

Chapter 7: Cell Structure and Function

TABLE OF CONTENTS

7.1 — Life is Cellular

The Discovery of the Cell

Cell Theory

Microscopes

Compound Light Microscopes

Electron Microscopes

Prokaryotes & Eukaryotes

7.2 — Cell Structure

Labeling Practice

The Nucleus

Support & Storage Organelles

The Cytoskeleton

Protein-Building Organelles

Energy-Producing Organelles

Cellular Boundaries

Properties of Lipids

The Fluid Mosaic Model

7.3 — Cell Transport

Passive Transport

Diffusion

Facilitated Diffusion

Osmosis

Active Transport

Bulk Transport

Endocytosis

Exocytosis

7.4 — Homeostasis & Cells

Maintaining Homeostasis in Individual Cells

Maintaining Homeostasis in Multicellular Organisms

Levels of Organization

Cellular Communication

7.1 — Life is Cellular

The Discovery of the Cell

In the 1500s, the microscope was invented to enhance smaller things into larger images.

Robert Hooke studied a cork under a microscope and found empty chambers, which he called "cells".

Anton van Leewenhoek used a microscope to find organisms in ponds, water, and his mouth.

· Called them bacteria

Cells are the basic unit of life.

Cell Theory

- Matthias Schleiden concluded that all plants are made of cells.
- Theodor Schwann concluded that all animals are made of cells.
- Rudolf Virchow concluded that new cells are only birthed from existing cells.

Those discoveries became the **cell theory**.

All living things are made of cells.

- Cells are the basic units of structure and function in living things.
- New cells are produced from existing cells

Microscopes

Use lenses to magnify the image of an object by focusing light or electrons

Compound Light Microscopes

- Allows light to pass through a specimen
- Uses two lenses to form a picture

Objective Lens → above the specimen

- Enlarges the image of the specimen
- Most microscopes have multiple objective lenses

Ocular Lens → magnifies the image further

Light microscopes can produce clear images to a magnification to ~1000 times.

Since cells are transparent, they must be stained to be clearly viewed.

Electron Microscopes

View smaller things than light microscopes can

Transmission Electron Microscopes → explore cell structures and large proteins

- Sample must be cut ultrathin to be viewed
- Electrons pass through thin samples → flat and 2D images

Scanning Electron Microscopes → 3D images of a specimen's surface

• Doesn't need to be in thin slices

Electron microscopy must be used in a vacuum.

Prokaryotes & Eukaryotes

All cells contain a form of genetic information.

• All surrounded by a **cell membrane**

Cells have two categories based on whether or not they have a nucleus.

Nucleus: a large membrane-enclosed structure that contains genetic material in the form of DNA

Controls the cell's activities

Eukaryotes: cells that enclose their DNA in nuclei

Larger and more complex

Prokaryotes: cells that don't enclose their genetic material in nuclei

Smaller and simpler

7.2 — Cell Structure

▼ Labeling Practice

https://learnful.ca/index.php/h5p/21/embed

https://learnful.ca/index.php/h5p/22/embed

Two main parts of the cell: nucleus and cytoplasm

Cytoplasm of a prokaryote is just the interior

Organelles: specialized structures in cells

Similar to "organs" of the human body

The Nucleus

· Control center of the cell

Nucleus → contains all the cell's DNA and the coded instructions for making proteins and other molecules

Prokaryotic cells lack a nucleus

The nucleus is surrounded by the nuclear envelope.

Thousands of nuclear pores to things can enter and exit the nucleus

Chromosomes → carry the cell's genetic material

- Found in the nucleus
 - Spread throughout the nucleus in the form of chromatin (thread-like form of chromosomes)

Nucleolus: small, dense region inside the nucleus

Site of ribosome assembly

Support & Storage Organelles

Vacuoles store water, salts, proteins, and carbohydrates.

• Plants have a singular, large vacuole

Vesicles store and move materials through the cell and in and out of the cell.

Lysosomes: small organelles that break down lipids, carbohydrates, and proteins into smaller molecules to be used by the rest of the cell

- Uses enzymes
- Found in both plant and animal cells
- Dysfunction in lysosomes can cause a variety of diseases

The Cytoskeleton

- gives the cell its shape and internal organization (maintains cell shape)
 - Uses protein filaments
 - Can also help in material transport

Microfilaments: threadlike structures made up of a protein called actin

- Form extensive networks in cells
- Produce a tough framework
- Helps cells to move

Microtubules: hollow structures made of proteins (tubulins)

- Maintain cell shape
- Important in cell division
 - Form the mitotic spindle to separate chromosomes
- Build cilia and flagella to assist in cell movement

Centrioles → also formed from tubulins

- Organize cell division
- Not in plant cells

Protein-Building Organelles

One main focus on cells is protein production and distribution.

