Rockchip RK356x USB 用户指南

文件标识: RK-YH-YF-298

发布版本: V1.0.0

日期:2021-08-13

文件密级:□绝密 □秘密 □内部资料 ■公开

免责声明

本文档按"现状"提供,瑞芯微电子股份有限公司("本公司",下同)不对本文档的任何陈述、信息和内容的准确性、可靠性、完整性、适销性、特定目的性和非侵权性提供任何明示或暗示的声明或保证。本文档仅作为使用指导的参考。

由于产品版本升级或其他原因,本文档将可能在未经任何通知的情况下,不定期进行更新或修改。

商标声明

"Rockchip"、"瑞芯微"、"瑞芯"均为本公司的注册商标,归本公司所有。

本文档可能提及的其他所有注册商标或商标,由其各自拥有者所有。

版权所有© 2021瑞芯微电子股份有限公司

超越合理使用范畴,非经本公司书面许可,任何单位和个人不得擅自摘抄、复制本文档内容的部分或全部,并不得以任何形式传播。

瑞芯微电子股份有限公司

Rockchip Electronics Co., Ltd.

地址: 福建省福州市铜盘路软件园A区18号

网址: <u>www.rock-chips.com</u>

客户服务电话: +86-4007-700-590

客户服务传真: +86-591-83951833

客户服务邮箱: fae@rock-chips.com

前言

概述

本文档提供 RK356x USB 模块的用户开发指南,目的是让用户快速了解 RK356x USB 控制器和 USB PHY 的硬件设计和软件驱动设计,以便开发者根据产品的 USB 应用需求进行灵活设计和快速开发。

芯片名称	内核版本
RK3566、RK3568	Linux-4.19

读者对象

本文档(本指南)主要适用于以下工程师:

技术支持工程师

硬件开发工程师

修订记录

日期	版本	作者	修改说明
2021-08-13	V1.0.0	杨斌	初始版本

目录

Rockchip RK356x USB 用户指南

- 1. RK356x USB 控制器和 PHY 简介
- 2. RK356x USB 硬件电路设计
 - 2.1 RK356x USB 2.0/3.0 PHY供电控制
 - 2.2 RK356x OTG 接口硬件电路
 - 2.2.1 RK356x OTG口 Micro-B 接口电路设计
 - 2.2.2 RK356x OTG口Type-A 接口电路设计
 - 2.2.3 RK356x OTG口 Type-C 接口硬件电路
 - 2.3 RK356x USB 3.0 HOST1 接口硬件电路
 - 2.4 RK356x HOST2/HOST3接口硬件电路
- 3. RK356x USB DTS 配置
 - 3.1 RK356x OTG配置
 - 3.1.1 RK3566 OTG配置
 - 3.1.2 RK3568 OTG 配置成USB3.0
 - 3.1.3 RK3568 OTG 配置成USB2.0
 - 3.2 RK356x HOST1 配置
 - 3.2.1 RK356x HOST1 配置成 USB3.0
 - 3.2.2 RK356x HOST1 配置成 USB2.0 Only
 - 3.3 RK356x HOST2 配置
 - 3.4 RK356x HOST3 配置
 - 3.5 USB VBUS 配置
 - 3.5.1 GPIO控制电源稳压芯片输出VBUS
 - 3.5.2 Rockchip 的 PMIC 输出VBUS
- 4. RK356x USB OTG mode 切换命令
- 5. RK356x 常见USB问题分析
 - 5.1 RK356x USB基本功能调试
 - 5.2 RK356x USB信号调节
- 6. Rockchip平台USB文档介绍

1. RK356x USB 控制器和 PHY 简介

RK356x 总共支持 4 个 USB 外设接口,包括 1 个OTG 接口,1 个 USB 3.0 Host 接口,以及 2 个 USB 2.0 Host 接口。USB接口名称与接口类型对应关系如下:

