

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
15 November 2001 (15.11.2001)

PCT

(10) International Publication Number
WO 01/85986 A2

(51) International Patent Classification⁷: C12Q 1/48,
A61P 19/00, 29/00, 35/00, 37/00

(21) International Application Number: PCT/US01/15065

(22) International Filing Date: 10 May 2001 (10.05.2001)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
60/203,346 10 May 2000 (10.05.2000) US

(71) Applicant (for all designated States except US): ICOS Corporation [US/US]; 22021 20th Avenue S.E., Bothell, WA 98021 (US).

(72) Inventor; and

(75) Inventor/Applicant (for US only): SADHU, Chancal [US/US]; 903 233rd Street S.E., Bothell, WA 98021 (US).

(74) Agent: NOLAND, Greta, E.; Marshall, O'Toole, Gerstein, Murray & Borun, 6300 Sears Tower, 233 South Wacker Drive, Chicago, IL 60606-6402 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

— without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 01/85986 A2

(54) Title: PHOSPHATIDYL INOSITOL 3-KINASE DELTA BINDING PARTNER

(57) Abstract: There is identified a functional interaction between the catalytic subunit of phosphatidyl inositol 3-kinase delta (P13K δ) and SH3 domain-containing polypeptides such as LASP-1. The invention provides methods of assaying the observed interaction, methods of exploiting the interaction to identify compounds that modulate the interaction, and methods of employing such modulators in the treatment of medical disorders characterized by P13K δ activity mediated by the interaction.

BEST AVAILABLE COPY

PHOSPHATIDYL INOSITOL 3-KINASE DELTA BINDING PARTNER

The present invention relates generally to phosphatidylinositol 3-kinase delta (PI3K δ) enzyme, and more particularly to binding partners of PI3K δ , and to methods of using such materials.

BACKGROUND OF THE INVENTION

Cell signaling via 3'-phosphorylated phosphoinositides has been implicated in a variety of cellular processes, e.g., malignant transformation, growth factor signaling, inflammation, and immunity [see Rameh et al., *J Biol Chem* 274:8347-8350 (1999) for a review]. The enzyme responsible for generating these phosphorylated signaling products, phosphatidyl inositol 3-kinase (PI 3-kinase; PI3K), was originally identified as an activity associated with viral oncoproteins and growth factor receptor tyrosine kinases that phosphorylates phosphatidyl inositol (PI) and its phosphorylated derivatives at the 3'-hydroxyl of the inositol ring [Panayotou et al., *Trends Cell Biol* 2:358-60 (1992)].

The levels of phosphatidyl inositol-3,4,5-triphosphate (PIP₃), the primary product of PI 3-kinase activation, increase upon treatment of cells with a variety of agonists. PI 3-kinase activation is, therefore, believed to be involved in a range of cellular responses including cell growth, differentiation, and apoptosis [Parker et al., *Current Biology* 5:577-99 (1995); Yao et al., *Science* 267:2003-05 (1995)]. Though the downstream targets of phosphorylated lipids generated following PI 3-kinase activation have not been well characterized, emerging evidence suggests that pleckstrin-homology domain- and FYVE-finger domain-containing proteins are activated upon binding to various phosphatidylinositol lipids [Sternmark et al., *J Cell Sci* 112:4175-83 (1999); Lemmon et al., *Trends Cell Biol* 7:237-42 (1997)]. *In vitro*, some isoforms of protein kinase C (PKC) are directly activated by PIP₃, and the PKC-related protein kinase, PKB, has been shown to be activated by PI 3-kinase [Burgering et al., *Nature* 376:599-602 (1995)].

Presently, the PI 3-kinase enzyme family has been divided into three classes based on their substrate specificities. Class I PI3Ks can phosphorylate phosphatidyl inositol (PI), phosphatidyl inositol-4-phosphate, and phosphatidyl inositol-4,5-biphosphate (PIP₂) to produce phosphatidyl inositol-3-phosphate (PIP), phosphatidyl

- 2 -

inositol-3,4-biphosphate, and phosphatidyl inositol-3,4,5-triphosphate, respectively. Class II PI3Ks phosphorylate PI and phosphatidyl inositol-4-phosphate, whereas Class III PI3Ks can only phosphorylate PI.

The initial purification and molecular cloning of PI 3-kinase revealed that it was a heterodimer consisting of p85 and p110 subunits [Otsu et al., *Cell* 65:91-104 (1991); Hiles et al., *Cell* 70:419-29 (1992)]. Since then, four distinct Class I PI3Ks have been identified, designated PI3K α , β , δ , and γ , each consisting of a distinct 110 kDa catalytic subunit and a regulatory subunit. More specifically, three of the catalytic subunits, i.e., p110 α , p110 β and p110 δ , each interact with the same regulatory subunit, p85; whereas p110 γ interacts with a distinct regulatory subunit, p101. As described below, the patterns of expression of each of these PI3Ks in human cells and tissues are also distinct. Though a wealth of information has been accumulated in recent past on the cellular functions of PI 3-kinases in general, the roles played by the individual isoforms are largely unknown.

Cloning of bovine p110 α was described in Hiles et al. [*supra*]. This protein was identified as related to the *Saccharomyces cerevisiae* protein: Vps34p, a protein involved in vacuolar protein processing [*Id.*]. The recombinant p110 α product was also shown to associate with p85 α , to yield a PI3K activity in transfected COS-1 cells [Hiles et al., *supra*].

The cloning of a second human p110 isoform, designated p110 β , is described by Hu et al. [*Mol Cell Biol* 13:7677-88 (1993)]. This isoform is said to associate with p85 in cells, and to be ubiquitously expressed, as p110 β mRNA has been found in numerous human and mouse tissues as well as in human umbilical vein endothelial cells, Jurkat human leukemic T cells, 293 human embryonic kidney cells, mouse 3T3 fibroblasts, HeLa cells, and NBT2 rat bladder carcinoma cells [*Id.*]. Such wide expression suggests that this isoform is broadly important in signaling pathways.

Identification of the p110 δ isoform of PI 3-kinase is described in Chantry et al., *J Biol Chem* 272:19236-41 (1997). It was observed that the human p110 δ isoform is expressed in a tissue-restricted fashion; it is expressed at high levels in lymphocytes and lymphoid tissues, suggesting that the protein might play a role in PI 3-kinase-mediated signaling in the immune system. Details concerning the P110 δ isoform may also be found in U.S. Patent Nos. 5,858,753, 5,822,910, and 5,985,589.

- 3 -

See also, Vanhaesebroeck et al., *Proc Natl Acad Sci USA* 94:4330-5 (1997), and international publication WO 97/46688.

In each of the PI3K α , β , and δ subtypes, the p85 subunit acts to localize PI 3-kinase to the plasma membrane by the interaction of its SH2 domain with phosphorylated tyrosine residues (present in an appropriate sequence context) in target proteins [Rameh et al., *Cell* 83:821-30 (1995)]. Two isoforms of p85 have been identified, p85 α , which is ubiquitously expressed, and p85 β , which is primarily found in the brain and lymphoid tissues [Volinia et al., *Oncogene* 7:789-93 (1992)]. Association of the p85 subunit to the PI 3-kinase p110 α , β , or δ catalytic subunits appears to be required for the catalytic activity and stability of these enzymes. In addition, the binding of Ras proteins also upregulates PI 3-kinase activity.

The cloning of p110 γ revealed still further complexity within the PI3K family of enzymes [Stoyanov et al., *Science* 269:690-93 (1995)]. The p110 γ isoform is closely related to p110 α and p110 β (45-48% identity in the catalytic domain), but as noted does not make use of p85 as a targeting subunit. Instead, p110 γ contains an additional domain termed a "pleckstrin homology domain" near its amino terminus. This domain allows interaction of p110 γ with the $\beta\gamma$ subunits of heterotrimeric G proteins and this interaction appears to regulate its activity [Stoyanov et al., *supra*].

The p101 regulatory subunit for PI3Kgamma was originally cloned in swine, and the human ortholog identified subsequently [Krugmann et al., *J Biol Chem* 274:17152-8 (1999)]. Interaction between the N-terminal region of p101 with the N-terminal region of p110 γ appears to be critical for the PI3K γ activation through G $\beta\gamma$ mentioned above.

A constitutively active PI3K polypeptide is described in international publication WO 96/25488. This document describes preparation of a chimeric fusion protein in which a 102-residue fragment of p85 known as the inter-SH2 (iSH2) region is fused through a linker region to the N-terminus of murine p110. The p85 iSH2 domain apparently is able to activate PI3K activity in a manner comparable to intact p85 [Klippe et al., *Mol Cell Biol* 14:2675-85 (1994)].

Thus, PI 3-kinases may be defined by their amino acid identity or by their activity. Additional members of this growing gene family include more distantly related lipid and protein kinases including Vps34 TOR1, and TOR2 of

- 4 -

Saccharomyces cerevisiae (and their mammalian homologs such as FRAP and mTOR), the ataxia telangiectasia gene product (ATR) and the catalytic subunit of DNA-dependent protein kinase (DNA-PK). See generally, Hunter, *Cell* 83:1-4 (1995).

5 PI 3-kinase also appears to be involved in a number of aspects of leukocyte activation. A p85-associated PI 3-kinase activity has been shown to physically associate with the cytoplasmic domain of CD28, which is an important costimulatory molecule for the activation of T-cells in response to antigen [Pages et al., *Nature* 369:327-29 (1994); Rudd, *Immunity* 4:527-34 (1996)]. Activation of T cells through 10 CD28 lowers the threshold for activation by antigen and increases the magnitude and duration of the proliferative response. These effects are linked to increases in the transcription of a number of genes including interleukin-2 (IL2), an important T cell growth factor [Fraser et al., *Science* 251:313-16 (1991)]. Mutation of CD28 such that it can no longer interact with PI 3-kinase leads to a failure to initiate IL2 production, 15 suggesting a critical role for PI 3-kinase in T cell activation [Pages et al., *supra*].

Specific inhibitors against individual members of a family of enzymes provide invaluable tools for deciphering function(s) of each enzyme. Two compounds, LY294002 and wortmannin, have been widely used as PI 3-kinase inhibitors. These compounds, however, are non-specific PI3K inhibitors, as they do not distinguish 20 among the four members of Class I PI 3-kinases. For example, the IC₅₀'s of wortmannin against the each of the various Class I PI 3-kinases are in the range of 1-10 nM. Similarly, the IC₅₀ for LY294002 against each of these PI 3-kinases is about 1 µM [Fruman et al., *Ann Rev Biochem* 67:481-507 (1998)]. Hence, the utility of these 25 compounds in studying the roles of individual Class I PI 3-kinases is limited.

Based on studies using the wortmannin, there is evidence that PI 3-kinase function is also required for some aspects of leukocyte signaling through G-protein coupled receptors [Thelen et al., *Proc Natl Acad Sci USA* 91:4960-64 (1994)]. Moreover, it has been shown that wortmannin and LY294002 block neutrophil 30 migration and superoxide release. However, inasmuch as these compounds do not distinguish among the various isoforms of PI3K, it remains unclear which particular PI3K isoform or isoforms are involved in these phenomena.

- 5 -

In view of the above considerations, it is clear that existing knowledge is lacking with respect to structural and functional features of the PI 3-kinase enzymes, including sub-cellular localization, activation states, substrate affinities, and the like. Moreover, the functions that these enzymes perform in both normal and diseased 5 tissues remains to be elucidated. In particular, the function of PI3K δ in leukocytes has not previously been characterized, and knowledge concerning its function in human physiology remains limited. The coexpression in these tissues of other PI3K isoforms has heretofore confounded efforts to segregate the activities of each enzyme. Furthermore, separation of the activities of the various PI3K isozymes may not be 10 possible without identification of inhibitors that demonstrate selective inhibition characteristics.

Thus, there exists a need in the art for further structural and functional characterization of the PI3K δ enzyme. Furthermore, our understanding of PI3K δ requires further elaboration of the structural interactions of p110 δ , both with its 15 regulatory subunit and with other proteins in the cell. There also remains a need for selective or specific inhibitors of PI3K isozymes, in order that the functions and structural interactions of each isozyme may be better characterized.

One of the purposes of the present invention is to provide methods for identifying compounds that can inhibit PI3K δ activity, and preferably compounds that inhibit interaction of PI3K δ with its binding partners. Another purpose of the 20 invention is to provide compounds that inhibit PI3K δ selectively while having relatively low inhibitory potency against the other PI3K isoforms. Another purpose of the invention is to provide methods of characterizing the function of human PI3K δ . Another purpose of the invention is to provide methods of selectively modulating 25 human PI3K δ activity, and thereby to promote medical treatment of diseases mediated by PI3K δ dysfunction. Other purposes and advantages of the invention will be readily apparent to the artisan having ordinary skill in the art.

- 6 -

SUMMARY OF THE INVENTION

It has now been discovered that these and other purposes can be achieved by the present invention, which, in one aspect, is a method of identifying a modulator of p110 δ binding to LASP-1, comprising the steps of:

- 5 (a) providing a p110 δ polypeptide and a LASP-1 polypeptide having specific binding affinity for one another;
- (b) measuring binding between the p110 δ polypeptide and the LASP-1 polypeptide in the presence and absence of a test compound; and
- 10 (c) identifying the test compound as a modulator of p110 δ binding to LASP-1 when a different amount of binding of the p110 δ polypeptide to the LASP-1 polypeptide is detected in the presence of the test compound than in the absence of the test compound.

The p110 δ polypeptide and the LASP-1 polypeptide can be provided in a system free of cellular components, or may be recombinantly expressed or coexpressed in host cells. In some embodiments, the p110 δ polypeptide comprises the proline rich region of p110 δ . Likewise, in some embodiments, the LASP-1 polypeptide comprises the SH3 region of LASP-1. Either or both of the polypeptides may be provided as fusion proteins to impart desirable properties to the polypeptides, e.g., to permit secretion or cell surface expression of the polypeptides. The method may be employed to identify modulators that inhibit binding of p110 δ to LASP-1 or modulators that enhance binding of p110 δ to LASP-1.

In another aspect, the invention is a compound having activity as a modulator of interaction between p110 δ and LASP-1, wherein the compound is identified according to the method described herein. For example, the compound may be a compound that inhibits binding of p110 δ to LASP-1, or a compound that enhances binding of p110 δ to LASP-1.

In another aspect, the invention is a method of treating a disease state characterized by undesirable or excessive activity of PI3K δ , comprising administering to a subject in need thereof a compound that modulates interaction of p110 δ with LASP-1 in an amount effective to modulate interaction of p110 δ with LASP-1. Preferably, the compound inhibits p110 δ :LASP-1 interaction. Compounds

- 7 -

suitable for use in this method may be identified using screening methods described herein, or may be derived analogs thereof.

In still another aspect, the invention is a method of modulating p110 δ binding to LASP-1, comprising the step of contacting p110 δ or LASP-1 with a modulator of p110 δ binding to LASP-1. Preferably, the method employs a modulator that inhibits binding of p110 δ to LASP-1.

In yet another aspect, the invention is a method of treating a disease state associated with p110 δ binding to LASP-1, comprising the step of administering to a subject in need thereof an effective amount of a modulator of p110 δ binding to LASP-1. It is preferred that the method employs a modulator that inhibits binding of p110 δ to LASP-1.

As noted in the examples herein, LASP-1 comprises an SH3 domain that interacts with the proline rich sequence of p110 δ (aa 288-314 of SEQ ID NO: 2). This proline rich sequence is contemplated as a site of interaction with other polypeptides comprising one or more SH3 domains, for example, Src family kinases, adapter proteins vav and cbl, the p47-phox component of NADPH oxidase, Bruton's tyrosine kinase (Btk) and the p85 component of PI3 kinase. Therefore, in another aspect, the invention is a method of identifying a modulator of p110 δ binding to a polypeptide comprising an SH3 domain, comprising the steps of:

- (a) providing a p110 δ polypeptide and an SH3 domain-containing polypeptide having specific binding affinity for one another;
- (b) measuring binding between the p110 δ polypeptide and the SH3 domain-containing polypeptide in the presence and absence of a test compound; and
- (c) identifying the test compound as a modulator of p110 δ binding to the SH3-domain containing polypeptide when a different amount of binding of the p110 δ polypeptide to the SH3 domain-containing polypeptide is detected in the presence of the test compound than in the absence of the test compound.

The p110 δ polypeptide and the SH3 domain-containing polypeptide can be provided in a system free of cellular components, or may be recombinantly expressed or coexpressed in host cells. In these embodiments, the p110 δ polypeptide comprises the proline rich region of p110 δ . Either or both of the polypeptides may be provided

- 8 -

as fusion proteins to impart desirable properties to the polypeptides, e.g., to permit secretion or cell surface expression of the polypeptides. The method may be employed to identify modulators that inhibit binding of p110 δ to SH3 domain-containing polypeptides or modulators that enhance binding of p110 δ to SH3 domain-containing polypeptides.

In another aspect, the invention is a compound having activity as a modulator of interaction between p110 δ and an SH3 domain-containing polypeptide, wherein the compound is identified according to the method described herein. For example, the compound may be a compound that inhibits binding of p110 δ to an SH3 domain-containing polypeptide, or a compound that enhances binding of p110 δ to an SH3 domain-containing polypeptide.

In another aspect, the invention is a method of treating a disease state characterized by undesirable or excessive activity of PI3K δ , comprising administering to a subject in need thereof a compound that modulates interaction of p110 δ with an SH3 domain-containing polypeptide in an amount effective to modulate interaction of p110 δ with an SH3 domain-containing polypeptide. Preferably, the compound inhibits p110 δ :SH3 domain-containing polypeptide interaction. Compounds suitable for use in this method may be identified using screening methods described herein, or may be derived analogs thereof.

In still another aspect, the invention is a method of modulating p110 δ binding to an SH3 domain-containing polypeptide, comprising the step of contacting p110 δ or the SH3 domain-containing polypeptide with a modulator of p110 δ binding to the SH3 domain-containing polypeptide. Preferably, the method employs a modulator that inhibits binding of p110 δ to the SH3 domain-containing polypeptide.

In yet another aspect, the invention is a method of treating a disease state associated with p110 δ binding to an SH3 domain-containing polypeptide, comprising the step of administering to a subject in need thereof an effective amount of a modulator of p110 δ binding to the SH3 domain-containing polypeptide. It is preferred that the method employs a modulator that inhibits binding of p110 δ to the SH3 domain-containing polypeptide.

- 9 -

These and other features and advantages of the present invention will be appreciated from the detailed description and examples that are set forth herein. The detailed description and examples are provided to enhance the understanding of the invention, but are not intended to limit the scope of the invention. In particular, while the following detailed description and examples focus on the interaction of p110 δ and LASP-1, the detailed description and examples are intended to be illustrative of interaction of p110 δ with other polypeptides comprising SH3 domains. Thus, for example, in the detailed description below discussion of LASP-1 is applicable to SH3 domain-containing polypeptides such as Src family kinases, adapter proteins vav and cbl, the p47-phox component of NADPH oxidase, Bruton's tyrosine kinase (Btk) and the p85 component of PI3 kinase.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The invention provides methods of characterizing an interaction between the p110 δ subunit of phosphatidyl inositol 3-kinase delta (PI3K δ), i.e., p110 δ , and LASP-1. There are further provided methods of identifying modulators, e.g., inhibitors and enhancers, of p110 δ :LASP-1 binding. Also provided are methods of employing modulators of PI3K δ activity associated with or mediated by p110 δ :LASP-1 binding, including methods of modulating the activity of the PI3K δ isozyme in cells, especially leukocytes, osteoclasts, and cancer cells. The methods include *in vitro*, *in vivo*, or *ex vivo* applications. Of particular benefit are methods of selectively modulating p110 δ :LASP-1 interactions in the clinical setting, to treat disease states mediated by PI3K δ activity. Thus, disease states characterized by excessive or inappropriate PI3K δ activity may be treated through use of selective modulators of p110 δ :LASP-1 binding according to the invention. Other methods enabled by the invention include methods necessary for further characterization of the p110 δ :LASP-1 interaction *in vivo*. Details of these and other useful embodiments of the invention are now described.

The methods described herein benefit from the use of compounds that selectively inhibit p110 δ :LASP-1 interaction in cells *in vitro*, *in vivo*, or *ex vivo*. Cells useful in the methods include those that express endogenous p110 δ and LASP-1. By "endogenous" it is meant that the cells express p110 δ and/or LASP-1 absent

- 10 -

recombinant introduction into the cells of one or more polynucleotides encoding the polypeptide(s) or biologically active fragments thereof. Methods also encompass use of host cells that have been modified recombinantly to express exogenous p110 δ and/or LASP-1, wherein one or more polynucleotides encoding p110 δ or LASP-1, or 5 biologically active fragments thereof, have been introduced into the cell using recombinant procedures. Host cells coexpressing a p110 δ polypeptide and a LASP-1 polypeptide are provided, as are recombinant expression vectors enabling such coexpression, e.g., vectors comprising DNAs encoding the polypeptides arranged in tandem. Of particular advantage, the cells may be *in vivo*, i.e., in a living subject, 10 e.g., an animal or human, wherein a modulator of p110 δ :LASP-1 binding may be used as a therapeutic to modulate PI3K δ activity in the subject. Alternatively, the cells may be isolated as discrete cells or in a tissue, for *ex vivo* or *in vitro* methods.

15 *In vitro* methods also comprehended by the invention can comprise the step of contacting an isolated p110 δ polypeptide or LASP-1 polypeptide with a modulator of p110 δ :LASP-1 binding. In such "biochemical" methods, the p110 δ and LASP-1 polypeptides are provided as purified and isolated polypeptides, i.e., the polypeptides are isolated from a natural source (e.g., cells or tissues that normally express at least one of the polypeptides absent modification by recombinant technology) or isolated 20 from cells modified by recombinant techniques to express at least one of the polypeptides.

Compounds of any type that selectively modulate p110 δ :LASP-1 binding may 25 be used as modulators in the methods of the invention. Moreover, compounds of any type that modulate, preferably inhibit, p110 δ :LASP-1 binding and that possess acceptable pharmacological properties may be used as modulators in the therapeutic methods of the invention.

The relative efficacies of compounds as modulators of a biological activity may be established by determining the concentrations at which each compound affects the activity to a predefined extent and then comparing the results. Typically, the preferred determination is the concentration that inhibits 50% of the activity in a biochemical assay, i.e., the 50% inhibitory concentration or "IC₅₀." IC₅₀ determinations may be accomplished using conventional techniques known in the art. In general, IC₅₀ may be determined by measuring the given biological activity in the

- 11 -

presence of a range of concentrations of the inhibitor under study. The experimentally obtained values of enzyme activity are then plotted against the inhibitor concentrations used. The concentration of the inhibitor that shows 50% activity (as compared to the activity in the absence of any inhibitor) is taken as the 5 IC₅₀. Analogously, other inhibitory concentrations may be defined through appropriate determinations of activity. For example, in some settings it may be desirable to establish a 90% inhibitory concentration, i.e., IC₉₀, etc.

Methods for Identifying Modulators of p110δ:LASP-1 Binding

10 The p110δ and LASP-1 polypeptides, as well as fragments thereof possessing biological activity, can be used for screening putative modulator compounds in any of a variety of drug screening techniques. A modulator of p110δ:LASP-1 binding is a compound that increases or decreases the ability of p110δ and LASP-1 to interact with one another, with the consequence of affecting the ability of p110δ to carry out 15 any of its biological functions. An example of such a compound is an agent that, through affecting p110δ:LASP-1 binding, increases or decreases the ability of PI3Kδ to phosphorylate phosphatidyl inositol or to target to appropriate structures within a cell.

20 The selectivity of a compound that modulates p110δ:LASP-1 binding can be evaluated by comparing its activity on p110δ:LASP-1 binding to its activity on other related proteins or the interactions on other related binding pairs of proteins. To illustrate, selective modulators of p110δ:LASP-1 binding may include, for example, antibodies and other proteins or peptides that specifically bind to a p110δ polypeptide or a LASP-1 polypeptide, oligonucleotides that specifically bind to a p110δ 25 polypeptide or a LASP-1 polypeptide, and other non-peptide compounds (e.g., isolated or synthetic organic molecules) that specifically interact with a p110δ polypeptide or a LASP-1 polypeptide.

30 Accordingly, the invention provides methods of characterizing the potency of a test compound as a modulator of p110δ:LASP-1 binding, said method comprising the steps of (a) measuring activity of a PI3Kδ polypeptide in the presence of a test compound; (b) comparing the activity of the PI3Kδ polypeptide in the presence of the

- 12 -

test compound to the activity of the PI3K δ polypeptide in the presence of an equivalent amount of a reference compound; wherein a lower activity of the PI3K δ polypeptide in the presence of the test compound than in the presence of the reference indicates that the test compound is a more potent inhibitor than the reference compound, and a higher activity of the PI3K δ polypeptide in the presence of the test compound than in the presence of the reference indicates that the test compound is a less potent inhibitor than the reference compound.

The invention further provides methods of characterizing the potency of a test compound as an inhibitor of p110 δ :LASP-1 binding, comprising the steps of (a) determining an amount of a control compound that inhibits p110 δ :LASP-1 binding by a reference percentage of inhibition, thereby defining a reference inhibitory amount for the control compound; (b) determining an amount of a test compound that inhibits p110 δ :LASP-1 binding by a reference percentage of inhibition, thereby defining a reference inhibitory amount for the test compound; (c) comparing the reference inhibitory amount for the test compound to the reference inhibitory amount for the control compound, wherein a lower reference inhibitory amount for the test compound than for the control compound indicates that the test compound is a more potent inhibitor than the control compound, and a higher reference inhibitory amount for the test compound than for the control compound indicates that the test compound is a less potent inhibitor than the control compound. In one aspect, the method uses a reference inhibitory amount that is the amount of the compound that inhibits p110 δ :LASP-1 binding by 50%, 60%, 70%, 80%. In another aspect, the method employs a reference inhibitory amount that is the amount of the compound that inhibits p110 δ :LASP-1 binding by 90%, 95%, or 99%. These methods may comprise determining the reference inhibitory amount of the compounds in an *in vitro* biochemical assay, in an *in vitro* cell-based assay, or in an *in vivo* assay.

The invention therefore provides a method for screening for candidate modulators of PI3K δ activity and/or to confirm the mode of action of candidate such negative regulators, i.e., to determine whether such compound operate through modulation of p110 δ :LASP-1 binding. Such methods may be employed against other p110 isoforms (e.g., p110 α , p110 β , and p110 γ) in parallel to establish comparative activity of the test compound across the isoforms.

- 13 -

In these methods, the p110 δ polypeptide may be a full-length p110 δ polypeptide, e.g., human p110 δ having the sequence set forth in SEQ ID NO:2, or it may be a p110 δ fragment, provided that the fragment exhibits binding activity for LASP-1. An exemplary p110 δ polypeptide is a fragment of p110 δ comprising the proline-rich region that has been identified hereunder as interacting with LASP-1.

