

Textos de apoio de Engenharia Económica PARTE I

Mestrado Integrado em Engenharia Informática

Paula Varandas Ferreira

2016/2017

ENQU	ADRAMENTO	3
1. (CONCEITOS BÁSICOS DE MATEMÁTICA FINANCEIRA	4
1.1	O VALOR DO DINHEIRO NO TEMPO	4
1.2	O JURO (INTERESSE)	4
1.3	O JURO SIMPLES E COMPOSTO	5
1.4	Taxa de juro nominal e efetiva	8
1.5	PAGAMENTOS UNIFORMES	9
1.6	Perpetuidades	12
1.7	RESUMO	12
2. (COMPARAÇÃO DE CUSTOS	13
2.1	AVALIAÇÃO PELO VALOR PRESENTE	14
2.2	AVALIAÇÃO PELA ANUIDADE EQUIVALENTE	15
2.3	COMPARAÇÃO DE OPÇÕES COM IGUAL TEMPO DE VIDA	16
2.4	COMPARAÇÃO DE OPÇÕES DIFERENTE TEMPO DE VIDA	17
3. (O EFEITO DOS IMPOSTOS NA COMPARAÇÃO DE CUSTOS	19
3.1	Amortizações	19
3.2	FLUXOS MONETÁRIOS APÓS IMPOSTOS	20
4.	AVALIAÇÃO DE PROJETOS	23
4.1	VALOR ATUAL LÍQUIDO (VAL)	24
4.2	TAXA INTERNA DE RENTABILIDADE	25
4.3	ANUIDADE EQUIVALENTE	26
4.4	TEMPO DE RECUPERAÇÃO	27
4.5	COMPARAÇÃO DOS MÉTODOS	27
5. (COMPARAÇÃO E SELEÇÃO DE PROJETOS DE INVESTIMENTO	29
REFER	ÊNCIAS BIBLIOGRÁFICAS	32
ANITY	O 4. TARELAS DE MATEMÁTICA FINANCEIRA	24

Enquadramento

As funções diversificadas e abrangentes de um engenheiro requerem que as suas competências vão muito para além dos conhecimentos técnicos específicos de cada especialidade. É necessário reconhecer e compreender o contexto económico, ambiental e social na tomada de decisão em projetos de engenharia. Assim, a utilização de recursos monetários escassos de um modo eficiente é um critério essencial na seleção de alternativas de investimento tecnicamente viáveis. A análise financeira de custos e benefícios associados a diferentes investimentos, representa assim uma disciplina fundamental para a formação de um profissional de engenharia.

1. Conceitos básicos de matemática financeira

Neste capítulo apresentam-se alguns conceitos básicos de matemática financeira essenciais para o decisor avaliar financeiramente os projetos.

1.1 O valor do dinheiro no tempo

A avaliação de um projeto envolve a análise de custos e benefícios, expressos em valores monetários, que ocorrem em diferentes momentos da vida do projeto. De modo a comparar esses fluxos monetários é necessário recorrer ao conceito de *taxa de juro* ou *taxa de interesse* que permite avaliar como o valor do dinheiro varia no tempo. $1 \in \text{agora vale mais do que } 1 \in \text{amanhã}$; $1 \in \text{amanhã}$ vale mais do que $1 \in \text{depois de amanhã}$... Quais as razões para isso?

- Os valores futuros são afetados pela inflação; deste modo o poder de compra de 1 €
 hoje é superior ao de 1 € amanhã.
- Existe risco e incerteza. Um rendimento ou despesa que ocorra hoje é um valor certo.
 O rendimento ou despesa futura pode variar de acordo com o valor antecipado.
- Existe necessidade de retorno. Ao incorrer numa despesa hoje, o investidor espera ser recompensado por um retorno no futuro que compense o deferimento do consumo.

Deste modo o investidor espera obter um prémio pelo seu investimento que compense os três fatores: inflação; risco e deferimento. Mesmo que a inflação não seja considerada, uma quantia hoje continua a ser mais valiosa do que a mesma quantia no futuro.

A definição da taxa de interesse tem grande importância na avaliação de projetos. Os benefícios futuros de um projeto, em valores absolutos, podem parecer muito superiores aos custos incorridos de imediato mas, quando reduzidos ao mesmo espaço temporal usando a taxa de interesse, a realidade pode ser substancialmente diferente.

1.2 O juro (interesse)

O *juro* ou *interesse* é a medida do valor do dinheiro no tempo e permite quantificar a diferença entre o dinheiro inicialmente investido/emprestado e o valor final obtido/devido. O capital inicial investido ou emprestado é chamado o *principal*. Se o principal é investido no momento t₀ e se esse valor acumular juros até ao momento t₁, o juro será:

$$Juro = (valor final obtido)_{t1} - (principal)_{t0}$$
 (1)

Do mesmo modo se o principal é emprestado no momento t₀, o juro será:

$$Juro = (valor final devido)_{t1} - (principal)_{t0}$$
 (2)

Se este juro ou interesse for apresentado sob a forma de uma taxa percentual será:

Taxa de juro (interesse) =
$$\frac{\text{Interesse no períodode tempo t}}{\text{Principal original}} \times 100 \,(\%)$$
 (3)

Exemplo 1

Uma empresa de construção civil investe $10\ 000\ \in$ num novo projeto, obtendo $10\ 650\ \in$ $12\ meses$ depois. Determine: (a) O juro ou interesse subjacente ao projeto. (b) A taxa de juro ou interesse sobre o capital investido.

- (a) Usando a eq. (1): Juro = $10650 10000 = 650 \in$
- (b) Usando a eq. (3): Taxa de juro = 650/10000 = 6.5 % ao ano

1.3 O juro simples e composto

Para calcular o valor do dinheiro acumulado durante mais do que um período poderá ser considerado juro simples ou juro composto.

No caso do juro simples, o juro acumulado é diretamente proporcional ao principal envolvido. O interesse total acumulado (I) ao longo de um determinado período é:

$$I = P \times i \times n \tag{4}$$

P- principal; i- taxa de interesse; n- número de períodos.

Deste modo o valor futuro do dinheiro (F) será dado por:

$$F = P + I = P + P \times i \times n = P[1 + (i \times n)]$$

$$(5)$$

Exemplo 2

Uma empresa pede um empréstimo no valor de 12 000 € por um período de 4 anos e com uma taxa de juro de 5% em regime simples. Quanto deverá pagar ao fim do período do empréstimo?

Usando a eq. (5):
$$F = 12000 [1 + (0.05 \times 4)] = 14400 €$$

Ano	Empréstimo	Interesse	Divida acumulada	Divida paga
0	12000			
1		600	12600	
2		600	13200	
3		600	13800	
4		600	14400	14400

No caso do juro composto, o juro devido em cada período de tempo é calculado sobre o principal mais o juro acumulado em todos os períodos anteriores. Deste modo o capital vai aumentando sucessivamente ao longo do tempo.

O interesse (I_1) ao fim do primeiro período é: $I_1 = P \times i$

O valor do capital (F_1) ao fim do primeiro período é: $F_1 = P + P \times i = P (1+i)$

O interesse (I₂) ao fim do segundo período é: $I_2 = (P+I_1) \times i = F_1 \times i$

O valor do capital (F₂) ao fim do primeiro período é: $F_2 = P(1+i)(1+i) = P(1+i)^2$

(...)

A expressão generalizada para obter o valor futuro do dinheiro (F) para um período de tempo (n) á taxa de juro composto (i) sobre o capital inicial (P), também conhecida por expressão de capitalização é:

$$F = P (1+i)^n = P F_{PF,i,n}$$
 (6)

Onde $F_{PF,i,n} = (1+i)^n$ é o fator do juro composto que pode ser calculado ou obtido em tabelas de matemática financeira como as que se apresentam no Anexo 1.

A relação inversa permite obter a expressão generalizada para obter o valor do capital inicial (P) a partir do valor futuro (F) para um período de tempo (n) á taxa de juro composto (i).

$$P = F (1+i)^{-n} = F F_{FP,i,n}$$
 (7)

Onde $F_{FP,i,n} = (1+i)^{-n}$ é o fator do valor atual que pode ser calculado ou obtido em tabelas de matemática financeira como as que se apresentam no Anexo 1.

Exemplo 3

Uma empresa pede um empréstimo no valor de 12 000 € por um período de 4 anos e com uma taxa de juro de 5% ao ano em regime composto. Quanto deverá pagar ao fim do período do empréstimo?

Usando a eq. (6):

 $F = 12000 \; (1 + 0.05)^4 = 14586, \\ 1 \; \in \; ou \; \; F = 12000 \; \times \; F_{PF,5,4} = 12000 \; \times \; 1.2155 = 14586, \\ 1 \; \in \; ou \; \; F = 12000 \; \times \; 1.2155 = 14586, \\ 1 \; \in \; ou \; \; F = 12000 \; \times \; 1.2155 = 14586, \\ 1 \; \in \; ou \; \; F = 12000 \; \times \; 1.2155 = 14586, \\ 1 \; \in \; ou \; \; F = 12000 \; \times \; 1.2155 = 14586, \\ 1 \; \in \; ou \; \; F = 12000 \; \times \; 1.2155 = 14586, \\ 1 \; \in \; ou \; \; F = 12000 \; \times \; 1.2155 = 14586, \\ 1 \; \in \; ou \; \; F = 12000 \; \times \; 1.2155 = 14586, \\ 1 \; \in \; ou \; \; F = 12000 \; \times \; 1.2155 = 14586, \\ 1 \; \in \; ou \; \; F = 12000 \; \times \; 1.2155 = 14586, \\ 1 \; \in \; ou \; \; F = 12000 \; \times \; 1.2155 = 14586, \\ 1 \; \in \; ou \; \; F = 12000 \; \times \; 1.2155 = 14586, \\ 1 \; \in \; ou \; \; F = 12000 \; \times \; 1.2155 = 14586, \\ 1 \; \in \; ou \; \; F = 12000 \; \times \; 1.2155 = 14586, \\ 1 \; \in \; ou \; \; F = 12000 \; \times \; 1.2155 = 14586, \\ 1 \; \in \; ou \; \; F = 12000 \; \times \; 1.2155 = 14586, \\ 1 \; \in \; ou \; \; F = 12000 \; \times \; 1.2155 = 14586, \\ 1 \; \in \; ou \; \; F = 12000 \; \times \; 1.2155 = 14586, \\ 1 \; \in \; ou \; F = 12000 \; \times \; 1.2155 = 14586, \\ 1 \; \circ ou \; F = 12000 \; \times \; 1.2156 = 12000 = 12000 = 12000 = 12000 =$

Ano	Empréstimo	Interesse	Divida acumulada	Divida paga
0	12000			
1		600.0	12600,0	
2		630.0	13230,0	
3		661,5	13891,5	
4		694,6	14586,1	14586,1
			Valores em €	

O exemplo 3 põe em evidência também o princípio da equivalência. De acordo com este exemplo 12000 € agora são equivalentes a possuir 14586,1 € dentro de 4 anos ou seja têm o mesmo valor económico. Este princípio da equivalência é essencial para a avaliação financeira de projetos, uma vez que permite que diferentes valores de fluxos monetários que ocorram em diferentes momentos possam ser comparados num instante de tempo comum.

