	hw-3 $(2023/09/26)$	姓名:	学号:	
-	Show, using Proposition $(r \rightarrow r)$) is logically equivalent	,		
(a) $((\neg(q \to p)) -$	$\rightarrow ((\neg q) \lor r))$			
		Recall that:		
Proposition 1.1	14: If \mathscr{B}_1 is a statement form a	arising from the stat	ement form \mathscr{A} by substituting	ng the statement
form \mathscr{B}_1 for one or more occurrences of the statement form \mathscr{A} in \mathscr{A}_1 , and if \mathscr{B} is logically equivalent to \mathscr{A} , then				
\mathcal{B}_1 is logically equiva	lent to \mathscr{A}_1 .			
Proposition 1.1	17 (De Morgan's Laws): l	Let $\mathscr{A}_1, \mathscr{A}_2, \cdots \mathscr{A}_n$ b	e any statement forms. The	en:
1. $(\bigvee_{i=1}^n (\neg \mathscr{A}_i))$ is	logically equivalent to $(\neg(\bigwedge_{i=1}^{n}$	$_{i=1}^{n}\mathscr{A}_{i})).$		
2. $(\bigwedge_{i=1}^n (\neg \mathscr{A}_i))$ is logically equivalent to $(\neg(\bigvee_{i=1}^n \mathscr{A}_i))$.				

Your answer: