Consecuencia lógica y satisfacibilidad

Clase 03

IIC 1253

Prof. Cristian Riveros

Outline

Consecuencia lógica

Satisfacibilidad

Outline

Consecuencia lógica

Satisfacibilidad

Modelación en lógica proposicional

Si Pedro estudia para la I1, entonces obtendrá un buena nota.

Pedro y Sofía estudiaron para la I1.

Por lo tanto, Pedro obtendrá una buena nota.

¿cómo formalizamos esta deducción en lógica proposicional?

¿Cuáles son nuestras proposiciones básicas?

PE := Pedro estudia para la l1

SE := Sofía estudia para la I1

BN := Pedro obtiene una buena nota.

¿Cuáles son nuestras proposiciones compuestas?

PE → BN := Si Pedro estudia para la I1, entonces obtendrá un buena nota.

PE ∧ SE := Pedro y Sofía estudiaron para la I1

Modelación en lógica proposicional

¿por qué decimos que esta deducción es válida?

PΕ	SE	BN	$PE \rightarrow BN$	$PE \wedge SE$	BN
0	0	0	1	0	0
0	0	1	1	0	1
0	1	0	1	0	0
0	1	1	1	0	1
1	0	0	0	0	0
1	0	1	1	0	1
1	1	0	0	1	0
1	1	1	1	1	1

Modelación en lógica proposicional (otro ejemplo)

$$PE \lor SE$$
 $PE :=$ Pedro estudia para la I1 $\neg PE \lor SE$ $SE :=$ Sofía estudia para la I1 SE $BN :=$ Pedro obtiene una buena nota.

¿por qué decimos que esta deducción es válida?

PΕ	SE	PE ∨ SE	$\neg PE \lor SE$	SE
0	0	0	1	0
0	1	1	1	1
1	0	1	0	0
1	1	1	1	1
	PE 0 0 1 1 1	PE SE 0 0 0 1 1 0 1 1	PE SE PE ∨ SE 0 0 0 0 1 1 1 0 1 1 1 1	PE SE PE ∨ SE ¬PE ∨ SE 0 0 0 1 0 1 1 1 1 0 1 0 1 1 1 1

Modelación en lógica proposicional (anti-ejemplo)

 $PE \rightarrow BN$ PE := Pedro estudia para la I1 $<math>PE \lor SE$ SE := Sofía estudia para la I1<math>BN := Pedro obtiene una buena nota.

¿por qué decimos que esta deducción es inválida?

PE	SE	BN	PE → BN	$PE \vee SE$	BN	
0	0	0	1	0	0	
0	0	1	1	0	1	
0	1	0	1	1	0	×
0	1	1	1	1	1	
1	0	0	0	1	0	
1	0	1	1	1	1	
1	1	0	0	1	0	
1	1	1	1	1	1	

Consecuencia lógica

Sea $\Sigma = \{\alpha_1, \ldots, \alpha_m\}$ un conjunto de formulas con variables p_1, \ldots, p_n .

Definición

■ Diremos que α es consecuencia lógica de Σ si, y solo si, para toda valuación v_1, \ldots, v_n se tiene que:

si
$$\left[\bigwedge_{i=1}^{m} \alpha_i\right](v_1,\ldots,v_n) = 1$$
, entonces $\alpha(v_1,\ldots,v_n) = 1$.

- Si α es consecuencia lógica de Σ , entonces escribiremos $\Sigma \vDash \alpha$.
- Diremos que $\alpha_1, \ldots, \alpha_m$ son premisas y α la conclusión.

Ejemplo

Algunas consecuencias lógicas clásicas

Consecuencias lógicas

1. Modus ponens: $\{p, p \rightarrow q\} \models q$

p	q	р	$p \rightarrow q$	q
0	0	0	1	0
0	1	0	1	1
1	0	1	0	0
1	1	1	1	1

2. Modus tollens: $\{\neg q, p \rightarrow q\} \vDash \neg p$

p	q	$\neg q$	$p \rightarrow q$	$\neg p$
0	0	1	1	1
0	1	0	1	1
1	0	1	0	0
1	1	0	1	0

Algunas consecuencias lógicas clásicas

Consecuencias lógicas

3. **Resolución**: $\{p \lor q, \neg q \lor r\} \models p \lor r$

р	q	r	$p \lor q$	$\neg q \lor r$	p∨r
0	0	0	0	1	0
0	0	1	0	1	1
0	1	0	1	0	0
0	1	1	1	1	1
1	0	0	1	1	1
1	0	1	1	1	1
1	1	0	1	0	1
1	1	1	1	1	1

Sobre consecuencia lógica

¿cuáles de las siguientes afirmaciones son verdaderas?

