Risoluzione di reti

A cura di Alessandro Niccolai A.A. 2019/2020

Ultimo aggiornamento: 20 gennaio 2020

B.1 • Risoluzione di reti mediante le leggi di Kirchhoff

Esercizio B.1.1

Dato il circuito in figura, calcolare la corrente che circola in R_2 e la potenza generata da E_2 .

$$\begin{aligned} & \textbf{Dati:} \\ & A = 5 \, \text{A} \\ & E_1 = 30 \, \text{V} \\ & E_2 = 12 \, \text{V} \\ & R_1 = 15 \Omega \\ & R_2 = 6 \Omega \end{aligned}$$

Risultati:

$$I_2 = -3 \text{ A}$$

 $P_{g,E_2} = -96 \text{ W}$

Soluzione:

Per risolvere questo esercizio, è possibile applicare il metodo del tableau. La rete ha 5 componenti, quindi il sistema risolutivo dovrebbe essere un sistema di 10 equazioni (3 KCL, 2 KVL e 5 EC) in 10 incognite. Tuttavia, è possibile ridurre il numero di equazioni non considerando i nodi impropri. Per calcolare la potenza generata da E_2 , è necessario calcolare la corrente nel generatore, presa con la convenzione dei generatori:

$$P_{a,E_2} = E_2 \cdot I_{E_2} \tag{1}$$

Indicando le correnti e le tensioni non ovvie:

Scrivendo il sistema di equazioni (KVL e KCL con già inserite le EC):

$$\begin{cases}
V_A - R_1 A - E_2 = 0 \\
V_2 - E_2 + E_1 = 0 \\
I_{E_2} + A - \frac{V_2}{R_2} = 0
\end{cases}$$
(2)

Si vede che la prima equazione è disaccoppiata dalle altre due e che la seconda contiene una sola incognita:

$$V_2 = E_2 - E_1 = -18 \,\text{V} \tag{3}$$

Quindi, dalla terza equazione è possibile calcolare la corrente I_{E_2} :

$$I_{E_2} = \frac{V_2}{R_2} - A = -8 \,\text{A} \tag{4}$$

Quindi:

$$I_2 = \frac{V_2}{R_2} = -3 \,\text{A} \tag{5}$$

e

$$P_{g,E_2} = -96 \,\mathrm{W}$$
 (6)

Esercizio B.1.2

Data la rete in figura, calcolare la tensione V_{AB} , la potenza generata da E_1 e la potenza dissipata da R_2 .

 $\begin{aligned} \textbf{Dati:} & R_1 = 20\Omega \\ R_2 = 15\Omega \\ R_3 = 15\Omega \\ E_1 = 70 \, \text{V} \\ E_2 = 15 \, \text{V} \\ E_3 = 45 \, \text{V} \end{aligned}$

Risultati: $P_{g,E_1} = 140 \, \mathrm{W}$ $V_{AB} = 15 \, \mathrm{V}$ $P_{d,R_2} = 60 W$

Soluzione:

Questa rete è composta da un unico anello, quindi, nota la corrente che circola nell'anello, è possibile calcolare qualunque altra grandezza.

La corrente I è scelta con la convenzione dei generatori rispetto ad E_1 , in modo tale da poter calcolare facilmente la potenza:

$$P_{a,E_1} = E_1 \cdot I \tag{7}$$

Le altre incognite della rete si possono esprimere rispetto alla corrente I:

$$V_{AB} = E_3 - R_2 I \tag{8}$$

$$P_{d,R_2} = R_2 I^2 (9)$$

Da una KVL all'anello:

$$E_1 - R_2 I + E_3 - E_2 - R_3 I - R_1 I = 0 (10)$$

Ovvero:

$$I = \frac{E_1 - E_2 + E_3}{R_1 + R_3 + R_3} = 2 \,\text{A} \tag{11}$$

Quindi le incognite del problema sono:

$$P_{a,E_1} = E_1 \cdot I = 140 \,\text{W} \tag{12}$$

$$V_{AB} = E_3 - R_2 I = 15 \,\text{V} \tag{13}$$

$$P_{d,R_2} = R_2 I^2 = 60 \,\mathrm{W} \tag{14}$$

Esercizio B.1.3

Data la rete in figura, verificare il bilancio di potenze, calcolando la potenza totale dissipata dai resistori, e le potenze generate da A, E_1 ed E_2 .

