

SEQUENCE LISTING

<110> Crompton, T.

<120> METHODS AND COMPOSITIONS FOR REGULATING LYMPHOCYTE ACTIVITY

<130> CIBT-P01-080

<140> 09/724,964

<141> 2000-11-28

<150> 60/168,112

<151> 1999-11-30

<160> 28

<170> PatentIn Ver. 2.1

<210> 1

<211> 1277

<212> DNA

<213> Gallus gallus

<400> 1

atggtcgaaa tgctgctgtt gacaagaatt ctcttggtgg gcttcatctg cgctttta 60
gtctcctctg ggctgacttg tggaccaggc aggggcattt gaaaaaggag gcaccccaa 120
aagctgaccc cgttagccta taagcagttt attcccaatg tggcagagaa gaccctagg 180
gccagtggaa gatatgaagg gaagatcaca agaaaactccg agagatttaa agaactaacc 240
ccaaattaca accctgacat tatttttaag gatgaagaga acacgggagc tgacagactg 300
atgactcagc gctgcaagga caagctgaat gcccctggcga tctcggtgtt gaaccagtgg 360
cccggggtga agctgcgggt gaccgagggc tgggacgagg atggccatca ctccgaggaa 420
tcgctgcact acgagggtcg cgccgtggac atcaccacgt cggatcgggc ccgcagcaag 480
tacggaatgc tggcccgct cgccgtcgag gccggcttcg actgggtcta ctacgagtcc 540
aaggcgcaca tccactgctc cgtcaaagca gaaaactcag tggcagcgaa atcaggaggc 600
tgcttcctg gtcagccac agtgcacctg gagcatggag gcaccaagct ggtgaaggac 660
ctgagccctg gggaccgcgt gctggctgtt gacgcggacg gccggctgtt ctacagtgtac 720
ttcctcacct tcctcgaccg gatggacagc tccccaaagc tcttctacgt catcgagacg 780
cgccagcccc gggcccggt gctactgacg gcccggccacc tgcttttgtt ggccccccag 840
cacaaccagt cggaggccac agggtccacc agtggccagg cgctttcgc cagcaacgtg 900
aagcctggcc aacgtgtcta tggctgggc gagggcgggc agcagctgtt gcccggctct 960
gtccacagcg ttcattgcg ggaggaggcg tccggagcct acggcccaact caccggccag 1020
ggcaccatcc tcatcaaccg ggttgtggcc tcctgtacg cctgtatcga ggagcacagt 1080
tggcccttgc accattccgc ttggctcagg ggctgctggc cgcctctgc 1140
ccagatgggg ccatccctac tgccgccacc accaccactg gcatccattt gtactcacgg 1200
ctcctctacc gcatggcag ctgggtgtt gatggtgacg cgctgcattt gctgggcattt 1260
gtggcaccgg ccagctg 1277

<210> 2

<211> 1190

<212> DNA

<213> Mus musculus

<400> 2

atggctctgc cggccagtct gttgcccctg tgctgcttgg cactcttggc actatctgcc 60
cagagctgcg ggccggcccg aggaccgggtt ggccggccgc gttatgtgcg caagcaactt 120
gtgcctctgc tataacaagca gtttgtgccc agtatgcccc agcggaccctt gggcgcgagt 180

gggccagcg aggggagggt aacaaggggg tcggagcgct tccggacact cgtacccaac 240
tacaaccccg acataatctt caaggatgag gagaacagcg gcgcagaccg cctgatgaca 300
gagcgttgca aagagcgggt gaacgctcta gccatcgccg tgatgaacat gtggcccgga 360
gtacgcctac gtgtgactga aggctggac gaggacggcc accacgcaca ggattcactc 420
caactacgaag gccgtgcctt ggacatcacc acgtctgacc gtgaccgtaa taagtatgg 480
tttgtggcgc gcctagctgt ggaagccgga ttgcactggg tctactacga gtcccgcac 540
cacatccacg tatcggtcaa agctgataac tcactggcgg tccgagccgg aggctgctt 600
ccggaaatg ccacgggtgc cttgcggagc ggcgaacgga aggggctgag ggaactacat 660
cgtggtgact gggtaactggc cgctgatgca gcgggcccgg tggtacccac gccagtgctg 720
ctcttcctgg accgggatct gcagcgcgcgc gcctcgctcg tggctgtgga gaccgagcg 780
cctccgcgcga aactgttgc cacaccctgg catctgggtg tcgctgctcg cgggcccagcg 840
cctgctccag gtgactttgc accgggtgttc gcgcgcgcgt tacgtgctgg cgactcggtg 900
ctggctcccc gccccggacgc gctccagccg gcgcgcgttag cccgcgtggc gcgcgaggaa 960
gcctgtggcg tggctgcacc gtcactgca gacgggacgc tgctggtaa cgacgtccctc 1020
gcctcctgct acgcggttct agagagtcaac cagtggggccc accgcgcctt cgcccccctt 1080
cggtctgctgc acgcgcctgg ggctctgctc cctgggggtg cagtccagcc gactggcatg 1140
cattggtaact ctgccttcctt ttaccgcttg gccgaggagt taatgggctg 1190

<210> 3
<211> 1281
<212> DNA
<213> Mus musculus

<400> 3
atgtctcccg cctggctccg gccccgactg cggttctgtc tggctctgtc gctgctgctt 60
ctgggtccgg cggcgcgggg ctgcgggccc ggccgggtgg tggcagccg cggaggccg 120
cctcgcaagc tcgtgcctct tgcctacaag cagttcagcc ccaacgtgcc ggagaagacc 180
ctggggccca gcggggcgcta cgaaggcaag atcgcgcgcg gctctgagcg cttcaaaagag 240
ctcacccttca actacaatcc cgacatcatc ttcaaggacg aggagaacac gggtgcccac 300
cgccctatga cccagcgctg caaggaccgt ctgaactcac tggccatctc tgtcatgaac 360
cagtggctcg gtgtgaaact gccccggacc gaaggccggg atgaagatgg ccatcactca 420
gaggagtctt tacactatga gggccgcgcg gtggatatca ccacctcaga ccgtgaccga 480
aataagtatg gactgtggc gcgccttagca gtggaggccg gttcgactg ggtgtattac 540
gagtccaaagg cccacgtgca ttgtctgtc aagtctgagc attcggccgc tgccaaagaca 600
ggtggctgct ttcctgcccgg agcccagggtg cgcctagaga acggggagcg tggccctcg 660
tcagctgtaa agccaggaga cgggggtctg gccatggggg agatgggac ccccacctc 720
atgtatgtgc ttatttctt ggaccgcgag ccaaaccggc tgagagctt ccaggtcatac 780
gagactcagg atcctccgcg tcggctggcg ctcacgcctg cccacctgtc ttcatgtcg 840
gacaatcata cagaaccagc agcccacttc cggggccacat ttgcagccca tggcaacca 900
ggcaaatatg tgctggtatac aggggtacca ggcctccagc ctgctcggtt ggcagctgac 960
tccaccacg tggcccttgg gtcctatgtc cctctcacaa ggcatgggac acttgtggtg 1020
gaggatgtgg tggccctctg cttgcagct gtggctgacc accatctggc tcagttggcc 1080
ttctggccccc tgctggacttttgc tcccagtttgc gcatggggca gctggacccc aagtgggggt 1140
gttcactcctt accctcagat gctctaccgc ctggggcgctc tcttgctaga agagagcacc 1200
ttccatccac tggccatgtc tggggcagga agctgaaggg actctaacca ctgccttcct 1260
ggaactgctg tgcgtggatc c 1281

<210> 4
<211> 1313
<212> DNA
<213> Mus musculus

<400> 4
atgtctgctgc tgctggccag atgtttctg gtgatccttg ctgcctcgct gctgggtgtc 60
ccggggctgg cctgtggggcc cggcagggggg tttggaaaaga ggcggcacc caaaaagctg 120

acccttttag cctacaagca gtttattccc aacgttagccg agaagacccct aggggccagc 180
ggcagatatg aaggaaagat cacaagaaac tccgaacgtat ttaaggaact caccccaat 240
tacaaccccg acatcatatt taaggatgag gaaaacacgg gagcagaccc gctgatgact 300
cagaggtgca aagacaagtt aaatgccttg gccatctctg tgatgaacca gtggcctgga 360
gtgaggctgc gagtgaccga gggctggat gaggacggcc atcattcaga ggagtctcta 420
caactatgagg gtcgagcagt ggacatcacc acgtccgacc gggaccgcag caagtacggc 480
atgctggctc gcctggctgt ggaaggcagg ttcgactggg tctactatga atccaaagct 540
cacatccact gttctgtgaa agcagagaac tccgtggcgg ccaaattccgg cggtgttcc 600
ccgggatccg ccacccgtgca cctggagcag ggcggcacca agctggtcaa ggacttacgt 660
cccgagacc gcgtgtggc ggctgacgac cagggccggc tgctgtacag cgacttcctc 720
acccctcgg acccgacga aggcccaag aaggcttct acgtgatcga gacgctggag 780
ccgcgcgacgc gcctgctgt caccgcgcg cacctgctct tcgtggcgcgc gcacaacgac 840
tcggggccca cggccggcc aagcgcgtc tttggcagcc gcgtgcggcc cggcagcgc 900
gtgtacgtgg tggctgaacg cggcggggac cgccggctgc tgcccgccgc ggtgcacagc 960
gtgacgctgc gagaggagga ggcgggcgcg tacgcgcgc tcacggcgcga cggcaccatt 1020
ctcatcaacc gggtgcgtc ctcgtgtac gctgtcatcg aggagcacag ctgggcacac 1080
cgggccttcg cgccttcgg cctggcgcac gcgcgtctgg ccgcgcgtgg acccccccgc 1140
acggacggcg ggggggggg cagcatccct gcagcgaat ctgcaacgga agcgggggc 1200
gcccggccga ctgcgggcat ccactggta tcgcagctgc tctaccacat tggcacctgg 1260
ctttggaca gcgcgacccat gcatcccttgg ggaatggcgg tcaagtccag ctg 1313

