CS447/647

Storage LVM and RAID

	▼ Cloud F	rovider 1 🔻	Clou	ıd Provider 2 💌	Clo	ud Provider 3 💌	W	niteBox 💌
Cost per GB	\$	0.02	\$	0.02	\$	0.02	\$	0.01
Ingress Cost	\$	-	\$	-	\$	-		
Egress Cost	\$	0.08	\$	0.09	\$	0.09	\$	-
Monthly Cost	\$	2,048.00	\$	2,048.00	\$	2,048.00	\$	-
20T Egress	\$	1,638.40	\$	1,843.20	\$	1,843.20	\$	-
1st Year Cost	\$	24,576.00	\$	24,576.00	\$	24,576.00	\$	5,688.00

124,723.20 \$

124,723.20

\$ 5,688.00

5 Years Cost

\$

124,518.40 \$

References

Nemeth, Evi, et al. UNIX and Linux System Administration Handbook. Addison-Wesley, 2018.

Remzi H., et al. *Operating Systems: Three Easy Pieces*, Arpaci-Dusseau Books, August, 2018 (Version 1.00) https://pages.cs.wisc.edu/~remzi/OSTEP/

LVM - Logical Volume Management

- Provides tools to create virtual block devices from physical devices
- Virtual devices are <u>easier to manage</u> than physical devices
- Three requirements
 - Device-mapper kernel module
 - Userspace device-mapper
 - Userspace lvm2 tools
- Three components
 - Physical Volume
 - Volume Group
 - Logical Volume

RAID

- We often want disks to be
 - faster
 - larger
 - more reliable
- Redundant Array of Inexpensive Disks (RAID)
 - O Developed in the late 1980's by the CS department at Berkeley
 - Technique to make multiple disks to appear as a single disk
 - More storage, better performance and reliability
 - Complex
 - Multiple Disks
 - RAM
 - Processors

RAID

- Advantages
 - Performance
 - Capacity
 - Reliability
 - Redundancy Tolerate the loss of a disk
- Transparency Easing Deployment
 - New functionality
 - Demands no changes to the rest of the system
 - RAID is a perfect example
 - Looks like one big disk
 - Solved the deployment problem

Interface and RAID Internals

- Filesystem sees one big disk
- When a logical IO request is made, a RAID must:
 - Calculate which disk
 - Issue physical IO request
 - Mirroring results is 2 physical writes for 1 logical
- SATA, SCSI or NVME
 - NVME is software RAID only
 - mdraid
 - Hardware RAID for SATA and SCSI

RAID0 - Striping

- Upper Bound of Performance and Capacity
- "Perfect reliability"
 - One disk fails the whole array fails
- Excellent Performance
 - All disks are utilized
 - Often parallel
- Best Capacity
 - All Disks combined

Disk 0	Disk 1	Disk 2	Disk 3
0	1	2	3
4	5	6	7
8	9	10	11
12	13	14	15

Figure 38.1: **RAID-0: Simple Striping**

RAID Mapping Problem

- How does the RAID map logical blocks to physical disks?
 - Logical Block A
 - O Disk = A % number_of_disk
 - o Offset = A / number_of_disks
- So, a write to A = 14 with a 4 disk RAID
 - o Disk: 14 % 4 = 2
 - o Offset: 14 / 4 = 3

Chunk Size

- Affects performance
 - 64Kb, 512Kb (common)
- Group blocks together on a single disk
- Small chunks means files are striped across many disks
- Large chunks reduce intra-file parallelism
- Art more than a science

RAID0 - Performance

- Sequential Workload Large continuous chunks
- Random Workload Small requests for random disk locations (blocks)
 - Databases
- In general Sequential > Random
- Number of Disks * Random Rate
- Number of Disks * Sequential Rate
- Full Bandwidth

How do we benchmark?

- dd(1) Basic Sequential Read\Write
- hdparm(1) Basic buffered reads test
- fio(1) synthetic benchmarks, 'real world' workloads

RAID1 - Mirroring

- Copy of each block on a different disk
- Each logical write is two physical writes
 - Slowest of the two
 - Happen in parallel
- Sequential Performance: (N/2) * Sequential Rate
- Random Performance: (N/2) * Random Rate

Disk 1	Disk 2	Disk 3	
0	1	1	
2	3	3	
4	5	5	
6	7	7	
	0 2 4 6	Disk 1 Disk 2 0 1 2 3 4 5 6 7	Disk 1 Disk 2 Disk 3 0 1 1 2 3 3 4 5 5 6 7 7

Figure 38.3: Simple RAID-1: Mirroring

RAID4 - Parity

- Each stripe has a parity block
- Parity calculated using XOR
- Can lose 1 disk
 - Replacement has to be rebuilt
- Performance
 - (N 1) * Rate
 - Random write does not improve when you add disks

