DEPARTMENT OF MATHEMATICS, IIT Guwahati

MA101: Mathematics I, July - November 2014 Summary of Lectures (Set - V)

1 Inner Product and Gram-Schmidt Process

Let \mathbb{K} denote \mathbb{C} or \mathbb{R} . Let $\mathbf{u} = \begin{bmatrix} u_1 \\ \vdots \\ u_n \end{bmatrix}, \mathbf{v} = \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix} \in \mathbb{K}^n$.

• The dot product or the standard inner product $\mathbf{u} \cdot \mathbf{v}$ of \mathbf{u} and \mathbf{v} is defined by

$$\mathbf{u} \cdot \mathbf{v} = \mathbf{u}^* \mathbf{v} = \begin{bmatrix} \overline{u_1} & \cdots & \overline{u_n} \end{bmatrix} \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix} = \overline{u_1} v_1 + \overline{u_2} v_2 + \ldots + \overline{u_n} v_n = \sum \overline{u_i} v_i.$$

- Sometimes, the notation $\langle \mathbf{u}, \mathbf{v} \rangle$ is also used to denote the inner product of \mathbf{u} and \mathbf{v} .
- The **length** or **norm** $\|\mathbf{u}\|$ of \mathbf{u} is defined by

$$\|\mathbf{u}\| = \sqrt{\mathbf{u} \cdot \mathbf{u}} = \sqrt{|u_1|^2 + |u_2|^2 + \dots + |u_n|^2}.$$

- Observe that $\|\alpha \mathbf{u}\| = |\alpha| \|\mathbf{u}\|$.
- The vectors \mathbf{u} and \mathbf{v} are said to be **orthogonal** if $\mathbf{u}.\mathbf{v} = 0$.
- A vector **u** is called an **unit** vector if $\|\mathbf{u}\| = 1$.

Result 1.1. Let $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{K}^n$ and $c \in \mathbb{K}$. Then

- 1. $\mathbf{u} \cdot \mathbf{v} = \mathbf{u}^* \mathbf{v} = (\mathbf{v}^* \mathbf{u})^* = \overline{\mathbf{v} \cdot \mathbf{u}};$
- 2. $\mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) = \mathbf{u}^* (\mathbf{v} + \mathbf{w}) = \mathbf{u}^* \mathbf{v} + \mathbf{u}^* \mathbf{w} = \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w}$;
- 3. $(c\mathbf{u}) \cdot \mathbf{v} = (c\mathbf{u})^* \mathbf{v} = \sum \overline{cu_i} v_i = \overline{c} \sum \overline{u_i} v_i = \overline{c} (\mathbf{u} \cdot \mathbf{v});$
- 4. $\mathbf{u} \cdot (c\mathbf{v}) = \mathbf{u}^*(c\mathbf{v}) = c(\mathbf{u} \cdot \mathbf{v});$
- 5. $\mathbf{u} \cdot \mathbf{u} = \sum |c_i|^2 \ge 0$. The equality holds iff each each $u_i = 0$, that is, iff $\mathbf{u} = 0$.

Orthogonal Set: A set $S \subseteq \mathbb{K}^n$ is said to be an orthogonal set if $\mathbf{v} \cdot \mathbf{w} = 0$ holds for each $\mathbf{v}, \mathbf{w} \in S, \mathbf{v} \neq \mathbf{w}$.

- The set $\{[2,1,-1]^t,[0,1,1]^t,[1,-1,1]^t\}$ is an orthogonal set in \mathbb{R}^3 .
- An orthogonal set can contain a zero.
- Let S be an orthogonal set and $\mathbf{u}, \mathbf{v} \in S$. Put $\mathbf{x} = 2\mathbf{u} + (1-i)\mathbf{v}$. Then

$$\mathbf{u} \cdot \mathbf{x} = \mathbf{u} \cdot (2\mathbf{u} + (1-i)\mathbf{v}) = 2(\mathbf{u} \cdot \mathbf{u}) + (1-i)(\mathbf{u} \cdot \mathbf{v}) = 2\|\mathbf{u}\|^2$$
.

