Linear System Theory

Jun Moon State space model

February 26, 2018

Outline

▶ Frequency domain to state space

Structure of Control Systems

Block

- ▶ Plant: system that needs to be controlled (ODE or difference equations) ⇒ motor, aircraft, pendulum, etc
- Actuator/sensor
- Controller: controller that controls the plant

Structure of Control Systems

- Signal
 - ► Input (r): reference signal
 - Output (y): sensor signal
 - Noise (n) / Disturbance (d): unwanted signal (need to reduce their effect)
 - ► Control (u): control signal (we need to design)
- ► Structure: Open loop / Feedback

Suppose that the input r(t) and output c(t) behavior of the system is described by the following ordinary differential equation with the zero initial condition:

$$a_2 \frac{dc^2(t)}{dt^2} + a_1 \frac{dc(t)}{dt} + a_0 c(t) = b_0 r(t)$$

Let

$$c(t) = x_1(t)$$
$$\frac{dc(t)}{dt} = \dot{c}(t) = x_2(t) = \dot{x}_1(t)$$

Let

$$c(t) = x_1(t)$$
 $\dot{c}(t) = x_2(t) = \dot{x}_1(t)$

Then

$$a_{2}\frac{dc^{2}(t)}{dt^{2}} + a_{1}\frac{dc(t)}{dt} + a_{0}c(t) = b_{0}r(t)$$

$$a_{2}\dot{x}_{2}(t) + a_{1}x_{2}(t) + a_{0}x_{1}(t) = b_{0}r(t)$$

$$\Leftrightarrow \dot{x}_{2}(t) = -\frac{a_{0}}{a_{2}}x_{1}(t) - \frac{a_{1}}{a_{2}}x_{2}(t) + \frac{b_{0}}{a_{2}}r(t)$$

$$c(t) = x_1(t) \qquad \dot{c}(t) = x_2(t) = \dot{x}_1(t)$$
$$\dot{x}_2(t) = -\frac{a_0}{a_2}x_1(t) - \frac{a_1}{a_2}x_2(t) + \frac{b_0}{a_2}r(t)$$

Let

$$x(t) = \begin{pmatrix} x_1(t) & x_2(t) \end{pmatrix}^T$$

Then

$$\dot{x}(t) = \begin{pmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -\frac{a_0}{a_2} & -\frac{a_1}{a_2} \end{pmatrix} x(t) + \begin{pmatrix} 0 \\ \frac{b_0}{a_2} \end{pmatrix} r(t), \quad x(0)$$

$$c(t) = \begin{pmatrix} 1 & 0 \end{pmatrix} x(t)$$

▶ This is the state space representation of the ODE

Let's do one more example:

$$a_2 \frac{dc^2(t)}{dt^2} + a_1 \frac{dc(t)}{dt} + a_0 c(t) = b_0 r(t) + b_1 \frac{dr(t)}{dt}$$

The transfer function of the above system

$$G(s) = \frac{C(s)}{R(s)} = \frac{b_1 s + b_0}{a_2 s^2 + a_1 s + a_0}$$

The transfer function can be decomposed into

$$G(s) = \frac{C(s)}{R(s)} = \frac{C(s)}{X(s)} \frac{X(s)}{R(s)} = \frac{b_1 s + b_0}{a_2 s^2 + a_1 s + a_0},$$

where

$$\frac{X(s)}{R(s)} = \frac{1}{a_2s^2 + a_1s + a_0} \quad \frac{C(s)}{X(s)} = b_1s + b_0$$

