RAČUNARSKE MREŽE

03 – Fizički sloj

Uvod

 Fizički sloj prima frame i kodira ga u niz signala koji se upućuju na dostupni prenosni medijum

The Physical layer interconnects our data networks.

- Prenos frejmova zahtjeve sljedeće fizičke elemente:
- fizički medijumi i odgovarajući konektori
- reprezentacija bita na medijumu
- kodovanje podataka i kontrolnih informacija

Svrha fizičkog sloja

 Osnovna svrha – kreiranje električnog, optičkog ili mikrotalasnog signala koji predstavljaju bite iz frejmova => medijumi ne prenose frejmove kao cjeline, već signale koji predstavljaju njihove bite jedan po jedan!

Mrežni medijumi

- 3 osnovna tipa mrežnih medijuma:
- Bakarni kablovi (copper)
- Optika (fiber)
- Bežični (wireless)

- Reprezentacija bita, tj. tipa signala zavisi od medijuma:
- bakarni kablovi signali su sekvenca električnih impulsa
- optika signali su sekvenca svjetlosnih zraka
- bežični signali su sekvenca radio talasa
- Identifikacija frejma (početak & kraj)

Principi

- Tri fundamentalna principa fizičkog sloja:
- kodovanje grupisanje bita
- 2. signalizacija kako se biti predstavljaju signalima
- fizičke komponente hardverski uređaji, medijumi i konektori

Predstavljanje bita signalima

- Na kraju se sva komunikacija svodi na binarne cifre koje se pojedinačno prenose preko fizičkog medijuma!
- Bit time vrijeme koje signal provede zauzimajući medijum
- Sinhronizacija primaoca i pošiljaoca ostvaruje se pomoću clock-a
- Biti se predstavljaju na medijumu mijenjajući neku od sljedećih karakteristika: amplitudu, frekvenciju ili fazu

Predstavljanje bita signalima(2)

NRZ metoda (Non Return To Zero) – male brzine, nizovi 0 i 1?

Manchester kodovanje – promjena nivoa signala, 10BaseT

Kodovanje – grupisanje bita

- Veće brzine => veća vjerovatnoća da će podaci biti oštećeni
- Kodne grupe omogućavaju da se greške pri prenosu lakše otkriju

 Pattern-i signala – pomaže primaocu da identifikuje početak i kraj frame-a

Kodovanje – grupisanje bita (2)

- Prednosti korištenja kodnih grupa:
- Smanjenje bit level grešaka onemogućavaju pojavu velikih nizova nula (jedinica) što uveliko otežava sinhronizaciju između pošiljaoca i primaoca
- Manja potrošnja energije balansiranje broja jedinica i nula što spriječava grijanje medijuma u slučaju da se emituje veliki broj jedinica
- 3. Razlika između data bita i kontrolnih bita 3 tipa simbola (podaci, kontrolni i nevalidni)
- 4. Lakše uočavanje grešaka npr. ako se primi dugačak niz nula (jedinica) odmah se može zaključiti da je došlo do greške

Kodovanje – grupisanje bita (3)

Primjer – 4B/5B

D -4-		
Data	1 (:0	me e
-au		uea

4B Code	5B Symbol
0000	11110
0001	01001
0010	10100
0011	10101
0100	01010
0101	01011
0110	01110
0111	01111
1000	10010
1001	10011
1010	10110
1011	10111
1100	11010
1101	11011
1110	11100
1111	11101

Control and Invalid Codes

4B Code	5B Symbol
idle	11111
start of stream	11000
start of stream	10001
end of stream	01101
end of stream	00111
transmit error	00100
invalid	00000
invalid	00001
invalid	00010
invalid	00011
invalid	00100
invalid	00101
invalid	00110
invalid	01000
invalid	10000
invalid	11001

Brzina prenosa

- Brzina prenosa podataka se mjeri na 3 načina:
- Bandwidth mjeri količinu informacija koja može doći od jednog mjesta na drugo za zadano vrijeme (idealna situacija)
- Throughput slična definicija kao za bandwidth, ali za realne situacije; pri mjerenju se uzimaju u obzir faktori kao što su količina i tip saobraćaja i broj uređaja priključenih na mrežu
- Goodput mjeri količinu KORISNIH informacija

Unit of Bandwidth	Abbreviation	Equivalence		
Bits per second	bps	1 bps = fundamental unit of bandwidth		
Kilobits per second	kbps	1 kbps = 1,000 bps = 10 ³ bps		
Megabits per second	Mbps	1 Mbps = 1,000,000 bps = 10 bps		
Gigabits per second	Gbps	1 Gbps = 1,000,000,000 bps = 10 bps		
Terabits per second	Tbps	1 Tbps = 1,000,000,000,000 bps = 1012bps		

