IEE5049-Spring 2012 Digital Integrated Circuit

HSPICE Tutorial

Tzu-Ting, Chiang
Department of Electronics Engineering
National Chiao Tung University
pebuch.ee96@g2.nctu.edu.tw

HSPICE Overview

- Synopsys HSPICE is an optimizing analog circuit simulator.
 - To simulate electrical circuits in steady-state, transient, and frequency domains.
 - Analysis of performance and yield, by using Monte Carlo, worst-case, parametric sweep, and data-table sweep analyses

HSPICE Overview

Important file types

Input File Type	File Name
Input netlist file	design.sp
Library input file	library_name

Output File Type	Extension
Output listing / log file	.lis
Transient analysis measurement results	.mt#
Transient analysis results (from .POST statement)	.tr#

Sourced from: HSPICE® User Guide C-2009.03

>hspice -i <input_file_name.sp> -o <log_file_name.lis>

Netlist Structure

.TITLE Hspice tutorial	■.TITLE
******* hspice simulation options	
.option post nomod brief measdgt=7 captab	.option
******** process and temperature options	
.include '65nm_bulk.pm'	
.temp 25	post
.global VDD GND	•
**************************************	measdgt=7
.param supply=1v	_
.param wp=0.2u .param wn=0.08u	captab
.param slew=30p	- captas
iparam cion cop	inaluda / lib
**************************************	.include / .lib
vs vdd gnd supply	
vin tin gnd pulse(0 supply 0.5n slew slew 0.47n 1n)	.temp
******* circuit	<u> </u>
MM0 OUT IN VDD VDD PMOS W=wp L=0.065u M=1.0	ا ما ماه ما
MM1 OUT IN GND GND NMOS W=wn L=0.065u M=1.0	■ .global
******* hspice simulation modes	•
.tran 1p 5n *sweep width 0.045u 0.2u 0.001u	.param
**************************************	- p - c c
.meas tran Tdr Trig v(in) val='0.5*supply' rise=2	.end
+ Targ v(out) val='0.5*supply' fall=2	enu
.meas tran Tdf Trig v(in) val='0.5*supply' fall=2	
+ Targ v(out) val='0.5*supply' rise=2	

Input Voltage and Current Sources

- Vxxx n+ n- [DC=] dcval tranfun [AC=acmag acphase]
 - v1 1 0 DC=5v
 - v2 2 0 5v
- Ixxx n+ n- [DC=] dcval tranfun [AC=acmag acphase]
 - i3 3 0 5mA
- tranfun
 - PULSE(v1 v2 T_{delay} T_{rise} T_{fall} P_{high-width} P_{period})
 - PWL(t1 v1, <t2 v2, t3 v3...> <R<=repeat>> <TD=delay>)
 - SIN(V_{offset} V_{acmag} <Freq T_{delay} Dfactor>)
 - Exponential

Pulse Voltage Source

- Vxxx node1 node2 PULSE(v1 v2 T_{delay} T_{rise} T_{fall} P_{high-period} P_{period})
 - Vin 1 0 PULSE(0v 5v 5ns 2ns 2ns 5ns 14ns)

Piecewise linear (PWL) Voltage Source

- Vxxx node1 node2 PWL(t1 v1, <t2 v2, t3 v3...> <R<=repeat>> <TD=delay>)
 - v1 1 0 pwl(60n 0v, 120n 0v, 130n 5v, 170n 5v, 180n 0v, R 0)

Sinusoidal Voltage Source

- \blacksquare Vxxx node1 node2 SIN(V_{offset} V_{acmag} <Freq T_{delay} D_{factor}>)
 - VIN 3 0 SIN(0 1 100meg 2ns 5e7)

Element Identifier & Scale Factors

First Letter	Element
С	Capacitor
D	Diode
1	Current Source
L	Linear Inductor
M	MOS transistor
Q	Bipolar transistor
R	Resistor
V	Voltage Source
Χ	Subcircuit call

Prefix	Scale Factor Symbol	Factor
tera	T	1e+12
giga	G	1e+9
mega	Meg	1e+6
kilo	k	1e+3
milli	m	1e-3
micro	u	1e-6
nano	n	1e-9
pico	р	1e-12
femto	f	1e-15
atto	а	1e-18

Element Syntax

- Passive components
 - Rxxx node1 node2 value
 - C, L, ... etc. just the same syntax

- Active components
 - Mxxx Drain Gate Source Bulk Model width length <multiple>
 - ➤EX: mtest1 out in vdd vdd pmos w=195n l=65n m=1 mtest2 out in gnd gnd nmos w=65n l=65n m=1

