Lecture 19: More Geometry MAT2040 Linear Algebra

Geometric Interpretation of Vector Addition

(Recall from Lecture 9!)

Geometric Interpretation of Vector Addition

(Recall from Lecture 9!)

Coming lectures: more geometry! Length, distance, **orthogonality**, angles! (In \mathbb{R}^n !).

Let **u** and **v** be two vectors in \mathbb{R}^n . The **inner product** of **u** and **v** is

$$\mathbf{u}^T\mathbf{v}=u_1v_1+u_2v_2+\cdots+u_nv_n.$$

Let **u** and **v** be two vectors in \mathbb{R}^n . The **inner product** of **u** and **v** is

$$\mathbf{u}^T\mathbf{v}=u_1v_1+u_2v_2+\cdots+u_nv_n.$$

The inner product of \mathbf{u} and \mathbf{v} is also called the **dot product** or **scalar product**, and sometimes written as $\mathbf{u} \cdot \mathbf{v}$, or $\langle \mathbf{u}, \mathbf{v} \rangle$.

Let **u** and **v** be two vectors in \mathbb{R}^n . The **inner product** of **u** and **v** is

$$\mathbf{u}^T\mathbf{v}=u_1v_1+u_2v_2+\cdots+u_nv_n.$$

The inner product of \mathbf{u} and \mathbf{v} is also called the **dot product** or **scalar product**, and sometimes written as $\mathbf{u} \cdot \mathbf{v}$, or $\langle \mathbf{u}, \mathbf{v} \rangle$.

(This (and a lot of this lecture) can be generalized to other vector spaces, but we will only talk about \mathbb{R}^n here.)

Example 19.2

Compute the inner product of
$$\begin{bmatrix} 1 \\ -7 \\ 3 \end{bmatrix}$$
 and $\begin{bmatrix} 2 \\ 3 \\ 2 \end{bmatrix}$.

Note that the inner product is a matrix times a vector, for which we know all kinds of algebraic rules, for instance:

$$\mathbf{v} (\mathbf{u} + \mathbf{v})^T \mathbf{w} = \mathbf{u}^T \mathbf{w} + \mathbf{v}^T \mathbf{w}$$

$$(t\mathbf{u})^T\mathbf{v} = t(\mathbf{u}^T\mathbf{v})$$

for any $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^n$, $t \in \mathbb{R}$.

Note that the inner product is a matrix times a vector, for which we know all kinds of algebraic rules, for instance:

$$(\mathbf{u} + \mathbf{v})^T \mathbf{w} = \mathbf{u}^T \mathbf{w} + \mathbf{v}^T \mathbf{w}$$

$$(t\mathbf{u})^T\mathbf{v} = t(\mathbf{u}^T\mathbf{v})$$

for any $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^n$, $t \in \mathbb{R}$.

Also, from the definition is it not hard to see that

$$\mathbf{v} \mathbf{u}^T \mathbf{v} = \mathbf{v}^T \mathbf{u}$$

$$\mathbf{v}^T \mathbf{u} \geq 0$$
, and $\mathbf{u}^T \mathbf{u} = 0$ if and only if $\mathbf{u} = \mathbf{0}$.

Recall: (Euclidean) length of line segment from (0,0) to (x_1, x_2) = $\sqrt{x_1^2 + x_2^2}$

Recall: (Euclidean) length of line segment from (0,0) to (x_1,x_2)

$$= \sqrt{x_1^2 + x_2^2} = \sqrt{\mathbf{x}^T \mathbf{x}} \text{ where } \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}.$$

Recall: (Euclidean) length of line segment from (0,0) to (x_1,x_2) $= \sqrt{x_1^2 + x_2^2} = \sqrt{\mathbf{x}^T \mathbf{x}} \text{ where } \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}.$

Definition 19.3

The **(Euclidean) length** of the vector $\mathbf{x} \in \mathbb{R}^n$ is

$$\sqrt{\mathbf{x}^T\mathbf{x}} = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}.$$

It is denoted by $\|\mathbf{x}\|$.

