Synthèse

E. Machefer

10 janvier 2024

1 Les étapes d'une synthèse chimique

1.1 Schéma

Une étape de purification peut s'ajouter après l'analyse du produit.

1.2 Prélèvement des réactifs

- 1. Vérifier les consignes de sécurités adaptées à la manipulation des réactifs en analysant les pictogrammes de danger
- 2. Déterminer la quantité à prélever pour les réactifs
 - **solide** en pesant le réactif
 - liquide en mesurant le volume (ou la masse si ρ ou c est donné)

1.3 Transformation chimique

En général, cette transformation s'effectue avec un chauffage à reflux.

La hausse de température permet d'accélérer la réaction chimique, la colonne évite les pertes de matière par vaporisation.

1.4 Isolement du produit de réaction

Afin de séparer le produit synthétisé du mélange réactionnel et/ou d'autres produits de réaction formés.

1. DONE Cas d'un produit solide Par une méthode de filtration

data/methode_filtration.png

Remarque 1.

Plus le solvant est froid, moins le solide est soluble dans le solvant.

2. \bf{DONE} Cas d'un produit liquide Par une méthode d'extraction liquide-liquide dans une ampoule à décanter.

1.5 Purification (facultatif)

Afin de purifier le produit, pas encore pur à ce stade, il faut procéder à une étape de lavage.

- Pour les solides : étape de recristallisation
- Pour les liquides : distillation fractionnée

1.6 Analyse du produit

Cette étape permet l'identification du produit et de contrôler sa pureté.

L'analyse peut se faire selon les caractéristiques physiques :

- température de fusion ou d'ébullition
- indice de réfraction (si produit transparent)
- masse volumique

Selon les caractéristiques chimiques :

- Chromatographie sur couche mince (CCM)
- Spectroscopie infrarouge

Rendement d'une synthèse

2.1 Définition et calcul

Le rendement permet de déterminer la qualité de la transformation, un rendement de 100%indique la quantité maximale de produit possible, un rendement proche de 0% indique que beaucoup de pertes ont eu lieu lors de la réaction.

$$\eta = \frac{n_P}{n_{max}},$$

 $\eta = \frac{n_P}{n_{max}},$ avec η le rendement (sans unité), n_P la quantité de matière de produit obtenu et n_{max} la quantité de matière maximale attendue (théorie).

Synthèse de l'éthanoate de benzyle

TP

3.1 Protocole

L'éthanoate de benzyle constitue la note de tête de l'odeur du jasmin

_	Document 1. Form	ules des réac	ctifs		
- 1		ares aes rea			
	Espèces chimiques	Formule	Dangers	M (g/mol)	$\rho \; (\mathrm{g/cm^3})$
	Anhydride éthanoïque	$C_4 H_6 O_3$	Corrosif	102	1,08
	Alcool benzylique	$C_7 H_8 O$		108	1,04
	Acide éthanoïque	$C_2 H_4 O_2$	Corrosif, inflammable	60	1,05
	Éthanoate de benzyle	$C_9 H_{10} O_2$		150	1,06

Document 3. Protocole

- Mettre les lunettes et les gants
- Introduire dans le ballon sous la hotte aspirante :
 - -- 10 mL d'anhydride éthanoïque
 - 15 mL d'alcool benzylique
 - quelques grains de pierre ponce
 - quelques gouttes d'acide sulfurique
- Fixer le ballon sur le support et adapter le tube réfrigérant
- Appeler le professeur
- Chauffer le mélange réactionnel, porter à ébullition pendant une vingtaine de minutes
- Retirer le chauffe ballon sous le mélange réactionnel et laisser refroidir quelques minutes
- Transvaser le contenu du ballon dans l'ampoule à décanter
- Ajouter 50 mL de solution aqueuse saturée de chlorure de sodium
- Agiter puis laisser décanter
- Recueillir la phase organique
- Ajouter quelques spatules de chlorure de calcium puis filtrer

3.2 Questions

- 1. Mettre en œuvre le protocole.
- 2. Légender le schéma 3.1 avec les termes suivants : réfrigérant à boules, mélange réactionnel, chauffe-ballon
- 3. Écrire puis équilibrer l'équation de réaction.
- 4. (a) Montrer que la quantité de matière peut s'écrire

$$n = \frac{\rho \times V}{M}$$

- (b) Calculer les quantités de matière initiales d'alcool benzylique et d'anhydride éthanoïque.
- (c) Déterminer la quantité de matière maximale d'éthanoate de benzyle.
- 5. Faire un schéma de l'ampoule à décanter.