

Probabilidade e Estatística (EAD)

MAT02219 - Probabilidade e Estatística - 2020/2

Plano Aula 17 e 18

(cont.) Inferência Estatística

Exemplo 1: Média amostral, $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$, em que X_1, \dots, X_n uma amostra aleatória de $X_i \sim Normal(\mu, \sigma^2)$ e σ^2 conhecido:

- a. Qual a distribuição amostral de \overline{X} ?
- b. \overline{X} é um bom estimador para a média populacional μ ?
- c. Como usar $Var(\overline{X})$ para fornecer um grau de certeza sobre usarmos \overline{X} para representar/estimar μ ?

Estmação Pontual (Bussab e Morettin - Capítulo 11)

• Estatísticas: Estimador versus Estimativa.

Definição (**Estimador**): Um estimador T do parâmetro θ é qualquer função das observações da amostra, $T = g(X_1, \dots, X_n)$.

Definição (**Estimativa**): Uma estimativa é um particular valor do estimador. Para uma amostra observada x_1, \ldots, x_n uma estimativa t do parâmetro θ é dada por $t = g(x_1, \ldots, x_n)$.

- Propriedades dos estimadores (Bussab e Morettin Seção 11.2)
 - Viés e o Erro Quadrático Médio (EQM); Constistência e Eficiência.

(cont.) Exemplo 1: E para a média amostral $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ se σ^2 desconhecido?

Exemplo 2: Para a variância amostral $s^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - E(X))^2$? E para $\widehat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - E(X))^2$?

Exemplo 3: E para a proporção amostral $\hat{p} = \frac{1}{n} \sum_{i=1}^{n} X_i$?

Introdução à estimação intervalar

Estimação pontual \times estimação intervalar

Intervalos de Confiança (IC) (Bussab e Morettin - Seção 11.6)

Definição (Intervalo de confiança (IC)): Seja T um estimador para o parâmetro θ , o IC ao nível $(1 - \alpha) \times 100\%$ para θ será denotado pelo intervalo

$$IC(\theta; 1 - \alpha) = (t_1(T), t_2(T)),$$

para dois valores $t_1(T)$ e $t_2(T)$ tais que $P[t_1(T) < \theta < t_2(T)] = 1 - \alpha$. (Se conhecida a distribuição amostral de T, será sempre possível achar $t_1(T)$ e $t_2(T)$).

- Esse é um tipo de estimação intervalar (o mais popular em inferência paramétrica clássica)
 - Veremos todas as situações de intervalos nos slides dessa semana.

Probabilidade e Estatística (EAD)

 $\rm MAT02219$ - Probabilidade e Estatística - 2020/2

Erro padrão de um Estimador (Bussab e Morettin - Seção 11.7)

Definição (**Erro padrão**): denominamos *erro padrão* do estimador T (para o parâmetro θ) a quantidade $EP(T) = \sqrt{Var(T)}$.

Definição (Erro padrão estimado): $ep(T) = \widehat{EP}(T) = \sqrt{\widehat{Var}(T)}$.

- ...cont. Exemplo 1: Média amostral \overline{X} . Calcular $EP(\overline{X})$. E $ep(\overline{X})$?
- ...cont. Exemplo 3: Proporção amostral \hat{p} . $EP(\hat{p}) \in ep(\hat{p})$?

IC para uma média populacional μ (supondo σ^2 conhecido ou n > 30)

Iniciaremos com o IC para uma média populacional μ ; * Resultado importante na construção de IC para uma média populacional: + No **Exemplo 1**, supondo σ^2 conhecido (ou n > 30), então

$$\overline{X} \sim Normal(\mu, \sigma^2/n)$$

se $X \sim Normal(\mu, \sigma^2)$. Também

$$Z = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim Normal(0, 1).$$

IC para uma média populacional μ (supondo σ^2 desconhecido e $n \leq 30$)

Estimação de σ^2

- Se desconhecemos a variância populacional, podemos estimá-la usando o estimador $S^2 = \frac{\sum_{i=1}^{n} (X_i \overline{X})^2}{n-1}$ (porquê?)
- Nesse caso S^2 é uma variável aleatória (v.a.). (Sabemos qual a distribuição amostral de S^2 ?)
- Qual a distribuição amostral da transformação $T = \frac{\overline{X} \mu}{S/\sqrt{n}}$?

$$T = \frac{\overline{X} - \mu}{S/\sqrt{n}} \sim ?$$

Distribuição (de probabilidade) t de Student (Bussab e Morettin - Seção 7.7.3)

Teorema (**Distribuição** t-Student, nossa versão): Seja X_1, \ldots, X_n uma amostra aleatória da v.a. $X \sim Normal(\mu, \sigma^2)$, então (dadas algumas outras suposições para S que omitimos aqui)

$$T = \frac{\overline{X} - \mu}{S/\sqrt{n}} \sim t_{(n-1)}.$$

em que $t_{(n-1)}$ denota a distribuição de probabilidade t-Student com n-1 graus de liberdade (g.l.).

