

Naresh Manwani

Machine Learning Lab, IIIT Hyderabad

Bayes theorem: Describes the probability of an event, based on conditions that might be related to the event.

Bayes theorem: Describes the probability of an event, based on conditions that might be related to the event.

- One fine day Allen felt sick. He went to a doctor.
- Doctor suggested a test.

- One fine day Allen felt sick. He went to a doctor.
- Doctor suggested a test.
- Test result came positive.

- One fine day Allen felt sick. He went to a doctor.
- Doctor suggested a test.
- Test result came positive.
- Doctor: "Allen: you have a very rare disease which affects 0.1% of the population in the world."

- One fine day Allen felt sick. He went to a doctor.
- Doctor suggested a test.
- Test result came positive.
- Doctor: "Allen: you have a very rare disease which affects 0.1% of the population in the world."
- Allen: "How certain is it that I have the disease?"

- One fine day Allen felt sick. He went to a doctor.
- Doctor suggested a test.
- Test result came positive.
- Doctor: "Allen: you have a very rare disease which affects 0.1% of the population in the world."
- Allen: "How certain is it that I have the disease?"
- Doctor: "The test accurately find 99% of the people who have the disease. False alarm rate of the test is 1%."

- What is the chance that Allen actually has the disease?
- Is it 99%? (Because that's the accuracy of the test.)

- What is the chance that Allen actually has the disease?
- Is it 99%? (Because that's the accuracy of the test.)
- Good news for Allen: that's not actually correct!

- What is the chance that Allen actually has the disease?
- Is it 99%? (Because that's the accuracy of the test.)
- Good news for Allen: that's not actually correct!
- •Thanks to Bayes Theorem !!!

$$P(H | E) = \frac{P(E | H) * P(H)}{P(E | H) * P(H) + P(E | \neg H) * P(\neg H)}$$

$$P(H|E) = \frac{P(E|H)*P(H)}{P(E|H)*P(H) + P(E|\neg H)*P(\neg H)}$$

Probability of hypothesis H being true given that event E has happened

Probability of observing event E given that hypothesis H is true

Probability of hypothesis H being true given that event E has happened

Probability of observing event E given that hypothesis H is true

Probability of hypothesis H being true given that event E has happened

Probability of observing event E given that hypothesis H is true

Probability of hypothesis H being true given that event E has happened

Probability of observing event E given that hypothesis H is false

Probability of observing event E given that hypothesis H is true

Probability of hypothesis H being true given that event E has happened

Probability that hypothesis H is false

- $\bullet H$: Actually have the disease
- $\bullet E$: Test result is positive

- H: Actually have the disease
- $\bullet E$: Test result is positive
- P(H) = 0.001

- $\bullet H$: Actually have the disease
- $\bullet E$: Test result is positive
- P(H) = 0.001
- • $P(\neg H) = 0.999$

- $\cdot H$: Actually have the disease
- $\bullet E$: Test result is positive
- P(H) = 0.001
- • $P(\neg H) = 0.999$
- P(E | H) = 0.99

- $\bullet H$: Actually have the disease
- $\bullet E$: Test result is positive
- P(H) = 0.001
- • $P(\neg H) = 0.999$
- P(E | H) = 0.99
- • $P(E \mid \neg H) = 0.01$ (False alarm rate)

Chance of Allen actually having disease

· Plugging all the numbers, we get

$$P(H|E) = \frac{0.99*0.001}{0.99*0.001 + 0.01*0.999} = 0.09$$

• Only 9% chance that Allen having the disease!

- •Suppose that a factory has two machines, Machine A (in China) and Machine B (in India), both producing electric vehicles.
- •40% of their electric vehicles come from Machine A and 60% of their electric vehicles come from Machine B.

- •Suppose that a factory has two machines, Machine A (in China) and Machine B (in India), both producing electric vehicles.
- •40% of their electric vehicles come from Machine A and 60% of their electric vehicles come from Machine B.
- •10% of the electric vehicles produced by Machine A are defective.

- •Suppose that a factory has two machines, Machine A (in China) and Machine B (in India), both producing electric vehicles.
- •40% of their electric vehicles come from Machine A and 60% of their electric vehicles come from Machine B.
- •10% of the electric vehicles produced by Machine A are defective.
- •5% percent of the electric vehicles from Machine B are defective.

