Содержание

§1. Ряды	2
1. Числовые ряды. Определения	2
2. Свойства числовых рядов	3
3. Условия сходимости рядов	6
3.1. Необходимое	6
3.2. Критерии (Необходимое и Достаточное условия)	6
3.3. Достаточное условие (признаки сходимости)	6
4. Знакочередующиеся ряды	10
§2. Функциональные ряды	13
1 Определения	13

§1. Ряды

1. Числовые ряды. Определения

Mem. Числовая последовательность: $\{u_n\} = \{u_1, u_2, \dots, u_n, \dots\}, u_n \in \mathbb{R}$ Ex. 1. Бесконечно убывающая геометрическая прогрессия: $u_n = bq^n$, $\frac{1}{2^n} \stackrel{n=0,1,\dots}{=} \{1, \frac{1}{2}, \frac{1}{4}, \dots\}$ Ex. 2. $u_n = 1, -1, 1, -1, \dots$

 $\mathbf{Def.}\ \{u_n\}$ - последовательность

$$\sum_{n=1}^{\infty}u_n=u_1+u_2+\cdots+u_n+\dots$$
 называется числовым рядом

Nota. Начальное значение n произвольно (целое)

Ex.
$$u_n = \frac{1}{(n-4)^3}$$
, $n = 5, 6, ...$
 $u_n = \frac{1}{n^3}$, $n = 2024, 2025, ...$

 $Nota.\ u_n$ называется общим членом ряда

Nota. Существует ли сумма $\sum_{n=1}^{\infty} u_n$ и в каком смысле?

$$Ex. \ 3. \ \sum_{n=1}^{\infty} n = 1 + 2 + 3 + \dots = \infty$$
 - существует, но бесконечная

Ex. 4.
$$\sum_{n=0}^{\infty} (-1)^n = 1 - 1 + 1 - 1 + 1 - 1 + \dots = \begin{bmatrix} 0 + 0 + \dots = 0 \\ 1 + 0 + 0 + \dots = 1 \end{bmatrix}$$

Ex. 5.
$$\sum_{n=0}^{\infty} \frac{1}{2^n} = 1 + \frac{1}{2} + \frac{1}{4} + \dots = 2$$

Def. Частичная сумма ряда $S_n \stackrel{def}{=} \sum_{k=1}^n u_k$

Nota. Последовательность частичных сумм - $S_1, S_2, S_3, S_4, \ldots$

Ex.
$$1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots$$

 $S_1 = u_1 = 1$ $S_2 = \frac{3}{2}$ $S_3 = \frac{7}{2}$ $S_4 = \frac{1}{2}$

 $S_1=u_1=1$ $S_2=\frac{3}{2}$ $S_3=\frac{7}{4}$ $S_4=\frac{15}{8}$ $\lim_{n\to\infty}S_n=?$, но проблема заключается в том, что бы найти формулу для S_n

Def. Если $\exists \lim_{n\to\infty} S_n = S \in \mathbb{R}$, то ряд $\sum_{n=1}^{\infty} u_n$ называют сходящимся, а S называют суммой ряда

$$\sum_{n=1}^{\infty} u_n = S$$

 $\overset{n-1}{Nota}$. В противном случае ряд расходится, суммы не может быть или она бесконечна

Ех. Поиск суммы по определению

$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$$

$$u_n = \frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}$$

$$S_n = \sum_{k=1}^{n} u_k = \sum_{k=1}^{n} \left(\frac{1}{k} - \frac{1}{k+1}\right) = 1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \frac{1}{3} + \dots + \frac{1}{n} - \frac{1}{n+1} = 1 - \frac{1}{n+1}$$

$$\lim_{n \to \infty} S_n = \lim_{n \to \infty} \left(1 - \frac{1}{n+1}\right) = 1 = S = \sum_{n=1}^{\infty} \frac{1}{n(n+1)}$$

Nota. При исследовании на сходимость используются эталонные ряды

$$Ex.$$
 Геометрический ряд (эталонный): $\sum_{n=0}^{\infty} bq^n$ $S_n = \sum_{k=0}^n bq^k = b(1+q+q^2+q^3+\cdots+q^n) = b\frac{1-q^n}{1-q}$

