# Ensemble Learning: Bayesian Model Averaging

#### Fabio Cimmino

Università degli Studi di Milano-Bicocca

Anno Accademico 2017-2018



Relatore: Prof.ssa Vincenzina Messina Co-Relatore: Dott.ssa Elisabetta Fersini



## **Ensemble Learning**

L'Ensemble Learning consiste in metodi d'insieme che usano modelli multipli per ottenere una miglior prestazione predittiva rispetto ai singoli modelli



## **Ensemble Learning**

L'Ensemble Learning consiste in metodi d'insieme che usano modelli multipli per ottenere una miglior prestazione predittiva rispetto ai singoli modelli



Vantaggio principale Ensemble Learning:

 Diminuisce il limite decisionale che separa i dati dalle diverse classi eliminando l'incertezza sul modello da usare

## **Ensemble Learning**

L'Ensemble Learning consiste in metodi d'insieme che usano modelli multipli per ottenere una miglior prestazione predittiva rispetto ai singoli modelli



## Validazione del modello e performance



## Validazione del modello e performance



|                   |         | Actua             | l class           |  |  |
|-------------------|---------|-------------------|-------------------|--|--|
|                   |         | Cat Non-cat       |                   |  |  |
| Predicted         | Cat     | 5 True Positives  | 2 False Positives |  |  |
| Predicte<br>class | Non-cat | 3 False Negatives | 17 True Negatives |  |  |

## Validazione del modello e performance



|                 |         | Actual class      |                   |  |  |  |
|-----------------|---------|-------------------|-------------------|--|--|--|
|                 |         | Cat Non-cat       |                   |  |  |  |
| Predicted class | Cat     | 5 True Positives  | 2 False Positives |  |  |  |
|                 | Non-cat | 3 False Negatives | 17 True Negatives |  |  |  |

 $Accuracy = \frac{True\ Positive + True\ Negative}{\sum Total\ Population}$ 

$$Precision = \frac{True\ Positive}{True\ Positive + False\ Positive}$$

$$Recall = \frac{True \; Positive}{True \; Positive + False \; Negative}$$

$$F\ measure = \frac{2 \cdot precision \cdot recall}{precision + recall}$$

- Bagging
- Boosting
- Stacking
- Random Forests

- Bagging
- Boosting
- Stacking
- Random Forests

#### Limitazioni:

 Non vengono considerate le capacità di generalizzazione dei modelli

- Bagging
- Boosting
- Stacking
- Random Forests

#### Limitazioni:

- Non vengono considerate le capacità di generalizzazione dei modelli
- Modelli indipendenti e ugualmente affidabili

- Bagging
- Boosting
- Stacking
- Random Forests

#### Limitazioni:

- Non vengono considerate le capacità di generalizzazione dei modelli
- Modelli indipendenti e ugualmente affidabili
- Securato La ricerca dell'insieme più accurato ha un costo

 $l^*(r) \equiv$  classe finale assegnata ad un record del dataset  $D \equiv$  dataset  $S \equiv$  possibile insieme di modelli  $S \subseteq C$ 

$$\begin{split} l^*(r) &= \arg\max P(l(r)\mid S, D) = \sum_{i \in S} P(l(r)\mid i, D) P(i\mid D) \\ &= \sum_{i \in S} P(l(r)\mid i, D) P(D\mid i) P(i) \\ &= \sum_{i \in S} \frac{P(l(r)\mid i, D) P(D\mid i)}{P(D\mid i)} \end{split}$$

 $l^*(r)\equiv$  classe finale assegnata ad un record del dataset  $D\equiv$  dataset  $S\equiv$  possibile insieme di modelli  $S\subseteq C$ 

$$\begin{split} l^*(r) &= \arg \max P(l(r) \mid S, D) = \sum_{i \in S} P(l(r) \mid i, D) P(i \mid D) \\ &= \sum_{i \in S} P(l(r) \mid i, D) P(D \mid i) P(i) \\ &= \sum_{i \in S} \boxed{P(l(r) \mid i, D) \quad P(D \mid i)} \end{split}$$

ullet Probabilità marginale di l(r) -

 $l^*(r) \equiv$  classe finale assegnata ad un record del dataset  $D \equiv$  dataset

$$S\equiv$$
 possibile insieme di modelli  $S\subseteq C$ 

$$\begin{split} l^*(r) &= \arg\max P(l(r)\mid S, D) = \sum_{i \in S} P(l(r)\mid i, D) P(i\mid D) \\ &= \sum_{i \in S} P(l(r)\mid i, D) P(D\mid i) P(i) \\ &= \sum_{i \in S} \frac{P(l(r)\mid i, D) P(D\mid i)}{\int} \end{split}$$

