Math 521 Homework 3

Due on Thursday, March 22, 2018

Kristin Holmbeck

Contents

Theor	\mathbf{y}	2
1. (Gradient of Inner Product	2
2. (Commutativity of Symmetric Matrix in the Inner Product	2
	Eigenvalues and eigenvectors	
	FLOP count	
Comp	outing	5
\mathbf{Code}		9
Eig	envalues and Vectors	9
	of Figures	-
1	Ensemble Average of data set	
2	One mean-subtracted image	
3	Some eigen-images	6
4	Scaled singular values	7
5	Rank Approximation Errors (rank ≥ 40)	7

Theory

1. Gradient of Inner Product

Show that $\nabla_{\boldsymbol{v}}(\boldsymbol{v},\boldsymbol{v}) = 2\boldsymbol{v}$ and that for a symmetric matrix C, $\nabla_{\boldsymbol{v}}(\boldsymbol{v},C\boldsymbol{v}) = 2C\boldsymbol{v}$.

Assume
$$v \in \mathbb{R}^n$$
.

$$\nabla_v(v, v) = \nabla_v v^T v$$

$$= \nabla_v \left(v_1^2 + v_2^2 + \dots + v_n^2\right)$$

$$= \left(\frac{\partial \left(v_1^2 + v_2^2 + \dots + v_n^2\right)}{\partial v_1} \dots, \frac{\partial \left(v_1^2 + v_2^2 + \dots + v_n^2\right)}{\partial v_n}\right)$$

$$= (2v_1, 2v_2, \dots, 2v_n)$$

$$= 2v$$

Next, show $\nabla_v(v, Cv) = 2Cv$:

$$Let $v = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$

$$= \begin{bmatrix} c_{11} & c_{12} & \dots & c_{1n} \\ c_{21} & c_{22} & \dots & c_{2n} \\ \vdots & & & \vdots \\ c_{n1} & \dots & c_{nn} \end{bmatrix} = \begin{bmatrix} c_{11} & c_{21} & \dots & c_{n1} \\ c_{12} & c_{22} & \dots & c_{n2} \\ \vdots & & & \vdots \\ c_{1n} & \dots & c_{nn} \end{bmatrix}$$

$$= \begin{bmatrix} c_{1} & \cdots & c_{n1} \\ c_{12} & c_{22} & \cdots & c_{n2} \\ \vdots & & & \vdots \\ c_{1n} & \dots & c_{nn} \end{bmatrix}$$

$$= \begin{bmatrix} c_{1} & \cdots & c_{n1} \\ \vdots & & & \vdots \\ c_{1n} & \dots & c_{nn} \end{bmatrix}$$

$$= \begin{bmatrix} c_{1} & \cdots & c_{n1} \\ \vdots & & & \vdots \\ c_{1n} & \dots & c_{nn} \end{bmatrix}$$

$$= \begin{bmatrix} c_{1} & \cdots & c_{n1} \\ \vdots & \vdots & & \vdots \\ c_{1n} & \dots & c_{nn} \end{bmatrix}$$

$$= \begin{bmatrix} c_{1} & \cdots & c_{n1} \\ \vdots & \vdots & & \vdots \\ c_{1n} & \dots & c_{nn} \end{bmatrix}$$

$$= \begin{bmatrix} c_{1} & \cdots & c_{n1} \\ \vdots & \vdots & & \vdots \\ c_{n} & \cdots & c_{nn} \end{bmatrix}$$

$$= \begin{bmatrix} c_{1} & \cdots & c_{n1} \\ \vdots & \vdots & \vdots \\ \vdots & \ddots & \vdots \\ \vdots & \ddots &$$$$

2. Commutativity of Symmetric Matrix in the Inner Product

Show that for a symmetric matrix C, $(\phi^{(1)}, C\phi^{(2)}) = (C\phi^{(1)}, \phi^{(2)})$.

