数值分析与计算软件(3) -牛顿法解非线性方程

刘帆

liufan@nju.edu.cn

南京大学工程管理学院

基本思想:

• 将非线性方程转化为某种线性方程来进行迭代求解。

设 x_k 是 f(x) = 0的近似根,将 f(x) 在 x_k 处进行一阶 Taylor 展开,得到 $f(x) \approx f(x_k) + f'(x_k)(x - x_k)$

从而非线性方程f(x) = 0近似为如下线性方程

$$f(x_k) + f'(x_k)(x - x_k) = 0$$

• 其根为

$$x = x_k - \frac{f(x_k)}{f'(x_k)}$$

几何意义:

• 以切线作为原曲线的替代。

- 为找到f(x) = 0的根,给定 一个初始估计 x_0 ,
- 画出函数f(x)在点x₀的切线
 ,求出切线与x轴的交点来
 作为f(x)的近似根,
- 迭代进行上述步骤
- 牛顿法也被成为切线法

牛顿迭代公式:

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

算法:

- Step 0: 给定初始估计 x_0 , 以及预设精度 ε
- Step 1: $f'(x_0) = \frac{1}{f'(x_0)} + \frac{1}{f'(x_0)}$

牛顿法-例子

例3.1:

• 用牛顿法求解方程 $xe^x - 1 = 0$ 。

解:

• 牛顿迭代公式为

$$x_{k+1} = x_k - \frac{x_k - e^{-x_k}}{1 + x_k}$$

• 取初始估计 $x_0 = 0.5$, 可以逐次计算 $x_1 = 0.57102$, $x_2 = 0.56716$, …

收敛性:

• 假设是 f(x) 二阶连续可微函数, x^* 是方程 f(x) = 0 的准确解,若 $f'(x^*) \neq 0$,则牛顿法局部二阶收敛到 x^* ,且第 k 步误差 e_k 和第 k+1 步误差 e_{k+1} 满足

$$\lim_{k \to \infty} \frac{e_{k+1}}{e_k^2} = \frac{f''(x^*)}{2f'(x^*)}$$

优点:

• (对于单根) 收敛速度快, 是目前求解非线性方程组的主要方法。

缺点:

- 对初始估计值的选取比较敏感
- 需要计算导数
- 对重根收敛速度慢

解决初值问题 - 牛顿下山法

- 一般来说,牛顿法的收敛性依赖于初值 x_0 的选取,如果 x_0 偏离所求的根 x^* 比较远,则牛顿法可能发散。
- 举个例子,在求方程 x³-x-1=0的根时,如果初始估计值选取的是1.5,则牛顿迭代收敛;如果初始估计值代入的是0.6,则通过计算可以发现,其结果越来越发散。
- 为了防止迭代发散,要求迭代法满足: $|f(x_{k+1})| < |f(x_k)|$ 。以此约束构造牛顿下山法。

解决初值问题 - 牛顿下山法

- 如何保证单调性呢?
- 将牛顿迭代公式改为

$$x_{k+1} = x_k - \lambda \frac{f(x_k)}{f'(x_k)}$$

- · 其中, λ是下山因子。
- 选择合适的下山因子以保证单调性。
- 可以采取逐步搜索的方式,从λ=1开始,逐次取前一次的一半,直到 单调性满足。

解决初值问题 - 牛顿下山法-例子

例3.2

• 用下山法求方程 $x^3 - x - 1 = 0$ 在1.5 附近的一个根,精确到 10^{-5} 。

解:

- 取初始估计值0.6
- 采用牛顿下 山法

k	λ	x_k	$f(x_k)$	$ f(x_{k+1}) < f(x_k) $
0	1	0.6	-1.384	-
1	1	17.9	5716	N
1	1/2	9.25	781	N
1	1/4	4.925	114	N
1	1/8	2.7625	17.319	N
1	1/16	1.68125	2.0709	N
1	1/32	1.14063	-0.625	Y
2	1	1.36681	0.1866	Y
•••	•••			•••

解决求导问题-弦截法

- · 牛顿法需要计算导数值f'(x),这对于复杂的函数是不方便的。
- 用差商

$$\frac{f(x_k) - f(x_{k-1})}{x_k - x_{k-1}}$$

取代导数。

• 牛顿迭代公式变为

$$x_{k+1} = x_k - \frac{f(x_k)}{f(x_k) - f(x_{k-1})} (x_k - x_{k-1})$$

解决求导问题-弦截法

• 以上方法成为弦截法, 其几何意义如下图

- 弦截法是用弦 $P_{k-1}P_k$ 与x轴的交点 x_{k+1} 来近似切线与x轴的交点。
- 在弦截法的计算中,每迭代 一步只需计算一个函数值, 避免了复杂的导数计算,且 该方法具有超线性的收敛性 ,深受广大工程人员所喜爱

解决重根问题

- 牛顿法具有平方收敛速度是指单根时的情况,当不是单根时,就没有 平方收敛速度,为了得到平方收敛速度,可对牛顿法进行修正。
- 设 x^* 为方程 f(x) = 0 的 m 重根 ($m \ge 2$),则有 $f(x) = (x x^*)^m g(x)$,其中 $g(x^*) \ne 0$,此时有

$$f(x^*) = f'^{(x^*)} = \dots = f^{m-1}(x^*) = 0, f^m(x^*) \neq 0$$

解决重根问题

• 当 m 已知时,由于 x^* 是方程 $f(x)^{1/m} = 0$ 的单根,对此方程应用牛顿迭代公式,有

$$x_{k+1} = x_k - m \frac{f(x_k)}{f'(x_k)}, k = 0,1,2,...$$

• 当 m 未知时,令u(x) = f(x)/f'(x),则 x^* 是方程u(x) = 0的单根。对 u(x)用牛顿法进行求解,其迭代公式如下

$$x_{k+1} = x_k - m \frac{f'(x_k)f(x_k)}{f'(x_k)^2 - f(x_k)f''(x_k)}, k = 0,1,2,...$$

解决重根问题-例子

例3.3

- 已知 $\sqrt{2}$ 是方程 $x^4 4x^2 + 4 = 0$ 的多重根,分别用牛顿法和求重根的牛顿法求其近似根。
- 作业(以1.5作为初值,采用三种方法,包括牛顿法、已知其是二重根的牛顿法、不知道其是二重根的牛顿法;每个方法迭代6次,记录每一次迭代得到的近似值,并说明三种方法的表现)。

Q & A

❖ 3月22日交纸质版本。