Conjecturing Some Number Theory Results Pre-class, Week 8

Recall the following corollary from Week 6 class activity:

Corollary: If gcd(a, n) = 1 and $ax \equiv ab \pmod{n}$, then $x \equiv b \pmod{n}$.

In other words, we can "cancel" a from an equation such as $ax \equiv ab \pmod{n}$ as long as a is relatively prime to n. If a is not relatively prime to n, then the cancellation does not necessarily hold, as the above problem shows. Similarly, we saw how to define the inverse a^{-1} of an element a as long as a is relatively prime to n. In all these cases the relative primeness makes it work.

Recall how we defined the Euler ϕ -function to count all these nice a's that worked with a fixed mod n:

Given n, the number of positive integers that are less or equal to than n and relatively prime to n is denoted by $\phi(n)$. More specifically,

$$\phi(n) = |\{x : 1 \le x \le n \text{ and } \gcd(x, n) = 1\}|$$
.

Therefore, for any given n there are $\phi(n)$ many nice a's. The question is then how big is $\phi(n)$ for an arbitrary n?

1. We already know that $\phi(p) = p - 1$ if p is prime. We also found that $\phi(pq) = (p - 1)(q - 1)$ for p, q two distinct primes. Does this formula work if p = q? If yes, justify. If no, can you guess the correct formula for $\phi(p^2)$? What about $\phi(p^k)$ for an unknown k?

2. For each of the following n, find $(n-1)! \pmod{n}$.

a.
$$n = 5$$

b.
$$n = 7$$

c.
$$n = 10$$

d.
$$n = 15$$

e.
$$n = 17$$

f.
$$n = 21$$

3. Using the results of the previous problem, make a conjecture about $(n-1)! \pmod{n}$ for composite n > 4 and prove it. (Note: Consider the perfect square case separately.)

Recall how we defined the *order* of an element modulo n with $\gcd(a,n)=1$: If k is the smallest positive integer such that $a^k\equiv 1\pmod n$, we call k the *order* of a modulo n. For example, if a=4, then

$$4^1 \equiv \pmod{9}, 4^2 \equiv 7 \pmod{9}, 4^3 \equiv 1 \pmod{9}$$

so the order of $a=4 \mod 9$ is 3. If we let a=2, the order of 2 will be 6 because $2,2^2,2^3,2^4,2^5$ are not congruent to 1 mod 9.

4. Find the order of all non-zero $a \pmod{7}$ (by hand or using a code). Any property common to all orders? (If you wrote a code, you can also try finding the orders for all $a \pmod{13}$ to get another example to help with the conjecturing.)