

THIAGARAJAR COLLEGE OF ENGINEERING

Department of Electronics and Communication Engineering

PERSONAL ASSISTANCE FOR SENIORS WHO ARE SELF RELIANT

Team ID: PNT2022TMID21391

TEAM DETAILS

TEAM-ID: PNT2022TMID21391

TEAM MEMBERS

Reg. No.	IBM Reg. No.	Name
19D058	917719D058	Nisha C
19D022	917719D022	Fathima D
19D028	917719D028	Harni V
19D134	917719D134	Sangeetha M

ABSTRACT

The history of agriculture began thousands of years ago. After gathering wild grains beginning at least 105,000 years ago, nascent farmers began to plant them around 11,500 years ago. Agriculture is the practice of cultivating plants and livestock. Agriculture was the key development in the rise of sedentary human civilization, whereby farming of domesticated species created food surpluses that enabled people to live in cities. Modern agronomy, plant breeding, agrochemicals such as pesticides and fertilizers, and technological developments have sharply increased crop yields, but cause ecological and environmental damage. Agriculture is the backbone of Indian Economy. The improvement of agriculture sector provides enormous opportunities for common folks, business people. So, in order to improve the farming methods, we use technology (Iot applications) rather than modern technology. This helps in providing precise condition of the farms which include temperature, humidity, range, soil conditions. This information when known to famers beforehand or to owners in their remote location helps them to improve the field and the farming conditions. The improved farming method thus result in increase in output

Content

CHAPTER	TITLE
1	Introduction
2	Literature Survey
3	Ideation and proposed solution
4	Requirement analysis
5	Project design
6	Project planning and scheduling
7	Coding and solutioning
8	Testing
9	Results
10	Advantages and Disadvantages
11	Conclusion
12	Future scope
13	Appendix

1.INTRODUCTION

Fig.1.1. IoT based Medicine Remainder System

1.1 Project Overview

- ➤ Personal assistance application is especially meant for elders who may forget to take their daily medications on time. It is designed for users who are in need to their medication schedule.
- ➤ It is difficult for doctors/caretakers to monitor the patients regularly. To avoid thisproblem, this medicine reminder system is developed, it helps to take medications at correct time.
- ➤ Personal assistance application will ask users to add the medicine names and time based upon their prescription, reminder will be updated which will be visible to the user. Also, users can get a voice commands to take their medications. They have an option to set an alarm which will notify

them to take medications, they can either stop or snooze the alarm as per their need.

1.2.Purpose

- Sometimes elderly people forget to take their medicine at the correct time, and it is difficult for doctors/caretakers to monitor the patients around the clock. To avoid this problem, this medicine reminder system is developed.
- An app is built for the user (caretaker) which enables him to set the desired time and medicine. These details will be stored in the IBM Cloudant DB.If the medicine time arrives the web application will send the medicine name to the IoT Device through the IBM IoT platform. The device will receive the medicine name and notify the user withvoice commands.

2.LITERATURE SURVEY

2.1.Existing problem

S.NO	PAPER	AUTHOR	PUBLICATION	RESULTS
	TITLE	NAME	YEAR	
1.	A Research	Chaitra N,	2019	In the paper, the main objective is to
	on Home	Ashwini CS,		build smart home and to make the
	Automation	Shyma Zaidi.		elderly and physically challenged
	for Elderly			population more self-dependent.
	and			Which is cheaper when compared to
	Physically			all The interfaced system so simple as
	Challenged			possible so that it makes physically
	People by			impaired people more efficiently use
	using IOT.			it. Here the system can be operated
				using google assistant and android
				application.
2.	HABITAT:	Elena Borelli,	2019	Here main aim is to provide flexible
	An IoT	Giacomo		and extensive digital platform for
	Solution for	Paolini,		Smart Homes is presented. The
	Independent	Francesco		HABITAT (Home Assistance Based
	Elderly	Antoniazzi		on the IOT for the autonomy of
				Everybody)is for assisting elderly
				and non-self-sufficient people in
				smart homes and embedding them in
				everyday life objects, thus reducing

