Matematyka I, Kognitywistyka, Zadania

Konrad Zdanowski

16 listopada 2024

Tekst ten zawiera listę najbardziej istotnych definicji i twierdzeń z wykładu oraz przykładowe zadania.

1 Teoria liczb

1.1 Faktoryzacja, gcd, lcm

- 1. Czy 113, 201, 213 to liczby pierwsze? ([FR15, 4.6.3, zad. 2])
- 2. Znajdź faktoryzację: 3465, 40 320, 14641. ([FR15])
- 3. Czy 1 111 111 111 jest pierwsza? ([FR15])
- 4. Niech $m = 2^2 * 3^3 * 5 * 7 * 11$, n = 2 * 3 * 11. Wyznacz gcd, lcm. ([FR15])
- 5. Niech $m = 5^2 * 7 * 11 * 13^2$, $n = 2 * 3 * 7^3 * 11^2 * 13$, $k = 3 * 5 * 7^2 * 11^3$. Wyznacz gcd(m, n, k), lcm(m, n, k).
- 6. Czy jest nieskończenie wiele liczb pierwszych postaci n^2-49 , dla pewnego $n\in\mathbb{N}?$ ([FR15])
- 7. Jeśli p jest pierwsza, to czy $2^p 1$ jest pierwsza? ([FR15])
- 8. ([FR15]) Wyznacz gcd(756, 2205), gcd(4725, 17460), gcd(465, 3861), gcd(4600, 2116), gcd(630, 990), gcd(96, 144).

Wyznacz lcm(756, 2205), lcm(4725, 17460), lcm(465, 3861), lcm(4600, 2116), lcm(630, 990), lcm(96, 144).

- 9. Wyznacz wszystkie liczby, których nie dzieli żadna liczba pierwsza większa od pięciu i które mają dokładnie pięć dzielników.
- 10. Wyznacz wszystkie liczby, które dzielą 5 * 7. Ile jest takich liczb?

1.2 Przystawanie modulo

- 1. Rozstrzygnij, czy jest prawdą
 - $0 \equiv 6 \pmod{3}$,
 - $35 \equiv 55 \pmod{9}$,
 - $(-23) \equiv 20 \pmod{7}$
 - $(-3) \equiv 3 \pmod{6}$,
 - $(-2) \equiv 2 \pmod{3}$,
 - $16 \equiv 185 \pmod{1}1$.

([FR15, sec. 6.1, p. 154])

- 2. Wyznacz wszystkie liczby $n \in \mathbb{Z}$ takie, że $n \equiv 2 \pmod{5}$.
- 3. Czy $(-1) \equiv 1 \pmod{2}$?
- 4. Wyznacz resztę z dzielenia liczby 17*23*45 przez 8. Wyznacz resztę z dzielenia liczby 17*23*45 przez 5.

Nie używaj kalkulatora.

- 5. Znajdź $n \in \mathbb{N}$ takie, że $n \equiv 3 \pmod{5}$ i $n \equiv 2 \pmod{3}$.
- 6. Znajdź $n \in \mathbb{N}$ takie, że $n \equiv 4 \pmod{4}$ i $n \equiv 2 \pmod{5}$.
- 7. Nie znajdź $n \in \mathbb{N}$ takiego, że $n \equiv 3 \pmod{6}$ is $n \equiv 0 \pmod{2}$. Dlaczego takie n nie istnieje?
- 8. Nie znajdź $n \in \mathbb{N}$ takiego, że $n \equiv 3 \pmod{6}$ is $n \equiv 2 \pmod{9}$. Dlaczego takie n nie istnieje?
- 9. Wyznacz wszystkie liczby, które dzielą 5*7.

- 10. Korzystając z Twierdzenia Eulera $(a^{\varphi(n)} \equiv 1 \pmod n)$, gdy $\gcd(a,n)=1$ i Małego Twierdzenia Fermata $(x^{p-1} \equiv 1 \pmod p)$, dla liczby pierwszej p) i z tego, że relacja przystawania modulo jest kongruencją względem dodawania i mnożenia, oblicz
 - $3^{100} \mod 5$,
 - $5^{100} \mod 7$,
 - $3^{100} \mod 10$,
 - 3¹⁰⁰ mod 6 (uwaga),
 - $4^{100} \mod 9$,
 - $2^{2^{100}} \mod 5$,
 - $5^{5^{100}} \mod 3$.

