Vorlesungsskript: Einführung in die mathematischen Methoden der Physik

Michael Czerner, Christian Heiliger

Gießen, WS 2021/22

Inhaltsverzeichnis

1	Newtonsche Axiome 3						
	1.1	Axiom	ıe	3			
	1.2	Diskus	ssion und Begriffsklärung	3			
2	Kin	Kinematik					
	2.1	Vektor	en	5			
		2.1.1	Definitionen	5			
		2.1.2	Skalarprodukt	7			
		2.1.3	Vektorprodukt	14			
			-	14			
			2.1.3.2 Komponentendarstellung des Vektorprodukts	16			
		2.1.4		19			
			2.1.4.1 Spatprodukt	19			
				20			
	2.2	Matriz		21			
		2.2.1		21			
		2.2.2		23			
		2.2.3		27			
		2.2.4		31			
		2.2.5	<u> </u>	33			
		2.2.6		36			
		2.2.7		38			
	2.3	Bahnk	· · · · · · · · · · · · · · · · · · ·	40			
		2.3.1		40			
		2.3.2		44			
		2.3.3		49			
3	Dyr	namik	;	54			
	3.1	Felder		54			
		3.1.1	Definition	54			
		3.1.2	Ableitungen	56			
			3.1.2.1 Totale und partielle Ableitungen	56			
				60			
			3.1.2.3 Extremwerte in mehreren Dimensionen	64			
	3.2	Masse	punkt	66			
		3.2.1	•	66			
		3.2.2		67			
				67			

			3.2.2.2 Zylinderkoordinaten	71			
			3.2.2.3 Kugelkoordinaten	74			
		3.2.3	Schwerpunkt	77			
	3.3	Arbeit		80			
		3.3.1		80			
		3.3.2		82			
		3.3.3	<u> </u>	83			
		3.3.4		86			
		0.0.2	\mathbf{e}	86			
			\mathbf{e}	87			
			1 0	88			
	3.4	Taylor	ı	90			
	0.1	3.4.1		90			
		3.4.2		93			
	3.5		V	98			
	3. 3	3.5.1	0	98			
		3.5.2	9	00			
	3.6			02			
	0.0	3.6.1		02			
		3.6.2	0 0	03			
		3.6.3		05			
		3.3.3	9 9	06			
				08			
		3.6.4		10			
			1				
4	Sch	Schwingungen 1					
	4.1	Faden	pendel	12			
	4.2	Kompl	lexe Zahlen	16			
		4.2.1	Definition und Rechenregeln	16			
		4.2.2	Komplexe Zahlenebene	18			
		4.2.3	Euler'sche Formel	19			
	4.3	Linear	er Oszillator	23			
		4.3.1	Freier linearer harmonischer Oszillator	23			
		4.3.2	Freier gedämpfter linearer Oszillator	25			
			4.3.2.1 Schwache Dämpfung	26			
			4.3.2.2 Starke Dämpfung	27			
			4.3.2.3 Aperiodischer Grenzfall (kritische Dämpfung) 1	29			
		4.3.3	Gedämpfter linearer Oszillator mit äußerer Kraft	30			
	4.4	Gekop	pelte Schwinger	36			
_							
5		tralkrä		40			
	5.1			40			
	5.2		8	41			
	5.3	Kepler 5.3.1		42 42			
			ů ,	42 42			
		5.3.2	ů –	43			
		5.3.3	Absolute Moordinaten	48			

Kapitel 1

Newtonsche Axiome

1.1 Axiome

- I) Jeder Körper verharrt im Zustand der Ruhe oder der gleichförmigen Bewegung, wenn er nicht durch einwirkende Kräfte gezwungen wird seinen Bewegungszustand zu ändern.
- II) Die Änderung der Bewegung ist der einwirkenden Kraft proportional und geschieht längs jener geraden Linie, nach welcher die Kraft wirkt.
- III) Die Reaktion auf eine Aktion ist immer entgegengesetzt und gleich, d.h. die Aktion (Kraftwirkung) zweier Körper aufeinander sind immer gleich groß und entgegengesetzt gerichtet.

1.2 Diskussion und Begriffsklärung

Inertialsystem: • ein Bezugssystem, in dem das 1. Axiom gilt

• Näherung, da die Gravitationskraft sich nicht abschirmen lässt

Massepunkt: • idealisiert, möglich wenn Ausdehnung des Körpers viel kleiner

als das betrachtete System ist

• starrer Körper: Schwerpunkt

Kraft: • ist durch das 2. Axiom definiert

• ist durch Richtung und einen Betrag gegeben \Rightarrow muss ein Vektor sein: \vec{F} (andere Schreibweisen: \mathbf{F} , \underline{F})

• entspricht unserer Wahrnehmung

• Superpositionsprinzip

Bahnkurve: $\vec{r}(t)$

Zustand in Ruhe: $\vec{r}(t) = \vec{r}_0 = \text{konstant}$

gleichf. Bew.: Geschwindigkeit $\vec{v}(t) = \frac{d\vec{r}}{dt} = \dot{\vec{r}}(t) = \vec{v}_0 = \text{konstant}$

 $\Rightarrow \vec{r}(t) = \vec{r}_0 + \vec{v}_0 t$

Änderung Bew.:

- Beschleunigung: $\vec{a}(t) = \frac{d^2 \vec{r}}{dt^2} = \ddot{\vec{r}}(t)$
- aus 2. Axiom folgt: $\vec{a}(t) \propto \vec{F}(t)$ $\Rightarrow m\vec{a}(t) = m\vec{r}(t) = \vec{F}(t)$ (Bewegungsgleichung) $\Rightarrow m \dots$ Proportionalitätsfaktor
- aus 1. Axiom folgt: $\vec{a}(t) = 0 \Leftrightarrow \sum \vec{F}_i = 0$

Masse:

- ist definiert als der Proportionalitätsfaktor im 2. Axiom
- betrachten folgendes System:

- System ist zunächst in Ruhe: $\vec{F}_1 = -\vec{F}_2$
- jetzt den Faden durchschneiden:

- Festlegung einer Referenzmasse notwendig: Urkilogramm
- die Masse ist in diesem Fall ein Maß, wie sich der Körper einer Kraft widersetzt, also wie träge er ist $\Rightarrow m$ wird als **träge** Masse bezeichnet
- m ist eine Eigenschaft des Körpers
- weitere Masse ist im Gravitationsgesetz enthalten:

$$\vec{F} = -G \frac{m_1 m_2}{r^2} \vec{e}_r$$

- diese Masse ist ein Maß für das Gravitations- beziehungsweise Schwerefeld ⇒ wird als schwere Masse bezeichnet
- in Newtonscher Mechanik sind dies unterschiedliche Massen
- die allgemeine Relativitätstheorie zeigt: **träge Masse = schwere Masse**

Impuls:

- $\vec{p} = m\vec{v} \Rightarrow \vec{F} = m\vec{a} = \dot{\vec{p}}$
- auch gültig innerhalb der speziellen Relativitätstheorie

Drehimpuls: $\vec{L} = \vec{r} \times \vec{p} = m\vec{r} \times \dot{\vec{r}}$

Drehmoment: $\vec{M} = \dot{\vec{L}} = \vec{r} \times \vec{F}$

Kinematik: Lehre der Bewegung von Massepunkten und Körpern im Raum ohne Berücksichtigung der Ursache (Kräfte).

Dynamik: Lehre der Bewegung von Massepunkten und Körpern im Raum unter Einfluss von Kräften.

Kapitel 2

Kinematik

2.1 Vektoren

2.1.1 Definitionen

Definition 2.1: Physikalische Größen, die durch die Angabe einer Zahl bestimmt sind, nennt man **Skalar**.

Beispiele:

Definition 2.2: Physikalische Größen, die neben einer Zahl noch eine Richtung benötigen, nennt man **Vektoren**.

Beispiele:

Darstellung: Tripel reeller Zahlen a_1, a_2, a_3 :

$$\vec{a} = \underline{a} = \mathbf{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$$

Hinweis: später in Analysis und in der Quantenmechanik Erweiterung auf abstrakten Vektorbegriff

Definition 2.3: Ein **linearer Vektorraum** \mathscr{H} ist eine Sammlung von Vektoren \vec{a}, \vec{b}, \dots für die

- i) eine Regel für die Vektorsumme $\vec{a} + \vec{b}$ definiert ist.
- ii) eine Regel für die Multiplikation mit Skalaren α, β, \ldots , also $\alpha \vec{a}, \beta \vec{b}, \ldots$ definiert ist.
- iii) die folgenden Axiome erfüllt sind:
 - \mathcal{H} ist abgeschlossen: $\vec{a} + \vec{b} \in \mathcal{H}$ und $\alpha \vec{a} \in \mathcal{H}$
 - Multiplikation ist distributiv: $\alpha (\vec{a} + \vec{b}) = \alpha \vec{a} + \alpha \vec{b}$ und $(\alpha + \beta)\vec{a} = \alpha \vec{a} + \beta \vec{a}$
 - Multiplikation mit Skalaren ist assoziativ: $\alpha(\beta \vec{a}) = (\alpha \beta) \vec{a}$
 - Addition ist assoziativ: $\vec{a} + (\vec{b} + \vec{c}) = (\vec{a} + \vec{b}) + \vec{c}$
 - Addition ist kommutativ: $\vec{a} + \vec{b} = \vec{b} + \vec{a}$

- es existiert ein Nullelement $\vec{0}$: $\vec{a} + \vec{0} = \vec{a}$
- es existiert ein inverses Element der Addition: $\vec{a} + (-\vec{a}) = \vec{0}$

Beispiel: alle 3D-Vektoren:

Definition 2.4: Sind für die Vektoren eines linearen Vektorraums eine Länge sowie zwischen zwei Vektoren ein Winkel definiert, so handelt es sich um einen **Euklidischen Vektorraum**.

Beispiel: 3D-Vektoren:

2.1.2 Skalarprodukt

Definition 2.5: Eine Vorschrift, die 2 Vektoren \vec{a} und \vec{b} auf eine reelle Zahl abbildet und die folgenden Axiome erfüllt, heißt **Skalarprodukt** (oder Inneres Produkt) und wird als $\vec{a} \circ \vec{b}$ (oder $(\vec{a}|\vec{b})$ oder $(\vec{a}|\vec{b})$) geschrieben.

