Chapter 4 Notions sur les fonctions en analyse

4.1 Fonctions d'une variable réelle à valeurs réelles

Exercice 4.3 (*)

Déterminer l'ensemble de définitions de la fonction $f: x \mapsto \sqrt{x-4} + \sqrt{6-x}$.

Exercice 4.4 (**)

Déterminer l'ensemble de définitions de la fonction $f: x \mapsto \frac{1}{\sin x - \cos x}$.

Exercice 4.5 (**)

Déterminer l'ensemble de définitions de la fonction $f: x \mapsto \sqrt{(x-1)(x-5)(x-7)}$.

Exercice 4.6 (*)

Déterminer l'ensemble de définitions de la fonction $f: x \mapsto \sqrt{x^2 - 6x + 8}$.

Exercice 4.8 (*)

Déterminer l'ensemble de définitions de la fonction $f: x \mapsto \sqrt{\sin^3 x}$.

Exercice 4.9 (***)

Déterminer le domaine de définition des fonctions d'une variable réelle ci-dessous.

1.
$$f(x) = x^2$$
.

2.
$$f(x) = \sqrt{1-x}$$
.

$$3. \ f(x) = \frac{1}{\sqrt{x^2 - 5}}.$$

4.
$$f(x) = \frac{\sqrt{-x}}{\sqrt{x-1}}$$
.

5.
$$f(x) = \sqrt{\frac{-x}{x-1}}$$
.

6.
$$f(x) = \sqrt{x(x+1)^2}$$
.

7.
$$f(x) = \sqrt{-1 + 2x^2 - x^4}$$

8.
$$f(x) = \frac{1}{\sqrt{x - x^3}}$$
.

9.
$$f(x) = x^{1/\lfloor x \rfloor}$$
.

10.
$$f(x) = |x| + \frac{x^2}{x}$$
.

11.
$$f(x) = \frac{1}{|x|^3 - 7|x| + 6}$$
.

Exercice 4.10 (**)

Trouver l'ensemble de définition de

$$g: x \mapsto \frac{x^2 + 3x + 2}{x^2 + 3x - 4}$$
 et $h: x \mapsto \ln \frac{x^2 + 3x + 2}{x^2 + 3x - 4}$.

4.2 Courbe représentative d'une fonction

Exercice 4.12 (*)

La courbe d'équation y = f(x) étant donnée. Apparier chaque équation à sa courbe représentative. Expliquer votre choix.

34

(a)
$$y = f(x - 4)$$

(b)
$$y = \frac{1}{2}f(x)$$

(c)
$$y = 2f(x+6)$$

(d)
$$y = f(x) + 3$$

(e)
$$y = -f(x+4)$$

Exercice 4.13 (*)

La courbe de f étant donnée, dessiner les courbes suivantes

(a)
$$y = f(x+4)$$

(b)
$$y = f(x) + 4$$

(c)
$$y = 2f(x)$$

(d)
$$y = -\frac{1}{2}f(x) + 4$$

Exercice 4.14 (*)

La courbe de f étant donnée, dessiner les courbes suivantes

(a)
$$y = f(2x)$$

(b)
$$y = f(-x)$$

(c)
$$y = f\left(\frac{1}{2}x\right)$$

(d)
$$y = -f(-x)$$

Exercice 4.15 (**)

Utiliser les courbes représentatives de f et g pour évaluer chacune des expressions suivantes, ou expliquer pourquoi elle ne sont pas définies.

- **1.** f(g(2)).
- **2.** $(g \circ f)(6)$.
- **3.** g(f(0)).
- **4.** $(g \circ g)(-2)$.
- **5.** $(f \circ g)(0)$.
- **6.** $(f \circ f)(4)$.

Exercice 4.16 (**)

La courbe de la fonction f étant donnée, tracer les courbes d'équations cartésiennes

- 1. y = f(x 8),
- 2. y = -f(x),
- 3. y = 2 f(x),
- **4.** $y = \frac{1}{2}f(x) 1$,
- 5. $y = f^{-1}(x)$,
- **6.** $v = f^{-1}(x+3)$.

Exercice 4.18 (**)

1.
$$f\left(\frac{1}{2}(x+|x|)\right)$$
;

2.
$$f\left(\frac{1}{2}(x-|x|)\right)$$
;

3.
$$\frac{1}{2}xf(x)$$
;

Symétries du graphe

Exercice 4.20 (**)

Déterminer si les fonctions d'une variables réelle suivantes sont paires et si elles sont impaires.

36

1.
$$x \mapsto \frac{1}{\sqrt[3]{(x-2)^2}}$$
.

