Escola de Economia de São Paulo - Fundação Getulio Vargas

Course: Microeconometria 1

Instructor: Bruno Ferman and Vitor Possebom

Problem Set: Lecture 11

Total = 190 points

Question 1 (Lecture 11: Nonparametric and Semiparametric Regressions - 190 points)

Using only one simulated dataset, we will analyze the performance of nonparametric and semiparametric estimators.¹

We will discuss the performance of our estimators using the following data generating processes:

 $\epsilon_1 \sim N(0,1)$

$$X = \begin{bmatrix} \tilde{X}_1 \\ \tilde{X}_2 \end{bmatrix} \sim N \begin{pmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 & 0.9 \\ 0.9 & 1 \end{bmatrix} \end{pmatrix}$$

 $X_1 = \Phi\left(\tilde{X}_1\right)$, where $\Phi\left(\cdot\right)$ is the CDF of the Standard Normal Distribution

 $X_{2}=\Phi\left(\tilde{X}_{2}\right) ,\ where\ \Phi\left(\cdot\right) \ is\ the\ CDF\ of\ the\ Standard\ Normal\ Distribution$

$$Y_1 = f(X_1) + \epsilon_1 = \sin(\beta_1 \cdot X_1) + \epsilon_1$$
, where $f(x) = \sin(\beta_1 \cdot x)$

$$Y_2 = g(X_1, X_2) = f(X_1) + \beta_2 \cdot X_2 + \epsilon_2 = \sin(\beta_1 \cdot X_1) + \beta_2 \cdot X_2 + \epsilon_2$$

$$Sample = \{X_1, X_2, Y_1, Y_2\}_{i=1}^{N}, where N = 10,000$$

Our target parameters are the function $f(\cdot)$ and the coefficient β_2 , where we impose that $\beta_1 = 4$ and $\beta_2 = 2$.

- 1. (10 points) Simulate one dataset according to the data generating process described above.
- 2. (10 points) Plot the function $f(\cdot)$ in the support of X_1 .
- 3. (20 points) Using data on X_1 and Y_1 , estimate the function f using a nonparametric local-linear regression.

¹For fun, you can create a Monte Carlo Simulation based on this question.

- 4. (30 points) Plot the estimated function f and the true function f in the same graph.

 Include the bias-corrected 95%-confidence interval in the same graph. Is the estimated function f close to the true function f? Should these two objects be close to each other?
- 5. (20 points) Using data on X_1 and Y_2 only, estimate the function f using a nonparametric local-linear regression.
- 6. (30 points) Plot the estimated function f and the true function f in the same graph.

 Include the bias-corrected 95%-confidence interval in the same graph. Is the estimated function f close to the true function f? Should these two objects be close to each other?
- 7. (20 points) Using data on X_1 , X_2 and Y_2 , estimate the function f and the coefficient β_2 using a semiparametric local-linear regression.
- 8. (30 points) Plot the estimated function f and the true function f in the same graph.

 Include the bias-corrected 95%-confidence interval in the same graph. Is the estimated function f close to the true function f? Should these two objects be close to each other?
- 9. (20 points) What is the value of the estimated β_2 ? Is it close to the true β_2 ? Should these two objects be close to each other?