Povezivanje na WAN

- Dial-up pristup (modemi, 56kb/s)
- ADSL brzina zavisi od rastojanja od stanice, korištenje neiskorištenog POTS opsega

Kablovski internet – brzina zavisi od broja korisnika na segmentu

Tipovi fizičkih medijuma

Physical Media - Characteristics Ethernet Media

	10BASE-T	100BASE-TX	100BASE-FX	1000BASE-CX	1000BASE-T	1000BASE-SX	1000BASE-LX	1000BASE-ZX	10GBASE-ZR
Media	EIA/TIA Category 3, 4, 5 UTP, two pair	EIA/TIA Category 3, 4, 5 UTP, two pair	50/62.5 µm multi mode fiber	STP	EIA/TIA Category 3, 4, 5 UTP, four pair	62.5/50 micron multimode fiber	50/62.5 micron multimode fiber or 9 micron single mode fiber	9µm single mode fiber	9µm single mode fiber
Maximum Segment Length	100m (328 feet)	100m (328 feet)	2 km (6562 ft)	25 m (82 feet)	100 m (328 feet)	Up to 550 m (1,804 ft) depending on fiber used	550 m (MMF)10 km (SMF)	Approx. 70 km	Up to 80 km
Topology	Star	Star	Star	Star	Star	Star	Star	Star	Star
Connector	ISO 8877 (RJ-45)	ISO 8877 (RJ- 45)		ISO 8877 (RJ- 45)	ISO 8877 (RJ- 45)				

Bakarni medijumi

Coaxial cable

Unshielded twisted-pair cable

RJ-45 connections

Bakarni medijumi i smetnje

- oklopljavanje žica i upredanje parica radi minimalizacije opadanja snage signala zbog električnih šumova
- Otpornost na šumove se još može ostvariti:
- odabiranjem tipa ili kategorije kabla u skladu sa okruženjem
- dizajniranjem kablovske infrastrukture tako da se fizički udalje od mogućih izvora smetnji

 korištenjem tehnika koje omogućavaju pravilno rukovanje sa kablovima i njihovo terminiranje

External Interference with Copper Media

UTP kablovi

- Unshielded Twisted Pair
- Upredanje parica (twisting) međusobno se poništavaju interferencije na paricama izazvane od strane eksternog EM polja
- Poništavanje (cancellation) eliminiše crosstalk negativan efekat internog magnetnog polja pri proticanju struje kroz žice, i to puštanjem struje u suprotnim smjerovima

UTP kablovi (2)

- Standardi kabliranja TIA/EIA-568A
- Definišu tipove i dužine kablova, konektore, terminatore i metode testiranja
- Kablovi se grupišu u kategorije, zavisno kolike brzine mogu da podrže
- Cat5 (100BASE-TX), Cat5e (minimalni zahtjev za gigabitni Ethernet), Cat6
- Tipovi kablova po načinu rasporeda žica:
- Ethernet Straight-through
- Ethernet Crossover
- Rollover
- RJ45 konektor

UTP kablovi (3)

Cable Type	Standard	Application
Ethernet Straight-through	Both ends T568A or both ends T568B	Connecting a network host to a network device such as a switch or hub.
Ethernet Crossover	One end T568A, other end T568B	Connecting two network hosts. Connecting two network intermediary devices (switch to switch, or router to router).
Rollover	Cisco proprietary	Connect a workstation serial port to a router console port, using an adapter.

Terminacija UTP kablova

2 tipa UTP interfejsa:

- MDI (Media-dependent Interface) – prirodan raspored: pinovi 1&2 za slanje, 3&6 za primanje (računar, router)
- MDIX (Media-dependent Interface, crossover) – interno mijenjanje žica za slanje i primanje (hub, switch)

Straight-through UTP

Straight-Through Cable

Straight-through cables have the same termination at each end - T568A or T568B.

T568B

Pair 2
Pair 3 Pair 1 Pair 4

RAZLIČITI TIPOVI UREĐAJA!

- switch router ETH port
- računar *switch*
- računar *hub*

Crossover UTP

Crossover Cable

Crossover cables have a T568A termination at one end and a T568B termination at the other end.

Pair 3

Pair 3 Pair 1 Pair 4

ISTI TIPOVI UREĐAJA!

- Transmit pins at each end connect to the receive pins at
- the other end. Switch hub
 - Hub hub
 - router router ETH port
 - računar računar
 - računar router ETH port

Konektori - bakar

Pravilna terminacija

Copper Media Connectors RJ45 Termination

Bad connector - Wires are untwisted for too great a length.

Good connector - Wires are untwisted to the extent necessary to attach the connector.

