Lecture 14: Sensors and Actuators

Seyed-Hosein Attarzadeh-Niaki

Some Slides from Edward Lee and Peter Marwedel

Embedded Real-Time Systems

1

Review

- IO Hardware and Mechanisms
 - Connecting Cyber and physical worlds: practical issues
 - Interrupts and concurrency
 - Modeling an interrupt controller

Embedded Real-Time Systems

What is A Sensor? What is An Actuator?

- A sensor is a device that measures a physical quantity
 - Input / "Read from physical world"
- Many physical effects used for constructing sensors
 - law of induction (gen. of voltages in a magnetic field)
 - light-electric effects

- An actuator is a device that modifies a physical quantity
 - Output / "Write to physical world"
- Huge variety of actuators and output devices

Embedded Real-Time Systems

Safe Cars

This film is for demonstrative purposes and intended to provide the viewer with a basic understanding regarding the functionality of the vehicle's safety technology Pedestrian and Cyclist detection with full Auto brake.

Embedded Real-Time Systems

7

Sensor-Rich Cars GPS (global positioning system) combined with readings from tachometers, Lidar (light detection and ranging) monitor the vehicle's surroundings (road, vehicles, pedestrians, etc.) Cost: \$90-8,000 altimeters and gyroscopes to provide the most accurate positioning Cost: \$80-\$6,000 Video cameras monitor the vehicle's surroundings (road, vehicles, pedestrians, etc.) and read traffic lights Ultrasonic sensors to measure the position of objects very Cost (Mono): \$125-\$150 Cost (Stereo): \$150-\$200 close to the vehicle Cost: \$15-\$20 Odometry sensors to complement and improve GPS information Cost: \$80-\$120 Radar sensors monitor the Central computer analyzes all sensor input, applies rules of the road and operates the steering, vehicle's surroundings (road, vehicles, pedestrians, etc.) Cost (Long Range): \$125-\$150 Cost (Short Range): \$50-\$100 accelerator and brakes Cost: ~50-200% of sensor costs Source: Wired Magazine Embedded Real-Time Systems 8

Example: Acceleration Sensor

Courtesy & ©: S. Bütgenbach, TU Braunschweig

The most common design measures the distance Accelerometers between a plate fixed to the platform and one attached by a spring and damper. The measurement is typically done by measuring capacitance.

Usages:

- Navigation
- Orientation
- Drop detection
- **Image** stabilization
- Airbag systems

Embedded Real-Time Systems

Spring-Mass-Damper Accelerometer

By Newton's second law, F=ma.

For example, F could be the Earth's gravitational force.

The force is balanced by the restoring force of the spring.

Measuring tilt

Component of gravitational force in the direction of the accelerometer axis must equal the spring force:

$$Mg\sin(\theta) = k(p - x(t))$$

Given a measurement of x, you can solve for θ , up to an ambiguity of π .

Embedded Real-Time Systems

Difficulties Using Accelerometers

- Separating tilt from acceleration
- Vibration
- Nonlinearities in the spring or damper
- Integrating twice to get position: Drift

$$p(t) = p(0) + \int_0^t v(\tau) d\tau, \qquad \text{Position is the integral of velocity,} \\ \text{which is the integral of acceleratio} \\ \text{Bias in the measurement of}$$

$$v(t) = v(0) + \int_0^t x(\tau)d\tau.$$

which is the integral of acceleration.

Bias in the measurement of acceleration causes position estimate error to increase quadratically.

Inertial Navigation Systems

Combinations of:

Dead reckoning plus GPS.

- GPS (for initialization and periodic correction).
- Three axis gyroscope measures orientation.
- Three axis accelerometer, double integrated for position after correction for orientation.

Typical drift for systems used in aircraft have to be:

- 0.6 nautical miles per hour
- tenths of a degree per hour

Good enough? It depends on the application!

Embedded Real-Time Systems

15

Example: CMOS image sensors

Based on standard production process for CMOS chips, allows integration with other components.

Comparison CCD/CMOS sensors

Property	CCD	смоѕ		
Technology optimized for	Optics	VLSI technology		
Technology	Special	Standard		
Smart sensors	No, no logic on chip	Logic elements on chip		
Access	Serial	Random		
Size	Limited	Can be large		
Power consumption	Low	Larger		
Video mode	Possibly too slow	ok		
Applications	Situation is changing over the years			

See also B. Diericks: CMOS image sensor concepts. Photonics West 2000 Short course (Web)

Example: Biometrical Sensors

e.g.: Fingerprint sensor

© P. Marwedel, 2010

Sensor Calibration (Same for Actuators)

- Assume a physical quantity x(t) is reported by the sensor to have value f(x(t))
- f is linear if there exists a proportionality constant a∈R such that

$$f(x(t)) = ax(t)$$

 f is affine if there exists a proportionality constant a∈R and a bias b∈R such that

$$f(x(t)) = \underline{a}x(t) + \underline{b}$$

Sensitivity Bias

Embedded Real-Time Systems

21

Range and Dynamic Range

- Sensors/actuators normally have an operating range (L,H)
 - Outside of that they will saturate
- An affine function model is augmented:

$$f(x(t)) = \left\{ \begin{array}{ll} ax(t) + b & \text{if } L \leq x(t) \leq H \\ aH + b & \text{if } x(t) > H \\ aL + b & \text{if } x(t) < L, \end{array} \right.$$

Example: Look at ADXL330 accelerometer datasheet

- The precision p of a digital sensor: smallest absolute difference between two values of a physical quantity whose sensor readings are distinguishable.
- Dynamic range:

$$D = \frac{H - L}{p}$$

In decibels:

$$D_{dB} = 20\log_{10}\left(\frac{H-L}{p}\right)$$

Embedded Real-Time Systems

Analog Devices ADXL330 Data Sheet

SPECIFICATIONS

 $T_A = 25^{\circ}$ C, $V_S = 3$ V, $C_X = C_Y = C_Z = 0.1$ μ F, acceleration = 0 g, unless otherwise noted. All minimum and maximum specifications are guaranteed. Typical specifications are not guaranteed.

