

Automatisierte infrastrukturgestützte Klassifizierung und 3D-Lokalisierung nicht-motorisierter Verkehrsteilnehmer mittels Computer Stereo Vision

Peter Haiduk, Besondere Lernleistung, 2020

27.05.2020 Kolloquium zur Besonderen Lernleistung (mündl. Abiturprüfung)

Inhalt

- Motivation
- Zielstellung
- Umsetzung
- Ergebnisse
- Zusammenfassung und Ausblick
- Quellen

Autonomes Fahren

Vernetztes Fahren

Car-to-Car Communication

Vernetztes Fahren

Car-to-Car Communication

Car-To-Infrastructure Communication

Zielstellung

Zielstellung

"Infrastrukturgestützte Objektklassifizierung und -verortung zur Erhöhung der Sicherheit nicht-motorisierter Verkehrsteilnehmer"

- 1) Entwicklung eines Prototyp-Konzepts
- 2) Implementierung & Versuch in konkreter Verkehrssituation

Vorbedingungen

- Lochkamera-Modell
- Innere und äußere Parameter beider Kameras bekannt

Vorbedingungen

- Lochkamera-Modell
- Innere und äußere Parameter beider Kameras bekannt

<u>Ablauf</u> 1) Erkennung der Verkehrsteilnehmer

<u>Ablauf</u> 1) Erkennung der Verkehrsteilnehmer

Ablauf 2) Zuordnung der Detektionen

Kamera A

Kamera B

Ablauf 2) Zuordnung der Detektionen

Übersicht der Epipolargeometrie

- Komplanaritätsbedingung
 - → muss für passendes Paar erfüllt sein

Ablauf 3) Triangulation

- Geraden berechnen
- Geraden schneiden

Ablauf 3) Triangulation

- Geraden berechnen

Ablauf 3) Triangulation

- Geraden schneiden

- → Beschreibung mit Gleichungen
 - Lineare Algebra (Vektoren, Matrizen)
 - Homogene Koordinaten
 - → Vereinfachung
 - → Rechen-Effizienz

Kalibrierung

- Kalibrierungspunkte in der Szene, mit bekannten...
 - ❖ 3D-Koordinaten in der Szene
 - 2D-Koordinaten im Kamerabild

- → Gleichungssystem aufstellen
- → Lösung gibt Gesamt-Projektionsmatrix
- → Gesuchte Parameter extrahieren

Zusätzliche Betrachtungen

- Grundvoraussetzungen:
 - geeignete Verkehrssituation
 - Installationsmöglichkeiten
 - rechtliche Grundlage
 - benötigte Hardware vorhanden
 - Kommunikation zu Informationsempfängern vorhanden

Zusätzliche Betrachtungen

- Installation:
 - Positionierung der Kameras
 - Art der Kameras
 - nicht mehr bewegen
- Kalibrierung:
 - Vermeidung kritischer Konfigurationen

Planung

- Aufnahme von Videos,
 Auswertung im Nachhinein
- Programm für automatisierte Auswertung
- Visualisierung in Video-Form

Vorbereitung

- Wahl einer Verkehrssituation
- Smartphones als Kameras
- Installierung der Kameras

Durchführung

Aufnahme von ausreichend Videomaterial

Kalibrierung

- 2D-Koordinaten in den Kamerabildern:

Kalibrierung

- 3D-Koordinaten im Welt-Bezugssystem:

→ Umrechnung aus geographischen Koordinaten

Programmierung

- Programmiersprache:
 - Python
- Programmbibliotheken:
 - NumPy
 - OpenCV

- Objekt-Erkennungs-Algorithmus:
 MobileNet Single Shot Detector, vortrainiert
- Unterprogramme für einzelne Funktionen

<u>Visualisierung</u>

- → Blender
 - Python-Skripte:
 - automatisiertes Einfügen der Objekte in 3D-Szene
 - erstellen einer Animation mit Keyframes
 - Export als Video

Ergebnisse

Ergebnisse

- System ist funktionstüchtig
 - → Prototyp-Konzept validiert

- Schwächen:
 - kleine Aussetzer in der Erkennung
 - hohe Laufzeit

Zusammenfassung und Ausblick

Zusammenfassung und Ausblick

- Leistung der Arbeit:
 - Prototyp-Konzept mit allen theoretischen Betrachtungen
 - Proof of Concept durch erfolgreichen Versuch
- Nutzen:
 - Demonstrator f
 ür vernetztes Fahren
 - Grundlage f
 ür real einsetzbare Systeme
- weitere Forschung:
 - Weiterverarbeitung der Echtzeit-Daten
 - Vereinfachung der Kalibrierung
 - mehrere Kameras

Vielen Dank!

Quellen (Inhalt)

 "Automatisierte infrastrukturgestützte Klassifizierung und 3D-Lokalisierung nicht-motorisierter Verkehrsteilnehmer mittels Computer Stereo Vision" (Peter Haiduk, BeLL 2020)

Quellen (Grafiken) letzter Zugriff: 26.05.2020

- https://assets.t3n.sc/news/wp-content/uploads/2018/04/bmw-autonomes-fahren-campus-soeder-1.jpg
- https://www.intelligenttransport.com/wp-content/uploads/cav.jpg
- https://media2.govtech.com/images/940*670/V2I+Communication+USDOT.jpg
- https://cdn-images-1.medium.com/max/1600/1*RV0cEqiwrHauPxl33SJKNQ.png
- https://asset.re-in.de/isa/160267/c1/-/de/1511649_LB_00_FB/TOOLCRAFT-LDM100H-Laser-Entfernungsmesser-Messbereich-max.-100m.jpg
- https://www.python.org/static/img/python-logo.png
- https://scipy.org/_static/images/numpylogo_med.png
- https://opencv.org/wp-content/uploads/2019/02/opencv-logo-1-150x150.png
- https://download.blender.org/branding/blender_logo.png
- https://www.vocovo.com/wp-content/uploads/shutterstock 1257993892-1350x600.jpg

Testbild eines verwendeten *Google Pixel* Smartphones, Geraden werden als Geraden abgebildet (*straight line preserving mapping*)

Euklidisches Koordinatensystem des globalen Bezugssystems (O_G , X^* , Y^* , Z^*) und Euklidisches Koordinatensystem des lokalen Bezugssystems (O_L , X^* , Y^* , Z^*)

Deutsche Telekom Lehrstuhl für Kommunikationsnetze

ComNets

Exzellenzcluster Center for Tactile Internet with Human-in-the-Loop (CeTI)

5G Research Tracks

Silicon

Systems

5G LAB

GERMANY

Tactile Internet Applications

5G LAB GERMANY

Mobile Edge Cloud

5G Lab Germany Members

[Team of 600+ Researchers]

- EU Leuchtturm Mobility.E Projekt
- Mobility as a service
- Mission Null Verkehrstote

"Fail-operational components and systems"

Unser Anteil (eher backend/Infrastruktur):

- Verzögerungsarme, resiliente Netzwerkfunktionalität
- Rahmen für Verkehrsflussoptimierung in AMEC