芯片/接口名称	OTG0	HOST1	HOST2	HOST3
RK3566	USB2.0 OTG	USB 3.0 HOST	USB 2.0 HOST	USB 2.0 HOST
RK3568	USB3.0 OTG	USB 3.0 HOST	USB 2.0 HOST	USB 2.0 HOST

RK356x USB 控制器和 PHY 的连接示意图,如下图所示:

- 1. 每个USB2.0 PHY 中包含两个 Port ,每一个 Port 分别给一个 USB2.0 控制器使用。
- 2. OTG 口的 USB3.0 控制器与 SATA0 控制器复用一个Combo PHY0(RK3568 only),HOST1 口的 USB3.0 控制器与 SATA1/QSGMII 控制器复用一个 Combo PHY1,并且OTG口的 USB3.0 功能 与 SATA0, Host1 口的 USB3.0功能与 SATA1/QSGMII 在使用上是互斥的,用户应该根据具体的产品 形态来配置对应的DTS, DTS具体的配置方法,请参考第3章节 RK356x USB DTS 配置。
- 3. "EHCI/OHCI" 表示该 USB 控制器集成了 EHCI 控制器和 OHCI 控制器; "DWC3/xHCI" 表示该 USB 控制器集成了 DWC3 控制器和 xHCI 控制器。
- 4. RK3568的OTG口支持 USB 3.0, RK3566的OTG口只支持USB2.0, 不支持USB3.0。

2. RK356x USB 硬件电路设计

本章节主要介绍RK356x USB 硬件电路设计方案。

2.1 RK356x USB 2.0/3.0 PHY供电控制

RK356x 包含 2 个 USB 2.0 PHY ,其中每一个 USB 2.0 PHY 的供电有三路:3.3V ,1.8V 和 0.9V ,这三路电源的电压要求,如下表所示:

Supply Voltage	Min	Тур	Max	Unit
USB_AVDD_3V3	3.0	3.3	3.6	V
USB_AVDD_1V8	1.62	1.8	1.98	V
USB_AVDD_0V9	0.81	0.9	0.99	V

注意: 实际电路中,这三路电压值超过规定的范围(电压最大允许上下波动±10%),都可能会导致 USB 连接异常。

RK3566 包含 1 个 USB 3.0 PHY, RK3568 包含 2 个 USB 3.0 PHY, 所有的USB3.0 PHY共用两路电源供电: 0.9V 和 1.8V。这两路电源的电压要求,如下表所示:

Supply Voltage	Min	Тур	Max	Unit
MULTI_PHY_AVDD_1V8	1.62	1.8	1.98	V
MULTI_PHY_AVDD_0V9	0.81	0.9	0.99	V

设计和使用注意事项:

- 1. 实际需求中 USB 端口没有被使用的,设计时应考虑断开其对应的USB PHY供电。USB PHY都是两个USB3.0 PHY共用一组电源,一个USB2.0 PHY的两个PORT共用一组电源,所以只有在一组电源上的所有PHY都没有被使用的情况下才能断开PHY的供电。
- 2. 如果USB端口没有被使用,不管USB PHY是否被供电,都应在软件DTS中关闭该端口对应的控制器、PHY等节点的配置,具体请参考第3章节 RK356x USB DTS 配置。

2.2 RK356x OTG 接口硬件电路

RK356x OTG口硬件设计注意事项:

