	OPYTOTCH	OPYTOTCH	OPYTOTCH	OPYTOTCH	OPYTOTCH	OPYTOTCH
ch	O PyTorch					

Usable while performant: the challenges building O PyTorch

Soumith Chintala

Deep Learning Workloads

Deep Learning Workloads

```
for epoch in range(max_epochs):
    for data, target in enumerate(training_data):
        output = model(data)
        loss = F.nll_loss(output, target)
        loss.backward()
        optimizer.step()
```


Deep Learning Workloads

N samples, each of some shape D

```
for epoch in range(max_epochs):
    for data, target in enumerate(training_data):
        output = model(data)
        loss = F.nll_loss(output, target)
        loss.backward()
        optimizer.step()
```


•Deep Learning Workloads mini-batch of M samples (M << N), each of shape D

```
for epoch in range(max_epochs):
    for data, target in enumerate(training_data):
        output = model(data)
        loss = F.nll_loss(output, target)
        loss.backward()
        optimizer.step()
```


Deep Learning Workloads

neural network with weights

```
for epoch in range(max_epochs):
    for data, target in enumerate(training_data):
        output = model(data)
        loss = F.nll_loss(output, target)
        loss.backward()
        optimizer.step()
```


Deep Learning Workloads backpropagation:
 compute derivatives wrt loss, using chain rule

```
for epoch in range(max_epochs):
    for data, target in enumerate(training_data):
        output = model(data)
        loss = F.nll_loss(output, target)
        loss.backward()
        optimizer.step()
```


Deep Learning Workloads

update weights using the computed gradients

```
for epoch in range(max_epochs):
    for data, target in enumerate(training_data):
        output = model(data)
        loss = F.nll_loss(output, target)
        loss.backward()
        optimizer.step()
```


Deep Learning Workloads

Deep Learning Workloads

neural network with weights

```
for epoch in range(max_epochs):
    for data, target in enumerate(training_data):
        output = model(data)
        loss = F.nll_loss(output, target)
        loss.backward()
        optimizer.step()
```


Convolution

Convolution

Types of typical operators Convolution

Matrix Multiply

Pointwise operations

```
for (i=0; i < data_length; i++) {
  output[i] = input1[i] + input2[i]
}</pre>
```


Types of typical operators Reduction operations

```
double sum = 0.0;
for (i=0; i < data_length; i++) {
    sum += input[i];
}</pre>
```


"deep"

"deep"

recurrent

Trained with Gradient Descent

"deep"

recurrent

 Deep Learning Workloads an easy way to see recurrence

```
for epoch in range(max_epochs):
    for data, target in enumerate(training_data):
        output = model(data)
        loss = F.nll_loss(output, target)
        loss.backward()
        optimizer.step()
```


 Deep Learning Workloads an easy way to see recurrence

```
for epoch in range(max_epochs):
    for data, target in enumerate(training_data):
        output, hidden = [], zeros()
        for t in data.size(0):
            out, hidden = model(data[t], hidden)
            output.append(out)
        loss = F.nll_loss(output, target)
        loss.backward()
        optimizer.step()
```


- Deep Learning Workloads
 - Vision models
 - model is very deep, straight-line chain with no recurrence
 - lots of convolutions
 - typically run on GPUs

Deep Learning Workloads

- Vision models
 - model is very deep, straight-line chain with no recurrence
 - lots of convolutions
 - typically run on GPUs
- NLP models
 - LSTM-RNN
 - model is 1 to 4 "layers" deep
 - two matmuls across space and time along with pointwise ops
 - -typically run on CPUs if small, GPUs if large

Deep Learning Frameworks

Make this easy to program

```
for epoch in range(max_epochs):
    for data, target in enumerate(training_data):
        output = model(data)
        loss = F.nll_loss(output, target)
        loss.backward()
        optimizer.step()
```


Pre-PyTorch

Caffe theano

meta programming meta programming

imperative

Caffe

deploy.prototxt	[examples] switch examples + models to Input layers	3 years ago
readme.md	BVLC -> BAIR	2 years ago
solver.prototxt	Renaming CaffeNet model prototxts and unignoring models/*	4 years ago
train_val.prototxt	Upgrade existing nets using upgrade_net_proto_text tool	4 years ago

■ readme.md

name	caffemodel	caffemodel_url	license	
BAIR/BVLC AlexNet Model	bvlc_alexnet.caffemodel	http://dl.caffe.berkeleyvision.org/bvlc_alexnet.caffemodel	unrestricted	91 ⁻

```
layer {
 name: "conv1"
 type: "Convolution"
 bottom: "data"
 top: "conv1"
 param {
   lr_mult: 1
   decay_mult: 1
 param {
   lr_mult: 2
   decay_mult: 0
 convolution_param {
   num_output: 96
   kernel_size: 11
   stride: 4
   weight_filler {
     type: "gaussian"
     std: 0.01
   bias_filler {
     type: "constant"
     value: 0
layer {
 name: "relu1"
 type: "ReLU"
 bottom: "conv1"
 top: "conv1"
layer {
 name: "norm1"
 type: "LRN"
bottom: "conv1"
 top: "norm1"
 lrn_param {
   local_size: 5
   alpha: 0.0001
   beta: 0.75
```


