VE485 HomeWork 6

Pan, Chongdan ID:516370910121

July 31, 2020

1 LS Problem

To $\min_x ||Ax - b||$, it's equal to minimize $f(x) = (Ax - b)^T (Ax - b)$ It's gradient is $\nabla f(x) = 2A^T (Ax - b)$ When f(x) = 0, we get the pseudo inverse $\hat{x} = A^T (AA^T)^{-1}b$ I set the A, X, b randomly, stopping critera $\epsilon = 0.01$ For Backtracking search $\alpha = 0.2, \beta = 0.25$ After a lot of test, I get results similar to following table

Input	Final Error	Iterations
\hat{x}	31.57	0
$0.5\hat{x}$	31.57	30
0.75x	7.892	28
0.25x	23.67	31
Random	44.61	33
x+Random	30.81	30
1	43.64	33
0	31.57	31
0.5	54.87	31

2 Analysis

For $X_{input} = \hat{x}$, I think it may be a saddle point since it has 0 iterations but still have error between X. It may also because A is not symmetric. What's more, if $X_{input} = k\hat{x}$, it will lead to same error after some iterations.

For $X_{input} = kX$, it's surprising that kX's error is always lower when $X_{input} = \hat{x}$, hence, they can also lead to similar saddle point, but it's closer to the optimal value, hence there are multiple saddle points. When $k \to 1$, the error is smaller because it's saddle point is closer to the original solution.

For $X_{input} = X_{random}$, we can find it always achieves the largest error with most iterations, it may because there are too much saddle points away from X and the random X will lead to it. But I also found that when $X_{input} = X_{random} + X$, error will be smaller.

For constant matrix, we find it will lead to results similar to \hat{x} , this may have relation with sparsity.

3 With Noise

3.1 Model for Ax = b

If we use the old model for Ax = b, we will get similar result when the noise σ^2 is small, such as $\sigma \in (0, 10)$

Input	Final Error	Iterations
\hat{x}	30.52	0
$0.5\hat{x}$	30.52	29
0.75x	7.839	29
0.25x	22.93	31
Random	43.33	32
x+Random	31.26	31
1	43.24	32
0	30.52	31
0.5	34.17	30

Table 1: When $\sigma = 10$

However, when σ increase bigger, all error will approach the same value.

Input	Final Error	Iterations
\hat{x}	2230	0
$0.5\hat{x}$	2230	43
0.75x	2230	44
0.25x	2230	44
Random	2230	44
x+Random	2230	44
1	2230	44
0	2230	44
0.5	2230	44

Table 2: When $\sigma = 100$

Figure 1: Loss vs. iteration for GD model without considering $\sigma=100$

The iteration for \hat{x} is still 0, which means it's still at the saddle point. The error will also increase with the increase of σ . It also takes more iterations to get the optimal value.

3.2 Model for $Ax + \varepsilon = b$

In this case, our objective is to minimize $||Ax + \varepsilon - b||$, hence the gradient $\nabla f(x) = 2A^T(Ax + \varepsilon - b)$, \hat{x} is also $\hat{x} = A^T(AA^T)^{-1}(b - \varepsilon)$ now.

After we change f(x), $\nabla f(x)$, and \hat{x} , we can get same result as $\varepsilon = 0$ no matter how large ε

Figure 2: Loss vs. iteration for GD model considering $\sigma=100$

Input	Final Error	Iterations
\hat{x}	31.77	0
$0.5\hat{x}$	31.77	29
0.75x	7.94	27
0.25x	23.83	30
Random	45.17	31
x+Random	32.37	30
1	43.60	32
0	31.77	30
0.5	34.91	30

Table 3: When $\sigma = 100$

Python Code

generate the dataset

```
import numpy as np
import matplotlib.pyplot as plt
# loss function
def loss(A, b, X, delta):
    y = np.dot(A, X) + delta - b # 50*1
    return np.dot(y.T, y)
# GD algorithm
def GD(A, b, X0, delta):
    e = 1e-2
    a = 0.2
   beta=0.25
   k = 0
    X = XO
    g = 2*np.dot(A.T,np.dot(A,X) + delta - b)
   n = []
    m = []
    while np.linalg.norm(g)>e: # When the gradient is not small enough
        g=2*np.dot(A.T,np.dot(A,X) + delta - b) # Calculate the negative gradient 1000*1
        t=1
        while 1: # Backtracking
            Xt = X-t*g # 1000*1
            if loss(A, b, Xt, delta) < loss(A, b, X, delta) + a*t*np.dot(g.T, (Xt - X)):
            t *= beta
        X = Xt
        n.append(k)
        m.append(np.linalg.norm(np.dot(A,X) + delta - b))
        k += 1
    plt.plot(n, m)
    return [X,k]
```

```
delta = 1 * (100**2)*np.random.randn(50, 1)
X = np.random.randn(1000, 1)
A = np.random.randn(50, 1000)
b = np.dot(A, X) + delta
# find the optimal solution through pseudo inverse directly
xhat = np.linalg.inv(np.dot(A, A.T))
xhat = np.dot(A.T, xhat)
xhat = np.dot(xhat, b-delta)
# print the rank of A
print('The rank of A is', np.linalg.matrix_rank(A))
# find the solution through GD
Result = GD(A, b, xhat, delta)
print('error for x0=xhat is', np.linalg.norm(X-Result[0]), ' with ', Result[1], 'iterations')
# find the solution through GD
Result = GD(A, b, 0.5*xhat, delta)
print('error for x0=0.5xhat is', np.linalg.norm(X-Result[0]), ' with ', Result[1], 'iteration
# find the solution through GD
Result = GD(A, b, 0.75*X, delta)
print('error for x0=0.75x is', np.linalg.norm(X-Result[0]), 'with ', Result[1], 'iterations'
# find the solution through GD
Result = GD(A, b, 0.25*X, delta)
print('error for x0=0.25x is', np.linalg.norm(X-Result[0]), 'with ', Result[1], 'iterations'
# find the solution through GD
XO = np.random.randn(1000, 1)
Result = GD(A, b, X0, delta)
print('error for x0=random matrix is', np.linalg.norm(X-Result[0]), ' with ', Result[1], 'ite
# find the solution through GD
Result = GD(A, b, X+X0, delta)
print('error for x0=x+random matrix is', np.linalg.norm(X-Result[0]), ' with ', Result[1], 'i
# find the solution through GD
X0 = np.ones((1000, 1))
Result = GD(A, b, X0, delta)
print('error for x0=1 is', np.linalg.norm(X-Result[0]), ' with ', Result[1], 'iterations')
# find the solution through GD
Result = GD(A, b, 0*X0, delta)
print('error for x0=0 is', np.linalg.norm(X-Result[0]), ' with ', Result[1], 'iterations')
# find the solution through GD
Result = GD(A, b, 0.5*X0, delta)
print('error for x0=0.5 is', np.linalg.norm(X-Result[0]), ' with ', Result[1], 'iterations')
```

plt.xlabel('iterations')
plt.ylabel('loss')
plt.axis([0,10,0,200])
plt.show()