Reg. No.				
----------	--	--	--	--

B.Tech. DEGREE EXAMINATION, NOVEMBER 2023

Fourth, Fifth and Sixth Semester

18MAB302T – DISCRETE MATHEMATICS FOR ENGINEERS (For the candidates admitted from the academic year 2020-2021 & 2021-2022)

Part - A should be answered in OMR sheet within first 40 minutes and OMR sheet should be handed

(ii))		r to hall invigilator at the end of 40 th t - B & Part - C should be answered					
Time	e: 3	hour	3			Max. l	Mar	ks: 100
			$PART - A (20 \times 1)$	= 20 [Marks)	Marks	BL	co
			Answer ALL (
	1	The	cardinality of the power set of the	-		1	1	1
	1.		·	(B)				
		(A) (C)		(D)				
3	0				4 4 4 marshan of massible	1	1	1
	2.			lemen	ts, then the number of possible	•	•	
			ions on the set A is	(D)	on-1			
		(A)			2 ⁿ⁻¹			
		(C)	2^{n^2}	(D)	2^{n+1}			
	2	A :	lation Domest A is defined as if	r.		1	2	1
	3.		lation R on set A is defined as if $y \mid \mathbb{R}x$, then $x = y \mid \forall x, y \in A$, then					
		-	**		Asymmetric			
		` '	Symmetric		Transitive			
		(C)	Antisymmetric	(D)	Transmice			
	4.	A fu	nction f: A→B is said to be		if for every y∈B there exist at	1	2	1
			tone element $x \in A$ such that $\overline{f(x)}$)=y.		1		
			Surjective	-	Bijective			
		(C)	Injective		Automorphism			
	5	If th	a chiect A is chosen in M wave	and F	B in N ways then either A or B is	1	1	2
	3.		sen in ways.	unu i	Jili IV Wayo tiloli olalol II ol D 20			
			M/N	(B)	MN			
		(C)	M+N		M-N			
		(0)	172.21	()				141
	6.	Ass	iming that repetitions are not pe	ermitte	ed, how many four-digit numbers	1	2	2
0.		are less than 4000, can be formed from the six digits 1, 2, 3, 5, 7, 8?						
			125		124			
		(C)	63					
	7	Eve	ry integer n>1 can be represented	d unio	mely as a product of	1	1	2
	1.		Prime members		Composite numbers			
			Even numbers	. /	Odd numbers			

Note:

(i)

8.		any positive integers a and 3 the a=3q+r where r must satisfy	re ex	ists unique integers q and r such	1	2	2
		1 < r < 3	(D)	0 < r < 3			
	• •	$0 \le r < 3$	` /				
	(0)	0 > 1 < 3	(D)	$0 < r \le 3$			
9.	The biconditional is conjunction of two statement.					1	3
	(A)	Negation	(B)	Compound			
	(C)	Connective	(D)	Conditional			
10.	Neo	ation of $P \rightarrow (P \lor \neg Q)$ is					
		$\neg P \rightarrow (\neg P \lor Q)$	(B)	$P \wedge (\neg P \wedge Q)$			
		$\neg P \lor (\neg P \lor \neg Q)$		$\neg P \rightarrow (\neg P \rightarrow Q)$			
				(-)			
11.	$P \rightarrow$	Q is logically equivalent to		•	1	2	3
	(A)	$\neg P \lor \neg Q$	(B)	$P \lor \neg Q$			
	(C)	$\neg P \lor Q$	(D)	$\neg P \land Q$			
12	A ni	remises may be introduced at any	noin	t in the derivation is called	1	1	3
14.		Rule T		Rule US		_	_
		CP rule	` '	Rule P			
	(0)	CI Iule	(D)	Kuic i			
13.	Fou	th root of unity namely 1, -1, i,-	i forr	n a group with respect to	1	2	4
	(A)	Addition	(B)	Subtraction			
	(C)	Multiplication	(D)	Division			
14.	If G	is a finite group and order of gro	ıın ic	m then for all acG	1	1	4
		$a^m \neq e$, an identity		$a^{m} = e$, an identity			
		$a^m = a$		$a^{m} = a^{-1}$			
	(0)	- a	(D)	a – a			
15.	A fi	nite integral domain is a		:	1	1	4
	(A)	Subfield	(B)	Vector			
	(C)	Field	(D)	Ring			
16	If in	a rino R the exist an elements a	her	uch that a*b =0 implies either a =	1	2	4
10.	0 or	b = 0 or both $a = 0$ and $b = 0$ then	, 0 st 1 R is	sien dat a b o mpnes etther a –			
	(A)	Ring with unit element	(B)	Ring with zero divisor			
	(C)	Ring without zero divisor	(D)	Boolean ring			
17	A or	aph G is said to be a simple grap	h		1	1	5
17.	_	G has no loops	(B)	There is exactly one edge			
	(* *)	G has no roops	(1)	between any given pair of			
				vertices			
	(C)	Both (A) and (B)	(D)	It contains only parallel edges			
	(-)	(-1)	(1)	to contains only paramet eages			
18.				Also, it is given that two vertices	1	2	5
				ne of degree 4 and remaining are			
		egree 5. How many total vertices		_			6
	(A)	8 9	(B)	7			
	and 100 110 110			* * *			

