Module EA4 – Éléments d'Algorithmique

Dominique Poulalhon dominique.poulalhon@liafa.univ-paris-diderot.fr

Université Paris Diderot L2 Informatique Année universitaire 2014-2015

Rappel - contrôle continu

- interrogation n° 2 *mercredi 1^{er} avril*(à la place de l'amphi)
- TP nº 6 pour tous les groupes les 14 et 15 avril
- Interrogation n° 3 : TP noté les 5 et 6 mai
- Dernier cours : mercredi 6 mai

	tableau		liste chaînée	
	non trié	trié	non triée	triée
recherche	$\Theta(\mathfrak{n})$	$\Theta(\log n)$	$\Theta(\mathfrak{n})$	$\Theta(\mathfrak{n})$

	tableau		liste chaînée	
	non trié	trié	non triée	triée
recherche	$\Theta(\mathfrak{n})$	$\Theta(\log n)$	$\Theta(\mathfrak{n})$	$\Theta(\mathfrak{n})$
insertion	$+\Theta(1)$	$\Theta(\mathfrak{n})$	$+\Theta(1)$	+ Θ (1)
suppression	$\Theta(\mathfrak{n})$	$\Theta(\mathfrak{n})$	$+\Theta(1)$	+ Θ(1)

	tableau		liste chaînée	
	non trié	trié	non triée	triée
recherche	$\Theta(\mathfrak{n})$	$\Theta(\log n)$	$\Theta(\mathfrak{n})$	$\Theta(\mathfrak{n})$
insertion	$+\Theta(1)$	$\Theta(\mathfrak{n})$	$+\Theta(1)$	+ Θ (1)
suppression	$\Theta(\mathfrak{n})$	$\Theta(\mathfrak{n})$	$+\Theta(1)$	+ Θ (1)
minimum	$\Theta(\mathfrak{n})$	Θ(1)	$\Theta(\mathfrak{n})$	Θ(1)

	tableau		liste chaînée	
	non trié	trié	non triée	triée
recherche	$\Theta(\mathfrak{n})$	$\Theta(\log n)$	$\Theta(\mathfrak{n})$	$\Theta(\mathfrak{n})$
insertion	$+\Theta(1)$	$\Theta(\mathfrak{n})$	$+\Theta(1)$	+ Θ (1)
suppression	$\Theta(\mathfrak{n})$	$\Theta(\mathfrak{n})$	$+\Theta(1)$	+ Θ (1)
minimum	$\Theta(\mathfrak{n})$	Θ(1)	$\Theta(\mathfrak{n})$	Θ(1)
sélection du k ^e	$\Theta(kn)$	Θ(1)	$\Theta(kn)$	$\Theta(k)$

	tableau		liste chaînée	
	non trié	trié	non triée	triée
recherche	$\Theta(\mathfrak{n})$	$\Theta(\log n)$	$\Theta(\mathfrak{n})$	$\Theta(\mathfrak{n})$
insertion	$+\Theta(1)$	$\Theta(\mathfrak{n})$	$+\Theta(1)$	+ Θ (1)
suppression	$\Theta(\mathfrak{n})$	$\Theta(\mathfrak{n})$	$+\Theta(1)$	$+\Theta(1)$
minimum	$\Theta(\mathfrak{n})$	Θ(1)	$\Theta(\mathfrak{n})$	Θ(1)
sélection du k ^e	$\Theta(kn)$	Θ(1)	$\Theta(kn)$	$\Theta(k)$
union	$\Theta(n^2)$	$\Theta(\mathfrak{n})$	$\Theta(n^2)$	$\Theta(n)$

sommets contenant des étiquettes reliés par des arêtes

hiérarchie entre les sommets : père, fils

hiérarchie entre les sommets : père, fils

sommet = nœud ou feuille

sommet = nœud ou feuille

profondeur d'un sommet = distance à la racine

hauteur de l'arbre = profondeur maximale

hauteur de l'arbre = profondeur maximale

pointeur vers le père (dans chaque nœud, ou dans un tableau)

pointeur vers le père (dans chaque nœud, ou dans un tableau)

avantage: représentation très compacte inconvénient: ne peut être parcouru que de bas en haut

