In [1]: import numpy as np
 import pandas as pd
 import matplotlib.pyplot as plt
 import seaborn as sns

In [2]: d=pd.read_csv(r"C:\Users\Admin\Downloads\uber - uber.csv")
d

Out[2]:

	Unnamed: 0	key	fare_amount	pickup_datetime	pickup_longitude	pickup_latitude	dropoff_longit
0	24238194	2015- 05-07 19:52:06	7.5	2015-05-07 19:52:06 UTC	-73.999817	40.738354	-73.999
1	27835199	2009- 07-17 20:04:56	7.7	2009-07-17 20:04:56 UTC	- 73.994355	40.728225	- 73.994
2	44984355	2009- 08-24 21:45:00	12.9	2009-08-24 21:45:00 UTC	-74.005043	40.740770	- 73.962
3	25894730	2009- 06-26 8:22:21	5.3	2009-06-26 08:22:21 UTC	-73.976124	40.790844	- 73.965
4	17610152	2014- 08-28 17:47:00	16.0	2014-08-28 17:47:00 UTC	-73.925023	40.744085	-73.973
199995	42598914	2012- 10-28 10:49:00	3.0	2012-10-28 10:49:00 UTC	- 73.987042	40.739367	- 73.986
199996	16382965	2014- 03-14 1:09:00	7.5	2014-03-14 01:09:00 UTC	- 73.984722	40.736837	- 74.006
199997	27804658	2009- 06-29 0:42:00	30.9	2009-06-29 00:42:00 UTC	- 73.986017	40.756487	-73.858
199998	20259894	2015- 05-20 14:56:25	14.5	2015-05-20 14:56:25 UTC	-73.997124	40.725452	-73.983
199999	11951496	2010- 05-15 4:08:00	14.1	2010-05-15 04:08:00 UTC	-73.984395	40.720077	-73.985
200000 rows × 9 columns							

4

In [3]: df=d.head(100)

```
In [4]: df.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 100 entries, 0 to 99
        Data columns (total 9 columns):
             Column
                                 Non-Null Count
                                                 Dtype
         0
             Unnamed: 0
                                 100 non-null
                                                 int64
                                 100 non-null
                                                 object
         1
             key
         2
             fare amount
                                 100 non-null
                                                 float64
             pickup datetime
                                 100 non-null
                                                 object
         3
             pickup_longitude
                                 100 non-null
                                                 float64
         5
             pickup_latitude
                                 100 non-null
                                                 float64
             dropoff_longitude 100 non-null
                                                 float64
             dropoff_latitude
         7
                                 100 non-null
                                                 float64
             passenger count
                                 100 non-null
                                                 int64
        dtypes: float64(5), int64(2), object(2)
        memory usage: 7.2+ KB
```

In [5]: df.describe()

Out[5]:

	Unnamed: 0	fare_amount	pickup_longitude	pickup_latitude	dropoff_longitude	dropoff_latitude	pas
count	1.000000e+02	100.000000	100.000000	100.000000	100.000000	100.000000	
mean	2.810554e+07	11.065700	-71.019759	39.123621	-71.015479	39.126295	
std	1.635033e+07	9.029756	14.569902	8.026358	14.569028	8.026905	
min	2.268700e+05	2.500000	-74.013173	0.000000	-74.016152	0.000000	
25%	1.422691e+07	5.475000	-73.992601	40.733982	- 73.989142	40.733759	
50%	2.710896e+07	8.100000	-73.982002	40.752764	-73.979396	40.757083	
75%	4.480811e+07	12.600000	- 73.968615	40.765572	-73.960980	40.770287	
max	5.508597e+07	56.800000	0.000000	40.850558	0.000000	40.876687	
4 —							

```
In [6]: df.columns
```

In [7]: sns.pairplot(df)

Out[7]: <seaborn.axisgrid.PairGrid at 0x24c7f41db80>

In [8]: sns.distplot(df['passenger_count'])

Out[8]: <matplotlib.axes._subplots.AxesSubplot at 0x24c0220ca90>

Out[9]:

	fare_amount	pickup_datetime	pickup_longitude	pickup_latitude	dropoff_longitude	dropoff_latitude	pas
0	7.5	2015-05-07 19:52:06 UTC	-73.999817	40.738354	-73.999512	40.723217	
1	7.7	2009-07-17 20:04:56 UTC	- 73.994355	40.728225	-73.994710	40.750325	
2	12.9	2009-08-24 21:45:00 UTC	-74.005043	40.740770	-73.962565	40.772647	
3	5.3	2009-06-26 08:22:21 UTC	- 73.976124	40.790844	-73.965316	40.803349	
4	16.0	2014-08-28 17:47:00 UTC	-73.925023	40.744085	-73.973082	40.761247	
95	9.5	2015-04-11 08:47:47 UTC	-73.978432	40.752399	- 74.000427	40.742119	
96	4.5	2011-10-03 20:29:00 UTC	-73.990055	40.756413	-73.983047	40.756727	
97	3.3	2010-04-26 03:12:44 UTC	-73.982326	40.731314	-73.989649	40.734398	
98	30.9	2011-11-18 09:51:00 UTC	-73.995888	40.759078	-73.865005	40.770452	
99	26.9	2009-08-30 14:03:55 UTC	-73.990137	40.756007	-73.929361	40.774553	

100 rows × 7 columns

```
In [10]: sns.heatmap(df1.corr())
```

Out[10]: <matplotlib.axes._subplots.AxesSubplot at 0x24c02985580>


```
In [15]: from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.3)
```

```
In [16]: from sklearn.linear_model import LinearRegression
lr= LinearRegression()
lr.fit(x_train,y_train)
```

Out[16]: LinearRegression()

```
In [17]: print(lr.intercept_)
```

0.9881903663278926

```
prediction= lr.predict(x_test)
In [18]:
         plt.scatter(y_test,prediction)
Out[18]: <matplotlib.collections.PathCollection at 0x24c02ec8d60>
          2.0
          1.8
          1.6
          1.4
          1.2
          1.0
               1.0
                    1.5
                         2.0
                              2.5
                                   3.0
                                        3.5
                                             4.0
                                                   4.5
                                                        5.0
In [19]:
         print(lr.score(x_test,y_test))
          -0.09377998485007377
In [20]: |print(lr.score(x_train,y_train))
         0.06735004195710648
In [21]: from sklearn.linear_model import Ridge,Lasso
         rr=Ridge(alpha=10)
         rr.fit(x_train,y_train)
Out[21]: Ridge(alpha=10)
In [22]: rr.score(x_test,y_test)
Out[22]: -0.00023882811437436757
In [23]: la=Lasso(alpha=10)
         la.fit(x_train,y_train)
Out[23]: Lasso(alpha=10)
In [24]: la.score(x_test,y_test)
Out[24]: -0.012979699106975051
In [25]: from sklearn.linear_model import ElasticNet
         en=ElasticNet()
         en.fit(x_train,y_train)
Out[25]: ElasticNet()
In [26]:
         print(en.intercept_)
         1.1345902220816857
```

0.0005892990223963501

Evaluation

```
In [29]: from sklearn import metrics
    print("Mean Absolute Error", metrics.mean_absolute_error(y_test, prediction))
    print("Mean Squared Error", metrics.mean_squared_error(y_test, prediction))
    print("Root Mean Squared Error:", np.sqrt(metrics.mean_squared_error(y_test, prediction))

    Mean Absolute Error 0.7771841170079521
    Mean Squared Error 0.9248517427454515
    Root Mean Squared Error: 0.9616921247184316
In []:
```