

第9讲 7-1~7-4

二阶电路

一阶电路: $y(t) = y(\infty) + [y(0_+) - y(\infty)] e^{-t/\tau}$

只含一种储能元件, R 影响过渡过程快慢。

含电容电路: $\tau = RC \rightarrow R$ 越大, 过渡过程越慢

含电感电路: $\tau = \frac{L}{R} \rightarrow R$ 越大,过渡过程越快

有激励时,储能增加或减少至稳态;

无激励时(零输入响应), 储能减少至零。

电阻元件	电容元件	电感元件
i R + u -	$ \begin{array}{c c} i_{\mathbf{C}} & C \\ + u_{\mathbf{C}} & - \end{array} $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
u(t) = Ri(t)	$q(t) = Cu_{\rm C}(t)$	$\psi(t) = L i_{L}(t)$
u(t) = R i(t)	$i_{\mathbf{C}} = C \frac{\mathrm{d} u_{\mathbf{C}}}{\mathrm{d} t}$	$u_{\rm L} = L \frac{\mathrm{d}i_{\rm L}}{\mathrm{d}t}$
	$u_{C}(t) = \frac{1}{C} \int_{-\infty}^{t} i(\xi) d\xi$	$i_L(t) = \frac{1}{L} \int_{-\infty}^t u(\xi) \mathrm{d} \xi$
$w_R(t) = \int_{t_1}^{t_2} i^2(t) R dt$	$w_{\mathbf{C}}(t) = \frac{1}{2}Cu_{\mathbf{C}}^{2}(t)$	$w_{\rm L}(t) = \frac{1}{2}Li_{\rm L}^2(t)$
电流(电压)随电压	电流为有限值时,	电压为有限值时,
(电流)瞬间改变	电压不能跃变	电流不能跃变

二阶电路:含有两个独立的动态元件的线性电路,称为二阶电路。其储能可在L和C之间交换,R影响过程的性质、快慢。

描述: 一阶微分方程组, 二阶微分方程

本章内容: LC、RLC二阶电路的零输入响应 直流激励RLC串联和并联电路的全响应

§ 7-1 LC 电路的正弦振荡

1. LC 电路的物理分析

初始储能:
$$u_{\rm C}(0) = U_0 > 0$$
 $i_{\rm L}(0) = 0$

$$C$$
 $=$ i $=$ $u_{\rm L} = u_{\rm C} = L \frac{{
m d}i}{{
m d}t}$ 电压的存在要求电流的变化 $i = -C \frac{{
m d}u_{\rm C}}{{
m d}t}$ 电流的存在又需电压的变化

$$u_{\rm L} = u_{\rm C} = L \frac{\mathrm{d}i}{\mathrm{d}t}$$

$$i = -C \frac{\mathrm{d} u_{\mathrm{C}}}{\mathrm{d} t}$$

■ 互相依托, 生生不息, 有始无终

$$\begin{array}{c|c}
 & i=0 \\
+ & + \\
 & u_{\text{C}} = U_0 \\
- & -
\end{array}$$

LC震荡电路的 五个典型时刻

1. 初始时刻,电容 放电, $i\uparrow$, $u_{C}\downarrow$

$$\begin{array}{c|c}
 & i=I_{m} \\
+ & u_{L}=0 \\
\hline
- & -
\end{array}$$

2. 电容放电完毕, 开始反向充电

3. 电容反向充电完毕, 开始反向放电

$$u_{L} = u_{C} = L \frac{\mathrm{d}i}{\mathrm{d}t}$$

$$i = -C \frac{\mathrm{d}u_{C}}{\mathrm{d}t}$$

4. 电容反向放电 完毕, 开始充电, |u_C|↑,|*i*|↓

5. 电容充电完毕 回到初始状态

2. LC电路的数学分析

设
$$L=1$$
H, $C=1$ F
初始状态 $u_{\rm C}(0)=1$ V, $i_{\rm L}(0)=0$

 $C = \begin{bmatrix} i \\ u_{\text{C}} \\ - \end{bmatrix} L$

列电容和电感的一阶微分方程组:

$$\begin{cases} i = -\frac{\mathrm{d}u_{\mathrm{C}}}{\mathrm{d}t} \\ u_{\mathrm{C}} = \frac{\mathrm{d}i}{\mathrm{d}t} \end{cases}$$

