

Time For Data Understanding

Data Science Vs Statistics

- Both fields use data, but they have different motivations and different goals
- They have different backgrounds, and they operate within different contexts

Hence Most Data Scientists Are Not Trained As Statisticians

Why Statistics

Statistics uses methods analyze the numbers and transform them into useful information for <u>making right decisions</u>

- Discover something new in the organization
- To Understand the situation
- Understand results with Biased View
- Which numbers are helpful in which situation

To Be A Good Statistical Person, Always Ask Yourself

- Where did the given numbers come from?
- How are they calculated?
- Are those the right numbers needed to make this decision?

TopicsFundamentals of Statistics

- 1. Population and Sample
- 2. Variable
- 3. Types of Data
- 4. Branches of Statistics

Fundamentals of Statistics 1. Population and Sample

What Data I have?

Your Questions Should Be:

Will it not be a wrong assumption if we take only samples?

Fundamentals of Statistics 2. Variable

Data is a combination of many variables

Fundamentals of Statistics Types Of Variables

Dependent (Y) and Independent Variables (X's)

Fundamentals of Statistics Types Of Variables

Dependent (Y) and Independent Variables (X's)

Loan_ID	Gender	Married	Dependents	Education	Self_Employed	ApplicantIncome	CoapplicantIncome	LoanAmount	Loan_Amount_Term	Credit_History	Property_Area	Loan_Statu
LP001003	Male	Yes		I Graduate	No	4583	1508	128	360	1	Rural	N
LP001005	Male	Yes	(Graduate	Yes	3000	(66	360	1	Urban	Y
LP001006	Male	Yes	1	Not Graduate	No	2583	2358	120	360	1	Urban	Y
LP001008	Male	No	(Graduate	No	6000		141	360	1	Urban	Υ
LP001011	Male	Yes		2 Graduate	Yes	5417	4196	267	360	1	Urban	Y
LP001013	Male	Yes	(Not Graduate	No	2333	1516	95	360	1	Urban	Υ
LP001014	Male	Yes	3+	Graduate	No	3036	2504	158	360	0	Semiurban	N
LP001018	Male	Yes		2 Graduate	No	4006	1526	168	360	1	Urban	γ
LP001020	Male	Yes		1 Graduate	No	12841	10968	349	360	1	Semiurban	N
P001024	Male	Yes		2 Graduate	No	3200	700	70	360	1	Urban	γ
LP001028	Male	Yes		2 Graduate	No	3073	8106	200	360	1	Urban	Υ
LP001029	Male	No	(Graduate	No	1853	2840	114	360	1	Rural	N
LP001030	Male	Yes		2 Graduate	No	1299	1086	17	120	1	Urban	Y
LP001032	Male	No	() Graduate	No	4950	(125	360	1	Urban	Y
LP001036	Female	No	i) Graduate	No	3510		76	360	0	Urban	N
LP001038	Male	Yes	1	Not Graduate	No	4887		133	360	1	Rural	N
LP001043	Male	Yes	(Not Graduate	No	7660		104	360	0	Urban	N
P001046	Male	Yes		I Graduate	No	5955	5625	315	360	1	Urban	γ
P001047	Male	Yes	1	Not Graduate	No	2600	1911	116	360		Semiurbar	N

IV's DV

Fundamentals of Statistics Types Of Variables

Visualization Presenting Categorical Variables

What can be represented in it:

- Count
- Amount
- Percentage

The Bar Chart

The Pie Chart

Two-Way Cross-Classification Table

Bi-variate

		Wafer Co	ndition	
		Good	Bad	Total
Particles	Yes	14	36	50
Found	No	320	80	400
	Total	334	116	450

Visualization Presenting Numerical Variables

What we look at?

