



# Kidney Stone Detection Using Machine Learning and Deep Learning

Presented by:

R2142220856 – Samaksh Mittal (B2, 500107995)

R2142221184 – Kavya Dangi (B3, 500108583)

Guided by:

Dr Achala Shakya



\*RANKED 52
IN INDIA



NO.1 PVT. UNIVERSITY IN ACADEMIC REPUTATION IN INDIA



ACCREDITED **GRADE 'A'**BY NAAC



PERFECT SCORE OF **150/150** AS A TESTAMENT TO EXECEPTIONAL E-LEARNING METHODS

**#University Category** 

#### **Contents**

- Abstract
- Introduction
- Problem Statement
- Motivation
- Objectives
- Literature Review
- Data Analysis
- Machine Learning
  - o Logistic Regression
  - o Naïve Bayes
  - K Nearest Neighbour
  - Support Vector Machine
  - Decision Tree
  - Random Forest



#### **Contents**

- Deep Learning
  - Convolution Neural Network
  - Region Based Convolution Neural Network
  - MobileNet
  - o VGG19
  - o ResNet50
- Evaluation Metrics
  - All Machine Learning Techniques
  - All Deep Learning Techniques
  - All Machine Learning and Deep Learning Techniques
- References



#### **Abstract**

This project leverages machine learning to detect kidney stones by classifying medical images into two categories: Normal (no stones) and Stone (presence of stones). Multiple models, including Random Forest, SVM, Logistic Regression, and Decision Tree, were implemented and evaluated. The goal is to identify the most accurate model, enhancing diagnostic accuracy and enabling efficient, automated kidney stone detection to improve patient care.





#### Introduction

Kidney stones are a common yet painful medical condition, often requiring early detection for effective treatment. Traditional diagnostic methods, while reliable, can be time-consuming and dependent on manual interpretation. This project explores the potential of machine learning in revolutionizing kidney stone detection, utilizing advanced algorithms to classify medical images into Normal and Stone categories. By automating this critical diagnostic process, the project aims to reduce human error, enhance accuracy, and support timely medical interventions. Comparing models like Random Forest, SVM, Logistic Regression, and Decision Tree, this work identifies the most effective approach to build a robust, efficient solution for kidney stone diagnosis.



#### **Problem Statement**

Develop an advanced machine learning model to detect kidney stones from medical images, classified into two categories: Normal (no stones) and Stone (presence of stones). This solution aims to enhance diagnostic accuracy, streamline detection processes, and support healthcare professionals in providing timely and effective treatment for kidney stone patients.



#### **Motivation**

- Prevalence of Kidney Stones: Kidney stones are a growing global health concern, affecting millions of people annually. Timely detection is crucial to avoid complications and provide effective treatment, making early diagnosis a key priority.
- Limitations of Traditional Methods: Traditional methods of detecting kidney stones, such as physical examinations, X-rays, and CT scans, are often time-consuming, expensive, and reliant on human expertise. These methods may also involve long waiting times, which can delay critical treatment.
- **Potential of Machine Learning:** Machine learning algorithms can revolutionize kidney stone detection by automating the image classification process. With the ability to process vast amounts of medical images quickly, machine learning models can reduce human error and offer more consistent results.



## **Objectives**

**Develop a Robust Classification Model:** To create and train machine learning models that can accurately classify medical images of kidneys into two categories: Normal and Stone.

**Evaluate Multiple Algorithms:** To implement and evaluate the performance of various machine learning algorithms, such as Random Forest, Support Vector Machine (SVM), Logistic Regression, and Decision Tree, in terms of accuracy, precision, and recall.

**Optimize Model Performance:** To fine-tune the chosen models for optimal performance using techniques like hyperparameter tuning and cross-validation to ensure the highest possible accuracy in kidney stone detection.

Automate the Detection Process: To build an automated system that can process medical images and provide real-time predictions, reducing manual intervention and enhancing diagnostic speed.



