

# Exploring the Development of Novel Sensor Systems for Human Occupancy Detection

Brandon Joel Gonzalez

Advisors: Dr. Camillo Jose Taylor, Dr. Madhu Annapragada

May 7th, 2021

ROBO 597: Master's Thesis Presentation



### **Overview**

- 1. Introduction
- 2. Background Research
- 3. Experimental Design
- 4. Analysis of Results
- 5. Conclusion

# 1. Introduction

#### What is occupancy detection and why is it useful?

- Any kind of system that can autonomously detect someone in the vicinity
- Depending on the application of the system:
  - Some systems only detect some motion
  - Others may count and track targets in the environment
- The kinds of applications are endless:
  - Building automation
  - Safety precautions
  - Autonomous navigation



#### What are some challenges in this field?

- Occupancy detection systems require the use of a sensor (or some combination of sensors)
- Sensor design is often a balance of:
  - Accuracy how consistent is the device in detecting humans?
  - Power how much energy does this device consume?
  - Cost how expensive is this device?
- The goal of this thesis is to design a hybrid sensor system that is comparable to vision



# 2. Background Research

#### The different kinds of sensors for occupancy detection

- There exists a wide variety of sensors that utilize the electromagnetic spectrum to detect humans:
  - Vision
  - Audio
  - Ultrasonic
  - Infrared
  - Millimeter wave
- We'll discuss some of the sensor types considered for this thesis in more detail over the next few slides

#### **Optical Camera**

- Captures image on a light-sensitive surface
- Ubiquitous in our world, from personal phones to surveillance systems
- Can run standard computer vision algorithms
- But there are concerns over power consumption and privacy
- Used the Arducam as a baseline





#### **Passive Infrared (PIR)**

- Looks for differences in the infrared heat signature of an environment
- Initializes to a baseline heat signature, then able to detect changes based on motion in the scene
- Can come as low-powered devices
- But can't track someone or distinguish between multiple targets
- Used the HC-SR501 for hybrid system



#### **Infrared Camera**

- Also utilizes the infrared spectrum
- Uses a thermopile array to convert thermal → electrical energy
- Yields a pixel-by-pixel map of an environment's heat signature
- Not as high-quality resolution as an optical camera
- But more useful than a PIR sensor for target tracking
- Used the AMG8833 for hybrid system



#### Millimeter Wave (MMW)

- Radio-frequency antenna system which transmits energy and receives reflections using the MMW spectrum
- Robust not as affected by environmental conditions such as lighting compared to other sensors
- Used the IWR6843 for hybrid system
  - RF antenna integrated with on-chip
    ARM MCU + TI DSP chip
  - Transmits point-cloud data over USB



#### **Comparisons**

 Below is a table that compares the different sensor devices discussed, comparing the sensors in their outputs, power consumption, and cost in dollars:

| Sensing Type        | Output                 | Power      | Cost         |
|---------------------|------------------------|------------|--------------|
| Vision (Arducam)    | 1080p (USB)            | 300 mA     | \$34.99      |
| PIR (HC-SR501)      | Digital Signal (Pin)   | 50 μA      | \$9.99 for 5 |
| IR Camera (AMG8833) | 8x8 Pixels (I2C)       | 4.5 mA     | \$40.95      |
| MMW (IWR6843)       | Point-Cloud Data (USB) | 50-2000 mA | \$125.00     |

#### Past research in the area of occupancy detection

- A 2019 paper, A novel occupancy detection solution using low-power IR-FPA based wireless occupancy sensor (Mikkilineni et. al), influenced the system design of this thesis
- They used a variety of sensors including PIR, ambient light, and longwave infrared
- They had two tiers of sensors the first tier was always active and triggered the second tier once some activity was detected
- This idea will show up in our experimental design



# 3. Experimental Design

#### **Experimental Layout**

- We utilized the 4th floor Levine GRASP Laboratory
- Provided an open space to walk in front of the sensors for testing
- Devices were mounted onto pillar in center of room



#### **Camera Baseline**

- Used Arducam to stream data over USB into MATLAB
- Within MATLAB, utilized the Cascade Object Detector (from the Computer Vision Toolbox)
- Used the Viola-Jones algorithm to detect and label the upper body within the frame



#### **Hybrid Sensor - System Design**

- Used an ATMega328p MCU to read the PIR sensor + IR camera & send data over USB
- MMW also sent its data over USB
- MATLAB processed the data streams and determined whether someone was in the scene
- PIR sensor was used to trigger IR camera, then IR camera triggered MMW sensor - more efficient to use a tiered system rather than have devices constantly on