Recall: (Euclidean) length of line segment from (0,0) to (x_1,x_2)

$$= \sqrt{x_1^2 + x_2^2} = \sqrt{\mathbf{x}^T \mathbf{x}} \text{ where } \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}.$$

Definition 19.3

The **(Euclidean) length** of the vector $\mathbf{x} \in \mathbb{R}^n$ is

$$\sqrt{\mathbf{x}^T\mathbf{x}} = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}.$$

It is denoted by $\|\mathbf{x}\|$.

 $\|\mathbf{x}\|$ is also called the (Euclidean) **norm** of \mathbf{x} .

Recall: (Euclidean) length of line segment from (0,0) to (x_1,x_2) $= \sqrt{x_1^2 + x_2^2} = \sqrt{\mathbf{x}^T \mathbf{x}} \text{ where } \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}.$

Definition 19.3

The **(Euclidean) length** of the vector $\mathbf{x} \in \mathbb{R}^n$ is

$$\sqrt{\mathbf{x}^T\mathbf{x}} = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}.$$

It is denoted by $\|\mathbf{x}\|$.

 $\|\mathbf{x}\|$ is also called the (Euclidean) **norm** of \mathbf{x} .

Note: in this definition we interpret the vector \mathbf{x} as a line segment (geometrically).

Example 19.4

Let
$$\mathbf{x} = \begin{bmatrix} 2 \\ 5 \\ 1 \end{bmatrix}$$
. Find a **unit vector** in the same direction as \mathbf{x} .

(A unit vector is a vector with length equal to 1.)

Can also interpret the vector \mathbf{x} as a point (geometrically), and then ask about the (**Euclidean**) distance from a point \mathbf{y} to \mathbf{x} .

Can also interpret the vector \mathbf{x} as a point (geometrically), and then ask about the (**Euclidean**) distance from a point \mathbf{y} to \mathbf{x} .

For instance, what is the distance from 0 to x?

Can also interpret the vector \mathbf{x} as a point (geometrically), and then ask about the (**Euclidean**) distance from a point \mathbf{y} to \mathbf{x} .

For instance, what is the distance from $\mathbf{0}$ to \mathbf{x} ?

This was exactly how we defined "the length of x", so ||x||.

Can also interpret the vector \mathbf{x} as a point (geometrically), and then ask about the (**Euclidean**) distance from a point \mathbf{y} to \mathbf{x} .

For instance, what is the distance from $\mathbf{0}$ to \mathbf{x} ?

This was exactly how we defined "the length of x", so ||x||.

In general, what should be the distance between \mathbf{a} and \mathbf{b} ?

Definition 19.5

The **distance** between **a** and **b** in \mathbb{R}^n is the number $\|\mathbf{a} - \mathbf{b}\|$.

The **distance** between **a** and **b** in \mathbb{R}^n is the number $\|\mathbf{a} - \mathbf{b}\|$.

Note: here we interpret \mathbf{a} and \mathbf{b} as points (geometrically), and $\mathbf{a} - \mathbf{b}$ as a line segment.

Example 19.6

What is the distance between
$$\mathbf{x} = \begin{bmatrix} 3 \\ 2 \\ 5 \end{bmatrix}$$
 and $\mathbf{y} = \begin{bmatrix} -1 \\ 2 \\ 2 \end{bmatrix}$?

Othogonality in \mathbb{R}^2

Vectors \mathbf{u} and \mathbf{v} are at 90 degree angle (perpendicular).

Othogonality in \mathbb{R}^2

Vectors \mathbf{u} and \mathbf{v} are at 90 degree angle (perpendicular).

Can we generalize this?

Othogonality in \mathbb{R}^2

Intuition: \mathbf{u} and \mathbf{v} are orthogonal exactly when $\|\mathbf{u} - \mathbf{v}\| = \|\mathbf{u} - (-\mathbf{v})\|$.

Definition 19.7

Vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^n are **orthogonal** if $\mathbf{u}^T \mathbf{v} = 0$.

