Macroeconometrics

Topic 2: Univariate Time Series

by Vanessa Berenguer-Rico

University of Oxford

Michaelmas 2016

Univariate Time Series

► ARMA processes

► Non-stationary Time Series (i): Deterministic Trends

► Non-stationary Time Series (ii): Stochastic Trends

ARMA processes

- ▶ Definition
- Properties: Stationarity & Invertibility
- Examples
- ▶ Wold Decomposition: $(MA(\infty))$
- Estimation and Inference
- Model Selection

► We have seen AR(1)

$$X_t = \mu + \phi X_{t-1} + \varepsilon_t,$$

where $\varepsilon_t \sim WN(0, \sigma_{\varepsilon}^2)$

We can generalize this to an AR(p)

$$X_t = \mu + \phi_1 X_{t-1} + \phi_2 X_{t-2} + \dots + \phi_p X_{t-p} + \varepsilon_t,$$

▶ We have also seen a MA(1)

$$X_t = \mu + \varepsilon_t + \theta \varepsilon_{t-1},$$

where $\varepsilon_t \sim WN(0, \sigma_{\varepsilon}^2)$

► We can generalize this to an MA(q)

$$X_t = \mu + \varepsilon_t + \theta_1 \varepsilon_{t-1} + \theta_2 \varepsilon_{t-2} + \dots + \theta_q \varepsilon_{t-q},$$

► We could then combine and get ARMA(p,q)

$$X_t - \phi_1 X_{t-1} - ... - \phi_p X_{t-p} = \mu + \varepsilon_t + \theta_1 \varepsilon_{t-1} + ... + \theta_q \varepsilon_{t-q}$$
, where $\varepsilon_t \sim WN(0, \sigma_\varepsilon^2)$

► For instance: ARMA(1,1)

$$X_t - \phi_1 X_{t-1} = \mu + \varepsilon_t + \theta_1 \varepsilon_{t-1}$$

- ► A useful tool in time series: the **Lag Operator** (*L*)
- ▶ Definition: $X_tL = X_{t-1}$
- Properties:
 - $X_t L^j = X_{t-i}$
 - $(aX_t)L = aX_{t-1}$
 - $(X_t + Y_t)L = X_{t-1} + Y_{t-1}$
- ► Example: AR(1). If $X_t = \mu + \phi X_{t-1} + \varepsilon_t$, then the model can be written as

$$(1 - \phi L)X_t = \mu + \varepsilon_t$$

► For an ARMA(p,q)

$$X_t - \phi_1 X_{t-1} - \dots - \phi_p X_{t-p} = \mu + \varepsilon_t + \theta_1 \varepsilon_{t-1} + \dots + \theta_q \varepsilon_{t-q},$$

▶ The model can be written as

$$(1 - \phi_1 L - \phi_2 L^2 - \dots - \phi_p L^p) X_t = \mu + (1 + \theta_1 L + \theta_2 L^2 + \dots + \theta_q L^q) \varepsilon_t$$

► The model can be written as

$$(1 - \phi_1 L - \phi_2 L^2 - \dots - \phi_p L^p) X_t = \mu + (1 + \theta_1 L + \theta_2 L^2 + \dots + \theta_q L^q) \varepsilon_t$$

► More compactly:

$$\Phi_p(L)X_t = \mu + \Theta_q(L)\varepsilon_t,$$

where

$$\begin{split} \Phi_p(L) &= 1 - \phi_1 L - \phi_2 L^2 - \dots - \phi_p L^p \\ \Theta_q(L) &= 1 + \theta_1 L + \theta_2 L^2 + \dots + \theta_q L^q \end{split}$$

are the autoregressive and moving average polynomials (in L), respectively

For an ARMA(1,1)

$$X_t - \phi_1 X_{t-1} = \mu + \varepsilon_t + \theta_1 \varepsilon_{t-1}$$

► The model can be written as

$$(1 - \phi_1 L) X_t = \mu + (1 + \theta_1 L) \varepsilon_t$$

More compactly:

$$\Phi_1(L)X_t = \mu + \Theta_1(L)\varepsilon_t,$$

where $\Phi_p(L)=1-\phi_1L$ and $\Theta_q(L)=1+\theta_1L$ are the autoregressive and moving average polynomials (in L), respectively

► Properties of ARMA processes:

$$\Phi_p(L)X_t = \mu + \Theta_q(L)\varepsilon_t,$$

- Stability and Invertibility
- ▶ **Definition**: The ARMA process X_t is **stable** (causal) if the roots of the autoregressive polynomial, $\Phi_p(L)$, are outside the unit circle
- ▶ **Definition**: The ARMA process X_t is **invertible** if the roots of the moving average polynomial, $\Theta_q(L)$, are outside the unit circle

► For an AR(1)

$$X_t - \phi_1 X_{t-1} = \mu + \varepsilon_t$$

▶ Is the model stable (causal)? Check: The roots of $\Phi_1(L) = 0$ have to be outside the unit circle (|L| > 1)

$$1 - \phi_1 L = 0$$
 so that $L = 1/\phi_1$

Hence, the model is stationary if $|\phi_1| < 1$

▶ Is the model invertible? Yes, by construction

► For a MA(1)

$$X_t = \mu + \varepsilon_t + \theta_1 \varepsilon_{t-1}$$

- ▶ Is the model stable? Yes, by construction
- ► Is the model invertible? Check: The roots of $\Theta_1(L) = 0$ have to be outside the unit circle (|L| > 1)

$$1 - \theta_1 L = 0$$
 so that $L = -1/\theta_1$

Hence, the model is invertible if $|\theta_1| < 1$

► For an ARMA(1,1)

$$X_t - \phi_1 X_{t-1} = \mu + \varepsilon_t + \theta_1 \varepsilon_{t-1}$$

▶ Is the model stable? Check: The roots of $\Phi_1(L) = 0$ have to be outside the unit circle (|L| > 1)

$$1 - \phi_1 L = 0$$
 so that $L = 1/\phi_1$

Hence, the model is stationary if $|\phi_1| < 1$

► Is the model invertible? Check: The roots of $\Theta_1(L) = 0$ have to be outside the unit circle (|L| > 1)

$$1 + \theta_1 L = 0$$
 so that $L = -1/\theta_1$

Hence, the model is invertible if $|\theta_1| < 1$

► Representations of **stable and invertible** ARMA processes:

$$\Phi_p(L)X_t = \Theta_q(L)\varepsilon_t$$

► MA representation

$$X_t = \Phi_p(L)^{-1}\Theta_q(L)\varepsilon_t$$

AR representation

$$\Theta_q(L)^{-1}\Phi_p(L)X_t=\varepsilon_t$$

► **The Wold Decomposition**: If *X*^{*t*} is a stationary and non-deterministic process, then

$$X_t = \sum_{j=0}^{\infty} \Psi_j u_{t-j} + Z_t = \Psi(L) u_t + Z_t$$

where:

- $ightharpoonup \Psi_0=1 ext{ and } \sum_{j=0}^\infty \Psi_j^2<\infty$
- u_t is $WN(0, \sigma_u^2)$ with $\sigma_u^2 > 0$
- $ightharpoonup Z_t$ is deterministic
- $Cov(u_t.Z_t) = 0$ for all s and t
- Ψ_j and u_t are unique

The Wold Decomposition and the $MA(\infty)$ representation

Wold Decomposition of a stationary process

$$X_t = \sum_{j=0}^{\infty} \Psi_j u_{t-j} + Z_t = \Psi(L) u_t + Z_t$$

► For a stationary ARMA process

$$\Phi_p(L)X_t = \mu + \Theta_q(L)\varepsilon_t$$

the MA representation is

$$X_t = \Phi_p(L)^{-1}\Theta_q(L)\varepsilon_t + \Phi_p(L)^{-1}\mu$$

► Let

$$X_t - \phi X_{t-1} = \mu + \varepsilon_t$$

with $|\phi|$ < 1 (so the process is stationary)

► The MA representation is

$$X_t = (1 - \phi L)^{-1} \varepsilon_t + (1 - \phi L)^{-1} \mu$$
$$= \frac{1}{1 - \phi L} \varepsilon_t + \frac{1}{1 - \phi L} \mu$$

Notice that

$$\frac{1}{1 - \phi L} = (1 + \phi L + \phi^2 L^2 + \phi^3 L^3 + \dots)$$

▶ Hence

$$X_t = \sum_{i=0}^{\infty} \phi^j \varepsilon_{t-j} + \frac{\mu}{1-\phi}$$

▶ Let

$$X_t = \mu + \varepsilon_t + \theta \varepsilon_{t-1}$$

with $|\theta|$ < 1 (so the process is invertible)

► The AR representation is

$$(1+\theta L)^{-1}X_t - (1+\theta L)^{-1}\mu = \varepsilon_t$$

Notice that

$$\frac{1}{1+\theta L} = \frac{1}{1-(-\theta L)} = (1+(-\theta L)+(-\theta L)^2+(-\theta L)^3+...)$$

► Hence

$$X_t = \frac{\mu}{1+\theta} + \sum_{i=1}^{\infty} (-1)^{j+1} \theta^j X_{t-j} + \varepsilon_t$$

► Autocorrelation function of an ARMA(1,1) process

$$(1 - \phi L)X_t = (1 - \theta L)\varepsilon_t$$

with $|\phi|$ < 1 and $|\theta|$ < 1 (so the process is stable and invertible)

Write

$$X_t X_{t-h} = \phi X_{t-1} X_{t-h} + \varepsilon_t X_{t-h} - \theta \varepsilon_{t-1} X_{t-h}$$

Take expectations

$$\gamma_X(h) = \phi \gamma_X(h-1) + E(\varepsilon_t X_{t-h}) - \theta E(\varepsilon_{t-1} X_{t-h})$$

$$\gamma_X(h) = \phi \gamma_X(h-1) + E(\varepsilon_t X_{t-h}) - \theta E(\varepsilon_{t-1} X_{t-h})$$

► This gives as this system of equations:

$$\begin{array}{l} h=0: \gamma_X(0)=\phi\gamma_X(1)+\sigma_{\varepsilon}^2-\theta(\phi-\theta)\sigma_{\varepsilon}^2\\ h=1: \gamma_X(1)=\phi\gamma_X(0)-\theta\sigma_{\varepsilon}^2\\ h\geq 2: \gamma_X(h)=\phi\gamma_X(h-1) \end{array}$$

Hence

$$ho_X(h) = \left\{ egin{array}{ll} 1 & h=0 \ rac{(\phi- heta)(1-\phi heta)}{1+ heta^2-2\phi heta} & h=1 \ \phi
ho_X(h-1) & h=2 \end{array}
ight.$$

ARMA process (stable and invertible)

$$\Phi_p(L)X_t = \Theta_q(L)\varepsilon_t$$

with $\varepsilon_t \sim i.i.d.(0, \sigma_{\varepsilon}^2)$

► MA representation of the ARMA process

$$X_t = \Psi(L)\varepsilon_t$$

where
$$\Psi(L) = \Phi_p(L)^{-1}\Theta_q(L)$$

▶ Law of Large Numbers for the mean: Let X_t be a covariance-stationary process with $E(X_t) = \mu$ and absolutely summable autocovariances, that is $\sum_{h=-\infty}^{\infty} |\gamma_h| < \infty$. Then

$$\frac{1}{n}\sum_{t=1}^{n}X_{t}\stackrel{p}{\longrightarrow}\mu$$

as $n \to \infty$. (see Hamilton p. 188 or Brockwell and Davis, p.58 or Hamilton p. 401)

► **Note**: Any covariance-stationary ARMA(p,q) process (roots of the autoregressive polynomial outside the unit circle) satisfies the conditions of this theorem.

