# **Formelsammlung**

# 1.5.2 TG Informationstechnik

**Lokale Formelsammlung HW: Arduino-IDE** 

Version: V 4.40

Gültig ab Abitur 2024

| Abiturprüfung ab 2024 | Berufliches Gymnasium (TG) |
|-----------------------|----------------------------|
| Formelsammlung        | 1.5.2 Informationstechnik  |

### Inhaltsverzeichnis:

| 1 Tra | ainingsplatine STM32                                                                                     |    |
|-------|----------------------------------------------------------------------------------------------------------|----|
| 1.1   | Pinbelegung                                                                                              |    |
| 1.2   | Layout                                                                                                   |    |
| 1.3   | Core Register mit PSR                                                                                    |    |
| 1.4   | Memory Map                                                                                               |    |
|       | chsprache C/CPP                                                                                          |    |
|       | tentypen                                                                                                 |    |
|       | ger und Referenzen                                                                                       |    |
|       | eratoren                                                                                                 |    |
| 2.1   | Schleifen                                                                                                |    |
| 2.2   | Programmverzweigungen                                                                                    |    |
| 2.3   | Operationen ( Unterprogramme, Funktionen)                                                                |    |
| 2.4   | Beispiel eines C/CPP-Programms                                                                           |    |
| 2.5   | Portpin: Eingabe und Ausgabe                                                                             |    |
| 2.6   | Externer Interrupt                                                                                       |    |
| 2.7   | Timer                                                                                                    |    |
| 2.8   | Puls-Weiten-Modulation (PWM)                                                                             |    |
| 2.9   | LCD                                                                                                      |    |
| 2.10  | Analog – Digital – Wandlung                                                                              |    |
| 2.11  | Digital – Analog – Wandlung                                                                              |    |
| 2.12  |                                                                                                          |    |
|       | versal Asynchronous Receiver Transmitter (UART)                                                          |    |
|       | rial Peripheral Interface (SPI)                                                                          |    |
|       | er-Integrated Circuit (I <sup>2</sup> C) SCL (Serial Clock): Taktleitung SDA (Serial Data): Datenleitung |    |
|       | Glossar                                                                                                  | 20 |

| Abiturprüfung ab 2024 | Berufliches Gymnasium (TG) |
|-----------------------|----------------------------|
| Formelsammlung        | 1.5.2 Informationstechnik  |

### 1 Trainingsplatine STM32 Nucleo L152RE



#### 1.1 Pinbelegung



| Abiturprüfung ab 2024 | Berufliches Gymnasium (TG) |
|-----------------------|----------------------------|
| Formelsammlung        | 1.5.2 Informationstechnik  |

#### 1.2 Layout

#### Nucleo L152RE

Arduino Headers



Nucleo L152RE

Morpho Headers



| Abiturprüfung ab 2024 | Berufliches Gymnasium (TG) |
|-----------------------|----------------------------|
| Formelsammlung        | 1.5.2 Informationstechnik  |

### 1.3 Core Register mit PSR



| R-Nr  | Zweck                                                                        |
|-------|------------------------------------------------------------------------------|
| R0-12 | General Purpose Register für Datenoperationen (Load-Store-Arithmethic-Logic) |
| R13   | Stack-Pointer SP                                                             |
| R14   | Link-Register LR                                                             |
| R15   | Programm Counter PC (halfword aligned-2er Schritte)                          |

| 31 | 30 | 29 | 28 | 27 | 26 25  | 24 | 23 16    | 15     | 10 | 9 | 8  |       |      | 0 |
|----|----|----|----|----|--------|----|----------|--------|----|---|----|-------|------|---|
| N  | Z  | С  | ٧  | Q  | ICI/IT | Т  | Reserved | ICI/IT |    |   | IS | R_NUI | MBER |   |

| PSR    | Programm Status Register                                           |
|--------|--------------------------------------------------------------------|
| Bit 31 | N: Negative or less flag                                           |
|        | 0: Ergebnis Operation positiv, 0, oder größergleich als            |
|        | 1: Ergebnis Operation negativ oder kleiner als                     |
| Bit 30 | Z: Zero flag                                                       |
|        | 0: Ergebnis Operation war ungleich Null                            |
|        | 1: Ergebnis Operation war gleich Null                              |
| Bit 29 | C: Carry or borrow flag                                            |
|        | 0: Addition ergibt keinen Übertrag, Subtraktion ergibt Ergebnis <0 |
|        | 1: Addition ergibt einen Übertrag, Subtraktion ergibt Ergebnis >=0 |
| Bit 28 | V: Overflow flag                                                   |
|        | 0: Operation ergibt keinen Überlauf Wertebereich                   |
|        | 1: Operation ergibt einen Überlauf Wertebereich                    |

| Abiturprüfung ab 2024 | Berufliches Gymnasium (TG) |
|-----------------------|----------------------------|
| Formelsammlung        | 1.5.2 Informationstechnik  |