- $\mathbf{i)} \ \vec{a} \circ \vec{b} = \vec{b} \circ \vec{a}$
- ii) $\vec{a} \circ \vec{a} \ge 0$ und 0 nur falls $\vec{a} = \vec{0}$
- iii) $(\alpha \vec{a}) \circ \vec{b} = \alpha (\vec{a} \circ \vec{b})$
- iv) $\vec{a} \circ (\vec{b} + \vec{c}) = \vec{a} \circ \vec{b} + \vec{a} \circ \vec{c}$

Beispiel: 3D-Vektoren:

Hinweise: • $\vec{a} \circ \vec{a} = |\vec{a}|^2 \implies a = |\vec{a}| = \sqrt{\vec{a} \circ \vec{a}}$ wird auch als Norm bezeichnet

•

Definition 2.6: Zwei Vektoren \vec{a} und \vec{b} sind **orthogonal** bzw. senkrecht zueinander, wenn $\vec{a} \circ \vec{b} = 0$.

Hinweise: • für 3D-Vektoren klar, da $\cos \varphi = 0 \implies \varphi = 90^{\circ}$

• für abstrakte Vektoren ist dies Definition

Definition 2.7: Ein Vektor der Länge (Norm) 1 heißt **Einheitsvektor** oder normalisierter Vektor.

Beispiel: $\vec{e} = \frac{\vec{a}}{|\vec{a}|}$ ist Einheitsvektor in Richtung \vec{a}

Definition 2.8: Eine Menge von *n* Vektoren heißt **linear unabhängig**, wenn

$$\alpha_1 \vec{a}_1 + \alpha_2 \vec{a}_2 + \ldots + \alpha_n \vec{a}_n = \vec{0}$$

nur erfüllt werden kann, wenn alle $\alpha_i=0$ sind.

Hinweis: kein Vektor kann als Linearkombination der anderen Vektoren dargestellt werden

Definition 2.9: Die maximale Anzahl n linear unabhängiger Vektoren eines Vektorraums wird als **Dimension** des Vektorraums bezeichnet.

Beispiel:

Definition 2.10: Ein Satz von n linear unabhängigen Vektoren eines n-dimensionalen Vektorraums heißt **Basis**.

Hinweise:

• jeder Vektor kann als Linearkombination der Basisvektoren dargestellt werden: $\vec{a}=\sum_i\alpha_i\vec{c}_i$

• Basis ist nicht eindeutig:

$$\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \quad \text{und} \quad \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 2 \\ 2 \\ 0 \end{pmatrix}, \begin{pmatrix} 3 \\ 0 \\ 1 \end{pmatrix}$$

Definition 2.11: Die Entwicklungskoeffizienten α_i eines Vektors in einer Basis werden als **Komponenten** in dieser Basis bezeichnet.

Hinweise: • in einer gegebenen Basis sind die α_i eindeutig

• Addition zweier Vektoren

• Multiplikation mit Skalar

• Wechsel der Basis führt zu anderen α_i , aber die Physik ändert sich nicht

Definition 2.12: Eine **orthonormale Basis** besteht aus normalisierten Basisvektoren, die paarweise orthogonal zueinander sind.

Hinweise:

• es handelt sich dann um orthogonale Einheitsvektoren \vec{e}_i für die gilt:

• die orthogonale Projektion von \vec{a} entlang eines orthonormalen Basisvektors liefert die zugehörige Komponente:

• der große Vorteil einer orthonormalen Basis ist die Berechnung des Skalarprodukts mit Hilfe der Komponenten:

Achtung: Nur bei orthonormierter Basis möglich! Beispiel für nicht orthonormale Basis:

- Skalarprodukt unabhängig von Basis, aber deutlich einfacher für orthonormale Basis
- Das Schmidtsche Orthonormalisierungsverfahren ist eine Vorschrift, um aus einer gegebenen Basis eine orthonormale Basis zu konstruieren
- Entwicklung eines Vektors in einer orthonormalen Basis:

- Schwarzsche Ungleichung: $\left|\vec{a}\circ\vec{b}\right| \leq \left|\vec{a}\right|\left|\vec{b}\right|$
- Dreiecksungleichung: $\left|\vec{a} + \vec{b}\right| \leq \left|\vec{a}\right| + \left|\vec{b}\right|$

2.1.3 Vektorprodukt

2.1.3.1 Grundlagen

Definition 2.13: Die Abbildung zweier Vektoren \vec{a} und \vec{b} auf einen anderen Vektor $\vec{c} = \vec{a} \times \vec{b}$ wird **Vektorprodukt** (oder Äußeres Produkt) genannt, wobei \vec{c} die folgenden Eigenschaften hat:

- i) $c = |\vec{c}| = ab\sin\gamma$, wobei γ der Winkel zwischen \vec{a} und \vec{b} ist
- ii) \vec{c} ist senkrecht zu \vec{a} und \vec{b}
- iii) \vec{a} , \vec{b} , \vec{c} bilden ein Rechtssystem (oder rechtshändiges System)

Hinweise:

- Vektorprodukt ist nur für 3D-Vektoren definiert
- $|\vec{c}| = ab \sin \gamma$ ist die Fläche des durch \vec{a} und \vec{b} aufgespannten Parallelogramms

Eigenschaften:

- i) $\vec{a} \times \vec{b} = -\vec{b} \times \vec{a}$; folgt aus der Forderung des Rechtssystems
- ii) falls $\vec{a} \times \vec{b} = \vec{0} \Rightarrow \vec{a}$ oder \vec{b} Nullvektor oder $\sin \gamma = 0 \Rightarrow \gamma = 0 \Rightarrow \vec{a}$ parallel zu \vec{b} speziell: $\vec{a} \times \vec{a} = \vec{0}$
- iii) $(\alpha \vec{a}) \times \vec{b} = \vec{a} \times \alpha \vec{b} = \alpha (\vec{a} \times \vec{b})$ Beweis:

iv)
$$\vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c}$$
 (distributiv)

v)
$$\vec{a} \times (\vec{b} \times \vec{c}) \neq (\vec{a} \times \vec{b}) \times \vec{c}$$

This works, perfectly

Definition 2.14: Das Vektorprodukt ist ein **axialer** Vektor (Pseudovektor), der sich bei Rauminversion nicht ändert. Im Gegensatz dazu gehen **polare** Vektoren bei Rauminversion in ihr negatives über:

Hinweise:

- Vektorprodukt ist weniger eine Richtung, sondern ein Drehsinn (wegen Rechtssystem)
- Skalarprodukt aus zwei polaren oder axialen Vektoren ändert sich bei Inversion nicht, aber Mischung führt zu Vorzeichenwechsel ⇒ Pseudoskalar

2.1.3.2 Komponentendarstellung des Vektorprodukts

orthonormale Basis als Rechtssystem:

This does work

This does work

I am just writing a few little words,

the interesting part is

$$x^2 + 5 + 78 > 0$$

This does work

 $x^2 + 5 + 78 > 0$

This does work

 $x^2 + 5 + 78 > 0$

The interesting part is

 $x^2 + 5 + 78 > 0$

The interesting part is

 $x^2 + 5 + 78 > 0$

The interesting part is

Definition 2.15: Der total antisymmetrische Tensor dritter Stufe ist durch die Komponenten $\epsilon_{ijk} = \vec{e}_i \circ (\vec{e}_j \times \vec{e}_k)$ gegeben.

Definition 2.16: Ein **Tensor** *n*-ter Stufe stellt eine lineare Abbildung von *n* Vektoren auf eine Zahl dar.

Hinweise:

- Tensor 1. Stufe: $T(\vec{a}) \rightarrow c$
- Tensor 2. Stufe: $T(\vec{a}, \vec{b}) \rightarrow c$
- Tensor 3. Stufe: $T(\vec{a}, \vec{b}, \vec{c}) \rightarrow c$
- aus linearer Abbildung folgt:

- \Rightarrow Abbildung der Basisvektoren ist ausreichend und diese werden als Komponenten des Tensors bezeichnet
- ⇒ für 3D-Raum besitzt Tensor
 - 1. Stufe: 3 Komponenten
 - 2. Stufe: $3 \cdot 3 = 9$ Komponenten
 - 3. Stufe: $3 \cdot 3 \cdot 3 = 27$ Komponenten Beispiel in kartesischen Koordinaten

$$\begin{pmatrix} A_x \\ A_y \\ A_z \end{pmatrix} \xrightarrow{\uparrow} \bigcirc$$

$$\begin{pmatrix} A_{xx} & A_{xy} & A_{xz} \\ A_{yx} & A_{yy} & A_{yz} \\ A_{zx} & A_{zy} & A_{zz} \end{pmatrix}$$

$$\rightarrow \rightarrow \qquad \rightarrow \uparrow \qquad \rightarrow \odot$$

$$\uparrow \rightarrow \qquad \uparrow \uparrow \qquad \uparrow \odot$$

$$\odot \rightarrow \qquad \odot \uparrow \qquad \odot \odot$$

2.1.4 Höhere Vektorprodukte

2.1.4.1 Spatprodukt

Definition 2.17: Das **Spatprodukt** dreier Vektoren $\vec{a}, \vec{b}, \vec{c}$ ist definiert durch

$$(\vec{a} \times \vec{b}) \circ \vec{c}$$

Hinweise: • das Spatprodukt ist das Volumen des von $\vec{a},\ \vec{b}$ und \vec{c} aufgespannten Parallelepipeds

Bei einem Testflug, in der Größe

1 ch sageuch Leute 1 think 1 linke how this looks Ü But writing everything here (1) 1 don't know 1 can't Zoom?

