

Chemical kinetics Procida June 2015

Module 1

Module 1

- Introduction to course and teachers (PG, AC)
- Basic concepts about kinetics (PG)
- Introduction to OpenSMOKE++ and pre-processing of kinetic mechanisms (AC)

Teachers

- Peter Glarborg (pgl@kt.dtu.dk)
 - -DTU Chemical Engineering
- Alberto Couci (alberto.couci@polimi.it)
 - -Politecnico di Milano

The Technical University of Denmark

- Founded in 1829 by the Danish physicist Hans Christian Ørsted
- Moved from Copenhagen to Lyngby in the 1960s
- 6000 students
- 1000 Ph.d. students
- 1250 researchers
- 18 departments

The CHEC Research Center DTU Chemical Engineering

Combustion
Harmful
Emission
Control

High temperature processes

Production of heat and power Industrial processes
Production of liquid fuels

Formation and reduction of pollutants

NO_x, SO₂, HCI, CO, PAH Trace metals Particles, aerosols

DTU Chemical Engineering, Technical University of Denmark

Selected high-temperature processes

Combustion and incineration

Engine (marine Diesel)

Cement production

Pyrolysis and gasification

Reforming and fuel synthesis

Fuel

Pyrolysis gas

2nd
Cyclone

Pyrolysis gas

Char/
Sand

Char Reactor

Pyrolysis

Char Reactor

Gasification ≈730°C

Air

Combustion chemistry

Pillars of combustion research

Fundamental

- develop a comprehensive, technology-independent chemical kinetic model for high-temperature gasphase chemistry
- characterize key gas-solid and gas-to-solid reactions

Knowledge transfer

facilitate industrial use of research results

Applied

 meet the technical challenges of clean and sustainable thermal processes

DTU

From molecular science to advanced technology

From molecular science to advanced technology

Semi-industrial scale experiments

DTU Chemical Engineering, Technical University of Denmark

How do we work

Laboratory experiments

Pilot scale measurements

Full scale measurements

DTU Chemical Engineering, Technical University of Denmark

Model development

Your background?

Course material

- Power point presentations
- Exercise sets
- Note material
 - -Excerpts from Kee, Coltrin and Glarborg: Chemically Reacting Flow -Theory and Practice (Wiley, 2000)

Program

Monday June 1

Introduction to course and basic kinetic concepts (PG)
Introduction to OpenSMOKE++ and pre-processing of kinetic mechanisms (AC)

Tuesday June 2

Reaction mechanisms (PG)

Task 1: Oxidation of aromatic compounds (AC)

Thursday June 4

Developing detailed chemical kinetic models (PG)

Task 2: Engine exhaust oxidation of unburned hydrocarbons (AC)

Friday June 5

Challenges in combustion chemistry (PG)

Numerical modeling of reacting flows with detailed kinetic mechanisms: challenges and perspectives (AC)

Task 3: Flame inhibitors (AC)

Objectives

Theory

- Learn fundamental concepts
- Understand different ways to represent chemistry in reacting flows
- Understand and model complex reactions
- Learn to develop and validate detailed reaction mechanisms

Practice (hands-on)

- Learn and use OpenSmoke software package
- Solve practical problems using chemical kinetic modeling

FIGURE 9.5
Soot formation and destruction zones in laminar jet flames.

Diffusion or kinetic control?

Finite rate chemistry

Fast chemistry

Gas-phase reactions

- Industry
 - Production of heat and power
 - Flue gas cleaning and incineration
 - Production of chemicals
 - Refinery processes
 - Materials synthesis
 - Hazard assessment
- Transportation
 - Engines
 - Turbines
- Atmospheric chemistry

Combustion of natural gas

Sandia National Laboratories

Kee et al. (2000)

GTL processes

- Conversion of gas to liquid reduces transportation costs
- Direct homogeneous conversion is simple and cheap

"Direct Partial Oxidation of Natural Gas to Liquid Chemicals"

Direct GTL partial oxidation of CH₄

Auto-thermal reforming: Prediction of soot propensity

Reburning

in-situ reduction of NO_x emissions in combustion

Reburning at SYSAV Municipal Waste Plant

DTU Chemical Engineering, Technical University of Denmark

Experimental and modeling study of reburning with CH₄

Selective Non-Catalytic Reduction In-situ reduction of NO_x emissions

Reaction Mechanism: CH₂O Subset

Reaction subset for CH2O. Rate constants for reactions 21-24 are reported elsewhere [24].

