# ResMLP: Feedforward networks for image classification with data efficient training

School of Industrial and Management Engineering, Korea University

Jong Kook, Heo





## **Contents**

\* Research Purpose

Overview

\* Additional Details

Experiments

Conclusion

# **Research Purpose**

- ResMLP: Feedforward networks for image classification with data-efficient training
  - Facebook Al Resarch 에서 연구, 2021년 11월 13일 기준 약 13회 인용
  - MLP Mixer(Tolstikhin et al, 2021)\* 와 상당히 유사한 구조
    - ✓ Cross-patch sublayer: 각 채널마다 독립적으로 모든 패치에 대해 연산(= Token-mixing in MLP Mixer)
    - ✓ Cross-channel sublayer : 각 패치마다 독립적으로 모든 채널에 대해 연산(= channel-mixing in MLP Mixer)
  - LayerNormalization 대신 Affine Transform 사용





MLP Mixer ResMLP

#### **ResMLP**

## Main Observation

- Attention Block 없이 단순히 MLP Layer로만 이루어진 구조이지만, accuracy/complexity trade-off 상에서 상당히 좋은 결과를 나타냄
  - ✓ MLP Mixer 와 거의 같은 시기에 연구된 동일한 구조
  - ✓ 저자 왈 "MLP Mixer는 ImageNet-22k 와 JFT-300M 으로 훈련시킨 매우 큰 모델이지만, 우린 ImageNet-1k 로 훈련시켜 더 가볍고 Inference Time 이 빠르다는 것이 장점"
- 해당 구조는 이미지 뿐만 아니라 다른 도메인에서도 적용 가능
  - ✓ 기계 번역 벤치마크 WMT 에서 seq2seq Transformers 와 견줄만한 성능을 나타냈다고 함
- 기존에 연구된 Distillation 이나 Self-SL 방법론을 적용하면 성능이 올라감

- The Residual Multi-Perceptron Layer
  - LayerNormalization 대신에 learnable parameter 로 이루어진 Affine Transform 적용(CaiT\* 에서 차용)
    - ✓ CaiT 에서 쓰였던 LayerScale 은 Layer Normalization -> SA/FFN Block -> Channel-wise 가중치를 준 후 Residual Connection



- ✓ Self-Attention 연산은 learning rate warm-up 이나 Layernorm 이 없으면 초기 학습이 매우 불안정!(CalT 참고)
- ✓ ResMLP 는 Self-Attention 연산이 없기 때문에 Layernorm 필요없이 Bias(β)가 추가된 Affine Transform 만 사용
- ✓ 각 블록의 첫번째 Affine 은 기존의 Layernorm 역할(pre-norm), 대신 channel-wise statistic 이 필요없음
- ✓ 각 블록의 두번째 Affine 은 CaiT 의 LayerScale 역할(post-norm)



$$\begin{aligned} & \text{Aff}_{\alpha,\beta}(\mathbf{x}) = \text{Diag}(\alpha)\mathbf{x} + \beta, \\ & \mathbf{Z} &= \mathbf{X} + \text{Aff}\left((\mathbf{A}\,\text{Aff}\left(\mathbf{X}\right)^{\top}\right)^{\top}\right), \\ & \mathbf{Y} &= \mathbf{Z} + \text{Aff}\left(\mathbf{C}\,\text{GELU}(\mathbf{B}\,\text{Aff}(\mathbf{Z}))\right), \end{aligned}$$

**Affine Transform in ResMLP** 

- The Residual Multi-Perceptron Layer
  - Details
    - ✓ Cross-patch sublayer: Transformer 의 SA layer 역할(패치 간의 정보 교환)
    - ✓ Cross-channel sublayer : Transformer 의 FFN layer 역할(차원을 4배로 늘렸다가 줄이는 것까지 동일하게 적용)
  - Difference with ViT architecture
    - ✓ Self-Attention, Positional embedding 존재X
    - ✓ CLS Token 을 사용하지 않고, 패치 임베딩 값에 대해 Average Pooling하여 사용
    - ✓ 배치 통계량을 이용한 정규화가 아닌 learnable parameter 사용



$$\mathbf{Z} = \mathbf{X} + \operatorname{Aff}\left(\left(\mathbf{A}\operatorname{Aff}\left(\mathbf{X}\right)^{\top}\right)^{\top}\right), \qquad A \in R^{N^{2}*N^{2}}$$

$$\mathbf{Y} = \mathbf{Z} + \operatorname{Aff}\left(\operatorname{C}\operatorname{GELU}(\operatorname{B}\operatorname{Aff}(\mathbf{Z}))\right), \qquad C \in R^{4d*d}$$