1.3 Indukcja

- 1. Udowodnij $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$.
- 2. Udowodnij $\sum_{i=0}^n (2i+1) = (n+1)^2$ (sumę n pierwszych liczb nieparzystych).
- 3. Udowodnij, dla każdego $n\geqslant 1$, dla wszystkich $x_1,\ldots,x_n\in\mathbb{R},\,|x_1+\ldots+x_n|\leqslant |x_1|+\ldots+|x_n|.$
- 4. Dla dowolnego $n \geqslant 1$, $\forall x \in (0,1)$ $x^n \leqslant x$. Skorzystaj z faktu, że dla dowolnych a,b, jeśli $0 \leqslant a < 1$ i $b \geqslant 0$, to ab < b.
- 5. Udowodnij, że dla dowolnego $n, \sum_{i=0}^n \frac{1}{2^i} \leqslant 2.$ Rozważ wzmocnienie tezy, do $\sum_{i=0}^n \frac{1}{2^i} \leqslant 2 - \frac{1}{2^n}.$
- 6. Udowodnij, że dla dowolnego $n \ge 4$, $2^n \ge n^2$.

Której części dowodu indukcyjnego nie można przeprowadzić dla tezy $\forall n \geqslant 0 \ (2^n \geqslant n^2).$

Której części dowodu indukcyjnego nie można przeprowadzić dla tezy $\forall n \geqslant 3$ $(2^n \geqslant n^2)$.

7. Ciag Fibbonacciego definiujmy jako F(1) = F(2) = 1, oraz F(n+2) = F(n) + F(n+1) dla $n \ge 1$.

Udowodnij, że dla $n \ge 1$,

$$F(n) = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)^n - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2} \right)^n.$$

8. (Nierówność Bernoulliego, uproszczony przypadek) Dla dowolnego $n \ge 1$,

$$\forall x \geqslant 0 ((1+x)^n \geqslant (1+nx)).$$

2 Teoria relacji i funkcji

Definicja 1. Niech X, Y będą dowolnymi zbiorami. Iloczyn kartezjański $X \times Y$ to zbiór par uporządkowanych postaci (a,b) gdzie $a \in X$ i $b \in Y$.

Relacja między zbiorami X i Y to dowolny podzbiór R iloczynu kartezjańskiego $X \times Y$.

Jeśli $R \subseteq X \times X$ to mówimy, że R jest relacją na X.

Zamiast pisać $(x,y) \in R$ będziemy często posługiwać się wygodniejszą notacją xRy.

Możemy wyróżnić relację pełną, równą $X \times Y$, relację pustą \emptyset . Wyróżniamy też relację identycznościową na X,

$$id_X = \{(a, a) \colon a \in X\}.$$

Definicja 2. Niech $R \subseteq X \times Y$. Dziedzina relacji dom(R) nazywamy zbiór elemntów, które występują jako lewy element pary w relacji,

$$dom(R) = \{x \in X \colon \exists y \in Y \, xRy\}.$$

Przeciwdziedzina (obraz) relacji rng(R) to zbiór elementów występujących jako prawy element pary w relacji,

$$\operatorname{rng}(R) = \{ y \in Y \colon \exists x \in X \, xRy \}.$$

2.1 Jak możemy przedstawić relację?

Relację możemy opisać jako

- 1. zbiór par,
- 2. rysunek,
- 3. macierz.

Następujące własności relacji bedą dla nas istotne.

Definicja 3 (Własności relacji). Niech R będzie relacją na X. R jest

- zwrotna gdy $\forall x \in X xRx$,
- przeciwzwrotna gdy $\forall x \in X \neg x R x$,
- symetryczna gdy $\forall x, y \in X(xRy \Rightarrow yRx)$,
- przeciwsymetryczna gdy $\forall x, y \in X(xRy \Rightarrow \neg yRx)$,
- antysymetryczna gdy $\forall x, y \in X(xRy \land yRx \Rightarrow x = y)$,
- przechodnia gdy $\forall x, y, z \in X(xRy \land yRz \Rightarrow xRz)$,
- spójna gdy $\forall x, y \in X(xRy \vee yRx)$.

