Университет ИТМО Физико-технический мегафакультет Физический факультет

Группа	<u>R3143</u>	К работе допущен
•	уллин Динислам иров Роман	Работа выполнена
Преполаватель	Пулькин Н. С	Отчет принят

Рабочий протокол и отчет по лабораторной работе № 1.03

«Изучение центрального соударения двух тел. Проверка второго закона Ньютона»

Цели работы:

- 1. Исследование упругого и неупругого центрального соударения тел на примере тележек, движущихся с малым трением.
- 2. Исследование зависимости ускорения тележки от приложенной силы и массы тележки.

Задачи:

- 1. Измерение скоростей тележек до и после соударения.
- 2. Измерение скорости тележки при ее разгоне под действием постоянной силы.
- 3. Исследование потерь импульса и механической энергии при упругом и неупругом соударении двух тележек.
- 4. Исследование зависимости ускорения тележки от приложенной силы и массы тележки. Проверка второго закона Ньютона.
- 3. Объект исследования.

Упругий и неупругий центральный удар двух тел, воздействие постоянной силы на тело

4. Метод экспериментального исследования.

Многократные прямые измерения времени скорости тел при прохождении через оптические ворота

5. Рабочие формулы и исходные данные.

 m_1 – масса первой тележки,

 m_2 - масса второй тележки,

 v_{10} - скорость первой тележки до соударения,

 v_{1x} - скорость первой тележки после соударения,

 v_{2x} - скорость второй тележки после соударения,

 p_{10x} - импульс первой тележки до соударения,

 p_{1x} - импульс первой тележки до соударения,

 p_{2x} – импульс второй тележки после соударения,

 δ_p - относительное изменения импульса системы при соударении,

 $\frac{\delta_W}{\delta_p}$ - относительное изменения кинетической энергии системы при соударении, $\overline{\delta_p}$ и $\overline{\delta_W}$ -средние значения данных величин соответственно, погрешности данных величин - $\Delta \overline{\delta_p}$, $\Delta \overline{\delta_W}$; $\delta_W^{(T)}$ - теоретическое значение относительного изменения механической энергии.

$$p_{10x}=m_1v_{10x}\,,\ p_{1x}=m_1v_{1x},\ p_{2x}=m_2v_{2x}\,.$$

$$\delta_p = \Delta p_x / p_{10x} = \frac{\left(p_{1x} + p_{2x}\right)}{p_{10x}} - 1 \qquad \delta_W = \Delta W_{\text{K}} / W_{\text{K}0} = \frac{m_1 v_{1x}^2 + m_2 v_{2x}^2}{m_1 v_{10x}^2} - 1$$

$$\Delta \overline{\delta}_{p} = t_{\alpha_{\text{aoa}},N} \sqrt{\frac{\sum_{i=1}^{N} \left(\delta_{pi} - \overline{\delta}_{p}\right)^{2}}{N(N-1)}} \; ; \; \Delta \overline{\delta}_{W} = t_{\alpha_{\text{aoa}},N} \sqrt{\frac{\sum_{i=1}^{N} \left(\delta_{Wi} - \overline{\delta}_{W}\right)^{2}}{N(N-1)}}$$

где $t_{\alpha_{\text{дов}},N}$ – коэффициент Стьюдента для доверительной вероятности $\alpha_{\text{дов}}$ = 0,95

$$\delta_W^{(T)} = -\frac{W_{\text{nor}}}{\frac{m_1 v_{10}^2}{2}} = -\frac{m_2}{m_1 + m_2}$$

 v_{10} - скорость первой тележки до соударения, v - скорость системы тележек после неупругого соударения

 $p_{10} = m_1 v_{10}$ – импульс системы до соударения;

 $p = (m_1 + m_2)v$ — импульс системы после соударения;

$$\delta_p = \Delta p/p_{10} = \frac{p_1}{p_{10}} - 1$$
 — относительное изменение импульса;

 $\delta_W^{(5)}$ – экспериментальное значение относительного изменения механической энергии, вычисляемое по формуле

$$\delta_W^{(5)} = \Delta W_{K} / W_{K0} = \frac{\left(m_1 + m_2\right) v_2^2}{m_1 v_{10}^2} - 1$$
,

 $\delta_W^{(\tau)}$ – теоретическое значение относительного изменения механической энергии, вычисляемое по формуле

$$\delta_W^{(\tau)} = -\frac{W_{\text{nor}}}{\frac{m_1 v_{10}^2}{2}} = -\frac{m_2}{m_1 + m_2}$$

m – масса гирьки,

 v_1 - скорость тележки при прохождении первых ворот,

 v_2 - скорость тележки при прохождении вторых ворот,

а - ускорение тележки,

Т- сила натяжения нити,

 M_1 - масса тележки,

b – коэффициент наклона экспериментальной зависимости,

 $F_{\rm rp}$ — сила трения, действующая на тележку.

$$a = \frac{(v_2)^2 - (v_1)^2}{2(x_2 - x_1)}, \quad T = m(g - a)$$

$$b = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{\sum (x_i - \overline{x})^2};$$

$$ma = mg - T$$

6. Измерительные приборы.