	1			
				the expenses for healthcare due to the
				lower need for personal assistance.
3.	Development	Sathish	2020	In this paper they use the software
	of an IoT-	Kumar,		which contains three core elements
	Based Health	Nivedha,		We-Watch, Service Board for We-
	Promotion	Anitha,		Care and the cloud application. The
		Jayaprakash.		We-Watch is composed of a discreet
				small bracelet which the elderly
				individual uses. This is responsible
				for tracking and gathering data from
				the available sensors. The solution
				alerts family members or appointed
				caretakers about sudden daily shifts
				·
4.	Developme	Chia-Hui Liu,	2020	Using wireless technology combined
	nt of an	Jih-Fu Tu .		with physiological measurement
	IoT-Based			techniques and home care equipment
	Health			can assist elderly individuals to
	Promotion			promote health and the health care
	System for			service at home. In this research the
	Seniors			system is divided into three
	Semois			subsystems the IoT-based ,the
				context awareness-based service
1				subsystem, and the elderly nutrition
				diet and health promotion subsystem

Table 2.1. Existing solutions

2.2.References

- https://ieeexplore.ieee.org/Xplore/home.jsp
- https://link.springer.com/

2.3. Problem Statement Definition

Our problem statement is to remind the elderly persons to take their medicines on correct time and monitor them.

Customer Problem Statement:

3.IDEATION & PROPOSED SOLUTION

3.1. Empathy Map Canvas

EMPATHY MAP

Fig 3.1. Empathy map

3.2.Ideation & Brainstorming

Step-1: Team Gathering, Collaboration and Select the Problem Statement

We have followed the first step of brainstorming, we have discussed as a team todecide a problem statement .As per the guideline the following is done

- TEAM GATHERING
- COLLABORATION
- DECIDING THE PROBLEM STATEMENT

Problem Statement:

A caretaker\doctor trying to monitor the elder people whether they take their medicine at the correct time. But the elder people forget to take their medicine at the correct time, so that it is difficult for the user to monitor the patient around the clock. To avoid this it requires medical remainder system for elders and notify the user with voice commands.

Step-2: Brainstorm, Idea Listing and Grouping

Table 3.1. Ideas of all the teammates

Step-3: Idea Prioritization:

Prioritization Matrix

Fig 3.3. Prioritization matrix

The reminder hits an alarm and requests for confirmation if an elder has taken the specific medicine at the times prescribed

The application used to notify should be easily accessible to both caretaker and elders

Give notification by SMS system, call, email, voice commands User can add details of his dosage schedules

3.3.Proposed Solution

S.No	Parameter	Description	
1.	Problem Statement	> Sometimes elderly people forget to take medicines at	
	(Problem to be	correct time ,to avoid this medicine remainder	
	solved)	system is developed.	
2.	Idea / Solution	➤ In order to monitor elders we proposed medicine	
	description	reminder system. An app is built for the user (caretaker)	
		which enables them to set the desired time and medicine	
		➤ These details will be stored in the Cloud DB. If the	
		medicine time arrives the web application will send the	
		medicine name to the IoT Device through the IoT	
		platform. The device will receive the medicine name and	
		notify the user with voice commands.	

3.	Novelty /	 Digital Voice assistant technology 		
	Uniqueness	Notification System.		
4.	Social Impact / Customer Satisfaction	This will be helpful for the caretakers/doctors for monitoring the health conditions of elders and also this creates positive impact on seniors health		
		creates positive impact on seniors health.		
5.	Business Model			
	(Revenue Model)	Cloud Services IBM Watson IoT Platform Web UI Cloudant db		
6.	Scalability of the	➤ In future increase the number of users, Maintains		
	Solution	best possible user experience.		
		➤ Helps the elders to take medicines regularly		

Table 3.2. Proposed solution

3.4. Problem Solution fit

Fig 3.5. Problem fit

4.REQUIREMENT ANALYSIS

4.1.Functional requirement

Following are the functional requirements of the proposed solution.

FR No.	Functional Requirement	Sub Requirement (Story / Sub-Task)
	(Epic)	
FR-1	User Registration	Registration can be done through Gmail or either using phone number.
FR-2	User Confirmation	Confirmation via Email or through Message.
FR-3	User Login (mobile app)	Login with registered mobile number and password
FR-4		In the app user can enter the medicine details with date. Then set the time in the app for alarm remainder.

Table 4.1. Functional requirements

4.2.Non-Functional requirements

Following are the non-functional requirements of the proposed solution.

FR No. Non-Functional		Description
	Requirement	
NFR-1 Usability It is used to remind the		It is used to remind the medicine on
		time and it alerts the users through
		voice commands.
NFR-2	Security	The login information should not be

		accessed by any other users than respective	
		users and caretakers.	
NFR-3	Reliability	It reminds on correct time. The user data	
		will getupdated and examined after	
		certain period of time.	
NFR-4	Performance	The voice message will be delivered	
		accurately to	
		the given time.	
NFR-5	Availability	It can be used by registered user from any	
		place.	
NFR-6	Scalability	It is easily adaptable. The device is	
		compatible and portable.	

