Best Available Copy

FEASIBILITY STUDY FOR DEVELOPMENT OF HOT-WATER GEOTHERMAL SYSTEMS

CALIFORNIA UNIVERSITY

PREPARED FOR

AIR FORCE OFFICE OF SCIENTIFIC RESEARCH

March 1973

DISTRIBUTED BY:

	NT CONTROL DATA -			
University of California - Riverside Institute of Geophysics and Planetary Physics Riverside, California 92502		20. REPORT SECURITY CLASSIFICATION 26. GROUP		
Feasibility Study for Development	of Hot-Water Geo	thermal Sys	tems	
4. DESCRIPTIVE NOTES (Type of report and inclusive data Final Report	•)			
James B. Combs				
6 REPORT DATE March, 1973	7a. TOTAL NO	OF PAGES	76. NO. OF REFS	
AFOSR-72-2393 b. PROJECT NO.		OR'S REPORT NU JCR-73-18	MBER(S)	
AO 2184 62701D		96. OTHER REPORT NOISI (Any other numbers that may be esset the AFOSR - TR - 73 - 2070		
Approved for public release; dis	tribution unlimit	ed		
TECH, OTHER	AFOSR	(NPG)		

Geothermal energy is the natural heat of the earth. Naturally occurring hot-water systems are systems which contain a single fluid phase, water, that may be at temperatures far above surface boiling because of the effect of pressure on the boiling point of water. Geothermal reservoirs of the hot-water type are located in the upflowing parts of major meteoric water convection systems. They occur world-wide in the zones of the most recent and most intense geological activity. An overlay of the distribution of earthquake epicenters is essentially a crude indication of the location of geothermal resources worldwide.

The primary use of geothermal energy to date is for the generation of electricity. However, the development and utilization of hot-water geothermal reservoirs can be for the production of electrical, as a source of fresh water, and as a means of providing space-heating and cooling. The detection of geothermal systems consists of both regional reconnaissance and local detailed evaluation. The detection and delineation of hot-water geothermal systems is relatively primitive. Case histories using a suite of detection capabilities to pinpoint drilling locations are almost nonexistent. More must be obtained and documented.

Three potential sites of hot-water geothermal systems, Point Mugu, Twentynine Palms, and China Lake, all located in California have been investigated. Geological and other data have been developed and evaluated. Recommendations have been presented for future research efforts. (Complete abstract in final report.)

DD . 1473

. .

NATIONAL TECHNICAL INFORMATION SERVICE
U.S. Deportment of Commerce
Springfield VA 22151

UNCLASSIFIED

Security Classification

KEY WORDS	LIN	KA	LINE	C B	
	ROLE	WT	ROLE	WT	ROLE
GEOTHERMAL ENERGY					
GEOTHERMAL RESOURCES					
HOT-WATER GEOTHERMAL SYSTEMS					
GEOLOGY OF HOT-WATER GEOTHERMAL SYSTEMS					
OCCURRENCE OF NOT HATER CROSSES					
OCCURRENCE OF HOT-WATER GEOTHERMAL RESERVOIRS			1		
PHYSICAL FACTORS CONTROLLING HOT-WATER GEOTHER-					
MAL SYSTEMS					
POINT MUGU, CALIFORNIA SITE	111				- 1
TWENTYNINE PALMS, CALIFORNIA SITE					
CHINA LAKE, CALIFORNIA SITE					
			1		
		- 1			
					711
				_	
					- 1
				- 1	
	- 1				
	- 1				- 1
					11:1
			1.		
		_			

Boff Saction	U D

AIM MAY ALL	
1	
,	
	AVAILUESERY EX

AIR FORCE OFFICE OF SCIENTIFIC RESEARCH (AFSC)
NOTICE OF TRANSMITTAL TO DDC
This technical report has been reviewed and is approved for public recase IAW AFR 190-12 (7b).
*Distribution is unumited.

D. W. TAYLOR

Technical Information Officer

FEASIBILITY STUDY FOR DEVELOPMENT OF HOT-WATER GEOTHERMAL SYSTEMS

Jim Combs

Assistant Professor of Geophysics Department of Earth Sciences

and

Institute of Geophysics and Planetary Physics University of California Riverside, California 92502

Grant No. AFOSR-72-2393

Project No. ARPA order 2184 Program Code 2F10

FINAL TECHNICAL REPORT

MARCH 1973

Prepared for

ATR FORCE OFFICE OF SCIENTIFIC RESEARCH (NPG)
1400 Wilson Boulevard
Arlington, Virginia 22209

Approved for public release; distribution unlimited.

ABSTRACT

Geothermal energy is the natural heat of the earth. Naturally occurring hot-water systems are systems which contain a single fluid phase, water, that may be at temperatures far above surface boiling because of the effect of pressure on the boiling point of water. Geothermal reservoirs of the hot-water type are located in the upflowing parts of major meteoric water convection systems. They occur worldwide in the zones of the most recent and most intense geological activity. An overlay of the distribution of earthquake epicenters is essentially a crude indication of the location of geothermal resources worldwide.

The primary use of geothermal energy to date is for the generation of electricity. However, the development and utilization of hot-water geothermal reservoirs can be for the production of electrical, as a source of fresh water, and as a means of providing space-heating and cooling. The detection of geothermal systems consists of both regional reconnaissance and local detailed evaluation. The detection and delineation of hot-water geothermal systems is relatively primitive. Case histories using a suite of detection capabilities to pinpoint drilling locations are almost nonexistent. More must be obtained and documented.

Three potential sites of hot-water geothermal systems, Point Mugu, Twentynine Palms, and China Lake, all located in California have been investigated. Geological and other data have been developed and evaluated. Recommendations have been presented for future research efforts. An ongoing geothermal resources research program should be developed at a significant level of funding. This abundant, widespread, multipurpose natural source of steam which does not have environmental restrictions of associated sulfur dioxides, nitrous oxides or radioactive waste may represent a substantial alternative or at least supplementary source of energy for the very near future.

TABLE OF CONTENTS

			Page
1.	IN.'R	ODUCTION	1
	1.1	General	1
	1.2	Purpose and Scope	3
	1.3	Definitions and Conversion Factors	4
2.	OCCUE	RRENCES	4
	2.1	Physical Factors Controlling Occurrence	4
	2.2	World-Wide	7
	2.3	United States	8
	2.4	Relation to United States DOD Installations	9
3.	DETEC	TION AND RESOURCE EVALUATION	10
4.		OF GEOTHERMAL RESOURCES	
	4.1	Present Uses	13
	4.2		13
	4.3	Favorable Features As An Energy Source	14
	4.3	Uses of Hot-Water Geothermal Resources at Military Installations	15
5.	STATE	OF DEVELOPMENT OF HOT-WATER SYSTEMS	16
	5.1	General	16
	5.2	Power Generation	16
	5.3	Multipurpose Utilization	18
	5.4	Detection	
6.	PROBLI	EMS ASSOCIATED WITH GEOTHERMAL RESOURCES	18
	6.1	General	19
	6.2		19
	0.2	Environmental Considerations	2

			Page
7.	THREE	STUDY AREAS	21
	7.1	Project Definition	21
	7.2	Point Mugu Site	22
		7.2.1 Introduction	22
		7.2.2 Geology	23
		7.2.3 Existing Data	25
		7.2.4 Research Needs	27
	7.3	Twentynine Palms Site	28
		7.3.1 Introduction	28
		7.3.2 Geology	30
		7.3.3 Existing Data	36
		7.3.4 Research Needs	38
	7.4	China Lake Site	38
		7.4.1 Introduction	38
		7.4.2 Geology	40
		7.4.3 Existing Data	42
		7.4.4 Research Needs	42
0	DICC	USSION AND CONCLUSIONS	43
8.	8.1	Contains	43
		C. Alexand Customs	43
	8.2	Evaluation and Development of Hot-Water Geothermal	, ,
		Systems	44
9.	RECO	MMENDATIONS	46
	222	DENCEC	48

			Page
11.	APPEND	DIXES	51
	I.	Colocation Summary of Several Potential Geothermal Systems and Military Installations	I-1 - I-2
	II-A.	Point Mugu Site	A-0 - A-13
	II-B.	Twentynine Palms Site	B-0 - B-32
	II-C.	China Lake Site	C-0 - C-15

PLATE I. Potential Occurrence of Hot-Water Geothermal Reservoirs in the United States.

1. INTRODUCTION

1.1 General

Geothermal energy is the natural heat of the earth. Temperatures in the earth increase with increasing depth. At the base of the continental crust which is at a depth of 25 to 50 km, the temperatures range from 400° C to 1200° C. At the center of the earth (approximately 6370 km), the temperatures are probably 3500° C to 4500° C. However most of the earth's heat is far too deeply buried to be tapped by man even with the most optimistic assumptions of technological development. Although drilling has reached 9 km and may some day reach 15 to 20 km, the depths to which heat might be extracted economically are unlikely to be greater than 10 km.

The amount of geothermal heat available ranges from approximately 10^{19} calories (equivalent to 58,000 Mw for 50 years) to 10^{29} calories depending on the assumptions and calculations that one accepts.

In 1965, White (U.S.G.S. Circular 519) calculated that the amount of geothermal heat available in the outer 10 km of the earth's crust is approximately 3×10^{26} calories, which is more than 2000 times the heat represented by the total coal resources of the world. However, most of the geothermal heat is far too diffuse ever to be recovered. Consequently, most of the heat within the earth, even at depths of less than 10 km, cannot be considered an energy resource.

Geothermal energy, however, does have potential where heat is concentrated into restricted volumes in a manner analogous to the concentration of valuable metals into ore deposits or oil into commercial petroleum reservoirs. At present, significant concentrations of geothermal energy occur where elevated temperatures are found in permeable rocks at depths

less than 3 km. The thermal energy is stored both in the solid rock and in water and steam filling pores and fractures. This water and steam serve to transfer the heat from the rock to a well and then to the ground surface. With present technology, rocks having too few pores, or having pores that are not connected, do not comprise a usuable geothermal reservoir, however hot the rocks may be.

Water in a geothermal system also serves as the medium by which heat is transferred from a deep igneous source to a geothermal reservoir at depths shallow enough to be tapped by drill holes. Geothermal reservoirs are located in the upflowing parts of water convection systems. Cool rainwater percolates underground from areas that may comprise tens to thousands of square kilometers. At depths of 2 to 6 km, the water is heated by contact with hot rock (in turn probably in contact with molten rock). The water expands upon heating and then moves buoyantly upward in a column of relatively restricted cross-sectional area (1 to 50 km²). The driving force of these large circulation systems is gravity, effective because of the density difference between cold, downward-moving recharge water and hot, upward-moving geothermal water.

Geothermal steam is a resource that requires both large-scale (regional) and small-scale (local) features to concentrate the natural heat within a reservoir near the earth's surface. Furthermore, this resource demonstrates the importance of both regional and areal geologic, hydrologic, geochemical, and geophysical investigations and the necessity for an interdisciplinary approach for success in detection and utilization. A strong emphasis must be placed on: (1) physical phenomena; (2) properties of rocks; (3) methods and techniques for locating and developing the

resource; and (4) influence of physical conditions within the earth's crust on migration and emplacement of magma as well as convective flow patterns of geothermal heat from source to reservoir.

1.2 Purpose and Scope

This investigation has been directed toward a feasibility study for the development of hot-water geothermal systems for potential Department of Defense utilization as an energy source. The research effort has included the gathering of both scientific and engineering data.

We will review and discuss the world-wide occurrence of both known and probable sites of hot-water (water-dominated) geothermal systems particularly in relation to United States Department of Defense installations.

In the study, we will review and discuss the geological settings and the types of detection techniques that are necessary to delineate geothermal systems.

In the original research plan, we proposed to use the Coso Thermal Area, located within the instrumented test ranges of the Naval Weapons Center, China Lake, California, as a type area for the study of water-dominated geothermal systems; however, during the course of the research, we determined to investigate two other military installations because of the abundance of published data available for the Coso Thermal Area.

In summary, this study will be concerned with hot-water geothermal systems to the exclusion of other types of reservoirs. Vapor-dominated, geopressured hot-water systems, and dry hot rock and/or magma will not be included in this report.

1.3 Definitions and Conversion Factors

Length: 1 m = 3.281 ft; 1 km = 3,281 ft = 0.6214 mi;

1 mi = 1.6094 km.

Area: $1 \text{ km}^2 = 10^{10} \text{ cm}^2 = 0.3861 \text{ mi}^2$; $1 \text{ mi}^2 = 2.5900 \text{ km}^2$.

Volume: $1 \text{ km}^3 = 10^{15} \text{ cm}^3 = 0.2399 \text{ mi}^3$; $1 \text{ mi}^3 = 4.168 \text{ km}^3$.

Mass: 1 kg = 2.205 pounds; 1 pound = 0.4536 kg.

Temperature: $({}^{\circ}C \times 9/5) + 32 = {}^{\circ}F.$

Thermal gradient: $1^{\circ}C/km = 2.897^{\circ}F/mi$; $1^{\circ}C/m = 0.549^{\circ}F/ft$;

 1° F/mi = 0.345°C/km; 1° F/100 ft = 1° C/54.5m =

18.2°C/km.

Pressure: $1 \text{ kg/cm}^2 = 0.9678 \text{ atm} = 0.9807 \text{ bars} = 14.22 \text{ psi.}$

Heat: $1 \text{ cal} = 3.9685 \times 10^{-3} \text{ BTU}$; 1 cal/gm = 1.80 BTU/1b.

2. OCCURRENCES

2.1 Physical Factors Controlling Occurence

Geothermal resources are restricted to certain places and particular areas of the earth's crust. The following regional geological conditions are indicative of most geothermal systems with potential energy production:

1) Late Tertiary and Quaternary volcanism; 2) recent tectonisms (active faulting and earthquakes); and 3) areas of high temperature and consequently, greater than normal heat flow. In other words, geothermal reservoirs of the hot-water type are not uniformly distributed in the earth's crust. They are located in the upflowing parts of major meteoric water convection systems. Cool rain water percolates underground from areas that may comprise tens to thousands of square kilometers. This water circulates downward 2 to at least 6 km, where it is heated by contact with hot rock (probably an intrusive igneous mass). The water expands upon

heating and moves buoyantly upward in a column of restricted cross-sectional area (1 to 50 km²). If the rocks have many interconnected pores or fractures, the heated water rises rapidly to the surface and the heat is dissipated. If, on the other hand, the upward movement of heated water is impeded by rocks without interconnected pores or fractures, the geothermal energy may be stored in permeable reservoir rocks below impeding layers.

Geothermal reservoirs of this type are thus "hot spots" within larger regions where the flow of heat from depth within the earth averages 1½ to perhaps 5 times the worldwide average heat flow of 1.5 HFU (1 HFU = 1 x 10⁻⁶ calories per square centimeter per second). Such regions of high average heat flow commonly are zones of young volcanism and mountain building, and are generally localized near the margins of major crustal plates. These margins are zones where either new material from the mantle is being added to the crust (spreading ridges) or where crustal material is being dragged downward and consumed in subduction zones (Muffler and White, 1972). In both situations, molten rock is generated and moves upward into the crust. These pods of igneous rock provide the heat that is then transferred by conduction to the convecting systems of meteoric water.

Some large sedimentary basins not at crustal plate margins do contain large amounts of hot water, generally at depths greater than three kilometers and at times with reservoir pressures greater than hydrostatic. Such geothermal resources are known to exist along the Gulf Coast of the United States, in Hungary, and in the U.S.S.R. The relatively high temperature gradients in these areas are due to a combination of somewhat elevated heat flow and relatively low thermal conductivity.

The continental nuclei, the Precambrian shields, are particularly unfavorable for potential geothermal systems. The shields have uniformly

low heat flow, are tectonically stable, display no recent volcanism, and are composed of old metamorphic and igneous rocks of low permeability.

For a discussion of geothermal resources at temperature greater than 100°C to be relevant, we have to place a reasonable (albeit somewhat arbitrary) limit on the depth to which one might drill. Although oil and gas wells have reached 9 km, costs per foot and technological difficulties rise strikingly at depths greater than 3 km. Perhaps not coincidentally, the deepest geothermal well drilled to date reaches only 3 km. Accordingly, we have chosen 3 km as a depth limit for present consideration. It is obvious that development of a new, cheap method of deep drilling would greatly expand the area under which we might top 100°C water. Even under the world-wide average thermal gradient of greater than 30°C per km, 100°C water is reached at only 3.5 km, and 200°C water at only 6.5 km.

that may be far above surface boiling, owing to the effect of pressure on the boiling-point of water. When brought to the surface by a well, this water in part flashes to steam (for example, 250°C water flashed to 6 bar will give 20% by weight of steam and 80% by weight of water). Vapordominated ("dry-steam") geothermal reservoirs, on the other hand, contain both water and steam, with steam as the continuous, pressure-controlling phase. Wells in the vapor-dominated geothermal systems produce dry or super-heated steam. Vapor-dominated geothermal systems are perhaps 1/10 to 1/20 as common as hot-water systems. If found, vapor-dominated systems can readily be exploited using existing technology. For the purposes of the following study, we shall neglect vapor-dominated geothermal systems and concentrate on possible military applications of the much more common hot-water geothermal systems.

Naturally occurring hot-water (water-dominated) systems are systems in which water may be at temperatures far above surface boiling because of the effect of pressure on the boiling point of water. For example, the Cerro Prieto Geothermal Field located in Baja California, Mexico, has temperatures of 370°C at depths of 1500 meters. In a normal hot-water geothermal field, the fluid that first enters a producing well is liquid water. This water remains entirely as liquid water as it flows up the well until the pressure has decreased enough for steam bubbles to start to form. With continuing flow upward and continuing decrease in pressure, more water boils to steam and the temperature of the mixture decreases. The expanding steam displaces the remaining water upward as the velocity of the mixture increases. In hot-water geothermal systems, therefore, only part of the produced fluid is steam and can be used to generate electricity with present technology. For example, geothermal water at 250°C will produce only about 20 weight precent of steam when the confining pressure is lowered to 6 kilograms per square centimeter, the approximate well-head pressure commonly used in geothermal installations. The steam and water at this pressure are mechanically separated before the steam is fed to the turbine. Water in most hot-water geothermal systems is a dilute solution (1,000 to 30,000 milligrams per liter), containing mostly sodium, potassium, lithium, chloride, bicarbonate, borate, sulfate, and silica.

The average potential of a geothermal well is 5 MW. Most of the known fields have reserves of from 250 to 4000 MW.

The average life time of a geothermal field is a problematic question.

Known fields have produced for as long as fifty years. Since we are

dealing with a geological process, the heat in most of the geothermal

systems will probably last for from 50 to 100 million years. The main problem with hot-water geothermal systems may be a lack of long term recharge water to function as a heat transfer mechanism. However, with future technological advances in reinjection techniques, this problem may also be essentially eliminated.

2.2 World-Wid-

As discussed above, geothermal reservoir; having temperatures of at least one hundred degrees Celcius are restricted to near the margins of crustal plates, i.e., in the zones of the most in an geological activity. Essentially all of the cland-are and mid-ocean ridge island systems have potential sources of geothermal energy. In particular, the Pac fic "sing or fire" has vast amounts of grothermal systems.

An overlay of the distribution of earth wake epic nters is essentially a crude indication of the location of geother 1 resources world-wide.

Another indicator is the distribution of thermal springs around the world.

The most comprehensive tabulation of thermal springs was published by the United States Geological (Waing, 1985).

Lab torie prejeted in excellent aport on the digin, characteristics and particularly the occur ence of gethermal systems. His work will not be duplicated in the report. Other cothermal review papers have been written by McNitt 1965), Grose (197, 1972) and Jaffé (1971).

2.3 United States

Most of the Vestern United States, Alaska, and Hawaii have potential sources of geot and energy. For 1 rth America, gastion eservoirs having temperature of at least 100°C would be expected by west of the

Great Plains, although warm springs in Virginia, Arkansas, and Georgia may indicate geothermal reservoirs perhaps reaching 100° C.

Within this large region west of the Great Plains, hot-water reservoirs appear to be abundant and widely distributed. This is indicated by a) the regional geologic setting, b) the distribution of young (late Cenozoic) volcanic rocks, c) the distribution of hot springs and fumaroles, and d) regional heat flow studies.

Koenig (1970) has shown that over 90 percent of the geothermal pnenomena in the United States are in 13 western states. These phenomena consist of more than 1000 warm and hot springs and fumarole localities. At least fifteen producible fields have been discovered.

2.4 Relation to United States DOD Installations

More detailed regional studies should be conducted in order to more carefully outline the potential sources of power from hot-water geothermal reservoirs all over the world. In the present study we considered four sources of input data in order to develop a first order estimate of the potential hot-water geothermal systems in the United States. That first order estimate of the potential occurrence of geothermal reservoirs is illustrated in Plate I which is an overlay to the map of the Major Army, Navy, and Air Force Installations in the United States, map number 8205. It should be noted on Plate I that all of the Hawaiian Islands is considered to have geothermal potential and therefore appears without specific marks.

The spatial relationship between several potential geothermal systems and DOD installations in the United States are present in Appendix I.

^{*}Copies of Plate I can be obtained at the reader's expense from the author or Geophysics Division. Air Force Office of Scientific Research (AFOSR) 1400 Wilson Blvd., Arlington, VA 22209.

The four sources of input data to the delineation of the potential geothermal areas were: 1) the comprehensive tabulation of thermal springs and fumaroles published by the United States Geological Survey (Waring, 1965); 2) the regional geologic setting with particular emphasis on the distribution of Tertiary to Recent volcanic rocks; 3) published regional heat flow studies (Roy, et al., 1968; Sass, et al., 1971); and 4) the compilation by the United States Department of Interior of their Known Geothermal Resource Areas (Announcements of these classifications have been published in the Federal Register: 36 F.R. 5626, 5627, as corrected, 36 F.R. 6118; 36 F.R. 6441, 6442; and 36 F.R. 7319, 7320, as corrected 36 F.R. 7759.).

In summary, the two maps, Plate I and map number 8205, show the spatial relationship between potential geothermal systems and DOD installations in the United States. Until much more basic data has been developed the map Plate I must serve as the initial guide for the detection of geothermal reservoirs. As noted above there is overlap or near overlap of many potential geothermal areas with DOD installations. Three of those areas of essential overlap are chosen as site studies in the present research and several others are indicated in Appendix I.

3. DETECTION AND RESOURCE EVALUATION

Detection of georhermal stems consists of bot's regional recommaissance and local detailed evaluation. Regional recommaissance involves assessment of 1) the regional geologic setting, 2) the distribution of young (late Cenozeic to Recent) volcanic rocks, 3; the distribution of hot springs and funaroles, and 4) regional heat flow studies along with 5) the distribution of salt clapins (which may act as heat rods"), 6) evaluation

of remote sensing data, and 7) consideration of available geothermal gradient and temperature data.

The local detailed evaluation consists of the use of both "structural" or "indirect" methods and direct methods (Hatherton, et al. 1966;
Bodvarsson, 1970; Combs and Muffler, 1973). Active seismic methods, gravity surveys, and magnetic surveys all fall under the category of "structural" methods as applied to the detection of geothermal systems. These "structural" methods do not study the properties of the hot water sought, but instead investigate the attitude and nature of the host rocks. Which of itself can be important information in the total resource evaluation.

Once a geothermal anomaly is identified, a number of surface and near-surface investigations can evaluate its relative magnitude and intensity. Geophysical techniques that have proven or suggested utility, that is, direct techniques, include electrical (D.C. resistivity and telluric), electromagnetic (loop-loop, wire-loop, transient EM, audio-magnetotellurics), microseismic (seismic ground noise), microearthquake, and thermal (gradient and heat flow). These techniques are termed direct because they can detect properties of the bot water being sought. Geochemical methods include major element chemistry (especially SiO, and Na-K-Ca, which can be used to predict subsurface temperatures) and isotopic analyses (0¹⁸, D, C¹³; used to evaluate hydrologic fram work). Hydrologic and geologic analysis provided information on the nature of reservoir rock expected. Research needs in site evaluation are primarily on the geophysical tools. In particular, the telluric, electromagnetic and microseismic methods are in the early developmental stages as applied to geothermal reservoir evaluation.

These surface and near-surface techniques serve primarily to site exploratory drill holes to depths of up to 3 km. Such drill holes are the only way to determine the reservoir characteristics and thus evaluate the potential for power, heat, or fresh water. Data acquired from the drill holes must include the following: 1) temperature distribution, 2) pressure distribution (by packing off and performing drill-stem tests), 3) permeability, 4) porosity, 5) lithology and stratigraphy, and 6) fluid composition. A full set of geophysical logs combined with production tests will provide these data and allow evaluation of the site.

Two needs exist for data that can only be obtained from a bore hole. The first is to determine the ability of a geothermal system to produce sufficient energy over an extended period of time to be an attractive area for development. The second need is to obtain data needed to define a model of the hot water system and to perfect methods to effectively detect and delimit such a system.

The reservoir extent and capacity can be predicted from core data giving permeability and porosity. Methods of cutting and recovering reservoir state cores in highly altered friable and fractured rocks must be developed to obtain optimum data. The productive effectiveness can be analyzed by a series of pressure data and volume of fluids recovered by drill stem tests using packers to isolate discreet zones. This technique must be researched to determine effective packer materials and pressure recording devices in high temperature environments. Drilling fluids must be developed that will not create blocking of the reservoir while drilling, in order that diagnostic measurements can be obtained.

Temperature curves of the total sections above and containing the geothermal cell must be obtained within the bore hole so the geometry of the temperature distribution can be used establishing the type and extent of the energy cell. This data is vital in equating the effectiveness of near surface temperature surveys in locating the geothermal target area. Techniques of normalizing bore hole data to a pre-bore hole regime must be developed. High temperature effects on present recording devices must be understood to achieve reproducibility of these data and to allow reliable interpretation.

The recovery of drill samples of sufficient quality to study low grade alteration of the rocks above and around the heat cell is a necessity. Research on drilling media is required in order to optimize bit cooling, upward movement of cuttings in a useful size, and maintenance of safety from blowouts while not damaging the reservoir.

The measuring of the density, velocity, and magnetism of the rocks encountered is needed to more adequately model the geophysics of the geothermal anomaly so effective methods of site selection can be made.

4. USES OF GEOTHERMAL RESOURCES

4.1 Present Uses

The primary use of geothermal energy to date is for the generation of electricity. Geothermal steam, after separation of any associated water (as much as 90 weight percent of the total effluent), is expanded into a turbine that drives a conventional generator. World electrical capacity from geothermal energy in 1973 was approximately 1000 megawatts, or about

0.10 percent of the total world electrical capacity from all generating modes. Power from favorable geothermal systems is competitive in cost with either fossil fuel or nuclear power. The production of geothermal power is obviously restricted to areas where geothermal energy is found in sufficient quantity. Unlike coal, oil, gas or uranium, geothermal steam cannot be transported long distances to a generating plant located near the existing load centers.