► Recall: MA representation of the ARMA process

$$X_t = \mu + \Psi(L)\varepsilon_t$$

▶ Central Limit Theorem for the mean: If $X_t = \mu + \Psi(L)\varepsilon_t$ where $\varepsilon_t \sim i.i.d.(0, \sigma_\varepsilon^2)$ and $\sum_{j=0}^{\infty} |\psi_j| < \infty$, then as $n \to \infty$,

$$\sqrt{n}\left(\bar{X}_n - \mu\right) \xrightarrow{d} N\left(0, \sum_{h=-\infty}^{\infty} \gamma_h\right)$$

where $\sum_{j=-\infty}^{\infty} \gamma_j = \sigma_{\varepsilon}^2 \Psi^2(1)$ is the long run variance. (See Hamilton, p.195 or Brockwell and Davis, p.58 or Hamilton p. 402)

► Example AR(1): (see Hamilton p.215)

$$X_t = \phi X_{t-1} + \varepsilon_t$$

where $|\phi| < 1$ and $\varepsilon_t \sim i.i.d.(0, \sigma_{\varepsilon}^2)$

▶ Then

$$\sqrt{n}\left(\frac{1}{n}\sum_{t=1}^{n}X_{t}\right) \xrightarrow{d} N\left(0, \frac{\sigma_{\varepsilon}^{2}}{(1-\phi)^{2}}\right)$$

where $\sigma_{\epsilon}^2 \Psi^2(1)$ is the long run variance

► Estimation of an AR(1)

$$X_t = \phi X_{t-1} + \varepsilon_t$$

where $|\phi| < 1$ and $\varepsilon_t \sim i.i.d.(0, \sigma_{\varepsilon}^2)$

► OLS estimation:

$$\hat{\phi}_n = \frac{\sum_{t=2}^n X_{t-1} X_t}{\sum_{t=2}^n X_{t-1}^2} = \phi + \frac{\sum_{t=2}^n X_{t-1} \varepsilon_t}{\sum_{t=2}^n X_{t-1}^2}$$

Properties

$$\hat{\phi}_n = \frac{\sum_{t=2}^n X_{t-1} X_t}{\sum_{t=2}^n X_{t-1}^2} = \phi + \frac{\sum_{t=2}^n X_{t-1} \varepsilon_t}{\sum_{t=2}^n X_{t-1}^2}$$

Denominator (LLN for stationary and ergodic processes)

$$\frac{1}{n} \sum_{t=2}^{n} X_{t-1}^2 \xrightarrow{p} E(X_{t-1}^2) = \frac{\sigma_{\varepsilon}^2}{1 - \phi^2}$$

► Numerator (CLT for m.d.s.)

$$\frac{1}{\sqrt{n}} \sum_{t=2}^{n} X_{t-1} \varepsilon_t \xrightarrow{d} N(0, \frac{\sigma_{\varepsilon}^4}{1 - \phi^2})$$

► Therefore,

$$\sqrt{n}(\hat{\phi}_n - \phi) = \frac{\frac{1}{\sqrt{n}} \sum_{t=2}^n X_{t-1} \varepsilon_t}{\frac{1}{n} \sum_{t=2}^n X_{t-1}^2} \xrightarrow{d} N(0, 1 - \phi^2).$$

- We can conduct standard inference
- ► See Hamilton, p. 215 for the estimation of a general AR(p)

ARMA processes: Selection

- ► AR(p): How should we choose p in practice?
- Different philosophies: General to Specific vs Specific to General
- ► Tools: significance test, information criteria

ARMA processes: Selection

▶ Information Criteria: Suppose we have \bar{k} alternative models, $M_1, ..., M_{\bar{k}}$ where $k = 1, ..., \bar{k}$ represents the number of parameters in the models. We choose the model that minimizes the information criteria

$$IC(k) = \ln \hat{\sigma}_k + k \frac{P(n)}{n}$$

where $\hat{\sigma}_k$ is the variance of the residuals of model M_k , n is the sample size and P(n) is a penalty

- ▶ There are different proposals for P(n) in the literature
 - ► AIC (Akaike): P(n) = 2
 - ▶ BIC (Bayesina): $P(n) = \ln(n)$
 - ► HQ (Hannan-Quin): $P(n) = 2 \ln(\ln(n))$

Deterministic Trends

Deterministic Trends

Deterministic Trends

$$y_t = \alpha + \delta t + \varepsilon_t$$
; $\varepsilon_t \sim i.i.d.(0,1)$

Deterministic Trends

- ▶ Let $\varepsilon_t \sim i.i.d. (0, \sigma^2)$
- ▶ Deterministic trends. Example:

$$y_t = \alpha + \delta t + \varepsilon_t$$

► Stochastic Properties

$$E[x_t] = \alpha + \delta t$$
 $V[x_t] = \sigma^2$
 $Cov[x_t, x_s] = 0$

Deterministic Trends: Estimation and Testing

Hamilton: Chapter 16

- $y_t = \alpha + \delta t + \varepsilon_t$: Estimate α and δ by OLS
- Asymptotic theory slightly different from the case of iid regressors
- OLS estimates in general have different rates of convergence
- ► Nevertheless, usual t and F statistics have the usual asymptotic distributions in this case

Deterministic Trends: Estimation

The model

$$y_t = \alpha + \delta t + \varepsilon_t$$
,

can be written in standard regression model form as follows

$$y_t = x_t' \beta + \varepsilon_t$$
,

where

$$x'_t \equiv \begin{bmatrix} 1 & t \end{bmatrix}$$
,

and

$$\beta \equiv \left[\begin{array}{c} \alpha \\ \delta \end{array} \right].$$

Let \hat{b}_T denote the OLS estimate of β based on a sample of size T

$$\hat{b}_T \equiv \left[\begin{array}{c} \hat{\alpha}_T \\ \hat{\delta}_T \end{array} \right] = \left[\sum_{t=1}^T x_t x_t' \right]^{-1} \left[\sum_{t=1}^T x_t y_t \right].$$

It is simple to see that

$$(\hat{b}_T - \beta) = \left[\sum_{t=1}^T x_t x_t'\right]^{-1} \left[\sum_{t=1}^T x_t \varepsilon_t\right],$$

or equivalently

$$\begin{bmatrix} \hat{\alpha}_T - \alpha \\ \hat{\delta}_T - \delta \end{bmatrix} = \begin{bmatrix} \sum_{t=1}^T 1 & \sum_{t=1}^T t \\ \sum_{t=1}^T t & \sum_{t=1}^T t^2 \end{bmatrix}^{-1} \begin{bmatrix} \sum_{t=1}^T \varepsilon_t \\ \sum_{t=1}^T t \varepsilon_t \end{bmatrix}$$

Notice that

$$\left[\sum_{t=1}^{T} x_t x_t' \right] = \left[\begin{array}{cc} \sum_{t=1}^{T} 1 & \sum_{t=1}^{T} t \\ \sum_{t=1}^{T} t & \sum_{t=1}^{T} t^2 \end{array} \right] \\
= \left[\begin{array}{cc} T & T(T+1)/2 \\ T(T+1)/2 & T(T+1)(2T+1)/6 \end{array} \right]$$