 $\blacksquare \ \{\mathbf{1}\} \vDash \alpha \ \ \text{entonces} \ \ \alpha \ \text{es una tautología}.$

- ,
- Si α es una contradicción, entonces $\{\alpha\} \models \beta$ para toda formula β . \checkmark

Demuestre estas afirmaciones.

Algunas reglas de consecuencia lógica

- 1. Modus ponens: $\{p, p \rightarrow q\} \models q$
- 2. Modus tollens: $\{ \neg q, p \rightarrow q \} \models \neg p$
- 3. Silogismo: $\{p \rightarrow q, q \rightarrow r\} \models p \rightarrow r$
- 4. Silogismo disyuntivo: $\{p \lor q, \neg p\} \models q$
- 5. Conjunción: $\{p, q\} \models p \land q$
- 6. Simplificación conjuntiva: $\{p \land q\} \models p$
- 7. Aplificación disyuntiva: $\{p\} \models p \lor q$
- 8. Demostración condicional: $\{p \land q, p \rightarrow (q \rightarrow r)\} \models r$
- 9. Demostración por casos: $\{p \rightarrow r, q \rightarrow r\} \models (p \lor q) \rightarrow r$

Composición y consecuencia lógica

Sean $\Sigma = \{\alpha_1(p_1, \dots, p_n), \dots, \alpha_m(p_1, \dots, p_n)\}$ y β_1, \dots, β_n formulas proposicionales.

Definición

La **composición** $\Sigma(\beta_1,...,\beta_n)$ es el conjunto resultante de componer cada formula en Σ con $\beta_1,...,\beta_n$, esto es:

$$\Sigma(\beta_1,\ldots,\beta_n) = \{\alpha_1(\beta_1,\ldots,\beta_n),\ldots,\alpha_m(\beta_1,\ldots,\beta_n)\}$$

Teorema

Sean Σ un conjunto de formulas y $\alpha(p_1,\ldots,p_n)$, β_1,\ldots , β_n formulas.

Si $\Sigma \vDash \alpha$, entonces $\Sigma(\beta_1, \ldots, \beta_n) \vDash \alpha(\beta_1, \ldots, \beta_n)$.

Demuestre este teorema (muy similar al caso de equivalencia lógica)

¿cómo demostramos que $\Sigma \vDash \alpha$?

- 1. Verificando todas las valuaciones (tabla de verdad).
- 2. Deducimos α desde Σ usando alguna de las reglas anteriores.

¿cómo demostramos que $\Sigma \vDash \alpha$?

¿cuáles de las siguientes afirmaciones son verdaderas?

1. Si
$$\{\alpha_1, \ldots, \alpha_m\} \vDash \alpha$$
, entonces $\{\alpha_1, \ldots, \alpha_m, \beta\} \vDash \alpha$ para toda formula β .

2. Si
$$\{\alpha_1, \ldots, \alpha_m, \beta\} \models \alpha$$
, entonces $\{\alpha_1, \ldots, \alpha_m\} \models \alpha$.

3. Si
$$\{\alpha_1, \ldots, \alpha_m, \beta\} \models \alpha$$
 y $\{\alpha_1, \ldots, \alpha_m\} \models \beta$, entonces $\{\alpha_1, \ldots, \alpha_m\} \models \alpha$.

Podemos usar las reglas de consecuencia lógica más 1. y 3. para demostrar nuevas reglas de consecuencia lógica.

¿cómo demostramos que $\Sigma \vDash \alpha$?

```
Ejemplo
i \{ p, p \rightarrow q, s \lor r, \neg s \land \neg t \} \models q \land r ?
                 1. p (Premisa)
                 2. p \rightarrow q (Premisa)
                 3. q (Modus Ponens 1 y 2)
                 4. s \lor r (Premisa)
                 5. \neg s \rightarrow r (equivalencia con 4.)
                 6. \neg s \land \neg t (Premisa)
                 7. \neg s (Simplificación conjuntiva 6)
                 8. r \pmod{\text{Modus Ponens 5 y 7}}
                 9. q \wedge r (Conjunción 3 y 8)
```

¿alguna estrategia mejor?