		A [cm, mole, s]	β	E _a [cal/mole]	Source
1.	$CH_2O + M \rightleftharpoons HCO + H + M^a$	6.1E15	0.00	76900	[28]
2.	$CH_2O + M \rightleftharpoons CO + H_2 + M^a$	2.8E15	0.00	63800	[28]
3.	$CH_2O + H \rightleftharpoons HCO + H_2$	5.7E07	1.90	2740	[5]
4.	$CH_2O + O \rightleftharpoons HCO + OH$	1.8E13	0.00	3080	[31] ^b
5.	$CH_2O + OH \rightleftharpoons HCO + H_2O$	3.4E09	1.18	-447	[31] ^b
6.	$CH_2O + HO_2 \rightleftharpoons HCO + H_2O_2$	4.1E04	2.50	10200	[32]
7.	$CH_2O + O_2 \rightleftharpoons HCO + HO_2$	5.0E04	3.00	39000	see text
8.	$HCO + M \rightleftharpoons H + CO + M^a$	4.8E17	-1.20	17700	[46]
9.	$HCO + H \rightleftharpoons CO + H_2$	1.2E13	0.25	0	[24] ^b
10.	$HCO + O \rightleftharpoons CO + OH$	3.0E13	0.00	0	[34] ^b
11.	$HCO + O \rightleftharpoons CO_2 + H$	3.0E13	0.00	0	[34] ^b
12.	$HCO + OH \rightleftharpoons CO + H_2O$	1.0E14	0.00	0	[34] ^b
13.	$HCO + HO_2 \rightleftharpoons CO_2 + OH + H$	3.0E13	0.00	0	[31]
14.	$HCO + O_2 \rightleftharpoons CO + HO_2$	3.4E12	0.00	0	[45]
15.	$HCO + HCO \rightleftharpoons CO + CH_2O$	3.0E13	0.00	0	[29]
16.	$CH_2O + NO_2 \rightleftharpoons HCO + HONO$	8.0E02	2.77	13730	[54] ^b
17.	$HCO + NO \rightleftharpoons CO + HNO$	7.0E13	-0.40	0	[44]
18.	$HCO + HNO \rightleftharpoons NO + CH_2O$	6.0E11	0.00	2000	[54] ^b
19.	$HCO + NO_2 \rightleftharpoons CO + HONO$	1.2E23	-3.29	2355	[54] ^b
20.	$HCO + NO_2 \rightleftharpoons H + CO_2 + NO$	8.4E15	-0.75	1930	[54] ^b
25.	$NO_2 + HO_2 \rightleftharpoons HONO + O_2$	6.3E08	1.25	5000	[48]
26.	$HNO + O_2 \rightleftharpoons NO + HO_2$	2.0E13	0.00	16000	[55]

^a Enhanced third-body efficiencies: $H_2O = 5$.

^b Adopted from Glarborg et al. [24]

Hierarchichal structure of oxidation mechanisms

Hydrocarbon reaction mechanism - comprehensive modeling tool

Hydrocarbon/nitrogen reaction mechanism - comprehensive modeling tool

Hydrocarbon/nitrogen reaction mechanism - technology independent modeling tool

Models of chemical reaction

- Fast chemistry
 - -"Mixed is burnt"
 - -Chemical equilibrium
- Finite rate chemistry
 - -Global reactions
 - -Analytically reduced mechanisms
 - -Detailed elementary reaction mechanisms

Finite Rate Chemistry

- 2-step global (e.g. Westbrook-Dryer)
 - $-CH_4 + 1.5O_2 -> CO + 2H_2O$
 - $-CO + \frac{1}{2}O_2 < -> CO_2$
- Reduced mechanism (e.g. Jones-Lindstedt)
 - $-CH_4 + \frac{1}{2}O_2 -> CO + 2H_2$
 - $-CH_4 + H_2O -> CO + 3H_2$
 - $-H_2 + \frac{1}{2}O_2 <-> H_2O$
 - $-CO + H_2O < -> CO_2 + H_2$
- Full mechanism
 - -E.g., 32 species and 156 reactions

Single-step global rate parameters

TABLE 5.1 Single-step reaction rate parameters for use with Eqn. 5.2. (Adapted from Ref. [6])