Исследуем предел
$$\lim_{n\to\infty} S_n$$
:
$$|q| < 1 \qquad \lim_{n\to\infty} S_n = \frac{b}{1-q} \lim_{n\to\infty} (1-q^n) = \frac{b}{1-q}$$

$$|q| > 1 \qquad \lim_{n\to\infty} S_n = \infty (q^n \to \infty)$$

$$|q| > 1$$
 $\lim_{n \to \infty} S_n = \infty(q^n \to \infty)$

$$|q| = 1$$

$$\lim_{n \to \infty} b \frac{0}{0}?$$

$$\sum_{n=0}^{\infty} b q^n = \sum_{n=0}^{\infty} b = \infty \quad (b \neq 0)$$

$$q=-1$$
 $\sum_{n=0}^{\infty}b(-1)^n$ - расходится (из четвертого примера)

<u>Lab.</u> Доказать при q = -1 по def $(S_n = ?)$

2. Свойства числовых рядов

Nota. Свойства рядов используются в арифметических операциях с рядами и при исследовании на сходимость

Th. 1. Отбрасывание или добавление конечного числа членов ряда не влияет на сходимость, но влияет на сумму

$$\sum_{n=1}^{\infty} u_n$$
 и $\sum_{n=k>1}^{\infty} u_n$ одновременно сходятся или расходятся

$$\Box S_{n}^{u} = \sum_{n=1}^{\infty} u_{n} = u_{1} + u_{2} + u_{3} + \dots + u_{k} + u_{k+1} + \dots + u_{n} + \dots$$

$$S_{n}^{v} = \sum_{n=k}^{\infty} v_{n} \qquad u_{n} = v_{n} \quad \forall n \ge k$$

$$S_{n}^{u} = \underbrace{u_{1} + u_{2} + \dots + u_{k-1}}_{\sigma \in \mathbb{R}} + \underbrace{u_{k} + \dots + u_{n}}_{S_{n}^{v}} = \sigma + S_{n}^{v}$$

$$\lim_{n \to \infty} S_{n}^{u} = \lim_{n \to \infty} (\sigma + S_{n}^{v}) = \sigma + \lim_{n \to \infty} S_{n}^{v}$$

Оба предела либо существуют (либо конечны, либо нет), либо не существуют

$${f Th.} \ {f 2.} \ \sum_{n=1}^\infty u_n = S \in \mathbb{R}, \quad lpha \in \mathbb{R}$$
 Тогда $lpha \sum_{n=1}^\infty u_n = \sum_{n=1}^\infty lpha u_n = lpha S$

□ По свойству пределов □

Th. 3.
$$\sum_{n=1}^{\infty} u_n = S \in \mathbb{R}, \ \sum_{n=1}^{\infty} v_n = \sigma \in \mathbb{R}$$
 Тогда $\sum_{n=1}^{\infty} (u_n \pm v_n) = S \pm \sigma$ - сходится

$$\square$$
 По свойству пределов $\lim_{n\to\infty}(S_n\pm\sigma_n)=\lim_{n\to\infty}S_n\pm\lim_{n\to\infty}\sigma_n=S\pm\sigma$ \square

Nota. Обратное неверно! Теорема разрешает складывать и вычитать сходящиеся ряды, но из сходимости суммы рядов не следует сходимость каждого из них

сходимости суммы рядов не следует сходимость каждого из них
$$Ex. \sum_{n=1}^{\infty} \frac{1}{n(n+1)} = 1$$
, но: $\frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}$, а $\sum_{n=1}^{\infty} \frac{1}{n}$ и $\sum_{n=1}^{\infty} \frac{1}{n+1}$ расходятся

Nota. Докажем расходимость $\sum_{n=1}^{\infty} \frac{1}{n}$

Ех. Гармонический ряд (эталонный)

$$\sum_{n=1}^{\infty} u_n = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} + \frac{1}{9} + \frac{1}{10} + \frac{1}{11} + \frac{1}{12} + \frac{1}{13} + \frac{1}{14} + \frac{1}{15} + \frac{1}{16} + \dots$$

$$\sum_{n=1}^{\infty} v_n = 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{4} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{16} + \dots = \frac{1}{16} + \frac{1}{$$

$$= 1 + \frac{1}{2} \cdot 1 + \frac{1}{4} \cdot 2 + \frac{1}{8} \cdot 4 + \frac{1}{16} \cdot 8 + \dots = 1 + \sum_{n=1}^{\infty} \frac{1}{2} = \infty$$

А так как нижний ряд почленно меньше верхнего, а нижний расходится, то и верхний расходится