ы		

Parameter	Conditions	Min	Тур	Max	Unit
SENSOR INPUT	Each axis				
Measurement Range		±3	±3.6		g
Nonlinearity	% of full scale		±0.3		%
Package Alignment Error			±1		Degrees
Inter-Axis Alignment Error			±0.1		Degrees
Cross Axis Sensitivity ¹			±1		%
SENSITIVITY (RATIOMETRIC) ²	Each axis				
Sensitivity at Xout, Yout, Zout	$V_S = 3 V$	270	300	330	mV/g
Sensitivity Change Due to Temperature ³	$V_S = 3 V$		±0.015		%/°C
ZERO g BIAS LEVEL (RATIOMETRIC)	Each axis				
0 g Voltage at Хоит, Yоит, Zоит	$V_S = 3 V$	1.2	1.5	1.8	V
0 g Offset vs. Temperature			±1		m <i>g</i> /°C
NOISE PERFORMANCE					
Noise Density Xout, Yout			280		μ <i>g</i> /√Hz rms
Noise Density Z _{OUT}			350		μ <i>g</i> /√Hz rms
FREQUENCY RESPONSE ⁴					
Bandwidth Xout, Yout ⁵	No external filter		1600		Hz
Bandwidth Z _{OUT} ⁵	No external filter		550		Hz
R _{FILT} Tolerance			$32 \pm 15\%$		kΩ
Sensor Resonant Frequency			5.5		kHz

Quantization

- An n-bit digital sensor picks one of 2ⁿ values for a physical quantity.
- · Precision:

$$p = \frac{(H - L)}{2^n}$$

· Dynamic range:

$$D_{dB} = 20 \log_{10} \left(\frac{H - L}{p} \right) 20 \log_{10}(2^n)$$

= $20n \log_{10}(2) \approx 6n dB$

6 decibels of dynamic range per bit

f: sensor distortion function

Embedded Real-Time Systems

2

Noise

 Undesired part of the signal

$$f(x(t)) = x(t) + n(t)$$

 Root mean square (RMS) of the noise

$$N = \lim_{T \to \infty} \sqrt{\frac{1}{2T} \int_{-T}^{T} (n(\tau))^2 d\tau}$$

• Signal to noise ratio (SNR, in decibels) $SNR_{dB} = 20 \log_{10} \left(\frac{X}{N} \right)$

• Quantization noise:

Embedded Real-Time Systems

Example: Quantization Noise of a 3-bit Digital Sensor

Sampling

Embedded Real-Time Systems

- Discretizing a continuous-time physical quantity
- For uniform signal sampling with sampling interval T

$$\forall n \in \mathbb{Z}, \ s(n) = f(x(nT))$$

What is a good *T*?

Embedded Real-Time Systems

Approximation of a Square Wave

$$e'_{K}(t) = \sum_{k=1,3,5,..}^{K} \frac{4}{\pi k} \sin\left(\frac{2\pi t}{p_{k}}\right)$$

with $\forall k$: p_k = p_1 /k, p_I =4

Embedded Real-Time Systems

29

Aliasing

- A high frequency sinusoid sampled at a low rate looks just like a low frequency sinusoid
- Nyquist criterion (sampling theory)
 - Aliasing can be avoided if we restrict the frequencies of the incoming signal to less than half of the sampling rate.

Embedded Real-Time Systems

Harmonic Distortion

- A form of nonlinearity that occurs even within the operating range of sensors and actuators
 - sensitivity is not constant and depends on the magnitude of the signal
- Modeled by powers of the physical quantity
 - Second harmonic distortion is a dependence on the square of the physical quantity

$$f(x(t)) = ax(t) + b + d_2(x(t))^2$$

 The importance of harmonic distortion depends on the application

Embedded Real-Time Systems

Signal Conditioning

- Use frequency selective filtering to remove noise and harmonic distortion
- Relies on Fourier theory to filter-out undesired frequencies
- Example: An accelerometer measures orientation plus vibration of a slowly-rotating object
 - Solution: Filter-out high-frequency vibration

Embedded Real-Time Systems

Design Issues with Sensors

Calibration

- Relating measurements to the physical phenomenon
- Can dramatically increase manufacturing costs

Nonlinearity

- Measurements may not be proportional to physical phenomenon
- Correction may be required
- Feedback can be used to keep operating point in the linear region

Sampling

- Aliasing
- Missed events

Noise

- Analog signal conditioning
- Digital filtering
- Introduces latency

Failures

- Redundancy (sensor fusion problem)
- Attacks (e.g. Stuxnet attack)

Embedded Real-Time Systems

Next Lecture

- Examples of Sensors
- Read chapter 3 of Pan & Zhu

Embedded Real-Time Systems