## Bài giảng môn học Đại số A<sub>1</sub>

# Chương 1:

# MA TRẬN VÀ HỆ PHƯƠNG TRÌNH TUYẾN TÍNH

#### Lê Văn Luyện

lvluyen@yahoo.com

http://www.math.hcmus.edu.vn/~lvluyen/09tt

Đại học Khoa Học Tự Nhiên Tp. Hồ Chí Minh

## Nội dung

# Chương 1. MA TRẬN VÀ HỆ PHƯƠNG TRÌNH TUYẾN TÍNH

- 1. Ma trận
- 2. Các phép biến đổi sơ cấp trên dòng
- 3. Hệ phương trình tuyến tính
- 4. Ma trận khả nghịch
- 5. Phương trình ma trận

## 1. Ma trận

- $1.1~{\rm Dịnh}$ nghĩa và ký hiệu
- 1.2 Ma trận vuông
- 1.3 Các phép toán trên ma trận

## 1.1. Định nghĩa và ký hiệu

**Định nghĩa.** Một ma trận cấp  $m \times n$  trên  $\mathbb{R}$  là một bảng chữ nhật gồm m dòng, n cột với mn hệ số trong  $\mathbb{R}$  có dạng

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}.$$

Viết tắt:  $A = (a_{ij})_{m \times n}$  hay  $A = (a_{ij})$ , trong đó  $a_{ij} \in \mathbb{R}$ .

 $\mathbf{a_{ij}}$ hay  $\mathbf{A_{ij}}$ là phần tử ở vị trí dòng i cột j của A

 $M_{m\times n}(\mathbb{R})$  là tập hợp tất cả những ma trận cấp  $m\times n$  trên  $\mathbb{R}$ .

## 1.1. Định nghĩa và ký hiệu

#### Ví dụ.

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \end{pmatrix} \in M_{2\times 3}(\mathbb{R}); \quad B = \begin{pmatrix} 1 & 2 \\ 0 & 1 \\ 2 & 3 \end{pmatrix} \in M_{3\times 2}(\mathbb{R}).$$

 $\rhd$  Ma trận có các phần tử bằng 0 được gọi là ma~trận~không, ký hiệu  $0_{m\times n}$  ( hay 0)



## 1.2. Ma trận vuông

**Định nghĩa.** Nếu  $A \in M_{n \times n}(\mathbb{R})$  (số dòng bằng số cột) thì A được gọi là ma trận vuông.

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}.$$

 $M_n(\mathbb{R})$ : Tập hợp tất cả các ma trận vuông cấp n trên  $\mathbb{R}$ .

$$A = \begin{pmatrix} -1 & 3 & 2 \\ 2 & -1 & 1 \\ 5 & 2 & 3 \end{pmatrix} \in M_3(\mathbb{R}); \quad 0_3 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

## 1.2. Ma trận vuông

**Định nghĩa.** Nếu  $A = (a_{ij}) \in M_{n \times n}(\mathbb{R})$  thì đường chứa các phần tử  $a_{11}, a_{22}, \ldots, a_{nn}$  được gọi là **đường chéo chính** hay **đường chéo** của A.

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}.$$

$$A = \begin{pmatrix} 1 & 3 & 5 \\ -2 & -3 & 3 \\ 2 & -2 & 1 \end{pmatrix}.$$



- Nếu các phần tử nằm dưới đường chéo của A đều bằng 0 (nghĩa là  $a_{ij}=0, \forall i>j)$  thì A được gọi là ma trận  $tam\ giác\ trên$ .
- Nếu các phần tử nằm trên đường chéo của A đều bằng 0 (nghĩa là  $a_{ij}=0, \forall i< j)$  thì A được gọi là ma trận  $tam\ giác\ dưới.$
- Nếu mọi phần tử nằm ngoài đường chéo bằng 0 thì A (nghĩa là  $a_{ij} = 0, \forall i \neq j$ ) được gọi là ma trận dường chéo, ký hiệu  $diag(\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n)$ .

Ví dụ. 
$$A = \begin{pmatrix} 1 & 3 & 5 \\ 0 & -3 & 3 \\ 0 & 0 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 0 & 0 \\ -2 & 0 & 0 \\ -1 & 2 & -4 \end{pmatrix}.$$
$$C = \operatorname{diag}(-1, 0, 5) = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 5 \end{pmatrix}.$$



## Ma trận đơn vị

Ma trận vuông cấp n có các phần tử trên đường chéo bằng 1, các phần tử nằm ngoài đường chéo bằng 0 được gọi là ma trận dơn vi cấp n, ký hiệu  $I_n$  (hoặc I.)

Ví dụ.

$$I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}; \quad I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Nhận xét. Ma trận A là ma trận đường chéo khi và chỉ khi vừa là ma trận tam giác vừa là ma trận tam giác dưới.

## 1.3. Các phép toán trên ma trận

#### a) So sánh hai ma trận

Cho  $A, B \in M_{m \times n}$ . Khi đó, nếu  $a_{ij} = b_{ij}, \forall i, j$  thì A và B được gọi là hai ma trận bằng nhau, ký hiệu A = B.

**Ví dụ.** Tìm 
$$x, y, z$$
 để  $\begin{pmatrix} x+1 & 1 \\ 2x-1 & z \end{pmatrix} = \begin{pmatrix} 3y-4 & 1 \\ y-1 & 2z+2 \end{pmatrix}$ .

Giải. Ta có

$$\begin{cases} x+1 &= 3y-4; \\ 2x-1 &= y-1; \\ z &= 2z+2. \end{cases} \Leftrightarrow \begin{cases} x &= 1; \\ y &= 2; \\ z &= -2. \end{cases}$$

# 1.3. Các phép toán trên ma trận

### b) Chuyển vi ma trân

Cho  $A \in M_{m \times n}(\mathbb{R})$ . Ta gọi ma trận chuyển vi của A, ký hiệu  $\mathbf{A}^{\mathsf{T}}$ , là ma trận cấp  $n \times m$ , có được từ A bằng cách xếp các dòng của A thành các cột tương ứng, nghĩa là

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} \text{ thì } A^{\top} = \begin{pmatrix} a_{11} & a_{21} & \dots & a_{m1} \\ a_{12} & a_{22} & \dots & a_{m2} \\ \dots & \dots & \dots & \dots \\ a_{1n} & a_{2n} & \dots & a_{mn} \end{pmatrix}.$$

$$A = \begin{pmatrix} 1 & -1 & 4 & 5 \\ \mathbf{6} & -\mathbf{8} & \mathbf{0} & \mathbf{1} \\ 0 & 4 & -3 & 6 \end{pmatrix} \Longrightarrow A^{\top} = \begin{pmatrix} 1 & \mathbf{6} & 0 \\ -1 & -\mathbf{8} & 4 \\ 4 & \mathbf{0} & -3 \\ 5 & \mathbf{1} & 6 \end{pmatrix}.$$

- Nếu  $A^{\top} = A$  thì ta nói A là ma trận dối xứng.
- Nếu  $A^{\top} = -A$  thì nói A là ma trận phản xứng.

**Ví dụ.** 
$$A = \begin{pmatrix} 1 & 2 & -2 \\ 2 & 4 & 5 \\ -2 & 5 & 6 \end{pmatrix}$$
 là ma trận đối xứng.

$$B = \begin{pmatrix} 0 & -2 & 1 \\ 2 & 0 & -3 \\ -1 & 3 & 0 \end{pmatrix}$$
 là ma trận phản xứng.

**Tính chất.** Cho  $A, B \in M_{m \times n}(\mathbb{R})$ . Khi đó:

- i)  $(A^{\top})^{\top} = A;$
- ii)  $A^{\top} = B^{\top} \Leftrightarrow A = B$ .

### c) Nhân một số với ma trận

Cho ma trận  $A \in M_{m \times n}(\mathbb{R}), \alpha \in \mathbb{R}$ . Ta định nghĩa  $\alpha A$  là ma trận có từ A bằng cách nhân tất cả các hệ số của A với  $\alpha$ , nghĩa là

$$(\alpha A)_{ij} = \alpha A_{ij}, \forall i, j.$$

Ma trận (-1)A được ký kiệu là -A được gọi là ma trận dối của A.

Ví dụ. Nếu 
$$A = \begin{pmatrix} 3 & 4 & 1 \\ 0 & 1 & -3 \end{pmatrix}$$
 thì 
$$2A = \begin{pmatrix} 6 & 8 & 2 \\ 0 & 2 & -6 \end{pmatrix};$$
$$-A = \begin{pmatrix} -3 & -4 & -1 \\ 0 & -1 & 3 \end{pmatrix}.$$

**Tính chất.** Cho A là ma trận và  $\alpha$ ,  $\beta \in \mathbb{R}$ , ta có

- i)  $(\alpha\beta)A = \alpha(\beta A);$
- ii)  $(\alpha A)^{\top} = \alpha A^{\top}$ ;
- iii)  $0.A = 0 \ var{a} \ 1.A = A.$

#### d) Tổng hai ma trận

Cho  $A, B \in M_{m \times n}(\mathbb{R})$ . Khi đó  $t \circ ng$  của A và B, ký hiệu A + B là ma trận được xác định bởi:

$$(A+B)_{ij} = A_{ij} + B_{ij}.$$

Như vậy, để tính A + B thì:

- A và B cùng cấp;
- Các vị trị tương ứng cộng lại.

