

Synthesize, Diagnose, and Optimize: Towards Fine-Grained Vision-Language Understanding

Wujian Peng^{1,2} Sicheng Xie^{1,2} Zuyao You^{1,2} Shiyi Lan³ Zuxuan Wu^{1,2}
¹Fudan University, ²Shanghai Collaborative Innovation Center of Intelligent Visual Computing, ³NVIDIA

Overview

Pretrained VLMs struggle with fine-grained compositional understanding.

Image to Text

Matching

<t →

bear *bigger than* bird

Text to Image

Matching

bear *bigger than* bird 0.09

bear *smaller than* bird 0.91

It is essential to evaluate VLMs from **both the visual and language perspectives** simultaneously.

query text: a photo of two / three dogs

Ensuring that candidates have only one variable is crucial for eliminating ambiguity and enhancing reliability.

Method

We decompose the complex data construction process into several manageable steps.

We ensure consistency through a shared initial background.

We introduce a bin-modal hard negatives loss to optimize the VLMs.

$$L_{hn}^{I2T} = -\sum_{i} log \frac{s(I_i, T_i)}{\sum_{T_j \in \mathbf{T}} s(I_i, T_j) + \sum_{T_k^{hn} \in \mathbf{T^{hn}}} s(I_i, T_k^{hn})}$$

$$L_{hn}^{T2I} = -\sum_{i} log \frac{s(I_{i}, T_{i})}{\sum_{I_{j} \in \mathbf{I}} s(I_{j}, T_{i}) + \sum_{I_{k}^{hn} \in \mathbf{I}^{hn}} s(I_{k}^{hn}, T_{i})} L_{clip} + \mu(L_{hn}^{I2T} + L_{hn}^{T2I})$$

Results

Synthesize: we constructed the SPEC benchmark, which consists of 6 subsets and a total of 15,000 image-text pairs.

Diagnose: we evaluated four leading VLMs on SPEC and highlighting their deficiencies in fine-grained understanding.

Optimize: We fine-tuned CLIP with a hard-negative loss, significantly enhancing its performance on SPEC.