

Asymmetric Transitivity Preserving Graph Embedding

Mingdong Ou Tsinghua U

Peng Cui

Jian Pei

Ziwei Zhang Tsinghua U Simon Fraser U Tsinghua U

Wenwu Zhu Tsinghua U

Graph Embedding

Graph Data

Social Network

Citation/Collaboration

Image/Video Tag/Caption

Web Hyperlink

Etc.

Graph DataRepresentation

Graph Embedding

Application

Similarity Measure

Link Prediction

Clustering/ Classification

Visualization

Etc.

Graph Embedding

Graph Embedding:

Input graph/network → Low dimensional space

□ Advantages:

- Fast computation of nodes similarity
- Utilization of vector-based machine learning techniques
- ☐ Facilitating parallel computing

Existing graph embedding methods

- **□** Existing work:
 - □ LINE(Tang J, et al. WWW 2015): explicitly preserves firstorder and second-order proximity
 - DeepWalk(Perozzi B, et al. KDD 2014): random walk on graphs + SkipGram Model from NLP
 - GraRep(Cao S, et al. CIKM 2015)
 - ☐ SDNE(Daixin W, et al. KDD 2016)
- Most methods focus on undirected graph

Directed Graph

Critical property in directed graph: Asymmetric Transitivity

☐ Transitivity is Asymmetric in directed graph:

- Key in graph inference.
- Data Validation: Tencent Weibo and Twitter

☐ Asymmetric transitivity is important!

Asymmetric Transitivity → **Graph Embedding**

- ☐ Challenge: incorporate asymmetric transitivity in graph embedding
- ☐ Problem: metric space is **symmetric**

asymmetric transitivity

metric space

Asymmetric Transitivity → **Graph Embedding**

- ☐ Directed graph embedding: use two vectors to represent each node
 - □ LINE(Tang J, et al. WWW 2015): second-order proximity is directed
 - PPE(Song H H, et al. SIGCOMM 2009): using sub-block of the proximity matrix

Source(U) Target(V)

Solved?

B

C

C

☐ Asymmetric: YES; Transitive: NO!

Similarity metric with asymmetric transitivity

- Asymmetric transitivity:
 - ☐ Asymmetry: not symmetric in directed graph
 - Transitivity:
 - More directed paths, larger similarity
 - ☐ Shorter paths, larger similarity
 - ☐ Compare A -> C similarity:

High-order Proximity!

(E.g. Katz, Rooted PageRank)

High-Order Proximity

- Solution: directly model transitivity using high-order proximity
 - Example: Katz Index
 - \square A: adjacency matrix, β : decaying constant

$$\mathbf{S}^{Katz} = \sum_{l=1}^{+\infty} (\beta \cdot A)^l$$

 \blacksquare Example: when $\beta = 1$

Preserve high-order proximity embedding

 \square Time and space complexity: $O(N^3)$, N: node number

High-Order Proximity: a general form

☐ Katz Index:

$$\mathbf{S}^{Katz} = \sum_{l=1}^{+\infty} (\beta \cdot A)^l = (I - \beta \cdot A)^{-1} \cdot (\beta \cdot A)$$

General Form

$$M_g^{-1} \cdot M_l$$

where M_g , M_l are polynomial of adjacency matrix or its variants General Formulation for High-Order Proximity measurements

Proximity Measurement	\mathbf{M}_g	\mathbf{M}_l
Katz	$\mathbf{I} - \beta \cdot \mathbf{A}$	$eta \cdot \mathbf{A}$
Personalized Pagerank	$\mathbf{I} - \alpha \mathbf{P}$	$(1-\alpha)\cdot\mathbf{I}$
Common neighbors	I	\mathbf{A}^2
Adamic-Adar	I	$\mathbf{A} \cdot \mathbf{D} \cdot \mathbf{A}$

The Power of General Form

$$\min_{U_S, U_t} ||\mathbf{S} - U_S \cdot U_t^T||_F^2$$
$$\mathbf{S} = M_g^{-1} \cdot M_l$$

Generalized SVD (Singular Value Decomposition) theorem

If we have the singular value decomposition of the general formulation

$$\mathbf{M}_g^{-1} \cdot \mathbf{M}_l = \mathbf{V}^s \Sigma \mathbf{V}^{t^{\top}}$$

where \mathbf{V}^t and \mathbf{V}^s are two orthogonal matrices,

$$\Sigma = diag(\sigma_1, \sigma_2, \cdots, \sigma_N)$$

Then, there exists a nonsingular matrix \mathbf{X} and two diagonal matrices, i.e. Σ^l and Σ^g , satisfying that

$$\mathbf{V}^{t^{\top}} \mathbf{M}_{l}^{\top} \mathbf{X} = \Sigma^{l} \qquad \mathbf{V}^{s^{\top}} \mathbf{M}_{g}^{\top} \mathbf{X} = \Sigma^{g}$$

, where

$$\Sigma^{l} = diag(\sigma_{1}^{l}, \sigma_{2}^{l}, \cdots, \sigma_{N}^{l}) \quad \sigma_{1}^{l} \geq \sigma_{2}^{l} \geq \cdots \geq \sigma_{K}^{l} \geq 0$$

$$\Sigma^{g} = diag(\sigma_{1}^{g}, \sigma_{2}^{g}, \cdots, \sigma_{N}^{g}) \quad 0 \leq \sigma_{1}^{g} \leq \sigma_{2}^{g} \leq \cdots \leq \sigma_{K}^{g}$$

$$\forall i \quad \sigma_{i}^{l^{2}} + \sigma_{i}^{g^{2}} = 1$$

The Power of General Form

$$\min_{U_S, U_t} ||\mathbf{S} - U_S \cdot U_t^T||_F^2$$
$$\mathbf{S} = M_g^{-1} \cdot M_l$$

