Lezione di Informatica Teorica: Teorema di Rice

Appunti da Trascrizione Automatica

30 giugno 2025

Indice

1	Intr	roduzione al Teorema di Rice	2
	1.1	Definizione di Proprietà di Macchine di Turing	2
		Classificazione delle Proprietà	
		Proprietà Banali	
2	Teo	rema di Rice	3
	2.1	Dimostrazione del Teorema di Rice	3
		2.1.1 Caso 1: Il linguaggio vuoto non appartiene a $P(\emptyset \notin P)$	3
		2.1.2 Caso 2: Il linguaggio vuoto appartiene a $P(\emptyset \in P)$	
3		plicazioni del Teorema di Rice Altri Esempi specifici	5

1 Introduzione al Teorema di Rice

Abbiamo precedentemente studiato linguaggi come $L_e = \{\langle M \rangle \mid L(M) = \emptyset\}$ (il linguaggio delle macchine di Turing il cui linguaggio è vuoto) e $L_{ne} = \{\langle M \rangle \mid L(M) \neq \emptyset\}$ (il linguaggio delle macchine di Turing il cui linguaggio non è vuoto). Abbiamo dimostrato che questi linguaggi sono indecidibili. Tuttavia, la loro indecidibilità non è un caso isolato, ma rientra in un risultato molto più generale: il Teorema di Rice. Questo teorema si applica a linguaggi che contengono le codifiche di macchine di Turing le cui proprietà soddisfano determinati criteri.

1.1 Definizione di Proprietà di Macchine di Turing

Intuitivamente, una macchina di Turing ha una certa proprietà se possiede determinate caratteristiche. Per formalizzare questo concetto:

Definizione 1 (Proprietà di Macchine di Turing). *Una proprietà* P di macchine di Turing è un insieme di codifiche di macchine di Turing. Una macchina di Turing M si dice che ha la proprietà P se e solo se la sua codifica $\langle M \rangle$ appartiene a P.

Associato a una proprietà *P*, definiamo il **linguaggio della proprietà** *P* come:

$$L_P = \{ \langle M \rangle \mid M \text{ ha la proprietà } P \} = \{ \langle M \rangle \mid \langle M \rangle \in P \}$$

In pratica, L_P è semplicemente la proprietà P stessa quando vista come un linguaggio.

1.2 Classificazione delle Proprietà

Le proprietà delle macchine di Turing possono essere categorizzate in due grandi famiglie:

- 1. **Proprietà Strutturali (o Sintattiche)**: Riguardano la struttura interna della macchina di Turing o il suo comportamento computazionale, ma non direttamente il linguaggio che essa riconosce.
- 2. **Proprietà Semantiche (o di Linguaggi)**: Riguardano esclusivamente il linguaggio riconosciuto dalla macchina di Turing, indipendentemente dalla sua implementazione specifica o dal suo comportamento interno (purché sia funzionalmente equivalente).

Il Teorema di Rice si applica specificamente alle proprietà semantiche.

Definizione 2 (Proprietà Semantica). *Una proprietà P di macchine di Turing è detta semantica se per ogni coppia di macchine di Turing* M_1 *e* M_2 :

$$L(M_1) = L(M_2) \implies (\langle M_1 \rangle \in P \iff \langle M_2 \rangle \in P)$$

Ciò significa che l'appartenenza di una macchina M a una proprietà semantica P dipende unicamente dal linguaggio L(M) che essa riconosce. Se due macchine riconoscono lo stesso linguaggio, o entrambe possiedono la proprietà P o nessuna delle due la possiede. Per questa ragione, le proprietà semantiche sono anche chiamate **proprietà di linguaggi**.

