Instituto Tecnológico de Buenos Aires

22.85 - Sistemas de Control

Trabajo de Laboratorio N°3: Control Servo por Realimentación lineal de Estados

Grupo 1

Máspero, Martina	57120
Mestanza, Joaquín Matías	58288
Nowik, Ariel Santiago	58309
Panaggio Venerandi, Guido Martin	56214
Parra, Rocío	57669
Regueira, Marcelo Daniel	58300

 $\begin{array}{c} Profesor \\ {\rm NASINI,\ V\'ictor\ Gustavo} \end{array}$

Presentado: 13/11/2019

${\bf \acute{I}ndice}$

1. Análisis del Motor de CC

 $\mathbf{2}$

1. Análisis del Motor de CC

En primer lugar se considera el modelo circuital para el motor utilizado, teniendo en cuenta que los diferentes parámetros son datos provistos por la hoja de datos del QUANSER:

Las ecuaciones que caracterizan al sistema son:

$$\left\{ \begin{array}{l} E_a = R_a \cdot i_a + L_a \cdot \dot{i_a} + V_b \\ V_b = K_b \cdot \omega_m = K_b \cdot \dot{\theta_m} \\ T_m = J_m \cdot \ddot{\theta_m} + B_m \cdot \dot{\theta_m} + T_l \end{array} \right.$$

De las cuales se puede obtener las funciones de transferencia de θ_l y ω_m respecto a la tensión de alimentación E_a :

$$\frac{\omega_m}{E_a} = \frac{\frac{K_t}{R_a \cdot J_m}}{S + \frac{B_m}{J_m} + \frac{K_t \cdot K_b}{R_a \cdot J_m}}$$

$$\frac{\theta_m}{E_a} = \frac{\frac{K_t}{R_a \cdot J_m}}{S \cdot \left(S + \frac{B_m}{J_m} + \frac{K_t \cdot K_b}{R_a \cdot J_m}\right)}$$