

Building Automatic Metrics to Simulate Fine-grained Human Feedback for Video Generation

1,2,† Xuan He*, 1,† Dongfu Jiang*, 1,3 Ge Zhang, 1 Max Ku,

¹Achint Soni, ¹Sherman Siu, ¹Haonan Chen, ¹Abhranil Chandra, ¹Ziyan Jiang, ¹Aaran Arulraj, ⁴Kai Wang, ¹Quy Duc Do, ¹Yuansheng Ni, ²Bohan Lyu, ¹Yaswanth Narsupalli, ¹Rongqi Fan, ¹Zhiheng Lyu, ⁵Bill Yuchen Lin, ^{1,†} Wenhu Chen

¹University of Waterloo, ²Tsinghua University, ³StarDust.AI, ⁴University of Toronto, ⁵AI2

*Equal Contribution

†Corresponding to: hexuan21@mails.tsinghua.edu.cn, dongfu.jiang@uwaterloo.ca, wenhuchen@uwaterloo.ca

Prompt: rain on a field of roses

Prompt: However, what truly set Ezra apart was not his gardening skills but his wisdom and the valuable life lessons he shared with anyone who cared listen

ModelScope

Prompt: Design a motorcycle drive on the road, with a in the front and one we back

morph

Prompt: One sunny day, as Dorothy cute little girl with long hairs was playing in the fields with Toto, her dog

LVDM

Prompt: A canary bird flucking in cage, pointillism style painting

AnimateDiff

Prompt: Jesus Christ e an avocado while h

Í 30 503£ C3("≥Ď73 How can we comprehensively evaluate these videos?

provide (1,2,3,4) discrete quality scores for many videos.

finetune Visual LLMs on this large-scale humanannotated data with visual QA format.

Human feedback dataset for AI-generated videos required! Then we can train our evaluators!

Dataset: VideoFeedback

First large-scale dataset of fine-grained humanfeedback dataset for text-tovideo (T2V) generations

Models: □ VideoScore

Evaluator model or Reward model for T2V generations

"An astronaut is riding a horse in the space"

VideoScore

Visual Quality: 2.78

Temporal Consistency:

Dynamic Degree: 3

Text-to-Video Alignm

Factual Consistence

Evaluation Dimension:

VQ: Visual Quality

TC: Temporal Consistency

DD: Dynamic Degree

TVA: Text-to-Video Alignment

FC: Factual Consistency

Score Scale

4-Real/Perfect

3-Good

2-Avg

1-Bad

Visual Quality (VQ) the quality of the video in terms of clearness, resolution, brightness, and Temporal Consistency (TC) the consistency of objects or humans in video the degree of dynamic changes Text-to-Video Alignment (TVA) the alignment between the text prompt and the video content the consistency of the video content with common-sense and factua	Aspect	Definition
	Temporal Consistency (TC) Dynamic Degree (DD) Text-to-Video Alignment (TVA)	the consistency of objects or humans in video the degree of dynamic changes the alignment between the text prompt and the video content

Table 2: The five evaluation aspects of VIDEOFEEDBACK and their definitions.

Prompts: VidProM (Wang et al, 2024)

Videos: 37.6K videos from 11 T2V models

with various resolution and real videos as augmentation

Base Model or Video Type	Video Source	Total Size	Resolution	Duration	FPS	Score
	Human Annotate	ed Videos				
Pika	VidProM	4.6k	(768, 480)	3.0s	8	[1-4]
Text2Video-Zero (Khachatryan et al., 2023)	VidProM	4.6k	(512,512)	2.0s	8	[1-4]
VideoCrafter2 (Chen et al., 2024a)	VidProM	4.9k	(512, 320)	2.0s	8	[1-4]
ModelScope (Wang et al., 2023a)	VidProM	4.5k	(256, 256)	2.0s	8	[1-4]
LaVie-base (Wang et al., 2023c)	Generated	3.2k	(512, 320)	2.0s	8	[1-4]
AnimateDiff (Guo et al., 2023)	Generated	1.4k	(512, 512)	2.0s	8	[1-4]
LVDM (He et al., 2022)	Generated	3.1k	(256, 256)	2.0s	8	[1-4]
Hotshot-XL (Mullan et al., 2023)	Generated	3.2k	(512, 512)	1.0s	8	[1-4]
ZeroScope-576w (Sterling, 2024)	Generated	2.2k	(256, 256)	2.0s	8	F*
Fast-SVD (Blattmann et al., 2023a)	Generated	1.0k	(1024, 576)	3.0s	8	
SoRA-Clip (OpenAI, 2024b)	Collected	0.9k	various	2.0/3.0s	8	
	Augmented V	Videos				4
DiDeMo (Hendricks et al., 2017)	Real	2.0k	various	2.0/3.0s	8	
Panda70M (Chen et al., 2024b)	Real	2.0k	various	2.0/3.0s	8	45

