

进化多目标优化平台

用户手册 3.3

生物智能与知识发现 (BIMK) 研究所 2021年8月14日

非常感谢使用由安徽大学生物智能与知识发现(BIMK)研究所开发的进化多目标优化平台 PlatEMO。本平台是一个开源免费的代码库,仅供教学与科研使用,不得用于商业用途。本平台中的代码基于作者对论文的理解编写而成,作者不对用户因使用代码产生的任何后果负责。包含利用本平台产生的数据的论文应在正文中声明对 PlatEMO 的使用,并引用以下参考文献:

Ye Tian, Ran Cheng, Xingyi Zhang, and Yaochu Jin, "PlatEMO: A MATLAB platform for evolutionary multi-objective optimization [educational forum]," IEEE Computational Intelligence Magazine, 2017, 12(4): 73-87.

如有任何意见或建议,欢迎联系 field910921@gmail.com (田野)。如想将您的代码添加进 PlatEMO 中并公开,也欢迎联系 field910921@gmail.com。您可以在 GitHub 上获取 PlatEMO 的最新版本。

目 录

	快速	入门	1
_	通过	命令行使用 PlatEMO	2
	1.	求解测试问题	2
	2.	求解自定义问题	3
	3.	获取运行结果	5
Ξ	通过	图形界面使用 PlatEMO	7
	1.	测试模块	7
	2.	应用模块	7
	3.	实验模块	8
	4.	算法和问题的标签	9
四	扩展	PlatEMO	11
	1.	算法类	11
	2.	问题类	13
	3.	个体类	17
	4.	一次完整的运行过程	18
	5.	指标函数	19
五	算法	列表	20
<u>\</u>	问题	列表	26

一快速入门

软件要求: MATLAB R2018a 或以上(不使用 PlatEMO 图形界面)或 MATLAB R2020b 或以上(使用 PlatEMO 图形界面)及 并行计算工具箱 和 统计与机器学习工具箱

PlatEMO 提供一系列的元启发式算法用于求解各类优化问题。为此,用户需要定义优化问题、选择求解算法并设置参数。PlatEMO 提供以下三种调用方式:

1) 带参数调用主函数:

```
platemo('problem',@SOP F1,'algorithm',@GA,'Name',Value,...);
```

可以利用指定的算法来求解指定的测试问题并设置参数,求解结果可以被显示在窗口中、保存在文件中或作为函数返回值(参阅求解测试问题章节)。

2) 带参数调用主函数:

```
f1 = @(x,d) sum(x*d);
f2 = @(x,d) 1-sum(x*d);
platemo('objFcn',f1,'conFcn',f2,'algorithm',@GA,...);
```

可以利用指定的算法来求解自定义的问题(参阅求解自定义问题章节)。

3) 不带参数调用主函数:

```
platemo();
```

可以弹出一个带有三个模块的图形界面,其中测试模块用于可视化地研究单个算法在单个问题上的性能(参阅测试模块章节),应用模块用于求解自定义问题(参阅应用模块章节),实验模块用于统计分析多个算法在多个问题上的性能(参阅实验模块章节)。

二 通过命令行使用 PlatEMO

1. 求解测试问题

用户可以以如下形式带参数调用主函数 platemo()来求解测试问题:

platemo('Name1', Value1, 'Name2', Value2, 'Name3', Value3,...);

其中所有可接受的参数列举如下:

参数名	数据类型	默认值	描述
'algorithm'	函数句柄或 单元数组	不定	算法类
'problem'	函数句柄或 单元数组	不定	问题类
'N'	正整数	100	种群大小
'M'	正整数	不定	问题的目标数
'D'	正整数	不定	问题的变量数
'maxFE'	正整数	10000	最大评价次数
'save'	整数	0	保存的种群数
'outputFcn'	函数句柄	@ALGORITHM.Output	每代开始前调用的函数

- 'algorithm'表示待运行的算法,它的值可以是一个算法类的句柄,例如 @GA。它的值还可以是形如{@GA,p1,p2,...}的单元数组,其中p1,p2,... 指 定了该算法中的参数值。
- 'problem'表示待求解的测试问题,它的值可以是一个问题类的句柄,例如@SOP_F1。它的值还可以是形如{@SOP_F1,p1,p2,...}的单元数组,其中p1,p2,...指定了该算法中的参数值。
- 'N'表示算法的种群大小,它通常等于最终种群中解的个数。
- 'м'表示问题的目标数,它仅对一些多目标测试问题生效。
- 'D'表示问题的变量数,它仅对一些测试问题生效。
- 'maxFE'表示算法可使用的最大评价次数,它通常等于种群大小乘以迭代次数。
- 'save'表示保存的种群数,该值大于零时结果将被保存在文件中,该值等

于零时结果将被显示在窗口中(参阅获取运行结果章节)。

• 'outputFcn'表示算法每代开始前调用的函数。该函数必须有两个输入和零个输出,其中第一个输入是当前的 ALGORITHM 对象、第二个输入是当前的 PROBLEM 对象。

例如,以下代码利用遗传算法求球面函数的最小值,其中种群大小为 50 且最终种群会被显示在窗口中:

```
platemo('algorithm',@GA,'problem',@SOP F1,'N',50);
```

以下代码利用 NSGA-II 来求解 5 目标、40 变量的 DTLZ2 问题,其中最大评价次数为 20000 且最终种群会被保存在文件中:

```
platemo('algorithm',@NSGAII,'problem',@DTLZ2,'M',5,'D',40,'
maxFE',20000,'save',10);
```

以下代码利用基于 Tchebycheff 方法的 MOEA/D 求解 ZDT1 问题十次,其中每次的结果会被保存在独立的文件中:

```
for i = 1 : 10
    platemo('algorithm', {@MOEAD, 2}, 'problem', @ZDT1, 'save', 5);
end
```

注意每个参数均有一个默认值,用户可以在调用时省略任意参数。

2. 求解自定义问题

当不指定参数'problem'时,用户可以通过指定以下参数来自定义问题:

参数名	数据类型	默认值	描述
'encoding'	字符串	'real'	问题的编码方式
'objFcn'	函数句柄或	@(x,d)sum(x)	问题的目标函数;所有目
00)1011	单元数组	e (x, a, sum (x)	标函数均为最小化问题
	函数句柄或		问题的约束; 当且仅当约
'conFcn'	単元数组	@(x,d)0	束违反值小于等于零时,
	平 儿奴组		约束被满足
'lower'	行向量	0	变量的下界
'upper'	行向量	1	变量的上界
'initFcn'	函数句柄	[]	种群初始化函数
'decFcn'	函数句柄	[]	无效解修复函数
'parameter'	单元数组	{ }	问题的数据

- · 'encoding'表示问题的编码方式,它的值可以是'real'(实数或整数变量)、'binary'(二进制变量)或'permutation'(序列变量)。算法针对不同的编码方式可能使用不同的算子来产生子代。
- 'objFcn'表示问题的目标函数,它的值可以是一个函数句柄(单目标)或一个单元数组(多目标)。每个目标函数必须有两个输入和一个输出,其中第一个输入是一个决策向量、第二个输入是由'parameter'指定的数据(当'parameter'未被指定时,该输入可以省略)、输出是目标值。所有目标函数均为最小化问题。
- · 'conFcn'表示问题的约束,它的值可以是一个函数句柄(单约束)或一个单元数组(多约束)。每个约束函数必须有两个输入和一个输出,其中第一个输入是一个决策向量、第二个输入是由'parameter'指定的数据(当'parameter'未被指定时,该输入可以省略)、输出是约束违反值。当且仅当约束违反值小于等于零时,约束被满足。
- 'lower'表示决策变量的下界,它仅在'encoding'的值为'real'时生效。
- · 'upper'表示决策变量的上界,它仅在'encoding'的值为'real'时生效。
- 'initFcn'表示种群初始化函数,它的值必须是一个函数句柄。该函数必须有两个输入和一个输出,其中第一个输入是种群大小、第二个输入是由'parameter'指定的数据(当'parameter'未被指定时,该输入可以省略)、输出是种群的决策向量构成的矩阵。该函数通常在算法开始时被调用。
- · 'decFcn'表示无效解修复函数,它的值必须是一个函数句柄。该函数必须有两个输入和一个输出,其中第一个输入是一个决策向量、第二个输入是由'parameter'指定的数据(当'parameter'未被指定时,该输入可以省略)、输出是修复后的决策向量。该函数会在计算目标函数前被调用。
- 'parameter'表示问题的数据,它作为函数'objFcn'、'conFcn'、'initFcn'和'decFcn'的第二个输入参数。

例如,以下代码利用差分进化算法求一个 10 变量的单峰函数的最小值:

```
platemo('objFcn',@(x) sum(x.^2),'lower', zeros(1,10)-10,
'upper', zeros(1,10)+10,'algorithm',@DE);
```

以下代码利用默认的算法求一个带旋转的 10 变量单峰函数的最小值,其中旋转矩阵通过'parameter'来指定:

```
platemo('objFcn',@(x,d)sum((x*d).^2),'lower',zeros(1,10)-
```

```
10, 'upper', zeros(1,10)+10, 'parameter', rand(10));
```

以下代码利用 NSGA-II 求一个带约束的 2 目标、20 变量的优化问题的最小值, 其中种群大小为 50:

```
f1 = @(x)x(1)*sum(x(2:end));
f2 = @(x)sqrt(1-x(1)^2)*sum(x(2:end));
g1 = @(x)1-sum(x(2:end));
platemo('objFcn', {f1, f2}, 'conFcn', g1, 'lower', zeros(1,20), 'u
pper', ones(1,20), 'algorithm', @NSGAII, 'N', 50);
```

3. 获取运行结果

算法运行结束后得到的种群可以被显示在窗口中、保存在文件中或作为函数返回值。若按以下方式调用主函数:

```
[Dec,Obj,Con] = platemo(...);
```

则最终种群会被返回,其中 Dec 表示种群的决策向量构成的矩阵、Obj 表示种群的目标值构成的矩阵、Con 表示种群的约束违反值构成的矩阵。若按以下方式调用主函数:

```
platemo('save', Value,...);
```

则当 Value 的值为零时(默认情况),得到的种群会被显示在窗口中,用户可以利用窗口中的 Data source 菜单来选择要显示的内容。

当 Value 的值大于零时,得到的种群会被保存在命名为 PlatEMO\Data\alg\alg\alg_pro_M_D_run.mat 的 MAT 文件中,其中 alg 表示算法名、pro 表示问题名、M表示目标数、D表示变量数、run是一个自动确定的正整数以保证不和已有文件重名。每个文件存储一个单元数组 result 和一个结构体 metric。算法的整个优化过程被等分为 Value 块,其中 result 的第一列存储每块最后一代时的种群、metric

存储所有种群的指标值。以上操作均由默认的输出函数@ALGORITHM.Output 实现,用户可以通过指定'outputFcn'的值为其它函数来实现自定义的结果展示或保存方式。

此外,图形界面的实验模块可以自动计算种群的指标值并存储到 metric 中。 若需要手动计算指标值,用户需获取问题的最优值并调用指标函数,例如

```
pro = DTLZ2();
IGD(result{end},pro.optimum);
```

三 通过图形界面使用 PlatEMO

1.测试模块

用户可以通过无参数调用主函数 platemo()来使用 PlatEMO 的图形界面:

platemo();

