Pattern Recognition and Machine Learning

Kurt F. Wendt Library

For more information about this document contact the Reference Desk at Wendt Library (askwendt@engr.wisc.edu) or 262-0696

Christopher M. Bishop F.R.Eng. Assistant Director Microsoft Research Ltd Cambridge CB3 0FB, U.K. cmbishop@microsoft.com http://research.microsoft.com/~cmbishop

Series Editors
Michael Jordan
Department of Computer
Science and Department
of Statistics
University of California,
Berkeley
Berkeley, CA 94720
USA

Professor Jon Kleinberg Department of Computer Science Cornell University Ithaca, NY 14853 USA Bernhard Schölkopf Max Planck Institute for Biological Cybernetics Spemannstrasse 38 72076 Tübingen Germany

Library of Congress Control Number: 2006922522

ISBN-10: 0-387-31073-8 ISBN-13: 978-0387-31073-2

Printed on acid-free paper.

© 2006 Springer Science+Business Media, LLC

All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

Printed in Singapore. (KYO)

98765432

springer.com

General Library System
University of Wisconsin - Madison
728 State Street
Madison, WI 53706-1494
U.S.A.

Contents

Pr	eface		vii	
Mathematical notation x				
Co	ontent	s	xiii	
1	Intr	oduction	1	
	1.1	Example: Polynomial Curve Fitting	4	
	1.2	Probability Theory		
		1.2.1 Probability densities		
		1.2.2 Expectations and covariances	19	
		1.2.3 Bayesian probabilities	21	
		1.2.4 The Gaussian distribution	24	
		1.2.5 Curve fitting re-visited	28	
		1.2.6 Bayesian curve fitting	30	
	1.3	Model Selection	32	
	1.4	The Curse of Dimensionality	33	
	1.5	Decision Theory	38	
		1.5.1 Minimizing the misclassification rate	39	
		1.5.2 Minimizing the expected loss	41	
		1.5.3 The reject option	42	
		1.5.4 Inference and decision	42	
		1.5.5 Loss functions for regression	46	
	1.6	Information Theory		
		1.6.1 Relative entropy and mutual information	55	
	Ever	rises	58	

xiv CONTENTS

2	Pro	bability	Distributions 67
	2.1	Binar	y Variables
		2.1.1	The beta distribution
	2.2	Multi	nomial Variables
		2.2.1	The Dirichlet distribution
	2.3	The C	Gaussian Distribution
		2.3.1	Conditional Gaussian distributions 85
		2.3.2	Marginal Gaussian distributions
		2.3.3	Bayes' theorem for Gaussian variables
		2.3.4	Maximum likelihood for the Gaussian
		2.3.5	Sequential estimation
		2.3.6	Bayesian inference for the Gaussian
		2.3.7	Student's t-distribution
		2.3.8	Periodic variables
		2.3.9	Mixtures of Gaussians
	2.4	The E	Exponential Family
		2.4.1	Maximum likelihood and sufficient statistics
		2.4.2	Conjugate priors
		2.4.3	Noninformative priors
	2.5	Nonp	arametric Methods
		2.5.1	Kernel density estimators
		2.5.2	Nearest-neighbour methods
	Exer	cises	
3	Lin	ear Mo	dels for Regression 137
	3.1		r Basis Function Models
	J.1	3.1.1	Maximum likelihood and least squares
		3.1.2	Geometry of least squares
		3.1.3	Sequential learning
		3.1.4	Regularized least squares
		3.1.5	Multiple outputs
	3.2		Bias-Variance Decomposition
	3.3		sian Linear Regression
	5.5	3.3.1	Parameter distribution
		3.3.2	Predictive distribution
		3.3.3	Equivalent kernel
	3.4		sian Model Comparison
	3.5		Evidence Approximation
	5.5	3.5.1	Evaluation of the evidence function
		3.5.2	Maximizing the evidence function
		3.5.3	Effective number of parameters
	3.6		ations of Fixed Basis Functions
		cicae	ations of Fixed Dasis Functions