Exemplo 4

Uma empresa pede um empréstimo no valor de $10~000~\epsilon$ por um período de 5~anos e com uma taxa de juro de 8% ao ano em regime composto. Compare os diferentes planos de pagamento disponíveis:

Ano	Empréstimo	Plano A	Plano B	Plano C
0	10000			
1		2504,6	0	
2		2504,6	0	5000
3		2504,6	0	
4		2504,6	0	
5		2504,6	14693,3	8394,7
Total	10000	12523	14693,3	13394,7

Valores em €

Para cada um destes planos é possível calcular o valor presente equivalente aos pagamentos a efetuar:

Plano A:
$$P = 2504,6 (1+0,08)^{-1} + 2504,6 (1+0,08)^{-2} + 2504,6 (1+0,08)^{-3} + 2504,6 (1+0,08)^{-4} + 2504,6 (1+0,08)^{-5} = 10000 \in$$

Plano B: P = $14693,3 (1+0,08)^{-5} = 10000 €$

Plano C: P =
$$5000 (1+0.08)^{-2} + 8394.7 (1+0.08)^{-5} = 10000 €$$

Os planos são todos economicamente equivalentes, para a taxa de juro de 8% ao ano.

1.4 Taxa de juro nominal e efetiva

Na maior parte dos casos, a taxa de juro é dada numa base anual. No entanto, frequentemente, o juro é vencido várias vezes ao longo de um ano (capitalização). Por exemplo, se o juro for vencido duas vezes num ano com uma taxa de juro de 6% em cada período de meio ano, a taxa pode ser expressa como 12% ao ano com capitalização semestral. Isto é a taxa de juro anual nominal é igual a 12%. Veja-se um exemplo, se um banco oferecer uma taxa de juro nominal de 12% ao ano para um depósito de 1000 €, teremos ao fim de 1 ano:

Deste modo o cálculo do juro total num período n depende da capitalização da taxa.

A utilização de taxas efetivas (equivalentes) elimina estas questões e torna assim os cálculos independentes do período de capitalização. Veja-se outro exemplo, se um banco oferecer uma taxa de juro efetiva de 12% ao ano para um depósito de 1000 €, teremos ao fim de 1 ano:

$$F = 1000 \times (1+0,12) = 1120 \in$$

A taxa efetiva semestral associada a esta conta poderia ser calculada por uma relação de equivalência:

$$1000 \times (1+0.12) = 1000 \times (1+i_{semestral})^2 \iff i_{semestral} = 5.83\%$$

É fundamental efetuar os cálculos de matemática financeira utilizando sempre as taxas de juro efetivas e não as anunciadas ou nominais.

Assim, a partir de uma taxa nominal é sempre possível calcular a taxa efetiva referente ao período de capitalização sabendo qual a periodicidade dessa capitalização. Considerando uma taxa nominal i_n referente a um determinado período e que capitaliza m vezes nesse período a taxa efetiva (i_{ef}) será dada pela relação de proporcionalidade:

$$i_{ef} = i_n / m$$
 , para o período m (8)

Para converter uma taxa de juro efetiva referentes a um período numa taxa efetiva referente a um subperiodo p, utilizaremos a relação da equivalência:

$$(1+i) = (1+i_p)^p$$
 ,onde p é o numero de subperiodos dentro do período da taxa (9)

Exemplo 5

O Sr. Antunes colocou 1000 € num banco durante 5 anos à taxa anual nominal de 16%. Determine o valor acumulado se:

(a) A capitalização for anual.

Se a taxa é dada para o mesmo período da capitalização, significa que a taxa nominal é simultaneamente a taxa efetiva. Verificando pela equação (7) teremos: $i_{ano} = 16\% / 1 = 16\%$.

$$F = 1000 \times (1+0.16)^5 = 2100.34 \in$$

(b) A capitalização for mensal.

Como o período de capitalização é o mês é necessário calcular a taxa mensal corresponde, pela equação (8): $i_{mes} = 16\% / 12 = 1,33\%$.

$$F = 1000 \times (1+0.0133)^{60} = 2209.44 \in$$

Ou, utilizando a taxa anual efetiva: $(1+0.0133)^{12} = (1+i_{ano}) \Leftrightarrow i_{ano} = 17.18\%$

$$F = 1000 \times (1+0,1718)^5 = 2209,44 \in$$

Exemplo 6

Considerando a taxa anual nominal de 18% com capitalização semestral, determine a taxa de juro mensal efetiva:

Uma vez que a capitalização é semestral o juro será vencido 2 vezes em cada período de 1 ano. Pela equação (8) teremos a taxa semestral efetiva: $i_s = 18\% / 2 = 9\%$.

Pela equação (9) teremos a taxa mensal efetiva, com p=6 uma vez que cada semestre tem 6 meses: $(1+0,09)=(1+i_m)^6 \Leftrightarrow i_m=1,45\%$

1.5 Pagamentos uniformes

Frequentemente os projetos/investimentos requerem pagamentos ou recebimentos uniformes, caracterizados por um valor A constante e pago no final de cada sub-periodo durante um

período de tempo n. Este tipo de pagamentos é frequente a nível empresarial e também a nível pessoal quando se contrai um empréstimo para a aquisição de uma casa ou de um carro por exemplo. A figura seguinte esquematiza o exemplo de um empréstimo P contraído em n=0, amortizado com pagamentos uniformes A no final de cada ano durante n períodos.

Usando a relação de atualização (equação 7) podemos calcular o valor de P como a somatórios dos valores de A atualizados à taxa de interesse i:

$$P = A (1+i)^{-1} + A (1+i)^{-2} + A (1+i)^{-3} + \dots + A (1+i)^{-n}$$

$$P = A (1+i)^{-1} [1 + (1+i)^{-1} + (1+i)^{-2} + \dots + (1+i)^{-n+1}]$$
(10)

Multiplicando por (1+i)⁻¹:

$$P(1+i)^{-1} = A(1+i)^{-1} [(1+i)^{-1} + (1+i)^{-2} + (1+i)^{-3} + \dots + (1+i)^{-n}]$$
(11)-(10):

$$P[(1+i)^{-1}-1] = A(1+i)^{-1}[(1+i)^{-n}1]$$

$$P = \frac{(1+i)^{-n} - 1}{(1+i)^{-1} - 1} (1+i)^{-1} \iff P = \frac{1 - (1+i)^{-n}}{i}$$

$$P = A \frac{(1+i)^{n} - 1}{i(1+i)^{n}} = A F_{AP,i,n}$$
 (12)

Onde $F_{AP,i,n} = \frac{(1+i)^n - 1}{i(1+i)^n}$ é o fator de anuidade- valor presente que pode ser calculado ou obtido em tabelas de matemática financeira como as que se apresentam no Anexo 1.

A relação inversa permite obter a expressão generalizada para obter o valor da anuidade a pagar no fim de cada ano (A) para recuperar (ou amortizar) um investimento (P) num período de tempo (n) á taxa de juro composto (i).

$$A = P \frac{i(1+i)^{n}}{(1+i)^{n}-1} = P F_{PA,i,n}$$
 (13)

Onde $F_{PA,i,n}=\frac{i(1+i)^n}{(1+i)^n-1}$ é o fator de recuperação de capital que pode ser calculado ou obtido em tabelas de matemática financeira como as que se apresentam no Anexo 1.

Exemplo 7

Qual o valor do investimento a realizar hoje num fundo que rende 10% ao ano, de modo a poder retirar $200 \in$ no final de cada ano durante os próximos 4 anos, esgotando por completo o fundo no final desse período?

Pela equação (12) teremos: P = 200
$$\frac{(1+0,1)^4-1}{0,1(1+0,1)^4}$$
 = 200 F_{AP,10%,4} = 200 × 3,1699 = 634 €

Combinando a equação (12) com a equação (6) obtemos:

$$F = A \frac{(1+i)^{n} - 1}{i} = AF_{AF,i,n}$$
 (14)

Onde $F_{AF,i,n} = \frac{(1+i)^n - 1}{i}$ é o fator de anuidade- valor futuro que pode ser calculado ou obtido em tabelas de matemática financeira como as que se apresentam no Anexo 1.

A relação inversa permite obter a expressão generalizada para obter o valor da anuidade a pagar no fim de cada ano (A) a partir do valor futuro (F) ao longo de um período de tempo (n) á taxa de juro composto (i).

$$A = F \frac{i}{(1+i)^{n} - 1} = AF_{FA,i,n}$$
 (15)

Onde $FA_{,i,n}=\frac{i}{(1+i)^n-1}$ é o fator do fundo de liquidação que pode ser calculado ou obtido em tabelas de matemática financeira como as que se apresentam no Anexo 1.

Exemplo 8

São feitos depósitos no valor de $110 \in$ no final de cada ano num fundo de investimento que rende 8% ao ano. Quanto estará acumulado no fundo ao fim de 12 anos?

