2018 至 2019 学年第 一 学期 考试时间: 120 分钟

课程名称: 概率论与数理统计 C (A)卷 考试形式: (闭卷)

年级: 2017 级 专业: **理工科各专业** ; 层次: (本)

题号	1	1 1	111			总分
分数						

一、填空题(每空3分,共24分)

- 1、设 A, B 为两个随机事件, $P(A) = 0.5, P(B \mid A) = 0.6$, 则 $P(\overline{AB}) =$;
- 2、设随机变量 $X \sim P(\lambda)$,且 $P\{X = 0\} = \frac{1}{3}$,则 $\lambda = _____;$
- 3、设随机变量 \boldsymbol{X} 的密度函数为 $f(x) = \begin{cases} 2x, & 0 < x < 1, \\ 0, & \text{其他} \end{cases}$ 用 \boldsymbol{Y} 表示对 \boldsymbol{X} 的 3 次 4、设 $\boldsymbol{X} \sim N(\mu, \sigma^2)$, $\boldsymbol{Y} = a\boldsymbol{X} b$,其中 a 、b 为常数,且 $a \neq 0$,则

独立重复观察中事件 $\left\{X \leq \frac{1}{2}\right\}$ 出现的次数,则 P(Y=2)=_____;

4、设两个随机变量 X 与 Y 相互独立,且同分布: $P(X=-1)=P(Y=-1)=\frac{1}{2}$,

$$P(X=1) = P(Y=1) = \frac{1}{2}$$
, \emptyset $P(X=Y) = ____;$

- 5、设D(X) = 4, D(Y) = 9, R(X,Y) = 0.5, 则D(X+Y) = 3;
- 6、若 $X \sim N(2, \sigma^2)$,且 $P\{2 < X < 4\} = 0.3$,则 $P\{X < 0\} =$
- 7、若 $X \sim t(n)$,则 $\frac{1}{\mathbf{v}^2} \sim \underline{\hspace{1cm}}$;
- 8、设 $X \sim U[a,1]$, x_1, x_2, \ldots, x_n 是从总体X中随机抽取的样本观测值,则a

的矩估计值为____;

二、选择题(每题3分,共18分)

- 1、设A、B为两个互不相容的随机事件,且P(B)>0,则下列选项一定正 确的是(
- $(A) P(A) = 1 P(B); (B) P(A|B) = 0; (C) P(A|B) = 1; (D) P(\overline{AB}) = 0$
- 2、一盒产品中有a 只正品,b 只次品,每次取一个,取出不再放回,连取两 个,第二次取到正品的概率为(
- $(A) \quad \frac{a-1}{a+b-1}; \quad (B) \quad \frac{a(a-1)}{(a+b)(a+b-1)}; \quad (C) \quad \frac{a}{a+b}; \qquad (D) \quad \left(\frac{a}{a+b}\right)^2$
- 3、设随机变量 X,Y 相互独立,且 E(X), E(Y) 存在,记 $U = \max\{X,Y\}$,

 $V = \min\{X,Y\}$,则E(UV)等于(

- (A) E(U) E(V); (B) E(X) E(Y); (C) E(U) E(Y); (D) E(X) E(V)
- $Y \sim ($
- (A) $N(a\mu b, a^2\sigma^2 + b^2);$ (B) $N(a\mu + b, a^2\sigma^2 b^2);$
- (C) $N(a\mu+b, a^2\sigma^2)$; (D) $N(a\mu-b, a^2\sigma^2)$
- 5、设总体 $X \sim N(\mu, \sigma^2)$, X_1, X_2, \dots, X_n 是来自总体的一个样本,则 σ^2 的 无偏估计量是(
- (A) $\frac{1}{n-1} \sum_{i=1}^{n} (X_i \overline{X})^2$; (B) $\frac{1}{n} \sum_{i=1}^{n} (X_i \overline{X})^2$; (C) $\frac{1}{n} \sum_{i=1}^{n} X_i^2$; (D) \overline{X}^2
- 6、设 $x_1, x_2,, x_{16}$ 是来自总体 $X \sim N(\mu, 0.4^2)$ 的简单随机抽样,算得
- $\bar{x} = 10.12$,则 μ 的置信度为 0.95 的置信区间为($(u_{0.025} = 1.96)$
 - (A) [9.924, 10.316];
- (B) [8.432, 11.321];
- (C) [5, 789, 7, 254]:
- (D) [6, 887, 9, 837]

装订线

中作

三、计算应用题(共58分)

1、(8分)某人决定去甲、乙、丙三国之一旅游。注意到这三国在此季节内下

雨的概率分别为 $\frac{1}{4}$ 、 $\frac{1}{3}$ 、 $\frac{1}{12}$,他去这三国旅游的概率分别为 0.3、0.2、0.5,

求:(1)他旅游遇到雨天的概率是多少;(2)如果遇到雨天了,则他是去乙国的概率是多少?

3、(10分)设随机变量 X 的概率密度为

$$f(x) = \begin{cases} 6x(1-x), & 0 < x < 1 \\ 0, & \cancel{\sharp} \stackrel{\sim}{\simeq} \end{cases}$$

求Y = 2X + 1的概率密度.

2、(8分)设随机变量 X 的密度函数为
$$f(x) = \frac{A}{e^x + e^{-x}}$$
, $x \in \mathbb{R}$, 求:

(1) 常数 A; (2) $P{0 < X < \frac{1}{2} \ln 3}$; (3) 分布函数 F(x).

4	(12分)	设二维随机图	を量(X	(Y)	的概率分布为

X Y	-1	0	1
-1	а	0	0.2
0	0.1	b	0.2
1	0	0.1	c

其中a, b, c为常数,且X的数学期望EX = -0.2, $P\{Y \le 0 | X \le 0\} = 0.5$,

记Z = X + Y, 求: (1) a, b, c 的值; (2) Z 的分布律.

6、(8 分)设总体 X 的分布律为: $P(X = x) = (1 - p)^{x-1}p$, x=1,2,3..., 其中 p 为未知参数, $X_1,X_2,...$, X_n 是来自总体 X 的简单随机抽样,求参数 p 的极大似然估计.

5、(12 分) 设随机变量 X 和 Y 在区域 D 上服从均匀分布,其中 D 为 y=x,y+x=0,x=1 围成,试求: (1) X 和 Y 的联合密度函数; (2) X 和 Y 的边缘密度函数,并讨论 X 和 Y 是否独立; (3) 期望 E(XY) 的值.