• welche Fläche als Grundfläche genommen wird, ist egal ⇒ keine Änderung bei zyklischer Vertauschung:

- bei antizyklischer Vertauschung ändert das Spatprodukt das Vorzeichen, weswegen es auch als Pseudoskalar bezeichnet wird
- Darstellung mit ϵ_{ijk} :

2.1.4.2 Doppeltes Vektorprodukt

Definition 2.18: Das **doppelte Vektorprodukt** dreier Vektoren $\vec{a}, \vec{b}, \vec{c}$ ist definiert durch

$$\vec{a} \times (\vec{b} \times \vec{c})$$

Entwicklungssatz:

1 (

Jacobi-Identität:

$$\vec{a} \times \left(\vec{b} \times \vec{c} \right) + \vec{b} \times \left(\vec{c} \times \vec{a} \right) + \vec{c} \times \left(\vec{a} \times \vec{b} \right) = \vec{0}$$

Hinweis: noch höhere Produkte lassen sich leicht durch Eigenschaften des Spatprodukts und mit Hilfe des Entwicklungssatzes vereinfachen

2.2 Matrizen

2.2.1 Transformation von Vektoren

Betrachten Transformation eines Vektors (Spiegeln, Drehung, Skalierung, **ohne** Translation)

Definition 2.19: Ein rechteckiges Schema reeller Zahlen a_{ij} (i = 1, ..., m; j = 1, ..., n)

$$A = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix} = (a_{ij})$$

heißt $(m \times n)$ -Matrix und besteht aus m Zeilen und n Spalten.

Hinweis: 2 Matrizen A und B sind gleich, wenn $a_{ij} = b_{ij} \ \forall ij$ spezielle Matrizen:

Definition 2.20: Als **Rang** einer Matrix bezeichnet man die maximale Anzahl an linear unabhängigen Spalten- oder Zeilenvektoren einer Matrix

Hinweis: maximale Anzahl linear unabhängiger Spaltenvektoren = maximale Anzahl linear unabhängiger Zeilenvektoren

Beispiel:

Definition 2.21: Durch Vertauschen von Zeilen und Spalten einer $(m \times n)$ -Matrix $A = (a_{ij})$ erhält man die zugehörige **transponierte Matrix** A^T , die eine $(n \times m)$ -Matrix ist:

$$A^T = \left(a_{ij}^T = a_{ji}\right) = \left(\begin{array}{ccc} a_{11} & \dots & a_{m1} \\ \vdots & & \vdots \\ a_{1n} & \dots & a_{mn} \end{array}\right)$$

2.2.2 Rechenregeln für Matrizen

Definition 2.22: Die Summe $C = A + B = (c_{ij})$ zweier Matrizen $A = (a_{ij})$ und $B = (b_{ij})$ ist gegeben durch

$$c_{ij} = a_{ij} + b_{ij} \quad \forall ij$$

Definition 2.23: Die **Multiplikation** einer Matrix A mit einem Skalar λ ist gegeben durch die Multiplikation jedes einzelnen Elements

$$\lambda A = (\lambda a_{ij})$$

Definition 2.24: Das **Produkt** einer $(m \times n)$ -Matrix A mit einer $(n \times r)$ -Matrix B ist gegeben durch

$$C = AB = (c_{ij})$$
 $((m \times r)\text{-Matrix})$

mit

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$$

Hinweise:

• c_{ij} ist das Skalarprodukt aus dem i-ten Zeilenvektor von A mit dem j-ten Spaltenvektor von B:

- Produkt ist **nur** definiert, wenn Spaltenanzahl von A gleich Zeilenanzahl von B ist
- AE = A (für $(n \times n)$ -Matrix)
- Skalarprodukt zweier Vektoren

• i.A. $AB \neq BA$ (nur für quadratische Matrizen überhaupt möglich)

Definition 2.25: Die zur $(n \times n)$ -Matrix A inverse Matrix A^{-1} ist definiert durch

$$A^{-1}A = AA^{-1} = E$$

Hinweis: A^{-1} existiert nicht immer

2.2.3 Determinante

Definition 2.26: Die **Determinante** einer $(n \times n)$ -Matrix A ist gegeben durch

$$\det A = \begin{vmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{m1} & \dots & a_{mn} \end{vmatrix} = \sum_{P} (\operatorname{sign} P) a_{1p(1)} a_{2p(2)} \dots a_{np(n)}$$

Hinweise:

- $P(1,2,\ldots,n) = (p(1),\ldots,p(n))$ ist eine Permutation der natürlichen Folge $(1,2,\ldots,n)$
- sign P ist positiv, wenn die Anzahl der paarweisen Vertauschungen, um zur Permutation zu kommen, gerade ist und negativ, wenn die Anzahl der Vertauschungen ungerade ist

Entwicklungssatz:

$$\det A = a_{i1}U_{i1} + a_{i2}U_{i2} + \ldots + a_{in}U_{in} = \sum_{j=1}^{n} a_{ij}U_{ij}$$
mit $U_{ij} = (-1)^{i+j} A_{ij}$ und

 A_{ij} : **Unterdeterminante**, d.h. die Determinante der $((n-1) \times (n-1))$ -Matrix, die aus A durch Streichen der i-ten Zeile und der j-ten Spalte entsteht

Satz (o.B.): Die Inverse einer Matrix Aexistiert genau dann, wenn det $A\neq 0$ ist und es gilt

$$\left(A^{-1}\right)_{ij} = \frac{U_{ji}}{\det A}$$

Hinweis: Anordnung der Indizes beachten

2.2.4 Rechenregeln für Determinanten

Die Determinante hat eine Reihe von wichtigen Eigenschaften, von denen die meisten direkt aus der Definition folgen:

i) Multiplikation einer Zeile oder Spalte mit einem Skalar α :

$$\begin{vmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ \alpha a_{i1} & \dots & \alpha a_{in} \\ \vdots & & \vdots \\ a_{n1} & \dots & a_{nn} \end{vmatrix} = \alpha \begin{vmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{i1} & \dots & a_{in} \\ \vdots & & \vdots \\ a_{n1} & \dots & a_{nn} \end{vmatrix}$$

ii) aus i) folgt $\det(\alpha A) = \alpha^n \det A$

$$\begin{vmatrix} a_{11} + b_{11} & \dots & a_{1n} + b_{1n} \\ a_{21} & \dots & a_{2n} \\ \vdots & & \vdots & & \vdots \\ a_{n1} & \dots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & \dots & a_{1n} \\ a_{21} & \dots & a_{2n} \\ \vdots & & \vdots \\ a_{n1} & \dots & a_{nn} \end{vmatrix} + \begin{vmatrix} b_{11} & \dots & b_{1n} \\ a_{21} & \dots & a_{2n} \\ \vdots & & \vdots \\ a_{n1} & \dots & a_{nn} \end{vmatrix}$$

- iv) durch das Vertauschen zweier benachbarter Zeilen (Spalten) ändert sich das Vorzeichen der Determinante
- v) aus iv) folgt, dass die Determinante einer Matrix mit 2 gleichen Zeilen (Spalten) gleich 0 ist
- vi) det $A = \det A^T$ \Rightarrow Entwicklungssatz auch nach Spalte möglich
- vii) wird zur *i*-ten Zeile (Spalte) die mit einem Skalar α multiplizierte *j*-te Zeile (Spalte) addiert, so ändert sich die Determinante nicht:

viii) aus v) und vii) folgt, dass die Determinante einer Matrix 0 ist, wenn die Zeilen (Spalten) linear abhängig sind

- ix) det(AB) = det A det B (o.B.)
- **x)** Falls die Matrix A Dreiecksgestalt hat:

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ 0 & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & a_{nn} \end{pmatrix} \quad \text{gilt} \quad \det A = a_{11} a_{22} \dots a_{nn} \quad \Rightarrow \det E = 1$$

Darstellung von Vektorprodukten:

2.2.5 Lineare Gleichungssysteme

Gegeben sind n lineare Gleichungen

$$a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \ldots + a_{2n}x_n = b_2$$

$$\vdots = \vdots$$

$$a_{n1}x_1 + a_{n2}x_2 + \ldots + a_{nn}x_n = b_n$$

$$\Rightarrow \vec{b} = A\vec{x}$$

Cramersche Regel: (o.B.) Das lineare Gleichungssystem $\vec{b}=A\vec{x}$ hat genau dann eine eindeutige Lösung, wenn

$$\det A \neq 0$$

und die Lösung lautet

$$x_k = \frac{\det A_k}{A}$$
 $k = 1, 2, \dots, n$

wobei A_k die Matrix ist, die entsteht, wenn die k-te Spalte durch \vec{b} ersetzt wird:

$$A_k = \begin{pmatrix} a_{11} & a_{12} & \dots & b_1 & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & b_2 & \dots & a_{2n} \\ \vdots & \vdots & & \vdots & & \vdots \\ a_{n1} & a_{n2} & \dots & b_n & \dots & a_{nn} \end{pmatrix}$$

2.2.6 Eigenwerte und Eigenvektoren

Häufig werden bei physikalischen Problemen die sogenannten Eigenwerte und Eigenvektoren benötigt (z.B. gekoppelte Differentialgleichungen)

Definition 2.27: Die **Eigenwerte** λ und die zugehörigen **Eigenvektoren** \vec{v} sind durch die Eigenwertgleichung

$$A\vec{v}_{\lambda} = \lambda \vec{v}_{\lambda}$$

definiert.

Hinweis: $A\vec{v}_{\lambda} = \lambda E\vec{v}_{\lambda} \Rightarrow (A - \lambda E)\vec{v}_{\lambda} = 0$ \Rightarrow homogenes Gleichungssystem \Rightarrow für nicht-triviale Lösung: $\det(A - \lambda E) = 0$

Definition 2.28: $det(A - \lambda E) = 0$ wird **charakteristisches Polynom** der Matrix genannt.

Beispiel:

2.2.7 Orthogonale Transformationen - Drehungen

Definition 2.29: Eine **orthogonale Transformation** (später auch unitäre Transformation) ist eine Koordinatentransformation, die das Skalarprodukt invariant lässt.

Hinweis: d.h. Länge von Vektoren und Winkel zwischen Vektoren bleiben gleich (z.B. Drehungen)

Eine orthogonale Transformation kann ein Rechtssystem in ein Linkssystem ändern, z.B. Spiegelung:

$$\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right)$$

⇒ Wann liegt eine reine Drehung vor?

2.3 Bahnkurve (Trajektorie)

2.3.1 Ableitung vektorwertiger Funktionen

Definition 2.30: Eine **vektorwertige Funktion** bildet eine reelle Zahl auf einen Vektor ab.

