General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some
 of the material. However, it is the best reproduction available from the original
 submission.

Produced by the NASA Center for Aerospace Information (CASI)

(NASA-TM-X-74009) LONGITUDINAL AND
LATERAL-DIRECTIONAL STATIC AERODYNAMIC
CHARACTERISTICS OF AN UNPOWERED ESCAPE
SYSTEM EXTRACTION ROCKET MODEL (NASA) 26 p
HC A03/MF A01 CSCL 01A G3/02

N77-20025

Unclas 22834

LONGITUDINAL AND LATERAL-DIRECTIONAL STATIC AERODYNAMIC CHARACTERISTICS OF AN UNPOWERED ESCAPE SYSTEM EXTRACTION ROCKET MODEL

by

Jarrett K. Huffman, Charles H. Fox, Jr., and Robert E. Satterthwaite

March 1977

This informal documentation medium is used to provide accelerated or special release of technical information to selected users. The contents may not meet NASA formal editing and publication standards, may be revised, or may be incorporated in another publication.

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
LANGLEY RESEARCH CENTER, HAMPTON, VIRGINIA 23665

					
1. Report No. NASA TM X-74009	2. Government Acce	sion No.	3, Re	cipient's Catalog No.	
4. Title and Subtitle 1 ONG TTUDINAL AND LATERAL	C AERODYI	NAMIC May	port Date Ch 1977		
CHARACTERISTICS OF AN UNPOWERED ESCAPE SYST ROCKET MODEL			6. Per	forming Organization Code	
7. Author(s) Jarrett K. Huffman, Charles H. Fox, Robert E. Satterthwaite			nd 8. Per	forming Organization Report No.	
			10. Wo	10. Work Unit No.	
9. Performing Organization Name and Address					
NASA Langley Research Cen Hampton, VA 23665		11. Co	ntract or Grant No.		
			13 Tv	pe of Report and Period Covered	
12. Sponsoring Agency Name and Address National Aeronautics and Space Administration			Technical Memorandum		
National Aeronautics and Washington, DC 20546	1011		onsoring Agency Code		
mashington, bo 20010			14. 55	And Angelicy Code	
15. Supplementary Notes					
16. Abstract					
An escape system extraction rocket proposed for use on the Rotor Systems Research Aircraft was tested at Mach numbers of 0.1 and 0.3 through an angle-of-attack range from -2° to 102° and an angle-of-sideslip range from 0° to 15° in the Langley 7- by					
Aircraft was tested at Mach numbers of 0.1 and 0.3 through an angle-of-attack range					
from -2° to 102° and an angle-of-sidesilp range from 0° to 15° in the Langley /- by 10-foot high speed tunnel. The data are presented without analysis in order to expedite					
publication.					
•					
·					
		4			
•				1	
12 V Mtd- 42					
17. Key Words (Suggested by Author(s)) Longitudinal aerodynamics		18. Distribution Statement			
Lateral-directional aerodynamics		Unclassified-Unlimited			
High angle of attack data Subsonic Flow					
Rockets Missiles					
	20 0 1 0 1		<u> </u>		
9. Security Classif. (of this report) 20. Security Classif. (of this page) Unclassified Unclassified		page)	21. No. of Pages	22, Price*	
0110 1400 11 100			23	\$3.50	

ABSTRACT

An escape system extraction rocket proposed for use on the Rotor Systems Research Aircraft was tested at Mach numbers of 0.1 and 0.3 through an angle-of-attack range from -2° to 102° and an angle-of-sideslip range from 0° to 15° in the Langley 7- by 10-foot high speed tunnel. The data are presented without analysis in order to expedite publication.

INTRODUCTION

The Rotor Systems Research Aircraft is a combined effort of the U.S. Army and NASA. An emergency escape system for this aircraft was proposed using an extraction rocket for each personnel station. A hot gas launch system attached to the aircraft would initiate the separation of the extraction rocket from the aircraft. A wind tunnel test program was initiated to obtain static aerodynamic data for input to a digital computer simulation of the rocket and extracted crewman trajectory.

It is the purpose of this report to present, without analysis, the static aerodynamic characteristics of this proposed extraction rocket. The investigation was conducted in the Langley 7- by 10-foot high speed tunnel at Mach numbers of 0.1 and 0.3 which correspond to Reynolds numbers based on model reference diameter of 0.15 x 10^6 and 0.475 x 10^6 , respectively. The angle-of-attack range was from -2^0 to 102^0 and the angle-of-sideslip range was from 0^0 to 15^0 .

