# Multiple Linear Regression

Dr. Maria Tackett

09.18.19



## **Click for PDF of slides**



#### **Announcements**

- HW 01 due TODAY at 11:59p
- Reading 03 for Monday
- HW 02 due Wednesday, 9/25 at 11:59p



## Today's Agenda

Introducing multiple linear regression



### R Packages used in the notes

```
library(tidyverse)
library(knitr)
library(broom)
library(Sleuth3) # case 1202 dataset
library(cowplot) # use plot_grid function
```



# Multiple Linear Regression



## **Example: Starting Wages**

- In the 1970s Harris Trust and Savings Bank was sued for discrimination on the basis of gender.
- The defense presented an analysis of the salaries for skilled, entrylevel clerical employees as evidence.
- Question: Did female employees receive lower starting salaries on average than male employees with similar experience and qualifications?



#### **Data**

```
glimpse(wages)
```



#### **Variables**

#### **Explanatory**

- Educ: years of education
- **Exper:** months of previous work experience (before hire at bank)
- Female: 1 if female, 0 if male
- **Senior**: months worked at bank since hire
- Age: age in months

#### Response

■ **Bsal:** annual salary at time of hire



## Salary comparison

Question: Did female employees receive lower starting salaries on average than male employees with similar experience and qualifications?





## **Using ANOVA**

 $H_0: \mu_F = \mu_M$ 

 $H_a: \mu_F \neq \mu_M$ 

| term      | df | sumsq    | meansq     | statistic | p.value |
|-----------|----|----------|------------|-----------|---------|
| Female    | 1  | 14045183 | 14045183.2 | 39.597    | 0       |
| Residuals | 91 | 32278107 | 354704.5   | NA        | NA      |

- What's your conclusion?
- What is a disadvantage to using this method to answer the question?



## Salary vs. Other Variables

```
pairs(Bsal ~ Senior + Age + Educ + Exper, data=wages)
```





# Multiple Regression Model

We will calculate a multiple linear regression model with the following form:

$$Bsal = \beta_0 + \beta_1 Senior + \beta_2 Age + \beta_3 Educ + \beta_4 Exper + \beta_5 Female$$

 Similar to simple linear regression, this model assumes that at each combination of the predictor variables, the values Bsal follow a Normal distribution



## **Regression Model**

■ Recall: The simple linear regression model assumes

$$y|x \sim N(\beta_0 + \beta_1 x, \sigma^2)$$

Similarly: The multiple linear regression model assumes

$$y|x_1, x_2, \dots, x_p \sim N(\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p, \sigma^2)$$

■ For a given observation  $(x_{i1}, x_{i2}, ..., x_{iP}, y_i)$ 

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip} + \epsilon_i \quad \epsilon_i \sim N(0, \sigma^2)$$



## **Regression Model**

• At any combination of x's, the true mean value of y is

$$\mu_y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p$$

• We will use multiple linear regression to estimate the mean y for any combination of  $x^{\prime}s$ 

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \dots + \hat{\beta}_p x_p$$



## **Regression Output**

| term        | estimate | std.error | statistic | p.value |
|-------------|----------|-----------|-----------|---------|
| (Intercept) | 6277.893 | 652.271   | 9.625     | 0.000   |
| Senior      | -22.582  | 5.296     | -4.264    | 0.000   |
| Age         | 0.631    | 0.721     | 0.876     | 0.384   |
| Educ        | 92.306   | 24.864    | 3.713     | 0.000   |
| Exper       | 0.501    | 1.055     | 0.474     | 0.636   |
| Female1     | -767.913 | 128.970   | -5.954    | 0.000   |



# Interpreting $\hat{\beta}_j$

- An estimated coefficient  $\hat{\beta}_j$  is the amount y is expected to change when  $x_j$  increases by one unit **holding the values all other predictor** variables constant
- Example: The estimated coefficient for Educ is 92.31. This means for each additional year of education an employee has, we expect starting salary to increase by about \$92.31, holding all other predictor variables constant.