### **ResMLP**

## Variants of ResMLP

- Class-MLP(An alternative to average pooling)
  - ✓ CaiT 의 Class Attention Layer(CA) 에서 차용(CLS Token 을 마지막에 넣어 Frozen embedding 으로부터 클래스 정보 요약)
  - ✓ Average Pooling 대신에 CLS Token 을 삽입한 후 패치 임베딩과 함께 Linear Layer 에 입력
  - ✓ FAIR github, Timm Library 에서는 해당 구현체 X



**CaiT Architecture** 

#### **ResMLP**

## Variants of ResMLP

- Seq2Seq ResMLP(For Machine Translation)
  - ✓ Self-Attention Layer 대신 ResMLP layer 를 쓴 인코더-디코더 구조
  - ✓ Vanilla Transformer 처럼 디코더에서 cross-attention layer 를 적용하여 인코더 아웃풋에 어텐션을 주었다고 하나 구체적
     인 그림 설명이나 구현체는 없음
  - ✓ 디코더의 Matrix A 는 Masked Attention 처럼 뒤의 토큰에 영향을 받지 않도록 Triangular Matrix 로 제약
  - ✓ Variable Sequence Length 에 적용할 수 있도록 배치 내의 가장 긴 시퀀스 길이에 맞춰 zero padding 한 후, submatrix A
     를 추출

- Supervised Learning Results(ImageNet-1k Validation Set)
  - ConvNet vs ViTs vs ResMLP
    - ✓ V100-32GB GPU 로 batch-size 32 고정
    - ✓ 이미지 사이즈(default): 14 by 14 patches of size 16 by 16
    - ✓ 정확도, throughput, FLOPS 등 다양한 지표의 trade-off 비교
    - ✓ 기존의 ConvNet 이나 VT 계열의 성능보다 완전히 우세하지 않지만, 그래도 높은 정확도를 나타냄 "충분한 데이터와 학습 스키마가 존재한다면 구조적 제약이 성능에 큰 영향을 미치지 않는다"

|                        | Arch.                      | #params $(\times 10^6)$ | throughput (im/s) | FLOPS $(\times 10^9)$ | Peak Mem<br>(MB) | Top-1<br>Acc. |
|------------------------|----------------------------|-------------------------|-------------------|-----------------------|------------------|---------------|
| State of the art       | CaiT-M48†448 <b>°</b> [57] | 356                     | 5.4               | 329.6                 | 5477.8           | 86.5          |
|                        | NfNet-F6 SAM [6]           | 438                     | 16.0              | 377.3                 | 5519.3           | 86.5          |
| Convolutional networks | EfficientNet-B3 [53]       | 12                      | 661.8             | 1.8                   | 1174.0           | 81.1          |
|                        | EfficientNet-B4 [53]       | 19                      | 349.4             | 4.2                   | 1898.9           | 82.6          |
|                        | EfficientNet-B5 [53]       | 30                      | 169.1             | 9.9                   | 2734.9           | 83.3          |
|                        | RegNetY-4GF [47]           | 21                      | 861.0             | 4.0                   | 568.4            | 80.0          |
|                        | RegNetY-8GF [47]           | 39                      | 534.4             | 8.0                   | 841.6            | 81.7          |
|                        | RegNetY-16GF [47]          | 84                      | 334.7             | 16.0                  | 1329.6           | 82.9          |
| Transformer networks   | DeiT-S [56]                | 22                      | 940.4             | 4.6                   | 217.2            | 79.8          |
|                        | DeiT-B [56]                | 86                      | 292.3             | 17.5                  | 573.7            | 81.8          |
|                        | CaiT-XS24 [57]             | 27                      | 447.6             | 5.4                   | 245.5            | 81.8          |
| Feedforward networks   | ResMLP-S12                 | 15                      | 1415.1            | 3.0                   | 179.5            | 76.6          |
|                        | ResMLP-S24                 | 30                      | 715.4             | 6.0                   | 235.3            | 79.4          |
|                        | ResMLP-B24                 | 116                     | 231.3             | 23.0                  | 663.0            | 81.0          |