## Literature Review

| S. No. | Authors                                                     | Title                                                                                     | Journal/Conference                                                 | Year | Key Focus                                                                      | Major Findings                                                                                                        |
|--------|-------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------|------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| 1      | Saman Ebrahimi,<br>Vladimir Y. Mariano                      | Image Quality Improvement in Kidney Stone Detection on Computed Tomography <sup>[1]</sup> | Journal of Image and<br>Graphics                                   | 2015 | Image quality<br>improvement in kidney<br>stone detection on CT<br>images      | Enhanced image quality led to better detection accuracy of kidney stones.                                             |
| 2      | Prema T. Akkasaligar,<br>Sunanda Biradar,<br>Veena Kumbar   | Kidney Stone<br>Detection in Computed<br>Tomography Images <sup>[2]</sup>                 | IEEE                                                               | 2017 | Kidney stone detection using CT images                                         | Proposed techniques<br>showed significant<br>improvement in<br>detecting kidney stones<br>from CT scans.              |
| 3      | Aniket Gaikwad,<br>Azharuddin Inamdar,<br>Vikas Behera      | Lung Cancer Detection<br>Using Digital Image<br>Processing on CT Scan<br>Images [3]       | International Research<br>Journal of Engineering<br>and Technology | 2016 | Application of digital image processing for lung cancer detection in CT images | Effective preprocessing and segmentation methods improved detection accuracy for lung cancer.                         |
| 4      | Brisbane Wayne, R.<br>Bailey Michael, D.<br>Sorensen Mathew | An Overview of<br>Kidney Stone Imaging<br>Techniques [4]                                  | Nature Reviews<br>Urology                                          | 2016 | Comparative analysis of kidney stone imaging methods                           | Detailed review of<br>various imaging<br>techniques like CT,<br>ultrasound, and MRI<br>for kidney stone<br>diagnosis. |

Table 1 Literature Review



## Literature Review

| S. No. | Authors                               | Title                                                                       | Journal/Conference                                                  | Year | Key Focus                                       | Major Findings                                                                                    |
|--------|---------------------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------|------|-------------------------------------------------|---------------------------------------------------------------------------------------------------|
| 5      | S. Asadi, H.<br>Hassanpour, A. Pouyan | Texture-Based Image<br>Enhancement Using<br>Gamma Correction <sup>[5]</sup> | Middle-East Journal of<br>Scientific Research                       | 2010 | Enhancing image textures using gamma correction | Improved visibility of medical images using gamma correction for texture-based image enhancement. |
| 6      | R. C. Gonzalez, R. E. Woods           | Digital Image<br>Processing [6]                                             | Book                                                                | 1992 | Fundamentals of digital image processing        | Introduced foundational concepts and algorithms in digital image processing.                      |
| 7      | D. Y. Kim, J. W. Park                 | Computer-Aided Detection of Kidney Tumor on Abdominal CT Scans [7]          | Acta Radiologica                                                    | 2004 | Computer-aided detection of kidney tumors       | Achieved improved tumor localization using computer-aided techniques.                             |
| 8      | D. T. Lin, C. C. Lei, S. W. Hung      | Computer-Aided<br>Kidney Segmentation<br>on Abdominal CT<br>Images [8]      | IEEE Transactions on<br>Information<br>Technology in<br>Biomedicine | 2006 | Automated kidney segmentation in CT images      | Presented a reliable algorithm for segmenting kidneys in CT scans.                                |
| 9      | F. L. Coe, A. Evan, E. Worcester      | Kidney Stone Disease <sup>[9]</sup>                                         | Journal of Clinical<br>Investigation                                | 2005 | Overview of kidney stone disease                | Explored causes, prevention, and treatments for kidney stones.                                    |

Table 1 Literature Review



## Literature Review

| S. No. | Authors                                                                                              | Title                                                                                                                           | Journal/Conference                                                | Year | Key Focus                                               | Major Findings                                                                                 |
|--------|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|------|---------------------------------------------------------|------------------------------------------------------------------------------------------------|
| 10     | F. Grases, A. Costa-<br>Bauza, R. M. Prieto                                                          | Renal Lithiasis and Nutrition [10]                                                                                              | Nutrition Journal                                                 | 2006 | Role of nutrition in kidney stone formation             | Found a significant relationship between dietary factors and kidney stone formation.           |
| 11     | Sri Madhava Raja N,<br>Rajinikanth V, Latha K                                                        | Otsu-Based Optimal<br>Multilevel Image<br>Thresholding Using Firefly<br>Algorithm <sup>[11]</sup>                               | Modelling and<br>Simulation in<br>Engineering                     | 2014 | Image thresholding for segmentation                     | Proposed a firefly algorithm-based method for efficient image thresholding.                    |
| 12     | R. Vishnupriya, N. Sri<br>Madhava Raja, V.<br>Rajinikanth                                            | An Efficient Clustering<br>Technique and Analysis of<br>Infrared Thermograms [12]                                               | International Conference on Biosignals Images and Instrumentation | 2017 | Clustering analysis of infrared thermograms             | Developed an efficient clustering method for thermal imaging analysis.                         |
| 13     | N. Sri Madhava Raja,<br>S. L. Fernandes,<br>Nilanjan Dev, S.<br>Chandra Satapathy, V.<br>Rajinikanth | Contrast-Enhanced Medical<br>MRI Evaluation Using Tsallis<br>Entropy and Region Growing<br>Segmentation <sup>[13]</sup>         | Journal of Ambient<br>Intelligence and<br>Humanized Computing     | 2018 | MRI image evaluation using contrast enhancement         | Applied Tsallis entropy<br>for better segmentation<br>and evaluation of<br>medical MRI images. |
| 14     | N. S. M. Raja, P. R. V.<br>Lakshmi, K. P.<br>Gunasekaran                                             | Firefly Algorithm-Assisted<br>Segmentation of Brain<br>Regions Using Tsallis Entropy<br>and Markov Random Field <sup>[14]</sup> | Lecture Notes in<br>Networks and Systems                          | 2018 | Brain region<br>segmentation using<br>firefly algorithm | Improved brain region segmentation in MRI images using entropy and Markov Random Field models. |

