Design and Analysis of Algorithms Lecture-3: Divide and Conquer

Prof. Eugene Chang

Overview

- Analyzing recurrence
- Solving recurrence
- The master method
- Part of the slides are based on material from Prof. Jianhua Ruan, The University of Texas at San Antonio

Analyzing recursive algorithms

Recursive algorithms

- General idea:
 - Divide a large problem into smaller ones
 - By a constant ratio
 - By a constant or some variable
 - Solve each smaller one recursively or explicitly
 - Combine the solutions of smaller ones to form a solution for the original problem

Divide and Conquer

Merge sort

MERGE-SORT $A[1 \dots n]$

- 1. If n = 1, done.
- 2. Recursively sort $A[1..\lceil n/2\rceil]$ and $A[\lceil n/2\rceil+1..n]$.
- 3. "Merge" the 2 sorted lists.

Key subroutine: MERGE

The problem of sorting a list of numbers lends itself immediately to a divide-and-conquer strategy.

Input:

10 2 5 3

7 | 13 | 1 | 6

10 2

5 3

7 13

1 6

10

2

5

3

7

13

1

9/26/2015

```
<u>function merge</u> (x[1...k], y[1...m])
if k = 0: return y[1...m]
if m = 0: return x[1...k]
if x[1] \leq y[1]:
   return x[1] \bullet merge(x[2...k],
   y[1...m])
else:
   return y[1]  merge(x[1...k],
   y[2...m])
   where ② is concatenation.
```

9/26/2015

```
function merge(x[1...k], y[1...m])
if k = 0: return y[1...m]
if m = 0: return x[1...k]

if x[1] ≤ y[1]:
    return x[1]   merge(x[2...k],
    y[1...m])
else:
    return y[1]   merge(x[1...k],
    y[2...m])
```

This merge procedure does a constant amount of work per recursive call (provided the required array space is allocated in advance), for a total running time of O(k + m).

20 12

13 11

7 9

20 12

13 11

7 9

20 12

13 11

How to show the correctness of a recursive algorithm?

• By induction:

- Base case: prove it works for small examples
- Inductive hypothesis: assume the solution is correct for all subproblems
- Step: show that, if the inductive hypothesis is correct, then the algorithm is correct for the original problem.

9/26/2015 SVU CS502 26

Correctness of merge sort

MERGE-SORT $A[1 \dots n]$

- 1. If n = 1, done.
- 2. Recursively sort $A[1..\lceil n/2\rceil]$ and $A[\lceil n/2\rceil+1...n]$.
- 3. "Merge" the 2 sorted lists.

Proof:

- 1. Base case: if n = 1, the algorithm will return the correct answer because A[1..1] is already sorted.
- 2. Inductive hypothesis: assume that the algorithm correctly sorts $A[1.. \lceil n/2 \rceil]$ and $A[\lceil n/2 \rceil + 1..n]$.
- 3. Step: if A[1.. $\lceil n/2 \rceil$] and A[$\lceil n/2 \rceil$ +1..n] are both correctly sorted, the whole array A[1.. $\lceil n/2 \rceil$] and A[$\lceil n/2 \rceil$ +1..n] is sorted after merging.

Analyzing merge sort

```
T(n)MERGE-SORT A[1 ... n]\Theta(1)1. If n = 1, done.2T(n/2)2. Recursively sort A[1 ... \lceil n/2 \rceil]A[n/2] + 1 ... n].A[n/2] + 1 ... n].
```

Sloppiness: Should be $T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor)$, but it turns out not to matter asymptotically.

Analyzing merge sort

- 1. Divide: Trivial.
- 2. Conquer: Recursively sort 2 subarrays.
- 3. Combine: Merge two sorted subarrays

1. What is the time for the base case?

Constant

- 2. What is f(n)?
- 3. What is the growth order of T(n)?

 $\Theta(n)$ time to merge a total of n elements (linear time).

Recurrence for merge sort

$$T(n) = \begin{cases} \Theta(1) \text{ if } n = 1; \\ 2T(n/2) + \Theta(n) \text{ if } n > 1. \end{cases}$$

- Later we shall often omit stating the base case when $T(n) = \Theta(1)$ for sufficiently small n, but only when it has no effect on the asymptotic solution to the recurrence.
- But what does T(n) solve to? I.e., is it O(n) or $O(n^2)$ or $O(n^3)$ or ...?

How to analyze the time-efficiency of a recursive algorithm?

