GCGCCACGC GGGGTGCGCC GGCGCGCGT AGCGCGGGCC CCTCAGTGCA CAA	ATGGCCAG 60
AGCAGGGGG GGAGCCCCAG CCCCACCCAG TGCGGAGCGC GCCGCGAGCC CCC	GCCGCAAG 120
CTGAGCGCCT CCGCCCGCCA GGCGCGCCGG CGCCGGGCCA TGTACTCGGG GAA	ACCGCAGC 180
GGCGCCACG GCTACTGGGA CGGCGGCGG GCCGCGGGC CTGAGGGGCC GGC	CCCCGCCG 240
GGGACACTGA GCCCGCGCC CCTCTTCAGC CCCGGCACCT ACGAGCGCCT GGC	CCTCCTC 300
CTGGGCTCCA TTGGGCTGCT GGGCGTCGGC AACAACCTGC TGGTGCTCGT CCT	TCTACTAC 360
AAGTTCCAGC GGCTCCGCAC TCCCACTCAC CTCCTCCTGG TCAACATCAG CCT	TCAGCGAC 420
CTGCTGGTGT CCCTCTTCGG GGTCACCTTT ACCTTCGTGT CCTGCCTGAG GAA	ACGCCTCC 480
GTGTGGGACA CCGTGGGCTG CGTGTGGGAC GGGTTTAGCG GCAGCCTCTT CGC	GGATTGTT 540
TCCATTGCCA CCCTAACCGT GCTGGCCTAT GAACGTTACA TTCGCGTGGT CCA	
GTGATCAATT TTTCCTGGGC CTGGAGGGCC ATTACCTACA TCTGGCTCTA CTG	CACTGGCG 660
TGGGCAGGAG CACCTCTCCT GGGATGGAAC AGGTACATCC TGGACGTACA CGC	GACTAGGC 720
TGCACTGTGG ACTGGAAATC CAAGGATGCC AACGATTCCT CCTTTGTGCT TT	TCTIATIT /80
CTTGGCTGCC TGGTGGTGCC CCTGGGTGTC ATAGCCCATT GCTATGGCCA TA	TTCTATAT 840
TCCATTCGAA TGCTTCGTTG TGTGGAAGAT CTTCAGACAA TTCAAGTGAT CA	AGATTTTA 900
AAATATGAAA AGAAACTGGC CAAAATGTGC TTTTTAATGA TATTCACCTT CC	TGGTCTGT 960
TGGATGCCTT ATATCGTGAT CTGCTTCTTG GTGGTTAATG GTCATGGTCA CC	TGGTCACT 1020
CCAACAATAT CTATIGITIC GTACCICITI GCTAAATCGA ACACTGTATA CA	ATCCAGTG 1080
ATTTATGTCT TCATGATCAG AAAGTTTCGA AGATCCCTTT TGCAGCTTCT GTC	GCCTCCGA 1140
CTGCTGAGGT GCCAGAGGCC TGCTAAAGAC CTACCAGCAG CTGGAAGTGA AA	TGCAGATC 1200
AGACCCATTG TGATGTCACA GAAAGATGGG GACAGGCCAA AGAAAAAGT GA	
TCTTCTTCCA TCATTTTTAT CATCACCAGT GATGAATCAC TGTCAGTTGA CG	ACAGCGAC 1320
AAAACCAATG GGTCCAAAGT TGATGTAATC CAAGTTCGTC CTTTGTAGGA AT	GAAGAATG 1380
GCAACGAAAG ATGGGGCCTT AAATTGGATG CCACTTITGG ACTITCATCA TA	AGAAGTGT 1440
CTGGAATACC CGTTCTATGT AATATCAACA GAACCTTGTG GTCCAGCAGG AA	ATCCGAAT 1500
TGCCCATATG CTCTTGGGCC TCAGGAAGAG GTTGAAC (SEQ ID NO:1)	1537

