Text Normalization

SLP3 Ch 2; INLP Ch 4.3.1

Text Normalization

- Every NLP task requires text normalization:
 - Tokenizing (segmenting) words
 - Normalizing word formats
 - Segmenting sentences

Word Tokenization

Space-based tokenization

- A very simple way to tokenize
 - For language that use space characters between words
 - Arabic, Cyrillic, Greek, Latin, etc., based writing systems
 - Segment off a token between instances of spaces (and punctuations)
- Example
 - Sentence:
 - I love natural language processing, too.
 - Tokenized:
 - I_love_natural_language_processing_too
 - "_": delimiter

Issues in tokenization

- Can't just blindly remove punctuation:
 - m.p.h., Ph.D., AT&T, cap'n
 - Prices (\$45.55)
 - Dates (01/02/06)
 - URLs (https://www.shanghaitech.edu.cn)
 - Hashtags (#nlproc)
 - Email addresses (someone@shanghaitech.edu.cn)
- Clitic: a word that doesn't stand on its own
 - "are" in we're, French "je" in j'ai, "le" in l'honneur
- When should multiword expressions (MWE) be words?
 - New York, rock 'n' roll

An example sentence

Sentence:

```
That U.S.A. poster-print costs $12.40...?
```

Expected output:

```
That_U.S.A._poster-print_costs_$12.40_..._?
```

Words with optional internal hyphens:

- Abbreviations:
 U.S.A.
- Currency and percentages: \$12.40
- Ellipsis: ...
- ▶ Separate tokens:
][.,;"'?():-_'

Tokenization with regular expressions

- Idea:
 - Write a pattern matching all possible tokens but matching none of non-tokens.
 - Output all non-overlapping matches.
- Tool: regular expression (RE)
 - Words with optional internal hyphens:
 - Pattern in RE: \w+(-\w+)*
 - Strings accepted:
 - ▶ That, poster-print, costs
 - Strings rejected:
 - ▶ U.S.A., \$12.40, ...
 - ▶ non-, -ly, AT&T

```
\w = any word character
```

$$= [a-zA-Z0-9_]$$

- + = match 1 or more times
- = match 0 or more times
- (...) is a group (followed by + or *)

Tokenization with regular expressions

- Abbreviations:
 - Pattern: ([A-Z]\.)+
 - Strings accepted: U.S.A.
 - String rejected: UU.S.A, I
- Currency and percentages:
 - Pattern: \\$?\d+(\.\\d+)?%?
 - String accepted: \$12.40
 - String rejected: \$.4, 1.4.0, 1%
- Ellipsis:
 - ▶ Pattern: \.\.\.
 - String accepted: ...
- Separate tokens:
 - Pattern: [][.,;"'?():-_`]

[A-Z] = uppercased char

 $\frac{d}{d} = digit = [0-9]$

In RE, some characters (e.g., ^\$.?+*()[]) have special meaning. They should be escaped to match them.

- + = match 1 or more times
- ? = match 0 or 1 time

Tokenization in languages without spaces

- Many languages (like Chinese, Japanese, Thai) don't use spaces to separate words!
- Same for compound nouns in some western languages
 - Example: German:
 Freundschaftsbezeigungen (demonstration of friendship)
 - Example: hashtags in social media: #TrueLoveInFourWords

Tokenization in languages without spaces

- ▶ Sentence: 姚明进入总决赛
- Multiple ways of tokenization
 - ▶ 姚明/进入/总决赛
 - ▶ 姚/明/进入/总/决赛
 - ▶ 姚/明/进/入/总/决/赛
- Typically cast as sequence labeling + supervised learning (to be discussed later)
- single-character segmentation

- Ambiguity
 - 南京市长江大桥

江大桥是一个网络流行用语, 指的是"从未在公共场合露面, 但手握重权,同时任职多市市 长的中国政界传奇人物"

Subword tokenization

- Subword tokens can be parts of words as well as whole words
- Advantages
 - Subwords are sometimes meaningful
 - prefix, postfix, stem, ...
 - ▶ Ex: postprocessing → post, process, ing
 - Much smaller vocabulary
 - Avoiding out-of-vocabulary (OOV) words
 - Can be automatically learned from data

Subword tokenization

- Three common algorithms:
 - Byte-Pair Encoding (BPE) (Sennrich et al., 2016)
 - Unigram language modeling tokenization (Kudo, 2018)
 - WordPiece (Schuster and Nakajima, 2012)
- All have 2 parts:
 - A token **learner** that takes a raw training corpus and induces a vocabulary (a set of tokens).
 - A token segmenter that takes a raw test sentence and tokenizes it according to that vocabulary

Byte Pair Encoding (BPE) token learner

Let vocabulary be the set of all individual characters

$$= \{A, B, C, D, ..., a, b, c, d....\}$$

- Repeat:
 - Choose the two symbols that are most frequently adjacent in the training corpus (say 'A', 'B')
 - Add a new merged symbol 'AB' to the vocabulary
 - Replace every adjacent 'A' 'B' in the corpus with 'AB'.
- Until k merges have been done.

