University Physics I - Basics (partial)

§Measurements

<u>Table 1: There are seven fundamental SI units.</u>

symbol	name	measures
m	meter	length
kg	kilogram	mass
\mathbf{S}	second	time
K	kelvin	temperature
mol	mole	amount of substance
A	ampere	electric current
cd	candela	luminous intensity

Table 2: Introductory mechanics and waves utilize several derived units.

combination	symbol	measures
rad		angular position
m^2		area
m^3		volume
$\mathrm{m}\mathrm{s}^{-1}$		velocity
$\rm rads^{-1}$		angular velocity
$\mathrm{m}\mathrm{s}^{-2}$		acceleration
$\rm rads^{-2}$		angular acceleration
$ m kgms^{-2}$	N	force
$ m kgm^2s^{-2}$	${ m Nm}$	torque
$\mathrm{kg}\mathrm{m}^2\mathrm{s}^{-2}$	m J , $ m N~m$	energy
$\mathrm{kg}\mathrm{m}^2\mathrm{s}^{-3}$	$ m W$, $ m Js^{-1}$	power
$ m kgms^{-1}$		linear momentum
$\mathrm{kg}\mathrm{m}^2\mathrm{rad}\mathrm{s}^{-1}$		angular momentum
${\rm kg}{\rm m}^{-1}{\rm s}^{-2}$	Pa , $\mathrm{N}\mathrm{m}^{-2}$	pressure
$\rm kgs^{-2}$	$ m Nm^{-1}$	spring constant
s^{-1}	$_{ m Hz}$	frequency
$\rm rads^{-1}$		angular frequency
${\rm rad}{\rm m}^{-1}$		angular wavenumber
m^{-1}		linear density
m^{-2}		areal density
m^{-3}		volumetric density

Table 3: Prefixes and their powers make number representations compact and consistent.

name	sym.	power	decimal
yocto	У	10^{-24}	0.000000000000000000000001
zepto	\mathbf{z}	10^{-21}	0.000000000000000000001
atto	a	10^{-18}	0.000000000000000001
femto	f	10^{-15}	0.000000000000001
pico	p	10^{-12}	0.000000000001
nano	n	10^{-9}	0.000000001
micro	μ	10^{-6}	0.000 001
milli	m	10^{-3}	0.001
centi	С	10-2	0.01
deci	d	10^{-1}	0.1
		10^{0}	1
deca	$_{ m da}$	10^{1}	10
hecto	h	10^{2}	100
kilo	k	10^{3}	1000
mega	M	10^{6}	1 000 000
giga	\mathbf{G}	10^{9}	1 000 000 000
tera	T	10^{12}	1 000 000 000 000
peta	P	10^{15}	1000000000000000
exa	\mathbf{E}	10^{18}	1000000000000000000
zetta	\mathbf{Z}	10^{21}	1000000000000000000000
yotta	Y	10^{24}	1000000000000000000000000

§Math

$$\begin{split} \vec{A} \cdot \vec{B} &= |\vec{A}| |\vec{B}| \cos \phi_{\text{AB}} = A_x B_x + A_y B_y + A_x B_z \\ \vec{A} \times \vec{B} &= |\vec{A}| |\vec{B}| \sin \phi_{\text{AB}} \hat{n} \\ &= (A_y B_z - A_z B_y) \hat{x} \\ &- (A_x B_z - A_z B_x) \hat{y} \\ &+ (A_x B_y - A_y B_x) \hat{z} \end{split}$$

The cross product can be represented as a determinant

$$ec{A} imes ec{B} = egin{array}{cccc} \hat{x} & \hat{y} & \hat{z} \\ A_x & A_y & A_z \\ B_x & B_y & B_z \\ \end{array}$$

If
$$ax^2 + bx + c = 0$$
, $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ $\frac{dx^m}{dx} = mx^{m-1}$

$$\int x^m \ dx = \frac{x^{m+1}}{m+1} + C$$

§Concept symbols

- A wave amplitude, area
- \vec{a} acceleration
- c speed of light
- $D\ \ {\rm distance, diameter}$
- d distance, diameter, depth, differential (e.g. dx)
- E energy
- \vec{F} force
- f (linear) frequency, factor
- ${\cal G}\,$ gravitational constant
- g accleration due to gravity
- H height
- h height
- I moment of inertia
- i index counter
- \hat{i} unit vector for x
- \vec{J} impulse
- *j* index counter
- \hat{j} unit vector for y
- K kinetic energy
- k spring constant, restoring force constant, angular wavenumber. index counter
- \hat{k} unit vector for z
- L length
- $ec{L}$ angular momentum, length
- l length
- ℓ length
- M mass
- m mass
- \vec{N} normal force
- n antinode number
- \vec{n} unit normal
- P power
- p pressure
- \vec{p} linear momentum
- q generic variable
- \vec{q} generic multi-variable
- R radius
- r radius, radial position
- \vec{r} position
- s arc length
- \vec{s} displacement
- T period
- \vec{T} tension
- t time

- U potential energy
- V volume
- $ec{v}$ velocity
- W work
- w weight, width
- $x \,\,$ position coordinate 1
- y position coordinate 2 z position coordinate 3
- α angular acceleration, generic angle
- β generic angle
- Δ coarse change (e.g. Δx)
- δ uncertainty, small change
- ϵ strain, small value
- θ generic angle
- κ restoring torque constant
- λ wavelength, linear mass density
- μ coefficient of friction, linear mass density
- ρ volumetric mass density
- σ areal mass density
- $\vec{ au}$ torque
- $\phi~$ phase angle, generic angle
- ω angular frequency
- $\vec{\Omega}$ precession velocity
- $\vec{\omega}$ angular velocity