Le 10 janvier 2013, 8h30 - 11h30.

Les documents et appareils électroniques (calculatrices et téléphones en particulier) sont interdits. Les réponses doivent être justifiées de façon claire et précise.

Question de cours. Énoncer le théorème de Schwarz.

Exercice 1. Soit f l'application de \mathbb{R}^2 dans \mathbb{R} définie par

$$\forall (x,y) \in \mathbb{R}^2$$
, $f(x,y) = (5x^2 - 4xy + y^2 - 2x + 1)e^{-2x}$.

- (1) Démontrer que f est de classe C^1 sur \mathbb{R}^2 .
- (2) Calculer la jacobienne de f en un point $(x, y) \in \mathbb{R}^2$.
- (3) Déterminer les points critiques de f, et donner la valeur de f en ces points.
- (4) Démontrer que f est de classe C^2 .
- (5) Calculer la matrice hessienne de f en un point $(x, y) \in \mathbb{R}^2$ quelconque.
- (6) Déterminer si les points critiques de f sont des maxima locaux ou des minima locaux.
- (7) Démontrer que f est positive ou nulle.
- (8) Démontrer f atteint son minimum global. En quel point?

Exercice 2. Soit $(E, \|\cdot\|)$ un espace vectoriel normé. On pose $S = \{x \in E, \|x\| = 1\}$.

- (1) On suppose que E est complet. Démontrer que S muni de la distance d(x,y) = ||x-y|| est un espace métrique complet.
- (2) Réciproquement, on suppose dans cette question que S muni de la distance d ci-dessus est complet. Soit $(x_n)_{n\in\mathbb{N}}$ une suite de Cauchy de E.
 - (a) Démontrer que la suite $(\|x_n\|)_{n\in\mathbb{N}}$ converge. On note a sa limite.
 - (b) On suppose que a>0. Démontrer qu'il existe $k\in\mathbb{N}$ tel que $\inf_{n\in\mathbb{N}}\|x_{n+k}\|>0$.
 - (c) Avec un tel k, montrer que la suite $\left(\frac{x_{n+k}}{\|x_{n+k}\|}\right)_{n\in\mathbb{N}}$ est de Cauchy dans S.
 - (d) En déduire que $(E, \|\cdot\|)$ est complet.

Exercice 3. Soit $n \in \mathbb{N}^*$. Dans tout l'exercice, $\|\cdot\|$ désigne la norme euclidienne sur \mathbb{R}^n , et $(\cdot|\cdot)$ le produit scalaire associé :

$$\forall x \in \mathbb{R}^n, \quad \forall y \in \mathbb{R}^n, \quad (x|y) = \sum_{i=1}^n x_i y_i, \quad ||x|| = \sqrt{(x|x)}.$$

Soit $f: \mathbb{R}^n \to \mathbb{R}^n$ une appplication bijective de classe C^1 . On suppose que $\forall x \in \mathbb{R}^n$, df(x) est une transformation orthogonale. Ceci équivaut donc à la propriété

$$\forall x \in \mathbb{R}^n, \quad Df(x)^T \ Df(x) = I_n,$$

où Df(x) est la jacobienne de f en x, M^T désigne la transposée de la matrice M, et I_n est la matrice identité de taille n, ou encore à la propriété

$$\forall x \in \mathbb{R}^n, \quad \forall h \in \mathbb{R}^n, \quad \|df(x)(h)\| = \|Df(x)h\| = \|h\|.$$

On suppose de plus que f(0) = 0.

- (1) Démontrer que f est un difféomorphisme de \mathbb{R}^n dans \mathbb{R}^n .
- (2) On commence par le cas n = 1.
 - (a) Démontrer que $\forall x \in \mathbb{R}, |f'(x)| = 1$.
 - (b) Démontrer que $\forall x \in \mathbb{R}, \ f(x) = x$ ou bien $\forall x \in \mathbb{R}, \ f(x) = -x$.
- (3) Dans cette question, n est quelconque.
 - (a) En utilisant l'inégalité des accroissements finis, démontrer que

$$\forall a \in \mathbb{R}^n, \quad \forall b \in \mathbb{R}^n, \quad ||f(b) - f(a)|| \le ||a - b||.$$

(b) Démontrer que

$$\forall a \in \mathbb{R}^n, \quad \forall b \in \mathbb{R}^n, \quad \|f(b) - f(a)\| \ge \|a - b\|.$$

- (c) En utilisant l'égalité $\forall x \in \mathbb{R}^n \quad \forall y \in \mathbb{R}^n, \quad \|x-y\|^2 = \|x\|^2 + \|y\|^2 2(x|y),$ démontrer que $\forall a \in \mathbb{R}^n, \quad \forall b \in \mathbb{R}^n, \quad (f(a)|f(b)) = (a|b)$.
- (d) Soit $c \in \mathbb{R}^n$. Démontrer que les applications $a \mapsto (f(a)|c)$ et $a \mapsto (a|f^{-1}(c))$ sont différentiables sur \mathbb{R}^n , et calculer leurs différentiables respectives.
- (e) Conclure qu'il existe une matrice M telle que $M^TM = I_n$ et $\forall x \in \mathbb{R}^n$, f(x) = Mx.

Exercice 4. Soit (E,\mathcal{O}) un espace topologique séparé. On suppose qu'il est localement compact, c'est-à-dire que tout point x de E admet un voisinage compact. On se donne un point (objet mathématique), noté ∞ , qui n'appartient pas à E. On note $\widetilde{E} = E \cup \{\infty\}$. On munit cet ensemble de la topologie $\widetilde{\mathcal{O}}$ définie comme suit :

$$U \in \widetilde{\mathcal{O}} \iff \bigg[U \in \mathcal{O} \text{ ou } \Big(\infty \in U \text{ et } \widetilde{E} \setminus U \text{ compact de } E\Big)\bigg].$$

On rappelle que $\widetilde{E} \setminus U = \{x \in E, x \notin U\}$ est le complémentaire de U dans \widetilde{E} .

- (1) Démontrer que $\widetilde{\mathcal{O}}$ est une topologie sur \widetilde{E} .
- (2) Démontrer que E est un ouvert de \widetilde{E} , et que $\{\infty\}$ est un fermé de \widetilde{E} .
- (3) Démontrer que $(\widetilde{E}, \widetilde{\mathcal{O}})$ est séparé.
- (4) Démontrer que l'espace topologique $(\widetilde{E},\widetilde{\mathcal{O}})$ est compact.
- (5) On suppose dans cette question que $E=\mathbb{N}$ muni de la topologie discrète (c'est-à-dire que \mathcal{O} est constitué de tous les sous-ensembles de \mathbb{N}). On définit d'autre part l'ensemble

$$F = \{0\} \cup \left\{\frac{1}{n}, \quad n \in \mathbb{N}^*\right\},$$

muni de la topologie \mathcal{O}' induite par la topologie usuelle de \mathbb{R} .

- (a) Caractériser les parties compactes de E.
- (b) Soit $f: \widetilde{E} \to F$ l'application définie par $f(n) = \frac{1}{n}$ et $f(\infty) = 0$. Démontrer que f est bijective et continue en chaque point.
- (c) Démontrer que E est homéomorphe à F.