- ullet Probabilità marginale di l(r)
- ullet Capacità di generalizzazione del modello i



 $l^*(r)\equiv$  classe finale assegnata ad un record del dataset  $D\equiv$  dataset  $S\equiv$  possibile insieme di modelli  $S\subseteq C$ 

$$\begin{split} l^*(r) &= \arg \max P(l(r) \mid S, D) = \sum_{i \in S} P(l(r) \mid i, D) P(i \mid D) \\ &= \sum_{i \in S} P(l(r) \mid i, D) P(D \mid i) P(i) \\ &= \sum_{i \in S} \frac{P(l(r) \mid i, D) \quad P(D \mid i)}{\uparrow} \end{split}$$

- ullet Probabilità marginale di l(r)
- ullet Capacità di generalizzazione del modello i

 $P(D \mid i) \approx \text{F-measure del training set}$ 

Contributo  $r_i^s$  di ogni modello i appartenente ad un determinato insieme  $S\subseteq C$ :

$$r_i^s = \frac{\sum_{j \in \{S \setminus i\}} \sum_{q \in \{0,1\}} P(i=1 \mid j=q) P(j=q)}{\sum_{j \in \{S \setminus i\}} \sum_{q \in \{0,1\}} P(i=0 \mid j=q) P(j=q)}$$

Contributo  $r_i^s$  di ogni modello i appartenente ad un determinato insieme  $S\subseteq C$ :

$$r_i^s = \frac{\sum_{j \in \{S \setminus i\}} \sum_{q \in \{0,1\}} P(i=1 \mid j=q) P(j=q)}{\sum_{j \in \{S \setminus i\}} \sum_{q \in \{0,1\}} P(i=0 \mid j=q) P(j=q)}$$

$$\begin{array}{c} \text{composizione ottimale} \\ \text{con } \textit{backward elimination} \end{array} \colon \frac{ACC(S)}{|S|} \geq \frac{ACC(S \setminus x)}{|S-1|} \\ \end{array}$$

Contributo  $r_i^s$  di ogni modello i appartenente ad un determinato insieme  $S \subseteq C$ :

$$r_i^s = \frac{\sum_{j \in \{S \setminus i\}} \sum_{q \in \{0,1\}} P(i=1 \mid j=q) P(j=q)}{\sum_{j \in \{S \setminus i\}} \sum_{q \in \{0,1\}} P(i=0 \mid j=q) P(j=q)}$$

$$\begin{array}{c} \text{composizione ottimale} \\ \text{con backward elimination} \\ \vdots \\ \frac{ACC(S)}{|S|} \geq \frac{ACC(S \setminus x)}{|S-1|} \\ \end{array}$$

$$\sum_{p=1}^{N} rac{N!}{p!(N-p)!}$$
 possibili soluzioni

- N modelli totali
- Insieme ottimale composto da p modelli

Contributo  $r_i^s$  di ogni modello i appartenente ad un determinato insieme  $S \subseteq C$ :

$$r_i^s = \frac{\sum_{j \in \{S \setminus i\}} \sum_{q \in \{0,1\}} P(i=1 \mid j=q) P(j=q)}{\sum_{j \in \{S \setminus i\}} \sum_{q \in \{0,1\}} P(i=0 \mid j=q) P(j=q)}$$

$$\begin{array}{c} \text{composizione ottimale} \\ \text{con backward elimination} \\ \vdots \\ \frac{ACC(S)}{|S|} \geq \frac{ACC(S \setminus x)}{|S-1|} \\ \end{array}$$

