Exercise 4: Solution Relational Algebra **DBS**

Question 1(i)

Library database schema:

LIB-MEMBER(<u>ID</u>, name, age) BOOK(<u>serial#</u>, title, author, year-of-publication) LOAN(<u>ID</u>, <u>serial#</u>, date-due)

(i) $\pi_{name}(\sigma_{year-of-publication < 1960} BOOK \bowtie LOAN \bowtie LIB-MEMBER)$

Find names of members who have loaned books published before 1960.

Question 1(ii)

Library database schema:

LIB-MEMBER(<u>ID</u>, name, age) BOOK(<u>serial#</u>, title, author, year-of-publication) LOAN(<u>ID</u>, <u>serial#</u>, date-due)

(ii) $\pi_{ID}(\sigma_{age < 21} LIB\text{-MEMBER}) - \pi_{ID}(\sigma_{author = "J.K.Rowling"} BOOK \bowtie LOAN)$

Find IDs of members under the age of 21 who have not loaned a book by author "J.K.Rowling".

Question 1(iii)

Library database schema:

LIB-MEMBER(<u>ID</u>, name, age) BOOK(<u>serial#</u>, title, author, year-of-publication) LOAN(<u>ID</u>, <u>serial#</u>, date-due)

(iii)
$$\pi_{\text{name}}((\pi_{\text{ID,serial}\#} \text{LOAN} \div \pi_{\text{serial}\#} (\sigma_{\text{title} = \text{"C Programming"}} \text{BOOK}))$$
 $\bowtie \text{LIB-MEMBER})$

Find names of members who have loaned all books with the title 'C Programming'

Question 2(i)

STUDENT(Sid, Sname, Sex, Age, Year, GPA)

DEPT(Dname, Numphds)

PROF(Pname, Dname)

COURSE(<u>Dname</u>, <u>Cno</u>, Cname)

MAJOR(Sid, Dname)

SECTION(<u>Dname</u>, <u>Cno</u>, <u>Sectno</u>, Pname)

ENROLL(Sid, Dname, Cno, Sectno, Grade)

(i) Find the names of professors who work in departments that have fewer than 50 PhD students.

Answer := π_{Pname} (PROF \bowtie ($\sigma_{\text{Numphds} < 50}$ DEPT))

Question 2(ii)

```
STUDENT(Sid, Sname, Sex, Age, Year, GPA)
```

DEPT(<u>Dname</u>, Numphds)

PROF(Pname, Dname)

COURSE(<u>Dname</u>, <u>Cno</u>, Cname)

MAJOR(Sid, Dname)

SECTION(<u>Dname</u>, <u>Cno</u>, <u>Sectno</u>, Pname)

ENROLL(Sid, Dname, Cno, Sectno, Grade)

(ii) Find the name(s) of student(s) with the lowest GPA.

```
Answer := \pi_{\text{Sname}} (STUDENT \bowtie_{\text{GPA=MinGPA}} (\gamma_{\text{MIN(GPA)} \to \text{MinGPA}} \text{STUDENT}))
```

Question 2(iii)

STUDENT(Sid, Sname, Sex, Age, Year, GPA)

DEPT(<u>Dname</u>, Numphds)

PROF(Pname, Dname)

COURSE(Dname, Cno, Cname)

MAJOR(Sid, Dname)

SECTION(<u>Dname</u>, <u>Cno</u>, <u>Sectno</u>, Pname)

ENROLL(Sid, Dname, Cno, Sectno, Grade)

(iii)Find the names and majors of students who have taken the 'Database Systems' course.

 $R1 := \pi_{Dname, Cno} (\sigma_{Cname = 'Database Systems'}, COURSE)$

 $R2 := \pi_{Sid} (R1 \bowtie ENROLL)$

Answer := $\pi_{\text{Sname, Dname}}$ (R2 \bowtie MAJOR \bowtie STUDENT)

Question 2(iv)

```
STUDENT(Sid, Sname, Sex, Age, Year, GPA)
```

DEPT(<u>Dname</u>, Numphds)

PROF(<u>Pname</u>, Dname)

COURSE(<u>Dname</u>, <u>Cno</u>, Cname)

MAJOR(Sid, Dname)

SECTION(<u>Dname</u>, <u>Cno</u>, <u>Sectno</u>, Pname)

ENROLL(Sid, Dname, Cno, Sectno, Grade)

(iv)Find the ids, names, and GPAs of the students who have taken all courses from the 'Civil Engineering' department.

 $R1 := \pi_{Dname, Cno}(\sigma_{Dname = 'Civil Engineering'}, COURSE)$

 $R2 := \pi_{Sid, Dname, Cno} ENROLL$

 $R3 := R2 \div R1$

Answer := $\pi_{Sid. Sname. GPA}$ (R3 \bowtie STUDENT)

Question 3(i)

Find the names of the players who won at least one gold and one silver.

PLAYERS(<u>player-id</u>, name, countryname, age) EVENTS(<u>event-id</u>, name, eventtype) RESULTS(<u>player-id</u>, <u>event-id</u>, medal)

R1 := $\pi_{\text{player-id}}(\sigma_{\text{medal} = \text{`gold'}}, \text{RESULTS})$ R2 := $\pi_{\text{player-id}}(\sigma_{\text{medal} = \text{`silver'}}, \text{RESULTS})$ R3 := R2 \cap R1 Answer := $\pi_{\text{name}}(\text{R3} \bowtie \text{PLAYERS})$

Question 3(ii)

Find the players who did not win a medal.

PLAYERS(<u>player-id</u>, name, countryname, age) EVENTS(<u>event-id</u>, name, eventtype) RESULTS(<u>player-id</u>, <u>event-id</u>, medal)

 $R1 := \pi_{player-id}$ PLAYERS

 $R2 := \pi_{player-id} RESULTS$

R3 := R1 - R2

Answer := π_{name} (R3 \bowtie PLAYERS)

Question 3(iii)

Find the names of all the players with the minimum age.

PLAYERS(<u>player-id</u>, name, countryname, age) EVENTS(<u>event-id</u>, name, eventtype) RESULTS(<u>player-id</u>, <u>event-id</u>, medal)

 $R1 := \pi_{name} PLAYERS$

R2 := $\pi_{p1.name}(\rho_{p1}(PLAYERS) \bowtie_{p1.age > p2.age} \rho_{p2}(PLAYERS))$

Answer := R1 - R2

Question 4

Relation R(A) only has one attribute A.

We want to find max value in A.

$$S := R$$

R1 :=
$$\sigma_{R.A < S.A}(R \times S)$$

Answer :=
$$R - \pi_{R,A}(R1)$$