TEORIA DAS CORES

AULA 2 -08/8/2019

Nesta aula veremos,

 Conceitos Básicos dos Aspectos Físicos da Cor

uriah.marcilio@ifpr.edu.br

A aparição da cor nos objetos, às vezes, nos parece magia. Assim, magicamente, tem-se também tendência a utilizá-la. Um profissional não pode pensar assim. Precisa entender que a "magia" da aparição das cores nos objetos deve ser estudada em seus vários aspectos para que possa lançar mão de sua construção perceptiva em seus projetos.

Quando tratamos do assunto cor, a primeira coisa que devemos levar em consideração é a própria conformação do olho humano. Nossos olhos possuem na retina 2 tipos de sensores: os cones e os bastonetes; os cones permitem a percepção das cores e os bastonetes a percepção dos tons de cinza.

Nós herdamos de nossos antepassados a visão tricrômica, ou seja, vemos todas as cores baseadas em apenas três: o vermelho, o azul e o verde. **Os bastonetes** nos permitem "ver" à noite, ou seja, podemos perceber silhuetas com algum grau de precisão, sem, no entanto, notarmos os detalhes.

Nos primatas a visão é baseada no vermelho, azul e verde, já os outros mamíferos geralmente só percebem duas delas. Os répteis e alguns insetos, no entanto, enxergam "cores" que nós não podemos.

Corte lateral do olho

Retina cones e bastonetes

A segunda coisa importante para entendermos as cores é a luz. A luz visível faz parte de um conjunto de vibrações eletromagnéticas, das quais só uma porção é percebida por nós. Nossos olhos são sensíveis a essas frequências, por isso enxergamos as cores.

Exemplo de Constatação

<Caso do controle remoto>

VAMOS TESTAR??

COMO VEMOS A COR

A cor é composta de ondas eletromagnéticas transmitidas pelo espaço que, captadas pelos olhos e transmitidas pelos nervos ópticos, causam certas impressões no cérebro, provocando sensações e reações diversas. Só enxergamos cores quando existe luz no ambiente. O desenvolvimento fisiológico nos condiciona ao lugar e ao que o ambiente nos proporciona.

COMO VEMOS A COR

O aparelho visual humano é relativamente limitado – a visão consegue perceber radiações eletromagnéticas dentro do espectro de comprimento de onda que vai de aproximadamente 380 até 780 nanômetros, e essa característica física da cor faz a diferença na hora da escolha entre os diferentes matizes e seus meios de transmissão. Uma rápida análise do espectro visível nos permite entender o porquê de as cores imprimirem no cérebro reações distintas, sem a necessidade de grandes conhecimentos de física.

COMO VEMOS A COR

O comprimento de onda mede a distância entre duas cristas sequenciais de uma onda eletromagnética, e a frequência mede a vibração de determinado comprimento de onda no tempo de 1 segundo. Dependendo do comprimento de omd e de sua frequência, essas propagações vão sensibilizar o cérebro humano com maior ou menor rapidez.

Luz	Comprimento de onda (10 ⁻⁷ m)	Freqüência (10 ⁴Hz)
Violeta	4,0 a 4,5	6,7 a 7,5
Anil	4,5 a 5,0	6,0 a 6,7
Azul	5,0 a 5,3	5,7 a 6,0
Verde	5,3 a 5,7	5,3 a 5,7
Amarela	5,7 a 5,9	5,0 a 5,3
Alaranjada	5,9 a 6,2	4,8 a 5,0
Vermelha	6,2 a 7,5	4,0 a 4,8

COMO O OLHO ABSTRAI CORES DOS OBJETOS

O aparelho visual humano é composto de certas partes que permitem a sensação de enxergar tons dos mais variados comprimentos de onda — temos a possibilidade de ver aproximadamente 16 milhões de cores. O olho humano lembra uma máquina fotográfica convencional, sendo a íris o obturador e a retina fazendo as vezes de filme pré-sensibilizado, fixando a imagem por meio de cones sensíveis a cores e bastonetes sensíveis ao claro e escuro.

