

FIGURE 1
Plasmid sequence of pNC5LSPCEAp53 (pMC30B5) for vCP2086

1 GCCCTTT CGTCTCG CGCGTTT CGGTGAT GACGGTG AAAACCT CTGACAC ATGCAGC TCCCGGA GACGGTC
 5 71 CCGGAAA GCAGAGC GCGCAA GCCACTA CTGCCAC TTTTGGA GACTGTC AGGGCCT CTGCCAG
 ACAGCTT GTCTGTA AGCGGAT GCGGGGA GCAGACA AGCCCGT CAGGGCG CGTCAGC GGGTGT GCGGGGT
 141 TGTCGAA CAGACAT TCGCCTA CGGCCCT CGTCGT CGGGCGA GTCCCGC GCAGTCG CCCACAA CGGCCCA
 GTCGGGG CTGGCTT AACTATG CGGCATC AGAGCAG ATTGTAC TGAGAGT GCACCAT ATGCGGT GTGAAAT
 10 211 CAGCCCC GACCGAA TTGATAC GCGCTAG TCTCGTC TAATAC TACCTCA CGTGGTA TACGCCA CACTTTA
 ACCGCAC AGATGCC TAAGGAG AAAATAC CGCATCA GGCGCCA TTCGCCA TTTCAGG TGCGCAA CTGTTGG
 TGGCGT TCTACGC ATTCCCT TTTATG GCGTAGT CGCGGT AAGCGGT AAGTCCG ACAGCGTT GACAACC
 281 GAAGGGC GATCGGT CGGGCCC TCTTCGC TATTAG CCAGCTG GCGAAAG GGGGATG TGCTGCA AGGCGAT
 CTTCCCG CTAGCCA CGCCCGG AGAACGG ATATGCA GGTCGAC CGCTTC CCCCTAC ACGACGT TCCGCTA
 15 351 TAAGTTG GGTAACG CCAGGGT TTTCCCA GTCACCA CGTTGTA AAACGAC GGCGCAGT GCCAAGC TTGGCTG
 ATTCAAC CCATTGC GGTCCCA AAAGGGT CAGTGCT GCAACAT TTGCTG CGGGTCA CGGTTCG AACCGAC

 Left Arm
 421 CAGGTAT TCTAAAC TAGGAAT AGATGAA ATTATGT GCAAAGG AGATACC TTTAGAT ATGGATC TGATTTA
 20 491 GTCCATA AGATTTG ATCCTTA TCTACTT TAATACA CGTTTCC TCTATGG AAATCTA TACCTAG ACTAAAT
 Left Arm
 561 TTTGGTT TTTCATA ATCATAA TCTAACCA ACATTT CACTATA CTATACC TTCTTGC ACAAGTC GCCATTA
 AAACCAA AAAGTAT TAGTATT AGATTGT TGTAAGA GATATGG GATATGG AAGAACG TGTTCA CGGTAAT
 Left Arm
 631 GTAGTAT AGACTTA TACTTG TAACCAT AGTATAC TTTAGGG CGTCATC TTCTTCA TCTAAAA CAGATT
 CATCATA TCTGAAT ATGAAAC ATTGGTA TCATATG AAATCGC GCAGTAG AAGAAGT AGATTT GTCTAAA
 Left Arm
 701 ACAACAA TAATCAT CGTCGTC ATCTICA TCTTCAT TAAAGTT TTCATAT TCAATAA CTTTCTT TTCTAAA
 TGGTGT ATTAGTA GCAGCG TAGAAGT AGAAGTA ATTCAA AAGTATA AGTTATT GAAAGAA AAGATT
 Left Arm
 771 TGCTCAT GATGTAC TTTTTTT CATTATT TAGAAAT TATGCAT TTTAGAT CTTTATA AGCGGCC GTGATTA
 35 ACAGAGTA CTACATG AAAAAAA GTAATAA ATCTTTA ATACGTA AAATCTA GAAATAT TCGCCGG CACTAAT

 Left Arm
 841 ACTAGTC ATAAAAA CCCGGGA TCGATTG TAGACTC GAGATAA AAACATAT ATCAGAG CAACCCC AACCGAC
 TGATCAG TATTTTT GGGCCCT AGCTAAG ATCTGAG CTCTATT TTTGATA TAGTCTC GTGGGG TTGGTCG

 40 CEA
 ***Ile LeuAla ValGly ValLeuVal.
 911 ACTCCAA TCATGAT GCCGACA GTGGCCC CAGCTGA GAGACCA GGAGAAG TTCCAGA TGCAAGAG ACTGTGA
 TGAGGTT AGTACTA CGGCTGT CACCGGG GTCGACT CTCTGGT CCTCTTC AAGGTCT ACGTCTC TGACACT
 CEA
 45 ..GlyIle MetIle GlyValThr AlaSer LeuGlyPro SerThr GlySer AlaSerVal ThrIle.
 981 TGCTCTT GACTATG GAATTAT TGCGGCC AGTAGCC AAGTTAG AGACAAA ACAGGCA TAGGTCC CGTTATT
 ACGAGAA CTGATAC CTTAATA ACGCCGG TCATCGG TTCAATC TCTGTTT TGTCCTG ATCCAGG GCAATAA
 CEA
 .SerLys ValIleSer AsnAsn ArgGly ThrAlaLeu AsnSer ValPhe CysAlaTyr ThrGly AsnAsn
 50 1051 ATTTGGC GTGATT TGCGAT AAAGAGA ACTTGTC TGTGTTG CTGCGGT ATCCCCT TGATACG CCAAGAA
 TAAACCG CACTAAA ACCGCTA TTCTCT TGAAAC ACACAAAC GACGCCA TAGGGTA ACTATGC GTTTCTT
 CEA
 AsnProThr IleLys AlaIle PheLeuVal GlnThr HisGln GlnProle GlyAsn IleArg TrpSerTyr.
 55 1121 TACTGCG GGGATGG GTTAGAG GCGAGT GGCAGGA GAGGTTG AGGTCCG CTCCCGA AAGGTAA GACGAGT
 ATGACGC CCCTTAC CAATCTC CGGCTCA CGGTCTT CTCCAC TCCAGGC GAGGGCT TTCCATT CTGCTCA
 CEA
 ..GlnPro SerPro AsnSerAla SerHis CysSer LeuAsnLeu AspAla GlySer LeuTyrSer SerAsp.
 1191 CTGGGGG GGAATG ATGGGGG TGTCCGG CCCATAG AGGACAT CCAGGGT GACTGGG TCACTGC GTTTGCG
 GACCCCG CCTTTAC TACCCCC ACAGGCC GGGTACT TCCTGTA GGTCCCA CTGACCC AGTGACG CCAAACG
 CEA
 .ProPro SerIleIle ProThr AspPro GlyTyrLeu ValAsp LeuThr ValProAsp SerArg AsnAla
 60 1261 ACTCACT GAGTTCT GGATTCC ACATACA TAGGCTC TTGCGTC ATTCTCT GTGACAT TGAATAG AGTGAGG
 TGAGTGA CTCAGGA CCTAAGG TGATGTT ATCCGAG AACGAG TAAAGAA CACTGTA ACTTATC TCACTCC
 CEA
 SerValSer AsnGln IleGly CysValTyr AlaArg AlaAsp AsnArgThr ValAsn PheLeu ThrLeuThr.
 65 1331 GTCCCTGT TGCCATT GGACAGC TGCAGCC TGGGACT GACTGGG AGGCTCT GACCAT TACCCAC CACAGGT
 CAGGACA ACGGTAA CCTGTCG ACGTCGG ACCCTGA CTGACCC TCCGAGA CTGGTAA ATGGGTG GTGTCCA
 CEA
 ..ArgAsn GlyAsn SerLeuGln LeuArg ProSer ValProLeu SerGln GlyAsn ValTrpTrp LeuTyr.
 70 1401 AGGTGTT GTTCTGA GCCTCAG GTTCACA GGTGAAG GCCACAG CATCCTT GTCCCTCC ACGGGTT TGGAGTT
 TCCAACA CAAGACT CGGAGTC CAAGTGT CCACTCT CGGTGTC GTAGGAA CAGGAGG TGCCCAA ACCTCAA
 CEA
 .ThrThr AsnGlnAla GluPro GluCys ThrPheAla ValAla AspLys AspGluVal ProLys SerAsn

1471 GTTGCTG GAGATGG AGGGCTT GGGCAGC TCCGCGG AAACAGT TATTGTT TTAACTG TAGTCCT GCTGTGA
 CAAAGAC CTCTTACCC TCCCGAA CCCGTCG AGGCAGC TTTGTCA ATAACAA AATTGAC ATCAGGA CGACACT
 CEA
 5 1541 AsnSerSer IleSer ProLys ProLeuGlu AlaSer ValThr IleThrLys ValThr ThrArg SerHisGly.
 CCACTGG CTGAGTT ATTGGCC TGGCAAG TATAGAG TCCGCTG TTCTTCT CAGTTAT GTTGCTT ATAAATA
 GGTGACC GACTCAA TAACCAG ACCGTT ATATCTC AGGCGAC AAGAAGA GTCAATA CAACGAA TATTTAT
 CEA
 10 1611 ..SerAla SerAsn AsnAlaGln CysThr TyrLeu GlySerAsn LysGlu ThrIle AsnSerIle PheLeu.
 ACTCTTG AGTATGC TGCTGAA TGTTTCC ATCAACATGCCAGG AGTACTG TGCGAGG GGGTTGG ATGCTGC
 TGAGAAC TCATACG ACGACTT ACAAAAGG TAGTTAG TCAGTCC TCATGAC ACGTCCC CCCAACCC TACGACG
 CEA
 15 1681 .GluGln ThrHisGln GlnIle AsnGly AspIleLeu TrpSer TyrGln AlaProPro AsnSer AlaAla
 ATGGCAA GAAAGGC TCAAGTT CACGCCG GGACGGT AGTAGGT GTATGAT GGAGATA TAGTTGG GTCGTCT
 TACCGTT CTTCCG AGTCAA GTGCCGC CCTGCCA CATACTA CCTCTAT ATCAACC CAGCAGA
 CEA
 20 1751 HisCysSer LeuSer LeuAsn ValGlyPro ArgTyr TyrThr TyrSerPro SerIle ThrPro AspAspPro.
 GGGCCAT ACAAAAC ATTAAAGG ATAACAG GGTGCGA GTGATCA ACGGATA ATTCAATT CTGAATG CCACACT
 CCCGGTA TGTTTG TAATTCC TATTGTC CCAAGCTT CACTAGT TGCTTAT TAAGTAA GACTTAC GTGTTGA
 CEA
 25 1821 ..GlyTyr ValVal AsnLeuIle ValPro AspSer HisAspVal SerLeu GluAsn GlnIleGly CysGlu.
 CATAAGG TCCTACA TCATTGC GAGTAAC GGACAGG AGTGTCA ATGTGCG GTTATCA TTAGACA ACTGCAA
 GTATTCC AGGATGT AGTAACG CTCAATTG CCTGTCC TCACAGT TACACGC CAATAGT AATCTGT TGACGTT
 CEA
 30 1891 .TyrPro GlyValAsp AsnArg ThrVal SerLeuLeu ThrLeu ThrArg AsnAspAsn SerLeu GlnLeu
 GCGTGGG CTAACCG GCAAAC TTGGTTA TTGACCC ACCATAA ATAAGTG GTATTTT GAATCTC TGGCTCA
 CGCACCC GATTGGC CGTTGA AACCAAT AACTGGG TGGTATT TATTCAAC CATAAAA CTTAGAG ACCGAGT
 CEA
 35 1961 ArgProSer ValPro LeuSer GlnAsnAsn ValTrp TrpLeu TyrThrThr AsnGln IleGlu ProGluCys.
 CAAGTTA ATGCAAC TGGCTCC TCATCCT CAACTGG GTTAGAA TTGGTCA TAGTTAT GAATGGT TTTGGTG
 GTTCAAT TAGGTT AGCAGG AGTAGGA GTTGACCA CAATCTT AACATG ATCAATA CTTACCA AAACCAC
 CEA
 40 2031 ..ThrLeu AlaVal AlaAspGlu AspGlu ValPro AsnSerAsn AsnSer ThrIle PheProLys ProPro.
 GCTCATCA CACGGTA ATCGTCC TCACGGT TGTGGGG TTGAGTC CGGTGTC GCTATTG TGACGTT GGCACGT
 CGAGTAT GTGCCAT TAGCAGC AGTGCCA ACACGCC AACTCAG GCCAAC CGATAAC ACTCGAA CGGTGCA
 CEA
 45 2101 .GluTyr ValThrIle ThrThr ValThr ThrArgAsn LeuGly ThrAsp SerAsnHis AlaGln CysThr
 GTAGGAT CCACTAT TGTTCAC GGTAAATA TTGGGAA TGAACAG TTCCCTGG GTGGACT GTTGGAA AGTGCCA
 CATCCTA GGTGATA ACAAGTG CCATTT ACTTGTC AAGGACC CACCTGA CAACCTT TCACCGT
 CEA
 50 2171 TyrSerGly SerAsn AsnVal ThrIleAsn ProIle PheLeu GluGlnThr SerGln GlnPhe ThrGlyAsn.
 TTGACAA ACCAGCT GTATTGG GCGGGAG GATTGCT AGCGGCA TGACAGC TCAGATT CAGATTT TCCCCTG
 AACTGTT TGGTCGA CATAACC CGCCCTC CTAACGA TCGCCGT ACTGTCG AGTCTAA GTCTAAA AGGGGAC
 CEA
 55 2241 ..ValPhe TrpSer TyrGlnAla ProPro AsnSer AlaAlaHis CysSer LeuAsn LeuAsnGlu GlySer.
 ATCTATA GCTGTGTG TTAGAG GGCTGAT TGTAGGA GCATCGG GTCCGTA AAGCAGC TTGAGAA TCACITGA
 TAGATAT CGAACAC AAATCTC CCGACTA ACATCTC CGTAGCC CAGGCAT TTCTGTC AACTCTT AGTGACT
 CEA
 60 2311 .ArgTyr SerThrAsn LeuPro SerIle ThrProAla AspPro GlyTyr LeuValAsn LeuIle ValSer
 ATCAGAC CTCTCTG CGCTGAC TGGATT TGGGTT CGCATT GTAGCTT GCTGTGT CGTCTCT GGTCAAG
 TAGTCTG GAGGACC GCGACTG ACCTAAA ACCCAA GCGTAAAC CATCGAA GCAAGGA CCAGTC
 CEA
 65 2381 AspSerArg ArgAla SerVal ProAsnGln ThrGlu CysLys TyrSerAla ThrAsp AsnArg ThrValAsn.
 TTAAACAA GGCTCAG AGTTCTA TTTCCTG TGCTGAG TTGGAGT CTAGGGG ACACAGG CAGGGAC TGGTTGT
 AATTGTC CCCAGTC TCAAGAT AAAGCCA ACGACTC AACCTCA GATCCCC TGTGTCG GTCCCTG ACCAACAA
 CEA
 70 2451 ..PheLeu ThrLeu ThrArgAsn GlyAsn SerLeu GlnLeuArg ProSer ValPro LeuSerGln AsnAsn.
 TCACCCA CCAGAGA TATGTTG CGTCTTG AGTTCAG GGCTCGC ATGTAAA AGCGACG GCATCTT TGTCTTC
 AGTGGGT GGTCTCT ATACAAC GCAGAAC CGCAGCG TACATT TCGCTGC CGTAGAA ACAGAAC
 CEA
 75 2521 .ValTrp TrpLeuTyr ThrAla AspGln ThrGluPro GluCys ThrPhe AlaValAla AspLys AspGlu
 GACAGGC TTACTAT TATGGGA GCTAAATA GAAGGCT TAGGGAG TTCCGGG TATACCC GGAACGT GCCAGTT
 CTGTCCG AATGATA ATAACCT CGATTAT CTTCCGA ATCCCTC AAGGCC ATATGGG CCTTGAC CGGTCAA
 CEA
 80 2591 ValProLys SerAsn AsnSer SerIleSer ProLys ProLeu GluProTyr ValArg PheGln GlyThrAla.
 GCCTCTT CATTCA CAAAGATCT GACTTTA TGACCTG TAGGGTG TAGAATC CTGCTGC ATTCTGG ATGATGT
 CGAAGAA GTAAGTG TTCTAGA CTGAAAT ACTGACAT ATCCCAAC ATCTTAG GACACAG TAAGACC TACTACA
 CEA
 85 2661 ..GluGlu AsnVal LeuAspSer LysIle ValHis LeuThrTyr PheGly ThrAsp AsnGlnIle IleAsn.
 TCTGGAT CAGCAGG GATGCAT TGGGTTA TATTATC TCTCGAC CACTGTA TGCGGGC CCTGGGG TAGCTTG
 AGACCTA GTCGTCC CTACGTA ACCCCAT ATAATAG AGACCTG GTGACAT ACGCCCG GGACCCC ATCGAAC
 CEA
 90 2731 .GlnIle LeuLeuSer AlaAsn ProTyr IleIleGlu ArgGly SerTyr AlaProGly ProThr AlaGln
 TTGAGTT CCTATTAA CATAATT TGACGGT TGCCATC CACTCTT TCACCTT TGTACCA GCTGTAG
 AACATCAA GGATAAT GTATAGG ATATCAA ACTGCCA ACGGTAG GTGAGAA AGTGGAA ACATGGT CGACATC

