Лекция 17. Принцип симметрии.

Теория функций комплексного переменного

Симметрия (инверсия) относительно обобщенной окружности

- Точки A, A_1 симметричны относительно обобщенной окружности S, если все окружности через A, A_1 перпендикулярны S.
- Симметрия относительно окружности инверсия.
- Симметрия относительно прямой отражение.

Симметричное конформное отображение

- Пусть C, C' обобщенные окружности, а $U \subset \overline{\mathbb{C}}$ открыто.
- Рассмотрим голоморфное отображение $f\colon U \to \overline{\mathbb{C}}$. Положим $\tilde{f} = S_{C'} \circ f \circ S_C$.

• Тогда $\tilde{f}:S_C(U) \to \overline{\mathbb{C}}$ тоже голоморфно.

Принцип симметрии Шварца

- Пусть теперь $\overline{U} \cap S_C(U)$ содержит открытую дугу γ обобщенной окружности C, причем $U \cap S_C(U) = \emptyset$.
- Пусть отображение f продолжается до непрерывного отображения $F \colon U \cup \gamma \to \mathbb{C}$.
- Пусть $f(\gamma) \subset C'$. Тогда отображение g, равное F на $U \cup \gamma$ и равное \tilde{f} на $S_C(U)$, голоморфно на $U \cup \gamma \cup S_C(U)$.
- Голоморфность выводится из теоремы Мореры.

Теорема Мореры

Предложение 5.15 (теорема Мореры). Пусть $U \subset \mathbb{C}$ — открытое множество. Если непрерывная функция $f: U \to \mathbb{C}$ обладает тем свойством, что $\int\limits_{\partial \Delta} f(z) \, dz = 0$ для всякого треугольника $\Delta \subset U$, то $\int\limits_{\partial \Delta} f(z) \, dz = 0$ для всякого треугольника $\Delta \subset U$, то

Идея доказательства. 1) Построим первообразную как раньше.

2) Первообразная голоморфна, следовательно, дважды дифференцируема.

Пример применения принципа симметрии

- Вспомним конформный изоморфизм между $U = \mathbb{H} \setminus [0, i]$ и $V = \mathbb{H}$.
- Это $f(z) = \sqrt{z^2 + 1}$.
- Согласно принципу симметрии, f переводит изображенную справа область в $\mathbb{C} \setminus (-\infty, 1]$.

Значит, изоморфизм между изображенной областью и верхней полуплоскостью можно записать как

$$z \mapsto i\sqrt{\sqrt{z^2 + 1} - 1}$$

Отображение на полуплоскость: полуплоскость с разрезом

$$f(z) = \sqrt{z^2 + 1}$$

Пример применения принципа симметрии

Карл Герман Шварц (1843 — 1921)

Немецкий математик, член Берлинской академии наук, профессор Галльского, Цюрихского, Гёттингенского и Берлинского университетов.

Ученик Куммера и Вейерштрасса.

Исследования по конформным отображениям и задачам геометрической оптимизации.

Глава добровольной бригады содействия пожарным.

Отображение из Ш на прямоугольник

- Пусть $a_1 < a_2 < a_3$. Определим $F(z) = \int\limits_{z_0}^z \frac{dz}{\sqrt{(z-a_1)(z-a_2)(z-a_3)}}.$ Выбор ветвей: $\sqrt{z-a_j} > 0.$
- Функция F продолжается до непрерывной функции из $\overline{\mathbb{H}}=\mathbb{H}$ U $\mathbb{R}\cup\{\infty\}$ в $\mathbb{C}.$

В самом деле, если $|z_1| \approx R$ и $|z_2| \approx R$, то $|z_1 - z_2|$ имеет порядок R, а подынтегральное выражение имеет порядок $R^{-\frac{3}{2}}$. Отсюда вытекает непрерывность в точке ∞ .

Образ множества $\ell = \mathbb{R} = \mathbb{R} \cup \{\infty\}$.

