MATHEMATIK

UNTERRICHT - ABITUR 2025

Inhaltsverzeichnes

Anal	ytische Geometrie	1
1.1	2024-08-14 - note_title	1
1.2	2024-08-19 - Schnittwinkel berechnen	1
Stock	nastik	2
2.1	2024-08-28 - Einleitung	2
2.1.1	Beipsiel: Faires Spiel	2
2.1.2	Aufgaben:	2
	2.1.2.1 S. 238 Aufgabe 1	2
2.2	2024-09-04 - Mehrstufiger Zufallsversuch	3
2.3	2024-09-10 - Vierfeldertafel	3
2.3.1	Aufgaben	3
Form	eln	5
Bibliographie 6		

Analytische Geometrie

1.1 2024-08-14 - note_title

Bei zwei windschiefen Geraden wird erst eine Hilfebene hinzugezogen. Diese muss folgende Bedingungen erfüllen:

- eine der beiden Geraden muss in der Ebene liegen
- die andere muss **parrallel** zu ihr verlaufen
- Die Ebene E enthält die Gerade g und die andere Gerade verläuft parrallel. Der **Normalenvektor** der Ebene verläuft dabei **orthogonal** zu den beiden **Richtungsvektoren** der Geraden.

Aufstellen der Ebene

Danach einfach

1.2 2024-08-19 - Schnittwinkel berechnen

Tipp: Zwei **gleiche** Dinge (z. B. Gerade und Gerade): Cosinus. Zwei **unterscheidliche** Dinge (z. B. Gerade und Ebene): Cosinus

Herleitung unter: Winkel zwischen zwei Vektoren

2.1 2024-08-28 - Einleitung

Statistik vs Stochastik

Stochastik ist die Vorhersage Statistik ist die Auswertung der Vargangenheit

Satz: Die Wahrscheinlichkeiten der Egebnisse eines Zufallsexperiments sind Zahlen im intervall [0; 1] mit Summe 1. Sie bilden eine *Wahrscheinlichkeitsverteilung*. Sie sind die Prognosen für die relativen Häufigkeiten bei vielen Versuchswiederholungen.

Definition: Wenn jedem Ergebnis eines Zufallsexperiments ein Zahlenwert zugeordnet wird, spricht man von einer **Zufallsgröße.** Die **Wahrscheinlichkeitsverteilung** ener Zufallsrgöße X ist eine Tabelle, bei der jedem Wert k von X die Wahrscheinlichkeit P(X=k) zugeordnet ist. Für eine Zufallsgröße X mit den Werten $x_1, x_2, ..., x_n$ heißt $\mu = x_1 \cdot P(X=x_1) + x_2 \cdot P(X=x_2) ... + x_n \cdot P(X=x_n)$ **Erwartungswert** von X. Er gibt an, welchen Mittelwert man bei ausreichend großer Versuchsanzahl auf lange Sicht erwartet.

2.1.1 Beipsiel: Faires Spiel

Beim Glücksspeil mit einem Würfel soll das Doppelte der Augenzahl (in Euro) ausgezahlt werden.

- a) Bestimmen Sie die Auszahlung, die der Spieler im Mittel erwarten kann.
- b) Geben Sie an, wie hoch der Einsatz sein muss, damit das Glücksspiel fair ist.

Als **fair** bezeichnet man ein Spiel, bei dem der Erwartungswert für den Gewinn null ist. Gewinn = Auszahlung - Einsatz

a) Wegen
$$\mu = \frac{1}{6}(2+4+6+8+10+12) = \frac{42}{6} = 7$$

b) Dei Einsatz sollte dem Erwartungswert entsprechen. So hat der anbieter des Glückspieles zwar keinen gewinn, aber auf lange sicht auch keinen direkten Verlust und die Teilnehmenden habe eine faiere Chanche.

2.1.2 Aufgaben:

2.1.2.1 S. 238 Aufgabe 1

Gewinn (Chips)	Wahrscheinlichkeit
-1	$\frac{1}{4}$
0	$\frac{1}{2}$
1	$\frac{1}{4}$

a) Warum ist die Tabelle korrekt?

Es gibt vier verschiedene Möglichkeiten für die Münzen zu fallen wenn 0 gleich Zahl und 1 gleich Kopf, sind das folgende Möglichkeiten: 00, 01, 10, 11. Jede dieser Möglichkeiten tritt mit der selben Wahrscheinlichkeit auf $(\frac{1}{4})$. In zwei der Fällen (10,01) bekommt man einen Chip zurück, ist also selber auf 0. Wenn der Fall 00 auftritt, verliert man den gesetzten Chip und bei 11 gewinnt man einen

3

Roulett

Erwartungswert bei 1Euro Einsatz:

$$\mu = \frac{1}{37}(36) = \frac{36}{37} \approx 0.97$$

2.2 2024-09-04 - Mehrstufiger Zufallsversuch

TODO

2.3 2024-09-10 - Vierfeldertafel

S. 248

Beispiel am Urnenmodell

In einer Urne sind **10** Kugeln, **5** davon sind Markiert (Ereignis M). Also $P(M) = \frac{5}{10} = 50\%$. Es gibt allerding **drei** von **vier** roten Kugeln, welche Markiert sind und und **zwei** von **sechs** nicht rote Kugeln. Wenn man nun beim ziehen vorher schon weiß, welche Farbe die Kugel hat, bevor man die Markierung sieht, verändert sich die Wahrscheinlichkeit auf $\frac{3}{4} = 75\%$.

Man bezeichnet die Wahrscheinlichkeit für eine Markierung (M) unter der Bedingung rot (R) als bedingte Wahrscheinlichkeit und schreibt.

$$P_R(M) = \frac{3}{4} = 75$$

Satz: $P_E(F)$ ist die bedingte Wahrscheinlichkeit

Das bedingende Ereignis R wird als Index notiert. Man liest $P_R(M)$: "Wahrscheinlichkeit von M unter der Bedingung R"

2.3.1 Aufgaben

Eine Münze wird dreimal geworfen. Berechnen Sie $P_E(F)$ und $P_F(E)$. Beschreiben Sie die gesuchten Wahrscheinlichkeiten in Worten.

a) E: "Beim zweiten Wurf lag 'Zahl' oben." F: "Es lag dreimal 'Zahl' oben"

 $P_E(F)$ verändert sich zu "Es lag zwei mal Zahl oben", da der Zweite Wurf bereits Zahl hat. Also ergibt sich die Wahrscheinlichkeit $P_E(F)=\frac{1}{4}$ anstatt $P(F)=\frac{1}{6}$

 $P_F(E)$ da dreimal ,Zahl' oben liegt, dann liegt auch beim zweiten Wurf ,Zahl' oben. Also eine Wahrscheinlichkeit von $P_F(E)=1$

b) E: "Beim ersten Wurf lag 'Zahl' oben" F: "Es lag genau einam 'Zahl' oben"

 $P_E(F) = \frac{1}{3}$: Möglichkeiten: 100, 110, 111 (1: Zahl, 0: nicht Zahl)

 $P_F(E) = \frac{1}{3}$: Möglichkeiten: 100, 010, 001

Was wir wissen müssen

- Vierfeldertafeln aus und in sachzusammenhänge
- Baumdiagramme hin und her
- Was bedeutet bedingte Wahrscheinlichkeit
- Fachsprache
- Formeln kennen

Formeln

Bibliographie