<210> 5
<211> 1256
<212> DNA
<213> Brachydanio rerio

<400> 5
atgcggctt tgacgagagt gctgctggtg tctcttctca ctctgtcctt ggtgggttcc 60
ggactggctt gcgggtcctgg cagaggctac ggcagaagaa gacatccgaa gaagctgaca 120
cctctcgcc acaagcagtt catacctaattt gtcgcggaga agacctttagg ggccagcggc 180
agatacgagg gcaagataac gcgcaattcg gagagattt aagaacttac tccaaattac 240
aatcccgaca ttatctttaa ggatgaggag aacacgggag cggacaggct catgacacag 300
agatgcaaaag acaagctgaa ctcgcgtggc atctctgtaa tgaaccactg gccagggtt 360
aagctgcgtg tgacagaggg ctggatgag gacggtcacc attttgaaga atcactccac 420
tacgaggggaa gagctgttga tattaccacc tctgaccgag acaagagcaa atacgggaca 480
ctgtctcgcc tagctgttgg ggcgtggattt gactgggtctt attacgagtc caaagcccc 540
attcattgtc ctgtcaaaggc agaaaattcg gttgcgtcga aatctggggg ctgtttccca 600
gggtcggctc tggctcgctt ccaggacggg ggcacagaagg ccgtgaaggg cctgaacccc 660
ggagacaagg tgctggcggc agacagcgcg ggaaacctgg tggtcagcga cttcatcatg 720
ttcacagacc gagactccac gacgcgcacgt gtgttttacg tcatagaaac gcaagaaccc 780
gttggaaaggat tcaccctcac cgccgcctcac ctcccttttgc tcctcgacaa ctcaacggaa 840
gatctccaca ccatgaccgc cgccgtatgcc agcagtgtca gagccggaca aaagggtatg 900
gttggatgat atagcggtca gcttaaatct gtcatcgatc agcggatata cacggaggag 960
cagcggggctt cgttcgcacc agtgcgtcga catggacca ttgtggtcga cagaataactg 1020
gcgtcctgtt acgcccataat agaggaccag gggcttgcgcg atttggcctt cgcccccgc 1080
aggctctattt attacgtgtc atcattcctg tcccccaaaa ctccagcagt cggtccaatg 1140
cgactttaca acaggagggg gtccactggt actccaggctt cctgtcatca aatgggaacg 1200
tggctttgg acagcaacat gcttcatcctt ttgggatgt cagtaaactc aagctg 1256

<210> 6
<211> 1425
<212> DNA
<213> Homo sapiens

<400> 6

atgctgctgc tggcgagatg tctgctgcta gtcctcgctc cctcgctgct ggtatgctcg 60
ggactggcgt gcggaccggg cagggggttc gggaaagagga ggcaccccaa aaagctgacc 120
cctttagcct acaagcagtt tatccccaaat gtggccgaga agaccctagg cgccagcgga 180
aggtatgaag ggaagatctc cagaaactcc gagcgattta aggaactcac ccccaattac 240
aaccccgaca tcataattaa ggatgaagaa aacaccggag cggacaggct gatgactcag 300
agtgtaagg acaagttgaa cgcttggcc atctcggtga tgaaccagtg gccaggagtg 360
aaactgcggg tgaccgaggg ctgggacgaa gatggccacc actcagagga gtctctgcac 420
tacgagggcc ggcgagtggaa catcaccacg tctgaccgca accgcagcaa gtacggcatg 480
ctggcccgcc tggcggtggaa ggccggcttc gactgggtgt actacgagtc caaggcacat 540
atccactgct cggtgaaagc agagaactcg gtggcgcca aatcgggagg ctgcttcccg 600
ggctcgccca cggtgcacct ggagcaggc ggcaccaagc tggtaagga cctgagcccc 660
ggggaccgcg tgctggcgcc ggacgaccag ggccggctgc tctacagcga cttcctcaact 720
ttcctggacc ggcgacgacgg cgccaaagaag gtcttctacg tgatcgagac gcccggagccg 780
cgcgagcgcc tgctgctcac cgccgcgcac ctgctcttg tggcgccgca caacgactcg 840
gccaccgggg agcccgaggc gtccctgggc tggggccgc cttccgggggg cgcaactgggg 900
cctcgccgcg tggcgccag ccgcgtgcgc cccggccagc gcgtgtacgt ggtggccgag 960
cgtgacgggg accgcggcgt cctggccgccc gctgtgcaca gcgtgaccct aagcgaggag 1020
gcccgccggcg cctacgcgc cgtcacggcc cagggcacca ttctcatcaa ccgggtgctg 1080
gcctcgct acgcggtcat cgaggagcac agctggcgcc accgggcctt cgcgccttc 1140
cgccctggcgc acgcgtctct ggctgcactg gcgcggcgcg gcacggaccg cggcggggac 1200
agcgccggcg gggaccggcg gggcggcgcc ggcagagtag ccctaaccgc tccagggtct 1260
gccgacgctc cgggtgcggg ggccaccggc ggcatccact ggtactcgca gctgctctac 1320
caaataaggca cctggctct ggacagcggag gcccgtcacc gcgtggcat ggcggtaag 1380
tccagcnna gccggggggc cgggggaggg ggcggggagg 1425

<210> 7
<211> 1622
<212> DNA
<213> Homo sapiens

<400> 7

catcagccca ccaggagacc tcgcccggc ctccccggg ctccccggcc atgtctcccg 60
cccgctccg gccccactg cacttctgcc tggctctgtt gctgctgctg gtgggtcccg 120
cgcatgggg ctgcgggccc ggtcggtgg tggcagccg ccggcgaccg ccacgcaaac 180
tcgtccgct cgccatacaag cagttcagcc ccaatgtgcc cgagaagacc ctggcgcca 240
gcccgccta tgaaggcaag atcgctcgca gtcggagcg cttcaaggag ctcacccca 300
attacaatcc agacatcatc ttcaaggacg aggagaacac aggccggcgc cgcctcatga 360
cccacgcgtc caaggaccgc ctgaactcgc tggctatctc ggtatgaac cagtggcccg 420
gtgtgaagct gcgggtgacc gagggtctggg acgaggacgg ccaccactca gaggagtccc 480
tgcattatga gggccgcgcg gtggacatca ccacatcaga ccgcgaccgc aataagtatg 540
gactgctggc ggcgttggca gtggaggccg gctttgactg ggttattac gatcaaaagg 600
cccacgtcga ttgtccgtc aagtccgagc actcggccgc agccaaagacg ggcggctgct 660
tccctggcg agcccaggta cgcctggaga gtggggccgc tggcccttg tcagccgtga 720
ggccggggaga ccgtgtgctg gccatggggg aggtatggag ccccaccttc agcgatgtgc 780
tcattttcct ggaccgcgag ccccacagggc tgagagcctt ccaggtcatc gagactcagg 840
accccccacg cgcctggca ctcacacccg ctcacctgct cttacggct gacaatcaca 900
cgagccggc agcccgcttc cggggccacat ttgcacggca cgtgcagcct ggccagtacg 960
tgcgtgtggc tgggtgcca ggcctgcgc ctcggccgt ggcagctgct tctacacacg 1020
tggccctggc ggcctacgc cgcctcacaa agcatggac actgggtggt gaggatgtgg 1080
tggcatctg cttcgcggcc gtggctgacc accacctggc tcagttggcc ttctggccccc 1140
tgagactctt tcacagctt gcatggggca gctggacccc gggggagggt gtgcatttgt 1200
accccccacg gctctaccgc ctggggccgtc tcctgctaga agagggcagc ttccacccac 1260
tggcatgtc cggggcaggg agctgaaagg actccacccgc tggccctctg gaactgctgt 1320
actgggtcca gaagcccttc agccaggagg gagctggccc tggaaaggac ctgagctggg 1380
ggacactggc tcctggccatc tcctctgcca tgaagataca ccattgagac ttgactggc 1440
aacaccagcg tcccccaccc gcgtcggtt gtagtcatag agctgcaagc tgagctggcg 1500

agggatggt tgttgacccc tctctcttag agaccttgag gctggcacgg cgactccaa 1560
ctcagcctgc tctcaactacg agtttcata ctctgcctcc cccattggga gggcccatc 1620
cc 1622

<210> 8
<211> 1191
<212> DNA
<213> Homo sapiens

<400> 8
atggctctcc tgaccaatct actgcccttg tgctgcttgg cacttctggc gctgccagcc 60
cagagctcg ggcggggccg gggggccgtt ggccggcgcc gctatgcgcg caagcagctc 120
gtgccgtac tctacaagca atttgtcccc ggcgtgccag acggacccct gggccgcagt 180
ggccgcagg gggggagggt ggcaaggggc tccgagcgct tccgggacct cgtcccaac 240
tacaaccccg acatcatctt caaggatgag gagaacagtg gagccgaccg cctgatgacc 300
gagcgttgca aggagagggt gaacgcttgg gccattggccg tgatgaacat gtggcccgga 360
gtgcgcctac gagtactga gggctggac gaggacggcc accacgctca ggattcactc 420
caactacgaag gccgtgtttt ggacatcact acgtctgacc gcgaccgcaa caagtatggg 480
ttgctggcgc gcctcgcaact ggaagccggc ttgcacttggg tctactacga gtcccgaac 540
cacgtccacg tgcgttcaa agctgataac tcactggccg tccgggcccc cggtgcctt 600
ccggaaatag caactgtcg cctgtggagc ggcgagcgga aagggtcgca ggaactgcac 660
cgccggagact gggtttggc ggccgatgca tcaggccggg tggcccac gccgggtctg 720
ctcttcctgg accgggactt gcagcgcggc gcttcatttg tggctgttgg aaccgagtgg 780
cctccacgc aactgttgc cacggccctgg cacctgggtt ttgcgcctcg agggccggcg 840
cccgcccg ggcactttgc accgggtttc gcgcgcggc tacgcgcctgg ggactcggtg 900
ctggcgcccc gcggggatgc gcttcggcca gcgcgcgtgg cccgtgtggc gcgggaggaa 960
gcgtggggcg tggctggcc gtcaccgcg cacgggacgc tgctggtaa cgatgtcctg 1020
gcctcttgc acgcggttct ggagagtca cagtggcgc accgcgttt tgccccctt 1080
agactgctgc acgcgttgcg ggcgtgtcc cccggccggg ccgtccagcc gactggcatg 1140
cattgttact ctggctctt ctaccgctta gcggaggagc tactggctg a 1191