图形界面的测试模块会被首先显示,它用于可视化地研究单个算法在单个问题上的性能。

在该模块中,用户首先需要在区域 A 中选择问题类型(参阅算法和问题的标签章节),在区域 B 中选择一个算法,在区域 C 中选择一个测试问题,并在区域 D 中设定相关参数。之后,用户可以在区域 E 中控制算法的运行,在区域 F 中观察算法运行的实时结果,并在区域 G 中调取历史运行结果。

按钮 H 用于选择要显示的内容,按钮 I 用于将当前显示内容显示在一个新窗口中并存储至工作空间,按钮 J 用于将算法运行的动态过程保存为一个 20 帧的 GIF 图像。

2. 应用模块

用户可以通过图形界面中的菜单切换至应用模块,它用于求解自定义问题。

在该模块中,用户首先需要在区域 D 中定义问题,定义方式与求解自定义问题相同,其中

- Decision vector 对应 'encoding'
- Decision space 对应 'lower' 和 'upper'
- Dataset 对应 'parameter'
- Initialization function 对应 'initFcn'
- Repair function 对应 'decFcn'
- Objective functions
 対应 'objFcn'
- Constraint functions 对应 'conFcn'

在简单情况下,用户可以仅定义 Decision vector、Decision space、Objective functions 和 Constraint functions。同时,用户可以在区域 E 中更改目标数量、约束数量和验证问题定义的合法性。之后,区域 A 中的问题类型可以被自动确定,用户需要在区域 B 中选择一个算法并在区域 C 中设定相关参数。最后,用户可以在区域 F 中控制算法的运行,并在区域 G 中观察算法运行的实时结果。

3. 实验模块

用户可以通过图形界面中的菜单切换至实验模块,它用于统计分析多个算法在多个问题上的性能。

在该模块中,用户首先需要在区域 A 中选择问题类型(参阅算法和问题的标签章节),在区域 B 中选择一个或多个算法,在区域 C 中选择一个或多个测试问题,在区域 D 中设定实验参数,并在区域 E 中设定相关参数;这里的目标数 M 和变量数 D 可以是向量。之后,用户可以在区域 F 中控制实验的运行,并在区域 G 中观察实验运行的实时结果。

需要在表格中显示的统计信息可以在区域 H 中选择。按钮 I 用于将当前表格保存为 Excel、TeX、TXT 或 MAT 文件,按钮 J 用于将所选单元格中的结果显示在一个新窗口中,按钮 K 用于选择实验在单处理器上运行(串行)或多处理器上运行(并行)。

所有结果将会被以 MAT 文件的形式保存在区域 D 中指定的文件夹中。如果存在同名的结果文件,该文件将会被读取以代替算法运行。

4. 算法和问题的标签

每个算法或测试问题需要被添加上标签,这些标签以注释的形式添加在主函数代码的第二行。例如在 PSO.m 代码的开头部分:

```
classdef PSO < ALGORITHM
% <single> <real> <large/none> <constrained/none>
```

通过多个标签指定了该算法可求解的问题类型。所有的标签列举如下:

标签	描述
<single></single>	单目标优化: 问题含有一个目标函数
<multi></multi>	多目标优化:问题含有两或三个目标函数
<many></many>	超多目标优化: 问题含有三个以上目标函数
<real></real>	连续优化: 决策变量为实数或整数
<binary></binary>	二进制优化: 决策变量为二进制数
<pre><permutation></permutation></pre>	序列优化: 决策变量构成一个序列
<large></large>	大规模优化:问题含有 100 个以上的决策变量
<pre><constrained></constrained></pre>	约束优化:问题含有至少一个约束
<expensive></expensive>	昂贵优化:目标函数的计算非常耗时,即最大评价次数非常小
<multimodal></multimodal>	多模优化:存在多个目标值接近但决策向量差异很大的最优解,
\mu\cimoda1>	它们都需要被找到
<sparse></sparse>	稀疏优化: 最优解中大部分的决策变量均为零
<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	偏好优化: 仅需寻找前沿面上指定区域的最优解
<none></none>	空标签

每个算法可能含有多个标签集合,这些集合的笛卡尔积构成该算法可求解的所有的问题类型。例如当标签集合为<single><real><constrained/none>时,表示该算法可求解带或不带约束的单目标连续优化问题;若标签集合为<single><real>,表示该算法只能求解无约束的问题;若标签集合为<single><real><constrained>,表示该算法只能求解带约束的问题;若标签集合为<single><real><constrained>,表示该算法可能求解带约束的问题;若标签集合为<single><real/binary>,表示该算法可以求解连续或二进制优化问题。

每个算法和测试问题都需要被添加至少一个标签,否则它将不会在图形界面的列表中出现。当用户在图形界面的区域 A 中选择问题类型后,所有可求解该类型问题的算法将会出现在图形界面的区域 B 中,且所有符合该类型的测试问题将会出现在图形界面的区域 C 中。PlatEMO 中所有算法和测试问题的标签分别参阅算法列表和问题列表章节。

四 扩展 PlatEMO

1. 算法类

每个算法需要被定义为 ALGORITHM 类的子类并保存在 PlatEMO\ Algorithms 文件夹中。算法类包含的属性与方法如下:

属性	赋值方式	描述					
parameter	用户	算法的参数					
save	用户	每次运行中保存的种群数					
outputFcn	用户	在 NotTerminated()中调用的函数					
pro	Solve()	当前运行中求解的问题对象					
result	NotTerminated()	当前运行中保存的种群					
metric	NotTerminated()	当前保存的种群的指标值					
方法	是否可重定义	描述					
ALGORITHM	不可	设定由用户指定的属性值					
Solve	不可	通过调用 alg.Solve (pro)来利用算法 alg 求					
SOLVE	راردا	解问题 pro					
main	必须	算法的主体部分					
NotTerminated	不可	main()中每次迭代前调用的函数					
ParameterSet	不可	根据 parameter 设定算法参数					

每个算法需要继承ALGORITHM类并重定义方法main()。例如GA.m的代码为:

```
methods
14
           function main(Alg, Pro)
15
               [proC, disC, proM, disM] = Alg.ParameterSet(1,20,1,20);
16
               P = Pro.Initialization();
17
              while Alg.NotTerminated(P)
18
                  P1 = TournamentSelection(2, Pro.N, FitnessSingle(P));
19
                  O = OperatorGA(P(P1), {proC, disC, proM, disM});
20
                  P = [P, O];
21
                  [~, rank] = sort(FitnessSingle(P));
22
                  P = P(rank(1:Pro.N));
23
              end
24
           end
25
       end
26
```

各行代码的功能如下:

第1行: 继承 ALGORITHM 类;

第2行: 为算法添加标签 (参阅算法和问题的标签章节);

第3行: 算法的全称;

第4-7行: 参数名 --- 默认值 --- 参数描述, 将会显示在图形界面的参数设置

列表中;

第 9-12 行: 算法的参考文献;

第 15 行: 重定义算法主体流程的方法;

第16行: 获取用户指定的参数设置,其中1,20,1,20分别表示参数proc,

disC, proM, disM 的默认值。

第17行: 调用 PROBLEM 类的方法获得一个初始种群;

第18行: 保存当前种群并检查评价次数是否超过最大值; 若超过则终止算法;

第19行: 调用公共函数实现基于二元联赛的交配池选择;

第20行: 调用公共函数产生子代种群;

第 21 行: 将父子代种群合并;

第22行: 调用公共函数计算种群中解的适应度,并依此对解进行排序;

第23行: 保留适应度较好的一半解进入下一代。

在以上代码中,函数 ParameterSet() 和 NotTerminated()是 ALGORITHM 类的方法,函数 Initialization()是 PROBLEM 类的方法,而 函数 TournamentSelection()、FitnessSingle()和 OperatorGA()是在 PlatEMO\Algorithms\Utility functions 文件夹中的公共函数。所

有可被算法调用的方法及公共函数列举如下,详细的调用方式参阅代码中的注释;此外,函数中用于提升算法效率的技术参阅这里。

函数名	描述
ALGORITHM. NotTerminated	算法每次迭代前调用的函数
ALGORITHM. ParameterSet	根据用户的输入设定算法参数
PROBLEM. Initialization	初始化一个种群
CrowdingDistance	计算解的拥挤距离 (用于多目标优化)
FitnessSingle	计算解的适应度 (用于单目标优化)
NDSort	非支配排序
OperatorDE	差分进化算子
OperatorFEP	进化规划算子
OperatorGA	遗传算子
OperatorGAhalf	遗传算子(仅产生前一半的子代)
OperatorPSO	粒子群优化算子
RouletteWheel Selection	轮盘赌选择
Tournament Selection	联赛选择
UniformPoint	产生均匀分布的参考点

2. 问题类

每个问题需要被定义为 PROBLEM 类的子类并保存在 PlatEMO\ Problems 文件夹中。问题类包含的属性与方法如下:

属性	赋值方式	描述
N	用户	求解该问题的算法的种群大小
М	用户和 Setting()	问题的目标数
D	用户和 Setting()	问题的变量数
maxFE	用户	求解该问题可使用的最大评价次数
FE	SOLUTION()	当前运行中已消耗的评价次数
encoding	Setting()	问题的编码方式
lower	Setting()	决策变量的下界
upper	Setting()	决策变量的上界
optimum	GetOptimum()	问题的最优值,例如目标函数的最小值(单目标优化)和前沿面上一组均匀参考点(多目标优化)
PF	GetPF()	问题的前沿面,例如1维曲线(双目标优化)、2

		维曲面 (三目标优化) 和可行区域 (约束优化)						
parameter	用户	问题的参数						
方法	是否可重定义							
PROBLEM	不可	设定由用户指定的属性值						
Setting	必须	设定默认的属性值						
Initialization	可以	初始化一个种群						
CalDec	可以	修复种群中的无效解						
CalObj	必须	计算种群中解的目标值; 所有目标函数均为最小 化问题						
CalCon	可以	计算种群中解的约束违反值; 当且仅当约束违反值小于等于零时, 约束被满足						
GetOptimum	可以	产生问题的最优值并保存在 optimum 中						
GetPF	可以	产生问题的前沿面并保存在 PF 中						
DrawDec	可以	显示一个种群的决策向量						
DrawObj 可以		显示一个种群的目标向量						
Current	不可	用来设定或获取当前 PROBLEM 对象的静态方法						
ParameterSet	不可	根据 parameter 设定问题参数						

每个算法需要继承 PROBLEM 类并重定义方法 Setting()和 CalObj()。例如 SOP F1.m 的代码为:

```
1 classdef SOP F1 < PROBLEM</pre>
2 % <single><real><expensive/none>
3 % Sphere function
5 %----- Reference -----
6 % X. Yao, Y. Liu, and G. Lin, Evolutionary programming made
7 % faster, IEEE Transactions on Evolutionary Computation, 1999, 3
  % (2): 82-102.
8
9
10
      methods
11
         function Setting(obj)
12
             obj.M = 1;
13
             if isempty(obj.D); obj.D = 30; end
14
             obj.lower = zeros(1,obj.D) - 100;
15
             obj.upper = zeros(1,obj.D) + 100;
16
             obj.encoding = 'real';
17
         end
18
19
         function PopObj = CalObj(obj,PopDec)
             PopObj = sum(PopDec.^2, 2);
20
```

```
21 end
22 end
```

各行代码的功能如下:

```
第1行: 继承 PROBLEM 类;
```

第2行: 为问题添加标签 (参阅算法和问题的标签章节);

