

Detecting Misinformation with Machine Learning

By Samith Lakka Springboard Capstone 3 Project

Problem

- How can machine learning detect and analyze misinformation?
- Identify key linguistic and structural patterns in fake news.
- Assist social media platforms, public organizations, and the public in combating misinformation.

Project Goals

- Develop a machine learning-based misinformation detection system.
- Use NLP techniques to differentiate real news from fake news.
- Evaluate model performance using accuracy, precision, recall, and F1-score.

Data Collection and Preprocessing

Dataset: WELFake dataset (labeled real and fake news articles).

 Features 	:
------------------------------	---

- Title (headline of the article).
- Text (full content of the article).
- Label (0 = Fake, 1 = Real).

Preprocessing Steps:

- Removed duplicates and missing values.
- Lowercased text, removed punctuation & stopwords, applied lemmatization.
- Used TF-IDF vectorization for feature transformation.

	title	text	label
0	LAW ENFORCEMENT ON HIGH A	No comment	1
1		Did they post	1
2	UNBELIEVABLE! OBAMA,ÄôS AT	Now, most	1
3	Bobby Jindal, raised Hindu, uses	A dozen	0
4	SATAN 2: Russia unvelis an imag	The RS-28	1
5	About Time! Christian Group Suc	All we can sa	1
6	DR BEN CARSON TARGETED BY	DR. BEN CAR	1
7	HOUSE INTEL CHAIR On Trump-I		1
8	Sports Bar Owner Bans NFL Gar	The owner o	1
9	Latest Pipeline Leak Underscore	FILE – In	1
10	GOP Senator Just Smacked Dow	The most pu	1

Exploratory Data Analysis (EDA)

• Fake vs. Real News Distribution: The dataset is approximately balanced.

Exploratory Data Analysis (EDA)

Word Count Analysis: Fake news articles tend to be slightly shorter.

Exploratory Data Analysis (EDA)

Common Words in Fake News: Fake articles use exaggerated, emotionally charged words.

Baseline Modeling

Logistic Regr	ession Perfo	rmance:			
5	precision	recall	f1-score	support	
-1	0.63	0.60	0.61	3505	
0	0.63	0.66	0.65	3649	
accuracy			0.63	7154	
macro avg	0.63	0.63	0.63	7154	
weighted avg	0.63	0.63	0.63	7154	
-					
Accuracy: 0.6	2929829466032	299			
Random Forest	Performance				
	precision	recall	f1-score	support	
-1	0.89	0.87	0.88	3505	
0	0.87	0.89	0.88	3649	
accuracy			0.88	7154	
macro avg	0.88	0.88	0.88	7154	
weighted avg	0.88	0.88	0.88	7154	
	V 9 11 27 111	215 0			
Accuracy: 0.8		299			
SVM Model Per					
	precision	recall	f1-score	support	
	0.66	0.04	. 74	2505	
-1	0.66	0.84	0.74	3505	
0	0.79	0.58	0.67	3649	
			0 71	7154	
accuracy	0.72	0.71	0.71	7154	
macro avg	0.73	0.71	0.70	7154	
weighted avg	0.73	0.71	0.70	7154	

Accuracy: 0.7089740005591277

Best Model Selected: RandomForestClassifier(random_state=42) with Accuracy: 0.8803466592116299

Model Optimization

Random Forest with Hyperparameter Tuning:

n_estimators: 200max_depth: 20

o min_samples_split: 5

o min_samples_leaf: 2

Final Performance:

Accuracy: 89%

Precision: 88%

o Recall: 87%

F1 Score: 87%

Model Evaluation

- Confusion Matrix:
- Strong precision, low false positives.
- ROC Curve Analysis:
- High AUC score, indicating strong classification ability.

Key Findings

- Fake news articles rely on emotionally charged language.
- Coordinated misinformation campaigns have distinct patterns.
- NLP-based feature extraction is highly effective in identifying fake content.

Next Steps

• Future Work:

- Experiment with deep learning models like BERT.
- Apply graph-based network analysis for detecting misinformation campaigns.
- Implement real-world testing on live news streams.

Recommendations for Stakeholders

For Social Media Platforms:

- Deploy automated misinformation detection to flag suspicious content.
- Provide warnings for users engaging with fake news.

For Public Sector Organizations:

- Use the model to monitor misinformation trends.
- Develop counter-misinformation strategies.

For Researchers:

- Expand datasets to include multilingual misinformation.
- Explore sentiment analysis for improved detection.

For the Public:

- Promote digital literacy and fact-checking habits.
- Encourage responsible content sharing.

Final Thoughts

By leveraging machine learning and NLP, this project presents a scalable solution to combat misinformation. Future improvements, such as deep learning and misinformation network analysis, will enhance detection capabilities and help ensure information integrity.