Synthesized from ribosomes

Ribosomes: small particles of RNA found throughout the cytoplasm in all cells

Follow coded instructions from the DNA

Endoplasmic Reticulum (ER): an internal membrane system where lipids, proteins, and other materials are synthesized

- Rough Endoplasmic Reticulum → involved in protein synthesis
 - Ribosomes on the surface make it look "rough"
- Smooth Endoplasmic Reticulum → synthesize lipids & detoxify drugs
 - No ribosomes on their surface
 - Help in synthesizing carbohydrates

Golgi Apparatus: stack of flattened membranes that modifies, sorts, and packages proteins and other materials from the ER for storage

· Receives materials in vesicles

Energy-Producing Organelles

All living things require **energy**.

Chloroplasts → capture energy from sunlight and convert it into food containing chemical energy

- Process is called *photosynthesis*
- Contains chlorophyll (a green pigment)

Mitochondria → convert chemical energy from food into compounds that can be used by cells

Has an inner and outer membrane

Chloroplasts and mitochondria have their own DNA.

• Suggests that they were once independent organisms

Cellular Boundaries

Cell Wall: strong layer that supports and encases the cell

- Most prokaryotes and plants have cell walls
- Allow certain molecules to pass through

All cells contain cell membranes.

• Made up of a double-layered sheet called a *lipid bilayer*

Lipid Bilayer \rightarrow gives cell membranes a flexible structure that forms a strong barrier between the cell and its surroundings

- Regulates what enters and leaves the cell
- Also protects and supports the cell

Properties of Lipids

 Oily fatty acid chains attached to chemical groups that have strong interactions with water

Hydrophobic End → away from water

Hydrophilic End → attracted to water

• 2 layers form a bilayer

The Fluid Mosaic Model

Protein molecules can be embedded in the lipid bilayers

Float around the bilayer → fluid mosaic

The proteins help to move materials across the bilayers.

Membranes are **permeable** to something if the object can pass through it.

Membranes are **impermeable** to something if the object cannot pass through it.

Membranes are **selectively permeable** if some substances can pass through and some can't.

• Called semipermeable membranes

7.3 — Cell Transport

Passive Transport

Every living cell exists in a liquid environment.

• The cell membrane must keep the cell's internal conditions relatively constant.

Regulates the movement of substances from one side to another

Diffusion

Particles move from areas of higher concentration to areas of lower concentration

Diffusion is the driving force between movement of substances across a membrane.

- Substances move through a membrane until both sides are equal (equilibrium)
 - Even after equilibrium is reached, particles still move but since they are in equal directions, equilibrium is maintained.

Passive Transport: the movement of molecules across the cell membrane without using cellular energy

Facilitated Diffusion

Proteins in the cell membranes act as **channels** for certain substances to pass through.

Channels facilitate the diffusion of certain substances

Facilitated Diffusion: process in which molecules that cannot directly pass through the cell membrane pass through specific protein channels

- Fast and specific
- Doesn't require any energy

Osmosis

It is difficult for water to pass through the cell membrane because the interior of the lipid bilayer is hydrophobic.

 Aquaporins: proteins embedded in the cell membrane that allow water to pass through Osmosis: diffusion of water through a selectively-permeable membrane

- Molecules moves from areas of higher concentration to area of lower concentration
- The molecules that move are water molecules

Before osmosis, there is a **hypertonic** side (more concentrated with sugar) and a **hypotonic** side (less concentrated with sugar).

After osmosis, the solutions will be isotonic (same amount of solute).

Osmotic Pressure: force that causes *hypertonic solutions* to shrink and *hypotonic solutions* to swell

- Changes the size of a cell's vacuoles
- Only if the cell comes in contact with fresh water

Active Transport

Active Transport: movement of materials against a concentration difference

- Requires energy
- Generally carries out by protein pumps

Bulk Transport

Larger molecules and clumps of material can be transported across the cell membrane.

Endocytosis

- Taking material into the cell by folding in the cell membrane
 - Forms vesicles to contain the material
 - Ex. phagocytosis → cells engulfing material, pinocytosis → cells taking up liquid from the environment and forming vacuoles

Exocytosis

- Release of large amounts of material
 - Vesicle membrane fuses with the cell membrane
 - Forces contents out of the cell

7.4 — Homeostasis & Cells

Maintaining Homeostasis in Individual Cells

Single cells can be organisms.

Homeostasis: relatively-constant internal physical and chemical conditions

• Individual cells grow, respond to environmental stimuli, transform energy and reproduce to maintain homeostasis.

Unicellular organisms can be either prokaryotic or eukaryotic.

Maintaining Homeostasis in Multicellular Organisms

The cells of multicellular organisms **specialize themselves** for particular tasks and **communicate** to maintain homeostasis.

Levels of Organization

- 1. Cells
- 2. **Tissues:** groups of similar cells that perform particular functions
- 3. Organs: groups of tissues
- 4. **Organ Systems:** groups of organs that work together to perform a specific function

Different levels of life in multicellular organisms allow for homeostasis to be maintained.

Cellular Communication

- Cells communicate with chemical signals
 - Speed up or slow down activities in the cells that receive them

Certain cells form **cellular junctions** to neighboring cells.

- Cellular junctions are connections between cells (allows for direct communication)
 - Cells require **receptors** to receive the direct communication