- Self-Supervised Learning with DINO
  - ResNet vs ViTs vs ResMLP
    - ✔ DINO 로 300 epoch 학습 후 Linear Evaluation 과 kNN Classifier 성능 비교(ImageNet-1k val)
    - ✓ VT 에 비해 성능이 떨어지지만, kNN evaluation 에서는 ConvNet 과 pure MLP architecture 를 뛰어넘음
    - ✓ Pretraining 을 한 후 finetuning 한 모델이 지도 학습만으로 학습 시킨 모델보다 Acc 가 0.5% 높음(ResMLP-S24 기준)

| Models                  | ResNet-50 | ViT-S/16 | ViT-S/8 | ViT-B/16 | ResMLP-S12 | ResMLP-S24 |
|-------------------------|-----------|----------|---------|----------|------------|------------|
| Params. $(\times 10^6)$ | 25        | 22       | 22      | 87       | 15         | 30         |
| FLOPS $(\times 10^9)$   | 4.1       | 4.6      | 22.4    | 17.5     | 3.0        | 6.0        |
| Linear k-NN             | 75.3      | 77.0     | 79.7    | 78.2     | 67.5       | 72.8       |
|                         | 67.5      | 74.5     | 78.3    | 76.1     | 62.6       | 69.4       |

- Knowledge distillation setting and Ablations
  - Knowledge Distillation
    - ✓ RegNet 을 Teacher Model로 distillation 한 모델이 baselines 보다 더 우수한 성능을 나타냄(파란색)