Beispiele:

- $\vec{a}(u) = a_1(u)\vec{e}_1 + a_2(u)\vec{e}_2 + a_3(u)\vec{e}_3$
- Bahnkurve mit kartesischen Koordinaten:

$$\vec{r}(t) = \begin{pmatrix} x(t) \\ y(t) \\ z(t) \end{pmatrix} = x(t)\vec{e}_x + y(t)\vec{e}_y + z(t)\vec{e}_z$$

• allgemein:

$$\vec{r}(t) = r_1(t)\vec{e}_1(t) + r_2(t)\vec{e}_2(t) + r_3(t)\vec{e}_3(t)$$

Definition 2.31: Die Ableitung einer vektorwertigen Funktion $\vec{a}(u)$ ist durch

$$\frac{d\vec{a}}{du} = \lim_{\Delta u \to 0} \frac{\vec{a}(u + \Delta u) - \vec{a}(u)}{\Delta u}$$

gegeben.

Hinweis: falls die Basisvektoren \vec{e}_i unabhängig vom Parameter sind:

Folgende **Differentiationsregeln** sind leicht mit Hilfe der Definition zu zeigen:

- i) $\frac{d}{du} \left[\vec{a}(u) + \vec{b}(u) \right] = \vec{a}'(u) + \vec{b}'(u)$
- ii) $\frac{d}{du}[f(u)\vec{a}(u)] = f'(u)\vec{a}(u) + f(u)\vec{a}'(u)$, wobei f(u) eine skalare Funktion ist

iii)
$$\frac{d}{du} [\vec{a}(u) \circ \vec{b}(u)] = \vec{a}'(u) \circ \vec{b}(u) + \vec{a}(u) \circ \vec{b}'(u)$$

iv)
$$\frac{d}{du} \left[\vec{a}(u) \times \vec{b}(u) \right] = \vec{a}'(u) \times \vec{b}(u) + \vec{a}(u) \times \vec{b}'(u)$$

Achtung: Reihenfolge beachten!

Satz: Die Ableitung eines Einheitsvektors steht orthogonal auf dem Einheitsvektor.

Beweis:

Anwendung auf Bahnkurve:

Definition 2.32: Eine Raumkurve $\vec{r}(t)$ heißt **glatt**, wenn $\vec{r}(t)$ stetig differenzierbar ist und

$$\frac{d\vec{r}}{dt} \neq 0 \qquad \forall t$$

Hinweis: d.h. es liegt immer eine Bewegung vor \Rightarrow zurückgelegte Strecke s(t) streng monoton steigend

Definition 2.33: Die **Bogenlänge** s ist die Länge der Raumkurve von einem Startpunkt aus gemessen.

Definition 2.34: Die Parametrisierung einer Raumkurve nach der Bogenlänge $\vec{r}(s)$ wird **natürliche Parametrisierung** genannt.

Hinweis: es gibt unterschiedliche Parametrisierungen eines Weges:

Frage: Wie berechnet man s(t)?

2.3.2 Integration

Definition 2.35: Die **Integration einer vektorwertigen Funktion** ist durch die Integration der Komponenten gegeben:

$$\int_{u_1}^{u_2} \vec{a}(u) du = \sum_{i=1}^{3} \vec{e}_i \int_{u_1}^{u_2} a_i(u) du = \begin{pmatrix} \int_{u_1}^{u_2} a_1(u) du \\ \int_{u_1}^{u_2} a_2(u) du \\ \int_{u_1}^{u_2} a_3(u) du \end{pmatrix}$$

Hinweise:

- diese Integration wird nur selten verwendet
- andere Integrationen: Wegintegrale, Volumenintegrale, Oberflächenintegrale

Berechnung der Bogenlänge s(t):

• Zerlegung der Raumkurve in einen Polygonzug:

Definition 2.36: Das **Wegintegral** (oder Kurvenintegral oder Linienintegral) **1. Art** ist die Integration einer skalaren Funktion $f(\vec{r})$ entlang eines Weges γ :

$$\int_{\gamma} f \ ds \coloneqq \int_{t_a}^{t_b} f(\gamma(t)) \left| \frac{d\gamma(t)}{dt} \right| dt$$

Hinweis: für $f \equiv 1$ liefert das Wegintegral 1. Art die Länge des Weges γ

Beispiel:

2.3.3 Begleitendes Dreibein

Betrachten orthonormale Basis, die an jedem Punkt der Raumkurve anders sein kann und somit eine Funktion der Bogenlänge s ist

Definition 2.37: Das **begleitende Dreibein** einer Raumkurve besteht aus den Einheitsvektoren

 $\hat{\vec{t}}$: Tangenteneinheitsvektor

 $\hat{\vec{n}}$: Normaleneinheitsvektor

 $\hat{\vec{b}}$: Binormaleneinheitsvektor

die ein orthonormales Rechtssystem bilden:

$$\hat{\vec{t}} = \hat{\vec{n}} \times \hat{\vec{b}}$$

Definition 2.38: Da $\dot{\vec{r}}(t)$ tangential zur Bahnkurve orientiert ist, wird der **Tangenteneinheitsvektor** über $\dot{\vec{r}}(t)$ definiert:

$$\hat{\vec{t}} = \frac{\frac{d\vec{r}}{dt}}{\left|\frac{d\vec{r}}{dt}\right|} = \frac{\frac{d\vec{r}}{dt}}{\frac{ds}{dt}} = \frac{d\vec{r}(s)}{ds} = \hat{\vec{t}}(s)$$

Skizze:

Definition 2.39: Die Krümmung κ ist durch

$$\kappa = \left| \frac{d\hat{\vec{t}}(s)}{ds} \right|$$

definiert. Der Krümmungsradius ρ ist dann

$$\rho = \kappa^{-1}$$

Hinweise: • falls $\hat{\vec{t}}(s)$ konstant $\forall s$ ist \Rightarrow Bahnkurve ist eine Gerade $\Rightarrow \kappa = 0 \quad \rho = \infty$ • da $\hat{t}(s)$ ein Einheitsvektor ist $\Rightarrow \frac{d\hat{t}(s)}{ds} \perp \hat{t}(s)$

Definition 2.40: Der Normaleneinheitsvektor ist durch

$$\hat{\vec{n}} = \frac{\frac{d\hat{t}(s)}{ds}}{\left|\frac{d\hat{t}(s)}{ds}\right|} = \frac{1}{\kappa} \frac{d\hat{t}(s)}{ds} = \hat{\vec{n}}(s)$$

definiert.

Definition 2.41: Die **Schmiegungsebene** ist die Ebene, die von den Vektoren $\hat{\vec{n}}$ und $\hat{\vec{t}}$ aufgespannt wird.

Definition 2.42: Der **Binormaleneinheitsvektor** ist dann durch $\hat{\vec{n}}$ und $\hat{\vec{t}}$ definiert:

$$\hat{\vec{b}}(s) = \hat{\vec{t}}(s) \times \hat{\vec{n}}(s)$$

Hinweis: • $\hat{ec{b}}$ steht senkrecht auf der Schmiegungsebene

• falls $\hat{\vec{b}}$ konstant ist

⇒ Bewegung in einer festen Ebene (in der Schmiegungsebene)

• falls $\hat{\vec{b}}$ sich mit s ändert, ist diese Änderung ein Maß dafür, wie sich die Bahnkurve aus der Schmiegungsebene herausschraubt:

Definition 2.43: Die Torsion τ der Raumkurve ist durch

$$\frac{d\hat{\vec{b}}}{ds} = -\tau \hat{\vec{n}}$$

gegeben. Der Torsionsradius σ ist entsprechend

$$\sigma = \frac{1}{\tau}$$

betrachten jetzt noch die Änderung von $\hat{\vec{n}}$:

Kapitel 3

Dynamik

3.1 Felder

3.1.1 Definition

Definition 3.1: Ein **skalares Feld** ist die Abbildung eines Vektors \vec{r} auf eine skalare

physikalische Größe $\varphi(\vec{r})$.

Beispiele: Temperaturfelder, Ladungsdichte, Massendichte, Potential

Graphische Darstellung: Schnitt durch eine Ebene und Darstellung mittels Höhenlinien, bei

denen $\varphi(\vec{r})$ konstant ist. Abstand zwischen zwei Höhenlinien ent-

spricht Abstand zwischen den Konstanten.

Beispiele: $\varphi(\vec{r}) = r$ Schnitt durch (x, y)-Ebene (z = 0):

 $\varphi(\vec{r}) = 1/r$ Schnitt durch (x, y)-Ebene (z = 0):

Potential im Festkörper (periodische 1/r-Potentiale):

Definition 3.2: Ein **Vektorfeld** ist die Abbildung eines Vektors \vec{r} auf eine vektorielle physikalische Größe $\vec{A}(\vec{r})$.

Beispiele: Kraftfelder, elektrische Felder, magnetische Felder, Geschwindigkeitsfelder, Impulsfelder

Graphische Darstellung: Schnitt durch eine Ebene und Darstellung mittels Höhenlinien, bei denen $|\vec{A}(\vec{r})|$ konstant ist. Zusätzlich werden Richtungspfeile gezeichnet.

andere Darstellung: **Feldlinien**: lokale Richtung der Feldlinien gibt Feldrichtung an und die Dichte der Feldlinien ist proportional zur Feldstärke.

3.1.2 Ableitungen

3.1.2.1 Totale und partielle Ableitungen

Definition 3.3: Die **partielle Ableitung** eines skalaren Feldes nach einer Variablen ist die Ableitung nach dieser Variablen, während alle anderen Variablen konstant gehalten werden:

$$\frac{\partial \varphi}{\partial x} = \lim_{\Delta x \to 0} \frac{\varphi(x + \Delta x, y, z) - \varphi(x, y, z)}{\Delta x}$$

Beispiele:

Hinweis: • falls es nur eine Unabhängige gibt: $\frac{\partial x}{\partial t} = \frac{dx}{dt}$

• partielle Ableitung von Vektorfeldern: Komponentenweise

Beispiel:

Satz von Schwarz: Wenn die ersten und zweiten partiellen Ableitungen stetig sind, dann gilt

$$\frac{\partial^2 \varphi}{\partial x \partial y} = \frac{\partial^2 \varphi}{\partial y \partial x} \ ,$$

 $\operatorname{d.h.}$ das Ergebnis ist unabhängig von der Reihenfolge der partiellen Ableitungen.

Kettenregel:

Definition 3.4: Das **totale Differential** der Funktion $\varphi(x,y,z)$ ist durch

$$d\varphi = \frac{\partial \varphi}{\partial x} dx + \frac{\partial \varphi}{\partial y} dy + \frac{\partial \varphi}{\partial z} dz + \frac{\partial \varphi}{\partial t} dt$$

gegeben.