5 The p110 δ fragment may further comprise the catalytic site of p110 δ and/or the p85 binding domain of p110 δ .

Likewise, the LASP-1 polypeptide may be a full-length LASP-1 polypeptide, e.g., human LASP-1 having the sequence set forth in SEQ ID NO:4, or it may be a

10 LASP-1 fragment, provided that the fragment exhibits binding activity for p110 δ . An exemplary LASP-1 polypeptide is a fragment of LASP-1 comprising the SH3 region that has been identified hereunder as interacting with p110 δ . The LASP-1 polypeptide may further comprise other domains of the LASP-1 protein, e.g., the LIM region.

15 The methods may be employed in cells expressing cells expressing p110 δ or fragments thereof, either endogenously or exogenously. Accordingly, the polypeptide employed in such methods may be free in solution, affixed to a solid support, modified to be displayed on a cell surface (e.g., as a fusion protein), or located intracellularly. The modulation of activity or the formation of binding complexes

20 between the p110 δ polypeptide, the LASP-1 polypeptide, and the agent being tested may then be measured.

25 LASP-1 and p110 δ polypeptides, and the interactions thereof, are amenable to biochemical or cell-based high throughput screening (HTS) assays according to methods known and practiced in the art, including melanophore assay systems to investigate receptor-ligand interactions, yeast-based assay systems, and mammalian cell expression systems. For a review, see Jayawickreme and Kost, *Curr Opin Biotechnol* 8:629-34 (1997). Automated and miniaturized HTS assays are also comprehended as described, for example, in Houston and Banks, *Curr Opin Biotechnol* 8:734-40 (1997).

30 Such HTS assays are used to screen libraries of compounds to identify particular compounds that exhibit a desired property. Any library of compounds may be used, including chemical libraries, natural product libraries, and combinatorial

- 14 -

libraries comprising random or designed oligopeptides, oligonucleotides, or other organic compounds.

Chemical libraries may contain known compounds, proprietary structural analogs of known compounds, or compounds that are identified from natural product screening.

Natural product libraries are collections of materials isolated from natural sources, typically, microorganisms, animals, plants, or marine organisms. Natural products are isolated from their sources by fermentation of microorganisms followed by isolation and extraction of the fermentation broths or by direct extraction from the microorganisms or tissues (plants or animal) themselves. Natural product libraries include polyketides, non-ribosomal peptides, and variants (including non-naturally occurring variants) thereof. For a review, see Cane et al., *Science* 282:63-68 (1998).

Combinatorial libraries are composed of large numbers of related compounds, such as peptides, oligonucleotides, or other organic compounds as a mixture. Such compounds are relatively straightforward to design and prepare by traditional automated synthesis protocols, PCR, cloning or proprietary synthetic methods. Of particular interest are peptide and oligonucleotide combinatorial libraries.

- 15 -

Still other libraries of interest include peptide, protein, peptidomimetic, multiparallel synthetic collection, recombinatorial, and polypeptide libraries. For a review of combinatorial chemistry and libraries created thereby, see Myers, *Curr Opin Biotechnol* 8:701-07 (1997).

Once compounds have been identified that show activity as modulators of p110δ:LASP-1 binding (i.e., "hits"), a program of optimization can be undertaken in an effort to improve the potency and/or selectivity of the activity. Analysis of structure-activity relationships (SAR) typically involves of iterative series of selective modifications of compound structures and their correlation to biochemical or biological activity. Families of related compounds can be designed that all exhibit the desired activity, with certain members of the family, namely those possessing suitable pharmacological profiles, potentially qualifying as therapeutic candidates. Compounds obtained using such medicinal chemistry methods may be referred to as "derived analogs" of the original "hit" compounds.

Related to methods of identifying modulators of p110δ:LASP-1 binding, the invention enables tools that facilitate such methods. For example, containers can be manufactured that contain a p110δ polypeptide and a LASP-1 polypeptide. To illustrate, the polypeptides may be provided in a kit, such as a kit in which the polypeptides are contained in separate containers, and optionally further comprising an instruction sheet providing guidance on performance of the assay. The contents can then be employed for measuring the p110δ:LASP-1 interaction in a modulator identification assay. For HTS assays, the invention provides multi-well (e.g., 96- or 384-well) plates in which at least one well contains a p110δ polypeptide and a LASP-1 polypeptide in amounts suitable for screening small quantities of a test compound. Alternatively, for cell-based assays, the invention provides containers (e.g., multi-well plates) containing host cells recombinantly modified to express, preferably cells modified to coexpress, a p110δ polypeptide and a LASP-1 polypeptide.

Therapeutic Uses of Inhibitors of p110 δ :LASP-1 Binding

As described herein, the invention provides a method for identifying compounds capable of selectively modulating p110 δ :LASP-1 binding, or modulating PI3K δ activity mediated thereby. Thus, the invention may provide the basis for development of methods of treatment of PI3K δ -mediated disease states. Such treatment methods can include administering an modulator, most probably an inhibitor, of p110 δ :LASP-1 binding in an amount effective for this purpose. These methods may be employed in treating humans or animals that are or may be subject to any disease state whose symptoms or pathology is characterized by PI3K δ activity as it may be mediated by p110 δ :LASP-1 binding. Among other things, as PI3K δ expression is predominantly limited to leukocytes, the invention enables methods of inhibiting PI3K δ function in these cells. Thus, disease states in which leukocyte function is excessive or undesirable may be amenable to treatment using p110 δ :LASP-1 binding modulators as described hereinbelow in greater detail.

In one aspect, the invention provides methods of treating disease states characterized by functions of neutrophils. It has been observed that inhibition of PI3K δ activity inhibits certain functions of neutrophils such as stimulated superoxide release, stimulated exocytosis, and chemotactic migration. Superoxide is released by neutrophils in response to any of a variety of stimuli including signals of infection, as a mechanism of cell killing. For example, superoxide release is known to be induced by tumor necrosis factor alpha (TNF α), which is released by macrophages, mast cells, and lymphocytes upon contact with bacterial cell wall components such as lipopolysaccharide (LPS). TNF α is an extraordinarily potent and promiscuous activator of inflammatory processes, being involved in activation of neutrophils and various other cell types, induction of leukocyte/endothelial cell adhesion, pyrexia, enhanced MHC class I production, and stimulation of angiogenesis. Alternatively, superoxide release may be stimulated by formyl-Met-Leu-Phe (fMLP) or other peptides blocked at the N-terminus by formylated methionine. Such peptides are not normally found in eukaryotes, but are fundamentally characteristic of bacteria, and signal the presence of bacteria to the immune system. Leukocytes expressing the fMLP receptor, e.g., neutrophils and macrophages, are stimulated to migrate up

- 17 -

gradients of these peptides (i.e., chemotaxis) toward loci of infection. In general, these functions may be collectively termed "inflammatory functions," as they are typically related to neutrophil response to inflammation. Such functions may further include, without limitation, stimulated degranulation, adhesion to vascular
5 endothelium (e.g., tethering/rolling of neutrophils, triggering of neutrophil activity, and/or latching of neutrophils to endothelium), transmural diapedesis or emigration through the endothelium to peripheral tissues. The inflammatory functions of neutrophils may be distinguished from the bacterial killing functions exhibited by these cells, e.g., phagocytosis and killing of bacteria.

10 Without intending to be bound by any one theory, it is believed that, because inflammation involves processes are typically mediated by leukocyte (e.g., neutrophil, lymphocyte, etc.) activation and chemotactic transmigration, and because PI3K δ may mediate such phenomena, antagonists of PI3K δ activity mediated by p110 δ :LASP-1 binding may be used to suppress injury associated with inflammation. Accordingly,
15 the invention further includes methods of treating disease states in which one or more of the inflammatory functions of neutrophils are abnormal or undesirable. Neutrophil functions suitable for inhibition according to the method include any function that is characterized by PI3K δ activity mediated by p110 δ :LASP-1 binding.

It has further been observed that PI3K δ plays a role in the stimulated
20 proliferation of lymphocytes, including B cells and T cells. Moreover, PI3K δ appears to play a role in stimulated secretion of antibodies by B cells. Thus, the invention includes methods for inhibiting lymphocyte proliferation, and methods for inhibiting antibody production by B lymphocytes through the use of modulators of p110 δ :LASP-1 binding. Other methods enabled by the invention include methods of
25 treating disease states in which one or more of these lymphocyte functions are abnormal or undesirable.

In another aspect, the invention includes a method for suppressing a function of basophils and/or mast cells, and thereby enabling treatment of disease states characterized by excessive or undesirable basophil and/or mast cell activity.

30 According to the method, a compound of the invention may be used that selectively inhibits p110 δ :LASP-1 binding and associated activity of phosphatidylinositol 3-kinase delta (PI3K δ) in basophils and/or mast cells. Preferably, the method employs

- 18 -

a p110 δ :LASP-1 inhibitor in an amount sufficient to inhibit stimulated histamine release by the basophils and/or mast cells. Accordingly, the use of such compounds and other PI3K δ selective inhibitors may be of value in treating diseases characterized by histamine release, i.e., allergic disorders, including disorders such as 5 chronic obstructive pulmonary disease (COPD), asthma, ARDS, emphysema, and related disorders.

In another aspect, selective inhibitors of PI3K δ activity mediated by p110 δ :LASP-1 binding may be employed in methods of treating diseases of bone, especially diseases in which osteoclast function is abnormal or undesirable. 10 Accordingly, the use of such compounds may be of value in treating osteoporosis, Paget's disease, and related bone resorption disorders.

In a further aspect, the invention includes methods of using modulators of p110 δ :LASP-1 binding to inhibit the growth or proliferation of cancer cells of hematopoietic origin, preferably cancer cells of lymphoid origin, and more preferably 15 cancer cells related to or derived from B lymphocytes or B lymphocyte progenitors. Cancers potentially amenable to treatment using the method of the invention include, without limitation, lymphomas, i.e., malignant neoplasms of lymphoid and reticuloendothelial tissues, such as Burkitt's lymphoma, Hodgkins' lymphoma, non-Hodgkins lymphomas, lymphocytic lymphomas and the like; multiple myelomas; as 20 well as leukemias such as lymphocytic leukemias, chronic myeloid (myelogenous) leukemias, and the like. In a preferred embodiment, p110 δ :LASP-1 modulatory compounds may be used to inhibit or control the growth or proliferation of chronic myeloid (myelogenous) leukemia cells.

"Treating" as used herein refers to preventing a disease state from occurring in 25 an animal that may be predisposed to the disease state, but has not yet been diagnosed as having it; inhibiting the disease state, i.e., arresting its development; relieving the disease state, i.e., causing its regression; or ameliorating the disease state, i.e., reducing the severity of symptoms associated with the disease state.

"Disease state" as used herein is intended to encompass pathological 30 disorders, diseases, conditions, syndromes, and the like, without limitation.

"Inflammatory disease" as used herein can refer to any disease state in which an excessive or unregulated inflammatory response leads to excessive inflammatory

- 19 -

symptoms, host tissue damage, or loss of tissue function. "Inflammatory disease" also refers to a pathological state mediated by influx of leukocytes and/or neutrophil chemotaxis.

"Inflammation" as used herein refers to a localized, protective response elicited by injury or destruction of tissues, which serves to destroy, dilute, or wall off (sequester) both the injurious agent and the injured tissue. Inflammation is notably associated with influx of leukocytes and/or neutrophil chemotaxis. Inflammation may result from infection with pathogenic organisms and viruses and from noninfectious means such as trauma or reperfusion following myocardial infarction or stroke, immune response to foreign antigen, and autoimmune responses. Accordingly, inflammatory diseases amenable to the invention encompass disease states associated with reactions of the specific defense system as well as with reactions of the non-specific defense system.

"Specific defense system" as used herein refers to the component of the immune system that reacts to the presence of specific antigens. Examples of inflammation resulting from a response of the specific defense system include the classical response to foreign antigens, autoimmune diseases, and delayed type hypersensitivity response mediated by T-cells. Chronic inflammatory diseases, the rejection of solid transplanted tissue and organs, e.g., kidney and bone marrow transplants, and graft versus host disease (GVHD), are further examples of inflammatory reactions of the specific defense system.

"Non-specific defense system" as used herein refers to the cells systems involved in inflammatory processes that are mediated by leukocytes that are incapable of immunological memory (e.g., granulocytes, and macrophages). Examples of inflammation that result, at least in part, from a reaction of the non-specific defense system include inflammation associated with conditions such as adult (acute) respiratory distress syndrome (ARDS) or multiple organ injury syndromes; reperfusion injury; acute glomerulonephritis; reactive arthritis; dermatoses with acute inflammatory components; acute purulent meningitis or other central nervous system inflammatory diseases such as stroke; thermal injury; inflammatory bowel disease; granulocyte transfusion associated syndromes; and cytokine-induced toxicity.

- 20 -

"Autoimmune disease" as used herein refers to any group of disease states in which tissue injury is associated with humoral or cellmediated responses to the body's own constituents. "Allergic disease" as used herein refers to any disease state in which symptoms, tissue damage, or loss of tissue function result from allergy.

5 "Arthritic disease" as used herein refers to any disease state that is characterized by inflammatory lesions of the joints attributable to a variety of etiologies. "Dermatitis" as used herein refers to any of a large family of diseases of the skin that are characterized by inflammation of the skin attributable to a variety of etiologies.

"Transplant rejection" as used herein refers to any immune reaction directed against grafted tissue, such as organs or cells (e.g., bone marrow), characterized by a loss of function of the grafted and surrounding tissues, pain, swelling, leukocytosis, and thrombocytopenia.

The therapeutic methods of the present invention include methods for the treatment of disease states associated with inflammatory cell activation.

15 "Inflammatory cell activation" refers to the induction by a stimulus (including, but not limited to, cytokines, antigens or autoantibodies) of a proliferative cellular response, the production of soluble mediators (including but not limited to cytokines, oxygen radicals, enzymes, prostanoids, or vasoactive amines), or cell surface expression of new or increased numbers of mediators (including, but not limited to, major histocompatibility antigens or cell adhesion molecules) in inflammatory cells (including but not limited to monocytes, macrophages, T lymphocytes, B lymphocytes, granulocytes (i.e., polymorphonuclear leukocytes such as neutrophils, basophils, and eosinophils), mast cells, dendritic cells, Langerhans cells, and endothelial cells). It will be appreciated by persons skilled in the art that the activation of one or a combination of these phenotypes in these cells can contribute to the initiation, perpetuation, or exacerbation of an inflammatory disease.

25 The present invention enables methods of treating such diseases as arthritic diseases, such as rheumatoid arthritis, monoarticular arthritis, osteoarthritis, gouty arthritis, spondylitis; Behcet disease; sepsis, septic shock, endotoxic shock, gram negative sepsis, gram positive sepsis, and toxic shock syndrome; multiple organ injury syndrome secondary to septicemia, trauma, or hemorrhage; ophthalmic disorders such as allergic conjunctivitis, vernal conjunctivitis, uveitis, and thyroid-

- 21 -

associated ophthalmopathy; eosinophilic granuloma; pulmonary or respiratory disorders such as asthma, chronic bronchitis, allergic rhinitis, ARDS, chronic pulmonary inflammatory disease (e.g., chronic obstructive pulmonary disease), silicosis, pulmonary sarcoidosis, pleurisy, alveolitis, vasculitis, emphysema,
5 pneumonia, bronchiectasis, and pulmonary oxygen toxicity; reperfusion injury of the myocardium, brain, or extremities; fibrosis such as cystic fibrosis; keloid formation or scar tissue formation; atherosclerosis; autoimmune diseases such as systemic lupus erythematosus (SLE), autoimmune thyroiditis, multiple sclerosis, some forms of diabetes, and Reynaud's syndrome; and transplant rejection disorders such as GVHD
10 and allograft rejection; chronic glomerulonephritis; inflammatory bowel diseases such as chronic inflammatory bowel disease (CIBD), Crohn's disease, ulcerative colitis, and necrotizing enterocolitis; inflammatory dermatoses such as contact dermatitis, atopic dermatitis, psoriasis, or urticaria; fever and myalgias due to infection; central or peripheral nervous system inflammatory disorders such as meningitis, encephalitis,
15 and brain or spinal cord injury due to minor trauma; Sjögren's syndrome; diseases involving leukocyte diapedesis; alcoholic hepatitis; bacterial pneumonia; antigen-antibody complex mediated diseases; hypovolemic shock; Type I diabetes mellitus; acute and delayed hypersensitivity; disease states due to leukocyte dyscrasia and metastasis; thermal injury; granulocyte transfusion-associated syndromes; and
20 cytokine-induced toxicity.

The method can have utility in treating subjects that are or may be subject to reperfusion injury, i.e., injury resulting from situations in which a tissue or organ experiences a period of ischemia followed by reperfusion. The term "ischemia" refers to localized tissue anemia due to obstruction of the inflow of arterial blood.
25 Transient ischemia followed by reperfusion characteristically results in neutrophil activation and transmigration through the endothelium of the blood vessels in the affected area. Accumulation of activated neutrophils in turn results in generation of reactive oxygen metabolites, which damage components of the involved tissue or organ. This phenomenon of "reperfusion injury" is commonly associated with
30 conditions such as vascular stroke (including global and focal ischemia), hemorrhagic shock, myocardial ischemia or infarction, organ transplantation, and cerebral vasospasm. To illustrate, reperfusion injury occurs at the termination of cardiac

- 22 -

bypass procedures or during cardiac arrest when the heart, once prevented from receiving blood, begins to reperfuse. It is expected that inhibition of PI3K δ activity will result in reduced amounts of reperfusion injury in such situations.

With respect to the nervous system, global ischemia occurs when blood flow to the entire brain ceases for a period. Global ischemia may result from cardiac arrest. Focal ischemia occurs when a portion of the brain is deprived of its normal blood supply. Focal ischemia may result from thromboembolic occlusion of a cerebral vessel, traumatic head injury, edema, or brain tumor. Even if transient, both global and focal ischemia can cause widespread neuronal damage. Although nerve tissue damage occurs over hours or even days following the onset of ischemia, some permanent nerve tissue damage may develop in the initial minutes following the cessation of blood flow to the brain.

Ischemia can also occur in the heart in myocardial infarction and other cardiovascular disorders in which the coronary arteries have been obstructed as a result of atherosclerosis, thrombus, or spasm. Accordingly, the invention is believed to be useful for treating cardiac tissue damage, particularly damage resulting from cardiac ischemia or caused by reperfusion injury in mammals.

The methods of the invention embrace various modes of treating an animal, preferably a mammal, more preferably a primate, and still more preferably a human. Among the mammals that may be treated are, for example, companion animals (pets) including dogs and cats; farm animals including cattle, horses, sheep, pigs, and goats; laboratory animals including rats, mice, rabbits, guinea pigs, and non-human primates. Non-mammalian animals include, for example, birds, fish, reptiles, and amphibians.

25

- 23 -

Methods of Administration of Modulators of p110δ:LASP-1 Interaction

Pharmaceutical compositions comprising a modulator of p110δ:LASP-1 binding activity may be administered to the subject by any conventional method, including parenteral and enteral techniques. Parenteral administration modalities include those in which the composition is administered by a route other than through the gastrointestinal tract, for example, intravenous, intraarterial, intraperitoneal, intramedullary, intramuscular, intraarticular, intrathecal, and intraventricular injections. Enteral administration modalities include, for example, oral (including buccal and sublingual) and rectal administration. Transepithelial administration modalities include, for example, transmucosal administration and transdermal administration. Transmucosal administration includes, for example, enteral administration as well as nasal, inhalation, and deep lung administration; vaginal administration; and rectal administration. Transdermal administration includes passive or active transdermal or transcutaneous modalities, including, for example, patches and iontophoresis devices, as well as topical application of pastes, salves, or ointments. Parenteral administration can also be accomplished using a high-pressure technique, e.g., POWDERJECT®. Surgical techniques include implantation of depot (reservoir) compositions, osmotic pumps, and the like. A preferred route of administration for treatment of inflammation can be local or topical delivery for localized disorders such as arthritis, or systemic delivery for distributed disorders, e.g., intravenous delivery for reperfusion injury or for systemic conditions such as septicemia. For other diseases, including those involving the respiratory tract, e.g., chronic obstructive pulmonary disease, asthma, emphysema, etc., administration may be accomplished by inhalation or deep lung administration of sprays, aerosols, powders, and the like.

For the treatment of neoplastic diseases, especially leukemias and other distributed cancers, parenteral administration is typically preferred. Formulations of the compounds to optimize them for biodistribution following parenteral administration would be desirable. The PI3K δ inhibitor compounds may be administered before, during, or after administration of chemotherapy, radiotherapy, and/or surgery.

- 24 -

Moreover, the therapeutic index of the p110 δ :LASP-1 modulator compounds may be enhanced by modifying or derivatizing the compounds for targeted delivery to cancer cells expressing a marker that identifies the cells as such. For example, the compounds may be linked to an antibody that recognizes a marker that is selective or specific for cancer cells, so that the compounds are brought into the vicinity of the cells to exert their effects locally, as previously described [see for example, Pietersz et al., *Immunol Rev* 129:57 (1992); Trail et al., *Science* 261:212 (1993); and Rowlinson-Busza et al., *Curr Opin Oncol* 4:1142 (1992)]. Tumor-directed delivery of these compounds would enhance the therapeutic benefit by, inter alia, minimizing potential non-specific toxicities that can result from radiation treatment or chemotherapy. In another aspect, p110 δ :LASP-1 inhibitor compounds and radioisotopes or chemotherapeutic agents may be conjugated to the same anti-tumor antibody.

For the treatment of bone resorption disorders or osteoclast-mediated disorders, the p110 δ :LASP-1 modulators can be delivered by any suitable method. Focal administration may be desirable, such as by intraarticular injection. In some cases, it may be desirable to couple the compounds to a moiety that can target the compounds to bone. For example, a p110 δ :LASP-1 modulator may be coupled to compounds with high affinity for hydroxyapatite, which is a major constituent of bone. This may be accomplished, for example, by adapting a tetracycline-coupling method developed for targeted delivery of estrogen to bone [Orme et al., *Bioorg Med Chem Lett* 4(11):1375-80 (1994)].

To be effective therapeutically in modulating central nervous system targets, the agents used in the methods of the invention should readily penetrate the blood brain barrier when peripherally administered. Compounds that cannot penetrate the blood brain barrier, however, can still be effectively administered by an intravenous route.

As noted above, the characteristics of the agent itself and the formulation of the agent can influence the physical state, stability, rate of *in vivo* release, and rate of *in vivo* clearance of the administered agent. Such pharmacokinetic and pharmacodynamic information can be collected through pre-clinical *in vitro* and *in vivo* studies, later confirmed in humans during the course of clinical trials. Thus, for

- 25 -

any compound used in the method of the invention, a therapeutically effective dose can be estimated initially from biochemical and/or cell-based assays. Then, dosage can be formulated in animal models to achieve a desirable circulating concentration range that modulates p110 δ :LASP-1 binding. As human studies are conducted,
5 further information will emerge regarding the appropriate dosage levels and duration of treatment for various diseases and conditions.

Toxicity and therapeutic efficacy of such compounds can be determined by standard pharmaceutical procedures in cell cultures or experimental animals, e.g., for determining the LD₅₀ (the dose lethal to 50% of the population) and the ED₅₀ (the dose therapeutically effective in 50% of the population). The dose ratio between toxic and therapeutic effects is the "therapeutic index," which is typically expressed as the ratio LD₅₀/ED₅₀. Compounds that exhibit large therapeutic indices are preferred. The data obtained from such cell culture assays and additional animal studies can be used in formulating a range of dosage for human use. The dosage of
10 such compounds lies preferably within a range of circulating concentrations that include the ED₅₀ with little or no toxicity.
15

For the method of the invention, any effective administration regimen regulating the timing and sequence of doses may be used. Doses of the agent preferably include pharmaceutical dosage units comprising an effective amount of the agent. As used herein, "effective amount" refers to an amount of a p110 δ :LASP-1
20 modulator compound sufficient to modulate PI3K δ activity and/or derive a measurable change in a physiological parameter of the subject through administration of one or more of the pharmaceutical dosage units.

Exemplary dosage levels for a human subject are of the order of from about
25 0.001 milligram of active agent per kilogram body weight (mg/kg) to about 100 mg/kg. Typically, dosage units of the active agent comprise from about 0.01 mg to about 10,000 mg, preferably from about 0.1 mg to about 1,000 mg, depending upon the indication, route of administration, etc. Depending on the route of administration, a suitable dose may be calculated according to body weight, body surface area, or
30 organ size. The final dosage regimen will be determined by the attending physician in view of good medical practice, considering various factors that modify the action of drugs, e.g., the agent's specific activity, the severity of the disease state, the

- 26 -

responsiveness of the patient, the age, condition, body weight, sex, and diet of the patient, the severity of any infection, etc. Additional factors that may be taken into account include time and frequency of administration, drug combination(s), reaction sensitivities, and tolerance/response to therapy. Further refinement of the dosage
5 appropriate for treatment involving any of the formulations mentioned herein is done routinely by the skilled practitioner without undue experimentation, especially in light of the dosage information and assays disclosed, as well as the pharmacokinetic data observed in human clinical trials. Appropriate dosages may be ascertained through use of established assays for determining concentration of the agent in a body fluid or
10 other sample together with dose response data.

The frequency of dosing will depend on the pharmacokinetic parameters of the agent and the route of administration. Dosage and administration are adjusted to provide sufficient levels of the active moiety or to maintain the desired effect.
Accordingly, the pharmaceutical compositions can be administered in a single dose,
15 multiple discrete doses, continuous infusion, sustained release depots, or combinations thereof, as required to maintain desired minimum level of the agent. Short-acting pharmaceutical compositions (i.e., short half-life) can be administered once a day or more than once a day (e.g., two, three, or four times a day). Long acting pharmaceutical compositions might be administered every 3 to 4 days, every
20 week, or once every two weeks. Pumps, such as subcutaneous, intraperitoneal, or subdural pumps, may be preferred for continuous infusion.

The following Examples are provided to further aid in understanding the invention, and presuppose an understanding of conventional methods well-known to those persons having ordinary skill in the art to which the examples pertain, e.g., the construction of vectors and plasmids, the insertion of genes encoding polypeptides into such vectors and plasmids, or the introduction of vectors and plasmids into host cells. Such methods are described in detail in numerous publications including, for example, Sambrook et al., *Molecular Cloning: A Laboratory Manual*, Cold Spring Harbor Laboratory Press (1989), Ausubel et al. (Eds.), *Current Protocols in Molecular Biology*, John Wiley & Sons, Inc. (1994); and Ausubel et al. (Eds.), *Short Protocols in Molecular Biology*, 4th ed., John Wiley & Sons, Inc. (1999). The particular materials and conditions described hereunder are intended to exemplify
25
30

particular aspects of the invention and should not be construed to limit the reasonable scope thereof.

EXAMPLE 1. Identification and Verification of a p110 δ -Interacting
5 Partner

The yeast di-hybrid technique was used in an effort to identify proteins that interact with the 110 kDa subunit of PI3 kinase delta (p110 δ). The di-hybrid method is described by Fields et al. [*Nature* 340(6230):245-6 (1989)]. [See also, e.g., U.S. Patent No. 5,959,079; Hollenberg et al., *Mol Cell Biol* 15:3813-22 (1995)].