#### 1.4 Memory Map



| Abiturprüfung ab 2024 | Berufliches Gymnasium (TG) |
|-----------------------|----------------------------|
| Formelsammlung        | 1.5.2 Informationstechnik  |

### 2 Hochsprache C/CPP

#### **Datentypen**

| Datentyp            | Bits  | Vorzeichen | Wertebereich                               |
|---------------------|-------|------------|--------------------------------------------|
| unsigned char       | 8     | +          | 0 255                                      |
| (signed) char       | 8     | -+         | -128127                                    |
| uint_32t/uint16_t   | 32/16 | +          | 0 4294967295 bzw. 0 65535                  |
| int_32t/int16_t     | 32/16 | -+         | -2147483648 2147483647 bzw. 32768 32767    |
| long                | 32    | +          | 0 4294967295                               |
| float               | 32    | - +        | -3,4E38 3,4E38                             |
| enum Aufzählungstyp |       |            | enum {AUTOMATK, HAND} Zustand = AUTOMATIK; |

#### Zeiger und Referenzen

int x=127; //Wert

y=&x; //der Zeiger bekommt die Adresse der Variable x im Speicher

Beispiel:

Adresse RAM
x 0x20000000 127
y 0x20000004 0x20000000

printf("%d %x %d\r\n",x,(int)y,\*y); => liefert folgende Ausgabe: 127 0x20000000 127

#### Operatoren

x den Wert 10 zu.

| Mathematische Operatoren |                           |     |
|--------------------------|---------------------------|-----|
| ++                       | Inkrement                 | Höc |
|                          | Dekrement                 |     |
| -                        | Vorzeichen                |     |
| *                        | Multiplikation            |     |
| /                        | Division                  |     |
| %                        | Modulo, Rest der Division |     |
| +                        | Plus                      |     |
| _                        | Minus                     |     |
|                          |                           | Nie |

Priorität Höchste

| Vergleichs- und logische Operatoren |                |
|-------------------------------------|----------------|
| !                                   | NOT            |
| >                                   | Größer         |
| >=                                  | Größer gleich  |
| <                                   | Kleiner        |
| <=                                  | Kleiner gleich |
| ==                                  | Gleich         |
| ! =                                 | Ungleich       |
| &&                                  | AND            |
|                                     | OR             |

| Bitweise Operatoren |                      |
|---------------------|----------------------|
| &                   | UND                  |
|                     | ODER                 |
| ^                   | EXOR                 |
| ~                   | Einerkomplement      |
| <<                  | Nach links schieben  |
| >>                  | Nach rechts schieben |

| Kurzschreibweisen |                         |
|-------------------|-------------------------|
| +=                | x += 3; wie $x = x + 3$ |
| -=                | x -= 3; wie $x = x - 3$ |
| *=                | x *= 5; wie x = x * 5   |
| /=                | x /= 7; wie $x = x / 7$ |

| Abiturprüfung ab 2024 | Berufliches Gymnasium (TG) |  |
|-----------------------|----------------------------|--|
| Formelsammlung        | 1.5.2 Informationstechnik  |  |

#### 2.1 Schleifen

#### FOR-Schleife (zählergesteuerte Schleife)

Schleife, mit einer genau berechenbaren Anzahl an Wiederholungen.

```
for (<zaehlvariable=startwert>;<bedingung>;<schrittweite>) {
    ...
}
```

• startwert Anfangswert der Zählvariablen

• bedingung Schleife wird so lange durchlaufen, wie die Bedingung wahr ist

schrittweite Anweisung zum Erhöhen oder Erniedrigen der Zählvariablen

#### Beispiel:

```
// DigitalOut ausgang(PC_0) 10x invertieren
for (int i=0; i<10; i++) {
   ausgang = !ausgang;
}</pre>
```

#### WHILE-Schleife (kopfgesteuerte Schleife)

Schleife, die wiederholt wird, so lange die Bedingung am Schleifenanfang erfüllt ist.

```
while (<bedingung>) {
    ...
}
```

Solange die am Anfang stehende **Bedingung erfüllt ist,** wird die Schleife wiederholt. Die Prüfbedingung steht **vor den Anweisungen**, sie heißt deshalb **kopfgesteuerte Schleife.** 

Wenn die am Schleifenanfang stehende **Bedingung nicht erfüllt ist**, dann wird die gesamte Schleife übersprungen.

