Wahrscheinlichkeitstheorie 2

Cornelius Hanel

July 29, 2024

Preface

Fehler oder Ergänzungen bitte an

corneliush99@univie.ac.at

Es fehlt noch:

- Beweis von Satz $10.2 \checkmark$
- Beweis von Satz 10.3 \checkmark
- Illustration im Beweis von PMT1, Teil 3 🗸
- Lindeberg CLT \checkmark
- Ljapunov CLT ✓
- \bullet Satz 12.8: R N für signierte Maße \checkmark
- Satz 11.10 all gemeiner Fall (Handout) \checkmark

- Beweis von Satz 9.24 ✓
- Beweis von Satz 9.25 ✓
- Lemma 8.6 und Bemerkungen
- Beweis von Proposition 8.17
- Beweis von Satz 9.18
- Anfang von Kapitel 8

Contents

Pr	reface	1
8.	Produkträume und Produktmaße Produktmaß und Integral	
9.	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	23
10	. Konvergenz von Zufallsvariablen Gesetze der großen Zahlen	29 29
11	Schwache Konvergenz Schwach konvergente Teilfolgen	46
12	Radon-Nikodym-Ableitungen 12.1 Signierte Maße	57 57
13	Bedingte Erwartungswerte und Wahrscheinlichkeiten Eigenschaften bedingter Erwartungswerte	

8. Produkträume und Produktmaße

8.4. Lemma: \mathcal{R}^* ist eine Algebra.

Beweis:

- $\Omega \in \mathcal{R}^*$: folgt sofort aus $\Omega = \Omega_1 \times \Omega_2$ und $\Omega_1 \in \mathcal{A}_1, \Omega_2 \in \mathcal{A}_2$.
- $A, B \in \mathcal{R}^* \implies A \cap B \in \mathcal{R}^*$: Schreibe $A = \bigcup_{i=1}^k A_{i,1} \times \ldots \times A_{i,d}$ und $B = \bigcup_{j=1}^\ell B_{j,1} \times \ldots \times B_{j,d}$. Dann gilt

$$A \cap B = \left(\bigcup_{i=1}^{k} A_{i,1} \times \ldots \times A_{i,d}\right) \cap \left(\bigcup_{j=1}^{\ell} B_{j,1} \times \ldots \times B_{j,d}\right)$$
$$= \bigcup_{i=1}^{k} \bigcup_{j=1}^{\ell} \left(A_{i,1} \times \ldots \times A_{i,d} \cap B_{j,1} \times \ldots \times B_{j,d}\right)$$

Wir wissen, dass eine Vereinigung zweier messbarer Rechtecke wieder ein messbares Rechteck ist. Damit gilt $A \cap B \in \mathcal{R}^*$.

• $A \in \mathcal{R}^* \implies A^c \in \mathcal{R}^*$: Sei hier auch wieder $A = \bigcup_{i=1}^k A_{i,1} \times \ldots \times A_{i,d}$. Dann gilt mit de Morgan $A^c = \bigcap_{i=1}^k (A_{i,1} \times \ldots \times A_{i,d})^c$. Zeige also, dass das Komplement eines messbaren Rechtecks eine endliche Vereinigung messbarer Rechtecke ist (dann folgt mit Abgeschlossenheit bezüglich endlicher Durchschnitte die Aussage). Zeige also

$$A_1 \times \ldots \times A_d \in \mathcal{R} \implies (A_1 \times \ldots \times A_d)^c \in \mathcal{R}^*$$

Definiere dazu für $i = 1, \dots, d$ die Koordinatenabbildungen

$$\pi_i:\Omega\to\Omega_i,\ (\omega_1,\ldots,\omega_d)\mapsto\omega_i$$

Dann gilt

$$A_1 \times \ldots \times A_d = \bigcap_{i=1}^d \{ \pi_i \in A \}$$

und es folgt

$$(A_1 \times \ldots \times A_d)^c = \bigcup_{\substack{j=1 \ J \subseteq \{1,\ldots,d\} \\ |J|=i}}^d \left[\left(\bigcap_{i \in J} \{\pi_i \notin A_i\} \right) \cap \left(\bigcap_{i \notin J} \{\pi_i \in A_i\} \right) \right]$$

wobei $(\bigcap_{i \in J} \{\pi_i \notin A_i\}) \cap (\bigcap_{i \notin J} \{\pi_i \in A_i\}) \in \mathcal{R}$ disjunkt sind. Da die Vereinigung endlich ist, folgt die Aussage.

Bemerkung: Bisher ist $\mu : \mathcal{R} \to [0, \infty]$ definiert als $\mu(A_1 \times \ldots \times A_d) := \mu(A_1) \cdot \ldots \cdot \mu(A_d)$. Wir erweitern μ nun zu einer Abbildung $\mu^* : \mathcal{R}^* \to [0, \infty]$ mit

$$\mu^* \left(\bigcup_{i=1}^k R_i \right) := \sum_{i=1}^k \mu(R_i)$$

für $R_i \in \mathcal{R}, i = 1, \dots, k$ disjunkt.

8.5. Lemma: Die Abbildung μ^* (definiert wie oben) ist ein Prämaß und unabhängig von der Darstellung von $R = \bigcup_{i=1}^k R_i$.

Beweis: $\mu^*(\emptyset) = 0$ und $\mu^*(A) \ge 0$ sind trivial. Zeige also die σ -Additivität. Seien also $R_1, R_2, \ldots, \in \mathcal{R}^*$ disjunkt und insbesondere $\bigcup_{i=1}^{\infty} R_i \in \mathcal{R}^*$. Damit folgt

$$\bigcup_{i=1}^{\infty} R_i = \bigcup_{j=1}^{m} S_j$$

mit $S_j \in \mathcal{R}, j = 1, \ldots, m$.

Zur Unabhängigkeit von der Darstellung: Sei $A = \bigcup_{i=1}^n R_i = \bigcup_{j=1}^m S_j$ mit $R_i, S_j \in \mathcal{R}$ für $i = 1, \ldots, n$ und $j = 1, \ldots, m$. Dann gilt

$$\mu^* \left(\bigcup_{i=1}^n R_i \right) \stackrel{\text{Def.}}{=} \sum_{i=1}^n \mu(R_i)$$

$$= \sum_{i=1}^n \mu(R_i \cap A) = \sum_{i=1}^n \mu \left(R_i \cap \bigcup_{j=1}^m S_j \right)$$

$$= \sum_{i=1}^n \mu \left(\bigcup_{j=1}^m (S_j \cap R_i) \right) = \sum_{i=1}^n \sum_{j=1}^m \mu(S_j \cap R_i)$$

$$= \sum_{j=1}^m \mu \left(S_j \cap \bigcup_{i=1}^n R_i \right) = \sum_{j=1}^m \mu(S_j)$$

$$= \mu^* \left(\bigcup_{j=1}^m S_j \right)$$

Bemerkung: Um μ^* nun zu einem Maß auf $(\prod_{i=1}^n \Omega_i, \sigma(\mathcal{R}^*))$ zu erweitern, sind mit dem Maßerweiterungssatz von Carathéodory folgende Voraussetzungen notwendig:

- (i) $\mu^*(\emptyset) = 0$ (bereits gezeigt).
- (ii) σ -Additivität: Für $A_i \in \mathcal{R}^*$ disjunkt mit $\bigcup_{i \ge 1} A_i \in \mathcal{R}^*$ gilt

$$\mu^* \left(\bigcup_{i \geqslant 1} A_i \right) = \sum_{i \geqslant 1} \mu^*(A_i)$$

(iii) σ -Endlichkeit: $\exists B_j \in \mathcal{R}^*, j \geqslant 1 : \Omega = \bigcup_{j \geqslant 1} B_j \text{ und } \forall j \geqslant 1 : \mu^*(B_j) < \infty.$

8.7. Satz: Seien $(\Omega_i, \mathcal{A}_i, \mu_i)$ jeweils σ -endliche Maßräume für $i = 1, \ldots, d$. Dann exisitert mit dem Maßerweiterungssatz von Carathéodory ein eindeutiges σ -endliches Maß μ auf dem Produktraum $(\prod_{i=1}^d \Omega_i, \bigotimes_{i=1}^d \mathcal{A}_i)$ mit der Eigenschaft, dass

$$\forall A_i \in \mathcal{A}_i, i = 1, \dots, d : \mu(A_1 \times \dots \times A_d) = \prod_{i=1}^d \mu_i(A_i)$$

Man nennt μ das Produktmaß.

Beweis: Ohne Beweis.

8.8. Korollar: Seien F_1, \ldots, F_d Verteilungsfunktionen auf \mathbb{R} . Dann gibt es einen Wahrscheinlichkeitsraum $(\Omega, \mathcal{A}, \mathbb{P})$ und Zufallsvariablen $X_i : \Omega \to \mathbb{R}, i = 1, \ldots, d$, sodass $X_i \sim F_i$ und die X_i unabhängig sind.

Beweis: Jedes F_i definiert ein Wahrscheinlichkeitsmaß \mathbb{P}_i auf $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ mit

$$\mathbb{P}_i((-\infty,t]) := F_i(t)$$

(cf. Satz 3.17). Definiere $\Omega := \mathbb{R}^d$, $\mathcal{A} := \bigotimes_{i=1}^d \mathcal{B}(\mathbb{R}) = \mathcal{B}(\mathbb{R}^d)$, $\mathbb{P} := \bigotimes_{i=1}^d \mathbb{P}_i$, $X_i := \pi_i$. Dann sind die X_i , $i = 1, \ldots, d$ alle messbar und für $t \in \mathbb{R}$ und $i = 1, \ldots, d$ gilt

$$\mathbb{P}(X_i \leqslant t) = \mathbb{P}(\mathbb{R} \times \ldots \times (-\infty, t] \times \ldots \times \mathbb{R}) = 1 \cdot \ldots \cdot \mathbb{P}_i((-\infty, t]) \cdot \ldots \cdot 1 = F_i(t)$$

Schließlich gilt für $t \in \mathbb{R}^d$ und $i = 1, \dots, d$

$$\mathbb{P}(X_1 \leqslant t_1, \dots, X_d \leqslant t_d) = \mathbb{P}((\infty, t_1] \times \dots \times (-\infty, d_t]) = \prod_{i=1}^d \mathbb{P}_i(-\infty, t_i]$$

sodass die X_i unabhängig sind.

Produktmaß und Integral

Betrachte in diesem Abschnitt zwei σ -endliche Maßräume $(\Omega_i, \mathcal{A}_i, \mu_i), i = 1, 2$, den entsprechenden Produktaum $(\Omega_1 \times \Omega_2, \mathcal{A}_1 \otimes \mathcal{A}_2, \mu_1 \otimes \mu_2)$, sowie einen weiteren messbaren Raum (Ω', \mathcal{A}') .

- **8.9. Definition:** Sei $\omega_1 \in \Omega_1$ fixiert.
 - (i) Für $A \subseteq \Omega_1 \times \Omega_2$ sei

$$A_{\omega_1} := \{ \omega_2 \in \Omega_2 : (\omega_1, \omega_2) \in A \}$$

der ω_1 -Schnitt (ω_1 -section) von A.

(ii) Für $f: \Omega_1 \times \Omega_2 \to \Omega'$ sei

$$f_{\omega_1}:\Omega_2\to\Omega',\omega_2\mapsto f(\omega_1,\omega_2)$$

der ω_1 -Schnitt (ω_1 section) von f.

Bemerkung: Es gilt (einfacher Beweis, siehe Übung)

- (i) $(\mathbb{1}_A)_{\omega_1} = \mathbb{1}_{A_{\omega_1}}$
- (ii) Für $A' \subseteq \Omega'$ ist $f_{\omega_1}^{-1}(A') = (f^{-1}(A'))_{\omega_1}$
- **8.10. Proposition:** Sei $\omega_1 \in \Omega_1$ fixiert. Dann gilt
 - (i) Ist $A \in \mathcal{A}_1 \otimes A_2$, dann ist $A_{\omega_1} \in \mathcal{A}_2$
 - (ii) Ist $f: \Omega_1 \times \Omega_2 \to \Omega'$ $\mathcal{A}_1 \otimes \mathcal{A}_2 \mathcal{A}'$ -messbar, dann ist $f_{\omega_1}: \Omega_2 \to \Omega'$ $\mathcal{A}_2 \mathcal{A}'$ -messbar.

Analoges gilt natürlich für die entsprechenden ω_2 -Schnitte.

Beweis: Betrachte für $\omega_1 \in \Omega_1$ fixiert die Abbildung $g_{\omega_1} : \Omega_2 \to \Omega_1 \times \Omega_2, \omega_2 \mapsto (\omega_1, \omega_2)$. Dann gilt

$$\forall A = (A_1 \times A_2) \in \mathcal{R} : g_{\omega_1}^{-1}(A) = \begin{cases} A_2 & \text{falls } \omega_1 \in \mathcal{A}_1 \\ \emptyset & \text{falls } \omega_1 \in \mathcal{A}_1 \end{cases}$$

Damit ist $g_{\omega_1} \mathcal{A}_2 - \mathcal{A}_1 \otimes \mathcal{A}_2$ -messbar (Da Messbarkeit im Erzeugendensystem eine hinreichende Bedingung ist). Damit folgt nun

- (i) $A_{\omega_1} = \{\omega_2 \in \Omega_2 : (\omega_1, \omega_2) \in A\} = g_{\omega_1}^{-1}(A) \in \mathcal{A}_2$
- (ii) $f_{\omega_1}(\omega_2) = f(\omega_1, \omega_2) = f(g(\omega_1, \omega_2)) = (f \circ g)(\omega_2)$

womit die Messbarkeit von f_{ω_1} aus der Messbarkeit von Zusammemsetzungen messbarer Funktionen folgt.

8.11. Satz (Tonelli's Theorem): Sei $f: \Omega_1 \times \Omega_2 \to \overline{\mathbb{R}}$ nicht-negativ und messbar. Dann ist die Abbildung

$$s_1: \Omega_1 \to \overline{\mathbb{R}} \text{ mit } \omega_1 \mapsto \int_{\Omega_2} f_{\omega_1} \ d\mu_2$$

nicht-negativ und messbar und es gilt

$$\int_{\Omega_1 \times \Omega_2} f \ d(\mu_1 \otimes \mu_2) = \int_{\Omega_1} s_1 \ d\mu_1 = \int_{\Omega_1} \left(\int_{\Omega_2} f_{\omega_1} \ d\mu_2 \right) \ d\mu_1$$

Bemerkung: Die σ -Endlichkeit von μ_1 und μ_2 ist hier notwendig. Ein analoges Ergebnis gilt auch wenn die Reihenfolge der Integrale geändert wird.

Beweis: Betrachte zunächst den Fall wo μ_1 und μ_2 (und damit auch das Produktmaß $\mu_1 \otimes \mu_2$) endlich sind.

I. f Indikatorfunktion auf messbarem Rechteck, $f = \mathbb{1}_{A_1 \times A_2}$ mit $A_1 \times A_2 \in \mathcal{R}$ Hier gilt $f_{\omega_1}(\omega_2) = \mathbb{1}_{A_1}(\omega_1) \cdot \mathbb{1}_{A_2}(\omega_2)$ und damit

$$s_1(\omega_1) = \mathbb{1}_{A_1}(\omega_1) \int_{\Omega_2} \mathbb{1}_{A_2} d\mu_2 = \mathbb{1}_{A_1}(\omega_1) \cdot \mu_2(A_2) \geqslant 0$$

und als einfache Funktion auf einer \mathcal{A}_1 -messbaren Menge auch \mathcal{A}_1 - $\mathcal{B}(\overline{\mathbb{R}})$ -messbar. Außerdem gilt

$$\int s_1 d\mu_1 = \int \mathbb{1}_{A_1} \mu_2(A_2) d\mu_1 = \mu_1(A_1) \cdot \mu_2(A_2)$$
$$= (\mu_1 \otimes \mu_2)(A_1 \times A_2) = \int \mathbb{1}_{A_1 \times A_2} d(\mu_1 \otimes \mu_2)$$

II. f Indikatorfunktion auf endl. Vereinigung messbarer Rechtecke, $f = \mathbb{1}_A$ mit $A \in \mathcal{R}^*$ Hier gilt $f_{\omega_1}(\omega_2) = (\mathbb{1}_A)_{\omega_1}(\omega_2) = \mathbb{1}_{A_{\omega_1}}(\omega_2)$ und da $A_{\omega_1} \in \mathcal{A}_2$, ist $f_{\omega_1} \mathcal{A}_2 - \mathcal{B}(\overline{\mathbb{R}})$ -messbar. Es gilt

$$s_1(\omega_1) = \int \mathbb{1}_{A_{\omega_1}} d\mu_2 = \mu_2(A_{\omega_1}) \geqslant 0$$

Zeige nun die Messbarkeit von s_1 : Definiere dazu

$$\mathcal{L} := \left\{ A \in \mathcal{A}_1 \otimes \mathcal{A}_2 : s_1(\cdot) = \int \mathbb{1}_A(\cdot, \omega_2) \ d\mu_2(\omega_2) \text{ ist } A_1 - \mathcal{B}(\overline{\mathbb{R}}) \text{-messbar} \right\}$$

und zeige $\mathcal{L} = \mathcal{A}_1 \otimes \mathcal{A}_2$. Es gilt natürlich $\mathcal{R} \subseteq \mathcal{L} \subseteq \mathcal{A}_1 \otimes \mathcal{A}_2 = \sigma(\mathcal{R})$ wobei die erste Inklusion mit dem I. Fall und die zweite Inklusion laut Konstruktion gilt. Wir wissen, dass \mathcal{R} ein π -System ist. Mit dem λ - π -Theorem genügt es also zu zeigen, dass \mathcal{L} ein λ -System ist (einfache Überlegung). Es gilt also zu zeigen

- $\Omega_1 \times \Omega_2 \in \mathcal{L}$: Gilt, da $\Omega_1 \times \Omega_2 \in \mathcal{R} \subseteq \mathcal{L}$.
- $A, B \in \mathcal{L}, A \subseteq B \implies B \setminus A \in \mathcal{L}$: Hier gilt $\mathbb{1}_{B \setminus A} = \mathbb{1}_B \mathbb{1}_A$, sodass

$$\int \mathbb{1}_{B\setminus A} d\mu_2 = \int \mathbb{1}_B d\mu_2 - \int \mathbb{1}_A d\mu_2$$

als Differenz zweier messbarer Funktionen (da $A, B \in \mathcal{L}$) wieder messbar ist.

• $A_1 \subseteq A_2 \subseteq \ldots, A_i \in \mathcal{L}, \forall i \geqslant 1 \implies \bigcup_{i \geqslant 1} A_i \in \mathcal{L}$: Setze $A := \bigcup_{i \geqslant 1} A_i$, sodass $0 \leqslant \mathbbm{1}_{A_i} \nearrow \mathbbm{1}_A$ punktweise. Damit gilt

$$\forall \omega_1 \in \Omega_1, \forall \omega_2 \in \Omega_2 : 0 \leqslant (\mathbb{1}_{A_i})_{\omega_1}(\omega_2) \nearrow (\mathbb{1}_A)_{\omega_1}(\omega_2)$$

und mit MONK folgt

$$\forall \omega_1 \in \Omega_1 : \int (\mathbb{1}_A)_{\omega_1} \ d\mu_2 = \lim_{i \to \infty} \int (\mathbb{1}_{A_i})_{\omega_1} \ d\mu_2$$

Das Integral ist als Grenzwert messbarer Funktionen damit messbar (da der Grenzwert laut MONK auch existiert).

Damit ist \mathcal{L} ein λ -System. Zeige nun $\int \mathbb{1}_A d(\mu_1 \otimes \mu_2) = \int s_1 d\mu_1$: Es gilt

$$\int \mathbb{1}_A \ d(\mu_1 \otimes \mu_2) = (\mu_1 \otimes \mu_2)(A)$$

Definiere

$$\nu(A) := \int \left(\int \mathbb{1}_A(\cdot, \omega_2) \ d\mu_2(\omega_2) \right) d\mu_1(\omega_1)$$

Wegen dem I. Fall wissen wir, dass $\nu(R) = (\mu_1 \otimes \mu_2)(R)$ für $R \in \mathcal{R}$ gilt. Falls ν ein Maß auf $\sigma(\mathcal{R}) = \mathcal{A}_1 \otimes \mathcal{A}_2$ ist, folgt mit Korollar 2.8, dass ν und $(\mu_1 \otimes \mu_2)$ auf $\mathcal{A}_1 \otimes \mathcal{A}_2 \supseteq \mathcal{R}^*$ übereinstimmen und damit die Aussage. $\nu(\emptyset)$ und $\nu \geqslant 0$ ergeben sich sofort aus den Eigenschaften vom Lebesgue-Integral. Zeige also die σ -Additivität:

Seien $A_i \in \mathcal{A}, i \geqslant 1$ disjunkt und definiere $B_n := \bigcup_{i=1}^n A_i$, $B := \bigcup_{i \geqslant 1} A_i$. Dann gilt $B_1 \subseteq B_2 \subseteq \ldots \subseteq B$ und damit $0 \leqslant \mathbb{1}_{B_n} \nearrow \mathbb{1}_B$. Folglich gilt auch $\forall \omega_1 \in \Omega_1 : 0 \leqslant (\mathbb{1}_{B_n})_{\omega_1} \nearrow (\mathbb{1}_B)_{\omega_1}$. Mit MONK folgt

$$\forall \omega_1 \in \Omega_1 : 0 \leqslant \int (\mathbb{1}_{B_n})_{\omega_1} \ d\mu_2 \xrightarrow[n \to \infty]{} \int (\mathbb{1}_B)_{\omega_1} \ d\mu_2$$

und (nochmal MONK)

$$0 \leqslant \int_{\Omega_1} \left(\int_{\Omega_2} (\mathbb{1}_{B_n})_{\omega_1} \ d\mu_2 \right) \ d\mu_1 \xrightarrow[n \to \infty]{} \int_{\Omega_1} \left(\int_{\Omega_2} (\mathbb{1}_B)_{\omega_1} \ d\mu_2 \right) \ d\mu_1$$

Also gilt

$$\nu(B) = \nu\left(\bigcup_{i \geqslant 1} A_i\right) = \lim_{n \to \infty} \nu(B_n) = \lim_{n \to \infty} \nu\left(\bigcup_{i=1}^n A_i\right)$$

$$= \lim_{n \to \infty} \int_{\Omega_1} \left(\int_{\Omega_2} \mathbb{1}_{\bigcup_{i=1}^n A_i} d\mu_2\right) d\mu_1$$

$$= \lim_{n \to \infty} \int_{\Omega_1} \left(\int_{\Omega_2} \sum_{i=1}^n \mathbb{1}_{A_i} d\mu_2\right) d\mu_1$$

$$= \lim_{n \to \infty} \sum_{i=1}^n \int_{\Omega_1} \left(\int_{\Omega_2} \mathbb{1}_{A_i} d\mu_2\right) d\mu_1$$

$$= \sum_{i > 1} \int_{\Omega_1} \left(\int_{\Omega_2} \mathbb{1}_{A_i} d\mu_2\right) d\mu_1 = \sum_{i > 1} \nu(A_i)$$

wobei die inneren Integrale jeweils über den ω_1 -Schnitt der jeweiligen Funktionen zu verstehen sind.

III. f einfache Funktion, $f = \sum_{i=1}^{n} \alpha_i \cdot \mathbb{1}_{A_i}$ mit $A_i \in A_1 \otimes A_2$ disjunkt

$$s_1(\omega_1) = \int f_{\omega_1} \ d\mu_2 = \int \left(\sum_{i=1}^n \alpha_i \cdot \mathbbm{1}_{A_i}\right)_{\omega_1} \ d\mu_2 = \sum_{i=1}^n \alpha_i \cdot \int \mathbbm{1}_{A_i} \ d\mu_2 \geqslant 0$$

und s_1 ist als Linearkombination messbarer Funktionen wieder messbar. Weiters gilt

$$\int f \ d(\mu_1 \otimes \mu_2) = \int \sum_{i=1}^n \alpha_i \cdot \mathbb{1}_{A_i} \ d(\mu_1 \otimes \mu_2)$$

$$= \sum_{i=1}^n \alpha_i \cdot \int \mathbb{1}_{A_i} \ d(\mu_1 \otimes \mu_2)$$

$$= \sum_{i=1}^n \alpha_i \cdot (\mu_1 \otimes \mu_2)(A_i)$$

$$= \sum_{i=1}^n \alpha_i \cdot \nu(A_i)$$

$$= \sum_{i=1}^n \alpha_i \cdot \int_{\Omega_1} \left(\int_{\Omega_2} \mathbb{1}_{A_i} \ d\mu_2 \right) \ d\mu_1$$

$$= \int_{\Omega_1} \left(\int_{\Omega_2} \sum_{i=1}^n \alpha_i \cdot \mathbb{1}_{A_i} \ d\mu_2 \right) \ d\mu_1$$

$$= \int_{\Omega_1} \left(\int_{\Omega_2} f \ d\mu_2 \right) \ d\mu_1$$

IV. f nicht-negativ, messbar

Wähle eine Folge einfacher Funktionen $f_n, n \ge 1$, sodass $0 \le f_n \nearrow f$. Seien die f_n o.B.d.A. wie im III. Fall. Dann gilt $\forall \omega_1 \in \Omega_1 : 0 \le (f_n)_{\omega_1} \nearrow f_{\omega_1}$ und mit MONK folgt

$$\forall \omega_1 \in \Omega_1 : 0 \leqslant \int_{\Omega_2} (f_n)_{\omega_1} d\mu_2 \xrightarrow[n \to \infty]{} \int_{\Omega_2} f_{\omega_1} d\mu_2$$

wobei die Integrale der f_n mit dem III. Fall messbar sind und der Grenzwert damit auch. Weiters gilt

$$\int f \ d(\mu_1 \otimes \mu_2) \stackrel{\text{Def.}}{=} \lim_{n \to \infty} \int f_n \ d(\mu_1 \otimes \mu_2)
\stackrel{\text{III.}}{=} \lim_{n \to \infty} \int_{\Omega_1} \left(\int_{\Omega_2} f_n \ d\mu_2 \right) \ d\mu_1
\stackrel{\text{MONK}}{=} \int_{\Omega_1} \left(\int_{\Omega_2} f \ d\mu_2 \right) \ d\mu_1 = \int_{\Omega_1} s_1 \ d\mu_1$$

Betrachte nun den allgemeinen Fall, wo μ_1 und μ_2 beide σ -endlich sind.

Für i=1,2 gibt es Mengenfolgen $B_{i,n} \in \mathcal{A}_i, n \geqslant 1$, sodass $B_{i,1} \subseteq B_{i,2} \subseteq \ldots \subseteq \bigcup_{n\geqslant 1} B_{i,n}$ und $\forall n \geqslant 1 : \mu_i(B_{i,n}) < \infty$. Für $B_n := B_{1,n} \times B_{2,n} \in \mathcal{A}_1 \otimes \mathcal{A}_2$ ist $\Omega_1 \times \Omega_2 = \bigcup_{n\geqslant 1} B_n$ und $\forall n \geqslant 1 : (\mu_1 \otimes \mu_2)(B_n) = \mu_1(B_{1,n}) \cdot \mu_2(B_{2,n}) < \infty$. Damit ist auch $\mu_1 \otimes \mu_2$ ein σ -endliches Maß. Definiere nun für $n \geqslant 1$ die folgenden Maße für messbare Mengen A:

$$\mu_{1,n}(A) := \mu_1(A \cap B_{1,n})$$

$$\mu_{2,n}(A) := \mu_2(A \cap B_{2,n})$$

$$\pi_n(A) := (\mu_1 \otimes \mu_2)(A \cap B_n)$$

Dann gelten folgende Eigenschaften (leicht zu prüfen):

- $\mu_{2,n}$, $\mu_{1,n}$ und π_n sind endliche Maße für alle $n \ge 1$.
- $\bullet \ \pi_n = \mu_{1,n} \otimes \mu_{2,n}$
- Es gilt für i = 1, 2, dass

$$\int_{\Omega_i} f \ d\mu_{i,n} = \int_{\Omega_i} f \cdot \mathbb{1}_{B_{i,n}} \ d\mu_i$$

für $f:\Omega_i\to\overline{\mathbb{R}}$ nicht-negativ und messbar und

$$\int f \ d\pi_n = \int f \cdot \mathbb{1}_{B_n} \ d(\mu_1 \otimes \mu_2)$$

für $f:\Omega_1\times\Omega_2\to\overline{\mathbb{R}}$ nicht-negativ und messbar

• Der Satz von Tonelli gilt für $\mu_{1,n}$ und $\mu_{2,n}$ wie bereits bewiesen.

