STAT 151A Additional Problems: Solutions

Billy Fang

These are rough sketches for the solutions. Some computational steps are omitted for brevity.

1

Intercept p-value: 2 * pt(-2.127, 99) yields 0.0359. This t-table would tell you the p-value is between 0.02 and 0.05.

Education estimate:

$$t = \frac{\widehat{\beta}_j}{\text{s. e.}(\widehat{\beta}_j)} \implies \widehat{\beta}_j = t \cdot \text{s. e.}(\widehat{\beta}_j) = 11.858 \cdot 0.3489120 \approx 4.1374.$$

Residual standard error degrees of freedom is 99 (same as second degree of freedom in F-statistic)

2

qt (0.975, 99) (or this t-table) shows that ≈ 1.984 is the 97.5% quantile of the t-distribution with 99 degrees of freedom. For each j, the confidence interval is

$$\widehat{\beta}_j \pm 1.984 \cdot \text{s. e.}(\widehat{\beta}_j),$$

where $\widehat{\beta}_j$ and s. e. $(\widehat{\beta}_j)$ are the entries in the first two columns of the table.

3

(a) True.

We state an auxiliary result that will simplify our work. Recall the definition of estimability: $\Lambda^{\top}\beta$ (for some matrix Λ) is called estimable if $\Lambda^{\top}\beta = P^{\top}X\beta$ for some matrix P. After some reformulation, we can write this as

 $\Lambda^{\top}\beta$ is estimable if and only if every column of Λ lies in the column space of X^{\top}

[Check that this is true.]

In simple regression, we have

$$X^{\top} = \begin{bmatrix} 1 & 1 & \cdots & 1 \\ x_1 & x_2 & \cdots & x_n \end{bmatrix}.$$

Note that by assumption n > p = 1. There are two cases for $C(X^{\top})$.

- 1. If $x_1 = \cdots = x_n$, then $C(X^\top) = \operatorname{span}\left\{\begin{bmatrix} 1 \\ x_1 \end{bmatrix}\right\}$ is a one-dimensional subspace.
- 2. Otherwise, $C(X^{\top}) = \mathbb{R}^2$ (i.e. the column space contains all two-dimensional vectors).

Note

$$eta_1 = egin{bmatrix} 0 & 1 \end{bmatrix} eta, \qquad ext{and} \qquad egin{bmatrix} eta_0 \ eta_1 \end{bmatrix} = egin{bmatrix} 1 & 0 \ 0 & 1 \end{bmatrix} eta.$$

1

If $\begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix}$ is not estimable, then at least one of $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ does not lie in $C(X^\top)$. This implies Case 2 above cannot happen (otherwise $C(X^\top)$ would contain any two-dimensional vector, which would contradict the previous sentence). Therefore we must have $x_1 = \cdots = x_n$ and $C(X^\top) = \operatorname{span}\left\{\begin{bmatrix} 1 \\ x_1 \end{bmatrix}\right\}$. But then $C(X^\top)$ cannot contain $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$, which implies β_1 is not estimable.

[Note: in the second lab section, I proved the contrapositive of the statement instead. Above, I proved the statement directly, so the argument is "backward" in some sense.]

(b) False. Note

$$\mathbb{E}\widehat{\beta} = \mathbb{E}[(X^{\top}X)^{-1}X^{\top}(X\beta + \epsilon)] = \beta + (X^{\top}X)^{-1}X^{\top}\mathbb{E}[\epsilon].$$

Thus $\widehat{\beta}$ is unbiased as long as $\mathbb{E}[\epsilon] = 0$, even if the components of ϵ are correlated.

4

- Approach 1: see lecture notes on one-way ANOVA
- Approach 2: the function we want to minimize is

$$S(\mu_1, ..., \mu_J) = \sum_{j=1}^{J} \sum_{i \in \text{group } j} (y_i - \mu_j)^2.$$

Setting the partial derivatives to zero yields

$$\sum_{i\in \operatorname{group}\, j} y_i = n_j \widehat{\mu}_j.$$

• Approach 3: If X is the $n \times J$ design matrix, where each row is the indicator vector for each observation's group, then

$$X^{\top}X = \begin{bmatrix} n_1 & & \\ & \ddots & \\ & & n_J \end{bmatrix}.$$

Moreover,

$$X^{\top} y = \begin{bmatrix} \sum_{i \in \text{group } 1} y_i \\ \vdots \\ \sum_{i \in \text{group } J} y_i \end{bmatrix}$$

Thus the normal equation

$$X^{\top} X \begin{bmatrix} \widehat{\mu}_1 \\ \vdots \\ \widehat{\mu}_J \end{bmatrix} = X^{\top} y$$

yields the answer.

