SNMPv1 Network management:

Organization, Information, communication and functional models

- SNMP organization model
 - SNMP Manager
 - SNMP Agent
 - Network element

Two tier

Manager/Agent interaction

Multiple managers – one agent

■ Three tier – with RMON

■ The proxy server organization model

Dual role of SNMP manager

SNMP network management Architecture

- Location in layered network protocol architecture
- The transport protocol

- SNMP network management Architecture
 - Protocol messages Five in number
 - Manager initiated
 - Get-request:
 - Get-next-request:
 - Set-request:
 - Agent initiated
 - Get-response:
 - Trap:

- System overview SNMP network management Architecture
 - Trap:
 - Generic trap: eg
 - coldStart, warmStart, linkUp, linkDown
 - Specific-trap
 - Timestamp
 - Some traps are application specific

- System overview SNMP network management Architecture
 - Manager databases
 - MIB information about objects
 - MDB the (measured) values associated with the objects
 - MIB is compiled in the manager during implementation.
 - Detected object that is not in MIB
 - ⇒Marked as unidentifiable

- System overview SNMP network management Architecture
 - Agent database
 - Agent has no physical database but also has a MIB compiled in the software module.

The Information Model

(similar to ISO)

- The Information Model
 - SMI: structure of managed information
 - MIB
 - Objects that can be managed by SNMP-compatible NMS include
 - Generic objects defined by IETF
 - Objects defined by private vendors, if they conform to specs
 - Specialized network objects, e.g. FDDI, OSPF, and ATM

- The Information Model
 - SMI MIB tree
 - The internet MIB

- The Information Model
 - The SMI

A managed objects consists of

■ ASN.1

ASN.1

 A formal language developed by CCITT and ISO for use with application layers for data transfer between systems.

Abstract syntax

 Set of rules used to specify data types and structures for storage of information

Transfer syntax

 Set of rules for communicating information between systems

ASN.1

Terminology, symbols and conventions

- ASN.1 is based on BNF
- Entity definitions

```
<entity> ::= <definition>
```

- < entity> : data type
- <definition> : construct made of key words, data types and meta-symbols

■ ASN.1

meta-symbols

```
::= - defined as| - alternatives{ } - list[ ] - tag( ) - subtype... - range
```

ASN.1

Keywords

BEGIN ;start of module
CHOICE ;list of alternatives
DEFINITIONS ;definitions of data types
END ; end of module
EXPORTS ;type that can be exported
IDENTIFIER ;a sequence of non-negative integers

IMPORTS ; types defined in external modules

INTEGER ; negative or non-negative integer

ASN.1

Keywords

```
NULL
                       ;place holder
OBJECT
                : used with IDENTIFIER
OCTET
                ;8-bit byte of data
SEQUENCE
                ;ordered list
SEQUENCE OF
                ; ordered array of repetitive data
SET
                ;un-ordered list
SET OF
                ;un-ordered array of repetitive data
STRING
                ;use with OCTET
```

SNMP-Based ASN.1 Data types

Structure Data type comments

Primitive INTEGER ;subtype INTEGR(n1..n2)

types OCTET STRING ;8-bit bytes of data

OBJECT IDENTIFIER ; position in MIT

NULL ;place holder

Defined NetworkAddress

types IpAddress

Counter

Gauge

TimeTicks

Opaque

Constructor SEQUENCE ; list maker

types SEQUENCE OF ;table maker

- ASN.1 encoding structure
- BER Basic encoding rules
 TLV Type Length Value encoding

	type	lengt	:h	value	
!					
<i>!</i>					
	Class	P/C	Та	g number	
	bit8-7	bit6		bit5-1	

P/C – primitive/construct

class	value		
universal	00		
application	01		
Context spec	10		
private	11		

- The Information Model
 - The SMI
 - A managed objects need not just a network element, but could be any object, e.g.
 - the Internet as an organization

Object name and identifier

- The Information Model : The SMI
 - Every object type uniquely identified by a
 - DESCRIPTOR and
 - OBJECT IDENTIFIER

DESCRIPTOR

is mnemonic (starts with lower case letter)

OBJECT IDENTIFIER

is unique name and number in the MIT

The Information Model :The SMI

Formats for declaration of descriptor for OBJECT IDENTIFIER e.g the internet MIB internet OBJECT IDENTIFIER ::= {1 3 6 1} internet OBJECT IDENTIFIER ::= {iso org dod 1} an object in the internet MIB mgmt OBJECT IDENTIFIER ::= {internet 2} private OBJECT IDENTIFIER ::= {internet 4} mib-2 OBJECT IDENTIFIER ::= {mgmt 1}

The Information Model : The SMI

```
e.g
the enterprise MIB
enterprise OBJECT IDENTIFIER ::= {private 1}
objects in the enterprise MIB
cisco OBJECT IDENTIFIER ::= {enterprise 9}
hp OBJECT IDENTIFIER ::= {enterprise 11}
3com OBJECT IDENTIFIER ::= {enterprise 43}
cabletron OBJECT IDENTIFIER ::= {enterprise 52}
```

The Information Model : The SMI

e.g the enterprise MIB

Assume that your company, unr-es has been given designation 200 in the enterprise MIB. You manufacture two models of hubs, three models of routers and 2 models of modems. Define DESCRIPTORs for each of those products. The Information Model :

The Structure of managed objects

The Information Model :

