Übungen zum Ferienkurs Analysis II

Topologie und Extrema

2.1 Eigenschaften von Mengen \star

Bestimmen Sie, welche der folgenden Mengen offen, abgeschlossen, zusammenhängend, kompakt sind (ohne Beweis).

- \bullet \mathbb{R}^2
- [4,7)
- $[0,1) \cup [2,5]$
- $\{x \in \mathbb{R} | |x| > 0\} = \mathbb{R} \setminus \{0\}$
- $\{(x,y) \in \mathbb{R}^2 | x + y = 0 \}$
- $\{(x, y) \in \mathbb{R}^2 | x^4 + y^3 = 3 \}$
- $\{(x,y) \in \mathbb{R}^2 | e^{x^2} = 3e^{-|y|} \}$
- $\{(x,y) \in \mathbb{R}^2 | x^2 + y^{10} > 3\}$

2.2 Stetigkeit *

Sei X, metrischer Raum, zusammenhängend und $f: X \to \mathbb{R}$ lokal konstant d.h. zu jedem $x \in X$ exisitiert eine Umgebung $x \in U \subset X$ so dass $f|_U$ konstant. Zeige: f ist konstant. Geben Sie zudem ein Gegenbeispiel an, für den Fall, dass X nicht zusammenhängend ist (eine lokal konstanten Funktion an, die nicht konstant ist).

2.3 Kompaktheit

Sei X kompakt und $A \subset X$ abgeschlossen. Zeige: A ist auch kompakt.

2.4 Kompaktheit II

Sei $(x_n)_{b\in\mathbb{N}}$ eine Folge in \mathbb{R}^n und H die Menge aller Häufungspunkte der Folge. Weiterhin sei $A := \{x_n | n \in \mathbb{N}\} \cup H$ die Menge der Folgenglieder und Häufungspunkte. Zeige: A ist kompakt.

2.5 Lokale Extremwerte *

Gegeben sei die Funktion $f: \mathbb{R}^2 \to \mathbb{R}, f(x,y) = y^3 - 3xy + x^2$

- (a) Bestimmen Sie die beiden Punkte (x_0, y_0) und (x_1, y_1) mit grad f(x, y) = 0.
- (b) Wie lautet die Hessematrix von f im Punkt (x_0, y_0) und (x_1, y_1) ?
- (c) Besitzt f in den Punkten (x_0, y_0) und (x_1, y_1) ein lokales Maximum, ein lokales Minimum oder einen Sattelpunkt?

Abgabe: 13.09.2016

Nimmt f ein globales Maximum oder ein globales Minimum in den Punkten $(x_0, y_0), (x_1, y_1)$?

2.6 Globale Minima und Maxima

Gegeben ist die Funktion $f: \mathbb{R}^2 \to \mathbb{R}$ mit

$$f(x,y) = x^3 + y^3 - 3xy.$$

- (a) Bestimmen Sie alle stationären Punkt von f und entscheiden Sie, ob diese isolierte Maxima oder Minima sind.
- (b) Sei nun $B = [0, 2]^2 \subset \mathbb{R}^2$. Bestimmen Sie sup f(B) und inf f(B).

2.7 Extrema mit Nebenbedingungen I \star

Berechnen Sie diejenigen Punkte auf der Kugeloberfläche

$$M = \{(x, y, z) \in \mathbb{R}^3 | x^2 + y^2 + z^2 = 1\}$$

die von (1, 1, 1) den kleinsten bzw. grösten Abstand haben.

2.8 Extrema mit Nebenbedingungen II

Zeigen Sie, dass die Funktion $f(x,y)=2xy+\frac{3}{2}x^2$ eingeschränkt auf die Menge $K=\{(x,y)\in\mathbb{R}^2|x^2+y^2=5\}$ ihr Maximum im Punkt (2,1) annimmt.

2.9 Extrema mit Nebenbedingungen III

Gegeben sei $f(x,y):(x-1)^2+y^2$ für $(x,y)\in\mathbb{R}^2$ sowie $B:=(x,y)\in\mathbb{R}^2:x^2+y^2\leq 4$.

- (a) Bestimmen Sie den stationären Punkt von f(x,y) und dessen Art im Inneren von B.
- (b) Bestimmen Sie das Minimum und das Maximum von f in ganz B unter Verwendung des Lagrange-Formalismus.