賽局論 HW6

許博翔

December 7, 2023

Problem 1.

(a) Same as the reason in the powerpoint, when Alice holds A, she will always raise; when Bob holds A, he will always call; when Bob holds J, he will always fold. Suppose that the probability that Alice raises when holding K, Q are p, q, respectively, and the probability that Bob calls when holding K, Q are r, s, respectively.

When holding Q, the expected value that Bob calls is -2, and that he folds is -1, since when he needs to decide whether calling or folding, Alice won't hold J.

.: Bob will always fold when holding Q, s=0.

When holding K, the expected value that Alice raises is $\frac{1}{3}(-2) + \frac{1}{3}(1) + \frac{1}{3}(1) = 0$, and that she checks is $\frac{1}{3}(-1) + \frac{1}{3}(1) + \frac{1}{3}(1) = \frac{1}{3}$.

... Alice will always checks when holding $K,\,p=0.$

When holding Q, the expected value that Alice raises is $\frac{1}{3}(-2) + \frac{1}{3}(r(-2) + (1-r)(1)) + \frac{1}{3}(1) = -\frac{1}{3} + \frac{1}{3}(1-3r) = -r$, and that she checks is $\frac{1}{3}(-1) + \frac{1}{3}(-1) + \frac{1}{3}(1) = -\frac{1}{3}$.

Alice will indifferent between these two actions iff $-r = -\frac{1}{3} \iff r = \frac{1}{3}$. When holding K, the expected value that Bob calls is $\frac{1}{1+q}(-2) + \frac{q}{1+q}(2)$, and that he folds is -1.

Bob will indifferent between these two actions iff $\frac{1}{1+q}(-2) + \frac{q}{1+q}(2) = -1 \iff \frac{q-1}{q+1} = -\frac{1}{2} \iff q = \frac{1}{3}.$

... there is a Nash equilibrium when Alice uses the mixed strategy $(1, 0, \frac{1}{3}, 0)$ and Bob uses the mixed strategy $(1, \frac{1}{3}, 0, 0)$.

(b) Let a_1, a_2, a_3, a_4 denote the probability that Alice raises when holding A, K, Q, J, respectively, and b_1, b_2, b_3, b_4 denote the probability that Bob calls when holding A, K, Q, J, respectively.

If there is a Nash equilibrium with $a_4 = 0$, then there are two cases.

Case 1: $a_1 < 1$.

When holding A, the expected value that Alice raises is $\frac{1}{3}(b_2(2) + (1 - b_2)(1)) + \frac{1}{3}(b_3(2) + (1 - b_3)(1)) + \frac{1}{3}(b_4(2) + (1 - b_4)(1)) = \frac{1}{3}(b_2 + b_3 + b_4) + 1 \ge 1 = \text{the}$ expected value that Alice checks, the equation holds $\iff b_2 = b_3 = b_4 = 0$. In this case, since $\frac{1}{2}(b_2 + b_3 + b_4) + 1 \le 1$ must holds, there must be $b_2 = b_3 = b_4 = 0$.

In this case, since $\frac{1}{3}(b_2 + b_3 + b_4) + 1 \le 1$ must holds, there must be $b_2 = b_3 = b_4 = 0$.

When holding J, the expected value that Alice raises is $\frac{1}{3}(b_1(-2)+(1-b_1)(1))+\frac{1}{3}(b_2(-2)+(1-b_2)(1))+\frac{1}{3}(b_3(-2)+(1-b_3)(1)) \stackrel{::b_2=b_3=0}{=} \frac{1}{3}(1-3b_1)+\frac{2}{3}$, and the expected value that Alice checks is -1.

 $\therefore \frac{1}{3}(1-3b_1) + \frac{2}{3} \ge \frac{1}{3}(1-3\cdot 1) + \frac{2}{3} = 0 > -1, a_4 = 1, \text{ which gets a contradiction.}$

Case 2: $a_1 = 1$.

When holding Q, the expected value that Bob calls is -2, and that he folds is -1, since when he needs to decide whether calling or folding, Alice won't hold J.

... Bob will always fold when holding Q, $b_3 = 0$.

When holding J, the expected value that Alice raises is $\frac{1}{3}(b_1(-2)+(1-b_1)(1))+\frac{1}{3}(b_2(-2)+(1-b_2)(1))+\frac{1}{3}(b_3(-2)+(1-b_3)(1)) \stackrel{::b_3=0}{=} \frac{1}{3}(2-3b_1-3b_2)+\frac{1}{3}$, and the expected value that Alice checks is -1.

