150467 LIZALOUREEN MAWIA KITHEKA

A) Simulation and implementation of logic gates using the basic and universal gate

NAND GATE

NOR GATE

NOR GATE TRUTH TABLE

A	В	(A+B)'
0	1	0
0	0	1
1	1	0
1	0	0

NAND GATE TRUTH TABLE

Α	В	(AB)'
0	1	1
0	0	1
1	1	0
1	0	1

TRUTH TABLE FOR AB+A'B'

Α	В	AB+A'B'
0	0	1
0	1	0
1	0	0
1	1	1

PART B: Gate level Minimization

 $Y = \overline{ABCD} + \overline{ABCD} + ABC\overline{D} + AB\overline{CD} + AB\overline{CD} + AB\overline{CD} + AB\overline{CD}$

Ī	Α	В	С	D	A'B'C	A'BCD	AB'CD	AB'CD	AB'C'	AB'C'	AB'CD	Υ
					D'	,	,		D'	D		

0	0	0	1	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	1	1	1	0	0	0	0	0	0	1
0	0	1	0	0	0	0	0	0	0	0	0
0	1	0	1	0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0	0	0	0	0
0	1	1	1	0	0	0	0	0	0	0	1
0	1	1	0	0	1	0	0	0	0	0	0
1	0	0	1	0	0	0	0	0	0	0	1
1	0	0	0	0	0	0	0	1	0	0	1
1	0	1	1	0	0	0	0	0	1	0	1
1	0	1	0	0	0	0	1	0	0	1	1
1	1	0	1	0	0	0	0	0	0	0	0
1	1	0	0	0	0	0	0	0	0	0	0
1	1	1	1	0	0	1	0	0	0	0	1
1	1	1	0	0	0	0	0	0	0	0	0

	00	01	11	10
00				1
01				1
11				1
10	1	1	1	1

= (m8+m9+m11+m10) + (m2+m6+m14+m10)

= AB' + CD'

K-MAP using normal Gates.

K-MAP using NOR Gates.

Question 2A)

Y = A'C + A'B + AC + BC

А	В	С	A'C	A'B	AC	ВС	Υ	A'B+C
0	0	1	0	0	0	0	0	0
0	0	0	1	0	0	0	1	1
0	1	1	0	1	0	0	1	1
0	1	0	1	1	0	1	1	1
1	0	1	0	0	0	0	0	0
1	0	0	0	0	1	0	1	1

1	1	1	0	0	0	0	0	0
1	1	0	0	0	1	1	1	1

circuit: Y = A'C + A'B + AC + BC

BOTH CIRCUITS ARE IDENTICAL

 $F(w,x,y,z) = \prod (0,1,4,5,6,7,8,9)$

	00	01	11	10
00	0	0	1	1
01	0	0	0	0
11	1	1	1	1

10 0 0 1 1

(m4+m5+m7+m6) + (m8+m9+m0+m1)

w'xy'z'+w'xy'z+w'xyz+w'xyz'=w'x+

Wx'y'z'+wx'y'z+w'x'y'z+w'y'x'z=x'y'

=(w'x+x'y')'

=(w'x)'(x'y')

=(w+x')(x+y);

Circuit for (w+x')(x+y)