Caffe

name	caffemodel	caffemodel_url	license	
BAIR/BVLC AlexNet Model	bvlc_alexnet.caffemodel	http://dl.caffe.berkeleyvision.org/bvlc_alexnet.caffemodel	unrestricted	9′

```
layer {
  name: "conv1"
 type: "Convolution"
 bottom: "data"
  top: "conv1"
  param {
   lr_mult: 1
   decay_mult: 1
  param {
   lr_mult: 2
   decay_mult: 0
 convolution_param {
   num output: 96
```

```
type: "gaussian"
     std: 0.01
   bias_filler {
     type: "constant"
     value: 0
layer {
 name: "relu1"
 type: "ReLU"
 bottom: "conv1"
 top: "conv1"
layer {
 name: "norm1"
 type: "LRN"
 bottom: "conv1"
 top: "norm1"
 lrn_param {
   local_size: 5
   alpha: 0.0001
   beta: 0.75
```


Caffe

layer {

name: "conv1"

bottom: "data"

lr_mult: 1

name: "relu1"

bottom: "conv1"

type: "ReLU"

top: "conv1'

name: "norm1"

type: "LRN"

top: "norm1"

lrn_param {

local_size: 5

alpha: 0.0001

beta: 0.75

layer {

decay_mult: 1

top: "conv1"

param {

type: "Convolution"

(

```
# allocate symbolic variables for the data
# 'rand' is a random array used for random cropping/mirroring of data
x = T.ftensor4('x')
y = T.lvector('y')
rand = T.fvector('rand')
print '... building the model'
self.layers = []
params = []
weight_types = []
if flag_datalayer:
   data_layer = DataLayer(input=x, image_shape=(3, 256, 256,
                                              batch_size),
                         cropsize=227, rand=rand, mirror=True,
                         flag_rand=config['rand_crop'])
   layer1_input = data_layer.output
else:
   layer1_input = x
convpool_layer1 = ConvPoolLayer(input=layer1_input,
                              image_shape=(3, 227, 227, batch_size),
                              filter_shape=(3, 11, 11, 96),
                              convstride=4, padsize=0, group=1,
                              poolsize=3, poolstride=2,
                              bias_init=0.0, lrn=True,
                              lib_conv=lib_conv,
self.layers.append(convpool_layer1)
params += convpool_layer1.params
weight_types += convpool_layer1.weight_type
convpool_layer2 = ConvPoolLayer(input=convpool_layer1.output,
                              image_shape=(96, 27, 27, batch_size),
                              filter_shape=(96, 5, 5, 256),
                              convstride=1, padsize=2, group=2,
                              poolsize=3, poolstride=2,
                              bias_init=0.1, lrn=True,
                              lib_conv=lib_conv,
self.layers.append(convpool_layer2)
params += convpool_layer2.params
weight_types += convpool_layer2.weight_type
```

```
def compile_models(model, config, flag_top_5=False):
   x = model.x
   y = model_y
   rand = model.rand
   weight_types = model.weight_types
   cost = model.cost
   params = model.params
   errors = model.errors
   errors_top_5 = model.errors_top_5
   batch_size = model.batch_size
   mu = config['momentum']
   eta = config['weight_decay']
   # create a list of gradients for all model parameters
   grads = T.grad(cost, params)
   updates = []
   learning_rate = theano.shared(np.float32(config['learning_rate']))
   lr = T.scalar('lr') # symbolic learning rate
   if config['use_data_layer']:
        raw_size = 256
   else:
        raw_size = 227
   shared_x = theano.shared(np.zeros((3, raw_size, raw_size,
                                       batch_size),
                                      dtype=theano.config.floatX),
                            borrow=True)
   shared_y = theano.shared(np.zeros((batch_size,), dtype=int),
                            borrow=True)
    rand_arr = theano.shared(np.zeros(3, dtype=theano.config.floatX),
                            borrow=True)
   vels = [theano.shared(param_i.get_value() * 0.)
           for param_i in params]
   if config['use_momentum']:
        assert len(weight_types) == len(params)
        for param_i, grad_i, vel_i, weight_type in \
```


else:

```
# allocate symbolic variables for the data
# 'rand' is a random array used for random cropping/mirroring of data
x = T.ftensor4('x')
y = T.lvector('y')
rand = T.fvector('rand')
print '... building the model'
self.layers = []
params = []
weight_types = []
if flag_datalayer:
   data_layer = DataLayer(input=x, image_shape=(3, 256, 256,
                                          batch size),
                       cropsize=227, rand=rand, mirror=True,
```

```
layer1_input = x
convpool_layer1 = ConvPoolLayer(input=layer1_input,
                                image_shape=(3, 227, 227, batch_size),
                                filter_shape=(3, 11, 11, 96),
                                convstride=4, padsize=0, group=1,
                                poolsize=3, poolstride=2,
                                bias_init=0.0, lrn=True,
                                lib_conv=lib_conv,
self.layers.append(convpool_layer1)
params += convpool_layer1.params
weight_types += convpool_layer1.weight_type
convpool_layer2 = ConvPoolLayer(input=convpool_layer1.output,
                                image_shape=(96, 27, 27, batch_size),
                               filter_shape=(96, 5, 5, 256),
                                convstride=1, padsize=2, group=2,
                                poolsize=3, poolstride=2,
                                bias_init=0.1, lrn=True,
                                lib_conv=lib_conv,
self.layers.append(convpool_layer2)
params += convpool_layer2.params
```

