Material Summary: Basic Algebra

1. Polynomials

- We already looked at linear and quadratic polynomials
- Term (monomial): $2x^2$
 - Coefficient (number), variable, power (number ≥ 0)
- Polynomial: sum of monomials
 - $2x^4 + 3x^2 0.5x + 2.72$
 - Degree: the highest degree of the variable (with coefficient $\neq 0$)
- Operations
 - Defined the same way as with numbers
 - Addition and subtraction

$$(2x^2 + 5x - 8) + (3x^4 - 2) = 3x^4 + 2x^2 + 5x - 10$$

Multiplication and division

$$(2x^2 + 5x - 8)(3x^4 - 2) = 6x^6 + 15x^5 - 24x^4 - 4x^2 - 10x + 16$$

2. Polynomials in Python

- numpy has a module for working with polynomials
 - Includes the "general" polynomials, as well as a few special cases
 - Chebyshev, Legandre, Hermit
- Storing polynomials
 - As arrays (index ⇒ power, value ⇒ coefficient)
 - Keep in mind this will look "reversed" relative to the way we write

```
import numpy.polynomial.polynomial as p
p.polyadd([-8, 5, 2], [-2, 0, 0, 0, 3])
p.polymul([-8, 5, 2], [-2, 0, 0, 0, 3])
# array([-10., 5., 2., 0., 3.])
# array([ 16., -10., -4., 0., -24., 15., 6.])
```

- Pretty printing
 - Use sympy to print the polynomial
 - If it's a list, use it directly
 - If it's a Polynomial object, call the coef property
 - Reverse the order of coefficients (sympy expects them from highest to lowest)

```
import sympy
from sympy.abc import x
polynomial = p.Polynomial([-2, 0, 0, 0, 3])
sympy.init_printing()
print(sympy.Poly(reversed(polynomial.coef), x).as_expr())
# Output: 3.0*x**4 - 2.0
```


3. Set

- An unordered collection of things
 - Usually, numbers
 - No repetitions
- Set notation:
 - "The set of numbers x, which are a subset of the real numbers, which are greater than or equal to zero"
 - Left: example element
 - Right: conditions to satisfy
- Python set comprehensions
 - Very similar to what we already wrote
 - Also very similar to list comprehensions (but with curly braces)

positive_x =
$$\{x \text{ for } x \text{ in range}(-5, 5) \text{ if } x \ge 0\}$$

$\{0, 1, 2, 3, 4\}$

- Cardinality: number of elements
- ${\color{red} \bullet}$ Checking whether an element is in the set: $x \in S$
- lacksquare Checking whether a set is subset of another set $S_1\subseteq S_2$
- Union: $S_1 \cup S_2$
- Intersection: $S_1 \cap S_2$
- Difference: $S_1 \setminus S_2$

4. Functions

- A relation between set of inputs X (domain) and a set of outputs Y (codomain)
- One input produces exactly one output
- The inputs don't need to be numbers
- Functions don't know how to compute the output, they're just mappings
- In programming, we write procedures
- Math notation:
 - lacksquare Commonly abbreviated as: $f: X \to Y$
- Some more definitions:
 - Injective (one-to-one): unique inputs => unique outputs
 - Surjective (onto): every element in the codomain is mapped
 - Bijective (one-to-one correspondence): injective and surjective
 - Here is a graphical view

5. Function Composition

- Also called pipelining in most languages
- Takes two functions and applies them in order
 - Innermost to outermost
 - $\qquad \underline{ \text{Math notation}} : f \circ g = f(g(x))$
 - Can be generalized to more functions

Note that the order matters

$$f(x) = 2x + 3, \ g(x) = x^{2}$$
$$(f \circ g)(x) = f(g(x)) = f(x^{2}) = 2x^{2} + 3$$
$$(g \circ f)(x) = g(f(x)) = g(2x + 3) = (2x + 3)^{2}$$

- This kind of notation can be confusing sometimes
 - x is only a placeholder for the input
 - We've used the same letter x for different inputs
 - Tip: When working with complicated functions, be very careful what the inputs and outputs are, and how variables depend on other variables
- Functions and composition are the basis of functional programming

6. Function Graphs (Plots)

- One very intuitive way to get to know functions is to plot them
 - Generate values in the **domain** (independent variable)
 - For each value compute the output (dependent variable)
 - Create a graph
 - Plot all computed points and connect them with tiny straight lines
- lambda in Python is a short syntax for a function
 - We can define it outside as well (it's just shorter and simpler to use it inline)

```
import numpy as np
import matplotlib.pyplot as plt
def plot function(f, x min = -10, x max = 10, n values = 2000):
  x = np.linspace(x min, x max, n values)
  y = f(x)
 plt.plot(x, y)
  plt.show()
plot function(lambda x: np.sin(x))
```

7. Graphing a Circle

- This cannot be represented as one function
 - We have multiple values of y $x = 0 \rightarrow y = \{-1, 1\}$
- We can try two functions:
 - But we want to represent the circle as one object


```
def plot_function(f, x_min = -10, x_max = 10, n_values = 2000):
   plt.gca().set_aspect("equal")
   x = np.linspace(x_min, x_max, n_values)
   y = f(x)
   plt.plot(x, y)

plot_function(lambda x: np.sqrt(1 - x**2), -1, 1)
   plot_function(lambda x: -np.sqrt(1 - x**2), -1, 1)
   plt.show()
```

