Experiment 2

Bachelor of Technology Department of Electrical Engineering

Arjun Pavanje (EE24BTECH11005) August 21, 2025

Objective

Determine the small-signal DC parameters of Diode, BJT, and MOSFET devices using both hand calculations and simulation.

1 Diode

Parameters and Formulae Used

• Shockley Equation

$$I_D = I_s \left(e^{\frac{V_D}{nV_T}} - 1 \right)$$

 \bullet Dynamic Resistance r_d

– Hand Calculation: $r_d = \frac{\eta V_T}{I_D}$

– Experimental: $r_d = \frac{\partial V_D}{\partial I_D}$ (from graph)

1.1 Plots

Operating Point values used,

Operating Point			
V(n002):	0.859781	voltage	
V(n001):	5	voltage	
I(V1):	-0.00414022	device_current	
I(R1):	-0.00414022	device_current	
I(D1):	0.00414022	device_current	

 I_s of the diode chosen is 0.0154fA

1. r_d

 $2. I_s$

Experimental vs Theoretical Results

Parameter	Experimental	Theory	Error (%)
r_d	$6.358 \ k\Omega$	$6.249 \ k\Omega$	1.71
I_s	$0.01535 \ fA$	$0.0154 \ fA$	2.27

2 BJT

Parameters and Formulae Used

- Transconductance g_m
 - Hand Calculation: $g_m = \frac{I_C}{\eta V_T}$
 - Experimental: $g_m = \frac{\partial I_C}{\partial V_{BE}}$ (from graph)
- Input Resistance r_{π}
 - Hand Calculation: $r_{\pi} = \frac{\eta V_T}{I_B}$
 - Experimental: $r_{\pi} = \frac{\partial V_{BE}}{\partial I_B}$ (from graph)
- Current Gain β
 - Hand Calculation: $\beta = \frac{I_C}{I_B}$
 - Experimental: $\beta = \frac{\partial I_C}{\partial I_B}$
- Output Resistance r_o
 - Hand Calculation: $r_o = \frac{1}{\lambda I_C}$
 - Experimental: $r_o = \frac{\partial V_{CE}}{\partial I_C}$ (from graph)

2.1 Plots

Operating Point values used, For the BJT chosen, $\eta = 1$

```
V(p001): 0.647526 voltage
V(n003): 0.65 voltage
V(n002): 0.758491 voltage
V(n001): 1.5 voltage
Ic(Q1): 0.000741509 device_current
Ib(Q1): 2.47353e-06 device_current
Ie(Q1): 0.000741509 device_current
Is(Q1): 0 device_current
I(VCC): -0.000741509 device_current
I(R1): -2.47353e-06 device_current
I(RC): 0.000741509 device_current
I(RC): 0.000741509 device_current
I(VBE): -2.47353e-06 device_current
```

1. g_m

$2. r_{\pi}$

3. β

4. r_0

Experimental vs Theoretical Results

Parameter	Experimental	Theory	Error (%)
g_m	$30.257 \ m\Omega^{-}1$	$30.705 \ m\Omega^{-}1$	1.45
r_{π}	$9.764 k\Omega$	$9.720 \ k\Omega$	0.45
β	297.304	299.825	0.93
r_0	$135.346 \ k\Omega$	$134.844 \ k\Omega$	0.37

3 MOSFET

Parameters and Formulae Used

- Transconductance g_m
 - Hand Calculation: $g_m = \frac{2I_D}{V_{GS} V_{TH}}$
 - Experimental: $g_m = \frac{\partial I_D}{\partial V_{GS}}$ (from graph)
- Output Resistance r_o
 - $\begin{array}{l} \text{ Hand Calculation: } r_o = \frac{\left(\frac{1}{\lambda} + V_{GS}\right)}{I_D} \approx \frac{1}{\lambda I_D} \\ \text{ Experimental: } r_o = \frac{\partial V_{DS}}{\partial I_D} \text{ (from graph)} \end{array}$

3.1Plots

Operating Point values used, For the chosen MOSFET, $\lambda = \frac{1}{V_A} = 1000, V_{TH} =$

Operating Point			
V(n004): V(n002): V(n001): V(n003): Id(M1): Ig(M1): Is(M1):	1 1.65 1.65 1 1.57289 -1.5419 -3.0938	voltage voltage voltage voltage e-09 device_current 5e-01 device_current	
I(VDD): I(R2): I(VGS):	-3.5464 1.45217 1.45283		
I(R1):	3.54647		

0.025V

1. g_m

2. r_0

Experimental vs Theoretical Results

Parameter	Experimental	Theory	Error (%)
g_m	$13.083 \ p\Omega^-1$	$13.016 \ p\Omega^{-}1$	0.51
r_0	$71.796 \ k\Omega$	$71.723k\Omega$	0.1

4 Conclusion

The experiment to conduct small signal analysis and verify the parameters with hand calculations was successful with a maximum error of 5%.