Codebook

Pitoni++

Žiga Gosar, Maks Kolman, Jure Slak

Kazalo

	Grafi		
	1.1	Topološko sortiranje	
	1.2	Mostovi in atriculation points grafa	
Γ	Teo	rija števil	
	2.1	Evklidov algoritem	
	2.2	Razširjen Evklidov algoritem	
	2.3	Kitajski izrek o ostankih	
	2.4	Hitro potenciranje	
	2.5	Številski sestavi	

1 Grafi

1.1 Topološko sortiranje

Vhod: Število vozlišč n in število povezav m ter seznam povezav E oblike $u \to v$ dolžine m. Usmerjen graf G je tako sestavljen iz vozlišč z oznakami 0 do n-1 in povezavami iz E. G ne sme imeti zank, če pa jih ima, se jih lahko brez škode odstrani.

Izhod: Topološka ureditev usmerjenega grafa G, to je seznam vozlišč v takem vrstem redu, da nobena povezava ne kaže nazaj. Če je vrnjeni seznam krajši od n, potem ima G cikle.

Časovna zahtevnost: O(V + E)Prostorska zahtevnost: O(V)Testiranje na terenu: UVa 10305

```
vector<int> topological_sort(int n, int m, const int E[][2]) {
2
         vector<vector<int>> G(n);
3
         vector<int> ingoing(n, 0);
         for (int i = 0; i < m; ++i) {
5
             int a = E[i][0], b = E[i][1];
6
             G[a].push_back(b);
7
             ingoing[b]++;
8
9
10
         queue<int> q; // morda priority_queue, če je vrstni red pomemben for (int i = 0; i < n; ++i)
11
12
             if (ingoing[i] == 0)
13
14
                  q.push(i);
15
         vector<int> res;
16
         while (!q.empty()) {
17
18
             int t = q.front();
             q.pop();
19
20
21
             res.push_back(t);
22
             for (int v : G[t])
23
                  if (--ingoing[v] == 0)
24
                      q.push(v);
26
         return res; // če res.size() != n, ima graf cikle.
28
    }
```

1.2 Mostovi in atriculation points grafa

Vhod: Število vozlišč n in število povezav m ter seznam povezav E oblike $u \to v$ dolžine m. Neusmerjen graf G je tako sestavljen iz vozlišč z oznakami 0 do n-1 in povezavami iz E.

Izhod: Seznam articulation pointov: točk, pri katerih, če jih odstranimo, graf razpade na dve komponenti in seznam mostov grafa G: povezav, pri katerih, če jih odstranimo, graf razpade na dve komponenti.

Časovna zahtevnost: O(V + E)Prostorska zahtevnost: O(V + E)Testiranje na terenu: UVa 315

```
namespace {
vector<int> low;
vector<int> dfs_num;
vector<int> parent;
}
```

```
void articulation_points_and_bridges_internal(int u, const vector<vector<int>>& G,
            vector<bool>& articulation_points_map, vector<pair<int, int>>& bridges) {
9
        static int dfs_num_counter = 0;
        low[u] = dfs_num[u] = ++dfs_num_counter;
11
        int children = 0;
        for (int v : G[u]) {
12
             if (dfs_num[v] == -1) \{ // unvisited \}
13
                 parent[v] = u;
14
15
                 children++;
16
                 articulation_points_and_bridges_internal(v, G, articulation_points_map, bridges);
17
                 low[u] = min(low[u], low[v]); // update low[u]
18
19
                 if (parent[u] == -1 && children > 1) // special root case
20
                 articulation_points_map[u] = true;
else if (parent[u] != -1 && low[v] >= dfs_num[u]) // articulation point
21
22
                     articulation_points_map[u] = true; // assigned more than once
23
                   (low[v] > dfs num[u])
                                                         // bridge
24
            bridges.push_back({u, v});
} else if (v != parent[u]) {
25
26
                 low[u] = min(low[u], dfs_num[v]); // update low[u]
27
28
29
        }
    }
30
31
32
    void articulation_points_and_bridges(int n, int m, const int E[][2],
             vector<int>& articulation_points, vector<pair<int, int>>& bridges) {
33
34
        vector<vector<int>> G(n);
        for (int i = 0; i < m; ++i) {
   int a = E[i][0], b = E[i][1];
35
36
37
             G[a].push_back(b);
38
             G[b].push_back(a);
40
        low.assign(n, -1);
42
        dfs_num.assign(n, -1);
        parent.assign(n, -1);
43
44
        vector<bool> articulation_points_map(n, false);
45
        for (int i = 0; i < n; ++i) {
46
            if (dfs_num[i] == -1) {
47
                 articulation_points_and_bridges_internal(i, G, articulation_points_map, bridges);
48
49
50
        for (int i = 0; i < n; ++i) {
51
            if (articulation_points_map[i]) {
52
                 53
54
        }
55
    }
56
```

2 Teorija števil

2.1 Evklidov algoritem

Vhod: $a, b \in \mathbb{Z}$

Izhod: Največji skupni delitelj *a* in *b*. Za pozitivna števila je pozitiven, če je eno število 0, je rezultat drugo število, pri negativnih je predznak odvisen od števila iteracij.

Časovna zahtevnost: $O(\log(a) + \log(b))$

Prostorska zahtevnost: O(1)

```
int gcd(int a, int b) {
    int t;
    while (b != 0) {
        t = a % b;
        a = b;
        b = t;
    }
    return a;
}
```

2.2 Razširjen Evklidov algoritem

Vhod: $a, b \in \mathbb{Z}$,. Števili retx, rety sta parametra samo za vračanje vrednosti.

