Unit 5 - Mark scheme

Question number		Mark
1(a)	C [Pt(NH ₃) ₂ Cl ₂]	1
Question number	Answer	Mark
1(b)	A [CuCl ₂] ⁻	-
Question number	Answer	Mark
1(c)	D [Cr(H ₂ O) ₆] ²⁺	-
Question number	Answer	Mark
2	B VO ₂	_
Question number	Answer	Mark
3	C sodium hydroxide	-
Question number	Answer	Mark
4	B ethanoate ion, CH ₃ COO ⁻	1
Question	Answer	Mark
5(a)	D the colour change of the reduction of the manganate(VII) ions is sufficient	1
Question number	Answer	Mark
5(b)	B uncertainty 0.06%	1

Question number	Answer	Mark
5(c)	D 0.014	-
Question number	Answer	Mark
9	A $1/2O_2(g) + H_2O(l) + 2e^- \rightarrow 2OH^-(aq)$	1
Question number	Answer	Mark
7(a)	C this label indicates the intermediate species	1
Question	Answer	Mark
numper		
7(b)	B they can gain and then lose electrons	_

Question number	Answer	Mark
∞	[MnO4]	-
Question number	Answer	Mark
6	A $C_6H_5-NH_2 < H-NH_2 < CH_3-NH_2$	-
Question number	Answer	Mark
10(a)	$A \qquad HNO_2 \qquad \bigcirc \longrightarrow MH_2$	-
Question number	Answer	Mark
10(b)	HO—N—N—O—N	-

	-		,
Question number	Answer		Mark
11	C $CH_3COCI + NH_3 \rightarrow CH_3CONH_2 + HCI$		_
Question number	Answer		Mark
12	A 3		1
Question number	Answer		Mark
13	CH ₃		_
	H ₃ C—C—CN + Ni/H ₂		
	− I		
	А		
Question number	Answer		Mark
14	D it avoids the decomposition of the organic molecule when it distils		1
Question number	Answer	Additional guidance	Mark
15(a)	A suitable equation such as:		_
	• $NH_2CH_2COOH + NaOH \rightarrow NH_2CH_2COO^{(-)}Na^{(+)} + H_2O$	Allow zwitterion ionic equation displayed formulae	

Ignore state symbols even if incorrect Do not award O-Na

Question Answer number	Answer	Additional guidance	Marks
15(b)		Example of calculation:	2
	 number of moles of lysine and number of moles of HCl 	(1) n(1.825 ÷ 146=) 0.0125 (mol) n(0.0125 × 2=) 0.025 (mol)	
	 volume of HCl in cm³ 	(1) $V = (0.025 \div 0.100) \times 1000 = 250 \text{ cm}^3$	
		Allow answer in dm³ Allow 1 mark for 125 cm³	

Question Answer number	Answer	Additional guidance	Marks
15(c)(i)	$\begin{array}{c c} H \\ \downarrow \\ C \\ C$	Structures must be 3-dimensional Allow any orientation	7

Question number	Answer	Additional guidance	Marks
15(c)(ii)	A description which includes:		7
	• the plane of plane-polarised (monochromatic) light	(1) Allow omission of one plane	
	 will be rotated equally but in opposite directions by the two enantiomers/left by one (laevo-rotatory) enantiomer and to the right by the other (dextro-rotatory) enantiomer. 	(1) Allow use of d and I/(+) and (-) Do not award use of D and L	

Question number	Answer	Additional guidance	Marks
15(c)(iii)	 glycine does not have a chiral carbon/centre or is superimposable on its mirror image 		~
Question number	Answer	Additional guidance	Marks
15(d)	A suitable diagram such as: Schoot front Chiga Mixture Origin	Allow spots of any reasonable size and anywhere within the range for lysine 0.1-0.2 and for glycine 0.2-0.3	-

Question number	Answer	Additional guidance	Marks
15(e)	A diagram such as: H O H H_2N — C — C — N — C — COOH (CH ₂) ₄ H H NH ₂	Allow: H O H H ₂ N -C -C -N -(CH ₂) ₄ -C -COOH H H H H ₂ N	~
Question number	Answer	Additional guidance	Marks
16(a)	298 K and 100 kPa (of gases)	Accept 25°C Accept 1 atm	-
Question number	Answer	Additional guidance	Marks
16(b)(i)	• $E_{\text{cell}} = (+0.340.76 =) (+)1.10 (\text{V})$		-
Question number	Answer	Additional guidance	Marks
16(b)(ii)	An answer to include observations such as: blue colour of copper(II) sulfate becomes paler	Observations can be in any order Three observations scores 2 Two observations scores 1	2
	 zinc electrode decreases in size. 		

