Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/JP05/002860

International filing date: 23 February 2005 (23.02.2005)

Document type: Certified copy of priority document

Document details: Country/Office: JP

Number: 2004-053653

Filing date: 27 February 2004 (27.02.2004)

Date of receipt at the International Bureau: 21 April 2005 (21.04.2005)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

日本国特許庁 JAPAN PATENT OFFICE

28.02.2005

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日 Date of Application: 2004年 2月27日

出 願 番 号 Application Number: 特願2004-053653

パリ条約による外国への出願 に用いる優先権の主張の基礎 となる出願の国コードと出願 番号

JP2004-053653

The country code and number of your priority application, to be used for filing abroad under the Paris Convention, is

人

シャープ株式会社

出 願 Applicant(s):

特許 Commis Japan P

特許庁長官 Commissioner, Japan Patent Office 2005年 4月 7日


```
特許願
【書類名】
              193313
【整理番号】
              平成16年 2月27日
【提出日】
              特許庁長官殿
【あて先】
              F24C 1/00
【国際特許分類】
【発明者】
              大阪府大阪市阿倍野区長池町22番22号 シャープ株式会社内
  【住所又は居所】
              安藤 有司
  【氏名】
【発明者】
              大阪府大阪市阿倍野区長池町22番22号 シャープ株式会社内
  【住所又は居所】
              上田 真也
   【氏名】
【発明者】
              大阪府大阪市阿倍野区長池町22番22号 シャープ株式会社内
   【住所又は居所】
              松林 一之
   【氏名】
【特許出願人】
   【識別番号】
              000005049
              大阪府大阪市阿倍野区長池町22番22号
   【住所又は居所】
              シャープ株式会社
   【氏名又は名称】
【代理人】
   【識別番号】
              100084146
   【弁理士】
   【氏名又は名称】
              山崎 宏
              06-6949-1261
   【電話番号】
   【ファクシミリ番号】
                 06-6949-0361
【選任した代理人】
              100100170
   【識別番号】
   【弁理士】
              前田 厚司
   【氏名又は名称】
              06-6949-1261
   【電話番号】
                06-6949-0361
   【ファクシミリ番号】
【選任した代理人】
   【識別番号】
              100122286
   【弁理士】
              仲倉 幸典
   【氏名又は名称】
              06-6949-1261
   【電話番号】
                 06-6949-0361
   【ファクシミリ番号】
【手数料の表示】
   【予納台帳番号】
              204815
   【納付金額】
               21,000円
【提出物件の目録】
               特許請求の範囲 1
   【物件名】
               明細書 1
   【物件名】
               図面 1
   【物件名】
               要約書 1
   【物件名】
                0208766
   【包括委任状番号】
```

【書類名】特許請求の範囲

【請求項1】

蒸気を発生する蒸気発生装置と、

上記蒸気発生装置からの蒸気を昇温する蒸気昇温装置と、

天井側に天井蒸気吹出口が設けられ、上記蒸気昇温装置から上記天井蒸気吹出口を介して供給される蒸気によって被加熱物を加熱するための加熱室とを備え、

上記蒸気昇温装置は、

上記蒸気発生装置からの蒸気が流入する蒸気供給口が側壁に設けられた凹部を有し、その凹部の平面形状が上記蒸気供給口から流入する蒸気の流れの中心線に対して略線対称であって、上記加熱室の天井蒸気吹出口上に上記凹部の開口を下側に向けて配置された皿形ケースと、

上記皿形ケースの凹部内に、平面形状が上記中心線に対して略線対称になるように配置されたヒータと、

上記ヒータに巻回され、フィンピッチが10mm以下の螺旋形状の放熱フィンとを有することを特徴とする蒸気調理器。

【請求項2】

請求項1に記載の蒸気調理器において、

上記皿形ケースの凹部の上記中心線を挟んで対向する側壁かつ上記蒸気供給口と反対の側に、上記加熱室内に側方から蒸気を供給するための複数の蒸気吹出口を上記中心線に対して略線対称に設けたことを特徴とする蒸気調理器。

【請求項3】

請求項1または2に記載の蒸気調理器において、

上記皿形ケースの凹部の上記蒸気供給口と反対の側の側壁が、上記中心線に略直角な平面に対して傾斜していることを特徴とする蒸気調理器。

【請求項4】

請求項1乃至3のいずれか1つに記載の蒸気調理器において、

上記皿形ケースの凹部の平面形状は、コの字形状をなす3辺と、その3辺の両端に連なり外側に向かって屈曲するくの字形状をなす2辺とを有する略5角形であって、

上記皿形ケースの凹部の上記コの字形状をなす3辺のうちの中央の辺の側壁に、上記蒸気供給口を設けていることを特徴とする蒸気調理器。

【請求項5】

請求項1乃至3のいずれか1つに記載の蒸気調理器において、

上記皿形ケースの凹部の平面形状は、コの字形状をなす3辺と、その3辺の両端に連なり外側に向かって湾曲する円弧状の外周縁とを有する形であって、

上記皿形ケースの凹部の上記コの字形状をなす3辺のうちの中央の辺の側壁に、上記蒸 気供給口を設けていることを特徴とする蒸気調理器。

【請求項6】

請求項4または5に記載の蒸気調理器において、

上記皿形ケースの凹部のコーナー部に、隣り合う側壁同士がなだらかに連なるように湾 曲面を設けたことを特徴とする蒸気調理器。 【書類名】明細書

【発明の名称】蒸気調理器

【技術分野】

 $[0\ 0\ 0\ 1]$

この発明は、蒸気調理器に関する。

【背景技術】

[0002]

従来、蒸気を用いて食品などの被加熱物の加熱調理を行う蒸気調理器として、オーブン 庫内に過熱蒸気を送り込むものがある(例えば、特許文献1(特開平8-49854号公報)参照)。この蒸気調理器は、ポット内にヒータを設けて蒸気を発生させる蒸気発生装置と 、その蒸気発生装置により発生させた蒸気を加熱することにより過熱蒸気を生成する蒸気 過熱器とを備え、蒸気過熱器で生成された過熱蒸気をオーブン庫内に送り込んで食品を調 理する。

[0003]

ところで、上記従来の蒸気調理器では、蒸気過熱器で生成された過熱蒸気をオーブン庫 の側面上部に設けられた吹出口からオーブン庫内に吹き込み、側面下部に設けられた吸込 口から吸い込んで、オーブン庫内と循環風路を循環する。このため、上記従来の蒸気調理 器では、オーブン庫内の気流が偏り、温度分布が均一にならないために被加熱物に加熱ム ラができ、仕上がりのより調理ができないという問題がある。

【特許文献1】特開平8-49854号公報

【発明の開示】

【発明が解決しようとする課題】

[0004]

そこで、この発明の目的は、加熱室内の温度分布を均一にでき、加熱ムラのない調理が できる蒸気調理器を提供することにある。

【課題を解決するための手段】

[0005]

上記目的を達成するため、この発明の蒸気調理器は、蒸気を発生する蒸気発生装置と、 上記蒸気発生装置からの蒸気を昇温する蒸気昇温装置と、天井側に天井蒸気吹出口が設け られ、上記蒸気昇温装置から上記天井蒸気吹出口を介して供給される蒸気によって被加熱 物を加熱するための加熱室とを備え、上記蒸気昇温装置は、上記蒸気発生装置からの蒸気 が流入する蒸気供給口が側壁に設けられた凹部を有し、その凹部の平面形状が上記蒸気供 給口から流入する蒸気の流れの中心線に対して略線対称であって、上記加熱室の天井蒸気 吹出口上に上記凹部の開口を下側に向けて配置された皿形ケースと、上記皿形ケースの凹 部内に、平面形状が上記中心線に対して略線対称になるように配置されたヒータと、上記 ヒータに巻回され、フィンピッチが10mm以下の螺旋形状の放熱フィンとを有すること を特徴とする。

[0006]