Geothermal resources have other uses, but to date they have been minor. Geothermal waters as low as 40°C are used locally for space heating and horticulture. Much of Reykjavík, the capital of Iceland, is heated by geothermal water, as are parts of Rotorua (New Zealand), Boise (Idaho), Klamath Falls (Oregon), and various towns in Hungary and the U.S.S.R. Geothermal steam is also used in paper manufacturing at Kawerau, New Zealand, and has potential use for refrigeration. Some geothermal waters contain potentially valuable by-products such as potassium, lithium, calcium, other metals. Use of geothermal energy to desalt geothermal water itself has been proposed, and the U.S. Bureau of Reclamation and the Office of Saline Water are presently developing a pilot operation for producing fresh water from the geothermal waters of the Imperial Valley of Southern California.

4.2 Favorable Features As An Energy Source

Favorable features of geothermal energy (those especially suited to DOD energy needs are marked *) over conventional sources of energy are:

- (1) the relatively low cost;
- (2) the significant environmental benefit produced by avoiding essentially all of the atmospheric and most of the thermal

pollution associated with other energy sources because no solid atmospheric pollutants are emitted and no radiation hazard is involved;

- (3) the wide-spread occurrence or availability of geothermal resources;*
- (4) the modular character of facilities which provides for ease in their relocation, expansion and reduction in size at any one installation;
- (5) small-scale power generation;
- (6) reliable power sources independent of supply lines;
- (7) the multiple-use or multipurpose nature of geothermal resources, that is, geothermal resources can be used for electrical power generation, as well as water desalting, mineral production, space-heating and air conditioning of buildings and facilities, defrosting of runways, etc.;
- (8) since they can be self-contained power sources in "hardened" (either underground or under water) facilities capable of providing space-heating, cooling, and fresh water as well as electric power.*

4.3 Uses of Hot-Water Geothermal Resources at Military Installations

The following uses of geothermal hot-water at military installations can be envisaged.

- (1) heating and air conditioning of buildings and facilities
- (2) small or large scale power generation

- (3) defrosting of roads and runways
- (4) recreational purposes, swimming pools, baths, saunas, etc.
- (5) multipurpose nature of the energy source
- (6) important power sources for small or remote installations and possible back-up or emergency power systems for larger bases.

A combination of all or any of these plus other uses can be envisaged depending on the local conditions.

5. STATE OF DEVELOPMENT OF HOT-WATER SYSTEMS

5.1 General

Hot-water systems occur worldwide. The development and utilization of this type of geothermal reservoir can be for the production of electrical power, as a source of fresh water, and as a means of providing spaceheating and cooling.

A hot-water geothermal system is already in production at Cerro Prieto in Baja California, Mexico. Similar reservoirs are being produced in New Zealand, Japan, and Russia; therefore, essentially all of the withdrawal techniques and power generating equipment are available for hot-water systems with temperatures above 180° C. Power generating equipment for hot-water systems with a base temperature less than 180° C have not been satisfactorily developed and demonstrated in the United States. A further discussion of the generation of power follows.

5.2 Electrical Power Generation

Generation of power from geothermal sources can be divided into three categories:

- I. Generation at greater than 200°C by using steam directly to drive a turbine. Geothermal resources (both hot-water and dry steam) at these temperatures have been developed by industry at a number of localities throughout the world. If a deposit at these temperatures is detected and delineated, development can be handled by industry using available technology. DOD funded research in utilization of these high-temperature reservoirs does not seem to be necessary.
- II. Generation at less than 200°C using steam directly to drive a turbine. Industry has not seriously investigated and evaluated use of these moderate-temperature fluids for geothermal generation, although theory and a small pilot plant in Kantoga suggest that such generation may be feasible. In particular, geothermal fluids at these temperatures may have considerable use in small (1-10Mw) units at isolated sites. Research is needed as the feasibility of direct generation from moderate-temperature fluids, with comparison to item III below.
- III. Generation at less than 200°C using a heat exchange and a low-boiling-point working fluid. Theory and a pilot plant at Paratunka (Kamchatka, USSR) suggest that this mode of generation may be feasible and indeed superior to item II. Inefficiencies in heat exchange may be offset by gains from small turbine size. Like item II, such stations appear well suited to meet small power needs, and may be readily adapted to hardened sites.

The main research need in geothermal utilization is for evaluation of the feasibility of electrical generation (either direct or heat exchange) from fluids of 100 to 200°C. This evaluation should take the form of alternate pilot studies of small direct and heat-exchange units.

5.3 Multipurpose Utilization

Geothermal fluids have the potential of producing fresh water by self-desalination (i.e., using the contained heat to desalt the fluid, which normally contains 5,000-25,000 ppm dissolved solids. Extensive experimentation and feasibility studies are being undertaken by the Bureau of Reclamation and the Office of Saline Water. The results of these experiments should have considerable impact to the possible production of fresh water at military installations, particularly in arid regions.

Space heating is an obvious use of geothermal resources, either independently or in conjunction with production of power or fresh water.

Use of geothermal resources for heating as obvious potential applications, both on a small and a large scale. Note that approximately 90,000 people at Reykjavik, Iceland utilize geothermal resources for space heating requirements.

Moderate temperature geothermal resources appear to have considerable potential for air-conditioning and refrigeration cooling. Geothermal heat is used in a lithium-bromide system to air-condition a large hotel in Rotorua, New Zealand. Such usage may have considerable small-scale use in a variety of military installations.

5.4 Detection

The detection and delineation of hot-water geothermal systems is relatively primitive and draws heavily on methods developed in connection

with the petroleum and mining industries. Case histories using a suite of detection capabilities to pinpoint drilling locations are almost non-existent. More must be obtained and documented.

Telluric, electromagnetic and microseismic methods are in the early developmental stages as applied to geothermal reservoir detection. Much research is needed using <u>all</u> of the possible detection techniques to delineate hot-water geothermal reservoirs.

6. PROBLEMS ASSOCIATED WITH GEOTHERMAL RESOURCES

6.1 General

Problems associated with the use of geothermal energy sources are:

- (1) detecting and delimiting geothermal reservoirs;
- (2) development of high temperature drilling and logging technology;
- (3) control of well blow-outs;
- (4) scaling, corrosion, and erosion of the withdrawal and power generating equipment;
- (5) disposal of waste;
- (6) reduction of noise levels associated with development;
- (7) possible seismic effects associated with water withdrawal and reinjection;
- (8) possible land subsidence, that is, if large quantities of fluids are removed from the underground reservoir, the land surface may sink;
- (9) control of noxious gases, e.g., hydrogen sulfide, which may be a by-product of geothermal wells;

- (10) the reinjection of unwanted effluent waters;
- (11) the rejection of surplus heat;
- (12) the demonstration of the feasibility of developing large quantities of desalted water;
- (13) the development and demonstration of closed cycle or heat exchange generating systems; and
- (14) the development of the necessary technology to accomplish each of the tasks.

6.2 Environmental Considerations

Considerable attention has been drawn to geothermal resources as an electrical generating mode that can have a relatively small effect on the environment. Geothermal energy does not produce atmospheric particulate pollutents as do fossil fuel plants, and has no potential for radiative pollution. Geothermal does share with fossil fuel and nuclear modes the potential for thermal pollution; indeed, the amount of waste heat per unit of electricity generated is higher for geothermal than for either nuclear or fossil fuel modes, owing to the low turbine efficiencies at the low geothermal steam pressures. Geothermal effluents, as well as being warm, commonly are mineralized, and present a chemical pollution hazard to surface or ground waters. Accordingly, most if not all proposed geothermal developments in the U.S.A. plan to dispose of unwanted effluent by reinjection into the geothermal reservoir.

Potential problems that are inherent in geothermal development are in large part controllable at reasonable costs. These include noise (drilling, testing, and production), gaseous emissions (particularly H₂S), and industrial scars. Intensive geothermal exploitation may cause subsidence,

either due to fluid withdrawal or to thermal contraction of rock as heat is withdrawn. Reinjection of water in fault zones should be avoided as this may increase the incidence of earthquakes, by a mechanism similar to that demonstrated for the Rocky Mountain Arsenal well.

7. THREE STUDY AREAS

7.1 Project Definition

In the original research plan, we proposed to use the Coso Thermal Area, located within the instrumented test ranges of the Naval Weapons Center, China Lake, California, as a type area for the study of hot-water geothermal systems; however as the research progressed, we determined to investigate two other military installations because of the abundance of published data for the Coso Thermal Area. The two other areas that were chosen out of the study could be the best, but again they may not have been. They were chosen for both their potential geothermal indicators and because of geographic expediency.

The first alternative area chosen to be studied was the Point Mugu and Port Hueneme, California areas. This area was chosen because of the occasional high temperature oil wells that are drilled in both the Los Angeles Basin and the Santa Barbara Channel. A logical connection of these two areas along the grain of the major geological features of the region suggested the Point Mugu area as a potential hot water geothermal area. As can be seen from the data presented and discussed later this does not appear to be the case.

The Marine Corps Base at Twentynine Palms, California, was the second alternative area that was chosen. The primary geologic features on which this decision was made are the two very young and almost totally

unweathered volvance crators, Pisgah Cr r and Amboy Crater, the heir associated extensive lava "ows. Very he green than "C, water wells that have been drilled in the Twentynine area a provided additional supportive information.

In the study, we review and describe the region settings in existing in a the time, the useful in the effection and delineation of potential bot-water seothermal systems on these three military installations.

7.2 Point sigu Site

7.2.1 Introduction

The areas under intestigation, the Naval Air Missale Test Center Point Mugu and the Naval Reservation near Port Hueneme, lie within the area known as the Oxnard Plain on the coast of California. The Cana i Plain is bordered on the west by the Pacific Ocean and extends northward from Point Mugu to the city of Ventura. On the northeast and east the plain is bordered by the Camarillo Hills and Santa Monica Mountains respectively.

The area is, therefore, a part of the Pacific coastline of southern California. It is a moderately inhabited region with a mean annual rainfall of about 32 centimeters and a mean annual temperature of 16° C (61° F). The climatic conditions range from as low as 0° C (32° F) to approximately 39° C (103° F).

R.W. Page, (1963), in cooperation with the Department of the Navy, briefly described the geology of the Naval Air Missile Test Center Area Point Mugu, California, as part of a ground water appraisal. The geology described herein is based largely on Page's report.

7.2.2 Geology

The test center is underlain by approximately 500 meters of unconsolidated deposits consisting of marine clay, shale, silt, sand, sandstone, and gravel. These in turn are underlain by consolidated sedimentary rocks of early Miocene age and sedimentary and volcanic rocks of middle Miocene age (Durrell, 1954).

Surficial expressions of structural features are few in the Oxnard Plain area since most are masked by the unconsolidated and alluvial sediments. Page (1963) pointed out the Bailey Fault which traverses the southeast corner of the test center beneath several hundreds of meters of unconsolidated sediments.

The stratigraphy of the Point Mugu area can be separated into two broad categories, the older consolidated rocks consisting of the Vaquero, the Topanga and Pico formations. These formations are approximately 600 meters thick and consist of sedimentary and volcanic rocks. The second group are younger unconsolidated water bearing units comprised of the Santa Barbara and San Pedro formations and Recent alluvial deposits.

The consolidated rocks crop out east of the test center in the Santa Monica Mountains where Page (1963) describes the sedimentary units of the consolidated rocks collectively as sandstone, conglomerate and shale. The total thickness of the consolidated rocks as described by Kew (1924) is about 2400 meters but Page points out that they may be only about 600 meters thick beneath the test center.

The Vaqueros formation of early Miocene age is described by Ke (1924) for exposures in the Simi Hills and in Santa Clara Valley. I.

these areas the Vaqueros appears to be conformable with both the

Sespe Formation below and the Modello Formation above. The Modello

does not overlie the Vaqueros in the area of the test site. The

rocks of the formation in the Simi Valley area consist of conglomerate,
sandstone, and shale and are about 550 meters thick. The strata are

mainly a brown coarse quartzitic sandstone with very little shale.

Durrell (1954) describes the stratigraphic position of the Vaqueros
in the vest end of the Santa Monica Mountains as overlying the "red

epiclastic sediments of continental origin" of the Sespe and under
lying the Topanga formation.

The Toparga Formation of middle Miocene crops out in the Santa Monica Mountains east or the test center. The formation consists of tan, brown and gray sandstones in places coarse grained and conglomeratic and volcanic rock of intrusive and extrusive basalts, and sites, rhyolites and associated agglomerate and mud flows. Kew (1924) describes the Topanga in the region south of the Simi Hills where the unit is about 4800 meters thick. Page (1963) has separated the volcanic rocks from the sedimentary tocks and reports a 600 meter thickness for the volcanic rocks that crop out in the Santa Monica Mountains. The Topanga, in the area under investigation, is overlain by the Pico formation.

The Marine Pico formation of late Pliocene age does not crop out in the area but has been detected through well logs (lN/21-3L1) and is about 21 meters thick beneath the test center (Page, 1963). The formation consists of marine clay, shale, and carbonaceous sandstone. Winterer and Durham (1958) describe the Pico formation in the area of

the Santa Susana Mountains where it is about 1500 meters thick consisting of light olive gray and medium blush gray siltstone and fine grained silty sandstone containing small reclien-brown concretions interbedded with generally light colored mudstone conglomerate. In the Santa Susana Mountains the Pico interfingers with the overlying Saugus formation but in the area of the test site is overlain by the Santa Barbara formation.

The unconsolidated rocks are the water pearing units for the test center ground-water supply. See Well Logs in Table A III. of Appendix A for lithologic descriptions.

The Santa Barbara formation of Pleistocene age does not crop out in the test center area but is detected in well lN/2lW-3lL1. It consists of about 240 meters of marine clay, shale, silt, sand, sand-stone and gravel, (Page, 1963). The Santa Barbara is overlain by the San Pedro formation.

The San Pedro formation of early Pleistocene age shows up in well logs (lN/21W-31L1) and crops out in the Camarillo Hills. The formation is about 82 meters thick and consists of yellowish-brown to gray silt, sand, and gravel and contains marine fossils. The San Pedro formation is known to be penetrated by numerous wells and yields water freely to many of them (Page, 1963).

7.2.3 Existing Data

The water bearing deposits in the vicinity of the test center vary in thickness from about 242 meters (1N/21W-32A1) to about 450 meters (1N/21W-31L1) along the coast (Page, 1963). The well locations, water temperatures and geologic well logs are presented in

Appendix II-A in tables AI, AII, and AIII, respectively. A log of well 1N/21W-27F1, 2.5 kilometers north of the test site shows bedrock at a depth of 248 meters.

Data from the California Department of Water Resources shows that no well logs indicate abnormal water flow. According to Page (1963), except for local sea-water encroachment there is no evidence of movement of ground water to the Oxnard Plain from sources other than precipitation that feeds local drainage streams.

Sea water ercroachment in the vicinity of Port Hueneme has resulted in the destruction of wells 1N/22W-29A1, 29A2 and 29C1 that yielded salty water (Page, 1963). Well 1N/22W-29A2 had a chloride content of only 41 ppm in 1947 so it is inferred that encroachment has occurred since that time. A high chloride content for well 1N/22W-28B1, 850 ppm, was measured in May, 1958. Samples on well 1S/21W-4El since 1949 indicate an increase in chloride from about 300 ppm to more than 5,000 ppm in 1953 and about 12,000 ppm in 1958. (It is believed by Page that contamination could have caused the high chloride content detected in 1948 because of faulty equipment.)

The chemical quality of the ground water in the test center area differs with depth and locally sea water has intruded the ground water body. (See Table AIV of Appendix II-A). A study of E-logs by Page revealed that the water bearing deposits could be divided into three distinct zones: (1) a shallow zone extending from the water surface to a depth of approximately 45 meters in which the water is salty, (2) an intermediate zone 45-300 meters below land surface in

which the water is brackish; (3) a deep zone 300-450 meters below land surface in which the water is salty.

Water temperature analysis does not appear to have been the concern of previous studies on the hydrology of the area as data is sparse. The temperatures available on various wells however, indicate a variability between 30° C, and 24° C. The majority of available temperatures were about 19° C (see Table AII of Appendix II-A).

7.2.4 Research Needs

The geology and the existing data for the Point Mugu are not particularly encouraging as far as the potential for a hot-water geothermal reservoir in the area. However, this lack of thermal manifestations may be caused by the encroachment of cold sea water in the subsurface. Nevertheless, we would not recommend additional research in this area in the immediate future.

7.3 TWENTY-NINE PALMS SITE

7.3.1 Introduction

The Twentynine Palms Marine Corps Training Center occupies a portion of the southeastern Mojave Desert region, California. The nearly 2500 square kilometers encompassed by the reserve lies almost entirely between 115°45' and 116°30' west longitude and 34°15' and 34°45' north latitude. The area includes within its boundaries the Bullion Mountains, parts of the Sheep Hole and Lava Bed Mountains, and portions of the Dale, Twenty-Nine Palms, Bessemer, Lavic, Bristol, Ames and Surprise Valleys.

The southeastern Mojave Desert is an arid, very sparsely inhabited region with a mean annual rainfall of 8.9 centimeters and a mean annual temperature of 20°C (68°F). The climatic conditions, however, are extreme, ranging from over 46°C (115°F) in the summer months to as low as -7°C (19°F) in the winter months. The major portion of the annual precipitation occurs during the period of November through April; the infrequent occurrence of thunderstorms during the rest of the year accounts for the remainder of the precipitation and the total surface runoff.

The mountains and valleys of the region are the topographic expression of the Basin and Range type of fault system established sometime during the Tertiary. The fault system consists of a series of right lateral normal and high angle reverse faults, uniformly trending in a northwesterly direction. Deep canyons have been carved into the upthrown fault blocks through the action of periodic runoff. Most of this infrequent storm runoff is absorbed into the semicircular alluvial fans established at the mouths of the canyons, and very little of it reaches the playas which have formed in the valley floors (Troxell and Hoffman, 1954).

The area is characterized by internal drainage and a lack of perennial streams. Some springs, however, do flow all year round; they, along with a number of wells which have been drilled on the base, supply enough water to meet the demands of the Training Center.

The first in depth research of the Mojave Desert Region was undertaken by D. G. Thompson from 1917-1921, and resulted in a geologic, geographic and hydrologic study, published in 1929. This remained the only geologic work regarding the major portion of this area until 1954, when the California Division of Water Resources published a ground water study of the Colorado River Basin which included a geologic reconnaissance map. There are basically two publications on the geology of the area, (1) a geologic report and reconnaissance map by Kupfer and Basset (1964); and (2) T.W. Dibblee's geologic maps, which cover most of the area in detail, and from which most of the geology for the present study was adapted. The geologic contributions of Miller (1938) and Gardner (1940) touch only on the fringes of the marine reserve and probably on areas of doubtful value for geothermal prospecting.

Hydrologic studies of the Twentynine Palms Marine Reserve were undertaken for several successive years in the late 1950's and early 1960's, under the auspices of the Department of Defense. Dyer (1960), Weir and Dyer (1961), and Riley and Bader (1961) published U.S.G.S. open-file reports containing yearly data on chemical analyses, core logs, and general ground water levels and conditions. These works will be valuable aids in the determination of possible areas for exploration for geothermal resources. The remaining source of data on water wells existing on the reserve were the well records of the California Department of Water Resources, Los Angeles Division.

7.3.2 Geology

A striking pattern of fault-bounded northwest trending mountain ranges and valleys suggests extensive Cenozoic tectonic activity within the southwest Mojave Desert region. The Basin and Range type, high angle normal and reverse faulting has caused secondary, relatively minor folding. Pre-Cretaceous structural features of the region were obliterated by the Late Mesozoic igneous intrusions and by the extensive early Cenozoic erosion and later Cenozoic faulting and tilting Kupfer and Bassett (1964).

Rupfer and Bassett (1964) divide the rocks of the southeastern Mojave Desert into three groups according to their inferred age: namely the "pre-Tertiary," the "older Cenozoic," and the "younger Cenozoic" rocks. The first and oldest group, the pre-Tertiary rocks, is composed entirely of volcanics and sedimentary rocks; the third group consists of volcanics and sedimentary rocks, as well as recent unconsolidated gravels, alluvium, and playa deposits.

The pre-Tertiary rocks within the bounds of the Marine reserve range in age from Precambrian through Cretaceous. Consisting of crystalline rocks of plutonic and metamorphic origin, the pre-Tertiary rocks provide the bulk of the main mountainous area, and may be considered the basement complex upon which rest Tertiary and Quaternary material. These crystalline rocks are believed to underlie the desert basins at depths, as well, but covered with younger sediments derived from erosion of the surrounding mountains.

By integrating information obtained from both Dibblee (1966; 1967a,b,c) and Kupfer and Bassett (1964), three types of metamorphic rocks can be recognized in the area: quartzite, limestone or dolomite marble, and rocks of questionable plutonic or metamorphic affinities. The rocks are exposed

mainly in the southern Bullion Mountains and points east, but this probably does not reflect their true distribution; the more northerly ranges and desert basins are predominantly covered by Tertiary volcanics and unconsolidated sediment.

Metamorphic rocks are relatively rare within the reserve. The "gneissic metamorphic rocks" described by Kupfer and Bassett (1964) incorporate not only true gneisses, but migmatitic intermixtures of metamorphic and granitic rock as well. These rocks occur primarily in the southeastern part of the area, and have not been studied in detail.

The ages of these rocks are questionable. Dibblee (1967c) states that the metasedimentary rocks are "lithologically similar to metasedimentary rocks of Paleozoic age" in areas west of the reserve boundaries, and thereby postulates a questionable Paleozoic age for the units. Kupfer and Bassett (1964) suggest that the metamorphic rocks of the desert region are of Precambrian, Paleozoic, and Mesozoic age, but none of the metamorphic rocks within the area of this reconnaissance have been accurately dated.

Although no definitive studies have been made of the plutonic rocks of the area, geologic reports on the fringing terraine, together with Dibblee's maps of a large portion of the area in question, suggest that the main mass of plutonic rock consists of light to medium gray, hard, resistant, massive, medium to coarse grained, generally porphyritic biotite quartz monzonite (Dibblee, 1967a,b,c). Locally, a younger, dark gray to black, massive, hard, medium to coarse grained hornblende-diorite or gabbro occurs as masses within the biotite quartz monzonite, and between it and an even younger quartz monzonite. The quartz monzonite forms a small stock intrusive into the biotite quartz monzonite and hornblende diorite.

The age of the biotite quartz monzonite and hornblende diorite is probably Mesozoic; the quartz monzonite is definitely Mesozoic, presumably Cretaceous.

Of some note is an iron-stained biotite quartz monzonite, lithologically identical to the biotite quartz monzonite, but stained dark brown from iron oxides, presumably through the action of hydrothermal agents. The stained monzonite occurs over a significant section of the southeastern portion of the area, where it is commonly found in contact with the "gneissic rocks" of Kupfer and Bassett (1964).

Dike rocks within the area are quite common, forming swarms of parallel dikes or scattered intrusions. Varying in thickness from less than 10 meters to as great as 30 meters (Dibblee, 1967a,b,c), these finely crystalline rocks most consistently intrude the biotite quartz monzonite, and less commonly the hornblende diorite. The steeply or vertically dipping dike rocks are composed of three general types: Dioritic to andesitic (mafic) dikes, felsitic dikes, and granite porphyry dikes. The age is probably Mesozoic (Dibblee, 1967c).

The older Cenozoic rocks consist of intrusive and extrusive volcanic and sedimentary rocks ranging from early Tertiary (Oligocene?) through Tertiary or Quaternary (Plio-Pleistocene) in age. They occur almost entirely in the northern Bullion Mountains and the Lava Bed Mountains, with small flows occurring elsewhere. A number of local and regional unconformities divide the stratigraphic sequence into discrete periods of active vulcanism followed by erosion and deposition of generally coarse detrital material.

The oldest Tertiary unit is a dacite porphyry which forms a large intrusive mass in the Sunshine Peak area. The rock is a light greenish-gray, massive porphyry, the phenocrysts consisting predominently of white plagioclase. The rock is intrusive into Mesozioc (Cretaceous?) quartz monzonite, and was probably emplaced during an early stage of Tertiary vulcanism. The dacite porphyry is assigned a tentative early Tertiary (Oligocene or Miocene?) age (Dibblee, 1966).

The volcanic and sedimentary rocks, represented particularly in the northern Bullion Mountains and Lava Bed Mountains, rest unconformably upon the uneven surface of earlier Tertiary intrusive volcanic and Mesozoic granitic rocks. The assemblage of volcanic flows, pyroclastic rocks and coarse sedimentary rocks is characterized by extreme lenticularity, intergradation, and interleaving of lithologic units. The maximum exposed thickness of the assemblage, approximately 4200 meters, occurs in the northern Bullion Mountains. The units themselves consist of rhyolitic and latitic felsites; fanglomerates of andesitic, basaltic and granitic detritus; tuffaceous and arkosic sandstone and conglomerate; andesite and tuff breccias; flow basalts; and flow andesites. The assigned age is Tertiary, most probably Oligocene or early Miocene, based on the lithologic similarity to volcanic and sedimentary rocks of Oligocene or early Miocene age in the Cady Mountains northwest of the area (Dibblee and Bassett, 1966, in Dibblee, 1967). The rocks appear to be nonfossiliferous although no definitive paleontological study has been made of this area.

The intrusive volcanic rocks occur as dikes, pods and plugs emplaced into pre-Tertiary rocks and earlier Tertiary volcanic and sedimentary focks. Dibblee (1966, 1967) proposes that the intrusive volcanics

probably fill vents and fissures through which volcanic rocks of this

Tertiary assemblage erupted. The assemblage is composed of the following
units: massive to flow-laminated felsites of varying local compositions;
hydrothermally leached andesite porphyry occurring only in the Stedman
district of the northern Bullion Mountains; a unit ranging from andesite
prophyry to dacite porphyry and quartz latite porphyry; and diabasic,
non-vesicular, intrusive basalt. Based upon their intrusive relationship to other Tertiary volcanics in the area, the rocks are assigned a
Tertiary, probably Oligocene or Miocene age.

Approximately four kilometers south of Stedman, just within the Marine reserve boundaries, a sequence of sedimentary rocks lies unconformably upon the older volcanic and sedimentary rocks. It is in turn overlain unconformably by a rhyolitic tuff which forms the Pacific Mesa. The streamlaid sequence consists of two units: (1) a light gray, poorly bedded, lensoidal conglomerate; and (2), a light gray, fine to coarse grained sandstone. A probable Miocene or Pliocene age is assigned, based mainly upon supraposition on Oligocene (?) or Miocene (?) deposits (Dibblee, 1967). The well-indurated rhyolitic tuff forms a capping as thick as 25 meters. Apparently on the basis of supraposition, the tuff has been given a questionable late Pliocene or early Pleistocene age.

A rhyolitic felsite of similar age and lithology, lies west of the rhyolitic tuff, resting unconformably upon Tertiary volcanic and sedimentary rocks. Although probably not the same unit as the tuff, the felsite quite possibly belongs to the same period of vulcanism.