2.
$$x \mapsto \frac{x^2}{|x|}$$
.

3.
$$x \mapsto \frac{3}{x(x^2+1)}$$
.

4.
$$x \mapsto 0$$
.

5.
$$x \mapsto \frac{1}{x-1} - \frac{1}{x-1}$$
.

6.
$$x \mapsto \frac{x^3}{x+1}$$
.

7.
$$x \mapsto x^2 - 2x + 1$$
.

8.
$$x \mapsto 2x^2 + 3$$
.

9.
$$x \mapsto \frac{(x^2-1)^2}{x^3}$$
.

$$10. x \mapsto \frac{\ln x}{x}.$$

11.
$$x \mapsto \ln\left(x + \sqrt{x^2 + 1}\right)$$
.

12.
$$x \mapsto \arcsin x$$
.

13.
$$x \mapsto \arccos x$$

13.
$$x \mapsto \arccos x$$
.
14. $x \mapsto \frac{3^x + 1}{3^x - 1}$.

Exercice 4.21 (*)

Parmi les fonction suivantes, déterminer celles qui sont elles paires ou impaires. Justifiez.

1.
$$f: x \mapsto 2x^5 - 3x^2 + 2$$
.

2.
$$f: x \mapsto x^3 - x^7$$
.

3.
$$f: x \mapsto \exp(-x^2)$$
.

4.
$$f: x \mapsto 1 + \sin x$$

Exercice 4.22 (**)

Quelle est la parité de la composée de deux fonctions impaires ? paires ? paire et impaire ? Exercice 4.23 (***)

Déterminer la période principale des fonctions suivantes.

1.
$$x \mapsto \cos(3x) + 1$$
.

2.
$$x \mapsto \cos(3x + 1)$$
.

3.
$$x \mapsto \cos(\pi x)$$
.

4.
$$x \mapsto \cos(4x) + \sin(x/2)$$
.

5.
$$x \mapsto \sin(2x) + \tan(4x)$$
.

6.
$$x \mapsto \sin(4x) + \tan(2x)$$
.

7.
$$x \mapsto \cos^2(2x)$$

7.
$$x \mapsto \cos^2(2x)$$
.
8. $x \mapsto \sin \frac{x}{12} + \sin \frac{x}{6}$.

9.
$$x \mapsto \sin(6x)\sin(4x)$$

Exercice 4.24 (**)

Soit $f:\mathbb{R}\to\mathbb{R}$ vérifiant $\forall x\in\mathbb{R}, f(6-x)=4-f(x)$. Trouver une symétrie de \mathcal{C}_f .

Exercice 4.25 (**)

Soit $f: \mathbb{R} \to \mathbb{R}$ définie par $f(x) = 2x^2 + 3x - 7$. Trouver un axe de symétrie de C_f .

Injections, surjections, bijections

Exercice 4.26 (**)

Montrer que la fonction $f:]3, +\infty[\rightarrow]-\infty, -2[$ est bijective et déterminer sa réciproque. $x \mapsto \frac{2x}{3-x}$

Exercice 4.27 (***)

Considérons la fonction $f: \mathbb{R} \to \mathbb{R}$ $x \mapsto \frac{e^x - e^{-x}}{2}$

Montrer que f est bijective et expliciter sa fonction réciproque.

Exercice 4.28 (****)

Soit $f : \mathbb{R} \to \mathbb{R}$ définie par $f(x) = \frac{x}{1 + |x|}$.

- **1.** Montrer que f réalise une bijection de \mathbb{R} dans]-1,1[.
- **2.** On note $g: \mathbb{R} \to]-1, 1[, x \mapsto f(x)$. Donner une expression de g^{-1} .

Exercice 4.29 (*)

Montrer que l'application suivante est bijective et déterminer sa fonction réciproque:

$$f: \mathbb{R} \to \mathbb{R}, x \mapsto 2x + 1.$$

Exercice 4.30 (**)

Montrer que l'application suivante est bijective et déterminer sa fonction réciproque:

$$f: [0,2] \to [0,2], x \mapsto \sqrt{4-x^2}.$$

Exercice 4.31 (**)

Montrer que l'application suivante est bijective et déterminer sa fonction réciproque:

$$f: [-4,0] \to [0,4], x \mapsto \sqrt{16-x^2}.$$

Exercice 4.33 (**)

Soit f l'application de \mathbb{R} dans \mathbb{R} définie par

$$f: x \mapsto x|x|$$
.

- **1.** Montrer que f est une bijection de \mathbb{R} dans \mathbb{R} . Déterminer l'application réciproque f^{-1} .
- 2. Construire, relativement à un repère orthonormal, les courbes représentatives de f et f^{-1} .