电压和电流互为导数

可设
$$\begin{cases} i(t) = \sin t \\ u_{C}(t) = \cos t \end{cases}$$

LC 电路的零输入响应为:

$$\begin{cases} i(t) = \sin t \\ u_{\rm C}(t) = \cos t \end{cases}$$

- 电流和电压按正弦规律不断 地改变大小和极性,形成等 幅振荡,亦称为自由振荡;
- ■若电路中存在电阻,则幅度 会逐渐衰减为零,称为阻尼 振荡;若电阻较大,甚至不 振荡。

LC电路的等幅振荡

3. LC电路的能量分析

在任何时刻
$$w(t) = \frac{1}{2}Cu^2(t) + \frac{1}{2}Li^2(t)$$

 $= \frac{1}{2} \times 1 \times \cos^2 t + \frac{1}{2} \times 1 \times \sin^2 t$
 $= \frac{1}{2}J = \frac{1}{2}Cu^2(0) = w(0)$

等幅振荡时, LC 电路的储能在任何时刻都为常量,在电场和磁场间不断往返。

§7-2 RLC串联电路的零输入响应

1. RLC 电路的微分方程

VCR:
$$i = C \frac{du_C}{dt}$$
, $u_L = L \frac{di}{dt} = LC \frac{d^2u_C}{dt^2}$

KVL:
$$u_L + Ri + u_C = 0$$

二阶常系数线性齐次方程:

$$LC\frac{\mathrm{d}^2 u_{\mathrm{C}}}{\mathrm{d}t^2} + RC\frac{\mathrm{d}u_{\mathrm{C}}}{\mathrm{d}t} + u_{\mathrm{C}} = 0$$

RLC串联电路

初始条件:

$$u_{\rm C}(0) = ? \rightarrow$$
 电容电压的初始值

$$\frac{\mathrm{d}u_{\mathrm{C}}}{\mathrm{d}t}\Big|_{t=0}=?=\frac{i(t)}{C}\Big|_{t=0}=\frac{i(0)}{C}$$
 →与电感电流的初始值有关

二阶常系数齐次线性微分方程的求解

采用特征方程法

$$y'' + py' + qy = 0$$

$$r^2 + pr + q = 0$$
 (特征方程)

	特征根的情况	通解的表达式
4	实根 $r_1 \neq r_2$	$y = C_1 e^{r_1 x} + C_2 e^{r_2 x}$
Section of the second	实根 $r_1 = r_2$	$y = (C_1 + C_2 x)e^{r_2 x}$
Na Carlo	$ 复根 r_{1,2} = \alpha \pm i\beta $	$y = e^{\alpha x} (C_1 \cos \beta x + C_2 \sin \beta x)$
1		

常数 C_1 和 C_2 由两个初始条件计算得到。

2. 解 RLC电路的二阶微分方程

二阶常系数齐次线性微分方程

$$LC\frac{\mathrm{d}^2 u_{\mathrm{C}}}{\mathrm{d}t^2} + RC\frac{\mathrm{d}u_{\mathrm{C}}}{\mathrm{d}t} + u_{\mathrm{C}} = 0$$

其特征方程为

$$LCs^2 + RCs + 1 = 0$$

特征方程的根(又称为固有频率)

$$s_{1,2} = \frac{-RC \pm \sqrt{(RC)^2 - 4LC}}{2LC} = -\frac{R}{2L} \pm \sqrt{(\frac{R}{2L})^2 - \frac{1}{LC}}$$

电路的零输入响应的性质取决于电路的固有频率。

当
$$\sqrt{(\frac{R}{2L})^2 - \frac{1}{LC}} = 0$$
 时, $R = 2\sqrt{\frac{L}{C}}$

 $2\sqrt{\frac{L}{C}}$ 具有电阻的量纲,称为阻尼电阻,记为 R_d 。

$$\sqrt{\frac{L}{C}} = \sqrt{\frac{\Phi}{i} \cdot \frac{u}{q}} = \sqrt{\frac{ut}{i} \cdot \frac{u}{it}} = \sqrt{R^2} = R$$