CEA

2801 GlnThrGly IleVal TyrGly IleIleGln ArgAsn GlyAsp ValArgGlu GlyLys TyrTrp SerTyrGly
CCAAAAAA GATGCTG GGGCAGA TTGTGGA CAAGTAG AAGCACCC TCCTTCG CCTCTGC GACATTG AACGCCG
GGTTTTT CTACGAC CCCGTCT AACACCT GTTCATC TTCTGG AGGAAGG GGAGACG CTGTAAC TTGCCGC
CEA

5 ..PheLeu HisGln ProLeuAsn HisVal LeuLeu LeuValGlu LysGly GluAla ValAsnPhe ProThr.
2871 TGGATTC AATAGTG AGCTTGG CAGTGGT GGGCGGG TTCCAGA AGGTAG AAGTGAG GCTGTGA GCAGGAG
ACCTAAC TTATCAC TCGAACCA GTCACCA CCCGCCC AAGGTCT TCCAATC TTCACTC CGACACT CGTCCTC
CEA

10 .SerGlu IleThrLeu LysAla ThrThr ProProAsn TrpPhe ThrLeu LeuSerAla ThrLeu LeuLeu
2941 CCTCTGC CAGGGGA TGACCA TCTGTGG GGAGGG CCGAGGG AGACTCC ATTATTT ATATTCC AAAA
GGAGACG GTCCCT ACCTGGT AGACACC CCTCCCC GGCTCCC TCTGAGG TAATAAA TATAAGG TTTTTT

E/L Promoter

15 CEA

ArgGlnTrp ProIle CysTrp ArgHisPro ProAla SerPro SerGluMet

H6 promoter

20 3011 AAAAATA AAATTC AATTTTT GTCGACC TGCACT CGACGGA TCCCCCC GGGTTCT TTATTCT ATACTTA
TTTTTAT TTAAAG CAGCTGG ACGTCGA GCTGCCT AGGGGG CCCAAGA AATAAGA TATGAAT

E/L Promoter

H6 promoter

25 3081 AAAAGTG AAAATAA ATACAAA GGTTCTT GAGGGTT GTGTAA ATTGAAA GCGAGAA ATAATCA TAAATTA
TTTCAC TTTTATT TATGTTT CCAAGAA CTCCCAA ACAATT TAACTTT CGCTCTT TATTAGT ATTTAAT
p53

30 H6 promoter

3151 MetGlu GluProGln SerAsp ProSer ValGluPro.
TTTCATT ATCGCGA TATCCGT AAAGTTT GTATCGT AATGGAG GAGCCCG AGTCAGA TCCTAGC GTCGAGC
AAAGTAA TAGCGCT ATAGGCA ATTCAAA CATAGCA TTACCTC CTCGGCG TCAGTCT AGGATCG CAGCTCG
p53

35 ..ProLeu SerGln GluThrPhe SerAsp LeuTrp LysLeuLeu ProGlu AsnAsn ValLeuSer ProLeu.
3221 CCCCTCT GAGTCAG GAAACAT TTTCAGA CCTATGG AAACATAC TTCCCTGA AAACAAAC GTTCTGT CCCCCCTT
GGGGAGA CTCAGTC CTTGTAA AAAGTCT GGATACC TTGATG AAGGACT TTGTTG CAAGACA GGGGGAA
p53

40 ..ProSer GlnAlaMet AspAsp LeuMet LeuSerPro AspAsp IleGlu GlnTrpPhe ThrGlu AspPro
3291 GCCGTCC CAAGCAA TGGATGA TTGATG CTGTCCT CGGACGA TATTGAA CAATGGT TCACTGA AGACCCA
CGGCAGG GTTCGTT ACCACTAC AAACATAC GACAGGG GCCTGCT ATAACCTT GTTACCA AGTGAAT TCTGGGT
p53

45 GlyProAsp GluAla ProArg MetProGlu AlaAla ProPro ValAlaPro AlaPro AlaAla ProThrPro.
3361 GGTCCAG ATGAAGC TCCCAGA ATGCCAG AGGCCTG TCCCCCC GTGGCCG CTGCACC AGCAGCT CCTACAC
CCAGGTC TACITCG AGGGCT TCCGTCG AGGGGG CACCGGG GACGTGG TCGTCGA GGATGTG
p53

50 ..AlaAla ProAla ProAlaPro SerTrp ProLeu SerSerSer ValPro SerGln LysThrTyr GlnGly.
3431 CGGGCGC CCCTGCA CCAGCCC CCTCTCG GCCCTG TCATCTT CTGTCCT TCCCAG AAAACCT ACCAGGG
GCCGCCG GGGACGT GTTCGGG GGAGGAC CGGGGAC AGTAGAA GACAGGG AAGGGTC TTTTGGG TGGTCCC
p53

55 ..SerTyr GlyPheArg LeuGly PheLeu HisSerGly ThrAla LysSer ValThrCys ThrTyr SerPro
3501 CAGCTAC GGTTCCT GCTCTGGG CTTCTTG CATTCTG GGACAGC CAAGTCT GTGACTT GCACGTA CTCCCCT
GTCTGATG CCAAAGG CAGACCC GAAGAAC GTAAGAC CCTGTGG GTTCAGA CACTGAA CGTGCAT GAGGGGA
p53

60 AlaLeuAsn LysMet PheCys GlnLeuAla LysThr CysPro ValGlnLeu TrpVal AspSer ThrProPro.
3571 GCCCTCA ACAAGAT GTTTGCA CAACTGG CCAAGAC CTGCCCT GTGCAGC TGTGGGT TGATTCC ACACCCC
CGGGAGT GTTTCTA CAAAAGC GTGACCC GGTACCG GACGGGA CACGTGG ACACCCA ACTAAGG TGTGGGG
p53

65 ..ProGly ThrArg ValArgAla MetAla IleTyr LysGlnSer GlnHis MetThr GluValVal ArgArg.
3641 CGCCCGG CACCCGC GTCCCGC CCATGGC CATCTAC AAGCAGT CACAGCA CATGACG GAGGTTG TGAGGCG
GCGGGCC GTGGGCG CAGGCGC GGTACCG GTAGATG TTCTGCA GTGTCGT GTACTGC CTCCAAC ACTCCGC
p53

70 .CysPro HisHisGlu ArgCys SerAsp SerAspGly LeuAla ProPro GlnHisLeu IleArg ValGlu
3711 CTGCCCG CACCATG AGCGCTG CTCAGAT AGCGATG GTCTGGC CCCTCCCT CAGCATC TTATCCG AGTGGAA
GACGGGG GTGGTAC TCGCGAC GAGCTTA TCGCTAC CAGACCG GGGAGGA GTCGTAG AATAGGC TCACCTT

p53

5 3781 GlyAsnLeu ArgVal GluTyr LeuAspAsp ArgAsn ThrPhe ArgHisSer ValVal ValPro TyrGluPro
GGAAATT TCGGTGT GGAGTAT TTGGATG ACAGAAA CACTTT CGACATA GTGTGGT GGTGCC TATGAGC
CCTTTAA ACGCACA CCTCATA AACCTAC TGTCCTT GTGAAAA GCTGTAT CACACCA CCACGGG ATACTCG
p53

10 3851 ..ProGlu ValGly SerAspCys ThrThr IleHis TyrAsnTyr MetCys AsnSer SerCysMet GlyGly
CGCCTGA GGTTGGC TCTGACT GTACCAC CATCCAC TACAAC TACATGTG TAACAGT TCCTGCA TGGCGG
GCGGACT CCAACCG AGACTGA CATGGTG TAGTGTG ATGTTGA TGTACAC ATTGTCA AGGACGT ACCCGCC
p53

15 3921 .MetAsn ArgArgPro IleLeu ThrIle IleThrLeu GluAsp SerSer GlyAsnLeu LeuGly ArgAsn
CATGAAC CGGAGGC CCATCCT CACCATC ATCACAC TGGAAAGA CTCCAGT GGTAAATC TACTGGG ACGGAAC
GTACTTG GCCTCCG GGTAGGA GTGGTAG TAGTGTG ACCTTCT GAGGTCA CCATTAG ATGACCC TGCCCTG
p53

20 3991 SerPheGlu ValArg ValCys AlaCysPro GlyArg AspArg ArgThrGlu GluGlu AsnIleu ArgLysLys.
AGCTTTG AGGTGCG TGTGTG GCCTGTC CTGGGAG AGACCGG CGCACAG AGGAAGA GAATCTC CGCAAGA
TCGAAAC TCCACGC ACAAACAA CGGACAG GACCCCTC TCTGGCC GCGTGTC TCCCTCT CTTAGAG GCCTTCT
p53

25 4061 ..GlyGlu ProHis HisGluLeu ProPro GlySer ThrLysArg AlaLeu ProAsn AsnThrSer SerSer.
AAGGGGA GCCTCAC CACGAGC TGCCCCC AGGGAGC ACTAACG GAGCACT GCCAAC AACACCA GCTCCTC
TCCCCCT CGGAGTG TGCGCTCG ACGGGGG TGATTCTG TGACCTA CCTCTTA TAAAGTG GGAAGTC TAGGCAC CCGCAAG
p53

30 4131 ..ProGln ProLysLys LysPro LeuAsp GlyLysGlu TyrPhe LeuGln IleArgGly ArgGlu ArgPhe
TCCCCAG CCAAAGA AGAACCC ACTGGAT ATTTCAC CCTTCAG ATCCGTG GGCGTGA GCGCTTC
AGGGGTC GGTTCT TGACCTA CCTCTTA TAAAGTG GGAAGTC TAGGCAC CCGCAAG
p53

35 4201 GluMetPhe ArgGlu LeuAsn GluAlaLeu GluLeu LysAsp AlaGlnAla GlyLys GluPro GlyGlySer.
GAGATGT TCCGAGA GCTGAAT GAGGCCT TGGAACT CAAGGAT GCCCAGG CTGGGAA GGAGCCA GGGGGGA
CTCTACAA AGGCTCT CGACTTA CTCCCGA ACCTTGA GTTCCTA CGGGTCC GACCCTT CCTCGGT CCCCCCT
p53

40 4271 ..ArgAla HisSer SerHisLeu LysSer LysLys GlyGlnSer ThrSer ArgHis LysLysLeu MetPhe.
GCAGGGC TCACTTC AGCCACC TGAAGTC CAAAAAG GGTCAGT CTACCTC CCGCCAT AAAAAC TCATGTT
CGTCCCG AGTGAGG TCGGTGG ACTTCAG GTTTTC CCAGTCA GATGGAG GGCGGTA TTTTTTG AGTACAA
p53

45 4341 .LysThr GluGlyPro AspSer Asp***
CAAGACA GAAGGGC CTGACTC AGACTGA ACGCGTT TTTTATC CCGGGCT CGAGGGT ACCGGAT CCTTTTT
GTTCTGT CTTCCCG GACTGAG TCTGACT TGCGCAA AAAATAG GGCCCGA GCTCCCA TGGCCTA GGAAAAAA
4411 ATAGCTA ATTAGTC ACCTTACG TTTGAGA GTACAC TTCACTG ACCTCTT TTGTGTC TCAGAGT AACTTTC
TATCGAT TAATCAG TGCGATG AAACCTC CATGGTG AAGTCGA TGGAGAA AACACAG AGTCTCA TTGAAAG