Now, let

$$\mathbf{Y}_T = \left[\begin{array}{cc} T^{1/2} & \mathbf{0} \\ \mathbf{0} & T^{3/2} \end{array} \right],$$

and notice that

$$Y_{T}^{-1} \left[\sum_{t=1}^{T} x_{t} x_{t}' \right] Y_{T}^{-1}$$

$$= \left[\begin{array}{ccc} T^{-1} \sum_{t=1}^{T} 1 & T^{-2} \sum_{t=1}^{T} t \\ T^{-2} \sum_{t=1}^{T} t & T^{-3} \sum_{t=1}^{T} t^{2} \end{array} \right]$$

$$= \left[\begin{array}{ccc} T^{-1}T & T^{-2}T (T+1) / 2 \\ T^{-2}T (T+1) / 2 & T^{-3}T (T+1) (2T+1) / 6 \end{array} \right]$$

$$\longrightarrow \left[\begin{array}{ccc} 1 & 1 / 2 \\ 1 / 2 & 1 / 3 \end{array} \right] \equiv Q.$$

Recall

$$\mathbf{Y}_T = \left[\begin{array}{cc} T^{1/2} & \mathbf{0} \\ \mathbf{0} & T^{3/2} \end{array} \right].$$

If $\varepsilon_t \sim i.i.d.$ $(0, \sigma^2)$ and $E\left[\varepsilon_t^4\right] < \infty$, then

$$Y_T^{-1}\left[\sum_{t=1}^T x_t \varepsilon_t\right] = \left[\begin{array}{c} \left(1/\sqrt{T}\right) \sum_{t=1}^T \varepsilon_t \\ \left(1/\sqrt{T}\right) \sum_{t=1}^T \left(t/T\right) \varepsilon_t \end{array}\right] \stackrel{d}{\longrightarrow} N\left(0,\sigma^2 Q\right).$$

Therefore,

$$\begin{bmatrix} T^{1/2} \left(\hat{\alpha}_T - \alpha \right) \\ T^{3/2} \left(\hat{\delta}_T - \delta \right) \end{bmatrix} \xrightarrow{d} N \left(0, \left[Q^{-1} \sigma^2 Q Q^{-1} \right] \right) = N \left(0, \sigma^2 Q^{-1} \right).$$

Theorem

Let
$$y_t = \alpha + \delta t + \varepsilon_t$$
 where ε_t is i.i.d. $(0, \sigma^2)$ and $E\left[\varepsilon_t^4\right] < \infty$. Then,

$$\left[\begin{array}{c} T^{1/2}\left(\hat{\alpha}_{T}-\alpha\right) \\ T^{3/2}\left(\hat{\delta}_{T}-\delta\right) \end{array}\right] \stackrel{d}{\longrightarrow} N\left(\left[\begin{array}{c} 0 \\ 0 \end{array}\right], \sigma^{2}\left[\begin{array}{cc} 1 & 1/2 \\ 1/2 & 1/3 \end{array}\right]^{-1}\right).$$

Remark: $\hat{\delta}_T$ is superconsistent!

Null Hypothesis

$$H_o: \alpha = \alpha_0$$

► Test statistic

$$t_{\alpha} = \frac{\hat{\alpha}_{T} - \alpha_{0}}{\left\{s_{T}^{2} \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} \sum_{t=1}^{T} x_{t} x_{t}' \end{bmatrix}^{-1} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right\}^{1/2}}'$$

where

$$s_T^2 = \frac{1}{T-2} \sum_{t=1}^T \left(y_t - \hat{\alpha}_T - \hat{\delta}_T t \right)^2$$

► Asymptotic Distribution

$$t_{\alpha} = \frac{\hat{\alpha}_{T} - \alpha_{0}}{\left\{s_{T}^{2} \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} \sum_{t=1}^{T} x_{t} x_{t}' \end{bmatrix}^{-1} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right\}^{1/2}} \xrightarrow{d} N(0,1)$$

Null Hypothesis

$$H_o: \delta = \delta_0$$

► Test statistic

$$t_{\delta} = \frac{\hat{\delta}_{T} - \delta_{0}}{\left\{s_{T}^{2} \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} \sum_{t=1}^{T} x_{t} x_{t}' \end{bmatrix}^{-1} \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\}^{1/2}},$$

where again

$$s_T^2 = \frac{1}{T-2} \sum_{t=1}^{T} (y_t - \hat{\alpha}_T - \hat{\delta}_T t)^2$$

► Asymptotic Distribution

$$t_{\delta} = \frac{\hat{\delta}_{T} - \delta_{0}}{\left\{s_{T}^{2} \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} \sum_{t=1}^{T} x_{t} x_{t}' \end{bmatrix}^{-1} \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\}^{1/2}} \stackrel{d}{\longrightarrow} N\left(0, 1\right)$$

Deterministic Trends: Estimation and Testing

• $\hat{\alpha}_T$ and $\hat{\delta}_T$ converge at different rates

► The corresponding standard errors also incorporate different orders of *T*

► Hence, the usual OLS *t* tests are asymptotically valid

Stochastic Trends

Stochastic Trends

▶ Let $\varepsilon_t \sim i.i.d.(0,1)$, $x_0 = 0$ and consider the following DGPs:

$$x_{t} = 0.5 + 0.3x_{t-1} + \varepsilon_{t};$$
 $x_{t} = 0.5 + 0.7x_{t-1} + \varepsilon_{t}$ $x_{t} = 0.5 + x_{t-1} + \varepsilon_{t}$

► Recall:

$$x_t = \beta + x_{t-1} + u_t; \quad u_t \sim i.i.d. \left(0, \sigma^2\right)$$

$$x_t = x_0 + \beta t + \sum_{i=1}^t u_i$$

► Stochastic Properties

$$E\left[x_{t}
ight] = x_{0} + eta t$$

$$V\left[x_{t}
ight] = \sigma^{2} t$$
 $Cov\left[x_{t}, x_{s}
ight] = \min\left\{t, s\right\} \sigma^{2}$

Some Properties of Unit Root processes:

First difference is stationary:

$$x_t = \beta + x_{t-1} + u_t$$
 vs $\Delta x_t = \beta + u_t$

► Shocks have a permanent effect on the future of the series

$$x_t = x_0 + \beta t + \sum_{j=1}^t u_j$$

Standard inference does not hold...