阻尼 (damping) 是指任何振动系统在振动中,由于外界作用或系统本身固有的原因引起的振动幅度逐渐下降的特性,以及对此一特性的量化表征。

3. RLC串联电路零输入响应分析

阻尼状况	特征根 (s ₁ 、s ₂)	通解的形式
无阻尼 (R = 0)	一对共轭虚数 $s_1, s_2 = \pm \mathbf{j}\omega_0$	$u_{\mathbf{C}}(t) = \left(K_1 \cos \omega_0 t + K_2 \sin \omega_0 t\right)$ 等幅振荡
	一对共轭复数 $s_1, s_2 = -\alpha \pm \mathbf{j}\omega_{\mathrm{d}}$	$u_{\rm C} = e^{-\alpha t} \left(K_1 \cos \omega_{\rm d} t + K_2 \sin \omega_{\rm d} t \right)$ 振荡性衰减
临界阻尼 $(R = R_d)$	相等的负实数 $s_1 = s_2 = -\alpha$	$u_{C}(t) = (K_{1} + K_{2} t)e^{-\alpha t}$ 非振荡性衰坏 $\frac{25}{20}$ $\frac{15}{500.0m}$
过阻尼 $(R > R_d)$	不相等的负实数 $s_1 = -\alpha_1, s_2 = -\alpha_2$	$u_{\rm C}(t) = K_1 e^{-\alpha_1 t} + K_2 e^{-\alpha_2 t}$ 非振荡性衰减 $\frac{25}{1.5}$

Multisim仿真结果

 $R_d = 2\sqrt{\frac{L}{C}} = 20\Omega$

$$L = 100 \mu H, C = 1 \mu F, u_C(0) = 2V, i_L(0) = 0$$

(1) 过阻尼情况 $(R > R_d = 2\sqrt{\frac{L}{C}})$

例1: 已知图示电路中 $t \ge 0$ 时, $R = 3\Omega, L = 0.5$ H,C = 0.25 F, $u_{\rm C}(0) = 2$ V, $i_{\rm L}(0) = 1$ A.求: $u_{\rm C}(t)$ 及 $i_{\rm L}(t)$ $t \ge 0$

分析: 阻尼电阻 $R_d = 2\sqrt{\frac{L}{C}} = 2.828 \Omega < R \rightarrow 过阻尼情况$

解1: 以 u_c(t) 为求解变量

$$LC\frac{\mathrm{d}^2 u_{\mathrm{C}}}{\mathrm{d}t^2} + RC\frac{\mathrm{d}u_{\mathrm{C}}}{\mathrm{d}t} + u_{\mathrm{C}} = 0$$

代入得:
$$\frac{\mathrm{d}^2 u_{\mathrm{C}}}{\mathrm{d}t^2} + 6 \frac{\mathrm{d}u_{\mathrm{C}}}{\mathrm{d}t} + 8 u_{\mathrm{C}} = 0$$

特征方程: $s^2+6s+8=0 \rightarrow s_1=-2$, $s_2=-4$

─ 也可代公式直接求S_{1.2}

∴通解
$$u_{\rm C}(t) = K_1 {\rm e}^{-2t} + K_2 {\rm e}^{-4t}$$

已知初始条件: $u_{\rm C}(0) = 2{\rm V}$, $i_{\rm L}(0) = 1{\rm A}$

$$\begin{cases} u_{\rm C}(0) = K_1 + K_2 = 2\\ \frac{\mathrm{d}u_{\rm C}}{\mathrm{d}t}\Big|_{t=0} = -2K_1 - 4K_2 = \frac{i_{\rm L}(0)}{C} = 4 \end{cases} \rightarrow K_1 = 6, K_2 = -4$$

$$u_C(t) = 6e^{-2t} - 4e^{-4t} V \quad t \ge 0$$

$$i_{L}(t) = i_{C}(t) = C \frac{du_{C}}{dt} = -3e^{-2t} + 4e^{-4t} \quad t \ge 0$$

解2:以iL(t)为求解变量

电感和电容的VCR为:

$$u_{\rm L} = L \frac{\mathrm{d}i}{\mathrm{d}t}$$
, $u_{\rm C}(t) = u_{\rm C}(0) + \frac{1}{\mathrm{C}} \int_0^t i \, dt$

