OthelloZero

Vom leeren Brett zur Meisterstrategie

Leo Pracht

Kantonsschule Kreuzlingen

Maturitätsarbeit 2025

Motivation

"Wie kann ich meinem Computer etwas beibringen, das ich selbst nicht kann?"

— Meine Motivation für OthelloZero

3/27

5 / 27

Funktionstheorie

Was ist eine Funktion?

Eine **Funktion** ist ein System mit *Eingaben* und *Ausgaben*:

$$x \xrightarrow{\mathsf{Eingabe}} f(x) \xrightarrow{\mathsf{Ausgabe}} y$$

Funktionen beschreiben die Welt!

Das Licht, das wir sehen, die Töne, die wir hören – sogar Ihr momentaner Puls – alles lässt sich durch Funktionen beschreiben.

Funktionen grafisch darstellen

Was, wenn wir die Funktion nicht kennen?

- Wir kennen nur einzelne Punkte also die x- und y-Werte.
- Können wir daraus die zugrunde liegende Funktion rekonstruieren?

⇒ Was wir brauchen, ist einen Funktionsapproximator – das ist ein neuronales Netz (KI).

Von Datenpunkten zur generalisierten Funktion

- Die KI hat das Muster gelernt sie kann nun auch neue Werte vorhersagen.
- Selbst wenn die Daten verrauscht sind, bleibt das Grundmuster erhalten.

⇒ Aus der approximierten Funktion lassen sich neue Werte erzeugen – auch solche, die im Datensatz nie vorkamen.

Eingabe in das neuronale Netz

Netzwerkinput (3×8×8)

Im Fall von **OthelloZero** erhält das neuronale Netz nicht nur eine einzelne Zahl, sondern eine **komplette Spielfeldkonfiguration**:

Positionen der eigenen und gegnerischen Steine sowie die gültigen Züge.

Neuronale Netze in OthelloZero

 \Rightarrow Das Netz liefert **Policy** (π) und **Value** (ν), die die MCTS zur Zugwahl kombiniert.

MCTS – Überblick

- Ziel: Durch viele kurze "Gedankenspiele" herausfinden, welcher Zug am besten ist.
- Drei Schritte:
 - Selektion zuerst dort weiterspielen, wo es spannend oder vielversprechend aussieht.
 - 2 Erweiterung einen neuen Zug ausprobieren, um Neues zu entdecken.
 - **3** Rücktragen das Ergebnis merken und daraus lernen.

MCTS mit PUCT-Selektion

- Hauptselektionspfad ($s_0 \rightarrow s_1 \rightarrow s_2 \rightarrow s_3$)
- Alternative Pfade
- Leere Knoten: Unbesucht

PUCT, ganz kurz

$$a^* = \arg \max_a \left[Q(s, a) + U(s, a) \right]$$

$$U(s, a) = c_{\mathsf{puct}} \cdot P(s, a) \cdot \frac{\sqrt{\sum_b N(s, b)}}{1 + N(s, a)}$$

- Q =Erfahrung: Wie gut lief dieser Zug bisher in unseren Probepartien?
- *U* = **Neugier:** Netz-Prior *P* pusht vielversprechende Züge; selten getestete (*N* klein) werden bevorzugt.
- $\mathbf{c}_{\text{puct}} = \text{Neugier-Regler: steuert Balance zwischen } Q \text{ (bewährt) und } U \text{ (entdecken)}.$
- **Ergebnis:** Wir wählen, was bewährt + vielversprechend ist.

MCTS mit Selektion und Expansion

MCTS Backpropagation

Schritt 3: Wert-Update entlang des Pfades

- Selektion
- Expansion
- Backpropagation s_1, s_2, s_3
- Unbesuchte Knoten

Umsetzung

- Implementierung in Python
- Training auf RTX 4060 mit 22 parallelen Prozessen
- Trainingsdauer: rund 48 Stunden für 55 Generationen
- Pro Iteration: 264 Partien mit etwa 126 000 Datenpunkten
- Insgesamt sah das Netz rund 7 Millionen Spielpositionen

Umsetzung

- Implementierung in Python
- Training auf RTX 4060 mit 22 parallelen Prozessen
- Trainingsdauer: rund 48 Stunden für 55 Generationen
- Pro Iteration: **264 Partien** mit etwa **126 000 Datenpunkten**
- Insgesamt sah das Netz rund 7 Millionen Spielpositionen

Umsetzung

- Implementierung in Python
- Training auf RTX 4060 mit 22 parallelen Prozessen
- Trainingsdauer: rund 48 Stunden für 55 Generationen
- Pro Iteration: **264 Partien** mit etwa **126 000 Datenpunkten**
- Insgesamt sah das Netz rund 7 Millionen Spielpositionen

Policy-Heatmap: Aufmerksamkeit des Modells

OthelloZero Demo

"OthelloZero" im Mittel- bis Endspiel

Modell (weiß) vs. Leo (schwarz) · Clipdauer: ca. 40 s

Methodenkritik

- Rechenleistung: Begrenzte Trainingszeit, weniger Self-Play-Partien
- **Implementierung:** Python statt C++/Rust Fokus auf Verständlichkeit
- **Zufallseinflüsse:** Ergebnisse leicht variabel (stochastisches Training)
- Evaluation: Nur Vergleich mit Edax, keine menschliche Referenz
- → Ziel war Nachvollziehbarkeit statt maximaler Leistung.

Fazit & Danksagung

"Intelligenz entsteht nicht aus Kraft, sondern aus Einsicht."

— frei nach David Silver / Demis Hassabis

Und genau das ist für mich das Faszinierende an AlphaZero – und an OthelloZero:

Intelligenz entsteht nicht durch Rechenleistung, sondern durch Struktur, Strategie und Lernen.

Danksagung

Mein Dank gilt meiner Betreuerin für die wertvolle Unterstützung, allen, die Interesse an meiner Arbeit gezeigt haben, und ganz besonders meiner Mutter, die mir die KSK überhaupt ermöglicht hat.