<210> 9
<211> 1251
<212> DNA
<213> Brachydanio rerio

<400> 9
atggacgtaa ggctgcatct gaagcaattt gctttactgt gtttatcatg cttgcttctg 60
acgcctgtg gattagcctg tggctctgg agaggatcg gaaaacgaag acacccaaag 120
aaattaaccc cggtggctta caagcaattt atcccaacg ttgctgagaa aacgcttgg 180
gccagcggca aatacgaagg caaatcaca aggaattcg agagatcaa agagctgatt 240
ccgaattata atcccgatata catctttaag gacgaggaaa acacaaacgc tgacaggctg 300
atgaccaagc gctgttaagga caagttaaat tcgttggcca tatccgtcat gaaccactgg 360
cccgccgtga aactgcgcgt cactgaaggc tggatgagg atggcacca tttagaagaa 420
tcttgcact atgaggacg ggcagtggac atcactaccc cagacaggaa taaaagcaag 480
tatggatgc tatccaggct tgcagtggag gcaggattcg actgggtcta ttatgaatct 540
aaagcccaaca tacactgctc tgtcaagca gaaaattcg tggctgctaa atcaggagga 600
tggcttgc tggatggac ggtgacactt ggtgatgggca cgaggaaacc catcaaagat 660
cttaaagtgg ggcgggggt tttggctgca gacgagaagg gaaatgtctt aataagcgac 720
tttattatgt ttatagacca cgatccgaca acgagaaggc aattcatcgat catcgagacg 780
tcagaacacct tcaccaagct caccctcaact gccgcgcacc tagtttgcgt tggaaactct 840
tcagcagctt cgggtataac agcaacattt gccagcaacg tgaagcctgg agatacagtt 900
ttatgttggg aagacacatg cgagagcctc aagagcgtta cagtgaaaag gatttacact 960
gaggagcaccg agggctctt tgcgcctgc accgcgcacg gaaccataat agtggatcag 1020
gtgttggcat cgtgctacgc ggtcattgag aaccacaaat gggcacattt ggctttgcg 1080

ccggtcagg tggatgacg tggctttc cggctcgta atcaaacgtc 1140
aatttcagg agatggat ccactggat ccaaataatgc tgttcacat cggctttgg 1200
ctgctggaca gagactctt ccatccactc gggattttac acttaagttg a 1251

<210> 10

<211> 425

<212> PRT

<213> Gallus gallus

<400> 10

Met Val Glu Met Leu Leu Leu Thr Arg Ile Leu Leu Val Gly Phe Ile
1 5 10 15

Cys Ala Leu Leu Val Ser Ser Gly Leu Thr Cys Gly Pro Gly Arg Gly
20 25 30

Ile Gly Lys Arg Arg His Pro Lys Lys Leu Thr Pro Leu Ala Tyr Lys
35 40 45

Gln Phe Ile Pro Asn Val Ala Glu Lys Thr Leu Gly Ala Ser Gly Arg
50 55 60

Tyr Glu Gly Lys Ile Thr Arg Asn Ser Glu Arg Phe Lys Glu Leu Thr
65 70 75 80

Pro Asn Tyr Asn Pro Asp Ile Ile Phe Lys Asp Glu Glu Asn Thr Gly
85 90 95

Ala Asp Arg Leu Met Thr Gln Arg Cys Lys Asp Lys Leu Asn Ala Leu
100 105 110

Ala Ile Ser Val Met Asn Gln Trp Pro Gly Val Lys Leu Arg Val Thr
115 120 125

Glu Gly Trp Asp Glu Asp Gly His His Ser Glu Glu Ser Leu His Tyr
130 135 140

Glu Gly Arg Ala Val Asp Ile Thr Thr Ser Asp Arg Asp Arg Ser Lys
145 150 155 160

Tyr Gly Met Leu Ala Arg Leu Ala Val Glu Ala Gly Phe Asp Trp Val
165 170 175

Tyr Tyr Glu Ser Lys Ala His Ile His Cys Ser Val Lys Ala Glu Asn
180 185 190

Ser Val Ala Ala Lys Ser Gly Gly Cys Phe Pro Gly Ser Ala Thr Val
195 200 205

His Leu Glu His Gly Gly Thr Lys Leu Val Lys Asp Leu Ser Pro Gly
210 215 220

Asp Arg Val Leu Ala Ala Asp Ala Asp Gly Arg Leu Leu Tyr Ser Asp
225 230 235 240

Phe Leu Thr Phe Leu Asp Arg Met Asp Ser Ser Arg Lys Leu Phe Tyr

245

250

255

Val Ile Glu Thr Arg Gln Pro Arg Ala Arg Leu Leu Leu Thr Ala Ala
 260 265 270

His Leu Leu Phe Val Ala Pro Gln His Asn Gln Ser Glu Ala Thr Gly
 275 280 285

Ser Thr Ser Gly Gln Ala Leu Phe Ala Ser Asn Val Lys Pro Gly Gln
 290 295 300

Arg Val Tyr Val Leu Gly Glu Gly Gln Gln Leu Leu Pro Ala Ser
 305 310 315 320

Val His Ser Val Ser Leu Arg Glu Glu Ala Ser Gly Ala Tyr Ala Pro
 325 330 335

Leu Thr Ala Gln Gly Thr Ile Leu Ile Asn Arg Val Leu Ala Ser Cys
 340 345 350

Tyr Ala Val Ile Glu Glu His Ser Trp Ala His Trp Ala Phe Ala Pro
 355 360 365

Phe Arg Leu Ala Gln Gly Leu Leu Ala Ala Leu Cys Pro Asp Gly Ala
 370 375 380

Ile Pro Thr Ala Ala Thr Thr Thr Gly Ile His Trp Tyr Ser Arg
 385 390 395 400

Leu Leu Tyr Arg Ile Gly Ser Trp Val Leu Asp Gly Asp Ala Leu His
 405 410 415

Pro Leu Gly Met Val Ala Pro Ala Ser
 420 425

<210> 11
 <211> 396
 <212> PRT
 <213> Mus musculus

<400> 11
 Met Ala Leu Pro Ala Ser Leu Leu Pro Leu Cys Cys Leu Ala Leu Leu
 1 5 10 15

Ala Leu Ser Ala Gln Ser Cys Gly Pro Gly Arg Gly Pro Val Gly Arg
 20 25 30

Arg Arg Tyr Val Arg Lys Gln Leu Val Pro Leu Leu Tyr Lys Gln Phe
 35 40 45

Val Pro Ser Met Pro Glu Arg Thr Leu Gly Ala Ser Gly Pro Ala Glu
 50 55 60

Gly Arg Val Thr Arg Gly Ser Glu Arg Phe Arg Asp Leu Val Pro Asn
 65 70 75 80

Tyr Asn Pro Asp Ile Ile Phe Lys Asp Glu Glu Asn Ser Gly Ala Asp
85 90 95

Arg Leu Met Thr Glu Arg Cys Lys Glu Arg Val Asn Ala Leu Ala Ile
100 105 110

Ala Val Met Asn Met Trp Pro Gly Val Arg Leu Arg Val Thr Glu Gly
115 120 125

Trp Asp Glu Asp Gly His His Ala Gln Asp Ser Leu His Tyr Glu Gly
130 135 140

Arg Ala Leu Asp Ile Thr Thr Ser Asp Arg Asp Arg Asn Lys Tyr Gly
145 150 155 160

Leu Leu Ala Arg Leu Ala Val Glu Ala Gly Phe Asp Trp Val Tyr Tyr
165 170 175

Glu Ser Arg Asn His Ile His Val Ser Val Lys Ala Asp Asn Ser Leu
180 185 190

Ala Val Arg Ala Gly Gly Cys Phe Pro Gly Asn Ala Thr Val Arg Leu
195 200 205

Arg Ser Gly Glu Arg Lys Gly Leu Arg Glu Leu His Arg Gly Asp Trp
210 215 220

Val Leu Ala Ala Asp Ala Ala Gly Arg Val Val Pro Thr Pro Val Leu
225 230 235 240

Leu Phe Leu Asp Arg Asp Leu Gln Arg Arg Ala Ser Phe Val Ala Val
245 250 255

Glu Thr Glu Arg Pro Pro Arg Lys Leu Leu Leu Thr Pro Trp His Leu
260 265 270

Val Phe Ala Ala Arg Gly Pro Ala Pro Ala Pro Gly Asp Phe Ala Pro
275 280 285

Val Phe Ala Arg Arg Leu Arg Ala Gly Asp Ser Val Leu Ala Pro Gly
290 295 300

Gly Asp Ala Leu Gln Pro Ala Arg Val Ala Arg Val Ala Arg Glu Glu
305 310 315 320

Ala Val Gly Val Phe Ala Pro Leu Thr Ala His Gly Thr Leu Leu Val
325 330 335

Asn Asp Val Leu Ala Ser Cys Tyr Ala Val Leu Glu Ser His Gln Trp
340 345 350

Ala His Arg Ala Phe Ala Pro Leu Arg Leu Leu His Ala Leu Gly Ala
355 360 365

Leu Leu Pro Gly Gly Ala Val Gln Pro Thr Gly Met His Trp Tyr Ser
370 375 380

Arg Leu Leu Tyr Arg Leu Ala Glu Glu Leu Met Gly
385 390 395

```
<210> 12  
<211> 411  
<212> PRT  
<213> Mus musculus
```

```

<400> 12
Met Ser Pro Ala Trp Leu Arg Pro Arg Leu Arg Phe Cys Leu Phe Leu
      1           5           10          15

