FINALS OUT-OF-CLASS COMPONENT

Soobin Rho

December 15, 2022

Functions

Prove: There exists a unique function $h: Z \to A \times B$ such that $f_1(z) = \pi_1 \circ h(z)$ and $f_2(z) = \pi_2 \circ h(z)$.

[p.f.] Show Existence:

Choose $Z = A \cap B$. Then, $x \in Z$ iff $x \in (A \cap B)$ (By def of set equality) $\Rightarrow x \in Z$ iff $(x \in A \text{ and } x \in B)$ (By def of set intersection) Since Definition 0.2 suggests $(a,b) \in A \times B$ iff $a \in A$ and $b \in B$, the function $h: Z \to A \times B$ exists.

SHOW UNIQUENESS:

Let $f_1: Z \to A$ and $f_2: Z \to B$ be functions. Let $\pi_1: A \times B \to A$ and $\pi_2: A \times B \to B$ be functions defined as $\pi_1(a,b) = a$ and $\pi_2(a,b) = b$, for all $(a,b) \in A \times B$. Let A and B be nonempty sets. Then, h(z) has a domain of Z and a codomain of $A \times B$. (By def of "Show Existence" part) Also, since $\pi_1(a,b) = a$ and $\pi_2(a,b) = b$, $\pi_1 \circ h(z)$ has a domain of $A \times B$ and a codomain of A. (By def of composite function) $\pi_2 \circ h(z)$ has a domain of $A \times B$ and a codomain of B.

Since
$$f_1: Z \to A$$
, then $f_1(z) = \pi_1 \circ h(z)$.
Since $f_2: Z \to B$, then $f_2(z) = \pi_2 \circ h(z)$.