The black, massive, hard basalt forms flows and dikes in the Lava

Bed Mountains. The flows unconformably overlie Tertiary tuff-breccia, and
are in turn overlain unconformably by Pleistocene fanglomerates and

gravels. The age is therefore placed at late Tertiary or early Quaternary, on the basis of stratigraphic position.

The younger Cenozoic rocks and sediments range in age from Pleistocene through recent. Composed predominently of older and younger, poorly consolidated alluvial detritus, the Quaternary units have characteristically gradational boundaries. The younger Cenozoic rocks may be divided into five "classes" on the basis of age and similar lithology: (1) older valley sediments; (2) Sunshine basalt flow and craters, and basalt flows of similar age; (3) older alluvium and dissected alluvial fan material superposed on the basalt and earlier sediments; (4) Pisgah basalt flow; and (5) surficial sediments.

The older valley sediments of presumably Pleistocene or very late
Tertiary age unconformably overlie Tertiary and pre-Tertiary formations.
Consisting of alluvial and some lacustrine sedimentary deposits, the
Quaternary rocks are weakly consolidated and slightly to severely dissected in areas which have been subject to uplift and/or deformation. The
older valley sediments are composed of the following units, frequently
gradational into each other: older alluvium; older fanglomerate gravel
and sand of both volcanic and granitic origin; older marl and clay of
playa lake deposits; a medium to coarse grained tuff of the Lava Bed
Mountains; older red conglomerate; and a boulder gravel. The bulk of the
sedimentary material was deposited as alluvial fans by torrential downpours in valley and former valley areas.

Basaltic lava erupted from at least three small craters northeast of Sunshine Peak to form both flow basalt and pumice. To the east, craters of similar age produced basalt flows, pyroclastics and plugs. The rocks, which locally rest unconformably upon pre-Tertiary, Tertiary and

Quaternary rocks and sediments, are considered to be Pleistocene in age. The scoriaceous lava of the craters grades outward into the flow basalt, which is commonly black, vesicular, and vitreous to microcrystalline.

Older alluvium, including dissected alluvial fan material, partially covers the basalt (conformably) and unconformably overlies older valley sediments. Derived mainly from the Bullion Mountains, the coarse fanglomerate, gravel and sand forms massive to crudely-bedded units. Locally, colors range from light-gray to black depending on the source rock of the unit. Based upon stratigraphic position, age is presumably Pleistocene.

Pisgah Crater, north of the reserve, contributed one or more basalt flows to the Lavic Lake area in the very late Pleistocene or Recent (Dibblee, 1966). The vesicular, black, microcrystalline to vitreous basalt flowed onto alluvium and partially onto the clay of the northern portion of Lavic Dry Lake.

The surficial sediments consist predominantly of unconsolidated sediments of undissected fill in valley areas and the flood plains of canyons. In large valley areas, the fill is about 30 meters thick and presumably grades downward into older alluvium or older valley sediments. Elsewhere, the fill is thinner and unconformable on older formations (from Dibblee, 1966, 1967a,b,c). The age is very late Pleistocene and Recent.

7.3.3 Existing Data

Existing data on the ground-water conditions and water wells at the Twentynine Palms Marine Corps Training Center come mainly from two sources. (1) H.B. Dyer (1960), F.S. Riley and J.S. Bader (1961), and J.E. Weir and Dyer (1959) complied reports on the water conditions at the base during several consecutive years. These studies, prepared at the request of the Department of the Navy, recorded data including temperature, chemical

analyses and depth, which are collected in Tables I-IV of Appendix II-B.

J. S. Bader and W. R. Moyle (1960), and Moyle (1961), working for the California Department of Water Resources, obtained data on the water wells of the Twentynine Palms, Yucca Valley and Dale Valley areas. Although these reports are restricted to areas outside the reserve boundaries, several wells owned by the Navy were monitered. Their information is included in Tables BI to BIV of Appendix II-B.

Table BI records the locations of the wells by State Well Number, as well as well depths, available temperatures, and marks denoting accompanying logs, chemical analyses and water-level reports. Table BII includes all known water-level measurements in the area, and Table BIII includes drillers' logs of wells. Table BIV records chemical analyses of water from wells.

The major water-bearing units of the reserve are the alluvial deposits which underlie fans extending into the valleys or basins to varying depths. These units consist primarily of lenticular, intergradational beds of clay, silt, sand and gravel of Cenozone age. Near the mountains, however, the deposits consist typically of coarse-grained, angular rock detritus (Bader and Moyle, 1960).

According to Bader and Moyle (1960), movement of ground water through the area is impeded locally by ground water barriers (presumably major faults). These barriers separate main valley areas into smaller ground water basins. The displacement of the water level across the barriers is locally as great as 75 meters (e.g. across Mesquite Dry Lake Fault).

The analyses of base and near base wells show ground water having a wide range of chemical quality. Fluoride content ranges from 0.4-100 parts per million (ppm.); chloride content from 10-725ppm.; and boron content

from 0-1.3ppm. The extremely high fluoride content of some of the wells in Mesquite and Deadman basins have rendered the water unpotable.

Although no wells surveyed in the reports record unusually high water temperatures, it should be noted (Table BI) that temperatures have been reported for only 22% of the wells in the area. Abnormally hot wells, registering 50°C and higher, have been located on privately owned land within several miles of the reserve boundaries (Donald W. Klick, personnal communication, 1972). These wells, so far unexplored, represent potential areas of investigation for possible geothermal resources.

7.3.4 Research Needs

Because of the high temperature wells located in the vicinity of the Marine Corps Training Center at Twentynine Palms, and because of the very recent Amboy and Pisgah Craters and their associated extensive lava fields, we would recommend that further research be initiated in the area to attempt to detect any potential hot-water geothermal resources that exist in the region. We will elaborate on this subject in sections 8 and 9 of this report.

7.4 China Lake Site

7.4.1 Introduction

The Coso Hot Springs area of the Naval Weapons Center at China Lake, California, was the original area that was chosen for the present study. It is a fairly rugged area with a combination of gentle valley and steep scarp terrain approximately 1000 square kilometers lying within latitudes 35° 40'N to 36° 10'N and longitudes 177° 35'W to 117° 55'W in Inyo and Kern Counties, California.

The climate is arid desert. The Naval Weapons Center is located in the northern Mojave Desert. The mean annual rainfall is about 11 centimeters and the mean annual temperature is 18° C (65° F). The temperature extremes range from a low of (-11° C) 12° F in the winter to as high as (48° C) 118° F in the summer months.

Koenig (1970) reported on a joint study at Coso Hot Springs between the U.S. Navy (Carl Austin and his coworkers) and the California Division of Mines and Geology. He stated that they conducted a detailed study, with emphasis upon geologic mapping, gravimetry, aeromagnetics, infrared mapping and other photogeologic techniques. They also used the distribution of mercury as a geochemical sensor for geothermal systems.

Koenig reported in a paper by Facca (1969) that in the Coso Hot Springs area, "Detailed magnetic traverses have resulted in the recognition of 'magnetic signatures' of the major rock types in the area, and in the probable recognition of their hydrothermally altered equivalents. Hydrothermal alteration is expressed as magnetic lows, due to destruction and removal of magnetite from the rocks by heated fluids. In some areas, in a linear zone to the west and especially south of Coso Hot Springs, magnetic lows in areas of relatively fresh granite are believed to be caused by concealed or buried hydrothermal alteration. That is, areas in which the heated fluids did not ascend to the present surface."

Furthermore, at the Coso Thermal Area, Carl Austin and his coworkers (Austin, 1966; Austin and Pringle, 1970; Austin, et al., 1971; Koenig et al., 1972) at the Naval Weapons Center have completed or are in the process of completing with other government agencies, extensive and sophisticated geologic and geophysical studies aimed at the detection of the extent and potential of the geothermal resources within the area. These Naval Weapons Center studies include: 1) preliminary surface geology with the California Division of Mines; 2) preliminary infrared

signature with the USGS and NASA; 3) detailed ground noise surveys with Teledyne-Geotech; and 4) detailed electrical resistivity with University of California-Riverside and Colorado School of Mines.

With the amount of preliminary data that has been obtained to this date, we determined to study the available data, not to duplicate it in this report, and to make recommendations about research needs.

We would point out only one criticism and that is that the large amount of existing data developed at the Coso Thermal Area should be published in readily available technical journals. Most of the data appears as Naval Weapons Center (NWC) documents and is therefore not readily available for use. Most of these NWC documents have had Carl F. Austin as the primary author (Austin, 1966; Austin and Pringle, 1970; Austin, et al., 1971; Koenig, et al., 1972).

7.4.2 Geology

Most of the geology is based on the Trona and Death Valley sheets of the Geologic Map of California. The exposed basement terrain consists of Mesozoic granitic rocks of medium-tocoarse-grained quartz monzonite, quartz diorite, etc. These plutonic rocks are related to the Sierra Nevada Batholith to the west and are the primary substructure. These older rocks were faulted and eroded to approximately their present surface relief and were later subjected to moderate Tertiary to Quaternary volcanism.

The Tertiary-Quaternary rocks reached the surface via channels rising through the Mesozoic basement rocks in the form of dikes, sills, plugs, necks, vents and craters. Volcanic rocks superimposed on the basement terrain produced Pleistocene rhyolitic, and basaltic lava flows,

in addition to numerous scattered prominent cones, craters and domes of effusive and pyroclastic materials.

The volcanic rocks in the northwest of the area, generally southwest of McCloud Flat, consist of Tertiary andesite flows, sills, and plugs. Those volcanic rocks forming the cones, craters, domes, and their adjacent slopes in the central part of the area (Cactus Peak, Sugarloaf Mountain, etc.) consist of Quaternary lapilli tuffs, rhyolic and obsidian flows, pumice, perlite, and cinders. Pyroclastic material from the volcanic activity has also accumulated on the lower slopes and in the small basins. The extensive, rugged "lava-breaks" terrain, generally east of Coso Hot Springs, consists primarily of porphyritic anaesite and vesicular basalt flows, which have been faulted along north-seath trends. Faulting and later erosion of these lava flows has produced a series of step-scarps rising west-to-east from the basin containing Coso Hot Springs.

The Quaternary alluvial deposits across the survey area reach their maximum thicknesses, estimated at 120 to 200 meters, in the larger basins of McCloud Flat, Upper Cactus Flat, and the basin of Coso Hot Springs.

Two smaller basins approximately 2.5 square-kilometer extent each are immediately north of Cactus Peak and immediately northwest of Sugarloaf Mountain. Other scattered small basins are common across the area with alluvial thicknesses estimated at less than 30 meters. The basins contain unconsolidated pumiceous and arkosic sands, gravels, playa deposits, windblown sand, stream wash, and other alluvial debris derived from the adjacent igneous outcrops.

The obvious surface manifestations of geothermal activity consist of exposed, discolored, mineralized, hydrothermal alteration zones. An

active fumarole belt along a six and one half kilometer arc trends southwest to northeast through the exposed hydrothermal alteration localities. This active fumarole belt passes from the Devil's Kitchen area through Coso Hot Springs. These surface manifestation zones are fault related. The predominant fault in the region is the Garlock Fault which has a similar southwest to northeast strike. It would appear that the regional tectonic patterns have produced the local structural trends and the surface manifestations. The steam venting at the surface fumaroles is moderately sulfurous, certainly corrosive, with low pressure and low flow volume.

7.4.3 Existing Data

As has been noted above, there is an abundance of geological, geochemical, and geophysical data available for the Coso Hot Springs area in a number of Naval Weapons Center documents (see, Austin, 1966; Austin and Pringle, 1970; Austin, et al., 1971; Koenig, et al., 1972).

The existing water well locations, geologic logs, and chemical analyses are presented in Appendix II-C in the Tables CI to CVI.

7.4.4 Research Needs

Although we have not seen all of the data that has been developed, we would recommend the following future studies. First, the preparation of a detailed surface geologic map. The former geochemical and geophysical survey which have been made should be completed and published in technical journals.

We would suggest the drilling of from 4 to 6 heat flow boreholes which should be no less than 100 meters total depth. These should be located using the seismic ground noise and the electrical resistivity data. At least one of the heat flow determinations should be made in a

potentially non-productive area in order to establish the magnitude of the background heat flow for the area.

Further research in the Coso area beyond those studies suggested above should be devoted to exploratory drilling to determine the extent of the reservoir as indicated by the surface measurements.

8. DISCUSSION AND CONCLUSIONS

8.1 Potential of Hot-Water Geothermal Systems

Hot-water geothermal resources are a multiple-use or multipurpose natural resource, that is, hot-water geothermal resources can be used for electrical power generation, as well as a source of fresh water; mineral production; space-heating and air-conditioning of buildings and facilities; recreational purposes, swimming pools, baths, saunas, etc.; defrosting of runways; and others.

The average electrical power potential of a single geothermal well is 5 MW. The known fields have reserves of from 250 to 4,000 MW. The average lifetime of a geothermal field is a problematic question. Known fields have produced continuously for as long as fifty years. Since we are dealing with a geological process, the heat in most of the geothermal systems will probably last for from 50 to 100 million years. The main problem with hot-water geothermal systems may be a lack of long term recharge water to function as a heat transfer mechanism. However, with future technological advances in reinjection techniques, this potential problem may also be eliminated.

8.2 Detection of Potential Geothermal Systems

Detection techniques for geothermal resources are relatively primitive, especially those applied to detection of hot-water reservoirs. Geothermal

steam is a resource that requires both large-scale (regional) and small-scale (local) features to concentrate the natural heat within a reservoir near the earth's surface.

Furthermore, this natural resource demonstrates the importance of both regional and areal geologic, hydrologic, geochemical, and geophysical investigations and the necessity for an interdisciplinary approach for success in detection and utilization. A strong emphasis must be placed on:

1) physical phenomena; 2) properties of rocks; 3) methods and techniques for detection and developing the resource; and 4) influence of physical conditions within the earth's crust on migration and emplacement of magma as well as convective flow patterns of geothermal heat from source to reservoir.

An extensive program of research is necessary to develop better geophysical, geological, hydrological, and geochemical methods of detection
specifically tailored to geothermal resources. An immediate specific need
is to combine and compare the existing data for a potential geothermal area
with data developed from geophysical studies in order to provide information
for detection purposes elsewhere. Case histories using a suite of detection capabilities to pinpoint drilling locations are almost nonexistent.
More must be obtained and documented.

8.3 Evaluation and Development of Geothermal Systems

World-wide, there are only 11 geothermal areas actually producing electrical power. Of these, four (including the only area in the USA) are vapor-dominated (dry-steam) areas. Of the hot-water systems, for only one, Wairakei, New Zealand, does there exist any significant body of production data, and even this data set is inadequate. Thus, one of the

major uncertainties in the development of a hot-water reservoir is the manner in which it will behave under production. How will temperature, pressure, fluid enthalpy and production change with time? What will be the productive life of the system? How can the production be optimized? Is this type of geothermal reservoir in practice a closed system, or is there significant recharge of water and heat? Can production be enhanced by various means of reservoir stimulation?

Accordingly, there is a critical need for a pilot project to drill, produce, and monitor a hot-water geothermal system. Such a pilot project should not be constrained by any economic necessity to sell electricity, water, or heat at a profit. Such a pilot project should be instrumented, both with surface and bore hole instrumentation, to provide all the data necessary to document production history. This history will be used to test production models, predict future performances, evaluate economic and technical feasibility, and extrapolate to other hot-water areas. The area of investigation should encompass not only the upflowing plumes of hot water, but also the recharge part of the circulation system (this will involve monitor drilling for hydrologic data). Drilling within the geothermal system should be deep enough to investigate the heat source (whether magma or hot rock) and provide sufficient data to produce a reliable, documented picture of the whole natural geothermal system.

9. RECOMMENDATIONS

An ongoing geothermal resources research program should be developed at a significant level of funding. This abundant, widespread, multipurpose natural source of steam which does not have environmental restriction of associated sulfur dioxides, nitrous oxides or radioactive wastes may represent a substantial alternative or at least supplementry source of energy for the very near future.

As pertains to follow up research to this study, we recommend the following:

- 1) The geology and the existing data for the <u>Point Mugu Site</u> are not particularly encouraging as far as the potential for a hot-water geothermal reservoir in the area. However, this lack of thermal manifestations may be caused by the encroachment of cold sea water in the subsurface. Nevertheless, we would not recommend additional research in this area in the immediate future.
- 2) Because of the high temperature water wells located in the vicinity of the Marine Corps Training Center at the <u>Twentynine</u>

 Palms Site, and because of the very recent Amboy and Pisgah Craters and their associated extensive lava fields, we would recommend that further research be initiated in the area to attempt to detect any potential hot-water geothermal reservoirs that may exist in the region. This research should include both regional and local geological, hydrological, geochemical, and geophysical investigations in order to detect and determine the extent of any geothermal reservoir. and

3) We recommend that a detailed surface geologic map be prepared for the China Lake Site. The available geochemical and geophysical surveys should be completed and published. We would recommend the drilling of from 4 to 6 heat flow boreholes which should be no less than 100 meters total depth. These should be located using the available seismic ground noise and electrical resistivity data. At least one of the heat flow determinations should be made in a potentially non-productive area in order to establish the magnitude of the background heat flow for the area. Further research in the Coso Thermal area beyond those suggested above should be devoted to exploratory drilling to determine the extent of the reservoir as indicated by the surface measurements.

In addition, there is a need to demonstrate that the particular locations tabulated in Appendix I are in fact potential geothermal resource areas. This can be accomplished most satisfactorily by drilling one heat flow hole no less than 100 meters total depth on several of the installations listed in the colocation summary, Appendix I. We recommend that these reconnaissance heat flow holes be drilled. Furthermore, we recommend that on at least one of the potentially lower enthalphy systems such as the Twentynine Palms Site, a complete detection program be implimented.

10. REFERENCES

- Austin, C.F., 1966, Selection criteria for geothermal prospects: Nevada Bureau of Mines, Report 13, Part C, Reno, Nevada, pp. 93-125.
- Austin, C.F., Austin, W.H. Jr., and Leonard, G.W., 1971, Geothermal science and technology a national program, Naval Weapons Center, China Lake, California, NWC TS 45-029-72
- Austin, C.F., and Pringle, J.K., 1970, Geologic investigations of the Coso Thermal Area: Naval Weapons Center, China Lake, California, NWC TP 4878
- Bader, J.S., and Moyle, W.R., Jr., 1960, Data on water wells and springs in the Yucca Valley-Twentynine Palms area, San Bernardino and Riverside Counties, California: Calif. Dept. Water Resources, Bull. 91-2, 163 p.
- Bassett, Allen M., and Kupfer, Donald H., 1964, A geologic reconnaissance in the southeastern Mojave Desert, California: Calif. Div. of Mines and Geol. Special Report 83, 43 p.
- Bodvarsson, G., 1970, Evaluation of geothermal prospects and the objectives of geothermal exploration: Geoexploration, v. 8, p. 7-17.
- California Dept. Water Resources, 1963, Bulletin, 130:63, Vol. 5.
- California Division of Water Resources, 1954, Ground water occurrence and quality, Colorado River Basin Region: Water Quality Inv. 4, 59 p.
- Combs, Jim, and Muffler, L.J.P., 1973, Exploration for geothermal resources: in Kruger, Paul, and Otte, Carel (eds.), 1973, Geothermal Energy: Resources, Production, Stimulation: Stanford Univ. Press, Palo Alto, California, p. 95-128.
- Dibblee, T.W., Jr., 1967a, Geologic map of the Deadman Lake quadrangle, San Bernardino County, California: U.S. Geol. Survey Misc. Geol. Inv. Map I-488, scale 1:62,500.
- ----1967b, Geologic map of the Emerson Lake quadrangle, San Bernardino County, California: U.S. Geol. Survey Misc. Geol. Inv. Map I-490, scale 1:62,500.
- ----1966, Geologic map of the Lavic quadrangle, San Bernardino County, California: U.S. Geol. Survey Misc. Geol. Inv. Map I-472, scale 1:62,500.
- ----1967c, Geologic map of the Ludlow quadrangle, San Bernardino County, California: U.S. Geol. Survey Misc. Geol. Inv. Map I-477, scale 1:62,500.
- Durrell, Cordell, 1954, Geology of the Santa Monica Mtns., Los Angeles and Ventura Counties, in Geology of southern Calif.: U.S. Geol. Survey Bull. 170, Map Sheet 8.

- Dyer, H.B., 1960, Ground-water conditions during 1960 at the Marine Corps Base, Twentynine Palms, California: U.S. Geol. Survey open file report, U.S.G.S. Ground Water Branch, Long Beach, California, 32 p.
- Facca, G, 1969, Geophysical investigations in the self-sealing geothermal fields: Bull. Volcanologique, 33 (1), 119-122.
- Gardner, D.L., 1940, Geology of the Newberry and Ord Mountains, San Bernardino County, California: California Jour. Mines and Geology, v. 36, p. 257-292.
- Grose, L.T., 1971, Geothermal energy: geology, exploration and developments. Part 1: Colo. School of Mines, Mineral Industries Bull., v. 14, no. 6, p. 1-14.
- Grose, L.T., 1972, Geothermal energy: geology, exploration and developments. Part 2: Colo. School of Mines, Mineral Industries Bull., v. 15, no. 1, p. 1-16.
- Hitherton, T., Macdonald, W.J.P., and Thompson, G.E.K., 1966, Geophysical methods in geothermal prospecting in New Zealand: Bull. Volcanol., v. 29, p. 485-497.
- Jaffe, F.C., 1971, Geothermal energy, a review: Bull. Ver. Schweiz. Petrol. -Geol. u. -lng., v. 38, no. 93, p. 17-40.
- Kew, W.S.W., 1924, Geology and oil resources of a part of Los Angeles and Ventura Counties, Calif.: U.S.G.S. Bull. 753, 202p.
- Kiersch, G.A., 1964, Geothermal steam: Origin, characteristics, occurrence, and exploitation: Final report Air Force Cambridge Research Laboratories contract No. AF-19 (628)-293, 204 pp.
- Koenig, J.B., 1970, Geothermal exploration in the Western United States: Geothermics, Special Issue 2, v.2, pt. 1, p. 1-13.
- Koenig, J.B., Garvarecki, S.J., and Austin, C.F., 1972, Remote sensing survey of the Coso Geothermal Area, Inyo County, California, Naval Weapons Center, China Lake, California, NWC TP 5233.
- McNitt, J.R., 1965, Review of geothermal resources: in Lee, W.H.K., ed., Terrestrial Heat Flow: Am. Geophys. Union, Geophys. Monograph no. 8, p. 240-266.
- Miller, W.J., 1938, Pre-Cambrian and associated rocks near Twentynine Palms, California: Geol. Soc. Am. Bull., v. 49, p. 417-446.
- Moyle, W.R., Jr., 1961, Data on water wells in the Dale Valley area, San Bernardino and Riverside Counties, California: California Dept. Water Resources, Bull. 91-5, 55 p.

- Muffler, L.J.P., and D.E. White, 1972, Geothermal energy: The Science Teacher, v. 39, no. 3, p. 40-43.
- Page, R.W., 1963, Geology and Ground Water Appraisal of the Naval Air Missile Test Center Point Magu, California: U.S.G.S. Water-Supply Paper 1619-S, 40 pp.
- Riley, F.S., and Bader, J.S., 1961, Data on water wells on Marine Corps Base, Twentynine Palms, California: U.S. Geol. Survey open file report, U.S.G.S. Ground Water Branch, Long Beach, California, 72 p.
- Roy, R.F., Decker, E.R., Blackwell, D.D., and Birch, Francis, 1968, Heat flow in the United States: J. Geophy. Res., v. 73, p. 5207-5221.
- Sass, J.H., Lachenbruch, A.H., Monroe, R.J., Green, G.W., and Moses, T.H., 1971, Heat flow in the western United States: J. Geophy. Res., v. 76, p. 6376-6413.
- Thompson, D.G., 1929, The Mojave Desert region, California; a geographic, geologic, and hydrologic reconnaissance: U.S. Geol. Survey Water-Supply Paper 578, 759 p.
- Troxell, H.C., and Hofmann, Walter, 1954, Hydrology of the Mojave Desert: California Div. Mines Bull. 170, ch. 6, p. 13-17.
- Tucker, W.B., and Sampson, R.J., 1940, Economic mineral deposits of the Newberry and Ord Mountains, San Bernardino County: California Jour. of Mines and Geology, v. 36, no. 3, p. 232-254.
- Waring, G.A., 1965, Thermal springs of the United States and other countries of the world a summary: U.S. Geol. Survey Prof. Paper 492, 383 pp.
- Weir, J.E., Jr., and Dyer, H.B., 1961, Ground-water conditions during 1961 at the Marine Corps Base, Twentynine Palms, California: U.S. Geol. Survey open file report, U.S.G.S. Ground Water Branch, Long Beach, California.
- White, D.E., 1965, Geothermal energy: U.S. Geol. Survey Circular 519, 17 pp.
- Winterer, E.L., and Durham, D.L., 1958, Geologic Map of a Part of the Ventura Basin, Los Angeles County, Calif.: U.S.G.S. Oil and Gas Inv. Map OM-196.
- U.S. Environmental Data Service, Climatological Data: California, 1959-61, 1969-70, v. 63-65, 73-74.

1.	APPENI	DIXES	page
	Ι.	Colocation Summary of Several Potential Geothermal Systems and Military Installations	I-1 - I-2
	II-A.	Point Mugu Site	A-0 - A-13
	II-B.	Twentynine Palms	B-0 - B-32
	II-C.	China Lake Site	C 0 0 1 1

APPENDIX I.

COLOCATION SUMMARY OF SEVERAL POTENTIAL GEOTHERMAL SYSTEMS AND MILITARY INSTALLATIONS

I.1 Military Installations on Known Geothermal Resources Areas

	DIALE	NAME	MAP-8205 #
	California:	Weapons Center, China Lake	5F-1
	Oregon:	Kingsley Field	4C-1
1.2	Military Instal	lations on Areas with Potential Geothermal	Resources
	STATE	NAME	MAP-8205 #
	California:	Marine Corps Base, Twentynine Palms	6F-2
		Air Facility, El Centro	6G-1
		Twenty Second AF HQ, Travis AFB	4E-5
		Weapons Station, Concord, Calif.	4E-10
		Rio Vista Storage Area (Act. of Sharpe Army Depot)	4E-6
		Parks, Camp (IN)	4E-12
		Radio Station, Dixon	4E-13
		Sierra Army Depot	4D-1
	Nevada:	Air Station (Auxiliary), Fallon	5D-2
	Utah:	Utah Army Depot (Permitted to DSA)	7D-1
	Alaska:	Communication Station, Clam Lagoon, Adak, Alaska; Radio Station, Mt. Moffett, Adak, Alaska; Station (Naval), Adak, Alaska	265-1

I.3 Military Installations on Areas With Warm Springs

None

I.4 Military Installations Within 10 Km of Known Geothermal Resource Areas

STATE	NAME	MAP-8205 #
California:	Air Facility, El Centro	6G-1

1.5 Military Installations Within 10 Km of Potential Geothermal Resource Areas

STATE	NAME	MAP-8205 #
California:	Schools Command, Mare Island, Vallejo	4E-36
	Shipyard, San Francisco Bay, Mare Island Division	4E-7
Utah:	Fort Douglas (IN)	7D-5
	Tooele Army Depot	7D-6
	OOAMA HQ, Hill AFB	7D-4
Alaska:	King Salmon Airport	32Q-1
	Eielson AFB	35N-1
	Wainwright, Fort	35N-2
ilibama Ingkal	lations Within 10 km of Warm Springs	

1.6 Military Installations Within 10 Km of Warm Springs

STATE	NAME	MAP-8205 #	
California:	Obispo, Camp San Luis (IN)	4F-3	

We note that the above list is not exhaustive but is complete as pertains to present knowledge of the location of geothermal resources. There will be many areas of the country which have potential geothermal resources and possible colocation with military installations. However, they are not included because they were not identified by the four criteria listed in Section 2.4. For example, the two recent exploratory geothermal wells drilled near Williams AFB, Chandler, Arizona.

