Глава 4

Квадратични остатъци.

4.1 Квадратични и *k*-степенни остатъци.

Да разгледаме общото сравнение от втора степен

$$ax^2 + bx + c \equiv 0 \pmod{n},\tag{4.1}$$

където $a \not\equiv 0 \pmod{n}$. Умножавайки по 4a и полагайки y = 2ax + b получаваме системата

$$\begin{vmatrix} y^2 &\equiv D \pmod{4an} \\ y &\equiv b \pmod{2a}, \end{vmatrix}$$
 (4.2)

кълето $D = b^2 - 4ac$.

Очевидно всяко решение на (4.1) определя еднозначно решение y на (4.2). Обратно, ако y е решение на системата (4.2), то x=(y-b)/2a е решение на (4.1). Следователно въпросът за решаване на произволно сравнение от втора степен се свежда до решаване на сравнения от вида

$$x^2 \equiv a \pmod{m}. \tag{4.3}$$

Направените заключения може още да се прецезират. По-точно в сила е

Теорема 4.1.1 Нека (a, m) = d, $a = da_1$, $m = dm_1$ и $d = e^2 f$, където f е свободно от квадрати естествено число. Сравнението (4.3) има решение тогава и само тогава, когато $(f, m_1) = 1$ и сравнението $y^2 \equiv fa_1 \pmod{m_1}$ има решение.

Доказателство. Необходимост. Ако x е решение на (4.3), то

$$x^2 \equiv e^2 f a_1 \pmod{e^2 f m_1},$$

откъдето следва $e^2 \mid x^2$, тъй като f е свободно от квадрати. Но тогава $e \mid x$, т.е. x = ey, което след заместване и съкращаване дава

$$y^2 \equiv fa_1 \pmod{fm_1}$$
.

Следователно $f \mid y^2$ и очевидно е изпълнено и по-слабото сравнение $y^2 \equiv fa_1 \pmod{m_1}$. Но f е свободно от квадрати и следователно $f \mid y$, т.е. y = fz.

Замествайки получаваме $fz^2 \equiv a_1 \pmod{m_1}$, откъдето $(f, m_1) \mid a_1$. Но тогава $(m_1, a_1) = 1$ влече $(m_1, f) = 1$, което пък дава, че $y^2 \equiv fa_1 \pmod{m_1}$. Достатъчност. Обратно нека $(m_1, f) = 1$ и съществува y, за което $y^2 \equiv fa_1 \pmod{m_1}$. Тогава съществува и то единствено z, такова че $fz \equiv y \pmod{m_1}$, откъдето $f^2z^2 \equiv fa_1 \pmod{m_1}$. Но щом $(m_1, f) = 1$, то $fz^2 \equiv a_1 \pmod{m_1}$. Умножавайки с e^2f получаваме

$$e^2 f^2 z^2 \equiv e^2 f a_1 \pmod{e^2 f m_1},$$

т.е.

$$(efz)^2 \equiv a \pmod{m}.$$

И така въпросът за решимостта на произволно сравнение от втора степен по същество се свежда до решимостта на квадратно сравнение от специален вид, а именно

$$x^2 \equiv a \pmod{n}, \ (a, n) = 1. \tag{4.4}$$

Цяло число a, за което (4.4) има решение се нарича квадратичен остатък по модул n, и квадратичен неостатък, ако такова решение не съществува. Въведеното понятие се обобщава със следната дефиниция:

Дефиниция 4.1.2 Нека $n \neq 0$ и $k \geq 2$ са цели числа. Казваме, че цялото число a, (a,n) = 1 е k-степенен остатък (неостатък) по модул n, когато е решимо (нерешимо) сравнението

$$x^k \equiv a \pmod{n}. \tag{4.5}$$

 $\Pi pu \ k=2,3,4$ числото а се нарича съответно **квадратичен, кубичен и биквадратичен** остатък

Теорема 4.1.3 Нека $n \neq 0$ е цяло число, което има примитивен корен. Цялото число a, (a, n) = 1, e k-степенен остатък по модул n тогава и само тогава, когато

$$a^{\frac{\varphi(n)}{d}} \equiv 1 \, (mod \, n),$$

където $d = (\varphi(n), k)$. В този случай сравнението (4.5) има точно d решения.

