GEOMETRIA ANALÍTICA - SEMANA 4 FUNCIONAL LINEAR E DETERMINANTES

Professor: Victor M. Cunha

Instituto de Matemática e Estatística (IME) - UFBA

ABRIL 2022

Sumário

1 Funcional Linear

2 Determinantes no Plano

3 Determinantes no Espaço

Sumário

- 1 Funcional Linear
- 2 Determinantes no Plano
- 3 Determinantes no Espaço

■ Um funcional $\ell: \mathbb{R}^n \to \mathbb{R}$ é um funcional linear se tivermos:

$$\ell(\vec{u} + \vec{v}) = \ell(\vec{u}) + \ell(\vec{v})$$
 $\ell(\alpha \vec{u}) = \alpha \ell(\vec{u})$

ou seja, um funcional linear 'respeita' as operações de soma e produto por escalar do espaço vetorial.

- **■** Exemplos:
 - ▶ Seja ℓ : $\mathbb{R}^2 \to \mathbb{R}$, $\ell(x\vec{i} + y\vec{j}) = 2x y$. Mostre que ℓ é um funcional linear.
 - Seja $\ell \colon \mathbb{R}^3 \to \mathbb{R}$ um funcional linear, $\vec{u} = (-2, 1, 3)$ e $\vec{v} = (4, -2, -6)$. Dado $\ell(\vec{u}) = 2$, calcule $\ell(\vec{v})$.
 - ▶ Seja ℓ : $\mathbb{R}^2 \to \mathbb{R}$ um funcional linear, $\vec{e}_1 = (-2,1)$, $\vec{e}_2 = (0,-1)$ e $\vec{v} = (2,1)$. Sabendo que $\ell(\vec{e}_1) = -1$ e $\ell(\vec{e}_2) = 2$, calcule $\ell(\vec{v})$.
 - ▶ Dado um funcional linear ℓ : $\mathbb{R}^n \to \mathbb{R}$, mostre que $\ell(\vec{0}) = 0$.
 - ▶ Dado um vetor $\vec{u} \in \mathbb{R}^n$ qualquer. Mostre que $\ell \colon \mathbb{R}^n \to \mathbb{R}$, $\ell(\vec{v}) = \vec{u} \cdot \vec{v}$ é um funcional linear.

■ Seja $\ell \colon \mathbb{R}^2 \to \mathbb{R}$ um funcional linear e $E = \{\vec{e}_1, \vec{2}_2\}$ uma base do \mathbb{R}^2 . Dado $\vec{v} \in \mathbb{R}^2$, podemos escrever \vec{v} como uma combinação linear de \vec{e}_1 e \vec{e}_2 :

$$\vec{v} = \alpha_1 \vec{e}_1 + \alpha_2 \vec{e}_2$$

■ A partir da linearidade do funcional, temos então:

$$\ell(\vec{v}) = \alpha_1 \, \ell(\vec{e}_1) + \alpha_2 \, \ell(\vec{e}_2)$$

portanto, a partir dos valores de $\ell(\vec{e}_1)$ e $\ell(\vec{e}_2)$, podemos encontrar $\ell(\vec{v})$.

- De modo análogo, sendo $\ell \colon \mathbb{R}^3 \to \mathbb{R}$ um funcional linear e $E = \{\vec{e}_1, \vec{2}_2, \vec{e}_3\}$ uma base do \mathbb{R}^3 , podemos encontrar $\ell(\vec{v})$ a partir de $\ell(\vec{e}_1)$, $\ell(\vec{e}_2)$ e $\ell(\vec{e}_3)$, para qualquer $\vec{v} \in \mathbb{R}^3$.
- Um funcional linear é completamente determinado pelos valores que ele assume nos vetores de uma base.

- A partir da bilinearidade do produto escalar, dado um vetor qualquer $\vec{u} \in \mathbb{R}^2$, temos $\ell \colon \mathbb{R}^2 \to \mathbb{R}, \ell(\vec{v}) = \vec{u} \cdot \vec{v}$ um funcional linear.
- Por outro lado, dado $\ell \colon \mathbb{R}^2 \to \mathbb{R}$ um funcional linear qualquer, com $\ell(\vec{i}) = u_1$ e $\ell(\vec{j}) = u_2$. Dado $\vec{v} = v_1 \vec{i} + v_2 \vec{j}$, temos:

$$\ell(\vec{v}) = v_1 \, \ell(\vec{i}) + v_2 \, \ell(\vec{j}) = u_1 v_1 + u_2 v_2 = \vec{u} \cdot \vec{v},$$

onde $\vec{u} = (u_1, u_2) \in \mathbb{R}^2$.

