I. S. F. A. 2009-2010

Concours d'Entrée

DEUXIEME EPREUVE DE MATHEMATIQUES OPTION A

Calculatrice non autoriséee.

Durée: 4 heures

Objectif du problème et remarques préliminaires :

- On se propose ici d'examiner, sous certaines conditions, si une équation différentielle linéaire d'ordre 1 ou 2 admet une solution bornée (respectivement admettant une limite finie en +∞).

- Le but de la partie I est d'établir quelques résultats utiles dans la suite du problème.
- Les trois suivantes sont très largement indépendantes.
- L'énoncé inclut un barème indicatif par parties totalisant 100 points répartis sur 31 items.

Notations:

- Dans tout le problème, \mathbf{N} , \mathbf{R} et \mathbf{C} désignent respectivement les ensembles des nombres entiers naturels, réels et complexes. De plus, $\mathbf{K} = \mathbf{R}$ ou $\mathbf{K} = \mathbf{C}$ et $\mathbf{N}^* = \mathbf{N} \setminus \{0\}$.
- On note classiquement Re l'application « partie réelle » définie sur C.
- Si $(m,n) \in \mathbb{N}^{*2}$, alors $\mathbb{N}_m = \{k \in \mathbb{N}^*, k \le m\}$ et $M_{m,n}(\mathbb{C})$ est l'ensemble des matrices à coefficients complexes possédant exactement m lignes et n colonnes.
- Si V est un K-espace vectoriel, on désigne par L(V) le K-espace vectoriel des

endomorphismes de V, par id_V l'application identité de V. De plus, si $v \in L(V)$, on note Ker(v) le noyau de v. Enfin, si V est normé, $p \in \mathbb{N}$ et I est un intervalle de \mathbb{R} , on note $C^p(I,V)$ le \mathbb{K} -espace vectoriel des applications de I dans V de classe C^p , $A^0(I,V)$ (respectivement $B^0(I,V)$) l'ensemble constitué des éléments de $C^0(I,V)$ qui admettent une limite en $+\infty$ (respectivement qui sont bornées).

PARTIE I

(sur 20 points)

- 1/ Prouver que $B^0(\mathbf{R}^+,\mathbf{K})$ est un sous-espace vectoriel de $C^0(\mathbf{R}^+,\mathbf{K})$.
- 2/ a) Constater qu'il est légitime de considérer l'application π de $C^{\circ}(\mathbf{R}^{+},\mathbf{K})$ dans lui-même qui associe son unique primitive nulle en 0 à tout élément de $C^{\circ}(\mathbf{R}^{+},\mathbf{K})$.
 - b) Vérifier que π est un endomorphisme de $C^{\circ}(\mathbf{R}^+,\mathbf{K})$.
- 3/ Soient $f \in C^0({\bf R}^+,\!{\bf K})$ et $\ell \in {\bf K}$ tels que $\lim_{x \to +\infty} f(x) = \ell$.
 - a) Prouver que f est bornée.
 - b) Montrer que : $\lim_{x \to +\infty} \frac{[\pi(f)](x)}{x} = \ell$.

(On pourra commencer par envisager le cas où ℓ est nul puis exploiter 2/b).)

- 4/ Justifier que $A^0({\bm R}^{\scriptscriptstyle +},\!{\bm K})$ est un sous-espace vectoriel de $B^0({\bm R}^{\scriptscriptstyle +},\!{\bm K})$.
- 5/ Soient $z \in \mathbb{C}$, $P \in \mathbb{C}[X] \setminus \{0\}$ et g l'application de **R** dans **C** définie par :

$$\forall t \in \mathbf{R} \ g(t) = e^{z.t}.P(t)$$
.

- a) Démontrer que g est bornée sur \mathbf{R} si, et seulement si, $\Re e(z)=0$ et P est constant.
- b) A quelle condition, nécessaire et suffisante, g est-elle bornée sur \mathbf{R}^+ (respectivement admet-elle une limite finie en $+\infty$)?

PARTIE II

(sur 25 points)

- Dans cette partie, on considère $(a,b) \in (C^0(\mathbf{R}^+,\mathbf{R}))^2$ et l'équation différentielle (E_1) : y'=a.y+b (d'inconnue y, élément de $C^1(\mathbf{R}^+,\mathbf{R})$). Enfin, on désigne par S_1 l'ensemble des solutions (E_1) .
- 6/ a) Prouver que l'unique solution y_0 de (E_1) telle que y(0)=0 est l'élément y_0 de $C^1(\mathbf{R}^+,\mathbf{R}) \text{ défini par}: \ \forall x \in \mathbf{R}^+ \ y_0(x) = \int_0^x \left[\ b(t) \, e^{[\pi(a)](x) [\pi(a)](t)} \ \right] dt \ .$
 - b) En déduire, si $\alpha \in \mathbb{R}$, l'unique solution y_{α} de (E_1) telle que $y_{\alpha}(0) = \alpha$.
 - c) Préciser S_1 en fonction y_1 - y_0 et y_0 .
- 7/ On suppose, dans cette question, que a et b sont intégrables sur \mathbf{R}^+ .
 - a) Justifier que y_1 - y_0 et y_0 admettent des limites finies en $+\infty$.
 - b) En déduire que toutes les solutions de (E_1) appartiennent à $A^0(\mathbf{R}^+,\mathbf{R})$.
- c) Prouver que, si $\ell \in \mathbf{R}$, alors (E_1) admet une, et une seule, solution qui tend vers ℓ en $+\infty$.
- 8/ On suppose maintenant que a et b sont positives.
- a) Démontrer que, si toutes les solutions de (E₁) sont bornées, alors a et b sont intégrables.
 - b) Prouver que les assertions suivantes sont équivalentes :
 - $\text{(i) a et b sont intégrables sur } \boldsymbol{R}^+, \qquad \qquad \text{(ii) } \forall \ell \in \! \boldsymbol{R} \; \exists ! y \in \! S_1 \; \lim_{x \to +\infty} y(x) = \ell \; ,$
- $(iii) \ \forall \boldsymbol{\ell} \in \boldsymbol{R} \ \exists y \in S_1 \ \lim_{x \to +\infty} y(x) = \boldsymbol{\ell} \ , \quad (iv) \ S_1 \subset A^0(\boldsymbol{R}^+, \boldsymbol{R}) \ , \quad (v) \ S_1 \subset B^0(\boldsymbol{R}^+, \boldsymbol{R}) \ .$