APPENDIX II-A.

POINT MUGU SITE

Table	AI.	Locations of	Page
		Locations of wells on or near Point Mugu and	
		Port Hueneme, California	A-2A-4
Table A	II.	Water temperatures from typical water wells	
		on or near Point Mugu and Port Hueneme,	
		California	A-5
Table AI	II.	Logs of water wells on or near Point	
		Mugu and Port Hueneme, California	A-6A-12
Table AI	v.	Chemical analyses of waters from selected	
		wells on or near Point Mugu and Port	
		Hueneme, California	A-13

APPENDIX 11-A.

Existing Data for Selected Water Wells on or Near
Point Mugu and Port Hueneme, California

All of the wells in Appendix A and the following appendices are located and numbered according to the California state well numbering system. The state well numbering system is based on township, range, and section subdivision of the Public Land Survey. Under the system, each section is divided into 40 acre tracts lettered as follows:

D C B A

E F G H

MLKJ

NPQR

Wells are numbered within each 40 acre tract according to the chronological sequence in which they have been assigned State Well Numbers.

Example: 1N/22W-16D4,S would be found in township 1 north,
Range 22 West, Section 16, San Bernardino Base and
Meridian, and would be further designated as the
fourth well assigned a State Well Number in tract D.

Incomplete numbers, such as IN/22W-8A or 2N/22W-13, indicate approximate locations of wells to the extent indicated by the symbol.

APPENDIX 11-A.

Existing Data for Selected Water Wells on or Near
Point Mugu and Port Hueneme, California

All of the wells in Appendix A and the following appendices are located and numbered according to the California state well numbering system. The state well numbering system is based on township, range, and section subdivision of the Public Land Survey. Under the system, each section is divided into 40 acre tracts lettered as follows:

D C B A

E F G H

MLKJ

N P Q R

Wells are numbered within each 40 acre tract according to the chronological sequence in which they have been assigned State Well Numbers.

Example: 1N/22W-16D4,S would be found in township 1 north,
Range 22 West, Section 16, San Bernardino Base and
Meridian, and would be further designated as the
fourth well assigned a State Well Number in tract D.

Incomplete numbers, such as IN/22W-8A or 2N/22W-13, indicate approximate locations of wells to the extent indicated by the symbol.

Table A I. Locations of wells on or near Point Mugu and Port Hueneme, California.

TI N/	R22W-	Agency Supplying Well Log Data	Logs Available at Calif. Dept. Water Resources	Water Analysis, Water Levels (WA/WL)
16D1	@	SWN		
16D2	*	5003		
16D3		SWN		
16D4		5050	x	(***)
16E1		5003	^	(WA)
16L1	@	SWN		
16M1		SWN		
16M2		USN		
16M3		SWN		
17B1	*	5003	X	
17B2	@	SWN	^	(WA/WL)
17B3		USN		
17C1	*	SWN		
17C2		SWN	v	
17D1		SWN	X	
17D2	*	SWN		
17G1		USN		
17F1		USN		
17J1		USN		
17J2		SWN		
17M1		No Info.		
17M2		SWN		
17M3	*	5050	X	(WL)
17Q1	*	SWN		
18A1	@	SWN		
18J1	ē	SWN		
19A1	@*	2100		
20B1	*	SWN	X	(WA)
20C1		No Info.	X	(WA/WL)
20E1	*	5050		
20E2	*	5050	X	(WL)
20G1		5050	X	(WA/WL)
20H1		5050	X	
OH2			X	(WA)
0Н3		5050	X	(WA/WL)
ОН4		5050	x	(WA/WL)
OH5		5050	x	(WA/WL)
0н6		5050		
OH7		5050	X	
0117		5050		
ONTINU	ED	5050	X	

eindicates wells that lie just outside the military boundry lines.

^{*}indicates wells whose water levels are published in California Dept. of Water Resources Bulletin 130:63, Vol. 5, 1963.

T1N/R22W-	Agency Supplying Well Log Data	Logs Available at Calif. Dept. Water Resources	Water Analysis, Water Levels (WA/WL)
20J1	5050	Х	
20J2	5050	X	
20J3	5050	x	
20K1	5050	X	(WA/WL)
20L1	USN		(WA/WL)
20N1	SWN	X	CLIA /LTL
20N2 *	5050	X	(WA/WL)
20R1 *	SWN	Α.	(WL)
20R2	SWN		
21E11	5050	X	/114 /1 m \
21E12	5050	X	(WA/WL)
21F1	5050	X	(WA/WL)
21F2	5050	X	(WA)
21F3	5050	X	(WA/WL)
21L1 *	5050	X	(WA/WL)
21L5	5050	X	(WA/WL)
21L6	5050	X	(WA)
21N1	SWN	A	(WA)
21E5	5050	X	(11.)
21E6	5050	X	(WA)
21E10	5050	X	(WA)
21E7	5050	X	(WA)
21E8	5050	X	(WA)
21E9	5050	X	(WA)
21C1	SWN	X	(WA)
21E1	No Info.	Α.	(WL)
21E2	USN		
21E3	USN		
21E4	5050	X	4
21M1	5050	Λ	(WA)
21M2	5050		
21L2	SWN		
21L3	5050		
21L4	5050		
	m +ha f-11		

Well logs for the following wells can be obtained from the California Dept. of Water Resources although not indicated on filed data cards at the agency.

TIN/R22W-

21B1

21B3

21J2

21J3

Notes: If the symbols (WA) or (WL) are listed for a particular well this indicates that either water analysis or water levels information is available, (WA/WL) indicates both are available.

Agency Code

Ifave -

USN United States Navy.

SWN Official State Well Numbering System.

5050.... Official State Well Numbering System, State Agency.

5003.... Official State Well Numbering System, Federal Agency.

2100.... Ventura County Flood Control District, Federal Agency.

Table A II. Water temperatures from typical water wells on or near Point Mugu and Port Hueneme, California. Data from California Department of Water Resources.

IN/R22W-	Dates	Temperatures, OF
16D2	4-16-58	69
	6-23-61	67
16D4	11- 2-64	68
	12- 3-64	68
16E1	5-21-58	68
	4-29-64	68
17B1	5-13-58	70
	6-30-61	67
	5-15-69	66
17C1	5-13-58	68
	6-30-61	68
	5-28-68	66
	5-14-69	66
17C2	12-18-61	70
17D2	5-13-58	68
	6-30-61	66
	5-28-68	66
	5-15-69	64
17J1	5-21-58	68
17J2	10-25-52	70
	5-13-58	69
	12- 4-59	65
	12-11-59	65
	1- 6-60	65
17M1	5- 9-60	69
	11-26-62	66
17M2	4-29-64	68
17M3	6- 9-60	70
	12-23-60	64
	6- 9-61	64
	12- 6-61	64
	11-26-62	70
	5-14-69	66

Table A III. Logs of water wells on or near Point Mugu and Port Hueneme, California. Data from Page, (1963) and California Department of Water Resources (1963).

	Thickness (feet)	Depth (feet)
IN/21-27F1. Broome Rar	och	
(Alt. 13.7 ft. Drilled by Henry Hatherly in 1926 425-426, 457-460, 584-588, 611-616, 687-692, 703 824-838 ft.)	10	ng, perforated
Clay		
Clay with a little gravel	134	134
Clay with a little gravel	1	135
Red Clay	250	385
Blue clay	36	421
Gravel water-booming	4	425
Gravel, water-bearing	1	426
Red sandy clay	24	450
Blue clay	5	455
Gravel	2	457
Sand, blue clay	13	470
Blue sand	13	483
Blue clay	7	490
Red clay	30	520
Red clay and gravel, water	10	530
Blue clay with a little sand	50	580
Lemented gravel	4	
Blue clay	24	584
Cemented formation	3	608
Blue sand	66	611
Blue clay	3	677
Sand, gravel, and shells	3	680
Cemented formation with shells		683
Blue sand	4	687
ayers of cement formation and shells	14	701
Blue clay and silt	4	705
ravel, not much water	38	743
and	6	749
ravel	63	812
olid rock	12	824
	16	840
IN/21-31L1 (supply well 3). Alt 8,89 ft. Drilled by Van Noy in 1949. 26-in. 6-in. casing to 360 ft. 12-in. casing to 1,000 ft. 50-420, 476-530, 620-700, and 810-972 ft. Cemen ell at 750 ft. after 1950. Log by T.L. Bailey,	casing to 310 t: originally p	erforated
and, mostly fineand, coarse, and gravel and streaks of blue	95	95
clay	39	134

IN/21-31L1continued	Th. 4 - 1	
	Thicknes	P
Sand, light-gray, fine, and blue clay	(feet)	
Gravel, light-gray, clean	78	212
Clay, blue, and thin silty sand and	59	271
gravel streaks		
Sand gravelly and make in	79	350
Sand, gravelly and pebbly	70	420
Clay, blue-gray	20	440
Sand, fine, silty	12	452
Clay, dark-gray	15	467
Gravel and coarse sand	71	538
Sand, medium to fine, silty	64	602
Sand, dark-gray, silt and silty	18	620
Sand, coarse, and gravel	70	790
Clay, blue, fine to medium, and sandy silt	42	732
Sand, medium to fine, and gravelly streaks	50	
silt, blue and fine sand	28	782 810
Sand and gravel, medium to coarse	80	810
Sand, medium to coarse, and fine silty sand	00	800
streak	60	0.7.0
Sand, medium to coarse (fair water)	68	958
Sand, medium to coarse (brackish water)	42	1,000
Silt, blue-gray, sandy and fine silty sand	50	1,050
Clay, blue-gray, shaly	60	1,110
Sand, dark-gray, modium to Since	50	1,160
Sand, dark-gray, medium to fine, carbonaceous Clay, dark-gray, carbonaceous, shale, and	40	1,200
sandy shale	18	1,218
Shale, gray, clayey, and shaly clayShale, light-gray, silty, thinner beds of	128	1,346
friable sandstone	124	1,470
Shale, soft, carbonaceous	12	1,482
Sandstone, dark, friable, interbedded with		-, 10-
brownish-black soft laminated clay-shale	61	1,543
Sandstone, dark-gray, hard	30	1,573
Basalt, dark-green, altered	10	
	10	1,583
IN/21_2241 (1		
IN/21-32A1 (supply well 5).	NAMTC	
(Alt about 10 ft. Drilled by Midway Drilling Co. perforated from 645-745 ft. Log by Geol. Survey)	in 1958.	16-in. casing
Silts, greenish-brown, fine sand lenses	75	76
Sand, coarse, pebble-size, well-rounded, some	15	75
marine shells	20	
Clay, silty, fine sand	20	95
Sand, coarse, pebble-size, well-rounded, some	20	115
fine sand, marine shells	0.	
Clay, silty, bluish-gray, some coarse sand	21	136
Sand, coarse, pebble-size, subrounded to	14	150
rounded some marine about		
rounded, some marine shells	20	170
Clay, bluish-gray, fine sand	9	179
Sand, fine to coarse, subrounded to rounded	10	189
Clay, bluish-gray, fine sand	10	199

IN/21-32A1continued	Thickness (feet)	Depth (feet)
Sand, fine, silty, well-rounded	9 7 14 10 12 18	208 215 229 239 251 269
fragments	113 13	382 395
shell fragments	65 16	460 476
Clay, blue-gray, fine sand and silt Sand, fine to medium, well-rounded, blue-gray,	134 26	610 636
Sand, fine to medium, well-rounded, blue-gray, some silts and clays	116 51	752 803

IN/21-32G1 (supply well 1). NAMTC (Alt 10.00 ft. Drilled in 1943. 12-in. casing perforated 121-137, 311-325, and 417-432 ft. Log from Navy, presumably by driller)

0 11		
Soil	3	3
Clay, yellow	19	22
Clay, blue	12	34
Sand, fine	18	52
Clay, sandy	14	66
Clay, blue	12	78
Sand, fine	20	98
Clay, blue	24	122
Sand	14	136
Sand and 1-inch gravel	16	
cray, yerrow	4	152
sand, line	12	156
cray, yerrow	12	168
sand, fine, and gravel	12	180
cray, blue	13	192
sand, blue, fine		205
cray, blue	35	240
sand, blue	4	244
clay, blue	12	256
Sand, blue	23	279
Clay, blue, sandy	3	282
Sand, fine	10	292
Clay, blue	6	298
Gravel, 2-inch	14	312
Clay, blue	12	324
Sand, blue	6	330
Sand and gravel company	36	366
Sand and gravel, cemented	12	378

IN/21-32G1continued	Thickness (feet)	Depth (feet)
Gravel————————————————————————————————————	6	384
Sand, blue, coarse	14	398
Sand, blue, fineClay, blue	8	406
Sand, blue, fine	2	408
, bide, illie	26	434

IN/21-32K1 (supply well 2). NAMTIC

(Alt. 9.46 ft. Drilled in 1943. 12-in. casing perforated 460-170, 544-550, and 575-593 ft. Log from Navy, presumably by driller.)

Soil		
Clay, yellow	3	
Clay, blue	17	20
Sand, blue, fine	15	35
Clay, blue	39	74
Sand blue fine-	20	94
Sand, blue, fine	4	98
Clay vellor	26	124
Clay, yellow	14	138
Sand, yellow, fine	12	150
Clay, blue	10	160
Sand, yellow	26	186
Clay, yellow	16	202
Sand, blue, fine	26	228
Clay, blue	62	290
Sand, blue, fine	6	296
Shale, blue	10	306
Sand, cemented	14	320
Sand, blue, fine	12	332
Sand, blue	28	360
Sand, blue, fine	30	300
Sand, blue	70	460
Sand and gravel	10	470
Sand, blue	38	508
Sand, blue, and some shells	12	520
		320
Sand, blue, fine	24	
Sand and gravel	24	544
Sand, blue	6	550
Sand and gravel	22	572
Clay, blue, sandy	18	590
, , , , , , , , , , , , , , , , , , , ,	32	622

IN/R22W-19A1	IN/R22W-20H1 continued
Depth in feet.	Depth in feet.
	beptil in feet.
0- 5Soil	190-197 Sand and gravel
5- 40Sand	197-211Sand
40- 60Clay	211-230Silty clay
60-122Sand	
122-190Blue clay	IN/R22W-20E2
190-200Brown clay	0- 4 Beach sand
200-232Sand and gravel	Beach Sand
232-272Blue clay	- The state clay
272-370Cemented sand and gravel	51- 70Blue clay
370-504Blue clay	70- 82Fine sand
504-520Grave1	82- 90Blue clay
520-566Cemented sand	90- 127Sand and gravel
566-590Tight gravel	127- 145Blue clay
590-610	145- 162Sand and gravel
610-638Sand and gravel 638-668Fine sand	162- 184Blue clay
668-692Hard blue clay	184- 206Brown clay
692-608Sand and gravel	206- 236Sand and gravel
708-726Blue clay	236- 285Brown clay
726-747Sand and gravel	285- 315Sand and gravel
747-766Blue clay	315- 402 Sea bottom mud
747 700	402- 514Blue clay
IN/R22W-20B1	514- 540Sand and gravel
	540- 602Fine sand
0- 7Soil	602- 638Blue clay
7- 42Soil	638- 660Fine blue sand
42- 90Clay	660- 680Blue clay
90-116Sand	680- 692Blue sand
116-143Clay	692- 698 Sand and gravel
143-176Gravel and sand	698- 710Blue clay
176-183Clay	710- 740Fine sand
183-223Gravel	740- 770Blue clay
223-268Clay 268-305Gravel	770- 820Fine blue sand
305-317Sea mud	820- 924Sea bottom silt
317-324Clay	924- 940Coarse sand
31, 324	940- 974Sand and gravel
IN/R22W-20H1	974-1014Blue sand
	IN/R22W-21C1
0- 6Silty clay	0-166
6- 17Sand and gravel	0-166Soil, sand and gravel
17- 30Silty clay	166-200Gravel 200-210Clay
30- 55Silty clay	210-224Gravel
55- 78Silty clay 78- 92Sand	224-244Clay
92-106Sand	244-266Gravel and sand
106-117Sand	266-281Clay
117-138Silty clay	
138-149Sand	
149-190Sand and gravel	
230	

IN/R22W-16D4 IN/R22W-17C2 Depth in feet. Depth in feet. 0-150.....Sand 0- 4.....Top soil 150-315.....Sand and boulders 4- 21......Fine sand and gravel 315-360.....Sand and rock 21- 39..........Blue clay 360-420......Rock and clay 30- 53.....Gravel 420-500.....Sand and rock 53- 87......Blue clay 500-608......Blue clay 87-114.....Sand 608-650.....Shale and sand 114-133......Gravel 650-680......Clay and sand 133-152......Blue clay 680-720......Coarse sand 152-165......Gravel 720-740......Clay and sand 165-214..... Brown clay 740-1106.....Sand and boulders 214-248.........Gravel IN/R22W-17B1 IN/R22W-17M3 0- 80.....Sand 80- 90.....Sandy shale 2- 10......Sand 90- 130.....Sand 10- 24.....Sand 130- 150..... Sandy shale 24- 32.....Clay 150- 180.......Coarse sand 32- 44.....Sand 180- 220......Sand 44- 58.....Clay 220- 255.....Sand 58- 78.....Clay 255- 270.....Sand and gravel 78- 96.....Gravel 270- 310..... Sand and gravel 96-100..... Sand and clay 310- 370......Coarse sand and gravel 100-106.....Sand and gravel 370- 390......Sand and gravel 106-110.....Sand 390- 400......Sandy shale 110-125......Clay 400- 440......Sand 125-145......Clay 400- 450.....Fine sand 145-172.....Clay 450- 500......Fine sand and gravel 172-194......Clay 500- 510.....Shale, sand and gravel 194-200......Sand 510- 520......Sand 200-206.....Sand and gravel 520- 540......Sand and gravel 206-217.....Sand and gravel 540- 580......Fine sand 217-230......Sand and gravel 580- 610.....Sand 230-234......Sand and gravel 610- 620.....Fine sand and gravel 234-236......Clay 620- 630.....Sand and gravel 236-238......Clay 630- 640.....Sand 238-240.....Sand 640- 660.....Sand and gravel 240-242......Clay 660- 670.....Fine sand and gravel 242-282......Clay 670- 680......Shale and gravel 282-284......Sand 680-1014......Sand and gravel 284-298.........Clay 1014-1070......Clay 298-300.....Sand and gravel 1070-1100......Sand 300-322.....Sand 1100-1280.....Shale

IN/R22W-20H6

Depth in feet.

Chemica, analyses of waters from selected wells on or near Point Mugu and Port Hueneme, California. Data from Page, 1963. (Constituents (in parts per million). The sum of determined con stituents is the sum of the constituents analyzed except for bicarbonate which is divided by .0.1 (Collins, 1928, p. 253). All values have been rounded where necessary to conform to the standards of the Geological Survey. Analyzing laboratory DA, U.S. Dept. of Agriculture; DWR, California Dept. Water Resources; F. Fruit Grovers Association; GS. Geol. Survey. N. U.S. Navy: U. United Water Conservation District. Table A IV.

	Anolyzing Capodol on on on on one one one one one one one	Depth (ft)	Dat	8	Date collected	Temp (°F)	Silica (SiO ₂	(Fe)	Calcium (Ca)	Magnesium (M	(oN) muibo2	Potossium(K	Bicorbonote (HCO3)	Corbonote (EOD)	Sulfote(SO ₄)	Chloride (CI)	Fluoride (F)	(¿ON) stortiN	Boron (B)	Dissolved spilos	Sum of defermined structurents	muibos %	£	
IN/21-27F1	F-2128	840			1932	1	-	-	72	100	1 295		431		292	25	13			- 1 430	-	-	0	
	F9369-5	1	July	27.	1949	1	1	1	72	20	278		707	7	74	3	12	-	-				7	
1862	Į4,	370	Feb.	6	1927	1	1	1	138	59	1 93		107	-	163	20	206		-	- 1 060	_	28	00	
	F-7890	-	May	14	1947	1	1	:	135	6.3	1115		305		351	-	1	-	0 33	-				
2901	F-7865	570	Apr.		1947	1	1	1	112	30	76	12	267	C	317	7	0.7		2	:		_		
2902	4031A	602			1957	1	1	-	120	37	1 97		287	1	358	7	42	-	9					
2981	F-182A	205			1960	1	1	-	160	67	333	17	307	-	535	7	30	-	. !	_	-			
	F-3432A	1		_	1956	1	1	-	1115	39	1 99		380	-	328		54		- 47		4	_		
3131	GS-25033	909	Jan.	7.	1958	75	43	0	86	39	96	5.7	266	0	250	. •	68 0.3	3	07. 0	747		-	_	
311.1	F-8096	750	Feb.	_	6761	1	1	1	74	38	136	7	332	1	198							_	-	
	GS-25032	1	Jan.		1958	1	77	1	98	37	96	5.7	290	0	240	41	52	3 1.	3 .49		_		-	
32A1	GS-28199	750	Oct.	23.	1958	-	99	1	86	42	182	9.9	-	0	261	15	192		9	-			-	
3261	F-8316	434	Feb.	6	1948	1	!	1	118	37	1 92	1	231	2	333	4	7		.3		767	3		
	GS-25030	1		7.	1958	69	39	0	162	42	66	6.9	274	0	355	14	071	3	9. 9	_	_		-	
32K1	F-8317	622		6	1948	1	1	1	96	43	117	-	254	1	333		89		- 30	0 905	_	-	-	
	GS-25031		Jan.		1958	1	39	0	108	38	96	5.6	_	0	293			3 2.	2 .57		_		-	
IN/22-26A1	DA-4031	236		_	1931	1	1	1	122	38	1 84	-	353	-	362	7	41		54	-	-		-	
	F-9196	1	May	2	6761	I	1	1	125	7	06		255	-	361	7	77	-	-	506				
	F-3431A	-	Oct.	16.	1956	1	1	1	128	32	100	-	263		365	7	42	-	67	9 930	_		-	
28A1	F-9193	-	May	5	6961	-	I	1	147	77	121		255	-	067	2	9	-	79		_	32		
	F-4033A			24.	1957	I	T	1	119	39	76	-	280	-	358	7	07	-	99	5 930	_		-	
2881		230		80	1958	T	1	1	370	137	182	-	241	-	463	850	0	-	-	-	7			
29A2	DWR-1900		Mar.	9	1933	-	1	1	126	77	86	-	245	-	707	5	52	-	- 6.		_	3.1		
	U-7808		Mar.	31	1947	1	1	1	121	17	88	7	253	0	395	7	42	۳	. 52				-	
36K1	U-1960	186	Apr.	m	1933	-	-	-	119	36	95	-	275	0	353	4	05	-	- ا			_	-	
	F-9195	1	May	\$	1949	T	-	1	119	32	76 ,		265		335	4	5	-	-			32		
*	F-4048A		Oct.	28.	1957	T	1	T	154	36	711		265	-	331	162	2		60	-		3	-	
IS/21-4E1		350	July		1949	T	T	1	125	21	229	-	279	67	385	307	7	- Trace	-	1,420	_	67	-	
*	GS-24811 ²	1	Jan.	10	1958	T	8.2	13	720	75	,380	65	105	0	1110	11.600	2	_	9 1 0	20 300	0			
6F1	CS-24808	320	Jan.	10,	1958	T	İ	1	1	Ť	-	-	254	4		6		-			3	2 1	9	
								-		-														
1/21-4E1 (b	*IS/21-4El (below packer)							-		-														
**							_	-										_	_					

Potassium included 2 CO2, 66ppm

APPENDIX II-B.

TWENTYNINE PALMS SITE

Table BI.	Locations of wells on or near the Marine Corps	
	Training Center, Twentynine Palms, California	B- 1A- 3
Table BII.	Water level measurements of wells on or near	
	the Marine Corps Training Center, Twentynine	
	Palms, California	B- 4B-11
Table BIII.	Logs of wells on or near the Marine Corps Train-	
	ing Center, Twentynine Palms, California	B-12B-23
Table BIV.	Chemical analyses of water from wells on or	
	near the Marine Corps Training Center, Twenty-	
	nine Palms, California	B-24B-32

Table BI. Locations of wells on or near the Marine Corps Training Center, Twentynine Palms, California.

State Well Number	Date of Observation	Depth (ft.)	Temp. (F)	L WA	WL
1N/7E-14N1*	6-3-58	450		X	X
1N/8E-1B1*	1959-60				X
1N/8E-12G1*	1960	420			X
1N/9E-4N1*	1959-60	500			X
1N/9E-4N3*	4-4-58	500	64	X	X
1N/9E-5G1*	4-8-58	500		Х	X
1N/9E-5H1*	1959-60	93.8			X
1N/9E-5Q2*	1959-60	184			Х
1N/9E-7H1*	1959-60	110			х
1N/9E-9M2*	1959-60	61.5			X
1N/9E-16D1*	1959-60	96			X
1N/9E-16H3*	1959-60	153.9			X
1N/9E-17E1*	1959-60	133			X
2N/6E-12R1	1-28-53	194			
	11-11-60	15			
2N/7E-2C1	11-9-60	400	93	хх	X
2N/7E-3A1	11-9-60	560	84	хх	X
2N/7E-3B1	11-9-60	700	82	хх	X
2N/7E-4H1	11-9-60	500	80	хх	X
2N/7E-14K1	11-9-60	644	96	хх	X
2N/8E-11B1	11-10-60	1	71	X	X
2N/8E-13A1	4-26-52	154.3			
	11-10-60	152.7			
2N/8E-24H1	11-9-60	320	85	хх	X

2N/8E-26J1*	1959-60	105		
2N/8E-32K1*	1939-00	185		X
		414		
2N/8E-32R1*		414		
2N/9E-19D1	4-26-52	146		
	11-9-60	120.3		
2N/9E-30P2*	1959-60	55.8		x
3N/6E-3N1	5-8-52	133.9		
	2-24-53	132		
	11-11-60	131.8		
3N/6E-4L1	11-11-60	137		x
3N/6E-4L2	5-8-52	76		
	11-11-60	64.4		
3N/6E-4P1	5-8-52	132		X
	11-11-60	125.3		
3N/6E-35N1	1-27-53			
	11-11-60			
3N/7E-13N1	11-9-60	188.5	83	ххх
3N/7E-18D1	11-11-60	384.5	74	ххх
3N/7E-31E1	11-11-60	430	78	ххх
3N/7E-35L1	11-9-60	0		х
3N/7E-35P1	11-9-60	16		X: X
3N/7E-35P2		605		X
3N/8E-17L1	11-10-60	512	83	ххх
3N/8E-29C1	11-9-60	800	85	ххх
3N/8E-29L1	11-9-60	600	79	ххх
3N/8E-33B1	11-9-60	526	72	ххх

3N/8E-34D1	4-26-52	400	74	хх
	11-9-60	400	-1-	
4N/6E-18F1	11-1-53	39.1		X
	11-11-60	2		
4N/6E-27C1	5-8-52	63.1	<u></u>	
	1-29-53	63.1		Х
	11-11-60	57.5		
4N/6E-27C2	6-23-54	73.5		
	11-11-60	5		
4N/6E-27D1	4-30-52	80.2		
	1-29-53	80.2		х
	11-11-60	80		
4N/6E-27F1	5 - 8-52	182.3		
	1-29-53	182.3		Х
	11-11-60	182.3		
4N/6E-27M1	1-29-53			х
	11-11-60	150		
4N/6E-28R1	5-8-52	150		
	1-29-53	150		
	11-11-60	133.5		
4N/6E-34E1	11-11-60	116.7		
5N/6E-3N1	11-11-60	40		

^{*}Outside the Marine Reserve Boundaries

[#] L: Log included.
WA: Water analysis included.
WL: Water levels included.