 $\mathbf{K}\mathbf{\acute{y}}$  hiệu  $\mathbf{A} - \mathbf{B} := A + (-B)$  và gọi là  $\mathbf{hiệu}$  của A và B.

$$\left(\begin{array}{ccc} 2 & 3 & 0 \\ 1 & 2 & -3 \end{array}\right) + \left(\begin{array}{ccc} 1 & 0 & -4 \\ 7 & 8 & -3 \end{array}\right) = \left(\begin{array}{ccc} 3 & 3 & -4 \\ 8 & 10 & -6 \end{array}\right).$$

$$\left(\begin{array}{ccc} 2 & 3 & 0 \\ 1 & 2 & -3 \end{array}\right) - \left(\begin{array}{ccc} 1 & 0 & -4 \\ 7 & 8 & -3 \end{array}\right) = \left(\begin{array}{ccc} 1 & 3 & 4 \\ -6 & -6 & 0 \end{array}\right).$$

**Tính chất.** Với  $A, B, C \in M_{m \times n}(\mathbb{R})$  và  $\alpha, \beta \in \mathbb{R}$ , ta có

i) 
$$A + B = B + A$$
 (tính giao hoán);

ii) 
$$(A+B)+C=A+(B+C)$$
 (tính kết hợp);

iii) 
$$0_{m \times n} + A = A + 0_{m \times n} = A;$$

iv) 
$$A + (-A) = (-A) + A = 0_{m \times n}$$
;

v) 
$$(A+B)^{\top} = A^{\top} + B^{\top};$$

vi) 
$$\alpha(A+B) = \alpha A + \alpha B$$
;

vii) 
$$(\alpha + \beta)A = \alpha A + \beta A;$$

viii) 
$$(-\alpha)A = \alpha(-A) = -(\alpha A)$$
.

#### e) Tích hai ma trận

Cho hai ma trận  $A \in M_{m \times n}(\mathbb{R}), B \in M_{n \times p}(\mathbb{R})$ . Khi đó, *tích* của A với B (ký hiệu AB) là ma trận thuộc  $M_{m \times p}(\mathbb{R})$  được xác định bởi:

$$(AB)_{ij} = A_{i1}B_{1j} + A_{i2}B_{2j} + \dots + A_{in}B_{nj}$$

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ \dots & \dots & \dots & \dots \\ a_{i1} & a_{i2} & \dots & a_{in} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix} \qquad b_{2j} & \dots & b_{2n}$$

$$b_{n1} & \dots & b_{nj} & \dots & b_{nn} \end{pmatrix}$$

Như vậy, để tính AB thì:

- Số cột của A bằng số dòng của B;
- $\bullet$  Phần tử thứ i,j của AB bằng dòng i của Anhân cột j của B.

06/04/2010

**Ví dụ.** Với 
$$A = \begin{pmatrix} 1 & 2 & -1 \\ 3 & 1 & 2 \end{pmatrix}, B = \begin{pmatrix} 1 & 3 \\ 2 & 1 \\ 3 & -1 \end{pmatrix}, C = \begin{pmatrix} 2 & -1 \\ 1 & 0 \end{pmatrix},$$

ta có:

$$AB = \begin{pmatrix} 1 & 2 & -1 \\ 3 & 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 3 \\ 2 & 1 \\ 3 & -1 \end{pmatrix} = \begin{pmatrix} 2 & 6 \\ 11 & 8 \end{pmatrix};$$

$$BA = \begin{pmatrix} 1 & 3 \\ 2 & 1 \\ 3 & -1 \end{pmatrix} \begin{pmatrix} 1 & 2 & -1 \\ 3 & 1 & 2 \end{pmatrix} = \begin{pmatrix} 10 & 5 & 5 \\ 5 & 5 & 0 \\ 0 & 5 & -5 \end{pmatrix};$$

$$BC = \begin{pmatrix} 1 & 3 \\ 2 & 1 \\ 3 & -1 \end{pmatrix} \begin{pmatrix} 2 & -1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 5 & -1 \\ 5 & -2 \\ 5 & -3 \end{pmatrix};$$

nhưng AC và CB không xác định.



Tính chất. Với  $A \in M_{m \times n}(\mathbb{R}), B, B_1, B_2 \in M_{n \times p}(\mathbb{R}), C \in M_{p \times q}(\mathbb{R}),$  $D_1, D_2 \in M_{q \times n}(\mathbb{R}), ta có$ 

- i)  $I_m A = A$  và  $AI_n = A$ . Đặc biệt, với  $A \in M_n(\mathbb{R})$ , ta có  $I_n A = AI_n = A$ .
- ii)  $0_{p\times m}A = 0_{p\times n}$  và  $A0_{n\times q} = 0_{m\times q}$ . Đặc biệt, với  $A\in M_n(\mathbb{R})$ , ta có  $0_{n\times n}A = A0_{n\times n} = 0_{n\times n}$ .
- iii)  $(AB)^{\top} = B^{\top}A^{\top}$ .
- iv) (AB)C = A(BC).
- v)  $A(B_1 + B_2) = AB_1 + AB_2$  $(D_1 + D_2)A = D_1A + D_2A.$

#### f) Lũy thừa ma trận

Cho  $A \in M_n(\mathbb{R})$ . Ta gọi *lũy thừa* bậc k của A là một ma trận thuộc  $M_n(\mathbb{R})$ , ký hiệu  $A^k$ , được xác định như sau:

$$A^0 = I_n; A^1 = A; A^2 = AA; \dots; A^k = A^{k-1}A.$$

Như vậy  $A^k = \underbrace{A \dots A}_{k \text{ lần}}$ .

**Ví dụ.** Cho 
$$A = \begin{pmatrix} 1 & 3 \\ 0 & 1 \end{pmatrix}$$
. Tính  $A^2, A^3$ , từ đó suy ra  $A^{200}$ .

Giải.

$$A^{2} = AA = \begin{pmatrix} 1 & 3 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 3 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 6 \\ 0 & 1 \end{pmatrix}.$$

$$A^{3} = A^{2}A = \begin{pmatrix} 1 & 6 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 3 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 9 \\ 0 & 1 \end{pmatrix}.$$



Suy ra 
$$A^{200} = \begin{pmatrix} 1 & 200 \times 3 \\ 0 & 1 \end{pmatrix}$$
.

**Ví dụ.** Cho 
$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$
. Tính  $A^{100}$ .

**Ví dụ.** Cho 
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$
. Tính  $A^n$  với  $n > 1$ .

#### **Tính chất.** Cho $A \in M_n(\mathbb{R})$ và $k, l \in \mathbb{N}$ . Khi đó:

- i)  $I^k = I$ ;
- ii)  $A^{k+l} = A^k A^l$ ;
- iii)  $A^{kl} = (A^k)^l$

## g) Đa thức ma trận Cho $A \in M_n(\mathbb{R})$ và

$$f(x) = \alpha_m x^m + \alpha_{m-1} x^{m-1} + \ldots + \alpha_1 x + \alpha_0$$

là một đa thức bậc m trên  $\mathbb{R}$  ( $\alpha_i \in \mathbb{R}$ ). Khi đó ta định nghĩa

$$f(A) = \alpha_m A^m + \alpha_{m-1} A^{m-1} + \ldots + \alpha_1 A + \alpha_0 I_n$$

và ta gọi f(A) là đa thức theo ma trận A.

**Ví dụ.** Cho 
$$A = \begin{pmatrix} -2 & 3 \\ 1 & -1 \end{pmatrix}$$
 và  $f(x) = 3x^2 - 2x + 2$ . Tính  $f(A)$ .

**Giải.** Ta có 
$$A^2 = \begin{pmatrix} 7 & -9 \\ -3 & 4 \end{pmatrix}$$
,  $f(A) = 3A^2 - 2A + 2I_2$ .

Suy ra

$$f(A) = 3 \begin{pmatrix} 7 & -9 \\ -3 & 4 \end{pmatrix} - 2 \begin{pmatrix} -2 & 3 \\ 1 & -1 \end{pmatrix} + 2 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 27 & -33 \\ -11 & 16 \end{pmatrix}$$

# 2. Các phép biến đổi sơ cấp trên dòng

- 2.1 Các phép biến đổi sơ cấp trên dòng
- 2.2 Ma trận bậc thang
- 2.3 Hạng của ma trận

# 2.1 Các phép biến đổi sơ cấp trên dòng

Định nghĩa. Cho  $A \in M_{m \times n}(\mathbb{R})$ . Ta gọi phép biến đổi sơ cấp trên dòng, viết tắt là phép BDSCTD trên A, là một trong ba loại biến đổi sau:

**Loại 1.** Hoán vị hai dòng i và j  $(i \neq j)$ .

Ký hiệu :  $d_i \leftrightarrow d_j$ 

**Loại 2.** Nhân dòng *i* cho một số  $\alpha \neq 0$ .

Ký hiệu:  $d_i := \alpha d_i$ 

**Loại 3.** Cộng vào một dòng i với  $\beta$  lần dòng j  $(j \neq i)$ .

Ký hiệu:  $d_i := d_i + \beta d_j$ 

Với  $\varphi$  là một phép biến đổi sơ cấp, ký hiệu  $\varphi(A)$  chỉ ma trận có từ A qua  $\varphi$ .

