UNIT 3

Formal Languages:

1. Derivations and the Language Generated by a Grammar:

o A derivation is a sequence of production rules applied to generate a string in a language. The language generated by a grammar is the set of all strings derivable from the start symbol.

2. Definition of a Grammar:

- o A grammar is a formal set of rules used to define the structure of a language, consisting of:
 - A set of non-terminal symbols (e.g., NNN)
 - A set of terminal symbols (e.g., TTT)
 - A set of production rules (e.g., $A \rightarrow BCA \setminus BCA \rightarrow BC$)
 - A start symbol (e.g., SSS)

3. Chomsky Classification of Languages:

- o Type 0 (Recursively Enumerable Languages): Can be recognized by a Turing machine.
- o Type 1 (Context-Sensitive Languages): Can be recognized by a linear-bounded automaton.
- o Type 2 (Context-Free Languages): Can be recognized by a pushdown automaton.
- o Type 3 (Regular Languages): Can be recognized by a finite automaton.

4. Languages and their Relation:

The hierarchy shows the inclusion of languages from Type 3 (regular) to Type 0 (recursively enumerable), where every regular language is context-free, every context-free language is context-sensitive, and every context-sensitive language is recursively enumerable.

5. Recursive and Recursively Enumerable Sets:

- Recursive Set: A set for which a decision procedure exists (algorithm to determine membership).
- o **Recursively Enumerable Set**: A set where a Turing machine can enumerate its elements but might not halt for non-members.

6. Languages and Automata:

- o **Automata** are abstract machines used to recognize languages, where:
 - Finite automata recognize regular languages.
 - Pushdown automata recognize context-free languages.
 - Turing machines recognize recursively enumerable languages.

7. Chomsky Hierarchy of Languages:

o Defines a classification of formal languages based on generative power, from regular languages (simplest) to recursively enumerable languages (most powerful).

Regular Grammars:

1. Regular Sets and Regular Grammars:

- o A **regular set** is a set of strings that can be expressed by a regular expression or recognized by a finite automaton.
- o A **regular grammar** is a context-free grammar where the production rules are restricted to right-linear or left-linear form.

2. Converting Regular Expressions to Regular Grammars:

o A regular expression can be converted into an equivalent regular grammar using rules based on the structure of the expression (e.g., concatenation, union, and Kleene star).

3. Converting Regular Grammars to Regular Expressions:

o A regular grammar can be converted into an equivalent regular expression by applying the reverse process of grammar construction.

4. Left Linear and Right Linear Regular Grammars:

- o **Left Linear Grammar**: All production rules are of the form $A \rightarrow xBA$ \rightarrow $xBA \rightarrow xB$ or $A \rightarrow xA$ \rightarrow $xA \rightarrow x$, where xxx is a string of terminals and BBB is a non-terminal.
- o **Right Linear Grammar**: All production rules are of the form $A \rightarrow BxA$ \rightarrow $BxA \rightarrow Bx$ or $A \rightarrow xA$ \rightarrow $xA \rightarrow x$, where xxx is a string of terminals and BBB is a non-terminal.

Important MCQ

1. Which of the following is true about a grammar?

- a) A grammar defines only regular languages
- b) A grammar defines only context-free languages
- c) A grammar defines the structure of a language
- d) A grammar is the same as a regular expression **Answer:** C

2. Which of the following is a Type 3 language in the Chomsky hierarchy?

- a) Context-free language
- b) Regular language
- c) Context-sensitive language
- d) Recursively enumerable language **Answer: B**

3. Which automaton is used to recognize regular languages?

- a) Pushdown automaton
- b) Turing machine
- c) Finite automaton
- d) Linear-bounded automaton **Answer:** C

4. A context-sensitive language can be recognized by which of the following?

- a) Pushdown automaton
- b) Turing machine
- c) Finite automaton
- d) Linear-bounded automaton

Answer: D

5. Which of the following is a valid production rule in a regular grammar?

- a) A→aBA \rightarrow aBA→aB
- b) A→BaA \rightarrow BaA→Ba
- c) A→aBbA \rightarrow aBbA→aBb
- d) A→ABA \rightarrow ABA→AB
 Answer: A

6. The language recognized by a Turing machine is:

- a) Context-sensitive
- b) Regular
- c) Context-free
- d) Recursively enumerable