10

Construction of Bait Plasmid and Yeast Strains

As shown in Table 1, a comparison of the amino acid sequence of human p110 δ to those of the other three p110 subunit types reveals that the amino acid sequence of the Ras-binding domain is a less conserved region than the catalytic domain.

15

Table 1

20	PI3K Isoform	Overall	Identity	
			Catalytic	Ras-Binding
	p110 α (SEQ ID NO:6)	41	49	26
	p110 β (SEQ ID NO:8)	58	72	35.5
25	p110 γ (SEQ ID NO:10)	35	45	20

25

To increase the probability of identifying proteins that specifically interact with p110 δ , we took advantage of the low level of homology in the Ras-binding domains. The Ras-binding region of p110 δ (aa 134 to 350 of SEQ ID NO:2) was amplified by PCR using 100 ng of template p110 δ DNA (SEQ ID NO:1) and 500 ng each of the following primers.

- 28 -

p110delta 5': 5'-GATCGAATTCCCAGAACGTGAACGACTTCGC-3'

(SEQ ID NO:11)

p110delta 3': 5'-GATCGTCGACGCCGTGGAAAAGCCCGGCCTG-3'

(SEQ ID NO:12)

5

The amplification reaction was performed using Taq polymerase and buffer provided by the supplier (Perkin Elmer, Foster City CA) according to the following temperature cycling protocol: 94°C for 5 min; followed by 25 cycles of 94°C for 30 sec, 68°C for 3 min, and 72° for 7 min. The amplified product was then digested with *EcoR*1 and *Sal*1 and subcloned in the *EcoR*1-*Sal*1 sites of the yeast di-hybrid vector pBTM116 such that the p110δ sequence was in frame with the LexA sequence.

We also cloned the corresponding region of p110β (aa 143 to 360) in frame with the LexA sequence for use as a specificity control. The following oligonucleotides were used to amplify the Ras-binding domain of p110β sequence
15 (SEQ ID NO:8).

p110beta 5 : 5'-GATCGAATTCCCTGAAGTAAATGAATTCGA-3

(SEQ ID NO:13)

p110beta 3 : 5'-GATCGTCGACACCATGAAAAAGACCAGCCCT-3

20 (SEQ ID NO:14)

The pBTM116 plasmid DNAs containing the p110δ or p110β sequences were then introduced into yeast cells by the lithium acetate treatment, generally in accordance with the method of Ito et al. [J Bacteriol 153:163-8 (1983)].

25

Screening for p110δ-Interacting Clones

One yeast colony containing the p110δ Ras-binding sequence was grown and the cells were transformed with a mouse embryonic cDNA library in the yeast vector pVP16. In this vector, the mouse cDNAs are cloned in frame with the VP16 sequence so that the resulting fusion protein can recognize RNA polymerase using the VP16 sequence to help initiate transcription. The cells were plated on appropriate selection medium lacking leucine, tryptophan and histidine. The ability of the yeast transformants to survive and propagate on this medium suggests an interaction
30

- 29 -

between p110 δ and the protein coded by the mouse cDNA sequence. As a further test of protein:protein interaction, replicas of the yeast colonies on the selection plates were made on membranes and assayed for β -galactosidase activity by a standard method [Breedon et al. *Cold Spring Harbor Symp Quant Biol* 50:643-50 (1985)].

5 Several hundred blue colonies were observed. The colonies that did not turn blue were considered false positive and discarded.

We selected 40 of the colonies that turned blue most rapidly and isolated plasmid DNA from each of them. *E. coli* cells that require leucine for growth were transformed with each of these 40 plasmid DNAs and plated on medium lacking leucine so that the cells carrying VP16 based plasmids would be selected. Plasmid DNAs were isolated from the *E. coli* transformants and re-introduced into the yeast cells carrying pBTM116-p110 δ Ras-binding domain. The resulting yeast transformants were again tested for the interaction with p110 δ by growth on medium lacking leucine, tryptophan, and histidine, and also assayed for β -galactosidase activity. Only those colonies that reproducibly tested positive for the interaction were selected for further characterization.

Characterization of p110 δ -Interacting Clones

Sequence Analysis

20 We determined the DNA sequences of 39 clones that were reproducibly positive for interaction with the p110 δ region of interest (aa 134 to 350 of SEQ ID NO:2). All of the DNA sequences were used to search the GenBank® database for any related proteins. Our searches revealed that the DNA sequence of Clone 32 (SEQ ID NO:15) is highly homologous with portions of the human and mouse LASP-1

25 DNAs (GenBank® Accession Nos. NM_006148 (human; SEQ ID NO:3) and NM_010688 (mouse; SEQ ID NO:17). The LASP-1 proteins of rabbit, human and mouse contain 2 domains: one LIM motif and one domain of Src homology region 3 (SH3), hence its name “LIM and SH3 Protein” [Tomasetto et al., *FEBS Lett* 373:245-9 (1995); Chew et al., *Amer J Physiol* 275 (Cell Physiol 44):C56-C57 (1998)]. The

30 amino acid sequence of the SH3 domain of Clone 32 (aa 4-60 of SEQ ID NO:16) was identical to the SH3 domain of both the human and mouse LASP-1 proteins (aa 205-261 of SEQ ID NO:4 and aa 207-263 of SEQ ID NO:18, respectively), which are

- 30 -

identical to one another. Moreover, the amino acid sequences of the Ras-binding domains of mouse and human p110 are 95% conserved. In particular, the amino acid sequences of the proline-rich segments within the Ras-binding domains of both the human and mouse p110 δ protein are identical. Since the mouse and human LASP-1 SH3 domain amino acid sequences are identical, and since the mouse and human p110 δ proline-rich segments are identical, we surmise that human LASP-1 is capable of binding to the human p110 δ proline-rich segment as does clone 32 which is derived from mouse LASP-1.

5 The DNA sequence of the Clone 32 is given below (note that the *NotI* sites
10 (underlined) at the 5' and 3' ends are from the vector).

15 GCGGCCGCTCAAACGGTACCGTGCAGTGTATGACTACAGCGCTGCCGACGAGGACGA
GGTCTCCTCCAGGATGGGGACACCATCGTCAATGTGCAGCAGATCGATGACGGCTG
GATGTACGGGACCGTAGAGCGCACCGGTGACACGGGGATGCTGCCAGCCAACCTACGT
20 GGAGGCCATCTGAACCTGTGCCGCCCCGCCCTGTCTTCATGCATTCCATGGCATC
ACATCTGTCCTGGGCCTGACCCGTCCACCCCTACAGTGTCTGTCTTTAAGATCT
TCAACTGCTTCTTATCCCCGCCCTCCAGCTTATTTACCATCCAAAGCCTTGTTC
TGCCCTTGAGCGGCCGC

(SEQ ID NO:15)

25 Since the mouse cDNAs are fused to the coding sequence of VP16, we deduced that the polypeptide sequence encoded by Clone 32 (below) was in the same reading frame as VP16. As noted above, amino acids 4-60 of SEQ ID NO:16 correspond to the amino terminal region of LASP-1.

25 RPLKRYRAVYDYSAADEDEVSFQDGDTIVNVQQIDDGWMYGTVERTGDTGMLPANYV
EAI

(SEQ ID NO:16)

Test for Specificity of Interaction of p110 δ with Clone 32

To check for the specificity of interaction of Clone 32 with the PI3 kinases, we introduced the Clone 32 plasmid DNA into the yeast cells carrying the p110 β Ras-binding domain, since the p110 β sequence is closest to the p110 δ sequence. After selection on appropriate growth medium, the yeast transformants were assayed for β -galactosidase activity. The cells carrying the p110 β sequence did not show any β -galactosidase activity whereas the p110 δ -carrying cells again showed positive activity, suggesting an absence of interaction between Clone 32 and p110 β Ras-binding domain (Table 2).

Clone 32 Interacts with the Proline (Pro) Rich Region of p110 δ

As determined by sequence analysis, Clone 32 comprises an SH3 domain. Since SH3 domains are known to bind proline rich sequences, we tested whether Clone 32 binds to the proline rich sequence of p110 δ . We created 3 individual clones, each carrying one of the following mutations: 1) P304/A, 2) P307/A, and 3) deletion of 51 amino acids (aa 300-350 of SEQ ID NO:2) into our original pBTM116-p110 δ Ras-binding domain construct using standard recombinant DNA techniques. Sequences of the proline-rich segments of p110 β and p110 δ are given below. In the p110 δ sequence, the proline residues mutated to provide the P304/A and P307/A clones are identified.

p110 δ : EQSNPAPQVQKPRAK----PPPIPAKKPSSV

(aa 288-314 of SEQ ID NO:2)

25 p110 β : EQEMIAIEAAINRNSSNLPLPLPPKKTRIIS

(aa 294-324 of SEQ ID NO:8)

The three mutant plasmids were introduced into yeast cells and tested for interaction with Clone 32 by growth on selective medium and β -galactosidase activity. Growth of the cells containing Clone 32 or mutant plasmids were poor. Moreover, as shown in Table 2, change of any of the proline residues to alanine

- 32 -

resulted in a reduction of β -galactosidase activity. Deletion of the proline rich segment eliminated β -galactosidase activity. These results suggest that the Clone 32 (which encodes an SH3 domain) product interacts with p110 δ (aa 134-350 of SEQ ID NO:2) through the proline rich segment of p110 δ .

5

Table 2

	Bait	β-Galactosidase Activity
	p110 β	
	p110 δ	++
10	p110 δ (P304/A)	-
	p110 δ (P307/A)	+/-
	p110 δ (Pro Rich Segment Deletion)	-

Further Verification of Interaction of p110 δ Ras-Binding Domain with Clone 32

15 Since the yeast di-hybrid technique can produce protein:protein interactions that are not always reproducible in mammalian cells, we tested whether Clone 32 can interact with p110 δ within a mammalian cell environment. We generated a fusion of GFP (Green Fluorescent Protein) with Clone 32 in the vector pcDNA3.1/NT-GFP-
 20 TOPO (Invitrogen, San Diego, CA) according to the procedure recommended by the supplier. The resulting fusion plasmid, designated "GFP-32," was co-transfected in triplicate with a FLAG-p110 δ -containing plasmid [Chantry et al., *J Biol Chem* 272:19236-41 (1997)] into the human embryonic kidney cell line HEK293. (The FLAG® N-terminal peptide identification system is described e.g., in US Patent Nos. 4,851,341 and 5,011,912.) Forty-eight hours after transfection the cells were lysed
 25 and immunoprecipitated using anti-FLAG® antibody M2-coated agarose beads. The bound proteins were separated by SDS-PAGE, blotted on nylon membrane, and probed with a rabbit anti-GFP antibody (Clontech, Palo Alto CA) and rabbit anti-p110 δ antibodies (prepared using the method described in US Patent No. 5,882,910). A horseradish peroxidase (HRP)-linked goat anti-rabbit antibody (Clontech) was used
 30 according to the manufacturer's protocol to develop the blot.

- 33 -

Examination of the developed blot showed a band at about 33 kDa in the lanes containing lysates of cells transfected with the plasmid pcDNA3.1/NT-GFP, indicating expression of the GFP protein only. In the lanes in which lysates from FLAG-p110 δ and pcDNA3.1/NT-GFP-clone32 co-transfected cells were applied, 5 both the FLAG-p110 δ band (at about 110 kDa) and the GFP-clone32 band (at about 40 kDa) were observed, indicating expression of both proteins.

We also analyzed the supernatant and pellet of anti-FLAG® immunoprecipitated samples for the presence of FLAG-p110 δ and GFP-clone32. As expected, the supernatants contained very little FLAG-p110 δ signal, indicating 10 successful precipitation of FLAG-p110 δ . Complementing the absence of FLAG-p110 δ in the supernatant, there was a large increase in the FLAG-p110 δ signal in the pellets. In addition to the FLAG-p110 δ signal, another band was observed in the pellet. This band comigrated with the GFP-clone32 band. These results indicate that 15 Clone 32 can associate with p110 δ within the mammalian cellular environment.

LASP-1 has been shown to be phosphorylated in response to extracellular signals such as forskolin, and the phosphorylation is correlated to the secretory response of the cells [Chew et al., *Am J Physiol* 275 (*Cell Physiol* 44:C56-C57) 20 (1998)]. In addition, LASP-1 has been shown to be tyrosine phosphorylated by c-Src and binds to actin [Schreiber et al., *Mol Med* 4:675-687 (1998)]. Since p110 δ is involved in cellular signal transduction pathways, we surmise that the LASP-1: p110 δ interaction may facilitate secretion and/or cytoskeletal reorganization. Disruption of the interaction between p110 δ proline rich sequence and SH3 domains may prevent 25 p110 δ activation in response to specific stimulus in a given cell type and thereby prevent unwanted signaling through the p110 δ pathway. Disease states mediated by excessive or undesirable p110 δ activity, therefore, may be expected to be susceptible to treatment using modulator compounds that disrupt binding or interaction of p110 δ with LASP-1.

EXAMPLE 2. Functional Significance of the Proline-rich Sequence in p110 δ

SH3 domains are approximately sixty amino acid residues long and are found 30 in many signaling proteins, enzymes, and cytoskeletal proteins. Despite their amino

- 34 -

acid sequence diversity, all SH3 domains bind to a short stretch of polyproline sequences of 8 to 10 amino acid residues. Even though several hundred distinct SH domains are known in human, they seem to bind polyproline sequences with a remarkable degree of specificity. The interaction between a polyproline sequence and a SH3 domain may be intramolecular or intermolecular. In the former case, the 5 polyproline sequence and the SH3 domain of the same polypeptide chain bind to each other. In case of intermolecular, interactions the polyproline sequence and the SH3 domain from different proteins interact.

Polyproline sequences serve as ligands for many protein domains such as the 10 EVH1 (Enabled, VASP Homology 1), WW and SH3 (Src Homology 3) for example. These protein domains and their ligand polyproline sequences have been observed in many species suggesting their evolutionary conserved role in cellular functions. Among the different domains that bind polyproline sequences, the SH3 domain has 15 been studied most of all.

SH3 binding has been shown to activate signaling enzymes as well as in the formation of active signaling complexes [Pleiman et al., *Science* 263:1609-1612 20 (1994); Pawson, *Nature* 373:573-580 (1995)]. The present study shows that the proline-rich segment of p110 δ can function as an SH3 binding sequence. Hence, it is possible that binding of SH3 domain-containing proteins leads to the activation of the kinase activity of p110 δ . For example, Src family kinases and adapter proteins (e.g., vav, cbl) having one or more SH3 domains may bind to p110 δ through the proline-rich domain.

Due to the important roles of polyproline sequences in the regulation of 25 cellular activation, small molecule inhibitors are being developed to prevent the interaction between polyproline sequences and their cognate binding partners. Proline is the only amino acid where the amido N is substituted. Based on this unique feature of proline, Nguyen et al., *Science*, 282: 2088-2092 (1998) designed a set of N-substituted analogs that can inhibit SH3-polyproline interaction.

30 Indications for p110 δ Activity Requirement in Neutrophils

Treatment of neutrophils with a p110 δ -specific inhibitor (such as disclosed in U.S.S.N. 09/841,341 filed April 24, 2001, the disclosure of which is hereby

- 35 -

incorporated by reference) results in the inhibition of neutrophil functions such as superoxide production. NADPH oxidase, the enzyme responsible for superoxide production, is a multicomponent enzyme, and p47-phox is an essential constituent of the complex. P47-phox is described in Volpp et.al., *PNAS*, 86: 7195-7199 (1989).

5 The p47-phox protein contains two SH3 domains. Human mutations of p47-phox have been discovered that result in defects in superoxide production by neutrophils. Most of these p47-phox mutations cause premature truncation and as a result the SH3 domains are not synthesized. These observations establish that in addition to p110 δ , p47-phox is also necessary for superoxide production. Since, both p110 δ and p47-phox are required, it is contemplated that the polyproline sequence of p110 δ functions in superoxide synthesis through an interaction with SH3 domain of p47-phox.

10

Indication for p110 δ Activity Requirement in B cells

In addition to inhibiting neutrophil function, p110 δ -specific inhibitor blocks B cell proliferation. This suggests that p110 δ plays an important role in B cell function. Bruton's tyrosine kinase (Btk) is another kinase that plays a crucial role in B cell function. Btk is described in Vetri et al., *Nature*, 361: 226-233 (1993) and Tsukata et al., *Cell*, 72: 279-290 (1993). Btk is preferentially expressed in B cells, mast cells and platelets. Btk is an X-linked gene, and defects in Btk activity results in X-linked agammaglobulinemia (XLA). Primary symptoms of XLA are low numbers of peripheral B cells and consequently low antibody titer. Similar to the defects in human B cells, in mice loss of Btk results in defective B cell development and function. A remarkably similar defect in B cell compartment was observed in PI kinase subunit p85 knock out mice. Since p85 is an essential component of class IA PI3 kinases, in addition to Btk, PI3 kinase(s) are apparently required for B cell function. Since Btk has an SH3 domain, it is contemplated that p110 δ interacts with the SH3 domain of Btk through its polyproline sequence.

20

25

In neutrophils and B cells therefore, it is contemplated that the polyproline sequence of p110 δ is involved in interactions with the SH3 domains of p47-phox and Btk respectively. However, in addition to interacting with other proteins, the polyproline sequence of p110 δ can interact with components of PI3 kinase itself. It may be recalled that class IA kinases consist of a catalytic subunit (p10) and a

30

- 36 -

regulatory subunit (p85). P85 is described in Escobedo et al., *Cell*, 65: 75-82 (1991); Skolnik et al., *Cell*, 65: 83-90 (1991) and Otsu et al., *Cell*, 65: 91-104 (1991).

5 Association of p85 is essential for the catalytic activity of p110. Though the regions responsible for the binding of p85 subunit to p110 subunit have been mapped, it is contemplated that the p110 subunit of PI3 kinase delta provides an additional binding site to the SH3 domain of p85 through its unique polyproline region, thereby further enhancing the interaction between p85 and p110 δ .

10 In summary the above example illustrates binding of the proline-rich sequence of p110 δ to SH3 domains of other proteins (e.g., p47-phox, Btk) or a component of PI3 kinase itself (e.g., p85) and regulation of cellular activity.

15 All publications and patent documents cited in this specification are incorporated herein by reference for all that they disclose.

20 While the present invention has been described with specific reference to certain preferred embodiments for purposes of clarity and understanding, it will be apparent to the skilled artisan that further changes and modifications may be practiced within the scope of the invention as it is defined in the claims set forth below. Accordingly, no limitations should be placed on the invention other than those specifically recited in the claims.

WHAT IS CLAIMED IS:

1. A method of identifying a modulator of p110 δ binding to LASP-1, comprising the steps of:
 - (a) providing a p110 δ polypeptide and a LASP-1 polypeptide having specific binding affinity for one another;
 - (b) measuring binding between the p110 δ polypeptide and the LASP-1 polypeptide in the presence and absence of a test compound; and
 - (c) identifying the test compound as a modulator of p110 δ binding to LASP-1 when a different amount of binding of the p110 δ polypeptide to the LASP-1 polypeptide is detected in the presence of the test compound than in the absence of the test compound.
2. A method according to Claim 1, wherein the p110 δ polypeptide comprises the proline rich region of p110 δ .
3. A method according to Claim 1, wherein the LASP-1 polypeptide comprises the SH3 region of LASP-1.
4. A method according to Claim 1, wherein the p110 δ polypeptide is provided as a fusion protein.
5. A method according to Claim 1, wherein the LASP-1 polypeptide is provided as a fusion protein.
6. A method according to Claim 1, wherein the p110 δ polypeptide is expressed by a host cell.
7. A method according to Claim 1, wherein the LASP-1 polypeptide is expressed by a host cell.
8. A method according to Claim 1, wherein the p110 δ polypeptide and the LASP-1 polypeptide are recombinantly coexpressed by a host cell.

- 38 -

9. A method according to Claim 1, wherein the modulator inhibits binding of p110 δ to LASP-1.

10. A method according to Claim 1, wherein the modulator enhances binding of p110 δ to LASP-1.

11. A compound having activity as a modulator of interaction between p110 δ and LASP-1, wherein the compound is identified according to the method of Claim 1.

12. A compound according to Claim 11, wherein the compound inhibits binding of p110 δ to LASP-1.

13. A method of treating a disease state characterized by undesirable or excessive activity of PI3K δ , comprising administering to a subject in need thereof a compound according to Claim 11 or a derived analog thereof in an amount effective to inhibit interaction of p110 δ with LASP-1.

14. A method according to Claim 13, wherein the modulator inhibits binding of p110 δ to LASP-1.

15. A method of modulating p110 δ binding to LASP-1, comprising the step of contacting p110 δ or LASP-1 with a modulator of p110 δ binding to LASP-1.

16. A method according to Claim 15, wherein the modulator inhibits binding of p110 δ to LASP-1.

17. A method of treating a disease state associated with p110 δ binding to LASP-1, comprising the step of administering to a subject in need thereof an effective amount of a modulator of p110 δ binding to LASP-1.

- 39 -

18. A method according to Claim 17, wherein the modulator inhibits binding of p110 δ to LASP-1.

19. A method of identifying a modulator of p110 δ binding to a polypeptide comprising an SH3 domain, comprising the steps of:

- (a) providing a p110 δ polypeptide and an SH3 domain-containing polypeptide having specific binding affinity for one another;
- (b) measuring binding between the p110 δ polypeptide and the SH3 domain-containing polypeptide in the presence and absence of a test compound; and
- (c) identifying the test compound as a modulator of p110 δ binding to the SH3 domain-containing polypeptide when a different amount of binding of the p110 δ polypeptide to the SH3 domain-containing polypeptide is detected in the presence of the test compound than in the absence of the test compound.

20. A method according to Claim 19, wherein the p110 δ polypeptide is provided as a fusion protein.

21. A method according to Claim 19, wherein the SH3 domain-containing polypeptide is provided as a fusion protein.

22. A method according to Claim 19, wherein the p110 δ polypeptide is expressed by a host cell.

23. A method according to Claim 19, wherein the SH3 domain-containing polypeptide is expressed by a host cell.

24. A method according to Claim 19, wherein the p110 δ polypeptide and the SH3 domain-containing polypeptide are recombinantly coexpressed by a host cell.

25. A method according to Claim 19, wherein the modulator inhibits binding of p110 δ to the SH3 domain-containing polypeptide.

- 40 -

26. A method according to Claim 19, wherein the modulator enhances binding of p110 δ to the SH3 domain-containing polypeptide.

27. A compound having activity as a modulator of interaction between p110 δ and an SH3 domain-containing polypeptide, wherein the compound is identified according to the method of Claim 19.

28. A compound according to Claim 28, wherein the compound inhibits binding of p110 δ to the SH3 domain-containing polypeptide.

29. A method of treating a disease state characterized by undesirable or excessive activity of PI3K δ , comprising administering to a subject in need thereof a compound according to Claim 27.

30. A method according to Claim 29, wherein the compound inhibits binding of p110 δ to the SH3 domain-containing polypeptide.

31. A method of modulating p110 δ binding to an SH3 domain-containing polypeptide, comprising the step of contacting p110 δ or the SH3 domain-containing polypeptide with a modulator of p110 δ binding to the SH3 domain-containing polypeptide.

32. A method according to Claim 31, wherein the modulator inhibits binding of p110 δ to the SH3 domain-containing polypeptide.

33. A method of treating a disease state associated with p110 δ binding to an SH3 domain-containing polypeptide, comprising the step of administering to a subject in need thereof an effective amount of a modulator of p110 δ binding to the SH3 domain-containing polypeptide.

34. A method according to Claim 33, wherein the modulator inhibits binding of p110 δ to the SH3 domain-containing polypeptide.

