# Midterm exam n°2

Duration: three hours

Documents and calculators not allowed

Name:

First name:

Class:

#### Instructions:

- You have to reply directly on the given sheets.
- No sheet other that the stapled ones provided for answers will be corrected.
- Answers written using lead pencils will be ignored.
- Any student not respecting these instructions will be awarded a mark of 00/20.

## Exercise 1 (4,5 points)

1. Using two consecutive integrations by parts, calculate  $I = \int_1^e \sin(\ln(x)) dx$ .

2. Using an integration by parts, calculate  $J = \int_0^1 \arctan(x) dx$ .

3. Using the substitution  $u = \sqrt{x}$  then an integration by parts, calculate  $K = \int_0^{\pi^2} \cos(\sqrt{x}) dx$ .

#### Exercise 2 (3 points)

Let  $(u_n)$  and  $(v_n)$  be two strictly positive numerical sequences such that for every  $n \in \mathbb{N}$ ,

$$\frac{u_{n+1}}{u_n} \leqslant \frac{v_{n+1}}{v_n}$$

1. Prove that if  $v_n \xrightarrow[n \to +\infty]{} 0$  then  $u_n \xrightarrow[n \to +\infty]{} 0$ .

2. Prove that if  $u_n \xrightarrow[n \to +\infty]{} +\infty$  then  $v_n \xrightarrow[n \to +\infty]{} +\infty$ .

### Exercise 3 (3 points)

Circle the letters corresponding to the true statements only.

Remark that unlike usually, wrong answers do not award negative points!

- a. Let  $(u_n)$  be a sequence of real numbers, and  $\ell \in \mathbb{R}$ . Then the assertion « if  $(u_n)$  converges towards  $\ell$  then, for every  $n \in \mathbb{N}$ ,  $u_n \leq \ell$  » is equivalent to the assertion « if there exists  $n \in \mathbb{N}$  such that  $u_n > \ell$ , then  $(u_n)$  does not converge towards  $\ell$  ».
- b. If  $(u_n)$  is a nonzero geometric sequence with common ratio  $q \in \mathbb{R}^*$ , then  $\left(\frac{1}{u_n}\right)$  is a geometric sequence with common ratio  $\frac{1}{q}$ .
- c. If  $(u_n)$  is a bounded numerical sequence, there exists a subsequence of  $(u_n)$  that is convergent.
- d. Let  $(u_n)$  be a numerical sequence. Then  $(u_{6n})$  is a subsequence of  $(u_{2n})$ .
- e. Let  $(u_n)$  be a numerical sequence. Then  $(u_{3\cdot 2^{n+1}})$  is a subsequence of  $(u_{6n})$ .
- f. None of the above.

| Exercise 4 | (3) | points) | Ì |
|------------|-----|---------|---|
|------------|-----|---------|---|

Exercise 4 (3 points)
Let  $(u_n)$  and  $(v_n)$  be defined for every  $n \in \mathbb{N}$  by  $u_n = \sum_{k=0}^{2n+1} \frac{(-1)^k}{(2k)!}$  and  $v_n = u_n + \frac{1}{(4n+4)!}$ .

Prove that  $(u_n)$  and  $(v_n)$  are adjacent sequences.

### Exercise 5 (2 points)

Let  $(u_n)_{n\in\mathbb{N}^*}$  be defined for every  $n\in\mathbb{N}$  by  $u_n=\frac{\ln(n!)}{n^2}$ .

1. Let  $n \in \mathbb{N}^*$ . Show (without using a proof by induction) that  $\ln(n!) \leq n \ln(n)$ .



## Exercise 6 (5,5 points)

Let  $(u_n)$  be the numerical sequence defined for every  $n \in \mathbb{N}$  by  $u_n = \sum_{k=0}^n \frac{1}{k!}$ .

1. Let  $n \in \mathbb{N}^*$  and  $q \in \mathbb{R} \setminus \{1\}$ . What is the sum  $\sum_{k=1}^n q^{k-1} = 1 + q + q^2 + \dots + q^{n-1}$  equal to?

2. Let  $n \in \mathbb{N}^*$ . Using the previous question, show (without using a proof by induction) that  $\sum_{k=1}^{n} \frac{1}{2^{k-1}} = 2 - \frac{1}{2^{n-1}}$ .

3. Let  $k \in \mathbb{N}$  such  $k \geqslant 2$ . Show (without induction) that  $\frac{1}{k!} = \frac{1}{2 \times 3 \times \cdots \times k} \leqslant \frac{1}{2^{k-1}}$ .

Check that this inequality is still true when k = 1.



5. Using questions 2 and 3, show that for every  $n \in \mathbb{N}$ ,  $u_n \leq 3$ .