SYMBOLS

The International System of Units, with the U.S. Customary Units presented in parentheses, is used for the physical quantities in this report. (See reference 1). Measurements and calculations were made in the U.S. Customary Units. The data presented in this report are referred to the body axis system as indicated in figure 1.

- b model reference span, .0762 m (.25 ft)
- C_A axial force coefficient, $\frac{Axial\ Force}{qS}$
- c rolling moment coefficient, Rolling Moment qSb
- C_m Pitching moment coefficient, Pitching Moment qSd
- C_N normal force coefficient, Normal Force
- C_n yawing moment coefficient, Yawing Moment qSb
- c_{Y} side force coefficient, $\frac{\text{Side Force}}{qS}$
- d model reference diameter, .0762 m (.25 ft)
- M free stream Mach number
- q free stream dynamic pressure, Pa(lbs/ft²)

- model reference area, .00456 m² (.049087 ft²)
- α angle of attack, degrees
- β angle of sideslip, degrees

DESCRIPTION OF MODEL

A full scale unpowered model was used in this study. A drawing of the model is shown in figure 1.

The model consisted of a nose, which incorporated the rocket nozzles, and a cylindrical center body, which was attached to a strain-gage balance.

The nose could be set at different roll angles relative to the centerbody. Since the centerbody was axisymmetric, the roll attitude of the nose was used to define the roll orientation of the model.

APPARATUS, TESTS, AND CORRECTIONS

This investigation was made in the Langley 7- by 10-foot high speed tunnel which is a continuous flow atmospheric tunnel. Forces and moments were measured by an internally mounted six-component strain-gage balance. The pitch attitude of the model was measured by an accelerometer mounted within the model. The pressure in the balance chamber was also recorded, however no corrections were made to the data for chamber pressure.

The test was conducted at Mach number of 0.1 and 0.3 which correspond to Reynolds numbers of 0.15 x 10^6 and 0.475 x 10^6 based on d. The angle-of-attack range was from -2° to 102° and the angle-of-sideslip range was from 0° to 15° .

Two major test setups were employed during the test. For the angle-of-attack range from -2° to 22°, the combined alpha and beta was obtained using combinations of sting pitch and sting yaw. The sting entered the model through the open base of the model.

The second test setup achieved combined alpha and beta using combinations of sting pitch and model roll. This setup divided the pitch angle into three overlapping ranges of 33° to 57°, 55.5° to 79.5°, and 78° to 102°. The model roll angle was chosen for the midpoint of each pitch range. Since the sideslip was achieved through a fixed model roll for each pitch range, the sideslip angle was not constant. The sting entered the model through an opening in the top of the centerbody.

The base of the model was plugged; however, no base pressures were measured. Note that the test technique employed for each pitch range was to start with the model at the midpoint of the range, then proceed to the lower limit of the range and take data as the pitch angle was increased to the upper limit of the range.

PRESENTATION OF RESULTS

The longitudinal characteristics are presented in figure 2. The lateral-directional characteristics are presented in figure 3. The chamber pressure characteristics are presented in figure 4.

Note that, due to the test technique employed, there may be anomalies between the data in the overlapped pitch range. These anomalies are real and result from the fact that, in one case the overlap region was presumably approached with attached flow on the model, whereas in the other case, the overlap region was presumably approached with separated flow on the model.

The differences between the data at a Mach number of 0.1 and at a Mach number of 0.3 are attributable primarily to Reynolds number effects. (See reference 2.)

REFERENCES

- 1. Mechtly, E. A.; The International System of Units NASA SP-7012, 1964.
- 2. Polhamus, Edward C.; Effect of Flow Incidence and Reynolds Number on Low-Speed Aerodynamic Characteristics of Several Noncircular Cylinders with Applications to Directional Stability and Spinning NASA TR R-29, 1959.

(a) Model geometry. All dimensions are based on the reference diameter of 7.620 cm. (3.000 in.)

Figure 1. Drawings of the model tested.

(b) Axis system for forces and moments.

Figure 1. Concluded.

ORIGINAL PAGE IS OF POOR QUALITY

Figure 2- Longitudinal aerodynamic characteristics.

Figure 2- Continued.

Figure 2 - Continued.

(c) $\beta \approx 10^{\circ}$.

Figure 2 - Concluded.

Figure 3- Lateral-directional aerodynamic characteristics.

(b) B = "

Figure 3- Continued.

Figure 3- Continued.

Figure 3- Concluded.

Figure 4- Chamber pressure characteristics.

Figure 4- Continued.

Figure 4- Continued.

Figure 4 - Concluded.