Operations Research Simplex Algorithmus

Prof. Dr. Tim Downie

Virtuelle Fachhochschule BHTB — WINF

Folien für das Video der 4. Woche

Inhalt

- Basisvariablen und Nichtbasisvariablen
- ► Lineare Gleichungssysteme einer LP
- ➤ Simplex Algorithmus Methode des Gleichungssystems
- Aufgabe: Lösung in ein anderes Video

Die Normalform eines LPs

Betrachten wir ein LP in der Grundform:

$$\max Z(x_1, x_2, \dots, x_n) = c_1 x_1 + c_2 x_2 + \dots + c_n x_n$$

$$a_{11} x_1 + a_{12} x_2 + \dots + a_{1n} x_n \leq b_1$$

$$a_{21} x_1 + a_{22} x_2 + \dots + a_{2n} x_n \leq b_2$$

$$\vdots$$

$$a_{m1} x_1 + a_{m2} x_2 + \dots + a_{mn} x_n \leq b_m$$

$$x_1, x_2, \dots, x_n \geq 0.$$

LP in Normalform:

Die Schlupfvariablen ergeben ein lineares Gleichungssystem

$$\max Z(x_1, x_2, \dots, x_n) = c_1 x_1 + c_2 x_2 + \dots + c_n x_n$$

$$a_{11} x_1 + a_{12} x_2 + \dots + a_{1n} x_n + y_1 = b_1$$

$$a_{21} x_1 + a_{22} x_2 + \dots + a_{2n} x_n + y_2 = b_2$$

$$\vdots$$

$$a_{m1} x_1 + a_{m2} x_2 + \dots + a_{mn} x_n + y_m = b_m$$

$$x_1, x_2, \dots, x_n, y_1, \dots, y_m \ge 0.$$

Die Schlupfvariablen werden in der Zielfunktion mit 0 bewertet.

Aus dem Präsenzunterricht: Alle Eckpunkte des Beispiels:

Gewinn-Maximierung-LP

GOWIIII WAXIII						
Gleichungen	Eckpunkt	Schlupf		zulässig?	$Z(x_1,x_2)$	
	(x_1, x_2)	<i>y</i> ₁	<i>y</i> ₂	<i>y</i> ₃		
R4 R5	(0,0)	6	7	18	✓	0
R3 R5	(6,0)	6	1	0	✓	24
R2 R5	(7,0)	6	0	-3	Х	_
R1 R5	keine	_	_	_	I	_
R3 R4	(0,9)	-3	-2	0	×	_
R2 R4	(0,7)	-1	0	4	Х	_
R1 R4	(0,6)	0	1	6	✓	18
R2 R3	(4,3)	3	0	0	✓	25
R1 R3	(2,6)	0	-1	0	Х	_
R1 R2	(1,6)	0	0	3	✓	22

Bemerkungen:

- Jeder unzulässige Lösung hat mindestens einen negativen Schlupfwert.
- ▶ Jede zulässige Lösung hat genau 3 positive Werte und zwei Nullen in der erweiterte Koordinaten (x₁, x₂, y₁, y₂, y₃)
- ▶ Die 1. Zeile ist $x_1 = 0$, $x_2 = 0$, $y_1 = 6$, $y_2 = 7$, $y_3 = 18$ und ist zulässig. x-Werte sind Null und y-Werte sind die Restriktionswerte.

Eine Iteration des Simplex-Algorithmus tauscht eine Null Variable mit einer nicht null variable.

Die *m* nicht-Null Einträge von *x* heißen **Basisvariablen** (BV).

Die *n* Null Einträge von *x* heißen **Nichtbasisvariablen** (NBV).

Eine zulässige Lösung eines LPs in Normalform ist:

Alle Entscheidungsvariablen gleich Null und die Schlupfvariablen gleich die Restriktionswerte

$$x_1 = x_2 = \ldots = x_n = 0,$$
 $y_1 = b_1, \ldots, y_m = b_m$

In dem Fall

OR

alle Entscheidungsvariablen sind Nichtbasisvariablen und alle Schlupfvariablen sind Basisvariablen.

Der Simplex-Algorithmus: Methode des Gleichungssystems

Ein LP in Normalform lässt sich in Matrixform schreiben.

$$A\mathbf{x} = \mathbf{b} \tag{1}$$

A ist eine $m \times (n+m)$ Matrix, \mathbf{x} ist ein (n+m)-dim. Vektor und \mathbf{b} ist ein m-dim. Vektor

Dies ist ein unterbestimmtes Lineares Gleichungssystem in n+m Variablen und m Gleichungen.