A luz do sol, que percebemos como branca, é na verdade composta por sete cores: as cores do arco-íris. Quando a luz do sol ilumina uma flor vermelha, significa que esta flor tem pigmentação vermelha. Isso quer dizer que a superfície dela absorve todas as outras cores da luz do sol, transforma-as em calor e reflete para os nossos olhos só a luz vermelha.

O preto absorve todas as sete cores e transforma-as em calor. Isso quer dizer que quando saímos com uma roupa preta em um dia de sol, sentimos muito calor! A cor branca reflete toda luz.

1.1Conceito de Cor

"A cor representa uma ferramenta poderosa para a transmissão de ideias, atmosferas e emoções, e pode captar a atenção do público de forma forte e direta, sutil ou progressiva (...)." (BARROS, Lilian Ried Miller. A cor no processo criativo: um estudo sobre a Bauhaus e a teoria de Goethe. São Paulo: Editora Senac, 2006).

Círculo Cromático

O círculo ou disco cromático não é um instrumento científico de classificação de cores, mas é muito útil no entendimento da teoria das cores. Geralmente usado para estudar as corespigmento, o disco cromático pode ser desenvolvido em qualquer material, lembrandose que cores-luz e cores pigmentos sofrem alterações de acordo com sua própria essência.

Círculo Cromático

Professora Uriah Izayra Marcilio

Teoria das Cores

Distinção das cores

Ao falarmos de cores, temos duas linhas de pensamento distintas: a Cor-Luz e a Cor-Pigmento. Falar de cor sem falar de luz é impossível, mesmo se tratando da Cor-Pigmento, pois ela, a luz, é imprescindível para a percepção da cor, seja ela Cor-Luz ou Cor-pigmento. No caso da Cor-Luz ela é a própria cor e no caso da Cor-Pigmento ela, a luz, é que é refletida pelo material, fazendo com que o olho humano perceba esse estímulo como cor.

Cor Luz – aditivas

É a cor através da incidência de raio de luz. A luz é emitida pelo objeto.

Pode ser natural, como o sol, ou artificial como TVs, monitores, câmeras digitais, etc. A soma das três cores primárias produz o branco.

Este sistema é o RGB (red, green and blue) que usamos quando produzimos algo para a web, por exemplo.

É o sistema oposto físico/matemático ao CMY.

Cor Luz – aditivas

Cor-Pigmento

A cor-pigmento é a substância material constituinte do objeto e é denominada de acordo com a sua natureza química. Ela pode absorver, refratar, refletir os raios luminosos componentes da luz incidente. Por exemplo, um corpo é chamado de vermelho porque tem a capacidade de absorver quase todos os raios da luz branca incidente, refletindo para os nossos olhos apenas a tonalidade dos vermelhos. A este processo dá-se o nome de síntese subtrativa.

Cor Pigmento- subtrativas

É a cor proveniente da absorção de luz, ou seja, a cor visível é aquela que não foi absorvida pelo objeto.

As cores pigmento podem ser divididas em opacas e transparentes:

Cor Pigmento- subtrativas Opacas – RYB:

É um sistema bastante usado nas artes plásticas, fabricações caseiras, tecelagem e etc.

As cores primárias pigmentos são o amarelo, o azul e o vermelho (RYB – red, yellow and blue).

A mistura das três cores produz o cinza através da síntese subtrativa.

Cor Pigmento- subtrativas Opacas – RYB:

O sistema RYB necessita da adição da cor branca (para clarear) e do preto (para escurecer).

Este sistema não possui outro sistema equivalente (como acontece do caso do RGB & CMY), por isso não é possível fazer uma conversão exata para nenhum outro sistema, no máximo uma aproximação.

Cor Pigmento Opacas – RYB:

Cor Pigmento Transparentes – CMYK:

É o sistema usado por impressoras, gráficas, artes gráficas, etc. É a versão industrial do CMY que é o sistema oposto físico/matemático ao RGB.

As cores primárias são magenta, ciano e amarelo. E a mistura das três cores produz o cinza através da síntese subtrativa.

Cor Pigmento Transparentes – CMYK:

Cor Pigmento Transparentes – CMYK:

A letra "K" no final significa "black" (preto). A adição do preto se deve ao fato que embora a mistura das cores ciano, magenta e amarelo, produzam um cinza bem próximo ao preto, ele ainda assim é inviável em questões de materiais (gasto com cores e papéis) e insatisfatório em questões de qualidade no acabamento.

