UNIVERISTY OF VICTORIA

CENG 355 MICROPROCESSOR-BASED SYSTEMS

MIDTERM EXAMINATION 24 OCTOBER 2013

NAME:	STUDENT NO
INSTRUCTOR: D.N.RAKHMATOV	DURATION: 80 MINUTES
TO BE ANSWERED IN THE BOOKLET.	
STUDENTS MUST COUNT THE NUMBER OF PAGES IN TH	IIS EXAMINATION PAPER,
AND REPORT ANY DISCREPANCY IMMEDIATELY TO THE	INVIGILATOR.
THIS EXAMINATION PAPER HAS <u>3</u> PAGES AND <u>3</u> QU	ESTIONS.
In taking this examination, you agree that all work reco	rded herein is vour own A
student caught in the act of cheating will be given a gra	-
stadent edagnt in the det el eneating tim se given a gra	
Show your work.	
Read the questions carefully. If something appears am	biguous, write down your
assumptions.	
You are allowed to use books, notes, and/or calculators	during this examination.

GOOD LUCK!

- 1. [15 points] The textbook's microcontroller below is responsible for <u>2 tasks</u>: (1) conditionally incrementing the displayed digit every second, and (2) keeping track of the **E** and **D** switches: pressing **E** enables the process of incrementing the digit every second, while pressing **D** disables that process. Write the corresponding <u>C program</u>, assuming that the first task is the <u>main program</u>, and the second task is the <u>ISR</u> whose address is stored at location **0x20**. Assume that bit **PSR[6]** is the processor's interrupt-enable bit, and **Port B** is always ready to receive data from the processor. Initially, the 7-segment display shows **0**, and it is <u>not</u> being incremented.
- *Main Program*: The displayed digit must be incremented every second, provided that **E** was pressed last (i.e., the process of incrementing the digit is <u>enabled</u>). If **D** was pressed last, the displayed digit is unchanged (i.e., the process of incrementing the digit is <u>disabled</u>). Required 1-second timeouts must be implemented using the <u>100-MHz Counter/Timer</u>. **Note:** Incrementing **9** gives **0**.
- *ISR*: **Port B** must be configured to generate interrupts whenever **PBIN** is changed. If **D** has been pressed, the digit <u>is not allowed</u> to increment every second (until **E** is pressed). If **E** has been pressed, the digit <u>is allowed</u> to increment every second (until **D** is pressed).

2. [10 points] Table below specifies a set of **4** <u>independent pre-emptive tasks</u> to be executed by a single processor. Show the <u>task schedule</u> using <u>Earliest Deadline First</u> (**EDF**) priority assignment.

Task T _i	P _i	Ci	D _i	<u>ф</u> і
T1 -	20	4	16	O
T2	40	4	32	0
Т3	40	12	40	0
T4	80	12	80	0

3. [15 points] Assume a computer has <u>256-byte main memory</u> and <u>128-byte cache</u> with <u>eight blocks</u>, where each block has <u>four 32-bit words</u>. While executing some program, the CPU reads 32-bit words from the following sequence of addresses:

80 48 44 20 00 40 48 CO 2C 88

Show the <u>cache contents</u> (e.g., **[00]** = address **00**'s contents) at the end of this sequence (10 addresses) and calculate the corresponding <u>miss rate</u> given that:

- (a) Cache is direct-mapped.
- (b) Cache is <u>4-way set-associative</u> (4 blocks per set) with LRU replacement.
- (c) Cache is <u>fully-associative</u> with LRU replacement.

Counter/Timer Registers

Parallel Port Registers