Pela equação (14) teremos: F = 110
$$\frac{(1+0.08)^{12}-1}{0.08}$$
 = 110 F_{AF,8%,12} = 110 × 18,9771 = 2087,48 €

1.6 Perpetuidades

Um projeto pode ter uma sequência infinita de recebimentos ou pagamentos. Este é o caso de grandes projetos de engenharia como túneis ou barragens que permitem um serviço muito prolongado. O custo capitalizado (P_{∞}) representa o valor presente dos custos e benefícios uniformes de um projeto com tempo de vida infinito e pode ser calculado a partir da equação $12 \text{ com } n=\infty$.

$$\lim_{n\to\infty} (1+i)n-1i(1+i)n = \lim_{n\to\infty} 1-1(1+i)ni=1i$$

$$P_{\infty} = A \frac{1}{i} \tag{16}$$

Exemplo 9

Uma fundação pretende criar um fundo de investimento que lhe permita distribuir anualmente 80000 ϵ para um período de tempo infinito. Se a taxa de interesse do fundo for de 7,75% quanto deverá ser investido hoje?

Pela equação (15) teremos:
$$P_{\infty} = 80000 \ \frac{1}{0,0775} = 1032258 \ \epsilon.$$

Repare-se que no exercício anterior, 80000 € corresponde exatamente ao valor do juro gerado anual pelo investimento inicial. Deste modo no cálculo do custo capitalizado assume-se que o juro ou interesse gerado pelo investimento pode ser gasto/distribuído mas o principal não decresce, caso contrário o investimento iria esgotar-se antes do infinito.

1.7 Resumo

Este capítulo abordou o conceito de equivalência e taxa de juro e a sua utilização nos fatores financeiros, que permitem efetuar cálculos tendo em consideração o valor do dinheiro no

tempo. O claro entendimento destes princípios financeiros básicos é fundamental para realizar uma avaliação económica de um projeto de engenharia. A tabela seguinte resume as principiais relações apresentadas anteriormente.

$$F = P (1+i)^n = P F_{PF,i,n}$$

$$P = F (1+i)^{-n} = P F_{FP,i,n}$$

$$P = A \frac{(1+i)^n - 1}{i(1+i)^n} = A F_{AP,i,n}$$

$$A = P \frac{i(1+i)^n}{(1+i)^n - 1} = P F_{PA,i,n}$$

$$F = A \frac{(1+i)^n - 1}{i} = AF_{AF,i,n}$$

$$A=F\ \frac{i}{(1+i)^n-1} \quad =AF_{FA,i,n}$$

$$P_{\infty} = A \frac{1}{i}$$

Estas relações assumem que o valor presente (P) ocorre no princípio do período em análise, as anuidades (A) e o valor futuro (F) ocorrem no fim do período em análise. Uma vez conhecidos os métodos de valorização do dinheiro no tempo é agora possível avaliar um projeto/investimento ou um conjunto de projetos do ponto de vista financeiro.

2. Comparação de custos

O processo de tomada de decisão implica a análise dos fluxos financeiros de cada alternativa de investimento de modo a que estes possam ser avaliados em termos da sua eficiência económica. Esta avaliação baseia-se na aplicação do princípio da equivalência, que permtie traduzir diferentes fluxos financeiros numa soma equivalente ou numa séria de fluxos com horizontes temporais comparáveis.

Para a comparação de máquinas ou diferentes propostas de investimento será necessário conhecer diversos elementos que permitem caracterizar cada alternativa:

- A vida económica do projeto, definida de acordo com as características técnicas do equipamento e com a aceitação do produto pelo mercado (n).
- Os fluxos financeiros do projeto em termos de valores monetários envolvido e momentos em que ocorrem ao longo da vida económica do projeto. Onde se incluem:
 - ⇒ C_i- Custo de aquisição, que poderá ocorrer na totalidade no início do projeto ou implicar pagamentos adicionais ao longo da vida do projeto.
 - ⇒ R- Custos regulares, que representam pagamentos a efetuar periodicamente ao longo da vida do projeto.
 - ⇒ C_x- Custos irregulares, que representam pagamentos a efetuar em determinados momentos ao longo da vida do projeto.
 - ⇒ R'- Recebimentos, que representam proveitos/benefícios auferidos ao longo da vida do projeto.
 - ⇒ VR- Valor residual, que representa o valor que pode ser recuperado após a vida útil do projeto.
- A taxa de interesse a aplicar na atualização dos fluxos financeiros. Esta taxa deverá ser a taxa mínima exigida pelo investidor, conhecida como a taxa mínima de atratividade.

Na comparação de opções às quais não são atribuídos benefícios financeiros diretos ou que trarão os mesmos benefícios, a análise será feita apenas com base no custo total e a escolha deverá recair naquela que apresentar um menor custo em valor absoluto.

2.1 Avaliação pelo valor presente

Uma das formas mais simples de proceder à comparação alternativas é reportar todos os fluxos financeiros ao momento presente. O valor presente (VP) representa o valor de uma determinada opção reportado ao momento atual medido em unidades monetárias. O cálculo de VP deverá ser realizada somando todos proveitos ou benefícios atualizados obtidos pelo projeto e subtraindo todos os custos atualizados incorridos pelo projeto.

No caso de projetos que não geram um benefício quantificável em valores monetários (por exemplo um equipamento auxiliar de produção ou administrativo), o valor de VP apenas representará a totalidade dos custos e apresentará assim um valor negativo.

Exemplo 10

Uma casa arrendada gera $12000 \in$ anuais. Os custos anuais de manutenção são $3000 \in$. Sabendo que se estima que a casa pode ser vendida por $145000 \in$ dentro de 10 ano, quanto poderá ser pago por ela agora assumindo que taxa de interesse mínima exigida pelo investidor é de 18%.

$$VP = -C_i + 12000 F_{AP,18\%,10} - 3000 F_{AP,18\%,10} + 145000 F_{FP,18\%,10} = -C_i + 68151$$

Para o investimento ser lucrativo deverá ter um VP > 0.

$$-C_i + 68151 > 0 \Leftrightarrow C_i < 68151 €.$$

O custo de aquisição da casa deverá ser inferior a 68151 €.

2.2 Avaliação pela anuidade equivalente

Este critério é uma variante do VP, convertendo todos os pagamentos e recebimentos num valor uniforme anual (A), ao longo da vida útil do projeto ou equipamento (n). Define-se como:

$$A = VP \times FPA, i, n \tag{17}$$

Mais uma vez no caso de decisões de investimento que não geram um benefício quantificável em valores monetários (por exemplo um equipamento auxiliar de produção ou administrativo), o valor de A apenas representará o custo total anual equivalente.

Exemplo 11

Um apartamento vai ser adquirido por $120\ 000\ \epsilon$. Os custos anuais de manutenção são $3000\ \epsilon$ e estima-se que a casa possa ser vendida por $110000\ \epsilon$ dentro de 15 ano. Se o investidor pretender arrendar o apartamento qual deverá ser o valor da renda anual a cobrar, sabendo que o investidor pretende obter uma taxa de interesse de 15% ao ano? E a renda mensal?

$$VP = -120000 - 3000 F_{AP,15\%,15} + 110000 F_{FP,15\%,15} = -124023,7$$

$$A = 124023,7 F_{PA,15\%,15} = 21210$$
 €/ano

Para o investimento ser lucrativo o apartamento deverá ser arrendado por 21210 €/ano.

$$(1{+}0{,}15) = (1{+}i_m\,)^{12} \Leftrightarrow i_m = 1{,}171\%$$

$$A = 21210 \text{ F}_{\text{FA}; 1,171\%; 12} = 1656 \text{ } \ell\text{/mês ou}$$

$$A = 124023,7 F_{PA; 1,17\%; 180} = 1656 \text{ } \text{e/mês}$$

2.3 Comparação de opções com igual tempo de vida

No caso de se pretender comparar projetos ou opções de investimento com igual tempo de vida estimado o cálculo poderá ser realizado de forma direta, com a opção a apresentar maior valor económico a ser a mais desejável do ponto de vista financeiro.

Exemplo 12

Compare as seguintes propostas para aquisição de uma máquina, assumindo uma taxa de interesse de 12% ao ano.

Custos	Opção A	Opção B
Custo inicial (C_i)	50000	70000
Custos anuais de manutenção (R)	6000	
Subsituação de peças ao fim do terceiro ano (C_{eta})		7000
Valor residual (VR)	8000	5000
Tempo de vida (n)	15	15
	Valores em €	•

VP (Opção A) = -50000 - 6000
$$F_{AP,12\%,15}$$
 + 8000 $F_{FP,12\%,15}$ = -89404 €

VP (Opção B) = -70000 − 7000
$$F_{FP,12\%,3}$$
 + 5000 $F_{FP,12\%,15}$ = -74069 €

A opção B deverá ser selecionada porque o seu custo total (valor absoluto) é inferior ao da máquina A.

A comparação poderia também ser feita recorrendo à anuidade equivalente obtendo-se resultados semelhantes:

A (Opção A) = (-50000 - 6000
$$F_{AP,12\%,15}$$
 + 8000 $F_{FP,12\%,15}$) $F_{PA,12\%,5}$ = -13127 €/ano

A (Opção B) =
$$(-70000 - 7000 F_{FP,12\%,3} + 5000 F_{FP,12\%,15}) F_{PA,12\%,5} = -10875 €/ano$$

Um investidor está a analisar três alternativas incluídas num programa de modernização da linha de produção.

	Alternativa A	Alternativa B	Alternativa C
Custo inicial	10000	15000	20000
Benefícios anuais	1990	2530	3310
Custos anuais	400	400	550
Vida útil	10	10	10
			(€)

Assumindo uma taxa mínima de atratividade de 6% ao ano, qual das alternativas deverá ser selecionada?

VP (Opção A) = -10000 + (1990-400)
$$F_{AP.6\%,10}$$
 = 1702 €

VP (Opção B) = -15000 + (2530-400)
$$F_{AP,6\%,10}$$
 = 677 €

VP (Opção C) = -20000 + (3310-550)
$$F_{AP,6\%,10}$$
 = 314 €

A opção A deverá ser selecionada porque VP_A > VP_B > VP_C.