Subcircuit

SUBCKT NAME Node1 < Node2 ... > < param1 ... > circuit description

.ENDS

- Subcircuit call
 - Xxxx Node1 <Node2 ...> NAME <param1 ...>

W/O subckt

.global VDD GND

******* circuit

MM0 tout1 IN VDD VDD PMOS W=195n L=65n MM1 tout1 IN GND GND NMOS W=65n L=65n

MM2 tout2 tout1 VDD VDD PMOS W=390n L=65n MM3 tout2 tout1 GND GND NMOS W=130n L=65n

MM4 out tout2 VDD VDD PMOS W=780n L=65n MM5 out tout2 GND GND NMOS W=260n L=65n

W/ subckt

.SUBCKT INV IN OUT wp=195n wn=65n MM0 OUT IN VDD VDD PMOS W=wp L=65n MM1 OUT IN GND GND NMOS W=wn L=65n .ENDS

.global VDD GND

****** circuit

X0 IN tout1 INV X1 tout1 tout2 INV wp=390n wn=130n X2 tout2 OUT INV wp=780n wn=260n

Low Por

Simulation Modes

Transient / DC Analysis / AC analysis

Transient Analysis

- .tran <timestep> <total simulation time>
 - + sweep <variable> <start value> <end value> <step>
 - .tran 1p 5n
 - .tran 1p 5n sweep temp 0 25 5
- dc.
- .ac
- HSPICE® User Guide: Simulation and Analysis

Measurements(1/2)

- .meas(ure) <mode> <name> <type description>
 - Mode
 - >DC / AC / TRAN
 - Type
 - Find, when/ AVG / MAX / MIN / Trig, Targ / PP
- **EX1**:
 - meas dc vout find V(out1) when V(in)=0.9
- **E**x2:
 - .meas tran Pavg avg I(out) from=5n to=50n

Measurements(2/2)

- **EX3**:
 - .meas tran TpHL Trig v(in) val=0.5V rise=2
 - + Targ v(out) val=0.5V fall=2
 - .meas tran TpLH Trig v(in) val='0.5*supply' fall=2
 - + Targ v(out) val='0.5*supply' rise=2
- Measured results are listed in .mt# file

Multiple Analyses

.alter

- Simulation all over again using new parameters
- .mt0 .mt1 .mt2 etc.
- .tr0 .tr1 .tr2 etc.

.sweep

- Simulation using new parameters but with the same initial point
- All in the same .mt0/.tr0

```
.temp 25
****** parameters
.param supply=1v
.param wp=0.2u
.param wn=0.08u
.param slew=30p
************************** hspice simulation modes
.tran 1p 5n sweep temp 0 25 5
****** measurements
.meas tran Tdr Trig v(in) val='0.5*supply' rise=2
            Targ v(out) val='0.5*supply' fall=2
.meas tran Tdf Trig v(in) val='0.5*supply' fall=2
            Targ v(out) val='0.5*supply' rise=2
.alter
.param supply=0.5v temp=25
.alter
.param supply=0.5v temp=50
```

.end

Avanwaves – Avanwaves Window

Monte Carlo Simulation

- Monte Carlo analysis uses a **random number** generator to create the following types of functions:
 - Gaussian Parameter Distribution
 - Uniform Parameter Distribution
 - Random Limit Parameter Distribution

Monte Carlo Simulation

.param xx=AGAUSS(nominal_val, abs_variation, sigma)

- AGAUSS: Gaussian distribution function using absolute variation
- nominal_val: Nominal value for Monte Carlo analysis and default value for all other analyses
- abs_variation : Vary the nominal_val by ±abs_variation
- **sigma**: The abs_variation is specified at the sigma level. For example, if sigma=3, then the standard deviation is abs_variation divided by 3.

EX:

- vth0 = 0.423
- \bullet vth0 = 0.423+agauss(0,30m,1)
- .param wp=200n+agauss(0,10n,1)

[HSPICE® User Guide: Simulation and Analysis] [Star-Hspice Manual 2001]

Technology Corner

- Typical (TT)
- Fast PMOS Fast NMOS (FF)
- Slow PMOS Slow NMOS (SS)
- Fast PMOS Slow NMOS (FPSN)
- Slow PMOS Fast NMOS (SPFN)
 - .lib '90nm.lib' TT
 - .lib `90nm.lib` FF
- Best Case
 - -25 °C / 1.1V / FF corner
- Worst Case
 - 125°C / 0.9V / SS corner