Наименование	Предел	Цена	Класс	Погрешность
средств	измерений	деления	точности	
измерения				
Линейка на	1.3 м	1 см/дел	-	0.5 см
рельсе				
ПКЦ-3 в режиме	9.99 м/с	0.01 м/с	-	0.01 м/с
измерения				
скорости				
Лабораторные	250 г	0.01 г	-	0.01 г
весы				

7. Схема установки.

Рис. 3. Общий вид экспериментальной установки

Общий вид экспериментальной установки для первой части работы изображен на Рис. 3. В состав установки входят:

- 1. Рельс с сантиметровой шкалой на лицевой стороне
- 2. Сталкивающиеся тележки
- 3. Воздушный насос
- 4. Источник питания насоса ВС 4-12
- 5. Опоры рельса
- 6. Опорная плоскость (поверхность стола)
- 7. Фиксирующий электромагнит
- 8. Оптические ворота
- 9. Цифровой измерительный прибор ПКЦ-3
- 10. Пульт дистанционного управления прибором ПКЦ-38.

Результаты прямых измерений и их обработки.

Задание 1.1

Таблица 1. Прямые измерения для упругого удара(без утяжеления)

Νō			υ10x,	υ1x,	υ2x,
опыта	т1, г	т2, г	м/с	м/с	м/с
1			0,35	0	0,28
2			0,34	0	0,27
3	50	47,1	0,34	0	0,27
4			0,33	0	0,27
5			0,36	0	0,29

Таблица 7. Расчёты для опыта 1.

Pасчёты следуют из уравнения p = mv

NO	P10x,	Pıx, MH-	Р2х, мН-	δр	δw
No	мН- с	c	c		
опыта					
1	17,5	0	13,188	-0,2464	-0,39712
2	17	0	12,717	-0,25194	-0,40595
3	17	0	12,717	-0,25194	-0,40595
4	16,5	0	12,717	-0,22927	-0,3694
5	18	0	13,659	-0,24117	-0,38872

Таблица 2. Прямые измерения для упругого удара(с утяжелением)

Νō			v10x,	υ1x,	υ2x,
опыта	т1, г	т2, г	м/с	м/с	м/с
1			0,35	-0,15	0
2			0,33	-0,14	0
3	50	96,2	0,34	-0,13	0
4			0,35	-0,14	0
5			0,35	-0,14	0

Таблица 8. Расчёты для опыта 2.

Νō	P10x,	Pıx, MH-	Р2х, мН-	δρ	δw
опыта	мН- с	С	c		
1	17,5	-7,5	0	-1,42857	-0,81633
2	16,5	-7	0	-1,42424	-0,82002
3	17	-6,5	0	-1,38235	-0,85381
4	17,5	-7	0	-1,4	-0,84
5	17,5	-7	0	-1,4	-0,84

Задание 1.2

Таблица 3. Прямые измерения для неупругого удара(без утяжеления)

Νō			v10 x ,	
опыта	<i>т</i> 1, г	т2, г	м/с	υ, м/c
1			0,33	0,06
2			0,26	0,04
3	52,1	50,1	0,29	0
4			0,31	0,08
5			0,29	0

Таблица 9. Расчёты для опыта 3.

№ опыта	<i>P10</i> , мН-	р1, мH- с	δр	δ(э)w	δ(T)w
1	17,193	6,132	-0,64334	-0,93515	
2	13,546	4,088	-0,69821	-0,95357	
3	15,109	0	-1	-1	-0,49022
4	16,151	8,176	-0,49378	-0,86936	
5	15,109	0	-1	-1	

Таблица 4. Прямые измерения для неупругого удара(с утяжелением)

Νō			v10 x ,	
опыта	т1, г	т2, г	υ10х, м/с	υ, м/c
1			0,3	0
2			0,3	0
3	52,1	99,2	0,29	0
4			0,3	0
5			0,3	0

Таблица 10. Расчёты для опыта 4.

№ опыта	<i>Р10</i> , мН-	р1, мН- с	δρ	δ(϶)w	δ(T)w
1	15,63	0	-1	-1	
2	15,63	0	-1	-1	
3	15,109	0	-1	-1	-0,65565
4	15,63	0	-1	-1	
5	15,63	0	-1	-1	

Для каждого эксперимента необходимо вычислить среднее относительное изменение импульса и кинетической энергии, а также определить их доверительные интервалы.

$$\bar{\delta_p} = \frac{\sum\limits_{i=1}^N \delta_{pi}}{N}; \bar{\delta_W} = \frac{\sum\limits_{i=1}^N \delta_{Wi}}{N}.$$

$$\bar{\Delta\delta_p} = t_{\alpha_{\text{\tiny ДOB}},N} \sqrt{\frac{\sum\limits_{i=1}^N (\delta_{pi} - \bar{\delta_p})^2}{N(N-1)}}; \Delta\bar{\delta}_W = t_{\alpha_{\text{\tiny ДOB}},N} \sqrt{\frac{\sum\limits_{i=1}^N (\delta_{Wi} - \bar{\delta_W})^2}{N(N-1)}},$$