上記構成の蒸気調理器によれば、上記蒸気発生装置により発生させた蒸気を蒸気昇温装 置により昇温して過熱蒸気とし、その過熱蒸気を加熱室内に供給することにより加熱室内 の被加熱物を加熱する。このとき、上記加熱室の天井蒸気吹出口上に配置された蒸気昇温 装置の皿形ケースの凹部の側壁に設けられた蒸気供給口から、蒸気発生装置の蒸気が流入 する。そして、上記蒸気供給口から流入する蒸気の流れの中心線に対して略線対称な平面 形状の上記皿形ケースの凹部内に流入した蒸気は、凹部の蒸気供給口と反対の側の側壁に ぶつかった後に左右に分かれ、分かれた蒸気の一部は、凹部の側面に沿って蒸気供給口側 に戻って蒸気供給口から流入する蒸気と合流する。そうして、上記皿形ケースの凹部内に 満たされた蒸気が、凹部の開口側の上記加熱室の天井蒸気吹出口を介して加熱室内に供給 される。

[0007]

上記皿形ケースの凹部の平面形状およびその凹部内に配置されたヒータの平面形状を、

蒸気供給口から流入する蒸気の流れの中心線に対して略線対称にすることによって、凹部 内の蒸気の流れに左右の偏りができず、皿形ケースの凹部内全体の温度分布が均一化され る。

[0008]

さらに、上記皿形ケースの凹部内に、上記中心線に対して略線対称な平面形状に配置さ れたヒータに巻回された螺旋形状の放熱フィンのフィンピッチを10mm以下とすること によって、蒸気供給口から吹き出す蒸気の流れに対する放熱フィンの影響度(乱れや抵抗 損失)を上記中心線に対して略線対称に分布させることができ、放熱フィンによるヒータ からの放熱の効率を向上しつつ、凹部内の蒸気の温度分布がより均一化される。したがっ て、上記加熱室の天井蒸気吹出口から加熱室内に供給される蒸気の温度分布を均一にする ことにより、加熱室内の温度分布を均一にでき、加熱ムラのない調理が実現できる。

[0009]

また、一実施形態の蒸気調理器は、上記皿形ケースの凹部の上記中心線を挟んで対向す る側壁かつ上記蒸気供給口と反対の側に、上記加熱室内に側方から蒸気を供給するための 複数の蒸気吹出口を上記中心線に対して略線対称に設けたことを特徴とする。

[0010]

上記実施形態の蒸気調理器によれば、上記皿形ケースの凹部の上記中心線を挟んで対向 する側壁かつ上記蒸気供給口と反対の側に複数の蒸気吹出口を設け、凹部内の蒸気の一部 をその複数の蒸気吹出口を介して上記加熱室内に側方から蒸気を供給する。上記皿形ケー スの凹部の上記中心線を挟んで対向する側壁に、上記中心線に対して略線対称に複数の蒸 気吹出口を設けることによって、凹部内から複数の蒸気吹出口を介して上記中心線の両側 外向に向かって吹き出す蒸気の温度分布を均一にできるので、上記加熱室内に側方から供 給される蒸気の温度分布の左右の偏りを低減でき、加熱室内の温度分布をより均一にする ことができる。さらに、上記皿形ケースの凹部の上記中心線を挟んで対向する側壁かつ蒸 気供給口と反対の側に複数の蒸気吹出口を設けることにより、凹部内では最も流速が速く かつ高温(ヒータ加熱による)の蒸気が複数の蒸気吹出口から吹き出すことになるので、加 熱室内に勢いよく高温の蒸気が供給される。それにより、加熱室内の蒸気が攪拌されるの で、加熱ムラを解消するのにより好適である。

[0 0 1 1]

また、一実施形態の蒸気調理器は、上記皿形ケースの凹部の上記蒸気供給口と反対の側 の側壁が、上記中心線に略直角な平面に対して傾斜していることを特徴とする。

$[0\ 0\ 1\ 2\]$

上記実施形態の蒸気調理器によれば、上記皿形ケースの凹部の上記蒸気供給口と反対の 側の側壁が、上記中心線に略直角な平面に対して傾斜しているので、凹部内に流入した蒸 気が、凹部の蒸気供給口と反対の側の側壁にぶつかって分かれるときに、蒸気の分流をス ムーズにして、温度分布ムラを生じさせる蒸気溜り等の発生を抑制して、凹部内を流れる 蒸気の温度分布をより均一にできる。

[0013]

また、一実施形態の蒸気調理器は、上記皿形ケースの凹部の平面形状が、コの字形状を なす3辺と、その3辺の両端に連なり外側に向かって屈曲するくの字形状をなす2辺とを 有する略5角形であって、上記皿形ケースの凹部の上記コの字形状をなす3辺のうちの中 央の辺の側壁に、上記蒸気供給口を設けていることを特徴とする。

[0014]

上記実施形態の蒸気調理器によれば、上記皿形ケースの平面形状が略5角形の凹部にお いて、コの字形状をなす3辺の両端に連なり外側に向かって屈曲するくの字形状をなす2 辺が、上記中心線に略直角な平面に対して傾斜する壁面となる。これにより、上記凹部の コの字形状をなす3辺のうちの中央の辺の側壁に設けられた蒸気供給口から凹部内に流入 した蒸気が、上記蒸気供給口と反対の側の上記くの字形状をなす2辺の側壁にぶつかって 左右に分かれるときに、蒸気の分流をスムーズにして、温度分布ムラを生じさせる蒸気溜 り等の発生を抑制して、凹部内を流れる蒸気の温度分布をより均一にできる。

[0015]

また、一実施形態の蒸気調理器は、上記皿形ケースの凹部の平面形状が、コの字形状をなす3辺と、その3辺の両端に連なり外側に向かって湾曲する円弧状の外周縁とを有する形であって、上記皿形ケースの凹部の上記コの字形状をなす3辺のうちの中央の辺の側壁に、上記蒸気供給口を設けていることを特徴とする。

[0016]

上記実施形態の蒸気調理器によれば、上記皿形ケースの凹部において、コの字形状をなす3辺の両端に連なり外側に向かって湾曲する円弧状の外周縁が、上記中心線に略直角な平面に対して傾斜する壁面となる。これにより、上記凹部のコの字形状をなす3辺のうちの中央の辺の側壁に設けられた蒸気供給口から凹部内に流入した蒸気が、上記蒸気供給口と反対の側の上記円弧状の外周縁である側壁にぶつかって左右に分かれるときに、蒸気の分流をスムーズにして、温度分布ムラを生じさせる蒸気溜り等の発生を抑制して、凹部内を流れる蒸気の温度分布をより均一にできる。

[0017]

また、一実施形態の蒸気調理器は、上記皿形ケースの凹部のコーナー部に、隣り合う側壁同士がなだらかに連なるように湾曲面を設けたことを特徴とする。

[0018]

上記実施形態の蒸気調理器によれば、上記皿形ケースの凹部のコーナー部に、隣り合う側壁同士がなだらかに連なるように湾曲面を設けることによって、皿形ケースの凹部内に流入した蒸気の一部が凹部の側面に沿ってスムーズに流れる。したがって、凹部内の蒸気の流れが安定し、凹部内を流れる蒸気の温度分布をより均一にできる。

【発明の効果】

[0019]

以上より明らかなように、この発明の蒸気調理器によれば、加熱室内の温度分布を均一にでき、加熱ムラのない調理ができる蒸気調理器を実現することにある。

【発明を実施するための最良の形態】

[0020]

以下、この発明の蒸気調理器を図示の実施の形態により詳細に説明する。

[0021]

図1はこの発明の実施の一形態の蒸気調理器1の外観斜視図であり、直方体形状のキャビネット10の正面の上部に操作パネル11を設け、上記キャビネット10の正面の操作パネル11の下側に、下端側の辺を中心に回動する扉12を設けている。上記扉12の上部にハンドル13を設け、上記扉12に耐熱ガラス製の窓14を設けている。

[0022]

また、図2は上記蒸気調理器1の扉12を開いた状態の外観斜視図を示しており、上記キャビネット10内に直方体形状の加熱室20が設けられている。上記加熱室20は、扉12に面する正面側に開口部20aを有し、加熱室20の側面,底面および天面をステンレス鋼板で形成している。また、上記扉12は、加熱室20に面する側をステンレス鋼板で形成している。上記加熱室20の周囲および扉12の内側に断熱材(図示せず)を配置して、加熱室20内と外部とを断熱している。

[0023]

また、上記加熱室20の底面に、ステンレス製の受皿21が置かれ、受皿21上に被加熱物を載置するためのステンレス鋼線製のラック24(図3に示す)が置かれる。さらに、上記加熱室20の両側面に、長手方向が略水平の略長方形状の側面蒸気吹出口22(図2では一方のみを示す)を設けている。