- 1. DP/DM 必须分别串接 2.2 Ω 电阻 , 提高 DP/DM 的抗压/抗静电能力。
- 2. 如果要支持 USB Device 动态拔插检测和充电类型检测功能,则 VBUSDET 脚一定要连接到 USB接口。
- 3. 如果不需要支持 USB Device 动态拔插检测和充电类型检测功能,可以允许 VBUSDET 脚固定拉高到 3.3V 或者悬空 (推荐拉高到 3.3V)。由于 RK356x Maskrom USB 的连接不依赖于 VBUSDET 信号的检测,所以即使 VBUSDET 脚悬空, Maskrom USB 仍然可以正常工作并下载固件。
- 4. USB3_OTG0_ID 在 RK356x 芯片内部通过155K ohm电阻上拉到1.8V , 所以如果没有使用 , 保持悬空即可。
- 5. 有些 USB 3.0 外设 (如 USB 3.0 机械硬盘和 USB 3.0 Camera) 对工作电流要求较高,所以当 USB 3.0 OTG 作 Host mode 时,需要保证 VBUS 的供电电流达到 1A 以上。

RK356x的OTG口一般比较常见的会设计成Micro-B , Type-A , Type-C这三种接口类型 , 以下分别介绍 这三种类型的硬件电路。

2.2.1 RK356x OTG口 Micro-B 接口电路设计

RK356x USB 2.0 OTG Micro-B 接口电路设计与 Rockchip 其他平台的 USB 2.0 OTG 电路设计类似,因此这里不详细介绍电路设计原理。

RK3566 USB 2.0 OTG Micro-B 接口电路如下图所示:

注意:RK3568 USB 2.0 OTG Micro-B接口电路设计与上面RK3566电路相同。但是RK3568平台的OTG 口是USB3.0的,所以如果将OTG设计成USB 2.0接口,且USB3.0 PHY如果没有被使用,设计时应该断开USB3.0 PHY的供电。

2.2.2 RK356x OTG口Type-A 接口电路设计

RK356x OTG口Type-A 接口分为USB2.0Type-A和USB3.0 Type-A (RK3568 Only)两种接口类型。

USB2.0 Type-A接口:

RK356x USB 2.0 OTG Type-A 的接口电路设计与RK356x USB 2.0 OTG Micro-B电路设计类似,差异是Type-A接口没有USB ID脚,所以让RK356x芯片上的USB ID保持悬空即可。

USB3.0 Type-A接口:

RK3568 USB 3.0 OTG Type-A 的接口电路设计如下图所示。

注意:不管是USB2.0的Type-A接口还是USB3.0的Type-A接口都没有连接USB ID管脚,所以无法支持硬件ID切换 Device/Host mode,需要通过软件命令切换 mode,切换命令参考第4章节 RK356x USB OTG mode 切换命令。

2.2.3 RK356x OTG口 Type-C 接口硬件电路

目前Rockchip提供的RK3566 Tablet参考设计其中的USB 2.0 部分是使用Type-C 接口,这种Type-C不是全功能Type-C接口,只能支持USB2.0、正反插识别、Host/Device切换功能。不能支持USB3.0/DP显示/PD快充等功能。具体电路请参考RK3566 Tablet参考设计。

如果RK3568需要支持USB 3.0 的Type-C功能需要在 RK3568 USB 3.0 OTG 和 Type-C 接口中间增加一个 USB 3.1 Switch 芯片 (如 FUSB340)和一个 CC 通信芯片 (如 FUSB302)。

注意:不能为了简单的实现USB 3.0 Type-C正反插功能,而将Type-C两面的TX/RX数据线直连在一起。

2.3 RK356x USB 3.0 HOST1 接口硬件电路

RK356x USB 3.0 HOST Type-A 接口硬件电路与前面章节 RK356x OTG口Type-A 接口电路设计类似,不同点在于 RK356x USB 3.0 HOST 没有 VBUSDET pin 和 ID pin。电路设计请参考 2.2.2 RK356x OTG 口Type-A 接口电路设计。

2.4 RK356x HOST2/HOST3接口硬件电路

RK356x Host2/Host3 接口硬件电路与 Rockchip 其他平台的USB 2.0 Host 电路设计类似,因此,这里不详细介绍。

3. RK356x USB DTS 配置

RK356x USB 硬件电路具有多样化的特点,尤其是灵活多变的 USB OTG 口的硬件电路,以及复杂的 USB 3.0/SATA/QSGMII Combo PHY 复用关系。因此,建议开发者要在理解硬件电路设计的基础上,正 确配置 USB 相关的控制器和 PHY 的 DTS 节点。

