Université de Bretagne-Sud

STA 2111 - Statistique Bayésienne

Travaux dirigés 2

Exercice 1 – Soit X v.a. de loi binomiale de paramètres (n, p). On considère une loi a priori bêta de paramètres (α, β) sur p.

- 1. Trouver distributions a posteriori et marginale. En déduire l'estimateur de Bayes $\delta^{\pi}(x)$ sous l'hypothèse d'un coût quadratique.
- 2. Sous quelles conditions sur (α, β) , $\delta^{\pi}(x)$ est-il sans biais?
- 3. Si la loi a priori est $\pi(p) = [p(1-p)]^{-1} \mathbb{I}_{]0,1[}(p)$, donner l'estimateur de Bayes sous l'hypothèse d'un coût quadratique.
- 4. Donner l'estimateur de Bayes sous le coût :

$$L(p, \delta(x)) = \frac{(\delta(x) - p)^2}{p(1 - p)}$$

Exercice 2 – Soit $(X_1, X_2, ..., X_n)$, un *n*-échantillon d'une loi normale de paramètres $(\mu, 1/\theta)$. On suppose que μ est connu et on cherche à estimer θ . On considère comme loi a priori sur ce dernier paramètre une loi Gamma de paramètres (α, β) :

$$\pi(\theta) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} \theta^{\alpha-1} \exp\{-\beta\theta\}, \quad \alpha, \beta > 0.$$

- 1. Calculer l'estimateur du maximum de vraisemblance (emv) de θ .
- 2. Caculer la loi a posteriori de θ . Que peut-on dire de $\pi(\theta)$?

 Donner l'estimateur de Bayes de θ pour un coût quadratique.
- 3. Comparer l'emv et l'estimateur de Bayes.

Exercice 3 – Montrer qu'un estimateur de Bayes associé à un coût quadratique et à une loi a priori propre ne peut être sans biais.

Exercice 4 – On considère le modèle bayésien $(\mathcal{X}, \mathcal{A}, P_{\theta}, \pi(\theta))$.

Soit $f(x|\theta)$ la densité de probabilité de la loi P_{θ} de X.

Soit $\mu(\theta)$ et $\sigma^2(\theta)$ respectivement l'espérance et la variance de X suivant $f(\cdot|\theta)$.

On note f(x) la loi marginale de X, c'est-à-dire $\int_{\Theta} f(x|\theta)\pi(\theta)d\theta$.

On note μ_f et σ_f , respectivement l'espérance et la variance de X relativement à f(x). On supposera que ces quantités existent.

- 1. Montrer que $\mu_f = \mathbb{E}[\mu(\theta)]$ et $\sigma_f^2 = \mathbb{E}[\sigma^2(\theta)] + \mathbb{E}[(\mu(\theta) \mu_f)^2]$.
- 2. Soit μ_{π} et σ_{π}^2 respectivement la moyenne et la variance de la loi a priori. Déduire de la question précédente que si $\mu(\theta) = \theta$ alors $\mu_{\pi} = \mu_f$ et si $\sigma^2(\theta) = \sigma^2$ alors $\sigma_{\pi}^2 = \sigma_f^2 - \sigma^2$, (σ^2 est une constante ne dépendant pas de θ).
- 3. Ces résultats peuvent permettre de donner des valeurs aux paramètres de la loi a priori. Considérons une loi exponentielle :

$$f(x|\theta) = \frac{1}{\theta} \exp\left\{-\frac{x}{\theta}\right\}, \quad x \in \mathbb{R}^+, \quad \theta > 0.$$

On cherche à déterminer une loi a priori dans la famille des lois Gamma-Inverse : $\mathcal{IG}(\alpha_{\pi}, \beta_{\pi})$.

Des observations du passé (o_1, o_2, \dots, o_n) permettent d'estimer empiriquement μ_f et σ_f^2 .

On a:

$$\mu_f = \frac{1}{n} \sum_{i=1}^n o_i = \bar{o}_n \quad \text{et} \quad \sigma_f^2 = \hat{\sigma}_n^2 = \frac{1}{n} \sum_{i=1}^n (o_i - \bar{o}_n)^2$$

Exprimer α_{π} et β_{π} en fonction de \bar{o}_n et $\hat{\sigma}_n^2$.

Exercice 5 – Soit X une variable aléatoire de loi binomiale de paramètre (n, θ) .

- 1. En appliquant la règle de Jeffreys, calculer et identifier la loi a priori non informative. Que peut-on dire de cette loi?
- 2. Calculer un estimateur de Bayes de θ sous l'hypothèse d'un coût quadratique.
- 3. On considère maintenant que la loi de X est une loi binomiale négative de paramètre (n, θ) .

$$P(X = x \mid \theta) = C_{n+x-1}^x \theta^n (1 - \theta)^x, \ x \in \mathbb{N}.$$

Répondre aux précédentes questions dans ce cas. Que peut-on dire de la loi obtenue?

M1 ISD

Exercice 6 – On considère la loi binomiale négative de paramètres (n, p) dont on rappelle la définition :

$$P(X = x|p) = C_{n+x-1}^{n-1} p^x (1-p)^n , \quad 0$$

- 1. Calculer E(X), l'espérance mathématique de X.
- 2. On suppose n fixé. En utilisant la règle de Jeffreys, construire une loi a priori non informative pour p.
- 3. Soit $(x_1, x_2, ..., x_N)$ un N-échantillon de la loi binomiale négative de paramètres (n, p). Calculer la loi a posteriori de p pour la loi a priori obtenue cidessus.
- 4. Donner l'estimateur de Bayes de p pour un coût quadratique.

Exercice 7 -

1. On considère la loi multinomiale : $\mathcal{M}(N; p_1, p_2, \dots, p_n)$

$$\Pr(X_1 = x_1, X_2 = x_2, \dots, X_n = x_n) = \frac{N!}{x_1! x_2! \dots x_{n+1}!} p_1^{x_1} p_2^{x_2} \dots p_{n+1}^{x_{n+1}}$$

avec
$$0 \le p_i \le 1$$
; $i = 1, \dots, n+1, \sum_{j=1}^{n+1} p_j = 1$ et $\sum_{j=1}^{n+1} x_j = N$.

Montrer que cette loi appartient à la famille exponentielle.

- 2. En appliquant le théorème du cours qui donne l'expression d'une famille de lois conjuguées pour la famille exponentielle, donner l'expression d'une famille de lois conjuguées pour la loi multinomiale.
- 3. On considère une loi a priori de Dirichlet de paramètres $(\nu_1, \nu_2, \dots, \nu_n; \nu_{n+1})$ sur le paramètre (p_1, p_2, \dots, p_n) .

$$\pi(p_1, p_2, \cdots, p_k) = \frac{\Gamma(\nu)}{\Gamma(\nu_1)\Gamma(\nu_2)\cdots\Gamma(\nu_{k+1})} p_1^{\nu_1-1} p_2^{\nu_2-1}\cdots p_k^{\nu_n-1} (1 - \sum_{j=1}^n p_j)^{\nu_{n+1}-1}$$

avec
$$\nu = \sum_{j=1}^{n+1} \nu_j$$
.

Vérifier que la loi de Dirichlet appartient à la famille des lois conjuguées.

Exprimer et identifier la loi a posteriori.

M1 ISD