- In math and science, many problems can be solved by changing our viewpoint
- We can use another type of reference system
 - One which incorporates angles naturally
 - Polar coordinate system (r, φ) :
 - (r: distance from origin $(r \ge 0)$; φ : angle to x-axis)
 - We can easily convert Cartesian to polar coordinates

$$x^{2} + y^{2} = 1$$

$$(r \cos \varphi)^{2} + (r \sin \varphi)^{2} = 1$$

$$r^{2} \cos^{2} \varphi + r^{2} \sin^{2} \varphi = 1$$

$$r^{2} (\cos^{2} \varphi + \sin^{2} \varphi) = 1$$

$$r^{2} = 1, r \ge 0 \Rightarrow r = 1$$

- Now we can see the equation is very, very simple
- Doesn't even depend on φ
- This is why we needed the change of viewpoint (coordinates)

- Graphing a function in polar coordinates
 - This applies to any function, circles in particular
 - Generate initial values of r and φ
 - Convert them to rectangular coordinates
 - Plot the rectangular coordinates

```
import numpy as np
import matplotlib.pyplot as plt
r = 1 # Radius
phi = np.linspace(0, 2 * np.pi, 1000) # Angle (full circle)
x = r * np.cos(phi)
y = r * np.sin(phi)
plt.plot(x, y)
plt.gca().set_aspect("equal")
plt.show()
```

plt.polar(phi, r)

8. Complex Numbers

- Field
 - A collection of values with operations "plus" and "times"
 - Algebra is so abstract we can redefine these operations
- History of number fields
 - $\blacksquare \quad \textbf{Natural numbers:} \mathbb{N} = \{0,1,2,\dots\}$
 - Integers: $\mathbb{Z} = \{\dots, -2, -1, 0, 1, 2, \dots\}$
 - Rational numbers : ratio of two integers
 - Real numbers: $\mathbb{R} = \mathbb{Q} \cup \mathbb{I}$
 - Complex numbers: $\mathbb C$
 - ullet "Imaginary unit": \imath is the positive solution of $x^2=-1$
 - Pairs of real numbers: $(a;b):a,b\in\mathbb{R}$
 - Commonly written as: a + bi
 - Real part: Re(a + bi) = a
 - Imaginary part: $\operatorname{Im}(a+bi) = b$
 - In Python, we use j instead of i

We can get the real and imaginary parts

```
z = 3 + 2j
print(z.real) # 3
print(z.imag) # 2
```


Adding and multiplying complex numbers

- We can plot the coordinate pairs on the plane
- Each point in the 2D space represents one complex number
- **Polar coordinates**: we can use the same transformation
 - $\rho = |z|$ **module** of the complex number
 - $\varphi = \arg(z) \operatorname{argument}$ of the complex number
 - $a = \rho \cos(\varphi)$, $b = \rho \sin(\varphi)$
- Why do we do this?
 - Some operations (e.g., multiplication and division) are easier in polar coordinates
 - Powers of complex numbers become extremely easy
- Polar form: $\mathbf{z} = \mathbf{a} + \mathbf{b}\mathbf{i} = \rho(\cos(\varphi) + \mathbf{i}\sin(\varphi))$

9. Euler's Formula

- Leonhard Euler proved that: $e^{i\varphi}=\cos(\varphi)+i\sin(\varphi)$
 - Here's a summary of the proof
 - It involves series which we haven't covered yet
 - A very beautiful consequence: $e^{i\pi} + 1 = 0$
- Now we can write our complex number as: $z=|z|e^{i\varphi}$
- Why and how does multiplication work?
 - Multiplication by a real number
 - Scales the original vector
 - Multiplication by an imaginary number
 - Rotates the original vector
 - You can see a thorough explanation here
- Main point: Multiplication of complex numbers is the same as scaling and rotating 2D vectors

10. Fundamental Theorem of Algebra

- Theorem of Algebra: "Every non-zero, single-variable, degree-n polynomial with complex coefficients has, counted with multiplicity, exactly n complex roots."
- More simply said: Every algebraic equation has as many roots as its power.
- Back to quadratic equations
 - How do we get all roots?
 - Simply use the complex math Python module: cmath

```
import cmath
def solve_quadratic_equation(a, b, c):
    discriminant = cmath.sqrt(b * b - 4 * a * c)
    return [
        (-b + discriminant) / (2 * a),
        (-b - discriminant) / (2 * a)]

print(solve_quadratic_equation(1, -3, -4))
# [(4+0j), (-1+0j)]
print(solve_quadratic_equation(1, 0, -4)) # [(2+0j), (-2+0j)]
print(solve_quadratic_equation(1, 2, 1)) # [(-1+0j), (-1+0j)]
print(solve_quadratic_equation(1, 4, 5)) # [(-2+1j), (-2-1j)]
```

11. Galois Field

- In everyday algebra, we usually think about fields as those we already know
- But since algebra is abstract, we can define our own fields
- Galois field: GF(2)
 - Elements {0, 1}
 - Addition: equivalent to XOR
 - Multiplication: as usual
- Usage: in cryptography
- If you're interested, you can have a look at this paper