```

Leu Leu Leu Leu Leu Val Pro Ala Ala Arg Gly Cys Gly Pro Gly Arg
20 25 30

Val Val Gly Ser Arg Arg Arg Pro Pro Arg Lys Leu Val Pro Leu Ala
35 40 45

Tyr Lys Gln Phe Ser Pro Asn Val Pro Glu Lys Thr Leu Gly Ala Ser
 50 55 60

Gly Arg Tyr Glu Gly Lys Ile Ala Arg Ser Ser Glu Arg Phe Lys Glu
 65 70 75 80

Leu Thr Pro Asn Tyr Asn Pro Asp Ile Ile Phe Lys Asp Glu Glu Asn
85 90 95

Thr Gly Ala Asp Arg Leu Met Thr Gln Arg Cys Lys Asp Arg Leu Asn
 100 105 110

Ser Leu Ala Ile Ser Val Met Asn Gln Trp Pro Gly Val Lys Leu Arg
115 120 125

Val Thr Glu Gly Arg Asp Glu Asp Gly His His Ser Glu Glu Ser Leu
 130 135 140

His Tyr Glu Gly Arg Ala Val Asp Ile Thr Thr Ser Asp Arg Asp Arg
145 150 155 160

Asn Lys Tyr Gly Leu Leu Ala Arg Leu Ala Val Glu Ala Gly Phe Asp
165 170 175

Trp Val Tyr Tyr Glu Ser Lys Ala His Val His Cys Ser Val Lys Ser
 180 185 190

Glu His Ser Ala Ala Ala Lys Thr Gly Gly Cys Phe Pro Ala Gly Ala
195 200 205

Gln Val Arg Leu Glu Asn Gly Glu Arg Val Ala Leu Ser Ala Val Lys
210 215 220

Pro	Gly	Asp	Arg	Val	Leu	Ala	Met	Gly	Glu	Asp	Gly	Thr	Pro	Thr	Phe
225					230					235					240

Ser Asp Val Leu Ile Phe Leu Asp Arg Glu Pro Asn Arg Leu Arg Ala
245 250 255

Phe Gln Val Ile Glu Thr Gln Asp Pro Pro Arg Arg Leu Ala Leu Thr
260 265 270

Pro Ala His Leu Leu Phe Ile Ala Asp Asn His Thr Glu Pro Ala Ala
275 280 285

His Phe Arg Ala Thr Phe Ala Ser His Val Gln Pro Gly Gln Tyr Val
290 295 300

Leu Val Ser Gly Val Pro Gly Leu Gln Pro Ala Arg Val Ala Ala Val
305 310 315 320

Ser Thr His Val Ala Leu Gly Ser Tyr Ala Pro Leu Thr Arg His Gly
325 330 335

Thr Leu Val Val Glu Asp Val Val Ala Ser Cys Phe Ala Ala Val Ala
340 345 350

Asp His His Leu Ala Gln Leu Ala Phe Trp Pro Leu Arg Leu Phe Pro
355 360 365

Ser Leu Ala Trp Gly Ser Trp Thr Pro Ser Glu Gly Val His Ser Tyr
370 375 380

Pro Gln Met Leu Tyr Arg Leu Gly Arg Leu Leu Leu Glu Glu Ser Thr
385 390 395 400

Phe His Pro Leu Gly Met Ser Gly Ala Gly Ser
405 410

<210> 13
<211> 437
<212> PRT
<213> Mus musculus

<400> 13
Met Leu Leu Leu Leu Ala Arg Cys Phe Leu Val Ile Leu Ala Ser Ser
1 5 10 15

Leu Leu Val Cys Pro Gly Leu Ala Cys Gly Pro Gly Arg Gly Phe Gly
20 25 30

Lys Arg Arg His Pro Lys Lys Leu Thr Pro Leu Ala Tyr Lys Gln Phe
35 40 45

Ile Pro Asn Val Ala Glu Lys Thr Leu Gly Ala Ser Gly Arg Tyr Glu
50 55 60

Gly Lys Ile Thr Arg Asn Ser Glu Arg Phe Lys Glu Leu Thr Pro Asn
65 70 75 80

Tyr Asn Pro Asp Ile Ile Phe Lys Asp Glu Glu Asn Thr Gly Ala Asp
85 90 95

Arg Leu Met Thr Gln Arg Cys Lys Asp Lys Leu Asn Ala Leu Ala Ile

100 105 110

Ser Val Met Asn Gln Trp Pro Gly Val Arg Leu Arg Val Thr Glu Gly
115 120 125

Trp Asp Glu Asp Gly His His Ser Glu Glu Ser Leu His Tyr Glu Gly
130 135 140

Arg Ala Val Asp Ile Thr Thr Ser Asp Arg Asp Arg Ser Lys Tyr Gly
145 150 155 160

Met Leu Ala Arg Leu Ala Val Glu Ala Gly Phe Asp Trp Val Tyr Tyr
165 170 175

Glu Ser Lys Ala His Ile His Cys Ser Val Lys Ala Glu Asn Ser Val
180 185 190

Ala Ala Lys Ser Gly Gly Cys Phe Pro Gly Ser Ala Thr Val His Leu
195 200 205

Glu Gln Gly Gly Thr Lys Leu Val Lys Asp Leu Arg Pro Gly Asp Arg
210 215 220

Val Leu Ala Ala Asp Asp Gln Gly Arg Leu Leu Tyr Ser Asp Phe Leu
225 230 235 240

Thr Phe Leu Asp Arg Asp Glu Gly Ala Lys Lys Val Phe Tyr Val Ile
245 250 255

Glu Thr Leu Glu Pro Arg Glu Arg Leu Leu Leu Thr Ala Ala His Leu
260 265 270

Leu Phe Val Ala Pro His Asn Asp Ser Gly Pro Thr Pro Gly Pro Ser
275 280 285

Ala Leu Phe Ala Ser Arg Val Arg Pro Gly Gln Arg Val Tyr Val Val
290 295 300

Ala Glu Arg Gly Gly Asp Arg Arg Leu Leu Pro Ala Ala Val His Ser
305 310 315 320

Val Thr Leu Arg Glu Glu Ala Gly Ala Tyr Ala Pro Leu Thr Ala
325 330 335

His Gly Thr Ile Leu Ile Asn Arg Val Leu Ala Ser Cys Tyr Ala Val
340 345 350

Ile Glu Glu His Ser Trp Ala His Arg Ala Phe Ala Pro Phe Arg Leu
355 360 365

Ala His Ala Leu Leu Ala Ala Leu Ala Pro Ala Arg Thr Asp Gly Gly
370 375 380

Gly Gly Gly Ser Ile Pro Ala Ala Gln Ser Ala Thr Glu Ala Arg Gly
385 390 395 400

Ala Glu Pro Thr Ala Gly Ile His Trp Tyr Ser Gln Leu Leu Tyr His

405

410

415

Ile Gly Thr Trp Leu Leu Asp Ser Glu Thr Met His Pro Leu Gly Met
420 425 430

Ala Val Lys Ser Ser
435

<210> 14
<211> 418
<212> PRT
<213> Brachydanio rerio

<400> 14
Met Arg Leu Leu Thr Arg Val Leu Leu Val Ser Leu Leu Thr Leu Ser
1 5 10 15

Leu Val Val Ser Gly Leu Ala Cys Gly Pro Gly Arg Gly Tyr Gly Arg
20 25 30

Arg Arg His Pro Lys Lys Leu Thr Pro Leu Ala Tyr Lys Gln Phe Ile
35 40 45

Pro Asn Val Ala Glu Lys Thr Leu Gly Ala Ser Gly Arg Tyr Glu Gly
50 55 60

Lys Ile Thr Arg Asn Ser Glu Arg Phe Lys Glu Leu Thr Pro Asn Tyr
65 70 75 80

Asn Pro Asp Ile Ile Phe Lys Asp Glu Glu Asn Thr Gly Ala Asp Arg
85 90 95

Leu Met Thr Gln Arg Cys Lys Asp Lys Leu Asn Ser Leu Ala Ile Ser
100 105 110

Val Met Asn His Trp Pro Gly Val Lys Leu Arg Val Thr Glu Gly Trp
115 120 125

Asp Glu Asp Gly His His Phe Glu Glu Ser Leu His Tyr Glu Gly Arg
130 135 140

Ala Val Asp Ile Thr Thr Ser Asp Arg Asp Lys Ser Lys Tyr Gly Thr
145 150 155 160

Leu Ser Arg Leu Ala Val Glu Ala Gly Phe Asp Trp Val Tyr Tyr Glu
165 170 175

Ser Lys Ala His Ile His Cys Ser Val Lys Ala Glu Asn Ser Val Ala
180 185 190

Ala Lys Ser Gly Gly Cys Phe Pro Gly Ser Ala Leu Val Ser Leu Gln
195 200 205

Asp Gly Gly Gln Lys Ala Val Lys Asp Leu Asn Pro Gly Asp Lys Val
210 215 220

Leu Ala Ala Asp Ser Ala Gly Asn Leu Val Phe Ser Asp Phe Ile Met
225 230 235 240

Phe Thr Asp Arg Asp Ser Thr Thr Arg Arg Val Phe Tyr Val Ile Glu
245 250 255

Thr Gln Glu Pro Val Glu Lys Ile Thr Leu Thr Ala Ala His Leu Leu
260 265 270

Phe Val Leu Asp Asn Ser Thr Glu Asp Leu His Thr Met Thr Ala Ala
275 280 285

Tyr Ala Ser Ser Val Arg Ala Gly Gln Lys Val Met Val Val Asp Asp
290 295 300

Ser Gly Gln Leu Lys Ser Val Ile Val Gln Arg Ile Tyr Thr Glu Glu
305 310 315 320

Gln Arg Gly Ser Phe Ala Pro Val Thr Ala His Gly Thr Ile Val Val
325 330 335

Asp Arg Ile Leu Ala Ser Cys Tyr Ala Val Ile Glu Asp Gln Gly Leu
340 345 350

Ala His Leu Ala Phe Ala Pro Ala Arg Leu Tyr Tyr Val Ser Ser
355 360 365

Phe Leu Ser Pro Lys Thr Pro Ala Val Gly Pro Met Arg Leu Tyr Asn
370 375 380

Arg Arg Gly Ser Thr Gly Thr Pro Gly Ser Cys His Gln Met Gly Thr
385 390 395 400

Trp Leu Leu Asp Ser Asn Met Leu His Pro Leu Gly Met Ser Val Asn
405 410 415

Ser Ser

<210> 15
<211> 475
<212> PRT
<213> Homo sapiens

<400> 15
Met Leu Leu Leu Ala Arg Cys Leu Leu Leu Val Leu Val Ser Ser Leu
1 5 10 15

