Grafika Komputerowa

Oświetlenie – sprawozdanie

Obsługa

- Q, A = translacja x
- W, S = translacja y
- E, D = translacja z

Technologie

- Python
- PyGame pętla zdarzeń, obsługa przycisków i rysowanie wielokątów
- Trimesh generacja mesh'ów sfery, wyznaczanie przecięć promieni śledzących

Struktury danych

Sfera jest proceduralnie generowana na początku działania programu. Parametry sfery, źródła światła oraz rzutni zdefiniowane są w pliku config.json.

Działanie programu

- 1. Wyznacz macierz kierunków promieni śledzących.
- Znajdź meshe sfery, które zostają jako pierwsze przecięte przez promień śledzący.
- 3. Dla każdego przeciętego mesha wyznacz natężenie światła wzorem:

$$I_p = I_L \left(k_d (\hat{L} \cdot \hat{N}) + k_s (\hat{R} \cdot \hat{V})^n \right)$$

- , gdzie I_p to natężenie światła w punkcie, I_L to natężenie źródła światła, k_d to współczynnik rozproszenia, \hat{L} to wektor promienia światła, \hat{N} to wektor normalny mesha, k_s to współczynnik odbicia kierunkowego, \hat{R} to wektor idealnie odbitego światła od mesha, \hat{V} to promień śledzący i n to dowolna potęga.
- 4. Przemnóż jasność przez albedo by uzyskać wektor RGB.
- 5. Narysuj mesh kolorując go uzyskanym wektorem RGB.

Przykłady działania

I_L	albedo	k_s	n	k_d
500	[0.2, 0.9, 1]	0.8	100	0.3

