

Drop-Connect as a Fault-Tolerance Approach for RRAM-based Deep Neural Network Accelerators

Mingyuan Xiang^{1*}, Xuhan Xie^{1*}, Pedro Savarese², Xin Yuan¹, Michael Maire¹, Yanjing Li¹

¹: University of Chicago²: Toyota Technological Institute at Chicago

Background

- RRAM accelerators for DNN
- RRAM defect
 - ~9% for SA1 faults for RRAM [Chen TC'15]

RRAM Defect Compensation

- Hardware solutions (ECC, etc.)
 - Additional area cost
- Software solutions
 - Deployment time cost
- Our solution:
 - Robustness of DNN
 - Additional circuits and retraining

method	Additional Circuits	Retraining and Mapping
Liu et al. [5]	Defect Detection	required
Das et al. [7]	Checksums	None
Li et al. [9]	Refresh and Detection	required
Ours	None	None

[Liu DAC'17]

A Better Approach for Defect Compensation

- A solution with "no" additional cost
 - Fault-aware training
- How to inject faulty behavior during training?
 - Drop-connect [Wan ICML'13]

DropConnect Network

Incorporate Drop-connect with modern DNN

Drop-connect: https://cds.nyu.edu/projects/regularization-neural-networks-using-dropconnect/

Challenges: Incorporating Drop-Connect

- RRAM defect distribution is changing
- Intuition: fault-aware training (SA1)
 - Having SA1 is the same as dropping weights
- Drop-connect with DNN training
- Special customization:
 - 1x1 convolutions
 - Batch normalization

Modify DNN Model Structure

- Dropping on 1x1 is effectively pruning
- -> Pad 1x1 CONV to 3x3 CONV

Adjust Batch Normalization

- Drop-connect will destroy running statistics
 - Moving mean and variance
- Additional epoch to align batch normalization

Algorithm 1 UpdateVar(MODEL)

```
// p': inference-time scaling factor, i.e., SA1 fault rate
for p' in [0%, 10%, 20%, 30%] do
MODEL.train()
for batch in TrainingSet do
Freeze MODEL.weights
MODEL.dropConnect(p')
MODEL.forward(batch)
end for
```


Experiments Set up

- Implement fault-aware training and simulate RRAM defect behavior using PyTorch
- Models (trained and tested on CIFAR-10¹):
 - ResNet20 [He CVPR'16]
 - MobileNet V2 [Sandler CVPR'18]
 - VGG13 [Simonyan ICLR'15]
- Collect results for 100 runs (CIFAR-10 testset)
 - Randomly generate faulty RRAM crossbars each time

^{1:}https://www.cs.toronto.edu/~kriz/cifar.html

Results

ResNet20 : Drop-connect alone is not enough

Results

- Widen the models
 - Compensate the information loss because of high drop rates

Conclusion

- Drop-connect as a fault tolerance solution
- No hardware/deployment overhead
 - Easy-to-deploy design
- Future work:
 - Why MobileNet has better performance than ResNet?
 - Bottleneck structure
 - Experiments with models in other domains
 - Other fault types

Appendix I (MobileNet V2 Results)

Appendix I (VGG Results)

Appendix I (ResNet20 results)

Appendix II (VGG Results)