50 4481 Right Arm
TTTAATC AATTCCA AAACAGT ATATGAT TTTCCAT TTCTTTC AAAGATG TAGTTTA CATCTGC TCCCTTG
AAATTAG TTAAGGT TTGTCATA TATACCA AAAGGTA AAGAAAG TTTCTAC ATCAAAT GTAGACG AGGAAAC
Right Arm

4551 TTGAAAA GTAGCCT GAGCACT TCTTTTC TACCATG AATTACA GCTGGCA AGATCAA TTTTTCC CAGTTCT
AACTTTT CATCGGA CTCGTGA AGAAAAG ATGGTAT TTAATGT CGACCGT TCTAGTT AAAAAGG GTCAAGA

55 4621 Right Arm
GGACATT TTATTTT TTTTAAG TAGTGTG CTACATA TTTCAAT ATTTCCA GATTGTA CAGCGAT CATTAAA
CCTGTAA AATAAAA AAAATTG ATCACAC GATGTAT AAAGTTA TAAAGGT CTAACAT GTCGCTA GTAATT
Right Arm

60 4691 GGAGTAC GTCCCCAT GTTATCC AGCAAGT CAGTATC AGCACCT TTGTTCA ATAGAAG TTTAACCT ATTGTTA
CCTCATG CAGGGTA CAATAGG TCGTTCA GTCATAG TCGTGGAA AACAACT TATCTTC AAATTGG TAACAA
Right Arm

4761 AATTTTT ATTGAT ACGGCTA TATGTTG AGGGATT AACCGAT CCGTGTG TGAAAATA TCTACAT CCGCCGA
TTAAAAA TAAACTA TGCGGAT ATACATC TCCTCAA TTGGCTA GGCACAA ACTTTAT AGATGTA GGCGGCT
Right Arm

65 4831 ATGAGCC AATAGAA GTTAAAC CAAATTA ACTTTGT TAAGGTA AGCTGCC AAACACA AAGGAGT AAAGCCT
TACTCGG TTATCTT CAAATTG GTTAAAT TGAAACA ATTCCAT TCGACGG TTGTTGT TTCTCTCA TTTCGGA
Right Arm

4901 CCGCTGT AAAGAAC ATTGTTT ACATAGT TATTCTT CAACAGA TCTTTCA CTATTTT GTAGTCG TCTCTCA
GGCGACA TTTCTTG TAACAAA TGTATCA ATAAGAA GTTGTCT AGAAAGT GATAAAA CATCAGC AGAGAGT
Right Arm

70 4971 ACACCGC ATCATGC AGACAAG AAGTTGT GCATTCGA GTAACTA CAGGTTT AGCTCCA TACCTCA TCAAGAT
TGTGGCG TAGTACG TCTGTTC TTCAACCA CGTAAGT CATTGAT GTCCAAA TCGAGGT ATGGAGT AGTTCTA
Right Arm

5041 TTTTATA GCCTCGG TATTCTT GAACATT ACAGCCA TTTCAAG AGGAGAT TGTAGAG TACCATCA TTCCGTG

AAAATAT CGGAGCC ATAAGAA CTTGTAA TGTCGGT AAAGTTC TCCTCTA ACATCTC ATGGTAT AAGGCAC
 Right Arm
 5 5111 TTAGGGT CGAATCC ATTGTCC AAAAACC TATTTAG AGATGCA TTGTCAT TATCCAT GATGCC TCACAGA
 AATCCC GCTTAGG TAACAGG TTTTGGA ATAAATC TCTACGT AACAGTA ATAGGTA CTATCGG AGTGTCT
 Right Arm
 5181 CGTATAT GTAAGCC ATCTTGA ATGTATA ATTTTGT TGTTTTC AACACC GCTCGTG AACAGCT TCTATAC
 GCATATA CATTGG TAGAACT TACATAT TAAAACA ACAAAAG TTGTTGG CGAGCAC TTGTCGA AGATATG
 Right Arm
 10 5251 TTTTCA TTTCTT CATGATT AATATAG TTTACGG AATATAA GTATACA AAAAGTT TATAGTA ATCTCAT
 AAAAGT AAAAGAA GTACTAA TTATATC AAATGCC TTATATT CATATGT TTTCAA ATATCAT TAGAGTA
 Right Arm
 5321 AATATCT GAAACAC ATACATA AAACATG GAAGAAT TACACGA TGTCGGT GAGATAA ATGGCTT TTTATTG
 TTATAGA CTTGTG TATGTAT TTTGTAC CTTCTTA ATGTGCT ACAGCAA CTCTATT TACCGAA AAATAAC
 Right Arm
 15 5391 TCATAGT TTACAAA TTCGAG TAATCTT CATCTT TACGAAT ATTGCAG AATCTGT TTTATCC AACCGAT
 AGTATCA ATATGTT AACGGTC ATTAGAA GTAGAAA ATGCTTA TAACGTC TTAGACA AAATAGG TTGGTCA
 Right Arm
 5461 GATTTTT GTATAAT ATAACATG GTATCCT ATCTTCC GATAGAA TGTCGGT ATTTAAC ATTTTTG CACCTAT
 CTAAAAA CATATTA TATTGAC CATAGGA TAGAAGG CTATCTT ACGACAA TAAATTG TAAAAAC GTGGATA
 Right Arm
 20 5531 TAAGTTA CATCTGT CAAATCC ATCTTCA CAACTGA CTTTATG TAACGAT GCGAAAT AGCATTT ATCACTA
 ATTCAT GTAGACA GTTTAGG TAGAAGG GTTGACT GAAATAC ATTGCTA CGCTTTA TCGTAAA TAGTGAT
 Right Arm
 25 5601 TGTCGTA CCCAATT ATCATGA CAAGATT CTCTTAA ATACGTA ATCTTAT TATCTCT TGCAATAT TCGTAAT
 ACAGCAT GGGTTAA TAGTACT GTTCTAA GAGAAT TATGCTA TAGAATA ATAGAGA ACGTATA AGCATTAA
 Right Arm
 5671 AGTAATT GTAAAGA GTATACG ATAACAG TATAGAT ATACACG TGATATA AATATT AAACCCA TTCCGTA
 TCATTA CAATTCT CATATGC TATTGTC ATATCTA TATGTGC ACTATAT TTATAAA TTGGGGT AAGGACT
 Right Arm
 30 5741 GTAAAAT AATTACG ATATTAC ATTTCTT TTTTATG TTGTTAG TTAGGTT ATACAAA
 CATTAA TTAATGC TATAATG TAAAGGA AAATAAT AAAATA CAAAATC AATAAAC AATCCAA TATGTTT
 Right Arm
 5811 AATTATG TTTTATG GTGTATA TTAAAG CGTCGGT AAGAATA AGCTTAG TTAACAT ATTATCG CTTAGGT
 TTAATAC AAATAAA CACATAT AAATTC GCAGCAA TTCTTAT TCGAATC AATTGTA TAATAGC GAATCCA
 Right Arm
 35 5881 TTTGTAG TATTGTA ATCCTTT CTTTAAAG TGGATTA TTTTCC AATGCAAT ATTTATA GCTTCAT CCAAAGT
 AAACATC ATAAACT TAGGAAA GAAATT ACCTAA AAAAGG TTACGTA TAAATAT CGAAGTA GGTTCA
 Right Arm
 40 5951 ATAACAT TTAACAT TCAGAAT TGCGGCC GCAATTG AATTCTG AATCATG GTCATAG CTGTTTC CTGTGTG
 TATTGTA AATTGTA AGTCTTA ACGCCGG CGTTAAG TTAAGCA TTAGTAC CAGTATC GACACAG GACACAC
 Right Arm
 6021 AAATTGT TATCCGC TCACAAT TCCACAC AACATAC GAGCCGG AAGCATA AAGTGTAA AAGCCTG GGGTGCC
 45 6091 TTTAAAC A TAGCGC AGTGTAA AGGTGTT TTGTTAG CTCGGCC TTCGATAT TTGCGAC CCCACGG
 TAATGAG TGAGCTA ACTCACA TTAATTG CGTTGCG CTCACTG CCGCCTT TCCAGTC GGGAAAC CTGTCGT
 ATTCATC ACTCGAT TGAGTGT AATTAA GCAACAG GAGTGAC GGGCGAA AGGTGAG CCCCTTTC GACAGCA
 6161 GCCAGCT GCATTA TGAATCG GCCAACG CGCGGGG AGAGGCG GTTTGCG TATTGGG CGCTCTT CCGCTTC
 CGGTGCA CGTAATT ACTTAGC CGGTTGC CGGCCGG TCTCTTC CAAACCC ATAACCC GCGAGAA GCGGAAG
 6231 CTGGCTC ACTGACT CGCTGCG CTCGGTC GTTCCGTC GAGCGGTAA TGAGCTC ACTCAA GCGGTA
 GAGCGAG TGACTGA GCGACGG GAGCCAG CAAAGCC ACGCCCG TCGCCAT AGTCGAG TGAGTTT CCGCCAT
 6301 ATACGGT TATCCAC AGAATCA GGGGATA ACGCAGG AAAGAAC ATGTGAG CAAAAGG CCAGCAA AAGGCCA
 TATGCCA ATAGGTG TCTTAGT CCCCCTA TGCGTCC TTTCTTG TACACTC GTTTTCC GGTCGTT TTCCGGT
 6371 GGAACCG TAAAGG CGCGCG TGCTGGC GTTTTC CATAGGC TCCCTGAC GAGCATC ACAAAA
 CCTTGGC ATTTTTC CGGGCA ACAGCCG CAAAAAA GTATCCC AGGCGGG GGGACTG CTCGTA TGTTTTT
 55 6441 TCGACCC TCAAGTC AGAGGTG GCGAAC CCGACAG GACTATA AAGATAC CAGGCGT TTCCCCC TGGAAGC
 AGCTGCG AGTTCAG TCTCCAC CGCTTTC GGCTGTC CTGATAT TTCTATG GTCCGCA AAGGGGG ACCTTCG
 6511 TCCCTCG TGCGCTC TCTCTGT CGGCCCT TGCGGCT TACCGTA TCTCTG CCGCCTT TCTCCCT CGGGAA
 AGGGAGC ACGCCAG AGGACAA GGCTGGG ACGGGCA ATGGACA TGGGCC AGGCGAA AGAGGGA AGCCCTT
 6581 GCGTGCG GCTTTCT CATAGCT CACGCTG TAGGTAT CTCAGTT CGGTGTA GTCGTT CGCTCCA AGCTGGG
 CGCACCG CGAAAGA GTATCGA GTGCGAC ATCCATA GAGTCAA GCCACAT CCAGCAA GCGAGGT TCGACCC
 6651 CTGTCG CACGAC CCCCCGT TCAGCCC GACCCG GCGCCTT ATCCCGT AACTATC GTCTTGA GTCCAAC
 GACACAC GTGCTTG GGGGGCA AGTCGGG CTGGCC CGCGGAA TAGGCCA TTGATAG CAGGTTG
 6721 CCGCTAA GACACAGA CTATCG CCACTGG CAGCAGC CACTGGT AACAGGA TTAGCAG AGCGAGG TATGTAG
 GGCCTT CTGTGCT GAATAGC GGTGACC GTGACCA TTGTCCT AATCGTC TCGCTCC ATACATC
 65 6791 GCGGTGC TACAGAG TTCTTGA AGTCTG GCCTAAC TACGGCT ACACITAG AAGGACA GTATTTG GTATCTG
 CGCCACG ATGTCTC AAGAACT TCACAC CGGATTC ATGCCGA TGTGATC TTCCCTGT CATAAAC CATAGAC
 6861 CGCTCTG CTGAAGC CAGTTAC CTTCGGG AAAAGAG TTGGTAG CTCTTGA TCCGGCA AACAAAC CACCGCT
 GCGAGAC GACTTCG GTCAATG GAAGCCT TTTCTC AACCAC T GAGAACT AGGCGCT TTGTTTG GTGGCGA
 6931 GGTAGCG GTGGTTT TTCTGTT TGCAAGC AGCAGAT TACGCC AGAAAAA AAGGATC TCAAGAA GATCCTT
 70 7001 CCATCGC CACCAA AAAACAA ACGTTCG TCGCTTA ATGCCGA TCTTTTG TTCCCTAG AGTTCTT CTAGGAA
 TGATCTT TTCTAGC GGGCTG ACGCTCA GTGGAC GAAAATC CACGTTA AGGGATT TTGGTCA TGAGATT
 ACTAGAA AAGATGC CCCAGAC TGCGAGT CACCTTG CTTTTGA GTGCAAT TCCCTAA AACCAAGT ACTCTAA
 ATCAAAA AGGATCT TCACCTA GATCCCTT TTAAATT AAAATG AAGTTTT AAATCAA TCTAAAG TATATAT
 TAGTTT TCCCTAGA AGTGGAT CTAGGAA AATTAA TTTTAC TTCAAAAA TTAGTAT AGATTTC ATATATA

