Министерство образования и науки РФ

Национальный исследовательский университет «Высшая школа экономики» Факультет Бизнес-информатики, отделение Программной инженерии Кафедра Управления разработкой программного обеспечения

Дисциплина «Вычислительная геометрия» (2 курс) Лектор д.ф.-м.н., профессор Воронова Л.И.

Методические указания к лабораторному практикуму

Дисциплина «Вычислительная геометрия» в соответствии с учебным планом предусматривает выполнение лабораторного практикума, состоящего из 9 лабораторных работ и практических заданий, продолжительностью 2-4 академических часа каждая.

Перечень приведен в приложении 1.

Для допуска к экзамену необходимо

- 1. Запрограммировать (как min) 10 лабораторных работ (см.прил.1)
- 2. Предоставить отчеты (по форме) в электронном виде, собранные в одном файле.
- 3. Предоставить все реализации, собранные в одном проекте,
- 4. Защитить все лабораторные работы,

Итоговый контроль - *экзамен* (120 мин.), состоящий из теоретической части; В результате по все формам отчетности формируется

итоговая оценка К по 10-балльной шкале как взвешенная сумма

 $K = 0.31 \Pi P + 0.31 \Pi 3 + 0.07 KP + 0.31 \Im$

где *ЛР, ДЗ, КР, Э* – 10-балльные оценки за

защиту лаб.работ, домашние задания(реализации л.р), контрольную работу, экзамен с округлением до целого числа баллов

Если на экзамене получена неудовлетворительная оценка, то именно она выставляется в ведомость.

Требования к отчетности по лаб.практикуму

- 1. Все отчеты (в конце семестра) собираются в один файл, с общим титульным листом (Приложение 2)
- 2. отчет к каждой работе оформляется по шаблону (Приложение 3).
- **3.** Отмет предоставляется в электронном виде.
- 4. Обязательно предоставляются код программы и реализация.

Внимание!!!

В течение семестра отчеты, коды и реализации присылать на эл.почту преподавателя в соответствии с указанными сроками (в течение недели после лабораторного занятия), соответственно нумеруя их.

Это позволит четко отслеживать, как вовремя выполнена работа.

e-mail: Ivoronova@hse.ru Тема: ВГ- л.р.№

Название файла: ЛР № (не нужно в имени файла писать свою фамилию)

Приложение 1.

Перечень лабораторных работ по дисциплине «Вычислительная геометрия» и порядок формирования оценок

N	Название лабораторной работы	требования	Мах к-во баллов на защите	Примечания
1.	Программирование пересечения двух отрезков на основе векторного произведения	обязат.п/г реализация	10	
2.	Построение выпуклой оболочки: сканирование по Грэхему(Graham's scan)	обязат.п/г реализация	10	
3.	Построение выпуклой оболочки: сканирование по обход по Джарвису (Jarvis's match)	обязат.п/г реализация	10	
4.	Программирование алгоритма нахождения пары ближайших точек на плоскости на основе алгоритма декомпозиции («разделяй и властвуй»)	обязат.п/г реализация	10	
5.	Программирование алгоритма определяющего наличие первого пересечения из N заданных отрезков на плоскости,	обязат.п/г реализация	10	
6.	Программирование алгоритма определяющего наличие всех пересечений из N заданных отрезков на плоскости FindIntersections (S)	обязат.п/г реализация	10	
7.	Программирование алгоритма наложения(S) двух планарных подразбиений(S1, S2), заданных двусвязными списками ребер MapOverlay (S1, S2)	обязат.п/г реализация	10	
8.	Программирование разбиения простого полигона на монотонные части: MakeMonotone(P);	обязат.п/г реализация	10	
9.	Программирование триангуляции простого полигона: TriangulateMonotonePolygon (P);	обязат.п/г реализация	10	
10- 11	Программирование нахождения общего пересечения полуплоскостей на основе алгоритма IntersectHalfplanes (H) и процедуры IntersectConvexRegions	обязат.п/г реализация	10	
12- 13	Программирование диаграммы Вороного на основе алгоритма «выметания плоскости») – построение линии прибоя VoronoiDiagram (P) + процедура HandleSiteEvent (pi)+ HandleCircleEvent (g)	частичная реализация	10	6 баллов max без реализации
14- 15	Вычисление триангуляции Делоне-Алгоритм DelauneyTriangulation	частичная реализация	10	6 баллов тах без реализации
16- 17	Программирование алгоритма PaintersAlgorithm (T, Pview).	частичная реализация	10	6 баллов тах без реализации