 $\therefore \frac{1}{3}(2-3b_1-3b_2) + \frac{1}{3} = 1 - b_1 - b_2 \ge -1, \text{ the equation holds } \iff b_1 = b_2 = 1.$ $\therefore a_4 = 0, \text{ the equation must hold.}$

 $\Rightarrow b_1 = b_2 = 1.$

When holding J, the expected value that Bob calls is -2, and that he folds is -1.

... Bob will always fold when holding J, $b_4 = 0$.

When holding Q, the expected value that Alice raises is $\frac{1}{3}(-2) + \frac{1}{3}(-2) + \frac{1}{3}(1) = -1$, and that she checks is $\frac{1}{3}(-1) + \frac{1}{3}(-1) + \frac{1}{3}(1) = -\frac{1}{3}$.

Author: 許博翔 2

Since $-1 < -\frac{1}{2}$, Alice will always check when holding Q, $a_3 = 0$.

When holding K, the expected value that Bob calls is -2, that he folds is -1, since when he needs to decide whether calling or folding, Alice won't hold J or Q.

 \Rightarrow Bob will fold when holding K, contradicts to that $b_2 = 1$.

 \therefore there is no Nash equilibrium with $a_4 = 0$.

Problem 2 (21.11.13). Let B(v) denote the bidding function with respect to the value v.

The expected value a buyer gets is P(B(v))(v - B(v)) + (1 - P(B(v)))(-B(v)) =P(B(v))v - B(v), where $P(p) := \mathbb{P}\{$ this buyer wins | the bid $= p\}$.

B(v) is increasing and every player use it, $P(B(v)) = \mathbb{P}\{v > w \text{ for all the other players' values } w\} = \mathbb{P}\{v > w \text{ for all the other players' values } w\}$ n^{n-1}

$$\Rightarrow P(p) = B^{-1}(p)^{n-1}.$$

 \Rightarrow the expected value is $vC(B(v))^{n-1} - B(v)$.

Let
$$\beta = B(v)$$
, and C be the inverse of B .
Let
$$\frac{d(vC(B(v))^{n-1} - B(v))}{d\beta} = \frac{d((n-1)vC(\beta)^{n-2} - \beta)}{d\beta} = 0.$$

$$\Rightarrow (n-1)vC(\beta)^{n-2}C'(\beta) - 1 = 0.$$

$$\Rightarrow (n-1)v^{n-1}\frac{d(C(\beta))}{d\beta} = 1.$$

$$\Rightarrow (n-1)v^{n-1}\frac{dv}{dB(v)} = 1.$$

$$\Rightarrow (n-1)v^{n-1}dv = dB(v).$$

$$\Rightarrow (n-1)v^{n-1}dv = dB(v).$$

$$\Rightarrow B(v) = \int (n-1)v^{n-1}dv = \frac{n-1}{n}v^n + C.$$

$$\therefore B(0) = 0$$
, there is $B(v) = \frac{n-1}{n}v^n$.

Problem 3. Let $\frac{d(90 - q_i - q_j)q_i}{dq_i} = 0.$

$$\Rightarrow -q_i + 90 - q_i - q_j = 0.$$

$$\Rightarrow q_i = \frac{90 - q_j}{2}$$

$$\Rightarrow q_i = \frac{90 - q_j}{2}.$$

$$\therefore q_1 = \frac{90 - q_2}{2}, q_2 = \frac{90 - q_1}{2}.$$

 $\Rightarrow q_1 = q_2 = 30$ is the Cournot equilibrium.

Let q_{21}, q_{22} denote the quantity of firm 2 when the unit cost is 10, 20,

Author: 許博翔 3 respectively.

Similar to the above problem, $q_{21} = \frac{90 - q_1}{2}$, $q_{22} = \frac{80 - q_1}{2}$ at Cournot equilibrium. Firm 1 wants to find $\max_{q_1} \frac{1}{2} q_1 (90 - q_1 - q_{21}) + \frac{1}{2} q_1 (90 - q_1 - q_{22}) = \max_{q_1} 90 q_1 - q_1^2 - q_1 (\frac{85 - q_1}{2}) = \max_{q_1} -\frac{q_1^2}{2} + \frac{95}{2} q_1.$ Let $\frac{d(-\frac{q_1^2}{2} + \frac{95}{2} q_1)}{dq_1} = 0$. $\Rightarrow -q_1 + \frac{95}{2} = 0.$ $\Rightarrow q_1 = \frac{95}{2}.$

Author: 許博翔 4