$$R_1 = 25 \Omega$$

 $R_2 = 10 \Omega$
 $R_3 = 30 \Omega$
 $A = 2 \Lambda$
 $E_1 = 50 V$
 $E_2 = 75 V$

Risultati: $P_R = 260 \text{ W}$ $P_{g,A} = 310 \text{ W}$ $P_{g,E_1} = 100 \text{ W}$ $P_{g,E_2} = 150 \text{ W}$

Soluzione:

La rete è formata da un unico anello per il quale è nota la corrente circolante. Le potenze dissipate dai resistori si calcolano facilmente:

$$P_{d,R_1} = R_1 A^2 = 100 \,\mathrm{W} \tag{15}$$

$$P_{d,R_2} = R_2 A^2 = 40 \,\text{W} \tag{16}$$

$$P_{d,R_3} = R_3 A^2 = 120 \,\mathrm{W} \tag{17}$$

La potenza totale dei resistori è quindi:

$$P_R = P_{d,R_1} + P_{d,R_2} + P_{d,R_3} = 260 \,\mathrm{W} \tag{18}$$

Per quanto riguarda i generatori di tensione, si noti che per E_1 la corrente A rispetta la convenzione dei generatori, mentre questo non accade per E_2 . Quindi:

$$P_{q,E_1} = E_1 A = 100 \,\mathrm{W} \tag{19}$$

Mentre:

$$P_{q,E_2} = -E_2 A = -150 \,\text{W} \tag{20}$$

La potenza risulta negativa perché, nella realtà, questo generatore sta dissipando potenza. Per calcolare la potenza generata da A è possibile scrivere una KVL per calcolare la tensione V_A :

$$V_A = E_2 - E_1 + R_1 A + R_2 A + R_3 A = 155 \,\text{V} \tag{21}$$

Quindi:

$$P_{q,A} = A \cdot V_A = 310 \,\text{W}$$
 (22)

Per verificare il bilancio di potenze è necessario verificare la seguente identità:

$$P_R = P_{g,E_1} + P_{g,E_2} + P_{g,A} (23)$$

Esercizio B.1.4

Dato il seguente circuito, calcolare la potenza dissipata dal resistore R_1 e la tensione V_3 . Calcolare, infine, la potenza totale generata e quella dissipata, verificando il bilancio di potenze.

Dati: $R_1 = 40\Omega$ $R_2 = 10\Omega$ $R_3 = 10\Omega$ $A_1 = 3 \text{ A}$ $A_2 = 2 \text{ A}$ E = 20 V

Risultati:

$$P_{d,R_1} = 10 \text{ W}$$

 $V_3 = 50 \text{ V}$
 $P_{d,tot} = 510 \text{ W}$
 $P_{g,tot} = 510 \text{ W}$

Soluzione:

Per calcolare la potenza dissipata da R_1 e' necessario conoscere o la tensione ai capi del resistore o la corrente che scorre nel resistore. Nel circuito in esame, la tensione è calcolabile con una semplice KVL:

$$V_1 = E = 20 \,\mathrm{V}$$
 (24)

Segue che:

$$P_{d,R_1} = \frac{V_1^2}{R_1} = 10 \,\text{W} \tag{25}$$

Per calcolare V_3 si potrebbe pensare di chiudere una KVL. Tuttavia conterrebbero sempre un generatore di corrente, che non fornisce nessuna informazione riguardo alla tensione. Di conseguenza, e' possibile considerare l'ipotesi di calcolare V_3 attraverso la legge di Ohm. Per fare ciò, è necessario conoscere la corrente che circola in R_3 , facilmente calcolabile con una KCL:

$$I_3 = A_1 + A_2 = 5 \,\text{A} \tag{26}$$

E quindi:

$$V_3 = R_3 I_3 = 50 \,\text{V} \tag{27}$$

Per il calcolo della potenza erogata dal generatore di tensione E, è possibile calcolare la corrente I_E tramite una KCL

$$I_E = A_1 + I_1 = A_1 + \frac{V_1}{R_1} = 3,5 \,\text{A}$$
 (28)

