Вольный конспект 2 лекции

22 сентября 2024 г.

Предложение: Модельный пример циклического пространства.

 $\mathbb{K}[t]/p(t)$ - векторное пространство над \mathbb{K} со стандартным базисом $1,t,t^2...,t^{n-1};\ p(t)=t^n-c_{n-1}p^{n-1}-...-c_0.$

На нем задан линейный оператор умножения на t.

$$\mu_t : \mathbb{K}[t]/p(t) \longrightarrow \mathbb{K}[t]/p(t)$$

 $f(t) \mapsto tf(t).$

$$[\mu_t(t)] = \begin{pmatrix} 0 & 0 & 0 & \dots & c_0 \\ 1 & 0 & 0 & \dots & c_1 \\ 0 & 1 & 0 & \dots & c_2 \\ 0 & 0 & 1 & \dots & c_3 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \dots & \dots & \dots & \dots & \dots & \dots \end{pmatrix}$$

Если (V, \mathcal{A}) - циклично, $V = \langle v \rangle_{\mathcal{A}}, \ \mu_{\mathcal{A},V}(t) = p(t),$ то

$$(\mathbb{K}[t]/p(t), \mu_t) \simeq (V, \mathcal{A})$$

$$\mathbb{K}[t]/p(t) \xrightarrow{\mu_t} \mathbb{K}[t]/p(t)$$

$$\downarrow^{\varphi} \qquad \qquad \downarrow^{\varphi}$$

$$V \xrightarrow{\mathcal{A}} V$$

где φ задается как:

$$\varphi : \mathbb{K}[t]/p(t) \longrightarrow V$$

 $f(t) \mapsto f(\mathcal{A})v$

Надо проверить что это изоморфизм для этого докажем что у него нулевое ядро и что он суръективный.

- 1. если f(A)v=0, то deg $f\geq p(t)$, чего не может быть. Значит $\ker\varphi=$
- вида f(A)v, то есть φ - суръективно.

Задача-предложение 1. Инвариантные подпространства в точности соответствуют идеалам этого кольца.

§4 **Аннулятор**.

Определение 6: $L \subset V$. Тогда многочлен $\mu_{A,L}(t)$ называется минимальным аннулятором L, если он равен $gcd(f(t): f(A)v = 0, \forall v \in L)$

Замечание 3:

- 1. Минимальный аннулятор делит любой другой аннулятор.
- 2. $\mu_{\mathcal{A},L}(t) = \mu_{\mathcal{A},\langle L \rangle}(t)$
- 3. $\mu_{A,U_1+U_2}(t) = HOK(\mu_{A,U_1}, \mu_{A,U_2})$ Это верно, потому что если $L_1 \subset L_2$, TO $\mu_{\mathcal{A},L_1}|\mu_{\mathcal{A},L_2}$
- 4. Аналогия предыдущему пункту с пересечением и НОД не работает.

5.
$$\mu_{A,U}(t) = HOK(\mu_{A,x_i})$$
, где $U = \langle ...x_i ... \rangle$

Обозначение $\mu_{\mathcal{A}} := \mu_{\mathcal{A},V}$

Задача-предложение 2.
$$\frac{LCM(\mu_{\mathcal{A},x},\mu_{\mathcal{A},y})}{\mu_{\mathcal{A},x},\mu_{\mathcal{A},y})}|\mu_{\mathcal{A},x+y}|LCM(\mu_{\mathcal{A},x},\mu_{\mathcal{A},y})$$
 (LCM это HOK)

Вторая делимость следует из того, что $x + y \in \langle x, y \rangle$. Осталось доказать первую делимость.

Доказательство частного случая. Если $gcd(\mu_{\mathcal{A},x},\mu_{\mathcal{A},y})=1$ В этом случае $\frac{LCM(\mu_{\mathcal{A},x},\mu_{\mathcal{A},y})}{\mu_{\mathcal{A},x},\mu_{\mathcal{A},y})}=\mu_{\mathcal{A},x}\mu_{\mathcal{A},y},$ а значит надо доказать, что $\mu_{A,x}\mu_{A,y}=\mu_{A,x+y}$. Уже доказано, что левая часть делить правую.