Der Simplex-Algorithmus: Methode des Gleichungssystems

Ein LP in Normalform lässt sich in Matrixform schreiben.

$$A\mathbf{x} = \mathbf{b} \tag{1}$$

A ist eine $m \times (n+m)$ Matrix, \mathbf{x} ist ein (n+m)-dim. Vektor und \mathbf{b} ist ein m-dim. Vektor

Dies ist ein unterbestimmtes Lineares Gleichungssystem in n+m Variablen und m Gleichungen.

Wenn n Einträge von x Null und m Einträge nicht-Null sind, reduzierte (??) zu

$$A^{(0)} \mathbf{x}^{(0)} = \mathbf{b}, \tag{2}$$

wobei A eine $m \times m$ Matrix ist und \mathbf{x} ein m-Dim. Vektor ist.

Soweit $A^{(0)}$ eine singuläre Matrix ist hat Gleichung (??) eine eindeutige Lösung.

Beispiel forts.

Die Gewinn-Maximierung-LP in Grundform:

$$\max Z(x_1, x_2) = 4x_1 + 3x_2$$

$$x_2 \leq 6$$

$$x_1 + x_2 \leq 7$$

$$3x_1 + 2x_2 \leq 18$$

$$x_1, x_2 \geq 0.$$

Nach der Einführung der Schlupfvariablen ist die LP in Normalform:

$$\max z = 4x_1 + 3x_2$$

$$x_2 + y_1 = 6$$

$$x_1 + x_2 + y_2 = 7$$

$$3x_1 + 2x_2 + y_3 = 18$$

$$x_1, x_2, y_1, y_2, y_3 \ge 0.$$

Die Restriktionen lassen sich in Matrixform schreiben

$$Ax = b$$

mit

$$A = \begin{bmatrix} 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 3 & 2 & 0 & 0 & 1 \end{bmatrix} \qquad \mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ y_1 \\ y_2 \\ y_3 \end{pmatrix} \qquad \mathbf{b} = \begin{pmatrix} 6 \\ 7 \\ 18 \end{pmatrix}$$

Eine gültige Lösung ist

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ y_1 \\ y_2 \\ y_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 6 \\ 7 \\ 18 \end{pmatrix}$$

Die reduzierte 3 × 3 LGS ist

$$A^{(0)} \mathbf{x}^{(0)} = \mathbf{b}$$

mit

$$A^{(0)} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad \mathbf{x}^{(0)} = \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} \qquad \mathbf{b} = \begin{pmatrix} 6 \\ 7 \\ 18 \end{pmatrix}$$

Diese LGS hat eine eindeutige Lösung

- Die aktuelle Lösung besteht aus m Basisvariablen und n Nichtbasisvariablen, die die aktuelle Ecke bestimmen.
- 2) Die aktuelle Isozielwertgerade (Z-Wert) wird durch die Basisvariablen gelegt.

- Die aktuelle Lösung besteht aus m Basisvariablen und n Nichtbasisvariablen, die die aktuelle Ecke bestimmen.
- Die aktuelle Isozielwertgerade (Z-Wert) wird durch die Basisvariablen gelegt.
- Man tauscht eine Basisvariable mit eine Nichtbasisvariable, um eine benachbarte Ecke zu bestimmen, die den höchst möglichen Anstieg der Zielfunktion verspricht.

- Die aktuelle Lösung besteht aus m Basisvariablen und n Nichtbasisvariablen, die die aktuelle Ecke bestimmen.
- Die aktuelle Isozielwertgerade (Z-Wert) wird durch die Basisvariablen gelegt.
- Man tauscht eine Basisvariable mit eine Nichtbasisvariable, um eine benachbarte Ecke zu bestimmen, die den höchst möglichen Anstieg der Zielfunktion verspricht.
 - Ist kein Anstieg mehr möglich, so **bricht das Verfahren ab**: die aktuelle Ecke liefert die optimale Lösung.

- Die aktuelle Lösung besteht aus m Basisvariablen und n Nichtbasisvariablen, die die aktuelle Ecke bestimmen.
- Die aktuelle Isozielwertgerade (Z-Wert) wird durch die Basisvariablen gelegt.
- Man tauscht eine Basisvariable mit eine Nichtbasisvariable, um eine benachbarte Ecke zu bestimmen, die den höchst möglichen Anstieg der Zielfunktion verspricht.
 - Ist kein Anstieg mehr möglich, so **bricht das Verfahren ab**: die aktuelle Ecke liefert die optimale Lösung.
- 4) Als nächste Näherung der Optimallösung verschiebt man die Isozielwertgerade parallel durch die neue Ecke. Dabei findet ein *Eckentausch* bzw. ein Basiswechsel statt.

