Solutions to Sheet 6

Exercise 1

Let K be a number field. Show that \mathcal{O}_K has infinitely many prime ideals.

Solution. There are many ideas one could use. For example, the statement is a direct consequence of the lying over theorem for integral extensions. But we proof this mimicking euclid's proof. Assume there is only a finite number of primes $\mathfrak{p}_1, \ldots, \mathfrak{p}_n$. Let $n \in \mathbb{Z}$ be an integer such that $n\mathbb{Z} = \mathfrak{p}_1 \cdots \mathfrak{p}_n \cap \mathbb{Z}$. Now $(n+1)\mathcal{O}_K$ is a prime ideal not contained in any of the ideals $\mathfrak{p}_1, \ldots, \mathfrak{p}_n$. In particular, decomposition into prime ideals cannot hold. This is a contradiction.

Exercise 2

Let $m \in \mathbb{Z}$ be negative and squarefree with $m \equiv 1 \mod 4$ and set $K = \mathbb{Q}(\sqrt{m})$. We assume that \mathcal{O}_K is a UFD (this is used in parts (ii) and (iv)).

- 1. Let p be a prime number and $k \in \mathbb{Z}$ such that $p \mid k^2 k + \frac{1-m}{4}$. Show that p is not a prime element in \mathcal{O}_K .
- 2. Let p be as in (i). Show that there exists u, v in \mathcal{O}_K such that $p \equiv uv$ and $N_{K/\mathbb{Q}}(u) = p$.
- 3. Let p be a prime number of the form $N_{K/\mathbb{O}}(u)$ for some $u \in \mathcal{O}_K$. Show that $p \geq (1-m)/4$.
- 4. Suppose that m < -3. Deduce that every number of the form $k^2 k + \frac{1-m}{4}$ with $0 \le k \le \frac{-3-m}{4}$ is prime.

Solution.

- 1. Let $\alpha = \left(\frac{1+\sqrt{m}}{2}\right)$. Then we can factor $k^2 k + \frac{1-m}{4} = (k-\alpha)(k-\sigma(\alpha))$, where σ is complex conjugation (in particular, $k^2 k + \frac{1-m}{4} = N_{K/\mathbb{Q}}(k-\alpha)$). We know that $(1,\alpha)$ is a \mathbb{Z} -basis for \mathcal{O}_K , and wee see that $k-\alpha, k-\sigma(\alpha) \notin p\mathcal{O}_K$. Hence $p\mathcal{O}_K$ is not a prime ideal, and p is not prime.
- 2. We make use of the fact that \mathcal{O}_K is a UFD. Let $p=q_1\dots q_r$ be a decomposition of p into (possibly repeating) irreducible factors (without units). Then $p^2=\mathrm{N}_{K/\mathbb{Q}}(p)=\mathrm{N}_{K/\mathbb{Q}}(q_1)\cdots$ $\mathrm{N}_{K/\mathbb{Q}}(q_r)$, and we find that $r\leq 2$. As \mathcal{O}_K is a UFD, p is not irreducible (prime = irreducible in UFDs). This shows that $r\geq 2$, so we have equality, and we get two elements q_1,q_2 with $\mathrm{N}_{K/\mathbb{Q}}(q_1)=\mathrm{N}_{K/\mathbb{Q}}(q_2)=p$.
- 3. Write $u = a + b\alpha$. Then

$$\mathcal{N}_{K/\mathbb{Q}}(u) = \left(a + \frac{b}{2}\right)^2 - \frac{b^2}{4}m \ge \frac{1-m}{4}.$$

Here we used that necessarily $b \neq 0$ if this is suppsed to be prime. Also, note that both terms are non-negative.

4. Suppose p_1 and p_2 are prime numbers that divide $k^2 - k + \frac{1-m}{4}$. By 2. there are u_1, u_2 in \mathcal{O}_K such that $\mathcal{N}_{K/\mathbb{Q}}(u_i) = p_i$. In particular we find by 3. that $p \geq \frac{1-m}{4}$. Now as m < -3, we find that

$$p_1 p_2 \ge \left(\frac{1-m}{4}\right)^2 \le k^2 - k + \frac{1-m}{4}.$$

The last inequality rewrites as

$$\left(\frac{1-m}{4}\right)\left(\frac{1-m}{4}-1\right) \le k(k-1),$$

which is only possible if $k \ge \frac{1-m}{4}$ or k < 0.

