```
Day 15
import pandas as pd
import numpy as np
a=np.random.randn(5,5)
df=pd.DataFrame(a,columns=['col1','col2','col3',
              'col4','col5'])
df1=pd.read_csv('Salary_Data.csv',names=['exp','salary'])
df2=pd.read_csv('sales_data.csv')
df2.index
df2.values
df2.shape
df2.size
df2.columns
df2.dtypes
df2.info()
df2.describe()
df3=df2.head(20)
df4=df2['MONTH_ID']
type(df4)
df5=df2[['QUANTITYORDERED','CITY']]
df2['vehicle-id']=np.arange(2823)
df2['QUANTITYORDERED']=df2['QUANTITYORDERED']+10
import pandas as pd
import numpy as np
a=[1,2,3,4,np.nan]
b=[1,2,3,np.nan,5]
c=[np.nan,1,2,3,4]
d=[1,2,3,4,5]
```

df=pd.DataFrame([a,b,c,d])

df.dropna(axis=0,how='any')

Out[3]:

0 1 2 3 4

3 1.0 2 3 4.0 5.0

df.dropna(axis=0,how='all')

Out[4]:

0 1 2 3 4

0 1.0 2 3 4.0 NaN

1 1.0 2 3 NaN 5.0

2 NaN 1 2 3.0 4.0

3 1.0 2 3 4.0 5.0

df.drop(axis=0,labels=[2])

Out[5]:

0 1 2 3 4

0 1.0 2 3 4.0 NaN

1 1.0 2 3 NaN 5.0

3 1.0 2 3 4.0 5.0

df.drop(axis=0,labels=[2,3])

Out[6]:

0 1 2 3 4

0 1.0 2 3 4.0 NaN

1 1.0 2 3 NaN 5.0

df

Out[7]:

0 1 2 3 4

0 1.0 2 3 4.0 NaN

1 1.0 2 3 NaN 5.0

2 NaN 1 2 3.0 4.0

3 1.0 2 3 4.0 5.0

df.drop(axis=1,labels=[2])

Out[9]:

0 1 3 4

0 1.0 2 4.0 NaN

1 1.0 2 NaN 5.0

2 NaN 1 3.0 4.0

3 1.0 2 4.0 5.0

df1=pd.read_csv('Data.csv')

df1.dropna(axis=0,how='any')

Out[11]:

Country Age Salary Purchased

0 France 44.0 72000.0 No

1 Spain 27.0 48000.0 Yes

2 Germany 30.0 54000.0 No

3 Spain 38.0 61000.0 No

5 France 35.0 58000.0 Yes

7 France 48.0 79000.0 Yes

8 Germany 50.0 83000.0 No

9 France 37.0 67000.0 Yes

df2=pd.read_csv('Social_Network.csv')

df2['Age']>25

Out[14]:

- 0 False
- 1 True
- 2 True
- 3 True
- 4 False
- 395 True
- 396 True
- 397 True
- 398 True
- 399 True

Name: Age, Length: 400, dtype: bool

con=df2['Age']>25

type(con)

Out[15]: pandas.core.series.Series

df2[con]

Out[16]:

Age EstimatedSalary Purchased

- 1 35 20000 0
- 2 26 43000 0
- 3 27 57000 0
- 5 27 58000 0
- 6 27 84000 0
-
- 395 46 41000 1

```
396 51
             23000
                       1
397 50
             20000
                       1
398 36
             33000
                       0
399 49
             36000
                       1
[351 rows x 3 columns]
df3=df2[con]
con1=df2['Age']>25
type(con1)
df3=df2[con1]
con2=df2['EstimatedSalary']<50000
df4=df[con1 & con2]
df5=df2[con1 | con2]
df6=df2[df2['Age'].isin([19,25,35])]
df7=df2[df2['Age'].between(20,30)]
df2.sort_values(by='Age')
Out[23]:
  Age EstimatedSalary Purchased
76 18
            52000
                       0
165 18
             86000
                       0
51 18
            44000
                       0
```

14 18

141 18

82000

68000

0

0

393 60	42000	1
370 60	46000	1
223 60	102000	1
355 60	34000	1
371 60	83000	1

[400 rows x 3 columns]

df2.sort_values(by='Age')

Out[24]:

[400 rows x 3 columns]

df8=df2.sort_values(by='Age')

df8=df2.sort_values(by='EstimatedSalary')

df8=df2.sort_values(by='EstimatedSalary',ascending=False)

df2

Out[28]:

Age EstimatedSalary Purchased

0	19	19000	0
1	35	20000	0
2	26	43000	0
3	27	57000	0
4	19	76000	0
395	46	41000	1
396	51	23000	1
397	50	20000	1
398	36	33000	0
399	49	36000	1

[400 rows x 3 columns]

df2.sort_values(by='EstimatedSalary')

Out[29]:

Age EstimatedSalary Purchased

92 26	15000	0
43 30	15000	0
155 31	15000	0
150 26	15000	0
32 21	16000	0

..

168 29	148000	1
103 33	149000	1
240 42	149000	1
211 52	150000	1
7 32	150000	1

[400 rows x 3 columns]

df9=df2.sort_values(by=['Age','EstimatedSalary'])
dfr=pd.read_csv('drinks.csv')

dfr.set_index('country')

Out[35]:

beer_servings ... continent

country ...

Afghanistan 0 ... AS

Albania 89 ... EU

Algeria 25 ... AF

Andorra 245 ... EU

Angola 217 ... AF

...

Venezuela 333 ... SA

Vietnam 111 ... AS

Yemen 6 ... AS

Zambia 32 ... AF

Zimbabwe 64 ... AF

[193 rows x 5 columns]

```
dfr1=dfr.set_index('country')
dfr1=dfr.set_index(['country','continent'])
dfr2=pd.read_csv('drinks.csv',index_col='country')
dfr2.loc['India']
Out[39]:
beer_servings
                         9
spirit_servings
                       114
wine_servings
                         0
total_litres_of_pure_alcohol 2.2
                      AS
continent
Name: India, dtype: object
a=dfr2.loc['India']
b=dfr2.loc[['India','Australia','France']]
c=dfr2.iloc[5]
d=c=dfr2.iloc[5:20]
c=dfr2.iloc[5]
dfr1=dfr.set_index(['country','continent'])
```