

MATH 830: Reflection Groups and Coxeter Groups

Lecturer: Dr. Mark Kleiner Notes By: Caleb McWhorter

Fall 2017

Contents

0	Introduction	1
1	Reflections and Rotations	1
	1.1 Reflections and Rotations in Euclidean Space	1

0 Introduction

MAT 830: Basic facts about Coxeter groups, including the classification of finite Coxeter groups, root systems, exchange conditions, and Bruhat ordering.

Textbook: Reflection Groups and Coxeter Groups, James E. Humphreys

1 Reflections and Rotations

1.1 Reflections and Rotations in Euclidean Space

Let \mathbb{R}^n denote Euclidean space and $\langle \ , \ \rangle$ denote the standard inner product. Let $0 \neq \alpha \in \mathbb{R}^n$ and let \mathcal{H}_{α} denote the hyperplane of all vectors orthogonal to α . We create a function $s_{\alpha} : \mathbb{R}^n \to \mathbb{R}^n$ on \mathbb{R}^n as follows: $s_{\alpha}(\lambda) := \lambda - 2 \frac{\langle \lambda \ , \ \alpha \rangle}{\langle \alpha \ , \ \alpha \rangle} \alpha$. The function s_{α} has the following properties:

- (i) If $\lambda \in \mathcal{H}_{\alpha}$, then $s_{\alpha}(\lambda) = \lambda$.
- (ii) $s_{\alpha}(\alpha) = -\alpha$. That is, s_{α} is the reflection about \mathcal{H}_{α} .

(iii)