

Pressure Detection Project

Mastering Embedded Systems Diploma

www.learn-in-depth.com

First Term (Final Project 1)

Eng. Amr Esaam Mohammed Zidan

My Profile: https://www.learn-in-depth.com/online-diploma/amresaam1342000%40gmail.com

Contents

1.Case Study	2
Requirements	2
•Assumptions	2
Versioning	2
2.Method	3
Software Development Lifecycle and Software Testing Lifecycle	3
3.System Requirements	4
Requirement model	4
4.Design Space Exploration	4
5.System Analysis	6
Use Case Diagram	6
Activity Diagram	7
Sequence Diagram	8
6.System Design	9
Block Diagrams	9
State Machine Diagrams	10
Pressure Sensor	10
Main Controller	11
Alarm Monitor	12
Alarm	13
•C Codes	14
Pressure Sensor	14
Main Controller	15
Alarm Monitor	16
Alarm	17
Main	18
Code Building Tools	19
Startup code	19
Linker Script	19
Makefile	20
Simulation	21
Pressure equals or larger than threshold	21
Pressure less than threshold	22
Software Analysis	23
.map file	23

Symbol Table	23
Section Table	24

1. Case Study

• Requirements

The client requires a system with the following specifications:

- 1. Pressure controller informing the cabin crew when pressure exceeds 20 bars.
- 2. The informing method is an alarm operating for 60 seconds.
- 3. Keep track of the measured values (optional).

Assumptions

The following assumptions are made:

- 1. No setup or shut down for the microcontroller.
- 2. No maintenance for the microcontroller.
- 3. Neither the pressure sensor nor the alarm fails
- 4. No power cuts for the microcontroller

Versioning

The possibility of storing pressure sensor readings might be included in a future version.

2. Method

Software Development Lifecycle and Software Testing Lifecycle

The (SDLC) and (STLC) will be approached based on the V-Model.

Requirements Gathering and Analysis: The first phase of the V-Model is the requirements gathering and analysis phase, where the customer's requirements for the software are gathered and analyzed to determine the scope of the project.

Design: In the design phase, the software architecture and design are developed, including the high-level design and detailed design.

Implementation: In the implementation phase, the software is actually built based on the design.

Testing: In the testing phase, the software is tested to ensure that it meets the customer's requirements and is of high quality.

Deployment: In the deployment phase, the software is deployed and put into use.

Maintenance: In the maintenance phase, the software is maintained to ensure that it continues to meet the customer's needs and expectations.

The V-Model is often used in safety-critical systems, such as aerospace and defense systems, because of its emphasis on thorough testing and its ability to clearly define the steps involved in the software development process.

3. System Requirements

Requirement model

4. Design Space Exploration

Microcontroller: one stm32f103c8t6 SoC will be used as it meets all the needed technical requirements such as: suitable processor, acceptable flash memory size and small size as well as being cost efficient.

Overview: The STM32F103C8T6 is a medium density performance line, ARM Cortex-M3 32bit microcontroller in 48 pin LQFP package. It incorporates high performance RISC core with 72MHz operating frequency, high speed embedded memories, extensive range of enhanced I/Os and peripherals connected to two APB buses. The STM32F103C8T6 features 12bit ADC, timers, PWM timer, standard and advanced communication interfaces. A comprehensive set of power saving mode allows the design of low power applications.

Features:

Operating voltage range from 2V to 3.6V

64Kbytes of flash memory

20Kbytes of SRAM

CRC calculation unit, 96bit unique ID

Two 12bit, 1µs A/D converter (up to 10 channels)