inconvénient: ne peut être parcouru que de bas en haut
inconvénient: ne peut être parcouru que de bas en haut
inconvénient: ne peut être parcouru que de bas en haut
inconvénient: ne peut être parcouru que de bas en haut
inconvénient: ne peut être parcouru que de bas en haut
inconvénient: ne peut être parcouru que de bas en haut
inconvénient: ne peut être parcouru que de bas en haut
inconvénient: ne peut être parcouru que de bas en haut
inconvénient: ne peut être parcouru que de bas en haut
inconvénient: ne peut être parcouru que de bas en haut
inconvénient: ne peut être parcouru que de bas en haut
inconvénient: ne peut être parcouru que de bas en haut
inconvénient: ne peut être parcouru que de bas en haut
inconvénient: ne peut être parcouru que de bas en haut
inconvénient: ne peut être parcouru que de bas en haut
inconvénient: ne peut être parcouru que de bas en haut
inconvénient: ne peut être parcouru que de bas en haut
inconvénient: ne peut être parcouru que de bas en haut
inconvénient: ne peut être parcouru que de bas en haut
inconvénient: ne peut être parcouru que de bas en haut
inconvénient: ne peut être parcouru que de bas en haut
inconvénient: ne peut être parcouru que de bas en haut
inconvénient: ne peut être parcouru que de bas en haut
inconvénient: ne peut être parcouru que de bas en haut
inconvénient: ne peut être parcouru que de bas en haut
inconvénient: ne peut être parcouru que de bas en haut
inconvénient: ne peut être parcouru que de bas en haut
inconvénient: ne peut être parcouru que de bas en haut
inconvénient: ne peut être parcouru que de bas en haut
inconvénient: ne peut être parcouru que de bas en haut
inconvénient: ne peut être parcouru que de bas en haut
inconvénient: ne peut être parcouru que de bas en haut
inconvénient: ne peut ètre parcouru que de bas en haut
inconvénient: ne peut ètre parcouru que de bas en haut
inconvénient en le peut
inconvénient en le pe

cas général : pointeurs vers le fils aîné et le frère cadet

cas général : pointeurs vers le fils aîné et le frère cadet (plus éventuellement le père)

Théorème

Les arbres à n sommets sont en bijection avec les arbres binaires à n-1 sommets

Théorème

Les arbres à n sommets sont en bijection avec les arbres binaires à n-1 sommets

Théorème

Les arbres à n sommets sont en bijection avec les arbres binaires à n-1 sommets

Théorème (admis)

Le nombre d'arbres à n sommets est $\frac{1}{n+1} \binom{2n}{n}$

À partir de maintenant, on suppose qu'on dispose des fonctions suivantes, dont le code dépend de la représentation choisie :

- pere(noeud)
- liste_des_fils(noeud)
- etiquette(noeud)
- gauche(noeud) et droite(noeud)

Parcours en profondeur générique

```
def parcours(racine) :
   pre_traitement(racine)
   for i, noeud in enumerate(liste_des_fils(racine)) :
     parcours(noeud)
     post_traitement(i, racine)
```

Parcours en profondeur générique

```
def parcours(racine) :
   pre_traitement(racine)
   for i, noeud in enumerate(liste_des_fils(racine)) :
     parcours(noeud)
     post_traitement(i, racine)
```

Théorème

parcours (racine) visite tous les nœuds de l'arbre enraciné en racine, en temps $\Theta(n)$ si chaque traitement est de coût $\Theta(1)$

Parcours en profondeur générique

```
def parcours(racine) :
   pre_traitement(racine)
   for i, noeud in enumerate(liste_des_fils(racine)) :
     parcours(noeud)
   post_traitement(i, racine)
```

Théorème

parcours (racine) visite tous les nœuds de l'arbre enraciné en racine, en temps $\Theta(n)$ si chaque traitement est de coût $\Theta(1)$

variation selon les traitements intermédiaires :

- s'il y a seulement un prétraitement : parcours préfixe
- s'il y a seulement un posttraitement : parcours postfixe
- dans le cas binaire, s'il y a seulement un traitement intermédiaire : parcours infixe

« Trier » un arbre?

les arbres binaires de recherche (ABR)

en chaque nœud, l'étiquette est comprise entre

- les étiquettes du sous-arbre gauche (plus petites) et
- celles du sous-arbre droit (plus grandes)

Arbre binaire de recherche

Arbre binaire de recherche

Arbre binaire de recherche

ORDRE DANS UN ABR

```
def liste_triee(noeud) :
    res = []
    if noeud != None :
        res = liste_triee(gauche(noeud))
        res += [ etiquette(noeud) ]
        res += liste_triee(droit(noeud))
    return res
```

