ФГАОУ ВО «Санкт-Петербургский Политехнический университет Петра Великого»

Физико-Механический институт Высшая школа теоретической механики

Отчет по индивидуальному заданию

Решение уравнения теплопроводности методом конечных разностей. Вариант 27

Студент:

Чеботин А.А.

группа: 5030103/90301

Преподаватель:

Витохин Е.Ю

Содержание

1.			2
	1.1.	Формулировка задачи	2
	1.2.	Описание численного метода	2
	1.3.	Подготовка контрольных тестов	5
	1.4.	Модульная структура программы	5
	1.5.	Численный анализ решения задачи	9
	1.6.	Выводы	13

Глава 1

1.1. Формулировка задачи.

Требуется получить конечно-разностное решение первой начально-краевой задачи для уравнения теплопроводности

$$\rho c_v \frac{\partial T}{\partial t} = \lambda \frac{\partial^2 T}{\partial x^2}$$

$$x \in [0; l], \ t \in [0; t^*], \ l = 0.6, \ t^* = 0.01$$

Обозначения:

- λ коэффициент теплопроводности
- ullet c_v теплоемкость среды
- \bullet ρ плотность вещества
- \bullet T температура

Дано начальное условие $T(x,0) = T^*(x) = 0.9 + 2x(1-x)$ и граничные условия

$$T(0,t) = T_0(t) = 3(0.3 - 2t)$$

$$T(l,t) = T(0.6,t) = T_l(t) = 1.38$$

Будем анализировать теплопередачу с параметрами $\lambda=1,\,c_v=1,\,\rho=1.$

1.2. Описание численного метода

1. Дискретизация. Область непрерывного изменения значения аргументов x и t разбивается на конечное число интервалов, то есть на пространственновременную область $\Omega \times T = (0 \le x \le l; \ 0 \le t \le t^*)$ наносится конечноразностная сетка

$$x_i = ih$$
, $x_0 = 0$, $x_n = l = 0.6$, $i = 0, 1, ..., n$ $(n = \frac{l}{h} = 6)$

$$t^k = k\Delta t, \ t^0 = 0, \ t^k = t^* = 0.001, \ k = 0, 1, ..., K \ (K = \frac{t^*}{\Delta t})$$

где k - номер слоя по времени, Δt - шаг интегрирования по времени, i - номер узла по пространству, h=0.1 - пространственный шаг.

Также вводятся два *временных слоя*. *Нижений* $t^k = k\Delta t$, на котором распределение искомой функции $T(x_i, t^k)$ известно, и *верхний* $t^{k+1} = (k+1)\Delta t$, на котором распределение функции $T(x_i, t^{k+1})$ нужно вычислить. Введем определение:

Определение 1.1. Сеточной функцией T_i^k назовем функцию, определенную только в дискретном множестве точек (в узлах) разностной сетки.

Таким образом, мы на сетке введем две сеточные функции, первая T_i^k из которых известна, а вторую T_i^{k+1} нужно найти методом конечных разностей.

- 2. Аппроксимация. Идея метода конечных разностей: вместо производных мы используем их конечно-разностные аналоги.
 - (a) **Явная схема**. Для определения T_i^{k+1} аппроксимируем дифференциалы уравнения теплопроводности:

$$\frac{\partial T}{\partial t} = \frac{T_i^{k+1} - T_i^k}{\Delta t}$$
$$\frac{\partial^2 T}{\partial x^2} = \frac{T_{i-1}^k - 2T_i^k + T_{i+1}^k}{h^2}$$

Подставляя эти аппроксимации в уравнение теплопроводности, получим:

$$\frac{\rho c_v}{\Delta t} (T_i^{k+1} - T_i^k) = \frac{\lambda}{h^2} (T_{i+1}^k - 2T_i^k + T_{i-1}^k)$$

В полученном разностном уравнении неизвестны только T_i^{k+1} , которые мы можем определить *явно* из разностного уравнения. Таким образом, явное выражение будет выглядеть следующим образом (и которое будем использовать в нашей программе):

$$T_i^{k+1} = \frac{h^2 c_v T_i^k + \Delta t \lambda (T_{i+1}^k - 2T_i^k + T_{i-1}^k)}{\rho c_v h^2}$$

(b) **Неявная схема**. Используя неявную схему, производные будут заменяться следующими выражениями

$$\frac{\partial T}{\partial t} = \frac{T_i^{k+1} - T_i^k}{\Delta t}$$

$$\frac{\partial^2 T}{\partial x^2} = \frac{T_{i-1}^{k+1} - 2T_i^{k+1} - T_{i+1}^{k+1}}{h^2}$$

