ATIVIDADE 3: ANÁLISE LÓGICA A PARTIR DE CASO CONCRETO

Link GitHub: https://github.com/filipetocchio/-matematica-computacional

Explicação da Lógica do Algoritmo

Parte A – Construção Manual da Tabela Verdade

Para elaborar a tabela verdade, é fundamental compreender e expressar as condições fornecidas logicamente, além de listar todas as combinações possíveis das proposições P, Q e M, e avaliar o valor de R para cada uma delas.

Definição das Proposições

- P: Ana comparece à festa.
- **Q**: Bruno comparece à festa.
- M: Bruno traz música.
- R: A festa é animada.

Condições Lógicas

• Cond. 1: Se Ana vai, Bruno também vai.

Representação: PQPQPQ

Em termos de lógica proposicional, isso indica que se P é verdadeiro (Ana vai), então Q também deve ser verdadeiro (Bruno vai). Se P for falso, o valor de Q não impacta essa condição.

• **Cond. 2**: Se pelo menos um deles vai, a festa é animada.

Representação: $(PQ) \rightarrow R(PQ) \setminus rightarrow R(PQ) \rightarrow R$

Isso implica que, se P ou Q é verdadeiro (ou ambos), então R também precisa ser verdadeiro (a festa é animada).

• Cond. 3: Se Ana não vai, a festa só será animada se Bruno trouxer música.

Representação: $P \rightarrow (M \rightarrow R)P \setminus rightarrow (M \setminus rightarrow R)P \rightarrow (M \rightarrow R)$

Isso significa que, se Ana não comparece (ou seja, P é falso), a animação da festa depende de Bruno trazer música. Assim, para que a festa seja animada (R), Bruno deve trazer música (M).

Construindo a Tabela Verdade

Para construir a tabela verdade, vou listar todas as combinações possíveis dos valores lógicos para P, Q,

Р	Q	M	$P \rightarrow Q$	$(P \lor Q) \to R$	$\neg P \rightarrow (M \rightarrow R)$	R
TRUE	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE
TRUE	TRUE	FALSE	TRUE	TRUE	TRUE	TRUE
TRUE	FALSE	TRUE	FALSE	FALSE	TRUE	FALSE
TRUE	FALSE	FALSE	FALSE	FALSE	TRUE	FALSE
FALSE	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE
FALSE	TRUE	FALSE	TRUE	TRUE	TRUE	TRUE
FALSE	FALSE	TRUE	TRUE	TRUE	TRUE	TRUE
FALSE	FALSE	FALSE	TRUE	TRUE	FALSE	FALSE

Construindo a Tabela Verdade Para construir a tabela verdade, irei listar todas as combinações possíveis dos valores lógicos para P, Q e M, e avaliar R em cada situação, de acordo com as três condições.

Explicação dos Valores de R na Tabela

- A coluna PQPQPQ reflete a Cond. 1: quando Ana participa, Bruno também deve estar presente.
- A coluna (PQ)R(PQ)R(PQ)R representa a Cond. 2: se qualquer um dos dois vai, a festa precisa ser animada.
- A coluna ¬P(MR)¬P(MR)¬P(MR) ilustra a Cond. 3: se Ana não vai, a festa só será animada se Bruno trouxer música.

O valor final de R em cada linha é determinado levando em conta todas as três condições.

Parte B - Implementação em Python

O código, além de estar aqui no docs, ele também se encontra no GitHub, fornecido neste mesmo arquivo e também fornecido do arquivo enviado da atividade.

Parte C – Explicação da Lógica do Algoritmo

Passo 1: Gere todas as combinações possíveis de valores para P, Q e M A função tabela_verdade utiliza três loops aninhados para criar todas as combinações possíveis de valores para as proposições P, Q e M (True e False). Dessa forma, o código abrange todas as combinações, permitindo a avaliação da expressão completa em cada cenário.

Passo 2: Avalie cada proposição lógica usando operadores do Python A função avalia condições implementa cada condição lógica utilizando operadores do Python:

- cond1 verifica a condição P→QP \rightarrow QP→Q, ou seja, se Ana participa, Bruno também deve comparecer.
- cond2 avalia a condição (PQ)→R(PQ) \rightarrow R(PQ)→R, indicando que se pelo menos um deles vai, a festa deve ser animada.
- cond3 analisa a condição P→(M→R)P \rightarrow (M \rightarrow R)P→(M→R), que estabelece que se Ana não vai, a festa só será animada se Bruno trouxer música.

Essas condições são avaliadas utilizando operadores lógicos como or e not, e o valor final de R é True apenas se todas as condições forem atendidas.

Passo 3: Apresenta a tabela verdade formatada com os resultados para cada combinação A função tabela_verdade imprime uma tabela contendo as colunas P, Q, M e R para cada combinação de valores. Cada linha da tabela exibe o resultado de R para uma combinação específica de P, Q e M, facilitando a visualização de como as condições influenciam o resultado em cada caso.

Parte D – Construção Visual com GeoGebra

Interpretação das Cores no Diagrama

Baseando-se nas condições necessárias para que a festa seja animada (R), a seguir está a classificação de cada área colorida, de acordo com a estrutura das proposições:

1. Vermelho (Apenas P):

Indica o cenário em que apenas Ana comparece à festa.

Condição: A festa não será animada, pois não há elementos suficientes para garantir RRR somente com PPP.

2. Verde (Apenas Q):

Representa o caso em que apenas Bruno participa da festa.

Condição: A festa será animada, pois a presença de Bruno (QQQ) atende à condição (P ∨ Q)→R.

3. Amarelo (Apenas M):

Simboliza o caso em que Bruno traz música, mas nenhum dos dois comparece à festa.

Condição: Isso não é suficiente para animar a festa, pois Ana e Bruno não estão presentes.

4. Azul (P ∩ M):

Refere-se ao cenário em que Ana vai à festa e Bruno traz música.

Condição: A festa será animada, já que a presença de Ana é suficiente para satisfazer $(PVQ) \rightarrow R$.

5. **Laranja (Q ∩ M):**

Denota o caso em que Bruno comparece e traz música.

Condição: A festa será animada, pois Bruno está presente.

6. **Roxo (P ∩ Q):**

Representa o caso em que Ana e Bruno vão juntos à festa.

Condição: A festa será animada porque ambos estão presentes.

7. Preto (P \cap Q \cap M):

Indica o cenário em que Ana e Bruno vão à festa e Bruno traz música.

Condição: A festa será animada, pois ambos estão presentes e há música.