#### Beispiel:

```
// Solange der Taster DigitalIn taster(PA_1) gedrückt ist, wird der
// Ausgang DigitalOut ausgang(PC_0) invertiert
while (taster==true) {
   ausgang = !ausgang;
}
```

#### Do-WHILE-Schleife (fußgesteuerte Schleife)

Schleife, die mindestens einmal durchlaufen wird, da erst am Ende der Schleife mit der Überprüfung der Bedingung entschieden wird, ob die Schleife wiederholt werden muss.

```
do {
    ...
} while (<bedingung>);
```

```
// Die Schleife wird maximal 100 mal und minimal 1 mal durchlaufen. Sie wird früh-
// zeitig abgebrochen, wenn der Taster DigitalIn taster(PA_1) gedrückt (=1) wird.
x = 100;
do {
    x--;
} while ((x>0) && taster==0);
```

| Abiturprüfung ab 2024 | Berufliches Gymnasium (TG) |  |
|-----------------------|----------------------------|--|
| Formelsammlung        | 1.5.2 Informationstechnik  |  |

#### 2.2 Programmverzweigungen

#### **Einfache Verzweigung mit if**

Bei der if-Anweisung werden die Anweisungen innerhalb des if-Blocks nur dann ausgeführt, falls die Bedingung wahr ist.

#### Beispiel:

#### Zweiseitige Verzweigung mit if

Bei der if/else-Anweisung kann zwischen **zwei Alternativen** entschieden werden. Ist die Bedingung wahr, so wird die erste Alternative (if-Block), ansonsten die zweite Alternative (else-Block) an Anweisungen ausgeführt.

| Abiturprüfung ab 2024 | Berufliches Gymnasium (TG) |  |
|-----------------------|----------------------------|--|
| Formelsammlung        | 1.5.2 Informationstechnik  |  |

Mehrere Verzweigungen mit if

#### Fallunterscheidung mit switch

Mit der switch-Anweisung kann aus einer **Reihe von Alternativen** ausgewählt werden. Es ist zulässig, dass mehrere Möglichkeiten gültig sind und dieselbe Wirkung haben. Sie werden nacheinander aufgelistet. Passt keine der Möglichkeiten, dann wird die **default-**Einstellung ausgeführt.

Achtung! Auf keinen Fall break vergessen!!!

#### Beispiel:

```
// In der Variablen ergebnis ist ein Messergebnis oder eine Zahl gespeichert.
// Abhängig vom genauen Wert sollen nun bestimmte Reaktionen erfolgen.
switch (ergebnis)
{
   case 0x00:
   case 0x10:
   case 0x20:
                   ausgang1 = 1;
                                      break;
   case 0x30:
                   ausgang1 = 0;
                                      break;
   case 0x40:
                   ausgang1 = ~ausgang1;
                                              break;
  default:
                 ausgang2 = 1;
                                    break;
}
```

Hinweis: **Switch-Variablen** müssen einen **einfachen Datentyp** verwenden. Hinter **case** müssen **Konstanten** stehen. Diese können mit #define am Anfang des Programms deklariert werden.

```
# define RECHTS 0x10
                         // ohne Semikolon!!
# define LINKS 0x20
# define RECHTSKURVE 0b0100
# define LINKSKURVE 0b1000
unsigned char richtung;
switch (richtung) {
  case RECHTS:
                    motor = RECHTSKURVE;
                                              break:
  case LINKS:
                    motor = LINKSKURVE;
                                              break;
                                       break;
  default: motor = vorwaerts;
}
```

| Abiturprüfung ab 2024 | Berufliches Gymnasium (TG) |  |
|-----------------------|----------------------------|--|
| Formelsammlung        | 1.5.2 Informationstechnik  |  |

#### 2.3 Operationen (Unterprogramme, Funktionen)

```
Deklaration von Operationen
      Beispiele:
      void addieren(void);
                                             // ohne Rückgabewert, ohne Parameter
      void zeitms(int msec);
                                             // ohne Rückgabewert, mit Parameter
      float berechneQuadrat(float pQ);
                                             // mit Rückgabewert, mit Parameter
Definition von Operationen
      Beispiel:
                                             // globale Variablen
      int a, result;
      void addieren(void) {
                                             // Operationsname
         result = a + a;
                                             // Anweisung(en)
Operationen mit Übergabewert
      Beispiel:
      void zeitms(int msec) {
                                             // Übergabewert msec
                                             // lokale Variable
         int t1;
         for (t1=msec;t1!=0;t1--)
            wait_us(1000);
                                             // Zeitschleife;
      }
```

#### Operationen mit Rückgabewert

```
float berechneQuadrat(float pQ=10) { // Parameter mit Standardwert
  return pQ*pQ;
                                      // Rückgabewert
```

| Abiturprüfung ab 2024 | Berufliches Gymnasium (TG) |  |
|-----------------------|----------------------------|--|
| Formelsammlung        | 1.5.2 Informationstechnik  |  |