Так как $\mu_{\mathcal{A},y}(\mathcal{A})(y) = 0$, то $\mu_{\mathcal{A},y}(\mathcal{A})(x+y) = \mu_{\mathcal{A},y}(\mathcal{A})(x)$. Поэтому $\mu_{\mathcal{A},x+y}\mu_{\mathcal{A},y}(\mathcal{A})(x) = \mu_{\mathcal{A},x+y}\mu_{\mathcal{A},y}(\mathcal{A})(x+y) = \mu_{\mathcal{A},y}\mu_{\mathcal{A},x+y}(\mathcal{A})(x+y) = 0$. Значит $\mu_{\mathcal{A},x+y}\mu_{\mathcal{A},y}$ делится на $\mu_{\mathcal{A},x}$. Так как $(\mu_{\mathcal{A},y},\mu_{\mathcal{A},x}) = 1$, то $\mu_{\mathcal{A},x}|\mu_{\mathcal{A},y+x}$. Аналогично доказывается, что $\mu_{\mathcal{A},y}|\mu_{\mathcal{A},y+x}$. \square .

Переформулировка Теоремы Гамильтона Кэли: Характеристический многочлен оператора делится на минимальный.

Предложение: Характеристический и минимальный многочлены оператора имеют один и тот же набор простых делителей.

Доказательство Сначала докажем над алгебраически замкнутым полем (например \mathbb{C})). В этом случае теорема звучит так: для любого собственного числа λ $(t-\lambda)|\mu_{\mathcal{A}}(t)$

Если $\mathcal{A}v = \lambda v$, то $p(\mathcal{A})v = p(\lambda)v \Rightarrow$ если $p(\mathcal{A}) = 0$, то $p(\lambda) = 0$. Значит λ является корнем $\mu_{\mathcal{A}}$.

Теперь из этого выведем теорему для произвольных полей.

Пусть p(t) - неприводимый делитель $\chi_{\mathcal{A}}(t)$. Наибольший общий делитель $\mu_{\mathcal{A}}(t)$ и p(t) равен либо 1, либо p(t). Поэтому достаточно доказать, что они невзаимнопросты.

Для этого рассмотрим поле разложения $\chi_{\mathcal{A}}(t)$ (можно перейти к алгебраическому замыканию, но хватит и поля разложения). Нужно както построить векторное пространство над полем разложения, которое будет содержать исходное векторное пространство V, если ограничится на скаляры из базового поля. Для этого построим изоморфоизм из V в пространство столбцов, \mathcal{A} будет записываться некоторой матрицей. И уже в этом случае можно считать, что компоненты векторов и матрицы принадлежат полю разложения.

Значит, срабатывают рассуждения для алгебраического замыкания. $(t-\lambda)|gcd(\mu_{\mathcal{A}}(t),p(t))$, а значит и в исходном поле у них нетривиальный наибольший общий делитель.

Есть другой способ доказательства.

Следствие доказательства теоремы Гамильтона-Кэли

Если V - циклическое, то $\mu_{\mathcal{A}}(t) = \chi_{\mathcal{A}}(t)$.

Если V не циклическое, то в нем есть циклическое подпространство, и матрица оператора приводится к виду:

$$\begin{pmatrix} B & * \\ 0 & C \end{pmatrix}$$

В силу свойств умножения матриц:

$$p\begin{pmatrix} B & * \\ 0 & C \end{pmatrix} = \begin{pmatrix} p(B) & * \\ 0 & p(C) \end{pmatrix}$$

Поэтому минимальный многочлен всей матрицы делится на наименьшее общее кратное минимальных многочленов диагональных блоков.

$$LCM(\mu(B), \mu(C)) \mid \mu(\begin{pmatrix} B & * \\ 0 & C \end{pmatrix})$$

Замечание Неверно, что он равен ему.

§5 Примарное разложение

Пространство с оператором можнно разложить в прямую сумму инвариантных подпрострнаств в соответствии с каноническим разложением характеристического/минимального многочлена на множители в $\mathbb{K}[t]$

Лемма о коммутирующих операторах. Если $\mathcal{A}, \mathcal{B}: V \longrightarrow V$ - коммутирующие операторы, то $\ker \mathcal{B}$ и $Im \ \mathcal{B}$ инвариантны относительно \mathcal{A} .