Hinweise:

- falls $\frac{\partial \varphi}{\partial t}=0 \Rightarrow \varphi$ ist nicht explizit von der Zeit abhängig (sondern nur implizit)
- aber: Zeitabhängigkeit einer physikalischen Größe ist durch die totale zeitliche Ableitung $\frac{d\varphi}{dt}$ gegeben
- $\frac{d\varphi}{dt} = 0 \ \Rightarrow \ \varphi$ ist Erhaltungsgröße

Beispiele:

Achtung: Substitution und Einsetzen

3.1.2.2 Gradient, Divergenz, Rotation, Laplace

Definition 3.5: Der Nabla-Operator

$$\nabla = \begin{pmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z} \end{pmatrix} = \vec{e}_x \frac{\partial}{\partial x} + \vec{e}_y \frac{\partial}{\partial y} + \vec{e}_z \frac{\partial}{\partial z}$$

ist ein Vektor-Differentialoperator.

Definition 3.6: Die Anwendung von ∇ auf ein skalares Feld liefert den **Gradienten**

$$\operatorname{grad}\varphi = \nabla\varphi = \begin{pmatrix} \frac{\partial\varphi}{\partial x} \\ \frac{\partial\varphi}{\partial y} \\ \frac{\partial\varphi}{\partial z} \end{pmatrix}$$

Bei grad φ handelt es sich um ein Vektorfeld, das sogenannte Gradientenfeld.

Rechenregeln:

- $\nabla(\varphi_1 + \varphi_2) = \nabla\varphi_1 + \nabla\varphi_2$
- $\nabla(\varphi_1\varphi_2) = \varphi_2\nabla\varphi_1 + \varphi_1\nabla\varphi_2$

Definition 3.7: Die **Divergenz** (Quellfeld) eines Vektorfeldes $\vec{A}(\vec{r})$ ist gegeben durch

$$\mathrm{div}\vec{A}(\vec{r}) = \nabla \circ \vec{A}(\vec{r}) = \frac{\partial A_x}{\partial x} + \frac{\partial A_y}{\partial y} + \frac{\partial A_z}{\partial z}$$

Hinweise:

- die Divergenz eines Vektorfeldes ist ein skalares Feld
- ist die Divergenz eines Vektorfeldes 0, so ist das Vektorfeld quellenfrei

Rechenregeln:

- $\operatorname{div}(\vec{a} + \vec{b}) = \operatorname{div} \vec{a} + \operatorname{div} \vec{b}$
- $\operatorname{div}(\alpha \vec{a}) = \alpha \operatorname{div} \vec{a}$
- $\operatorname{div}(\varphi \vec{a}) = \varphi \operatorname{div} \vec{a} + \vec{a} \operatorname{grad} \varphi = \varphi \nabla \circ \vec{a} + \vec{a} \circ \nabla \varphi$

Beispiele:

Definition 3.8: Der Laplace-Operator Δ ist durch die Divergenz eines Gradientenfeldes definiert:

Definition 3.9: Die Rotation (Wirbelfeld) eines Vektorfeldes ist gegeben durch

$$\begin{split} \operatorname{rot} \vec{A} &= \nabla \times \vec{A} &= \left(\frac{\partial A_z}{\partial y} - \frac{\partial A_y}{\partial z} \right) \vec{e}_x + \left(\frac{\partial A_x}{\partial z} - \frac{\partial A_z}{\partial x} \right) \vec{e}_y + \left(\frac{\partial A_y}{\partial x} - \frac{\partial A_x}{\partial y} \right) \vec{e}_z \\ &= \sum_{ijk} \epsilon_{ijk} \left(\frac{\partial}{\partial x_i} a_j \right) \vec{e}_k \end{split}$$

Hinweise:

- die Rotation eines Vektorfeldes ist wieder ein Vektorfeld
- ist die Rotation eines Vektorfeldes 0, dann ist das Vektorfeld wirbelfrei

Rechenregeln:

i)
$$\operatorname{rot}(\vec{a} + \vec{b}) = \operatorname{rot} \vec{a} + \operatorname{rot} \vec{b}$$

ii)
$$rot(\alpha \vec{a}) = \alpha rot \vec{a}$$
 $\alpha \in R$

iii)
$$\operatorname{rot}(\varphi \vec{a}) = \varphi \operatorname{rot} \vec{a} + (\operatorname{grad} \varphi) \times \vec{a} \qquad \varphi \dots \operatorname{skalares} \operatorname{Feld}$$

iv)
$$rot(grad \varphi) = 0$$

(d.h. Gradientenfelder sind stets wirbelfrei)

v)
$$\operatorname{div}(\operatorname{rot} \vec{a}) = 0$$

(d.h. Wirbelfelder sind stets quellenfrei)

vi) rot
$$(f(r)\vec{r}) = 0$$
 $f(r) \dots$ skalare Funktion

vii)
$$\operatorname{rot}(\operatorname{rot}\vec{a}) = \operatorname{grad}(\operatorname{div}\vec{a}) - \Delta\vec{a}$$

3.1.2.3 Extremwerte in mehreren Dimensionen

Definition 3.10: Eine Matrix heißt

- positiv definit, wenn alle Eigenwerte positiv sind
- positiv semidefinit, wenn alle Eigenwerte ≥ 0 sind
- negativ definit, wenn alle Eigenwerte negativ sind
- negativ semidefinit, wenn alle Eigenwerte ≤ 0 sind
- indefinit, wenn positive und negative Eigenwerte existieren

Definition 3.11: Die **Hesse-Matrix** einer Funktion $f(x_1, x_2, ..., x_n) = f(\vec{x})$ ist gegeben durch

$$H(\vec{x}_0) = \begin{pmatrix} \frac{\partial f(\vec{x})}{\partial x_1 \partial x_1} & \frac{\partial f(\vec{x})}{\partial x_1 \partial x_2} & \cdots & \frac{\partial f(\vec{x})}{\partial x_1 \partial x_n} \\ \frac{\partial f(\vec{x})}{\partial x_2 \partial x_1} & \frac{\partial f(\vec{x})}{\partial x_2 \partial x_2} & \cdots & \frac{\partial f(\vec{x})}{\partial x_2 \partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f(\vec{x})}{\partial x_n \partial x_1} & \frac{\partial f(\vec{x})}{\partial x_n \partial x_2} & \cdots & \frac{\partial f(\vec{x})}{\partial x_n \partial x_n} \end{pmatrix}_{\vec{x} = \vec{x}_0}$$

Extremwerte von $f(\vec{x}) = f(x_1, x_2, \dots, x_n)$:

- notwendige Bedingung: grad $f(\vec{x})/_{\vec{x}=\vec{x}_E} = 0$
- hinreichende Bedingung: Untersuchung der Hesse-Matrix $H_f(\vec{x}_E)$:
 - ▶ lokales Minimum bei \vec{x}_E , falls $H_f(\vec{x}_E)$ positiv definit
 - ▶ lokales Maximum bei \vec{x}_E , falls $H_f(\vec{x}_E)$ negativ definit
 - ▶ Sattelpunkt bei \vec{x}_E , falls $H_f(\vec{x}_E)$ indefinit
 - keine Aussage, falls $H_f(\vec{x}_E)$ semidefinit

Beispiele:

3.2 Massepunkt

3.2.1 Volumenintegral

Definition 3.12: Das Volumenintegral in kartesischen Koordinaten ist gegeben durch

$$\int f(x,y,z)dV = \int_{z_1}^{z_2} \int_{y_1}^{y_2} \int_{x_1}^{x_2} f(x,y,z)dxdydz$$

Hinweis:

- für $f \equiv 1$ liefert das Integral das Volumen
- falls f die Massendichteverteilung ist, liefert das Integral die Masse

Beispiele:

3.2.2 Koordinatentransformation

3.2.2.1 Allgemeine Betrachtungen

betrachten Transformation von Koordinaten x_i nach y_i und zurück:

$$x_i = x_i(y_1, y_2, \dots, y_n)$$

totales Differential:

$$dx_i = \frac{\partial x_i}{\partial y_1} dy_1 + \frac{\partial x_i}{\partial y_2} dy_2 + \ldots + \frac{\partial x_i}{\partial y_n} dy_n$$

Definition 3.13: Die Funktionalmatrix ist gegeben durch

$$F_{ij}^{(xy)} = \frac{\partial x_i}{\partial y_j} \qquad F^{(xy)} = \begin{pmatrix} \frac{\partial x_1}{\partial y_1} & \dots & \frac{\partial x_1}{\partial y_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial x_n}{\partial y_1} & \dots & \frac{\partial x_n}{\partial y_n} \end{pmatrix}$$

$$\Rightarrow \begin{pmatrix} dx_1 \\ \vdots \\ dx_n \end{pmatrix} = F^{(xy)} \begin{pmatrix} dy_1 \\ \vdots \\ dy_n \end{pmatrix}$$

Definition 3.14: Die Funktionaldeterminante ist gegeben durch

$$\det F^{(xy)} = \frac{\partial(x_1, \dots, x_n)}{\partial(y_1, \dots, y_n)} = \begin{vmatrix} \frac{\partial x_1}{\partial y_1} & \dots & \frac{\partial x_1}{\partial y_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial x_n}{\partial y_1} & \dots & \frac{\partial x_n}{\partial y_n} \end{vmatrix}$$

 \Rightarrow Eine Umkehrung der Transformation ist genau dann möglich, wenn

$$\det F^{(xy)} = \frac{\partial(x_1, \dots, x_n)}{\partial(y_1, \dots, y_n)} \neq 0$$

Beispiel:

Volumenelement:

3.2.2.2 Zylinderkoordinaten

Zusammenfassung:

• Koordinaten: (ρ, φ, z) $0 \le \varphi < 2\pi$

• Einheitsvektoren:
$$\vec{e}_{\rho} = \begin{pmatrix} \cos \varphi \\ \sin \varphi \\ 0 \end{pmatrix}$$
 $\vec{e}_{\varphi} = \begin{pmatrix} -\sin \varphi \\ \cos \varphi \\ 0 \end{pmatrix}$ $\vec{e}_{z} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$

• Koordinatentransformation:

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} \rho \cos \varphi \\ \rho \sin \varphi \\ z \end{pmatrix} , \quad \begin{pmatrix} \rho \\ \varphi \\ z \end{pmatrix} = \begin{pmatrix} \sqrt{x^2 + y^2} \\ \arctan \frac{x}{y} \\ z \end{pmatrix}$$