# Hypothesis Tests for $\hat{\beta}_j$

We want to test whether a particular coefficient has a value of 0 in the population, given all other variables in the model:

$$H_0: \beta_j = 0$$

$$H_a: \beta_j \neq 0$$

■ The test statistic reported in R is the following:

test statistic = 
$$t = \frac{\hat{\beta}_j - 0}{SE(\hat{\beta}_j)}$$



## Salary

| term        | estimate | std.error | statistic | p.value |
|-------------|----------|-----------|-----------|---------|
| (Intercept) | 6277.893 | 652.271   | 9.625     | 0.000   |
| Senior      | -22.582  | 5.296     | -4.264    | 0.000   |
| Age         | 0.631    | 0.721     | 0.876     | 0.384   |
| Educ        | 92.306   | 24.864    | 3.713     | 0.000   |
| Exper       | 0.501    | 1.055     | 0.474     | 0.636   |
| Female1     | -767.913 | 128.970   | -5.954    | 0.000   |

Given the other variables in the model, are the following significant predictors of salary at time of hire (Bsal)?

- Education (Educ)
- Experience (Exper)



# Confidence Interval for $\beta_j$

The C confidence interval for  $\beta_i$ 

$$\hat{\beta}_j \pm t^* SE(\hat{\beta}_j)$$

where  $t^*$  follows a t distribution with with (n-p-1) degrees of freedom

■ **General Interpretation**: We are C confident that the interval LB to UB contains the population coefficient of  $x_j$ . Therefore, for every one unit increase in  $x_j$ , we expect y to change LB to UB units, holding all else constant.



#### CI for Educ

| term        | estimate | std.error | statistic | p.value | conf.low  | conf.high |
|-------------|----------|-----------|-----------|---------|-----------|-----------|
| (Intercept) | 6277.893 | 652.271   | 9.625     | 0.000   | 4981.434  | 7574.353  |
| Senior      | -22.582  | 5.296     | -4.264    | 0.000   | -33.108   | -12.056   |
| Age         | 0.631    | 0.721     | 0.876     | 0.384   | -0.801    | 2.063     |
| Educ        | 92.306   | 24.864    | 3.713     | 0.000   | 42.887    | 141.725   |
| Exper       | 0.501    | 1.055     | 0.474     | 0.636   | -1.597    | 2.598     |
| Female1     | -767.913 | 128.970   | -5.954    | 0.000   | -1024.255 | -511.571  |

Interpret the 95% confidence interval for the coefficient of Educ.



## Notes about CI and Hypothesis Tests

- If the sample size is large enough, the test will likely result in rejecting  $H_0: \beta_i = 0$  even  $x_i$  has a very small effect on y
  - Consider the practical significance of the result not just the statistical significance
  - Use the confidence interval to draw conclusions instead of pvalues
- If the sample size is small, there may not be enough evidence to reject  $H_0: \beta_j = 0$ 
  - When you fail to reject the null hypothesis, DON'T immediately conclude that the variable has no association with the response.
  - There may be a linear association that is just not strong enough to detect given your data, or there may be a non-linear association.



#### **Prediction**

- We calculate predictions the same as with simple linear regression
- Example: Suppose we want to predict the starting wages for a female who is 28 years old with 12 years of education, 11 months seniority and 2 years of prior experience.

$$bsal = 6277.893 - 22.582 \times Senior + 0.631 \times Age + 92.306 \times Educ + 0.501 \times Exper - 767.913 \times Female$$

```
6277.893 - 22.582 * 11 + 0.631 * 28 + 92.306 * 12 + 0.501 * 24 - 7
```

## [1] 6398.942



#### **Prediction**

- Just like with simple linear regression, we can use the predict.lm() function in R to calculate the appropriate intervals for our predicted values
- Suppose we want to predict the starting wages for a female who is 28 years old with 12 years of education, 11 months seniority and 2 years of prior experience.

```
x0 <- data.frame(Senior= 11, Age = 28, Educ = 12, Exper = 24, Fema
predict.lm(bsal_model, x0, interval = "prediction")</pre>
```

```
## fit lwr upr
## 1 6398.93 4967.054 7830.805
```



#### **Prediction**

Suppose we want to predict the mean age for the subset of all females who are 28 years old with 12 years of education, 11 months of seniority and 2 years of prior experience.

