

SLURRY HYDROCRACKER PROJECT

Appendix E - Detailed Equipment Sizing

PREPARED FOR

Frank Nolte, PEng

Worley Limited

PREPARED BY

Team 15: TR Solutions

Jaryl Schmidt, Student

Jose Te Eng Fo, Student

Naira Correia, Student

Xingming Shan, Student

Yichun Zhang, Student

DATE: April 9th, 2020

Table of contents

E.1 SUMMARY	3	
E.2 EQUIPMENT SIZING	4	
E.2.1 Two-Phase Separator Sizing Sample Calculations	6	
E.2.2 PUMP SIZING SAMPLE CALCULATIONS	8	
E.2.3 THREE-PHASE SEPARATOR SAMPLE CALCULATIONS	9	
E.2.4 CONTROL VALVE SIZING SAMPLE CALCULATIONS	11	
E.2.5 HEAT EXCHANGER SIZING SAMPLE CALCULATIONS	12	
E.2.6 GAS EXPANDER SIZING SAMPLE CALCULATIONS	16	
E.2.7 PSV SIZING SAMPLE CALCULATIONS	17	
E.2.8 REACTOR SIZING SAMPLE CALCULATIONS	18	
E.2.9 STRIPPER COLUMN SIZING SAMPLE CALCULATIONS	23	
E.3 LINE SIZING	25	
E.3.1 Line Sizing Sample Calculations	26	
E.4 REFERENCES	29	

E.1 Summary

This appendix contains detailed sizing of major equipment used in the process. Section E2 shows the type, material, specifications, as well as the operating conditions of each of the equipment. Section E3 provides the line sizing table with the pipe diameter, material, and pressure drop of major streams.

E.2 Equipment Sizing

Table E1. Equipment sizing specifications and operating conditions.

Equipment Number	Equipment Description	Equipment Sub-Type	Material	Capacity / Size / Duty Specifications	Temperature (°C)	Pressure (bar)	Mass Flow Rate (tonnes/hr)	Number of Trains	Number of Equipment per Train	Total Number of Equipment
C-01	Waste Heat Boiler	Floating Head	CS/SS	$A = 924.5 \text{ m}^2$	380.0	168.0	646.0	2	4	8
C-02	Cooler	Air fin	Stainless Steel	$A = 1827 \text{ m}^2$	455.3	79.0	13.0	2	1	2
C-03	Cooler	Air fin	Stainless Steel	$A=84~\mathrm{m}^2$	319.0	1.0	9.3.0	1	1	1
C-04	Cooler	Air fin	Stainless Steel	$A = 1638 \text{ m}^2$	173.0	20.0	630.0	1	1	1
CP-01	Compressor	Centrifugal	Stainless Steel	$w_s = 480 \text{ kW}$	70.0	167.0	140.0	1	1	1
CP-02	Compressor	Centrifugal	Stainless Steel	$w_s = 9,581 \text{ kW}$	76.0	0.9	33.0	1	1	1
CT-C01	Cooler	Air fin	Carbon Steel	$A = 161 \text{ m}^2$	245.3	60.0	40.0	1	1	1
CT-CP01	Compressor	Centrifugal	Stainless Steel	$w_s = 26,777 \text{ kW}$	80.0	21.0	40.0	1	1	1
CT-CP02	Compressor	Centrifugal	Stainless Steel	$w_s = 27,957 \text{ kW}$	80.0	59.0	40.0	1	1	1
D-01	Flash Drum	Vertical	Stainless Clad	D = 4 m $L = 20 m$	450.0	169.0	211.0	2	2	4
D-02	Flash Drum	Vertical	Stainless Clad	D = 4 m $L = 20 m$	380.0	168.0	208.0	2	2	4
D-03	3 Phase Separator	Horizontal	Stainless Clad	D = 3 m L = 7.08 m	70.0	167.0	646.0	1	1	1
D-04	Flash Drum	Vertical	Stainless Clad	D = 1.5 m L = 7.5 m	350.0	78.0	12.7.0	1	1	1
D-05	Flash Drum	Vertical	Stainless Clad	D = 4 m $L = 20 m$	80.0	20.0	156.0	1	4	4

