ISOMORFISMO, EMPARELHAMENTO E COMPONENTES CONEXOS DCE529 - Algoritmos e Estruturas de Dados III

Atualizado em: 28 de maio de 2023

Iago Carvalho

Departamento de Ciência da Computação

ISOMORFISMO

Grafos isomorfos

Dois grafos são isomorfos se e somente se existir uma correspondência um-para-um entre seus vértices e suas arestas de maneira que suas relações de adjacência sejam preservadas

2

CONDIÇÕES NECESSÁRIAS PARA ISOMORFISMO

Existem 4 condições necessárias (mas não suficientes) para que dois grafos sejam isomorfos

- 1. Mesmo número de vértices
- 2. Mesmo número de arestas
- 3. Mesmo número de componentes
- 4. Mesmo número de vértices com mesmo grau

Estas quatro condições podem ser checadas em tempo polinomial

- O Elas conseguem nos dizer se um grafo não é isomorfo
- O Entretanto, reconhecer a isomorfia não é tão simples assim

SÃO ISOMORFOS?

SÃO ISOMORFOS?

ALGORITMO PARA RECONHECIMENTO DE ISOMORFISMO

Um algoritmo simples para reconhecimento de isomorfismo tem complexidade $\mathcal{O}(n!)$

 Consiste em verificar todas as permutações de linhas e colunas das matrizes de adjacência de dois grafos

	а	b	С	d	e
a	0	1	0	1	1
b	1	0	1	1	1
С	0	1	0	1	0
d	1	1	1	0	1
е	1	1	0	1	0

		1	2	3	4	5
	1	0	0	1	1	1
	2	0	0	1	0	1
Ī	3	1	1	0	1	1
	4	1	0	1	0	1
	5	1	1	1	1	0

ALGORITMO PARA RECONHECIMENTO DE ISOMORFISMO

Um algoritmo simples para reconhecimento de isomorfismo tem complexidade $\mathcal{O}(n!)$

 Consiste em verificar todas as permutações de linhas e colunas das matrizes de adjacência de dois grafos

	а	Ь	С	d	e
a	0	1	0	1	1
b	1	0	1	1	1
С	0	1	0	1	0
d	1	1	1	0	1
е	1	1	0	1	0

		1	5	2	3	4
	1	0	1	0	1	1
	5	1	0	1	1	1
	2	0	1	0	1	0
	3	1	1	1	0	1
	4	1	1	0	1	0

ALGORITMO PARA RECONHECIMENTO DE ISOMORFISMO

Outro algoritmo para reconhecimento de isomorfismo Link

- Complexidade quasipolinomial
 - Complexidade pior que polinomial
 - Mas menor que exponencial

Entretanto, a complexidade do problema ainda não é conhecida

- Provado pertencer a NP
- Entretanto, não se sabe se pertence a P ou é completo para NP

DEFINIÇÃO

Um emparelhamento (também conhecido como casamento ou *matching*) é um conjunto independente de arestas

O Conjunto de arestas sem vértices em comum

EMPARELHAMENTO PERFEITO

Um emparelhamento perfeito inclui todos os vértices do grafo

- O Um emparelhamento perfeito é maximal
- \bigcirc Algoritmo de Blossons $\mathcal{O}(|V|^2|E|)$

EMPARELHAMENTO DE PESO MÁXIMO

Um emparelhamento que considera os pesos das arestas

- O Somatório dos pesos das arestas utilizadas é maximal
- Algoritmo de caminhos, árvores e flores
 - Algoritmo de Edmond's
 - Polinomial, de complexidade $\mathcal{O}(|V|^2|E|)$

Um caso especial (e muito útil) é definido em grafos bipartidos

- Problema da atribuição
- \bigcirc Algoritmo Húngaro, de complexidade $\mathcal{O}(|V|^3)$

PROBLEMA DA ATRIBUIÇÃO

Conjunto de trabalhadores × conjunto de tarefas

- O Cada trabalhador gasta um tempo diferente para cada tarefa
- Como dividir as tarefas entre os trabalhadores?
- O Desejável gastar o menor tempo o possível

Operário\Máquina	1	2	3
1	3	5	6
2	5	4	2
3	2	3	4

CONECTIVIDADE

A conectividade tem a ver com a alcançabilidade (ou atingibilidade) em grafos

- Fecho transitivo dos vértices
- Ou un vértice u é alcançavel a partir de v se existir um caminho entre u e v em G

- É possível ir do ponto A até o ponto B?
- O computador X está conectado na mesma rede que o computador Y?
- Existe um barramento de dados entre dois chips de um computador?
- É possível enviar energia de uma usina hidroelétrica para uma cidade?

GRAFOS DESCONEXOS

Um grafo é desconexo se existir pelo menos um par de vértices não alcançaveis entre si

GRAFO NÃO-ORIENTADO CONEXO

Um grafo não orientado é conexo se todos os vértices são alcançaveis a partir de um vértice qualquer

CONECTIVIDADE EM GRAFOS ORIENTADOS

Em grafos orientados, nós temos diferentes conceitos de conectividade

 Ele é considerado conexo se seu grafo não-orientado subjacente é conexo

CONECTIVIDADE EM GRAFOS ORIENTADOS

Além disso, dizemos que estes grafos podem ser divididos em três categorias

- 1. Simplemente conexo
- 2. Semi-fortemente conexo
- 3. Fortemente conexo

Cada categoria depende da alcançabilidade de seus vértices

SIMPLESMENTE CONEXO

Todo grafo conexo é simplesmente conexo (s-conexo)

SEMI-FORTEMENTE CONEXO

Um grafo é semi-fortemente conexo (sf-conexo) se

- \bigcirc Para todo par de vértices $u, v \in V$
- O Existe um caminho de u para v OU de v para u

FORTEMENTE CONEXO

Um grafo é fortemente conexo (f-conexo) se

- \bigcirc Para todo par de vértices $u, v \in V$
- \bigcirc Existe um caminho de u para v \mathbf{E} de v para u

CONECTIVIDADE EM GRAFOS DIRECIONADOS

COMPONENTES CONEXOS

Um componente conexo é um subgrafo conexo maximal

- Maior subgrafo induzido conexo
- Grafos conexos possuem somente um componente
- O número de componentes de um grafo é denotado por c

Grafo com c = 4

COMPONENTES FORTEMENTE CONEXOS

Em um grafo direcionado, componentes fortemente conexos são subgrafos maximais ${\it f-conexos}$

GRAFOS REDUZIDOS

Um grafo reduzido é construído mostrando somente as conexões entre os seus componentes conexos

Algoritmo baseado no algoritmo de busca em profundidade

- \bigcirc Complexidade de $\Theta(|V| + |A|)$
- 1. Faça uma busca em profundidade a partir de *u* e salve os tempos de fechamento de cada vértice
 - O tempo que ele é colorido de preto
- 2. Gere o grafo transposto G^T do grafo original G
 - Arcos com sentido invertido
- 3. Faça uma busca em profundidade em G^T
 - Considerando a ordem decrescente do tempo de fechamento dos vértices encontrado na etapa 1

[a, b, e, c, d, g, h, f]

