

New Results in Bounded-Suboptimal Search

Maximilian Fickert, Tianyi Gu, Wheeler Ruml

The Problem Setting

- Motivation: many real-world problems are too hard to solve optimally. Need bounded-suboptimal solution!
- Problem: initial state (I), goal states (G), and a suboptimality bound $\omega \geq 1$.
- Objective: Find a solution with cost at most $\omega \cdot C^*$ as fast as possible.

Previous Approaches

- Weighted A*
- Explicit Estimation Search (EES)¹
- \rightarrow focal search:
- cleanup sorted by f, all generated nodes
- open sorted by \hat{f} , only nodes with $g + \hat{h} \leq \omega \cdot f_{min}$
- focal sorted by d, only nodes with $g + \hat{h} \leq \omega \cdot f_{min}$ (\hat{h} is corrected for the observed heuristic error²)
- Dynamic Potential Search (DPS)³
 - \rightarrow best-first search on $\frac{\omega \cdot f_{min} g(n)}{h(n)}$

Dynamic Expected Effort Search

Best-first search on the expected effort: $\frac{4}{p}$

- T(n): search effort to find a solution under n
- ullet p(n): probability that n leads to a solution within estimated bound

$$n_1 \quad T = 10 \\ p = 0.5 \quad \leadsto 20$$

$$n_2 T = 6$$

$$p = 0.25 \longrightarrow 24$$

How to obtain T and p?

- $\bullet \ \mathsf{Obtaining} \ T \ \mathsf{use} \ \mathsf{distance\text{-}to\text{-}go} \ d \\$
- ullet Obtaining p from belief distributions

hard to estimate when raising the bound is useful!

A Round-Robin Scheme

Replace EES selection rule with Round-Robin⁵:

- open list: sorted by \hat{f}
- cleanup list: sorted by f
- focal list: sorted by d(EES) or ud(DPS) or xe(DXES)

Experiments

Planning Domains: IPC optimal tracks (48 domains)

Coverage	*	EES	DPS	DXES	RR-DPS	RR-d	RR-DXES
Sum (1652)	995	967	1012	894	982	1025	1052
Normalized(%)	58.7	57.0	60.0	51.5	57.9	60.7	62.5
Expansions	569	558	472	734	665	383	371

Search Domains:

RoundRobin-d and RoundRobin-DXES perform best overall.

Conclusion

- Weighted-A* is the first thing to try
- Round-Robin on d, \hat{f} , f is the next to try
- Round-Robin on xe, \hat{f} , f performs well in some domains

Still unresolved:

- When to raise bound, and when to pursue solution?
- How to best use belief distribution in bounded-suboptmal search?

¹Thayer and Ruml, 2011.

²Thayer, Dionne, and Ruml, 2011.

³Gilon, Felner, and Stern, 2016.

⁴First suggested by Dobson and Haslum (HSDIP'17)

⁵Helmert and Roger, 2010