7 channel DMA controller, 3 general purpose timer and 1 advanced control timer

37 fast I/O ports

Serial wire debug (SWD) and JTAG interfaces

Two SPI, two I2C, three USART, one USB and one CAN interfaces

Ambient operating temperature range from -40°C to 85°C

5. System Analysis

• Use Case Diagram

• Sequence Diagram

6. System Design

• Block Diagrams

• State Machine Diagrams

Pressure Sensor

• C Codes

Pressure Sensor

.c file

```
## pressure_sensor_h"
#include "pressure_sensor.h"
#include "driver.h"

#include "driver.h"

## pressure_vales;

//global variables to the block

## static int pressure_vales;

//state pointer (ptr to function)

void (*pPressure_sensor_State)();

//init pressure_sensor driver

void pressure_sensor_init()

//init pressure_sensor_init()

//init pressure_sensor_init()

//init pressure_sensor_init()

//init pressure_sensor_init()

// //init pressure_sensor_init()

//init pressure_sensor_init()
```

```
#indef PRESSURE_SENSOR_H

#include "state.h"

#include "state.h"

#include "states

#onum (

#opensure_sensor_pull_time 100

#include "states

#onum (

#opensure_sensor_waiting_state)

#opensure_sensor_state_id;

#include "states

#include "state.h"

#include "state
```

```
p. yourses / Embedded Systems Uploma / Assignments / First ferm Projects / Project / 2 Code / C
```

```
Courses > Embedded systems Diploma > Assignments > First Term Projects > Project 1 > Code > C mich > ...

# dring MINI_CONTROLLER_H

# minclude "strate.h"

//define states

enum(

MC_pressure_reading_state

//states

STATE_DEFINE(MC_pressure_reading);

# endif

# endif
```

```
D. > Courses > Embedded Systems Diploma > Assignments > First Term Projects > Project 1 > Code > C alarm_monitor.c > ...

#include "alarm_monitor.h"

// state pointer (ptr to function)

void ("palarm_monitor_State)();

// high pressure detected function body
int high_pressure_detected()

palarm_monitor_State=alarm_monitor_on;

// waiting state

STATE_DEFINE(alarm_monitor_state_id=alarm_monitor_off_state;

// state action

set_alarm_off();

STATE_DEFINE(alarm_monitor_on)

// state id

// state_id

// state_id
```

```
#include "alarm.h"
#include "driver.h"

//global variables to the block ---> none

//state pointer (ptr to function)
void (*pAlarm_State)();

//init alarm driver
void alarm_init()
{
    //init
}

//alarm on function body
void set_alarm_on()
{
    Set_Alarm_actuator(1);
}

//alarm off function body
void set_alarm_off()
{
    Set_Alarm_actuator(0);
}
```

```
#infindef ALARM_H_
#define ALARM_H_
#include "state.h"

//define states
enum {
    alarm_waiting_state,
    alarm_on_state,
    alarm_off_state

} alarm_state_id;

//states

**STATE_DEFINE(alarm_waiting);

**STATE_DEFINE(alarm_on);

**STATE_DEFINE(alarm_off);

**Your d_glarm_init();

##endif

#endif
```

Code Building Tools

Startup code

```
Grees > Embedded Systems Diploma > Assignments > First Term Projects > Project 1 > Code > 400 startup.s
/* ARM Conex M3 Startup code
By: Eng. Amn Zidan */
/* SRAM from 0x20000000 */
section .vectors
.word 0x20001000 /* stack top address*/
.word _reset /*1 reset*/
.word _vector_handler /*2 !Wil"/
.word _vector_handler /*3 !Hard Fault*/
.word _vector_handler /*5 !Bus Fault*/
.word _vector_handler /*6 !Usage Fault*/
.word _vector_handler /*6 !Usage Fault*/
.word _vector_handler /*7 Reserved*/
.word _vector_handler /*9 Reserved*/
.word _vector_handler /*10 Reserved*/
.word _vector_handler /*11 SV Call*/
.word _vector_handler /*12 !Debug Reserved*/
.word _vector_handler /*13 Reserved*/
.word _vector_handler /*15 SysTick*/
.word _vector_handler /*15 SysTick*/
.word _vector_handler /*16 TRQ0*/
.word _vector_handler /*17 TRQ1*/
.word _vector_handler /*18 TRQ2*/
.word _vector_handler /*19 ...*/
   .section .vectors
.word 0x20001000
      .thumb func
      vector handler:
```

Linker Script

```
SECTIONS
    .text :
   {
    *(.vectors*)
     *(.text*)
     *(.rodata)
   }> flash
   {
| *(.data*)
   }> sram
```