2.4 Comparação de opções diferente tempo de vida

No caso de se pretender comparar projetos ou opções de investimento com diferente tempo de vida o cálculo deverá ser realizado reportando ao mesmo número de anos. Se a análise não for feita considerando um período de tempo comum, o valor presente irá geralmente favorecer a opção com menor tempo de vida uma vez que implica menos custos, mesmo que esta não seja a mais económica.

Frequentemente recorre-se à comparação das opções considerando um tempo de vida igual o mínimo múltiplo comum (mmc) dos tempos de vida das opções em análise. Com este método assume-se que os fluxos financeiros de uma opção se repetem ao longo de um período de tempo igual ao mmc, estabelecendo-se assim um horizonte comum a ambas as alternativas. Por exemplo, se duas opções estão a ser comparadas, uma com tempo de vida igual a 6 anos e outra com tempo de vida igual a 9 anos, assume-se um projeto a 18 anos, o mmc entre 6 e 9. Deste modo, a primeira opção será analisada para 3 ciclos de vida e a segunda opção será analisada para 2 ciclos de vida.

Um investidor tem duas propostas para construção de um armazém. Uma será feita em madeira e a outra em aço. A tabela seguinte caracteriza financeiramente as opções. Compare as opções com base no valor presente e assumindo uma taxa de interesse de 12% ao ano.

Custos	Madeira	Aço
Custo inicial (C_i)	40000	60000
Custos anuais de manutenção (R)	6500	3500
Valor residual (VR)	5000	
Tempo de vida (n)	10	15

Valores em €

mmc (10, 15) = 30 anos

A análise será assim realizada a 30 anos.

O ciclo da opção madeira deverá ser repetido 3 vezes e o ciclo da opção aço deverá ser repetido 2 vezes conforme ilustra o diagrama seguinte.

VP (Madeira) = -40000 (1+
$$F_{FP,12\%,10}$$
+ $F_{FP,12\%,20}$) - 6500 $F_{AP,12\%,30}$ + 5000 ($F_{FP,12\%,10}$ + $F_{FP,12\%,20}$ + $F_{FP,12\%,30}$) = -107423 €

VP (Aço) = -60000 (1+
$$F_{FP,12\%,15}$$
) - 3500 $F_{AP,12\%,30}$ = -99154 €

A opção aço deverá ser selecionada porque o seu custo total (valor absoluto) é inferior ao da opção madeira.

A técnica do mmc pode-se tornar morosa e, em alternativa pode-se recorrer ao critério da anuidade na seleção de projetos com diferentes tempos de vida. Esta técnica baseia-se também no pressuposto da possibilidade de repetição das condições de realização dos investimentos ao longo do tempo.

Compare as opções apresentadas no exercício anterior com base na anuidade equivalente e assumindo uma taxa de interesse de 12% ao ano.

A (Madeira) = -40000
$$F_{PA,12\%,10}$$
 - 6500 + 5000 $F_{FA,12\%,10}$ = -13294 €/ano

A (Aço) = -60000
$$F_{PA,12\%,15}$$
 - 3500 = -12309 €/ano

A opção aço deverá ser selecionada porque o seu custo anual equivalente (valor absoluto) é inferior ao da opção madeira.

3. O efeito dos impostos na comparação de custos

Na comparação de custos apresentada no Capitulo 2 foi utilizada uma simplificação da realidade, tendo-se assumido cálculos sem impostos. Assim, os fluxos financeiros calculados são considerados fluxos financeiros antes de impostos. Estes valores deverão ser tidos em linha de conta num cálculo mais elaborado (e realista) onde os impostos sejam incluídos e as suas consequências económicas devidamente consideradas. Para estes cálculos são necessários diversos elementos:

- Fluxos financeiros antes de impostos (FAI): calculados de acordo com as receitas e os custos operacionais de cada investimento.
- Amortizações: calculadas de acordo com o tempo de vida fiscal e o método de amortização considerado.
- Rendimento coletável: calculado de acordo com os fluxos financeiros antes de impostos e as amortizações.
- Impostos: calculado de acordo com a taxa de imposto (t) e o rendimento coletável.
- Fluxos financeiros após impostos (FDI): calculados de acordo com os fluxos financeiros antes de impostos e os impostos.

3.1 Amortizações

As amortizações representam a perda de valor contabilístico de um bem imobilizado. São por isso um custo contabilístico uma vez que não são uma saída efetiva de dinheiro da empresa ou projeto. Assim no momento da aquisição de um bem (i.e. no momento do investimento) é

efetuado um pagamento real pelo investidor, o que representa uma saída de dinheiro compensada em termos contabilísticos pela entrada de um bem no mesmo valor. No entanto, este bem vai perdendo valor ao longo do tempo, o que se reflete num custo do exercício: a amortização.

Uma vez que como se disse as amortizações são custos contabilísticos não deveriam afetar diretamente o cálculo dos cash-flows do projeto. No entanto, estes custos são relevantes para efeitos fiscais permitindo obter uma poupança fiscal que deverá ser tida em consideração no cálculo dos CFs.

Existem vários métodos de amortização, sendo o mais comum o método linear onde se assume que a perda de valor do bem é constante ao longo da sua vida útil.

Exemplo 16

Um projeto de investimento implica a aquisição de uma frota de transporte no valor de 150000 amortizável pelo método linear a uma taxa de 25% ao ano (i.e. amortizável em 4 anos). Calcule o valor das amortizações ao longo de 4 anos. Assumindo que a taxa de imposto sobre os lucros é de 30%, determine a poupança fiscal associada a estas amortizações.

Amortização = $150000 \times 0.25 = 37500$ /ano

Poupança fiscal = 25000 × 0,3 = 7500 €/ano

		0	1	2	3	4
Investimento		150000				
Amortizações	25%		37500	37500	37500	37500
Poupança fiscal	30%		11250	11250	11250	11250

Deste modo, a empresa poderá abater 37500 € por ano aos seus lucros, o que lhe permitirá economizar 11250 €/ano em impostos.

3.2 Fluxos monetários após impostos

Os fluxos monetários após impostos podem assim ser calculados seguindo uma estrutura como a que se apresenta na tabela seguinte:

Tabela 3.1 – Fluxos monetários após impostos

Ano	Fluxos financeiros	Amortização	Rendimento	Impostos	Fluxos financeiros após
	antes de imposto		coletável		imposto
0	FAI_0				FAI_0
1	FAI ₁	D_1	FAI ₁ -D ₁	$(FAI_1-D_1)\times t$	FAI_1 - $(FAI_1$ - $D_1)\times t$

m	FAI_m	D_{m}	FAI _m -D _m	$(FAI_m-D_m)\times t$	FAI_m - $(FAI_m$ - $Dm)\times t$
()	()	()	()	()	()
n	FAI _n	D_n	FAI _n -D _n	$(FAI_n-D_n)\times t$	FAI_n - $(FAI_n$ - $Dn)\times t+VR$

O ano 0 deverá ser considerado como o momento de partida do projeto, deste modo está frequentemente associado ao investimento inicial mas não deverá ter associadas despesas operacionais, receitas ou impostos que apenas serão contabilizadas após o primeiro ano de operação.

No último ano em análise (n) deverá ter se contabilizado o valor residual do equipamento. No sentido simplificar a análise iremos assumir que o valor residual atribuído pelo mercado é igual ao seu valor contabilístico, isto é à componente não amortizada do investimento. Deste modo não há lugar nem ao pagamento nem à dedução em impostos. Assim, o valor residual deverá apenas surgir no cálculo do fluxo financeiro após imposto.

O rendimento coletável poderá aparecer com um valor negativo, caso as despesas sejam superiores às receitas. Se assim for o imposto deverá ser calculado do mesmo modo, mas terá também um sinal negativo. Este valor representa assim uma poupança fiscal obtida pela empresa pela aquisição de um bem ou de uma máquina. De qualquer modo as equações e a estrutura de cálculo apresentada na Tabela 3.1 deverão ser mantidas.

Exemplo 17

Uma empresa está a considerar a compra de uma máquina com um custo inicial de $3000 \in$. Estima-se que a máquina permita obter receitas anuais no valor de $800 \in$, tenha despesas operacionais anuais de $490 \in$ e uma vida útil igual a 5 anos. A máquina será amortizada pelo método linear em 3 anos. O valor residual estimado é igual a $750 \in$.

Determine os fluxos monetários antes e após impostos ao longo dos próximos 5 anos. Considere uma taxa de imposto igual a 30%.

Ano	Fluxos financeiros	Amortização	Rendimento	Impostos	Fluxos financeiros
	antes de imposto		coletável		após imposto
0	-3000				-3000
1	800-490=310	750	310-750=-440	$0.3 \times (-440) = -132$	310-(-132) = 442
2	310	750	-440	-132	442
3	310	750	-440	-132	442
4	310		310	93	217
5	310		310	93	310-93+750=967

Amortizações =
$$(3000 - 750)/3 = 750$$
 €

Após o cálculo dos fluxos financeiros após impostos, a decisão económica na comparação de de custos deverá ser baseada nos critérios estabelecidos no Capitulo 2, nomeadamente o valor presente (VP) ou a anuidade equivalente (A). Deverá no entanto ser também considerado o efeito do imposto no cálculo da taxa de juro. Assim a taxa de juro após imposto (r) deverá ser calculada a partir da taxa de juro antes de imposto (i) e da taxa de imposto (t):

$$r = i - i \times t$$

$$r = i (1-t) \tag{23}$$

Exemplo 18

Um investidor tem duas propostas para construção de um armazém. Uma será feita em madeira e a outra em aço. A tabela seguinte caracteriza financeiramente as opções.

Compare as opções considerando que ambas serão amortizadas pelo método linear em 6 anos, a taxa de imposto é 25% e a taxa de juro antes de imposto é igual a 12%.