 $\implies \nabla_{\boldsymbol{v}}(\boldsymbol{v}, C\boldsymbol{v}) = 2C\boldsymbol{v}$

$$(x, Cy) = (Cy)^T x = y^T C^T x = y^T Cx = (Cx, y)$$

$$\implies (x, Cy) = (Cx, y)$$

3. Eigenvalues and eigenvectors

Given the data matrix

$$X = \begin{bmatrix} -2 & -1 & 1\\ 0 & -1 & 0\\ -1 & 1 & 2\\ 1 & -1 & 1 \end{bmatrix}$$

compute the eigenvalues and eigenvectors of XX^T and X^TX . For $u^{(1)}$, confirm the statement

$$\boldsymbol{u}^{(j)} = \frac{1}{\sigma_j} \Sigma_{k=1}^P v_k^{(j)} \boldsymbol{x}^{(k)}$$

By MATLAB, $\rho(XX^T) = \lambda(\lambda - 9)(\lambda - 4)(\lambda - 3) = \lambda \rho(X^TX)$, i.e. the eigenvalues of XX^T are $\{0, 3, 4, 9\}$ and the eigenvalues of X^TX are $\{3, 4, 9\}$. See the heavy-lifting code later in this document. The eigenvectors of X^TX are the column vectors of the matrix:

$$\begin{bmatrix} -0.71 & 0.50 & -0.41 & -0.29 \\ 0.00 & 0.50 & -0.00 & 0.87 \\ -0.71 & -0.50 & 0.41 & 0.29 \\ -0.00 & 0.50 & 0.82 & -0.29 \end{bmatrix}$$

and the eigenvectors of XX^T are the column vectors of

$$\begin{bmatrix} -0.71 & 0.00 & -0.71 \\ 0.00 & -1.00 & 0.00 \\ 0.71 & 0.00 & -0.71 \end{bmatrix}$$

For $u^{(1)}$,

stuffgoeshere

4. FLOP count

Assume A is $N \times P$, and that N > P. Then the SVD of A is $A = U\Sigma V^T$ where U is $N \times P$, Σ is $P \times P$, and V is $P \times P$.

$$A = \Sigma V^{T} = \begin{bmatrix} \sigma_{1} & & & & & \\ & \ddots & & & \\ & & \sigma_{P} \\ 0 & \cdots & & & 0 \end{bmatrix} \begin{bmatrix} v_{11} & \cdots & v_{1P} \\ \vdots & \ddots & \vdots \\ v_{P1} & \cdots & v_{PP} \end{bmatrix}^{T}$$

$$= \begin{bmatrix} \sigma_{1} & & & & & \\ & \ddots & & & \\ & & \ddots & & \\ & & & \sigma_{P} \\ 0 & \cdots & & & 0 \end{bmatrix} \begin{bmatrix} v_{11} & \cdots & v_{P1} \\ \vdots & \ddots & \vdots \\ v_{1P} & \cdots & v_{PP} \end{bmatrix}$$

$$= \begin{bmatrix} \sigma_{1} \mathbf{v}^{(1)^{T}} \\ \sigma_{2} \mathbf{v}^{(2)^{T}} \\ \vdots \\ \sigma_{P} \mathbf{v}^{(P)^{T}} \end{bmatrix} = \begin{bmatrix} P \text{ scalar multiplies} \\ P \text{ scalar multiplies} \\ P \text{ scalar multiplies} \end{bmatrix} = P^{2} \text{ operations}$$

On the other hand,

$$A = U^T X = \begin{bmatrix} u_{11} & \cdots & u_{N1} \\ \vdots & \ddots & \vdots \\ u_{1P} & \cdots & u_{NP} \end{bmatrix}^T \begin{bmatrix} x_{11} & \cdots & x_{N1} \\ \vdots & \ddots & \vdots \\ x_{1P} & \cdots & x_{NP} \end{bmatrix}$$

$$= \begin{bmatrix} u_{11} & \cdots & u_{P1} \\ \vdots & \ddots & \vdots \\ u_{1N} & \cdots & u_{PN} \end{bmatrix} \begin{bmatrix} x_{11} & \cdots & x_{N1} \\ \vdots & \ddots & \vdots \\ x_{1P} & \cdots & x_{NP} \end{bmatrix}$$