			CONTENTS	χV
4	Lin	ear Mo	odels for Classification	179
•	4.1		riminant Functions	
	7.1	4.1.1	Two classes	
		4.1.2	Multiple classes	
		4.1.3	Least squares for classification	
		4.1.4	Fisher's linear discriminant	
		4.1.5	Relation to least squares	
		4.1.6	Fisher's discriminant for multiple classes	
		4.1.7	The perceptron algorithm	
	4.2		abilistic Generative Models	
	7.2	4.2.1	Continuous inputs	
		4.2.2	Maximum likelihood solution	
		4.2.3	Discrete features	
		4.2.4	Exponential family	
	4.3		abilistic Discriminative Models	
	7.5	4.3.1	Fixed basis functions	
		4.3.2	Logistic regression	
		4.3.3	Iterative reweighted least squares	
		4.3.4	Multiclass logistic regression	
		4.3.5	Probit regression	
		4.3.6	Canonical link functions	
	4.4		Laplace Approximation	
	7.7	4.4.1	Model comparison and BIC	
	4.5		esian Logistic Regression	
	7.5	4.5.1	Laplace approximation	
		4.5.2	Predictive distribution	
	Eve	cises		
5			etworks	225
	5.1		-forward Network Functions	
		5.1.1	Weight-space symmetries	231
	5.2		ork Training	
		5.2.1	Parameter optimization	
		5.2.2	Local quadratic approximation	
		5.2.3	Use of gradient information	239
		5.2.4	Gradient descent optimization	
	5.3		Backpropagation	
		5.3.1	Evaluation of error-function derivatives	
		5.3.2	A simple example	
		5.3.3	Efficiency of backpropagation	
		5.3.4	The Jacobian matrix	
	5.4		Hessian Matrix	
		5.4.1	Diagonal approximation	
		5.4.2	Outer product approximation	251
		5.4.3	Inverse Hessian	252

xvi CONTENTS

		5.4.4	Finite differences
		5.4.5	Exact evaluation of the Hessian
		5.4.6	Fast multiplication by the Hessian
	5.5	Regul	arization in Neural Networks
		5.5.1	Consistent Gaussian priors
		5.5.2	Early stopping
		5.5.3	Invariances
		5.5.4	Tangent propagation
		5.5.5	Training with transformed data
		5.5.6	Convolutional networks
		5.5.7	Soft weight sharing
	5.6		re Density Networks
	5.7		ian Neural Networks
	5.7	5.7.1	Posterior parameter distribution
		5.7.1	Hyperparameter optimization
		5.7.2	Bayesian neural networks for classification
	Ever	cises .	•
	Exei	cises .	
6	Ker	nel Me	thods 291
v	6.1		Representations
	6.2		ructing Kernels
	6.3		Basis Function Networks
	0.5	6.3.1	Nadaraya-Watson model
	6.4		ian Processes
	0.4	6.4.1	Linear regression revisited
		6.4.2	Gaussian processes for regression
		6.4.3	Learning the hyperparameters
		6.4.4	Automatic relevance determination
		6.4.5	
			- · · · · · · · · · · · · · · · · · · ·
		6.4.6	
	_	6.4.7	Connection to neural networks
	Exei	cises .	
7	Sno	ree Kor	rnel Machines 325
,	7.1		mum Margin Classifiers
	7.1	7.1.1	8
			11 - 6
		7.1.2	
		7.1.3	Multiclass SVMs
		7.1.4	SVMs for regression
		7.1.5	Computational learning theory
	7.2		ance Vector Machines
		7.2.1	RVM for regression
		7.2.2	Analysis of sparsity
		7.2.3	RVM for classification
	Eva	roicac	357