То есть мы дифференциал по x аппроксимировали соотношением на верхнем временном слое, в отличие от аппроксимации по явной схеме. После подставления данных аппроксимаций, приводим подобные слагаемые и получаем следующее разностное уравнение:

$$-AT_{i-1}^{k+1} + BT_i^{k+1} - CT_{i+1}^{k+1} = F_i,$$

$$A = \frac{\lambda}{h^2}, \ B = \frac{\rho c_v h^2 + 2\lambda \Delta t}{\Delta t h^2}, \ C = \frac{\lambda}{h^2}, \ F_i = \frac{\rho c_v}{\Delta t} T_i^k$$

Разностное уравнение есть СЛАУ с трехдиагональной матрицей, поэтому в случае неявной схемы нужно перейти к ее решению (этап 3).

3. Решение СЛАУ. В результате аппроксимации мы свели исходную задачу к системе алгебраических уравнений. Образованная этими уравнениями СЛАУ имеет трехдиагональную матрицу, поэтому будем применять метод прогонки, алгоритм которого имеет сложность O(n).

СЛАУ МКР будет иметь следующую структуру:

$$\begin{pmatrix}
B & -C & 0 & 0 & \dots & 0 \\
-A & B & -C & 0 & \dots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & \dots & 0 & -A & B & -C \\
0 & \dots & 0 & 0 & -A & B
\end{pmatrix} \cdot \begin{pmatrix}
T_1^{k+1} \\ T_2^{k+1} \\ \vdots \\ T_{n-1}^{k+1} \\ T_n^{k+1} \end{pmatrix} = \begin{pmatrix}
F_1^{k+1} \\ F_2^{k+1} \\ \vdots \\ F_{n-1}^{k+1} \\ F_n^{k+1} \end{pmatrix}$$

Алгоритм метода прогонки. Мы должны найти прогоночные коэффициенты.

(a) Прямой ход. $i=1:\ P_1=\frac{C}{B},\ Q_1=\frac{F_1}{B}$ $i=2,...,n:\ P_i=\frac{C}{B-AP_{i-1}},\ Q_i=\frac{F_i+AQ_{i-1}}{B-AP_{i-1}}$

(b) Обратный ход. Находим искомое решение, используя найденные прогоночные коэффициенты

$$T_i^{k+1} = P_i T_{i+1}^{k+1} + Q_i$$

1.3. Подготовка контрольных тестов

Для исследования метода будем проводить следующие тесты:

- 1. Построим поверхности явной и неявной схем;
- 2. Построим разрезы, зафиксировав определенный момент времени;
- 3. Сравним схемы численно.

1.4. Модульная структура программы

В коде имеются различные пользовательские типы:

- enum ListOfSubstances перечисление, состоящее из набора целочисленных констант. В нашем случае перечислителями будут вещества: (StainlessSteel сталь, Iron=1 железо, Gold=2 золото, Brass=3 латунь, Copper=4 медь, Mercury=5 ртуть, Silver=6 серебро, Diamond=7 алмаз, Glass=8 стекло, Vacuum=9 вакуум, Ones=10 по умолчанию);
- struct MaterialsData простейшая структура, имеющая три элемента: (const double cvHeatCapacity теплоемкость, const double lambdaThermalConductivity коэффициент теплопроводности, const double rhoDensity плотность);
- namespace MaterialsDataBase пространство имен. Здесь используется контейнер vector из стандартной библиотеки C++. Мы используемся вектор структур MaterialsData и при инициализации задаем значения для всех элементов структуры MaterialsData;
- ullet struct IntegrateParameters простейшая структура, содержащая два элемента шаг интегрирования по времени и по координате x;
- class HeatEquationSolver основной класс программы, решающий уравнение теплопроводности. Класс имеет свои функции. Для передачи структур в функции класса HeatEquationSolver используется константная ссылка, чтобы повысить эффективность алгоритма и избавиться от дополнительных затрат. Обычные переменные будут передаваться по значению, не затрачивая при этом расходы на дополнительный доступ в функции класса.