Quindi:

$$P_{q,E} = I_E E = 70 \,\text{W}$$
 (29)

La tensione V_{A_2} ai capi del generatore A_2 , può essere ottenuta tramite una KVL alla maglia di destra

$$V_{A_2} = V_2 + V_3 = V_3 + R_2 I_2 = 100 \,\text{V} \tag{30}$$

Quindi:

$$P_{q,A_2} = V_{A_2} A_2 = 200 \,\mathrm{W} \tag{31}$$

La tensione V_{A_1} ai capi del generatore A_1 può essere calcolata tramite una KVL alla maglia di sinistra

$$V_{A_1} = V_2 + V_3 - E = 80 \,\text{V} \tag{32}$$

Quindi:

$$P_{q,A_1} = V_{A_1} A_1 = 240 \,\mathrm{W} \tag{33}$$

Per quanto riguarda le potenze dissipate, è necessario calcolare la potenza dissipata da R_2 e da R_3 :

$$P_{d,R_2} = R_2 I_3^2 = 250 \,\text{W} \tag{34}$$

$$P_{d,R_3} = R_3 I_3^2 = 250 \,\text{W} \tag{35}$$

Dato che tutte le potenze ottenute hanno segno positivo, le potenze totali dissipata e generata sono:

$$P_{d,tot} = P_{d,R_1} + P_{d,R_2} + P_{d,R_3} = 510 \,\mathrm{W}$$
(36)

$$P_{a,tot} = P_{a,E_1} + P_{a,A_1} + P_{a,A_2} = 510 \,\mathrm{W} \tag{37}$$

Il bilancio delle potenze risulta dunque:

$$510W = 510W$$
 (38)

Ottenendo dunque una identità, possiamo concludere che il bilancio delle potenze risulta rispettato.

Esercizio B.1.5

Dato il seguente circuito, calcolare la potenza dissipata dal generatore E_1 .

Dati:

$$R_1 = 50\Omega$$

 $A_1 = 4 \text{ A}$
 $E_1 = 30 \text{ V}$
 $E_2 = 20 \text{ V}$

Risultati:
$$P_{d,E_1} = 90 \,\mathrm{W}$$

Soluzione:

Al fine di calcolare la potenza dissipata da E_1 , e' necessario trovare la corrente che scorre in tale generatore. Infatti:

$$P_{d,E_1} = E_1 I_1$$

con \mathcal{I}_1 presa con la convenzione degli utilizzatori.

Per calcolare I_1 e' possibile scrivere una KCL:

$$I_1 = A_1 - I_R (39)$$

dove I_R e' ancora incognita.

Per il calcolo di I_R e' possibile ricorrere alla legge di Ohm ed ad una KVL.

Infatti:

$$I_R = \frac{V_R}{R} \tag{40}$$

Dalla KVL:

$$V_R = E_1 + E_2 = 50 \,\text{V} \tag{41}$$

Quindi:

$$I_R = 1 \,\mathrm{A} \tag{42}$$

е

$$I_1 = 3 \,\mathrm{A} \tag{43}$$

Infine, la potenza di E_1 e':

$$P_{d,E_1} = 90 \,\mathrm{W}$$
 (44)

B.2 • Partitori di tensione

Esercizio B.2.1

Dato il circuito in figura, calcolare la differenza di potenziale V_1 .

Dati:

$$R_1 = 4\Omega$$

 $R_2 = 15\Omega$
 $R_3 = 10\Omega$
 $E = 35 \text{ V}$

Risultati: $V_1 = 14 \text{ V}$

Soluzione:

In questo circuito non si puo' applicare direttamente il partitore di tensione dato che, in serie al generatore di tensione, non ci sono solo due resistenze.

