Let A=(1,1,1) be vector in \mathbb{R}^3 , and let L be a vector subspace of \mathbb{R}^3 spanned by the vectors (1,0,-1) and (3,5,x) (where x is a real parameter). Find the values of x such that the distance between A and L is maximal. Find also the square of this maximal distance.

For the distance $d(A,L) = ||ort_LA|| = ||A-pr_LA||$ to be maximal we need pr_LA to be minimal, which is equal to 0. That means that vector A should be orthogonal to L and therefore orthogonal to any vector of L. Moreover in this case we can state that ort_LA and A itself coincide. We can check if this is true in our case by finding dot-product of vector A and the known vector of subspace L.

Let us denote vectors of subspace L as $v_1 = (1, 0, -1)$ and $v_2 = (3, 5, x)$. We know that if vectors are orthogonal their dot-product is equal to 0. Therefore if $\langle A, v_1 \rangle = 0$ and then A and L are orthogonal.

$$\langle A, v_1 \rangle = 0$$

 $1*1 + 1*0 + 1* - 1 = 0$
 $0 = 0$

The equivalence holds and we can state that A is orthogonal to L and the d(A, L) is maximal notwithstanding value of x.

Now let's find x from v_2 .

$$\langle A, v_2 \rangle = 0$$

1*3 + 1*5 + 1*x = 0
8 + x = 0
 $x = -8$

The maximal distance can be expressed as $d(A,L) = ||ort_L A|| = ||A - pr_L A||$, where $pr_L A = 0$, $||ort_L A|| = ||A||$. So the squared maximal distance $d^2(A,L) = 1^2 + 1^2 + 1^2 = 3$

OR we may use the following formula:

$$d(A, L) = ||A - V(V^{T}V)^{-1}VA||,$$
(1)

where V is the matrix of basis of L and $V(V^TV)^{-1}VA = pr_LA$. However, as we have stated above $pr_LA = 0$ and therefore the formula (1) can be simplified to d(A, L) = ||A||, which gives us the same result of d(A, L) = 3.