Teorie polí

podpole

Buď (K, +, 0, -, *, 1) pole typu (2, 0, 1, 2, 0) a (T, +, 0, -, *, 1) podalgebra (tj. podokruh se stejným jednotkovým prvkem). Je-li (T, +, 0, -, *, 1) samotná polem, pak se nazývá podpole pole (K, +, 0, -, *, 1). Platí: T je podpole \iff

- $x, y \in T \Rightarrow x + y \in T$
- 0 ∈ T
- $x \in T \Rightarrow -x \in T$
- $x, y \in T \Rightarrow x * y \in T$
- 1 ∈ T
- $x \in T, x \neq 0 \Rightarrow x^{-1} \in T$

minimální pole

Pole (K, +, 0, -, *, 1) se nazývá minimální, pokud nemá žádná jiná podpole než sebe sama.

Každé pole má vždy jediné podpole, které je minimální.

rozšíření pole

Buďte K,L pole a K podpole pole L. Potom se L nazývá nadpole nebo rozšíření pole K.

Je-li L nadpole pole K a $S\subset L$, pak definujeme rozšíření K(S) pole K takto:

• $K(S) := \bigcap \{E \subseteq L | E$ je podpole pole L, které obsahuje $K \cup S\}$.

Je-li $S=u_1,...,u_r$ konečné, pak píšeme $K(S)=:K(u_1,...,u_r)$. Je-li speciálně $S=\alpha$ jednoprvkové, pak píšeme $K(S)=:K(\alpha)$ (jednoduché rozšíření pole K).

kořenové pole

Je dáno pole K, $f(x) \in K[x]$, $f(x) \neq 0$, $grad\ f(x) = n$. Je třeba najít rozšíření L pole K, ve kterém má f(x) právě n kořenů (včetně násobností), tj. ve kterém platí $f(x) = c(x - \alpha_1)...(x - \alpha_n)$, kde $\alpha_i \in L$. Jinými slovy, f(x) lze rozložit na lineární činitele. Takové pole L se nazývá kořenové pole polynomu f(x) vzhledem ke K.

konečné pole

Buď K konečné pole. Potom platí $char K=p\in P$ a minimální podpole P pole K je izomorfní se Z_p . Protože K je vektorový prostor nad podpolem P, existuje báze $a_1,...,a_n$ vektorového prostoru K nad P $(K:P]=n\in N$). Proto platí $K=\lambda_1a_1+...+\lambda_na_n|\lambda_i\in P$ a $|K|=p^n$, neboť každý koeficient λ_i ize zvolit |P|=p způsoby.

Stránka byla naposledy editována 25. 5. 2011 v 22:07.

1 z 1 29.5.2011 17:03