Monte Carlo Methods

Univariate

Nipun Batra

June 5, 2023

IIT Gandhinagar

Introduction

General Form

The general form of Monte Carlo methods is: The expectation of a function f(x) with respect to a distribution p(x) is given by:

$$\mathbb{E}_{x \sim p(x)}[f(x)] = \int f(x)p(x)dx \tag{1}$$

Using Monte Carlo methods, we can estimate the above expectation by sampling x_i from p(x) and computing the average of $f(x_i)$.

$$\mathbb{E}_{x \sim p(x)}[f(x)] \approx \frac{1}{N} \sum_{i=1}^{N} f(x_i)$$
 (2)

where $x_i \sim p(x)$.

1

Estimating Pi using Monte Carlo (Part 1)

We can estimate the value of pi using Monte Carlo methods by considering a unit square with a quarter circle inscribed within it.

- Let p(x) be defined over the unit square using the uniform distribution in two dimensions, i.e., p(x) = U(x) = 1 for $x \in [0, 1]^2$.
- Let f(x) be the indicator function defined as follows:

$$f(x) = \begin{cases} \mathsf{Green}(1), & \text{if } x \text{ falls inside the quarter circle,} \\ \mathsf{Red}(0), & \text{otherwise.} \end{cases}$$

Estimating Pi using Monte Carlo (Part 1)

• Or, we can write f(x) to be the following:

$$f(x) = \begin{cases} 1, & \text{if } x_1^2 + x_2^2 \le 1, \\ 0, & \text{otherwise.} \end{cases}$$

• Or, using the indicator function, we can write f(x) to be the following:

$$f(x) = \mathbb{I}(x_1^2 + x_2^2 \le 1)$$

Estimaing prior predictive distribution

- Let $p(\theta)$ be the prior distribution of parameter $\theta \in R^2$. Say, for example, $p(\theta_i) = \mathcal{N}(0,1) \forall i$.
- Let $p(y|\theta,x)$ be the likelihood function. Say, for example, $p(y|\theta,x) = \mathcal{N}(\theta_0 + \theta_1 x, 1)$.
- Then, the prior predictive distribution is given by:

$$p(y|x) = \int p(y|\theta, x)p(\theta)d\theta \tag{3}$$

$$p(y|x) \approx \frac{1}{N} \sum_{i=1}^{N} p(y|\theta_i, x)$$
 (4)

where $\theta_i \sim p(\theta)$.