Model Building

Team ID	PNT2022TMID10679
Project Name	AI-powered Nutrition Analyzer For Fitness Enthusiasts

Dataset:

In our dataset we have collected images of the five variety of fruits.

- Apple
- Orange
- Pineapple
- Watermelon
- Banana

Image Pre-processing:

Import The ImageDataGenerator Library Configure ImageDataGenerator Class Apply Image DataGenerator Functionality To Trainset And Testset

Model Building:

Importing The Model Building Libraries
Initializing The Model
Adding CNN Layers
Adding Dense Layers
Configure The Learning Process

Data Collection

Unzipping the dataset !unzip'/content/Dataset.zip'

inflating:

Dataset/TRAIN_SET/WATERMELON/r_288_100.jp ginflating:

Dataset/TRAIN_SET/WATERMELON/r_289_100.jp ginflating:

Dataset/TRAIN_SET/WATERMELON/r_28_100.jpg inflating:

Dataset/TRAIN_SET/WATERMELON/r_290_100.jp ginflating:

Dataset/TRAIN_SET/WATERMELON/r_291_100.jp ginflating:

Dataset/TRAIN_SET/WATERMELON/r_292_100.jp ginflating:

Dataset/TRAIN_SET/WATERMELON/r_293_100.jp ginflating:

Dataset/TRAIN_SET/WATERMELON/r_294_100.jp ginflating:

Dataset/TRAIN_SET/WATERMELON/r_295_100.jp ginflating:

Dataset/TRAIN_SET/WATERMELON/r_296_100.jp ginflating:

Dataset/TRAIN_SET/WATERMELON/r_297_100.jp ginflating:

Dataset/TRAIN_SET/WATERMELON/r_298_100.jp ginflating:

Dataset/TRAIN_SET/WATERMELON/r_299_100.jp ginflating:

Dataset/TRAIN_SET/WATERMELON/r_29_100.jpg inflating:

Dataset/TRAIN_SET/WATERMELON/r_2_100.jpg inflating:

Dataset/TRAIN_SET/WATERMELON/r_300_100.jp ginflating:

Dataset/TRAIN_SET/WATERMELON/r_301_100.jp ginflating:

Dataset/TRAIN_SET/WATERMELON/r_302_100.jp ginflating:

Dataset/TRAIN_SET/WATERMELON/r_303_100.jp ginflating:

Dataset/TRAIN_SET/WATERMELON/r_304_100.jp ginflating:

Dataset/TRAIN_SET/WATERMELON/r_305_100.jp ginflating:

Dataset/TRAIN_SET/WATERMELON/r_306_100.jp ginflating:

Dataset/TRAIN_SET/WATERMELON/r_307_100.jp ginflating:

Dataset/TRAIN_SET/WATERMELON/r_308_100.jpg inflating:

Dataset/TRAIN_SET/WATERMELON/r_309_100.jp ginflating:

Dataset/TRAIN_SET/WATERMELON/r_30_100.jpg inflating:

Dataset/TRAIN_SET/WATERMELON/r_310_100.jp ginflating:

Dataset/TRAIN_SET/WATERMELON/r_311_100.jp ginflating:

Dataset/TRAIN_SET/WATERMELON/r_312_100.jp ginflating:

Dataset/TRAIN_SET/WATERMELON/r_313_100.jp ginflating:

Dataset/TRAIN_SET/WATERMELON/r_314_100.jp ginflating:

Dataset/TRAIN_SET/WATERMELON/r_315_100.jp ginflating:

Dataset/TRAIN_SET/WATERMELON/r_31_100.jpg inflating:

Dataset/TRAIN_SET/WATERMELON/r_32_100.jpg inflating:

Dataset/TRAIN_SET/WATERMELON/r_33_100.jpg inflating:

Dataset/TRAIN_SET/WATERMELON/r_34_100.jpg inflating:

Dataset/TRAIN_SET/WATERMELON/r_35_100.jpg inflating:

Dataset/TRAIN_SET/WATERMELON/r_36_100.jpg inflating:

Dataset/TRAIN_SET/WATERMELON/r_37_100.jpg inflating:

Dataset/TRAIN_SET/WATERMELON/r_38_100.jpg inflating:

Dataset/TRAIN_SET/WATERMELON/r_39_100.jpg inflating:

Dataset/TRAIN_SET/WATERMELON/r_3_100.jpg inflating:

Dataset/TRAIN_SET/WATERMELON/r_40_100.jpg inflating:

Dataset/TRAIN SET/WATERMELON/r 41 100.jpg

inflating:

Dataset/TRAIN_SET/WATERMELON/r_42_100.jpg inflating:

Dataset/TRAIN_SET/WATERMELON/r_43_100.jpg inflating:

Dataset/TRAIN_SET/WATERMELON/r_44_100.jpg inflating:

Dataset/TRAIN_SET/WATERMELON/r_45_100.jpg inflating:

Dataset/TRAIN_SET/WATERMELON/r_46_100.jpg inflating:

Dataset/TRAIN_SET/WATERMELON/r_4_100.jpg inflating:

Dataset/TRAIN_SET/WATERMELON/r_50_100.jpg inflating:

Dataset/TRAIN_SET/WATERMELON/r_57_100.jpg inflating:

Dataset/TRAIN_SET/WATERMELON/r_5_100.jpg inflating:

Dataset/TRAIN_SET/WATERMELON/r_6_100.jpg inflating:

Dataset/TRAIN_SET/WATERMELON/r_7_100.jpg inflating:

Dataset/TRAIN_SET/WATERMELON/r_81_100.jpg inflating:

Dataset/TRAIN_SET/WATERMELON/r_8_100.jpg inflating:

Dataset/TRAIN_SET/WATERMELON/r_9_100.jpg

Image Preprocessing

```
#Importing The ImageDataGenerator Library from keras.preprocessing.image import ImageDataGenerator
```

```
Image Data Augmentation
#Configure ImageDataGenerator Class
train datagen =
ImageDataGenerator(rescale=1./255,shear range=0.2,zoom range=0.2,horizonta
test datagen=ImageDataGenerator(rescale=1./255)
Applying Image DataGenerator Functionality To TrainsetAndTestset
#Applying Image DataGenerator Functionality To Trainset And Testset
x train = train datagen.flow from directory(
   r'/content/Dataset/TRAIN SET',
   target size=(64, 64),batch size=5,color mode='rgb',class mode='sparse')
#Applying Image DataGenerator Functionality To Testset
x test =
   test datagen.flow from directory(r'/content/Dataset/TES
   T SET',
   target size=(64, 64),batch size=5,color mode='rgb',class mode='sparse')
    Found 4118 images belonging to 5 classes.
    Found 929 images belonging to 5 classes.
#checking the number of
classes
print(x train.class indices)
     {'APPLES': 0, 'BANANA': 1, 'ORANGE': 2, 'PINEAPPLE': 3, 'WATERMELON': 4}
#checking the number of
classes
print(x test.class indices)
```

```
from collections import Counter as c c(x train .labels)
```

```
Counter({0: 995, 1: 1354, 2: 1019, 3: 275, 4: 475})
```

Model Building

1. Importing The Model Building Libraries

```
import numpy as np
import tensorflow
from tensorflow.keras.models import Sequential
from tensorflow.keras import layers
from tensorflow.keras.layers import Dense,Flatten
from tensorflow.keras.layers import Conv2D,MaxPooling2D,Dropout
```

2. Initializing The Model

```
model = Sequential()
```

3. Adding CNN Layers

Flattening the layers classifier.add(Flatten())

```
# Initializing the CNN classifier = Sequential()

# First convolution layer and pooling classifier.add(Conv2D(32, (3, 3), input_shape=(64, 64, 3), activation='relu')) classifier.add(MaxPooling2D(pool_size=(2, 2)))

# Second convolution layer and pooling classifier.add(Conv2D(32, (3, 3), activation='relu'))

# input_shape is going to be the pooled feature maps from the previous convolution layer classifier.add(MaxPooling2D(pool_size=(2, 2)))
```

4. Adding Dense Layers

classifier.add(Dense(units=128, activation='relu'))
classifier.add(Dense(units=5, activation='softmax'))

#summary of our model classifier.summary()

Model: "sequential_1"

conv2d (Conv2D)	(None, 62, 62, 32)	896
max_pooling2d (MaxPooling2D)	(None, 31, 31, 32)	0
conv2d_1 (Conv2D)	(None, 29, 29, 32)	9248
max_pooling2d_1 (MaxPooling2D)	(None, 14, 14, 32)	0

(None, 128)

(None, 5)

802944

645

Total params: 813,733 Trainable params: 813,733 Non-trainable params: 0

dense (Dense)

dense 1 (Dense)

5. Configure The Learning Process

Compiling the CNN

categorical_crossentropy for more than 2 classifier.compile(optimizer='adam', loss='sparse categorical crossentropy', metrics=['acc