Question number	Answer	4	Additional guidance	Marks
16(c)	A justification that makes reference to the following points:	<u> </u>	gnore:	m
	• Iron $E_{\text{cell}} = (-0.44 - +0.77 =) -1.21 \text{ (V)}$	(1)	3Fe ²⁺ → Fe + 2Fe ³⁺	
	Copper $E_{\text{cell}} = (+0.52 - +0.15 =) +0.37 \text{ (V)}$			
	• $2Cu^+ \rightarrow Cu^{2+} + Cu$	£	(1) Ignore state symbols	
	 comment on copper electrode potential is positive so disproportionation is feasible and iron electrode potential is negative so disproportionation is not feasible. 	£		

Question number	Answer	Additional guidance	Marks
16(d)	 High activation energy/physical barrier prevents reaction Reaction is (very) slow Reaction conditions may not be standard 		1

Mark	9	
Additional Guidance	Guidance on how the mark scheme should be applied. The mark for indicative content should be added to the mark for lines of reasoning. For example, a response with four indicative marking points that is partially structured with some linkages and lines of reasoning scores 4 marks (3 marks for indicative content and 1 mark for partial structure and some linkages and lines of reasoning). If there were no linkages between the points, then the same indicative marking points would yield an overall score of 3 marks (3 marks for linkages). If there is any incorrect chemistry, deduct mark(s) from the reasoning. If no reasoning mark(s) awarded, do not deduct mark(s).	
ver	tr's ability to show a coherent and linkages and fully sustained reasoning. content and for how the answer is soning. Number of marks awarded for a structure of marks should be awarded for structure of answer and sustained lines of reasoning lith 1 1 2 2 1 1 1 2 2 1 1 1 1 2 2 1 1 1 1	
Answer	ituder with with how the how t	points and is unstructured
Question number	17(a)	

uestion umber	Answer	Additional Guidance
7(a)	Indicative content:	
	Spectroscopy: (IP 1 and 2)either X-ray diffractionall C-C bond lengths in benzene are equal	lgnore references to equal/120 $^\circ$ bond angles
	 but if it was a cyclic triene then they would alternate in 'short' and 'long' lengths 	
	which is consistent with equivalent C-C bonds with a delocalised ring of electrons	
	or (infrared spectroscopy) • benzene has peaks at 1600, 1580, 1500, 1450 (cm ⁻¹) for an aromatic C=C	Allow for one indicative point The infrared spectrum for benzene has a peak
	 alkene C=C has a peak at 1669 - 1645 (cm⁻¹). 	for an aromatic C=C at a different wavenumber/absorption/frequency to an alkene C=C
	Thermochemistry: (IP 3 and 4)enthalpy of hydrogenation is less exothermic than expected for a cyclic triene or enthalpy of combustion data	Allow benzene is more stable by $\sim\!150~{\rm kJ~mol^{-1}}$
	 which is consistent with the delocalisation stability of the ring from the ring of electrons 	Stated enthalpies (of hydrogenation) -205 to -210 kJ mol ⁻¹ for benzene and -360 kJ mol ⁻¹ for 3 (localised C=C) double bonds
	Type of reaction: (IP 5 and 6) • benzene undergoes substitution reactions	Allow di-substitution There are only 3 isomers of di-substituted compounds (not 4)
	 alkenes undergo addition reactions/decolourise bromine water. 	some di-substituted compounds are the same, e.g. 1,2 and 1,6

