Árvores

Definição

Uma árvore enraizada, *T*, é um conjunto finito de elementos chamados vértices (ou nós), tal que:

- i) $T = \emptyset$ (a árvore é dita vazia) ou
- ii) Existe um nó especial, r, dito raiz da árvore de T e os nós restantes constituem um único conjunto vazio ou são divididos em $m \ge 1$ conjuntos disjuntos não vazios, chamados de subárvores de r, cada qual uma árvore.

Cajueiro de Pirangi

Representação

A representação mais comum é a hierárquica.

Representação

Que outras representações existem para árvores além da hierárquica?

Representação

Subárvores da raiz

Floresta = um conjunto de árvores

Árvore 1 Árvore 2 Árvore 3

Seja v um nó de T, a notação T_v representa a subárvore de T com raiz v.

Seja v o nó raiz de T_v .

Os nós raízes $w_1,...,w_j$ das subárvores de T_v

são os filhos de v.

Filhos de v

r é avô de w_1, w_2 e w_3

W₁, W₂ e W₃ são irmãos

O número de filhos de um nó v é chamado grau de saída de v

O número de filhos de um nó v é chamado grau de saída de v

Se w pertence a T_v , então w é descendente de v e v é ancestral de w

Observação: se *v* ≠ *w*, diz-se ancestral próprio ou descendente próprio

Um nó com grau de saída igual a 0 é chamado folha

Teorema

Toda árvore com número de nós maior que 1 (n > 1) possui no mínimo 1 e no máximo n - 1 folhas.

Exercício: Prove este teorema por indução

Uma sequência de nós distintos v_1 , v_2 , ..., v_k tal que para dois nós consecutivos existe sempre a relação é filho de (é pai de) é dita um caminho na árvore.

Comprimento do caminho = k-1

Nível do nó v é o número de nós no caminho entre a raiz da árvore e v.

Altura do nó v é o número de nós no caminho entre v e seu descendente mais distante.

A altura da árvore, h(T), é dada pela altura da raiz (ou pelo nível máximo de seus nós)

Árvore

Nó da árvore

Árvore

Nó da árvore

chave conteúdo pfilho irmão

Exemplo C:

```
struct nodo {
  int chave;
  int conteudo;
  struct nodo *pfilho;
  struct nodo *irmao;
};
typedef struct nodo no;
```

typedef no *pont_no;

Observação: O campo *chave* pode ser usado como chave e conteúdo

Árvore

Expressão aritmética

Uma árvore binária, *T*, é um conjunto finito de elementos chamados vértices (ou nós), tal que:

- i) $T = \emptyset$ (a árvore é dita vazia) ou
- ii) Existe um nó especial, *r*, dito *raiz* da árvore *T* e os nós restantes são divididos em dois conjuntos disjuntos, a subárvore <u>esquerda</u> e <u>direita</u> de *r*, cada qual uma árvore binária.

Nó da árvore

Nó da árvore

esq chave conteudo dir

Exemplo C:

```
struct nodo {
  int chave;
  int conteudo;
  struct nodo *esq;
  struct nodo *dir;
};
typedef struct nodo no;
```

typedef no *pont_no;

Observação: O campo *chave* pode ser usado como chave e conteúdo

Lema 1

O número de subárvores vazias de uma árvore binária com *n* nós é

$$n+1$$

Exercício: Prove o Lema 1

Árvore Estritamente Binária

Todo nó possui 0 ou 2 filhos

Árvore Binária Completa

Se v é um nó com uma subárvore vazia, então v está no último ou no penúltimo nível de T.

Árvore Binária Cheia

Se v é um nó com uma subárvore vazia, então v está no último nível de *T*.

Obs. Toda árvore cheia é estritamente binária e completa

Árvores Ziguezague

Altura máxima para um número fixo de nós

Lema 2

Considere T uma árvore binária completa com n > 0 nós.

Então T possui altura h mínima. Além disso, $h = 1 + |\log n|$.

Exercício: Prove o lema 2

Lema 3

Seja T uma árvore binária completa com *n* nós e altura *h*.

Então,
$$2^{h-1} \le n \le 2^h - 1$$

Exercício: Prove o lema 3

Percurso em Árvore Binária

Um percurso é uma visita sistemática a cada nó da árvore.

Corresponde a conhecer a informação contida no nó, percorrer a subárvore esquerda e percorrer a subárvore direita.

Percurso em Árvore Binária

Considerando da esquerda para a direita

Considerando que visitar(raiz) significa imprimir o conteúdo do nó.

Pré-ordem

visitar(raiz)

percorrer subárvore esquerda da raiz em pré-ordem percorrer subárvore direita da raiz em pré-ordem

Exemplo: Pré-ordem

visitar(raiz) percorrer subárvore esquerda da raiz em pré-ordem percorrer subárvore direita da raiz em pré-ordem

Exemplo: Pré-ordem

visitar(raiz) percorrer subárvore esquerda da raiz em pré-ordem percorrer subárvore direita da raiz em pré-ordem

Pré-ordem: ABDJHCEFI

```
Principal se pt \neq \lambda pre\_ordem(pt)
```

```
Algoritmo pre_ordem(pont_no pt)
visitar(pt)
se pt \uparrow.esq \neq \lambda
pre_ordem(pt \uparrow.esq)
se pt \uparrow.dir \neq \lambda
pre_ordem(pt \uparrow.dir)
```


Exercício

Qual a complexidade de pre_ordem, considerando que o procedimento visita é constante?