Definicja 4 (Rodzaje relacji). • R jest relacją równoważności gdy jest zwrotna, symetryczna i przechodnia.

- R jest relacją (częściowego) porządku gdy jest zwrotna, antysymetryczna i przechodnia.
- ullet R jest relacją ostrego porządku gdy jest przeciwzwrotna, przeciwsymetryczna i przechodnia.
- R jest relacja liniowego porządku jeśli jest relacją porządku i jest spójna (czyli dowolne dwa elementy są ze sobą porównywalne).

Jeśli R jest relacją porządku, to S zdefiniowane jako

$$xSy \iff xRy \land x \neq y$$

jest odpowiadającym mu ostrym porządkiem.

Jeśli S jest relacją ostrego porządku, to R zdefiniowane jako

$$xRy \iff xSy \lor x = y$$

jest odpowiadającym mu porządkiem.

Jeśli relacja R jest relacją równoważnośći na X, to definiuje podział zbioru X na rozłączne podzbiory.

Definicja 5 (Klasa abstrakcji). Niech R będzie relacją równoważnośći na zbiorze X i niech $a \in X$. Klasa abstrakcji a względem R to zbiór elementów, które wchodzą w relację z a. Klasę abstrakcji oznaczamy przez

$$[a]_R = \{x \in X : aRx\}.$$

Każde dwie różne klasy abstrakcji są rozłączne. Zbiór klas abstrakcji $\{[a]_R\}_{a\in X}$ definiuje podział zbioru X na rozłączne podzbiory.

2.2 Operacje na relacjach

Definicja 6. Niech $R \subseteq X \times Y$, $S \subseteq Y \times Z$.

• Relacja odwrotna

$$R^{-1} = \{(y, x) \in Y \times X : xRy\}.$$

• Złożenie relacji $S \circ R \subseteq X \times Z$ to relacja między X i Z zdefiniowana jako

$$S \circ R = \{(x, z) \in X \times Z \colon \exists y \in Y(xRy \land yRz)\}.$$

• Tranzytywne domknięcie relacji R to najmniejsza relacja przechodnia zawierająca R. Tranzytywne domknięcie R oznaczamy często przez R^* .

2.3 Funkcje

Definicja 7. Niech $R \subseteq X \times Y$. R jest funkcją jeśli

$$\forall x \in X \forall y, z \in Y(xRy \land xRz \Rightarrow y = z)$$

Piszemy $f: X \to Y$ jeśli $f \subseteq X \times Y$, f jest funkcją oraz dom(f) = X. Jeśli $f: X \to Y$ i (xfy) to piszemy f(x) na oznaczenie y.

Definicja 8. Niech $f: X \to Y \ i \ g: Y \to Z$.

- f jest injekcją (różnowartościowa, 1-1) gdy dla każdych $\forall x,y \in X(f(x) = f(y) \Rightarrow x = y)$,
- f jest surjekcją ("na") $gdy \ \forall y \in Y \exists x \in X f(x) = y$,
- f jest bijekcją jeśli jest injekcją i surjekcją.

2.4 Zadania (ChatGPT)

1. Relacja na zbiorze liczb całkowitych.

Rozważ zbiór liczb całkowitych \mathbb{Z} . Zdefiniuj relację R na \mathbb{Z} jako:

$$x R y$$
 wtedy i tylko wtedy, gdy $x = y$.

Udowodnij, że relacja R jest zwrotna, symetryczna i przechodnia.

2. Relacja "większe niż"

Rozważ zbiór liczb naturalnych \mathbb{N} . Zdefiniuj relację R na \mathbb{N} jako:

$$x R y$$
 wtedy i tylko wtedy, gdy $x > y$.

Sprawdź, czy relacja R jest antysymetryczna i przechodnia. Udowodnij, że ta relacja nie jest zwrotna.