- A distribuição t de Student também possui valores tabelados, como a distribuição normal padrão.
 Qual a relação entra essas distribuições?
- Como usar a distribuição t de Student para construir um IC para μ ? Quais as suposições necessárias? Como interpretar os resultados?

 $\rm MAT02219$ - Probabilidade e Estatística - 2020/2

Intervalo de confiança para a Variância

- Suponha que agora queremos estimar uma variância populacional σ^2 .
- Exemplo: Estimar a variabilidade dos retornos de certa aplicação financeira.
 - Qual o estimador pontual "natural" para o problema? E como calcular um IC para σ^2 ?

$(\dots continuação)$ Estimação de σ^2

- Se desconhecemos a variância populacional, podemos estimá-la usando o estimador $S^2 = \frac{\sum_{i=1}^{n} (X_i \overline{X})^2}{n-1}$ (porquê?)
- Nesse caso S^2 é uma variável aleatória (v.a.). (Sabemos qual a distribuição amostral de S^2 ?)

Distribuição (de probabilidade) Qui - Quadradot (Bussab e Morettin - pág. 358)

Teorema (**Distribuição Qui-Quadrado, nossa versão**): Seja X_1,\ldots,X_n uma amostra aleatória da v.a. $X \sim Normal(\mu, \sigma^2)$ e $S^2 = \sum_{i=1}^n (X_i - \overline{X})^2/(n-1)$, então podemos escrever uma quantidade Q tal que (dadas algumas outras suposições que omitimos aqui)

$$Q = \frac{(n-1)S^2}{\sigma^2} \sim \chi^2_{(n-1)}.$$

em que $\chi^2_{(n-1)}$ denota a distribuição de probabilidade Qui-Quadrado com n-1 graus de liberdade (g.l.).

- A distribuição χ^2 valores tabelados, assim como a distribuição normal padrão e a t. A diferença é que Q só assume valores positivos.
- Como usar a distribuição de Q para construir um IC para σ^2 ? Quais as suposições necessárias? Como interpretar os resultados?

Intervalo para uma proporção (populacional)

- Suponha que agora queremos estimar uma proporção populacional π .
- Exemplo: Estimar a proporção de pessoas infectadas por um certo vírus numa população.
 - Qual o estimador pontual "natural" para o problema? E como calcular um IC para π ?
- Quais as suposições necessárias? Como interpretar os resultados?

Usando o teorema central do limite

- $\frac{\overline{X} \mu}{\sigma/\sqrt{n}} \sim Normal(0, 1)$ se $X \sim Normal(\mu, \sigma^2)$, para σ^2 conhecido, ou $\frac{\overline{X} \mu}{S/\sqrt{n}} \sim Normal(0, 1)$ se o tamanho amostral for grande, n >> 30.

No caso da proporção amostral X não será normal Para uma amostra aleatória X_1,\dots,X_n da v.a. $X \sim Bernoulli(\pi)$ temos que $\sum_{i=1}^{n} X_i \sim Binomial(n, \pi)$. Das propriedades da distribuição binomial sabemos que $E(\sum_{i=1}^{n} X_i) = np$ e $V(\sum_{i=1}^{n} X_i) = np(1-p)$.

Assim, para um tamanho de amostra suficientemente grande (n >> 30)

$$Z = \frac{\left(\sum_{i=1}^{n} X_i\right) - np}{\sqrt{np(1-p)}} \sim Normal(0,1)$$

MAT02219 - Probabilidade e Estatística - 2020/2

ou ainda usando $p = \sum_{i=1}^n X_i/n$

$$Z = \frac{\left(\sum_{i=1}^{n} X_i/n\right) - p}{\sqrt{\frac{p(1-p)}{n}}} \sim Normal(0,1)$$

Dimensionamento do tamanho de amostra n

Chamamos de erro de estimação a metade da amplitude do intervalo,

- no caso de IC para μ com σ^2 conhecido, $E=z_{\alpha/2}\times\sigma/\sqrt{n},$ no caso de IC para μ com σ^2 desconhecido e n pequeno, $E=t_{(n-1);\alpha/2}\times s/\sqrt{n},$
- e no caso de IC para π , $E = z_{\alpha/2} \times \sqrt{p(1-p)/n}$.

Como calcular o tamanho mínimo de uma amostra para uma confiança $1-\alpha$ especificada e um erro **máximo**E também fixado?

Ler slides e ver vídeos da semana 9.

Fazer lista de exercícios 2-4.

Fazer o Quiz da semana 9 - VALE NOTA!!!