Leu Val Cys Ser Gly Leu Ala Cys Gly Pro Gly Arg Gly Phe Gly Lys
20 25 30

Arg Arg His Pro Lys Lys Leu Thr Pro Leu Ala Tyr Lys Gln Phe Ile
35 40 45

Pro Asn Val Ala Glu Lys Thr Leu Gly Ala Ser Gly Arg Tyr Glu Gly
50 55 60

Lys Ile Ser Arg Asn Ser Glu Arg Phe Lys Glu Leu Thr Pro Asn Tyr
65 70 75 80

Asn Pro Asp Ile Ile Phe Lys Asp Glu Glu Asn Thr Gly Ala Asp Arg
85 90 95

Leu Met Thr Gln Arg Cys Lys Asp Lys Leu Asn Ala Leu Ala Ile Ser
100 105 110

Val Met Asn Gln Trp Pro Gly Val Lys Leu Arg Val Thr Glu Gly Trp
115 120 125

Asp Glu Asp Gly His His Ser Glu Glu Ser Leu His Tyr Glu Gly Arg
130 135 140

Ala Val Asp Ile Thr Thr Ser Asp Arg Asp Arg Ser Lys Tyr Gly Met
145 150 155 160

Leu Ala Arg Leu Ala Val Glu Ala Gly Phe Asp Trp Val Tyr Tyr Glu
165 170 175

Ser Lys Ala His Ile His Cys Ser Val Lys Ala Glu Asn Ser Val Ala
180 185 190

Ala Lys Ser Gly Gly Cys Phe Pro Gly Ser Ala Thr Val His Leu Glu
195 200 205

Gln Gly Gly Thr Lys Leu Val Lys Asp Leu Ser Pro Gly Asp Arg Val
210 215 220

Leu Ala Ala Asp Asp Gln Gly Arg Leu Leu Tyr Ser Asp Phe Leu Thr
225 230 235 240

Phe Leu Asp Arg Asp Gly Ala Lys Lys Val Phe Tyr Val Ile Glu
245 250 255

Thr Arg Glu Pro Arg Glu Arg Leu Leu Leu Thr Ala Ala His Leu Leu
260 265 270

Phe Val Ala Pro His Asn Asp Ser Ala Thr Gly Glu Pro Glu Ala Ser
275 280 285

Ser Gly Ser Gly Pro Pro Ser Gly Gly Ala Leu Gly Pro Arg Ala Leu
290 295 300

Phe Ala Ser Arg Val Arg Pro Gly Gln Arg Val Tyr Val Val Ala Glu
305 310 315 320

Arg Asp Gly Asp Arg Arg Leu Leu Pro Ala Ala Val His Ser Val Thr
325 330 335

Leu Ser Glu Glu Ala Ala Gly Ala Tyr Ala Pro Leu Thr Ala Gln Gly
340 345 350

Thr Ile Leu Ile Asn Arg Val Leu Ala Ser Cys Tyr Ala Val Ile Glu
355 360 365

Glu His Ser Trp Ala His Arg Ala Phe Ala Pro Phe Arg Leu Ala His
370 375 380

Ala Leu Leu Ala Ala Leu Ala Pro Ala Arg Thr Asp Arg Gly Gly Asp
385 390 395 400

Ser Gly Gly Asp Arg Gly Gly Gly Arg Val Ala Leu Thr
405 410 415

Ala Pro Gly Ala Ala Asp Ala Pro Gly Ala Gly Ala Thr Ala Gly Ile
420 425 430

His Trp Tyr Ser Gln Leu Leu Tyr Gln Ile Gly Thr Trp Leu Leu Asp
435 440 445

Ser Glu Ala Leu His Pro Leu Gly Met Ala Val Lys Ser Ser Xaa Ser
450 455 460

Arg Gly Ala Gly Gly Ala Arg Glu Gly Ala
465 470 475

<210> 16

<211> 411

<212> PRT

<213> Homo sapiens

<400> 16

Met Ser Pro Ala Arg Leu Arg Pro Arg Leu His Phe Cys Leu Val Leu
1 5 10 15

Leu Leu Leu Leu Val Val Pro Ala Ala Trp Gly Cys Gly Pro Gly Arg
20 25 30

Val Val Gly Ser Arg Arg Arg Pro Pro Arg Lys Leu Val Pro Leu Ala
35 40 45

Tyr Lys Gln Phe Ser Pro Asn Val Pro Glu Lys Thr Leu Gly Ala Ser
50 55 60

Gly Arg Tyr Glu Gly Lys Ile Ala Arg Ser Ser Glu Arg Phe Lys Glu
65 70 75 80

Leu Thr Pro Asn Tyr Asn Pro Asp Ile Ile Phe Lys Asp Glu Glu Asn
85 90 95

Thr Gly Ala Asp Arg Leu Met Thr Gln Arg Cys Lys Asp Arg Leu Asn
100 105 110

Ser Leu Ala Ile Ser Val Met Asn Gln Trp Pro Gly Val Lys Leu Arg
115 120 125

Val Thr Glu Gly Trp Asp Glu Asp Gly His His Ser Glu Glu Ser Leu
130 135 140

His Tyr Glu Gly Arg Ala Val Asp Ile Thr Thr Ser Asp Arg Asp Arg

145 150 155 160
Asn Lys Tyr Gly Leu Leu Ala Arg Leu Ala Val Glu Ala Gly Phe Asp
165 170 175
Trp Val Tyr Tyr Glu Ser Lys Ala His Val His Cys Ser Val Lys Ser
180 185 190
Glu His Ser Ala Ala Ala Lys Thr Gly Gly Cys Phe Pro Ala Gly Ala
195 200 205
Gln Val Arg Leu Glu Ser Gly Ala Arg Val Ala Leu Ser Ala Val Arg
210 215 220
Pro Gly Asp Arg Val Leu Ala Met Gly Glu Asp Gly Ser Pro Thr Phe
225 230 235 240
Ser Asp Val Leu Ile Phe Leu Asp Arg Glu Pro His Arg Leu Arg Ala
245 250 255
Phe Gln Val Ile Glu Thr Gln Asp Pro Pro Arg Arg Leu Ala Leu Thr
260 265 270
Pro Ala His Leu Leu Phe Thr Ala Asp Asn His Thr Glu Pro Ala Ala
275 280 285
Arg Phe Arg Ala Thr Phe Ala Ser His Val Gln Pro Gly Gln Tyr Val
290 295 300
Leu Val Ala Gly Val Pro Gly Leu Gln Pro Ala Arg Val Ala Ala Val
305 310 315 320
Ser Thr His Val Ala Leu Gly Ala Tyr Ala Pro Leu Thr Lys His Gly
325 330 335
Thr Leu Val Val Glu Asp Val Val Ala Ser Cys Phe Ala Ala Val Ala
340 345 350
Asp His His Leu Ala Gln Leu Ala Phe Trp Pro Leu Arg Leu Phe His
355 360 365
Ser Leu Ala Trp Gly Ser Trp Thr Pro Gly Glu Gly Val His Trp Tyr
370 375 380
Pro Gln Leu Leu Tyr Arg Leu Gly Arg Leu Leu Leu Glu Glu Gly Ser
385 390 395 400
Phe His Pro Leu Gly Met Ser Gly Ala Gly Ser
405 410