weight_types += convpool_layer2.weight_type

```
def compile_models(model, config, flag_top_5=False):
   x = model.x
   y = model_y
   rand = model.rand
   weight_types = model.weight_types
   cost = model.cost
   params = model.params
   errors = model.errors
   errors_top_5 = model.errors_top_5
   batch_size = model.batch_size
   mu = config['momentum']
   eta = config['weight_decay']
   # create a list of gradients for all model parameters
   grads = T.grad(cost, params)
   updates = []
```

```
meta-program Theano VM via Python API [], validate_outputs,
```

```
if config['use_data_layer']:
    raw_size = 256
else:
    raw_size = 227
shared_x = theano.shared(np.zeros((3, raw_size, raw_size,
                                   batch_size),
                                  dtype=theano.config.floatX),
                         borrow=True)
shared_y = theano.shared(np.zeros((batch_size,), dtype=int),
                         borrow=True)
rand_arr = theano.shared(np.zeros(3, dtype=theano.config.floatX),
                         borrow=True)
vels = [theano.shared(param_i.get_value() * 0.)
        for param_i in params]
if config['use_momentum']:
    assert len(weight_types) == len(params)
    for param_i, grad_i, vel_i, weight_type in \
```

```
# Define Theano Functions
train_model = theano.function([], cost, updates=updates,
                              givens=[(x, shared_x), (y, shared_y),
                                      (lr, learning_rate),
                                      (rand, rand_arr)])
validate_outputs = [cost, errors]
if flag_top_5:
                                 givens=[(x, shared_x), (y, shared_y),
                                         (rand, rand_arr)])
train_error = theano.function(
    [], errors, givens=[(x, shared_x), (y, shared_y), (rand, rand_arr)])
return (train_model, validate_model, train_error,
        learning_rate, shared_x, shared_y, rand_arr, vels)
```



```
# allocate symbolic variables for the data
# 'rand' is a random array used for random cropping/mirroring of data
x = T.ftensor4('x')
y = T.lvector('y')
rand = T.fvector('rand')
print '... building the model'
self.layers = []
params = []
weight_types = []
if flag_datalayer:
   data_layer = DataLayer(input=x, image_shape=(3, 256, 256,
                                          batch_size),
                       cropsize=227, rand=rand, mirror=True,
```

else: layer1_input = v

```
filter_shape=(3, 11, 11, 96),
                                convstride=4, padsize=0, group=1,
                                poolsize=3, poolstride=2,
                                bias_init=0.0, lrn=True,
                                lib_conv=lib_conv,
self.layers.append(convpool_layer1)
params += convpool_layer1.params
weight_types += convpool_layer1.weight_type
convpool_layer2 = ConvPoolLayer(input=convpool_layer1.output,
                                image_shape=(96, 27, 27, batch_size),
                               filter_shape=(96, 5, 5, 256),
                                convstride=1, padsize=2, group=2,
                                poolsize=3, poolstride=2,
                                bias_init=0.1, lrn=True,
                                lib_conv=lib_conv,
self.layers.append(convpool_layer2)
params += convpool_layer2.params
weight_types += convpool_layer2.weight_type
```

```
def compile_models(model, config, flag_top_5=False):
   x = model.x
   y = model.y
   rand = model.rand
   weight_types = model.weight_types
   cost = model.cost
   params = model.params
   errors = model.errors
   errors_top_5 = model.errors_top_5
   batch_size = model.batch_size
   mu = config['momentum']
   eta = config['weight_decay']
   # create a list of gradients for all model parameters
   grads = T.grad(cost, params)
   updates = []
```

```
if flag_top_5:
meta-program Theano VM via Python API (1), validate_outputs,
```

convpool_layers whole program optimizations, graph fusion

```
shared_x = theano.shared(np.zeros((3, raw_size, raw_size,
                                   batch_size),
                                  dtype=theano.config.floatX),
                         borrow=True)
shared_y = theano.shared(np.zeros((batch_size,), dtype=int),
                         borrow=True)
rand_arr = theano.shared(np.zeros(3, dtype=theano.config.floatX),
                         borrow=True)
vels = [theano.shared(param_i.get_value() * 0.)
        for param_i in params]
if config['use_momentum']:
    assert len(weight_types) == len(params)
    for param_i, grad_i, vel_i, weight_type in \
```

```
return (train_model, validate_model, train_error,
```

learning_rate, shared_x, shared_y, rand_arr, vels)

train_model = theano.function([], cost, updates=updates,

givens=[(x, shared_x), (y, shared_y),

(lr, learning_rate),

givens=[(x, shared_x), (y, shared_y),

(rand, rand_arr)])

(rand, rand_arr)])

