Summary of Meeting July 19, 2016

Putu Ayu Sudyanti

The current algorithm poses some mixing problem in which the chain failed to explore other modes in the posterior. To fix this, an additional Metropolis-Hastings step is needed to guarantee that other possible solutions are considered. There are 2 different ways in which we can attempt this procedure; with independent or dependent transition probability.

1. Independent transition probability

The first method assumes that sampling of $(\theta_i^n \theta_i^t)$ and ζ^i are done independently in the transition probability of the Metropolis-Hastings step. The algorithm can be written as follows:

- i. Randomly sample $\theta_i^* = (\theta_i^{n^*}, \theta_i^{t^*})$ uniformly each with probability $\frac{1}{9}$
- ii. Pick $P(\zeta_i^*|\theta_i^*)$ based on the following:
 - If ζ_i is not a singleton: $\zeta_i^*=\zeta_{c^*}$ with probability $\frac{n_{c^*}}{N-1}$ where $c^*=1,2,\cdots,K$
 - Otherwise: $\zeta_i^* \sim H$ with probability 1
- iii. Determine the acceptance probability of the Metropolis-Hastings by:

$$r = \frac{P(\zeta_{i}^{*}, \theta_{i}^{*}|y) \times q(\zeta_{i}, \theta_{i}|\zeta_{i}^{*}, \theta_{i}^{*})}{P(\zeta_{i}, \theta_{i}|y) \times q(\zeta_{i}^{*}, \theta_{i}^{n*}, \theta_{i}^{t*}|\zeta_{i}, \theta_{i}^{n}, \theta_{i}^{t})}$$

$$= \frac{\frac{1}{9} \frac{n_{c*}}{n + \alpha - 1} \times P(y_{i}|\zeta_{i}^{*}, \theta_{i}^{*})}{\frac{1}{9} \frac{n_{c}}{N - 1}} \frac{\frac{1}{9} \frac{n_{c}}{N - 1}}{\frac{1}{9} \frac{n_{c^{*}}}{N - 1}}$$

$$= \frac{P(y_{i}|\zeta_{i}^{*}, \theta_{i}^{*})}{P(y_{i}|\zeta_{i}, \theta_{i})}$$

2. Dependent transition

This second method assumes that the choice of ζ_i should depend on the sample of (θ_i^n, θ_i^t) in the transition probability of the algorithm. The pseudo-code is as follows:

1

- i. Propose $\theta^* = (\theta_i^{n*}, \theta_i^{t*})$ uniformly with probability $\frac{1}{9}$
- ii. For nonsingleton:

Set $\zeta^* = \zeta_{c^*}$ for an existing cluster $c^* = 1, 2, \dots, K$ with probability

$$q(\zeta^* = \zeta_{c^*}|\theta^*) \propto \frac{n_{c^*}P(y_i|\zeta_{c^*},\theta^*)}{z(\theta^*)}$$

where $z(\theta^*) = \sum_{j=1}^K n_j P(y_i|\zeta_j, \theta^*)$. The acceptance rate will be:

$$r = \frac{P(y_{i}, \theta^{*}, \zeta^{*})}{P(y_{i}, \theta, \zeta)} \times \frac{q(\theta, \zeta)}{q(\theta^{*}, \zeta^{*})}$$

$$= \frac{\frac{1}{9} \frac{n_{c^{*}}}{N + \alpha - 1} P(y_{i} | \theta^{*}, \zeta_{c^{*}})}{\frac{1}{9} \frac{n_{c}}{N + \alpha - 1} P(y_{i} | \theta, \zeta)} \times \frac{\frac{1}{9} \frac{n_{c} P(y_{i} | \zeta_{c}, \theta)}{z(\theta)}}{\frac{1}{9} \frac{n_{c^{*}} P(y_{i} | \zeta_{c^{*}}, \theta^{*})}{z(\theta^{*})}}$$

$$= \frac{z(\theta^{*})}{z(\theta)}$$

iii. For singleton:

The transition probability is $q(\zeta^*) = p(\zeta^*)$ then the acceptance rate becomes:

$$r = \frac{P(y_i, \theta^*, \zeta^*)}{P(y_i, \theta, \zeta)} \times \frac{q(\theta, \zeta)}{q(\theta^*, \zeta^*)}$$

$$= \frac{\frac{1}{9}P(\zeta^*)P(y_i|\theta^*, \zeta_{c^*})}{\frac{1}{9}P(\zeta)P(y_i|\theta, \zeta)} \times \frac{\frac{1}{9}P(\zeta)}{\frac{1}{9}P(\zeta^*)}$$

$$= \frac{P(y_i|\zeta^*, \theta_*)}{P(y_i|\zeta, \theta)}$$