Custos	Madeira	Aço
Custo inicial (C _i)	40000	60000
Custos anuais de manutenção (R)	6000	3500
Substituição de materiais no inicio do 6º ano	1000	
Valor residual (VR)	5000	
Tempo de vida (n)	10	15

Valores em €

$$r = 12 \times (1-0.25) = 9\%$$

Opção madeira

Ano	Fluxos financeiros antes de imposto	Amortização	Rendimento coletável	Impostos	Fluxos financeiros após imposto
0	-40000		Colourel		-40000
1	-6000	5833	-11833	-2958	-3042
2	-6000	5833	-11833	-2958	-3042
3	-6000	5833	-11833	-2958	-3042
4	-6000	5833	-11833	-2958	-3042
5	-7000	5833	-12833	-3208	-3792
6	-6000	5833	-11833	-2958	-3042
7	-6000		-6000	-1500	-4500
8	-6000		-6000	-1500	-4500
9	-6000		-6000	-1500	-4500

10	-6000		-6000	-1500	500
----	-------	--	-------	-------	-----

VP (10 anos) = - 60713 €
$$A = -9460 \text{ €/ano}$$

Opção aço

Ano	Fluxos financeiros	Amortização	Rendimento	Impostos	Fluxos financeiros
	antes de imposto		coletável		após imposto
0	-60000				-60000
1	-3500	10000	-13500	-3375	-125
2	-3500	10000	-13500	-3375	-125
3	-3500	10000	-13500	-3375	-125
4	-3500	10000	-13500	-3375	-125
5	-3500	10000	-13500	-3375	-125
6	-3500	10000	-13500	-3375	-125
7	-3500		-3500	-875	-2625
8	-3500		-3500	-875	-2625
9	-3500		-3500	-875	-2625
10	-3500		-3500	-875	-2625
11	-3500		-3500	-875	-2625
12	-3500		-3500	-875	-2625
13	-3500		-3500	-875	-2625
14	-3500		-3500	-875	-2625
15	-3500		-3500	-875	-2625

VP (15 anos) = -69944 €
$$A = -8677 \text{ €/ano}$$

A opção aço deverá ser selecionada porque o seu custo total (valor absoluto) é inferior ao da opção madeira.

4. Avaliação de projetos

Os projetos envolvem investimentos com o objetivo de satisfazer uma procura e atingir um objetivo de engenharia ou um propósito económico, envolvendo muitas tarefas complexas. Um projeto é um processo não repetitivo, com inicio e fim definidos, orçamentos e planos financeiros e diversas fases ao longo do ciclo de vida.

O projeto de investimento engloba duas vertentes (Barros, 1995): a intenção ou plano do investimento (ideia) e o próprio estudo dessa intenção (plano de negócios). O objetivo do projeto de investimento é gerar um rendimento durante um certo tempo que remunere adequadamente a aplicação dos recursos escassos. Deste modo a seleção de um projeto é um problema de alocação de recursos escassos incluindo capital, mão de obra, capacidade

administrativa e de gestão, assim como outros recursos. Os projetos podem ser justificados pelo aumento da procura, pela necessidade de melhorar a qualidade do produto ou serviço fornecido, ou por outras necessidades económicas ou ambientais.

A análise de projetos permite escolher entre diferentes alternativas de uso de recursos pela análise de informação e de dados. Os estudos de avaliação de projetos permitem apoiar a seleção e a preparação de novos projetos viáveis.

A avaliação de projetos ou opções de investimento implica a previsão dos fluxos financeiros (ou *cash-flows*) do projeto que são depois utilizados no cálculo dos indicadores de rentabilidade. Assume-se para já que estes valores são conhecidos à partida e no Capitulo 7 será retomada em maior detalhe esta temática. A taxa de interesse a aplicar na atualização dos fluxos financeiros. Esta taxa deverá ser a taxa mínima exigida pelo investidor, conhecida como a taxa mínima de atratividade.

4.1 Valor Atual Líquido (VAL)

O Valor Atual Líquido (VAL) de um projeto é um dos métodos de avaliação mais populares. Baseia-se nos princípios subjacentes ao cálculo do VP e representa o somatório dos cash-flows líquidos atualizados. O critério VAL define-se por:

$$VAL = \sum_{t=0}^{n} \frac{CF_{t}}{(1+i)^{t}} = \sum_{t=0}^{n} CF_{t} (1+i)^{-t}$$
 (18)

Onde n é o horizonte do projeto, i é a taxa de atualização, t é o período e CF é o cash-flow (fluxo financeiro) no período t. A utilização da expressão (24) pressupõe que é conhecida a taxa de atualização e que esta permanece constante ao longo do horizonte do projeto. Obviamente, a consideração de diferentes taxas de atualização tem como consequência a obtenção de diferentes valores do VAL.

Se o VAL for positivo significa que o projeto irá gerar um valor superior ao desembolso de capital do investidor assegurando a taxa de remuneração pretendida e criando riqueza. As regras de decisão são:

Se
$$VAL > 0 \implies Aceitar$$

Se VAL
$$< 0 \Rightarrow$$
 Rejeitar

Se
$$VAL = 0 \Rightarrow$$
 Indiferença

Considere um projeto com os cash-flows estimados apresentados no quadro seguinte:

Ano	0	1	2	3	4	5
CF	-100000	25000	25000	35000	35000	35000

Analise o projeto na ótica do VAL considerando a taxa de atualização igual a 10% e a 18%.

VAL
$$(10\%) = -100000 + 25000(1+0,1)^{-1} + 25000(1+0,1)^{-2} + 35000(1+0,1)^{-3} + 35000(1+0,1)^{-4} + 35000(1+0,1)^{-5} = 15322 \in$$

VAL
$$(18\%)$$
 = -100000 + 25000 $(1+0,18)^{-1}$ + 25000 $(1+0,18)^{-2}$ + 35000 $(1+0,18)^{-3}$ + 35000 $(1+0,18)^{-4}$ + 35000 $(1+0,18)^{-5}$ = -6205 €

Deste modo se os investidores exigirem uma taxa mínima de atratividade de 10% o projeto será implementável. No entanto se for exigida uma taxa de 18% o projeto não é implementável.

4.2 Taxa interna de rentabilidade

A taxa interna de rentabilidade (TIR) é a taxa de juro que torna o VAL igual a zero. Tem-se assim:

$$\sum_{t=0}^{n} \frac{CF_{t}}{(1+TIR)^{t}} = \sum_{t=0}^{n} CF_{t} (1+TIR)^{-t} = 0$$
(19)

Em termos gráficos o cálculo do VAL e da TIR pode ser representado como na figura seguinte:

A tomada de decisão é feita comparando o valor da TIR com a taxa mínima de atratividade (TA) fixada pela empresa. Assim, apesar do cálculo da TIR não exigir o conhecimento prévio

de uma taxa de referência, a decisão final implica esse conhecimento. A TIR poderá ser interpretada como a taxa máxima que uma empresa poderia considerar usar para financiar um projeto sem haver perda financeira para o investidor. O projeto é implementável sempre que TIR seja superior a essa TA. As regras de decisão são:

Se TIR > TA \Rightarrow Aceitar

Se TIR < TA \Rightarrow Rejeitar

Se TIR = TA ⇒ Indiferença

Exemplo 20

Calcule a TIR e analise o projeto descrito no exemplo 19.

$$-100000 + 25000(1+i)^{-1} + 25000(1+i)^{-2} + 35000(1+i)^{-3} + 35000(1+i)^{-4} + 35000(1+i)^{-5} = 0$$

i = TIR = 15,4%.

Deste modo se os investidores exigirem uma taxa mínima de atratividade de 10% o projeto será implementável. No entanto se for exigida uma taxa de 18% o projeto não é implementável.

4.3 Anuidade equivalente

Este critério é uma variante do VAL, convertendo todos os pagamentos e recebimentos num valor uniforme anual (A). Define-se como:

$$A = \sum_{t=0}^{n} \frac{CF_{t}}{(1+i)^{t}} F_{PA,i,n}$$
 (20)

Um projeto é rentável quando A >0. Projetos com A<0 são rejeitados, de acordo com este critério.

Exemplo 21

Calcule a anuidade equivalente (A) e analise o projeto descrito no exemplo 19 para uma taxa mínima de atratividade de 10%.

$$\begin{split} A &= \left[-100000 + 25000(1 + 0,1)^{-1} + 25000(1 + 0,1)^{-2} + 35000(1 + 0,1)^{-3} + 35000(1 + 0,1)^{-4} + \ 35000(1 + 0,1)^{-5}\right] F_{PA,10,5} \\ &= 4042 \ \ \text{€/ano}. \end{split}$$

Deste modo o projeto será implementável.

4.4 Tempo de recuperação

O período de recuperação é um indicador simples que traduz o número de anos necessários para recuperar o investimento inicial de um projeto. O método assume que um projeto irá gerar recebimentos durante o seu tempo de vida e, em algum instante de tempo, os recebimentos totais irão igualar o custo inicial. O cálculo podes ser feito considerando os CFs simples sem atualização (tempo de recuperação simples) ou considerando os CFs atualizados (tempo de recuperação atualizado).

Exemplo 22

Calcule o tempo de recuperação simples e atualizado para o projeto descrito no exemplo 19, para uma taxa mínima de atratividade de 10%

Ano	CF	Acumulado
0	-100000	-100000
1	25000	-75000
2	25000	-50000
3	35000	-15000
4	35000	20000
5	35000	55000

Ano	CF	CF atualizado	Acumulado
0	-100000	-100000	-100000
1	25000	22727	-77273
2	25000	20661	-56612
3	35000	26296	-30316
4	35000	23905	-6410
5	35000	21732	15322

Tempo de recuperação simples:

Interpolação linear (-15000,3); (20000,4): 3,4 anos

Tempo de recuperação atualizado:

Interpolação linear (-6410,4); (15322,5): 4,3 anos

4.5 Comparação dos métodos

Tempo de recuperação

- É um método simples e não um cálculo económico exato.
- No método simples todos os custos e proveitos ocorridos antes da recuperação são incluídos sem considerar o seu valor no tempo.

- Todos impactos económicos que ocorrem após o tempo de recuperação são ignorados.
- O tempo de recuperação pode apontar para conclusões diferentes das obtidas com métodos envolvendo uma maior fundamentação teórica.
- É de fácil aplicação e compreensão.
- Permite analisar a velocidade com que o dinheiro é recuperado, e deste modo avaliar a liquidez do projeto, o seu risco e a disponibilidade de fundos para outros investimentos.
- Deverá ser utilizado como complemento de outros métodos.

