

- ✓ Quelques rappels théoriques.
 - Les 3 phénomènes.

Conduction.

$$J = \frac{\lambda}{e} \cdot (T_{P1} - T_{P2})$$

Résistance thermique :

Loi de Fourier

$$T_{p1} - T_{p4} = \left(\frac{e_1}{\lambda_1} + \frac{e_2}{\lambda_2} + \frac{e_3}{\lambda_3}\right) \cdot J$$

J Flux par unité de surface

Unité: $W \cdot m^{-2}$ (J > 0)

λ Conductivité thermique Unité: W·m-1·K-1

$$\lambda_{or} = 400 \ W \cdot m^{\text{-1}} \cdot \text{K}^{\text{-1}} \hspace{0.5cm} \lambda_{air} = 0.02 \ W \cdot m^{\text{-1}} \cdot \text{K}^{\text{-1}}$$

Coef. de

transmission thermique:

$$U_{th} = \frac{\lambda}{e}$$
 Unité: W·m⁻²·K⁻¹

$$R_{th} = \frac{e}{\lambda}$$
 Unité: m²· K· W⁻¹

Convection.

Phénomène complexe liant mécanique des fluides et transferts thermiques

Loi de Newton

$$\left|T_p - T_m\right| = h \cdot J = \frac{h}{S} \cdot \Phi$$

On définit un coefficient d'échange thermique : h

Unité: W·m⁻²·K⁻¹

 $h_{air\ calme}$: 3 W·m⁻²·K⁻¹

h_{vapeur d'eau chaude} : 5.10⁴ W·m⁻² ·K⁻¹

T_m: température moyenne du fluide au voisinage de la paroi

T_D: température de la paroi

✓ Les matériaux et procédés.

> Ou isoler?

Comment isoler?

- Par les matériaux
 - le typel'épaisseur/ la densité
- Par le choix des techniques
 - intérieur
 - extérieur
 - répartie
- Par un travail sur les ouvertures
 - simple vitrage
 - double / triple vitrage 5

- Les matériaux.
 - ✓ La fiche technique.

- Les matériaux.
 - Qualités d'un isolant.
- Conductivité thermique
- Etanchéité à l'air
- Résistance mécanique (traction et compression)
- Résistance à la diffusion de vapeur d'eau
- Faible absorption d'eau
- Stabilité dimensionnelle
- Comportement à la chaleur
- Résistance au feu
- Qualités acoustiques
- Prix

- Les matériaux.
 - ✓ L'épaisseur, la densité.

- Les matériaux.
 - ✓ La conductibilité relative.

9

Les matériaux.

✓ Les différents critères de qualité

Applications Matériau	Pouvoir isolant	Densité	Résistanmce au feu	Résistance à la diffusion de vapeur d'eau μ	Résistance à l'eau	Résistance à 10% de compression [kPa]	Résistance à la traction [kPa]	Étanchéité à l'air	Résistance à la chaleur	Absorption acoustique bruits de choc	Absorption acoustique bruits aériens
Laine minérale légère	+	1	++		0			1	+		++
Laine minérale dense	++	ı	++		0	0	1	1	++	++	+
Mousse de verre	+	+	++	++	++	++	++	++	++		
Béton cellulaire	++*	++	++	-	-	++	+	+	++		
PUR	++	1	0	-	0	+	+	0	++	-	
Urée Formaldéhyde	+		+		-				0		
PS expansé	+	1	+	+	0	+	+	0	0	-	
PS extrudé	++	0	+	++	+	+	++	0	0	ı	
Fibres de bois	0	+	0	0		+		-	+	+	++
Paille et ciment	0	++	+	0		+	0	ı	+	0	+
Liège	+	+	+	+	-	+	0	+	++	+	-

PS :Polystyrène

PUR: Polyuréthane

++ : Très élevé +: élevé

0 : moyen, acceptable

-: bas --: très bas

Case vide: ne s'applique pas.

D'après "Essais comparatifs", OFQC 1983.