Table 1 Literature Review



## Data Analysis – Labels Distribution



Fig. 1 Label Distribution

- Fig. 1 shows the distribution of each label as per their image count.
- 2 Label 0 represents there is no kidney stone present.
- Label 1 represents there is kidney stone present.
- Label 0: 1000 images
  Label 1: 700 images



# Data Analysis – Heatmap of Label Count

Heatmap of Label Counts



Fig. 2 Heatmap of Label Count



## Data Analysis – Label Proportions

**Label Proportions** 



Fig. 3 Label Proportions

- Fig. 3 shows the proportions of each label as per their image count.
- 2 Label 0 represents there is no kidney stone present.
- Label 1 represents there is kidney stone present.
- Label 0: 58.8% Label 1: 41.2%



# Data Analysis – Example Images



Fig. 4 Example Images



# **Machine Learning**

- Data-Driven Decision Making: Machine learning models help in analyzing large datasets to identify patterns and make informed predictions.
- Automation of Complex Tasks: These models automate tasks that traditionally require human intervention, improving efficiency and accuracy.
- Improved Accuracy: Machine learning models continually learn from data, leading to improved prediction accuracy over time.
- Versatility in Applications: From image recognition to medical diagnoses, machine learning models can be applied across a wide range of industries and domains.



## **Logistic Regression**



Fig. 5 Logistic
Regression Architecture [15]

- Binary Classification: Logistic regression is commonly used for binary classification tasks, predicting outcomes like "yes/no" or "true/false".
- Probability Estimation: It estimates the probability of a given input belonging to a certain class, providing a score between 0 and 1.



# Logistic Regression



Fig. 6 Confusion Matrix for Naïve Bayes



Fig. 7 Fitness Function for Logistic Regression



## Logistic Regression





Fig. 8 Training Regression for Logistic Regression

Fig. 9 Testing Regression for Logistic Regression



# Logistic Regression: Evaluation Metrics

| Metric    | Value             |
|-----------|-------------------|
| Accuracy  | 0.758823529411765 |
| Precision | 0.7430764815612   |
| Recall    | 0.751298026998962 |
| F1 Score  | 0.746139277389277 |

Fig. 10 Evaluation Metrics for Logistic Regression



## **Naïve Bayes**



- Probabilistic: Uses Bayes' theorem fo classification.
- 2 Independence Assumption: Assumes feature independence.
- Befficient: Fast and scalable for large datasets.
- Common Applications: Used in text classification and medical predictions

Fig. 11 Naïve Bayes
Architecture [16]



# **Naïve Bayes**





Fig. 12 Feature Variances for Naïve Bayes

Fig. 13 Fitness Function for Naïve Bayes



## **Naïve Bayes**





Fig. 14 Training Regression for Naïve Bayes

Fig. 15 Testing Regression for Naïve Bayes



# Naïve Bayes: Evaluation Metrics

| Metric    | Value             |
|-----------|-------------------|
| Accuracy  | 0.461764705882353 |
| Precision | 0.651375756026919 |
| Recall    | 0.565902685061564 |
| F1 Score  | 0.424054206662902 |

Fig. 16 Evaluation Metrics for Naïve Bayes



## K Nearest Neighbor



Fig. 17 KNN
Architecture [17]

- Instance-based: Classifies based on nearest data points.
- Non-parametric: No assumptions about data distribution.
- Simple: Easy to understand and implement.
- Flexible: Works for both classification and regression tasks.