Где $t_{\alpha\text{дов},N}$ = 2,77

№	$\overline{\delta p}$	$\overline{\delta w}$	$\Delta \bar{\delta}_p$	$\Delta \bar{\delta}_W$
Эксперимента				
1	-0,24414	-0,39343	0,011698	0,018855
2	-1,40703	-0,83403	0,023732	0,019312
3	-0,76707	-0,95162	0,279242317	0,067062033
3	-1	-1	0	0

Задание 2

(Тележка без утяжелителя)

$$M1 = 48,1$$
 г

№	Состав гирьки	т, г	V1, M/c	V2, M/c
опыта				
1	подвеска	1,7	0,26	0,51
2	подвеска + одна шайба	2,4	0,36	0,68
3	подвеска + две шайбы	3	0,41	0,78
4	подвеска + три шайбы	3,6	0,46	0,86
5	подвеска + четыре шайбы	4,5	0,49	0,92
6	подвеска + пять шайб	5,3	0,52	0,98
7	подвеска + шесть шайб	5,9	0,57	1,07

Расчёты для таблицы выше:

$$a = \frac{(v_2)^2 - v_1)^2}{2(x_2 - x_1)}, T = m(g - a)$$

(при
$$g = 9.82 \text{ м/c}^2$$
)

№ опыта	т, г	a, м/c ²	Т, мН
1	1,7	0,148077	16,44227
2	2,4	0,256	22,9536
3	3	0,338692	28,44392
4	3,6	0,406154	33,88985
5	4,5	0,466385	42,09127

6	5,3	0,530769	49,23292
7	5,9	0,630769	54,21646

Определим массу тележку с помощью метода наименьших квадратов:

Для уравнения T(a) = M1a + Fтр

Применив метод находим, что

M1(коэффициент наклона) = 83,99626168 гр

Fтр(свободный коэффициент) = 1,721495327 мH

Причём погрешность $\delta M1 = 10,80204504$ гр

(Тележка с утяжелителем)

 $M1 = 97.2 \Gamma$

№	Состав гирьки	т, г	V1, M/c	V2, M/c
опыта				
1	подвеска	1,7	0,07	0,09
2	подвеска + одна шайба	2,4	0,09	0,11
3	подвеска + две шайбы	3	0,13	0,14
4	подвеска + три шайбы	3,6	0,2	0,3
5	подвеска + четыре шайбы	4,5	0,25	0,37
6	подвеска + пять шайб	5,3	0,28	0,43
7	подвеска + шесть шайб	5,9	0,34	0,58

Расчёты аналогичны предыдущим

№ опыта	т, г	а, м/c ²	Т, мН
1	1,7	0,002462	16,68982
2	2,4	0,003077	23,56062
3	3	0,002077	29,45377
4	3,6	0,038462	35,21354
5	4,5	0,057231	43,93246
6	5,3	0,081923	51,61181
7	5,9	0,169846	56,93591

Для уравнения $T(a) = M2a + F\tau p2$

Применив метод находим, что

M2(коэффициент наклона) = 216,630 гр

Fтр2(свободный коэффициент) = 25,938 мH

Причём погрешность $\delta M2 = 89,913$ гр

1. Окончательные результаты.

Доверительные интервалы для относительных изменений импульса и энергии при упругом соударении двух легких тележек и соударении легкой тележки с утяжеленной $\overline{\delta_p},\,\overline{\delta_W}$

1)
$$\overline{\delta_p} = -0.244 \pm 0.012$$
 $\overline{\delta_W} = -0.3934 \pm 0.019$
2) $\overline{\delta_p} = -1.407 \pm 0.024$
 $\overline{\delta_W} = -0.834 \pm 0.019$

Теоретическое значение относительного изменения механической энергии $\delta_{W}^{(T)} \!\! = \! -0.490$

Доверительные интервалы для относительных изменений импульса и энергии при неупругом соударении двух легких тележек и соударении легкой тележки с утяжеленной $\delta_p, \delta_W^{(3)}$

1)
$$\delta_p = -0.767 \pm 0.279$$
 $\delta_W^{(3)} = -0.952 \pm 0.067$

$$2) \delta_p = -1 \pm 0$$

$$\delta_W^{(9)} = -1 \pm 0$$

Масса M_1 неутяжеленной тележки и доверительный интервал этой величины

$$M_1 = 83,996 \pm 10,802$$

Масса M_1 утяжеленной тележки и доверительный интервал этой величины $M_1 = 216,630 \pm 89,913$

2. Выводы и анализ результатов работы.

Практически все измерения относительного измерения энергии попадают в доверительный интервал.

С учётом погрешности определённые массы тележки оказались довольно блики к реальным