Simplex Algorithmus - Methode des Gleichungssystems

Beispiel (forts.)

$$z = 4x_1 + 3x_2$$
$$x_2 + y_1 = 6$$
$$x_1 + x_2 + y_2 = 7$$
$$3x_1 + 2x_2 + y_3 = 18$$

 $z = 0 + 4x_1 + 3x_2$

$$y_1 = 6 - x_2$$
 (I)

$$y_2 = 7 - x_1 - x_2 (II)$$

$$y_3 = 18 - 3x_1 - 2x_2 (III)$$

Die Zielfunktion bzw. die 3 Basisvariablen sind als Funktionen der Nichtbasisvariablen geschrieben. Die Nichtbasisvariablen sind gleich Null.

$$\Rightarrow y_3 = 18 - 3 \cdot 0 - 2 \cdot 0 = 18$$
 usw.

Der Algorithmus startet in der Ecke (0,0).

1. Schritt

A. Wahl der Eintrittsvariable Der größte Zielfunktionskoeffizient ist 4, der zum x_1 gehört. x_1 verspricht einen größeren Zuwachs der Zielfunktion (per Einheit). Wir wählen x_1 als die Eintrittsvariable.

1. Schritt

A. Wahl der Eintrittsvariable Der größte Zielfunktionskoeffizient ist 4, der zum x_1 gehört. x_1 verspricht einen größeren Zuwachs der Zielfunktion (per Einheit). Wir wählen x_1 als die Eintrittsvariable.

B. Wahl der Austrittsvariable: Welche Variable verlässt nun die Basis? Die Eintrittsvariable x_1 tauscht jeweils mit der betreffenden Basisvariable und x_2 bleibt gleich 0.

- ▶ In (I) tritt x₁ gar nicht auf, kein Austausch ist möglich.
- In (II) tausche x_1 mit y_2 , $\Rightarrow x_1 = 7$ und $y_2 = 0$.
- ▶ In (III) tausche $3x_1$ mit y_3 , $\Rightarrow x_1 = 6$ und $y_3 = 0$.

Problem: Gleichung (III) ist nun unzulässig

$$y_3 = 18 - 3x_1 - 2x_2 = 18 - 3 \cdot 7 - 2 \cdot 0 = -3 < 0 \Rightarrow$$
 unzulässig, da $y_3 \ge 0!$

Problem: Gleichung (III) ist nun unzulässig

$$y_3 = 18 - 3x_1 - 2x_2 = 18 - 3 \cdot 7 - 2 \cdot 0 = -3 < 0 \Rightarrow$$
 unzulässig, da $y_3 \ge 0!$

Wenn x_1 tauscht mit y_3 , ist $x_1 = 6$.

Entsprechend wird Gleichung (II)

$$y_2 = 7 - 1 \cdot 6 - 1 \cdot 0 = 1 > 0 \Rightarrow zul$$
ässig.

Problem: Gleichung (III) ist nun unzulässig

$$y_3 = 18 - 3x_1 - 2x_2 = 18 - 3 \cdot 7 - 2 \cdot 0 = -3 < 0 \Rightarrow$$
 unzulässig, da $y_3 \ge 0!$

Wenn x_1 tauscht mit y_3 , ist $x_1 = 6$.

Entsprechend wird Gleichung (II)

$$y_2 = 7 - 1 \cdot 6 - 1 \cdot 0 = 1 > 0 \Rightarrow$$
 zulässig.

 x_1 kann nicht mit y_1 tauschen.

Problem: Gleichung (III) ist nun unzulässig

$$y_3 = 18 - 3x_1 - 2x_2 = 18 - 3 \cdot 7 - 2 \cdot 0 = -3 < 0 \Rightarrow$$
unzulässig, da $y_3 \geqslant 0!$

Wenn x_1 tauscht mit y_3 , ist $x_1 = 6$.

Entsprechend wird Gleichung (II)

$$y_2 = 7 - 1 \cdot 6 - 1 \cdot 0 = 1 > 0 \Rightarrow zulässig.$$

 x_1 kann nicht mit y_1 tauschen.