				CONTENTS		XVII
8	Gra	phical I	Models			359
	8.1		ian Networks			360
		8.1.1	Example: Polynomial regression			362
		8.1.2	Generative models			365
		8.1.3	Discrete variables			366
		8.1.4	Linear-Gaussian models			370
	8.2		tional Independence			372
	·	8.2.1	Three example graphs			373
		8.2.2	D-separation			378
	8.3		ov Random Fields			383
	0.0	8.3.1	Conditional independence properties .			383
		8.3.2	Factorization properties			384
		8.3.3	Illustration: Image de-noising			387
		8.3.4	Relation to directed graphs			390
	8.4		nce in Graphical Models		•	393
	0.1	8.4.1	Inference on a chain		•	394
		8.4.2	Trees			398
		8.4.3	Factor graphs			399
		8.4.4	The sum-product algorithm			402
		8.4.5	The max-sum algorithm			411
		8.4.6	Exact inference in general graphs			416
		8.4.7	Loopy belief propagation			417
		8.4.8	Learning the graph structure		•	418
	Exer					418
	LACI				•	710
9	Mix	ture M	odels and EM			423
	9.1	K-me	ans Clustering			424
		9.1.1	Image segmentation and compression			428
	9.2	Mixtu	res of Gaussians			430
		9.2.1	Maximum likelihood	.		432
		9.2.2	EM for Gaussian mixtures			435
	9.3	An Al	ternative View of EM			439
		9.3.1	Gaussian mixtures revisited			441
		9.3.2	Relation to K -means			443
		9.3.3	Mixtures of Bernoulli distributions			444
		9.3.4	EM for Bayesian linear regression			448
	9.4		M Algorithm in General			450
	Exer					455
			-			
10			te Inference			461
	10.1		ional Inference			462
		10.1.1	Factorized distributions			464
		10.1.2	1 1 1			466
		10.1.3	1			470
			Model comparison			473
	10.2	Illustr	ation: Variational Mixture of Gaussians			474

xviii CONTENTS

		10.2.1 Variational distribution
		10.2.2 Variational lower bound
		10.2.3 Predictive density
		10.2.4 Determining the number of components 483
		10.2.5 Induced factorizations
	10.3	Variational Linear Regression
		10.3.1 Variational distribution
		10.3.2 Predictive distribution
		10.3.3 Lower bound
	10.4	Exponential Family Distributions
	10.4	10.4.1 Variational message passing
	10.5	Local Variational Methods
	10.5	Variational Logistic Regression
	10.0	
		r
	10.7	10.6.3 Inference of hyperparameters
	10.7	Expectation Propagation
		10.7.1 Example: The clutter problem
		10.7.2 Expectation propagation on graphs
	Exer	cises
11	Sam	apling Methods 523
		Basic Sampling Algorithms
		11.1.1 Standard distributions
		11.1.2 Rejection sampling
		11.1.3 Adaptive rejection sampling
		11.1.4 Importance sampling
		11.1.5 Sampling-importance-resampling
		11.1.6 Sampling and the EM algorithm
	11.2	Markov Chain Monte Carlo
	11.2	11.2.1 Markov chains
		11.2.2 The Metropolis-Hastings algorithm
	11.3	
	11.4	Slice Sampling
	11.5	1 0
	11.5	•
	11.	11.5.2 Hybrid Monte Carlo
		Estimating the Partition Function
	Exer	cises
12	Con	tinuous Latent Variables 559
	12.1	Principal Component Analysis
		12.1.1 Maximum variance formulation
		12.1.2 Minimum-error formulation
		12.1.3 Applications of PCA
		12.1.4 PCA for high-dimensional data