FIG.1

1 MYSGNRSGGH GYWDGGGAAG AEGPAPAGTL SPAPLFSPGT YERLALLLGS
51 IGLLGVGNNL LVLVLYYKFQ RLRTPTHLLL VNISLSDLLV SLFGVTFTFV
101 SCLRNGWVWD TVGCVWDGFS GSLFGIVSIA TLTVLAYERY IRVVHARVIN
151 FSWAWRAITY IWLYSLAWAG APLLGWNRYI LDVHGLGCTV DWKSKDANDS
201 SFVLFLFLGC LVVPLGVIAH CYGHILYSIR MLRCVEDLQT IQVIKILKYE
251 KKLAKMCFLM IFTFLVCWMP YIVICFLVVN GHGHLVTPTI SIVSYLFAKS
301 NTVYNPVIYV FMIRKFRRSL LQLLCLRLLR CQRPAKDLPA AGSEMQIRPI
351 VMSQKDGDRP KKKVTFNSSS IIFIITSDES LSVDDSDKTN GSKVDVIQVR
401 PL (SEQ ID NO:2)

FIG.2

3/8

AGCA	GGCG	GC G	GAGC	CCCA	G CC	CCAC	CCAG	TGC	GGAG	CGC A	GCCG VTG T	CGAG AC T	CC C CC G ER G	CGCC GG A	GCCAG GCAAG AC SN 5	120 174
CGC ARG	AGC SER	GGC GLY	GGC GLY	CAC HIS	GLY	TAC TYR	TGG TRP	GAC ASP	GGC GLY 15	GLY	GGG GLY	GCC ALA	GCG ALA	GGC GLY 20	ALA	222
GAG GLU	GGG GLY	CCG PRO	GCG ALA 25	PR0	GCG Ala	GGG GLY	aca Thr	CTG LEU 30	SER	CCC PRO	GCG ALA	CCC PRO	CTC LEU 35	PHE	agc Ser	270
CCC PRO	GGC GLY	ACC THR 40	TYR	GAG GLU	CGC ARG	CTG LEU	GCG ALA 45	LEU	CTG LEU	CTG LEU	GGC GLY	TCC SER 50	ATT ILE O	GGG GLY	CTG LEU	318
CTG LEU	GGC GLY 5!	VAL	GGC GLY	AAC ASN	aac asn	CTG LEU 60	LEU	GTG VAL	CTC LEU	GTC VAL	CTC LEU 65	TYR	TAC TYR	AAG LYS	TTC PHE	366
CAG GLN 70	ARG	CTC LEU	CGC ARG	ACT THR	CCC PRO 75	THR	CAC HIS	CTC LEU	CTC LEU	CTG LEU 8	VAL	AAC ASN	ATC ILE	agc Ser	CTC LEU 85	414
AGC SER	GAC ASP	CTG LEU	CTG LEU	GTG VAL 9	SER	CTC LEU	TTC PHE	GGG GLY	GTC VAL 9	THR	TTT PHE	ACC THR	TTC PHE	GTG VAL 100	SER	462
TGC CYS	CTG LEU	AGG ARG	AAC ASN 10	GLY	TGG TRP	GTG VAL	TGG TRP	GAC ASP	THR	GTG VAL	GGC GLY	TGC CYS	GTG VAL 11	TRP	GAC ASP	510
GGG GLY	TTT PHE	AGC SER 12	GLY	AGC SER	CTC LEU	TTC PHE	GGG GLY 12	ILE	GTT VAL	TCC SER	ATT	GCC ALA 13	ACC THR 0	CTA LEU	ACC THR	558
GTG VAL	CTG LEU 13	ALA	TAT	GAA GLU	CGT	TAC TYR 14	ILE	CGC	GTG VAL	GTC VAL	CAT HIS 14	ALA	AGA ARG	GTG VAL	ATC ILE	606

