Eigen Decomposition

Eigenvectors & Eigenvalues

- ▼ Keywords
 - ▼ Eigenvectors
 - **▼** Eigenvalues

Eigenvectors and Eigenvalues

- 1. Eigenvectors
 - a. given a square matrix A of size (n x n)
 - b. an eigenvector is a nonzero vector x of a matrix A
 - c. such that
 - i. $Ax = \lambda x$ for some scalar λ , which is called an eigenvalue of A
 - ii. x is called an eigenvector corresponding to λ
- 2. Transformation perspective
 - a. linear transformation $T(x) = Ax = \lambda x$
 - b. computational advantage
 - i. matrix multiplication needs to compute 4 times
 - ii. whereas using eigenvectors only computes twice
 - c. application
 - i. image rotation
- 3. Eigenvectors and eigenvalues
 - a. the equation $Ax=\lambda x$ can be rewritten as $(A-\lambda I)x=0$
 - i. which can be seen as one of the linear combination
 - b. the equation has a nontrivial solution if and only if matrix $(A-\lambda I)$ is linearly dependent

Null Space & Orthogonal Complement

Eigen Decomposition 1

- ▼ Keywords
 - ▼ Null space
 - ▼ Orthogonal complement

Null Space

- 1. Null space
 - a. usually denoted as Nul A
 - i. where A is a matrix of size (m x n)
 - b. the set of all solutions of a homogeneous linear system, Ax=0
 - c. note that
 - i. orthogonal vectors are linearly independent
 - ii. however, linearly independent vectors are not always orthogonal

Orthogonal Complement

- 1. Orthogonal complement
 - a. the set of all vectors z that are orthogonal to ${\it W}$
- 2. Fundamental subspaces given by A
 - a. the fundamental subspaces
 - i. Nul A = orthogonal space of Row A
 - ii. Nul A^T = orthogonal space of Col A
 - b. rank theorem
 - i. $n = \dim(Row A) + \dim(Nul A)$

Characteristic Equation

- ▼ Keywords
 - ▼ Characteristic equation

Characteristic Equation

- 1. Previous
 - a. eigenvalues are given

Eigen Decomposition 2

- b. find eigenvectors when eigenvalues are given
- 2. Characteristic equation
 - a. linearly (in)dependent vs. (non)invertible
 - i. linearly (in)dependent can be defined on both rectangular and square matrix
 - ii. invertible can be defined only on the square matrix
 - b. under the special condition
 - i. linearly dependent is similar to non-invertible
 - ii. linearly independent is similar to invertible
 - c. therefore, the eigenvalue λ can be found by computing det(A)=0
 - i. which means non-invertible, i.e., linearly dependent
 - d. det(A) = 0 is called characteristic equation

Eigenspace

- 1. Eigenspace
 - a. the dimension of the eigenspace can be more than one
 - i. corresponds to a particular λ
 - b. any vector in the eigenspace satisfies $T(x) = Ax = \lambda x$

Diagonalization

- ▼ Keywords
 - ▼ Diagonalizable matrix

Diagonalization

- 1. Diagonalization
 - a. the values of diagonal entries are nonzero and the others are zero
 - i. given square matrix A of size $n \times n$
 - ii. $D=V^{-1}AV$
 - iii. if and only if the invertible matrix ${\cal V}$ exists

- b. the matrix A is called diagonalizable matrix
- c. the matrix D is called diagonal matrix
- 2. Finding V and D
 - a. for V
 - i. the vectors v of the matrix V should be eigenvectors
 - ii. the matrix V should be invertible, i.e., the eigenvectors \boldsymbol{v} are linearly independent
 - b. for D
 - i. the matrix D has eigenvalues as diagonal entries
 - c. for A
 - i. A should have n linearly independent eigenvectors

Eigendecomposition & Linear Transformation

- ▼ Keywords
 - **▼** Eigendecomposition

Eigendecomposition

- 1. Eigendecomposition
 - a. diagonalizable matrix $A = VDV^{-1}$
 - i. this is called eigendecomposition of $oldsymbol{A}$
 - b. if the matrix is diagonalizable, the matrix has eigendecomposition
 - i. the two condition is equivalent
- 2. Linear transformation via eigendecomposition

a.
$$T(x) = Ax = VDV^{-1}x = V(D(V^{-1}x))$$

- i. where the linear transformation T(x)=Ax
- ii. the matrix $oldsymbol{A}$ is diagonalizable, i.e., has eigendecomposition
- b. computational advantage

- i. the matrix multiplication can be transformed into the summation of vectors
- 3. Change of basis
 - a. 평행사변형 법칙을 이용하여 vector x 값을 구하는 것이 아니라 eigendecomposition 을 이용하여 구함
 - i. Vx=a where a vector a is a given arbitrary vector and the matrix V is a set of eigenvectors
- 4. Element-wise scaling

a.
$$T(x) = V(D(V^{-1}x)) = V(Dy)$$

- b. let z = Dy
 - i. the vector z is simply the element-wise scaling of the vector y
 - ii. b/c of the definition of the diagonal matrix
- 5. Dimension-wise scaling

a.
$$T(x) = V(Dy) = Vz$$

- i. where z is still a coordinate based on the new basis $\{v_1,v_2\}$
- b. Vz is a linear combination of v_1,v_2 using the coefficient vector z
 - i. which means $Vz=v_1z_1+v_2z_2$
- 6. Linear transformation via A^k
 - a. consider recursive transformation $A^k x$

b.
$$A^k = (VDV^{-1})(VDV^{-1})...(VDV^{-1}) = VD^kV^{-1}$$

i. when A is diagonalizable

Further Study

- ▼ Keywords
 - ▼ Diagonalization
 - ▼ Algebraic multiplicity and geometric multiplicity

Existence of Eigendecomposition

1. Determining whether a matrix A (n x n) is diagonalizable

a. geometric multiplicity should be equal to algebraic multiplicity

i.
$$det(A-\lambda I)=0$$

- ii. eigenvalue 값이 다르면 두 eigenspace 는 서로 linearly independent 함
- b. A has n distinct eigenvalues, A is diagonalizable

i. e.g.,
$$(\lambda-1)(\lambda-3)(\lambda-2)(\lambda+5)(\lambda+2)$$

2. Solve $(A-\lambda I)x=0$ for a given eigenvalue λ