• Nabla: $\nabla=\vec{e}_{\rho}\frac{\partial}{\partial\rho}+\vec{e}_{\varphi}\frac{1}{\rho}\frac{\partial}{\partial\varphi}+\vec{e}_{z}\frac{\partial}{\partial z}$

• Gradient: $\nabla U = \frac{\partial U}{\partial \rho} \vec{e}_{\rho} + \frac{1}{\rho} \frac{\partial U}{\partial \varphi} \vec{e}_{\varphi} + \frac{\partial U}{\partial z} \vec{e}_{z}$

• Divergenz: $\nabla \cdot \vec{F} = \frac{1}{\rho} \frac{\partial}{\partial \rho} (\rho F_{\rho}) + \frac{1}{\rho} \frac{\partial F_{\varphi}}{\partial \varphi} + \frac{\partial F_{z}}{\partial z}$

• Rotation:

$$\nabla \times \vec{F} = \left(\frac{1}{\rho} \frac{\partial F_z}{\partial \varphi} - \frac{\partial F_{\varphi}}{\partial z}\right) \vec{e}_{\rho} + \left(\frac{\partial F_{\rho}}{\partial z} - \frac{\partial F_z}{\partial \rho}\right) \vec{e}_{\varphi} + \frac{1}{\rho} \left(\frac{\partial}{\partial \rho} (\rho F_{\varphi}) - \frac{\partial F_{\rho}}{\partial \varphi}\right) \vec{e}_z$$

• Laplace: $\nabla^2 U = \frac{1}{\rho} \frac{\partial}{\partial \rho} \left(\rho \frac{\partial U}{\partial \rho} \right) + \frac{1}{\rho^2} \frac{\partial^2 U}{\partial \varphi^2} + \frac{\partial^2 U}{\partial z^2}$

• Volumenelement: $dV = \rho \ d\rho \ d\varphi \ dz$

3.2.2.3 Kugelkoordinaten

Zusammenfassung:

• Koordinaten: (r, ϑ, φ) $0 \le \vartheta < \pi$ $0 \le \varphi < 2\pi$

• Einheitsvektoren:
$$\vec{e}_r = \begin{pmatrix} \sin \vartheta & \cos \varphi \\ \sin \vartheta & \sin \varphi \\ \cos \vartheta \end{pmatrix}$$
 $\vec{e}_\vartheta = \begin{pmatrix} \cos \vartheta & \cos \varphi \\ \cos \vartheta & \sin \varphi \\ -\sin \vartheta \end{pmatrix}$ $\vec{e}_\varphi = \begin{pmatrix} -\sin \varphi \\ \cos \varphi \\ 0 \end{pmatrix}$

• Koordinatentransformation:

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} r \sin \vartheta & \cos \varphi \\ r \sin \vartheta & \sin \varphi \\ r \cos \vartheta \end{pmatrix} , \quad \begin{pmatrix} r \\ \vartheta \\ \varphi \end{pmatrix} = \begin{pmatrix} \sqrt{x^2 + y^2 + z^2} \\ \arccos \frac{z}{\sqrt{x^2 + y^2 + z^2}} \\ \arctan \frac{y}{x} \end{pmatrix}$$

• Nabla: $\nabla = \vec{e}_r \frac{\partial}{\partial r} + \vec{e}_{\vartheta} \frac{1}{r} \frac{\partial}{\partial \vartheta} + \vec{e}_{\varphi} \frac{1}{r \sin \vartheta} \frac{\partial}{\partial \varphi}$

• Gradient: $\nabla U = \frac{\partial U}{\partial r} \vec{e}_r + \frac{1}{r} \frac{\partial U}{\partial \vartheta} \vec{e}_\vartheta + \frac{1}{r \sin \vartheta} \frac{\partial U}{\partial \varphi} \vec{e}_\varphi$

• Divergenz: $\nabla \cdot \vec{F} = \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 F_r) + \frac{1}{r \sin \vartheta} \frac{\partial}{\partial \vartheta} (\sin \vartheta F_\vartheta) + \frac{1}{r \sin \vartheta} \frac{\partial F_\varphi}{\partial \omega}$

• Rotation:

$$\nabla \times \vec{F} = \frac{1}{r \sin \vartheta} \left(\frac{\partial}{\partial \vartheta} (\sin \vartheta F_{\varphi}) - \frac{\partial F_{\vartheta}}{\partial \varphi} \right) \vec{e}_r + \left(\frac{1}{r \sin \vartheta} \frac{\partial F_r}{\partial \varphi} - \frac{1}{r} \frac{\partial}{\partial r} (r F_{\varphi}) \right) \vec{e}_{\vartheta} + \frac{1}{r} \left(\frac{\partial}{\partial r} (r F_{\vartheta}) - \frac{\partial F_r}{\partial \vartheta} \right) \vec{e}_{\varphi}$$

• Laplace: $\nabla^2 U = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial U}{\partial r} \right) + \frac{1}{r^2 \sin \vartheta} \frac{\partial}{\partial \vartheta} \left(\sin \vartheta \frac{\partial U}{\partial \vartheta} \right) + \frac{1}{r^2 \sin^2 \vartheta} \frac{\partial^2 U}{\partial \varphi^2}$

• Volumenelement: $dV = r^2 \sin \vartheta \ dr \ d\vartheta \ d\varphi$

3.2.3 Schwerpunkt

- betrachten zunächst N Massepunkte der Masse m_i
- Gesamtmasse:

$$M = \sum_{i=1}^{N} m_i$$

Definition 3.15: Der Schwerpunkt (Massenmittelpunkt) der N Massenpunkte ist gegeben durch

$$\vec{r}_S = \frac{1}{M} \sum_{i=1}^N m_i \vec{r}_i$$

Geschwindigkeit:

$$\vec{r}_S = \frac{1}{M} \int_V \vec{r} \rho(\vec{r}) dV$$

und

$$M = \int_{V} \rho(\vec{r}) dV$$

3.3 Arbeit, Energie, Potential

3.3.1 Arbeit und Leistung

Definition 3.16: Bewegt sich ein Massenpunkt in einem Kraftfeld $\vec{F}(\vec{r}, \dot{\vec{r}}, t)$ auf einer Bahnkurve $\vec{r}(t)$ von Punkt \vec{a} zum Punkt \vec{b} , dann ist die dabei geleistete **Arbeit** durch das **Wegintegral 2. Art** gegeben:

$$W_{ab} = \int_{\vec{a}}^{\vec{b}} \vec{F}(\vec{r}, \dot{\vec{r}}, t) \circ d\vec{r} = \int_{t_{\vec{a}}}^{t_{\vec{b}}} \vec{F}(\vec{r}, \dot{\vec{r}}, t) \circ \frac{d\vec{r}}{dt} dt$$

Hinweise:

- Beiträge zur Arbeit nur von der Komponente der Kraft in Richtung des Weges $\Rightarrow \vec{F} \perp \vec{r} \Rightarrow W = 0$
- der Weg $\vec{r}(t)$ kann auch durch andere Parametrisierungen dargestellt werden

• Die **Leistung** P ist als Arbeit pro Zeit definiert:

$$P = \frac{dW}{dt} = \frac{d}{dt} \int_{t_{\bar{a}}}^{t_{\bar{b}}} \vec{F} \circ \dot{\vec{r}}(t') dt' \quad P = \vec{F} \circ \dot{\vec{r}}$$

3.3.2 kinetische Energie

Definition 3.17: kinetische Energie:

Die Änderung der kinetischen Energie ist gleich der von der Kraft \vec{F} längs des Weges von \vec{a} nach \vec{b} geleisteten Arbeit.

Hinweis: • für mehrere Teilchen gilt

$$T = \sum_{i=1}^{N} T_i = \sum_{i=1}^{N} \frac{1}{2} m_i v_i^2 \quad \text{und}$$
$$T_b - T_a = \sum_i W_{\vec{a}\vec{b}}^i = \sum_i \int_{t_{\vec{a}}}^{t_{\vec{b}}} \vec{F}_i \circ \vec{v}_i dt$$

3.3.3 Konservative Kräfte und Potentiale

die Arbeit hängt im Allgemeinen vom Weg ab:

Definition 3.18: Konservative Kräfte sind Kräfte, bei denen $W_{\vec{a}\vec{b}}$ unabhängig vom Weg ist. Im mathematischen Sinn ist eine Kraft konservativ, wenn es eine skalare Funktion $U(\vec{r})$ gibt mit

$$W_{\vec{a}\vec{b}} = \int_{\vec{a}}^{\vec{b}} \vec{F} \circ d\vec{r} = U(\vec{a}) - U(\vec{b})$$

d.h. $W_{\vec{a}\vec{b}}$ hängt nur vom Ausgangs- und Endzustand ab.

Definition 3.19: Diese skalare Funktion $U(\vec{r})$ wird **Potential** oder auch **potentielle Energie** genannt.

Hinweise: \bullet U

- $U(\vec{r})$ bis auf Konstante eindeutig bestimmt
- Arbeit entlang eines beliebigen geschlossenen Wegs: $\oint \vec{F} \circ d\vec{r} = 0$

Satz: für die Berechnung von konservativen Kräften gilt:

$$\vec{F} = -\nabla U = -\text{grad } U = \begin{pmatrix} -\frac{\partial U}{\partial x} \\ -\frac{\partial U}{\partial y} \\ -\frac{\partial U}{\partial z} \end{pmatrix}$$

Beweis:

Beispiel:

Definition 3.20: Eine **Zentralkraft** ist eine Kraft, die immer auf einen festen Punkt gerichtet ist. Im Koordinatensystem mit diesem Punkt als Zentrum lässt sich die Zentralkraft als $\mathbf{F}(\mathbf{r}) = f(r)\mathbf{e}_r$ schreiben.

Satz: Eine konservative Kraft \vec{F} ist genau dann eine Zentralkraft, wenn $V(\vec{r}) = V(r)$ ist.