7141 GAGTAAA CTTGGTC TGACAGT TACCAAT GCTTAAT CAGTGAG GCACCTA TCTCAGC GATCTGT CTATTTC
CTCATTT GAACCGAG ACTGTCA ATGGTTA CGAATTA GTCACTC CGTGGAT AGAGTCG CTAGACA GATAAAG
~~~~~  
Amp resistance gene

5 7211 GTTCATC CATACTT GCCTGAC TCCCCGT CGTGTAG ATAACCTA CGATCAC GGAGGGC TTACCAT CTGGCCC  
CAAGTAG GTATCAA CGGACTG AGGGGCA GCACATC TATTGAT GCTATGC CCTCCCG AATGGTA GACCGGG  
Amp resistance gene

7281 CAGTGCT GCAATGA TACCGCG AGACCCA CGCTCAC CGGCTCC AGATTAA TCAGCAA TAAACCA GCCAGCC  
GTCACGA CGTTACT ATGGCGC TCTGGGT GCGAGTG CGCGAGG TCTAAAT AGTCGTT ATTTGGT CGGTGCG  
Amp resistance gene

10 7351 GGAAGGG CCGAGCG CAGAACT GGTCTTG CAACCTT ATCCGCC TCCATCC AGTCTAT TAATTGT TGCCGGG  
CCTTCCC GGCTCGC GTCTTCA CCAGGAC GTTGAAG TAGGGCG AGGTAGG TCAGATA ATTAACA ACGGCCC  
Amp resistance gene

15 7421 AAGCTAG AGTAAGT AGTTCGC CAGTTAA TAGTTTG CGCAACG TTGTTGC CATTGCT ACAGGCA TCGTGGT  
TTCGATC TCATTCA TCAAGCG GTCAATT ATCAAAC GCGTTGC AACAAACG GTAACGA TGTCCGT AGCACCA  
Amp resistance gene

7491 GTCACCG TCGTCGT TTGGTAT GGCTTCA TTCAGCT CCGGTC CCAACGA TCAAGGC GAGTTAC ATGATCC  
CAGTGGC AGCAGCA AACCATCA CCGAAGT AAGTCGA GGCCAAAG GGTTGCT AGTTCCG CTCAATG TACTAGG  
Amp resistance gene

20 7561 CCCATGT TGTGCAA AAAAGCG GTTAGCT CCTTCGG TCCCTCG ATCGTTG TCAGAACG TAAGTTG GCCGCAG  
GGGTACA ACACGTT TTTTCGC CAATCGA GGAAGCC TAGAAC ACAGTCTC ATTCAAC CGCGTC  
Amp resistance gene

7631 TGTTATC ACTCATG GTTATGG CAGCACT GCATAAT TCTCTTA CTGTCAT GCCATCC GTAAGAT GCTTTTC  
ACAATAG TGAGTAC CAATACC GTCCGTA CGTATTAA AGAGAAAT GACAGTA CGGTAGG CATTCTA CGAAAAG  
Amp resistance gene

25 7701 TGTGACT GGTGAGT ACTCAAC CAAGTC CAATCTG AATAGTG TATGCCG CGACCGA GTTGCTC TTGCCCC  
ACACTGA CCACTCA TGAGTTG GTTCAGT AAGACTC TTATCAC ATACGCC GCTGGCT CAACGAG AACGGGC  
Amp resistance gene

7771 GCGTCAA TACGGGA TATAFACC GCGCCAC ATAGCAG AACTTTA AAAGTGC TCATCAT TGGAAAAA CGTTCTT  
CGCAGTT ATGCCCT ATTATGG CGCGGTG TATCGTC TTGAAAT TTTCAGG AGTAGTA ACCTTTT GCAAGAA  
Amp resistance gene

30 7841 CGGGCG AAAACTC TCAAGGA TCTTACCC GCTGTTC AGATCCA GTTCAAT GTAAACCC ACTCGTG CACCCAA  
GCCCCGC TTTTGAG AGTTCTT AGAATGG CGACAC TCTAGGT CAAGCTA CATTGGG TGAGCAC GTGGGTT  
Amp resistance gene

35 7911 CTGATCT TCAGCAT CTTTTAC TTTCACC AGCGTTT CTGGGTG AGCAAAA ACAGGAA GGCAAAA TGCCGCA  
GACTAGA AGTCGTA GAAAATG AAAGTGG TCGCAAA GACCCAC TCGTTTT TGTCCTT CCGTTTT ACGGCGT  
Amp resistance gene

7981 AAAAAGG GAATAAG GGGCACA CGGAAAT GTTGAAT ACTCATCA CTCTTCC TTTTCA ATATTAT TGAAGCA  
TTTTTCC CTTATTG CCGCTGT GCCTTA CAACTTA TGAGTAT GAGAAGG AAAAAGT TATAATA ACTTCGT  
~~~~~  
Amp resistance gene

40 8051 TTTATCA GGGTTAT TGCTCA TGAGCGG ATACATA TTTGAAT GTATTAA GAAAAT AAACAAA TAGGGGT
AAATAGT CCCAATA ACAGAGT ACTCGCC TATGTAT AAACCTTA CATAAAAT CTTTTTA TTGTTTT ATCCCCA
TCCGCGC ACATTTG CCCGAAA AGTGCCA CCTGACG TCTAAGA AACCTAT ATTATCA TGACATT AACCTAT
AGGCAGCG TGTAAGG GGCTTT TCACGGT GGACTGC AGATTCT TTGGTAA TAATAGT ACTGTAA TTGGATA
AAAATA GGCGTAT CACGAG
TTTTTAT CCGCATA GTGCTC

FIGURE 2A

mCEA (6D) mCEA (6D, 1st&2nd)	1 ATGGAGTCTC CCTCGGCCCC TCCCCACAGA TGTTGCATCC CCTGGCAGAG	50 ATGGAGTCTC CCTCGGCCCC TCCCCACAGA TGTTGCATCC CCTGGCAGAG
mCEA (6D) mCEA (6D, 1st&2nd)	51 GCTCCTGCTC ACAGCCTCAC TTCTAACCTT CTGGAACCCG CCCACCACTG	100 GCTCCTGCTC ACAGCCTCAC TTCTAACCTT CTGGAACCCG CCCACCACTG
mCEA (6D) mCEA (6D, 1st&2nd)	101 CCAAGCTCAC TATTGAATCC ACGCCGTTCA ATGTCGCAGA GGGGAAGGAG	150 CCAAGCTCAC TATTGAATCC ACGCCGTTCA ATGTCGCAGA GGGGAAGGAG
mCEA (6D) mCEA (6D, 1st&2nd)	151 GTGCTTCTAC TTGTCCACAA TCTGCCCCAG CATCTTTTG GCTACAGCTG	200 GTGCTTCTAC TTGTCCACAA TCTGCCCCAG CATCTTTTG GCTACAGCTG
mCEA (6D) mCEA (6D, 1st&2nd)	201 GTACAAAGGT GAAAGAGTGG ATGGCAACCG TCAAATTATA GGATATGTAA	250 GTACAAAGGT GAAAGAGTGG ATGGCAACCG TCAAATTATA GGATATGTAA
mCEA (6D) mCEA (6D, 1st&2nd)	251 TAGGAACTCA ACAAGCTACC CCAGGGCCCG CATACTGG TCGAGAGATA	300 TAGGAACTCA ACAAGCTACC CCAGGGCCCG CATACTGG TCGAGAGATA
mCEA (6D) mCEA (6D, 1st&2nd)	301 ATATACCCCA ATGCATCCCT GCTGATCCAG AACATCATCC AGAATGACAC	350 ATATACCCCA ATGCATCCCT GCTGATCCAG AACATCATCC AGAATGACAC
mCEA (6D) mCEA (6D, 1st&2nd)	351 AGGATTCTAC ACCCTACACG TCATAAAAGTC AGATCTTG AATGAAGAAG	400 AGGATTCTAC ACCCTACACG TCATAAAAGTC AGATCTTG AATGAAGAAG
mCEA (6D) mCEA (6D, 1st&2nd)	401 CAAATGGCCA GTTCCGGGTA TACCCGGAGC TGCCCAAGGC CTCCATCTCC	450 CAAATGGCCA GTTCCGGGTA TACCCGGAAC <u>TCCCTAAGGC</u> <u>TTCTATTAGC</u>
mCEA (6D) mCEA (6D, 1st&2nd)	451 AGCAACAACCT CCAAACCGT GGAGGACAAG GATGCTGTG CCTTCACCTG	500 <u>TCCAATAATA</u> <u>GTAAGCCTGT</u> <u>CGAACACAAA</u> <u>GATGCCGTG</u> <u>CTTTTACATG</u>
mCEA (6D) mCEA (6D, 1st&2nd)	501 TGAACCTGAG ACTCAGGACG CAACCTACCT GTGGTGGGTA AACATCAGA	550 <u>CGAGCCCCGAA</u> <u>ACTCAAGACG</u> <u>CAACATATCT</u> <u>CTGGTGGGTA</u> <u>AACAAACCGAT</u>
mCEA (6D) mCEA (6D, 1st&2nd)	551 GCCTCCCGGT CAGTCCCAGG CTGCAGCTGT CCAATGGCAA CAGGACCTC	600 <u>CCCTGCCTGT</u> <u>GTCCCCTAGA</u> <u>CTCCAACCTCA</u> <u>GCAACGGAAA</u> <u>TAGAACTCTG</u>
mCEA (6D) mCEA (6D, 1st&2nd)	601 ACTCTATTCA ATGTCACAAG AAATGACACA GCAAGCTACA AATGTGAAAC	650 <u>ACCCTGTTA</u> <u>ACGTGACCAAG</u> <u>GAACGACACA</u> <u>GCAAGCTACA</u> <u>AATGCGAAAC</u>

FIGURE 2B

		651	700
	mCEA (6D)	CCAGAACCCA GTGAGTGCCA GGCAGCAGTGA TTCAGTCATC CTGAATGTCC	
	mCEA (6D, 1st&2nd)	CCAAA <u>ATCCA</u> GTC <u>AGCGCCA</u> GG <u>AGGTCTGA</u> TTC <u>AGTGATT</u> CT <u>CAACGTGC</u>	
5			
	mCEA (6D)	701	750
	mCEA (6D, 1st&2nd)	TCTATGGCCC GGATGCCCCC ACCATTTCCC CTCTAACAC ATCTTACAGA	
		TTT <u>ACGGACC</u> CGAT <u>GCTCCT</u> ACA <u>ATCAGCC</u> CTCTAACAC A <u>AGCTATA</u> AGA	
10			
	mCEA (6D)	751	800
	mCEA (6D, 1st&2nd)	TCAGGGAAA ATCTGAACCT CTCCTGCCAC GCAGCCTCTA ACCCACCTGC	
		TCAGGGAAA ATCTGA <u>ATCT</u> GAG <u>CTGTCA</u> GCC <u>GCTAGCA</u> AT <u>CCTCCCGC</u>	
15			
	mCEA (6D)	801	850
	mCEA (6D, 1st&2nd)	ACAGTACTCT TGGTTTGTC <u>A</u> TGGGACTTT CCAGCAATCC ACCCAAGAGC	
		<u>CCAATACAGC</u> TGGTTTGTC <u>A</u> TGG <u>CACTTT</u> CCA <u>ACAGTCC</u> ACC <u>CCAGGAAC</u>	
20			
	mCEA (6D)	851	900
	mCEA (6D, 1st&2nd)	TCTTATCCC CAACATCACT GTGAATAATA GTGGATCCTA TACGTGCCAA	
		<u>TGTTCAT</u> <u>TCC</u> CA <u>ATATTAC</u> <u>C</u> GT <u>GAACA</u> <u>ATA</u> GTGGATCCTA <u>CACGTGCCAA</u>	
25			
	mCEA (6D)	901	950
	mCEA (6D, 1st&2nd)	GCCCATAACT CAGACACTGG CCTCAATAGG ACCACAGTCA CGACGATCAC	
		<u>GCT</u> <u>CACA</u> <u>ATA</u> <u>GCGACAC</u> <u>GG</u> ACT <u>CAAC</u> <u>CGC</u> ACA <u>ACCGTGA</u> CGACGATTAC	
	mCEA (6D)	951	1000
	mCEA (6D, 1st&2nd)	AGTCTATGAG CCACCCAAAC CTTCATCAC CAGCAACAAAC TCCAACCCCG	
		<u>CGTGTATGAG</u> CC <u>ACCA</u> <u>AAAC</u> C <u>ATT</u> <u>CATA</u> <u>AC</u> TAG <u>TAACA</u> <u>AT</u> T <u>CTA</u> <u>ACCC</u> <u>AG</u>	
30			
	mCEA (6D)	1001	1050
	mCEA (6D, 1st&2nd)	TGGAGGATGA GGATGCTGTA GCCTTAACCT GTGAACCTGA GATTAGAAC	
		<u>TTGAGGATGA</u> GG <u>ACGCAG</u> <u>TT</u> GC <u>ATTA</u> <u>ACT</u> <u>TT</u> GT <u>GAGC</u> <u>AGA</u> GATT <u>CAA</u> <u>AT</u>	
35			
	mCEA (6D)	1051	1100
	mCEA (6D, 1st&2nd)	ACAACCTACC TGTGGTGGGT AAATAATCAG AGCCTCCCGG TCAGTCCCAG	
		<u>ACC</u> <u>ACT</u> <u>TATT</u> <u>T</u> T <u>ATGGTGGG</u> <u>T</u> C <u>AA</u> <u>TAAC</u> <u>AA</u> AG <u>TTT</u> <u>GCC</u> <u>GG</u> TT <u>AG</u> <u>CCC</u> <u>ACG</u>	
40			
	mCEA (6D)	1101	1150
	mCEA (6D, 1st&2nd)	GCTGCAGCTG TCCAATGACA ACAGGACCCCT CACTCTACTC AGTGTACAA	
		<u>CTTGCAG</u> <u>TTG</u> T <u>CA</u> <u>ATG</u> <u>GAT</u> <u>A</u> ACC <u>GCAC</u> <u>ATT</u> G <u>AC</u> <u>ACT</u> <u>CCTG</u> <u>TCC</u> <u>GTT</u> <u>ACTC</u>	
45			
	mCEA (6D)	1151	1200
	mCEA (6D, 1st&2nd)	GGAAATGATGT AGGACCTAT GAGTGTGGAA TCCAGAACGA ATTAAAGTGT	
		<u>GCA</u> <u>ATG</u> <u>ATGT</u> <u>T</u> AG <u>GCAC</u> <u>TT</u> G <u>AGT</u> <u>GTGG</u> <u>CA</u> T <u>TC</u> <u>AGA</u> <u>AT</u> <u>GA</u> ATT <u>AT</u> <u>CC</u> <u>GT</u>	
50			
	mCEA (6D)	1201	1250
	mCEA (6D, 1st&2nd)	GACCACAGCG ACCCAGTCAT CCTGAATGTC CTCTATGCC CAGACGACCC	
		<u>GAT</u> <u>CA</u> <u>CT</u> <u>CCG</u> ACC <u>CT</u> <u>GTT</u> <u>AT</u> C <u>CT</u> <u>TA</u> <u>AT</u> <u>GTT</u> T <u>TG</u> <u>TAT</u> <u>GGCC</u> CAGACGACCC	
	mCEA (6D)	1251	1300
	mCEA (6D, 1st&2nd)	CACCATTTCC CCCTCATACA CCTATTACCG TCCAGGGGTG AACCTCAGCC	
		<u>AA</u> <u>CT</u> <u>AT</u> <u>AT</u> <u>CT</u> <u>T</u> CC <u>AT</u> <u>TC</u> <u>AT</u> <u>ACA</u> CCT <u>AC</u> <u>TAC</u> <u>CG</u> T <u>CC</u> <u>CGG</u> <u>CGT</u> <u>G</u> AAC <u>T</u> <u>TG</u> <u>GAG</u> <u>CC</u>	

