Lab B4

TT0L - GROUP 0

Person 1	111111111
Person 2	111111111

- 1. Perform the following operations by writing programs using ARM instruction. 34,25,15,23,45,64,56,23
 - a. Sort the numbers above in ascending order using bubble sort.

	cio above i	in ascending order a
1	MOV	R1, #0X6000
2	MOV	R2, #0X34
3	MOV	R3, #0X25
4	MOV	
5	MOV	R5 , #0X23
6	MOV	
7		R7, #0X64
8	MOV	R8 , #0 X 56
9	MOV	
10	STRB	R2, [R1], #0X1
11	STRB	R3, [R1], #0X1
12	STRB	R4, [R1], #0X1
13	STRB	R5, [R1], #0X1
14	STRB	R6, [R1], #0X1
15	STRB	R7, [R1], #0X1
16	STRB	R8, [R1], #0X1
17	STRB	R9, [R1], #0X1
18	MOV	R2, #0X6000
19	MOV	R3, #0
20	BL	SORT
21	END	

```
MOV
           R10, R2
MOV
           R7,R3
MOV
           R4, #01
           R5,[R10],#1
R6,[R10]
R5,R6
LDRB
LDRB
CMP
BLE
           R5,[R10],#-1
STRB
           R6,[R10]
STRB
           R10, R10,#1
ADD
           R7, #1
MOV
           R4,R4,#1
ADD
           R4, #8
CMP
BNE
           R7, #1
SORT
CMP
BEQ
MOV
           PC, LR
```


b. Sort the numbers in descending order by changing BLE to BGE.

2. Assume there is a five-stages instruction pipeline - Fetch (F), Decode (D), Fetch Operand (FO), Execute (E) and Write (W) running in a microprocessor. Assume that each stage requires one-time unit and no branch instruction is involved

a. By using formula, how many time units are needed to complete these FOUR instructions with pipelining?

$$T_{k,n} = [k + (n - 1)]\tau$$

 $T_{k,n} = [5 + (4 - 1)]$
= 8 time units

1	2	3	4	5	6	7	8
F	D	FO	Е	W			
	F	D	FO	Ш	W		
		F	D	FO	Е	W	
			F	D	FO	Е	W

b. By using formula, calculate the total time required to execute FOUR instructions without pipelining.

$$T_{1,n} = nk\tau$$

$$T_{1,n} = 4 \cdot 5$$

$$= 20 \text{ time units}$$

c. Calculate the speedup factor for the same number of instructions

$$\frac{nk}{k+(n-1)}$$
(4 * 5)/5 + (4 - 1) = 2.5

3. Write a program to evaluate the arithmetic expression A = [(B+C) - D)] / E, using one address instructions, two address instructions and three address instructions. The instructions available for use are as follows

One Address	Two Address	Three Address
LOAD X		
STORE X	MOVE X ,Y	
ADD X	ADD X, Y	ADD X,Y,Z
SUB X	SUB X, Y	SUB X,Y,Z
MUL X	MUL X ,Y	MUL X,Y, Z
DIV X	DIV X, Y	DIV X, Y, Z

One Address

LOAD B ACC = B

ADD C ACC = B + C

SUB D ACC = (B + C) - D

DIV E ACC = [(B + C) - D] / E

STORE A A = ACC

Two Address

MOV A, B A = BADD A,C A = B + C

SUB A,D A = (B + C) - DDIV A,E A = [(B + C) - D] / E

Three Address

ADD A, B, C A = B + CSUB A, A, D A = (B + C) - DDIV A, A, E A = [(B + C) - D] / E

4. Suppose an 8-bit data word stored in memory is 1111 1000. Using the Hamming algorithm, determine what is the value of the four check bits (Check bit 8, Check bit 4, Check bit 2 and Check bit 1) that would be stored in memory with the data word. Show how you got your answer.

Hamming Code

	12	11	10	9	8	7	6	5	4	3	2	1
Bit	D8	D7	D6	D5	C8	D4	D3	D2	C4	D1	C2	C1
Word	1	1	1	1		1	0	0		0		
Check Bit												

The check bits are in bit number 8, 4, 2 and 1

Check bit 8 (Bit positions: 12, 11, 10, 9)

$$1 \oplus 1 \oplus 1 \oplus 1 = 0$$

Check bit 4 (Bit positions: 12, 7, 6, 5)

$$1 \oplus 1 \oplus 0 \oplus 0 = 0$$

Check bit 2 (Bit positions: 11, 10, 7, 6, 3)

$$1 \oplus 1 \oplus 1 \oplus 0 \oplus 0 = 1$$

Check bit 1 (Bit positions: 11, 9, 7, 5, 3)

$$1 \oplus 1 \oplus 1 \oplus 0 \oplus 0 = 1$$

The check bits are: 0 0 1 1