E' possibile calcolare la resistenza equivalente fra R_2 ed R_3 :

$$R_{23} = R_2 / / R_3 = 6\Omega (45)$$

A questo punto, si vede che sono soddisfatte le condizioni di applicazione del partitore di tensione:

$$V_1 = E \frac{R_1}{R_1 + R_{23}} = 14 \,\text{V} \tag{46}$$

Esercizio B.2.2

Dato il circuito in figura, calcolare la differenza di potenziale V_4 .

Soluzione:

In questo circuito non si puo' applicare direttamente il partitore di tensione dato che, in serie al generatore di tensione, non ci sono solo due resistenze.

E' possibile calcolare la resistenza equivalente:

$$R_{234} = R_2 / / (R_3 + R_4) = \frac{15}{4} \Omega \tag{47}$$

Si puo' calcolare la tensione su R_{234} :

$$V_{234} = E \cdot \frac{R_{234}}{R_{234} + R_1} = 60 \,\text{V} \tag{48}$$

Il circuito risulta quindi essere:

Se si considera solo la serie fra R_3 ed R_4 si vede che sono soddisfatte le condizioni di applicazione del partitore di tensione:

$$V_4 = V_{234} \frac{R_4}{R_4 + R_3} = 20 \,\text{V} \tag{49}$$

Esercizio B.2.3

Dato il circuito in figura, calcolare le differenze di potenziale V_1 e V_6 .

Soluzione:

Per prima cosa, e' necessario calcolare le resistenze equivalenti:

$$R_{123} = R_3 / / (R_1 + R_2) = 20\Omega (50)$$

$$R_{45} = R_4 / / R_5 = 10\Omega \tag{51}$$

A questo punto si possono calcolare le differenze di potenziale V_6 e V_{123} (si noti che la formulazione del partitore di tensione si puo' facilmente estendere al caso di N resistori in serie):

$$V_6 = E \frac{R_6}{R_6 + (R_{123} + R_{45})} = 40 \,\text{V}$$
 (52)

$$V_{123} = -E \frac{R_{123}}{R_{123} + (R_6 + R_{45})} = -40 \,\text{V}$$
(53)

A questo punto:

$$V_{1} = V_{123} \frac{R_{1}}{R_{1} + R_{2}} = -10 \,\text{V}$$

$$(54)$$

Esercizio B.2.4

Dato il circuito in figura, calcolare la corrente I.

Soluzione:

Il circuito puo' essere risolto mediante l'applicazione del partitore di tensione. Infatti la corrente I puo' essere ricavata a partire dalla tensione sul restore:

Per calcolare V_2 si puo' notare che questa e' anche la tensione ai capi del parallelo fra R_2 e la serie di R_3 ed R_4 .

$$E \uparrow \bigvee_{V_2} \bigvee_{R_2//(R_3 + R_4)}$$

A questo punto vengono rispettate le condizione per l'applicazione del partitore di tensione:

$$V_2 = E \cdot \frac{R_2//(R_3 + R_4)}{R_1 + (R_2//(R_3 + R_4))} = E \cdot \frac{R//(R + R)}{R + (R//(R + R))} = E \cdot \frac{\frac{2}{3}R}{\frac{5}{3}R} = E \cdot \frac{2}{5} = 16 \text{ V}$$
 (56)

Quindi:

$$I = -0.5 \,\mathrm{A} \tag{57}$$

B.3 • Partitori di corrente

Esercizio B.3.1

Dato il circuito in figura, calcolare la differenza di potenziale V_2 .

$$\begin{aligned} \textbf{Dati:} \\ R_1 &= 4\Omega \\ R_2 &= 15\Omega \\ R_3 &= 5\Omega \\ A &= 8 \, \text{A} \end{aligned}$$

Risultati:
$$V_2 = 30 \,\mathrm{V}$$

Si puo' applicare direttamente il partitore di tensione, notando che la resistenza R_1 non altera la corrente che scorre nel parallelo R_2 R_3 .

$$I_2 = A \frac{R_3}{R_2 + R_3} = 2 \,\text{A} \tag{58}$$

Dalla legge di Ohm:

$$V_2 = R_2 I_2 = 30 \,\text{V} \tag{59}$$

Esercizio B.3.2

Dato il circuito in figura, calcolare la corrente I_3 .

