

Big Data Analytics & Applications

Bin Li

School of Computer Science Fudan University

- Block-structure view
 - Co-clustering approach

■ Co-clustering

3.7	5	1	1	0	0	9	0	
3.7	3.4	0	0	1	1	1	1	

Assume two user and two item groups

Matrix tri - factorization : $\hat{\mathbf{X}} = \mathbf{P}\mathbf{B}\mathbf{Q}^{\mathrm{T}} \in R^{5\times 6}$

User membership matrix: $\mathbf{F} \in [0,1]^{5\times 2}$

Item membership matrix : $\mathbf{G} \in [0,1]^{6\times 2}$

Group - level rating matrix : $\mathbf{B} \in \mathbb{R}^{2 \times 2}$

- Matrix Reconstruction
 - ☐ Predict missing ratings in the preference matrix

4	3			5	
4	4				
3.7		3	3	4	
		3	4	3.4	
			5		2

	1	0
	1	0
,	0	1
	0	1
	0	1

3.7	5
3.7	3.4

1)	1	0	0	0	0
0	0	1	1	1	1

- Clustering users and items separately
 - Most straightforward way for co-clustering
 - ☐ Clustering one side using the other side as features
 - ☐ Any clustering algorithm can be applied (e.g., *K*-Means)

1	0	4		5			3
0	1		3	4		3	
0	1		3			4	
1	0	4					4
0	1				2	5	

1	0 0	0	0	1
0	1 1	1	1	0

4		5			-3
	3	4		3	
	3			4	
4					4
			2	5	

- Group-level rating matrix
 - Each entry is the average rating of a user-item joint group

4	3			5	
4	4				
		3	3	4	
		3	4		
			5		2

3.7	5
3.7	3.4

$$\mathbf{B}_{1,1} = (3+4+4+4)/4 = 3.7$$

$$\mathbf{B}_{1,2} = 5/1 = 5$$

$$\mathbf{B}_{2,1} = (2+3\times4+4\times5+5\times2)/12 = 3.7$$

$$\mathbf{B}_{2,2} = (2+3+3+3+4+4+5)/7 = 3.4$$

- Flexible Mixture Model^[1] (FMM)
 - ☐ From hard-membership to soft-membership
 - \square Each user/item has a distribution over K user/L item groups

$$\hat{\mathbf{X}} = \mathbf{P}\mathbf{B}\mathbf{Q}^{\mathrm{T}}$$
 where $\mathbf{B}_{k,l} = \sum_{r} rp(r \mid k, l)$

User u's membership in user group $k : \mathbf{P}_{u,k} = p(k \mid u)$

$$p(k | u) \propto p(u | k) p(k)$$

Item *m*'s membership in item group $l: \mathbf{Q}_{m,l} = p(l \mid m)$

$$p(l \mid m) \propto p(m \mid l) p(l)$$

E-Step:

$$p(k, l \mid x_{u,m}) = \frac{p(x_{u,m} \mid k, l) p(u \mid k) p(k) p(m \mid l) p(l)}{\sum_{k,l} p(x_{u,m} \mid k, l) p(u \mid k) p(k) p(m \mid l) p(l)}$$

M-Step:

$$p(k) = \frac{\sum_{l} \sum_{w_{u,m}=1} p(k, l \mid x_{u,m})}{\sum_{(u,m)} w_{u,m}}, \quad p(l) = \frac{\sum_{k} \sum_{w_{u,m}=1} p(k, l \mid x_{u,m})}{\sum_{(u,m)} w_{u,m}}$$

$$p(u \mid k) = \frac{\sum_{l} \sum_{w_{v,m}=1 \cap v=u} p(k, l \mid x_{v,m})}{p(k) \sum_{(u,m)} w_{u,m}}, \quad p(m \mid l) = \frac{\sum_{k} \sum_{w_{u,m}=1 \cap m'=m} p(k, l \mid x_{u,m'})}{p(l) \sum_{(u,m)} w_{u,m}}$$

$$p(r \mid k, l) = \frac{\sum_{w_{u,m}=1 \cap x_{u,m}=r} p(k, l \mid x_{u,m})}{\sum_{w_{u,m}=1} p(k, l \mid x_{u,m})}$$

Cold-Start Problem

New user

■ Cold-Start Problem in Collaborative Filtering

New item

Cold-Start Problem

- A major limitation of CF
 - ☐ A reason that real-world RSs adopts hybrid strategies
- Solutions for user cold-start
 - Demography-based
 - Popularity-based (most popular items)
 - □ Social relationship based (friends' preference)
 - ☐ Implicit preference based (e.g., browsed items)
- Solutions for item cold-start
 - □ Content-based
 - Ratings borrowed from items of the same category

Temporal Changes

- A major challenge of CF
 - ☐ Real RSs usually take into account temporal factors
- Causes of temporal changes from users
 - Changing bias
 - ☐ Changing interest
 - ☐ Changing context
- Causes of temporal changes from items
 - ☐ Seasonal effects (Valentine's day, Mid-autumn day)
 - ☐ Trending (fashions, digital products)

Temporal CF

- Temporal CF Problem
 - Each timestamp has a rating matrix
 - ☐ Can be represented as a tensor

	_	0	,												
×,	'n	/	/												
•	,	4				_								/	
		П									П	П			
		П													
		П										П			
Ś		Ħ													
users															
S													П		
\Box		П										П			
_		П												Г	$\overline{}$
		Ц		Ц		L		Ц		Ц	Ц	Ц	\vdash		
					i	t	e	n	าร	•					

	user	movie	date	rate
/	1	34	11-04-02	3
	1	296	09-05-02	4
	2	11	18-01-02	5
	2	59	23-02-02	4
	2	124	03-04-02	2