FIGURE 2C

		1301	1350
	mCEA (6D)	TCTCCCTGCCA TGCAGCCTCT AACCCACCTG CACAGTATTTC TTGGCTGATT	
5	mCEA (6D, 1st&2nd)	TTTCTTGCCA TGCAGCATCC AACCCCCCTG CACAGTACTC CTGGCTGATT	
		1351	1400
	mCEA (6D)	GATGGGAACA TCCAGCAACA CACACAAGAG CTCTTTATCT CCAACATCAC	
	mCEA (6D, 1st&2nd)	GATGGAAACA TTCAGCAGCA TACTCAAGAG TTATTATAA GAACACATAAAC	
10		1401	1450
	mCEA (6D)	TGAGAAGAAC AGCGGACTCT ATACCTGCCA GGCCAATAAC TCAGCCAGTG	
	mCEA (6D, 1st&2nd)	TGAGAAGAAC AGCGGACTCT ATACCTGCCA GGCCAATAAC TCAGCCAGTG	
15		1451	1500
	mCEA (6D)	GCCACAGCAG GACTACAGTC AAGACAATCA CAGTCTCTGC GGAGCTGCC	
	mCEA (6D, 1st&2nd)	GTCACAGCAG GACTACAGTT AAAACAATAA CTGTTTCCGC GGAGCTGCC	
20		1501	1550
	mCEA (6D)	AAGCCCTCCA TCTCCAGCAA CAACTCCAAA CCCGTGGAGG ACAAGGATGC	
	mCEA (6D, 1st&2nd)	AAGCCCTCCA TCTCCAGCAA CAACTCCAAA CCCGTGGAGG ACAAGGATGC	
25		1551	1600
	mCEA (6D)	TGTGGCCTTC ACCTGTGAAC CTGAGGCTCA GAACACAACC TACCTGTGGT	
	mCEA (6D, 1st&2nd)	TGTGGCCTTC ACCTGTGAAC CTGAGGCTCA GAACACAACC TACCTGTGGT	
30		1601	1650
	mCEA (6D)	GGGTAAATGG TCAGAGCCTC CCAGTCAGTC CCAGGCTGCA GCTGTCCAAT	
	mCEA (6D, 1st&2nd)	GGGTAAATGG TCAGAGCCTC CCAGTCAGTC CCAGGCTGCA GCTGTCCAAT	
35		1651	1700
	mCEA (6D)	GGCAACAGGA CCCTCACTCT ATTCAATGTC ACAAGAAATG ACGCAAGAGC	
	mCEA (6D, 1st&2nd)	GGCAACAGGA CCCTCACTCT ATTCAATGTC ACAAGAAATG ACGCAAGAGC	
40		1701	1750
	mCEA (6D)	CTATGTATGT GGAATCCAGA ACTCAGTGAG TGCAAACCGC AGTGACCCAG	
	mCEA (6D, 1st&2nd)	CTATGTATGT GGAATCCAGA ACTCAGTGAG TGCAAACCGC AGTGACCCAG	
45		1751	1800
	mCEA (6D)	TCACCCCTGGA TGTCCCTAT GGGCCGGACA CCCCCATCAT TTCCCCCCCCA	
	mCEA (6D, 1st&2nd)	TCACCCCTGGA TGTCCCTAT GGGCCGGACA CCCCCATCAT TTCCCCCCCCA	
50		1801	1850
	mCEA (6D)	GACTCGTCTT ACCTTTCGGG AGCGGACCTC AACCTCTCCT GCCACTCGGC	
	mCEA (6D, 1st&2nd)	GACTCGTCTT ACCTTTCGGG AGCGGACCTC AACCTCTCCT GCCACTCGGC	
		1851	1900
	mCEA (6D)	CTCTAACCCA TCCCCGCACT ATTCTTGGCG TATCAATGGG ATACCGCAGC	
	mCEA (6D, 1st&2nd)	CTCTAACCCA TCCCCGCACT ATTCTTGGCG TATCAATGGG ATACCGCAGC	
		1901	1950
	mCEA (6D)	AACACACACA AGTTCTCTTT ATCGCCAAAA TCACGCCAAA TAATAACGGG	
	mCEA (6D, 1st&2nd)	AACACACACA AGTTCTCTTT ATCGCCAAAA TCACGCCAAA TAATAACGGG	

FIGURE 2D

	1951	2000
5	mCEA (6D)	ACCTATGCCT GTTTTGTCTC TAACTTGGCT ACTGGCCGCA ATAATTCCAT
	mCEA (6D, 1st&2nd)	ACCTATGCCT GTTTTGTCTC TAACTTGGCT ACTGGCCGCA ATAATTCCAT
	2001	2050
	mCEA (6D)	AGTCAAGAGC ATCACAGTCT CTGCATCTGG AACTTCTCCT GGTCTCTCAG
10	mCEA (6D, 1st&2nd)	AGTCAAGAGC ATCACAGTCT CTGCATCTGG AACTTCTCCT GGTCTCTCAG
	2051	2100
	mCEA (6D)	CTGGGGCCAC TGTCGGCATC ATGATTGGAG TGCTGGTTGG GGTTGCTCTG
	mCEA (6D, 1st&2nd)	CTGGGGCCAC TGTCGGCATC ATGATTGGAG TGCTGGTTGG GGTTGCTCTG
15		2101
	mCEA (6D)	ATATAAG
	mCEA (6D, 1st&2nd)	ATATAAG

FIGURE 3**A. Amino Acid Sequence Comparison of “Wild-Type KSA” (1) and Modified KSA (2)**

5 1 MAPPQVLAFGLLLAATATFAAAQEECVCENYKLAVNCVNNNRQCQCTSVGAQNTVIC
 2 MAPPQVLAFGLLLAATATFAAAQEECVCENYKLAVNCVNNNRQCQCTSVGAQNTVIC

10 1 SKLAAKCLVMKAEMNGSKLGRRAKPEGALQNNDGLYDPDCDESGLFKAKQCNGTSTCWC
 2 SKLAAKCLVMKAEMNGSKLGRRAKPEGALQNNDGLYDPDCDESGLFKAKQCNGTSTCWC

15 1 VNTAGVRRTDKDTEITCSERVRTWIIIELKHKAREKPYDSKSLRTALQKEITTRYQLD
 2 VNTAGVRRTDKDTEITCSERVRTWIIIELKHKAREKPYDSKSLRTALQKEITTRYQLD

20 1 PKFITSILYENNVTIDLVQNSSQKTQNDVDIADVAYYFEKDVKGESLFHSKKMDLTVN
 2 PKFITSVLYENNVTIDLVQNSSQKTQNDVDIADVAYYFEKDVKGESLFHSKKMDLTVN

25 1 GEQLLDLDPGQTLYYVDEKAPEFSMQGLKAGVIAVIVVVVIAVVAGIVVLVISRKKRMA
 2 GEQLLDLDPGQTLYYVDEKAPEFSMQGLKAGVIAVIVVVVIAVVAGIVVLVISRKKRMA

30 1 KYEKAEI**KEMGEMHRELNA**
 2 KYEKAEI**KEMGEMHRELNA**

B. DNA Sequence of Modified KSA

atggcgcccccgcaggtcctcggttcgggcttctgcttgccgcggcgacggcgactttgccgcagctcaggaa
 25 gaatgtgtctgtgaaaactacaagctggcgtaaaactgtcttgcataataatcgtaatgcgcgtgtacttca
 gttgggtcacaaaaactgtcattgtctaaagctggctgccaatgttggtgatgaaggcagaaatgaatggc
 tcaaaaacttgggagaagagcaaaacctgaaggggccccccagaacaatgtggctttatgatcctgactgcgt
 gagagcgggcttttaaggccaagcagtgcacggcacccacgtgctggtgatgaacactgtgggtcaga
 agaacagacaaggacactgaaataacctgtcattgtggatcatcattgaactaaaacac
 30 aaagcaagagaaaaaaccttatgatgtaaaagtgcggactgcacttcagaaggagatcacaacgcgttatcaa
 ctggatccaaaatttatcagagtgtttgtatgagaataatgttatcactattgatctggttcaaaattcttct
 caaaaaactcagaatgtgtggacatagctgtatgtggcttattttgaaaaagatgttaaagggtgaatccttg
 ttcatcattcaagaaaatggacctgacagtaatgggaacaactggatctggatcctggtcaaactttaatttat
 tatgttgatgaaaaagcacctgaattctcaatgcagggtctaaagctggttattgtgttattgtgggtgt
 35 gtgatagcagtttgctggaaatttgtgtctggttattccagaaagaagagaatggcaaagtatgagaaggct
 gagataaaggagatgggtgagatgcataggaaactcaatgcataaa

FIGURE 4A
Construction of Modified KSA Plasmid

FIGURE 4B
Construction of Modified KSA Plasmid

FIGURE 5**A. Plasmid Map of Modified KSA Expression Vector**

5

B. DNA Sequence of Modified KSA Expression Vector

Promoter H6 for KSAV	9930-9515
KSAV	1-945
Left arm	1002-1422
Right arm	4070-5590
Right arm fragment	9012-9299

MetAlaProPro GlnValLeu AlaPheGly LeuLeuLeuAla AlaAlaThr.
 1 ATGGCGCCCC CGCAGGTCT CGCGTTGGG CTTCTGCTTG CCGCGGCCAC
 10 TACCGCGGGG GCGTCCAGGA GCGCAAGCCC GAAGACGAAC GGCGCCGCTG
 .AlaThrPhe AlaAlaAlaGln GluGluCys ValCysGlu AsnTyrLysLeu.
 51 GGCGACTTTT GCCGCAGCTC AGGAAGAATG TGCTCTGTGAA AACTACAAGC
 CCCGCTAAAA CGCGCTCGAG TCCTTCTTAC ACAGACACTT TTGATGTTCG
 ..AlaValAsn CysPheVal AsnAsnAsnArg GlnCysGln CysThrSer
 15 101 TGGCCGTAAG CTGCTTTGTG AATAATAATC GTCAATGCCA GTGTACTTCA
 ACCGGCATTT GACGAAACAC TTATTATTAG CAGTTACGGT CACATGAAGT
 ValGlyAlaGln AsnThrVal IleCysSer LysLeuAlaAla LysCysLeu.
 151 GTTGGTGAC AAAATACTGT CATTGCTCA AAGCTGGCTG CCAAATGTTT
 CAACCACGTG TTTTATGACA GTAAACGAGT TTCGACCGAC GGTTTACAAA
 20 201 .ValMetLys AlaGluMetAsn GlySerLys LeuGlyArg ArgAlaLysPro.
 GGTGATGAAG GCAGAAATGA ATGGCTCAA ACTTGGGAGA AGAGCAAAC
 CCACTACTTC CGTCTTTACT TACCGAGTT TGAAACCTCT TCTCGTTTG
 ..GluGlyAla LeuGlnAsn AsnAspGlyLeu TyrAspPro AspCysAsp
 25 251 CTGAAGGGC CCTCCAGAAC AATGATGGGC TTTATGATCC TGACTGCGAT
 GACTTCCCCG GGAGGTCTG TTACTACCCG AAATACTAGG ACTGACGCTA
 GluSerGlyLeu PheLysAla LysGlnCys AsnGlyThrSer ThrCysTrp.
 301 GAGAGCGGGC TCTTAAGGC CAAGCAGTGC AACGGCACCT CCACGTGCTG
 CTCTCGCCCC AGAAATTCCG GTTCGTCACG TTGCCGTGGA GGTGCACGAC
 .CysValAsn ThrAlaGlyVal ArgArgThr AspLysAsp ThrGluIleThr.
 351 GTGTGTGAAC ACTGCTGGGG TCAGAAGAAC AGACAAGGAC ACTGAAATAA
 CACACACTTG TGACGACCCC AGTCTTCTG TCTGTTCCCTG TGACTTTATT
 ..CysSerGlu ArgValArg ThrTyrTrpIle IleIleGlu LeuLysHis