KVL:
$$u_{L} + Ri + u_{C} = 0$$

$$Ri + L\frac{\mathrm{d}i}{\mathrm{d}t} + u_C(0) + \frac{1}{C} \int_0^t i \, \mathrm{d}t = 0$$

等式两边微分得:
$$LC\frac{\mathrm{d}^2i}{\mathrm{d}t^2} + RC\frac{\mathrm{d}i}{\mathrm{d}t} + i(t) = 0$$

代入得:
$$\frac{\mathrm{d}^2i}{\mathrm{d}t^2} + 6\frac{\mathrm{d}i}{\mathrm{d}t} + 8i = 0$$

特征方程:
$$s^2+6s+8=0$$

19/41

特征根:
$$s_1 = -2$$
, $s_2 = -4$

特征方程与电容电压特征方程相同

∴ 通解
$$i_L(t) = K_1 e^{-2t} + K_2 e^{-4t}$$

初始条件 $u_{\rm C}(0) = 2{\rm V}$, $i_{\rm L}(0) = 1{\rm A}$

$$\begin{cases} i_{L}(0) = K_{1} + K_{2} = 1 \\ \frac{di}{dt} \Big|_{t=0} = -2K_{1} - 4K_{2} = \frac{u_{L}(0)}{L} \end{cases}$$

由右图
$$u_L(0_+) = -3 \times 1 - 2 = -5V$$

代入得
$$K_1 = -3$$
, $K_2 = 4$

$$i_L(t) = -3e^{-2t} + 4e^{-4t} A$$
 $t \ge 0$

$$\begin{aligned} u_{C}(t) &= u_{C}(0) + \frac{1}{C} \int_{0}^{t} i \, dt = 2 + 4 \left(\frac{3}{2} e^{-2t} - e^{-4t} \right) \Big|_{0}^{t} \\ &= 6 e^{-2t} - 4 e^{-4t} V \quad t \ge 0 \end{aligned}$$

t=0,时电路

对LC串联电 路最好以 u_C 为求解变量

(2) 临界阻尼情况 $(R = R_d = 2\sqrt{\frac{L}{C}})$

$$s_1, s_2$$
为两个相等的负实数: $s_1 = s_2 = -\frac{R}{2L} = -\alpha$

通解
$$u_{\mathbf{C}}(t) = K_1 e^{-\alpha t} + K_2 t e^{-\alpha t} = (K_1 + K_2 t) e^{-\alpha t}$$

$$\frac{\mathrm{d}u_{\mathrm{C}}}{\mathrm{d}t}\Big|_{t=0} = \left[K_{2}\mathrm{e}^{-\alpha t} - \alpha (K_{1} + K_{2}t)\mathrm{e}^{-\alpha t}\right]\Big|_{t=0} = K_{2} - \alpha K_{1} = \frac{i_{\mathrm{L}}(0)}{C}$$

$$K_1 = u_C(0), K_2 = \frac{i_L(0)}{C} + \alpha u_C(0)$$

最终解:
$$u_{\rm C}(t) = \left\{ u_{\rm C}(0) + \left[\frac{i_{\rm L}(0)}{C} + \alpha u_{\rm C}(0) \right] t \right\} e^{-\alpha t}$$
 其中 $\alpha = \frac{R}{2L}$

临界阻尼示例

例2:已知RLC串联电路中 $t \ge 0$ 时, $i_L(0) = 1A$, $u_C(0) = 0$,C = 1F, L=1H, $R=2\Omega$. 求 $u_C(t)$, $t\geq 0$

$$s_{1,2} = -\frac{R}{2L} \pm \sqrt{(\frac{R}{2L})^2 - \frac{1}{LC}} = -\frac{2}{2 \times 1} \pm \sqrt{1 - 1} = -1$$

通解 $u_C(t) = (K_1 + K_2 t) e^{-t}$

$$\begin{cases} K_1 = u_{C}(0) = 0 \\ \frac{du_{C}}{dt}|_{t=0} = K_2 - K_1 = \frac{i_{L}(0)}{C} = 1 \end{cases}$$

$$K_1 = 0, K_2 = 1$$

$$u_{\mathbf{C}}(t) = t \, \mathbf{e}^{-t} \, \mathbf{V}$$
 $t \ge 0$

一临界阻尼情况

(3) 欠阻尼情况
$$(R < R_d = 2\sqrt{\frac{L}{C}})$$

 s_1, s_2 为共轭复数

$$S_{1, 2} = -\frac{R}{2L} \pm \mathbf{j} \sqrt{\frac{1}{LC} - (\frac{R}{2L})^2} = -\alpha \pm \mathbf{j} \omega_{\mathbf{d}}$$

