

Formalización de las matemáticas con Lean. Un caso de estudio: Geometría euclídea plana.

Adrián Lattes Grassi

Septiembre de 2023

Facultad de Ciencias Matemáticas Trabajo dirigido por Jorge Carmona Ruber

Resumen

Este trabajo explora el uso del asistente de demostración Lean, un lenguaje de programación que implementa una teoría de tipos útil para verificar formalmente demostraciones matemáticas, para formalizar enunciados y resultados de la axiomática de Hilbert de la geometría euclídea plana. Esta teoría servirá de guía para introducir el uso del asistente y exponer cómo puede ser utilizado para construir relaciones de equivalencia, modelos de una teoría y demostrar la independencia entre axiomas.

Abstract

Resumen traducido al inglés.

Índice

Introducción		5
1 Lea		6
	ection.1.1 ubsection 2 .2 La geometría de Hilbert	8
3 Fo	ormalizando la geometría de Hilbert en Lean	9
Refere	rencias	10

Introducción

Los asistentes de demostración nos permiten formalizar definiciones, enunciados de proposiciones y teoremas, demostraciones, y verficar estas definiciones. Formalizar matemáticas consiste en digitalizar enunciados y resultados escribiéndolos en un lenguaje de programación que garantiza, mediante una correspondencia entre una teoríá de tipos y la lógica, la validez de cada paso.

Algunos beneficios de formalizar enunciados y resultados matemáticos mediante un asistente de demostración son:

El proceso de formalización requiere explicitar todos los detalles de las demostraciones.
 Garantiza la comprensión.

0.1. Contenidos del trabajo

- Introducción a la formalización de enunciados y demostraciones mediante el uso de tácticas
- Tratamiento de distintos patrones de demostración comunes en la geometría euclídea
 - ¿Qué es un modelo?
 - ¿Cómo podemos trabajar con relaciones de equivalencia?
 - ¿Cómo demostramos independencia de axiomas?
- Desarrollo y demostración de resultados. Se formalizan enunciados y demostraciones de las primeras secciones de axiomas. Posteriormente se plantea cómo se podría demostrar la independencia del axioma de las paralelas y se formalizan los enunciados necesarios dejando pendientes ciertas construcciones.

1. Lean

En esta sección se introducen los elementos básicos del lenguaje para

1.1. Cómo enunciar proposiciones con teoría de tipos

Estado táctico: hipótesis y metas.

Tipos y conjuntos Analogías y diferencias

hipótesis Los resultados pueden depender de unas hipótesis, enunciadas antes de los :.

El tipo Prop

Implicación y funciones

Doble implicación

and y or como tipos inductivos

Términos true y false

La negación

1.2. Tácticas básicas

refl Sirve para demostrar metas de la forma A = A. Por ejemplo, podemos demostrar que todo punto es igual a si mismo:

```
lemma point_refl (A : Point) : A = A :=
begin
  refl
end
```

rw Para reescribir

exact Si la meta es \vdash X y x es un término de tipo X se puede usar la táctica exact x para cerrar la meta.

apply Demostrar hacia atrás

intro Introducir hipótesis

```
lemma equal_comm (A B : Point) : A = B \rightarrow B = A := begin intro h, sorry end
```

split Dividir la meta

left, right

Modificar la meta

exfalso

Cambia la meta a false

2. La geometría de Hilbert

En esta sección se introduce la teoría de la geometría de Hilbert [1]. limitaremos al caso de la geometría plana. Introducción de los problemas de la formalización de Euclides en los Elementos.

Se utilizan nociones y construcciones intuitivas, basadas en justificaciones mediante dibujos, pero no incluidas dentro de la axiomática.

3. Formalizando la geometría de Hilbert en Lean

Referencias

basis David Hilbert. The foundations of geometry. Open court publishing Company, 1902. 8