- Logo, dado um funcional linear $\ell \colon \mathbb{R}^2 \to \mathbb{R}$ qualquer, existe um vetor $\vec{u} \in \mathbb{R}^2$ associado ao funcional tal que $\ell(\vec{v}) = \vec{u} \cdot \vec{v}$.
- lacktriangle Temos um resultado análogo para três dimensões, a partir de $\ell(\vec{i}),\ell(\vec{j})$ e $\ell(\vec{k}).$
- Dizemos que temos uma *dualidade* entre os funcionais lineares $\ell \colon \mathbb{R}^n \to \mathbb{R}$ e os vetores $\vec{u} \in \mathbb{R}^n$, formada a partir do produto escalar.

Exercícios

- Seja ℓ : $\mathbb{R}^2 \to \mathbb{R}$ um funcional linear, $\vec{e}_1 = (1, -2)$, $\vec{e}_2 = (-1, -1)$. Sabendo que $\ell(\vec{e}_1) = -2$ e $\ell(\vec{e}_2) = 3$:
 - ▶ Encontre $\vec{u} \in \mathbb{R}^2$ tal que $\ell(\vec{v}) = \vec{u} \cdot \vec{v}$, para todo $\vec{v} \in \mathbb{R}^2$.
 - Encontre $\vec{w} \neq \vec{0}$ tal que $\ell(\vec{w}) = 0$.
 - ► Encontre uma base ortonormal $F = \{\vec{f_1}, \vec{f_2}\}$ tal que $\ell(\vec{f_2}) = 0$.
- Seja $\ell \colon \mathbb{R}^3 \to \mathbb{R}$ um funcional linear. Sabendo que $\ell(\vec{i}) = -2$ e $\ell(\vec{i} 2\vec{j}) = 3$ e $\ell(\vec{i} \vec{j} + \vec{k}) = 1$:
 - ► Encontre $\vec{u} \in \mathbb{R}^3$ tal que $\ell(\vec{v}) = \vec{u} \cdot \vec{v}$, para todo $\vec{v} \in \mathbb{R}^3$.
 - Encontre vetores não-paralelos $\vec{w}_1, \vec{w}_2 \in \mathbb{R}^3$ tal que $\ell(\vec{w}_1) = \ell(\vec{w}_2) = 0$.
 - ▶ Encontre uma base ortonormal $F = \{\vec{f_1}, \vec{f_2}, \vec{f_3}\}$ tal que $\ell(\vec{f_2}) = \ell(\vec{f_3}) = 0$.

Sumário

- 1 Funcional Linear
- 2 Determinantes no Plano
- 3 Determinantes no Espaço

■ Dados dois vetores $\vec{u}, \vec{v} \in \mathbb{R}^2$. Considere $A(\vec{u}, \vec{v})$ a área do paralelogramo formado por eles.

■ Se fixarmos $\vec{u} \neq \vec{0}$, note que $\ell(\vec{v}) = A(\vec{u}, \vec{v})$ não é um funcional linear. Em particular, temos $\ell(-\vec{v}) = \ell(\vec{v})$ e não $\ell(-\vec{v}) = -\ell(\vec{v})$.

DETERMINANTES NO PLANO

■ No entanto, se associarmos um *sinal* para esta área, considerando $A(\vec{u}, \vec{v})$ positiva/negativa quando a orientação de $\{\vec{u}, \vec{v}\}$ for positiva/negativa, teremos agora $\ell(\vec{v}) = A(\vec{u}, \vec{v})$ um funcional linear.

- Note que, com a introdução deste sinal, a ordem dos vetores faz diferença. Em particular, temos $A(\vec{v}, \vec{u}) = -A(\vec{u}, \vec{v})$.
- Chamamos essa *área com sinal* do determinante da matriz formada pelos vetores \vec{u} e \vec{v} , nesta ordem.

$$det(\vec{u}, \vec{v}) = A(\vec{u}, \vec{v})$$

■ Dados $\vec{u} = (u_1, u_2)$ e $\vec{v} = (v_1, v_2)$, representamos este determinante como:

$$det(\vec{u}, \vec{v}) = det \begin{pmatrix} u_1 & v_1 \\ u_2 & v_2 \end{pmatrix} = \begin{vmatrix} u_1 & v_1 \\ u_2 & v_2 \end{vmatrix}$$

■ Note que se fixarmos agora \vec{v} , $\ell(\vec{u}) = det(\vec{u}, \vec{v}) = -det(\vec{v}, \vec{u})$ também é um funcional linear. O determinante é, portanto, bilinear.