通解
$$u_{\rm C}(t) = e^{-\alpha t} (K_1 \cos \omega_{\rm d} t + K_2 \sin \omega_{\rm d} t)$$

$$u_{\mathbf{C}}(0) = K_1$$

$$\frac{\mathrm{d}u}{\mathrm{d}t}|_{t=0} = \left[-\alpha e^{-\alpha t} \left(K_1 \cos \omega_{\mathrm{d}} t + K_2 \sin \omega_{\mathrm{d}} t \right) + e^{-\alpha t} \left(-\omega_{\mathrm{d}} K_1 \sin \omega_{\mathrm{d}} t + \omega_{\mathrm{d}} K_2 \cos \omega_{\mathrm{d}} t \right) \right]|_{t=0}$$

$$= -\alpha K_1 + \omega_{\mathrm{d}} K_2 = i_{\mathrm{L}}(0)/C$$

$$K_1 = u_{\rm C}(0), \quad K_2 = \frac{i_{\rm L}(0)}{\omega_{\rm d}C} + \frac{\alpha u_{\rm C}(0)}{\omega_{\rm d}}$$

解的最后形式
$$u_{\rm C}(t) = e^{-\alpha t} (K_1 \cos \omega_{\rm d} t + K_2 \sin \omega_{\rm d} t)$$

或

$$u_{\rm C}(t) = Ke^{-\alpha t}\cos(\omega_{\rm d}t + \varphi)$$

$$\begin{cases} K = \sqrt{K_1^2 + K_2^2} \\ \varphi = -\arctan \frac{K_2}{K_1} \end{cases}$$

$$K_1 = u_{\mathcal{C}}(0)$$

$$i_{\mathcal{I}}(0) \quad \alpha u_{\mathcal{C}}(0)$$

$$\alpha = \frac{R}{2L}$$

$K_2 = \frac{i_{\rm L}(0)}{\omega_{\rm A}C} + \frac{\alpha u_{\rm C}(0)}{\omega_{\rm A}}$

*ω*_d ─ 衰减振荡角频率

$$\omega_{\rm d} = \sqrt{\frac{1}{LC} - (\frac{R}{2L})^2}$$

欠阻尼示例

例3:已知: $R=4\Omega$,RLC串联电路的零输入响应为 $u_C(t)=5e^{-2t}\cos\sqrt{3}t$ V,求:L和C。

解:由零输入响应的形式可知,电路应为欠阻尼情况。 此时零输入响应的一般形式为

$$u_{C}(t) = e^{-\alpha t} (K_{1} \cos \omega_{d} t + K_{2} \sin \omega_{d} t)$$

$$s_{1,2} = -\frac{R}{2L} \pm \mathbf{j} \sqrt{\frac{1}{LC} - \left(\frac{R}{2L}\right)^2} = -\alpha \pm \mathbf{j} \omega_d$$

$$\alpha = \frac{R}{2L} = 2$$
 $\omega_{\rm d} = \sqrt{\frac{1}{LC} - \left(\frac{R}{2L}\right)^2} = \sqrt{3}$

解得: L=1H, $C=\frac{1}{7}$ F

4. R=0 无阻尼

特征根
$$s_1 = \mathbf{j} \sqrt{\frac{1}{LC}} = \mathbf{j} \omega_0$$
 $s_2 = -\mathbf{j} \sqrt{\frac{1}{LC}} = -\mathbf{j} \omega_0$

等幅震荡角频率(谐振频率)
$$\omega_0 = \sqrt{\frac{1}{LC}} \quad (\omega_0^2 = \alpha^2 + \omega_d^2)$$

解的形式 $u_{\rm C}(t) = K_1 \cos \omega_0 t + K_2 \sin \omega_0 t$

$$\begin{cases} K_1 = u_{\mathbf{C}}(0) \\ \frac{\mathbf{d}u_{\mathbf{C}}}{\mathbf{d}t} \Big|_{t=0} = \omega_0 K_2 = \frac{i_{\mathbf{L}}(0)}{C} \longrightarrow K_2 = \frac{i_{\mathbf{L}}(0)}{C\omega_0} \end{cases}$$

解的最终形式 $u_{\rm C}(t) = K\cos(\omega_0 t + \varphi)$

$$K = \sqrt{K_1^2 + K_2^2}$$
, $\varphi = -\arctan\frac{K_2}{K_1}$

无衰减等 幅振荡!

