MVO-31: Desempenho de Aeronaves

Modelo aerodinâmico

Flávio Ribeiro

Departamento de Mecânica do Voo Divisão de Engenharia Aeroespacial Instituto Tecnológico de Aeronáutica

- sustentação: perpendicular ao vetor velocidade
- arrasto: na direção do vetor velocidade
- ▶ escritos usando **coeficientes adimensionais** de arrasto (C_D) e sustentação (C_L) :

$$D=\frac{1}{2}\rho(H)\,V_\infty^2SC_D(\alpha,M,{\rm Re})$$

$$L=\frac{1}{2}\rho(H)\,V_\infty^2SC_L(\alpha,M,{\rm Re}) \ , \ {\rm onde}$$

 $q_{\infty} = \frac{1}{2} \rho(H) \, V_{\infty}^2$ é a pressão dinâmica do escoamento não perturbado

S é a área de referência (área da asa, ou área em planta da aeronave)

- parâmetros para a determinação dos coeficientes:
 - $ightharpoonup \alpha$: ângulo de ataque (AoA)
 - ightharpoonup M: número de Mach \longrightarrow compressibilidade
 - ightharpoonup Re: número de Reynolds \longrightarrow viscosidade

Força Aerodinâmica Coeficiente de sustentação C_L

- ightharpoonup o parâmetro de maior influência é o ângulo de ataque lpha
- ightharpoonup para os casos estudados em desempenho (pequenos ângulos de ataque) C_L pode ser considerado proporcional a α :

$$C_L = C_{L\alpha} (\alpha - \alpha_0)$$

= $C_{L0} + C_{L\alpha} \alpha$

 $\begin{array}{ll} \blacktriangleright & C_{L\alpha} = \frac{\mathrm{d} \; C_L}{\mathrm{d} \; \alpha} \colon 2\pi \; \mathrm{para \; placa \; plana \; (\alpha \; \\ \mathrm{em \; rad); \; para \; outros \; aerofólios \; \\ \mathrm{assume \; valores \; menores; \; para \; a} \\ \mathrm{aeronave \; como \; um \; todo, \; depende \; } \\ \mathrm{das \; parcelas \; de \; todas \; as \; superfícies \; } \\ \mathrm{sustentadoras} \end{array}$

- C_{L0}: coeficiente de sustentação para ângulo de ataque nulo
- C_{Lmax}: coeficiente de sustentação máxima

Força Aerodinâmica Coeficiente de sustentação C_L

Exemplo: NACA 0006 (simétrico)

Coeficiente de sustentação $\,C_L\,$

Exemplo: NACA 4412 (arqueado)

Coeficiente de arrasto C_D

- comumente divide-se em arrasto parasita (C_{D0}) e arrasto de induzido.
- arrasto de sustentação (arrasto induzido), origem: efeito tridimensional das asas (finitas)
- ▶ medida de arrasto: DRAG COUNTS 1 drag count $\Rightarrow C_D = 0.0001$

fonte: Yechout et. al, Introduction to aircraft flight mechanics, AIAA Educational Series, 2003, pp. 44.

Polar de arrasto

$$C_D = C_D(\alpha, M, \text{Re})$$

 $C_L = C_L(\alpha, M, \text{Re})$

 \triangleright eliminando α :

$$C_D = C_D(C_L, M, \text{Re})$$

- ▶ para cada conjunto $\{M, Re\}$, o gráfico $C_D = C_D(C_L, M, Re)$ é chamado **polar de arrasto**
- polar de arrasto simétrica:

$$C_D = C_{D0} + K \times C_L^2$$

Polar de arrasto

Para uma superfície sustentadora, o fator de arrasto induzido ${\cal K}$ pode ser calculado como:

$$K = \frac{1}{\pi eAR}$$

onde:

- ightharpoonup e: fator de eficiência de Oswald (0.7 0.85 em regime subsônico)
- ▶ AR: alongamento da asa (b^2/S) , onde b é a envergadura, e S a área em planta

Polar de arrasto

Exemplo: A aeronave de alto desempenho A-10 (Fairchild Republic) em vôo horizontal não acelerado possui as seguintes características:

$$C_{D\,0}=320$$
 drag counts, $AR=6.5$, $S=506 ft^2$, $e=0.87$, $C_{L{
m max}}=2.0$

Eficiência aerodinâmica

ightharpoonup chama-se de eficiência aerodinâmica E a razão entre sustentação e arrasto:

$$E = \frac{L}{D} = \frac{C_L}{C_D} = \frac{C_L}{C_{D0} + K \times C_L^2}$$

- ightharpoonup para dado C_L deseja-se que C_D seja o menor possível
- ightharpoonup máxima eficiência aerodinâmica: $\partial E/\partial C_L=0$

$$C_L|_{E_{\text{max}}} = C_L^* = \sqrt{\frac{C_{D0}}{K}}$$
 $C_D|_{E_{\text{max}}} = C_D^* = 2C_{D0}$
 $E_{\text{max}} = \frac{1}{2\sqrt{KC_{D0}}}$

Eficiência aerodinâmica

$$E = \frac{C_L}{C_D} = \tan \kappa$$

ightharpoonup o máximo ângulo κ tangencia a parábola

Eficiência aerodinâmica

Eficiência aerodinâmica

Máxima eficiência aerodinâmica para diferentes tipos de aeronave:

planadores	35
aviões de transporte (M 0.8)	18
aviões de combate subsônicos	10
aviões supersônicos	7
helicópteros	3