Cálculo do Determinante

■ Podemos encontrar 'na mão grande' uma expressão para o determinante $det(\vec{u}, \vec{v})$ a partir do cálculo das áreas abaixo.

- No entanto, podemos utilizar a bilinearidade do determinante ao nosso favor.
- Primeiro, note que temos, para os vetores da base canônica:

$$det(\vec{i},\vec{i}) = det(\vec{j},\vec{j}) = 0 \qquad det(\vec{i},\vec{j}) = -det(\vec{j},\vec{i}) = 1$$

■ Deste modo, dados $\vec{u} = (u_1, u_2)$ e $\vec{v} = (v_1, v_2)$, temos:

$$\begin{aligned} \det(\vec{u}, \vec{v}) &= \det(u_1 \vec{i} + u_2 \vec{j}, v_1 \vec{i} + v_2 \vec{j}) \\ &= u_1 v_1 \det(\vec{i}, \vec{i}) + u_1 v_2 \det(\vec{i}, \vec{j}) + u_2 v_1 \det(\vec{j}, \vec{i}) + u_2 v_2 \det(\vec{j}, \vec{j}) \\ &= u_1 v_2 - u_2 v_1 \end{aligned}$$

■ Sendo assim, o determinante é dado por:

$$\begin{vmatrix} u_1 & v_1 \\ u_2 & v_2 \end{vmatrix} = u_1 v_2 - u_2 v_1$$

Anti-Comutatividade $det(\vec{u}, \vec{v}) = -det(\vec{v}, \vec{u})$. Bilinearidade

$$\begin{split} \det(\vec{u},\vec{v}+\vec{w}) &= \det(\vec{u},\vec{v}) + \det(\vec{u},\vec{w}), \qquad \det(\vec{u},\alpha\vec{v}) = \alpha \det(\vec{u},\vec{v}) \\ \det(\vec{u}+\vec{v},\vec{w}) &= \det(\vec{u},\vec{w}) + \det(\vec{v},\vec{w}) \qquad \det(\alpha\vec{u},\vec{v}) = \alpha \det(\vec{u},\vec{v}) \end{split}$$

Módulo Para todos $\vec{u}, \vec{v} \in \mathbb{R}^2$, temos:

$$|det(\vec{u},\vec{v})| = \|\vec{u}\| \, \|\vec{v}\| \operatorname{sen} \theta$$

onde θ é o ângulo entre \vec{u} e \vec{v} .

- Mostre que $\begin{vmatrix} a_{11} & a_{12} + ka_{11} \\ a_{21} & a_{22} + ka_{21} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}$, para todo $k \in \mathbb{R}$.
- Mostre que o sistema homogêneo $\begin{cases} a_{11}x + a_{12}y = 0 \\ a_{21}x + a_{22}y = 0 \end{cases}$ admite apenas a solução trivial $x = y = 0 \text{ se e somente se } \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} \neq 0.$
- Calcule a área do triângulo de vértices A(1,-1), B(2,3) e C(-3,-3).
- Calcule a altura relativa ao lado \overline{AB} do triângulo acima.
- Dado $\vec{u} = (u_1, u_2) \in \mathbb{R}^2$, encontre $\vec{w} \in \mathbb{R}^2$ tal que $det(\vec{u}, \vec{v}) = \vec{w} \cdot \vec{v}$, para todo $\vec{v} \in \mathbb{R}^2$.

Sumário

- 1 Funcional Linear
- 2 Determinantes no Plano
- 3 Determinantes no Espaço

DETERMINANTES NO ESPAÇO

■ Para estendermos o conceito de determinantes para o espaço, dados três vetores $\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^3$, considere $V(\vec{u}, \vec{v}, \vec{w})$ o volume do paralelepípedo formado por eles.

