

Last time: Sequential logic

- Introduction
- Bistables
- Monostables or one-shots
- Astables
- Timers
- Memory registers
- Shift registers
- Counters

Video 25A

25.1

- Sequential logic is built with combinational logic elements
- Combines the characteristics of combinational logic with memory
- When constructing sequential logic circuits our building blocks are often some form of multivibrator
 - A term used to describe a range of circuits
 - these have two outputs that are the inverse of each other
 - the output are labelled Q and Q
 - three basic forms:

Introduction

- Bistables (flip-flops or latches)
- Monstables (one-shots)
- Astables (digital oscillators)

Monostables or one-shots

25.3

- Monostables are another form of multivibrator
 - while bistables have two stable output states that we can switch between
 - monostables have one stable & one metastable states
 - when in its stable state Q = 0
 - when an appropriate signal is applied to the trigger input (T) the circuit enters its metastable state with Q = 1
 - after a set period of time (determined by circuit components) it reverts to its stable state

it is therefore a pulse generator

Initially in stable state:

T low and Q low \Rightarrow !Q high

No current flows across R

(both sides of C at same voltage, $\Delta V_c = 0$)

V₁ floats high keeping Q low

A simple monostable

Then trigger to metastable:

T goes high briefly \Rightarrow !Q goes low

Capacitor initially has no charge and so no voltage across it

So V_1 drops to $0 \Rightarrow Q$ goes high, keeping !Q low

Current flows through R,

charging the capacitor V₁ increases until Q goes low

System returns to stable state

 Monostables can be retriggerable or nonretriggerable

Astables

25.4

- The last member of the multivibrator family is the astable
 - this has two metastable states
 - has the function of a digital oscillator
 - circuit spends a fixed period in each state (determined by circuit components)
 - if the period in each state is set to be equal, this will produce a square waveform

A simple astable arrangement

Waveforms of the simple astable circuit

Waveforms of the simple astable circuit.

How do I get the signal out to the world?

Waveforms of the simple astable circuit.

An astable formed by two monostables

Timers

25.5

- The integrated circuit timer can produce a range of functions
 - including those of a monostable or astable
 - various devices
 - one of the most popular is the 555 timer
 - can be configured using just a couple of external passive components
 - internal construction largely unimportant all required information on using the device is in its data sheet

- A simplified circuit diagram of the 555 timer is shown here
 - It consists basically of a flip-flop, two comparators, a switching transistor and a resistive network.

- The diagram here shows the 555 configured as a monostable.
 - It can be seen that only a couple of external components are needed.

- Here the 555 is shown configured as an astable
 - Again very few additional components are required.

Sequential Logic or Multivibrators Logic with memory!

- Bistables ⇒two stable output states
 - $Q=1 (\bar{Q}=0) \text{ and } Q=0 (\bar{Q}=1)$
 - Switch between the two with external signals
- Monostables ⇒one stable & one metastable states
 - External trigger switches from stable to metastable state
 - After a time (determined by circuit) return to stable state
- Astable ⇒this has two metastable states
 - Self switches between the two states with time constant determined by circuit components
 - digital oscillator or timer circuit

• Questions?

Today: Sequential logic uses

- Introduction
- Bistables
- Monostables or one-shots
- Astables
- Timers
- Memory registers
- Shift registers
- Counters

Memory Registers

25.6

- Combining a number of bistables we can construct a memory register
 - several forms of bistable can be used, for example:

25.19

- Often we are not concerned with the internal construction of the register
 - they are a standard integrated component

25.20

Video 25B

25.7

Shift Registers

The operation of a shift register

A simple serial to parallel shift register

Every 4 Clk cycles we need to tell the reader to read the word

Need to change a memory register (parallel in-parallel out) where the D's are independent inputs To a shift register (parallel in-serial out) where D is from the Q output of previous stage

A 4-bit parallel load shift register-

Neil Storey, Electronics: A Systems Approach, 5th Edition © Pearson Education Limited 2013

- A design example see Example 25.3 in course text
 Application of a shift register
 - shift registers are widely used in communications systems

Counters

Ripple counters

- can be constructed using several forms of bistable
- consider the following arrangement
- with J = K = 1 each bistable toggles on the falling edge of its clock input

Remember our 4-bit serial to parallel converter Wanted to tell reader to read on every 4th clock fall⇒Q₁

- Each stage toggles at half the frequency of the previous one
 - acts as a frequency divider
 - divides frequency by 2ⁿ (where n is the number of stages)