Similarly $\mathbf{v} \cdot \mathbf{x} = (1 - i) ||v||^2$.

Result 1.2. If S is an orthogonal set of non-zero vectors, then S is linearly independent.

Proof. Suppose that S is linearly dependent. Then there exist $\mathbf{v_1}, \dots, \mathbf{v_k} \in S$ such that $\sum_{i=1}^k c_i \mathbf{v_i} = \mathbf{0}$, where some c_i are nonzero. But then (see previous item)

$$c_i ||v_i||^2 = \mathbf{v_i} \cdot \sum_{i=1}^k c_i \mathbf{v_i} = \mathbf{v_i} \cdot \mathbf{0} = 0.$$

As $\|\mathbf{v_i}\| \neq 0$, we get $c_i = 0$. And this holds for each i, a contradiction.

Orthogonal Basis: An orthogonal basis for a subspace W is a basis for W that is an orthogonal set.

• The set $\{\mathbf{u} = \begin{bmatrix} 2 \\ 1 \\ -1 \end{bmatrix}, \mathbf{v} = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, \mathbf{w} \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} \}$ is an orthogonal basis for \mathbb{R}^3 . Take $\mathbf{x} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \in \mathbb{R}^3$. Find a, b, c such that $\mathbf{x} = a\mathbf{u} + b\mathbf{v} + c\mathbf{w}$.

Ans.
$$a = \frac{\mathbf{u} \cdot \mathbf{x}}{\|\mathbf{u}\|^2} = \frac{1}{3}$$
, $b = \frac{\mathbf{v} \cdot \mathbf{x}}{\|\mathbf{v}\|^2} = 1$ and $c = \frac{\mathbf{w} \cdot \mathbf{x}}{\|\mathbf{w}\|^2} = \frac{1}{3}$.

• The set $\{\mathbf{u} = \begin{bmatrix} 2 \\ 1 \\ -1 \end{bmatrix}, \mathbf{v} = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, \mathbf{w} \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} \}$ is an orthogonal basis for \mathbb{C}^3 . Take $\mathbf{x} = \begin{bmatrix} 1 \\ 1 \\ i \end{bmatrix} \in \mathbb{C}^3$. Find a, b, c such that $\mathbf{x} = a\mathbf{u} + b\mathbf{v} + c\mathbf{w}$.

Ans.
$$a = \frac{\mathbf{u} \cdot \mathbf{x}}{\|\mathbf{u}\|^2} = \frac{3-i}{6}$$
, $b = \frac{\mathbf{v} \cdot \mathbf{x}}{\|\mathbf{v}\|^2} = \frac{1+i}{2}$ and $c = \frac{\mathbf{w} \cdot \mathbf{x}}{\|\mathbf{w}\|^2} = \frac{i}{3}$.

Result 1.3. Let $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ be an orthogonal basis for a subspace W and let $\mathbf{w} \in W$. Then the unique scalars c_1, c_2, \dots, c_k such that $\mathbf{w} = c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \dots + c_k\mathbf{v}_k$ are given by

$$c_i = \frac{\mathbf{v}_i \cdot \mathbf{w}}{\mathbf{v}_i \cdot \mathbf{v}_i}$$
 for $i = 1, 2, \dots, k$.

Proof. Follows from the evaluation that $\mathbf{v_i} \cdot \mathbf{w} = c_i ||\mathbf{v_i}||^2$.

Orthonormal Set: A set of vectors is said to be an orthonormal set if it is an orthogonal set of unit vectors. Orthonormal Basis: An orthonormal basis of a subspace W is a basis of W that is an orthonormal set.

Result 1.4. Let $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k\}$ be an orthonormal basis for a subspace W and let $\mathbf{w} \in W$. Then

$$\mathbf{w} = (\mathbf{u}_1.\mathbf{w})\mathbf{u}_1 + (\mathbf{u}_2.\mathbf{w})\mathbf{u}_2 + \ldots + (\mathbf{u}_k.\mathbf{w})\mathbf{u}_k,$$

and this representation is unique.

 ${\it Proof.}$ Follows from the previous result.