Fuel	Pre-exponential factor, A*	Activation temperature, E_a/R_s (K)	m	п
CH ₄	1.3 · 10 ⁸	24,358 ^b	-0.3	1.3
CH ₄	8.3 · 10 ⁵	15,098°	-0.3	1.3
C ₂ H ₆	$1.1 \cdot 10^{12}$	15,098	0.1	1.65
C ₃ H ₈	8.6 · 1011	15,098	0.1	1.65
C ₄ H ₁₀	7.4 - 1011	15,098	0.15	1.6
C ₅ H ₁₂	$6.4 \cdot 10^{11}$	15,098	0.25	1.5
C6H14	$5.7 \cdot 10^{11}$	15,098	0.25	1.5
C7H16	5.1 - 1011	15,098	0.25	1.5
C ₈ H ₁₈	4.6 · 1011	15,098	0.25	1.5
C ₈ H ₁₈	$7.2 \cdot 10^{12}$	20,131 ^d	0.25	1.5
C ₉ H ₂₀	$4.2 \cdot 10^{11}$	15,098	0.25	1.5
C ₁₀ H ₂₂	$3.8 \cdot 10^{11}$	15,098	0.25	1.5
CH₃OH	$3.2 \cdot 10^{12}$	15,098	0.25	1.5
C ₂ H ₅ OH	$1.5 \cdot 10^{12}$	15,098	0.15	1.6
C ₆ H ₆	2.0 · 1011	15,098	-0.1	1.85
C ₇ H ₈	1.6 · 1011	15,098	-0.1	1.85
C ₂ H ₄	2.0 · 10 ¹²	15,098	0.1	1.65
C ₃ H ₆	4.2 · 10 ¹¹	15,098	-0.1	1.85
C ₂ H ₂	$6.5 \cdot 10^{12}$	15,098	0.5	1.25

[&]quot;Units of A are consistent with concentrations in Eqn. 5.1 expressed in units of gmol/cm³, i.e., A[=] (gmol/cm³)1-m-n/s.

Turns: An Introduction to Combustion

 $^{{}^{}b}E_{a} = 48.4 \text{ kcal/gmol}.$

 $^{^{}c}E_{a} = 30 \text{ kcal/gmol}.$

 $^{{}^{}d}E_{a}=40 \text{ kcal/gmol}.$

Global reaction

$$CO + \frac{1}{2}O_2 \rightarrow CO_2$$

Global rate expression for CO oxidation:

$$-R_{CO} = k [CO]^a [O_2]^b$$

- Rate constant $k = A \exp(-E_a/RT)$ (Arrhenius)
- Reaction order a+b
- Parameters k, a, b are empirical

Arrhenius expression

 $k = A \exp(-E_a/RT)$

Global reaction

$$CO + \frac{1}{2}O_2 \rightarrow CO_2$$

Global rate expression for CO oxidation:

$$-R_{CO} = k [CO]^a [O_2]^b$$

= 1.3x10¹⁰ exp(-20130/T)[CO][O₂]^{0.25}[H₂O]^{0.5}

Reactor design exercise

Global rate expression for CO oxidation:

 $-R_{CO} = 1.3x10^{10} \exp(-20130/T)[CO][O_2]^{0.25}[H_2O]^{0.5}$

Task: design a high-pressure reactor that ensures oxidation of CO

Reactor design

1 atm

- $-R_{CO} = 1.3 \times 10^{10} \exp(-20130/T)[CO][O_2]^{0.25}[H_2O]^{0.5}$
- -R_{CO} proportional to [M]^{1.75} and thereby P^{1.75}

Design suggestion

10 atm

CO oxidation

Experimental results: effect of pressure

Fig. 13.3 Laboratory flow reactor experiments on carbon monoxide oxidation as function of pressure [226]. The initial temperature is 1040 K and the initial mole fractions are 1.0% CO, 0.5% O₂, and 0.65% H₂O, with the balance N₂.

Reactor design

1 atm

Based on experimental evidence:

10 atm

Elementary reaction

$$CO + OH \rightarrow CO_2 + H$$

Rate expression for CO oxidation:

$$-R_{CO} = k [CO][OH]$$

- Rate constant $k = A T^{\beta} \exp(-E_a/RT)$
- Bimolecular reaction
- Reactor order according to stoichiometric coefficients
- Parameter k is empirical

Arrhenius plot for CO + OH

Figure 2. Arrhenius plot for the rate coefficient of reaction CO + OH; buffer gas is argon.

$$k = A T^{\beta} exp(-E_a/RT)$$

Molecularity of elementary reactions

Unimolecular (decay) A → P

$$-\dot{A} = k_1 [A]$$

Bimolecular (collision) A + B → P

$$-\dot{A} = k_2 [A] [B]$$

Termolecular (collision) A + B + C → P

$$-\dot{A} = k_3 [A] [B] [C]$$

$$-\dot{A} = k_3 [A] [B] [M]$$

Why \dot{A} and not d[A]/dt?

CO oxidation

Global reaction

$$CO + \frac{1}{2}O_2 \rightarrow CO_2$$

Elementary reaction

$$CO + OH \rightarrow CO_2 + H$$

- -Proceeds as written
- -As a rule, does not break/form more than one chemical bond
- -Seldom involves more than two reactants (may also involve collision partner)

Reaction Mechanism: CH₂O Subset

Reaction subset for CH2O. Rate constants for reactions 21-24 are reported elsewhere [24].

