Задание 1. Свободное движение

Рассмотреть систему 2-го порядка, заданную дифференциальным уравнением

$$\ddot{y} + a_1 \dot{y} + a_0 y = u. \tag{1}$$

С использованием блоков элементарных операций построить структурную схему данной системы. На структурной схеме отметить блоки, на которых задаются начальные условия y(0), $\dot{y}(0)$.

Для каждого из вариантов в **Таблицах 1 и 2** задано по шесть наборов значений корней характеристического уравнения λ_1 , λ_2 и начальных условия y(0), $\dot{y}(0)$. В соответствии с вашим вариантом для каждого из шести экспериментов вычислить коэффициенты a_1, a_0 системы (1) и найти аналитическое выражение для свободной составляющей ее движения $y_{\text{св}}(t)$.

Осуществить моделирования свободного движения системы для каждого из шести экспериментов и сопоставить результаты с полученными аналитически.

Проанализировать устойчивость каждой из систем на основании моделирования и корневого критерия, сделать соответствующие выводы о типе устойчивости.

Ожидаемые результаты:

- Структурная схема системы.
- Листинги аналитических расчетов.
- Результаты вычисления коэффициентов a_1, a_0 .
- Аналитические выражения $y_{cs}(t)$.
- Графики сигналов $y_{cs}(t)$, их сопоставление с вычисленными аналитически.
- Выводы.

Задание 2. Область устойчивости

Рассмотреть систему 3-го порядка, заданную структурной схемой, представленной на рисунке 1. Определить, при каких значениях постоянных времени T_1 и T_2 полюса соответствующих передаточных функций совпадут с первым набором корней λ_1 , λ_2 из Задания 1.

Определить аналитически границу устойчивости в пространстве параметров K и T_1 для системы с фиксированным значением T_2 (рассчитанным ранее), опираясь на критерий Гурвица. Привести графическое изображение границы устойчивости на плоскости двух параметров $K(T_1)$ и определить область устойчивости системы.

Рис. 1: Схема моделирования для задания 2

Аналогично определить аналитически границу устойчивости в пространстве параметров K и T_2 для системы с фиксированным значением T_1 (рассчитанным ранее). Привести графическое изображение границы устойчивости на плоскости двух параметров $K(T_2)$ и определить область устойчивости системы.

Задаться тремя наборами параметров K, T_1 и T_2 , соответствующих:

- асимптотически устойчивой системе;
- системе на границе устойчивости;
- неустойчивой системе.

Для каждого набора параметров осуществить моделирование при g(t) = 1.

Сделайте выводы.

Ожидаемые результаты:

- Листинги аналитических расчетов.
- Значения постоянных времени T_1 и T_2 .
- Графическое изображение границы устойчивости на плоскости двух параметров $K(T_1)$ для случая фиксированной T_2 .
- Графическое изображение границы устойчивости на плоскости двух параметров $K(T_2)$ для случая фиксированной T_1 .
- Графики сигналов y(t) для трех наборов параметров K, T_1 и T_2 , соответствующих различным случаям устойчивости.
- Выводы.

Задание 3. Автономный генератор

Для приведенного в **Таблице 3** для вашего варианта аналитически заданного сигнала $g_{\mathbf{x}}(t)$ в системе вида

$$\begin{cases} \dot{x} = Ax \\ g = Cx, \end{cases} x(0),$$

задать такие параметры A, C и x(0), чтобы выход системы при свободном движении совпадал с желаемым выходом $g_{\mathbf{x}}(t)$. Выполнить моделирование, подтверждающее правильность выбранных параметров.

Ожидаемые результаты:

- Листинги аналитических расчетов.
- Значения матриц A и C и начальных условий x(0).
- Графики сигналов $g_{\mathbf{x}}(t)$ и g(t) с их сопоставлением.

