Engineering Physics (BAS101) List of Important Questions

.....

UNIT-5: SUPERCONDUCTORS & NANOMATERIALS

|| Short Answer Type Questions ||

- 1. What is superconductivity phenomenon in superconductors?
- **2.** What are superconductors? Write their properties and uses.
- **3.** What is persistent current? Explain its effect on superconductor.
- **4.** What are High T_c superconductors? Give some examples.
- **5.** Differentiate between top-down and bottom-up approach in nanotechnology.

|| Long Answer Type Questions ||

- 1. What do you understand by superconductivity? Explain How the critical magnetic field depends on temperature of superconductor?
- **2.** What is a superconductor? Explain the effect of temperature and critical current on the state of superconductivity of a superconductor.
- **3.** What is Meissner's effect? Describe that diamagnetism is a more fundamental property than perfect conductivity for a superconductor.

OR

Explain Meissner's effect. Show that zero resistivity and perfect diamagnetism are two essential but independent properties of superconductors.

OR

Explain flux exclusion property of superconductors. Show that a superconductor behaves as a perfect diamagnetic substance.

- **4.** Differentiate between type–I and type-II superconductor with examples. Give properties and uses.
- 5. What is quantum confinement? Distinguish between quantum dot, quantum wire and quantum well.
- **6.** What are nanomaterials? Explain the chemical vapor deposition (CVD) method to synthesize the nanomaterials. Discuss its importance and limitations.
- 7. Explain the Sol Gel method to synthesize the nanomateials with the help of suitable diagram. Give its advantages and disadvantages.

|| Numerical Problems ||

- **1.** The critical magnetic field for Niobium as superconductor is 7.616 and 4.284 mA/m at 6K and 8K respectively. Calculate the transition temperature of the element and critical filed at 0K.
- 2. The critical magnetic field for Niobium as superconductor is 1.0×10^5 amp/m at 8×10^5 amp/m at absolute zero. Find the transition temperature of the element.
- 3. The transition temperature for lead is 7.26 K. The maximum critical field for the material is $8x10^5$ A/m. Lead has to use as a superconductor subjected to a magnetic field of $4x10^4$ A/m. What precaution will have to be taken?
- **4.** How much current can a lead wire, 2.0 mm in diameter, carry in its superconducting state at 4.2K? Given $B_C(4.2K) = 0.0548$ Tesla.
- 5. Calculate the critical current which can flow through a long thin super conducting wire of diameter 1 mm. The critical magnetic field is 7.9×103 Amp m⁻¹.
- **6.** Calculate the critical current and current density for a wire of a lead having a diameter of 1 mm at 4.2 K. The critical temperature for lead is 7.18 K and $H = 6.5 \times 10^4$ A m⁻¹.
- 7. Lead has a superconducting transition temperature of 7.26 K. If initial field at 0 K is 50×10^3 Am⁻¹, calculate the critical field at 6 K. If the lead is in the form of a wire with diameter 1.00 mm, then calculate the critical current it can carry.