$\tau_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{2ik}{t_1 + 2k^2t_1}$	$\frac{i\sqrt{2}k(2k^2r_1+t_1)}{(t_1+2k^2t_1)^2}$	0	$\frac{2 k^2 (2 k^2 r_1 + t_1)}{(t_1 + 2 k^2 t_1)^2}$
$\tau_{1^{-}\alpha}^{\#1}$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{\sqrt{2}}{t_1 + 2k^2t_1}$	$\frac{2k^2r_1+t_1}{(t_1+2k^2t_1)^2}$	0	$-\frac{i\sqrt{2}k(2k^2r_1+t_1)}{(t_1+2k^2t_1)^2}$
$\sigma_{1}^{\#1}{}_{\alpha}$	0	0	0	0	$\frac{\sqrt{2}}{t_1 + 2 k^2 t_1}$	0	$-\frac{2ik}{t_1+2k^2t_1}$
$\tau_1^{\#1}_+ \alpha_\beta$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$\frac{ik}{(1+k^2)^2t_1}$	$\frac{k^2}{(1+k^2)^2t_1}$	0	0	0	0
$\sigma_1^{\#2}{}_+\alpha\beta$	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{1}{(1+k^2)^2 t_1}$	$-\frac{ik}{(1+k^2)^2t_1}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{+}\alpha\beta$	0	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{i\sqrt{2}k}{t_1+k^2t_1}$	0	0	0	0
	$\sigma_{1}^{\#1} + \alpha^{eta}$	$\sigma_{1}^{#2} + \alpha \beta$	$\tau_1^{\#1} + \alpha \beta$	$\sigma_{1^{\bar{-}}}^{\#_1} +^{\alpha}$	$\sigma_{1}^{\#2} +^{lpha}$	$\tau_{1}^{\#1} + ^{\alpha}$	$\tau_{1}^{\#2} + \alpha$

