O PyTorch

链式法则

主讲人: 龙良曲

Derivative Rules

Rules	Function	Derivative
Multiplication by constant	cf	cf'
Power Rule	x ⁿ	nx ⁿ⁻¹
Sum Rule	f + g	f' + g'
Difference Rule	f - g	f' – g'
Product Rule	fg	f g' + f' g
Quotient Rule	f/g	$(f'g - g'f)/g^2$
Reciprocal Rule	1/f	-f'/f ²
Chain Rule (as <u>"Composition of Functions")</u>	f º g	(f' ° g) × g'
Chain Rule (using ')	f(g(x))	f'(g(x))g'(x)
Chain Rule (using $\frac{d}{dx}$)		dy du du dx

Basic Rule

$$\bullet f + g$$

$$\bullet f - g$$

Product rule

$$\bullet (fg)' = f'g + fg'$$

$$x^{4'} = (x^2 * x^2)' = 2x * x^2 + x^2 * 2x = 4x^3$$

Quotient Rule

$$\bullet \frac{f}{g} = \frac{f'g + fg'}{g^2}$$

• e.g. Softmax

$$p_i = rac{e^{a_i}}{\sum_{k=1}^N e^{a_k}}$$

$$rac{\partial p_i}{\partial a_j} = rac{\partial rac{e^{a_i}}{\sum_{k=1}^N e^{a_k}}}{\partial a_j}$$

$$\frac{\partial \frac{e^{a_i}}{\sum_{k=1}^N e^{a_k}}}{\partial a_j} = \frac{e^{a_i} \sum_{k=1}^N e^{a_k} - e^{a_j} e^{a_i}}{\left(\sum_{k=1}^N e^{a_k}\right)^2}$$

$$= \frac{e^{a_i} \left(\sum_{k=1}^N e^{a_k} - e^{a_j}\right)}{\left(\sum_{k=1}^N e^{a_k}\right)^2}$$

$$= \frac{e^{a_j}}{\sum_{k=1}^N e^{a_k}} \times \frac{\left(\sum_{k=1}^N e^{a_k} - e^{a_j}\right)}{\sum_{k=1}^N e^{a_k}}$$

$$= p_i (1 - p_j)$$

Chain rule

$$\frac{\partial y}{\partial x} = \frac{\partial y}{\partial u} \frac{\partial u}{\partial x}$$

$$y_2 = y_1 w_2 + b_2$$

$$y_1 = xw_1 + b_1$$

•
$$y_2 = (xw_1 + b_1) * w_2 + b_2$$

Chain rule

$$O_k^1$$
 O_k^2 $O_k^$

$$\frac{\partial E}{\partial w_{jk}^{1}} = \frac{\partial E}{\partial o_{k}^{1}} \frac{\partial o_{k}^{1}}{\partial x} = \frac{\partial E}{\partial o_{k}^{2}} \frac{\partial o_{k}^{2}}{\partial o_{k}^{1}} \frac{\partial o_{k}^{1}}{\partial x}$$

```
In [63]: x=torch.tensor(1.)
In [65]: w1=torch.tensor(2.,requires_grad=True)
In [66]: b1=torch.tensor(1.)
In [67]: w2=torch.tensor(2.,requires_grad=True)
In [68]: b2=torch.tensor(1.)
In [69]: y1=x*w1+b1
In [70]: y2=y1*w2+b2
In [72]: dy2_dy1=autograd.grad(y2,[y1],retain_graph=True)[0]
In [73]: dy1_dw1=autograd.grad(y1,[w1],retain_graph=True)[0]
In [74]: dy2_dw1=autograd.grad(y2,[w1],retain_graph=True)[0]
In [75]: dy2_dy1*dy1_dw1
Out[75]: tensor(2.)
In [76]: dy2_dw1
Out[76]: tensor(2.)
```

下一课时

MLP反向传播

Thank You.

O PyTorch

MLP反向传播

主讲人: 龙良曲

Chain rule

$$O_k^1$$
 O_k^2 $O_k^$

$$\frac{\partial E}{\partial w_{jk}^{1}} = \frac{\partial E}{\partial o_{k}^{1}} \frac{\partial o_{k}^{1}}{\partial x} = \frac{\partial E}{\partial o_{k}^{2}} \frac{\partial o_{k}^{2}}{\partial o_{k}^{1}} \frac{\partial o_{k}^{1}}{\partial x}$$

Multi-output Perceptron

$$\frac{\partial E}{\partial w_{jk}} = \left(O_k - t_k\right) O_k \left(1 - O_k\right) x_j^0$$

$$\frac{\partial E}{\partial w_{jk}} = (O_k - t_k) O_k (1 - O_k) x_j^0$$

$$\frac{\partial E}{\partial w_{jk}} = (O_k - t_k) O_k (1 - O_k) O_j^J$$

$$\frac{\partial E}{\partial w_{jk}} = (O_k - t_k) O_k (1 - O_k) O_j^J$$

$$\frac{\partial E}{\partial w_{jk}} =$$

$$\delta_k^R$$

$$O_j^J$$

$$\frac{\partial E}{\partial W_{ij}} = \frac{\partial}{\partial W_{ij}} \frac{1}{2} \sum_{k \in K} (\mathcal{O}_k - t_k)^2 \qquad x_0^0 | \mathcal{O}_0^J \int_{\mathcal{W}_0} x_k^K | \mathcal{O}_0^K |$$

$$\frac{\partial E}{\partial W_{ij}} = \mathcal{O}_j(1 - \mathcal{O}_j)\mathcal{O}_i \sum_{k \in K} (\mathcal{O}_k - t_k)\mathcal{O}_k(1 - \mathcal{O}_k)W_{jk}$$

$$\frac{\partial E}{\partial W_{ij}} = \mathcal{O}_i \mathcal{O}_j (1 - \mathcal{O}_j) \sum_{k \in K} \delta_k W_{jk}$$

$$\frac{\partial E}{\partial W_{ij}} = \mathcal{O}_j(1 - \mathcal{O}_j)\mathcal{O}_i \sum_{k \in K} (\mathcal{O}_k - t_k)\mathcal{O}_k(1 - \mathcal{O}_k)W_{jk}$$

$$\frac{\partial E}{\partial W_{ij}} = \mathcal{O}_i \mathcal{O}_j (1 - \mathcal{O}_j) \sum_{k \in K} \delta_k W_{jk}$$

For an output layer node $k \in K$

$$\frac{\partial E}{\partial W_{jk}} = \mathcal{O}_j \delta_k$$

where

$$\delta_k = \mathcal{O}_k (1 - \mathcal{O}_k) (\mathcal{O}_k - t_k)$$

For a hidden layer node $j \in J$

$$\frac{\partial E}{\partial W_{ij}} = \mathcal{O}_i \delta_j$$

where

$$\delta_j = \mathcal{O}_j(1 - \mathcal{O}_j) \sum_{k \in K} \delta_k W_{jk}$$

- δ_k^K $\frac{\partial E}{\partial w_{jk}}$
- $\frac{\partial E}{\partial w_{ij}}$
- δ_i^I
- $\bullet \frac{\partial E}{\partial w_{ni}}$

下一课时

2D函数优化

Thank You.