Define Theano Functions

validate_outputs = [cost, errors]


```
# allocate symbolic variables for the data
# 'rand' is a random array used for random cropping/mirroring of data
x = T.ftensor4('x')
y = T.lvector('y')
rand = T.fvector('rand')
print '... building the model'
self.layers = []
params = []
weight_types = []
if flag_datalayer:
   data_layer = DataLayer(input=x, image_shape=(3, 256, 256,
                                          batch_size),
                       cropsize=227, rand=rand, mirror=True,
```

```
def compile_models(model, config, flag_top_5=False):
   x = model.x
   y = model.y
   rand = model.rand
   weight_types = model.weight_types
   cost = model.cost
   params = model.params
   errors = model.errors
   errors_top_5 = model.errors_top_5
   batch_size = model.batch_size
   mu = config['momentum']
   eta = config['weight_decay']
   # create a list of gradients for all model parameters
   grads = T.grad(cost, params)
   updates = []
```

```
# Define Theano Functions
train_model = theano.function([], cost, updates=updates,
                              givens=[(x, shared_x), (y, shared_y),
                                      (lr, learning_rate),
                                      (rand, rand_arr)])
validate_outputs = [cost, errors]
if flag_top_5:
```

meta-program Theano VM via Python API (1), validate_outputs, else:

layer1_input = v

convpool_layer1 whole program optimizations, graph fusion,

graphs took minutes to hours to compile and start vels)

```
self.layers.append(convpool_layer1)
params += convpool_layer1.params
weight_types += convpool_layer1.weight_type
convpool_layer2 = ConvPoolLayer(input=convpool_layer1.output,
                                image_shape=(96, 27, 27, batch_size),
                                filter_shape=(96, 5, 5, 256),
                                convstride=1, padsize=2, group=2,
                                poolsize=3, poolstride=2,
                                bias_init=0.1, lrn=True,
                                lib_conv=lib_conv,
self.layers.append(convpool_layer2)
params += convpool_layer2.params
weight_types += convpool_layer2.weight_type
```

```
shared_y = theano.shared(np.zeros((batch_size,), dtype=int),
                         borrow=True)
rand_arr = theano.shared(np.zeros(3, dtype=theano.config.floatX),
                         borrow=True)
vels = [theano.shared(param_i.get_value() * 0.)
        for param_i in params]
if config['use_momentum']:
    assert len(weight_types) == len(params)
    for param_i, grad_i, vel_i, weight_type in \
```


givens=[(x, shared_x), (y, shared_y),

(rand, rand_arr)])

```
function alexnet(lib)
  local SpatialConvolution = lib[1]
  local SpatialMaxPooling = lib[2]
  local ReLU = lib[3]
  local SpatialZeroPadding = nn.SpatialZeroPadding
  local padding = true
  local stride1only = false
  -- from https://code.google.com/p/cuda-convnet2/source/browse/layers/layers-imagenet-1gpu.cfg
  -- this is AlexNet that was presented in the One Weird Trick paper. http://arxiv.org/abs/1404.5997
  local features = nn.Sequential()
  features:add(SpatialConvolution(3,64,11,11,4,4,2,2))
                                                             -- 224 -> 55
  features:add(ReLU(true))
  features:add(SpatialMaxPooling(3,3,2,2))
                                                             -- 55 -> 27
  features:add(SpatialConvolution(64,192,5,5,1,1,2,2))
                                                             -- 27 -> 27
  features:add(ReLU(true))
  features:add(SpatialMaxPooling(3,3,2,2))
                                                             -- 27 -> 13
  features:add(SpatialConvolution(192,384,3,3,1,1,1,1))
                                                             -- 13 -> 13
  features:add(ReLU(true))
  features:add(SpatialConvolution(384,256,3,3,1,1,1,1))
                                                             -- 13 -> 13
  features:add(ReLU(true))
  features:add(SpatialConvolution(256,256,3,3,1,1,1,1))
                                                             -- 13 -> 13
  features:add(ReLU(true))
  features:add(SpatialMaxPooling(3,3,2,2))
                                                             -- 13 -> 6
  local classifier = nn.Sequential()
  classifier:add(nn.View(256*6*6))
  -- classifier:add(nn.Dropout(0.5))
  classifier:add(nn.Linear(256*6*6, 4096))
  classifier:add(nn.Threshold(0, 1e-6))
  -- classifier:add(nn.Dropout(0.5))
  classifier:add(nn.Linear(4096, 4096))
  classifier:add(nn.Threshold(0, 1e-6))
  classifier:add(nn.Linear(4096, 1000))
  -- classifier:add(nn.LogSoftMax())
  features:get(1).gradInput = nil
  local model = nn.Sequential()
  model:add(features):add(classifier)
  return model, 'AlexNet', {128, 3, 224, 224}
end
return alexnet
```

```
-- 4. trainBatch - Used by train() to train a single batch after the data is loaded.
function trainBatch(inputsCPU, labelsCPU)
   cutorch.synchronize()
   collectgarbage()
   local dataLoadingTime = dataTimer:time().real
   timer:reset()
   -- transfer over to GPU
   inputs:resize(inputsCPU:size()):copy(inputsCPU)
   labels:resize(labelsCPU:size()):copy(labelsCPU)
   local err, outputs
   feval = function(x)
      model:zeroGradParameters()
      outputs = model:forward(inputs)
      err = criterion:forward(outputs, labels)
      local gradOutputs = criterion:backward(outputs, labels)
      model:backward(inputs, gradOutputs)
      return err, gradParameters
  optim.sgd(feval, parameters, optimState)
   cutorch.synchronize()
   batchNumber = batchNumber + 1
   loss_epoch = loss_epoch + err
   -- top-1 error
   local top1 = 0
      local _,prediction_sorted = outputs:float():sort(2, true) -- descending
      for i=1,opt.batchSize do
        if prediction_sorted[i][1] == labelsCPU[i] then
           top1_epoch = top1_epoch + 1;
           top1 = top1 + 1
        end
      end
      top1 = top1 * 100 / opt.batchSize;
   -- Calculate top-1 error, and print information
   print(('Epoch: [%d][%d/%d]\tTime %.3f Err %.4f Top1-%: %.2f LR %.0e DataLoadingTime %.3f'):format(
          epoch, batchNumber, opt.epochSize, timer:time().real, err, top1,
          optimState.learningRate, dataLoadingTime))
```