CONTEN	TS	xix	
10.0 7 1 177 7 704		570	
12.2 Probabilistic PCA		570	
12.2.1 Maximum likelihood PCA		574	
12.2.2 EM algorithm for PCA		577	
12.2.3 Bayesian PCA		580	
12.2.4 Factor analysis		583	
12.3 Kernel PCA		586	
12.4 Nonlinear Latent Variable Models		591	
12.4.1 Independent component analysis		591 592	
12.4.2 Autoassociative neural networks		595	
12.4.3 Modelling nonlinear manifolds		595 599	
Exercises		399	
13 Sequential Data		605	
13.1 Markov Models		607	
13.2 Hidden Markov Models		610	
13.2.1 Maximum likelihood for the HMM		615	
13.2.2 The forward-backward algorithm		618	
13.2.3 The sum-product algorithm for the HMM		625	
13.2.4 Scaling factors		627	
13.2.5 The Viterbi algorithm		629	
13.2.6 Extensions of the hidden Markov model		631	
13.3 Linear Dynamical Systems		635	
13.3.1 Inference in LDS		638	
13.3.2 Learning in LDS		642	
13.3.3 Extensions of LDS		644	
13.3.4 Particle filters		645	
Exercises		646	
14 Combining Models		653	
14.1 Bayesian Model Averaging		654	
14.2 Committees		655	
14.3 Boosting		657	
14.3.1 Minimizing exponential error		659	
14.3.2 Error functions for boosting		661	
14.4 Tree-based Models		663	
14.5 Conditional Mixture Models		666	
14.5.1 Mixtures of linear regression models		667	
14.5.2 Mixtures of logistic models		670	
14.5.3 Mixtures of experts		672	
Exercises		674	
Appendix A Data Sets		677	
Appendix B Probability Distributions		685	
Appendix C Properties of Matrices 69			

XX CONTENTS

Appendix D	Calculus of Variations	703
Appendix E	Lagrange Multipliers	707
References		711
Index		729

Figure 12.14 'Hinton' diagrams of the matrix $\mathbf W$ in which each element of the matrix is depicted as a square (white for positive and black for negative values) whose area is proportional to the magnitude of that element. The synthetic data set comprises 300 data points in D=10 dimensions sampled from a Gaussian distribution having standard deviation 1.0 in 3 directions and standard deviation 0.5 in the remaining 7 directions for a data set in D=10 dimensions having M=3 directions with larger variance than the remaining 7 directions. The left-hand plot shows the result from maximum likelihood probabilistic PCA, and the left-hand plot shows the corresponding result from Bayesian PCA. We see how the Bayesian model is able to discover the appropriate dimensionality by suppressing the 6 surplus degrees of freedom.

taken to have a diagonal rather than an isotropic covariance so that

$$p(\mathbf{x}|\mathbf{z}) = \mathcal{N}(\mathbf{x}|\mathbf{W}\mathbf{z} + \boldsymbol{\mu}, \boldsymbol{\Psi})$$
 (12.64)

where Ψ is a $D \times D$ diagonal matrix. Note that the factor analysis model, in common with probabilistic PCA, assumes that the observed variables x_1, \ldots, x_D are independent, given the latent variable \mathbf{z} . In essence, the factor analysis model is explaining the observed covariance structure of the data by representing the independent variance associated with each coordinate in the matrix Ψ and capturing the covariance between variables in the matrix \mathbf{W} . In the factor analysis literature, the columns of \mathbf{W} , which capture the correlations between observed variables, are called *factor loadings*, and the diagonal elements of Ψ , which represent the independent noise variances for each of the variables, are called *uniquenesses*.

The origins of factor analysis are as old as those of PCA, and discussions of factor analysis can be found in the books by Everitt (1984), Bartholomew (1987), and Basilevsky (1994). Links between factor analysis and PCA were investigated by Lawley (1953) and Anderson (1963) who showed that at stationary points of the likelihood function, for a factor analysis model with $\Psi = \sigma^2 \mathbf{I}$, the columns of \mathbf{W} are scaled eigenvectors of the sample covariance matrix, and σ^2 is the average of the discarded eigenvalues. Later, Tipping and Bishop (1999b) showed that the maximum of the log likelihood function occurs when the eigenvectors comprising \mathbf{W} are chosen to be the principal eigenvectors.

Making use of (2.115), we see that the marginal distribution for the observed