Non-linear hypotheses

- Computer vision section matrix of pixel intensities correspond to an image
 - Denote + and for affirming if an image fits a classification
 - Would need nonlinear hypothesis
 - Feature vector x pixel intensities in a column vector
- Example
 - Assume 50×50 pixel images 2500 pixels
 - * n = 2500 features
 - Quadratic features would mean ~ 3 mil features
 - * number of features = $50^2 + C(50^2, 2)$ as need all possible ways of 2 terms from features in addition to number of features present

Neural Network Model

- Neuron structure
 - Dendrite input wires
 - Computation in nucleus
 - Axon output wires
- Neuron model logistic unit
 - Input wires from features x through computation to output $h_{\theta}(x)$
 - Sigmoid activation function $g(z) = \frac{1}{1+e^{-z}}$
 - Parameters θ are same as weights
- Lavers of neural networks
 - Layer 1 of features/inputs
 - Layer 2 of bias units is hidden as is not an output
 - Layer 3 is the output

$$[x_0x_1x_2x_3] \to \left[a_1^{(2)}a_2^{(2)}a_3^{(2)}\right] \to h_\theta(x)$$

Node values are

$$\begin{split} a_1^{(2)} &= g\left(\Theta_{10}^{(1)}x_0 + \Theta_{11}^{(1)}x_1 + \Theta_{12}^{(1)}x_2 + \Theta_{13}^{(1)}x_3\right) \\ a_2^{(2)} &= g\left(\Theta_{20}^{(1)}x_0 + \Theta_{21}^{(1)}x_1 + \Theta_{22}^{(1)}x_2 + \Theta_{23}^{(1)}x_3\right) \\ a_3^{(2)} &= g\left(\Theta_{30}^{(1)}x_0 + \Theta_{31}^{(1)}x_1 + \Theta_{32}^{(1)}x_2 + \Theta_{33}^{(1)}x_3\right) \\ h_{\Theta}(x) &= a_1^{(3)} &= g\left(\Theta_{10}^{(2)}a_0^{(2)} + \Theta_{11}^{(2)}a_1^{(2)} + \Theta_{12}^{(2)}a_2^{(2)} + \Theta_{13}^{(2)}a_3^{(2)}\right) \end{split}$$

Arguments are $z_c^{(k)}$ where c is which element of the layer and k is the layer.

- - $-a_{i}^{(j)}$ is activation of unit i in layer j
 - $-\Theta^{(j)}$ is matrix of weights controlling function mapping from layer j to layer j+1
 - If network has s_i units in layer j, s_{i+1} units in layer j+1, then $\Theta^{(j)}$ is of dimension $s_{i+1} \times (s_i+1)$
 - * x_0 and $\Theta_0^{(j)}$ bias nodes are not shown in a NN diagram
- Vectorized
 - Arguments of g, $z_c^{(k)} = \theta^{(k)}x$ Can let $a^{(k)} = g(z^{(k)}) = \Theta^{(k)}a^{(k)}$

$$-x = \left[\begin{array}{c} x_0 \\ x_1 \\ \dots \\ x_n \end{array}\right], \ z^{(j)} = \left[\begin{array}{c} z_1^{(j)} \\ z_2^{(j)} \\ \dots \\ z_n^{(j)} \end{array}\right]$$

– Thus
$$z^{(j)} = \Theta^{(j-1)} a^{(j-1)}$$

Multiclass Classification

- One-vs-all method extension
- Multiple output units for multiple classifications $h_{\Theta}(x)$ is a vector