| Ablation        | Model         | Patch<br>size | $\begin{array}{c} \text{Params} \\ \times 10^6 \end{array}$ | $FLOPs \times 10^9$ | Variant                                            | top-1<br>val | acc. on In<br>real [4] | nageNet<br>v2 [49] |
|-----------------|---------------|---------------|-------------------------------------------------------------|---------------------|----------------------------------------------------|--------------|------------------------|--------------------|
|                 | ResMLP-S12    | 16            | 15.4                                                        | 3.0                 | 12 layers, working dimension 384                   | 76.6         | 83.3                   | 64.4               |
| Baseline models | ResMLP-S24    | 16            | 30.0                                                        | 6.0                 | 24 layers, working dimension 384                   | 79.4         | 85.3                   | 67.9               |
|                 | ResMLP-B24    | 16            | 115.7                                                       | 23.0                | 24 layers, working dimension 768                   | 81.0         | 86.1                   | 69.0               |
| Normalization   | ResMLP-S12    | 16            | 15.4                                                        | 3.0                 | Aff → Layernorm                                    | 77.7         | 84.1                   | 65.7               |
| Pooling         | ResMLP-S12    | 16            | 17.7                                                        | 3.0                 | average pooling $\rightarrow$ Class-MLP            | 77.5         | 84.0                   | 66.1               |
|                 | ResMLP-S12    | 16            | 14.9                                                        | 2.8                 | $linear \rightarrow none$                          | 56.5         | 63.4                   | 43.1               |
| Patch           | ResMLP-S12    | 16            | 18.6                                                        | 4.3                 | $linear \rightarrow MLP$                           | 77.3         | 84.0                   | 65.7               |
| communication   | ResMLP-S12    | 16            | 30.8                                                        | 6.0                 | linear $\rightarrow$ conv 3x3                      | 77.3         | 84.4                   | 65.7               |
|                 | ResMLP-S12    | 16            | 14.9                                                        | 2.8                 | linear $\rightarrow$ conv 3x3 depth-wise           | 76.3         | 83.4                   | 64.6               |
|                 | ResMLP-S12    | 16            | 16.7                                                        | 3.2                 | linear $\rightarrow$ conv 3x3 depth-separable      | 77.0         | 84.0                   | 65.5               |
|                 | ResMLP-S12/14 | 14            | 15.6                                                        | 4.0                 | patch size $16 \times 16 \rightarrow 14 \times 14$ | 76.9         | 83.7                   | 65.0               |
| Patch size      | ResMLP-S12/8  | 8             | 22.1                                                        | 14.0                | patch size $16 \times 16 \rightarrow 8 \times 8$   | 79.1         | 85.2                   | 67.2               |
|                 | ResMLP-B24/8  | 8             | 129.1                                                       | 100.2               | patch size $16 \times 16 \rightarrow 8 \times 8$   | 81.0         | 85.7                   | 68.6               |
|                 | ResMLP-S12    | 16            | 15.4                                                        | 3.0                 | old-fashioned (90 epochs)                          | 69.2         | 76.0                   | 56.1               |
|                 | ResMLP-S12    | 16            | 15.4                                                        | 3.0                 | pre-trained SSL (DINO)                             | 76.5         | 83.6                   | 64.5               |
|                 | ResMLP-S12    | 16            | 15.4                                                        | 3.0                 | distillation                                       | 77.8         | 84.6                   | 66.0               |
| Training        | ResMLP-S24    | 16            | 30.0                                                        | 6.0                 | pre-trained SSL (DINO)                             | 79.9         | 85.9                   | 68.6               |
|                 | ResMLP-S24    | 16            | 30.0                                                        | 6.0                 | distillation                                       | 80.8         | 86.6                   | 69.8               |
|                 | ResMLP-B24/8  | 8             | 129.1                                                       | 100.2               | distillation                                       | 83.6         | 88.4                   | 73.4               |
|                 | ResMLP-B24/8  | 8             | 129.1                                                       | 100.2               | pre-trained ImageNet-21k (60 epochs)               | 84.4         | 88.9                   | 74.2               |

- Knowledge distillation setting and Ablations
  - Ablations Patch Communication
    - ✓ Cross-patch sublayer 의 matrix A의 일부 row만 가져와 시각화
    - ✓ Convolution Filter 와 상당히 유사하며, depth 가 커질수록 전역적인 부분 고려
    - ✓ 그렇다면 Patch Communication 을 3 by 3 Conv 쓰는 것에 비해 어떤 점이 좋을까??



- Sparsity
  - Ablations Patch Communication
    - ✓ 3 by 3 Convolution 을 쓴 variant가 가장 좋은 결과를 나타내었지만, MLP-variant 나 Baselines 와 큰 차이는 없음
    - √ 3 by 3 Convolution 을 쓸 경우 FLOPs 와 parameter 수 증가가 거의 2배

