Industry Panel at

1st workshop on Information-Centric Fog Computing

Dirk Kutscher Yiannis Psaras

12 June 2017

Adoption Challenges and Prospect of ICN Fog Computing

Topics

1. Motivation and feasibility of ICN edge/fog computing

- Why is this a good idea? Why not?
- What are expected benefits?

2. Challenges for ICN edge/fog computing

- What are the most important challenges in your opinion?
 - Research challenges
 - Deployment challenges

3. Outlook: Deployment

- Most promising use cases (if any)?
- Most promising approach (architecture, specific technology etc.)?

Adoption Challenges and Prospect of ICN Fog Computing

Panelists:

- **Eve Schooler** (Principal Engineer and Director, Intel IoT)
- Dirk Trossen (Senior Principal Engineer, InterDigital Europe)
- Chris Wood (Researcher, University of California Irvine)
- **Cedric Westphal** (Principal Research Architect, Huawei)

Eve M. Schooler

Principal Engineer & Director, Research in Emerging Architectures

- Affiliation: Internet of Things Group, Intel
- •Interest/research in ICN & Edge/Fog:
 - Fog architecture, ICN in IoT / smart spaces, Data privacy, Reverse CDNs, Smart Objects in Fog computing, Trust models, ICN in Wireless Edge Networks, Remote interaction and control of real-time IoT data and devices, Anomaly detection

Mission Statement:

 Disrupt the status quo, bridge the divide between research and Intel business units, make Fog less Foggy

Dirk Trossen

- Senior Principal Engineer @ InterDigital Europe
 - Started 2013, leading network team in London office
- Started ICN research in 2007
 - Led numerous ICN pprojects
 - Technical Manager PSIRP & PURSUIT FP7 project
 - Technical Manager POINT & FLAME H2020 project, arch lead RIFE H2020 Project
 - Interest in architecture, routing, naming, ... building workable systems

Mission statement: if we make the Internet work (better) over ICN, it will be the best use case for ICN ever!

Christopher Wood

- Affiliation: UC Irvine
- Current research interest: privacy in ICN
- Mission statement: Make ICN secure and private by default with the ability to opt-out

Cedric Westphal

SANTA CRUZ

Affiliation:

Huawei Technology, Santa Clara, CA, USA

Computer Engineering Dept, University of California, Santa Cruz

Interests:

AR/VR and video distribution in ICN networks Content-based Traffic Engineering, resource allocation and management Caching algorithms and policy Graph properties of ICN networks

Mission Statement:

Can we turn ICN into actual products?

Motivation and feasibility of ICN edge/fog computing

Mission & Feasability of ICN Edge/Fog Computing

Why is this a good idea?

- Not a bad idea. ICN proven useful intra-cloud comms for IoT. Why not E/W and N/S, too?
- Edge/Fog needs a transport to bring "compute to the data", something data-centric.
- ICN already provides routing and caching capability, why not processing too?

• Why not?

- Is ICN uniquely positioned to provide this service?
- Can it play well with other IC technologies?
- Data availability in a tussle with data privacy not sure ICN up to task, yet.

Expected Benefits?

Converged networking/compute/storage Fog nodes

Motivation for ICN-based Edge: Meeting 5G Requirements through Novel Performance Characteristics Multicast of service responses Cost-efficien Dynamic t SDN service integration routing Reduce Stem unicast Differentiate Localize ??? latency proliferation services traffic **Net-level** Direct path service mobility indirection Simplify traffic steering

Chris: Motivation and Feasibility

The good:

- Current (secure) connection-based transport is architecturally restrictive
- ICN collapses many layers in the stack
- Authenticity is a core architectural feature
- ICN consumers are often ghosts*

The bad:

- Formulating meaningful definitions of privacy is difficult
- Applications are ultimately responsible for privacy -- what if they accidentally opt out?
- Consumers (and applications) are often "noisy"

Cedric: Motivation and Feasibility

- AR needs:
 - FAST access to content with strong locality
 - Content needs to be distributed nearby
 - Processing functions nearby
 - For instance, to extract features from user's field of view
 - Information and processing can be shared between users
- ICN and fog answers some of these requirements
 - Depending on how you define these...
- Feasibility is TBD....
 - Or: can it be provided over current architecture at the application layer?

Challenges For ICN edge/fog computing

Challenges for ICN Edge/Fog Computing

Most important Research challenges

- Does it work at IoT scale? Naming, routing, security, privacy, trust
- ICN and the Mobile edge
- ICN for software-defined Fog
- Support for service orchestration

Most important Deployment challenges

- Ease of use for: developers, integrators, administrators, ... users
- Simplicity of setup
- Interoperability with other flavors of ICN and IP, w/broader eco-system

Challenges: Brave New World or the Internet (over ICN?)

New service API(s) or based on HTTP (and other IP-based protocols)?

- If new service API(s), what services?
 - New? Old ones but better?
- If backward compatible
 - Most 5G edge transports are (SDN) L2
 - -> service routing over L2 (SROL) problem
 - Need mapping of HTTP to ICN
 - -> Use solutions developed in POINT project
 - Possibly provide performance benefits unseen in IP networks

*FLIPS (Flexible IP Services) is a platform based on POINT & RIFE H2020 project solutions

Chris: Challenges

- Data-centric security shifts burden of security and privacy to applications.
 - TLS does not give us the best privacy
 - Are ICNs better or worse off?
- Giving applications maximal flexibility of name-to-data bindings without allowing them to harm themselves
 - IoT data (names) can be very specific and illuminating
- Meaningful separations between "what is requested at the application layer" and "what packet is sent over the wire" that maintain privacy
- Privacy-preserving data models and application design patterns
 - How can applications transfer or obtain data without leaking sensitive information?

Cedric: Challenges

- How to build an infrastructure to support the AR fog use case?
- What naming? What distributed security mechanisms? What caching? How to share in between users?
- Can the gains be achieved without new architecture?
 - Market research says AR will be \$\$\$ in 2020, and I'm assuming they have not included a new post-IP architecture in this valuation...
- What is a fog network (who exactly is Karl?)

Outlook: Deployment?

Deployment Outlook

- Most promising use cases?
 - Video/Audio analytics & surveillance it is already here, already needed
 - AR/VR commercial promise
 - Autonomous driving from an impact standpoint
 - Smart cities it's where over ½ the population will live
- Most promising approach (architecture, specific technology, etc.)?
 - Participate in and influence IoT and Fog standards
 - Balance getting it done with IoT for Social Good

Outlook: Deployment as a Net App

Chris: Outlook

- ICN is not about caching
 - Stack revolution and simplification is a huge win
 - Symmetric traffic flow and in-network signals are a huge help for newer transports
- Not enough attention paid to privacy
- Security and privacy should be core features
 - TLS is the thin waist today
 - Applications should not be trusted entirely

Cedric: Outlook

- Clouded with a chance of fog in the evening
- Work in standardization in AR/VR and ICN
- IoT driven fog computing but video a component of this
 - And even AR, say in a surveillance use case

_

•

Questions? Comments?