 $\sum_{p=1}^{N} \frac{N!}{p!(N-p)!} \text{ possibili soluzioni}$ 

N-1 potenziali modelli candidati

- N modelli totali
- Insieme ottimale composto da p modelli

## Algoritmi ed insiemi di modelli utilizzati

#### Algoritmi di apprendimento:

- K-Nearest Neighbors
- Decision Tree
- Multilayer Perceptron

- Naive Bayes
- Support Vector Machines

## Algoritmi ed insiemi di modelli utilizzati

#### Algoritmi di apprendimento:

- K-Nearest Neighbors
- Decision Tree
- Multilayer Perceptron

- Naive Bayes
- Support Vector Machines



5 omogenei

1 eterogeneo5 modelli prodotti dai 5 algoritmi

- 10 modelli di K-Nearest Neighbors
- 10 modelli di Decision Tree
- 10 modelli di Multilayer Perceptron
- 3 modelli di Naive Bayes
- 40 modelli di Support Vector Machines

## Dataset

| Dataset       | # lstanze | # Attributi | # Classi |
|---------------|-----------|-------------|----------|
| ann eal       | 898       | 39          | 5        |
| autos         | 205       | 26          | 6        |
| audiology     | 226       | 70          | 2        |
| balance-scale | 625       | 5           | 3        |
| breast-cancer | 286       | 10          | 2        |
| breast-w      | 699       | 10          | 2        |
| colic         | 368       | 23          | 2        |
| credit-rating | 690       | 16          | 2        |
| german-credit | 1000      | 21          | 2        |
| pima-diabetes | 768       | 9           | 2        |
| glass         | 214       | 10          | 6        |
| heart-c       | 303       | 14          | 2        |
| h eart-h      | 294       | 14          | 5        |
| heart-statlog | 270       | 14          | 2        |
| hepatitis     | 155       | 20          | 2        |
| hypothyroid   | 3772      | 30          | 4        |

| Dataset         | # lstanze | # Attributi | # Class |
|-----------------|-----------|-------------|---------|
| ionosphere      | 351       | 35          | 2       |
| iris            | 150       | 5           | 3       |
| kr-vs-kp        | 3196      | 37          | 2       |
| lab or          | 57        | 17          | 2       |
| lymph           | 148       | 19          | 4       |
| mushroom        | 8124      | 23          | 2       |
| prim ary-tum or | 339       | 18          | 9       |
| segment         | 2310      | 20          | 7       |
| sick            | 3772      | 30          | 2       |
| sonar           | 208       | 61          | 2       |
| soybean         | 683       | 36          | 19      |
| vehicle         | 846       | 19          | 4       |
| vote            | 435       | 17          | 2       |
| vowel           | 990       | 13          | 11      |
| Z00             | 101       | 18          | 7       |