Divisão das cores

As cores se dividem em:

Cores Primárias

Cores Secundárias

Cores Terciárias

Cores primárias: São as cores puras, que não se fragmentam.

As cores primárias das cores-pigmento são:

Vermelho;

Amarelo;

Azul.

Cores primárias:

Cores Secundária e Terciárias

Todas as outras cores que existem são provenientes da mistura das cores primárias. Quando combinamos duas cores primárias, conseguimos uma cor secundária, e ao combinarmos uma cor secundária com uma primária adquirimos uma cor terciária.

Cores-luz(RGB)

As cores primárias das cores-luz são:

- •Vermelho;
- •Verde;
- •Azul.

Cores-luz(RGB)

Cores secundárias

As combinações surgidas de duas cores primárias são chamadas de cores secundárias.

São elas: laranja, que é a mistura do amarelo com o vermelho, o verde, que é a mistura do azul com o amarelo e o violeta, que é a mistura do vermelho com o azul.

Cores Secundárias

Cores Terciárias

As cores terciárias, por sua vez, são oriundas da mistura de cores primárias com secundárias. Elas são: oliva (verde com amarelo), rosa (vermelho com magenta), celeste (azul com ciano), violeta (azul com magenta), turquesa (verde com ciano) e laranja (amarelo com vermelho).

Cores Secundária e Terciárias

Cores Complementares

Cores complementares **são as cores opostas** no disco de cores. Usar duas cores opostas (complementares) é quase sempre garantia de uma boa foto!

Ex: o vermelho é complementar do verde.

O azul é complementar do laranja.

As cores complementares são usadas Para dar força e equilíbrio a um trabalho criando contrastes.

raramente se usa cores apenas

cores complementares em um trabalho, o efeito pode ser desastroso.

Ressaltamos que as cores complementares são as que mais contrastes entre si oferecem, sendo assim, se queremos destacar um amarelo, devemos colocar junto dele um

violeta.

Exemplo da importância do uso das cores no tratamento de fotografias

Síntese da aula de hoje

- 1. Os aspectos físicos da cor compreendem os conhecimentos sobre a trajetória luminosa da fonte para o objeto e daí para os nossos órgãos visuais.
- 2. Os aspectos físicos tratam da aparição da cor ainda sem interpretação do ser humano.
- 3. Fisicamente, a cor acontece porque ondas de luz alcançam os olhos através de uma transmissão da fonte de luz para o objeto, e deste para o observador ou quando o objeto é a própria fonte de luz.

Síntese da aula de hoje

- 4. A cor-pigmento é a substância material constituinte do objeto e é denominada de acordo com a sua natureza química. Ela pode absorver, refratar ou refletir os raios luminosos componentes da luz incidente, por síntese subtrativa.
- 5. A cor primária é cada uma das três cores indecomponível. Quando misturadas em proporções variáveis, produzem todas as cores do espectro visível.

6.

Síntese da aula de hoje

- 6. Existem dois conjuntos de cores —pigmento com suas respectivas cores primárias: as cores-pigmento opacas (vermelho, amarelo e azul) e as cores-pigmento transparentes(magenta, ciano e amarelo). A mistura das três cores primárias, neste caso, produz o cinza-neutro por síntese substrativa.
- 7. A cor-luz é o intervalo do espectro eletromagnético. Suas cores primárias são o verde (*Red*), o verde (*Green*) e o azulvioletado (*Blue*), cuja mistura resulta na luz branca por síntese aditiva.

ATIVIDADE: Produzir uma (1) fotografia de cada classificação das cores primárias, secundárias, terciárias e complementares;

ENTREGA: Para a próxima aula 22/8/2019; ORIENTAÇÃO PARA APRESENTAÇÃO DAS ATIVIDADES: Identificar o Sistema Cromático e a classificação em cada slide.

•Exibir as fotos em PowerPoint ou PDF. Lembrando, salvá-las em *pen drive* ou enviá-las para o meu e-mail um dia (1) antes da apresentação.

TRABALHO INDIVIDUAL

Primárias

Primárias

Secundárias

Terciárias

Complementares