- •Suppose that a factory has two machines, Machine A (in China) and Machine B (in India), both producing electric vehicles.
- •40% of their electric vehicles come from Machine A and 60% of their electric vehicles come from Machine B.
- •10% of the electric vehicles produced by Machine A are defective.
- •5% percent of the electric vehicles from Machine B are defective.
- •If an electric vehicle is randomly chosen and found defective, what is the probability that it came from machine A?

- P(MachineA) = 0.4
- P(MachineB) = 0.6

- P(MachineA) = 0.4
- P(MachineB) = 0.6
- P(Defective | Machine A) = 0.1

- P(MachineA) = 0.4
- P(MachineB) = 0.6
- P(Defective | Machine A) = 0.1
- P(Defective | Machine B) = 0.05

Probability that Defective EV Came from Machine A

- P(MachineA) = 0.4
- P(MachineB) = 0.6
- P(Defective | Machine A) = 0.1
- P(Defective | Machine B) = 0.05
- Find P(MachineA | Defective)

Probability that Defective EV Came from Machine A

- P(MachineA) = 0.4
- P(MachineB) = 0.6
- P(Defective | Machine A) = 0.1
- P(Defective | Machine B) = 0.05
- Find P(MachineA | Defective)

```
P(MachineA \mid Defective) = \frac{P(Defective \mid MachineA)P(MachineA)}{P(Defective \mid MachineA)P(MachineA) + P(Defective \mid MachineB)P(MachineB)}
```


Probability that Defective EV Came from Machine A

- P(MachineA) = 0.4
- P(MachineB) = 0.6
- P(Defective | Machine A) = 0.1
- P(Defective | Machine B) = 0.05
- Find P(MachineA | Defective)

$$P(MachineA \mid Defective) = \frac{P(Defective \mid MachineA)P(MachineA)}{P(Defective \mid MachineA)P(MachineA) + P(Defective \mid MachineB)P(MachineB)}$$

$$= \frac{0.1*0.4}{0.1*0.4 + 0.05*0.6} = \frac{4}{7}$$

Generalized Bayes Theorem

Let E_1, E_2, \ldots, E_n be (pairwise) mutually exclusive events such that $E_1 \cup E_2 \cdots \cup E_n = S$, where S denotes the sample space. Let F be an event such that $P(F) \neq 0$, Then

$$P(E_1 | F) = \frac{P(F | E_1)P(E_1)}{P(F | E_1)P(E_1) + P(F | E_2)P(E_2) + \dots + P(F | E_n)P(E_n)}$$

- *As the name suggests, it is based on Bayes Theorem.
- · Lets see ...

- Suppose $\mathcal X$ be the space from which examples come. $\mathcal X$ could be discrete space or continuous.
- For example, in case of text data, $\mathcal X$ is bag of words representation of a set of documents.

- Suppose $\mathcal X$ be the space from which examples come. $\mathcal X$ could be discrete space or continuous.
- For example, in case of text data, $\mathcal X$ is bag of words representation of a set of documents.

- Suppose ${\mathcal X}$ be the space from which examples come. ${\mathcal X}$ could be discrete space or continuous.
- For example, in case of text data, $\mathcal X$ is bag of words representation of a set of documents.

	the	red	dog	cat	eats	food
 the red dog -> 	1	1	1	0	0	0
cat eats dog →	0	0	1	1	1	0
dog eats food	0	0	1	0	1	1
 red cat eats → 	0	1	0	1	1	0

• \mathcal{X} could be a space of vectors in \mathbb{R}^d . Elements of these vectors represent various features of an object. For example, in disease prediction, these feature values can be temperature, blood pressure, oxygen level, heart rate etc.

 $\, \cdot \,$ Suppose there are K categories from which these feature vectors are observed.

 \cdot Suppose there are K categories from which these feature vectors are observed.

*The goal is to find a classifier which is inspired by Bayes Theorem.

- Let C denotes the class variable. Thus, $C \in \{1, ..., K\}$.
- Let P(C=i) be the prior probability of i^{th} class.

- Let C denotes the class variable. Thus, $C \in \{1, ..., K\}$.
- Let P(C=i) be the prior probability of i^{th} class.
- Let $p(\mathbf{x} \mid C = i)$ be the class conditional distribution of the i^{th} class.

