〈탄생배경〉

Reviewer: 227834

다음이 residual network 를 되었다.

htm = he + f(he, 06)

이 심은 가반게 되면 Eular method 라 상당의 유가한 것을 갖인할 수 있다. 와막 우리가 hidden layer을 우십 명이 국가와면 어떻게 될까? 게면 위 심의 부(hu Qu)을 시의 방화광으로 보수도 있다. 즉,

 $\frac{dh(6)}{dt} = f(h(6), t, 0) 3 2 2 2 2000.$

〈写不〉

1) memory efficiency

https://leonardoaraujosantos.gitbook.io/artificial-inteligence/machine_learning/supervised_learning/backpropagation

(7) 2 daysol olbal Asol obc ofa)

2) adaptive computation

3 Scalable and involtable normalizing flows
510/5174 Functions 5344 the can soon the

州岛北 孔和이 飞雪水上 (石铁湖 及…) 4) Continuous time-series models अध्यासन निर्मा ने अपने के अपने थ्रिक. <back ward >

forward देश गुड़े के किया ने प्रमान ने प्रमान 出版 backward是 어떻게 ま以 이다.

和知知是 基础 DE layer是 到此 对是 On 4 gth.

Z66) = Z(60) + [f(z(6),6,0) dt

= ODE Solver ($Z(t_0)$, f, t_0 , t, θ)

ALT AND PRIME PARAMETER

12 LOSS & FORM THE BARD

L($Z(t_0)$) = L ($Z(t_0)$ + $\int_{t_0}^{t} (Z(t), t_1 \theta) dt$)

= L (ODESolver (Z(to), f, to, t, 0))

四月川 智力 站台部 月到 明朝 电温度 里本 for ODE network は品みでけ.

MNIST AM

Image Conv feature OBE ZCID > fc > ŷ

4 > layer > tensor

命能 到%是,否 feature 皇 學中學 network (orkloll M는 Conv layer) 多 站台計1 引到

이를 구하기 위해
$$a(t) = \frac{dL}{dz(t)}$$
를 도입한다.
이를 수있으로 이라게 해보면 (본모의 Appendix로 26고)
$$\frac{da(t)}{dt} = -a(t)^{T} \frac{df(z(t),t,0)}{dz}$$
 및 42 수 있다.

가는 생대보자 거와?
$$Q(t_0) = \frac{dL}{dz(t_0)}$$
 를 건하기 위해서
 $\frac{da(t)}{dt}$ = 이용해 또라는 obESolver를 제상하면 되다.
 개인 또 항치하면 $Q\frac{dL}{d\theta} = -\int_{t_0}^{t_0} a(t)^T \frac{df(z(t_0), t_0)}{d\theta} dt$ 를 얻은 4 있다.

时是 对别是 好社性 五分一个

- · State of Mt about ODESO/vers Altabor.
- · adjoint state or lute augmented dynamic을 이용하다. 시간장 Nokholullute ODE Solver3 게상라고 각 시간됐어서 어딘데트를 하다.

etally backpropagations sike objects out

351/AGEN	Algorithm 1 Reverse-mode derivative of an ODE initial value problem
	Input: dynamics parameters θ , start time t_0 , stop time t_1 , final state $\mathbf{z}(t_1)$, loss gradient $\frac{\partial L}{\partial \mathbf{z}(t_1)}$
	$s_0 = [\mathbf{z}(t_1), \frac{\partial L}{\partial \mathbf{z}(t_1)}, 0_{ \theta }]$ \triangleright Define initial augmented state $ \theta $
	def aug_dynamics([$\mathbf{z}(t), \mathbf{a}(t), \cdot], t, \theta$): \triangleright Define dynamics on augmented state
	return $[f(\mathbf{z}(t), t, \theta), -\mathbf{a}(t)^{T} \frac{\partial f}{\partial \mathbf{z}}, -\mathbf{a}(t)^{T} \frac{\partial f}{\partial \theta}]$ \triangleright Compute vector-Jacobian products —
	$[\mathbf{z}(t_0), \frac{\partial L}{\partial \mathbf{z}(t_0)}, \frac{\partial L}{\partial \theta}] = \text{ODESolve}(s_0, \text{aug_dynamics}, t_1, t_0, \theta) $ \triangleright Solve reverse-time ODE
	return $\left(\frac{\partial L}{\partial \mathbf{z}(t_0)}\right)\left(\frac{\partial L}{\partial \theta}\right)$ > Return gradients
	WEND 12 75 75 75 75 75 75 75 75 75 75 75 75 75
	ODE layer sys.
	fortune 是 为 M 是 hetwork 改
	network 3kg