3. Relacja na zbiorze osób.

Rozważ zbiór osób $P = \{A, B, C\}$. Zdefiniuj relację R na P jako:

x R y wtedy i tylko wtedy, gdy osoba x jest starsza od osoby y.

Sprawdź, czy relacja R jest antysymetryczna i przechodnia. Czy relacja jest zwrotna? Uzasadnij odpowiedź.

4. Relacja podzielności.

Rozważ zbiór liczb naturalnych \mathbb{N} . Zdefiniuj relację R na \mathbb{N} jako:

x R y wtedy i tylko wtedy, gdy x jest podzielne przez y.

Sprawdź, czy relacja R jest zwrotna, symetryczna i przechodnia.

5. Relacja "przyjaciele".

Rozważ zbiór osób P i zdefiniuj relację R na P jako:

x R y wtedy i tylko wtedy, gdy osoby x i y są przyjaciółmi.

Czy relacja R jest symetryczna? Uzasadnij odpowiedź. Czy relacja R jest zwrotna? Uzasadnij odpowiedź.

6. Relacja "parzystość",

Rozważ zbiór liczb naturalnych \mathbb{N} . Zdefiniuj relację R na \mathbb{N} jako:

x R y wtedy i tylko wtedy, gdy suma liczb x i y jest liczbą parzystą.

Sprawdź, czy relacja R jest zwrotna, symetryczna i przechodnia. Jeśli tak, to jakie są jej klasy abstrakcji?

7. Relacja identyczności id.

Rozważ zbiór $S = \{1, 2, 3\}$. Zdefiniuj relację R na S jako:

$$x R y$$
 wtedy i tylko wtedy, gdy $x = y$.

Sprawdź, czy relacja R jest zwrotna, symetryczna, przechodnia i antysymetryczna. Jeśli R jest relacją równoważności, to jakie są jej klasy abstrakcji.

8. Relacja "wspólnej współrzędnej".

Rozważ zbiór punktów na płaszczyźnie \mathbb{R}^2 . Zdefiniuj relację R na \mathbb{R}^2 jako:

$$(x_1, y_1) R(x_2, y_2)$$
 wtedy i tylko wtedy, gdy $x_1 = x_2 \lor y_1 = y_2$.

Sprawdź, czy relacja ${\cal R}$ jest zwrotna, symetryczna, przechodnia i antysymetryczna.

9. Relacja "bycie większym lub równym".

Rozważ zbiór liczb całkowitych \mathbb{Z} . Zdefiniuj relację R na \mathbb{Z} jako:

x R y wtedy i tylko wtedy, gdy $x \ge y$.

Sprawdź, czy relacja ${\cal R}$ jest zwrotna, symetryczna, przechodnia i antysymetryczna.

10. Relacja na zbiorze liter.

Rozważ zbiór liter A, B, C, D. Zdefiniuj relację R jako:

x R y wtedy i tylko wtedy, gdy litera x sasiąduje z y w alfabecie.

Sprawdź, czy relacja ${\cal R}$ jest zwrotna, symetryczna, antysymetryczna i przechodnia.

11. Własności relacji na zbiorze liczb

Niech R będzie relacją na zbiorze $A = \{1, 2, 3, 4\}$ zdefiniowaną jako aRb, jeśli $a \le b$. Ustal, czy relacja R jest zwrotna, symetryczna, przechodnia.

12. Relacja podzielności

Niech R będzie relacją na zbiorze liczb całkowitych $A=\{2,3,6,9,12\}$, gdzie aRb zachodzi, gdy a dzieli b bez reszty. Ustal, czy relacja R jest zwrotna, symetryczna, przechodnia.

13. Relacja równości modulo

Rozważ zbiór $A = \{0, 1, 2, 3, 4, 5\}$ oraz relację R zdefiniowaną jako aRb, gdy $a \equiv b \pmod{2}$. Ustal, czy relacja R jest zwrotna, symetryczna, przechodnia. Jeśli tak, to jak wyglądają jej klasy abstrakcji.

14. Relacja na zbiorze punktów

Na płaszczyźnie rozważmy zbiór punktów $A = \{(0,0), (1,1), (2,2), (1,0), (2,1)\}$. Zdefiniuj relację R jako $(x_1,y_1)R(x_2,y_2)$, jeśli $x_1 = x_2 \vee y_1 = y_2$. Ustal, czy relacja R jest zwrotna, symetryczna, przechodnia.