- Let C denotes the class variable. Thus, $C \in \{1, ..., K\}$.
- Let P(C=i) be the prior probability of i^{th} class.
- Let $p(\mathbf{x} \mid C = i)$ be the class conditional distribution of the i^{th} class.
- We first find the posterior distribution of the each class using Bayes Theorem as follows:

- Let C denotes the class variable. Thus, $C \in \{1, ..., K\}$.
- Let P(C=i) be the prior probability of i^{th} class.
- Let $p(\mathbf{x} \mid C = i)$ be the class conditional distribution of the i^{th} class.
- We first find the posterior distribution of the each class using Bayes Theorem as follows:

$$P(C = i \mid \mathbf{x}) = \frac{P(C = i)p(\mathbf{x} \mid C = i)}{p(\mathbf{x})}$$

- Let C denotes the class variable. Thus, $C \in \{1, ..., K\}$.
- Let P(C=i) be the prior probability of i^{th} class.
- Let $p(\mathbf{x} \mid C = i)$ be the class conditional distribution of the i^{th} class.
- We first find the posterior distribution of the each class using Bayes Theorem as follows:

$$P(C = i \mid \mathbf{x}) = \frac{P(C = i)p(\mathbf{x} \mid C = i)}{p(\mathbf{x})}$$

* Bayes Classifiers predicts class label as follows:

- Let C denotes the class variable. Thus, $C \in \{1, ..., K\}$.
- Let P(C=i) be the prior probability of i^{th} class.
- Let $p(\mathbf{x} \mid C = i)$ be the class conditional distribution of the i^{th} class.
- We first find the posterior distribution of the each class using Bayes Theorem as follows:

$$P(C = i \mid \mathbf{x}) = \frac{P(C = i)p(\mathbf{x} \mid C = i)}{p(\mathbf{x})}$$

* Bayes Classifiers predicts class label as follows:

$$\hat{y} = \underset{i \in \{1,...,k\}}{\text{arg}} P(C = i \mid \mathbf{x}) = \underset{i \in \{1,...,K\}}{\text{arg}} P(C = i) p(\mathbf{x} \mid C = i)$$

Quantities to estimate to find Bayes Classifier

•
$$P(C = i), \forall i$$

•
$$p(\mathbf{x} \mid C = i), \forall i$$

Quantities to estimate to find Bayes Classifier

•
$$P(C = i), \forall i$$

•
$$p(\mathbf{x} \mid C = i), \forall i$$

- If $\mathbf{x} \in \mathbb{R}^d$, then estimating $p(\mathbf{x} \mid C = i)$ means estimating the joint density function of $(x_1, x_2, ..., x_d)$ corresponding to i^{th} class.
- *This can be a tedious task.

Quantities to estimate to find Bayes Classifier

- $P(C = i), \forall i$
- $p(\mathbf{x} \mid C = i), \forall i$

- If $\mathbf{x} \in \mathbb{R}^d$, then estimating $p(\mathbf{x} \mid C = i)$ means estimating the joint density function of $(x_1, x_2, ..., x_d)$ corresponding to i^{th} class.
- *This can be a tedious task.
- *Naive Bayes makes life easy!

$$p(\mathbf{x} \mid C = i) = p(x_1, x_2, ..., x_d \mid C = i) = \prod_{k=1}^{n} p(x_k \mid C = i)$$

$$p(\mathbf{x} \mid C = i) = p(x_1, x_2, ..., x_d \mid C = i) = \prod_{k=1}^{n} p(x_k \mid C = i)$$

$$p(\mathbf{x} \mid C = i) = p(x_1, x_2, ..., x_d \mid C = i) = \prod_{l=1}^{n} p(x_l \mid C = i)$$

$$p(\mathbf{x} \mid C = i) = p(x_1, x_2, ..., x_d \mid C = i) = \prod_{i=1}^{n} p(x_i \mid C = i)$$

$$p(\mathbf{x} \mid C = i) = p(x_1, x_2, ..., x_d \mid C = i) = \prod p(x_k \mid C = i)$$

$$p(\mathbf{x} \mid C = i) = p(x_1, x_2, ..., x_d \mid C = i) = \prod p(x_k \mid C = i)$$

$$p(\mathbf{x} \mid C = i) = p(x_1, x_2, ..., x_d \mid C = i) = \prod p(x_k \mid C = i)$$

$$p(\mathbf{x} \mid C = i) = p(x_1, x_2, ..., x_d \mid C = i) = \prod p(x_k \mid C = i)$$

$$p(\mathbf{x} \mid C = i) = p(x_1, x_2, ..., x_d \mid C = i) = \prod p(x_k \mid C = i)$$

$$p(\mathbf{x} \mid C = i) = p(x_1, x_2, ..., x_d \mid C = i) = \prod p(x_k \mid C = i)$$

