Part III: Survival Analysis

Outline

- ▶ Basic concepts (time-to-event, censoring, hazard)
- Kaplan-Meier curve and survival function
- Cox proportional hazards model
- Application examples

Survival Analysis

- Survival analysis is a method for analyzing survival data or failure (death) time data, that is time-to-event data.
- It arises in a number of applied fields, such as medicine, biology, public health, epidemiology, engineering, economics, and demography.
- ► The time-to-event (or failure time) variable *T* is a non-negative random variable.
- ▶ *T* is the time from a well-defined time origin to a failure event.

Examples

- ▶ Times to death of patients with certain disease
- Remission duration of certain disease in clinical trials
- Incubation times of certain disease, such as AIDS
- ► Failure times of certain manufactured products
- ▶ Life times of elderly in particular social programs
- ▶ Patience time of call center customers
- **.**..

Incomplete Observations

Times-to-event are not always completely observable. These times are subject to censoring and truncation. For a censored or a truncated time-to-event, only partial information is available.

- Censoring: When an observation is incomplete due to some random cause.
- ▶ Truncation: When the incomplete nature of the observation is due to a systematic selection process inherent to the study design.

Censoring

- ▶ Right censoring: some individuals do not fail or lost-to-follow-up during the observed period; instead of knowing the failure time *T*, all we know about these individuals is that their time-to-event exceeds some observed value *Y* (type I, type II, random, etc).
- ▶ Left censoring: we only know the event happens before an observed time
 - e.g., time to first use of marijuana: used it but forgot when
- ▶ Interval censoring: when time-to-event is only known to fall within an interval
 - e.g., in clinical trials where patients have periodic follow-ups

Right Censoring

- events occur after the end of study
- subjects drop out of study
- subjects are lost to follow-up during the study period

Right Censoring

- events occur after the end of study
- subjects drop out of study
- subjects are lost to follow-up during the study period

Right Censoring

- events occur after the end of study
- subjects drop out of study
- subjects are lost to follow-up during the study period

Example: A set of observed survival data is

i	Уi	δ_i
1	25	1
2	18	0
3	17	1
4	22	0
5	27	1

where y_i is the observed time, and δ_i is the indicator of event. The data can also be presented as

Why Survival Analysis

- A special course of difficulty in the analysis of survival data is the possibility that some individuals may not be observed for the full time to failure.
- ▶ The goal of survival analysis is to make inferences about the underlying survival time random variable T based on the observed, incomplete data $(y_1, \delta_1), (y_2, \delta_2), \ldots, (y_n, \delta_n)$.
- ► Special methods are needed to characterize the distribution of the time-to-event variable, and its association with other factors.

In survival analysis, the time origin and end event must be clearly defined based on the research question of interest. For example,

▶ If we want to study the disease-specific survival (DSS) after a surgical procedure, the time origin is the surgery completion time, and the end event is disease-specific death.

Basic Functions and Quantities

Let T denote the time-to-event random variable. Assume T is continuous for now.

- Cumulative distribution function
- Survival function
- ► Hazard function
- Cumulative hazard function

Survival Function

Cumulative distribution function of T is defined as

$$F(t) = \mathbb{P}(T \le t) = \int_0^t f(x) dx$$

Survival function is defined as

$$S(t) = \mathbb{P}(T > t) = 1 - F(t)$$

- ▶ S(t) = 1 if $t \le 0$; $S(\infty) = 0$.
- ▶ S(t) is continuous and decreasing (for continuous T).
- ▶ S(t) provides useful summary information, such as median survival time $(S^{-1}(0.5))$, 5-year survival rate (S(5)), etc.

Parametric Survival Functions

Examples of parametric distribution families for survival analysis:

- Exponential distribution:
 - $f(x) = \lambda e^{-\lambda x}$
 - $> S(x) = e^{-\lambda x}$
- Weibull distribution:
 - $f(x) = \lambda \alpha x^{\alpha 1} e^{-\lambda x^{\alpha}}$
 - $S(x) = e^{-\lambda x^{\alpha}}$
- ▶ Log-normal, Gamma, Pareto, etc

Five Examples of Survival Curves

Hazard Rate Function

Hazard rate captures the instantaneous failure rate at time t, given survival up to time t. Hazard rate function is defined as

$$h(t) = \lim_{\Delta t \to 0} \frac{\mathbb{P}(t \leq T < t + \Delta t | T \geq t)}{\Delta t}$$

Cumulative hazard function is defined as

$$H(t) = \int_0^t h(x) dx$$

Characteristics of h(t):

- ▶ $0 \le h(t) < \infty$
- ▶ $h(t) \cdot \Delta t$ is approximately the proportion of individuals experiencing failure in $[t, t + \Delta t)$ among those surviving up to t.

By definition, $f(t) = \lim_{\Delta t \to 0} \mathbb{P}(t \leq T < t + \Delta t)/\Delta t$. Thus, we have

$$h(t) = \frac{f(t)}{S(t)} = -\frac{\partial \log(S(t))}{\partial t}$$

and

$$S(t) = \exp\{-H(t)\}\$$

- ► This is a well know relation among the density, hazard and survival functions.
- ► The distribution of T can be fully defined by a hazard function!

Parametric Hazard Functions

- ▶ Exponential distribution: $h(x) = \lambda$ (constant!)
- ▶ Weibull distribution: $h(x) = \lambda \alpha x^{\alpha-1}$