#### 2.4 Beispiel eines C/CPP-Programms

```
volatile bool Anforderung Fussgaenger = false; //globale Variablen
int z;
int S1 = PA4;
int LED_rt = D1, LED_ge = D2, LED_gn = D3;
char phasen[4]= { //array
    0b001, //0 rot
    0b101, //1 rotgelb
    0b010, //2 grün
    0b100}; //3 gelb
void setup()
  pinMode(LED_rt, OUTPUT);
  pinMode(LED_ge, OUTPUT);
  pinMode(LED_gn, OUTPUT);
  pinMode(S1, INPUT_PULLUP);
  z=0;
}
void loop()
{
      if (digitalRead(S1) == LOW)
      Anforderung_Fussgaenger = true;
      digitalWrite(LED_rt,HIGH);
      digitalWrite(LED_gn,LOW);
      digitalWrite(LED ge,LOW);
      delay(500);
      digitalWrite(LED_ge,HIGH);
      delay(500);
      digitalWrite(LED_gn, HIGH);
      digitalWrite(LED_rt, LOW);
      digitalWrite(LED ge, LOW);
      delay(500);
      digitalWrite(LED_gn, LOW);
      digitalWrite(LED_ge, HIGH);
      delay(500);
        if (Anforderung Fussgaenger) //Fußgängeranforderung auswerten
        {
            digitalWrite(LED_rt, HIGH);
            delay(500);
            Anforderung_Fussgaenger = false;
            digitalWrite(LED_rt, LOW);
        }
        Z++;
        if (z>8)
        {
          z=0;
        }
}
```

| Abiturprüfung ab 2024 | Berufliches Gymnasium (TG) |  |
|-----------------------|----------------------------|--|
| Formelsammlung        | 1.5.2 Informationstechnik  |  |

### 2.5 Portpin: Eingabe und Ausgabe

|                                                                                    | Befehl                                     | Beispiel                                  |
|------------------------------------------------------------------------------------|--------------------------------------------|-------------------------------------------|
| <pre>Portausgabe: Bsp.: GPIOA-&gt;ODR = 0xFF00; // Highbyte auf HIGH gesetzt</pre> |                                            |                                           |
| Einzelbitausgabe                                                                   | •                                          |                                           |
| Deklaration                                                                        | #define Name Pin                           | #define LED_D12 D12                       |
|                                                                                    | Name = Pin-Bezeichnung                     |                                           |
| Konfiguration                                                                      | <pre>pinMode(LED_D12, OUTPUT);</pre>       |                                           |
| _                                                                                  |                                            |                                           |
| Verwendung                                                                         | digitalWrite(name, WERT)<br>WERT=HIGH, LOW | <pre>digitalWrite(LED_rt,HIGH);</pre>     |
| Einzelbiteingabe                                                                   |                                            |                                           |
| Deklaration                                                                        | #define Name Pin                           | #define S2 PA4                            |
|                                                                                    | Mögliche Werte für Pin: PA0PA15, PB0       | PB15, PC0PC15 oder D1, A0                 |
| Konfiguration                                                                      | <pre>pinMode(name, konfig);</pre>          | pinMode (S2, INPUT);                      |
|                                                                                    | Mögliche Werte für konfig: = INPUT_P       | ULLUP, INPUT_PULLDOWN, INPUT              |
| Verwendung                                                                         | Var = Pin Zustand lesen                    | <pre>buttonState = digitalRead(S2);</pre> |

### 2.6 Externer Interrupt



|                    | Befehl                                          |                              |  |
|--------------------|-------------------------------------------------|------------------------------|--|
| Externer Interrupt | Externer Interrupt                              |                              |  |
| Deklaration        | #define Name Pin                                | #define S2 PA4               |  |
|                    | Mögliche Werte für Portpin: PA0PA15, P          | B0PB15, PC0PC15, oder D1, A0 |  |
| Konfiguration      | attachInterrupt (digitalPinToInterrupt (PIN),   | ISR_Name, Aktion);           |  |
| Bsp.:              | attachInterrupt (digitalPinToInterrupt (S2), Is | SR_EXT_IR, FALLING);         |  |
|                    | Aktion: FALLING, RISING, CHANGE, HIGH           | H, LOW                       |  |
|                    | detachInterrupt (digitalPinToInterrupt (PIN)    |                              |  |
| Hinweis:           | Variable(n) in der ISR sollten als volatil      | e deklariert werden          |  |



| Abiturprüfung ab 2024 | Berufliches Gymnasium (TG) |
|-----------------------|----------------------------|
| Formelsammlung        | 1.5.2 Informationstechnik  |