Exercice 4.34 (**)

On considère la fonction f donnée par

$$f(x) = \frac{3x - 1}{x - 2}.$$

- 1. Montrer qu'il existe un réel et un seul, noté a, n'ayant pas d'image par f.
- **2.** Montrer qu'il existe un réel et un seul, noté b, n'ayant pas d'antécédent par f.
- **3.** Soit g la restriction de f à $\mathbb{R} \setminus \{a\}$ au départ et à $\mathbb{R} \setminus \{b\}$ à l'arrivée:

$$g: \begin{tabular}{ll} $g: & $\mathbb{R}\setminus\{\,a\,\} & \to & $\mathbb{R}\setminus\{\,b\,\} \ . \\ & x & \mapsto & f(x) \end{tabular}$$

Montrer que g est bijective et préciser l'application réciproque g^{-1} de g.

Exercice 4.35 (**)

On pose $f: x \mapsto x^2 + 4x + 1$.

Montrer que f réalise une bijection de $[-2, +\infty[$ sur un intervalle que l'on précisera. Déterminer la réciproque associée.

Exercice 4.38 (***)

Pour tout x > 0, on pose $f(x) = \frac{e^x}{e^x - 1}$.

- 1. Montrer que f réalise une bijection de $]0, +\infty[$ vers un intervalle que l'on précisera.
- **2.** Expliciter l'application réciproque de f.

Exercice 4.40 (***)

Montrer que $f: x \mapsto \frac{1-x^2}{1+x^2}$ réalise une bijection de \mathbb{R}_+ sur un intervalle à préciser. Donner la fonction réciproque.

Exercice 4.41 (***)

Montrer que l'application

$$Q: \mathbb{R} \to]0, +\infty[$$

$$x \mapsto x + \sqrt{x^2 + 1}$$

est une bijection et déterminer sa réciproque.

4.5 Notions liées à l'ordre

Exercice 4.42 (*)

La fonction $f: \mathbb{R}^* \to \mathbb{R}, x \mapsto -\frac{1}{x}$ est-elle

- **1.** Croissante sur \mathbb{R}^* ?
- **2.** Croissante sur \mathbb{R}_{+}^{\star} ?
- **3.** Croissante?

- **4.** Strictement croissante sur \mathbb{R}^* ?
- 5. Strictement croissante sur \mathbb{R}_+^{\star} ?
- **6.** Strictement croissante?

Exercice 4.43 (**)

Vrai ou Faux?

Déterminer si les assertions suivantes sont vraies ou fausses ; justifier les vraies et produire des contreexemples pour les fausses.

- 1. La somme de deux fonctions croissantes est croissante.
- 2. La différence de deux fonctions croissantes est croissante.
- **3.** Le produit de deux fonctions croissantes est croissante.
- 4. La composée de deux fonctions croissantes est croissante.
- **5.** L'inverse d'une fonction croissante est croissante.
- **6.** La réciproque d'une bijection croissante est croissante.
- 7. Le produit d'une fonctions croissante par une constante est croissante.
- 8. Il existe des fonctions à la fois croissantes et décroissantes.

Exercice 4.44 (*)

Soient A,B,C trois parties de \mathbb{R} , $f:A\to B$ et $g:B\to C$. Vérifier la véracité du tableau suivant.

	f croissante	f décroissante
g croissante	gof croissante	gof décroissante
g décroissante	gof décroissante	$g \circ f$ croissante

39

4.6 Tangente et dérivées

Exercice 4.45 (*)

Déterminer une équation de la tangente à la courbe de f au point considéré.

1.
$$f(x) = x^2 + 3$$
 au point $A(1, 4)$.

2.
$$f(x) = x^2 + 3x + 4$$
 au point $A(-2, 2)$.

3.
$$f(x) = x^3$$
 au point $A(2, 8)$.

4.
$$f(x) = x^3 + 1$$
 au point $A(1, 2)$.

5.
$$f(x) = \sqrt{x}$$
 au point $A(1, 1)$.

6.
$$f(x) = \sqrt{x-1}$$
 au point $A(5,2)$.

7.
$$f(x) = x + \frac{4}{x}$$
 au point $A(4, 5)$.

8.
$$f(x) = \frac{1}{x+1}$$
 au point $A(0,1)$.

Pour s'entrainer. Utiliser Python et matplotlib pour représenter la courbe et sa tangente. **Exercice 4.47** (***)

Déterminer les équations des deux tangentes à la courbe de

$$f: x \mapsto 4x - x^2$$

passant par le point A(2, 5).

