Programming Assignment 1: EE-5180

February 12, 2024

1 Instructions

- 1. Submission deadline: Monday (26/02/2024) 3.00 PM
- 2. You can discuss ideas, but you must write your own program.
- 3. There will be lab session on this.
- 4. You will have to show the output and answer questions related to program.

Linear Regression (Program)

Suppose $y(x,\theta) = \theta x + \theta_0$, suppose that θ^* , and θ^*_0 are true values and it is unknown. For given input response x_i , the desired output response $\tilde{y}_i = \theta^* x_i + \theta^*_0$. The observed data $\mathcal{D} = \{x_i, \tilde{y}_i\}_{i=1}^N$. Then the loss function $L_i(\theta, \theta_0) = (y(x_i, \theta, \theta_0) - \tilde{y}_i)^2$ The total loss is

$$L(\theta, \theta_0) = \frac{1}{2N} \sum_{i=1}^{N} L_i(\theta, \theta_0)$$
 (1)

- 1. Suppose that true $\theta^* = 2.5$ and $\theta_0^* = 3$. For N = 300 input data points of x in range of [1, 5], write a program in python to generate Dataset \mathcal{D} .
- 2. Write a program to compute the total loss function for given dataset \mathcal{D} .
- 3. Compute gradient $\frac{\partial L_i}{\partial \theta}$ and $\frac{\partial L}{\partial \theta}$. Write a program to compute the gradient for given dataset \mathcal{D} .
- 4. Write program of gradient descent algorithm for iteration T = 10000. Plot the cost function as function of iteration.