401 CCTGCTCTGA GCGAGTGAGA ACCTACTGG A TCATCATTGA ACTAAAACAC
 GGACGAGACT CGCTCACTCT TGGATGACCT AGTAGTAAC TGATTTGTG
 LysAlaArgGlu LysProTyr AspSerLys SerLeuArgThr AlaLeuGln.
 451 AAAGCAAGAG AAAAACCTTA TGATAGTAAA AGTTTGCAGA CTGCACTTC
 5 TTTCGTTCTC TTTTGAAAT ACTATCATTT TCAAACGCT GACGTGAAGT
 .LysGluIle ThrThrArgTyr GlnLeuAsp ProLysPhe IleThrSerVal.
 501 GAAGGAGATC ACAACGCGTT ATCAACTGG A TCCAAAATTT ATCACGAGTG
 CTTCCCTCTAG TGTGCGCAA TAGTTGACCT AGGTTTAAA TAGTGCTCAC
 ..LeuTyrGlu AsnAsnVal IleThrIleAsp LeuValGln AsnSerSer
 10 551 TGTTGTATGA GAATAATGTT ATCACTATTG ATCTGGTTCA AAATTCTTCT
 ACAACATACT CTTATTACAA TAGTGATAAC TAGACCAAGT TTTAAGAAGA
 GlnLysThrGln AsnAspVal AspIleAla AspValAlaTyr TyrPheGlu.
 601 CAAAAAAACTC AGAATGATGT GGACATAGCT GATGTGGCTT ATTATTTGA
 GTTTTTTGTAG TCTTACTACA CCTGTATCGA CTACACCGAA TAATAAAACT
 .LysAspVal LysGlyGluSer LeuPheHis SerLysLys MetAspLeuThr.
 15 651 AAAAGATGTT AAAGGTGAAT CCTTGTTCA TTCTAAGAAA ATGGACCTGA
 TTTTCTACAA TTTCCACTTA GGAACAAAGT AAGATTCTTT TACCTGGACT
 .ValAsnGly GluGlnLeu AspLeuAspPro GlyGlnThr LeuIleTyr
 701 CAGTAAATGG GGAACAACTG GATCTGGATC CTGGTCAAAC TTTAATTAT
 GTCATTTACC CCTTGTTGAC CTAGACCTAG GACCAGTTG AAATTAATA
 TyrValAspGlu LysAlaPro GluPheSer MetGlnGlyLeu LysAlaGly.
 751 TATGTTGATG AAAAACGACC TGAATTCTCA ATGCAGGGTC TAAAAGCTGG
 ATACAACATAC TTTTCTGAG ACTTAAGAGT TACGTCCCAG ATTTTCGACC
 .ValIleAla ValIleValVal ValValile AlaValVal AlaGlyIleVal.
 20 801 TGTTATTGCT GTTATTGTGG TTGTGGTGAT AGCAGTTGTT GCTGGAATTG
 ACAATAACGA CAATAACACC AACACCACTA TCGTCAACAA CGACCTTAAC
 ..ValLeuVal IleSerArg LysLysArgMet AlaLysTyr GluLysAla
 851 TTGTGCTGGT TATTTCAGA AAGAAGAGAA TGGCAAAGTA TGAGAAGGCT
 AACACGACCA ATAAAGGTCT TTCTTCTCTT ACCGTTTCAT ACTCTTCCGA
 GluIleLysGlu MetGlyGlu MetHisArg GluLeuAsnAla ***
 30 901 GAGATAAAAGG AGATGGGTGA GATGCATAGG GAACTCAAIG CATAAGAAGC
 CTCTATTTCCT TCTACCCACT CTACGTATCC CTTGAGTTAC GTATTCTCG
 951 TTATCGATAC CGTCGACCTC GAGGAATTCT TTTTATTGAT TAACTAGTTA
 AATAGCTATG GCAGCTGGAG CTCCTTAAGA AAAATAACTA ATTGATCAAT
 35 1001 ATCACGGCG CTTATAAAGA TCTAAAATGC ATAATTCTA AATAATGAAA
 TAGTGCCCGC GAATATTCT AGATTTTACG TATTAAAGAT TTATTACTTT
 1051 AAAAGTACA TCATGAGCAA CGCGTTAGTA TATTTCAGA TGGAGATTAA
 TTTTCTATGT AGTACTCGTT GCGCAATCAT ATAAAATGTT ACCTCTAATT
 1101 CGCTCTTAC CGTCTATGT TTATTGATTC AGATGATGTT TTAGAAAAGA
 40 GCGAGATATG GCAAGATACA AATAACTAAG TCTACTACAA AATCTTTCT
 1151 AAGTTATTGA ATATGAAAAC TTTAATGAAG ATGAAGATGA CGACGATGAT
 TTCAATAACT TATACTTTTG AAATTACTTC TACTTCTACT GCTGCTACTA
 1201 TATTGTTGTA AATCTGTTT AGATGAAGAA GATGACGCGC TAAAGTATAAC
 ATAACACAT TTAGACAAAAA TCTACTTCTT CTACTGCGCG ATTTCATATG
 45 1251 TATGGTTACA AAGTATAAGT CTATACTACT AATGGCGACT TGTGCAAGAA
 ATACCAATGT TTCATATTCA GATATGATGA TTACCGCTGA ACACGTTCTT
 1301 GGTATAGTAT AGTGAAGAA CCTGTTAGATT ATGATTATGA AAAACCAAAT
 CCATATCATA TCACCTTAC AACAATCTAA TACTAATACT TTTTGGTTA
 50 1351 AAATCAGATC CATATCTAAA GGTATCTCCT TTGACATCAA TTTCATCTAT
 TTTAGTCTAG GTATAGATT CCATAGAGGA AACGTGTATT AAAGTAGATA
 1401 TCCTAGTTA GAATACCTGC AGCCAAGCTT GGCACTGGCC GTCGTTTAC
 AGGATCAAAT CTTATGGACG TCGGTTCGAA CCGTGACCGG CAGCAAATG
 1451 AACGTCCGTGA CTGGGAAAC CCTGGCGTTA CCCAACTTAA TCGCCTTGCA
 TTGCAGCACT GACCCTTTG GGACCGCAAT GGGTTGAATT AGCGGAACGT
 55 1501 GCACATCCCC CTTTCGCCAG CTGGCGTAAT AGCGAAGAGG CCCGCACCGA
 CGTGTAGGGG GAAAGCGGT GACCGCATT A TCGCTTCTCC GGGCGTGGCT
 TCGCCCTTCC CAACAGTTGC GCAGCCTGAA TGGCGAATGG CGCCTGATGC
 AGCGGGAAAGG GTTGTCAACG CGTCGGACTT ACCGCTTACCG GCGGACTACG
 1601 GGTATTTCT CCTTACGCA CTGTGCGGT A TTTCACACCG CATATGGTC

		CCATAAAAGA GGAATGCGTA GACACGCCAT AAAGTGTGGC GTATACCACG
	1651	ACTCTCAGTA CAATCTGCTC TGATGCCGCA TAGTTAACGCC AGCCCCGACA
		TGAGAGTCAT GTTAGACGAG ACTACGGCGT ATCAAATTGG TCAGGGGCTGT
5	1701	CCCGCCAACA CCCGCTGACG CGCCCTGACG GGCTTGTCTG CTCCCGGCAT
	1751	GGCGGTTGTG GGGCGACTGC CGGGGACTGC CGAACACAGAC GAGGGCCGTA
	1801	CCGCTTACAG ACAAGCTGTG ACCGTCTCCG GGAGCTGCAT GTGTCAGAGG
		GGCGAATGTC TGTTCGACAC TGGCAGAGGC CCTCGACGTA CACAGTCTCC
10	1851	TTTTCACCGT CATCACCGAA ACGCGCGAGA CGAAAGGGCC TCGTGATACG
		AAAAGTGGCA GTAGTGGCTT TGCGCGCTCT GCTTCCCAG AGCACTATGC
	1851	CCTATTTTTA TAGGTTAATG TCATGATAAT AATGGTTCT TAGACGTCAG
		GGATAAAAAT ATCCAATTAC AGTACTATTA TTACCAAAGA ATCTGCAGTC
	1901	GTGGCACTTT TCAGGGAAAT GTGCGCGGAA CCCCTATTG TTTATTTTC
		CACCGTGAAG AGCCCCTTA CACGCCCTT GGGGATAAAC AAATAAAAG
15	1951	TAAATACATT CAAATATGTA TCCGCTCATG AGACAATAAC CCTGATAAAT
		ATTTATGTAA GTTATACAT AGGCGAGTAC TCTGTTATTG GGACTATTAA
	2001	GCTTCAATAA TATTGAAAAA GGAAGAGTAT GAGTATTCAA CATTTCCTG
		CGAAGTTATT ATAACCTTTT CCTTCTCATA CTCTAAAGTT GTAAAGGCAC
	2051	TCGCCCTTAT TCCCTTTTTT GCGGCATTTT GCCTTCTGT TTTTGCTCAC
		AGCGGGAAATA AGGGAAAAAA CGCCGTAAAA CGGAAGGACA AAAACGAGTG
20	2101	CCAGAAAACGC TGGTGAAAGT AAAAGATGCT GAAGATCAGT TGGGTGCACG
		GGTCTTGCAC ACCACTTTCA TTTTCTACGA CTTCTAGTCA ACCCACGTGC
	2151	AGTGGGTTAC ATCGAACTGG ATCTCAACAG CGGTAAGATC CTTGAGAGTT
		TCACCCAATG TAGCTTGACC TAGAGTTGTC GCCATTCTAG GAACTCTCAA
25	2201	TTCGCCCCGA AGAACGTTT CCAATGATGA GCACTTTTAA AGTTCTGCTA
		AAGCGGGGCT TCTGCAAAA GGTTACTACT CGTGAAAATT TCAAGACGAT
	2251	TGTGGCGCGG TATTATCCCG TATTGACGCC GGGCAAGAGC AACTCGGTG
		ACACCGCGCC ATAATAGGGC ATAACTGCCG CCCGTTCTCG TTGAGCCAGC
	2301	CCGCATACAC TATTCTCAGA ATGACTTGGT TGAGTACTCA CCAGTCACAG
		GGCGTATGTG ATAAGAGTCT TACTGAACCA ACTCATGAGT GGTAGTGTG
30	2351	AAAAGCATCT TACGGATGGC ATGACAGTAA GAGAATTATG CAGTGTGCC
		TTTTCTGAGA ATGCCCTACCG TACTGTCATT CTCTTAAATAC GTCACGACGG
	2401	ATAACCATGA GTGATAACAC TGCGGCCAAC TTACTCTGA CAACGATCGG
		TATTGGTACT CACTATTGTG ACGCCGGTTG AATGAAGACT GTTGCTAGCC
	2451	AGGACCGAAG GAGCTAACCG CTTTTTGCA CAACATGGGG GATCATGTAA
35		TCCTGGCTTC CTCGATTGGC GAAAAAACGT GTTGTACCCC CTAGTACATT
	2501	CTCGCCTTGA TCGTTGGGAA CCGGAGCTGA ATGAAGCCAT ACCAACGAC
		GAGCGGAACG AGCAACCCCTT GGCCTCGACT TACCTCGGT TGGTTGCTG
	2551	GAGCGTGACA CCACGATGCC TGTAGCAATG GCAACAAACGT TGCGAAACT
		CTCGCACTGT GGTGCTACGG ACATCGTTAC CGTTGTTGCA ACGCGTTGA
40	2601	ATTAACCTGGC GAACTACTTA CTCTAGCTTC CGGCAACAA TTAATAGACT
		TAATTGACCG CTTGATGAAT GAGATCGAAG GGCGTTGTT AATTATCTGA
	2651	GGATGGAGGC GGATAAAAGTT GCAGGACCAC TTCTCGCGCTC GGCCCTTCCG
		CCTACCTCCG CCTTAACTCAA CGTCTGGTG AAGACGCGAG CCGGGAAGGC
45	2701	GCTGGCTGGT TTATTGCTGA TAAATCTGGA GCCGGTGAGC GTGGGTCTCG
		CGACCGACCA AATAACGACT ATTTAGACCT CGGCCACTCG CACCCAGAGC
	2751	CGGTATCATT GCAGCACTGG GGCCAGATGG TAAGCCCTCC CGTATCGTAG
		CCCATAGTAA CGTCGTGACC CGGGTCTACC ATTCCGGAGG GCATAGCATC
	2801	TTATCTACAC GACGGGGAGT CAGGCAACTA TGGATGAACG AAATAGACAG
		AATAGATGTG CTGCCCCCTCA GTCCGTTGAT ACCTACTTGC TTTATCTGTC
50	2851	ATCGCTGAGA TAGGTGCTC ACTGATTAAG CATTGGTAAC TGTCAAGACCA
		TAGCGACTCT ATCCACGGAG TGACTAAATC GTAACCAATTG ACAGTCTGGT
	2901	AGTTTACTCA TATATACTTT AGATTGATTT AAAACTTCAT TTTTAAATTAA
		TCAAATGAGT ATATATGAAA TCTAACTAAA TTTTGAAGTA AAAATTAAAT
55	2951	AAAGGATCTA GGTGAAGATC CTTTTGATA ATCTCATGAC CAAATCCCT
		TTTCCTAGAT CCACTCTAG GAAAAACTAT TAGAGTACTG GTTTTAGGGA
	3001	TAACGTGAGT TTTCGTTCCA CTGAGCGTCA GACCCCGTAG AAAAGATCAA
		ATTGCACTCA AAAGCAAGGT GACTCGCAGT CTGGGGCATC TTTCTAGTT
	3051	AGGATCTCT TGAGATCCTT TTTTCTGCG CGTAATCTGC TGCTTGCAAA
		TCCTAGAAGA ACTCTAGGAA AAAAGACGC GCATTAGACG ACGAACGTTT

