

Tratamento de dados Experimentais

No laboratório tão importante quanto à coleta de dados experimentais é saber processar essas informações para uma correta interpretação da fenomenologia estudada.

Ao se realizar uma medida, há sempre fontes de erro que a afetam. As fontes de erro fazem com que toda a medida realizada, por mais cuidadosa que seja, esteja afetada por um erro experimental.

Média

O valor médio é, usualmente, aceito como sendo o mais provável. Por esta razão calcula-se a média aritmética dos valores medidos

$$\overline{x} = \sum_{i=1}^{n} \frac{x_i}{n}$$

onde x_i é o resultado da i-esma medida e n é o número total de medidas feitas.

Média Quadrática

A média pode também ser expressa pela média quadrática definida como

$$\overline{x}_q = \sqrt{\sum_{i=1}^n \frac{x_i^2}{n}}$$

Tratamento de dados Experimentais

Ao se realizar várias medições da mesma grandeza nas mesmas condições, a incidência de erros aleatórios faz com que os valores medidos estejam distribuídos em torno da média apresentando uma dispersão.

Desvio Padrão

Quantitativamente a dispersão do conjunto de medidas realizadas pode ser caracterizada pelo desvio padrão do conjunto de medidas, definido como

$$S = \sqrt{\sum_{i=1}^{n} \frac{(x_i - \bar{x})^2}{n - 1}}$$

Erro Padrão da média ou Erro estatístico

À medida que se realiza mais medidas, a compensação dos erros aleatórios entre si vai melhorando e a média do conjunto de medidas, x, vai se tornando uma grandeza mais precisa. O erro padrão da média é definido por:

$$\Delta \overline{x} = S_m = \frac{S}{\sqrt{n}}$$

Erro percentual ou relativo

É o erro que afeta a grandeza medida expresso como porcentagem do valor medido da grandeza. Portanto, o erro relativo percentual numa medida x com erro absoluto Δx será dada por

$$\left(\Delta \overline{x}\right)_r = \frac{\Delta \overline{x}}{\overline{x}} \cdot 100\%$$

Propagação de erros em cálculos

Geralmente é necessário usar valores medidos e afetados por erros para realizar cálculos a fim de se obter o valor de outras grandezas. É necessário conhecer como o erro na medida original afeta a grandeza final.

Soma e subtração

Ao somarmos ou subtrairmos grandezas estatisticamente independentes o erro no resultado será dado por

$$\Delta \overline{w} = \sqrt{(\Delta \overline{x})^2 + (\Delta \overline{y})^2 + (\Delta \overline{z})^2}$$

Multiplicação e Divisão

Neste caso o erro relativo do resultado será

$$\Delta \overline{w} = \overline{P} \sqrt{\left(\frac{\Delta \overline{x}}{\overline{x}}\right)^2 + \left(\frac{\Delta \overline{y}}{\overline{y}}\right)^2}$$

Onde P é o produto das variaveis.

Maiores detalhes sobre a propagação de erros com outras operações pode ser encontrado em

https://sites.google.com/site/caguarany

Exemplo

Suponha que você deseja medir o volume de água que pode conter em uma pia. Para isso foram realizadas 10 medidas do comprimento (C), da lagura (L) e da profundidade (P). Os valores das grandezas são dados na Tabela abaixo. Calcule o volume.

Medidas	С	L	P	$(C_i - \overline{C})^2$	$(L_i - \overline{L})^2$	$(P_i - \overline{P})^2$
	(cm)	(cm)	(cm)	(cm ²)	(cm ²)	(cm ²)
1	54,2	30,7	16,3	0,0025	0,0016	0,0025
2	54,4	30,5	16,5	0,0225	0,0256	0,0225
3	54,3	30,8	16,4	0,0025	0,0196	0,0025
4	54,2	30,8	16,2	0,0025	0,0196	0,0225
5	54,1	30,6	16,5	0,0225	0,0036	0,0225
6	54,4	30,7	16,4	0,0225	0,0016	0,0025
7	54,3	30,6	16,3	0,0025	0,0036	0,0025
8	54,1	30,8	16,2	0,0225	0,0196	0,0225
9	54,2	30,5	16,3	0,0025	0,0256	0,0025
10	54,3	30,6	16,4	0,0025	0,0036	0,0025

Soma

Média

Desvio

Um gráfico bem apresentavel

Gráfico: é a maneira de detectar visualmente como varia uma quantidade (y) à medida que uma segunda quantidade (x) também varia. Um gráfico bem feito é talvez a melhor forma de apresentar os dados experimentais.

Erros típicos na elaboração de Gráficos

