Misura della caratteristica I-V di un transistor BJT

Matteo Bonazzi, Massimo D'Alessandro Schmidt

December 4, 2022

Abstract

Misura della caratteristica I-V di un transistor BJT in configurazione emettitore comune, in due valori differenti della corrente di base

Dal fit lineare dei dati nella regione attiva, si ottengono i parametri $V_{Early} =$ e R =.

1 Introduzione

Per la misura è stato utilizato un transistor BJT di tipo pnp,......; il transistor è in configurazione a base comune, con base e collettore collegati a due potenziometri e l'emettitore collegato a terra.

Il circuito è realizzato con due potenziometri regolabili, uno regolante la corrente di base I_b con una resitenza di $100k\Omega$, e uno regolante la corrente di collettore I_c , con resitenza pari a $1k\Omega$;

2 Dati

Nella configurazione con $I_b = -200 \mu A$, si misurano i seguenti valori per V_{ce} e I_c :

$V_{ce} (\mathrm{mV})$	Errore V	Risoluzione	Fondo scala		
V _{ce} (IIIV)	(mV)	(mV)	(mV/div)		
4000	160	200	1000		
3800	150	200	1000		
3600	150	200	1000		
3400	143	200	1000 1000 1000 500		
3200	139	200			
3000	135	200			
2900	100	200			
2700	95	200	500		
2500	90	100	500		
2400	88	100	500		
2200	83	100	500		
2000	78	100	500		
1900	76	100	500		
1700	71	100	500		
1500	67	100	500		
1400	65	100	500		
1200	41	40	200		
1120	39	40	200 200 200		
1000	36	40			
800	31	40			
720	29	40	200		
500	18	20	100		
400	16	20	100		
300	10	10	50		

T (A)	errore I_c	Risoluzione	Fondo scala		
$I_c \text{ (mA)}$	(mA)	(mA)	(mA)		
36.9	0.18	0.1	200		
36.5	0.18	0.1	200		
36	0.18	0.1	200		
35.6	0.18	0.1	200		
35.1	0.18	0.1	200 200 200 200 200		
34.7	0.17	0.1			
34.6	0.17	0.1			
34.2	0.17	0.1			
33.6	0.17	0.1	200		
33.6	0.17	0.1	200		
33.1	0.17	0.1	200 200		
32.5	0.16	0.1			
32.5	0.16	0.1	200		
32	0.16	0.1	200		
31.4	0.16	0.1	200 200 200		
31.2	0.16	0.1			
30.8	0.15	0.1			
30.6	0.15	0.1	200		
30.2	0.15	0.1	200		
29.8	0.15	0.1	200		
28.9	0.14	0.1	200		
26.5	0.13	0.1	200		
24.4	0.12	0.1	200		
22	0.11	0.1	200		

200	7.8	10	50	17.08	0.085	0.01	20	
50	5.2	10	50	4.5	0.0225	0.01	20	

Table 1: Valori di V_{ce} e I_c , per $I_b = 200\mu A$

Nella configurazione con $I_b=-100\mu A,$ si misurano i seguenti valori per V_{ce} e I_c :

17 (17)	Errore V	Risoluzione	Fondo scala	T (A)	errore I_c	Risoluzione	Fondo scala
$V_{ce} (mV)$	(mV)	(mV)	(mV/div)	$I_c \text{ (mA)}$	(mA)	(mA)	(mA)
4000	156	200	1000	21.7	0.11	0.1	200
3800	152	200	1000	21.6	0.11	0.1	200
3600	147	200	1000	21.3	0.11	0.1	200
3400	143	200	1000	21.1	0.11	0.1	200
3200	108	200	1000	21	0.11	0.1	200
3000	135	200	1000	21	0.11	0.1	200
2900	100	100	500	20.7	0.10	0.1	200
2700	95	100	500	20.4	0.10	0.1	200
2500	90	100	500	20.4	0.10	0.1	200
2400	87	100	500	20.2	0.10	0.1	200
2200	83	100	500	19.96	0.10	0.01	20
2000	78	100	500	19.84	0.099	0.01	20
1900	76	100	500	19.72	0.099	0.01	20
1700	71	100	500	19.49	0.097	0.01	20
1500	67	100	500	19.26	0.096	0.01	20
1400	65	100	500	19.14	0.096	0.01	20
1200	41	50	200	18.81	0.094	0.01	20
1080	38	50	200	18.69	0.093	0.01	20
1000	36	50	200	18.58	0.093	0.01	20
800	31	50	200	18.42	0.092	0.01	20
720	29	50	200	18.29	0.091	0.01	20
500	18	20	100	17.74	0.089	0.01	20
400	15	20	100	17.11	0.086	0.01	20
300	10	10	50	15.78	0.079	0.01	20
200	8	10	50	12.46	0.062	0.01	20
50	5	10	50	3.19	0.016	0.01	20

Table 2: Valori di V_{ce} e I_c , per $I_b = 100 \mu A$

3 Analisi dati

Figure 1: Grafico delle caratterste I-V del transistor, nelle due configurazioni delle correnti di base I_b

Per V_{ce} nel range 1-3V, cioè nella regione attiva del transistor, si opera un fit lineare del tipo:

$$V_{ce} = a + bI_c \tag{1}$$

dove a rappresenta la tensione di Early V_{Ea} , e b
 rappresenta la resistenza del circuito; dal fit si ottengono i seguenti valori:

$$V_{Ea,100\mu A} = (16 \pm 6)V R_{100\mu A} = (931 \pm 30)\Omega$$

$$V_{Ea,200\mu A} = (13 \pm 4)V R_{200\mu A} = (449 \pm 13)\Omega$$