## **HOPE AI**

# Skew | Kurtosis Analysis Document

#### **Github link of Data:**

https://github.com/JayachandraPrabha/3.Data-Science/blob/main/Placement.csv

#### 1) **Skew**:

- Skew is nothing but the peak position on a bell curve.
- When data points are not distributed symmetrically to the left/right sides of the median.
- If the bell curve is shifted to the left or the right, it is said to be skewed.



#### 2) Kurtosis:

- Happenings/broadness in the bell curve
- Frequency distribution is peaked in comparison with a normal curve.
- It is the degree of peakedness of a distribution



Let us consider the given data, some of the basic informations about the given data are,

- 1) The overall shape of the dataset: **215 rows × 15 columns.**
- 2) The data basically deals with the survey of the candidates who have **placed and not placed** in the placement and the columns in the data are,
  - 'sl\_no', 'gender', 'ssc\_p', 'ssc\_b', 'hsc\_p', 'hsc\_b', 'hsc\_s', 'degree\_p', 'degree\_t',
    'workex', 'etest\_p', 'specialization', 'mba\_p', 'status', 'salary'
  - In the above mentioned columns there were qualitative columns / variables (Categorical data) and quantitative columns / variables (Numerical data), hence both were separated.
- 3) Below is the obtained data from the dataset:

|          | sl_no  | ssc_p     | hsc_p     | degree_p  | etest_p   | mba_p     | salary        |
|----------|--------|-----------|-----------|-----------|-----------|-----------|---------------|
| Mean     | 108.0  | 67.303395 | 66.334744 | 66.358558 | 72.100558 | 62.278186 | 277648.648649 |
| Median   | 108.0  | 67.0      | 65.0      | 66.0      | 71.0      | 62.0      | 265000.0      |
| Mode     | 1      | 62.0      | 63.0      | 65.0      | 60.0      | 56.7      | 300000.0      |
| min      | 1.0    | 40.89     | 42.75     | 50.0      | 50.0      | 51.21     | 200000.0      |
| Q1:25%   | 54.5   | 60.6      | 60.9      | 61.0      | 60.0      | 57.945    | 240000.0      |
| Q2:50%   | 108.0  | 67.0      | 65.0      | 66.0      | 71.0      | 62.0      | 265000.0      |
| Q3:75%   | 161.5  | 75.7      | 73.0      | 72.0      | 83.5      | 66.255    | 300000.0      |
| 99%      | 212.86 | 87.0      | 91.129    | 83.86     | 97.0      | 76.1142   | NaN           |
| Q4:100%  | 215.0  | 89.4      | 91.15     | 88.5      | 98.0      | 77.89     | 390000.0      |
| IQR      | 107.0  | 15.1      | 12.1      | 11.0      | 23.5      | 8.31      | 60000.0       |
| 1.5Rule  | 160.5  | 22.65     | 18.15     | 16.5      | 35.25     | 12.465    | 90000.0       |
| Lesser   | -106.0 | 37.95     | 42.75     | 44.5      | 24.75     | 45.48     | 150000.0      |
| Greater  | 322.0  | 98.35     | 91.15     | 88.5      | 118.75    | 78.72     | 390000.0      |
| Min      | 1      | 40.89     | 42.75     | 50.0      | 50.0      | 51.21     | 200000.0      |
| Max      | 215    | 89.4      | 91.15     | 88.5      | 98.0      | 77.89     | 390000.0      |
| kurtosis | -1.2   | -0.60751  | 0.086901  | -0.09749  | -1.08858  | -0.470723 | -0.239837     |
| skew     | 0.0    | -0.132649 | 0.162611  | 0.204164  | 0.282308  | 0.313576  | 0.8067        |

4) From the obtained insights, let us segregate the need informations:

| colName  | Skew Value | Skew Info | Kurtosis Value | Kurtosis Info |
|----------|------------|-----------|----------------|---------------|
| ssc_p    | -0.1326    | Negative  | -0.6075        | Platykurtic   |
| hsc_p    | 0.1626     | Positive  | 0.0869         | Platykurtic   |
| degree_p | 0.2041     | Positive  | -0.0974        | Platykurtic   |
| etest_p  | 0.2823     | Positive  | -1.0885        | Platykurtic   |
| mba_p    | 0.3135     | Positive  | -0.4707        | Platykurtic   |
| salary   | 0.8067     | Positive  | -0.2398        | Platykurtic   |

### Result:

Hence the skew & kurtosis in the given data were as follows:

- In the given data, all are positive skew except in ssc\_p (-0.1326) is considered as negative skew.
- In kurtosis, all the values are <3 so, all lies in platykurtic kurtosis.