 Express the running time on input of size n as a function of the running time on smaller problems

$$T(n) = 2T(n/2) + O(n).$$

$$T(n) = a * T(n/b) + d * f(n)$$

$$a = 2, b = 2, d = 1 \implies O(n \log n)$$

9/26/2015

Solving recurrence

- 1. Recursion tree / iteration method
- 2. Substitution method
- 3. Master method

Binary Search

```
\begin{aligned} & \text{ if } (\mathsf{N} == 0) \\ & \text{ return -1; } & \text{// not found} \\ & \text{mid} = (1+\mathsf{N})/2; \\ & \text{ if } (\mathsf{A}[\mathsf{mid}] == \mathsf{value}) \\ & \text{ return mid; } & \text{// found} \\ & \text{ else if } (\mathsf{A}[\mathsf{mid}] > \mathsf{value}) \\ & \text{ return } \textit{\textbf{BinarySearch}} \left(\mathsf{A}[\mathsf{1..mid-1}], \mathsf{value}\right); \\ & \text{ else} \\ & \text{ return } \textit{\textbf{BinarySearch}} \left(\mathsf{A}[\mathsf{mid+1}, \mathsf{N}], \mathsf{value}\right) \\ & \} \end{aligned}
```

Binary Search

To find an element in a sorted array, we

- 1. Check the middle element
- 2. If ==, we've found it
- 3. else if less than wanted, search right half
- 4. else search left half

Binary Search

To find an element in a sorted array, we

- 1. Check the middle element
- 2. If ==, we've found it
- 3. else if less than wanted, search right half
- 4. else search left half

To find an element in a sorted array, we

- 1. Check the middle element
- 2. If ==, we've found it
- 3. else if less than wanted, search right half
- 4. else search left half

3

5

7

8

9

12

To find an element in a sorted array, we

- 1. Check the middle element
- 2. If ==, we've found it
- 3. else if less than wanted, search right half
- 4. else search left half

3

5

7

8

9

To find an element in a sorted array, we

- 1. Check the middle element
- 2. If ==, we've found it
- 3. else if less than wanted, search right half
- 4. else search left half

Example: Find 9

3

5

7

8

9

To find an element in a sorted array, we

- 1. Check the middle element
- 2. If ==, we've found it
- 3. else if less than wanted, search right half
- 4. else search left half

Example: Find 9

3

5

7

8

9

12

What's the recurrence relation for its running time?

Recurrence for binary search

$$T(n) = T\left(\frac{n}{2}\right) + \Theta(1)$$

$$T(1) = \Theta(1)$$

Recursive Insertion Sort

RecursiveInsertionSort(A[1..n])

- 1. if (n == 1) do nothing;
- 2. RecursiveInsertionSort(A[1..n-1]);
- 3. Find index i in A such that $A[i] \le A[n] < A[i+1]$;
- 4. Insert A[n] after A[i];

$$T(n) = T(n-1) + \Theta(n)$$

Recursive Insertion Sort

RecursiveInsertionSort(A[1..n])

- 1. if (n == 1) do nothing;
- 2. RecursiveInsertionSort(A[1..n-1]);
- 3. Find index i in A such that $A[i] \le A[n] < A[i+1]$;
- 4. Insert A[n] after A[i];

Recurrence for insertion sort

$$T(n) = T(n-1) + \Theta(n)$$

$$T(1) = \Theta(1)$$

Compute factorial

```
Factorial (n)
if (n == 1) return 1;
return n * Factorial (n-1);
```

• Note: here we use n as the size of the input. However, usually for such algorithms we would use log(n), i.e., the bits needed to represent n, as the input size.

Compute factorial

Factorial (n) if (n == 1) return 1; return n * Factorial (n-1);

$$T(n) = T(n-1) + \Theta(1)$$

 Note: here we use n as the size of the input. However, usually for such algorithms we would use log(n), i.e., the bits needed to represent n, as the input size.

Recurrence for computing factorial

$$T(n) = T(n-1) + \Theta(1)$$

$$T(1) = \Theta(1)$$

• Note: here we use n as the size of the input. However, usually for such algorithms we would use log(n), i.e., the bits needed to represent n, as the input size.

Power series

• How many multiplications do you need to compute 3¹⁶?

Pseudo code

```
int pow (b, n) // compute b<sup>n</sup>
    m = n >> 1;
    p = pow (b, m);
    p = p * p;
    if (n % 2)
        return p * b;
    else
        return p;
```

Pseudo code

```
int pow (b, n)
    m = n >> 1;
    p = pow (b, m);
    p = p * p;
    if (n % 2)
        return p * b;
    else
        return p;
```

```
int pow (b, n)
    m = n >> 1;
    p = pow(b,m) * pow(b,m);
    if (n % 2)
        return p * b;
    else
        return p;
```

Recurrence for computing power

```
int pow (b, n)
    m = n >> 1;
    p = pow (b, m);
    p = p * p;
    if (n % 2)
        return p * b;
    else
        return p;
```

```
int pow (b, n)
    m = n >> 1;
    p=pow(b,m)*pow(b,m);
    if (n % 2)
        return p * b;
    else
        return p;
```

