Interim Report

Team number: ##

Team members: 000, 000, 000

Team number					
Team					
members					
Check competitions and tracks where you are participating					
Competition 1		Competition 2			
Track 1:	Track 2:	Track 3:	Conversational		
Speech	Face	Speech + Face	agents		
0	X	Х	X		

F Fill in tables on the following pages according to competitions and tracks where you are participating.

Competition 1 – Track 1: Speech emotion recognition

Classification methods used to predict speech emotion (in detail)

```
Our team takes a deep learning approach to predict speech emotion.
```

Classification algorithm: Mini-batch stochastic gradient descent. Adam optimization.

```
We are using a deep neural network whose architecture is:
model = Sequential()
model.add(Conv1D(256, 8, padding='same',input_shape=(X_train.shape[1],1))) #1
model.add(Activation('relu'))
model.add(Conv1D(256, 8, padding='same')) #2
model.add(BatchNormalization())
model.add(Activation('relu'))
model.add(Dropout(0.25))
model.add(MaxPooling1D(pool_size=(8)))
model.add(Conv1D(128, 8, padding='same')) #3
model.add(Activation('relu'))
model.add(Conv1D(128, 8, padding='same')) #4
model.add(Activation('relu'))
model.add(Conv1D(128, 8, padding='same')) #5
model.add(Activation('relu'))
model.add(Conv1D(128, 8, padding='same')) #6
model.add(BatchNormalization())
model.add(Activation('relu'))
model.add(Dropout(0.25))
model.add(MaxPooling1D(pool_size=(8)))
model.add(Conv1D(64, 8, padding='same')) #7
model.add(Activation('relu'))
model.add(Conv1D(64, 8, padding='same')) #8
model.add(Activation('relu'))
model.add(Flatten())
model.add(Dense(target class)) #9
model.add(Activation('softmax'))
opt = keras.optimizers.SGD(Ir=0.0001, momentum=0.0, decay=0.0, nesterov=False)
```

Datasets used (in brief)

Provided training sets, The Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS)

Describe your pre-processing procedure (in brief).

We used XXX software to extract audios from mp4 videos.

Programming languages, libraries, and frameworks used (in brief)

Python3. Tensorflow.

Opensource used

- https://github.com/MITESHPUTHRANNEU/Speech-Emotion-Analyzer
- ...

Describe your plans to be done by the final day of Hackathon (in detail).

(What kinds of methods, datasets, and opensource codes to be used)

Competition 1 – Track 2: Face emotion recognition
Classification methods used to predict speech emotion (in detail)
Datasets used (in brief)
Describe your pre-processing procedure (in brief).
Programming languages, libraries, and frameworks used (in brief)
Opensource used
Describe your plans to be done by the final day of Hackathon (in detail).

QIA Software Development Hackathon 2019

Competition 1 – Track 3: Multi-modal emotion recognit	tion
Classification methods used to predict speech emotion (in detail)	
Datasets used (in brief)	
Describe your pre-processing procedure (in brief).	
Programming languages, libraries, and frameworks used (in brief)	
Opensource used	
Describe your plans to be done by the final day of Hackathon (in detail).	

Competition 2 – Emotional conversational agent	
Methods used to build emotional chit-chat bot (in detail)	
Datasets used (in brief)	
Describe your pre-processing procedure (in brief).	
Programming languages, libraries, and frameworks used (in brief)	
Opensource used	
Describe your plans to be done by the final day of Hackathon (in detail).	