From non-deterministic to deterministic

Arno Pauly

February 9, 2021

Non-deterministic vs deterministic finite automata

Definition

A non-deterministic finite automaton over an alphabet Σ is given by a set V of states, a transition relation $\delta \subseteq V \times \Sigma \times V$, a start state $s \in V$ and a set of accepting (or final) states $F \subseteq V$.

Definition

A deterministic finite automaton over an alphabet Σ is given by a set V of states, a transition function $\delta: V \times \Sigma \to V$, a start state $s \in V$ and a set of accepting (or final) states $F \subseteq V$.

The run of an automaton

Definition

A deterministic finite automaton over an alphabet Σ is given by a set V of states, a transition function $\delta: V \times \Sigma \to V$, a start state $s \in V$ and a set of accepting (or final) states $F \subseteq V$.

Definition

The run of a deterministic automaton \mathcal{A} on a word $w \in \Sigma^*$ is $q_0q_1\dots q_{|w|-1} \in V^*$ where $q_0=s$ and $q_{i+1}=\delta(q_i,w_i)$. If $q_{|w|-1} \in F$, it is accepting, otherwise it is rejecting. An automaton accepts a word $w \in \Sigma^*$ iff its run on w is accepting. We let $L(\mathcal{A})$ be the language of all words accepted by \mathcal{A} .

A technicality

A state in a deterministic finite automaton has outgoing edges with all labels – but we usually don't draw dead ends.

Equivalence

Theorem

Deterministic and non-deterministic finite automata recognize the same languages.

The powerset construction

Definition

By $\mathcal{P}(\mathbf{X})$ we denote the powerset of the set \mathbf{X} , i.e. $\mathcal{P}(\mathbf{X}) = \{S \mid S \subseteq \mathbf{X}\}.$

Proof.

Given a non-deterministic finite automaton with states V and transition relation δ , let the powerset construction automaton be the deterministic finite automaton with:

- ▶ states P(X)
- ▶ transition function Δ where $\Delta(S, a) = \{q \in V \mid \exists r \in S (r, a, q) \in \delta\}$
- ▶ initial state {s} (where s is the initial state of the original automaton)
- ▶ final states $\{S \mid S \cap F \neq \emptyset\}$ (where F is the set of final states of the original automaton)

A consequence

Definition

Given a language L, let $L^C = \{ w \in \Sigma^* \mid w \notin L \}$.

Corollary

If L is regular, then so is L^C .

A heads-up

- Determinizing a non-deterministic finite automaton is a very natural exam question.
- Practise it!
- Check your answers by trying out a few words to see whether both automata give the same answer.