Coalescence : principe et bases théoriques

Simon Boitard

INRA, Laboratoire de Génétique Cellulaire, Toulouse

Master MABS, UE Génétique et génomique statistique, 2011-2012

Introduction

- Modèle mathématique permettant de décrire / simuler la généalogie d'un échantillon d'individus.
- On remonte le temps au lieu de le descendre.
- Article fondateur de Kingman en 1982, très utilisé depuis.

OOOOOOOOO population de taille N

population de taille N

population de taille N

échantillon de taille n

échantillon de taille n

Plan du cours

- Modèle de base : une population de taille constante, un locus sans recombinaison
- 2 Population de taille variable au cours du temps
- Population structurée
- Modèle avec recombinaison
- Conclusions

Plan du cours

- Modèle de base : une population de taille constante, un locus sans recombinaison
- 2 Population de taille variable au cours du temps
- 3 Population structurée
- 4 Modèle avec recombinaison
- Conclusions

Temps de coalescence

• Proba qu'il n'y ait pas de coalescence à une génération donnée

$$q^{N}(n) = \prod_{i=1}^{n-1} (1 - \frac{i}{N}) = 1 - \frac{n(n-1)}{2N} + O(\frac{1}{N^{2}})$$

T_n^N suit une loi géométrique

$$\mathbb{P}(T_n^N > t) = (q^N(n))^t$$

• Changement d'échelle $au = rac{t}{N}$

$$\mathbb{P}(T_n^N > N\tau) = (q^N(n))^{N\tau} \approx (1 - \frac{n(n-1)}{2N})^{N\tau} \to e^{-\frac{n(n-1)}{2}\tau}$$

quand
$$N \to +\infty$$
.

 $\stackrel{\cdot}{\to} T_n^N$ tend vers T_n , de loi exponentielle de paramètre $\frac{n(n-1)}{2}$.

Evènements de coalescence

- La proba que trois individus ou plus coalescent à la même génération est en $O(\frac{1}{N^2})$
 - \rightarrow négligeable quand $N \rightarrow +\infty$.
- En pratique, une coalescence consiste toujours à regrouper exactement deux lignées.

Espérance du TMRCA

$$T_{MRCA} = \sum_{k=2}^{n} T_k$$

$$\mathbb{E}[T_{MRCA}] = \sum_{k=2}^{n} \mathbb{E}[T_k]$$

$$= \sum_{k=2}^{n} \frac{2}{k(k-1)}$$

$$= 2\sum_{k=2}^{n} (\frac{1}{k-1} - \frac{1}{k})$$

$$= 2(1 - \frac{1}{n}) \approx 2$$

Mutations

- Proba μ de mutation par site et par méiose.
- M(t) nombre de mutations pour une branche de longueur $t = N\tau$ et un locus de taille L.

$$\mathbb{E}[M(t)] = \mu L N \tau = \frac{\theta}{2} L \tau$$

en posant $\theta = 2N\mu$.

- $M(\tau)$ processus de Poisson d'intensité $\frac{\theta}{2}L$.
- On peut choisir ensuite le modèle qu'on veut pour décrire ce qui se passe quand une mutation se produit.

Mutations

Mutations

Infinite site model

Simulation

- Pour k allant de n à 2 :
 - Simuler une loi exponentielle T_k de paramètre $\frac{k(k-1)}{2}$.
 - **②** Choisir uniformément celui des $\frac{k(k-1)}{2}$ couples d'haplotypes qui coalesce.
- ② Placer les mutations indépendamment sur chaque branche selon un processus de Poisson d'intensité $\frac{\theta}{2}L$.

Beaucoup plus rapide que de simuler la population en forward!

Population diploïde

- N taille de la population, 2N allèles.
- Remplacer *N* par 2*N* dans tout ce qui précède.
- En particulier : unité de temps 2N générations, $\theta = 4N\mu$.