	3101	CAAAAAAACC ACCGCTACCA GCGGTGGTTT GTTGCCGGA TCAAGAGCTA
		GTTTTTTTGG TGGCGATGGT CGCCACCAAA CAAACGGCCT AGTTCTCGAT
	3151	CCAACTCTT TTCCGAAGGT AACTGGCTTC AGCAGAGCGC AGATAACAAA
		GGTTGAGAAA AAGGCTTCCA TTGACCGAAG TCGTCTCGCG TCTATGGTT
5	3201	TACTGTCCTT CTAGTGTAGC CGTAGTTAGG CCACCACTTC AAGAACTCTG
		ATGACAGGAA GATCACATCG GCATCAATCC GGTGGTGAAG TTCTTGAGAC
	3251	TAGCACCGCC TACATACCTC GCTCTGCTAA TCCTGTTACC AGTGGCTGCT
		ATCGTGGCGG ATGTATGGAG CGAGACGATT AGGACAATGG TCACCGACGA
10	3301	GCCAGTGGCG ATAAGTCGTG TCTTACCGGG TTGGACTCAA GACGATAAGTT
		CGGTCAACCGC TATTCAAGCAC AGAATGGCC AACCTGAGTT CTGCTATCAA
	3351	ACCGGATAAG GCGCAGCGGT CGGGCTGAAC GGGGGGTTCG TGACACACAGC
		TGGCCTATTG CGCGTCGCCA GCCCCGACTTG CCCCCCAAGC ACGTGTGTCG
	3401	CCAGCTTGGA CGAACGACC TACACCGAAC TGAGATACTT ACAGCGTGGAG
		GGTCAACCT CGCTTGTGG ATGTTGGCTTG ACTCTATGGA TGTCGCACTC
15	3451	CTATGAGAAA GCGCACAGCT TCCCAGAGGG AGAAAGGCGG ACAGGTATCC
		GATACTCTTT CGCGGTGCGA AGGGCTTCCC TCTTCCGCC TGTCCATAGG
	3501	GGTAAGCGGC AGGGTCGGA CAGGAGAGCG CACGAGGGAG CTTCCAGGGG
		CCATTGCCG TCCACGCCCT GTCTCTCGC GTGCTCCCTC GAAGGTCCCC
20	3551	GAAACGCTG GTATCTTTAT AGTCCTGTCG GGTTTCGCCA CCTCTGACTT
		CTTTGCGGAC CATAGAAATA TCAGGACAGC CAAAGCGGT GGAGACTGAA
	3601	GAGCGTCGAT TTTGTGATG CTCGTCAGGG GGGCGGAGCC TATGGAAAAAA
		CTCGCAGCTA AAAACACTAC GAGCAGTCCC CCCGCCCTCGG ATACCTTTT
25	3651	CGCCAGCAAC CGGGCCTTT TACGGTTCCCT GGCCTTTGC TGGCCTTTG
		GCGGTCGTTG CGCCGGAAAA ATGCCAAGGA CGGAAAACG ACCGAAAAC
	3701	CTCACATGTT CTTCCCTGCG TTATCCCCTG ATTCTGTGGA TAACCGTATT
		GAGTGTACAA GAAAGGACGC AATAGGGGAC TAAGACACCT ATTGGCATAA
	3751	ACCGCCTTG AGTGAGCTGA TACCGCTCGC CGCAGCCGAA CGACCGAGCG
		TGGCGGAAAC TCACTCGACT ATGGCGAGCG GCGTCGGCTT GCTGGCTCGC
30	3801	CAGCGAGTCA GTGAGCGAGG AAGCGGAAGA GCGCCCAATA CGCAAACCGC
		GTCGCTCAGT CACTCGCTCC TTGCGCTTCT CGCGGGTTAT GCGTTTGGCG
	3851	CTCTCCCCGCG CGGTTGGCCG ATTCAATTAT GCAGCTGGCA CGACAGGTTT
		GAGAGGGCG CGCAACCGGC TAAGTAATT CGTCGACCGT GCTGTCCAAA
	3901	CCCGACTGGA AAGCGGGCAG TGAGCGAAC GCAATTAAATG TGAGTTAGCT
		GGGCTGACCT TTCGCCGTC ACTCGCGTT CGTTAATTAC ACTCAATCGA
35	3951	CACTCATAG GCACCCCCAGG CTTTACACCTT TATGCTTCCG GCTCGTATGT
		GTGAGTAATC CGTGGGGTCC GAAATGTGAA ATACGAAGGC CGAGCATACA
	4001	TGTGTGGAAT TGTGAGCGGA TAACAATTTC ACACAGGAAA CAGCTATGAC
		ACACACCTTA ACACTCGCCT ATTGTTAAAG TGTGTCCTTT GTCGATACTG
40	4051	CATGATTACG AATTGAATTG CGGCCGCAAT TCTGAATGTT AAATGTTATA
		GTACTAATGC TTAACTTAAC GCGGGCGTTA AGACTTACAA TTTACAATAT
	4101	CTTTGGATGA AGCTATAAT ATGCATTGGA AAAATAATCC ATTTAAAGAA
		GAAACCTACT TCGATATTAA TACGTAACCT TTTTATTAGG TAAATTCTT
	4151	AGGATTCAAA TACTACAAAA CCTAAGCGAT AATATGTTAA CTAAGCTTAT
		TCCTAAGTTT ATGATGTTT GGATTGCTA TTATACAATT GATTGAAATA
45	4201	TCTTAACGAC GCTTTAAATA TACACAAATA AACATAATT TTGTATAACC
		AGAATTGCTG CGAAATTAT ATGTTTTAT TTGTATTAAA AACATATTGG
	4251	TAACAAATAA CTAAAACATA AAAATAATAA AAGGAAATGT AATATCGTAA
		ATTGTTTATT GATTGTTAT TTTTATTATT TTCTTTACA TTATAGCATT
50	4301	TTATTTTACT CAGGAATGGG GTTAAATATT TATATCACGT GTATATCTAT
		AATAAAATGA GTCCTTACCC CAATTATAA ATATAGTGCA CATATAGATA
	4351	ACTGTTATCG TATACCTTT ACAATTACTA TTACGAATAT GCAAGAGATA
		TGACAATAGC ATATGAGAAA TGTTAATGAT AATGCTTATA CGTTCTCTAT
	4401	ATAAGATTAC GTATTTAAGA GAATCTTGTC ATGATAATTG GGTACGACAT
		TATTCTAATG CATAAAATTCT CTTAGAACAG TACTATTAAC CCATGCTGTA
55	4451	AGTGATAAAAT GCTATTTCGC ATCGTTACAT AAAGTCAGTT GGAAAGATGG
		TCACTATTG CGATAAAGCG TAGCAATGTA TTTCAGTC GCTTCTTAC
	4501	ATTTGACAGA TGTAACCTAA TAGGTGCAAA AATGTTAAAT AACAGCATTC
		TAAACTGTCT ACATTGAATT ATCCACGTTT TTACAATTAA TTGTCGTAAG
	4551	TATCGGAAGA TAGGATACCA GTTATATTAT ACAAAATCA CTGGTTGGAT

		ATAGCCTTCT ATCCATGGT CAATATAATA TGTTTTAGT GACCAACCTA
4601		AAAACAGATT CTGCAATATT CGTAAAAGAT GAAGATTACT GCGAATTGT
		TTTTGTCTAA GACGTTATAA GCATTTCTA CTTCTAATGA CGCTTAAACA
5	4651	AAACTATGAC AATAAAAAGC CATTTATCTC AACGACATCG TGTAATTCTT
		TTTGATACTG TTATTTTCG GTAAATAGAG TTGCTGTAGC ACATTAAGAA
	4701	CCATGTTTA TGTATGTGTT TCAGATATTA TGAGATTACT ATAAACTTT
		GGTACAAAAT ACATACACAA AGTCTATAAT ACTCTAATGA TATTTGAAAA
	4751	TGTATACTTA TATTCCGTAA ACTATATTAA TCATGAAGAA ATGAAAAAG
10		ACATATGAAT ATAAGGCATT TGATATAATT AGTACTTCTT TTACTTTTC
	4801	TATAGAACGT GTTCACGAGC GGTTGTTGA AACAAACAAA TTATACATT
		ATATCTTCGA CAAGTGCTCG CCAACAAACT TTGTTGTTT AATATGTAAG
	4851	AAGATGGCTT ACATATACTG CTGTGAGGCT ATCATGGATA ATGACAATGC
		TTCTACCGAA TGTATATGCA GACACTCCGA TAGTACCTAT TACTGTTACG
15	4901	ATCTCTAAAT AGGTTTTG ACAATGGGATT CGACCTAAC ACAGGAATATG
		TAGAGATTTA TCCAAAACC TGTTACCTAA GCTGGGATTG TGCCTTATAC
	4951	GTACTCTACA ATCTCCTCTT GAAAATGGCTG TAATGTTCAA GAATACCGAG
		CATGAGATGT TAGAGGAGAA CTTTACCGAC ATTACAAGTT CTTATGGCTC
	5001	GCTATAAAAAT TCTTGATGAG GTATGGAGCT AACACCTGTAG TTACTGAATG
20		CGATATTTTT AGAACTACTC CATACTCGA TTTGGACATC AATGACTTAC
	5051	CACAACCTCT TGTCTGCATG ATGCCGTTGTT GAGAGACGAC TACAAAATAG
		GTGTTGAAGA ACAGACGTAC TACGCCACAA CTCTCTGCTG ATGTTTATC
	5101	TGAAAGATCT GTTGAAGAAT AACTATGTAA ACAATGTTCT TTACAGCGGA
		ACTTTCTAGA CAACTCTTA TTGATACATT TGTTACAAGA AATGTCGCC
25	5151	GGCTTTACTC CTTTGTGTTT GGCAGCTTAC CTTAACAAAG TTAATTGGT
		CCGAAATGAG GAAACACAAA CGCTCGAATG GAATTGTTTC AATTAAACCA
	5201	TAAACTCTA TTGGCTCATT CGCGGGATGT AGATATTTC AACACGGATC
		ATTGAAAGAT ACCGAGTAA GCCGTATCAA TCTATAAAGT TTGTGCCTAG
	5251	GGTTAACTCC TCTACATATA CGCGTATCAA ATAAAAATT T ACAATGGTT
		CCAATTGAGG AGATGTATAT CGGCATAGTT TATTTTTAA TTGTTACCA
30	5301	AAACCTCTAT TGAACAAAGG TGCTGATACT GACTGCTGG ATAACATGGG
		TTTGAAGATA ACTTGTITCC ACGACTATGA CTGAACGACC TATTGTACCC
	5351	ATGTACTCTT TTAATGATCG CTGTACAATC TGGAAATATT GAAATATGTA
		TACATGAGGA ATTACTAGC GACATGTTAG ACCTTTATAA CTTTATACAT
35	5401	GCACACTACT TAAAAAAAT AAAATGTCCA GAACCTGGAA AAATTGATCT
		CGTGTGATGA ATTTTTTTTA TTTTACAGGT CTGACCCCTT TTAACTAGA
	5451	TGCCAGCTGT AATTCACTGGT AGAAAAGAAG TGCTCAGGCT ACTTTTCAAC
		ACGGTCGACA TTAAGTACCA TCTTTCTTC ACGAGTCCGA TGAAAAGTTG
	5501	AAAGGAGCAG ATGAAACTA CATCTTGAA AGAAATGGAA AATCATATAC
		TTTCCTCGTC TACATTGAT GTAGAAACTT TCTTACCTT TTGTTATATG
40	5551	TGTTTTGGAA TTGATTAAAG AAAGTTACTC TGAGACACAA AAGAGGTAGC
		ACAAAACCTT AACTAATTTC TTCATGAG ACTCTGTT TTCTCCATCG
	5601	TGAAGTGGTA CTCTCAAAGG TACGTGACTA ATTAGCTATA AAAAGGATCC
		ACTTCACCAT GAGAGTTCC ATGCACTGAT TAATCGATAT TTTTCCCTAGG
45	5651	TAGAGGATCA TTATTTAACG TAAACTAAAT GGAAAAGCTA TTTACAGTA
		ATCTCCTAGT AATAAAATTGC ATTTGATTA CCTTTTCGAT AAATGTCAT
	5701	CATACGGTGT TTTCTGGAAT CAAATGATTC TGATTTGAG GATTTTATCA
		GTATGCCACA AAAGACCTA GTTTACTAAG ACTAAAACTC CTAAAATAGT
	5751	ATACAATAAT GACAGTGCTA ACTGGTAAA AGAAAGCAA ACAATTATCA
		TATGTTATTA CTGTCACGAT TGACCATTT TTCTTCGTT TGTAAATAGT
50	5801	TGGCTAACAA TTTTATTAT ATTTGATGTA TGCATAGTGG TCTTACGTT
		ACCGATTGTT AAAAATAATA TAAACATCAT ACGTATCACC AGAAATGCAA
	5851	TCTTTATTAA AAGTTAATGT GTTAAGATTA AATGGAGTAA TTGGATCCCC
		AGAAAATAAT TTCAATTACA CAATTCTAAAT TTACCTCATT AACCTAGGG
55	5901	CATCGATGGG GAATTCACTG CGCGTCGTT TACAACGTCG TGACTGGAA
		GTAGCTACCC CTTAAGTGCAC CGGCAGCAA ATGGTGCAGC ACTGACCC
	5951	AACCCCTGGCG TTACCCAAT TAATCGCTT GCAGCACATC CCCCTTCGC
		TTGGGACCGC AATGGGTTGA ATTAGCGGAA CGTCGTGTAG GGGGAAAGCG
	6001	CAGCTGGCGT AATAGCGAAG AGGCCCGCAC CGATGCCCT TCCCAACAGT
		GTGCGACCGCA TTATCGCTTC TCCGGCGTG GCTAGCGGGA AGGGTTGTCA