Министерство образования и науки РФ Национальный исследовательский университет «Высшая школа экономики»

Лабораторный практикум по дисциплине «Вычислительная геометрия»

> Выполнил: студент гр. 472ПИ Фамилия И.О.

> > Проверила: д.ф.-м.н., проф. Воронова Л.И.

Тема «Пересечение двух отрезков»

Цель. Формулируется общая цель работы (как правило единств.число) Например: Разработка и реализация алгоритма использующего векторное произведение для решения задачи пересечения двух отрезков

Задачи:

- ✓ Изучить теорию по темам «Введение в Вычислительную геометрию», «Базовые геометрические понятия(свойства отрезков, векторное произведение»
- ✓ Реализовать алгоритм процедуры SegmentsIntersect (p1, p2, p3, p4) на основе псевдокода рассмотренного на лекции
- ✓ Провести моделирование.
- ✓ Предоставить реализацию и отчет.
- ✓ Подготовить ответы на вопросы(устно), защитить работу.

В итоге отчет должен содержать:

- 1. Цель
- 2. Задачи, которые были решены при реализации,

со ссылками на соответствующие методы и алгоритмы, если они были рассмотрены на лекции

или описанием алгоритмов разработанных самостоятельно с приведением соответствующих методов и псевдокода

- 3. Описание использованных в программе структур данных
- 4. Оценку времени выполнения алгоритма (кроме того, возможно сравнительное исследование, или анализ алгоритма на устойчивость и т.д.)
 - 5. Скриншоты на «входе» и «выходе» программы с результатами
- 6. Выводы (по работе с точки зрения практической значимости проведенного исследования)
 - 7. Список источников и литературы
 - 8. Приложения (при необходимости прикладываются коды программ)

Список источников и литературы

- 1. Лекции
- 2. Thomas H. Cormen, Charles E.Leiserson, Ronald L.Rivest, Clifford Stein. Introduction to Algorithms. (Third Edition). Part VII Chapter 33. Cmp.1014-1021
- **3.** Кормен Т., Лейзерсон Ч., Ривест Р., Штайн К. Алгоритмы: построение и анализ, 2-е издание. Пер. с англ. М.; СПб.; Киев: Издательский дом «Вильямс», 2011. стр. 1047-1055.

- 1. В каких областях применяются методы вычислительной геометрии?
- 2. Что такое выпуклая комбинация двух точек на плоскости, отрезок, вектор?
- 3. Скалярное произведение двух векторов на плоскости
- 4. Векторное произведение что это? Физический смысл? Примеры поворотов отрезков.
- 5. Как определить пересекаются ли два отрезка на плоскости? Примеры
- 6. Процедура SegmentsIntersect (p1, p2, p3, p4)
- 7. Псевдокод вспомогательных процедур

Тема. Построение выпуклой оболочки

Цель. Разработать программу построения выпуклой оболочки с использованием методов «выметание по кругу» на основе алгоритма Грэхема или Джарвиса

Задачи
Реализовать алгоритм GrahamScan(Q) на основе псевдокода рассмотренного на лекции

Список источников и литературы

- 1. Лекции
- 2. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein. Introduction to Algorithms. (Third Edition). Part VII Chapter 33.

Есть русский перевод: Томас Кормен и др. **Алгоритмы. Построение и анализ**. 2005. (второе издание) - электр. В нашей библиотеке — книга(перевод, 2-е издание).

