sentiment-analysis-distilbert

November 28, 2024

1 Sentiment Analysis Using DistilBERT

1.1 Project Details

- Name: Shrinidhi Krpete Thimmegowda
- Email: krpetesh@msu.edu
- Dataset:
 - **Source**: Amazon Product Reviews
 - Size: 1000 reviews
 - Class Distribution:
 - * 500 Positive (Label: 1)
 - * 500 Negative (Label: 0)

```
import numpy as np
import pandas as pd
from transformers import DistilBertTokenizer, DistilBertModel, AdamW, u
get_scheduler
from torch.utils.data import DataLoader, TensorDataset, random_split
import torch
from tqdm import tqdm
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, classification_report
```

c:\Users\Admin\AppData\Local\Programs\Python\Python312\Lib\sitepackages\tqdm\auto.py:21: TqdmWarning: IProgress not found. Please update
jupyter and ipywidgets. See
https://ipywidgets.readthedocs.io/en/stable/user_install.html
from .autonotebook import tqdm as notebook_tqdm

Step 2: Load data Analize

```
[3]: # Split the data into lines
lines = data.strip().split("\n")
```

```
# Split each line into two parts: review and sentiment
    rows = [line.rsplit("\t", 1) for line in lines]
    # Create a DataFrame
    df = pd.DataFrame(rows, columns=["Review", "Sentiment"])
    # Convert the 'Sentiment' column to integers
    df["Sentiment"] = df["Sentiment"].astype(int)
    # Display the DataFrame
    print(df)
                                                   Review Sentiment
    0
         So there is no way for me to plug it in here i...
                                                                 0
    1
                              Good case, Excellent value.
                                                                   1
    2
                                   Great for the jawbone.
                                                                   1
    3
         Tied to charger for conversations lasting more...
    4
                                        The mic is great.
                                                                   1
    995
        The screen does get smudged easily because it ...
                                                                 0
         997
                             Item Does Not Match Picture.
    998
         The only thing that disappoint me is the infra...
    999 You can not answer calls with the unit, never ...
                                                                 0
    [1000 rows x 2 columns]
[4]: df.dtypes
[4]: Review
                 object
    Sentiment
                  int32
    dtype: object
[5]: df['Sentiment'].unique()
[5]: array([0, 1])
[6]: texts = list(df["Review"]) # Reviews
    labels = list(df["Sentiment"]) # Sentiments (0 or 1)
    Step 2: Tokenize Data
[7]: tokenizer = DistilBertTokenizer.from_pretrained("distilbert-base-uncased")
    inputs = tokenizer(
        texts,
        padding=True,
```

```
truncation=True,
  max_length=128,
  return_tensors="pt"
)
labels = torch.tensor(labels)
```

Step 3: Create Dataset and DataLoader

```
[8]: dataset = TensorDataset(inputs["input_ids"], inputs["attention_mask"], labels)
    train_size = int(0.8 * len(dataset))
    val_size = len(dataset) - train_size
    train_dataset, val_dataset = random_split(dataset, [train_size, val_size])

train_loader = DataLoader(train_dataset, batch_size=16, shuffle=True)
    val_loader = DataLoader(val_dataset, batch_size=16)
```

Step 4: Initialize DistilBERT

```
[9]: distilbert_model = DistilBertModel.from_pretrained("distilbert-base-uncased")
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
  distilbert_model.to(device)
```

```
[9]: DistilBertModel(
       (embeddings): Embeddings(
         (word embeddings): Embedding(30522, 768, padding idx=0)
         (position_embeddings): Embedding(512, 768)
         (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise affine=True)
         (dropout): Dropout(p=0.1, inplace=False)
       (transformer): Transformer(
         (layer): ModuleList(
           (0-5): 6 x TransformerBlock(
             (attention): DistilBertSdpaAttention(
               (dropout): Dropout(p=0.1, inplace=False)
               (q_lin): Linear(in_features=768, out_features=768, bias=True)
               (k_lin): Linear(in_features=768, out_features=768, bias=True)
               (v_lin): Linear(in_features=768, out_features=768, bias=True)
               (out lin): Linear(in features=768, out features=768, bias=True)
             (sa layer norm): LayerNorm((768,), eps=1e-12, elementwise affine=True)
             (ffn): FFN(
               (dropout): Dropout(p=0.1, inplace=False)
               (lin1): Linear(in features=768, out features=3072, bias=True)
               (lin2): Linear(in_features=3072, out_features=768, bias=True)
               (activation): GELUActivation()
             (output_layer_norm): LayerNorm((768,), eps=1e-12,
     elementwise_affine=True)
```

```
)
```