2.

Table 4.2. Non – functional requirements

5.PROJECT DESIGN

5.1.Data Flow Diagram

Fig 5.1. Dataflow diagram

5.2. Solution & Technical Architecture

Solution Architecture:

Fig 5.2. Solution architecture

Technical stack:

S. No	Component	Description	Technology
1.	User Interface	How user interacts	HTML, CSS,
		withapplication e.g.	JavaScript /Angular
		Web UI, Mobile App etc.	Js / React Js etc.
2.	Application Logic-1	Logic for a process in	Java / Python
		theapplication	
3.	Application Logic-2	Logic for a process in the	IBM Watson TTS

		application	service
4.	Application Logic-3	Logic for a process in	IBM Watson Assistant
		theapplication	
5.	Database	Data Type, Configurations	MySQL, NoSQL, etc.
		etc.	
6.	Cloud Database	Database Service on	IBM DB2, IBM
		Cloud	Cloudantetc.
7.	Infrastructure	Application	Local, Cloud
	(Server /Cloud)	Deployment onLocal	Foundry,
		System / Cloud	Kubernetes, etc.

Table 5.1. Components and technologies

S. No	Characteristics	Description	Technology
1.	Scalable Architecture	Can be used at	IOT(Internet Of
		> Hospitals	Things)
		Old age Homes	
		> In working people	
		homes where it	
		will beused for	
		elders	
2.	Availability	To remind to take	IBM Cloud
		medicine with	
		uninterrupted services,	
		we have to implemented	
		in distributed service	

3.	Performance	If it was implemented,	IBM Cloud DB,RTC
		it isgiven with	DS1307 Module
		medicine name	
		and desired time	

Table 5.2. Application Characteristics

5.3.User Stories

User Type	Functi	User	User Story / Task	Acceptance	Priority	Release
	onal	Story		criteria		
	Requir					
	ement					
	(Epic)					
Custome	Caretaker	USN-1	As a user, I want to	I want to	High	Sprint-1
r (Senior			take medicines on	take		
user)			timeand monitor	medicines		
			my health.	on time.		
Custo	Smart	USN-2	As a user, I want to	I want to	High	Sprint-1
mer	medici		take my tablets on	take my		
(Diab	nebox		time byvoice	tabletson		
etes			command.	time by		
Patient)				voice		
				command.		
Customer	Smart	USN-3	As a user, I need	I need to take	Medium	Sprint-3
(disabled	medicin		to take my	my medicine		
person)	e box		medicine in	in nearby		
			nearby places	places		
			with	with		

	notification.	notification.	

Table 5.3. User stories

6.PROJECT PLANNING & SCHEDULING

6.1.Sprint Planning & Estimation

Product Backlog, Sprint Schedule, and Estimation:

Sprint	Func	User	User Story / Task	Story	Priority	Team Members
	tiona	Stor		Points		
	1	\mathbf{y}				
	Requ	Num				
	irem	ber				
	ent					
Sprint-1	Medication	USN-1	As a user, I take	10	Low	Nisha C
	Details		the medicines that			Fathima D
			shouldintake daily			Harni V
			and put them in the			Sangeetha M
			medicine box by			
			the day order			
			separetely			
Sprint-1		USN-2	As a user, by	10	High	Nisha C
			setting the			Fathima D
			particular			Harni V
			time, medicine			Sangeetha M
			names the			
			elders can be			
			notified			
			appropriately.			
Sprint-2	Set Time	USN-3	As a user,I set	10	High	Nisha C
			the desired			Fathima D
			time,medicine			Harni V

Sprint-2		USN-4	names and the dosages in the medicine remainder system. The above setted details were stored in IBM Cloudant DB, which helps to notify the people on time	10	Medium	Sangeetha M Nisha C Fathima D Harni V Sangeetha M
Sprint-3	Notification	USN-5		10		Nisha C Fathima D Harni V Sangeetha M
Sprint-3		USN-6	By that device elders can be notified and also caretaker can receive the conformation	10		Nisha C Fathima D Harni V Sangeetha M
Sprint 4	Monitoring	USN-7	In IBM	20	High	Nisha C

andTracking	Cloudant DB	Fathima D
healthStatus	the	Harni V
	time,medicine	Sangeetha
	names and the	M
	dosages are	
	stored.By	
	which the	
	elders	
	medication	
	and health	
	records were keep	
	on tracking	