Answer: D

7. Which of the following is not a property of regular languages?

- a) They can be recognized by a finite automaton
- b) They can be expressed by regular expressions
- c) They can be recognized by a pushdown automaton
- d) They can be described by regular grammars **Answer:** C

8. What is the Chomsky type of the language $L=\{anbn|n\geq 1\}L=\{a^n b^n | n \geq 1\}L=\{anbn|n\geq 1\}$?

- a) Type 0
- b) Type 1
- c) Type 2
- d) Type 3

Answer: C

9. Which of the following languages is context-free?

- a) $\{anbncn|n\geq 1\}\setminus \{a^n b^n c^n | n \geq 1 \setminus \{anbncn|n\geq 1\}$
- b) $\{anbm|n,m\geq 1\}\setminus \{a^n b^m \mid n, m \geq 1\} \{anbm|n,m\geq 1\}$
- c) $\{anbn|n\geq 1\}\setminus \{a^n b^n \mid n \neq 1 \} \{anbn|n\geq 1\}$
- d) {anbncn|n≥1}\{ a^n b^n c^n | n \geq 1 \} {anbncn|n≥1}
 Answer: C

10. Which of the following is true about left-linear and right-linear grammars?

- a) Both types generate regular languages
- b) Left-linear grammars generate context-free languages
- c) Right-linear grammars generate context-sensitive languages
- d) Left-linear grammars generate context-sensitive languages **Answer: A**

11. Which of the following is a valid regular expression for the language of all strings over the alphabet $\{a,b\}\setminus\{a,b\}$ that contain at least one aaa?

- a) b*a(b*a)*b^*a(b^*a)^*b*a(b*a)*
- b) a*b*a^*b^*a*b*
- c) $(a|b)*a(a|b)^*a(a|b)*a$
- d) a*b*a^*b^*a*b*

Answer: C

12. Which type of automaton recognizes context-free languages?

- a) Finite automaton
- b) Pushdown automaton
- c) Turing machine
- d) Linear-bounded automaton

Answer: B

13. The production rule $S \rightarrow aSb|\epsilon S \cdot b|\epsilon S \rightarrow aSb|\epsilon S$

- a) Context-free grammar
- b) Regular grammar
- c) Context-sensitive grammar
- d) Recursive grammar

Answer: A

14. Which of the following is not a characteristic of regular expressions?

- a) They can represent all regular languages
- b) They can be converted into finite automata
- c) They can describe context-free languages
- d) They are used to describe regular sets

Answer: C

15. Which of the following is an example of a left-linear grammar?

- a) A→aBA \rightarrow aBA→aB
- b) A→BcA \rightarrow BcA→Bc
- c) A→aBbA \rightarrow aBbA→aBb
- d) $A \rightarrow ABA \land rightarrow ABA \rightarrow AB$

Answer: A

16. Which type of language is the set $\{anbn|n\geq 1\}\setminus \{a^n b^n \mid n \geq 1\} \{anbn|n\geq 1\}$?

- a) Regular
- b) Context-free
- c) Context-sensitive
- d) Recursively enumerable

Answer: B

17. What is the language of the regular expression $(a|b)*(a|b)^*(a|b)*?$

- a) The set of all strings containing at least one aaa or bbb
- b) The set of all strings containing only aaa or bbb
- c) The set of all strings starting with aaa or bbb
- d) The set of all strings containing zero or more aaa's and bbb's
 Answer: D

18. What does the Kleene star in a regular expression represent?

- a) Zero or more repetitions of the preceding symbol
- b) One or more repetitions of the preceding symbol
- c) A choice between two options
- d) Concatenation of two symbols

Answer: A

19. Which of the following is the correct conversion of the regular expression $(a|b)*(a|b)^**(a|b)*$ to a regular grammar?