Скриншоты программы:

```
Mechanics_testlab1

    (Глобальная область)

                                                                                                            ▼ 😭 main()
              #define _CRT_SECURE_NO_WARNINGS
              #include <cmath>
              #include <array>
           #include <stdint.h>
             #define K 11
             /*just enumeration of various materials*/
            ⊟enum ListOfSubstances {
                 StainlessSteel = 0.
                   Iron = 1.
                  Gold = 2
                   Brass = 3,
                   Copper = 4,
                   Mercury = 5,
                  Silver = 6,
Diamond = 7,
                   Glass = 8,
                   Vacuum = 9,
                   Ones = 10,
                   Wood = 11
             /*struct consists of material parameters*/
          ⊟struct MaterialsData {
                 const double cv_HeatCapacity;
                  const double lambda_ThermalConductivity;
                  const double rho_Density;
           \sqsubseteqnamespace MaterialDataBase {
                 std::vector<MaterialsData> materials = {
                      {490, 15, 7800},

{452, 92, 7870},

{128.7, 320, 19300},

{378, 100, 8600},
                       {383, 401, 8900 },
{139, 8.3, 13540},
{235, 430, 10500},
                       {502, 1700, 3500},
                       {500, 1, 25},
{0, 0, 0},
{1, 1, 1},
                       {2300, 110, 470 }
            □struct IntegrateParameters {
                  double delta_tStep;
                  double h_xStep;
                  //~HeatEquationSolver() {}; //destructor
                   inline double InitialValueFunction(double x);
                   inline double LeftBoundaryConditionFunction(double t);
                   inline double RightBoundaryConditionFunction(double t);
                  void SetCoordinateXGrid(std::array<double, N>& x, const IntegrateParameters& params);
void SetTimeGrid(std::array<double, K>& t, const IntegrateParameters& params);
                   void getSolutionExplicit(const MaterialsData& material, double(*Temperature)[N], std::array<double, N>& x, std::array<dou
                  const IntegrateParameters& params);
void getSolutionImplicit(const MaterialsData& material, double(*Temperature)[N], std::array<double, N>& x, std::array<dou
                       const IntegrateParameters& params);
```

```
/* NU T(x.0) */
inline double HeatEquationSolver::InitialValueFunction(double x)
      return 0.9 + 2 * x * (1 - x);
□inline double HeatEquationSolver::LeftBoundaryConditionFunction(double t)
      return 3 * (0.3 - 2 * t);
□inline double HeatEquationSolver::RightBoundaryConditionFunction(double t)
      return 1.38;
 □void HeatEquationSolver::SetCoordinateXGrid(std::array<double, N>& x, const IntegrateParameters& params)
      \times[0] = 0;
      for (uint8_t i = 1; i < N; ++i) {
Id
          x[i] = i * params.h_xStep;
 ⊟void HeatEquationSolver::SetTimeGrid(std::array<double, K>& t, const IntegrateParameters& params)
          t[k] = k * params.delta_tStep;
  void HeatEquationSolver::getSolutionExplicit(const MaterialsData& material, double (*Temperature)[N], std::array<double, N>&
      std::array<double, K>& t, const IntegrateParameters& params)
       /*setting initial condition*/
      for (uint8_t i = 0; i < N; ++i)
           Temperature[0][i] = InitialValueFunction(x[i]);
       for (uint8_t k = 0; k < K; ++k)
           Temperature[k][0] = LeftBoundaryConditionFunction(t[k]);
          Temperature[k][N-1] = RightBoundaryConditionFunction(t[k]);
      /*to be short*
      double c_v = material.cv_HeatCapacity;
double lambda = material.lambda_ThermalConductivity;
      double rho = material.rho_Density;
      double h = params.h_xStep;
      double delta_t = params.delta_tStep;
      for (uint8_t k = 0; k < K-1; ++k)
þ
İ
          for (uint8_t i = 1; i < N - 1; ++i)
              void HeatEquationSolver::getSolutionImplicit(const MaterialsData& material, double(*Temperature)[N], std::array<double, N>& ;
      std::array<double, K>& t, const IntegrateParameters& params)
      /*setting initial condition*/
      for (uint8_t i = 0; i < N; ++i)
          Temperature[0][i] = InitialValueFunction(x[i]);
```

```
/*setting boundary conditions*/
for (uint8_t k = 0; k < K; ++k)</pre>
            Temperature[k][0] = LeftBoundaryConditionFunction(t[k]);
            Temperature[k][N-1] = RightBoundaryConditionFunction(t[k]);
      double c_v = material.cv_HeatCapacity;
double lambda = material.lambda_ThermalConductivity;
       double rho = material.rho_Density;
       double h = params.h_xStep;
       double delta_t = params.delta_tStep;
      /*setting coefficients of finite difference equation*/
double A = (lambda) / (h * h);
double C = (lambda) / (h * h);
       double B = (rho * c_v * h * h + 2 * lambda * delta_t) / (delta_t * h * h);
       double F[N], P[N], Q[N];
       for (uint8_t k = 0; k < K - 1; ++k)
            for (uint8_t i = 0; i < N; i++)
                 F[i] = Temperature[k][i] * ((rho * c_v) / (delta_t));
            /*Progonka algorithm coefficients*/
P[0] = C / B;
Q[0] = F[0] / B;
            for (uint8_t j = 1; j < N; ++j)
                 P[j] = C / (B - A * P[j - 1]);

Q[j] = (F[j] + A * Q[j - 1]) / (B - A * P[j - 1]);
                 Temperature[k + 1][j] = P[j] * Temperature[k + 1][j + 1] + Q[j];
⊡int main()
      using namespace MaterialDataBase;
      HeatEquationSolver mySolver;
      IntegrateParameters params;
      params.h_xStep = 0.1;
params.delta_tStep = 0.001;
      double Temperature[K][N] = { 0 };
      std::array<double, N> x;
      std::array<double, K> t;
      mySolver.SetCoordinateXGrid(x, params);
      mySolver.SetTimeGrid(t, params);
      mySolver.getSolutionImplicit(materials[Ones], Temperature, x, t, params);
```

```
| Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subsort | Subs
```

