## Неустойчивость Рэлея-Тейлора

Братчиков Д.С., Дмитрачков Д.Д

## 1 Математическая постановка задачи

Рассмотрим ограниченную связную область  $\Omega$  содержащую две несмешиваемые, несжимаемые, ньютоновские жидкости, разделенные свободной поверхностью  $\Gamma(t)$  непрерывной по Липшицу (рис.1.1). Тогда каждая каждая жидкость находится в ограниченной связной области  $\Omega_i(t)$  (i=1,2):



Рис. 1.1: Пример области

$$\overline{\Omega} = \overline{\Omega}_1(t) \cup \overline{\Omega}_2(t), \quad \Omega_1(t) \cap \Omega_2(t) = \emptyset, 
\Gamma(t) = \partial \Omega_1(t) \cap \partial \Omega_2(t).$$
(1.1)

Мы предполагаем, что обе жидкости однородны, поэтому их физические свойства постоянны в каждом  $\Omega_i(t)$  с границей  $\partial\Omega_i(t)$  непрерывной по Липшицу.

Пусть первая жидкость имеет плотность и вязкость  $\rho_1$ ,  $\mu_1$  соответственно, а вторая  $\rho_2$ ,  $\mu_2$  (при этом  $\rho_2 > \rho_1$ ). Введём для регуляризации гладкую функцию Хевисайда для достаточно малого  $\varepsilon$ :

$$H_{\varepsilon}(\phi) = \begin{cases} 0, & \varphi < -\varepsilon \\ \frac{1}{2} \left( 1 + \frac{\varphi}{\varepsilon} + \frac{1}{\pi} \sin\left(\frac{\pi\varphi}{\varepsilon}\right) \right), & -\varepsilon \leq \varphi \leq \varepsilon \\ 1, & \varphi > \varepsilon \end{cases}$$
 (1.2)

Зададим поверхность раздела  $\Gamma(t)$  методом уровня множества (level set function):

$$\Gamma(t) = \{ \mathbf{x} \in \overline{\Omega} : \varphi(\mathbf{x}, t) = 0 \}$$
(1.3)

Тогда гладкие плотность и вязкость можно задать следующими соотношениями в  $\Omega$ :

$$\rho(\varphi) = \rho_1 + (\rho_2 - \rho_1) H_{\varepsilon}(\varphi),$$
  

$$\mu(\varphi) = \mu_1 + (\mu_2 - \mu_1) H_{\varepsilon}(\varphi).$$
(1.4)

Движение границы раздела  $\Gamma(t)$  описывается уравнением переноса:

$$\frac{\partial \varphi}{\partial t} + \mathbf{u} \cdot \nabla \varphi = 0. \tag{1.5}$$

Движение двух несжимаемых жидкостей может быть описано уравнением Навье-Стокса:

$$\begin{cases}
\rho \left( \frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla) \mathbf{u} \right) - \nabla \cdot (\mu \nabla \mathbf{u}) + \nabla p = \mathbf{f} + \mathbf{f}_{\sigma}, \\
\nabla \cdot \mathbf{u} = 0,
\end{cases}$$
B  $\Omega \times [0, T]$  (1.6)

где вектор скорости  ${\bf u}$  и давление p – искомые величины,  ${\bf f}$  – векторное поле массовых сил (в нашем случае  ${\bf f}=(0,\rho g)^T$ ,  ${\bf f}_{\sigma}$  – векторное поле поверхностных сил, возникающее из-за поверхностного натяжения  $\Gamma(t)$ .

Для замыкания системы введём краевые и начальные условия. Для скорости используем нулевое условие Дирихле:

$$\mathbf{u}_{|\partial\Omega} = 0 \tag{1.7}$$

Необходима непрерывность скорости при переходе через границу раздела  $\Gamma(t)$ :

$$\mathbf{u}_{1|\Gamma(t)} = \mathbf{u}_{2|\Gamma(t)}.\tag{1.8}$$

Эффекты поверхностного натяжения учитываются за счёт баланса сил на  $\Gamma(t)$ :

$$(\mu_1 \nabla \mathbf{u}_1 - p_1 I) \cdot \mathbf{n} + (\mu_2 \nabla \mathbf{u}_2 - p_2 I) \cdot \mathbf{n}_{|\Gamma(t)} = \sigma \kappa \mathbf{n}_{|\Gamma(t)}, \tag{1.9}$$

где  ${\bf n}$  — нормаль поверхности  $\Gamma(t)$  направленная в  $\Omega_2$ ,  $\sigma$  — коэффициент поверхностного натяжения,  $\kappa = \nabla \cdot {\bf n}$  — кривизна поверхности  $\Gamma(t)$ .

Начальные условия:

$$\mathbf{u}(\mathbf{x},0) = \mathbf{0}, \quad \varphi(\mathbf{x}) = \varphi_0(\mathbf{x})$$
 (1.10)