3.1 RK356x OTG配置

RK356x OTG 的DTS节点名称定义如下:

usbdrd30	usbdrd_dwc3	usb2phy0	u2phy0_otg	combphy0_us
USB 控制器	USB 控制器子	USB2.0 PHY父节点(与	USB2.0 PHY	USB3.0 PHY节
父节点	节点	HOST1口共用)	子节点	点

注意: RK3568 OTG 口支持 USB2.0 和 USB3.0 功能,它们内部是属于同一个USB控制器,DTS的节点名称为 usbdrd30 和 usbdrd_dwc3; RK3566 OTG 口虽然只支持 USB2.0 功能,但是DTS的节点名称也是 usbdrd30 和usbdrd_dwc3。

3.1.1 RK3566 OTG配置

RK3566 OTG口不支持USB3.0功能, DTS配置如下:

```
&u2phy0_otg {
         vbus-supply = <&vcc5v0_otg>;
         status = "okay";
};

&usb2phy0 {
         status = "okay";
}
```

- 1. u2phy0_otg 中的 vbus-supply 为OTG 口的VBUS 电源配置,详细配置说明参考 3.5 USB VBUS 配置章节。
- 2. 如果 OTG 口需要Host/Device功能切换,但是开机默认需要工作在 Host 模式,此处 usbdrd_dwc3中仍然建议配置成 dr_mode = "otg",然后根据第4章节 RK356x USB OTG mode 切换命令在开机初始化中,比如inir.rc中使用命令将 OTG 口的 USB 模式切换成HOST。

3.1.2 RK3568 OTG 配置成USB3.0

RK3568 OTG当作USB3.0使用的DTS配置如下:

```
&combphy0_us {
       status = "okay";
};
&u2phy0_otg {
        vbus-supply = <&vcc5v0_otg>;
        status = "okay";
};
&usb2phy0 {
       status = "okay";
};
&usbdrd_dwc3 {
       dr_mode = "otg";
       extcon = <&usb2phy0>;
       status = "okay";
};
&usbdrd30 {
       status = "okay";
};
```

注意:

- 1. u2phy0_otg 中的 vbus-supply 为OTG口的VBUS配置,详细配置说明参考3.5 USB VBUS 配置章 节.
- 2. 如果 OTG 口需要Host/Device功能切换,但是开机默认需要工作在 Host 模式,此处 usbdrd_dwc3中仍然建议配置成 dr_mode = "otg",然后根据第4章节 RK356x USB OTG mode 切换命令在开机初始化中,比如inir.rc中使用命令将 OTG 口的 USB 模式切换成HOST。

3.1.3 RK3568 OTG 配置成USB2.0

RK3568 OTG当作USB2.0 Only使用的DTS配置如下:

```
&combphy0_us {
        rockchip,dis-u3otg0-port;
        /* OTG 和 SATAO 都没有使用combphyO_us, 则此处disabled */
        status = "okay";
};
&u2phy0_otg {
        vbus-supply = <&vcc5v0_otg>;
        status = "okay";
};
&usb2phy0 {
        status = "okay";
};
&usbdrd_dwc3 {
        dr_mode = "otg";
        phys = <\&u2phy0\_otg>;
        phy-names = "usb2-phy";
        extcon = <&usb2phy0>;
        maximum-speed = "high-speed";
        snps,dis_u2_susphy_quirk;
        status = "okay";
};
&usbdrd30 {
       status = "okay";
};
```

