

An Introduction to Machine Learning

Agenda

- 1 Cleaning of Data
- 2 Encoding of Data
- 3 Plotting and EDA analysis
- 4 Data Transformations
- 5 Model fitting
- 6 Model selection (HPO)
- 7 Model understanding/explainability

Rule:
$$+ 3$$
 meaning $f(x) = x + 3$

Creating a prediction of the future value!

We are using the a set of numbers to help us decide what the rule should be

Machine Learning is the act of using statistical algorithms to find a function that best describes the data.

$$Y = f(X) + \varepsilon$$
Irreducible Error

Intro Encoding EDA Data Transformations Model Fitting Model Selection Understanding

What is Machine Learning?

Algorithms that **analyse** data to **identify** patterns, make accurate **predictions** or intelligent decisions.

1. Objective:

Make accurate predictions or inferences from data patterns

2. Types

- Supervised: Training dataset and test dataset required for future predictions
 - Regression: Predict a continuous number (e.g. Amount of sales for next year)
 - Classification: Predict whether True or False (e.g. Buy or Not buy)
- Unsupervised: Just a dataset is required
 - Clustering (e.g. Market Segmentation)

3. Applications

Literally where there is data!!

Data Cleaning

Definition: the process of identifying and correcting or removing errors, inconsistencies, and inaccuracies in datasets to improve data quality and reliability.

1. How to get a good dataset

Kaggle walkthrough

2. Missing Values

- Removal or imputation
 - 0 imputing
 - Mean imputing

3. Outliers

- Extreme values, consider removal depending on impact
 - 1Q 1.5IQR, 3Q + 1.5IQR

Encoding

Machines only recognise numbers, so we must change categorical data (text) to numerical data using encoding!

1. One-Hot Encoding:

- Nominal categories without ordering/ranking
- Binary, 1 indicates the presence, 0 indicates absence

id	color		id	color_red	color_blue	color_green
1	red		1	1	Θ	0
2	blue	One Hot Encoding	2	0	1	0
3	green		3	0	Θ	1
4	blue		4	0	1	0

2. Label Encoding:

- Used on ordinal data: categories with ranking!
 - Data with order: e.g. small, medium, large
- Unique numerical codes to each category with ordering/ranking

Original Data

Points Team 25 A 12 15 В В 14 19 В 23 C 25 C 29

Label Encoded Data

Team	Points
0	25
0	12
1	15
1	14
1	19
1	23
2	25
2	29

Exploratory Data Analysis

Visualising and exploring the data to uncover patterns, identify outliers, and gain insights

before performing formal statistical modeling.

Plots to consider:

- Correlation Matrix
- Histograms
- Violin Plots/Box Plots
- Pairplots

Number of stocks sold

Correlation Matrix

1. Cleaning 2. Encoding

4. Data Transformations

5. Model Fitting

6. Model Selection

7. Understanding

Data Transformations

Definition: modifying the original data to improve its distribution, scale, or other characteristics for better analysis or modeling

- Normalisation: transform features to be on the same scale
 - Feature Clipping
 - Standard Scaling

Feature Clipping

 $z = \frac{x - \mu}{\sigma}$

4. Data

Transformations

Data Transformations

- Box-cox: either features or response will be transformed to be normally distributed
 - Reasons: meet assumptions, stabilise variance
 - Special case (lambda = 0): log transformations

Normalisation

Removing skewness in distribution

Non-Transformed Data

1. Cleaning

2. Encoding

3 FDA

4. Data

Transformations

5. Model Fitting

6 Model Selection

7. Understanding

Model: Logistic Regression

Business Understanding

Suppose:

- KFC is a fast food company that sells amazing deep fried chicken.
- They come to you (a data scientist) to understand and predict whether their customers will leave or return.
- Supervised Problem -> Classification Question:

- Leave = 1, Return = 0
$$p_i = \frac{1}{1 + \exp{-(\beta_0 + \beta_1 x_{i1} + \dots + \beta_k x_{ik})}}$$
Sigmoid Function

We can then impose a threshold:

- p_i >= 0.5 (classify as true); p_i < 0.5 (classify as false)

Advantages:

- Simple and interpretable

Disadvantages:

- Sensitive to outliers
- Requires normalisation of data
- Linearity assumption

Model: Random Forest

How does this work?