DETERMINANTES NO ESPAÇO

- Novamente, se fixarmos \vec{u} e \vec{v} , $\ell(\vec{w}) = V(\vec{u}, \vec{v}, \vec{w})$ não é em geral um funcional linear.
- Podemos, no entanto, associar um *sinal* para este volume, considerando $V(\vec{u}, \vec{v}, \vec{w})$ positivo/negativo quando a orientação da base $\{\vec{u}, \vec{v}, \vec{w}\}$ for positiva/negativa.
- Caso \vec{u}, \vec{v} e \vec{w} sejam coplanares, eles não formam uma base do \mathbb{R}^3 , mas nesse caso $V(\vec{u}, \vec{v}, \vec{w}) = 0$ e o sinal não tem importância.
- Considerando este *volume com sinal*, temos agora $\ell(\vec{w}) = V(\vec{u}, \vec{v}, \vec{w})$ um funcional linear.
- Note que, com a introdução deste sinal, a ordem dos vetores faz diferença. Em particular, quando trocamos a ordem de dois dos vetores, temos uma troca de sinal:

$$\begin{split} V(\vec{v}, \vec{u}, \vec{w}) &= V(\vec{w}, \vec{v}, \vec{u}) = V(\vec{u}, \vec{w}, \vec{v}) = -V(\vec{u}, \vec{v}, \vec{w}) \\ V(\vec{v}, \vec{w}, \vec{u}) &= V(\vec{w}, \vec{u}, \vec{v}) = V(\vec{u}, \vec{v}, \vec{w}) \end{split}$$

DETERMINANTES NO ESPAÇO

■ Chamamos este *volume com sinal* do determinante da matriz formada pelos vetores \vec{u} , \vec{v} e \vec{w} , nesta ordem.

$$det(\vec{u},\vec{v},\vec{w}) = V(\vec{u},\vec{v},\vec{w})$$

■ Dados $\vec{u} = (u_1, u_2, u_3)$, $\vec{v} = (v_1, v_2, v_3)$ e $\vec{w} = (w_1, w_2, w_3)$, representamos este determinante como:

$$det(\vec{u}, \vec{v}, \vec{w}) = det \begin{pmatrix} u_1 & v_1 & w_1 \\ u_2 & v_2 & w_2 \\ u_3 & v_3 & w_3 \end{pmatrix} = \begin{vmatrix} u_1 & v_1 & w_1 \\ u_2 & v_2 & w_2 \\ u_3 & v_3 & w_3 \end{vmatrix}$$

■ Note que, fixando \vec{u} e \vec{w} , ou \vec{v} e \vec{w} , $\ell(\vec{v}) = det(\vec{u}, \vec{v}, \vec{w})$ e $\ell(\vec{u}) = det(\vec{u}, \vec{v}, \vec{w})$ também são funcionais lineares. O determinante é, portanto, multilinear.

CÁLCULO DO DETERMINANTE

- Novamente, podemos utilizar os valores dos determinantes associados à base canônica e a multilinearidade para obter uma fórmula para o determinante.
- Temos, para os vetores da base canônica:

$$\begin{split} \det(\vec{i},\vec{j},\vec{k}) &= \det(\vec{j},\vec{k},\vec{i}) = \det(\vec{k},\vec{i},\vec{j}) = 1 \\ \det(\vec{i},\vec{k},\vec{j}) &= \det(\vec{k},\vec{j},\vec{i}) = \det(\vec{j},\vec{i},\vec{k}) = -1 \end{split}$$

- Para todas as outras triplas ordenadas, temos determinantes nulos, dado que, como um dos vetores estará repetido, teremos vetores coplanares.
- Deste modo, dados $\vec{u} = (u_1, u_2, u_3), \vec{v} = (v_1, v_2, v_3)$ e $\vec{w} = (w_1, w_2, w_3)$, temos:

$$\begin{split} \det(\vec{u},\vec{v},\vec{w}) &= \det(u_1\vec{i} + u_2\vec{j} + u_3\vec{k}\,, v_1\vec{i} + v_2\vec{j} + v_3\vec{k},\, w_1\vec{i} + w_2\vec{j} + w_3\vec{k}) \\ &= u_1v_2w_3\det(\vec{i},\vec{j},\vec{k}) + u_1v_3w_2\det(\vec{i},\vec{k},\vec{j}) + u_2v_3w_1\det(\vec{j},\vec{k},\vec{i}) \\ &\quad + u_2v_1w_3\det(\vec{j},\vec{i},\vec{k}) + u_3v_1w_2\det(\vec{k},\vec{i},\vec{j}) + u_3v_2w_1\det(\vec{k},\vec{j},\vec{i}) \\ &= (u_1v_2w_3 + v_1w_2u_3 + w_1u_2v_3) - (w_1v_2u_3 + u_1w_2v_3 + v_1u_2w_3) \end{split}$$

