Aula 02

Introdução aos Conceitos de Roteamento

Conceito

Roteamento é a transferência de informação da origem até o destino através de uma rede. Ao longo do caminho, tipicamente haverá pelo menos um nó intermediário.

Roteador X Switch/Bridge

A função do roteador parece ser a mesma que a de uma ponte (switch/bridge). A principal diferença entre ambos é que a ponte opera na camada de enlace, enquanto os roteadores operam na camada de rede.

Assim, eles operam de maneiras diferentes, embora ambos executem operações de comutação.

A entrega de datagramas

Na arquitetura TCP/IP, a camada de rede é responsável por prover e implementar o serviço de entrega de datagramas. Tecnicamente, esse serviço de entrega é definido como um serviço não confiável e sem conexão, que opera usando o paradigma de melhor esforço.

- Serviço não confiável: Serviço que não garante a entrega de datagramas IP ao destino final.
- Serviço sem conexão: Serviço que não estabelece uma conexão entre origem e destino antes de enviar os dados.
- Paradigma de melhor esforço: O protocolo IP tenta entregar os pacotes da melhor forma possível usando os recursos disponíveis.

Roteamento x Hosts multi-homed

Roteamento: É um processo de escolha das rotas, com objetivo de alcançar um determinado destino.

Obs: Não necessáriamente o tempo de transmissão é o fator mais relevante. A entrega dos pacotes, em efetivo, determina a condição das escolhas.

Hosts multi-homed: São hosts que estão interconectados a mais de uma rede. No entanto, não detém a função de encaminhadores de pacotes.

Encaminhamento de Pacotes

Direto

Ocorre quando o host destino pertence à mesma rede do emissor. Neste caso, a emissão ocorre direto do emissor para o receptor.

Indireto

Ocorre quando o host destino não pertence à mesma rede do emissor. Neste caso, o pacote é encaminhado para o roteador, que encaminha para a rede do destinatário.

Roteamento passo-a-passo (hop-by-hop)

Consiste em uma técnica de roteamento em que a estação origem e cada roteador intermediário entregam o datagrama ao próximo roteador do caminho, até que algum deles possa entregar o datagrama diretamente à estação destino.

Com isso, o Hop-by-hop utilzar Encaminhamento Direto e Indireto.

Tabela de Roteamento

Tem a função de associar destino às rotas e, em função dessa associação, definir o próximo salto (next hop).

Por definição, o Next Hop é o próximo roteador no caminho até o destino final.

É improvável a manutenção de uma tabela com todas as rotas para todos os destinos que se possa ter. Sendo assim, conhecer o **Next Hop** garante a continuidade da transmissão.

Observe que as rotas não indicam o caminho completo até o destino, mas apenas o endereço IP do próximo roteador

Exemplo de Tabela

Routing Table					
10.1.0.0	E0	0			
10.2.0.0	SO	0			
10.3.0.0	S0	1			
10.4.0.0	S0	2			

Routing Table				
10.2.0.0	S0	0		
10.3.0.0	S1	0		
10.4.0.0	S1	1		
10.1.0.0	S0	1		

Routing Table					
10.3.0.0	S0	0			
10.4.0.0	E0	Down			
10.2.0.0	S0	1			
10.1.0.0	S0	2			

Tipos de rotas

Rotas para uma rede Rotas para um host Rota default root@debian:/home/roitier# route -n

Tabela de Roteamento IP do Kernel

Opções Métrica Ref Uso Iface MáscaraGen. Destino Roteador 0.0.0.0 192.168.1.1 0.0.0.0 UG 0 wlan0 192.168.1.0 0.0.0.0 255.255.255.0 U 0 wlan0

Principais indicadores de estado da rota:

U – rota válida (up);

G – rota indireta via um roteador intermediário (Roteador).

root@debian:/home/roitier# netstat -nr

Tabela de Roteamento IP do Kernel

Destino	Roteador	MáscaraGen.	0pções	MSS Janela	irtt Iface		
0.0.0.0	192.168.1.1	0.0.0.0	UĞ	0 0	0 wlan0		
192.168.1.0	0.0.0.0	255.255.255.0	U	0 0	0 wlan0		