<210> 17
<211> 396
<212> PRT
<213> Homo sapiens

<400> 17

Met Ala Leu Leu Thr Asn Leu Leu Pro Leu Cys Cys Leu Ala Leu Leu
1 5 10 15

Ala Leu Pro Ala Gln Ser Cys Gly Pro Gly Arg Gly Pro Val Gly Arg
20 25 30

Arg Arg Tyr Ala Arg Lys Gln Leu Val Pro Leu Leu Tyr Lys Gln Phe
35 40 45

Val Pro Gly Val Pro Glu Arg Thr Leu Gly Ala Ser Gly Pro Ala Glu
50 55 60

Gly Arg Val Ala Arg Gly Ser Glu Arg Phe Arg Asp Leu Val Pro Asn
65 70 75 80

Tyr Asn Pro Asp Ile Ile Phe Lys Asp Glu Glu Asn Ser Gly Ala Asp
85 90 95

Arg Leu Met Thr Glu Arg Cys Lys Glu Arg Val Asn Ala Leu Ala Ile
100 105 110

Ala Val Met Asn Met Trp Pro Gly Val Arg Leu Arg Val Thr Glu Gly
115 120 125

Trp Asp Glu Asp Gly His His Ala Gln Asp Ser Leu His Tyr Glu Gly
130 135 140

Arg Ala Leu Asp Ile Thr Thr Ser Asp Arg Asp Arg Asn Lys Tyr Gly
145 150 155 160

Leu Leu Ala Arg Leu Ala Val Glu Ala Gly Phe Asp Trp Val Tyr Tyr
165 170 175

Glu Ser Arg Asn His Val His Val Ser Val Lys Ala Asp Asn Ser Leu
180 185 190

Ala Val Arg Ala Gly Gly Cys Phe Pro Gly Asn Ala Thr Val Arg Leu
195 200 205

Trp Ser Gly Glu Arg Lys Gly Leu Arg Glu Leu His Arg Gly Asp Trp
210 215 220

Val Leu Ala Ala Asp Ala Ser Gly Arg Val Val Pro Thr Pro Val Leu
225 230 235 240

Leu Phe Leu Asp Arg Asp Leu Gln Arg Arg Ala Ser Phe Val Ala Val
245 250 255

Glu Thr Glu Trp Pro Pro Arg Lys Leu Leu Leu Thr Pro Trp His Leu
260 265 270

Val Phe Ala Ala Arg Gly Pro Ala Pro Ala Pro Gly Asp Phe Ala Pro
275 280 285

Val Phe Ala Arg Arg Leu Arg Ala Gly Asp Ser Val Leu Ala Pro Gly
290 295 300

Gly Asp Ala Leu Arg Pro Ala Arg Val Ala Arg Val Ala Arg Glu Glu
305 310 315 320

Ala Val Gly Val Phe Ala Pro Leu Thr Ala His Gly Thr Leu Leu Val
325 330 335

Asn Asp Val Leu Ala Ser Cys Tyr Ala Val Leu Glu Ser His Gln Trp
340 345 350

Ala His Arg Ala Phe Ala Pro Leu Arg Leu Leu His Ala Leu Gly Ala
355 360 365

Leu Leu Pro Gly Gly Ala Val Gln Pro Thr Gly Met His Trp Tyr Ser
370 375 380

Arg Leu Leu Tyr Arg Leu Ala Glu Glu Leu Leu Gly
385 390 395

<210> 18

<211> 416

<212> PRT

<213> Brachydanio rerio

<400> 18

Met Asp Val Arg Leu His Leu Lys Gln Phe Ala Leu Leu Cys Phe Ile
1 5 10 15

Ser Leu Leu Leu Thr Pro Cys Gly Leu Ala Cys Gly Pro Gly Arg Gly
20 25 30

Tyr Gly Lys Arg Arg His Pro Lys Lys Leu Thr Pro Leu Ala Tyr Lys
35 40 45

Gln Phe Ile Pro Asn Val Ala Glu Lys Thr Leu Gly Ala Ser Gly Lys
50 55 60

Tyr Glu Gly Lys Ile Thr Arg Asn Ser Glu Arg Phe Lys Glu Leu Ile
65 70 75 80

Pro Asn Tyr Asn Pro Asp Ile Ile Phe Lys Asp Glu Glu Asn Thr Asn
85 90 95

Ala Asp Arg Leu Met Thr Lys Arg Cys Lys Asp Lys Leu Asn Ser Leu
100 105 110

Ala Ile Ser Val Met Asn His Trp Pro Gly Val Lys Leu Arg Val Thr
115 120 125

Glu Gly Trp Asp Glu Asp Gly His His Leu Glu Glu Ser Leu His Tyr
130 135 140

Glu Gly Arg Ala Val Asp Ile Thr Thr Ser Asp Arg Asp Lys Ser Lys
145 150 155 160

Tyr Gly Met Leu Ser Arg Leu Ala Val Glu Ala Gly Phe Asp Trp Val
165 170 175

Tyr Tyr Glu Ser Lys Ala His Ile His Cys Ser Val Lys Ala Glu Asn
180 185 190

Ser Val Ala Ala Lys Ser Gly Gly Cys Phe Pro Gly Ser Gly Thr Val
195 200 205

Thr Leu Gly Asp Gly Thr Arg Lys Pro Ile Lys Asp Leu Lys Val Gly
210 215 220

Asp Arg Val Leu Ala Ala Asp Glu Lys Gly Asn Val Leu Ile Ser Asp
225 230 235 240

Phe Ile Met Phe Ile Asp His Asp Pro Thr Thr Arg Arg Gln Phe Ile
245 250 255

Val Ile Glu Thr Ser Glu Pro Phe Thr Lys Leu Thr Leu Thr Ala Ala
260 265 270

His Leu Val Phe Val Gly Asn Ser Ser Ala Ala Ser Gly Ile Thr Ala
275 280 285

Thr Phe Ala Ser Asn Val Lys Pro Gly Asp Thr Val Leu Val Trp Glu
290 295 300

Asp Thr Cys Glu Ser Leu Lys Ser Val Thr Val Lys Arg Ile Tyr Thr
305 310 315 320

Glu Glu His Glu Gly Ser Phe Ala Pro Val Thr Ala His Gly Thr Ile
325 330 335

Ile Val Asp Gln Val Leu Ala Ser Cys Tyr Ala Val Ile Glu Asn His
340 345 350

Lys Trp Ala His Trp Ala Phe Ala Pro Val Arg Leu Cys His Lys Leu
355 360 365

Met Thr Trp Leu Phe Pro Ala Arg Glu Ser Asn Val Asn Phe Gln Glu
370 375 380

Asp Gly Ile His Trp Tyr Ser Asn Met Leu Phe His Ile Gly Ser Trp
385 390 395 400

Leu Leu Asp Arg Asp Ser Phe His Pro Leu Gly Ile Leu His Leu Ser
405 410 415

<210> 19
<211> 1416
<212> DNA
<213> Drosophila melanogaster

<220>
<221> CDS

<222> (1)..(1413)

<400> 19
atg gat aac cac agc tca gtg cct tgg gcc agt gcc gcc agt gtc acc 48
Met Asp Asn His Ser Ser Val Pro Trp Ala Ser Ala Ala Ser Val Thr
1 5 10 15

tgt ctc tcc ctg gga tgc caa atg cca cag ttc cag ttc cag 96
Cys Leu Ser Leu Gly Cys Gln Met Pro Gln Phe Gln Phe Gln Phe Gln
20 25 30

ctc caa atc cgc agc gag ctc cat ctc cgc aag ccc gca aga aga acg 144
Leu Gln Ile Arg Ser Glu Leu His Leu Arg Lys Pro Ala Arg Arg Thr
35 40 45

caa acg atg cgc cac att gcg cat acg cag cgt tgc ctc agc agg ctg 192
Gln Thr Met Arg His Ile Ala His Thr Gln Arg Cys Leu Ser Arg Leu
50 55 60

acc tct ctg gtg gcc ctg ctg atc gtc ttg ccg atg gtc ttt agc 240
Thr Ser Leu Val Ala Leu Leu Ile Val Leu Pro Met Val Phe Ser
65 70 75 80

ccg gct cac agc tgc ggt cct ggc cga gga ttg ggt cgt cat agg gcg 288
Pro Ala His Ser Cys Gly Pro Gly Arg Gly Leu Gly Arg His Arg Ala
85 90 95

cgc aac ctg tat ccg ctg gtc ctc aag cag aca att ccc aat cta tcc 336
Arg Asn Leu Tyr Pro Leu Val Leu Lys Gln Thr Ile Pro Asn Leu Ser
100 105 110

gag tac acg aac agc gcc tcc gga cct ctg gag ggt gtg atc cgt cgg 384
Glu Tyr Thr Asn Ser Ala Ser Gly Pro Leu Glu Gly Val Ile Arg Arg
115 120 125

gat tcg ccc aaa ttc aag gac ctc gtg ccc aac tac aac agg gac atc 432
Asp Ser Pro Lys Phe Lys Asp Leu Val Pro Asn Tyr Asn Arg Asp Ile
130 135 140

ctt ttc cgt gac gag gaa ggc acc gga gcg gat ggc ttg atg agc aag 480
Leu Phe Arg Asp Glu Glu Gly Thr Gly Ala Asp Gly Leu Met Ser Lys
145 150 155 160

cgc tgc aag gag aag cta aac gtg ctg gcc tac tcg gtg atg aac gaa 528
Arg Cys Lys Glu Lys Leu Asn Val Leu Ala Tyr Ser Val Met Asn Glu
165 170 175

tgg ccc ggc atc cgg ctg ctg gtc acc gag agc tgg gac gag gac tac 576
Trp Pro Gly Ile Arg Leu Leu Val Thr Glu Ser Trp Asp Glu Asp Tyr
180 185 190

cat cac ggc cag gag tcg ctc cac tac gag ggc cga gcg gtg acc att 624
His His Gly Gln Glu Ser Leu His Tyr Glu Gly Arg Ala Val Thr Ile
195 200 205

gcc acc tcc gat cgc gac cag tcc aaa tac ggc atg ctc gct cgc ctg 672
Ala Thr Ser Asp Arg Asp Gln Ser Lys Tyr Gly Met Leu Ala Arg Leu

210	215	220	
gcc gtc gag gct gga ttc gat tgg gtc tcc tac gtc agc agg cgc cac Ala Val Glu Ala Gly Phe Asp Trp Val Ser Tyr Val Ser Arg Arg His 225 230 235 240			720
atc tac tgc tcc gtc aag tca gat tcg tcg atc agt tcc cac gtg cac Ile Tyr Cys Ser Val Lys Ser Asp Ser Ser Ile Ser Ser His Val His 245 250 255			768
ggc tgc ttc acg ccg gag agc aca gcg ctg ctg gag agt gga gtc cgg Gly Cys Phe Thr Pro Glu Ser Thr Ala Leu Leu Glu Ser Gly Val Arg 260 265 270			816
aag ccg ctc ggc gag ctc tct atc gga gat cgt gtt ttg agc atg acc Lys Pro Leu Gly Glu Leu Ser Ile Gly Asp Arg Val Leu Ser Met Thr 275 280 285			864
gcc aac gga cag gcc gtc tac agc gaa gtg atc ctc ttc atg gac cgc Ala Asn Gly Gln Ala Val Tyr Ser Glu Val Ile Leu Phe Met Asp Arg 290 295 300			912
aac ctc gag cag atg caa aac ttt gtg cag ctg cac acg gac ggt gga Asn Leu Glu Gln Met Gln Asn Phe Val Gln Leu His Thr Asp Gly Gly 305 310 315 320			960
gca gtg ctc acg gtg acg ccg gct cac ctg gtt agc gtt tgg cag ccg Ala Val Leu Thr Val Thr Pro Ala His Leu Val Ser Val Trp Gln Pro 325 330 335			1008
gag agc cag aag ctc acg ttt gtg ttt gcg cat cgc atc gag gag aag Glu Ser Gln Lys Leu Thr Phe Val Phe Ala His Arg Ile Glu Glu Lys 340 345 350			1056
aac cag gtg ctc gta cgg gat gtg gag acg ggc gag ctg agg ccc cag Asn Gln Val Leu Val Arg Asp Val Glu Thr Gly Glu Leu Arg Pro Gln 355 360 365			1104
cga gtg gtc aag ttg ggc agt gtg cgc agt aag ggc gtg gtc gcg ccg Arg Val Val Lys Leu Gly Ser Val Arg Ser Lys Gly Val Val Ala Pro 370 375 380			1152
ctg acc cgc gag ggc acc att gtg gtc aac tcg gtg gcc gcc agt tgc Leu Thr Arg Glu Gly Thr Ile Val Val Asn Ser Val Ala Ala Ser Cys 385 390 395 400			1200
tat gcg gtg atc aac agt cag tcg ctg gcc cac tgg gga ctg gct ccc Tyr Ala Val Ile Asn Ser Gln Ser Leu Ala His Trp Gly Leu Ala Pro 405 410 415			1248
atg cgc ctg ctg tcc acg ctg gag gcg tgg ctg ccc gcc aag gag cag Met Arg Leu Leu Ser Thr Leu Glu Ala Trp Leu Pro Ala Lys Glu Gln 420 425 430			1296
ttg cac agt tcg ccg aag gtg gtg agc tcg gcg cag cag aat ggc Leu His Ser Ser Pro Lys Val Val Ser Ser Ala Gln Gln Gln Asn Gly 435 440 445			1344

