# Formulaire de réponse pour le test 1

# Michel Yoeung G2

## Question 1

• Déterminer l'espérance du nombre de candidats réussissant l'examen.

## Réponse :

L'espérance du nombre de candidats réussissant l'examen est  $240*0.98^{10}$  candidats.

## Question 2

• Calculer les probabilités P(N = i), pour tout i de 1 à 4.

## Réponse :

$$P(N=1) = \frac{1}{10}, P(N=2) = \frac{1}{5}, P(N=3) = \frac{3}{10}, P(N=4) = \frac{2}{5}.$$

## Question 3

• Calculer la probabilité de l'événement G sachant que le candidat change de porte. Calculer la probabilité de l'événement G sachant que le candidat conserve son choix initial.

#### Réponse:

La probabilité de l'événement G sachant que le candidat change de porte est  $\frac{2}{3}$ .

La probabilité de l'événement G sachant que le candidat concerve son choix initial est  $\frac{1}{3}$ .

#### Question 4

• Le candidat opte a priori pour une stratégie aléatoire. Il change de porte avec la probabilité p = 1/3. Puis il joue et gagne le jeu. Quelle est la probabilité que le candidat ait changé de porte ?

#### Réponse :

La probabilité que le candidat ait changé de porte sachant qu'il a gagné est  $\frac{1}{2}$ .

## Question 5

• Calculer la valeur médiane de la variable X.

#### Réponse:

La médiane de la variable X vaut  $\frac{9}{13}$ .

| Question | 6 |
|----------|---|
|          |   |



Réponse :

La probabilité de l'événement  $(Z_N > 1)$  est  $e^{-n\mu}(1 - e^{-1})$ .

## Question 7

• Déterminer la loi de la variable Z. Donner son espérance.

Réponse :

Z suit une loi binomiale de paramètres n=20 et  $p=\frac{8}{9}$ .

L'espérance de Z est  $\frac{160}{9}$  archers.

# Question 8

 $\bullet\,$  Déterminer la loi de la variable Y. Donner son espérance.

Réponse:

L'espérance de Y est  $\frac{40}{9}$  archers.

## Question 9

• Donner une relation simple liant  $\mathrm{E}[XY]$  à l'espérance d'une fonction simple de X et la valeur de cette espérance (une ligne).

Réponse :

## Question 10

• Calculer la variance de la variable aléatoire Z. En déduire la covariance du couple (X,Y) et retrouver le résultat précédent (une ligne).

Réponse :