Austrittsvariable Entscheidungsregel:

Man wählt als Austrittsvariable die Basisvariable, die den kleinsten wert von x_1 ergibt. Größere Werte entsprechen eine unzulässig Lösung.

Die zugehörige Schlupfvariable y₃ wird auf Null gesetzt.

 \Rightarrow y_3 verlässt die Basis.

Die Variable x_1 und y_3 tauschen ihre Plätze in der Gleichung (III).

Alle anderen Restriktionen müssen umgeformt werden, damit die rechte Seiten nur Nicht-Basis-Variablen umfassen.

Gleichung (III)
$$y_3 = 18 - 3x_1 - 2x_2$$

Die Variable x_1 und y_3 tauschen ihre Plätze in der Gleichung (III).

Alle anderen Restriktionen müssen umgeformt werden, damit die rechte Seiten nur Nicht-Basis-Variablen umfassen.

Gleichung (III)
$$y_3 = 18 - 3x_1 - 2x_2$$

Umformen $x_1 = 6 - \frac{1}{3}y_3 - \frac{2}{3}x_2$

Die Variable x_1 und y_3 tauschen ihre Plätze in der Gleichung (III).

Alle anderen Restriktionen müssen umgeformt werden, damit die rechte Seiten nur Nicht-Basis-Variablen umfassen.

Gleichung (III) Umformen	$y_3 = 18 - 3x_1 - 2x_2$ $x_1 = 6 - \frac{1}{3}y_3 - \frac{2}{3}x_2$	
Ersetzen	$Z = 0 + 4(6 - \frac{1}{3}y_3 - \frac{2}{3}x_2) + 3x_2$	(Z)
	$y_1 = 6 - x_2$	(I)
	$y_2 = 7 - (6 - \frac{1}{3}y_3 - \frac{2}{3}x_2) - x_2$	(II)
	$x_1 = 6 - \frac{1}{3}y_3 - \frac{2}{3}x_2$	von oben (III)

Die Variable x_1 und y_3 tauschen ihre Plätze in der Gleichung (III).

Alle anderen Restriktionen müssen umgeformt werden, damit die rechte Seiten nur Nicht-Basis-Variablen umfassen.

Gleichung (III) Umformen	$y_3 = 18 - 3x_1 - 2x_2$ $x_1 = 6 - \frac{1}{3}y_3 - \frac{2}{3}x_2$	
Ersetzen	$Z = 0 + 4(6 - \frac{1}{3}y_3 - \frac{2}{3}x_2) + 3x_2$	(Z)
	$y_1 = 6 - x_2$	(I)
	$y_2 = 7 - (6 - \frac{1}{3}y_3 - \frac{2}{3}x_2) - x_2$	(II)
	$x_1 = 6 - \frac{1}{3}y_3 - \frac{2}{3}x_2$	von oben (III)
Vereinfachen	$Z = 24 - \frac{4}{3}y_3 + \frac{1}{3}x_2$	(Z)
	$y_1 = 6 - x_2$	(I)
	$y_2 = 1 + \frac{1}{3}y_3 - \frac{1}{3}x_2$	(II)
	$x_1 = 6 - \frac{1}{3}y_3 - \frac{2}{3}x_2$	(III)

OR PAT hoter recentle

1.Schritt: Tausch in die Ecke (6,0).

2. Schritt

A. Wahl der Eintrittsvariable Da y_3 einen negativen Koeffizienten in der Zielfunktion besitzt, erhalten wir einen kleineren Z-Wert für positive y_3 .

Da x_2 einen positiven Koeffizienten hat, erhalten wir einen größeren Z-Wert für positive x_2 . x_2 ist die Eintrittsvariable.

OR PHT to receive the second 18

2. Schritt

OR

A. Wahl der Eintrittsvariable Da y_3 einen negativen Koeffizienten in der Zielfunktion besitzt, erhalten wir einen kleineren Z-Wert für positive y_3 .

Da x_2 einen positiven Koeffizienten hat, erhalten wir einen größeren Z-Wert für positive x_2 . x_2 ist die Eintrittsvariable.

- **B.** Wahl der Austrittsvariable: Welche Variable verlässt nun die Basis? x_2 tauscht jeweils mit der betreffenden Basisvariable und y_3 bleibt gleich 0.
- ▶ In (I) $x_2 = 6$ tauscht mit $y_1 \Rightarrow y_2 = -1$. unzulässig!
- In (II) $\frac{1}{3}x_2$ tauscht mit $y_2 = 1$ $\Rightarrow \frac{1}{3}x_2 = 3$. Diese ist zulässig.
- In (III) $\frac{2}{3}x_2$ tauscht mit x_1 $\Rightarrow x_2 = 9$ tauscht mit $x_1 \Rightarrow y_1 = -3$. **unzulässig!**

Die Austrittsvariable ist die Basisvariable, die den kleinsten wert von x_2 ergibt.