atc cat tgg tat gcc aat gcg ctc tac aag gtc aag gac tac gtg ctg 1392
Ile His Trp Tyr Ala Asn Ala Leu Tyr Lys Val Lys Asp Tyr Val Leu
450 455 460

ccg cag agc tgg cgc cac gat tga 1416
Pro Gln Ser Trp Arg His Asp
465 470

<210> 20
<211> 471
<212> PRT
<213> Drosophila melanogaster

<400> 20
Met Asp Asn His Ser Ser Val Pro Trp Ala Ser Ala Ala Ser Val Thr
1 5 10 15

Cys Leu Ser Leu Gly Cys Gln Met Pro Gln Phe Gln Phe Gln Phe Gln
20 25 30

Leu Gln Ile Arg Ser Glu Leu His Leu Arg Lys Pro Ala Arg Arg Thr
35 40 45

Gln Thr Met Arg His Ile Ala His Thr Gln Arg Cys Leu Ser Arg Leu
50 55 60

Thr Ser Leu Val Ala Leu Leu Ile Val Leu Pro Met Val Phe Ser
65 70 75 80

Pro Ala His Ser Cys Gly Pro Gly Arg Gly Leu Gly Arg His Arg Ala
85 90 95

Arg Asn Leu Tyr Pro Leu Val Leu Lys Gln Thr Ile Pro Asn Leu Ser
100 105 110

Glu Tyr Thr Asn Ser Ala Ser Gly Pro Leu Glu Gly Val Ile Arg Arg
115 120 125

Asp Ser Pro Lys Phe Lys Asp Leu Val Pro Asn Tyr Asn Arg Asp Ile
130 135 140

Leu Phe Arg Asp Glu Glu Gly Thr Gly Ala Asp Gly Leu Met Ser Lys
145 150 155 160

Arg Cys Lys Glu Lys Leu Asn Val Leu Ala Tyr Ser Val Met Asn Glu
165 170 175

Trp Pro Gly Ile Arg Leu Leu Val Thr Glu Ser Trp Asp Glu Asp Tyr
180 185 190

His His Gly Gln Glu Ser Leu His Tyr Glu Gly Arg Ala Val Thr Ile
195 200 205

Ala Thr Ser Asp Arg Asp Gln Ser Lys Tyr Gly Met Leu Ala Arg Leu
210 215 220

Ala Val Glu Ala Gly Phe Asp Trp Val Ser Tyr Val Ser Arg Arg His
225 230 235 240

Ile Tyr Cys Ser Val Lys Ser Asp Ser Ser Ile Ser Ser His Val His
245 250 255

Gly Cys Phe Thr Pro Glu Ser Thr Ala Leu Leu Glu Ser Gly Val Arg
260 265 270

Lys Pro Leu Gly Glu Leu Ser Ile Gly Asp Arg Val Leu Ser Met Thr
275 280 285

Ala Asn Gly Gln Ala Val Tyr Ser Glu Val Ile Leu Phe Met Asp Arg
290 295 300

Asn Leu Glu Gln Met Gln Asn Phe Val Gln Leu His Thr Asp Gly Gly
305 310 315 320

Ala Val Leu Thr Val Thr Pro Ala His Leu Val Ser Val Trp Gln Pro
325 330 335

Glu Ser Gln Lys Leu Thr Phe Val Phe Ala His Arg Ile Glu Glu Lys
340 345 350

Asn Gln Val Leu Val Arg Asp Val Glu Thr Gly Glu Leu Arg Pro Gln
355 360 365

Arg Val Val Lys Leu Gly Ser Val Arg Ser Lys Gly Val Val Ala Pro
370 375 380

Leu Thr Arg Glu Gly Thr Ile Val Val Asn Ser Val Ala Ala Ser Cys
385 390 395 400

Tyr Ala Val Ile Asn Ser Gln Ser Leu Ala His Trp Gly Leu Ala Pro
405 410 415

Met Arg Leu Leu Ser Thr Leu Glu Ala Trp Leu Pro Ala Lys Glu Gln
420 425 430

Leu His Ser Ser Pro Lys Val Val Ser Ser Ala Gln Gln Gln Asn Gly
435 440 445

Ile His Trp Tyr Ala Asn Ala Leu Tyr Lys Val Lys Asp Tyr Val Leu
450 455 460

Pro Gln Ser Trp Arg His Asp
465 470

<210> 21
<211> 221
<212> PRT
<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Degenerate Shh
polypeptide general formula

<220>

<221> SITE

<222> (7)

<223> Xaa=Gly, Ala, Val, Leu, Ile, Phe, Tyr, or Trp

<220>

<221> SITE

<222> (9)

<223> Xaa=Arg, His or Lys

<220>

<221> SITE

<222> (44)

<223> Xaa=Gly, Ala, Val, Leu, Ile, Ser. or Thr

<220>

<221> SITE

<222> (85)

<223> Xaa=Gly, Ala, Val, Leu, Ile, Ser, or Thr

<220>

<221> SITE

<222> (93)

<223> Xaa=Lys, Arg, His, Asn, or Gln

<220>

<221> SITE

<222> (98)

<223> Xaa=Lys, Arg or His

<220>

<221> SITE

<222> (112)

<223> Xaa=Ser, Thr, Tyr, Trp, or Phe

<220>

<221> SITE

<222> (132)

<223> Xaa=Lys, Arg or His

<220>

<221> SITE

<222> (137)

<223> Xaa=Met, Cys, Ser, or Thr

<220>

<221> SITE

<222> (139)

<223> Xaa=Gly, Ala, Val, Leu, Ile, Ser, or Thr

<220>

<221> SITE

<222> (181)

<223> Xaa=Leu, Val, Met, Thr, or Ser

<220>
<221> SITE
<222> (183)
<223> Xaa=His, Phe, Tyr, Ser, Thr, Met, or Cys

<220>
<221> SITE
<222> (185)
<223> Xaa=Gln, Asn, Glu, or Asp

<220>
<221> SITE
<222> (186)
<223> Xaa=His, Phe, Tyr, Thr, Gln, Asn, Glu, or Asp

<220>
<221> SITE
<222> (189)
<223> Xaa=Gln, Asn, Glu, Asp, Thr, Ser, Met, or Cys

<220>
<221> SITE
<222> (191)
<223> Xaa=Ala, Gly, Cys, Leu, Val, or Met

<220>
<221> SITE
<222> (196)
<223> Xaa=Arg, Lys, Met, Ile, Asn, Asp, Glu, Gln, Ser, Thr, or Cys

<220>
<221> SITE
<222> (200)
<223> Xaa=Arg, Lys, Met, or Ile

<220>
<221> SITE
<222> (206)
<223> Xaa=Ala, Gly, Cys, Asp, Glu, Gln, Asn, Ser, Thr, or Met

<220>
<221> SITE
<222> (207)
<223> Xaa=Ala, Gly, Cys, Asp, Asn, Glu, or Gln

<220>
<221> SITE
<222> (209)
<223> Xaa=Arg, Lys, Met, Ile, Asn, Asp, or Glu

<220>
<221> SITE
<222> (211)
<223> Xaa=Leu, Val, Met, or Ile

<220>
<221> SITE
<222> (212)
<223> Xaa=Phe, Tyr, Thr, His, or Trp

<220>
<221> SITE
<222> (216)
<223> Xaa=Ile, Val, Leu, or Met

<220>
<221> SITE
<222> (217)
<223> Xaa=Met, Cys, Ile, Leu, Val, Thr, or Ser

<220>
<221> SITE
<222> (219)
<223> Xaa=Leu, Val, Met, Thr, or Ser

<400> 21

Cys	Gly	Pro	Gly	Arg	Gly	Xaa	Gly	Xaa	Arg	Arg	His	Pro	Lys	Lys	Leu
1															15

Thr Pro Leu Ala Tyr Lys Gln Phe Ile Pro Asn Val Ala Glu Lys Thr
20 25 30

Leu Gly Ala Ser Gly Arg Tyr Glu Gly Lys Ile Xaa Arg Asn Ser Glu
35 40 45

Arg Phe Lys Glu Leu Thr Pro Asn Tyr Asn Pro Asp Ile Ile Phe Lys
50 55 60

Asp Glu Glu Asn Thr Gly Ala Asp Arg Leu Met Thr Gln Arg Cys Lys
65 70 75 80

Asp Lys Leu Asn Xaa Leu Ala Ile Ser Val Met Asn Xaa Trp Pro Gly
85 90 95

Val Xaa Leu Arg Val Thr Glu Gly Trp Asp Glu Asp Gly His His Xaa
100 105 110

Glu Glu Ser Leu His Tyr Glu Gly Arg Ala Val Asp Ile Thr Thr Ser
115 120 125

Asp Arg Asp Xaa Ser Lys Tyr Gly Xaa Leu Xaa Arg Leu Ala Val Glu
130 135 140

Ala Gly Phe Asp Trp Val Tyr Tyr Glu Ser Lys Ala His Ile His Cys
145 150 155 160

Ser Val Lys Ala Glu Asn Ser Val Ala Ala Lys Ser Gly Gly Cys Phe
165 170 175

Pro Gly Ser Ala Xaa Val Xaa Leu Xaa Xaa Gly Gly Xaa Lys Xaa Val
180 185 190

Lys Asp Leu Xaa Pro Gly Asp Xaa Val Leu Ala Ala Asp Xaa Xaa Gly
195 200 205

Xaa Leu Xaa Xaa Ser Asp Phe Xaa Xaa Phe Xaa Asp Arg
210 215 220

<210> 22
<211> 167
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Degenerate hedgehog polypeptide general formula

