Chapter I. Preliminaries: Set theory and categories

Algebra: Chapter 0, by Paolo Aluffi

I.1. Naive set theory

Problem 2

Prove that if \sim is an equivalence relation on a set S, then the corresponding family \mathcal{P}_{\sim} is indeed a partition of S: that is, its elements are nonempty, disjoint, and their union is in S.

Proof. Here \mathcal{P}_{\sim} is the set of equivalence classes w.r.t \sim over S:

$$\mathcal{P}_{\sim} := \{ [a]_{\sim} \mid a \in S \}.$$

Consider any $[a]_{\sim} \in \mathcal{P}_{\sim}$. Then $[a]_{\sim}$ is nonempty, because $a \in [a]_{\sim}$ by reflexivity. Now consider any other $[b]_{\sim} \in \mathcal{P}_{\sim}$ where $a \not\sim b$. By transitivity, for any element $b_n \in [b]_{\sim}$ we know that $a \not\sim b_n$ and so $[a]_{\sim}$ and $[b]_{\sim}$ must be disjoint. Finally, consider any $c \in S$. Then we must have that $c \in [c]_{\sim} \in \mathcal{P}_{\sim}$, and so we can write:

$$S = \bigcup_{[c]_{\sim} \in \mathcal{P}_{\sim}} [c]_{\sim}.$$

So each element of the family \mathcal{P}_{\sim} is nonempty, disjoint, and their union equals S, as desired.

- I.2. Functions between sets
- I.3. Categories
- I.4. Morphisms
- I.5. Universal properties