- Ensemble model averages multiple models
- Key: wisdom in crowds, any error is evened out
 - Variance reduction, uncorrelated
- Pros and cons:
 - More accurate, hard to explain/interpret

Individual Models

- Decision trees
 - Partition data into two regions
 - split variable wise
 - Continue splitting until stopping criteria is reached
- Issues
 - Trees are prone to overfitting or bias
 - Aggregating many models addresses this

Random Forest Classifier

Aggregating models - decorrelating trees

- Bootstrapping sampling data with replacement
 - Individual trees trained on resampled set
 - Introduces uncorrelated data for trees
- Random feature selection
 - Increases training speed
 - Decorrelates trees
- Height constraints limit amount of splits
 - Overfitting, computation, less noise

Types of outputs

- Classifier probability %
- Regressor average of outputs

Implementation:

Brieman Random Forest in sklearn

Assesses model quality, different aspects of model prediction

Cross validation

- Test on different portions of data
- K-fold, LOOCV test on one portion: assess accuracy
- Predictive power on unseen data

Classification report

- Precision: when predicted positive, likely to be correct - accurate
- Recall: good at finding the positive instances, even at cost of false positives - sensitive

ROC curve

- TP = true positive, predicted correct positive / actual positive
- FP = false positive, predicted false positive / actual negative
- Higher AUC (area), more overall TP

6. Model Selection

Hyper Parameter Optimisation

What are Hyperparameters?

- Parameters defining **behavior/structure** of a model
 - o E.g. Random Forest: number of models, height
 - Set prior to training affects model learning
- Key: improve model performance and efficiency
 - Controls overfitting or underfitting
 - Better generalisation on new datasets

Techniques

- Grid search, random search, Bayesian optimisation
- Implementation GridSearchCV, RandomizedSearchCV

1. Cleaning 2. Encoding 3. EDA 4. Data Transformations 5. Model Fitting 6. Model Selection 7. Understanding

Feature Importance

Main idea

- The degree of individual variable contribution to the performance of a machine learning model
- Metrics, degree of coefficients, etc.

Why?

- Model: quality, prediction
 - o Interpretability, communication, generalisation
- Informed business decision making
 - Simplicity, efficiency in real-world process,
 Allocation of resources
 - E.g. Potability concentrate on contaminants

Hierachy/ranking of variable importance?

Metrics: SHAP values, Decision Tree Feature importance

1. Cleaning 2. Encoding 3. EDA 4. Data Transformations 5. Model Fitting 6. Model Selection 7. Understanding

Q&A

Photo Time!!

Agenda

- 1 Cleaning of Data
- 2 Encoding of Data
- 3 Plotting and EDA analysis
- 4 Data Transformations
- 5 Model fitting
- 6 Model selection (HPO)
- 7 Model understanding/explainability

ARCHIVE

UNSW Data Science Society

Exploratory Data Analysis

Visualising and exploring the data to uncover patterns, identify outliers, and gain insights before performing formal statistical modeling.

- Purpose: Gain familiarity, data quality issues, hypotheses
- Techniques: Descriptive statistics, visualisations (plots), exploration (correlations), outlier detection
- Benefits: Data quality, insights, informed decision making
- Outliers: data point, with extreme response value
 - Impact: skews models
 - Treatment: deletion, imputation, transformation, separate treatment
 - Side note: high leverage point, extreme predictor values

How to Fit Models?

Data point: X = dependent variables, y = response

- Fundamental idea: assume observed equals mean plus error
- Aim: estimate this mean (coefficients, equation form)

$$y_i = f(X_{i,1}, \dots X_{i,n}) + e_i$$

$$\widehat{y_i} = \widehat{b_0} + \widehat{b_1} \cdot X_{i,1} + \dots + \widehat{b_n} \cdot X_{i,n}$$

Ordinary Least Squares

- Key: minimise total square error between predictions and observations
- Differentiate with respect to parameters to minimise

$$\sum_{all\ i} e_i^2 = \sum_{all\ i} (y_i - \hat{y}_l)^2$$

Maximum Likelihood Estimation

- Key: maximise probability of observations with respect to distribution
- Specify probability distribution with parameters
- Find probability of observations, differentiate with respect to parameters, solve to maximise probability
- Benefits: minimum variance unbiased estimates

1. Cleaning 2. Encoding 3. EDA 4. Data

4. Data Transformations

5. Model Fitting

Model Selection

7. Understanding

Model: Logistic Regression

How does this work?

- Calculate the *'response'*: $\widehat{y_i} = \widehat{b_0} + \widehat{b_1} \cdot X_{i,1} + \dots + \widehat{b_n} \cdot X_{i,n}$ Convert to a *probability*: $p_i = 1/[1 + exp(-\widehat{y_i})]$
- Assign 0 or 1 (based on threshold)

Why?

- Variables linearly combined to create *response* $(-\infty, \infty)$
- Logit function transforms linear response to a probability between [0, 1]
- **Key:** we want a linear combination of predictors, but must transform into a probability

Normalisation:

- Regularisation constraint imposed on coefficients to avoid overfitting
 - Bias variance tradeoff how well model generalises
- Normalised same units, variables fairly constrained

Challenges:

Multicollinearity: increases variance of coefficient estimates, important variables not discerned