Ví dụ. 
$$\begin{pmatrix} 1 & -2 \\ 2 & 3 \end{pmatrix} \xrightarrow{d_1 \leftrightarrow d_2} \begin{pmatrix} 2 & 3 \\ 1 & -2 \end{pmatrix} \xrightarrow{d_2 := 2d_2} \begin{pmatrix} 2 & 3 \\ 2 & -4 \end{pmatrix}$$
.

$$A = \begin{pmatrix} 1 & -2 & 3 & 2 \\ 3 & 6 & -1 & -3 \\ 2 & 1 & 3 & 4 \end{pmatrix}$$

$$\xrightarrow{d_1 \leftrightarrow d_3} \begin{pmatrix} 2 & 1 & 3 & 4 \\ 3 & 6 & -1 & -3 \\ 1 & -2 & 3 & 2 \end{pmatrix}$$

$$\xrightarrow{d_2 := 2d_2} \begin{pmatrix} 2 & 1 & 3 & 4 \\ 6 & 12 & -2 & -6 \\ 1 & -2 & 3 & 2 \end{pmatrix}$$

$$\xrightarrow{d_1 := d_1 + 2d_3} \begin{pmatrix} 4 & -3 & 9 & 8 \\ 6 & 12 & -2 & -6 \\ 1 & -2 & 3 & 2 \end{pmatrix}.$$

## Tương đương dòng

#### Nhận xét.

1) 
$$A \xrightarrow{d_i \leftrightarrow d_j} A' \Rightarrow A' \xrightarrow{d_i \leftrightarrow d_j} A;$$

2) 
$$A \xrightarrow{d_i := \alpha d_i} A' \Rightarrow A' \xrightarrow{d_i := \frac{1}{\alpha} d_i} A;$$

3) 
$$A \xrightarrow{d_i := d_i + \beta d_j} A' \Rightarrow A' \xrightarrow{d_i := d_i - \beta d_j} A.$$

**Định nghĩa.** Cho  $A, B \in M_{m \times n}(\mathbb{R})$ . Ta nói A tương đương dòng với B, ký hiệu  $A \sim B$ , nếu B có được từ A qua hữu hạn phép biến đổi sơ cấp trên dòng nào đó. Vậy,

 $A \sim B \Leftrightarrow \text{Tồn tại các phép BĐSCTD } \varphi_1, \dots, \varphi_k \text{ sao cho}$ 

$$A \xrightarrow{\varphi_1} A_1 \xrightarrow{\varphi_2} \dots \xrightarrow{\varphi_k} A_k = B.$$

Nhận xét. Quan hệ tương đương dòng là một quan hệ tương đương trên  $M_{m \times n}(\mathbb{R})$ , nghĩa là  $\forall A, B, C \in M_{m \times n}(\mathbb{R})$ , ta có:

- i)  $A \sim A$  (tính phản xạ).
- ii)  $A \sim B \Rightarrow B \sim A$  (tính đối xứng).
- iii)  $A \sim B$  và  $B \sim C \Rightarrow A \sim C$  (tính bắc cầu).

Ví dụ. 
$$A = \begin{pmatrix} 1 & 2 & -2 & 3 \\ 1 & 2 & 5 & 1 \\ 2 & 3 & -2 & 1 \end{pmatrix} \sim \begin{pmatrix} 2 & 3 & -2 & 1 \\ 5 & 8 & 1 & 3 \\ 3 & 6 & -6 & 9 \end{pmatrix} = B.$$

Vì B có được từ A qua lần lượt các phép BDSCTD sau:  $d_1 \leftrightarrow d_3$ ,  $d_2 := d_2 + 2d_1$ ,  $d_3 := 3d_3$ .

Hỏi. Làm cách nào kiểm tra hai ma trận tương đương dòng với nhau?

## 2.2 Ma trận bậc thang

**Định nghĩa.** Cho  $A \in M_{m \times n}(\mathbb{R})$ . Phần tử khác không đầu tiên của một dòng kể từ bên trái được gọi là **phần tử cơ sở** của dòng đó.

**Ví dụ.** Cho ma trận 
$$\begin{pmatrix} 0 & -1 & 2 & 1 \\ 3 & 1 & -2 & 3 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
. Khi đó:

Dòng 1 có phần tử cơ sở là -1, dòng 2 có phần tử cơ sở là 3, dòng 3 không có phần tử cơ sở.

**Định nghĩa.** Một ma trận được gọi là *ma trận bậc thang* nếu nó thỏa 2 tính chất sau:

- Dòng không có phần tử cơ sở (nếu tồn tại) thì nằm dưới cùng;
- Phần tử cơ sở của dòng dưới nằm bên phải so với phần tử cơ sở của dòng trên.

Như vậy ma trận bậc thang sẽ có dạng

$$\mathbf{Vi} \ \mathbf{du.} \ \ A = \begin{pmatrix} \mathbf{1} & 2 & 5 & 4 & 2 \\ 0 & 0 & \mathbf{3} & 1 & 7 \\ 0 & 0 & 0 & \mathbf{1} & 4 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}; \quad B = \begin{pmatrix} 2 & 3 & 2 & 1 \\ 0 & 0 & 4 & 2 \\ 0 & 1 & 0 & 3 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

A là trận bậc thang, B không là ma trận bậc thang.

## ma trận bậc thang rút ngọn

**Định nghĩa.** Ma trận A được gọi là ma trận bậc thang rút ngọn nếu thỏa các điều kiên sau:

- A là ma trận bậc thang.
- Các phần tử cơ sở đều bằng 1.
- Trên các cột có chứa phần tử cơ sở, tất cả các hệ số khác đều bằng 0.

$$\mathbf{Vi} \ \mathbf{du.} \ \ C = \begin{pmatrix} \mathbf{1} & 0 & 0 & 0 & 4 \\ 0 & \mathbf{1} & 0 & 0 & -7 \\ 0 & 0 & \mathbf{1} & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}; \quad D = \begin{pmatrix} \mathbf{1} & \mathbf{3} & 0 & 2 & 7 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}.$$

C là ma trận bậc thang rút gọn.

D không là ma trận bậc thang rút gọn.

## 2.3 Hạng của ma trận

Dạng bậc thang

**Định nghĩa.** Nếu A tương đương dòng với một ma trận bậc thang B thì B được gọi là một  $\frac{dang}{dang}$  bậc  $\frac{dang}{dang}$  của A.

Ví dụ. Cho

$$A = \begin{pmatrix} 1 & 2 & 3 & -2 \\ -2 & -5 & 1 & -4 \\ 3 & 6 & 9 & -6 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 2 & 3 & -2 \\ 0 & -1 & 7 & -8 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

Khi đó B là một dạng bậc thang của A vì B có được từ A thông qua các phép biến đổi:  $d_2:=d_2+2d_1,\,d_3=d_3-3d_1.$ 

Hỏi. Dạng bậc thang của một ma trận có duy nhất không?

## Hạng của ma trận

Nhận xét. Một ma trận A thì có nhiều dạng bậc thang, tuy nhiên các dạng bậc thang của A đều có chung số dòng khác 0. Ta gọi số dòng khác 0 của một dạng bậc thang của A là hạng của A, ký hiệu r(A).

**Mệnh đề.** Cho  $A, B \in M_{m \times n}(\mathbb{R})$ . Khi đó:

- i)  $0 \le r(A) \le m, n;$
- ii)  $r(A) = 0 \Leftrightarrow A = 0;$
- iii)  $r(A^{\top}) = r(A);$
- iv) Nếu  $A \sim B$  thì r(A) = r(B).

**Định nghĩa.** Nếu A tương đương dòng với một ma trận bậc thang rút gọn B thì B được gọi là  $\frac{dang}{dang}$   $\frac{bac}{dang}$   $\frac{bac}{dang}$   $\frac{cua}{dang}$   $\frac{dang}{dang}$ 

**Nhận xét.** Dạng bậc thang rút gọn của một ma trận A là duy nhất và ký hiệu  $R_A$ .

**Ví dụ.** Cho 
$$A = \begin{pmatrix} 1 & 2 & 3 & -2 \\ -2 & -5 & 1 & -4 \\ 3 & 6 & 9 & -6 \end{pmatrix}$$
. Khi đó

$$R_A = \left(\begin{array}{cccc} 1 & 0 & 17 & -18 \\ 0 & 1 & -7 & 8 \\ 0 & 0 & 0 & 0 \end{array}\right).$$

 $R_A$  có được từ A thông qua các phép biến đổi:  $d_2 := d_2 + 2d_1$ ,  $d_3 = d_3 - 3d_1$ ,  $d_2 := -1d_2$ ,  $d_1 := d_1 - 2d_2$ .

### Thuật toán Gauss

Tìm một dạng bậc thang của  $A=(a)_{ij}\in M_{m\times n}(\mathbb{R})$ 

**Bước 1**: i := 1, j := 1.

**Bước 2**: Nếu i > m hoặc j > n thì kết thúc.

**Bước 3**: Nếu  $a_{ij} = 0$  thì sang Bước 4. Nếu  $a_{ij} \neq 0$  thì thực hiện các phép BĐSCTD sau:

$$d_k := d_k - \frac{a_{kj}}{a_{ij}} d_i$$
 với  $k > i$ .

Sau đó i := i+1, j := j+1 và quay về Bước 2.

**Bước 4**: Nếu  $a_{kj} = 0$  với mọi k > i thì j := j + 1 và quay về Bước 2. Nếu  $a_{kj} \neq 0$  với một k > i nào đó thì chọn một k như vậy và thực hiện phép BDSCTD:  $d_i \leftrightarrow d_k$  và quay về Bước 3.  $\mathbf{V}$ í dụ. Tìm một ma trận dạng bậc thang R của ma trận

$$A = \begin{pmatrix} 1 & 7 & 1 & 3 & 0 \\ 1 & 7 & -1 & -2 & -2 \\ 2 & 14 & 2 & 7 & 0 \\ 6 & 42 & 3 & 13 & -3 \end{pmatrix}.$$

Từ đó xác định hạng của A.

