ISLR | Chapter 7 Exercises

 $Marshall\ McQuillen$ 9/12/2018

Conceptual

1

• A. The cubic piecewise polynomial:

$$f(x) = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3 + \beta_4 (x - \xi)_+^3 \quad where \quad (x - \xi)_+^3 = \begin{cases} 0, & x \le \xi \\ (x - \xi)^3, & otherwise \end{cases}$$

...can be broken up and rewritten to be:

$$f(x) = \begin{cases} f(x)_1 = a_1 + b_1 x + c_1 x^2 + d_1 x^3, & x \le \xi \\ f(x)_2 = a_2 + b_2 x + c_2 x^2 + d_2 x^3, & otherwise \end{cases}$$

In $f(x)_1$, since $(x - \xi)_+^3 = 0$ (because $x \le \xi$), the fifth term (of f(x)) zeroes out and the coefficients can be expresses as $a_1 = \beta_0$, $b_1 = \beta_1$, $c_1 = \beta_2$ and $d_1 = \beta_3$.

• **B.** Expanding the fifth term in f(x) allows for the various powers of x to be grouped together and then recondensed. a_2 , b_2 , c_2 and d_2 are expressed in terms of the cofficients below.

$$f(x)_2 = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3 + \beta_4 (x - \xi)^3$$
 (1)

$$= \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3 + \beta_4 (x - \xi)(x - \xi)(x - \xi)$$
(2)

$$= \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3 + \beta_4 (x^2 - 2x\xi + \xi^2)(x - \xi)$$
(3)

$$= \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3 + \beta_4 (x^3 - x^2 \xi - 2x^2 \xi + 2x \xi^2 + \xi^2 x - \xi^3)$$
(4)

$$= \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3 + \beta_4 (x^3 - 3x^2 \xi + 3x \xi^2 - \xi^3)$$
 (5)

$$= \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3 + \beta_4 x^3 - \beta_4 3x^2 \xi + \beta_4 3x \xi^2 - \beta_4 \xi^3$$
 (6)

$$= (\beta_0 - \beta_4 \xi^3) + (\beta_1 x + \beta_4 3x \xi^2) + (\beta_2 x^2 - \beta_4 3x^2 \xi) + (\beta_3 x^3 + \beta_4 x^3)$$
 (7)

$$= (\beta_0 - \beta_4 \xi^3) + (\beta_1 + 3\beta_4 \xi^2)x + (\beta_2 - 3\beta_4 \xi)x^2 + (\beta_3 + \beta_4)x^3$$
(8)

$$f(x)_{2} = a_{2} + b_{2}x + c_{2}x^{2} + d_{2}x^{3} \quad where \begin{cases} a_{2} = \beta_{0} - \beta_{4}\xi^{3} \\ b_{2} = \beta_{1} + 3\beta_{4}\xi^{2} \\ c_{2} = \beta_{2} - 3\beta_{4}\xi \\ d_{2} = \beta_{3} + \beta_{4} \end{cases}$$
(9)

• C. Showing that f(x) is continuous at ξ is illustrated by showing that $f(\xi)_1 = f(\xi)_2$.

$$f(\xi)_1 = a_1 + b_1(\xi) + c_1(\xi)^2 + d_1(\xi)^3$$
(10)

$$= \beta_0 + \beta_1(\xi) + \beta_2(\xi)^2 + \beta_3(\xi)^3 \tag{11}$$

$$f(\xi)_2 = a_2 + b_2(\xi) + c_2(\xi)^2 + d_2(\xi)^3$$
(13)

$$= (\beta_0 - \beta_4 \xi^3) + (\beta_1 + 3\beta_4 \xi^2)(\xi) + (\beta_2 - 3\beta_4 \xi)(\xi)^2 + (\beta_3 + \beta_4)(\xi)^3$$
(14)

$$= (\beta_0 - \beta_4 \xi^3) + (\beta_1 \xi + 3\beta_4 \xi^3) + (\beta_2 \xi^2 - 3\beta_4 \xi^3) + (\beta_3 \xi^3 + \beta_4 \xi^3)$$
(15)

$$= \beta_0 - \beta_4 \xi^3 + \beta_1 \xi + 3\beta_4 \xi^3 + \beta_2 \xi^2 - 3\beta_4 \xi^3 + \beta_3 \xi^3 + \beta_4 \xi^3$$
(16)

$$= \beta_0 + \beta_1 \xi + \beta_2 \xi^2 + \beta_3 \xi^3 + 3\beta_4 \xi^3 - 3\beta_4 \xi^3 + \beta_4 \xi^3 - \beta_4 \xi^3$$
(17)

$$= \beta_0 + \beta_1 \xi + \beta_2 \xi^2 + \beta_3 \xi^3 + (3\beta_4 \xi^3 - 3\beta_4 \xi^3) + (\beta_4 \xi^3 - \beta_4 \xi^3)$$
(18)

$$f(\xi)_2 = \beta_0 + \beta_1 \xi + \beta_2 \xi^2 + \beta_3 \xi^3 \tag{19}$$

$$f(\xi)_2 = \beta_0 + \beta_1 \xi + \beta_2 \xi^2 + \beta_3 \xi^3 = f(\xi)_1$$