Equipment Number	Equipment Description	Equipment Sub-Type	Material	Capacity / Size / Duty Specifications	Temperature (°C)	Pressure (bar)	Mass Flow Rate (tonnes/hr)	Number of Trains	Number of Equipment per Train	Total Number of Equipment
D-06	Flash Drum	Vertical	Stainless Clad	D = 4 m $L = 20 m$	78.2	4.0	305.0	1	2	2
D-07	3 Phase Separator	Horizontal	Stainless Clad	D = 1 m $L = 1.1 m$	80.0	0.9	93.0	1	1	1
E-01	Heat Exchanger	Floating Head	CS/SS	$A = 895 \text{ m}^2$	250	171.0	665.5	2	1	2
E-02	Heat Exchanger	U Tube	CS/SS	$A = 30 \text{ m}^2$	72.7	171.0	140.0	2	1	2
EX-01	Gas Expander	Axial	Stainless Steel	$w_s = 2640 \; kW$	70.0	167.0	60.0	1	1	1
F-01	Heater	Fired Heater	Carbon Steel	Q = 31627 kW	250.0	171.0	665.5	2	1	2
F-02	Heater	Fired Heater	Carbon Steel	Q = 56431 kW	72.7	171.0	140.0	2	1	2
P-01A	Pump	Centrifugal	Cast Steel	$w_s = 769 \text{ kW}$ $Q = 0.104 \text{ m}^3/\text{s}$	80.0	5.0	333.0	2	1	2
P-01B	Pump	Centrifugal	Cast Steel	$w_s = 769 \text{ kW}$ $Q = 0.104 \text{ m}^3/\text{s}$	80.0	61.0	333.0	2	1	2
P-01C	Pump	Centrifugal	Cast Steel	$w_s = 769 \text{ kW}$ $Q = 0.104 \text{ m}^3/\text{s}$	80.0	116.0	333.0	2	1	2
P-02	Pump	Centrifugal	Cast Steel	$w_s = 0.85 \text{ kW}$ $Q = 0.0016 \text{ m}^3/\text{s}$	80.0	0.9	47.0	1	1	1
R-01	Main Reactor	Vertical	Stainless Steel	D = 4 m L = 30.8 m	466.9	170.0	106.0	2	4	8
R-05, R- 06	Conversion Reactor	Vertical	Stainless Steel	D = 4 m L = 19.7 m	119.0	55.0	93.0	1	2	1
T-02	Stripping Column	Vertical	Stainless Steel	D = 1.5 m L = 4.04 m	350.0	78.0	12.6	1	1	1

E.2.1 Two-Phase Separator Sizing Sample Calculations

Iwo-	Phase Separators Sizing
ex)	Flash Drum D-01
f	according to S13 & S14 of the stream table:
	T= 450°C, P= 169 bar
Total How rates	$Q_L = 16.323 \text{ m}^3/h$, $Q_G = 12005.798 \text{ m}^3/h$
	$QG > QL \longrightarrow Gas$ phase is the continuous phase. Liquid phase is the dispersed phase
	$P_d = 622.690 \text{ kg/m}^3$, $P_c = 69.388 \text{ kg/m}^3$
After	being splitted into two trains and two vessels
per	train:
	$Q_{ol} = \frac{16.323 \text{ m}^3/\text{h}}{4} \frac{\text{h}}{3600 \text{ s}} = 0.83374 \text{ m}^3/\text{s}$
	$Q_{c} = \frac{12005.798 \text{ m}^{3}/\text{h}}{4} \frac{\text{h}}{3600s} = 6.00 \text{ (134 m}^{3}/\text{s})$
Assu	uning a droplet size of 100 um, at P= 169 bar:
	Ks = 0.025 m/s (Campbell, 2014)
	VG, max = Ks \ Pd - Pc (Campbell. 2014)
	$V_{G,max} = (0.025 \text{ m/s}) \sqrt{\frac{622.690 - 69.388}{69.388}}$
	VG. max = 0.0706 m/s
	Dmin = \frac{(4/\pi) Qc}{FG VGMax} (campbell-2014)

FG = 1 for vertical vessels. (Campbell, 2014)

Drain = $\frac{(4/\pi t)(0.00 \text{ 1/3} 4 \text{ m}^3/\text{s})}{(1)(0.0706 \text{ m/s})} = 3.8778 \text{ m}$ 6P = P - Patm = 169 bar - 1 bar = 168 bar

According to Ulrich & Vasudevan, (2004), Table 424: $\frac{L}{D} = 5.0 \quad \text{for vessels with an internal}$ pressure > 35 bar.