Orthogonal Complement: Let W be a subspace of \mathbb{K}^n .

- A vector $\mathbf{v} \in \mathbb{K}^n$ is said to be **orthogonal** to W if \mathbf{v} is orthogonal to every vector in W.
- The orthogonal complement of W, denoted W^{\perp} (called W-perp), is defined as

$$W^{\perp} = \{ \mathbf{v} \in \mathbb{K}^n : \mathbf{v}.\mathbf{w} = 0 \text{ for all } \mathbf{w} \in W \}.$$

- In \mathbb{R}^3 , take $W = \{\mathbf{e_1}\}$. Then $W^{\perp} = yz$ -plane.
- $\bullet \ \text{ In } \mathbb{R}^3 \text{, take } W = \{ \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \}. \ \text{Then } W^\perp = \{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} : \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = 0 \}.$
- $\bullet \ \text{ In } \mathbb{R}^3 \text{, take } W = \{ \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \}. \ \text{ Then } W^\perp = \{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} : \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = 0 \}.$
- In \mathbb{R}^3 , take $W = \text{SPAN}\{\mathbf{e_1}\}$. Then $W^{\perp} = yz$ -plane.
- In \mathbb{R}^3 , take $W = \text{SPAN}\left\{\begin{bmatrix}1\\1\\1\end{bmatrix},\begin{bmatrix}1\\2\\3\end{bmatrix}\right\}$. Then $W^{\perp} = \left\{\begin{bmatrix}x\\y\\z\end{bmatrix}:\begin{bmatrix}1&1&1\\1&2&3\end{bmatrix}\begin{bmatrix}x\\y\\z\end{bmatrix} = 0\right\}$.
- In \mathbb{C}^3 , take $W = \text{SPAN}\left\{\begin{bmatrix} 1\\1\\i\end{bmatrix},\begin{bmatrix} 1\\2i\\3\end{bmatrix}\right\}$. Then $W^{\perp} = \left\{\begin{bmatrix} x\\y\\z\end{bmatrix}:\begin{bmatrix} 1&1&-i\\1&-2i&3\end{bmatrix}\begin{bmatrix} x\\y\\z\end{bmatrix} = 0\right\}$.
- \bullet Let W be a subspace. Then W^\perp is also a subspace.

Proof. Just show that if
$$\mathbf{x}, \mathbf{y} \in W^{\perp}$$
, then $\mathbf{x} + c\mathbf{y} \in W^{\perp}$.

 $\bullet \ W \cap W^{\perp} = \{\mathbf{0}\}.$

Proof. If
$$\mathbf{v} \in W \cap W^{\perp}$$
, then $\mathbf{v} \cdot \mathbf{v} = 0$. Hence $\mathbf{v} = \mathbf{0}$.

• If $B = \{\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_k\}$ is a basis for W, then $\mathbf{v} \in W^{\perp}$ if and only if $\mathbf{v} \cdot \mathbf{w}_i = 0$ for all $i = 1, 2, \dots, k$. Proof. Suppose that $\mathbf{v} \cdot \mathbf{w}_i = 0$, for each i. Let $\mathbf{w} \in W$. Then $\mathbf{w} = \sum a_i \mathbf{w}_i$. Hence $\mathbf{v} \cdot \mathbf{w} = \sum a_i (\mathbf{v} \cdot \mathbf{w}_i) = 0$.

Conversely, if
$$\mathbf{v} \cdot \mathbf{w} = 0$$
 for each $\mathbf{w} \in W$, then in particular, $\mathbf{v} \cdot \mathbf{w_i} = 0$ for each i .

