$\begin{array}{ccc} \text{EECS 16A} & \text{Designing Information Devices and Systems I} \\ \text{Spring 2023} & & \text{Discussion 11B} \end{array}$

1. Op-Amp Rules

Here is an equivalent circuit of an op-amp (where we are assuming that $V_{SS} = -V_{DD}$) for reference:

(a) What are the currents flowing into the positive and negative terminals of the op-amp (i.e., what are i^+ and i^-)? Based on this answer, what are some of the advantages of using an op-amp in your circuit designs?

(b) Suppose we add a resistor of value R_L between u_{out} and ground. What is the value of v_{out} ? Does your answer depend on R_L ? In other words, how does R_L affect Av_C ? What are the implications of this with respect to using op-amps in circuit design?

(c) Now suppose our op-amp is connected in negative feedback.

What is the relationship between u^+ and u^- ?

2. A Trans-Resistance Amplifier

Calculate v_{out} as a function of I_s and R.

Hint: First show that the op-amp is in negative feedback and then apply the golden rules.

3. Multiple Inputs To One Op-Amp

(a) First, let's focus on the left part of the circuit containing the voltage sources v_{s1} and v_{s2} , and resistances R_1 and R_2 . Solve for u_+ in the circuit above. (*Hint: Use superposition.*)

(b) How would you choose R_1 and R_2 that produce a voltage $u_+ = \frac{1}{2}V_{s1} + \frac{1}{2}V_{s2}$? Could you also achieve $u_+ = \frac{1}{3}V_{s1} + \frac{2}{3}V_{s2}$?

(c) Now, for the whole circuit, find an expression for v_o .

(d) How should we select our values R_1 , R_2 , R_3 , R_4 to find the sum of different signals, i.e. $V_{s1} + V_{s2}$? What about taking the sum and multiplying by 2, i.e. $2(V_{s1} + V_{s2})$?