NÂNG CAO HIỆU SUẤT KNOWLEDGE DISTILLATION THÔNG QUA ATTENTION TRANSFER CHO BÀI TOÁN PHÂN LOẠI.

Nguyễn Viết Đức - 22520273

Đoàn Văn Hoàng - 22520459

Tóm tắt

- Lớp: CS519.P11
- Link Github của nhóm:
- Link YouTube video:
- Nguyễn Viết Đức

Đoàn Văn Hoàng

Giới thiệu

Knowledge Distillation:

Attention Map:

Mục tiêu

- Khám phá vai trò của attention maps trong việc chuyển giao kiến thức: Phân tích cách các attention maps có thể được tạo ra từ mô hình teacher và cách chúng hướng dẫn quá trình học của mô hình student.
- Tích hợp Attention Transfer (AT) vào Knowledge Distillation (KD): Phát triển một framework nơi mô hình student được huấn luyện để mô phỏng không chỉ các logits của teacher mà còn các attention maps mà teacher đã học được.
- Cải thiện hiệu suất phân loại của mô hình student: Đánh giá tác động của AT-KD trong việc tăng độ chính xác và khả năng tổng quát trên các lớp khó phân loại.

Nội dung và Phương pháp

1. Tìm hiểu tổng quan về đề tài:

- Tìm hiểu tổng quan về Knowledge Distillation và Attention Transfer.
- Nghiên cứu các phương pháp nâng cao hiệu suất Knowledge Distillation thông qua Attention Transfer.

2. Tìm kiếm và xây dựng bộ dữ liệu:

- Bộ dữ liệu:
- + CIFAR-10: gồm 60.000 ảnh thuộc 10 lớp, kích thước 32x32.
- + ImageNet: hơn 1 triệu ảnh thuộc 1.000 lớp.
- Tiền xử lý dữ liệu: tăng cường (xoay, cắt ngẫu nhiên, đổi độ sáng), chuẩn hóa dữ liệu: Sử dụng mean và standard deviation của từng kênh RGB để chuẩn hóa.

3. Xây dựng kiến trúc mô hình:

- Teacher: ResNet-50 làm nguồn chuyển giao kiến thức với các attention maps được trích xuất từ các lớp trung gian sử dụng cơ chế self-attention để làm nổi bật các vùng không gian đặc trưng.

UIT.CS519.ResearchMethodology

Nội dung và Phương pháp

- Student: MobileNet (mô hình nhỏ hơn) huấn luyện để mô phỏng:
- + Logits: Đầu ra cuối của teacher, biểu diễn xác suất các lớp.
- + Attention maps: vùng đặc trưng quan trọng mà teacher chú ý.
- Hàm mất mát: KL Divergence Loss (tính khoảng cách giữa logits của teacher (Zt) và của student (Zs); MSE Loss (giảm sự khác biệt giữa attention maps).

4. Huấn luyện, đánh giá:

- Huấn luyện student với sự kết hợp giữa logits matching và attention map matching.
- So sánh hiệu suất của phương pháp AT-KD với các phương pháp KD truyền thống và các kỹ thuật khác.

Kết quả dự kiến

- 1. Độ chính xác (Accuracy) của student khi sử dụng AT-KD kỳ vọng cao hơn ít nhất 2-5% so với KD truyền thống trên cả CIFAR-10 và ImageNet.
- **2.** Mô hình student sử dụng AT-KD kỳ vọng đạt hiệu suất cao hơn,khả năng tổng quát hóa tốt trên cả các tập dữ liệu chưa được huấn luyện .
- **3.** Duy trì kích thước mô hình student nhỏ gọn, phù hợp với các thiết bị IoT, ổn định của mô hình khi triển khai trên dữ liệu thực tế.

Tài liệu tham khảo

- [1] Hinton, G., Vinyals, O., & Dean, J. (2015). Distilling the Knowledge in a Neural Network. In *NIPS Workshop on Deep Learning and Representation Learning*.
- [2] Sergey Zagoruyko, Nikos Komodakis (2016) Paying More Attention to Attention: Improving the Performance of Convolutional Neural Networks via Attention Transfer.
- [3] Zhu Baozhou, Peter Hofstee 1, Jinho Lee, Zaid Al-Ars (2021) An Attention Module for Convolutional Neural Networks.