[0024]

図3は上記蒸気調理器1の基本構成を示す概略構成図を示している。図3に示すように、上記蒸気調理器1は、加熱室20と、蒸気用の水を貯める水タンク30と、上記水タンク30から供給された水を蒸発させる蒸気発生装置40と、上記蒸気発生装置40からの蒸気を加熱する蒸気昇温装置50と、上記蒸気発生装置40や蒸気昇温装置50などを制

御する制御装置80とを備える。

[0025]

上記加熱室20内に置かれた受皿21上に格子状のラック24を載置し、そのラック24の略中央に被加熱物90が置かれる。

[0026]

また、水タンク30の下側に設けられた接続部30aを、第1給水パイプ31の一端に設けられた漏斗形状の受入口31aに接続している。上記第1給水パイプ31から分岐して上方に延びる第2給水パイプ32の他端にポンプ35の吸込側を接続し、そのポンプ35の吐出側に第3給水パイプ33の一端を接続している。また、上記第1給水パイプ31から分岐して上方に延びる水位センサ用パイプ38の上端に水タンク用水位センサ36を配設している。さらに、上記第1給水パイプ31から分岐して上方に延びる大気開放用パイプ37の上端を後述する排気ダクト65に接続している。

[0027]

そして、上記第3給水パイプ33は、垂直に配置された部分から略水平に屈曲するL字形状をしており、第3給水パイプ33の他端に補助タンク39を接続している。上記補助タンク39の下端に第4給水パイプ34の一端を接続し、その第4給水パイプ34の他端を蒸気発生装置40の下端に接続している。また、上記蒸気発生装置40の第4給水パイプ34が接続された下端に、排水バルブ70の一端を接続している。そして、排水バルブ70の他端に排水パイプ71の一端を接続し、排水パイプ71の他端に排水タンク72を接続している。なお、上記補助タンク39の上部は、大気開放用パイプ37と排気ダクト65を介して大気に連通している。

[0028]

上記水タンク30が接続されると、水タンク30内の水は、水タンク30と同水位になるまで大気開放用パイプ37内に水が上昇する。上記水タンク用水位センサ36につながる水位センサ用パイプ38は先端が密閉されているため、水位は上がらないが、水タンク30の水位に応じて水位センサ用パイプ38の密閉された空間の圧力は大気圧から上昇する。この圧力変化を、水タンク用水位センサ36内の圧力検出素子(図示せず)により検出することにより、水タンク30内の水位が検出される。ポンプ35の静止中の水位測定では、大気開放用パイプ37は不要であるが、ポンプ35の吸引圧力が直接圧力検出素子に働いて水タンク30の水位検出の精度が低下するのを防止するため、開放端を有する大気開放用パイプ37を用いている。

[0029]

また、上記蒸気発生装置 40 は、下側に第 4 給水パイプ 3 4 の他端が接続されたポット 4 1 と、上記ポット 4 1 内の底面近傍に配置されたヒータ 4 2 と、上記ポット 4 1 内のヒータ 4 2 の上側近傍に配置された水位センサ 4 3 と、上記ポット 4 1 の上側に取り付けられた蒸気吸引エジェクタ 4 4 とを有している。そして、加熱室 2 0 の側面上部に設けられた吸込口 2 5 の外側にファンケーシング 2 6 を配置している。上記ファンケーシング 2 6 に配置された送風ファン 2 8 により、加熱室 2 0 内の蒸気は、吸込口 2 5 から吸い込まれる。吸い込まれた蒸気は、第 1 パイプ 6 1 と第 2 パイプ 6 2 を介して蒸気発生装置 4 0 の蒸気吸引エジェクタ 4 4 の入口側に送り込まれる。上記第 1 パイプ 6 1 は、略水平に配置されており、一端がファンケーシング 2 6 に接続されている。また、上記第 2 パイプ 6 2 は、略垂直に配置されており、一端が第 1 パイプ 6 1 の他端に接続され、他端が蒸気吸引エジェクタ 4 4 のインナーノズル 4 5 の入口側に接続されている。

[0030]

上記蒸気吸引エジェクタ44は、インナーノズル45の外側を包み込むアウターノズル46を備えており、インナーノズル45の吐出側がポット41の内部空間と連通している。そして、上記蒸気吸引エジェクタ44のアウターノズル46の吐出側を第3パイプ63の一端に接続し、その第3パイプ63の他端に蒸気昇温装置50を接続している。

[0031]

上記ファンケーシング26,第1パイプ61,第2パイプ62,蒸気吸引エジェクタ44,

第3パイプ63および蒸気昇温装置50で外部循環路60を形成している。また、上記加 熱室20の側面の下側に設けられた放出口27に放出通路64の一端を接続し、放出通路 64の他端を排気ダクト65の一端に接続している。上記排気ダクト65の他端に排気口 66を設けている。蒸気放出通路64の排気ダクト65側にラジエータ69を外嵌して取 り付けている。そして、上記外部循環路60を形成する第1パイプ61,第2パイプ62 との接続部を、排気通路67を介して排気ダクト65に接続している。上記排気通路67 の第1,第2パイプ61,62の接続側に、排気通路67を開閉するダンパ68を配置して いる。

[0032]

また、上記蒸気昇温装置50は、加熱室20の天井側かつ略中央に、開口を下側にして 配置された皿形ケース51と、上記皿形ケース51内に配置された第1蒸気加熱ヒータ5 2と、上記皿形ケース51内に配置された第2蒸気加熱ヒータ53とを有している。上記 皿形ケース51の底面は、加熱室20の天井面に設けられた金属製の天井パネル54で形 成されている。上記天井パネル54には、複数の天井蒸気吹出口55を形成している。ま た、上記天井パネル54は、上下両面が塗装などにより暗色に仕上げられている。なお、 使用を重ねることにより暗色に変色する金属素材や暗色のセラミック成型品によって天井 パネル54を形成してもよい。

[0033]

さらに、上記蒸気昇温装置50は、加熱室20の左右両側に延びる蒸気供給通路23(図3では一方のみを示す)の一端が夫々接続されている。そして、上記蒸気供給通路23 の他端は、加熱室20の両側面に沿って下方に延び、加熱室20の両側面かつ下側に設け られた側面蒸気吹出口22に接続されている。

[0034]

次に、図4,図5を用いて上記蒸気発生装置40について詳細に説明する。

[0035]

まず、図4(a)は上記蒸気発生装置40のポット41を上方から見た平面図であり、図 4(b)は上記ポット41の側面図である。

[0036]

図4(a),(b)に示すように、ポット41は、水平面図が略長方形状の筒部41aと、上記 筒部4 1 aの下側に設けられ、中央に向かって徐々に低くなる傾斜面からなる底部4 1 bと 、上記底部41bの略中央に設けられた給水口41cとを有している。上記ポット41の平 面形状は、縦横比が1:2.5であるが、細長い形状、つまり長方形状や楕円形状であれ ばよい。もっとも、長方形の場合の縦横比が1/2であるのが好ましく、1/2.5であ ればより好ましく、1/3以下であればさらに好ましい。

[0037]

上記ポット41内の底部41b近傍にヒータ42を配置しており、そのヒータ42は、 U字形状の大管径のシーズヒータである第1蒸気発生ヒータ42Aと、そのU字形状の第 1蒸気発生ヒータ42Aの内側に略同一平面上に配置されたU字形状の小管径のシーズヒ ータである第2蒸気発生ヒータ42Bで構成されている。上記ヒータ42は、ポット41 の筒部41aの側壁に沿って近接して配置されており、ヒータ42の外縁と筒部41aの側 壁の最短距離は2mm~5mmとしている。また、ヒータ42の下端は、ポット41の底 部41bに近接して配置されており、ヒータ42の最下部とポット41の底部41bの最短 距離は2mm~5mmとしている。

[0038]