Sei also $f: \Omega_1 \times \Omega_2 \to \overline{\mathbb{R}}$ nicht-negativ und messbar. Dann gilt $0 \leqslant f \cdot \mathbbm{1}_{B_n} \nearrow f$ und $\forall \omega_1 \in \Omega_1: 0 \leqslant (f \cdot \mathbbm{1}_{B_n})_{\omega_1} \nearrow f_{\omega_1}$. Mit MONK folgt also

$$s_1(\omega_1) = \int_{\Omega_2} f_{\omega_1} d\mu_2 = \lim_{n \to \infty} \int_{\Omega_2} (f \cdot \mathbb{1}_{B_n})_{\omega_1} d\mu_2$$

$$= \begin{cases} \lim_{n \to \infty} \int_{\Omega_2} f_{\omega_1} d\mu_{2,n} & \text{falls } \omega_1 \in B_{1,n} \\ 0 & \text{falls } \omega_1 \notin B_{1,n} \end{cases}$$

$$= \mathbb{1}_{B_{1,n}}(\omega_1) \int_{\Omega_2} f_{\omega_1} d\mu_{2,n} \geqslant 0$$

und messbar (IV. Fall und Produkt mit Indikatorfunktion auf messbarer Menge). Weiters gilt

$$\int f \ d(\mu_1 \otimes \mu_2) = \lim_{n \to \infty} \int \mathbb{1}_{B_n} \cdot f \ d(\mu_1 \otimes \mu_2)$$

$$\stackrel{\text{s.o.}}{=} \lim_{n \to \infty} \int f \ d\pi_n$$

$$= \lim_{n \to \infty} \int f \ d(\mu_{1,n} \otimes \mu_{2,n})$$

$$\stackrel{\text{IV.}}{=} \lim_{n \to \infty} \int_{\Omega_1} \left(\int_{\Omega_2} f_{\omega_1} \ d\mu_{2,n} \right) \ d\mu_{1,n}$$

$$\stackrel{\text{s.o.}}{=} \lim_{n \to \infty} \int_{\Omega_1} \left(\mathbb{1}_{B_{1,n}} \int_{\Omega_2} f_{\omega_1} \cdot \mathbb{1}_{B_{2,n}} \ d\mu_2 \right) \ d\mu_1$$

$$\stackrel{\text{2x MONK}}{=} \int_{\Omega_1} \left(\int_{\Omega_2} f_{\omega_1} \ d\mu_2 \right) \ d\mu_1 = \int_{\Omega_1} s_1 \ d\mu_1$$

wobei der vorletzte Schritt mit den nicht-negativen monotonen Folgen $(f_{\omega_1} \cdot \mathbbm{1}_{B_{2,n}}), n \geqslant 1$ und $(\mathbbm{1}_{B_{1,n}} \cdot \int_{\Omega_2} f_{\omega_1} \mathbbm{1}_{B_{2,n}} d\mu_2), n \geqslant 1$ und MONK folgt.

8.12. Satz (Fubini's Theorem): Sei $f: \Omega_1 \times \Omega_2 \to \overline{\mathbb{R}}$ absolut $\mu_1 \otimes \mu_2$ -integrierbar. Dann gibt es eine messbare Menge $N_1 \in \mathcal{A}_1$ mit folgenden Eigenschaften

(i)
$$\mu_1(N_1) = 0$$
 und $\forall \omega_1 \notin N_1 : f_{\omega_1} \in L_1(\mu_2)$

(ii) Die Abbildung $s_1:\Omega_1\to\overline{\mathbb{R}}$ mit

$$s_1(\omega_1) := \begin{cases} \int_{\Omega_2} f_{\omega_1} \ d\mu_2 & \text{ falls } \omega_1 \notin N_1 \\ 0 & \text{ falls } \omega_1 \in N_1 \end{cases}$$

ist absolut μ_1 -integrierbar.

(iii)

$$\int f \ d(\mu_1 \otimes \mu_2) = \int_{\Omega_1} s_1 \ d\mu_1$$

Beweis:

(i) |f| ist nicht-negativ und messbar. Laut Annahme und mit Tonelli (Satz 8.11) gilt

$$\int_{\Omega_1} \left(\int_{\Omega_2} |f| \ d\mu_2 \right) \ d\mu_1 = \int |f| \ d(\mu_1 \otimes \mu_2) < \infty$$

wobei das innere Integral auf der linken Seite für alle $\omega_a \in \Omega_1$ eine nicht-negative Funktion mit endlichem μ_1 -Integral ist und damit $< \infty$ f.ü. ist. Definiere also

$$N_1 := \left\{ \omega_1 \in \Omega_1 : \int_{\Omega_2} |f|_{\omega_1} \ d\mu_2 = \infty \right\}$$

Dann gilt wegen der Messbarkeit von s_1 laut Tonelli $N_1 \in \mathcal{A}_1$ und trivial die gesuchten Eigenschaften (da $|f_{\omega_1}| = |f|_{\omega_1}$).

(ii) Schreibe $f=f_+-f_-$ und wende jeweils Tonelli auf den Positiv- und Negativteil an. Schreibe

$$s_1(\omega_1) = \begin{cases} \int_{\Omega_2} (f\omega_1)_+ \ d\mu_2 - \int_{\Omega_2} (f\omega_1)_- \ d\mu_2 & \text{falls } \omega_1 \notin N_1 \\ 0 & \text{falls } \omega_1 \in N_1 \end{cases}$$
$$= \begin{cases} \int_{\Omega_2} (f_+)\omega_1 \ d\mu_2 - \int_{\Omega_2} (f_-)\omega_1 \ d\mu_2 & \text{falls } \omega_1 \notin N_1 \\ 0 & \text{falls } \omega_1 \in N_1 \end{cases}$$

Damit ist s_1 als Produkt und Summe messbarer Funktionen und mit Tonelli messbar. Weiters gilt

$$\begin{split} \int_{\Omega_{1}} |s_{1}| \ d\mu_{1} &= \int_{\Omega_{1}} \mathbb{1}_{N_{1}^{c}} \left| \int_{\Omega_{2}} (f_{\omega_{1}})_{+} \ d\mu_{2} - \int_{\Omega_{2}} (f_{\omega_{1}})_{-} \ d\mu_{2} \right| \ d\mu_{1} \\ &\leqslant \int_{\Omega_{1}} \mathbb{1}_{N_{1}^{c}} \left(\left| \int_{\Omega_{2}} (f_{\omega_{1}})_{+} \ d\mu_{2} \right| + \left| \int_{\Omega_{2}} (f_{\omega_{1}})_{-} \ d\mu_{2} \right| \right) \ d\mu_{1} \\ &= \int_{\Omega_{1}} \mathbb{1}_{N_{1}^{c}} \int_{\Omega_{2}} (f_{\omega_{1}})_{+} \ d\mu_{2} \ d\mu_{1} + \int_{\Omega_{1}} \mathbb{1}_{N_{1}^{c}} \int_{\Omega_{2}} (f_{\omega_{1}})_{-} \ d\mu_{2} \ d\mu_{1} \\ &\leqslant \int_{\Omega_{1}} \int_{\Omega_{2}} (f_{\omega_{1}})_{+} \ d\mu_{2} \ d\mu_{1} + \int_{\Omega_{1}} \int_{\Omega_{2}} (f_{\omega_{1}})_{-} \ d\mu_{2} \ d\mu_{1} \\ &\stackrel{\text{Tonelli}}{=} \int f_{+} \ d(\mu_{1} \otimes \mu_{2}) + \int f_{-} \ d(\mu_{1} \otimes \mu_{2}) \\ &= \int f \ d(\mu_{1} \otimes \mu_{2}) < \infty \end{split}$$

Damit ist s_1 absolut μ_1 -integrierbar.

(iii) Mit Tonelli für f_+ und f_- gilt

$$\int_{\Omega_{1}} d\mu_{1} \stackrel{\text{Def.}}{=} \int_{\Omega_{1}} \mathbb{1}_{N_{1}^{c}} \left(\int_{\Omega_{2}} f_{\omega_{1}} d\mu_{2} \right) d\mu_{1} \\
= \int_{\Omega_{1}} \mathbb{1}_{N_{1}^{c}} \left(\int_{\Omega_{2}} (f_{+})_{\omega_{1}} d\mu_{2} \right) d\mu_{1} - \int_{\Omega_{1}} \mathbb{1}_{N_{1}^{c}} \left(\int_{\Omega_{2}} (f_{-})_{\omega_{1}} d\mu_{2} \right) d\mu_{1} \\
= \int_{\Omega_{1}} \left(\int_{\Omega_{2}} (f_{+})_{\omega_{1}} d\mu_{2} \right) d\mu_{1} - \int_{\Omega_{1}} \left(\int_{\Omega_{2}} (f_{-})_{\omega_{1}} d\mu_{2} \right) d\mu_{1} \\
\stackrel{\text{Tonelli}}{=} \int f_{+} d(\mu_{1} \otimes \mu_{2}) - \int f_{-} d(\mu_{1} \otimes \mu_{2}) = \int f d(\mu_{1} \otimes \mu_{2})$$

wobei der vorletzte Schritt aus $\mu_1(N_1)=0$ und $f\stackrel{a.e.}{=} g \implies \int f \ d\mu = \int g \ d\mu$ folgt. \square .

8.13. Beispiel: Betrachte unabhängige Zufallsvariablen $X,Y:\Omega\to\mathbb{N}$ mit gemeinsamer pmf $p_{X,Y}(x,y)=\mathbb{P}(X=x,Y=y)$, marginal pmfs $p_X=\mathbb{P}(X=x)$, $p_Y(y)=\mathbb{P}(Y=y)$ und eine messbare Funktion $f:\mathbb{N}\times\mathbb{N}\to\mathbb{Q}$ mit

$$(x,y) \mapsto \frac{1}{p_{X,Y}(x,y)} \frac{(-1)^{x+1}}{x+y} = \frac{1}{p_X(x) \cdot p_Y(y)} \frac{(-1)^{x+1}}{x+y}$$

Gesucht ist $\mathbb{E}f(X,Y)$. Betrachte dazu folgende Tabelle

\downarrow y / x \rightarrow	1	2	3	4		Summe
1	1/2	-1/3	1/4	-1/5		$1 - \log 2 =: c$
2	1/3	-1/4	1/5	-1/6		-c + 1/2
3	1/4	-1/5	1/6	-1/7		c - 1/2 + 1/3
4	1/5	-1/6	1/7	-1/8		c + 1/2 - 1/3 + 1/4
:	:	:	:	:	٠	:
Summe	$+\infty$	$-\infty$	$+\infty$	$-\infty$		

Damit gelten folgende Eigenschaften

(i)
$$\sum_{x\geqslant 1}\sum_{y\geqslant 1}f(x,y)\cdot p_{X,Y}(x,y)=\sum_{x\geqslant 1}(\infty-\infty+\infty-\ldots) \text{ existient nicht!}$$

(ii)
$$\sum_{y\geqslant 1}\sum_{x\geqslant 1}f(x,y)\cdot p_{X,Y}(x,y)=\sum_{y\geqslant 1}\left(\lim_{n\to\infty}\begin{cases}1/2+1/4+\ldots+1/n&\text{falls n gerade}\\c+1/3+1/5+\ldots+1/n&\text{falls n ungerade}\end{cases}\right)=\infty$$

Mit dem Kontrapositiv von Fubini (Satz 8.12) gilt also $\mathbb{E}|f(X,Y)| = \infty$.

Messbarkeit \mathbb{R}^d -wertiger Funktionen

Betrachte in diesem Abschnitt \mathbb{R}^d -wertige Abbildungen (statt $\overline{\mathbb{R}}^d$, der Einfachheit wegen) und die euklidische Norm $\|x\|_2 = \left(\sum_{i=1}^d x_i^2\right)^{1/2}$ für $x \in \mathbb{R}^d, x = (x_1, \dots, x_d)'$.

8.14. Definition:

(i) Sei $\mathcal{O}_d := \{O \subseteq \mathbb{R}^d : O \text{ offen}\}$ die Familie aller offenen Mengen in \mathbb{R}^d . Die Borel- σ -Algebra auf \mathbb{R}^d ist definiert als

$$\mathcal{B}(\mathbb{R}^d) := \sigma(\mathcal{O}_d)$$

- (ii) Ist $(\Omega, \mathcal{A}, \mathbb{P})$ ein Wahrscheinlichkeitsraum und $X : (\Omega, \mathcal{A}) \to (\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d))$ messbar, dann nennt man X einen d-dimensionalen Zufallsvektor. Man nennt die Funktion $F : \mathbb{R}^d \to [0, 1]$ mit $t \to \mathbb{P}(X \leq t)$ (komponentenweise) die Verteilungsfunktion (cdf) von X.
- **8.15. Lemma** Betrachte $(\mathbb{R}^d,\|\cdot\|_2)$ als metrischen Raum bzw. normierten Vektorraum. Dann gilt

$$f: \mathbb{R}^d \to \mathbb{R}^\ell \text{ stetig } \iff \forall O \in \mathcal{O}_\ell : f^{-1}(O) \in \mathcal{O}_d$$

also ist f genau dann stetig, wenn Urbilder offener Mengen unter f immer offen sind. Die Stetigkeit ist hier im Sinn des metrischen Raumes zu verstehen (also " ϵ - δ -Stetigkeit").

Beweis: Übung! (cf. Höhere Analysis) □

8.16. Proposition: Sei $f:(\mathbb{R}^d,\mathcal{B}(\mathbb{R}^d))\to(\mathbb{R}^\ell,\mathcal{B}(\mathbb{R}^\ell))$ stetig. Dann ist f auch messbar.

Beweis: Mit Lemma 8.15 folgt unmittelbar die Messbarkeit im Erzeugendensystem und damit auch die Messbarkeit in $\mathcal{B}(\mathbb{R}^d)$.

8.17. Proposition:

$$\mathcal{B}(\mathbb{R}^d) = \bigotimes_{i=1}^d \mathcal{B}(\mathbb{R})$$

Bemerkung: Allgemeiner gilt

$$\mathcal{B}(X^d) = \bigotimes_{i=1}^d \mathcal{B}(X)$$

für alle separablen Mengen X.

Beweis: fehlt noch!

8.18 Korollar: Betrachte folgende Mengenfamilien

$$\mathcal{J}_1 := \left\{ (-\infty, t_1] \times \ldots \times (-\infty, t_d] : t \in \mathbb{R}^d \right\}
\mathcal{J}_2 := \left\{ (s_1, t_1) \times \ldots \times (s_d, t_d) : s, t \in \mathbb{R}^d \right\}
\mathcal{J}_3 := \left\{ (s_1, t_1) \times \ldots \times (s_d, t_d) : s, t \in \overline{\mathbb{R}}^d, s_i \leqslant t_i \text{ für } i = 1, \ldots, d \right\}$$

13

Dann gilt $\sigma(\mathcal{J}_1) = \sigma(\mathcal{J}_2) = \sigma(\mathcal{J}_3) = \mathcal{B}(\mathbb{R}^k)$

Beweis: Übung! Hinweis: Mit $\mathcal{B}(\mathbb{R}) = \sigma(\mathcal{O}_1)$ und $\mathbb{R} = \bigcup_{k \geqslant 1} (-k, k)$, wobei $(-k, k) \in \mathcal{O}_1$ gilt für $\mathcal{M} := \{A_1 \times \ldots \times A_n : A_i \in \mathcal{O}_1 \text{ für } i = 1, \ldots, d\}$, dass $\sigma(\mathcal{M}) = \bigotimes_{i=1}^d \sigma(\mathcal{O}_1) = \bigotimes_{i=1}^d \mathcal{B}(\mathbb{R})$.

8.19. Korollar: Sei (Ω, \mathcal{A}) ein messbarer Raum und $f: \Omega \to \mathbb{R}^d, \omega \mapsto (f_1(\omega), \dots, f_d(\omega))'$ mit $f_i: \Omega \to \mathbb{R}$. Dann ist f genau dann $\mathcal{A}\text{-}\mathcal{B}(\mathbb{R}^d)$ -messbar, wenn die Koordinatenfunktionen f_i für $i=1,\dots,d$ jeweils $\mathcal{A}\text{-}\mathcal{B}(\mathbb{R})$ -messbar sind.

Beweis:

- I. \Longrightarrow Die Koordinatenprojektionen $\pi_i : \mathbb{R}^d \to \mathbb{R}$ sind stetig und damit $\mathcal{B}(\mathbb{R}^d)$ - $\mathcal{B}(\mathbb{R})$ -messbar. Damit ist $f_i = (\pi_i \circ f)$ auch messbar.
- II. \Leftarrow Mit Korollar 8.18 genügt es die Messbarkeit für Urbilder unter f aus \mathcal{J}_{∞} zu zeigen. Es gilt

$$f^{-1}((-\infty, t_1] \times \ldots \times (-\infty, t_d]) = \bigcap_{i=1}^d \{f_i \leqslant t_i\} \in \mathcal{A}$$

da ein endlicher Durchschnitt messbarer Mengen wieder messbar ist.

- **8.20.** Korollar: Sei (Ω, \mathcal{A}) ein messbarer Raum und seien $f, g : (\Omega, \mathcal{A}) \to (\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d))$ und $h : \Omega \to \mathbb{R}$ messbar. Sei weiters $M \in \mathbb{R}^{\ell \times d}$ eine deterministische Matrix. Dann gilt
 - (i) f + g ist $\mathcal{A} \mathcal{B}(\mathbb{R}^d)$ -messbar.
 - (ii) $\langle f, g \rangle = \sum_{i=1}^{d} f_i g_i$ ist \mathcal{A} - $\mathcal{B}(\mathbb{R})$ -messbar.
- (iii) Mf ist \mathcal{A} – $\mathcal{B}(\mathbb{R}^{\ell})$ -messbar.
- (iv) hf ist \mathcal{A} - $\mathcal{B}(\mathbb{R}^d)$ -messbar.

Beweis: Folgt aus der Messbarkeit der Komponentenfunktionen und der Messbarkeit von Summen und Produkten messbarer Funktionen. \Box

- **8.21. Proposition:** Die Verteilungsfunktion $F : \mathbb{R}^d \to [0,1]$ einer Zufallsvariable $X : (\Omega, \mathcal{A}) \to (\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d))$ hat folgende Eigenschaften:
 - (i) Für eine Folge $t_n = (t_n^{(1)}, \dots, t_n^{(d)})' \in \mathbb{R}^d, n \geqslant 1$ mit $\min_{1 \leqslant i \leqslant d} t_n^{(i)} \searrow -\infty$ gilt $\lim_{n \to \infty} F(t_n) = 0$ und für eine Folge $s_n = (s_n^{(1)}, \dots, s_n^{(d)})' \in \mathbb{R}^d, n \geqslant 1$ mit $\min_{1 \leqslant i \leqslant d} s_n^{(i)} \nearrow \infty$ gilt $\lim_{n \to \infty} F(s_n) = 1$.
 - (ii) Für $t_n \in \mathbb{R}^d, n \geqslant 1$ mit $t_n \searrow t_0$ komponentenweise gilt $\lim_{n \to \infty} F(t_n) = F(t_0)$. (Rechtsstetigkeit)
- (iii) Für $t_n \in \mathbb{R}^d, n \geqslant 1$ mit $t_n \nearrow t_0$ komponentenweise existiert $\lim_{n \to \infty} F(t_n)$.

(iv) Für $s,t\in\mathbb{R}^d$ mit $s\leqslant d$ komponentenweise gilt

$$0 \leqslant \sum_{k=0}^{d} (-1)^k \sum_{x \in I_k} F(x)$$

wobei $I_k = \left\{ x \in \mathbb{R}^d : \sum_{i=1}^d \delta_{x_i, s_i} = k, \sum_{i=1}^d \delta_{x_i, t_i} = d - k \right\}$, also die Menge der der x, sodass x in k Komponenten mit s übereinstimmt und in den restlichen Komponenten mit t übereinstimmt.

Beweis:

- (i) Sei $m_n := \min_{1 \le i \le d} t_n^{(i)}$ und sei i_n so, dass $m_n = t_n^{(i_n)}$ (also, dass das Minimum in der i_n -ten Koordinate angenommen wird).
 - Falls $m_n \searrow -\infty$

$$F(t_n) = \mathbb{P}(X_1 \leqslant t_n^{(1)}, \dots, X_d \leqslant t_n^{(d)})$$

$$\leqslant \mathbb{P}(X_{i_n} \leqslant m_n)$$

$$\leqslant \sum_{i=1}^d \mathbb{P}(X_i \leqslant m_n) \xrightarrow[n \to \infty]{} 0$$

• Falls $m_n \nearrow \infty$

$$F(t_n) = \mathbb{P}(X_1 \leqslant t_n^{(1)}, \dots, X_d \leqslant t_n^{(d)})$$

$$\geqslant \mathbb{P}(X_1 \leqslant m_n, \dots, X_d \leqslant m_n) \xrightarrow[n \to \infty]{\text{S.V.U.}} \mathbb{P}(X \in \mathbb{R}^d) = 1$$

wobei die Stetigkeit von unten mit den Mengen $(-\infty, t_n^{(i)}] \supseteq (-\infty, m_n], i = 1, \dots, d$ gilt.

- (ii) Setze $A_n := \{X \leqslant t_n\}$. Dann gilt $A_1 \supseteq A_2 \supseteq \ldots \supseteq \bigcap_{n\geqslant 1} A_n$. Mit der Stetigkeit von oben folgt $\mathbb{P}(A) = \lim_{n\to\infty} \mathbb{P}(A_n)$ und damit $F(t_0) = \lim_{n\to\infty} F(t_n)$.
- (iii) Für A_n wie in (ii) gilt hier $A_1 \subseteq A_2 \subseteq \ldots \subseteq \bigcup_{n\geqslant 1} A_n =: A$. Mit der Stetigkeit von unten folgt $\lim_{n\to\infty} F(t_n) = \mathbb{P}(A) \in [0,1]$, sodass der Grenzwert exisitiert.
- (iv) Es gilt

$$0 \leqslant \mathbb{P}(X \in (s_1, t_1] \times \ldots \times (s_d, t_d])$$

$$= \mathbb{P}(\{X \leqslant t\} \setminus \{\exists i \leqslant d : X_i \leqslant s_i\})$$

$$= \mathbb{P}(\{X \leqslant t\} \setminus \{\forall i \leqslant d : X_i \leqslant t_i, \exists i \leqslant d : X_i \leqslant s_i\}) =: (*)$$

Setze $A_j := \{X \leq t, X_j \leq s_j\}$ für $j = 1, \dots, d$. Dann gilt

$$(*) = F(t) - \mathbb{P}\left(\bigcup_{j=1}^{d} A_{j}\right) \stackrel{\text{In-Ex}}{=} F(t) + \sum_{\ell=1}^{d} (-1)^{\ell} \sum_{\substack{I \subseteq \{1, \dots, d\} \\ |I| = \ell}} \mathbb{P}\left(\bigcap_{j \in I} A_{j}\right)$$
$$= F(t) + \sum_{\ell=1}^{d} (-1)^{\ell} \sum_{x \in I_{\ell}} F(x) = \sum_{\ell=0}^{d} (-1)^{\ell} \sum_{x \in I_{\ell}} F(x)$$

8.22. Proposition: Sei $F: \mathbb{R}^d \to [0,1]$ eine Funktion mit den Eigenschaften (i)-(iv) aus Proposition 8.21. Dann gibt es einen Wahrscheinlichkeitsraum $(\Omega, \mathcal{A}, \mathbb{P})$ und einen Zufallsvektor $X: \Omega \to \mathbb{R}^d$, sodass F die cf von X ist.

Beweis: Nur Beweisidee: Konstruiere ein Wahrscheinlichkeitsmaß \mathbb{P} auf $(\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d))$, sodass

$$\mathbb{P}((-\infty, t_1] \times \ldots \times (-\infty, t_d]) = F(t)$$

und setze $X(\omega) := \omega$ für $\omega \in \mathbb{R}^d$.

8.23. Definition: Sei $(\Omega, \mathcal{A}, \mu)$ ein Maßraum und $f: (\Omega, \mathcal{A}) \to (\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d))$ messbar. Sind alle Komponentenfunktionen $f_i: (\Omega, \mathcal{A}) \to (\mathbb{R}, \mathcal{B}(\mathbb{R})), i = 1, \ldots, d$ (quasi-)integrierbar, dann nennt man f (quasi-)integrierbar und setzt

$$\int f \ d\mu := \left(\int f_1 \ d\mu, \dots, \int f_d \ d\mu \right)'$$

- **8.24. Definition:** Sei V ein Vektorraum über einen Körper K. Eine Abbildung $\|\cdot\|:V\to[0,\infty)$ ist eine Norm auf V, falls für $x,y\in V$ und $\lambda\in K$ gilt:
 - $\bullet \|x\| = 0 \iff x = 0$
 - $\|\lambda x\| = |\lambda| \|x\|$
 - $||x + y|| \le ||x|| + ||y||$

Bemerkung: Eine Norm $\|\cdot\|$ erfüllt auch die umgekehrte Dreiecksungleichung

$$|||x|| - ||y||| \le ||x - y||$$

8.25. Lemma: Alle Normen auf \mathbb{R}^d sind äquivalent, i.e. für eine beliebige Norm $\|\cdot\|$ auf \mathbb{R}^d gibt es Konstanten $\alpha, \beta > 0$, sodass

$$\forall x \in \mathbb{R}^d : \alpha ||x||_{\infty} \le ||x|| \le \beta ||x||_{\infty}$$

für $||x||_{\infty} = \max_{1 \leq i \leq d} x_i$. Insbesondere führen damit alle Normen auf \mathbb{R}^d zu denselben offenen Mengen.

Beweis: Betrachte die kanonische Basis $\{e_1, \dots, e_d\}$ und setze $\mu := \max_{1 \le i \le d} \|e_i\|$. Dann gilt

$$||x|| = \left\| \sum_{i=1}^{d} x_i e_i \right\| \leqslant \sum_{i=1}^{d} ||x_i e_i|| = \sum_{i=1}^{d} ||x_i|| ||e_i|| \leqslant \mu \sum_{i=1}^{d} ||x_i|| \leqslant \mu \mu ||x||_{\infty} =: \beta ||x||_{\infty}$$

Damit ist die Abbildung $f:\mathbb{R}^d\to [0,\infty)$ mit $x\mapsto \|x\|$ stetig, denn

$$|||x|| - ||y||| \le ||x - y|| \le \beta ||x - y||_{\infty}$$

und für $\varepsilon > 0$, setze $\delta := \varepsilon/\beta$. Betrachte nun $S := \{ s \in \mathbb{R}^d : \|x\|_{\infty} = 1 \}$. Dann ist S mit Heine–Borel kompakt und für f gilt der Extremwertsatz. Sei also $p \in \arg\min_{x \in S} \|x\|$. Dann gilt $\|p\| \neq 0$ und für alle $x \neq 0$ gilt

$$||x|| = ||||x||_{\infty} \cdot \frac{x}{||x||_{\infty}}|| = ||x||_{\infty} ||| \cdot \frac{x}{||x||_{\infty}}|| \ge ||x||_{\infty} \cdot ||p|| =: \alpha ||x||_{\infty}$$

Bemerkung: Sei $\|\cdot\|$ eine beliebige Norm auf \mathbb{R}^d . Dann gilt

$$f \in L_1 \iff ||f|| \in L_1$$

da für $i=1,\ldots,d$ gilt

$$|f_i| \leqslant ||f||_2 \leqslant \sum_{j=1}^d |f_j|$$

und alle Normen auf \mathbb{R}^d äquivalent sind (cf. Lemma 8.25).

