Analisadores Descendentes Tabulares; Cjs First Follow

Marcelo Johann

Conteúdo da aula

Analisadores Descendentes

- Recursivos com Retrocesso
- · Recursivos Preditivos
- · Conjunto FIRST e Implementação

Analisador Preditivo Tabular Conjuntos FIRST e FOLLOW Montagem da Tabela Implementação

YACC

INF01033 - Compiladores B - Marcelo Johann - 2010/1

Auto 00 - Slido 1

Definição: Conjuntos "First"

- Seja α qualquer seqüência de símbolos
 - terminais ou não terminais
- First(α):
 - Definição informal:
 - conjunto de todos os terminais que começam qualquer seqüência derivável de α.
 - Definição formal:
 - Se existe um $t \in T$ e um $\beta \in V^*$ tal que $\alpha \Rightarrow^* t \beta$ então $t \in First(\alpha)$
 - Se $\alpha \Rightarrow^* \epsilon$ então $\epsilon \in \mathsf{First}(\alpha)$

INF01033 - Compiladores B - Marcelo Johann - 2010/1

Condição para que se possa usar um analisador preditivo

- Informalmente: no caso que em os First() dos lados direitos das regras de produção sejam "simpáticos", não terá retrocesso.
- Formalmente: para qualquer produção
 A → α₁ | α₂ | ... | α_n,
 quer-se:
 First(α₁) ∩ First(α₂) ∩ ... ∩ First(α_n) = Ø

INF01033 - Compiladores B - Marcelo Johann - 2010/1

Aula 08 : Slide 4

```
 \begin{array}{c} \text{Proc First}(\alpha : \text{string of symbols}) \\ \\ \text{Repeat } \{ \\ \\ \text{Para todas as produções } \alpha \longrightarrow \textbf{X}_1 \ \textbf{X}_2 \ \textbf{X}_3 \dots \textbf{X}_n \ \text{do} \\ \\ \text{if } \textbf{X}_1 \subseteq \textbf{T} \ \text{then } // \ \text{caso simples onde } \textbf{X}_1 \in \text{um terminal} \\ \\ \text{First}(\alpha) := \text{First}(\alpha) \cup \{\textbf{X}_1\} \\ \\ \text{else } \{ \qquad // \ \text{caso menos simples: } \textbf{X}_1 \in \text{um não-terminal} \\ \\ \\ \text{First}(\alpha) = \text{First}(\alpha) \cup \text{First}(\textbf{X}_1) \setminus \{\epsilon\}; \\ \\ \text{for } (i=1 \ ; i=n \ ; i++) \{ \\ \\ \text{if } \epsilon \text{ is in First}(\textbf{X}_1) \text{ and in First}(\textbf{X}_2) \text{ and in... First}(\textbf{X}_{i-1}) \\ \\ \text{First}(\alpha) := \text{First}(\alpha) \cup \text{First}(\textbf{X}_i) \setminus \{\epsilon\} \\ \\ \text{lten First}(\alpha) := \text{First}(\alpha) \cup \{\epsilon\} \\ \\ \text{end do} \\ \\ \text{until no change in any First}(\alpha) \\ \\ \text{INF01033 - Compliadores B - Marcelo Johann - 2010/1} \\ \end{array}
```

```
proc\ Follow(A \subset N)
Follow(S) := \{\$\};
Repeat
foreach\ p \in P\ do\ \{ \qquad \text{$/Laço\ sobre\ as\ produções} \\ case\ p := X \to \alpha A \qquad \text{$//a\ produção\ termina\ por\ A} \\ Follow(A) := Follow(A) \cup Follow(X);
case\ p := X \to \alpha A\beta\ \{ \text{$//a\ produção\ NÃO\ termina\ por\ A} \\ Follow(A) := Follow(A) \cup First(\beta) \setminus \{\epsilon\}; \\ if\ \epsilon \in First(\beta)\ then \\ Follow(A) := Follow(A) \cup Follow(X); \\ end
\}
\}
until\ no\ change\ in\ any\ Follow()
INFO1033 - Compliadores\ B - Marcelo\ Johann - 2010/1
Aula\ 08 : Silde\ 6
```