この実施の形態では、第1蒸気発生ヒータ42Aは700Wの大管径のシーズヒータを 用い、第2蒸気発生ヒータ42Bは300Wの小管径のシーズヒータを用いている。上記 第1蒸気発生ヒータ42Aは、略半円弧形状の湾曲部42Aaと、その湾曲部42Aaの両 端から略平行に延びる2ヶ所の直線部42Ab,42Acとを有している。また、上記第2 蒸気発生ヒータ42Bは、略半円弧形状の湾曲部42Baと、その湾曲部42Baの両端か ら略平行に延びる2ヶ所の直線部42Bb,42Bcとを有している。上記第1蒸気発生ヒ

ータ42Aの湾曲部42Aaは、使用する大管径のシーズヒータにより定まる最小曲率半径rlとなっており、第2蒸気発生ヒータ42Bの湾曲部42Baは、使用する小管径のシーズヒータにより定まる最小曲率半径r2(<r1)となっている。

[0039]

上記ポット 4 1 内のヒータ 4 2 の上側近傍かつ第 2 蒸気発生ヒータ 4 2 B の内側の非発熱部 (図 4 (a) の C 領域)側の側壁に、水位センサ 4 3 を配置している。また、上記ポット 4 1 内に水位センサ 4 3 の周りを囲む断面コの字形状の仕切板 4 7 を設けている。上記仕切板 4 7 は、ポット 4 1 内の側壁とで断面長方形状の筒体を形成している。上記仕切板 4 7 の下端は、ポット 4 1 の底部 4 1 bより上側かつ第 1 ,第 2 蒸気発生ヒータ 4 2 A ,4 2 B の最下部よりも下側に位置する。一方、上記仕切板 4 7 の上端は、ヒータ 4 2 の最下部 から水位センサ 4 3 の取り付け位置までの高さの 2 倍以上の高さにしている。また、上記ポット 4 1 内の水位センサ 4 3 に対向する側壁に温度センサ 4 8 を配置している。

[0040]

上記水位センサ43は、自己加熱サーミスタであり、水中では、20 \mathbb{C} \mathbb{C} \mathbb{C} の温度に応じて100 \mathbb{C} \mathbb{C} 140 \mathbb{C} 程度の温度が検出され、空気中では、略140 \mathbb{C} \mathbb{C} 100 \mathbb{C} 100 \mathbb{C} 140 \mathbb{C} 150 \mathbb{C} 前後の温度が検出される。そして、温度センサ48 により検出された水の温度に基づいて、水位センサ43 により検出される温度を判定することにより、水の有無すなわち水位センサ43 の取付位置に水があるか否かを判定する。

[0041]

また、図 5(a) は上記蒸気発生装置 40 の側面図であり、図 5(b) は図 5(a) の V-V 線から見た断面図である。

[0042]

[0043]

次に、図6に示す上記蒸気調理器1の制御ブロックについて説明する。

[0044]

図6に示すように、制御装置80には、送風ファン28と、第1蒸気加熱ヒータ52と、第2蒸気加熱ヒータ53と、ダンパ68と、排水バルブ70と、第1蒸気発生ヒータ42Aと、第2蒸気発生ヒータ42Bと、操作パネル11と、水タンク用水位センサ36と、水位センサ43と、加熱室20(図3に示す)内の温度を検出する温度センサ81と、加熱室20内の湿度を検出する湿度センサ82と、ポンプ35が接続されている。

[0045]

上記制御装置 8 0 は、マイクロコンピュータと入出力回路などからなり、水タンク用水位センサ 3 6,水位センサ 4 3,温度センサ 8 1 および湿度センサ 8 2 からの検出信号に基づいて、送風ファン 2 8,第 1 蒸気加熱ヒータ 5 2,第 2 蒸気加熱ヒータ 5 3,ダンパ 6 8,排水バルブ 7 0,第 1 蒸気発生ヒータ 4 2 A,第 2 蒸気発生ヒータ 4 2 B,操作パネル 1 1 およびポンプ 3 5 を所定のプログラムに従って制御する。

$[0\ 0\ 4\ 6]$

上記構成の蒸気調理器 1 において、操作パネル 1 1 中の電源スイッチ(図示せず)が押さ 出証特 2 0 0 5 - 3 0 3 0 7 6 8 れて電源がオンし、操作パネル11の操作により加熱調理の運転を開始する。そうすると 、まず、制御装置80は、排水バルブ70を閉ざして、ダンパ68により排気通路67を 閉じた状態でポンプ35の運転を開始する。上記ポンプ35により水タンク30から第1 ~第4給水パイプ31~34を介して蒸気発生装置40のポット41内に給水される。そ して、上記ポット41内の水位が所定水位に達したことを水位センサ43が検出すると、 ポンプ35を停止して給水を止める。

[0047]

次に、第1,第2蒸気発生ヒータ42A,42Bを通電し、ポット41内に溜まった所定 量の水を第1,第2蒸気発生ヒータ42A,42Bにより加熱する。

[0048]

次に、第1,第2蒸気発生ヒータ42A,42Bの通電と同時、または、ポット41内の 水の温度が所定温度に達すると、送風ファン28をオンすると共に、蒸気昇温装置50の 第1蒸気加熱ヒータ52を通電する。そうすると、送風ファン28は、加熱室20内の空 気(蒸気を含む)を吸込口25から吸い込み、外部循環路60に空気(蒸気を含む)を送り出 す。上記送風ファン28に遠心ファンを用いているので、プロペラファンに比べて高圧を 発生させることができる。さらに、送風ファン28に用いる遠心ファンを直流モータで高 速回転させることによって、循環気流の流速を極めて速くすることができる。

[0049]

次に、上記蒸気発生装置40のポット41内の水が沸騰すると、飽和蒸気が発生し、発 生した飽和蒸気は、蒸気吸引エジェクタ44のところで外部循環路60を通る循環気流に 合流する。上記蒸気吸引エジェクタ44から出た蒸気は、第3パイプ63を介して高速で 蒸気昇温装置50に流入する。

[0050]

そして、上記蒸気昇温装置50に流入した蒸気は、第1蒸気加熱ヒータ52により加熱 されて略300℃(調理内容により異なる)の過熱蒸気となる。この過熱蒸気の一部は、下 側の天井パネル54に設けられた複数の天井蒸気吹出口55から加熱室20内の下方に向 かって噴出する。また、過熱蒸気の他の一部は、蒸気昇温装置50の左右両側に設けられ た蒸気供給通路23を介して加熱室20の両側面の側面蒸気吹出口22から噴出する。

[0051]

これにより、上記加熱室20の天井側から噴出した過熱蒸気が中央の被加熱物90側に 向かって勢いよく供給されると共に、加熱室20の左右の側面側から噴出した過熱蒸気は 、受皿21に衝突した後、被加熱物90の下方から被加熱物90を包むように上昇しなが ら供給される。それによって、上記加熱室20内において、中央部では吹き下ろし、その 外側では上昇するという形の対流が生じる。そして、対流する蒸気は、順次吸込口25に 吸い込まれて、外部循環路60を通って再び加熱室20内に戻るという循環を繰り返す。

[0052]

このようにして上記加熱室20内で過熱蒸気の対流を形成することにより、加熱室20 内の温度,湿度分布を均一に維持しつつ、蒸気昇温装置50からの過熱蒸気を天井蒸気吹 出口55と側面吹出口22から噴出して、ラック24上に載置された被加熱物90に効率 よく衝突させることが可能となる。そうして、過熱蒸気の衝突により被加熱物90を加熱 する。このとき、上記被加熱物90の表面に接触した過熱蒸気は、被加熱物90の表面で 結露するときに潜熱を放出することによっても被加熱物90を加熱する。これにより、過 熱蒸気の大量の熱を確実にかつ速やかに被加熱物90全面に均等に与えることができる。 したがって、むらがなく仕上がりよい加熱調理を実現することができる。

[0053]

また、上記加熱調理の運転において、時間が経過すると、加熱室20内の蒸気量が増加 し、量的に余剰となった分の蒸気は、放出口27から放出通路64,排気ダクト65を介 して排気口66から外部に放出される。このとき、放出通路64に設けたラジエータ69 により放出通路64を通過する蒸気を冷却して結露させることによって、外部に蒸気がそ のまま放出されるのを抑制している。上記ラジエータ69により放出通路64内で結露し た水は、放出通路 6 4 内を流れ落ちて受皿 2 1 に導かれ、調理により発生した水と共に調理終了後に処理する。

[0054]

