Συστήματα Αρχείων: Διεπαφή και Υλοποίηση

Λειτουργικά Συστήματα 6ο εξάμηνο ΣΗΜΜΥ ακ. έτος 2019-2020

http://www.cslab.ece.ntua.gr/courses/os

Εργαστήριο Υπολογιστικών Συστημάτων ΕΜΠ

Ιούνιος 2020

Συστήματα Αρχείων (Σ.Α.) σκελετός

- Διεπαφή
 - Αρχεία
 - Κατάλογοι
 - Μονοπάτια
 - Προσάρτηση ΣΑ
 - Απομακρυσμένα ΣΑ
- Ζητήματα Υλοποίησης
 - VFS
 - Ανάθεση
 - Ζητήματα (page cache, journaling, ...)

 $\Delta ιεπαφή ΣΑ \\ (από τη μεριά του χώρου χρήστη)$

Συσκευές αποθήκευσης

- · Μόνιμα δεδομένα (persistent) (σε αντίθεση με μνήμη)
- Σκληροί Δίσκοι
 - Αργή πρόσβαση
 - Χρόνος αναζήτησης (seek time)
 - Solid State Disks (SSDs)
- · Γραμμικός χώρος
 - Προσπέλαση βάση τμημάτων (blocks)
 - → Όχι ιδανικός για χρήστη/εφαρμογές
 - Συστήματα Αρχείων (Ιεραρχική Δομή)
 - Βάσεις Δεδομένων (SQL)

Συστήματα αρχείων

Παράδειγμα

- · Κατάλογοι (Κόμβοι Ιεραρχίας)
- · Αρχεία (Δεδομένα)

Παράδειγμα:

Συστήματα αρχείων

Παράδειγμα

- · Κατάλογοι (Κόμβοι Ιεραρχίας)
- · Αρχεία (Δεδομένα)

Παράδειγμα:


```
#include <stdio.h>

int main(int argc, char **argv)
{
   printf("Hello World!\n");
   return 0;
}
```

Αρχεία

Αρχείο: Μόνιμος, συνεχής, λογικός χώρος διευθύνσεων.

- Μόνιμος: Παραμένει προβάσιμο και μετά τον τερματισμό του προγράμματος (ή το κλείσιμο του υπολογιστή)
- Λογικός: Ξεχωριστό από την φυσική απεικόνισή στην συσκευή αποθήκευσης
- Χώρος Διευθύνσεων: Διευθυνσιοδήτηση δεδομένων σε επίπεδο byte
- Συνεχής: Χωρίς κενά

"Everything is a file" – ρητό του Unix

Τύποι Αρχείων

Γενικά το τι δεδομένα περιέχει το αρχείο είναι θέμα του χρήστη (ή της εφαρμογής)

- Πρόγραμμα (executable)
- Κείμενο (text)
- Δυαδικά δεδομένα (binary)
- Απλές Δομές:
 - Γραμμές (πχ πρόγραμμα .c)
 - Πεδία σταθερού μεγέθους (πχ ακέραιοι)
 - Πεδία μεταβλητού μεγέθους (πχ συμβολοσειρές)
- Σύνθετες δομές (πχ αρχείο pdf)

Ιδιότητες Αρχείων

- Όνομα
- Αναγνωριστικό (εσωτερικό)
- Τύπος
- Θέση
- Μέγεθος
- Δικαιώματα (προστασία)
- Ώρα / Ημερομήνια πρόσβασης
- **.** . . .

Λειτουργίες Αρχείων

- Δημιουργία (create)
- Ανάγνωση (read)
- Εγγραφή (write)
- Επανατοποθέτηση (seek)
- Διαγραφή (delete)
- Μηδενισμός (truncate)
- Απεικόνιση στη μνήμη (mmap)

Ανοιχτά Αρχεία

Πρόβαση από εφαρμογή χώρου χρήστη:

- Άνοιγμα (open)
- Εγγραφή / Ανάγνωση / Επανατοποθέτηση (επηρεάζουν την τρέχουσα θέση)
- Κλείσιμο (close)

Πλήροφορίες που χρειάζεται να διατηρεί το ΛΣ:

Ανοιχτά Αρχεία

Πρόβαση από εφαρμογή χώρου χρήστη:

- Άνοιγμα (open)
- Εγγραφή / Ανάγνωση / Επανατοποθέτηση (επηρεάζουν την τρέχουσα θέση)
- Κλείσιμο (close)

Πλήροφορίες που χρειάζεται να διατηρεί το ΛΣ:

- Γίνακας ανοιχτών αρχείων (δομή περιγραφής αρχείου → File Control Block (FCB))
- ► FCB:
 - Αρχείο στο Σ.Α. (i-node στο UNIX)
 - τύπος αρχείου, μέγεθος αρχείου
 - δείκτες προς δεδομένα στο Σ.Α.
 - πληροφορίες ιδιοκτησίας, δικαιωμάτων
 - **.** . . .

Μέθοδοι Πρόσβασης

πώς αποθηκεύονται δεδομένα στα αρχεία;

- Ακολουθιακή (sequential)
- Άμεση (εγγραφές σταθερού μήκους)
- Έμμεση (π.χ. ευρετήρια / δείκτες)

Κατάλογοι

- Κατάλογος ενός επιπέδου
- Κατάλογος δύο επιπέδων
- Κατάλογοι δενδρικής δομής

Κόμβοι Ιεραρχίας – Σύνολα κόμβων που μπορούν να είναι:

- Αρχεία
- Κατάλογοι

Παράδειγμα Δενδρικής Δομής

Λειτουργίες Καταλόγων

- Αναζήτηση αρχείου (με βάση το όνομα)
- Δημιουργία αρχείου
- Διαγραφή αρχείου
- Μετονομασία αρχείου
- Διάσχιση ιεραρχίας

Μονοπάτια στο Σ.Α.

(τύπου Unix)

Μονοπάτι (path):

Συμβολοσειρα από αναγνωριστικά χωρισμένα από τον χαρακτήρα / πχ: /this/is/a/path/name Κανόνες:

- Το μονοπάτι είναι
 - 1. απόλυτο αν ξεκινάει με / αφετηρία είναι η αρχή της ιεραρχίας
 - 2. σχετικό (αν όχι) αφετηρία είναι ο τρέχων κατάλογος (ΤΚ)
- Το αναγνωριστικό:
 - . σηματοδοτεί τον ΤΚ
 - .. σηματοδοτεί τον πατέρα του ΤΚ

Σύνδεσμοι, δομή Γράφου

Σύνδεσμοι:

- στο αρχείο (hard links)
 - Ίδιο αρχείο (inode) με πολλαπλά ονόματα
 - reference count
- στο όνομα (soft links)
 - Επίλυση συνδέσμου με βάση το όνομα

Οδηγούν σε δομή γράφου:

- Ακυκλικός γράφος
- Γενικός γράφος (με κύκλους):
 - Κύκλοι οδηγούν σε προβλήματα
 - Πολλά ΛΣ αποτρέπουν τη δημιουργία συνδέσμων αρχείων (hard links) σε καταλόγους
 - Γενικά τα ΛΣ περιορίζουν τον αριθμό διάσχισης συμβολικών συνδέσμων (ELOOP).

Προσάρτηση ΣΑ

(mount)

Χρειάζονται:

- Σημείο προσάρτησης (mountpoint)
- Συσκευή αποθήκευσης (σκληρός δίσκος, flash)

Απομακρυσμένα ΣΑ

remote

- FTP / WWW
- Δικτυακά ΣΑ (Network FS) (πχ NFS, CIFS, AFS)
 - Οι πόροι βρίσκονται σε απομακρυσμένο υπολογιστή
 - Πρόσβαση σε αυτούς μέσω δικτύου (πχ TCP/IP)
 - Πελάτης-Εξυπηρετητής (client-server)
- Κατανεμημένα ΣΑ (Distributed FS) (πχ Lustre)
 - Οι πόροι βρίσκονται σε πολλαπλούς υπολογιστές
 - Στόχοι:
 - Προστασία πλεονασμός πληροφορίας (data redundancy)
 - Επίδοση παράλληλη πρόσβαση
 - Χειρισμός σφαλμάτων (πχ δικτυακό πρόβλημα)

Εφαρμογή Δικτυακών ΣΑ

Μηχανήματα εργαστηρίου:

- Χωρίς δίσκο
- Προσαρτήσεις:
 - κατάλογος ρίζας (/)
 - κατάλογος χρηστών (/home)
 - **•** . . .
- Κοινά αρχεία (de-duplication)

