Predicting Bug-inducing Tickets The Impact of Temporal Proximity

Daniele La Prova (Candidato) Chiarissimo Prof. Davide Falessi (Relatore) Ing. Emanuele Gentili (Correlatore)

21/02/2025

Results

Roadmap

- 1 Introduction
- 2 Design
- 3 Results
- 4 Conclusion

Why Bother?

- Modern society heavily relies on software, permeating all aspects of our lives.
- When software fails, the costs can be immense.
- The later a bug is found, the more expensive its aftermaths are.

Figure 1: Some critical services that rely on software.

Daniele La Prova Thesis Defense 21/02/2025 3/38

Why Bother?

Introduction

000000000

Figure 2: Most recent software outages caused by bugs, resulting in costly losses.

Daniele La Prova Thesis Defense 21/02/2025 4/38

What is Bug Prediction?

• Given a set of entities composing the project, **bug prediction** aims to identify those that are more likely to contain bugs.

Results

- Testing efforts focus on predicted buggy entities
- State-of-the-art bug prediction techniques are focused on classes, methods, LOCs, files or commits.
- However, these predicted entities already contain bugs.

Daniele La Prova Thesis Defense 21/02/2025 5/38

What is our Aim?

- For the first time to the best of our knowledge, we predict bugs before they have been injected.
- With the idea that prevention is better than cure, our aim is to propose and evaluate a first approach for ticket-level prediction (TLP);
- Our contribution is to define, measure and evaluate 62 features for a new task named TLP.

Daniele La Prova Thesis Defense 21/02/2025 6/38

7 / 38

What is a Ticket?

Figure 3: Ticket lifecycle. Developers use tickets to track project work.

Daniele La Prova Thesis Defense 21/02/2025

What is a Ticket?

Figure 4: Ticket Example

Daniele La Prova Thesis Defense 21/02/2025 8/38

What is a Ticket?

Figure 5: Ticket Example vs Commit Example. We focus on the Tickets.

Daniele La Prova Thesis Defense 21/02/2025 9 / 38

When do we make prediction?

• The earlier, the better.

Introduction

0000000000

Figure 6: Weather forecast

Daniele La Prova Thesis Defense 21/02/2025 10 / 38

When do we make prediction?

Introduction

000000000

Figure 7: Ticket timeline

 Daniele La Prova
 Thesis Defense
 21/02/2025
 11/38

When do we make prediction?

Figure 7: Ticket timeline with Measurement Dates.

Daniele La Prova Thesis Defense 21/02/2025 11/38

Roadmap

- 1 Introduction
- 2 Design
- 3 Results
- 4 Conclusion

Results

Research Questions

RQ1

Does temporal proximity impact the accuracy of TLP?

RQ2

Does temporal proximity impact the predictive power of TLP features?

Daniele La Prova Thesis Defense 21/02/2025 13 / 38

Measurement Procedure

Figure 8: Phases overview

Daniele La Prova Thesis Defense 21/02/2025 14 / 38

Features

- Since TLP is an innovative approach implemented by no one before, we had to define, measure and evaluate the features to feed the models.
- Leveraging SE principles, we propose and measure 62 features belonging to 7 families:
 - Code: 4 features
 - **Developer**: 2 features
 - **External Temperature**: 6 features
 - ▶ Internal Temperature: 10 features
 - ► Intrinsic: 22 features
 - ► Requirement to Requirements: 3 features
 - ▶ JIT: 15 features

Results

Code

- The code base on which a ticket is implemented impacts the bugginess of the ticket
- The same ticket could lead to a bug according to how easy the code base is to accept its implementation.
- 4 features:
 - Quality: Number of code smells in the code base.

Daniele La Prova Thesis Defense 21/02/2025 16 / 38

Results

Developer

- We take into account the assigned developer to the ticket.
- SE gives to the human factor a crucial role in the ticket implementation process.
- 2 features:
 - ► Familiarity: How many tickets have been historically assigned to the developer divided by the total number of project tickets.

Daniele La Prova Thesis Defense 21/02/2025 17/38

External Temperature

 The family takes into account how often the project is subject to changes.

Results

- Implementing a ticket in an ever-changing environment can be hard.
- 6 features:
 - **Temporal Locality**: The proportion of bug-inducing tickets among all tickets prior to the measured ticket in a limited time horizon.

Daniele La Prova Thesis Defense 21/02/2025 18 / 38

Internal Temperature

- We measure when, how and how often the ticket was changed.
- "Hot" tickets can be suspected to be problematic at least.
- 10 features.
 - **Comments count**: Ticket participants use comments to express their opinions, ask for clarifications, provide additional information, etc.

Results

Daniele La Prova Thesis Defense 21/02/2025 19 / 38

Intrinsic

- We measure the ticket intrinsic characteristics.
- Intuitively, SE practitioners consider some tickets inherently more difficult to implement than others.
- 22 features:
 - Priority: A level of importance telling what ticket should be implemented first.
 - ► **Type**: i.e: bug, improvement, new feature, subtask, etc.

R2R

- We measure the similarity between the ticket and the previous tickets that induced a bug.
- It is intuitive that tickets semantically similar to tickets that induced a bug are more prone to induce a bug.
- 3 features:
 - Levenshtein Max Title: Max Levenshtein distance calculated on Title.

Thesis Defense 21/02/2025 21 / 38

JIT

- We consider the **aggregated features of the commits** linked to the ticket when they are available according to the measurement date.
- Since commits can contain the bug, they have been consistently studied in the SE domain.
- 15 features:
 - Sum LOCs Added
 - Number of Commits

Results

Features Measurement

Figure 9: TLP dataset creation overview.