## Risultati Insieme Omogeneo Multilayer Perceptron

| Dataset         | Boosting | Bagging | Stacking | R and om Forest | Democratic | Bayesian |
|-----------------|----------|---------|----------|-----------------|------------|----------|
| anne al         | 0.8363   | 0.9822  | 0.7617   | 0.9933          | 0.9933     | 0.9933   |
| autos           | 0.4488   | 0.6976  | 0.3268   | 0.8341          | 0.7938     | 0.7986   |
| a ud io logy    | 0.4646   | 0.7655  | 0.2522   | 0.7699          | 0.8401     | 0.8314   |
| bal ance-scale  | 0.7272   | 0.8288  | 0.4576   | 0.8048          | 0.9247     | 0.9152   |
| bre ast-cancer  | 0.7028   | 0.6783  | 0.7028   | 0.6923          | 0.7452     | 0.7384   |
| bre ast-w       | 0.9485   | 0.9557  | 0.6552   | 0.9614          | 0.9642     | 0.9685   |
| colic           | 0.8125   | 0.8533  | 0.6404   | 0.8614          | 0.8559     | 0.8478   |
| credit-rating   | 0.8464   | 0.8507  | 0.5505   | 0.8507          | 0.8696     | 0.8696   |
| german-credit   | 0.695    | 0.744   | 0.70     | 0.725           | 0.7710     | 0.7690   |
| pim a-dia betes | 0.7435   | 0.7461  | 0.651    | 0.7383          | 0.7683     | 0.7722   |
| glass           | 0.4486   | 0.6963  | 0.3551   | 0.729           | 0.7190     | 0.7100   |
| heart-c         | 0.8218   | 0.8218  | 0.5446   | 0.8152          | 0.8483     | 0.8548   |
| heart-h         | 0.7789   | 0.7857  | 0.6395   | 0.7789          | 0.8575     | 0.8508   |
| heart-statlog   | 0.8      | 0.7926  | 0.5556   | 0.7815          | 0.8407     | 0.8407   |
| hepatitis       | 0.8258   | 0.8452  | 0.7935   | 0.8258          | 0.8396     | 0.8329   |
| hypothyroid     | 0.9321   | 0.9955  | 0.9229   | 0.991           | 0.9510     | 0.9531   |
| io nosphe re    | 0.9088   | 0.9088  | 0.641    | 0.9288          | 0.9317     | 0.9203   |
| iris            | 0.9533   | 0.94    | 0.3333   | 0.9533          | 0.9800     | 0.9800   |
| kr-vs-kp        | 0.9384   | 0.9912  | 0.5222   | 0.9881          | 0.9950     | 0.9947   |
| labor           | 0.8772   | 0.8596  | 0.6491   | 0.8772          | 0.8967     | 0.9333   |
| lymph           | 0.7432   | 0.7838  | 0.5473   | 0.8108          | 0.8519     | 0.8519   |
| mushroom        | 0.962    | 1       | 0.518    | 1_              | 1          | 1        |
| primary-tumor   | 0.2891   | 0.4513  | 0.2478   | 0.4248          | 0.4840     | 0.4721   |
| seg ment        | 0.2857   | 0.9697  | 0.1429   | 0.9766          | 0.9680     | 0.9684   |
| sick            | 0.9719   | 0.9849  | 0.9388   | 0.9838          | 0.9751     | 0.9761   |
| sonar           | 0.7163   | 0.774   | 0.5337   | 0.8077          | 0.8374     | 0.8326   |
| soybe an        | 0.2796   | 0.8682  | 0.1318   | 0.9165          | 0.9458     | 0.9487   |
| ve h ic le      | 0.3995   | 0.727   | 0.2565   | 0.7707          | 0.8583     | 0.8570   |
| vote            | 0.954    | 0.9586  | 0.6138   | 0.9586          | 0.9609     | 0.9679   |
| vo we           | 0.1737   | 0.8576  | 0.909    | 0.9606          | 0.9636     | 0.9677   |
| Z00             | 0.604    | 0.4257  | 0.4059   | 0.8911          | 0.9618     | 0.9618   |

## Risultati Insieme Omogeneo Multilayer Perceptron

Il 45% delle volte il Bayesian Model Averaging risulta la tecnica migliore con l'insieme omogeneo Multilayer Perceptron