- 1. 因为combphy0_us 节点是 OTG USB3.0 PHY 和 SATA0 复用的,当 OTG USB3.0 PHY 没有使用 combphy0_us,但是 SATA0 使用了 combphy0_us,则DTS需要按照上面中的配置对 combphy0_us 进行配置,如果 OTG USB3.0 PHY 和 SATA0 都没有使用 combphy0_us,这种情况下 combphy0_us 的硬件电路一般也不会被供电,则DTS中应关闭 combphy0_us 的配置。
- 2. u2phy0_otg 中的 vbus-supply 为OTG 口的VBUS电源配置,详细配置说明参考3.5 USB VBUS 配置章节。
- 3. 如果 OTG 口需要Host/Device功能切换,但是开机默认需要工作在 Host 模式,此处 usbdrd_dwc3中仍然建议配置成 dr_mode = "otg",然后根据第4章节 RK356x USB OTG mode 切换命令在开机初始化中,比如inir.rc中使用命令将 OTG 口的 USB 模式切换成HOST。

3.2 RK356x HOST1 配置

RK356x HOST1 的DTS节点名称定义如下:

usbhost30	usbhost_dwc3	usb2phy0	u2phy0_host	combphy1_usq
USB 控制器	USB 控制器子	USB2.0 PHY父节点	USB2.0 PHY	USB3.0 PHY节
父节点	节点	(与OTG口共用)	子节点	点

3.2.1 RK356x HOST1 配置成 USB3.0

RK356x HOST1 当作USB3.0使用的DTS配置如下:

```
&combphy1_usq {
```

- 1. u2phy0_host 中的 phy-supply 为Host1口的VBUS电源配置,详细配置说明参考3.5 USB VBUS 配置章节。
- 2. 如果硬件上HOST1没有使用,只需要去掉上面的配置即可(rk3568.dtsi中的默认节点配置都是关闭的)。但是usb2phy0节点是和OTG共用的,因为OTG口基本上都会被使用,所以 usb2phy0 该节点相当于是都要被打开的。

3.2.2 RK356x HOST1 配置成 USB2.0 Only

RK356x HOST1 当作USB2.0 Only使用的DTS配置如下:

```
&combphy1_usq {
        rockchip,dis-u3otg1-port;
        /*HOST1、SATA1 和 QSGMII都没有使用combphy1_usq,则此处disabled */
        status = "okay";
};
&u2phy0_host {
        phy-supply = <&vcc5v0_host>;
        status = "okay";
};
&usb2phy0 {
       status = "okay";
};
&usbhost_dwc3 {
        phys = <\&u2phy0\_host>;
        phy-names = "usb2-phy";
        maximum-speed = "high-speed";
        status = "okay";
};
&usbhost30 {
        status = "okay";
};
```

- 1. 因为 combphy1_usq 节点是 HOST1 的 USB3.0 PHY 和 SATA1/QSGMII 复用的,当 HOST1 的 USB3.0 PHY 没有使用 combphy1_usq,但是 SATA1/QSGMII 使用了 combphy1_usq,则DTS需要按照上面中的配置对 combphy1_usq 进行配置,如果 HOST1的USB3.0 PHY 和 SATA1/QSGMII 都没有使用 combphy1_usq,这种情况下 combphy1_usq 的硬件电路上一般也不会被供电,则 DTS中应关闭 combphy1_usq 配置。
- 2. u2phy0_host中的 phy-supply为Host1口的VBUS电源配置,详细配置说明参考3.5 USB VBUS 配置 章节。
- 3. 如果硬件上HOST1没有使用,只需要去掉上面的配置即可(rk3568.dtsi 中的默认节点配置都是关闭的)。但是 usb2phy0 节点是和 OTG 共用的,因为 OTG 口基本上都会被使用,所以 usb2phy0 该节点相当于是都要被打开的。

3.3 RK356x HOST2 配置

RK356x HOST2 第DTS节点名称定义如下:

usb_host0_ehci	usb_host0_ohci	usb2phy1	u2phy1_otg
USB HS控制器节	USB FS/LS控制器节	USB PHY父节点(与HOST3 共	USB PHY子节
点	点	用)	点

