Quatrième/Arithmétique

1. Nombres de diviseurs :

 $(+2 \ exercices \ pour \ les \ enseignants)$

Exercice 9073

Soit a et b deux entiers positif. On dit que b est un **diviseur** du nombre a s'il existe un entier k tel que: $a = k \times b$

- 1. Si possible, compléter les pointillés ci-dessous à l'aide d'entiers:
- (a.) $18 = 1 \times ...$
- (b.) $18 = 2 \times ...$
- (c.) $18 = 3 \times ...$

- (d.) $18 = 4 \times ...$
- (e.) $18 = 5 \times ...$
- (f.) $18 = 6 \times ...$

- (g.) $18 = 7 \times ...$
- (h.) $18 = 8 \times ...$
- 2. Donner l'ensemble des diviseurs du nombre 18.

Exercice 9074

- a. Donner les 2 diviseurs du nombre 13.
- b. Donner les 6 diviseurs de l'entier 12.
- c. Donner les 4 diviseurs de l'entier 22.

Exercice 9322

Dire si l'affirmation suivante est vraie ou fausse:

Affirmation: pour tous les nombres entiers n compris entre 2 et 9, 2^n-1 est un nombre premier.

2. Entiers premiers:

 $(+1\ exercice\ pour\ les\ enseignants)$

Exercice 9076

Le tableau ci-dessous présente les entiers de 2 à 99:

		2	3	4	5	6	7	8	9
10	11	12	13	14	15	16	17	18	19
20	21	22	23	24	25	26	27	28	29
30	31	32	33	34	35	36	37	38	39
40	41	42	43	44	45	46	47	48	49
50	51	52	53	54	55	56	57	58	59
60	61	62	63	64	65	66	67	68	69
70	71	72	73	74	75	76	77	78	79
80	81	82	83	84	85	86	87	88	89
90	91	92	93	94	95	96	97	98	99

- 1. (a.) Entourer l'entier 2.
 - (b.) Hachurer les cases dont l'entier admet 2 pour diviseur.
- 2. (a.) Entourer l'entier 3.
 - (b.) Hachurer les cases dont l'entier admet 3 pour diviseur.
- a. Répéter les instructions précédentes avec les entiers 5 et 7.
 - (b.) Entourer tous les nombres non-hachurés de la grille.
- 4. (a.) Combien de diviseurs admettent les entiers 2, 3, 5,

7, 11?

- (b.) Parmi les entiers 13, 17, 19, 23, 29, 31, 37, 41, 47, lesquels appartiennent à une table de multiplication? Si oui, laquelle?
- (c.) Pour quelle raison peut-on dire que le nombre 97 n'admet que deux diviseurs 1 et 97?

Définition: on dit qu'un entier a est **premier** s'il admet exactement 2 diviseurs: 1 et lui-même.

Exemple: les entiers 2, 3, 5, 7, 11, 13 sont des entiers premiers.

Remarque: cet exercice présente la méthode dite du "crible d'Eratosthène" permettant de déterminer rapidement les entiers premiers parmi 2 à 99.

Eratosthène est un scientifique grec du 2^e siècle avant JC. Il est connu pour avoir été nommé directeur de la bibliothèque d'Alexandrie et pour avoir été le premier à avoir mesuré la circonférence de la Terre. Vous trouverez un diaporama présentant le crible d'Eratosthène dans le lien ci-contre.

Exercice 9077

- 1. Parmi les entiers suivants, lequel n'est pas un entier premier: 31 ; 33 ; 37 ; 41
- Parmi les entiers suivants, lequel n'est pas un entier premier: 43 ; 47 ; 49 ; 53

Vous trouverez dans le lien ci-contre la liste des entiers premiers inférieurs ou égal à 1000.

Exercice 9079

Définition: on dit qu'un entier est décomposé en produit d'entiers premiers s'il est écrit comme un produit dont tous les facteurs sont des entiers premiers.

Exemple: l'entier 72 admet la décom-

position: $2 \times 2 \times 2 \times 3 \times 3$

Algorithme: ci-contre une méthode d'obtention de la décomposition d'un entier en produit d'entiers premiers:

$$72 = 2 \times 2 \times 18$$

1. Utiliser l'égalité $28 = 2 \times 14$ pour obtenir la décomposition

en produit d'entiers premiers de l'entier 28.

- Utiliser l'égalité $40 = 2 \times 20$ pour obtenir la décomposition en produit d'entiers premiers de l'entier 40.
- 3. Utiliser l'égalité $96 = 2 \times 48$ pour obtenir la décomposition en produit d'entiers premiers de l'entier 96.

Exercice 9080

Pour chacun des entiers 198, 297, 462, déterminer leur décomposition en produit d'entiers premiers.

Indications: pour cela, on utilisera les égalités:

- $198 = 6 \times 33$

- $297 = 9 \times 33$ $462 = 14 \times 33$

Exercice 9321

Quel est le plus grand nombre premier qui divise 41 895?

4. Simplification de fractions:

 $(+1\ exercice\ pour\ les\ enseignants)$

Exercice 9082

- 1. Donner la décomposition en produit des entiers premiers des entiers: 42 ; 90
- 2. En déduire l'écriture réduite de la fraction $\frac{42}{90}$

Exercice 9083

- 1. Décomposer 140 et 870 en produit de nombres premiers.
- 2. En déduire la forme irréductible de la fraction $\frac{140}{870}$