- 41 -

35. The method of claim 19, 29, 31 or 33 wherein the SH3 domain-containing polypeptide is p85.

36. The method of claim 19, 29, 31 or 33 wherein the SH3 domain-containing polypeptide is p47-phox.

37. The method of claim 19, 29, 31 or 33 wherein the SH3 domain-containing polypeptide is Btk.

-1-

SEQUENCE LISTING

<110> Sadhu, Chanchal

<120> PHOSPHATIDYL INOSITOL 3-KINASE DELTA BINDING PARTNER

<130> 36828PCT

<140>

<141>

<160> 18

<170> PatentIn Ver. 2.1

<210> 1

<211> 3868

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (197) ..(3331)

<223> Human p110 delta cDNA (GenBank Accession No.
NM_005026)

<400> 1

gaattcggca cgagcgccg cgagcagagc cgcccagccc tgccagctgc gcccggacga 60
taaggagtca ggccaggcg gatatgacact cattgattct aaagcatctt taatctgcc 120
ggcggagggg gctttgctgg tctttcttgg actattccag agaggacaac tgtcatctgg 180
gaagtaacaa cgcagg atg ccc cct ggg gtg gac tgc ccc atg gaa ttc tgg 232
Met Pro Pro Gly Val Asp Cys Pro Met Glu Phe Trp
1 5 10

acc aag gag gag aat cag agc gtt gtg gtt gac ttc ctg ctg ccc aca 280
Thr Lys Glu Glu Asn Gln Ser Val Val Val Asp Phe Leu Leu Pro Thr
15 20 25

ggg gtc tac ctg aac ttc cct gtg tcc cgc aat gcc aac ctc agc acc 328
Gly Val Tyr Leu Asn Phe Pro Val Ser Arg Asn Ala Asn Leu Ser Thr
30 35 40

atc aag cag ctg ctg tgg cac cgc gcc cag tat gag ccg ctc ttc cac 376
Ile Lys Gln Leu Leu Trp His Arg Ala Gln Tyr Glu Pro Leu Phe His
45 50 55 60

atg ctc agt ggc ccc gag gcc tat gtg ttc acc tgc atc aac cag aca 424
Met Leu Ser Gly Pro Glu Ala Tyr Val Phe Thr Cys Ile Asn Gln Thr
65 70 75

gcg gag cag caa gag ctg gag gac gag caa cgg cgt ctg tgt gac gtg 472
Ala Glu Gln Gln Glu Leu Glu Asp Glu Gln Arg Arg Leu Cys Asp Val
80 85 90

cag ccc ttc ctg ccc gtc ctg cgc ctg gtg gcc cgt gag ggc gac cgc 520
Gln Pro Phe Leu Pro Val Leu Arg Leu Val Ala Arg Glu Gly Asp Arg
95 100 105

-2-

gtg aag aag ctc atc aac tca cag atc agc ctc ctc atc ggc aaa ggc	568
Val Lys Lys Leu Ile Asn Ser Gln Ile Ser Leu Leu Ile Gly Lys Gly	
110 115 120	
ctc cac gag ttt gac tcc ttg tgc gac cca gaa gtg aac gac ttt cgc	616
Leu His Glu Phe Asp Ser Leu Cys Asp Pro Glu Val Asn Asp Phe Arg	
125 130 135 140	
gcc aag atg tgc caa ttc tgc gag gag ggc gcc ggc cgc cg ^g cag cag	664
Ala Lys Met Cys Gln Phe Cys Glu Ala Ala Ala Arg Arg Gln Gln	
145 150 155	
ctg ggc tgg gag gcc tgg ctg cag tac agt ttc ccc ctg cag ctg gag	712
Leu Gly Trp Glu Ala Trp Leu Gln Tyr Ser Phe Pro Leu Gln Leu Glu	
160 165 170	
ccc tcg gct caa acc tgg ggg cct ggt acc ctg cgg ctc ccg aac cgg	760
Pro Ser Ala Gln Thr Trp Gly Pro Gly Thr Leu Arg Leu Pro Asn Arg	
175 180 185	
gcc ctt ctg gtc aac gtt aag ttt gag ggc agc gag gag agc ttc acc	808
Ala Leu Leu Val Asn Val Lys Phe Glu Gly Ser Glu Glu Ser Phe Thr	
190 195 200	
ttc cag gtg tcc acc aag gac gtg ccg ctg gcg ctg atg gcc tgt gcc	856
Phe Gln Val Ser Thr Lys Asp Val Pro Leu Ala Leu Met Ala Cys Ala	
205 210 215 220	
ctg cgg aag aag gcc aca gtg ttc ccg cag ccg ctg gtg gag cag ccg	904
Leu Arg Lys Lys Ala Thr Val Phe Arg Gln Pro Leu Val Glu Gln Pro	
225 230 235	
gaa gac tac acg ctg cag gtg aac ggc agg cat gag tac ctg tat ggc	952
Glu Asp Tyr Thr Leu Gln Val Asn Gly Arg His Glu Tyr Leu Tyr Gly	
240 245 250	
agc tac ccg ctc tgc cag ttc cag tac atc tgc agc tgc ctg cac agt	1000
Ser Tyr Pro Leu Cys Gln Phe Gln Tyr Ile Cys Ser Cys Leu His Ser	
255 260 265	
ggg ttg acc cct cac ctg acc atg gtc cat tcc tcc tcc atc ctc gcc	1048
Gly Leu Thr Pro His Leu Thr Met Val His Ser Ser Ser Ile Leu Ala	
270 275 280	
atg cgg gat gag cag agc aac cct gcc ccc cag gtc cag aaa ccg cgt	1096
Met Arg Asp Glu Gln Ser Asn Pro Ala Pro Gln Val Gln Lys Pro Arg	
285 290 295 300	
gcc aaa cca cct ccc att cct gcg aag aag cct tcc tct gtg tcc ctg	1144
Ala Lys Pro Pro Ile Pro Ala Lys Lys Pro Ser Ser Val Ser Leu	
305 310 315	
tgg tcc ctg gag cag ccg ttc cgc atc gag ctc atc cag ggc agc aaa	1192
Trp Ser Leu Glu Gln Pro Phe Arg Ile Glu Leu Ile Gln Gly Ser Lys	
320 325 330	
gtg aac gcc gac gag cgg atg aag ctg gtg gtg cag gcc ggg ctt ttc	1240
Val Asn Ala Asp Glu Arg Met Lys Leu Val Val Gln Ala Gly Leu Phe	
335 340 345	

-3-

cac ggc aac gag atg ctg tgc aag acg gtg tcc agc tcg gag gtg agc	1288
His Gly Asn Glu Met Leu Cys Lys Thr Val Ser Ser Ser Glu Val Ser	
350 355 360	
gtg tgc tcg gag ccc gtg tgg aag cag cggttgc gag ttc gac atc aac	1336
Val Cys Ser Glu Pro Val Trp Lys Gln Arg Leu Glu Phe Asp Ile Asn	
365 370 375 380	
atc tgc gac ctg ccc cgc atg gcc cgt ctc tgc ttt gcgttg tac gcc	1384
Ile Cys Asp Leu Pro Arg Met Ala Arg Leu Cys Phe Ala Leu Tyr Ala	
385 390 395	
gtg atc gag aaa gcc aag aag gct cgc tcc acc aag aag aag tcc aag	1432
Val Ile Glu Lys Ala Lys Lys Ala Arg Ser Thr Lys Lys Ser Lys	
400 405 410	
aag gcg gac tgc ccc att gcc tgg gcc aac ctc atg ctg ttt gac tac	1480
Lys Ala Asp Cys Pro Ile Ala Trp Ala Asn Leu Met Leu Phe Asp Tyr	
415 420 425	
aag gac cag ctt aag acc ggg gaa cgc tgc ctc tac atg tgg ccc tcc	1528
Lys Asp Gln Leu Lys Thr Gly Glu Arg Cys Leu Tyr Met Trp Pro Ser	
430 435 440	
gtc cca gat gag aag ggc gag ctg ctg aac ccc acg ggc act gtg cgc	1576
Val Pro Asp Glu Lys Gly Glu Leu Leu Asn Pro Thr Gly Thr Val Arg	
445 450 455 460	
agt aac ccc aac acg gat agc gcc gct gcc ctg ctc atc tgc ctg ccc	1624
Ser Asn Pro Asn Thr Asp Ser Ala Ala Leu Leu Ile Cys Leu Pro	
465 470 475	
gag gtg gcc ccg cac ccc gtg tac tac ccc gcc ctg gag aag atc ttg	1672
Glu Val Ala Pro His Pro Val Tyr Tyr Pro Ala Leu Glu Lys Ile Leu	
480 485 490	
gag ctg ggg cga cac agc gag tgt gtg cat gtc acc gag gag gag cag	1720
Glu Leu Gly Arg His Ser Glu Cys Val His Val Thr Glu Glu Glu Gln	
495 500 505	
ctg cag ctg cgg gaa atc ctg gag cgg cgg ggg tct ggg gag ctg tat	1768
Leu Gln Leu Arg Glu Ile Leu Glu Arg Arg Gly Ser Gly Glu Leu Tyr	
510 515 520	
gag cac gag aag gac ctg gtg tgg aag ctg cgg cat gaa gtc cag gag	1816
Glu His Glu Lys Asp Leu Val Trp Lys Leu Arg His Glu Val Gln Glu	
525 530 535 540	
cac ttc ccg gag gcg cta gcc cgg ctg ctg gtc acc aag tgg aac	1864
His Phe Pro Glu Ala Leu Ala Arg Leu Leu Val Thr Lys Trp Asn	
545 550 555	
aag cat gag gat gtg gcc cag atg ctc tac ctg ctg tgc tcc tgg ccg	1912
Lys His Glu Asp Val Ala Gln Met Leu Tyr Leu Leu Cys Ser Trp Pro	
560 565 570	
gag ctg ccc gtc ctg agc gcc ctg gag ctg cta gac ttc agc ttc ccc	1960
Glu Leu Pro Val Leu Ser Ala Leu Glu Leu Leu Asp Phe Ser Phe Pro	
575 580 585	

-4-

gat tgc cac gta ggc tcc ttc gcc atc aag tcg ctg cgg aaa ctg acg Asp Cys His Val Gly Ser Phe Ala Ile Lys Ser Leu Arg Lys Leu Thr 590 595 600	2008
gac gat gag ctg ttc cag tac ctg ctg cag ctg gtg cag gtg ctc aag Asp Asp Glu Leu Phe Gln Tyr Leu Leu Gln Leu Val Gln Val Leu Lys 605 610 615 620	2056
tac gag tcc tac ctg gac tgc gag ctg acc aaa ttc ctg ctg gac cgg Tyr Glu Ser Tyr Leu Asp Cys Glu Leu Thr Lys Phe Leu Leu Asp Arg 625 630 635	2104
gcc ctg gcc aac cgc aag atc ggc cac ttc ctt ttc tgg cac ctc cgc Ala Leu Ala Asn Arg Lys Ile Gly His Phe Leu Phe Trp His Leu Arg 640 645 650	2152
tcc gag atg cac gtg ccg tgc gtg gcc ctg cgc ttc ggc ctc atc ctg Ser Glu Met His Val Pro Ser Val Ala Leu Arg Phe Gly Leu Ile Leu 655 660 665	2200
gag gcc tac tgc agg ggc agg acc cac cac atg aag gtg ctg atg aag Glu Ala Tyr Cys Arg Gly Arg Thr His His Met Lys Val Leu Met Lys 670 675 680	2248
cag ggg gaa gca ctg agc aaa ctg aag gcc ctg aat gac ttc gtc aag Gln Gly Glu Ala Leu Ser Lys Leu Lys Ala Leu Asn Asp Phe Val Lys 685 690 695 700	2296
ctg agc tct cag aag acc ccc aag ccc cag acc aag gag ctg atg cac Leu Ser Ser Gln Lys Thr Pro Lys Pro Gln Thr Lys Glu Leu Met His 705 710 715	2344
ttg tgc atg cgg cag gag gcc tac cta gag gcc ctc tcc cac ctg cag Leu Cys Met Arg Gln Glu Ala Tyr Leu Glu Ala Leu Ser His Leu Gln 720 725 730	2392
tcc cca ctc gac ccc agc acc ctg ctg gct gaa gtc tgc gtg gag cag Ser Pro Leu Asp Pro Ser Thr Leu Leu Ala Glu Val Cys Val Glu Gln 735 740 745	2440
tgc acc ttc atg gac tcc aag atg aag ccc ctg tgg atc atg tac agc Cys Thr Phe Met Asp Ser Lys Met Lys Pro Leu Trp Ile Met Tyr Ser 750 755 760	2488
aac gag gag gca ggc agc ggc ggc agc gtg ggc atc atc ttt aag aac Asn Glu Glu Ala Gly Ser Gly Gly Ser Val Gly Ile Ile Phe Lys Asn 765 770 775 780	2536
ggg gat gac ctc cgg cag gac atg ctg acc ctg cag atg atc cag ctc Gly Asp Asp Leu Arg Gln Asp Met Leu Thr Leu Gln Met Ile Gln Leu 785 790 795	2584
atg gac gtc ctg tgg aag cag gag ggg ctg gac ctg agg atg acc ccc Met Asp Val Leu Trp Lys Gln Glu Gly Leu Asp Leu Arg Met Thr Pro 800 805 810	2632
tat ggc tgc ctc ccc acc ggg gac cgc aca ggc ctc att gag gtg gta Tyr Gly Cys Leu Pro Thr Gly Asp Arg Thr Gly Leu Ile Glu Val Val 815 820 825	2680

-5-

ctc cgt tca gac acc atc gcc aac atc caa ctc aac aag agc aac atg Leu Arg Ser Asp Thr Ile Ala Asn Ile Gln Leu Asn Lys Ser Asn Met 830 835 840	2728
gca gcc aca gcc gcc ttc aac aag gat gcc ctg ctc aac tgg ctg aag Ala Ala Thr Ala Ala Phe Asn Lys Asp Ala Leu Leu Asn Trp Leu Lys 845 850 855 860	2776
tcc aag aac ccg ggg gag gcc ctg gat cga gcc att gag gag ttc acc Ser Lys Asn Pro Gly Glu Ala Leu Asp Arg Ala Ile Glu Glu Phe Thr 865 870 875	2824
ctc tcc tgt gct ggc tat tgt gtg gcc aca tat gtg ctg ggc att ggc Leu Ser Cys Ala Gly Tyr Cys Val Ala Thr Tyr Val Leu Gly Ile Gly 880 885 890	2872
gat cgg cac agc gac aac atc atg atc cga gag agt ggg cag ctg ttc Asp Arg His Ser Asp Asn Ile Met Ile Arg Glu Ser Gly Gln Leu Phe 895 900 905	2920
cac att gat ttt ggc cac ttt ctg ggg aat ttc aag acc aag ttt gga His Ile Asp Phe Gly His Phe Leu Gly Asn Phe Lys Thr Lys Phe Gly 910 915 920	2968
atc aac cgc gag cgt gtc cca ttc atc ctc acc tac gac ttt gtc cat Ile Asn Arg Glu Arg Val Pro Phe Ile Leu Thr Tyr Asp Phe Val His 925 930 935 940	3016
gtg att cag cag ggg aag act aat aat agt gag aaa ttt gaa cgg ttc Val Ile Gln Gln Gly Lys Thr Asn Asn Ser Glu Lys Phe Glu Arg Phe 945 950 955	3064
cgg ggc tac tgt gaa agg gcc tac acc atc ctg cgg cgc cac ggg ctt Arg Gly Tyr Cys Glu Arg Ala Tyr Thr Ile Leu Arg Arg His Gly Leu 960 965 970	3112
ctc ttc ctc cac ctc ttt gcc ctg atg cgg gcg gca ggc ctg cct gag Leu Phe Leu His Leu Phe Ala Leu Met Arg Ala Ala Gly Leu Pro Glu 975 980 985	3160
ctc agc tgc tcc aaa gac atc cag tat ctc aag gac tcc ctg gca ctg Leu Ser Cys Ser Lys Asp Ile Gln Tyr Leu Lys Asp Ser Leu Ala Leu 990 995 1000	3208
ggg aaa aca gag gag gca ctg aag cac ttc cga gtg aag ttt aac Gly Lys Thr Glu Glu Ala Leu Lys His Phe Arg Val Lys Phe Asn 1005 1010 1015 1020	3256
gaa gcc ctc cgt gag agc tgg aaa acc aaa gtg aac tgg ctg gcc cac Glu Ala Leu Arg Glu Ser Trp Lys Thr Lys Val Asn Trp Leu Ala His 1025 1030 1035	3304
aac gtg tcc aaa gac aac agg cag tag tggctcctcc cagccctggg Asn Val Ser Lys Asp Asn Arg Gln 1040 1045	3351
cccaagagga ggcggctgcg ggtcggtgggg accaagcaca ttggctctaa aggggctgaa	3411
gagcctgaac tgcaccta ac gggaaagaac cgacatggct gcctttgtt tacactggtt	3471
atttatattat gacttgaaat agtttaagga gctaaacagc cataaaacgga aacgcctcct	3531

-6-

tcatgcagcg gcgggtctgg gccccccgag gctgcacctg gctctcggt gaggattgtc 3591
acccccaagtc ttccagctgg tggatctggg cccagcaaag actgttctcc tcccgaggga 3651
accttcttccc caggcctccc gccagactgc ctgggtcctg gcgcctggcg gtcacctgg 3711
gcctactgtc cgacaggatg cttgatcct cgtgcgaccc accctgtgtta tcctccctag 3771
actgagttct ggcaagctccc cgagggcagcc ggggtaccct ctagattcag ggatgcttgc 3831
tctccacttt tcaagtgggt ctgggtacg agaattc 3868

```
<210> 2
<211> 1044
<212> PRT
<213> Homo sapiens
```

<400> 2
 Met Pro Pro Gly Val Asp Cys Pro Met Glu Phe Trp Thr Lys Glu Glu
 1 5 10 15
 Asn Gln Ser Val Val Val Asp Phe Leu Leu Pro Thr Gly Val Tyr Leu
 20 25 30
 Asn Phe Pro Val Ser Arg Asn Ala Asn Leu Ser Thr Ile Lys Gln Leu
 35 40 45
 Leu Trp His Arg Ala Gln Tyr Glu Pro Leu Phe His Met Leu Ser Gly
 50 55 60
 Pro Glu Ala Tyr Val Phe Thr Cys Ile Asn Gln Thr Ala Glu Gln Gln
 65 70 75 80
 Glu Leu Glu Asp Glu Gln Arg Arg Leu Cys Asp Val Gln Pro Phe Leu
 85 90 95
 Pro Val Leu Arg Leu Val Ala Arg Glu Gly Asp Arg Val Lys Lys Leu
 100 105 110
 Ile Asn Ser Gln Ile Ser Leu Leu Ile Gly Lys Gly Leu His Glu Phe
 115 120 125
 Asp Ser Leu Cys Asp Pro Glu Val Asn Asp Phe Arg Ala Lys Met Cys
 130 135 140
 Gln Phe Cys Glu Glu Ala Ala Ala Arg Arg Gln Gln Leu Gly Trp Glu
 145 150 155 160
 Ala Trp Leu Gln Tyr Ser Phe Pro Leu Gln Leu Glu Pro Ser Ala Gln
 165 170 175
 Thr Trp Gly Pro Gly Thr Leu Arg Leu Pro Asn Arg Ala Leu Leu Val
 180 185 190
 Asn Val Lys Phe Glu Gly Ser Glu Glu Ser Phe Thr Phe Gln Val Ser
 195 200 205
 Thr Lys Asp Val Pro Leu Ala Leu Met Ala Cys Ala Leu Arg Lys Lys
 210 215 220

-7-

Ala Thr Val Phe Arg Gln Pro Leu Val Glu Gln Pro Glu Asp Tyr Thr
 225 230 235 240
 Leu Gln Val Asn Gly Arg His Glu Tyr Leu Tyr Gly Ser Tyr Pro Leu
 245 250 255
 Cys Gln Phe Gln Tyr Ile Cys Ser Cys Leu His Ser Gly Leu Thr Pro
 260 265 270
 His Leu Thr Met Val His Ser Ser Ser Ile Leu Ala Met Arg Asp Glu
 275 280 285
 Gln Ser Asn Pro Ala Pro Gln Val Gln Lys Pro Arg Ala Lys Pro Pro
 290 295 300
 Pro Ile Pro Ala Lys Lys Pro Ser Ser Val Ser Leu Trp Ser Leu Glu
 305 310 315 320
 Gln Pro Phe Arg Ile Glu Leu Ile Gln Gly Ser Lys Val Asn Ala Asp
 325 330 335
 Glu Arg Met Lys Leu Val Val Gln Ala Gly Leu Phe His Gly Asn Glu
 340 345 350
 Met Leu Cys Lys Thr Val Ser Ser Ser Glu Val Ser Val Cys Ser Glu
 355 360 365
 Pro Val Trp Lys Gln Arg Leu Glu Phe Asp Ile Asn Ile Cys Asp Leu
 370 375 380
 Pro Arg Met Ala Arg Leu Cys Phe Ala Leu Tyr Ala Val Ile Glu Lys
 385 390 395 400
 Ala Lys Lys Ala Arg Ser Thr Lys Lys Ser Lys Lys Ala Asp Cys
 405 410 415
 Pro Ile Ala Trp Ala Asn Leu Met Leu Phe Asp Tyr Lys Asp Gln Leu
 420 425 430
 Lys Thr Gly Glu Arg Cys Leu Tyr Met Trp Pro Ser Val Pro Asp Glu
 435 440 445
 Lys Gly Glu Leu Leu Asn Pro Thr Gly Thr Val Arg Ser Asn Pro Asn
 450 455 460
 Thr Asp Ser Ala Ala Leu Leu Ile Cys Leu Pro Glu Val Ala Pro
 465 470 475 480
 His Pro Val Tyr Tyr Pro Ala Leu Glu Lys Ile Leu Glu Leu Gly Arg
 485 490 495
 His Ser Glu Cys Val His Val Thr Glu Glu Glu Gln Leu Gln Leu Arg
 500 505 510
 Glu Ile Leu Glu Arg Arg Gly Ser Gly Glu Leu Tyr Glu His Glu Lys
 515 520 525
 Asp Leu Val Trp Lys Leu Arg His Glu Val Gln Glu His Phe Pro Glu
 530 535 540
 Ala Leu Ala Arg Leu Leu Val Thr Lys Trp Asn Lys His Glu Asp
 545 550 555 560

-8-

Val	Ala	Gln	Met	Leu	Tyr	Leu	Leu	Cys	Ser	Trp	Pro	Glu	Leu	Pro	Val
				565						570					575
Leu	Ser	Ala	Leu	Glu	Leu	Leu	Asp	Phe	Ser	Phe	Pro	Asp	Cys	His	Val
				580					585						590
Gly	Ser	Phe	Ala	Ile	Lys	Ser	Leu	Arg	Lys	Leu	Thr	Asp	Asp	Glu	Leu
				595			600								605
Phe	Gln	Tyr	Leu	Leu	Gln	Leu	Val	Gln	Val	Leu	Lys	Tyr	Glu	Ser	Tyr
				610			615					620			
Leu	Asp	Cys	Glu	Leu	Thr	Lys	Phe	Leu	Leu	Asp	Arg	Ala	Leu	Ala	Asn
				625			630			635					640
Arg	Lys	Ile	Gly	His	Phe	Leu	Phe	Trp	His	Leu	Arg	Ser	Glu	Met	His
				645					650						655
Val	Pro	Ser	Val	Ala	Leu	Arg	Phe	Gly	Leu	Ile	Leu	Glu	Ala	Tyr	Cys
				660				665				670			
Arg	Gly	Arg	Thr	His	His	Met	Lys	Val	Leu	Met	Lys	Gln	Gly	Glu	Ala
				675			680				685				
Leu	Ser	Lys	Leu	Lys	Ala	Leu	Asn	Asp	Phe	Val	Lys	Leu	Ser	Ser	Gln
				690			695				700				
Lys	Thr	Pro	Lys	Pro	Gln	Thr	Lys	Glu	Leu	Met	His	Leu	Cys	Met	Arg
				705			710			715					720
Gln	Glu	Ala	Tyr	Leu	Glu	Ala	Leu	Ser	His	Leu	Gln	Ser	Pro	Leu	Asp
				725				730							735
Pro	Ser	Thr	Leu	Leu	Ala	Glu	Val	Cys	Val	Glu	Gln	Cys	Thr	Phe	Met
				740				745							750
Asp	Ser	Lys	Met	Lys	Pro	Leu	Trp	Ile	Met	Tyr	Ser	Asn	Glu	Glu	Ala
				755				760				765			
Gly	Ser	Gly	Gly	Ser	Val	Gly	Ile	Ile	Phe	Lys	Asn	Gly	Asp	Asp	Leu
				770			775				780				
Arg	Gln	Asp	Met	Leu	Thr	Leu	Gln	Met	Ile	Gln	Leu	Met	Asp	Val	Leu
				785			790			795					800
Trp	Lys	Gln	Glu	Gly	Leu	Asp	Leu	Arg	Met	Thr	Pro	Tyr	Gly	Cys	Leu
				805				810							815
Pro	Thr	Gly	Asp	Arg	Thr	Gly	Leu	Ile	Glu	Val	Val	Leu	Arg	Ser	Asp
				820				825							830
Thr	Ile	Ala	Asn	Ile	Gln	Leu	Asn	Lys	Ser	Asn	Met	Ala	Ala	Thr	Ala
				835			840					845			
Ala	Phe	Asn	Lys	Asp	Ala	Leu	Leu	Asn	Trp	Leu	Lys	Ser	Lys	Asn	Pro
				850			855				860				
Gly	Glu	Ala	Leu	Asp	Arg	Ala	Ile	Glu	Glu	Phe	Thr	Leu	Ser	Cys	Ala
				865			870			875					880
Gly	Tyr	Cys	Val	Ala	Thr	Tyr	Val	Leu	Gly	Ile	Gly	Asp	Arg	His	Ser
				885				890				895			

-9-

Asp Asn Ile Met Ile Arg Glu Ser Gly Gln Leu Phe His Ile Asp Phe
 900 905 910

Gly His Phe Leu Gly Asn Phe Lys Thr Lys Phe Gly Ile Asn Arg Glu
 915 920 925

Arg Val Pro Phe Ile Leu Thr Tyr Asp Phe Val His Val Ile Gln Gln
 930 935 940

Gly Lys Thr Asn Asn Ser Glu Lys Phe Glu Arg Phe Arg Gly Tyr Cys
 945 950 955 960

Glu Arg Ala Tyr Thr Ile Leu Arg Arg His Gly Leu Leu Phe Leu His
 965 970 975

Leu Phe Ala Leu Met Arg Ala Ala Gly Leu Pro Glu Leu Ser Cys Ser
 980 985 990

Lys Asp Ile Gln Tyr Leu Lys Asp Ser Leu Ala Leu Gly Lys Thr Glu
 995 1000 1005

Glu Glu Ala Leu Lys His Phe Arg Val Lys Phe Asn Glu Ala Leu Arg
 1010 1015 1020

Glu Ser Trp Lys Thr Lys Val Asn Trp Leu Ala His Asn Val Ser Lys
 1025 1030 1035 1040

Asp Asn Arg Gln

<210> 3

<211> 3846

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (76)..(861)

<223> Human LASP-1 cDNA (GenBank Accession No.
 NM_006148)

<400> 3

gcctcccgcc agctcgccctc ggggaacagg acgcgcgtga gtcaggcgt ccccgccccca 60

gcttttctcg gaacc atg aac ccc aac tgc gcc cgg tgc ggc aag atc gtg 111
 Met Asn Pro Asn Cys Ala Arg Cys Gly Lys Ile Val
 1 5 10

tat ccc acg gag aag gtg aac tgt ctg gat aag ttc tgg cat aaa gca 159
 Tyr Pro Thr Glu Lys Val Asn Cys Leu Asp Lys Phe Trp His Lys Ala
 15 20 25

tgc ttc cat tgc gag acc tgc aag atg aca ctg aac atg aag aac tac 207
 Cys Phe His Cys Glu Thr Cys Lys Met Thr Leu Asn Met Lys Asn Tyr
 30 35 40

aag ggc tac gag aag aag ccc tac tgc aac gca cac tac ccc aag cag 255
 Lys Gly Tyr Glu Lys Lys Pro Tyr Cys Asn Ala His Tyr Pro Lys Gln
 45 50 55 60

tcc ttc acc atg gtg gcg gac acc ccg gaa aac ctt cgc ctc aag caa 303

-10-

Ser Phe Thr Met Val Ala Asp Thr Pro Glu Asn Leu Arg Leu Lys Gln			
65	70	75	
cag agt gag ctc cag agt cag gtg cgc tac aag gag gag ttt gag aag			351
Gln Ser Glu Leu Gln Ser Gln Val Arg Tyr Lys Glu Glu Phe Glu Lys			
80	85	90	
aac aag ggc aaa ggt ttc agc gta gtg gca gac acg ccc gag ctc cag			399
Asn Lys Gly Lys Gly Phe Ser Val Val Ala Asp Thr Pro Glu Leu Gln			
95	100	105	
aga atc aag aag acc cag gac cag atc agt aat ata aaa tac cat gag			447
Arg Ile Lys Lys Thr Gln Asp Gln Ile Ser Asn Ile Lys Tyr His Glu			
110	115	120	
gag ttt gag aag agc cgc atg ggc cct agc ggg ggc gag ggc atg gag			495
Glu Phe Glu Lys Ser Arg Met Gly Pro Ser Gly Gly Glu Gly Met Glu			
125	130	135	140
cca gag cgt cgg gat tca cag gac ggc agc agc tac cgg cgg ccc ctg			543
Pro Glu Arg Arg Asp Ser Gln Asp Gly Ser Ser Tyr Arg Arg Pro Leu			
145	150	155	
gag cag cag cag cct cac cac atc ccg acc agt gcc ccg gtt tac cag			591
Glu Gln Gln Pro His His Ile Pro Thr Ser Ala Pro Val Tyr Gln			
160	165	170	
cag ccc cag cag cag ccg gtg gcc cag tcc tat ggt ggc tac aag gag			639
Gln Pro Gln Gln Pro Val Ala Gln Ser Tyr Gly Gly Tyr Lys Glu			
175	180	185	
cct gca gcc cca gtc tcc ata cag cgc agc gcc cca ggt ggt ggc ggg			687
Pro Ala Ala Pro Val Ser Ile Gln Arg Ser Ala Pro Gly Gly Gly Gly			
190	195	200	
aag cgg tac cgc gcg gtg tat gac tac agc gcc gcc gac gag gac gag			735
Lys Arg Tyr Arg Ala Val Tyr Asp Tyr Ser Ala Ala Asp Glu Asp Glu			
205	210	215	220
gtc tcc ttc cag gac ggg gac acc atc gtc aac gtg cag cag atc gac			783
Val Ser Phe Gln Asp Gly Asp Thr Ile Val Asn Val Gln Gln Ile Asp			
225	230	235	
gac ggc tgg atg tac ggg acg gtg gag cgc acc ggc gac acg ggg atg			831
Asp Gly Trp Met Tyr Gly Thr Val Glu Arg Thr Gly Asp Thr Gly Met			
240	245	250	
ctg ccg gcc aac tac gtg gag gcc atc tga acccggagcg ccccccacatctg			881
Leu Pro Ala Asn Tyr Val Glu Ala Ile			
255	260		
tcttcagcac attccacggc atcgcacatccg tcctggcggt gagccgtcca ttcttcagtg			941
tctctgtttt ttaaaaacctg cgacagcttg tgattcctac ccctcttcca gcttcttttg			1001
ccaaactgaag ccttcttctg ccacttctgc gggctccctc ctctggcagg cttccccctgt			1061
gatcgacttc ttggtttct ctctggatgg aacgggtatg ggcctctctg ggggaggcag			1121
ggctggaatg ggagacctgt tggcctgtgg gcctcacctg cccctctgtt ctctccccctc			1181
acatcctcct gcccagctcc tcacataccc acacattcca gggctggggt gagcctgact			1241