	19.	A path in a connected graph G=V, E) is called Hamilton path if (A) It includes every edge exactly (B) It includes every vertex exactly once once (C) It includes every edge exactly (D) It includes every vertex exactly twice twice	1	1	5
	20.	A degree of pendent vertex is (A) 0 (B) 1 (C) 2 (D) 3	1	2	5
		PART – B (5 × 4 = 20 Marks) Answer ANY FIVE Questions	Marks	BL	CO
	21.	Prove that $(A-C)\cap(C-B)=\emptyset$ analytically where A, B and C are sets.	4	3	1
	22.	Draw the Hasse diagram for (D12, \mid) where D_{12} is the set of positive integers divisor of 12.	4	4	1
	23.	Find the number of ways of preparing a garland with 3 yellow, 4 pink and 2 red roses of different sizes such that the two red roses come together.	4	3	2
	24.	Construct the truth table for the following $(P \rightarrow Q) \leftrightarrow (\neg Q \rightarrow \neg P)$	4	4	3
	25.	Prove the following implication without using truth table $P \Rightarrow (Q \rightarrow P)$.	4	3	3
	26.	If α , β are elements of the symmetric group S ₄ given by $\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 2 & 1 \end{pmatrix} \text{ and } \beta = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 3 & 1 \end{pmatrix}$	4	3	4
	27.	Find $\alpha\beta$, $\beta\alpha$, α^2 and α^{-1} . Prove that the number of edges in a bipartite graph with n vertices is atmost $n^2/4$.	4	4	5
		$PART - C (5 \times 12 = 60 Marks)$			
		Answer ALL Questions	Marks	BL	CO
28	. a.i.	R is the relation on the set of integers such that $(a, b) \in R$ if $3a+4b=7n$ for some integer n, prove R is equivalence relation?	6	3	1
	ii.	If $A=\{1, 2, 3, 4, 5\}$, $B=\{1, 2, 3, 8, 9\}$ and $f:A \rightarrow B$ and $g:A \rightarrow A$ are defined by $f=\{(1, 8), (3, 9), (4, 3), (2, 1), (5, 2)\}$ and $g=\{(1, 2), (3, 1), (2, 2), (4, 3), (5, 2)\}$. Find $f \circ g, g \circ f, f \circ f, g \circ g$ if they exist.	12	3	1
	b.	Let $A = \{1, 2, 3, 4\}$ and $R = \{(1, 2), (2, 3), (2, 1), (3, 4)\}$ using Warshall's	12	3	1
		algorithm, find the transitive closure of R.	6		
29	. a.i.	If there are 5 points inside a square of side length 2. Prove that two of the points are within a distance of $\sqrt{2}$ of each other	12 h	4	2
		In a group of 72 students, 47 have background in electronics, 59 have background in mathematics and 42 have background in both the subject, how many students do not have background in any of the subjects?	12	4	2
Page	3 of 4	24NF4,	5&6-181	VLAB3	02T

- 2 b. Use the Euclidean algorithm to find gcd(1819, 3587) and also express linear combination of the given number.
- 30. a.i. Prove the following by using direct method $P \lor Q, Q \to R, P \to S, \neg S \Rightarrow R \land (P \lor Q)$

- ii. Show that $P \rightarrow Q, P \rightarrow R, Q \rightarrow \neg R$ and P are inconsistent.

(OR)

b.i. Use indirect method of proof to show that $R \rightarrow \neg Q, R \lor S, S \rightarrow \neg Q, P \rightarrow Q \Rightarrow \neg P$

- ii. Use mathematical induction to show that $n! \ge 2^{n-1} \ \forall n \ge 1$.
- 31. a.i Let $Q^+ = \{\text{set of all postive rational number}\}$, let * be defined on Q^+ by $a * b = \frac{ab}{2}a, b \in Q^+$, prove that $(Q^+, *)$ is an abelian group.
 - ii. Prove that the intersection of two subgroups of a group is also a subgroup of a group.

(OR)

b. Find the code words generated by the parity check matrix

12

- 1 1 when the encoding function is $e:B^3 \rightarrow B^6$. H =
- 32. a.i. Check whether the following graphs are isomorphic. If not give reason.

- ii. Prove that a tree with n vertices has n-1 edges.
 - (OR)
- b. Use Kuskal's algorithm to find a minimum spanning tree for the weighted 12 graph.