Manipulando rotas (GNU Debian)

Ativar Roteamento

echo 1 >> /proc/sys/net/ipv4/ip forward

Adicionar rota:

#route add default eth0 (ROTA PADRÃO 0.0.0.0)

#route **add** -net 200.10.1.0 netmask 255.255.255.0 eth0

Apagar rota

#route **del** -net 200.10.1.0 netmask 255.255.255.0 eth0

Listar rota:

#route -n

#netstat -nr

Protocolos de roteamento

- IP (Internet Protocol) o protocolo IP provê um serviço de entrega de datagrama não confiável.
- ICMP (Internet Control Message Protocol) o protocolo ICMP auxilia o protocolo IP, sendo usado para trocar mensagens de erro e de controle, sinalizar situações anormais de operação e permitir a identificação de informações operacionais da rede.

Leitura Complementar

- Redes de Computadores 4º Edição A. S. Tanenbaum
- Protocolo_ICMP.pdf

Rotas estáticas e Rotas dinâmicas

- Rotas estáticas são as rotas previamente configuradas pelo administrador da rede
- Rotas dinâmicas são as rotas aprendidas pelo roteador através dos protocolos de roteamento.

Ex:

- OSPF (Open Shortest Path First)
- BGP (Border Gateway Protocolo)
- RIP

OBS: O rotemanto dinâmico é implementado por protocolos e sempre é precedido por um roteamento estático.

Principais protocolos de roteamento na arquitetura TCP/IP

RIP (Routing Information Protocol) — protocolo de roteamento tipo vetor distância que propaga, periodicamente, informações de roteamento aos roteadores vizinhos, independente de ocorrerem ou não mudanças operacionais nas redes físicas.

OSPF (Open Shortest Path First) – protocolo de roteamento tipo estado de enlace que propaga as informações dos enlaces de rede para todos os roteadores, apenas na inicialização ou após mudanças no estado dos enlaces.

BGP (Border Gateway Protocol) — protocolo de roteamento tipo exterior usado para propagar informações de alcançabilidade das redes que compõem os diversos sistemas autônomos

Loops

Um loop é uma transmissão sem fim. Um pacote fica transitando na rede, em loop, sem nunca encontrar o seu destino. Consequentemente, um loop pode gerar uma sobrecarga de tráfego na rede, a qual, em um futuro condicionado a magnitude do tráfego, fará com que a rede fique indisponível.

Como evitar?

Utiliza-se o TTL (Time To Live – Tempo de vida)

TTL - Time to Live

TTL é um parametro fornecido na transmissão de cada pacote, o qual determina quantos HOPS um pacote pode fazer. Quanto o TTL alcança o valor zero (0), ele é descartado pelo roteador que o recebeu.

É possível sim, descobrir o Sistema Operacional através do TTL do ping, pois os valores geralmente são padrões. Por exemplo:

Linux = 64

Windows = 128

Cisco = 255

Verificando o seu TTL

Um usuário malicioso, hacker, pode descobrir, ou pelo menos presupor o seu Sistema Operacional através do TTL, dado que, como visto anteriormente, há um padrão para cada sistema. No entanto, como todo padrão, isso pode ser alterado.

No linux, conseguimos verificar o TTL através do seguinte arquivo /proc/sys/net/ipv4/ip_default_ttl.

Alterando o valor do arquivo, alteramos o TTL do sistema. Após a alteração, é necessário validar essa alteração através do comando:

sysctl -p /etc/sysctl.conf

Validando:

Realize um PING para a máquina que foi alterada.

#ping 127.0.0.1 (pingando o localhost)

Cabeçalho IP

Algoritmo de Roteamento

- Se destino é direto: encaminha direto;
- Se existe rota para o host: use a rota;
- Se existe rota para a rede: use a rota:
- Se existe rota default: use a rota;
- Nenhum das regras atende: erro de roteamento.

Processo de Comutação

Atividade Complementar

Crie uma rede onde todos os computadores Local onde todos os host consigam "pingar" um outro host que esteja, pelo menos, a três hops de distância.

Sugestão: Grupos de 4 pessoas.