The metabolism of arsenic in humans:

Bioaccessibility in the gastrointestinal tract, diffusion across lipid membranes and biotransformations in liver cells

Teresa González de Chávez Capilla

This thesis is submitted in fulfilment of the requirements for the degree of Doctor of Philosophy

January 2018
Institute for Applied Ecology
University of Canberra
Australia

To all the brave women before me who fought for my right to get an education in science

Acknowledgements

First and most importantly I would like to thank my primary supervisor Simon Foster. He has done a great job in supervising and guiding me during my first steps in what I hope to be a career in academia. Thank you for encouraging me to be independent and to learn from my mistakes, for your patience and positive attitude, and for teaching me so much.

Bill Maher and Tamsin Kelly, my secondary supervisors, thanks for your meticulous edits to improve my publications and thesis drafts. Tamsin, thanks for your assistance while analysing my samples by LC-MS-MS. Bill, I truly appreciate your involvement and wise advice on different aspects of my project, and of course your unusual sense of humour that has made many days better.

Thanks to the HPLC-ICP-MS for giving me such a hard (and delightful) time and to Simon again for introducing me to the wonderful universe of troubleshooting. Thanks to Frank Krikowa for all his support and help when dealing with equipment failure, despite constantly reminding me how jinxed I am.

Thanks to all those who have let me use their facilities or borrow equipment to complete my experiments. Thanks to Alison Shield for letting me use the cell culture room in the Pharmaceutical Laboratory at University of Canberra and to Sue Mahat-Basnet for teaching me how to culture cells. Thanks to Ashraf Ganem for giving me access to the Organic Synthesis Laboratory at University of Canberra to synthesise some of my standards and to Frady Gouany for taking me to the NMR facilities at the Australian National University and helping me with the analysis of my compounds there. Thanks to Marco Casarotto for allowing me to use the Zetasizer in his laboratory at the John Curtin School of Medical Research, Australian National University. Thanks to Mona Beshai for volunteering to help with some of my experiments and to Andrew O'Reilly-Nugent for IT support with the software required to complete one of my chapters. Thanks to James Grech for his assistance with the LC-MS-MS in the Forensics Laboratory at University of Canberra. Thanks to Richard Carne for his patience and help when ordering consumables and to Rubén Ramírez for letting me borrow small equipment for my experiments.

Thanks to the University of Canberra for awarding me the W. J. Weeden Scholarship that has covered my tuition fees and living allowance during my first three years of PhD. Many thanks to the Institute for Applied Ecology (IAE) for the Top up Scholarship to further support my living expenses during these three years; for covering my tuition fees during my fourth year of PhD; for the Extension and Writing Scholarships that have helped me to survive during this last year; and for the travel allowance that has covered my expenses in several conferences during my candidature.

Within the IAE I would particularly like to thank the Ecochemistry group for all the feedback, general support and enjoyable moments sharing international dishes. I would also like to thank Barbara Harris, who has been highly helpful in every administrative task required; to Bernd Gruber and Janine Deakin for having been excellent IAE HDR Coordinators; and particularly to Janine for being such an inspirational role model for women in science.

Without the Dungeon crew and their peculiar sense of humour this journey would have not been the same. Thanks to Rod, Yaz, Jill and Eman for being such great office mates. Our minutes of 'personal reflection' for meditation, headstands, email jokes and 'coffeeee!' have been priceless. Specially thanks to Rod and Yaz for always being there. Together with Rod and Yaz, I would also like to thank my other IAE HDR student fellows Jonas, Andrew, Will, Margi, Al, Sal and Adrian for the funny times making beer and movies to relieve our PhD stress. Thanks to Will and Yaz for that Agatha Christie's novel as potential reference material for my project in arsenic. I will read it someday. Special thanks to Jonas, not only as a colleague but as my partner, who has been, and is, simply the best.

To everyone that has supported me during these four years, thank you.

No quiero acabar sin incluir al otro lado del mundo, en donde la gente que más me importa me ha demostrado que la distancia no se mide en kilómetros. Muchísimas gracias a mis padres por haberme dado tanto, pero sobre todo por facilitarme la educación que me ha hecho llegar hasta aquí y por inculcarme los valores de honestidad e integridad que tan necesarios son en el mundo de la investigación. Gracias a mis hermanos, en especial a Mauro, a mis abuelos y al resto de mi familia por su apoyo

incondicional. Aurora, Guille (y Cebolla), Matías, Susana, Suheda, Laura, Tahir, Jens, Valentina, Ruggero, Borja, Vero, Marta, Paula, Silvia, Bruno, Miriam, y Chloe: muchas gracias por las conversaciones y risas por Skype y por los mails que han hecho de mis desayunos la mejor manera de empezar el día. Amigos y familia como vosotros hacen que estar tan lejos sea más llevadero.