Доказателство. Нека g е примитивен корен по модул n. Вземайки индекси при основа g от (4.5) получаваме

$$k.\operatorname{ind} x \equiv \operatorname{ind} a \pmod{\varphi(n)}.$$

Но съгласно Теорема 2.2.1 това сравнение има решение относно ind x тогава и само тогава, когато $d=(\varphi(n),k)$ дели ind a. При това, ако решение съществува, то това сравнение, а следователно и (4.5) ще имат точно d решения. Нека сега $e=\operatorname{ind} a=d.t.$ От определението за индекс получаваме, че

$$a^{\frac{\varphi(n)}{d}} = g^{\frac{e\varphi(n)}{d}} = g^{t\varphi(n)} \equiv 1 \pmod{n}.$$

Обратно, ако $a^{\frac{\varphi(n)}{d}} \equiv 1 \pmod{n}$, то

$$q^{\frac{e\varphi(n)}{d}} \equiv 1 \pmod{n},$$

откъдето $\varphi(n)$ дели $\frac{e\varphi(n)}{d}$. Следователно $d \mid \operatorname{ind} a$.

Теорема 4.1.4 Нека $n \neq 0$ е цяло число, което има примитивен корен и $d = (\varphi(n), k)$. Съществуват точно $\frac{\varphi(n)}{d}$ на брой несравними k-ти остатъци по модул n.

Доказателство. Съгласно предната теорема a е k-степенен остатък по модул n тогава и само тогава, когато

$$a^{\frac{\varphi(n)}{d}} \equiv 1 \pmod{n}$$
.

Но това сравнение има точно

$$(\frac{\varphi(n)}{d}, \varphi(n)) = \frac{\varphi(n)}{d}$$

решения пак съгласно горната теорема.

Да се върнем отново към квадратичните остатъци. В частност от предната теорема получаваме, че броят на кватратичните остатъци съвпада с този на неостатъците и е равен на $\varphi(n)/2$.

Дефиниция 4.1.5 Нека p е нечетно просто число. **Символ на Льожандр** от а относно p се дефинира като:

$$\left(\frac{a}{p}\right) = \left\{ \begin{array}{ll} 1, & \text{ако a } e \text{ квадратичен остатък по модул } p, \\ -1, & \text{ако a } e \text{ квадратичен неостатък по модул } p. \end{array} \right.$$

Твърдение 4.1.6 Символът на Льожандр притежава следните свойства:

(1)
$$a\kappa o \ a \equiv b \ (mod \ p), \ mo \ \left(\frac{a}{p}\right) = \left(\frac{b}{p}\right),$$

$$(2)$$
 $\left(\frac{a}{p}\right) \equiv a^{\frac{p-1}{2}} \pmod{p}$ (Критерий на Ойлер),

$$(3) \left(\frac{ab}{p}\right) = \left(\frac{a}{p}\right) \left(\frac{b}{p}\right).$$

Доказателство. Свойство (1) е очевидно.

- (2): Полагайки $k=2,\ n=p$ в Теорема 4.1.3 получаваме, че d=(p-1,2)=2, откъдето следва, че a е квадратичен остатък тогава и само тогава, когато $a^{\frac{p-1}{2}}\equiv 1\ (\mathrm{mod}\ p),$ откъдето и $a^{\frac{p-1}{2}}\equiv \pm 1\ (\mathrm{mod}\ p)$ за всяко (a,p)=1 следва твърдението.
- (3): Съгласно (2)

$$\left(\frac{ab}{p}\right) \equiv (ab)^{\frac{p-1}{2}} = a^{\frac{p-1}{2}}b^{\frac{p-1}{2}} \equiv \left(\frac{a}{p}\right)\left(\frac{b}{p}\right) \pmod{p}.$$

Нека p е нечетно просто число и g е примитивен корен по модул p. Тъй като всяко число $1 \le a \le p-1$ е степен на g, то съвкупността от квадратични остатъци съвпада с множеството от четните степени на g

$$QR^+ = \{g^2, g^4, \dots, g^{p-1}\},\$$

а съвкупността от квадратични неостатъци с

$$QR^- = \{g, g^3, \dots, g^{p-2}\}.$$

Очевидно горните множества описват квадратичните остатъци и неостатъци и в пообщия случай за произволно естествено число n, което има примитивен корен g.