# K Nearest Neighbor





Fig. 18 Average Distance to Neighbors for KNN

Fig. 19 Fitness Function for KNN



## K Nearest Neighbor



Testing Regression (KNN) 1.0 -0.8 **Predicted Values** 0.6 **Data Points** Y=T Line Fit Line 0.4 0.2 0.0 1.0 0.2 0.4 0.6 0.8 0.0 True Values

Fig. 20 Training Regression for KNN

Fig. 21 Testing Regression for KNN



## K Nearest Neighbor: Evaluation Metrics

Metric Value
Accuracy 0.844117647058824
Precision 0.836476179525507
Recall 0.825582257825249
F1 Score 0.830305769792167

Fig. 22 Evaluation Metrics for KNN



## **Support Vector Machine**



Fig. 23 SVM Architecture [18]

- Margin Maximization: SVM finds the optimal hyperplane that maximizes the margin between classes.
- 2 Effective for High Dimensions: Works well in high-dimensional spaces.



#### 7

# **Support Vector Machine**



Fig. 24 Fitness Function for SVM



## **Support Vector Machine**



Fig. 25 Training Regression for SVM



Fig. 26 Testing Regression for SVM



# **Support Vector Machine: Evaluation Metrics**

| Metric    | Value             |
|-----------|-------------------|
| Accuracy  | 0.820588235294118 |
| Precision | 0.822855107087472 |
| Recall    | 0.785677199228601 |
| F1 Score  | 0.797411477411477 |

Fig. 27 Evaluation Metrics for SVM



#### **Decision Tree**



- Tree Structure: Splits data based on feature values.
- 2 Interpretable: Easy to understand and visualize.
- Handles Both Data Types: Works with numerical and categorical data.
- Overfitting Risk: Prone to overfitting, but can be controlled.

Fig. 28 DT Architecture<sup>[19]</sup>



## **Decision Tree**



Fig. 29 Training Regression for DT



Fig. 30 Testing Regression for DT



#### **Decision Tree: Evaluation Metrics**

| Metric    | Value             |
|-----------|-------------------|
| Accuracy  | 0.697058823529412 |
| Precision | 0.677958446251129 |
| Recall    | 0.682650941996736 |
| F1 Score  | 0.679770297826425 |

Fig. 31 Evaluation Metrics for DT



#### **Random Forest**



Fig. 32 Random Forest Architecture [20]

- Combines multiple decision trees for better accuracy.
- Versatile: Handles both classification and regression tasks.
- Robust: Reduces overfitting compared to single trees.
- Feature Importance: Highlights key features influencing predictions.



## **Random Forest**

#### Fitness Function (Random Forest Accuracy Over Training Steps)



Fig. 33 Fitness Function for Random Forest



#### **Random Forest**



Testing Regression (Random Forest) 1.0 -0.8 Predicted Values 0.6 **Data Points** Y=T Line Fit Line 0.4 0.2 0.0 0.2 0.4 0.6 0.8 1.0 0.0 True Values

Fig. 34 Training Regression for Random Forest

Fig. 35 Testing Regression for Random Forest



## **Random Forest: Evaluation Metrics**

| Metric    | Value             |
|-----------|-------------------|
| Accuracy  | 0.85              |
| Precision | 0.869698574517852 |
| Recall    | 0.810673490580033 |
| F1 Score  | 0.827412885310189 |

Fig. 36 Evaluation Metrics for Random Forest



# **Deep Learning**

- Neural Networks: Deep learning uses artificial neural networks with multiple layers to mimic the way the human brain processes information.
- High Accuracy: It achieves state-of-the-art accuracy in tasks such as image recognition, natural language processing, and speech recognition due to its ability to learn hierarchical features.
- Data-Driven: Deep learning models thrive on large datasets, as they use vast amounts of data to improve their performance and generalization.
- Wide Applications: Deep learning powers cutting-edge advancements in different fields





Fig. 37 CNN Architecture [21]

- Image Processing: CNNs specialize in analyzing image data by recognizing patterns like edges and textures.
- Peature Extraction: They use convolution layers to automatically learn features, reducing manual effort.