9. Konvergenz von messbaren Abbildungen

Sei in diesem Kapitel $(\Omega, \mathcal{A}, \mu)$ immer ein generischer Maßraum.

Konvergenz von $\overline{\mathbb{R}}$ -wertigen Funktionen

Seien in diesem Abschnitt $f_n, f, g_n, g: (\Omega, \mathcal{A}) \to (\overline{\mathbb{R}}, \mathbb{B}(\overline{\mathbb{R}}))$ messbare Funktionen. Weiters setze hier $\infty - \infty = -\infty + \infty := 0$.

9.1. Definition: Eine Funktionenfolge $f_n, n \ge 1$ konvergiert μ -fast-überall (kurz f.ü.) gegen f, falls

$$\mu\left(\left\{\omega\in\Omega:\lim_{n\to\infty}f_n(\omega)=f(\omega)\right\}^c\right)=0$$

Wir schreiben dann $f_n \xrightarrow[n \to \infty]{a.e.} f$ (almost everywhere) oder im Falle eines Wahrscheinlichkeitsraumes a.s. (amost surely).

9.2. Lemma: Es gilt $f_n \xrightarrow[n \to \infty]{a.e.} f$ genau dann, wenn

(i)
$$\forall \varepsilon > 0 : \mu \left(\limsup_{n \to \infty} \{ |f_n - f| \ge \varepsilon \} \right) = 0$$

(ii) Falls μ endlich ist, dann ist (i) äquivalent zu $\forall \varepsilon > 0 : \lim_{N \to \infty} \mu\left(|f_n - f| > \varepsilon \text{ für alle } n \geqslant N\right) = 0$

Beweis: Mit der archimedischen Eigenschaft von \mathbb{R} genügt es jeweils den Fall $\varepsilon=1/k$ für alle $k\geqslant 1$ zu betrachten.

I.
$$f_n \xrightarrow[n \to \infty]{a.e.} f \Longrightarrow (i)$$
:

$$\left\{ \lim_{n \to \infty} f_n = f \right\} = \left\{ \forall k \geqslant 1 \exists N \geqslant 1 \forall n \geqslant N : |f_n - f| < \frac{1}{k} \right\}$$
$$= \bigcap_{k \geqslant 1} \bigcap_{N \geqslant 1} \bigcap_{n \geqslant N} \left\{ |f_n - f| < \frac{1}{k} \right\}$$
$$= \bigcap_{k \geqslant 1} \liminf_{n \to \infty} \left\{ |f_n - f| > \frac{1}{k} \right\}$$

Also gilt mit de Morgan und den Gesetzen zu lim sup und lim inf von Mengen

$$\left\{\lim_{n\to\infty} f_n = f\right\}^c = \bigcup_{k\geqslant 1} \limsup_{n\to\infty} \left\{ |f_n - f| \geqslant \frac{1}{k} \right\}$$

und laut Annahme damit

$$\mu\left(\bigcup_{k\geqslant 1}\limsup_{n\to\infty}\left\{|f_n-f|\geqslant \frac{1}{k}\right\}\right)=0$$

und damit insbesondere

$$\mu\left(\limsup_{n\to\infty}\left\{|f_n-f|\geqslant\frac{1}{k}\right\}\right)=0$$

für jedes $k \geqslant 1$ (da $A_k \subseteq \bigcup_{k\geqslant 1} A_k$ für alle $k \geqslant 1$).

II. (i) $\Longrightarrow f_n \xrightarrow[n \to \infty]{a.e.} f$:

$$\mu\left(\lim_{n\to\infty} f_n \neq f\right) \stackrel{\text{s.o.}}{=} \mu\left(\bigcup_{k\geqslant 1} \limsup_{n\to\infty} \left\{|f_n - f| \geqslant \frac{1}{k}\right\}\right)$$

$$\stackrel{\sigma\text{-Subadd.}}{\leqslant} \sum_{k\geqslant 1} \mu\left(\limsup_{n\to\infty} \left\{|f_n - f| \geqslant \frac{1}{k}\right\}\right) = 0$$

wobei der letzte Schritt aus der Annahme folgt.

III. μ endlich \Longrightarrow ((i) \Longleftrightarrow (ii)):

$$\limsup_{n \to \infty} \left\{ |f_n - f| \geqslant \frac{1}{k} \right\} = \bigcap_{N > 1} \bigcup_{n > N} \left\{ |f_n - f| \geqslant \frac{1}{k} \right\} =: \bigcap_{N > 1} A_N$$

Dann gilt $A_1 \supseteq A_2 \supseteq \ldots \supseteq \bigcap_{N\geqslant 1} A_N$ und mit der Stetigkeit von oben gilt

$$\mu\left(\limsup_{n\to\infty}\left\{|f_n-f|\geqslant \frac{1}{k}\right\}\right) = \lim_{N\to\infty}\mu(A_N)$$
$$= \lim_{N\to\infty}\mu\left(|f_n-f|> \frac{1}{k} \text{ für alle } n\geqslant N\right) = 0$$

für alle $k \geqslant 1$.

9.3. Lemma:

$$\forall \varepsilon > 0 : \sum_{n \geqslant 1} \mu\left(|f_n - f| > \varepsilon\right) < \infty \implies f_n \xrightarrow[n \to \infty]{a.e.} f$$

Beweis: Mit dem 1. Borel-Cantelli-Lemma für allgemeine Maße (Lemma 7.8, Bemerkung 2) gilt

$$\mu\left(\limsup_{n\to\infty}|f_n-f|>\varepsilon\right)=0$$

und mit Lemma 9.2 folgt die Behauptung.

9.4. Definition: Eine Funktionenfolge $f_n, n \ge 1$ konvergiert im Maß μ gegen f, falls

$$\forall \varepsilon > 0 : \lim_{n \to \infty} \mu\left(|f_n - f| > \varepsilon\right) = 0$$

Wir schreiben dann $f_n \xrightarrow[n \to \infty]{\mu} f$.

9.5. Proposition: Ist μ endlich, dann gilt $f_n \xrightarrow[n \to \infty]{a.e.} f \Longrightarrow f_n \xrightarrow[n \to \infty]{\mu} f$.

Beweis: Es gelte $f_n \xrightarrow[n \to \infty]{a.e.} f$. Mit Lemma 9.2 (ii) folgt

$$\forall \varepsilon > 0 \lim_{N \to \infty} \mu\left(|f_n - f| > \varepsilon \text{ für alle } n \geqslant N\right) = 0$$

Aber $\{|f_n - f| > \varepsilon\} \subseteq \{|f_n - f| > \varepsilon$ für alle $n \ge N\}$ und damit folgt per Definition von Konvergenz im Maß die Aussage.

9.6. Proposition: Sei μ endlich. Dann ist $f_n \xrightarrow[n \to \infty]{\mu} f$ äquivalent zu folgender Aussage: Jede Teilfolge $f_{n_k}, k \geqslant 1$ von $f_n, n \geqslant 1$ enthält eine weitere Teilfolge $f_{n_{k_j}}, j \geqslant 1$, sodass

$$f_{n_{k_j}} \xrightarrow[j \to \infty]{a.e.} f$$

Beweis:

I. \Longrightarrow Sei $0 < \varepsilon < 1$. Da $\mu(|f_n - f| > \varepsilon) \xrightarrow[n \to \infty]{} 0$, kann man o.B.d.A. annehmen, dass $\mu(|f_n - f| > \varepsilon) \le 1$ für alle $n \ge 1$ (wähle einfach einen Index $N \ge 1$ für den die Aussage wahr ist, das Argument ändert sich dadurch nicht). Sei nun eine beliebige Teilfolge $f_{n_k}, k \ge 1$ gegeben. Wähle nun eine weitere Teilfolge $f_{n_{k_i}}, j \ge 1$, sodass

$$\mu\left(|f_{n_{k_j}}-f|>\frac{1}{j}\right)<2^{-j}$$

Dann gilt

$$\sum_{j\geqslant 1}\mu(|f_{n_{k_j}}-f|>\varepsilon)=\sum_{\substack{j\geqslant 1\\j\leqslant 1/\varepsilon}}\mu(|f_{n_{k_j}}-f|>\varepsilon)+\sum_{\substack{j\geqslant 1\\j\geqslant 1/\varepsilon}}\mu(|f_{n_{k_j}}-f|>\varepsilon)$$

Die erste Summe ist endlich, und jeder Term ist nach oben durch 1 beschränkt. Eine Abschätzung der Terme in der zweiten Summe erfolgt mit obigem Argument. Damit gilt

$$\sum_{j\geqslant 1} \mu(|f_{n_{k_j}} - f| > \varepsilon) \leqslant \frac{1}{\varepsilon} + \sum_{j\geqslant 1} 2^{-j} = \frac{1}{\varepsilon} + 2 < \infty$$

und mit Lemma 9.3 folgt $f_{n_{k_j}} \xrightarrow[j \to \infty]{a.e.} f$.

II. ⇐

Angenommen $f_n \xrightarrow{\mu} f$. Dann gibt es $\varepsilon > 0$, sodass $\mu(|f_n - f| > \varepsilon)$ nicht gegen 0 geht. Da μ aber endlich ist, ist die Folge $(\mu(|f_n - f| > \varepsilon))_{n \geqslant 1}$ beschränkt und mit Bolzano-Weierstraß existiert eine Teilfolge $f_{n_k}, k \geqslant 1$, die konvergiert, also

$$\lim_{k \to \infty} \mu(|f_{n_k} - f| > \varepsilon) = \alpha$$

mit $\alpha > 0$. Da alle Teilfolgen von konvergenten Folgen gegen denselben Grenzwert konvergieren, folgt für die Teilfolge $f_{n_{k_i}}, j \geqslant 1$ aus der Annahme

$$\lim_{j \to \infty} \mu(|f_{n_{k_j}} - f| > \varepsilon) = \alpha$$

Mit Proposition 9.5 gilt aber $f_{n_{k_j}} \xrightarrow[j \to \infty]{\mu} f$ und damit erhalten wir einen Widerspruch.

9.7. Definition: Sei $p \ge 1$. Eine Funktionenfolge $f_n, n \ge 1$ konvergiert in L_p (bzw. im p-ten Mittel) gegen f, falls

$$\int |f_n - f|^p \ d\mu \xrightarrow[n \to \infty]{} 0$$

Wir schreiben dann $f_n \xrightarrow[n \to \infty]{L_p} f$

9.8. Proposition:

$$f_n \xrightarrow[n \to \infty]{L_p} f \implies f_n \xrightarrow[n \to \infty]{\mu} f$$

Beweis: Sei $\varepsilon > 0$. Es gilt

$$\int |f_n - f|^p d\mu \geqslant \int |f_n - f|^p \cdot \mathbb{1}_{\{|f_n - f|^p > \varepsilon^p\}} d\mu$$

$$\geqslant \int \varepsilon^p \cdot \mathbb{1}_{\{|f_n - f|^p > \varepsilon^p\}} d\mu$$

$$= \varepsilon^p \cdot \mu(|f_n - f|^p > \varepsilon^p)$$

Teile beide Seiten durch ε^p und die linke Seite konvergiert noch immer gegen 0, und damit auch die rechte Seite. Damit folgt per Definiton von Konvergenz im Maß die Aussage.

Bemerkung: Der Beweis liefert auch eine allgemeine Form der Markov-Ungleichung: Für $g\geqslant 0$ und $\varepsilon>0$ gilt

$$\mu(g\geqslant\varepsilon)\leqslant\frac{1}{\varepsilon}\int f\ d\mu$$

9.9. Proposition: Für $1 \le p \le q < \infty$ gilt

$$f_n \xrightarrow[n \to \infty]{L_q} f \implies f_n \xrightarrow[n \to \infty]{L_p} f$$

Beweis: Mit der Ljapunov-Ungleichung gilt

$$\left(\int |f_n - f|^p \ d\mu\right)^{1/p} \leqslant \left(\int |f_n - f|^q \ d\mu\right)^{1/q}$$

wobei die rechte Seite laut Annahme gegen 0 konvergiert. Die Aussage folgt mit dem continuous mapping theorem für konvergente Folgen reeller Zahlen.

9.10. Proposition: Sei $f_n, n \ge 1$ eine Funktionenfolge, sodass $f_n \xrightarrow[n \to \infty]{L_1} f$ für eine absolut integrierbare Funktion f, i.e. $f \in L_1$. Dann folgt

$$\int f_n \ d\mu \xrightarrow[n\to\infty]{} \int f \ d\mu$$

Beweis: Es gilt $f_n \in L_1$ für hinreichend große n (also $\exists N \ge 1 \forall n \ge N : f_n \in L_1$), denn mit der Dreiecksungleichung gilt

$$\limsup_{n \to \infty} \int |f_n| \ d\mu \leqslant \limsup_{n \to \infty} \left(\int |f_n - f| \ d\mu + \int |f| \ d\mu \right) < \infty$$

Weiters ist

$$\limsup_{n \to \infty} \left| \int f_n \ d\mu - \int f \ d\mu \right| \leqslant \limsup_{n \to \infty} \int |f_n - f| \ d\mu = 0$$

womit die Aussage folgt.

9.12. Proposition: Sei μ ein endliches Maß und f_n, g_n, f, g alle reellwertig für alle $n \ge 1$, sodass $f_n \xrightarrow[n \to \infty]{\mu/a.e.} f$ und $g_n \xrightarrow[n \to \infty]{\mu/a.e.} g$. Dann gilt

(i)
$$f_n \pm g_n \xrightarrow[n \to \infty]{\mu/a.e.} f \pm g$$

(ii)
$$f_n \cdot g_n \xrightarrow[n \to \infty]{\mu/a.e.} f \cdot g$$

(iii) Falls
$$\mu(g=0)$$
, dann $\frac{f_n}{g_n} \xrightarrow[n \to \infty]{} \frac{f}{g}$

Beweis: Der Fall für Konvergenz f.ü. folgt sofort aus der Tatsache, dass die Vereinigung zweier Nullmengen wieder eine Nullmenge ist. Zeige also die Aussage für Konvergenz im Maß.

Sei $n_k, k \geqslant 1$ eine Teilfolge von $n, n \geqslant 1$. Weil $f_n \xrightarrow[n \to \infty]{\mu} f$, gibt es eine wegen Proposition 9.6 eine weitere Teilfolge $n_{k_j}, j \geqslant 1$ von $n_k, k \geqslant 1$, sodass $f_{n_{k_j}} \xrightarrow[j \to \infty]{a.e.} f$. Da $n_{k_j}, j \geqslant 1$ aber auch eine Teilfolge der ursprünglichen Folge $n, n \geqslant 1$ ist, gibt es eine weitere Teilfolge $n_{k_{j_\ell}}, \ell \geqslant 1$, sodass $g_{n_{k_{j_\ell}}} \xrightarrow[\ell \to \infty]{a.e.} g$. Es gilt aber auch $f_{n_{k_{j_\ell}}} \xrightarrow[\ell \to \infty]{a.e.} f$ und damit $f_{n_{k_{j_\ell}}} \pm g_{n_{k_{j_\ell}}} \xrightarrow[\ell \to \infty]{a.e.} f \pm g$ und $f_{n_{k_{j_\ell}}} \xrightarrow[\ell \to \infty]{a.e.} f \cdot g$. Damit gibt es für jede Teilfolge $n_k, k \geqslant 1$ von $n, n \geqslant 1$ eine weitere Teilfolge $n_{k_{j_\ell}}, \ell \geqslant 1$, sodass Summe/Differenz/Produkt konvergieren und mit Proposition 9.6 folgt die Aussage für Konvergenz im Maß. Für (iii) siehe Übung!

9.13. Satz (Continuous Mapping Theorem, CMT): Sei μ endlich und sei $f_n, n \ge 1$ eine reellwertige Funktionenfolge, sodass $f_n \xrightarrow[n \to \infty]{} f$. Sei weiters $h : \mathbb{R} \to \mathbb{R}$ eine Abbildung, die stetig auf einer Menge $H \subseteq N$, mit $\mu(f \notin N) = 0$ ist. Dann gilt

$$h(f_n) \xrightarrow[n \to \infty]{\mu/a.e.} h(f)$$

Beweis: Zeige den Fall mit Konvergenz f.ü. Sei $A := \{\lim_{n\to\infty} f_n \neq f\} \cup \{f \notin N\}$. Dann gilt mit der σ-Subadditivität $\mu(A) = 0$ und für $\omega \notin A$ gilt $f_n(\omega) \xrightarrow[n\to\infty]{} f(\omega)$ und $f(\omega) \in H$. Mit dem Continuous Mapping Theorem für punktweise Konvergenz folgt $h(f_n(\omega)) \xrightarrow[n\to\infty]{} h(f(\omega))$. Damit folgt

$$h(f_n) \xrightarrow[n \to \infty]{a.e.} h(f)$$

Die Aussage für Konvergenz im Maß folgt mit Proposition 9.6.

Konvergenz von \mathbb{R}^d -wertigen Funktionen

In diesem Abschnitt seien $f_n, f: \Omega \to \mathbb{R}^d$ \mathcal{A} - $\mathcal{B}(R^d)$ -messbar und $\|\cdot\|$ die euklidische Norm auf \mathbb{R}^d .

9.14. Definition:

$$f_n \xrightarrow[n \to \infty]{\mu/a.e./L_p} f \iff ||f_n - f|| \xrightarrow[n \to \infty]{\mu/a.e./L_p} 0$$

9.15. Proposition: Für $f_n = (f_n^{(1)}, \dots, f_n^{(d)})'$ und $f = (f^{(1)}, \dots, f^{(d)})'$ gilt

$$f_n \xrightarrow[n \to \infty]{\mu/a.e./L_p} f \iff \forall i = 1, \dots, d: f_n^{(i)} \xrightarrow[n \to \infty]{\mu/a.e./L_p} f^{(i)}$$

Beweis: Für $x = (x_1, \dots, x_d)'$ gilt die folgende Ungleichung für alle $j = 1, \dots, d$

$$|x_{j}| = \sqrt{x_{j}^{2}} \leqslant \sqrt{\sum_{j=1}^{d} x_{j}^{2}} = ||x|| \leqslant \sqrt{d \cdot \max_{1 \leqslant j \leqslant d} x_{j}^{2}} = \sqrt{d} \max_{1 \leqslant j \leqslant d} |x_{j}| \leqslant \sqrt{d} \sum_{j=1}^{d} |x_{j}|$$

und damit

$$|f_n^{(i)} - f^{(i)}| \le ||f_n - f|| \le \sqrt{d} \sum_{i=1}^d |f_n^{(j)} - f^{(j)}|$$

womit die Behauptung folgt.

Bermekung: Damit gelten die Resultate aus dem vorherigen Abschnitt auch für vektorwertige rationale Operationen, soweit diese definiert sind.

Konvergenz von Integralen

Seien in diesem Abschnitt $(\Omega, \mathcal{A}, \mu)$ ein Maßraum und $f_n, f: (\Omega, \mathcal{A}) \to (\overline{\mathbb{R}}, \mathcal{B}(\overline{\mathbb{R}}))$ messbar.

9.16. Lemma (von Fatou, 1.Version): Sei $f_n, n \ge 1$ eine Folge nicht-negativer Funktionen. Dann gilt

$$\int \liminf_{n \to \infty} f_n \ d\mu \leqslant \liminf_{n \to \infty} \int f_n \ d\mu$$

Beweis: Setze $g_n := \inf_{k \ge n} f_k$, sodass $\liminf_{n \to \infty} g_n$ und $0 \le g_1 \le \ldots \le \lim_{n \to \infty} g_n$. Dann gilt mit MONK

$$\int \lim_{n \to \infty} g_n = \int \liminf_{n \to \infty} f_n \ d\mu = \lim_{n \to \infty} \int g_n \ d\mu$$

Da aber $g_n = \inf_{k \geqslant n} f_k \leqslant f_n$ gilt für alle $n \geqslant 1 : \int g_n \ d\mu \leqslant \int f_n \ d\mu$ und damit

$$\int \liminf_{n \to \infty} f_n \ d\mu = \lim_{n \to \infty} \int g_n \ d\mu \leqslant \liminf_{n \to \infty} \int f_n \ d\mu$$

9.17. Lemma (von Fatou, 2.Version): Sei $f_n, n \ge 1$ eine Folge von Funktionen, sodass $g \le f_n$ für alle $n \ge 1$ und $g_- \in L_1$. Sei weiters f_n quasi-integrierbar, i.e. $f \in L$, für alle $n \ge 1$. Dann gilt

$$\int \liminf_{n \to \infty} f_n \ d\mu \leqslant \liminf_{n \to \infty} \int f_n \ d\mu$$

Beweis:

- I. Fall $(\int g_+ d\mu = \infty)$ Weil $f \leq f_n$ für alle $n \geq 1$ und damit $g \leq \liminf_{n \to \infty} f_n$, folgt $\int f_n d\mu = \infty$ für alle $n \geq 1$. Damit gilt auch $\liminf_{n \to \infty} \int f_n d\mu = \infty$ und die Aussage folgt trivial.
- II. Fall $(\int g_+ d\mu < \infty)$ Damit gilt laut Voraussetzung $g \in L_1$ und damit $g < \infty$ f.ü., sodass für alle $n \ge 1$ $(f_n - g)$ f.ü. wohldefiniert und f.ü. nicht-negativ ist. Mit Lemma 9.16 folgt

$$\int \liminf_{n \to \infty} (f_n - g) \ d\mu \leqslant \liminf_{n \to \infty} \int f_n - g \ d\mu$$

und mit der Linearität des Integrals und der Tatsache, dass g nicht von n abhängt folgt die Aussage.

- **9.18. Satz (Dominated Convergence Theorem, DOMK):** Sei $f_n, n \ge 1$ eine Funktionenfolge, sodas $f_n \xrightarrow[n \to \infty]{\mu} f$ und $|f_n| \le g$ für alle $n \ge 1$ und eine integrierbare Funktion g. Dann folgt
 - (i) $f \in L_1$

(ii)
$$\int f_n \ d\mu \xrightarrow[n \to \infty]{} \int f \ d\mu$$

(iii)
$$f_n \xrightarrow[n \to \infty]{L_1} f$$

Beweis:

9.19. Korollar (Bounded Convergence Theorem): Sei μ ein endliches Maß und $f_n, n \ge 1$ eine Funktionenfolge, sodass $f_n \xrightarrow[n \to \infty]{\mu} f$ und $|f_n| \le K$ für ein $K \in [0, \infty)$. Dann folgt (i), (ii) und (iii) aus Satz 9.18.

Beweis: Folgt sofort aus DOMK (Satz 9.18) und $\int K d\mu = K \cdot \mu(\Omega) < \infty$ für endliche Maße. \square

9.20. Lemma (Scheffé's Lemma): Seien $f_n, n \ge 1$, f nicht-negative, integrierbare Funktionen, sodass $f_n \xrightarrow[n \to \infty]{\mu} f$. Falls zusätzlich $\int f_n d\mu \xrightarrow[n \to \infty]{} \int f d\mu$, dann folgt $f_n \xrightarrow[n \to \infty]{L_1} f$.

Beweis: Setze $h_n := f - f_n$ und wende DOMK (Satz 9.18) auf die Folgen $(h_n)_+, n \ge 1$ und $(h_n)_-, n \ge 1$ an.

9.21. Proposition: Falls $f_n \xrightarrow[n \to \infty]{L_p} f$ und $f \in L_p$ für ein $p \geqslant 1$, dann folgt

(i)
$$\int |f_n|^p d\mu \xrightarrow[n\to\infty]{} \int |f|^p d\mu$$

(ii)
$$\int f_n \ d\mu \xrightarrow[n \to \infty]{} \int f \ d\mu$$

Beweis:

(i) Mit der Minkowski-Ungleichung gilt

$$\left(\int |f_n|^p \ d\mu\right)^{1/p} = \left(\int |f_n - f + f|^p \ d\mu\right)^{1/p} \leqslant \left(\int |f_n - f|^p \ d\mu\right)^{1/p} + \left(\int |f|^p \ d\mu\right)^{1/p}$$

wobei der erste Summand laut Annahme gegen 0 konvergiert (und damit insbesondere ab einem Index $N \ge 1$ endlich ist) und der zweite Summand laut Annahme endlich ist. Es gilt also $f_n \in L_p$ für hinreichend große n. Weiters folgt

$$\limsup_{n \to \infty} \int |f_n|^p \ d\mu \leqslant \int |f|^p \ d\mu$$

da der erste Summand nicht-negativ ist. Aber mit der Minkowski-Ungleichung gilt auch

$$\left(\int |f|^p \ d\mu\right)^{1/p} = \left(\int |f - f_n + f_n|^p \ d\mu\right)^{1/p} \leqslant \left(\int |f - f_n|^p \ d\mu\right)^{1/p} + \left(\int |f_n|^p \ d\mu\right)^{1/p}$$

sodass

$$\liminf_{n \to \infty} \int |f_n|^p \ d\mu \geqslant \int |f|^p \ d\mu$$

und daher

$$\lim_{n \to \infty} \int |f_n|^p \ d\mu = \int |f| \ d\mu$$

(ii) Es gilt $|(f_n)_+ - f_+| \le |f_n - f|$ und $|(f_n)_- - f_-| \le |f_n - f|$ (einfache Überlegung). Laut Annahme gilt $f_n \xrightarrow[n \to \infty]{L_p} f$ und mit Proposition 9.9 auch $f_n \xrightarrow[n \to \infty]{L_1} f$. Mit den beiden Ungleichung oben folgt also

$$(f_n)_+ \xrightarrow[n \to \infty]{L_1} f_+ \text{ und } (f_n)_- \xrightarrow[n \to \infty]{L_1} f_-$$

Da $f \in L_p$ gilt auch $f \in L_1$ und damit $f_+, f_- \in L_1$. Mit Teil (i) folgt

$$\int (f_n)_+ d\mu \xrightarrow[n\to\infty]{} \int f_+ d\mu \text{ und } \int (f_n)_- d\mu \xrightarrow[n\to\infty]{} \int f_- d\mu$$

und mit den Rechenregeln für Konvergenz von Folgen reeller Zahlen die Aussage. □

Gleichgradige Integrierbarkeit

Seien in diesem Abschnitt $f_n:(\Omega,\mathcal{A})\to(\overline{\mathbb{R}},\mathcal{B}(\overline{\mathbb{R}}))$ messbare Funktionen für alle $n\geqslant 1$.

9.22. Definition: Sei μ endlich. Eine Folge messbarer Funktionen $f_n, n \ge 1$ ist gleichgradig integrierbar ("uniformly integrable", g.i.), falls

$$\lim_{\alpha \to \infty} \limsup_{n \to \infty} \int_{|f_n| \geqslant \alpha} |f_n| \ d\mu = 0$$

Bemerkung: Eine konstante Folge absolut integrierbarer, reellwertiger Funktionen ist gleichgradig integrierbar, da

$$\lim_{\alpha \to \infty} \int_{\{|f| \ge \alpha\}} |f| \ d\mu = \lim_{\alpha \to \infty} \int |f| \cdot \mathbb{1}_{\{|f| \ge \alpha\}} \ d\mu$$

wobei $|f| < \infty$ f.ü., da $f \in L_1$ und damit

$$|f| \cdot \mathbb{1}_{\{|f| \geqslant \alpha\}} \xrightarrow{a.e.} |f| \cdot 0 \stackrel{a.e.}{=} \mathbb{1}_{\{|f| = \infty\}}$$

Da $|f| \cdot \mathbb{1}_{\{|f| \geqslant \alpha\}} \leqslant f \in L_1$ folgt mit DOMK

$$\int_{\{|f| \geqslant \alpha\}} |f| \ d\mu \xrightarrow[\alpha \to \infty]{} \mu(|f| = \infty) = 0$$

9.23. Lemma: Sei μ endlich und $f_n, n \ge 1$ gleichgradig integrierbar. Dann folgt

$$\limsup_{n \to \infty} \int |f_n| \ d\mu < \infty$$

i.e. $f_n \in L_1$ für hinreichend große n.