• Let W be a subspace of \mathbb{K}^n with a basis $\{\mathbf{w_1} = \begin{bmatrix} w_{11} \\ \vdots \\ w_{1n} \end{bmatrix}, \dots, \mathbf{w_k} = \begin{bmatrix} w_{k1} \\ \vdots \\ w_{kn} \end{bmatrix} \}$. Form the matrix A by taking $\mathbf{w_i}$ as the i-th column. Then W is nothing but COL A and so

$$(\operatorname{COL} A)^{\perp} = W^{\perp} = \{ \mathbf{v} : \mathbf{v} \cdot \mathbf{w} = 0 \text{ for each } \mathbf{w} \in W \}$$

$$= \{ \mathbf{v} : \mathbf{w} \cdot \mathbf{v} = 0 \text{ for each } \mathbf{w} \in W \}$$

$$= \{ \mathbf{v} : \mathbf{w_i} \cdot \mathbf{v} = 0 \text{ for each } i = 1, \dots, k \}$$

$$= \{ \mathbf{v} : \mathbf{w_i}^* \mathbf{v} = 0 \text{ for each } i = 1, \dots, k \}$$

$$= \{ \mathbf{v} : \begin{bmatrix} \overline{w_{11}} & \cdots & \overline{w_{1n}} \\ \vdots \\ \overline{w_{k1}} & \cdots & \overline{w_{kn}} \end{bmatrix} \mathbf{v} = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix} \}$$

$$= \text{NULL } A^*.$$

In particular, we have,

- $-W^{\perp}$ has dimension n-k.
- $(\operatorname{ROW} \overline{A})^{\perp} = (\operatorname{COL} A^*)^{\perp} (\operatorname{as} \operatorname{ROW} A = \operatorname{COL} A^t) = \operatorname{NULL} A.$
- Let W be a subspace of \mathbb{K}^n with a basis $\{\mathbf{w_1} = \begin{bmatrix} w_{11} \\ \vdots \\ w_{1n} \end{bmatrix}, \dots, \mathbf{w_k} = \begin{bmatrix} w_{k1} \\ \vdots \\ w_{kn} \end{bmatrix} \}$. Form the matrix A by taking $\mathbf{w_i}$ as

the *i*-th column. Note that RANK A=k. Hence there is an invertible matrix T such that $TA=\text{RREF }A=\begin{bmatrix}I_k\\\overline{\mathbf{O}}\end{bmatrix}$. Consider the last n-k rows of T. These rows are linearly independent, as they are part of an invertible matrix. Notice that the matrix product of such a row with the vectors $\mathbf{w_i}$ is 0. Then the last n-k columns of T^* will belong to W^{\perp} . In view of the previous item, they will form a basis of W^{\perp} .

• Orthogonal Decomposition Theorem Let W be a subspace of \mathbb{K}^n of dimension k. Then $W \oplus W^{\perp} = \mathbb{K}^n$.

Proof. We already know that the dimension of W^{\perp} is n-k. Let $\{\mathbf{v_1},\ldots,\mathbf{v_k}\}$ be a basis for W and $\{\mathbf{v_{k+1}},\ldots,\mathbf{v_n}\}$ be a basis for W^{\perp} . Then $\{\mathbf{v_1},\ldots,\mathbf{v_n}\}$ is linearly independent. Indeed, if $\sum a_i\mathbf{v_i}=\mathbf{0}$, then we have $\sum_{i=1}^k a_i\mathbf{v_i}+\sum_{i=k+1}^n a_i\mathbf{v_i}=\mathbf{0}$. That is, $\sum_{i=1}^k a_i\mathbf{v_i}=-\sum_{i=k+1}^n a_i\mathbf{v_i}\in W\cap W^{\perp}$. Hence $\sum_{i=1}^k a_i\mathbf{v_i}=\sum_{i=k+1}^n a_i\mathbf{v_i}=0$. Hence each $a_i=0$, as $\{\mathbf{v_1},\ldots,\mathbf{v_k}\}$ and $\{\mathbf{v_{k+1}},\ldots,\mathbf{v_n}\}$ are bases.

• Let $W \subseteq \mathbb{K}^n$. Then SPAN $W \subseteq (W^{\perp})^{\perp}$.

Proof. Note that $(W^{\perp})^{\perp}$ contains those elements of \mathbb{K}^n which are orthogonal to W^{\perp} . In particular, as each element w of W is orthogonal to W^{\perp} , we see that $w \in (W^{\perp})^{\perp}$. As $W \subseteq (W^{\perp})^{\perp}$ and the later is a subspace, we see that $SPANW \subseteq (W^{\perp})^{\perp}$.