Naive Bayes Assumption

• It assumes that given the class label, features are independent to each other. In other words

$$p(\mathbf{x} \mid C = i) = p(x_1, x_2, ..., x_d \mid C = i) = \prod p(x_k \mid C = i)$$

Naive Bayes Assumption

• It assumes that given the class label, features are independent to each other. In other words

$$p(\mathbf{x} \mid C = i) = p(x_1, x_2, ..., x_d \mid C = i) = \prod p(x_k \mid C = i)$$

Naive Bayes Assumption

• It assumes that given the class label, features are independent to each other. In other words

$$p(\mathbf{x} \mid C = i) = p(x_1, x_2, ..., x_d \mid C = i) = \prod p(x_k \mid C = i)$$

ullet Naive Bayes Classifiers predicts class label y as follows:

$$\hat{y} = \arg\max_{i \in \{1, ..., K\}} P(C = i) p(\mathbf{x} \mid C = i)$$

$$= \arg\max_{i \in \{1, ..., K\}} P(C = i) \prod_{k=1}^{d} p(x_k \mid C = i)$$

Quantities to estimate to find Naive Bayes Classifier

Quantities to estimate to find Naive Bayes Classifier

$$\bullet P(C=i), \forall i$$

•
$$p(x_k | C = i), \forall i, \forall k$$

Quantities to estimate to find Naive Bayes Classifier

•
$$P(C = i), \forall i$$

•
$$p(x_k | C = i), \forall i, \forall k$$

*Thus, it only requires the to estimate the distribution of each feature given the class label.

Quantities to estimate to find Naive Bayes Classifier

•
$$P(C = i), \forall i$$

•
$$p(x_k | C = i), \forall i, \forall k$$

- *Thus, it only requires the to estimate the distribution of each feature given the class label.
- *This not only makes the overall model simple, also reduces the computations required.

Simple and fast.

- Simple and fast.
- Low computation cost.

- Simple and fast.
- Low computation cost.
- Easy and fast to predict class of test data.

- Simple and fast.
- Low computation cost.
- Easy and fast to predict class of test data.
- When assumption of independence holds, a Naive Bayes classifier performs better compare to other models like logistic regression and you need less training data.

- Zero Frequency Issue: If categorical variable has a category in test data set, which was not observed in training data set, then model will assign a zero probability and will be unable to make a prediction. This is often known as "Zero Frequency".
- Independence Assumption: Another limitation of Naive Bayes is the assumption of independent predictors. In real life, it is almost impossible that we get a set of predictors which are completely independent.

Questions

Examples of Naive Bayes Classifier

Naive Bayes Classifier Example 1: Predicting whether to play given the weather conditions

Weather Data Record of 14 Days

Day		Outlook	Humidity	Wind	Play
	1	Sunny	High	Week	No
	2	Sunny	Normal	Strong	Yes
	3	Overcast	High	Week	Yes
	4	Rain	Normal	Strong	No
	5	Rain	Normal	Week	No
	6	Sunny	High	Strong	Yes
	7	Overcast	Normal	Strong	Yes
	8	Sunny	High	Week	Yes
	9	Overcast	High	Strong	Yes
	10	Rain	Normal	Week	No
	11	Overcast	High	Strong	No
	12	Rain	High	Week	No
	13	Sunny	Normal	Week	No
	14	Overcast	High	Strong	Yes

* Step 1: Find the posterior probabilities as follows:

* Step 1: Find the posterior probabilities as follows:

$$P(Play = Yes | Outlook, Humidity, Wind) = \frac{P(Play = Yes)P(Outlook, Humidity, Wind | Play = Yes)}{P(Outlook, Humidity, Wind)}$$

$$= \frac{P(Play = Yes)P(Outlook | Play = Yes)P(Humidity | Play = Yes)P(Wind | Play = Yes)}{P(Outlook, Humidity, Wind)}$$

$$P(Play = No | Outlook, Humidity, Wind) = \frac{P(Play = No)P(Outlook, Humidity, Wind | Play = No)}{P(Outlook, Humidity, Wind)}$$

$$= \frac{P(Play = No)P(Outlook | Play = No)P(Humidity | Play = No)P(Wind | Play = No)}{P(Outlook, Humidity, Wind)}$$

Classification Rule:

Classification Rule:

• Decide to Play if P(Play = Yes | Outlook, Humidity, Wind) > P(Play = No | Outlook, Humidity, Wind)OR