Hamilton Chapter 17: Consider the OLS estimation of the AR(1) process,

$$y_t = \rho y_{t-1} + u_t,$$

where $u_t \sim i.i.d.N\left(0,\sigma^2\right)$ and $y_0 = 0$. The OLS estimate of ρ is given by

$$\hat{\rho}_T = \frac{\sum_{t=1}^T y_{t-1} y_t}{\sum_{t=1}^T y_{t-1}^2} = \rho + \frac{\sum_{t=1}^T y_{t-1} u_t}{\sum_{t=1}^T y_{t-1}^2}.$$

- ▶ If $|\rho|$ < 1, then the LLN and the CLT can be applied to obtain the asymptotic distribution of the OLS estimator of ρ . See Hamilton (p. 215)
- ► LLN:

$$\frac{1}{T} \sum_{t=1}^{I} y_{t-1}^2 \xrightarrow{p} E\left[y_{t-1}^2\right] = \frac{\sigma^2}{1 - \rho^2}.$$

► CLT:

$$\frac{1}{T^{1/2}} \sum_{t=1}^{T} y_{t-1} u_t \xrightarrow{d} N\left(0, E\left[y_{t-1}^2 u_t^2\right]\right) = N\left(0, \frac{\sigma^4}{1 - \rho^2}\right)$$

► Therefore,

$$T^{1/2}\left(\hat{\rho}_T - \rho\right) \stackrel{d}{\longrightarrow} N\left(0, 1 - \rho^2\right)$$

- ▶ If $\rho = 1$, the distribution collapses; that is, $T^{1/2}(\hat{\rho}_T \rho) \stackrel{p}{\longrightarrow} 0$: not very helpful for hypothesis testing
- ► To obtain a non-degenerate asymptotic distribution: $T(\hat{\rho}_T \rho)$
- ► Faster than the stationary case $(T^{1/2})$ but at slower than the deterministic trend case $(T^{3/2})$
- ▶ Asymptotic distribution when $\rho = 1$ non-standard. Can be described in terms of functionals of **Brownian motions!**

Brownian Motion

Definition

A Standard Brownian motion W(.) is a continuous-time stochastic process, associating each date $r \in [0,1]$ with the scalar W(r) such that:

- (a) W(0) = 0
- (b) For any dates $0 \le r_1 < r_2 < ... < r_k \le 1$, the changes $[W(r_2) W(r_1)]$, $[W(r_3) W(r_2)]$, ..., $[W(r_k) W(r_{k-1})]$ are independent Gaussian with $[W(s) W(r)] \sim N(0, s r)$
- (c) For a given realization, W(r) is continuous in r with probability 1

The Functional Central Limit Theorem

- The CLT establishes convergence of random variables, the FCLT establishes conditions for convergence of random functions
- ▶ Let ε_t be an *i.i.d.* $(0, \sigma^2)$ sequence
- ► The CLT considers

$$T^{1/2}\bar{\varepsilon}_T = T^{1/2}\frac{1}{T}\sum_{t=1}^{T}\varepsilon_t$$

▶ The FCLT considers

$$T^{1/2}X_{T}\left(r\right)=T^{1/2}\frac{1}{T}\sum_{t=1}^{[Tr]}\varepsilon_{t}$$

The Functional Central Limit Theorem

Consider

$$X_{T}\left(r
ight)=rac{1}{T}\sum_{t=1}^{\left[Tr
ight]}arepsilon_{t},$$

where $r \in [0, 1]$, [Tr] denotes the integer part of Tr

► For any given realization, $X_T(r)$ is a step **function** in r:

$$X_{T}(r) = \begin{cases} 0 & 0 \leq r < 1/T \\ \varepsilon_{1}/T & 1/T \leq r < 2/T \\ (\varepsilon_{1} + \varepsilon_{2})/T & 2/T \leq r < 3/T \\ \vdots & \vdots \\ (\varepsilon_{1} + \varepsilon_{2} + \dots + \varepsilon_{T})/T & r = 1 \end{cases}$$

The Functional Central Limit Theorem

The simplest FCLT is known as Donsker's theorem (Donsker, 1951)

Theorem

Let ε_t be a sequence of i.i.d. random variables with mean zero. If $\sigma^2 \equiv var(\varepsilon_t) < \infty$, $\sigma^2 \neq 0$, then

$$T^{1/2}X_{T}\left(r\right)/\sigma\overset{d}{\longrightarrow}W\left(r\right)$$

The Continuous Mapping Theorem

The Continuous Mapping Theorem, CMT, states that if $X_T(.) \xrightarrow{d} X(.)$ and g is a continuos functional, then $g(X_T(.)) \xrightarrow{d} g(X(.))$

The Continuous Mapping Theorem

- ► Example: $S_T(r) = T^{1/2}X_T(r) \stackrel{d}{\longrightarrow} \sigma W(r)$
- ► Example: $S_T^2(r) = \left[T^{1/2}X_T(r)\right]^2 \xrightarrow{d} \sigma^2 \left[W(r)\right]^2$
- ► Example: $\int_0^1 S_T(r) dr = \int_0^1 T^{1/2} X_T(r) dr \xrightarrow{d} \sigma \int_0^1 W(r) dr$
- ► Example:

$$\int_{0}^{1} S_{T}^{2}(r) dr = \int_{0}^{1} \left[T^{1/2} X_{T}(r) \right]^{2} dr \xrightarrow{d} \sigma^{2} \int_{0}^{1} \left[W(r) \right]^{2} dr$$

► Consider the random walk

$$y_t = y_{t-1} + \varepsilon_t,$$

where $\varepsilon_t \sim i.i.d.$ $(0, \sigma^2)$, and $y_0 = 0$, so that

$$y_t = \sum_{j=1}^t \varepsilon_j$$

$$y_t = \sum_{j=1}^t \varepsilon_j$$

▶ Then, $X_T(r)$ can be consturcted as follows

$$X_{T}(r) \begin{cases} 0 & 0 \leq r < 1/T \\ y_{1}/T = \varepsilon_{1}/T & 1/T \leq r < 2/T \\ y_{2}/T = (\varepsilon_{1} + \varepsilon_{2})/T & 2/T \leq r < 3/T \\ \vdots & \vdots \\ y_{T}/T = (\varepsilon_{1} + \varepsilon_{2} + ... + \varepsilon_{T})/T & r = 1 \end{cases}$$