• Let W be a subspace of \mathbb{K}^n of dimension k. Then $(W^{\perp})^{\perp} = W$.

Proof. As DIM W=k, by a previous item, we know that DIM $W^{\perp}=n-k$. Hence $\text{DIM}(W^{\perp})^{\perp}=n-(n-k)=k$. By the preceding item, $W\subseteq (W^{\perp})^{\perp}$. But as both have the same dimension, they must be the same.

• Let A be an $m \times n$ matrix. Then $(\operatorname{COL} A)^{\perp} = \operatorname{NULL} A^*$, $(\operatorname{ROW} \overline{A})^{\perp} = \operatorname{NULL} A$, and $\operatorname{ROW} \overline{A} = (\operatorname{NULL} A)^{\perp}$.

Proof. We already have proved the first two. The third one follows from the second by using the preceding item. \Box

Example 1.1. Consider
$$W = \left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} \in \mathbb{R}^3 : x + y + z = 0 \right\}$$
. A basis for W is $\left\{ \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} \right\}$. A basis for W^{\perp} is $\left\{ \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \right\}$.

• Notice that if $\mathbf{v} \in \mathbb{R}^3$ satisfies

$$\mathbf{v} = \mathbf{w}_1 + \mathbf{w}_1' = \mathbf{w}_2 + \mathbf{w}_2', \text{ where } \mathbf{w}_1, \mathbf{w}_2 \in W, \mathbf{w}_1', \mathbf{w}_2' \in W^{\perp};$$

then $\mathbf{w}_1 - \mathbf{w}_2 = \mathbf{w}_2' - \mathbf{w}_1' \in W \cap W^{\perp}$. Hence $\mathbf{w}_1 = \mathbf{w}_2$ and $\mathbf{w}_1' = \mathbf{w}_2'$.

- Thus ${\bf v}$ can be written as a sum of a vector in W and a vector in W^{\perp} uniquely.
- Consider $\mathbf{v} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$. Find (somehow) $\mathbf{w} \in W$ and $\mathbf{w}' \in W^{\perp}$ such that $\mathbf{v} = \mathbf{w} + \mathbf{w}'$. This \mathbf{w} is called the orthogonal projection of \mathbf{v} on W.

- Let W be a subspace of \mathbb{K}^n and $\mathbf{v} \in \mathbb{K}^n$. Then the **orthogonal projection of v on** W is the unique vector $\mathbf{w} \in W$ such that $\mathbf{v} = \mathbf{w} + \mathbf{w}'$, for some $\mathbf{w}' \in W^{\perp}$. In other words, it is the unique vector $\mathbf{w} \in W$ such that $\mathbf{v} \mathbf{w} \in W^{\perp}$. Again in words, it is the unique vector $\mathbf{w} \in W$ such that $(\mathbf{v} \mathbf{w})$ is orthogonal to \mathbf{w} . We denote this vector \mathbf{w} by $\operatorname{proj}_W(\mathbf{v})$. The vector $\mathbf{v} \operatorname{proj}_W(\mathbf{v})$ which denotes the perpendicular from \mathbf{v} to W is denoted by $\operatorname{perp}_W(\mathbf{v})$.
- Let W be a subspace of \mathbb{K}^n and $\mathbf{v} \in \mathbb{K}^n$. If we have an orthonormal basis $\{\mathbf{w_1}, \dots, \mathbf{w_k}\}$ of W, then $\operatorname{proj}_W(\mathbf{v})$ can be easily computed. In fact

$$\operatorname{proj}_{W}(\mathbf{v}) = (\mathbf{w_{1}} \cdot \mathbf{v})\mathbf{w_{1}} + \dots + (\mathbf{w_{k}} \cdot \mathbf{v})\mathbf{w_{k}} = \sum_{i=1}^{k} (\mathbf{w_{i}} \cdot \mathbf{v})\mathbf{w_{i}}.$$

