◆ Previous (/articles/minimum-remove-to-make-valid-parentheses/)
Next ◆ (/articles/insert-into-a-cyclic-sorted-list/)

518. Coin Change II (/problems/coin-change-2/)

Nov. 16, 2019 | 2.8K views

Average Rating: 4.75 (16 votes)

You are given coins of different denominations and a total amount of money. Write a function to compute the number of combinations that make up that amount. You may assume that you have infinite number of each kind of coin.

Example 1:

```
Input: amount = 5, coins = [1, 2, 5]
Output: 4
Explanation: there are four ways to make up the amount:
5=5
5=2+2+1
5=2+1+1+1
5=1+1+1+1
```

Example 2:

```
Input: amount = 3, coins = [2]
Output: 0
Explanation: the amount of 3 cannot be made up just with coins of 2.
```

Example 3:

```
Input: amount = 10, coins = [10]
Output: 1
```

Note:

You can assume that

- 0 <= amount <= 5000
- 1 <= coin <= 5000
- the number of coins is less than 500
- the answer is guaranteed to fit into signed 32-bit integer

Solution

Approach 1: Dynamic Programming

Template

This is a classical dynamic programming problem.

Here is a template one could use:

- Define the base cases for which the answer is obvious.
- Develop the strategy to compute more complex case from more simple one.
- Link the answer to base cases with this strategy.

Example

Let's pic up an example: amount = 11, available coins - 2 cent, 5 cent and 10 cent. Note, that coins are unlimited.

Number of combinations that make up 11

Base Cases: No Coins or Amount = 0

If the total amount of money is zero, there is only one combination: to take zero coins.

Another base case is no coins: zero combinations for amount > 0 and one combination for amount == 0.

amount =	0	1	2	3	4	5	6	7	8	9	10	11
combinations using no coins =	1	0	0	0	0	0	0	0	0	0	0	0

2 Cent Coins

Let's do one step further and consider the situation with one kind of available coins: 2 cent.

amount =	0	1	2	3	4	5	6	7	8	9	10	11
combinations using no coins =	1	0	0	0	0	0	0	0	0	0	0	0
combinations with 2 cents =	1	0	1	0	1	0	1	0	1	0	1	0
			2		6		2		12)	2	

It's quite evident that there could be 1 or 0 combinations here, 1 combination for even amount and 0 combinations for the odd one.

The same answer could be received in a recursive way, by computing the number of combinations for all amounts of money, from 0 to 11.

First, that's quite obvious that all amounts less than 2 are *not* impacted by the presence of 2 cent coins. Hence for amount = 0 and for amount = 1 one could reuse the results from the figure 2.

Starting from amount = 2, one could use 2 cent coins in the combinations. Since the amounts are considered gradually from 2 to 11, at each given moment one could be sure to add not more than one coin to the previously known combinations.

So let's pick up 2 cent coin, and use it to make up amount = 2. The number of combinations with this 2 cent coin is a number combinations for amount = 0, i.e. 1.

Now let's pick up 2 cent coin, and use it to make up amount = 3. The number of combinations with this 2 cent coin is a number combinations for amount = 1, i.e. 0.

That leads to DP formula for number of combinations to make up the amount = x : dp[x] = dp[x] + dp[x - coin], where coin = 2 cents is a value of coins we're currently adding.

$$dp[x] = dp[x] + dp[x - coin]$$

 $coin = 2 cents$

2 Cent Coins + 5 Cent Coins + 10 Cent Coins

Now let's add 5 cent coins. The formula is the same, but do not forget to add dp[x], number of combinations with 2 cent coins.

amount =	0	1	2	3	4	5	6	7	8	9	10	11
combinations using no coins =	1	0	₽oAr	ticles >	5 6 8.	Со јე С	nan g e I	▼ 0	0	0	0	0
combinations with 2 cents =	1	0	1	0	1	0	1	0	1	0	1	0
combinations with 2 and 5 cents =	1	0	1	0	1	1	1	1	1	1	2	1

dp[x] for x < coin = 5 cents
 are not going to change</pre>

dp[x] = dp[x] + dp[x - coin]coin = 5 cents

The story is the same for 10 cent coins.

amount =	0	1	2	3	4	5	6	7	8	9	10	11
combinations using no coins =	1	0	0	0	0	0	0	0	0	0	0	0
combinations with 2 cents =	1	0	1	0	1	0	1	0	1	0	1	0
combinations with 2 and 5 cents =	1	0	1	0	1	1	1	1	1	1	2	1
combinations with 2, 5, and 10 cents =	1	0	1	0	1	1	1	1	1	1	3	1

dp[x] for x < coin = 10 cents
 are not going to change</pre>

dp[x] = dp[x] + dp[x - coin]coin = 10 cents

Now the strategy is here:

- Add coins one-by-one, starting from base case "no coins".
- For each added coin, compute recursively the number of combinations for each amount of money from 0 to amount.

Algorithm

- Initiate number of combinations array with the base case "no coins": dp[0] = 1, and all the rest = 0.
- Loop over all coins:

- For each coin, loop over all amounts from 0 to amount :
- Return dp[amount].

Implementation

```
Copy
Java
       Python
    class Solution:
1
2
        def change(self, amount: int, coins: List[int]) -> int:
3
            dp = [0] * (amount + 1)
            dp[0] = 1
4
5
6
            for coin in coins:
7
                for x in range(coin, amount + 1):
                    dp[x] += dp[x - coin]
8
            return dp[amount]
```

Complexity Analysis

- Time complexity: $\mathcal{O}(N imes \mathrm{amount})$, where N is a length of coins array.
- Space complexity: $\mathcal{O}(\mathrm{amount})$ to keep dp array.

Analysis written by @liaison (https://leetcode.com/liaison/) and @andvary (https://leetcode.com/andvary/)

Rate this article:

Comments: (0) Sort By ▼

Type comment here... (Markdown is supported)

Post

Copyright © 2020 LeetCode