- Les matériaux.
 - ✓ Les fibres minérales.
- Fibre de verre (ISOVER)
- Laine de roche (ROCKWOOL, FLUMROC)
- Fibres obtenues par filage de verre plus ou moins pur, liée avec une colle (bakélite)
 - ⇒ Bonne résistance au feu
 - ⇒ Peu hygroscopique
 - ⇒ Absorption acoustique
 - ⇒ Résistance mécanique nulle à basse densité, moyenne à haute densité

- Les matériaux.
 - Mousses minérales.
- Mousse de verre (FOAMGLAS)
 - ⇒ Cuisson d'un « cake » de verre
 - ⇒ Bonne résistance à la compression
 - ⇒ Etanche à l'eau et à la vapeur d'eau
 - ⇒ Cher

- Les matériaux.
 - ✓ Les polystyrènes.
- Polystyrène expansé

- ⇒ Usage général
- ⇒ Résistance mécanique médiocre
- Polystyrène extrudé

- ⇒ Bonne résistance aux intempéries, notamment à l'eau
- ⇒ Résistance mécanique supérieure
- → Plus cher que le PS expansé

- Les matériaux.
 - Mousses minérales.
- Béton cellulaire (YTONG)

- → Mortier à la poudre d'aluminium, autoclavé
- ⇒ Pouvoir isolant (épaisseur > 24cm)
- ⇒ Bonne résistance mécanique
- ⇒ Parois et dalles homogènes, éléments légers
- ⇒ Sensible à l'eau, au gel si humide

- Les matériaux.
 - Les fibres naturelles.
- Laine, coton, cellulose, paille, coco, chanvre, bois dense
- Cellulose (papier recyclé) injectée

- ⇒ Emploi marginal, connotation écologique
- ⇒ Absorption acoustique
- ⇒ Faible résistance au feu, à l'humidité et aux agents biologiques

- Les matériaux.
 - ✓ Isolants ligneux
- Fibre de bois léger
- Paille agglomérée

- ⇒ Bonne résistance mécanique
- ⇒ Faible résistance à l'humidité (pourriture)

- ✓ Liège
 - ⇒ Bonne résistance mécanique
 - ⇒ Résistance à l'humidité médiocre
 - ⇒ Certaine résistance au feu

- Les techniques d'isolation.
- Pour chaque type de construction :
 - plusieurs techniques
- Pour chaque matériau :
- des techniques différentes.

⇒ Des solutions multi-formes

- Les techniques d'isolation.
 - Les grands principes : isolation intérieure.

- Pas de modification extérieure
- Coût relativement peu élevé
- Diminution des surfaces habitables
- Problème des ponts thermiques

- > Les techniques d'isolation.
 - Les grands principes : isolation intérieure.

Les panneaux composites ou complexes de doublage

L'isolant est derrière une contre-cloison maçonnée ou sur ossature

20

- Les techniques d'isolation.
 - Les grands principes : isolation extérieure.

- Traiter un grand nombre de ponts thermiques
- Ne pas modifier
 les surfaces habitables
- Protéger les murs contre les variations climatiques
- Cout plus élevé que l'isolation intérieure
- Modification de l'aspect extérieur déclaration de travaux₂₁ / permis de construire

- Les techniques d'isolation.
 - Les grands principes : isolation extérieure.
- L'enduit mince sur isolant.
 - Isolant collé sur le mur (Polystyrène expansé.)
 - Un enduit spécifique est posé sur l'isolant.
- L'enduit hydraulique sur isolant.
 - Isolant collé sur le mur
 - Un enduit hydraulique est projeté sur l'isolant. (Mortier)
- Les parements sur isolants.
 - Isolant fixé au support
 - Sur l'isolant est fixé pierres minces, dalles...

- Les techniques d'isolation.
 - ✓ Les grands principes : isolation répartie.

- Gain de temps dans la mise en œuvre (1 seul produit)
- Réduit les ponts thermiques
- Améliore le confort thermique

- Mono mur en terre cuite
- Bloc et panneaux de béton célulaire

- > Les techniques d'isolation.
 - ✓ Le bilan.

Intérieur

- Les techniques d'isolation.
 - ✓ Toiture, dalle, toit-terrasse.

- > Les techniques d'isolation.
 - ✓ Toiture, dalle, toit-terrasse.
- Toiture plate : sans protection

Toiture plate : avec protection

Toiture inversée

Dalle, planchers

- Les techniques d'isolation.
 - ✓ Toiture, dalle, toit-terrasse.

