Introduction to Computer Vision

GENERATIVE ADVERSARIAL NETS

2014, Ian J.Good et al.

Presented by Nguyen Quang Huy

Faculty of Information Technology, Ton Duc Thang University

Email: 523h0140@student.tdtu.edu.vn

QR Code

Presentation slide

GAN Implementation

Github Resources

Outline

- Introduction & General Idea
- 2. Architecture
- 3. Challenges & improvements
- 4. Applications
- 5. Demo / Visualization

Ian Goodfellow (1987) source: Wikipedia

- B.S & M.S at Stanford
- Ph.D at Montreal
- Google Brain
- OpenAl
- Google Research
- Apple
- Google Deepmind

Stage 1 Feature learning

- Image processing
- SVM / KNN, CNN

Stage 2 Detection & Segmentation

- Object detection: 2 Stage Detector (R-CNN), 1 Stage Detector (YOLO)
- Image segmentation: Semantic, Instance Segmentation

Stage 3 Tracking & Attention

- Object tracking
- Object Recognition (SORT, DeepSORT)
- Attention Mechanism & VisionTransformer

Why we need Generative Models?

Discriminative models
$$P(Class)$$

Generative models

Discriminative AI vs Generative AI

Discriminative

Classify or labeling data points as cat or dog

Generative

Produce a new data points that looks like dog or cat

Adversarial Learning

D/G try to maximize/mininize

value of objective function

$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{oldsymbol{x} \sim p_{ ext{data}}(oldsymbol{x})} [\log D(oldsymbol{x})] + \mathbb{E}_{oldsymbol{z} \sim p_{oldsymbol{z}}(oldsymbol{z})} [\log (1 - D(G(oldsymbol{z})))]$$

Expected on noise distribution

Expected on real dataset

$$D(x) \in [0,1]$$
 the probability that the D believes the sample x is real $G(z)$ generated image from the z noise $x \sim p_{data}(x)$ random variable x taken according to real data distribution

Adversarial Learning

Discriminator (D)

Real:
$$D(x)
ightarrow 1, x \sim P_{data}(x) \ log D(x)
ightarrow 0^-$$

Fake:
$$D(G(z))
ightarrow 0, z \sim P_z(z) \ log(1-D(G(z)))
ightarrow 0^-$$

Generator (G)

Fake:
$$D(G(z))
ightarrow 1, z \sim P_z(z)$$
 $log(1-D(G(z))
ightarrow -\infty$

Adversarial Learning

discriminative distribution (D, blue, dashed line)

data generating distribution (black, dotted line)

generative distribution (green, solid line)

Discrimator training

Generator training

Non-covergence

In GANs architecture:

- The D tries to minimize a crossentropy while the G tries to maximize it.
- When D confidence is high and starts to reject the samples that are produced by G leads to G's gradient vanishes.

Cause Gradient Vanishing

Non-covergence

Non-covergence

WGAN Improvement

- Use the Earth Mover distance.
- Provides meaningful and continuous gradients even when the real and generated distributions do not overlap.
- Removes the need for carefully balanced updates between G and D.
- Overall, it provides smoother convergence and a clearer measure of training progress through the critic loss.

pyimagesearch.com

Mode collapse

GANs can sometimes suffer from the limitation of generating samples with little representative of the population, which means that, for example, after training a GAN on the MNIST dataset, it may happen that our Generator is unable to generate digits different from digit 0.

Mode collapse Unrolled GAN

- Anticipating how the discriminator would respond to the generator's updates: before updating the generator, they "unroll" several discriminator optimization steps.
- This gives the generator a clearer, more global view of the loss landscape and discourages it from collapsing onto a single mode.

Evaluation Difficulty

- There is no ground truth reference for generated samples: No MSE, RMSE, F1, ...
- Metrics must assess both image quality and diversity, yet common losses do not directly correlate with visual realism.

Evaluation Difficulty

Improvement

- Inception Score: Pros and Cons of GAN Evaluation Measures
- Fréchet Inception Distance: Pros and Cons of GAN Evaluation Measures
- Kernel Maximum Mean Discrepancy: An empirical study on evaluation metrics of gans
- 1-Nearest Neighbor: An empirical study on evaluation metrics of gans
- CrossLID: Quality Evaluation of GANs Using Cross Local Intrinsic Dimensionality
- Duality Gap: A Domain Agnostic Measure for Monitoring and Evaluating GANs
- Based on 3rd Models: On the Evaluation of GANs By Discriminative Models

Fréchet Inception Distance

$$|FID(P_r,P_g) = ||\mu_r - \mu_g||_2^2 + Tr(\Sigma_r + \Sigma_g - 2(\Sigma_r\Sigma_g)^{1/2})|$$

- Where $(\Sigma_r \Sigma_g)^{1/2}$ denotes the matrix square root of the product.
- Compares the distribution of real images and distribution of generated images by a pretrained network (commonly Inception-V3).
- Approximates each distribution by a multivariate Gaussian and computes the Fréchet (Wasserstein-2) distance between the two Gaussians.
- Lower FID → generated set is closer to the real set in feature statistics (both mean and covariance).

Fréchet Inception Distance

5. Demo / Visualization

GAN Implementation

Github Resources

References

- PyTorch implementations of GANs
- A list of all named GANs
- Vanilla GANs paper
- WGAN paper
- Fréchet Inception Distance
- A mix of GAN implementations including progressive growing
- GAN-play
- Style GAN