Dati:

$$R_1 = 5\Omega$$

 $R_2 = 30\Omega$
 $R_3 = 8\Omega$
 $R_4 = 20\Omega$
 $A = 10 \text{ A}$

Risultati:
$$I_3 = -6A$$

Soluzione:

La formula del partitore di tensione non e' facilmente estendibile al caso di piu' resistenze in parallelo, quindi si consiglia di calcolare sempre la resistenza equivalente e di ricondursi al caso base:

$$R_{24} = R_2 / / R_4 = 12\Omega \tag{60}$$

$$I_3 = -A \cdot \frac{R_{24}}{R_{24} + R_3} = -6 \,\text{A} \tag{61}$$

Esercizio B.3.3

Dato il circuito in figura, calcolare la differenza di potenziale V e la corrente I.

Risultati:
$$V = -24 \text{ V}$$
 $I = 5 \text{ A}$

Il circuito si puo' risolvere notando che sono presenti due blocchi avente ciascuno due resistenze in parallelo e la corrente entrante nota (sempre A).

 $A = 10 \,\mathrm{A}$

Per il primo gruppo:

$$V = -A \frac{R_2}{R_1 + R_2} \cdot R_1 = -24 \,\text{V} \tag{62}$$

Per il secondo gruppo:

$$I = \frac{A}{2} = 5 \,\mathrm{A} \tag{63}$$

Esercizio B.3.4

Dato il circuito in figura, calcolare la differenza di potenziale V_5 .

$$\begin{aligned} \textbf{Dati:} \\ R_1 &= 20\Omega \\ R_2 &= 4\Omega \\ R_3 &= 12\Omega \\ R_4 &= 24\Omega \\ R_5 &= 24\Omega \\ R_6 &= 12\Omega \\ A &= 12 \, \text{A} \end{aligned}$$

Risultati:
$$V_5 = 48 \,\mathrm{V}$$

Il circuito si risolve con l'applicazione a cascata del partitore di corrente. Per prima cosa è necessario calcolare la resistenza equivalente della parte destra della rete:

$$R_{23456} = R_2 + R_3 /\!\!/ R_4 + R_5 /\!\!/ R_6 = 20 \Omega \tag{64}$$

A questo punto è possibile calcolare la corrente che circola in R_2 attraverso il partitore di corrente:

$$I_2 = A_1 \frac{R_1}{R_1 + R_{23456}} = 6A (65)$$

La parte destra della rete si può quindi ridisegnare come segue:

Quindi:

$$V_5 = R_5 \cdot I_2 \cdot \frac{R_6}{R_6 + R_5} = 48 \,\text{V} \tag{66}$$

Esercizio B.3.5

Dato il circuito in figura, calcolare la corrente I.

Dati: Risultati:
$$A_1 = 20\Omega$$
, $\forall i = 1...4$ Risultati: $I = 3 \text{ A}$

Soluzione:

Il circuito puo' essere risolto mediante l'applicazione a cascata del partitore di corrente. Infatti, si puo' notare che la resistenza R_1 e la resistenza R_2 sono fra di loro in parallelo. Quindi la corrente I e' la corrente che entra nel parallelo (I_3) ripartita come:

$$I = I_3 \cdot \frac{R}{R+R} = \frac{I_3}{2} \tag{67}$$

Facendo il parallelo fra R_1 ed R_2 si trova:

Quindi si vede che la serie $R_3 + R_1//R_2$ e' in parallelo ad R_4 e che la corrente entrante nel parallelo e' nota.