Так как $u_n \geq v_n$, то $S_n \geq \sigma_n$, тогда $\lim_{n \to \infty} S_n \geq \lim_{n \to \infty} \sigma_n$

$$\sigma_n = 1 + \frac{1}{2} \cdot n \to \infty \Longrightarrow S_n \to \infty$$

Th. 4. Если ряд сходится к числу S, то члены ряда можно группировать произвольным образом, не переставляя, и сумма всех рядов будет равна S

Группировка означает выделение различных подпоследовательностей из последовательности частичных сумм

Так как
$$\lim_{n\to\infty}S_n=S$$
, то $\lim_{k\to\infty}S_n^{(k)}=S$, где $S_n^{(k)}$ - подпоследовательность S_n

$$Ex.$$
 Было $\sum (-1)^n = 1 - 1 + 1 - 1 + 1 - 1 + 1 - \dots = \begin{bmatrix} 0, \\ 1, \end{bmatrix}$ так как ряд расходится

$$Nota.$$
 В условиях $\mathbf{Th.}$ важно, что переставлять члены ряда нельзя $Ex.$ $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \frac{1}{7} - \frac{1}{8} + \frac{1}{9} - \frac{1}{10} + \frac{1}{11} - \frac{1}{12} + \frac{1}{13} - \frac{1}{14} + \frac{1}{15} + \dots$

Далее будет доказано, что этот ряд сходится

Найдем сумму, переставив члены ряда

$$S = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} = 1 - \frac{1}{2} + \left(\frac{1}{3} - \frac{1}{6}\right) - \frac{1}{4} + \left(\frac{1}{5} - \frac{1}{10}\right) - \frac{1}{8} + \left(\frac{1}{7} - \frac{1}{14}\right) - \frac{1}{12} + \left(\frac{1}{9} - \frac{1}{18}\right) + \dots$$

$$S = 1 - \frac{1}{2} \left(1 + \frac{1}{2} - \frac{1}{3} + \frac{1}{4} - \frac{1}{5} + \frac{1}{6}\right) = 1 + \frac{1}{2} \left(-1 - \frac{1}{2} + \frac{1}{3} - \dots\right) = 1 + \frac{1}{2} \left(-2 + 1 - \frac{1}{2} + \frac{1}{3} + \dots\right) = \frac{1}{2} \left(1 - \frac{1}{2} + \frac{1}{3} - \dots\right) = \frac{1}{2}S$$
 ?!

 $ar{N}ota$. Можно доказать, что в подобных рядах перестановкой членов можно получить любое наперед заданное число

Nota. Сходящиеся ряды допускают умножение, но непочленное. В действительности используют формулы перемножения рядов (см. литературу)

$$\sum_{n=1}^{\infty}u_n=S, \sum_{n=1}^{\infty}v_n=\sigma$$
Тогда $\left(\sum_{n=1}^{\infty}u_n\right)\left(\sum_{n=1}^{\infty}v_n\right)=S\sigma$

3. Условия сходимости рядов

3.1. Необходимое

Th.
$$\sum_{n=1}^{\infty} u_n = S \in \mathbb{R} \Longrightarrow \lim_{n \to \infty} u_n = 0$$

$$\lim_{n \to \infty} S_n = S, \quad \lim_{n \to \infty} (S_n - S_{n-1}) = 0$$

Nota. Обратное неверно! (см. гармонический ряд)

Ex.
$$\sum_{n=1}^{\infty} (2n+3) \sin \frac{1}{n}$$

 $\lim_{n \to \infty} (2n+3) \sin \frac{1}{n} = \lim_{n \to \infty} (2+\frac{3}{n}) = 2 \neq 0$

3.2. Критерии (Необходимое и Достаточное условия)

Mem. Критерий Коши для последовательности: $\{x_n\}$ сходится $\Longleftrightarrow \forall \varepsilon > 0$ $\exists n_0 \in \mathbb{N} \mid \forall m > n > n_0 \mid x_m - x_k \mid < \varepsilon$

Th. (без док-ва)
$$\sum_{n=1}^{\infty}u_n \, \operatorname{сходится} \Longleftrightarrow \forall \varepsilon > 0 \, \exists \, n_0 \in \mathbb{N} \, \mid \, \forall m > n > n_0 \, \mid \! u_n + \cdots + u_m \! \mid < \varepsilon \, \mid \, |S_m - S_k| < \varepsilon \, \mid \, |S$$