dataTimer:reset()

```
function alexnet(lib)
  local SpatialConvolution = lib[1]
  local SpatialMaxPooling = lib[2]
  local ReLU = lib[3]
  local SpatialZeroPadding = nn.SpatialZeroPadding
  local padding = true
  local stride1only = false
  -- from https://code.google.com/p/cuda-convnet2/source/browse/layers/layers-imagenet-1gpu.cfg
  -- this is AlexNet that was presented in the One Weird Trick paper. http://arxiv.org/abs/1404.5997
  local features = nn.Sequential()
  features:add(SpatialConvolution(3,64,11,11,4,4,2,2))
  features:add(ReLU(true))
  features:add(SpatialMaxPooling(3,3,2,2))
  features:add(SpatialConvolution(64,192,5,5,1,1,2,2))
  features:add(ReLU(true))
  features:add(SpatialMaxPooling(3,3,2,2))
  features:add(SpatialConvolution()
  features:add(ReLU(true))
  features:add(SpatialConvolution()
  features:add(ReLU(true))
  features:add(SpatialConvolution()
  features:add(ReLU(true))
  features:add(SpatialMaxPooling(3)
  local classifier = nn.Sequential()
  classifier:add(nn.View(256*6*6))
  -- classifier:add(nn.Dropout(0.5))
  classifier:add(nn.Linear(256*6*6, 4096))
  classifier:add(nn.Threshold(0, 1e-6))
  -- classifier:add(nn.Dropout(0.5))
  classifier:add(nn.Linear(4096, 4096))
  classifier:add(nn.Threshold(0, 1e-6))
  classifier:add(nn.Linear(4096, 1000))
  -- classifier:add(nn.LogSoftMax())
  features:get(1).gradInput = nil
  local model = nn.Sequential()
  model:add(features):add(classifier)
  return model, 'AlexNet', {128, 3, 224, 224}
end
return alexnet
```

-- 224 -> 55

-- 55 **->** 27

-- 27 -> 27

-- 27 -> 13

```
-- 4. trainBatch - Used by train() to train a single batch after the data is loaded.
                                                                  function trainBatch(inputsCPU, labelsCPU)
                                                                     cutorch.synchronize()
                                                                     collectgarbage()
                                                                     local dataLoadingTime = dataTimer:time().real
                                                                     timer:reset()
                                                                     -- transfer over to GPU
                                                                     inputs:resize(inputsCPU:size()):copy(inputsCPU)
                                                                     labels:resize(labelsCPU:size()):copy(labelsCPU)
                                                                     local err, outputs
                                                                     feval = function(x)
                                                                       model:zeroGradParameters()
                                                                       outputs = model:forward(inputs)
                                                                       err = criterion:forward(outputs, labels)
imperative programming in Lua
```

```
loss_epoch = loss_epoch + err
-- top-1 error
local top1 = 0
   local _,prediction_sorted = outputs:float():sort(2, true) -- descending
   for i=1,opt.batchSize do
     if prediction_sorted[i][1] == labelsCPU[i] then
        top1_epoch = top1_epoch + 1;
        top1 = top1 + 1
     end
   top1 = top1 * 100 / opt.batchSize;
-- Calculate top-1 error, and print information
print(('Epoch: [%d][%d/%d]\tTime %.3f Err %.4f Top1-%: %.2f LR %.0e DataLoadingTime %.3f'):format(
       epoch, batchNumber, opt.epochSize, timer:time().real, err, top1,
       optimState.learningRate, dataLoadingTime))
dataTimer:reset()
```

```
function alexnet(lib)
  local SpatialConvolution = lib[1]
  local SpatialMaxPooling = lib[2]
  local ReLU = lib[3]
  local SpatialZeroPadding = nn.SpatialZeroPadding
  local padding = true
  local stride1only = false
  -- from https://code.google.com/p/cuda-convnet2/source/browse/layers/layers-imagenet-1gpu.cfg
  -- this is AlexNet that was presented in the One Weird Trick paper. http://arxiv.org/abs/1404.5997
  local features = nn.Sequential()
  features:add(SpatialConvolution(3,64,11,11,4,4,2,2))
                                                             -- 224 -> 55
  features:add(ReLU(true))
  features:add(SpatialMaxPooling(3,3,2,2))
  features:add(SpatialConvolution(64,192,5,5,1,1,2,2))
                                                             -- 27 -> 27
```

```
-- 4. trainBatch - Used by train() to train a single batch after the data is loaded.
function trainBatch(inputsCPU, labelsCPU)
    cutorch.synchronize()
    collectgarbage()
    local dataLoadingTime = dataTimer:time().real
    timer:reset()

-- transfer over to GPU
    inputs:resize(inputsCPU:size()):copy(inputsCPU)
    labels:resize(labelsCPU:size()):copy(labelsCPU)

local err, outputs
    feval = function(x)
        model:zeroGradParameters()
```

