Written exam of Calculus - Part 1 - Sample 2

IT IS FORBIDDEN TO USE CALCULATORS, BOOKS, NOTES, AND SO ON

TIME ALLOWED: 90 MINUTES

NAME:	
SURNAME:	
PART A Write only the answer.	
1.1 (3 POINTS) Z. 1-;	2:1-1 . 2.1 1
Let z be the complex number satisfying $\frac{z}{1-i} = \frac{1}{2i}.$	$Z = \frac{1}{2i} - \frac{i}{2i}$ $j = \frac{1}{2i} - \frac{1}{2}$
Compute the conjugate of z . Write the solution in Cartesian form.	1=14
ANSWER: $\overline{z} = \begin{bmatrix} -\frac{1}{2} - \frac{1}{2}i \end{bmatrix}$	$Z = \frac{1i^3}{2} - \frac{1}{2}i^4$ $i^2 = -1$ $Z = \frac{1}{2} - \frac{1}{2}i$ $Z = -\frac{1}{2} - \frac{1}{2}i$
	2 2 2 2
1.2 (3 POINTS)	
Let $f(x) = \sin(\log(x^2 - 3))$. Write the equation of the tangent line to th	
ANSWED	$\frac{2x}{x^2-3} \cosh\left(x^2-3\right)$
	x ² -3)= 4 - (4)
1.3 (3 POINTS)	
Let $A = \{x \in \mathbb{R} : 0 < x^2 \le 4\}$. Determine if A is open. Determine all the	accumulation points of A .

1.

PART B Write a complete solution.

1.4 (8 POINTS)

Let, for the parameter $a \in \mathbb{R}$,

$$f(x) = \begin{cases} a + a^2x & \text{se } x \le 0\\ \frac{\sqrt{x}\sin(\sqrt{x})\log\left((1+3x)^2\right)}{x^2 + x^4} & \text{se } x > 0 \end{cases}$$

Determine, if they exist, the values of $a \in \mathbb{R}$ such that the function f is continuous on the whole \mathbb{R} .

Another possible example: Let $f: \mathbb{R} \to \mathbb{R}$ be such that for any $x \in \mathbb{R}$

$$f(x) = \begin{cases} x^2(\log(|x|) - 1) & \text{if } x \neq 0\\ 0 & \text{if } x = 0. \end{cases}$$

Determine in which points $x \in \mathbb{R}$ the function is continuous. Determine in which points $x \in \mathbb{R}$ the function is derivable and in these points compute the derivative.

SOLUTION:

$$\int_{X \to a_{0}}^{C} \int_{X \to a_$$

SO IF = 6 THE FUNCTION IS CONTINUOUS

1.5 (8 POINTS)

Determine, if it exists,

$$\min_{x \in [1/8,8]} f(x)$$

where $f(x) = -x^{2/3}(x-1)^2$. Determine also all minimizers.

Another possible example: $\min_{x \in [-2,1/2]} f(x)$ where $f(x) = \frac{2x^2 - x + 1}{1 - x}$.

SOLUTION:

1.6 (7 POINTS)

State the Theorem on the derivability of the composition of functions and write the formula of its derivative

STATEMENT AND FORMULA:

1)
$$F(x) = f(x) + g(x)$$
 prove $F'(x) = f'(x) + g'(x)$, Given $F'(x) = \lim_{y \to x_0} \frac{f(x) - F(x_0)}{x - x_0}$ then

$$F'(x) = \lim_{y \to x_0} \frac{f(x) - g(x_0)}{x - x_0} + \lim_{x \to x_0} \frac{g(x) - g'(x_0)}{x - x_0} + \lim_{x \to x_0} \frac{g'(x) - g'(x_0)}{x - x_0} + \lim_{x \to x_0} \frac{g'(x) - g'(x_0)}{x - x_0} + \lim_{x \to x_0} \frac{g'(x) - g'(x_0)}{x - x_0} + \lim_{x \to x_0} \frac{g'(x) - g'(x_0)}{x - x_0} + \lim_{x \to x_0} \frac{g'(x) - g'(x_0)}{x - x_0} + \lim_{x \to x_0} \frac{g'(x) - g'(x_0)}{x - x_0} + \lim_{x \to x_0} \frac{g'(x) - g'(x_0)}{x - x_0} + \lim_{x \to x_0} \frac{g'(x) - g'(x_0)}{x - x_0} + \lim_{x \to x_0} \frac{g'(x) - g'(x_0)}{x - x_0} + \lim_{x \to x_0} \frac{g'(x) - g'(x_0)}{x - x_0} + \lim_{x \to x_0} \frac{g'(x) - g'(x_0)}{x - x_0} + \lim_{x \to x_0} \frac{g'(x) - g'(x)}{x - x_0} + \lim_{x \to x_0} \frac{g'(x) - g'(x)}{x - x_0} + \lim_{x \to x_0} \frac{g'(x) - g'(x)$$

2)
$$f(x) = f(x) \cdot g(x)$$
 PROJE $f'(x) = f'(x) + f(x)g'(x)$ SINCE $f'(x) = \lim_{h \to \infty} \frac{f(x+h) - f(x)}{h}$ THEN

$$f'(x) = \lim_{h \to \infty} \frac{f(x+h) \cdot f(x+h) - f(x)}{h} \cdot g'(x)$$

And the maintain of t

$$\frac{F'(x) = c_{1}n_{1}}{h_{1}n_{2}} = \frac{F(y+h) f(y+h) - F(x) f(y+h) + 5(\lambda) g(y+h) - F(x) f(x)}{h} = c_{1}n_{2} = c_{1}n_{1} = \frac{g(y+h) \left(F(x+h) - F(x) f(x) - F(x$$

400 and subtract from the normator
$$s(x) \neq (y)$$

1. $u_{11} = \frac{s(y+h) + y(y) - s(y) + y(y) + s(y) + y(y)}{y(y)^{2}} = \frac{1}{3(x)^{2}} = \frac{1}{$

$$y(x)^{2} \cdot \left(4(x)^{\frac{1}{2}}(x) - 5(x) 4(x) \right) \Rightarrow f'(x) = \frac{3(x)^{2}}{2}(x) - 5(x)^{\frac{1}{2}}(x)$$

Determine, if they exist, the values of $a \in \mathbb{R}$ such that the function f is continuous on the whole \mathbb{R} .

Another possible example: Let $f: \mathbb{R} \to \mathbb{R}$ be such that for any $x \in \mathbb{R}$

$$f(x) = \begin{cases} x^2(\log(|x|) - 1) & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$$

Determine in which points $x \in \mathbb{R}$ the function is continuous. Determine in which points $x \in \mathbb{R}$ the function is derivable and in these points compute the derivative.

$$S(x) = \begin{cases} x^2(\cos(x)) & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$$