VAL e anuidade equivalente

- E conceptualmente superior ao tempo de recuperação.
- Não ignora o período de vida do projeto nem qualquer CF, tendo assim em consideração todos os impactos económicos do projeto.
- Tem em consideração o valor do dinheiro no tempo e deste modo valoriza mais os fluxos financeiros imediatos em detrimento dos posteriores.
- Implica o conhecimento prévio de uma taxa de atualização apropriada, sendo muito sensível à escolha desta taxa.
- A utilização da expressão simples no cálculo do VAL (equação 24) pressupõe a constância da taxa de atualização, embora seja possível alterar a expressão de modo a considerar variações dessa taxa no tempo.
- Não tem em consideração a solvabilidade do projeto.
- O VAL não deverá ser utilizado na comparação de projetos com diferentes tempos de vida conforme iremos verificar. No entanto, esta limitação pode ser ultrapassada com manipulação matemática ou pela utilização da anuidade equivalente.

TIR

- E conceptualmente superior ao tempo de recuperação.
- Não ignora o período de vida do projeto nem qualquer CF, tendo assim em consideração todos os impactos económicos do projeto.
- Tem em consideração o valor do dinheiro no tempo e deste modo valoriza mais os fluxos financeiros imediatos em detrimento dos posteriores.
- Não implica o conhecimento prévio de uma taxa de atualização apropriada. Esta poderá ser uma vantagem significativa na comparação de projetos alternativos. No entanto na

tomada de decisão de investimento ou não implica o conhecimento da taxa mínima de atratividade exigida ao projeto.

- Fornece um valor relativo (taxa) o que permite contornar o problema de escala dos projetos.
- Pode apresentar alguma complexidade no cálculo e podem existir TIR múltiplas.
- Assume implicitamente que CFs recuperados são reinvestidos à mesma TIR.
- Na comparação de projetos com diferentes pode conduzir a resultados diferentes do critério VAL, sendo por isso essencial utilizar a lógica diferencial na tomada de decisão.

5. Comparação e seleção de projetos de investimento

Na tomada de decisão para a seleção de projetos deverá ser tida em consideração a existência de diversas possibilidades de investimento que poderão apresentar características distintas. Será necessário não apenas avaliar a aceitação e rejeição de um projeto mas também hierarquizar as diferentes opções de investimento.

Em projetos concorrentes ou mutuamente exclusivos a aceitação de um implica a não realização do outro. Nestes problemas pretende-se analisar diferentes opções investimento, hierarquizando-as e selecionando a que apresenta melhores resultados. Ex: Instalar uma nova unidade produtiva no Porto ou em Lisboa.

A comparação de projetos mutuamente exclusivos deve ser feita recorrendo aos indicadores apresentados anteriormente e tendo em consideração o tempo de vida dos projetos e a dimensão dos investimentos.

Na comparação de opções às quais não são atribuídos benefícios financeiros directos ou que trarão os mesmos benefícios, a análise será feita apenas com base no custo total e a escolha deverá recair naquela que apresentar um menor custo em valor absoluto.

Exemplo	23							
	Considere dois projetos de investimento A e B com os seguintes CFs, para uma taxa mínima de atratividade (TA) de 12%. Selecione um dos projetos de acordo com os critérios VAL e TIR.							
	Ano	0	1	2	3	4	5	
	CF_A	-5000	1800	1800	1800	1800	1800	
	CF_B	-5000	1000	1000	2300	2300	2300	
						(milha	res de €)	
TIR (A) =	=23,4%	$\qquad \qquad \Longrightarrow \qquad$	Proj	eto A				
TIR (B) =	= 19,8%							

VAL (A) = 1488,6 m€

VAL (B) = 1207,4 m€

Projeto A

De acordo com os critérios VAL e TIR a escolha deveria recair sobre o projeto A.

No caso de se pretender comparar projetos ou opções de investimento com diferente valor de investimento os resultados obtidos com o indicador TIR poderão não ser consistentes com o indicador VAL. Nestes casos os projetos deverão ser comparados com base numa análise diferencial, onde se assume que o projeto de maior dimensão pode ser dividido em dois projetos de menor dimensão: um igual ao projeto de menor investimento e outro igual à diferença dos projetos. Trata-se assim de avaliar um investimento alternativo (diferencial) que tornaria indiferente a escolha do de maior dimensão face à alternativa de menor investimento. Veja-se um exemplo:

Exemplo 24

Considerem-se dois projetos de investimento A e B com os seguintes CFs para uma taxa mínima de atratividade (TA) de 10%.

Ano	0	1	2	3	4
CF_A	-1000	350	420	420	420
CF_B	-600	200	250	300	300

TIR (A) =21,5% Projeto B
TIR (B) = 24,7%

VAL (A) = 267,7 € Projeto A VAL (B) = 218,7 €

De acordo com o critério VAL a escolha deveria recair sobre o projeto A, mas de acordo com o critério TIR a escolha deveria recair sobre o projeto B.

Se optarmos pelo projeto B apenas serão investidos $600 \in à$ taxa de 24,7%, sendo os restantes $400 \in investidos à TA (10\%)$. Se optarmos pelo projeto A os $1000 \in serão investidos à taxa de <math>21,5\%$. Vamos assim analisar o projeto diferencial que nos permite verificar qual a taxa que tornaria indiferente a escolha dos projetos.

Ano	0	1	2	3	4
Δ (A-B)	-400	150	170	120	120

VAL (Δ) = 50,0 €

TIR (Δ) = 15,8%.

Deste modo, para ser indiferente a escolha entre A e B o investimento diferencial teria de ter uma rentabilidade de 15,8%. Uma vez que ao optarmos pelo projeto B estaríamos implicitamente a assumir que a rentabilidade dos 400 € seria de 10%, ficaríamos aquém do pretendido.

Deste modo, deveria ser selecionado o projeto de maior investimento, i.e. o Projeto A.

A projeção gráfica do VAL de cada investimento para diferentes níveis de taxas de atualização, permite tornar mais claras as ideias subjacentes ao cálculo diferencial.

Exemplo 24 (resolução gráfica):

Cada curva intercepta o eixo horizontal no ponto corresponde à TIR do respetivo projeto. Olhando apenas à TIR verifica-se que para uma taxa de atualização de 10% o investimento preferível é o A. No entanto, há um ponto em as curvas se intersectam correspondente ao valor da TIR do projeto diferencial. Para valores de TA inferiores a 15,8% o investimento A é preferível. Para valores superiores a 15,8% o investimento B é preferível pois apresenta maior VAL.

Deste modo, uma vez que a TA considerada no exercício é de 10%, deverá ser selecionado o projeto A.

Os casos de incompatibilidade de VAL e TIR surgem frequentemente associados à comparação de opções com diferente dimensão de investimento, conforme demonstrado no problema anterior. No entanto grandes diferenças de perfil temporal dos CFs dos projetos alternativos podem também gerar resultados divergentes, mesmo que partindo de iguais valores investidos. Nestes casos, a divergência poderá ser resolvida também pela avaliação do projeto diferencial.

As regras de decisão pelo critério VAL podem ser resumidas a:

Se
$$VAL(A) > VAL(B) \Rightarrow$$
 Selecionar A

As regras de decisão pelo critério TIR podem ser resumidas a:

Se TIR (A) > TIR (B) e Investimento (A) > Investimento (B)
$$\Rightarrow$$
 Selecionar A

Se TIR (A)> TIR (B) e Investimento (A) < Investimento (B)
$$\Rightarrow$$
 Projeto diferencial (Δ)

Se TIR $(\Delta) > TA \Rightarrow$ Selecionar B (maior investimento)

Se TIR (Δ) < TA \Rightarrow Selecionar A (menor investimento)

Referências bibliográficas

Barros, C (1995) Decisões de investimento e financiamento de projetos, Edições Sílabo.

Ernest & Young (2005) "Business plan guidebook" (www.ey.com)

Ernest & Young (2001) "Guide to producing a business plan" (www.ey.com)

IAPMEI "Como Elaborar um Plano de Negócios: o seu guia para um projeto de sucesso" (http://www.iapmei.pt/iapmei-art02.php?id=162&temaid=17)

Soares, I; Moreira, J; Pinho; C e Couto, J (2007) *Decisões de investimento*. *Análise financeira de projetos*, Edições Sílabo.

Sousa, A (2005) *Análise económica e financeira de projetos*, Editor: Instituto Superior de Ciências Sociais e Políticas, Lisboa.