Fig. 38 Confusion Matrix for CNN



Fig. 39 Fitness vs Generations for CNN







Fig. 40 MSE vs Epochs for CNN

Fig. 41 Sensitivity Analysis for CNN







Fig. 42 Training Regression for CNN

Fig. 43 Testing Regression for CNN





Fig. 44 All Data Regression for CNN



# Convolution Neural Network: Evaluation Metrics

| Metric    | Score             |
|-----------|-------------------|
| Accuracy  | 0.852941176470588 |
| Precision | 0.852510717548668 |
| Recall    | 0.852941176470588 |
| F1 Score  | 0.852694938440493 |

Metric MSE R2 Score

Train

0.00312260576918241 0.115480389715828

Test

0.987198531627655 0.504912734031677

Fig. 45 Evaluation Metrics for CNN

Fig. 46 Model Metrics for **CNN** 





- Object Detection: RCNN is designed for detecting objects in images.
- Region Proposals: It generates region proposals before classification.
- Accurate: Improves accuracy compared to traditional methods.
- Requires more computation due to its multi-stage process.

Fig. 47 RCNN
Architecture [22]







Fig. 48 Confusion Matrix for RCNN

Fig. 49 Fitness vs Generations for RCNN







Fig. 50 MSE vs Epochs for RCNN

Fig. 51 Sensitivity Analysis for RCNN





Testing Regression for RCNN **Data Points** Fit Line Y=T Line 0.8 **Predicted Values** 0.6 0.2 0.0 0.0 1.0 0.2 0.4 0.6 0.8 True Values

Fig. 52 Training Regression for RCNN

Fig. 53 Testing Regression for RCNN



#### 7



Fig. 54 All Data Regression for RCNN



## **Region Based CNN: Evaluation Metrics**

| Metric    | Score                        |                            |                           |
|-----------|------------------------------|----------------------------|---------------------------|
| Accuracy  | 0.688235294117647            |                            |                           |
| Precision | 0.702289774970391 Metric MSE | Train<br>0.225199130097909 | Test<br>0.224222622192482 |
| Recall    | 0.688235294117647 R2 Score   | 0.0767694711685181         | 0.224222622192482         |
| F1 Score  | 0.635868566176471            |                            |                           |

Fig. 55 Evaluation Metrics for RCNN

Fig. 56 Model Metrics for RCNN





Fig. 57 MobileNet Architecture [23]

- Lightweight: MobileNet is designed for mobile and embedded devices with limited resources.
- Real-time Performance: Optimized for fast processing and real-time applications as used in kidney stone detection.







Fig. 58 Confusion Matrix for MobileNet

Fig. 59 Fitness vs Generations for MobileNet







Fig. 60 MSE vs Epochs for MobileNet

Fig. 61 Sensitivity Analysis for MobileNet





Fig. 62 Training Regression for MobileNet



Fig. 63 Testing Regression for MobileNet







Fig. 64 All Data Regression for MobileNet



#### **MobileNet: Evaluation Metrics**

| Metric    | Score             |        |                            |                           |
|-----------|-------------------|--------|----------------------------|---------------------------|
| Accuracy  | 0.632352941176471 |        |                            |                           |
| Precision | 0.609658995272778 | Metric | Train<br>0.176252538004267 | Test<br>0.216999596678661 |
| Recall    | 0.632352941176471 |        |                            |                           |
| F1 Score  | 0.60839688892245  |        |                            |                           |

Fig. 65 Evaluation Metrics for MobileNet

Fig. 66 Model Metrics for MobileNet





Fig. 67 VGG19 Architecture [24]

- Deep Architecture: VGG19 has 19 layers, offering a deep network for complex feature extraction.
- Simple Design: Uses 3x3 convolution filters and 2x2 max-pooling layers, ensuring simplicity and efficiency.





Fitness vs Generations for VGG19 Training Fitness Validation Fitness 6.0 4.0 3.5 10 12 14 6 Generations (Epochs)

Fig. 68 Confusion Matrix for VGG19

Fig. 69 Fitness vs Generations for VGG19



0.0

0.2



Sensitivity Analysis for VGG19 **Predicted Values** True Values 1.0 Predicted Concentration 0.8 0.4 0.2 0.0 -0.2

Fig. 70 MSE vs Epochs for VGG19

Fig. 71 Sensitivity
Analysis for VGG19

True Concentration

0.6

0.4



1.0

0.8



Fig. 72 Training
Regression for VGG19



Fig. 73 Testing Regression for VGG19



#### All Data Regression for VGG19



Fig. 74 All Data Regression for VGG19



#### VGG19: Evaluation Metrics

| Metric    | Score             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                        |
|-----------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------------------------------------|
| Accuracy  | 0.735294117647059 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                        |
| Precision | 0.7434911589055   | Metric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | HO. 3 (1996) | Test                                   |
| Recall    | 0.735294117647059 | The second secon |              | 0.194114256963704<br>0.167793810367584 |
| F1 Score  | 0.710206726133076 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                        |

Fig. 75 Evaluation Metrics for VGG19

Fig. 76 Model Metrics for VGG19





Fig. 77 ResNet50 Architecture [25]

- Residual Connections: ResNet uses skip connections (residuals) to bypass layers, solving vanishing gradient issues.
- Strong Performance: ResNet achieves state-of-the-art results in image classification and object detection tasks.





