

TAS TD 2 - Lambda-Calcul Simplement Typé

1 Types Simples

Typer les termes suivants, dans l'environnement vide :

- 1. *I*
- 2. *I I*
- 3. *K*
- 4. S
- 5. S K K
- 6. Ω
- 7. $KI\Omega$

Donner un type pour les entiers.

2 Listes

On peut représenter la liste $[e_1, e_2, \dots, e_k]$ par le terme $\lambda cn.c \ e_1 \ (c \ e_2 \ \dots \ (c \ e_k \ n) \dots)$

- 1. Donner deux termes réalisant la liste vide et la construction d'une liste (à partir d'une liste et d'un élément).
- 2. Donner un λ -terme réalisant la concaténation de deux listes.
- 3. Donner un λ -terme réalisant l'extraction de la tête.
- 4. Donner un λ -terme réalisant un *map* sur une liste.
- 5. Donner un λ -terme réalisant un *reducelfold* sur une liste.
- 6. Donner un λ -terme calculant la longueur d'une liste.
- 7. Donner un λ -terme réalisant l'extraction de la queue.
- 8. Donner un λ -terme réalisant un *filter* sur une liste.
- 9. Expliquer comment représenter un arbre binaire en λ -calcul.
- 10. Expliciter un type pour les listes.

3 Indices de De Bruijn

Pour de nombreuses raisons, il peut être pratique de se débarrasser de l' α -conversion en ayant une représentation unique des λ -termes. La syntaxe du λ -calcul en indice de De Bruijn est définie par la grammaire :

$$M ::= n \mid MM \mid \lambda.M$$

où n est un entier naturel. Intuitivement n représente la variable liée par le (n+1)-ème λ obtenu en remontant le terme. Ainsi $\lambda\lambda.(10)(\lambda.20)$ désigne le λ -terme $\lambda xy.(xy)(\lambda z.xz)$.

- 1. Ecrire les règles décrivant la sémantique opérationnelle à petits pas du λ -calcul en indice de De Bruijn.
- 2. Ecrire la multiplication en indice de De Bruijn.
- 3. Donner la traduction du λ -calcul dans celui en indice de De Bruijn, et la traduction inverse.

4 Stratégies

Une stratégie de réduction pour le λ -calcul est une relation $\to_s \subseteq \to$ qui est déterministe.

1. Que signifie " \rightarrow_s est déterministe"?

4.1 Call-by-value

On définit le λ -calcul en appel par valeur en définissant (x est une variable) :

- les termes : $M := x \mid \lambda x.M \mid MN$
- les valeurs : $V := x \mid \lambda x.M$
- la sémantique opérationnelle à petits pas :

$$\frac{M \to_v M'}{(\lambda x.M)V \to_v M[V/x]} \beta \qquad \qquad \frac{M \to_v M'}{MN \to_v M'N} \mu_l \qquad \qquad \frac{N \to_v N'}{VN \to_v VN'} \mu_r$$

- 1. Réduisez les termes $\delta(I\delta I)$ et $I(F\delta I)$ avec la relation \rightarrow_v .
- 2. Prouvez que \rightarrow_v est déterministe.
- 3. Cette présentation est appelée "left-to-right", quelle est la présentation "right-to-left"?

4.2 Call-by-name

La sémantique du λ -calcul en appel par nom est :

$$\frac{M \to_n M'}{(\lambda x.M)N \to_n M[N/x]} \beta \qquad \frac{M \to_n M'}{MN \to_n M'N} \mu_l$$

1. Répondez aux questions prècèdentes pour l'appel par nom.

5 Combinateurs de point fixe

Un λ -terme M est un point-fixe d'un λ -terme F si $M =_{\beta} FM$. Un terme C est un combinateur de point fixe si pour tout terme F, CF est un point fixe de F.

On définit les termes suivants :

$$p = \lambda f x. f(xx)$$
 $\mathbf{Y} = \lambda f. p f(pf)$ $q = \lambda xy. y(xxy)$ Theta = qq

1. Montrer que Y et Theta sont des combinateurs de point fixe.