3. Mark de Berg, Otfried Cheong, Mark van Kreveld, Mark Overmars. Computational Geometry. Algorithms and Applications. Springer, 3d Edition.

- 1. Дать определения: многоугольник, стороны и вершины многоугольника, простой/выпуклый полигон, внутренняя/внешняя обл.полигона, выпуклая оболочка...
- 2. Кратко описать входные/выходные данные и используемые функции в алгоритме Грэхема.
- 3. Описать алгоритм Грэхема
- 4. Пояснить геометрически почему при обходе против часовой стрелки из стека убирается вершина, в которой не происходит поворот налево.
- 5. Привести пример последовательности действий (на рис) исследования вершин при сканировании по Грэхему
- 6. Дать доказательство корректности алгоритма
- 7. Объяснить, что лежит в основе метода упаковки(подарка)
- 8. Дать геометрическую интерпретацию обхода по Джарвису
- 9. Описать действия при обходе по Джарвису
- 10. Оценить сложность и время работы алгоритмов

Тема. Поиск двух ближайших точек в множестве

Цель. Разработать программу нахождения пары ближайших точек методом «разделяй и властвуй» на основе алгоритма «ClosestPair»

Задачи	
	!a

Список источников и литературы

- 1. Лекции
- 2. Thomas H. Cormen, Charles E.Leiserson, Ronald L.Rivest, Clifford Stein. Introduction to Algorithms. (Third Edition). Part VII Chapter 33.

Есть русский перевод: Томас Кормен и др. **Алгоритмы. Построение и анализ**. 2005. (второе издание) - электр. В нашей библиотеке — книга(перевод, 2-е издание).

3/ Mark de Berg, Otfried Cheong, Mark van Kreveld, Mark Overmars. Computational Geometry. Algorithms and Applications. Springer, 3d Edition.

- 1. Дать математическое определение пары ближайших точек
- 2. Объяснить алгоритм декомпозиции («разделяй и властвуй»):
 - разделение,
 - властвование,
 - комбинирование
- 3. Доказать корректность алгоритма
- 4. Пояснить, почему следует проверить только 7 точек, следующих в массиве Y' за каждой точкой p.
- 5. Описать особенности реализации
- 6. Оценить сложность и время работы алгоритма
- 7. Пояснить псевдокод разбивки отсортированного массива на два
- 8. Пояснить псевдокод алгоритма «грубой силы»
- 9. Пояснить псевдокод алгоритма «разделяй и властвуй»

Тема. Программирование алгоритма определяющего наличие первого пересечения из N заданных отрезков на плоскости

Цель. Разработать программу нахождения пересекающихся отрезков методом выметающей линии (sweeping line) на основе алгоритма Any-Segments-Intersect(S)

Задачи
 Реализовать алгоритм «Any-Segments-Intersect(S)» на основе псевдокода рассмотренного на лекции

Список источников и литературы

- 1. Лекции
- 2. Thomas H. Cormen, Charles E.Leiserson, Ronald L.Rivest, Clifford Stein. Introduction to Algorithms. (Third Edition). Part VII Chapter 33.

Есть русский перевод: Томас Кормен и др. **Алгоритмы. Построение и анализ**. 2005. (второе издание) - электр. В нашей библиотеке — книга (перевод, 2-е издание).

Внимание: в описании обсуждавшегося алгоритма в русском переводе есть ошибка, см. стр. 1058 — первый абзац обсуждения псевдокода...и стр. 1024 в англоязычном оригинале)

3.Mark de Berg, Otfried Cheong, Mark van Kreveld, Mark Overmars. Computational Geometry. Algorithms and Applications. Springer, 3d Edition.

