Tags: Logic

First Order Logic

△ Motivation

Consider the typical structures in Maths and CS. Groups, Rings, Monoids etc etc. All of them are sets, equipped with *functions* and *relations* on them and sometimes they have *special promoted terms*, like units in groups.

First Order Logic gives a natural frameword to talk about these thingies.

The idea is to fix symbols to denote functions, relations and constants and combine the with the standard \neg and \lor operator. In addition to all that we have operators to quantify over all elements \exists and \forall , and a \equiv operator to check equality of primitive constructs.

The syntax and semantics are a bit more involved for first order logic, than in *Propositional Logic*.

Groups are a really good example to get introduced to first order logic

A Group is a structure (G, +, 0) where G is a set, + is a binary operation on it, a special element 0 and the following properties hold:

- + is associative
- 0 is the right identity for the operation +
- For every element in G, it has a right inverse, such applying the operator on those two elements will yield 0

To formalize this we have the following statements in **First Order Logic** where op represents the operator and ϵ represents the identity.

- $\forall x \ \forall y \ \forall z \ op(op(x,y),z) \equiv op(x,op(y,z))$
- $\forall x \ op(x, \epsilon) \equiv x$
- $\forall x \exists y \ op(x,y) \equiv \epsilon$

To give this meaning, we fix a set S which is the set we are working with, make op a binary relation on the set, \equiv equivalence on it and ϵ an element from S which is treated in a special way. so S is the same as the set G, op represents + and ϵ is the identity here.

The goal of first order logic is to capture the properties of mathematical structures.

1 Todo

Revisit Groups after finishing First Order Logic Syntax and Semantics

References

Isomorphism Between First Order Interpretations