Recurrence for computing power

```
int pow (b, n)

m = n >> 1;

p = pow (b, m);

p = p * p;

if (n % 2)

return p * b;

else

return p;

T(n) = T(n/2) + \Theta(1)
```

```
int pow (b, n)
 m = n >> 1;
 p=pow(b,m)*pow(b,m);
 if (n % 2)
      return p * b;
 else
      return p;
 T(n) = 2T(n/2) + \Theta(1)
```

SVU CS502 53

What do they mean?

$$T(n) = T(n-1) + 1$$

$$T(n) = T(n-1) + n$$

$$T(n) = T(n/2) + 1$$

$$T(n) = 2T(n/2) + 1$$

Challenge: how to solve the recurrence to get a closed form, e.g. $T(n) = \Theta(n^2)$ or $T(n) = \Theta(nlgn)$, or at least some bound such as $T(n) = O(n^2)$?

Solving recurrence

 Running time of many algorithms can be expressed in one of the following two recursive forms

$$T(n) = aT(n-b) + f(n)$$

or

$$T(n) = aT(n/b) + f(n)$$

Both can be very hard to solve. We focus on relatively easy ones, which you will encounter frequently in many real algorithms (and exams...)

Solving recurrence

- 1. Recursion tree or iteration method
 - Good for guessing an answer
- 2. Substitution method
 - Generic method, rigid, but may be hard
- 3. Master method
 - Easy to learn, useful in limited cases only
 - Some tricks may help in other cases

Recurrence for merge sort

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1; \\ 2T(n/2) + \Theta(n) & \text{if } n > 1. \end{cases}$$

We will usually ignore the base case, assuming it is always a constant (but not 0).

Solve
$$T(n) = 2T(n/2) + dn$$
, where $d > 0$ is constant.
$$T(n)$$

Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.

Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.

Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.

Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.

Recurrence for computing power

```
int pow (b, n) int pow

m = n >> 1; m = r

p = pow (b, m); p = p * p; if (n % 2)

return p * b; else

return p;

T(n) = T(n/2) + \Theta(1) T(n)
```

```
int pow (b, n)

m = n >> 1;

p = pow(b,m)*pow(b,m);

if (n % 2)

return p * b;

else

return p;
```

Time complexity for Alg1

Solve
$$T(n) = T(n/2) + 1$$

• $T(n) = T(n/2) + 1$
= $T(n/4) + 1 + 1$
= $T(n/8) + 1 + 1 + 1$
= $T(1) + 1 + 1 + \dots + 1$
 $\log(n)$
= $\Theta(\log(n))$ Iteration method

Time complexity for Alg2

Solve
$$T(n) = 2T(n/2) + 1$$
.

Time complexity for Alg2

Solve
$$T(n) = 2T(n/2) + 1$$
.
 $T(n)$

Solve
$$T(n) = 2T(n/2) + 1$$
.

 $T(n/2)$
 $T(n/2)$

Solve
$$T(n) = 2T(n/2) + 1$$
.

Solve
$$T(n) = 2T(n/2) + 1$$
.

Solve
$$T(n) = 2T(n/2) + 1$$
.

Solve
$$T(n) = 2T(n/2) + 1$$
.

$$h = \log n$$

$$\vdots$$

Solve T(n) = 2T(n/2) + 1. $h = \log n$ f(n) = 2T(n/2) + 1 f(n) = 2T(n/2) + 1 f(n) = 2T(n/2) + 1 f(n) = 2T(n/2) + 1

Solve
$$T(n) = 2T(n/2) + 1$$
.

$$h = \log n$$

$$\vdots$$

$$\Theta(1) = 2T(n/2) + 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 1$$

$$1 = 4$$

$$\vdots$$

$$\vdots$$

$$\Theta(n) = 2T(n/2) + 1$$

$$\vdots$$

$$\vdots$$

$$\vdots$$

$$\Theta(n) = 2T(n/2) + 1$$

$$\vdots$$

$$\vdots$$

$$\vdots$$

$$\Theta(n) = 2T(n/2) + 1$$

More iteration method examples

•
$$T(n) = T(n-1) + 1$$

= $T(n-2) + 1 + 1$
= $T(n-3) + 1 + 1 + 1$
= $T(1) + 1 + 1 + ... + 1$
= $\Theta(n)$

82

More iteration method examples

•
$$T(n) = T(n-1) + n$$

= $T(n-2) + (n-1) + n$
= $T(n-3) + (n-2) + (n-1) + n$
= $T(1) + 2 + 3 + ... + n$
= $\Theta(n^2)$

Recursive definition of sum of series

• T (n) =
$$\sum_{i=0..n}$$
 i is equivalent to:

T(n) = T(n-1) + n

T(0) = 0

Boundary condition

• T(n) = $\sum_{i=0..n}$ aⁱ is equivalent to:

T(n) = T(n-1) + aⁿ

T(0) = 1

Recursive definition is often intuitive and easy to obtain. It is very useful in analyzing recursive algorithms, and some non-recursive algorithms too.