Lmin = (5.0) (Dmin) = (5.0) (3.8778m) = 19.3888 m

Vessels must have a liquid hold-up time of at least 20 mins. (Rehm et. al., 2012)

Vhold-up = (Q_d) (zo mins) $(\frac{min}{60s})$ = $(0.83374 \, \text{m}^3/\text{s})$ (zo mins) $(\frac{min}{60s})$ = $(0.83374 \, \text{m}^3/\text{s})$

 $V_{min} = \frac{\pi}{4} D_{min}^{2} L_{min} + V_{hold-up}$ $= (\frac{\pi}{4})(3.8778 \text{ m})^{2} (19.3888 \text{ m}) + 1.360 \text{ m}^{3}$ $= 230.342 \text{ m}^{3}$

To satisfy all the limits Dmin, Lmin, Vmin & D,

the actual size of the vessel is determined to be:

D = 4 m. L = 20 m.

The rest of the two phase separators are sized in the same manner.

E.2.2 Pump Sizing Sample Calculations

E.2.3 Three-Phase Separator Sample Calculations

	(47 40
UorA	- As = A (QL) = 7.068583 W x (667.90 -)
	- As = A Ratal 667.90 + AG65.50
	=> A2 = 8.881207 m2
	= 7/1 = 1 = 1
	- The flow velocity is
	11 - Rx - 667.90 1/4 1/4 = 0.026247 m/s
	- The flow velocity is $V_2 = \frac{R}{A} = \frac{667.90 \text{ m}^3 \text{h}}{0.885207 \text{ m}^2} \times \frac{1 \text{h}}{36005} = 0.026247 \text{ m/s}$
	- In orbar to have a recentron time for 300 5, that is, the
	- In proper to make a female troop to a second
	liquid has to flow in the separator for 3005.
	The leads of the separator is their
	L = V2 x t x = 0-026247 W/s x 300 s = 7.874 m
	L = 12 x 6 R = 10 20 1 / 1
	- Finally the Li ration is thereby:
	$\frac{L}{QV} = \frac{7.874 \text{ m}}{3 \text{ m}} = 7.62$
	Dr 3 cm
	which is a normal number.
	The Sizing for another 3-place separator is done in the same wewer
	\

E.2.4 Control Valve Sizing Sample Calculations

E.2.5 Heat Exchanger Sizing Sample Calculations

(The state of the	
Unh	: CMTO = LMTD (F)
	= 97.20°C
	- 17:40.0
	a Quetall heat transfer coefficient
	From Table 4.156 from Ulrich and Vasudeva (2004)
	Vair/medium 310 J/m² s K
	slcwn
	Heat Transfer Area
-	A = Q = (1)0×10°W) = 3650 6 m2
	UH 1MTD (310.3) (97.90°C)
	Finned Tube Dimensions
-	The selected tube sizing is 10 fins per exposed tube
	The selected tube sizing is 10 fms per exposed tube
	triongular tube pileh In tube OD Stainless Steel
	To first # of tube rows calculate
-	7. [T-T-] 24n 70 170 0.2091
	$Z = \begin{bmatrix} T_1 + T_2 \end{bmatrix} = \frac{240 - 70}{240 - 30} = \frac{170}{210} = 0.8091$
	From Table (1 in Hudson (LLC
	# of rows = 8 rows
	wifn face velocity = 900 ft/min wifn face velocity = 8.03 m/s air velocity
	Ly transcisable pitch of 2.5 in = 0.0435m
	n (number of tubes per row) = 12 = 5 tubes per row
	a (area per ft of tube) = II. OD = 0.2618 ft / ft = 0.08 m2
	025

The	heat transfer rate of of fluid is
	Cf = Q.75x107 W = 161 764 W
	Cair = 2.75x1078W _ 1375 DOU W
To	size the ACHE the values of R and k must be laulated to refer to Fagure (12) (Hudson'i)
	R. Cmin - Chot - 161 764W/K . 0.118 Cmoy Car 1375 000
	NTU- n.N. a .W.L. [a] 7. U
	since R: Q (Hudson FV.L.W-1.98(T1-Tz)
k	= R.NTU = n.N.a =
	n = 5 tubes /row N = 8 tubes rows a = 0.2 (618 ft²/f+tube = FV = 400 scfm U = 5415 BTU = 310 W/n²k
}: =	R NTU = (1.820)
	Z= T1-T2 - 0.77
	Reading from Figure 13 for 2 pass cross flow ACHE R= 0.5
	The face Area FA 16
	FA: R.O - [1874+2]