Nota. Хвост ряда попадает в ε -трубу

Nota. Критерий не удобен для непосредственного исследования на сходимость, в отличии от признаков

3.3. Достаточное условие (признаки сходимости)

Здесь мы рассмотрим:

- 1. Признак сравнения (в неравенствах)
- 2. Предельный признак сравнения
- 3. Признак Даламбера
- 4. Признак Коши (радикальный)
- 5. Признак Коши (интегральный)

Далее $\sum_{n=1}^{\infty}u_n$ - исследуемый ряд, $\sum_{n=1}^{\infty}v_n$ - вспомогательный (уже исследован на сходимость), для простоты $v_n, u_n > 0$ (для отрицательных доказывается аналогично)

Th. 1. Признак сравнения (в неравенствах)

а)
$$\exists 0 < u_n \le v_n$$
. Тогда $\sum v_n$ сходится $\Longrightarrow \sum u_n$ сходится

а)
$$\exists 0 < u_n \le v_n$$
. Тогда $\sum v_n$ сходится $\Longrightarrow \sum u_n$ сходится б) $\exists 0 \le v_n \le u_n$. Тогда $\sum v_n$ расходится $\Longrightarrow \sum u_n$ расходится

а) Строим частичные суммы:

$$\sum v_n$$
 сходится \iff $\exists \lim_{n \to \infty} \sigma_n = \sigma \in \mathbb{R}$ S_n, σ_n возрастают и обе ограничены числом σ

Следовательно $\exists \lim_{n \to \infty} S_n = S \le \sigma$ Аналогично пункт б)

Th. 2. Предельный признак

$$\lim_{n\to\infty}\frac{u_n}{v_n}=q\in\mathbb{R}\setminus\{0\}\implies \begin{bmatrix} \sum u_n \text{ сходится, если }\sum v_n \text{ сходится}\\ \sum u_n \text{ расходится, если }\sum v_n \text{ расходится} \end{cases}$$

По определению предела

$$\exists \lim_{n \to \infty} \frac{u_n}{v_n} = q \in \mathbb{R} \iff \forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} \ | \ \forall n > n_0 \ | \frac{u_n}{v_n} - q | < \varepsilon$$
$$|\frac{u_n}{v_n} - q| < \varepsilon \iff q - \varepsilon < \frac{u_n}{v_n} < q + \varepsilon$$
$$(q - \varepsilon)v_n < u_n < (q + \varepsilon)v_n$$

$$\left|\frac{u_n}{v_n} - q\right| < \varepsilon \Longleftrightarrow q - \varepsilon < \frac{u_n}{v_n} < q + \varepsilon$$

$$(q-\varepsilon)v_n < u_n < (q+\varepsilon)v_n$$

а) Если $\sum v_n$ сходится, то из правой части неравенства: $0 < u_n < (q+\varepsilon)v_n$

По признаку сравнения $\sum u_n$ также сходится

б) Если $\sum v_n$ расходится, то из левой части неравенства: $0 < (q - \varepsilon)v_n < u_n$

Тогда по пункту б) **Th. 1.** $\sum u_n$ расходится

 $Nota.\ \, \Pi$ ри q=0 можем говорить, что u_n - бесконечно малая высшего порядка, чем v_n , а значит, если ряд v_n сходится, то u_n сходится

Ex. 1.
$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \sum_{n=1}^{\infty} u_n$$

$$\begin{split} \sum_{n=1}^{\infty} \frac{1}{n(n+1)} &= \sum_{n=1}^{\infty} v_n \text{ сходится} \\ \frac{1}{n(n+1)} &= \frac{1}{n^2+n} > \frac{1}{n^2+2n+1} = \frac{1}{(n+1)^2} \\ \sum_{n=0}^{\infty} \frac{1}{(n+1)^2} &= \sum_{n=1}^{\infty} \frac{1}{n^2} \text{ сходится по признаку сравнения} \end{split}$$

$$Ex. \ 2. \ \sum_{n=1}^{\infty} \frac{1}{n!} = \sum_{n=1}^{\infty} u_n$$
 $\sum_{n=1}^{\infty} \frac{1}{2^n} = \sum_{n=1}^{\infty} v_n$ сходится

Начиная с некоторого n_0 $n! > 2^n$. Тогда $u_n < v_n$ при $n > n_0$, по признаку сравнения $\sum_{i=1}^{\infty} \frac{1}{n!}$ сходится