Exercício

Qual a complexidade de pre_ordem, considerando que o procedimento visita é constante?

Ordem Simétrica

percorrer subárvore esquerda da raiz em ordem simétrica visitar(raiz) percorrer subárvore direita da raiz em ordem simétrica

Ordem Simétrica

percorrer subárvore esquerda da raiz em ordem simétrica visitar(raiz) percorrer subárvore direita da raiz em ordem simétrica

Ordem Simétrica: D J B H A E C I F

```
Principal se pt \neq \lambda ordemSis(pt)
```

```
Algoritmo ordemSis(pont_no pt)

se pt\uparrow.esq \neq \lambda

ordemSis(pt\uparrow.esq)

visitar(pt)

se pt\uparrow.dir \neq \lambda

ordemSis(pt\uparrow.dir)
```

Pós ordem

percorrer subárvore esquerda da raiz em pós-ordem percorrer subárvore direita da raiz em pós-ordem visitar(raiz)

Pós ordem

percorrer subárvore esquerda da raiz em pós-ordem percorrer subárvore direita da raiz em pós-ordem visitar(raiz)

Pós-Ordem: J D H B E I F C A

Principal $se pt \neq \lambda$ posOrdem(pt)

```
Algoritmo posOrdem(pont_no pt)

se pt\lambda.esq \neq \lambda

posOrdem(pt\lambda.esq)

se pt\lambda.dir \neq \lambda

posOrdem(pt\lambda.dir)

visitar(pt)
```

Expressão aritmética

Qual percurso da árvore abaixo obteria uma expressão polonesa reversa (posfixa)?

Exercício Aula

Faça um algoritmo para calcular a altura de todos os nós de uma árvore binária

Exercício Aula

Nó da árvore

```
Exemplo C:
struct nodo {
 int chave;
 int altura;
 struct nodo *esq;
 struct nodo *dir;
typedef struct nodo no;
typedef no *pont no;
```

Um novo campo na nossa estrutura

Exercício Aula

Calcula Altura

```
Principal

se pt \neq \lambda

pos_ordem(pt)
```

```
pos_ordem(pont_no pt)

se (pt\lambda.esq \neq \lambda)

pos_ordem(pt\lambda.esq)

se (pt\lambda.dir \neq \lambda)

pos_ordem(pt\lambda.dir)

visitar(pt)
```

```
visita(pont_no pt)
   sejam alt_e e alt_d inteiros
   se (pt\uparrow.esq = \lambda)
        alt e \leftarrow 0
   senão alt_e ← pt↑.esq↑.altura
   se (pt\uparrow.dir = \lambda)
        alt d \leftarrow 0
   senão alt_d ← pt↑.dir↑.altura
   se (alt_e > alt d)
         pt\uparrow.altura \leftarrow pt\uparrow.esq\uparrow.altura + 1
   senão
         pt\uparrow.altura \leftarrow pt\uparrow.dir\uparrow.altura + 1
```

Árvore Binária

Exercício

Qual a complexidade do algoritmo para calcular a altura de todos os nós da árvore binária?

Exercícios

Fazer as versões iterativas de: pre_ordem ordem_simetrica pos_ordem

Percurso pré-ordem iterativo

```
pre_ordem_iterativo (raiz)
 Pilha p; bool fim ← false;
 repita
  se (raiz \neq \lambda)
    visita(raiz)
    se (raiz\uparrow.dir \neq \lambda) então push(p, raiz\uparrow.dir)
    raiz ← raiz↑.esq
                                                  D
  senão
    se p é vazia então fim ← true
    senão raiz ← pop(p)
 até fim==true
                                                   Pré-ordem: ABDJHCEFI
```

Percurso de ordem sistemática iterativo

```
em_ordem_iterativo (raiz)
Pilha p; bool fim ← false;
                                                     В
repita
 enquanto (raiz \neq \lambda)
                                                                            E
   empilha (p, raiz); raiz = raiz↑.esq
 se p nao vazia então
   raiz \leftarrow pop(p)
   visita (raiz)
                                            Ordem Simétrica: D J B H A E C I F
   raiz = raiz↑.dir
 senão
    fim ← true
até que fim==true
```

Percurso pós-ordem iterativo

```
pos_ordem_iterativo (raiz)
Pilha p; bool sobre; int m;
repita
 enquanto (raiz \neq \lambda)
   push (p, {raiz, 1}); raiz = raiz↑.esq
 sobe ← true
 enquanto (sobe==true && p nao vazia)
   \{\text{raiz}, \, \mathbf{m}\} \leftarrow \mathsf{pop}(\mathbf{s})
   switch(m)
      caso 1: push(p, {raiz, 2}); raiz = raiz↑.dir
                sobe ← false;
      caso 2: visita(raiz)
até que p esteja vazia
```


Pós-Ordem: J D H B E I F C A

m = 1 ==> ainda deve empilhar a sub-árvore direita do nó m = 2 ==> deve visitar o nó

Percurso em Nível

Considerando da esquerda para a direita

Considerando que visitar(raiz) significa imprimir o conteúdo do nó.

Imprime os nós de cada nível da árvore

Percurso em Nível

Nível: A B C D H E F J I

Exercício

Faça um algoritmo de percurso em nível de uma árvore TERNÁRIA

FIM