

Mathématiques

Classe: 4^{ème} Mathématiques

Primitives: Résumé

Nom du prof : Fraj Zemni

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir Gabes / Djerba

Primitives

Définition:

Soient F et f deux fonctions définies sur un intervalle I.

F est une primitive de f sur I si et seulement si F est dérivable sur I et $\forall x \in I$, F'(x) = f(x)

Théorème 1:

Toute fonction **continue** sur un intervalle I de \mathbb{R} admet des primitives sur cet intervalle.

Théorème 2:

Si F et G sont deux primitives de f sur un intervalle I alors $\forall x \in I$, F(x)=G(x)+c où $c \in \mathbb{R}$.

Théorème 3:

Si f est continue sur un intervalle I, alors pour tout x_o de I et y_o de \mathbb{R} , il existe une primitive F et une seule de f sur I vérifiant $F(x_o) = y_o$.

Tableau des primitives usuelles:

f(x)	I	F(x)
а	\mathbb{R}	ax + b
x^n , $n \in \mathbb{N}^*$	\mathbb{R}	$\frac{x^{n+1}}{n+1}+c$
x^n , $n \in \mathbb{Z}^{-1}$]-∞,0[ou]0,+∞[$\frac{x^{n+1}}{n+1}+c$
$\frac{1}{\sqrt{x}}$]0,+∞[2√x +c
cosx	\mathbb{R}	sinx + c
sinx	\mathbb{R}	– cosx+c
cos(ax+b) a ≠0	\mathbb{R}	$\frac{1}{a}$ sin(ax+b)
sin(ax+b); a ≠0	\mathbb{R}	$-\frac{1}{a}\cos(ax+b)$
$\frac{1}{\cos^2 x} = 1 + \tan^2 x$	$\left] -\frac{\pi}{2} + k\pi, \frac{\pi}{2} + k\pi \left[k \in \mathbb{Z} \right] \right]$	tan x + c
$\frac{1}{\sin^2 x} = 1 + \cot an^2 x$]k π , (k+1) π [, k \in \mathbb{Z}	-cot x+ c

<u>Calculs sur les primitives :</u>

u et v étant deux fonctions dérivables sur un intervalle I de \mathbb{R} .

Fonction f	Une primitive F de f
u' + v'	u+v
α.u'	α.u
u'.v + u.v'	u.v
$\frac{u'}{u^2}$; $\forall x \in I$, $u(x) \neq 0$	$-\frac{1}{u}$
$\frac{u'v - uv'}{v^2} \;\; ; \;\; \forall x \in I, v(x) \neq 0$	u v
u'.u n ; ($n \in \mathbb{N}^{*}$)	$\frac{u^{n+1}}{n+1}$
$\frac{u'}{u^n}$; $(n \in \mathbb{N} \setminus \{0,1\})$	$\frac{-1}{(n-1)u^{n-1}}$
(u(x) ≠0)	
$\frac{u'}{\sqrt{u}}$; $(u(x)>0,\forallx\inI)$	2 √u
$u'\sqrt{u}$, $(u(x) > 0, \forall x \in I)$	$\frac{2}{3}u\sqrt{u}$
v'(x).u'(v(x))	
v dérivable sur l et u dérivable sur v(l)	(uov)(x)
$\frac{u'(x)}{u(x)} ; u(x) \neq 0$	In u(x) +c
u'(x).e ^{u(x)}	e ^{u(x)} + c

