

Formale Systeme

Prof. Dr. Bernhard Beckert, WS 2018/2019

LTL und Büchi-Automaten

Omega-Strukturen (Wiederholung)

Definition

Eine omega-Struktur $\mathcal{R}=(\mathbb{N},<,\xi)$ für eine aussagenlogische Signatur P besteht aus der geordneten Menge der natürlichen Zahlen

$$(\mathbb{N},<)$$

interpretiert als Menge abstrakter Zeitpunkte und einer Funktion

$$\xi: \mathbb{N} \to \mathbf{2}^P$$

mit der Intention

 $p \in \xi(n) \Leftrightarrow \text{ in } \mathcal{R} \text{ ist } p \text{ zum Zeitpunkt } n \text{ wahr }$

LTL und Büchi-Automaten

Für einen Automaten $\mathcal{B} = (S, V, s_0, \delta, F)$ mit

 $V = 2^{\Sigma}$, wobei

 Σ = Menge aussagenlogischer Atome,

können wir

- ▶ Omega-Strukturen ξ über Σ und
- ▶ unendliche Wörter $w \in V^{\omega}$ über V identifizieren.

Notation

Für die folgenden drei Beispiele vereinbaren wir die folgende Notation

- ▶ eine aussagenlogische Signatur Σ mit $p, q \in \Sigma$
- V = 2^Σ
- ▶ $P = \{b \in V \mid p \in b\}$
- $\blacktriangleright \ Q = \{b \in V \mid q \in b\}$

Automat für $\Diamond \Box p$

Für den Automaten A_{dbp}

gilt

$$\xi \in L^{\omega}(\mathcal{A}_{dbp}) \quad \Leftrightarrow \quad \xi \models \Diamond \Box p$$

Automat für p U q

Für den Automaten $A_{puntila}$

gilt

$$\xi \in L^{\omega}(\mathcal{A}_{puntilg}) \Leftrightarrow \xi \models p \mathbf{U} q$$

Automat für $\Box \Diamond q$

Für den Automaten A_{infa}

gilt

$$\xi \in L^{\omega}(\mathcal{A}_{infq}) \quad \Leftrightarrow \quad \xi \models \Box \Diamond q$$

Lemma

Automat für Konjunktion

Seien

$$\mathcal{A}_1 = (S_1, V, s_1^0, \delta_1, F_1), \ \mathcal{A}_2 = (S_2, V, s_2^0, \delta_2, F_2)$$

Büchi-Automaten, C_1 , C_2 LTL-Formeln mit

$$A_1 \models C_1$$

 $A_2 \models C_2$

Dann gibt es einen Büchi-Automaten C mit

$$\mathcal{C} \models C_1 \wedge C_2$$

Automat für $\Box \Diamond p \land \Box \Diamond q$

Allgemeine Konstruktion für Konjunktionsautomaten

Gegeben
$$\mathcal{A}_{i} = (S_{i}, s_{i}^{0}, \delta_{i}, F_{i})$$

Gesucht $\mathcal{C} = (S, s^{0}, \delta, F)$ mit $L^{\omega}(\mathcal{C}) = L^{\omega}(\mathcal{A}_{1}) \cap L^{\omega}(\mathcal{A}_{2})$.
 $S = S_{1} \times S_{2} \times \{1, 2\}$
 $s^{0} = (s_{1}^{0}, s_{2}^{0}, 1)$
 $F = F_{1} \times S_{2} \times \{1\}$
falls $s_{1} \in F_{1}$ und $i = 1$
 $(t_{1}, t_{2}, 2) \in \delta((s_{1}, s_{2}, i), a) \Leftrightarrow t_{1} \in \delta_{1}(s_{1}, a)$ und $t_{2} \in \delta_{2}(s_{2}, a)$
falls $s_{2} \in F_{2}$ und $i = 2$
 $(t_{1}, t_{2}, 1) \in \delta((s_{1}, s_{2}, i), a) \Leftrightarrow t_{1} \in \delta_{1}(s_{1}, a)$ und $t_{2} \in \delta_{2}(s_{2}, a)$
sonst
 $(t_{1}, t_{2}, i) \in \delta((s_{1}, s_{2}, i), a) \Leftrightarrow i \in \{1, 2\},$
 $t_{1} \in \delta_{1}(s_{1}, a)$ und $t_{2} \in \delta_{2}(s_{2}, a)$

Theorem

Zu jeder LTL-Formel

В

gibt es einen - effektiv konstruierbaren - Büchi-Automaten

 \mathcal{A}_{B}

mit

$$L^{\omega}(\mathcal{A}_{\mathcal{B}}) = \{ \xi \in V^{\omega} \mid \xi \models \mathcal{B} \}$$

Beweis: Siehe Skriptum

Korollar

Erfüllbarkeit und Allgemeingültigkeit von LTL Formeln ist entscheidbar.

Beweis:

Man konstruiert die Büchi-Automaten A_B und $A_{\neg B}$. Es gilt

B ist erfüllbar $\Leftrightarrow L^{\omega}(\mathcal{A}_B) \neq \emptyset$

B ist allgemeingültig \Leftrightarrow $L^{\omega}(\mathcal{A}_{\neg B}) = \emptyset$

Für jeden Büchi-Automaten C ist die Frage $L^{\omega}(C) = \emptyset$? entscheidbar.