15. Relacja porządku

Niech R będzie relacją na zbiorze $A=\{a,b,c\}$ zdefiniowaną jako aRb, jeśli a jest "mniejsze lub równe" od b według pewnej kolejności alfabetycznej. Sprawdź, czy relacja R jest relacją porządku częściowego. Zapisz diagram Hassego dla tej relacji.

16. Właściwości relacji na zbiorze liczb

Rozważ zbiór $A=\{1,2,3,4,5\}$ oraz relację R zdefiniowaną jako aRb wtedy i tylko wtedy, gdy a+b jest liczbą parzystą. Sprawdź, czy relacja R jest zwrotna, symetryczna, przechodnia.

17. Klasy abstrakcji

Na zbiorze $A = \{1, 2, 3, 4, 5, 6\}$ zdefiniowana jest relacja R, gdzie aRb, jeśli a - b jest podzielne przez 3. Wykaż, że R jest relacją równoważności. Wyznacz klasy abstrakcji dla tej relacji.

18. Zapis relacji w postaci macierzy

Rozważ zbiór $A=\{1,2,3\}$ oraz relację R zdefiniowaną jako aRb, gdy a+b jest liczbą nieparzystą. Przedstaw relację R w postaci macierzy. Na podstawie macierzy ustal, czy relacja R jest symetryczna.

3 Matematyka dyskretna

3.1 Zliczania

Notacje. |X| to moc zbioru X. $\mathcal{P}(X)$ to zbiór podzbiorów X. $\mathcal{P}^{=k}(X)$ to ilość k elementowych podzbiorów zbioru X, gdzie $k \in \mathbb{N}$.

3.1.1 Zliczania zbiorów

Twierdzenie 9. Niech X, Y, Z zbiory skończone. Wtedy $|X \cup Y| = |X| + |Y| - |X \cap Y|$ oraz

$$\begin{split} X \cup Y \cup Z| &= |X| + |Y| + |Z| + \\ &- |X \cap Y| - |X \cap Z| - |Y \cap Z| + |X \cap Y \cap Z|. \end{split}$$

Twierdzenie 10. Niech X będzie zbiorem skończonym o mocy (liczności) n. Wtedy $|\mathcal{P}(X)| = 2^n$.

Definicja 11. Dwumian Newtona to wyrażenie $\binom{n}{k}$, gdzie $0 \le k \le n$, zdefiniowane jako

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}.$$

Ponieważ 0! = 1, to $\binom{0}{0} = 1$.

Twierdzenie 12. Dla $0 \le k \le n$, ilość k-elementowych podzbiorów n elementowego to $\binom{n}{k}$.

Innymi słowy, jeśli |X| = n, to $|\mathcal{P}^{=k}(X)| = \binom{n}{k}$.

Dwumian Newtona spełnia rekurencyjną zależność, dla $k+1 \le n$,

$$\binom{n+1}{k+1} = \binom{n}{k+1} + \binom{n}{k}.$$

3.1.2 Zliczania wyborów

Definicja 13. Niech X będzie n elementowym zbiorem. Wtedy r-kombinacja zbioru X to r elementowy podzbiór X.

Np. Jeśli X jest zbiorem trzech osób, $X = \{ala, ola, ela\}$, to 2-kombinacja to dowolny dwuelementowy podzbiór X, np. $\{ala, ola\}$, $\{ala, ela\}$.

Twierdzenie 14. Niech X będzie n-elementowym zbiorem, niech $0 \le r \le n$. Ilość r-kombinacji X to $\binom{n}{r}$.

Przykładowe 2-kombinacje zbioru {ala, ela, ola}, to {ala, ela}, {ala, ola}. (Uwaga, w zbiorach nie ma znaczenia kolejność wypisywania elementów.)

Definicja 15. Niech X będzie n elementowym zbiorem . Permutacja zbioru X to sposób uporządkowania elementów X.

Np. jeśli X jest zbiorem 3 osób, to możemy na sześć sposobów ustawić te osoby w kolejce.