■ Sendo assim, o determinante é dado por:

$$\begin{vmatrix} u_1 & v_1 & w_1 \\ u_2 & v_2 & w_2 \\ u_3 & v_3 & w_3 \end{vmatrix} = (u_1 v_2 w_3 + v_1 w_2 u_3 + w_1 u_2 v_3) - (w_1 v_2 u_3 + u_1 w_2 v_3 + v_1 u_2 w_3)$$

■ Podemos também representar o determinante em três dimensões a partir de determinantes menores:

$$\begin{vmatrix} u_1 & v_1 & w_1 \\ u_2 & v_2 & w_2 \\ u_3 & v_3 & w_3 \end{vmatrix} = u_1 \begin{vmatrix} v_2 & w_2 \\ v_3 & w_3 \end{vmatrix} - u_2 \begin{vmatrix} v_1 & w_1 \\ v_3 & w_3 \end{vmatrix} + u_3 \begin{vmatrix} v_1 & w_1 \\ v_2 & w_2 \end{vmatrix}$$

Anti-Comutatividade

$$\begin{split} \det(\vec{v}, \vec{u}, \vec{w}) &= \det(\vec{w}, \vec{v}, \vec{u}) = \det(\vec{u}, \vec{w}, \vec{v}) = -\det(\vec{u}, \vec{v}, \vec{w}) \\ \det(\vec{v}, \vec{w}, \vec{u}) &= \det(\vec{w}, \vec{u}, \vec{v}) = \det(\vec{u}, \vec{v}, \vec{w}) \end{split}$$

Multilinearidade

$$\begin{aligned} \det(\vec{u}, \vec{v}, \alpha_1 \vec{w}_1 + \alpha_2 \vec{w}_2) &= \alpha_1 \det(\vec{u}, \vec{v}, \vec{w}_1) + \alpha_2 \det(\vec{u}, \vec{v}, \vec{w}_2) \\ \det(\vec{u}, \alpha_1 \vec{v}_1 + \alpha_2 \vec{v}_2, \vec{w}) &= \alpha_1 \det(\vec{u}, \vec{v}_1, \vec{w}) + \alpha_2 \det(\vec{u}, \vec{v}_2, \vec{w}) \\ \det(\alpha_1 \vec{u}_1 + \alpha_2 \vec{u}_2, \vec{v}, \vec{w}) &= \alpha_1 \det(\vec{u}_1, \vec{v}, \vec{w}) + \alpha_2 \det(\vec{u}_2, \vec{v}, \vec{w}) \end{aligned}$$

Módulo Dados os vetores não-colineares $\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^3$, temos:

$$|\det(\vec{u},\vec{v},\vec{w})| = ||\vec{u}|| \, ||\vec{v}|| \, ||\vec{w}|| \, sen \, \theta \cos \psi$$

onde θ é o ângulo entre \vec{u} e \vec{v} , ψ é o ângulo entre \vec{w} e a direção perpendicular ao plano uv.

- Dados os vetores $\vec{u} = (1, 0, 1), \vec{v} = (2, -1, 0)$ e $\vec{w} = (2, 2, 1)$, calcule $det(\vec{u}, \vec{v}, \vec{w})$.
- Verifique se os vetores a seguir são coplanares:
 - $\vec{u} = (1, 1, 1), \vec{v} = (2, -1, -1) \text{ e } \vec{w} = (0, 1, 1).$
 - $\vec{u} = (2,0,1), \vec{v} = (1,-1,2) \text{ e } \vec{w} = (3,-1,0).$
 - $\vec{u} = (1, -1, 2), \vec{v} = (-1, 3, 1) \text{ e } \vec{w} = (-2, 2, -4).$
- Calcule o volume do tetraedro de vértices A(1,1,0), B(-1,2,3), C(-2,-3,2) e D(0,4,-2).
- Dados os pontos A(1,0,-1), B(2,-1,3) e C(1,-2,1), encontre o ponto do eixo z coplanar com A, B e C.
- Dados os vetores $\vec{u}=(1,-1,1)$ e $\vec{v}=(-3,0,2)$, encontre $\vec{n}\in\mathbb{R}^3$ tal que $det(\vec{u},\vec{v},\vec{w})=\vec{n}\cdot\vec{w}$, para todo $\vec{w}\in\mathbb{R}^3$.