

Synthetic Data & Privacy Risks

Understanding Adversarial Attacks & Protection Mechanisms

> By: [Your Name] | [Your Organization]

Introduction

- Synthetic data is used to protect privacy while preserving data utility.
- Adversarial attacks can still extract sensitive information.
- Key attacks analyzed: Membership Inference, GAN Inversion, Model Extraction.
- Our goal: Evaluate privacy risks and implement defense mechanisms.

- We use CTGAN (Conditional Tabular GAN) to generate synthetic data.
- Data includes categorical and numerical features.
- Differential privacy (Laplace noise) is applied for additional protection.
- The goal is to generate data that cannot be reverse-engineered.

Privacy Attacks on Synthetic Data

- Membership Inference Attack: Detects if a sample was in the original dataset.
- GAN-Based Inversion Attack: Uses a GAN to reconstruct original data.
- Model Extraction Attack: Adversary replicates the behavior of our model.
- Differential Privacy Impact: Measures how much noise protects the data.

Attack Results

- Membership Attack Accuracy: **55%**
 (slightly better than random guessing).
- GAN Reconstruction Similarity: **64,919**
 (high → strong privacy protection).
- Differential Privacy Impact: **42,810**
 (high → strong noise effect).
- Model Extraction Success: **100%**
 (critical security risk!).

Risk Analysis

- Model extraction is **a major concern**
 (attackers can steal our model).
- Membership inference is **moderate risk** but still possible.
- GAN-based inversion is **not effective**
 due to high similarity distance.
- Differential privacy is **working well** but must be fine-tuned.

Mitigation Strategies

- **Limit API access** to prevent model extraction.
- **Increase differential privacy noise** for higher obfuscation.
- **Use adversarial defenses** (differentially private training, query restrictions).
- **Regularly test synthetic data** for privacy vulnerabilities.

Conclusion & Next Steps

- Synthetic data is effective but **not bulletproof** against attacks.
- Model extraction is a **critical risk** stronger protections needed.
- Differential privacy is **helpful** but should be carefully optimized.
- Future work: Exploring federated learning and adversarial defenses.

Thank You!

Questions? Let's discuss!