Protokoll Resonanz

Versuchsgruppe: Dercio Cipriano Datum: November 14, 2014

Max Henschell

Aufgabenstellung

1. Skizzieren Sie qualitativ das Amplitudenverhältnis und die Phasenlage φ in Abhängigkeit von der Erregerfrequenz f_{ERR} , wie Sie in den Gleichungen (3) und (5) theoretisch dargestellt und im Experiment zu erwarten sind.

- 2. Machen Sie sich mit der Funktionsweise der Versuchsapparatur "DRIVEN HARMONIC MOTION ANALYSATOR" vertraut und überprüfen Sie die Justage.
- 3. Bestimmen Sie für das vorliegende schwingungsfähige System "Masse-Feder" die Resonanzfrequenz f_0 bzw. ω , die Periodendauer T_0 , die Federkonstante k, die Dämpfung δ und den Reibungskoeffizienten b_R .
- 4. Nehmen Sie für die in Aufgabe 3 eingestellten Versuchsbedingungen die Auslenkungen und Phasenlagen in Abhängigkeit von der Erregerfrequenz auf.
- 5. Überprüfen Sie die Eigenfrequenz f_0 und die Dämpfung δ für die freie Schwingung.

Vorbetrachtung

frei Schwingung	· schwingfähiges System wird ausgelenkt
	\rightarrow schwingt mit Eigenfrequenz
	· keine Einwirkung von außen
erzwungene Schwingung	· Schwinger wird durch zeitveränderlicher äußerer
	Einwirkung zum Schwingen gebracht
	· wichtigste Erregerfrom periodisch
	ightarrow Frequenz periodischer Erregung heißt Erregerfrequenz
gedämpfte Schwingung	· bei einer Schwingung werden 2 Energieformen in
	einander umgewandelt, durch Reibung wird die Energie
	auch in Wärme umgewandelt
	·Auslenkung eines schwingfähigen Systems nimmt zeitlich ab
ungedämpfte Schwingung	· während des Schwingens Umwandlung zweier
	Energieformen ohne Reibung
	· keine Abnahme der Amplitude
Masse-Feder-Systeme in der Praxis	· Verwendung beim Gleisbau
	Dämpfung der Erschütterung (Schwingung) durch Bahnverkehr
Eigenfrequenz	· ist eine Frequenz, mit der das System nach
	einmaliger Anregung als Eigenform schwingen kann
Rolle der Dämpfung	· zeitliche Verringerung der Amplitude
	· ist Dämpfung groß genug kann Schwingung verhindert werden
Resonanz	· Form der erzwungenen Schwingung
	· periodische Anregung des schwingfähigen Systems
Schwingfall	· Ausschwingen des Systems durch das Wirken einer Dämpfung
	\rightarrow Amplitude und Frequenz nähren sich ihrer Ausgangslage
	vor der Anregung
Kriechfall	· schwingfähiges System erfährt Dämpfung
	· Schwingfähiges System nimmt über monotonen zeitlichen
	Verlauf seine Gleichgewichtslage an
Aperiodischer Grenzfall	· beschreibt Dämpfungszustand eines harmonischen Oszillator
	· kleinste Dämpfung ohne Überschwingen
	· Annäherung an Gleichgewichtslage in kürzeste Zeit
]

Geräte

- ullet Grundgerät
- Zusatzmasse
- \bullet Stoppuhr

Durchführung und Auswertung

geg:
$$T_0=0,8s,\,x_{0,ERR}=6mm,x_{0,RES},\,m=0,1kg,\,f_0=1,26s^{-1}$$
ges: $\omega_0,\,\delta,\,b_r,\,k$ Lös:

$$\omega_0 = \frac{2\pi}{T_0}$$

$$\omega_0 = \frac{2\pi}{0.8s}$$

$$\omega_0 = 7.85s^{-1}$$

$$\delta = \frac{x_{ERR} \cdot \omega_0}{2x_{RES}}$$
$$\delta = \frac{6mm \cdot 7,85s^{-1}}{2 \cdot 50mm}$$
$$\delta = 0,47s^{-1}$$

$$b_R = 2\delta m$$

$$b_R = 2 \cdot 0,47s^{-1} \cdot 0,1kg$$

$$b_R = 0,094 \frac{kg}{s}$$

$$k = \omega_0^2 \cdot m$$

$$k = 7,85^2 \cdot 0,1$$

$$k = 6,16 \frac{kg}{s^2}$$