EASA PPL(A) Meteorology: Atmosphere — Study Notes

1. Atmosphere Overview

- **Definition**: The layer of gases surrounding Earth, essential for flight and life.
- Composition:
 - o Nitrogen (N₂): ~78%
 - o Oxygen (O₂): ~21%
 - o Other Gases (CO₂, Argon, etc.): ~1%
 - o Water Vapour: 0-4% (varies by location/time)

2. Layers of the Atmosphere (by temperature profile)

Layer	Altitude (approx.)	Characteristics
Troposphere	Surface-11 km	All weather occurs here, temperature drops
Tropopause	~ll km	Boundary layer, stable, isothermal
Stratosphere	11-50 km	Temp rises with height, very stable
Mesosphere	50-85 km	Temp drops again
Thermosphere	85 km+	Temp rises, thin air

3. International Standard Atmosphere (ISA)

• MSL (Mean Sea Level) Conditions:

o Temperature: 15°C

o Pressure: 1013.25 hPa (millibar)

o Density: 1.225 kg/m³

o Lapse Rate: -2°C per 1000 ft

• **Use**: Altimeter calibration, aircraft performance reference.

4. Pressure

- **Definition**: Force per unit area from the weight of the air above.
- Unit: hPa (hectopascal)
- Standard Pressure at Sea Level: 1013.25 hPa
- Pressure decreases with altitude.

5. Temperature

- Decreases with height in troposphere (~2°C/1000 ft)
- Lapse Rates:
 - o Standard: -2°C/1000 ft
 - o Dry Adiabatic: -3°C/1000 ft
 - o Saturated Adiabatic: ~-1.5°C/1000 ft

6. Density

- Decreases with altitude, temperature, and humidity.
- **Density Altitude**: Pressure altitude corrected for non-standard temperature.
- High density altitude = reduced aircraft performance.

7. Global Circulation

- Driven by uneven heating of Earth.
- **Equator**: Rising warm air → low pressure.
- **Poles**: Sinking cold air → high pressure.
- Creates circulation cells: Hadley, Ferrel, Polar.
- Jet Streams: Fast upper-level winds near tropopause.

8. Local Atmospheric Effects

- **Temperature Inversion**: Temp increases with height. Can trap fog/pollution.
- Sea/Land Breeze: Caused by different heating rates of land and sea.

9. Humidity

- Water Vapour Content of the air.
- Warm air holds more moisture.
- **Relative Humidity**: Ratio of current water vapor to the maximum possible.
- High humidity = lower density = reduced performance.

10. Key Values Recap

Concept	Standard Value
ISA Temperature @ MSL	15°C
ISA Pressure @ MSL	1013.25 hPa
Lapse Rate (Std)	-2°C per 1000 ft
Tropopause Height	~11 km (~36,000 ft)
Air Density @ MSL	1.225 kg/m³
Composition	78% N ₂ , 21% O ₂ , 1% Other