Ex. 3.
$$\sum_{n=1}^{\infty} 1_{\overline{n}}$$

Nota. Члены рядов u_n и v_n - бесконечно малые последовательности. Иначе ряды расходятся по необходимому условию. Тогда в Тh. 2. сравниваются порядки бесконечно малых, и ряды одновременно сходятся или расходятся, если u_n и v_n одного порядка малости. По этому принципу подбирается вспомогательный ряд

$$u_n = \arcsin \frac{1}{n} \sim \frac{1}{n-\infty} \frac{1}{n} = v_n$$
 $\sum_{n=1}^{\infty} v_n = \sum_{n=1}^{\infty} \frac{1}{n}$ расходится

Th. 3. Признак Даламбера

$$\sum_{n=1}^{\infty}u_n$$
 - исследуемый, $\exists \mathcal{D}=\lim_{n o\infty}rac{u_{n+1}}{u_n}\in\mathbb{R}^+$

а)
$$0 \le \mathcal{D} < 1 \implies \sum u_n$$
 сходится

a)
$$0 \le \mathcal{D} < 1 \implies \sum u_n$$
 сходится б) $\mathcal{D} > 1 \implies \sum u_n$ расходится

в)
$$\mathcal{D} = 1$$
 \Longrightarrow ничего не следует, требуется другое исследование

а) По определению предела
$$\mathcal{D} = \lim_{n \to \infty} \frac{u_{n+1}}{u_n}, \ 0 \le \mathcal{D} < 1 \Longleftrightarrow$$
 $\forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} \ | \ \forall n > n_0 \ | \frac{u_{n+1}}{u_n} - \mathcal{D} | < \varepsilon \iff \mathcal{D} - \varepsilon < \frac{u_{n+1}}{u_n} < \mathcal{D} + \varepsilon$

Так как $0 \le \mathcal{D} < 1$, можно втиснуть число r между \mathcal{D} и $1: \mathcal{D} < r < 1$

Положим $\varepsilon = r - \mathcal{D}$, то есть $\mathcal{D} + \varepsilon = r$

Смотрим правую часть $\frac{u_{n+1}}{u_n} < r$ для $\forall n > n_0$, где $n_0 = n_0(\varepsilon), \varepsilon = r - \mathcal{D}$

 $u_{n_0+1} < ru_{n_0}$

$$u_{n_0+2} < ru_{n_0+1} < r^2 u_{n_0}$$

$$\sum_{n=1}^{\infty} u_n = \underbrace{u_1 + u_2 + \dots + u_{n_0 - 1}}_{k} + u_{n_0} + \dots = k + \sum_{m=1}^{\infty} v_m$$

Члены $v_m < r^l u_{n_0};\; u_{n_0}$ - фикс. число, а $\sum_{l=1}^\infty r^l$ сходится как геометрический при |r| < 1

Итак ряд $\sum_{l=1}^{\infty} r^l u_{n_0}$ сходится и почленно превышает $\sum v_m = (\sum u_n) - k$

To есть $\sum_{n=1}^{\infty} u_n$ сходится

б) <u>Lab.</u> (взять r между $\mathcal D$ и 1, $1 < r < \mathcal D$, $\mathcal D - r = \varepsilon$)

Сравнить $\sum u_n$ с $\sum r^l$ (расходящимся)

$$Ex.\ 1.\ \sum_{n=1}^{\infty} \frac{1}{n!}$$
 $\mathcal{D} = \lim_{n \to \infty} \frac{u_{n+1}}{u_n} = \lim_{n \to \infty} \frac{n!}{(n+1)!} = \lim_{n \to \infty} \frac{1}{n+1} = 0$ - сходится

$$Ex.\ \mathcal{Z}.\ \sum_{n=1}^{\infty} \frac{1}{n}$$
 $\mathcal{D} = \lim_{n \to \infty} \frac{n}{n+1} = 1$ - расходится

$$\sum_{n=1}^{\infty} \frac{1}{n^2} \qquad \mathcal{D} = \lim_{n \to \infty} \frac{n^2}{(n+1)^2} = 1 - \text{сходится}$$

Th. 4. Радикальный признак Коши

$$\sum_{n=1}^{\infty} u_n \qquad u_n \ge 0 \text{ и } \exists \lim_{n \to \infty} \sqrt[n]{u_n} = K \in \mathbb{R}$$