Observações First/Follow

- Só terminais entram em First e Follow.
- O algoritmo de cálculo de First(α):
 - É trivial quando α é um terminal t.
 - varre as produções X → tω quando α é um não-terminal X;
 - é chato quando o início de uma derivação se α deriva em ϵ .
 - Inclui ϵ apenas quando α pode derivar em ϵ .
- O algoritmo de cálculo de Follow(A)
 - É reservado aos não-terminais A
 - Inclui o \$ em alguns casos triviais (A == o start S)
 - Varre as produções onde A aparece à direita (X \rightarrow ω A ω ')
 - É chato quando A aparece no fim (ou logo antes de algo que deriva em
 - NUNCA inclui ε

```
Exemplo First/Follow
S \rightarrow XYZ
X \rightarrow aXb \mid \epsilon
Y \rightarrow cYZcX \mid d
Z \rightarrow eZYe \mid f
```

Exemplo First/Follow

 $S \rightarrow XYZ$

 $X \rightarrow aXb \mid \epsilon$

 $Y \rightarrow cYZcX \mid d$

 $Z \rightarrow eZYe \mid f$

First(X) = $\{a, \epsilon\}$ Follow(X) = $\{c, d, b, e, f\}$

First(Y) = $\{c, d\}$ Follow(Y) = $\{e, f\}$

 $First(Z) = \{e, f\}$ $Follow(Z) = \{\$, c, d\}$

 $First(S) = \{a, c, d\}$ $Follow(S) = \{\$\}$

Gramática LL(1)

Condições necessárias:

- sem ambigüidade
- sem recursão a esquerda

Uma gramática G é LL(1) se e somente se

Para qualquer produção do tipo: $A \rightarrow \alpha | \beta \Rightarrow^* t$

- 1. First(α) \cap First(β) = \emptyset
- 2. $\alpha \Rightarrow^* \epsilon$ implies !($\beta \Rightarrow^* \epsilon$) 3. $\alpha \Rightarrow^* \epsilon$ implies First(β) \cap Follow(A) = \emptyset

LL(1) = leitura Left -> right + derivação mais a esquerda (Left) + uso de 1 token lookahead.

Análise top-down com tabela preditiva

- · Os dois métodos apresentados até agora para fazer análise descendente (top-down) usam recursividade.
 - Cada não-terminal tem um procedimento associado;
 - Há chamadas com ou sem retrocesso.
 - · Para gramáticas LL1 não tem retrocesso
- · Chamadas recursivas usam uma pilha implícita
 - A pilha das chamadas!
 - Sobrecusto!
- · Idéia: de-recursificar o procedimento:
 - Usa-se uma pilha para armazenar os não-terminais

 - Usa-se uma tabela para orientar as derivações.
 - Ver o uso de tabelas para derecursificar um algoritmo em programação dinâmica.

INF01033 - Compiladores B - Marcelo Johann - 2010/

Reconhecedor preditivo com Pilha

- Tem um buffer de símbolos em entrada;
- \$ marca seu fim.
- Tem um fluxo de saída;
- Usa uma pilha cujo fundo é marcado por \$ Inicializada com S (Start)
- Usa uma tabela sintática preditiva M

Funcionamento do parser

- Seja X o símbolo no topo da pilha
- Seja a o símbolo de entrada (terminal/token de lookahead) a analisar
- · Etapas:
 - 1. Se X == \$ e a == \$: para e reconheceu uma sentença
 - 2. Se X == a e a != \$: desempilha X e avança de um símbolo na entrada.
 - 3. Se X é um não-terminal:
 - Consulta a tabela M(X, a)
 - Se for vazia: ERRO
 - Se contém X → UVW, então substitui na pilha X por UVW (U no topo).

INF01033 - Compiladores B - Marcelo Johann - 2010/

Aula 08 : Slide

Como construir a tabela?

