EE 810. Home work # 9

Name. Onkar Vivel Apte

D80 ID .

7.2(4)

4. For the positive definite $A = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$, compute $||A^{-1}|| = 1/\lambda_1$, $||A|| = \lambda_2$, and $c(A) = \lambda_2/\lambda_1$. Find a right-hand side b and a perturbation δb so that the error is the worst possible, $||\delta x||/||x|| = c||\delta b||/||b||$.

$$|A-IA| = \begin{vmatrix} 2-A & -1 \\ -1 & 2-A \end{vmatrix} = 0$$

$$\therefore A-AA+A^2-1=0$$

$$\therefore A^2-AA+3=0$$

 $\lambda_1 = 3$ $\lambda_{min} = 1$ $\lambda_2 = 1$ $\lambda_{max} = 3$

$$\frac{1}{|A^{-1}|} = \frac{1}{|A_{min}|} = \frac{1}{|A_{min}|}$$

Nou, for
$$A = 1$$
, $\begin{bmatrix} 1 & -1 & 0 \\ -1 & 1 & 0 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$

$$\overrightarrow{x_1}: \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_2 \\ x_2 \end{bmatrix} = x_2 \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
 \leftarrow \therefore $x_1 = x_2$

Nou, for
$$\Lambda = 3$$
, $\begin{bmatrix} -1 & -1 & 0 \\ -1 & -1 & 0 \end{bmatrix} \longrightarrow \begin{bmatrix} -1 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$

. :	worst	case	error: (1,1)	: 11 A-1 1 = 1	& c(A): 3
.· .	value	of	Sb = & (1,-1)	: 11 A 11 = 3	

		•	^
コ.	າ	Ιa	١.
τ	_	しン	,

.:

1 = ±1

9. Show that $\max |\lambda|$ is not a true norm, by finding 2 by 2 counterexamples to $\lambda_{\max}(A+B) \le \lambda_{\max}(A) + \lambda_{\max}(B)$ and $\lambda_{\max}(AB) \le \lambda_{\max}(A)\lambda_{\max}(B)$.

Let
$$A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$
 : $A_{max} A = 0$ $A + B = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$

$$B = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$$
 : $A_{max} B = 0$

Now,
$$AB : \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$
 $\therefore \lambda_{mqx} AB = 1$
 $\therefore \lambda_{mqx} AB > \lambda_{mqx} A + \lambda_{mqx} B$
 $(1 > 0 + 0)$

· Counter examples for given statements are shown.

13. Find the norms and condition numbers from the square roots of $\lambda_{\max}(A^TA)$ and $\lambda_{\min}(A^TA)$:

$$||A|| = \sqrt{\lambda_{max} (A^{T}A)}$$

$$= \sqrt{4}$$

$$= 2$$

$$(A^{T}A)$$

$$= \sqrt{4}$$

$$= \sqrt{4}$$

$$= \sqrt{4}$$

$$A(A-2) = 0$$

$$A_{mqx} = 2$$

$$A_{min} = 0$$

$$\frac{1}{2} = \sqrt{2} \qquad \qquad 4 \qquad C(A) = \sqrt{\frac{\lambda_{max}}{\lambda_{min}}} = \sqrt{\frac{2}{0}} = \frac{\infty}{0}$$

..
$$Matrix 1 : ||A|| = 2$$

$$C(A) = 1$$
• $Matrix 2 : ||A|| = \sqrt{2}$

$$C(A) = 0$$
• $Matrix 3 : ||A|| = \sqrt{2}$

$$C(A) = 1$$

1. For the matrix $A = \begin{bmatrix} 1 & -1 \\ 1 & 2 \end{bmatrix}$ with eigenvalues $\lambda_1 = 1$ and $\lambda_2 = 3$, apply the power method $u_{k+1} = Au_k$ three times to the initial guess $u_0 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$. What is the limiting vector u_{∞} ?