Table B II. Water-level measurements of wells on or near the Marine Corps Training Center, Twentynine Palms, California
IN/8-1B1. Royer. Altitude 1,903 ft.

	Date		Water Level		Dat	e	Water Level		Date	2	Water Level
July		1959	125.06	Nov.	7	, 1959	125.29	Man	2	1000	
Aug.	12		125.20	Dec.			125.34	Mar.		1960	125.19
Sept.	. 9		125.24	Jan.		, 1960	125.25	Apr.			125.2
Oct.	6		125.25	Feb.			125.23	May June	3		125.24
	IN/8	-12G1.	W. Hock	ett. D	epth	420 ft	. Altitu			t.	123.70
Sept.	9	1959	197.10								
Nov.	7	1///	197.10	Jan.		, 1960	197.2	Apr.	4,	1960	197.06
Dec.	J1		197.13	Feb. Mar.			197.30	May	3		197.02
			177.14	Mar.	2		197.11				
	IN/9	-4N1 (SW 1). U.	S. Nav	y. I	epth 50	00 ft. A	ltitude	1,78	6.8 ft	
July		1959	13.12	Nov.	7.	1959	13.15	Mar.		1000	10.05
Aug.	12		13.80	Dec.	10		13.15			1960	13.07
Sept.	9		13.79	Jan.		1960	13.10	Apr.	3		13.05
Oct.	6		13.25	Feb.	1	1700	13.31	May June	3 6		b13.66 b13.70
	IN/9-	-4N3.	U.S. Navy	. Dept	h ab	out 500	ft. Alt			1,787	
Nov.	13,	1946	11.62	Nov.	27	1953	16.19				
Feb.	13,	1952	11.84	Apr.		1954		Jan.		1957	12.98
Nov.		1952	13.10	Dec.		1955	23.50	Apr.	26		12.79
lay		1953	15.10	Apr.	-	1956	12.57 12.58	Dec.	18	1050	12.91
								Apr.		1958	12.83
	LN/9-	5G1 (S	W 2). U.	S. Navy	. D	epth 50	0 ft. Al	titude	1,779	.2 ft.	
Tuly		1959	5.32	Dec.	9,	1959	6.00	Mar.	2	1960	6 01
ct.	6		5.40	Jan.		1960	6.21	Apr.		1 300	6.24
lov.	7		5.30	Feb.	1		ь7.12	May	3		6.14 a52.9
1	N/9-	502.	W. Single	ton. D	epth	148 ft.	Altitu	de 1,80			
uly	7,	1959	28.91	Nov.	7	1959	20.07				
	12		29.02	Dec.	9	¥7J7	29.07	Mar.	2,	1960	28.73
ept.	9		29.15	Jan.		1060	28.96	Apr.	3		28.70
ct.	6		29.11	Feb.	1	1960	28.86 28.81	May	3		28.76
	_			ren.				Jun3	6		28.95

	Date		Water Level		Date		Water Level		Date		Wat	
	IN/9	-5R1.			epth 9	3.8 ft 6; Ma	. Altitude y 3, 19.45.	1,78	8.8 f	t. Mar.	2,	1960
	IN/9	-7Hl.	Paul Ca	rson. l	Depth	110 ft	. Altitude	1,843	3.3 f	t.		
July	7,	1959	69.53	Nov	7.	1959	69.22	Mar.	2	1960	60	.48
Aug.	12		69.65				69.55	Apr.	3	1700		.50
Sept.	. 9		a69.77	Jan	4.	1960	69.56	May	3			.59
Oct.	6		69.81	Feb			69.55	June	6			.67
	IN/9	-9M2.	Head.	Formerly	Tayl	or. De	pth 61.5 ft	. Alt	itud	e 1,810	.0 f	t.
July	7,	1959	38.11	Nov	7.	1959	38.20	Mar.	2.	1960	3.7	.99
Aug.	12		38.60	Dec.			38.15	Apr.	3			.98
Sept.	9		38.44	Jan	4.	1960	38.17	May	3			.94
Oct.	16		38.35				38.01	June	6			.15
	IN/9	-16D1	. United	. Depth	96 f	t. Al	titude 1,81	2.9 ft				
July	7,	1959	a44.65	Nov.	7,	1959	40.30	Mar.	2.	1960	b45	.83
Aug.	12		40.25	Dec.			a48.95	Apr.	3	_,,,,		.28
Sept.	9		a42.02	Jan.	4.	1960	ъ45.85	May	3		a55	
	-											
Oct.	6		a46.90	Feb.	1		45.14	June	6		a53	.57
Oct.		-16н3				153.9	45.14 ft. Altitud	June		t.		.57
July	IN/9-	-16Н3 1959		hells.	Depth		ft. Altitud	June le 1,7	77 f		a53	
July	IN/9-		. G. Mic	hells.	Depth	153.9 1959 1960	ft. Altitud	June de 1,7 Mar.	777 f	t. 1960	a53	.94
July	IN/9-		. G. Mic	hells.	Depth 10, 5,	1959	ft. Altitud	June de 1,7 Mar. Apr.	777 f		10 10	.94
July	IN/9-		. G. Mic 12.08 11.43	hells. Dec. Jan.	Depth 10, 5,	1959	ft. Altitud	June de 1,7 Mar.	777 f		10 10	.94
July Aug. Sept.	7, 12 9 6		. G. Mic 12.08 11.43 12.31 11.17	Dec. Jan. Feb.	Depth 10, 5, 1	1959 1960	ft. Altitud	June de 1,7 Mar. Apr. May	277 f		10 10	.94
July Aug. Sept. Oct.	7, 12 9 6 IN/9-	1959 -17E1	. G. Mic 12.08 11.43 12.31 11.17 . Barry.	Dec. Jan. Feb.	Depth 10, 5, 1	1959 1960	11.37 11.16 11.03	June de 1,7 Mar. Apr. May	277 f	1960	10 10 11	.94 .97 .08
July Aug. Sept. Oct. July Aug.	7, 12 9 6 IN/9-	1959 -17E1	. G. Mic 12.08 11.43 12.31 11.17 . Barry. 108.12 108.20	Dec. Jan. Feb.	Depth 10, 5, 1	1959 1960	ft. Altitud 11.37 11.16 11.03 titude 1,882	June de 1,7 Mar. Apr. May 2.7 ft	2,77 f 2, 3 4		10 10 11	.94 .97 .08
July Aug. Sept. Oct. July Aug. Sept.	7, 12 9 6 IN/9- 7, 12 9	1959 -17E1	. G. Mic 12.08 11.43 12.31 11.17 . Barry.	Dec. Jan. Feb. Depth	Depth 10, 5, 1 133 f	1959 1960	ft. Altitude 11.37 11.16 11.03 titude 1,882	June de 1,7 Mar. Apr. May 2.7 ft Mar. Apr.	2,77 f 2,3 4	1960	100 100 111 108 108	.94 .97 .08
July Aug. Sept. Oct. July Aug.	7, 12 9 6 IN/9-	1959 -17E1	. G. Mic 12.08 11.43 12.31 11.17 . Barry. 108.12 108.20	Dec. Jan. Feb. Depth Nov. Dec.	Depth 10, 5, 1 133 f	1959 1960 t. Al:	ft. Altitude 1.37 11.16 11.03 titude 1,882 108.26 108.22	June de 1,7 Mar. Apr. May 2.7 ft	2,77 f 2, 3 4	1960	10 10 11	.94 .97 .08
July Aug. Sept. Oct. July Aug. Sept. Oct.	7, 12 9 6 IN/9- 7, 12 9	1959 -17E1 1959	. G. Mic 12.08 11.43 12.31 11.17 . Barry. 108.12 108.20 108.24	Dec. Jan. Feb. Depth Nov. Dec. Jan. Feb.	Depth 10, 5, 1 133 f 7, 10 4, 1	1959 1960 t. Al: 1959 1960	ft. Altitude 1.37 11.16 11.03 titude 1,882 108.26 108.22 108.18	June de 1,7 Mar. Apr. May 2.7 ft Mar. Apr. May	2,77 f 2, 3 4	1960	10 10 11 108 108 108	.94 .97 .08
July Aug. Sept. Oct. July Aug. Sept. Oct.	IN/9- 7, 12 9 6 IN/9- 7, 12 9 6 2/7-2	1959 -17E1 1959	. G. Mic 12.08 11.43 12.31 11.17 . Barry. 108.12 108.20 108.24 108.25 Altitude a25.44	Dec. Jan. Feb. Depth Nov. Dec. Jan. Feb.	Depth 10, 5, 1 133 f 7, 10 4, 1 ft.	1959 1960 t. Al: 1959 1960	ft. Altitude 1.37 11.16 11.03 titude 1,882 108.26 108.22 108.18 108.19	June de 1,7 Mar. Apr. May 2.7 ft Mar. Apr. May	2,77 f 2,3 4 2,4 3,6	1960	10 10 11 108 108 108	.94 .97 .08
July Aug. Sept. Oct. July Aug. Sept. Oct.	IN/9- 7, 12 9 6 IN/9- 7, 12 9 6 2/7-2	1959 -17E1 1959	. G. Mic 12.08 11.43 12.31 11.17 . Barry. 108.12 108.20 108.24 108.25 Altitude a25.44 25.50	Dec. Jan. Feb. Depth Nov. Dec. Jan. Feb.	Depth 10, 5, 1 133 f 7, 10 4, 1 ft.	1959 1960 t. Al: 1959 1960	ft. Altitude 1.37 11.16 11.03 titude 1,882 108.26 108.22 108.18 108.19 400 ft.	June de 1,7 Mar. Apr. May 2.7 ft Mar. Apr. May June	2,77 f 2,3 4 2,4 3,6	1960	100 100 111 108 108 108 108	.94 .97 .08 .03 .18 .23 .50
July Aug. Sept. Oct. July Aug. Sept. July Aug. Sept. Oct.	7, 12 9 6 IN/9- 7, 12 9 6 2/7-2 21, 8 10	1959 -17E1 1959	. G. Mic 12.08 11.43 12.31 11.17 . Barry. 108.12 108.20 108.24 108.25 Altitude a25.44 25.50 25.61	Dec. Jan. Feb. Depth Nov. Dec. Jan. Feb.	Depth 10, 5, 1 133 f 7, 10 4, 1 ft.	1959 1960 t. Al: 1959 1960	ft. Altitude 1.37 11.16 11.03 titude 1,882 108.26 108.22 108.18 108.19 400 ft. c26.73	June de 1,7 Mar. Apr. May 2.7 ft Mar. Apr. May June	2, 3 4 2, 4 3 6	1960	100 100 111 108 108 108 108	.94 .97 .08 .03 .18 .23 .50
July Aug. Sept. Oct. July Aug. Sept. Oct.	7, 12 9 6 IN/9- 7, 12 9 6 2/7-2 21, 8 10 2	1959 -17E1 1959 2C1.	. G. Mic 12.08 11.43 12.31 11.17 . Barry. 108.12 108.20 108.24 108.25 Altitude a25.44 25.50 25.61 25.55	Dec. Jan. Feb. Depth Nov. Dec. Jan. Feb.	Depth 10, 5, 1 133 f 7, 10 4, 1 ft. 10, 15	1959 1960 t. Al: 1959 1960	ft. Altitude 1.37 11.16 11.03	June de 1,7 Mar. Apr. May 2.7 ft Mar. Apr. My June	2,77 f 2,3 4 2,4 3,6 12,30	1960	100 100 111 108 108 108 108 c28 c29 c28	.94 .97 .08 .03 .18 .23 .50
July Aug. Sept. Oct. July Aug. Sept. Oct. July Apr. July Sept. Oct. July	7, 12 9 6 IN/9- 7, 12 9 6 2/7-2 21, 8 10 2	1959 -17E1 1959	. G. Mic 12.08 11.43 12.31 11.17 . Barry. 108.12 108.20 108.24 108.25 Altitude a25.44 25.50 25.61 25.55 25.29	Dec. Jan. Feb. Depth Nov. Dec. Jan. Feb.	Depth 10, 5, 1 133 f 7, 10 4, 1 ft. 10, 15 20	1959 1960 t. Al: 1959 1960	ft. Altitude 1.37 11.16 11.03 titude 1,882 108.26 108.22 108.18 108.19 400 ft. c26.73 c26.54 c26.44	June de 1,7 Mar. Apr. May 2.7 ft Mar. Apr. My June	2, 3 4 2, 3 4 2, 3 6 12, 30 4	1960	10 10 10 11 108 108 108 108 c29 c28 c29	.94 .97 .08 .03 .18 .23 .50
July Aug. Sept. Oct. July Aug. Sept. Oct.	7, 12 9 6 IN/9- 7, 12 9 6 2/7-2 21, 8 10 2 29, 3	1959 -17E1 1959 2C1.	. G. Mic 12.08 11.43 12.31 11.17 . Barry. 108.12 108.20 108.24 108.25 Altitude a25.44 25.50 25.61 25.55	Dec. Jan. Feb. Depth Nov. Dec. Jan. Feb.	Depth 10, 5, 1 133 f 7, 10 4, 1 ft. 10, 15 20 31	1959 1960 t. Al: 1959 1960	11.37 11.16 11.03 titude 1,882 108.26 108.22 108.18 108.19 400 ft. c26.73 c26.54 c26.44 a26.33 26.24	June de 1,7 Mar. Apr. May 2.7 ft Mar. Apr. May June June	277 f 2, 3 4 2, 4 3 6 12, 30 4 18 29	1960	10 10 10 11 108 108 108 108 c28 c29 c28 c29 c29	.94 .97 .08 .03 .18 .23 .50
July Aug. Sept. Oct. July Aug. Sept. Oct. Apr. July Sept. Oct. July Feb.	7, 12 9 6 IN/9- 7, 12 9 6 2/7-2 21, 8 10 2 29, 3 20	1959 -17E1 1959 2C1.	. G. Mic 12.08 11.43 12.31 11.17 . Barry. 108.12 108.20 108.24 108.25 Altitude a25.44 25.50 25.61 25.55 25.29	Dec. Jan. Feb. Depth Nov. Dec. Jan. Feb.	Depth 10, 5, 1 133 f 7, 10 4, 1 ft. 10, 15 20 31 16 30	1959 1960 t. Al: 1959 1960	11.37 11.16 11.03 titude 1,882 108.26 108.22 108.18 108.19 400 ft. c26.73 c26.54 c26.44 a26.33 26.24	June de 1,7 Mar. Apr. May 2.7 ft Mar. Apr. May June June July Aug.	2, 3 4 2, 3 4 3 6 12, 30 4 18 29 15	1960	100 101 108 108 108 108 108 108 229 c29 c29 c29	.94 .97 .08 .03 .18 .23 .50 .83 .13 .95 .66
July Aug. Sept. Oct. July Aug. Sept. Oct. July Apr. July Sept. Oct. July	7, 12 9 6 IN/9- 7, 12 9 6 2/7-2 21, 8 10 2 29, 3	1959 -17E1 1959 2C1.	. G. Mic 12.08 11.43 12.31 11.17 . Barry. 108.12 108.20 108.24 108.25 Altitude a25.44 25.50 25.61 25.55 25.29 b26.50	Dec. Jan. Feb. Depth Nov. Dec. Jan. Feb. 2,272.1 May	Depth 10, 5, 1 133 f 7, 10 4, 1 ft. 10, 15 20 31 16 30	1959 1960 t. Al: 1959 1960	ft. Altitude 1.37 11.16 11.03 11.16 11.03	June de 1,7 Mar. Apr. May 2.7 ft Mar. Apr. May June June	2, 3 4 2, 3 4 3 6 12, 30 4 18 29 15 1	1960	100 100 111 108 108 108 108 108 229 c29 c29 c29 c29 c29 c29	.94 .97 .08 .03 .18 .23 .50 .83 .13 .95 .66 .95
July Aug. Sept. Oct. July Aug. Sept. Oct. Apr. July Sept. Oct. July Feb.	7, 12 9 6 IN/9- 7, 12 9 6 2/7-2 21, 8 10 2 29, 3 20	1959 -17E1 1959 2C1.	. G. Mic 12.08 11.43 12.31 11.17 . Barry. 108.12 108.20 108.24 108.25 Altitude a25.44 25.50 25.61 25.55 25.29 b26.50 25.80	Dec. Jan. Feb. Depth Nov. Dec. Jan. Feb. 2,272.1 May	Depth 10, 5, 1 133 f 7, 10 4, 1 ft. 10, 15 20 31 16 30 10	1959 1960 t. Al: 1959 1960	ft. Altitude 1.37 11.16 11.03 titude 1.882 108.26 108.22 108.18 108.19 400 ft. c26.73 c26.54 c26.44 a26.33 26.24 c27.13 c27.38	June de 1,7 Mar. Apr. May 2.7 ft Mar. Apr. May June June July Aug.	2, 3 4 2, 3 4 3 6 12, 30 4 18 29 15	1960	100 101 108 108 108 108 108 108 229 c29 c29 c29	.94 .97 .08 .03 .18 .23 .50 .83 .13 .95 .66 .95 .45

Table B II cont.

June	25		25.41	A	24		20.00				
July	15		c25.46	Aug.	24		c28.26	Nov.	30		c31.80
July	31		c25.50	Sept			c28.20	Dec.	2		c31.45
Aug.	5		c25.51		8		c28.17		31		c32.65
Aug.	10		c25.60		11		c28.40	Jan.	19,	1956	c33.40
	14				15		c28.10		22		c32.85
	24		c25.74	0 +	24		c27.85	Feb.	4		c32.23
	30		c25.65	Oct.	1		c27.65		12		c32.80
Cont			c25.79		9		c27.45		20		c32.10
Sept.			c25.88		15		c27.48	Mar.	1		c32.48
	20		c25.94		21		c27.77		16		c33.15
0-4	30		c25.99	Nov.	1		c27.43	Apr.	9		c32.55
Oct.	10		c26.05		15		c27.24		20		c33.15
	20		a25.98		25		c27.14	May	1		c33.35
	30		c26.10		3 0		c27.31		16		c33.34
Nov.	10		c26.15	Dec.	8		c27.57	June	30		c34.59
	20		c26.21		13		c27.62	July	4		c34.60
	30		c26.04		19		c27.88		20		c35.23
Dec.	11		c26.35	Jan.	1,	195 5	c27.89	Aug.	5		c35.32
	20		c26.12		11		c28.02		31		c36.70
	27		c26.01		16		c27.78	Sept.	9		c35.98
Jan.	3,	1954	c26.40		31		c27.63		28		c38.48
	22		c26.01	Feb.	14		c27.80	Oct.	5		c36.42
Feb.	4		c25.92		28		c27.80		20		c35.81
	19		c26.28	Mar.	15		c28.00	Nov.	7		c35.40
Mar.	3		c26.35		23		c27.86		25		c35.80
	10		c26.28		31		c28.00	Dec.	5		c35.97
	20		c26.27	Apr.	15		c28.25		21		c35.84
	31		c26.50		30		c28.41	Jan.	10,	1957	c34.78
Apr.	10		c26.54	May	15		c28.66		24		c34.68
	19		c26.50		31		c28.74	Feb.	8		c35.03
	20		c26.62								233.03
Mar.	5,	1957	c35.69	Jan.	10,	1958	37.37	Feb.	6,	1959	38.74
Apr.	3		c35.66		17		c37.36	Mar.	12		38.73
May	7		c38.43	Feb.	9		c36.86	Apr.	7		38.94
June	6		c36.22		10		36.97	May	11		39.54
July	5		36.68		29		c37.17	June	10		39.81
	10		c36.56	Mar.	9		c36.86	July	7		39.98
Aug.	3		c37.15		11		36.80	Aug.	12		40.80
	6		37.12		21		c37.09	Sept.	9		41.11
	23		c37.65	Apr.	9		c36.77	Oct.	6		41.21
Sept.	3		c36.89		15		37.00	Nov.	7		41.15
	9		37.01	May	14		37.22	Dec.	9		41.09
	10		c36.94		26		c36.98	Jan.	5,	1960	40.63
Oct.	4		c37.65	June	13		c37.44	Feb.	2	1900	41.15
	7		37.47		14		38.09	Mar.	2		
	18		c37.78	July	15		37.97	Apr.	4		41.32
Nov.	6		c37.17	Aug.	12		38.40	May	4		41.71
	7		37.24	Sept.			38.74				41.94
	11		c37.28	Oct.	8		38.97	June	7 8		42.63
	-		20,120	006.	9		30.37	July	O		43.81

Dec.	6		c37.96	Nov.	6		39.05	Aug.	9	43.20
	9		37.97	Dec.	4		38.54			43.34
	12		c38.02	Jan.	6,	1959	38.30	Oct.		43.27
Jan.	8,	1958	c37.24					Nov.	9	43.19

- a. Measurement by W. O. Wagner.b. Nearby well being pumped.c. Selected from recorder charts.

	2/7-	3A1.	Altitude	2,300.9	ft.	Depth	560 ft.				
Feb.	1,	1953	c84.26	Feb.	22,	1955	56.98	Aug.	6,	1957	e69.03
	5		55.49	Mar.	16		d57.18	Sept.	9		67.50
	13		55.02	Apr.	16		57.34	Oct.	7		e69.00
	20		54.87	May	17		57.96	Nov.	7		67.16
Mar.	27		54.55	June	17		58.04	Dec.	9		e70.39
May	2		54.44	July	21		e59.50	Jan.	10.	1958	e68.46
	30		54.39	Aug.	25		58.24	Feb.	10		66.92
June	25		54.41	Sept.	. 23		57.51	Mar.	11		66.47
Aug.	6		54.50	Oct.	17		d72.90	Apr.	15		e68.50
Sept.	9		55.65	Nov.	23		d78.52	June	14		e67.96
Dec.	23		55.09	Dec.	22		d77.06	July	14		67.66
Jan.	22,	1954	55.00	Jan.	24,	1956	62.20	Aug.	12		e70.19
Mar.	2		55.36	Mar.	1		62.29	Oct.	8		e69.66
	30		56.73	Apr.	4		62.53	Jan.	6.	1959	68.69
	31		55.59	June	5		e64.64	Feb.	6		e70.00
May	3		57.28	July	3		e65.83	Mar.	12		68.44
	4		55.77	Sept.	6		e67.52	May	11		e70.94
June	25		55.72	Oct.	5		e68.20	June	10		e70.31
July	21		d72.13	Nov.	7		e67.37	July	7		69.87
	22		56.87	Dec.	4		65.64	Sept.	9		e72.73
Aug.	23		d72.48	Jan.	10,	1957	64.15	Nov.	7		71.01
	24		57.74	Feb.	8		64.63	Jan.	4,	1960	e72.14
Sept.	24		57.03	Mar.	6		65.37	Mar.	2		e72.48
Nov.	20,	1954	56.21	May	8		65.68	Apr.	4		e73.31
Dec.	21		57.29	June	6		e68.77	May	4		71.87

- d. Well being pumped.e. Pumped recently.

	2/7-3B1.	Altitude	2,355.3	ft.	Depth	700 ft.				
Jan.	10, 1953	104.68	Jan.	21,	1955	106.64	Aug.	6,	1957	el19.13
	14	d155.75	Mar.	16		105.14	Sept.	•		el16.67
	12	104.87	Apr.	15		106.81	Oct.	7		el16.58
Feb.	20	104.77	May	17		106.50	Nov.	7		113.49
Mar.	27	104.67	June	17		106.46	Dec.	9		111.73
May	2	104.68	July	21		107.34	Jan.	10.	1958	111.12
	30	104.69	Aug.	25		107.83		11		111.10
June	25	104.70	Sept.	23		108.60	Mar.	11		112.69

	Date		Water Level		Date		Water Level		Date		Water Level
July	9		104.69	Oct.	18		107.69	Apr.	15		el16.12
Aug.	6		104.89	Nov.	23		107.50	May	14		111.22
Sept.			105.07	Dec.	22		107.68	June	14		113.47
Dec.	23		e106.49	Mar.	1,	1956	108.20	July	14		113.47
Mar.	2,	1954	105.72	Apr.	4		109.69	Dec.	4		
	30		e107.60	June	5		109.58	Jan.		1959	ь114.60
	31		105.77	July	3		109.84		6,	1939	113.39
May	3		e108.57	Aug.	4		110.51	Feb.	6		114.14
	4		105.78	Sept.			ell1.43	Mar.	12		el16.06
June	25		106.26	Oct.	5		-	Apr.	7		114.42
July	22		d140.6	Nov.	7		el14.30	July	7		el17.28
	23		107.00		,		110.21	Sept.	9		el19.44
Aug.	23		d138.52	Dec.	4		el18.C1	Nov.	7		el19.05
nug.	24			Jan.		1357	e119.25	Jan.	5,	1960	e123.93
Cant			e107.44	Feb.	8		111.19	Feb.	2		115.20
Sept.	24		d140.42	Mar.	5		el14.84	Mar.	2		114.96
Nov.	20		107.35	Apr.	4		b116.36	Apr.	4		el19.20
Dec.	21		d143.20	May	8		el18.19	May	4		e117.26
	22		e107.58	July	5		el16.62	Nov.	9		117.76

- b. Nearby well being pumped.d. Pumping.e. Pumped recently.