The Structure of managed objects

characteristics		
Object type		
Syntax		
Description		
Access		
status		

Ex. 1

{system 1}
OCTET STRING

"full name and version"
read-only
mandatory

Ex. 2

{...}

SEQUENCE OF IpAdrEntry

"full name and version"

read-only

mandatory

Exercise

 Using ASN.1 as appropriate. Provide a definition of the structure of the switch you have used in the practical. SNMP Communication model

- Need to know
 - Get-request, set-request
 - Object descriptor
 - Object structure

The internet MIB group

The internet mib-2 group

The system group

The Structure of managed objects:
Formal specification of the object sysDescr

```
sysDescr OBJECT-TYPE
SYNTAX DisplayString (SIZE(0..255))
ACCESS read-only
STATUS mandatory
DESCRIPTION " ... "
::= {system 1}
```

Exercise:

Write the formal specification of the objects

- sysName
- sysLocation
- sysUptime

The interfaces group

The Structure of managed objects: if Entry

The Structure of managed objects:

IfEntry data structure

```
IfEntry ::= SEQUENCE {
    ...
    ...
}
```

Structure/order of table entries

e.g.

 Write out the object identifier for the incoming octet counter of the third interface of a given switch

(refer to the ifEntry group in next slide)

The {ifEntry} group

The ip group

To students: make an educated guess as to the semantics and syntax of the objects in the ip group shown here

The ip group - Exercise:

Given

- a router with three interface: ser0, eth0 and eth1
- It is used to route traffic between subnets 212.22.90.252, 10.2.21.0, 192.168.5.0
- IP address assignments:
 - ser0: 212.22.90.1
 - eth0: 10.2.21.1, 10.2.30.4
 - eth1: 192.168.5.10, 192.168.20.3

Show the probable ifAddressTable content for this router

Administrative Model

Administrative Model :

SNMP access policy:

- Application entities
 - Manager
 - Agent
 - The pairing of two is an snmp community
 - Multiple pairs may belong to the same community

Recall SNMP operation:

- Protocol messages Five in number
- Manager initiated
 - Get-request:
 - Get-next-request:
 - Set-request:
- Agent initiated
 - Get-response:
 - Trap:

Administrative Model: Community Profile

- A network element: managed object
- A management agent may be permitted to view only a subset of the network element's managed objects, i.e.
 - the community MIB view
- Each community name is also assigned an snmp
 - → access mode: READ-ONLY or READ-WRITE
- A pairing of snmp MIB view and snmp access mode is a
 - community profile

SNMP operation: Encapsulation

- Protocol messages Five in number
- Manager initiated
 - Get-request:
 - Get-next-request:
 - Set-request:
- Agent initiated
 - Get-response:
 - Trap:

snmp Protocol PDU encapsulation (port 12)

msg SNMP msg Appl H version community msg **SNMP PDU UDP H** transp PDU SNMP PDU ntwk PDU IP H transp PDU **DLC PDU** DLC H ntwk PDU

snmp Protocol UDP ports

 For most messages, SNMP by default receives on UDP port 161

- Trap messages are received on port 162
- SNMPv1 max msg length is 484 bytes

snmp Protocol UDP ports

SNMP operation:

Get and Set Type PDUs

PDU	requestID	Error	Error	VarBind 1	VarBind 1	•••	VarBind n	VarBind n
type	-	status	index	name	value		name	value

Trap PDUs

get-request operation

E.g

- get the system's description
- Get systems location

manager

agent

GetRequest(sysDescr.0) ————

GetResponse(sysDescr.0="linux OS") —

- get-next-request operationE.g
 - get the element following system's description

- SNMP operation:
- Getting the elements of a structured object
- Generally column order
- E.g
 - interface information
 - IP information

- SNMP operation:
- Getting the elements of a structured object
- With get bulk ver 2

Get bulk pdu

PDU	requestID	Non	Max	VarBind 1	VarBind 1		VarBind n	VarBind n
type		rep	rep	name	value		name	value

- SNMP operation:
- set-request operation
- E.g
 - set systems location

SNMP on servers and workstations

- Standard operating system platforms provide implementations of SNMP agent
- Enables monitoring and configuration from a remote location (NMS)
- Can provide/manage information on hardware and software; configuration and statistical information
- We can, for example, request system and interfaces MIBs from a Windows XP and linux systems.

Exercise (to be accomplished on Wednesday afternoon)

- 1. Write a sequence of snmp commands to retrieve information from your switch, e.g.
 - Location
 - Contact information
 - Number of interfaces
 - IP address(es)
 - Number of incoming bytes that have been seen at interface 1 of the switch
- 2. Explain how, using an snmp based application at a remote workstation, one can determine the type of switch whose IP address is given.

Exercise (should be accomplished on Wednesday afternoon)

- 3. Read about the snmp based software tool known as net-snmp. Write brief descriptive notes on the tool.
- 4. Install net-snmp and use it to execute exercises 1 and two above on the switch available to you.

Net-SNMP

The net-snmp toolkit provides a suite of command line applications that can be used to query and act on remote SNMP agents.

Sections:

- <u>snmptranslate</u>: learning about the MIB tree.
- <u>snmpget</u>: retrieving data from a host.
- <u>snmpgetnext</u>: retrieving unknown indexed data.
- <u>snmpwalk</u>: retrieving lots of data at once!
- snmptable: displaying table.
- <u>snmpset</u>: peforming write operations.
- <u>snmptrap</u>: Sending and receiving traps, and acting upon them.

PRTG Network Monitoring Software