Applying power method 3 times ->

- $\therefore \ \, u_1 = A_{40} = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$

- & it is given: 12=3 i.e. > 1,=1
 - : limiting vector U_{∞} is a multiple of eigenvector Corrosponding to $\lambda = 3$.
 - $\begin{bmatrix} 2-3 & -1 & 0 \\ -1 & 2-3 & 0 \end{bmatrix} \longrightarrow \begin{bmatrix} -1 & -1 & 0 \\ -1 & -1 & 0 \end{bmatrix} \longrightarrow \begin{bmatrix} -1 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$
 - -. X1 X2 = 0
 - $\therefore \qquad \chi_1 = -\chi_2 \qquad \qquad \therefore \qquad \begin{bmatrix} \chi_1 \\ \chi_2 \end{bmatrix} = \begin{bmatrix} \chi_2 \\ -\chi_2 \end{bmatrix} = \chi_2 \begin{bmatrix} 1 \\ -1 \end{bmatrix}$
 - ilimiting vector is a multiple of 1

7.4 Ci)

1. This matrix has eigenvalues $2 - \sqrt{2}$, 2, and $2 + \sqrt{2}$:

$$A = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}.$$

Find the Jacobi matrix $D^{-1}(-L-U)$ and the Gauss-Seidel matrix $(D+L)^{-1}(-U)$ and their eigenvalues, and the numbers $\omega_{\rm opt}$ and $\lambda_{\rm max}$ for SOR.

$$\therefore \mathfrak{P}^{-1}(-L-U) = \underbrace{1}_{2} \mathfrak{T} \cdot (-L-U)$$

$$= \underbrace{1}_{2} (-L-U) = \underbrace{0}_{2} \underbrace{0}_{2}$$
 Clea

$$\therefore (D+L)^{-1} = \frac{1}{8} \begin{bmatrix} 4 & 00 \\ 2 & 40 \\ 1 & 24 \end{bmatrix}$$

: Nov,
$$\omega_{opt} = \frac{2(1-\sqrt{1-M_{max}^2})}{2(1-\sqrt{1-M_{max}^2})} = \frac{2(1-\sqrt{1-M_{max}^2})}{\frac{1}{2}}$$

$$\mathcal{U}_{max}^{2} = 4\left(1-\sqrt{\frac{1}{2}}\right)$$

$$= 4\left(1-\sqrt{\frac{1}{2}}\right)$$

$$= 4 \left(1 - \sqrt{\frac{1}{2}}\right)$$

$$= 4 \left(1 - \frac{1}{52}\right)$$

$$= 4 \left(1 - \sqrt{\frac{1}{2}}\right)$$

$$= 4 \left(1 - \frac{1}{52}\right)$$

$$= 4 \left(52 - 1\right)$$

$$\mathcal{U}_{max}^{2} = 4 \left(1 - \sqrt{\frac{1}{2}}\right)$$

$$= 4 \left(1 - \frac{1}{\sqrt{2}}\right)$$

$$= 4 \left(1 - \frac{1}{\sqrt{2}}\right)$$

$$= 4 \left(2 - \sqrt{2}\right)$$

$$= 4 \left(2 - \sqrt{2}\right)$$

$$= 4 - 2\sqrt{2}$$

$$= 4 - 2\sqrt{2}$$

$$\therefore \lambda_{max} = \omega_{opt} - 1$$

$$\frac{1}{2} \cdot \text{Nov}, \quad \omega_{\text{opt}} = \frac{2(1-\sqrt{1-\frac{1}{2}})}{2} = \frac{2(1-\sqrt{1-\frac{1}{2}})}{\frac{1}{2}}$$

$$= 4(1-\sqrt{\frac{1}{2}})$$

$$= 4(1-\sqrt{\frac{1}{2}})$$

$$= 4(1-\sqrt{\frac{1}{2}})$$

$$= 4(2-\sqrt{2})$$

$$= 4(2-\sqrt{2})$$

$$= 4-2\sqrt{2}$$

$$= 4-2\sqrt{2}$$

$$\therefore \quad \lambda_{\text{max}} = \omega_{\text{opt}} - 1$$

$$= 3-2\sqrt{2}$$

$$\vdots \quad \omega_{\text{opt}} = 4-2\sqrt{2}$$

$$\lambda_{\text{max}} = 3-2\sqrt{2}$$

7.4 (4)

4. The matrix

$$A = \begin{bmatrix} 3 & 1 & 1 \\ 0 & 4 & 1 \\ 2 & 2 & 5 \end{bmatrix}$$

is called *diagonally dominant* because every $|a_{ii}| > r_i$. Show that zero cannot lie in any of the circles, and conclude that A is nonsingular.

input	
eigenvalues	$\begin{pmatrix} 3 & 1 & 1 \\ 0 & 4 & 1 \\ 2 & 2 & 5 \end{pmatrix}$

Results

$$\lambda_1\approx 6.56155$$

$$\lambda_2 = 3$$

$$\lambda_3 \approx 2.43845$$

The circles that bound eigenvalues are C1, C2, C3.