P(Play = Yes)P(Outlook | Play = Yes)P(Humidity | Play = Yes)P(Wind | Play = Yes)

> P(Play = No)P(Outlook | Play = No)P(Humidity | Play = No)P(Wind | Play = No)

Classification Rule:

• Decide to Play if $P(Play = Yes \mid Outlook, Humidity, Wind) > P(Play = No \mid Outlook, Humidity, Wind)$ OR $P(Play = Yes)P(Outlook \mid Play = Yes)P(Humidity \mid Play = Yes)P(Wind \mid Play = Yes)$

* Decide Not to Play if $P(Play = No \mid Outlook, Humidity, Wind) > P(Play = Yes \mid Outlook, Humidity, Wind)$ OR

P(Play = No)P(Outlook | Play = No)P(Humidity | Play = No)P(Wind | Play = No)> P(Play = Yes)P(Outlook | Play = Yes)P(Humidity | Play = Yes)P(Wind | Play = Yes)

> P(Play = No)P(Outlook | Play = No)P(Humidity | Play = No)P(Wind | Play = No)

Quantities defining the classifier

```
P(Play = Yes) = 0.5
  P(Play = No) = 0.5
P(Outlook | Play = Yes)
P(Outlook | Play = No)
P(Humidity | Play = Yes)
P(Humidity | Play = No)
 P(Wind | Play = Yes)
  P(Wind | Play = No)
```


Likelihoods of Outlook

Outlook	P(Outlook Play = Yes)	P(Outlook Play = No)
Sunny	$P(Outlook = Sunny Play = Yes) = \frac{3}{7}$	$P(Outlook = Sunny Play = No) = \frac{2}{7}$
Overcast	$P(Outlook = Overcast Play = Yes) = \frac{4}{7}$	$P(Outlook = Overcast Play = No) = \frac{1}{7}$
Rain	P(Outlook = Rain Play = Yes) = 0	$P(Outlook = Rain Play = No) = \frac{4}{7}$

Likelihoods for Humidity

Humidity	P(Humidity Play = Yes)	P(Humidity Play = No)
High	$P(Humidity = High Play = Yes) = \frac{5}{7}$	$P(Humidity = High Play = No) = \frac{3}{7}$
Normal	$P(Humidity = Normal Play = Yes) = \frac{2}{7}$	$P(Humidity = High Play = No) = \frac{4}{7}$

Likelihoods of Wind

Wind	P(Wind Play = Yes)	P(Wind Play = No)
Week	$P(Wind = Week Play = Yes) = \frac{2}{7}$	$P(Wind = Week Play = No) = \frac{5}{7}$
Strong	$P(Wind = Strong Play = Yes) = \frac{5}{7}$	$P(Wind = Strong Play = No) = \frac{2}{7}$

- * Let on a given day, we observe the following: Outlook=Sunny, Humidity=High, Wind=Strong.
- What is the prediction of Naive Bayes Classifier (Play or Not to Play) ?

- * Let on a given day, we observe the following: Outlook=Sunny, Humidity=High, Wind=Strong.
- What is the prediction of Naive Bayes Classifier (Play or Not to Play) ?

• Thus, the classifier predicts to Play

- * Let on a given day, we observe the following: Outlook=Sunny, Humidity=High, Wind=Strong.
- What is the prediction of Naive Bayes Classifier (Play or Not to Play) ?

$$P(Play = Yes)P(Outlook = Sunny | Play = Yes)P(Humidity = High | Play = Yes)P(Wind = Strong | Play = Yes)$$

$$= 0.5 * \frac{3}{7} * \frac{5}{7} * \frac{5}{7}$$

$$= 0.11$$

* Thus, the classifier predicts to Play

- * Let on a given day, we observe the following: Outlook=Sunny, Humidity=High, Wind=Strong.
- What is the prediction of Naive Bayes Classifier (Play or Not to Play) ?

$$P(Play = Yes)P(Outlook = Sunny | Play = Yes)P(Humidity = High | Play = Yes)P(Wind = Strong | Play = Yes)$$

$$= 0.5*\frac{3}{7}*\frac{5}{7}*\frac{5}{7}$$

$$= 0.11$$

$$P(Play = No)P(Outlook = Sunny | Play = No)P(Humidity = High | Play = No)P(Wind = Strong | Play = No)$$

$$= 0.5*\frac{2}{7}*\frac{3}{7}*\frac{2}{7}$$

$$= 0.02$$

* Thus, the classifier predicts to Play

Naive Bayes Classifier Example 2: Continuous features with Gaussian Distribution

- · Consider binary classification problem.
- Let $p(x_k | C = i) = \mathcal{N}(\mu_{i,k}, \sigma_k^2), i = 1, 2; k = 1...d$

