Lösungen und zusätzliche Bemerkungen

zu Übungsblatt 1

Jendrik Stelzner

7. Mai 2017

Aufgabe 3

(a)

Da I eine Untergruppe der additiven Gruppe von R ist, ist aus der Linearen Algebra I ist bekannt, dass

- \sim eine Äquivalenz relation auf R definiert,
- durch $\overline{x} + \overline{y} \coloneqq \overline{x+y}$ eine wohldefiniert binäre Verknüpfung von R/I definiert wird,
- R/I durch + zu einer abelschen Gruppe wird.

Es bleibt zu zeigen, dass

- durch $\overline{x} \cdot \overline{y} = \overline{xy}$ eine wohldefiniert binäre Verknüpfüng auf R/I definiert wird,
- diese Multiplikation \cdot auf R/I assoziativ ist,
- diese Multiplikation \cdot auf R/I kommutativ ist,
- es für diese Multiplikation \cdot auf R/I ein Einselement gibt,
- die Distributivgesetze für die Addition + und Multiplikation \cdot auf R/I gelten.

Für die Wohldefiniertheit der Multiplikation seien $x,x,y,y'\in R$ with $\overline{x}=\overline{x'}$ und $\overline{y}=\overline{y'}$. Dann gilt $x-x',y-y'\in I$ und somit auch

$$xy - x'y' = xy - xy' + xy' - x'y' = x\underbrace{(y - y')}_{\in I} + \underbrace{(x - x')}_{\in I}y' \in I,$$

also $\overline{xy}=\overline{x'y'}$. Das zeigt die Wohldefiniertheit der Multiplikation. Für alle $\overline{x},\overline{y},\overline{z}\in R/I$ gilt

$$\overline{x} \cdot (\overline{y} \cdot \overline{z}) = \overline{x} \cdot \overline{yz} = \overline{xyz} = \overline{xy} \cdot \overline{z} = (\overline{x} \cdot \overline{y}) \cdot \overline{z},$$

was die Assoziativität der Multiplikation zeigt. Für alle $\overline{x}, \overline{y} \in R/I$ gilt

$$\overline{x} \cdot \overline{y} = \overline{xy} = \overline{yx} = \overline{y} \cdot \overline{x},$$

was die Kommutativität der Multiplikation zeigt. Das Element $\overline{1} \in R/I$ ist ein Einselement für die Multiplikation, denn für alle $\overline{x} \in R/I$ gilt

$$\overline{1} \cdot \overline{x} = \overline{1 \cdot x} = \overline{x}.$$

Die Distributivität der Multiplikation im ersten Argument ergibt sich darus, dass für alle $\overline{x}, \overline{y}, \overline{z} \in R/I$ die Gleichheit

$$(\overline{x} + \overline{y}) \cdot \overline{z} = \overline{x + y} \cdot \overline{z} = \overline{(x + y)z} = \overline{xz + yz} = \overline{xz} + \overline{yz} = \overline{x} \cdot \overline{z} + \overline{y} \cdot \overline{z}$$

gilt. Da die Multiplikation auf R/I kommutativ ist, ergibt sich hieraus auch die Distributivität im zweiten Argument.

Ingesamt zeig dies, dass R/I mit der gegeben Addition und Multiplikation ein kommutativer Ring ist.

(b)

Als Ringhomomorphismus ist φ insbesondere ein Gruppenhomomorphismus zwischen den unterliegenden additiven Gruppen von R und S; deshalb gilt

$$\varphi(0) = 0$$

und somit $0 \in \ker \varphi$, und für jedes $x \in \ker \varphi$ gilt

$$\varphi(-x) = -\varphi(x) = -0 = 0$$

und somit auch $-x \in \ker \varphi$. Für alle $x, y \in \ker \varphi$ gilt außerdem

$$\varphi(x+y) = \varphi(x) + \varphi(y) = 0 + 0 = 0,$$

und somit auch $x+y\in\ker\varphi$. Das zeigt, dass $\ker\varphi$ eine Untergruppe der additiven Gruppe von R ist. Für alle $r\in R$ und $x\in\ker\varphi$ gilt

$$\varphi(rx) = \varphi(r)\varphi(x) = \varphi(r) \cdot 0 = 0,$$

und somit auch $rx \in \ker \varphi$. Somit ist $\ker \varphi$ bereits ein Ideal in R.

(c)

Wir betrachten den kommutativen Ring R/I und die Abbildung $\pi\colon R\to R/I, x\mapsto \overline{x}$. Dies ist ein Ringhomomorphismus, denn für alle $x,y\in R$ gilt

$$\pi(x+y) = \overline{x+y} = \overline{x} + \overline{y} = \pi(x) + \pi(y)$$

sowie

$$\pi(x \cdot y) = \overline{x \cdot y} = \overline{x} \cdot \overline{y} = \pi(x) \cdot \pi(y)$$

sowie $\pi(1)=\overline{1}=1_{R/I}.$ Für den Ringhomomorphismus π gilt

$$\ker \pi = \{ x \in R \mid \pi(x) = 0 \} = \{ x \in R \mid \overline{x} = 0 \}$$
$$= \{ x \in R \mid x \sim 0 \} = \{ x \in R \mid x \in I \} = I,$$

was die gegebene Behauptung zeigt.