|   | Dataset         | Boosting | Bagging | Stacking | R and om Forest | Democratic | Bayesian |
|---|-----------------|----------|---------|----------|-----------------|------------|----------|
|   | anne al         | 0.8363   | 0.9822  | 0.7617   | 0.9933          | 0.9933     | 0.9933   |
|   | autos           | 0.4488   | 0.6976  | 0.3268   | 0.8341          | 0.7938     | 0.7986   |
|   | a ud io logy    | 0.4646   | 0.7655  | 0.2522   | 0.7699          | 0.8401     | 0.8314   |
|   | bal ance-scale  | 0.7272   | 0.8288  | 0.4576   | 0.8048          | 0.9247     | 0.9152   |
|   | bre ast-cancer  | 0.7028   | 0.6783  | 0.7028   | 0.6923          | 0.7452     | 0.7384   |
|   | bre ast- w      | 0.9485   | 0.9557  | 0.6552   | 0.9614          | 0.9642     | 0.9685   |
|   | colic           | 0.8125   | 0.8533  | 0.6404   | 0.8614          | 0.8559     | 0.8478   |
|   | credit-rating   | 0.8464   | 0.8507  | 0.5505   | 0.8507          | 0.8696     | 0.8696   |
|   | german-credit   | 0.695    | 0.744   | 0.70     | 0.725           | 0.7710     | 0.7690   |
|   | pim a-dia betes | 0.7435   | 0.7461  | 0.651    | 0.7383          | 0.7683     | 0.7722   |
|   | glass           | 0.4486   | 0.6963  | 0.3551   | 0.729           | 0.7190     | 0.7100   |
|   | he art-c        | 0.8218   | 0.8218  | 0.5446   | 0.8152          | 0.8483     | 0.8548   |
|   | he art-h        | 0.7789   | 0.7857  | 0.6395   | 0.7789          | 0.8575     | 0.8508   |
|   | he art-statlog  | 0.8      | 0.7926  | 0.5556   | 0.7815          | 0.8407     | 0.8407   |
|   | hepatitis       | 0.8258   | 0.8452  | 0.7935   | 0.8258          | 0.8396     | 0.8329   |
|   | hypothyroid     | 0.9321   | 0.9955  | 0.9229   | 0.991           | 0.9510     | 0.9531   |
|   | io nosphe re    | 0.9088   | 0.9088  | 0.641    | 0.9288          | 0.9317     | 0.9203   |
|   | iris            | 0.9533   | 0.94    | 0.3333   | 0.9533          | 0.9800     | 0.9800   |
| _ | kr-vs-kp        | 0.9384   | 0.9912  | 0.5222   | 0.9881          | 0.9950     | 0.9947   |
| n | labor           | 0.8772   | 0.8596  | 0.6491   | 0.8772          | 0.8967     | 0.9333   |
|   | lymph           | 0.7432   | 0.7838  | 0.5473   | 0.8108          | 0.8519     | 0.8519   |
|   | mushroom        | 0.962    | 1       | 0.518    | 1_              | 1          | 1        |
|   | primary-tumor   | 0.2891   | 0.4513  | 0.2478   | 0.4248          | 0.4840     | 0.4721   |
|   | seg ment        | 0.2857   | 0.9697  | 0.1429   | 0.9766          | 0.9680     | 0.9684   |
|   | sic k           | 0.9719   | 0.9849  | 0.9388   | 0.9838          | 0.9751     | 0.9761   |
|   | sonar           | 0.7163   | 0.774   | 0.5337   | 0.8077          | 0.8374     | 0.8326   |
|   | soybe an        | 0.2796   | 0.8682  | 0.1318   | 0.9165          | 0.9458     | 0.9487   |
|   | ve h ic le      | 0.3995   | 0.727   | 0.2565   | 0.7707          | 0.8583     | 0.8570   |
|   | vote            | 0.954    | 0.9586  | 0.6138   | 0.9586          | 0.9609     | 0.9679   |
|   | vo we l         | 0.1737   | 0.8576  | 0.909    | 0.9606          | 0.9636     | 0.9677   |
|   | Z00             | 0.604    | 0.4257  | 0.4059   | 0.8911          | 0.9618     | 0.9618   |

