Recap - Intro. to Deep Learning

Rina BUOY

AMERICAN UNIVERSITY OF PHNOM PENH

STUDY LOCALLY. LIVE GLOBALLY.

Why Deep Learning?

Features Classifier

Why Deep Learning?

Hand engineered features are time consuming, brittle, and not scalable in practice

Can we learn the **underlying features** directly from data?

Low Level Features Mid Level Features High Level Features Lines & Edges High Level Features Facial Structure

Why Now?

Stochastic Gradient 1952 Descent Perceptron 1958 Learnable Weights : 1986 Backpropagation Multi-Layer Perceptron 1995 Deep Convolutional NN Digit Recognition

Neural Networks date back decades, so why the dominance?

I. Big Data

- Larger Datasets
- Easier Collection
 & Storage

2. Hardware

- Graphics
 Processing Units
 (GPUs)
- Massively Parallelizable

3. Software

- Improved Techniques
- New Models
- Toolboxes

The Perceptron – A Neuron

Beyond Sigmoid - Activation Functions

Sigmoid Function

$$g(z) = \frac{1}{1 + e^{-z}}$$

$$g'(z) = g(z)(1 - g(z))$$

Hyperbolic Tangent

$$g(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}}$$

$$g'(z) = 1 - g(z)^2$$

Rectified Linear Unit (ReLU)

$$g(z) = \max(0, z)$$

$$g'(z) = \begin{cases} 1, & z > 0 \\ 0, & \text{otherwise} \end{cases}$$

Activation Functions

The purpose of activation functions is to introduce non-linearities into the network

Linear activation functions produce linear decisions no matter the network size

Non-linearities allow us to approximate arbitrarily complex functions

From Perceptron to Neural Network

The Perceptron: Compact Notation

$$z = w_0 + \sum_{j=1}^m x_j w_j$$

Beyond One Output – Multivariate Case

Because all inputs are densely connected to all outputs, these layers are called **Dense** layers

$$z_{\underline{i}} = w_{0,\underline{i}} + \sum_{j=1}^{m} x_j w_{j,\underline{i}}$$

Now, Neural Network

Called a single layer neural network because there is only one layer of hidden neurons.

Beyond Single Layer - Deep Neural Network

Example Problem

Example Problem

Model Training

We want to find the network weights that achieve the lowest loss

Loss Functions & Training

Cross entropy loss can be used with models that output a probability between 0 and 1

Mean squared error loss can be used with regression models that output continuous real numbers

$$J(\mathbf{W}) = -\frac{1}{n} \sum_{i=1}^{n} \underbrace{y^{(i)} \log \left(f(x^{(i)}; \mathbf{W}) \right) + (1 - y^{(i)}) \log \left(1 - f(x^{(i)}; \mathbf{W}) \right)}_{\text{Predicted}}$$
Actual Predicted

Algorithm

- 1. Initialize weights randomly $\sim \mathcal{N}(0, \sigma^2)$
- 2. Loop until convergence:
- 3. Compute gradient, $\frac{\partial J(W)}{\partial W}$
- 4. Update weights, $\mathbf{W} \leftarrow \mathbf{W} \eta \frac{\partial J(\mathbf{W})}{\partial \mathbf{W}}$
- 5. Return weights

Practically, compute over a mini-batch.

Dropout

- During training, randomly set some activations to 0
 - Typically 'drop' 50% of activations in layer
 - Forces network to not rely on any I node

Early Stopping

Stop training before we have a chance to overfit

Summary

The Perceptron

- Structural building blocks
- Nonlinear activation functions

Neural Networks

- Stacking Perceptrons to form neural networks
- Optimization through backpropagation

Training in Practice

- Adaptive learning
- Batching
- Regularization