Bemerkung 1. Die Konstruktion des Quotientenringes R/I funktioniert auch für einen nicht-kommutativen Ring, sofern man fordert, dass I ein beidseitiges Ideal ist, d.h. dass $rx, xr \in I$ für alle $x \in I$ und $r \in R$ gilt. Analog zu den letzten beiden Aufgabenteilen ergibt sich dann, dass $I \subseteq R$ genau dann beidseitiges Ideal ist, wenn es einen Ring S und einen Ringhomomorphismus $\varphi \colon R \to S$ mit ker $\varphi = I$ gibt.

Bemerkung 2. Im Falle $R=\mathbb{Z}$ und $I=(n)=n\mathbb{Z}=\{an\mid a\in\mathbb{Z}\}$ ist die Konstruktion von $R/I=\mathbb{Z}/n\mathbb{Z}$ bereits aus Lineare Algebra I bekannt.

Aufgabe 4

(a)

Die Kommutativität des Diagrams

$$R \xrightarrow{\varphi} S$$

$$\downarrow^{\pi} \nearrow_{\overline{\varphi}}$$

$$R/I$$

ist äquivalent dazu, dass $\overline{\varphi}(\overline{x}) = \varphi(x)$ für alle $x \in R/I$. Dies zeigt die Eindeutigkeit von $\overline{\varphi}$. Zum Beweis der Existenz gilt es zu zeigen, dass durch

$$\overline{\varphi} \colon R/I \to S, \quad \overline{x} \mapsto \varphi(x)$$

ein wohldefinierter Ringhomomorphismus gegeben ist:

Für $x,y\in R$ mit $\overline{x}=\overline{y}$ gilt $x-y\in \ker \varphi$ und somit $0=\varphi(x-y)=\varphi(x)-\varphi(y)$, also $\varphi(x)=\varphi(y)$. Dies zeigt die Wohldefiniertheit von $\overline{\varphi}$. Dass $\overline{\varphi}$ ein Ringhomomorphismus ist, ergibt sich durch direktes Nachrechnen, denn für alle $\overline{x},\overline{y}\in R/I$ gilt

$$\overline{\varphi}(\overline{x} + \overline{y}) = \overline{\varphi}(\overline{x + y}) = \varphi(x + y) = \varphi(x) + \varphi(y) = \overline{\varphi}(\overline{x}) + \overline{\varphi}(\overline{y}).$$

und

$$\overline{\varphi}(\overline{x} \cdot \overline{y}) = \overline{\varphi}(\overline{x} \cdot \overline{y}) = \varphi(x \cdot y) = \varphi(x) \cdot \varphi(y) = \overline{\varphi}(\overline{x}) \cdot \overline{\varphi}(\overline{y}),$$

und es gilt $\overline{\varphi}(1_{R/I}) = \overline{\varphi}(\overline{1_R}) = \varphi(1_R) = 1_S$.

(b)

Es gilt

$$\operatorname{im} \overline{\varphi} = \{ \overline{\varphi}(\overline{x}) \mid \overline{x} \in R/I \} = \{ \varphi(x) \mid x \in R \} = \operatorname{im} \varphi,$$

also ist $\overline{\varphi}$ genau dann surjektiv, wenn φ surjektiv ist. Außerdem gilt

$$\begin{split} \ker \overline{\varphi} &= \{ \overline{x} \in R/I \mid \overline{\varphi}(\overline{x}) = 0 \} = \{ \overline{x} \in R/I \mid \varphi(x) = 0 \} \\ &= \{ \overline{x} \in R/I \mid x \in \ker \varphi \} = \{ \overline{x} \mid x \in \ker \varphi \} = \{ x + I \mid x \in \ker \varphi \} = (\ker \varphi)/I. \end{split}$$

Deshalb gilt

$$\overline{\varphi} \text{ ist injektiv } \iff \ker \overline{\varphi} = \{0\} \iff (\ker \varphi)/I = \{0\} \iff \ker \varphi = I.$$

Das Bild im φ ist ein kommutativer Unterring von S:

Es gilt $0=\varphi(0)\in\operatorname{im}\varphi$. Für $y\in\operatorname{im}\varphi$ gibt es $x\in R$ mit $y=\varphi(x)$, we shalb auch $-y=-\varphi(x)=\varphi(-x)\in\operatorname{im}\varphi$. Für $y_1,y_2\in\operatorname{im}\varphi$ gibt es $x_1,x_2\in R$ mit $y_1=\varphi(x_1)$ und $y_2=\varphi(x_2)$, we shalb auch $y_1+y_2=\varphi(x_1)+\varphi(x_2)=\varphi(x_1+x_2)\in\operatorname{im}\varphi$. Das zeigt, dass im φ eine Untergruppe der additiven Gruppe von S ist.

Es gilt $1_S=\varphi(1_R)\in \operatorname{im}\varphi$. Für alle $y_1,y_2\in \operatorname{im}\varphi$ gibt es $x_1,x_2\in R$ mit $y_1=\varphi(x_1)$ und $y_2=\varphi(x_2)$, we shalb auch $y_1y_2=\varphi(x_1)\varphi(x_2)=\varphi(x_1x_2)\in \operatorname{im}\varphi$. Das zeigt, dass im φ bereits ein Unterring von S ist.

Wir können nun φ als einen surjektiven Ringhomorphismus $\varphi\colon R\to\operatorname{im}\varphi$ auffassen. Aus den bereits gezeigten Aussagen erhalten wir, dass φ einen bijektiven Ringhomomorphismus, also einen Ringisomorphismus $\overline{\varphi}\colon R/I\to\operatorname{im}\varphi, \overline{x}\mapsto \varphi(x)$ induziert. Somit gilt $R/I\cong\operatorname{im}\varphi$.