Beispiel STM32L152

| Maßnahme                                     | Syntax                                                                                                                               |  |
|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--|
| Timerauswahl:                                | static HardwareTimer mytimer = HardwareTimer(TIM3);                                                                                  |  |
| TimerÜberlauf nach Zeit konfigurieren        | mytimer.setOverflow(2000, MICROSEC_FORMAT); [<= 32 Bit]  ⇒ Wenn Counter-Reg und ARR gleich sind  Prescaler automatisch konfiguriert! |  |
| TimerÜberlauf nach<br>Frequenz konfigurieren | <pre>mytimer.setOverflow(2000, HERTZ_FORMAT); [&lt;= 32 Bit] Prescaler automatisch konfiguriert!</pre>                               |  |
| TimerÜberlauf nach f-Ctr                     | Mytimer.setOverflow(50000); Prescaler Konfigurierbar!                                                                                |  |
| zusätzlich Vorteiler nutzen:                 | <pre>mytimer.setPrescaleFactor(32); [&lt;= 16 Bit]</pre>                                                                             |  |
| TimerInterrupt aktivieren und ISR aufrufen   | <pre>mytimer.attachInterrupt(ISR_Timer);</pre>                                                                                       |  |
| TimerInterrupt deaktivieren                  | <pre>mytimer.detachInterrupt();</pre>                                                                                                |  |
| Timer starten                                | <pre>mytimer.resume();</pre>                                                                                                         |  |
| Timer stoppen                                | <pre>mytimer.pause();</pre>                                                                                                          |  |
| Hinweis:                                     | Variable(n) in der ISR sollten als volatile deklariert werden                                                                        |  |

| Abiturprüfung ab 2024 | Berufliches Gymnasium (TG) |
|-----------------------|----------------------------|
| Formelsammlung        | 1.5.2 Informationstechnik  |

#### 2.8 Puls-Weiten-Modulation (PWM)

Prinzip:



| PWM                                                     | Befehl                           | Beispiel                                                 |
|---------------------------------------------------------|----------------------------------|----------------------------------------------------------|
| Deklaration                                             | #define name (Portpin)           | #define RGB_bl D10                                       |
| Konfiguration<br>f-Frequenz in Hz =><br>1/Periodendauer | analogWriteFrequency(var);       | <pre>analogWriteFrequency(2000); //entspricht 2KHz</pre> |
| Pulsewidth Bitbreite                                    | analogWriteResolution(8-16);     | analogWriteResolution (16);                              |
| Verwendung                                              | analogWrite(Pinname, Pulsweite); | analogWrite(RGB_r, 200);                                 |

#### 2.9 LCD

Ausgabevariante am LCD mit zusammengesetzten Strings:

```
I2C LCD(" " + String(Std) + ":" + String(Min) + ":" + String(Sec));
```

Ausgabevariante am LCD mit Standard-Funktion sprintf();

```
char buf [16];
sprintf(buf, "%02u : %02u : %02u", Std, Min, Sec);
I2C LCD(buf);
```



Bei Umlauten und Sonderzeichen müssen diese jeweils im Displaycode eingefügt werden:

Bsp.: Würfelz\xe1hler

| Hinweis: \xe1 ist der Displaycode für          |         |         |  |
|------------------------------------------------|---------|---------|--|
| den Umlaut <b>ä</b> . Weitere Zeichencodes:    |         |         |  |
| ö: ∖xef                                        | ß: \xe2 | σ: \xe5 |  |
| $\ddot{u}$ : \xf5 $\mu$ : \xe4 $\alpha$ : \xe0 |         |         |  |
| °: \xdf                                        | €: \xd3 | ε: \xe3 |  |

| Abiturprüfung ab 2024 | Berufliches Gymnasium (TG) |
|-----------------------|----------------------------|
| Formelsammlung        | 1.5.2 Informationstechnik  |

### 2.10 Analog - Digital - Wandlung

| AD-Wandler  | Befehl                                        | Beispiel                                     |
|-------------|-----------------------------------------------|----------------------------------------------|
| Deklaration | Datentyp Name Pin                             | #define A0_Pin A0                            |
|             | analogReadResolution(10, 12, 16); //Bitbreite | analogReadResolution(12);                    |
|             | Mögliche Werte für Portpin: A0-A5             |                                              |
| Verwendung  | Var = analogRead(Pin)                         | <pre>sensorValue = analogRead(A0_Pin);</pre> |



#### Berechnungsformeln:

- Anzahl der Stufen: 2<sup>n</sup>
- Stufen:  $0 (2^n 1)$
- kleinste Spannungsstufe =>  $U_{LSB}$ :  $U_{VCC} / 2^n$  bzw.  $U_{ref} / 2^n$
- Aktueller Wandelwert (Rohwandelwert):  $x = U_e/U_{VCC} * (2^n 1)$