- How will the predicted value change?
- How will the interval change?

```
x0 <- data.frame(Senior= 11, Age = 28, Educ = 12, Exper = 24, Femapredict.lm(bsal_model, x0, interval = "confidence")</pre>
```

```
## fit lwr upr
## 1 6398.93 5383.844 7414.016
```



#### **Cautions**

- **Do not extrapolate!** Because there are multiple explanatory variables, you can extrapolation in many ways
- The multiple regression model only shows association, not causality
  - To prove causality, you must have a carefully designed experiment or carefully account for confounding variables in an observational study



# **Assumptions**



### **Assumptions**

The confidence intervals and hypothesis tests are reliable only when the regression assumptions are reasonably satisfied

- 1. Linearity: Response variable has a linear relationship with the explanatory variables in the model
- 2. **Constant Variance:** The regression variance is the same for all set of predictor variables  $(x_1, \ldots, x_p)$
- 3. **Normality:** For a given  $(x_1, \ldots, x_p)$ , the distribution of y around its mean is Normal
- 4. Independence: All observations are independent



### **Scatterplots**

- Look at a scatterplot of the response variable vs. each of the predictor variables in the exploratory data analysis before calculating the regression model
- This is a good way to check for obvious departures from linearity
  - Could be an indication that a higher order term or transformation is needed (will discuss this next class)



#### **Residual Plots**

- Plot the residuals vs. the predicted values
  - Can expose issues such at outliers or nonconstant variance
- Plot the residuals vs. each of the predictors
  - Can expose issues between the response and a predictor variable that didn't show in the exploratory data analysis
  - Use boxplots to plot residuals versus categorical predictor variables
- Residual plots should show no systematic pattern
- Plot a histogram and QQ-plot of the residuals to check Normality



### **Scatterplots**

pairs(Bsal ~ Senior + Age + Educ + Exper, data = wages, lower.pane





 Only include a few variables in a single pairs plot; otherwise, the scatterplots are too small to be readable.

#### Residuals vs. Predicted Values

```
wages <- wages %>%
  mutate(predicted = predict.lm(bsal_model), residuals = resid(bsa
ggplot(data=wages,aes(x=predicted, y=residuals)) +
  geom_point() +
  geom_hline(yintercept=0,color="red") +
  labs(title="Residuals vs. Predicted Values")
```





#### Residuals vs. Predictors





#### Residuals vs. Predictors





## Normality of Residuals







## **Math Foundation**



## **Regression Model**

■ The multiple linear regression model assumes

$$y|x_1,...,x_p \sim N(\beta_0 + \beta_1 x_1 + ... + \beta_p x_p, \sigma^2)$$

■ For a given observation  $(x_{i1}, ..., x_{ip}, y_i)$ , we can rewrite the previous statement as

$$y_i = \beta_0 + \beta_1 x_{i1} + \dots + \beta_p x_{ip} + \epsilon_i \qquad \epsilon_i \sim N(0, \sigma^2)$$



## Estimating $\sigma^2$

■ For a given observation  $(x_{i1}, ..., x_{ip}, y_i)$  the residual is

$$e_i = y_i - (\hat{\beta}_0 + \hat{\beta}_1 x_{i1} + \dots + \hat{\beta}_p x_{ip})$$

■ The estimated regression variance is

.alert[

$$\hat{\sigma}^2 = \frac{RSS}{n-p-1} = \frac{\sum_{i=1}^{n} [y_i - (\hat{\beta}_0 + \hat{\beta}_1 x_{i1} + \dots + \hat{\beta}_p x_{ip})]^2}{n-p-1}$$



# Calculating $\hat{\sigma}^2$

Salary: Estimating  $\hat{\sigma}^2$ 

```
(glance(bsal_model)$sigma)^2
```

## [1] 258156

kable(tidy(aov(bsal\_model)), format="html", digits=3)

| term      | df | sumsq       | meansq     | statistic | p.value |
|-----------|----|-------------|------------|-----------|---------|
| Senior    | 1  | 3784914.70  | 3784914.70 | 14.661    | 0.000   |
| Age       | 1  | 17010.44    | 17010.44   | 0.066     | 0.798   |
| Educ      | 1  | 8814046.86  | 8814046.86 | 34.142    | 0.000   |
| Exper     | 1  | 2095479.05  | 2095479.05 | 8.117     | 0.005   |
| Female    | 1  | 9152264.30  | 9152264.30 | 35.452    | 0.000   |
| Residuals | 87 | 22459574.96 | 258156.03  | NA        | NA      |