3-way-merge-sort

```
3-way-merge-sort (A[1..n])

If (n <= 1) return;

3-way-merge-sort(A[1..n/3]);

3-way-merge-sort(A[n/3+1..2n/3]);

3-way-merge-sort(A[2n/3+1.. n]);

Merge A[1..n/3] and A[n/3+1..2n/3];

Merge A[1..2n/3] and A[2n/3+1..n];
```

- Is this algorithm correct?
- What's the recurrence function for the running time?
- What does the recurrence function solve to?

Unbalanced-merge-sort

```
ub-merge-sort (A[1..n])
  if (n<=1) return;
  ub-merge-sort(A[1..n/3]);
  ub-merge-sort(A[n/3+1.. n]);
  Merge A[1.. n/3] and A[n/3+1..n].</pre>
```

- Is this algorithm correct?
- What's the recurrence function for the running time?
- What does the recurrence function solve to?

More recursion tree examples (1)

•
$$T(n) = 3T(n/3) + n$$

•
$$T(n) = T(n/3) + T(2n/3) + n$$

•
$$T(n) = 2T(n/4) + n$$

•
$$T(n) = 2T(n/4) + n^2$$

•
$$T(n) = 3T(n/2) + n$$

•
$$T(n) = 3T(n/2) + n^2$$

More recursion tree examples (2)

•
$$T(n) = T(n-2) + n$$

•
$$T(n) = T(n-2) + 1$$

•
$$T(n) = 2T(n-2) + n$$

•
$$T(n) = 2T(n-2) + 1$$

Solving recurrence

- 1. Recursion tree / iteration method
 - Good for guessing an answer
- 2. Substitution method
 - Generic method, rigid, but may be hard
- 3. Master method
 - Easy to learn, useful in limited cases only
 - Some tricks may help in other cases

The master method

The master method applies to recurrences of the form

$$T(n) = a T(n/b) + f(n) ,$$

where $a \ge 1$, b > 1, and f is asymptotically positive.

- 1. Divide the problem into a subproblems, each of size n/b
- **2.** Conquer the subproblems by solving them recursively.
- 3. Combine subproblem solutions
 Divide + combine takes f(n) time.

Master theorem

$$T(n) = a T(n/b) + f(n)$$

Key: compare f(n) with $n^{\log_b a}$

CASE 1:
$$f(n) = O(n^{\log_b a - \varepsilon}) \Rightarrow T(n) = \Theta(n^{\log_b a})$$

CASE 2:
$$f(n) = \Theta(n^{\log_b a}) \Rightarrow T(n) = \Theta(n^{\log_b a} \log n)$$

Case 3:
$$f(n) = \Omega(n^{\log_b a + \varepsilon})$$
 and $af(n/b) \le cf(n)$

Regularity Condition

$$\Rightarrow T(n) = \Theta(f(n))$$

Case 1

 $f(n) = O(n^{\log_b a - \varepsilon})$ for some constant $\varepsilon > 0$.

Alternatively: $n^{log_{ba}}/f(n) = \Omega(n^{\varepsilon})$

Intuition: f(n) grows polynomially slower than $n^{\log b^a}$

Or: $n^{\log_b a}$ dominates f(n) by an n^{ϵ} factor for some $\epsilon > 0$

Solution: $T(n) = \Theta(n^{\log_b a})$

$$T(n) = 4T(n/2) + n$$

$$b = 2, a = 4, f(n) = n$$

$$log_2 4 = 2$$

$$f(n) = n = O(n^{2-\varepsilon}), \text{ or }$$

$$n^2 / n = n^1 = \Omega(n^{\varepsilon}), \text{ for } \varepsilon = 1$$

$$\therefore T(n) = \Theta(n^2)$$

$$T(n) = 4T(n/2) + n$$
 $T(n) = 2T(n/2) + n/\log n$
 $b = 2, a = 4, f(n) = n$ $b = 2, a = 2, f(n) = n/\log n$
 $\log_2 4 = 2$ $\log_2 2 = 1$
 $f(n) = n = O(n^{2-\varepsilon})$, or $f(n) = n/\log n \notin O(n^{1-\varepsilon})$, or $n^2/n = n^1 = \Omega(n^{\varepsilon})$, for $\varepsilon = 1$ $n^1/f(n) = \log n \notin \Omega(n^{\varepsilon})$, for any $\varepsilon > 0$
 $\therefore T(n) = \Theta(n^2)$ $\therefore CASE \ 1 \ does \ not \ apply$

9/26/2015

Case 2

$$f(n) = \Theta (n^{\log_b a}).$$

Intuition: f(n) and $n^{\log ba}$ have the same asymptotic order.

