Activity 1.0 - Empirical Complexity

José Carlos Martínez Núñez

August 18, 2022

Contents

Algorithm and Implementation	3
Results	3
Hardware	4

Algorithm and Implementation

There are three main files in this project:

- generate_numbers.cpp: Generates random numbers between 1 and 100.
- main.cpp: Receives a file of numbers separated by a newline, calculates the sum of the numbers, prints the result and the amount of time it took to perform the sum.
- run_test_cases.sh: Compiles and runs the program for each test case and saves the amount of time it took to perform the sum in a file.

The algorithm that's used to compute the sum of the numbers is the following:

```
int sum = 0;
while (!file.eof())
{
   int n;
   file >> n;
   sum += n;
}
```

Results

Amount of Numbers (n)	Time taken to sum (μs)
10	$117\mu s$
50	$120\mu s$
100	$119\mu s$
150	$125\mu s$
300	$151\mu s$
1000	$277\mu s$
5000	$1050\mu s$
10000	$1978\mu s$
20000	$3828\mu s$
50000	$9566 \mu s$

Figure 1: Graph of the above table

$$t = 5.291x - 508.81$$

$$R^{2} = 1$$

As you can see, the graph is linear, and the \mathbb{R}^2 value is 1. This means that the graph is a good fit for the data. Taking this into account, we can say that the algorithm used to compute the sum of the numbers is linear. The big O notation of the algorithm is O(n) because the amount of time it takes to compute the sum of the numbers is directly proportional to the amount of numbers.

Hardware

For this activity I used a MacBook Pro (13-inch, 2018, Four Thunderbolt 3 Ports) with the following specs:

• Processor: 2.3 GHz Quad-Core Intel Core i5

• Memory: 8 GB 2133 MHz LPDDR3

• Graphics: Intel Iris Plus Graphics 655 1536 MB