A todos los que me han apoyado durante estos cuatro años, muchas gracias.

ABSTRACT

Arsenic is ubiquitous in the environment and widely available to humans through their diet. Arsenic toxicity strongly depends on the chemical species absorbed and metabolised once inside an organism. The current regulations to prevent overexposure to arsenic are primarily based on inorganic arsenic species, disregarding more than 30 arsenic species also present in food. There are many studies on the effects of inorganic arsenic on human health, however, only recently the focus has shifted towards the consequences of both endogenic and exogenic complex organic arsenic species. Although little is known about general organic arsenic metabolism, recent publications have shown that some of these species are toxic to humans. Even so, health and environmental organisations still require more information to update the evidence based policies that control arsenic permitted levels in food.

The aim of this thesis was to provide new insights into the poorly understood metabolic pathways of these arsenic species in humans.

Arsenic transformations in the gastrointestinal tract determine the nature of the arsenic species available for metabolism in cells. The studies in *Chapters 2* and *3* investigated the bioaccessibility and degradation of the organic arsenic species commonly found food. Physiological based extraction tests of rice, seaweed, fish and krill oil were performed, as well as of the pure standards of the major arsenic species present in these foodstuffs (arsenic glutathione complexes, arsenosugars, arseno-fatty acids and arseno-hydrocarbons), to assess the effect of the food matrix on arsenic bioaccessibility. It was found that around 80 % of arsenic in these foods is bioaccessible after gastrointestinal digestion. Hydrolysis and demethylation of arsenic glutathione complexes and arsenosugars standards was observed, however, no transformations occurred to arsenosugars present in seaweed. Arseno-fatty acids and arseno-hydrocarbons in krill oil were also found to be bioaccessible. Demethylation of methylarsonic acid and dimethylarsinic acid from rice occurs increasing the amount of inorganic arsenic species available for metabolism in cells.

Arsenic metabolism depends on the ability of different arsenic species to traverse biological membranes. Simple diffusion provides an alternative route to mediated transport mechanisms that can increase the amount of arsenic available for metabolism in cells. In *Chapter 4*, octanol-water and liposome-water partition coefficients were used to investigate the ability of arsenous acid, arsenate, methylarsonate, dimethylarsinate, thiomethylarsonate, thio-dimethylarsinic acid, arsenotriglutathione and monomethylarsonic diglutathione to diffuse through the lipid bilayer of cell membranes. Molecular modelling of arsenic species aided in the interpretation of results. All arsenic species with the exception of arsenate, methylarsonate and thio-methylarsonate were able to diffuse through the lipid bilayer of liposomes, with liposome-water partition coefficients between 0.04 and 0.13. The highest partition coefficients corresponded to trivalent and thioarsenic species, which are known to exert higher toxicities than oxo-pentavalent arsenic species in humans.

Arsenous acid and arsenic acid are known carcinogens and their metabolism in mammals has been extensively studied. They are known to undergo methylation in humans, although the existing proposed pathways to explain the process are still under debate. The study in *Chapter 5* focused on the metabolism of arsenate and arsenous acid in HepG2 cells after 24 h exposure. Particular attention was paid to the species produced and their distribution within the different cellular organelles. It was found that microsomes and mitochondria are the main sites for the metabolism of these arsenic species in liver cells.

Arseno-fatty acids and arseno-hydrocarbons are common in seaweed, fish and crustaceans and have been reported to be toxic to human cells. As they were found to survive the physiological conditions of the gastrointestinal tract, *Chapter 6* investigated the biotransformations of arseno-fatty acids and arseno-hydrocarbons in HepG2 cells. Arsenic speciation of subcellular fractions after 24 h exposure showed that both arsenic species are degraded to dimethylarsinoyl propionic acid in mitochondria and peroxisomes.

A synthesis of the outcomes from this thesis is presented in *Chapter 7*. The key arsenic species for future research in human health studies are discussed. The work presented within this thesis will aid toxicologists and epidemiologists to approach arsenic related topics more effectively.

