

Information Retrieval

IR Evaluation

Danilo Montesi Stefano Giovanni Rizzo

Measuring Relevance

- Methods pioneered by Cyril Cleverdon in the Cranfield Experiments in the 1960s
- Three elements:
 - A benchmark document collection
 - 2. A benchmark suite of queries
 - A human assessment of either Relevant or Nonrelevant for each query and each document

Cyril Cleverdon

Assessments

- Note: user need is translated into a query
- Relevance is assessed relative to the user need, not the query
- E.g., <u>Information need</u>: My swimming pool bottom is becoming black and needs to be cleaned.
- Query: pool cleaner
- Assess whether the doc addresses the underlying need, not whether it has these words

Relevance judgments

- Binary (relevant vs. non-relevant) in the simplest case, or more precisely (0, 1, 2, 3 ...) in others
- If, for each query, we consider all the set of documents to be judged, the relevance assessment can be huge and expensive
- The depth-k pooling solution:
 - Take in consideration the top-k (e.g. 100) documents of N (e.g. 100) different information retrieval systems
 - Humans must judge a "pool" of no more than k x N documents (e.g. 10'000), which is far less than the entire document collection (could be millions of documents).

Qualified Test Collections

Collection	NDocs	NQrys	Size (MB)	Term/Doc	Q-D RelAss
ADI	82	35			
AIT	2109	14	2	400	>10,000
CACM	3204	64	2	24.5	
CISI	1460	112	2	46.5	
Cranfield	1400	225	2	53.1	
LISA	5872	35	3		
Medline	1033	30	1		
NPL	11,429	93	3		
OSHMED	34,8566	106	400	250	16,140
Reuters	21,578	672	28	131	
TREC	740,000	200	2000	89-3543	» 100,000

Typical TREC

TREC Collections

Text REtrieval Conference (TREC)

...to encourage research in information retrieval from large text collections.

- The U.S. National Institute of Standards and Technology (NIST) has run a large IR test bed evaluation series since 1992. Within this framework, there have been many tracks over a range of different test collections.
- TREC GOV2 is now the largest Web collection easily available for research purposes, including 25 million pages.

Mechanical Turk

- Present query-document pairs to low-cost labor on online crowd-sourcing platforms
 - Hope that this is cheaper than hiring qualified assessors
- Lots of literature on using crowd-sourcing for such tasks
- Main takeaway you get some signal, but the variance in the resulting judgments is very high

Effectiveness measures

- To assess the effectiveness of an IR system (the quality of its search results), there are two parameters about the system's returned results for a query:
 - Precision: What fraction of the returned documents are relevant to the information need?
 - Recall: What fraction of the relevant documents in the collection were returned by the system?

Collection of documents

Each dot • is a document of the collection

Relevant documents

is the set of all the

Given a query, the set in green documents **really relevant** to the query.

Returned documents

Given the same query, the set in yellow is the set of all the documents **returned by the system** we want to **evaluate**.

Relevant retrieved documents

Relevant Retrieved Documents

=

Relevant Documents

 \bigcap

Retrieved Documents

Relevant retrieved documents

Relevant Retrieved Documents

=

Relevant Documents

 \bigcap

Retrieved Documents

Precision

Recall

Precision @ K

- Set a rank threshold K
- Compute % relevant in top K
- Ignores documents ranked lower than K
- Ex:
- Precision@1 is 1 rel. /1 ret.
- Precision@2 is 1 rel. /2 ret.
- Precision@3 is 2 rel. /3 ret.

#1 is relevant
#2 is not relevant
#3 is relevant
#4 is not relevant
#5 is relevant

In similar fashion we have Recall@K

Recall @ K

- Set a rank threshold K
- Compute % relevant in top K
- Ignores documents ranked lower than K
- Ex:
- Recall@1 is 1 rel. /3 rel. tot
- Recall@2 is 1 rel. /3 rel. tot
- Recall@3 is 2 rel. /3 rel. tot

#1 is relevant

#2 is not relevant

#3 is relevant

#4 is not relevant

#5 is relevant

Average Precision (AP)

- Average Precision is an aggregated measure for ranked results.
- It is computed as follows:
 - Instead of setting an arbitrary K we stop only when all the relevant documents are retrieved.
 - This coincides with the first K for which Recall@K is equal to 1.
 - We compute the Precisions @K only for those K where relevant result is retrieved.
 - The average of this Precision measures is the Average Precision.

Example: Average Precision (AP)

Ranking #1:
$$(1.0 + 0.67 + 0.75 + 0.8 + 0.83 + 0.6)/6 = 0.78$$

Ranking #2:
$$(0.5 + 0.4 + 0.5 + 0.57 + 0.56 + 0.6)/6 = 0.52$$

Recall@10 and Precision@10 is equal for the two rankings. However, AP is able to capture that Ranking #1 is better, as it ranks more relevant documents in higher positions.

Mean Average Precision

- When evaluating a system we usually measure the effectiveness over more than one query.
 - Test collections usually span from 50 to 500 queries.
- After computing the Average Precision of each query in the test collection, the Mean Average Precision (MAP) is the average of the Average Precision over all the queries.

Mean Average Precision (MAP)

average precision query
$$1 = (1.0 + 0.67 + 0.5 + 0.44 + 0.5)/5 = 0.62$$

average precision query $2 = (0.5 + 0.4 + 0.43)/3 = 0.44$

mean average precision = (0.62 + 0.44)/2 = 0.53

MAP - Observations

- If a relevant document never gets retrieved, we assume the precision corresponding to that relevant doc to be zero.
- MAP is macro-averaging: each query counts equally
- Now perhaps most commonly used measure in research papers
- MAP assumes user is interested in finding many relevant documents for each query
- MAP requires many relevance judgments in text collection

Beyond binary relevance

- We assumed a binary notion of relevance:
 - either a document is relevant to the query or
 - it is non relevant to the query.
- Some documents can be less relevant than others, but still relevant (non binary notion)
 - Specific measure with non-binary assessments: DCG (Discounted Cumulative Gain) or NDCG (Normalized Discounted Cumulative Gain).
- Binary relevance is still more common and provide a good estimation for IR evaluation

References

Christopher D. Manning, Prabhakar Raghavan and Hinrich Schütze Introduction to Information Retrieval Cambridge University Press.

2008

The book is also online for free:

- HTML edition (2009.04.07)
- PDF of the book for online viewing (with nice hyperlink features, 2009.04.01)
- PDF of the book for printing (2009.04.01)