Werteanpassung / Skalierung mit map():

Werteanpassung, Bsp.:

map(Wert, 0, 1023, 0, 255); // Werte von 0-1023 werden auf 0-255 angepasst

#### 2.11 Digital - Analog - Wandlung

|                  | Befehl                                       | Beispiel                          |
|------------------|----------------------------------------------|-----------------------------------|
| Digital-Analog W | andler                                       |                                   |
| Deklaration      | <pre>AnalogOut meinAnalogOut(Portpin);</pre> | AnalogOut ausgang(ledPin);        |
|                  | Mögliche Werte für Portpin: PA5              |                                   |
| Verwendung       | analogWrite(Pin, Wert)                       | analogWrite(ledPin, outputValue); |



| Abiturprüfung ab 2024 | Berufliches Gymnasium (TG) |
|-----------------------|----------------------------|
| Formelsammlung        | 1.5.2 Informationstechnik  |

### 2.12 Externe Kommunikationsmöglichkeiten

#### **Universal Asynchronous Receiver Transmitter (UART)**



|                                                                                                  | Befehl                                                                 | Beispiel                                                                  |  |
|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------------------|--|
| Universal Asynchro                                                                               | Universal Asynchronous Receiver Transmitter (UART)                     |                                                                           |  |
| #include <software< th=""><th>Serial.h&gt; =&gt; Software Serial Modus</th><th></th></software<> | Serial.h> => Software Serial Modus                                     |                                                                           |  |
| Deklaration                                                                                      | <pre>#define softserial #define RX Pin? #define TX Pin?</pre>          |                                                                           |  |
|                                                                                                  | SoftwareSerial SerialBsp(RX, TX);                                      |                                                                           |  |
| Verwendung                                                                                       | SerialBsp.begin(9600); // Baudrate                                     |                                                                           |  |
| Daten empfangen                                                                                  | Fragen nach daten im Serial-Buffer<br>Wenn ja, dann in Variable lesen… | <pre>if (SerialBsp.available()) {   msg =   SerialBsp.readString();</pre> |  |
| Daten senden                                                                                     | Mit print(ln) String schreiben Mit print Var-wert schreiben            | <pre>SerialBsp.print("LED an"); SerialBsp.print(LED);</pre>               |  |

#### **Frame**



Eine UART-Übertragung beginnt immer mit einem Startbit (Low). Darauf folgen

- 5-8 **Data-Bits** (Standard = 8)
- 0 oder 1 **Parity-Bit** (Standard = 0 none)
- 1 oder 2 **Stop-Bbit** (Standard =1)

Falls ein Paritybit programmiert wurde, kann es gerade Parity (even) oder ungerade Parity (odd) anzeigen. Bsp:

| Informationswort | Summe der Einsen | Paritätsbit / Codewort |                        |
|------------------|------------------|------------------------|------------------------|
| Illomationswort  |                  | bei Even-Parity        | bei Odd-Parity         |
| 0011.1010        | gerade           | 0 / 0011.1010 <b>0</b> | 1 / 0011.1010 <b>1</b> |
| 1010.0100        | ungerade         | 1 / 1010.0100 <b>1</b> | 0 / 1010.0100 <b>0</b> |

| Abiturprüfung ab 2024 | Berufliches Gymnasium (TG) |
|-----------------------|----------------------------|
| Formelsammlung        | 1.5.2 Informationstechnik  |

### Serial Peripheral Interface (SPI)

Das **Serial Peripheral Interface** (**SPI**) dient der Kommunikation des Mikrocontrollers mit **Modulen** auf der Platine. Module sind

- Anzeigen,
- Speicher,
- LAN-Bausteine
- ...



#### Signale

| Master/Slave (OLD)         | Controller/Peripheral (NEW)          |
|----------------------------|--------------------------------------|
| Master In Slave Out (MISO) | Controller In, Peripheral Out (CIPO) |
| Master Out Slave In (MOSI) | Controller Out Peripheral In (COPI)  |
| Slave Select pin (SS)      | Chip Select Pin (CS)                 |

Sendeleitung
Empfangsleitung
Auswahl Slaves/Chip (Lowaktiv)

SCLK (Serial Clock):

