ASSIGNMENT I, ALGEBRA II, HKU, SPRING 2025 DUE AT 11:59PM ON FRIDAY FEBRUARY 20, 2025

- (1) Let R and Q be any commutative rings and let $\phi: R \to Q$ be a ring homomorphism. Recall that for any ideal I of R, the ideal $\phi(I)Q$ of Q is called the extension of I to Q (by ϕ) and is denoted as $I^e = \phi(I)Q \subset Q$, and for any ideal J o Q, the ideal $\phi^{-1}(J)$ of R is called the contraction of J in R (by ϕ) and is denoted as $J^c = \phi^{-1}(J) \subset R$. Prove that the following statements hold:
 - 1) For any ideal I of R, one has $I \subset (I^e)^c$;
 - 2) For any ideal J of Q, one has $(J^c)^e \subset J$.
- (2) Suppose that R is any commutative ring and $D \subset R \setminus \{0\}$ is multiplicatively closed. Let $D^{-1}R$ be the localization of R at D. Prove the following statements:
 - 1) For any ideal J of $D^{-1}R$, one has $J=(J^c)^e$;
 - 2) For any ideal I of R, one has $(I^e)^c = \{r \in R : dr \in I \text{ for some } d \in D\}$. Moreover, $I^e = D^{-1}R$ if and only if $I \cap D \neq \emptyset$.
 - 3) Extension and contraction gives a bijection between prime ideals I of R such that $I \cap D = \emptyset$ and prime ideals of $D^{-1}R$.
- (3) Is the ring $\mathbb{C}[x,y,z]/\langle z-2\rangle$ is a Unique Factorization Domain? Explain your answer.
- (4) Show that if R is a UFD, then the intersection of two principal ideals of R is again principal.
- (5) Let $R = \mathbb{Z} + x\mathbb{Q}[x] \subset \mathbb{Q}[x]$.
 - 1) Prove that R is an integral domain and determine its units;
 - 2) Show that the irreducible elements of R are $\pm p$, where $p \in \mathbb{Z}$ is prime, and $f(x) \in \mathbb{Q}[x]$ that are irreducible and have constant term ± 1 ;
 - 3) Show that R is not a UFD.
- (6) Let R be a UFD. Show that any non-zero $f \in R[x]$ can be decomposed as $f(x) = \gamma g(x)$, where $\gamma = \text{cont}(f)$, and $g(x) \in R[x]$ is primitive. Show that any other such product is of the form $f(x) = (\gamma u^{-1})ug(x)$, where $u \in R$ is a unit.
- (7) Let R be a UFD and F = Frac(R). Show that any non-zero $f(x) \in F[x]$ can be decomposed as $f(x) = \alpha g(x)$, where $\alpha \in F$ and $g(x) \in R[x]$ is primitive. Moreover, any other such product is of the form $f(x) = (\alpha u^{-1})ug(x)$, where $u \in R$ is a unit.
- (8) Show that $f(x,y) = xy^3 + x^2y^2 x^5y + x^2 + 1 \in \mathbb{R}[x,y]$ is irreducible.
- (9) Show that $x^3 6x^2 + 4ix + 1 + 3i$ is irreducible in R[x] where $R = \mathbb{Z}[\sqrt{-1}]$;
- (10) Determine whether or not the polynomials are irreducible over \mathbb{Q} :
 - a) $f(x) = 2x^9 + 12x^4 + 36x^3 + 27x + 6$;
 - b) $f(x) = x^4 + 25x + 7$;
 - c) $f(x) = (x-1)(x-2)\cdots(x-n) 1$ for each integer n > 1.