- * Consider binary classification problem.
- Let $p(x_k | C = i) = \mathcal{N}(\mu_{i,k}, \sigma_k^2), i = 1,2; k = 1...d$
- Which means, given the class label, each individual feature follows Gaussian distribution

- * Consider binary classification problem.
- Let $p(x_k \mid C=i) = \mathcal{N}(\mu_{i,k}, \sigma_k^2), i=1,2; k=1...d$
- Which means, given the class label, each individual feature follows Gaussian distribution

Naive Bayes Classifier

Naive Bayes Classifier

• For a new example x, the Naive Bayes Classifier predicts class 1 if

$$P(C = 1) \prod_{k=1}^{d} p(x_k | C = 1) > P(C = 2) \prod_{k=1}^{d} p(x_k | C = 2)$$

$$\Rightarrow \log \left(\prod_{k=1}^{d} \frac{p(x_k | C = 1)}{p(x_k | C = 2)} \right) > \log \left(\frac{P(C = 2)}{P(C = 1)} \right)$$

$$\Rightarrow \sum_{k=1}^{d} \frac{1}{\sigma_k^2} \left[(x_k - \mu_{2,k})^2 - (x_k - \mu_{1,k})^2 \right] > \log(P(C = 2)) - \log(P(C = 1))$$

$$\Rightarrow \sum_{k=1}^{d} \frac{2\left(\mu_{1,k} - \mu_{2,k}\right)}{\sigma_k^2} x_k > \log(P(C=2)) - \log(P(C=1)) + \sum_{k=1}^{d} \frac{\mu_{1,k}^2 - \mu_{2,k}^2}{\sigma_k^2}$$

Naive Bayes Classifier

• For a new example x, the Naive Bayes Classifier predicts class 1 if

$$\begin{split} P(C=1) \prod_{k=1}^{d} p(x_{k} | C=1) > P(C=2) \prod_{k=1}^{d} p(x_{k} | C=2) \\ \Rightarrow \log \left(\prod_{k=1}^{d} \frac{p(x_{k} | C=1)}{p(x_{k} | C=2)} \right) > \log \left(\frac{P(C=2)}{P(C=1)} \right) \\ \Rightarrow \sum_{k=1}^{d} \frac{1}{\sigma_{k}^{2}} \left[(x_{k} - \mu_{2,k})^{2} - (x_{k} - \mu_{1,k})^{2} \right] > \log(P(C=2)) - \log(P(C=1)) \end{split}$$

 $\Rightarrow \sum_{k=1}^{d} \frac{2\left(\mu_{1,k} - \mu_{2,k}\right)}{\sigma_k^2} x_k > \log(P(C=2)) - \log(P(C=1)) + \sum_{k=1}^{d} \frac{\mu_{1,k}^2 - \mu_{2,k}^2}{\sigma_k^2}$

NaiveBayesClassifierturns outto beLinear

Gaussian Naive Bayes Classifier

- NEWS Classification: Classify the news type (e.g., sports, political, national, international, finance, stock market, cinema, educations etc.) given the news content.
- Spam Mail Or Message Filter

- NEWS Classification: Classify the news type (e.g., sports, political, national, international, finance, stock market, cinema, educations etc.) given the news content.
- Spam Mail Or Message Filter
- Object Detection

- NEWS Classification: Classify the news type (e.g., sports, political, national, international, finance, stock market, cinema, educations etc.) given the news content.
- Spam Mail Or Message Filter
- Object Detection
- Medical Diagnosis

- NEWS Classification: Classify the news type (e.g., sports, political, national, international, finance, stock market, cinema, educations etc.) given the news content.
- Spam Mail Or Message Filter
- Object Detection
- Medical Diagnosis
- Many more

Tomphy and

scikit-learn Usage

```
>>> from sklearn.datasets import load_iris
>>> from sklearn.model_selection import train_test_split
>>> from sklearn.naive_bayes import GaussianNB
>>> X, y = load_iris(return_X_y=True)
>>> X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5,
random_state=0)
>>> gnb = GaussianNB()
>>> y_pred = gnb.fit(X_train, y_train).predict(X_test)
```

The documentation contains lot of useful details and explanations https://scikit-learn.org/stable/modules/naive_bayes.html