Beweis:

• betrachten die Rotation einer konservativen Kraft:

- \Rightarrow das Verschwinden der Rotation einer Kraft ist eine notwendige Bedingung, aber nicht hinreichend
 - damit dieses Kriterium auch hinreichend ist, muss das Definitionsgebiet der Kraft zusätzlich einfach zusammenhängend sein, also z.B. keine Definitionslücken enthalten:

3.3.4 Erhaltungssätze

3.3.4.1 Energiesatz

für konservative Kräfte gilt:

Hinweise:

- alle uns bekannten fundamentalen Kräfte sind konservativ ⇒ Energieerhaltung gilt in abgeschlossenen Systemen
- Reibungskräfte:
 - ▶ enstehen mikroskopisch durch fundamentale konservative Kräfte (z.B. Wechselwirkungen zwischen Atomen)
 - ▶ aber in praktischer Beschreibung phänomenologische Ansätze: z.B. $\vec{F}_R = -\alpha \vec{v}$ mit $\alpha > 0$ $\Rightarrow \int_{t_a}^{t_b} \vec{F}_R \circ \vec{v} dt = -\alpha \int_{t_a}^{t_b} v^2 dt < 0 \Rightarrow \text{Energieverlust}$ $\Rightarrow \text{scheinbarer Widerspruch} \; ; \; \text{Ursache: Betrachtung von}$ offenen System ; in der Summe (Universum) stimmt die Energiebilanz wieder
 - \blacktriangleright später: Darstellung durch zeitabhängiges Potential eventuell möglich
 - \Rightarrow aus $\frac{\partial U}{\partial t} = 0 \Rightarrow$ Energieerhaltung

${\bf 3.3.4.2}\quad {\bf Impulser haltung}$

 $Translation\ eines\ abgeschlossenen\ Systems:$

3.3.4.3 Drehimpulserhaltung

3.4 Taylorreihe

3.4.1 Taylorentwicklung skalarer Funktionen

Idee: Entwicklung einer beliebig oft differenzierbaren skalaren Funktion um einen Punkt x_0 in ein Polynom:

Definition 3.21: Die **Taylorentwicklung** einer beliebig oft differenzierbaren skalaren Funktion f(x) ist gegeben durch

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$

Hinweise:

- Abbruch der Entwicklung häufig nach 1. oder 2. Ordnung
- Gültigkeit der Näherung (Abbruch) häufig vorausgesetzt, aber schwer zu zeigen

3.4.2 Taylorentwicklung von Feldern

Definition 3.22: Für ein skalares beliebig oft differenzierbares Feld ist die Taylorentwicklung gegeben durch

Hinweis: für Vektorfelder komponentenweise

3.5 Oberflächenintegrale

3.5.1 Oberflächenintegral 1. Art

Definition 3.23: Das **Oberflächenintegral 1. Art** (oder skalares Oberflächenintegral) ist gegeben durch

$$\int_{F} f(x, y, z) \ dF$$

mit

$$dF = \left| \frac{\partial \vec{\gamma}}{\partial u} \times \frac{\partial \vec{\gamma}}{\partial v} \right| du \, dv$$

wobei $\gamma(\vec{u}, v)$ eine geeignete Parametrisierung von F darstellt.

Hinweis: für $f \equiv 1$ liefert das Integral den Oberflächen
inhalt

3.5.2 Oberflächenintegral 2. Art

Definition 3.24: Das orientierte Flächenelement ist gegeben durch

$$d\vec{F} = \vec{n} dF$$
 ,

wobei \vec{n} der Normaleneinheitsvektor auf der Fläche dF ist:

$$\begin{split} \vec{n} &= \frac{\partial_u \vec{\gamma} \times \partial_v \vec{\gamma}}{|\partial_u \vec{\gamma} \times \partial_v \vec{\gamma}|} \\ \Rightarrow & d\vec{F} = \partial_u \vec{\gamma} \times \partial_v \vec{\gamma} \ du \ dv \end{split}$$

Hinweis: \vec{n} ist durch Kreuzprodukt nicht eindeutig; Konvention: für geschlos-

sene Oberfläche zeigt \vec{n} nach außen

Beispiel: Kugeloberfläche:

Definition 3.25: Der **Vektorfluss** Φ eines Vektorfeldes \vec{A} durch eine Fläche ist die Gesamtheit der durchströmenden Vektoren. Zur Berechnung werden die Normalkomponenten der Vektoren über die Fläche aufintegriert:

$$\Phi = \int_F \vec{A} \circ \vec{n} \, dF$$

Dies ist gerade das Oberflächenintegral 2. Art.

3.6 Bewegungsgleichung

$$m\ddot{\vec{r}} = \vec{F}(\vec{r}, \dot{\vec{r}}, t)$$

- Differentialgleichung zweiter Ordnung
- Komplexität hängt von der Gestalt von $\vec{F}(\vec{r}, \dot{\vec{r}}, t)$ ab

3.6.1 Klassifikation von Differentialgleichungen

Definition 3.26: Eine **gewöhnliche Differentialgleichung (DGL)** n-ter Ordnung einer skalaren Funktion x(t) ist gegeben durch die stetige Abbildung

$$f(t, x, \dot{x}, \ddot{x}, \dots, x^{(n)}) = 0$$

Beispiele: • radioaktiver Zerfall:

• $m\ddot{\vec{r}} = \vec{F}(\vec{r}, \dot{\vec{r}}, t)$ 2. Ordnung genauer: System von 3 gekoppelten DGLs:

• Riccatische DGL:

$$f'(x) = g(x)f^{2}(x) + h(x)f(x) + i(x)$$

nichtlineare DGL 1. Ordnung

• d'Alembertsche DGL, Bernoullische DGL, Jacobische DGL, . . .

Definition 3.27: Eine **partielle DGL** einer skalaren Funktion mit mehreren Unabhängigen liegt vor, wenn nach mindestens 2 Unabhängigen partiell abgeleitet wird.

Beispiele: • Schrödingergleichung:

$$i\hbar\frac{\partial}{\partial t}\psi(\vec{r},t) = \left(-\frac{\hbar^2}{2m}\Delta + V(\vec{r},t)\right)\psi(\vec{r},t)$$

- Maxwell-Gleichungen
- Wärmeleitungsgleichung

3.6.2 Gewöhnliche Differentialgleichungen

- Lösung einer DGL 1. Ordnung ist einde
utig bis auf einen Parameter:

ullet eine DGL n-ter Ordnung kann in ein DGL-System aus n DGLs erster Ordnung umgewandelt werden:

• Umkehrung nicht immer möglich

Satz (o.B.): Eine DGL n-ter Ordnung hat als **allgemeine Lösung** eine Lösungsschar

$$x(t,c_1,c_2,\ldots,c_n)$$

die von n unabhängigen Parametern c_1, c_2, \ldots, c_n abhängen.

Definition 3.28: Ein fest vorgegebener Satz von c_1, c_2, \ldots, c_n führt zu einer **speziellen** (oder **partikulären**) Lösung.

Definition 3.29: Bei einem Anfangswertproblem werden die Parameter c_i durch

$$x(t_0), \dot{x}(t_0), \ddot{x}(t_0), \dots x^{(n-1)}(t_0)$$

bestimmt.

Satz (o.B.): Hängt die Lösung einer DGL n-ter Ordnung von n unabhängigen Parametern ab, so handelt es sich um die allgemeine Lösung.

Hinweis: die Lösung kann z.B. auch geraten werden

3.6.3 Lineare gewöhnliche Differentialgleichungen

Definition 3.30: Eine **lineare gewöhnliche DGL** ist eine DGL, bei der die Ableitungen nur linear eingehen:

$$\sum_{i=0}^{n} \alpha_i(t) x^{(i)}(t) = f(t)$$

Definition 3.31: Falls f(t) = 0 ist, dann handelt es sich um eine **homogene** lineare DGL, ansonsten um eine **inhomogene** lineare DGL

Beispiele: • Besselsche DGL

$$x^2y'' + xy' + (x^2 - n^2)y = 0$$

• Hermitesche DGL

$$y'' - 2xy' + 2ny = 0$$

• Laguerresche DGL

$$xy'' + (1-x)y' + ny = 0$$

• Legendresche DGL

$$(1-x^2)y'' - 2xy' + n(n+1)y = 0$$

Satz: Für eine homogene lineare DGL gilt das Superpositionsprinzip, d.h. falls $x_1(t)$ und $x_2(t)$ Lösungen sind, dann ist auch $c_1x_1(t) + c_2x_2(t)$ eine Lösung

Definition 3.32: Die Lösungsfunktionen $x_1(t), x_2(t), \ldots, x_n(t)$ heißen **linear unabhängig**, falls

$$\sum_{i=1}^{n} \alpha_i x_i(t) = 0$$

nur für $\alpha_1 = \alpha_2 = \dots = \alpha_n = 0$ erfüllt werden kann.

 \Rightarrow da die allgemeine Lösung einer DGL n-ter Ordnung von n unabhängigen Parameter abhängen muss, kann man diese als Linear-kombination von n linear unabhängigen Lösungsfunktionen schreiben:

$$x(t) = \sum_{i=1}^{n} \alpha_i x_i(t)$$

wobei die α_i die Rolle der unabhängigen Parameter übernehmen.

Definition 3.33: Ein Satz von n linear unabhängigen Lösungsfunktionen

$$x_1(t),\ldots, x_n(t)$$

einer homogenen linearen DGL heißt Fundamentalsystem.