: Centre of
$$C_1 = (3,0)$$

radius $r_1 = |1| + |1|$

= 2

7.4(5)

5. Write the Jacobi matrix J for the diagonally dominant A of Problem 4, and find the three Gershgorin circles for J. Show that all the radii satisfy $r_i < 1$, and that the Jacobi iteration converges.

$$=$$
 $\frac{1}{60}\begin{pmatrix} 20 & 0 & 0 \\ 0 & 15 & 0 \\ 0 & 0 & 12 \end{pmatrix}$

Result

$$C_{1} = (0,0)$$
, $r_{1} = \frac{1}{3} + \frac{1}{3} = 2$

Hence, we have

Shown that

 $C_{2} = (0,0)$, $r_{2} = |0| + |\frac{1}{4}| = \frac{1}{4}$
 $r_{1}, r_{2}, r_{3} < 0$
 $r_{3} = |\frac{2}{5}| + |\frac{2}{5}| = \frac{4}{5}$

Converges.

7. For a general 2 by 2 matri

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix},$$

find the Jacobi iteration matrix $S^{-1}T = -D^{-1}(L+U)$ and its eigenvalues μ_i . Find also the Gauss-Seidel matrix $-(D+L)^{-1}U$ and its eigenvalues λ_i , and decide whether $\lambda_{\max} = \mu_{\max}^2$.

$$D^{-1} = \begin{bmatrix} \frac{1}{a} & 0 \\ 0 & \frac{1}{d} \end{bmatrix} \qquad \{ L+U = \begin{bmatrix} 0 & b \\ C & 0 \end{bmatrix}$$

Tacobian
$$S^{1}T = -D^{-1}(L+U) = \begin{bmatrix} 1/a & 0 & 0 & b \\ 0 & 1/a & 0 & 0 & 0 \end{bmatrix}$$
There from Ma

Input
$$\begin{array}{c|c} c & 0 & \frac{-b}{a} \\ \hline -c & 0 \\ \hline -d & 0 \\ \hline \end{array}$$
 eigenvalues
$$\begin{array}{c|c} 0 & -\frac{b}{a} \\ \hline -\frac{b}{a} & 0 \\ \hline \end{array}$$

Results $\lambda_1 = -\frac{\sqrt{b} \ \sqrt{c}}{\sqrt{a} \ \sqrt{d}}$

$$\lambda_2 = \frac{\sqrt{b} \ \sqrt{c}}{\sqrt{a} \ \sqrt{d}}$$

Now,
$$D+L = \begin{bmatrix} a & 0 \\ c & d \end{bmatrix}$$
, $A = \begin{bmatrix} D+L \\ -\frac{c}{ad} & \frac{1}{d} \end{bmatrix}$

: Mmgx = Jb Jc

$$\therefore - (D+L)^{-1}U = \begin{bmatrix} \frac{1}{a} & 0 & 0 & b \\ \frac{-c}{ad} & \frac{1}{d} & 0 & 0 \end{bmatrix}$$

$$\begin{array}{c} = \begin{bmatrix} 0 & \frac{-b}{a} \\ o & \frac{-b}{ad} \end{bmatrix} \\ o & \frac{-b}{ad} \\ o & \frac{-b}{ad} \end{bmatrix}$$

$$\begin{array}{c} \vdots \\ \text{linput} \\ \text{eigenvalues} \\ \begin{bmatrix} 0 & \frac{-b}{a} \\ 0 & \frac{cb}{ad} \end{bmatrix} \\ \vdots \\ \lambda_1 = 0 \\ \lambda_2 = \frac{bc}{ad} \\ \vdots \\ \lambda_{10} = \frac{bc}{ad} \\ \vdots \\ \lambda_{10}$$