Προστασία

- Κατηγορίες:
 - Χρήστης
 - Ομάδες
 - Άλλοι
- Δικαιώματα:
 - Ανάγνωση
 - Εγγραφή
 - Εκτέλεση
 - Προσθήκη
 - Διαγραφή
 - Λίστα (για καταλόγους)
- Λίστα Ελέγχου πρόσβασης (ACL)

Υλοποίηση ΣΑ (από τη μεριά του πυρήνα)

Συστήματα Αρχείων

Πολλές υλοποιήσεις:

- UFS
- ► FAT16, FAT32
- NTFS
- ► EXT2, EXT3, EXT4
- ZFS
- BTRFS
- XFS, ReiserFS
- NFS, AFS
- **>** . . .

ΛΣ και Συσκευές Αποθήκευσης

- Συστήματα Αρχείων
 - Ιεραρχική δομή πάνω από γραμμικό χώρο (συσκευή)
- Κρυφή Μνήμη
 - Η πρόσβαση στο δίσκο είναι αργή
 - Περιοχές αρχείων στη μνήμη
- Χρονοδρομολόγηση Ε/Ε
 - Μεγάλος χρόνος αναζήτησης (seek)
 - Βελτιστοποίηση Ε/Ε αιτήσεων
- · Οδηγός συσκευής
 - Επικοινωνία με συσκευή
 - Εγγραφή τμημάτων (blocks)

Σύστημα Αρχείων (Filesystem)

Κρυφή Μνήμη (Page Cache)

Χρον/γηση Ε/Ε (I/O Scheduling)

Οδηγός Συσκευής (Device Driver)

Αρχεία

Δεδομένα περιεχόμενα των αρχείων

Μέτα-δεδομένα
 δομή αρχείων, περιεχόμενα καταλόγων, ιδιότητες, κλπ ...
 (ο,τι δεν είναι Δεδομένα)

Πληροφορίες που διατηρεί ένα ΣΑ

- Τμήμα ελέγχου εκκίνησης (boot control block)
- Τμήμα ελέγχου τόμου (volume control block)
- Δομή καταλόγων ιεραρχική δομή
- Τμήμα ελέγχου αρχείου (FCB) ένα ανά αρχείο

Οι πληροφορίες:

- Υπάρχουν στη δευτερέυουσα συσκευή αποθήκευσης (δίσκος)
- Αποθηκεύονται και στη μνήμη για βελτίωση της ταχύτητας (caching)

Στη μνήμη αποθηκεύονται:

- Πληροφορίες για την προσάρτηση
- Οικουμενικός πίνακας ανοιχτών αρχείων
- Πίνακας ανοιχτών αρχείων διεργασίας

FCB Πληροφορία ανά αρχείο

- Δικαιώματα
- Ημερομηνίες
- Χρήστης, Ομάδα, Λίστες πρόσβασης
- Μέγεθος
- Δεδομένα ή Τοποθεσία δεδομένων

Αναπαράσταση ΣΑ

Ιεραρχία

Αναπαράσταση ΣΑ

- Ιεραρχία
- ► FCBs (inodes)

Αναπαράσταση ΣΑ

- Ιεραρχία
- ► FCBs (inodes)
- hard links

Αναπαράσταση ΣΑ

- Ιεραρχία
- ► FCBs (inodes)
- hard links
- ▶ soft links

Λειτουργίες ΣΑ

Λειτουργίες ΣΑ

Λειτουργίες ΣΑ

Εικονικό Σύστημα Αρχείων

Virtual Filesystem – VFS

Δομές Linux VFS

- ▶ struct inode: Δομή που περιγράφει ένα αρχείο (FCB).
- ▶ struct file: Δομή που περιγράφει ένα ανοιχτό αρχείο.
- struct super_block: Δομή που περιγράφει ένα ΣΑ.
- struct dentry: Δομή που περιγράφει μια θέση στην ιεραρχία των ΣΑ.
- struct file_operations: Διαδικασίες για υλοποίηση λειτουργιών σε αρχεία (πχ read, write). Χρησιμοποιούνται για την υλοποίηση διαφορετικών ΣΑ.