# Risultati Insieme Eterogeneo

| Dataset         | Boosting | Bagging | Stacking | RandomForest | Democratic | Bayesian |
|-----------------|----------|---------|----------|--------------|------------|----------|
| anne al         | 0.8363   | 0.9822  | 0.7617   | 0.9933       | 0.9922     | 0.9922   |
| autos           | 0.4488   | 0.6976  | 0.3268   | 0.8341       | 0.8181     | 0.8529   |
| a ud io logy    | 0.4646   | 0.7655  | 0.2522   | 0.7699       | 0.8449     | 0.8225   |
| bal ance-scale  | 0.7272   | 0.8288  | 0.4576   | 0.8048       | 0.9087     | 0.9024   |
| bre ast-cancer  | 0.7028   | 0.6783  | 0.7028   | 0.6923       | 0.7590     | 0.7558   |
| bre ast-w       | 0.9485   | 0.9557  | 0.6552   | 0.9614       | 0.9699     | 0.9714   |
| colic           | 0.8125   | 0.8533  | 0.6404   | 0.8614       | 0.8559     | 0.8586   |
| credit-rating   | 0.8464   | 0.8507  | 0.5505   | 0.8507       | 0.8638     | 0.8638   |
| german-credit   | 0.695    | 0.744   | 0.70     | 0.725        | 0.7690     | 0.7640   |
| pim a-dia betes | 0.7435   | 0.7461  | 0.651    | 0.7383       | 0.7800     | 0.7800   |
| glass           | 0.4486   | 0.6963  | 0.3551   | 0.729        | 0.7201     | 0.7472   |
| heart-c         | 0.8218   | 0.8218  | 0.5446   | 0.8152       | 0.8347     | 0.8415   |
| he art-h        | 0.7789   | 0.7857  | 0.6395   | 0.7789       | 0.8540     | 0.8506   |
| he art-statlog  | 0.80     | 0.7926  | 0.5556   | 0.7815       | 0.8556     | 0.8593   |
| hepatitis       | 0.8258   | 0.8452  | 0.7935   | 0.8258       | 0.8508     | 0.8638   |
| hypothyroid     | 0.9321   | 0.9955  | 0.9229   | 0.991        | 0.9690     | 0.9960   |
| io nosphe re    | 0.9088   | 0.9088  | 0.641    | 0.9288       | 0.9517     | 0.9460   |
| iris            | 0.9533   | 0.94    | 0.3333   | 0.9533       | 0.9800     | 0.9800   |
| kr-vs-kp        | 0.9384   | 0.9912  | 0.5222   | 0.9881       | 0.9947     | 0.9956   |
| labor           | 0.8772   | 0.8596  | 0.6491   | 0.8772       | 0.9333     | 0.9333   |
| lymph           | 0.7432   | 0.7838  | 0.5473   | 0.8108       | 0.8710     | 0.8581   |
| mushroom        | 0.962    | 1_      | 0.518    | 1            | 1          | 1        |
| primary-tumor   | 0.2891   | 0.4513  | 0.2478   | 0.4248       | 0.4807     | 0.4837   |
| seg ment        | 0.2857   | 0.9697  | 0.1429   | 0.9766       | 0.9801     | 0.9805   |
| sick            | 0.9719   | 0.9849  | 0.9388   | 0.9838       | 0.9812     | 0.9852   |
| sonar           | 0.7163   | 0.774   | 0.5337   | 0.8077       | 0.8702     | 0.8657   |
| soybe an        | 0.2796   | 0.8682  | 0.1318   | 0.9165       | 0.9458     | 0.9473   |
| ve h ic le      | 0.3995   | 0.727   | 0.2565   | 0.7707       | 0.8217     | 0.8264   |
| vote            | 0.954    | 0.9586  | 0.6138   | 0.9586       | 0.9701     | 0.9678   |
| vo we           | 0.1737   | 0.8576  | 0.909    | 0.9606       | 0.9707     | 0.9929   |
| Z00             | 0.604    | 0.4257  | 0.4059   | 0.8911       | 0.9718     | 0.9809   |

## Risultati Insieme Eterogeneo

Il 65% delle volte il Bayesian Model Averaging risulta la tecnica migliore con l'insieme eterogeneo