- а) $0 \le K < 1 \Longrightarrow \sum u_n$ сходится
- б) $K > 1 \Longrightarrow \sum u_n$ расходится

 $Nota.\ K=1$ - ничего не следует

а) По определению предела $\forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} \ | \ \forall n > n_0 \ | \sqrt[n]{u_n} - K | < \varepsilon$

 $\Longleftrightarrow k-\varepsilon < \sqrt[n]{u_n} < k+\varepsilon$ Положим $\varepsilon = r-K$, где K < r < 1

 $\Longrightarrow 0 \leq u_n < r^n$ - геом. ряд с |r| < 1, то есть $\sum r^n$ сходится

б) Аналогично

Ex. 1.
$$\sum_{n \to \infty} \left(\frac{n}{n+1} \right)^n \qquad K = \lim_{n \to \infty} \sqrt[n]{\left(\frac{n}{n+1} \right)^n} = \lim_{n \to \infty} \frac{n}{n+1} = 1$$

$$\mathcal{D} = \lim_{n \to \infty} \frac{\left(1 - \frac{1}{n+2}\right)^{n+1}}{\left(1 - \frac{1}{n+1}\right)^n}$$

Ho $\lim_{n\to\infty}u_n=e^{-1}\neq 0$ - необходимое условие не выполняется

$$Ex. \ 2. \ \sum_{n=1}^{\infty} \left(\frac{n}{n+1}\right)^{n^2}, \qquad K = \lim_{n \to \infty} \sqrt[n]{\left(\frac{n}{n+1}\right)^n} = e^{-1} < 1$$
 - сходится

Th. 5. Интегральный признак Коши

Если существует $f(x):[1;+\infty]\to\mathbb{R}^+, f(x)$ монотонно убывает, $f(n)=u_n$, то $\sum_{n=1}^\infty u_n$ и

 $\int_{1}^{\infty} f(x)dx$ одновременно сходятся или расходятся

$$\int_{1}^{+\infty} f(x)dx = \lim_{b \to \infty} \int_{1}^{b} f(x)dx$$

$$\sum_{n=2}^{b} u_{n} = u_{2} \cdot 1 + u_{3} \cdot 1 + \dots < \int_{1}^{b} f(x)dx < u_{1} \cdot 1 + u_{2} \cdot 1 + \dots = \sum_{n=1}^{b-1} u_{n}$$
Обозначим
$$\sum_{n=1}^{b-1} u_{n} = S_{b-1}, \quad \sum_{n=2}^{b} u_{n} = S_{b-1} - u_{1} + u_{b}$$

$$0 < S_{b-1} - u_{1} + u_{b} < \int_{1}^{b} f(x)dx < S_{b-1}$$

$$0 < \sum_{n=1}^{\infty} u_{n} - u_{1} + u_{b} < \int_{1}^{\infty} f(x)dx < \sum_{n=1}^{\infty} u_{n}$$
Если
$$\int \text{ сходится, то смотрим правую часть}$$
Если
$$\int \text{ расходится, то смотрим левую часть неравенства}$$

4. Знакочередующиеся ряды

 $\mathbf{Def.}\ \sum_{n=0}^{\infty} (-1)^n u_n\ (u_n>0)$ - знакочередующийся ряд

Th. Признак Лейбница

Если для знакочередующегося ряда $\sum_{n=0}^{\infty} (-1)^n u_n$ верно, что $u_n \to 0$ и $|u_1| > |u_2| > \cdots > |u_n|$,

то ряд $\sum_{n=0}^{\infty} (-1)^n u_n$ сходится

$$\sum_{n=1}^{\infty} (-1)^{n+1} u_n = u_1 - u_2 + u_3 - u_4 + \dots + u_n + \dots$$

$$S_{2n} = (u_1 - u_2) + (u_3 - u_4) + \dots + (u_{2n-1} - u_{2n})$$

Все слагаемые в скобках будут больше нуля, тогда частичные суммы будут возрастать

$$S_{2n} = u_1 - (u_2 - u_3) - (u_4 - u_5) - \dots - (u_{2n-2} - u_{2n-1}) - u_{2n} < u_1$$

Здесь же тоже все слагаемые больше нуля - их мы вычитаем из u_1 и получаем число гарантированно меньшее u_1

