Federated Multi-Tenant Service Architecture for an Internet of Things

Mark Burges

Herb Wildfeuer (hwildfeu@cisco.com)

Overview

- Describe key components of a federated service architecture for the Internet of Things
- By it's nature, IOT is heterogeneous/multi-vendor
 - Standards (and/or OSS) required to achieve Internet of Things goals
- Looking for interest in pursuing multi-vendor service oriented IOT arch/framework
 - Pseudo-research, Open Source Projects, W3C/IETF activites
- Up-level from current connectivity/data-passing focus of IOT

Abstract

The draft describes architectural recommendations for an Internet of Things scenario, based on tried and tested principles from infrastructure science. We describe a functional service architecture that may be applied in the manner of a platform, from the smallest scale to the largest scale, using vendor agnostic principles. The current draft is rooted in the principles of Promise Theory[Bergstra1] and voluntary cooperation.

- An architecture where autonomously behaving things operate based on system level intent provided from a variety of authoritative sources.
- We also introduce the concept of workspaces as a bottom up approach for segmentation in high scale multi-tenent IOT.

Things as Service Entities

Bottom Up Control

Service instance tied to physical device – differs from traditional service architectures that instantiate services

Autonomous operation of service

- System intent derived from policy provisioned from authoritative source
- Ownership

Use promise theory for describing inter-service policy (e.g contracts *ala* GBP) - system intent/deriving system behavior

- No centralized top down control
- Pull, not push (auth pub/sub)

Security Benefits

- Reduced exposure to attacks in the promise-oriented pull- only architecture
- rejects all external data sent without invitation

Multi-tenancy

Multi-tenancy in infrastructure as in traditional service architectures

 Networking challenges/opportunities exist as with existing service architectures..

Addition of multi-tenancy scope within sphere of influence of services

 IOT services offer set of promises for capabilities that are captured by different concerns simultaneously

Scale

Scale of services architecture to the Internet of Things

- Bottom up system control key for scaling
- No centralization of control components/policy rendering

Given the full scale though, still require segmentation of service space

 Formation of self-service domains (workspaces)

Workspaces

Human aspect - Human separation of concerns need tools that support separation of responsibility

Realtime "control" requires us to limit the scope and create "cells" or organisms

- Limit the exposed surface of applications and subsystems
- Potential for sharing resources across workspace –

IT resources will be challenged to scale by living in a centralized "cloud": latency and trunking throttle performance, and privacy will lead to decentralization in IOT service architecture

More than namespaces – More than clusters

The natural partner to IOT Workspaces is containers and SDN virtual networks

Interesting tools, but not yet good enough:
Kubernetes (resources) - no multitenancy, namespaces
Consul/etcd (directories) - no multitenancy, namespaces

Smart directories

- A workspace is not a "compute cluster", but a number of logical separable overlays with separate resources, and allowed communication paths associated with a particular role or tenant.
- Federation of intent, with policy constraints
- Sharing of resources across workspaces if necessary
- Self-service resource consumption (ask forgiveness not permission)
- The proper successor of VLAN, subdomain, cloud customer, etc

Not subdivision hierarchy, overlapping domains

