This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

Fig. 6

Fig. 7A

Fig. 7B

Fig. 8A

		TCOD	SCOD	TSS	VSS	TKN	NH ₄ -N	TCOD:TKN
Period	pН	TCOD		220	142	43	26	9.1
1	7.81	389	195	189	135	41	29	8.6
2	7.85	354	176		132	43	30	8.4
3	7.76	363	183	212	146	36	26	9.4
44	7.70	338	140	227		37	28	8.7
5	7.75	321	156	232	157		24	9.0
6	7.71	332_	170	243	169	37		9.7
7	7.75	436_	156	256	178	45	31	
8	7.77	324	148	232	143	39	25	8.3
9	7.86	364	167	228	155	40	27	9.1
10	7.92	341	162	213	135	41	27	8.3
11	7.73	367	226	187	113	42	26	8.7
12	8.02	379	179	233	156	39	28	9.7
13	7.93	385	156	227	149	43	29	9.0
14	7.89	381	174	262	169	41	31	9.3
15	7.75	406	181	253	173	45	30	9.0
16	7.68	382	184	237	156	39	27	9.8
17	7.44	393	172	243	163	38	31_	10.3
18	7.77	411	169	261	177	44	28	9.3
	7.63	379	183	224	136	43	32	8.8
19	7.65	397	167	264	159	42	33	9.5
20	7.83	387	183	244	152	39	29	9.9
21		372	186	226	141	42	31	8.9
22	7.56		178	268	187	41	29	10.2
23	7.76	417		237	144	40	29	9.9
24	7.79	395	193		125	38	27	9.6
25	7.82	364	191	206	123			

Fig. 8C

					SBR3	2				
Phase	Period	TCOD	SCOD	SSL	VSS	TKN	NH4-N	NO ₃ -N	MLSS	MLVSS
		95	80	10	7	8.3	4.4	10.2	3430	2400
-	2	93	08	6	9	7.9	4.4	9.6	3350	2520
	3	83	72	8	5	6.0	3.7	8.8	3560	2360
	4	78	89	7	5	6.0	3.0	7.2	3450	2480
Π	5	73	19	8	5	5.5	2.1	4.3	3530	2450
	9	75	19	7	5	5.2	1.5	4.6	3420	2320
	7	72	28	9	9	4.5	1.7	4.6	3680	2540
	8	70	54	9	4	4.2	1.2	5.4	3570	2570
	6	9/	57	7	5	4.6	1.6	5.6	3250	2270
	10	74	64	8	5	5.8	2.4	6.4	2310	1550
,	111	96	78	12	8	6.2	2.8	8.0	1450	1000
II(a)	12	94	82	∞	5	7.2	2.8	8.4	1420	926
	13	68	79	7	5	5.4	2.4	8.8	1350	890
	14	85	77	9	4	6.2	2.9	7.9	1290	810
(P) II(P)	15	85	73	8	5	6.7	3.1	7.9	1330	098
· ,	16	84	69	6	9	6.2	2.2	7.8	1360	890
	17	95	62	11	7	5.0	2.0	8.3	1410	006
II(c)	18	06	72	13	6	5.4	2.1	8.8	1350	920
,	19	83	72	7	5	4.8	1.8	8.0	1370	840
	70	84	69	8	5	5.5.	2.0	9.2	1400	920
(p)II	21	94	74	12	8	5.9	2.1	8.4	1380	950
,	22	87	71	6	9	0.9	2.2	8.5	1340	910
	23	94	73	12	8	6.4	2.3	7.2	1370	880
(a)[I]	24	88	74	6	9	5.3	2.3	9.8	1420	850
	25	98	75	7	5	5.2	2.2	8.3	1280	006