Contents

Certificate of authorship	i
Acknowledgements	iii
Abstract	vii
List of publications	xv
List of figures	xvii
Chapter 1	xvii
Chapter 2	xviii
Chapter 3	xix
Chapter 4	xx
Chapter 5	xxi
Chapter 6	xxi
Chapter 7	xxii
List of tables	xxiii
Chapter 1	xxiii
Chapter 3	xxiii
Chapter 4	xxiii
Chapter 5	xxiii
Chapter 6	xxiii
Chapter 1 – General introduction	1
Arsenic in the environment	1
Human exposure to arsenic	6
Arsenic toxicity	8
Arsenic metabolism	12
Inorganic arsenic species	15

Organic arsenic species	22
Scope of this research	30
Chapter 2 – Bioaccessibility and degradation of naturally occurring a	arsenic species
from food in the human gastrointestinal tract	35
Introduction	35
Materials and methods	38
Arsenic species standards	38
Arsenic-containing foodstuffs	38
Physiologically based extraction test	39
Total arsenic concentration in foodstuffs samples	40
Arsenic speciation analysis	40
Results	41
Arsenic glutathione complexes and rice	41
Arsenosugars and seaweed	43
Arsenic in fish	46
Discussion	48
Arsenic glutathione complexes and rice	48
Arsenosugars and seaweed	50
Arsenic in fish	52
Concluding remarks	53
Chapter 3 – Degradation of arsenic containing hydrocarbons and fatty a	ıcids from krill
oil and hijiki seaweed in the human gastrointestinal tract	55
Introduction	55
Materials and methods	58
Synthesis of arsenolipid standards	58
Arsenolipid-containing foodstuffs	59
Physiologically based extraction test	60

Total arsenic concentration analysis	61
Arsenic speciation analysis	61
Identification of arsenolipids	63
Results	64
Arsenolipid standards	64
Arsenic species in hijiki seaweed	65
Arsenic species in krill oil	70
Discussion	75
Concluding remarks	78
Chapter 4 – Evaluation of the ability of arsenic species to passively diffus	se across cell
membranes using octanol-water and liposome-water partition coefficients	81
Introduction	81
Materials and methods	87
Arsenic species standards	87
Octanol-water partition coefficients	88
Fabrication and characterization of liposomes	88
Liposome-water partition coefficients	89
Total arsenic concentration analysis	90
Statistical analysis	91
Molecular modelling of arsenic species	91
Results and discussion	91
Octanol-water partition coefficients	91
Liposomes-water partition coefficients	97
Concluding remarks	100
Chapter 5 – Subcellular distribution of the metabolites produced from a	arsenate and
arsenous acid biotransformations in HepG2 cells	101
Introduction	101

Materials and methods	106
Arsenic standards	106
Cell culture reagents preparation	106
Cell culture and incubation	106
Cell seeding, harvesting and subcellular fractionation	107
Total protein concentration	109
Total arsenic analysis	109
Arsenic speciation	110
Results	111
Protein concentration in subcellular fractions	111
Cellular growth and viability	111
As(III) exposed HepG2 cells	112
As(V) exposed HepG2 cells	115
Discussion	118
Cellular growth and viability	118
Arsenic uptake	118
Arsenic distribution and metabolism in As(III) exposed HepG2 cells	119
Arsenic distribution and metabolism in As(V) exposed HepG2 cells	121
Concluding remarks	123
Chapter 6 – Biotransformations of dimethylarsinoyl decane and din	nethylarsinoyl
ındecanoic acid in HepG2 cells	125
Introduction	125
Materials and methods	127
Arsenic standards	127
Cell culture reagents preparation	127
Cell culture and incubation	127

Cell seeding, harvesting and subcellular fractionation
Total protein concentration
Total arsenic analysis
Arsenic speciation
Identification of unknown arsenic species
Results
Protein concentration in subcellular fractions
Cellular growth and viability
AsFA-C11 exposed HepG2 cells
AsHC-C10 exposed HepG2 cells
Discussion
Cellular growth and viability
Arsenic uptake
Arsenic distribution and metabolism in AsFA-C11 exposed HepG2 cells
Arsenic distribution and metabolism in AsHC-C10 exposed HepG2 cells
Concluding remarks 146
Chapter 7 – General conclusions and further directions
References
Appendices
Chapter 3
Chapter 4
Chapter 6

List of publications

Chapter 2

Teresa Chávez-Capilla, Mona Beshai, William Maher, Tamsin Kelly, Simon Foster, Bioaccessibility and degradation of naturally occurring arsenic species from food in the human gastrointestinal tract, Food Chemistry, 2016, 212, 189-197.