Daniele La Prova Thesis Defense 21/02/2025 23 / 38

Features Measurement

- We selected the projects HIVE and HBASE since they have the highest buggy linkage while having lots of usable tickets.
 - Other project had too much noise in data, which would have made the evaluation less reliable.
 - ► A priori, there is no evidence suggesting that HIVE and HBASE make TLP more effective than other projects.
- ullet We analyzed $\sim 11\,000$ tickets in total

RQ1: Does temporal proximity impact the accuracy of TLP?

- Independent variables:
 - Temporal Proximity (Open, InProgress, Closed).

0000000000000000

- Dependent variables:
 - Accuracy metrics (AUC, Precision, Recall, Kappa, Specificity, GMean)
- H10: Temporal proximity does not impact TLP accuracy.
- Models: Random Forest (RF), Logistic Regression (LR), Neural Network (NN)

Thesis Defense 21/02/2025 25 / 38

Results

- Independent variables:
 - Temporal Proximity, Features.
- Dependent variables:
 - ► IGR, Backward FS result (selected, not selected).
- H20: The power of TLP features does not vary across feature family, temporal points, and their combination.
- Models: same as RQ1.

Thesis Defense 21/02/2025 26 / 38

Validation Technique

• Moving Window:

- ► Addresses Concept Drift.
- ► Feature Selection: FS and No FS.
- ▶ Balancing: SMOTE and no SMOTE.

Figure 10: Sliding Window example using the first commit date as measurement date.

Daniele La Prova Thesis Defense 21/02/2025 27 / 38

Roadmap

- 1 Introduction
- 2 Design
- 3 Results
- 4 Conclusion

Daniele La Prova Thesis Defense 21/02/2025 28 / 38

RQ1: Temporal Proximity impacts Accuracy

Figure 11: Distributions of TLP accuracy using moving-window in three proximity points.

Daniele La Prova Thesis Defense 21/02/2025 29 / 38

RQ1: Temporal Proximity impacts Accuracy

Figure 11: Distributions of TLP accuracy using moving-window in three proximity points.

Daniele La Prova Thesis Defense 21/02/2025 29 / 38

RQ1: Temporal Proximity impacts Accuracy

Figure 11: Distributions of TLP accuracy using moving-window in three proximity points.

Daniele La Prova Thesis Defense 21/02/2025 29 / 38

Results 00000

RQ1: Temporal Proximity impacts Accuracy

Table 1: Average gain across classifiers in TLP accuracy using moving-window in HBASE when increasing the proximity.

	HBASE						
OpenToInProgress InProgressToClosed	Precision 4% 15%	Recall -7% 8%	F1 -2% 13%	AUC 6% 29%	GMean 44% 154%	Specificity 45% 49%	Kappa 22% 42%

Table 2: Average gain across classifiers in TLP accuracy using moving-window in HIVE when increasing the proximity.

		HIVE						
OpenToInProgress InProgressToClosed	Precision 9% 12%	Recall 13% 0%	F1 14% 6%	AUC 17% 27%	GMean 120% 234%	Specificity -18% 137%	Kappa 11% 84%	

Daniele La Prova Thesis Defense 21/02/2025 30 / 38

RQ2: Temporal Proximity impacts Feature Power

Introduction

Figure 12: Distributions of feature family power, in terms of IGR, across different proximity points, in specific projects.

Daniele La Prova Thesis Defense 21/02/2025 31/38

RQ2: Temporal Proximity impacts Feature Power

Table 3: Statistical test comparison on the impact on IGR of Feature Family, Proximity and their interaction using moving-window.

Results 00000

Independent Variable	Pvalue			
independent variable	HBASE	HIVE		
FeatureFamily	0.0001	0.0001		
Proximity	0.0001	0.0001		
${\sf Proximity} \times {\sf FeatureFamily}$	0.0001	0.0001		

- Most powerful features include:
 - # Participants, # Parallel Commits when in Open;
 - # Activities when InProgress;
 - **JIT** and # languages when in Closed.

Daniele La Prova Thesis Defense 21/02/2025 32 / 38

Roadmap

- 1 Introduction
- 2 Design
- 3 Results
- 4 Conclusion

Conclusion

Introduction

This work aimed to leverage SE principles in order to define,
 measure and evaluate 62 features for a new task named TLP.

Daniele La Prova Thesis Defense 21/02/2025 34 / 38

RQ1: Does temporal proximity impact the accuracy of TLP?

Results

- TLP accuracy improves as proximity to the ticket closing event increases.
- Practitioners should favor a Moving Window strategy when implementing TLP.

Daniele La Prova Thesis Defense 21/02/2025 35 / 38 Introduction

RQ2: How do TLP features perform across different temporal points?

- Predictive power of TLP features changes according to the **Family**, the Temporal Proximity, and their combination.
- Prediction models should dynamically adapt feature selection based on the proximity stage.

Daniele La Prova Thesis Defense 21/02/2025 36 / 38

Conclusion

Future Work

- Expanding the dataset scope (more projects, both open and proprietary);
- Explore additional feature families;
- Investigate how TLP insights can be leveraged to teach better bug prevention strategies.

Daniele La Prova Thesis Defense 21/02/2025 37 / 38

38 / 38

- More details can be found in the Thesis.
 - Other validation techniques, statistical tests, complete feature set, and more.

Results

- We are going to publish this work in a **journal paper**.
- Any questions?

Daniele La Prova Thesis Defense 21/02/2025