Пример 4.1.1 Ще покажем, че -1 е квадратичен остатък по модул p тогава и само тогава, когато p = 4k + 1. Наистина съгласно критерия на Ойлер

$$\left(\frac{-1}{p}\right) \equiv (-1)^{\frac{p-1}{2}} \pmod{p}.$$

Следователно

$$\left(\frac{-1}{p}\right) = \begin{cases} 1, & \text{ако } p = 4k+1, \\ -1, & \text{ако } p = 4k-1 \end{cases}$$

Лема 4.1.7 (Лема на Гаус) Нека p е нечетно просто число u (a,p)=1. Нека μ е броя на числата в редицата $a, 2a, 3a, \ldots, \frac{p-1}{2}a$, които са сравними по модул p с числа в интервала $[-\frac{p-1}{2}, -1]$, $(m.e.\ c\ числата\ в\ интервала\ [\frac{p+1}{2}, p-1])$. Тогава

$$\left(\frac{a}{p}\right) = (-1)^{\mu}.$$

Доказателство. Нека $r_k \equiv ka \pmod p$ е минималния по абсолютна стойност остатък на ka, т.е. $-\frac{p-1}{2} \le r_k \le \frac{p-1}{2}$. Очевидно $r_k = r_l$, т.е. $ka \equiv la \pmod p$, е в сила тогава и само тогава, когато k = l. Аналогично, ако допуснем, че $r_k = -r_l$, то $(k+l)a \equiv 0 \pmod p$. Но това е невъзможно тъй като k+l < p. Следователно $|r_k| \ne |r_l|$ за $k \ne l$, т.е. абсолютните стойности на остатъците r_k представляват пермутация на числата от 1 до $\frac{p-1}{2}$. Умножавайки ги получаваме

$$\left(\frac{p-1}{2}\right)!a^{\frac{p-1}{2}} \equiv \prod_{k=1}^{\frac{p-1}{2}} r_k = (-1)^{\mu} \prod_{k=1}^{\frac{p-1}{2}} |r_k| = (-1)^{\mu} \left(\frac{p-1}{2}\right)! \pmod{p}.$$

Делейки двете страни на сравнението на (p-1/2)! получаваме

$$a^{\frac{p-1}{2}} \equiv (-1)^{\mu},$$

което съгласно критерия на Ойлер дава търсеното равенство.

Теорема 4.1.8 Числото 2 е квадратичен остатък по модул прости числа от вида $8t\pm 1$ и квадратичен неостатък по модул останалите нечетни прости числа, т.е.

$$\left(\frac{2}{p}\right) = (-1)^{\frac{p^2 - 1}{8}}.\tag{4.6}$$

Доказателство. Да отбележим първо, че за $p=8t\pm 1$ дясната страна на (4.6) дава точно 1, т.е. 2 е остатък, а при $p=8t\pm 3$ дава -1 (т.е. 2 е неостатък). За да докажем теоремата ще приложим Лемата на Гаус за a=2. Нека $m=\lfloor \frac{p-1}{4} \rfloor$, т.е. $2m \leq (p-1)/2$, но 2(m+1) > (p-1)/2. Тогава $\mu=(p-1)/2-m$. В такъв случай при p=8t+1 получаваме m=4t и $\mu=2t$. Аналогично, при p=8t-1 имаме m=2t-1 и $\mu=2t$. Следователно $(-1)\mu=1$. При $p=8t\pm 3$, обаче $\mu=2t+1$ и $\mu=2t-1$, съответно. Следователно $(-1)^{\mu}=-1$, т.е. 2 е квадратичен неостатък по модул p.

Упражнение 4.1.1 Числото -2 е квадратичен остатък по модул прости числа от вида 8t+1 и 8t+3 и квадратичен неостатък по модул останалите нечетни прости числа (8t-1) и 8t-3).

Лема 4.1.9 Сравнението $x^2 \equiv a \pmod{2^e}, \ (a,2) = 1, \ e \geq 3,$ е разрешимо тогава и само тогава, когато $x^2 \equiv a \pmod{8}$ е разрешимо.

