

Satellite Collision Avoidance

Gabriella Armijo

Project Goa

Methods

. .

Reference

Satellite Collision Avoidance

Gabriella Armijo

Institute for Computing in Research

August 3, 2022

Outline

Satellite Collision Avoidance

Gabriella Armijo

Project Goa

Introduction

Methods

Results

Relevance

Future Work

Referenc

- Project Goal
- 2 Introduction
- Methods
- 4 Results
- 6 Relevance
- 6 Future Work
- References

Project Goal

Satellite Collision Avoidance

Gabriella Armijo

Project Goal

Laboratoria de la constitución d

Mathada

ivictilous

resures

Relevance

Future World

Reference

- Track satellites to see how likely they were collide.
- See how often they got within 100 km of each other.
- Analyze those results to see what satellites showed up the most.

Kessler Syndrome

Satellite Collision Avoidance

Gabriella Armijo

Project Goa

Introduction

Market

Methods

Dalamana

_ ...

A scenario in which the density of objects in Low Earth Orbit (LEO) is high enough that each collision creates debris that increases the likelihood of more collisions.

3D Plot

Satellite Collision Avoidance

Methods

Conjunction Plots

Satellite Collision Avoidance

Gabriella Armijo

Project Goa

Introduction

Methods

...cemou.

i didie vvoir

Satellite Point of View

Satellite Collision Avoidance

Gabriella Armijo

Project Goa

Introduction

Methods

...cemou

.

Future Worl

Referenc

Dot Product

Satellite Collision Avoidance

Gabriella Armijo

Project Goa

Introduction

Methods

Wicthoo

Б.

Future Wor

Referenc

```
|def mindist_and_time(pairpos_vels):
    deltas = pairpos_vels[:, 1] - pairpos_vels[:, 0]
    v = deltas[:, 1, :]
    rnorm = np.sqrt(np.sum(r ** 2, axis=-1))
    vnorm = np.sqrt(np.sum(v ** 2, axis=-1))
    rdotv = np.sum(r * v. axis=-1)
    costheta = rdotv / (rnorm * vnorm)
    sintheta = np.sqrt(1 - costheta ** 2)
    distance = rnorm * sintheta
    travel = -rnorm * costheta
    time = travel / vnorm
    return distance, time
```

Figure: Dot Product

```
def pairs_for_time(satellites, time, search_radius=100, maxdistance=10, timestep=10):
  Satellite
                      pos vels = satellitepos vels(satellites, time)
  Collision
                      if np.anv(np.isnan(pos vels)):
  Avoidance
                      times = time + delta_times / seconds_per_day
Methods
                          for i, satnum in enumerate(pairs[i]):
                               result[i]["velocities"][i] = geocentric.velocitv.km per s
                      delta pos = np.diff(result["positions"], axis=1)[:, 0, :]
```

new_distance = np.sgrt(np.sum(delta_pos ** 2, axis=-1))

Results

```
Satellite
Collision
Avoidance
```

Gabriella Armijo

Introduction

....

Results

Б.

Future Wor

Reference

```
[(2459793.49996586, [b'STARLINK-2686', b'STARLINK-4016'], [48464, 52603], [
(2459793.49995395, [b'COSMOS 2251 DEB', b'FENGYUN 1C DEB'], [36052, 37578],
(2459793.50000893, [b'STARLINK-1477', b'STARLINK-3763'], [45754, 52556], [
```

[[3043.82085744, 3832.24481974, 4890.72523754], [3040.55030319, 3828.28038801, 4885.57477159]], [
-6.96578649, 0.41137309, -2.99202699], [-4.81553841, -5.02496521, 3.04540734]], 9.24237707, 9.24234973),
[[-4.84987248, -5.65995379, -0.78727613], [6.36757837, -3.49630711, -1.91743309]], 4.39999659, 4.4000118
[-6.81385665, 1.79480535, 2.82645312], [-3.28465361, 6.23568948, -2.83285029]], 7.27602526, 7.27602899),

[[-1035.20786393, 1826.2946224, -6772.34418336], [-1035.9581627, 1830.56719824, -6771.60789707]

```
[(2459793.49996586, [b'STARLINK-2686', b'STARLINK-4016'], [48464, 52603], [
(2459793.49995395, [b'COSMOS 2251 DEB', b'FENGYUN 1C DEB'], [36052, 37578]
(2459793.50000893, [b'STARLINK-1477', b'STARLINK-3763'], [45754, 52556], [
```

[[-1794.74737479, 4644.46295733, 4883.81598868], [-1796.996286 , 4637.41754928, 4798.27287065]], |], [[-1035.20786393, 1826.2946224 , -6772.34418336], [-1035.9581627 , 1830.56719824, -6771.60789707]] [[3043.82085744, 3832.24481974, 4890.72523754], [3040.55030319, 3828.28038801, 4885.57477159]], |

```
[-6.96578649, 0.41137309, -2.99202699], [-4.81553841, -5.02496521, 3.04540734]], 9.24237707, 
, [[-4.84987248, -5.65995379, -0.78727613], [6.36757837, -3.49630711, -1.91743309]], 4.3999965
[-6.81385665, 1.79480535, 2.82645312], [-3.28465361, 6.23568948, -2.83285029]], 7.27602526,
```

Why is this important?

Satellite Collision Avoidance

Gabriella Armijo

Project Goa

Method

...----

.

Relevance

Future Wor

Referenc

- Prevents Collisions
- Keeping tabs on growing constellations
- Understanding satellite movement

Future Work

Satellite Collision Avoidance

Gabriella Armijo

Project Go

Introductio

ivietno

Reculte

Relevano

Future Work

Reference

- Conjunction Plots
- Starlink orbital readjustments
- Future Collisions

Acknowledgements

Satellite Collision Avoidance

Gabriella Armijo

Project Goal

Mathada

Methods

ь .

Relevano

Future Work

Reference

I would like to thank my mentor, David Palmer, for everything he has taught me.

I would also like to thank the Institute for Computing in Research and everyone involved for giving me and my fellow interns this opportunity.

References

Satellite Collision Avoidance

References

- 1 Mann, A., Pultarova, T., Howell, E. (2022, April 14). SpaceX Starlink Internet: Costs, Collision Risks and How it Works.
 - https://www.space.com/spacex-starlink-satellites.html
- 2 Lambert, J. (2018, september). Fengyun-1C Debris Cloud Evolution Over One Decade.
- 3 McKnight, D., Shouppe, M., (2021, November 18). Analysis of the Cosmos 1408 Breakup https://leolabs-space.medium.com/analysis-of-thecosmos-1408-breakup-71b32de5641f
- 4 Wall, M. (2018, November 15,). Kessler Syndrome and the Space Debris Problem https://www.space.com/kessler-syndrome-space-debris