Taktleitung

| Mode      | Clock Polarity (CPOL) | Clock Phase (CPHA) | Output Edge | Data Capture |
|-----------|-----------------------|--------------------|-------------|--------------|
| SPI_MODE0 | 0                     | 0                  | Falling     | Rising       |
| SPI_MODE1 | 0                     | 1                  | Rising      | Falling      |
| SPI_MODE2 | 1                     | 0                  | Rising      | Falling      |
| SPI_MODE3 | 1                     | 1                  | Falling     | Rising       |

|                                                                                                 | Befehl                                                                                                                                                     | Beispiel                                                                                                                                       |  |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| #include <spi< th=""><th colspan="8">include <spi.h> //Bibliothek einbinden</spi.h></th></spi<> | include <spi.h> //Bibliothek einbinden</spi.h>                                                                                                             |                                                                                                                                                |  |  |  |  |  |  |  |
| Initialisiere SPI                                                                               | SPI.begin()                                                                                                                                                |                                                                                                                                                |  |  |  |  |  |  |  |
|                                                                                                 | SPISettings(14000000, MSBFIRST                                                                                                                             | G, SPI_MODEO) f, dataOrder, Modus                                                                                                              |  |  |  |  |  |  |  |
|                                                                                                 | Oder:                                                                                                                                                      |                                                                                                                                                |  |  |  |  |  |  |  |
|                                                                                                 | <pre>SPI.setBitOrder(MSBFIRST); SPI.setClockDivider(SPI_CLOCK_DIV32); SPI.setDataMode(SPI_MODE3);</pre>                                                    |                                                                                                                                                |  |  |  |  |  |  |  |
|                                                                                                 | SPI.end();                                                                                                                                                 |                                                                                                                                                |  |  |  |  |  |  |  |
| Konfiguration<br>CS-Pin                                                                         | #define chipSelectPin (CS) = D5                                                                                                                            |                                                                                                                                                |  |  |  |  |  |  |  |
|                                                                                                 | <pre>pinMode(chipSelectPin, OUTPUT);</pre>                                                                                                                 |                                                                                                                                                |  |  |  |  |  |  |  |
| Verwendung                                                                                      | <pre>Bsp: Schreiben: digitalWrite(CS, LOW); SPI.transfer(address_w); SPI.transfer(0x09); SPI.transfer(Bitmuster); digitalWrite(CS, HIGH); SPI.end();</pre> | <pre>Bsp.: Lesen:     digitalWrite(CS, LOW);     ADC_H = SPI.transfer(0x00);     ADC_L = SPI.transfer(0x01);     digitalWrite(CS, HIGH);</pre> |  |  |  |  |  |  |  |
|                                                                                                 |                                                                                                                                                            |                                                                                                                                                |  |  |  |  |  |  |  |

| Abiturprüfung ab 2024 | Berufliches Gymnasium (TG) |
|-----------------------|----------------------------|
| Formelsammlung        | 1.5.2 Informationstechnik  |

# Inter-Integrated Circuit (I<sup>2</sup>C) SCL (Serial Clock): Taktleitung SDA (Serial Data): Datenleitung



| I <sup>2</sup> C               | Befehl                                                                                                                                                                                     | Beispiel                                                                                                                                                                                                              |
|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                | #include <wire.h> =&gt; I<sup>2</sup>C-Library</wire.h>                                                                                                                                    | JE NACH Datenblatt!                                                                                                                                                                                                   |
| Deklaration                    | #define adress => 7 Bit!                                                                                                                                                                   | address 0b0100000                                                                                                                                                                                                     |
| Initialisierung                | Bibliothek starten                                                                                                                                                                         | Wire.begin();                                                                                                                                                                                                         |
|                                | I <sup>2</sup> C-Frequenz einstellen                                                                                                                                                       | Wire.setClock(10000);.                                                                                                                                                                                                |
| Verwendung                     | l <sup>2</sup> C-Übertragung starten inkl. Adresse Baustein                                                                                                                                | Wire.beginTransmission(address);                                                                                                                                                                                      |
| Daten senden  Daten empfangen  | Daten auf Bus schreiben Übertragung abschließen I2C-Übertragung starten inkl. Adresse Baustein Daten auf Bus schreiben Nach Empfangenen Daten fragen Var = daten lesen Übertragung beenden | Wire.write(0x09); Wire.endTransmission(); Wire.beginTransmission(address); Wire.write(0x00); Wire.endTransmission(); Wire.requestFrom(address, 2); Temp_H = Wire.read(); Temp_L= Wire.read(); Wire.endTransmission(); |
| ReStart<br>gemäß<br>Datenblatt | Daten aus einem bestimmten Register lesen: Slave Registeradresse mitteilen Inhalt des Registers in var lesen Wenn Restart gemäß I <sup>2</sup> C-Frame benötigt:                           | Wire.beginTransmission(address);<br>int WR_Byte = Wire.write(0x??);<br>Wire.endTransmission();<br>Wire.requestFrom(address, WR_Byte);<br>var = Wire.read();<br>Wire.endTransmission();                                |

| Abiturprüfung ab 2024 | Berufliches Gymnasium (TG) |
|-----------------------|----------------------------|
| Formelsammlung        | 1.5.2 Informationstechnik  |

