16-745 Optimal Control Lecture 2

Reid Graves

January 21, 2025

1 Last time

- Continuous Time Dynamics
- Manipulator Dynamics
- Linear Systems

Won't need to derive these for this class.

2 Today

- Equilibria
- Stability
- Discrete Time Dynamics and Simulation

3 Equilibria

• A point where the system will "remain at rest"

$$\dot{x} = f(x, u) = 0$$

- Algebraically, roots of the dynamics
- Look at Pendulum again

$$\dot{x} = \begin{bmatrix} \dot{\theta} \\ \frac{-q}{l} \sin(\theta) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
$$\dot{\theta} = 0$$
$$\theta = 0, \pi$$

Figure 1: Pendulum

3.1 First control Problem

• Can I move the equilibria?

Figure 2: Moving pendulum equilibria

$$\theta = \frac{\pi}{2} \qquad \dot{x} = \begin{bmatrix} \dot{\theta} \\ \frac{-q}{l} \sin\left(\frac{\pi}{2}\right) + \frac{1}{ml^2}u \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\frac{1}{ml^2} u = \frac{q}{l} \sin\left(\frac{\pi}{2}\right)$$

$$u = mgl$$

• In general, we get a root finding problem in u:

$$f(x^*, u) = 0$$

4 Stability of Equilibria

- When will we stay "near" an equilibrium point under perturbations?
- Look at a 1D system (1 dimensional state space) $x \in \mathbb{R}$

Figure 3: Stability at equilibria graphic

- If $\frac{df}{dx} < 0$, stable
- If $\frac{df}{dx} > 0$, unstable
- Basin of attraction: area between the two unstable points
- In higher dimensions: $\frac{\partial f}{\partial x}$ is a Jacobian Matrix
- Take an Eigendecomposition \rightarrow Decouple into n 1D systems

$$Re\left[eigvals\left(\frac{\partial f}{\partial x}\right)\right] < 0 \rightarrow \text{stable}$$

Otherwise \rightarrow Unstable

• Pendulum:

$$f(x) = \begin{bmatrix} \dot{\theta} \\ \frac{-q}{l} \sin(\theta) \end{bmatrix} \to \frac{\partial f}{\partial x} = \begin{bmatrix} 0 & 1 \\ \frac{-q}{l} \cos(\theta) & 0 \end{bmatrix}$$
$$\frac{\partial f}{\partial x}|_{\theta=\pi} = \begin{bmatrix} 0 & 1 \\ \frac{q}{l} & 0 \end{bmatrix}$$

 $eigvals = \pm \sqrt{\frac{q}{l}} \rightarrow \text{unstable}$

$$\frac{\partial f}{\partial x}_{\theta=0} = \begin{bmatrix} 0 & 1\\ \frac{-q}{l} & 0 \end{bmatrix} \rightarrow \text{eigvals} = \pm i\sqrt{\frac{q}{l}}$$

 \rightarrow Undamped oscillation

• Add damping (e.g. $u = -kd\dot{\theta}$) results in strictly negative real part

5 Discrete Time Dynamics

- Motivation:
 - In general, we can't solve $\dot{x} = f(x)$ for x(t)
 - Computationally, need to represent x(t) with a set of discrete x_k
 - Discrete-time models can capture some effects that continuous ODEs can't (like a brick hitting the ground)

• Explicit Form:

$$x_{k+1} = f_d(x_k, u_k)$$

• Simplest discretization:

$$x_{k+1} = x_k + h f(x_k, u_k)$$

h is time step, whole right hand side is $f_d(x_k, u_k)$. Whole thing is called **Forward Euler Integration**

- Forward Euler integration adds energy- If you have an oscillatory system, this method always adds energy, causing the system to explode
- Pendulum Sim:

$$l = m = 1$$

5.1 Stability of discrete time systems

• In discrete time, dynamics is an iterated map:

$$x_n = f_d(f_d(f_d(f_d \dots f_d(x_0))))$$

• Linearize and apply chain rule:

$$\frac{\partial x_k}{\mathbf{x}_0} = \frac{\partial f_d}{x} |_{x_0} \frac{\partial f_d}{x} |_{x_0} \dots \frac{\partial f_d}{x} |_{x_0} = A_d^N$$

• Assume $x_0 = 0$ is an equilibrium

stable
$$\rightarrow \lim_{k \to \infty} A_d^k x_0 = 0 \quad \forall x_0$$

 $\rightarrow \lim_{k \to \infty} A_d^k = 0$
 $\rightarrow |eigvals(A_d)| < 1 \text{ (Inside unit circle)}$

• Pendulum with Forward Euler:

$$x_{k+1} = x_k + hf(x_k)$$

Right side is $f_d(x_k)$

$$Ad = \frac{\partial f_d}{\partial x} = I + HA = I + h \begin{bmatrix} 0 & 1 \\ \frac{-q}{l} \cos(\theta) & 0 \end{bmatrix}$$

$$eigvals(A_d|_{\theta \approx 0})$$

• Key takeaway: Never Use Forward Euler

• Intuition:

Figure 4: Linear approximator always overshoots

Linear Approximation always overshoots

- Take Aways:
 - Be careful
 - Always sanity check e.g. energy, momentum behavior
 - Never use forward Euler!
- A better explicit integrator:
 - 4th order Runge-Kutta Method
 - RK4 fits a cubic polynomial to x(t) rather than a line- Much better accuracy!
 - Pseudo Code:

$$x_{k+1} = f_d(x_k)$$

$$k_1 = f(x_k)$$

$$k_2 = f(x_k + \frac{h}{2}k_1)$$

$$k_3 = f(x_k + \frac{h}{2}k_2)$$

$$k_4 = f(x_k + hk_3)$$

$$x_{k+1} = x_k + \frac{h}{6}(k_1 + 2k_2 + 2k_3 + k_4)$$

- take away:
 - Accuracy >> additional compute cost
 - Even "good" integrators have issues
 - Always sanity check