| Dataset         | Boosting | Bagging | Stacking | R and om Forest | Democratic | Bayesian |
|-----------------|----------|---------|----------|-----------------|------------|----------|
| anne al         | 0.8363   | 0.9822  | 0.7617   | 0.9933          | 0.9922     | 0.9922   |
| autos           | 0.4488   | 0.6976  | 0.3268   | 0.8341          | 0.8181     | 0.8529   |
| a udio logy     | 0.4646   | 0.7655  | 0.2522   | 0.7699          | 0.8449     | 0.8225   |
| balance-scale   | 0.7272   | 0.8288  | 0.4576   | 0.8048          | 0.9087     | 0.9024   |
| breast-cancer   | 0.7028   | 0.6783  | 0.7028   | 0.6923          | 0.7590     | 0.7558   |
| bre ast-w       | 0.9485   | 0.9557  | 0.6552   | 0.9614          | 0.9699     | 0.9714   |
| co lic          | 0.8125   | 0.8533  | 0.6404   | 0.8614          | 0.8559     | 0.8586   |
| credit-rating   | 0.8464   | 0.8507  | 0.5505   | 0.8507          | 0.8638     | 0.8638   |
| german-credit   | 0.695    | 0.744   | 0.70     | 0.725           | 0.7690     | 0.7640   |
| pim a-dia betes | 0.7435   | 0.7461  | 0.651    | 0.7383          | 0.7800     | 0.7800   |
| glass           | 0.4486   | 0.6963  | 0.3551   | 0.729           | 0.7201     | 0.7472   |
| heart-c         | 0.8218   | 0.8218  | 0.5446   | 0.8152          | 0.8347     | 0.8415   |
| he art-h        | 0.7789   | 0.7857  | 0.6395   | 0.7789          | 0.8540     | 0.8506   |
| heart-statlog   | 0.80     | 0.7926  | 0.5556   | 0.7815          | 0.8556     | 0.8593   |
| hepatitis       | 0.8258   | 0.8452  | 0.7935   | 0.8258          | 0.8508     | 0.8638   |
| hypothyroid     | 0.9321   | 0.9955  | 0.9229   | 0.991           | 0.9690     | 0.9960   |
| io nosphe re    | 0.9088   | 0.9088  | 0.641    | 0.9288          | 0.9517     | 0.9460   |
| iris            | 0.9533   | 0.94    | 0.3333   | 0.9533          | 0.9800     | 0.9800   |
| kr-vs-kp        | 0.9384   | 0.9912  | 0.5222   | 0.9881          | 0.9947     | 0.9956   |
| labor           | 0.8772   | 0.8596  | 0.6491   | 0.8772          | 0.9333     | 0.9333   |
| lymph           | 0.7432   | 0.7838  | 0.5473   | 0.8108          | 0.8710     | 0.8581   |
| mushroom        | 0.962    | 1_      | 0.518    | 1               | 1          | 1        |
| primary-tumor   | 0.2891   | 0.4513  | 0.2478   | 0.4248          | 0.4807     | 0.4837   |
| seg ment        | 0.2857   | 0.9697  | 0.1429   | 0.9766          | 0.9801     | 0.9805   |
| sick            | 0.9719   | 0.9849  | 0.9388   | 0.9838          | 0.9812     | 0.9852   |
| sonar           | 0.7163   | 0.774   | 0.5337   | 0.8077          | 0.8702     | 0.8657   |
| soybe an        | 0.2796   | 0.8682  | 0.1318   | 0.9165          | 0.9458     | 0.9473   |
| ve h ic le      | 0.3995   | 0.727   | 0.2565   | 0.7707          | 0.8217     | 0.8264   |
| vote            | 0.954    | 0.9586  | 0.6138   | 0.9586          | 0.9701     | 0.9678   |
| vo we l         | 0.1737   | 0.8576  | 0.909    | 0.9606          | 0.9707     | 0.9929   |
| Z00             | 0.604    | 0.4257  | 0.4059   | 0.8911          | 0.9718     | 0.9809   |

Il successo di un sistema d'insieme si basa direttamente sulla diversità degli algoritmi di apprendimento che compongono l'insieme

Il successo di un sistema d'insieme si basa direttamente sulla diversità degli algoritmi di apprendimento che compongono l'insieme

## Sviluppi futuri:

Sviluppo di una strategia di forward selection

Il successo di un sistema d'insieme si basa direttamente sulla diversità degli algoritmi di apprendimento che compongono l'insieme

## Sviluppi futuri:

- Sviluppo di una strategia di forward selection
- Parallelizzazione del Bayesian Model Averaging

Il successo di un sistema d'insieme si basa direttamente sulla diversità degli algoritmi di apprendimento che compongono l'insieme

## Sviluppi futuri:

- Sviluppo di una strategia di forward selection
- Parallelizzazione del Bayesian Model Averaging
- Sviluppo di una struttura di multi-task learning