Giải.

$$\frac{d_4 := d_4 - \frac{3}{2}d_2}{\longrightarrow} \begin{pmatrix}
1 & 7 & 1 & 3 & 0 \\
0 & 0 & -2 & -5 & -2 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & \frac{5}{2} & 0
\end{pmatrix}$$

$$\frac{d_4 := d_4 - \frac{5}{2}d_3}{\longrightarrow} \begin{pmatrix}
1 & 7 & 1 & 3 & 0 \\
0 & 0 & -2 & -5 & -2 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{pmatrix} = R.$$

Ta c<br/>ó $A \sim R$  và R có dạng bậc thang với 3 dòng khác 0 nê<br/>nA có hạng là r(A) = 3.

**Lưu ý.** Trong quá trình đưa ma trận về dạng bậc thang, ta có thể dùng các phép BDSCTD phù hợp để tránh việc tính toán các số lẻ.

#### Ví dụ.

Tìm hạng của ma trận sau:

$$A = \begin{pmatrix} 1 & 2 & 3 & 3 \\ 2 & 4 & 6 & 9 \\ 2 & 6 & 7 & 6 \end{pmatrix}$$

$$B = \begin{pmatrix} 2 & 3 & 1 & 4 \\ 3 & 4 & 2 & 9 \\ -2 & 0 & -1 & -3 \end{pmatrix}$$

$$C = \begin{pmatrix} 1 & 1 & -1 & 2 & 1 \\ 2 & 3 & -1 & 4 & 5 \\ 3 & 2 & -3 & 7 & 4 \\ -1 & 1 & 2 & -3 & 1 \end{pmatrix}$$

**Ví du.** Tìm tất cả giá trị m để r(A) = 3 với

$$A = \left(\begin{array}{cccc} 1 & 1 & 1 & 2 \\ 2 & 3 & 4 & 1 \\ 3 & 2 & m & m+1 \end{array}\right)$$

**Ví dụ.** Tìm tất cả giá trị m để r(B) = 2 với

$$B = \left(\begin{array}{ccc} 1 & m & m \\ m & 1 & m \\ m & m & 1 \end{array}\right)$$

## Thuật toán Gauss-Jordan

Tìm một dạng bậc thang rút gọn của  $A = (a)_{ij} \in M_{m \times n}(\mathbb{R})$ 

Chỉ khác Thuật toán Gauss ở Bước 3, ta cần thực hiện các phép biến đổi sau:

$$d_k := d_k - \frac{a_{kj}}{a_{ij}} d_i \text{ v\'oi } k \neq i;$$

$$d_i := \frac{1}{a_{ij}} d_i.$$

Ví dụ. Tìm ma trận dạng bậc thang rút gọn của ma trận

$$A = \begin{pmatrix} 1 & 7 & 1 & 3 & 0 \\ 1 & 7 & -1 & -2 & -2 \\ 2 & 14 & 2 & 7 & 0 \\ 6 & 42 & 3 & 13 & -3 \end{pmatrix}.$$

#### Giải.

$$\begin{pmatrix} 1 & 7 & 1 & 3 & 0 \\ 1 & 7 & -1 & -2 & -2 \\ 2 & 14 & 2 & 7 & 0 \\ 6 & 42 & 3 & 13 & -3 \end{pmatrix} \xrightarrow{d_2:=d_2-d_1} \begin{pmatrix} 1 & 7 & 1 & 3 & 0 \\ 0 & 0 & -2 & -5 & -2 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & -3 & -5 & -3 \end{pmatrix}$$

$$\xrightarrow{d_1:=d_1+\frac{1}{2}d_2} \begin{pmatrix} 1 & 7 & 0 & \frac{1}{2} & -1 \\ 0 & 0 & 1 & \frac{5}{2} & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & \frac{5}{2} & 0 \end{pmatrix}$$

$$\xrightarrow{d_2:=d_2-\frac{1}{2}d_2} \begin{pmatrix} 1 & 7 & 0 & 0 & 1 \\ 0 & 0 & 1 & \frac{5}{2} & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & \frac{5}{2} & 0 \end{pmatrix}$$

$$\xrightarrow{d_2:=d_2-\frac{5}{2}d_3} \begin{pmatrix} 1 & 7 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} = R_A.$$

Ta thấy  $R_A$  là ma trận dạng bậc thang rút gọn của A.

#### Ví dụ.

Tìm dạng ma trận bậc thang rút gọn của các ma trận sau:

a) 
$$\begin{pmatrix} 4 & 3 & 2 & 2 \\ 0 & 2 & 1 & 1 \\ 0 & 0 & 3 & 3 \end{pmatrix};$$

b) 
$$\begin{pmatrix} 1 & 2 & 3 & 6 \\ 2 & 3 & 1 & 6 \\ 3 & 1 & 2 & 6 \end{pmatrix}$$
;

c) 
$$\begin{pmatrix} 1 & -1 & 5 & -1 \\ 1 & 1 & -2 & 3 \\ 3 & -1 & 8 & 1 \\ 1 & 3 & -9 & 7 \end{pmatrix};$$

d) 
$$\begin{pmatrix} 1 & 3 & -2 & -1 \\ 2 & 5 & -2 & 1 \\ 1 & 1 & 6 & 13 \\ -2 & -6 & 8 & 10 \end{pmatrix}.$$

# 3. Hệ phương trình tuyến tính

- 3.1 Định nghĩa
- 3.2 Nghiệm hệ của phương trình tuyến tính
- 3.3 Giải hệ phương trình tuyến tính
- 3.4 Định lý Kronecker Capelli

# 3.1 Định nghĩa hệ phương trình tuyến tính Mở đầu

$$\begin{cases} 2x_1 - 2x_2 + x_3 - x_4 + x_5 = 1; \\ x_1 + 2x_2 - x_3 + x_4 - 2x_5 = 1; \\ 4x_1 - 10x_2 + 5x_3 - 5x_4 + 7x_5 = 1; \\ 2x_1 - 14x_2 + 7x_3 - 7x_4 + 11x_5 = -1. \end{cases}$$

# 3.1 Định nghĩa hệ phương trình tuyến tính

Định nghĩa. Một  $h\hat{e}$  phương trình tuyến tính trên  $\mathbb{R}$  gồm m phương trình, n ẩn số là một hệ có dạng

trong đó

- $a_{ij} \in \mathbb{R}$ : các hệ số;
- $b_i \in \mathbb{R}$ : các hệ số tự do;
- $x_1, x_2, \ldots, x_n$ : các ẩn số nhận giá trị trong  $\mathbb{R}$ .

Nếu (\*) có các hệ số tự do =0 thì ta nói (\*) là  $h\hat{e}$  phương trình thuần nhất trên  $\mathbb{R}$ .

Đặt

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}, \quad X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}, \quad B = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix}.$$

Ta gọi A là ma trận hệ số, X là cột các ẩn, B là cột các hệ số tự do của hệ (\*). Khi đó hệ (\*) được viết dưới dạng AX = B. Đặt

$$\tilde{\mathbf{A}} = (A|B) = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} & b_1 \\ a_{21} & a_{22} & \dots & a_{2n} & b_2 \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} & b_m \end{pmatrix}$$

 $\tilde{A}$  được gọi là ma trận mở rộng (hay ma trận bổ sung) của hệ (\*).

# 3.2 Nghiệm hệ phương trình tuyến tính

**Định nghĩa.** Ta nói  $u = (\alpha_1, \alpha_2, \dots, \alpha_n)$  là **nghiệm** của hệ phương trình (\*) nếu ta thay thế  $x_1 := \alpha_1, x_2 := \alpha_2, \dots x_n := \alpha_n$  thì tất cả các phương trình trong (\*) đều thỏa.

**Định nghĩa.** Hai hệ phương trình được gọi là *tương đương* nhau nếu chúng có cùng tập nghiệm.

Nhận xét. Khi giải một hệ phương trình tuyến tính, các phép biến đổi sau đây cho ta các hệ tương đương:

- Hoán đổi hai phương trình cho nhau.
- Nhân hai vế của một phương trình cho một số khác 0.
- Cộng vào một phương trình một bội của phương trình khác.

06/04/2010

**Định lý.** Nếu hai hệ phương trình tuyến tính có ma trận mở rộng tương đương dòng với nhau thì hai hệ phương trình đó tương đương nhau.