Remark. The last statement implies the funny result that $k^2 - k + 41$ is a prime for all integers $0 \le k < 41$, as $\mathcal{O}_{\mathbb{Q}(\sqrt{-163})}$ is known to be a UFD.

Exercise 3

Let K be a number field. Let I and J be ideals of \mathcal{O}_K and let $\sigma: K \to K$ be a field automorphism. Recall that $\sigma(\mathcal{O}_K) \subset \mathcal{O}_K$.

- 1. Show that $\sigma(I)$ is an ideal of \mathcal{O}_K .
- 2. Show that $\sigma(I)$ is prime if I is prime.
- 3. Show that $\sigma(IJ) = \sigma(I)\sigma(J)$.

Solution.

1. For $x \in I$, $r \in \mathcal{O}_K$ we have

$$r\sigma(x) = \sigma(\sigma^{-1}(r)x) \in \sigma(I).$$

Hence $\sigma(I)$ is an ideal.

- 2. Same trick: If I is prime and $xy \in \sigma(I)$, then $\sigma^{-1}(x)\sigma^{-1}(y) \in I$, so by primality of I and without loss of generality $\sigma^{-1}(x) \in I$. But now $x \in \sigma(I)$, so $\sigma(I)$ is prime.
- 3. $\sigma(IJ) = {\sigma(x)\sigma(y) \mid x \in I, y \in J} = \sigma(I)\sigma(J)$.

Exercise 4

Let R be a Dedekind domain.

1. Let I and I_1, \ldots, I_n be ideals such that $I_j \nmid I$ for all $j = 1, \ldots, n$. Show that

$$I \setminus (I_1 \cup \cdots \cup I_n) \neq \emptyset$$
.

2. Suppose that R has at most finitely many prime ideals. Show that R is a principal ideal domain.

Solution. The following lemma will prove useful (and is really just a weak form of 4.1):

Lemma 1. Let R be a Dedekind domain and let $\mathfrak{p}_1, \ldots, \mathfrak{p}_n$ prime ideals of R. Let $e_1, \ldots, e_n \in \mathbb{Z}$ be arbitrary integers. Then there is some $r \in R$ with $r \in \mathfrak{p}_j^{e_j} \setminus \mathfrak{p}_j^{e_{j+1}}$ for all j.

Proof. We'll make use of the Chinese remainder theorem. We have the map

$$R \to R/(\mathfrak{p}_1^{e_1+1} \cap \dots \mathfrak{p}_n^{e_n+1}) \cong \prod_j R/\mathfrak{p}_j^{e_j+1}.$$

Now choose non-zero elements $s_j \in \mathfrak{p}_j^{e_j}/\mathfrak{p}_j^{e_j+1} \subset R/\mathfrak{p}_j^{e_j+1}$. Any element r in the preimage of

$$(s_1,\ldots,s_n)\in\prod_j R/\mathfrak{p}_j^{e_j+1}$$

works. \Box

- 1. We are in the Dedekind situation, so of course we look at the prime factorization of the Ideals at hand. Let $I = \mathfrak{p}_1^{e_1} \dots \mathfrak{p}_m^{e_m}$. Also, by the divisibility assumption, for any j there is some prime ideal \mathfrak{q}_j and some integer f_j such that $\mathfrak{q}_j^{f_j} \mid I$, $\mathfrak{q}_j^{f_j+1} \nmid I$ and $\mathfrak{q}_j^{f_j+1} \mid I_j$. Now, there is some element $r \in R$ with $r \in \mathfrak{p}_i^{e_i}$ for all i (i.e., $r \in I$) and $r \in \mathfrak{q}_j^{e_j} \setminus \mathfrak{q}_j^{e_j+1}$ (i.e., $r \notin I_j$).
- 2. As R is a Dedekind domain, it suffices to show that all prime ideals are principal. By assumption there are only finitely many, let's call them $\mathfrak{p}_1, \ldots, \mathfrak{p}_n$. We now use lemma 1 to find an element $x \in R$ with $x \notin \mathfrak{p}_j$ for $j \neq 1$ and $x \in \mathfrak{p}_1 \setminus \mathfrak{p}_1^2$. This forces $(x) = \mathfrak{p}_1$.