Lagrangian density	$-t_1 \omega_{,\alpha}^{\alpha\prime} \omega_{\kappa\alpha}^{\kappa} - t_1 \omega_{,\kappa}^{\kappa\lambda} \omega_{\kappa\lambda}^{\prime} + 2 r_1 \partial_i \omega^{\kappa\lambda}_{\kappa} \partial^i \omega_{\lambda}^{\alpha} -$	$\frac{2}{3}r_{1}\partial^{\beta}\omega^{\theta\alpha}_{\alpha}\partial_{\theta}\omega_{\alpha\beta}^{} - \frac{2}{3}r_{1}\partial_{\theta}\omega_{\alpha\beta}^{}\partial_{\kappa}\omega^{\alpha\beta\theta} + \frac{2}{3}r_{1}\partial_{\theta}\omega_{\alpha\beta}^{}\partial_{\kappa}\omega^{\theta\alpha\beta} +$	$2r_1\partial_\alpha\omega_\lambda^{\ \alpha}_{\ \ \theta}\partial_\kappa\omega^{\theta\kappa\lambda} - 2r_1\partial_\theta\omega_\lambda^{\ \alpha}_{\ \alpha}\partial_\kappa\omega^{\theta\kappa\lambda} + 2r_1\partial_\alpha\omega_\lambda^{\ \alpha}_{\ \ \theta}\partial_\kappa\omega^{\kappa\lambda\theta} -$	$4 r_1 \partial_\theta \omega_\lambda^{\ \alpha} \partial_\kappa \omega^{\kappa \lambda \theta} - \frac{1}{2} t_1 \partial^\alpha f_{\theta \kappa} \partial^\kappa f_{\alpha}^{\ \theta} - \frac{1}{2} t_1 \partial^\alpha f_{\kappa \theta} \partial^\kappa f_{\alpha}^{\ \theta} -$	$rac{1}{2}t_1\partial^{lpha}f^{\lambda}_{\kappa}\partial^{\kappa}f_{\lambda}+t_1\omega_{\kappa\alpha}^{\alpha}\partial^{\kappa}f'_{\prime}+t_1\omega_{\kappa\lambda}^{\lambda}\partial^{\kappa}f'_{\prime}+2t_1\partial^{lpha}f_{\kappa\alpha}\partial^{\kappa}f'_{\prime}-$	$t_1 \partial_{\kappa} f^{\lambda}_{\lambda} \partial^{\kappa} f'_{\mu} + 2 t_1 \omega_{\kappa \theta} \partial^{\kappa} f'^{\theta} - t_1 \omega_{\mu}^{\alpha} \partial^{\kappa} f'_{\kappa} - t_1 \omega_{\mu}^{\lambda} \partial^{\kappa} f'_{\kappa} +$	$\frac{1}{2}t_1\partial^{\alpha}f^{\lambda}_{\kappa}\partial^{\kappa}f_{\lambda\alpha} + \frac{1}{2}t_1\partial_{\kappa}f_{\beta}^{\lambda}\partial^{\kappa}f_{\lambda}^{\theta} + \frac{1}{2}t_1\partial_{\kappa}f^{\lambda}_{\theta}\partial^{\kappa}f_{\lambda}^{\theta} - t_1\partial^{\alpha}f^{\lambda}_{\alpha}\partial^{\kappa}f_{\lambda\kappa} +$	$\frac{2}{3}r_{1}\partial_{\kappa}\omega^{\alpha\beta\theta}\partial^{\kappa}\omega_{\alpha\beta\theta} - \frac{2}{3}r_{1}\partial_{\kappa}\omega^{\theta\alpha\beta}\partial^{\kappa}\omega_{\alpha\beta\theta} + \frac{2}{3}r_{1}\partial^{\beta}\omega_{\alpha}^{\ \alpha\lambda}\partial_{\lambda}\omega_{\alpha\beta}^{\ \prime} -$	$rac{8}{3}r_1\partial^{eta}\omega_{\lambda}^{\ \lambdalpha}\partial_{\lambda}\omega_{lphaeta}^{\ \prime}$ - $2r_1\partial_{lpha}\omega_{\lambda}^{\ lpha}\partial^{\lambda}\omega^{eta\kappa}_{\ \ \kappa}+2r_1\partial_{eta}\omega_{\lambda}^{\ lpha}\partial^{\lambda}\omega^{eta\kappa}_{\ \ \kappa}$	Added source term: $f^{\alpha\beta} \tau_{\alpha\beta} + \omega^{\alpha\beta\chi} \sigma_{\alpha\beta\chi}$
<i>r</i> ₁ <	Un:	(N)								

	$\sigma_{2^{+}\alpha\beta}^{\#1}$	$ au_2^{\#1}_{lphaeta}$	$\sigma_{2}^{\#1}{}_{\alpha\beta\chi}$
$\sigma_{2}^{\#1} \dagger^{lphaeta}$		$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0
$ au_2^{\#1} \dagger^{lphaeta}$	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0
$\sigma_{2}^{\sharp 1} \dagger^{lphaeta\chi}$	0	0	$\frac{2}{2 k^2 r_1 + t_1}$

