Modèle CCYC: ©DNE Nom de famille (naissance): (Suivi s'il y a lieu, du nom d'usage)																		
Prénom(s) :																		
N° candidat :											N° c	d'ins	crip	tior	ı :			
	(Les nu	uméros	s figure	ent sur	la con	vocatio	n.)			•								
Liberté · Égalité · Fraternité RÉPUBLIQUE FRANÇAISE Né(e) le :			/			/												1.1

ÉPREUVES COMMUNES DE CONTRÔLE CONTINU
EPREUVES COMMINIONES DE CONTROLE CONTINU
CLASSE : Première
E3C : □ E3C1 ⊠ E3C2 □ E3C3
VOIE : Générale Technologique Toutes voies (LV)
ENSEIGNEMENT : Spécialité « Mathématiques »
DURÉE DE L'ÉPREUVE : 2 heures
CALCULATRICE AUTORISÉE : ⊠Oui □ Non
DICTIONNAIRE AUTORISÉ : □Oui ⊠ Non
\square Ce sujet contient des parties à rendre par le candidat avec sa copie. De ce fait, il
ne peut être dupliqué et doit être imprimé pour chaque candidat afin d'assurer
ensuite sa bonne numérisation.
☐ Ce sujet intègre des éléments en couleur. S'il est choisi par l'équipe pédagogique,
il est nécessaire que chaque élève dispose d'une impression en couleur.
Ce sujet contient des pièces jointes de type audio ou vidéo qu'il faudra
télécharger et jouer le jour de l'épreuve.
Nombre total de pages : 6

Exercice 1 (5 points)

Ce QCM comprend 5 questions. Pour chacune des questions, une seule des quatre réponses proposées est correcte. Les questions sont indépendantes.

Pour chaque question, indiquer le numéro de la question et recopier sur la copie la lettre correspondante à la réponse choisie. Chaque réponse correcte rapporte 1 point. Une réponse incorrecte ou une question sans réponse n'apporte ni ne retire de point.

- **1.** L'inéquation $2x^2 9x + 4 \ge 0$ a pour ensemble de solutions :
 - a. $S = \left[\frac{1}{2}; 4\right]$
 - b. $S = \left[-\infty; \frac{1}{2} \right] \cup [4; +\infty[$
 - c. $S = \emptyset$
 - d. $S =]-\infty; -4] \cup \left[-\frac{1}{2}; +\infty\right[$
- 2. On considère la fonction g définie sur l'ensemble des réels \mathbf{R} par

$$g(x) = -x^2 + 4x$$

alors

- a. le minimum de la fonction g sur \mathbf{R} est 4
- b. le maximum de la fonction g sur \mathbf{R} est 4
- C. le maximum de la fonction g sur \mathbf{R} est 2
- d. g est décroissante sur l'intervalle $[4; +\infty[$
- 3. Le plan est rapporté à un repère orthonormé. La droite passant par le point

 $Aig(0\ ; -7ig)$ et de vecteur normal $\vec{n}ig({2 \atop -5}ig)$ a pour équation

- a. 2x 5y 35 = 0
- b. 2x 5y + 35 = 0
- c. -5x 2y + 14 = 0
- d. 5x + 2y + 14 = 0

Modèle CCYC : ©DNE Nom de famille (naissance) : (Suivi s'il y a lieu, du nom d'usage)																		
Prénom(s) :																		
N° candidat :											N° c	d'ins	crip	tio	n :			
Liberté · Égalité · Fraternité Né(e) le :	Les nur	méros	figure	nt sur	la con	vocatio	on.)]	•								

- **4.** Le plan est rapporté à un repère orthonormé. L'ensemble des points M de coordonnées (x; y) telles que $x^2 4x + y^2 + 6y = 12$ est
 - a. le point de coordonnées (5; 1)
 - b. le cercle de centre A(2; -3) et de rayon $\sqrt{12}$
 - c. le cercle de centre A(2; -3) et de rayon 5
 - d. le cercle de centre B(-2;3) et de rayon 5
- 5. Le plan est muni d'un repère orthonormé. On considère la droite d d'équation 2x + 3y 1 = 0.
- a) La droite d est perpendiculaire à la droite (AB), où A(-2;3) et B(2;9).
- b) Le vecteur $\vec{u} \binom{-3}{2}$ est un vecteur normal à la droite d.
- c) La droite perpendiculaire à d passant par le point (-1; 2) admet pour équation 3x 2y + 1 = 0.
- d) La droite parallèle à d passant par le point (2; 3) admet pour équation 2x + 3y + 13 = 0.

