Fibonacci Heaps

Priority Queue Operations

- Maintain a set Q (initially empty)
- Insert(x, k): add x to Q with value d(x) = k

Slight overkill for Dijkstra

Start by inserting s with value 0, all other nodes with value ∞

• **Deletemin**(): Find an $x \in Q$ minimizing d(x). Delete x from Q and return it.

• Decreasekey(x, k): $d(x) \leftarrow \min\{d(x), k\}$

Priority Queue Implementations

- Next: Binomial Trees
 - Insert = Decreasekey = Deletemin = $O(\log n)$ time
- After that: Fibonacci Trees
 - Insert = Decreasekey = O(1), Deletemin = $O(\log n)$

Heap-ordered trees

- Represent Q by a forest of rooted trees
- One element per node
- Heap ordered: $d(x) \ge d(parent(x))$
 - ⇒ element with min. key at a root
 - \Rightarrow two heap ordered trees can be linked in O(1) time

Heap-ordered trees

- Represent Q by a forest of rooted trees
- One element per node
- Heap ordered: $d(x) \ge d(parent(x))$
 - ⇒ element with min. key at a root
 - \Rightarrow two heap ordered trees can be linked in O(1) time

- A binomial tree is a tree that obeys a special structure
- A binomial tree B_i of "rank 0" must be a **single node**.
- A binomial tree B_{i+1} of "rank i+1" is:
 - A B_i , with another B_i added as the rightmost child of the root.

- Equivalent definition:
 - $-B_{i+1}$ = one root node with children B_0 , B_1 , ..., B_i

• Size of binomial trees: $|B_0|=1$, $|B_i|=2|B_{i-1}| \Rightarrow |B_i|=2^i$

- B_i = binomial tree with rank i
 - $-B_0$ = one node
 - $-B_{i+1}$ = make one B_i the rightmost child of another B_i

Rank 1

- B_i = binomial tree with rank i
 - $-B_0$ = one node
 - $-B_{i+1}$ = make one B_i the rightmost child of another B_i

- B_i = binomial tree with rank i
 - $-B_0$ = one node
 - $-B_{i+1}$ = make one B_i the rightmost child of another B_i

Rank 3

- B_i = binomial tree with rank i
 - $-B_0$ = one node
 - $-B_{i+1}$ = make one B_i the rightmost child of another B_i

Rank 4

- B_i = binomial tree with rank i
 - $-B_0$ = one node
 - $-B_{i+1}$ = make one B_i the rightmost child of another B_i

- B_i = binomial tree with rank i
 - $-B_0$ = one node
 - $-B_{i+1}$ = make one B_i the rightmost child of another B_i

- Structure of a binomial heap:
 - (1) A list of heap-ordered binomial trees
 - (2) At most one tree of each rank
- Insert(X, k):
 - Create a new node X (a B_0 tree)
 - Add X to the list of trees (1)
 - Now there might be two rank-0 trees
 - Do some work to restore property (2)

Insert(x, k): create new B_0 tree (one node) for x Now more than one B_0 tree

Insert(x,k):

Link B_0 trees. Now there's too many B_1 trees.

Insert(x,k):

Link B_1 trees. Now too many B_2 trees.

Insert(x,k):

Link B_2 trees.

Insert(x,k):

Link B_2 trees. At most 1 tree of each rank so we're done.

Insertion: Which Goes Under?

Insert(x, k): create new B_0 tree (one node) for x Now more than one B_0 tree

Insertion: Which Goes Under?

Insert(x, k):

Link B_0 trees. Now there's too many B_1 trees.

- Structure of a binomial heap:
 - (1) A list of heap-ordered binomial trees
 - (2) At most one tree of each rank
- Insert(X,k) :
 - Create a new node X (a B_0 tree)
 - Repeatedly link trees until property is restored

Claim:

Insert takes $O(\log n)$ operations in the worst case.

- Initially: n elements and $O(\log n) + 1$ inserted tree in the collection
- One operation links two trees → one fewer in the collection
- Can only perform $O(\log n)$ linkings per insert

- Structure of a binomial heap:
 - (1) A list of heap-ordered binomial trees
 - (2) At most one tree of each rank
- Insert(X,k): $O(\log n)$ operations (# of trees)
- Deletemin():
 - Scan roots of trees in collection to find the one with min key
 - Remove and return min root r
 - Insert children of r to the collection

Deletemin(): Search all tree roots for minimum key

Deletemin():

Delete this root and insert its children one at a time

Deletemin():

...after inserting children B_0 , B_1 , B_2

Deletemin():

...after inserting children B_0 , B_1 , B_2

Deletemin():

...after linking two B_3 trees

Deletemin():

...after linking two B_3 trees...and two B_4 trees

Deletemin():

No more than one tree per rank, so we're done.