Step 5: Fine-Tune DistilBERT

```
[10]: optimizer = AdamW(distilbert_model.parameters(), lr=2e-5)
      num_training_steps = len(train_loader) * 3 # 3 epochs
      scheduler = get_scheduler("linear", optimizer=optimizer, num_warmup_steps=0,__
       →num_training_steps=num_training_steps)
      distilbert model.train()
      for epoch in range(3): # Adjust number of epochs as needed
          progress_bar = tqdm(train_loader, desc=f"Epoch {epoch+1}")
          for batch in progress_bar:
              input_ids, attention_mask, _ = [b.to(device) for b in batch]
              # Forward pass
              outputs = distilbert_model(input_ids, attention_mask=attention_mask)
              embeddings = outputs.last_hidden_state[:, 0, :] # First token_
       \hookrightarrow ([CLS]-like embedding)
              # Compute dummy loss (optional for fine-tuning purposes)
              loss = embeddings.norm(2) # Example dummy loss
              optimizer.zero grad()
              loss.backward()
              optimizer.step()
              scheduler.step()
      distilbert_model.eval()
```

```
c:\Users\Admin\AppData\Local\Programs\Python\Python312\Lib\site-
     packages\transformers\optimization.py:591: FutureWarning: This implementation of
     AdamW is deprecated and will be removed in a future version. Use the PyTorch
     implementation torch.optim.AdamW instead, or set `no_deprecation_warning=True`
     to disable this warning
       warnings.warn(
     Epoch 1: 100%|
                     | 50/50 [02:26<00:00, 2.93s/it]
     Epoch 2: 100%|
                     | 50/50 [02:09<00:00, 2.60s/it]
                       | 50/50 [02:04<00:00, 2.49s/it]
     Epoch 3: 100%|
[10]: DistilBertModel(
        (embeddings): Embeddings(
         (word_embeddings): Embedding(30522, 768, padding_idx=0)
         (position_embeddings): Embedding(512, 768)
```

(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)

```
(dropout): Dropout(p=0.1, inplace=False)
        )
        (transformer): Transformer(
          (layer): ModuleList(
            (0-5): 6 x TransformerBlock(
              (attention): DistilBertSdpaAttention(
                (dropout): Dropout(p=0.1, inplace=False)
                (q_lin): Linear(in_features=768, out_features=768, bias=True)
                (k lin): Linear(in features=768, out features=768, bias=True)
                (v_lin): Linear(in_features=768, out_features=768, bias=True)
                (out lin): Linear(in features=768, out features=768, bias=True)
              (sa layer norm): LayerNorm((768,), eps=1e-12, elementwise affine=True)
              (ffn): FFN(
                (dropout): Dropout(p=0.1, inplace=False)
                (lin1): Linear(in_features=768, out_features=3072, bias=True)
                (lin2): Linear(in_features=3072, out_features=768, bias=True)
                (activation): GELUActivation()
              )
              (output_layer_norm): LayerNorm((768,), eps=1e-12,
      elementwise_affine=True)
            )
          )
        )
      )
     Step 6: Extract Fine-Tuned Embeddings
[11]: with torch.no_grad():
          outputs = distilbert model(**inputs)
          embeddings = outputs.last_hidden_state[:, 0, :].cpu().numpy() # Extract_
       \hookrightarrow [CLS]-like embeddings
     Step 7: Train Logistic Regression
[12]: # Split data into train and validation sets
      X_train, X_val, y_train, y_val = train_test_split(embeddings, labels.numpy(),__

state=42)

state=42)

      # Train logistic regression
      logistic_model = LogisticRegression(max_iter=1000)
      logistic_model.fit(X_train, y_train)
```

Step 8: Evaluate Logistic Regression

[12]: LogisticRegression(max_iter=1000)

Validation Accuracy: 0.8900 Classification Report:

	precision	recall	f1-score	support
Negative	0.87	0.90	0.88	93
Positive	0.91	0.88	0.90	107
accuracy			0.89	200
macro avg	0.89	0.89	0.89	200
weighted avg	0.89	0.89	0.89	200

1.2 Results Summary

1.2.1 Validation Metrics

- Validation Accuracy: 89.0%
 - The model correctly classified 89% of the validation dataset.

1.2.2 Class-Specific Metrics

- Negative Class (Label: 0):
 - **Precision**: 87% Out of all reviews predicted as Negative, 87% were actually Negative.
 - Recall: 90% Out of all actual Negative reviews, 90% were correctly identified.
 - F1-Score: 88% A balanced performance metric combining precision and recall.
- Positive Class (Label: 1):
 - **Precision**: 91% Out of all reviews predicted as Positive, 91% were actually Positive.
 - Recall: 88% Out of all actual Positive reviews, 88% were correctly identified.
 - F1-Score: 90% Strong overall performance in identifying Positive reviews.

1.2.3 Overall Metrics

• Macro Average:

– Precision: 89%– Recall: 89%

- F1-Score: 89%

• Weighted Average:

- Precision: 89%

Recall: 89%F1-Score: 89%

1.3 Key Takeaways

- The model achieves a strong balance between precision, recall, and F1-score across both classes
- Positive reviews are identified with slightly higher precision (91%), reducing false positives.
- Negative reviews achieve slightly higher recall (90%), reducing false negatives.
- The balanced metrics indicate the model effectively handles both classes with consistent performance.