Disk 0	Disk 1	Disk 2	Disk 3	Disk 4
0	1	2	3	P0
4	5	6	7	P1
8	9	10	11	P2
12	13	14	15	P3

Figure 38.4: **RAID-4 With Parity**

C ₀	C1	C2	C3	P
0	0	1	1	XOR(0,0,1,1) = 0
0	1	0	0	XOR(0,1,0,0) = 1

Disk and Flash Drive Rebuild Times

RAID	Capacity TB	Capacity GB	Capacity MB	Seq Write Speed MB/sec	Rebuild Time Minimum secs	Minutes	Hours
Disk	0.72	72	72,000	80	900	15	0.25
	1	1,000	1,000,000	115	8,696	145	2.42
	4	4,000	4,000,000	115	34,783	580	9.66
SSD FlashMax III	2.2	2,200	2,200,000	1,400	1,571	26	0.44
Intel D3600	2	2,000	2,000,000	1,500	1,333	22	0.37
Micron 9100	3.2	3,200	3,200,000	2,000	1,600	27	0.44
Intel DC P3608	4	4,000	4,000,000	3,000	1,333	22	0.37

https://www.theregister.com/2016/05/13/disak_versus_ssd_raid_rebuild_times/

RAID5 - Rotating Parity

- Operates identically to RAID4
- Random read performance slightly better
- Random Write: (N/4) * R

Disk 0	Disk 1	Disk 2	Disk 3	Disk 4
0	1	2	3	P0
5	6	7	P1	4
10	11	P2	8	9
15	P3	12	13	14
P4	16	17	18	19

Figure 38.7: RAID-5 With Rotated Parity

		$\frac{N}{2}$ (if lucky)		
Throughput				36 / 755
Sequential Read	$N \cdot S$	$(N/2) \cdot S^1$	$(N-1)\cdot S$	$(N-1)\cdot S$
Sequential Write	$N \cdot S$	$(N/2) \cdot S^1$	$(N-1)\cdot S$	$(N-1)\cdot S$
Random Read	$N \cdot R$	$N \cdot R$	$(N-1)\cdot R$	$N \cdot R$
Random Write	$N \cdot R$	$(N/2) \cdot R$	$\frac{1}{2} \cdot R$	$\frac{N}{4}R$
Latency			-	4
Read	T	T	T	T
Write	T	T	2T	2T

RAID-1

 $(N \cdot B)/2$

1 (for sure)

RAID-4

 $(N-1)\cdot B$

RAID-5

RAID-0

 $N \cdot B$

0

Capacity

Reliability

Figure 38.8: RAID Capacity, Reliability, and Performance

mdraid - Linux Software Raid

- RAID devices are virtual devices created from two or more block devices
- Many devices to one virtual device
- RAID Levels offer performance and redundancy
- Levels
 - **LINEAR** concatenates devices in a single device. Like LVM Volume Group
 - RAID0 (striping) No redundancy, performance
 RAID1 (mirroring) Mirror disks
 - O RAID4 RAID0 plus a parity disk
 - **RAID5** RAID4 with parity spread across disks, lose 1 disk
 - O RAID6 RAID5 with two parity segments, lose two disks
 - RAID10 striped mirroring
 - \bigcirc MULTIPATH Not a RAID. Multiple paths to same storage device. iSCSI
 - O FAULTY provides a layer over a true device that can be used to inject faults
 - CONTAINER Set of devices

```
.config - Linux/x86 4.15.18 Kernel Configuration
> Device Drivers > Multiple devices driver support (RAID and LVM)
                   Multiple devices driver support (RAID and LVM)
    Arrow keys navigate the menu. <Enter> selects submenus ---> (or empty
    submenus ----). Highlighted letters are hotkeys. Pressing <Y> includes. <N>
    excludes, <M> modularizes features. Press <Esc> to exit. <?> for Help.
    </> for Search. Legend: [*] built-in [] excluded <M> module < > module
        --- Multiple devices driver support (RAID and LVM)
              RAID support
                Autodetect RAID arrays during kernel boot
                Linear (append) mode
                RAID-0 (striping) mode
                RAID-1 (mirroring) mode
                RAID-10 (mirrored striping) mode
        {M}
                RAID-4/RAID-5/RAID-6 mode
        <M>
                Multipath I/O support
        <M>
                Faulty test module for MD
                Cluster Support for MD
        <M>
        <M>
              Block device as cache
                Bcache debugging
                Debug closures
              Device mapper support
                request-based DM: use blk-mg I/O path by default
                Device mapper debugging support
                Block manager locking
        <M>
                Crypt target support
                Snapshot target
        <M>
        <del>_</del>(+)
```

< Exit > < Help > < Save > < Load >

<Select>

drbd

- Distributed Replicated Block Device
- High-Availability Storage
- RAID1 over the network
- Active/Passive Setup

Why does this matter?

Complex container and virtual machine managers use LVM, mdadm and drbd

extensively. They are heavily scripted.