## Ví dụ. Giải phương trình

$$\begin{cases} x - y - 2z = -3; \\ 2x - y + z = 1; \\ x + y + z = 4. \end{cases}$$
 (1)

Giải. 
$$\tilde{A} = \begin{pmatrix} 1 & -1 & -2 & | & -3 \\ 2 & -1 & 1 & | & 1 \\ 1 & 1 & 1 & | & 4 \end{pmatrix} \xrightarrow{d_2 := d_2 - 2d_1} \begin{pmatrix} 1 & -1 & -2 & | & -3 \\ 0 & 1 & 5 & | & 7 \\ 0 & 2 & 3 & | & 7 \end{pmatrix}$$

$$\xrightarrow[d_3:=d_3-2d_2]{d_1:=d_1+d_2} \left( \begin{array}{cc|c} 1 & 0 & 3 & 4 \\ 0 & 1 & 5 & 7 \\ 0 & 0 & -7 & -7 \end{array} \right) \xrightarrow[d_2:=d_1-3d_3]{d_3:=\frac{-1}{7}d_3} \left( \begin{array}{cc|c} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 1 \end{array} \right)$$

Ta có 
$$\tilde{A} \sim \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 1 \end{pmatrix}$$
. Suy ra

(1) 
$$\Leftrightarrow$$
 
$$\begin{cases} x + 0y + 0z = 1; \\ 0x + y + 0z = 2; \\ 0x + 0y + z = 1. \end{cases}$$
  $\Leftrightarrow$  
$$\begin{cases} x = 1; \\ y = 2; \\ z = 1. \end{cases}$$

Ví dụ. Giải hệ phương trình

$$\begin{cases} x + y - 2z = 4; \\ 2x + 3y + 3z = 3; \\ 5x + 7y + 4z = 10. \end{cases}$$
 (2)

- 4 ロ ト 4 回 ト 4 重 ト 4 重 ト 9 G

Giải. Ma trận hóa hệ phương trình tuyến tính, ta có

$$\tilde{A} = \left(\begin{array}{ccc|c} 1 & 1 & -2 & 4 \\ 2 & 3 & 3 & 3 \\ 5 & 7 & 4 & 10 \end{array}\right)$$

$$\tilde{A} \xrightarrow{d_2:=d_2-2d_1} \begin{pmatrix}
1 & 1 & -2 & 4 \\
0 & 1 & 7 & -5 \\
0 & 2 & 14 & -10
\end{pmatrix}
\xrightarrow[d_3:=d_3-2d_2]{}
\xrightarrow{d_1:=d_1-d_2} \begin{pmatrix}
1 & 0 & -9 & 9 \\
0 & 1 & 7 & -5 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

Như vậy,

$$(2) \Leftrightarrow \begin{cases} x & -9z = 9\\ y + 7z = -5 \end{cases}$$

Như vậy nghiệm của (2) là

$$\left\{ \begin{array}{lcl} x & = & 9+9t; \\ y & = & -5-7t; \\ z & = & t. \end{array} \right.$$

## Ví dụ. Giải hệ phương trình

$$\begin{cases} x + y - 2z = 4; \\ 2x + 3y + 3z = 3; \\ 5x + 7y + 4z = 5. \end{cases}$$
 (3)

Giải. Ma trận hóa hệ phương trình tuyến tính, ta có

$$\tilde{A} = \left(\begin{array}{ccc|c} 1 & 1 & -2 & 4 \\ 2 & 3 & 3 & 3 \\ 5 & 7 & 4 & 5 \end{array}\right)$$

$$\tilde{A} \xrightarrow{d_2:=d_2-2d_1} \left( \begin{array}{ccc|c} 1 & 1 & -2 & 4 \\ 0 & 1 & 7 & -5 \\ 0 & 2 & 14 & -15 \end{array} \right) \xrightarrow{d_1:=d_1-d_2} \left( \begin{array}{ccc|c} 1 & 0 & -9 & 9 \\ 0 & 1 & 7 & -5 \\ 0 & 0 & 0 & -5 \end{array} \right)$$

Hê (3) vô nghiêm vì 0x + 0y + 0z = -5.

▶ Tiếp tục Gauss-Jordan

## Nhận xét. Hệ phương trình tuyến tính thuần nhất

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0; \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = 0; \\ \dots & \dots & \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = 0, \end{cases}$$

luôn có một nghiệm  $u=(0,0,\ldots,0)$ . Nghiệm này được gọi là **nghiệm** tầm thường.

**Định lý.** Số nghiệm của phương trình tuyến tính chỉ có 3 trường hợp sau:

- Vô nghiệm;
- Duy nhất một nghiệm;
- Vô số nghiệm.

# 3.3 Giải hệ phương trình tuyến tính

## Có 2 phương pháp

- Gauss
- Gauss Jordan

## Phương pháp Gauss

Bước 1. Lập ma trận mở rộng  $\tilde{A} = (A|B)$ .

Bước 2. Đưa ma trận  $\tilde{A}$  về dạng bậc thang R.

Bước 3. Tùy theo trường hợp dạng bậc thang R ma ta kết luận nghiệm như sau:

- Trường hợp 1. Xuất hiện một dòng

$$(0\ 0\ 0\ 0\ \dots 0\ 0| \neq 0).$$

Kết luận hệ phương trình vô nghiệm.



- Trường hợp 2. Ma trận R có dạng

$$\begin{pmatrix} c_{11} & c_{12} & \dots & c_{1n} & \alpha_1 \\ 0 & c_{22} & \dots & c_{2n} & \alpha_2 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & c_{nn} & \alpha_n \\ 0 & 0 & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 0 & 0 \end{pmatrix}.$$

Khi đó hệ phương trình có nghiệm duy nhất. Việc tính nghiệm được thực hiện từ dưới lên trên.

- Trường hợp 3. Khác 2 trường hợp trên. Khi đó hệ có vô số nghiệm, và:
  - Ẩn tương ứng với các cột không có phần tử cơ sở sẽ là ẩn tự do (lấy giá trị tùy ý).
  - Ấn tương ứng với cột có phần tử cơ sở sẽ được tính từ dưới lên trên và theo các ẩn tự do.

#### Ví dụ. Giải hệ phương trình sau:

$$\begin{cases} x_1 + 2x_2 + 3x_3 + 4x_4 = 7; \\ x_2 + 2x_1 + 2x_3 + 3x_4 = 6; \\ 3x_1 + 2x_2 + 2x_4 + x_3 = 7; \\ 4x_1 + 3x_2 + 2x_3 + x_4 = 18, \end{cases}$$

#### Giải. Ta có

$$\tilde{A} = (A|B) = \begin{pmatrix} 1 & 2 & 3 & 4 & 7 \\ 2 & 1 & 2 & 3 & 6 \\ 3 & 2 & 1 & 2 & 7 \\ 4 & 3 & 2 & 1 & 18 \end{pmatrix}$$

$$\frac{d_2 := d_2 - 2d_1}{d_3 := d_3 - 3d_1} \xrightarrow{d_4 := d_4 - 4d_1}$$

$$\begin{pmatrix}
1 & 2 & 3 & 4 & 7 \\
0 & -3 & -4 & -5 & -8 \\
0 & -4 & -8 & -10 & -14 \\
0 & -5 & -10 & -15 & -10
\end{pmatrix}$$

$$\frac{d_2 := d_2 - d_3}{d_2 := d_2 - d_3} \xrightarrow{d_3 := d_3 + 4d_2}$$

$$\frac{d_3 := d_3 + 4d_2}{d_4 := d_4 + 5d_2} \xrightarrow{d_3 := d_3 + 4d_2}$$

$$\begin{pmatrix}
1 & 2 & 3 & 4 & 7 \\
0 & 1 & 4 & 5 & 6 \\
0 & -4 & -8 & -10 & -14 \\
0 & -5 & -10 & -15 & -10
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 2 & 3 & 4 & 7 \\
0 & 1 & 4 & 5 & 6 \\
0 & 0 & 8 & 10 & 10 \\
0 & 0 & 10 & 10 & 20
\end{pmatrix}
\xrightarrow{d_3 \mapsto d_4}
\begin{pmatrix}
1 & 2 & 3 & 4 & 7 \\
0 & 1 & 4 & 5 & 6 \\
0 & 0 & 1 & 1 & 2 \\
0 & 0 & 8 & 10 & 10
\end{pmatrix}$$

Vậy hệ đã cho tương đương với hệ sau:

$$\begin{cases} x_1 + 2x_2 + 3x_3 + 4x_4 = 7; \\ x_2 + 4x_3 + 5x_4 = 6; \\ x_3 + x_4 = 2; \end{cases} \Leftrightarrow \begin{cases} x_1 = 2; \\ x_2 = 1; \\ x_3 = 5; \\ x_4 = -3. \end{cases}$$

#### Ví dụ. Giải hệ phương trình sau:

$$\begin{cases} x_1 + 2x_2 - 3x_3 + 5x_4 = 1; \\ x_1 + 3x_2 - 13x_3 + 22x_4 = -1; \\ 3x_1 + 5x_2 + x_3 - 2x_4 = 5; \\ 2x_1 + 3x_2 + 4x_3 - 7x_4 = 4, \end{cases}$$

#### Giải. Ta có

$$\tilde{A} = (A|B) = \begin{pmatrix} 1 & 2 & -3 & 5 & 1\\ 1 & 3 & -13 & 22 & -1\\ 3 & 5 & 1 & -2 & 5\\ 2 & 3 & 4 & -7 & 4 \end{pmatrix}$$

$$\frac{d_2 := d_2 - d_1}{d_3 := d_3 - 3d_1} \xrightarrow{d_4 := d_4 - 2d_1} 
\begin{pmatrix}
1 & 2 & -3 & 5 & 1 \\
0 & 1 & -10 & 17 & -2 \\
0 & -1 & 10 & -17 & 2 \\
0 & -1 & 10 & -17 & 2
\end{pmatrix}$$

$$\left(\begin{array}{ccc|ccc|c}
1 & 2 & -3 & 5 & 1 \\
0 & 1 & -10 & 17 & -2 \\
0 & -1 & 10 & -17 & 2 \\
0 & -1 & 10 & -17 & 2
\end{array}\right)$$

Vây hệ đã cho tương đương với hệ sau:

$$\begin{cases} x_1 + 2x_2 - 3x_3 + 5x_4 = 1; \\ x_2 - 10x_3 + 17x_4 = -2. \end{cases}$$

Chon  $x_3 = \alpha, x_4 = \beta$ , ta tính được

$$\begin{cases} x_2 = -2 + 10x_3 - 17x_4 = -2 + 10\alpha - 17\beta; \\ x_1 = 1 - 2x_2 + 3x_3 - 5x_4 = 5 - 17\alpha + 29\beta. \end{cases}$$