	2/7-	14K1.	Altitude	2,532.	l ft.	Depti	n 644 ft.				
Oct.		1952	334.1	Feb.	22,	1955	335.89	Oct.	7.	1957	336.71
Feb.		1953	334.49	Aug.	25		336.20	May	-	1958	336.81
Nat	30		334.58	Oct.	17		336.17	Oct.	8	1,50	336.98
Aug.	7		335.00	June	5,	1956	336.20	Apr.		1959	336.89
Mar.	3,	1954	335.4	Nov.			336.59	Mar.	-	1960	336.97
Aug.	23		335.63	Mar.	6,	1957	336.70	Nov.	9	1700	337.11
Jan.	21,	1955	335.63								557.11
	2/8-	11B1.	Altitude	about 1	,870	ft. D	epth 64.6	ft.			
Apr.		1952	35.52	Jan.	23,	1953	35.56	July	10	1953	35.64
May	28		35 .5 3	Feb.	20		35.53	Aug.	8	1733	35.64
July	7		35.58	Mar.	27		35.53	Sept.			35.71
Aug.	6		35.64	Apr.	30		35.52	Nov.	22		35.69
Oct.	4		35.62	May	29		35.57	Dec.	23		35.68
								Well de	stro	yed	
	2/8-2	24H1.	Altitude	1,856.2	ft.	Depth	320 ft.				
Mar.	6,	1952	180.16	Mar.	16.	1955	80.62	Nov.	7	1957	91 02
May	28		80.19	Apr.	16		80.64	Dec.	9	1931	81.03
July	7		80.22	May	19		80.64	Jan.	_	1958	80.96
Aug.	6		80.23	June	17		80.61	Feb.	10,	1970	80.95 80.98

	Date		Water Level		Date		Water Level		Date		Water Level
Oct.	2		80.33	July	21		80.68	Apr.	15		80.94
	3		80.28	Aug.	24		80.66	May	14		80.97
	4		80.24	Sept.	23		80.67	June	14		80.98
	23		80.25	Oct.	17		80.66	July	14		81.01
	31		80.24	Nov.	23		80.77	Aug.	12		81.02
Jan.	23,	1953	80.38	Dec.	21		80.73	Sept.			80.60
Feb.	18		80.38	Jan.	24,	1956	80.69	Oct.	8		81.07
Mar.	27		80.45	Mar.	1		80.77	Nov.	6		81.06
Apr.	30		80.46	Apr.	4		80.63	Dec.	4		80.98
May	29		80.47	May	1		80.74	Jan.	6,	1959	81.01
July	10		80.45	June	5		80.81	Mar.	12	-,,,	81.03
Aug.	8		80.50	July	2		80.85	Apr.	7		d86.67
Sept	. 11		80.55	Aug.	3		80.86	May	11		81.06
Nov.	22		80.56	Sept.	5		80.84	June	10		d85.39
Dec.	23		80.57	Oct.	5		80.86	Sept.			81.24
Jan.	19,	1954	80.48	Nov.	6		80.85	Dec.	9		e84.83
Mar.	31		80.55	Dec.	4		80.85	Jan.	5,	1960	81.23
May	5		80.53	Jan.	10,	1957	80.90	Feb.	2	2,00	81.19
June	24		80.63	Feb.	7		80.91	Mar.	2		81.14
July	23,	1954	80.59	Mar.	5		80.91	Apr.	4		81.19
Aug.	24		80.63	Apr.	3		80.85	May	4		81.14
Sept	. 24		80.61	May	7		80.85	June	7		81.85
Oct.	21		80.62	June	6		80.86	July	8		80.27
Nov.	20		80.63	July	5		80.88	Aug.	9		81.33
Dec.	22		80.61	Aug.	6		80.93	Sept.			81.39
Jan.	21,	1955	80.64	Sept.	9		80.91	Oct.	4		81.63
Feb.	22		80.59	Oct.	7		80.96	Nov.	9		81.36
	3/7-1	3N1.	Altitude	2,020.2	ft.	Depth	501 ft.				
Oct.	28,	1952	189.5	Dec.	2,	1952	189.40	June	25,	1954	189.43
	30		189.39		6		189.36	Oct.	21		189.44
Nov.	3		189.42	May	30,	1953	189.37	Jan.	21,	1955	189.43
	8		189.40	Aug.	6		189.36	June	17		189.45
	13		189.36	Dec.	23		189.45	Oct.	17		189.39
								Well	dest	royed	
	3/7-1	8D1.	Altitude	2,403.7	ft.	Depth	449 ft.				
July	8,	1952	146.75	Oct.	21,	1954	146.81	Oct.	7.	1957	146.83
Nov.	10		146.80	June		1955	146.83	May		1958	146.81
Feb.	22,	1953	146.66	Oct.	18		146.77	Oct.	8		146.83
Aug.	7		146.72	June	5,	1956	146.83	May		1960	146.97
Nov	21		146.76	Nov.	7		146.82	Nov.	11		146.94
		1954	146.77								

3/7-31E1. Altitude 2,514.3 ft. Depth 430 ft.

	Date		Water Level	I	ate		Water Level		Date		Water Level
July	8,	1952	249.96	June	17,	1955	249.76	Oct.	7,	1957	249.83
Jan.		1953	249.90	Oct.	18		249.79	May	14,	1958	249.87
May	30		249.55	June	5,	1956	249.79	Oct.	8		249.86
Aug.	7		249.72	Nov.	7		249.84	Mar.	4,	1960	249.89
Mar.		1954	249.85	Mar.	6,	1957	249.96	Nov.	11		249.83
Aug.	23		249.73								
	3/7-3	35L1.	Altitude	2,259.6	ft.	Depth	36 ft.				
July		1952	13.51	Apr.		1953	12.60	Aug.		1953	13.03
Jan.	23,	1953	12.70	May	30		12.57	Sept.			13.28
Feb.	20		12.90	June	25		12.64	Well	dest	royed	
Mar.	27		12.73	July	9		12.91			· 	
	3/8-	1711.	Altitude	1,850.4	ft.	Depth	512 ft.				
July	9,	1952	46.87	Apr.	15,	1955	47.12	Feb.	8,	1957	47.25
Oct.	30		46.85	May	17		47.19	Mar.	5		47.21
	31		46.84	June	17		47.21	Apr.	3		47.21
Nov.	7		46.86	Aug.	25		47.24	May	7		47.18
	13		46.85	Sept.	23		47.27	June	6		47.17
Dec.	2		46.88	Oct.	17		47.25	July	5		47.28
	8		46.93	Nov.	23		47.26	Aug.	6		47.29
	9		46.96	Dec.	22		47.23	Sept.			47.31
	12		46.97	Jan.	24,	1956	47.23	Oct.	7		47.36
Jan.	17,	1953	46.87	Mar.	1		47.31	Nov.	7		47.41
May	29		46.86	Apr.	4		47.26	Dec.	9		47.39
Aug.	6		46.91	May	2		47.26	Jan.	10,	1958	47.40
Dec.	23		46.98	June	5		47.28	Feb.	10		47.44
Jan.	22,	1954	47.05	July	3		47.28	May	14		47.50
Oct.	21		47.08	Aug.	3		47.30	June	14		47.54
Nov.	20		47.10	Oct.	5		47.31	July	14		47.60
Dec.	21		47.09	Nov.	7		47.26	Nov.	6		47.72
Jan.	21,	1955	47.14	Dec.	4		47.25	Mar.		1960	47.81
Feb.	22		47.10	Jan.	9,	1957	47.29	Nov.	10		47.93
Mar.	16		47.13								
	3/8-	29L1.	Altitude	1,905.7	ft.	Depth	600 ft.				
Dec.	13,	1952	d129.39	May		1955	d115.03	Nov.		1957	102.9
	14		102.27	June	17		102.68	Dec.	9	1000	e103.0
	15		102.20	July	21		102.51	Jan.		1958	102.8
Feb.	20,	1953	102.07	Sept.			102.75	Feb.	10		102.8
Mar.	27		102.04	Oct.	17		d113.18	Mar.	11		102.7
Apr.	30		102.03	Nov.	23		102.68	Apr.	15		e103.4
May	30		102.02	Dec.	22		102.58	June			e103.2
June	25		102.04	Jan.	24,	1956	102.55	Aug.	12		e104.5

	Date		Water Level		Date		Water Level	D	ate		Water Level
July	10		102.03	Apr.	4		102.53	Oct.	8		103.47
Aug.	8		102.04	May	2		102.44	Nov.	6		103.36
Nov.	22		e102.27	June	5		102.45	Dec.	4		103.30
Dec.	23		e102.28	July	3		102.47	Jan.		1959	103.38
Mar.	2,	1954	e102.29	Aug.	3		102.42	Apr.	7	1,,,,	103.42
	30		102.25	Sept.	6		102.43	May	11		e106.53
	31		102.26	Oct.	5		102.43	June	10		103.41
May	3		102.17	Nov.	6		102.66	Aug.		1959	103.40
	5		d112.20	Dec.	4		102.52	Sept.	9	-,,,	103.42
June	25		102.37	Jan.	10,	1957	102.47	Oct.	6		103.29
July	23		102.26	Feb.	7		102.43	Nov.	7		103.21
Aug.	23		102.23	Mar.	5		102.39	Dec.	9		103.18
Oct.	21		d113.82	Apr.	3		102.37	Jan.	5,	1960	103.15
Nov.	20		102.50	May	7		102.37	Feb.	2		103.14
Dec.	22		102.37	June	6		102.46	Mar.	2		103.08
Feb.	22,	1955	e102.43	July	5		102.76	Apr.	4		103.07
Mar.	16		102.42	Aug.	6		102.64	May	4		103.04
Apr.	16		102.41	Sept.	9		e103.01	July	8		103.24
May	17		102.53	Oct.	7		e102.95	Nov.	9		103.30

Table B III. Logs of wells on or near the Marine Corps Training Center, Twentynine Palms, California.

(Materials logged by the U.S.G.S., except as indicated.)

IN/7-14N1. U.S. Navy, formerly Twentynine Palms Air Academy. Altitude about 2,359 ft. Drilled by Mogle Bros. in 1943. 12-inch casing, perforated 386-425 ft.

	Thickness (feet)	Depth (feet)
Topsoil	16	16
Clay, stickyClay, black	66	82
Clay, sticky	10	92
Sand; water	294	386
Clay, sandy	39	425
	2.5	450
2/7-2C1. Altitude 2,272.1 ft. Drilled by Mogle Broscasing, perforated 149-152, 189-192, 239-259, 261-268, 271 Coment plug at 400 ft.	. in 1952. -305, and 2	10-inch 56-377 f
Sand, fine to very coarse, light-orange, soft, windblown	13	13

Sand Sim.		
Sand, fine to very coarse, light-orange, soft, windblown		
Gravel, fine to coarse, light-buff, to light-orange	13	13
arkosic, soft	6	19
Gravel, fine, and sand, fine to very coarse; arkosic, calcareous, soft, with small basalt pebbles	4	23
Clay, slightly sandy to silty, calcareous, micaceous,	1	24
light green-gray, hard	4	28
Gravel, fine, sandy, arkosic, soft; heaves up in well Clay, slightly sandy, silty, micaceous, calcareous,	5	33
Sand, fine to very coarse, slightly silty and clayey, micaceous, light buff, packed, very hard, except from 42 to 46 feet which is refer	3	36
42 to 46 feet which is soft and water-bearing Clay, sandy, silty, calcareous, light brown, hard to soft	12	48
filt, sandy, clayey, calcareous, micaceous, light	11	59
green-gray; compact and fairly hardand, coarse to very coarse, some silt, occasional pebbles; arkosic, light buff, compact and medium hard	8	67
and very fine to making all	4	71
and, very fine to medium, silty, clayey, buff, hard and, fine to very coarse, silty, clayey, micaceous, arkosic, slightly iron-stained, soft, water-	7	78
ravel, fine; and sand, medium to very coarse, arkosic,	10	. 88
micaceous, soft; water-bearing	5	93

	Thickness (feet)	Depth (feet)
2/7-2Cl. continued.		
Gravel, fine to medium; sand, coarse to very coarse;		
clayey, brown-gray, angular, soft; water-bearing Sand, coarse to very coarse; and gravel, fine;	3	96
arkosic, light buff, soft, water-bearingClay, sandy, calcareous, micacous, light yellow to	20	116
brown, hard	7	123
Sand, very fine to coarse, clayey, light yellow to	4	127
buff, hardSand, coarse to very coarse, some gravel, silty, clayey,	6	133
light orange, soft	14	147
brown, hardGravel, fine to coarse; and sand, coarse to very coarse; slightly silty, light buff, soft,	2	149
water-bearingSand, coarse to very coarse; and little gravel, in very thin laminae, silty, arkosic, light buff,	3	152
soft, water-bearing	37	189
227 feet; possibly a minor fault zone	50	239
few pebbles; arkosic, micaceous, light to dark buff, soft, water-bearing	10	249
to buff, soft water-bearingGravel, coarse to fine, sandy, cobbley, angula: to	7	256
well rounded gray-buff, soft, water-bearing	3	259
Sand, fine to very coarse, cemented, hard	2	261
water-bearing	7	268
micaceous, hard	2	270
Gravel, cemented, nonwater-bearing	1	271

	Thickness (feet)	Depth (feet)
2/7-2Cl. continued.		
Gravel, fine to coarse; sand, coarse to very coarse, layered; slightly iron-stained in upper few feet, but grading into a gray-buff to buff below, in part slightly silty, with a few calcareous sand-		
stone concretions, soft, water-bearing throughout Gravel, medium to coarse, only slightly sandy, arkosic, light gray to buff, soft, clean, quite well sorted,	31	302
soft, water-bearing	1	303
clay in colloidal suspension, poorly water-bearing Gravel, fine to coarse; and sand, very coarse; clayey, arkosic, light buff, medium soft, poorly	22	325
water-bearingSand, fine to very coarse, slightly silty, clayey, gravelly, light buff, medium soft, in part	3	328
water-bearingGravel, fine to coarse, silty to clayey, brown-gray to buff, soft; some	10	338
colloidal clay, water-bearing	3	341
356 feet	22	363
soft, water-bearing	4	367
bearing	33	400
2/7-3Al. Altitude 2,300.9 ft. Drilled by F.W. Walkersing 0-200 ft., 12-inch casing 200-560 ft. with bullnose packed 0-560 ft. Materials logged by driller.	er in 1953. e at 5 60 ft.	16-inch Gravel
Sand, hard "shells," and thin streaks of clay	20	20
Coarse sand and gravel, and thin "shells"	60	80
Cobbles and coarse sand	10	90
Sand and streaks of sandy clay	15	105
Sand and "shells"	25	130
dard "shells" and coarse sand	18	148
coarse sand	92	240
andy yellow clay, streaks of sand	20	260
and, "shells," and cobbles	35	295
ery hard "shells"	5	300
andy yellow clay, coarse sand, and "shells"	20	320
and and streaks of yellow sandy clay	42	362
lard "shells"		202

	Thickness (feet)	Depth (feet
2/7-3Al. continued		
Sand, cobbles, and thin "shells"	25	390
Coarse sand and cobbles		420
Coarse sand, cobbles, and "shells"	96	516
lard "shells"	4	520
Sand, thin "shells," and cobbles	40	560
Sand, and streaks of rellow sandy clay		590
and, and thin streaks of yellow sandy clay	95	685
and, cobbles and yellow sandy clay	15	700
oarse sand	60	760
lard packed sandy clay	10	770
coarse sand	30	800
a. "Shells" refers to thin cemented beds.		
2/7-14K1. Altitude 2,432.1 ft. Drilled by Mogle Br 0-inch casing, perforated 450-525, 538-548, 550-558 ft. et 644 ft.	Cement plug	
oil, sandy, loose, gray-brown	2	2
lay, fine to coarse sandy, very hard, red=brown;		
veinlets of calcium carbonate	32	34
and, fine to very coarse, clayey; some small		
(12-inch) pebbles; fairly hard, red-brown; color		
change to gray-brown and no clay present at 47		
feet	54	88
and, fine to medium, some very coarse; occasional		
cobbles to 3 inches; fairly soft, gray-brown	20	108
and, very fine to very coarse, hard, gray-brown;		
silty clay streaks from 108 to 112 feet, and		
generally more fine material from 122 to 160 feet	80	188
and, fine to very coarse, and gravel to 2 inches;		
soft, gray-brown	4	192
and, very fine to very coarse, clayey; streaks of		
very coarse sand and gravel to 1/2 inch; hard,		
gray-brown; some veinlets of white calcium		
carbonate	12	204
and, medium to coarse, and some very coarse, very		
hard, medium gray, fairly well sorted	12	216
inch; hard, gray-brown; streaks of very hard		
inch; hard, gray-brown; streaks of very hard silty fine sand from 216 to 220 feet; some gravel		
inch; hard, gray-brown; streaks of very hard silty fine sand from 216 to 220 feet; some gravel to 1 inch; softer from 230 to 240 feet	24	240
inch; hard, gray-brown; streaks of very hard silty fine sand from 216 to 220 feet; some gravel to 1 inch; softer from 230 to 240 feetand, fine to very coarse, and gravel and boulders	24	240
inch; hard, gray-brown; streaks of very hard silty fine sand from 216 to 220 feet; some gravel to 1 inch; softer from 230 to 240 feet	24	240
inch; hard, gray-brown; streaks of very hard silty fine sand from 216 to 220 feet; some gravel to 1 inch; softer from 230 to 240 feetand, fine to very coarse, and gravel and boulders larger than 5 inches; hard, gray-brown; calcium carbonate crystals (calcite) well developed in	24	240
inch; hard, gray-brown; streaks of very hard silty fine sand from 216 to 220 feet; some gravel to 1 inch; softer from 230 to 240 feetand, fine to very coarse, and gravel and boulders larger than 5 inches; hard, gray-brown; calcium	24	240 250
silty fine sand from 216 to 220 feet; some gravel to 1 inch; softer from 230 to 240 feet		

	Thickness (feet)	Depth (feet)
2/7-14K1. continued.	7200	Treet
Clay (interstitial); sand, mostly medium to very coarse, some fine to medium; and gravel, mostly fine, occasional cobbles; fairly soft; light		
Clay, very sandy, mostly fine to medium, a little	8	2 62
coarse, fairly soft, medium gray-brownSand, coarse to very coarse, with some clay;	4	266
fairly soft, light gray-brown	4	270
Sand, mostly coarse to very coarse; considerable gravel, very fine to medium; and some cobbles:	4	274
Sand, mostly medium, some fine and coarse; with a little very fine gravel; and much interstitial clay; rather hard; plastic and cohesive when wet; light gray-brown. Sand finer and gravel absent 298 to 308, 326 to 329, and 331 to 335 feet. Slight increase in clay, and gravel coarser	15	289
(fine to medium) 308 to 326 and 329 to 331 feet Sand, mostly medium to very coarse; and gravel, mostly very fine to medium, some cobbles to	46	335
2 inches; fairly soft, gray-brown	4	339
gray-brown	11	350
368 to 388 feet	38	388
and gravels alternating with clayey sands and gravels	6.1	440
0-4/015	61	449

	Thickness	Depth
2/7-14K1. continued	(feet)	(feet
Sand, mostly coarse to very coarse, some medium to coarse; and considerable gravel, mostly fine, some medium; contains some maroon basalt pebbles largely altered to clay; rather soft, yellowish-gray-brown, good water-bearing material. Drilling water continue milky. From 510 to 553 feet quantity and size of gravel varies slightly in beds 3 to 10 feet thick and drilling water somewhat more milky; occasional	es	
clay streaks 543 to 558 feet———————————————————————————————————	109	558
NOTE: Sand grains are predominantly quartz and feldspar, with minor amounts of biotite, magnetite, and granit minerals; subangular to subrounded. Gravel and cobbles largely gneiss and granitics, with few basalt and some metamorphic rocks; subrounded to rounded.	86 :1c	644
3/7-13N1. Altitude 2,020.2 ft. Drilled by Mogle Bros 0-inch casing, perforated 280-293, 305-317, 345-389, 416-4 50-460, and 480-487 ft.	. in 1952. 26,	
and, fine to coarse; occasionally silty, some thin lenses of caliche; some thin lenses of fine to medium gravel; buff to tan, soft. No real soil or soil profile; grains are fresh		
mostly fine to medium, some coarse, some cobbles up to 6 inches; medium to light grayish-brown, soft to hard due to compaction, no cemented grains found. Interbedded calcareous, whitish clay from 76 to 78 feet. Some cementation and large cobbles up to 8 inches from 85 to 86 feet.	18	18
nd, fine to coarse, mostly fine; and considerable clay and silt; gray-brown to brown, calcareous, hard	94	112
	4	116

	Thickness	Depth
2/7 1201	(feet)	(feet)
3/7-13N1. continued.		
Sand, fine to very coarse, mostly very coarse; and		
gravel, mostly fine: gravish brown moderately		
naid, partially water-bearing. Some modium		
coarse gravel 143 to 144 feet. some culiche		
Too reet; considerable biotite and magnetite		
giving a dark gravish color to the cuttings 172		
179 leet; cemented sand and gravel at 101		
reet; coarse grave) 194 to 195 foot	84	200
build, like to coarse, mostly coarse, and amount	04	200
rine to coarse; some small cobbles: gray-brown		
soit, water-pearing	20	220
said, line to coarse, mostly coarse, and consideral	20	220
and side of the state of the st		
sort, water-pearing	57	277
Sand, line to coarse, mostly coarse, and grant		211
Time to coarse; occasionally calcareous and the		
water-pearing, mogrity time has 11441		
coarse gravel 293 to 303 feet. some achiles		
to 4 inches 303 to 318 feet	41	318
Sand, fine to coarse. mostly fine to medium,		310
gray-brown, soft, water-bearing	8	326
Sand, fine to coarse, mostly fine to medium,		
considerable biotite, dark brownish-gray,		
Sand, fine to coarse, mostly coarse; and gravel,	10	336
mostly fine to medium with and gravel,		
mostly fine to medium, with some coarse; gray- brown to gray, soft, water-bearing. Cemented		
sand and gravel 381 to 382 feet		
and, fine to coarse, mostly fine, with considerable	53	389
silt and clay, dark grayish-brown, soft, partially		
water-bearing		
and, fine to coarse, mostly coarse; and gravel,	8	397
mostly fine, with some medium to coarse; gray-		
blown, soit, water-bearing. Considerable and		
or medium and coarse gravel 401 to 407 411 to 414		
and 410 to 420 reet	20	
and, fine to coarse; and some gravel, mostly fine.	29	426
gray-brown, soft, water-hearing	22	4.40
and, fine to coarse, mostly coarse: gravel fine	22	448
to coarse; and some cobbles up to 6 inches. light		
Blay 1811-Drown, Soft, Water-hearing Consideral		
basalt gravel and cobbles from 456 to 450 fort	11	150
ma, Time to coarse; and some fine gravel: cemented		459
calcaleous, gray-brown, hard, partially weter-		
bearing	19	478
ind, fine to coarse, mostly coarse; and gravel,		470
fine to coarse; gray-brown, soft, water-bearing. Somewhat cemented 479 to 481 feet		

	Thickness (feet)	Depth (feet)
3/7-13N1. continued.		
Sand, fine to coarse, silty, cemented, considerable biotite, dark brownish-gray, hard, partially		
water-bearing	9	496
water-bearing formation	5	501
NOTE: Sands, largely quartz and feldspar with varying amo magnetite, biotite (phlogopite), grains subrounded angular and poorly sorted, color is largely gray-br but is commonly gray when there is considerable bio and magnetite. Gravels and cobbles are largely alt unaltered granitics with gneiss and granite (?) wit basalt, and quartzite, usually subrounded to rounde	to own, tile ered and h some	
3/7-31El. Altitude 2,514.3 ft. Drilled by Mogle Bro 10-inch casing 0-418 ft, uncased hole 418-430 ft, perforat 340-401 ft.		
Soil, fine to very coarse sandy and gravelly,		
brown, fairly hardCaliche (calcium carbonate), white, very hard	3 2	3 5
Sand, fine to very coarse, and some gravel to 3 inches, gray-brown, hard; boulders to 20 inches and thin caliche (calcium carbonate) layers from 5 feet to 7 feet; no gravel from 40 feet to 44		
feet	39	44
Clay, very fine to very coarse sandy, brown, very	36	80
Sand, very fine to very coarse, silty, brown, fairly	30	00
hard, calcium carbonate cement	3	83
Clay, very fine to very coarse sandy, brown, hard Sand, very fine to very coarse, and gravel to 4	5	88
inches, brown, fairly softClay, silty, and very fine to very coarse sandy,	4	92
brown, hardClay, silty and fine sandy, brown, fairly soft; contains black organic material and some iron	32	124
stains	2	125
carbonate), more coarse to very coarse brittle sand from 186 to 210 feet	84	210
Sand, very fine to very coarse; some silty clay; gray-brown, hard, cemented; fine to coarse brown sandy clay from 214 to 215 feet	14	224

3/7-31E1. continued.	Thickness (feet)	Depth (feet)
		12000
Sand, fine to coarse; occasional gravel; and cobbles		
up to 5 inches; gray, fairly hard, partially cemented		
	20	244
Sand, very fine to very coarse; occasional gravel; and		
cobbles up to 5 inches; gray, soft; pebbles smaller,		
and more stiry from 478 foot to 200 a		
very hard, round, fine to coarse sand concretions from 340 to 358 feet; partially cemented and		
fairly hard from 358 feet to 392 feet; in part		
Sand, fine to coarse, and some gravel with boulders	148	392
larger than 10 inches; gray, very hard drilling;		
at least partially cemented with an extremely hard		
The state of the s		
The state of the s	У	
bear tille to coaree eand home to		
415 feet to 415 feet 6 inches; in part water-bearing-		
3/8-17L1. Altitude 1,850.4 ft. Drilled by Mogle Bros	38	430
0-inch casing, perforated 248-258, 272-300, 374-380, 396-4 and 444-456 ft. Cement plug at 512 ft.		
and, the to coarse, floor buff coft	8	8
) curcureous, plasfic, effekt light	4	12
and some cand	12	24
	- 1	
		25
the course, light buff coft, for	3	25 28
pebbles few	3	28
pebblesand and clay, with layers of fine send and city		
pebblesand and clay, with layers of fine sand and silty	3 5	28 33
pebbles and and clay, with layers of fine sand and silty clay, gray	3	28
pebbles and and clay, with layers of fine sand and silty clay, gray	3 5 21	28 33 54
pebbles	3 5	28 33 54 73
pebbles	3 5 21 19	28 33 54 73 79
pebbles——————————————————————————————————	3 5 21 19 6	28 33 54 73
pebbles——————————————————————————————————	3 5 21 19 6	28 33 54 73 79
pebbles——————————————————————————————————	3 5 21 19 6	28 33 54 73 79
pebbles——————————————————————————————————	3 5 21 19 6 14	28 33 54 73 79 93
pebbles——————————————————————————————————	3 5 21 19 6 14	28 33 54 73 79 93
pebbles——————————————————————————————————	3 5 21 19 6 14	28 33 54 73 79 93
pebbles——————————————————————————————————	3 5 21 19 6 14 29 19 3	28 33 54 73 79 93 122 142
pebbles——————————————————————————————————	3 5 21 19 6 14 29	28 33 54 73 79 93 122 142
pebbles——————————————————————————————————	3 5 21 19 6 14 29 19 3	28 33 54 73 79 93 122 142 145 188
pebbles——————————————————————————————————	3 5 21 19 6 14 29 19 3	28 33 54 73 79 93 122 142 145
pebbles——————————————————————————————————	3 5 21 19 6 14 29 19 3	28 33 54 73 79 93 122 142 145 188
pebbles——————————————————————————————————	3 5 21 19 6 14 29 19 3	28 33 54 73 79 93 122 142 145 188

	Thickness (feet)	Depth (feet)
3/8-17L1. continued.		(1000)
Sand, coarse to very coarse, and gravel to 2-inch; streaks of fine sandy clay; light brown, fairly soft		
Sand, very fine to medium, silty; some coarse sand- streaks, and some clay; light brown, hard; some	4	196
layers of cemented (CaCO ₃) sand	36	232
clay, fine to very coarse sandy, and some pebbles to 4-inch; dark brown, extremely hard; white	4	236
Sand, coarse to very coarse; and gravel to 3 inches; few streaks of silty sand: light brown soft acres	12	248
Sand, very fine to very coarse, silty; some gravel to 1-inch; medium brown, hard. Grav, green, violet	10	258
Sand, coarse to very coarse, some fine to medium, and gravel to 6 inches, buff, soft; heaves up	14	272
Sand, coarse to very coarse, some fine to medium; some gravel to l-inch; buff, soft; heaves up in hole:	28	300
gray-brown from 320 to 332 feetSand, fine to medium, dark brown-gray, firm; some l-inch gravel from 332 to 340 feet; some fine	32	332
sandy clay streaks 346 to 360 feet	28	360
brown clay and ½-inch gravel 373 to 374 feetSand, medium to very coarse, and gravel to 3 inches, light brown to buff, soft; heaves up in hole;	14	374
Sand, medium to very coarse, some gravel to 2 inches, and streaks of clay; brown-buff, soft; cemented	6	380
Sand, medium to very coarse, and gravel to 3 inches, gray to buff, soft; some CaCO ₃ cemented sand and gravel; clayey fine to coarse sand with red-brown, very hard, white CaCO ₃ stringers from 408 to 410	16	396
Sand, medium to very coarse, occasional gravel to 2 inches, brown-buff, soft; gravel to 4 inches, 444 to 456 feet; water-bearing; many cemented	20	416
(CaCO ₃) fine to coarse sand concretions, gray-brown, very hard from 499 to 510 feet	94	510
hard	2	512

3/8-29L1. Altitude 1,905.7 ft. Drilled by F.W. Walker in 1952. 16-inch casing 0-250 ft, 12-inch casing 250-600 ft. with bullnose at 600 ft. Uncased pilot hole 600-800 ft. Perforated 270-590 ft. Gravel packed 0-600 ft. Materials logged by driller.

