Computergrafik

Übungsblatt 3

Aufgabe 1 Zusammengesetzte Matrizen

Gegeben sei ein Viereck mit den Eckpunkten $\vec{p}_0 = [2; 2]^T$, $\vec{p}_1 = [4; 2]^T$, $\vec{p}_2 = [4; 8]^T$, $\vec{p}_3 = [2; 8]^T$.

Rotieren Sie das Viereck um seinen Schwerpunkt (d.h. den Mittelwert seiner Eckpunkte) um 45° gegen den Uhrzeigersinn!

Geben Sie dabei

- (a) die rotierten Eckpunkte \vec{q}_i und
- (b) die Transformation in einer Matrix an.
- (c) Geben Sie die Inverse-Transformation in Matrixform an, welche die Punkte \vec{q}_i zurück nach \vec{p}_i rotiert.

Verwenden Sie dabei homogene Koordinaten.

Aufgabe 2 Transformation zwischen Koordinatensystemen Gegeben sei

- ein Dreieck mit den Eckpunkten $\vec{p}_0 = [2; 1]^T$, $\vec{p}_1 = [4; 1]^T$, $\vec{p}_2 = [3; 2]^T$ in Weltkoordinaten;
- ein Kamera-Koordinatensystem mit dem Ursprung $\vec{c}_o = [7,2]^T$ und deren Achsen in Richtung $[-1,1]^T$ und $[-1,-1]^T$ zeigen
- (a) Wie lauten die normalisierten Koordinatenachsen des Kamerakoordinatensystems?
- (b) Geben Sie die Transformation an, welche Punkte \vec{p}_i ins normalisierte Kamera-Koordinatensystem abbildet an. Verwenden Sie dazu homogene Koordinaten!
- (c) Wie lauten die Koordinaten im Kamerakoordinatensystem?

Aufgabe 3 Koordinatensysteme und baryzentrische Koordinaten Die Koordinatenachsen in einem Koordinatensystem müssen nicht zwingend orthogonal und normalisiert sein.

Betrachten Sie dazu das Dreieck mit den Eckpunkten $\vec{a} = [1; 1]^T$, $\vec{b} = [4; 1]^T$, $\vec{c} = [3; 3]^T$.

Nun konstruieren wir ein Koordinatensystem $\vec{t}_o = \vec{a}$, $\vec{t}_1 = \vec{b} - \vec{a}$ und $\vec{t}_2 = \vec{c} - \vec{a}$.

- (a) Wie lauten die Koordinaten des Punktes $\vec{p} = [3; 2]^T$ in dem Koordinatensystem $[\vec{t}_1, \vec{t}_2, \vec{t}_a]$?
- (b) Wie lauten die baryzentrischen Koordinaten des Punktes $\vec{p} = [3; 2]^T$?
- (c) Beschreiben Sie, was Ihnen auffällt!