SLIM 🔮

Training samples for the state CO_2 saturation at k=1

p(K)

$$\mathbf{x}_{k-1} \sim p(\mathbf{x}_{k-1})$$

$$\mathbf{x}_k \sim p(\mathbf{x}_k | \mathbf{x}_{k-1})$$

permeability

initial saturation

transitioned saturation

$$\mathbf{x}_k = \mathcal{M}_{k-1}(\mathbf{x}_{k-1}, \mathbf{K}; \mathbf{q}_{k-1})$$
 with $\mathbf{x}_0 \sim p(\mathbf{x}_0), K \sim p(K)$

Training samples for the state CO_2 saturation at k=1

permeability

initial saturation

transitioned saturation

$$\mathbf{x}_{k} = \mathcal{M}_{k-1}(\mathbf{x}_{k-1}, \mathbf{K}; \mathbf{q}_{k-1})$$
 with $\mathbf{x}_{0} \sim p(\mathbf{x}_{0}), K \sim p(K)$

Rock physics patchy saturation model at k=1

saturations

$$\{\mathbf{v}_k^{(m)} = \mathcal{R}(\bar{\mathbf{v}}_0, \mathbf{x}_k^{(m)})\}_{m=1}^M$$

impedance change

Symbol	Meaning
B_{r_1}/B_{r_2}	bulk modulus of rock fully saturated with fluid 1/2
B_{f_1}/B_{f_2}	fluid bulk modulus
$ ho_{f_1}/ ho_{f_2}$	fluid density
μ_r	rock shear modulus
v_p/v_s	rock P/S-wave velocity
B_{o}	bulk modulus of rock grains
$ ho_r$	rock density
ф	rock porosity
S	CO ₂ saturation

CO₂ concentration $\uparrow \to v_p \& \rho \downarrow$ $v_p \text{ decrease by 0-300 m/s}$ localized time-lapse changes
1.68% change in acoustic impedance

$$\begin{array}{lcl} B_{r1} & = & \rho_r(v_p^2 - \frac{4}{3}v_s^2) \\ \mu_r & = & \rho_r v_s^2 \\ \frac{B_{r2}}{B_o - B_{r2}} & = & \frac{B_{r1}}{B_o - B_{r1}} - \frac{B_{f1}}{\phi(B_o - B_{f1})} + \frac{B_{f2}}{\phi(B_o - B_{f2})} \\ \hat{B}_r & = & \left[(1 - S)(B_{r1} + \frac{4}{3}\mu_r)^{-1} + S(B_{r2} + \frac{4}{3}\mu_r)^{-1} \right]^{-1} - \frac{4}{3}\mu_r \\ \hat{\rho}_r & = & \rho_r + \phi S(\rho_{f2} - \rho_{f1}) \\ \hat{v}_p & = & \sqrt{\frac{\hat{B}_r + \frac{4}{3}\mu_r}{\hat{\rho}_r}} \end{array}$$

Per Avseth, et al. Quantitative seismic interpretation: Applying rock physics tools to reduce interpretation risk. Cambridge university press, 2010.