预备知识

二阶常系数非齐次线性微分方程

$$y''+py'+qy=f(x)$$

的通解:

对应齐次微分方程的通解: y = Y(x)

非齐次方程的一个特解: $y = y^*(x)$

即: y = Y(x) + y*(x).

若非齐次项为常数C,则 $y^*(x) = C/q$ 即为一个特解。

§7-3 RLC 辛联电路的全响应

LC串联网络的分解

等效网络

$$u_{OC}(t) = u_{R_0}(t) + u_L(t) + u_C(t)$$

$$LC\frac{\mathrm{d}^2 u_{\mathrm{C}}}{\mathrm{d}t^2} + RC\frac{\mathrm{d}u_{\mathrm{C}}}{\mathrm{d}t} + u_{\mathrm{C}} = U_{\mathrm{S}}$$

$$u_{\rm C}(t) = u_{\rm Ch} + u_{\rm Cp}$$

(homogeneous) (particular)

- 齐次解u_{Ch} 形式与RLC零输入响应相同
- 特解u_{Cp}: 稳态响应(稳态解)

这里为直流激励,则 $u_{\rm Cp} = U_{\rm S}$

例如: 过阻尼全响应形式为

$$u_{\mathrm{C}}(t) = K_{1} \mathrm{e}^{-\alpha_{1}t} + K_{2} \mathrm{e}^{-\alpha_{2}t} + U_{\mathrm{S}}$$

 K_1 , K_2 由初始条件确定

例: 求图示电路中
$$u_{\rm C}(t)$$
 $t \ge 0$

已知
$$u_{\rm C}(0) = 0$$
 $i_{\rm L}(0) = 0$

解:

$$LC \frac{\mathrm{d}^2 u_{\mathrm{C}}}{\mathrm{d}t^2} + RC \frac{\mathrm{d}u_{\mathrm{C}}}{\mathrm{d}t} + u_{\mathrm{C}} = U_{\mathrm{S}}$$

$$\frac{\mathrm{d}^2 u_{\mathrm{C}}}{\mathrm{d}t^2} + \frac{\mathrm{d}u_{\mathrm{C}}}{\mathrm{d}t} + u_{\mathrm{C}} = 2$$

$$s^2+s+1=0$$
 $\longrightarrow s_{1,2}=\frac{-1\pm\sqrt{1-4}}{2}=-\frac{1}{2}\pm j\frac{\sqrt{3}}{2}$

为欠阻尼情况

$$u_{\text{Ch}}(t) = e^{-\frac{1}{2}t} (K_1 \cos \frac{\sqrt{3}}{2}t + K_2 \sin \frac{\sqrt{3}}{2}t)$$

$$u_{\text{Ch}}(t) = 2$$

确定系数
$$\exists \exists u_{C}(0) = 0$$
 $i_{L}(0) = 0$

$$u_{C}(t) = e^{\frac{1}{2}t} [K_{1}\cos\frac{\sqrt{3}}{2}t + K_{2}\sin\frac{\sqrt{3}}{2}t] + 2$$

$$\begin{cases} u_{C}(0) = K_{1} + 2 = 0 \\ \frac{du_{C}}{dt}|_{t=0} = -\frac{1}{2}K_{1} + \frac{\sqrt{3}}{2}K_{2} = \frac{i_{L}(0)}{C} = 0 \end{cases}$$

$$\therefore K_{1} = -2, \quad K_{2} = -\frac{2}{3}\sqrt{3}$$

$$u_{C}(t) = e^{\frac{1}{2}t} [-2\cos\frac{\sqrt{3}}{2}t - \frac{2}{3}\sqrt{3}\sin\frac{\sqrt{3}}{2}t] + 2$$

$$= -2.3e^{\frac{1}{2}t}\cos(\frac{\sqrt{3}}{2}t - 30^{\circ}) + 2V \qquad t \ge 0$$

