SystemML: Declarative Machine Learning on MapReduce

By: Rohit Ranjan

Topics

- Declarative Machine Learning Language(DML)
- SystemML
 - Overview
 - Architecture
 - Components
 - Matrix Multiplication Algorithm
 - Experiments

Why Declarative Machine Learning Language?

Why Declarative Machine Learning Language?

- Data scientists can write an algorithm in an expressive language
- 4 major requirements for Algorithms:
 - **High-level semantics**: A data scientist should be able to write an algorithm in a high-level language without focusing on any low-level implementation details
 - **Flexibility**: A data scientist should have flexibility to leverage existing algorithms with or without any customization
 - **Data independence**: A data scientist should not worry about data characteristics while writing the algorithms.
 - Scale independence: The size of the data could be small or large

State-of-the-Art: Big Data

Data Scientist

Systems Programmer

State-of-the-Art: Big Data

Data Scientist

Days or weeks per iteration Errors while translating algorithms

23 AAPL	30.05.2008	182.75	188.75
24 AAPL	06/06/2008	188.6	185.64
25 AAPL	13/06/2008	184.79	172.37
26 AAPL	20/06/2008	171.3	175.27
27 AAPL	27/06/2008	174.74	170.09
28 AAPL	03/07/2008	170.19	170.12
29 AAPL	0 2038	73.16	172.58
30 AAPL	18/07/2018	179 24	165.15
3: AAPL	25/07/2008	166.9	162.12
32 AAPL	01/08/2008	162.34	156.66
33 AAPL	08/08/2008	156.6	169.55
34 AAPL	15/08/2008	170.07	175.74
35 AAPL	22/08/2008	175.57	176.79
35 AAPL	29/08/2008	176.15	169.53

The SystemML Vision

Data Scientist

The SystemML Vision

Data Scientist


```
4 X = read ($X); # explanatory variables
5 y = read ($Y); # predicted variables
6 n = nrow (X);
8 m = ncol (X);
10 # Rescale the col mns & X if the color of the
```


SystemML

23 AAPL	30/05/2008	182.75	188.75
24 AAPL	06/06/2008	188.6	185.64
25 AAPL	13/06/2008	184.79	172.37
26 AAPL	20/06/2008	171.3	175.27
27 AAPL	27/06/2008	174.74	170.09
28 AAPL	03/07/2008	170.19	170.12
29 AAPL	1/0 02008	73.16	172.58
33 AAPL	18/07/2018	179-24	165.15
31 AAPL	25/07/2008	168.9	162.12
32 AAPL	01/08/2008	162.34	156.66
33 AAPL	08/08/2008	156.6	169.55
34 AAPL	15/08/2008	170.07	175.74
35 AAPL	22/08/2008	175.57	176.79
36 AARI	20/00/2008	178 18	160.62

What is Apache SystemML?

- In a nutshell
 - a language for data scientists to implement scalable ML algorithms
 - 2 language variants: R-like and Python-like syntax
 - Strong foundation of linear algebra operations and statistical functions
 - Comes with approx. 20+ algorithms pre-implemented
 - Cost-based optimizer to compile execution plans
 - Depending on data characteristics (tall/skinny, short/wide; dense/sparse)
 and cluster characteristics
 - ranging from single node to clusters (MapReduce, Spark); hybrid plans
- APIs & Tools
 - Command line: hadoop jar, spark-submit, standalone Java app
 - JMLC: embed as library
 - Spark MLContext: Scala, Python, and Java
 - Tools
- REPL (Scala Spark and pyspark)
- Spark ML pipeline

High level Architecture of SystemML

High-Level Algorithm

Dynamic Recompile Parallel Spark Program

The SystemML Optimizer Stack

DML Script

- Parsing
 - Parse input DML/PyDML using Antlr v4 (see <u>Dml.g4</u> and <u>Pydml.g4</u>)
 - Perform syntactic validation
 - Construct DMLProgram (=> list of Statement and function blocks)
- Live Variable Analysis
 - Classic dataflow analysis
 - A variable is "live" if it holds value that may be needed in future
 - Dead code elimination
- Semantic Validation

- Dataflow in DAGs of operations on matrices, frames, and scalars
- Choosing from alternative execution plans based on memory and cost estimates
- Operator ordering & selection; hybrid plans

- Low-level physical execution plan (LOPDags)
 - Over key-value pairs for MR
 - Over RDDs for Spark
- "Piggybacking" operations into minimal number Map-Reduce jobs

Problems we are going to Discuss-Matrix Multiplication

- For Matrix Multiplication System ML offers two alternative execution plans
 - RMM-Replication based Matrix Multiplication- Requires only one Map-Reduce Job
 - CPMM: Cross Product based Matrix Multiplication- Requires Two Mapreduce jobs

RMM-Replication based Matrix Multiplication

Fig. 1. RMM: Replication based Matrix Multiplication

CPMM: Cross Product based Matrix Multiplication

SystemML vs GNMF (GaussianNon-Negative Matrix Factorization)

Dataset is Sparse Matrix-Calculating Time consumed for Matrix Multiplication Increasing Data Size (V) in 40 Core Cluster Methods Used:

- Hand-Coded GNMF
- SystemML
- Single Node R

Scaling in SystemML-Linear Regression and Page Rank

Performance Comparison- Alternating Least Square

Synthetic data, 0.01 sparsity, 10⁵ products × {10⁵,10⁶,10⁷} users. Data generated by multiplying two rank-50 matrices of normally-distributed data, sampling from the resulting product, then adding Gaussian noise. Cluster of 6 servers with 12 cores and 96GB of memory per server. Number of iterations tuned so that all algorithms produce comparable result quality.

Performance Comparison- Alternating Least Square

 $\blacksquare R$

■ MLLib

SystemML

Recap

Questions

 How does SystemML know it's better to run on one machine?

Answers

Live variable analysis
Propagation of statistics

 Why is SystemML so much faster than singlenode R?

Advanced rewrites

Efficient runtime

Benefits of the SystemML

Approach

Simplifies algorithm development

It can compile and run algorithm at scale

No additional performance code needed!

Your code gets faster as the system improves

Question?