第3行: 问题的全称;

第 5-9 行: 问题的参考文献;

第12行: 重定义设定默认属性值的方法;

第13行: 设置问题的目标数;

第14行: 设置问题的变量数 (若未被用户指定);

第15-16行:设置决策变量的上下界;

第 17 行: 设置问题的编码方式;

第 19 行: 重定义计算目标函数的方法;

第20行: 计算种群中解的目标值。

除以上代码外,默认的方法 Initialization()用于随机初始化一个种群,用户可以重定义该方法来指定特殊的种群初始化策略。例如 Sparse_NN.m 将初始化的种群中随机一半的决策变量置零:

```
function Population = Initialization(obj,N)
  if nargin < 2; N = obj.N; end
  PopDec = (rand(N,obj.D)-0.5)*2.*randi([0 1],N,obj.D);
  Population = SOLUTION(PopDec);
end</pre>
```

默认的方法 CalDec()将大于上界的决策变量设为上界值、将小于下界的决策变量设为下界值,用户可以重定义该方法来指定特殊的解修复策略。例如 MOKP.m 修复了超过背包容量限制的解:

```
function PopDec = CalDec(obj,PopDec)

C = sum(obj.W,2)/2;

[~,rank] = sort(max(obj.P./obj.W));

for i = 1 : size(PopDec,1)

   while any(obj.W*PopDec(i,:)'>C)

    k = find(PopDec(i,rank),1);

   PopDec(i,rank(k)) = 0;

end
end
```

```
end
```

默认的方法 CalCon()返回零作为解的约束违反值(即解都是满足约束的),用户可以重定义该方法来指定问题的约束。例如 MW1.m 添加了一个约束:

```
function PopCon = CalCon(obj,X)
   PopObj = obj.CalObj(X);
   l = sqrt(2)*PopObj(:,2) - sqrt(2)*PopObj(:,1);
   PopCon = sum(PopObj,2) - 1 - 0.5*sin(2*pi*l).^8;
end
```

利用 all (PopCon<=0,2)来确定每个解是否满足所有约束。注意等式约束需要被松弛为以上形式的不等式约束来处理。用户可以重定义方法 GetOptimum()来指定问题的最优值。例如 SOP F8.m 指定了目标函数的最小值:

```
function R = GetOptimum(obj,N)
    R = -418.9829*obj.D;
end
```

DTLZ2.m 生成了一组前沿面上均匀分布的参考点:

```
function R = GetOptimum(obj,N)

R = UniformPoint(N,obj.M);

R = R./repmat(sqrt(sum(R.^2,2)),1,obj.M);
end
```

在不同形状前沿面上的采点方法参阅这里。用户可以重定义方法 GetPF()来指定多目标优化问题的前沿面或可行区域。例如 DTLZ2.m 生成了 2 维和 3 维的前沿面数据:

```
function R = GetPF(obj)
  if obj.M == 2
    R = obj.GetOptimum(100);
  elseif obj.M == 3
    a = linspace(0,pi/2,10)';
    R = {sin(a)*cos(a'),sin(a)*sin(a'),cos(a)*ones(size(a'))};
  else
    R = [];
  end
end
```

MW1.m 生成了可行区域的数据:

```
function R = GetPF(obj)
```

```
[x,y] = meshgrid(linspace(0,1,400),linspace(0,1.5,400));
z = nan(size(x));
fes = x+y-1-0.5*sin(2*pi*(sqrt(2)*y-sqrt(2)*x)).^8 <= 0;
z(fes&0.85*x+y>=1) = 0;
R = {x,y,z};
end
```

默认的方法 DrawDec()显示种群的决策向量(用于图形界面中),用户可以重定义该方法来指定特殊的显示方式。例如 TSP.m 显示了种群中最优解的路径:

```
function DrawDec(obj,P)
    [~,best] = min(P.objs);
    Draw(obj.R(P(best).dec([1:end,1]),:),'-k','LineWidth',1.5);
    Draw(obj.R);
end
```

默认的方法 DrawObj()显示种群的目标向量(用于图形界面中),用户可以重定义该方法来指定特殊的显示方式。例如 Sparse CD.m 添加了坐标轴的标签:

```
function DrawObj(obj,P)
    Draw(P.objs,{'Kernel k-means','Ratio cut',[]});
end
```

其中 Draw()用于显示数据,它位于 PlatEMO\GUI 文件夹中。以上方法的详细调用方式参阅代码中的注释。

3. 个体类

一个 SOLUTION 类的对象表示一个个体 (即一个解), 一组 SOLUTION 类的对象表示一个种群。个体类包含的属性与方法如下:

属性	属性 描述							
dec	用户解的决策向量							
obj	SOLUTION()	解的目标值						
con	SOLUTION()	解的约束违反值						
add	adds()	解的额外属性值 (例如速度)						
方法	描述							
SOLUTION		解的决策向量并计算相应的目标值与约束违反值; 值会自动加上生成的 SOLUTION 对象数目						
decs	获取多个解的决策	获取多个解的决策向量构成的矩阵						
objs	获取多个解的目标	获取多个解的目标值构成的矩阵						
cons	获取多个解的约束	束违反值构成的矩阵						

adds	获取多个解的额外属性值构成的矩阵
best	获取种群中可行且最好的解 (单目标优化) 或可行且非支配的解 (多目标优化)

例如,以下代码产生一个具有十个解的种群,并获取其中最好的解的目标值矩阵:

```
Population = SOLUTION(rand(10,5));
BestObjs = Population.best.objs
```

4. 一次完整的运行过程

以下代码利用遗传算法求球面函数的最小值:

```
Alg = GA();
Pro = SOP_F1();
Alg.Solve(Pro);
```

其中代码 Alg. Solve (Pro) 执行时所涉及的函数调用过程如下图所示。

5. 指标函数

每个性能指标需要被定义为一个函数并保存在 PlatEMO\Metrics 文件夹中。例如 IGD.m 的代码为:

```
1 function score = IGD(Population, optimum)
3 % Inverted generational distance
4
                 ----- Reference -----
5 %-----
6 % C. A. Coello Coello and N. C. Cortes, Solving multiobjective
7 % optimization problem using an artificial immune system, Genetic
  % Programming and Evolvable Machines, 2005, 6(2): 163-190.
10
11
      PopObj = Population.best.objs;
12
      if size(PopObj,2) ~= size(optimum,2)
       score = nan;
13
14
      else
        score = mean(min(pdist2(optimum, PopObj), [], 2));
15
16
      end
17 end
```

各行代码的功能如下:

第1行: 函数声明,其中第一个输入为一个种群(即一个 SOLUTION 对象数组)、第二个输入为问题的最优值(即问题的 optimum 属性)、输出为种群的指标值;

第2行: 为指标添加标签,其中<min>表示指标值越小越好、<max>表示指标值越大越好;

第3行: 指标的全称;

第5-9行: 指标的参考文献;

第11行: 获取种群中最好的解(可行且非支配的解)的目标值矩阵;

第12-13行: 若种群不存在可行解则返回 nan;

第14-15行: 否则返回可行且非支配的解的指标值。

五 算法列表

	算法缩写	算法全称	single	multi	many	real	binary	permutation	large	constrained	expensive	multimodal	sparse	preference
1	ABC	Artificial bee colony algorithm				\checkmark								
2	AB-SAEA	Adaptive Bayesian based surrogate-assisted evolutionary algorithm		√	√	√					√			
3	ACO	Ant colony optimization						\checkmark						
4	AGE-II	Approximation-guided evolutionary multi-objective algorithm II		V		$\sqrt{}$	V	V						
5	AGE-MOEA	Adaptive geometry estimation-based many-objective evolutionary algorithm		√	$\sqrt{}$	$\sqrt{}$	V	$\sqrt{}$		√				
6	A-NSGA-III	Adaptive NSGA-III		$\sqrt{}$	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark				
7	AR-MOEA	Adaptive reference points based multi-objective evolutionary algorithm		√	\checkmark	\checkmark	\checkmark	$\sqrt{}$		\checkmark				
8	BCE-IBEA	Bi-criterion evolution based IBEA		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark						
9	BCE-MOEA/D	Bi-criterion evolution based MOEA/D		V	$\sqrt{}$	$\sqrt{}$	V	V						
10	BFGS	A quasi-Newton method proposed by Broyden, Fletcher, Goldfarb, and Shanno				\checkmark								
11	BiGE	Bi-goal evolution			\checkmark	\checkmark	$\sqrt{}$	\checkmark						
12	BSPGA	Binary space partition tree based genetic algorithm					\checkmark			\checkmark				
13	CA-MOEA	Clustering based adaptive multi-objective evolutionary algorithm		$\sqrt{}$		\checkmark	\checkmark	\checkmark						
14	CCGDE3	Cooperative coevolution GDE3		V		$\sqrt{}$			√					
15	ССМО	Coevolutionary constrained multi-objective optimization framework		√		V	V	V		√				
16	c-DPEA	Constrained dual-population evolutionary algorithm		V		$\sqrt{}$	V	V		√				
17	CMA-ES	Covariance matrix adaptation evolution strategy	\checkmark			\checkmark				\checkmark				
18	C-MOEA/D	Constraint-MOEA/D		$\sqrt{}$	\checkmark	\checkmark	$\sqrt{}$	\checkmark		$\sqrt{}$				
19	CMOEA-MS	Constrained multiobjective evolutionary algorithm with multiple stages		√		\checkmark	\checkmark	$\sqrt{}$		\checkmark				
20	CMOPSO	Competitive mechanism based multi-objective particle swarm optimizer		√		\checkmark								
21	CPS-MOEA	Classification and Pareto domination based multi- objective evolutionary		~		~					~			
22	CSEA	Classification based surrogate-assisted evolutionary algorithm		$\sqrt{}$	\checkmark	\checkmark					\checkmark			
23	CSO	Competitive swarm optimizer	\checkmark			\checkmark				\checkmark				
24	C-TAEA	Two-archive evolutionary algorithm for constrained MOPs		$\sqrt{}$	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark				
25	DAEA	Duplication analysis based evolutionary algorithm		$\sqrt{}$			$\sqrt{}$							
26	DCNSGA-III	Dynamic constrained NSGA-III		$\sqrt{}$	\checkmark	\checkmark	$\sqrt{}$	\checkmark		\checkmark				
27	DE	Differential evolution	√			\checkmark			√	$\sqrt{}$				
28	DEA-GNG	Decomposition based evolutionary algorithm guided by growing neural gas		V	√	V	V	V						