調理終了後、制御装置 80 により操作パネル 11 に調理終了のメッセージを表示し、さらに操作パネル 11 に設けられたブザー (図示せず)により合図の音を鳴らす。それにより、調理終了を知った使用者が扉 12 を開けると、制御装置 80 は、扉 12 が開いたことをセンサ (図示せず)により検知して、排気通路 67 のダンパ 68 を瞬時に開く。それにより、外部循環路 60 の第 1 パイプ 61 が排気通路 67 を介して排気ダクト 65 に連通し、加熱室 20 内の蒸気は、送風ファン 28 により吸込口 25 、第 1 パイプ 61 、排気通路 67 および排気ダクト 65 を介して排気口 66 から排出される。このダンパ動作は、調理中に使用者が扉 12 を開いても同様である。したがって、使用者は、蒸気にさらされることなく、安全に被加熱物 90 を加熱室 20 内から取り出すことができる。

[0055]

また、上記蒸気発生装置40のポット41内の底部41b近傍かつ略同一水平面上にヒータ42を配置することによって、ポット41内に供給される水の水位を、ポット41の底部41bからヒータ42の上部のわずか上側までとすることが可能となる。したがって、ポット41内の水位を、ポット41の底部41bからヒータ42の上部のわずか上側までとし、水位を可能な限り低くすることによって、ヒータ42により加熱するポット41内の水量をできるだけ少なくでき、蒸気発生装置40による蒸気発生の立ち上がりを早くすることにより、過熱蒸気の立ち上がりを早くできて、調理時間を短縮することができる。特に、長時間運転を停止した後の最初の加熱調理時において、停止中に予熱などを行うことなく、加熱室20に供給する過熱蒸気の立ち上がりを早くできるので、調理時間の短縮化の効果が顕著である。

[0056]

また、上記蒸気発生装置 40 の平面形状が細長い形状 (この実施形態では略長方形) のポット 41 内にヒータ 42 が配置され、そのヒータ 42 として用いられるシーズヒータ (42A, 42B) をポット 41 の側壁に沿うように配置することによって、ヒータ 42 の外縁で囲まれる領域の占有面積が小さくなり、ポット 41 内のヒータ占有床面積 (または水面の面積) に対するヒータ電力を高くすることができると共に、ポット 41 の平面形状の面積も小さくすることができる。したがって、上記ポット 41 内のヒータ占有床面積 (または水面の面積) に対するヒータ電力を高くし、さらにポット 41 の平面形状の面積も小さくして水量を低減することにより、蒸気発生装置 40 による蒸気の発生をより早く立ち上げることができる。

[0057]

また、上記 U字形状の大管径のシーズヒータである第 1 蒸気発生ヒータ 4 2 A と、その第 1 蒸気発生ヒータ 4 2 A の内側に略同一平面上に配置された U字形状の小管径のシーズヒータである第 2 蒸気発生ヒータ 4 2 B において、湾曲部 4 2 B a の曲率半径を、シーズヒータの管径などにより定まる最小曲率半径にすることによって、ヒータ 4 2 への投入電力が同一の条件であれば、径の異なる 2 種類のシーズヒータで構成されるヒータ 4 2 の外縁で囲まれる領域の占有面積を、ポット 4 1 内のヒータ占有床面積(または水面の面積)に対するヒータ電力が最も高くなるように小面積化ができる。上記ポット 4 1 内のヒータ占有床面積(または水面の面積)に対するヒータ電力を高くすることにより、上記蒸気発生装置による蒸気発生の立ち上がりをさらに早くすることができる。また、上記大電力 (700 W)の第 1 蒸気発生ヒータ 4 2 A と小電力 (300 W)の第 2 蒸気発生ヒータ 4 2 B の通電を制御装置 80 により切り換えることによって、その組み合わせにより蒸気発生のために投入される電力を制御することが可能となり、調理内容に応じた蒸気発生が可能となる

[0058]

また、図7(a)は上記蒸気調理器の蒸気昇温装置50を下側から見た平面図を示してお

り、図 7 (b) は上記蒸気昇温装置 5 0 の蒸気供給口側から見た側面図を示している。上記蒸気昇温装置 5 0 は、図 7 (a),(b) に示すように、平面形状が略五角形の凹部 5 1 aを有する皿形ケース 5 1 内に、大電力 (1 0 0 0 W)の大管径のシーズヒータである第 1 蒸気加熱ヒータ 5 2 と小電力 (3 0 0 W)の小管径のシーズヒータである第 2 蒸気加熱ヒータ 5 3 とを配置している。上記第 1 蒸気加熱ヒータ 5 2 よりも第 2 蒸気加熱ヒータ 5 3 の単位表面積あたりの電力密度が高くなっている。また、図 7 (a),(b) では示していないが、皿形ケース 5 1 の凹部 5 1 aの開口は、加熱室 2 0 の天井面に設けられた金属製の天井パネル 5 4 (図 3 に示す)で覆われている。

[0059]

上記皿形ケース51の凹部51aは、蒸気供給管94A,94B,94Cが接続された第1側壁91と、その第1側壁91の一方の側にR部105Aを介して隣接し、第1側壁91に対して略直角な第2側壁92Aと、上記第1側壁91の他方の側にR部105Bを介して隣接し、第1側壁91に対して略直角かつ第2側壁92Aに平行な第3側壁92Bと、上記第2側壁92AとR部106Aを介して隣接し、第2側壁92Aに対して鈍角をなす第4側壁93Aと、上記第3側壁92BとR部106Bを介して隣接し、第3側壁92Bに対して鈍角をなしかつ第4側壁93Aに対して鈍角をなす第5側壁93Bとを有している。上記第4側壁93Aと第5側壁93BとはR部107を介して隣接している。上記第4側壁93Aと第5側壁93BとはR部107を介して隣接している。上記 皿形ケース51は、しぼり加工で形成することにより、凹部51aのコーナー部である湾曲面を有するR部105A,106A,106B,107を設けている。

[0060]

上記皿形ケース51において、蒸気供給管94A,94B,94Cが接続された第1側壁91側がこの蒸気調理器1の背面側(図7(a)の右側)であり、第4側壁93A,第5側壁93B側が蒸気調理器1の前面側(図7(a)の左側)である。上記第1側壁91の略中央に蒸気供給口95Aを有する蒸気供給管94Aを接続し、その蒸気供給管94Aの両側に所定の間隔をあけて蒸気供給口95B,95Cを有する蒸気供給管94B,94Cを夫々接続している。また、上記第2側壁92Aの前面側から背面側に向かって、所定の間隔をあけて蒸気吹出口101A,102A,103A,104Aを設けると共に、その蒸気吹出口101A~104Aに対向する第3側壁92Bの位置に、蒸気吹出口101B,102B,103B,104Bを設けている。上記蒸気吹出口101A~104Aおよび蒸気吹出口101B~104B、図3に示す蒸気供給通路23に接続されている。また、上記蒸気供給管94A,94B,94Cの入口側に、図3に示す第3パイプ63を介して蒸気発生装置40の蒸気吸引エジェクタ44の吐出側を接続している。

[0.061]

また、上記第1側壁91の蒸気供給管94A,94Cの外側に、第1蒸気加熱ヒータ52の第1,第2非発熱部52b,52cを貫通して固定している。上記第1蒸気加熱ヒータ52の第1,第2非発熱部52b,52cの先端に電気配線(図示せず)が接続される。上記第1蒸気加熱ヒータ52は、蒸気供給口95A,95B,95Cから流入する蒸気の流れの中心線Lに対して略線対称な平面形状であって、上記中心線Lに略平行に所定の間隔をあけて配置された2ヶ所の第1,第2非発熱部52b,52cの先端に一端が夫々接続され、凹部51a中央に向かって湾曲する略U字形状の2ヶ所の第1,第2発熱部52a-1,52a-2とその2ヶ所の第1,第2発熱部52a-1,52a-2の他端間を接続する略コの字形状の第3発熱部52a-3とを有する。また、上記第1蒸気加熱ヒータ52の第1~第3発熱部52a-1~52a-3の外周および第1,第2非発熱部52b,52cの一部の外周に、螺旋状の放熱フィン56を巻きつけている。

[0062]