Example 19.8

 $\mathbf{0} \in \mathbb{R}^n$ is orthogonal to every vector $\mathbf{x} \in \mathbb{R}^n$.

Example 19.8

 $\mathbf{0} \in \mathbb{R}^n$ is orthogonal to every vector $\mathbf{x} \in \mathbb{R}^n$.

Example 19.9

Find all vectors in \mathbb{R}^2 that are orthogonal to $\begin{bmatrix} 1 \\ -2 \end{bmatrix}$. Check your answer with a picture.

Theorem 19.10 (Pythagorean Theorem)

Two vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^n are orthogonal, if and only if $\|\mathbf{u} + \mathbf{v}\|^2 = \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2$.

Angle between two vectors \mathbf{x} and \mathbf{y} ?

Angle between two vectors \mathbf{x} and \mathbf{y} ?

Fact 19.11

The angle ϑ between two nonzero vectors \mathbf{x} and $\mathbf{y} \in \mathbb{R}^n$ is given by

$$\cos \vartheta = \frac{\mathbf{x}^T \mathbf{y}}{\|\mathbf{x}\| \|\mathbf{y}\|}.$$

Angle between two vectors \mathbf{x} and \mathbf{y} ?

Fact 19.11

The angle ϑ between two nonzero vectors \mathbf{x} and $\mathbf{y} \in \mathbb{R}^n$ is given by

$$\cos \vartheta = \frac{\mathbf{x}^T \mathbf{y}}{\|\mathbf{x}\| \|\mathbf{y}\|}.$$

The scalar projection of x onto y is

$$a = \frac{\mathbf{x}^T \mathbf{y}}{\|\mathbf{y}\|}.$$

Angle between two vectors \mathbf{x} and \mathbf{y} ?

Fact 19.11

The angle ϑ between two nonzero vectors \mathbf{x} and $\mathbf{y} \in \mathbb{R}^n$ is given by

$$\cos \vartheta = \frac{\mathbf{x}^T \mathbf{y}}{\|\mathbf{x}\| \|\mathbf{y}\|}.$$

The scalar projection of x onto y is

$$a = \frac{\mathbf{x}^T \mathbf{y}}{\|\mathbf{y}\|}.$$

The vector projection of x onto y is

$$\mathbf{p} = a \frac{1}{\|\mathbf{y}\|} \mathbf{y} = \frac{\mathbf{x}' \mathbf{y}}{\|\mathbf{y}\|^2} \mathbf{y}.$$

Example 19.12

Find the angle between
$$\mathbf{x} = \begin{bmatrix} 1 \\ \sqrt{3} \end{bmatrix}$$
 and $\mathbf{y} = \begin{bmatrix} 3 \\ 0 \end{bmatrix}$.

Example 19.12

Find the angle between
$$\mathbf{x} = \begin{bmatrix} 1 \\ \sqrt{3} \end{bmatrix}$$
 and $\mathbf{y} = \begin{bmatrix} 3 \\ 0 \end{bmatrix}$.

What is the scalar projection of x onto y?

Example 19.12

Find the angle between
$$\mathbf{x} = \begin{bmatrix} 1 \\ \sqrt{3} \end{bmatrix}$$
 and $\mathbf{y} = \begin{bmatrix} 3 \\ 0 \end{bmatrix}$.

What is the scalar projection of x onto y?

What is the vector projection of \mathbf{x} onto \mathbf{y} ?

Corollary 19.13 (Cauchy-Schwarz Inequality)

For **x** and $\mathbf{y} \in \mathbb{R}^n$, the following inequality holds:

$$|\mathbf{x}^T \mathbf{y}| \le \|\mathbf{x}\| \|\mathbf{y}\|.$$

The inequality holds with equality if and only if one of the vectors is zero, or one vector is a multiple of the other.

Back to orthogonality — important concept in Linear Algebra!

Back to orthogonality — important concept in Linear Algebra!

Recall from Lecture 10:

Linearly independent, w not in Span{u, v}

Linearly dependent, w in Span{u, v}

(picture from David Lay, Linear Algebra.)