- ☐ Generalized SVD: decompose *S* without actually calculating it
- ☐ JDGSVD: Time Complexity

- Linear complexity w.r.t. the volume of data (i.e. edge number)
 - --> Scalable algorithm, suitable for large-scale data

Theoretical Guarantee

☐ Approximation Error Upper Bound:

Theorem 2. Given the proximity matrix, S, of a directed graph, and the embedding vectors, U^s and U^t , learned by HOPPE. Then the approximation error is

$$\|\mathbf{S} - \mathbf{U}^s \cdot \mathbf{U}^t\|_F^2 = \sum_{i=K+1}^N \sigma_i^2$$

, and the relative approximation error is:

$$\frac{\|\mathbf{S} - \mathbf{U}^s \cdot \mathbf{U}^t\|_F^2}{\|\mathbf{S}\|_F^2} = \frac{\sum_{i=K+1}^N \sigma_i^2}{\sum_{i=1}^N \sigma_i^2}$$
(22)

where $\{\sigma_i\}$ are the singular values of **S** in descend order.

HOPE: HIGH-ORDER PROXIMITY PRESERVED EMBEDDING

HOPE: High-Order Proximity preserved Embedding

Algorithm framework:

Algorithm 1 High-order Proximity preserved Embedding

Require: adjacency matrix \mathbf{A} , embedding dimension K, parameters of high-order proximity measurement θ .

Ensure: embedding source vectors \mathbf{U}^s and target vectors \mathbf{U}^t .

- 1: calculate \mathbf{M}_g and \mathbf{M}_l .
- 2: perform JDGSVD with \mathbf{M}_g and \mathbf{M}_l , and obtain the generalized singular values $\{\sigma_1^l, \dots, \sigma_K^l\}$ and $\{\sigma_1^g, \dots, \sigma_K^g\}$, and the corresponding singular vectors, $\{\mathbf{v}_1^s, \dots, \mathbf{v}_K^s\}$ and $\{\mathbf{v}_1^t, \dots, \mathbf{v}_K^t\}$.
- 3: calculate singular values $\{\sigma_1, \dots, \sigma_K\}$ according to Equation (21).
- 4: calculate embedding matrices \mathbf{U}^s and \mathbf{U}^t according to Equation (19) and (20).

Experiment Setting: Datasets

Datasets:

- ☐ Synthetic (Syn): generate using Forest Fire Model
- ☐ Cora¹: citation network of academic papers
- SN-Twitter²: Twitter Social Network
- ☐ SN-TWeibo³: Tencent Weibo Social Network

Statistics of datasets. |V| denotes the number of vertexes and |E| denotes the number of edges.

	Syn	Cora	SN-Twitter	SN-TWeibo
$ \mathbf{V} $	10,000	23166	465,017	1,944,589
$ \mathbf{E} $	144,555	91500	834,797	50,655,143

¹http://konect.uni-koblenz.de/networks/subelj_cora

²http://konect.uni-koblenz.de/networks/munmun_twitter_social

³http://www.kddcup2012.org/c/kddcup2012-track1/data

Experiment Setting: Task

- Approximation accuracy
 - ☐ **High-order proximity approximation**: how well can embedded vectors approximate high-order proximity
- Reconstruction
 - ☐ Graph Reconstruction: how well can embedded vectors reconstruct training sets
- ☐ Inference:
 - ☐ Link Prediction: how well can embedded vectors predict missing edges
 - □ Vertex Recommendation: how well can embedded vectors recommend vertices for each node

Experiment Setting: Baseline

☐ Graph embedding □ PPE: approximate high-order proximity by selecting landmarks and using sub-block of the proximity matrix ☐ LINE: preserves first-order and second-order proximity, called LINE1 and LINE2 respectively □ DeepWalk: random walk on graphs + SkipGram Model ☐ Task Specific: ☐ Common Neighbors: used for link prediction and vertex recommendation task ☐ Adamic-Adar: used for link prediction and vertex recommendation task

Experiment result:high-order Proximity Approximation

Conclusion: HOPE achieves much smaller RMSE error

-> generalized SVD achieves a good approximation

Experiment result: Graph Reconstruction

Conclusion: HOPE successfully capture the information of training sets

Experiment result: Link Prediction

Conclusion: HOPE has good inference ability

-> based on asymmetric transitivity

Experiment result: Vertex Recommendation

+81% improvement +88% improvement SN-TWebio SN-Twitter Method MAP050MAP@50MAP@10MAP@100 MAP@10MAP@100 0.22950.169HOPE 0.18690.10000.08810.0766 $\overline{\text{PPE}}$ 0.09280.08450.077 0.00610.00770.0081LINE1 0.0050.0221 0.02090.02210 LINE2 0.051 0.0510.048 0.0043 0.00350.0044 DeepWalk 0.06350.0583 0.0008 0.0040.00060.001Common Neighbors 0.1031 0.12170.1550.0394 0.03790.0369Adamic-Adar 0.11730.09900.1560.04550.0442 0.0423

Conclusion: HOPE significantly outperforms all state-of-

the-art baselines on all these experiments

Conclusion

- Directed graph embedding:
 - □ High-order Proximity → Asymmetric Transitivity
- □ Derivation of a general form for high-order proximities, and solution with generalized SVD
 - Covering multiple commonly used high order proximity
 - □ Time complexity linear w.r.t. graph size
 - Theoretically guaranteed accuracy.
- Extensive experiments on several datasets
 - Outperforming all baselines in various applications.
 - □ x4/x10 smaller approximation error for Katz
 - □ +50% improvement in reconstruction and inference

Thanks!

Ziwei Zhang, Tsinghua University

zw-zhang16@mails.tsinghua.edu.com

https://cn.linkedin.com/in/zhangziwei