Exercice 4.48 (***)

Déterminer les équations des deux tangentes à la courbe de

$$f: x \mapsto x^2$$

passant par le point A(1, -3).

Exercice 4.50 (*)

Après avoir précisé le domaine de dérivabilité, dériver les fonctions définies par $x \mapsto$

1.
$$4x^5 + 5x^3 - 3x + 4$$

2.
$$x^{-1/\sqrt{2}}$$

3.
$$(x-a)(x^2-b^2)(x^3-c^3)$$
 où $a,b,c \in \mathbb{R}$.

4.
$$\frac{1+x}{1-x}$$

5.
$$\frac{7x-3}{x+2}$$

6.
$$\log x$$

7.
$$\frac{3x^4 - 5x^3 + 1}{2x^2 + x - 3}$$

Exercice 4.51 (**)

Après avoir précisé le domaine de dérivabilité, dériver les fonctions définies par $x \mapsto$

- 1. $ln(\sin x)$
- **2.** $\arctan(\ln x)$
- 3. $e^{\cos x}$
- **4.** $tan^{3} x$
- 5. $\arcsin(e^x)$

- **6.** $\sin(\ln x)$

Exercice 4.52 (***)

Après avoir précisé le domaine de dérivabilité, dériver les fonctions définies par $x \mapsto$

- 1. $\sin(\sin(\sin x))$
- **2.** $\ln(\ln(\ln(\ln x)))$

3. $e^{e^{e^{e^{e^{x}}}}}$.

Exercice 4.53 (**)

Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction dérivable. Après avoir précisé le domaine de dérivabilité, dériver les fonctions définies par $x \mapsto$

- 1. $f(x^2)$
- 2. $f(\sin x)$
- 3. $f\left(\frac{3x}{x^2+1}\right)$

- **5.** $\frac{1}{f(x)^{3/2}}$ **6.** $\ln(f(e^x))$.

Exercice 4.55 (**)

Calculer les dérivées des fonctions définies sur R suivantes en précisant le domaine de dérivabilité.

- 1. $f(x) = \sqrt{x^2 + 1}$.
- **2.** $g(x) = \sin(x^2) + x \ln(1 + x^2)$.
- 3. $h(x) = \frac{\exp(x^2)\ln(1+x^4)}{\sqrt{1+x^2}}$.

Exercice 4.56 (*)

Déterminer la dérivabilité et la dérivée de la fonction suivante. $f: x \mapsto \ln(x^2 + 10)$.

Exercice 4.57 (*)

Déterminer la dérivabilité et la dérivée de la fonction suivante. $f: x \mapsto \sin(\ln x)$.

Exercice 4.58 (*)

Déterminer la dérivabilité et la dérivée de la fonction suivante. $f: x \mapsto \ln(\sin^2 x)$.

Exercice 4.59 (*)

Déterminer la dérivabilité et la dérivée de la fonction suivante. $f: x \mapsto \log_2(1-3x)$.

Exercice 4.60 (*)

Déterminer la dérivabilité et la dérivée de la fonction suivante. $f: x \mapsto \log_5(xe^x)$.

Exercice 4.61 (*)

Déterminer la dérivabilité et la dérivée de la fonction suivante. $f: x \mapsto \sqrt[5]{\ln x}$.

Exercice 4.62 (*)

Déterminer la dérivabilité et la dérivée de la fonction suivante. $f: x \mapsto \ln \sqrt[5]{x}$.

Exercice 4.63 (*)

Déterminer la dérivabilité et la dérivée de la fonction suivante. $f: x \mapsto \sin x \ln(5x)$.

Exercice 4.64 (*)

Déterminer la dérivabilité et la dérivée de la fonction suivante. $f: t \mapsto \frac{1 + \ln t}{1 - \ln t}$.

Exercice 4.65 (*)

Déterminer la dérivabilité et la dérivée de la fonction suivante. $F: t \mapsto \ln \frac{(2t+1)^3}{(3t-1)^4}$.

Exercice 4.66 (**)

Déterminer la dérivabilité et la dérivée de la fonction suivante. $h: x \mapsto \ln \left(x + \sqrt{x^2 - 1}\right)$.

Exercice 4.67 (*)

Déterminer la dérivabilité et la dérivée de la fonction suivante. $g: x \mapsto \ln \left(x\sqrt{x^2-1}\right)$.

Exercice 4.68 (*)

Déterminer la dérivabilité et la dérivée de la fonction suivante. $F: y \mapsto y \ln(1 + e^y)$.

Exercice 4.69 (*)

Déterminer la dérivabilité et la dérivée de la fonction suivante. $f: u \mapsto \frac{\ln u}{1 + \ln(2u)}$.