$$= \begin{bmatrix} P \text{ multiplies, } P - 1 \text{ additions} & \cdots & P \text{ multiplies, } P - 1 \text{ additions} \\ \vdots & \ddots & \vdots \\ P \text{ multiplies, } P - 1 \text{ additions} & \cdots & P \text{ multiplies, } P - 1 \text{ additions} \end{bmatrix}_{N \times N}$$

$$= \begin{bmatrix} 2P - 1 \text{ operations} & \cdots & 2P - 1 \text{ operations} \\ \vdots & \ddots & \vdots \\ 2P - 1 \text{ operations} & \cdots & 2P - 1 \text{ operations} \end{bmatrix}_{N \times N}$$

$$= (2P - 1)N^2 \text{ operations}$$

Computing

The computing assignment is to apply the *snapshot* method to a collection of high-resolution files. We will briefly discuss the background being the method, the implementation, and provide results on a test data set.

Suppose we have a set of P $N \times N$ matrices where $P \ll N$. The KL expansion as discussed in class gives rise to a construction of an optimal basis for a set of vectors $\{x^{(\mu)}\}_{\mu=1}^P$ characterized by:

$$C\phi^{(i)} = \lambda_i \phi^{(i)} \tag{1}$$

where
$$C = \frac{1}{P} \sum_{\mu=1}^{P} (x^{(\mu)} - \langle x \rangle) (x^{(\mu)} - \langle x \rangle)^T$$
 is the ensemble average covariance matrix and $\langle x \rangle = \frac{1}{P} \sum_{\mu=1}^{P} x^{(\mu)}$ is the ensemble average

Notice that C is $N \times N$. When N becomes large, it is not feasible to solve this problem directly. If C is nonsingular, we can reduce (without approximation) the problem from Equation 1 into a $P \times P$ problem. This is known as the snapshot method.

The test data set in question involves a fixed camera in a room with a person facing the camera and moving in the foreground. The ensemble average of these data is shown in Figure 1.

Figure 1: Ensemble Average of data set

Next, we display one of the mean-subtracted images, that is, the data set minus the ensemble average (Figure 2).

Figure 2: One mean-subtracted image

Additionally, several eigen-images are shown below:

Figure 3: Some eigen-images

Next, we show the cumulative energy (as defined in a previous homework) of the mean-subtracted data set (Figure 4).

Figure 4: Scaled singular values

Page 7 of 9

Code

Eigenvalues and Vectors

```
1 clear;
2
3 \quad X = [-2 \quad -1 \quad 1]
       0 -1 0
        -1 1 2
         1 -1 1];
s = [U1, S1, V1] = svd(X*X', 0);
9 [U2,S2,V2] = svd(X' * X, 0);
10 [Ut,St,Vt] = svd(X, 0);
12 ATA = X' \star X;
13 AAT = X \star X';
15 % do the SVD "by hand"
17 El = sort(eig(ATA), 'descend');
18 E2 = sort(eig(AAT), 'descend');
19
20 	 I3 = eye(3);
14 = eye(4);
22
23 for ii = 1:4
       V_AAT{ii} = null(AAT - E2(ii)*I4);
24
25 end
26 V_AAT = [V_AAT{:}];
27
   for ii = 1:3
28
   V_ATA\{ii\} = null(ATA - E1(ii)*I3);
31 V_ATA = [V_ATA{:}];
33 % Confirming the statement for u^{(1)}:
34
35 k = 1;
36 \quad u1 = 0;
37 for ii = 1:size(X,2)
   u1 = u1 + X(:,ii)*Vt(ii,k);
38
39 end
40 % u1 = u1 / sqrt(S1(1));
41
42 return
44 disp_for_latex( V_AAT );
45 disp_for_latex( V_ATA );
```

References

[1] Chang, Jen-Mei. Matrix Methods for Geometric Data Analysis and Recognition. 2014.