Доказателство. Необходимостта е очевидна. Да покажем достатъчността. Нека x_0 е решение $x^2 \equiv a \pmod{2^e}, \ e \geq 3$, т.е. $x_0^2 = a + c2^e$, където $c \in \mathbb{Z}$. Да разгледаме $x = x_0 + b2^{e-1}$, където b = 0 или 1 и $b \equiv c \pmod{2}$. Тогава за $e \geq 3$

$$x^{2} = x_{0}^{2} + 2^{e}bx_{0} + b^{2}2^{2e-2} \equiv a + (bx_{0} + c)2^{e} \pmod{2^{e+1}}.$$

Ho $bx_0+c\equiv b+c\equiv 0\ (\mathrm{mod}\ 2)$, тъй като $x_0\equiv 1\ (\mathrm{mod}\ 2)$. Следователно

$$x^2 \equiv a \pmod{2^{e+1}},$$

откъдето твърдението следва по индукция.

Теорема 4.1.10 Нека $n=2^ep_1^{e_1}p_2^{e_2}\dots p_k^{e_k}$ е разлагането на n на прости множители $u\ (a,n)=1$. Сравнението $x^2\equiv a\ (mod\ n)$ е решимо тогава $u\ само$ тогава, когато са изпълнени следните условия:

- (1) and e = 2, mo $a \equiv 1 \pmod{4}$; and $e \geq 3$, mo $a \equiv 1 \pmod{8}$.
- (2) $a^{\frac{p-1}{2}} \equiv 1 \, (mod \, p_i)$ за всяко i.

Доказателство. Съгласно Китайската теорема за остатъците даденото сравнение е еквивалентно със системата от k+1 сравнения:

$$x^2 \equiv a \pmod{2^e}, \ x^2 \equiv a \pmod{p_1^{e_1}}, \ \dots, \ x^2 \equiv a \pmod{p_k^{e_k}}.$$

Да разгледаме $x^2 \equiv a \pmod{2^e}$. При e=1 то не налага никакви ограничения на a. При e=2 квадратични остатъци са само числата $a\equiv 1 \pmod{4}$, тъй като $(2t+1)^2\equiv 1 \pmod{4}$. Аналогично при e=3 такива са само $a\equiv 1 \pmod{8}$, тъй като $(8t\pm 1)^2$ и $(8t\pm 3)^2$ дават остатък 1 при деление на a. В такъв случай условие a0 се получава от Лема a1.5.

Съгласно Теорема 3.3.11 сравнението $x^2 \equiv a \pmod{p_i^{e_i}}$ е разрешимо тогава и само тогава, когато $x^2 \equiv a \pmod{p_i}$ е решимо. Сега условие (2) следва от критерия на Ойлер.

4.2 Квадратичен закон за реципрочност.

Квадратичният закон за реципрочност (Теорема 4.2.3) е формулиран от Ойлер, а доказателство, макар и в частни случаи, за първи път дава Льожандр (1785 г.). Гаус предлага осем различни доказателства, а днес са известни над сто. Тук ще изложим едно доказателство, което се свързва с Айзенщаин - ученик на Гаус, който има значителен принос за развитието на математиката, въпреки че умира твърде млад - на 29 години. Самият Гаус го определя като един от тримата най-велики математици наред с Архимед и Нютон.

Лема 4.2.1 Нека p е нечетно просто число, (a,p)=1 и μ е дефинирано както в Лема 4.1.7. Тогава

$$\sum_{k=1}^{\frac{p-1}{2}} \left\lfloor \frac{ka}{p} \right\rfloor + (a-1) \cdot \frac{p^2 - 1}{8} \equiv \mu \pmod{2}.$$

Доказателство. Да разгледаме редицата

$$a, 2a, 3a, \dots, \frac{p-1}{2}a.$$

За всяко число ka от нея е в сила $ka=p\lfloor\frac{ka}{p}\rfloor+\rho_k$, където $1\leq\rho_k\leq p-1$. Тогава

$$\frac{p^2 - 1}{8} \cdot a = \sum_{k=1}^{\frac{p-1}{2}} ka = p \sum_{k=1}^{\frac{p-1}{2}} \left\lfloor \frac{ka}{p} \right\rfloor + \sum_{k=1}^{\frac{p-1}{2}} \rho_k.$$