- Structure of a binomial heap:
 - (1) A list of heap-ordered binomial trees
 - (2) At most one tree of each rank
- Insert(X,k): O(log n) operations (# of trees)
- Deletemin():
 - Scan roots of trees in collection to find the one with min key
 - Remove and return min root r, insert children of r

Claim:

Deletemin takes $O(\log n)$ operations in the worst case.

• Up to $O(\log n)$ insertions, and one insertion can take $O(\log n)$ time! What?

- Structure of a binomial heap:
 - (1) A list of heap-ordered binomial trees
 - (2) At most one tree of each rank
- Insert(X,k): $O(\log n)$ operations (# of trees)
- Deletemin():
 - Scan roots of trees in collection to find the one with min key
 - Remove and return min root r, insert children of r

Claim:

Deletemin takes $O(\log n)$ operations in the worst case.

- Initially: n elements and $O(\log n) + 1$ trees in the collection
- One operation links two trees

 one fewer in the collection
- Can only perform $O(\log n)$ links across all the insertions.

- Structure of a binomial heap:
 - (1) A list of heap-ordered binomial trees
 - (2) At most one tree of each rank
- Insert(X,k): $O(\log n)$ operations (# of trees)
- Deletemin(): $O(\log n)$ operations (max # children)
- DecreaseKey(X,k):
 - (Can jump straight to the right key)
 - Decrease the value
 - Swap up the tree to fix the ordering

Decreasekey in a Binomial Heap

Decreasekey(x,4):

Decreasekey in a Binomial Heap

Decreasekey(x,4):

Decreasekey in a Binomial Heap

Decreasekey(x,4):

Decreasekey in a Binomial Heap

Decreasekey(x,4):

Decreasekey in a Binomial Heap

Decreasekey(x,4):

Binomial *Heaps*

- Structure of a binomial heap:
 - (1) A list of heap-ordered binomial trees
 - (2) At most one tree of each rank
- Insert(X,k): $O(\log n)$ operations (# of trees)
- Deletemin(): $O(\log n)$ operations (max # children)
- DecreaseKey(X,k): $O(\log n)$ operations (max tree height)

The Fibonacci Heap

- Like binomial heap, but not so picky about the tree structure
- Collection of heap ordered trees (not necessarily binomial)
- At most one tree per "rank" (definition will change)
- Insert & Deletemin same as in binomial heap
- New DecreaseKey

The Fibonacci Heap

- Like binomial heap, but not so picky about the tree structure
- Collection of heap ordered trees (not necessarily binomial)
- At most one tree per "rank" (definition will change)
- Insert & Deletemin same as in binomial heap
- New DecreaseKey

Slightly different definition of "rank"

- In binomial tree "rank"

 "number of children"
- In Fibonacci heap a rank k node <u>EITHER</u> has k children

• OR: It has k-1 children and is marked (lost one)

The Fibonacci Heap

- Like binomial heap, but not so picky about the tree structure
- Collection of heap ordered trees (not necessarily binomial)
- At most one tree per "rank" (definition will change)
- Insert & Deletemin same as in binomial heap

- Decreasekey(x,k): cuts link from x to parent(x)
 - A node that has lost one child is marked
 - A node that has lost two children is unmarked and cuts the link to its parent and reinserts

Cut link from node to its parent, mark the parent

Cut link from node to its parent, mark the parent

Cut link from node to its parent, mark the parent

Too many rank 0 nodes, so link them

Too many rank 0 nodes, so link them

New decreasekey: cut link from node to its parent, mark the parent

- Parent lost two children
- Cut it and set it to be unmarked

- Its parent lost two children
- Cut it as well and set it to be unmarked

Too many rank 1 nodes, so link them

Too many rank 1 nodes, so link them

• At most one tree per rank, so we're done.

The Challenge

Binomial Heaps:

– Insert, DeleteMin, DecreaseKey all cost $O(\log n)$ time in the worst case.

Fibonacci Heaps:

- No changes in Insert, DeleteMin
- Aiming for O(1) time DecreaseKey
- DecreaseKey calls Insert
- How are we going to get O(1) Insert and DecreaseKey? .
 Are we doomed?

The Challenge

Binomial Heaps:

- Insert, DeleteMin, DecreaseKey all cost $O(\log n)$ time in the worst case.

Need "average-case" analysis

- Repeated insertions/cuts can happen
- But very often?