- 1. Провести постановку задачи по наличию пересечения отрезков
- 2. Описать метод решения и упрощающие предположения
- 3. Пояснить подход к упорядочению отрезков
- 4. Привести геометрический пример последовательных отрезков
- 5. Описать наборы данных характерные для выметающих алгоритмов
- 6. Описать мн-во T, отражающее состояние относительно выметающей прямой. Дать оценку сложности выполнения операций из множества.
- 7. Пояснить псевдокод, выявляющий пересечения отрезков
- 8. Дать геометрическую интерпретацию. Пояснить как выполняется проверка на пересечение двух последовательных отрезков в полном упорядочении
- 9. иллюстрацию работы алгоритма
- 10. Доказательство корректности и возможность снятия упрощающих ограничений
- 11. Общая оценка алгоритма нахождения пересечения отрезков

Тема. Программирование алгоритма определяющего наличие всех пересечений из N заданных отрезков на плоскости

Цель. Разработать программу нахождения всех пересечений отрезков методом sweeping line на основе алгоритма FindIntersections (S)

Задачи
Реализовать алгоритм «FindIntersections (S)» на основе псевдокода рассмотренного на
лекции

Список источников и литературы

1. Лекции

3.Mark de Berg, Otfried Cheong, Mark van Kreveld, Mark Overmars. Computational Geometry. Algorithms and Applications. Springer, 3d Edition.

- 1. Провести постановку задачи по поиску множественного пересечения отрезков
- 2. Описать метод решения и упрощающие предположения
- 3. Пояснить подход к упорядочению отрезков. От чего зависит приоритет события?
- 4. Привести геометрический пример последовательных отрезков
- 5. Описать структуры данных используемые в программе (Q, T)
- 6. Пояснить алгоритм FindIntersections (S)
- 7. Описать алгоритм HandleEventPoint (p), процедуру FindNewEvent (sl, sr, p).
- 8. Доказать Лемму 1 «Алгоритм FindIntersections вычисляет все точки пересечения и сегменты, содержащие их, корректно».
- 9. Доказать Лемму 2 о времени выполнения алгоритма FindIntersections(S)
- 10. Пояснить формулу Эйлера
- 11. Проанализировать размер памяти, требуемый алгоритмом FindIntersections
- 12. Сформулировать теорему о сложности алгоритма FindIntersections

Тема. Программирование алгоритма наложения двух планарных подразбиений заданных двусвязными списками ребер.

Цель. Разработать программу наложения(S) двух планарных подразбиений(S1, S2), заданных двусвязными списками ребер на основе алгоритма MapOverlay (S1, S2)

Задачи	
Реализовать алгоритм «FindIntersections (S)» на основе псевдокода рассмотренного на	
лекции	

Список источников и литературы

1. Лекции

3.Mark de Berg, Otfried Cheong, Mark van Kreveld, Mark Overmars. Computational Geometry. Algorithms and Applications. Springer, 3d Edition.

- 1. Что такое планарные разбиения, поверхность и сложность подраздела, свойственные вертекс и ребро (и т.д).
- 2. Что такое двусявзный список ребер, полуребро, близнец, ориентированное полуребро
- 3. Вычисление наложения двух подразделений
- 4. Сколько информации из ДСР для S1 и S2 можно переиспользовать для O(S1,S2)?
- 5. Общий подход к построению алгоритма наложения
- 6. Структуры данных алгоритма обзора плоскости
- 7. Показать последовательность действий, когда ребро одного подразбиения, проходит через вертекс другого
- 8. Оценить сложность метода наложения
- 9. Вычисление информации о поверхностях (faces) для O(S1,S2)
- 10. Обработка дыр для **O(S1,S2**)
- 11. Лемма о соответствии связанных компонентов графа и множества циклов, относящихся к одной поверхности
- 12. Каким образом поверхность f в наложении помечается именами поверхностей из старых подразбиений
- 13. Пояснить алгоритм MapOverlay (S1? S2)
- 14. Булевские операции над полигонами контрольная работа.