imperative programming in Lua tied closely to underlying C89 implementations

```
-- classifier:add(nn.Dropout(0.5))
classifier:add(nn.Linear(256*6*6, 4096))
classifier:add(nn.Threshold(0, 1e-6))
-- classifier:add(nn.Dropout(0.5))
classifier:add(nn.Linear(4096, 4096))
classifier:add(nn.Threshold(0, 1e-6))
classifier:add(nn.Linear(4096, 1000))
-- classifier:add(nn.LogSoftMax())

features:get(1).gradInput = nil

local model = nn.Sequential()
model:add(features):add(classifier)

return model, 'AlexNet', {128,3,224,224}
end

return alexnet
```

```
function alexnet(lib)
  local SpatialConvolution = lib[1]
  local SpatialMaxPooling = lib[2]
  local ReLU = lib[3]
  local SpatialZeroPadding = nn.SpatialZeroPadding
  local padding = true
  local stride1only = false
  -- from https://code.google.com/p/cuda-convnet2/source/browse/layers/layers-imagenet-1gpu.cfg
  -- this is AlexNet that was presented in the One Weird Trick paper. http://arxiv.org/abs/1404.5997
  local features = nn.Sequential()
  features:add(SpatialConvolution(3,64,11,11,4,4,2,2))
                                                             -- 224 -> 55
  features:add(ReLU(true))
  features:add(SpatialMaxPooling(3,3,2,2))
                                                             -- 55 -> 27
  features:add(SpatialConvolution(64,192,5,5,1,1,2,2))
                                                             -- 27 -> 27
```

```
-- 4. trainBatch - Used by train() to train a single batch after the data is loaded.
function trainBatch(inputsCPU, labelsCPU)
    cutorch.synchronize()
    collectgarbage()
    local dataLoadingTime = dataTimer:time().real
    timer:reset()

-- transfer over to GPU
    inputs:resize(inputsCPU:size()):copy(inputsCPU)
    labels:resize(labelsCPU:size()):copy(labelsCPU)

local err, outputs
feval = function(x)
    model:zeroGradParameters()
```

imperative programming in Lua tied closely to underlying C89 implementations Lua lacked good tooling and ecosystem

```
-- classifier:add(nn.Dropout(0.5))
classifier:add(nn.Linear(256*6*6, 4096))
classifier:add(nn.Threshold(0, 1e-6))
-- classifier:add(nn.Dropout(0.5))
classifier:add(nn.Linear(4096, 4096))
classifier:add(nn.Threshold(0, 1e-6))
classifier:add(nn.Linear(4096, 1000))
-- classifier:add(nn.LogSoftMax())

features:get(1).gradInput = nil

local model = nn.Sequential()
model:add(features):add(classifier)

return model, 'AlexNet', {128,3,224,224}
end

return alexnet
```

```
local top1 = 0
do
  local _,prediction_sorted = outputs:float():sort(2, true) -- descending
  for i=1,opt.batchSize do
    if prediction_sorted[i][1] == labelsCPU[i] then
        top1_epoch = top1_epoch + 1;
        top1 = top1 + 1
    end
  end
  top1 = top1 * 100 / opt.batchSize;
end
-- Calculate top-1 error, and print information
print(('Epoch: [%d] %d/%d]\tTime %.3f Err %.4f Top1-%: %.2f LR %.0e DataLoadingTime %.3f'):format(
        epoch, batchNumber, opt.epochSize, timer:time().real, err, top1,
        optimState.learningRate, dataLoadingTime))
```

What is PyTorch?