▶ Notice that

$$\int_{0}^{1} X_{T}(r) dr = \frac{y_{1}}{T^{2}} + \frac{y_{2}}{T^{2}} + \dots + \frac{y_{T}}{T^{2}} = \frac{1}{T^{2}} \sum_{t=1}^{T} y_{t}$$

► Hence,

$$\frac{1}{T^{3/2}}\sum_{t=1}^{T}y_{t}=\int_{0}^{1}T^{1/2}X_{T}\left(r\right)dr\stackrel{d}{\longrightarrow}\sigma\int_{0}^{1}W\left(r\right)dr$$

► Similarly,

$$\frac{1}{T^2} \sum_{t=1}^{T} y_t^2 = \int_0^1 \left[T^{1/2} X_T(r) \right]^2 dr \xrightarrow{d} \sigma^2 \int_0^1 \left[W(r) \right]^2 dr$$

► Recall, if

$$y_t = \rho y_{t-1} + \varepsilon_t$$
,

where $\varepsilon_t \sim i.i.d.$ $(0, \sigma^2)$, then the OLS estimator of ρ is

$$\hat{\rho}_T = \frac{\sum_{t=1}^T y_{t-1} y_t}{\sum_{t=1}^T y_{t-1}^2} = \rho + \frac{\sum_{t=1}^T y_{t-1} \varepsilon_t}{\sum_{t=1}^T y_{t-1}^2}$$

• If $\rho = 1$

$$(\hat{
ho}_T-1)=rac{\displaystyle\sum_{t=1}^T y_{t-1}arepsilon_t}{\displaystyle\sum_T^T y_{t-1}^2}.$$

► For the numerator, notice that $y_t^2 = y_{t-1}^2 + \varepsilon_t^2 + 2y_{t-1}\varepsilon_t$. Hence,

$$\frac{1}{T} \sum_{t=1}^{T} y_{t-1} \varepsilon_t = \frac{1}{2} \left(\frac{1}{T} \sum_{t=1}^{T} \left(y_t^2 - y_{t-1}^2 \right) - \frac{1}{T} \sum_{t=1}^{T} \varepsilon_t^2 \right)$$

$$= \frac{1}{2} \left(\frac{1}{T} y_T^2 - \frac{1}{T} \sum_{t=1}^{T} \varepsilon_t^2 \right)$$

$$\xrightarrow{d} \frac{1}{2} \sigma^2 \left(W^2 \left(1 \right) - 1 \right)$$

And for the denominator

$$\frac{1}{T^2} \sum_{t=1}^{T} y_{t-1}^2 \xrightarrow{d} \sigma^2 \int_0^1 \left[W(r) \right]^2 dr$$

► Therefore,

$$T\left(\hat{\rho}_{T}-1\right) = \frac{\frac{1}{T}\sum_{t=1}^{T}y_{t-1}\varepsilon_{t}}{\frac{1}{T^{2}}\sum_{t=1}^{T}y_{t-1}^{2}} \xrightarrow{d} \frac{\left(W^{2}\left(1\right)-1\right)}{2\int_{0}^{1}\left[W\left(r\right)\right]^{2}dr}$$

- ► **Remark 1**: The OLS estimator converges at a rate *T*: Super-consistent!
- ▶ **Remark 2**: The asymptotic distribution is not standard

Testing for Unit Roots

- Unit Root tests: hypotheses testing procedures for a unit root
- ➤ This course focuses on: **testing the null of a unit root vs the alternative of trend-stationary** (there are many other types)
- ► In particular, we will consider one of the most popular test for unit roots: the Dickey-Fuller (DF) test
- ► For an overview on unit root testing: Phillips and Xiao (1998)

Testing for Unit Roots

Some features of the DF test:

► The asymptotic distribution is not standard

► Deterministic components in true model and/or auxiliary regression affect the asymptotic distribution

 Different tables of critical values have to be used in each case

▶ The Hypotheses

$$\begin{cases}
H_o: y_t \sim I(1) \\
H_a: y_t \sim I(0)
\end{cases}$$

► The Auxiliary Regression

$$y_t = \rho y_{t-1} + u_t,$$

and hence

$$\begin{cases} H_o: y_t \sim I(1) \equiv \rho = 1 \\ H_a: y_t \sim I(0) \equiv \rho < 1 \end{cases}$$

Equivalently,

$$\Delta y_t = \theta y_{t-1} + u_t,$$

where $\theta = (\rho - 1)$ and hence

$$\begin{cases} H_o: y_t \sim I(1) \equiv \theta = 0 \\ H_o: y_t \sim I(0) \equiv \theta < 0 \end{cases}$$

- ► Three possible specifications to consider deterministic components:
- ► No Deterministic Components:

$$(i) \quad \Delta y_t = \theta y_{t-1} + u_t$$

► Constant Term:

(ii)
$$\Delta y_t = \alpha + \theta y_{t-1} + u_t$$

► Linear Trend:

(iii)
$$\Delta y_t = \alpha + \beta t + \theta y_{t-1} + u_t$$

- Which specification to use in practice?
- ▶ It is convenient to use an auxiliary regression that is able to explain both H_0 and H_1
- A graphical simple device:
- ▶ If the data looks trended, then (*iii*) would be a reasonable specification under both hypothesis
- ▶ Otherwise, (*ii*) is recommended

Auxiliary Regression

$$\Delta y_{t}=f\left(t
ight) + heta y_{t-1}+u_{t},$$
 where $heta=\left(
ho -1
ight)$

- ► Two scenarios:
 - (a) u_t uncorrelated: DF test
 - (b) u_t correlated: Augmented DF (ADF) test, etc...