Контрольные вопросы для подготовки к защите:

- 1. Что такое свободное движение?
- 2. Что такое мода? Какие моды свободного движения линейных систем существуют?
- 3. Что такое устойчивость?
- 4. Какие виды устойчивости линейных систем вы знаете? Как они соотносятся между собой?
- 5. Какие критерии устойчивости линейных систем вы знаете?
- 6. Можно ли представить генератор из задания 3 в виде дифференциального уравнения?
- 7. Можно ли представить генератор из задания 3 в виде передаточной функции?

Таблица 1: Исходные данные для Задания 1 (варианты 1-15)

	Номер эксперимента												
	1		2		3		4		5		6		
3HT	Начальные условия												
Вариант	y(0)	$\dot{y}(0)$	y(0)	$\dot{y}(0)$	y(0)	$\dot{y}(0)$	y(0)	$\dot{y}(0)$	y(0)	$\dot{y}(0)$	y(0)	$\dot{y}(0)$	
	1	0	1	0	1	0	0.05	0	0.05	0	0	0.1	
	L,			нения									
	λ_1	λ_2	λ_3	λ_4	λ_5	λ_6	λ_7	λ_8	λ_9	λ_{10}	λ_{11}	λ_{12}	
1	-1	-1	-0.5	-0.5	j3	-j3	0.5	0.5	1	1	-0.1	0.1	
		_	+j3	-j3	J -	3 -	+j3	-j3					
2	-1	-1.5	-0.6	-0.6	\parallel_{j4}	j4 $-j4$	0.6	0.6	1	1.5	-0.2	0.2	
			+j4	-j4			+j4	-j4					
3	-1	-2	-0.7	-0.7	j5	-j5	0.7	0.7	1	2	-0.3	0.3	
			+j5 -0.8	$-j5 \\ -0.8$		$+j5 \\ 0.8$	$-j5 \ 0.8$						
4 -	-2	-1.5	$\begin{vmatrix} -0.8 \\ +j6 \end{vmatrix}$		j6	-j6	$\begin{vmatrix} 0.8 \\ +j6 \end{vmatrix}$		2	1.5	-0.4	0.4	
			-0.9	$-j6 \\ -0.9$			0.9	-j6 0.9					
5	-2	-2	$\begin{vmatrix} -0.5 \\ +j7 \end{vmatrix}$	$-0.3 \\ -j7$	j7	$\mid -j7 \mid$	$\begin{vmatrix} 0.3 \\ +j7 \end{vmatrix}$	$\begin{vmatrix} 0.3 \\ -j7 \end{vmatrix}$	2	2	-0.5	0.5	
6	-2.5	-2.5	-1	-1	j8	-j8	1	1	2.5	2.5	-0.6	0.6	
			+j8	-j8			+j8	-j8					
	-3	-1	-1.1	-1.1	<i>j</i> 9	-j9	1.1	1.1	3	1	-0.7	0.7	
7			+j9	-j9			+j9	-j9					
0	-3	-1.5	-1.2	-1.2	<i>j</i> 10	-j10	1.2	1.2	3	1.5	-0.8	0.8	
8			+j10	-j10			+j10	-j10					
9	-3	-2	-1.3	-1.3	j11	-j11	1.3	1.3	3	2	-0.9	0.9	
			+j11	-j11	$J^{\perp \perp}$	-j11	+j11	-j11					
10	-3	-3	-1.4	-1.4	j12	-j12	1.4	1.4	3	3	-1	1	
10			+j12	-j12	J 1 2	J12	+j12	-j12				1	
11	-4	-3	-1.6	-1.6	j13	-j13	1.6	1.6	4	3	-1.2	1.2	
			+j13	-j13			+j13	-j13			1.2		
12	-4	-4	-1.7	-1.7	j14	-j14	1.7	1.7	4	4	-1.3	1.3	
			+j14				+j14						
13	-5	-5.5	-2.5	-2.5	j15	-j15	0.5	0.5	5	5.5	-1.4	1.4	
			+j3	-j3			+j3	-j3					
14	-5	-5.5	-2.6	-2.6	j16	-j16	0.6	0.6	5	5.5	-1.5	1.5	
			+j4	-j4			+j4	-j4					
15	-5.5	-6	-2.7	-2.7	j17	-j17	0.7	0.7	5.5	6	-1.6	1.6	
			+j5	-j5	<i>J</i> = ·	J 1 1	+j5	-j5	3.0				