Chapter 4

Teresa Chávez-Capilla, William Maher, Tamsin Kelly, Simon Foster, Evaluation of the ability of arsenic species to passively diffuse across cell membranes using octanol-water and liposome-water partition coefficients, Journal of Environmental Sciences, 2016, 49, 222-232.

List of figures

Chapter 1

Figure 1-1. Major inorganic (highlighted in blue) and organic (highlighted in orange)
arsenic species found in nature. The moiety -SG corresponds to a molecule of
glutathione5
Figure 1-2. Arsenic species present in drinking water and food. Photo credit: Pexels and
Ken Hawkins (CC-BY-2.0)8
Figure 1-3. General metabolic pathway for xenobiotics in humans, adapted from
(Goodman and Gilman, 2006, Casarett and Doull, 2008, Rang et al., 2012)15
Figure 1-4. Suggested metabolic pathways by Challenger (A), Hayakawa (B) and
Naranmandura (C) for inorganic arsenic in mammals, adapted from (Kobayashi, 2010,
Rehman and Naranmandura, 2012). Abbreviations: AS3MT (enzyme arsenic III
$methyltransferase), \ GSH \ (glutathione \ molecule), \ SAM \ (\emph{S}-adenosyl-L-methionine}), \ -SG$
(glutathione moiety)
Figure 1-5. Proposed pathways for arsenate reduction in mammalian cells, adapted from
(Foster, 2007, Aposhian et al., 2004, Caspi et al., 2006). Abbreviations: GSTO1-1
(glutathione- S -transferase omega class 1-1), PNP (purine nucleoside phosphorylase) 17
Figure 1-6. Proposed mechanisms for oxidative methylation (A) and reductive
methylation through nucleophilic attack to carbon (B), adapted from (Naranmandura et
al., 2006). Abbreviations: $AS3MT$ (enzyme arsenic III methyltransferase), GSH
(glutathione molecule), -R (thiol moiety of the cysteine residue in a protein), -SG
(glutathione moiety), SAM (S-adenosyl-L-methionine)
Figure 1-7. Proposed metabolism of thio-arsenic species in red blood cells, adapted from
(Hua Naranmandura, 2008). Abbreviations: ECF (extracellular fluid), GSH (glutathione
molecule), Hb- (haemoglobin), ICF (intracellular fluid)
Figure 1-8. Metabolic pathway suggested for the degradation of
phosphatidylarsenocholine in mice, adapted from (Fukuda et al., 2011)25 $$
Figure 1-9. Suggested metabolic pathways of arsenolipid formation from DMA(III),
adapted from (de Bettencourt et al., 2011)25

Figure 1-10. Suggested pathway for arsenosugar formation from DMA, adapted from
(Edmonds and Francesconi, 1987a)
Figure 1-11. Suggested biogenesis of arseno-fatty acids and arseno-hydrocarbons,
adapted from (Rumpler et al., 2008, Taleshi et al., 2008)
Figure 1-12. Overview of proposed pathways for arsenic metabolism from inorganic to
complex organic arsenic species
Chapter 2
Figure 2-1. Structures of the arsenic species commonly encountered in food and water
relevant to this study. The moiety -SG in ATG, MADG and DMAG corresponds to a
molecule of glutathione, in which a sulfur atom is bound to arsenic
Figure 2-2. Arsenic species (%) identified after the PBET (stomach (s) and small intestine
(i) phases) of pure arsenic glutathione complex standards: a) arsenotriglutathione (ATG),
b) monomethylarsonic diglutathione (MADG) and c) dimethylarsoglutathione (DMAG).
42
Figure 2-3. Chromatograms of rice samples (CRM-T07151QC) before (a) and after (b)
PBET. Arsenic concentrations (%) in the stomach (s) and small intestine (i) phases are
shown for each of the arsenic species identified
Figure 2-4. Arsenic species (%) identified after the PBET (stomach (s) and small intestine
(i) phases) of pure arsenosugar standards: a) arsenosugar glycerol (O-Gly) b) arsenosugar-
sulfate (O-SO $_4$), c) arsenosugar-sulfonate (O-SO $_3$), and d) arsenosugar-phosphate (O-
PO ₄)
Figure 2-5. Chromatograms of the arsenosugar-phosphate (O-PO ₄) standard after the
PBET: a) stomach and small intestine phases under anion exchange conditions, b)
stomach and small intestine phases under anion exchange conditions coupled with
hydride generation and c) small intestine phase under cation exchange conditions45
Figure 2-6. Chromatograms of macroalgae samples (NIES CRM Sargasso N.9) before
(a) and after (b) the PBET. Arsenic concentrations (%) in the stomach (s) and small
intestine (i) phases are shown for each of the arsenic species identified47
Figure 2-7. Chromatograms of the dimethylarsinoyl propionic acid (DMAP) standard
before and after the PBET47