Consider the following case

$$y_t = y_{t-1} + u_t$$
 where $u_t = \varepsilon_t \sim i.i.d. (0, \sigma^2)$

► Auxiliary Regression

where $\theta = (\rho - 1)$

$$\Delta y_t = \theta y_{t-1} + u_t,$$

▶ Test statistic under the H_0 : $\theta = 0$ is

$$t_{ heta} = rac{\hat{ heta}_T}{\hat{\sigma}_{\hat{ heta}_T}} = rac{rac{1}{T} \sum_{t=1}^T y_{t-1} arepsilon_t}{\left(rac{1}{T^2} \sum_{t=1}^T y_{t-1}^2
ight)^{1/2} s_T},$$

where, given that $\hat{\theta}_T = \hat{\rho}_T - 1$,

$$s_T^2 = \frac{1}{(T-1)} \sum_{t=1}^{T} (y_t - \hat{\rho}_T y_{t-1})^2$$

Recall

$$y_t = y_{t-1} + u_t$$
 where $u_t = \varepsilon_t \sim i.i.d. (0, \sigma^2)$,

Therefore,

(i)

$$s_T^2 \xrightarrow{p} \sigma^2$$

$$\frac{1}{T} \sum_{t=1}^{T} y_{t-1} \varepsilon_t \xrightarrow{d} (1/2) \sigma^2 \left\{ [W(1)]^2 - 1 \right\}$$

$$\frac{1}{T^2} \sum_{t=1}^{T} y_{t-1}^2 \xrightarrow{d} \sigma^2 \int_0^1 \left[W(r) \right]^2 dr$$

► Hence,

$$t_{\theta} \xrightarrow{d} \frac{(1/2) \left\{ [W(1)]^2 - 1 \right\}}{\left(\int_0^1 [W(r)]^2 dr \right)^{1/2}}$$

Remark: This distribution is not standard but it can be tabulated. Check DFtest.prg!

▶ Remark: Remember from above that different tables of critical values have to be used in the presence of deterministic components (in the true model and/or the auxiliary regression)

- ▶ Assumption $u_t = \varepsilon_t \sim i.i.d$. typically violated in economic applications
- ▶ Relax the iid assumption: $u_t = \psi(L) \varepsilon_t$ with $\varepsilon_t \sim i.i.d.$
- ▶ If u_t is autocorrelated, then the distribution of the DF test will change
- ► Several ways of accounting for this fact. Here: **ADF** test

The Augmented Dickey-Fuller test

- ADF test: parametric correction to allow for autocorrelation in the error
- ▶ Based on the following "augmented" auxiliary regression

$$\Delta y_{t} = f(t) + \theta y_{t-1} + \sum_{j=1}^{p-1} \varphi_{j} \Delta y_{t-j} + \varepsilon_{t}$$

- ▶ Under H_0 : $\theta = 0$ the test based on the corresponding t-statistic has the same asymptotic distribution as in the non-autocorrelated case
- ► As before, the presence of deterministic components will affect the asymptotic distribution

The Augmented Dickey-Fuller test

ADF auxiliary regression

$$\Delta y_t = f(t) + \theta y_{t-1} + \sum_{j=1}^{p-1} \varphi_j \Delta y_{t-j} + \varepsilon_t$$

- ► Said and Dickey (1984): if p goes to infinity slowly enough relative to T, $p = T^{1/3}$, then the OLS t-test for H_o : $\theta = 0$ can be carried out using the DF critical values
- ▶ How to select the order of the polynomial lags, *p*, in practice? Information criteria. General to Specific

- ► Nelson and Plosser (1982): "Trends and Random Walks in Macroeconomic Time Series"
- ► "This paper investigates whether macroeconomic time series are better characterized as stationary fluctuations around a deterministic trend or as non-stationary processes that have no tendency to return to a deterministic path."
- "Using long historical time series for the U.S. we are unable to reject the hypothesis that these series are non-stationary stochastic processes with no tendency to return to a trend line."

Nelson&Plosser data set:

- ► The U.S. historical time series include measures of output, money, prices, interest rates...
- ► Annual data. Starting dates varying from 1860 to 1909. All end in 1970
- All series except the bond yield are transformed to natural logs
- Extended version available

Table 2 Sample autocorrelations of the natural logs of annual data.^a

Series		Sample autocorrelations							
	Period	T	r ₁	r ₂	r ₃	r ₄	r ₅	r ₆	
Random walk ^b		100	0.95	0.90	0.85	0.81	0.76	0.70	
Time aggregated ^b									
random walk		100	0.96	0.91	0.86	0.82	0.77	0.73	
Real GNP	1909-1970	62	9.95	0.90	0.84	0.79	0.74	0.69	
Nominal GNP	1909-1970	62	0.95	0.89	0.83	0.77	0.72	0.67	
Real per capita GNP	1909-1970	62	0.95	0.88	0.81	0.75	0.70	0.65	
Industrial production	1860-1970	111	0.97	0.94	0.90	0.87	0.84	0.81	
Employment	1890-1970	81	0.96	0.91	0.86	0.81	0.76	0.71	
l nemployment rate	1890-1970	81	0.75	0.47	0.32	0.17	0.04	- 0.01	
GNP deflator	1889-1970	82	0.96	0.93	0.89	0.84	0.80	0.76	
Consumer prices	1860-1970	111	0.96	0.92	0.87	0.84	0.81	0.77	
Wages	1900-1970	71	0.96	0.91	0.86	0.82	0.77	0.73	
Real wages	1900-1970	71	0.96	0.92	0.88	0.84	0.80	0.75	
Money stock	1889-1970	82	0.96	0.92	0.89	0.85	0.81	0.77	
Velocity	18 69 -1970	102	0.96	0.92	0.88	0.85	0.81	0.79	
Bond yield	1906-1970	71	0.84	0.72	0.60	0.52	0.46	0.40	
Common stock prices	1871-1970	100	0.96	0.90	0.85	0.79	0.75	0.71	

[&]quot;The natural logs of all the data are used except for the bond yield. T is the sample size and r_i is the ith order autocorrelation coefficient. The large sample standard error under the null hypothesis of no autocorrelation is T^{-1} or roughly 0.11 for series of the length considered here. "Computed by the authors from the approximation due to Wichern (1973).