Beweis: Wähle $\alpha > 0$, sodass $\limsup_{n \to \infty} \int_{\{|f_n| \geqslant \alpha\}} |f_n| < \infty$. Dann gilt

$$\limsup_{n \to \infty} \int |f_n| \ d\mu = \limsup_{n \to \infty} \left(\int_{\{|f_n| \ge \alpha\}} |f_n| \ d\mu + \int_{\{|f_n| \ge \alpha\}} |f_n| \ d\mu \right) < \infty$$

wobei der erste Summand laut Annahme endlich ist und der zweite Summand $\leq \alpha \cdot \mu(\Omega)$ ist. \square

9.24. Lemma: Sei μ endlich und seien $f_n, n \ge 1$ und $g_n, n \ge 1$ gleichgradig integrierbar. Dann ist $f_n + g_n$ f.ü. wohldefiniert für hinreichend große n und $f_n + g_n, n \ge 1$ ist gleichgradig integrierbar.

Beweis: Es ist $\int |f_n| d\mu < \infty$ fr $n \ge n_f$ und $\int |g_n| d\mu < \infty$ fr $n \ge n_g$. Damit ist

$$\int f_n + g_n \ d\mu \leqslant \int |f_n| + |g_n| \ d\mu < \infty$$

und damit $f_n + g_n < \infty$ fast berall fr $n \ge \max(n_f, n_g)$.

Setze nun $h_n := \max(|f_n|, |g_n|), n \ge 1$. Dann gilt $|f_n + g_n| \le 2h_n$ und

$$h_n \cdot \mathbb{1}_{\{h_n \geqslant \alpha/2\}} = h_n \cdot \mathbb{1}_{\{|f_n| \geqslant \alpha/2\}} \cdot \mathbb{1}_{\{f_n \geqslant g_n\}} + h_n \cdot \mathbb{1}_{\{|g_n| \geqslant \alpha/2\}} \cdot \mathbb{1}_{\{f_n < g_n\}}$$

$$\leq |f_n| \cdot \mathbb{1}_{\{|f_n| \geqslant \alpha/2\}} + |g_n| \cdot \mathbb{1}_{\{|g_n| \geqslant \alpha/2\}}$$

und damit fr $\alpha > 0$

$$\int\limits_{\{|f_n+g_n|\geqslant\alpha\}} |f_n+g_n|\ d\mu \leqslant 2 \int\limits_{\{h_n\geqslant\alpha/2\}} h_n\ d\mu$$

$$\leqslant 2 \int\limits_{\{|f_n|\geqslant\alpha/2\}} |f_n|\ d\mu + 2 \int\limits_{\{|g_n|\geqslant\alpha/2\}} |g_n|\ d\mu$$

wobei der lim sup fr $n \to \infty$ beider Summanden fr $\alpha \to \infty$ gegen 0 geht, womit $f_n + g_n, n \ge 1$ gleichgradig integrierbar sind.

9.25. Satz: Sei μ endlich. Dann ist folgendes äquivalent

- (i) $f_n \xrightarrow[n \to \infty]{L_1} f$ und $f \in L_1$
- (ii) $f_n \xrightarrow[n \to \infty]{\mu} f$ und $f_n, n \ge 1$ gleichgradig integrierbar

Bemerkung: Aus (i) folgt mit Proposition 9.10, dass

$$\int f_n \ d\mu \xrightarrow[n\to\infty]{} \int f \ d\mu$$

Beweis:

I. (i) \Longrightarrow (ii)

Aus (i) folgt mit Proposition 9.8, dass $f_n \xrightarrow[n \to \infty]{\mu} f$. Weiters ist fr $\alpha > 0$

$$0 = \lim_{n \to \infty} \int |f_n - f| \ d\mu \geqslant \int_{\{|f_n - f| \ge \alpha\}} |f_n - f| \ d\mu \geqslant 0$$

Damit ist $f_n - f, n \ge 1$ gleichgradig integrierbar. Da $f \in L_1$ ist die konstante Folge $f, n \ge 1$ gleichgradig integrierbar und mit Satz 9.24 auch die Summe $f_n = (f_n - f) + f, n \ge 1$

II. (ii) \Longrightarrow (i)
Mit Proposition 9.6 gengt es, die Aussage unter der strkeren Annahme $f_n \xrightarrow[n \to \infty]{a.e.} f$ zu zeigen.
Mit Fatou I gilt

$$\int |f| \ d\mu = \int \liminf_{n \to \infty} f_n \ d\mu \leqslant \liminf_{n \to \infty} \int |f_n| \ d\mu \leqslant \limsup_{n \to \infty} \int |f_n| \ d\mu < \infty$$

wobei die Endlichkeit des Integrals fr groe n aus der Annahme der gleichgradigen Integrierbarkeit folgt. Damit gilt $f \in L_1$. Fr $\alpha > 0$ gilt

$$\int |f_n - f| \ d\mu = \int_{\{|f_n - f| \ge \alpha\}} |f_n - f| \ d\mu + \int_{\{|f_n - f| < \alpha\}} |f_n - f| \ d\mu$$

wobei mit Korollar 9.19 gilt

$$\int_{\{|f_n - f| < \alpha\}} |f_n - f| \ d\mu \xrightarrow[n \to \infty]{} 0$$

und damit

$$\limsup_{n \to \infty} \int |f_n - f| \ d\mu = \limsup_{n \to \infty} \int_{\{|f_n - f| \ge \alpha\}} |f_n - f| \ d\mu$$

Da aber $f \in L_1$ ist die konstante Folge $f, n \ge 1$ gleichgradig integrierbar, womit die Aussage mit der Dreiecksungleichung fr $\alpha \searrow 0$ folgt.

9.26. Proposition: Sei μ endlich. Angenommen $f_n \xrightarrow[n \to \infty]{} f$ und $\limsup_{n \to \infty} \int |f_n|^{1+\delta} d\mu < \infty$ für ein $\delta > 0$. Dann folgt

- (i) $f \in L_1$
- (ii) $\int f_n \ d\mu \xrightarrow[n \to \infty]{} \int f \ d\mu$
- (iii) $f_n \xrightarrow[n \to \infty]{L_1} f$

Beweis: Unter der Annahme $f_n \xrightarrow[n \to \infty]{\mu}$ genügt es mit Satz 9.25 zu zeigen, dass $f_n, n \ge 1$ gleichgradig integrierbar ist.

$$\limsup_{n \to \infty} \int_{\{|f_n| \geqslant \alpha\}} |f_n| \ d\mu = \limsup_{n \to \infty} \int_{\{|f_n|^{\delta} \geqslant \alpha^{\delta}\}} |f_n| \cdot \frac{\alpha^{\delta}}{\alpha^{\delta}} \ d\mu$$

$$\leqslant \frac{1}{\alpha^{\delta}} \limsup_{n \to \infty} \int_{\{|f_n|^{\delta} \geqslant \alpha^{\delta}\}} |f_n| |f_n|^{\delta} \ d\mu$$

$$= \frac{1}{\alpha^{\delta}} \limsup_{n \to \infty} \int_{\{|f_n| \geqslant \alpha\}} |f_n| |f_n|^{\delta} \ d\mu \xrightarrow{\alpha \to \infty} 0$$

da der lim sup im letzten Ausdruck endlich ist und $\alpha^{-\delta} \xrightarrow[\alpha \to \infty]{} 0$.

10. Konvergenz von Zufallsvariablen

Gesetze der großen Zahlen

Sei im folgenden Kapitel $(\Omega, \mathcal{A}, \mathbb{P})$ jeweils ein Wahrscheinlichkeitsraum und $X_n, X \in L_1, n \geqslant 1$ jeweils \mathbb{R} -wertige Zufallsvariablen.

10.1. Proposition: Sei $X \in L_2$. Dann ist folgendes äquivalent:

1.
$$\frac{1}{n} \sum_{i=1}^{n} (X_i - \mathbb{E}X_i) \xrightarrow[n \to \infty]{L_2} 0$$

2.
$$\frac{1}{n^2} \sum_{i=1}^n \sum_{j=1}^n \operatorname{Cov}(X_i, X_j) \xrightarrow[n \to \infty]{} 0$$

Beweis:

$$\mathbb{E}\left[\left(\frac{1}{n}\sum_{i=1}^{n}(X_i - \mathbb{E}X_i)^2\right] = \frac{1}{n^2}\sum_{i=1}^{n}\sum_{j=1}^{n}\mathbb{E}\left[(X_i - \mathbb{E}X_i)(X_j - \mathbb{E}X_j)\right]\right]$$

Bermerkung: Für $X_i \in L_2$ unkorreliert ist 2. äquivalent zu

$$\frac{1}{n^2} \sum_{i=1}^n \operatorname{Var}(X_i) \longrightarrow 0$$

Falls die $X_i \in L_2$ und i.i.d. sind, gilt 1. und 2. trivial.

10.2. Satz (Schwaches Gesetz der großen Zahlen, WLLN): Seien $X_i \in L_1$ i.i.d.. Dann gilt:

$$\frac{1}{n} \sum_{i=1}^{n} X_i \xrightarrow{P} \mathbb{E} X_1$$

Beweis: Sei M > 0. Dann gilt

$$\frac{1}{n} \sum_{i=1}^{n} (X_i - \mathbb{E}X_i) = \frac{1}{n} \sum_{i=1}^{n} (X_i \cdot \mathbb{1}_{\{|X_i| \le M\}} - \mathbb{E}[X_i \cdot \mathbb{1}_{\{|X_i| \le M\}}])
+ \frac{1}{n} \sum_{i=1}^{n} (X_i \cdot \mathbb{1}_{\{|X_i| > M\}} - \mathbb{E}[X_i \cdot \mathbb{1}_{\{|X_i| > M\}}])$$

I. Zum ersten Summanden:

Die Zufallsvariablen $X_i \cdot \mathbb{1}_{\{|X_i| \leq M\}}$ sind unabh
ngig und beschr
nkt (also $\in L_{\infty}$ und damit insbesondere $\in L_2$). Damit ist

$$\operatorname{Var}\left(X_{i} \cdot \mathbb{1}_{\{|X_{i}| \leq M\}}\right) = \mathbb{E}\left[X_{i}^{2} \cdot \mathbb{1}_{\{|X_{i}| \leq M\}}\right] - \left(\mathbb{E}\left[X_{i} \cdot \mathbb{1}_{\{|X_{i}| \leq M\}}\right]\right)^{2} \leq 2M^{2}$$

Mit Bemerkung (ii) zu Proposition 10.1 folgt damit, dass der erste Summand $\frac{L_2}{n\to\infty}$ und damit $\frac{P}{n\to\infty}$ 0.

II. Zum zweiten Summanden:

$$\mathbb{E}\left|\frac{1}{n}\sum_{i=1}^{n}\left(X_{i}\cdot\mathbb{1}_{\left\{|X_{i}|>M\right\}}-\mathbb{E}[X_{i}\cdot\mathbb{1}_{\left\{|X_{i}|>M\right\}}]\right)\right|\overset{2\times\mathrm{DUG}}{\leqslant}\mathbb{E}\left[\frac{1}{n}\sum_{i=1}^{n}\left|X_{i}\cdot\mathbb{1}_{\left\{|X_{i}|>M\right\}}\right|+\left|\mathbb{E}[X_{i}\cdot\mathbb{1}_{\left\{|X_{i}|>M\right\}}]\right|\right]$$

$$\leqslant\frac{1}{n}\sum_{i=1}^{n}\mathbb{E}\left|X_{i}\cdot\mathbb{1}_{\left\{|X_{i}|>M\right\}}\right|+\mathbb{E}[|X_{i}|\cdot\mathbb{1}_{\left\{|X_{i}|>M\right\}}]$$

$$=2\cdot\mathbb{E}\left[|X_{1}|\cdot\mathbb{1}_{\left\{|X_{i}|>M\right\}}\right]\xrightarrow{M\to\infty}0$$

Sei also $\varepsilon > 0$. Dann ist

$$\lim \sup_{n \to \infty} \mathbb{P}\left(\left|\frac{1}{n}\sum_{i=1}^{n} (X_{i} - \mathbb{E}X_{i})\right| > \varepsilon\right) = \lim \sup_{n \to \infty} \mathbb{P}(|(1) + (2)| > \varepsilon)$$

$$\leqslant \lim \sup_{n \to \infty} \mathbb{P}\left(|(1)| > \frac{\varepsilon}{2}\right) + \mathbb{P}\left(|(2)| > \frac{\varepsilon}{2}\right)$$

$$= \lim \sup_{n \to \infty} \mathbb{P}\left(|(2)| > \frac{\varepsilon}{2}\right)$$

$$\stackrel{\text{Markov}}{\leqslant} \lim \sup_{n \to \infty} \frac{2 \cdot \mathbb{E}|(2)|}{\varepsilon}$$

$$\leqslant \frac{4 \cdot \mathbb{E}\left[|X_{1}| \cdot \mathbb{1}_{\{|X_{i}| > M\}}\right]}{\varepsilon}$$

fr jedes M>0. Wh
le nun fr $\varepsilon>0$ ein M>0 so, sodass dieser Ausdruck < δ ist. Das funktioniert wegen II. fr jedes $\delta>0$ und daher folgt

$$\mathbb{P}\left(\left|\frac{1}{n}\sum_{i=1}^{n}(X_i - \mathbb{E}X_i)\right| > \varepsilon\right) \xrightarrow[n \to \infty]{} 0$$

und damit die Aussage.

10.3. Satz (Starkes Gesetz der großen Zahlen, SLLN): Seien $X_i \in L_1$ i.i.d.. Dann gilt sogar die stärkere Aussage:

$$\frac{1}{n} \sum_{i=1}^{n} X_i \xrightarrow[n \to \infty]{a.s.} \mathbb{E} X_1$$

Beweis: siehe z.B.: P. Billingsley, *Probability and Measure* (2nd Ed.), Theorem 6.1

10.4. Proposition (Momentenmethode): Betrachte i.i.d. Zufallsvariablen $X_i, i \geq 1$, sodass $X_i^d \in L_1$ fr ein $d \geq 1$. Sei auerdem $f: \mathbb{R}^d \to \mathbb{R}^\ell$ und setze $\theta := f(\mathbb{E}X_1^1, \dots, \mathbb{E}X_1^d)$ (θ knnte z.B. als Funktion der ersten d Momente die Verteilung von X_1 parametrisieren). Falls f stetig im Punkt $(\mathbb{E}X_1^1, \dots, \mathbb{E}X_1^d)'$ ist, dann gilt fr $\hat{\theta}_n := f\left(\frac{1}{n}\sum_{i=1}^n X_i^1, \dots, \frac{1}{n}\sum_{i=1}^n X_i^d\right)$, dass $\hat{\theta}_n \xrightarrow[n \to \infty]{P} \theta$.

Beweis: Mit der Ljapunov-Unggleichung gilt $X_i^j \in L_1$ fr $j=1,\ldots,d$. Weiters sind X_i^j i.i.d. Mit dem SLLN gilt damit fr $j=1,\ldots,d$

$$\frac{1}{n} \sum_{i=1}^{n} X_i^j \xrightarrow[n \to \infty]{a.s.} \mathbb{E} X_1^j$$

und mit Proposition 9.15 folgt

$$\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}^{1},\ldots,\frac{1}{n}\sum_{i=1}^{n}X_{i}^{d}\right)'\xrightarrow[n\to\infty]{a.s.}(\mathbb{E}X_{1}^{1},\ldots,\mathbb{E}X_{1}^{d})'$$

Die Aussage folgt schlielich mit dem CMT (quasi Satz 9.13. fr $f: \mathbb{R}^d \to \mathbb{R}^\ell$).

11. Schwache Konvergenz

Betrachte in diesem Kapitel einen Wahrscheinlichkeitsraum $(\Omega, \mathcal{A}, \mathbb{P})$, reelwertige Zufallsvariablen $X, X_n, n \ge 1$ mit entsprechenden cdfs $F, F_n, n \ge 1$ bzw. den entsprechenden induzierten Wahrscheinlichkeitsmaßen $\mathbb{P}, \mathbb{P}_n, n \ge 1$ auf $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$.

11.1. **Definition:** $\mathbb{P}_n, n \geqslant 1$ konvergieren schwach/in Verteilung gegen \mathbb{P} , wenn

$$\forall t \in \mathbb{R} \text{ mit } F(\cdot) \text{ stetig in } t : F_n(t) \xrightarrow[n \to \infty]{} F(t)$$

Kurz: $\mathbb{P}_n \xrightarrow[n \to \infty]{d} \mathbb{P}$, oder $F_n \xrightarrow[n \to \infty]{d} F$, oder $X_n \xrightarrow[n \to \infty]{d} X$.

11.2. Proposition: $X_n \xrightarrow[n \to \infty]{P} X \implies X_n \xrightarrow[n \to \infty]{d} X$

Beweis: Sei $\varepsilon > 0$ beliebig.

$$F_n(t) = \mathbb{P}(X_n \leqslant t)$$

$$= \mathbb{P}(X_n \leqslant t, |X_n - X| \leqslant \varepsilon) + \mathbb{P}(X_n \leqslant t, |X_n - X| > \varepsilon)$$

$$\leqslant \mathbb{P}(X - \varepsilon \leqslant t, |X_n - X| \leqslant \varepsilon) + \mathbb{P}(|X_n - X| > \varepsilon)$$

$$\leqslant \mathbb{P}(X - \varepsilon \leqslant t) + \mathbb{P}(|X_n - X| > \varepsilon)$$

Damit folgt $\forall t \in \mathbb{R}$:

$$\limsup_{n\to\infty} F_n(t) \leqslant F(t+\varepsilon)$$

Gleichzeitig gilt:

$$\begin{split} F(t-\varepsilon) &= \mathbb{P}(X \leqslant t-\varepsilon) \\ &= \mathbb{P}(X \leqslant t-\varepsilon, |X_n-X| \leqslant \varepsilon) + \mathbb{P}(X \leqslant t-\varepsilon, |X_n-X| > \varepsilon) \\ &\leqslant \mathbb{P}(X_n-\varepsilon \leqslant t-\varepsilon, |X_n-X| \leqslant \varepsilon) + \mathbb{P}(|X_n-X| > \varepsilon) \\ &= \mathbb{P}(X_n \leqslant t) + \mathbb{P}(|X_n-X| > \varepsilon) \end{split}$$

Damit folgt

$$\liminf_{n \to \infty} F_n(t) \geqslant F(t - \varepsilon)$$

Wenn $F(\cdot)$ nun stetig im Punkt t ist, dann gilt

$$\lim_{\varepsilon \searrow 0} F(t - \varepsilon) = \lim_{\varepsilon \searrow 0} F(t + \varepsilon) = F(t)$$

und damit

$$F(t) \leqslant \liminf_{n \to \infty} F_n(t) \leqslant \limsup_{n \to \infty} F_n(t) \leqslant F(t)$$

und es folgt für alle $t \in \mathcal{C}(F)$:

$$F_n(t) \xrightarrow[n \to \infty]{} F(t)$$

11.3. Proposition: Es gelte $X_n \xrightarrow[n \to \infty]{d} X$ mit $\mathbb{P}(X = c) = 1$ für ein $c \in \mathbb{R}$. Dann folgt $X_n \xrightarrow[n \to \infty]{P} c$.

Beweis:

$$F(t) = \begin{cases} 1, & \text{if } t \geqslant c \\ 0, & \text{if } t < c \end{cases}$$

ist stetig auf $\mathbb{R} \setminus \{c\}$ und damit stetig in $c \pm \varepsilon$ für alle $\varepsilon > 0$. Also gilt

$$\mathbb{P}(|X_n - X| > \varepsilon) = \mathbb{P}(|X_n - c| > \varepsilon)$$

$$= \mathbb{P}(X_n - c \notin [-\varepsilon, \varepsilon])$$

$$= 1 - \mathbb{P}(X_n - c \in [-\varepsilon, \varepsilon])$$

$$\leqslant 1 - F_n(c + \varepsilon) + F_n(c - \varepsilon) \xrightarrow[n \to \infty]{} 1 - F(c + \varepsilon) + F(c - \varepsilon) = 0$$

Damit folgt $X_n \xrightarrow[n \to \infty]{P} X \stackrel{a.s.}{=} c$.

11.4. Satz (von Glivenko-Cantelli): Seien $X_n, n \ge 1$ i.i.d.reellwertige Zufallsvariablen mit cdf F. Definiere die empirical cdf:

$$\hat{F}_n(t) := \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{\{X_i \leqslant t\}}$$

für alle $\omega \in \Omega$. Dann gilt:

$$\sup_{t \in \mathbb{R}} |\hat{F}_n(t) - F(t)| \xrightarrow[n \to \infty]{a.s.} 0$$

Beweis: Zeige zuerst, dass $\sup_{t\in\mathbb{R}} |\hat{F}_n(t) - F(t)|$ messbar ist. Wähle dazu $t_k \in \mathbb{R}, k \geqslant 1$, sodass

$$|\hat{F}_n(t_k) - F(t_k)| \geqslant \sup_{t \in \mathbb{R}} |\hat{F}_n(t) - F(t)| - \frac{1}{k}$$

Beachte, dass t_k von ω abhängt! Wähle nun $q_k \in \mathbb{Q}, k \geqslant 1$, sodass

$$|\hat{F}_n(q_k) - F(q_k)| \geqslant |\hat{F}_n(t_k) - F(t_k)| - \frac{1}{k}$$

Dieser Schritt funktioniert wegen der rechtsseitigen Stetitgkeit von $F, \hat{F}_n, n \ge 1$. Nun folgt aber

$$|\hat{F}_n(q_k) - F(q_k)| \geqslant \sup_{t \in \mathbb{R}} |\hat{F}_n(t) - F(t)| - \frac{2}{k}$$

und damit

$$|\hat{F}_n(q_k) - F(q_k)| \xrightarrow[k \to \infty]{} \sup_{t \in \mathbb{R}} |\hat{F}_n(t) - F(t)|$$

Also

$$\sup_{q \in \mathbb{Q}} |\hat{F}_n(q) - F(q)| = \sup_{t \in \mathbb{R}} |\hat{F}_n(t) - F(t)|$$

wobei die linke Seite als abzählbares Supremem messbarer Funktionen messbar ist. Setze nun $F(-\infty) = \hat{F}_n(-\infty) = 0$ und $F(\infty) = \hat{F}_n(\infty) = 1$ und wähle ein Mesh

$$-\infty = t_0 < t_1 < \ldots < t_{k-1} < t_k = +\infty$$

sodass

$$F(t_{j-1}) - F(t_{j-1}) \leqslant \varepsilon \tag{1}$$

für $1 \leq j \leq k$. Dazu verfährt man folgendermaßen:

Beginne mit $t_0 = -\infty$. Angenommen wir haben schon $j - 1 \ge 0$ Punkte gewählt, sodass (1) für alle $i \le j - 1$ gilt und $t_{j-1} < \infty$. Setze dann

$$t_j := \sup \{t > t_{j-1} : F(t_-) - F(t_{j-1}) < \varepsilon\}$$

Mit der Stetigkeit von oben gilt dann $F(t_{-}) - F(t_{j-1}) = \mathbb{P}(t_{j-1} < X < t) \xrightarrow[t \searrow t_{j-1}]{} 0$. Damit ist t_{j} wohldefiniert. Falls $t_{j} = \infty$ sind wir fertig. Andernfalls wiederholt man die Prozedur für j+1. Wir haben am Schluss also Punkte $(t_{j})_{0 \leqslant j \leqslant k}$ für die gilt:

$$F(t_{j-1}) - F(t_{j-1}) \leqslant \varepsilon$$

$$F(t_j) - F(t_{j-1}) \geqslant \varepsilon$$

Da $F(\infty) - F(-\infty) = 1$, gilt $k\varepsilon \leq 1$ und damit $k < \lfloor \frac{1}{\varepsilon} \rfloor$, also endet die Prozedur immer in endlich vielen Schritten.

Zeige nun, dass die empirische cdf gleichmäßig in $t \in \mathbb{R}$ gegen die tatsächliche cdf konvergiert. Mit dem SLLN gilt

$$\hat{F}_n(t_j) \xrightarrow[n \to \infty]{a.s.} F(t_j) \tag{2}$$

$$\hat{F}_n(t_{j-}) \xrightarrow[n \to \infty]{a.s.} F(t_{j-}) \tag{3}$$

Sei also N_{ε} , so dass für alle $\omega \in N_{\varepsilon}^{c}$ (2) und (3) gelten. Für jedes $t \in \mathbb{R}$ gibt es $1 \leq j \leq k$, sodass $t \in [t_{j-1}, t_{j})$ und es gilt

$$\begin{split} \hat{F}_{n}(t) - F(t) & \stackrel{\text{Monotonie}}{\leqslant} \hat{F}_{n}(t_{j-}) - F(t_{j-1}) = \\ & = \hat{F}_{n}(t_{j-}) - F(t_{j-}) + F(t_{j-}) - F(t_{j-1}) \leqslant \\ & \leqslant \hat{F}_{n}(t_{j-}) - F(t_{j-}) + \varepsilon \end{split}$$

und

$$\hat{F}_{n}(t) - F(t) \overset{\text{Monotonie}}{\geqslant} \hat{F}_{n}(t_{j-1}) - F(t_{j-1}) =$$

$$= \hat{F}_{n}(t_{j-1}) - F(t_{j-1}) + F(t_{j-1}) - F(t_{j-1}) \geqslant$$

$$\geqslant \hat{F}_{n}(t_{j-1}) - F(t_{j-1}) - \varepsilon$$

Damit folgt

$$\lim_{n \to \infty} \sup_{t \in \mathbb{R}} \left(\hat{F}_n(t_{j-1}) - F(t) \right) \leqslant \lim_{n \to \infty} \max \left\{ \hat{F}_n(t_{j-1}) - F(t_{j-1} \leqslant j \leqslant k) \right\} + \varepsilon$$

$$\lim_{n \to \infty} \inf_{t \in \mathbb{R}} \inf_{t \in \mathbb{R}} \left(\hat{F}_n(t_{j-1}) - F(t) \right) \geqslant \lim_{n \to \infty} \min \left\{ \hat{F}_n(t_{j-1}) - F(t_{j-1} \leqslant j \leqslant k) \right\} - \varepsilon$$

Weil $\varepsilon > 0$ beliebig war, folgt

$$\liminf_{n \to \infty} \inf_{t \in \mathbb{R}} \left(\hat{F}_n(t_{j-}) - F(t) \right) = \limsup_{n \to \infty} \sup_{t \in \mathbb{R}} \left(\hat{F}_n(t_{j-}) - F(t) \right) = 0$$

und damit

$$\lim_{n \to \infty} \sup_{t \in \mathbb{R}} |\hat{F}_n(t) - F(t)| = 0$$

für alle $\omega\in\bigcup_{\varepsilon>0}N_\varepsilon^c=\bigcup_{n\geqslant 1}N_n^c$ mit Maß 0.

Bemerkung: Für eine Klasse von Funktionen \mathcal{F} , sei

$$\forall f \in \mathcal{F}: \ \hat{F}_n(f) := n^{-1} \sum_{i=1}^n f(X_i)$$
$$F(f) := \mathbb{E}[f(X_1)]$$

Im Fall von Satz 11.4 war z.B. $\mathcal{F} = \{\mathbb{1}_{(-\infty,t]}(\cdot), t \in \mathbb{R}\}$. Im allgemeinen Fall geben Glivenko-Cantelli Theoreme Bedinungen an die Klasse \mathcal{F} , sodass

$$\sup_{f \in \mathcal{F}} |\hat{F}_n(f) - F(f)| \xrightarrow[n \to \infty]{a.e.} 0$$

- 11.5. Satz (Portemanteau Theorem 1): Es gilt $X_n \xrightarrow[n\to\infty]{d} X$ genau dann, wenn eine der folgenden Bedingungen erfüllt ist:
 - (i) $\mathbb{E}f(X_n) \xrightarrow[n \to \infty]{} \mathbb{E}f(X)$ für alle f stetig mit kompaktem Träger.
 - (ii) $\mathbb{E}f(X_n) \xrightarrow[n \to \infty]{} \mathbb{E}f(X)$ für alle f stetig und beschränkt.

