Announcement

- Feel free to post questions/discussions within each lab group.
- Coding assignment consultation sessions today:
 - 3:45-4:45pm, LT 15 (TA: Jiqing and Xihao)
 - 8:15-9:15pm, I3-AUD (TA: Zhiheng and Edward)

Recap: MapReduce Implementation

Recap: The amount of network I/O in shuffle

Case 1: Map Workers are different to Reduce Workers

Recap: The amount of network I/O in shuffle

Case 2: Two map Workers are reused in reduce phase.

Recap: Performance Guidelines for Basic Algorithmic Design

- Linear scalability: more nodes can do more work in the same time
 - Linear on data size
 - Linear on computer resources
- Minimize the amount of I/Os in hard disk and network
 - Minimize disk I/O; sequential vs. random.
 - Minimize network I/O; bulk send/recvs vs. many small send/recvs
- Memory working set of each task/worker
 - Large memory working set -> high memory requirements / probability of out-of-memory errors.
- Load balance among tasks
 - Load imbalance -> long execution time / large memory working set.
- Guidelines are applicable to Hadoop, Spark, ...

Recap: A Step-by-Step Performance Analysis Guide

- Scalability analysis
 - Max number of Map tasks: Will the number of mapper tasks increase linearly as the input size increases?
 - Max number of Reduce tasks: Will the number of reducer tasks increase linearly as the input size increases?
- I/O analysis: input + intermediate results + output
 - The amount of disk I/O from each Map/Reduce task
 - The amount of network I/O from each Map/Reduce task
 - The amount of network I/O in shuffle (= amount of intermediate results from map tasks)
- Memory working set: intermediate results
 - The amount of memory consumption from each map/reduce task
- Load balance: worst case analysis
 - The worst execution time for all map/reduce tasks
 - The largest memory working set for all map/reduce tasks

Recap: Scalability Analysis

- Assume that one worker can run one Map or Reduce task
- Linear scalability:
 - Given W workers, we can run W tasks at the same time.
 - The key question will be: how many tasks does the job have?
- We calculate:
 - Max number of Map tasks
 - Max number of Reduce tasks
- We analyze:
 - Will the number of mapper tasks increase linearly as the input size increases?
 - Will the number of reducer tasks increase linearly as the input size increases?

Recap: Word Count V0: Scalability Analysis

```
Scalability analysis for Map:
   class Mapper {
                                               * Max number of map tasks
      def map(key: Long, value: Text) = {
                                               = input size / chunk size
        for (word <- tokenize(value)) {</pre>
3
          emit(word, 1)
      }
5
   }
6
7
    class Reducer {
      def reduce(key: Text, values: Iterable[Int]) = {
9
        for (value <- values) {</pre>
10
          sum += value
11
                                               Scalability analysis for Reduce:
12
                                               * Max number of reduce tasks
        emit(key, sum)
13
14
                                               = number of distinct keys
   }
15
```

Recap: I/O Analysis

- For a Mapreduce job, we have the following I/O components:
 - Reading input from HDFS: mainly disk I/O
 - Shuffle and sort: Disk and network I/O
 - Output: Disk and network I/O

We calculate:

- The amount of disk I/O from each Map/Reduce task
- The amount of network I/O from each Map/Reduce task
- The amount of network I/O in shuffle (= amount of intermediate results from map tasks)

Recap: Word Count V0: I/O Analysis

```
class Mapper {
   def map(key: Long, value: Text) = {
     for (word <- tokenize(value)) {
        emit(word, 1)
     }
}</pre>
```

I/O analysis for map task:

- Input Disk I/O= 128MB
- Intermediate results = very small (i.e., can be ignored)
- Output Disk I/O= all <word, 1> pairs, #pairs= #words in the chunk
- Network I/O= very small

I/O analysis for shuffling:

Network I/O = all <word, 1> pairs, #pairs= #words in the chunk

Recap: Word Count V0: I/O Analysis

```
class Mapper {
      def map(key: Long, value: Text) = {
        for (word <- tokenize(value)) {</pre>
           emit(word, 1)
      }
5
    }
6
7
    class Reducer {
      def reduce(key: Text, values: Iterable[Int]) = {
9
        for (value <- values) {
10
           sum += value
11
12
        emit(key, sum)
13
14
    }
15
```

I/O analysis for reduce task:

- Input Disk I/O= very small //already counted in shuffling
- Intermediate results = very small
- Output Disk I/O= very small
- **Network I/O= very small**

Recap: Memory Consumption Analysis

- For Map/Reduce function, look for the memory allocation:
 - Variables
 - Intermediate data structures
- We calculate:
 - The total amount of memory consumption by all those variables/data structures.

Recap: Word Count V0: Memory Consumption

```
Memory analysis for Map:
   class Mapper {
                                              * Memory working set
      def map(key: Long, value: Text) = {
                                              = very small
        for (word <- tokenize(value)) {</pre>
          emit(word, 1)
      }
5
   }
6
7
    class Reducer {
      def reduce(key: Text, values: Iterable[Int]) = {
9
        for (value <- values) {
10
          sum += value
11
                                              Memory analysis for Reduce:
12
                                              * Memory working set
        emit(key, sum)
13
14
                                              = very small
   }
15
```

Recap: Load Balance

- Avoid unevenly overloading some compute nodes while other compute nodes are left idle.
- Cannikin Law ("Buckets effect")
- Worst case analysis for all map/reduce tasks
 - The worst execution time (sensitive to input)
 - The largest memory consumption

Recap: Word Count V0: Worst Case Analysis

```
class Mapper {
      def map(key: Long, value: Text) = {
        for (word <- tokenize(value)) {</pre>
           emit(word, 1)
      }
5
    }
6
7
    class Reducer {
      def reduce(key: Text, values: Iterable[Int]) = {
9
        for (value <- values) {</pre>
10
           sum += value
11
12
        emit(key, sum)
13
14
    }
15
```

Worst case analysis for Map:

- * Memory working set
- = Very small
- * Execution time
- = Parsing the chunk

Worst case analysis for Reduce:

- * Memory working set
- = Very small
- * Execution time
- = Parsing the entire input (all documents have the same word)

Recap: Summary of Issues in Word Count Version 0

- Scalability
 - Max number of reducer tasks= number of distinct keys
- I/C
 - Map: Output Disk I/O= all <word, 1> pairs, #pairs= #words in the chunk
 - Shuffle: Network I/O= all <word, 1> pairs, #pairs= #words in the chunk
- Memory working set
 - No Issue
- Load balance
 - Reduce: Execution time= Parsing the entire input (all documents have the same word)

CS4225/CS5425 Big Data Systems for Data Science

MapReduce & Relational Databases

Bingsheng He School of Computing National University of Singapore hebs@comp.nus.edu.sg

Learning Objectives

- Learn how to process big relational data with MapReduce.
- Learn algorithmic design of MapReduce.

Relational Databases

- A relational database is comprised of tables.
- Each table represents a relation = collection of tuples (rows).
- Each tuple consists of multiple fields.

Star Schema and SQL Queries

GROUP BY

P.Brand,

S.Country

20

Projection

Projection in MapReduce

- Map: take in a tuple (with tuple ID as key), and emit new tuples with appropriate attributes
- \circ No reducer needed (\Rightarrow no need shuffle step)

Selection

SELECT * FROM **Sales** WHERE (price > 10)

Selection in MapReduce

- Map: take in a tuple (with tuple ID as key), and emit only tuples that meet the predicate
- No reducer needed

Group by... Aggregation

- Example: What is the average sale price per product?
- In SQL:
 - SELECT product_id, AVG(price) FROM sales GROUP BY product_id
- In MapReduce:
 - Map over tuples, emit product_idprice>
 - Framework automatically groups values by keys
 - Compute average in reducer
 - Optimize with combiners