Exercice 2 (5 points)

On considère la fonction f définie sur \mathbf{R} par $f(x) = (2x - 1)e^x$. On note f' la fonction dérivée de la fonction f.

- **1.** Montrer que pour tout réel x, $f'(x) = (2x + 1)e^x$.
- **2.** Étudier le signe de f'(x) sur **R**.
- **3.** En déduire le tableau de variation de la fonction f sur \mathbf{R} . Dans les questions suivantes, on note $\mathcal C$ la courbe représentative de la fonction f dans un repère.
- **4.** Déterminer les coordonnées du point d'intersection de $\mathcal C$ avec l'axe des ordonnées.
- **5.** Déterminer une équation de la tangente T à \mathcal{C} au point d'abscisse 0.

Exercice 3 (5 points)

On appelle pourcentage de compression d'une image, le pourcentage de réduction de sa taille en ko (kilo-octets) après compression.

Une image a une taille initiale de $800\,\mathrm{ko}$. Après une première compression, sa taille est de $664\,\mathrm{ko}$.

1. Calculer le pourcentage de réduction associé à cette première compression.

Dans la suite de l'exercice, on fixe le pourcentage de réduction à 17%. On effectue n compressions successives. Pour tout entier naturel n, on note t_n la taille de l'image en ko après n compressions. On a donc $t_0=800$.

- **2.** Pour tout entier naturel n, exprimer t_{n+1} en fonction de t_n et en déduire la nature de la suite (t_n) .
- **3.** Pour tout entier naturel n, exprimer t_n en fonction de n.

Modèle CCYC: ©DNE Nom de famille (naissance): (Suivi s'il y a lieu, du nom d'usage)																			
Prénom(s) :																			
N° candidat :												N° d	d'ins	scrip	tior	ı :			
Liberté · Égalité · Fraternité Né(e) le :	(Les nu	ıméros	figure	ent sur	la con	vocati	on.)	Π	Π]									1.1

Afin de déterminer le nombre minimal n de compressions successives à effectuer pour que cette image ait une taille finale inférieure à 50 ko, on considère la fonction Python suivante :

```
def nombreCompressions(A):
    t = 800
    n = 0
    While t > A :
        t = t*0,83
        n = n+1
    return n
```

- **4.** Préciser, en justifiant, le nombre A de sorte que l'appel nombreCompressions(A) renvoie le nombre de compressions successives à effectuer que l'on cherche à déterminer.
- **5.** Quel est le nombre minimal de compressions successives à effectuer pour que ce fichier ait une taille finale inférieure à 50 ko ?

Exercice 4 (5 points)

Dans un jeu, Jeanne doit trouver la bonne réponse à une question posée.

Les questions sont classées en trois catégories : sport, cinéma et musique.

Jeanne, fervente supportrice de ce jeu, est consciente qu'elle a :

- 1 chance sur 2 de donner la bonne réponse sachant qu'elle est interrogée en sport ;
- 3 chances sur 4 de donner la bonne réponse sachant qu'elle est interrogée en cinéma ;
- 1 chance sur 4 de donner la bonne réponse sachant qu'elle est interrogée en musique.

On note:

S l'événement : « Jeanne est interrogée en sport » ;
C l'événement : « Jeanne est interrogée en cinéma » ;
M l'événement : « Jeanne est interrogée en musique » ;

B l'événement : « Jeanne donne une bonne réponse ».

Rappel de notation : la probabilité d'un événement A est notée P(A).

Dans chaque catégorie, il y a le même nombre de questions. On admet donc que $P(S) = P(C) = P(M) = \frac{1}{3}$.

- 1. Construire un arbre pondéré décrivant la situation.
- **2.** Jeanne tire au hasard une question. Montrer que $P(B) = \frac{1}{2}$.

Pour participer à ce jeu, Jeanne doit payer 10 € de droit d'inscription. Elle recevra :

- 10 € si elle est interrogée en sport et que sa réponse est bonne ;
- 20 € si elle est interrogée en cinéma et que sa réponse est bonne ;
- 50 € si elle est interrogée en musique et que sa réponse est bonne ;
- rien si la réponse qu'elle donne est fausse.

On note X la variable aléatoire qui, à chaque partie jouée par Jeanne associe son gain algébrique, c'est-à-dire la différence en euros entre ce qu'elle reçoit et les $10 \in \text{de}$ droit d'inscription.

- **3.** Montrer que $P(X = 40) = \frac{1}{12}$.
- **4.** Déterminer la loi de probabilité de X.
- **5.** Calculer l'espérance mathématique de X. Jeanne a-t-elle intérêt à jouer ?