The state space system is

$$\dot{x}(t) = \begin{pmatrix} 0 & 1 \\ -\frac{a_1}{a_2} & -\frac{a_0}{a_2} \end{pmatrix} x(t) + \begin{pmatrix} 0 \\ \frac{1}{a_2} \end{pmatrix} r(t), \quad x(0)$$

$$c(t) = \begin{pmatrix} b_1 & b_1 \end{pmatrix} x(t)$$

Every LTI system can be described by the state space system with the following general form:

$$\dot{x}(t) = Ax(t) + Bu(t) + Dd(t), \ x(0)$$
$$y(t) = Cx(t) + Eu(t) + Fn(t)$$

- ▶ $t \ge 0$: time
- $\mathbf{x} \in \mathbb{R}^n$: state
- ▶ $u \in \mathbb{R}^m$: control
- ▶ $d \in \mathbb{R}^I$: disturbance
- $v \in \mathbb{R}^p$: (sensor) output
- ▶ $n \in \mathbb{R}^q$: noise
- ightharpoonup A: $n \times n$ system matrix
- \triangleright B: $n \times m$ input matrix
- \triangleright D: $n \times I$ disturbance matrix
- $ightharpoonup C: p \times n$ output matrix
- \triangleright *E*: $p \times m$ feedthrough matrix
- ightharpoonup F: p imes q noise matrix

The simplified state space equation

$$\dot{x}(t) = Ax(t) + Bu(t)$$
 $y(t) = Cx(t) + Eu(t)$

- ▶ $x \in \mathbb{R}^n$: state
- ▶ $u \in \mathbb{R}^m$: control
- ▶ $y \in \mathbb{R}^p$: (sensor) output

What is "state"?

Definition of the state

⇒ The state is a vector that consists of state variables.

Definition of the state variable

 \Rightarrow The smallest set of linearly independent system variables such that the values of the members of the set at time 0 along with known input completely determine the value of all system variables for all $t \geq 0$

We use "state" and "state variables" interchangeability in control theory

Better definition of the state

 \Rightarrow The state of a dynamical system (plant or model) that completely characterizes the motion of a system for the purpose of predicting future motion

Easy definition: The state describes the behavior of the dynamical system (plant)

Examples of the state

- ► Electrical systems: current, voltage, charge
- Mechanical systems: position, velocity, acceleration
- ▶ Economics: output of the employer's effort, customer's perference

Selection of the state

- ► Each state variable must be independent: each state variable cannot be represented by a linear combination of other state variables
- ▶ Minimum dimension of the state vector

 ⇒ The minimum number of state variables

From Time Domain to Frequency Domain

Laplace transformation of the LTI system

$$\dot{x}(t) = Ax(t) + Bu(t), \ x(0) = 0$$
$$y(t) = Cx(t)$$

Let
$$X(s) = \int_0^\infty x(t)e^{-st}dt$$
, $s = \sigma + j\omega$

$$sX(s) - x(0) = AX(s) + BU(s)$$

$$X(s) = (sI - A)^{-1}BU(s)$$

Then, since Y(s) = CX(s)

$$Y(s) = C(sI - A)^{-1}BU(s) \Rightarrow G(s) = \frac{Y(s)}{U(s)} = C(sI - A)^{-1}B$$

G(s): transfer function from input to output g(t): inverse Laplace transformation of $G(s) \Rightarrow$ impulse response

Discrete-Time LTI Systems

▶ discrete-Time LTI System

$$x(t+1) = Ax(t) + Bu(t) + Dd(t)$$
$$y(t) = Cx(t) + Eu(t) + Fn(t)$$

- ▶ $t \in \mathbb{Z}_+ = \{0, 1, 2, ...\}$
- difference equation (first-order recursive equation)
- ► x, y, u are sequences
- ▶ sampled system: x(t) := x(tT) (T: sampling period)

From Time Domain to Frequency Domain

z-transformation of the LTI system

$$x(t+1) = Ax(t) + Bu(t), \ x(0) = 0$$

$$y(t) = Cx(t)$$
 Let $X(z) = \sum_{t=0}^{\infty} x(t)z^{-t}, \ z = e^{sT}, \ s = \sigma + j\omega, \ T > 0 \text{ (sampling)}$
$$zX(s) - zx(0) = AX(z) + BU(z)$$

$$X(z) = (zI - A)^{-1}BU(z)$$

Then, since Y(z) = CX(z)

$$Y(z) = C(zI - A)^{-1}BU(z) \Rightarrow G(z) = \frac{Y(z)}{U(z)} = C(zI - A)^{-1}B$$