Table 6.1. Estimation chart

Project Tracker, Velocity & Burndown Chart:

Sprint	Total Story Point s	Duration	Sprint Start Date	Sprint End Date (Plann ed)	Story Points Completed (as on Planned End Date)	Sprint Release Date (Actual)
Sprint-1	20	6 Days	24 Oct 2022	29 Oct 2022	20	29 Oct 2022
Sprint-2	20	6 Days	31 Oct 2022	05 Nov 2022	20	05 Nov 2022
Sprint-3	20	6 Days	07 Nov 2022	12 Nov 2022	20	12 Nov 2022
Sprint-4	20	6 Days	14 Nov 2022	19 Nov 2022	20	19 Nov 2022

Table 6.2. Burndown chart

6.2.Sprint Delivery Schedule

S.N	ACTIVITY TITLE	ACTIVITY DESCRIPTION	DURATION
0			
1	Literature Survey	Literature Survey on the	10 October 2022
		selected project and gathering	
		information byreferring the	
		technical	
		papers,research papers etc.	
2	Empathy Map	Prepare Empathy Map to know	11 October 2022
		the user's thought,pain and	
		gain.Also forpreparing list of	
		problem statements	
3	Ideation and	List the ideas by brainstorming	13 October 2022
	Brainstorming	sessions.Prioritize the ideas	
		that isfeasible and optimal.	
4	Problem Solution Fit	Prepare the Problem Solution	14 October 2022
		Fit which describes the	
		solution for the	
		problem statement.	
5	Proposed Solution	Prepare the proposed solution	17 October 2022
		document which includes the	
		feasibility of	
		idea,novelty,business	
		model and scalability of	
		solution.	

6	Solution Architecture	Defines the process of	18 October 2022
		developing	
		solution based on	
		predefinedprocess.	
7	Customer Journey	Prepare Customer Problem	20October 2022
		Statement by customer	
		interactions.From which	
		optimalsolutions can be	
		obtained.	
8	Funtional Requirements	Prepare the Functional	21 October 2022
		Requirements which specifies	
		therequirements.	
9	Data Flow Diagram	Draw the data flow diagram	22 October 2022
		basedon the problem	
		statements.	
10	Technical Architecture	Prepare the Technical	24 October 2022
		Architecture which describes the	
		working.	
11	Prepare Milestone	Prepare the milestones &	4 November
	andActivity List	Activity listof the project.	2022
12	Project Development	Develop and submit the	IN PROGRESS
	andDelivery of Sprint	developedcode by testing it.	
	1,2,3,4		

Table 6.3. Sprint delivery schedule

6.3.Reports from JIRA

Fig 6.1. JIRA report

7.CODING AND SOLUTION:

7.1 FEATURE 1

MEDICINE.PY (PYTHON SCRIPT TO RECEIVE DATA FROM NODE-RED)

```
import time
#import ibmiotf.application
from ibm_watson import TextToSpeechV1
from ibm_cloud_sdk_core.authenticators import IAMAuthenticator
import ibmiotf.device
import pygame
pygame.init()
config={
  "org":"k54tgp",
  "type": "abcd",
  "id":"123",
  "auth-method": "token",
  "auth-token":"123456789"
}
url="https://api.eu-gb.text-to-speech.watson.cloud.ibm.com/instances/3337f7ab-
eb47-4558-8344-cf4e0e94bee7"
api="ri9CfHaOitFC4s_8nN2fYhKmdVBku6yqzeedtTcCOQf1"
client= ibmiotf.device.Client (config)
client.connect()
auth=IAMAuthenticator(api)
tts=TextToSpeechV1(authenticator=auth)
tts.set_service_url(url)
```

```
def myCommandCallback (cmd):
  a=cmd.data
  instruction="Please Take following Medicine."
  c=1
  if len(a["command"])==0:
    pass
  else:
    client.disconnect()
    client.connect()
    for i in a["command"]:
       instruction+=str(c)+". "
       instruction+=i
       instruction+="."
       c+=1
    with open("./speech.wav","wb") as audio_file:
       res=tts.synthesize(instruction,accept="audio/mp3",voice='en-
US_AllisonExpressive').get_result()
       audio_file.write(res.content)
    play("speech.wav")
def play(a):
  p=pygame.mixer.Sound(a)
  pygame.mixer.Sound.play(p)
  time.sleep(20)
  pygame.mixer.Sound.play(p)
  time.sleep(20)
```

```
pygame.mixer.Sound.play(p)
time.sleep(20)
```

while True:

client.commandCallback = myCommandCallback
client.disconnect()