- Centre
- Spread
- Outliers

Distribution of Count of Passengers vs Age (Into Bins)

Visualization Presenting Data in Charts and Tables

Fundamentals of Statistics 4. Branches of Statistics

Descriptive Statistics

Large amount of data

Inferential Statistics

Sample data

Topics

Fundamentals of Statistics

- 1. Population and Sample
- 2. Variable
- 3. Types of Data
- 4. Branches of Statistics
 - a) Descriptive Statistics
 - b) Inferential Statistics

Descriptive Statistics

- 1. Measures of Central Tendency
- 2. Measures of Spread

Descriptive Statistics 1. Measures of Central Tendency

Three commonly used measures of **Central Tendency**

- 1. Mean
- 2. Median
- 3. Mode

Mean = 156

Descriptive Statistics 1. Measures of Central Tendency

Mean **Simple Average**

Concept

$$\mu = \frac{\sum x}{N}$$

$$\bar{X} = \frac{\sum x}{n}$$

Disadvantage

Mean is Effected by Outliers

Descriptive Statistics 1. Measures of Central Tendency Median

The median is the middle value for a set of data when a set of the data values have been ordered from lowest to higher value.

65	55	89	56	35	14	56	55	87	45	92
14	35	45	55	55	56	56	65	87	89	92
					5 5	_				

Concept

$$\frac{n+1}{2}$$

Advantage

Median is Less Effected by Outliers

Descriptive Statistics 1. Measures of Central Tendency Mode

A value (or values) in a set of data that appears most frequently, the **Mode is generally used for categorical data**

- Not Effected by Outliers
- Not good most common mark is far away from the rest of the data

Your Questions Should Be:

Which measure is the best?

There is no best method At least we must try two methods Don't ever depend on single method

82, 84, 86, 89, 90, 91, 93, 95, 99, 101, 103

High Variability

More spread out

Measures of spread help us to summarize how spread out these scores are!

	H14	¥ (°	f _x		
A	А	В		С	D
1	ID	Name		Course	Marks
2	1	Jack	Sc	oftware Engineering	60
3	2	Billy	Req	uirement Engineering	90
4	3	Mcfaden	N	Iultivariate Calculus	34
5	4	Steven Shwimmer	Sc	oftware Architecture	96
6	5	Ruby jason		Relational DBMS	70
7	6	Mark Dyne	10 16	PHP development	34
8	7	Philip namdaf	Micr	osoft Dot Net Platform	78
9	8	Erik Bawn	19	HTMI & Scripting	87
10	9	Ricky ben	D	ata communication	78
11	10	Miecky	C	omputer Networks	89

Measure of Spread Can Be Explained Through

- 1. Range
- 2. Quartile and Interquartile Range
- 3. Variance
- 4. Standard Deviation

Measures of Spread is used to describe the variability in a sample or population and is connected with measure of central tendency

Range

Difference between the lowest and highest values

Meal cost Range in City = 62 Suburban Meal Cost Range = 42

Meal costs in the city show much more variation than suburban meal costs.

Disadvantage

Misleading, when there are extremely high or low values

Quartiles and Interquartile Range

Quartiles tell us about the spread of a data set by breaking the data set into quarters

$$Q_1 = \frac{n+1}{4} th$$
 Median $= \frac{n+1}{2}$ $Q_3 = \frac{3(n+1)}{4} th$

Quartiles useful:

- Useful to measure of spread
- Data that isn't symmetrically distributed
- Data set that has outliers

Interquartile range or IQR

Distance between the first quartile and the third quartile.

IQR useful for: For calculating outliers

- Lower boundary is Q1 1.5 * IQR
- Upper boundary is Q3 + 1.5 * IQR

Variation

Two measures that tell you how a set of data values fluctuate around the mean of the variable.

1. Variance

2. Standard Deviation

1. Variance

Sample variance =
$$S^2 = \frac{\sum (X_i - \overline{X})^2}{n-1}$$

Steps to Calculate Variance

- 1. Find Mean
- 2. Calculate the difference between each of the 10 individual times and the mean (which is 39.6 minutes)
- 3. Square those differences
- 4. Sum the squared differences

412.40	 Campla	Vanianaa
9	Sample	Variance

		Difference:	
Day	Time	Time Minus Mean (39.6)	Square of Difference
1	39	-0.6	0.36
2	29	-10.6	112.36
3	43	3.4	11.56
4	52	12.4	153.76
5	39	-0.6	0.36
6	44	4.4	19.36
7	40	0.4	0.16
8	31	-8.6	73.96
9	44	4.4	19.36
10	35	-4.6	21.16
		Sum of Squares:	412.40

