```
import pandas as pd # type: ignore
     from sklearn.preprocessing import StandardScaler # type: ignore
     from sklearn.decomposition import PCA # type: ignore
     from sklearn.cluster import KMeans # type: ignore
     import matplotlib.pyplot as plt # type: ignore
                   فراخوانی تمامی کتابخانه های مورد نیاز از جمله K-Means و Pandas
 df = pd.read_csv("dataset-uci.csv")
                                                          تىدىل فايل xlsx. به csv.
df_clean = df.dropna()
                                                             حذف دادههای ناقص
features = df_clean.select_dtypes(include=["float64", "int64"])
                                                       انتخاب فقط ستونهاي عددي
      scaler = StandardScaler()
      X_scaled = scaler.fit_transform(features)
  17
                                                                نرمالسازی دادهها
      pca = PCA(n_components=2)
      X_pca = pca.fit_transform(X_scaled)
                                                 کاهش بعد با PCA برای رسم نمودار
                                                           خوشەىندى باK-Means
```

```
plt.figure(figsize=(8, 6))
plt.scatter(X_pca[:, 0], X_pca[:, 1], c=df_clean["Cluster"], cmap="viridis", s=50)
plt.title("K-Means Clustering (PCA Projection)")
plt.xlabel("PCA 1")
plt.ylabel("PCA 2")
plt.grid(True)

plt.show()
```

رسم نمودار نتايج

df clean.to excel("clustering result.xlsx", index=False)

ذخیره فایل خروجی در Excel

## گزارش نهایی خوشهبندی دادهها

در این پروژه، ابتدا یک دیتاست شامل ۲۰ ویژگی و ۲۰۰ نمونه از افراد مختلف مورد پردازش قرار گرفت. مراحل به شرح زیر انجام شد:

## 1. پیشپردازش:

ابتدا دادههای ناقص (Missing Values) حذف شدند و فقط ستونهای عددی برای تحلیل انتخاب شدند.

2. نرمالسازی: با استفاده از StandardScaler، مقیاس تمامی ویژگیها استاندارد شد. 3. کاهش ابعاد: با استفاده از روش PCA ابعاد دادهها به دو بعد کاهش داده شد تا امکان رسم نمودار فراهم شود.

## 4. خوشەبندى:

- با الگوریتم K-Means خوشهبندی دادهها انجام شد (تعداد خوشهها = ۳).
- سپس با الگوریتم \*\*K-Medoids\*\* نیز همین کار انجام شد تا نتایج مقایسه شوند.

## تحليل خوشهها:

با بررسی نمودارهای PCA، خوشه بندی ها به طور منطقی داده ها را تفکیک کرده اند. خوشه ها تقریباً از هم جدا و با تراکم یکنواخت هستند.

با استفاده از میانگین مقادیر ویژگیها برای هر خوشه نشان داد که خوشهی شماره در الگوریتم K-Means از نظر برخی ویژگیها مانند X1 و X1 دارای مقادیر بالاتر و متمایزتری بود. این موضوع نشاندهنده شاخصبودن این خوشه نسبت به سایر خوشههاست.

این موضوع نشان میدهد که افراد موجود در این خوشه دارای ویژگیهای شاخصتری در برخی معیارها هستند.

## نتيجه گيرى:

در این پروژه مشاهده شد که خوشهبندی به خوبی توانست الگوهای موجود در دادهها را آشکار کند. الگوریتم K-Medoids به دلیل مقاومت بالاتر در برابر دادههای پرت، در برخی موارد نتایج پایدارتر و واضحتری ارائه داد. در نهایت فایل اکسل نهایی شامل شماره خوشه به ازای هر فرد ارائه شده است.