По **Th.** о монотонности и ограниченности последовательность $\exists \lim_{n \to \infty} S_{2n} = S \in \mathbb{R}$

$$S_{2n+1} = S_{2n} + u_{2n+1};$$
 $\lim_{n \to \infty} S_{2n+1} = \lim_{n \to \infty} S_{2n} + \lim_{n \to \infty} u_{2n+1} = S \in \mathbb{R}$

$$Ex. \ \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots$$

$$u_n = \frac{1}{n} \xrightarrow[n \to \infty]{} 0, \qquad \frac{1}{n} > \frac{1}{n+1} \Longrightarrow \text{ряд сходится}$$

Nota. Оценка остатка ряда

Запишем ряд:
$$\sum_{n=1}^{\infty} (-1)^{n+1} u_n = u_1 - u_2 + u_3 - \dots \pm u_n \mp u_{n+1} = S + \sum_{k=n+1}^{\infty} (-1)^k u_k = S_n + P_n - \text{ остаток ряда}$$

В доказательстве было установлено, что сумма ряда не превышает своего первого члена

$$R_{n+1} < |(-1)^{k+1}u_k| = u_k = u_{n+1}$$

Ex.
$$1 - \frac{1}{2} + \frac{1}{4} - \frac{1}{8} + \frac{1}{16} \underbrace{-\frac{1}{32} + \dots}_{R_4} = \sum_{n=0}^{\infty} (-1)^n \frac{1}{2^n}$$

$$|R_4| < \frac{1}{32}$$

Проверка:
$$-(\frac{1}{32} - \frac{1}{64}) - (\frac{1}{128} - \frac{1}{256}) - \dots = -\sum_{k=3}^{\infty} \frac{1}{2^{2k}} - \underline{\text{Lab.}}$$
 досчитать и сравнить с $\frac{1}{32}$

Nota. Оценка не работает в знакоположительных рядах

$$1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \dots$$

$$R_3 = \frac{1}{16} + \frac{1}{32} + \frac{1}{64} + \dots = \frac{1}{16} (1 + \frac{1}{2} + \dots) = \frac{2}{16} = \frac{1}{8} > \frac{1}{16}$$

Def. Знакопеременный ряд

 $\sum_{n=1}^{\infty} u_n$, где u_n - любого знака и не все u_n одного знака

Ex.
$$1 - \frac{1}{2} + \frac{1}{3} + \frac{1}{4} - \frac{1}{5} - \frac{1}{6} + \frac{1}{7} + \dots$$

Nota. Исследование таких рядов (в том числе знакочередующихся) на сходимость можно проводить при помощи ряда из модулей

$$\mathbf{Th.}$$
 Абсолютная сходимость $\sum_{n=1}^{\infty} |u_n|$ сходится $\Longrightarrow \sum_{n=1}^{\infty} u_n$ сходится

Мет. См. абсолютную сходимость в несобственных интегралах

По критерию Коши:
$$\sum_{n=1}^{\infty} |u_n| \text{ сходится}$$
 $\forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} \ | \ \forall m > n > n_0 \quad ||u_n| + |u_{n+1}| + \cdots + |u_m|| < \varepsilon$ По неравенству треугольника:
$$|u_n| + |u_{n+1}| + \cdots + u_m| < |u_n| + |u_{n+1}| + \cdots + |u_m| < \varepsilon$$

Nota. Обратное неверно!

$$Ex. \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} = 1 - \frac{1}{2} + \frac{1}{3} + \dots$$
 сходится
Но $\sum_{n=1}^{\infty} \frac{1}{n}$ расходится

Def. Если $\sum u_n$ сходится, при том что $\sum |u_n|$ сходится, он называется **абсолютно сходя**щимся

Def. Если $\sum u_n$ сходится, при том что $\sum |u_n|$ расходится, он называется условно сходящимся

Nota. Для абсолютно сходящихся рядов перестановка членов безболезнена и сохраняет сумму

Nota. На абсолютно сходящиеся ряды распространяются признаки сходимости знакоположительных рядов

- 1) Признак сравнения: $|u_n|<|v_n|$: $\sum |v_n|$ сходится $\Longrightarrow \sum |u_n|$ сходится 2) Предельный признак: $\lim |\frac{u_n}{v_n}|=q\in\mathbb{R}\setminus\{0\}$
- 3) $D = \lim \left| \frac{u_{n+1}}{u_n} \right| < 1$
- 4) $K = \lim \sqrt[n]{|u_n|} < 1$
- 5) $\int_{-\infty}^{\infty} f(x) dx$ сравнивается с $\sum |u_n|$