La resistenza equivalente vale:

$$R_{eq} = (R_3 + R_2//R_1) = \frac{3}{2}R\tag{68}$$

Quindi e' possibile applicare il partitore di corrente:

$$I_3 = A_1 \cdot \frac{R_4}{R_4 + R_{eq}} = A_1 \cdot \frac{R}{\frac{5}{2}R} = A_1 \cdot \frac{2}{5} = 6 \text{ A}$$
 (69)

Usando questo dato nella formula di I:

$$I = \frac{I_3}{2} = 3 \,\text{A} \tag{70}$$

B.4 • Formula di Millman

Esercizio B.4.1

Calcolare la differenza di potenziale V_{MN} .

$$\begin{array}{l} \textbf{Dati:} \\ R_1 = R_4 = 10\Omega \\ R_2 = R_3 = 5\Omega \\ E_1 = 20\,\text{V} \\ E_2 = 100\,\text{V} \\ A = 5\,\text{A} \end{array} \qquad \begin{array}{l} \textbf{Risultati:} \\ V_{MN} = 46\,\text{V} \end{array}$$

Soluzione:

In questo caso, la soluzione dell'esercizio e' immediata:

$$V_{MN} = \frac{A - \frac{E_1}{R_1} + \frac{E_2}{R_3}}{\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}} = 46 \,\text{V}$$
(71)

Si noti che, dato che R_4 e' in serie ad un generatore di corrente, non da' contributi agli effetti esterni.

Esercizio B.4.2

Calcolare la corrente I_1 .

Dati:

$$R_1 = 6\Omega$$

 $R_2 = 12\Omega$
 $E_1 = 60 \text{ V}$
 $A = 2 \text{ A}$

Risultati:
$$I_1 = \frac{14}{3} A$$

Soluzione:

In primo luogo e' possibile calcolare la differenza di potenziale ${\cal V}_{MN}$ applicando la formula di Millman:

$$V_{MN} = \frac{A - \frac{E_1}{R_1}}{\frac{1}{R_1} + \frac{1}{R_2}} = -32V \tag{72}$$

Isolando il ramo centrale ed evidenziando la tensione ai capi di R_1 :

choiudendo una KVL:

$$V_1 = E_1 + V_{MN} = 28 \,\text{V} \tag{73}$$

da cui:

$$I_1 = \frac{V_1}{R_1} = \frac{14}{3} \,\text{A} \tag{74}$$

Esercizio B.4.3

Calcolare: I_2 , V_4 ed I_6 .

Si vede subito che R_6 non da' contributo agli effetti esterni, tuttavia una delle incognite appartiene a questo elemento, quindi va calcolata prima di eliminarlo:

$$I_6 = \frac{V_6}{R_6} = \frac{-E_2}{R_6} = -4 \,\text{A} \tag{75}$$

Un discorso analogo si puo' fare per il parallelo fra R_4 ed R_5 . Analizzandoli separatamente dal resto del circuito:

si vede che sono rispettate le ipotesi di applicazione del partitore di corrente:

$$I_4 = -A \frac{R_5}{R_4 + R_5} = -1 \,\text{A} \tag{76}$$

quindi:

$$V_4 = R_4 \cdot I_4 = -5 \,\text{V} \tag{77}$$

Per il calcolo di I_2 , si deve calcolare la tensione di Millman. Il circuito su cui fare il calcolo, semplificati gli elementi che non danno contributi agli effetti esterni, e':

Calcolando il parallelo fra \mathbb{R}_2 ed \mathbb{R}_3 :

$$R_{23} = R_2 / / R_3 = 5\Omega (78)$$

Quindi:

$$V_{MN} = \frac{\frac{E_1}{R_{23} + R_1} + \frac{E_2}{R_7} + A}{\frac{1}{R_{23} + R_1} + \frac{1}{R_7}} = 25 \,\text{V}$$
(79)

Isolando il ramo di interesse:

Applicando un partitore di tensione:

$$V_{23} = (E_1 - V_{MN}) \frac{R_{23}}{R_{23} + R_1} = -7.5 \,\text{V}$$
(80)

Infine:

$$I_2 = \frac{V_{23}}{R_2} = -0.75 \,\text{A} \tag{81}$$