Exercice 4.70 (*)

Déterminer la dérivabilité et la dérivée de la fonction suivante. $y: x \mapsto \frac{1}{\ln x}$.

Exercice 4.71 (*)

Déterminer la dérivabilité et la dérivée de la fonction suivante. $y: x \mapsto \ln|2 - x - 5x^2|$.

Exercice 4.72 (*)

Déterminer la dérivabilité et la dérivée de la fonction suivante. $H: z \mapsto \ln \sqrt{\frac{a^2 - z^2}{a^2 + z^2}}$.

Exercice 4.73 (*)

Déterminer la dérivabilité et la dérivée de la fonction suivante. $y: x \mapsto \ln(e^{-x} + xe^{-x})$.

Exercice 4.74 (*)

Déterminer la dérivabilité et la dérivée de la fonction suivante. $y: x \mapsto [\ln(1+e^x)]^2$.

Exercice 4.75 (*)

Déterminer la dérivabilité et la dérivée de la fonction suivante. $y: x \mapsto 2x \log_{10} \sqrt{x}$.

Exercice 4.76 (*)

Déterminer la dérivabilité et la dérivée de la fonction suivante. $y: x \mapsto \log_2(e^{-x} \cos \pi x)$. **Exercice 4.77** (**)

- Que dire de la dérivée d'une fonction dérivable paire?
- Que dire de la dérivée d'une fonction dérivable impaire?
- Que dire de la dérivée d'une fonction dérivable périodique?

Exercice 4.78 (***)

On considère la fonction $f: \mathbb{R} \to \mathbb{R}$ $x \mapsto 1 - x^2 e^x$

- **1.** Montrer que f établit une bijection de \mathbb{R}_+ vers $]-\infty,1]$.
- **2.** On note $g: \mathbb{R}_+ \to]-\infty, 1]$. Déterminer le domaine de dérivabilité de g^{-1} . $x \mapsto 1-x^2 e^x$

42

3. Déterminer $(g^{-1})'(1-e)$.

Exercice 4.79 (****)

Soit f la fonction définie sur \mathbb{R} par $f(x) = x + e^x$.

1. Vérifier que la fonction f est bijective. On note alors g son application réciproque.

2. Sans calculer g, justifier que g est indéfiniment dérivable sur \mathbb{R} , puis calculer g(1), g'(1) et g''(1).

4.7 Convexité

Exercice 4.80 (***)

Étudier la convexité / concavité de la fonction

$$x \mapsto \frac{x^3}{x^2 - 3}.$$

4.8 Branches infinies

4.9 Étude pratique des fonctions

Exercice 4.81 (***)

Réduire l'intervalle d'étude au maximum et indiquer comment obtenir la courbe entière.

1. $f: x \mapsto \sin x - \sin 3x$;

2. $f: x \mapsto \sin \frac{x}{2} \sin \frac{3x}{2}$;

3. $f: x \mapsto x^3 + x^2 + x$. (Indication : chercher un centre de symétrie d'abscisse $-\frac{1}{3}$)

Exercice 4.82 (****)

Soit f la fonction définie et dérivable sur $]0, +\infty[$ par

$$f(x) = \sqrt{x+1} \left(1 + \frac{1}{\sqrt{x}} \right).$$

1. Déterminer la fonction dérivée f' de f sur $]0, +\infty[$.

2. Dresser le tableau de variations de f sur $]0, +\infty[$.

3. Quel est le minimum de f sur $]0, +\infty[$.

4. En déduire que, pour tous réels a > 0 et b > 0, on a

$$\sqrt{a+b}\left(\frac{1}{\sqrt{a}} + \frac{1}{\sqrt{b}}\right) \ge 2\sqrt{2}.$$

43

Exercice 4.83 (**)

Tracer la courbe d'équation $y = 2x^3 - 6x - 4$.

Exercice 4.84 (**)

Tracer la courbe d'équation $y = -2x^4 + x^2 + 3$.

Exercice 4.86 (**)

Tracer la courbe d'équation $y = x + 1 - \frac{2}{x}$.

Exercice 4.87 (**)

Tracer la courbe d'équation $y = \frac{2x}{\sqrt{x^2 - 9}}$.

Exercice 4.94 (***)

Étudier les fonctions f définies ci-dessous

1.
$$f(x) = 4x^3 - 6x^2 \text{ sur } D = \mathbb{R}$$
.

