N(2250) 9/2⁻

$$I(J^P) = \frac{1}{2}(\frac{9}{2})$$
 Status: ****

Older and obsolete values are listed and referenced in the 2014 edition, Chinese Physics **C38** 070001 (2014).

N(2250) POLE POSITION

RFAI	PART
	· FAIL

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT	
2150 to 2250 (≈ 2200) OUR EST			TECH	COMMILITY	
2157± 3±14	¹ SVARC	14	I +P	$\pi N \rightarrow \pi N$	
2195±45	ANISOVICH	12A		Multichannel	
2217	ARNDT	06	DPWA	$\pi N \rightarrow \pi N, \eta N$	
2187	HOEHLER	93		$\pi N \rightarrow \pi N$	
2150 ± 50	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$	
-2×IMAGINARY PART					
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT	
350 to 550 (≈ 450) OUR ESTIMA					
412± 7±44	¹ SVARC	14	L+P	$\pi N \rightarrow \pi N$	
470± 50	ANISOVICH	12A	DPWA	Multichannel	
431	ARNDT	06	DPWA	$\pi N \rightarrow \pi N, \eta N$	
388	HOEHLER	93	SPED	$\pi N \rightarrow \pi N$	
360 ± 100	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$	

N(2250) ELASTIC POLE RESIDUE

MODULUS |r|

Created: 5/30/2017 17:20

N(2250) BREIT-WIGNER MASS

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
2250 to 2320 (≈ 2280) OUR ESTIM	MATE			
2280 ± 40	ANISOVICH	12A	DPWA	Multichannel
2302± 6	ARNDT	06	DPWA	$\pi N \rightarrow \pi N$, ηN
2250 ± 80	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
2268 ± 15	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$

N(2250) BREIT-WIGNER WIDTH

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
300 to 600 (≈ 500) OUR ESTIMAT	E			
520± 50	ANISOVICH	12A	DPWA	Multichannel
628± 28	ARNDT	06	DPWA	$\pi N \rightarrow \pi N, \eta N$
480 ± 120	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$
300± 40	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$

N(2250) DECAY MODES

The following branching fractions are our estimates, not fits or averages.

	Mode	Fraction (Γ_i/Γ)
Γ ₁	$N\pi$	5–15 %

N(2250) BRANCHING RATIOS

$I(N\pi)/I_{total}$					l 1/l
VALUE (%)	DOCUMENT ID		TECN	COMMENT	
5 to 15 OUR ESTIMATE					
12 ± 4	ANISOVICH	12A	DPWA	Multichannel	
$8.9 \!\pm\! 0.1$	ARNDT	06	DPWA	$\pi N \rightarrow \pi N$, ηN	
10 ± 2	CUTKOSKY	80	IPWA	$\pi N \rightarrow \pi N$	
10 ± 2	HOEHLER	79	IPWA	$\pi N \rightarrow \pi N$	

N(2250) PHOTON DECAY AMPLITUDES AT THE POLE

$N(2250) \rightarrow p\gamma$, helicity-1/2 amplitude A_{1/2}

$MODULUS$ ($GeV^{-1/2}$)	PHASE (°)	DOCUMENT ID		TECN
$-0.090 {+0.025 \atop -0.022}$	-49^{+17}_{-11}	ROENCHEN	14	DPWA

$N(2250) \rightarrow p\gamma$, helicity-3/2 amplitude A_{3/2}

$MODULUS (GeV^{-1/2})$	PHASE (°)	DOCUMENT ID		TECN
$0.049 {+ 0.031 \atop - 0.019}$	171^{+36}_{-43}	ROENCHEN	14	DPWA

Created: 5/30/2017 17:20

N(2250) FOOTNOTES

N(2250) REFERENCES

PDG	14	CP C38 070001	K. Olive et al.	(PDG Collab.)
ROENCHEN	14	EPJ A50 101	D. Roenchen et al.	,
Also		EPJ A51 63 (errat.)	D. Roenchen et al.	
SVARC	14	PR C89 045205	A. Svarc et al.	
ANISOVICH	12A	EPJ A48 15	A.V. Anisovich et al.	(BONN, PNPI)
ARNDT	06	PR C74 045205	R.A. Arndt et al.	` (GWU)
HOEHLER	93	π N Newsletter 9 1	G. Hohler	(KARL)
CUTKOSKY	80	Toronto Conf. 19	R.E. Cutkosky et al.	(CMU, LBL) IJP
Also		PR D20 2839	R.E. Cutkosky et al.	(CMU, LBL) IJP
HOEHLER	79	PDAT 12-1	G. Hohler <i>et al.</i>	(KARLT) IJP
Also		Toronto Conf. 3	R. Koch	(KARLT) IJP

 $^{^{1}\,\}mathrm{Fit}$ to the amplitudes of HOEHLER 79.