Makefile

Simulation

Pressure equals or larger than threshold

.map file

```
Attributes
                 Origin
                                     Length
flash
                 0×08000000
                                     0x00020000
                 0x20000000
                                     0x00005000
sram
                                                         xrw
                                     axfffffff
                 axaaaaaaaa
Linker script and memory map
.text
                0x08000000
                                 0x3d4
 *(.vectors*)
.vectors
                0x08000000
                                  0x50 startup.o
 *(.text*)
                                  0x9c alarm.o
 .text
                0x08000050
                0x08000050
                                           alarm_init
                0x0800005c
                                           set_alarm_on
                                           set_alarm_off
                0x0800006c
                0x0800007c
                                           alarm_waiting
                0x08000094
                                           alarm_on
                0х080000с0
                                           alarm off
 .text
                0x080000ec
                                  0x6c alarm_monitor.o
                0x080000ec
                                           high_pressure_detected
                                           alarm_monitor_off
                0x0800010c
                0x08000124
                                           alarm_monitor_on
                0x08000158
 .text
                                 0x10c driver.o
                0x08000158
                                           Delay
                0x0800017c
                                           getPressureVal
                0x08000194
                                           Set_Alarm_actuator
                                           GPIO_INITIALIZATION
                0x080001e4
 .text
                0x08000264
                                  0x98 main.o
```

Symbol Table

```
$ arm-none-eabi-nm.exe High_Pressure_Detection.elf
080003cc t _reset
080003d2 t _vector_handler
08000050 T alarm_init
0800010c T alarm_monitor_off
08000124 T alarm monitor on
20000014 B alarm_monitor_state_id
080000c0 T alarm_off
08000094 T alarm_on
2000000c B alarm_state_id
0800007c T alarm_waiting
08000158 T Delay
0800017c T getPressureVal
080001e4 T GPIO_INITIALIZATION
080000ec T high_pressure_detected
080002c0 T main
0800031c T MC_pressure_reading
20000016 B MC_state
20000010 B pAlarm_monitor_State
20000008 B pAlarm_State
20000018 B pMain_controller_State
2000001c B pPressure_sensor_State
08000348 T pressure_sensor_init
08000354 T pressure_sensor_reading
20000015 B pressure_sensor_state_id
0800039c T pressure_sensor_waiting
20000004 b pressure_val
20000000 b pressure_val
080002fc T send_pressure_val
08000194 T Set_Alarm_actuator
0800006c T set_alarm_off
0800005c T set_alarm_on
08000264 T setup
```

Section Table

Sections:						
Idx Name	Size	VMA	LMA	File off	Algn	
0 .text	000003d4	08000000	08000000	0008000	2**2	
	CONTENTS, ALLOC, LOAD, READONLY, CODE					
1 .bss	00000020	20000000	20000000	00010000	2**2	
	ALLOC					
<pre>2 .debug_info</pre>	0000076d	00000000	00000000	000083d4	2**0	
	CONTENTS,	READONLY,	DEBUGGING			
3 .debug_abbrev	000003d1	00000000	00000000	00008b41	2**0	
	CONTENTS,	READONLY,	DEBUGGING			
<pre>4 .debug_loc</pre>	00000394	00000000	00000000	00008f12	2**0	
	CONTENTS,	READONLY,	DEBUGGING			
5 .debug_arange	s 000000e0	00000000	00000000	000092a8	2**3	
	CONTENTS,	READONLY,	DEBUGGING			
<pre>6 .debug_line</pre>	000002c2	00000000	00000000	00009388	2**0	
	CONTENTS,	READONLY,	DEBUGGING			
<pre>7 .debug_str</pre>	0000037c	00000000	00000000	0000964a	2**0	
	CONTENTS,	READONLY,	DEBUGGING			
8 .comment	00000011	00000000	00000000	000099c6	2**0	
	CONTENTS,	READONLY				
9 .ARM.attributes 00000031 00000000 00000000 000099d7 2**0						
	CONTENTS,	READONLY				
<pre>10 .debug_frame</pre>	00000270	00000000	00000000	00009a08	2**2	
	CONTENTS,	READONLY,	DEBUGGING			