さらに、上記第1側壁91の蒸気供給管94A,94Bの間と蒸気供給管94B,94Cの間に、第2蒸気加熱ヒータ53の両端の非発熱部53b,53cを貫通して固定している。上記第2蒸気加熱ヒータ53の両端の非発熱部53b,53cの先端に電気配線(図示せず)が接続される。上記第2蒸気加熱ヒータ53は、発熱部53aが円形をしており、その円形の発熱部53aの両端が非発熱部53b,53cに連なる形状をしている。上記第2蒸気加

熱ヒータ53は、蒸気供給口95A,95B,95Cから流入する蒸気の流れの中心線Lに対して略線対称な平面形状である。

[0063]

上記皿形ケース 5 1 の凹部 5 1 a の蒸気の一部が、上記中心線 L を挟んで対向する第 2 , 第 3 側壁 9 2 A , 9 2 B にかつ蒸気供給口 9 5 A , 9 5 B , 9 5 C と反対の側 (前面側) に設けられた蒸気吹出口 1 0 1 A \sim 1 0 4 A , 1 0 1 B \sim 1 0 4 B と蒸気供給通路 2 3 (図 3 に示す) を介して側面蒸気吹出口 2 2 A , 2 2 B (図 1 2 に示す) から加熱室 2 0 内に吹き出す

[0064]

また、図8(a)は第2蒸気加熱ヒータのない蒸気昇温装置を下側から見た平面図を示しており、図8(b)は上記蒸気昇温装置の蒸気供給口側から見た側面図を示している。この蒸気昇温装置150は、第2蒸気加熱ヒータがないのと第1蒸気加熱ヒータの形状を除いて図7(a),(b)に示す蒸気昇温装置と同一の構成をしており、同一構成部は同一参照番号を付して説明を省略する。図8(a)において、151は第2蒸気加熱ヒータの取り付け箇所を設けていない皿形ケース、152は第1蒸気加熱ヒータ、105A,105B,106A,106B,107はR部である。

[0065]

次に、上記蒸気昇温装置50の蒸気の流れを図9(a)を用いて説明する。

[0066]

図9(a)に示すように、蒸気発生装置40(図3に示す)から供給された蒸気は、図面上側(背面側)の蒸気供給口95A,95B,95Cを通って図面下側(前面側)に向かって皿形ケース51内に流れ込む。そして、例えば蒸気供給口95Bから流入した蒸気の流れR1に着目すると、皿形ケース51の凹部51aのR部107近傍で、第4側壁93A側と第5側壁93B側に分岐して分岐流R2A,R2Bとなる。そして、上記分岐流R2Aの一部は、第4側壁93Aに沿って側方に向かって流れ、R部106A近傍で第2側壁92Aに沿って流れるように向きを変え、さらに、R部105Aで内側に向きを変えて再び流れR1に合流する。同様に、上記分岐流R2Bの一部は、第5側壁93Bに沿って側方に向かって流れ、R部106B近傍で第3側壁92Bに沿って流れるように向きを変え、さらに、R部105Bで内側に向きを変えて再び流れR1に合流する。また、他の蒸気供給口95A,95Cから流入する蒸気についても、蒸気供給口95Bから流入する蒸気の流れR1に沿って流れることになる。

[0067]

[0068]

上記実施形態の蒸気昇温装置 50では、皿形ケース 51の凹部 51aの平面形状を、コの字形状をなす3辺と、その3辺の両端に連なり外側に向かって屈曲するくの字形状をなす2辺とを有する略5角形としたが、皿形ケースの凹部の平面形状はこれに限らず、例えば図9(b)に示すように、コの字形状をなす3辺と、その3辺の両端に連なり外側に向かって湾曲する円弧状の外周縁を有する壁面96とを有する形状であってもよい。

[0069]

これに対して、例えば、蒸気昇温装置の皿形ケースの形状が図10に示すような前面側かつ両側のコーナー部が鋭角である場合、図面上側(背面側)の蒸気供給口95A,95B,95Cから図面下側(前面側)に向かって皿形ケース251内に流れ込み、例えば蒸気供給口95Bから流入した蒸気の流れR11に着目すると、蒸気供給口95Bの反対側で分岐して分岐流R12A,R12Bとなる。このとき、鋭角なコーナー部には、蒸気溜りSA,SBができ、この蒸気溜りSA,SBが原因となって、皿形ケース251内の蒸気の温度分布が不均一になってしまう。

[0070]

また、図11(a)はこの発明の実施形態の蒸気調理器の蒸気昇温装置の放熱フィンにつ いて説明するための図を示しており、皿形ケース 5 1 (図 7 (a), (b)に示す)の第 1 側壁 9 1近傍における第1蒸気加熱ヒータ52の第1,第2発熱部52a-1,52a-2の互いに平行 な部分を示している。第1蒸気加熱ヒータ52に同じ旋回方向で螺旋状の放熱フィン56 を巻きつけているので、放熱フィン56の傾斜面は同じ方向に傾いている。このため、例 えば図11(a)に示す第1蒸気加熱ヒータ52の第1,第2発熱部52a-1,52a-2の互い に平行な部分の中央を図中の上側から下側に向けて流れる蒸気に対して、放熱フィン56 の傾斜面の影響は異なることになる。しかしながら、この実施の形態では、第1蒸気加熱 ヒータ52に巻回する螺旋状の放熱フィン56のフィンピッチを10mmとすることによ って、蒸気供給口94A,94B,94C(図9に示す)から吹き出す蒸気の流れに対する放 熱フィン56の影響度(乱れや抵抗損失)の分布を蒸気の中心線しに対して略線対称にして いる。

[0071]

なお、図11(b)に示すように、図11(a)よりもフィンピッチが広い場合の放熱フィン 57を第1蒸気加熱ヒータ52に巻回した場合は、蒸気供給口94A,94B,94C(図 9に示す)から吹き出す蒸気の流れに対して放熱フィン57の影響が左右で異なってしま い、皿形ケース51の凹部51a内の蒸気の流れが乱れて安定せず、温度分布を均一にで きなくなる。

[0072]

また、図12は上記蒸気調理器の扉を開いた状態の正面図を示しており、加熱室20の 奥の側面上部の隅に吸込口25が配置され、加熱室20の天井側の略中央に、複数の天井 蒸気吹出口55を有する円形の天井パネル54を取り付けている。また、加熱室20の左 右の側面の下側に、蒸気昇温装置50からの蒸気が吹き出す側面蒸気吹出口22A,22 Bを配置している。上記加熱室20の左側に水タンク30を配置している。

[0073]

このように、上記構成の蒸気調理器によれば、皿形ケース51の凹部51aの平面形状 およびその凹部 5 1 a内に配置された第 1 蒸気加熱ヒータ 5 2 の平面形状を、蒸気供給口 95A,95B,95Cから流入する蒸気の流れの中心線Lに対して略線対称にすることに よって、凹部 5 1 a内の蒸気の流れに偏りができず、温度分布が均一化され、加熱室 2 0 の天井パネル54の天井蒸気吹出口55から加熱室20内に供給される蒸気の温度分布を 均一にすることができる。

[0074]

さらに、上記皿形ケース51の凹部51a内に配置された第1蒸気加熱ヒータ52に巻 回された螺旋形状の放熱フィン56のフィンピッチを10mm以下とすることによって、 蒸気供給口95A,95B,95Cから吹き出す蒸気の流れに対する放熱フィン56の影響 度(乱れや抵抗損失)の分布を上記中心線しに対して略線対称に分布させることができ、凹 部51a内の蒸気の温度分布がより均一化され、加熱室20の天井パネル54の天井蒸気 吹出口55から加熱室20内に供給される蒸気の温度分布を均一にすることができる。し たがって、加熱室20内の温度分布を均一にでき、加熱ムラのない調理が行うことができ る。

[0075]

また、上記皿形ケース51の凹部51aの中心線Lを挟んで対向する第2,第3側壁92 A,92Bかつ蒸気供給口95A,95B,95Cと反対の側に蒸気吹出口101A~10 4A,101B~104Bを設けると共に、その蒸気吹出口101A~104A,101B ~104Bを上記中心線Lに対して略線対称に凹部51a内に配置することによって、凹 部51a内から蒸気吹出口101A~104A,101B~104Bを介して左右の側方に 向かって吹き出す蒸気の量や流速および温度の分布を均一にできるので、蒸気供給通路2 3(図3に示す)を介して加熱室20内に側方から供給する蒸気の温度分布の偏りを低減で き、加熱室20内の温度分布をより均一にすることができる。