Fibonacci Heaps:

- No changes in Insert, DeleteMin
- Aiming for O(1) time DecreaseKey
- DecreaseKey calls Insert
- How are we going to get O(1) Insert and DecreaseKey? .
 Are we doomed?

Amortized Analysis

- Statement: Total running time is at most
 - O((# insert) + (# decreasekey) + log n*(# deletemin)).
 - On average, insert, decreasekey run in time O(1) and deletemin runs in time O(log n).
- Strategy: Maintain a "potential" ϕ in the analysis.
 - Some function of the current state of the heap.
 - Let c_i = actual running time of i-th operation.
 - Let D_i = Fibonnaci heap after the i-th operation.
 - $-\operatorname{Let}\widehat{c_i} = c_i + \phi(D_i) \phi(D_{i-1}).$
 - Total running time $\sum_{i=1}^n c_i = (\sum_{i=1}^n \widehat{c_i}) \phi(D_n) + \phi(D_0)$
 - So, if $\phi(D_0)=0$ and $\phi(D_n)\geq 0$, $\sum_{i=1}^n c_i\leq \sum_{i=1}^n \widehat{c_i}$
 - If $\widehat{c_i} \leq O(1)$ whenever i is insert/decreasekey and $\widehat{c_i} \leq O(\log n)$ when i is deletemin, we prove what we want!

Insert:

- O(1) work to link two trees, reducing # of trees by 1
- Might do this repeatedly...
- But that's okay if potential depends on the # of trees

DecreaseKey:

- -O(1) work to cut
- Might have to do this repeatedly...
- Last cut in the chain:
 - Increases the number of trees by 1
 - Increases the number of marked nodes by 1

DecreaseKey:

- -O(1) work to cut
- Might have to do this repeatedly...
- All other cuts in the chain:
 - Increase the number of trees by 1
 - Decrease the number of marked nodes by 1

$$\phi = 2(\text{# marked nodes}) + (\text{# trees})$$

Amortized Cost

Insert

$$-c_{i} = 1 + \#links$$
$$-\Delta \phi = 1 - \#links$$
$$-\widehat{c}_{i} = 2$$

- If you want to more precise bound $c_i \le a(1 + links)$ for some constant a, define
 - $-\phi = a \cdot (2(\# \text{ marked nodes}) + (\# \text{ trees}))$
 - Everything will be multiplied by a, but fine.

Amortized Cost

Deletemin

- $-c_i = \#trees + \#children + \#links$
- $-\Delta \phi = \#children 1 \#links$

Lemma] Tree of rank i has at least i-th Fibonnaci number = $\Omega(1.682^i)$.

 $-\widehat{c_i} \le \#trees + 2 \cdot \#children \le O(\log n)$

Amortized Cost

Decreasekey

- $-c_i = 1 + \#cuts + \#links$
- Last cut in the chain
 - Increase #trees by 1
 - Increase #markednodes by 1
- Every other cut in chain
 - Increase #trees by 1
 - Decrease #markednodes by 1

$$-\Delta \phi = 3 - (\#cuts - 1) - \#links$$

$$-\widehat{c_i} = c_i + \Delta \phi = 5.$$

Amortized Analysis

- Statement: Total running time of Fibonacci Heaps is at most
 - -O((# insert) + (# decreasekey) + log n*(# deletemin)).
 - On average, insert, decreasekey run in time O(1) and deletemin runs in time O(log n).

Dijkstra with Fibonacci heaps

- Input: directed graph G with positive lengths, source s
- $\operatorname{dist}[s] = 0$, $\operatorname{dist}[v] = \infty$ for all $v \neq s$, $\operatorname{prev}[s] = \emptyset$. $A = \emptyset$.
- For every $v \in V$
 - Insert(Q, v, dist[v])

Insert O(n) times O(n) operations **total**

Deletemin O(n) times

 $O(n \log n)$ operations

- While $A \neq V$
 - -v = Deletemin(Q)
 - $-A \leftarrow A \cup \{v\}.$
 - − For every $(v, w) \in E$
 - If $dist[w] > dist[v] + \ell(v, w)$
 - $-\operatorname{dist}[w] = \operatorname{dist}[w] + \ell(v, w), \operatorname{prev}[w] = v.$
 - -Decreasekey(Q, w, dist[w]).

Decreasekey O(m) times O(m) operations **total**

Total: $O(m + n \log n)$ operations

Wrapup

• Upshot: Dijkstra takes $O(m + n \log n)$ time.

Choosing a good potential function can be tricky!