	Thickness (feet)	Depth (feet)
Surface soil and and	10	10
Coarse sand and cobbles up to 2 inches in diameter,		
some basalt cobbles	10	20
Coarse sand	10	30
Sand and gravel	10	40
Coarse sand	25	65
Fine sand, hard; cobbles at 110 feet	45	110
Coarse sand	20	130
Hard packed sand	20	150
Hard packed sand	40	190
Coarse sand	55	245
Hard packed sand	5	250
Coarse sand	35	285
Coarse sand and hard "shells"	41	326
Hard packed sand	20	346
Coarse sand	23	369
Hard packed sand	11	380
Cobbles and hard sandy "shells"	10	390
Coarse sand	45	435
Hard sand and "shells"	15	450
Coarse sand	20	470
fine sand	10	480
Sandy yellow clay	20	500
Coarse sand	15	515
Hard-packed fine sand	8	523
Sandy yellow clay	7	530
Sand	20	550
ellow sandy clay	20	570
Cobbles	2	572
Coarse sand	38	610
Sandy yellow clay	10	620
Coarse sand	15	635
Yellow sandy clay	55	690
Coarse sand	20	710
Sandy clay		730
Sandy yellow clay and streaks of coarse sand		760
Coarse sand and streaks of yellow sandy clay		800
a. "Shells" refers to thin cemented beds.		

3/8-34D1. Altitude 1,823.9 ft. Drilled by Mogle Bros. in 1943. 12-inch casing, perforated 186-210, 270-290, 360-370, 384-396 ft. Materials logged by driller.

	Thickness (feet)	Depth
Drift sand		(feet
	· ·	6
Sandy clay	7.7	50
Coarse water sand and rock		70
Yellow clay		80
Quicksand		135
Coarse sand and small gravel		145
Packed silt and fine sand		186
Coarse water sand	27	210
Fine silt and sand	20	238
Coarse sand and fine gravel		248
Clay and sand	8	256
Cemented sand	14	270
Coarse sand and rock	20	290
Packed silt and cement	70	360
Coarse water sand	10	370
Packed silt	14	384
Coarse water sand	12	396
Packed silt		400
dard brown lake clay slightly modet holon		
Hard brown lake clay, slightly moist below		/. (
4 inches	4.0	
4 inches	1	
4 inches	1	4.8 4.9
4 inches	1 5 1.8	4.9
4 inches	1 5 1.8 1.3	4.9 5.4 7.2
4 inches	1 5 1.8 1.3	5.4 7.2 8.5
4 inches	1 5 1.8 1.3 1 2.7	5.4 7.2 8.5 8.6
4 inches	1 5 1.8 1.3 1 2.7 3	5.4
4 inches	1 5 1.8 1.3 1 2.7 3 1.2	5.4 7.2 8.5 8.6
4 inches	1 5 1.8 1.3 1 2.7 3 3 3	5.4 7.2 8.5 8.6 11.3 11.6
4 inches	15 1.8 1.31 2.73 1.223	5.4 7.2 8.5 8.6 11.3 11.6 12.8
4 inches	15 1.8 1.31 2.73 1.223 3.3	5.4 7.2 8.5 8.6 11.3 11.6 12.8 13.0
4 inches	15 1.8 1.31 2.73 1.223 3.3 3.3	5.4 7.2 8.5 8.6 11.3 11.6 12.8 13.0 14.0
4 inches	15 1.8 1.31 2.733333	5.4 7.2 8.5 8.6 11.3 11.6 12.8 13.0 14.0
4 inches	15 1.8 1.31 2.733333	5.4 7.2 8.5 8.6 11.3 11.6 12.8 13.0 14.0
4 inches	15 1.8 1.31 2.73 1.223 3.33 4.4 1.4	5.4 7.2 8.5 8.6 11.3 11.6 12.8 13.0 14.0 17.3 22.0 23.4
4 inches	15 1.8 1.31 2.73 1.223 1.4 1.4	5.4 7.2 8.5 8.6 11.3 11.6 12.8 13.0 14.0 17.3 17.6 22.0 23.4
4 inches	15 1.8 1.31 2.73 1.223 1.46 8.2	5.4 7.2 8.5 8.6 11.3 11.6 12.8 13.0 14.0 17.3 17.6 22.0 23.4
4 inches	15 1.8 1.31 2.73 1.223 1.4 1.46 8.24	4.9 5.4 7.2 8.3 8.6 11.3 11.6 12.8 13.0 14.0 17.6 22.0 23.4 24.0 32.2 32.6
4 inches	15 1.8 1.31 2.73 1.223 1.223 1.4 1.46 8.24	4.9 5.4 7.2 8.3 8.6 11.3 11.6 12.8 13.0 14.0 17.3 17.6 22.0 23.4 24.0 32.2 33.5
4 inches	15 1.8 1.31 2.73 1.223 1.4 1.46 8.249 3.7	4.9 5.4 7.2 8.9 8.9 11.3 11.6 12.8 13.0 14.0 17.3 17.6 22.0 23.4 24.0 32.2 32.6

Table B IV. Chemical analyses of water from wells on or near the Marine Corps
Training Center, Twentynine Palms, California

Constituents: Values shown in parentheses were calculated.

Well number	IN/9E-4N3	IN/9E501
Constituents in parts per million		
Silica (SiO ₂)		
Silica (SiO ₂) Iron (Fe)		
Calcium (Ca)	28	33
Magnesium (Mg)	3	4.7
Sodium (Na)	180	200
Potassium (K)	3	4.8
Bicarbonate (HCO ₃)	98	76
Carbonate (CO ₃)	0	0
Sulfate (SO _A) ³	294	(343)
Chloride (C1)	66	74
Fluoride (F)	6	7.2
Nitrate (NO ₃)	1	
Boron (B)	0.26	
Dissolved solids	666	
Sum of determined constituents	(624)	(704)
Hardness as CaCO ₃	82	102
Percent sodium (%Na)	(82)	(80)
Specific conductance		
(micromhos at 77 F)	936	1,070
pH	8.2	6.8
Temperature (F)	64	
Date collected	4-15-52	5-3-60
Depth of well in feet	500	500
Analyzing laboratory (Lab.)	DWR	GS
Laboratory number	1835	33852

Well number	2/7-201		2/7-3	A1	
Constituents in parts p	er million				
Silica (SiO ₂) Iron (Fe)	18 0	18	24		
Calcium (Ca) Magnesium (Mg)	3 0	11 .5	9 1	12 .5	

Dis. S Sum Hardness	32	151) 30	33	(160)		
NO 3		1.9			. 7	
F		.4			7	
C1 ⁴	20	19	20	21	,	
so,3		0 (29)		0 (34)		
HCO ₃ co ₃ so ₄ c1		86		86		
K		1.9		47	. 3	
Mg Na		.5 45			.5	
Ca		11		12		
Constituent SiO ₂ Fe	s in parts per mil	lion				
Well number			2/7-3A1-	-continued		
Laboratory	number (No.)	1492	6210	4 1	1,154	
Analyzing :	laboratory (Lab.)	N	GS	N	GS	
	ell in feet	400	560	560	5-4-54 560	
Date collec	eted	93 4-21 - 52	84.5 2-3 - 53	84.5 2-24-53	82	
pH Temperature	(OE)	9.0	8.6	8.8	7.9	
	onductance nos at 77 ⁰ F)		270		306	
Percent so		(94)	75	(78)	75	
Hardness a	s CaCO ₃	7	30	26	(164) 32	
	sorius ermined constituent	140 ts (150)	172 168	185 (164)	(16/)	
Dissolved		.3	.12	.06		
Nitrate (No Boron (B)	03)		1.5			
Fluoride (1.1	1.0	.9	.8	
Chloride (CĪ)	12	20	18	22	
Sulfate (S	0,)3	24	30	29	(46)	
Carbonate	$(co_2)^{3}$	17	82 0	68 5	69 0	
Bicarbonat	e (HCO)	51				
Sodium (Na Potassium		a(50)	2.1	a(44)	47 2.2	
Soultum (No	,	(50)				

%Na		75			
Micromhos	276	284	278	74	
		.7.2	270	285	
B _F	82	81	79	20	
Date	5-18-55	10-17-55	3-5-57	80	
Depth	560	560	560	5-14-58	
Lab.	GS	GS	GS	560	
No.	15,348	18,237	21,833	GS 25,927	
Well number	er		2/7-3A1Con		
Constitue	nts in parts	per million	27. 3.11 -0011	critided	
SiO ₂					
Fe ²					
Ca		12	12	11	
Mg		1.0	.2	1.2	
Na		52	47	48	
K		1.8	2.1	2.8	
HCO ₃					
co.3		85 0	87	90	
so.3			0	0	
co ₃ so ₄ c1		(47) 21	(31)	34	
		21	21	21	
F		.8	.7	.8	
NO ₃				•0	
В					
Dis. S					
Sum		(178)	(157)	(163)	
Hardness		34	31	32	
(Na		76	75	74	
licromhos	,	292	261	287	
H F		7.0	7.4	6.9	
		81	81	0.9	
ate		10-8-58	4-7-59	5-4-60	
Pepth		560	560	560	
.ab.		GS	GS	GS	
io.		28,224	30,073	00	
Well numbe:	r		2/7-381		
onstituen	ts in parts p	er million			
102	22				
e ²	0				
a	12		13	12	
g	C		.4	.1	
	- 5 7		F 2		
a	a57		53 2.2	52	

		83	88	
9.6		0	0	
			(38)	
30	29	28	24	
. 4		. 4	.6	
.09				
235				
		(180)	(173)	
30	35	34	31	
81		76	77	
	307			
	307			
0.0	80		0.9	
9-11-56			E / /O	
IN				
	21,834	28,225	33,855	
r		2/7-3B1. continu	ued	
ts in parts p	er million			
21	23			
. 1	.1			
9	11	15	16	
1	1			
a (44)	a (52)			
		2.6	2.7	
68	61	83	0.2	
.9	.5	.6	.7	
.06	.06			
196	210			
194		(192)	(190)	
38	32	46	41	
72	(78)	70	73	
311				
	8.8			
82			0.0	
			12-21-54	
6209	3	11,153	14,949	
	46 30 .4 .09 235 (206) 30 81 316 8.6 9-11-56 700 N r ts in parts p 21 .1 9 1 a(44) 68 5 29 18 .9 .06 196 194 38	.4 .09 .35 (206) 30 .35 81 316 307 8.6 80 9-11-56 700 700 N GS 21,834 r ts in parts per million 21 23 .1 .1 9 11 1 a(44) a(52) 68 61 5 7 29 40 18 28 .9 .5 .06 .06 196 194 193 38 32 72 (78) 311 8.4 8.8 82 1-15-53 700 700	46 30 29 28 .4 .4 .09 .09 .235 (206) 30 35 34 81 316 307 313 8.6 6.8 9-11-56 3-6-57 700 700 700 700 700 700 700 8 65 68 21,834 28,225 r 2/7-3B1. continuents in parts per million 21 23 .1 .1 9 11 1 2.1 9 11 1 2.1 1 2.1 4(44) a(52) 52 2.6 68 61 83 5 7 0 29 40 (50) 18 28 29 .9 .5 .6 .06 .06 .06 .06 .06 .06 .06 .06 .06	46 30 29 28 24 .4 .4 .6 .09 235 (206) 30 35 (206) 30 35 (206) 30 35 34 31 81 316 307 313 300 8.6 6.8 6.8 6.8 6.8 6.8 6.9 9-11-56 3-6-57 700 700 700 700 700 700 700 8 65 65 65 65 65 65 65 65 65 65 65 65 65

Well number	2/7-4H1	2/7-14K1	2/8-11-B1	2/8-24H1	3/6-4L1
Constituents	in parts pe	r million			
SiO ₂	25	20		10	18
Fe ²	0			.1	0
Ca	12	2	4.3	8	38
Mg	1	1	4.7	1	9
Na	a (43)	a(57)	1,720	a(181)	a (39)
K			8.6		,
HCO ₃	76	73	1,340	22	168
co,	1	24	187	10	0
co ₃ so ₄ c1	39	15	(1,170)	258	42
C1 ⁴	15	10	725	66	30
F	.7	1.1	50	8	5
NO ₃					
В	.1			.52	.08
Dis. S	164	154		580	230
Sum	(174)	(166)	(4,530)	(554)	(264)
Hardness	35	8	30	26	132
7/	(20)	4-21			
%Na Micromhos	(73)	(93)	99	(94)	(39)
pH	8.5	8.9	7,010 9.0	0 0	7.0
o _F	80	96	71	8.9 85	7.9
Date	9-30-52	9-29-52	5-1-53	3-11-52	12-5-51
Depth	500	644	64.6	320	137
Lab.	N	N	GS	N	N
No.	8	1589	7357	1458	
Well number	3/6-4P1	3/7-13N1	3/7-18D1	3/7-31E1	
Constituents	in parts pe	r million			
		24	16	16	
SiO ₂ Fe		0	0	0	
Ca	20	52	56	10	
Mg	3.5	5	11	2	
Na	49	a(173)	a(81)	a (42)	
K	2.5				
нсо _з	148	93	76	81	
COn	0	0	0	4	
so ₄	(19)	245	120	25	
	22	136	122	17	
F	.7	1.6	.3	.5	
NO ₃		.14	2/	01	
			.24	.01	
Dis. S	(100)	640	430	140	
Sum	(190)	(683)	(444)	(157)	
Hardness	64	150	184	34	

%Na	61	(72)	(49)	(74)	
Micromhos	356				
pН	8.2	8.2	7.7	8.4	
oF		83	74	78	
Date	1-29-53	8-8-52	5-1-52	8-8-52	
Depth	132	501	449	430	
Lab.	GS	N	N	N	
No.	6602	1560	1500	1557	
Well number	3/7-	-35P1	3/8-17L1	3/8-2901	
Constituents	in parts pe	er million			
SiO ₂	18		16	18	
Fe 2	0		.1	0	
Ca	6	6.8	20	33	
Mg	1	. 2	3	5	
Na K	a (56)	50 4.2	a(318)	a (258)	
HCO ₃	83	96	76	90	
CO. 3	2	0	4	0	
50.	36	(21)	268	298	
50 ₃ 50 ₄ 51	18	20	280	196	
F	2.5				
	2.5	1.0	4	1.5	
NO 3	.12		.7	.7	
Dis. S	120		980	860	
Sum	(181)	(150)	(951)	(854)	
Hardness	20	18	62	102	
%Na	(86)	82	(92)	(84)	
Micromhos		271			
PH .	8.2	7.0	8.3	8.0	
P_{F}			83	85	
ate	12-5-51	5-1-53	3-18-52	6-12-52	
Depth			512	800	
Lab.	N	GS	_ N	N	
vo.		7358	1479	1515	
Well number			3/8-29L1		
Constituents	in parts pe	r million			
Sio ₂	18	18			
e ²		0			
Ca	46	46	48		48
·1g	4.6	5	2.1		1.3
Na .	305	a(305)	300		296
<	5.6		5.1		5.6

78	63	78		80
,,,				0
407				(385)
			212	211
				4.8
	4.5	5	4.8	4.0
.67	1.0			
1,040	1,000			
	(1,040)	(1,000)		(991)
134	136	128		125
92	(83)	83		83
	(03)		1 710	1,660
	0 3		1,710	7.2
			79 5	79.5
				4-16-55
				600
				GS
5986	1	11155	14947	14948
		3/8-29L1Conti	nued	
s in parts pe	r million			
	6	20		
		27	46	44
				3.6
				303
		82/1		5.6
4.5	4.5			
40	70	83	88	80
	5	0	0	0
100		360	(342)	(403)
		186	216	210
5.0		5.0	5.0	4.0
1.3	.83	1.2		
		952		
			(941)	(1,010)
12%				125
124				
83	90	84	83	83
1,630	1,700			1,630
	8.3	7.9	7.7	7.1
				80
	4-4-56	9-11-56	2-8-57	5-14-58
		600	600	600
GS	N	N	GS	GS
				25926
	82 1,690 7.9 79 12-13-52 600 GS 5986 s in parts pe 44 3.3 297 4.5 40 0 5.0 6 1.3 124 83 1,630 6.8 80 10-17-55 600	407 427 215 202 3.6 4.5 1.0 .67 1.0 1,040 1,000 (1,040) 134 136 82 (83) 1,690 7.9 8.3 79 80 12-13-52 12-22-52 600 600 GS N 5986 1 s in parts per million 6 4.5 44 40 3.3 6 297 442 4.5 4.5 40 70 0 5 340 296 5.0 6.0 .6 .1 1.3 .83 1,200 (1,180) 124 100 83 90 1,630 1,700 6.8 8.3 80 10-17-55 4-4-56 600 600	407 427 (391) 215 202 215 3.6 4.5 5 1.0 .67 1.0 1,040 1,000 (1,040) (1,000) 134 136 128 82 (83) 83 1,690 1,680 7.9 8.3 8.0 79 80 79 12-13-52 12-22-52 5-5-54 600 600 600 GS N GS 5986 1 11155 3/8-29L1Conti s in parts per million 6 20 4.5 44 40 37 3.3 6 5 297 442 a271 4.5 4.5 40 70 83 0 5 0 340 360 296 186 5.0 6.0 5.0 .6 .1 1.3 .83 1.2 1,200 952 (1,180) (926) 124 100 114 83 90 84 1,630 1,700 1,570 6.8 8.3 7.9 80 10-17-55 4-4-56 9-11-56 600 600 600	407 427 (391) 215 202 215 212 3.6 4.5 5 4.8 1.0 .67 1.0 1,040 1,000 (1,040) (1,000) 134 136 128 82 (83) 83 1,690 1,680 1,710 7.9 8.3 8.0 79 80 79 79.5 12-13-52 12-22-52 5-5-54 10-21-54 600 600 600 600 600 65 N GS GS 5986 1 11155 14947 3/8-29L1Continued s in parts per million 6 20 4.5 44 40 37 46 3.3 6 5 2.4 4.5 4.5 40 70 83 88 0 5 0 0 340 360 (342) 296 186 216 5.0 6.0 5.0 5.0 6.6 .1 1.3 83 1.2 1,200 952 (1,180) (926) (941) 124 100 114 125 83 90 84 83 1,630 1,700 1,570 1,620 6.8 8.3 7.9 7.7 80 80 10-17-55 4-4-56 9-11-56 2-8-57 600 600 600 600

Well number			3/8-	-29L1Cor	itinued	
Constituent	s in parts	per milli	on	2301(01	reinued	
SiO ₂		F-1	.011			
Fe 2						
Ca		15				
Mg		43				47
Na			.0			4.5
K		294	.0			307
UCO						9.8
HCO ₃		83				92
503		0				0
CO ₃ SO ₄ C1		(374				(415)
		207				210
F		5	.0			
NO ₃			••			4.8
В						
Dis. S						
Sum		(969)				
Hardness		120				(1,040)
%Na		84				136
Micromhos		1,620				82
pН		6.	8			1,630
OF		79				6.7
Date		10-8-	-58			5 / 65
Depth		600				5-4-60
Lab.		GS				600 GS
No.		28223				33853
Well number	3/8-33B1	3/8-34D1		4/6-27D1	4/6-27F1	4/6-27Mi
Constituents	in parts p	er millio	n			
SiO ₂	18	18				
Fe ²	.1	0				
Ca	50	23	0.7			
Mg	8	3	27	ь13.6	Ъ4	128
Na	a(268)	a(280)	12 790	206		21
K	,	4(200)	5.8	206	790	160
HCO.	0.5	100		2.0	4.9	4.7
HCO ₃	85 0	103	640	12	568	112
50.3	381	276	43	252	421	0
50 ₃ 50 ₄	188	276 204	a (562)	(9)	(173)	(257)
			465	164	88	282
7	1.	/, 5	1.0	6 1	100	
r in	4	4.5	1.9	6.4	100	. 9
			1.9	0.4	100	.9
¹⁰ 3	1.1	1.2	1.9	0.4	100	.9
303 Dis. S	1.1 830	1.2 870		0.4	100	.9
¹⁰ 3	1.1	1.2	(2,230)	(523)	(1,860)	.9

%Na	(79)	(90)	93	92	99	46
Micromhos			2,710	997	3,170	1,560
PH	8.0	8.2	8.8	8.6	9.7	7.8
F	72	74				
Date		4-2-52	1-29-53	1-29-53	1-29-53	6-10-53
Depth	526	400	63	80.2	182.3	150
Lab.	N	N	GS	GS	GS	GS
No.	1445	1485	6603	6605	6604	7359

b. Includes magnesium.

APPENDIX II-C.

CHINA LAKE SITE

		page
Table	CI.	Factual data on test wells drilled on
		Naval Weapons Center, China Lake, CaliforniaC- 1
Table	CII.	Logs on test wells drilled on Naval Weapons
		Center, China Lake, California
Table	CIII.	Chemical analyses of water from test wells on
		Naval Weapons Center, China Lake, CaliforniaC-10C-11
Table	CIV.	Analysis of fluids and alteration products in
		the Coso thermal area
Table	CV.	Recent analysis of waters at Coso thermal
		area
Table	CVI.	Geologic log and water analysis of samples
		from Coso No. 1 drillhole

Table CI. Factual data on test wells drilled on Naval Weapons Center, China Lake, California.

State Well Number	Altitude (feet)	Depth (feet)	Type of well and	Measuring point	Water	level
		···	diameter (inches)	(feet)	Date	(feet)
25N/40E-33L2	2,171.0	22.2	RG8	TcN 1.8	3- 8-54	2.01
					4-15-54	1.96
					5-13-54	2.14
25N/41E-28B1	2,238.6	161.8	R 8	TcE 1.5	3-10-54	68.84
					3-16-54	67.58
8 8 1					4-15-54	67.60
					5-13-54	67.66
26N/40E-1A2	2,157.6	197.5	R 6	TcE 1.7	3- 9-54	+0.98
					4-15-54	+1.39
					5-13-54	+1.45
26N/40E-1A3	2,157.6	18.5	A 11/4	TcE 1.9	4-15-54	8.92
					5-13-54	8.72
(N//OF 22D1	2 250 7	850.0*	2.0			
6N/40E-22P1	2,258.7	850.0	R 8	TcS 1.5	3- 8-54	64.39
					4-16-54	64.36
					5-13-54	64.28
6N/40E-24R1	2,260.4	149.1	R 6	TcS 1.2	3- 9-54	74.59
					4-15-54	74.15
					5-13-54	74.06
6N/40E-36A1	2,247.2	270.0	R 6	TcN 1.5	3- 9-54	56.82
					4-15-54	56.84
					5-13-54	56.85
6N/41E-7G2	2,181.3	49.3	R 6	TcN 1.2	3- 3-54	36.42
					3-16-54	36.40
					4-15-54	36.38
					5-13-54	36.36

^{*}Well drilled to 1,358 feet, concrete plug from 850 to 875 feet.

Table C II. Logs on test wells drilled on Naval Weapons Center, China Lake, California.