Тема. Триангуляция полигонов

Цель. Разработать програл триангуляции монотонного	мы декомпозиции простого полигона на монотонные и полигона
Задачи	
Реализовать алгоритм «Tri	кеMonotone (P)» на основе псевдокода рассмотренного на лекции ungulateMonotonePolygon (P)»
на основе псевдокода рассм	тренного на лекции

Список источников и литературы

- 1. Лекции
- 2. Mark de Berg, Otfried Cheong, Mark van Kreveld, Mark Overmars.

 Computational Geometry. Algorithms and Applications. Springer, 3d Edition.
- 3. http://en.wikipedia.org/wiki/Polygon_triangulation
- 4. http://cgm.cs.mcgill.ca/~godfried/teaching/cg-projects/97/Ian/cutting_ears.html

Вопросы для защиты

- 1. Дать определение триангуляции. Пояснить, где используется.
- 2. Задача об охране художественной галереи (Guarding an Art Gallery)-?
- 3. Сформулировать и доказать теорему 1 о триангуляции простого полигона
- 4. Сформулировать задачу о трехцветной раскраске триангулированного полигона
- 5. Пояснить существование 3-цв. раскраски через граф для триангуляции Т(Р)
- 6. Пояснить, почему подход с 3-цветной раскраской является оптимальным в худшем случае
- 7. Сформулировать теорему 2 (Художественной Галереи)
- 8. Показать, что алгоритм триангуляции простого полигона потребует в худшем случае квадратичного времени
- 9. Пояснить, что такое «монотонность полигона». Каковы свойства монотонного полигона
- 10. Сформулировать идею триангуляции простого полигона с предварит.разбиением на монотонные части.
- 11. Пояснить понятия «ниже» и «выше» для вертексов с равными у-координатами
- 12. Описать типы вертексов

- 13. Доказать лемму 1 об условии монотонности полигона
- 14. Пояснить, как добавляются диагонали для вертексов разбиения в методе выметания плоскости
- 15. Пояснить, почему, чтобы избавиться от вертекса разбиения, надо соединить его с помощником для ребра слева
- 16. Пояснить, как строится диагональ для вертексов слияния
- 17. Пояснить, как формируется статус (состояние) алгоритма выметания линией и как изменяется (Структура динамического дерева бинарного поиска Т).
- 18. Какова структура двусвязного списка ребер и как он связан с полигоном Р?
- 19. Пояснить алгоритм MakeMonotone (P)
- 20. Пояснить точные алгоритмы для каждого типа вертекса:
- HandleStartVertex (vi)
- HandleSplitVertex (vi)
- HandleMergeVertex (vi)
- HandleRegularVertex (vi)
- HandleEndVertex (vi)
- 21. Сформулировать Лемму 2 об алгоритме MakeMonotone
- 22. Провести Оценку выполнения алгоритма и сформулировать соотв. теорему
- 23. Триангуляция монотонного полигона
- 24. Жадный алгоритм (Greedy algorithm)
- 25. Почему «перевернутая воронка» является инвариантом алгоритма.
- 26. Рассмотреть, какие диагонали добавляются при обработке очередного вертекса: когда следующий вертекс находится на
- той же стороне, что и вертексы, отраженные в стеке
- на противоположной стороне.
- 27. Пояснить алгоритм TriangulateMonotonePolygon (P)
- 28. Оценка времени этого алгоритма + теорема
- 29. Оценка времени алгоритма триангуляции простого полигона + теорема

Тема. Программирование нахождения общего пересечения полуплоскостей

Цель. Разработать программу нахождения общего пересечения полуплоскостей на основе алгоритма IntersectHalfplanes(H) и процедуры IntersectConvexRegions(C1,C2)

Задачи		
, ,	етический материал по теме «Геометрические аспекты литья»	
Реализовать а	илгоритм «IntersectHalfplanes (H)» на основе псевдокода рассмотренного	
на лекции		
Реализовать а	илгоритм процедуры «IntersectConvexRegions($C1,C2$)» на основе	
псевдокода из лекци	u	

Список источников и литературы

- 1. Лекции
- 2. Mark de Berg at al. **Computational Geometry. Algorithms and Applications**. 3d Edition. Chapter 4

Про связь между алгоритмами вычисления выпуклых оболочек и пересечений полуплоскостей см. также разделы 8.2 и 11.4 этого учебника, а также п.2.2 и 2.3.