•

PARTIE III

(sur 15 points)

- Dans cette partie, on considère $(p,q) \in (C^0(\mathbf{R}^+,\mathbf{R}))^2$ tel que p soit intégrable sur \mathbf{R}^+ et l'équation différentielle (E_2) : y''=p.y+q (d'inconnue y, élément de $C^2(\mathbf{R}^+,\mathbf{R})$). Enfin, on appelle (H_2) l'équation différentielle linéaire homogène associée à (E_2) .
- 9/ Montrer que, si y est une solution bornée de (H_2) , alors : $\lim_{x\to +\infty} y'(x) = 0$. (On pourra utiliser la question 3/b).)
- 10/ Soient u et v deux solutions de (H₂) et w=u.v'-u'.v .
 - a) Prouver que w est constante.
 - b) En déduire que w est nulle si u et v sont bornées.
- 11/En conclure que (H₂) admet une solution non bornée.
- 12/ (E₂) admet-elle une solution non bornée ?

PARTIE IV

(sur 40 points)

- Dans cette dernière partie, n désigne un élément de \mathbf{N}^* , E le \mathbf{C} -espace vectoriel $M_{n,1}(\mathbf{C})$ que l'on suppose muni d'une norme, et $A \in M_{n,n}(\mathbf{C})$. On considère l'équation différentielle $(L): X' = A \times X$ (d'inconnue X, élément de $C^1(\mathbf{R},E)$). On désigne par S_L l'ensemble des solutions de (L). De plus, u est l'endomorphisme de E représenté par A dans la base canonique de E, E0 le spectre de u et E1 le cardinal de E3. En outre, on suppose que E3 et que, pour tout élément E4 de E5, E6 et que, pour tout élément E7 de E8.

 m_k est l'ordre de multiplicité de λ_k en tant que valeur propre de u et que :

$$E_k = \text{Ker}(u - \lambda_k . id_E) \text{ et } F_k = \text{Ker}((u - \lambda . id_E)^{m_k}).$$

- 13/ a) Constater que : $\forall X \in E \ u(X) = A \times X$.
- b) Justifier le fait que l'application φ qui, à tout élément X de $S_L,$ associe X(0) est un isomorphisme de S_L sur E.
- 14/ On suppose ici que u est diagonalisable et que : $\forall k \in \mathbb{N}_s \Re(\lambda_k)=0$.
 - a) Si $k \in \mathbb{N}_s$ et $Y \in E_k$, prouver que : $\forall t \in \mathbb{R} \ [\phi^{-1}(Y)](t) = e^{\lambda_k \cdot t}.Y$
 - b) En déduire que $S_L \subset B^0(\mathbf{R}^+, E)$.
- 15/ Soit $k \in \mathbb{N}_s$.
- a) Constater que $F_k \neq \{0_E\}$ puis qu'il est licite de considérer l'endomorphisme v_k de F_k tel que : $\forall Y \in F_k \ v_k(Y) = u(Y) \lambda_k . Y$.
 - b) Justifier l'existence d'un élément ω_k de \boldsymbol{N}_{m_k} satisfaisant :

$$v_k^{\ \omega_k-1} \neq \ \mathbf{0}_{L(F_k)} \ \ \text{et} \quad v_k^{\ \omega_k} \, = \, \mathbf{0}_{L(F_k)} \ \ .$$

c) Vérifier que, si Y∈F_k, alors :

$$\forall t {\in} \boldsymbol{R} \ [\phi^{\text{-}1}(Y)](t) = e^{\lambda_k.t}. \sum_{p=0}^{\omega_k-1} \left\lceil \frac{t^p}{p!}.v_k^{p}(Y) \right\rceil.$$

d) En déduire que, si toutes les solutions de (L) sont bornées, alors :

$$\Re e(\lambda_k) = 0$$
 et $\omega_k = 1$.

On admet désormais que : $E = \bigoplus_{k=1}^{s} F_k$

- 16/ Déduire des questions précédentes que les assertions suivantes sont équivalentes :
- (α) A est diagonalisable et $S \subset \mathbf{R}$.i,

$$(\beta)$$
 $S_L \subset B^0(\mathbf{R}^+, E)$,

$$(\gamma) \ \forall k \in \mathbf{R}_s \ (\Re(\lambda_k)=0 \ \text{et} \ \omega_k=1).$$

17/ A quelle condition, nécessaire et suffisante, les solutions de (L) sont-elles toutes bornées sur \mathbf{R}^+ (respectivement admettent-elles toutes une limite en $+\infty$)?

Fin de l'énoncé