	6051	TGCGCAGCCT GAATGGCGAA TGGCGCTTTG CCTGGTTTCC GGCACCAGAA
		ACCGTCGGA CTTACCGCT ACCCGAAC GGACCAAAGG CCGTGGTCTT
	6101	GCGGTGCCGG AAAGCTGGCT GGAGTGCAGT CTTCTGAGG CCGATACTGT
		CGCCACGCC TTTGACCGA CCTCACGCTA GAAGGACTCC GGCTATGACA
5	6151	CGTCGTCCCC TCAAACGGC AGATGCACGG TTACGATGCG CCCATCTACA
		GCAGCAGGG AGTTGACCG TCTACGTGCC AATGCTACGC GGGTAGATGT
	6201	CCAACGTAAC CTATCCCATT ACGGTCAATC CGCCGTTGT TCCCACGGAG
		GGTTGCATTG GATAGGGTAA TGCCAGTTAG GCGCAAACA AGGGTGCCTC
	6251	AATCCGACGG GTTGTACTC GCTCACATT AATGTTGATG AAAGCTGGCT
10		TTAGGCTGCC CAACAATGAG CGAGTGTAAA TTACAACATAC TTTCGACCGA
	6301	ACAGGAAGGC CAGACGCGAA TTATTTTGA TGGCGTTAAC TCGGCCTTTC
		TGTCCTTCCG GTCTGCGCTT AAAAAAAACT ACCGCAATTG AGCCGAAAG
	6351	ATCTGTGGTG CAACGGGCGC TGGGTCGTT ACGGCCAGGA CAGTCGTTTG
15	6401	TAGACACAC GTTGCCTCGC ACCCAGCCTA TGCGGTCCT GTCAAGAAC
		CCGCTCTGAAT TTGACCTGAG CGCATTTTA CGCCGCCGGAG AAAACCGCCT
		GGCAGACTTA AACTGGACTC GCGTAAAAAT GCGCCGGCCTC TTTTGGCGGA
	6451	CGCGGTGATG GTGTCGCGTT GGAGTGCACGG CAGTTATCTG GAAGATCAGG
		GCGCCACTAC CACCGACGCAA CCTCACTGCC GTCATAGAC CTTCTAGTCC
20	6501	ATATGTGGCG GATGAGCGGC ATTTCCGTG ACGTCTCGTT GCTGCATAAA
		TATACACCGC CTACTCGCCG TAAAGGCCAC TGCAAGAGCAA CGACGTATT
	6551	CCGACTACAC AAATCAGCGA TTTCCATGTT GCCACTCGCT TTAATGATGA
		GGCTGATGTG TTTAGTCGCT AAAGGTACAA CGGTGAGCGA AATTACTACT
	6601	TTTCAGCCGC GCTGTACTGG AGGCTGAAGT TCAGATGTGC GGCGAGTTGC
25		AAAGTCGGCG CGACATGACC TCCGACTTCA AGTCTACACG CCGCTAACG
	6651	GTGACTACCT ACGGGTAACA GTTTCTTAT GGCAGGGTGA AACGCAGGTC
		CACTGATGGA TGCCCATTGT CAAAGAAATA CCGTCCCAC TTGCGTCCAG
	6701	GCCAGCGCA CGCGCCTTT CGCGGGTGA ATTATCGATG AGCGTGGTGG
		CGGTCGCCGT GGCGCGGAAA CGCGCCACTT TAATAGCTAC TCGCACCAACC
30	6751	TTATGCCAT CGCGTCACAC TACGTCTGAA CGTCGAAAC CCGAAACTGT
		AATAACGGCTA GCGCAGTGTG ATGCAGACTT GCAGCTTTTG GGCTTGACA
	6801	GGAGCGCGA AATCCCGAAT CTCTATCGTG CGGTGGTTGA ACTGCACACC
		CCTCGCGCGT TTAGGGCTTA GAGATAGCAC GCCACCAACT TGACGTGTGG
	6851	GCCGACGGCA CGCTGATTGA AGCAGAAAGCC TGCGATGTGC GTTTCCCGCA
		CGGCTGCCGT GCGACTAAT TCGTCTTCGG ACCTACAGC CAAAGGGCCT
35	6901	GGTGGGATT GAAAATGGTC TGCTGCTGCT GAACGGCAAG CCGTTGCTGA
		CCACGCCCTAA CTTTTACAG ACGACGACGA CTTGCCGTTG GGCAACGACT
	6951	TTCGAGGCGT TAACCCTCAC GAGCATCATC CTCTGCATGG TCAGGTCTAG
		AAGCTCCGCA ATTGGCAGTG CTCGTAGTAG GAGACGTACC AGTCCAGTAC
40	7001	GATGAGCAGA CGATGGTGA GGATATCCTG CTGATGAAGC AGAACAAACTT
		CTACTCGTCT GCTACCACGT CCTATAGGAC GACTACTTCG TCTTGTGAA
	7051	TAACGCCGT CGCTGTCGC ATTATCCGAA CCATCCGCTG TGGTACACGC
		ATTGCGGCAC GCGACAAGCG TAATAGGCTT GGTAGGCGAC ACCATGTGCG
	7101	TGTGCGACCG CTACGGCCTG TATGTGGTGG ATGAAGCCAA TATTGAAACC
45		ACACGCTGGC GATGCCGGAC ATACACCAC TACTTCGGTT ATAACTTGG
	7151	CACGGCATGG TGCCAATGAA TCGTCTGACC GATGATCCGC GCTGGCTACC
		GTGCGTACCG ACGGTTACTT AGCAGACTGG CTACTAGGCG CGACCGATGG
	7201	GGCGATGAGC GAACCGTAA CGCGAATGGT CGACGCGCGAT CGTAATCACC
		CCGCTACTCG CTTGCGCATT GCGCTTACCA CGTCGCGCTA GCATTAGTGG
50	7251	CGAGTGTGAT CATCTGGTCG CTGGGGAAATG AATCAGGCCA CGGCGCTAAT
		GCTCACACTA GTAGACCGAG GACCCCTTAC TTAGTCCGGT GCCGCGATTA
	7301	CACGACGCCG TGTATCGTG GATCAAATCT GTGATCCTT CCCGCCCCGGT
		GTGCTGCCGC ACATAGCGAC CTAGTTAGA CAGCTAGGAA GGGCGGGCCA
	7351	GCAGTATGAA GGCGCGGAG CCGACACCAC GGCCACCGAT ATTATTTGCC
		CGTCATACCT CGGCCGCCTC GGCTGTGGTG CCGGTGGCTA TAATAAACGG
55	7401	CGATGTACGC GCGCGTGGAT GAAGACCAAGC CCTTCCCAGGC TGTGCCGAAA
		GCTACATGCG CGCGCACCTA CTTCTGGTCG GGAAGGGCCG ACACGGCTTT
	7451	TGGTCCATCA AAAAATGGCT TTGCGTACCT GGAGAGACGC GCCCGCTGAT
		ACCAGGTAGT TTTTACCGA AAGCGATGGA CCTCTCTGCG CGGGCGACTA
	7501	CCTTTGCGAA TACGCCACG CGATGGGTAA CAGTCTGGC GGTTTCGCTA

		GGAAACGCTT ATGCGGGTGC GCTACCCATT GTCAGAACCG CCAAAGCGAT
	7551	AATACTGGCA GCGCTTCGT CAGTATCCCC GTTACAGGG CGGCTCGTC
		TTATGACCGT CCGAAAGCA GTCATAGGG CAAATGTCCC GCCGAAGCAG
5	7601	TGGGACTGGG TGGATCAGTC GCTGATTAAA TATGATGAAA ACGGCAACCC
		ACCCCTGACCC ACCTAGTCAG CGACTAATTT ATACTACTTT TGCCGTTGGG
	7651	GTGGTCGGCT TACGGCGGTG ATTTTGGCGA TACGCCGAAC GATCGCCAGT
		CACCAGCCGA ATGCCGCCAC TAAAACCGCT ATGCCGCTTG CTAGCGGTCA
	7701	TCTGTATGAA CGGTCTGGTC TTTGCCGACC GCACGCCGCA TCCAGCGCTG
		AGACATAACTT GCCAGACCAAG AAACGGCTGG CGTGCAGCGT AGGTCGCGAC
10	7751	ACGGAAGCAA AACACCAGCA GCAGTTTTTC CAGTTCCGTT TATCCGGCA
		TGCCTTCGTT TTGTGGTCGT CGTCAAAAG GTCAAGGCAA ATAGGCCCGT
	7801	AACCATCGAA GTGACCAGCG AATACCTGTT CCGTCATAGC GATAACGAGC
		TTGGTAGCTT CACTGGTCGC TTATGGACAA GGCAGTATCG CTATTGCTCG
15	7851	TCCTGCACTG GATGGTGGCG CTGGATGGTA AGCCGCTGGC AAGCGGTGAA
		AGGACGTGAC CTACCACCGC GACCTACCAT TCGGCGACCG TTGCCCACTT
	7901	GTGCCTCTGG ATGTCGCTCC ACAAGGTTAA CAGTTGATTG AACTGCCCTGA
		CACGGAGACC TACAGCGAGG TGTTCCATT GTCAAACAAAC TTGACGGACT
	7951	ACTACCCGAC CCGGAGAGCG CCGGGCAACT CTGGCTCAC A GTACCGTAG
20	8001	TGATGGCGTC GGCTCTCGC GGCCCCTTGA GACCGAGTGT CATGCGCATC
		TGCAACCGAA CGCGACCGCA TGGTCAGAAG CGGGGCACAT CAGCGCTGG
	8051	ACGTTGGCTT GCGCTGGCGT ACCAGTCITC GGCCCCTGTA GTCGCGGACC
		CAGCAGTGGC GTCTGGCGGA AAACCTCAGT GTGACGCTCC CCGCCGCGTC
		GTCGTACCCG CAGACCGCCT TTTGGAGTCA CACTGCGAGG GGCGGCGCAG
25	8101	CCACGCCATC CCGCATCTGA CCACCAGCGA AATGGATTT TGCACTGAGC
		GGTGCCTTAG GGGTAGACT GGTGGTCGCT TTACCTAAAA ACGTAGCTCG
	8151	TGGGTAATAAA GCGTTGGCAA TTTAACCGCC AGTCAGGCTT TCTTCACAG
		ACCCATTATT CGCAACCGTT AAATTGGCGG TCAGTCCGAA AGAAAGTGTGTC
	8201	ATGTGGATTG GCGATAAAAAA ACAACTGCTG ACGCCGCTGC GCGATCAAGT
		TACACCTAAC CGCTATTTTT TGTTGACGAC TGCGGCGACG CGCTAGTCAA
30	8251	CACCCGTGCA CGCGTGGATA ACGACATTGG CGTAAGTCAA GCGACCCGCA
		GTGGGCACCGT GGCACCTAT TGTGTAAACC GCATTCACCTT CGCTGGCGT
	8301	TTGACCTAA CGCCTGGTC GAACGCTGGA AGGCGGGCGGG CCATTACAG
		AACTGGGATT GCGGACCCAG CTTGCGACCT TCCGCCGCCCC GGTAATGGTC
	8351	GCCGAAGCAG CGTGTGTC GTGCACGGCA GATAACATTG CTGATGCGGT
35		CGGCTTCGTC GCAACAACGT CACGTGGCGT CTATGTGAAAC GACTACGCCA
	8401	GCTGATTACG ACGCTCACG CGTGGCAGCA TCAGGGGAAA ACCTTATTITA
	8451	CGACTAATGC TGGCGAGTGC GCACCGTCGT AGTCCCCCTTT TGGAAATAAAT
		TCAGCCGAA AACCTACCGG ATTGATGGTA GTGGTCAAAT GGCGATTACC
		AGTCGGCCCTT TTGGATGGCC TAACCTACCAT CACCAAGTTA CCGCTAATGG
40	8501	GTTGATGTTG AAGTGGCGAG CGATACACCG CATCCGGCGC GGATTGGCCT
		CAACTACAAC TTCACCGCTC GCTATGTGGC TAGGCGCGC CCTAACCGGA
	8551	GAAC TGCCAG CTGGCGCAGG TAGCAGAGCG GGTAAACTGG CTCGGATTAG
		CTTGACGGTC GACCGCGTCC ATCGTCTCGC CCATTTGACC GAGCCTAATC
		GGCCGCAAGA AAACTATCCC GACCGCCTTA CTGCCGCGCTG TTTGACCGC
45	8601	CCGGCGTTCT TTTGATAGGG CTGGCGGAAT GACGGCGGAC AAAACTGGCG
		TGGGATCTGC CATTGTCAGA CATGTATACC CCGTACGTCT TCCCGAGCGA
	8651	ACCCCTAGACG GTAACAGTCT GTACATATGG GGATGTCAGA AGGGCTCGCT
		AAACGGCTTG CGCTGCGGGGA CGCGCGAATT GAATTATGGC CCACACCACT
	8701	TTTGCCAGAC GCGACGCCCT GCGCGCTTAA CTAAATACCG GGTGTGGTCA
50	8751	GGCGCGGCCA CTTCCAGTTC AACATCAGCC GCTACAGTCA ACAGCAACTG
		CCGCGCCGCT GAAGGTCAAG TTGTAGTCGG CGATGTCAGT TGTGTTGAC
	8801	ATGGAAACCA GCCATCGCCA TCTGCTGCAC CGCGAACGAAG GCACATGGCT
		TACCTTTGGT CGGTAGCGGT AGACGACGTG CGCCTTCTTC CGTGTACCGA
	8851	GAATATCGAC GGTTCCTATA TGGGGATTGG TGGCGACGAC TCCTGGAGCC
55		CTTATAGCTG CCAAAGGTAT ACCCTAAACC ACGCTCGCTG AGGACCTCGG
	8901	CGTCAGTATC GGCGGAATT CAGCTGAGCG CCGCTCGCTA CCATTACAG
		GCAGTCATAG CGCCTTAAG GTCGACTCGC GGCCAGCGAT GGTAATGGTC
	8951	TTGGTCTGGT GTCAAAAATA ATAATAACCG GGCAAGGGGGG ATCCGGAGCT
		AACCAGACCA CAGTTTTAT TATTATTGGC CGTCCCCCCC TAGGCCTCGA

9001	TATCGCAGAT CAATGATCGC TGTACAATCT GGAAATATTG AAATATGTAG ATAGCGTCTA GTTACTAGCG ACATGTTAGA CCTTTATAAC TTTATACATC
9051	CACACTACTT AAAAAAAATA AAATGTCCAG AACTGGGAAA AATTGATCTT GTGTGATGAA TTTTTTTTAT TTTACAGGTC TTGACCCTT TTAACTAGAA
5	9101 GCCAGCTGTA ATTCACTGGTA GAAAAGAAGT GCTCAGGCTA CTTTCAACA CGGTCGACAT TAAGTACCAT CTTTCTTCA CGAGTCCGAT GAAAAGTTGT
9151	AAGGAGCAGA TGTAACACTAC ATCTTGAAA GAAATGGAAA ATCATATACT TTCCTCGTCT ACATTGATG TAGAAACCTT CTTTACCTT TAGTATATGA
9201	GTTTGGAAT TGATTAAGA AAGTTACTCT GAGACACAAA AGAGGTAAGCT CAAAACCTTA ACTAATTCT TTCAATGAGA CTCTGTGTT TCTCCATCGA
10	9251 GAAGTGGTAC TCTCAAAGGT ACGTGACTAA TTAGCTATAAA AAAGGATCCG CTTCACCATG AGAGTTCCA TGCACTGATT AATCGATAATT TTTCCCTAGGC
9301	GTACCCCTCGA GTCTAGAACAT GATCCC GGTT TAATTAATTAA GTTATTAGAC CATGGGAGCT CAGATCTTAG CTAGGGCCCA ATTAAATTAAAT CAATAATCTG
15	9351 AAGGTGAAAA CGAAACTATT TGTAGCTTAA TTAATTAGAG CTTCTTTATT TTCCACTTTT GCTTGATAAA ACATCGAATT AATTAATCTC GAAGAAATAA
9401	CTATACTTAA AAAGTGGAAA TAAATACAAA GGTTCTTGAG GGTTGTGTTA GATATGAATT TTTCACCTTT ATTATGTTT CCAAGAACTC CCAACACAAT
20	9451 AATTGAAAGC GAGAAATAAT CATAAAATTAT TTCATTATCG CGATATCCGT TTAACCTTCG CTCTTATTA GTATTAAATA AAGTAATAGC GCTATAGGCA
9501	TAAGTTTGTA TCGTA ATTCAACAT AGCAT

FIGURE 6