SAGI Summer School 2024 IC/DAQ & Electronics Project

Presenters:

Duong Dang Le

Ngan Le

Nguyen Nguyen Duc

Tin Mai Nhu

Advisors: Sam Codon, Logan Foote, and Hien Nguyen

Outline

- I. Introduction: Motivation and background
- II. Filter design
- III. Data acquisition
 - 1. Overview of instruments
 - 2. Softwares
 - 3. Measurement procedures

IV. Data analysis

- 1. FFT: Limitations
- 2. Transmission
- 3. Results:
- V. Conclusions.

- Received digital signal is discrete → need to be sample to get continue one.
- Sometimes observed signal is at high frequency → need to low down the frequency by "mixing"
- Filtering is also important to extract the signal from noise.

II. Filter design for IC/DAQ

Requirement:

Bandpass filter: 3dB from 6 kHz to 65 kHz

IC/DAQ: Sweep from 1 kHz to 200 kHZ to obtain response

Signal generator: Maximum output 60Mhz

Oscilloscope: 100Mhz

II. Filter design

Passive Low Pass RC Filters

ELECTRONICS HU3

II. Filter design

Passive High Pass RC Filters ELECTRONICS HU3 High Pass Gain V_{IN} Frequency

II. Filter design: Simulation using Ltspice

II. Filter design

Butterworth bandpass filter

II. Filter design

III. Data acquisition

1. Overview of instruments

- KKmoon FY6900 function generator (upper): provides various waveforms (sine, square, etc.) at different frequencies and amplitudes.
- Siglent SDS1104X-E oscilloscope (lower): used for observing the varying signal voltages, typically in the time domain.
- Others: PC,...

2. Softwares

- Python is the primary language for instrument control and data acquisition.
- Libraries used
 - PyVisa: communication with instruments via VISA.
 - NumPy: for mathematical operations,
 especially Fast Fourier Transform (FFT)
 for frequency domain analysis.
 - Matplotlib, Time,...

Communication Protocol Summary

	Writing Command	Command Line			Return	Reading	Command Line		Return	
		Code	Value	End Mark	Return	Command	Code	End Mark	Value	End Mark
	Set waveform of main wave	WMW	xxxxxxx	0x0a	0x0a	Read waveform of main wave	RMW	0x0a	xxxxxxx	0x0a
	Set frequency of main wave	WMF	xxxxxxx	0x0a	0x0a	Read frequency of main wave	RMF	0x0a	xxxxxxx	0x0a
	Set amplitude of main wave	WMA	xxxxxxx	0x0a	0x0a	Read amplitude of main wave	RMA	0x0a	xxxxxxx	0x0a
	Set offset of main wave	WMO	xxxxxxx	0x0a	0x0a	Read offset of main wave	RMO	0x0a	xxxxxxx	0x0a
	Set duty cycle of main wave	WMD	xxxxxxx	0x0a	0x0a	Read duty cycle of main wave	RMD	0x0a	xxxxxxx	0x0a

2. Softwares

• Example: instruments initialising code

```
osc_inst = osc.connect('192.168.1.4')
fgen inst = fgen.connect('192.168.1.2')
osc.initialize(osc inst)
xscale = 'VARIABLE'
xoffset, yoffset = 0, 0
yscale = 1
amplification = 1
trigger mode = 'AUTO'
osc.set yscale(osc inst, yscale)
inst log = osc.create log(xscale, xoffset, yscale, yoffset, amplification, trigger mode) + '\n'
fgen.initialize(fgen inst)
fgen.set amplitude(fgen inst, 1, 5)
channel = 1
wave type = 'SINE'
freq = 'VARIABLE'
amp = 5
offset = 0
inst log += fgen.create log(channel, wave type, freq, amp, offset) + '\n'
```

3. Measurement procedures: Instrument control

 First, ensure the instruments are properly connected and can be controlled through our software.

Testing

- Use the function generator to produce a signal of known frequency and amplitude.
- Capture the signal with the oscilloscope.

3. Measurement procedures: Frequency sweep measurement

 Purpose: to measure the transmission characteristics of the circuit across a range of frequencies.

• Steps:

- Set up the initial parameters for the function generator and oscilloscope.
- Automate the function generator to sweep through a range of frequencies.
- Collect data at each frequency point using the oscilloscope.
- Perform FFT on the captured data to obtain the frequency response.

3. Measurement procedures: Filter transmission

 Purpose: to measure the transmission characteristics of the circuit across a range of frequencies with a bandpass filter.


```
def record(fil name):
    osc inst = osc.connect('192.168.1.4')
    fgen inst = fgen.connect('192.168.1.2')
    out directory = f'data/sweep {fil name}/'
    os.makedirs(out directory, exist ok = True)
    start freg = 1e3
    end freq = 200e3
    npoints = 200
    yscale = 1
    capture freq sweep(out directory, osc inst, fgen inst, start freq, end freq, npoints, yscale)
    frequencies, voltage = import freq sweep(out directory)
    transmission = 20*np.log10(voltage/2.5)
    out = np.array([frequencies, voltage, transmission])
    out =np.transpose(out )
    np.savetxt(f'freq volt trans {fil name}.txt', X=out ,
    delimiter=' ', newline='\n', header='freq (Hz) volt (V) trans (dB)')
    fig, ax = plt.subplots(1,1, figsize = [12,6])
    ax.plot(frequencies, transmission, 'b-', marker = 'x', drawstyle = 'steps-mid', lw =2)
    ax.set(xscale = 'log')
    ax.set xlabel('frequency (Hz)')
    ax.set ylabel('transmission (dB)')
```

IV. Results

1. Methods

- Swept out the signal with frequency ranges from: 1 kHz to 200 kHz.
- Extract the frequency and amplitude of the signal (Using FFT).
 - Signal in frequency space is convoluted with a sinc function.
 - Sampling rate: 10 MHz -> above Nyquist
 - Cannot fully recover the voltage -> systematic errors

2. Results

- Transmission:
- Difference responses between frequencies.
- Up to 30% loss (-3dB).
- The losses may due to the transmission lines, instruments or FFT.

2. Results

- Performance of the band-pass filter from 6 kHz to 65 kHz (1 kHz to 200 kHz in total).
- Subtract the systematic errors from the baseline in order to get a smooth response.

2. Results

- The mismatch between theory calculation and measurements.
- Start to split from 6 kHz.
- Huge transmission loss at high frequency domain.
- Impedance mismatch.
- Poor connection between instruments.

V. Conclusions

THANKS FOR YOUR LISTENING!