Question number	Answer	Additional guidance	Marks
17(b)(i)	An answer that makes reference to the following points:		4
	• electron pair movement from ring to electrophile (1	(1) Allow arrow that starts from anywhere from within the hexagon	
	formula of intermediate ion	'Horseshoe' to cover at least three carbon atoms and facing the tetrahedral carbon with some part of the positive sign to be inside	
	 movement of electron pair to reinstate delocalised ring 		
	• formulae of products. (1)	Exemplar mechanism: H ₃ C CH ₃ CH	
		Do not award dotted bonds unless clearly part of a 3-D structure	

Question number	Answer	Additional guidance	Marks
17(b)(ii)	 CH₃COCl + AlCl₃ → CH₃CO⁺ + AlCl₄ 	Accept use of FeCl ₃ /Fe + 3Cl ₂	_

Question number	Answer	Additional guidance	Marks
17(c)	An explanation that make reference to the following points:		2
	 lone pair of electrons on the oxygen atom increases the electron density of the ring 		
	 more susceptible to attack by electrophiles. 	1)	

Question Answer number	Answer	Additional guidance	Marks
17(d)(i)	• (reactant) (conc) HNO ₃ (1)	(1) Ignore name	2
	• (catalyst) (conc) H ₂ SO ₄ (1)	(1) Allow name	
		Penalise reference to dilute acid once only	

estion nber	Answer	Additional guidance	Marks
(ii)		Example of calculation:	က
	• calculation of molar masses	(1) M_r of benzene = 78 and M_r of nitrobenzene = 123	
	 number of moles of benzene and maximum mass of nitrobenzene 	(1) n(0.936 ÷ 78=) 0.012 (mol) m(0.012 × 123=) 1.476 (g)	
	 percentage yield of nitrobenzene to 2/3 SF 	(1)	

Question number	Answer	Additional guidance Marks	arks
18(a)	An answer that makes reference to the following points:	Accept displayed/skeletal formulae 8	œ
	 react iodoethane with aqueous hydroxide ions 	(1) Accept aqueous sodium hydroxide/ potassium hydroxide	
	• $C_2H_5I + OH^- \rightarrow C_2H_5OH + I^-$	(1) $C_2H_5I + NaOH \rightarrow C_2H_5OH + NaI$	
	 oxidation of C₂H₅OH with acidified dichromate(VI) under distillation conditions 	(1) Accept reference to sodium/ potassium dichromate(VI)	
	• $C_2H_5OH + [O] \rightarrow CH_3CHO + H_2O$	(1)	
	react iodoethane with magnesium (in ethoxyethane)	(1)	
	• $C_2H_5I + Mg \rightarrow C_2H_5MgI$	(1)	
	 reaction of ethylmagnesium iodide with ethanal to form butan-2-ol 	(1)	
	• $C_2H_5MgI + CH_3CHO + H_2O \rightarrow C_2H_5CH(OH)CH_3 + Mg(OH)I$	(1) Allow this to be shown as two separate equations	

Question number	Answer	Additional guidance Mark	Marks
18(b)(i)		Example of calculation:	4
	 calculation of number of moles of butan-2-ol 	(1) n=(1.850 ÷ 74 =) 0.025 (mol)	
	• calculation of number of moles of carbon dioxide	(1) $n(CO_2) = 4 \times 0.025 = 0.100 \text{ (mol)}$	
	water	$n(H_2O) = 5 \times 0.025 = 0.125 \text{ (mol)}$	
	 calculation of carbon dioxide mass/mass increase of solid X 	(1) $m(CO_2) = 0.100 \times 44 = 4.40 (g)$	
	 calculation of mass of water/mass increase of solid Y 	(1) $m(H_2O) = 0.125 \times 18 = 2.25$ (g)	

Question number	Answer	Additional guidance	Marks
18(b)(ii)	Prediction:		2
	 suitable example by name or formula. 	(1) Allow structural / displayed / skeletal	
		formula.	
		Any molecule with the molecular	
	Reason:	formula C₄H₁0O	
	 the same molecular formula as butan-2-ol / is an isomer of butan-2-ol. 	(1) Do not award just ' $C_4H_{10}O$ '	

