \frac{16n^2}{16n^2} |x| \underset{n \to +\infty}{\longrightarrow} |x|.$$

Notons que si $a_n=0$ pour un entier n alors tous les termes sont nuls à partir d'un certain rang (et en fait tous les termes sont nuls) : dans ce cas la fonction somme est identiquement nulle.

On s'intéresse dans la suite au cas où f est non identiquement nulle.

On obtient classiquement R = 1.

3. On itère la relation démontrée à la question précédente :

$$\begin{split} a_n &= \frac{(4n-3)(4n-5)}{4(2n)(2n-1)} \frac{(4n-7)(4n-9)}{4(2n-2)(2n-3)} \dots \frac{(4\cdot 2-3)(4\cdot 2-5)}{4(2\cdot 2)(2\cdot 2-1)} a_1 \\ &= \frac{(4n-3)(4n-5)}{4(2n)(2n-1)} \frac{(4n-7)(4n-9)}{4(2n-2)(2n-3)} \dots \frac{(4\cdot 2-3)(4\cdot 2-5)}{4(2\cdot 2)(2\cdot 2-1)} \frac{-1}{8} a_0 \\ &= \frac{(4n-3)(4n-5)}{4(2n)(2n-1)} \frac{(4n-7)(4n-9)}{4(2n-2)(2n-3)} \dots \frac{5\cdot 3}{4(2\cdot 2)(2\cdot 2-1)} \frac{-1}{4\cdot 2} \\ &= \frac{-1}{4^n(2n)!} (4n-3)(4n-5)(4n-7)(4n-9) \dots (5)(3) \\ &= \frac{-[4n]\{4n-1\}}{4^n(2n)!} \frac{[4n-2][4n-3][4n-4](4n-5) \dots [6](5)[4](3)[2]}{[4n]\{4n-1\}[4n-2][4n-4] \dots [6][4][2]} \\ &= -\frac{(4n)!}{(4n-1)4^n(2n)!} \frac{1}{2^{2n}(2n)!} \\ &= -\frac{(4n)!}{(4n-1)4^n(2n)!} \frac{1}{2^{2n}(2n)!} \\ &= -\frac{(4n)!}{(4n-1)4^n(2n)!} \frac{1}{2^{2n}(2n)!} \\ &= -\frac{(4n)!}{(4n-1)4^n(2n)!} \frac{1}{2^{2n}(2n)!} \end{split}$$

4. En utilisant la formule de Stirling, $n! \underset{n \to +\infty}{\sim} \sqrt{2n\pi} \left(\frac{n}{e}\right)^n$, on trouve

$$a_{n} \underset{n \to +\infty}{\sim} -\frac{1}{(4n-1)4^{2n}} \sqrt{8n\pi} \left(\frac{4n}{e}\right)^{4n} \frac{1}{\left(\sqrt{4n\pi} \left(\frac{2n}{e}\right)^{2n}\right)^{2}}$$

$$\underset{n \to +\infty}{\sim} -\frac{1}{(4n-1)4^{2n}} \frac{1}{\sqrt{2n\pi}} \left(\frac{4n}{2n}\right)^{4n}$$

$$\underset{n \to +\infty}{\sim} -\frac{1}{(4n-1)4^{2n}} \frac{1}{\sqrt{2n\pi}} 2^{4n}$$

$$\underset{n \to +\infty}{\sim} -\frac{1}{(4n-1)\sqrt{2n\pi}}$$

$$\underset{n \to +\infty}{\sim} -\frac{1}{4n\sqrt{2n\pi}}.$$