G(z): transfer function from input to output g(t): inverse z-transformation of $G(z) \Rightarrow$ impulse response

Continuous-Time Linear Time-Varying (LTV) System

$$\dot{x}(t) = \frac{dx(t)}{dt} = A(t)x(t) + B(t)u(t) + D(t)d(t)$$
$$y(t) = C(t)x(t) + E(t)u(t) + F(t)n(t)$$

- ▶ *t* > 0: time
- ▶ $x \in \mathbb{R}^n$: state
- ▶ $u \in \mathbb{R}^m$: control
- ▶ $d \in \mathbb{R}^I$: disturbance
- ▶ $y \in \mathbb{R}^p$: (sensor) output
- ▶ $n \in \mathbb{R}^q$: noise
- \blacktriangleright A(t): $n \times n$ system matrix
- ▶ B(t): $n \times m$ input matrix
- ▶ D(t): $n \times l$ disturbance matrix
- ightharpoonup C(t): $p \times n$ output matrix
- \triangleright E(t): $p \times m$ feedthrough matrix
- \blacktriangleright F(t): $p \times q$ noise matrix

LTV and LTI Systems

- ► LTV system: constants are *time-varying*
- ▶ LTI system: constants are *time-invariant*
- ► LTI system can be converted into the transfer function via the Laplace (or z) transformation
- ► LTV and LTI systems: first-order ODE (first-order recursive equation)

LTV and LTI Systems

- ▶ state *x*: position, velocity, acceleration, etc, which capture the behavior of the system
- scalar (one-dimensional) u and y: single-input-single-output (SISO) system
- ▶ In this course, we consider continuous-time LTV and LTI systems when D = E = F = 0 (system without disturbance, noise and feedthrough terms)

Nonlinear Systems

► continuous-time nonlinear system

$$\dot{x}(t) = f(t, x(t), u(t), d(t)), \ y(t) = g(t, x(t), u(t), n(t))$$

discrete-time nonlinear system

$$x(t+1) = f(t,x(t),u(t),d(t)), \ y(t) = g(t,x(t),u(t),n(t))$$

- Example: $\dot{x}(t) = x^2(t)$, $\dot{x}(t) = \cos(t)$
- ▶ Linear system can be obtained by *linearization* of a nonlinear system ⇒ next class

Nonlinear Systems

continuous-time nonlinear system

$$\dot{x}(t) = f(t, x(t), u(t), d(t)), \ y(t) = g(t, x(t), u(t), n(t))$$

discrete-time nonlinear system

$$x(t+1) = f(t,x(t),u(t),d(t)), \ y(t) = g(t,x(t),u(t),n(t))$$

- Example: $\dot{x}(t) = x^2(t)$, $\dot{x}(t) = \cos(t)$
- ► Linear system can be obtained by *linearization* of a nonlinear system ⇒ next class

Why Study Linear Systems?

- ▶ Linear system is a special case of nonlinear systems
- Why do we study linear systems?
- If you do not understand linear systems, you cannot understand nonlinear systems
- Nonlinear system
 - Existence of solution?
 - Hard to analyze its dynamic behavior
 - Hard to see its input/output characteristics

Why Study Linear Systems?

- Linear system
 - Solution always exists
 - System characteristics depend on coefficients of the system
 - Computationally inexpensive
 - Easy to implement (real-time systems)
 - Linear algebra is the most effective tool
 - Many applications can be represented by linear systems (circuits, aircraft, missile, communication, traffic, guidance, economics)

Continuous-Time LTI Systems

Linear system in this course

- ► Lumped system ⇔ finite-dimensional system where the state space is finite dimensional
- ► Distributed system ⇔ infinite-dimensional system (on some function spaces)
 - Delay system
 - PDE
 - Will NOT be covered in this lecture

Next Class

- ▶ Existence and uniqueness of the solution of ODEs
- ▶ Linearization of nonlinear systems