Twierdzenie 16. *Ilość permutacji zbioru* n *elementowego, to* n!.

Definicja 17. Niech X będzie zbiorem n elementowym i niech $r \leq n$. Wtedy, r-wariacja bez powtórzeń zbioru X to sposób na wybranie i uporządkowanie r różnych elementów z X.

Przykładowe 2-wariacje zbioru {ala, ela, ola}, to (ala, ola), (ola, ala), (ela, ala).

Twierdzenie 18. *Ilość r-wariacji bez powtórzeń n elementowego zbioru to* $\frac{n!}{(n-r)!}$.

Definicja 19. Niech X będzie zbiorem n elementowym i niech $r \leq n$. Wtedy, rwariacja z powtórzeniami zbioru X to sposób na wybranie i uporządkowanie relementóW z X, gdy elementy mogą się powtarzać.

Przykładowe 2-wariacje z powtórzeniami zbioru {ala, ela, ola}, to (ala, ala), (ola, ala), (ala, ola), (ola, ola).

Twierdzenie 20. Ilość r-wariacji z powtórzeniami n elementowego zbioru to n^{r} .

Jeśli losujemy kule tak jak w totolotku, to jest to kombinacja (kolejność wylosowania nie ma znaczenia). Jeśli losujemy r ponumerowanych kul i układamy je w rządek (bez zwracania do worka), to mamy wariację bez powtórzeń. Jeśli zapisujemy wyniki kolejnych losowań a same kule wrzucamy z powrotem do worka, to mamy wariację z powtórzeniami.

Dodatkowo, jeśli umieszczamy n takich samych przedmiotów w r różnych

pudełkach, to możemy zrobić to na $\binom{n+r-1}{r-1}$ sposobów. Na przykład, jeśli mamy 1, 2, 5 i 10 groszówki, to możemy wybrać z nich 10 moment na $\binom{10+4-1}{4-1} = \binom{13}{3}$ sposobów.

Twierdzenie 21 (Zasada szufladkowa). *Niech* $n \ge m \ge 1$. *Jeśli* n *przedmiotów* umieścimy w m pudełkach, to będzie pudełko, w którym znajdzie się przynajmniej $\lceil \frac{n}{m} \rceil$ przedmiotów.

Wniosek 22. Jeśli n+1 przedmiotów umieścimy w n pudełkach, gdzie $n \ge 1$, to w pewnym pudełku znajdą się przynajmniej dwa przedmioty.

Zadania 3.1.3

1. Zad. ([RW06], Cw. 5.3.1, p.302) Wśród 200 osób 150 uprawia pływanie lub jogging lub oba sporty. 85 uprawia pływanie, 60 uprawia pływanie i jogging. Ile osób pływa?

Czy informacja o ilości wszystkich osób była istotna?

- 2. Zad. Ile liczb z {10, ..., 99} ma dokładnie jedną liczbę równą 7? Ile ma przynajmniej jedną siódemkę? Ile ma przynajmniej jedną 7 lub 3? Ile ma przynajmniej jedną 7 i przynajmniej jedną 3?
- 3. Ile liczb ze zbioru $\{1, ..., 100\}$ jest podzielnych przez 3 i przez 5? Ile przez 6 i przez 9?

- 4. Na ile sposobów można usadzić n osób na ławce?
- 5. Na ile sposobów można usadzić n osób przy okrągłym stole?
- 6. Na ile sposobów można rozdać 52 karty po równo między 4 graczy?
- 7. Ile przekątnych ma *n*-kąt wypukły?
- 8. Ile jest różnych sposobów ustawienia na półce dzieła 5-tomowego tak, aby:
 - a tomy I i II stały obok siebie
 - b tomy I i II nie stały obok siebie?
- 9. Ile czteroosobowych komisji można stworzyć z grupy 9 urzędników, jeżeli wiadomo, że wśród nich są osoby A oraz B, które nie chcą razem pracować?
- 10. Ile jest liczb całkowitych pomiędzy 1000 a 9999, których suma cyfr wynosi dokładnie 9?
- 11. Na ile sposobów można podzielić 3n osób na n grup 3-osobowych?
- 12. W klasie jest *n* chłopców i *n* dziewczynek. Na ile sposobów mogą utworzyć pary do tańca.
- 13. Jaka jest szansa trafienia szóstki w totolotku (losujemy sześć liczb z 49)? Ile powinna wynosić kumulacja, żeby przy cenie zakładu 3zł. opłacało się zagrać?
- 14. Na ile sposobów można przejść z lewego górnego do prawego dolnego pola szachownicy, jeśli możemy poruszać się tylko w prawo i w dół?
- 15. Na ile sposobów można odwiedzić wszystkie wierzchołki w grafie pełnym o *n* wierzchołkach? Na ile sposobów można to zrobić, ale tak, żeby wrócić do punktu wyjścia?
- 16. Ile jest możliwych wyników rzutu dwiema rozróżnialnymi kostkami do gry?