<220>
<221> SITE,
<222> (7)
<223> Xaa=Gly, Ala, Val, Leu, Ile, Pro, Phe, or Tyr

<220>
<221> SITE
<222> (8)
<223> Xaa=Gly, Ala, Val, Leu, or Ile

<220>
<221> SITE
<222> (9)
<223> Xaa=Gly, Ala, Val, Leu, Ile, Lys, His, or Arg

<220>
<221> SITE
<222> (12)
<223> Xaa=Lys, Arg or His

<220>
<221> SITE
<222> (13)
<223> Xaa=Phe, Trp or Tyr or an amino acid gap

<220>
<221> SITE
<222> (14)
<223> Xaa=Gly, Ala, Val, Leu, or Ile or an amino acid gap

<220>
<221> SITE
<222> (17)
<223> Xaa=Asn, Gln, His, Arg, or Lys

<220>
<221> SITE
<222> (19)
<223> Xaa=Gly, Ala, Val, Leu, Ile, Ser, or Thr

<220>
<221> SITE
<222> (22)
<223> Xaa=Gly, Ala, Val, Leu, Ile, Ser, or Thr

<220>
<221> SITE
<222> (27)
<223> Xaa=Gly, Ala, Val, Leu, Ile, Ser, or Thr

<220>
<221> SITE
<222> (29)
<223> Xaa=Ser, Thr, Gln, or Asn

<220>
<221> SITE
<222> (30)
<223> Xaa=Met, Cys, Gly, Ala, Val, Leu, Ile, Ser, or Thr

<220>
<221> SITE
<222> (31)
<223> Xaa=Gly, Alka, Val, Leu, Ile, or Pro

<220>
<221> SITE
<222> (33)
<223> Xaa=Arg, His or Lys

<220>
<221> SITE
<222> (40)
<223> Xaa=Gly, Ala, Val, Leu, Ile, Pro Arg, His, or Lys

<220>
<221> SITE
<222> (41)
<223> Xaa=Gly, Ala, Val, Leu, Ile, Phe, or Tyr

<220>
<221> SITE
<222> (44)
<223> Xaa=Arg, His or Lys

<220>
<221> SITE
<222> (45)
<223> Xaa=Gly, Ala, Val, Leu, Ile, Ser, or Thr

<220>
<221> SITE
<222> (46)
<223> Xaa=Thr or Ser

<220>

<221> SITE
<222> (48)
<223> Xaa=Gly, Ala, Val, Leu, Ile, Asn, or Gln

<220>
<221> SITE
<222> (53)
<223> Xaa=Arg, His or Lys

<220>
<221> SITE
<222> (54)
<223> Xaa=Asp or Glu

<220>
<221> SITE
<222> (71)
<223> Xaa=Ser or Thr

<220>
<221> SITE
<222> (79)
<223> Xaa=Glu, Asp, Gln, or Asn

<220>
<221> SITE
<222> (83)
<223> Xaa=Glu or Asp

<220>
<221> SITE
<222> (84)
<223> Xaa=Arg, His or Lys

<220>
<221> SITE
<222> (85)
<223> Xaa=Gly, Ala, Val, Leu, or Ile

<220>
<221> SITE
<222> (87)
<223> Xaa=Gly, Ala, Val, Leu, Ile, Thr, or Ser

<220>
<221> SITE
<222> (95)
<223> Xaa=Met, Cys, Gln, Asn, Arg, Lys, or His

<220>
<221> SITE
<222> (100)
<223> Xaa=Arg, His or Lys

<220>
<221> SITE
<222> (107)

<223> Xaa=Trp, Phe, Tyr, Arg, His, or Lys

<220>

<221> SITE

<222> (114)

<223> Xaa=Gly, Ala, Val, Leu, Ile, Ser, Thr, Tyr, or Phe

<220>

<221> SITE

<222> (115)

<223> Xaa=Gln, Asn, Asp, or Glu

<220>

<221> SITE

<222> (116)

<223> Xaa=Asp or Glu

<220>

<221> SITE

<222> (125)

<223> Xaa=Gly, Ala, Val, Leu, or Ile

<220>

<221> SITE

<222> (134)

<223> Xaa=Arg, His or Lys

<220>

<221> SITE

<222> (135)

<223> Xaa=Asn, Gln, Thr, or Ser

<220>

<221> SITE

<222> (139)

<223> Xaa=Gly, Ala, Val, Leu, Ile, Ser, Thr, Met, or Cys

<220>

<221> SITE

<222> (141)

<223> Xaa=Gly, Ala, Val, Leu, Ile, Thr, or Ser

<220>

<221> SITE

<222> (157)

<223> Xaa=Arg, His or Lys

<220>

<221> SITE

<222> (158)

<223> Xaa=Asn, Gln, Gly, Ala, Val, Leu, or Ile

<220>

<221> SITE

<222> (160)

<223> Xaa=Gly, Ala, Val, Leu, or Ile

<220>
 <221> SITE
 <222> (162)..(162)
 <223> Xaa=Gly, Ala, Val, Leu, Ile, Ser, Thr, or Cys

<220>
 <221> SITE
 <222> (166)
 <223> Xaa=Gly, Ala, Val, Leu, Ile, Thr, or Ser

<220>
 <221> SITE
 <222> (167)
 <223> Xaa=Asp or Glu

<400> 22
 Cys Gly Pro Gly Arg Gly Xaa Xaa Xaa Arg Arg Xaa Xaa Xaa Pro Lys
 1 5 10 15

Xaa Leu Xaa Pro Leu Xaa Tyr Lys Gln Phe Xaa Pro Xaa Xaa Xaa Glu
 20 25 30

Xaa Thr Leu Gly Ala Ser Gly Xaa Xaa Glu Gly Xaa Xaa Xaa Arg Xaa
 35 40 45

Ser Glu Arg Phe Xaa Xaa Leu Thr Pro Asn Tyr Asn Pro Asp Ile Ile
 50 55 60

Phe Lys Asp Glu Glu Asn Xaa Gly Ala Asp Arg Leu Met Thr Xaa Arg
 65 70 80

Cys Lys Xaa Xaa Xaa Asn Xaa Leu Ala Ile Ser Val Met Asn Xaa Trp
 85 90 95

Pro Gly Val Xaa Leu Arg Val Thr Glu Gly Xaa Asp Glu Asp Gly His
 100 105 110

His Xaa Xaa Xaa Ser Leu His Tyr Glu Gly Arg Ala Xaa Asp Ile Thr
 115 120 125

Thr Ser Asp Arg Asp Xaa Xaa Lys Tyr Gly Xaa Leu Xaa Arg Leu Ala
 130 135 140

Val Glu Ala Gly Phe Asp Trp Val Tyr Tyr Glu Ser Xaa Xaa His Xaa
 145 150 155 160

His Xaa Ser Val Lys Xaa Xaa
 165

<210> 23
 <211> 74
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Primer

<400> 23
gcgcgcttcg aagcgaggca gccagcgagg gagagagcga gcgggcgagc cggagcgagg 60
aaatcgatgc gcgc 74

<210> 24
<211> 74
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Primer

<400> 24
gcgcgcagat ctgggaaagc gcaagagaga gcgcacacgc acacacccgc cgcgcgact 60
cgggatccgc gcgc 74

<210> 25
<211> 996
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Gene
activation construct

<400> 25
cgaagcgagg cagccagcga gggagagagc gagcgggcga gccggagcga ggaaatcgaa 60
gttgcgaatc cttcccccac caccatcaact ttcaaaaagtc cgaaagaatc tgctccctgc 120
tttgtgttg gaggtcgctg agtagtgcgc gagtaaaatt taagctacaa caaggcaagg 180
cttgaccgac aattgcatga agaatctgct tagggttagg cgtttgcgc tgcttcgcga 240
tgtacgggcc agatatacgc gttgacattt attattgact agttattaaat agtaatcaat 300
tacggggtca ttagttcata gcccataatat ggagttccgc gttacataaac ttacggtaaa 360
tggccgcct ggctgaccgc ccaacgacccc ccgcccattt acgtcaataa tgacgtatgt 420
tcccatagta acgccaatag ggacttcca ttgacgtcaa tgggtggact atttacggta 480
aactgcccac ttggcagttt atcaagtgtt tcataatgcca agtacgcccc ctattgacgt 540
caatgacggt aaatggcccg cctggcattt tgcccagtac atgaccttat gggactttcc 600
tacttggcag tacatctacg tattagtcat cgctattacc atgggtatgc ggaaaaatggca 660
gtacatcaat gggcgtggat agcggtttga ctcacgggaa tttccaaatgc tccacccat 720
tgacgtcaat gggagtttggat tttggcacca aaatcaacgg gactttccaa aatgtcgtaa 780
caactccgc ccatggacgc aaatggccgg taggcgtgtt cgggtggagg tctatataag 840
cagagctctc tggctaacta gagaacccac tgcttactgg cttatcgaaa ttaatacgac 900
tcactatagg gagacccaaatg cttggtaccg agctcggatc gatctggaa agcgcaagag 960
agagcgacaca cgccacacacc cggccgcgc actcg 996

<210> 26
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Antisense
construct

<400> 26
gtcctggcgc cgccgccc gtcgcc 26

<210> 27
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Antisense construct

<400> 27
ttccgatgac cggccttcg cggta 26

<210> 28
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Antisense construct

<400> 28
gtgcacggaa aggtgcagggc cacact 26