Supervised Learning Exam

Università degli Studi di Milano-Bicocca

12-06-2023

Monaco Filippo – 840089 Picione Marco - 827116

Table of contents

00 --- Introduction

01 → Dataset

02 → Bag of Visual Words

03 --> Convolutional Neural Network

04 → Conclusion

Introduction

AIM: Multi-class image classification

MODELS: Visual Bag of Words & Convolutional Neural Network

Multi-class Image Classification

Computer vision task that aims to assign a single label to an image.

Dataset

TinyImageNet, a reduced version of the widely-used ImageNet

- 100 classes
- 1000 images per class
- 64 x 64 image size

Data was split 80% for Training, 20% for Validation. A different set for Testing.

Some images of the dataset with associated label.

Note that the low resolution is due to the low size of the images (64x64).

Data pre-processing

Bag of Words:

- RGB to GrayScale

Convolutional Neural Network:

- Resize to 256 x 256
- Central Crop to 224 x 224
- Image to Tensor
- Normalization (mean [0.485, 0.456, 0.406], std [0.229, 0.224, 0.225])
- Batching (64 images per batch)

Data Augmentation

Certain classes performed much worse than others.

Our Neural Network particularly did not enjoy pictures of cockroaches.

Augment this class by creating new images with random transformations:

- random Horizontal/Vertical Flip
- random Brightness variation
- random Rotation

Bag of Words

Visual Bag of Words tries to represent images by a set of features (keypoints and descriptors), which are used to construct a visual vocabulary.

The image is described by a frequency histogram of features, which is then used for classification.

Extracting Local Features

SIFT is used to extract local features from images:

- keypoints (stand-out points)
- descriptors (description of keypoints)

37 keypoints per image (on average), each described by a 128-dimensional vector.

Keypoints Clustering

Clustering of all descriptors using an unsupervised algorithm: MiniBatches k-Means.

Elbow point method was inconclusive: arbitrarily chosen 3000 clusters (number of visual words).

Visual Histogram

Descriptors are clustered to construct a Visual Histogram based on the frequency of features w.r.t. the visual vocabulary.

Classifier

Histograms are used to train a traditional classifier, which is then used to predict labels on the Test set.

Classifiers tested:

- k-Nearest Classifier
- Stochastic Gradient Descent Classifier
- Support Vector Classifier
- Decision Tree
- Random Forest
- AdaBoost
- Bagging

	svc	SGDC
Accuracy	6.7 %	4.7 %
Training Time	4 hours	4 minutes
Testing Time	1 hour	0.1 seconds

Motivation

Very poor performance achieved.

Possible reasons:

- The visual vocabulary is not optimal
- Overfitting

Further testing would be required.

Convolutional Neural Network

Biologically-inspired Networks of neurons widely used in computer vision tasks. Stack multiple feature extractors as hidden neural layers and train them using ground truth labels.

Transfer Learning

- 1. Take pre-trained model
 - efficientnet_b0, trained on ImageNet
- 2. Change output classifier
 - from 1000 to 100 classes
- 3. Freeze main model
 - train only the newly-added classifier
- 4. Data pre-processing
 - Resize to 256 x 256
 - Central Crop to 224 x 224
 - Image to Tensor
 - Normalization (mean [0.485, 0.456, 0.406], std [0.229, 0.224, 0.225])
 - Batching (64 images per batch)

Training and Validation

- 1. Input images to network with corresponding label
- 2. Output logits
- 3. Compute Cross-Entropy Loss
- 4. Backpropagate error, updating classifier parameters
- 5. Validate model at current epoch
- 6. Repeat process until validation loss is stable
- 7. Save best model

Hyper-parameters:

- Epochs : 10 - Patience : 3

- Optimizer : Adam - Learning Rate : 0.001

- Scheduler : CosineAnnealingLR

durate?

Testing

Accuracy per Class

Hyperparameter Tuning

To achieve the best possible performance, we tried many different pre-trained models:

- mobilenet_v3_large 79% accuracy

- efficientnet_b0 84% accuracy

- vgg16_bn 70% accuracy

Optuna

Python framework for automatic hyperparameter optimization.

Sample different sets of values for each parameter and train the network, try to minimize the loss in validation.

Hyperparameters:

- Number of Hidden Neurons in Classifier (first and second hidden layer)
- Dropout chance
- Training **Epochs**
- Learning Rate
- Optimizer

Colab did not want us to reach the maximum of our abilities.

Conclusion

The Convolutional Neural network works much much better than the traditional classifier, both in terms of overall accuracy, and training times.

And them's the facts.

Thanks!

If you have any more questions, please direct them to chat.openai.com

(We did not make us of ChatGPT or any other Natural Language Processing models for this project).

Credit:

Filippo Monaco & Marco Picione under the wise supervision of Prof. Simone Bianco & Mirko Agarla