4.5 4.0 1.5 Training Fitness Validation Fitness 1.0 12 2 6 8 10 14 Generations (Epochs)

Fitness vs Generations for ResNet

Fig. 78 Confusion Matrix for ResNet50

Fig. 79 Fitness vs Generations for ResNet50







Fig. 80 MSE vs Epochs for ResNet50

Fig. 81 Sensitivity
Analysis for ResNet50





Fig. 82 Training Regression for ResNet50



Fig. 83 Testing Regression for ResNet50







Fig. 84 All Data Regression for ResNet



#### **ResNet50: Evaluation Metrics**

| Metric    | Score             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                         |
|-----------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------|
| Accuracy  | 0.682352941176471 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                         |
| Precision | 0.698230578393783 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | Test                                    |
| Recall    | 0.682352941176471 | MSE<br>R2 Score                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.228988089879994<br>0.0612363219261169 | 0.223647188335691<br>0.0411801934242249 |
| F1 Score  | 0.624216742851423 | The second of th |                                         |                                         |

Fig. 85 Evaluation Metrics for ResNet50

Fig. 86 Model Metrics for ResNet50



#### All ML Models: Evaluation Metrics

| Model Name          | Accuracy          | Precision         | Recall            | F1 Score          |
|---------------------|-------------------|-------------------|-------------------|-------------------|
| Logistic Regression | 0.758823529411765 | 0.7430764815612   | 0.751298026998962 | 0.746139277389277 |
| KNN                 | 0.844117647058824 | 0.836476179525507 | 0.825582257825249 | 0.830305769792167 |
| Random Forest       | 0.85              | 0.869698574517852 | 0.810673490580033 | 0.827412885310189 |
| Decision Trees      | 0.697058823529412 | 0.677958446251129 | 0.682650941996736 | 0.679770297826425 |
| SVM                 | 0.820588235294118 | 0.822855107087472 | 0.785677199228601 | 0.797411477411477 |
| Naive Bayes         | 0.461764705882353 | 0.651375756026919 | 0.565902685061564 | 0.424054206662902 |

Fig. 87 Evaluation Metrics for all ML models



## All DL Models: Evaluation Metrics

| Model Name |
|------------|
| VGG19      |
| CNN        |
| ResNet     |
| RCNN       |
| MobileNet  |

| Accuracy          | Precision         | Recall            | F1 Score          |
|-------------------|-------------------|-------------------|-------------------|
| 0.735294117647059 | 0.7434911589055   | 0.735294117647059 | 0.710206726133076 |
| 0.852941176470588 | 0.852510717548668 | 0.852941176470588 | 0.852694938440493 |
| 0.682352941176471 | 0.698230578393783 | 0.682352941176471 | 0.624216742851423 |
| 0.688235294117647 | 0.702289774970391 | 0.688235294117647 | 0.635868566176471 |
| 0.632352941176471 | 0.609658995272778 | 0.632352941176471 | 0.60839688892245  |

Fig. 88 Evaluation Metrics for all DL models



## All Models: Evaluation Metrics

| Model Name          | Accuracy          | Precision         | Recall            | F1 Score          | model type |
|---------------------|-------------------|-------------------|-------------------|-------------------|------------|
| Logistic Regression | 0.758823529411765 | 0.7430764815612   | 0.751298026998962 | 0.74613927738927  | 7 ML       |
| KNN                 | 0.844117647058824 | 0.836476179525507 | 0.825582257825249 | 0.83030576979216  | 7 ML       |
| Random Forest       | 0.85              | 0.869698574517852 | 0.810673490580033 | 0.827412885310189 | 9 ML       |
| Decision Trees      | 0.697058823529412 | 0.677958446251129 | 0.682650941996736 | 0.67977029782642  | 5 ML       |
| SVM                 | 0.820588235294118 | 0.822855107087472 | 0.785677199228601 | 0.79741147741147  | 7 ML       |
| Naive Bayes         | 0.461764705882353 | 0.651375756026919 | 0.565902685061564 | 0.424054206662902 | 2 ML       |
| VGG19               | 0.735294117647059 | 0.7434911589055   | 0.735294117647059 | 0.71020672613307  | 5 DL       |
| CNN                 | 0.852941176470588 | 0.852510717548668 | 0.852941176470588 | 0.852694938440493 | 3 DL       |
| ResNet              | 0.682352941176471 | 0.698230578393783 | 0.682352941176471 | 0.62421674285142  | 3 DL       |
| RCNN                | 0.688235294117647 | 0.702289774970391 | 0.688235294117647 | 0.63586856617647  | I DL       |
| MobileNet           | 0.632352941176471 | 0.609658995272778 | 0.632352941176471 | 0.6083968889224   | 5 DL       |

