$u^{\scriptscriptstyle b}$

UNIVERSITÄT BERN

Fabric-Elasticity Relationships in Cortical Bone

Mathieu Simon

July 17, 2025

Samples

UNIVERSITÄT BERN

Bone matrix

- Franzoso et al. [1]
- Dall'Ara et al. [2]

Cortical bone

- Femur
- μCT at 6.5 μm voxel size
- RUS measurement

Trabecular bone

- Tibia
- HR-pQCT at 61 μm voxel size

Numerical Analysis

$u^{\scriptscriptstyle b}$

UNIVERSITÄT

Cortical bone

- 16x 1mm³ ROIs
- Fabric (Medtool)
- Coarsening factor 2
- Homogenisation (Abaqus) Transverse isotropic **Isotropic**

Trabecular bone

 Homogenisation (Abaqus) Isotropic

Comparison to Experiment

UNIVERSITÄT BERN

Analysis pipeline

- Homogenisation with tranverse isotropic matrice
- Average 16 tensors
- ROI's CV < 0.263
- Project to transverse isotropy
- Linear regression (BV/TV and S)
- S and E anisotropy

Cortical and Trabecular

UNIVERSITÄT

Cortical and Trabecular Fabric

Cortical and Trabecular CV vs BV/TV

Cortical Constitutive Models

- Zysset-Curnier in orthotropic space
- Zysset-Curnier in transverse isotropic space
- Yang and Cowin in transverse isotropic space

Cortical and trabecular

- Transverse isotropic space
- Yang and Cowin model

mathieu.simon@unibe.ch FABCORT

Comparison to Experiment

Comparison to Experiment

Cortical Bone

UNIVERSITÄT BERN

Cortical and Trabecular Bone

Constitutive Models

Constitutive Models

Cortical and Trabecular Bone

References

Franzoso, G. and Zysset, P. (2009)

Elastic anisotropy of human cortical bone secondary osteons measured by nanoindentation

J Biomech Eng., 131(2)

https://api.semanticscholar.org/CorpusID:25765365

► Enrico, D., Schmidt, R. and Zysset P. (2012)

Microindentation can discriminate between damaged and intact human bone tissue

Bone, 50(4)

https://api.semanticscholar.org/CorpusID:23349859