1.5. Численный анализ решения задачи

Рис 1.1 Поверхность (явная схема)

Рис 1.2. Поверхность (неявная схема)

Рис 2.1. Распределение температуры в разные моменты времени (явная схема)

Рис 2.2. Распределение температуры в разные моменты времени (неявная cxeмa)

Рис 3. Сравнение схем в момент времени t = 0.4.

Сравним численно:

Таблица 1. Явная схема

	$x_0 = 0$	$x_1 = 0.1$	$x_2 = 0.2$	$x_3 = 0.3$	$x_4 = 0.4$	$x_5 = 0.5$	$x_6 = 0.6$
$t_0 = 0$	0.900000	1.080000	1.220000	1.320000	1.380000	1.400000	1.380000
$t_1 = 0.001$	0.894000	1.076000	1.216000	1.316000	1.376000	1.396000	1.380000
$t_2 = 0.002$	0.888000	1.071800	1.212000	1.312000	1.372000	1.392400	1.380000
$t_3 = 0.003$	0.882000	1.067440	1.207980	1.308000	1.368040	1.389120	1.380000
$t_4 = 0.004$	0.876000	1.062950	1.203928	1.304002	1.364144	1.386100	1.380000
$t_5 = 0.005$	0.870000	1.058353	1.199838	1.300009	1.360325	1.383294	1.380000
$t_6 = 0.006$	0.864000	1.053666	1.195706	1.296023	1.356591	1.380668	1.380000
$t_7 = 0.007$	0.858000	1.048903	1.191534	1.292048	1.352942	1.378194	1.380000
$t_8 = 0.008$	0.852000	1.044076	1.187322	1.288086	1.349378	1.375849	1.380000
$t_9 = 0.009$	0.846000	1.039193	1.183074	1.284139	1.345896	1.373617	1.380000
$t_{10} = 0.01$	0.840000	1.034262	1.178792	1.280208	1.342492	1.371483	1.380000

Таблица 2. Неявная схема

1.6. Выводы 13

	$x_0 = 0$	$x_1 = 0.1$	$x_2 = 0.2$	$x_3 = 0.3$	$x_4 = 0.4$	$x_5 = 0.5$	$x_6 = 0.6$
$t_0 = 0$	0.900000	1.080000	1.220000	1.320000	1.380000	1.400000	1.380000
$t_1 = 0.001$	0.894000	1.071239	1.215601	1.315969	1.376025	1.396335	1.380000
$t_2 = 0.002$	0.888000	1.063075	1.210914	1.311891	1.372092	1.392954	1.380000
$t_3 = 0.003$	0.882000	1.055393	1.206025	1.307762	1.368207	1.389812	1.380000
$t_4 = 0.004$	0.876000	1.048106	1.200995	1.303583	1.364378	1.386875	1.380000
$t_5 = 0.005$	0.870000	1.041141	1.195871	1.299359	1.360604	1.384113	1.380000
$t_6 = 0.006$	0.864000	1.034442	1.190687	1.295097	1.356886	1.381501	1.380000
$t_7 = 0.007$	0.858000	1.027963	1.185470	1.290805	1.353224	1.379020	1.380000
$t_8 = 0.008$	0.852000	1.021667	1.180238	1.286492	1.349615	1.376651	1.380000
$t_9 = 0.009$	0.846000	1.015525	1.175006	1.282165	1.346058	1.374381	1.380000
$t_{10} = 0.01$	0.840000	1.009513	1.169784	1.277832	1.342551	1.372196	1.380000

1.6. Выводы

Был исследован метод конечных разностей. Метод достаточно прост в реализации. Была получена поверхность с распределением температуры по явной и неявной схеме. Проведено графическое сравнение схем.