Fig. 89 Evaluation Metrics for all models



- 1. Ebrahimi, S., & Mariano, V. Y. (2015). Image quality improvement in kidney stone detection on computed tomography. *Journal of Image and Graphics*, 3(1), June.
- 2. Akkasaligar, P. T., Biradar, S., & Kumbar, V. (2017). Kidney stone detection in computed tomography images. In *IEEE Proceedings*.
- 3. Gaikwad, A., Inamdar, A., & Behera, V. (2016). Lung cancer detection using digital image processing on CT scan images. *International Research Journal of Engineering and Technology*.
- 4. Wayne, B., Bailey, M. R., & Sorensen, M. D. (2016). An overview of kidney stone imaging techniques. *Nature Reviews Urology*, *13*(11).
- 5. Asadi, S., Hassanpour, H., & Pouyan, A. (2010). Texture-based image enhancement using gamma correction. *Middle-East Journal of Scientific Research*, 6(6), 569–574.
- 6. Gonzalez, R. C., & Woods, R. E. (1992). Digital Image Processing (2nd ed., pp. 47–51).
- 7. Kim, D. Y., & Park, J. W. (2004). Computer-aided detection of kidney tumor on abdominal computed tomography scans. *Acta Radiologica*, 45(7), 791–795.
- 8. Lin, D. T., Lei, C. C., & Hung, S. W. (2006). Computer-aided kidney segmentation on abdominal CT images. *IEEE Transactions on Information Technology in Biomedicine*, 10(1), 59–65. <a href="https://doi.org/10.1109/TITB.2006.862739">https://doi.org/10.1109/TITB.2006.862739</a>



- 9. Coe, F. L., Evan, A., & Worcester, E. (2005). Kidney stone disease. *Journal of Clinical Investigation*, 115(10), 2598–2608. <a href="https://doi.org/10.1172/JCI26662">https://doi.org/10.1172/JCI26662</a>
- 10. Grases, F., Costa-Bauza, A., & Prieto, R. M. (2006). Renal lithiasis and nutrition. *Nutrition Journal*, 5(23), 1–7. <a href="https://doi.org/10.1186/1475-2891-5-23">https://doi.org/10.1186/1475-2891-5-23</a>
- 11. Madhava, S., Raja, N., Rajinikanth, V., & Latha, K. (2014). Otsu-based optimal multilevel image thresholding using firefly algorithm. *Modelling and Simulation in Engineering*. <a href="https://doi.org/10.1155/2014/617498">https://doi.org/10.1155/2014/617498</a>
- 12. Vishnupriya, R., Madhava Raja, N. S., & Rajinikanth, V. (2017). An efficient clustering technique and analysis of infrared thermograms. In *Proceedings of the 2017 Third International Conference on Biosignals, Images, and Instrumentation (ICBSII)* (pp. 1–5). IEEE. <a href="https://doi.org/10.1109/ICBSII.2017.8082245">https://doi.org/10.1109/ICBSII.2017.8082245</a>
- 13. Madhava Raja, N. S., Fernandes, S. L., Dev, N., Satapathy, S. C., & Rajinikanth, V. (2018). Contrastenhanced medical MRI evaluation using Tsallis entropy and region growing segmentation. *Journal of Ambient Intelligence and Humanized Computing*. <a href="https://doi.org/10.1007/s12652-018-0740-4">https://doi.org/10.1007/s12652-018-0740-4</a>
- 14. Madhava Raja, N. S., Lakshmi, P. R. V., & Gunasekaran, K. P. (2018). Firefly algorithm-assisted segmentation of brain regions using Tsallis entropy and Markov random field. In *Innovations in Electronics and Communication Engineering* (Vol. 7, pp. 235–244). Singapore: Springer. <a href="https://doi.org/10.1007/978-981-10-5569-3\_21">https://doi.org/10.1007/978-981-10-5569-3\_21</a>