Нека с r_1,\ldots,r_μ означим тези остатъци ρ_k , които са по-големи от (p-1)/2, а с $s_j,\ 1\leq j\leq \frac{p-1}{2}-\mu$, тези, които не надминават (p-1)/2. Тогава числата $(p-r_1),\ldots,(p-r_\mu),\ s_1,\ldots,s_{\frac{p-1}{2}-\mu}$ не надминават (p-1)/2 и са различни, т.е. представляват точно числата от 1 до (p-1)/2. Следователно

$$\mu p - \sum r_i + \sum s_j = 1 + 2 + \dots + \frac{p-1}{2} = \frac{p^2 - 1}{8}.$$

Но тъй като

$$\sum_{k=1}^{\frac{p-1}{2}} \rho_k = \sum_{k=1}^{\infty} r_i + \sum_{k=1}^{\infty} s_j = 2\sum_{k=1}^{\infty} r_i - \mu p \equiv \frac{p^2 - 1}{8} - \mu p \pmod{2}$$

то

$$\frac{p^2 - 1}{8} \cdot (a - 1) \equiv p \left(\sum_{k=1}^{\frac{p-1}{2}} \left\lfloor \frac{ka}{p} \right\rfloor - \mu \right) \pmod{2},$$

откъдето и условието р нечетно просто получаваме

$$\sum_{k=1}^{\frac{p-1}{2}} \left\lfloor \frac{ka}{p} \right\rfloor - \mu \equiv (a-1) \cdot \frac{p^2 - 1}{8} \pmod{2}.$$

Лема 4.2.2 (Лема на Айзенщайн) Heка m u n ca heчеmнu eзаuмноnроcmu uсn eзоeнu0 m 1. Tоeзаeа

$$\sum_{k=1}^{\frac{n-1}{2}} \left\lfloor \frac{km}{n} \right\rfloor + \sum_{l=1}^{\frac{m-1}{2}} \left\lfloor \frac{ln}{m} \right\rfloor = \frac{m-1}{2} \cdot \frac{n-1}{2}.$$

Доказателство. Да фиксираме в равнината декартова координатна система и да разгледаме в нея права зададена с уравнение $y=\frac{m}{n}x$. Тази права се явява диагонал на правоъгълника в първи квадрант ограничен от координатните оси и правите x=n/2 и y=m/2. Ще преброим точките с естествени координати ("целите точки") в правоъгълника по два начина. По абцисата имаме (n-1)/2 естествени числа, а по ординатата - (m-1)/2. Следователно общият брой цели точки е

$$\frac{m-1}{2}\cdot\frac{n-1}{2}.$$

От друга страна това число е сума от броя на точките под диагонала и над диагонала. За зсяко $k,\ 1 \le k \le (n-1)/2$ под диагонала има точно $\lfloor \frac{m}{n} \cdot k \rfloor$ цели точки. Следователно общият брой на точките под правата е

$$\sum_{k=1}^{\frac{n-1}{2}} \left\lfloor \frac{km}{n} \right\rfloor.$$

Аналогично над диагонала има

$$\sum_{l=1}^{\frac{m-1}{2}} \left\lfloor \frac{ln}{m} \right\rfloor$$

точки. Сумирайки получаваме твърдението на лемата.

Теорема 4.2.3 Ако р и д са нечетни прости число, то

$$\left(\frac{p}{q}\right)\left(\frac{q}{p}\right) = (-1)^{\frac{p-1}{2}\frac{q-1}{2}}.$$

Доказателство. Полагайки a=q в Лема 4.2.1 и използвайки, че q-1 е четно число получаваме

$$\sum_{l=1}^{\frac{p-1}{2}} \left| \frac{kq}{p} \right| \equiv \mu \pmod{2}.$$

В такъв случай лемата на Гаус ни дава

$$\left(\frac{q}{p}\right) = (-1)^{\sum_{k=1}^{\frac{p-1}{2}} \left\lfloor \frac{kq}{p} \right\rfloor}.$$

Аналогично

$$\left(\frac{p}{q}\right) = (-1)^{\sum_{k=1}^{\frac{q-1}{2}} \left\lfloor \frac{kp}{q} \right\rfloor}.$$

Умножавайки горните равенства и прилагайки лемата на Айзенщайн за m=p и n=q получаваме твърдението на теоремата.

Следващият пример илюстрира как законът за реципрочност може да се използва при пресмятане на символа на Льожьндр.