Figure 2-8. Chromatograms of fish samples (CRM DORM-3) before and after the PBET.
Arsenic concentrations (%) in controls (c), and the stomach (s) and small intestine (i)
phases are shown for each of the arsenic species identified
Figure 2-9. Proposed mechanism for the degradation of arsenic glutathione complexes
(a) and arsenic species in rice (b) during PBET50
Figure 2-10. Proposed mechanism for the degradation of arsenosugars standards during
PBET52
Chapter 3
Figure 3-1. Chemical structures of the types of arsenolipids known to date56
Figure 3-2. Chemical structures of dimethylarsinoyl undecanoic acid and
dimethylarsinoyl decane
Figure 3-3. Chromatograms of dimethylarsinoyl undecanoic acid (AsFA-C11) samples
before (c) and after stomach (s) and small intestine (i) digestions65
Figure 3-4. Chromatograms of dimethylarsinoyl decane (AsHC-C10) samples before (c)
and after stomach (s) and small intestine (i) digestions65
Figure 3-5. Chromatograms of water soluble (a) and lipid soluble (b) arsenic species in
hijiki seaweed samples before (c) and after stomach (s) and small intestine (i) digestions.
The percentages of lipid soluble arsenic species are calculated relative to the total arsenic
concentration in the corresponding fraction
Figure 3-6. Proposed structures for the arsenolipids identified in hijiki seaweed. The
structures of AsHC 332, AsHC 360, GlyAsL 1012, GlyAsL 1014, GlyAsL 1042, AsPC
$985\ and\ AsPE\ 1035$ are adapted from (Garcia-Salgado et al., 2012, Viczek et al., 2016).69
Figure 3-7. Anion (A) and cation (B) exchange chromatograms of water soluble arsenic
species in krill oil before (c) and after the stomach (s) and small intestine (i) digestions. C)
Reverse-phase chromatograms of lipid soluble arsenic species in krill oil before (c) and
after the stomach (s) and small intestine (i) digestions. The percentages of lipid soluble
arsenic species are calculated relative to the total arsenic concentration in the
corresponding fraction
Figure 3-8. Proposed structures for the arsenolipids identified in krill oil samples. The
structures of AsHC 330 and AsFA 302 have been adapted from (Lischka et al., 2013,

Amayo et al., 2013). Double bonds in aliphatic carbon chains are arbitrary as the
structures need to be confirmed by high resolution LC-MS
Chapter 4
Figure 4-1. Structures of the arsenic species of interest for this chapter. The moiety –SG
in ATG and MADG corresponds to a molecule of glutathione, in which a sulfur atom is
bound to arsenic
Figure 4-2. Octanol-water partition coefficients (P_{OW}) of arsenic species (mean \pm s.d,
n=4). Arsenic recovery ± s.d is given in parentheses93
Figure 4-3. Modelled molecular structures and electrostatic potential maps for the
arsenic species: arsenous acid (a), arsenate (b), methylarsonate (c), dimethylarsinate (d),
thio-methylarsonate (e), thio-dimethylarsinic acid (f), monomethylarsonic diglutathione
(g) and arsenotriglutathione (h). The scale next to each molecule shows the values of the
electrostatic potential for each colour. The red and dark blue regions correspond to the
most negative and most positive regions in the molecule, respectively96
Figure 4-4. Modelled molecular structure and electrostatic potential map of 1-octanol.
The scale next to the molecule shows the values of the electrostatic potential for each
colour. The red and dark blue regions correspond to the most negative and most positive
regions in the molecule, respectively97
Figure 4-5. Modelled molecular structures and electrostatic potential maps for dithio-
methylarsonic acid (a), trithio-methylarsonic acid (b) and dithio-dimethylarsinic acid (c).
The scale next to each molecule shows the values of the electrostatic potential for each
colour. The red and dark blue regions correspond to the most negative and most positive
regions in the molecule, respectively97
Figure 4-6. Structures of phosphatidylcholine (left) and phosphatidylethanolamine (right)
and modelled molecular structures and electrostatic potential maps for their polar heads.
The scale next to each molecule shows the values of the electrostatic potential for each
colour. The red and dark blue regions correspond to the most negative and most positive
regions in the molecule, respectively98
Figure 4-7. Liposome-water partition coefficients (P_{LW}) of arsenic species (mean \pm s.d,
n=3). Arsenic recovery \pm s.d is given in parentheses