Solution: $T(n) = \Theta(n^{\log_b a} \log n)$

e.g.
$$T(n) = T(n/2) + 1$$
 $\log_b a = 0$
 $T(n) = 2 T(n/2) + n$ $\log_b a = 1$
 $T(n) = 4T(n/2) + n^2$ $\log_b a = 2$
 $T(n) = 8T(n/2) + n^3$ $\log_b a = 3$

Case 3

 $f(n) = \Omega(n^{\log_b a + \varepsilon})$ for some constant $\varepsilon > 0$.

Alternatively: $f(n) / n^{logba} = \Omega(n^{\epsilon})$

Intuition: f(n) grows polynomially faster than $n^{\log_b a}$

Or: f(n) dominates $n^{\log_b a}$ by an n^{ε} factor for some $\varepsilon > 0$

Solution: $T(n) = \Theta(f(n))$

$$T(n) = T(n/2) + n$$

 $b = 2$, $a = 1$, $f(n) = n$
 $n^{\log_2 l} = n^0 = 1$
 $f(n) = n = \Omega(n^{0+\varepsilon})$, or
 $n / l = n = \Omega(n^{\varepsilon})$
 $\therefore T(n) = \Theta(n)$

$$T(n) = T(n/2) + \log n$$

 $b = 2$, $a = 1$, $f(n) = \log n$
 $n^{\log_2 l} = n^0 = 1$
 $f(n) = \log n \notin \Omega(n^{0+\varepsilon})$, or
 $f(n) / n^{\log_2 l} / = \log n \notin \Omega(n^{\varepsilon})$
 $\therefore CASE \ 3 \ does \ not \ apply$

9/26/2015

Regularity condition

- $af(n/b) \le cf(n)$ for some c < 1 and all sufficiently large n
- This is needed for the master method to be mathematically correct.
 - to deal with some non-converging functions such as sine or cosine functions
- For most f(n) you'll see (e.g., polynomial, logarithm, exponential), you can safely ignore this condition, because it is implied by the first condition $f(n) = \Omega(n^{\log b^{a+\epsilon}})$

9/26/2015 SVU CS502 95

```
T(n) = 4T(n/2) + n

a = 4, b = 2 \Rightarrow n^{\log ba} = n^2; f(n) = n.

CASE\ 1: f(n) = O(n^{2-\epsilon}) \text{ for } \epsilon = 1.

\therefore T(n) = \Theta(n^2).
```

$$T(n) = 4T(n/2) + n^{2}$$

$$a = 4, b = 2 \Rightarrow n^{\log_b a} = n^{2}; f(n) = n^{2}.$$

$$CASE 2: f(n) = \Theta(n^{2}).$$

$$\therefore T(n) = \Theta(n^{2}\log n).$$

```
T(n) = 4T(n/2) + n^3

a = 4, b = 2 \Rightarrow n^{\log ba} = n^2; f(n) = n^3.

CASE\ 3: f(n) = \Omega(n^{2+\epsilon}) \text{ for } \epsilon = 1

and\ 4(n/2)^3 \le cn^3 \text{ (reg. cond.) for } c = 1/2.

\therefore T(n) = \Theta(n^3).
```

$$T(n) = 4T(n/2) + n^2/\log n$$

 $a = 4, b = 2 \Rightarrow n^{\log ba} = n^2; f(n) = n^2/\log n.$
Master method does not apply. In particular, for every constant $\varepsilon > 0$, we have $n^{\varepsilon} = \omega(\log n)$.

```
T(n) = 4T(n/2) + n^{2.5}

a = 4, b = 2 \Rightarrow n^{\log ba} = n^2; f(n) = n^{2.5}.

CASE\ 3: f(n) = \Omega(n^{2+\epsilon}) \text{ for } \epsilon = 0.5

and\ 4(n/2)^{2.5} \le cn^{2.5} \text{ (reg. cond.) for } c = 0.75.

\therefore T(n) = \Theta(n^{2.5}).
```

$$T(n) = 4T(n/2) + n^2 \log n$$

 $a = 4, b = 2 \Rightarrow n^{\log ba} = n^2; f(n) = n^2 \log n.$
Master method does not apply. In particular, for every constant $\varepsilon > 0$, we have $n^{\varepsilon} = \omega(\log n)$.

How do I know which case to use? Do I need to try all three cases one by one?

