2 Die Zariski-Topologie

Definition 2. Sei $M \subset k[T_1, \ldots, T_n] =: k[\underline{T}]$ eine Teilmenge. Mit

$$V(M) = \{(t_1, \dots, t_n) \in k \mid f(t_1, \dots, t_n) = 0 \ \forall f \in M\}$$

bezeichnen wir die gemeinsame Nullstellen-(Verschwindungs-)Menge der Elemente aus M. (Manchmal auch $V(f_i, i \in I)$ statt $V(\{f_i, i \in I\})$.

2.1 Eigenschaften

- $V(M) = V(\mathfrak{A})$, wenn $\mathfrak{A} = \langle M \rangle$ das von M erzeugte Ideal in k[I] bezeichnet.
- Da $k[\underline{T}]$ noethersch (Hilbertscher Basissatz) ist, reichen stets endlich viele $f_1, \ldots, f_n \in M$:

$$V(M) = V(f_1, \dots, f_n)$$
 falls $\mathfrak{A} = \langle f_1, \dots, f_n \rangle$.

• V(-) ist inklusionsumkehrend, $M' \subset M \Rightarrow V(M) \subseteq V(M')$.

Satz 3. Die Mengen $V(\mathfrak{A})$, $\mathfrak{A} \subset k[\underline{T}]$ ein Ideal, sind die **abgeschlossenen** Mengen einer Topologie auf k^n , der sogenannten **Zariski-Topologie**.

- (i) $\emptyset = V((1)), k^n = V(0).$
- (ii) $\bigcap_{i \in I} V(\mathfrak{A}_i) = V\left(\sum_{i \in I} \mathfrak{A}_i\right)$ für beliebige Familien (\mathfrak{A}_i) von Idealen.
- (iii) $V(\mathfrak{A}) \cup V(\mathfrak{B}) = V(\mathfrak{AB})$ für $\mathfrak{A}, \mathfrak{B} \subset k[\underline{T}]$ Ideale.

Beweis.Übung / Algebra II.