& its eigenvalues: 0, cb

Amax = M2

7.4(10)

10. Show why the iteration $x_{k+1} = (I - A)x_k + b$ does not converge for $A = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$.

$$I-A = \begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix}$$
. Let $\chi_{k} = \begin{bmatrix} \chi_1 \\ \chi_2 \end{bmatrix}$

Let
$$b = 0$$

$$\therefore \ \mathcal{X}_2 = \begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} -\mathcal{X}_1 + \mathcal{Y}_2 \\ \mathcal{X}_1 - \mathcal{Y}_2 \end{bmatrix} = \begin{bmatrix} \mathcal{X}_1 - \mathcal{X}_2 \\ -\mathcal{X}_1 + \mathcal{X}_2 \end{bmatrix} = \begin{bmatrix} 2\mathcal{X}_1 - 2\mathcal{X}_2 \\ -2\mathcal{X}_1 + 2\mathcal{X}_2 \end{bmatrix}$$

 $not converge for A = \begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix}$

the value of vector b.

7-4 (17)

17. What bound on $|\lambda|_{\rm max}$ does Gershgorin give For these matrices (see Problem 4)? What are the three Gershgorin circles that contain all the eigenvalues?

The key point for large matrices is that matrix-vector multiplication is much faster than matrix-matrix multiplication. A crucial construction starts with a vector b and computes $Ab,A^2b,...$ (but never A^2 !). The first N vectors span the Nth Krylov subspace. They are the columns of the Krylov matrix K_N :

$$K_N = \begin{bmatrix} b & Ab & A^2b & \cdots & A^{N-1}b \end{bmatrix}$$
.

The Arnoldi-Lanczos iteration orthogonalizes the columns of K_N , and the conjugate gradient iteration solves Ax = b when A is symmetric positive definite.

1) for row 1, $A_1 = |0.3| + |0.2| + |0.2| = 0.8$ for row 2, $A_2 = |0.3| + |0.2| + |0.4| = 0.9$ For row 3, $A_3 = |0.2| + |0.4| + |0.1| = 0.7$

Eigenvalues of A: eigenvalues $\begin{pmatrix} 0.3 & 0.3 & 0.2 \\ 0.3 & 0.2 & 0.4 \\ 0.2 & 0.4 & 0.1 \end{pmatrix}$

. C (0,3,0)

V, = [0:3] + [0:2] = 0.5

 $\lambda_1 \approx 0.806318$ $\lambda_2 \approx -0.258992$ $\lambda_3 \approx 0.0526744$

Results

 $C_2 \subseteq \left(0.2, 0\right)$

re= 10.3/10.4) = 0.7

$$C_3 = (0.1, 0)$$
 $C_3 = (0.2) + (0.4) = 0.6$

C3 contains
all eigenvalues

bound on 1/1

[-0.5|<|1/1<|0.9|

for
$$row 1$$
, $A_1 = |2| + |-1| + |0| = 3$
for $row 2$, $A_2 = |-1| + |2| + |-1| = 4$
For $row 3$, $A_3 = |0| + |-1| + |2| = 3$

Figenvalues of A:
$$\begin{array}{c} \text{liput} \\ \text{eigenvalues} \end{array} \begin{array}{c} \begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix} \end{array} \begin{array}{c} \therefore C_1 \subseteq \left(\begin{array}{c} 2 & 0 \end{array} \right) \\ Y_1 \subseteq \left[\begin{array}{c} -1 & 1 & 1 \end{array} \right] = 1 \end{array}$$

Results
$$\begin{array}{c} \lambda_1 = 2 + \sqrt{2} \quad \text{if } \lambda_2 = 2 \\ \lambda_3 = 2 - \sqrt{2} \quad \text{if } 0 \cdot 5 \end{array} \begin{array}{c} C_2 \subseteq \left(\begin{array}{c} 2 & 0 \end{array} \right) \\ Y_2 \subseteq \left[\begin{array}{c} -1 & 1 & 1 & 1 \end{array} \right] = 2 \end{array}$$

$$C_3 = (2,6)$$
 $C_3 = (0)+(-1)=($