Таблица 2: Исходные данные для Задания 1 (варианты 16-30)

	Номер эксперимента													
	1		2		3		4		5		6			
HT	Начальные условия													
Вариант	y(0)	$\dot{y}(0)$	y(0)	$\dot{y}(0)$	y(0)	$\dot{y}(0)$	y(0)	$\dot{y}(0)$	y(0)	$\dot{y}(0)$	y(0)	$\dot{y}(0)$		
	1	0	1	0	1	0	0.05	0	0.05	0	0	0.1		
	Корни характеристического уравнения													
	λ_1	λ_2	λ_3	λ_4	λ_5	λ_6	λ_7	λ_8	λ_9	λ_{10}	λ_{11}	λ_{12}		
16	-5.5	-6	$\begin{vmatrix} -2.8 \\ +j6 \end{vmatrix}$	$ \begin{array}{c c} -2.8 \\ -j6 \end{array} $	j18	-j18	0.8 + j6	$\begin{vmatrix} 0.8 \\ -j6 \end{vmatrix}$	5.5	6	-1.7	1.7		
17	-6	-6.5	-2.9 + j7	$ \begin{array}{c c} -2.9 \\ -j7 \end{array} $	<i>j</i> 19	-j19	$0.9 \\ +j7$	$\begin{array}{c} 0.9 \\ -j7 \end{array}$	6	6.5	-1.8	1.8		
18	-6	-6.5	-3 $+j8$	-3 $-j8$	<i>j</i> 20	-j20	1 + j8	$1 \\ -j8$	-6	6.5	-1.9	1.9		
19	-6.5	-7	-3.1 + j9	$ \begin{array}{c c} -3.1 \\ -j9 \end{array} $	<i>j</i> 21	-j21	1.1 + j9	$ \begin{array}{c c} 1.1 \\ -j9 \end{array} $	6.5	7	-2	2		
20	-6.5	-7	-3.2 + j10	$ \begin{array}{c c} -3.2 \\ -j10 \end{array} $	j22	-j22	1.2 + j10	$ \begin{array}{c c} 1.2 \\ -j10 \end{array} $	6.5	7	-2.1	2.1		
21	-7	-7.5	-3.3 + j11	$ \begin{array}{c c} -3.3 \\ -j11 \end{array} $	j23	-j23	1.3 + j11	$ \begin{array}{c c} \hline 1.3 \\ -j11 \end{array} $	7	7.5	-2.2	2.2		
22	-7	-7.5	-3.4 + j12	$ \begin{array}{c c} -3.4 \\ -j12 \end{array} $	j24	-j24	1.4 + j12	$ \begin{array}{c c} 1.4 \\ -j12 \end{array} $	7	7.5	-2.3	2.3		
23	-7.5	-1.5	-3.6 + j13	$-1.6 \\ -j13$	j25	-j25	1.6 + j13	$ \begin{array}{c} 1.6 \\ -j13 \end{array} $	7.5	1.5	-2.4	2.4		
24	-7.5	-2.5	-3.7 + j14	$ \begin{array}{c c} -3.7 \\ -j14 \end{array} $	<i>j</i> 26	-j16	1.7 + j14	$ \begin{array}{c c} 1.7 \\ -j14 \end{array} $	7.5	2.5	-2.5	2.5		
25	-1.5	-4.5	-3.5 + j3	$ \begin{array}{c c} -3.5 \\ -j3 \end{array} $	<i>j</i> 27	-j27	$0.5 \\ +j3$	$\begin{array}{c c} 0.5 \\ -j3 \end{array}$	1.5	4.5	-2.6	2.6		
26	-2.5	-4.5	-3.6 + j4	$ \begin{array}{c c} -3.6 \\ -j4 \end{array} $	j28	-j28	$0.6 \\ +j4$	$\begin{array}{c c} 0.6 \\ -j4 \end{array}$	2.5	4.5	-2.7	2.7		
27	-4.5	-5.5	-3.7 + j5	$ \begin{array}{c c} -3.7 \\ -j5 \end{array} $	j29	-j29	0.7 + j5	$\begin{array}{c c} 0.7 \\ -j5 \end{array}$	4.5	5.5	-2.8	2.8		
28	-4.5	-5.5	-3.8 + j6	$ \begin{array}{c c} -3.8 \\ -j6 \end{array} $	<i>j</i> 30	-j30	0.8 + j6	$0.8 \\ -j6$	4.5	5.5	-2.9	2.9		
29	-8	-8	-3.9 + j7	$ \begin{array}{c c} -3.9 \\ -j7 \end{array} $	<i>j</i> 31	-j31	$0.9 \\ +j7$	$\begin{array}{c} 0.9 \\ -j7 \end{array}$	8	8	-3	3		
30	-8	-8	$\begin{vmatrix} -4 \\ +j8 \end{vmatrix}$	$ \begin{array}{c c} -4 \\ -j8 \end{array} $	<i>j</i> 32	-j32	$\begin{vmatrix} 1 \\ +j8 \end{vmatrix}$	$\begin{vmatrix} 1 \\ -j8 \end{vmatrix}$	8	8	-3.4	3.4		