Fig. 8D

				Ŝ	nventio	Conventional SBR				
0100	Doriod	TCOD	CODS	TSS	NSS	TKN	NH4-N	NO ₃ -N	MLSS	MLVSS
Fnase	reilou	1000	80	0	9	8.3	4.7	10.0	3550	2480
	٠ (د	20	8	=	-	7.8	4.6	6.6	3650	2445.5
	7 0	88	20 82	7	. ~	9.8	4.8	6.6	3620	2470
		8 8	70	, 9	4	8.3	5.3	9.6	3550	2670
-	4 4	2 2	77	0	9	0.6	5.3	6.6	3670	2610
-		2 2	100	, ,	, (8.7	5.2	10.1	3480	2540
	o t	20 2	9/) =	7	0	5.8	10.0	3890	2740
		5 8	5 6	2 0		93	6.1	9.6	3720	2610
	∞	3 3	0/	0 4		8.5	4.7	9.4	3450	2450
	6	\$	0/5		r \	10.8	73	8.0	2200	1350
	92	102	8	2 5	0	20.0	16.7	4.4	1520	066
II(a)		521	103	7 7	0 6	20.2	18.7	4.5	1550	1020
	12	12/	/OI		- 4	22.0	20.2	43	1480	096
	13	123	109	\		62.0	7.07			

Fig. 8E

Period	Hu	TCOD	SCOD	TSS	VSS	TKN	TKN NH4-N	TP	PO ₄ -P	TCOD:TKN
7	6.84	478	258	220	181	39	25	11.1	7.8	12.3
1	6.80	454	239	223	174	42	27	11.6	8.2	10.8
1 "	7.35	465	246	219	171	40	26	10.9	8.5	11.6
7	7.76	442	203	232	185	38	28	10.7	8.3	11.6
- ~	7.70	435	219	231	196	37	26	11.5	6.7	11.8
, 9	6 94	432	233	243	208	39	24	10.0	7.6	11.1
	7.20	452	219	256	217	43	29	10.8	7.2	10.5
~	7.08	434	211	232	182	37	23	10.7	6.9	11.7
, 0	7.05	446	189	228	194	42	25	11.4	7.7	10.6
2	7.05	442	225	213	174	43	26	9.7	7.1	10.3
2 =	715	467	289	194	152	42	27	10.2	7.9	11.1
2	7.17	482	242	231	195	45	28	10.5	7.6	10.7
2 2	7.30	487	219	237	188	44	29	10.2	7.4	11.1
7	7.45	481	237	267	208	46	31	11.3	7.3	10.5
7	7.15	432	244	256	212	41	37	11.0	6.9	10.5
7	7.78	478	247	273	195	39	25	11.3	8.0	12.3
2 2	7.34	425	235	245	202	36	31	9.7	7.5	11.8
7	733	454	232	276	216	44	25	10.3	7.6	10.3
10	70.1	-		-						

Fig. 8F

Fig. 8G

					ن ا	Conventional SBR	nal SBR					
		4000	CODO	700	SSA	TKN	N-7HN	NO3-N	PO ₄ -P	TP	MLSS	MLVSS
Phase	Репод	1000	3000	100	2	3.0	1 7	0.5	6.7	7.5	3530	2450
	-1	87	64	οI	71	5.0	1.,	2	99	76	3510	2440
	,	91	99	18	14	4.0	1.6	5.5	0.0	2:/	2210	
	4 (3	67	17	=	4.2	1.5	5.8	5.5	6.3	3400	2670
-	2	2	3 3		1 2	2.0	1.5	5.4	5.1	6.2	3350	2340
	4	97	3	07	2	5:5];			67	3540	0296
	v	90	19	21	91	4.2	1.7	5.5	7.0	ò	OFCC	
	,		; {	-	10	Q V	17	5.5	5.5	6.5	3490	2640
	9	80	00	10	2	<u>}</u>			T v];	0770	1750
		200	17	13	6	11.5	∞ ∞	3.7	2.7	0.1	7,470	1/30
	_	5	5	3 ;	, ;	3 55	21.1	1 3	3.4	4.5	1720	1210
=	~	6	- 65	17	13	73.3	21.1	J.				
1		3	3	20	15	25.9	23.5	0.8	2.6	3.7	1780	1310
	2	7,5	75	27 -	2 -	24.0	23.5	13	1.9	3.0	.1750	1350
-	10	84	19	2	7	7.4.7	25.57			,	1000	1290
	=	08	63	17	15	25.2	22.5	4.4	1.0	3.1	1020	12.00
III(a)	11 ;	3 6	3	18	13	24.1	21.3	4.5	1.8	3.2	1750	1310
	12	55	3	01	2			,	-	0 0	1780	1360
	13	87	59	18	12	24.2	20.8	3.1	1:1	6.3	1/00	
	7	5	; 									

Fig. 8H

Fig. 8I

Fig. 8K

Fig. 9A

Fig. 10A