Anexo 1- Tabelas de matemática financeira¹

Taxa de juro (i) =1%

	Actualização/	Capitalização		Pagamentos	s uniformes		
	$P \rightarrow F$	$F \rightarrow P$	$A \rightarrow F$	$A \rightarrow P$	$F \rightarrow A$	$P \rightarrow A$	
N	$F_{PF,l,n}$	$F_{FP,l,n}$	$F_{AF,i,n}$	$F_{AP,I,n}$	$F_{FA,i.n}$	$F_{PA,i,n}$	N
1	1.0100	0.9901	1.0000	0.9901	1.0000	1.0100	1
2	1.0201	0.9803	2.0100	1.9704	0.4975	0.5075	2
3	1.0303	0.9706	3.0301	2.9410	0.3300	0.3400	3
4	1.0406	0.9610	4.0604	3.9020	0.2463	0.2563	4
5	1.0510	0.9515	5.1010	4.8534	0.1960	0.2060	5
6	1.0615	0.9420	6.1520	5.7955	0.1625	0.1725	6
7	1.0721	0.9327	7.2135	6.7282	0.1386	0.1486	7
8	1.0829	0.9235	8.2857	7.6517	0.1207	0.1307	8
9	1.0937	0.9143	9.3685	8.5660	0.1067	0.1167	9
10	1.1046	0.9053	10.4622	9.4713	0.0956	0.1056	10
11	1.1157	0.8963	11.5668	10.3676	0.0865	0.0965	11
12	1.1268	0.8874	12.6825	11.2551	0.0788	0.0888	12
13	1.1381	0.8787	13.8093	12.1337	0.0724	0.0824	13
14	1.1495	0.8700	14.9474	13.0037	0.0669	0.0769	14
15	1.1610	0.8613	16.0969	13.8651	0.0621	0.0721	15
16	1.1726	0.8528	17.2579	14.7179	0.0579	0.0679	16
17	1.1843	0.8444	18.4304	15.5623	0.0543	0.0643	17
18	1.1961	0.8360	19.6147	16.3983	0.0510	0.0610	18
19	1.2081	0.8277	20.8109	17.2260	0.0481	0.0581	19
20	1.2202	0.8195	22.0190	18.0456	0.0454	0.0554	20
21	1.2324	0.8114	23.2392	18.8570	0.0430	0.0530	21
22	1.2447	0.8034	24.4716	19.6604	0.0409	0.0509	22
23	1.2572	0.7954	25.7163	20.4558	0.0389	0.0489	23
24	1.2697	0.7876	26.9735	21.2434	0.0371	0.0471	24
25	1.2824	0.7798	28.2432	22.0232	0.0354	0.0454	25
26	1.2953	0.7720	29.5256	22.7952	0.0339	0.0439	26
27	1.3082	0.7644	30.8209	23.5596	0.0324	0.0424	27
28	1.3213	0.7568	32.1291	24.3164	0.0311	0.0411	28
29	1.3345	0.7493	33.4504	25.0658	0.0299	0.0399	29
30	1.3478	0.7419	34.7849	25.8077	0.0287	0.0387	30
36	1.4308	0.6989	43.0769	30.1075	0.0232	0.0332	36
40	1.4889	0.6717	48.8864	32.8347	0.0205	0.0305	40
48	1.6122	0.6203	61.2226	37.9740	0.0163	0.0263	48
50	1.6446	0.6080	64.4632	39.1961	0.0155	0.0255	50
52	1.6777	0.5961	67.7689	40.3942	0.0148	0.0248	52
60	1.8167	0.5504	81.6697	44.9550	0.0122	0.0222	60

⁻

¹ A taxa de juro poderá ser representada por i ou r conforme sejam ou não considerados os impostos na análise.

Taxa de juro (i) =2%

	Actualização/	Capitalização		Pagamentos	s uniformes		
	$P \rightarrow F$	$F \rightarrow P$	$A \rightarrow F$	$A \rightarrow P$	$F \rightarrow A$	$P \rightarrow A$	
N	F _{PF,l,n}	$F_{FP,l,n}$	$F_{AF,i,n}$	$F_{AP,I,n}$	$F_{FA,i.n}$	$F_{PA,i,n}$	N
1	1.0200	0.9804	1.0000	0.9804	1.0000	1.0200	1
2	1.0404	0.9612	2.0200	1.9416	0.4950	0.5150	2
3	1.0612	0.9423	3.0604	2.8839	0.3268	0.3468	3
4	1.0824	0.9238	4.1216	3.8077	0.2426	0.2626	4
5	1.1041	0.9057	5.2040	4.7135	0.1922	0.2122	5
6	1.1262	0.8880	6.3081	5.6014	0.1585	0.1785	6
7	1.1487	0.8706	7.4343	6.4720	0.1345	0.1545	7
8	1.1717	0.8535	8.5830	7.3255	0.1165	0.1365	8
9	1.1951	0.8368	9.7546	8.1622	0.1025	0.1225	9
10	1.2190	0.8203	10.9497	8.9826	0.0913	0.1113	10
11	1.2434	0.8043	12.1687	9.7868	0.0822	0.1022	11
12	1.2682	0.7885	13.4121	10.5753	0.0746	0.0946	12
13	1.2936	0.7730	14.6803	11.3484	0.0681	0.0881	13
14	1.3195	0.7579	15.9739	12.1062	0.0626	0.0826	14
15	1.3459	0.7430	17.2934	12.8493	0.0578	0.0778	15
16	1.3728	0.7284	18.6393	13.5777	0.0537	0.0737	16
17	1.4002	0.7142	20.0121	14.2919	0.0500	0.0700	17
18	1.4282	0.7002	21.4123	14.9920	0.0467	0.0667	18
19	1.4568	0.6864	22.8406	15.6785	0.0438	0.0638	19
20	1.4859	0.6730	24.2974	16.3514	0.0412	0.0612	20
21	1.5157	0.6598	25.7833	17.0112	0.0388	0.0588	21
22	1.5460	0.6468	27.2990	17.6580	0.0366	0.0566	22
23	1.5769	0.6342	28.8450	18.2922	0.0347	0.0547	23
24	1.6084	0.6217	30.4219	18.9139	0.0329	0.0529	24
25	1.6406	0.6095	32.0303	19.5235	0.0312	0.0512	25
26	1.6734	0.5976	33.6709	20.1210	0.0297	0.0497	26
27	1.7069	0.5859	35.3443	20.7069	0.0283	0.0483	27
28	1.7410	0.5744	37.0512	21.2813	0.0270	0.0470	28
29	1.7758	0.5631	38.7922	21.8444	0.0258	0.0458	29
30	1.8114	0.5521	40.5681	22.3965	0.0246	0.0446	30
36	2.0399	0.4902	51.9944	25.4888	0.0192	0.0392	36
40	2.2080	0.4529	60.4020	27.3555	0.0166	0.0366	40
48	2.5871	0.3865	79.3535	30.6731	0.0126	0.0326	48
50	2.6916	0.3715	84.5794	31.4236	0.0118	0.0318	50
52	2.8003	0.3571	90.0164	32.1449	0.0111	0.0311	52
60	3.2810	0.3048	114.0515	34.7609	0.0088	0.0288	60

Taxa de juro (i) =3%

	Actualização/	Capitalização		Pagamentos	s uniformes		
	$P \rightarrow F$	$F \rightarrow P$	$A \rightarrow F$	$A \rightarrow P$	$F \rightarrow A$	$P \rightarrow A$	
N	F _{PF,l,n}	$F_{FP,I,n}$	$F_{AF,i,n}$	$F_{AP,I,n}$	$F_{FA,i.n}$	$F_{PA,i,n}$	N
1	1.0300	0.9709	1.0000	0.9709	1.0000	1.0300	1
2	1.0609	0.9426	2.0300	1.9135	0.4926	0.5226	2
3	1.0927	0.9151	3.0909	2.8286	0.3235	0.3535	3
4	1.1255	0.8885	4.1836	3.7171	0.2390	0.2690	4
5	1.1593	0.8626	5.3091	4.5797	0.1884	0.2184	5
6	1.1941	0.8375	6.4684	5.4172	0.1546	0.1846	6
7	1.2299	0.8131	7.6625	6.2303	0.1305	0.1605	7
8	1.2668	0.7894	8.8923	7.0197	0.1125	0.1425	8
9	1.3048	0.7664	10.1591	7.7861	0.0984	0.1284	9
10	1.3439	0.7441	11.4639	8.5302	0.0872	0.1172	10
11	1.3842	0.7224	12.8078	9.2526	0.0781	0.1081	11
12	1.4258	0.7014	14.1920	9.9540	0.0705	0.1005	12
13	1.4685	0.6810	15.6178	10.6350	0.0640	0.0940	13
14	1.5126	0.6611	17.0863	11.2961	0.0585	0.0885	14
15	1.5580	0.6419	18.5989	11.9379	0.0538	0.0838	15
16	1.6047	0.6232	20.1569	12.5611	0.0496	0.0796	16
17	1.6528	0.6050	21.7616	13.1661	0.0460	0.0760	17
18	1.7024	0.5874	23.4144	13.7535	0.0427	0.0727	18
19	1.7535	0.5703	25.1169	14.3238	0.0398	0.0698	19
20	1.8061	0.5537	26.8704	14.8775	0.0372	0.0672	20
21	1.8603	0.5375	28.6765	15.4150	0.0349	0.0649	21
22	1.9161	0.5219	30.5368	15.9369	0.0327	0.0627	22
23	1.9736	0.5067	32.4529	16.4436	0.0308	0.0608	23
24	2.0328	0.4919	34.4265	16.9355	0.0290	0.0590	24
25	2.0938	0.4776	36.4593	17.4131	0.0274	0.0574	25
26	2.1566	0.4637	38.5530	17.8768	0.0259	0.0559	26
27	2.2213	0.4502	40.7096	18.3270	0.0246	0.0546	27
28	2.2879	0.4371	42.9309	18.7641	0.0233	0.0533	28
29	2.3566	0.4243	45.2189	19.1885	0.0221	0.0521	29
30	2.4273	0.4120	47.5754	19.6004	0.0210	0.0510	30
36	2.8983	0.3450	63.2759	21.8323	0.0158	0.0458	36
40	3.2620	0.3066	75.4013	23.1148	0.0133	0.0433	40
48	4.1323	0.2420	104.4084	25.2667	0.0096	0.0396	48
50	4.3839	0.2281	112.7969	25.7298	0.0089	0.0389	50
52	4.6509	0.2150	121.6962	26.1662	0.0082	0.0382	52
60	5.8916	0.1697	163.0534	27.6756	0.0061	0.0361	60