- a) $S \rightarrow aS|bS| \in S \cdot rightarrow aS \mid bS \mid epsilonS \rightarrow aS|bS| \in S \cdot rightarrow aS \mid bS \mid epsilonS \rightarrow aS|bS| \in S \cdot rightarrow aS \mid bS \mid epsilonS \rightarrow aS|bS| \in S \cdot rightarrow aS \mid bS \mid epsilonS \rightarrow aS|bS| \in S \cdot rightarrow aS \mid bS \mid epsilonS \rightarrow aS|bS| \in S \cdot rightarrow aS \mid epsilonS \rightarrow aS|bS| \in S \cdot rightarrow aS \mid epsilonS \rightarrow aS|bS| \in S \cdot rightarrow aS \mid epsilonS \rightarrow aS|bS| \in S \cdot rightarrow aS \mid epsilonS \rightarrow aS|bS| \in S \cdot rightarrow aS \mid epsilonS \rightarrow aS|bS| \in S \cdot rightarrow aS \mid epsilonS \rightarrow aS|bS| \in S \cdot rightarrow aS|bS| \in S \cdot rightarrow aS|bS| = epsilonS \rightarrow aS|bS| = epsilonS|bS| = epsilonS|bS|$
- b) S→aS|bSS \rightarrow aS | bSS→aS|bS
- c) S→Sa|SbS \rightarrow Sa | SbS→Sa|Sb
- d) S→a|bS \rightarrow a | bS→a|b

Answer: A

20. A Turing machine can recognize which type of language?

- a) Type 1
- b) Type 2
- c) Type 3
- d) Type 0

Answer: D

21. Which of the following is true about a recursive set?

- a) It can be decided algorithmically
- b) It can be recognized by a finite automaton
- c) It can be recognized by a Turing machine that does not halt
- d) It can only be enumerated by a Turing machine **Answer: A**

22. Which of the following is not a regular grammar?

- a) A→aBA \rightarrow aBA→aB
- b) A→BaA \rightarrow BaA→Ba
- c) A→aBbA \rightarrow aBbA→aBb
- d) A→aB|bA \rightarrow aB | bA→aB|b Answer: C

23. Which of the following is a characteristic of a recursively enumerable set?

- a) It can be recognized by a finite automaton
- b) It can be decided algorithmically
- c) It can be enumerated by a Turing machine but may not halt
- d) It is always a context-sensitive set **Answer:** C

24. Which of the following is an example of a right-linear grammar?

- a) A→aBA \rightarrow aBA→aB
- b) $A \rightarrow BcA \land BcA \rightarrow Bc$
- c) $A \rightarrow aB | \epsilon A \setminus aB | \epsilon A \rightarrow aB | \epsilon$
- d) A→bAA \rightarrow bAA→bA
 Answer: A

25. What is the Chomsky type of the language L={anbm| $n\neq m$ }L = \{ a^n b^m | n \neq m \}L={anbm| $n\square=m$ }?

- a) Type 0
- b) Type 1
- c) Type 2
- d) Type 3

Answer: A

26. Which of the following languages is regular?

- a) $\{anbn|n\geq 1\}\setminus \{a^n b^n \mid n \geq 1\} \{anbn|n\geq 1\}$
- b) $\{anbm|n\neq m\}\setminus \{a^n b^m \mid n \neq m \setminus \{anbm|n = m\}$
- c) $\{anbm|n,m\geq 1\}\setminus \{a^n b^m \mid n, m \geq 1\} \{anbm|n,m\geq 1\}$
- d) {anbncn|n≥1}\{ a^n b^n c^n | n \geq 1 \} {anbncn|n≥1}
 Answer: C

27. Which of the following statements is true about regular languages?

- a) They are always context-sensitive
- b) They can be recognized by a finite automaton
- c) They can be described by context-free grammars
- d) They cannot be described by regular expressions
 Answer: B

28. What is the regular expression for the language of all strings over $\{a,b\}\setminus\{a,b\setminus\}\{a,b\}$ that end with aaa?

- a) $(a|b)*a(a|b)^*a(a|b)*a$
- b) $a*(a|b)*a^*(a|b)^*a*(a|b)*$
- c) a*b*aa^*b^*aa*b*a
- d) $(a|b)+a(a|b)^++a(a|b)+a$

Answer: A

29. What is the primary difference between regular languages and context-free languages?

- a) Regular languages can be recognized by finite automata, while context-free languages require a pushdown automaton
- b) Context-free languages are more complex than regular languages
- c) Regular languages use grammars only with terminal symbols
- d) Context-free languages use grammars with recursive rules
 Answer: A

30. What is the key feature of a regular grammar?

- a) It can have recursive production rules
- b) It generates non-context-free languages
- c) Its rules consist of a terminal symbol followed by a non-terminal symbol
- d) It is used for context-sensitive languages

Answer: C