Esempio 1 (Proprietà Strutturale). Sia P_1 la proprietà: la macchina di Turing M ha esattamente S stati. $P_1 = \{\langle M \rangle \mid M$ ha S stati $\}$. Questa è una proprietà strutturale. Per dimostrare che non è semantica, troviamo un controesempio: Siano M_1 e M_2 due macchine di Turing. M_1 ha S stati e riconosce un linguaggio L. M_2 è costruita da M_1 aggiungendo uno stato irraggiungibile (o una transizione superflua, ecc.), cosicché M_2 abbia S stati ma riconosca lo stesso linguaggio S. In questo caso, S (S), S0 mentre S1. Dunque S2 Dunque S3 non è semantica.

Esempio 2 (Proprietà Semantica). Sia P_2 la proprietà: il linguaggio riconosciuto da M contiene solo stringhe di lunghezza pari. $P_2 = \{\langle M \rangle \mid \forall s \in L(M), |s| \text{ è pari}\}$. Questa è una proprietà semantica. Se $L(M_1) = L(M_2)$, allora o tutte le stringhe di $L(M_1)$ (e quindi di $L(M_2)$) hanno lunghezza pari, o nessuna (o alcune) ce l'hanno. L'appartenenza a P_2 dipende solo dal linguaggio.

Esempio 3 (Proprietà Semantica: L_e). Il linguaggio $L_e = \{\langle M \rangle \mid L(M) = \emptyset\}$ è l'insieme delle macchine di Turing il cui linguaggio è vuoto. Questo è un esempio di proprietà semantica, poiché dipende solo dal linguaggio riconosciuto (in questo caso, il linguaggio vuoto).

1.3 Proprietà Banali

Definizione 3 (Proprietà Banale). *Una proprietà P è detta banale se*:

- 1. Non contiene alcuna macchina di Turing: $P = \emptyset$.
- 2. Contiene tutte le macchine di Turing: $P = \{ \langle M \rangle \mid M \text{ è una macchina di Turing} \}$.

Se P è una proprietà di linguaggi (cioè semantica), allora P è banale se e solo se $P = \emptyset$ (nessun linguaggio ha la proprietà) o P = RE (tutti i linguaggi ricorsivamente enumerabili hanno la proprietà).

Le proprietà banali sono sempre **decidibili**. Se una proprietà è banale nel senso che $P=\emptyset$, possiamo sempre rispondere "no" per qualsiasi macchina data. Se P contiene tutte le macchine, possiamo sempre rispondere "sì". Il problema di decidere se una macchina possiede una proprietà banale è quindi banale esso stesso.

2 Teorema di Rice

Il Teorema di Rice è un risultato fondamentale nella teoria della computabilità, che generalizza l'indecidibilità di problemi come L_e e L_{ne} .

Teorema 1 (Teorema di Rice). Ogni proprietà non banale dei linguaggi ricorsivamente enumerabili (RE) è indecidibile. In altre parole, se P è una proprietà semantica (proprietà di linguaggi) tale che $P \neq \emptyset$ e $P \neq RE$, allora il linguaggio $L_P = \{\langle M \rangle \mid L(M) \in P\}$ è indecidibile.

2.1 Dimostrazione del Teorema di Rice

Sia P una proprietà semantica non banale dei linguaggi RE. Vogliamo dimostrare che L_P è indecidibile. Procediamo con una riduzione dal Problema di Halting Universale, $L_u = \{\langle M, w \rangle \mid M \text{ accetta } w\}$, che sappiamo essere indecidibile.

La dimostrazione si divide in due casi, a seconda che il linguaggio vuoto \emptyset appartenga o meno alla proprietà P.

2.1.1 Caso 1: Il linguaggio vuoto non appartiene a $P (\emptyset \notin P)$

Poiché P è una proprietà non banale, e $\emptyset \notin P$, deve esistere almeno un linguaggio $L \in P$ tale che $L \neq \emptyset$. (Se tutti i linguaggi in P fossero vuoti, e $\emptyset \notin P$, allora P sarebbe \emptyset , contraddicendo l'ipotesi che P sia non banale). Dato che $L \in RE$, deve esistere una macchina di Turing M_L tale che $L(M_L) = L$.