Ά(ī №57ī É / 5£ 5££3 Ž503 £

5££3 ž5ž3 ù īī; ů

Ľ 57'×ī Ĭ ÊAA "£ĭ "≥5žī ů ž' ī ŭ 7'5> "7'ž 3 ◊ 5££3 ž5°3 £

Ê£ůžù ≥03£ Ãī/3£ůžù503£

Ĺŭ 5££3 ž5ž žử57

Ďī žĒŽi ù A££3Ž5Ž3ù A(ŭī/ī£ž ĒAA Łī 'ī 5£ĭ A (/ī£ž503£

Ā"ī≥ &àùü 57°ž 5£ĭ ×zāù£(

> ŒÛ(Ī №57Ī A££3 Ž503£

IAA of Pre-annotation Trial

IAA metric	VQ	TC	DD	TVA	FC		
Trial 1 (#=30)							
Match Ratio Kappa Alpha	0.733 0.369 0.481	0.706 0.414 0.453	0.722 0.413 0.498	0.678 0.490 0.540	0.633 0.265 0.365		

Trial 2 (#=100)

Match Ratio | 0.787 | 0.699 | 0.91

Kappa | 0.088 | 0.562 | 0

Alpha | 0.078 | 0.579

Table 3: Inter-Annotator Agree sults considering Matching Rapendorff's α on the two trial ann

Examples

Base Model: Mantis (Main) (Jiang et al,2024) Ablation model: Idefics2-8B, VideoLLaVA-7B

Finetune Data Format: Visual Question Answering

We sample some frames of video, then input them and the text-prompt

Suppose you are an expert in judging and evaluating the quality of AI-generated videos, please watch the following frames of a given video and see the text prompt for generating the video, then give scores from 5 different dimensions:

- (1) visual quality: the quality of the video in terms of clearness, resolution, brightness, and color
- (2) temporal consistency, the consistency of objects or humans in video
- (3) dynamic degree, the degree of dynamic changes
- (4) text-to-video alignment, the alignment between the text prompt and the video content
- (5) factual consistency, the consistency of the video content with the common-sense and factual knowledge

For each dimension, output a number from [1,2,3,4], in which '1' means 'Bad', '2' means 'Average', '3' means 'Good',

'4' means 'Real' or 'Perfect' (the video is like a real video)

Here is an output example:

visual quality: 4

temporal consistency: 4

dynamic degree: 3

text-to-video alignment: 1

factual consistency: 2

For this video, the text prompt is "{text_prompt}", all the frames of video are as follows:

VideoScore series MLLM Prompting Method Feature-Based Metric

VBench

73.0

58.7

52.9

52.3

51.7

47.4

43.3

Compare with two kinds of baselines on correlation with human-annotated ground truth:

- (1) **MLLM Prompting Method**: query MLLMs with the same template and the same sampled frames.
- (2) Feature-based Metric: e.g. CLIP-sim: average cosine similarity between the CLIP features of adjacent frames.

(See more details in our paper)

Metric	Final Avg Score ↓	VideoFeedback-test	EvalCrafter	GenAI-Bench
VideoScore (reg)	69.6	75.7	51.1	78.5
VideoScore-(gen)	55.6	77.1	27.6	59.0
Gemini-1.5-Pro	39.7	22.1	22.9	60.9
Gemini-1.5-Flash	39.4	20.8	17.3	<u>67.1</u>
GPT-4o	38.9	23.1	28.7	52.0
CLIP-sim	31.7	8.9	36.2	34.2
DINO-sim	30.3	7.5	32.1	38.5
SSIM-sim	29.5	13.4	26.9	34.1
CLIP-Score	28.6	-7.2	21.7	45.0
LLaVA-1.5-7B	27.1	8.5	10.5	49.9
LLaVA-1.6-7B	23.3	-3.1	13.2	44.5

"A robot that throws a stack of paper from a desk"

VideoScore Inference Visual Quality:

2.67

Temporal Consistency:

0.81

Dynamic Degree:

3.09

Text-to-Video Alignment:

2.50

Factual Consister

"Illustrate a bustling market scene, with fresh produce displayed on stalls, attracting villagers eager to purchase, cartoon style" VideoScore Inference Visual Quality:

1.91

Temporal Consistency:

1.86

Dynamic Degree:

2.84

Text-to-Video Alignment:

2.44

Factual Consister

"An astronaut flying in space, oil painting"

VideoScore Inference Visual Quality:

2.01

Temporal Consistency:

2.63

Dynamic Degree:

2.98

Text-to-Video Alignment:

2.91

Factual Consister

"Every day must be Sunday Amusement park inside the school" VideoScore Inference Visual Quality:

1.04

Temporal Consistency:

1.42

Dynamic Degree:

2.95

Text-to-Video Alignment:

1.97

Factual Consister

Thanks For Watching