Bemerkung: Ist f stetig und $\overline{\text{supp }f}$ kompakt, dann ist f auch beschränkt. Damit gilt trivial (ii) \Longrightarrow (i).

Beweis:

I. $X_n \xrightarrow[n \to \infty]{d} X \Longrightarrow (i)$

Sei f wie in (i). Dann ist f auf supp f auch gleichmäßig stetig. Für $\varepsilon > 0$ wähle ein Mesh

$$a_0 < a_1 < \ldots < a_{k-1} < a_k$$

sodass

$$\forall x \notin (a_0, a_k] : f(x) = 0$$

$$\forall x \in (a_{i-1}, a_i] : |f(x) - f(a_i)| < \varepsilon \quad \text{für } 1 \le i \le k$$

und so, dass a_0, \ldots, a_k alle Stetigkeitsstellen von F sind (davon gibt es höchstens abzählbar viele, also ist das ohne Probleme möglich).

Definiere

$$g_{\varepsilon}(x) := \sum_{i=1}^{k} f(a_i) \mathbb{1}_{(a_{i-1}, a_i]}(x)$$

sodass

$$\sup_{x \in \mathbb{R}} |f(x) - g_{\varepsilon}(x)| \leqslant \varepsilon \tag{4}$$

Dann gilt

$$\mathbb{E}g_{\varepsilon}(X_n) = \sum_{i=1}^k f(a_i) \mathbb{P}(a_{i-1} < X_n \le a_i) =$$

$$= \sum_{i=1}^k f(a_i) (F_n(a_i) - F_n(a_{i-1})) \xrightarrow[n \to \infty]{} \sum_{i=1}^k f(a_i) (F(a_i) - F(a_{i-1})) = \mathbb{E}g_{\varepsilon}(X)$$

und mit (4) folgt $\forall \varepsilon > 0 : f \leq g_{\varepsilon} + \varepsilon$ und $g_{\varepsilon} \leq f + \varepsilon$ und damit

$$\limsup_{n \to \infty} \mathbb{E}f(X_n) \leqslant \limsup_{n \to \infty} \mathbb{E}g_{\varepsilon}(X_n) + \varepsilon = \mathbb{E}g_{\varepsilon}(X) + \varepsilon \leqslant \mathbb{E}f(X) + 2\varepsilon$$
$$\liminf_{n \to \infty} \mathbb{E}f(X_n) \geqslant \limsup_{n \to \infty} \mathbb{E}g_{\varepsilon}(X_n) - \varepsilon = \mathbb{E}g_{\varepsilon}(X) - \varepsilon \geqslant \mathbb{E}f(X) - 2\varepsilon$$

und für $\varepsilon \to 0$ folgt, dass

$$\mathbb{E}f(X_n) \xrightarrow[n \to \infty]{} \mathbb{E}f(X)$$

II. $(i) \Longrightarrow (ii)$

Sei f wie in (ii). Für M > 1 definiere eine stetige Funktion g_M mit kompaktem Träger, wie folgt:

Also
$$g_M(x) := \begin{cases} 0 \text{ if } x \notin (-M-1, M+1] \\ 1 \text{ if } x \in (-M, M] \\ x + (M+1) \text{ if } x \in (-M-1, -M] \\ (M+1) - x \text{ if } x \in (M, M+1] \end{cases}$$

Wähle nun M groß genug, sodass $|1 - \mathbb{E}g_M(X)| < \varepsilon$ (möglich wegen $g_M(x) \xrightarrow{M \to \infty} 1$ und MONK). Die Funktion $f_M := f \cdot g_M$ ist dann stetig, beschränkt und hat kompakten Träger (einfache überlegung). Weiters folgt

$$\begin{aligned} \left| \mathbb{E}f(X_n) - \mathbb{E}f(X) \right| &= \left| \mathbb{E}\left[f(X_n) - f_M(X_n) + f_M(X_n) - f_M(X) + f_M(X) - f(X) \right] \right| \leqslant \\ &\leqslant \left| \mathbb{E}f(X_n) - \mathbb{E}f_M(X_n) \right| + \left| \mathbb{E}f_M(X_n) - \mathbb{E}f_M(X) \right| + \left| \mathbb{E}f_M(X) - f(X) \right| \end{aligned}$$

Betrachte nun der Reihe nach alle drei Summanden

$$\left| \mathbb{E} f(X_n) - f_M(X_n) \right| \leqslant \|f\|_{\infty} \left| \mathbb{E} [1 - g_M(X_n)] \right| \xrightarrow[n \to \infty]{} \|f\|_{\infty} \left| \mathbb{E} [1 - g_M(X)] \right| \leqslant \varepsilon \cdot \|f\|_{\infty}$$

$$\left| \mathbb{E}[f_M(X_n) - f_M(X)] \right| \xrightarrow[n \to \infty]{\text{Ann.}} 0$$

$$\left| \mathbb{E}f(X) - f_M(X) \right| \stackrel{\text{s.o.}}{\leqslant} \varepsilon \cdot \|f\|_{\infty}$$

Damit folgt

$$0 \leqslant \limsup_{n \to \infty} \left| \mathbb{E}[f(X_n) - f(X)] \right| \leqslant 2\varepsilon$$

und da $\varepsilon > 0$ beliebig war auch die Aussage.

III. (ii)
$$\Longrightarrow X_n \xrightarrow[n \to \infty]{d} X$$

III. (ii) $\Longrightarrow X_n \xrightarrow[n \to \infty]{d} X$ Für $t \in \mathbb{R}$ definiere stetige, beschränkte Funktionen f_{ε}^- und f_{ε}^+ wie folgt:

Dann ist $f_{\varepsilon}^- \leqslant \mathbb{1}_{(-\infty,t]} \leqslant f_{\varepsilon}^+$ und damit

$$\mathbb{E}f_{\varepsilon}^{-}(X_n) \leqslant F_n(t) \leqslant \mathbb{E}f_{\varepsilon}^{+}(X_n)$$

für alle $n \ge 1$. Es folgt mit DOMK

$$\mathbb{E}f_{\varepsilon}^{-}(X) \leqslant \liminf_{n \to \infty} F_n(t) \leqslant \limsup_{n \to \infty} F_n(t) \leqslant \mathbb{E}f_{\varepsilon}^{+}(X)$$

Aber

$$\mathbb{E}f_{\varepsilon}^{-}(X) \geqslant \mathbb{E}[\mathbb{1}_{(-\infty, t-\varepsilon]}(X)] = F(t-\varepsilon)$$
$$\mathbb{E}f_{\varepsilon}^{-}(X) \leqslant \mathbb{E}[\mathbb{1}_{(-\infty, t+\varepsilon]}(X)] = F(t+\varepsilon)$$

Wenn F also stetig im Punkt t ist, folgt $F_n(t) \xrightarrow[n \to \infty]{} F(t)$.

- 11.6. Satz (Portemanteau Theorem 2): Es gilt $X_n \xrightarrow[n\to\infty]{d} X$ genau dann, wenn eine der folgenden Bedingungen zutrifft:
 - (i) Für $O \subseteq \mathbb{R}$ offen ist $\mathbb{P}(X \in O) \leqslant \liminf_{n \to \infty} \mathbb{P}(X_n \in O)$.
 - (ii) Füpr $A \subseteq \mathbb{R}$ abgeschlossen ist $\mathbb{P}(X \in A) \geqslant \limsup_{n \to \infty} \mathbb{P}(X_n \in A)$.
- (iii) Für $B \in \mathcal{B}(\mathbb{R})$ mit $\mathbb{P}(X \in \partial B) = 0$ gilt $\mathbb{P}(X_n \in B) \xrightarrow[n \to \infty]{} \mathbb{P}(X \in B)$.

Beweis: (i) \iff (ii) folgt sofort aus O offen \iff O^c abgeschlossen.

I.
$$X_n \xrightarrow[n \to \infty]{} X \Longrightarrow (i)$$

Sei $O \subseteq \mathbb{R}$ offen und wähle stetige und beschränkte Funktionen (einfache berlegung, Hinweis: Jede offene Teilmenge von \mathbb{R} ist eine abzhlbare Vereinigung offener Intervalle) $f_m, m \geq 1$, sodass

$$0 \leqslant f_1 \leqslant \ldots \leqslant \lim_{m \to \infty} f_m = \mathbb{1}_O$$

Es folgt mit Portemanteau 1 (Satz 11.5)

$$\forall m \geqslant 1 : \mathbb{E} f_m(X) = \lim_{n \to \infty} \mathbb{E} f_m(X_n) \leqslant \liminf_{n \to \infty} \mathbb{P}(X_n \in O)$$

und damit

$$\mathbb{P}(X \in O) = \mathbb{E} \mathbb{1}_O(X) \stackrel{\text{MONK}}{=} \lim_{m \to \infty} \mathbb{E} f_m(X) \stackrel{\text{s.o.}}{\leqslant} \lim_{m \to \infty} \liminf_{n \to \infty} \mathbb{P}(X_n \in O) = \liminf_{n \to \infty} \mathbb{P}(X_n \in O)$$

II.
$$(i),(ii) \Longrightarrow (iii)$$

Sei $B \in \mathcal{B}(\mathbb{R})$ mit $\mathbb{P}(X \in \partial B) = 0$. Dann ist

$$\mathbb{P}(X \in B \setminus \partial B) = \mathbb{P}(X \in \text{int}(S)) = \mathbb{P}(X \in \text{clos}(S)) = \mathbb{P}(X \in S)$$

und damit

$$\mathbb{P}(X \in B) = \mathbb{P}(X \in \operatorname{clos}(B)) \overset{\text{(ii)}}{\geqslant} \limsup_{n \to \infty} \mathbb{P}(X_n \in \operatorname{clos}(B)) \geqslant \limsup_{n \to \infty} \mathbb{P}(X_n \in B)$$

$$\mathbb{P}(X \in B) = \mathbb{P}(X \in \text{int}(B)) \stackrel{\text{(i)}}{\leqslant} \liminf_{n \to \infty} \mathbb{P}(X_n \in \text{int}(B)) \leqslant \liminf_{n \to \infty} \mathbb{P}(X_n \in B)$$

und damit

$$\mathbb{P}(X_n \in B) \xrightarrow[n \to \infty]{} \mathbb{P}(X \in B)$$

III. (iii)
$$\Longrightarrow X_n \xrightarrow[n \to \infty]{d} X$$

III. (iii) $\Longrightarrow X_n \xrightarrow[n \to \infty]{d} X$ Für $B = (-\infty, t]$ ist $\mathbb{P}(X_n \in B) = F_n(t)$ und $\partial B = \{t\}$. Wenn F also stetig in t ist, folgt die Aussage.

11.7. Satz (Slutsky's Theorem): Wenn $X_n \xrightarrow[n \to \infty]{d} X$ und $Z_n \xrightarrow[n \to \infty]{d} Z$, mit $\mathbb{P}(Z = c) = 1$, dann gilt:

(i)
$$X_n + Z_n \xrightarrow[n \to \infty]{d} X + c$$

(ii)
$$X_n Z_b \xrightarrow[n \to \infty]{d} X_c$$

(iii) Falls
$$c \neq 0$$
: $\frac{X_n}{Z_n} \xrightarrow[n \to \infty]{d} \frac{X}{c}$

Beweis:

(i) Wenn t Stetigkeitspunkt der Verteilung von X+c ist, dann ist t-c Stetigkeitspunkt der Verteilung von X, also

$$\lim_{x \nearrow t} \mathbb{P}(X \leqslant x - c) = \lim_{x \nearrow c} \mathbb{P}(X + c \leqslant x) \stackrel{\text{Ann.}}{=} \mathbb{P}(X + c \leqslant t) = \mathbb{P}(X \leqslant t - c)$$

Damit folgt $X_n + c \xrightarrow[n \to \infty]{d} X + c$ für $c \in \mathbb{R}$.

Sei also $f: \mathbb{R} \to \mathbb{R}$ stetig mit kompaktem Träger. Dann ist f beschränkt und gleichmäßg stetig. Sei $\varepsilon > 0$ und wähle $\delta > 0$, sodass

$$\forall x, y \in \mathbb{R} : |x - y| < \delta \implies |f(x) - f(y)| < \varepsilon$$

Dann gilt

$$\begin{aligned} \left| \mathbb{E}f(X_n + Z_n) - \mathbb{E}f(X_n + c) \right| &\leq \mathbb{E} \left| f(X_n + Z_n) - f(X_n + c) \right| = \\ &= \mathbb{E} \left[\left| f(X_n + Z_n) - f(X_n + c) \right| \mathbb{1}_{|Z_n - c| > \delta} \right] \\ &+ \mathbb{E} \left[\left| f(X_n + Z_n) - f(X_n + c) \right| \mathbb{1}_{|Z_n - c| < \delta} \right] \leq \\ &\leq \varepsilon + 2 \|f\|_{\infty} \cdot \mathbb{P}(|Z_n - c| \geq \delta) \xrightarrow[n \to \infty]{} \varepsilon \end{aligned}$$

Für $\varepsilon \searrow 0$ und mit $X_n + c \xrightarrow[n \to \infty]{d} X + c$ folgt die Aussage mit Portememanteau 1 (Satz 11.5).

(ii) Zeige zuerst den Fall wo c = 0:

Hier genügt es mit Proposition 11.3 zu zeigen, dass $X_n Z_n \xrightarrow[n \to \infty]{P} 0$. Für $\varepsilon > 0$ gilt

$$\mathbb{P}(|X_n Z_n| > \varepsilon)
= \mathbb{P}(|X_n Z_n| > \varepsilon, |Z_n| > \delta) + \mathbb{P}(|X_n Z_n| > \varepsilon, |Z_n| \leq \delta)
\leq \mathbb{P}(|X_n Z_n| > \varepsilon, |Z_n| \leq \delta) + \mathbb{P}(|Z_n| > \delta)
= \mathbb{P}(X_n < -\varepsilon/\delta) + [1 - \mathbb{P}(X_n \leq \varepsilon/\delta)] + \mathbb{P}(|Z_n| > \delta)
\leq F_n(-\varepsilon/\delta) + 1 - F_n(\varepsilon/\delta) + \mathbb{P}(|Z_n| > \delta)$$

Wir können nun $\delta > 0$ so wählen, dass F in den Punkten $\pm \varepsilon / \delta$ stetig ist. Dann folgt

$$\limsup_{n \to \infty} \mathbb{P}(|X_n Z_n| > \varepsilon) \leqslant F(-\varepsilon/\delta) + [1 - F(\varepsilon/\delta)]$$

und für $\delta \searrow 0$ folgt die gewünschte Aussage.

Zeige nun den Fall wo $c \neq 0$:

Schreibe dazu $X_n Z_n = X_n (Z_n - c) + X_n c$. Es gilt $X_n c \xrightarrow[n \to \infty]{d} X_n c$ (einfach zu prüfen) und $(Z_n - c) \xrightarrow{P} 0$. Mit dem ersten Fall folgt

$$X_n(Z_n-c) \xrightarrow{P/d} 0$$

Mit (i) folgt also

$$X_n Z_n = X_n (Z_n - c) + X_n c \xrightarrow[n \to \infty]{d} X_c$$

(iii) Die Abbildung $t \mapsto 1/t$ ist steig auf $\mathbb{R} \setminus \{0\}$ und damit gilt

$$\frac{1}{Z_n} \xrightarrow[n \to \infty]{P} \frac{1}{c}$$

Mit (ii) folgt damit die Aussage.

11.8. Satz (Continuous Mapping Theorem, CMT): Seien $X_n, n \ge 1$ und X Zufallsvariablen, sodass $X_n \xrightarrow[n \to \infty]{d} X$ und sei $h : \mathbb{R} \to \mathbb{R}$ eine Abbildung, sodass es $H \in \mathcal{B}(\mathbb{R})$ gibt, mit $H \subseteq C(h)$ und $\mathbb{P}(X \in H) = 1$. Dann folgt

$$h(X_n) \xrightarrow[n \to \infty]{d} h(X)$$

Beweis: Sei $A \subseteq \mathbb{R}$ abgeschlossen. Dann gilt

$$h^{-1}A \subseteq \operatorname{clos}(h^{-1}A) \stackrel{\dagger}{\subseteq} h^{-1}A \cup H^c$$

† folgt mit einer kurzen überlegung aus der Tatsache, dass Urbilder abgeschlossener Mengen unter stetigen Funktionen wieder abgeschlossen sind.

Damit folgt nun

$$\limsup_{n \to \infty} \mathbb{P}(h(X_n) \in A) = \limsup_{n \to \infty} \mathbb{P}(X_n \in h^{-1}A)$$

$$\leqslant \limsup_{n \to \infty} \mathbb{P}(X_n \in \operatorname{clos}(h^{-1}A))$$

$$\stackrel{\text{PMT2}}{\leqslant} \mathbb{P}(X \in h^{-1}A)$$

$$\leqslant \mathbb{P}(X \in h^{-1}A \cup H^c)$$

$$\leqslant \mathbb{P}(X \in h^{-1}A) + \mathbb{P}(X \in H^c)$$

$$= \mathbb{P}(X \in h^{-1}A) = \mathbb{P}(h(X) \in A)$$

und da A eine beliebige abgeschlossene Teilmenge von \mathbb{R} war folgt mit PMT2 (Satz 11.6), dass

$$h(X_n) \xrightarrow[n \to \infty]{d} h(X)$$

11.9. Proposition (δ -Methode): Für eine Folge von Zufallsvariablen $X_n, n \ge 1$ mit

$$\sqrt{n}(X_n - \mu) \xrightarrow[n \to \infty]{d} \mathcal{N}(\prime, \sigma^{\in})$$

und eine Abbildung $f: \mathbb{R} \to \mathbb{R}$, die stetig im Punkt μ ist, gilt

$$\sqrt{n}(f(X_n) - f(\mu)) \xrightarrow[n \to \infty]{d} \mathcal{N}(0, (f'(\mu))^2 \sigma^2)$$

Eine hinreichende Bedingung an die $X_n, n \ge 1$ wäre z.B., dass sie einen zentralen Grenzwertsatz (siehe Sätze 11.25, 11.26, 11.27) erfüllen.

Beweis: Betrachte die Abbildung $q: \mathbb{R} \to \mathbb{R}$ mit

$$x \mapsto \begin{cases} f'(\mu) - \frac{f(x) - f(\mu)}{x - \mu} & \text{if } x \neq \mu \\ 0 & \text{if } x = \mu \end{cases}$$

Da $f'(\mu)$ existiert ist g stetig im Punkt μ (Definition der Ableitung). Dann gilt

$$f(x) - f(\mu) = f'(\mu)(x - \mu) - g(x)(x - \mu)$$

und damit

$$\sqrt{n}(f(X_n) - f(\mu)) = f'(\mu)\sqrt{n}(X_n - \mu) - g(X_n)\sqrt{n}(X_n - \mu) =: A_n - B_n$$

Mit Slutsky's Theorem (Satz 11.7. (ii)) und dem Reproduktionssatz folgt sofort $A_n \xrightarrow[n\to\infty]{d} \mathcal{N}(0, (f'(\mu))^2 \sigma^2)$. Es genügt mit Slutky's Theorem (Satz 11.7. (i)) also zu zeigen, dass $B_n \xrightarrow[n\to\infty]{P} 0$.

Sei $Z \sim \mathcal{N}(0, \sigma^2)$. Dann gilt (einfache überlegung) $X_n - Z \xrightarrow{P} 0$. Dag stetig in μ ist, gilt mit dem Continuous Mapping Theorem (Satz 11.8) $g(X_n) \xrightarrow{P} g(\mu) = 0$. Dann folgt erneut mit Slutsky's Theorem $B_n \xrightarrow{P/d} 0$ und damit die Behauptung.

11.10. Satz Seien $X_n, n \ge 1$ gleichgradig integrierbar und $X_n \xrightarrow[n \to \infty]{d} X$. Dann folgt $X \in L_1$ und $\mathbb{E}X_n \xrightarrow[n \to \infty]{} \mathbb{E}X$.

Beweis:

I. $X_n, n \ge 0$ und X alle nicht-negativ Aus der gleichgradigen Integrierbarkeit folgt mit Lemma 9.2

$$\limsup_{n \to \infty} \mathbb{E}|X_n| = B < \infty$$

Für alle M > 1 definiere $g_M(\cdot)$ wie im Beweis von Satz 11.5 (PMT1, Teil II). Dann ist g_M stetig, beschränkt und hat kompakten Träger. Also ist die Abbildung mit $t \mapsto t \cdot g_M(t)$ stetig mit kompaktem Träger und es gilt $\forall m \ge 1$

$$0 \leqslant \mathbb{E}[Xg_M(X)] \stackrel{\mathrm{PMT1}}{=} \lim_{n \to \infty} \mathbb{E}[X_n g_M(X_n)] \stackrel{g_M \leqslant 1}{\leqslant} \limsup_{n \to \infty} \mathbb{E}X_n \leqslant \limsup_{n \to \infty} \mathbb{E}|X_n| = B < \infty$$

Gleichzeitig gilt aber

$$0 \leqslant Xg_1(X) \leqslant \ldots \leqslant \lim_{M \to \infty} Xg_M(X) = X$$

und mit MONK

$$0 \leqslant \mathbb{E}X = \lim_{M \to \infty} \mathbb{E}[Xg_M(X)] \leqslant B$$

und da $\mathbb{E}X = \mathbb{E}|X|$, folgt $X \in L_1$.

Zeige nun die Konvergenz:

$$\begin{aligned} \left| \mathbb{E} X_n - \mathbb{E} X \right| &= \left| \mathbb{E} [X_n g_M(X_n) - X + X_n - X_n g_M(X_n)] \right| \\ &\leq \left| \mathbb{E} [X_n g_M(X_n)] - \mathbb{E} X \right| + \mathbb{E} |X_n| \left| 1 - g_M(X_n) \right| \\ &\leq \left| \mathbb{E} [X_n g_M(X_n)] - \mathbb{E} X \right| + \mathbb{E} |X_n| \cdot \mathbb{1}_{\{|X_n| \geqslant M\}} \end{aligned}$$

Damit folgt mit PMT1

$$\limsup_{n\to\infty} |\mathbb{E} X_n - \mathbb{E} X| \leqslant \left| \mathbb{E} [Xg_M(X)] - \mathbb{E} X \right| + \limsup_{n\to\infty} \mathbb{E} |X_n| \cdot \mathbb{1}_{\{|X_n| \geqslant M\}}$$

und für $M \to \infty$

$$\limsup_{n\to\infty} |\mathbb{E} X_n - \mathbb{E} X| \leqslant \limsup_{M\to\infty} \left| \mathbb{E} X g_M(X) - \mathbb{E} X \right| + \limsup_{M\to\infty} \limsup_{n\to\infty} \mathbb{E} |X_n| \cdot \mathbb{1}_{\{|X_n| \geqslant M\}} = 0$$

wobei die letzte Gleichung mit MONK und der Def. von gleichgradiger Integrierbarkeit folgt.

II. allgemeiner Fall

Die Abbildung mit $t \mapsto \max(t,0)$ ist stetig auf \mathbb{R} , sodass mit dem Continuous Mapping Theorem (Satz 11.8) fr $X^+ := \max(X,0)$ und $X_n^+ := \max(X_n,0)$ gilt

$$X_n^+ \xrightarrow[n \to \infty]{d} X^+$$

Da $0 \le X_n^+ \le |X_n^+|$ und die $X_n, n \ge 1$ gleichgradig integrierbar sind, sind auch die $X_n^+, n \ge 1$ gleichgradig integrierbar. Mit dem I. Fall folgt

$$\mathbb{E}X_n^+ \xrightarrow[n \to \infty]{} \mathbb{E}X^+$$

Dasselbe gilt fr den Negativteil und es folgt

$$\mathbb{E}X_n \xrightarrow[n\to\infty]{} \mathbb{E}X$$

mit den Rechenregeln fr Konvergenz von Folgen reeler Zahlen.

Schwach konvergente Teilfolgen

Erinnerung Analysis: Jede Folge reeller Zahlen $a_n, n \geqslant 1$ enthält eine Teilfolge $a_{n_i}, i \geqslant 1$, die gegen einen Grenzwert $\alpha \in \overline{\mathbb{R}}$ konvergiert, i.e. $\alpha = \lim_{i \to \infty} a_{n_i} \in \overline{\mathbb{R}}$. Falls $a_n, n \geqslant 1$ zusätzlich beschränkt ist, dann gilt $\alpha \in \mathbb{R}$. ähnliches gilt für Wahrscheinlichkeitsmaße.

Reimnder: $b_n, n \ge 1$ ist eine Teilfolge von $a_n, n \ge 1$, falls eine bijektive, streng monoton steigende Abbildung $f: \mathbb{N} \to \mathbb{N}$ existiert, sodass $b_n = a_{f(n)}$ für alle $n \ge 1$.

11.11. Satz (Helly's Selection Theorem): Sei $F_n, n \ge 1$ eine Folge von Verteilungsfunktionen (cdfs). Dann existiert eine Teilfolge $F_{n_i}, i \ge 1$ und eine monoton-nichtfallende rechtsstetige Funktion $F: \mathbb{R} \to \mathbb{R}$ mit linksseitigen Grenzwerten (cdlg), sodass

$$\forall t \in C(F) : F_{n_i}(t) \xrightarrow[i \to \infty]{} F(t)$$

Dabei ist aber <u>nicht</u> garantiert, dass F auch eine cdf ist (also $\lim_{t\to\infty} F(t) = 1$, $\lim_{t\to-\infty} F(t) = 0$)!

Beweis: Ordne $\mathbb{Q} = \{q_1, q_2, \ldots\}$ und wähle aus der vollen Folge $n = 1, 2, 3, \ldots$ eine erste Teilfolge $n_i(1), i \ge 1$, sodass $F_{n_i(1)}(q_1)$ für $i \to \infty$ kovergiert (möglich da $F_n \le 1$, cf. Anmerkung unter der Unterüberschrift).

Wähle nun eine weitere (Teil-)Teilfolge $n_i(2), i \ge 1$, sodass $F_{n_i(2)}(q_2)$ für $i \to \infty$ konvergiert.

Für die k-te Teilfolge $n_i(k), i \ge 1$ existieren dann die Grenzwerte

$$\lim_{i \to \infty} F_{n_i(k)}(q_\ell), \ \ell = 1, \dots, k$$

Setze nun $n_i := n_i(i)$ für $i \ge 1$. Dann konvergiert $F_{n_i}(q_\ell)$ für jedes $\ell \ge 1$, da n_i ab dem Index $i = \ell$ eine Teilfolge von $n_\ell(1)$ ist. Setze nun für $q \in \mathbb{Q}$

$$G(q) := \lim_{i \to \infty} F_{n_i}(q)$$

Dann ist $G: \mathbb{Q} \to [0,1]$ monoton-nichtfallend auf \mathbb{Q} , da jedes Element der Folge $F_{n_i}(q)$ monoton-nichtfallend ist. Für $t \in \mathbb{R}$ definiere nun

$$F(t) := \inf\{G(q) : q \geqslant t, q \in \mathbb{Q}\}\$$

Als infimum einer nichtleeren Menge ist F(t) damit für alle $t \in \mathbb{R}$ wohldefiniert und

1. F ist monoton-nichtfallend auf \mathbb{R} , da

$$s \leqslant t \implies \{G(q) : q \geqslant s, q \in \mathbb{Q}\} \supseteq \{G(q) : q \geqslant t, q \in \mathbb{Q}\}$$

2. F ist rechtsstetig auf \mathbb{R} :

Sei $\varepsilon > 0, t \in \mathbb{R}$. Dann gibt es mit der Greatest Lower Bound Property $q \in \mathbb{Q}, q \geqslant t$, sodass

$$F(t) \leqslant G(q) \leqslant F(t) + \varepsilon$$

da \mathbb{Q} dicht in \mathbb{R} liegt. Damit gilt

$$\forall s \in [t, q] : F(t) \leqslant F(s) \leqslant F(q) = G(q) \leqslant F(t) + \varepsilon$$

und für $\varepsilon \searrow 0$ folgt die Aussage.