Costruiamo una macchina di Turing N a partire da una coppia $\langle M, w \rangle$ (input per L_u) e da M_L . La macchina N è una nuova macchina (la cui codifica è l'output della nostra riduzione) che prende un input x. La sua logica di funzionamento è la seguente:

Costruzione della macchina $N_{M,w}$ (che chiamiamo N per semplicità):

- 1. Su input *x*:
- 2. Ignora l'input x e simula M sull'input w.
- 3. Se la simulazione di *M* su *w* accetta:
 - (a) Inizia a simulare M_L sull'input x.
 - (b) Se M_L accetta x, allora N accetta x.
 - (c) Se M_L rifiuta x, allora N rifiuta x.
- 4. Se la simulazione di *M* su *w* non accetta (ovvero, rifiuta o loopa):
 - (a) *N* non accetta (rifiuta o loopa).

Ora analizziamo il comportamento di N per dimostrare che la riduzione funziona:

i) Se $\langle M, w \rangle \in L_u$ (cioè, M accetta w): In questo caso, la simulazione di M su w al passo 2 della costruzione di N terminerà e accetterà. Di conseguenza, N procederà sempre al passo 3 e simulerà M_L su x. Questo significa che N accetta x se e solo se M_L accetta x. Quindi, $L(N) = L(M_L) = L$. Poiché abbiamo stabilito che $L \in P$, ne consegue che $\langle N \rangle \in L_P$.

ii) Se $\langle M, w \rangle \notin L_u$ (cioè, M non accetta w): In questo caso, la simulazione di M su w al passo 2 della costruzione di N non terminerà accettando (o rifiuterà, o loopa). Di conseguenza, N non raggiungerà mai il passo 3 e quindi non accetterà mai alcun input x. Quindi, $L(N) = \emptyset$. Poiché abbiamo assunto $\emptyset \notin P$, ne consegue che $\langle N \rangle \notin L_P$.

Questa costruzione definisce una funzione calcolabile $f:\langle M,w\rangle\mapsto\langle N\rangle$ tale che $\langle M,w\rangle\in L_u\iff\langle N\rangle\in L_P$. Poiché L_u è indecidibile e $L_u\leq_m L_P$, concludiamo che L_P è indecidibile.

2.1.2 Caso 2: Il linguaggio vuoto appartiene a $P (\emptyset \in P)$

Se $\emptyset \in P$, consideriamo la proprietà \overline{P} , definita come il complemento di P rispetto all'insieme di tutti i linguaggi RE: $\overline{P} = RE \setminus P$.

- \overline{P} è una proprietà semantica, poiché se P lo è, anche il suo complemento lo è.
- Poiché $\emptyset \in P$, ne consegue che $\emptyset \notin \overline{P}$.
- Se P è non banale, allora \overline{P} è anch'essa non banale. (Se $P=\emptyset$, $\overline{P}=RE$. Se P=RE, $\overline{P}=\emptyset$. In entrambi i casi, \overline{P} sarebbe banale. Ma abbiamo assunto che P è non banale, quindi anche \overline{P} è non banale).

Riassumendo, \overline{P} è una proprietà semantica non banale e $\emptyset \notin \overline{P}$. Questo è esattamente il Caso 1 che abbiamo appena dimostrato. Quindi, il linguaggio $L_{\overline{P}} = \{\langle M \rangle \mid L(M) \in \overline{P}\}$ è indecidibile.

Ora, supponiamo per assurdo che L_P sia decidibile. Allora esisterebbe una macchina di Turing decisore D_P che decide L_P . Utilizzando D_P , potremmo costruire una macchina di Turing $D_{\overline{P}}$ che decide $L_{\overline{P}}$ nel modo seguente: **Costruzione di** $D_{\overline{P}}$ **su input** $\langle M \rangle$:

1. Esegui D_P su $\langle M \rangle$.

- 2. Se D_P accetta $\langle M \rangle$, allora $D_{\overline{P}}$ rifiuta $\langle M \rangle$.
- 3. Se D_P rifiuta $\langle M \rangle$, allora $D_{\overline{P}}$ accetta $\langle M \rangle$.