Relational Joins

Relational Joins ('Inner Join')

An Overview

- Join implementations are complex
- "One size does not fit all"
- We mainly talk about two methods.
 - If (one of the input tables is small):
 Choose method 1: Broadcast Join
 - Else:

Choose method 2: Reduce-side Join

Method 1: Broadcast Join

- Requires one of the tables to fit in main memory of individual servers
 - All mappers store a copy of the small table
 - They iterate over the big table, and join the records with the small table

An Example

- Small table S with 2 tuples
- Large table R with 6 tuples

(S1: k1, ...)

(S2: k2, ...)

(R1: k1, ...)

(R2: k2, ...)

(R3: k3, ...)

(R4: k2, ...)

(R5: k1, ...)

(R6: k4, ...)

Map Worker 1

(S1: k1, ...)

(S2: k2, ...)

 \bowtie

(R1: k1, ...)

(R2: k2, ...)

(k1,[S1,R1]), (k2,[S2,R2]) Map Worker 2

(S1: k1, ...)

(S2: k2, ...)

 \bowtie

(R3: k3, ...)

(R4: k2, ...)

(k2,[S2,R4])

Map Worker 3

(S1: k1, ...)

(S2: k2, ...)

 $>\!\!<$

(R5: k1, ...)

(R6: k4, ...)

(k1,[S1,R5])

Method 2: Reduce-side ('Common') Join

- Doesn't require a dataset to fit in memory, but slower than map-side join
 - Different mappers operate on each table, and emit records, with key as the variable to join by

An Example

- Small table S with 2 tuples
- Large table R with 6 tuples

(S1: k1, ...) (R1: k1, ...)

(S2: k2, ...)

(R2: k2, ...)

(R3: k3, ...)

(R4: k2, ...)

(R5: k1, ...)

(R6: k4, ...)

Map Worker 1

Map Worker 2

Map Worker 3

Map Worker 4

(S1: k1, ...)

(S2: k2, ...)

(R1: k1, ...)

(R2: k2, ...)

(R3: k3, ...)

(R4: k2, ...)

(R5: k1, ...)

(R6: k4, ...)

Shuffle

Reduce Worker

Reduce Worker

Reduce Worker

Reduce Worker

(S1: k1, ...)

(R1: k1, ...)

(R5: k1, ...)

(S2: k2, ...)

(R2: k2, ...)

(R4: k2, ...)

(R3: k3, ...)

(R6: k4, ...)

Method 2: Reduce-side ('Common') Join

- In reducer: we can use secondary sort to ensure that all keys from table X arrive before table Y
 - Then, hold the keys from table X in memory and cross them with records from table Y

Secondary Sort

- (note: not required knowledge for class)
- Problem: each reducer's values arrive unsorted. But what if we want them to be sorted (e.g. sorted by temperature)?
- Solution: define a new 'composite key' as (K1, K2), where K1 is the original key ("Natural Key") and K2 is the variable we want to use to sort
 - Partitioner: now needs to be customized, to partition by K1 only, not (K1, K2)

Further Reading

- Chapter 6, "Data-Intensive Text Processing with MapReduce", by Jimmy Lin.
 - http://lintool.github.io/MapReduceAlgorithms/ed1n/MapReduce-algorithms.pdf
- Foto N. Afrati and Jeffrey D. Ullman. 2010. Optimizing joins in a map-reduce environment. In *Proceedings of the 13th International Conference on Extending Database Technology* (EDBT '10).
 - http://infolab.stanford.edu/~ullman/pub/join-mr.pdf.

Acknowledgement

- "Join Strategies in Hive" (Facebook; Liyin Tang, Namit Jain)
- "Data Algorithms", July 2015, O'Reilly Media, Inc.
- "Data-Intensive Text Processing with MapReduce", Jimmy Lin and Chris Dyer
- Bryan Hooi