3. $F_{n_i} \xrightarrow[n \to \infty]{} F$ auf C(F):

Sei F stetig in t, und sei $\varepsilon > 0$. Wähle nun $\delta > 0$, sodass

$$|t-s| < \delta \implies |F(t) - F(s)| < \varepsilon$$

Wähle nun $r, q \in \mathbb{Q}$, sodass

$$t - \delta < r < t < a < t + \delta$$

und somit

$$F(t) - \varepsilon < F(r) \leqslant F(t) \leqslant F(q) < F(t) + \varepsilon$$

Mit der Definition von G und F folgt nun

$$F_{n_i}(r) \leqslant F_{n_i}(t) \leqslant F_{n_i}(q)$$

wobei die linke und rechte Schranke gegen G(r) bzw. G(q) konvergieren, also

$$F(t) - \varepsilon < G(r) \leqslant \liminf_{i \to \infty} F_{n_i}(t) \leqslant \limsup_{i \to \infty} F_{n_i}(t) \leqslant G(q) < F(t) + \varepsilon$$

und für $\varepsilon \searrow 0$ folgt die Aussage.

11.12. Definition: Eine Folge von Zufallsvariablen $X_n, n \ge 1$ ist stochastisch beschränkt, wenn gilt:

$$\sup_{n\geqslant 1} \mathbb{P}(|X_n| > M) \xrightarrow[M\to\infty]{} 0$$

Die entsprechende Folge der Maße/cdfs nennt man dann straff.

11.13. Lemma: $X_n, n \ge 1$ ist genau dann stochastisch beschränkt, wenn gilt:

$$\forall \varepsilon > 0 \exists g : \mathbb{R} \to [0, \infty) \text{ messbar} : \limsup_{n \to \infty} \mathbb{E}g(X_n) \leqslant \varepsilon \cdot \liminf_{|t| \to \infty} g(t)$$
 (5)

Beweis:

 $I. \implies$

Wähle $a_0 < a_1 < \ldots$ mit $a_k \xrightarrow[k \to \infty]{} \infty$, sodass mit der stochastischen Beschränktheit

$$\forall n \geqslant 1 : \mathbb{P}(|X_n| > a_k) < \left(\frac{1}{4}\right)^k$$

(Setze $\varepsilon = 4^{-k}$ und setze a_k dann einfach groß genug). Setze nun

$$g(t) := \sum_{k>0} 2^k \mathbb{1}_{(a_k, a_{k+1}]}(|t|)$$

Dann ist g messbar (einfaches Argument) und $\liminf_{|t|\to\infty}g(t)=\infty$ (folgt z.B. aus $\liminf\geqslant\inf$). Weiters gilt

$$\forall n \geqslant 1 : \mathbb{E}g(X_n) = \sum_{k \geqslant 0} 2^k \mathbb{P}(a_k < |X_n| \leqslant a_{k+1})$$

$$\leqslant \sum_{k \geqslant 0} 2^k \mathbb{P}(|X_n| > a_k)$$

$$\leqslant \sum_{k \geqslant 0} 2^k \frac{1}{4^k} = 2 < \infty$$

Es gilt also $\forall \varepsilon > 0$

$$\limsup_{n\to\infty} \mathbb{E}g(X_n) \leqslant 2 \leqslant \infty = \varepsilon \cdot \liminf_{|t|\to\infty} g(t)$$

II. ←

Sei $\varepsilon > 0$ und wähle g, sodass (5) gilt.

$$\liminf_{|t| \to \infty} g(t) = \lim_{T \to \infty} \inf_{|t| > T} g(t)$$

wobei $\inf_{|t|>T}g(t)$ monoton nicht-fallend in T ist. Mit der Annahme können wir T>0 wählen, sodass

$$\limsup_{n \to \infty} \mathbb{E}g(X_n) \leqslant \varepsilon \cdot \inf_{|t| > T} g(t) \leqslant \varepsilon \cdot \liminf_{|t| \to \infty} g(t)$$

Wähle nun $c \in \mathbb{R}$, sodass

$$\limsup_{n \to \infty} \mathbb{E}g(X_n) < c < \leqslant \varepsilon \cdot \inf_{|t| > T} g(t) \leqslant \varepsilon \cdot \liminf_{|t| \to \infty} g(t)$$

Für |t| > T ist dann $c < \varepsilon g(t)$, bzw. $1 < \varepsilon g(t)/c$ und damit

$$\begin{split} \lim\sup_{n\to\infty} \mathbb{P}(|X_n| > T) &= \limsup_{n\to\infty} \mathbb{E}\left[1 \cdot \mathbb{1}_{\{|X_n| > T\}}\right] \\ &\leqslant \limsup_{n\to\infty} \mathbb{E}\left[\frac{\varepsilon g(X_n)}{c} \mathbb{1}_{\{|X_n| > T\}}\right] \\ &\leqslant \frac{\varepsilon}{c} \cdot \limsup_{n\to\infty} \mathbb{E}g(X_n) < \varepsilon \end{split}$$

Damit gibt es ein $n_0 \in \mathbb{N}$, sodass für $n \ge n_0 : \mathbb{P}(|X_n| > T) < \varepsilon$. Wähle nun S > 0 groß genug, sodass für $n = 1, \ldots, n_0 - 1 : \mathbb{P}(|X_n| > S) < \varepsilon$ und setze $M := \max(S, T)$. Damit gibt es für jedes $\varepsilon > 0$ ein M > 0, sodass

$$\forall n \geqslant 1 : \mathbb{P}(|X_n| > M) < \varepsilon$$

und insbesondere $\sup_{n\geqslant 1} \mathbb{P}(|X_n| > M) \xrightarrow[M\to\infty]{} 0.$

11.14. Satz (Prokorov Theorem): Betrachte eine Folge von cdfs $F_n, n \ge 1$. Dann sind folgende Aussagen äquivalent:

- (i) Die $F_n, n \ge 1$ sind straff.
- (ii) Jede Teilfolge F_{n_i} , $i \ge 1$ enthält eine weitere Teilfolge $F_{n_{i_k}}$, $k \ge 1$, sodass

$$F_{n_{i_k}} \xrightarrow[k \to \infty]{d} F$$

für eine $\operatorname{cdf} F$.

Beweis:

I. (i) \Longrightarrow (ii)

Helly's Selection Theorem (Satz 11.11) liefert uns eine Teilfolge $F_{n_{i_k}}, k \ge 1$ und eine monoton nicht-fallende cdlg Funktion F, sodass $F_{n_{i_k}} \xrightarrow[k \to \infty]{d} F$. Zeige also

$$F(t) \xrightarrow[t \to \infty]{} 1 \text{ und } F(t) \xrightarrow[t \to -\infty]{} 0$$

Da die $F_n, n \ge 1$ straff sind, kann man $M_\ell, \ell \ge 1$ wählen, sodass

$$\sup_{n \ge 1} \left[F_n(-M_{\ell}) + 1 - F_n(M_{\ell}) \right] \le \sup_{n \ge 1} \mathbb{P}(|X_n| > M_{\ell}) < \frac{1}{\ell}$$

O.B.d.A. seien $\pm M_\ell$ Stetigskeitspunkte und $M_\ell + 1 < M_{\ell+1} \xrightarrow[\ell \to \infty]{} \infty$ für alle $\ell \geqslant 1$. Dann gilt $F_{n_{i_k}}(M_\ell) = 1 - [1 - F_{n_{i_k}}(M_\ell)] > 1 - 1/\ell$ und damit

$$\lim_{t \to \infty} F_n(t) = \lim_{\ell \to \infty} F(M_\ell) = \lim_{\ell \to \infty} \left(\lim_{k \to \infty} F_{n_{i_k}}(M_\ell) \right) \geqslant 1$$

Da aber für alle $k \ge 1$ $F_{n_{i_k}}(M_\ell) \le 1$ sind, folgt

$$\lim_{t \to \infty} F(t) = 1$$

Ein ähnliches Argument funktionert für $\lim_{t\to-\infty} F(t)$.

II. (ii) \Longrightarrow (i)

Angenommen die $F_n, n \ge 1$ sind nicht straff

$$\implies \exists \varepsilon > 0 \forall M > 0 : \sup_{n \ge 1} \mathbb{P}(|X_n| > M) \ge \varepsilon \tag{6}$$

Wähle nun $n_i, i \ge 1$ so, dass

$$F_{n_i}(-i) + 1 - F_{n_i}(i) > \frac{\varepsilon}{2}$$

Wegen (6) können die $n_i, i \ge 1$ monoton steigend gewählt werden. Laut Voraussetzung existiert nun eine weitere Teilfolge $F_{n_{i_k}}, k \ge 1$ und eine cdf F, sodass

$$F_{n_{i_k}} \xrightarrow[k \to \infty]{d} F$$

Weil F eine cdf ist, gibt es M > 0, sodass

$$F(-M) + 1 - F(M) < \frac{\varepsilon}{2}$$

Seien o.B.d.A. $\pm M$ Stetigkeitspunkte von F. Dann gilt

$$F(-M) + 1 - F(M) = \lim_{k \to \infty} \left[F_{n_{i_k}}(-M) + 1 - F_{n_{i_K}}(M) \right] < \frac{\varepsilon}{2}$$

Da aber

$$F_{n_{i_k}}(-M) + 1 - F_{n_{i_k}}(M) \geqslant F_{n_{i_k}}(-i_k) + 1 - F_{n_{i_k}}(i_k) \geqslant \varepsilon > \frac{\varepsilon}{2}$$

für hinreichend große k (sodass $i_k \geqslant M$) ergibt sich hier ein Widerspruch zur Annahme (6).

Charakteristische Funktionen

Betrachte $\mathbb{C} = \{a + ib \ a, b \in \mathbb{R}\}$ isomorph zu \mathbb{R}^2 (im Sinne von Vektorräumen). Weil $|a + ib|^2 = \|(a,b)\|_2^2$, kann man $\mathcal{B}(\mathbb{C})$, die von den offenen Teilmengen in \mathbb{C} erzeugte σ -Algebra, auch als $\mathcal{B}(\mathbb{R}^2)$ betrachten. In diesem Kapitel sei $(\Omega, \mathcal{A}, \mathbb{P})$ wieder ein generischer Wahrscheinlichkeitsraum.

11.15. Definition: Sei $X : \Omega \to \mathbb{C}$ eine Zufallsvariable und schreibe $X = \Re(X) + \Im(X)$ ($\Re(z)$ ist der Realteil von $z \in \mathbb{C}$ und $\Im(z)$ ist der Imaginärteil von $z \in \mathbb{C}$). Sind $\Re(X)$ und $\Im(X)$ beide integrierbar (bzgl.), dann nennt man X integrierbar und setzt

$$\int X \ d\mathbb{P} := \int \Re(X) \ d\mathbb{P} + i \int \Im(X) \ d\mathbb{P}$$

Bemerkung: Es gilt $X \in L_1 \iff |X| \in L_1$, denn

$$\max(\Re(X),\Im(X)) \leqslant |(\Re(X))^2 + (\Im(X))^2|^{1/2} = |X| \leqslant |\Re(X)| + |\Im(X)|$$

11.16. Lemma: Das oben definierte Lebesgue-Integral ist linear und für $X \in L_1$ gilt die Dreiecksungleichung

$$|\mathbb{E}X| \leq \mathbb{E}|X|$$

Beweis: folgt noch

Bemerkung: Es gilt (einfacher Beweis, cf. komplexe Analysis)

$$e^{ix} = \cos(x) + i\sin(x)$$

$$\frac{\partial}{\partial x}e^{ix} = ie^{ix}$$

11.17. **Definition:** Die charakteristische Funktion (cf) einer Zufallsvariable $X:\Omega\to\mathbb{R}$ ist definiert als

$$\varphi_X(t) := \mathbb{E}\left[e^{itX}\right], \forall t \in \mathbb{R}$$

 $\varphi:\mathbb{R}\to\mathbb{C}$ ist mit DOMK immer wohldefiniert, da $\left|e^{itX}\right|\leqslant 1$

11.18. Proposition: Seien X, Y reellwertige, unabhängige Zufallsvariablen. Dann gilt

$$\varphi_{X+Y} = \varphi_X(t)\varphi_Y(t)$$

Beweis:

$$\begin{split} \varphi_{X+Y}(t) &= \mathbb{E}\left[e^{itX}e^{itY}\right] \\ &= \mathbb{E}\left[(\cos(tX) + i\sin(tX))(\cos(tY) + i\sin(tY))\right] \\ &= \mathbb{E}\left[\cos(tX)\cos(tY) + i\cos(tX)\sin(tY) + i\sin(tX)\cos(tY) - \sin(tX)\sin(tY)\right] \\ &\stackrel{\in \mathbb{R}}{=} \mathbb{E}\left[\cos(tX) + i\sin(tX)\right] \mathbb{E}\left[\cos(tY) + i\sin(tY)\right] = \varphi_X(t)\varphi_Y(t) \end{split}$$

11.19. Lemma: Die momenterzeugende Funktion (mgf) einer reellwertigen Zufallsvariable X

$$M_X(t) := \mathbb{E}\left[e^{tX}\right]$$

sei wohldefiniert in einer offenen Umgebung von 0, i.e.

$$\exists t_0 > 0 : M_X(t)$$
 existert für $t \in (-t_0, t_0)$

Dann folgt

$$\forall k \geqslant 0 : X \in L_k \text{ und } \mathbb{E}X^k = \frac{\partial^k}{\partial t^k} M_X(t) \bigg|_{t=0}$$

Beweis: Sei $M_X(t)$ wohldefiniert für $|t| < t_0$ mit $t_0 > 0$. Dann folgt mit

$$0 \leqslant e^{t|X|} \leqslant e^{tX} + e^{-tX}$$

dass

$$\forall |t| < t_0 : e^{t|X|} \in L_1$$

Sei also $t < t_0$. Per Definition ist

$$e^{tX} = \sum_{k>0} \frac{(tX)^k}{k!}$$

wobei die Partialsummen im Betrag durch $e^{|tX|} \in L_1$ beschränkt sind. Mit DOMK gilt damit

$$M_X(t) = E\left[e^{tX}\right] = \lim_{n \to \infty} \sum_{k=1}^n \frac{t^k \mathbb{E} X^k}{k!}$$

wobei die Reihe absolut konvergiert, da

$$\sum_{k\geqslant 0} \frac{|t^k \mathbb{E} X^k|}{k!} \leqslant \sum_{k\geqslant 0} \frac{|t^k|\mathbb{E} |X|^k}{k!} \overset{\text{MONK}}{=} \mathbb{E} \left[\sum_{k\geqslant 0} \frac{|t^k|X^k}{k!} \right] = \mathbb{E} \left[e^{|tX|} \right] < \infty$$

Differenzieren liefert dann

$$\frac{\partial^{\ell}}{\partial t^{\ell}} M_X(t) = \sum_{k \geqslant \ell} \frac{k(k-1)\dots(k-\ell+1)}{k!} t^{k-\ell} \mathbb{E} X^k$$

und mit t = 0 das gewünschte Ergebnis.

11.20. Satz (Inversions- und Eindeutigkeitssatz): Sei φ die cf und F die cdf einer reelwertigen Zufallsvariable X. Dann gilt

$$F(t) = \lim_{n \to \infty} \frac{1}{2\pi} \int_{-\infty}^{t} \int_{-\infty}^{+\infty} \exp\left(-\frac{w^2}{2n^2} + iwv\right) \varphi(-w) \ dw \ dv$$

für jedes t mit $\mathbb{P}(x=t)=0$. Wegen der rechtsstetigkeit von F ist F(t) damit für jedes $t\in\mathbb{R}$ eindeutig durch φ definiert.

Bermerkung: In der Literatur wird oft

$$\mathbb{P}(a \leqslant X < b) = \lim_{T \to \infty} \frac{1}{2\pi} \int_{-T}^{T} \frac{e^{-ita} - e^{-itb}}{it} \varphi(t) dt$$

angegeben für $\mathbb{P}(X = a) = \mathbb{P}(x = b) = 0.$

Beweis: Die Idee ist Folgende:

Sei $Z \sim \mathcal{N}(0,1)$ u.a. von X und setze $X_n := X + Z/n$. Dann gilt $X_n \xrightarrow[n \to \infty]{a.s.} X$ und als Konsequenz auch $F_n \xrightarrow[n \to \infty]{d} F$. Für t mit $\mathbb{P}(X = t) = 0$, folgt dann $F_n(t) \xrightarrow[n \to \infty]{} F(t)$. Zeige nun:

- I. X_n hat eine Dichte f_n bzgl. dem Lebesgue-Maß $\lambda = \text{vol}$
- II. Diese Dichte ist von der Form

$$f_n(v) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \exp\left(-\frac{w^2}{2n^2} + iwv\right) \varphi(-w) \ dw$$

I. Z/n hat eine Riemann-integrierbare Dichte $\phi_{0,1/n^2}=:\phi$ bzgl. λ und somit folgt

$$F_{n}(t) = \mathbb{P}(X + Z/n \leq t)$$

$$\text{Tonelli, u.a.} \int \int_{(X)(Z)} \mathbb{1}_{(-\infty,t]}(x+v) \ d\mathbb{P}_{Z/n}(v) \ d\mathbb{P}_{X}(x)$$

$$= \int \int_{(X)-\infty}^{t-x} \phi(v) \ dv \ d\mathbb{P}_{X}(x)$$

$$w \stackrel{=}{=} t \int_{X} \int_{-\infty}^{t} \phi(w-x) \ dw \ d\mathbb{P}_{X}(x)$$

$$= \int \int \int_{(X)(W)} \mathbb{1}_{(-\infty,t]}(w)\phi(w-x) \ d\lambda(w) \ d\mathbb{P}_{X}(x)$$

$$\stackrel{\text{Tonelli}}{=} \int \int_{(W)(X)} \mathbb{1}_{(-\infty,t]}(w)\phi(w-x) \ d\mathbb{P}_{X}(x) \ d\lambda(w)$$

$$= \int \int_{(W)} \mathbb{1}_{(-\infty,t]}(w) \left[\int_{(X)} \phi(w-x) \ d\mathbb{P}_{X}(x) \right] \ d\lambda(w)$$

$$= \int \int_{-\infty}^{t} \mathbb{E}_{X} \left[\phi(w-X) \right] d\lambda(w)$$

Damit ist $f_n(v) := \mathbb{E}_X \left[\phi(v-X) \right]$ eine Dichte von X_n .

II. Es gilt

$$\phi(t) = \frac{n}{\sqrt{2\pi}} \exp\left(-\frac{t^2 n^2}{2}\right) = \frac{n}{\sqrt{2\pi}} \varphi_Z(nt)$$

und damit

$$f_{n}(v) = \mathbb{E}_{X} \left[\phi(v - X) \right]$$

$$= \mathbb{E}_{X} \left[\frac{n}{\sqrt{2\pi}} \varphi_{Z}[n(v - X)] \right]$$

$$= \mathbb{E}_{X} \left[\frac{n}{\sqrt{2\pi}} \mathbb{E}_{Z} \left[e^{invZ - inXZ} \right] \right]$$

$$\stackrel{\text{Fubini}}{=} \frac{n}{\sqrt{2\pi}} \mathbb{E}_{Z} \left[\mathbb{E}_{X} \left[e^{invZ} e^{-inXZ} \right] \right]$$

$$= \frac{n}{\sqrt{2\pi}} \mathbb{E}_{Z} \left[e^{invZ} \mathbb{E}_{X} \left[e^{-inXZ} \right] \right]$$

$$= \frac{n}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \frac{1}{n\sqrt{2\pi}} \exp\left(-\frac{w^{2}}{2n^{2}} \right) \exp\left(iwv \right) \mathbb{E}_{X} \left[e^{-iwX} \right] dw$$

$$= \frac{1}{2\pi} \int_{-\infty}^{+\infty} \exp\left(-\frac{w^{2}}{2n^{2}} + iwv \right) \varphi(-w) dw$$

wobei der vorletzte Schritt mit der Erwartung von $nZ \sim \mathcal{N}(0, n^2)$ folgt.

11.21. Satz (Lévy Continuity Theorem/Stetigkeitssatz): Betrachte eine Folge von reellwertigen Zufallsvariablen $X_n, n \ge 1$ mit entsprechenden cdfs $F_n, n \ge 1$ und cfs $\varphi_n, n \ge 1$. Wenn

- (i) $\forall t \in \mathbb{R} : \exists \lim_{n \to \infty} \varphi_n(t) =: \gamma(t) \in \mathbb{C}$
- (ii) $\gamma(t)$ stetig im Punkt t=0

dann folgt, dass γ die cf einer cdf F ist, und

$$F_n \xrightarrow[n \to \infty]{d} F$$

Beweis: Seien $X_n, n \ge 1$ jeweils F_n -verteilt. Zeige (später), dass die F_n straff sind. Mit Prokorov (Satz 11.14) gibt es dann eine Teilfolge $F_{n_j}, j \ge 1$, sodass

$$F_{n_j} \xrightarrow[j\to\infty]{d} F$$

für eine cdf einer Zufallsvariable X. Da die Funktionen sin, cos auf \mathbb{R} stetig und beschränkt sind folgt mit PMT1 (Satz 11.5)

$$\forall t \in \mathbb{R} : \varphi_{n_j}(t) \xrightarrow[j \to \infty]{} \varphi_X(t)$$

für φ_X die cf von X. Wegen Annahme (i) und weil der Grenzwert von $\varphi_{n_j}(t)$ derselbe wie von $\varphi_n(t)$ sein muss (cf. Analysis: wenn eine Folge konvergiert, dann konvergiert jede Teilfolge zum selben Grenzwert), folgt damit

$$\forall t \in \mathbb{R} : \varphi_n(t) \xrightarrow[n \to \infty]{} \varphi_X(t)$$

Zeige nun $F_n \xrightarrow[n \to \infty]{d} F$. Angenommen nicht:

$$\implies \exists \text{Teilfolge}(F_{n_k})_{k\geqslant 1}: F_{n_k} \xrightarrow{d} F$$

Aber $F_{n_k}, k \ge 1$ ist straff, da $F_n, n \ge 1$ straff ist und enthält mit Helly (Satz 11.11) und Prokorov (Satz 11.14) daher eine weitere Teilfolge $F_{n_{k_\ell}}, \ell \ge 1$ mit

$$F_{n_{k_{\ell}}} \xrightarrow[\ell \to \infty]{d} G$$

für eine cdf G. Damit gilt

$$\forall t \in \mathbb{R} : \varphi_{n_{k_{\ell}}}(t) \xrightarrow[\ell \to \infty]{} \varphi_{G}(t)$$

und damit (siehe oben)

$$\forall t \in \mathbb{R}\varphi_n(t) \xrightarrow[n \to \infty]{} \varphi_G(t)$$

Wegen (ii) gilt aber $\varphi_X(t) = \varphi_G(t)$ und mit dem Inversion Theorem (Satz 11.20) folgt

$$G \stackrel{d}{=} F$$

ein Widerspruch.

11.22. Satz Betrachte eine Folge von Zufallsvariablen $X_n, n \ge 1$ mit cdfs $F_n, n \ge 1$ und cfs $\varphi_n, n \ge 1$. Es gilt

$$X_n \xrightarrow[n \to \infty]{d} X \iff \varphi_n \xrightarrow[n \to \infty]{} \varphi$$

Beweis: Die Implikation \implies folgt trivial mit PMT1, da cos, sin stetig und beschränkt auf \mathbb{R} sind. Zeige also die Implikation \iff

Dazu genügt es zu zeigen, dass $\varphi(\cdot)$ stetig im Punkt t=0 ist (dann folgt mit dem Lévy Continuity Theorem, dass $F_n \xrightarrow[n \to \infty]{d} F$). Es gilt

$$\left|e^{itX}\right| \leqslant 1$$
 und $e^{itX} \xrightarrow[t \to 0]{a.s.} 1$ (sogar punktweise)

Mit DOMK folgt daher

$$\varphi(t) = \mathbb{E}\left[e^{itX}\right] \xrightarrow[t \to 0]{} 1 = \varphi(0)$$

und damit die Aussage.

Zentrale Grenzwertsätze

11.23. Lemma: Seien $z_i, w_i \in \mathbb{C}$ mit $|z_i|, |w_i| \leq 1, i = 1, \ldots, n$. dann gilt folgende Ungleichung

$$|z_1 \cdot \ldots \cdot z_n - w_1 \cdot \ldots \cdot w_n| \leqslant \sum_{i=1}^n |z_i - w_i|$$

Beweis: Induktiv nach n.

- 1. Base (P(1)): $|z_1 w_1| \le |z_1 w_1|$
- 2. Induktionsschritt $(P(n) \implies P(n+1))$:

$$|z_{1} \cdot \ldots \cdot z_{n} \cdot z_{n+1} - w_{1} \cdot \ldots \cdot w_{n} \cdot w_{n+1}|$$

$$= |z_{1} \cdot \ldots \cdot z_{n} \cdot z_{n+1} - z_{1} \cdot \ldots \cdot z_{n} w_{n+1} + z_{1} \cdot \ldots \cdot z_{n} w_{n+1} - w_{1} \cdot \ldots \cdot w_{n} \cdot w_{n+1}|$$

$$= |z_{1} \cdot \ldots \cdot z_{n} \cdot (z_{n+1} - w_{n+1}) - w_{n+1} \cdot (z_{1} \cdot \ldots \cdot z_{n} - w_{1} \cdot \ldots \cdot w_{n})|$$

$$\leq |z_{1} \cdot \ldots \cdot z_{n}| \cdot |z_{n+1} - w_{n+1}| + |w_{n+1}||z_{1} \cdot \ldots \cdot z_{n} - w_{1} \cdot \ldots \cdot w_{n}|$$

$$\leq \sum_{i=1}^{n+1} |z_{i} - w_{i}|$$

11.24. Lemma: Für $x \in \mathbb{R}$ und $n \in \mathbb{N}_0$ ist

$$e^{ix} = \sum_{k=0}^{n} \frac{(ix)^k}{k!} + R_n(x)$$

mit Rest

$$R_n(x) = \frac{i^{n+1}}{n!} \int_{0}^{x} (x-s)^n e^{is} ds$$

wobei insbesondere gilt

$$R_n(x) \le \min\left(\frac{|x|^{n+1}}{(n+1)!}, \frac{2|x|^n}{n!}\right)$$

(wobei uns später im Beweis des Lindeberg-Lévy CLT der Fall n=2 interessiert).

Beweis: Induktiv nach n.

1. Base (P(0)):

$$\int_{0}^{x} e^{is} ds = i^{-1}e^{is}\Big|_{s=0}^{s=x}$$

$$= -ie^{is}\Big|_{s=0}^{s=x}$$

$$= i - ie^{ix}$$

$$\Rightarrow ie^{ix} = i - \int_{0}^{x} e^{is}$$

$$\Rightarrow e^{ix} = 1 + i \int_{0}^{x} e^{is} ds = \sum_{k=0}^{\infty} \frac{(ix)^{k}}{k!} + \frac{i^{0+1}}{0!} \int_{0}^{x} (x - s)^{0} e^{is} ds$$

2. Induktionsschritt ($P(n) \implies P(n+1)$): Laut Voraussetzung gilt

$$e^{ix} = \sum_{k=0}^{n} \frac{(ix)^k}{k!} + R_n(X)$$

wobei

$$R_n(x) = \frac{i^{n+1}}{n!} \int_0^x (x-s)^n e^{is} ds$$

Zeige also

$$R_n(x) = \frac{(ix)^{n+1}}{(n+1)!} + R_{n+1}(x)$$

Mit partieller Integration $(f(s) = e^{is}, g'(s) = -\frac{(x-s)^{n+1}}{n+1})$ gilt

$$R_n(x) = \frac{i^{n+1}}{n!} \int_0^x (x-s)^n e^{is} ds$$

$$= \frac{i^{n+1}}{n!} \left(\left[-e^{is} \frac{(x-s)^{n+1}}{n+1} \right]_{s=0}^{s=x} + \int_0^x i e^{is} \frac{(x-s)^{n+1}}{n+1} ds \right)$$

$$= \frac{i^{n+1}}{n!} \left(\frac{x^{n+1}}{n+1} + \frac{i}{n+1} \int_0^x (x-s)^{n+1} e^{is} ds \right)$$

$$= \frac{(ix)^{n+1}}{(n+1)!} + \frac{i^{n+2}}{(n+1)!} \int_0^x (x-s)^{n+1} e^{is} ds$$

$$= \frac{(ix)^{n+1}}{(n+1)!} + R_{n+1}(x)$$

Zur ersten Ungleichung:

Für $x \ge 0$ und mit $|e^{ix}| \le 1, |i^{\ell}| = 1, \forall \ell \ge 1$ ist

$$|R_n(x)| \le \frac{1}{n!} \int_0^x |x - s|^n ds$$

$$= \frac{1}{n!} \int_0^x (x - s)^n ds$$

$$= \frac{x^{n+1}}{(n+1)!} x \ge \frac{|x|^{n+1}}{(n+1)!}$$

Für x < 0 ist

$$|R_n(x)| \le \frac{1}{n!} \left| \int_0^x (x-s)^n e^{is} \, ds \right|$$

$$\frac{1}{n!} \left| \int_x^0 (x-s)^n e^{is} \, ds \right|$$

$$= \frac{1}{n!} \int_x^0 (s-x)^n \, ds = \frac{(-x)^{n+1}}{(n+1)!} \stackrel{x \le 0}{=} \frac{|x|^{n+1}}{(n+1)!}$$

womit die erste Ungleichung für alle $x \in \mathbb{R}$ gilt.