2.
$$f(x) = \frac{x^2 + 1}{x + 3} \text{ sur } D = \mathbb{R} \setminus \{-3\}.$$

3.
$$f(x) = \frac{1}{\sqrt{4x - x^2}} \text{ sur } D =]0, 4[.$$

4.
$$f(x) = x^2 \ln x \text{ sur } D =]0, +\infty[.$$

5.
$$f(x) = \frac{1}{2}x^2 - e^x \text{ sur } D = \mathbb{R}.$$

6.
$$f(x) = \frac{x}{1 - e^{-x}} \text{ sur } D = \mathbb{R}^*.$$

Exercice 4.100 (****)

1. Déterminer le signe de la fonction polynomiale

$$p: [-1,1] \rightarrow \mathbb{R}$$

$$x \mapsto -2x^3 + 4x + 1$$

Pour cela, on effectuera une étude des variations de p.

On admettra qu'il existe un unique réel $\beta \in \left[-\sqrt{\frac{2}{3}}, 0 \right]$ tel que $p(\beta) = 0$.

2. Faire une étude complète de la fonction suivante, définies à l'aide de fonctions trigonométriques.

$$f: x \mapsto \frac{\tan x}{1 + 2\cos x}$$
.

On soignera en particulier les points suivants.

- (a) Domaines de définition, de dérivabilité.
- (b) Réduction du domaine d'étude autant que possible en utilisant la périodicité et les éléments de symétrie du graphe.
- (c) Limites aux bornes du domaine, comportement asymptotique.
- (d) Dérivée (utiliser la fonction *p* pour le signe) et tableau de variations.
- (e) Représentation graphique.

Exercice 4.101 (***)

Étudier la fonction d'une variable réelle définie par la relation

$$f(x) = \frac{\sin^2 x}{\sin x + \cos x}$$

en portant une attention particulière aux symétries de la courbe de f.

Exercice 4.102 (****)

Montrer

$$\forall a \in \mathbb{R}, \forall b \in \mathbb{R}_+^*, ab \le b \ln b + e^{a-1}.$$

À quelle condition a-t-on l'égalité?

Exercice 4.103 (**)

On considère la fonction $f: \mathbb{R} \to \mathbb{R}$ définie par

$$f(x) = x^3 + 2x^2 - 4.$$

- 1. Étudier les variation de f et tracer sa courbe représentative.
- 2. Discuter graphiquement l'existence et le signe des racines de l'équation

$$x^3 + 2x^2 - 4 = m$$

suivant les valeurs du paramètre m.

Exercice 4.104 (**)

Étudier et tracer la courbe de la fonction f définie par

$$f(x) = \frac{x}{x^2 - 9}$$

Exercice 4.106 (**)

Étudier et tracer la courbe de la fonction f définie par

$$f(x) = \frac{\sqrt{1 - x^2}}{x}$$

Préciser les demi-tangentes au point d'abscisse -1 et 1.

Exercice 4.107 (**)

Étudier et tracer la courbe de la fonction f définie par

$$f(x) = \frac{x}{\sqrt{x^2 - 1}}$$

Exercice 4.108 (***) Tangentes perpendiculaires en une infinité de points d'intersection

- 1. Justifier que l'équation cos(x) = x sin(x) équivaut à l'équation $tan(x) = \frac{1}{x}$ sur un certain ensemble D à préciser.
- 2. Pressentir graphiquement le nombre de solutions de l'équation $\cos(x) = x \sin(x) \sin(0) + \infty$.
- 3. Prouver qu'en tout point M_0 d'intersection des deux courbes d'équation $y = \cos(x)$ et $y = x \sin(x)$, les tangentes en M_0 à ces deux courbes sont perpendiculaires.

Rappel. Les deux droite d'équation cartésienne y = ax + b et $y = \alpha x + \beta$ sont perpendiculaires si, et seulement si $\alpha a = -1$.

Exercice 4.109 (***)

Étudier et tracer la courbe de la fonction f définie par

$$f(x) = \frac{\sin x}{1 + \cos x}$$

Exercice 4.110 (***)

Étudier et tracer la courbe de la fonction f définie par

$$f(x) = \frac{\sin x}{2 + \cos x}$$

Exercice 4.114 (**)

Faire une étude complète de la fonction

$$f: x \mapsto \frac{x^2 - 5x + 7}{x - 2}.$$

On soignera en particulier les points suivants.

- 1. Domaines de définition, de dérivabilité.
- **2.** Limites aux bornes du domaine, comportement asymptotique, position du graphe par rapport aux asymptote.
- 3. Dérivée et tableau de variations.
- 4. Représentation graphique.

4.10 Intégration des fonctions continues

Exercice 4.117 (*)

Déterminer l'aire de la région du plan délimité par les courbes d'équations

1.
$$y = 5x^2 + 2$$
, $x = 0$, $x = 2$, $y = 0$.