Пример 4.2.1 Да пресметнем

$$\left(\frac{213}{499}\right) = \left(\frac{3}{499}\right) \left(\frac{71}{499}\right).$$

Прилагайки Теорема 4.2.3 и Твърдение 4.1.6 получаваме

$$\left(\frac{3}{499}\right) = \left(\frac{499}{3}\right)(-1)^{249\cdot 1} = -\left(\frac{1}{3}\right) = -1.$$

$$\left(\frac{71}{499}\right) = \left(\frac{499}{71}\right)(-1)^{249\cdot 35} = -\left(\frac{2}{71}\right) = -(-1)^{\frac{71^2 - 1}{8}} = -1.$$

Следователно

$$\left(\frac{213}{499}\right) = 1.$$

4.3 Представяне в сума от квадрати.

Лема 4.3.1 (Лема на Туе) Нека n > 1 е естествено число и $r = \lceil \sqrt{n} \rceil$. Тогава за всяко a, (a, n) = 1 съществуват две естествени числа x и y ненадминаващи r - 1, такива че

$$ay \equiv x$$
 $u \land u$ $ay \equiv -x \pmod{n}$.

Доказателство. Да разгледаме множеството от всички числа от вида ay+x, където $x,y \in \{0,1,\ldots,r-1\}$. То се състои от $r^2 > n$ числа и следователно съществуват две двойки числа (x_1,y_1) и (x_2,y_2) , такива че

$$ay_1 + x_1 \equiv ay_2 + x_2 \pmod{n}$$
, T.e. $a(y_1 - y_2) \equiv x_2 - x_1 \pmod{n}$.

Но $0 \le |y_1 - y_2| \le r - 1$ и $0 \le |x_1 - x_2| \le r - 1$. При това $x_1 \ne x_2$ влече $y_1 \ne y_2$. Следователно полагайки $y = |y_1 - y_2|$ и $x = |x_1 - x_2|$ получаваме исканото сравнение.

Теорема 4.3.2 Нечетното просто число p се представя като сума на два квадрата тогава и само тогава, когато p от вида 4t + 1.

Доказателство. Необходимост. Нека $p=a^2+b^2$. Очевидно (b,p)=1 и следователно

$$\left(\frac{a}{b}\right)^2 \equiv -1 \pmod{p}.$$

Но това означава, че -1 е квадратичен остатък по модул p, което влече p=4t+1.

Достатъчност. Нека p=4t+1. Тогава съществува естествено число z, такова че $z^2\equiv -1\ (\mathrm{mod}\ p)$. Но съгласно лемата на Туе може да намерим естествени числа $a,b<\sqrt{p}$, такива че $zb\equiv \pm a\ (\mathrm{mod}\ p)$, т.е.

$$z \equiv \pm \frac{a}{b} \pmod{p}$$
.

Последното дава

$$\frac{a^2}{b^2} \equiv -1 \,(\text{mod } p),$$
 r.e. $a^2 + b^2 \equiv 0 \,(\text{mod } p).$

Вземайки предвид, че $a^2 + b^2 < 2p$ получаваме $a^2 + b^2 = p$.

Теорема 4.3.3 Всяко цяло число, което е произведение на прости числа от вида p = 4t + 1 или два пъти такова произведение се представя като сума на два квадрата.

Доказателството следва от предната теорема, $2=1^2+1^2$ и равенството

$$(a^2 + b^2)(c^2 + d^2) = (ac - bd)^2 + (ad + bc)^2.$$

Да отбележим, че условието в горното твърдение е достатъчно, но не е необходимо. Например $18 = 3^2 + 3^2$, но 18 не е произведение от посочения тип прости числа.

Пример 4.3.1 Да представим 29 като сума на два квадрата.

Очевидно $5^2+2^2=29$, но ще илюстрираме метода прилаган за произволни (големи) числа. Първо решаваме сравнението $x^2\equiv -1\pmod{29}$. Извличането на квадратен корен по голям модул е сложна задача, което обуславя приложението й в криптографски протоколи. На методите за решаванието й ще посветим отделен параграф , а сега с директна проверката намираме, че $(\pm 12)^2\equiv -1\pmod{29}$. И двете решения 12 и $-12\equiv 17$ са $>\sqrt{29}$. Затова търсим $k=2,3,\ldots$, такова че $x\equiv 12k\pmod{29}$ или 29-x е $<\sqrt{29}$. Тогава $x^2\equiv -k^2\pmod{29}$, откъдето следва $x^2+k^2=29$ или $(29-x)^2+k^2=29$. В конкретния случай k=2 и $(-5)^2+2^2=29$.