例7-5 图所示为电火花加工器的原理电路。若 $u_c(0)$ =0, $i(0_{-})=0$, 开关S在t=0时闭合, 电容被充电。当电 容电压达到工作电极和金属工件间隙击穿电压,即产 生电火花,电容通过间隙放电,然后电源再次对电容 充电, 重复上述过程。电火花的温度一般可达10⁴°C, 足使工件局部融化,从而对工件进行加工。若 $R=50\Omega$ 、L=0.06H、 $C=1\mu F$,试计算加工频率及电容的最高充 电电压。(假设电容电压最大值即为间隙击穿电压,并 假设放电在瞬间完成.)

解:
$$R_d = 2\sqrt{\frac{L}{C}} = 489\Omega$$
, $R < R_d$ 欠阻尼状态

特征根为共轭复根:

$$s_{1,2} = -\frac{R}{2L} \pm j \sqrt{\frac{1}{LC} - \frac{R}{2L}} = -\alpha \pm j\omega_d$$
 $\alpha = 417$, $\omega_d = 4060$

$$\therefore u_C(t) = e^{-\alpha t} [K_1 \cos(\omega_d t) + K_2 \sin(\omega_d t)] + 300$$

$$u_C(0) = K_1 + 300 = 0, \quad \frac{du_C}{dt}\Big|_{0} = -\alpha K_1 + \omega_d K_2 = \frac{i_L(0)}{C} = 0$$

解得:
$$K_1 = -300$$
, $K_2 = -300 \left(\frac{\alpha}{\omega_d} \right)$

$$\therefore u_C(t) = \left\{ -300e^{-\alpha t} \left[\cos(\omega_d t) + \frac{\alpha}{\omega_d} \sin(\omega_d t) \right] + 300 \right\} V$$

 $t \geq 0$

求 $u_C(t)$ 的最大值:

$$\frac{du_C}{dt} = 300e^{-\alpha t} \left[\frac{\alpha^2 + \omega_d^2}{\omega_d} \right] \sin(\omega_d t) = 300 \frac{\omega_0^2}{\omega_d} e^{-\alpha t} \sin(\omega_d t)$$

 $\diamondsuit du_C/dt=0$, 得 $\sin(\omega_d t)=0$,

所以电容电压最大值发生在
$$t_m = \frac{\pi}{\omega_d}, \frac{3\pi}{\omega_d}, \frac{5\pi}{\omega_d}, \dots$$
 等时刻。

第一最大值发生时刻为 $\pi/\omega_d=0.774ms$,以之代入 $u_C(t)$ 得

$$u_C(t_{m1}) = 300(1 + e^{-417 \times 0.774 \times 10^{-3}}) V = 516 V$$

其周期为 $T = t_m = 0.774ms$, 即加工频率f = 1/T = 1292Hz。

调节R, L, C的参数值即能根据加工需要调节加工 频率及电容的最高充电电压。

若此例中无工件与电容并联, $u_c(t)$ 是一个最终趋于 300V的衰减振荡如右下图所示。最大值高于稳态值的 数值常又称为"上冲" (overshoot)。

电火花加工器uc波形图

无放电旁路时uc波形图

§7-4 GCL并联电路的分析

LC并联网络的分解

等效网络

$$C\frac{\mathrm{d}u_{\mathrm{C}}}{\mathrm{d}t} + Gu_{\mathrm{C}} + i_{\mathrm{L}} = I_{\mathrm{S}}$$
 $u_{\mathrm{C}} = u_{\mathrm{L}} = L\frac{\mathrm{d}i_{\mathrm{L}}}{\mathrm{d}t}$

$$LC\frac{\mathrm{d}^{2}i_{\mathrm{L}}}{\mathrm{d}t^{2}} + GL\frac{\mathrm{d}i_{\mathrm{L}}}{\mathrm{d}t} + i_{\mathrm{L}} = I_{\mathrm{S}}$$

$$i_{\mathrm{L}}(0) = ? \qquad \frac{\mathrm{d}i_{\mathrm{L}}}{\mathrm{d}t}\big|_{t=0} = ?$$

特征方程

$$LCs^2 + GLs + 1 = 0$$
 $\longrightarrow s_{1,2} = -\frac{G}{2C} \pm \sqrt{(\frac{G}{2C})^2 - \frac{1}{LC}}$

- ■齐次解i_{Ch} 即为GCL零输入响应解; 根据固有频率四种情况可写出解的形式。
- ■特解 i_{Cp} =I_S.