Ile jest takich wyników, jeśli nie rozróżniamy kostek?

Jaka jest szansa na wyrzucenie w sumie 12 oczek? Jaka jest szansa na wyrzucenie dwóch szóstek? Jaka jest szansa na wyrzucenie w sumie 11?

Jak jest szansa na wyrzucenie w sumie 7? Jak jest szansa na wyrzucenie w sumie 8?

- 17. Układamy ośmio literowe hasło z 26 liter alfabetu. Ile jest haseł, jeśli symbole mogą się powtarzać. Ile jest takich haseł, w których musi wystąpić przynajmniej jedna samogłoska (a, e, o, u, i). Ile jest haseł, w których musi wystąpić przynajmniej jedna samogłoska i przynajmniej jedna spółgłoska.
- 18. W worku jest 20 kul ponumerowanych od 1 do 20. Losujemy (bez zwracania) pięć kul. Jaka jest szansa, że wylosujemy tylko kule o numerach parzystych? Jaka jest szansa, że wylosujemy przynajmniej jedną kulę o numerze parzystym? Jaka jest szansa, że wylosujemy przynajmniej jedną kulę o numerze parzystym i przynajmniej jedną kulę o numerze nieparzystym.

Jak zmieni sie odpowiedź, jeśli będziemy zwracali po wylosowaniu kule do worka?

3.2 Zadania z ChatGPT

3.2.1 Zasada szufladkowa

- 1. W klasie jest 26 uczniów, którzy przynieśli na zajęcia 10 różnych książek. Udowodnij, że co najmniej trzech uczniów przyniosło tę samą książkę.
- 2. W grupie liczącej 13 osób udowodnij, że przynajmniej dwie osoby obchodzą urodziny w tym samym miesiącu.
- 3. Mamy dany zbiór 10 liczb naturalnych z zakresu od 1 do 18. Udowodnij, że istnieją dwie liczby w zbiorze, których różnica wynosi co najwyżej 2.
- 4. Pięciu przyjaciół ma razem 25 monet. Udowodnij, że przynajmniej jedna osoba ma co najmniej 5 monet.
- 5. Na okręgu rozmieszczono 9 punktów. Udowodnij, że istnieją dwa punkty, których odległość (mierząc po łuku) nie jest większa niż 40 stopni.
- 6. 30 jabłek rozdzielono pomiędzy 8 koszyków. Udowodnij, że przynajmniej w jednym koszyku znajduje się co najmniej 4 jabłka.
- 7. Wybieramy 8 różnych liczb całkowitych spośród liczb 2, 4, 6, ..., 20. Udowodnij, że wśród wybranych liczb istnieją dwie, których różnica wynosi 4.
- 8. Na biurku znajduje się 12 długopisów w trzech różnych kolorach. Udowodnij, że przynajmniej cztery długopisy mają ten sam kolor.

- 9. W prostokącie umieszczono 6 punktów. Udowodnij, że można wybrać dwa punkty, których odległość jest mniejsza lub równa połowie długości przekątnej prostokąta.
- 10. Mamy 7 klocków, każdy o masie całkowitej (w kilogramach) z zakresu od 1 do 12 kg. Udowodnij, że można wybrać dwa klocki, których masy różnią się o co najwyżej 2 kg.