-11-

gccaggaccc caggtcaggg gctccctaca ttccccagag tgggatccac ttcttggttc 1301
ctggatggc gatggggact ctgccgtgt gtagggacca gtgggatggg ctctacctct 1361
ctttctcaa gagggggctc tgcccacctg gggtctctct ccctacctcc ctctcaggg 1421
gcaacaacag gagaatgggg ttccctgtgt ggggcgaatt catcccctcc ccgcgcgttc 1481
cttcgcacac tgtgatttg ccctcctgcc cacgcagacc tgcagcgggc aaagagctcc 1541
cgaggaagca cagcttgggt caggttcttg cctttcttaa ttttagggac agctaccgga 1601
aggaggggaa caaggagttc tcttccgcag ccccttccc cacgcccacc cccagtctcc 1661
agggaccctt gcctgcctcc taggctggaa gccatggtcc cgaagtgttag ggcaagggtg 1721
cctcaggacc ttttggtctt cagcctccct cagccccag gatctgggtt aggtggccgc 1781
tcctccctgc tcctcatggg aagatgtctc agagccttcc atgacctccc ctccccagcc 1841
caatgccaag tggacttggg gctgcacaaa gtcagcaggg accactaaat ctccaagacc 1901
tgtgtgcgg aggcaggagc atgtatgtct gcaggtgtct gacacgcaag tgtgtgagtg 1961
tgagtgtgag agatggggcg ggggtgtgtc tgtaggtgtc tctgggcctg tgtgtgggtg 2021
gggttatgtg agggtatgaa gagctgtctt cccctgagag tttcctcaga acccacagtg 2081
agaggggagg gctcctgggg cagagaagtt ctttaggttt tctttggaat gaaattcctc 2141
cttccccca tctctgagtg gaggaagccc accaatctgc cctttgcagt gtgtcagggt 2201
ggaaggtaag aggttgggt gtagttgggg ctgccatagg gtctgcagcc tgctgggct 2261
aagcggtgga ggaaggctct gtcactccag gcatatgttt ccccatctct gtctgggct 2321
acagaatagg gtggcagaag tgcaccctg tgggtgtctc ctcgggggc tcttcccta 2381
gaccccccc tcacttacat aaagctccct tgaagcaaga aagagggtcc caggcgtgca 2441
aaactggaag cacgcctcg gggatgggg gggaaagacg gtgctataatc cagttcctgc 2501
tctctgctca tgggtggctg tgacaaccct ggcctcaact gattcatctc tggttttctt 2561
gccaccctct gggagtcccc atcccatttt catcctgagc ccaaccaggc cctgccattg 2621
gcctcttgta ctttggcaca cttgtaccca caggtgaggg gcaggacctg aaggtattgg 2681
cctgttcaac aatcagtcat catgggtgtt tttgtcaact gcttgttaat tgatttgggg 2741
atgtttgccc cgaatgagag gttgaggaaa agactgtggg tggggaggcc ctgcctgacc 2801
catccctttt cctttctggc cccagcctag gtggaggcaa gtggaatatc ttatattggg 2861
cgatttgggg gctcggggag gcagagaatc tcttggaggt cttgggtggc gctgggtgc 2921
tctgtttcct cttgatctca aagcacaatg tggatttggg gaccaaaggt cagggacaca 2981
tccccttaga ggacctgagt ttgggagagt ggtgagtgga agggaggagc agcaagaagc 3041
agcctgtttt cactcagtt aattctcctt cccagataag gcaagccagt catggaatct 3101

-12-

tgctgcaggc ccccccctcta ctcttcctgt cctaaaaata ggggcccgttt tcttacacac 3161
ccccagagag aggagggact gtcacactgg tgctgagtga ccgggggctg ctgggcgtct 3221
gttctttacc aaaaccatcc atccctagaa gagcacagag ccctgaggggg ctgggctggg 3281
ctgggctgag cccctggtct tctctacagt tcacagaggt cttcagctc atttaatccc 3341
aggaaaagagg catcaaagct agaatgtcaa tataactttt gtggggccaat actaagaata 3401
acaagaagcc cagtggtgag gaaagtgcgt tctcccagca ctgcctcctg ttttctccct 3461
ctcatgtccc tccagggaaa atgactttat tgcttaattt ctgcctttcc cccctcacac 3521
atgcactttt gggccttttt ttatagctgg aaaaaacaaa ataccaccct acaaacctgt 3581
atttaaaaag aaacagaaaat gaccacgtga aatttgccctc tgccaaaca tttcatccgt 3641
gtgtatgtgt atgtgtgtga gtgtgtgaag ccgccagttc atcttttat atggggttgt 3701
tgtctcattt tggtctgttt tggtccccctc cctcgtggc ttgtgctcgg gatcaaacct 3761
ttctggcctg ttatgattct gaacatttga cttgaaccac aagtgaatct ttctcctgg 3821
gactcaaata aaagtataat tttta 3846

<210> 4
<211> 261
<212> PRT
<213> Homo sapiens

<400> 4
 Met Asn Pro Asn Cys Ala Arg Cys Gly Lys Ile Val Tyr Pro Thr Glu
 1 5 10 15
 Lys Val Asn Cys Leu Asp Lys Phe Trp His Lys Ala Cys Phe His Cys
 20 25 30
 Glu Thr Cys Lys Met Thr Leu Asn Met Lys Asn Tyr Lys Gly Tyr Glu
 35 40 45
 Lys Lys Pro Tyr Cys Asn Ala His Tyr Pro Lys Gln Ser Phe Thr Met
 50 55 60
 Val Ala Asp Thr Pro Glu Asn Leu Arg Leu Lys Gln Gln Ser Glu Leu
 65 70 75 80
 Gln Ser Gln Val Arg Tyr Lys Glu Glu Phe Glu Lys Asn Lys Gly Lys
 85 90 95
 Gly Phe Ser Val Val Ala Asp Thr Pro Glu Leu Gln Arg Ile Lys Lys
 100 105 110
 Thr Gln Asp Gln Ile Ser Asn Ile Lys Tyr His Glu Glu Phe Glu Lys
 115 120 125
 Ser Arg Met Gly Pro Ser Gly Gly Glu Gly Met Glu Pro Glu Arg Arg
 130 135 140
 Asp Ser Gln Asp Gly Ser Ser Tyr Arg Arg Pro Leu Glu Gln Gln Gln
 145 150 155 160

-13-

Pro His His Ile Pro Thr Ser Ala Pro Val Tyr Gln Gln Pro Gln Gln
 165 170 175

Gln Pro Val Ala Gln Ser Tyr Gly Gly Tyr Lys Glu Pro Ala Ala Pro
 180 185 190

Val Ser Ile Gln Arg Ser Ala Pro Gly Gly Gly Lys Arg Tyr Arg
 195 200 205

Ala Val Tyr Asp Tyr Ser Ala Ala Asp Glu Asp Glu Val Ser Phe Gln
 210 215 220

Asp Gly Asp Thr Ile Val Asn Val Gln Gln Ile Asp Asp Gly Trp Met
 225 230 235 240

Tyr Gly Thr Val Glu Arg Thr Gly Asp Thr Gly Met Leu Pro Ala Asn
 245 250 255

Tyr Val Glu Ala Ile
 260

<210> 5
<211> 3424
<212> DNA
<213> Homo sapiens

<220>
<221> CDS
<222> (13)..(3219)
<223> Human p110 alpha cDNA (GenBank Accession No.
NM_006218)

<400> 5
aggatcagaa ca atg cct cca aga cca tca ggt gaa ctg tgg ggc atc 51
Met Pro Pro Arg Pro Ser Ser Gly Glu Leu Trp Gly Ile
1 5 10

cac ttg atg ccc cca aga atc cta gtg gaa tgt tta cta cca aat gga 99
His Leu Met Pro Pro Arg Ile Leu Val Glu Cys Leu Leu Pro Asn Gly
15 20 25

atg ata gtg act tta gaa tgc ctc cgt gag gct aca tta gta act ata 147
Met Ile Val Thr Leu Glu Cys Leu Arg Glu Ala Thr Leu Val Thr Ile
30 35 40 45

aag cat gaa cta ttt aaa gaa gca aga aaa tac cct ctc cat caa ctt 195
Lys His Glu Leu Phe Lys Glu Ala Arg Lys Tyr Pro Leu His Gln Leu
50 55 60

ctt caa gat gaa tct tct tac att ttc gta agt gtt acc caa gaa gca 243
Leu Gln Asp Glu Ser Ser Tyr Ile Phe Val Ser Val Thr Gln Glu Ala
65 70 75

gaa agg gaa gaa ttt ttt gat gaa aca aga cga ctt tgt gat ctt cgg 291
Glu Arg Glu Glu Phe Phe Asp Glu Thr Arg Arg Leu Cys Asp Leu Arg
80 85 90

ctt ttt caa cca ttt tta aaa gta att gaa cca gta ggc aac cgt gaa 339
Leu Phe Gln Pro Phe Leu Lys Val Ile Glu Pro Val Gly Asn Arg Glu
95 100 105

-14-

gaa aag atc ctc aat cga gaa att ggt ttt gct atc ggc atg cca gtg	387
Glu Lys Ile Leu Asn Arg Glu Ile Gly Phe Ala Ile Gly Met Pro Val	
110 115 120 125	
tgc gaa ttt gat atg gtt aaa gat cct gaa gta cag gac ttc cga aga	435
Cys Glu Phe Asp Met Val Lys Asp Pro Glu Val Gln Asp Phe Arg Arg	
130 135 140	
aat att ctt aat gtt tgt aaa gaa gct gtg gat ctt agg gat ctt aat	483
Asn Ile Leu Asn Val Cys Lys Glu Ala Val Asp Leu Arg Asp Leu Asn	
145 150 155	
tca cct cat agt aga gca atg tat gtc tat ccg cca cat gta gaa tct	531
Ser Pro His Ser Arg Ala Met Tyr Val Tyr Pro Pro His Val Glu Ser	
160 165 170	
tca cca gag ctg cca aag cac ata tat aat aaa ttg gat aga ggc caa	579
Ser Pro Glu Leu Pro Lys His Ile Tyr Asn Lys Leu Asp Arg Gly Gln	
175 180 185	
ata ata gtg gtg att tgg gta ata gtt tct cca aat aat gac aag cag	627
Ile Ile Val Val Ile Trp Val Ile Val Ser Pro Asn Asn Asp Lys Gln	
190 195 200 205	
aag tat act ctg aaa atc aac cat gac tgt gtg cca gaa caa gta att	675
Lys Tyr Thr Leu Lys Ile Asn His Asp Cys Val Pro Glu Gln Val Ile	
210 215 220	
gct gaa gca atc agg aaa aaa act aga agt atg ttg cta tca tct gaa	723
Ala Glu Ala Ile Arg Lys Lys Thr Arg Ser Met Leu Leu Ser Ser Glu	
225 230 235	
caa tta aaa ctc tgt gtt tta gaa tat cag ggc aag tac att tta aaa	771
Gln Leu Lys Leu Cys Val Leu Glu Tyr Gln Gly Lys Tyr Ile Leu Lys	
240 245 250	
gtg tgt gga tgt gat gaa tac ttc cta gaa aaa tat cct ctg agt cag	819
Val Cys Gly Cys Asp Glu Tyr Phe Leu Glu Lys Tyr Pro Leu Ser Gln	
255 260 265	
tat aag tat ata aga agc tgt ata atg ctt ggg agg atg ccc aat ttg	867
Tyr Lys Tyr Ile Arg Ser Cys Ile Met Leu Gly Arg Met Pro Asn Leu	
270 275 280 285	
aag atg atg gct aaa gaa agc ctt tat tct caa ctg cca atg gac tgt	915
Lys Met Met Ala Lys Glu Ser Leu Tyr Ser Gln Leu Pro Met Asp Cys	
290 295 300	
ttt aca atg cca tct tat tcc aga cgc att tcc aca gct aca cca tat	963
Phe Thr Met Pro Ser Tyr Ser Arg Arg Ile Ser Thr Ala Thr Pro Tyr	
305 310 315	
atg aat gga gaa aca tct aca aaa tcc ctt tgg gtt ata aat aga gca	1011
Met Asn Gly Glu Thr Ser Thr Lys Ser Leu Trp Val Ile Asn Arg Ala	
320 325 330	
ctc aga ata aaa att ctt tgt gca acc tac gtg aat cta aat att cga	1059
Leu Arg Ile Lys Ile Leu Cys Ala Thr Tyr Val Asn Leu Asn Ile Arg	
335 340 345	

-15-

gac att gac aag att tat gtt cga aca ggt atc tac cat gga gga gaa	1107
Asp Ile Asp Lys Ile Tyr Val Arg Thr Gly Ile Tyr His Gly Gly Glu	
350 355 360 365	
ccc tta tgt gac aat gtg aac act caa aga gta cct tgt tcc aat ccc	1155
Pro Leu Cys Asp Asn Val Asn Thr Gln Arg Val Pro Cys Ser Asn Pro	
370 375 380	
agg tgg aat gaa tgg ctg aat tat gat ata tac att cct gat ctt cct	1203
Arg Trp Asn Glu Trp Leu Asn Tyr Asp Ile Tyr Ile Pro Asp Leu Pro	
385 390 395	
cgt gct cga ctt tgc ctt tcc att tgc tct gtt aaa ggc cga aag	1251
Arg Ala Ala Arg Leu Cys Leu Ser Ile Cys Ser Val Lys Gly Arg Lys	
400 405 410	
ggt gct aaa gag gaa cac tgt cca ttg gca tgg gga aat ata aac ttg	1299
Gly Ala Lys Glu Glu His Cys Pro Leu Ala Trp Gly Asn Ile Asn Leu	
415 420 425	
ttt gat tac aca gac act cta gta tct gga aaa atg gct ttg aat ctt	1347
Phe Asp Tyr Thr Asp Thr Leu Val Ser Gly Lys Met Ala Leu Asn Leu	
430 435 440 445	
tgg cca gta cct cat gga tta gaa gat ttg ctg aac cct att ggt gtt	1395
Trp Pro Val Pro His Gly Leu Glu Asp Leu Leu Asn Pro Ile Gly Val	
450 455 460	
act gga tca aat cca aat aaa gaa act cca tgc tta gag ttg gag ttt	1443
Thr Gly Ser Asn Pro Asn Lys Glu Thr Pro Cys Leu Glu Leu Glu Phe	
465 470 475	
gac tgg ttc agc agt gtg gta aag ttc cca gat atg tca gtg att gaa	1491
Asp Trp Phe Ser Ser Val Val Lys Phe Pro Asp Met Ser Val Ile Glu	
480 485 490	
gag cat gcc aat tgg tct gta tcc cga gaa gca gga ttt agc tat tcc	1539
Glu His Ala Asn Trp Ser Val Ser Arg Glu Ala Gly Phe Ser Tyr Ser	
495 500 505	
cac gca gga ctg agt aac aga cta gct aga gac aat gaa tta agg gaa	1587
His Ala Gly Leu Ser Asn Arg Leu Ala Arg Asp Asn Glu Leu Arg Glu	
510 515 520 525	
aat gac aaa gaa cag ctc aaa gca att tct aca cga gat cct ctc tct	1635
Asn Asp Lys Glu Gln Leu Lys Ala Ile Ser Thr Arg Asp Pro Leu Ser	
530 535 540	
gaa atc act gag cag gag aaa gat ttt cta tgg agt cac aga cac tat	1683
Glu Ile Thr Glu Gln Glu Lys Asp Phe Leu Trp Ser His Arg His Tyr	
545 550 555	
tgt gta act atc ccc gaa att cta ccc aaa ttg ctt ctg tct gtt aaa	1731
Cys Val Thr Ile Pro Glu Ile Leu Pro Lys Leu Leu Ser Val Lys	
560 565 570 575	
tgg aat tct aga gat gaa gta gcc cag atg tat tgc ttg gta aaa gat	1779
Trp Asn Ser Arg Asp Glu Val Ala Gln Met Tyr Cys Leu Val Lys Asp	
575 580 585	

-16-

tgg cct cca atc aaa cct gaa cag gct atg gaa ctt ctg gac tgt aat Trp Pro Pro Ile Lys Pro Glu Gln Ala Met Glu Leu Leu Asp Cys Asn 590 595 600 605	1827
tac cca gat cct atg gtt cga ggt ttt gct gtt cgg tgc ttg gaa aaa Tyr Pro Asp Pro Met Val Arg Gly Phe Ala Val Arg Cys Leu Glu Lys 610 615 620	1875
tat tta aca gat gac aaa ctt tct cag tat tta att cag cta gta cag Tyr Leu Thr Asp Asp Lys Leu Ser Gln Tyr Leu Ile Gln Leu Val Gln 625 630 635	1923
gtc cta aaa tat gaa caa tat ttg gat aac ttg ctt gtg aga ttt tta Val Leu Lys Tyr Glu Gln Tyr Leu Asp Asn Leu Leu Val Arg Phe Leu 640 645 650	1971
ctg aag aaa gca ttg act aat caa agg att ggg cac ttt ttc ttt tgg Leu Lys Lys Ala Leu Thr Asn Gln Arg Ile Gly His Phe Phe Phe Trp 655 660 665	2019
cat tta aaa tct gag atg cac aat aaa aca gtt agc cag agg ttt ggc His Leu Lys Ser Glu Met His Asn Lys Thr Val Ser Gln Arg Phe Gly 670 675 680 685	2067
ctg ctt ttg gag tcc tat tgt cgt gca tgt ggg atg tat ttg aag cac Leu Leu Leu Glu Ser Tyr Cys Arg Ala Cys Gly Met Tyr Leu Lys His 690 695 700	2115
ctg aat agg caa gtc gag gca atg gaa aag ctc att aac tta act gac Leu Asn Arg Gln Val Glu Ala Met Glu Lys Leu Ile Asn Leu Thr Asp 705 710 715	2163
att ctc aaa cag gag agg aag gat gaa aca caa aag gta cag atg aag Ile Leu Lys Gln Glu Arg Lys Asp Glu Thr Gln Lys Val Gln Met Lys 720 725 730	2211
ttt tta gtt gag caa atg agg cga cca gat ttc atg gat gcc cta cag Phe Leu Val Glu Gln Met Arg Arg Pro Asp Phe Met Asp Ala Leu Gln 735 740 745	2259
ggc ttg ctg tct cct cta aac cct gct cat caa cta gga aac ctc agg Gly Leu Leu Ser Pro Leu Asn Pro Ala His Gln Leu Gly Asn Leu Arg 750 755 760 765	2307
ctt aaa gag tgt cga att atg tct tct gca aaa agg cca ctg tgg ttg Leu Lys Glu Cys Arg Ile Met Ser Ser Ala Lys Arg Pro Leu Trp Leu 770 775 780	2355
aat tgg gag aac cca gac atc atg tca gag tta ctg ttt cag aac aat Asn Trp Glu Asn Pro Asp Ile Met Ser Glu Leu Leu Phe Gln Asn Asn 785 790 795	2403
gag atc atc ttt aaa aat ggg gat gat tta cgg caa gat atg cta aca Glu Ile Ile Phe Lys Asn Gly Asp Asp Leu Arg Gln Asp Met Leu Thr 800 805 810	2451
ctt caa att att cgt att atg gaa aat atc tgg caa aat caa ggt ctt Leu Gln Ile Ile Arg Ile Met Glu Asn Ile Trp Gln Asn Gln Gly Leu 815 820 825	2499

-17-

gat ctt cga atg tta cct tat ggt tgt ctg tca atc ggt gac tgt gtg		2547
Asp Leu Arg Met Leu Pro Tyr Gly Cys Leu Ser Ile Gly Asp Cys Val		
830 835 840 845		
gga ctt att gag gtg gtg cga aat tct cac act att atg caa att cag		2595
Gly Leu Ile Glu Val Val Arg Asn Ser His Thr Ile Met Gln Ile Gln		
850 855 860		
tgc aaa ggc ggc ttg aaa ggt gca ctg cag ttc aac agc cac aca cta		2643
Cys Lys Gly Gly Leu Lys Gly Ala Leu Gln Phe Asn Ser His Thr Leu		
865 870 875		
cat cag tgg ctc aaa gac aag aac aaa gga gaa ata tat gat gca gcc		2691
His Gln Trp Leu Lys Asp Lys Asn Lys Gly Glu Ile Tyr Asp Ala Ala		
880 885 890		
att gac ctg ttt aca cgt tca tgt gct gga tac tgt gta gct acc ttc		2739
Ile Asp Leu Phe Thr Arg Ser Cys Ala Gly Tyr Cys Val Ala Thr Phe		
895 900 905		
att ttg gga att gga gat cgt cac aat agt aac atc atg gtg aaa gac		2787
Ile Leu Gly Ile Gly Asp Arg His Asn Ser Asn Ile Met Val Lys Asp		
910 915 920 925		
gat gga caa ctg ttt cat ata gat ttt gga cac ttt ttg gat cac aag		2835
Asp Gly Gln Leu Phe His Ile Asp Phe Gly His Phe Leu Asp His Lys		
930 935 940		
aag aaa aaa ttt ggt tat aaa cga gaa cgt gtg cca ttt gtt ttg aca		2883
Lys Lys Phe Gly Tyr Lys Arg Glu Arg Val Pro Phe Val Leu Thr		
945 950 955		
cag gat ttc tta ata gtg att agt aaa gga gcc caa gaa tgc aca aag		2931
Gln Asp Phe Leu Ile Val Ile Ser Lys Gly Ala Gln Glu Cys Thr Lys		
960 965 970		
aca aga gaa ttt gag agg ttt cag gag atg tgt tac aag gct tat cta		2979
Thr Arg Glu Phe Glu Arg Phe Gln Glu Met Cys Tyr Lys Ala Tyr Leu		
975 980 985		
gct att cga cag cat gcc aat ctc ttc ata aat ctt ttc tca atg atg		3027
Ala Ile Arg Gln His Ala Asn Leu Phe Ile Asn Leu Phe Ser Met Met		
990 995 1000 1005		
ctt ggc tct gga atg cca gaa cta caa tct ttt gat gac att gca tac		3075
Leu Gly Ser Gly Met Pro Glu Leu Gln Ser Phe Asp Asp Ile Ala Tyr		
1010 1015 1020		
att cga aag acc cta gcc tta gat aaa act gag caa gag gct ttg gag		3123
Ile Arg Lys Thr Leu Ala Leu Asp Lys Thr Glu Gln Glu Ala Leu Glu		
1025 1030 1035		
tat ttc atg aaa caa atg aat gat gca cat cat ggt ggc tgg aca aca		3171
Tyr Phe Met Lys Gln Met Asn Asp Ala His His Gly Gly Trp Thr Thr		
1040 1045 1050		
aaa atg gat tgg atc ttc cac aca att aaa cag cat gca ttg aac tga		3219
Lys Met Asp Trp Ile Phe His Thr Ile Lys Gln His Ala Leu Asn		
1055 1060 1065		
aagataactg agaaaaatgaa agctcactct ggattccaca ctgcactgtt aataactctc		3279

-18-

agcaggcaaa gaccgattgc ataggaattt cacaatccat gaacagcatt agatttacag 3339
caagaacaga aataaaaatac tatataattt aaataatgtt aacgcaaaca gggtttgata 3399
gcacttaaac tagttcattt caaaa 3424

<210> 6
<211> 1068
<212> PRT
<213> Homo sapiens

<400> 6
Met Pro Pro Arg Pro Ser Ser Gly Glu Leu Trp Gly Ile His Leu Met
1 5 10 15
Pro Pro Arg Ile Leu Val Glu Cys Leu Leu Pro Asn Gly Met Ile Val
20 25 30
Thr Leu Glu Cys Leu Arg Glu Ala Thr Leu Val Thr Ile Lys His Glu
35 40 45
Leu Phe Lys Glu Ala Arg Lys Tyr Pro Leu His Gln Leu Leu Gln Asp
50 55 60
Glu Ser Ser Tyr Ile Phe Val Ser Val Thr Gln Glu Ala Glu Arg Glu
65 70 75 80
Glu Phe Phe Asp Glu Thr Arg Arg Leu Cys Asp Leu Arg Leu Phe Gln
85 90 95
Pro Phe Leu Lys Val Ile Glu Pro Val Gly Asn Arg Glu Lys Ile
100 105 110
Leu Asn Arg Glu Ile Gly Phe Ala Ile Gly Met Pro Val Cys Glu Phe
115 120 125
Asp Met Val Lys Asp Pro Glu Val Gln Asp Phe Arg Arg Asn Ile Leu
130 135 140
Asn Val Cys Lys Glu Ala Val Asp Leu Arg Asp Leu Asn Ser Pro His
145 150 155 160
Ser Arg Ala Met Tyr Val Tyr Pro Pro His Val Glu Ser Ser Pro Glu
165 170 175
Leu Pro Lys His Ile Tyr Asn Lys Leu Asp Arg Gly Gln Ile Ile Val
180 185 190
Val Ile Trp Val Ile Val Ser Pro Asn Asn Asp Lys Gln Lys Tyr Thr
195 200 205
Leu Lys Ile Asn His Asp Cys Val Pro Glu Gln Val Ile Ala Glu Ala
210 215 220
Ile Arg Lys Lys Thr Arg Ser Met Leu Leu Ser Ser Glu Gln Leu Lys
225 230 235 240
Leu Cys Val Leu Glu Tyr Gln Gly Lys Tyr Ile Leu Lys Val Cys Gly
245 250 255