Outline

Consecuencia lógica

Satisfacibilidad

Satisfacción de un conjunto de formulas

Definiciones

• $\alpha(p_1,\ldots,p_n)$ se dice satisfacible si existe una valuación v_1,\ldots,v_n :

$$\alpha(v_1,\ldots,v_n) = 1$$

- $\Sigma = \{\alpha_1, \dots, \alpha_m\}$ con variables p_1, \dots, p_n se dice satisfacible si existe una valuación v_1, \dots, v_n tal que: $\left[\bigwedge_{i=1}^m \alpha_i\right](v_1, \dots, v_n) = 1$.
- Σ es inconsistente si NO es satisfacible.

¿qué propiedad cumple la tabla de verdad de una formula satisfacible? ¿y la del conjunto?

Satisfacción de un conjunto de formulas

Definiciones

 $\alpha(p_1,\ldots,p_n)$ se dice satisfacible si existe una valuación v_1,\ldots,v_n :

$$\alpha(v_1,\ldots,v_n) = 1$$

- $\Sigma = \{\alpha_1, \dots, \alpha_m\}$ con variables p_1, \dots, p_n se dice satisfacible si existe una valuación v_1, \dots, v_n tal que: $\left[\bigwedge_{i=1}^m \alpha_i\right](v_1, \dots, v_n) = 1$.
- Σ es inconsistente si NO es satisfacible.

¿cuál de las siguientes formulas/conjuntos son satisfacibles?

- $(p \lor q \lor r) \land (\neg p \lor \neg q \lor \neg r)$
- \blacksquare { $\neg q \lor p$, $q \lor \neg r$, $\neg p \lor r$ }

Consecuencia lógica vs satisfacibilidad

Teorema

$$\{\alpha_1,\ldots,\alpha_m\} \vDash \alpha$$
 si, y solo si, $\{\alpha_1,\ldots,\alpha_m,\neg\alpha\}$ es inconsistente.

Demostración (⇒)

Suponga que $\{\alpha_1,\ldots,\alpha_m\} \vDash \alpha$.

PD: para toda v_1, \ldots, v_n se cumple que $\left[\bigwedge_{i=1}^m \alpha_i \wedge \neg \alpha \right] (v_1, \ldots, v_n) = 0$.

Tomamos una valuación cualquiera v_1, \ldots, v_n y tenemos dos casos:

- 1. Si $[\bigwedge_{i=1}^{m} \alpha_i](v_1,\ldots,v_n)=0$,
 - entonces $\left[\bigwedge_{i=1}^{m} \alpha_i \wedge \neg \alpha\right] (v_1, \dots, v_n) = 0.$

(; por qué?)

- 2. Si $\left[\bigwedge_{i=1}^{m} \alpha_i\right] (v_1, \dots, v_n) = 1$, entonces:
 - $\alpha(v_1,\ldots,v_n)=1$
 - $\neg \alpha(v_1,\ldots,v_n)=0$

... y por lo tanto $\left[\bigwedge_{i=1}^{m} \alpha_i \wedge \neg \alpha\right] (v_1, \ldots, v_n) = 0.$

Consecuencia lógica vs satisfacibilidad

Teorema

$$\{\alpha_1, \dots, \alpha_m\} \models \alpha$$
 si, y solo si, $\{\alpha_1, \dots, \alpha_m, \neg \alpha\}$ es inconsistente.

Demostración (←)

Suponga que $\{\alpha_1, \ldots, \alpha_m, \neg \alpha\}$ es inconsistente.

PD1: para toda v_1, \ldots, v_n ,

si
$$\left[\bigwedge_{i=1}^{m} \alpha_i\right](v_1,\ldots,v_n) = 1$$
, entonces $\alpha(v_1,\ldots,v_n) = 1$.

Sea v_1, \ldots, v_n una valuación cualquiera tal que $\left[\bigwedge_{i=1}^m \alpha_i \right] (v_1, \ldots, v_n) = 1$.

PD2:
$$\alpha(v_1, ..., v_n) = 1$$
.

$$\left[\bigwedge_{i=1}^{m} \alpha_{i}\right](v_{1}, \ldots, v_{n}) = 1 \quad \text{entonces} \quad \neg \alpha(v_{1}, \ldots, v_{n}) = 0 \quad \text{(ipor qué?)}$$

$$\text{entonces} \quad \alpha(v_{1}, \ldots, v_{n}) = 1$$

Satisfacibilidad y representación de problemas

Problema

Dada una fórmula α , queremos verificar si α es satisfacible.

¿cómo podemos hacer esto eficientemente?

- El problema de satisfacción es un problema fundamental tanto en ciencia de la computación como en ingeniería.
- Muchos otros problemas pueden ser resueltos usando este problema.

Más sobre satisfiabilidad en IA, lógica para CS, etc ...