	算法缩写	算法全称	single	multi	many	real	binary	permutation	large	constrained	expensive	multimodal	sparse	preference
29	DGEA	Direction guided evolutionary algorithm		√	$\sqrt{}$	$\sqrt{}$								
30	DMOEA-eC	Decomposition-based multi-objective evolutionary algorithm with the e-constraint framework		√		$\sqrt{}$	$\sqrt{}$	\checkmark						
31	dMOPSO	MOPSO based on decomposition		√		\checkmark								
32	DN-NSGA-II	Decision space based niching NSGA-II		1		V						$\sqrt{}$		
33	DWU	Dominance-weighted uniformity multi-objective evolutionary algorithm		√		V	V	$\sqrt{}$						
34	EAG-MOEA/D	External archive guided MOEA/D		$\sqrt{}$		$\sqrt{}$	$\sqrt{}$	$\sqrt{}$						
35	EDN-ARMOEA	Efficient dropout neural network based AR-MOEA		$\sqrt{}$	\checkmark	$\sqrt{}$					$\sqrt{}$			
36	EFR-RR	Ensemble fitness ranking with a ranking restriction scheme		√	\checkmark	$\sqrt{}$	$\sqrt{}$	\checkmark						
37	EGO	Efficient global optimization				\checkmark					$\sqrt{}$			
38	EIM-EGO	Expected improvement matrix based efficient global optimization		√		\checkmark					$\sqrt{}$			
39	e-MOEA	Epsilon multi-objective evolutionary algorithm		√	$\sqrt{}$	V	V	$\sqrt{}$						
40	EMyO/C	Evolutionary many-objective optimization algorithm with clustering-based		V	√	V								
41	ENS-MOEA/D	Ensemble of different neighborhood sizes based MOEA/D		√	$\sqrt{}$	$\sqrt{}$								
42	FEP	Fast evolutionary programming				$\sqrt{}$				$\sqrt{}$				
43	FRCG	Fletcher-Reeves conjugate gradient				$\sqrt{}$								
44	FROFI	Feasibility rule with the incorporation of objective function information	V			√			V	V				
45	GA	Genetic algorithm				$\sqrt{}$	√	\checkmark	$\sqrt{}$	$\sqrt{}$				
46	GDE3	Generalized differential evolution 3		V		V				$\sqrt{}$				
47	GFM-MOEA	Generic front modeling based multi-objective evolutionary algorithm		V	√	V	V	√						
48	GLMO	Grouped and linked mutation operator algorithm		√		$\sqrt{}$								
49	g-NSGA-II	g-dominance based NSGA-II		V		V	V							$\sqrt{}$
50	GrEA	Grid-based evolutionary algorithm			$\sqrt{}$	V	V	$\sqrt{}$						
51	HeE-MOEA	Multiobjective evolutionary algorithm with heterogeneous ensemble based infill criterion		√		V					1			
52	hpaEA	Hyperplane assisted evolutionary algorithm		√	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$						
53	НурЕ	Hypervolume estimation algorithm		√	\checkmark	$\sqrt{}$	$\sqrt{}$	\checkmark						
54	IBEA	Indicator-based evolutionary algorithm		V		$\sqrt{}$	$\sqrt{}$							
55	ICMA	Indicator based constrained multi-objective algorithm		V		V				$\sqrt{}$				
56	I-DBEA	Improved decomposition-based evolutionary algorithm		V	$\sqrt{}$	V	V	$\sqrt{}$		$\sqrt{}$				
57	IM-MOEA	Inverse modeling based multiobjective evolutionary algorithm		V		V			V					
58	IMODE	Improved multi-operator differential evolution				V				$\sqrt{}$				
59	I-SIBEA	Interactive simple indicator-based evolutionary algorithm		√		V	V							$\sqrt{}$
60	KnEA	Knee point driven evolutionary algorithm				V	V			$\sqrt{}$				
61	K-RVEA	Surrogate-assisted RVEA		√		V					√			
62	KTA2	Kriging-assisted Two_Arch2		V	$\sqrt{}$	$\sqrt{}$					V			

	算法缩写	算法全称	single	multi	many	real	binary	permutation	large	constrained	expensive	multimodal	sparse	preference
	I CC A	**		. /	.1	.1		per	. 1	[CO]	ex	m		pr
63	LCSA	Linear combination-based search algorithm Evolutionary algorithm for large-scale many-objective		√	√	√			√					
64	LMEA	optimization			$\sqrt{}$									
65	LMOCSO	Large-scale multi-objective competitive swarm optimization algorithm		√	\checkmark	\checkmark			√	√				
66	LSMOF	Large-scale multi-objective optimization framework with NSGA-II		√		\checkmark			√					
67	MaOEA-CSS	Many-objective evolutionary algorithms based on coordinated selection		√	√	√	√	√						
68	MaOEA-DDFC	Many-objective evolutionary algorithm based on directional diversity and favorable convergence		√	\checkmark	√	√	~						
69	MaOEA/IGD	IGD based many-objective evolutionary algorithm				\checkmark	\checkmark	√						
70	MaOEA/IT	Many-objective evolutionary algorithms based on an independent two-stage		√	\checkmark	\checkmark				√				
71	MaOEA-R&D	Many-objective evolutionary algorithm based on objective space reduction			$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	√						
72	MMOPSO	MOPSO with multiple search strategies		√		\checkmark								
73	MO_Ring_ PSO_SCD	Multiobjective PSO using ring topology and special crowding distance		√		\checkmark						$\sqrt{}$		
74	MOCell	Cellular genetic algorithm		√		\checkmark	\checkmark	√		√				
75	MO-CMA	Multi-objective covariance matrix adaptation evolution strategy		$\sqrt{}$		\checkmark								
76	MOEA/D	Multiobjective evolutionary algorithm based on decomposition		√	\checkmark	7	7	7						
77	MOEA/D-AWA	MOEA/D with covariance matrix adaptation evolution strategy		√		\checkmark								
78	MOEA/D- CMA	MOEA/D with covariance matrix adaptation evolution strategy		√	~	\checkmark								
79	MOEA/DD	Many-objective evolutionary algorithm based on dominance and decomposition		√	\checkmark	√	√	√		√				
80	MOEA/D-DAE	MOEA/D with detect-and-escape strategy		√		\checkmark	\checkmark	$\sqrt{}$		$\sqrt{}$				
81	MOEA/D-DE	MOEA/D based on differential evolution			$\sqrt{}$	$\sqrt{}$								
82	MOEA/D-DRA	MOEA/D with dynamical resource allocation			$\sqrt{}$	$\sqrt{}$								
83	MOEA/D-DU	MOEA/D with a distance based updating strategy			$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$						
84	MOEA/D-EGO	MOEA/D with efficient global optimization		$\sqrt{}$		\checkmark					$\sqrt{}$			
85	MOEA/D- FRRMAB	MOEA/D with fitness-rate-rank-based multiarmed bandit		√	\checkmark	√								
86	MOEA/D- M2M	MOEA/D based on MOP to MOP		√		√								
87	MOEA/D- MRDL	MOEA/D with maximum relative diversity loss		√		$\sqrt{}$								
88	MOEA/D-PaS	MOEA/D with Pareto adaptive scalarizing approximation		V	\checkmark	√								
89	MOEA/D-STM	MOEA/D with stable matching		√	$\sqrt{}$	\checkmark								
90	MOEA/D- URAW	MOEA/D with uniform randomly adaptive weights		√	\checkmark	$\sqrt{}$	$\sqrt{}$	√						
91	MOEA/DVA	Multi-objective evolutionary algorithm based on decision variable		V		V			√					

	算法缩写	算法全称	single	multi	many	real	binary	permutation	large	constrained	expensive	multimodal	sparse	preference
92	MOEA/IGD- NS	Multi-objective evolutionary algorithm based on an enhanced IGD		√		$\sqrt{}$	\checkmark	\checkmark						
93	MOEA-PC	Multiobjective evolutionary algorithm based on polar coordinates				$\sqrt{}$								
94	MOEA/PSL	Multi-objective evolutionary algorithm based on Pareto optimal subspace		√		\checkmark	\checkmark		√	$\sqrt{}$			√	
95	MOMBI-II	Many objective metaheuristic based on the R2 indicator II		$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$						
96	MOPSO	Multi-objective particle swarm optimization		√		$\sqrt{}$								
97	MOPSO-CD	MOPSO with crowding distance		√		$\sqrt{}$								
98	M-PAES	Memetic algorithm with Pareto archived evolution strategy		√		$\sqrt{}$								
99	MP-MMEA	Multi-population multi-modal multi-objective evolutionary algorithm		√		√			V			1	√	
100	MPSO/D	Multi-objective particle swarm optimization algorithm based on decomposition		V	√	V								
101	MSCMO	Multi-stage constrained multi-objective evolutionary algorithm		V		$\sqrt{}$	$\sqrt{}$	\checkmark		$\sqrt{}$				
102	MSEA	Multi-stage multi-objective evolutionary algorithm		V		$\sqrt{}$	$\sqrt{}$	$\sqrt{}$						
103	MSOPS-II	Multiple single objective Pareto sampling II		V	$\sqrt{}$	$\sqrt{}$								
104	MTS	Multiple trajectory search		√		V								
105	MultiObjective EGO	Multi-objective efficient global optimization		V		V				√	V			
106	MyO-DEMR	Many-objective differential evolution with mutation restriction		V		V								
107	NMPSO	Novel multi-objective particle swarm optimization		√	$\sqrt{}$	$\sqrt{}$								
108	NNIA	Nondominated neighbor immune algorithm		√		$\sqrt{}$	\checkmark	\checkmark						
109	NSGA-II	Nondominated sorting genetic algorithm II		√		$\sqrt{}$	$\sqrt{}$	$\sqrt{}$		$\sqrt{}$				
110	NSGA-II+ARSBX	NSGA-II with adaptive rotation based simulated binary crossover		√		$\sqrt{}$				$\sqrt{}$				
111	NSGA-II- conflict	NSGA-II with conflict-based partitioning strategy			√	V	V	√						
112	NSGA-III	Nondominated sorting genetic algorithm III		$\sqrt{}$	\checkmark	\checkmark	\checkmark	\checkmark		$\sqrt{}$				
113	NSGA-II/SDR	NSGA-II with strengthened dominance relation			\checkmark	\checkmark	\checkmark	\checkmark						
114	NSLS	Multiobjective optimization framework based on nondominated sorting and local search		√		\checkmark								
115	OFA	Optimal foraging algorithm	$\sqrt{}$			$\sqrt{}$				$\sqrt{}$				
116	one-by-one EA	Many-objective evolutionary algorithm using a one-by- one selection		√	\checkmark	$\sqrt{}$	\checkmark	\checkmark						
117	OSP-NSDE	Non-dominated sorting differential evolution with prediction in the objective space		√		$\sqrt{}$								
118	ParEGO	Efficient global optimization for Pareto optimization		√		\checkmark					$\sqrt{}$			
119	PeEA	Pareto front shape estimation based evolutionary algorithm		√	$\sqrt{}$	V	$\sqrt{}$	\checkmark						
120	PESA-II	Pareto envelope-based selection algorithm II		V		V	$\sqrt{}$	$\sqrt{}$						
121	PICEA-g	Preference-inspired coevolutionary algorithm with goals		V	$\sqrt{}$	V		$\sqrt{}$						
122	PM-MOEA	Pattern mining based multi-objective evolutionary algorithm		√						$\sqrt{}$				
123	POCEA	Paired offspring generation based constrained evolutionary algorithm		1		V			1	V				

