Python On Resonance (PyOR)

Everybody can simulate NMR

Author: Vineeth Thalakottoor

Email: vineethfrancis.physics@gmail.com

Tutorial 13: Relaxation Random Field Fluctuation

In this tutorial you will see Relaxation due to Random Field Fluctuation of single spin half system. We will evolve the density matrix in Hilbert Space.

Load Python packages and define path to the source file "PythonOnResonance.py"

```
In [1]: pathSource = '/media/HD2/Vineeth/PostDoc_Simulations/Github/PyOR_G/Source'

In [2]: from IPython.display import display, HTML
    display(HTML("<style>.container { width:100% !important; }</style>"))
    import sys
    sys.path.append(pathSource)
    import PythonOnResonance as PyOR
    import time
    import numpy as np
    import matplotlib.pyplot as plt
    from matplotlib import rc
    %matplotlib notebook
    import sympy as sp
    from sympy import *
```

Generating Spin System

```
In [3]:
    Define Spin quantum numbers of your spins in "Slist1".
    Slist1[0] is spin of first particle and Slist1[1] is spin of second particle.
    """;
    Slist1 = [1/2]

In [4]:
    Define Planck constant equals 1.
    Because NMR spectroscopists are more interested to write Energy in frequency units.
    if False then hbarEQ1 = hbar
    """;
    hbarEQ1 = True
```

```
In [5]:
    Generate Spin Operators
    """;

    System = PyOR.Numerical_MR(Slist1, hbarEQ1)

    """
    Sx, Sy and Sz Operators
    """;
    Sx, Sy, Sz = System.SpinOperator()

    """
    S+ and S- Operators
    """;
    Sp, Sm = System.PMoperators(Sx, Sy)
```

Zeeman Hamiltonian in Lab Frame

```
In [6]:
    """
    Gyromagnetic Ratio
    Gamma = [Gyromagnetic Ratio spin 1, Gyromagnetic Ratio spin 1, ...]
    """;
    Gamma = [System.gammaH1]
    """
    Define the field of the spectromter, B0 in Tesla.
    """
    B0 = 9.4
    """
    Define the chemical Shift of individual spins
    Offset = [chemical Shift spin 1, chemical Shift spin 1, ..]
    """
    Offset = [10] # Offset frequency in Hz
    """
    Function "LarmorF" give the list Larmor frequencies of individual spins in lab frame
    """
    LarmorF = System.LarmorFrequency(Gamma, B0, Offset)
    Hz = System.Zeeman(LarmorF, Sz)
```

Larmor Frequency in MHz: [-400.22802765]

Initialize Density Matrix

```
In [7]:
    We will generate Initial Density Matrix in two ways:
    First we will generate a density matrix as we prefer say, Sz.
    Second we will create density matrix at thermal equlibrium

First Case
    """;

Thermal_DensMatrix = False

if Thermal_DensMatrix:
    Hz_EnUnit = System.Convert_FreqUnitsTOEnergy(Hz)
    HT_approx = False # High Temperature Approximation is False
    T = 300 # Temperature in Kelvin
    rho_in = System.EqulibriumDensityMatrix(Hz_EnUnit,T,HT_approx)
```

```
rhoeq = rho_in.copy()
else:
    rho_in = np.sum(Sz,axis=0) # Initial Density Matrix
    rhoeq = np.sum(Sz,axis=0) # Equlibrium Density Matrix
    print("Trace of density metrix = ", np.trace(rho_in))
```

Trace of density metrix = 0j

Zeeman Halitonian in Rotating Frame

```
In [8]: OmegaRF = [-System.gammaH1*B0]
Hzr = System.Zeeman_RotFrame(LarmorF, Sz, OmegaRF)
```

Pulse

```
In [9]: """
Selective Pulse on Spin 1
""";
pulse_angle = 90.0
rho = System.Rotate_H(rho_in, pulse_angle, Sx[0])
```

Relaxation Constant

```
In [10]:
    """
Options: "No Relaxation", "Phenomenological", "Dipolar", "Random Field Fluctuation"
    """;
    R1 = None
    R2 = None
    Rprocess = "Random Field Fluctuation"
    tau = 1.0e-6
    bIS = 0.0
    System.Relaxation_Constants(R1,R2)
    System.Relaxation_Parameters(LarmorF, OmegaRF, tau, bIS)
```

```
In [11]: print(System.SpectralDensity(10,25.0e-3))
```

0.023529411764705882

Evolution of Density Matrix

```
In [12]: dt = 0.0005
   AQ = 10.0
   Npoints = int(AQ/dt)
   print("Number of points in the simulation", Npoints)

"""
   option for solver, "method": "Unitary Propagator", or "ODE Solver"
"""
   method = "ODE Solver"

   start_time = time.time()
   t, rho_t = System.Evolution_H(rhoeq,rho,Sx,Sy,Sz,Sp,Sm,Hzr,dt,Npoints,method,Rprocess)
   end_time = time.time()
   timetaken = end_time - start_time
   print("Total time = %s seconds " % (timetaken))
```

Number of points in the simulation 20000 Total time = 1.2422175407409668 seconds

Expectation value

```
In [13]: EXP_T = Sx[0] + 1j * Sy[0]
EXP_Z = Sz[0]

t, Mt = System.Expectation_H(rho_t, EXP_T, dt, Npoints)
t, Mz = System.Expectation_H(rho_t, EXP_Z, dt, Npoints)
```

```
In [14]: System.Plotting(1,t,Mt,"time (s)","Mt","red")
```


/opt/anaconda3/lib/python3.9/site-packages/numpy/core/_asarray.py:102: ComplexWarning: Cas ting complex values to real discards the imaginary part return array(a, dtype, copy=False, order=order)
No handles with labels found to put in legend.

```
In [15]: System.Plotting(2,t,Mz,"time (s)","Mz","red")
```


/opt/anaconda3/lib/python3.9/site-packages/numpy/core/_asarray.py:102: ComplexWarning: Cas ting complex values to real discards the imaginary part return array(a, dtype, copy=False, order=order)
No handles with labels found to put in legend.

Any suggestion? write to me

If you see something is wrong please write to me, so that the PyOR can be error free.

vineethfrancis.physics@gmail.com