Lecture 7 Concerntration

IEMS 402 Statistical Learning

Northwestern

Ref

https://people.eecs.berkeley.edu/~bartlett/courses/281b-sp08/18.pdf https://people.eecs.berkeley.edu/~bartlett/courses/281b-sp08/19.pdf

Uniform Bound

Recall

$$L(\hat{\theta}) - L(\theta^*) = \underbrace{L(\hat{\theta}) - \hat{L}(\hat{\theta})}_{(1)} + \underbrace{\hat{L}(\hat{\theta}) - \hat{L}(\theta^*)}_{(2)} + \underbrace{\hat{L}(\theta^*) - \hat{L}(\theta^*)}_{(3)}.$$

Uniform Bound

Bound $\sup_{\theta \in \Theta} |L(\theta) - L(\hat{\theta})|$

Why can't we use Chernoff/CLT?

Uniform Bound

Bound $\sup_{\theta \in \Theta} |L(\theta) - L(\hat{\theta})|$

Why can't we use Chernoff/CLT?

Uniform Bound:

$$\Pr\left[\forall \theta \in \Theta, |\hat{L}(\theta) - L(\theta)| \ge \varepsilon'\right] \le \sum_{\theta \in \Theta} \Pr\left[|\hat{L}(\theta) - L(\theta)| \ge \varepsilon'\right].$$

Finite Hypothesis Class

Theorem 4.1. Suppose that our hypothesis class \mathcal{H} is finite and that our loss function ℓ is bounded in [0,1], i.e. $0 \leq \ell((x,y),h) \leq 1$. Then $\forall \delta$ s.t. $0 < \delta < \frac{1}{2}$, with probability at least $1 - \delta$, we have

$$|L(h) - \hat{L}(h)| \le \sqrt{\frac{\ln|\mathcal{H}| + \ln(2/\delta)}{2n}} \qquad \forall h \in \mathcal{H}. \tag{4.9}$$

As a corollary, we also have

$$L(\hat{h}) - L(h^*) \le \sqrt{\frac{2(\ln|\mathcal{H}| + \ln(2/\delta))}{n}}.$$
 (4.10)

Northwestern

Finite Hypothesis Class

Infinite Hypothesis Class

Epsilon Cover

Definition 14.1 (ϵ -covering). Let $(V, \|\cdot\|)$ be a normed space, and $\Theta \subset V$. $\{V_1, ..., V_N\}$ is an ϵ -covering of Θ if $\Theta \subset \bigcup_{i=1}^N B(V_i, \epsilon)$, or equivalently, $\forall \theta \in \Theta$, $\exists i$ such that $\|\theta - V_i\| \leq \epsilon$.

Epsilon Packing

Definition 14.2 (ϵ -packing). Let $(V, \|\cdot\|)$ be a normed space, and $\Theta \subset V$. $\{\theta_1, ..., \theta_M\}$ is an ϵ -packing of Θ if $\min_{i \neq j} \|\theta_i - \theta_j\| > \epsilon$ (notice the inequality is strict), or equivalently $\bigcap_{i=1}^M B(\theta_i, \epsilon/2) = \emptyset$.

Covering and Packing Number

Definition 14.3 (Covering number). $N(\Theta, \|\cdot\|, \epsilon) := \min\{n : \exists \epsilon \text{-covering over } \Theta \text{ of size } n\}$. **Definition 14.4** (Packing number). $M(\Theta, \|\cdot\|, \epsilon) := \max\{m : \exists \epsilon \text{-packing of } \Theta \text{ of size } m\}$.

Fact

Theorem 14.1. Let $(V, \|\cdot\|)$ be a normed space, and $\Theta \subset V$. Then

$$M(\Theta, \|\cdot\|, 2\epsilon) \overset{(a)}{\leq} N(\Theta, \|\cdot\|, \epsilon) \overset{(b)}{\leq} M(\Theta, \|\cdot\|, \epsilon).$$

Dimension Depedency

Intuition: A d-dimensional set has metric dimension d. $(N(\epsilon) = \Theta(1/\epsilon^d).)$

Example: $([0,1]^d, l_{\infty})$ has $N(\epsilon) = \Theta(1/\epsilon^d)$.

Discretization Theorem

Theorem 1.1. Discretization Theorem:

$$\hat{R}(f) \le \inf_{\alpha} \left(\alpha + \sqrt{\frac{2 \log N(\alpha, F, L_2(P_n))}{n}} \right)$$

Dudley's Theorem

Theorem 3.1. Dudley:

$$\hat{R}(F) \le 12 \int_0^\infty \frac{\log N(\epsilon, F, L_2(P_n))}{n} d\epsilon$$

Chaining

The Chaining idea is to rewrite f as follows:

$$f=f+\sum_{j=1}^N(\hat{f}_j-\hat{f}_{j-1})+\hat{f}_0-\hat{f}_N.$$

Example

Example. F =the non-decreasing function from \mathbb{R} to [0,1].

We can actually cover such a function uniformly. We only need to approximate it at n points, marked in the figure. If it is within α at each of these points then the L_2 distance will be no more than α . From the approximating points one can produce a non-decreasing function: for each of the α -levels (of which there will be $1/\alpha$), just specify one of the n points at which it increases above that level. From this we can (loosely, but to the right order of magnitude) upper bound the size of the class of estimate functions: $|\hat{F}| \leq n^{1/\alpha}$.

We see that we can cover F in L_2 :

$$N(\alpha, F, L_2(P_n)) \le C n^{1/\alpha}$$
.

1. The Discretization Theorem gives

$$\hat{R}_n(F) \le c \left(\frac{\log n}{n}\right)^{1/3}$$

2. The Chaining Theorem gives

$$\hat{R}_n(F) \le 12 \int_0^1 \sqrt{\frac{\log n}{\alpha n}} d\alpha = 12 \sqrt{\frac{\log n}{n}} \int_0^1 \sqrt{\frac{1}{\alpha}} d\alpha = 24 \sqrt{\frac{\log n}{n}}$$