Zur zweiten Ungleichung:

$$R_n(x) = \frac{i^{n+1}}{n!} \int_0^x (x-s)^n e^{is} ds$$

$$= \frac{i^{n+1}}{n!} \left(\left[-ie^{is} (x-s)^n \right]_{s=0}^{s=x} - in \int_0^x (x-s)^{n-1} e^{is} ds \right)$$

$$= \frac{i^{n+2} x^n}{n!} - \frac{i^{n+2}}{(n-1)!} \int_0^x (x-s) e^{is} ds$$

wobei der erste Schritt wieder mit partieller Integration für $f(s) = (x - s)^n$ und $g'(s) = e^{is}$ folgt. Ähnlich wie für die erste Ungleichung folgt damit

$$|R_n(x)| \le \frac{|x|^n}{n!} + \frac{1}{(n+1)!} \left| \int_0^x (x-s)^{n-1} e^{is} \right| \le \frac{2|x|^n}{n!}$$

11.25. Satz (Lindeberg–Lévy CLT): Es seien $X_i \overset{\text{i.i.d.}}{\sim} X, i \geqslant 1$ quadratisch integrierbare Zufallsvariablen mit $\mathbb{E}X = \mu, \text{Var}(X) = \sigma^2 \in (0, \infty)$. Für $\overline{X}_n := \sum_{i=1}^n X_i$ gilt dann

$$\frac{\sqrt{n}(\overline{X}_n - \mu)}{\sigma} \xrightarrow[n \to \infty]{d} \mathcal{N}(0, 1)$$

Beweis: Seien o.B.d.A. $\mu = 0, \sigma = 1$. Sei im Folgenden ψ die cf von X und φ_n die cf von $\sqrt{nX_n}$. Zu zeigen ist dann

$$\varphi_n(t) \xrightarrow[n \to \infty]{} e^{-t^2/2}$$

Mit Lemma 11.23 gilt $e^{itX} = 1 + itX - \frac{(tX)^2}{2} + R_2(tX)$ wobei $|R_2(tX)| \leq \min\left(\frac{|tX|^3}{6}, t^2X^2\right)$. Damit gilt also

$$\psi(t) = 1 + \mathbb{E}[itX] - \frac{t^2 \mathbb{E}X^2}{2} + \mathbb{E}R_2(tX)$$

Sei t > 0. Mit der zweiten Ungleichung aus Lemma 11.23 gilt $\left| \frac{R_2(tX)}{t^2} \right| \leqslant X^2 \in L_1$ und mit der ersten Ungleichung gilt $\left| \frac{R_2(tX)}{t^2} \right| \xrightarrow[t \searrow 0]{a.s.} 0$. Mit DOMK folgt schließlich

$$\mathbb{E}\left|\frac{R_2(tX)}{t^2}\right| \xrightarrow[t\searrow 0]{} 0$$

Nun gilt

$$\varphi_n(t) = \mathbb{E}\left[e^{it\sqrt{nX_n}}\right] \stackrel{\text{i.i.d.}}{=} \left[\psi\left(\frac{t}{\sqrt{n}}\right)\right]^n = \left(1 - \frac{t^2}{2n} + \mathbb{E}[R_2(tX)]\right)^n$$

Für t = 0 gilt also $\varphi_n(0) = 1 = e^{-0^2/2}$.

Für $t \neq 0$ ist

$$\left| \varphi_n(t) - e^{-t^2/2} \right| = \left| \varphi_n(t) - \left(1 - \frac{t^2}{2n} \right)^n + \left(1 - \frac{t^2}{2n} \right)^n - e^{-t^2/2} \right|$$

$$\leq \left| \varphi_n(t) - \left(1 - \frac{t^2}{2n} \right)^n \right| + \left| \left(1 - \frac{t^2}{2n} \right)^n - e^{-t^2/2} \right|$$

$$= \left| \left[\psi \left(\frac{t}{\sqrt{n}} \right) \right]^n - \left(1 - \frac{t^2}{2n} \right)^n \right| + \mathcal{O}(1)$$

$$\stackrel{11.22}{\leq} \sum_{i=1}^n \left| \psi \left(\frac{t}{\sqrt{n}} \right) - \left(1 - \frac{t^2}{2n} \right) \right|$$

$$= n \left| \psi \left(\frac{t}{\sqrt{n}} \right) - \left(1 - \frac{t^2}{2n} \right) \right|$$

$$= n \left| \mathbb{E} \left[R_2 \left(\frac{tX}{\sqrt{n}} \right) \right] \right|$$

$$= \frac{nt^2}{n} \left| \frac{\mathbb{E} \left[R_2 \left(\frac{tX}{\sqrt{n}} \right) \right]}{t^2/n} \right| \xrightarrow{n \to \infty} 0$$

Lindeberg- und Ljapunov-Bedingung

Betrachte nun allgemeiner ein triangulres Feld von quadratisch integrierbaren Zufallsvariablen $X_{n,i}, i = 1, \ldots, r_n, n \ge 1$, sodass fr $n \ge 1$ die $X_{n,1}, \ldots, X_{n,r_n}$ unabhngig sind. Definiere weiters

$$\sigma_{n_i}^2 := \text{Var}(X_{n,i}) \text{ und } s_n^2 := \sum_{i=1}^{r_n} \sigma_{n,i}^2$$

Eine Folge von quadratisch integrierbaren, unabh
ngigen Zufallsvariablen $Y_k, k \ge 1$ erfl
lt diese Eigenschaften natrlich, da wir dann $X_{n,i} \sim Y_i$ fr
 alle $n \ge 1$ und $i = 1, \ldots, r_n$ haben.

11.26. Definition (Lindeberg-Bedingung): Wir sagen, dass die Lindeberg-Bedingung fr $X_{n,i}, i = 1, \ldots, r_n, n \geqslant 1$ gilt, falls

$$\forall \varepsilon > 0 : \frac{1}{s_n^2} \sum_{i=1}^{r_n} \mathbb{E}\left[(X_{n,i} - \mathbb{E}X_{n,i})^2 \mathbb{1}_{\{|X_{n,i} - \mathbb{E}X_{n,i}| > \varepsilon \cdot s_n\}} \right] \xrightarrow[n \to \infty]{} 0$$

11.27. Satz (Lindeberg CLT): Unter der Lindeberg-Bedingung gilt fr $\overline{X}_n = n^{-1} \sum_{i=1}^{r_n} X_{n,i}$, dass

$$\sqrt{n} \frac{\overline{X}_n - \mathbb{E}\overline{X}_n}{s_n} = \frac{\overline{X}_n - \mathbb{E}\overline{X}_n}{\sqrt{\operatorname{Var}(\overline{X}_n)}} \xrightarrow[n \to \infty]{d} \mathcal{N}(0, 1)$$

Beweis: siehe z.B. P. Billingsley, *Probability and Measure* (3rd Ed.), p.360. □

11.28. Definition (Ljapunov-Bedingung): Wir sagen, dass die Ljapunov-Bedingung fr $X_{n,i}$, $i = 1, ..., r_n, n \ge 1$ gilt, falls

$$\exists \delta > 0 : \frac{1}{s_n^{2+\delta}} \sum_{i=1}^{r_n} \mathbb{E} |X_{n,i} - \mathbb{E} X_{n,i}|^{2+\delta} \xrightarrow[n \to \infty]{} 0$$

11.29. Lemma: Die Ljapunov-Bedingung impliziert die Lindeberg-Bedingung.

Beweis: Sei o.B.d.A. $\mathbb{E}X_{n,i}=0$ fr alle $i=1,\ldots,r_n,n\geqslant 1$. Sei $\delta>0$ wie in der Ljapunov-Bedingung, die laut Annahme gilt. Fr $\varepsilon>0$ gilt

$$\frac{1}{s_n^2} \sum_{i=1}^{r_n} \mathbb{E}\left[X_{n,i}^2 \mathbb{1}_{\{|X_{n,i}| > \varepsilon \cdot s_n\}}\right] \overset{1 \leqslant \frac{|X_{n,i}|^{\delta}}{(\varepsilon \cdot s_n)^{\delta}}}{\lesssim} \frac{1}{s_n^2} \sum_{i=1}^{r_n} \mathbb{E}\left[X_{n,i}^2 \frac{|X_{n,i}|^{\delta}}{(\varepsilon \cdot s_n)^{\delta}} \mathbb{1}_{\{|X_{n,i}| > \varepsilon \cdot s_n\}}\right]$$

$$\leqslant \frac{1}{\varepsilon^{\delta}} \frac{1}{s_n^{2+\delta}} \sum_{i=1}^{r_n} \mathbb{E}|X_{n_i}|^{2+\delta} \xrightarrow[n \to \infty]{} 0$$

12. Radon-Nikodym-Ableitungen

In diesem Kapitel sei (Ω, \mathcal{A}) ein messbarer Raum und ν, μ generische Maße auf diesem Raum.

Signierte Maße

12.1. Definition: Ein signiertes Maß ist eine Abbildung $\varphi : \mathcal{A} \to \mathbb{R}$, die σ -additiv ist, i.e. für $A_n \in \mathcal{A}, n \geqslant 1$ disjunkt gilt

$$\varphi\left(\bigcup_{n\geqslant 1}A_n\right)=\sum_{n\geqslant 1}\varphi(A_n)$$

In unserem Kontext seien signierte Maße immer endlich und bilden \emptyset auf 0 ab.

12.2. Beispiel: Einige Beispiele für signierte Maße sind

- (i) $\phi(A) := \mu(A)$, wenn μ endlich ist.
- (ii) $\varphi(A) := \mu(A) \nu(A)$, wenn μ, ν endlich sind.
- (iii) $\varphi(A) := \int_A f \ d\mu$, wenn $f \in L_1(\mu)$

12.3. Lemma: Seien $A_n \in \mathcal{A}, n \ge 1$, sodass entweder

- (i) $A_1 \subseteq A_2 \subseteq \ldots \subseteq \bigcup_{n\geqslant 1} A_n := A$, oder
- (ii) $A_1 \supseteq A_2 \supseteq \ldots \supseteq \bigcap_{n \geqslant 1} A_n := A$

Dann ist in beiden Fällen

$$\lim_{n\to\infty}\varphi(A_n)=\varphi(A)$$

i.e. signierte Maße sind von unten/oben stetig.

Beweis:

(i)

$$\varphi(A) = \varphi(A_1 \cup \bigcup_{n \geqslant 1} (A_{n+1} \setminus A_n))$$

$$= \varphi(A_1) + \sum_{n \geqslant 1} \varphi(A_{n+1} \setminus A_n)$$

$$= \lim_{N \to \infty} \left[\varphi(A_1) + \sum_{n=1}^{N} \varphi(A_{n+1} \setminus A_n) \right]$$

$$= \lim_{N \to \infty} \varphi(A_{N+1}) = \lim_{N \to \infty} \varphi(A_N)$$

(ii) Hier gilt $A_1^c \subseteq \ldots \subseteq \bigcup_{n \geqslant 1} A_n^c =: A^c$

$$\stackrel{\text{(i)}}{\Longrightarrow} \varphi(A^c) = \lim_{n \to \infty} \varphi(A_n^c)$$

$$\Longrightarrow \varphi(\Omega) - \varphi(A) = \lim_{n \to \infty} [\varphi(\Omega) - \varphi(A_n)] = \varphi(\Omega) - \lim_{n \to \infty} \varphi(A_n)$$

$$\Longrightarrow \varphi(A) = \lim_{n \to \infty} \varphi(A_n)$$

4. Satz (Hahn/Jordan Decomposition Theorem): Sei φ ein signiertes Maß auf (Ω, \mathcal{A}) . Dann gibt es eine Partition (Hahn-Zerlegung) von Ω

$$\Omega = \Omega_+ \cup \Omega_-$$

mit $\Omega_+, \Omega_- \in \mathcal{A}$, sodass

$$\forall A \in \mathcal{A} : \varphi(A \cap \Omega_+) =: \varphi_+(A) \geqslant 0, \ \varphi(A \cap \Omega_-) =: \varphi_-(A) \leqslant 0$$

Daraus folgt sofort die Jordan-Zerlegung

$$\forall A \in \mathcal{A} : \varphi(A) = \varphi_{+}(A) + \varphi_{-}(A)$$

Beweis: Sei $\alpha := \sup_{A \in \mathcal{A}} \varphi(A)$. Dann gibt es eine Menge $D \in \mathcal{A}$, sodass dieses Supremum angenommen wird, i.e. $\varphi(D) = \alpha$ (Details zur Konstruktion siehe unten). Setze nun $\Omega_+ := D$ und $\Omega_- := D^c$. Dann gilt

• Angenommen es gibt $A \in \mathcal{A}$ mit $\varphi(A \cap D) < 0$. Dann ist $D = (D \cap A) \cup (D \setminus A)$ und

$$\alpha = \varphi(D) = \varphi(D \cap A) + \varphi(D \setminus A) < \varphi(D \setminus A)$$

ein Widerspruch, da $D \setminus A \in \mathcal{A}$ und $\alpha = \sup_{A \in \mathcal{A}} \varphi(A)$.

• Angenommen es gibt $A \in \mathcal{A}$ mit $\varphi(A \cap D^c) > 0$. Dann ist

$$\varphi(D \cup (A \cap D^c)) = \varphi(D) + \varphi(A \cap D^c) > \varphi(D) = /\alpha$$

ein Widerspruch, da $D \cup (A \cap D^c) \in \mathcal{A}$ und $\alpha = \sup_{A \in \mathcal{A}} \varphi(A)$.

Zur Konstruktion von D:

Wähle $A_n, n \ge 1$, sodass $\lim_{n \to \infty} \varphi(A_n) = \alpha$ und definiere für $n \ge 1$

$$\mathcal{B}_n := \left\{ B_I = \left(\bigcap_{I_i = 1} A_i \right) \cup \left(\bigcap_{I_i = 0} A_i \right) : I \in \{0, 1\}^n \right\}$$

sukzessive feiner werdende Partitionen von Ω . Setze nun

$$C_n := \bigcup_{\substack{B_I \in \mathcal{B}_n \\ \varphi(B_I) > 0}} B_I$$

Nun ist

$$A_n = \bigcup_{\substack{B_I \in \mathcal{B}_n \\ I_- = 1}} B_I$$

sodass $\varphi(A_n) \leqslant \varphi(C_n)$ (*). Außerdem ist

$$\varphi\left(\bigcup_{m=n}^{N} C_{m}\right) \leqslant \varphi\left(\bigcup_{m=n}^{N+1} C_{m}\right)$$

da $\left(\bigcup_{m=n}^{N+1} C_m\right) \setminus \left(\bigcup_{m=n}^{N} C_m\right)$ eine Vereinigung von Mengen B_I aus \mathcal{B}_{N+1} mit $\varphi(B_I) > 0$ ist. (**)

Setze nun $D_i := \limsup_{n \to \infty} C_n$ Dann folgt

$$\alpha = \lim_{n \to \infty} \varphi(A_n)$$

$$\stackrel{(*)}{\leqslant} \liminf_{n \to \infty} \varphi(C_n)$$

$$\stackrel{(**)}{\leqslant} \liminf_{n \to \infty} \limsup_{N \to \infty} \varphi\left(\bigcup_{m=n}^{N} C_m\right)$$

$$\stackrel{\text{S.v.U.}}{=} \liminf_{n \to \infty} \varphi\left(\bigcup_{m=n}^{\infty} C_m\right)$$

$$\stackrel{\text{S.v.O.}}{=} \varphi\left(\bigcap_{n=1}^{\infty} \bigcup_{m=n}^{\infty} C_m\right)$$

$$= \varphi\left(\limsup_{n \to \infty} C_n\right) = \varphi(D) \leqslant \alpha$$

12.5. Definition:

(i) μ und ν sind gegenseitig singular (kurz $\mu \perp \nu$), wenn

$$\exists M \in \mathcal{A} : \mu(M) = 0, \nu(M^c) = 0$$

Die Relation \perp ist symmetrisch, i.e. $\mu \perp \nu \iff \nu \perp \mu$.

(ii) ν ist absolut stetig bezüglich μ , (kurz $\nu \ll \mu$) wenn

$$\forall A \in \mathcal{A} : \mu(A) = 0 \implies \nu(A) = 0$$

Die Relation \ll ist transitiv, i.e. $\nu \ll \mu, \mu \ll \lambda \implies \nu \ll \lambda$.

12.6. Lemma: Seien μ und ν zwei endliche Maße, die NICHT gegenseitig singular sind. Dann gibt es ein $\varepsilon > 0$ und $N \in \mathcal{A}$ mit $\mu(B) > 0$, sodass

$$\forall A \in \mathcal{A} : \varepsilon \cdot \mu(A \cap B) \leq \nu(A \cap B)$$

Beweis: Für $n \ge 1$ definiere ein signiertes Maß $\varphi_n := \nu - \mu/n$. Seien nun $\Omega_+^{(n)}$ und $\Omega_-^{(n)}$ die Hahn-Zerlegung von φ_n . Setze $M := \bigcup_{n \ge 1} \Omega_+^{(n)}$ und $M^c = \bigcap_{n \ge 1} \Omega_-^{(n)}$. Da $\varphi_1 \le \ldots \le \lim_{n \to \infty} \varphi_n = \nu$, gilt $\Omega_+^{(1)} \supseteq \ldots \supseteq M^c$ und mit der S.v.O. für signierte Maße $\forall n \ge 1 : \varphi_n(M^c) \le 0$. Damit folgtper Definition für alle $n \ge 1$

$$\nu(M^c) - \frac{1}{n}\mu(M^c) \leqslant 0 \iff \nu(M^c) \leqslant \frac{1}{n}\mu(M^c)$$

und damit $\nu(M^c) = 0$. Laut Annahme git aber $\nu \not \succeq \mu$ und damit $\mu(M) > 0$. Also folgt

$$0 < \mu(M) \leqslant \sum_{n \geqslant 1} \mu(\Omega_+^{(n)})$$

und damit gibt es ein $m \ge 1$, sodass $\mu(\Omega_+^{(m)}) > 0$ (*). Mit der Definition von φ_m gilt aber

$$\forall A \in \mathcal{A} : \nu(A \cap \Omega_+^{(m)}) - \frac{1}{m}\mu(A \cap \Omega_+^{(m)}) \geqslant 0 \iff \nu(A \cap \Omega_+^{(m)}) \geqslant \frac{1}{m}\mu(A \cap \Omega_+^{(m)})$$

Setze also $B:=\Omega_+^{(m)}$ mit $\varepsilon:=m^{-1}$. Dann gilt wegen (*) auch $\mu(B)=\mu(\Omega_+^{(m)})>0$.

12.7. Satz (Radon–Nikodym Theorem für σ -endliche Maße): Seien μ und ν zwei σ -endliche Maße, sodass $\nu \ll \mu$. Dann hat ν eine Dichte bezüglich μ , i.e. es gibt ein $f: \Omega \to \mathbb{R}$ messbar, sodass

$$\forall A \in \mathcal{A} : \nu(A) = \int_{A} f \ d\mu \tag{7}$$

Wir schreiben $f = \frac{d\nu}{d\mu}$. Falls insbesondere $g: \Omega \to \mathbb{R}$ eine weitere messbare Abbildung ist, die (7) erfüllt, dann gilt $f = g \mu$ -a.e.

Beweis: Unterscheide hier die Fälle, wo μ, ν beide endlich sind, und den allgemeinen Fall (μ, ν) beide σ -endlich).

1. Fall (μ, ν) beide endlich): Betrachte die Menge

$$\mathcal{G} := \left\{ g \geqslant 0 : g \text{ messbar und } \forall A \in \mathcal{A} : \int_A g \ d\mu \leqslant \nu(A) \right\}$$

Da die konstante Nullfunktion $0 \in \mathcal{G}$, gilt $\mathcal{G} \neq \emptyset$ und es gibt ein $f \in \mathcal{G}$, sodass

$$\int f \ d\mu = \sup_{g \in \mathcal{G}} \int g \ d\mu \tag{8}$$

Zerlege nun $\nu(\cdot)$ als $\nu(A) = \int_A f \ d\mu + \nu_s(A)$ für $A \in \mathcal{A}$ mit Rest $\nu_s(\cdot)$. Dann ist ν_s ein endliches Maß und

$$\nu_s \perp \mu$$
 (9)

Zeige also (8) und (9):

(8): Für $g, h \in \mathcal{G}$ ist $\max(g, h) \in \mathcal{G}$, denn für $A \in \mathcal{A}$ gilt

$$\int_{A} \max(g,h) \ d\mu = \int\limits_{A \cap \{g \geqslant h\}} g \ d\mu + \int\limits_{A \cap \{g < h\}} h \ d\mu \overset{g,h,\in\mathcal{G}}{\leqslant} \nu(A \cap \{g \geqslant h\}) + \nu(A \cap \{g < h\}) = \nu(A)$$

Für $g_n \in \mathcal{G}, n \geqslant 1$ mit $0 \leqslant g_1 \leqslant \ldots \leqslant \lim_{n \to \infty} g_n =: g$ ist $g \in \mathcal{G}$, denn für $A \in \mathcal{A}$ gilt

$$\int_{A} g \ d\mu \stackrel{\text{MONK}}{=} \lim_{n \to \infty} \int_{A} g_n \ d\mu \leqslant \nu(A)$$

wobei die letze Ungleichung folgt, da jedes Element der Folge $\int_A g_n \ d\mu$ durch $\nu(A)$ beschränkt ist.

(9): Angenommen (9) gilt nicht. Mit Lemma 12.6 gibt es $\varepsilon > 0, b \in \mathcal{A}$ mit $\mu(B) > 0$, sodass $\forall A \in \mathcal{A} : \varepsilon \cdot \mu(A \cap B) \leqslant \nu_s(A \cap B)$. Damit folgt für $A \in \mathcal{A}$

$$\int_{A} (f + \varepsilon \cdot \mathbb{1}_{B}) \ d\mu = \int_{A} f \ d\mu + \varepsilon \cdot \mu(A \cap B)$$

$$\leqslant \int_{A} f \ d\mu + \nu_{s}(A \cap B)$$

$$\leqslant \int_{A} f \ d\mu + \nu_{s}(A) = \nu(A)$$

Damit folgt $f + \varepsilon \cdot \mathbb{1}_B \in \mathcal{G}$ und

$$\sup_{g \in \mathcal{G}} \int g \ d\mu \geqslant \int (f + \varepsilon \cdot \mathbb{1}_B) \ d\mu = \int f \ d\mu \varepsilon \cdot \mu(B) > \int f \ d\mu = \sup_{g \in \mathcal{G}} \int g \ d\mu$$

ein Widerspruch.

Mit (9) folgt per Definition von gegenseitiger Singularität

$$\exists M \in \mathcal{A} : \mu(M) = 0, \ \nu_s(M^c) = 0$$

. Da aber $\nu \ll \mu$ ist $\nu(M) = 0$ und

$$0 = \nu(M) \stackrel{\text{per const.}}{\geqslant} \nu_s(M) \geqslant 0$$

und damit

$$\nu_s(\Omega) = \nu_s(M) + \nu(M^c) = 0$$

Also ist ν_s das Nullmaß und $\nu(A) = \int_A f \ d\mu$, womit die erste Aussage folgt. Sei nun g eine weitere Dichte von ν bzgl. μ (also eine messbare Abbildung, die (7) erfüllt). Setze $A := \{f > g\}$. Dann ist

$$0 = \nu(A) - \nu(A)$$

$$= \int_A f \ d\mu - \int_A g \ d\mu$$

$$= \int_A f - g \ d\mu$$

$$= \int \mathbb{1}_{\{f-g>0\}} (f - g) \ d\mu$$

und da im Integral f - g > 0, gilt $\mathbbm{1}_A \stackrel{a.e.}{=} 0$ und $\mu(A) = 0$ Ein ähnliches Argument folgt für $B := \{f < g\}$ und die Aussage folgt schließlich mit der σ -Subadditivität.

2. Fall: (μ, ν) beide σ -endlich): Wähle $A_n \in \mathcal{A}, n \geqslant 1$ mit $A_1 \subseteq \ldots \subseteq \bigcup_{n\geqslant 1} A_n = \Omega$, sodass $\mu(A_n) < \infty$ für alle $n \geqslant 1$. Wähle $B_n \in \mathcal{A}$ mit denselben Eigenschaften für ν . Setze nun $C_n := A_n \cap B_n$ für $n \geqslant 1$, sodass $C_n \in \mathcal{A}$ und $C_1 \subseteq \ldots \subseteq \bigcup_{n\geqslant 1} C_n = \Omega$ und $\mu(C_n), \nu(C_n) < \infty$ für alle $n \geqslant 1$. Disjunktisiere nun C_n durch $M_1 := C_1$ und $M_{n+1} := C_{n+1} \setminus C_n$ für alle $n \geqslant 1$. Dann gilt $\Omega = \bigsqcup_{n\geqslant 1} M_n$ und $\mu(M_n), \nu(M_n) < \infty$ für alle $n \geqslant 1$. Definiere nun endlich Maße ν_n und μ_n wie folgt:

$$\nu_n(A) := \nu(A \cap M_n)$$

$$\mu_n(A) := \mu(A \cap M_n)$$

für alle $n \ge 1$ und $A \in \mathcal{A}$. Laut Voraussetzung ist $\nu \ll \mu$ und daher auch $\nu_n \ll \mu_n$ für alle $n \ge 1$. Mit dem 1. Fall hat also für jedes $n \ge 1$ ν_n eine Dichte f_n bzgl. μ_n . Setze nun

$$f := \sum_{n \geqslant 1} f_n \cdot \mathbb{1}_{M_n}$$

Dann ist $f \geqslant 0$ und messbar und für $A \in \mathcal{A}$ gilt

$$\int_{A} f \ d\mu = \int \sum_{n \geqslant 1} f_{n} \cdot \mathbb{1}_{M_{n}} \cdot \mathbb{1}_{A} \ d\mu$$

$$\stackrel{\text{MONK}}{=} \sum_{n \geqslant 1} \int f_{n} \cdot \mathbb{1}_{M_{n}} \cdot \mathbb{1}_{A} \ d\mu$$

$$= \sum_{n \geqslant 1} \int_{A} f_{n} \cdot \mathbb{1}_{M_{n}} \ d\mu$$

$$= \sum_{n \geqslant 1} \int_{A} f_{n} \ d\mu_{n}$$

$$= \sum_{n \geqslant 1} \nu_{n}(A)$$

$$= \sum_{n \geqslant 1} \nu(A \cap M_{n}) = \nu(A)$$

Die Eindeutigkeit folgt wie im endlichen Fall.

