Calculus on Surfaces

Ingo Nitschke

March 30, 2016

Contents

1	Tens	sor Calculus	1
	1.1	n-Tensors	1
	1.2	1-Tensors (vectors / 1-forms)	1

1 Tensor Calculus

1.1 n-Tensors

	Full	Components	Mathemathica
n-Tensor ¹	$t = t^{(s_1, \dots, s_n)}$	$ \uparrow \uparrow \uparrow \uparrow \uparrow 2 \\ ti_1 i_2 \cdots i_n 2 \\ \downarrow \downarrow \downarrow \downarrow $	$\left\{\left\{t_{i_1}^{\uparrow\uparrow}, i_2 \cdots i_n \atop \downarrow \downarrow \downarrow \downarrow \downarrow \right\}_{i_1, \dots, i_n = 1, 2}, \left\{s_1, \dots, s_n\right\}\right\}$
e.g.	$t = t^{(1,0,1,1,0)}$	$t^{i \ k l \atop j \ m}$	$\{\{t_{j-m}^{i-kl}\}_{i,j,k,l,m=1,2},\{1,0,1,1,0\}\}$
Swap-Transpose $T_{k,l}$	$t^{T_{k,l}} = T_{k,l}(t)$	$\begin{array}{c} t\cdots_{i_k}\cdots_{i_l}\cdots\mapsto t\cdots_{i_l}\cdots_{i_k}\cdots\\ t\cdots^ik\cdots^il\cdots\mapsto t\cdots^il\cdots^ik\cdots\end{array}$	
Push-Transpose $T_{l\to k}$	$t^{T_{l\to k}} = T_{l\to k}(t)$	$t \cdots \stackrel{\uparrow}{i_k} \cdots \stackrel{\uparrow}{i_l} \cdots \mapsto t \cdots \stackrel{\uparrow}{i_l} \stackrel{\uparrow}{i_k} \cdots$	TransFromToTM[TensorMatrix,1,k]
e.g.	$t^{T_{4\to2}} = T_{4\to2}(t)$	$t^i{}^{kl}_j{}^m\mapsto t^{il}{}^k_j{}^m$	
Contraction $C_{k,l}$	$C_{k,l}(t)$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	ContractT[Tensor,k,1]
Outer Product \otimes	$t\otimes s$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	OuterT[Tensor,Tensor]

	Full	Components	Mathemathica
Partial Derivative ∂	$(\partial t)^{T_{1 \to n}}$	$t \cdots_{,i} = \partial_i t \cdots$	D[TensorMatrix, var[[i]]]
Covariant Derivative ∇	$\nabla t^{(s_1, \dots, s_n)} = (\partial t)^{T_{1 \to n}} - \sum_{i=1}^n (-1)^{s_i} \left[C_{i, n - s_i + 3}(t \otimes \Gamma) \right]^{T_{n + s_i \to i}}$	$t \cdots_{ i } = \nabla_i t \cdots$	CoDT[Tensor]

1.2 1-Tensors (vectors / 1-forms)

	Full	Components
∇	$\nabla t^{(0)}$	$t_{i k} = t_{i,k} - \Gamma_{ik}{}^l t_l$
	$\nabla t^{(1)}$	$t^i_{\ k} = t^i_{\ ,k} + \Gamma_{lk}^{\ i} t^l$

of type (s_1, \ldots, s_n) , with $s_i = 0, 1$. Hence, if $m = \sum_{i=1}^n s_i$, then $t \in \mathcal{T}_{n-m}^m(\mathcal{S})$ \uparrow if $s_k = 1$ $(i_k$ is contravariant index); \downarrow if $s_k = 0$ $(i_k$ is covariant index)