RK356x HOST2 DTS 配置如下:

注意:

- 1. u2phy1_otg 中的 phy-supply 为HOST2口的VBUS电源配置,详细配置说明参考3.5 USB VBUS 配置 章节。
- 2. 如果硬件上 HOST2 没有使用,只需要去掉上面的配置即可(rk3568.dtsi中的默认节点配置都是关闭的)。但是usb2phy1节点是和HOST3共用的,只要HOST2和HOST3都没有使用的情况下才能关闭。

3.4 RK356x HOST3 配置

RK356x HOST3 的DTS节点名称定义如下:

usb_host1_ehci	usb_host1_ohci	usb2phy1	u2phy1_host
USB HS控制器节	USB FS/LS控制器节	USB PHY父节点 (与HOST2共	USB PHY子节
点	点	用)	点

RK356x HOST3配置如下:

```
&u2phy1_host {
          phy-supply = <&vcc5v0_host>;
          status = "okay";
};

&usb2phy1 {
          status = "okay";
};

&usb_host1_ehci {
               status = "okay";
};

&usb_host1_ohci {
               status = "okay";
};
```

注意:

- 1. u2phy1_host 中的 phy-supply 为HOST3口袋VBUS电源配置,详细配置说明参考3.5 USB VBUS配置 章节。
- 2. 如果硬件上HOST3没有使用,只需要去掉上面的配置即可(rk3568.dtsi中的默认节点配置都是关闭的)。但是usb2phy1节点是和HOST2共用的,只要HOST2和HOST3都没有使用的情况下才能关闭。

3.5 USB VBUS 配置

Rockchip 平台的 USB VBUS 控制电路,一般有GPIO控制电源稳压芯片输出、Rockchip 的 PMIC 输出、硬件直接输出(不受软件控制,DTS不需要配置,不建议使用)等几种方案。

3.5.1 GPIO控制电源稳压芯片输出VBUS

该方案一般适用于USB HOST口和不带充电方案的OTG口, DTS配置参考如

```
};
};
...
};
```

- 1. OTG口的VBUS电源引用名称是 vbus-supply, HOST口的VBUS电源引用名称是 phy-supply。
- 2. vcc5v0_otg节点中的GPIO需要根据实际硬件设计来修改,并且需要配置对应的GPIO Pinctrl。
- 3. 上述示例中, vcc5v0_otg为OTG口的配置, HOST口的配置与OTG口是一样的, 只要修改下定义的节点名称即可。

3.5.2 Rockchip 的 PMIC 输出VBUS

该方案一般适用于带充电方案的OTG口, DTS配置参考如下:

```
rk817: pmic@20 {
    ...
    regulators {
        otg_switch: OTG_SWITCH {
            regulator-name = "otg_switch";
            regulator-state-mem {
                 regulator-off-in-suspend;
            };
        };
    };
    ...
};
```

注意:

- 1. 示例中使用的是RK817,不同的PMIC配置可能会存在差异。
- 2. 如果需要VBUS在休眠的时候保持关闭,可以配置"regulator-off-in-suspend"。

4. RK356x USB OTG mode 切换命令

RK356x SDK 支持通过软件方法,强制设置 USB 2.0/3.0 OTG 切换到 Host mode 或者 Peripheral mode,而不受 USB 硬件电路的 OTG ID 电平或者 Type-C 接口的影响。

RK356x Linux-4.19 内核切换 USB 控制器工作在 Peripheral mode 或 Host mode 的方法

```
#1.Force host mode
  echo host > /sys/devices/platform/fe8a0000.usb2-phy/otg_mode
#2.Force peripheral mode
  echo peripheral > /sys/devices/platform/fe8a0000.usb2-phy/otg_mode
#3.Force otg mode
  echo otg > /sys/devices/platform/fe8a0000.usb2-phy/otg_mode
```