-19-

Cys	Asp	Glu	Tyr	Phe	Leu	Glu	Lys	Tyr	Pro	Leu	Ser	Gln	Tyr	Lys	Tyr
				260		265							270		
Ile	Arg	Ser	Cys	Ile	Met	Leu	Gly	Arg	Met	Pro	Asn	Leu	Lys	Met	Met
	275					280							285		
Ala	Lys	Glu	Ser	Leu	Tyr	Ser	Gln	Leu	Pro	Met	Asp	Cys	Phe	Thr	Met
	290					295						300			
Pro	Ser	Tyr	Ser	Arg	Arg	Ile	Ser	Thr	Ala	Thr	Pro	Tyr	Met	Asn	Gly
	305					310					315		320		
Glu	Thr	Ser	Thr	Lys	Ser	Leu	Trp	Val	Ile	Asn	Arg	Ala	Leu	Arg	Ile
				325				330					335		
Lys	Ile	Leu	Cys	Ala	Thr	Tyr	Val	Asn	Leu	Asn	Ile	Arg	Asp	Ile	Asp
				340				345					350		
Lys	Ile	Tyr	Val	Arg	Thr	Gly	Ile	Tyr	His	Gly	Gly	Glu	Pro	Leu	Cys
				355				360					365		
Asp	Asn	Val	Asn	Thr	Gln	Arg	Val	Pro	Cys	Ser	Asn	Pro	Arg	Trp	Asn
				370		375						380			
Glu	Trp	Leu	Asn	Tyr	Asp	Ile	Tyr	Ile	Pro	Asp	Leu	Pro	Arg	Ala	Ala
	385				390						395		400		
Arg	Leu	Cys	Leu	Ser	Ile	Cys	Ser	Val	Lys	Gly	Arg	Lys	Gly	Ala	Lys
				405					410				415		
Glu	Glu	His	Cys	Pro	Leu	Ala	Trp	Gly	Asn	Ile	Asn	Leu	Phe	Asp	Tyr
				420				425					430		
Thr	Asp	Thr	Leu	Val	Ser	Gly	Lys	Met	Ala	Leu	Asn	Leu	Trp	Pro	Val
				435				440					445		
Pro	His	Gly	Leu	Glu	Asp	Leu	Leu	Asn	Pro	Ile	Gly	Val	Thr	Gly	Ser
				450			455					460			
Asn	Pro	Asn	Lys	Glu	Thr	Pro	Cys	Leu	Glu	Leu	Glu	Phe	Asp	Trp	Phe
				465			470				475		480		
Ser	Ser	Val	Val	Lys	Phe	Pro	Asp	Met	Ser	Val	Ile	Glu	Glu	His	Ala
				485					490				495		
Asn	Trp	Ser	Val	Ser	Arg	Glu	Ala	Gly	Phe	Ser	Tyr	Ser	His	Ala	Gly
				500				505					510		
Leu	Ser	Asn	Arg	Leu	Ala	Arg	Asp	Asn	Glu	Leu	Arg	Glu	Asn	Asp	Lys
				515			520						525		
Glu	Gln	Leu	Lys	Ala	Ile	Ser	Thr	Arg	Asp	Pro	Leu	Ser	Glu	Ile	Thr
				530			535						540		
Glu	Gln	Glu	Lys	Asp	Phe	Leu	Trp	Ser	His	Arg	His	Tyr	Cys	Val	Thr
				545			550				555		560		
Ile	Pro	Glu	Ile	Leu	Pro	Lys	Leu	Leu	Ser	Val	Lys	Trp	Asn	Ser	
				565				570					575		
Arg	Asp	Glu	Val	Ala	Gln	Met	Tyr	Cys	Leu	Val	Lys	Asp	Trp	Pro	Pro
				580				585					590		

-20-

Ile Lys Pro Glu Gln Ala Met Glu Leu Leu Asp Cys Asn Tyr Pro Asp
595 600 605

Pro Met Val Arg Gly Phe Ala Val Arg Cys Leu Glu Lys Tyr Leu Thr
610 615 620

Asp Asp Lys Leu Ser Gln Tyr Leu Ile Gln Leu Val Gln Val Leu Lys
625 630 635 640

Tyr Glu Gln Tyr Leu Asp Asn Leu Leu Val Arg Phe Leu Leu Lys Lys
645 650 655

Ala Leu Thr Asn Gln Arg Ile Gly His Phe Phe Trp His Leu Lys
660 665 670

Ser Glu Met His Asn Lys Thr Val Ser Gln Arg Phe Gly Leu Leu Leu
675 680 685

Glu Ser Tyr Cys Arg Ala Cys Gly Met Tyr Leu Lys His Leu Asn Arg
690 695 700

Gln Val Glu Ala Met Glu Lys Leu Ile Asn Leu Thr Asp Ile Leu Lys
705 710 715 720

Gln Glu Arg Lys Asp Glu Thr Gln Lys Val Gln Met Lys Phe Leu Val
725 730 735

Glu Gln Met Arg Arg Pro Asp Phe Met Asp Ala Leu Gln Gly Leu Leu
740 745 750

Ser Pro Leu Asn Pro Ala His Gln Leu Gly Asn Leu Arg Leu Lys Glu
755 760 765

Cys Arg Ile Met Ser Ser Ala Lys Arg Pro Leu Trp Leu Asn Trp Glu
770 775 780

Asn Pro Asp Ile Met Ser Glu Leu Leu Phe Gln Asn Asn Glu Ile Ile
785 790 795 800

Phe Lys Asn Gly Asp Asp Leu Arg Gln Asp Met Leu Thr Leu Gln Ile
805 810 815

Ile Arg Ile Met Glu Asn Ile Trp Gln Asn Gln Gly Leu Asp Leu Arg
820 825 830

Met Leu Pro Tyr Gly Cys Leu Ser Ile Gly Asp Cys Val Gly Leu Ile
• 835 840 845

Glu Val Val Arg Asn Ser His Thr Ile Met Gln Ile Gln Cys Lys Gly
850 855 860

Gly Leu Lys Gly Ala Leu Gln Phe Asn Ser His Thr Leu His Gln Trp
865 870 875 880

Leu Lys Asp Lys Asn Lys Gly Glu Ile Tyr Asp Ala Ala Ile Asp Leu
885 890 895

Phe Thr Arg Ser Cys Ala Gly Tyr Cys Val Ala Thr Phe Ile Leu Gly
900 905 910

Ile Gly Asp Arg His Asn Ser Asn Ile Met Val Lys Asp Asp Gly Gln
915 920 925

-21-

Leu Phe His Ile Asp Phe Gly His Phe Leu Asp His Lys Lys Lys Lys
 930 935 940
 Phe Gly Tyr Lys Arg Glu Arg Val Pro Phe Val Leu Thr Gln Asp Phe
 945 950 955 960
 Leu Ile Val Ile Ser Lys Gly Ala Gln Glu Cys Thr Lys Thr Arg Glu
 965 970 975
 Phe Glu Arg Phe Gln Glu Met Cys Tyr Lys Ala Tyr Leu Ala Ile Arg
 980 985 990
 Gln His Ala Asn Leu Phe Ile Asn Leu Phe Ser Met Met Leu Gly Ser
 995 1000 1005
 Gly Met Pro Glu Leu Gln Ser Phe Asp Asp Ile Ala Tyr Ile Arg Lys
 1010 1015 1020
 Thr Leu Ala Leu Asp Lys Thr Glu Gln Glu Ala Leu Glu Tyr Phe Met
 1025 1030 1035 1040
 Lys Gln Met Asn Asp Ala His His Gly Gly Trp Thr Thr Lys Met Asp
 1045 1050 1055
 Trp Ile Phe His Thr Ile Lys Gln His Ala Leu Asn
 1060 1065

<210> 7
 <211> 3213
 <212> DNA
 <213> Homo sapiens

<220>
 <221> CDS
 <222> (1) .. (3213)
 <223> Human p110 beta cDNA (GenBank Accession No.
NM_06219)

atg tgc ttc agt ttc ata atg cct cct gct atg gca gac atc ctt gac Met Cys Phe Ser Phe Ile Met Pro Pro Ala Met Ala Asp Ile Leu Asp 1 5 10 15	48
atc tgg gcg gtg gat tca cag ata gca tct gat ggc tcc ata cct gtg Ile Trp Ala Val Asp Ser Gln Ile Ala Ser Asp Gly Ser Ile Pro Val 20 25 30	96
gat ttc ctt ttg ccc act ggg att tat atc cag ttg gag gta cct cgg Asp Phe Leu Leu Pro Thr Gly Ile Tyr Ile Gln Leu Glu Val Pro Arg 35 40 45	144
gaa gct acc att tct tat att aag cag atg tta tgg aag caa gtt cac Glu Ala Thr Ile Ser Tyr Ile Lys Gln Met Leu Trp Lys Gln Val His 50 55 60	192
aat tac cca atg ttc aac ctc ctt atg gat att gac tcc tat atg ttt Asn Tyr Pro Met Phe Asn Leu Leu Met Asp Ile Asp Ser Tyr Met Phe 65 70 75 80	240

-22-

gca tgt gtg aat cag act gct gta tat gag gag ctt gaa gat gaa aca Ala Cys Val Asn Gln Thr Ala Val Tyr Glu Glu Leu Glu Asp Glu Thr 85 90 95	288
cga aga ctc tgt gat gtc aga cct ttt ctt cca gtt ctc aaa tta gtg Arg Arg Leu Cys Asp Val Arg Pro Phe Leu Pro Val Leu Lys Leu Val 100 105 110	336
aca aga agt tgt gac cca ggg gaa aaa tta gac tca aaa att gga gtc Thr Arg Ser Cys Asp Pro Gly Glu Lys Leu Asp Ser Lys Ile Gly Val 115 120 125	384
ctt ata gga aaa ggt ctg cat gaa ttt gat tcc ttg aag gat cct gaa Leu Ile Gly Lys Gly Leu His Glu Phe Asp Ser Leu Lys Asp Pro Glu 130 135 140	432
gta aat gaa ttt cga aga aaa atg cgc aaa ttc agc gag gaa aaa atc Val Asn Glu Phe Arg Arg Lys Met Arg Lys Phe Ser Glu Glu Lys Ile 145 150 155 160	480
ctg tca ctt gtg gga ttg tct tgg atg gac tgg cta aaa caa aca tat Leu Ser Leu Val Gly Leu Ser Trp Met Asp Trp Leu Lys Gln Thr Tyr 165 170 175	528
cca cca gag cat gaa cca tcc atc cct gaa aac tta gaa gat aaa ctt Pro Pro Glu His Glu Pro Ser Ile Pro Glu Asn Leu Glu Asp Lys Leu 180 185 190	576
tat ggg gga aag ctc atc gta gct gtt cat ttt gaa aac tgc cag gac Tyr Gly Lys Leu Ile Val Ala Val His Phe Glu Asn Cys Gln Asp 195 200 205	624
gtg ttt agc ttt caa gtg tct cct aat atg aat cct atc aaa gta aat Val Phe Ser Phe Gln Val Ser Pro Asn Met Asn Pro Ile Lys Val Asn 210 215 220	672
gaa ttg gca atc caa aaa cgt ttg act att cat ggg aag gaa gat gaa Glu Leu Ala Ile Gln Lys Arg Leu Thr Ile His Gly Lys Glu Asp Glu 225 230 235 240	720
gtt agc ccc tat gat tat gtg ttg caa gtc agc ggg aga gta gaa tat Val Ser Pro Tyr Asp Tyr Val Leu Gln Val Ser Gly Arg Val Glu Tyr 245 250 255	768
gtt ttt ggt gat cat cca cta att cag ttc cag tat atc cgg aac tgt Val Phe Gly Asp His Pro Leu Ile Gln Phe Gln Tyr Ile Arg Asn Cys 260 265 270	816
gtg atg aac aga gcc ctg ccc cat ttt ata ctt gtg gaa tgc tgc aag Val Met Asn Arg Ala Leu Pro His Phe Ile Leu Val Glu Cys Cys Lys 275 280 285	864
atc aag aaa atg tat gaa caa gaa atg att gcc ata gag gct gcc ata Ile Lys Lys Met Tyr Glu Gln Glu Met Ile Ala Ile Glu Ala Ala Ile 290 295 300	912
aat cga aat tca tct aat ctt cct ctt cca tta cca cca aag aaa aca Asn Arg Asn Ser Ser Asn Leu Pro Leu Pro Leu Pro Pro Lys Lys Thr 305 310 315 320	960

-23-

cga att att tct cat gtt tgg gaa aat aac aac cct ttc caa att gtc		1008	
Arg Ile Ile Ser His Val Trp Glu Asn Asn Asn Pro Phe Gln Ile Val			
325	330	335	
ttg gtt aag gga aat aaa ctt aac aca gag gaa act gta aaa gtt cat		1056	
Leu Val Lys Gly Asn Lys Leu Asn Thr Glu Glu Thr Val Lys Val His			
340	345	350	
gtc agg gct ggt ctt ttt cat ggt act gag ctc ctg tgt aaa acc atc		1104	
Val Arg Ala Gly Leu Phe His Gly Thr Glu Leu Leu Cys Lys Thr Ile			
355	360	365	
gta agc tca gag gta tca ggg aaa aat gat cat att tgg aat gaa cca		1152	
Val Ser Ser Glu Val Ser Gly Lys Asn Asp His Ile Trp Asn Glu Pro			
370	375	380	
ctg gaa ttt gat att aat att tgt gac tta cca aga atg gct cga tta		1200	
Leu Glu Phe Asp Ile Asn Ile Cys Asp Leu Pro Arg Met Ala Arg Leu			
385	390	395	400
tgt ttt gct gtt tat gca gtt ttg gat aaa gta aaa acg aag aaa tca		1248	
Cys Phe Ala Val Tyr Ala Val Leu Asp Lys Val Lys Thr Lys Ser			
405	410	415	
acg aaa act att aat ccc tct aaa tat cag acc atc agg aaa gct gga		1296	
Thr Lys Thr Ile Asn Pro Ser Lys Tyr Gln Thr Ile Arg Lys Ala Gly			
420	425	430	
aaa gtg cat tat cct gta gcg tgg gta aat acg atg gtt ttt gac ttt		1344	
Lys Val His Tyr Pro Val Ala Trp Val Asn Thr Met Val Phe Asp Phe			
435	440	445	
aaa gga caa ttg aga act gga gac ata ata tta cac agc tgg tct tca		1392	
Lys Gly Gln Leu Arg Thr Gly Asp Ile Ile Leu His Ser Trp Ser Ser			
450	455	460	
ttt cct gat gaa ctc gaa gaa atg ttg aat cca atg gga act gtt caa		1440	
Phe Pro Asp Glu Leu Glu Met Leu Asn Pro Met Gly Thr Val Gln			
465	470	475	480
aca aat cca tat act gaa aat gca aca gct ttg cat gtt aaa ttt cca		1488	
Thr Asn Pro Tyr Thr Glu Asn Ala Thr Ala Leu His Val Lys Phe Pro			
485	490	495	
gag aat aaa aaa caa cct tat tat tac cct ccc ttc gat aag att att		1536	
Glu Asn Lys Lys Gln Pro Tyr Tyr Pro Pro Phe Asp Lys Ile Ile			
500	505	510	
gaa aag gca gct gag att gca agc agt gat agt gct aat gtg tca agt		1584	
Glu Lys Ala Ala Glu Ile Ala Ser Ser Asp Ser Ala Asn Val Ser Ser			
515	520	525	
cga ggt gga aaa aag ttt ctt cct gta ttg aaa gaa atc ttg gac agg		1632	
Arg Gly Gly Lys Lys Phe Leu Pro Val Leu Lys Glu Ile Leu Asp Arg			
530	535	540	
gat ccc ttg tct caa ctg tgt gaa aat gaa atg gat ctt att tgg act		1680	
Asp Pro Leu Ser Gin Leu Cys Glu Asn Glu Met Asp Leu Ile Trp Thr			
545	550	555	560

-24-

ttg cga caa gac tgc cga gag att ttc cca caa tca ctg cca aaa tta Leu Arg Gln Asp Cys Arg Glu Ile Phe Pro Gln Ser Leu Pro Lys Leu 565 570 575	1728
ctg ctg tca atc aag tgg aat aaa ctt gag gat gtt gct cag ctt cag Leu Leu Ser Ile Lys Trp Asn Lys Leu Glu Asp Val Ala Gln Leu Gln 580 585 590	1776
gcg ctg ctt cag att tgg cct aaa ctg ccc ccc cgg gag gcc cta gag Ala Leu Leu Gln Ile Trp Pro Lys Leu Pro Pro Arg Glu Ala Leu Glu 595 600 605	1824
ctt ctg gat ttc aac tat cca gac cag tac gtt cga gaa tat gct gta Leu Leu Asp Phe Asn Tyr Pro Asp Gln Tyr Val Arg Glu Tyr Ala Val 610 615 620	1872
ggc tgc ctg cga cag atg agt gat gaa gaa ctt tct caa tat ctt tta Gly Cys Leu Arg Gln Met Ser Asp Glu Glu Leu Ser Gln Tyr Leu Leu 625 630 635 640	1920
caa ctg gtg caa gtg tta aaa tat gag cct ttt ctt gat tgt gcc ctc Gln Leu Val Gln Val Leu Lys Tyr Glu Pro Phe Leu Asp Cys Ala Leu 645 650 655	1968
tct aga ttc cta tta gaa aga gca ctt ggt aat cgg agg ata ggg cag Ser Arg Phe Leu Leu Glu Arg Ala Leu Gly Asn Arg Arg Ile Gly Gln 660 665 670	2016
ttt cta ttt tgg cat ctt agg tca gaa gtg cac att cct gct gtc tca Phe Leu Phe Trp His Leu Arg Ser Glu Val His Ile Pro Ala Val Ser 675 680 685	2064
gta caa ttt ggt gtc atc ctt gaa gca tac tgc cgg gga agt gtg ggg Val Gln Phe Gly Val Ile Leu Glu Ala Tyr Cys Arg Gly Ser Val Gly 690 695 700	2112
cac atg aaa gtg ctt tct aag cag gtt gaa gca ctc aat aag tta aaa His Met Lys Val Leu Ser Lys Gln Val Glu Ala Leu Asn Lys Leu Lys 705 710 715 720	2160
act tta aat agt tta atc aaa ctg aat gcc gtg aag tta aac aga gcc Thr Leu Asn Ser Leu Ile Lys Leu Asn Ala Val Lys Leu Asn Arg Ala 725 730 735	2208
aaa ggg aag gag gcc atg cat acc tgt tta aaa cag agt gct tac cgg Lys Gly Lys Glu Ala Met His Thr Cys Leu Lys Gln Ser Ala Tyr Arg 740 745 750	2256
gaa gcc ctc tct gac ctg cag tca ccc ctg aac cca tgt gtt atc ctc Glu Ala Leu Ser Asp Leu Gln Ser Pro Leu Asn Pro Cys Val Ile Leu 755 760 765	2304
tca gaa ctc tat gtt gaa aag tgc aaa tac atg gat tcc aaa atg aag Ser Glu Leu Tyr Val Glu Lys Cys Lys Tyr Met Asp Ser Lys Met Lys 770 775 780	2352
cct ttg tgg ctg gta tac aat aac aag gta ttt ggt gag gat tca gtt Pro Leu Trp Leu Val Tyr Asn Asn Lys Val Phe Gly Glu Asp Ser Val 785 790 795 800	2400

-25-

gga gtg att ttt aaa aat ggt gat gat tta cga cag gat atg ttg aca Gly Val Ile Phe Lys Asn Gly Asp Asp Leu Arg Gln Asp Met Leu Thr 805 810 815	2448
ctc caa atg ttg cgc ttg atg gat tta ctc tgg aaa gaa gct ggt ttg Leu Gln Met Leu Arg Leu Met Asp Leu Leu Trp Lys Glu Ala Gly Leu 820 825 830	2496
gat ctt cgg atg ttg cct tat ggc tgt tta gca aca gga gat cgc tct Asp Leu Arg Met Leu Pro Tyr Gly Cys Leu Ala Thr Gly Asp Arg Ser 835 840 845	2544
ggc ctc att gaa gtt gtg agc acc tct gaa aca att gct gac att cag Gly Leu Ile Glu Val Val Ser Thr Ser Glu Thr Ile Ala Asp Ile Gln 850 855 860	2592
ctg aac agt agc aat gtg gct gca gca gcc ttc aac aaa gat gcc Leu Asn Ser Asn Asn Val Ala Ala Ala Ala Phe Asn Lys Asp Ala 865 870 875 880	2640
ctt ctg aac tgg ctt aaa gaa tac aac tct ggg gat gac ctg gac cga Leu Leu Asn Trp Leu Lys Glu Tyr Asn Ser Gly Asp Asp Leu Asp Arg 885 890 895	2688
gcc att gag gaa ttt aca ctg tcc tgt gct ggc tac tgt gta gct tct Ala Ile Glu Phe Thr Leu Ser Cys Ala Gly Tyr Cys Val Ala Ser 900 905 910	2736
tat gtc ctt ggg att ggt gac aga cat agt gac aac atc atg gtc aaa Tyr Val Leu Gly Ile Gly Asp Arg His Ser Asp Asn Ile Met Val Lys 915 920 925	2784
aaa act ggc cag ctc ttc cac att gac ttt gga cat att ctt gga aat Lys Thr Gly Gln Leu Phe His Ile Asp Phe Gly His Ile Leu Gly Asn 930 935 940	2832
ttc aaa tct aag ttt ggc att aaa agg gag cga gtg cct ttt att ctt Phe Lys Ser Lys Phe Gly Ile Lys Arg Glu Arg Val Pro Phe Ile Leu 945 950 955 960	2880
acc tat gat ttc atc cat gtc att caa caa gga aaa aca gga aat aca Thr Tyr Asp Phe Ile His Val Ile Gln Gln Gly Lys Thr Gly Asn Thr 965 970 975	2928
gaa aag ttt ggc cgg ttc cgc cag tgt tgt gag gat gca tat ctg att Glu Lys Phe Gly Arg Phe Arg Gln Cys Cys Glu Asp Ala Tyr Leu Ile 980 985 990	2976
tta cga cgg cat ggg aat ctc ttc atc act ctc ttt gcg ctg atg ttg Leu Arg Arg His Gly Asn Leu Phe Ile Thr Leu Phe Ala Leu Met Leu 995 1000 1005	3024
act gca ggg ctt cct gaa ctc aca tca gtc aaa gat ata cag tat ctt Thr Ala Gly Leu Pro Glu Leu Thr Ser Val Lys Asp Ile Gln Tyr Leu 1010 1015 1020	3072
aag gac tct ctt gca tta ggg aag agt gaa gaa gaa gca ctc aaa cag Lys Asp Ser Leu Ala Leu Gly Lys Ser Glu Glu Glu Ala Leu Lys Gln 1025 1030 1035 1040	3120

-26-

ttt aag caa aaa ttt gat gag gcg ctc agg gaa agc tgg act act aaa Phe Lys Gln Lys Phe Asp Glu Ala Leu Arg Glu Ser Trp Thr Thr Lys 1045 1050 1055	3168
gtg aac tgg atg gcc cac aca gtt cg ^g aaa gac tac aga tct taa Val Asn Trp Met Ala His Thr Val Arg Lys Asp Tyr Arg Ser 1060 1065 1070	3213
<210> 8	
<211> 1070	
<212> PRT	
<213> Homo sapiens	
<400> 8	
Met Cys Phe Ser Phe Ile Met Pro Pro Ala Met Ala Asp Ile Leu Asp 1 5 10 15	
Ile Trp Ala Val Asp Ser Gln Ile Ala Ser Asp Gly Ser Ile Pro Val 20 25 30	
Asp Phe Leu Leu Pro Thr Gly Ile Tyr Ile Gln Leu Glu Val Pro Arg 35 40 45	
Glu Ala Thr Ile Ser Tyr Ile Lys Gln Met Leu Trp Lys Gln Val His 50 55 60	
Asn Tyr Pro Met Phe Asn Leu Leu Met Asp Ile Asp Ser Tyr Met Phe 65 70 75 80	
Ala Cys Val Asn Gln Thr Ala Val Tyr Glu Glu Leu Glu Asp Glu Thr 85 90 95	
Arg Arg Leu Cys Asp Val Arg Pro Phe Leu Pro Val Leu Lys Leu Val 100 105 110	
Thr Arg Ser Cys Asp Pro Gly Glu Lys Leu Asp Ser Lys Ile Gly Val 115 120 125	
Leu Ile Gly Lys Gly Leu His Glu Phe Asp Ser Leu Lys Asp Pro Glu 130 135 140	
Val Asn Glu Phe Arg Arg Lys Met Arg Lys Phe Ser Glu Glu Lys Ile 145 150 155 160	
Leu Ser Leu Val Gly Leu Ser Trp Met Asp Trp Leu Lys Gln Thr Tyr 165 170 175	
Pro Pro Glu His Glu Pro Ser Ile Pro Glu Asn Leu Glu Asp Lys Leu 180 185 190	
Tyr Gly Gly Lys Leu Ile Val Ala Val His Phe Glu Asn Cys Gln Asp 195 200 205	
Val Phe Ser Phe Gln Val Ser Pro Asn Met Asn Pro Ile Lys Val Asn 210 215 220	
Glu Leu Ala Ile Gln Lys Arg Leu Thr Ile His Gly Lys Glu Asp Glu 225 230 235 240	
Val Ser Pro Tyr Asp Tyr Val Leu Gln Val Ser Gly Arg Val Glu Tyr 245 250 255	