Master theorem

• Compare f(n) with $n^{\log_b a}$

9/26/2015

a.
$$T(n) = 4T(n/2) + n$$
;

$$log_h a = 2$$
. $n = o(n^2) => Check case 1$

b.
$$T(n) = 9T(n/3) + n^2$$
;

$$\log_{h} a = 2$$
. $n^2 = \Theta(n^2) = 2$ case 2

c.
$$T(n) = 6T(n/4) + n$$
;

$$log_{h}a = 1.3. n = o(n^{1.3}) => Check case 1$$

d.
$$T(n) = 2T(n/4) + n$$
;

$$log_b a = 0.5$$
. $n = \omega(n^{0.5}) => Check case 3$

e.
$$T(n) = T(n/2) + n \log n$$
;

$$log_b a = 0$$
. $nlog n = \omega(n^0) => Check case 3$

f.
$$T(n) = 4T(n/4) + n \log n$$
.

$$log_b a = 1$$
. $nlog n = \omega(n) => Check case 3$

More examples

$$T(n) = nT(n/2) + n$$

$$T(n) = 0.5T(n/2) + n \log n$$

$$T(n) = 3T(n/3) - n^2 + n$$

$$T(n) = T(n/2) + n(2 - \cos n)$$

Why does the master method work?

$$T(n) = aT(n/b) + f(n)$$

What is the depth of the tree?

At each level, the size of the data is divided by b

$$\frac{n}{b^d} = 1$$

$$\log\left(\frac{n}{b^d}\right) = 0$$

$$\log n - \log 4^b = 0$$

$$d \log b = \log n$$

$$d = \log_b n$$

How many leaves?

How many leaves are there in a complete *a*-ary tree of depth *d*?

$$a^d = a^{\log_b n}$$
$$= n^{\log_b a}$$

Total cost
$$\begin{aligned} & \text{if } f(n) = O(n^{\log_b a - \varepsilon}) \text{ for } \varepsilon > 0, \text{ then } T(n) = \Theta(n^{\log_b a}) \\ & \text{if } f(n) = \Theta(n^{\log_b a}), \text{ then } T(n) = \Theta(n^{\log_b a} \log n) \\ & \text{if } f(n) = \Omega(n^{\log_b a + \varepsilon}) \text{ for } \varepsilon > 0 \text{ and } af(n/b) \le cf(n) \text{ for } c < 1 \\ & \text{ then } T(n) = \Theta(f(n)) \end{aligned}$$

$$T(n) = cf(n) + af(n/b) + a^2 f(n/b^2) + ... + a^{n-1} f(n/b^{n-1}) + \Theta(n^{\log_b a 3})$$

$$= \sum_{i=0}^{\log_b n - 1} a^i f(n/b^i) + \Theta(n^{\log_b a})$$

Case 1: cost is dominated by the cost of the leaves

$$=\sum_{i=0}^{\log_b n-1} a^i f(n/b^i) < \Theta(n^{\log_b a})$$

Total cost if
$$f(n) = O(n^{\log_b a - \varepsilon})$$
 for $\varepsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$ if $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \log n)$ if $f(n) = \Omega(n^{\log_b a + \varepsilon})$ for $\varepsilon > 0$ and $af(n/b) \le cf(n)$ for $c < 1$ then $T(n) = \Theta(f(n))$

$$T(n) = cf(n) + af(n/b) + a^2 f(n/b^2) + ... + a^{n-1} f(n/b^{n-1}) + \Theta(n^{\log_b a^3})$$

$$=\sum_{i=0}^{\log_b n-1} a^i f(n/b^i) + \Theta(n^{\log_b a})$$
 Case 2: cost is evenly distributed across tree

As we saw with mergesort, $\log n$ levels to the tree and at each level f(n) work

Total cost if
$$f(n) = O(n^{\log_b a - \varepsilon})$$
 for $\varepsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$ if $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \log n)$ if $f(n) = \Omega(n^{\log_b a + \varepsilon})$ for $\varepsilon > 0$ and $af(n/b) \le cf(n)$ for $c < 1$ then $T(n) = \Theta(f(n))$

$$T(n) = cf(n) + af(n/b) + a^2 f(n/b^2) + ... + a^{d-1} f(n/b^{d-1}) + \Theta(n^{\log_b a^3})$$

$$= \sum_{i=0}^{\log_b n - 1} a^i f(n/b^i) + \Theta(n^{\log_b a})$$

Case 3: cost is dominated by the cost of the root

Some tricks

Changing variables

- Obtaining upper and lower bounds
 - Make a guess based on the bounds
 - Prove using the substitution method

Changing variables

$$T(n) = 2T(n-1) + 1$$

• Let
$$n = \log m$$
, i.e., $m = 2^n$

$$=> T(\log m) = 2 T(\log (m/2)) + 1$$

• Let
$$S(m) = T(\log m) = T(n)$$

$$=> S(m) = 2S(m/2) + 1$$
 Case 1

$$\Rightarrow$$
 S(m) $=$ Θ (m)

$$\Rightarrow$$
 T(n) = S(m) = Θ (m) = Θ (2ⁿ)