	算法缩写	算法全称	single	multi	many	real	binary	permutation	large	constrained	expensive	multimodal	sparse	preference
124	PPS	Push and pull search algorithm		$\sqrt{}$	$\sqrt{}$	$\sqrt{}$								
125	PREA	Promising-region based EMO algorithm		$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$						
126	PSO	Particle swarm optimization				$\sqrt{}$			$\sqrt{}$					
127	RM-MEDA	Regularity model-based multiobjective estimation of distribution		$\sqrt{}$		$\sqrt{}$								
128	r-NSGA-II	r-dominance based NSGA-II		$\sqrt{}$		$\sqrt{}$	$\sqrt{}$	$\sqrt{}$						$\sqrt{}$
129	RPD-NSGA-II	Reference point dominance-based NSGA-II		$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$						
130	RPEA	Reference points-based evolutionary algorithm			\checkmark	$\sqrt{}$	$\sqrt{}$	\checkmark						
131	RSEA	Radial space division based evolutionary algorithm		\checkmark		$\sqrt{}$	$\sqrt{}$							
132	RVEA	Reference vector guided evolutionary algorithm		$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$		√				
133	RVEAa	RVEA embedded with the reference vector regeneration strategy			\checkmark	$\sqrt{}$	$\sqrt{}$	\checkmark						
134	RVEA-iGNG	RVEA based on improved growing neural gas		$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$						
135	S3-CMA-ES	Scalable small subpopulations based covariance matrix adaptation		$\sqrt{}$	\checkmark	$\sqrt{}$			\checkmark					
136	SA	Simulated annealing	\checkmark			$\sqrt{}$			7	√				
137	SACC-EAM-II	Surrogate-assisted cooperative co-evolutionary algorithm of Minamo				√					$\sqrt{}$			
138	SACOSO	Surrogate-assisted cooperative swarm optimization				\checkmark			V		$\sqrt{}$			
139	SADE- Sammon	Sammon mapping assisted differential evolution				V					$\sqrt{}$			
140	SAMSO	Multiswarm-assisted expensive optimization				$\sqrt{}$			√		$\sqrt{}$			
141	S-CDAS	Self-controlling dominance area of solutions			\checkmark	$\sqrt{}$	\checkmark	\checkmark						
142	SHADE	Success-history based adaptive differential evolution				$\sqrt{}$			√	√				
143	SIBEA	Simple indicator-based evolutionary algorithm		$\sqrt{}$		$\sqrt{}$	$\sqrt{}$	$\sqrt{}$						
144	SIBEA- kEMOSS	SIBEA with minimum objective subset of size k with minimum error			$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$						
145	SMEA	Self-organizing multiobjective evolutionary algorithm		$\sqrt{}$		$\sqrt{}$								
146	SMPSO	Speed-constrained multi-objective particle swarm optimization		$\sqrt{}$		$\sqrt{}$								
147	SMS-EGO	S metric selection based efficient global optimization				$\sqrt{}$					$\sqrt{}$			
148	SMS-EMOA	S metric selection based evolutionary multiobjective optimization				$\sqrt{}$	$\sqrt{}$	$\sqrt{}$						
149	SparseEA	Evolutionary algorithm for sparse multi-objective optimization problems		$\sqrt{}$		V	$\sqrt{}$		\checkmark	V			√	
150	SPEA2	Strength Pareto evolutionary algorithm 2		$\sqrt{}$		$\sqrt{}$	$\sqrt{}$	$\sqrt{}$						
151	SPEA2+SDE	SPEA2 with shift-based density estimation			$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$						
152	SPEA/R	Strength Pareto evolutionary algorithm based on reference direction		~	\checkmark	\checkmark	\checkmark	\checkmark						
153	SQP	Sequential quadratic programming	$\sqrt{}$			$\sqrt{}$			$\sqrt{}$	√				
154	SRA	Stochastic ranking algorithm			$\sqrt{}$	V	$\sqrt{}$	$\sqrt{}$						
155	t-DEA	theta-dominance based evolutionary algorithm		$\sqrt{}$	\checkmark	$\sqrt{}$	$\sqrt{}$	\checkmark						
156	TiGE-2	Tri-Goal Evolution Framework for CMaOPs			$\sqrt{}$	√	V	$\sqrt{}$		√				
157	ToP	Two-phase framework with NSGA-II		$\sqrt{}$		$\sqrt{}$				√				
158	TriMOEA-	Multi-modal MOEA using two-archive and				$\sqrt{}$						$\sqrt{}$		

	算法缩写	算法全称	single	multi	many	real	binary	permutation	large	constrained	expensive	multimodal	sparse	preference
	TA&R	recombination strategies												
159	Two_Arch2	Two-archive algorithm 2		√	√	\checkmark	\checkmark	√						
160	VaEA	Vector angle based evolutionary algorithm		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark						
161	WOF	Weighted optimization framework		\checkmark		\checkmark			\checkmark					
162	WV-MOEA-P	Weight vector based multi-objective optimization algorithm with preference		√		√								√

六 问题列表

	问题缩写	问题全称	single	- multi	many	real	binary	permutation	large	constrained	expensive	multimodal	sparse	preference
1	BT1	Benchmark MOP with bias feature		√ ,		√,			√ ,					
2	BT2	Benchmark MOP with bias feature		√		√ .			√					
3	BT3	Benchmark MOP with bias feature		√		√			√					
4	BT4	Benchmark MOP with bias feature		√		√			√					
5	BT5	Benchmark MOP with bias feature		$\sqrt{}$		√			√					
6	BT6	Benchmark MOP with bias feature				V								
7	BT7	Benchmark MOP with bias feature		$\sqrt{}$		$\sqrt{}$			$\sqrt{}$					
8	BT8	Benchmark MOP with bias feature		$\sqrt{}$		$\sqrt{}$			$\sqrt{}$					
9	ВТ9	Benchmark MOP with bias feature		$\sqrt{}$		$\sqrt{}$			$\sqrt{}$					
10	CEC2008_F1	Shifted sphere function	$\sqrt{}$			$\sqrt{}$			$\sqrt{}$		$\sqrt{}$			
11	CEC2008_F2	Shifted Schwefel's function				$\sqrt{}$			\checkmark		$\sqrt{}$			
12	CEC2008_F3	Shifted Rosenbrock's function				$\sqrt{}$			\checkmark		\checkmark			
13	CEC2008_F4	Shifted Rastrign's function	V			$\sqrt{}$			\checkmark		\checkmark			
14	CEC2008_F5	Shifted Griewank's function	V			$\sqrt{}$					\checkmark			
15	CEC2008_F6	Shifted Ackley's function	V			V			$\sqrt{}$		V			
16	CEC2008_F7	FastFractal 'DoubleDip' function				V			$\sqrt{}$		V			
17	CEC2010_F1	CEC'2010 constrained optimization benchmark problem				$\sqrt{}$				$\sqrt{}$				
18	CEC2010_F2	CEC'2010 constrained optimization benchmark problem				$\sqrt{}$				$\sqrt{}$				
19	CEC2010_F3	CEC'2010 constrained optimization benchmark problem	V			V				$\sqrt{}$				
20	CEC2010_F4	CEC'2010 constrained optimization benchmark problem				$\sqrt{}$				$\sqrt{}$				
21	CEC2010_F5	CEC'2010 constrained optimization benchmark problem	V			V				$\sqrt{}$				
22	CEC2010_F6	CEC'2010 constrained optimization benchmark problem	V			V				V				
23	CEC2010_F7	CEC'2010 constrained optimization benchmark problem	V			V				$\sqrt{}$				
24	CEC2010_F8	CEC'2010 constrained optimization benchmark problem	V			V				$\sqrt{}$				
25	CEC2010_F9	CEC'2010 constrained optimization benchmark problem	V			V				V				
26	CEC2010_F10	CEC'2010 constrained optimization benchmark problem	V			V				$\sqrt{}$				
27	CEC2010_F11	CEC'2010 constrained optimization benchmark problem				V				$\sqrt{}$				
28	CEC2010_F12	CEC'2010 constrained optimization benchmark problem	V			√				$\sqrt{}$				
29	CEC2010_F13	CEC'2010 constrained optimization benchmark problem				V				$\sqrt{}$				
30	CEC2010_F14	CEC'2010 constrained optimization benchmark problem				$\sqrt{}$				$\sqrt{}$				
31	CEC2010_F15	CEC'2010 constrained optimization benchmark problem	√			√				$\sqrt{}$				
32	CEC2010_F16	CEC'2010 constrained optimization benchmark problem	√			√				$\sqrt{}$				
33	CEC2010_F17	CEC'2010 constrained optimization benchmark problem	$\sqrt{}$			V				$\sqrt{}$				

	问题缩写	问题全称	single	multi	many	real	binary	permutation	large	constrained	expensive	multimodal	sparse	preference
34	CEC2010_F18	CEC'2010 constrained optimization benchmark problem	$\sqrt{}$			$\sqrt{}$				$\sqrt{}$				
35	CEC2013_F1	Shifted elliptic function	√			$\sqrt{}$			\checkmark					
36	CEC2013_F2	Shifted Rastrigin's function	7			$\sqrt{}$			7					
37	CEC2013_F3	Shifted Ackley's function				\checkmark			\checkmark					
38	CEC2013_F4	7-nonseparable, 1-separable shifted and rotated elliptic function	V			V								
39	CEC2013_F5	7-nonseparable, 1-separable shifted and rotated Rastrigin's function				V								
40	CEC2013_F6	7-nonseparable, 1-separable shifted and rotated Ackley's function	V			V								
41	CEC2013_F7	7-nonseparable, 1-separable shifted and rotated Schwefel's function				V								
42	CEC2013_F8	20-nonseparable shifted and rotated elliptic function	V			V								
43	CEC2013_F9	20-nonseparable shifted and rotated Rastrigin's function				\checkmark								
44	CEC2013_F10	20-nonseparable shifted and rotated Rastrigin's function	V			V								
45	CEC2013_F11	20-nonseparable shifted and rotated Schwefel's function	V			V								
46	CEC2013_F12	Shifted Rosenbrock's function	V			V								
47	CEC2013_F13	Shifted Schwefel's function with conforming overlapping subcomponents	V			V			V					
48	CEC2013_F14	Shifted Schwefel's function with conflicting overlapping subcomponents	√			$\sqrt{}$			\checkmark					
49	CEC2013_F15	Shifted Schwefel's function				$\sqrt{}$								
50	CEC2017_F1	CEC'2017 constrained optimization benchmark problem				$\sqrt{}$				$\sqrt{}$				
51	CEC2017_F2	CEC'2017 constrained optimization benchmark problem	$\sqrt{}$			$\sqrt{}$				$\sqrt{}$				
52	CEC2017_F3	CEC'2017 constrained optimization benchmark problem				$\sqrt{}$				$\sqrt{}$				
53	CEC2017_F4	CEC'2017 constrained optimization benchmark problem				$\sqrt{}$				$\sqrt{}$				
54	CEC2017_F5	CEC'2017 constrained optimization benchmark problem				$\sqrt{}$				$\sqrt{}$				
55	CEC2017_F6	CEC'2017 constrained optimization benchmark problem	$\sqrt{}$			$\sqrt{}$				$\sqrt{}$				
56	CEC2017_F7	CEC'2017 constrained optimization benchmark problem				$\sqrt{}$				$\sqrt{}$				
57	CEC2017_F8	CEC'2017 constrained optimization benchmark problem				$\sqrt{}$				$\sqrt{}$				
58	CEC2017_F9	CEC'2017 constrained optimization benchmark problem				$\sqrt{}$				$\sqrt{}$				
59	CEC2017_F10	CEC'2017 constrained optimization benchmark problem	$\sqrt{}$			$\sqrt{}$				$\sqrt{}$				
60	CEC2017_F11	CEC'2017 constrained optimization benchmark problem	$\sqrt{}$			$\sqrt{}$				$\sqrt{}$				
61	CEC2017_F12	CEC'2017 constrained optimization benchmark problem				$\sqrt{}$				$\sqrt{}$				
62	CEC2017_F13	CEC'2017 constrained optimization benchmark problem	7			$\sqrt{}$				$\sqrt{}$				
63	CEC2017_F14	CEC'2017 constrained optimization benchmark problem	7			$\sqrt{}$				$\sqrt{}$				
64	CEC2017_F15	CEC'2017 constrained optimization benchmark problem	√			$\sqrt{}$				$\sqrt{}$				
65	CEC2017_F16	CEC'2017 constrained optimization benchmark problem	7			$\sqrt{}$				$\sqrt{}$				
66	CEC2017_F17	CEC'2017 constrained optimization benchmark problem				\checkmark				$\sqrt{}$				
67	CEC2017_F18	CEC'2017 constrained optimization benchmark problem	$\sqrt{}$			V				$\sqrt{}$				
68	CEC2017_F19	CEC'2017 constrained optimization benchmark problem	√			$\sqrt{}$				√				
69	CEC2017_F20	CEC'2017 constrained optimization benchmark problem				$\sqrt{}$				$\sqrt{}$				

