

Three v	variable	K-map)		
A		01	11	10	
0			1	1	
1	1	1			-
AB	C 00	01	11	10	
0	1	1			
1	1	1			

Three \	/ariable	K-map)		
AB		01	11	10	_
0	1	1	1	1	
1					
ABO	00	01	11	10	1
0	1	1	1		
1	1	1			

Three \	/ariable	K-map)		
AB		01	11	10	-
0			1		
1	1		1	1	
A	00	01	11	10	-
0	1		1	1	
1	1			1	

K-map simplification

- Pair Group of 2 adjacent minterms eliminates 1 variable
- Quad Group of 4 adjacent minterms eliminates 2 variables
- Octet Group of 8 adjacent minterms eliminates 3 variables
- Redundant group Is the one in which all the elements of the group are covered by some other group.

For simplification

- Prime implicants A product term obtained by combining the maximum possible number of adjacent squares in the map.
- Essential prime implicant If a minterm in the square is covered by only one prime implicant, that prime implicant is termed as "Essential".

Simplify - $F(A,B,C,D) = \sum (0,2,3,5,7,8,9,10,11,13,15)$ F(A,B,C,D) = BD+B'D'+CD+AD F(A,B,C,D) = BD+B'D'+CD+AB' F(A,B,C,D) = BD+B'D'+B'C+AD F(A,B,C,D) = BD+B'D'+B'C+AB'

Using k-map for obtaining POS form

- Squares in k-map not marked with 1's gives the complement function.
- Mark empty squares with 0's →combine them to obtain expression of complement of Function.
- Complement of F' is F. (Using De-Morgan's theorem)

Map-Entered Variable (MEV) Or Variable Entered Mapping (VEM)

- Allows smaller map to handle greater number of variables.
- In K-map, for n variables, it requires 2ⁿ=m squares.
- In MEV, map dimensions can be compressed.
- In K-map, each square represents a minterm, maxterm or a don't care term.
- In MEV, K-map cell is permitted to contain single variable (x) or a complete switching expression (xy'+z).

For a simplified function from MEV K-map

- Determine the EPI's consisting of only 1's along with any don't care terms that may exist. (cover all 1's)
- Consider the 1's as don't care terms once step 1 is completed, because all 1's have been covered.
- Group all identical MEV terms with 1's or don't care terms to maximize the MEV EPI size.
- Determine the MEV EPIs by reading k-map in normal fashion, then AND the MEV variable with remaining k-map variable.

P= $f(a,b,c,d) = \Sigma(2,9,10,11,13,14,15)$

ΊΕV	Std	W	Χ		Z	O/p	o/p
0	0	0	0	0	0	0	0
0	1	0	0	0	1	0	
1	2	0	0	1	0	1	Z'
1	3	0	0	1	1	0	
2	4	0	1 0 0 0	0	0		
2	5	0	1	0	1	0	
3	6	0	1	1	0	0	0
3	7	0	1	1	1	0	
4	8	1	0	0	0	0	Z
4	9	1	0	0	1	1	_
5	10	1	0	1	0	1	1
5	11	1	0	1	1	1	
6	12	1	1	0	0	0	Z
6	13	1	1	0	1	1	
7	14	1	1	1	0	1	1
7	15	1	1	1	1	1	į.

Quine-McCluskey method (QM)

- Suitable for computer solution
- · Uses Tabular method

QM Method

• D = f(a, b, c, d) = Σ (0,1,2,3,6,7,8,9,14,15)

$D = f(a, b, c, d) = \Sigma (0,1,2,3,6,7,8,9,14,15)$

Index	Decimal Number	Binary representation						
0	0	0	0	0	0			
1	1	0	0	0	1			
	2	0	0	1	0			
	8	1	0	0	0			
2	3	0	0	1	1			
	6	0	1	1	0			
	9	1	0	0	1			
3	7	0	1	1	1			
	14	- 1	1	1	0			
4	15	1	1	1	1			

0	0	0	0	0	(0,1)	0	0	0	-
1	0	0	0	1	(0,2)	0	0		C
2	0	0	1	0	(0,8)	-	0	0	0
8	1	0	0	0	(1,3)	0	0		1
3	0	0	1	1	(1,9)	-	0	0	1
6	0	1	1	0	(2,3)	0	0	1	
9	1	0	0	1	(2,6)	0	-	1	0
7	0	1	1	1	(8,9)	1	0	0	
14	1	1	1	0	(3,7)	0	-	1	1
15	1	1		1	(6,7)	0	1	1	
111111111111111111111111111111111111111	NACHALISM.	I construction	4	***************************************	(6,14)	-	1	1	0
					(7,15)	-	1	1	1
					(14,15)	1	1	1	-

(0,1)	0	0	0	-	(0,1,2,3)	0	0	-
(0,2)	0	0	-	0	(0,1,8,9)		0	0
(0,8)	-	0	0	0	(2,3,6,7)	0	-	1
(1,3)	0	0	-	1	(6,7,14,15)	-	1	1
(1,9)	-	0	0	1				
(2,3)	0	0	1	-				
(2,6)	0	-	1	0				
(8,9)	1	0	0					
(3,7)	0	-	1	1				
(6,7)	0	1	1					
(6,14)	-	1	1	0				
(7,15)	-	1	1	1				
(14,15)	1	1	1	-				

