MNAF. Grado de Físicas. 3^{er} curso. La ecuación de difusión

Vamos a estudiar una barra cilíndrica de 1.5 m de longitud y sección 2 m². La barra tiene en su mitad una unión de cobre y acero plateado cada una de 50 cm de longitud. A cada lado de esta unión hay una sección de acero. La barra está aislada en su superficie cilíndrica pero sus extremos se mantienen a T(0,t)=50 °C y a T(1.5,t)=200 °C. En la tabla I se dan algunos parámetros importantes para el estudio del comportamiento térmico de estos materiales.

Tabla I	k (J/m·s·°C)	$\rho (gr/cm^3)$	c(J/gr·°C)	$\alpha^2 (\text{mm}^2/\text{s})$
Cobre	401.	8.02	0.385	130.
Plata	429.	9.32	0.235	196.
Acero plateado	100.	8.0	0.30	60.
Acero	46.	7.85	0.45	13.1

Supón que la barra parte de una distribución inicial de temperaturas:

$$T(x, t=0) = (80 \text{ °C/m}^2) \cdot x^2 - (20 \text{ °C/m}) \cdot x + 50 \text{ °C}$$

y se rige por la ecuación en derivadas parciales (EDP):

$$\partial T_t - \partial (\alpha^2(x) \!\cdot\! \partial T_x)_x = Q \; (x).$$

Usa un esquema explícito de diferencias finitas para responder a las siguientes preguntas.

Objetivo 1

Si Q
$$(x) = 0$$
:

¿Cuál será la distribución estacionaria de temperaturas $T(x, t\to\infty)$ de la barra sin la unión cobreacero plateado?

¿Cuál será la distribución estacionaria de temperaturas $T(x, t\rightarrow \infty)$ de la barra con la citada unión?

Objetivo 2

Sigue suponiendo que Q(x) es nula.

Calcula el valor de la funcional asociada a la EDP estacionaria al comienzo del intervalo temporal. ¿Qué le ocurre durante la evolución temporal de la temperatura? ¿Cuál es su distribución espacial?

Objetivo 3

Supón que añadimos una fuente de calor, $Q(x) = Q_o \exp \left[-((x-x_o)/\sigma)^2\right]$, en el medio de la barra. Si esta fuente de calor tiene un σ de 15cm. ¿Cómo evolucionarán temporalmente T(x, t) si Q_o es 0.40 °C/s?

Supón que la fuente de calor es cambiada por una de refrigeración. ¿Cómo evolucionarán temporalmente T(x,t) si Q_o es -0.30 °C/s?