3.2.2 Permutacje

- 1. Ile różnych słów można utworzyć, przestawiając litery w słowie "KOT"?
- 2. Ile różnych słów można utworzyć, przestawiając litery w słowie "MAMA"?
- 3. Czworo dzieci siada w jednym rzędzie na 4 miejscach. Na ile sposobów mogą się usiąść?
- 4. Na ile różnych sposobów pięć osób może usiąść przy okrągłym stole?

3.2.3 Kombinacje

- 1. Z grupy 10 osób wybieramy drużynę składającą się z 4 osób. Na ile sposobów można wybrać drużynę?
- 2. Na półce znajduje się 8 różnych książek. Ile sposobów jest na wybranie 3 książek, które zamierzasz przeczytać?
- 3. Sześcioro przyjaciół chce się podzielić na trzy dwuosobowe zespoły. Na ile sposobów można utworzyć takie zespoły?

3.2.4 Wariacje bez powtórzeń i z powtórzeniami

- 1. Z grupy 5 uczniów wybieramy trzech, którzy zajmą miejsca na podium (złoto, srebro, brąz). Na ile sposobów można to zrobić?
- 2. Do zamka szyfrowego wybieramy 3-cyfrowy kod, gdzie cyfry nie mogą się powtarzać, a do wyboru mamy cyfry od 1 do 5. Na ile sposobów można ustawić taki kod?
- 3. Na półce mamy 7 różnych książek. Na ile sposobów możemy wybrać i ustawić trzy z nich?

- 4. Na ile sposobów można utworzyć 3-literowe "słowa" z liter A, B, C, przy czym litery mogą się powtarzać?
- 5. Tworzymy czterocyfrowy kod PIN, przy czym każda cyfra może być dowolnie powtórzona, a do wyboru mamy cyfry od 0 do 9. Na ile sposobów można stworzyć taki PIN?
- 6. Mamy do wyboru trzy kolory kulek: czerwony, zielony i niebieski. Na ile sposobów można ułożyć pięć kulek, jeśli mogą być one tego samego koloru?
- 7. Na ile sposobów można utworzyć liczbę 2-cyfrową, wybierając cyfry spośród 1, 2, 3, 4, przy czym cyfry mogą się powtarzać?

3.3 Teoria grafów

Do uzupełnienia.

4 Uwagi lub (p)odpowiedzi

• Część 1.2, zadanie 10. Aby policzyć np. $3^{5^100} \mod 7$ trzeba wykorzystać twierdzenie Eulera, moulo równego 7 i równego 6. Zauważmy, że $\varphi(7)=6$, $\varphi(6)=2$. Po pierwsze, jeśli przedstawimy $5^{100}=6k+i$, gdzie $0\leqslant i<6$, to

$$3^{6k+i} \equiv (3^6)^k 3^i \equiv 1^k 3^i \equiv 3^i \pmod{7}.$$

Teraz, aby sprawdzić, jaka jest reszta z dzielenia 5^100 przez 6, czyli aby znaleźć i takie, że

$$5^{100} \equiv i \pmod{6}.$$

Ponieważ 5 jest względnie pierwsze z 6, z twierdzenia Eulera mamy $5^2 \equiv 1 \pmod 6$. Wtedy

$$5^100 \equiv (5^2)^{50} \equiv 1^{50} \equiv 1 \pmod{6}.$$

Skoro szukana wartość i wynosi 1, to

$$3^{5^100} \equiv 3^1 \equiv 3 \pmod{7}$$
.

• Część 1.3, zadanie 6.

W tezie $\forall n \geqslant 0 (2^n \geqslant n^2)$ nie uda się udowodnić kroku indukcyjnego.

W tezie $\forall n \geqslant 3(2^n \geqslant n^2)$ krok indukcyjny da się udowodnić, ale nie da się udowodnić przypadek bazowy.

Literatura

- [FR15] Sylvia Forman and Agnes M. Rash. *The Whole Truth About Whole Numbers: An Elementary Introduction to Number Theory*. Springer International Publishing, 2015.
- [RW06] Kenneth A. Ross and Charles R. B. Wright. *Matematyka dyskretna*. Wydawnictwo Naukowe PWN, 2006.