	Heat Exchanger Sizing (E-02)
	Slep 1.1 Determine the Q
)	Ti of a Tis
	$Q_n = \dot{m}\Delta H = \dot{m} (H_2 - H_1)$ SII SE
	Sterams H(KJhans) O S3
	1 39415 1463 3 Shelleide Shelleide
	3 42343 1463 F=880°C T=450°C
	4 43807 1463 T - 6 3 9 5
	5 45270 1463 0 8 7=250°C
	T. 95.6'C
	LMTD
	$LMTD = \Delta T_i - \Delta T_{i+1} \qquad i.e. \qquad LMTD = (395-122.3) - (380-85.6)$ $In \begin{bmatrix} \Delta T_i \\ \Delta T_{i+1} \end{bmatrix} \qquad In \begin{bmatrix} 395-122.3 \\ 380-95.6 \end{bmatrix}$
	In [ΔT_{i+1}] In [395-1277] 380-854
	Shean LMTD(°C) = -260.23°C
)	1 282. 45
	2 a40 25 3 240.73
	4 223 08
	5 207 40
	Overall V Value Coefficient
	- From Table 9.15a, shell and tube exchange overall coefficient for
	- From Table 9.15a, shell and tube exchange overall coefficient for asphalt" and condensing vapor stream hydrocarbons with inert gas.
	U= 100-200 W Chase 150 Wm2
	m²k \\C
	A= Q0 A= 1463 = 574.86 m2 VLMTD (80)(282.23)
	VLMTD (80)(282-23)
	ZA; = 3790 m²

E.2.6 Gas Expander Sizing Sample Calculations

E.2.7 PSV Sizing Sample Calculations

E.2.8 Reactor Sizing Sample Calculations

E.2.9 Stripper Column Sizing Sample Calculations

Th	us, $H = \frac{2}{0.3}$ (24in) $\frac{0.0254m}{1.0}$ = $\frac{4.04m}{1.0}$
	The liquid hold-up is also part of total tower height
	HIH = Val , liquid residence time ;
	$H_{LH} = \frac{(7.4 \text{ m}^3/\text{h})(3 \text{min})(1/60)}{(11)(1.5 \text{m}^2)} = 0.204 \text{m}$
	Dimensions
	D= 1.5m Hz = 1×1.0te m= Tray spaces = 24in
	Tray spacing = 24in Nactual = 2 = 7trays 0.3

E.3 Line Sizing

Table E2. Detailed line designation.

Stream Number	Nominal Pipe Diameter (in)	Pipe Schedule	Velocity (m/s)	Pressure Drop (kPa/100m)	Material	Material Grade	Type of Flow	Flow Regime
S3	8	20	3.1	35	ASTM A106 (CS)	В	Liquid	Turbulent
S4	8	100	3.7	55	ASTM A106 (CS)	В	Liquid	Turbulent
S5	8	100	4.6	68	ASTM A106 (CS)	В	Liquid	Turbulent
S 6	8	100	5.8	83	ASTM A106 (CS)	В	Liquid	Turbulent
S7	4	160	0.0	n/a	ASTM A106 (CS)	В	Solid	Turbulent
S 8	8	160	5.9	84	ASTM A106 (CS)	В	Slurry	Turbulent
S 9	14	120	24.2	19	ASTM A376 (SS)	TP304	Vapour	Turbulent
S10	4	140	0.0	n/a	ASTM A376 (SS)	TP304	Slurry	Turbulent
S11	18	140	15.2	26	ASTM A376 (SS)	TP304	Vapour	Turbulent
S12	18	120	14.2	29	ASTM A376 (SS)	TP304	2-Phase	Dispersed
S13	1.5	80	2.0	51	ASTM A376 (SS)	TP304	Liquid	Turbulent
S14	18	140	14.9	25	ASTM A376 (SS)	TP304	Vapour	Turbulent
S15	18	120	12.8	32	ASTM A376 (SS)	TP304	2-Phase	Dispersed
S16	8	120	2.0	5	ASTM A376 (SS)	TP304	Liquid	Turbulent
S17	16	120	15.6	27	ASTM A376 (SS)	TP304	Vapour	Turbulent
S18	16	120	12.1	34	ASTM A376 (SS)	TP304	2-Phase	Dispersed
S19	18	100	11.9	39	ASTM A376 (SS)	TP304	3-Phase	Dispersed
S20	1	40	1.4	71	ASTM A376 (SS)	TP304	Liquid	Turbulent
S21	8	100	6.6	84	ASTM A376 (SS)	TP304	Liquid	Turbulent
S22	12	100	20.9	44	ASTM A376 (SS)	TP304	Vapour	Turbulent
S23	12	100	14.6	21	ASTM A376 (SS)	TP304	Vapour	Turbulent
S24	10	100	10.2	13	ASTM A376 (SS)	TP304	Vapour	Turbulent
S25	10	120	20.3	28	ASTM A376 (SS)	TP304	Vapour	Turbulent