Таблица 3: Исходные данные для Задания 3

Вариант	Желаемый выход системы $g_{\mathbf{x}}(t)$	Вариант	Желаемый выход системы $g_{\mathbf{x}}(t)$
1	$\sin t + e^{3t}\cos 9t$	16	$\sin(-5t) + e^{-7t}\sin 9t$
2	$\cos(-2t) + e^{6t}\sin 5t$	17	$\cos 4t + e^{-8t} \cos 5t$
3	$\sin 3t + e^{9t} \cos t$	18	$\sin t + e^{-3t} + e^{4t}$
4	$\cos 8t + e^{8t} \sin(-2t)$	19	$\cos(-2t) + e^{-8t} + te^{-8t}$
5	$\sin(-6t) + e^{2t} + e^{-t}$	20	$\sin 9t + e^{7t} + te^{7t}$
6	$\cos 5t + e^t + e^{-5t}$	21	$\cos 7t + e^{5t} + e^{4t}$
7	$\sin(-5t) + e^{5t}\cos(-5t)$	22	$\cos 6t + e^{-2t} \cos 3t$
8	$\sin(-3t) + e^{-9t} + e^{-t}$	23	$\sin 7t + e^{-t} \sin 7t$
9	$\cos 2t + e^{6t} + e^{-2t}$	24	$\sin 3t + e^{5t} + e^{6t}$
10	$\cos 6t + e^{-4t} \cos 8t$	25	$\cos(-4t) + e^{4t} + te^{4t}$
11	$\cos 4t + e^{6t}\cos 2t$	26	$\sin 3t + e^{9t} + e^{-6t}$
12	$\sin(-3t) + e^{7t}\sin t$	27	$\cos(-3t) + e^{-5t}\sin 7t$
13	$\sin 9t + e^{-3t}\cos 3t$	28	$\sin 4t + e^{-5t}\cos 2t$
14	$\sin(-5t) + e^{-4t} + te^{-2t}$	29	$\sin t + e^{9t} + e^{-7t}$
15	$\cos 7t + e^{-7t} + e^{5t}$	30	$\cos 9t + e^{9t} \sin(-t)$