

BJT and BJT Circuit

Ve311 Electronic Circuits (Fall 2020)

Dr. Chang-Ching Tu

BJT (Before Contact)

Emitter

n-type

Base

p-type

Collector

n-type

E_v -----

$$E_c$$
 E_f

$$n \cong N_{d1} = n_i e^{\frac{q \phi_{n1}}{kT}}$$

$$p \cong \frac{n_i^2}{N_{d1}} = n_i e^{\frac{-q\phi_{n1}}{kT}}$$

$$p \cong N_a = n_i e^{\frac{q \phi_p}{kT}}$$

$$n \cong \frac{n_i^2}{N_2} = n_i e^{\frac{-q \phi_p}{kT}}$$

$$n \cong N_{d2} = n_i e^{\frac{q \phi_{n2}}{kT}}$$

$$p \cong \frac{n_i^2}{N_{d2}} = n_i e^{\frac{-q\phi_{n2}}{kT}}$$

$N_{d1} \gg N_{a}$

$V_{BE} > 0$ and $V_{CB} = 0$ (W_B long)

 $N_{d1} \gg N_a$

The n (electron) diffusion is much larger than the p (hole) diffusion at the Base-Emitter junction.

$V_{BE} > 0$ and $V_{CB} = 0$ (W_B very short)

 $N_{d1} \gg N_a$

The n (electron) diffusion is much larger than the p (hole) diffusion at the Base-Emitter junction.

W_B very short

Nearly all the n (electron) diffusion from the Base-Emitter junction pass through the Base, enter into the depletion region of the Base-Collector junction, and are swept to the Collector side by the built-in electric field.

Summary

$$I_{C} = I_{S} \left(e^{\frac{qV_{BE}}{kT}} - 1 \right)$$

$$lpha = rac{I_{
m C}}{I_{
m E}} \cong {f 1}$$

$$\beta = \frac{I_C}{I_R} = \frac{\alpha}{1 - \alpha}$$

Ideal case

$$I_{C} = I_{S} \left(e^{\frac{q V_{BE}}{kT}} - 1 \right)$$

$$\alpha = \frac{I_C}{I_E} = 1$$

$$\beta = \frac{I_C}{I_B} = \infty$$

 I_S is a constant in the spice model.

I_C vs V_{CE} and I_C vs V_{BE} in Forward-Active Region

I_C vs V_{CE} (not considering Early Effect)

At given V_{BE} , DC sweep V_{CE}

I_C vs V_{CE} (considering Early Effect)

At given V_{BE} , DC sweep V_{CE}

 V_A is a constant in the spice model.

At given V_{CE} , DC sweep V_{BE}

Small-Signal Model

Hybrid- π Model (how to get gm and r_{π})

$$V_{CE} \ge V_{BE}$$
 \Rightarrow Forward – Active

Small-signal circuit:

$$\begin{split} r_{\pi} &= \frac{dV_{BE}}{dI_{B}} = \frac{1}{\frac{dI_{C}}{\beta dV_{BE}}} = \frac{1}{\frac{gm}{\beta}} = \frac{\beta}{gm} \\ gm &= \frac{dI_{C}}{dV_{BE}} \cong \frac{I_{C}}{kT/q} \end{split}$$

Hybrid- π Model (how to get r_o)

Complete circuit:

$$V_{CE} \ge V_{BE}$$
 \Rightarrow Forward – Active

$$I_{CE} + \upsilon_{CE}$$

$$I_{C} = I_{S} \left(e^{\frac{qV_{BE}}{kT}} - 1 \right) \left(1 + \frac{V_{CE}}{V_{A}} \right)$$

Small-signal circuit:

$$\begin{split} r_{\pi} &= \frac{1}{\frac{dI_B}{dV_{BE}}} = \frac{1}{\frac{dI_C}{\beta dV_{BE}}} = \frac{1}{\frac{gm}{\beta}} = \frac{\beta}{gm} \\ gm &= \frac{dI_C}{dV_{BE}} \cong \frac{I_C}{kT/q} \\ r_o &= \frac{1}{\frac{dI_C}{MC}} \cong \frac{V_A}{I_C} \end{split}$$

Common-Emitter Amplifier

Common-Emitter Amplifier $(V_A = \infty)$

DC Analysis

$$\begin{aligned} V_{OUT} &= V_{CC} - I_C R_C \\ &= V_{CC} - \frac{AqD_n n_i^2}{N_a W_B} \left(e^{\frac{qV_{BE}}{kT}} - 1 \right) R_C \end{aligned}$$

$$A_{v} = \frac{dV_{OUT}}{dV_{BE}} \cong -\frac{I_{C}}{kT/q}R_{C} = -gmR_{C}$$

Common-Emitter Amplifier $(V_A = \infty)$

Small-Signal Analysis

$$A_{v} = \frac{v_{out}}{v_{be}} = -gm(R_{C} \parallel r_{o}) = -gmR_{C} \quad \text{(since } r_{o} = \infty\text{)}$$

Common-Emitter Amplifier $(V_A = a finite value)^{16}$

DC Analysis

$$V_{OUT} = V_{CC} - I_C R_C = V_{CC} - I_S \left(e^{\frac{qV_{BE}}{kT}} - 1 \right) \left(1 + \frac{V_{OUT}}{V_A} \right) R_C$$

$$\frac{dV_{OUT}}{dV_{BE}} = -\frac{q}{kT} \frac{I_S e^{\frac{qV_{BE}}{kT}} \left(1 + \frac{V_{OUT}}{V_A}\right)}{1 + \frac{V_{OUT}}{V_A}} R_C - \frac{I_S \left(e^{\frac{qV_{BE}}{kT}} - 1\right)}{1 + \frac{1}{V_A} \frac{dV_{OUT}}{dV_{BE}}} R_C \approx -gmR_C - \frac{1}{r_o} \frac{dV_{OUT}}{dV_{BE}} R_C$$

$$A_{v} = \frac{dV_{OUT}}{dV_{BE}} \cong -gm(R_{C} \parallel r_{o})$$

Common-Emitter Amplifier $(V_A = a finite value)^{17}$

• Small-Signal Analysis

BJT Structure and Pspice Model

npn BJT Cross Section

npn BJT Pspice Model

.model Qbreakn NPN IS=1e-18 BF=100 VAF=100

$$I_{C} = IS \left(e^{\frac{qV_{BE}}{kT}} - 1\right) \left(1 + \frac{V_{CE}}{VAF}\right)$$

$$BF = \frac{I_{C}}{I_{B}} \qquad I_{E} = I_{C} + I_{B}$$

$$gm \cong \frac{I_C}{kT/q}$$
 $r_{\pi} = \frac{BF}{gm}$ $r_o \cong \frac{VAF}{I_C}$