- (Re-escrever a gramática para satisfazer condições de LL(1) – isso é um pre-requisito!)
- Calcular os conjuntos First e Follow
- Para cada produção A → α na gramática:
 - 1. Para cada terminal a ∈First(α)
 - incluir a produção A $\rightarrow \alpha$ em M[A, a]
 - 2. Se $\varepsilon \in First(\alpha)$
 - incluir a produção A → α em M[A,b] para cada b em Follow(A)
 - 3. Se $\varepsilon \in First(\alpha)$ e $\varepsilon \in Follow(A)$
- incluir a produção A → α em M[A,\$]
- Todas as entradas não definidas são erros

INF01033 - Compiladores B - Marcelo Johann - 2010/1

Aula 08 : Slide 14

A tabela preditiva M(X, t)

- · Tabela Bi-dimensional:
 - Dimensão 1: Não-terminal X
 - Dimensão 2: Caractere da entrada (terminal) t
 - A entrada (X,t) contém a regra de produção a aplicar

	(, ,		1 3	
	а	b	С	\$
S				
Α				
В				
$S \rightarrow cAa$ $A \rightarrow cB \mid B$ $B \rightarrow bcB \mid \epsilon$	Fir	st(A) = {b, c, st(B) = {b, e} st(S) = {c}		5) = {\$} 4) = {a} 3) = {a}
		00404		

NF01033 - Compiladores B - Marcelo Johann - 2010/1

ula 08 : Slide

Exemplo de tabela M(X, t)

- · Tabela Bi-dimensional:
 - Dimensão 1: Não-terminal X
 - Dimensão 2: Caractere da entrada (terminal) t
 - A entrada (X,t) contém a regra de produção a aplicar

	а	b	С	\$
S			S → cAa	
Α				
В				
$\begin{array}{c} S \rightarrow cAa \\ A \rightarrow cB \mid B \\ B \rightarrow bcB \mid \epsilon \end{array}$	Fir	st(A) = {b, c, st(B) = {b, ɛ} st(S) = {c}	ε} Follow(s Follow(s Follow(s	
1033 - Compiladores E	3 - Marcelo Johann -	2010/1		Aula 08 : Slide 1

Exemplo de tabela M(X, t)

- · Tabela Bi-dimensional:
 - Dimensão 1: Não-terminal X
 - Dimensão 2: Caractere da entrada (terminal) t
 - A entrada (X,t) contém a regra de produção a aplicar

	а	b	С	\$
S			S → cAa	a
Α			A → cB	3
В				
$S \rightarrow cA\alpha$ $A \rightarrow cB \mid B$ $B \rightarrow bcB \mid \epsilon$	Fir	st(A) = {b, c, st(B) = {b, e} st(S) = {c}	Follow	v(S) = {\$} v(A) = {a} v(B) = {a}

Exemplo de tabela M(X, t)

- · Tabela Bi-dimensional:
 - Dimensão 1: Não-terminal X
 - Dimensão 2: Caractere da entrada (terminal) t
 - A entrada (X,t) contém a regra de produção a aplicar

	а	b	С	\$
S			S → cAa	
Α		$A \rightarrow B$	A → cB	
В				
$S \rightarrow cAa$ $A \rightarrow cB \mid B$ $B \rightarrow bcB \mid \epsilon$	Fir	st(A) = {b, c, st(B) = {b, ε} st(S) = {c}		S) = {\$} A) = {a} B) = {a}

3

Exemplo de tabela M(X, t)

- Tabela Bi-dimensional:
 - Dimensão 1: Não-terminal X
 - Dimensão 2: Caractere da entrada (terminal) t
 - A entrada (X,t) contém a regra de produção a aplicar

	а	b	С	\$
S			S → cAa	
Α	$A \rightarrow B$	A → B	A → cB	
В				
$S \rightarrow cAa$ $A \rightarrow cB \mid B$ $B \rightarrow bcB \mid \epsilon$	Fir	rst(A) = {b, c, rst(B) = {b, e} rst(S) = {c}		5) = {\$} 4) = {a} 3) = {a}

Exemplo de tabela M(X, t)

- · Tabela Bi-dimensional:
 - Dimensão 1: Não-terminal X
 - Dimensão 2: Caractere da entrada (terminal) t
 - A entrada (X,t) contém a regra de produção a aplicar

	а	b	С	\$
S			S → cAa	
Α	$A \rightarrow B$	A → B	A → cB	
В		B →bcB		
$S \rightarrow cA\alpha$ $A \rightarrow cB \mid B$ $B \rightarrow bcB \mid \epsilon$	Fir	st(A) = {b, c, st(B) = {b, ε} st(S) = {c}		5) = {\$} A) = {a} B) = {a}

INF01033 - Compiladores B - Marcelo Johann - 2010/1

Aula 08 : Slide 20

Exemplo de tabela M(X, t)