Temporal CF

- TimeSVD++^[1]: Netflix Winner's Method
 - ☐ An improvement of SVD++ for temporal CF
 - □ TimeSVD++ considers time-dependent factors: user rating bias $b_u(t)$, item rating bias $b_m(t)$, and user feature vector $\mathbf{f}_u(t)$

$$x_{u,m,t} = \mu + b_u(t) + b_m(t) + \mathbf{g}_m^{\mathrm{T}} \mathbf{f}_u(t)$$

Timestamp *t*-1

Timestamp *t*

Timestamp t+1

Temporal CF

■ Matrix Factorization

+

items

■ Tensor Factorization

Noise Problem

- Spammer Detection (malicious users)
 - ☐ Promote certain items with misleading information
 - ☐ Usually formulate as a classification problem to detect malicious users
- Shilling Detection (malicious users)
 - A group of colluded users inserting untruthful profiles to promote or degrade certain items
 - ☐ Fake profiles are usually generated according to certain distributions
 - Usually formulate as a clustering or principal component analysis problem to detect colluded users

Noise Problem

- Natural Noise Detection (nonmalicious users)
 - ☐ Difficult to detect because no patterns
 - ☐ Difficult to define natural noisy users
 - Difficult to quantify the noise
- Solutions: Consistency of Preference
 - ☐ The larger the difference, the more likely a user is to be noisy
 - E.g., consistency between observed and predicted ratings
 - ☐ E.g., consistency between multiple ratings on same items

Implicit Feedback

- Implicit Feedback Data
 - □ Click-through records, purchased records, etc.
 - Easy and cheap to obtain
 - □ Large amount
 - Noisy

Implicit Feedback

- Characteristics of Implicit Feedbacks
 - ☐ Simple (usually binary data)
 - Abundant
 - Noisy
 - Sequential
- A Better Approach Online Learning
 - ☐ Binary data is simpler for online learning
 - ☐ Performance can be reinforced using noisy but abundant data
 - ☐ Sequential arrived data is natural for online learning

Online Recommendation

■ Example: Online Advertising

Allows	8.4-21	Manue	Consta	F:	Marthan	0	0	A	0	
	Mail	News	Sports	Finance	Weather	Games	Groups	Answers	Screen	
YAH	OO	goo	gle chrom	e download				×	Search	
Web		Ads	related to go	ogle chrome	download					
Images		Goo	gle Chror	me™ Down	load - Get	The Google	e Chrome	TM_		
Video			gleChrome Version & 10	.SoftPack.info)					
Shopping		I ull	version & ro	70 70 T Tee:						
Blogs		Goo	gle Chro	me - 100% 1	ree downl	oad. Easy	setup.			
More				ogle-Chrome gle Chrome n	ow.					
Anytime			Google CHROME Download - 2013 Version Free! DownloadGoogleChrome.softonic.com							
Past day			Download Official Google Chrome 2013 Browser Here!							
Past week	C	Li	ightning Qui	_	Se	cure Downlo	ad			

Online Recommendation

- Basic Idea of Online Recommendation
 - ☐ Initial recommending item set (usually popularity-based)
 - Recommend her favorite items based on users' feedback
 - □ Also try other items potentially extracting the user
- Exploitation and Exploration Problem
 - ☐ An online decision making problem
 - "Exploitation" of the items been frequently clicked
 - "Exploration" to get more information about the other items
 - ☐ A tradeoff between Exploitation and Exploration

Multi-Armed Bandits

- An ML problem originated from casino
 - ☐ Each slot machine has an unknown probability to win
 - \square The gambler faces a set of slot machines (K-armed bandits)
 - □ Play slot machines sequentially to achieve the largest possible reward

Multi-Armed Bandits

- Arms (Items)
 - \square *K* arms to select (i.e., *K*-armed bandits)
 - Each arm has an unknown (possibly changing) probability of reward
- Rewards (Click-throughs, Purchases)
 - At time $t = 1, 2, \dots$, select one arm a_t to play and get a random reward r_t according to the unknown probability
- Trials
 - $\square (a_1, r_1) (a_2, r_2) \cdots (a_t, r_t) \cdots$
- Goal
 - Maximize the accumulated rewards over time

MAB for Online Recommendation

■ Bernoulli MAB

- Prior of item m being clicked is Beta(α , β)
- -Online recommendations are Bernoulli trials: a_m (clicked), b_m (unclicked)
- Posterior of being clicked is Beta($\alpha + a_m$, $\beta + b_m$)
- -Sample from Beta($\alpha + a_m, \beta + b_m$)
- Exploitation and Exploration
 - ☐ Items been clicked more are more likely to be recommended
 - □ Other items also have different probabilities to be tried

MAB for Online Recommendation

■ Thompson sampling for the Bernoulli MAB

```
- for t = 1, ..., T do
       for m = 1, ..., M do
             draw \theta_m from Beta(\alpha + a_m, \beta + b_m)
       end for
             select arm \hat{m} = \arg \max_{m} \theta_{m} and observe click r_{t}
       if r_t = 1 then
             a_k = a_k + 1
       else
             b_k = b_k + 1
       end if
- end for
```

Project: Block Modeling for Network Data

■ Dataset:

■ Public available datasets for collaborative filtering (e.g., https://movielens.org/) or social network analysis (e.g., https://snap.stanford.edu/data/)

■ Method:

☐ Use Infinite Relational Model for network data analysis: http://web.mit.edu/cocosci/Papers/Kemp-etal-AAAI06.pdf

■ Experiments:

☐ Visualize the block structures of the modeling results

Thanks

Email: libin@fudan.edu.cn