Yakeen NEET 2.0 2026

Physics By Saleem Sir

Motion in a Straight Line

DPP: 10

- Q1 A body starts from rest. What is the ratio of the distance travelled by the body during the $4^{
 m th}$ and $3^{
 m rd}$ second?
 - (A) $\frac{7}{5}$
 - (B) $\frac{5}{7}$
 - (C) $\frac{7}{3}$ (D) $\frac{3}{7}$
- **Q2** A particle travels $10~\mathrm{m}$ in first $5\mathrm{sec}$ and $10~\mathrm{m}$ in next 3sec. Assuming constant acceleration what is the distance travelled in next 2 sec
 - $(A) 8.3 \mathrm{m}$
 - (B) 9.3 m
 - (C) 10.3 m
 - (D) None of the above
- **Q3** If a body starts from rest and travels $120~\mathrm{cm}$ in the 6^{th} second, then what is the acceleration
 - (A) 0.20 m/s^2
 - (B) 0.027 m/s^2
 - (C) 0.218 m/s^2
 - (D) 0.03 m/s^2
- Q4 Initially a body is at rest. If its acceleration is $5~\mathrm{ms^{-2}}$, then the distance travelled in the 18^{th} second is:
 - (A) 86.6 m
 - (B) 87.5 m
 - (C) 88 m
 - (D) 89 m
- Q5 A particle moving along a straight line with a constant acceleration of -4 m/s² passes through a point A on the line with a velocity of +8 m/s at some moment. Find the distance travelled by the particle in 5 seconds after that moment.
 - (A) 10 m
- (B) 26 m
- (C) 40 m
- (D) 8 m

- **Q6** A car starts from rest and moves with uniform acceleration α on a straight road from time t = 0to t = T. After that, a constant deceleration brings it to rest. In this process the average speed of the car is
 - (A) $\frac{aT}{4}$ (C) $\frac{aT}{2}$

- A car moving with a velocity of $10 \mathrm{m/s}$ can be stopped by the application of a constant force F in a distance of 20 m. If the velocity of the car is 30 m/s it can be stopped by this force in:
 - (A) 100m
- (B) 90m
- (C) 180m
- (D) 160m
- The acceleration of a particle is increasing linearly with time t as bt. The particle starts from the origin with an initial velocity v_0 . The distance travelled by the particle in time t will be
- $\begin{array}{ll} \text{(A) } v_0 \, t + \frac{1}{3} b t^2 & \text{(B) } v_0 \, t + \frac{1}{3} b t^3 \\ \text{(C) } v_0 \, t + \frac{1}{6} b t^3 & \text{(D) } v_0 \, t + \frac{1}{2} b t^2 \end{array}$
- A time-velocity graph of two vehicles A and B starting from rest at the same time is given in the figure. The statement that can be deduced correctly from the graph is:

- (A) Acceleration of A is greater than that of B
- (B) Acceleration of B is greater than that of A
- (C) Acceleration of A is increasing at a slower rate than that of B
- (D) Velocity of B is greater than that of A.
- Q10 Mark the correct statement.

- (A) The magnitude of the instantaneous velocity of a particle is equal to the instantaneous speed.
- (B) The magnitude of average velocity in an interval is equal to its average speed in that interval.
- (C) It is possible to have a situation in which the speed of a particle is always zero but the average speed is not zero.
- (D) It is possible to have a situation in which the speed of a particle is never zero but the average speed in an interval is zero.
- Q11 The figure shows the displacement–time graph of a body subject only to the force of gravity.

 The graph indicates that:

- (A) At A, the acceleration is zero
- (B) At A, the velocity is maximum
- (C) At A, the displacement is zero
- (D) The acceleration is constant for all times shown
- Q12 The velocity of a particle moving in straight line is given by the graph shown here. Then its acceleration is best represented by:

(B)

Q13 A body starts from rest and moves for *n* seconds with uniform acceleration *a*, its velocity after *n* seconds is *v*. The displacement of the body in last 3 seconds is:

(A)
$$\frac{v(6n-9)}{2n}$$

(B)
$$\frac{2v(6n-9)}{n}$$

(C)
$$\frac{2v(2n+1)}{n}$$

(D)
$$\frac{2v(n-1)}{n}$$

Q1	(A)	Q8	(C)
Q2	(A)	Q9	(B)
Q3	(C)	Q10	(A)
Q4	(B)	Q11	(D)
Q5	(B)	Q12	(B)
Q6	(C)	Q13	(A)
Q 7	(C)		

Master NCERT with PW Books APP