Предложение 10.9. Функция F переводит кривую $\ell \subset \mathbb{C}$ (действительную ось с добавленной точкой ∞) в границу прямоугольника со сторонами, параллельными осям координат. Когда ℓ однократно обходится в направлении слева направо, граница прямоугольника также однократно обходится в положительном направлении.

t	$(-\infty;a_1)$	$(a_1; a_2)$	$(a_2; a_3)$	$(a_3; +\infty)$
1	$i\alpha, \alpha > 0$	< 0	$i\alpha$, α < 0	> 0
$\sqrt{(t-a_1)(t-a_2)(t-a_3)}$	$\alpha, \alpha > 0$	7	$\alpha, \alpha < 0$	/ 0

Образ множества $\ell = \mathbb{R} = \mathbb{R} \cup \{\infty\}$.

t	$(-\infty;a_1)$	$(a_1; a_2)$	$(a_2; a_3)$	$(a_3; +\infty)$
1	$i\alpha \alpha > 0$	< 0	$i\alpha$, α < 0	> 0
$\sqrt{(t-a_1)(t-a_2)(t-a_3)}$	ια, α > 0	,	ια, α < 0	7

Отображение из Ш на прямоугольник

Предложение 10.10. Функция F, определенная выше, осуществляет конформное отображение верхней полуплоскости на внутренность прямоугольника со сторонами, параллельными осям. При этом отображение F продолжается до непрерывной биекции между $\bar{H} = H \cup \ell$ и замыканием прямоугольника; точки a_1 , a_2 , a_3 и ∞ переходят в вершины прямоугольника.

- Положим $\Pi = F(\mathbb{H})$. Пусть u, v длины горизонтальной и вертикальной сторон прямоугольника Π .
- Рассмотрим обратное конформное отображение $G = F^{-1}: \Pi \to \mathbb{H}$.

Свойства отображения $G = F^{-1}: \Pi \to \mathbb{H}$.

Предложение 10.11. Голоморфное отображение $G: \Pi \to H$ продолжается до функции, мероморфной на всем \mathbb{C} . Эта продолженная функция G обладает следующими свойствами.

- (1) Функция G дважды периодична c периодами 2u u 2iv: имеем G(z+2mu+2inv)=G(z) для всякого z u всяких $m,n\in\mathbb{Z}$.
- (2) Если p любая из вершин прямоугольника Π , то G(p-z) = G(p+z) для всех z.
- (3) Функция G имеет полюсы порядка 2 в точках $F(\infty) + mu + nv$ для всех $m, n \in \mathbb{Z}$, а других полюсов не имеет.
- (4) Если p вершина прямоугольника Π , отличная от $F(\infty)$, то во всех точках p+mu+inv, $m,n\in\mathbb{Z}$, функция G разветвлена c индексом 2; во всех других точках, где она голоморфна, функция G неразветвлена.

Замощение плоскости прямоугольниками

Эллиптические функции

Определение 11.9. Решеткой в \mathbb{C} называется подгруппа по сложению $\Gamma \subset \mathbb{C}$, порожденная двумя образующими $\omega_1, \omega_2 \in \mathbb{C}$, линейно независимыми над \mathbb{R} .

Иными словами, $\Gamma = \{m_1\omega_1 + m_2\omega_2 : m_1, m_2 \in \mathbb{Z}\}$, где ω_1 и ω_2 — ненулевые комплексные числа, отношение которых не лежит в \mathbb{R} .

Определение 11.10. Эллиптической функцией относительно решетки $\Gamma \subset \mathbb{C}$ называется мероморфная функция f на \mathbb{C} , для которой f(z+u)=f(z) при всех $z\in \mathbb{C}$ и $u\in \Gamma$.

• Построенная выше функция G доставляет пример эллиптической функции. Она получена обращением эллиптического интеграла.

В лекции использованы иллюстрации и материалы из следующих источников:

- С.М. Львовский, «Принципы комплексного анализа». МЦНМО.
- https://wikipedia.org
- https://mathworld.wolfram.com/

НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