#### Ví dụ. Giải hệ phương trình sau:

$$\begin{cases} x_1 - 2x_2 + 3x_3 - 4x_4 = 2; \\ 3x_1 + 3x_2 - 5x_3 + x_4 = -3; \\ -2x_1 + x_2 + 2x_3 - 3x_4 = 5; \\ 3x_1 + 3x_3 - 10x_4 = 8. \end{cases}$$

#### Giải. Ta có

$$\tilde{A} = (A|B) = \begin{pmatrix} 1 & -2 & 3 & -4 & 2 \\ 3 & 3 & -5 & 1 & -3 \\ -2 & 1 & 2 & -3 & 5 \\ 3 & 0 & 3 & -10 & 8 \end{pmatrix}$$

$$\frac{d_2 := d_2 - 3d_1}{d_3 := d_3 + 2d_1} \xrightarrow{d_4 := d_4 - 3d_1}$$

$$\begin{pmatrix}
1 & -2 & 3 & -4 & 2 \\
0 & 9 & -14 & 13 & -9 \\
0 & -3 & 8 & -11 & 9 \\
0 & 6 & -6 & 2 & 2
\end{pmatrix}$$

$$\frac{d_{2} \leftrightarrow d_{3}}{d_{4} := d_{4} + 2d_{2}} \begin{pmatrix}
1 & -2 & 3 & -4 & 2 \\
0 & 9 & -14 & 13 & -9 \\
0 & -3 & 8 & -11 & 9 \\
0 & 6 & -6 & 2 & 2
\end{pmatrix}$$

$$\frac{d_{2} \leftrightarrow d_{3}}{d_{4} := d_{4} + 2d_{2}} \begin{pmatrix}
1 & -2 & 3 & -4 & 2 \\
0 & -3 & 8 & -11 & 9 \\
0 & 9 & -14 & 13 & -9 \\
0 & 6 & -6 & 2 & 2
\end{pmatrix}$$

$$\frac{d_{3} := d_{3} + 3d_{2}}{d_{4} := d_{4} + 2d_{2}} \begin{pmatrix}
1 & -2 & 3 & -4 & 2 \\
0 & -3 & 8 & -11 & 9 \\
0 & 0 & 10 & -20 & 18 \\
0 & 0 & 10 & -20 & 20
\end{pmatrix}$$

$$\frac{d_{4} := d_{4} - d_{3}}{d_{4} := d_{4} - d_{3}} \begin{pmatrix}
1 & -2 & 3 & -4 & 2 \\
0 & -3 & 8 & -11 & 9 \\
0 & 0 & 10 & -20 & 18 \\
0 & 0 & 0 & 0 & 20 & 18
\end{pmatrix}$$

$$\frac{d_{4} := d_{4} - d_{3}}{d_{4} := d_{4} - d_{3}} \begin{pmatrix}
1 & -2 & 3 & -4 & 2 \\
0 & -3 & 8 & -11 & 9 \\
0 & 0 & 10 & -20 & 18 \\
0 & 0 & 0 & 0 & 0 & 20 & 20
\end{pmatrix}$$

$$\frac{d_{4} := d_{4} - d_{3}}{d_{4} := d_{4} - d_{3}} \begin{pmatrix}
1 & -2 & 3 & -4 & 2 \\
0 & -3 & 8 & -11 & 9 \\
0 & 0 & 10 & -20 & 18 \\
0 & 0 & 0 & 0 & 0 & 20 & 20
\end{pmatrix}$$

$$\left(\begin{array}{ccc|ccc|c}
1 & -2 & 3 & -4 & 2 \\
0 & -3 & 8 & -11 & 9 \\
0 & 0 & 10 & -20 & 18 \\
0 & 0 & 0 & 0 & 2
\end{array}\right)$$

Vây hệ đã cho tương đương với hệ sau:

$$\begin{cases} x_1 - 2x_2 + 3x_3 - 4x_4 = 2; \\ -3x_2 + 8x_3 - 11x_4 = 9; \\ 10x_3 - 20x_4 = 18; \\ 0 = 2. \end{cases}$$

Hệ này vô nghiệm. Do đó hệ đã cho cũng vô nghiệm.

## Phương pháp Gauss - Jordan

Bước 1. Lập ma trận mở rộng  $\tilde{A}=(A|B)$ .

Bước 2. Đưa ma trận  $\tilde{A}$  về dạng bậc thang rút gọn  $R_A$ .

Bước 3. Tùy theo trường hợp dạng bậc thang rút gọn  $R_A$  mà ta kết luận nghiệm như sau:

- Trường hợp 1. Xuất hiện một dòng (0 0 0 0 . . . 0 0<br/>| $\neq$ 0). Kết luận hệ phương trình vô nghiệm.
  - Trường hợp 2. Ma trận  $R_A$  có dạng

$$\begin{pmatrix}
1 & 0 & \dots & 0 & \alpha_1 \\
0 & 1 & \dots & 0 & \alpha_2 \\
\dots & \dots & \dots & \dots \\
0 & 0 & \dots & 1 & \alpha_n \\
0 & 0 & \dots & 0 & 0 \\
\dots & \dots & \dots & \dots \\
0 & 0 & \dots & 0 & 0
\end{pmatrix}.$$

Khi đó hệ phương trình có nghiệm duy nhất là

$$x_1 = \alpha_1, \ x_2 = \alpha_2, \dots, x_n = \alpha_n.$$

- Trường hợp 3. Khác 2 trường hợp trên. Khi đó hệ có vô số nghiệm, và:
  - Ẩn tương ứng với các cột không có phần tử cơ sở 1 sẽ là ẩn tự do (lấy giá trị tùy ý).
  - Ấn tương ứng với cột có phần tử cơ sở 1 sẽ được tính theo các ẩn tự do.

Số ẩn tự do được gọi là *bậc tự do* của hệ phương trình.

▶ Xem lại ví dụ đầu tiên

# 3.4 Định lý Kronecker- Capelli

**Định lý.** Nếu  $\tilde{A}=(A|B)$  là ma trận mở rông của hệ gồm n ẩn dạng AX=B thì  $r(\tilde{A})=r(A)$  hoặc  $r(\tilde{A})=r(A)+1$ . Hơn nữa,

- $n\acute{e}u \ r(\tilde{A}) = r(A) + 1 \ thì \ hệ vô \ nghiệm;$
- $n\acute{e}u \ r(\tilde{A}) = r(A) = n \ thì \ hệ có nghiệm duy nhất;$
- $r(\tilde{A}) = r(A) < n$  thì hệ có vô số nghiệm với bậc tự do là n r(A).

 $\mathbf{V} \mathbf{\hat{i}}$  dụ. Giải và biện luận hệ phương trình tuyến tính sau theo tham số m

$$\begin{cases} 3x_1 + 5x_2 + 3x_3 - 4x_4 = 1; \\ 2x_1 + 3x_2 + x_3 + x_4 = 0; \\ 5x_1 + 9x_2 + 6x_3 - 15x_4 = 2; \\ 13x_1 + 22x_2 + 13x_3 - 22x_4 = 2m, \end{cases}$$

$$\tilde{A} = (A|B) = \begin{pmatrix} 3 & 5 & 3 & -4 & 1 \\ 2 & 3 & 1 & 1 & 0 \\ 5 & 9 & 6 & -15 & 2 \\ 13 & 22 & 13 & -22 & 2m \end{pmatrix}$$

$$\xrightarrow{d_1:=d_1-d_2} \begin{pmatrix} 1 & 2 & 2 & -5 & 1 \\ 2 & 3 & 1 & 1 & 0 \\ 5 & 9 & 6 & -15 & 2 \\ 13 & 22 & 13 & -22 & 2m \end{pmatrix}$$

$$\xrightarrow{d_2:=d_2-2d_1}_{d_3:=d_3-5d_1} \begin{pmatrix} 1 & 2 & 2 & -5 & 1 \\ 0 & -1 & -3 & 11 & -2 \\ 0 & -1 & -4 & 10 & -3 \\ 0 & -4 & -13 & 43 & 2m - 13 \end{pmatrix}$$

$$\xrightarrow{d_3:=d_3-d_2}_{d_4:=d_4-4d_2} \begin{pmatrix} 1 & 2 & 2 & -5 & 1 \\ 0 & -1 & -3 & 11 & -2 \\ 0 & 0 & -1 & -1 & -1 \\ 0 & 0 & -1 & -1 & 2m - 5 \end{pmatrix}$$

$$\frac{d_3 := d_3 - d_2}{d_4 := d_4 - 4d_2} \qquad \begin{pmatrix}
1 & 2 & 2 & -5 & | & 1 \\
0 & -1 & -3 & 11 & | & -2 \\
0 & 0 & -1 & -1 & | & -1 \\
0 & 0 & -1 & -1 & | & 2m - 5
\end{pmatrix}$$

$$\frac{d_4 := d_4 - d_3}{d_4 := d_4 - d_3} \qquad \begin{pmatrix}
1 & 2 & 2 & -5 & | & 1 \\
0 & -1 & -3 & 11 & | & -2 \\
0 & 0 & -1 & -1 & | & -1 \\
0 & 0 & 0 & 0 & | & 2m - 4
\end{pmatrix}$$

Biên luân:

- 1)  $2m-4\neq 0 \Leftrightarrow m\neq 2$ : Khi đó hệ (1) vô nghiệm nên hệ đã cho cũng vô nghiệm.
- 2) m=2: Hệ (1) tương đương với hệ sau:

$$\begin{cases} x_1 + 2x_2 + 2x_3 - 5x_4 = 1; \\ -x_2 - 3x_3 + 11x_4 = -2; \\ -x_3 - x_4 = -1. \end{cases}$$

Chọn  $x_4 = \alpha$  ta tính được

$$\begin{cases} x_3 = 1 - x_4 = 1 - \alpha; \\ x_2 = 2 - 3x_3 + 11x_4 = -1 + 14\alpha; \\ x_1 = 1 - 2x_2 - 2x_3 + 5x_4 = 1 - 21\alpha. \end{cases}$$

Vậy khi m=2, hệ đã cho có vô số nghiệm với một ẩn tự do

$$(x_1, x_2, x_3, x_4) = (1 - 21\alpha, -1 + 14\alpha, 1 - \alpha, \alpha)$$

với  $\alpha \in \mathbb{R}$  tùy ý.

