Pass 6 - Kongruensräkning

- 1. Beräkna $5^{327} \mod 17$
- 2. Vad blir den minsta positiva resten då $61 \cdot 2^{1000} + 2^{2000}$ delas med 33?
- 3. Bestäm alla lösningar till ekvationen $3x \equiv 8 \, \mathrm{mod} \, 10$
- 4. Bestäm samtliga lösningar till $3x \equiv 5 \mod 9$
- 5. Ange entalssiffran i talet $3^{14} + 4^{15}$
- 6. Avgör om det finns en multiplikativ invers till $14 \mod 8$
- 7. a) Låt a,b och n vara heltal sådana att $n \geq 2$. Definiera vad det innebär att a är kongruent med b modulo n (d.v.s. att $a \equiv b \bmod n$).
 - b) Låt a,b,m och n vara positiva heltal och antag att $n\mid m$. Visa att om $a\equiv b \bmod m$, så gäller $a\equiv b \bmod n$.
- 8. Hur många positiva heltal delar minst ett av talen $a=2^2\cdot 3^5\cdot 5^4\cdot 7^4\cdot 11^3\cdot 13^2\cdot 19^4$ och $b=3^2\cdot 5^8\cdot 7^3\cdot 11^3\cdot 13^5\cdot 17\cdot 19?$