[0076]

なお、上記皿形ケースの凹部の平面形状およびヒータ5の平面形状が略線対称でなくとも、皿形ケースの凹部の蒸気供給口が設けられた側壁に隣接する両側壁かつその両側壁の上記蒸気供給口と反対の側に、加熱室内に側方から蒸気を供給するための複数の蒸気吹出口を設けることにより、凹部内から複数の蒸気吹出口を介して両側外向に向かって吹き出す蒸気の温度分布を均一にすることができる。

[0077]

また、上記皿形ケース51の凹部51aの第4,第5側壁93A,93Bが、蒸気供給口95A,95B,95Cから流入する蒸気の流れの中心線Lに略直角な平面に対して傾斜しているので、凹部51a内に流入した蒸気が、第4,第5側壁93A,93Bにぶつかって左右に分かれるときに、蒸気の分流をスムーズにして、温度分布ムラを生じさせる蒸気溜り等の発生を抑制して、凹部51a内を流れる蒸気の温度分布をより均一にできる。

[0078]

また、上記皿形ケース51の略5角形の凹部51aにおいて、コの字形状をなす3辺の両端に連なり外側に向かって屈曲するくの字形状をなす2辺が、上記中心線Lに略直角な平面に対して傾斜する第4,第5側壁93A,93Bとなる。これにより、上記中心線Lに対して略線対称な平面形状の皿形ケース51の凹部51a内に流入した蒸気が、第4,第5側壁93A,93Bにぶつかって左右に分かれるときに、蒸気の分流をスムーズにして、温度分布ムラを生じさせる蒸気溜り等の発生を抑制して、凹部51a内を流れる蒸気の温度分布をより均一にできる。

[0079]

なお、図 9 (b) に示すように、上記皿形ケース 5 1 の凹部 5 1 aの平面形状を、コの字形状をなす 3 辺と、その 3 辺の両端に連なり外側に向かって湾曲する円弧状の外周縁とを有する形にしてもよい。この場合、湾曲する円弧状の外周縁が上記中心線 L に略直角な平面に対して傾斜する壁面 9 6 となる。これにより、上記蒸気供給口 9 5 A, 9 5 B, 9 5 Cから凹部 5 1 a内に流入した蒸気が、円弧状の外周縁を有する壁面 9 6 にぶつかって左右に分かれるときに、蒸気の分流をスムーズにして、温度分布ムラを生じさせる蒸気溜り等の発生を抑制して、凹部 5 1 a内を流れる蒸気の温度分布をより均一にできる。

[080]

さらに、上記皿形ケース51の凹部51aのコーナー部に、隣り合う側壁同士がなだらかに連なるように湾曲面を有するR部105A,105B,106A,106B,107を設けることによって、凹部51a内に流入した蒸気が凹部51aの側面に沿ってスムーズに流れる。したがって、凹部51a内の蒸気の流れが安定し、凹部51a内を流れる蒸気の温度分布をより均一にすることができる。

[0081]

[0082]

また、上記第1蒸気加熱ヒータ52の第1,第2発熱部52a-1,52a-2と第1,第2非発熱部52b,52cとの接続部近傍が、蒸気供給口95A,95Cから流入する蒸気が直接当たる位置に配置されているので、第1蒸気加熱ヒータ52により昇温された蒸気の温度に比べて低温の蒸気が蒸気供給口95A,95Cから第1蒸気加熱ヒータ52の第1,第2発熱部52a-1,52a-2と第1,第2非発熱部52b,52cとの接続部近傍に供給される。したがって、低温の蒸気により第1蒸気加熱ヒータ52の第1,第2発熱部52a-1,52a-2から第1,第2非発熱部52b,52cに伝わる熱を、第1,第2非発熱部52b,52c側の

放熱フィン56を介して放熱することができ、電気配線が接続される側の非発熱部52b,52cの温度上昇を効果的に低減することができる。なお、上記第1蒸気加熱ヒータの第1,第2発熱部と第1,第2非発熱部との接続部が、蒸気供給口から流入する蒸気が直接当たる位置に配置されていてもよい。

[0083]

また、大電力の第1蒸気加熱ヒータ52と小電力の第2蒸気加熱ヒータ53のうち、大電力の第1蒸気加熱ヒータ52の第1~第3発熱部52a-1~52a-3および第1,第2非発熱部52b,52cの一部に放熱フィン56を設けることによって、発熱量の大きい第1蒸気加熱ヒータ52の第1,第2発熱部52a-1,52a-2から第1,第2非発熱部52b,52cに伝わる熱を、第1,第2非発熱部52b,52c側の放熱フィン56を介して放熱することができ、電気配線が接続される側のヒータの非発熱部の温度上昇をより効果的に低減できる。

[0084]

さらに、上記蒸気昇温装置 5 0 の皿形ケース 5 1 の凹部 5 1 a内に、蒸気供給口 9 5 A, 9 5 B, 9 5 C 近傍の空間の単位体積あたりの発熱密度が高くなるように第 1, 第 2 蒸気加熱ヒータ 5 2, 5 3 を配置することによって、蒸気供給口 9 5 A, 9 5 B, 9 5 C から流入するい温度の蒸気が単位体積あたりの発熱密度が高い領域の第 1, 第 2 蒸気加熱ヒータ 5 2, 5 3 の部分に当たって加熱され、皿形ケース 5 1 の凹部 5 1 a内全体の温度分布が均一化されて、加熱室 2 0 の天井蒸気吹出口 5 5 から加熱室 2 0 内に供給される蒸気の温度分布を均一にすることができる。したがって、加熱室 2 0 内の温度分布を均一にでき、加熱ムラのない調理ができる。

[0085]

また、単位表面積あたりの電力密度が異なる第1,第2蒸気加熱ヒータ52,53のうちの単位表面積あたりの電力密度が高い第2蒸気加熱ヒータ53を蒸気供給口95A,95B,95Cから流入するB,95C近傍に配置することによって、蒸気供給口95A,95B,95Cから流入する低い温度の蒸気が単位表面積あたりの電力密度が高い第2蒸気加熱ヒータ53により加熱されるので、蒸気の温度上昇の立ち上がりを早くでき、調理時間を短縮化が図れると共に、皿形ケース51の凹部51a内全体の温度分布をより効果的に均一化できる。

[0086]

また、単位表面積あたりの電力密度が異なりかつ蒸気供給口95A,95B,95Cから流入する蒸気の流れの中心線Lに対して略線対称な平面形状をしている第1,第2蒸気加熱ヒータ52,53のうち、単位表面積あたりの電力密度が高い第2蒸気加熱ヒータ53 を内側に配置し、単位表面積あたりの電力密度が低い第1蒸気加熱ヒータ52を外側に配置することによって、蒸気供給口95A,95B,95Cから流入する低い温度の蒸気が、内側に配置された単位表面積あたりの電力密度が高い第2蒸気加熱ヒータ53により加熱され、その外側では単位表面積あたりの電力密度が低い第1蒸気加熱ヒータ52により加熱されるので、皿形ケース51の凹部51a内全体の温度分布をより効果的に均一化できる。

[0087]

また、上記蒸気供給口95A,95B,95Cから流入する蒸気の流れの中心線Lに対して略線対称な平面形状をしている第1,第2蒸気加熱ヒータ52,53を用いることによって、凹部51a内の蒸気の流れに左右の偏りができず、皿形ケース51の凹部51a内全体の温度分布をより効果的に均一化できる。

[0088]

また、上記中心線Lに略平行に所定の間隔をあけて配置された2ヶ所の第1,第2非発熱部52b,52cと、その第1,第2非発熱部52b,52cの先端に一端が夫々接続され、凹部51a中央に向かって湾曲する略U字形状の2ヶ所の第1,第2発熱部52a-1,52a-2とその2ヶ所の第1,第2発熱部52a-1,52a-2の他端間を接続する略コの字形状の第3発熱部52a-3とを有する第1蒸気加熱ヒータ52は、蒸気供給口95A,95B,95Cから流入する蒸気の流れの中心線Lに対して略線対称な平面形状をしているので、凹部

[0089]

