Technische Informatik I

Kapitel 2

Boolesche Algebra

Prof. Dr. Dirk W. Hoffmann

Boolesche Algebra

Gegeben: Menge V, Operatoren •, +: V × V → V

V heißt Boolesche Algebra, wenn die folgenden vier Huntingtonschen Axiome gelten:

Kommutativgesetze (K): a • b = b • a

$$a + b = b + a$$

Distributivgesetze (D): a • (b + c) = (a • b) + (a • c)

$$a + (b \cdot c) = (a + b) \cdot (a + c)$$

• Neutrale Elemente (N): Es existieren e, $n \in V$ mit

$$a \cdot e = a \text{ und } a + n = a$$

Inverse Elemente (I): Für alle a ∈ V existiert ein a' mit

Beispiel 1: Mengenalgebra (T = Trägermenge)

Boolesche Algebra	Mengenalgebra	
V	<i>℘</i> (T)	Potenzmenge der Trägermenge T
•	Λ	Durchschnitt
+	U	Vereinigung
n	Ø	Leere Menge
е	Т	Trägermenge
a'	T\A	Komplementärmenge

Veranschaulichung durch Venn-Diagramme

■ A ∩ (B ∪ C)

■ (A ∩ B) ∪ (B ∩ C)

■ A U (B ∩ C)

■ (A ∪ B) ∩ (A ∪ C)

Beispiel 2: Schaltalgebra

Boolesche Algebra	Schaltalgebra	
V	{ 1, 0 }	Wahrheitswerte (TRUE, FALSE)
•	٨	Konjunktion (UND-Operator)
+	V	Disjunktion (ODER-Operator)
n	0	"Falsch" (FALSE)
е	1	"Wahr" (TRUE)
a'	¬a	Negation (Verneinung)

Notation und Operatorenbindung

Abgeleitete Operatoren ("syntactic sugar")

•
$$(a \rightarrow b)$$
 für $(\neg a \lor b)$ (Implikation)

•
$$(a \leftarrow b)$$
 für $(b \rightarrow a)$ (Inv. Implikation)

•
$$(a \leftrightarrow b)$$
 für $(a \rightarrow b) \land (a \leftarrow b)$ (Äquivalenz)

•
$$(a \oplus b)$$
 für $\neg(a \leftrightarrow b)$ (Antivalenz)

•
$$(a \underline{v} b) \text{ für } \neg (a v b)$$
 (NOR)

•
$$(a \wedge b) \text{ für } \neg (a \wedge b)$$
 (NAND)

Schaltalgebra

Boolesche Funktionen

¬ ist eine einstellige Boolesche Funktion

$$\neg : \{0,1\} \rightarrow \{0,1\}$$

Alle anderen Operatoren sind zweistellige Boolesche Funktionen

$$\wedge, \vee, \dots : \{0,1\} \times \{0,1\} \rightarrow \{0,1\}$$

Wie viele zweistellige Boolesche Funktionen gibt es insgesamt?

Die zweistelligen Booleschen Funktionen

		$f_0 = 0$	$f_1 = a \wedge b$	$f_2 = \neg a \wedge b$	$f_3 = b$	$f_4 = \neg b \wedge a$	f ₅ = a	$f_6 = a \oplus b$	$f_7 = a \lor b$	$f_8 = \neg (a \lor b)$	$f_9 = a \Leftrightarrow b$	f ₁₀ = ¬a	$f_{11} = a \rightarrow b$	$f_{12} = -b$	$f_{13} = a \leftarrow b$	$f_{14} = \neg (a \land b)$	f ₁₅ = 1
b	а	fo	f ₁	f_2	f_3	f_4	f_5	f_6	f ₇	f ₈	f ₉	f ₁₀	f ₁₁	f ₁₂	f ₁₃	f ₁₄	f ₁₅
0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
0	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
		Nullfunktion	Konjunktion					Antivalenz	Disjunktion		Äquivalenz		Implikation		nverse Implikation		Einsfunktion

Notation und Operatorenbindung

- Alternative Notation der Booleschen Operatoren
 - (a b) bzw. (ab) anstelle (a ∧ b)
 - (a + b) anstelle (a v b)
 - a anstelle ¬a
 - (a
 → b) anstelle (a
 → b)
 - (a ⊼ b) anstelle (a ∧ b)
 - $(a \overline{v} b)$ anstelle $(a \underline{v} b)$
- Bindung der Operatoren
 - h bindet stärker als v
 - ¬ bindet stärker als ∧
- Klammerung
 - Gleiche binäre Operatoren werden linksassoziativ zusammengefasst, z.B. a ^ b ^ c = (a ^ b) ^ c

Kommutativgesetze	a n b = b n a a v b = b v a	(K)
Distributivgesetze	a \((b \(\nabla \) c) = (a \(\nabla \) b) \(\nabla \) (a \(\nabla \) c) a \(\nabla \) (b \(\nabla \) c)	(D)
Neutrale Elemente	a x 1 = a a v 0 = a	(N)
Inverse Elemente	a n ¬a = 0 a v ¬a = 1	(I)

In jeder Booleschen Algebra, so auch in der Schaltalgebra, gelten die vier oben gezeigten Huntingtonschen Axiome

Aus den Huntingtonschen Axiomen lassen sich weitere praktische Rechenregeln ableiten...

Kommutativgesetze	a n b = b n a a v b = b v a	(K)
Distributivgesetze	a ^ (b v c) = (a ^ b) v (a ^ c) a v (b ^ c) = (a v b) ^ (a v c)	(D)
Neutrale Elemente	a x 1 = a a v 0 = a	(N)
Inverse Elemente	a n ¬a = 0 a v ¬a = 1	(I)
Assoziativgesetze	a ^ (b ^ c) = (a ^ b) ^ c = a ^ b ^ c a v (b v c) = (a v b) v c = a v b v c	(A)
Idempotenzgesetze	a ^ a = a a v a = a	(ID)
Absorptionsgesetze	a v (a x b) = a a x (a v b) = a	(AB)
Gesetze von DeMorgan	¬(a v b) = ¬a ∧ ¬b ¬(a ∧ b) = ¬a v ¬b	(M)
Auslöschungsgesetze	a x 0 = 0 a v 1 = 1	(L)
Gesetz der Doppelnegation	¬¬a = a	(DN)

Anwendung der Regeln

- Vereinfachung von Ausdrücken
 - Beispiel 1: $Y = (A \land B \land C \land \neg D) \lor (A \land B) \lor \neg (\neg B \lor (A \land \neg A))$
 - Beispiel 2: $Y = \neg((\neg A \lor \neg B \lor \neg C) \land (\neg D \lor \neg E \lor \neg F))$

Bitweise Logische Operationen

A,B seien Bitvektoren, ⊗ eine beliebige Verknüpfung

Ergebnis $E = A \otimes B$

Bitweise Logische Operationen

UND, ODER und XOR wirken wie spezielle Bit-Masken

UND wird verwendet, um Bits gezielt auf 0 zu setzen. Dazu hat die Maske an allen Bitpositionen, die übernommen werden sollen, eine 1 und an den Stellen, die auf 0 gesetzt werden sollen, eine 0.

oder wird verwendet, um Bits gezielt auf 1 zu setzen. Dazu hat die Maske an allen Bitpositionen, die übernommen werden sollen, eine 0 und an den Stellen, die auf 1 gesetzt werden sollen, eine 1.

XOR wird verwendet, um Bits gezielt zu kippen. Dazu hat die Maske an allen Bitpositionen, die übernommen werden sollen, eine 0 und an den Stellen, die gekippt werden sollen, eine 1.