阻尼电导

$$G_{\rm d} = 2\sqrt{\frac{C}{L}}$$

GCL并联电路

$$LC\frac{\mathrm{d}^2 i_{\mathrm{L}}}{\mathrm{d}t^2} + GL\frac{\mathrm{d}i_{\mathrm{L}}}{\mathrm{d}t} + i_{\mathrm{L}} = I_{\mathrm{S}}$$

$$s_{1,2} = -\frac{G}{2C} \pm \sqrt{(\frac{G}{2C})^2 - \frac{1}{LC}}$$

RLC串联电路

$$LC \frac{\mathrm{d}^2 u_{\mathrm{C}}}{\mathrm{d}t^2} + RC \frac{\mathrm{d}u_{\mathrm{C}}}{\mathrm{d}t} + u_{\mathrm{C}} = U_{\mathrm{S}}$$

$$s_{1,2} = -\frac{R}{2L} \pm \sqrt{(\frac{R}{2L})^2 - \frac{1}{LC}}$$

互为对 偶关系

阻尼电阻 $R_{\rm d} = 2\sqrt{\frac{L}{C}}$

利用对偶规则可得 GCL 并联二阶电路的解。

例1:图示电路中,欲使电路产生临界阻尼响应,则 C 应为何值?

解: 阻尼电导
$$G_{\rm d} = 2\sqrt{\frac{C}{L}}$$

欲使电路产生临界阻尼响应,应满足 $G = G_d$

由于
$$G=1S$$

故
$$2\sqrt{\frac{C}{L}}=1$$

得
$$C = 0.5 \, \text{F}$$

例2: RLC并联电路的零输入响应为

$$u_{c}(t) = 100e^{-600t}\cos 400t$$
,

若电容初始贮能是 $\frac{1}{30}$ J,

求R, L, C以及电感的初始电流。

解:

$$\begin{array}{c} u_{\rm C}(0) = 100{\rm V} \\ w_{\rm C}(0) = \frac{1}{2} C \left[u_{\rm C}(0_+) \right]^2 = \frac{1}{30} \end{array} \right\} C = 6.67 \mu{\rm F}$$

由零输入响应的形式可知,电路应为欠阻尼情况。

对应零输入响应的一般形式

$$u_{\rm C}(t) = e^{-\alpha t} (K_1 \cos \omega_{\rm d} t + K_2 \sin \omega_{\rm d} t)$$

可得
$$\alpha = 600$$
, $\omega_d = 400 \text{ rad/s}$

$$\alpha = 600$$
, $\omega_d = 400 \text{ rad/s}$

$$s_{1,2} = -\frac{G}{2C} \pm \mathbf{j} \sqrt{\frac{1}{LC} - \left(\frac{G}{2C}\right)^2} = -\alpha \pm \mathbf{j} \omega_d$$

$$i_R \qquad + \qquad i_C \qquad \downarrow i_L$$

$$\alpha = \frac{G}{2C} = 600 \rightarrow G = 80.04 \times 10^{-4} \text{ S}$$

$$\therefore R = 124.9 \Omega$$

$$\omega_{\rm d} = 400 = \sqrt{\frac{1}{LC} - \alpha^2} \rightarrow L = 0.288 \text{H}$$

$$i_{L}(0_{+}) = -i_{R}(0_{+}) - i_{C}(0_{+}) = -\frac{u_{C}(0_{+})}{R} - C\frac{du_{C}}{dt}\Big|_{t=0}$$

$$= -\frac{100}{124.9} - 6.67 \times 10^{-6} \frac{d}{dt} (100e^{-600t} \cos 400t)\Big|_{t=0}$$

$$= -0.4A$$

第七章 作业

P302: 7-2, 7-5, 7-7

要求: 做每一题时:

- 1. 画电路图;
- 2. 写清分析过程。