Izhod: Števila x, y, d, pri čemer $d = \gcd(a, b)$, ki rešijo Diofantsko enačbo ax + by = d. V posebnem primeru, da je b tuj a, je x inverz števila a v multiplikativni grupi Z_b^* .

Časovna zahtevnost: $O(\log(a) + \log(b))$

Prostorska zahtevnost: O(1)

Testiranje na terenu: UVa 756

```
int ext_gcd(int a, int b, int& retx, int& rety) {
    int x = 0, px = 1, y = 1, py = 0, r, q;
    while (b!= 0) {
        r = a % b; q = a / b; // quotient and reminder
        a = b; b = r; // gcd swap
        r = px - q * x; // x swap
        px = x; x = r;
        r = py - q * y; // y swap
        py = y; y = r;
    }
    retx = px; rety = py; // return
    return a;
}
```

2.3 Kitajski izrek o ostankih

Vhod: Sistem n kongruenc $x \equiv a_i \pmod{m_i}$, m_i so paroma tuji.

Izhod: Število x, ki reši ta sistem dobimo po formuli

$$x = \left[\sum_{i=1}^{n} a_i \frac{M}{m_i} \left[\left(\frac{M}{m_i} \right)^{-1} \right]_{m_i} \right]_{M}, \qquad M = \prod_{i=1}^{n} m_i,$$

kjer $[x^{-1}]_m$ označuje inverz x po modulu m. Vrnjeni x je med 0 in M.

Časovna zahtevnost: $O(n \log(\max\{m_i, a_i\}))$

Prostorska zahtevnost: O(n)

Potrebuje: Evklidov algoritem (str. 4)

Testiranje na terenu: UVa 756

Opomba: Pogosto potrebujemo unsigned long long namesto int.

```
int mul_inverse(int a, int m) {
         int x, y;
ext_gcd(a, m, x, y);
2
3
         return (x + m) \% m;
4
6
    int chinese_reminder_theorem(const vector<pair<int, int>>& cong) {
         int M = 1;
         for (size_t i = 0; i < cong.size(); ++i) {</pre>
9
             M *= cong[i].second;
10
11
         int x = 0, a, m;
12
         for (const auto& p : cong) {
13
14
             tie(a, m) = p;
             x += a * M / m * mul_inverse(M/m, m);

x %= M;
15
16
17
         return (x + M) \% M;
    }
```

2.4 Hitro potenciranje

Vhod: Število g iz splošne grupe in $n \in \mathbb{N}_0$.

Izhod: Število g^n .

Časovna zahtevnost: $O(\log(n))$

Prostorska zahtevnost: O(1)

Testiranje na terenu: http://putka.upm.si/tasks/2010/2010_3kolo/nicle

```
int fast_power(int g, int n) {
   int r = 1;
   while (n > 0) {
      if (n & 1) {
        r *= g;
      }
      g *= g;
      n >>= 1;
   }
   return r;
}
```

2.5 Številski sestavi

Vhod: Število $n \in \mathbb{N}_0$ ali $\frac{p}{q} \in Q$ ter $b \in [2, \infty) \cap \mathbb{N}$.

Izhod: Število n ali $\frac{p}{q}$ predstavljeno v izbranem sestavu z izbranimi števkami in označeno periodo.

Časovna zahtevnost: $O(\log(n))$ ali $O(q \log(q))$.

Prostorska zahtevnost: O(n) ali O(q).

Testiranje na terenu: http://putka.upm.si/tasks/2010/2010_finale/ulomki Opomba: Zgornja meja za bazo b je dolžina niza STEVILSKI_SESTAVI_ZNAKI.

```
char STEVILSKI_SESTAVI_ZNAKI[] = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ";
2
    string convert_int(int n, int baza) {
3
         if (n == 0) return "0";
         string result;
         while (n > 0) {
             result.push_back(STEVILSKI_SESTAVI_ZNAKI[n % baza]);
         reverse(result.begin(), result.end());
10
11
         return result;
12
13
    string convert_fraction(int stevec, int imenovalec, int base) {
14
         div_t d = div(stevec, imenovalec);
15
         string result = convert_int(d.quot, base);
16
         if (d.rem == 0) return result;
17
18
         string decimalke; // decimalni del
result.push_back('.');
19
20
         int mesto = 0;
21
         map<int, int> spomin;
spomin[d.rem] = mesto;
22
23
         while (d.rem != 0) { // pisno deljenje
24
25
             {\tt mesto}{}^{++};
             d.rem *= base;
26
             decimalke += STEVILSKI_SESTAVI_ZNAKI[d.rem / imenovalec];
27
28
             d.rem %= imenovalec;
             if (spomin.count(d.rem) > 0) { // periodicno
29
                 result.append(decimalke.begin(), decimalke.begin() + spomin[d.rem]);
30
31
                 result.push_back('(');
                 result.append(decimalke.begin() + spomin[d.rem], decimalke.end());
32
                 result.push_back(')');
                 return result;
34
             }
             spomin[d.rem] = mesto;
36
         }
37
         result += decimalke;
         return result; // koncno decimalno stevilo
    }
40
```

3 Eulerjeva funkcija ϕ

Vhod: Število $n \in \mathbb{N}$.

Izhod: Število $\phi(n)$, to je število števil manjših ali enakih n in tujih n. Direktna

formula:

$$\phi(n) = n \cdot \prod_{p \mid n} (1 - \frac{1}{p})$$

Časovna zahtevnost: $O(\sqrt{n})$.

Prostorska zahtevnost: O(1).

Testiranje na terenu: https://projecteuler.net/problem=69