Original corpus:

low low low low lowest lowest newer newer

- Usually run inside space-separated tokens.
- First add end-of-word tokens "_"
 - So we can differentiate est in estate and smallest
- Resulting vocabulary:

corpus

vocabulary

_, d, e, i, l, n, o, r, s, t, w

Merge e r to er

corpus

vocabulary

_, d, e, i, l, n, o, r, s, t, w, er

corpus

- 5 low_
- 2 lowest_
- 6 newer_
- 3 wider $_$
- 2 new_

vocabulary

_, d, e, i, l, n, o, r, s, t, w, er

Merge er _ to er_

corpus

- 5 low_
- 2 lowest_
- 6 newer_
- 3 wider_
- 2 new_

vocabulary

__, d, e, i, l, n, o, r, s, t, w, er, er__

corpus

- 5 1 o w _
- 2 lowest_
- 6 newer_
- 3 wider_
- 2 new_

vocabulary

, d, e, i, l, n, o, r, s, t, w, er, er

Merge n e to ne

corpus

- 5 1 o w _
- 2 lowest_
- 6 ne w er_
- 3 wider_
- 2 new $_$

vocabulary

__, d, e, i, l, n, o, r, s, t, w, er, er__, ne

The next merges are:

```
      Merge
      Current Vocabulary

      (ne, w)
      __, d, e, i, l, n, o, r, s, t, w, er, er__, ne, new

      (l, o)
      __, d, e, i, l, n, o, r, s, t, w, er, er__, ne, new, lo

      (lo, w)
      __, d, e, i, l, n, o, r, s, t, w, er, er__, ne, new, lo, low, newer__

      (low, __)
      __, d, e, i, l, n, o, r, s, t, w, er, er__, ne, new, lo, low, newer__, low__
```

BPE token segmenter algorithm

The learned vocabulary:

```
__, d, e, i, l, n, o, r, s, t, w, er, er__, ne, new, lo, low, newer__, low__
```

- On the test data, run each merge learned from the training data:
 - Greedily, in the order we learned them
 - (test frequencies don't play a role)
- So: merge every e r to er, then merge er _ to er_, etc.
- Result:
 - Test set "n e w e r _ " would be tokenized as a full word
 - Test set "lower_" would be two tokens: "lower_"

Properties of BPE tokens

- Usually include frequent words and frequent subwords
 - Which are often morphemes like -est or -er
- A morpheme is the smallest meaning-bearing unit of a language
 - unbreakable has 3 morphemes un-, -break-, and -able

Word Normalization

Word normalization

- Putting words/tokens in a standard format
 - ▶ U.S.A. or USA
 - uhhuh or uh-huh
 - Putting or putting
 - am, is, be, are

Case folding

- Reduce all letters to lower case
- Good in some scenarios
 - Information retrieval: users tend to use lower case
 - Example:

- Not good in others
 - Example: General Motors, Fed, US

Lemmatization

- Represent all words as their lemma, their shared root= dictionary headword form
 - \blacktriangleright am, are, is \rightarrow be
 - ▶ car, cars, car's, cars' → car
 - Spanish quiero ('I want'), quieres ('you want')
 - → querer 'want'
- Example
 - He is reading detective stories
 - → He be read detective story
- A simple method: dictionary matching

Lemmatization done by Morphological Parsing

- Morphemes:
 - The small meaningful units that make up words
 - Stems: The core meaning-bearing units
 - Can be used to recover the lemma
 - Affixes: Parts that adhere to stems, often with grammatical functions
- Morphological Parsers:
 - Parse cats into two morphemes cat and s
 - Parse Spanish amaren ('if in the future they would love') into morpheme amar 'to love', and the morphological features 3PL and future subjunctive.
- We will talk about parsing later.

Stemming

- Reduce terms to stems, chopping off affixes crudely
 - A simple and crude alternative to lemmatization
- Porter Stemmer
 - Based on a series of rewrite rules run in series
 - A cascade, in which output of each pass fed to next pass
 - Some sample rules

```
ATIONAL \rightarrow ATE (e.g., relational \rightarrow relate)

ING \rightarrow \epsilon if stem contains vowel (e.g., motoring \rightarrow motor)

SSES \rightarrow SS (e.g., grasses \rightarrow grass)
```

Stemming

- Reduce terms to stems, chopping off affixes crudely
 - A simple and crude alternative to lemmatization
- Example
 - Sentence:
 - ▶ This was not the map we found in Billy Bones's chest.
 - Stemming:
 - ▶ Thi wa not the map we found in Billi Bone s chest.
 - Lemmatizing:
 - ▶ This be not the map we find in Billy Bones 's chest.

Sentence Segmentation

Sentence segmentation

- !, ? mostly unambiguous but period "." is very ambiguous
 - Sentence boundary
 - Abbreviations like Inc. or Dr.
 - Numbers like .02% or 4.3
- Common algorithm
 - Tokenize first
 - So a period is classified as either part of a word or a sentenceboundary.
 - Sentence segmentation can then often be done by rules based on this tokenization.
 - Ex: punctuation, capitalization

Summary

Text Normalization

- Word tokenization
 - Regular expression, BPE
- Word normalization
 - Lemmatization, stemming
- Sentence segmentation