- 15. Author(s). (n.d.). A machine-learning approach to distinguish passengers and drivers reading while driving [Scientific figure]. Retrieved from <a href="https://www.researchgate.net/figure/Architecture-of-a-Logistic-Regression-Model-56">https://www.researchgate.net/figure/Architecture-of-a-Logistic-Regression-Model-56</a> fig7 334575492
- 16. Author(s). (n.d.). A study of stock market prediction through sentiment analysis [Scientific figure]. Retrieved November 20, 2024, from <a href="https://www.researchgate.net/figure/Architecture-of-Naive-Bayes-Classifier fig1 368646502">https://www.researchgate.net/figure/Architecture-of-Naive-Bayes-Classifier fig1 368646502</a>
- 17. Author(s). (n.d.). A novel intrusion detection model for mobile ad-hoc networks using CP-KNN [Scientific figure]. Retrieved November 20, 2024, from <a href="https://www.researchgate.net/figure/Design-Architecture-of-CP-KNN fig1 307675744">https://www.researchgate.net/figure/Design-Architecture-of-CP-KNN fig1 307675744</a>
- 18. Author(s). (n.d.). Hybrid techniques to predict solar radiation using support vector machine and search optimization algorithms: A review [Scientific figure]. Retrieved November 20, 2024, from <a href="https://www.researchgate.net/figure/General-architecture-of-a-support-vector-maching-SVM-model-according-to-55 fig3 348745187">https://www.researchgate.net/figure/General-architecture-of-a-support-vector-maching-SVM-model-according-to-55 fig3 348745187</a>
- 19. Author(s). (n.d.). Fraud detection using machine learning in e-commerce [Scientific figure]. Retrieved November 20, 2024, from <a href="https://www.researchgate.net/figure/Architecture-of-Decision-Trees fig3 336148901">https://www.researchgate.net/figure/Architecture-of-Decision-Trees fig3 336148901</a>



- 20. Author(s). (n.d.). Pre-evacuation time estimation-based emergency evacuation simulation in urban residential communities [Scientific figure]. Retrieved November 21, 2024, from <a href="https://www.researchgate.net/figure/Architecture-of-the-Random-Forest-algorithm">https://www.researchgate.net/figure/Architecture-of-the-Random-Forest-algorithm</a> fig1 337407116
- 21. Author(s). (n.d.). A high-accuracy model average ensemble of convolutional neural networks for classification of cloud image patches on small datasets [Scientific figure]. Retrieved November 21, 2024, from <a href="https://www.researchgate.net/figure/Schematic-diagram-of-a-basic-convolutional-neural-network-CNN-architecture-26 fig1 336805909">https://www.researchgate.net/figure/Schematic-diagram-of-a-basic-convolutional-neural-network-CNN-architecture-26 fig1 336805909</a>
- 22. Author(s). (n.d.). A maximum-entropy-attention-based convolutional neural network for image perception [Scientific figure]. Retrieved November 21, 2024, from <a href="https://www.researchgate.net/figure/Architecture-of-the-R-CNN-model fig1 362218031">https://www.researchgate.net/figure/Architecture-of-the-R-CNN-model fig1 362218031</a>
- 23. Author(s). (n.d.). Efficient approach towards detection and identification of copy move and image splicing forgeries using Mask R-CNN with MobileNet V1 [Scientific figure]. Retrieved November 21, 2024, from <a href="https://www.researchgate.net/figure/The-architecture-of-MobileNet-V1-30">https://www.researchgate.net/figure/The-architecture-of-MobileNet-V1-30</a> fig5 357623745
- 24. Author(s). (n.d.). Generalization of convolutional network to domain adaptation network for classification of disaster images on Twitter [Scientific figure]. Retrieved November 21, 2024, from <a href="https://www.researchgate.net/figure/VGG-19-Architecture-39-VGG-19-has-16-convolution-layers-grouped-into-5-blocks-After fig5 359771670">https://www.researchgate.net/figure/VGG-19-Architecture-39-VGG-19-has-16-convolution-layers-grouped-into-5-blocks-After fig5 359771670</a>

25. Author(s). (n.d.). Performance evaluation of deep CNN-based crack detection and localization techniques for concrete structures [Scientific figure]. Retrieved November 21, 2024, from <a href="https://www.researchgate.net/figure/The-architecture-of-ResNet-50-model fig4 349717475">https://www.researchgate.net/figure/The-architecture-of-ResNet-50-model fig4 349717475</a>