**Ví dụ.** Giải và biện luận hệ phương trình tuyến tính sau theo tham số m

$$\begin{cases} x_1 + x_2 - x_3 + 2x_4 = 1; \\ x_1 + 2x_2 - 3x_3 + 4x_4 = 2; \\ x_1 - x_2 + 4x_3 - x_4 = m; \\ 4x_1 + 3x_2 - x_3 + mx_4 = m^2 - 6m + 4, \end{cases}$$

$$\tilde{A} = (A|B) = \begin{pmatrix} 1 & 1 & -1 & 2 & 1 \\ 1 & 2 & -3 & 4 & 2 \\ 1 & -1 & 4 & -1 & m \\ 4 & 3 & -1 & m & m^2 - 6m + 4 \end{pmatrix}$$

$$\xrightarrow{d_2 := d_2 - d_1}_{d_3 := d_3 - d_1} \rightarrow \begin{pmatrix} 1 & 1 & -1 & 2 & 1 \\ 0 & 1 & -2 & 2 & 1 \\ 0 & -2 & 5 & -3 & m - 1 \\ 0 & -1 & 3 & m - 8 & m^2 - 6m \end{pmatrix}$$

$$\xrightarrow{d_3 := d_3 + 2d_2}_{d_4 := d_4 + d_2} \rightarrow \begin{pmatrix} 1 & 1 & -1 & 2 & 1 \\ 0 & 1 & -2 & 2 & 1 \\ 0 & 0 & 1 & 1 & m + 1 \\ 0 & 0 & 1 & m - 6 & m^2 - 6m + 1 \end{pmatrix}$$

$$\xrightarrow{d_4 := d_4 - d_3} \rightarrow \begin{pmatrix} 1 & 1 & -1 & 2 & 1 \\ 0 & 1 & -2 & 2 & 1 \\ 0 & 1 & -2 & 2 & 1 \\ 0 & 0 & 1 & 1 & m + 1 \\ 0 & 0 & 0 & m - 7 & m^2 - 7m \end{pmatrix}.$$

$$\left(\begin{array}{ccc|cccc}
1 & 1 & -1 & 2 & 1 \\
0 & 1 & -2 & 2 & 1 \\
0 & 0 & 1 & 1 & m+1 \\
0 & 0 & 0 & m-7 & m^2-7m
\end{array}\right)$$

Biên luân:

1) 
$$m-7 \neq 0 \Leftrightarrow m \neq 7$$
: Khi đó hệ (1) cho ta

$$\begin{cases} x_4 = m; \\ x_3 = m+1-x_4=1; \\ x_2 = 1+2x_3-2x_4=3-2m; \\ x_1 = 1-x_2+x_3-2x_4=-1. \end{cases}$$

Suy ra khi m  $\neq 7$  hệ đã cho có duy nhất một nghiệm là

$$(x_1, x_2, x_3, x_4) = (-1, 3 - 2m, 1, m).$$



2) m = 7: Hê (1) tương đương với hê sau:

$$\begin{cases} x_1 + x_2 - x_3 + 2x_4 = 1; \\ x_2 - 2x_3 + 2x_4 = 1; \\ x_3 + x_4 = 8. \end{cases}$$
 (2)

Chon  $x_4 = \alpha$  ta tính được

$$\begin{cases} x_3 = 8 - x_4 = 8 - \alpha; \\ x_2 = 1 + 2x_3 - 2x_4 = 17 - 4\alpha; \\ x_1 = 1 - x_2 + x_3 - 2x_4 = -8 + \alpha. \end{cases}$$

Vậy khi m=7 hệ đã cho có vô số nghiệm với một ẩn tự do

$$(x_1, x_2, x_3, x_4) = (-8 + \alpha, 17 - 4\alpha, 8 - \alpha, \alpha)$$

với  $\alpha \in \mathbb{R}$  tùy ý.



# 4. Ma trận khả nghịch

- 4.1 Định nghĩa
- 4.2 Nhận diện và tìm ma trận khả nghịch

## 4.1 Định nghĩa

#### Mở đầu

Xét trên tập số thực  $\mathbb{R}$ . Cho  $x \in \mathbb{R}$ , hỏi tồn tại hay không y sao cho

$$xy = 1$$
.

Hỏi. Trên tập hợp ma trận thì sao?

**Định nghĩa.** Cho  $A \in M_n(\mathbb{R})$ . Ta nói A khả nghịch nếu tồn tại ma trận B sao cho  $AB = BA = I_n$ . Nếu B thỏa diều kiện trên được gọi là ma trận nghịch đảo của A.

**Nhận xét.** Ma trận nghịch đảo của một ma trận khả nghịch là duy nhất. Ta ký hiệu ma trận nghịch đảo của A là  $A^{-1}$ .

Ví dụ. Cho 
$$A = \begin{pmatrix} 3 & 5 \\ 1 & 2 \end{pmatrix}$$
. Khi đó  $A^{-1} = \begin{pmatrix} 2 & -5 \\ -1 & 3 \end{pmatrix}$ .

**Mệnh đề.** Cho  $A \in M_n(\mathbb{R})$ . Giả sử A khả nghịch và có nghịch đảo là  $A^{-1}$ . Khi đó

- i)  $A^{-1}$  khả nghịch và  $(A^{-1})^{-1} = A$ .
- ii)  $A^{\top}$  khả nghịch và  $(A^{\top})^{-1} = (A^{-1})^{\top}$ .
- iii)  $\forall \alpha \in \mathbb{R} \setminus \{0\}, \ \alpha A \ khả nghịch và <math>(\alpha A)^{-1} = \frac{1}{\alpha} A^{-1}.$

**Mệnh đề.** Cho  $A, B \in M_n(\mathbb{R})$ . Nếu A và B khả nghịch thì AB khả nghịch, hơn nữa

$$(AB)^{-1} = B^{-1}A^{-1}$$
.



## 4.2 Nhận diện và tìm ma trận khả nghịch

**Định lý.** Cho  $A \in M_n(\mathbb{R})$ . Khi đó các khẳng định sau tương đương:

- i) A khả nghịch.
- ii) r(A) = n.
- iii)  $A \sim I_n$ .
- iv) Tồn tại các phép BDSCTD  $\varphi_1, \ldots, \varphi_k$  biến ma trận A thành ma trận đơn vị  $I_n$ :

$$A \xrightarrow{\varphi_1} A_1 \longrightarrow \dots \xrightarrow{\varphi_k} A_k = I_n.$$

Hơn nữa, khi đó qua chính các phép BDSCTD  $\varphi_1, \ldots, \varphi_k$ , ma trận đơn vị  $I_n$  sẽ biến thành ma trận nghịch đảo  $A^{-1}$ :

$$I_n \xrightarrow{\varphi_1} B_1 \longrightarrow \dots \xrightarrow{\varphi_k} B_k = A^{-1}.$$

## Phương pháp tìm ma trận nghịch đảo

Lập  $(A|I_n)$  và dùng các phép BĐSCTD biến A về dạng ma trận bậc thang rút gọn:

$$(A | I_n) \xrightarrow{\varphi_1} (A_1 | B_1) \longrightarrow \dots \xrightarrow{\varphi_p} (A_p | B_p) \longrightarrow \dots$$

Trong quá trình biến đổi có thể xảy ra hai trường hợp:

- Trường hợp 1: Tồn tại p sao cho trong dãy biến đổi trên, ma trận  $A_p$  có ít nhất một dòng hay một cột bằng 0. Khi đó A không khả nghịch.
- Trường hợp 2: Mọi ma trận  $A_i$  trong dãy biến đổi trên đều không có dòng hay cột bằng 0. Khi đó ma trận cuối cùng của dãy trên có dạng  $(I_n|B)$ . Ta có A khả nghịch và  $A^{-1} = B$ .

**Lưu ý.** Nếu bài toán chỉ yêu cầu kiểm tra ma trận A có khả nghịch hay không, ta chỉ cần tính hạng của ma trận (dùng Gauss).