Chapter 5

Figure 5-1. Proposed metabolic pathways by Challenger (A), Hayakawa (B),
Naranmandura (C) and Wang (D) for inorganic arsenic in mammals, adapted from
(Kobayashi, 2010, Rehman and Naranmandura, 2012, Wang et al., 2012).
Abbreviations: $AS3MT$ (enzyme arsenic III methyltransferase), ATC (arsenotricysteine),
DMAC (dimethylarsocysteine), GSH (glutathione molecule), MADC
$(monomethylarsonic\ dicysteine),\ SAM\ (\emph{S}-adenosyl-L-methionine}),\ -SG\ (glutathione$
moiety)
Figure 5-2. Schematic representation of the protocol for subcellular fractionation 109
Figure 5-3. Cell growth and viabilities of control and As(III) and As(V) exposed HepG2
cells
Figure 5-4. Arsenic concentrations and species distribution in subcellular fractions of
HepG2 cells after 24 h exposure to As(III). S2, nuclei and cell membranes; P2, granules;
P3, mitochondria; S4, cytosol; P4, lysosomes, peroxisomes and microsomes113
Figure 5-5. Arsenic concentrations and species distribution in subcellular fractions of
HepG2 cells after 24 h exposure to As(V). S2, nuclei and cell membranes; P2, granules;
P3, mitochondria; S4, cytosol; P4, lysosomes, peroxisomes and microsomes116
Figure 5-6. Proposed sites for As(III) biotransformations in HepG2 cells
Figure 5-7. Proposed sites for As(V) biotransformations in HepG2 cells
Chapter 6
Figure 6-1. Chemical structures of dimethylarsinoyl undecanoic acid and
dimethylarsinoyl decane
Figure 6-2. Cell growth and viabilities of control and AsFA-C11 and AsH-C10 exposed
HepG2 cells
Figure 6-3. Arsenic concentrations and species distribution in subcellular fractions of
HepG2 cells after 24 h exposure to AsFA-C11. S2, nuclei and cell membranes; P2,
granules; P3, mitochondria; S4, cytosol; P4, lysosomes, peroxisomes and microsomes.
Figure 6-4. Arsenic concentrations and species distribution in subcellular fractions of
HepG2 cells after 24 h exposure to AsHC-C10. S2, nuclei and cell membranes; P2,

granules; P3, mitochondria; S4, cytosol; P4, lysosomes, peroxisomes and microsomes.
Figure 6-5. Proposed pathway for AsFA-C11 biotransformations in HepG2 cells 142
Figure 6-6. Proposed pathways for AsHC-C10 biotransformations in HepG2 cells 145
Chapter 7
Figure 7-1. General metabolic pathway for xenobiotics in humans, adapted from
(Goodman and Gilman, 2006, Casarett and Doull, 2008, Rang et al., 2012). The
processes represented by the arrows filled in red involve transport through cell
membranes
Figure 7-2. Suggested activation of DMA by citrate
Figure 7-3. Increasing order (left to right) of the ability of arsenic species to passively
diffuse across cell membranes

List of tables

Chapter 1
Table 1-1. LC ₅₀ and LC ₇₀ values of different arsenic species. 11
Chapter 3
Table 3-1. Lipid soluble arsenic species detected in hijiki seaweed by LC-QQQ analysis.
68
Table 3-2. Lipid soluble arsenic species detected in krill oil by LC-QQQ analysis73
Chapter 4
Table 4-1. Arsenic uptake systems in cells, adapted from (Zangi and Filella, 2012)83
Table 4-2. Arsenic efflux systems in cells, adapted from (Zangi and Filella, 2012)85
Table 4-3. Molecular properties computed for the arsenic species of interest. The steric
volume includes the electron cloud into the molecule volume94
Chapter 5
Table 5-1. Arsenic concentrations and percentages of arsenic species in the subcellular
fractions of HepG2 cells after 24 h exposure to As(III)
Table 5-2. Arsenic concentrations and percentages of arsenic species in the subcellular
fractions of HepG2 cells after 24 h exposure to As(V)
Chapter 6
Table 6-1. Arsenic concentrations and percentages of arsenic species in the subcellular
fractions of HepG2 cells after 24 h exposure to AsFA-C11
Table 6-2. Arsenic concentrations and percentages of arsenic species in the subcellular
fractions of HepG2 cells after 24 h exposure to AsHC-C10