Le pont thermique

- Le pont thermique
 - ✓ La cause :
- Discontinuité dans l'isolation thermique de l'enveloppe du bâtiment
- Ponts thermiques géométriques angles, coins

Ponts thermiques matériels
 balcons, fixations, cadres si isolation extérieure
 dalles, murs intérieurs si isolation intérieure

- Le pont thermique
 - ✓ Les effets :
- Déperditions d'énergie
- Abaissement de la température superficielle intérieure

Condensations

Moisissures (odeurs, allergies)

Taches, coulures

Le pont thermique

✓ Les effets :

> Le cout.

> Le cout.

Les ouvertures en général.

> Les ouvertures : le vitrage.

Les ouvertures : le vitrage, quels phénomènes ?

Conduction.

• Convection.

Rayonnement

- Le rayonnement.
- Puissance émise par une source :

$$\Phi = S \cdot \varepsilon \cdot \sigma \cdot T^4$$

Unité: W

> Le rayonnement solaire sur un vitrage.

> Technique.

Type de vitrage	$U_{_{\scriptscriptstyle V}}$	$\mathcal{G}_{ ho}$	g_g	F_r
Vitrage simple VS	5,6	0,82	0,84	0,9
Vitrage simple VS, avec couche sélective IR	4,3	0,66	0,69	0,73
Double vitrage (DV) avec air sec	2,9	0,69	0,75	0,81
Double vitrage (DV) avec argon	2,7	0,69	0,75	0,73
Double fenêtre (2 SV)	2,7	0,69	0,75	0,81
DV avec couche sélective et air sec	1,6	0,62	0,67	0,78
DV avec couche sélective et argon	1,3	0,62	0,67	0,7
DV avec couche sélective et xénon	0,9	0,58	0,63	0,76
Double, double vitrage DV	1,5	0,59	0,53	0,66
Triple vitrage (TV) avec air sec	2	0,62	0,7	0,74
Triple vitrage (TV) avec argon	1,9	0,62	0,7	0,71
TV avec 2 couches sélectives et air sec	1,1	0,43	0,5	0,68
TV avec 2 couches sélectives et argon	0,9	0,43	0,5	0,56
TV avec 2 couches sélectives et xénon	0,4	0,42	0,48	0,64
Pavé de verre	3	0,6	0,65	0,75

 g_p : coefficient de transmission global pour le rayonnement solaire perpendiculaire au vitrage

 g_p : idem, pour le rayonnement solaire global, climat européen.

Fr : facteur de réflexion.

Pour aller plus loin:

Quelques notions théoriques.

- > La conduction.
- Résultat de la différence d'énergie entre deux milieux en contact
- La conduction s'effectue sans mouvement de matière.
 - Loi de Fourier

$$\vec{J} = -\lambda . \overrightarrow{grad} T$$

J Flux par unité de surface λ Conductivité thermique T Température Unité : W·m-2 (J > 0) Unité : W·m-1 · K-1 Unité : K $\lambda_{or} = 400 \text{ W·m-1} \cdot \text{K-1} \quad \lambda_{air} = 0.02 \text{ W·m-1} \cdot \text{K-1}$

- Pour une surface S, le flux transféré (puissance thermique) est par :

$$\Phi = J \cdot S$$

 Φ Puissance thermique.

Unité: W

$$\Phi = \frac{dQ}{dt}$$

Q Chaleur transférée.

Unité: J

Cas d'un mur simple.

Hypothèses:

- Pas de source interne de chaleur
- Toute la surface à la même température
- Régime permanent et propagation unidirectionnelle

• Loi de Fourier
$$J = -\lambda \cdot \frac{\partial T}{\partial x}$$

$$J = \frac{\lambda}{e} \cdot (T_{P1} - T_{P2}) \quad \Longrightarrow \quad T_{p1} - T_{p2} = \frac{e}{\lambda} \cdot J$$

On définit la résistance thermique par : $R_{th} = \frac{e}{\lambda}$

Unité: m²· K· W⁻¹

Puissance thermique :
$$\Phi = \frac{S}{R_{th}} \cdot (T_{P1} - T_{p2})$$

Cas de murs « multiples ».