Changing variables

$$T(n) = T(\sqrt{n}) + 1$$

- Let $n = 2^m$
- $=> sqrt(n) = 2^{m/2}$
- We then have $T(2^m) = T(2^{m/2}) + 1$
- Let $T(n) = T(2^m) = S(m)$

$$=> S(m) = S(m/2) + 1$$
 Case 2

$$\Rightarrow$$
S(m) = Θ (log m) = Θ (log log n)

$$\Rightarrow$$
T(n) = Θ (log log n)

Changing variables

•
$$T(n) = 2T(n-2) + 1$$

• Let
$$n = log m$$
, i.e., $m = 2^n$

$$=> T(\log m) = 2 T(\log m/4) + 1$$

• Let
$$S(m) = T(\log m) = T(n)$$

$$=> S(m) = 2S(m/4) + 1$$

CASE 1

$$=> S(m) = \Theta(m^{1/2})$$

=>
$$T(n) = S(m) = \Theta((2^n)^{1/2}) = \Theta((sqrt(2))^n) \approx \Theta(1.4^n)$$

Obtaining bounds

Solve the Fibonacci sequence:

$$T(n) = T(n-1) + T(n-2) + 1$$

•
$$T(n) >= 2T(n-2) + 1$$
 [1]

•
$$T(n) \le 2T(n-1) + 1$$
 [2]

- Solving [1], we obtain $T(n) >= 1.4^n$
- Solving [2], we obtain T(n) <= 2ⁿ
- Actually, $T(n) \approx 1.62^n$

Obtaining bounds

- $T(n) = T(n/2) + \log n$
- $T(n) \in \Omega(\log n)$
- $T(n) \in O(T(n/2) + n^{\epsilon})$
- Solving $T(n) = T(n/2) + n^{\epsilon}$, we obtain $T(n) = O(n^{\epsilon})$, for any $\epsilon > 0$
- So: $T(n) \in O(n^{\epsilon})$ for any $\epsilon > 0$
 - T(n) is unlikely polynomial
 - Actually, $T(n) = \Theta(\log^2 n)$ by extended case 2

Extended Case 2

CASE 2:
$$f(n) = \Theta(n^{\log_b a}) \Rightarrow T(n) = \Theta(n^{\log_b a} \log n)$$
.

Extended CASE 2: $(k \ge 0)$

$$f(n) = \Theta(n^{\log_b a} \log^k n) \Rightarrow T(n) = \Theta(n^{\log_b a} \log^{k+1} n).$$

Solving recurrence

- 1. Recursion tree / iteration method
 - Good for guessing an answer
 - Need to verify
- 2. Substitution method
 - Generic method, rigid, but may be hard
- 3. Master method
 - Easy to learn, useful in limited cases only
 - Some tricks may help in other cases

Substitution method

The most general method to solve a recurrence (prove Ω and Ω separately):

- 1. Guess the form of the solution(e.g. by recursion tree / iteration method)
- 2. *Verify* by induction (inductive step).
- 3. Solve for O-constants n_0 and c (base case of induction)

Substitution method

- Recurrence: T(n) = 2T(n/2) + n.
- Guess: $T(n) = O(n \log n)$. (eg. by recursion tree method)
- To prove, have to show $T(n) \le c n \log n$ for some c > 0 and for all $n > n_0$
- Proof by induction: assume it is true for T(n/2), prove that it is also true for T(n). This means:
- Given: T(n) = 2T(n/2) + n
- Need to Prove: $T(n) \le c n \log (n)$
- Assume: *T*(*n*/2)≤ *cn*/2 log (*n*/2)

Proof

```
• Given: T(n) = 2T(n/2) + n
• Need to Prove: T(n) \le c n \log(n)
• Assume: T(n/2) \le cn/2 \log (n/2)
• Proof:
 Substituting T(n/2) \le cn/2 \log (n/2) into the recurrence, we get
 T(n) = 2 T(n/2) + n
        \leq cn log (n/2) + n
        \leq c n \log n - c n + n
        \leq c n \log n - (c - 1) n
        \leq c n \log n for all n > 0 (if c \geq 1).
Therefore, by definition, T(n) = O(n \log n).
```

Substitution method – example 2

- Recurrence: T(n) = 2T(n/2) + n.
- Guess: $T(n) = \Omega(n \log n)$.
- To prove, have to show $T(n) \ge c n \log n$ for some c > 0 and for all $n > n_0$
- Proof by induction: assume it is true for T(n/2), prove that it is also true for T(n). This means:
- Given: T(n) = 2T(n/2) + n
- Need to Prove: $T(n) \ge c n \log (n)$
- Assume: $T(n/2) \ge cn/2 \log (n/2)$

Proof

```
• Given: T(n) = 2T(n/2) + n
• Need to Prove: T(n) \ge c n \log (n)
• Assume: T(n/2) \ge cn/2 \log (n/2)
• Proof:
 Substituting T(n/2) \ge cn/2 \log (n/2) into the recurrence, we get
       T(n) = 2 T(n/2) + n
            \geq cn log (n/2) + n
            \geq c n \log n - c n + n
            \geq c n \log n + (1 - c) n
            \geq c n \log n for all n > 0 (if c \leq 1).
Therefore, by definition, T(n) = \Omega(n \log n).
```

More substitution method examples (1)

- Prove that $T(n) = 3T(n/3) + n = O(n\log n)$
- Need to show that $T(n) \le c$ n log n for some c, and sufficiently large n
- Assume above is true for T(n/3), i.e.