| Ablation        | Model         | Patch | Params        | FLOPs<br>×10 <sup>9</sup> | Variant                                            |      | top-1 acc. on ImageNet |         |  |
|-----------------|---------------|-------|---------------|---------------------------|----------------------------------------------------|------|------------------------|---------|--|
| Ablation        | Wiodei        | size  | $\times 10^6$ |                           | variant                                            | val  | real [4]               | v2 [49] |  |
|                 | ResMLP-S12    | 16    | 15.4          | 3.0                       | 12 layers, working dimension 384                   | 76.6 | 83.3                   | 64.4    |  |
| Baseline models | ResMLP-S24    | 16    | 30.0          | 6.0                       | 24 layers, working dimension 384                   | 79.4 | 85.3                   | 67.9    |  |
|                 | ResMLP-B24    | 16    | 115.7         | 23.0                      | 24 layers, working dimension 768                   | 81.0 | 86.1                   | 69.0    |  |
| Normalization   | ResMLP-S12    | 16    | 15.4          | 3.0                       | $Aff \rightarrow Layernorm$                        | 77.7 | 84.1                   | 65.7    |  |
| Pooling         | ResMLP-S12    | 16    | 17.7          | 3.0                       | average pooling $\rightarrow$ Class-MLP            | 77.5 | 84.0                   | 66.1    |  |
|                 | ResMLP-S12    | 16    | 14.9          | 2.8                       | $linear \rightarrow none$                          | 56.5 | 63.4                   | 43.1    |  |
| Patch           | ResMLP-S12    | 16    | 18.6          | 4.3                       | linear $\rightarrow$ MLP                           | 77.3 | 84.0                   | 65.7    |  |
| communication   | ResMLP-S12    | 16    | 30.8          | 6.0                       | linear $\rightarrow$ conv 3x3                      | 77.3 | 84.4                   | 65.7    |  |
|                 | ResMLP-S12    | 16    | 14.9          | 2.8                       | linear $\rightarrow$ conv 3x3 depth-wise           | 76.3 | 83.4                   | 64.6    |  |
|                 | ResMLP-S12    | 16    | 16.7          | 3.2                       | linear $\rightarrow$ conv 3x3 depth-separable      | 77.0 | 84.0                   | 65.5    |  |
|                 | ResMLP-S12/14 | 14    | 15.6          | 4.0                       | patch size $16 \times 16 \rightarrow 14 \times 14$ | 76.9 | 83.7                   | 65.0    |  |
| Patch size      | ResMLP-S12/8  | 8     | 22.1          | 14.0                      | patch size $16 \times 16 \rightarrow 8 \times 8$   | 79.1 | 85.2                   | 67.2    |  |
|                 | ResMLP-B24/8  | 8     | 129.1         | 100.2                     | patch size $16 \times 16 \rightarrow 8 \times 8$   | 81.0 | 85.7                   | 68.6    |  |
|                 | ResMLP-S12    | 16    | 15.4          | 3.0                       | old-fashioned (90 epochs)                          | 69.2 | 76.0                   | 56.1    |  |
| Training        | ResMLP-S12    | 16    | 15.4          | 3.0                       | pre-trained SSL (DINO)                             | 76.5 | 83.6                   | 64.5    |  |
|                 | ResMLP-S12    | 16    | 15.4          | 3.0                       | distillation                                       | 77.8 | 84.6                   | 66.0    |  |
|                 | ResMLP-S24    | 16    | 30.0          | 6.0                       | pre-trained SSL (DINO)                             | 79.9 | 85.9                   | 68.6    |  |
|                 | ResMLP-S24    | 16    | 30.0          | 6.0                       | distillation                                       | 80.8 | 86.6                   | 69.8    |  |
|                 | ResMLP-B24/8  | 8     | 129.1         | 100.2                     | distillation                                       | 83.6 | 88.4                   | 73.4    |  |
|                 | ResMLP-B24/8  | 8     | 129.1         | 100.2                     | pre-trained ImageNet-21k (60 epochs)               | 84.4 | 88.9                   | 74.2    |  |

- Sparsity
  - 각 Linear Layer 에서 최대값의 절대값 대비 5% 미만의 가중치의 비율
    - ✓ 저자 왈 " Layer 의 Sparsity 가 높기 때문에, parameter pruning 이나 Quant-Noise, DiffQ 같은 quantization 방법을 적용할 수도 있다."



Figure 3: **Sparsity of linear interaction layers.** For each layer (linear and MLP), we show the rate of components whose absolute value is lower than 5% of the maximum. Linear interaction layers are sparser than the matrices involved in the per-patch MLP.

## **Conclusion**

## CaiT

- ❖ MLP Mixer 와 거의 같은 구조이기 때문에 큰 차별점은 느끼지 못했음
- ❖ CNN이나 기존 ViT 계열과 비교해봤을 때, 약간 성능은 떨어지지만 throughput 이나 Peak Memory 측면에서 확실히 가볍다는 것에 장점이 있어보임.
- ❖ ResMLP는 자연어 등 다른 도메인에도 사용할 수 있다고 주장하여 기계 번역 태스크에 대해 실험을 진행하였지만, 해당 variant architecture 나 실험에 대한 설명이 빈약한 것이 아쉬웠음.