The square root of 45.82 is sample standard deviation

$$S = \sqrt{\frac{\sum (X_i - \overline{X})^2}{n - 1}}$$

Descriptive Statistics Measures of Spread Standard Deviation

Promotion to a Cricketer

Average

33	31	32	36	31	31	32.3

22	34	58	52	10	21	32.8

33

Aver	age
------	-----

L	32	36	31	31	32.3

22	34	58	52	10	21	32.8
----	----	----	----	----	----	------

STDEV

2.0

→ Extremely volatile

Conclude that between 30.3 (32.3 - 2.0) runs and 34.3 (32.3 + 2.0)

Descriptive Statistics Shape of Distributions

Highest point is defined by mode

Scores on an exam in which most students score between 10 to 60

Scores on an exam in which most students score between 80 and 100

Descriptive Statistics Shape of Distributions

Identifying Shape

Descriptive Statistics Shape of Distributions

Box Plot

Left-skewed

Descriptive Statistics

- 1. Measures of Central Tendency
- 2. Measures of Spread
- 3. Measure of Symmetry

Univariate Measures

What if we are working with more than one variable

Descriptive Statistics

- 1. Measures of Central Tendency
- 2. Measures of Spread
- 3. Measure of Symmetry
- 4. Covariance
- 5. Correlation

Bivariate Measures

To understand the measure of relations between variables

Check The Below Images

Correlation Coefficient is 1
Absolutely dependent on each other

Correlation Coefficient is 0 Absolutely Independent on each other

Correlation Coefficient is -1 Negative relation with each other

But with how much once variable is related with other? Number

Functionality	Covariance	Correlation
Used for	Extent to which two random variables change	How strongly two random variables are related
Values	-∞ and +∞	-1 and +1
Scaling down to understandable values	A measure of correlation	Scaled form of covariance
Change in scale effect	Covariance is affected by the change in scale	Correlation is not influenced by the change in scale.
Hence it is	Unit bound measure	A unit-free measure

Correlation is preferred over covariance

Descriptive Statistics Correlation Coefficient

For linear models , multicollinearity will decreases the model performance

Probability

How likely is it that some event will occur?

N Trials = Experiment

| Trials = Experiment |
| Experiment |
| Trials = Exper

Q. What is the probability of getting two when I throw a die You

A. We have six possibilities, two is one of them, so it is 1/6th

Probability Calculating

$$p(Event) = \frac{Number of Elementary Outcomes in Event}{Number of Elementary Outcomes in the Sample Space}$$

Example:

Calculate the probability of an even number, 2, 4, or 6 on the toss of a die

Probability Calculating

How many elementary outcomes for a pair dice

- 6 elementary outcomes on die number one
- 6 elementary outcomes on die number two
- 6*6 = 36 elementary outcomes in the sample space

Now tell me:

What's the probability of tossing a pair of dice and having a 5 come up?

Compound Events

Tossing a pair of dice and having a 5 come up?

Compound Events

Here we have 2 events
Event A and Event B (combinations of events)

Combine events in either of two ways

Union

Intersection

Compound Events

Probability of a 1 or a 5 on the toss of a single fair die.

$$p(1 \cup 5) = \frac{\text{Number of Elementary Outcomes in Tossing a 1 OR 5}}{\text{Number of Elementary Outcomes in the Sample Space}} = \frac{2}{6} = .33$$

Probability of tossing between 1 and 3 or between 2 and 4?

$$p(A \cup B) = \frac{(\text{# of outcomes in } A) + (\text{# of outcomes in } B) - (\text{# of outcomes in } A \cap B)}{\text{Number of Elementary Outcomes in the Sample Space}} = \frac{3 + 3 - 2}{6} = .67$$

Conditional Probability

Let's think about two independent experiments.