#### **Hybrid Sensor - Target Detection for IR Camera**

- IR camera produces a temperature heatmap - we can use image segmentation on this
- Interpolate image from 8x8 to 32x32, then turn into a binary image using a threshold value
- Run connected components algorithm effectively groups together pixels that are adjacent to each other to yield a number of blobs



#### **Hybrid Sensor - Target Detection for MMW Sensor**

- MMW sensor uses a signal processing algorithm on the front-end data coming from the radar
- Signal processing includes using an FFT, removing false detections in the scene, and grouping together points to label a target in the range





# 4. Analysis of Results

#### **Method of Evaluation**

- Based off an evaluation method from Texas Instruments, used the following metrics:
  - Good Measurement Rate (GMR) percentage of measurements with no errors
  - Miss Detection Rate (MDR) Ratio of individuals missed to total individuals across all measurements
  - False Detection Rate (FDR) Ratio of false positives to total individuals across all measurements
- And tested three different scenarios:
  - Scenario 1: Individual enters the scene and remains in the vicinity of the sensor, standing still, until the end of the trial
  - Scenario 2: Individual enters the scene and remains in the vicinity of the sensor, moving around the scene, until the end of the trial
  - Scenario 3: Individual enters the scene and exits the scene before the end of the trial



#### **Camera Baseline**

- Vision algorithm began to struggle when target was consistently moving or came too close to camera
- Lighting may have been an issue for the camera
- Algorithm was triggering on environmental cues
- Could refine vision algorithm to deal with motion better

| Scenario-Trial | GMR  | MDR  | FDR  |
|----------------|------|------|------|
| 1-1            | 0.80 | 0.30 | 0.20 |
| 1-2            | 0.70 | 0.78 | 0.66 |
| 1-3            | 0.65 | 0.25 | 0.10 |
| 1-AVG          | 0.72 | 0.44 | 0.32 |
| 2-1            | 0.40 | 0.63 | 0.10 |
| 2-2            | 0.70 | 0.32 | 0.11 |
| 2-3            | 0.55 | 0.42 | 0.05 |
| 2-AVG          | 0.55 | 0.46 | .09  |
| 3-1            | 0.60 | 0.78 | 0.78 |
| 3-2            | 0.75 | 0.50 | 0.70 |
| 3-3            | 0.65 | 0.63 | 0.50 |
| 3-AVG          | 0.67 | 0.64 | 0.66 |

#### **Hybrid Sensor System**

- System struggled when target sat motionless, as MMW may have removed them as static clutter
- Did a better job of tracking the target when they kept moving, compared to camera
- IR camera handles stationary targets well + MMW handles targets in motion well - could optimize system based on this

| Scenario-Trial | GMR  | MDR  | FDR  |
|----------------|------|------|------|
| 1-1            | 0.40 | 0.60 | 0.00 |
| 1-2            | 0.40 | 0.60 | 0.00 |
| 1-3            | 0.40 | 0.60 | 0.00 |
| 1-AVG          | 0.40 | 0.60 | 0.00 |
| 2-1            | 0.40 | 0.60 | 0.00 |
| 2-2            | 0.65 | 0.35 | 0.00 |
| 2-3            | 0.60 | 0.60 | 0.20 |
| 2-AVG          | 0.55 | 0.51 | 0.06 |
| 3-1            | 0.25 | 0.00 | 1.87 |
| 3-2            | 0.20 | 0.43 | 0.71 |
| 3-3            | 0.80 | 0.33 | 0.00 |
| 3-AVG          | 0.42 | 0.25 | 0.86 |



# 5. Conclusion

#### **Possible Improvements**

- Hybrid sensor system could identify a target similar to the camera, but there is room for improvement:
  - Better sensors another IR camera (or higher resolution) could help with tracking
  - Better integration using a more powerful MCU such as a Raspberry Pi so that all computation occurs on the same platform
  - Better algorithm perhaps using more advanced sensor fusion, such as Kalman filtering

#### **Looking Forward**

- As discussed at the start, the applications of occupancy detection sensors are endless
- This project was originally inspired by discussions with Dr. Taylor, Dr. Madhu Annapragrada (of Automation Research Group), and Michael Wong and Dayo Adewole (of Instahub) - for the purpose of automatic lighting control
- This technology could also be useful in the pandemic era of social distancing
- These are just a few of many examples
- My hope is that this work has helped provide some insight into the technology and tools available in this field!



# Thank you so much for your time and attention!