Вопросы для защиты

- 1. Описать процесс литья. Отливаемый(castable) объект?
- 2. Показать графически: top facet, обычная грань, d-направление, n(f)-?
- 3. Сформулировать и доказать лемму о необходимых и достаточных условиях извлечения многогранника Р из формы. Сформулировать следствия из леммы
- 4. Поиск направления извлечения. Дать математическую формулировку перевода необх.и дост.условий на извлечение в направлении d в геометрическую задачу.
- 5. Сформулировать теорему2 сложности задачи об отливаемости объекта. Геометрическая интерпретация совместного решения набора линейн.ограничений. Форма пересечения п полуплоскостей.
- 6. Привести примеры пересечения полуплоскостей
- 7. Описать общий алгоритм IntersectHalfplanes (H)
- 8. Описать структуры данных в алгоритме пересечения двух полигональных регионов
- 9. Алгоритм выметания плоскости сверху вниз
- 10. Очередь событий. Инициализация указателей
- 11. Пояснить как формируется L(C) процедурой IntersectConvexRegions (C1, C2) обрабатывающей ребро е € L_left(C1) с верхней конечной точкой р если:

- е не пересекает ребер С2
- *e* ∩ *left edge C2*;
- e ∩ right_edge_C2
- 12. Применить процедуру IntersectConvexRegions (C1, C2) для е € R_left(C1)
- 13. Применить процедуру IntersectConvexRegions (C1, C2) для е € L_left(C2)
- 14. Применить процедуру IntersectConvexRegions (C1, C2) для е € R_left(C2) Для n.11-14 записать соответствующие полуплоскости в границы С и дать геометрическую интерпретацию рассматриваемых ситуаций
- 15. Сформулировать теорему (и следствие) о пересечении двух выпуклых полигональных регионов на плоскости

Тема. Программирование диаграммы Вороного

Цель. Разработать программу построения разбиения Вороного на основе алгоритма Форчюна.

Задачи		
	Изучить теоретический материал по теме «Диаграммы Вороного»	
	Реализовать алгоритм «VoronoiDiagram (P)» на основе псевдокода рассмотренного на	
лекі	<i>şuu</i>	
	Реализовать алгоритм процедуры then HandleSiteEvent (pi) и HandleCircleEvent (g) на	
осн	ове псевдокода из лекции	

Список источников и литературы

- 1. Лекции
- 2. Mark de Berg at al. Computational Geometry. Algorithms and Applications.

3d Edition. Chapter 7.

3. Формула Эйлера для многогранников:

0

http://www.pereplet.ru/obrazovanie/stsoros/801.html

http://schools.techno.ru/sch758/2003/geomet/new!!/eyler.html

http://www.pereplet.ru/nauka/Soros/pdf/9906_116.pdf

http://collection.edu.yar.ru/dlrstore/9ec3aaf6-95cd-35b0-b94e-

9138604828c7/00145619754673487.htm

4. См. реализацию алгоритма Форчюна в проекте Idea...

Вопросы для защиты)

- 1. Что такое модель приписки Вороного, к какому подразбиению приводит эта модель.
- 2. Опишите математически ячейку Вороного ()
- 3. Сформулировать и доказать теорему о связности Vor(P) и виде ее ребер
- 4. Сформулировать и доказать теорему о мах числе вертексов и ребер в диаграмме Вороного для n точек на плоскости
- 5. Сформулировать теорему о связи к-ва вертексов и ребер с наибольшим пустым кругом CP(q)
- 6. Сформулировать основные идеи алгоритма Форчюна. Какова его сложность?
- 7. Что такое линия прибоя (ЛП)? Пояснить математически почему она состоит из парабол? Пояснить смысл фразы «точки пересечения трассируют ребра диаграммы Вороного».
- 8. Является ли линия прибоя х-монотонной? Может ли одна парабола участвовать не один раз в линии прибоя?