注意:如果在某些应用中想让OTG口默认工作在HOST模式,建议DTS中的dr_mode仍然配置成默认的 "otg",然后在开机初始化中,比如inir.rc中使用上述 Force host mode 的命令将OTG口的USB模式切换成HOST。

5. RK356x 常见USB问题分析

5.1 RK356x USB基本功能调试

Rockchip 提供的 RK356x SDK 中的 USB 的基本功能肯定都是正常的,其中包括USB固件烧录、USB 各种Decies 功能(ADB、MTP和RNDIS等)、USB HOST功能(连接U盘、USB Camera、鼠标等各种常见USB设备使用等)。如果用户出现这种基础的功能性的问题,请务必先按照本文档的第2章节 RK356x USB 硬件电路设计和第3章节 RK356x DTS配置进行排查。如果自行排查后问题还是无法得到解决,再将问题信息和排查结果一并提交Redmine 申请 Rockchip 的技术支持。

5.2 RK356x USB信号调节

当USB模块在实际使用中遇到如下问题时,且在硬件上已没有优化的可能的情况下可以考虑通过 Rockchip USB PHY Tuning Tool.xlsm工具调节USB信号相关参数来软件优化。

- 1. 眼图指标测试失败问题;
- 2. 信号质量问题或者 PHY 供电压差问题引起的 USB 枚举失败;
- 3. USB连接外设会自动发生异常断开;
- 4. USB连接外设拔掉无法检测到断开事件;

6. Rockchip平台USB文档介绍

SDK中的Rockchip平台USB文档目录:

RKDocs/common/usb/

Rockchip_User_Guide_USB_PHY_Tuning_CN.pdf

该文档主要介绍Rockchip平台USB PHY信号调节方法。当用户有USB信号相关问题时,可以阅读此文档。

Rockchip_Developer_Guide_Linux_USB_Initialization_Log_Analysis_CN_v1.1.1.pdf

该文档主要分析Rockchip平台USB模块初始化时相关的内核日志,该文档有助于用户快速排查USB相关功能异常以及获取USB相关状态信息等。

Rockchip_Developer_Guide_Linux_USB_Performance_Analysis_CN_V1.1.1.pdf

该文档提供 Rockchip平台USB模块传输性能测试方法和优化方法等。如果用户遇到U盘、USB Camera 等传输性能问题时可以阅读该文档。

Rockchip_Developer_Guide_USB_CN_V1.3.1.pdf Rockchip_Developer_Guide_USB_EN.pdf

该文档主要说明 Rockchip 系列芯片 USB 3.0/2.0 控制器和物理层的特性、USB 硬件电路、各内核版本中 USB 驱动模块的开发和调试方法。该文档介绍了Rockchip 大部分芯片的USB模块,所以内容会相对比较多,如果用户希望对Rockchip 平台的 USB 模块有更深入的了解时,可以阅读此文档。

Rockchip_Developer_Guide_USB_FFS_Test_Demo_CN_v1.2.1.pdf

该档提供类 Rockchip 平台 USB FFS Test Demo 的使用方法。

Rockchip_Developer_Guide_USB_Gadget_UAC_CN_V1.1.1.pdf

该文档提供 Rockchip 平台基于 Linux 内核的 USB Gadget UAC(USB Audio Class)驱动的使用方法。USB Gadget UAC是将Rockchip平台芯片作为一个Audio设备(USB Device)连接PC等主机使用的情况。

 ${\tt Rockchip_Developer_Guide_USB_SQ_Test_CN_V1.6.2.pdf}$

该文档提供 Rockchip 平台 USB 2.0/3.0 信号完整性测试的方法。用户有信号完整性测试需求的或者测试中遇到问题的,都应该先认真阅读下该文档。文档中介绍了Rockchip各个芯片平台的信号完整性测试环境和测试方法等,并有测试中遇到的常见问题分析。