Plan du cours

- Modèle de base : une population de taille constante, un locus sans recombinaison
- Population de taille variable au cours du temps
- Population structurée
- Modèle avec recombinaison
- Conclusions

Principe

- La taille de la population change selon une fonction déterministe du temps :
 - Croissance exponentielle : $N(t) = N_0 * e^{-\alpha t}, \ \alpha > 0$
 - Décroissance exponentielle : $N(t) = N_0 * e^{\alpha t}, \ \alpha > 0$
 - Décroissance linéaire : $N(t) = N_0 + \alpha t$, $\alpha > 0$
 - Goulot d'étranglement ("bottleneck") : $\mathit{N}(t) = \mathit{N}_0$ si $t < t^*$, N_1 si $t > t^*$
- La probabilité de coalescence dépend de la taille de population et donc varie au cours du temps.
- L'unité de temps est $\tau = \frac{t}{N_0}$.
- En un temps τ , on a à peu près:

$$T_n(au) \sim \frac{N(au)}{N_0} \exp(\frac{n(n-1)}{2})$$

Simulation (approchée)

 $\tau = 0$

- Pour k allant de n à 2 :
 - **1** Simuler une loi exponentielle T_k de paramètre $\frac{k(k-1)}{2}$.
 - 2 La multiplier par $\frac{N(\tau)}{N_0}$.

 - Choisir uniformément celui des $\frac{k(k-1)}{2}$ couples d'haplotypes qui coalesce.
- ② Placer les mutations indépendamment sur chaque branche selon un processus de Poisson d'intensité $\frac{\theta}{2}L$.

Application

- Population croissante \to temps de coalescence plus longs en bas de l'arbre \to plus de fréquences alléliques extrêmes.
- Population décroissante \to temps de coalescence plus longs en haut de l'arbre \to plus de fréquences alléliques intermédiaires.

Plan du cours

- Modèle de base : une population de taille constante, un locus sans recombinaison
- 2 Population de taille variable au cours du temps
- Opulation structurée
- Modèle avec recombinaison
- 6 Conclusions

Principe

- Pour chaque noeud de l'arbre, une étiquette indique sa population d'origine.
- Coalescences intra population. Par ex, pour deux pops 1 et 2, 2 évènements possibles : coalescence dans 1 et coalescence dans 2.
- Taille relative des pops importante car détermine la vitesse des évènements.
- Si migrations entre populations avec une proba par génération en $O(\frac{1}{N})$, évènements "migration de 1 vers 2" et "migration de 2 vers 1" possibles.

Exemple

Plan du cours

- Modèle de base : une population de taille constante, un locus sans recombinaison
- 2 Population de taille variable au cours du temps
- Population structurée
- Modèle avec recombinaison
- Conclusions

Principe

- Un haplotype créé par recombinaison n'a plus un seul mais deux parents.
- En remontant dans le temps, une branche peut donc se diviser en deux. Cela se produit avec une proba c par génération, c taux de recombinaison entre les loci.
- A l'échelle $\tau = \frac{t}{N}$, et en posant $\rho = 2Nc$, le temps au bout duquel une branche se divise en deux suit une loi exponentielle de paramètre $\frac{\rho}{2}$.
- La généalogie joite des deux locus est appellée "Ancestral Recombination Graph". On peut en déduire les arbres de coalescence marginaux pour chacun des loci (qui sont corrélés).

Exemple

Simulation

k = n. Tant que k > 1:

- Simuler U, une loi exponentielle de paramètre $\frac{k(k-1)}{2}$.
- ② Simuler V, une loi exponentielle de paramètre $\frac{k\rho}{2}$.
- Si $U \le V$, choisir au hasard celui des $\frac{k(k-1)}{2}$ couples d'haplotypes qui coalesce.
 - Si U > V, choisir au hasard celle des k lignées qui se sépare.

Remarque : le stade k=1 finit toujours par être atteint, mais cela peut être long.

Plan du cours

- Modèle de base : une population de taille constante, un locus sans recombinaison
- 2 Population de taille variable au cours du temps
- Population structurée
- Modèle avec recombinaison
- Conclusions

Le coalescent en génétique des populations

- Modèle théorique permettant de faire le lien entre des données génétiques observées et des modèles démographiques.
- Outil de simulation très performant.
- Logiciels de simulation : ms, SIMCOAL, GENOME . . .
- En pratique, tous les aspects du modèles (démographie, structure, recombinaison) sont mélangés.

A suivre

- TD3 : Etude de deux estimateurs de θ .
- TP :

Quelques refs

- Simon Tavaré (2001), *Ancestral inference in molecular biology*. Ecole de Probabilités de Saint-Flour.
- Handbook of statistical genetics, Wiley. Chapitres 22.6, 25, 26, 27.3.