Доказательства свойств для множества Мандельброта

Формула: $z_{n+1} = z_n^2 + c, \quad z_0 = 0$

1 свойство

Симметрия относительно вещественной оси

Доказательство:

Пусть дана последовательность $\{z_n\}$ для параметра c

$$z_0 = 0, z_{n+1} = z_n^2 + c$$

По определению, $c \in M$ тогда и только тогда, когда последовательность $\{\mid z_n \mid\}$ ограничена.

Рассмотрим последовательность $\{k_n\}$ для сопряженного параметра \overline{c} :

$$k_0 = 0$$

$$k_{n+1}=k_n^2+\overline{c}$$

Нужно доказать, что $k_n=z_n$ для всех $n\geq 0$. Используем метод математической индукции

1. База индукции:

$$k_0=0$$
 $\overline{z_0}=\overline{0}=0$

Мы видим, что $k_0=\overline{z_0}$. База индукции есть

2. Индукционный переход:

Допустим, что $k_i=\overline{z_i}$. Рассмотрим $k_{i+1}=k_i^2+\overline{c}$:

Используя индуктивное предположение подставим $\overline{z_i}=k_i$:

$$k_{i+1} = (\overline{z_i})^2 + \overline{c}$$

Так как $\overline{c_1}+\overline{c_2}=\overline{c_1+c_2}$, а $\overline{z^2}=\overline{z}^2$ Получаем, что

$$k_{i+1} = \overline{z_i^2 + c}$$

Таким образом

$$k_i=\overline{z_i}$$

Мы доказали, что последовательность для \overline{c} является последовательностью сопряженных значений для c: $k_n=\overline{z_n}$.

Сравним их модули:

$$\mid k_n\mid=\mid\overline{z_n}\mid$$
 Так как $\mid\overline{z_n}\mid=\mid z_n\mid$ получаем, что $\mid k_n\mid=\mid z_n\mid$

Таким образом, последовательность $\{\mid z_n\mid\}$ ограничена тогда и только тогда, когда последовательность $\{\mid k_n\mid\}$ ограничена.

По определению множества Мандельброта:

 $c\in M\Longleftrightarrow\{\mid z_n\mid\}$ ограничена $\Leftrightarrow\{\mid k_n\mid\}$ ограничена $\Longleftrightarrow\overline{c}\in M$ Это доказывает симметрию M относительно вещественной оси.

2 свойство

Если $\mid c \mid > 2$, то c не принадлежит множеству Мандельброта (с otin M).

Определение: $c\in M$ тогда и только тогда, когда последовательность $z_{n+1}=z_n^2+c$, где $z_0=0$, остается ограниченной, то есть $\{\mid z_n\mid\}$ ограничена.

При $\mid c \mid > 2$. Докажем, что $\{\mid z_n \mid \}$ неограничена.

Докажем, что если $\mid z_n \mid$ достигает $\mid c \mid$, то последовательность начинает строго монотонно расти.

Рассмотрим

$$||z_{k+1}|| = ||z_k^2 + c|| \ge ||z_k^2 - c|| \ge ||z_k^2|| - ||c|||$$

Нам необходимо избавиться от внешнего модуля, доказав, что внутреннее выражение неотрицательно:

$$\mid z_k^2 \mid - \mid c \mid \geq 0$$

Мы ведем доказательство при условии, что $\mid z_k \mid \geq \mid c \mid$. Поскольку $\mid c \mid > 2$, то $\mid z_k \mid \geq \mid c \mid \geq 2$. Умножим неравенство $\mid z_k \mid \geq \mid c \mid$ на $\mid z_k \mid$.

$$\mid z_k \mid^2 \geq \mid c \mid \cdot \mid z_k \mid$$

Поскольку $\mid z_k \mid \geq 2 > 1$, то $\mid zk \mid \cdot \mid c \mid > \mid c \mid$. Следовательно, $|z_k|^2 > \mid c \mid$, что означает

$$|z_k|^2-\mid c\mid\geq 0$$

Таким образом, внешний модуль снимается строго:

$$|z_{k+1}| \geq |z_k|^2 - \mid c \mid$$

Доказательство монотонного роста

Нам нужно доказать, что если $\mid z_k \mid \geq \mid c \mid$, то $\mid z_{k+1} \mid > \mid z_k \mid$. Это эквивалентно неравенству:

$$|z_k|^2 - \mid c\mid > \mid z_k\mid \Longleftrightarrow \mid z_k\mid (\mid z_k\mid -1) > \mid c\mid$$

Поскольку $\mid z_k \mid \geq \mid c \mid$ и $\mid c \mid > 2$:

- 1. Оценка первого множителя: $\mid z_k \mid \geq \mid c \mid$.
- 2. Оценка второго множителя: $\mid z_k \mid -1 \geq \mid c \mid -1$. Поскольку $\mid c \mid > 2$, то $\mid c \mid -1 > 1$.

Подставим минимальные оценки:

$$\mid z_k \mid (\mid z_k \mid -1) > \mid c \mid \cdot 1 = \mid c \mid$$

Вывод:

Если
$$\mid z_{k} \mid \geq \mid c \mid$$
, то $\mid z_{k+1} \mid > \mid z_{k} \mid$ и $\mid z_{k+1} \mid > \mid c \mid$.

Доказательство неограниченности

Поскольку $\mid c \mid > 2$, определим константу λ :

$$\lambda = \mid c \mid -1$$

Очевидно, $\lambda > 1$.

Используя доказанное выше неравенство $\mid z_{n+1} \mid \geq |z_n^2| - \mid c \mid$, мы выделяем множитель $\mid z_n \mid$:

$$\mid z_{n+1}\mid \geq \mid z_{n}\mid (\mid z_{n}\mid -1)+(\mid z_{n}\mid -\mid c\mid)$$

Поскольку $\mid z_n \mid \geq \mid c \mid$ для $n \geq 1$:

1. Отбрасываем положительный член $\mid z_n \mid - \mid c \mid \geq 0$:

$$\mid z_{n+1}\mid \geq \mid z_{n}\mid (\mid z_{n}\mid -1)$$

2. Оцениваем множитель:

Так как
$$\mid z_n \mid \geq \mid c \mid$$
, то $\mid z_n \mid -1 \geq \mid c \mid -1 = \lambda$. $\mid z_{n+1} \mid \geq \mid z_n \mid \cdot \lambda$

Мы начинаем с первого члена $\mid z_1 \mid = \mid c \mid$ (который удовлетворяет условию $z_1 \mid \geq \mid c \mid$), и применяем неравенство $\mid z_{k+1} \mid \geq \lambda \mid z_k \mid$ последовательно

- k=1: $|z_2| > \lambda |z_1|$
- k=2: $\mid z_3 \mid \geq \lambda \mid z_2 \mid \geq \lambda (\lambda \mid z1 \mid) = \lambda^2 \mid z1 \mid \setminus$
- ...
- k=n-1 $\mid z_n \mid \geq \lambda^{n-1} \mid z_1 \mid$

Подставляя $\mid z_1 \mid = \mid c \mid$, получаем: $\mid z_n \mid \geq \lambda^{n-1} \mid c \mid$

Вывод

Поскольку λ — это константа, строго большая 1, и $\mid c \mid$ — положительное число, показатель λ^{n-1} стремится к бесконечности при $n \to \infty$:

$$\lim_{n o\infty}\mid z_n\mid \geq \lim_{n o\infty}\mid c\mid \cdot\lambda^{n-1}$$

Последовательность $\{\mid z_n\mid\}$ неограничена. Следовательно, |c|>2 не принадлежит множеству Мандельброта.