Theorem 19.14 (Orthogonality implies linear independence)

Let $\mathcal{U} = \{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_p\}$ be a set of linearly independent vectors in \mathbb{R}^n . Suppose $\mathbf{x} \in \mathbb{R}^n$ is orthogonal to \mathbf{u}_i for all $i = 1, 2, \dots, p$ and $\mathbf{x} \neq \mathbf{0}$.

Then $\mathcal{U} \cup \{\mathbf{x}\} = \{\mathbf{x}, \mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_p\}$ is linearly independent.

Theorem 19.14 (Orthogonality implies linear independence)

Let $\mathcal{U} = \{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_p\}$ be a set of linearly independent vectors in \mathbb{R}^n , and $\mathcal{V} = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ be a set of linearly independent vectors in \mathbb{R}^n , so that \mathbf{u}_i is orthogonal to \mathbf{v}_j for all $i = 1, 2, \dots, p$ and $j = 1, 2, \dots, k$.

Then $\mathcal{U} \cup \mathcal{V}$ is linearly independent.

Example 19.15
$$\text{Suppose } \mathcal{U} = \left\{ \begin{bmatrix} 4 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 3 \\ 0 \\ 1 \end{bmatrix} \right\}.$$
 Check that $\mathbf{x} = \begin{bmatrix} -1 \\ 4 \\ 3 \end{bmatrix}$ is orthogonal to both vectors in \mathcal{U} , and that $\mathcal{U} \cup \{\mathbf{x}\}$ is linearly independent.

Definition 19.16

Two subspaces X and Y of \mathbb{R}^n are said to be **orthogonal** if $\mathbf{x}^T \mathbf{y} = 0$ for every pair of vectors $\mathbf{x} \in X$ and $\mathbf{y} \in Y$.

Notation: We write $X \perp Y$ if X and Y are orthogonal subspaces.

Definition 19.17

Given a subspace X of \mathbb{R}^n . The **orthogonal complement of** X, denoted by X^{\perp} , is the set of all vectors in \mathbb{R}^n that are orthogonal to all vectors in X:

$$X^{\perp} = \{ \mathbf{y} \in \mathbb{R}^n : \mathbf{x}^T \mathbf{y} = 0 \text{ for all } \mathbf{x} \in X \}.$$

Example 19.18

Let $X, Y \subseteq \mathbb{R}^4$, where $X = \mathsf{Span}\{\mathbf{e}_1\}$ and

$$Y = \mathsf{Span} \left\{ \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \\ 5 \end{bmatrix} \right\}.$$

Are X and Y orthogonal subspaces?

Is Y the orthogonal complement of X?

Example 19.19

Let X be a subspace of \mathbb{R}^n . Can $\mathbf{x} \in X$ be in X^{\perp} ?

Theorem 19.20 (Fundamental Subspaces Theorem)

For any $m \times n$ matrix A,

Null
$$A = (\operatorname{Row} A)^{\perp}$$
.

Theorem 19.20 (Fundamental Subspaces Theorem)

For any $m \times n$ matrix A,

Null
$$A = (\operatorname{Row} A)^{\perp}$$
.

Corollary 19.21

For any $m \times n$ matrix A,

$$\operatorname{Null} A^T = (\operatorname{Row} A^T)^{\perp} = (\operatorname{Col} A)^{\perp}.$$

Corollary 19.22

If S is a subspace of \mathbb{R}^n then dim $S + \dim S^{\perp} = n$.

Theorem 19.23 (Orthogonal Decomposition Theorem)

If $\mathbf{x} \in \mathbb{R}^n$ and S is a subspace of \mathbb{R}^n , then \mathbf{x} can be uniquely expressed as $\mathbf{x} = \hat{\mathbf{x}} + \mathbf{z}$, where $\hat{\mathbf{x}} \in S$ and $\mathbf{z} \in S^{\perp}$.

(picture from Gilbert Strang, Linear Algebra and Its Applications.)