Introduction to Computer Networks

Fairness of Bandwidth Allocation (§6.3.1)

Topic

- What's a "fair" bandwidth allocation?
 - The max-min fair allocation

Recall

- We want a good bandwidth allocation to be fair and efficient
 - Now we learn what fair means
- Caveat: in practice, efficiency is more important than fairness

Efficiency vs. Fairness

- Cannot always have both!
 - Example network with traffic $A \rightarrow B$, $B \rightarrow C$ and $A \rightarrow C$
 - How much traffic can we carry?

Efficiency vs. Fairness (2)

- If we care about fairness:
 - Give equal bandwidth to each flow
 - $-A\rightarrow B: \frac{1}{2}$ unit, $B\rightarrow C: \frac{1}{2}$, and $A\rightarrow C, \frac{1}{2}$
 - Total traffic carried is 1 ½ units

Efficiency vs. Fairness (3)

- If we care about efficiency:
 - Maximize total traffic in network
 - $-A\rightarrow B$: 1 unit, $B\rightarrow C$: 1, and $A\rightarrow C$, 0
 - Total traffic rises to 2 units!

The Slippery Notion of Fairness

- Why is "equal per flow" fair anyway?
 - A→C uses more network resources (two links) than A→B or B→C
 - Host A sends two flows, B sends one
- Not productive to seek exact fairness
 - More important to avoid starvation
 - "Equal per flow" is good enough

Generalizing "Equal per Flow"

- Bottleneck for a flow of traffic is the link that limits its bandwidth
 - Where congestion occurs for the flow
 - For A→C, link A–B is the bottleneck

Generalizing "Equal per Flow" (2)

- Flows may have different bottlenecks
 - For A→C, link A−B is the bottleneck
 - For $B \rightarrow C$, link B-C is the bottleneck
 - Can no longer divide links equally ...

Max-Min Fairness

- Intuitively, flows bottlenecked on a link get an equal share of that link
- Max-min fair allocation is one that:
 - Increasing the rate of one flow will decrease the rate of a smaller flow
 - This "maximizes the minimum" flow

Max-Min Fairness (2)

- To find it given a network, imagine "pouring water into the network"
 - Start with all flows at rate 0
 - Increase the flows until there is a new bottleneck in the network
 - 3. Hold fixed the rate of the flows that are bottlenecked
 - 4. Go to step 2 for any remaining flows

Max-Min Example

- Example: network with 4 flows, links equal bandwidth
 - What is the max-min fair allocation?

Max-Min Example (2)

- When rate=1/3, flows B, C, and D bottleneck R4—R5
 - Fix B, C, and D, continue to increase A

Max-Min Example (3)

When rate=2/3, flow A bottlenecks R2—R3. Done.

Max-Min Example (4)

- End with A=2/3, B, C, D=1/3, and R2—R3, R4—R5 full
 - Other links have extra capacity that can't be used

Adapting over Time

Allocation changes as flows start and stop

Adapting over Time (2)

END

© 2013 D. Wetherall

Slide material from: TANENBAUM, ANDREW S.; WETHERALL, DAVID J., COMPUTER NETWORKS, 5th Edition, © 2011. Electronically reproduced by permission of Pearson Education, Inc., Upper Saddle River, New Jersey