

reacting the reaction product with $R^1OC_6H_4CH_3$ where R^1 is selected from the group consisting of Na, K, H and Li to produce an alkali phenoxy sulfonimide functionalized polyphosphazene of the formula $[NP(OC_6H_4SO_2NR^1SO_2R_f)_x(OC_6H_4CH_3)_{2-x}]_n$.

38(new). The method of claim 37 wherein R^1 is Na.

39(new). A sulfonimide functionalized polyphosphazene homopolymer of the formula $[NP(OC_6H_4SO_2NR^2SO_2R_f)_2]_n$ where R^1 is selected from the group consisting of Li, Na, H and K.

40(new). The homopolymer of claim 39 wherein R^1 is Na.

41(new). A method of manufacture of a sulfonimide functionalized polyphosphazene homopolymer of the formula $[NP(OC_6H_4SO_2NR^1SO_2R_f)_2]_n$ where R^1 is selected from the group consisting of Li, Na, H, and K and, R_f is a C_1-C_8 perfluoroalkyl, comprising,

reacting $(NPCl_2)_n$, where $n \geq 3$ with $R^1OC_6H_4NR^1SO_2R_f$ where R^1 is selected from the group consisting of Li, K and Na and, R_f is a C_1-C_8 perfluoroalkyl, at a temperature of about 60 °C to about 200 °C at a pressure of about ambient to about 12 bar for about 12 hours to about 40 hours.

42. (new) hc method of claim 41 wherein R^1 is Na.

43(new). A phenoxy sulfonimide functionalized polyphosphazene copolymer of the formula $[NP(ZR^2)_x(ZC_6H_4SO_2NR^1SO_2R_f)_{2-x}]_n$, where, R_f is a C_1-C_8 perfluoroalkyl, where R^2 is selected from the group consisting of - CH_2CH_3 , - $C_6H_4CH_3$, - $CH_2CH_2OCH_2CH_2OCH_3$, - CH_2CH_2OTHP , - C_6H_4COOPr , - CH_2CF_3 , - $CH_2CF_2OCF_2CF_2OCF_3$, - $C_6H_4CF_3$, - C_6F_5 , and mixtures thereof, Z is O or NH, and R^1 is selected from the group consisting of Na, Li, H, and K.

44(new). The copolymer of claim 43 wherein R² is -C₆H₄CH₃, and Z is -O-.

45(new). The copolymer of claim 43 wherein R¹ is Na.

46(new). A method of making a phenoxy sulfonimide functionalized polyphosphazene copolymer of the formula [NP(ZR²)_x(ZC₆H₄SO₂NR¹SO₂R_f)_{2-x}]_n where, R_f is a C₁-C₈ perfluoroalkyl, where R² is selected from the group consisting of -CH₂CH₃, -C₆H₄CH₃, -CH₂CH₂OCH₂CH₂OCH₃, -CH₂CH₂OTHP where THP is tetrahydropyran, -C₆H₄COOPr, -CH₂CF₃, -CH₂CF₂OCF₂CF₂OCF₃, -C₆H₄CF₃, -C₆F₅, Z is O or NH, and R¹ is selected from the group consisting of Na, Li and K, comprising,

reacting (PNCl₂)_n where n≥3 with a first amount of compound of the formula R³R² where R³ is selected from the group consisting of -NaO, -LiO, -KO, NH₂ or mixtures thereof, R² is selected from the group consisting of -CH₂CH₃, -C₆H₄CH₃, -CH₂CH₂OCH₂CH₂OCH₃, -CH₂Cl I₂OTHP where THP is tetrahydropyran, -C₆H₄COOPr, -CH₂CF₃, -CH₂CF₂OCF₂CF₂OCF₃, -C₆H₄CF₃, -C₆F₅, or mixtures thereof, with a second amount of a compound of the formula R²C₆H₄SO₂NHSO₂R_f where R_f is a C₁-C₈ perfluoroalkyl, where R² is selected from the group consisting of -NaO, -LiO, -KO, NH or mixtures thereof, at a first temperature of about 60 °C to about 200 °C to produce a reaction product,

reacting the reaction product with R³R² at a second temperature of 60 °C to about 200 °C at a pressure of about 3.5-4 bar.

47(new). A haloalkoxy sulfonimide functionalized polyphosphazene of the formula (NP(OCH₂(CF₂)₄H)₂)_x(NP(OCH₂(CF₂)₄H))OC₆H₄SO₂NR¹SO₂R_f)_(1-x) where R¹ is selected from the group consisting of Na, Li, H, and K, and where R_f is a C₁-C₈ perfluoroalkyl.

48(new). The haloalkoxy sulfonimide functionalized polyphosphazene of claim 47