Table 3

Sample autocorrelations of the first difference of the natural logs of annual data.*

		Sample autocorrelations									
Series	Period	T	r_{i}	r ₂	r ₃	r ₄	r ₅	r ₆	s(r)		
Time aggregated											
random walk ^b			0.25	0.00	0.00	0.00	0.00	0.00			
Real GNP	1909-1970	62	0.34	0.04	-0.18	-0.23	-0.19	0.01	0.13		
Nominal GNP	1 909 19 70	62	0.44	0.08	-0.12	-0.24	-0.07	0.15	0.13		
Real per capita GNP	1909-1970	62	0.33	0.04	-0.17	-0.21	-0.18	0.02	0.13		
ladustrial production	1860-1970	111	0.03	-0.11	-0.00	-0.11	-0.28	0.05	0.09		
Employment	1890-1970	81	0.32	-0.05	-0.08	-0.17	-0.20	0.01	0.11		
Unemployment rate	1890-1970	81	0.09	-0.29	0.03	0.03	-0.19	0.01	0.11		
GNP deflator	1.89-1970	82	0.43	0.20	0.07	0.06	0.03	0.02	0.11		
Consumer prices	1860-1970	111	0.58	0.16	0.02	-0.00	0.05	0.03	0.09		
Wages	1900-1970	7.	0.46	0.10	-0.03	-0.09	-0.09	0.08	0.12		
Real wages	1900-1970	71	0.19	-0.03	-0.07	-0.11	-0.18	-0.15	0.12		
Money stock	1889-1970	82	0.62	0.30	0.13	-0.01	-0.07	-0.04	0.11		
Velocity	1869-1970	102	0.11	-0.04	-0.16	-0.15	-0.11	0.11	0.10		
Bond yield	1900-1970	71	0.18	0.31	0.15	0.04	0.06	0.05	0.12		
Common stock prices	1871-1970	100	0.22	-0.13	-0.08	-0.18	-0.23	0.02	0.10		

[&]quot;The first differences of the natural logs of all the data are used except for the bond yield. T is the example size and r, is the estimated ith order autocorrelation coefficient. The large sample standard error for r is given by s(r) under the null hypothesis of no autocorrelation.

Theoretical autocorrelations as the number of aggregated observations becomes large; result due to Working (1960).

Table 4
Sample autocorrelations of the deviations from the time trend.

Series		Sample autocorrelations								
	Period	T ,	<i>r</i> ₁	r ₂	<i>r</i> ₃	r ₄ ·	r ₅	r ₆		
Detrended random		61	0.85	0.71	0.58	0.47	0.36	0.27		
walk ^b		101	0.91	0.82	0.74	0.66	0.58	0.51		
Real GNP	1909-1970	62	0.87	0.66	0.46	0.26	0.19	0.07		
Nominal GNP	1909-1970	62	0.93	0.79	0.65	0.52	0.43	0.05		
Real per capita GNP	1909-1970	62	0.87	0.65	0.43	0.24	0.11	0.04		
Industrial production	1860-1970	111	0.84	0.67	0.53	0.40	0.30	0.28		
Employment	1890-1970	81	0.89	0.71	0.55	0.39	0.25	0.17		
Unemployment rate	1890-1970	81	0.75	0.46	0.30	0.15	0.03	0.01		
GNP deflator	1889-1970	82	0.92	0.81	0.67	0.54	0.42	0.30		
Consumer prices	1860-1970	111	0.97	0.91	0.84	0.78	0.71	0.63		
Wages	1900-1970	71	0.93	0.81	0.67	0.54	0.42	0.31		
Real wages	1900-1970	71	0.87	0.69	0.52	0.38	0.26	0.19		
Money stock	1889-1970	82	0.95	0.83	0.69	0.53	0.37	0.21		
Velocity	18691970	102	0.91	0.81	0.72	0.65	0.59	0.56		
Bond vield	1900-1970	71	0.85	0.73	0.62	0.55	0.49	0.43		
Common stock prices	18711970	100	0.90	0.76	0.64	0.53	0.46	0.43		

^aThe data are residuals from linear least squares regression of the logs of the series (except the bond yield) on time. See footnote for table 3.

^bApproximate expected sample autocorrelations based on Nelson and Kang (1981).

Table 5
Tests for autoregressive unit roots^a

 $z_t = \hat{\mu} + \hat{\gamma}t + \hat{\rho}_1 z_{t-1} + \hat{\rho}_2 (z_{t-1} - z_{t-2}) + \dots + \hat{\rho}_k (z_{t-k+1} - z_{t-k}) + \hat{\mu}_t.$

Series	T	k	û	t(û)	Ŷ	t(7)	$\hat{\rho}_1$	$\tau(\hat{\rho}_1)$	s(û)	r ₁
Real GNP	62	2	0.819	3.03	0.006	3.03	0.825	-2.99	0.058	-0.02
Nominal GNP	62	2	1.06	2.37	0.006	2.34	0.899	-2.32	0.087	0.03
Real per										
capita GNP	62	2	1.28	3.05	0.004	3.01	0.818	-3.04	0.059	- 5.02
Industrial										
production	111	6	0.103	4.32	0.007	2.44	0.835	-2.53	0.097	0.03
Employment	81	3	1.42	2.68	0.002	2.54	0.861	-2.66	0.035	0.10
Unemployment										
rate	81	4	0.513	2.81	-0.000	-0.23	0.706	- 3.55°	0.407	0.02
GNP deflator	82	2	0.260	2.55	0.002	2.65	0.915	-2.52	0.046	-0.03
Consumer prices	111	4	0.090	1.76	0.001	2.84	0.986	-1.97	0.042	-0.06
Wages	71	3	0.566	2.30	0.004	2.30	0.910	-2.09	0.060	0.00
Real wages	71	2	0.487	3.10	0.004	3.14	0.831	-3.04	0.034	-0.01
Money stock	82	2	0.133	3.52	0.005	3.03	0.916	3.08	0.047	0.03
Velocity	102	1	0.052	0.99	-0.000	-0.65	0.941	-1.66	0.067	0.11
Interest rate	71	3	-0.186	-0.95	0.003	1.75	1.03	0.686	0.283	-0.02
Common stock										
prices	100	3	0.481	2.02	0.003	2.37	0.913	-2.05	0.158	0.20

 $^{{}^{}n}z_{i}$ represents the natural logs of annual data except for the bond yield. $t(\hat{\mu})$ and $t(\hat{\gamma})$ are the ratios of the OLS estimates of μ and γ to the respective standard errors. $t(\hat{\mu})$ is the ratio of $\hat{\rho}_{i} = 1$ to its standard error. $s(\hat{\mu})$ is the standard error of the regression and r_{i} is the first-oron autocorrelation coefficient of the residuals. The values of $t(\hat{\rho}_{i})$ denoted by an (*) are smaller than the 0.05 one tail critical value of the distribution of $t(\hat{\rho}_{i})$ and similarly for $\hat{\rho}_{i}$. It should also be noted that $t(\hat{\mu})$ and $t(\hat{\gamma})$ are not distributed as normal random variables.