EEE205 – Digital Electronics (II) Lecture 8

Dr. Ming Xu

Dept of Electrical & Electronic Engineering

XJTLU

In This Session

- A Revision of Karnaugh Maps
- The Terminology
- Five-Variable Karnaugh Maps

A Revision of Karnaugh Maps

Determine the Minimum SOP

- 1. When a variable appears in both complemented and uncomplemented form in a group, that variable is eliminated.
- 2. Variables that are the same for all cells of the group must appear 1 for uncomplemented form and 0 for complemented form. $\bar{A}B\bar{C}$ BC \bar{B}

A Revision of Karnaugh Maps

Grouping the 1s

- The goal is to maximize the size of the groups (shorter product terms) and to minimize the number of groups (less product terms).
- A group may contain 1, 2, 4, 8, or 16 adjacent cells.
- Each 1 must be included in one or **more** groups.

3

The Terminology

- A **minterm** is a product term that includes all the variables in a Boolean function.
- It corresponds a 1 cell in a K-map.
- Here 7 minterms in total.

5

7

The Terminology

 Minterms are often used to express a specific Boolean function or a truth table in a compact way.

ABC	f
000	0
001	1
010	1
011	1
100	1
101	1
110	0
111	0

$$f(A,B,C) = A'B'C + A'BC' + A'BC + AB'C' + AB'C$$

$$f(A,B,C) = m_1 + m_2 + m_3 + m_4 + m_5 = \sum m(1,2,3,4,5)$$

The Terminology

• A minterm is often referred to by the decimal number converted from its binary value.

ABC	Minterm	Number
000	A'B'C'	0
001	A'B'C	1
010	A'BC'	2
011	A'BC	3
100	AB'C'	4
101	AB'C	5
110	ABC'	6
111	ABC	7

$$m_1 = A'B'C$$

$$m_6 = ABC'$$

The Terminology

• If the function includes **don't cares**, those terms are included in a separate sum.

abc	g
000	X
001	1
010	1
011	X
100	0
101	1
110	0
111	0

$$g(a,b,c) = \sum m(1,2,5) + \sum d(0,3)$$

ď

8

The Terminology

- An implicant is a product form that can be used in the sum-of-products expression for a function.
- The function is 1 whenever the implicant is 1.
- An implicant corresponds to a rectangle of 1, 2, 4, 8, ...(any power of 2) 1's in a K-map.
- Here 14 implicants: seven 1's, six groups of 2 and one group of 4.

CDA	B 00	01	11	10
00	1		1	
01			1	
11	1	1	9	1
10				

The Terminology

- A prime implicant is an implicant which can not be merged with another implicant to remove a variable.
- It corresponds to a 1's group which is not fully contained in another group.
- Here 4 prime implicants:
 A'B'C'D', ABC', ABD and CD.

10

The Terminology

- An **essential prime implicant** is a prime implicant that includes at least one 1 that is not included in any other prime implicant.
- Essential prime implicants must appear in a fully minimized SOP expression.
- Here 3 essential prime implicants: A'B'C'D', ABC' and CD.

Karnaugh Maps

Find prime implicants

$$f(a, b, c, d) =$$

 $\sum m(0, 1, 2, 5, 6, 7, 8, 9, 10, 14)$

9

Karnaugh Maps

Find essential prime implicants

13

Five-Variable Karnaugh Maps

- Boolean functions with five variables can be simplified using **two** 4-variable maps.
- Squares directly above or below each other are adjacent.

14

Five-Variable Karnaugh Maps

Five-Variable Karnaugh Maps