§2. Функциональные ряды

1. Определения

 $\mathbf{Def.} \ \sum_{n=1}^{\infty} u_n(x),$ где $u_n(x): E \subset \mathbb{R} \to \mathbb{R}$ называется функциональным

Nota. При фиксации переменной x ряд становится числовым Ex. $\sum_{n=0}^{\infty} x^n$

$$Ex. \sum_{n=0}^{\infty} x^{n}$$

$$x = 2$$
 $\sum_{n=0}^{\infty} 2^n$ расходится

$$x = \frac{1}{2} - \sum_{n=0}^{\infty} (\frac{1}{2})^n$$
 сходится

n=0 Таким образом для |x|<1 ряд будет сходящимся, для |x|>1 расходящимся

Def. Множество значений x, при которых $\sum_{n=1}^{\infty} u_n(x)$ сходится, называется областью сходимости

Def. Если ряд $\sum_{n=1}^{\infty} u_n(x)$ сходится при всех x из некоторого множества E, то сумма ряда функция S(x)

Nota. To ecth $\exists \lim_{n \to \infty} S_n(x) = S(x)$

Запишем остаток: $R_n(x) = S(x) - S_n(x)$. Часто удобно исследовать $R_n(x) \to 0$. Также работает критерий Коши

Тһ. Критерий Коши

$$\sum_{n=1}^{\infty}u_n(x)$$
 сходится в области $D\Longleftrightarrow \forall \varepsilon>0$ \exists $n_0\in\mathbb{N}$ $\mid \forall m>n>n_0 \mid u_n(x)+u_{n+1}(x)+\cdots+u_m(x)\mid <\varepsilon$

Nota. Очень неприятно, что n_0 зависит от ε и всякого x

Def. Равномерная сходимость ряда

$$\sum_{n=1}^{\infty} u_n(x)$$
 равномерно сходится в области $D \stackrel{def}{\Longleftrightarrow} \forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} \ | \ \forall n > n_0 \ |R_n(x)| < \varepsilon$

Nota. Доказательства равномерной сходимости по определению сложно, пользуются другими способами

Th. Признак Вейерштрасса
$$\exists \sum_{n=1}^\infty \alpha_n \text{ - числовой ряд такой, что } \alpha_n > 0, \ \sum \alpha_n \text{ сходится, } |u_n(x)| \le \alpha_n \ \forall n$$
 Тогда
$$\sum_{n=1}^\infty u_n(x) \text{ равномерно сходящийся}$$

Nota. Ряд $\sum_{i=1}^{\infty} \alpha_n$ называется мажорирующим

$$\sum_{n=1}^{\infty} \alpha_n \operatorname{сходится} \iff \forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} \ | \ \forall n > n_0 \ | R_n^{\alpha} | < \varepsilon$$
 Заменим на условие $|\alpha_n + \dots + \alpha_m| < \varepsilon$ (кр. Коши)
$$|u_n(x) + \dots + u_m(x)| \leq |u_n(x)| + \dots + |u_m(x)| \leq \alpha_n + \dots + \alpha_m \leq \varepsilon$$
 При этом номер n_0 зависит только от ε

Nota. Таким образом всякий мажорирующий ряд равномерно сходится, но не всякий равномерно сходящийся ряд мажорируем

Nota. Установим свойство суммы равномерно сходящегося ряда

$$Ex.$$
 Рассмотрим ряд $\sum_{n=1}^{\infty} (x^{\frac{1}{2n+1}} - x^{\frac{1}{2n-1}}) = (x^{\frac{1}{3}} - x^1) + (x^{\frac{1}{5}} - x^{\frac{1}{3}}) + (x^{\frac{1}{7}} - x^{\frac{1}{5}}) + \dots;$ $S_n = x^{\frac{1}{2n+1}} - x$ При $x > 0$ $\lim_{n \to \infty} S_n = \lim_{n \to \infty} (x^{\frac{1}{2n+1}} - x) = 1 - x$ При $x < 0$ $\lim_{n \to \infty} S_n = \lim_{n \to \infty} (-2^{n+1}\sqrt{|x|} - x) = -1 - x$ При $x = 0$ $S_n = 0$

$$\prod_{p \in \mathcal{X}} x = 0 \quad S_p = 0$$