Hinweis: Lösungsfunktionen können auch durch Erraten oder Probieren gefunden werden und die allgemeine Lösung als Linearkombination dieser dargestellt werden

Satz: Die Lösung einer inhomogenen linearen DGL n-ter Ordnung ist durch die allgemeine Lösung $x_h(t, c_1, c_2, \ldots, c_n)$ der zugehörigen homogenen DGL und einer speziellen Lösung $x_s(t)$ der inhomogenen DGL gegeben:

$$x(t, c_1, c_2, \dots, c_n) = x_h(t, c_1, c_2, \dots, c_n) + x_s(t)$$

Beweis:

- ⇒ Rezept: zunächst ein Fundamentalsystem der homogenen DGL finden
 - spezielle Lösung der inhomogenen DGL finden
 - allgemeine Lösung aus den beiden konstruieren

3.6.3.1 Homogene lineare DGL mit konstanten Koeffizienten

Definition 3.34: Eine homogene lineare DGL mit konstanten Koeffizienten ist gegeben durch

$$\sum_{i=0}^{n} \alpha_i x^{(i)}(t) = 0$$

Definition 3.35: Das zugehörige **charakteristische Polynom** $P(\lambda)$ ist gegeben durch

$$P(\lambda) = \sum_{i=0}^{n} \alpha_i \lambda^i$$

Satz: Das Fundamentalsystem wird über die Nullstellen λ_i des charakteristischen Polynoms bestimmt. Dabei gibt es k Nullstellen $(i = 1, 2, \ldots, k)$, wobei μ_i die Vielfachheit der i-ten Nullstelle ist $(\sum_{i=1}^k \mu_i = n)$. Die i-te Nullstelle liefert dann die folgenden Funktionen zum Fundamentalsystem:

$$x_{i,1} = e^{\lambda_i t}$$
; $x_{i,2} = t e^{\lambda_i t}$; ...; $x_{i,\mu_i} = t^{\mu_i - 1} e^{\lambda_i t}$

3.6.3.2 Spezielle Lösungen der inhomogenen linearen DGL

- $\bullet\,$ es existiert kein allgemeines Rezept zur Bestimmung einer speziellen Lösung
- oft wird auch physikalisch motiviert die spezielle Lösung gesucht

Beispiel:

- Verfahren, um die spezielle Lösung zu finden:
 - \blacktriangleright Ansätze je nach Struktur der Inhomogenität f(t):
 - * f(t) ist Polynom $\Rightarrow x_s(t)$ Polynom
 - * f(t) ist Exponentialfunktion $\Rightarrow x_s(t)$ Exponentialfunktion
 - * f(t) ist \sin/\cos Funktion $\Rightarrow x_s(t) \sin/\cos$
 - ▶ Variation der Konstanten:

$$x_s(t) = \sum_{i=1}^{n} c_i(t) x_i(t)$$
 mit $x_i(t)$... Fundamentalsystem

▶ Potenzreihenansatz, Laplace-Transformation, ...

3.6.4 Separierbare DGL

Definition 3.36: Eine gewöhnliche DGL erster Ordnung ist eine **separierbare DGL**, wenn sie sich zu

$$\dot{x}(t) = f(x(t))g(t)$$

umformen lässt.

Eine solche DGL lässt sich mit der Methode Trennung der Variablen lösen:

Kapitel 4 Schwingungen

4.1 Fadenpendel

Definition 4.37: Die Kreisfrequenz ω ist gegeben durch

$$\omega = \sqrt{\frac{g}{l}}$$

Hinweis: experimentell ist ω unabhängig von der Masse \Rightarrow schwere Masse träge Masse, da $\omega=\sqrt{\frac{m_s\,g}{m_t\,l}}$

Definition 4.38: Die **Schwingungsdauer** *T* ist die Zeit, die für eine volle Schwingung notwendig ist:

$$\omega T = 2\pi \iff T = 2\pi \sqrt{\frac{l}{g}}$$

Definition 4.39: Die Frequenz ν ist dann gegeben durch

$$\nu = \frac{1}{T} = \frac{1}{2\pi} \sqrt{\frac{g}{l}} = \frac{\omega}{2\pi}$$

Umschreiben der Lösung:

4.2 Komplexe Zahlen

4.2.1 Definition und Rechenregeln

Definition 4.40: Die Einheit der imaginären Zahlen ist

$$i = \sqrt{-1} \iff i^2 = -1$$

⇒ jede **imaginäre Zahl** lässt sich als

i b

schreiben, wobei b eine reelle Zahl ist

Beispiele:

Definition 4.41: Die Summe einer reellen und einer imaginären Zahl

$$z = a + i b$$

ist die **komplexe Zahl** z, wobei der Realteil von z, $Re\ z$ = a und der Imaginärteil von z, $Im\ z$ = b sind.

Hinweis:

- z = Re z + i Im z
- z ist genau dann 0, wenn der Real- und Imaginärteil 0 sind
- Relationen (größer, kleiner, ...) sind nicht mehr möglich
- rein reelle und rein imaginäre Zahlen sind Spezialfälle komplexer Zahlen
- komplexe Zahlen sind ein mathematisches Hilfskonstrukt, die Berechnungen vereinfachen, allerdings sind physikalische Größen (Messgrößen bzw. Observablen) **immer reell**

Definition 4.42: Die zu z konjugierte Zahl ist

$$z^* = a - i b$$

Rechenregeln:

4.2.2 Komplexe Zahlenebene

analog zu Polarkoordinaten:

Definition 4.43: Der **Betrag** einer komplexen Zahl z ist definiert durch

$$|z| = \sqrt{a^2 + b^2}$$

und das Argument durch

$$\varphi = \arg(z) = \arctan \frac{b}{a}$$

Hinweis:

- da $z z^* = a^2 + b^2 \Rightarrow |z| = \sqrt{z z^*}$
- $\arctan \frac{b}{a}$ hat im Intervall $[0, 2\pi[$ immer 2 Lösungen \Rightarrow richtiges Argument muss durch Probe bestimmt werden

Beispiel:

4.2.3 Euler'sche Formel

4.3 Linearer Oszillator

4.3.1 Freier linearer harmonischer Oszillator

- ullet betrachten idealen Federschwinger mit der Federkonstanten k
- nach dem Hooke'schem Gesetz gibt es bei einer Auslenkung der Feder eine rückstellende Kraft, die proportional zur Auslenkung ist:

$$F = -k x$$

- die Frequenz ist unabhängig von der Amplitude $\Rightarrow \omega_0$ ist eine reine Systemeigenschaft
- idealer elektrischer Schwingkreis zeigt ebenfalls das Verhalten eines linearen harmonischen Oszillators:

• Lösung der Schwingungsgleichung mittels komplexer Zahlen:

4.3.2 Freier gedämpfter linearer Oszillator

• betrachten zusätzlich Stokes'sche Reibung:

$$m\ddot{x} = -k \ x - \alpha \ \dot{x}$$

• elektrischer Schwingkreis mit Ohm'schen Widerstand:

• Lösung:

4.3.2.1 Schwache Dämpfung

4.3.2.2 Starke Dämpfung

- \Rightarrow das System "kriecht" zurück in die Ausgangslage; für $\beta \to \infty$ dauert dies ∞ lang
- \Rightarrow der Fall starker Dämpfung wird deswegen auch Kriechfall genannt (oder auch überaperiodisch)

4.3.2.3 Aperiodischer Grenzfall (kritische Dämpfung)

4.3.3 Gedämpfter linearer Oszillator mit äußerer Kraft

• zusätzlich zum bisherigen Fall kommt eine externe periodische Kraft hinzu:

$$\ddot{x} + 2\beta \dot{x} + \omega_0^2 x = \frac{1}{m} F(t)$$

 mit

$$F(t) = \tilde{F} \cos(\tilde{\omega} t)$$

• im elektrischen Schwingkreis durch Anlegen einer Wechselspannung realisierbar:

4.4 Gekoppelte Schwinger

Kapitel 5

Zentralkräfte

- speziell: Wechselwirkung zwischen zwei Massepunkten; Anwendung in der Himmelsmechanik, Atomphysik, Kernphysik
- abgeschlossenes System \Rightarrow keine äußeren Kräfte
- Zentralkraft: $\vec{F}_{12}=-\nabla U(\vec{r})=-f(r)\frac{\vec{r}}{r}=-\vec{F}_{21},$ mit $\vec{r}=\vec{r}_1-\vec{r}_2=-\vec{r}_{21}$

5.1 Koordinatentransformation

• Bewegungsgleichungen:

- falls $m_1 = m_2 = m \Rightarrow \mu = \frac{m}{2}$
- falls $m_1 \gg m_2 \Rightarrow \mu \approx m_2 \Rightarrow$ kleinere Masse ist entscheidend

Zusammenfassung:

- Zweikörperproblem auf ein Einkörperproblem reduziert
- ein virtuelles Teilchen mit der Masse μ mit den Relativkoordinaten unter den Einfluss der Kraft \vec{F}_{12}
 - ⇒ Anstatt 6 nur noch 3 Freiheitsgrade

5.2 Erhaltungssätze

- Zentralkraft \Rightarrow Energieerhaltung + Drehimpulserhaltung \Rightarrow anstatt 3 nur noch 1 Freiheitsgrad
- da \vec{L} konstant ist \Rightarrow Bewegung in der Ebene
 - ⇒ Wahl der Koordinaten:

• Energieerhaltung:

- \Rightarrow nur noch eine Gleichung mit einer Unabhängigen: r
- \Rightarrow Gleichung hat die Form einer 1D Bewegung in einem effektiven Potential

$$U_{eff}(r) = \frac{l^2}{2\mu r^2} + U(r)$$

$$\Rightarrow E = \frac{1}{2}\mu\dot{r}^2 + U_{eff}(r)$$

• der zusätzliche Potentialbeitrag $U_z(r) = \frac{l^2}{2\mu r^2}$ wird als **Zentrifugal-** potential bezeichnet

$$\Rightarrow$$
zugehörige Kraft: $\vec{F}_z=-\nabla U_z(r)=\frac{l^2}{\mu r^3}\vec{e}_r=\mu r\omega^2\vec{e}_r$

5.3 Kepler-Problem

$$V(r) = -\frac{\alpha}{r}$$

Gravitation: $\alpha = Gm_1m_2$ Coulomb: $\alpha = -\frac{q_1q_2}{4\pi\epsilon_0}$

5.3.1 Qualitative Analyse

 $\alpha > 0$:

Minimum:

 \Rightarrow mögliche Bahnen:

- i) $E = U_{eff}^{min} \Rightarrow r(t) = r_0$ =konstant \Rightarrow Kreisbahnen
- ii) $U_{eff} < E < 0 \colon r(t)$ ist beschränkt \Rightarrow gebundene Bahn
- iii) $E > 0 \Rightarrow r(t)$ ungebunden

falls $\alpha < 0$:

5.3.2 Quantitative Analyse

5.3.3 Absolute Koordinaten

• bei Planetenbahnen: $m_{Sonne} \gg m_{Planet} \Rightarrow$ Sonne bewegt sich praktisch gar nicht

Zusammenfassung der Kepler-Gesetze:

- 1. Planetenbahnen sind Ellipsen, in deren Brennpunkt die Sonne steht.
- 2. Der Radiusvektor von der Sonne zum Planeten überstreicht in gleichen Zeiten gleiche Flächen
- 3. Die Quadrate der Umlaufzeiten verschiedener Planeten verhalten sich wie die Kuben der großen Halbachse ihrer Ellipsenbahnen.