If the basis is orthogonal, then

$$\operatorname{proj}_{W}(\mathbf{v}) = (\mathbf{w_{1}} \cdot \mathbf{v}) \frac{\mathbf{w_{1}}}{\|\mathbf{w_{1}}\|^{2}} + \dots + (\mathbf{w_{k}} \cdot \mathbf{v}) \frac{\mathbf{w_{k}}}{\|\mathbf{w_{k}}\|^{2}} = \sum_{i=1}^{k} (\mathbf{w_{i}} \cdot \mathbf{v}) \frac{\mathbf{w_{i}}}{\|\mathbf{w_{i}}\|^{2}}.$$

• For the previous example, we have $\left\{\begin{bmatrix} -1\\2\\-1\end{bmatrix},\begin{bmatrix} 1\\0\\-1\end{bmatrix}\right\}$ is an orthogonal basis. Hence

$$\operatorname{proj}_{W}(\begin{bmatrix} 1\\2\\3 \end{bmatrix}) = \frac{1}{6}(\begin{bmatrix} -1\\2\\-1 \end{bmatrix} \cdot \begin{bmatrix} 1\\2\\3 \end{bmatrix}) \begin{bmatrix} -1\\2\\1 \end{bmatrix} + \frac{1}{2}(\begin{bmatrix} 1\\0\\-1 \end{bmatrix} \cdot \begin{bmatrix} 1\\2\\3 \end{bmatrix}) \begin{bmatrix} 1\\0\\-1 \end{bmatrix} = 0 \begin{bmatrix} -1\\2\\-1 \end{bmatrix} - \begin{bmatrix} 1\\0\\-1 \end{bmatrix} = \begin{bmatrix} -1\\0\\1 \end{bmatrix}.$$

Thus,

$$\operatorname{perp}_W(\begin{bmatrix}1\\2\\3\end{bmatrix}) = \begin{bmatrix}1\\2\\3\end{bmatrix} - \begin{bmatrix}-1\\0\\1\end{bmatrix} = \begin{bmatrix}2\\2\\2\end{bmatrix}.$$

• Let W be a subspace of \mathbb{K}^n with an orthonormal basis $\{\mathbf{w_1}, \dots, \mathbf{w_k}\}$ and $\mathbf{v} \in \mathbb{K}^n$. Put $W_i = \text{SPAN}(\mathbf{w_i})$. Then

$$\operatorname{proj}_W(\mathbf{v}) = \operatorname{proj}_{W_1}(\mathbf{v}) + \ldots + \operatorname{proj}_{W_k}(\mathbf{v}).$$

Example 1.2. Let A and B be two $m \times n$ matrices and let the linear systems $A\mathbf{x} = \mathbf{0}$ and $B\mathbf{x} = \mathbf{0}$ have the same solution space. Show that the matrix A is row equivalent to B.

Ans. We have Null A = Null B. Hence $(\text{Null }A)^{\perp} = (\text{Null }B)^{\perp}$, that is $\text{Row }\overline{A} = \text{Row }\overline{B}$. Hence Row A = Row B. Let k = DIM ROW A. Let A' be the matrix obtained by taking the first k rows of RREFA and B' be the matrix obtained by taking the first k rows of RREFB. As rows of A' are linear combinations of rows of B', we have A' = SB' for some $k \times k$ matrix S. Note that $k = \text{Rank }A' = \text{Rank }(SB') \leq \text{Rank }S$, Rank B' and hence $k \leq \text{Rank }S$. That is, S is invertible. Hence A' is row equivalent to B'. Hence RREFA is row equivalent to RREFB, that is, they are equal. \square

Example 1.3. Let A and B be two $m \times n$ matrices and let the **consistent** linear systems $A\mathbf{x} = \mathbf{c}$ and $B\mathbf{x} = \mathbf{d}$ have the same solution set. Show that the matrix A is row equivalent to B.

Ans. If $A\mathbf{x} = \mathbf{c}$ and $B\mathbf{x} = \mathbf{d}$ have the same solution set, then $A\mathbf{x} = \mathbf{0}$ and $B\mathbf{x} = \mathbf{0}$ have the same solution set.

