Dynamic Programming 1

TABLE OF CONTENTS

- 1. Fibonacci Series
- 2. Introduction to Dynamic Programming
- 3. Climb Stairs

0 k	4. Minimum Perfect Squares					Notes				
	-@	°\\ .		* *	Ш	1!	D	v Çîz		\$

Nth Fibonacci Number

$$N \rightarrow 0$$
 1 2 3 4 5 6 7 8 9 10
 $fib (N) \rightarrow 0$ 1 2 3 5 8 13 21 34 55

$$TC = O(2^{N})$$

$$SC = O(N)$$

- 1. Optimal Structure → A problem car be solved by

 dividing it into smaller subproblems.
- 2. Overlapping Subproblems → Same subproblems are

calculated multiple times

store & reuse - Dyramic Programming

// Vi, Fli] = -1

int fib (N) {

if (N <= 1) return N

if (F[N]!=-1) return F[N]

F[N] = fib (N-1) + fib (N-2)

return FIN]

$$TC = O(N) \qquad SC = O(N + N) = O(N)$$

 $2^{N} \longrightarrow N$ (using DP)

Top-down Approach → Menoization in recursive solutions.

Start with big problem, break it to smaller subproblems & recursively calculate arriver.

Easy to understand & implement.

ars for bigger problem.

Bottom - up Approach → Iterative approach.

Start with base case & iteratively calculate

No recursion space => polertial to optimize SC

$$F[0] = 0 \qquad F[1] = 1$$

for $i \rightarrow 2$ to N ? | F[i] = F[i-1] + F[i-2]}

return F[N]

$$TC = O(N) \qquad SC = O(N)$$

Further S.C Optimisation

$$a = 0$$
 $b = 1$

for
$$i \rightarrow 2$$
 to N {

$$a = b$$

$$TC = O(N) \qquad SC = O(1)$$

return c

Climbing Stairs

 $1 \le N \le 10^5$

Calculate the number of ways to reach Nth stair.

You can take 1 step at a time or 2 steps at a time.

$$N = 1$$

$$N = 2$$

$$N = 3$$

ways
$$(N) = ways (N-1) + ways (N-2)$$

ways $(0) = ways (1) = 1$

< **Question** >: Find the minimum number of perfect squares required to get sum = N?

[numbers can repeat]

$$N = 6$$
 $1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2$

$$2^2 + 1^2 + 1^2$$
 Ans = 3

N = 10
$$|x^2 + x^2 + x^$$

$$N = 9 \qquad 3 \qquad Ans = 1$$

$$N = 5$$
 $2^{2} + 1^{2}$ $A_{ns} = 2$

→ use large perfect sq. to reduce court. (areedy)

$$N = 50$$
 $7^2 + 1^2$ Ans = 2

$$N = 12. \qquad 3^{2} + 1^{2} + 1^{2} + 1^{2} \times X$$

$$2^{2} + 2^{2} + 2^{2} \qquad \text{Ans} = 3$$

optimal substructure / } use DP overlapping subproblems /

ert (12) = mir (ert (12-12), ert (12-22), ert (12-32)) + 1

ert (N) =
$$\forall x \text{ mir } (\text{ert } (N-x^2)) + 1$$
 $1 <= x^2 <= N$

N = 5 $0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5$ $0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 8$