	Thickness	Depth
	(feet)	(feet
25/40-33L2. Perforated from 2 to 22 feet. Altitude 2,171.0 feet.		
Sand, subangular to subrounded, poorly		
sorted, fine to coarse, loose, and a		
little very fine gravel	2	2
dana, medium, uniform, loose	7	9
band, medium to coarse, angular	1	10
Sand, medium to coarse, with a little clay	4	14
fine gravel Sand, coarse, subangular to subrounded	2	16
and very fine gravel, with some clay		
Sand, medium to coarse, angular, with a little silty clay and subrounded	3	19
fine gravel	THE RES	20
sand, medium to coarse, with	1	20
increase in silty clay	2	22
Altitude 2,238.6 feet.		
Sand, wind-blown	6	6
Sand, wind-blown	4	10
Sand, wind-blown Sand, gravel and white silty clay Sand, coarse, and fine gravel	4	10 14
Sand, wind-blown Sand, gravel and white silty clay Sand, coarse, and fine gravel Sand and gravel	4 4 9	10 14 23
Sand, wind-blown Sand, gravel and white silty clay Sand, coarse, and fine gravel Sand and gravel Sand	4 4 9 11	10 14 23 34
Sand, wind-blown. Sand, gravel and white silty clay. Sand, coarse, and fine gravel. Sand and gravel Sand Sand with plastic clay. Gravel	4 4 9 11 2	10 14 23 34 36
Sand, wind-blown. Sand, gravel and white silty clay. Sand, coarse, and fine gravel. Sand and gravel Sand Sand with plastic clay. Gravel Gravel with clay.	4 9 11 2 1	10 14 23 34 36 37
Sand, wind-blown. Sand, gravel and white silty clay. Sand, coarse, and fine gravel. Sand and gravel Sand Sand with plastic clay Gravel Gravel with clay Boulder	4 9 11 2 1	10 14 23 34 36 37 38
Sand, wind-blown. Sand, gravel and white silty clay. Sand, coarse, and fine gravel. Sand and gravel Sand Sand with plastic clay Gravel Gravel with clay Boulder Sand, coarse.	4 9 11 2 1 1	10 14 23 34 36 37 38 39
Sand, wind-blown. Sand, gravel and white silty clay. Sand, coarse, and fine gravel. Sand and gravel Sand Sand with plastic clay Gravel with clay. Boulder Sand, coarse Sand, reddish, stained by oxidation.	4 9 11 2 1 1 27	10 14 23 34 36 37 38 39 66
Sand, wind-blown. Sand, gravel and white silty clay. Sand, coarse, and fine gravel. Sand and gravel Sand Sand with plastic clay. Gravel. Gravel with clay. Boulder. Sand, coarse. Sand, reddish, stained by oxidation. Boulder.	4 9 11 2 1 1 1 27 3	10 14 23 34 36 37 38 39 66 69
Sand, wind-blown. Sand, gravel and white silty clay. Sand, coarse, and fine gravel. Sand and gravel Sand Sand with plastic clay. Gravel. Gravel with clay. Boulder Sand, coarse. Sand, reddish, stained by oxidation Boulder Sand	4 9 11 2 1 1 27 3	10 14 23 34 36 37 38 39 66 69 70
Sand, wind-blown. Sand, gravel and white silty clay. Sand, coarse, and fine gravel. Sand and gravel Sand with plastic clay Gravel Gravel with clay Boulder Sand, coarse Sand, reddish, stained by oxidation. Boulder Sand Sand and gravel.	4 9 11 2 1 1 27 3 1 3	10 14 23 34 36 37 38 39 66 69 70 73
Sand, wind-blown. Sand, gravel and white silty clay. Sand, coarse, and fine gravel. Sand and gravel. Sand. Sand with plastic clay. Gravel. Gravel with clay. Boulder. Sand, coarse. Sand, reddish, stained by oxidation Boulder. Sand Sand and gravel. Sand and white clay.	4 9 11 2 1 1 27 3 1 3 3	10 14 23 34 36 37 38 39 66 69 70 73 76
Sand, wind-blown. Sand, gravel and white silty clay. Sand, coarse, and fine gravel. Sand and gravel. Sand. Sand with plastic clay. Gravel. Gravel with clay. Boulder. Sand, coarse. Sand, reddish, stained by oxidation. Boulder. Sand and gravel. Sand and gravel. Sand and some grains oxidized.	4 9 11 2 1 1 27 3 1 3 3 3	10 14 23 34 36 37 38 39 66 69 70 73 76 79
Sand, wind-blown. Sand, gravel and white silty clay. Sand, coarse, and fine gravel. Sand and gravel Sand Sand with plastic clay. Gravel Gravel with clay. Boulder Sand, coarse. Sand, reddish, stained by oxidation. Boulder Sand and gravel Sand and gravel Sand and white clay Sand, some grains oxidized. Sand with blue clay and white silt	4 9 11 2 1 1 27 3 1 3 3 3	10 14 23 34 36 37 38 39 66 69 70 73 76 79 88
Sand, wind-blown. Sand, gravel and white silty clay. Sand, coarse, and fine gravel. Sand and gravel Sand Sand with plastic clay. Gravel Gravel with clay. Boulder Sand, coarse Sand, reddish, stained by oxidation. Boulder Sand and gravel Sand and gravel Sand and white clay Sand, some grains oxidized. Sand with blue clay and white silt.	4 9 11 2 1 1 27 3 1 3 3 3 9 7	10 14 23 34 36 37 38 39 66 69 70 73 76 79 88 95
Sand, wind-blown. Sand, gravel and white silty clay. Sand, coarse, and fine gravel. Sand and gravel. Sand. Sand with plastic clay. Gravel. Gravel with clay. Boulder. Sand, coarse. Sand, reddish, stained by oxidation. Boulder. Sand and gravel. Sand and gravel. Sand and some grains oxidized.	4 9 11 2 1 1 27 3 1 3 3 3	10 14 23 34 36 37 38 39 66 69 70 73 76 79 88

	Thickness	Depth
25/41-28B1. Continued.	(feet)	(feet
Silt, white; sand and gravel	5	105
Silt, white; sand; gravel and blue clay	10	115
Silt, white, sandy, soft, and coarse sand	14	129
Silt, white, sandy, soft, gradually		
becoming gray, with increase in		
coarse sand	10	139
Sand, coarse, and pea gravel	3	142
Sand, medium to coarse, and gray		
to gray-blue clay	13	155
Transition zone	4	159
Bedrock	3	162
	3	10%
26/40-1A2. Perforated from 80 to 100, 110 to		
130, 170 to 190 feet. Altitude 2,157.6 feet		
Clay, pale green, plastic; and gray clay	30	30
Clay, black, carbonaceous, with about	30	30
10% medium sand	10	40
Clay, dark gray to black, plastic, with	10	40
olive-green very fine silt and some waxy		
clay. Gastropod shells and H ₂ S odor	0	10
Sand, moderately well consolidated,	9	49
calcareous, fairly hard		
Clay, black, plastic, with small amount of	1	50
subrounded, moderately well consolidated		
medium to coarse, calcareous sand		
Clay, gray, plastic, and black, pyritic sandy,	20	70
carbonacous alon with automatic sandy,		
carbonaceous clay with numerous chips of		
calcareous material and some partly		
carbonized wood. Strong H ₂ S odor	10	80
Sand, fine to medium, argillaceous, with		
some calcareous material	10	9C
Sand, fine, moderately well cemented; and		
a little rounded coarse sand	1	91
Sand, gray, silty, with some clay and streaks		
of moderately well cemented fine to medium		
calcareous sand. Gastropods	9	100
ollt, argillaceous, finely sandy; black when wet		
dark green when dry; with calcareous chips.		
Strong H ₂ S odor	10	110
and, gray, subangular to subrounded, silty, fine		110
to medium, plus a little white calcareous		
sand, moderately well cemented	10	120
and, fine to medium, gray-white, subrounded,	10	120
slightly calcareous, fairly hard, silty	0	100
de la	9	129

26/40-1A2. Continued.	Thickress (feet)	Depth (feet)
1 11 - 1 - 1 - 1 - 1	11	140
lay, sandy, gray and black clay	4	144
lay, sandy with chips of lime	2	146
inv had	14	160
lay black	10	170
view gilty gray to plastic		190
and very coarse or very fine grave	2)	
Clay, with some sand	7.5	197.5
26/40-1A3. Perforated from 13.9 to 18.5 Feet. Altitude 2,157.6 feet		
	1.0	1.0
Silt, cemented	3.5	4.5
Sand, fine, yellow	0.5	5.0
Sand, clayey, yellow	1.0	6.0
Silt gray with numerous shell fragments	2.5	8.5
Clay, gray plastic	2.5	0.5
clay finely sandy, slightly micaceous, moist	0.5	9.0
olive-green	0.5	
Clar plactic gray	3.0	12.0
Clay plactic gray-black	1.3	13.3
Clay, plastic, gray, soft and moist	0.2	13.5
Sand, clayey, moist	0.2	13.7
Clay, plastic, gray-blue	4.8	18.5
26/40-22Pl. Perforated from 530 to 850 feet. Concrete plug from 850 to 875 feet. Altitude 2,258.7 feet.		
Sand, yellow, wind-blown and pebbles	2.5	2.5
Sand, fine to medium, angular, white,		
with pebbles to 3/4-inch	13	15.
Sand, very fine, micaceous, with pumice (?)	17	32.
Sand, very fine, micaceous, with punite (1)	34	66.
Silt, sandy, fine, gray, soft, with shells		
Clay, sandy, fine, gray-green, soft, plastic, with gastrapods	19	85.
Clay gray-green, very soft, with very little sand	The state of the s	101
and no challe	16	101.
Clay soft blue-green. No shells, no sand	31	132.
Clay, soft, blue-green, with a little coarse	15	147.
sand and no shells	1000	
Silt, slightly sandy, very fine, and gray clay	15.5	163
Class coft plue-green, with a few		
coarse sand glains	15.5	175.
clay coft plastic, blue-green with a	The Carlo	194
vory fine gravel		197
Calcargous material, hard	,	
clay goft plastic gray-green, with rare very line		209
gravel	12.5	209

26/40-22P1. Continued	Thickness (feet)	Depth (feet)
Clay, firm, gray-green, mottled, micaceous,		
gritty	1, 5	
C ay, gray green, firm, with angular chips of gray tuff and some very fine gravel	14.5	224
streaks of biolite-rich silty clay and a	30.5	254.5
Clay, soft, gray-green and olive-green, with	15	269.5
some rounded very fine gravel, very little		
biotite, and some calcareous fragments		
cidy, soit, glay-green and olive-gre n with	15	284.5
sand-size fragments of granite	48	332.5
ray, gray-green, Soir, with some coarse and	12.5	345
Cal areous material, hard (Limestone?)	8	353
Clay, grav-green, soft, with sand and some shell	8.5	361.5
Calcareous material	2	363.5
No returns	43	406.5
very fine gravel, calcareous fragments and		
shellsClay, blue, with calcareous fragments and	44	450.5
less sand	17	467.5
day, blue, with small pebbles and chins of lime	10	485.5
Clay, blue, soft, with hard lime and	40	525.5
sind streaks	38	563.5
aicareous material, hard	4	567.5
ria, sindy	7	574.5
ime (17; hard streak	2	576.5
lay, sandy	13	594.5
riavel (.). Ver, fine, hard	22	616.5
odid, Coarse, With lime and shell fragments	4	620.5
and with gastropods	15	635.5
and gray-green, soft, crumbly clay		033.3
and shell fragments	3	643.5
and, line-clarse, angular	8	651.5
biotite, some coarse sand, soft, blue.		031.3
platy clay, and a few limy chipsand, coarse, angular, with some blue clay and	15	666.5
a little fine sandand, subrounded to subangular, very fine to	16	682.5
fine, with rare biotite plus blue and		
gray non-plastic clay	16	698.5

26/40-22P1. Continued	Thickness (feet)	Depth (feet)
Sand, greenish-gray, argillaceous, subrounded,		
medium to coarse, with much biotite	14.5	713
Sand, fine and silty gray-green clay	16.5	729.5
Sand, fine, silty, micaceous, and clay		
Sand, very fine, well-sorted, and silty,	14.5	744
gray-green claySand, fine and gray-green clay with chips of	62	806
hard, green non-plastic clay	10.5	816.5
Sand, hardSand, silty, fine, with olive-green, non-plastic	5	821.5
clay plus rare coarse sand	45	866.5
Sand, silty, green with increase in clay	30	896.5
Sand and sandy clay in alternating beds	31	
Clay, plastic, blue-green, soft, gritty		927.5
Sand, hard	26	953.5
Sand, medium, fairly uniform, subangular to	1	954.5
subrounded, with some plastic blue clay,		
silt and a little coarse angular sand	19	973.5
micaceous, sand and a little plastic blue clay	15	988.5
Sand, coarse, clay, gray-green Sand, fine to medium, arkosic, angular sand; blue and gray plastic clave and silts and a little	46	1,034.5
coarse, angular arkosic sand in alternating		
hard and soft beds	15.5	1,050
a little fine sand	28.5	1,078.5
Clay, blue silt and very fine sand	3	1,081.5
Clay, sandy, blue-green, and sand; hard streaks	47	1,128.5
lay, sandy, blue-green, with sand	45.5	
Clay, hard, blue-green to gray-green with		1,174
very little sand	16.5	1,190.5
Sand, very fine, micaceous, uniform, with blue-gray plastic clay and a large amount of leaves,	14.5	1,205
wood, and seed pods	15.5	1 220 5
Clay, soft, plastic, blue-gray, and leaves	15.5	1,220.5
with some fine sand	15.5	1,236
angular sand and a little fine sand	11.5	1,247
Silt, tight, green, non-plastic	18.5	1,265.5
Clay, soft, plastic, blue-gray, sticky	30.5	1,205.5
Sand, fine micaceous, very angular	15	
Sand, micaceous; biotite in books but	15	1,311
quartz grains roundedror more basic	16	1,327
rock; possibly a cobble bed	28	1,355
rich in biotite	3	1,358

26/40-24Rl. Perforated from 22 to 72 feet Altitude 2,260.4 feet.	Thickness (feet)	Pepth (feet
Sand, subangular to subrounded, poorly sorted,		
fine to very coarse	4	4
Sand, coarse, rounded, with calcareous cement	4	8
Sand, coarse; very fine gravel and a little		
black clay	1	9
Sand with less limy material	1	10
Sand with a little clay	1 - 6	11
Sand with a little clay to subangular		
Sand, coarse, uniform, angular to subangular	4	15
with limy material		
San', very coarse, angular, and very fine	5	20
angular gravel		
avel coarse, angular to well-rounded, with	10	30
ver coarse sand		34
Gravel, fine to medium	4	_
Gravel, fine, and coarse sand	6	40
Gravel, fine, permeable	4	44
Gravel, very fine, un form, subrounde	4	48
Gravel, very fine, and coarse sand	2	50
Cobbles or tightly packed gravel	1	51
Gravel, fine	3	54
Gravel, very fine to fine	19	73
C'ay, silty, and limy, cemented fine sand	7	80
C'ay, silty, and limy, cemented line sand	10	90
Clay, greer finely sandy	77.	
Clay, blue-gray, crumbly to plastic, with	10	100
much less fine sand and silt	10	110
Clay, sticky, plastic	10	120
Clay, silty, with shells		126
Clay	6	120
Clay, green, with finely sandy zones; semi-		100
plastic to crumbly	2	128
Clay	2	130
Clay, green, plastic, with finely sandy or		10.5
silty zones	17	147
Limestone, sandy, and poorly sorted sand	2	149
26/40-36Al. Perforated from 80 to 90, 107-12 187 to 195, 240 to 260 feet. Altitude 2,247.2 feet.	7,	
Caliche, hard, cemented	2	2
loosely cemented fine sand, fine gravel, traces of clay and caliche	11	13
and very fine gravel with some calcareous		
material	2	15
material	2	17
Sand, fine, hard, with calcareous cement		
Sand, fine, soft, limy, with coarse angular	2	19
sand and a little blue clay	-	

26/40-36Al. continued	Thickness (feet)	Depth (feet
Sand, very coarse, subangular to subrounded,		
and very fine grave	5	2.4
,caram to coarse	5 4	24
		28
medicum, dillioriii. Very angular +3-1.	5	33
angular, with traces	7	40
of blue clay Sand, fine to medium, argular, hard	2	62
Sand, coarse, subangular, and since	10	52
Sand, coarse, subangular, and fine angular sand	7	59
Sand, coarse, subangular, with oxidized grains	3.5	62.5
, course, and tang y	2.5	65
, codisc, with limy cement	2	67
and, course,	3	70
with limy cement	10	80
very loose,		80
Gravel, cemented, hard	2	82
very time, sublounded to rounded	1	83
in part with limy cementGravel, fine, subangular, and medium to	3	86
coarse sand	1	87
odia, fine to coarse	3	90
band, very time to coarse	12	
The Co Coarse, With ting grave?	2	102
with limy cement		104
with hard zones	9	113
Sand, coarse and very fine subrounded gravel	11	124
Clay, blue, silty to finely sandy, plastic	5	129
clay, blue-green-black speckled	10	139
ilt. finely sand gray with a live	3	142
lay, silty, speckled, plastic, micaceous, with	8	150
SHELLS	10	160
, b, b	3	163
Sitty Clay with some	,	103
coarse sand and limeand, fine to coarse, angular to subrounded,	10	173
silty, and gray silty clayravel, very fine to coarse, subangular,	14	187
and some coarse sandand, medium to coarse, limy fine sand	4	191
and blue clayand very fine	1	192
gravel with a little silty clay	1	102
The Lo Codise, With imv cement hand	3	193
The, course, subangular to subrounded	,	196
and very finegravel	1	197
me, the, diguid. With a little lime and mile	8	205
and, medium, angular, hard	1	206

26/40-36Al. continued	Thickness (feet)	Depth (feet
Sand, fine, angular, coarsely silty	4	210
Sand, fine to coarse, angular to subrounded loose, with about 10% spherical to bean-	11	221
shaped sideritic pellets in some zones	26	045
Sand, coarse, and very fine and	13	247 260
cemented, subangular to subrounded	10	270
26/41-7G2. Perforated from 9.3 to 49.3 feet. Altitude 2,181.3 feet.		
Sand, fine to medium, angular, loose, with some calcareous material		
Sand, medium, uniform, rounded	4	4
subrounded to rounded,	6	10
in part cemented,	7	17
with cemented fine sand and soft white	3	20
numerous stained or oxidia.	3	23
loose, permeable	18	41
loose, permeable	4.5	45.5
edrock	2	47.5
	1.8	49.3

Table C III. Chemical analyses of water from test wells on Naval Weapons Center, China Lake, California

(Analyses in parts per million)

		25/40-3	33L2	25/41-28B1	26/40-1A2
Calcium		-		_	0
Magnesiu	ım (Mg)			_	1.9
Sodium (-		_	5,400
Potassiu	ım (K)	-			64
Carbonat	e (CO ₃)			_	2,430
Bicarbon	ate (HCO3)			_	1,420
Sulfate	(SO_{λ})			_	1,620
Chloride	(CI)	898		1,390	3,460
Fluoride	(F)	_			
Nitrate				-	_
Boron (B) 3	3.	8	17	161
Sum				17	151
	(N)			- H-T	13,837
%Sodium	conductance	-		-	99
Micro	mhos @ 25°C	2 700		Mara III	
	milos e 25 C	3,730		5,050	19,100
рН				1 1 <u>1</u>	9.6
lardness					9.0
lotal	as CaCO3	205		200	8
Nonca	rbonate 3	-		-	0
epth of		22		162	100
	ure (°F)	63		71	198 76
ate coll		3-4-54	3-	10-54	3-9-54
aborator		USGS		USGS	USGS
aborator	ry No.	10,796	1	0,797	10,795
	26/40-1A3	26/40-22P1	26/40-24R1	26/40-36A	1 26/41-7G2
a		3.4	9.6	90	
g	7 P. S.	0.6	24	22	-
a		407	228	483	
		7.1	18	24	
03 063 14		24	0		
cd,		766	136	0	7 7 7 1 1 1 7
04		23	83	118 62	
1	19,500	152	314	875	1,440
		4.0		373	1,440
0,		1 1	5 - 4	5	
03	73	1.1 3.0	1.8	-	- 1
ım		1,008		3.7	19
			746		

11		,	
Con	C I	Ln.	ıed

	26/40-1A3	26/40-22P1	26/40-24R1	26/40-36A1	26/41-7G2
% Na K x 10 ⁶ pH Hardness	52,700	98 1,690 8.6	77 1,430 7.6	75 3,060 7.6	6,580
Total N.C.	22	11 0	122 11	315 218	11
Depth o _F Date Lab. Lab. No.	18 68 3-17-54 USGS 10,801	850 90 2-23-54 USGS 10,623	149 71 3-9-54 USGS 10,800	270 72 3-8-54 USGS 10,799	49 68 4-5-54 USGS 10,798

Table C IV. Analysis of Fluids and Alteration Products in the Coso Thermal Area. (from, Austin, et al., 1971)

Resort, Resort, shal-Resort, shall bevil's shallow low well nextlow well at steam siliceous green siliceous					Location	r r		
Marchen, shallow Low well nextlow well at Kitchen, steam Steam Lo fault Old Steam	Devil's	Bosort	Resort, shal	-Resort, shal		Devil's		
Pool Scarp bath residue Geous resiliation Color	Analysis	Kitchen, clear	shallow	low well nex	tlow well at		Kitchen,	Resort,
10-100 1		pool	well	scarp	bath	residue	Geous resi-	pnu
10-100 10-10 10	Constituent					-		
1-10 1-10	Si	10-100	001.01					
1-10		001_01	10-100	10-100	10-100	10-100	10-100	10-100
1-10		::-	3-30	3-30	3-30	11	1-10	1-10
.3-3 .1-1 .1-1 1-10 .033 .71.1 .033 .3-3 .1-1 .1-1 .033 .011 .00303 .033 .1-1 .1-1 .1-1 .011 .00303 .033 .1-1 .1-1 .011 .033 .00303 .00101 .011 .00101 .00303 .00101 .00101 .00101 .00303 .011 .00101 .00101 .00303 .033 .011 .00101 .00101 .00303 .033 .011 .00101 .00101 .00303 .011 .00303 .011 .00101 .00303 .011 .00303 .00101 .00101 .00101 .00101 .00101 .00101 .00101 .00101 .00101 .00101 .00101 .00101 .00101 .00101 .00101 .00101 .00101 <t< td=""><td>AL</td><td>01-1</td><td>1-10</td><td>1-10</td><td>3-30</td><td>1-10</td><td>3-30</td><td>3-30</td></t<>	AL	01-1	1-10	1-10	3-30	1-10	3-30	3-30
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ra	.3-3	.1-1	.1-1	1-10	.033		1 - 10
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	mggm	.1-1	.3-3	.3-3	.3-3	.011	.003~.03	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Na.	.03~.3	.3-3	.1-1	1-10	1 10		1 .
	× :	.3-3	.1-1	.1-1	3-30	110.	.033	I-I.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Mo	:	.0003003	.0003003		:	.5-5	.3-3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Zn	:	.00303	.011		•	:	:
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Sn	:	:	:	.011	001-01		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Co						10100.	.00303
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Sc.		:		.00101	:	.0003003	:
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Υ		:	:	.0003003	:	.0003003	.00303
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	В	.3-3	.033	:	::		.00101	:
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Mn	.00303	.033	.033		.011	.00303	.00101
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ag				•	10100.	1.0003003	.00303
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.00303			:	:	:	.0003003
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ti	.033	1-1	.00303	.011	.00303	.00303	.00303
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Sr	.011	.00303	.00303	.1-1	. 1-1	.3-3	.3-3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N.i.	.00303	.0003003	.0003003	.00303	.00101	.033	.033
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Λ.	.00101	.00101	.00101	1001-01	001-01	500.	10100.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Pb	.00101	.00101	.00303	.033	001-01	.00303	.00303
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ba	.00303	.011	.011	.011	.011	3-3	.00303
176 2.03	Ca	.00101	.00101	.00101	.00101	.0003003	003-03	.033
176 2.03 .00303 .00303 .011 .033 176 2.03 .203 203	7r	0003003	.0003003	.0003003	.001.01	.0003003	.00101	.00101
2,500 2,800 2,800 1.5 4.5 203 203	1 60	0003003	.00303	.00303	.00303	.011	.033	.00303
2,500 2,800 2,800 2,700 1.5 4.5 4.5 1.76 203 203	Total dissolved		10100.	.0003003	:			
176 203 203	solids, ppm	2,500	2,800	2,800	2,700			31
203 203	To The T	1.5	4.5	4.5	•		•	•
		0/1	503	203	:			:

Table C-V. Recent Analysis of Waters at Coso Thermal Area. (from, Austin, et al., 1971)

			Locati	Location and date		
Analysis	22/39-731	22/39-4K5	22/39-4K4	22/39-4K3 Condensed	22/39-4K2	Coso No. 1
	Spring, 1960	Well,	Well,	steam from	Spring,	at 375 ft.
Constituent, ppm:			-000	WEIL, 1700	1900	136/2
S10 ₂	326	306	326	203	202	20
Fe	28	0.6	5.5	0.06	60 0	20 0
A1	77	3.8	2.3	110	7	0.10
Ca	18	77	28	17	****	12.0
Mg	81	19	12	6.2	25	0.5
Na	14	36	30	25	~	1 76.
К	28	9.2	8.8	8.6	23	15.04
нсо3	:	:	:	•	:	134.2
		:	:	:		78
so.4	1,450	1,270	247	133	528	38
C1	:	375	275		L V	2 700
Tra 1	6.0	9.0	7.0	0.5		3 70
NO3	3.0	9.0	0.5	0.1	~	0
В.	9.0	:	0.11			7.7
Мо	1.7	•	0.8	:		0.0
Li	0.1		C			
PO,		0	010	:	•	:
Br		. 8	7 . 8	•	:	7.0
As		0		•	:	:
Mo	:	0.004	0.004	:	:	:
I	:	0.003	0.006		:	:
Cu	:			•	:	:
Total dissolved			•	:	:	0.0
solids, ppm	2,260	2,060	1,070	643	1 030	777. 3
ь	2.2	1.2	2.1	4.5	0 7	7,44
np., F	206	115	173	201	78	240

C-13

Table C VI. Geologic log and water analysis of samples from Coso No. 1 Drill Hole. (from, Austin et al., 1971)

Only one shallow test has been drilled here so details are lacking for depths beyond a few tens of feet in exposed granites and beyond a depth of 375 feet in alluvium covered granites.

Quarternary alluvium	185	feet
Weathered Cretaceous granite	24	feet
Altered granite	65	feet
Hydrothermally altered granite	5	feet
Slightly altered granite	20	feet
Heavily fractured altered granite	25	feet
Hydrothermally altered granite with clay	10	feet
Altered granite	40	feet
Total depth	375	feet

Sample 1 was taken from the well discharge (clear water) at completion of drilling after blowing the well with compressed air for over 1 hour. Samples 2 and 3 were taken after the well was idle for 7 months. Sample 2 is from the first and third bailer, and Sample 3 from the 13th and 14th bailer. All water from depth of 375 feet.

Data		Sample 1	No.
	1	2	3
Data:			
Sample taken	27 7 (7		
Analysis	27 Jun. 67	Mar. 68	Mar. 68
	12 Jul. to	16 Apr. 68	16 Apr. 68
Temp., °F	3 Aug. 67		
Constituent	240	287	287
Constituent, ppm:			
Ca	72.8	359.0	74.4
Mg	0.5	0.6	1.0
Na	1,764	2,808.0	1,632.0
K	154	172.0	244.0
^{CO} ₃	84	50.4	77.4
нсо ₃	134.2	0.0	
504	38	216.0	0.0
C1	2,790	3,681.0	52.8
NO ₃	7.1		3,042.0
NO ₂	• • •	trace	trace
		negative	negative
Si0 ₂	50	27.0	154.0
F	3.70	1.60	2.20
B	48	57.42	71.60
Fe	0.15		
Mn	0.0	• • •	• • •
PO ₄	0.4a	0.23	
Cu	0.0		0.88
ОН		76.2	•••
Br		4.67	1.7
As		0.94	2.55
NH ₄		trace	7.50
Eg			trace
Synthetic detergents,		1.4	0.0
apparent ABS	0.290		
otal dissolved	0.270	•••	• • •
solids, ppm	5,744	(001 0	
4	8.9	6,894.0	5,228.0
nalytical laboratory		9.8	8.5
, and additionally	Navy	Hornkohl	Hornkohl

aOrtho.