Example 1.4. Let W be the subspace of \mathbb{R}^5 spanned by the vectors $\mathbf{w}_1 = [1, -3, 5, 0, 5]^t$, $\mathbf{w}_2 = [-1, 1, 2, -2, 3]^t$ and $\mathbf{w}_3 = [0, -1, 4, -1, 5]^t$. Find a basis for W^{\perp} .

Example 1.5. Let S be a subspace of \mathbb{C}^n and let $\{\mathbf{v}_1, \dots, \mathbf{v}_k\}$ form a basis for S^{\perp} . Consider the $k \times n$ matrix A whose i-th row is \mathbf{v}_i^* . Show that S = NULL A.

Ans. Note that $\mathbf{v_i}^*\mathbf{w} = 0$ for each $\mathbf{w} \in S$. Hence $S \subseteq \text{NULL } A$. Furthermore, $\text{RANK } A = k = \text{DIM } S^{\perp}$. Hence DIM S = n - k = DIM NULL A, so that S = NULL A.

Result 1.5 (The Gram-Schmidt Process). Let $\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k\}$ be a basis for a subspace W of \mathbb{C}^n and define

$$\mathbf{v}_{1} = \mathbf{x}_{1}, \qquad W_{1} = span(\mathbf{x}_{1});$$

$$\mathbf{v}_{2} = \mathbf{x}_{2} - \left(\frac{\mathbf{v}_{1}.\mathbf{x}_{2}}{\mathbf{v}_{1}.\mathbf{v}_{1}}\right)\mathbf{v}_{1}, \qquad W_{2} = span(\mathbf{x}_{1},\mathbf{x}_{2});$$

$$\mathbf{v}_{3} = \mathbf{x}_{3} - \left(\frac{\mathbf{v}_{1}.\mathbf{x}_{3}}{\mathbf{v}_{1}.\mathbf{v}_{1}}\right)\mathbf{v}_{1} - \left(\frac{\mathbf{v}_{2}.\mathbf{x}_{3}}{\mathbf{v}_{2}.\mathbf{v}_{2}}\right)\mathbf{v}_{2}, \qquad W_{3} = span(\mathbf{x}_{1},\mathbf{x}_{2},\mathbf{x}_{3});$$

$$\vdots \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$\mathbf{v}_{k} = \mathbf{x}_{k} - \left(\frac{\mathbf{v}_{1}.\mathbf{x}_{k}}{\mathbf{v}_{1}.\mathbf{v}_{1}}\right)\mathbf{v}_{1} - \left(\frac{\mathbf{v}_{2}.\mathbf{x}_{k}}{\mathbf{v}_{2}.\mathbf{v}_{2}}\right)\mathbf{v}_{2} - \dots - \left(\frac{\mathbf{v}_{k-1}.\mathbf{x}_{k}}{\mathbf{v}_{k-1}.\mathbf{v}_{k-1}}\right)\mathbf{v}_{k-1}, \qquad W_{k} = span(\mathbf{x}_{1}, \dots, \mathbf{x}_{k}).$$

Then for each $i=1,2,\ldots,k,\ \{\mathbf{v}_1,\ldots,\mathbf{v}_i\}$ is an orthogonal basis for W_i . In particular, $\{\mathbf{v}_1,\ldots,\mathbf{v}_k\}$ is an orthogonal basis for W.

Example 1.6. Apply the Gram-Schmidt process to find an **orthonormal** basis of the subspace spanned by $\mathbf{u} = [1, -1, 1]^t$, $\mathbf{v} = [0, 3, -3]^t$ and $\mathbf{w} = [3, 2, 2]^t$.

- \bullet Given a set of vectors S, we can use Gram-Schmidt process to check its linear dependency.
- We can find an orthonormal basis B for span(S).
- \bullet The vectors in S corresponding to the elements of B are linearly independent.
- The **angle** θ between **u** and **v**, $(\mathbf{u}, \mathbf{v} \in \mathbb{R}^n)$, is defined by

$$\cos \theta = \frac{\mathbf{u}.\mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|}, \theta \in [0, \pi].$$

Orthogonal Matrix: An $n \times n$ matrix Q whose columns form an orthonormal set (i.e., $QQ^t = I = Q^tQ$) is called an **orthogonal matrix**.