Event (B) influences the probability of occurrence another event (A)

↓ Conditional Probability

Tsunami

$$p(A \mid B) = \frac{p(A \cap B)}{p(B)}$$

Conditional Probability

Bayesian Probability

It's based on a theorem of refining the probability of A given B

$$p(A | B) = \frac{p(B | A) p(A)}{p(B | A) p(A) + p(B | A) p(A)}$$

$$P(A|B) = \frac{P(A) P(B|A)}{P(B)}$$

Another Version

Distribution

(Probability Distribution)

- Distribution is another name for a set of numbers.
- A distribution is a function that shows the possible values for a variable and how often they occur

Rolling A die

Probability distribution is associated with a graph describing the likelihood of occurrence of every event

Outcome	Probability	У
1	_	0.17
2 3		0.17 0.17
4	1/6	0.17
5 6		0.170.17
7	0	

Likelihood of occurrence of every event

Uniform Distribution

Rolling Two Dice

Discrete Distribution

Distribution Of Our Focus

- Normal Distributions
- Students Distributions

Distribution Of Our Focus

(Continuous Distribution)

Students T Distribution

- Decisions based on ND have good track record
- Distributions of sample means with large enough samples size could be approximate to normal.

Distribution

(Normal Distribution)

Imagine the above data plot has mean 740 and standard deviation 140 What if Mean is smaller or larger

Normal Distribution

(Controlling the Standard Deviation)

Mean Decreased: Distribution moves towards left Mean Increased: Distribution moves towards right

What if Standard Deviation is smaller or larger

Normal Distribution

(Controlling the Mean)

Observation:

No Moment but changing the shape

Std. Deviation Decreased: More data will be in the middle, sharp tail

Std. Deviation Increased: Less data will be in the middle, flat tail

Distribution

(Standard Normal Distribution)

Normal Distribution Variable

Standard Normal Distribution Variable Z score Variable

Why Standardize?

- Compare different normally distributed datasets
- Detect normality
- Detect outliers
- Create confidence intervals
- Test hypotheses
- Perform regression analysis

Central Limit Theorem

Standard Error

Mean of Samples

Standard Deviation between the sample means

Samples Distribution

More the Standard Deviation More the Standard Error

Confidence Interval

A Confidence Interval is a range of values we are fairly sure our true value lies in

Hyderabad Restaurant

You visit 5% of the restaurants

95 % confident that the population parameter lies between 20 and 25

Level of Confidence

Denotation

Hypothesis Testing

A hypothesis is an idea that can be tested

Evaluates a claim made about the value of a population parameter by using a sample statistic.

Apples in Hyderabad are expensive

Price of Apples in Hyderabad > 100/- --- Hypothesis

Compare Employment rate or Administration in Obama period and George bush period

Hypotheses	Notation	
Null hypothesis	H _o	H_0 : $\mu_0 =$
Alternative hypothesis	H ₁ or H _A	$H_1: \mu_0 \neq$

$$H_0$$
: $\mu_0 = $113,000$

 H_1 : $\mu_0 \neq \$ 113,000$

Data Scientist

Mean data scientists salary the US is 113000\$

Generally the researcher will be trying to reject the null hypothesis

Low significance levels

High significance levels

Hypothesis Testing Errors

Type I Error Reject a true null hypothesis **False Positives** Alpha You are Responsible for this error

Type II Error Accept a false null hypothesis **False Negative** Beta Depends mainly on sample size and

population variance

To Understand The Correlation

Type of Test	Use of the Test	Data Type
Pearson correlation	To understand association between two continuous variables	Continues Variables
Spearman correlation	To understand association between two ordinal variables	Ordinal Variable (Categorical)
Chi-square	To understand association between two categorical variables	Categorical

To understand difference between the means of variables

Type of Test	Use of the Test	Data Type
Paired T-test	Tests for the difference between two related variables	Continues Variables
Independent T- Test	Tests for the difference between two independent variables	Continues Variables
ANOVA	Tests the difference between group means (More than two) Differences in the means of 3+ independent groups for one variable	Continues Variables

Ex:

Measuring the average diameter of shafts from a certain machine when you have a small sample

Ex:

Comparing the average engineering salaries of men versus women

Regression: Assess if change in one variable predicts change in another variable

Type of Test	Use of the Test	Data Type
Simple Regression	Tests how change in the predictor variable predicts the level of change in the outcome variable	Continues Variables
Multiple regression	Tests how change in the combination of two or more predictor variables predict the level of change in the outcome variable	Continues Variables