	问题缩写	问题全称	single	multi	many	real	binary	permutation	large	constrained	expensive	multimodal	sparse	preference
70	CEC2017_F21	CEC'2017 constrained optimization benchmark problem	$\sqrt{}$			$\sqrt{}$				$\sqrt{}$				
71	CEC2017_F22	CEC'2017 constrained optimization benchmark problem				$\sqrt{}$				$\sqrt{}$				
72	CEC2017_F23	CEC'2017 constrained optimization benchmark problem				$\sqrt{}$				$\sqrt{}$				
73	CEC2017_F24	CEC'2017 constrained optimization benchmark problem	\checkmark			\checkmark				$\sqrt{}$				
74	CEC2017_F25	CEC'2017 constrained optimization benchmark problem				\checkmark				$\sqrt{}$				
75	CEC2017_F26	CEC'2017 constrained optimization benchmark problem				V				V				
76	CEC2017_F27	CEC'2017 constrained optimization benchmark problem				\checkmark				$\sqrt{}$				
77	CEC2017_F28	CEC'2017 constrained optimization benchmark problem				V				V				
78	CEC2020_F1	Bent cigar function				\checkmark								
79	CEC2020_F2	Shifted and rotated Schwefel's function				\checkmark								
80	CEC2020_F3	Shifted and rotated Lunacek bi-Rastrigin function				V								
81	CEC2020_F4	Expanded Rosenbrock's plus Griewangk's function				\checkmark								
82	CEC2020_F5	Hybrid function 1				√								
83	CEC2020_F6	Hybrid function 2				V								
84	CEC2020_F7	Hybrid function 3				√								
85	CEC2020_F8	Composition function 1				V								
86	CEC2020_F9	Composition function 2				√								
87	CEC2020_F10	Composition function 3				√								
88	CF1	Constrained benchmark MOP		V		V				$\sqrt{}$				
89	CF2	Constrained benchmark MOP		√		√			$\sqrt{}$	$\sqrt{}$				
90	CF3	Constrained benchmark MOP		√		√			$\sqrt{}$	$\sqrt{}$				
91	CF4	Constrained benchmark MOP		V		V				V				
92	CF5	Constrained benchmark MOP		V		√				$\sqrt{}$				
93	CF6	Constrained benchmark MOP		V		V				$\sqrt{}$				
94	CF7	Constrained benchmark MOP		√		√			$\sqrt{}$	$\sqrt{}$				
95	CF8	Constrained benchmark MOP		√		√			$\sqrt{}$	$\sqrt{}$				
96	CF9	Constrained benchmark MOP		V		V				V				
97	CF10	Constrained benchmark MOP		V		√				$\sqrt{}$				
98	DAS-CMOP1	Difficulty-adjustable and scalable constrained benchmark MOP		√		√				$\sqrt{}$				
99	DAS-CMOP2	Difficulty-adjustable and scalable constrained benchmark MOP		√		$\sqrt{}$				$\sqrt{}$				
100	DAS-CMOP3	Difficulty-adjustable and scalable constrained benchmark MOP		V		V				$\sqrt{}$				
101	DAS-CMOP4	Difficulty-adjustable and scalable constrained benchmark MOP		√		$\sqrt{}$				$\sqrt{}$				
102	DAS-CMOP5	Difficulty-adjustable and scalable constrained benchmark MOP		√		$\sqrt{}$				$\sqrt{}$				
103	DAS-CMOP6	Difficulty-adjustable and scalable constrained benchmark MOP		V		√				V				
104	DAS-CMOP7	Difficulty-adjustable and scalable constrained benchmark MOP		√		√				$\sqrt{}$				
105	DAS-CMOP8	Difficulty-adjustable and scalable constrained benchmark MOP		√		√				$\sqrt{}$				
106	DAS-CMOP9	Difficulty-adjustable and scalable constrained benchmark MOP		√		1			$\sqrt{}$	V				

	问题缩写	问题全称	single	multi	many	real	binary	permutation	large	constrained	expensive	multimodal	sparse	preference
107	DOC1	Benchmark MOP with constraints in decision and objective spaces		$\sqrt{}$		$\sqrt{}$				$\sqrt{}$				
108	DOC2	Benchmark MOP with constraints in decision and objective spaces		$\sqrt{}$		$\sqrt{}$				$\sqrt{}$				
109	DOC3	Benchmark MOP with constraints in decision and objective spaces		$\sqrt{}$		$\sqrt{}$				$\sqrt{}$				
110	DOC4	Benchmark MOP with constraints in decision and objective spaces		$\sqrt{}$		$\sqrt{}$				$\sqrt{}$				
111	DOC5	Benchmark MOP with constraints in decision and objective spaces		$\sqrt{}$		$\sqrt{}$				$\sqrt{}$				
112	DOC6	Benchmark MOP with constraints in decision and objective spaces		$\sqrt{}$		$\sqrt{}$				$\sqrt{}$				
113	DOC7	Benchmark MOP with constraints in decision and objective spaces		$\sqrt{}$		$\sqrt{}$				$\sqrt{}$				
114	DOC8	Benchmark MOP with constraints in decision and objective spaces		$\sqrt{}$		$\sqrt{}$				$\sqrt{}$				
115	DOC9	Benchmark MOP with constraints in decision and objective spaces		$\sqrt{}$		$\sqrt{}$				$\sqrt{}$				
116	DTLZ1	Benchmark MOP proposed by Deb, Thiele, Laumanns, and Zitzler		√	$\sqrt{}$	$\sqrt{}$			\checkmark		$\sqrt{}$			
117	DTLZ2	Benchmark MOP proposed by Deb, Thiele, Laumanns, and Zitzler		√	$\sqrt{}$	\checkmark			\checkmark		$\sqrt{}$			
118	DTLZ3	Benchmark MOP proposed by Deb, Thiele, Laumanns, and Zitzler		√	$\sqrt{}$	$\sqrt{}$			\checkmark		$\sqrt{}$			
119	DTLZ4	Benchmark MOP proposed by Deb, Thiele, Laumanns, and Zitzler		√	$\sqrt{}$	\checkmark			\checkmark		\checkmark			
120	DTLZ5	Benchmark MOP proposed by Deb, Thiele, Laumanns, and Zitzler		√	\checkmark	\checkmark			\checkmark		\checkmark			
121	DTLZ6	Benchmark MOP proposed by Deb, Thiele, Laumanns, and Zitzler		√	\checkmark	\checkmark			\checkmark		\checkmark			
122	DTLZ7	Benchmark MOP proposed by Deb, Thiele, Laumanns, and Zitzler		√	$\sqrt{}$	\checkmark			\checkmark		$\sqrt{}$			
123	DTLZ8	Benchmark MOP proposed by Deb, Thiele, Laumanns, and Zitzler		√	\checkmark	\checkmark			\checkmark	\checkmark	\checkmark			
124	DTLZ9	Benchmark MOP proposed by Deb, Thiele, Laumanns, and Zitzler		√	\checkmark	\checkmark			\checkmark	\checkmark	\checkmark			
125	CDTLZ2	Convex DTLZ2		√	$\sqrt{}$	$\sqrt{}$			\checkmark		$\sqrt{}$			
126	IDTLZ1	Inverted DTLZ1		√	$\sqrt{}$	$\sqrt{}$			\checkmark		$\sqrt{}$			
127	IDTLZ2	Inverted DTLZ2		√	$\sqrt{}$	\checkmark			\checkmark		\checkmark			
128	SDTLZ1	Scaled DTLZ1		√	$\sqrt{}$	V			V		V			
129	SDTLZ2	Scaled DTLZ2		√	\checkmark	\checkmark			\checkmark		\checkmark			
130	C1-DTLZ1	Constrained DTLZ1		√	\checkmark	\checkmark			\checkmark	\checkmark	\checkmark			
131	C1-DTLZ3	Constrained DTLZ3		√	\checkmark	\checkmark			\checkmark	\checkmark	\checkmark			
132	C2-DTLZ2	Constrained DTLZ2		√	\checkmark	\checkmark			\checkmark	\checkmark	\checkmark			
133	C3-DTLZ4	Constrained DTLZ4		√	$\sqrt{}$	$\sqrt{}$			\checkmark	$\sqrt{}$	$\sqrt{}$			
134	DC1-DTLZ1	DTLZ1 with constrains in decision space		√	\checkmark	\checkmark			\checkmark	\checkmark	\checkmark			
135	DC1-DTLZ3	DTLZ3 with constrains in decision space		√	$\sqrt{}$	\checkmark				$\sqrt{}$				
136	DC2-DTLZ1	DTLZ1 with constrains in decision space		√	\checkmark	\checkmark			\checkmark	\checkmark	\checkmark			
137	DC2-DTLZ3	DTLZ3 with constrains in decision space		√	\checkmark	\checkmark			\checkmark	\checkmark	\checkmark			
138	DC3-DTLZ1	DTLZ1 with constrains in decision space		√	$\sqrt{}$	V			V	$\sqrt{}$	V			
139	DC3-DTLZ3	DTLZ3 with constrains in decision space		√	\checkmark	\checkmark			\checkmark	\checkmark	\checkmark			
140	FCP1	Benchmark constrained MOP proposed by Yuan		√		\checkmark				\checkmark				
141	FCP2	Benchmark constrained MOP proposed by Yuan		√		$\sqrt{}$				$\sqrt{}$				
142	FCP3	Benchmark constrained MOP proposed by Yuan		√		√				$\sqrt{}$				
143	FCP4	Benchmark constrained MOP proposed by Yuan		√		$\sqrt{}$				$\sqrt{}$				