FEATURES:

The first feature is the use of web application

Fig. 7.1. Visual results in node red dashboard

7.2 TTS.PY (PROGRAM FOR ACCESSING TEXT TO SPEECH SERVICE) FEATURE 2:

Fig. 7.2. Text to speech

7.3.DATABASE SCHEMA

Fig. 7.3. Database

WEB USER INTERFACE:

APPLICATION:

Voice commands are also been generated

8.TESTING AND USE CASES:

8.1.TEST CASES

S.No	MEDICINE NAME	TIME (H:M)	Expected output	Actual Output
1	Dolo	11:20	Alarm is set	Alarm is set
2	Flucold	12:00	Alarm is set	Alarm is set
3	Wikoryl	23:54	Alarm is set	Alarm is set
4	vicks	1:20	Alarm is set	Alarm is set

8.2.USER ACCEPTANCE TESTING

- The web application will be served to the user for setting reminder.
- The user can set alarm or reminder by running the application.
- Based on the medicine name and time entered in the app, an alarm is set and a voicecommand is played at the entered time.

9.RESULT:

Medicine name and time can be entered to get alert

Fig 9.1. Results

10.ADVANTAGES AND DISADVANTAGES:

Fig. 10.1. Medicine Remainder Advantages

ADVANTAGES:

- Receiving remainders to take medications at correct time.
- Alarm is set at particular time as per the user requirement.
- Voice commands are received at particular time to take medications.
- No need of internet connection.

DISADVANTAGES:

• Possibility of run time problem when user enters two medicines at the same time..

11.CONCLUSION:

➤ The objective of this project was to design and develop a simple, reliable, efficient medicine remainder system that has a precise and quick notification mechanism. Appropriate services were used to make reminder alarm and voice commands .A step-by- step approach was followed in the design of the system. The design was carried out based on the study and analysis of existing similar systems and user perceptions. Several tests were conducted, and the results were analysed to ensure that the system produced the intended results. The system has been implemented and tested, showing satisfactory performance.

12.FUTURE SCOPE:

Fig. 12.1. Future scope

Health information:

The application helps family members to keep track of medicines.

Alert message:

If medicines are out of stock it gives alert message.

Order nearby:

We can order medicines in nearby pharmacy.

Users:

Single point to multi point user.

13.APPENDIX:

SOURCE CODE:

```
import time
#import ibmiotf.application
from ibm_watson import TextToSpeechV1
from ibm_cloud_sdk_core.authenticators import IAMAuthenticator
import ibmiotf.device
import pygame
pygame.init()
config={
  "org":"k54tgp",
  "type": "abcd",
  "id":"123",
  "auth-method": "token",
  "auth-token":"123456789"
url="https://api.eu-gb.text-to-speech.watson.cloud.ibm.com/instances/3337f7ab-
eb47-4558-8344-cf4e0e94bee7"
api="ri9CfHaOitFC4s_8nN2fYhKmdVBku6yqzeedtTcCOQf1"
client= ibmiotf.device.Client (config)
client.connect()
auth=IAMAuthenticator(api)
tts=TextToSpeechV1(authenticator=auth)
tts.set_service_url(url)
```

```
def myCommandCallback (cmd):
  a=cmd.data
  instruction="Please Take following Medicine."
  c=1
  if len(a["command"])==0:
    pass
  else:
    client.disconnect()
    client.connect()
    for i in a["command"]:
       instruction+=str(c)+". "
       instruction+=i
       instruction+="."
       c+=1
    with open("./speech.wav", "wb") as audio_file:
       res=tts.synthesize(instruction,accept="audio/mp3",voice='en-
US_AllisonExpressive').get_result()
       audio_file.write(res.content)
    play("speech.wav")
def play(a):
  p=pygame.mixer.Sound(a)
  pygame.mixer.Sound.play(p)
  time.sleep(20)
  pygame.mixer.Sound.play(p)
  time.sleep(20)
  pygame.mixer.Sound.play(p)
  time.sleep(20)
```

client commandC	allback = myComman	dCallback	
client.disconnect()	anouck – my Command	Canoack	
PROJECT DEMO	LINK:		