**Ví dụ.** Xét tính khả nghịch của A và tìm  $A^{-1}$  (nếu có)

$$A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 5 & 4 & 7 \\ 3 & 7 & 8 & 12 \\ 4 & 8 & 14 & 19 \end{pmatrix}$$

Giải.

$$(A|I_4) = \begin{pmatrix} 1 & 2 & 3 & 4 & 1 & 0 & 0 & 0 \\ 2 & 5 & 4 & 7 & 0 & 1 & 0 & 0 \\ 3 & 7 & 8 & 12 & 0 & 0 & 1 & 0 \\ 4 & 8 & 14 & 19 & 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix}
1 & 2 & 3 & 4 & 1 & 0 & 0 & 0 \\
0 & 1 & -2 & -1 & -2 & 1 & 0 & 0 \\
0 & 1 & -1 & 0 & -3 & 0 & 1 & 0 \\
0 & 0 & 2 & 3 & -4 & 0 & 0 & 1
\end{pmatrix}$$

$$\frac{d_1 := d_1 - 2d_2}{d_3 := d_3 - d_2} \xrightarrow{d_1 := d_1 - 7d_3} \xrightarrow{d_2 := d_2 + 2d_3}$$

$$\frac{d_1 := d_1 - 7d_3}{d_4 := d_4 - 2d_3} \xrightarrow{d_4 := d_4 - 2d_3}$$

$$\begin{pmatrix}
1 & 0 & 0 & -1 & 12 & 5 & -7 & 0 \\
0 & 1 & 0 & 1 & -4 & -1 & 2 & 0 \\
0 & 0 & 1 & 1 & -1 & -1 & 1 & 0 \\
0 & 0 & 1 & 1 & -1 & -1 & 1 & 0 \\
0 & 0 & 1 & 1 & -1 & -1 & 1 & 0 \\
0 & 0 & 1 & 1 & -2 & 2 & -2 & 1
\end{pmatrix}$$

$$\frac{d_1 := d_1 + d_4}{d_2 := d_2 - d_4} \xrightarrow{d_2 := d_2 - d_4}$$

$$\frac{d_3 := d_3 - d_4}{d_3 := d_3 - d_4} \xrightarrow{d_3 := d_3 - d_4}$$

$$\begin{pmatrix}
1 & 0 & 0 & 0 & 1 & 0 & 7 & -9 & 1 \\
0 & 1 & 0 & 0 & 1 & -2 & 2 & -2 & 1 \\
0 & 0 & 1 & 0 & 1 & -3 & 3 & -1 \\
0 & 0 & 0 & 1 & -2 & 2 & -2 & 1
\end{pmatrix}$$

$$= (I_4 | A^{-1}).$$

Như vậy, A khả nghịch và

$$A^{-1} = \begin{pmatrix} 10 & 7 & -9 & 1 \\ -2 & -3 & 4 & -1 \\ 1 & -3 & 3 & -1 \\ -2 & 2 & -2 & 1 \end{pmatrix}.$$

**Ví dụ.** Xét tính khả nghịch của A và tìm  $A^{-1}$  (nếu có)

$$A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 1 & 0 \\ 3 & 0 & 2 & 1 \\ 4 & -1 & 0 & -3 \end{pmatrix}$$

Giải.

$$(A|I_4) = \left(\begin{array}{ccc|ccc|ccc|ccc} 1 & 2 & 3 & 4 & 1 & 0 & 0 & 0 \\ 2 & 1 & 1 & 0 & 0 & 1 & 0 & 0 \\ 3 & 0 & 2 & 1 & 0 & 0 & 1 & 0 \\ 4 & -1 & 0 & -3 & 0 & 0 & 0 & 1 \end{array}\right)$$

$$\frac{d_2 := d_2 - 2d_1}{d_3 := d_3 - 3d_1} \xrightarrow{d_4 := d_4 - 4d_1}$$

$$\begin{pmatrix}
1 & 2 & 3 & 4 & 1 & 0 & 0 & 0 \\
0 & -3 & -5 & -8 & -2 & 1 & 0 & 0 \\
0 & -6 & -7 & -11 & -3 & 0 & 1 & 0 \\
0 & -9 & -12 & -19 & -4 & 0 & 0 & 1
\end{pmatrix}$$

$$\frac{d_3 := d_3 - 2d_2}{d_4 := d_4 - 3d_2} \xrightarrow{d_4 := d_4 - d_3}$$

$$\begin{pmatrix}
1 & 2 & 3 & 4 & 1 & 0 & 0 & 0 \\
0 & -3 & -5 & -8 & -2 & 1 & 0 & 0 \\
0 & 0 & 3 & 5 & 1 & -2 & 1 & 0 \\
0 & 0 & 3 & 5 & 2 & -3 & 0 & 1
\end{pmatrix}$$

$$\frac{d_4 := d_4 - d_3}{0 & 0 & 3 & 5 & 1 & -2 & 1 & 0 \\
0 & 0 & 3 & 5 & 1 & -2 & 1 & 0 \\
0 & 0 & 3 & 5 & 1 & -2 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & -1 & -1 & 1
\end{pmatrix}$$

Ta có r(A) < 4. Suy ra A không khả nghịch.

## 5. Phương trình ma trận

**Định lý.** Cho các ma trận  $A, A' \in M_n(\mathbb{R})$  khả nghịch và  $B \in M_{n \times p}(\mathbb{R}), C \in M_{m \times n}(\mathbb{R}), D \in M_n(\mathbb{R}).$  Khi đó

i) 
$$AX = B \Leftrightarrow X = A^{-1}B;$$

ii) 
$$XA = C \Leftrightarrow X = CA^{-1}$$
;

iii) 
$$AXA' = D \Leftrightarrow X = A^{-1}DA'^{-1}$$
.

**Ví dụ.** Giải phương trình 
$$\begin{pmatrix} 3 & 1 \\ 5 & 2 \end{pmatrix} X = \begin{pmatrix} -2 & 3 \\ 2 & 5 \end{pmatrix}$$
.

**Giải.** Phương trình có dạng AX = B. Ta có A khả nghịch, nên

$$X=A^{-1}B=\left(\begin{array}{cc}2&-1\\-5&3\end{array}\right)\left(\begin{array}{cc}-2&3\\2&5\end{array}\right)=\left(\begin{array}{cc}-6&1\\16&0\end{array}\right).$$



**Ví dụ.** Giải phương trình 
$$X \begin{pmatrix} 3 & 1 \\ 5 & 2 \end{pmatrix} = \begin{pmatrix} -2 & 3 \\ 2 & 5 \end{pmatrix}$$
.

**Giải.** Phương trình có dạng XA = B. Ta có A khả nghịch, nên

$$X = BA^{-1} = \begin{pmatrix} -2 & 3 \\ 2 & 5 \end{pmatrix} \begin{pmatrix} 2 & -1 \\ -5 & 3 \end{pmatrix} = \begin{pmatrix} -19 & 11 \\ -21 & 13 \end{pmatrix}.$$

 $\mathbf{V}$ í dụ. Tìm ma trận X thỏa

$$\begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & 2 & 3 \end{pmatrix} X \begin{pmatrix} 3 & 2 \\ 4 & 3 \end{pmatrix} = \begin{pmatrix} 1 & -2 \\ 3 & 1 \\ 2 & -1 \end{pmatrix}.$$

**Giải.** Phương trình có dạng AXB = C. Ta có A, B khả nghịch, nên

$$X = A^{-1}CB^{-1}$$



$$X = A^{-1}CB^{-1} = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{pmatrix} \begin{pmatrix} 1 & -2 \\ 3 & 1 \\ 2 & -1 \end{pmatrix} \begin{pmatrix} 3 & -2 \\ -4 & 3 \end{pmatrix}$$
$$= \begin{pmatrix} -1 & -5 \\ 3 & 5 \\ -1 & -2 \end{pmatrix} \begin{pmatrix} 3 & -2 \\ -4 & 3 \end{pmatrix}$$
$$= \begin{pmatrix} 17 & -13 \\ -11 & 9 \\ 5 & -4 \end{pmatrix}.$$

**Ví dụ.** Tìm ma trận X thỏa  $\begin{pmatrix} 1 & 2 & -1 \\ -2 & -3 & 1 \end{pmatrix} X = \begin{pmatrix} 1 & -2 \\ -1 & 1 \end{pmatrix}$ .

**Giải.** Đặt 
$$X = \begin{pmatrix} x_1 & x_2 \\ x_3 & x_4 \\ x_5 & x_6 \end{pmatrix}$$
. Ta có

$$\begin{pmatrix} 1 & 2 & -1 \\ -2 & -3 & 1 \end{pmatrix} X = \begin{pmatrix} x_1 + 2x_3 - x_5 & x_2 + 2x_4 - x_6 \\ -2x_1 - 3x_3 + x_5 & -2x_2 - 3x_4 + x_6 \end{pmatrix}.$$

Suy ra hệ phương trình 
$$\begin{cases} x_1 + 2x_3 - x_5 &= 1; \\ x_2 + 2x_4 - x_6 &= -2; \\ -2x_1 - 3x_3 + x_5 &= -1 \\ -2x_2 - 3x_4 + x_6 &= 1. \end{cases}$$

$$\tilde{A} = \begin{pmatrix} 1 & 0 & 2 & 0 & -1 & 0 & 1 \\ 0 & 1 & 0 & 2 & 0 & -1 & -2 \\ -2 & 0 & -3 & 0 & 1 & 0 & -1 \\ 0 & -2 & 0 & -3 & 0 & 1 & 1 \end{pmatrix}$$

$$\sim \begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 0 & -1 \\ 0 & 1 & 0 & 0 & 0 & 1 & 4 \\ 0 & 0 & 1 & 0 & -1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & -1 & -3 \end{pmatrix}$$

$$\left(\begin{array}{cccc|cccc}
1 & 0 & 0 & 0 & 1 & 0 & -1 \\
0 & 1 & 0 & 0 & 0 & 1 & 4 \\
0 & 0 & 1 & 0 & -1 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & -1 & -3
\end{array}\right)$$

Suy ra

$$\begin{cases} x_1 &= -1 - t; \\ x_2 &= 4 - s; \\ x_3 &= 1 + t; \\ x_4 &= -3 + s; \\ x_5 &= t; \\ x_6 &= s. \end{cases} t, s \in \mathbb{R}$$

Vậy 
$$X = \begin{pmatrix} -1-t & 4-s \\ 1+t & -3+s \\ t & s \end{pmatrix}$$
 với  $t,s$  tự do.