

2

Robótica Industrial

Exame de Época de Recurso

28 de Janeiro de 2015

Mestrado Integrado em Engenharia Mecânica / Mestrado em Engenharia de Automação Industrial

1- Na figura seguinte pretende-se que o manipulador parta da posição em que está, pegue no objeto que está no chão, referencial A, e o coloque em cima da mesa, referencial C. O referencial C é paralelo ao referencial R. Assumir que o robô não tem restrições para pegar nos objetos (grasping).

- a) Respeitanto as orientações ilustradas e descritas no enunciado, indicar as matrizes dos seguintes referenciais: RT_C , RT_A e BT_H . (Assume-se que RT_B é uma translação em x).
 - b) Indicar os grafos e as equações de transformação das duas operações: 1) robô pega no objeto em A; 2) robô leva o objeto de A para C.
 - c) Se d_m =10 e d_c =15, e desprezado trajetórias e riscos de colisão, quais seriam as transformações a comunicar ao manipulador para ele cumprir estas duas operações?
 - 2- Seja a seguinte representação, segundo a metodologia de *Denavit-Hartenberg*, dos sistemas de coordenadas atribuídos a um dado robô com 7 DOF, representado na sua posição zero *hardware*, e com as medidas indicadas à direita. As linhas a tracejado indicam referenciais com origens sobrepostas.

a) Reproduzir o diagrama, indicando nomes dos sistemas de eixos a começar em $\{x_0, y_0, z_0\}$, e indicar junto às setas o nome apropriado das variáveis de junta, θ_i ou d_i , onde i é o número do elo.

- 4
- b) Construir a tabela de parâmetros de *Denavit-Hartenberg* para este robô, respeitando a correspondância correta entre os nomes das variáveis de junta e o número do respetivo elo, e usando os valores numéricos para os comprimentos e ângulos que são constantes.
- 3- Seja um robô com os seguintes sistemas de coordenadas e respetiva tabela de parâmetros de Denavit-Hartenberg.

elo i	θ_i	l_{i}	$d_{_i}$	$\alpha_{_i}$
1	$\theta_{\scriptscriptstyle 1}$	0	1	$\frac{\pi}{2}$
2	$\theta_2 + \frac{\pi}{2}$	0	0	$\frac{\pi}{2}$
3	0	0	$d_3 + \frac{1}{2}$	0

 θ_1 e θ_2 não têm limites; d_3 pode variar de 0 a 2

- 3
- a) Através da multiplicação das matrizes associadas a cada elo, determinar as coordenadas da ponta em função das variáveis de junta e dos restantes parâmetros dos elos.
- 2
- b) Pretende-se movimentar as juntas da posição $Q_A = [-\pi/2 \pi/2 \ 0]^T$ para a posição $Q_B = [\pi/2 \pi/4 \ 1]^T$ em 2 segundos com planenamento de trajetória polinomial de 3^a ordem nas juntas. Em que instante(s) a aceleração da primeira junta é metade do valor máximo da aceleração dessa mesma junta durante este movimeno? Justificar.
- 2
- c) Calcular a cinemática inversa de posição do robô, incluindo as eventuais redundâncias.
- 1
- d) Demonstrar que o jacobiano direto do manipulador é dado pela expressão:

$$\mathbf{J} = \begin{bmatrix} -C_2 S_1 \left(d_3 + \frac{1}{2} \right) & -C_1 S_2 \left(d_3 + \frac{1}{2} \right) & C_1 C_2 \\ C_1 C_2 \left(d_3 + \frac{1}{2} \right) & -S_1 S_2 \left(d_3 + \frac{1}{2} \right) & C_2 S_1 \\ 0 & C_2 \left(d_3 + \frac{1}{2} \right) & S_2 \end{bmatrix}$$

- 2
- e) Foram colocados dois robôs iguais frente a frente com os respetivos planos X_0Z_0 e X_0Y_0 coincidentes entre si, e em contacto rígido pontual nas respetivas pontas. Porém, um dos robôs ficou com o ângulo θ_2 a +30° e o outro robô ficou com θ_2 a +45° e a sua junta prismática no valor mínimo, e as juntas θ_1 de ambos estão a 0. Subitamente, este último robô aplica no motor da sua junta θ_2 um momento de 2 Nm no sentido de diminuição de θ_2 , e uma força de 100 N na sua junta linear no sentido de a estender. Nesse instante, quais os acréscimos de momento/força sofridos pelos 3 motores do outro manipulador para manter o regime estático? Justificar usando o princípio do trabalho virtual de d'Alembert.