-27-

Val Phe Gly Asp His Pro Leu Ile Gln Phe Gln Tyr Ile Arg Asn Cys
260 265 270

Val Met Asn Arg Ala Leu Pro His Phe Ile Leu Val Glu Cys Cys Lys
275 280 285

Ile Lys Lys Met Tyr Glu Gln Glu Met Ile Ala Ile Glu Ala Ala Ile
290 295 300

Asn Arg Asn Ser Ser Asn Leu Pro Leu Pro Leu Pro Pro Lys Lys Thr
305 310 315 320

Arg Ile Ile Ser His Val Trp Glu Asn Asn Asn Pro Phe Gln Ile Val
325 330 335

Leu Val Lys Gly Asn Lys Leu Asn Thr Glu Glu Thr Val Lys Val His
340 345 350

Val Arg Ala Gly Leu Phe His Gly Thr Glu Leu Leu Cys Lys Thr Ile
355 360 365

Val Ser Ser Glu Val Ser Gly Lys Asn Asp His Ile Trp Asn Glu Pro
370 375 380

Leu Glu Phe Asp Ile Asn Ile Cys Asp Leu Pro Arg Met Ala Arg Leu
385 390 395 400

Cys Phe Ala Val Tyr Ala Val Leu Asp Lys Val Lys Thr Lys Lys Ser
405 410 415

Thr Lys Thr Ile Asn Pro Ser Lys Tyr Gln Thr Ile Arg Lys Ala Gly
420 425 430

Lys Val His Tyr Pro Val Ala Trp Val Asn Thr Met Val Phe Asp Phe
435 440 445

Lys Gly Gln Leu Arg Thr Gly Asp Ile Ile Leu His Ser Trp Ser Ser
450 455 460

Phe Pro Asp Glu Leu Glu Glu Met Leu Asn Pro Met Gly Thr Val Gln
465 470 475 480

Thr Asn Pro Tyr Thr Glu Asn Ala Thr Ala Leu His Val Lys Phe Pro
485 490 495

Glu Asn Lys Lys Gln Pro Tyr Tyr Pro Pro Phe Asp Lys Ile Ile
500 505 510

Glu Lys Ala Ala Glu Ile Ala Ser Ser Asp Ser Ala Asn Val Ser Ser
515 520 525

Arg Gly Gly Lys Lys Phe Leu Pro Val Leu Lys Glu Ile Leu Asp Arg
530 535 540

Asp Pro Leu Ser Gln Leu Cys Glu Asn Glu Met Asp Leu Ile Trp Thr
545 550 555 560

Leu Arg Gln Asp Cys Arg Glu Ile Phe Pro Gln Ser Leu Pro Lys Leu
565 570 575

Leu Leu Ser Ile Lys Trp Asn Lys Leu Glu Asp Val Ala Gln Leu Gln
580 585 590

-28-

Ala	Leu	Leu	Gln	Ile	Trp	Pro	Lys	Leu	Pro	Pro	Arg	Glu	Ala	Leu	Glu
595						600						605			
Leu	Leu	Asp	Phe	Asn	Tyr	Pro	Asp	Gln	Tyr	Val	Arg	Glu	Tyr	Ala	Val
610						615						620			
Gly	Cys	Leu	Arg	Gln	Met	Ser	Asp	Glu	Glu	Leu	Ser	Gln	Tyr	Leu	Leu
625						630				635		640			
Gln	Leu	Val	Gln	Val	Leu	Lys	Tyr	Glu	Pro	Phe	Leu	Asp	Cys	Ala	Leu
						645			650		655				
Ser	Arg	Phe	Leu	Leu	Glu	Arg	Ala	Leu	Gly	Asn	Arg	Arg	Ile	Gly	Gln
						660			665		670				
Phe	Leu	Phe	Trp	His	Leu	Arg	Ser	Glu	Val	His	Ile	Pro	Ala	Val	Ser
						675			680		685				
Val	Gln	Phe	Gly	Val	Ile	Leu	Glu	Ala	Tyr	Cys	Arg	Gly	Ser	Val	Gly
						690			695		700				
His	Met	Lys	Val	Leu	Ser	Lys	Gln	Val	Glu	Ala	Leu	Asn	Lys	Leu	Lys
						705			710		715		720		
Thr	Leu	Asn	Ser	Leu	Ile	Lys	Leu	Asn	Ala	Val	Lys	Leu	Asn	Arg	Ala
						725			730		735				
Lys	Gly	Lys	Glu	Ala	Met	His	Thr	Cys	Leu	Lys	Gln	Ser	Ala	Tyr	Arg
						740			745		750				
Glu	Ala	Leu	Ser	Asp	Leu	Gln	Ser	Pro	Leu	Asn	Pro	Cys	Val	Ile	Leu
						755			760		765				
Ser	Glu	Leu	Tyr	Val	Glu	Lys	Cys	Lys	Tyr	Met	Asp	Ser	Lys	Met	Lys
						770			775		780				
Pro	Leu	Trp	Leu	Val	Tyr	Asn	Asn	Lys	Val	Phe	Gly	Glu	Asp	Ser	Val
						785			790		795		800		
Gly	Val	Ile	Phe	Lys	Asn	Gly	Asp	Asp	Leu	Arg	Gln	Asp	Met	Leu	Thr
						805			810		815				
Leu	Gln	Met	Leu	Arg	Leu	Met	Asp	Leu	Leu	Trp	Lys	Glu	Ala	Gly	Leu
						820			825		830				
Asp	Leu	Arg	Met	Leu	Pro	Tyr	Gly	Cys	Leu	Ala	Thr	Gly	Asp	Arg	Ser
						835			840		845				
Gly	Leu	Ile	Glu	Val	Val	Ser	Thr	Ser	Glu	Thr	Ile	Ala	Asp	Ile	Gln
						850			855		860				
Leu	Asn	Ser	Ser	Asn	Val	Ala	Ala	Ala	Ala	Phe	Asn	Lys	Asp	Ala	
						865			870		875		880		
Leu	Leu	Asn	Trp	Leu	Lys	Glu	Tyr	Asn	Ser	Gly	Asp	Asp	Leu	Asp	Arg
						885			890		895				
Ala	Ile	Glu	Glu	Phe	Thr	Leu	Ser	Cys	Ala	Gly	Tyr	Cys	Val	Ala	Ser
						900			905		910				
Tyr	Val	Leu	Gly	Ile	Gly	Asp	Arg	His	Ser	Asp	Asn	Ile	Met	Val	Lys
						915			920		925				

-29-

Lys Thr Gly Gln Leu Phe His Ile Asp Phe Gly His Ile Leu Gly Asn
 930 935 940
 Phe Lys Ser Lys Phe Gly Ile Lys Arg Glu Arg Val Pro Phe Ile Leu
 945 950 955 960
 Thr Tyr Asp Phe Ile His Val Ile Gln Gln Gly Lys Thr Gly Asn Thr
 965 970 975
 Glu Lys Phe Gly Arg Phe Arg Gln Cys Cys Glu Asp Ala Tyr Leu Ile
 980 985 990
 Leu Arg Arg His Gly Asn Leu Phe Ile Thr Leu Phe Ala Leu Met Leu
 995 1000 1005
 Thr Ala Gly Leu Pro Glu Leu Thr Ser Val Lys Asp Ile Gln Tyr Leu
 1010 1015 1020
 Lys Asp Ser Leu Ala Leu Gly Lys Ser Glu Glu Ala Leu Lys Gln
 1025 1030 1035 1040
 Phe Lys Gln Lys Phe Asp Glu Ala Leu Arg Glu Ser Trp Thr Thr Lys
 1045 1050 1055
 Val Asn Trp Met Ala His Thr Val Arg Lys Asp Tyr Arg Ser
 1060 1065 1070

```
<210> 9  
<211> 5397  
<212> DNA  
<213> Homo sapiens
```

<220>
<221> CDS
<222> (324)..(3629)
<223> Human pl10 gamma cDNA (GenBank Accession No.
NM_002469)

-30-

agt gct gcc agc ctg tcc tcc atg gag ctc atc ccc atc gag ttc gtg	449
Ser Ala Ala Ser Leu Ser Ser Met Glu Leu Ile Pro Ile Glu Phe Val	
30 35 40	
ctg ccc acc agc cag cgc aaa tgc aag agc ccc gaa acg gcg ctg ctg	497
Leu Pro Thr Ser Gln Arg Lys Cys Lys Ser Pro Glu Thr Ala Leu Leu	
45 50 55	
cac gtg gcc ggc cac ggc aac gtg gag cag atg aag gcc cag gtg tgg	545
His Val Ala Gly His Gly Asn Val Glu Gln Met Lys Ala Gln Val Trp	
60 65 70	
ctg cga gcg ctg gag acc agc gtg gcg gac ttc tac cac cgg ctg	593
Leu Arg Ala Leu Glu Thr Ser Val Ala Ala Asp Phe Tyr His Arg Leu	
75 80 85 90	
gga ccg cat cac ttc ctc ctg ctc tat cag aag aag ggg cag tgg tac	641
Gly Pro His His Phe Leu Leu Leu Tyr Gln Lys Lys Gly Gln Trp Tyr	
95 100 105	
gag atc tac gac aag tac cag gtg gtg cag act ctg gac tgc ctg cgc	689
Glu Ile Tyr Asp Lys Tyr Gln Val Val Gln Thr Leu Asp Cys Leu Arg	
110 115 120	
tac tgg aag gcc acg cac cgg agc ccg ggc cag atc cac ctg gtg cag	737
Tyr Trp Lys Ala Thr His Arg Ser Pro Gly Gln Ile His Leu Val Gln	
125 130 135	
cgg cac ccg ccc tcc gag gag tcc caa gcc ttc cag cgg cag ctc acg	785
Arg His Pro Pro Ser Glu Glu Ser Gln Ala Phe Gln Arg Gln Leu Thr	
140 145 150	
gcg ctg att ggc tat gac gtc act gac gtc agc aac gtg cac gac gat	833
Ala Leu Ile Gly Tyr Asp Val Thr Asp Val Ser Asn Val His Asp Asp	
155 160 165 170	
gag ctg gag ttc acg cgc cgt ggc ttg gtg acc ccg cgc atg gcg gag	881
Glu Leu Glu Phe Thr Arg Arg Gly Leu Val Thr Pro Arg Met Ala Glu	
175 180 185	
gtg gcc agc cgc gac ccc aag ctc tac gcc atg cac ccg tgg gtg acg	929
Val Ala Ser Arg Asp Pro Lys Leu Tyr Ala Met His Pro Trp Val Thr	
190 195 200	
tcc aag ccc ctc ccg gag tac ctg tgg aag aag att gcc aac aac tgc	977
Ser Lys Pro Leu Pro Glu Tyr Leu Trp Lys Lys Ile Ala Asn Asn Cys	
205 210 215	
atc ttc atc gtc att cac cgc agc acc acc agc cag acc att aag gtc	1025
Ile Phe Ile Val Ile His Arg Ser Thr Thr Ser Gln Thr Ile Lys Val	
220 225 230	
tca ccc gac gac acc ccc ggc gcc atc ctg cag agc ttc ttc acc aag	1073
Ser Pro Asp Asp Thr Pro Gly Ala Ile Leu Gln Ser Phe Phe Thr Lys	
235 240 245 250	
atg gcc aag aag aaa tct ctg atg gat att ccc gaa agc caa agc gaa	1121
Met Ala Lys Lys Lys Ser Leu Met Asp Ile Pro Glu Ser Gln Ser Glu	
255 260 265	

-31-

cag gat ttt gtg ctg cgc gtc tgt ggc cg ^g gat gag tac ctg gtg ggc Gln Asp Phe Val Leu Arg Val Cys Gly Arg Asp Glu Tyr Leu Val Gly 270 275 280	1169
gaa acg ccc atc aaa aac ttc cag tgg gtg agg cac tgc ctc aag aac Glu Thr Pro Ile Lys Asn Phe Gln Trp Val Arg His Cys Leu Lys Asn 285 290 295	1217
gga gaa gag att cac gtg gta ctg gac acg cct cca gac ccg gcc cta Gly Glu Ile His Val Val Leu Asp Thr Pro Pro Asp Pro Ala Leu 300 305 310	1265
gac gag gtg agg aag gaa gag tgg ccg ctg gtg gac gac tgc acg gga Asp Glu Val Arg Lys Glu Glu Trp Pro Leu Val Asp Asp Cys Thr Gly 315 320 325 330	1313
gtc acc ggc tac cat gag cag ctt acc atc cac ggc aag gac cac gag Val Thr Gly Tyr His Glu Gln Leu Thr Ile His Gly Lys Asp His Glu 335 340 345	1361
agt gtg ttc acc gtg tcc ctg tgg gac tgc gac ccg aag ttc agg gtc Ser Val Phe Thr Val Ser Leu Trp Asp Cys Asp Arg Lys Phe Arg Val 350 355 360	1409
aag atc aga ggc att gat atc ccc gtc ctg cct ccg aac acc gac ctc Lys Ile Arg Gly Ile Asp Ile Pro Val Leu Pro Arg Asn Thr Asp Leu 365 .370 375	1457
aca gtt ttt gta gag gca aac atc cag cat ggg caa caa gtc ctt tgc Thr Val Phe Val Glu Ala Asn Ile Gln His Gly Gln Gln Val Leu Cys 380 385 390	1505
caa agg aga acc agc ccc aaa ccc ttc aca gag gag gtg ctg tgg aat Gln Arg Arg Thr Ser Pro Lys Pro Phe Thr Glu Glu Val Leu Trp Asn 395 400 405 410	1553
gtg tgg ctt gag ttc agt atc aaa atc aaa gac ttg ccc aaa ggg gct Val Trp Leu Glu Phe Ser Ile Lys Ile Lys Asp Leu Pro Lys Gly Ala 415 420 425	1601
cta ctg aac ctc cag atc tac tgc ggt aaa gct cca gca ctg tcc agc Leu Leu Asn Leu Gln Ile Tyr Cys Gly Lys Ala Pro Ala Leu Ser Ser 430 435 440	1649
aag gcc tct gca gag tcc ccc agt tct gag tcc aag ggc aaa gtt ccg Lys Ala Ser Ala Glu Ser Pro Ser Glu Ser Lys Gly Lys Val Arg 445 450 455	1697
ctt ctc tat tat gtg aac ctg ctg ctg ata gac cac cgt ttc ctc ctg Leu Leu Tyr Tyr Val Asn Leu Leu Leu Ile Asp His Arg Phe Leu Leu 460 465 470	1745
cgc cgt gga gaa tac gtc ctc cac atg tgg cag ata tct ggg aag gga Arg Arg Gly Glu Tyr Val Leu His Met Trp Gln Ile Ser Gly Lys Gly 475 480 485 490	1793
gaa gac caa gga agc ttc aat gct gac aaa ctc acg tct gca act aac Glu Asp Gln Gly Ser Phe Asn Ala Asp Lys Leu Thr Ser Ala Thr Asn 495 500 505	1841

-32-

cca gac aag gag aac tca atg tcc atc tcc att ctt ctg gac aat tac Pro Asp Lys Glu Asn Ser Met Ser Ile Ser Ile Leu Leu Asp Asn Tyr 510 515 520	1889
tgc cac ccg ata gcc ctg cct aag cat cag ccc acc cct gac ccg gaa Cys His Pro Ile Ala Leu Pro Lys His Gln Pro Thr Pro Asp Pro Glu 525 530 535	1937
ggg gac cgg gtt cga gca gaa atg ccc aac cag ctt cgc aag caa ttg Gly Asp Arg Val Arg Ala Glu Met Pro Asn Gln Leu Arg Lys Gln Leu 540 545 550	1985
gag gcg atc ata gcc act gat cca ctt aac cct ctc aca gca gag gac Glu Ala Ile Ile Ala Thr Asp Pro Leu Asn Pro Leu Thr Ala Glu Asp 555 560 565 570	2033
aaa gaa ttg ctc tgg cat ttt aga tac gaa agc ctt aag cac cca aaa Lys Glu Leu Leu Trp His Phe Arg Tyr Glu Ser Leu Lys His Pro Lys 575 580 585	2081
gca tat cct aag cta ttt agt tca gtg aaa tgg gga cag caa gaa att Ala Tyr Pro Lys Leu Phe Ser Ser Val Lys Trp Gly Gln Gln Glu Ile 590 595 600	2129
gtg gcc aaa aca tac caa ttg ttg gcc aga agg gaa gtc tgg gat caa Val Ala Lys Thr Tyr Gln Leu Leu Ala Arg Arg Glu Val Trp Asp Gln 605 610 615	2177
agt gct ttg gat gtt ggg tta aca atg cag ctc ctg gac tgc aac ttc Ser Ala Leu Asp Val Gly Leu Thr Met Gln Leu Leu Asp Cys Asn Phe 620 625 630	2225
tca gat gaa aat gta aga gcc att gca gtt cag aaa ctg gag agc ttg Ser Asp Glu Asn Val Arg Ala Ile Ala Val Gln Lys Leu Glu Ser Leu 635 640 645 650	2273
gag gac gat gat gtt ctg cat tac ctt cta caa ttg gtc cag gct gtg Glu Asp Asp Asp Val Leu His Tyr Leu Leu Gln Leu Val Gln Ala Val 655 660 665	2321
aaa ttt gaa cca tac cat gat agc gcc ctt gcc aga ttt ctg ctg aag Lys Phe Glu Pro Tyr His Asp Ser Ala Leu Ala Arg Phe Leu Leu Lys 670 675 680	2369
cgt ggt tta aga aac aaa aga att ggt cac ttt ttg ttt tgg ttc ttg Arg Gly Leu Arg Asn Lys Arg Ile Gly His Phe Leu Phe Trp Phe Leu 685 690 695	2417
aga agt gag ata gcc cag tcc aga cac tat cag cag agg ttc gct gtg Arg Ser Glu Ile Ala Gln Ser Arg His Tyr Gln Gln Arg Phe Ala Val 700 705 710	2465
att ctg gaa gcc tat ctg agg ggc tgt ggc aca gcc atg ctg cac gac Ile Leu Glu Ala Tyr Leu Arg Gly Cys Gly Thr Ala Met Leu His Asp 715 720 725 730	2513
ttt acc caa caa gtc caa gta atc gag atg tta caa aaa gtc acc ctt Phe Thr Gln Gln Val Gln Val Ile Glu Met Leu Gln Lys Val Thr Leu 735 740 745	2561

-33-

gat att aaa tcg ctc tct gct gaa aag tat gac gtc agt tcc caa gtt Asp Ile Lys Ser Leu Ser Ala Glu Lys Tyr Asp Val Ser Ser Gln Val 750 755 760	2609
att tca caa ctt aaa caa aag ctt gaa aac ctg cag aat tct caa ctc Ile Ser Gln Leu Lys Gln Lys Leu Glu Asn Leu Gln Asn Ser Gln Leu 765 770 775	2657
ccc gaa agc ttt aga gtt cca tat gat cct gga ctg aaa gca gga gcg Pro Glu Ser Phe Arg Val Pro Tyr Asp Pro Gly Leu Lys Ala Gly Ala 780 785 790	2705
ctg gca att gaa aaa tgt aaa gta atg gcc tcc aag aaa aaa cca cta Leu Ala Ile Glu Lys Cys Lys Val Met Ala Ser Lys Lys Lys Pro Leu 795 800 805 810	2753
tgg ctt gag ttt aaa tgt gcc gat cct aca gcc cta tca aat gaa aca Trp Leu Glu Phe Lys Cys Ala Asp Pro Thr Ala Leu Ser Asn Glu Thr 815 820 825	2801
att gga att atc ttt aaa cat ggt gat gat ctg cgc caa gac atg ctt Ile Gly Ile Ile Phe Lys His Gly Asp Asp Leu Arg Gln Asp Met Leu 830 835 840	2849
att tta cag att cta cga atc atg gag tct att tgg gag act gaa tct Ile Leu Gln Ile Leu Arg Ile Met Glu Ser Ile Trp Glu Thr Glu Ser 845 850 855	2897
ttg gat cta tgc ctc ctg cca tat ggt tgc att tca act ggt gac aaa Leu Asp Leu Cys Leu Leu Pro Tyr Gly Cys Ile Ser Thr Gly Asp Lys 860 865 870	2945
ata gga atg atc gag att gtg aaa gac gcc acg aca att gcc aaa att Ile Gly Met Ile Glu Ile Val Lys Asp Ala Thr Thr Ile Ala Lys Ile 875 880 885 890	2993
cag caa agc aca gtg ggc aac acg gga gca ttt aaa gat gaa gtc ctg Gln Gln Ser Thr Val Gly Asn Thr Gly Ala Phe Lys Asp Glu Val Leu 895 900 905	3041
aat cac tgg ctc aaa gaa aaa tcc cct act gaa gaa aag ttt cag gca Asn His Trp Leu Lys Glu Lys Ser Pro Thr Glu Glu Lys Phe Gln Ala 910 915 920	3089
gca gtg gag aga ttt gtt tat tcc tgt gca ggc tac tgt gtg gca acc Ala Val Glu Arg Phe Val Tyr Ser Cys Ala Gly Tyr Cys Val Ala Thr 925 930 935	3137
ttt gtt ctt gga ata ggc gac aga cac aat gac aat att atg atc acc Phe Val Leu Gly Ile Gly Asp Arg His Asn Asp Asn Ile Met Ile Thr 940 945 950	3185
gag aca gga aac cta ttt cat att gac ttc ggg cac att ctt ggg aat Glu Thr Gly Asn Leu Phe His Ile Asp Phe Gly His Ile Leu Gly Asn 955 960 965 970	3233
tac aaa agt ttc ctg ggc att aat aaa gag aga gtg cca ttt gtg cta Tyr Lys Ser Phe Leu Gly Ile Asn Lys Glu Arg Val Pro Phe Val Leu 975 980 985	3281

-34-

acc cct gac ttc ctc ttt gtg atg gga act tct gga aag aag aca agc Thr Pro Asp Phe Leu Phe Val Met Gly Thr Ser Gly Lys Lys Thr Ser 990 995 1000	3329
cca cac ttc cag aaa ttt cag gac atc tgt gtt aag gct tat cta gcc Pro His Phe Gln Lys Phe Gln Asp Ile Cys Val Lys Ala Tyr Leu Ala 1005 1010 1015	3377
ctt cgt cat cac aca aac cta ctg atc atc ctg ttc tcc atg atg ctg Leu Arg His His Thr Asn Leu Leu Ile Ile Leu Phe Ser Met Met Leu 1020 1025 1030	3425
atg aca gga atg ccc cag tta aca agc aaa gaa gac att gaa tat atc Met Thr Gly Met Pro Gln Leu Thr Ser Lys Glu Asp Ile Glu Tyr Ile 1035 1040 1045 1050	3473
cgg gat gcc ctc aca gtg ggg aaa aat gag gag gat gct aaa aag tat Arg Asp Ala Leu Thr Val Gly Lys Asn Glu Glu Asp Ala Lys Lys Tyr 1055 1060 1065	3521
ttt ctt gat cag atc gaa gtt tgc aga gac aaa gga tgg act gtg cag Phe Leu Asp Gln Ile Glu Val Cys Arg Asp Lys Gly Trp Thr Val Gln 1070 1075 1080	3569
ttt aat tgg ttt cta cat ctt gtt ctt ggc atc aaa caa gga gag aaa Phe Asn Trp Phe Leu His Leu Val Leu Gly Ile Lys Gln Gly Glu Lys 1085 1090 1095	3617
cat tca gcc taa tacttttaggc tagaatcaaa aacaagtttag tgttctatgg His Ser Ala 1100	3669
tttaaatttag catagcaatc atcgaacttg gattcaa at gcaatagaca ttgtgaaagc 3729 tggcatttca gaagtatagc tctttcccta cctgaactct tccctggaga aaagatgttg 3789 gcattgctga ttgttggtt aagcaatgtc cagtgc tagg attatggca ggtttggttt 3849 tttctcattt gtctgtggca ttggagaata ttctcggtt aaacagacta atgacttcct 3909 tattgtccct gatatggca ctatcttact attgagtgct tctggaaatt ctggaaata 3969 attgatgaca tctatttca tctgggttta gtctcaattt tggtatctt tggttccctc 4029 aagctcttta aagaaaaaga tgtaatcggtt gtaacctttg tctcattcct taaatgatgc 4089 ttccaaacat ctccttagtg tctgcagggtt ttagtgggtt gctaaaagca aggaaagcga 4149 gttagtcttt tcagtgtctt ttgcaattca attctttgt catgtataac tgagacacac 4209 aaacacagca ggagaaatct aaaccgttgt gccttgacct tcctctgctg gtcttggcc 4269 agggttatga atatgaaaaa atagagatga gacttttgt gtcaactctg tccacaagag 4329 tgagttatct agtatgatta gtatagctt ctccagcatg gcagcaggaa gtaactacag 4389 ggcctctttt atgcctgaca tttcttcct tcctttccct ctgcctccct ttttcatcaa 4449 ttgcaatgct cccacaactc tttacagact tgtgaaatct tcaagaacac ctttactcta 4509 taactcaaaa attagttgaa aaataattac ttctcaagga ttattagaat cttaggtact 4569	

-35-

tattttaaaa gatgttttagt gacttttttt tcaagtatct ataaaggagg cagattctag 4629
aaaatatgaa ttagttcca aatgccttaa ttttaaactt tggcctgaac agttttttct 4689
ttttcttaat ggaagaagat atttaatatac taaaaaatat tccaaagttag gaagaacact 4749
acttgcctta tccatttccc atttaaagga cttttaaact ttgacacagt ctttcagatt 4809
tcctgaaaat ccttgaaata tcttacttta aaaatatttt catctctgaa atatctcggt 4869
atttatggg ggtattgttt aaccttagat agaccattaa attatttata aaatattttg 4929
taattactgt agctaataaca ttacatagaa aaaactatgt taacagtgtc tctgtttaag 4989
tataatcaga tataaatata taacttaatt ttttaatttt aaaaaataga tacctgtttg 5049
actttgaggt agtccaggcc tttttctttt tttttttttt taatgtgtgc aaaagccccaa 5109
aggttcctaa gcctggctgc aaagaagaat caacaggac actttttaaa aacactctta 5169
tcagcctggg gcaacacagt gagactccat ctctaaaaaa aaaaatttagc tgggtatagt 5229
ggtatgtgcc tgttagtccccca ggtactcagg aggctgaggc aggaggattg cctgagcccc 5289
ggagggggaa actgcagaga gtcatgatca tgccttaca ctccagcctg gataacagag 5349
cgagaccctg tctaaaaaaaaaaaaaaa aaaaaaaaaaa aactcgag 5397

```
<210> 10  
<211> 1101  
<212> PRT  
<213> Homo sapiens
```

```

<400> 10
Met Glu Leu Glu Asn Tyr Lys Gln Pro Val Val Leu Arg Glu Asp Asn
1 5 10 15

Cys Arg Arg Arg Arg Met Lys Pro Arg Ser Ala Ala Ser Leu Ser
20 25 30

Ser Met Glu Leu Ile Pro Ile Glu Phe Val Leu Pro Thr Ser Gln Arg
35 40 45

Lys Cys Lys Ser Pro Glu Thr Ala Leu Leu His Val Ala Gly His Gly
50 55 60

Asn Val Glu Gln Met Lys Ala Gln Val Trp Leu Arg Ala Leu Glu Thr
65 70 75 80

Ser Val Ala Ala Asp Phe Tyr His Arg Leu Gly Pro His His Phe Leu
85 90 95

Leu Leu Tyr Gln Lys Gly Gln Trp Tyr Glu Ile Tyr Asp Lys Tyr
100 105 110

Gln Val Val Gln Thr Leu Asp Cys Leu Arg Tyr Trp Lys Ala Thr His
115 120 125

Arg Ser Pro Gly Gln Ile His Leu Val Gln Arg His Pro Pro Ser Glu
130 135 140