ORDRE DANS UN ABR

```
def liste_triee(noeud) :
    res = []
    if noeud != None :
      res = liste_triee(gauche(noeud))
      res += [ etiquette(noeud) ]
      res += liste_triee(droit(noeud))
    return res
```

Théorème

le parcours infixe d'un ABR à n nœuds produit la liste triée de ses éléments en temps $\Theta(n)$.


```
def recherche(noeud, x) : # version récursive
  if noeud == None : return None
  if etiquette(noeud) == x : return noeud
  if etiquette(noeud) > x : return recherche(gauche(noeud))
  return recherche(droit(noeud))
```

```
def recherche(noeud, x) : # version récursive
  if noeud == None : return None
  if etiquette(noeud) == x : return noeud
  if etiquette(noeud) > x : return recherche(gauche(noeud))
  return recherche(droit(noeud))
```

Théorème

recherche (r, x) effectue la recherche d'un élément x dans l'ABR de racine r en temps $\Theta(h)$ au pire, où h est la hauteur de l'ABR.

Cas particuliers : minimum/maximum

```
def minimum(noeud) : # version récursive
  if gauche(noeud) == None : return noeud
  return minimum(gauche(noeud))
```

CAS PARTICULIERS: MINIMUM/MAXIMUM

```
def minimum(noeud) : # version récursive
  if gauche(noeud) == None : return noeud
  return minimum(gauche(noeud))

def minimum(noeud) : # version itérative
  while gauche(noeud) != None :
    noeud = gauche(noeud)
  return noeud
```

CAS PARTICULIERS: MINIMUM/MAXIMUM

```
def minimum(noeud) : # version récursive
  if gauche(noeud) == None : return noeud
  return minimum(gauche(noeud))

def minimum(noeud) : # version itérative
  while gauche(noeud) != None :
    noeud = gauche(noeud)
  return noeud
```

Théorème

minimum(r) détermine le plus petit élément dans l'ABR de racine r en temps $\Theta(h)$ au pire, où h est la hauteur de l'ABR.

Successeur d'un élément

successeur(n)

étant donné un nœud n d'un ABR, d'étiquette e, déterminer le nœud de l'arbre ayant la plus petite étiquette supérieure à e.

si le nœud a un fils droit

si le nœud a un fils droit


```
def successeur(noeud) :
   if droit(noeud) != None :
     return minimum(droit(noeud))
   while pere(noeud) != None and est_fils_droit(noeud) :
     noeud = pere(noeud)
   return pere(noeud)
```

```
def successeur(noeud) :
   if droit(noeud) != None :
     return minimum(droit(noeud))
   while pere(noeud) != None and est_fils_droit(noeud) :
     noeud = pere(noeud)
   return pere(noeud)
```

Théorème

successeur (noeud) détermine le successeur d'un noeud d'un ABR en temps $\Theta(h)$ au pire, où h est la hauteur de l'ABR.

Insertion dans un ABR

Théorème

L'insertion d'un nouvel élément dans un ABR de hauteur h peut se faire en temps $\Theta(h)$ au pire.

si le nœud à supprimer n'a pas d'enfant

si le nœud à supprimer n'a pas d'enfant

si le nœud à supprimer n'a qu'un enfant

si le nœud à supprimer n'a qu'un enfant

si le nœud à supprimer n'a qu'un enfant

cas d'une feuille : suppression simple

cas d'un nœud à un seul fils : l'autre fils remonte d'un niveau

cas où le successeur est le fils droit : le fils droit remonte d'un niveau et adopte son frère

autres cas : le noeud est remplacé par son successeur, dont l'unique fils (droit) remonte d'un niveau

cas d'une feuille : suppression simple

cas d'un nœud à un seul fils : l'autre fils remonte d'un niveau

cas où le successeur est le fils droit : le fils droit remonte d'un niveau et adopte son frère

autres cas : le noeud est remplacé par son successeur, dont l'unique fils (droit) remonte d'un niveau

remarque : la même manipulation peut être faite avec le prédécesseur plutôt que le successeur

cas d'une feuille : suppression simple

cas d'un nœud à un seul fils : l'autre fils remonte d'un niveau

cas où le successeur est le fils droit : le fils droit remonte d'un niveau et adopte son frère

autres cas : le noeud est remplacé par son successeur, dont l'unique fils (droit) remonte d'un niveau

Théorème

la suppression d'un nœud d'un ABR de hauteur h se fait en temps $\Theta(h)$ au pire.