В частности, $\ker g(\mathcal{A})$ и $Img(\mathcal{A})$ инвариантны относительно \mathcal{A} Доказательство.

Пусть $x \in \ker \mathcal{B}$. Тогда $\mathcal{A}(x) \in \ker \mathcal{B} \iff \mathcal{B}\mathcal{A}(x) = 0$. Но $\mathcal{B}\mathcal{A}(x) = \mathcal{A}\mathcal{B}(x) = \mathcal{A}(0) = 0$.

Теперь пусть $x \in Im\mathcal{B}$. Тогда $x = \mathcal{B}(y)$. Значит $\mathcal{A}x = \mathcal{A}\mathcal{B}(x) = \mathcal{B}\mathcal{A}(x) \in Im \mathcal{B}$.

Эти соотношения верны, если подставить $\mathcal{B} = g(\mathcal{A})$, потому что $g(\mathcal{A})$ коммутирует с \mathcal{A} .

Лемма. Пусть (f(t), g(t)) = 1. $\mathcal{A}: V \longrightarrow V$.

Тогда $\ker fg(\mathcal{A}) = \ker f(\mathcal{A}) \oplus \ker g(\mathcal{A})$

Uдейное замечание: В прошлый раз мы брали вектор/подпространство и изучали, какими многочленами оно аннулируется. Сейчас мы берем многочлен и ищем, какое подпространство он аннулирует. Можно рассмотреть операцию $\langle f(t),v\rangle=f(\mathcal{A})v$. Если фиксировать вектор и посмотреть, при каких f(t) будет 0, получим аннулятор. Если фиксировать f(t) и искать подпространство которое он аннулирует, получим $\ker f(t)$. \mathcal{A} оказательство:

Чтобы доказать теорему, надо доказать, что :

- 1. $\ker f(\mathcal{A}) \cap \ker g(\mathcal{A}) = 0$.
- 2. $\ker f(\mathcal{A}) + \ker g(\mathcal{A}) = \ker fg(\mathcal{A})$

В обоих случаях воспользуемся теоремой о линейном представлении наибольшего общего делителя.

- 1. $f(t)h_1(t)+g(t)h_2(t)=1 \Rightarrow$, если $v \in \ker f(\mathcal{A})\cap \ker g(\mathcal{A})$, то $h_1(\mathcal{A})f(\mathcal{A})v+h_2(\mathcal{A})g(\mathcal{A})v=0$, чего не может быть, так как это же выражение равно Idv=v.
- 2. Чтобы доказать равенство подпространств, докажем что обе части входят друг в друга. Если v входит в левую часть, то он очевидно входит в правую, так как $f(\mathcal{A})(x)=0$ следует, что $fg(\mathcal{A})(x)=0$, аналогично с $g(\mathcal{A})(x)=0$

Теперь докажем обратное включение.

Посмотрим на то же самое равенство, пусть $v \in \ker fg(A)$.

$$v = h_1(\mathcal{A})f(\mathcal{A})v + h_2(\mathcal{A})g(\mathcal{A})v$$

Если применить $f(\mathcal{A})$ к $h_2(\mathcal{A})g(\mathcal{A})v$, получим $h_2(\mathcal{A})f(\mathcal{A})g(\mathcal{A})v = 0$, значит $h_2(\mathcal{A})g(\mathcal{A})v \in \ker f(\mathcal{A})$. Аналогично $h_1(\mathcal{A})f(\mathcal{A})v \in \ker g(\mathcal{A})$.

То есть мы разложили любой вектор из правой части в сумму векторов левой части. Учиитывая предыдущий пункт получаем, что они равны. \square .

Следствие.

Если
$$p(t) = \prod\limits_{i=1}^r f_i(t),$$
 где $\forall i,j \ (f_i,f_j) = 1,$ то

$$\ker p(t) = \bigoplus_{i=1}^{r} \ker f_i(t)$$

Доказательство

$$p(t) = p_1(t) \prod_{i=2}^r f_i(t) \Rightarrow \ker p(t) = \ker p_1(t) \oplus \bigoplus_{i=2}^r \ker p_i(t) = \bigoplus_{i=1}^r \ker f_i(t) \square$$