Темата за представянето като сума на два квадрата ще завършим с описанието на питагоровите тройки, т.е. с решаването в цели числа на уравнението

$$x^2 + y^2 = z^2. (4.7)$$

Очевидно, че ако две от числата имат общ делител, то той дели и третото. Затова интерес представляват решениеята с (x,y)=(x,z)=(y,z)=1, които ще наричаме примитивни решения.

Теорема 4.3.4 Всички примитивни решения на (4.7) се дават с

$$x = a^2 - b^2$$
, $y = 2ab$, $z = a^2 + b^2$,

където (a,b)=1 като точно едното от тях е четно. (очевидно местата на x и y може да се разменят)

Доказателство. Тъй като се интересуваме от примитивните решения, то две от числата трябва да са нечетни, а третото четно. Допускането $x=2k+1,\ y=2m+1,\ z=2n$ дава $x^2+y^2\equiv 2\ (\mathrm{mod}\ 4),$ докато $z^2\equiv 0\ (\mathrm{mod}\ 4).$ Следователно $x=2k+1,\ y=2m,\ z=2n+1.$ Тогава z+x и z-x са едновременно четни и следователно

$$4m^2 = y^2 = z^2 - x^2 = 4(n+k)(n-k) = 4cd$$
, T.E. $m^2 = cd$,

Тъй като (c,d) = 1, то $c = a^2$, $d = b^2$ и получаваме

$$z + x = 2a^2$$
, $z - x = 2b^2$, $y = 2ab$,

което ни дава твърдението. Условието за четностите и примитивност на решението определя изискванието към a и b.

Лема 4.3.5 Aко p e нечетно просто число, то съществуват цели числа x, y, m, такива че

$$x^2 + y^2 + 1 = mp,$$

където $1 \le m < p$, $0 \le x, y \le (p-1)/2$.

Доказателство. Всяко от множествата

$$\left\{ x^2 \; | \; \; 0 \le x \le \frac{p-1}{2} \right\} \quad \text{ if } \quad \left\{ -1 - y^2 \; | \; \; 0 \le y \le \frac{p-1}{2} \right\}$$

се състои от две по две несравними по модул p числа, а общият им брой е p+1. Следователно съществуват x и y, такива че $x^2 \equiv -1 - y^2 \pmod{p}$, т.е.

$$x^2 + y^2 + 1 = mp$$
.

Но

$$m = \frac{x^2 + y^2 + 1}{p} < \frac{1}{p} \left(\frac{p^2}{4} + \frac{p^2}{4} + 1 \right) < p,$$

с което лемата е доказана.

Лема 4.3.6 Всяко просто число p може да се представи като сума от квадрати на четири цели числа.

Теорема 4.3.7 Всяко цяло число може да се представи като сума от квадрати на четири цели числа.

4.4 Допълнителни задачи към Глава 4.

Задача 4.1 Докажете, че сравнението $x^2 \equiv -1 \pmod{n}$ е решимо тогава и само тогава, когато n е нечетно число от вида $4t+1,\ t>0$.

Задача 4.2 Нека p е нечетно просто число. Докажете, че сравнението $x^4+1 \equiv 0 \pmod{p}$ е решимо тогава и само тогава, когато p е от вида 8t+1, t>0.

Задача 4.3 Използвайки предната задача докажете, че има безброй много прости числа от вида 8t+1.

Задача 4.4 Проверете, че 666 е квадратичен остатък по модул простото число 2137.

Задача 4.5 Докажете, че ако а и b са цели числа и p е нечетно просто число, което не дели a, то

$$\sum_{n=0}^{p-1} \left(\frac{an+b}{p} \right) = 0.$$

Задача 4.6 Докажете, че полиномът $x^4 + 1$ е разложим в \mathbb{Z}_p за всяко просто p.

Задача 4.7 Докажете, че нечетното просто число p се представя като сума от вида $p=a^2+3b^2$ тогава и само тогава, когато p от вида 6t+1.