 $T(n/3) \le cn/3 \log (n/3)$

examples

```
T(n) = 3 T(n/3) + n

\leq 3 cn/3 \log (n/3) + n

\leq cn \log n - cn \log 3 + n

\leq cn \log n - (cn \log 3 - n)

\leq cn \log n \text{ (if cn log } 3 - n \geq 0)

cn \log 3 - n \geq 0

=> c \log 3 - 1 \geq 0 \text{ (for } n > 0)

=> c \geq 1/\log 3

=> c \geq \log_3 2
```

Therefore, $T(n) = 3 T(n/3) + n \le cn \log n$ for $c = \log_3 2$ and n > 0. By definition, $T(n) = O(n \log n)$.

9/26/2015

More substitution method examples (2)

- Prove that $T(n) = T(n/3) + T(2n/3) + n = O(n\log n)$
- Need to show that $T(n) \le c$ n log n for some c, and sufficiently large n
- Assume above is true for T(n/3) and T(2n/3), i.e.

```
T(n/3) \le cn/3 \log (n/3)
T(2n/3) \le 2cn/3 \log (2n/3)
```

9/26/2015 SVU CS502 124

examples

```
T(n) = T(n/3) + T(2n/3) + n
        \leq cn/3 log(n/3) + 2cn/3 log(2n/3) + n
        \leq cn log n + n - cn (log 3 - 2/3)
        \leq cn log n + n(1 - clog3 + 2c/3)
        \leq cn log n, for all n > 0 (if 1– c log3 + 2c/3 \leq 0)
       c \log 3 - 2c/3 \ge 1
\Rightarrowc \geq 1 / (log3-2/3) > 0
Therefore, T(n) = T(n/3) + T(2n/3) + n \le cn \log n for c = 1 / (\log 3 - 2/3)
  and n > 0. By definition, T(n) = O(n \log n).
```

More substitution method examples (3)

- Prove that $T(n) = 3T(n/4) + n^2 = O(n^2)$
- Need to show that $T(n) \le c n^2$ for some c, and sufficiently large n
- Assume above is true for T(n/4), i.e.

$$T(n/4) \le c(n/4)^2 = cn^2/16$$

9/26/2015 SVU CS502 126

examples

$$T(n) = 3T(n/4) + n^2$$

 $\leq 3 c n^2 / 16 + n^2$
 $\leq (3c/16 + 1) n^2$
 $\leq cn^2$

 $3c/16 + 1 \le c$ implies that $c \ge 16/13$

Therefore, $T(n) = 3(n/4) + n^2 \le cn^2$ for c = 16/13 and all n. By definition, $T(n) = O(n^2)$.

Avoiding pitfalls

- Guess T(n) = 2T(n/2) + n = O(n)
- Need to prove that $T(n) \le c n$
- Assume $T(n/2) \le cn/2$
- $T(n) \le 2 * cn/2 + n = cn + n = O(n)$
- What's wrong?
- Need to prove $T(n) \le cn$, not $T(n) \le cn + n$

Subtleties

- Prove that $T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + 1 = O(n)$
- Need to prove that $T(n) \le cn$
- Assume above is true for T(⌊n/2⌋) & T(⌈n/2⌉)

$$T(n) \le c \lfloor n/2 \rfloor + c \lceil n/2 \rceil + 1$$

$$\le cn + 1$$

Is it a correct proof?

No! has to prove T(n) <= cn

However we can prove T(n) = O(n-1)

Details skipped.

Making good guess

```
T(n) = 2T(n/2 + 17) + n When n approaches infinity, n/2 + 17 are not too different from n/2 Therefore can guess T(n) = \Theta(n \log n) Prove \Omega:

Assume T(n/2 + 17) \ge c (n/2 + 17) \log (n/2 + 17) Then we have
T(n) = n + 2T(n/2 + 17)
\ge n + 2c (n/2 + 17) \log (n/2 + 17)
\ge n + c n \log (n/2 + 17) + 34 c \log (n/2 + 17)
\ge c n \log (n/2 + 17) + 34 c \log (n/2 + 17)
....
```

Maybe can guess $T(n) = \Theta((n-17) \log (n-17))$ (trying to get rid of the +17). Details skipped.

9/26/2015 SVU CS502 130