								Ţ.		þ	0)	II.		40
	问题缩写	问题全称	single	multi	many	real	binary	permutation	large	constrained	expensive	multimodal	sparse	preference
144	FCP5	Benchmark constrained MOP proposed by Yuan		√		√		be		> √	е	uı		Ь
145	IMMOEA_F1	Benchmark MOP for testing IM-MOEA		\ √		· √			√	,				
146	IMMOEA_F2	Benchmark MOP for testing IM-MOEA		√		√			√					
147	IMMOEA_F3	Benchmark MOP for testing IM-MOEA		√		· √			√					
148	IMMOEA_F4	Benchmark MOP for testing IM-MOEA		√		· √			√					
149	IMMOEA_F5	Benchmark MOP for testing IM-MOEA		√		√			√					
150	IMMOEA_F6	Benchmark MOP for testing IM-MOEA		√		√			√					
151	IMMOEA_F7	Benchmark MOP for testing IM-MOEA		√		√			√					
151	IMMOEA_F8	Benchmark MOP for testing IM-MOEA		√		· √			√					
153	IMMOEA_F9	Benchmark MOP for testing IM-MOEA		√		√			√					
153	IMMOEA_F10	Benchmark MOP for testing IM-MOEA		√		√			√					
155	IMOP1	Benchmark MOP with irregular Pareto front		√ √		√			٧		√			
156	IMOP2	Benchmark MOP with irregular Pareto front		√ √		√					√			
157	IMOP3	Benchmark MOP with irregular Pareto front		√ √		√					√			
157	IMOP4	Benchmark MOP with irregular Pareto front		√ √		√					√			
159	IMOP4	Benchmark MOP with irregular Pareto front		√ √		√					√			
	IMOP6	Benchmark MOP with irregular Pareto front		√ √		√					√ √			
160				√ √		√ √					√ √			
161	IMOP7	Benchmark MOP with irregular Pareto front				√ √					√ √			
162	IMOP8	Benchmark MOP with irregular Pareto front	-1	V		V	V		-1	اء	V			
163	KP CMOD1	The knapsack problem	√	1		1	٧		√ /	√ /				
164	LIR-CMOP1	Constrained benchmark MOP with large infeasible regions		√ /		√ ,			√ ,	√ 				
165	LIR-CMOP2	Constrained benchmark MOP with large infeasible regions		√ 		√ ,			√ /	√ 				
166	LIR-CMOP3	Constrained benchmark MOP with large infeasible regions		V		٧ ,			٧	V				
167	LIR-CMOP4	Constrained benchmark MOP with large infeasible regions		√ /		√ ,			√ /	√ /				
168	LIR-CMOP5	Constrained benchmark MOP with large infeasible regions		√		√ ,			√ '	√				
169	LIR-CMOP6	Constrained benchmark MOP with large infeasible regions		√ /		√ ,			√ ,	√ /				
170	LIR-CMOP7	Constrained benchmark MOP with large infeasible regions		√		√ ,			√ ,	√				
171	LIR-CMOP8	Constrained benchmark MOP with large infeasible regions		√		√			√	√				
172	LIR-CMOP9	Constrained benchmark MOP with large infeasible regions		√		√			√	√				
173	LIR-CMOP10	Constrained benchmark MOP with large infeasible regions		√		√,			√	√				
174	LIR-CMOP11	Constrained benchmark MOP with large infeasible regions		√		√			√	√				
175	LIR-CMOP12	Constrained benchmark MOP with large infeasible regions		$\sqrt{}$		√			√	$\sqrt{}$				
176	LIR-CMOP13	Constrained benchmark MOP with large infeasible regions		$\sqrt{}$		$\sqrt{}$			√	$\sqrt{}$				
177	LIR-CMOP14	Constrained benchmark MOP with large infeasible regions		$\sqrt{}$		$\sqrt{}$			√	$\sqrt{}$				
178	LSMOP1	Large-scale benchmark MOP		$\sqrt{}$	V	$\sqrt{}$			√					
179	LSMOP2	Large-scale benchmark MOP		√	√	√			√					
180	LSMOP3	Large-scale benchmark MOP		$\sqrt{}$	$\sqrt{}$	$\sqrt{}$								

								n		q		II		4)
	问题缩写	问题全称	single	multi	many	real	binary	permutation	large	constrained	expensive	multimodal	sparse	preference
181	LSMOP4	Large-scale benchmark MOP		V	√	$\sqrt{}$]	√					
182	LSMOP5	Large-scale benchmark MOP		√		V								
183	LSMOP6	Large-scale benchmark MOP		V	$\sqrt{}$	$\sqrt{}$								
184	LSMOP7	Large-scale benchmark MOP		V		V								
185	LSMOP8	Large-scale benchmark MOP		√	$\sqrt{}$	$\sqrt{}$								
186	LSMOP9	Large-scale benchmark MOP		√	$\sqrt{}$	$\sqrt{}$								
187	MaF1	Inverted DTLZ1		√	$\sqrt{}$	$\sqrt{}$			$\sqrt{}$					
188	MaF2	DTLZ2BZ		V	$\sqrt{}$	$\sqrt{}$								
189	MaF3	Convex DTLZ3		V		V								
190	MaF4	Inverted and scaled DTLZ3		√	$\sqrt{}$	$\sqrt{}$			$\sqrt{}$					
191	MaF5	Scaled DTLZ4		√	$\sqrt{}$	$\sqrt{}$								
192	MaF6	DTLZ5IM		√	$\sqrt{}$	$\sqrt{}$								
193	MaF7	DTLZ7		√		$\sqrt{}$								
194	MaF8	MP-DMP		√		V								
195	MaF9	ML-DMP		V	$\sqrt{}$	V								
196	MaF10	WFG1		V	$\sqrt{}$	V								
197	MaF11	WFG2		V		V			$\sqrt{}$					
198	MaF12	WFG9		V	$\sqrt{}$	V			$\sqrt{}$					
199	MaF13	Р7		V		V								
200	MaF14	LSMOP3		V		V								
201	MaF15	Inverted LSMOP8		V		V								
202	MLDMP	The multi-line distance minimization problem		√	$\sqrt{}$	V								
203	MMF1	Multi-modal multi-objective test function		V		V						$\sqrt{}$		
204	MMF2	Multi-modal multi-objective test function		√		V						√		
205	MMF3	Multi-modal multi-objective test function		V		V						$\sqrt{}$		
206	MMF4	Multi-modal multi-objective test function		V		V						$\sqrt{}$		
207	MMF5	Multi-modal multi-objective test function		√		$\sqrt{}$						$\sqrt{}$		
208	MMF6	Multi-modal multi-objective test function		√		$\sqrt{}$						$\sqrt{}$		
209	MMF7	Multi-modal multi-objective test function		√		$\sqrt{}$						$\sqrt{}$		
210	MMF8	Multi-modal multi-objective test function		√		V						$\sqrt{}$		
211	MMMOP1	Multi-modal multi-objective optimization problem		√	$\sqrt{}$	V						$\sqrt{}$		
212	MMMOP2	Multi-modal multi-objective optimization problem		V		V						$\sqrt{}$		
213	MMMOP3	Multi-modal multi-objective optimization problem		V	$\sqrt{}$	V						$\sqrt{}$		
214	MMMOP4	Multi-modal multi-objective optimization problem		√	$\sqrt{}$	$\sqrt{}$						√		
215	MMMOP5	Multi-modal multi-objective optimization problem		V		V						$\sqrt{}$		
216	MMMOP6	Multi-modal multi-objective optimization problem		V		V						$\sqrt{}$		
217	MOEADDE_F1	Benchmark MOP for testing MOEA/D-DE		V		V								

								n		q	-	7		40
	问题缩写	问题全称	single	multi	many	real	binary	permutation	large	constrained	expensive	multimodal	sparse	preference
218	MOEADDE_F2	Benchmark MOP for testing MOEA/D-DE		√		√		1	√					
219	MOEADDE_F3	Benchmark MOP for testing MOEA/D-DE		$\sqrt{}$		$\sqrt{}$								
220	MOEADDE_F4	Benchmark MOP for testing MOEA/D-DE				V			V					
221	MOEADDE_F5	Benchmark MOP for testing MOEA/D-DE		$\sqrt{}$		V								
222	MOEADDE_F6	Benchmark MOP for testing MOEA/D-DE		$\sqrt{}$		V								
223	MOEADDE_F7	Benchmark MOP for testing MOEA/D-DE		$\sqrt{}$		V			√					
224	MOEADDE_F8	Benchmark MOP for testing MOEA/D-DE		$\sqrt{}$		$\sqrt{}$								
225	MOEADDE_F9	Benchmark MOP for testing MOEA/D-DE		$\sqrt{}$		$\sqrt{}$								
226	MOEADM2M_F1	Benchmark MOP for testing MOEA/D-M2M		$\sqrt{}$		$\sqrt{}$								
227	MOEADM2M_F2	Benchmark MOP for testing MOEA/D-M2M		$\sqrt{}$		$\sqrt{}$								
228	MOEADM2M_F3	Benchmark MOP for testing MOEA/D-M2M		$\sqrt{}$		V								
229	MOEADM2M_F4	Benchmark MOP for testing MOEA/D-M2M		$\sqrt{}$		V								
230	MOEADM2M_F5	Benchmark MOP for testing MOEA/D-M2M		$\sqrt{}$		$\sqrt{}$								
231	MOEADM2M_F6	Benchmark MOP for testing MOEA/D-M2M		$\sqrt{}$		V								
232	MOEADM2M_F7	Benchmark MOP for testing MOEA/D-M2M		$\sqrt{}$		$\sqrt{}$								
233	MOKP	The multi-objective knapsack problem		$\sqrt{}$	$\sqrt{}$		$\sqrt{}$							
234	MONRP	The multi-objective next release problem		$\sqrt{}$			V							
235	MOTSP	The multi-objective traveling salesman problem		$\sqrt{}$	V			$\sqrt{}$						
236	MPDMP	The multi-point distance minimization problem		√	V	V								
237	mQAP	The multi-objective quadratic assignment problem		$\sqrt{}$	V			V						
238	MW1	Constrained benchmark MOP proposed by Ma and Wang				V				$\sqrt{}$				
239	MW2	Constrained benchmark MOP proposed by Ma and Wang		√		V			√	V				
240	MW3	Constrained benchmark MOP proposed by Ma and Wang				V				$\sqrt{}$				
241	MW4	Constrained benchmark MOP proposed by Ma and Wang		\checkmark	\checkmark	\checkmark				$\sqrt{}$				
242	MW5	Constrained benchmark MOP proposed by Ma and Wang		\checkmark		$\sqrt{}$			$\sqrt{}$	$\sqrt{}$				
243	MW6	Constrained benchmark MOP proposed by Ma and Wang		\checkmark		$\sqrt{}$			$\sqrt{}$	$\sqrt{}$				
244	MW7	Constrained benchmark MOP proposed by Ma and Wang		\checkmark		$\sqrt{}$				$\sqrt{}$				
245	MW8	Constrained benchmark MOP proposed by Ma and Wang		\checkmark	$\sqrt{}$	$\sqrt{}$			$\sqrt{}$	$\sqrt{}$				
246	MW9	Constrained benchmark MOP proposed by Ma and Wang		\checkmark		\checkmark				$\sqrt{}$				
247	MW10	Constrained benchmark MOP proposed by Ma and Wang		\checkmark		\checkmark				$\sqrt{}$				
248	MW11	Constrained benchmark MOP proposed by Ma and Wang		\checkmark		$\sqrt{}$				$\sqrt{}$				
249	MW12	Constrained benchmark MOP proposed by Ma and Wang		$\sqrt{}$		$\sqrt{}$				$\sqrt{}$				
250	MW13	Constrained benchmark MOP proposed by Ma and Wang		\checkmark		$\sqrt{}$			$\sqrt{}$	$\sqrt{}$				
251	MW14	Constrained benchmark MOP proposed by Ma and Wang			V	V			$\sqrt{}$	$\sqrt{}$				
252	RMMEDA_F1	Benchmark MOP for testing RM-MEDA		$\sqrt{}$		$\sqrt{}$			$\sqrt{}$					
253	RMMEDA_F2	Benchmark MOP for testing RM-MEDA		$\sqrt{}$		V			√					
254	RMMEDA_F3	Benchmark MOP for testing RM-MEDA				V			1					

