BAMS1623 DISCRETE MATHEMATICS

Tutorial 9

- 1. Let $A = \{0, 2, 4, 6\}$ and $B = \{1, 3, 5, 7\}$. Determine which of the following relations between A and B forms a function with domain A and codomains B. For those whose are functions, determine whether they are injective, surjective or bijective.
 - i) $\{(6,3),(2,1),(0,3),(4,5)\}$
 - $\{(2,3),(4,7),(0,1),(6,5)\}$ ii)
 - iii) $\{(2, 1), (4, 5), (6, 3)\}$
 - $\{(6, 1), (0, 3), (4, 1), (0, 7), (2, 5)\}$ iv)
- Let $A = \{-1, 0, 1, 2\}$ and $f: A \to Z$ be given by $f(x) = \left| \frac{x^2 + 1}{3} \right|$. 2.
 - Find the range of *f*. i)
 - Determine whether the function f is injective, surjective or bijective. Justify your ii)
- Determine whether the function $g: \mathbb{Z} \to \mathbb{Z}$ given by $g(n) = \left| \frac{n}{2} \right|$ is injective, surjective or 3. bijective. Justify your answer.
- 4. Given f(x) = 2x - 1, a function from $X = \{1, 2, 3\}$ to $Y = \{1, 2, 3, 4, 5\}$. Find the domain and range of the function f. Hence determine whether the function is a bijective function and explain your answer.
- 5. Functions $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$ are given by

$$f(x) = x^2 \text{ and } g(x) = \begin{cases} 2x+1 & \text{if } x \ge 0 \\ -x & \text{if } x < 0 \end{cases}.$$

Find formulae for $f \circ g$, $g \circ f$, and $g \circ g$

- 6. Let *f* be the mod-10 function. Compute
 - f(417)i)

ii) f(38)

- iii) f(253)
- Let the universal set $U = \{a, b, c, ..., y, z\}$ and the characteristic function for the specified 7. subset to compute the following function values.
 - $A = \{a, e, i, o, u\}$ i)
 - $f_A(i)$

b) $f_A(y)$ c) $f_A(o)$

- $B = \{m, n, o, p, q, r, z\}$ ii)
 - a) $f_B(a)$

- b) $f_B(m)$
- c) $f_B(s)$

- 8. Compute each of the following.
 - i) |2.78|, [2.78]
- ii) $\lfloor -2.78 \rfloor$, $\lceil -2.78 \rceil$ iii) $\lfloor 14 \rfloor$, $\lceil 14 \rceil$

- iv) |-17.3|, [-17.3]
- v) |21.5|, [21.5]

BAMS1623 DISCRETE MATHEMATICS

9.	Compute the function values indicated. i) $f(n) = 3n^2 - 1$		
	a) f(3) c) f(5)	b) f(17) d) f(12)	
	ii) $f_2(n) = 2^n$ a) $f_2(1)$ c) $f_2(5)$	b) $f_2(3)$ d) $f_2(10)$	
10.	Let Q be the propositional function defined by $Q(x)$: $\exists y \in Z^+$ such that $xy = 60$. Evaluate each of the following.		
	i) $Q(3)$ iii) $Q(-6)$	ii) $Q(7)$ iv) $Q(15)$	
11.	Let $A = \{1, 2, 3, 4, 5, 6\}$ and $p_1 = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$	$\begin{pmatrix} 2 & 3 & 4 & 5 & 6 \\ 4 & 1 & 2 & 6 & 5 \end{pmatrix}$, $p_2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 3 & 1 & 5 & 4 & 6 \end{pmatrix}$	
	$p_3 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 3 & 2 & 5 & 4 & 1 \end{pmatrix}$. Compute the following.		
	1	ii) $p_3 \circ p_1$ iv) $p_1^{-1} \circ p_2^{-1}$	
12.	Let $A = \{1, 2, 3, 4, 5, 6, 7, 8\}$. Compute the i) $(3, 5, 7, 8) \circ (1, 3, 2)$	e following products. ii) $(2, 6) \circ (3, 5, 7, 8) \circ (2, 5, 3, 4)$	
13.	Let $A = \{1, 2, 3, 4, 5, 6, 7, 8\}$. Write		
	disjoint cycles and product of transpositions	S.	
14.	Let $A = \{1, 2, 3, 4, 5, 6, 7, 8\}$. Write each point $(2, 1, 4, 5, 8, 6)$	permutation as a product of transpositions. ii) $(3, 1, 6) \circ (4, 8, 2, 5)$	
15.	Let $A = \{1, 2, 3, 4, 5, 6, 7, 8\}$. Determine th i) $(6, 4, 2, 1, 5)$	ne given permutation is even or odd. ii) $(4, 8) \circ (3, 5, 2, 1) \circ (2, 4, 7, 1)$	
16.	Let $A = \{1, 2, 3, 4, 5\}$. Let $f = (5, 3, 2)$ and each of the following and write the results at i) $f \circ g$	d $g = (3, 4, 1)$ be permutations of A . Compute as the product of disjoint cycles. ii) $f^{-1} \circ g^{-1}$	
17.	Let $A = \{1, 2, 3, 4, 5, 6\}$ and $p = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 3 \end{pmatrix}$	$\begin{pmatrix} 4 & 5 & 6 \\ 1 & 5 & 6 \end{pmatrix}$ be a permutation of A.	
	 i) Write p as a product of disjoint cycle ii) Compute p⁻¹. iii) Compute p². 	/	