Deep Learning

Reinforcement Learning

Numpy-alternative

ndarray library

- •np.ndarray <-> torch.Tensor
- •200+ operations, similar to numpy
- •very fast acceleration on NVIDIA GPUs


```
# -*- coding: utf-8 -*-
import numpy as np
# N is batch size; D_in is input dimension;
# H is hidden dimension; D_out is output dimension.
N, D_{in}, H, D_{out} = 64, 1000, 100, 10
# Create random input and output data
x = np.random.randn(N, D_in)
y = np.random.randn(N, D out)
# Randomly initialize weights
w1 = np.random.randn(D_in, H)
                                             Numpy
w2 = np.random.randn(H, D_out)
learning_rate = 1e-6
for t in range(500):
    # Forward pass: compute predicted y
    h = x.dot(w1)
   h_relu = np.maximum(h, 0)
   y_pred = h_relu.dot(w2)
    # Compute and print loss
    loss = np.square(y_pred - y).sum()
    print(t, loss)
    # Backprop to compute gradients of w1 and w2 with respect to loss
    grad_y_pred = 2.0 * (y_pred - y)
    grad_w2 = h_relu.T.dot(grad_y_pred)
    grad_h_relu = grad_y_pred.dot(w2.T)
    grad_h = grad_h_relu.copy()
    grad_h[h < 0] = 0
    grad_w1 = x.T.dot(grad_h)
    # Update weights
    w1 -= learning_rate * grad_w1
    w2 -= learning_rate * grad_w2
```

```
import torch
dtype = torch.FloatTensor
# dtype = torch.cuda.FloatTensor # Uncomment this to run on GPU
# N is batch size; D_in is input dimension;
# H is hidden dimension; D_out is output dimension.
N, D_{in}, H, D_{out} = 64, 1000, 100, 10
# Create random input and output data
x = torch.randn(N, D_in).type(dtype)
y = torch.randn(N, D_out).type(dtype)
                                              PyTorch
# Randomly initialize weights
w1 = torch.randn(D_in, H).type(dtype)
w2 = torch.randn(H, D_out).type(dtype)
learning_rate = 1e-6
for t in range(500):
   # Forward pass: compute predicted y
   h = x.mm(w1)
   h_relu = h.clamp(min=0)
   y_pred = h_relu.mm(w2)
   # Compute and print loss
   loss = (y_pred - y).pow(2).sum()
   print(t, loss)
    # Backprop to compute gradients of w1 and w2 with respect to loss
   grad_y_pred = 2.0 * (y_pred - y)
   grad_w2 = h_relu.t().mm(grad_y_pred)
   grad_h_relu = grad_y_pred.mm(w2.t())
   grad_h = grad_h_relu.clone()
   grad_h[h < 0] = 0
   grad_w1 = x.t().mm(grad_h)
   # Update weights using gradient descent
   w1 -= learning_rate * grad_w1
   w2 -= learning_rate * grad_w2
```

Tensors are similar to numpy's ndarrays, with the addition being that Tensors can also be used on a GPU to accelerate computing.

```
from __future__ import print_function
import torch
```

Construct a 5x3 matrix, uninitialized:

```
x = torch.Tensor(5, 3)
print(x)
```

Out:

```
1.00000e-25 *

0.4136  0.0000  0.0000

0.0000  1.6519  0.0000

1.6518  0.0000  1.6519

0.0000  1.6518  0.0000

1.6520  0.0000  1.6519

[torch.FloatTensor of size 5x3]
```


Construct a randomly initialized matrix

```
x = torch.rand(5, 3)
print(x)

Out:
0.2598  0.7231  0.8534
    0.3928  0.1244  0.5110
    0.5476  0.2700  0.5856
    0.7288  0.9455  0.8749
    0.6663  0.8230  0.2713
[torch.FloatTensor of size 5x3]
```

Get its size

```
print(x.size())

Out:
torch.Size([5, 3])
```


You can use standard numpy-like indexing with all bells and whistles!

```
print(x[:, 1])

Out:
0.7231
0.1244
0.2700
0.9455
0.8230
[torch.FloatTensor of size 5]
```



```
y = torch.rand(5, 3)
print(x + y)
```

Out:

```
0.7931 1.1872 1.6143

1.1946 0.4669 0.9639

0.7576 0.8136 1.1897

0.7431 1.8579 1.3400

0.8188 1.1041 0.8914

[torch.FloatTensor of size 5x3]
```


Converting torch Tensor to numpy Array

```
a = torch.ones(5)
print(a)
```

```
Out:

1
1
1
1
1
1
[torch.FloatTensor of size 5]
```

```
b = a.numpy()
print(b)
```

```
Out:
[ 1. 1. 1. 1.]
```


Converting torch Tensor to numpy Array

```
a = torch.ones(5)
print(a)
```

Out:

```
Zero memory-copy

very efficient

[torch.FloatTensor of size 5]
```

```
b = a.numpy()
print(b)
```

```
Out: [ 1. 1. 1. 1. ]
```


See how the numpy array changed in value.

```
a.add_(1)
print(a)
print(b)
```

```
Out:

2
2
2
2
2
[torch.FloatTensor of size 5]

[ 2. 2. 2. 2. 2.]
```


Converting numpy Array to torch Tensor

See how changing the np array changed the torch Tensor automatically

```
import numpy as np
a = np.ones(5)
b = torch.from_numpy(a)
np.add(a, 1, out=a)
print(a)
print(b)
```

```
Out:
[ 2. 2. 2. 2. 2.]

2 2 2 2 2 2 [torch.DoubleTensor of size 5]
```

All the Tensors on the CPU except a CharTensor support converting to NumPy and back.

