Insertion Sort	Custo	Vezes
for $j \leftarrow 2$ to comprimento [A]	c1	n
do chave ← A[j]	c2	n - 1
i ← j − 1	c3	n - 1
while i > 0 e chave < A[i]	c4	$\sum_{2}^{n}t$
$\mathbf{do} \ A[i+1] \leftarrow A[i]$	c5	$\sum_{2}^{n} t - 1$
i ← i − 1	с6	$\sum_{2}^{n} t - 1$
A[i + 1] ← chave	с7	n – 1

T(n) = c1 * n + c2 * (n - 1) + c3 * (n - 1) + c4 *
$$\sum_{i=1}^{n} t + (c5 + c6) * \sum_{i=1}^{n} (t - 1) + c7 * (n - 1)$$

Temos que:

$$\sum_{1}^{n} t = \frac{n*(n+1)}{2} - 1$$

$$\sum_{1}^{n} t - 1 = \frac{n \cdot (n-1)}{2}$$

Substituindo:

T(n) = c1 * n + c2 * (n - 1) + c3 * (n - 1) + c4 *
$$(\frac{n^2}{2} + \frac{n}{2} - 1)$$
 + (c5 + c6) * $(\frac{n^2}{2} - \frac{n}{2})$ + c7 * (n - 1)

Organizando:

$$T(n) = \frac{c4 + c5 + c6}{2} * n^2 + (c1 + c2 + c3 + \frac{c4}{2} - \frac{c5}{2} - \frac{c6}{2} + c7) * n - (c2 + c3 + c4 + c7)$$

A análise acima considera o pior caso do Insertion Sort, que é quando a entrada está na ordem inversa da que deseja-se ordenar. Para esse caso, o Insertion se comporta como uma função quadrática, podendo ser expresso na notação grande-O como $O(n^2)$. Porém se a entrada estiver totalmente ordenada o comportamento passa a ser linear, podendo ser expresso como O(n).

Selection Sort	Custo	Vezes
for $i \leftarrow 1$ to comprimento [A] - 1	c1	n
menor ← i	c2	n - 1
for j ← i + 1 to comprimento [A]	c3	$\sum_1^n t$
if A[j] < A[menor]	c4	$\sum_{1}^{n-1} t$
menor ← j	c5	$\sum_{1}^{n-1} t$
if menor != i	c6	n - 1
swap(A[menor] , A[i])	с7	n - 1

$$T(n) = c1 * n + c2 * (n - 1) + c3 * \sum_{1}^{n} t + (c4 + c5) * \sum_{1}^{n-1} t + c6 * (n - 1) + c7 * (n - 1)$$

Organizando, temos:

$$T(n) = c1 * n + (c2 + c6 + c7) * (n - 1) + c3 * \sum_{1}^{n} t + (c4 + c5) * \sum_{1}^{n-1} t$$

Temos que:

$$\sum_{1}^{n} t = \frac{(1+n)*n}{2} = \frac{n^2}{2} + \frac{n}{2}$$

$$\sum_{1}^{n-1} t = \frac{(1+n-1)*(n-1)}{2} = \frac{n^2}{2} - \frac{n}{2}$$

Substituindo:

T(n) = c1* n + (c2 + c6 + c7) * (n - 1) + c3 *
$$(\frac{n^2}{2} + \frac{n}{2})$$
 + (c4 + c5) * $\frac{n^2}{2} - \frac{n}{2}$

Organizando, temos:

$$T(n) = \frac{(c3+c4+c5)}{2} * n^2 + (c1+c2+\frac{c3}{2}-\frac{c4}{2}-\frac{c5}{2}+c6+c7) * n - (c2+c6+c7) * 1$$

Podemos expressar a T(n) acima como $an^2 + bn + c$, portanto temos uma função quadrática. Na notação grande-O, não é importante os fatores constantes. Dessa forma, temos que o resultado da execução do algoritmo Selection Sort é O(n^2). Diferente do insertion sort, o selection sort irá apresentar esse comportamento independentemente da ordenação prévia da entrada.