Question Answer number	Answer	Additional guidance	Marks
19(a)	• copper is oxidised from 0 to +2 (1)	(1) Look at the equation in the question for the correct oxidation number changes if not given	2
	• nitrogen is reduced from (+)5 to (+)4 (1)	(1) on the answer lines	
		Award maximum of one mark if the terms	
		oxidised and reduced are not used or used the	
		wrong way round	

Question number	Answer	Additional guidance Mark	ark
19(b)	An answer which makes reference to the following points:	Accept the points in either order 2	2
	 (precaution) carry out in a fume cupboard 	(1) Do not award 'well-ventilated laboratory/ face masks'	
	• (hazard) toxic nitrogen dioxide/NO ₂ gas.	(1) Allow poisonous	
Question number	Answer	Additional guidance Marks	arks
19(c)		Example of calculation: 6	9
	 calculation of the number of moles of thiosulfate 	(1) $n(S_2O_3^{2-}) = (22.65 \times 0.100 \div 10000=)$ = 2.265 × 10 ⁻³ /0.002265 (mol)	
	 evaluation of the number of moles of iodine 	(1) $n(I_2) = (2.265 \times 10^{-3} \div 2 =)$ = 1.1325 × 10 ⁻³ / 0.0011325 (mol)	
	 evaluation of the number of moles of copper ions in the 10.0 cm³ aliquot 	(1) $n(Cu^{2+}) = (1.1325 \times 10^{-3} \times 2=)$ = 2.265 × 10 ⁻³ / 0.002265 (mol)	
	 evaluation of the number of moles of copper ions in 250 cm³ 	(1) $n(Cu^{2+}) = (2.265 \times 10^{-3} \times 25)$ = 5.6625 × 10 ⁻² / 0.056625 (mol)	
	 evaluation of mass of copper ions in sample 	(1) $m(Cu^{2+}) = (5.6625 \times 10^{-2} \times 63.5 =)$ = 3.5956875 (g)	
	 evaluation of percentage of copper in sample to 2/3 SF 	(1) $\% = (3.5956875 \div 5.0000 \times 100 = 71.91375 =)$	
		= 72/71.9 %	
		Penalise inappropriate rounding once only	
		Correct answer with no working scores 6 marks	

Question number	Answer	Additional guidance		Marks
19(d)	An answer that makes reference to the following points:			9
	colours of the precipitates formed	(1) Blue precipitate with copper(II) ions and white precipitate with zinc ions	er(II) ions and white	
	 addition of excess sodium hydroxide has no effect on copper precipitate 	(1)		
	 but the zinc precipitate dissolves to form colourless solution 	(1) Do not award 'clear'		
	 equation for the formation of a precipitate for either copper(II) or zinc ions 	(1) Example of equations:	$)\rightarrow Cu(H_{2}O)_{4}OH)_{2}(s)$	
		or $[Zn(H_2O)_6]^{2+}(aq) + 2OH^{-}(aq) \rightarrow Zn(OH)_2(s) + 6H_2O(l)$	$\rightarrow Zn(OH)_2(s) +$	
		or $Cu^{2+}(aq) + 2OH^{-}(aq) \rightarrow Cu(OH)_{2}(s)$	OH) ₂ (s)	
		or $Zn^{2+}(aq) + 2OH^{-}(aq) \rightarrow Zn(OH)_{2}(s)$	OH) ₂ (s)	
	 equation for the dissolving of the zinc precipitate 	(1) $\left Zn(OH)_2(s) + 2OH^{-}(aq) \rightarrow [Zn(OH)_4]^{2-}(aq) \right $	(OH) ₄]²-(aq)	
	all state symbols correct.	(1)		

Question number	Answer	Additional guidance	Marks
19(e)	An explanation that makes reference to:		2
	• copper forms an ion with an incomplete d subshell		
	• but the only ion that zinc forms has a completely filled d subshell. (1)		

Question number	Answer	Additional guidance	Marks
19(f)	A explanation that makes reference to:		2
	• the atoms/cations are of different size (in brass)	(1) Ignore movement of the electrons	
	• therefore the layers do not slide over one another so easily.	(1) Accept a labelled diagram	