5 Textbook problems

5.3

Taking the derivative of S with respect to A' and setting it equal to zero yields

$$\sum_{i=1}^{n} Y_i = nA'.$$

5.4

Recall that the least squares coefficients in simple regression are

$$B = \frac{\sum_{i} (X_{i} - \overline{X})(Y_{i} - \overline{Y})}{\sum_{i} (X_{i} - \overline{X})^{2}}$$

$$A = \overline{Y} - B\overline{X}$$

$$S_{E} = \sqrt{\frac{\sum_{i} (Y_{i} - \hat{Y}_{i})^{2}}{n - 2}}$$

$$r = \frac{\sum_{i} (X_{i} - \overline{X})(Y_{i} - \overline{Y})}{\sqrt{\sum_{i} (X_{i} - \overline{X})^{2} \sum_{i} (Y_{i} - \overline{Y})^{2}}}$$

- (a) (i) If X' = X 10, then $X_i' = X_i 10$ and $\overline{X}' = \overline{X} 10$. Thus B' = B and A' = A + 10B and r' = r. Then $\widehat{Y}_i' = \widehat{Y}_i$, so $S_E' = S_E$.
 - (ii) If X'=10X, then $X_i'=10X_i$ and $\overline{X}'=10\overline{X}$. Thus B'=B/10 and A'=A and r'=r. Then $\widehat{Y}_i'=\widehat{Y}_i$, so $S_E'=S_E$.
 - (iii) If X' = 10X 10, then applying (ii) then (i) yields B' = B/10 and A' = A + B and r' = r. Again, $\widehat{Y}'_i = \widehat{Y}_i$, so $S'_E = S_E$.
- (b) (i) If Y'' = Y + 10, then $Y_i'' = Y_i + 10$ and $\overline{Y}'' = \overline{Y} + 10$. Thus B'' = B and A'' = A + 10 and r' = r. Then $\widehat{Y_i''} = \widehat{Y_i} + 10$ so $S_E'' = S_E$.
 - (ii) If Y'' = 5Y, then $Y_i'' = 5Y_i$ and $\overline{Y}'' = 5\overline{Y}$. Thus B'' = 5B and A'' = 5A and r' = r. Then $\widehat{Y}_i'' = 5\widehat{Y}_i$ so $S_E'' = 5S_E$.
 - (iii) If Y''=5Y+10, then applying (ii) and then (i) yields B''=5B and A''=5A+10 and r'=r. Then $\widehat{Y}_i''=5\widehat{Y}+10$ so $S_E''=5S_E$.
- (c) If $X' = c_1 X + c_2$ and $Y' = c_3 Y + c_4$ with $c_1 \neq 0$, then $B' = \frac{c_3}{c_1} B$ and $A' = \frac{c_3}{c_1} (A \frac{c_2}{c_1} B) + \frac{c_4}{c_4}$ and $r' = \frac{\sin(c_1) \sin(c_3) \cdot r}{\sin(c_3) \cdot r}$. Then $\hat{Y}'_i = \frac{c_3}{c_1} \hat{Y}_i + \frac{c_4}{c_4} \sin S'_E = \frac{|c_3| S_3}{c_1}$.

6.6

Recall that in simple regression, the standard error of the slope coefficient is

$$SE(B) = \sqrt{\frac{S_E^2}{\sum_i (X_i - \overline{X})^2}}.$$

- (a) Since B' = B/10 and $S'_E = S_E$, we have SE(B') = SE(B)/10 and $t'_0 = t_0$.
- (b) Since B'' = 5B and $S_E'' = 5S_E$, we have SE(B'') = 5SE(B) and $t_0'' = t_0$.
- (c) Hypothesis tests for the slope do not change because the t statistic stays the same. If $X' = c_1 X + c_2$ and $Y' = c_3 Y + c_4$ with $c_1 \neq 0$, then the new confidence interval is of the form $\frac{c_3}{c_1}B \pm q|\frac{c_3}{c_1}|S_E$ where q is the appropriate quantile of the t-distribution. So the center of the interval changes according to $B' = \frac{c_3}{c_1}B$, and the width of the interval scales by $|c_3/c_1|$.

9.8

[This is also proved in the lecture notes on normal regression theory.]

Our goal is to show Cov(e, b) = 0. [Then, since (e, b) is jointly Gaussian, this implies e and b are independent, and consequently B_i and S_E are independent.]

As noted in the hint,

$$b - \beta = (X^\top X)^{-1} X^\top (X\beta + \epsilon) - \beta = (X^\top X)^{-1} X^\top \epsilon,$$

so

$$Cov(e, b) = \mathbb{E}[e(b - \beta)^{\top}]$$
$$= \mathbb{E}[e\epsilon^{\top}X(X^{\top}X)^{-1}]$$
$$= \mathbb{E}[e\epsilon^{\top}]X(X^{\top}X)^{-1}.$$

Recall $e = (I - H)\epsilon$ (e.g., see Lab 3 notes), where $H = X(X^{\top}X)^{-1}X^{\top}$. Thus,

$$\begin{aligned} \operatorname{Cov}(e,b) &= \mathbb{E}[(I-H)\epsilon\epsilon^{\top}]X(X^{\top}X)^{-1} \\ &= (I-H)(\sigma^{2}I)X(X^{\top}X)^{-1} \\ &= \sigma^{2}\big[I-X(X^{\top}X)^{-1}X^{\top}\big]X(X^{\top}X)^{-1} \\ &= 0. \end{aligned}$$