- 9. Показать графически как изменяется линия прибоя при движении выметающей прямой
- 10. Что происходит при события пункта? Каковы условия появления на ЛП новой параболы?
- 11. Показать графически каким образом исчезает парабола с линии прибоя. Что такое событие окружности?
- 12. Описать структуру данных для хранения диаграммы Вороного двусвязный список ребер, а также Очередь событий.
- 13. Описать структуру данных Линии прибоя как дерева бинарного поиска.
- 14. Что означает событие ложной тревоги
- 15. Сформулировать кратко последовательность действий алгоритма, а также лемму об определении с помощью события элемента диаграммы Вороного.
- 16. Описать алгоритм VoronoiDiagram (P)
- 17. Описать алгоритм процедуры для обработки событий **HandleSiteEvent** (pi)
- 18. Описать алгоритм процедуры для обработки событий **HandleCircleEvent** (g)
- 19. Лемма о сложности и объеме памяти алгоритма (с док-вом)
- 20. Вырожденные случаи

Тема. Программирование триангуляции Делоне **Цель.** Разработать программу на основе предложенных в лекции алгоритмов и псевдокода. **Задачи**Изучить теоретический материал по теме «Триангуляция Делоне»

Реализовать алгоритм «VoronoiDiagram (P)» на основе псевдокода рассмотренного на лекции

Реализовать алгоритм процедуры then HandleSiteEvent (pi) и HandleCircleEvent (g) на основе псевдокода из лекции

Список источников и литературы

...

- 1. Лекции
- 2. Mark de Berg at al. Computational Geometry. Algorithms and Applications. 3d Edition. Chapter 7.

Вопросы для защиты

- 1. Что такое триангуляция Делоне? Где она используется?
- 2. Чем отличается триангуляция Делоне от любой другой триангуляции?
- 3. Дать определение террейна. Дискретный и полиэдральный террейны
- 4. Что такое максимальное планарное подразбиение
- 5. Связь неограниченной грани и выпуклой оболочки. Доказать теорему о количестве треугольников и ребер в T(P) если CH(P) содержит k точек.
- 6. Сравнение угловых векторов Т(Р).Оптимальная по углу триангуляция
- 7. Теорема Тейля
- 8. Переключение ребра. Нелегальное ребро.
- 9. Лемма об условиях нелегальности ребер
- 10. Легальная триангуляция. Алгоритм LegalTriangulation (T).
- 11. Дуальный граф для диаграммы Вороного. Граф Делоне DG(P).
- 12. Доказать теорему о графе Делоне для планарного множества точек как плоском графе.
- 13. Теорема о диаграмме Вороного в терминах графа Делоне.
- 14. Теорема о легальной триангуляции как триангуляции Делоне док-во
- 15. Вычисление TD(P). Рандомизированный инкрементальный подход.
- 16. Алгоритм DelauneyTriangulation (P).
- 17. Как работает рекурсивная процедура LegalizeEdge
- 18. Лемма о новых ребрах, созданых в алгоритме DelauneyTriangulation.
- 19. Нахождение треугольника, содержащего точку D.
- 20. Выбор охватывающего треугольника.

Тема. Бинарные разбиения пространства

Цель. Разработать программу на основе предложенных в лекции алгоритмов и псевдокода PaintersAlgorithm (T, Pview).

Задачи
Реализовать алгоритм «PaintersAlgorithm (T, Pview) на основе псевдокода
рассмотренного на лекции

Список источников и литературы

- 1. Лекции
- 2. Mark de Berg at al. Computational Geometry. Algorithms and Applications. 3d Edition. Chapter 7.

Вопросы для защиты