- A design example see Example 25.4 in course text
 Clock generator for a digital watch
 - 15-stage counter divides signal from a crystal oscillator by 32,768 to produce a 1 Hz signal to drive stepper motor or digital display

- Consider the pattern on the outputs of the counter shown earlier – displayed on the right
- the outputs count in binary from 0 to 2ⁿ-1 and then repeat
 - the circuit acts as a modulo-2ⁿ
 counter
 - since the counting process
 propagates from one bistable to the next this is called a ripple counter
 - circuit shown is a 4-bit or modulo-16 (or mod-16) ripple counter

Number of clock pulses	Q_3	\mathbf{Q}_2	$Q_1 \\$	Q_0
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	1	0	0	0
9	1	0	0	1
10	1	0	1	0
11	1	0	1	1
12	1	1	0	0
13	1	1	0	1
14	_1_	1_	1	0
15	1	1	1	1
16	0	0	0	0
17	0	0	0	1
18	0	0	1	0
19	0	0	1	1
20	0	1	0	0

Reset when you detect the counter has reached a binary value. Mod10 \Rightarrow 10₁₀=1010, so first occasion one see bit 1 and 3 go high, reset

Modulo-N counters

- by using an appropriate number of stages the earlier counter can count modulo any power of 2
- to count to any other base we add reset circuitry
- e.g. the modulo-10 or decade counter shown here

Waveform diagram for the decade counter

A ripple down counters

 The output sequence of the ripple-down counter

Number of clock pulses	Q_3	Q_2	Q_1	Q_0	Coun
0	0	0	0	0	0
1	1	1	1	1	15
2	1	1	1	0	14
3	1	1	0	1	13
4	1	1	0	0	12
5	1	0	1	1	11
6	1	0	1	0	10
7	1	0	0	1	9
8	1	0	0	0	8
9	0	1	1	1	7
10	0	1	1	0	6
11	0	1	0	1	5
12	0	1	0	0	4
13	0	0	1	1	3
14	0	0	1	0	2
15	0	0	0	1	1
16	0	0	0	0	0
17	1	1	1	1	15
18	1	1	1	0	14
19	1	1	0	1	13
20	1	1	0	0	12

An up/down counter

Propagation delay in ripple counters

- while ripple counters are very simple they suffer from problems at high speed
- since the output of one flip-flop is triggered by the change of the previous device, delays produced by each flip-flop are summed along the chain
- the time for a single device to respond is termed its propagation delay time t_{PD}
- an *n*-bit counter will take $n \times t_{PD}$ to respond
- if read before this time the result will be garbled

Counters (contd.)

- With a ripple counter, what we really have at each transition is a slight delay from clock fall to output Q_n change:
- But each output Q_n change is the clock to the next stage, which adds its own delay from this clock fall to its output Q_{n+1}!

So since each output feeds that delay into next clock: Final bit has the delay of gate₀, gate₁, gate₂ and gate₃

Synchronous counters

- these overcome the propagation delay in ripple counters by connecting all the flip-flops to the same clock signal
- thus each stage changes state at the same time
- additional circuitry is used to determine which stages change state on each clock pulse
- faster than ripple counters but more complex
- available in many forms including up, down, up/down and modulo-N counters

A synchronous four-stage counter

A cascadable 4-bit synchronous counter

Integrated circuit counters

- while we can build counters from flip-flops, we more often use dedicated ICs
- these are available in numerous forms, such as binary, decade, BCD, up, down and up/down
- they are normally designed to simplify cascading

Design of Sequential Logic Circuits

25.9

- Sequential systems may be synchronous or asynchronous
 - the design stages involved are similar, although synchronous design is slightly easier
 - the major elements of synchronous design are
 - identification of the system states
 - a state transition diagram
 - a state transition table
 - state reduction
 - state assignment
 - generation of an excitation table
 - circuit design
 - investigation of unused states

Further Study

- The Further Study section at the end of Chapter 25 looks at the design of a digital stopwatch.
- The watch has a display showing seconds and minutes, and three pushbuttons.
- Apply the techniques described in this lecture to design such a watch, then compare your design with that given in the video.

Key points

- Sequential logic circuits have the characteristic of memory
- Among the most important groups of sequential components are the various forms of multivibrator
 - bistables
 - monostables
 - astables
- The most widely used form is the bistable which includes
 - latches, edge-triggered flip-flops and master/slave devices
- Registers form the basis of various memories
- Counters are widely used in a range of applications
- Monostables and astables perform a range of functions