PageRank and Recent Advances

Quiz, 9 questions

9/9 points (100.00%)

Congratulations! You passed!

Next Item

1/1 point

1

How many connected components do you see in this graph?

0

1

Correct

True. A graph that is connected by itself has exactly one connected component, consisting of the whole graph.

5

PageRank and Recent Advances Quiz, 9 questions

9/9 points (100.00%)

9 questi	ons				
2. What I	DOES "The Alternating algorithm is local" mean?				
	There is a bar named "The alternating algorithm" not far away				
	The Alternating algorithm is efficient only of you are running it on your local machine				
0	With every node in the graph performing some rewiring decisions is based solely on the structure of its neighbourhood.				
Corr	rect				
	yes, you are 100% right				
~	1/1 point				
3. What i	is the right definition of a stochastic graph?				
0	A graph where for each vertex the sum of weights of all the outgoing edges is equal to one				
Corr True	rect e. There is no way to trick you!				
	A graph where the sum of all edges' weights is equal to one				
	The graph which exists with certain probability				
	1/1				

point

4.

What conditions should THE GRAPH satisfy FOR ITS UNIQUE STATIONARY DISTRIBUTION TO EXIST?

Tick the true variants

Correct

True. This is the necessary(необходимое) condition

		.) (
	and Dagger	t Advances
Pagekank 2	and Recen	LAUVANCES
i agenaini	and necesii	t ria variees

9/9 points (100.00%) Quiz, 9 questions There is a path from every node to every node Correct True. You are absolutely right Graph by itself is one connected component Un-selected is correct The greatest common divider of all the cycle lengths is 1 Correct True. This is the necessary(необходимое) condition 1/1 point The stationary distribution at a vertex is related: Tick the true variants A probability to get there after the first step **Un-selected is correct** To the probability of getting to a certain vertex after quite a big amount of steps. Correct True. You are learning really fast To the amount of time a random walker spends visiting that vertex. Correct

True. This is a correct answer.

PageRank and Recent Advances Quiz, 9 questions

9/9 points (100.00%)

6.

In the Page Rank Formula

$$PR(p_i) = \frac{1-d}{N} + d\sum_{p_j \in \Gamma(p_i)} \frac{PR(p_j)}{L(p_j)}$$

what meaning does the fraction below have?

$$\frac{1-d}{N}$$

- There is a probability for every page to be chosen if a random surfer doesn't get bored
- There's a probability for every page to be chosen after a random surfer gets bored

Correct

Yep. You quickly grasp the essence

1/1 point

7.

What type of edges does a taste graph have?

- Both types
- O Directed edges

Correct

Correct, the taste graph is an oriented graph.

Undirected edges

1/1

point

8. PageRag	ikandiRaasut Advances	9/9 points (100.00%)
Quiz, 5 questio	If you take only the edges of the same type and only vertices of the same type you will stochastic graph	receive a
	If you take only the vertices of the same type from a taste graph then you will receive a graph	a stochastic
0	If you take only the edges of the same type from a taste graph then you will receive a sgraph	stochastic
Corre	ect	
Corr	ect statement	
9. Under	1 / 1 $$ point $$ the weight function ω_{eta} graph G is a stochastic graph because	
0	For each vertex sum of weights of all the outgoing edges is equal to one	
Corre	ect	
True	. There is no way to trick you!	
	It transforms weights of all the edges in a way that sum of all of them becomes equal t	to one
	It forces all the edges to have the same type	