Beispielhaft aufgeführte I<sup>2</sup>C-Bausteine bzw. Auszug Datenblätter Quelle: www.alldatasheet.com LM 75:

| BIT 7 | BIT 6 | BIT 5 | BIT 4 | BIT 3 | BIT 2 | BIT 1 | BIT 0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| 1     | 0     | 0     | 1     | A2    | A1    | A0    | RD/W  |



| UPPER BYTE                              |             |      |      |     |     |     |     | LOWER BYTE   |    |    |    |    |    |    |    |
|-----------------------------------------|-------------|------|------|-----|-----|-----|-----|--------------|----|----|----|----|----|----|----|
| D15                                     | D14         | D13  | D12  | D11 | D10 | D9  | D8  | D7           | D6 | D5 | D4 | D3 | D2 | D1 | D0 |
| Sign bit<br>1= Negative<br>0 = Positive | MSB<br>64°C | 32°C | 16°C | 8°C | 4°C | 2°C | 1°C | LSB<br>0.5°C | X  | Х  | X  | X  | X  | Х  | X  |

X = Don't care.

#### **PCF 8574**



| UPPER BYTE                              |             |      |      |     |     |     |     |              |    | L  | OWER | BYTE |    |    |    |
|-----------------------------------------|-------------|------|------|-----|-----|-----|-----|--------------|----|----|------|------|----|----|----|
| D15                                     | D14         | D13  | D12  | D11 | D10 | D9  | D8  | D7           | D6 | D5 | D4   | D3   | D2 | D1 | D0 |
| Sign bit<br>1= Negative<br>0 = Positive | MSB<br>64°C | 32°C | 16°C | 8°C | 4°C | 2°C | 1°C | LSB<br>0.5°C | X  | X  | X    | X    | X  | Х  | X  |

X = Don't care.

#### 2.13 Glossar

| Acknowlege | Quittierung                                       |
|------------|---------------------------------------------------|
| ALU        | Arithmetisch-Logische Einheit                     |
| Ax         | Analogeingang Pin                                 |
| PWM        | Analogausgang Pin                                 |
| BCD        | Binär Codiert Dezimal                             |
| BLDC-Motor | Bürstenloser Gleichstrommotor, Brushless DC-Motor |
| Bluetooth  | Funkstandard zur Datenübertragung                 |
| Carry      | Übertrag                                          |
| CISC       | Complex Instructionset Computer                   |

| Abiturprüfung ab 2024 | Berufliches Gymnasium (TG) |
|-----------------------|----------------------------|
| Formelsammlung        | 1.5.2 Informationstechnik  |

| CPU            | Central Processing Unit                                |
|----------------|--------------------------------------------------------|
| CS             | Steuerleitung für Chip Select                          |
| CTR            | Counter                                                |
| DA-Wandler     | Digital-Analog-Wandler                                 |
| DEMUX          | Demultiplexer                                          |
| %2             | Modulo 2                                               |
| EN             | Enable, Freigabe                                       |
| EPROM          | Erasable Programmable Read Only Memory                 |
| EVA            | Eingabe Verarbeitung Ausgabe                           |
| Even           | gerade                                                 |
| Frame          | Rahmen                                                 |
| GPIO           | General Purpose Input Output                           |
| Hardware Timer | 16-Bit Timer                                           |
| LED            | Light Emitting Diode Leuchtdiode                       |
| LOAD           | laden                                                  |
| MUX            | Multiplexer                                            |
| NVIC           | Nested Vector Interrupt Controller                     |
| Odd            | Ungerade                                               |
| OE             | Steuerleitung für Output Enable                        |
| Overflow       | Überlauf                                               |
| Parity         | Geradzahligkeit                                        |
| Periode        | Periodendauer                                          |
| Poti           | Potentiometer Einstellwiderstand für analoge Eingabe   |
| Pulsewidth     | Pulsbreite                                             |
| PWM            | Puls-Weiten-Modulation                                 |
| R0 usw.        | Prozessorregister                                      |
| RAM            | Random Access Memory                                   |
| RD             | Steuerleitung für lesen                                |
| RISC           | Reduced Instructionset Computer                        |
| ROM            | Read Only Memory                                       |
| Rx             | Receive                                                |
| SPI            | Serial Peripheral Interface                            |
| SRG            | Schieberegister                                        |
| SS             | Slave Select                                           |
| Stack          | Stapel                                                 |
| Stackpointer   | Stapelzeiger                                           |
| Tx             | Transmit                                               |
| UART           | Universal Synchronous Asynchonous Receiver Transmitter |
| WR             | Steuerleitung für schreiben                            |