FIG. 3A

	PHE					ARG					ILE		CTC LEU			654
CTG LEU	GCG ALA	TGG TRP	GCA ALA	GGA GLY 17(ALA	CCT PRO	CTC LEU	CTG LEU	GGA GLY 175	TRP	AAC ASN	AGG ARG	TAC TYR	ATC ILE 180	LEU	702
GAC ASP	GTA VAL	CAC HIS	GGA GLY 185	LEU	GGC GLY	TGC CYS	ACT THR	GTG VAL 190	ASP	TGG TRP	AAA LYS	TCC SER	AAG LYS 195	ASP	GCC ALA	750
AAC ASN	gat ASP	TCC SER 200	SER	TTT PHE	GTG VAL	CTT LEU	TTC PHE 205	LEU	TTT PHE	CTT LEU	GGC GLY	TGC CYS 210	CTG LEU O	GTG VAL	GTG VAL	798
CCC PRO	CTG LEU 215	GLY	GTC VAL	ATA ILE	GCC ALA	CAT HIS 220	CYS	TAT TYR	GGC GLY	CAT HIS	ATT ILE 22	LEU	TAT TYR	TCC SER	ATT ILE	846
CGA ARG 230	MET	CTT LEU	CGT ARG	TGT CYS	GTG VAL 23	GLU	GAT ASP	CTT LEU	CAG GLN	ACA THR 24	ILE	CAA GLN	GTG VAL	ATC ILE	AAG LYS 245	894
ATT ILE	TTA LEU	AAA LYS	TAT TYR	GAA GLU 25	LYS	AAA LYS	CTG LEU	GCC ALA	AAA LYS 25	MET	TGC	TTT PHE	TTA LEU	ATG MET 26		942
				VAL					TYR				TGC CYS 27	PHE		990
			GLY					VAL					SER		GTT VAL	1038
		LEU					ASN					PRO	GTG VAL			1086
	PHE					PHE					LEU				TGC CYS 325	1134

CTC CGA CTG CTG AGG TG	C CAG AGG CCT GC	AAA GAC CIA CCA GCA GCI	1102
	S GLN ARG PRO ALA	LYS ASP LEU PRO ALA ALA	
330	ა.	35 340	
OOA ACT CAA ATC CAC AT	C ACA CCC ATT CTO	ATG TCA CAG AAA GAT GGG	1230
CLY CED CLILLAGT CLAL TI	F ARC PRO TIF VAI	MET SER GLN LYS ASP GLY	.200
345	350	355	-
JAJ	550	, , , , , , , , , , , , , , , , , , ,	
CAC AGG CCA AAG AAA AA	A GTG ACT TTC AA	C TOT TOT TOO ATO ATT TIT	1278
ASP ARG PRO LYS LYS LY	'S VAL THR PHE AS	N SER SER SER ILE ILE PHE	
360	365	370	
ATC ATC ACC AGT GAT GA	A TCA CTG TCA GT	T GAC GAC AGC GAC AAA ACC	1326
ILE ILE THR SER ASP GL	u ser leu ser vai	_ ASP ASP SER ASP LYS THR	
375	380	385	
er.			4 775
AAT GGG TCC AAA GTT GA	NT GTA ATC CAA GT	T CGT CCT TTG TAGGAATGAA	1375
ASN GLY SER LYS VAL AS	SP VAL ILE GLN VA	L ARG PRO LEU (SEQ ID NO:2)	
	395	400	
			4475
GAATGGCAAC GAAAGATGGG	GCCTTAAATT GGATG	CCACT TITGGACTTT CATCATAAGA	1435
		GAACC TTGTGGTCCA GCAGGAAATC	1495
CCAATTCCCC ATATCCTCTT	GGGCCTCAGG AAGAG	GTTGA AC (SEQ ID NO:2)	1537

FIG. 3C

2.4 7.5 1.35 4.4 9.5	-CEREBELLUM -CEREBRAL CORTEX -MEDULLA	-SPINAL CHORD -OCCIPITAL POLE	TO JATE OF THE STATE OF THE STA
2.4 7.5 · .35 4,4 9.5	-HEART -BRAIN -PLACENTA	-LUNG -LIVER	-SKELEIAL MUSCLE -KIDNEY -PANCREAS

FIG.4A

-PROSTATE -THYMUS -SPLEEN

-OVARY -TESTIS

: S.:

FIG.4C

-PERIPHERAL BLOOD LEUCOCYTE

-COLON(MUCOSAL LINING)

-SMALL INTESTINE

FIG.4B

6/8

-AMYGDALA

-CORPUS COLLOSUM -COUDATE NUCLEUS

-SUBSTANTIA NIGRA -HIPPOCAMPUS -WHOLE BRAIN

-THALAMUS

09/

831765

FIG.4D

FIG.4E

8/8

FIG. 5