Seamless GPU Tensors

CUDA Tensors %

Tensors can be moved onto GPU using the .cuda function.

```
# let us run this cell only if CUDA is available
if torch.cuda.is_available():
    x = x.cuda()
    y = y.cuda()
    x + y
```


automatic differentiation engine

for deep learning and reinforcement learning


```
W_h = torch.randn(20, 20, requires_grad=True)
W_x = torch.randn(20, 10, requires_grad=True)
x = torch.randn(1, 10)
prev_h = torch.randn(1, 20)
```

 W_h h W_x x

```
W_h = torch.randn(20, 20, requires_grad=True)
W_x = torch.randn(20, 10, requires_grad=True)
x = torch.randn(1, 10)
prev_h = torch.randn(1, 20)
i2h = torch.mm(W_x, x.t())
h2h = torch.mm(W h, prev h.t())
```


next h = i2h + h2h

```
W_h = torch.randn(20, 20, requires_grad=True)
W_x = torch.randn(20, 10, requires_grad=True)
x = torch.randn(1, 10)
prev_h = torch.randn(1, 20)

i2h = torch.mm(W_x, x.t())
h2h = torch.mm(W h, prev h.t())
```



```
W_h = torch.randn(20, 20, requires_grad=True)
W_x = torch.randn(20, 10, requires_grad=True)
x = torch.randn(1, 10)
prev_h = torch.randn(1, 20)

i2h = torch.mm(W_x, x.t())
h2h = torch.mm(W_h, prev_h.t())
next h = i2h + h2h
```



```
W_h = torch.randn(20, 20, requires_grad=True)
W_x = torch.randn(20, 10, requires_grad=True)
x = torch.randn(1, 10)
prev_h = torch.randn(1, 20)

i2h = torch.mm(W_x, x.t())
h2h = torch.mm(W_h, prev_h.t())
next_h = i2h + h2h
next_h = next_h.tanh()
```



```
W h = torch.randn(20, 20, requires grad=True)
W x = torch.randn(20, 10, requires grad=True)
x = torch.randn(1, 10)
prev h = torch.randn(1, 20)
i2h = torch.mm(W x, x.t())
h2h = torch.mm(W h, prev h.t())
next h = i2h + h2h
next h = next h.tanh()
next h.backward(torch.ones(1, 20))
```


Neural Networks

```
class Net(nn.Module):
         def __init__(self):
             super(Net, self).__init__()
             self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
             self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
 5
             self.conv2_drop = nn.Dropout2d()
 6
             self.fc1 = nn.Linear(320, 50)
             self.fc2 = nn.Linear(50, 10)
 9
        def forward(self, x):
10
11
             x = F.relu(F.max_pool2d(self.conv1(x), 2))
             x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
             x = x.view(-1, 320)
            x = F.relu(self.fc1(x))
14
15
             x = F.dropout(x, training=self.training)
            x = self.fc2(x)
16
             return F.log_softmax(x)
    model = Net()
     input = Variable(torch.randn(10, 20))
    output = model(input)
```

Neural Networks

```
class Net(nn.Module):
         def __init__(self):
             super(Net, self).__init__()
 3
             self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
 4
             self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
 5
             self.conv2_drop = nn.Dropout2d()
 6
             self.fc1 = nn.Linear(320, 50)
             self.fc2 = nn.Linear(50, 10)
 8
 9
        def forward(self, x):
10
11
             x = F.relu(F.max_pool2d(self.conv1(x), 2))
             x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
             x = x.view(-1, 320)
            x = F.relu(self.fc1(x))
14
             x = F.dropout(x, training=self.training)
15
             x = self.fc2(x)
16
             return F.log_softmax(x)
    model = Net()
     input = Variable(torch.randn(10, 20))
    output = model(input)
```

Neural Networks

```
class Net(nn.Module):
        def __init__(self):
             super(Net, self).__init__()
             self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
             self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
             self.conv2_drop = nn.Dropout2d()
 6
             self.fc1 = nn.Linear(320, 50)
             self.fc2 = nn.Linear(50, 10)
 9
         def forward(self, x):
10
             x = F.relu(F.max_pool2d(self.conv1(x), 2))
11
             x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
12
             x = x.view(-1, 320)
13
             x = F.relu(self.fc1(x))
14
15
             x = F.dropout(x, training=self.training)
             x = self_fc2(x)
16
             return F.log_softmax(x)
    model = Net()
     input = Variable(torch.randn(10, 20))
    output = model(input)
```

Optimization package

SGD, Adagrad, RMSProp, LBFGS, etc.

```
net = Net()
optimizer = torch.optim.SGD(net.parameters(), lr=0.01, momentum=0.9)

for input, target in dataset:
    optimizer.zero_grad()
    output = model(input)
    loss = F.cross_entropy(output, target)
    loss.backward()
    optimizer.step()
```

Bootstrapping

Writing
Dataset loaders

Building models

Implementing
Training loop

Checkpointing models

Python + PyTorch - an environment to do all of this

Interfacing with environments

Building optimizers

Dealing with GPUs

Building Baselines

Bootstrapping

Writing
Dataset loaders

Building models

Implementing
Training loop

Checkpointing models

bootstrapping the Python tooling stack for good UX

Interfacing with environments

Building optimizers

Dealing with GPUs

Building Baselines

Python is slow, interpreted

- •Global interpreter-lock
- •application logic is order of magnitude slower than C++
- moved autograd engine to C++
- moved everything to ATen
 - Side-effect, a clean C++ API