Koaksijalni kablovi

- CATV, antene + radio oprema
- Manja cijena i veća brzina su bili glavni razlozi zašto su UTP kablovi potpuno istisnuli koaksijalne iz Ethernet mreža

Coaxial Cable Design

Zaštitni plastični omotač

Spoljni mrežasti provodnik

Bakarno jezgro

Izolacioni materijal

Coaxial
Connectors

BNC

N type

F type

STP kablovi

- Shielded Twisted-Pair
- Za razliku od UTP kablova, svaka žica ima dupli metalni oklop
- Otporniji na smetnje, ali znatno skuplji

Optički kablovi

- Korištenje staklenih ili plastičnih vlakana koji prenose bite kao svjetlosne impulse
- Vrlo velike brzine prenosa
- Imuni na EM smetnje, a zbog toga i svoje male debljine mogu prenositi podatke na puno veće udaljenosti od UTP kablova bez potrebe za regeneracijom signala
- Potencijalni nedostaci:
- uglavnom skuplji od UTP kablova za iste distance (uz veći propusni opseg)
- prilično komplikovane procedure i oprema za splajsovanje i terminaciju kablova
- sa optičkim kablovima se mora pažljivije rukovati

Optički kablovi (2)

 Konstrukcija kabla: PVC oklop + niz ojačavajućih materijala koji okružuju optički kabl i njegovu ovojnicu (cladding), koja spriječava

svjetlost da napusti vlakno

Full duplex – dva vlakna

Optički kablovi – modovi rada

Laseri, LED -> foto dioda

Fiber Media Modes

- Small Core
- Less Despersion
- Suited for long distance applications (up to 100 km, 62,14 mi.)
- Uses lasers as the light source often within campus backbones for distance of several thousand meters

- Larger core than single-mode cable (50 microns or greater)
- Allows greater dipersion and therefore, loss of signal
- Used for long distance appllication, but shoter than single-mode (up to ~2km, 6560 ft)
- Uses LEDs as the light source often within LANs or distances of couple hundred meters within a campus network

Konektori - optika

- Terminacija komplikovana
- Optical Time Domain Reflectometer (OTDM) tester

Wireless

Elektromagnetni spektar

Wireless

• interferencija, sigurnost

Wireless – tipovi mreža

- Specifikacije na fizičkom i data link sloju
- Standard IEEE 802.11 lokalne bežične mreže, Wi-Fi, koristi CSMA/CA (Carrier Sense Multiple Access/Collision Avoidance)
- Standard IEEE 802.15 bežične lične mreže (WPAN), Bluetooth
- Standard IEEE 802.16 wireless broadband access, WIMAX, point-to-multipoint
- GSM (Global System for Mobile Communications) uključuje specifikacije fizičkog sloja koje omogućavaju imlementaciju GPRS (General Packet Radio Service) protokola na data link sloju koji omogućava transfer podataka preko mreže mobilne telefonije

WLAN

- Za implementaciju zahtijeva:
- Wireless Access Point (WAP)
- Wireless NIC kartice
- Standardi pod okvirom 802.11:
- IEEE 802.11a 5 GHz, do 54 Mbps, manji domet, neoperabilnost
- IEEE 802.11b 2.4 GHz, do 11 Mbps, veći domet, prihvaćeniji
- IEEE 802.11g 2.4 GHz, do 54 Mbps, fuzija prethodna dva
- IEEE 802.11n 2009, preko 100Mbps
- IEEE 802.11ac 2013, povećanje throughput-a za 10%
- IEEE 802.11ad 2013
- Prednosti wireless-a: nema troškova kabliranja + mobilnost korisnika
- Nedostaci: sigurnost

Wireless protokoli

- 802.11, Wi-Fi
- Razlike u prva dva sloja, od trećeg struktura ista!

Wireless protokoli (2)

problem skrivene i izložene stanice, CSMA/CA

Magnetni medijumi

- Magnetna traka 200 GB podataka
- Kutija veličine 60 x 60 x 60 cm može da primi 1000 traka, ukupno 1600 terabita (1.6 petabita)
- Kutija s trakama može da se dostavi ekspresnom poštom na bilo koju adresu unutar 24 sata
- Efektivna brzina ovog prenosa je 1600 terabita / 86400s ili 19 Gb/s
- Ako je odredište udaljeno 1 sat, brzina prenosa se uvećava na preko 400 Gb/s
- Nema računarske mreže koja se ovoj vrijednosti može i približiti ©

Magnetni medijumi (2)

- Cijena jedne trake oko 40 dolara
- Cijena kutije sa trakama oko 4000 dolara + 1000 dolara za poštanske troškove (iako su oni vjerovatno mnogo niži),
- Ukupno 5000 dolara za prenos 200 TB podataka
- Cijena prenosa gigabajta podataka košta manje od 3 centa