Die Variable x_2 und y_2 tauschen ihre Plätze.

Alle anderen Restriktionen müssen umgeformt werden.

Gleichung (II)
$$y_2 = 1 + \frac{1}{3}y_3 - \frac{1}{3}x_2$$

Umformen $x_2 = 3 + y_3 - 3y_2$

Die Variable x_2 und y_2 tauschen ihre Plätze.

Alle anderen Restriktionen müssen umgeformt werden.

Gleichung (II)	y ₂	$= 1 + \frac{1}{3}y_3 - \frac{1}{3}x_2$	
Umformen	<i>X</i> ₂	$=3+y_3-3y_2$	
Ersetzen	Z	$=24-\tfrac{4}{3}y_3-\tfrac{1}{3}(3+y_3-3y_2)$	(Z)
	<i>y</i> ₁	$=6-(3+y_3-3y_2)$	(I)
	<i>X</i> ₂	$=3+y_3-3y_2$	von oben (II)
	<i>X</i> ₁	$=6-\tfrac{1}{3}y_3-\tfrac{2}{3}(3+y_3-3y_2)$	(III)

Die Variable x_2 und y_2 tauschen ihre Plätze.

Alle anderen Restriktionen müssen umgeformt werden.

Gleichung (II)	y ₂	$= 1 + \frac{1}{3}y_3 - \frac{1}{3}x_2$	
Umformen	<i>X</i> ₂	$=3+y_3-3y_2$	
Ersetzen	Z	$=24-\tfrac{4}{3}y_3-\tfrac{1}{3}(3+y_3-3y_2)$	(Z)
	y 1	$=6-(3+y_3-3y_2)$	(I)
	<i>X</i> ₂	$=3+y_3-3y_2$	von oben (II)
	<i>X</i> ₁	$=6-\tfrac{1}{3}y_3-\tfrac{2}{3}(3+y_3-3y_2)$	(III)
Vereinfachen		$= 6 - \frac{1}{3}y_3 - \frac{2}{3}(3 + y_3 - 3y_2)$ $= 25 - y_3 - y_2$	(III) (Z)
Vereinfachen	Z		
Vereinfachen	Z y ₁	$= 25 - y_3 - y_2$	(Z)

Die aktuelle Zielfunktion ist

$$Z=25-y_3-y_2$$

Wenn $y_2 > 0$, wird Z kleiner

Wenn $y_3 > 0$, wird Z kleiner.

Alle Koeffizienten in der Zielfunktion besitzen ein negatives Vorzeichen. Wir können keine bessere Lösung finden.

Ende des Verfahrens

Die optimale Lösung ist:

$$Z^* = 25 \text{ mit } x_1^* = 4 \text{ , } x_2^* = 3, y_1^* = 3, y_2^* = 0, y_3^* = 0.$$

2. Schritt: Tausch in die Ecke (4,3).

Zusammenfassung

Simplex-Algorithmus - Methode des Gleichungssysteme

- (a) Stelle die LP mit z bzw. die Basisvariablen als Funktionen der Nichtbasisvariablen.
- (b) Wähle den größten positiven Koeffizient der Zielfunktion als Eintrittsvariable
- (c) Für jede Restriktion berechne den neuen Wert der Eintrittsvariable. Die Gleichung, die der kleinste Wert ergibt, bestimmt die Austrittsvariable.
- (d) Wechsele die Austrittsvariable und der Eintrittsvariable, damit nur NBV auf der rechten Seite stehen.
- (e) Vereinfache jede Gleichung
- (f) Falls es noch ein positiven Koeffizienten in der Zielfunktion gebe, wiederhole Schritte (b) bis (e).
- (g) Wenn alle Koeffizienten in der Zielfunktion negativ sind, lese die optimale Lösung ab.

Aufgabe: Simplex-Algorithmus - Methode des GS

$$\max Z(x,y)=2x_1+3x_2$$

unter den Nebenbedingungen

$$x_1 + 3x_2 \leq 9$$

$$x_1 + x_2 \leqslant 4$$

$$x_1, x_2 \geqslant 0$$

Stellen Sie die LP in Normalform und Lösen Sie sie durch die Methode des Gleichungssystems.