Υλοποίηση καταλόγου

στη δευτερεύουσα συσκευή αποήκευσης

- Γραμμική λίστα
 - Γραμμική αναζήτηση
- Πίνακας κατακερματισμού
 - Χώρος
 - Συγκρούσεις
- B-trees ή παραλλαγές (πχ Btrfs, ReiserFS)
- Οι πληροφορίες αυτές αντιγράφονται στη μνήμη από το ΛΣ για καλύτερη επίδοση

Μέθοδοι Ανάθεσης

(allocation methods)

(πχ ο χρήστης ζήτησε να γραφούν 4096 bytes σε ένα αρχείο)

Μέθοδοι:

- Συνεχόμενη ανάθεση (contiguous allocation)
- Συνδεδεμένη ανάθεση (linked allocation)
- Ανάθεση με ευρετήριο (indexed allocation)

Συνεχόμενη ανάθεση

(contiguous allocation)

- Τα δεδομένα των αρχείων τοποθετούνται συνεχόμενα
- Αρχικό τμήμα και μέγεθος
- Ακολουθιακή (sequential) και Άμεση (random) πρόσβαση (access)
- Δύσκολη η ανάθεση χώρου
- Δύσκολη η επέκταση των αρχείων
- Εξωτερικός κατακερματισμός
- Γενικά δεν χρησιμοποιείται
- Επεκτάσεις (extents) NTFS, XFS, ext4, btrfs

Συνεχόμενη ανάθεση

παράδειγμα

Αρχείο	αρχή	μέγεθος
count	0	2
tr	14	3
mail	19	6
list	28	4
f	6	2

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31

Συνδεδεμένη ανάθεση

linked allocation

- Κάθε αρχείο είναι μια λίστα απο τμήματα (blocks).
- Το κάθε τμήμα περιλαμβάνει δείκτη στο επόμενο.
- Απλό, όχι σπατάλη χώρου
- Όχι άμεση πρόσβαση (random access)
- Αναζήτηση δίσκου (seek)
- χώρος για κάθε δείκτη
- Πίνακας ανάθεσης αρχείου (File Allocation Table – FAT)

pointer

Συνδεδεμένη ανάθεση

παράδειγμα

Αρχείο	αρχή	τέλος
pizza	9	25

block	pointer
9	16
16	1
1	10
10	25
25	-1

Ανάθεση με ευρετήριο

Όλοι οι δείκτες του αρχείου σε μια θέση (index block).

Σχήματα:

- Συνδεδεμένο σχήμα
- Πολυεπίπεδο ευρετήριο
- UFS: Συνδυασμένο σχήμα
 - 12 άμεσα τμήματα
 - 3 έμμεσα τμήματα:
 - απλό (single indirect block)
 - διπλό (double indirect block)
 - τριπλό (triple indirect block)

Ανάθεση με ευρετήριο

Παράδειγμα

Έμμεσα τμήματα

indirect blocks

Διαχείριση ελεύθερου χώρου

- Διάνυσμα δυαδικών ψηφίων (bitvector / bitmap)
 - 0 Το τμήμα χρησιμοποιείται
 - 1 Το τμήμα είναι ελέυθερο
- Συνδεδεμένη λίστα
 - Ομαδοποίηση (πολλαπλοί δείκτες)
 - Καταγραφή πλήθους (αρχή, μέγεθος)

Κρυφή μνήμη

Λειτουργίες:

- Τυπική Ε/Ε (πχ read()/write())
- Ε/Ε που αντιστοιχίζεται στη μήμη (πχ mmap())

Κρυφές μνήμες

- buffer cache → Τυπική Ε/Ε
- page cache → E/E μνήμης
 - Χρησιμοποιεί buffer cache
- Ενοποιημένη κρυφή μνήμη (page cache) (Linux)

ΣΑ με αρχεία καταγραφής journaled FS

- Ασύγχρονη λειτουργία, κρυφές μνήμες
- Προβλήματα από αναπάντεχο τερματισμό λειτουργίας (ΔΕΗ)
- Ανάνηψη, συνέπεια δεδομένων στον δίσκο
- Ημερολόγιο αλλαγών (journal)
- Πραγματοποιήση Αλλαγών
 - Καταγραφή αλλαγών στο journal
 - Πραγματοποίηση αλλαγών στις δομές του δίσκου
- ext3, ...