Hypothèses:

- Pas de source interne de chaleur
- Toute la surface à la même température
- Régime permanent et propagation unidirectionnelle

$$J = -\lambda \cdot \frac{\partial T}{\partial x}$$

• Loi de Fourier
$$J = -\lambda \cdot \frac{\partial T}{\partial x}$$
• Loi de Fourier
$$J = -\lambda \cdot \frac{\partial T}{\partial x}$$

$$T_{p1} - T_2 = \frac{e_1}{\lambda_1} \cdot J$$

$$T_2 - T_3 = \frac{e_2}{\lambda_2} \cdot J$$

$$T_3 - T_{p4} = \frac{e_3}{\lambda_3} \cdot J$$

$$T_{p4}$$
• Loi de Fourier
$$J = -\lambda \cdot \frac{\partial T}{\partial x}$$

$$T_{p1} - T_{p4} = \left(\frac{e_1}{\lambda_1} + \frac{e_2}{\lambda_2} + \frac{e_3}{\lambda_3}\right) \cdot J$$

$$T_{p1} - T_{p4} = (R_{th1} + R_{th2} + R_{th3}) \cdot J$$

Cas de murs « multiples ».

Entre deux « solides », la frontière commune peut être :

- A contact parfait. ⇒ Etude précédente.
- A contact imparfait.
- ⇒ L'interface se comporte comme un milieu isotrope.

Elle possède:

- Conductivité thermique

- Résistance thermique

$$R_C = \frac{e}{\lambda_C}$$
 Unité : m²· K· W·¹

$$(T_{1\varepsilon} - T_{2\varepsilon}) = R_C \cdot J = \frac{R_C}{S} \cdot \Phi$$

- La convection.
- Etude globale.

Phénomène complexe liant mécanique des fluides et transferts thermiques

On définit un coefficient d'échange thermique :

Unité: W·m⁻²·K⁻¹

 $h_{\text{air calme}}: 3 \text{ W} \cdot \text{m}^{\text{-2}} \cdot \text{K}^{\text{-1}} \qquad \quad h_{\text{vapeur d'eau chaude}}: 5.10^4 \text{ W} \cdot \text{m}^{\text{-2}} \cdot \text{K}^{\text{-1}}$

• Loi de Newton
$$\left|T_p - T_m\right| = h \cdot J = \frac{h}{S} \cdot \Phi$$

T_m: température moyenne du fluide au voisinage de la paroi

T_n: température de la paroi

Bilan global pour un mur simple.

Hypothèses:

- Pas de source interne de chaleur
 - Toute la surface à la même température
 - Régime permanent et propagation unidirectionnelle

$$T_{m1} - T_{p1} = \frac{1}{h_1} \cdot J$$

$$T_{m1} - T_{m2} = \frac{1}{h_1} \cdot J$$

$$T_{m1} - T_{m2} = \frac{e_2}{\lambda_2} \cdot J$$

$$\left(\frac{1}{h_1} + \frac{e_2}{\lambda_2} + \frac{1}{h_3} \right) \cdot J$$

$$T_{p2} - T_{m2} = \frac{1}{h_2} \cdot J$$
 nection

$$T_{m1} - T_{m2} = (R_{C1} + R_{th2} + R_{C3}) \cdot J$$

- Le rayonnement.
- Flux d'une source : Φ Puissance émise par la source. Unité : W
 ⇒ Source de puissance émise par une source.
- Emittance d'une source (monochromatique : λ) :

$$\Rightarrow M_{\lambda} = \frac{d\Phi_{\lambda}}{dS} \qquad \text{Unit\'e : W·m-2}$$

Transfert de chaleur par rayonnement :

$$\implies M = \varepsilon \cdot \sigma \cdot T^4$$
 Unité: W·m⁻²

- constante de Stefan-Boltzmann : σ = 5,6703 . 10⁻⁸ W·m⁻²·K⁻⁴
- ε : émissivité (facteur d'absorption ou d'émission de la surface émettrice) coefficient sans unité (1 pour un corps noir)
- T: température du corps (K)

Le rayonnement solaire.

Le rayonnement solaire sur un vitrage.