	$f_{1}^{\#2}$	0	0	0	$i k t_1$	0	0	0
	$f_{1^{-}\alpha}^{\#1}$	0	0	0	0	0	0	0
	$\omega_{1^{-}}^{\#2}{}_{\alpha}$	0	0	0	$\frac{t_1}{\sqrt{2}}$	0	0	0
	$\omega_{1^{\bar{-}}}^{\#1}{}_{\alpha}$	0	0	0	$-k^2 r_1 - \frac{t_1}{2}$	$\frac{t_1}{\sqrt{2}}$	0	$-\bar{\imath}kt_1$
:	$f_{1}^{\#1}{}_{\!$	$-\frac{ikt_1}{\sqrt{2}}$	0	0	0	0	0	0
!	$\omega_1^{\#2}$	$-\frac{t_1}{\sqrt{2}}$	0	0	0	0	0	0
	$\omega_1^{\#1}{}_+\alpha\beta$	- <u>t1</u>	$-\frac{t_1}{\sqrt{2}}$	$\frac{ikt_1}{\sqrt{2}}$	0	0	0	0
		$\omega_1^{\#1} + \alpha^{\beta}$	$\omega_1^{\#2} + \alpha^{eta}$	$f_{1+}^{\#1} \dagger^{\alpha\beta}$	$\omega_{1}^{\#1} +^{\alpha}$	$\omega_1^{\#2} +^{\alpha}$	$f_{1}^{\#1} +^{\alpha}$	$f_{1}^{\#2} \dagger^{\alpha}$

	$\omega_{0^+}^{\sharp 1}$	$f_{0^{+}}^{#1}$	$f_{0}^{#2}$	$\omega_0^{\#1}$
$\omega_{0}^{\#1}$ †	-t ₁	$i \sqrt{2} kt_1$	0	0
$f_{0}^{#1}$ †	$-i \sqrt{2} kt_1$	$-2 k^2 t_1$	0	0
$f_{0}^{#2}$ †	0	0	0	0
$\omega_0^{\#1}$ †	0	0	0	-t ₁

Total #:

			$\omega_{2}^{\#1}{}_{\alpha\beta}$	$f_{2+\alpha\beta}^{\#1}$	$\omega_2^{\#}$	1 αβχ
		$\omega_{2}^{\#1}\dagger^{\alpha\beta}$	<u>t</u> 1 2	$-\frac{i k t_1}{\sqrt{2}}$		0
Source constraints		$f_{2+}^{#1} \dagger^{\alpha\beta}$	γ∠	$k^2 t_1$		0
SO(3) irreps	#	$\omega_2^{\#_1} \dagger^{\alpha\beta\chi}$	0	0	$k^2 r_1$	$_{1}+\frac{t_{1}}{2}$
$\tau_{0^{+}}^{\#2} == 0$	1					
$\tau_{0+}^{\#1} - 2 \bar{\imath} k \sigma_{0+}^{\#1} == 0$	1			$\sigma_{0}^{#1}$	<u>.</u>	τ
$\tau_1^{\#2\alpha} + 2 i k \sigma_1^{\#2\alpha} == 0$	3		$\sigma_{0^{+}}^{\#1}$ †	$-\frac{1}{(1+2k^2)^2}$	1,2 ,1	<u>i</u> (1+2
$\tau_1^{\#_1\alpha} == 0$	3					
$\tau_{1+}^{\#1}{}^{\alpha\beta} + i k \sigma_{1+}^{\#2}{}^{\alpha\beta} == 0$	3			$(1+2k^2)$	$(t_1)^2 t_1$	(1+2
$\tau_{2+}^{\#1\alpha\beta} - 2 i k \sigma_{2+}^{\#1\alpha\beta} == 0$	5		$\tau_{0}^{\#2}$ †	0		
Total #:	16		$\sigma_{0}^{\#1}$ †	0		

_	$\sigma_0^{\#1}$	$\tau_{0}^{\#1}$	$ au_{0}^{\#2}$	$\sigma_0^{\#1}$
$\sigma_{0}^{\#1}$ †	$-\frac{1}{(1+2k^2)^2t_1}$	$\frac{i\sqrt{2}k}{(1+2k^2)^2t_1}$	0	0
$\tau_{0}^{\#1}$ †	$-\frac{i\sqrt{2} k}{(1+2k^2)^2 t_1}$	$-\frac{2k^2}{(1+2k^2)^2t_1}$	0	0
$ au_{0}^{\#2} \dagger$	0	0	0	0
$\sigma_0^{\sharp 1}$ †	0	0	0	$-\frac{1}{t_1}$

(No massless particles)