

Institut Mines-Télécom

Électronique des Systèmes d'acquisition ELEC101

Chadi Jabbour

Échantillonnage et TZ

Signaux analogiques continus et discrets

Deux grandes classes de signaux analogiques sont distinguées :

- ▶ Signaux à temps continu, noté t, fonction x(t);
- ▶ Signaux à temps discret, noté k, séquence x[k].

Signal continu
$$x(t)$$
 Signal échantillonné $x(k)$ Signal échantillonné $x[k] = x^*(nT_e)$ Période d'échantillonnage

Systèmes Discrets

- ► Caractérisé par une relation entrée sortie y[n] = f(x[n])
- Les valeurs en entrée et en sortie ne sont connues qu'à des instants discrets
- L'intervalle de temps qui sépare deux de ces instants est la période d'échantillonnage notée T_e ou T_s en anglais

Théorème de Nyquist-Shannon

L'échantillonnage sans perte d'un signal exige une fréquence d'échantillonnage supérieure au double de la bande passante de ce signal.

Systèmes analogiques: x et y échantillonnés

Ce filtre réalise la différence entre 2 échantillons consécutifs d'où son nom de dérivateur.

Le comportement de ce type de système peut être modélisé par une 'équation aux différences finies' d'ordre n à coefficient α_i et β_i réels et constants.

$$y[k] = -\sum_{i=1}^{n} \beta_i y[k-i] + \sum_{i=0}^{m} \alpha_j x[k-j]$$
 m et n sont finis.

Systèmes analogiques: x échantillonné et y continu

Interpolation d'ordre 0 ou blocage

La valeur de l'entrée est bloquée sur une période d'échantillonnage

L'Échantillonnage: le Peigne de Dirac

Échantillonnage

L'échantillonnage peut être modélisé par une multiplication (temporelle) du signal analogique avec un peigne de Dirac

$$x^*(nT_e) = x(t) \cdot \bigsqcup_{T_e}(t) = x(t) \cdot \sum_{n=-\infty}^{+\infty} \delta(t - nT_e)$$

$$x^*(nT_e) = \sum_{n=-\infty}^{+\infty} x(nT_e)\delta(t - nT_e)$$

Avril 2020

Exemple fonction sinusoïdale

Soit $x_1(t)=\cos(2\pi f_1 t)$ et $x_2(t)=\cos(2\pi f_2 t)$ 2 signaux qu'on échantillonnera à une fréquence $f_e=\frac{1}{T_e}$. On prendra $f_2=f_e+f_1$

$$x_1^*(t) = \cos(2\pi f_1 t) \sum_{n=-\infty}^{+\infty} \delta(t - nT_e) = \sum_{n=-\infty}^{+\infty} \cos(2\pi f_1 nT_e) \delta(t - nT_e)$$

$$x_2^*(t) = \sum_{n=-\infty}^{+\infty} \cos(2\pi f_2 n T_e) \delta(t - n T_e)$$

$$= \sum_{n=-\infty}^{+\infty} \cos(2\pi f_e n T_e) + 2\pi f_1 n T_e) \delta(t - n T_e) = x_1^*(t)$$

Exemple Repliement du signal

Exemple Repliement du signal

Exemple Repliement du signal

Impact fréquentiel de l'échantillonnage

On peut démontrer en utilisant les séries de Fourier que

$$extstyle \sqcup_{T_e}(t) = f_e \sum_{n=-\infty}^{+\infty} e^{jn2\pi f_e t}$$

La transformée de Fourier de $\coprod_{T_e}(t)$ est donc donnée par

$$TF\{\coprod_{T_e}(t)\} = \coprod(f) = \int\limits_{-\infty}^{+\infty} \coprod_{T_e}(t)e^{-j2\pi ft}dt = f_e \sum_{n=-\infty}^{+\infty} \delta(f-nfe)$$

Impact fréquentiel de l'échantillonnage

L'échantillonnage est modélisé par une multiplication par un peigne de Dirac dans le domaine temporel donc c'est une convolution dans le domaine fréquentiel

$$X^*(f) = X(f) * \coprod (f) = X(f) * f_e \sum_{n=-\infty}^{+\infty} \delta(f - nfe)$$

$$X^*(f) = f_e \sum_{k=-\infty}^{+\infty} \sum_{n=-\infty}^{+\infty} X(k)\delta(f - nfe - k) = f_e \sum_{n=-\infty}^{+\infty} X(f - nf_e)$$