また、上記実施の形態では、蒸気発生装置 4 0 において U 字形状の大管径のシーズヒータである第 1 蒸気発生ヒータ 4 2 A と、その内側に配置された U 字形状の小管径のシーズヒータである第 2 蒸気発生ヒータ 4 2 B とを有するヒータ 4 2 を用いたが、ヒータの形状はこれに限らない。しかしながら、ポット内の底部近傍に配置された略同一水平面上のヒータであるのが好ましい。

[0090]

また、上記実施の形態では、蒸気昇温装置50に平面形状のヒータとしての第1蒸気加熱ヒータ52(図7に示す)を用いたが、ヒータの形状はこれに限らず、蒸気供給口から流入する蒸気の流れの中心線Lに対して略線対称な平面形状であればよい。

[0091]

例えば、図13に示すように、皿形ケース51の凹部51a内に配置されたヒータ58であってよい。このヒータ58は、直線部58aと、半円弧形状の湾曲部58bと、直線部58cと、半円弧形状の湾曲部58fと、直線部58gとを有している。

[0092]

上記直線部58aの一端(非発熱部側)を、皿形ケース51の第1側壁91の一端近傍に 挿通し、直線部58aの他端は、第2側壁92Aに略平行に第4側壁93A近傍まで延び ている。上記直線部58aの他端に半円弧形状の湾曲部58bの一端を接続し、その湾曲部 58bの他端に、直線部58aに略平行に第1側壁91側に延びる直線部58cの一端を接 続している。また、上記直線部58cの他端に半円弧形状の湾曲部58dの一端を接続し、 その湾曲部58dの他端に、上記直線部58cに略平行に第1側壁91と反対の側に延びる 直線部58eの一端を接続している。上記直線部58eの他端に半円弧形状の湾曲部58f の一端を接続し、その湾曲部58fの他端に、第3側壁92Bに略平行に延びる直線部5 8gの一端を接続している。その直線部58gの他端(非発熱部側)を第1側壁91の他端近 傍に挿通している。上記ヒータ58は、蒸気供給口95A,95B,95Cからの蒸気の流 れの中心線Lに対して略線対称な平面形状をしている。

【図面の簡単な説明】

[0093]

- 【図1】図1はこの発明の実施の一形態の蒸気調理器の外観斜視図である。
- 【図2】図2は上記蒸気調理器の扉を開いた状態の外観斜視図である。
- 【図3】図3は上記蒸気調理器の構成を示す概略構成図である。
- 【図4】図4(a)は上記蒸気調理器の蒸気発生装置のポットの水平面図であり、図4(b)は上記ポットの側面図である。
- 【図 5 】図 5 (a) は上記蒸気発生装置 4 0 の側面図であり、図 5 (b) は図 5 (a) の V-V 収 の 5 (b) は図 5 (a) の V-V 収 の 5 (b) は図 5 (a) の V-V 収 の 6 (b) は図 5 (a) の V-V 収 の 6 (b) は図 5 (a) の V-V 収 の 6 (b) は図 5 (a) の V-V 収 の 6 (b) は図 5 (a) の V-V 収 の 6 (b) は図 5 (a) の V-V 収 の 6 (b) は図 5 (b) は図 5 (a) の V-V 収 の 6 (b) は図 5 (b) は図 5 (a) の V-V 収 の V-V の
- 【図6】図6は上記蒸気調理器の制御ブロック図である。
- 【図7】図7(a)は上記蒸気調理器の蒸気昇温装置の下側から見た平面図であり、図7(b)は上記蒸気昇温装置の蒸気供給口側から見た側面図である。
- 【図8】図8(a)は第2蒸気加熱ヒータのない蒸気昇温装置の下側から見た平面図であり、図8(b)は上記蒸気昇温装置の蒸気供給口側から見た側面図である。
- 【図9】図9(a)は上記蒸気昇温装置の蒸気の流れを示す模式図である。図9(b)は上記蒸気昇温装置の皿形ケースの他の例を示す模式図である。
 - 【図10】図10は他の蒸気昇温装置の蒸気の流れを示す模式図である。
- 【図11】図11(a)はこの発明の実施形態の蒸気調理器の蒸気昇温装置の放熱フィンを説明するための図であり、図11(b)は図11(a)よりもピッチが広い場合の放熱フィンを説明するための図である。
- 【図12】図12は上記蒸気調理器の扉を開いた状態の正面図である。

【図13】図13は上記蒸気調理器の蒸気昇温装置に用いられるヒータの他の例を説明するための図である。

【符号の説明】

- [0094]
- 1 …蒸気調理装置
- 11…操作パネル
- 1 2 …扉
- 13…ハンドル
- 14…窓
- 20…加熱室
- 2 1 …受皿
- 22…側面蒸気吹出口
- 23…蒸気供給通路
- 24…ラック
- 2 5 … 吸込口
- 26…ファンケーシング
- 27…放出口
- 28…送風ファン
- 30…水タンク
- 3 1…第 1 給水パイプ
- 3 2 … 第 2 給水パイプ
- 33…第3給水パイプ
- 3 4 … 第 4 給水パイプ
- 35…ポンプ
- 36…水タンク用水位センサ
- 39…補助タンク
- 4 0 …蒸気発生装置
- 41…ポット
- 42…ヒータ
- 4 2 A…第1蒸気発生ヒータ
- 4 2 A a…湾曲部
- 4 2 Ab, 4 2 Ac…直線部
- 4 2 B…第 2 蒸気発生ヒータ
- 4 2 Ba…湾曲部
- 4 2 Bb, 4 2 Bc···直線部
- 4 3 …水位センサ
- 44…蒸気吸引エジェクタ
- 4 7 … 仕切板
- 48…温度センサ
- 50,150…蒸気昇温装置
- 51,151,251…皿形ケース
- 5 1 a…凹部
- 52,152…第1蒸気加熱ヒータ
- 5 2 a-1…第 1 発熱部
- 5 2 a-2…第 2 発熱部
- 5 2 a-3…第 3 発熱部
- 5 2 b…第 1 非発熱部
- 5 2 c…第 2 非発熱部
- 5 3 … 第 2 蒸気加熱ヒータ
- 5 3 a…発熱部

- 5 3 b, 5 3 c…非発熱部
- 56,57…放熱フィン
- 60…外部循環路
- 61…第1パイプ
- 62…第2パイプ
- 63…第3パイプ
- 6 4 …放出通路
- 65…排気ダクト
- 6 6 …排気口
- 6 7…排気通路
- 68…ダンパ
- 69…ラジエータ
- 70…排水バルブ
- 71…排水パイプ
- 72…排水タンク
- 80…制御装置
- 8 1 …温度センサ
- 82…湿度センサ
- 9 1 … 第 1 側壁
- 9 2 A…第 2 側壁
- 9 2 B…第 3 側壁
- 9 3 A…第 4 側壁
- 9 3 B…第 5 側壁
- 9 4 A, 9 4 B, 9 4 C…蒸気供給管
- 95A,95B,95C…蒸気供給口
- 9 6 …壁面
- 101A~104A,101B~104B…蒸気吹出口
- 105A,105B,106A,106B,107···R部

【書類名】図面【図1】

【図2】

【図4】

【図10】

【図13】

【書類名】要約書

【要約】

【課題】加熱室内の温度分布を均一にでき、加熱ムラのない調理ができる蒸気調理器を提供する。

【解決手段】蒸気昇温装置50の皿形ケース51は、蒸気発生装置からの蒸気が第1側壁91に設けられた蒸気供給口95A,95B,95Cから流入し、その蒸気供給口95A,95B,95Cから流入する蒸気の流れの中心線Lに対して略線対称な平面形状の凹部51aを有する。上記皿形ケース51の凹部51a内に、平面形状が上記中心線Lに対して略線対称になるように第1,第2蒸気加熱ヒータ52,53を配置する。上記第1蒸気加熱ヒータ52に、フィンピッチが10mm以下の螺旋形状の放熱フィン56を巻回する。上記皿形ケース51を、凹部51aの開口を下側に向けて加熱室の天井パネルの蒸気吹出口上に配置する。

【選択図】図7

特願2004-053653

出願人履歴情報

識別番号

[000005049]

1. 変更年月日 1990年 8月29日

[変更理由] 新規登録 住 所

大阪府大阪市阿倍野区長池町22番22号

氏 名 シャープ株式会社