

원자 분자 상태 총괄성 반응 전기화학

원자

분자

상태

총괄성

반응

위 그림은 20°C에서 pH가 3이고 농도가 0.5 M인 HA(aq) 50ml와 x M인 BOH(aq) 50ml에 대해 묘사하고 있다. 온도가 일정하고 물의 이온화 상수가 $(K_w = 1.0 \times 10^{-14})$ 일 때 아래의 문 제에 답하시오. (총 4점)

(1) 20°C에서 HA의 이온화 상수 (K_a)는 얼마인가? (1점)

(2) 왼쪽 HA 용액에 오른쪽 BOH 용액을 모두 섞은 후 pH를 재보았더니 4가 되었다. 오른 쪽 염기의 섞기 전 농도 x는 얼마인가? (2점)

(3) pH를 다시 3으로 되돌리고자 이를 위해 1 M의 HA 용액을 새로 제조하였다. (2)처럼 섞은 용액에 몇 mL의 1 M HA를 섞어야 pH가 다시 3으로 되돌아올 수 있는가? (1점)

3번에서,

왼쪽 용액의 pH가 3이고 오른쪽 용액을 섞은 뒤, 다시 1M짜리 HA 용액을 섞어 pH 3으로 되돌리려 한다. 초기 pH가 3이므로, xM BOH 용액과 1M HA 용액을 섞은 용액이 pH가 3이면 된다.

전기화학

03 > 금속의 반응성과 표준 환원 전위
그림은 25 *C에서 금속 A∼C를 1 M HCl(aq)과 1 M HNO₃(aq)에 각각 담갔을 때 일부 금속에서 기체가 발생하는 모습을, 표는 이와 관련된 반쪽 반응의 표준 환원 전위 (E^*) 를 나타 낸 것이다. E° 의 크기는 a < b < c이다.

(a) (c)

호이다.)

- ㄱ. \bigcirc 은 H+보다 반응성이 크므로 $E^{\circ} < 0$ 이다.
- ㄴ. ᢕ은 (가)에서 반응하지 않았으므로 b > 0이고, (나)에서 반응하였으므로 b < 0.96이다.
- \sqsubset . $\mathbf{NO_3^-}$ 의 환원 전위가 수소에 비해 크므로, (나)에서는 \mathbf{NO} 기체가 발생한다.

답: ①

- ¬. ⊙은 C이다. ㄴ. a, b<0이다. ㄷ. (가)의 ⓒ과 (나)의 ⓒ에서 발생하는 기체는 같다. ① 7 ② C ③ 7, L ④ L, C ⑤ 7, L, C
- ㄱ. \bigcirc 은 H+보다 반응성이 크므로 $\mathrm{E}^\circ < 0$ 이다.
- ㄴ. ᢕ은 (가)에서 반응하지 않았으므로 b > 0이고, (나)에서 반응하였으므로 b < 0.96이다.
- \sqsubset . $\mathbf{NO_3^-}$ 의 환원 전위가 수소에 비해 크므로, (나)에서는 \mathbf{NO} 기체가 발생한다.

답: ①