Le spectre de $X^*(f)$ est infini et est périodisé avec une période f_e

Échantillonnage

11/29

Échantillonnage

11/29

Comparaison 2 valeurs de f_e

$$X^*(f) = f_e \sum_{n=-\infty}^{+\infty} X(f - nf_e)$$

Premier cas: échantillonnage à $f_{\rm e}=f_{\rm 1}$

Comparaison 2 valeurs de f_e

$$X^*(f) = f_e \sum_{n=-\infty}^{+\infty} X(f - nf_e)$$

Deuxième cas: échantillonnage à $f_e = 2 \times f_1$

Exercice 1: Signal ECG

- 1. Sachant que la phase du signal ECG est une fonction impaire et que son module, comme illustré, est une fonction paire, quelle conclusion peut-on tirer sur le signal ECG?
- 2. Tracer le spectre du signal pour une fréquence d'échantillonnage f_e de 70 Hz.
- 3. Que faut-il faire pour éviter d'avoir le problème du repliement?

Transformée en \mathcal{Z}

Transformée en ${\mathcal Z}$

$$TZ\{x[n]\} = X(Z) = \sum_{n=-\infty}^{\infty} x[n]Z^{-n}$$

- ▶ La transformée en Z est l'équivalent dans le domaine discret de la transformée de Laplace dans le domaine continu.
- ► La TZ est l'outil mathématique adapté pour concevoir et analyser les fonctions discrètes (analogiques et numériques).

Propriétés de la TZ

La TZ est linéaire

$$TZ\{ax_1[n] + bx_2[n]\} = aTZ\{x_1[n]\} + bTZ\{x_2[n]\}$$

► La TZ d'un signal retardé

$$TZ\{x[n-k]\} = \mathcal{Z}^{-k}X(\mathcal{Z})$$

▶ La TZ de la sortie d'un filtre discret h[n]

$$Y(\mathcal{Z}) = TZ\{x[n] * h[n]\} = X(\mathcal{Z}) \cdot H(\mathcal{Z})$$

Exercice 2: Échantillonnage et TZ

- 1. Écrire l'expression du signal $x^*(t)$ en fonction de la valeur des échantillons de x(t) et du peigne de Dirac.
- 2. Trouver la transformation de Laplace, puis la transformation en \mathcal{Z} de $x^*(t)$.
- 3. En déduire la relation entre \mathcal{Z} et p et les conditions de stabilité du système en temps discret.

Stabilité équivalence temps continu- discret

Un système de fonction de transfert H(p) est stable si les pôles sont à partie réelle négative

$$p = \sigma + j\omega \Longrightarrow \mathcal{Z} = e^{(\sigma + j\omega)Te} = e^{\sigma Te} \cdot e^{j\omega Te}$$

$$\sigma < 0 \Longrightarrow \mid e^{\rho Te} \mid < 1$$

Stabilité dans le domaine temporel

Un filtre h(n) est stable au sens EBSB si et seulement si

$$\sum_{n=-\infty}^{\infty} |h(n)| < \infty$$

Stabilité dans le domaine des $\mathcal Z$

Un filtre $H(\mathcal{Z})$ est stable EBSB si et seulement tous ses pôles sont à l'intérieur du cercle unité

Stablilité au sens large

Si un système a des pôles d'ordre 1 sur le cercle unité, il est stable au sens large

Stabilité et pôles : illustrations

Systèmes continus à systèmes discrets

Temps continu	Temps Discret
h(t) réponse impulsionnelle	h[n] réponse impulsionnelle discrète
Réponse temporelle	Réponse temporelle
y(t) = x(t) * h(t)	y[n] = x[n] * h[n]
Fonction de transfert en p	Fonction de transfert en ${\mathcal Z}$
H(p)	$H(\mathcal{Z})_{\mathcal{Z}=e^{p\cdot Te}}$
Domaine complexe	Domaine complexe
$Y(p) = X(p) \cdot H(p)$	$Y(\mathcal{Z}) = X(\mathcal{Z}) \cdot H(\mathcal{Z})$
Transformée de Fourier	TFTD
$H(p)_{p=i\omega}$	$H(\mathcal{Z})_{\mathcal{Z}=ej\omega\cdot Te}$
$P = J\omega$	1 (Z=e) = 10

Exercice 3: Échantillonnage et blocage

- 1. Exprimer $x_{EB}(t)$ en fonction des échantillons $x(nT_e)$ et de la fonction échelon u(t)
- 2. Calculer la transformation de Laplace de $x_{EB}(t)$: $X_{EB}(p)$. Faire apparaître dans cette expression la transformation de Laplace de $x^*(t)$: $X^*(p)$. En déduire la fonction de transfert d'un bloqueur, notée $T_B(p)$.
- 3. Représenter le module de $T_{B}\left(j\omega\right)$ en fonction de la fréquence.