- 1. How do wet oxidation and dry oxidation differ from each other, including their respective chemical equations- 3 marks 1. Oxidizing Agent:
 - Dry Oxidation: Uses pure oxygen (O₂) as the oxidizing agent. Chemical Equation:
 Si+O2→SiO2
 - \circ Wet Oxidation: Uses water vapor (H₂O) as the oxidizing agent. Chemical Equation: Si+2H2O→SiO2 + 2H2

2. Oxidation Rate:

- o Wet oxidation is **faster** because H₂O diffuses more readily through SiO₂ than O₂.
- o Dry oxidation is **slower** but produces higher-quality oxide with better electrical properties.

3. Applications:

- o **Dry Oxidation**: Used for thin, high-quality oxide layers (e.g., gate oxides in MOSFETs).
- Wet Oxidation: Used for thicker oxide layers (e.g., masking layers or field oxides).

4. Temperature Dependence:

- Wet oxidation can achieve usable growth rates at lower temperatures compared to dry oxidation.
- o Dry oxidation typically requires higher temperatures for reasonable growth rates.

2. How does channel length modulation influence the saturation drain current? 2 marks

Reduction in Effective Channel Length:

- \circ In saturation, the channel pinches off near the drain, but the depletion region extends further with increasing V_DS, effectively shortening the channel (Δ L).
- This reduces the resistance of the channel, causing I_Dsat to increase slightly with V_DS instead of remaining constant.

3.describe the photolithography process flow with reference to various types of photoresists. 5 marks

1. Substrate Preparation & Photoresist Coating

 Wafer cleaning followed by spin-coating of positive resist (solubilizes on exposure) or negative resist (hardens on exposure).

2. Soft Baking & UV Exposure

 Pre-bake (~100°C) removes solvents; UV light exposes resist through a photomask (positive: exposed areas dissolve, negative: unexposed dissolve).

3. Development

 Chemical developer removes soluble regions, transferring mask pattern to resist (positive: exposed removed, negative: unexposed removed).

4. Hard Baking & Pattern Transfer

o Post-bake (~120°C) strengthens resist for etching/doping; resist acts as a protective mask.

5. Resist Stripping

o Removal of resist using solvents/plasma, completing the lithography cycle.

Photoresist Types:

- Positive (e.g., DNQ-Novolac): High resolution for ICs.
- **Negative** (e.g., SU-8): Thick films for MEMS.

4. describe the voltage transfer characteristics of a cmos inverter circuit. 5 marks

Region	V_{in}	Vout	nMOS	pMOS
A B C	$< V_{T0,n}$ V_{IL} V_{th} V_{IH}	V_{OH} high $pprox V_{OH}$ V_{th} low $pprox V_{OL}$	cut-off saturation saturation linear	linear linear saturation saturation
E	$> (V_{DD} + V_{T0,p})$	V_{OL}	linear	cut-off

6. Discuss the y chart along with the overall vlsi design flow. 10 marks

Y-Chart (Gajski-Kuhn Y-Chart):

- The Y-Chart is a model for VLSI design representation.
- It has three axes representing different domains of design:
 - 1. Behavioural Domain: Describes what the system does (functions, algorithms, HDL code).
 - 2. Structural Domain: Describes *how the system is built* (logic gates, modules, interconnections).
 - 3. Physical Domain: Describes the *geometric layout* (placement, routing, masks).
- Each axis has levels of abstraction: system → logic → circuit → layout.
- Designers move around the Y to refine from high-level description down to the physical chip.

Overall VLSI Design Flow:

- 1. Specification: Define system requirements (function, performance, cost).
- 2. Behavioural/RTL Design: Describe functionality in HDL (VHDL/Verilog).
- 3. Functional Verification: Check correctness via simulation.

- 4. Logic Synthesis: Convert RTL into gate-level netlist.
- 5. Design for Testability (DFT): Add scan chains, BIST, etc.
- 6. Floorplanning & Placement: Decide chip area and block positions.
- 7. Routing: Connect components physically.
- 8. Timing Analysis & Optimization: Ensure performance, remove violations.
- 9. Physical Verification: DRC (Design Rule Check), LVS (Layout vs Schematic).
- 10. Fabrication & Testing: Send final layout (GDSII) to foundry \rightarrow manufactured chip \rightarrow tested.

Expression for MOSFET Resistance in the Triode (Linear) Region (10 Marks)

1. Assumptions & Operating Conditions

• Triode (Linear) Region Condition:

 $V_{DS} < V_{GS} - V_{th}$ (Drain-Source voltage is small).

- MOSFET acts as a voltage-controlled resistor.
- Channel is fully formed (no pinch-off).

2. Drain Current (I_D) in Triode Region

The drain current in the triode region is given by:

$$I_D = \mu_n C_{ox} rac{W}{L} \left[(V_{GS} - V_{th}) V_{DS} - rac{V_{DS}^2}{2}
ight]$$

Where:

- μ_n = Electron mobility
- C_{ox} = Oxide capacitance per unit area
- ullet W/L = Width-to-length ratio
- ullet V_{GS} = Gate-Source voltage
- ullet V_{th} = Threshold voltage
- V_{DS} = Drain-Source voltage

3. Small-Signal Resistance Approximation

For **very small** V_{DS} (**Deep Triode Region**), the quadratic term $rac{V_{DS}^2}{2}$ becomes negligible. Thus:

$$I_Dpprox \mu_n C_{ox} rac{W}{L} (V_{GS}-V_{th}) V_{DS}$$

4. MOSFET Resistance (R_{on})

The on-resistance (R_{on}) is defined as:

$$R_{on} = rac{V_{DS}}{I_D}$$

Substituting I_{D} from the simplified triode equation:

$$R_{on} = rac{V_{DS}}{\mu_{n}C_{ox}rac{W}{L}(V_{GS}-V_{th})V_{DS}} = rac{1}{\mu_{n}C_{ox}rac{W}{L}(V_{GS}-V_{th})}$$

Final Expression:

$$R_{on} = rac{1}{\mu_n C_{ox} rac{W}{L} (V_{GS} - V_{th})}$$