- · Tabela Bi-dimensional:
 - Dimensão 1: Não-terminal X
 - Dimensão 2: Caractere da entrada (terminal) t
 - A entrada (X,t) contém a regra de produção a aplicar

	(, ,	0	. ,	•
	а	b	С	\$
S			S → cAa	
Α	A → B	A → B	A → cB	
В	$B \rightarrow \epsilon$	B →bcB		
$S \rightarrow cAa$ $A \rightarrow cB \mid B$ $B \rightarrow bcB \mid \epsilon$	Fir	st(A) = {b, c, st(B) = {b, ε} st(S) = {c}	Follow(5) = {\$} A) = {a} B) = {a}
1033 - Compiladores P	Marcelo Johann -	2010/1		Aula 08 · Slide

Exemplo de tabela M(X, t)

- · Tabela Bi-dimensional:
 - Dimensão 1: Não-terminal X
 - Dimensão 2: Caractere da entrada (terminal) t
 - A entrada (X,t) contém a regra de produção a aplicar

	а	b	С	\$
S	ERRO	ERRO	S → cAa	ERRO
Α	A → B	A → B	A → cB	ERRO
В	$B \rightarrow \epsilon$	B →bcB	ERRO	ERRO
$S \rightarrow cA\alpha$ $A \rightarrow cB \mid B$ $B \rightarrow bcB \mid \epsilon$	Fir	rst(A) = {b, c, rst(B) = {b, e} rst(S) = {c}	ε} Follow(s Follow(Follow(f	

INF01033 - Compiladores B - Marcelo Johann - 2010/1

Aula 08 : Slide 22

Usando a tabela

• String: "cbca"

Pilha	Entrada	Ação
S\$	cbca\$	S->cAa
cAa\$	cbca\$	casar c
Aa\$	bca\$	A->B
Ba\$	bca\$	B->bcB
bcBa\$	bca\$	casar b
cBa\$	ca\$	casar c
Ba\$	a\$	Β-> ε
a\$	a\$	casar a
\$	\$	casar \$, sucesso

Mais um exemplo...

E → TE'	S
$E' \rightarrow +TE' \epsilon$	_
T → FT'	E
T' → *FT' ε	T
$F \rightarrow (E) Id$	T

Símbolo	First	Follow
E	{(, id}	{\$,)}
	(t, .σ) {+, ε}	
E'		{\$,)}
T	{(, id}	{+, \$,)}
T'	{*, ε}	{+, \$,)}
F	{(, id}	{*, +, \$,)}

INF01033 - Compiladores B - Marcelo Johann - 2010/1

Aula 08 : Slide 24

Exemplo LL(1)

 $S \rightarrow XYZ$

Construir Tabela Analisar abcdfcf

 $X \rightarrow aXb \mid \epsilon$

 $y \rightarrow cyZcX \mid d$

 $Z \rightarrow eZYe \mid f$

First(X) = $\{a, \epsilon\}$ Follow(X) = $\{c, d, b, e, f\}$

 $First(Y) = \{c, d\}$ $Follow(Y) = \{e, f\}$

 $First(Z) = \{e, f\}$ $Follow(Z) = \{\$, c, d\}$

 $First(S) = \{a, c, d\} Follow(S) = \{\$\}$

INF01033 - Compiladores B - Marcelo Johann - 2010/1

Aula 08 · Slida

Observação sobre a Tabela

- A tabela indica se há ambigüidade!
- Mais de uma regra numa entrada!
- Soluções?
 - Tornar a gramática LL(1)
 - Eliminar ambiguidade, recursividade...
 - Usar uma heurística para desempatar as regras
 - Qual?
- Usar outros algoritmos do que os top-down!
- Exemplo total: if... Then... Else:

S → i EtS | i EtS eS | a E → b

INF01033 - Compiladores B - Marcelo Johann - 2010/1

Aula 08 : Slide 26

Retornando ao Gerador Yacc

Makefile: continuando...

Produções entre %% e %%

%token

%type, %union e yy.lval

NF01033 - Compiladores B - Marcelo Johann - 2010/1

Aula 08 : Slide

Leituras e Tarefas sugeridas

Repetir os experimentos com yacc feitos pelo professor com etapa1

Implementar uma outra gramática com o código de analisador tabular

NF01033 - Compiladores B - Marcelo Johann - 2010/1

Aula 08 : Slide 2