E.3.1 Line Sizing Sample Calculations

LINE SIZING General Assumptions / Notes: & at points where streams merge/split between parallel pieces of equipment (cg. R-A01-R-AO4), the largest combined flow rate is used for line sizing * Ylb in corrosion allowance was applied to carbon steel lines; 1/32 in corrosion allowance applied to stainless steel lines * 100m characteristic length used for all sizing * line sizing was not performed for 57 (solicl catalyst input) or 510 (reactor bottoms slurry line) as they would require more detailed analysis Line Wall Thickness (Pipe Schedule) Ape wall thickness for allowable working pressure determined by ANSI B31.3, "Code for Pressure Piping, Petrollium Refinery Piping" (GPSA, Fig 17-23) * clota for allowable material stress, 5, obtained from GPSA, Fy 17-25 Example: 56 - set nominal pipe size to 8.0in $t = \frac{(17,000 - 107,325)(214,0mm)}{2[117hPa·1 + (17,000 - 101,325)(0,4]} = 148 mm$ +m=14.8 mm+ 1.59mm = 16.3mm = minimum pipe wall thickness e 8.0 in pipe, closest schedule pipe is schedule 100, t= 18.3 mm

Liquid Flows

Pressure loss due to friction is calculated using the Darry Weisbach Equation

$$\Delta P_{f} = \frac{0.5 \rho f_{m} L V^{2}}{d}$$

(GPSA, Eq 17-2)

* Moody Friction factor, fm, oldtuined From GPSA, Fig 17-2

Exampk: 56

Vapour Flows

Pressure loss due to Friction (for vapour Flows) is calculated using a simplified Descy-Weistach formula.

$$\Delta P_{100} = \frac{W^2}{e} \left[\frac{62,350(10^2)F}{d^5} \right]$$

(GPSA, Eq 17-30)

which can be simplified to:

(GPSA, Eq. 17-31)

where: $C_1 = W^2(10^{-9})$, obtained from GPSA, Fig. 17-8 $C_2 = \frac{62.350 \cdot 10^{14} \cdot F}{\text{cl}^5}$ obtained from GPSA, Fig. 17-9

Example: 59

Two-Phase Flow

The Dunkler equation was used for Frictional pressure drop calculations

(GPSA, Eq 17-30)

Where Fn = 0.0056 · 0.5 (Rey) -0.32

(GPSA, Eq. 17-44)

(GPSA, Eq. 17-45)

$$F_{tpr} = \frac{y}{1.281 - 0.478 y + 0.444 y^2 - 0.094 y^3 + 0.00843 y^4} + 1 \qquad (GPSA, Eq. 17-48)$$

$$y = -2n(7)$$

Example: 515

$$F_{tpr} = \frac{3.37}{1.281 - 0.478/3.37) + 0.444(3.37)^2 - 0.094(3.37)^2 + 0.00843/3.37)^4} + 1$$

$$F_{tpr} = 2.53$$

$$Re_y = \frac{(0.001)(76.96 \text{ hg/m}^3)(387.2 \text{mm})}{1.75 \cdot 10^{-5} \text{ Pa·s}} = 2.17 \cdot 10^{-7} = Re_y$$

E.4 References

Campbell, J.M., Gas Conditioning and Processing, Volume 2: The Equipment Modules, 9th Edition, 2nd Printing, Editors Hubbard, R. and Snow–McGregor, K., Campbell Petroleum Series, Norman, Oklahoma, 2014.

CHE 464 and 465 Class Notes

- Engineering Data Book: Si Version. 13th ed., SI Tulsa, Okla.: Gas Processors Suppliers Association, 2012.
- Rehm, B., Haghshenas, A., Paknejad, A., Al-Yami, A., Hughes, J., & Schubert, J. (2012). Flaring. Underbalanced Drilling: Limits and Extremes, 537–575. doi: 10.1016/b978-1-933762-05-0.50019-x.
- Ulrich, G. D., Vasudevan, P. T., & Ulrich, G. D. (2004). *Chemical engineering process design and economics: A practical guide*. Durham, N.H: Process Pub.