2.
$$y = x^3 + x$$
, $x = 2$, $y = 0$.

3.
$$y = 1 + \sqrt[3]{x}, x = 0, x = 8, y = 0.$$

4.
$$y = (3 - x)\sqrt{x}, y = 0.$$

5.
$$y = -x^2 + 4x$$
, $y = 0$.

6.
$$y = 1 - x^4, y = 0.$$

7.
$$y = \frac{4}{x}, x = 1, x = e, y = 0.$$

8.
$$y = e^x$$
, $x = 0$, $x = 2$, $y = 0$.

Exercice 4.118 (*) Calcul d'intégrale

Calculer l'intégrale suivante :

$$\int_0^1 2^t \cdot 3^{2t} \cdot 5^{3t} \, \mathrm{d}t$$

Exercice 4.119 (*) Intégration par parties

Les fonctions suivantes sont dérivables et continues sur \mathbb{R} . Utiliser l'intégration par parties pour donner une nouvelle écriture de celle proposée.

1.
$$\int_{2}^{6} u'(x)v(x) dx$$
.

2.
$$\int_2^6 u(x)v'(x) dx$$
.

3.
$$[u(x)v(x)]_{-3}^4 - \int_{-3}^4 u(x)v'(x) dx$$
.

4.
$$u(3)v(3) - u(1)v(1) - \int_1^3 u(x)v'(x) dx$$
.

Exercice 4.120 (**) Intégration par parties

Calculer les intégrales suivantes

1.
$$\int_0^1 -xe^x \, \mathrm{d}x$$
.

2.
$$\int_{-1}^{1} (x+3)e^{-x} dx$$
.

Exercice 4.121 (***)

Déterminer les intégrales suivantes.

1.
$$\int_0^3 x e^{x/2} dx$$
.

2.
$$\int_0^2 x^2 e^{-2x} dx$$
.

3.
$$\int_0^{\pi/4} x \cos 2x \, dx$$
.

$$\mathbf{4.} \int_0^\pi x \sin 2x \, \mathrm{d}x.$$

5.
$$\int_0^{1/2} \arccos x \, dx$$
.

$$\mathbf{6.} \ \int_0^1 x \arcsin x^2 \, \mathrm{d}x.$$

$$7. \int_0^1 e^x \sin x \, \mathrm{d}x.$$

8.
$$\int_0^2 e^{-x} \cos x \, dx$$
.

$$9. \int_1^2 \sqrt{x} \ln x \, \mathrm{d}x.$$

9.
$$\int_{1}^{2} \sqrt{x} \ln x \, dx$$
.
10. $\int_{0}^{1} \ln (4 + x^{2}) \, dx$.

Exercice 4.122 (**)

À l'aide d'une intégration par parties, calculer

$$\int_0^{\pi} t \sin(3t) \, \mathrm{d}t.$$

Exercice 4.123 (**)

À l'aide d'une intégration par parties, calculer

$$\int_0^1 t \operatorname{ch}(t) \, \mathrm{d}t.$$

Exercice 4.124 (**)

À l'aide d'une intégration par parties, calculer

$$\int_4^9 \frac{\ln y}{y} \, \mathrm{d}y.$$

Exercice 4.125 (***) Intégration par parties

Calculer l'intégrale suivante :

$$\int_0^{\pi} t^2 \sin t \, dt$$

Exercice 4.126 (**) Intégration par parties

Calculer l'intégrale suivante :

$$\int_0^{\frac{\pi}{2}} x \sin x \, \mathrm{d}x$$

Exercice 4.127 (**) Intégration par parties

Calculer l'intégrale suivante :

$$\int_{1}^{2} x^{2} \ln x \, \mathrm{d}x$$

Exercice 4.128 (**)

Donner les primitives des fonctions f données ci-dessous sur l'intervalle I indiqué

1.
$$f(x) = 3x^2 + 5x^4 \text{ sur } I = \mathbb{R}$$
.

$$2. \ f(x) = x^2 + \sin x \text{ sur } I = \mathbb{R}.$$

3.
$$f(x) = 3\cos(2x) \text{ sur } I = \mathbb{R}$$
.

4.
$$f(x) = \cos\left(3x - \frac{\pi}{4}\right) \sin I = \mathbb{R}.$$

5.
$$f(x) = \frac{1}{x^3} \text{ sur } I =]-\infty, 0[.$$

6.
$$f(x) = -\frac{3}{x^5} \text{ sur } I =]-\infty, 0[.$$

7.
$$f(x) = \frac{1}{x^2} - \frac{1}{\sqrt{x}} \operatorname{sur} I =]0, +\infty[.$$

8.
$$f(x) = x(x^2 + 1)^7 \text{ sur } I = \mathbb{R}.$$

9.
$$f(x) = (1 - x^2)^2 \text{ sur } I = \mathbb{R}.$$

10.
$$f(x) = x\sqrt{x^2 + 1} \text{ sur } I = \mathbb{R}.$$

11.
$$f(x) = \sin^2 x \cos x \text{ sur } I = \mathbb{R}.$$

12.
$$f(x) = \cos^3 x \sin x \text{ sur } I = \mathbb{R}$$
.