								n		þ	4)	Te.		d)
	问题缩写	问题全称	single	multi	many	real	binary	permutation	large	constrained	expensive	multimodal	sparse	preference
255	RMMEDA_F4	Benchmark MOP for testing RM-MEDA		V		√			√					
256	RMMEDA_F5	Benchmark MOP for testing RM-MEDA		V		$\sqrt{}$								
257	RMMEDA_F6	Benchmark MOP for testing RM-MEDA		$\sqrt{}$		V								
258	RMMEDA_F7	Benchmark MOP for testing RM-MEDA		√		V								
259	RMMEDA_F8	Benchmark MOP for testing RM-MEDA		V		V								
260	RMMEDA_F9	Benchmark MOP for testing RM-MEDA		V		V								
261	RMMEDA_F10	Benchmark MOP for testing RM-MEDA		V		$\sqrt{}$								
262	Sparse_CD	The community detection problem		V			$\sqrt{}$				$\sqrt{}$		√	
263	Sparse_CN	The critical node detection problem		V			V				√		√	
264	Sparse_FS	The feature selection problem		V			√		$\sqrt{}$		$\sqrt{}$		√	
265	Sparse_IS	The instance selection problem		$\sqrt{}$			V				$\sqrt{}$		√	
266	Sparse_KP	The sparse multi-objective knapsack problem		V	$\sqrt{}$		V							
267	Sparse_NN	The neural network training problem		V		V					√		√	
268	Sparse_PM	The pattern mining problem		V			V				√		√	
269	Sparse_PO	The portfolio optimization problem		V		V					√		√	
270	Sparse_SR	The sparse signal reconstruction problem		V		V					√		√	
271	SMMOP1	Sparse multi-modal multi-objective optimization problem		$\sqrt{}$	\checkmark	\checkmark						$\sqrt{}$	$\sqrt{}$	
272	SMMOP2	Sparse multi-modal multi-objective optimization problem		$\sqrt{}$	\checkmark	$\sqrt{}$			\checkmark			$\sqrt{}$	$\sqrt{}$	
273	SMMOP3	Sparse multi-modal multi-objective optimization problem		$\sqrt{}$	$\sqrt{}$	$\sqrt{}$			$\sqrt{}$			$\sqrt{}$	$\sqrt{}$	
274	SMMOP4	Sparse multi-modal multi-objective optimization problem		$\sqrt{}$	\checkmark	$\sqrt{}$			~			$\sqrt{}$	$\sqrt{}$	
275	SMMOP5	Sparse multi-modal multi-objective optimization problem		$\sqrt{}$	\checkmark	$\sqrt{}$			~			$\sqrt{}$	$\sqrt{}$	
276	SMMOP6	Sparse multi-modal multi-objective optimization problem		$\sqrt{}$	\checkmark	$\sqrt{}$			√			$\sqrt{}$	$\sqrt{}$	
277	SMMOP7	Sparse multi-modal multi-objective optimization problem		$\sqrt{}$	\checkmark	$\sqrt{}$			~			$\sqrt{}$	$\sqrt{}$	
278	SMMOP8	Sparse multi-modal multi-objective optimization problem		$\sqrt{}$		$\sqrt{}$			√			$\sqrt{}$	$\sqrt{}$	
279	SMOP1	Benchmark MOP with sparse Pareto optimal solutions		$\sqrt{}$	$\sqrt{}$	$\sqrt{}$			$\sqrt{}$		$\sqrt{}$		$\sqrt{}$	
280	SMOP2	Benchmark MOP with sparse Pareto optimal solutions		$\sqrt{}$	$\sqrt{}$	$\sqrt{}$			\checkmark		$\sqrt{}$		$\sqrt{}$	
281	SMOP3	Benchmark MOP with sparse Pareto optimal solutions		$\sqrt{}$	$\sqrt{}$	$\sqrt{}$					$\sqrt{}$		$\sqrt{}$	
282	SMOP4	Benchmark MOP with sparse Pareto optimal solutions		$\sqrt{}$	$\sqrt{}$	$\sqrt{}$			\checkmark		$\sqrt{}$		$\sqrt{}$	
283	SMOP5	Benchmark MOP with sparse Pareto optimal solutions		$\sqrt{}$	$\sqrt{}$	$\sqrt{}$			\checkmark		$\sqrt{}$		$\sqrt{}$	
284	SMOP6	Benchmark MOP with sparse Pareto optimal solutions		$\sqrt{}$	$\sqrt{}$	$\sqrt{}$			√		$\sqrt{}$		$\sqrt{}$	
285	SMOP7	Benchmark MOP with sparse Pareto optimal solutions		$\sqrt{}$	$\sqrt{}$	$\sqrt{}$					$\sqrt{}$		$\sqrt{}$	
286	SMOP8	Benchmark MOP with sparse Pareto optimal solutions		$\sqrt{}$	$\sqrt{}$	$\sqrt{}$					$\sqrt{}$		$\sqrt{}$	
287	SOP_F1	Sphere function				$\sqrt{}$					$\sqrt{}$			
288	SOP_F2	Schwefel's function 2.22	√			$\sqrt{}$					$\sqrt{}$			
289	SOP_F3	Schwefel's function 1.2	√			√					$\sqrt{}$			
290	SOP_F4	Schwefel's function 2.21	√			$\sqrt{}$					$\sqrt{}$			
291	SOP_F5	Generalized Rosenbrock's function	V			$\sqrt{}$					$\sqrt{}$			

			0				y	tion		ned	ive	odal	0	nce
	问题缩写	问题全称	single	multi	many	real	binary	permutation	large	constrained	expensive	multimodal	sparse	preference
202	COD EC	C4 £4:	1			V		bei		00	6) V	ш		Id
292	SOP_F6	Step function	\ \ \			√ √					√ √			
293	SOP_F7	Quartic function with noise	1			1					1		\rightarrow	
294	SOP_F8	Generalized Schwefel's function 2.26	 `			,					√ √		\rightarrow	
295	SOP_F9	Generalized Rastrigin's function	√ /			√ /								
296	SOP_F10	Ackley's function	√ /			√ /					√ 			
297	SOP_F11	Generalized Griewank's function	√ /			√ /					√ /			
298	SOP_F12	Generalized penalized function	√ /			√ /					√ 			
299	SOP_F13	Generalized penalized function	√ ,			√ ,					√ '			
300	SOP_F14	Shekel's foxholes function	√,			√					√		\longrightarrow	
301	SOP_F15	Kowalik's function	√			√					√			
302	SOP_F16	Six-hump camel-back function	√			V					√			
303	SOP_F17	Branin function	V			V					$\sqrt{}$			
304	SOP_F18	Goldstein-price function				$\sqrt{}$					$\sqrt{}$			
305	SOP_F19	Hartman's family	V			$\sqrt{}$					$\sqrt{}$			
306	SOP_F20	Hartman's family	$\sqrt{}$			$\sqrt{}$					$\sqrt{}$			
307	SOP_F21	Shekel's family	V			$\sqrt{}$					$\sqrt{}$			
308	SOP_F22	Shekel's family	$\sqrt{}$			$\sqrt{}$					$\sqrt{}$			
309	SOP_F23	Shekel's family	V			~					\checkmark			
310	TREE1	The time-varying ratio error estimation problem		√		\checkmark			√	√	\checkmark			
311	TREE2	The time-varying ratio error estimation problem		√						$\sqrt{}$				
312	TREE3	The time-varying ratio error estimation problem		√						$\sqrt{}$				
313	TREE4	The time-varying ratio error estimation problem		V		V			V	V	V			
314	TREE5	The time-varying ratio error estimation problem		√		V			√	V	$\sqrt{}$			
315	TREE6	The time-varying ratio error estimation problem		√		$\sqrt{}$			V	V	$\sqrt{}$			
316	TSP	The traveling salesman problem	√						√					
317	UF1	Unconstrained benchmark MOP		√		$\sqrt{}$								
318	UF2	Unconstrained benchmark MOP		√		$\sqrt{}$								
319	UF3	Unconstrained benchmark MOP		√		$\sqrt{}$			$\sqrt{}$					
320	UF4	Unconstrained benchmark MOP		V		$\sqrt{}$			V					
321	UF5	Unconstrained benchmark MOP		V		V			V					
322	UF6	Unconstrained benchmark MOP		V		V			V					
323	UF7	Unconstrained benchmark MOP		√		$\sqrt{}$			V					
324	UF8	Unconstrained benchmark MOP		V		$\sqrt{}$			V					
325	UF9	Unconstrained benchmark MOP		√		V			√					
326	UF10	Unconstrained benchmark MOP		√		V			V					
327	VNT1	Benchmark MOP proposed by Viennet		V		V								
328	VNT2	Benchmark MOP proposed by Viennet		√		$\sqrt{}$								
		<u> </u>	1	1				<u> </u>		1				

	问题缩写	问题全称	single	multi	many	real	binary	permutation	large	constrained	expensive	multimodal	sparse	preference
329	VNT3	Benchmark MOP proposed by Viennet				\checkmark								
330	VNT4	Benchmark MOP proposed by Viennet				\checkmark								
331	WFG1	Benchmark MOP proposed by Walking Fish Group		\checkmark	\checkmark	\checkmark			\checkmark		\checkmark			
332	WFG2	Benchmark MOP proposed by Walking Fish Group		\checkmark	\checkmark	\checkmark			\checkmark		\checkmark			
333	WFG3	Benchmark MOP proposed by Walking Fish Group		\checkmark	\checkmark	\checkmark			\checkmark		\checkmark			
334	WFG4	Benchmark MOP proposed by Walking Fish Group		$\sqrt{}$	$\sqrt{}$	V			V		V			
335	WFG5	Benchmark MOP proposed by Walking Fish Group		\checkmark	\checkmark	\checkmark			\checkmark		\checkmark			
336	WFG6	Benchmark MOP proposed by Walking Fish Group		\checkmark	\checkmark	$\sqrt{}$			\checkmark		$\sqrt{}$			
337	WFG7	Benchmark MOP proposed by Walking Fish Group		\checkmark	\checkmark	$\sqrt{}$			\checkmark		$\sqrt{}$			
338	WFG8	Benchmark MOP proposed by Walking Fish Group		\checkmark	\checkmark	$\sqrt{}$			\checkmark		$\sqrt{}$			
339	WFG9	Benchmark MOP proposed by Walking Fish Group		\checkmark	\checkmark	$\sqrt{}$			\checkmark		$\sqrt{}$			
340	ZDT1	Benchmark MOP proposed by Zitzler, Deb, and Thiele		\checkmark		$\sqrt{}$			\checkmark		$\sqrt{}$			
341	ZDT2	Benchmark MOP proposed by Zitzler, Deb, and Thiele		\checkmark		$\sqrt{}$			\checkmark		$\sqrt{}$			
342	ZDT3	Benchmark MOP proposed by Zitzler, Deb, and Thiele		\checkmark		$\sqrt{}$			\checkmark		$\sqrt{}$			
343	ZDT4	Benchmark MOP proposed by Zitzler, Deb, and Thiele		\checkmark		$\sqrt{}$			\checkmark		$\sqrt{}$			
344	ZDT5	Benchmark MOP proposed by Zitzler, Deb, and Thiele		\checkmark			V		√		V			
345	ZDT6	Benchmark MOP proposed by Zitzler, Deb, and Thiele		$\sqrt{}$		$\sqrt{}$			$\sqrt{}$		$\sqrt{}$			