		A [cm, mole, s]	β	E _a [cal/mole]	Source
1.	$CH_2O + M \rightleftharpoons HCO + H + M^a$	6.1E15	0.00	76900	[28]
2.	$CH_2O + M \rightleftharpoons CO + H_2 + M^a$	2.8E15	0.00	63800	[28]
3.	$CH_2O + H \rightleftharpoons HCO + H_2$	5.7E07	1.90	2740	[5]
4.	$CH_2O + O \rightleftharpoons HCO + OH$	1.8E13	0.00	3080	[31] ^b
5.	$CH_2O + OH \rightleftharpoons HCO + H_2O$	3.4E09	1.18	-447	[31] ^b
6.	$CH_2O + HO_2 \rightleftharpoons HCO + H_2O_2$	4.1E04	2.50	10200	[32]
7.	$CH_2O + O_2 \rightleftharpoons HCO + HO_2$	5.0E04	3.00	39000	see text
8.	$HCO + M \rightleftharpoons H + CO + M^a$	4.8E17	-1.20	17700	[46]
9.	$HCO + H \rightleftharpoons CO + H_2$	1.2E13	0.25	0	[24] ^b
10.	$HCO + O \rightleftharpoons CO + OH$	3.0E13	0.00	0	[34] ^b
11.	$HCO + O \rightleftharpoons CO_2 + H$	3.0E13	0.00	0	[34] ^b
12.	$HCO + OH \rightleftharpoons CO + H_2O$	1.0E14	0.00	0	[34] ^b
13.	$HCO + HO_2 \rightleftharpoons CO_2 + OH + H$	3.0E13	0.00	0	[31]
14.	$HCO + O_2 \rightleftharpoons CO + HO_2$	3.4E12	0.00	0	[45]
15.	$HCO + HCO \rightleftharpoons CO + CH_2O$	3.0E13	0.00	0	[29]
16.	$CH_2O + NO_2 \rightleftharpoons HCO + HONO$	8.0E02	2.77	13730	[54] ^b
17.	$HCO + NO \rightleftharpoons CO + HNO$	7.0E13	-0.40	0	[44]
18.	$HCO + HNO \rightleftharpoons NO + CH_2O$	6.0E11	0.00	2000	[54] ^b
19.	$HCO + NO_2 \rightleftharpoons CO + HONO$	1.2E23	-3.29	2355	[54] ^b
20.	$HCO + NO_2 \rightleftharpoons H + CO_2 + NO$	8.4E15	-0.75	1930	[54] ^b
25.	$NO_2 + HO_2 \rightleftharpoons HONO + O_2$	6.3E08	1.25	5000	[48]
26.	$HNO + O_2 \rightleftharpoons NO + HO_2$	2.0E13	0.00	16000	[55]

^a Enhanced third-body efficiencies: $H_2O = 5$.

^b Adopted from Glarborg et al. [24]

Some fundamentals

- Temperature dependence of reaction
 - -Arrhenius expression

$$k = A T^{\beta} exp(-E_a/RT)$$

- Pressure dependence of reaction rate
 - -Lindemann
 - -Troe
 - -PLOG format
- Kinetics and thermodynamics

$$K_C = k_f / k_r$$

Relationship between forward and reverse activation energies

The Lindemann mechanism

Pressure dependent reactions

$$A + M \xrightarrow{k_1} A^* + M$$

$$A^* \xrightarrow{k_2} P$$

$$k_{uni} = \frac{k_2 k_1[M]}{k_{-1}[M] + k_2}$$

High pressure limit ([M] $\rightarrow \infty$): $k_{\infty} = \frac{k_1}{k_1} k_2$

$$\frac{d[A]}{dt} = k_{\infty}[A] \qquad (1. \text{ order})$$

Low pressure limit ([M] \rightarrow 0): $k_0 = k_1$

$$\frac{d[A]}{dt} = k_0[A][M] \qquad (2. \text{ order})$$

$$k_{uni} = \frac{k_2 k_1[M]}{k_{-1}[M] + k_2} = \frac{k_{\infty}}{1 + k_{\infty} / (k_0[M])}$$

Stable molecules

Hydrogen (H₂):

- Stable molecule
- Comparatively unreactive
- Can be stored in a box

Stable molecules and chain carriers

Hydrogen (H₂):

- Stable molecule
- Comparatively unreactive
- Can be stored in a box

Hydrogen atom (H):

- Radical (unpaired electrons)
- Reactive
- Cannot be stored

Chain carrier