13.
$$f(x) = \frac{2x+3}{x^2+3x} \text{ sur } I =]0, +\infty[.$$

14.
$$f(x) = \frac{2x+1}{(x^2+x+2)^2} \text{ sur } I = \mathbb{R}.$$

15.
$$f(x) = \frac{2x+1}{x^2+2x+2}$$
 sur $I = \mathbb{R}$.

16.
$$f(x) = \frac{1}{\sqrt{3-x}} \operatorname{sur} I =]-\infty, 3[.$$

17.
$$f(x) = \frac{1}{x^2} e^{1/x} \text{ sur } I =]0, +\infty[.$$

18.
$$f(x) = (x^3 + 1)e^{x^4 + 4x + 1}$$
 sur $I = \mathbb{R}$.

Exercice 4.129 (***)

Calculer les intégrales suivantes à l'aide d'un changement de variable.

1.
$$\int_0^1 \frac{t^2}{t^6 + 1} \, \mathrm{d}t.$$

2.
$$\int_{1/3}^{1} \frac{1}{(t+1)\sqrt{t}} dt$$
. 5. $\int_{1}^{2} (\ln t)^{2} dt$.

3.
$$\int_0^1 t\sqrt{1+t^2} \, dt$$
.

4.
$$\int_2^e \frac{1}{(\ln t)^3 t} dt$$
.

5.
$$\int_{1}^{2} (\ln t)^2 dt$$
.

$$\mathbf{6.} \int_{1}^{2} \frac{1}{t + \sqrt{t}} \, \mathrm{d}t.$$

7.
$$\int_0^{\pi/4} \cos^5 t \sin t \, dt$$
.

8.
$$\int_{\pi/6}^{\pi/3} \frac{1}{\tan t} \, \mathrm{d}t.$$

Indications:

1.
$$u = t^3$$

2.
$$u = \sqrt{t}$$

3.
$$u = 1 + t^2$$

4.
$$u = \ln t$$

4.
$$u = \ln t$$

5. $u = \ln t$

6.
$$u = \sqrt{t}$$

7.
$$u = \cos t$$

Exercice 4.130 (**) Changement de variable

Calculer l'intégrale suivante :

$$\int_0^1 \frac{\arctan x}{1+x^2} \, \mathrm{d}x$$

Exercice 4.131 (***) Changement de variable

Calculer l'intégrale suivante :

$$\int_{\frac{1}{2}}^{2} \left(1 + \frac{1}{x^2} \right) \arctan x \, \mathrm{d}x$$

Exercice 4.133 (***) Changement de variable

Calculer l'intégrale suivante :

$$\int_0^{\sqrt{3}} \frac{x^2}{\sqrt{4-x^2}} \, \mathrm{d}x$$

Exercice 4.134 (**) Changement de variable

Calculer l'intégrale suivante :

$$\int_{-1}^{1} \frac{1}{x^2 + 4x + 7} \, \mathrm{d}x$$

Exercice 4.137 (**) Changement de variable

Calculer l'intégrale suivante :

$$\int_0^1 \frac{t}{\sqrt{1-t^2}} \, \mathrm{d}t$$

Exercice 4.138 (**) Changement de variable

Calculer l'intégrale suivante :

$$\int_0^a \sqrt{a^2 - t^2} \, \mathrm{d}t$$

Exercice 4.139 (***) Changement de variable, intégration par parties

Calculer l'intégrale suivante :

$$\int_{1-\frac{\pi^2}{4}}^1 \cos\sqrt{1-t} \,\mathrm{d}t$$

Exercice 4.142 (***) Changement de variable

Calculer l'intégrale suivante :

$$\int_{-\pi}^{\pi} \sqrt{1 + \cos t} \, \mathrm{d}t$$

Exercice 4.143 (***)

On fait semblant de ne pas connaître la fonction logarithme. Montrer que pour tous $x, y \in]0, +\infty[$

$$\int_{1}^{xy} \frac{\mathrm{d}t}{t} = \int_{1}^{x} \frac{\mathrm{d}t}{t} + \int_{1}^{y} \frac{\mathrm{d}t}{t}.$$