Questa macchina $D_{\overline{P}}$ deciderebbe $L_{\overline{P}}$. Tuttavia, abbiamo appena dimostrato che $L_{\overline{P}}$ è indecidibile. Abbiamo raggiunto una contraddizione. Pertanto, la nostra supposizione iniziale che L_P fosse decidibile deve essere falsa. Concludiamo quindi che L_P è indecidibile anche nel Caso 2.

Combinando i due casi, il Teorema di Rice è dimostrato. Ogni proprietà non banale dei linguaggi RE è indecidibile.

3 Applicazioni del Teorema di Rice

Il Teorema di Rice fornisce un potente strumento per dimostrare l'indecidibilità di un'ampia classe di problemi. Per applicarlo, è sufficiente verificare che la proprietà in questione sia:

- 1. Una proprietà di linguaggi (cioè semantica).
- 2. Non banale.

Se entrambe le condizioni sono soddisfatte, allora il problema di decidere se una macchina di Turing possiede tale proprietà è indecidibile.

Esempio 4 (Indecidibilità di L_e e L_{ne}). 1. $L_e = \{\langle M \rangle \mid L(M) = \emptyset\}$:

- Proprietà semantica?: Sì, dipende solo dal linguaggio L(M).
- Non banale?: Sì. Contiene il linguaggio vuoto (quindi non è \emptyset). Non contiene, ad esempio, Σ^* (quindi non è RE).

Dato che è semantica e non banale, per il Teorema di Rice, L_e è indecidibile.

- 2. $L_{ne} = \{ \langle M \rangle \mid L(M) \neq \emptyset \}$:
 - *Proprietà semantica?*: Si, dipende solo dal linguaggio L(M).
 - Non banale?: Sì. Contiene, ad esempio, Σ* (quindi non è ∅). Non contiene ∅ (quindi non è RE).

Dato che è semantica e non banale, per il Teorema di Rice, L_{ne} è indecidibile.

Esempio 5 (Decidere se L(M) è finito). *Sia* $L_{finito} = \{ \langle M \rangle \mid L(M) \text{ è finito} \}$.

- Proprietà semantica?: Sì, la finitezza di un linguaggio è una sua proprietà intrinseca.
- Non banale?: Sì. Contiene linguaggi finiti (e.g., $L(M) = \emptyset$ o $L(M) = \{a\}$), quindi non è \emptyset . Non contiene linguaggi infiniti (e.g., $L(M) = \Sigma^*$), quindi non è RE.

Per il Teorema di Rice, L_{finito} è indecidibile.

Esempio 6 (Decidere se L(M) è infinito). Sia $L_{infinito} = \{ \langle M \rangle \mid L(M) \text{ è infinito} \}$.

- Proprietà semantica?: Sì.
- Non banale?: Sì. Contiene linguaggi infiniti (e.g., $L(M) = \Sigma^*$), quindi non è \emptyset . Non contiene linguaggi finiti (e.g., $L(M) = \emptyset$), quindi non è RE.

Per il Teorema di Rice, L_{in finito} è indecidibile.

Esempio 7 (Decidere se L(M) è riconosciuto solo da macchine con 5 stati). *Sia* $P_{solo5stati} = \{\langle M \rangle \mid L(M)$ è riconosciuto solo da macchine con 5 stati $\}$.

- Proprietà di linguaggi?: Sì, è una proprietà semantica.
- Non banale?: No, è banale. Ogni linguaggio ricorsivamente enumerabile che può essere riconosciuto da una macchina di Turing con 5 stati, può essere riconosciuto anche da una macchina con più di 5 stati (basta aggiungere stati irraggiungibili). Quindi, nessun linguaggio può essere riconosciuto solo da macchine con 5 stati. Pertanto, $P_{solo5stati} = \emptyset$. Essendo \emptyset , è una proprietà banale.

Poiché è una proprietà banale, $P_{solo5stati}$ è **decidibile** (la risposta è sempre "no"). Il Teorema di Rice non si applica per dimostrare l'indecidibilità in questo caso.

