Geodesics in Schwarzschild Metric

Candidate: Federico De Paoli Supervisor: Prof. Albino Perego

> Bachelor degree in Physics, University of Trento

> > September 18, 2024

Introduzione

- Cos'è la relatività generale e perché esiste
- Cos'è la metrica di Schwarzschild
- Studio delle geodetiche come strumento per capire la metrica
- Soluzioni numeriche alle equazioni del moto di una particella massiva

Il moto di una particella libera

Possiamo descrivere il moto di una particella libera tramite il principio variazionale

Principio di Minima Azione

Una particella libera che si muove da A a B segue il percorso che minimizza la distanza tra i due punti.

Il problema si può quindi ricondurre a come si misura correttamente una distanza?

Misurare le Distanze

Meccanica Newtoniana

$$\mathrm{d}s^2 = \mathrm{d}x^2 + \mathrm{d}y^2 + \mathrm{d}z^2$$

Rappresentazione 2D (x, y) di Δs^2 .

Misurare le Distanze

Meccanica Newtoniana

$$\mathrm{d}s^2 = \mathrm{d}x^2 + \mathrm{d}y^2 + \mathrm{d}z^2$$

Rappresentazione 2D (x, y) di Δs^2 .

Relatività Ristretta

$$ds^2 = -c^2 dt^2 + dx^2 + dy^2 + dz^2$$

Rappresentazione 2D (x, ct) di Δs^2 .

Riformulazione della Meccanica

È utile definire la metrica

$$\eta_{\nu\mu} = \begin{pmatrix} t & x & y & z \\ -1 & 0 & 0 & 0 \\ x & -1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ z & 0 & 0 & 0 & 1 \end{pmatrix} \implies ds^{2} = \eta_{\nu\mu} dx^{\nu} dx^{\mu}$$

 $\mathrm{d}s^2$ si chiama **elemento di linea**, ha le seguenti proprietà:

- è uguale per tutti i sistemi di riferimento inerziali
- determina la geometria dello spaziotempo

Il Problema della Forza di Gravità

La forza di gravità tra due masse m_1 e m_2 , posizionate in $r_1(t)$ e $r_2(t)$, non è compatibile con la relatività ristretta. Infatti

$$F_{12} = G \frac{m_1 m_2}{|r_1(t) - r_2(t)|^2}$$

- Nella teoria di Newton dovrebbe essere istantanea
- $|r_1(t) r_2(t)|$ dipende dal sistema di riferimento

Una Nuova Teoria

Relatività Generale

La massa di un oggetto non da origine alla forza di gravità, ma curva lo *spaziotempo* stesso.

L'elemento di linea ds^2 si dovrà calcolare in modo diverso.

https://www.esa.int

Il Moto nello Spazio Curvo

La distanza più breve tra due punti in uno spazio curvo non è più una retta

https://www.thephysicsmill.com

La Metrica di Schwarzschild

$$ds^{2} = -\left(1 - \frac{2GM}{c^{2}r}\right)c^{2}dt^{2} + \left(1 - \frac{2GM}{c^{2}r}\right)^{-1}dr^{2} + r^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2})$$

Descrive uno spaziotempo stazionario e a simmetria sferica

- stella sferica
- buco nero

https://www.physicsforums.com/

La Metrica di Schwarzschild

$$ds^{2} = -\left(1 - \frac{2M}{r}\right)dt^{2} + \left(1 - \frac{2M}{r}\right)^{-1}dr^{2} + r^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2})$$

Singolarità

- r = 0
- $r = r_s = 2M$

Per $r \to \infty$ si recupera la metrica di Minkowski

La Metrica di Schwarzschild

$$ds^{2} = -\left(1 - \frac{2GM}{c^{2}r}\right)c^{2}dt^{2} + \left(1 - \frac{2GM}{c^{2}r}\right)^{-1}dr^{2} + r^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2})$$

È indipendente da t e $\phi \implies$ Killing vector associati

$$\xi^{\mu} = (1, 0, 0, 0) \quad \eta^{\mu} = (0, 0, 0, 1)$$

Possiamo trovare delle costanti del moto

$$e = -\xi \cdot \mathbf{u} = \left(-\frac{2M}{r}\right) \frac{\mathrm{d}t}{\mathrm{d}\tau}$$
$$l = \eta_{\mu} u^{\mu} = r^2 \sin^2 \theta \frac{\mathrm{d}\phi}{\mathrm{d}\tau}$$

Titolo slide

argomenti capitolo 2

Video on the computer

Conclusions

conclusione