```

-36-

Glu	Ser	Gln	Ala	Phe	Gln	Arg	Gln	Leu	Thr	Ala	Leu	Ile	Gly	Tyr	Asp
145					150					155					160
Val	Thr	Asp	Val	Ser	Asn	Val	His	Asp	Asp	Glu	Leu	Glu	Phe	Thr	Arg
					165					170					175
Arg	Gly	Leu	Val	Thr	Pro	Arg	Met	Ala	Glu	Val	Ala	Ser	Arg	Asp	Pro
					180				185						190
Lys	Leu	Tyr	Ala	Met	His	Pro	Trp	Val	Thr	Ser	Lys	Pro	Leu	Pro	Glu
					195			200					205		
Tyr	Leu	Trp	Lys	Lys	Ile	Ala	Asn	Asn	Cys	Ile	Phe	Ile	Val	Ile	His
					210			215					220		
Arg	Ser	Thr	Thr	Ser	Gln	Thr	Ile	Lys	Val	Ser	Pro	Asp	Asp	Thr	Pro
225					230					235					240
Gly	Ala	Ile	Leu	Gln	Ser	Phe	Phe	Thr	Lys	Met	Ala	Lys	Lys	Ser	
					245				250				255		
Leu	Met	Asp	Ile	Pro	Glu	Ser	Gln	Ser	Glu	Gln	Asp	Phe	Val	Leu	Arg
					260			265					270		
Val	Cys	Gly	Arg	Asp	Glu	Tyr	Leu	Val	Gly	Glu	Thr	Pro	Ile	Lys	Asn
					275			280					285		
Phe	Gln	Trp	Val	Arg	His	Cys	Leu	Lys	Asn	Gly	Glu	Glu	Ile	His	Val
					290			295					300		
Val	Leu	Asp	Thr	Pro	Pro	Asp	Pro	Ala	Leu	Asp	Glu	Val	Arg	Lys	Glu
					305			310			315				320
Glu	Trp	Pro	Leu	Val	Asp	Asp	Cys	Thr	Gly	Val	Thr	Gly	Tyr	His	Glu
					325				330					335	
Gln	Leu	Thr	Ile	His	Gly	Lys	Asp	His	Glu	Ser	Val	Phe	Thr	Val	Ser
					340				345					350	
Leu	Trp	Asp	Cys	Asp	Arg	Lys	Phe	Arg	Val	Lys	Ile	Arg	Gly	Ile	Asp
					355			360					365		
Ile	Pro	Val	Leu	Pro	Arg	Asn	Thr	Asp	Leu	Thr	Val	Phe	Val	Glu	Ala
					370			375					380		
Asn	Ile	Gln	His	Gly	Gln	Gln	Val	Leu	Cys	Gln	Arg	Arg	Thr	Ser	Pro
					385			390					395		400
Lys	Pro	Phe	Thr	Glu	Glu	Val	Leu	Trp	Asn	Val	Trp	Leu	Phe	Ser	
					405				410				415		
Ile	Lys	Ile	Lys	Asp	Leu	Pro	Lys	Gly	Ala	Leu	Leu	Asn	Leu	Gln	Ile
					420				425				430		
Tyr	Cys	Gly	Lys	Ala	Pro	Ala	Leu	Ser	Ser	Lys	Ala	Ser	Ala	Glu	Ser
					435			440					445		
Pro	Ser	Ser	Glu	Ser	Lys	Gly	Lys	Val	Arg	Leu	Leu	Tyr	Tyr	Val	Asn
					450			455					460		
Leu	Leu	Leu	Ile	Asp	His	Arg	Phe	Leu	Leu	Arg	Arg	Gly	Glu	Tyr	Val
					465			470				475			480

-37-

Leu His Met Trp Gln Ile Ser Gly Lys Gly Glu Asp Gln Gly Ser Phe
485 490 495

Asn Ala Asp Lys Leu Thr Ser Ala Thr Asn Pro Asp Lys Glu Asn Ser
500 505 510

Met Ser Ile Ser Ile Leu Leu Asp Asn Tyr Cys His Pro Ile Ala Leu
515 520 525

Pro Lys His Gln Pro Thr Pro Asp Pro Glu Gly Asp Arg Val Arg Ala
530 535 540

Glu Met Pro Asn Gln Leu Arg Lys Gln Leu Glu Ala Ile Ile Ala Thr
545 550 555 560

Asp Pro Leu Asn Pro Leu Thr Ala Glu Asp Lys Glu Leu Leu Trp His
565 570 575

Phe Arg Tyr Glu Ser Leu Lys His Pro Lys Ala Tyr Pro Lys Leu Phe
580 585 590

Ser Ser Val Lys Trp Gly Gln Gln Glu Ile Val Ala Lys Thr Tyr Gln
595 600 605

Leu Leu Ala Arg Arg Glu Val Trp Asp Gln Ser Ala Leu Asp Val Gly
610 615 620

Leu Thr Met Gln Leu Leu Asp Cys Asn Phe Ser Asp Glu Asn Val Arg
625 630 635 640

Ala Ile Ala Val Gln Lys Leu Glu Ser Leu Glu Asp Asp Asp Val Leu
645 650 655

His Tyr Leu Leu Gln Leu Val Gln Ala Val Lys Phe Glu Pro Tyr His
660 665 670

Asp Ser Ala Leu Ala Arg Phe Leu Leu Lys Arg Gly Leu Arg Asn Lys
675 680 685

Arg Ile Gly His Phe Leu Phe Trp Phe Leu Arg Ser Glu Ile Ala Gln
690 695 700

Ser Arg His Tyr Gln Gln Arg Phe Ala Val Ile Leu Glu Ala Tyr Leu
705 710 715 720

Arg Gly Cys Gly Thr Ala Met Leu His Asp Phe Thr Gln Gln Val Gln
725 730 735

Val Ile Glu Met Leu Gln Lys Val Thr Leu Asp Ile Lys Ser Leu Ser
740 745 750

Ala Glu Lys Tyr Asp Val Ser Ser Gln Val Ile Ser Gln Leu Lys Gln
755 760 765

Lys Leu Glu Asn Leu Gln Asn Ser Gln Leu Pro Glu Ser Phe Arg Val
770 775 780

Pro Tyr Asp Pro Gly Leu Lys Ala Gly Ala Leu Ala Ile Glu Lys Cys
785 790 795 800

-38-

Lys	Val	Met	Ala	Ser	Lys	Lys	Pro	Leu	Trp	Leu	Glu	Phe	Lys	Cys	
					805			810					815		
Ala	Asp	Pro	Thr	Ala	Leu	Ser	Asn	Glu	Thr	Ile	Gly	Ile	Ile	Phe	Lys
					820			825					830		
His	Gly	Asp	Asp	Leu	Arg	Gln	Asp	Met	Leu	Ile	Leu	Gln	Ile	Leu	Arg
					835			840				845			
Ile	Met	Glu	Ser	Ile	Trp	Glu	Thr	Glu	Ser	Leu	Asp	Leu	Cys	Leu	Leu
					850			855				860			
Pro	Tyr	Gly	Cys	Ile	Ser	Thr	Gly	Asp	Lys	Ile	Gly	Met	Ile	Glu	Ile
					865			870			875			880	
Val	Lys	Asp	Ala	Thr	Thr	Ile	Ala	Lys	Ile	Gln	Gln	Ser	Thr	Val	Gly
					885			890					895		
Asn	Thr	Gly	Ala	Phe	Lys	Asp	Glu	Val	Leu	Asn	His	Trp	Leu	Lys	Glu
					900			905					910		
Lys	Ser	Pro	Thr	Glu	Glu	Lys	Phe	Gln	Ala	Ala	Val	Glu	Arg	Phe	Val
					915			920				925			
Tyr	Ser	Cys	Ala	Gly	Tyr	Cys	Val	Ala	Thr	Phe	Val	Leu	Gly	Ile	Gly
					930			935				940			
Asp	Arg	His	Asn	Asp	Asn	Ile	Met	Ile	Thr	Glu	Thr	Gly	Asn	Leu	Phe
					945			950			955			960	
His	Ile	Asp	Phe	Gly	His	Ile	Leu	Gly	Asn	Tyr	Lys	Ser	Phe	Leu	Gly
					965			970					975		
Ile	Asn	Lys	Glu	Arg	Val	Pro	Phe	Val	Leu	Thr	Pro	Asp	Phe	Leu	Phe
					980			985					990		
Val	Met	Gly	Thr	Ser	Gly	Lys	Lys	Thr	Ser	Pro	His	Phe	Gln	Lys	Phe
					995			1000					1005		
Gln	Asp	Ile	Cys	Val	Lys	Ala	Tyr	Leu	Ala	Leu	Arg	His	His	Thr	Asn
					1010			1015				1020			
Leu	Leu	Ile	Ile	Leu	Phe	Ser	Met	Met	Leu	Met	Thr	Gly	Met	Pro	Gln
					1025			1030			1035			1040	
Leu	Thr	Ser	Lys	Glu	Asp	Ile	Glu	Tyr	Ile	Arg	Asp	Ala	Leu	Thr	Val
					1045			1050					1055		
Gly	Lys	Asn	Glu	Glu	Asp	Ala	Lys	Lys	Tyr	Phe	Leu	Asp	Gln	Ile	Glu
					1060			1065				1070			
Val	Cys	Arg	Asp	Lys	Gly	Trp	Thr	Val	Gln	Phe	Asn	Trp	Phe	Leu	His
					1075			1080				1085			
Leu	Val	Leu	Gly	Ile	Lys	Gln	Gly	Glu	Lys	His	Ser	Ala			
					1090			1095				1100			

<210> 11
<211> 31
<212> DNA

-39-

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Amplification
Primer

<400> 11

gatcgaattc ccagaagtga acgactttcg c

31

<210> 12

<211> 31

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Amplification
Primer

<400> 12

gatcgtcgac gccgtggaaa agcccccct g

31

<210> 13

<211> 31

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Amplification
Primer

<400> 13

gatcgaattc cctgaagtaa atgaatttcg a

31

<210> 14

<211> 31

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Amplification
Primer

<400> 14

gatcgtcgac accatgaaaa agaccagccc t

31

<210> 15

<211> 360

<212> DNA

<213> Mus musculus

<220>

<221> CDS

<222> (11)..(181)

<223> Clone 32

<400> 15

-40-

gcggccgctc	aaa	cgg	tac	cgt	gca	gtg	tat	gac	tac	agc	gct	gcc	gac	49
Lys	Arg	Tyr	Arg	Ala	Val	Tyr	Asp	Tyr	Ser	Ala	Ala	Asp		
1													10	

gag	gac	gag	gtc	tcc	ttc	cag	gat	ggg	gac	acc	atc	gtc	aat	gtg	cag	97
Glu	Asp	Glu	Val	Ser	Phe	Gln	Asp	Gly	Asp	Thr	Ile	Val	Asn	Val	Gln	
15													25			

cag	atc	gat	gac	ggc	tgg	atg	tac	ggg	acc	gta	gag	cgc	acc	ggt	gac	145
Gln	Ile	Asp	Asp	Gly	Trp	Met	Tyr	Gly	Thr	Val	Glu	Arg	Thr	Gly	Asp	
30													45			

acg	ggg	atg	ctg	cca	gcc	aac	tac	gtg	gag	gcc	atc	tgaaccctgt	191	
Thr	Gly	Met	Leu	Pro	Ala	Asn	Tyr	Val	Glu	Ala	Ile			
50												55		

gccccccgc	cctgtttca	atgcattcca	tggcatcaca	tctgtcctgg	ggcctgaccc	251
gtccacccta	cagtgtctct	gtcttttaag	atcttcaact	gcttctttat	ccccgcccct	311
ccagcttatt	ttaccatccc	aagccttgtt	ctgccccctg	agcggccgc		360

<210> 16
<211> 57
<212> PRT
<213> Mus musculus

<400> 16																
Lys	Arg	Tyr	Arg	Ala	Val	Tyr	Asp	Tyr	Ser	Ala	Ala	Asp	Glu	Asp	Glu	
1													15			
Val	Ser	Phe	Gln	Asp	Gly	Asp	Thr	Ile	Val	Asn	Val	Gln	Gln	Ile	Asp	
													30			
Asp	Gly	Trp	Met	Tyr	Gly	Thr	Val	Glu	Arg	Thr	Gly	Asp	Thr	Gly	Met	
													45			
Leu	Pro	Ala	Asn	Tyr	Val	Glu	Ala	Ile								
									50						55	

<210> 17
<211> 944
<212> DNA
<213> Mus musculus

<220>
<221> CDS
<222> (65)..(856)
<223> Mouse LASP-1 cDNA (GenBank Accession No.
NM_010688)

<400> 17																
ccgccccagg	aaaagggaac	gcgcgcgaat	acgggcgtcc	ccgccccagt	ctttccccgg	60										
aacc	atg	aac	cct	aac	tgt	gcc	cgg	tgc	ggc	aag	atc	gtg	tac	ccc	acg	109
1																
Met	Asn	Pro	Asn	Cys	Ala	Arg	Cys	Gly	Lys	Ile	Val	Tyr	Pro	Thr		
															15	
5																
10																

-41-

gag aag gtg aac tgt ctg gat aag tac tgg cat aaa gca tgc ttt cac Glu Lys Val Asn Cys Leu Asp Lys Tyr Trp His Lys Ala Cys Phe His 20 25 30	157
tgc gag acc tgc aag atg acc ctg aac atg aag aac tac aag ggt tat Cys Glu Thr Cys Lys Met Thr Leu Asn Met Lys Asn Tyr Lys Gly Tyr 35 40 45	205
gag aag aac cct tac tgc aat gca cac tat ccc aag cag tcc ttc acc Glu Lys Lys Pro Tyr Cys Asn Ala His Tyr Pro Lys Gln Ser Phe Thr 50 55 60	253
atg gtg gcc gac act ccg gaa aat ctc cgc ctc aag caa cag agc gag Met Val Ala Asp Thr Pro Glu Asn Leu Arg Leu Lys Gln Gln Ser Glu 65 70 75	301
ctg cag agt cag gtg cgc tac aag gag gaa ttt gag aag aat aag ggc Leu Gln Ser Gln Val Arg Tyr Lys Glu Glu Phe Glu Lys Asn Lys Gly 80 85 90 95	349
aaa ggt ttc agc gtg gtg gca gac acg cct gag ctg cag aga atc aag Lys Gly Phe Ser Val Val Ala Asp Thr Pro Glu Leu Gln Arg Ile Lys 100 105 110	397
aag acc cag gac cag atc agc aat atc aaa tac cat gag gag ttt gag Lys Thr Gln Asp Gln Ile Ser Asn Ile Lys Tyr His Glu Glu Phe Glu 115 120 125	445
aag agc cgc atg ggg ccc agt gga gga gaa ggg gtg gaa cca gag cgc Lys Ser Arg Met Gly Pro Ser Gly Gly Glu Gly Val Glu Pro Glu Arg 130 135 140	493
cga gaa gcc cag gac agc agc tac cgg agg ccc aca gag cag cag Arg Glu Ala Gln Asp Ser Ser Ser Tyr Arg Arg Pro Thr Glu Gln Gln 145 150 155	541
cag ccg cag cct cac cat atc ccg acc agt gcc ccc gtg tac cag cag Gln Pro Gln Pro His His Ile Pro Thr Ser Ala Pro Val Tyr Gln Gln 160 165 170 175	589
ccc cag cag cag cag atg acc tcg tcc tat ggt ggg tac aag gag cca Pro Gln Gln Gln Met Thr Ser Ser Tyr Gly Gly Tyr Lys Glu Pro 180 185 190	637
gca gcc cct gtc tcc ata cag cgc agt gcc cca ggt ggc ggt ggg aaa Ala Ala Pro Val Ser Ile Gln Arg Ser Ala Pro Gly Gly Gly Lys 195 200 205	685
cgg tac cgt gca gtg tat gac tac agc gct gcc gac gag gac gag gtc Arg Tyr Arg Ala Val Tyr Asp Tyr Ser Ala Ala Asp Glu Asp Glu Val 210 215 220	733
tcc ttc cag gat ggg gac acc atc gtc aat gtg cag cag atc gat gac Ser Phe Gln Asp Gly Asp Thr Ile Val Asn Val Gln Gln Ile Asp Asp 225 230 235	781
ggc tgg atg tac ggg acc gta gag cgc acc ggt gac acg ggg atg ctg Gly Trp Met Tyr Gly Thr Val Glu Arg Thr Gly Asp Thr Gly Met Leu 240 245 250 255	829

-42-

cca gcc aac tac gtg gag gcc atc tga accctgtgcg ccccgccctg	876
Pro Ala Asn Tyr Val Glu Ala Ile	
260	
 tcttcaatgc attccatggc atcacatctg tcctgggctg acccgtccac ctttcagtg 936	
ctctgtct	944
 <210> 18	
<211> 263	
<212> PRT	
<213> Mus musculus	
 <400> 18	
Met Asn Pro Asn Cys Ala Arg Cys Gly Lys Ile Val Tyr Pro Thr Glu	15
1 5 10 15	
Lys Val Asn Cys Leu Asp Lys Tyr Trp His Lys Ala Cys Phe His Cys	30
20 25 30	
Glu Thr Cys Lys Met Thr Leu Asn Met Lys Asn Tyr Lys Gly Tyr Glu	45
35 40 45	
Lys Lys Pro Tyr Cys Asn Ala His Tyr Pro Lys Gln Ser Phe Thr Met	60
50 55 60	
Val Ala Asp Thr Pro Glu Asn Leu Arg Leu Lys Gln Gln Ser Glu Leu	80
65 70 75 80	
Gln Ser Gln Val Arg Tyr Lys Glu Glu Phe Glu Lys Asn Lys Gly Lys	95
85 90 95	
Gly Phe Ser Val Val Ala Asp Thr Pro Glu Leu Gln Arg Ile Lys Lys	110
100 105 110	
Thr Gln Asp Gln Ile Ser Asn Ile Lys Tyr His Glu Glu Phe Glu Lys	125
115 120 125	
Ser Arg Met Gly Pro Ser Gly Gly Glu Gly Val Glu Pro Glu Arg Arg	140
130 135 140	
Glu Ala Gln Asp Ser Ser Ser Tyr Arg Arg Pro Thr Glu Gln Gln Gln	160
145 150 155 160	
Pro Gln Pro His His Ile Pro Thr Ser Ala Pro Val Tyr Gln Gln Pro	175
165 170 175	
Gln Gln Gln Gln Met Thr Ser Ser Tyr Gly Gly Tyr Lys Glu Pro Ala	190
180 185 190	
Ala Pro Val Ser Ile Gln Arg Ser Ala Pro Gly Gly Gly Lys Arg	205
195 200 205	
Tyr Arg Ala Val Tyr Asp Tyr Ser Ala Ala Asp Glu Asp Glu Val Ser	220
210 215 220	
Phe Gln Asp Gly Asp Thr Ile Val Asn Val Gln Gln Ile Asp Asp Gly	240
225 230 235 240	
Trp Met Tyr Gly Thr Val Glu Arg Thr Gly Asp Thr Gly Met Leu Pro	255
245 250 255	

-43-

Ala Asn Tyr Val Glu Ala Ile
260

WO 01/85986 A2

THIS PAGE BLANK (USPTO)

(19) World Intellectual Property Organization
International Bureau(43) International Publication Date
15 November 2001 (15.11.2001)

PCT

(10) International Publication Number
WO 01/085986 A3(51) International Patent Classification⁷: C12Q 1/48, A61P 19/00, 29/00, 35/00, 37/00, G01N 33/50, C12N 9/12

(21) International Application Number: PCT/US01/15065

(22) International Filing Date: 10 May 2001 (10.05.2001)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
60/203,346 10 May 2000 (10.05.2000) US

(71) Applicant (for all designated States except US): ICOS Corporation [US/US]; 22021 20th Avenue S.E., Bothell, WA 98021 (US).

(72) Inventor; and

(75) Inventor/Applicant (for US only): SADHU, Chantal [US/US]; 903 233rd Street S.E., Bothell, WA 98021 (US).

(74) Agent: NOLAND, Greta, E.; Marshall, O'Toole, Gerstein, Murray & Borun, 6300 Sears Tower, 233 South Wacker Drive, Chicago, IL 60606-6402 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

— with international search report

(88) Date of publication of the international search report:
27 December 2002

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 01/085986 A3

(54) Title: PHOSPHATIDYL INOSITOL 3-KINASE DELTA BINDING PARTNER

(57) Abstract: There is identified a functional interaction between the catalytic subunit of phosphatidyl inositol 3-kinase delta (P13K δ) and SH3 domain-containing polypeptides such as LASP-1. The invention provides methods of assaying the observed interaction, methods of exploiting the interaction to identify compounds that modulate the interaction, and methods of employing such modulators in the treatment of medical disorders characterized by P13K δ activity mediated by the interaction.

INTERNATIONAL SEARCH REPORT

International Application No

PCT/US 01/15065

A. CLASSIFICATION OF SUBJECT MATTER	
IPC 7 C12Q1/48 G01N33/50	A61P19/00 C12N9/12
A61P29/00	A61P35/00
	A61P37/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 G01N C12Q C12N

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, BIOSIS, MEDLINE

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	US 5 985 589 A (CHANTRY DAVID H ET AL) 16 November 1999 (1999-11-16) cited in the application abstract claims 2,3 column 4, line 25 – line 42	19-35
Y	---	36,37

 Further documents are listed in the continuation of box C. Patent family members are listed in annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

- *T* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- *Y* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- *Z* document member of the same patent family

Date of the actual completion of the international search

21 June 2002

Date of mailing of the international search report

10/10/2002

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl.
Fax: (+31-70) 340-3016

Authorized officer

Stricker, J-E

INTERNATIONAL SEARCH REPORT

International Application No

PCT/US 01/15065

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	<p>DIDICHENKO S A ET AL: "CONSTITUTIVE ACTIVATION OF PROTEIN KINASE B AND PHOSPHORYLATION OF P47PHOX BY A MEMBRANE-TARGETED PHOSPHOINOSITIDE 3-KINASE" CURRENT BIOLOGY, CURRENT SCIENCE,, GB, vol. 6, no. 10, 1 October 1996 (1996-10-01), pages 1271-1278, XP002037800 ISSN: 0960-9822 abstract</p> <p>---</p> <p>DATABASE BIOSIS 'Online! BIOSCIENCES INFORMATION SERVICE, PHILADELPHIA, PA, US; 31 March 1998 (1998-03-31)</p> <p>QIU YUN ET AL: "Etk/Bmx, a tyrosine kinase with a pleckstrin-homology domain, is an effector of phosphatidylinositol 3'-kinase and is involved in interleukin 6-induced neuroendocrine differentiation of prostate cancer cells." Database accession no. PREV199800230700 XP002203057 abstract</p> <p>& PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES, vol. 95, no. 7, 31 March 1998 (1998-03-31), pages 3644-3649, March 31, 1998 ISSN: 0027-8424</p> <p>---</p> <p>CHANTRY D ET AL: "P110DELTA, A NOVEL PHOSPHATIDYLINOSITOL 3-KINASE CATALYTIC SUBUNIT THAT ASSOCIATES WITH P85 AND IS EXPRESSED PREDOMINANTLY IN LEUKOCYTES" JOURNAL OF BIOLOGICAL CHEMISTRY, AMERICAN SOCIETY OF BIOLOGICAL CHEMISTS, BALTIMORE, MD, US, vol. 272, no. 31, 1 August 1997 (1997-08-01), pages 19236-19241, XP002059998 ISSN: 0021-9258 cited in the application abstract</p> <p>---</p> <p>-/-</p>	36
Y		37
A		19-35

INTERNATIONAL SEARCH REPORT

International Application No
PCT/US 01/15065

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	VANHAESEBROECK B ET AL: "P110BETA, A NOVEL PHOSPHOINOSITIDE 3-KINASE IN LEUKOCYTES" PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA, NATIONAL ACADEMY OF SCIENCE, WASHINGTON, US, vol. 94, no. 9, 29 April 1997 (1997-04-29), pages 4330-4335, XP002044005 ISSN: 0027-8424 cited in the application abstract ---	19-35
A	DATABASE BIOSIS 'Online' BIOSCIENCES INFORMATION SERVICE, PHILADELPHIA, PA, US; July 1998 (1998-07) CHEW C S ET AL: "Lasp-1 is a regulated phosphoprotein within the cAMP signaling pathway in the gastric parietal cell." Database accession no. PREV199800388860 XP002202774 cited in the application abstract & AMERICAN JOURNAL OF PHYSIOLOGY, vol. 275, no. 1 PART1, July 1998 (1998-07), pages C56-C67, ISSN: 0002-9513 ---	1-18
A	KLIPPEL A ET AL: "A REGION OF THE 85-KILODALTON (KDA) SUBUNIT OF PHOSPHATIDYLINOSITOL 3-KINASE BINDS THE 110-KDA CATALYTIC SUBUNIT IN VIVO" MOLECULAR AND CELLULAR BIOLOGY, WASHINGTON, DC, US, vol. 13, no. 9, 1 September 1993 (1993-09-01), pages 5560-5566, XP002037804 ISSN: 0270-7306 abstract -----	

INTERNATIONAL SEARCH REPORT

International application No.
PCT/01/15065

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)

This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.: 13-18, 29-37
because they relate to subject matter not required to be searched by this Authority, namely:

see FURTHER INFORMATION sheet PCT/ISA/210

2. Claims Nos.: 19-34 (partially), 11, 12, 27 and 28 (totally)
because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:

see FURTHER INFORMATION sheet PCT/ISA/210

3. Claims Nos.:
because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.

2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.

3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:

4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

The additional search fees were accompanied by the applicant's protest.

No protest accompanied the payment of additional search fees.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

Continuation of Box I.1

Although claims 13-18 and 29-37 are directed to a method of treatment of the human/animal body, the search has been carried out and based on the alleged effects of the compound/composition.

Continuation of Box I.1

Claims Nos.: 13-18, 29-37

Rule 39.1(iv) PCT - Method for treatment of the human or animal body by therapy

Continuation of Box I.2

Claims Nos.: 19-34 (partially), 11, 12, 27 and 28 (totally)

Present claims 19-34 relate to an extremely large number of possible polypeptides comprising an SH3 domain. Support within the meaning of Article 6 PCT and/or disclosure within the meaning of Article 5 PCT is to be found (p.36, 1.10), however, for only a reduced number of polypeptides. In the present case, the claims so lack support, and the application so lacks disclosure, that a meaningful search over the whole of the claimed scope is impossible. Consequently, the search has been carried out for those parts of the claims which appear to be supported and disclosed, namely those parts relating to the polypeptides p85, p47-phox and Btk.

Present claims 11, 12, 27 and 28 relate to a substance and its use defined by reference to a desirable characteristic or property, namely an activator or inhibitor of the binding between p110 delta and an SH3 containing polypeptide, e.g. LASP-1.

The said claims cover all substances having this characteristic or property, whereas the application provides support within the meaning of Article 6 PCT and/or disclosure within the meaning of Article 5 PCT for only a very limited number of such substances. In the present case, the claims so lack support, and the application so lacks disclosure, that a meaningful search over the whole of the claimed scope is impossible. Independent of the above reasoning, the claims also lack clarity (Article 6 PCT). An attempt is made to define the substances by reference to a result to be achieved. Again, this lack of clarity in the present case is such as to render a meaningful search over the whole of the claimed scope impossible.

The applicant's attention is drawn to the fact that claims, or parts of claims, relating to inventions in respect of which no international

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

search report has been established need not be the subject of an international preliminary examination (Rule 66.1(e) PCT). The applicant is advised that the EPO policy when acting as an International Preliminary Examining Authority is normally not to carry out a preliminary examination on matter which has not been searched. This is the case irrespective of whether or not the claims are amended following receipt of the search report or during any Chapter II procedure.

INTERNATIONAL SEARCH REPORT

Info on patent family members

International application No

PCT/US 01/15065

Patent document cited in search report	Publication date		Patent family member(s)	Publication date
US 5985589	A	16-11-1999	US 5882910 A	16-03-1999
			US 5858753 A	12-01-1999
			AU 5458798 A	22-06-1998
			CA 2243944 A1	04-06-1998
			EP 0891428 A1	20-01-1999
			JP 2000505653 T	16-05-2000
			WO 9823760 A1	04-06-1998

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

THIS PAGE BLANK (USPTO)