3.1 Altri Esempi specifici

Consideriamo il linguaggio $L = \{w\#A \mid w \in \{0,1\}^+, A = w \lor A = w^R\}$. Questo linguaggio è RE. Di seguito, una descrizione di una macchina di Turing a 2 nastri che riconosce L:

- Inizialmente, il nastro 1 contiene w#A.
- La macchina copia w sul nastro 2.
- Quando incontra '#', si sposta all'inizio di w sul nastro 2.
- Non deterministicamente, la macchina può scegliere tra due rami:
 - 1. **Verifica** A = w: Confronta A sul nastro 1 con w sul nastro 2, leggendo entrambi da sinistra a destra. Se corrispondono e si arriva alla fine, accetta.
 - 2. **Verifica** $A = w^R$: Confronta A sul nastro 1 da sinistra a destra con w sul nastro 2 da destra a sinistra. Se corrispondono e si arriva alla fine, accetta.

Esempio 8 (Decidere se L(M) = L). Sia $P_L = \{\langle M \rangle \mid L(M) = L\}$, dove $L \ge il$ linguaggio definito sopra.

- Proprietà di macchine?: Sì.
- Proprietà semantica?: Sì, dipende solo dal fatto che il linguaggio riconosciuto sia esattamente L.
- Non banale?: Sì. Contiene il linguaggio L (quindi non è ∅). Non contiene, ad esempio, il linguaggio Σ* (quindi non è RE).

Per il Teorema di Rice, P_L è **indecidibile**.

Esempio 9 (Decidere se ogni stringa di L(M) è accettata in al più 100 passi). *Sia* $P_{100steps} = \{\langle M \rangle \mid \forall s \in L(M), M \ accetta s \ in \leq 100 \ passi\}$.

- Proprietà di macchine?: Sì.
- Proprietà semantica?: No. Dipende dal comportamento computazionale (numero di passi). Controesempio: una macchina M₁ accetta "a" in 10 passi. Un'altra macchina M₂ potrebbe accettare "a" in 200 passi (es. loopando inutilmente prima di accettare). L(M₁) = L(M₂) = {a}. Ma M₁ ∈ P₁00steps e M₂ ∉ P₁00steps.

• Banale?: No. Contiene macchine che accettano stringhe corte in pochi passi (e.g., una macchina che accetta solo € in 5 passi). Non è RE (poiché non tutte le macchine soddisfano la proprietà).

Poiché $P_{100steps}$ non è semantica, il Teorema di Rice **non si applica**. Questo problema è in realtà **decidibile**. Una macchina per questo problema può simulare M su tutte le stringhe di lunghezza ≤ 100 per 100 passi. Se M accetta una stringa più lunga di 100, o non accetta una stringa in L(M) entro 100 passi, allora rifiuta. Altrimenti accetta.

Esempio 10 (Decidere se M non accetta stringhe di L di lunghezza 100). Sia $P_{no100} = \{\langle M \rangle \mid L(M) \cap \{s \mid |s| = 100\} = \emptyset\}$, dove L è il linguaggio definito in precedenza. In altre parole, M non accetta alcuna stringa del linguaggio L che abbia lunghezza 100.

- Proprietà di macchine?: Sì.
- **Proprietà semantica?**: Sì, dipende esclusivamente dal linguaggio L(M) e dalla sua intersezione con l'insieme delle stringhe di lunghezza 100.
- Non banale?: Sì.
 - Non è ∅: una macchina che accetta solo 0#0 (lunghezza 3) appartiene a P_{no100} , poiché non accetta alcuna stringa di lunghezza 100.
 - Non è RE: una macchina che accetta una stringa di L di lunghezza 100 (se esiste) non appartiene a P_{no100} . Se esistono stringhe di L di lunghezza 100, allora non tutte le macchine RE appartengono a P_{no100} .

Poiché P_{no100} è semantica e non banale, per il Teorema di Rice, è **indecidibile**.