12.8. Satz (Radon–Nikodym Theorem für signierte Maße) folgt. Sei φ ein signiertes Ma und μ ein σ -endliches Ma, sodass $\varphi \ll \mu$. Dann hat φ eine Dichte bezüglich μ , i.e. es gibt ein $f: \Omega \to \mathbb{R}$ messbar, sodass

$$\forall A \in \mathcal{A} : \varphi(A) = \int_A f \ d\mu$$

Wir schreiben $f = \frac{d\varphi}{d\mu}$. Falls insbesondere $g: \Omega \to \mathbb{R}$ eine weitere messbare Abbildung ist, die (7) erfüllt, dann gilt f = g μ -a.e.

Beweis: Betrachte die Hahn-Zerlegung $\Omega = \Omega_+ \cup \Omega_-$ und die Jordan-Zerlegung $\varphi = \varphi_+ - \varphi_-$. Dann sind φ_+ und φ_- beide endliche Mae und $\varphi_+ \ll \mu$, $\varphi_- \ll \mu$. Setze also

$$f_{(+)} := \frac{d\varphi_+}{d\mu}, \ f_{(-)} := \frac{d\varphi_-}{d\mu}, \ f := f_{(+)} - f_{(-)}$$

Die Messbarkeit von f folgt sofort aus der Messbarkeit von $f_{(+)}, f_{(-)}$ laut Satz 12.7. Weiters gilt $f_{(+)}, f_{(-)} \in L_1(\mu)$ und damit auch $f \in L_1(\mu)$. Dass f eine Dichte von φ bezglich μ ist folgt mit

$$\varphi(A) = \varphi_{+}(A) - \varphi_{-}(A) = \int_{A} f_{(+)} d\mu - \int f_{(-)} d\mu = \int_{A} f d\mu$$

Ist g eine weitere Dichte von φ bezglich μ , dann ist $g \cdot \mathbbm{1}_{\Omega_+}$ eine Dichte von φ_+ bezglich μ und mit Satz 12.7 gilt $g \cdot \mathbbm{1}_{\Omega_+} \stackrel{a.e.}{=} f_{(+)}$. Dasselbe folgt fr $g \cdot \mathbbm{1}_{\Omega_-}$ und $f_{(-)}$. Da die Vereinigung zweier Nullmengen wieder eine Nullmenge ist folgt

$$g \stackrel{a.e.}{=} f$$

13. Bedingte Erwartungswerte und Wahrscheinlichkeiten

13.1. Definition: Betrachte einen Wahrscheinlichkeitsraum $(\Omega, \mathcal{A}, \mathbb{P})$ mit einer sub- σ -Algebra $\mathcal{G} \subseteq \mathcal{A}$ und eine Zufallsvariable $X \in L_1(\Omega, \mathcal{A}, \mathbb{P})$, i.e. \mathcal{A} -messbar und integrierbar. Für $G \in \mathcal{G}$ sei $\nu(G) := \int_G X \ d\mathbb{P} = \mathbb{E} \left[\mathbb{1}_G X \right] \ \text{und} \ \mathbb{P}_{\mathcal{G}}(G) := \mathbb{P}(G)$. Dann ist ν ein signiertes Maß auf (Ω, \mathcal{G}) und $\mathbb{P}_{\mathcal{G}}$ ist ein Wahrscheinlichkeitsmaß (und damit endlich) auf (Ω, \mathcal{G}) , sodass $\nu \ll \mathbb{P}_{\mathcal{G}}$. Der bedingte Erwartungswert von X bezüglich \mathcal{G} ist dann definiert als

$$\mathbb{E}[X \parallel \mathcal{G}] := \frac{d\nu}{d\mathbb{P}_{\mathcal{G}}}$$

Für eine weitere Zufallsvariable Y auf $(\Omega, \mathcal{A}, \mathbb{P})$, setzt man

$$\mathbb{E}[X \parallel Y] := \mathbb{E}[X \parallel \sigma(Y)]$$

Für $A \in \mathcal{A}$ setzt man

$$\mathbb{P}(A \parallel \mathcal{G}) := \mathbb{E}[\mathbb{1}_A \parallel \mathcal{G}]$$

Bemerkung: $\mathbb{E}[X \parallel \mathcal{G}]$ ist fast sicher eindeutig, d.h. falls Y eine \mathcal{G} -messbare Zufallsvariable ist und $\forall G \in \mathcal{G} : \mathbb{E}[Y \cdot \mathbb{1}_G] = \mathbb{E}[X \cdot \mathbb{1}_G]$, dann gilt $Y \stackrel{a.s.}{=} \mathbb{E}[X \parallel \mathcal{G}]$. Mit Satz kann man den bedingten Erwartungswert $\mathbb{E}[X \parallel \mathcal{G}]$ auch für quasiintegrierbare X definieren (Details Übung).

13.2. Beispiel: Sei $(\Omega, \mathcal{A}, \mathbb{P})$ ein Wahrscheinlichkeitsraum mit einer sub- σ -Algebra $\mathcal{G} \subseteq \mathcal{A}$. Für $X = \mathbb{1}_A$ und $Y = \mathbb{1}_B$ mit $A, B \in \mathcal{A}$ mit $0 < \mathbb{P}(B) < 1$ ist

$$\mathbb{P}(A \parallel \mathbb{1}_B)(\omega) = \begin{cases} \mathbb{P}(A \parallel B)(\omega) & \text{wenn } \omega \in B \\ \mathbb{P}(A \parallel B^c)(\omega) & \text{wenn } \omega \notin B \end{cases}$$

Weiters ist $\Omega \in \sigma(B)$, sodass für $\mathbb{1}_{\Omega} = 1$ gilt:

$$\begin{split} \mathbb{P}(A) &= \mathbb{E} \mathbb{1}_A = \mathbb{E} [\mathbb{1}_A \cdot \mathbb{1}_{\Omega}] \\ &\stackrel{\mathrm{Def.}}{=} \int_{\Omega} \mathbb{E} [\mathbb{1}_A \parallel \sigma(B)] \ d\mathbb{P} \\ &= \int_{\Omega} \mathbb{P}(A \parallel \mathbb{1}_B) \ d\mathbb{P} \\ &\stackrel{\mathrm{s.o.}}{=} \mathbb{P}(A \parallel B) \cdot \mathbb{P}(B) + \mathbb{P}(A \parallel B^c) \end{split}$$

Eigenschaften bedingter Erwartungswerte

- **13.3. Proposition:** Sei $X \in L_1(\Omega, \mathcal{A}, \mathbb{P})$ und $\mathcal{G} \subseteq \mathcal{A}$ eine sub- σ -Algebra.
 - (i) Sind $\sigma(X)$ und \mathcal{G} unabhängig, dann gilt $\mathbb{E}[X \parallel \mathcal{G}] \stackrel{a.s.}{=} \mathbb{E}[X]$.
- (ii) Ist $X \mathcal{G} \mathcal{B}(\overline{\mathbb{R}})$ -messbar, dann ist $\mathbb{E}[X \parallel \mathcal{G}] \stackrel{a.s.}{=} X$

Beweis:

(i) Die konstante Zufallsvariable $\mathbb{E}[X]$ ist natürlich \mathcal{G} -messbar und für $G \in \mathcal{G}$ sind $\mathbb{1}_G$ und X unabhängig (per Definition), sodass

$$\mathbb{E}[\mathbb{E}[X] \cdot \mathbb{1}_G] = \mathbb{E}[X] \cdot \mathbb{E}[\mathbb{1}_G] \stackrel{\text{u.a.}}{=} \mathbb{E}[X \cdot \mathbb{1}_G]$$

(ii) Wenn $X \mathcal{G}-\mathcal{B}(\overline{\mathbb{R}})$ -messbar ist, ist X eine Dichte gemäß Definition 13.1, da trivial

$$\mathbb{E}[X \cdot \mathbb{1}_G] = \mathbb{E}[X \cdot \mathbb{1}_G]$$

Bemerkung: Damit gilt für $X \in L_1(\Omega, \mathcal{A}, \mathbb{P})$ sofort

- $\mathbb{E}[X \parallel \{\emptyset, \Omega\}] \stackrel{a.s.}{=} \mathbb{E}[X]$
- $\mathbb{E}[X \parallel \mathcal{A}] \stackrel{a.s.}{=} X$

13.4. Proposition: Sei $(\Omega, \mathcal{A}, \mathbb{P})$ ein Wahrscheinlichkeitsraum mit einer sub- σ -Algebra $\mathcal{G} \subseteq \mathcal{A}$, $X_n, n \geqslant 1$ eine Folge von $(\Omega, \mathcal{A}, \mathbb{P})$ -integrierbaren Zufallsvariablen und X, Y $(\Omega, \mathcal{A}, \mathbb{P})$ -integrierbaren Zufallsvariablen. Seien außerdem $a, b \in \mathbb{R}$. Dann gilt

- (i) Ist $X \stackrel{a.s.}{=} a$, dann ist $\mathbb{E}[X \parallel \mathcal{G}] \stackrel{a.s.}{=} a$
- (ii) $\mathbb{E}[aX + bY \parallel \mathcal{G}] \stackrel{a.s.}{=} a \cdot \mathbb{E}[X \parallel G] + b \cdot \mathbb{E}[Y \parallel \mathcal{G}]$ (Linearitt)
- (iii) Ist $X \stackrel{a.s.}{\leqslant} Y$, dann ist $\mathbb{E}[X \parallel \mathcal{G}] \leqslant \mathbb{E}[Y \parallel \mathcal{G}]$ (Monotonie)
- (iv) $|\mathbb{E}[X \parallel \mathcal{G}]| \stackrel{a.s.}{\leqslant} \mathbb{E}[|X| \parallel \mathcal{G}]$ (Dreiecksungleichung)
- (v) Fr $X_1 \leqslant X_2 \leqslant \ldots \leqslant \lim_{n \to \infty} X_n$ fast sicher, ist (MONK)

$$\lim_{n\to\infty} \mathbb{E}[X_n \parallel \mathcal{G}] \stackrel{a.s.}{=} \mathbb{E}\left[\lim_{n\to\infty} X_n \parallel \mathcal{G}\right]$$

(vi) Falls $\forall n \geqslant 1: Y \stackrel{a.s.}{\leqslant} X_n$ und $\liminf_{n \to \infty} X_n \in L_1$, dann ist **(Fatou's Lemma)**

$$\mathbb{E}[\liminf_{n\to\infty} X_n \parallel \mathcal{G}] \stackrel{a.s.}{\leqslant} \liminf_{n\to\infty} \mathbb{E}[X_n \parallel \mathcal{G}]$$

(vii) Falls $X_n \xrightarrow[n \to \infty]{a.s.} X$ und $\forall n \geqslant 1 : |X_n| \stackrel{a.s.}{\leqslant} Y$, dann ist $X \in L_1$ und **(DOMK)**

$$\lim_{n\to\infty} \mathbb{E}[X_n \parallel \mathcal{G}] \stackrel{a.s.}{=} \mathbb{E}[X \parallel \mathcal{G}]$$

Beweis:

- (i) folgt sofort aus Proposition 13.3 und der Tatsache, dass X u.a. von jedem \mathcal{G} ist.
- (ii) $a \cdot \mathbb{E}[X \parallel \mathcal{G}] + b \cdot \mathbb{E}[Y \parallel \mathcal{G}]$ ist als Linearkombination \mathcal{G} -messbarer Funktionen wieder \mathcal{G} -messbar und fr $G \in \mathcal{G}$ gilt:

$$\int_{G} a \cdot \mathbb{E}[X \parallel \mathcal{G}] + b \cdot \mathbb{E}[Y \parallel \mathcal{G}] \ d\mathbb{P} = a \int_{G} \mathbb{E}[X \parallel \mathcal{G}] \ d\mathbb{P} + b \int_{G} \mathbb{E}[Y \parallel \mathcal{G}] \ d\mathbb{P}$$
$$= a \cdot \mathbb{E}[X \cdot \mathbb{1}_{G}] + b \cdot \mathbb{E}[Y \cdot \mathbb{1}_{G}]$$
$$= \mathbb{E}[(aX + bY) \cdot \mathbb{1}_{G}]$$

Die Aussage folgt mit Definition 13.1 und Satz 12.8.

(iii) Hier ist insbesondere $X_{+} \overset{a.s.}{\leqslant} Y_{+}$, sodass $0 \overset{a.s.}{\leqslant} Y_{+} - X_{+}$. Sei $G := \{ \mathbb{E}[X_{+} \parallel \mathcal{G}] > \mathbb{E}[Y_{+} \parallel \mathcal{G}] \}$. Dann ist G messbar und

$$\int_{G} \mathbb{E}[X_{+} \parallel \mathcal{G}] - \mathbb{E}[Y_{+} \parallel \mathcal{G}] \ d\mathbb{P} \stackrel{\text{(ii)}}{=} \int_{G} \mathbb{E}[X_{+} - Y_{+} \parallel \mathcal{G}] \ d\mathbb{P} = \mathbb{E}[(X_{+} - Y_{+}) \cdot \mathbb{1}_{G}]$$

wobei das linke Integral nicht-negativ und das rechte Integral nicht-positiv ist, sodass $\mathbb{P}(G) = 0$ folgt. Ein hnliches Argument gilt fr X_- und Y_- , sodass folgt

$$\mathbb{E}[X \parallel \mathcal{G}] = \mathbb{E}[X_{+} \parallel \mathcal{G}] - \mathbb{E}[X_{-} \parallel \mathcal{G}] \leqslant \mathbb{E}[Y_{+} \parallel \mathcal{G}] - \mathbb{E}[Y_{-} \parallel \mathcal{G}] = \mathbb{E}[Y \parallel \mathcal{G}]$$

wobei alle Relationen fast sicher gelten.

(iv) Aus $X \leq |X|$ folgt mit (iii), dass

$$\mathbb{E}[X \parallel \mathcal{G}] \stackrel{a.s.}{\leqslant} \mathbb{E}[|X| \parallel \mathcal{G}]$$

Aus $-X \leq |X|$ folgt mit (ii) und (iii), dass

$$-\mathbb{E}[X \parallel \mathcal{G}] \stackrel{a.s.}{=} \mathbb{E}[-X \parallel \mathcal{G}] \stackrel{a.s.}{\leqslant} \mathbb{E}[|X| \parallel \mathcal{G}]$$

womit die Aussage aus der Kombination beider Flle folgt.

(v) Mit (iii) gilt $\mathbb{E}[X_1 \parallel \mathcal{G}] \leqslant \mathbb{E}[X_2 \parallel \mathcal{G}] \leqslant \ldots \leqslant \lim_{n \to \infty} \mathbb{E}[X_n \parallel \mathcal{G}]$. Damit ist $\lim_{n \to \infty} \mathbb{E}[X_n \parallel \mathcal{G}]$ als Grenzwert \mathcal{G} -messbarer Funktionen messbar. Mit (iv) ist $|\mathbb{E}[X_1 \parallel \mathcal{G}]| \stackrel{a.s.}{\leqslant} \mathbb{E}[|X_1| \parallel \mathcal{G}]$, und damit $\mathbb{E}[X_1 \parallel \mathcal{G}] \in L_1$. Mit MONK gilt fr $G \in \mathcal{G}$

$$\begin{split} \int_{G} \lim_{n \to \infty} \mathbb{E}[X_n \parallel \mathcal{G}] \ d\mathbb{P} &= \lim_{n \to \infty} \int_{G} \mathbb{E}[X_n \parallel \mathcal{G}] \ d\mathbb{P} \\ &= \lim_{n \to \infty} \mathbb{E}[X_n \cdot \mathbb{1}_G] \\ &\stackrel{\text{MONK}}{=} \mathbb{E}[X \cdot \mathbb{1}_G] \end{split}$$

womit per Definition 13.1 die Aussage folgt.

(vi) Fr $Z_n := \inf_{k \ge n} X_k$ gilt $Z_1 \le \ldots \le \lim_{n \to \infty} Z_n = \liminf_{n \to \infty} X_n \in L_1$. Es gilt $Z_n \stackrel{a.s.}{\le} X_k$ fr alle $k \ge n$, sodass mit (iii)

$$\mathbb{E}[Z_n \parallel \mathcal{G}] \stackrel{a.s.}{\leqslant} \inf_{k > n} \mathbb{E}[X_k \parallel \mathcal{G}]$$

und damit

$$\mathbb{E}[\liminf_{n\to\infty} X_n \parallel \mathcal{G}] \stackrel{\text{(v)}}{=} \lim_{n\to\infty} \mathbb{E}[Z_n \parallel \mathcal{G}] \leqslant \lim_{n\to\infty} \inf_{k>n} \mathbb{E}[X_k \parallel \mathcal{G}] = \liminf_{n\to\infty} \mathbb{E}[X_n \parallel \mathcal{G}]$$

wobei in der letzten Ungleichung die ersten beiden Relationen als fast sicher zu verstehen sind.

(vii) Mit DOMK ist $X \in L_1$ und $\lim_{n\to\infty} \mathbb{E}[X_n] = \mathbb{E}[X]$. Mit (iii) und (iv) gilt

$$|\mathbb{E}[X_n \parallel \mathcal{G}]| \stackrel{a.s.}{\leqslant} \mathbb{E}[|X_n| \parallel \mathcal{G}] \stackrel{a.s.}{\leqslant} \mathbb{E}[Y_n \parallel \mathcal{G}]$$

Mit (vi) gilt

$$\mathbb{E}[X \parallel \mathcal{G}] \stackrel{a.s.}{=} \mathbb{E}[\liminf_{n \to \infty} X_n \parallel \mathcal{G}] \stackrel{a.s.}{\leqslant} \liminf_{n \to \infty} \mathbb{E}[X_n \parallel \mathcal{G}]$$

wobei die letze Ungleichung folgt, da laut Annahme $\mathbb{E}[-Y \parallel \mathcal{G}] \leqslant \mathbb{E}[X_n \parallel \mathcal{G}]$ fr alle $n \geqslant 1$. Ebenfalls gilt

$$-\mathbb{E}[X \parallel \mathcal{G}] \stackrel{a.s.}{=} \mathbb{E}[-X \parallel \mathcal{G}]$$

$$\stackrel{a.s.}{=} \mathbb{E}[\liminf_{n \to \infty} (-X_n) \parallel \mathcal{G}]$$

$$\stackrel{a.s.}{\leq} \liminf_{n \to \infty} \mathbb{E}[-X_n \parallel \mathcal{G}]$$

$$\stackrel{a.s.}{=} -\limsup_{n \to \infty} \mathbb{E}[X_n \parallel \mathcal{G}]$$

Damit gilt

$$\limsup_{n\to\infty} \mathbb{E}[X_n \parallel \mathcal{G}] \stackrel{a.s.}{\leqslant} \mathbb{E}[X \parallel \mathcal{G}] \stackrel{a.s.}{\leqslant} \liminf_{n\to\infty} \mathbb{E}[X_n \parallel \mathcal{G}]$$

und damit folgt die Aussage.

13.5. Proposition: Sei $\mathcal{G} \subseteq \mathcal{A}$ eine sub- σ -Algebra und seien X, U Zufallsvariablen, sodass $X, UX \in L_1$. Falls $U \mathcal{G} - \mathcal{B}(\mathbb{R})$ -messbar ist, dann gilt

$$\mathbb{E}[UX \parallel \mathcal{G}] \stackrel{a.s.}{=} U \cdot \mathbb{E}[X \parallel \mathcal{G}]$$

Beweis: $U \cdot \mathbb{E}[X \parallel \mathcal{G}]$ ist \mathcal{G} -messbar.

I. $U = \mathbb{1}_H, H \in \mathcal{G}$

$$\forall G \in \mathcal{G}: \int_G U \cdot \mathbb{E}[X \parallel \mathcal{G}] \ d\mathbb{P} = \int_{G \cap G} \mathbb{E}[X \parallel \mathcal{G}] \ d\mathbb{P} = \mathbb{E}[X \cdot \mathbb{1}_{G \cap H}] = \mathbb{E}[UX \cdot \mathbb{1}_G]$$

- II. U einfach
 - folgt aus I. und der Linearitt des bedingten Erwartungswertes.
- III. $U \geqslant 0$

Whle $U_n, n \ge 1$ einfach und \mathcal{G} -messbar mit $0 \le U_n \nearrow U$. Dann gilt $U_n X \to U X$ und $|U_n X| = |U_n||X| \le |U||X|$. Es folgt

$$\mathbb{E}[UX \parallel \mathcal{G}] \stackrel{\text{DOMK}}{=} \lim_{n \to \infty} \mathbb{E}[U_nX \parallel \mathcal{G}] \stackrel{\text{II.}}{=} \lim_{n \to \infty} U_n \cdot \mathbb{E}[X \parallel \mathcal{G}] = U \cdot \mathbb{E}[X \parallel \mathcal{G}]$$

IV. U allgemein

Schreibe $U = U_{+} - U_{-}$. Dann gilt

$$\mathbb{E}[UX \parallel \mathcal{G}] = \mathbb{E}[(U_{+} - U_{-})X \parallel \mathcal{G}]$$

$$\stackrel{a.s.}{=} \mathbb{E}[U_{+}X \parallel \mathcal{G}] - \mathbb{E}[U_{-}X \parallel \mathcal{G}]$$

$$\stackrel{a.s.}{=} (U_{+}) \cdot \mathbb{E}[X \parallel \mathcal{G}] - (U_{-}) \cdot \mathbb{E}[X \parallel \mathcal{G}]$$

$$\stackrel{a.s.}{=} (U_{+} - U_{-}) \cdot \mathbb{E}[X \parallel \mathcal{G}] = U \cdot \mathbb{E}[X \parallel \mathcal{G}]$$

13.6. Proposition: Seien \mathcal{G} und \mathcal{H} sub- σ -Algebran, sodass $\mathcal{H} \subseteq \mathcal{G} \subseteq \mathcal{A}$. Sei $X \in L_1$. Dann gilt

$$\mathbb{E}[X \parallel \mathcal{H}] \stackrel{\text{(i)}}{=} \mathbb{E}[\mathbb{E}[X \parallel \mathcal{H}] \parallel \mathcal{G}] \stackrel{\text{(ii)}}{=} \mathbb{E}[\mathbb{E}[X \parallel \mathcal{G}] \parallel \mathcal{H}]$$

fast sicher.

Beweis:

(i) folgt sofort, da $\mathbb{E}[X \parallel \mathcal{H}]$ \mathcal{H} -messbar und damit auch \mathcal{G} -messbar ist. Mit Proposition 13.3 gilt

$$\mathbb{E}[X \parallel \mathcal{H}] \stackrel{a.s.}{=} \mathbb{E}[\mathbb{E}[X \parallel \mathcal{H}] \parallel \mathcal{G}]$$

(ii) $\mathbb{E}[\mathbb{E}[X \parallel \mathcal{G}] \parallel \mathcal{H}]$ ist \mathcal{H} -messbar und damit auch \mathcal{G} -messbar. Es gilt

$$\forall H \in \mathcal{H} : \int_{H} \mathbb{E}[\mathbb{E}[X \parallel \mathcal{G}] \parallel \mathcal{H}] \ d\mathbb{P} = \int_{H} \mathbb{E}[X \parallel \mathcal{G}] \ d\mathbb{P}$$
$$= \int_{H} X \ d\mathbb{P}$$

da $H \in \mathcal{H} \implies H \in \mathcal{G}$. Mit Definition 13.1 und Satz 12.8 folgt die Aussage.

Bedingte Verteilungen

- **13.7.** Satz: Sei $\mathcal{G} \subseteq \mathcal{A}$ eine sub- σ -Algebra und sei X eine reelwertige Zufallsvariable. Dann existiert eine Funktion $\mu : \mathcal{B}(\mathbb{R}) \times \Omega \to [0,1]$ mit den folgenden Eigenschaften:
 - (i) Fr $\omega \in \Omega$ fest ist $\mu(\cdot, \omega) : \mathcal{B}(\mathbb{R}) \to [0, 1]$ ein Wahrscheinlichkeitsma.
 - (ii) Fr $B \in \mathcal{B}(\mathbb{R})$ fest, gilt fr $\mu(B,\cdot): \Omega \to [0,1]$, dass $\mu(B,\cdot) = \mathbb{P}(X \in B \parallel \mathcal{G})$ fast sicher.

Man nennt $\mu(\cdot, \omega)$ die bedingte Verteilung von X gegeben \mathcal{G} .

Beweis: Fr $q \in \mathbb{Q}$ sei $F(q, \omega) := \mathbb{P}(X \leq q \parallel \mathcal{G})(\omega)$. Fr $q, r \in \mathbb{Q}$ mit $q \leq r$ gilt damit (Monotonie des bedingten Erwartungswertes, Proposition 13.4)

$$F(q,\omega) \leqslant F(r,\omega)$$
 (10)

fr alle w auerhalb einer \mathbb{P} -Nullmenge. Mit DOMK fr bedingte Erwartungswerte (Proposition 13.4) gilt

$$\forall q \in \mathbb{Q} : F(q, \omega) = \lim_{n \to \infty} F\left(q + \frac{1}{n}, \omega\right)$$
 (11)

fr ω auerhalb einer \mathbb{P} -Nullmenge und (DOMK)

$$\lim_{n \to \infty} F(-n, \omega) = 0 \text{ und } \lim_{n \to \infty} F(n, \omega) = 1$$
 (12)

auerhalb einer \mathbb{P} -Nullmenge. Sei N die abzhlbare Vereinigung der in (10), (11) und (12) auftretenden Nullmengen Dann ist N wieder eine \mathbb{P} -Nullmenge und (10), (11), (12) gelten fr jedes $\omega \in N^c$.

Sei nun $t \in \mathbb{R}$. Fr $\omega \in \mathbb{N}^c$ setze

$$F(t,\omega) := \inf \{ F(q,\omega) : t \leqslant q, q \in \mathbb{Q} \}$$

und fr $\omega \in N$ setze $F(t, \omega) := F(t)$ fr eine beliebige fest cdf F. Mit (10), (11) und (12) ist $F(\cdot, \omega)$ eine cdf fr jedes $\omega \in \Omega$. Fr $\omega \in \Omega$ sei nun $\mu(\cdot \omega)$ das durch $F(\cdot \omega)$ bestimmte Wahrscheinlichkeitsma auf $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$. Damit gilt (i).

Die Mengenfamilie

$$\mathcal{L} := \{ B \in \mathcal{B}(\mathbb{R}) : \mu(B, \cdot) \text{ ist } \mathcal{G}\text{-messbar} \}$$

ist ein λ -System (leicht zu prfen) und enthlt das π -System $\mathcal{M} := \{(-\infty, q] : q \in \mathcal{Q}\}$. Mit dem λ - π -Theorem gilt

$$\mathcal{B}(\mathbb{R}) = \sigma(\mathcal{M}) = \lambda(\mathcal{M}) \subseteq \mathcal{L} \subseteq \mathcal{B}(\mathbb{R})$$

Also gilt $\mathcal{L} = \mathcal{B}(\mathbb{R})$ und $\mu(B, \cdot)$ ist fr jedes $B \in \mathcal{B}(\mathbb{R})$ \mathcal{G} -messbar.

Fr $B=(-\infty,q]$ mit $q\in\mathbb{Q}$ ist $\mu(B,\cdot)=\mathbb{P}(X\leqslant q\parallel\mathcal{G})$ laut Konstruktion, sodass fr $G\in\mathcal{G}$ gilt

$$\mathbb{E}[\mathbb{1}_G \cdot \mu(B, \cdot)] = \mathbb{P}(G \cap \{X \in B\}) \tag{13}$$

Fr $G \in \mathcal{G}$ fest gilt (13) fr jede Menge $B \in \mathcal{M}$. Sei nun

$$\mathcal{Z} := \{ B \in \mathcal{B}(\mathbb{R}) : \mathbb{E}[\mathbb{1}_G \cdot \mu(B, \cdot)] = \mathbb{P}(G \cap \{X \in B\}) \}$$

Nun sind in (14) beide Seiten der Gleichung endliche Mae, die auf dem π -System \mathcal{M} bereinstimmen. Mit Korollar 2.9 folgt, dass die beiden Mae auch auf $\sigma(\mathcal{M}) = \mathcal{B}(\mathbb{R})$ bereinstimmen. Also gilt (13) fr alle $B \in \mathcal{B}(\mathbb{R})$. Mit Definition 13.1 folgt Aussage (ii).