Taxa de juro (i) =4%

	Actualização/	Capitalização		Pagamentos	uniformes		
	$P \rightarrow F$	$F \rightarrow P$	$A \rightarrow F$	$A \rightarrow P$	$F \rightarrow A$	$P \rightarrow A$	
N	F _{PF,l,n}	$F_{FP,l,n}$	$\mathbf{F}_{AF,i,n}$	$F_{AP,I,n}$	$F_{FA,i.n}$	$F_{PA,i,n}$	N
1	1.0400	0.9615	1.0000	0.9615	1.0000	1.0400	1
2	1.0816	0.9246	2.0400	1.8861	0.4902	0.5302	2
3	1.1249	0.8890	3.1216	2.7751	0.3203	0.3603	3
4	1.1699	0.8548	4.2465	3.6299	0.2355	0.2755	4
5	1.2167	0.8219	5.4163	4.4518	0.1846	0.2246	5
6	1.2653	0.7903	6.6330	5.2421	0.1508	0.1908	6
7	1.3159	0.7599	7.8983	6.0021	0.1266	0.1666	7
8	1.3686	0.7307	9.2142	6.7327	0.1085	0.1485	8
9	1.4233	0.7026	10.5828	7.4353	0.0945	0.1345	9
10	1.4802	0.6756	12.0061	8.1109	0.0833	0.1233	10
11	1.5395	0.6496	13.4864	8.7605	0.0741	0.1141	11
12	1.6010	0.6246	15.0258	9.3851	0.0666	0.1066	12
13	1.6651	0.6006	16.6268	9.9856	0.0601	0.1001	13
14	1.7317	0.5775	18.2919	10.5631	0.0547	0.0947	14
15	1.8009	0.5553	20.0236	11.1184	0.0499	0.0899	15
16	1.8730	0.5339	21.8245	11.6523	0.0458	0.0858	16
17	1.9479	0.5134	23.6975	12.1657	0.0422	0.0822	17
18	2.0258	0.4936	25.6454	12.6593	0.0390	0.0790	18
19	2.1068	0.4746	27.6712	13.1339	0.0361	0.0761	19
20	2.1911	0.4564	29.7781	13.5903	0.0336	0.0736	20
21	2.2788	0.4388	31.9692	14.0292	0.0313	0.0713	21
22	2.3699	0.4220	34.2480	14.4511	0.0292	0.0692	22
23	2.4647	0.4057	36.6179	14.8568	0.0273	0.0673	23
24	2.5633	0.3901	39.0826	15.2470	0.0256	0.0656	24
25	2.6658	0.3751	41.6459	15.6221	0.0240	0.0640	25
26	2.7725	0.3607	44.3117	15.9828	0.0226	0.0626	26
27	2.8834	0.3468	47.0842	16.3296	0.0212	0.0612	27
28	2.9987	0.3335	49.9676	16.6631	0.0200	0.0600	28
29	3.1187	0.3207	52.9663	16.9837	0.0189	0.0589	29
30	3.2434	0.3083	56.0849	17.2920	0.0178	0.0578	30
36	4.1039	0.2437	77.5983	18.9083	0.0129	0.0529	36
40	4.8010	0.2083	95.0255	19.7928	0.0105	0.0505	40
48	6.5705	0.1522	139.2632	21.1951	0.0072	0.0472	48
50	7.1067	0.1407	152.6671	21.4822	0.0066	0.0466	50
52	7.6866	0.1301	167.1647	21.7476	0.0060	0.0460	52
60	10.5196	0.0951	237.9907	22.6235	0.0042	0.0442	60

Taxa de juro (i) =5%

	Actualização/	Capitalização		Pagamentos	s uniformes		
	$P \rightarrow F$	$F \rightarrow P$	$A \rightarrow F$	$A \rightarrow P$	$F \rightarrow A$	$P \rightarrow A$	
N	F _{PF,l,n}	$F_{FP,I,n}$	$F_{AF,i,n}$	$F_{AP,I,n}$	$F_{FA,i.n}$	$F_{PA,i,n}$	N
1	1.0500	0.9524	1.0000	0.9524	1.0000	1.0500	1
2	1.1025	0.9070	2.0500	1.8594	0.4878	0.5378	2
3	1.1576	0.8638	3.1525	2.7232	0.3172	0.3672	3
4	1.2155	0.8227	4.3101	3.5460	0.2320	0.2820	4
5	1.2763	0.7835	5.5256	4.3295	0.1810	0.2310	5
6	1.3401	0.7462	6.8019	5.0757	0.1470	0.1970	6
7	1.4071	0.7107	8.1420	5.7864	0.1228	0.1728	7
8	1.4775	0.6768	9.5491	6.4632	0.1047	0.1547	8
9	1.5513	0.6446	11.0266	7.1078	0.0907	0.1407	9
10	1.6289	0.6139	12.5779	7.7217	0.0795	0.1295	10
11	1.7103	0.5847	14.2068	8.3064	0.0704	0.1204	11
12	1.7959	0.5568	15.9171	8.8633	0.0628	0.1128	12
13	1.8856	0.5303	17.7130	9.3936	0.0565	0.1065	13
14	1.9799	0.5051	19.5986	9.8986	0.0510	0.1010	14
15	2.0789	0.4810	21.5786	10.3797	0.0463	0.0963	15
16	2.1829	0.4581	23.6575	10.8378	0.0423	0.0923	16
17	2.2920	0.4363	25.8404	11.2741	0.0387	0.0887	17
18	2.4066	0.4155	28.1324	11.6896	0.0355	0.0855	18
19	2.5270	0.3957	30.5390	12.0853	0.0327	0.0827	19
20	2.6533	0.3769	33.0660	12.4622	0.0302	0.0802	20
21	2.7860	0.3589	35.7193	12.8212	0.0280	0.0780	21
22	2.9253	0.3418	38.5052	13.1630	0.0260	0.0760	22
23	3.0715	0.3256	41.4305	13.4886	0.0241	0.0741	23
24	3.2251	0.3101	44.5020	13.7986	0.0225	0.0725	24
25	3.3864	0.2953	47.7271	14.0939	0.0210	0.0710	25
26	3.5557	0.2812	51.1135	14.3752	0.0196	0.0696	26
27	3.7335	0.2678	54.6691	14.6430	0.0183	0.0683	27
28	3.9201	0.2551	58.4026	14.8981	0.0171	0.0671	28
29	4.1161	0.2429	62.3227	15.1411	0.0160	0.0660	29
30	4.3219	0.2314	66.4388	15.3725	0.0151	0.0651	30
36	5.7918	0.1727	95.8363	16.5469	0.0104	0.0604	36
40	7.0400	0.1420	120.7998	17.1591	0.0083	0.0583	40
48	10.4013	0.0961	188.0254	18.0772	0.0053	0.0553	48
50	11.4674	0.0872	209.3480	18.2559	0.0048	0.0548	50
52	12.6428	0.0791	232.8562	18.4181	0.0043	0.0543	52
60	18.6792	0.0535	353.5837	18.9293	0.0028	0.0528	60

Taxa de juro (i) =6%

	Actualização/	Capitalização		Pagamentos	uniformes		
	$P \rightarrow F$	$F \rightarrow P$	$A \rightarrow F$	$A \rightarrow P$	$F \rightarrow A$	$P \rightarrow A$	
N	$F_{PF,l,n}$	$F_{FP,l,n}$	$F_{AF,i,n}$	$F_{AP,I,n}$	$F_{FA,i.n}$	$F_{PA,i,n}$	N
1	1.0600	0.9434	1.0000	0.9434	1.0000	1.0600	1
2	1.1236	0.8900	2.0600	1.8334	0.4854	0.5454	2
3	1.1910	0.8396	3.1836	2.6730	0.3141	0.3741	3
4	1.2625	0.7921	4.3746	3.4651	0.2286	0.2886	4
5	1.3382	0.7473	5.6371	4.2124	0.1774	0.2374	5
6	1.4185	0.7050	6.9753	4.9173	0.1434	0.2034	6
7	1.5036	0.6651	8.3938	5.5824	0.1191	0.1791	7
8	1.5938	0.6274	9.8975	6.2098	0.1010	0.1610	8
9	1.6895	0.5919	11.4913	6.8017	0.0870	0.1470	9
10	1.7908	0.5584	13.1808	7.3601	0.0759	0.1359	10
11	1.8983	0.5268	14.9716	7.8869	0.0668	0.1268	11
12	2.0122	0.4970	16.8699	8.3838	0.0593	0.1193	12
13	2.1329	0.4688	18.8821	8.8527	0.0530	0.1130	13
14	2.2609	0.4423	21.0151	9.2950	0.0476	0.1076	14
15	2.3966	0.4173	23.2760	9.7122	0.0430	0.1030	15
16	2.5404	0.3936	25.6725	10.1059	0.0390	0.0990	16
17	2.6928	0.3714	28.2129	10.4773	0.0354	0.0954	17
18	2.8543	0.3503	30.9057	10.8276	0.0324	0.0924	18
19	3.0256	0.3305	33.7600	11.1581	0.0296	0.0896	19
20	3.2071	0.3118	36.7856	11.4699	0.0272	0.0872	20
21	3.3996	0.2942	39.9927	11.7641	0.0250	0.0850	21
22	3.6035	0.2775	43.3923	12.0416	0.0230	0.0830	22
23	3.8197	0.2618	46.9958	12.3034	0.0213	0.0813	23
24	4.0489	0.2470	50.8156	12.5504	0.0197	0.0797	24
25	4.2919	0.2330	54.8645	12.7834	0.0182	0.0782	25
26	4.5494	0.2198	59.1564	13.0032	0.0169	0.0769	26
27	4.8223	0.2074	63.7058	13.2105	0.0157	0.0757	27
28	5.1117	0.1956	68.5281	13.4062	0.0146	0.0746	28
29	5.4184	0.1846	73.6398	13.5907	0.0136	0.0736	29
30	5.7435	0.1741	79.0582	13.7648	0.0126	0.0726	30
36	8.1473	0.1227	119.1209	14.6210	0.0084	0.0684	36
40	10.2857	0.0972	154.7620	15.0463	0.0065	0.0665	40
48	16.3939	0.0610	256.5645	15.6500	0.0039	0.0639	48
50	18.4202	0.0543	290.3359	15.7619	0.0034	0.0634	50
52	20.6969	0.0483	328.2814	15.8614	0.0030	0.0630	52
60	32.9877	0.0303	533.1282	16.1614	0.0019	0.0619	60

Taxa de juro (i) =7%

	Actualização/	Capitalização		Pagamentos	s uniformes		
	$P \rightarrow F$	$F \rightarrow P$	$A \rightarrow F$	$A \rightarrow P$	$F \rightarrow A$	$P \rightarrow A$	
N	$F_{PF,l,n}$	$F_{FP,l,n}$	$F_{AF,i,n}$	$F_{AP,I,n}$	$F_{FA,i.n}$	$F_{PA,i,n}$	N
1	1.0700	0.9346	1.0000	0.9346	1.0000	1.0700	1
2	1.1449	0.8734	2.0700	1.8080	0.4831	0.5531	2
3	1.2250	0.8163	3.2149	2.6243	0.3111	0.3811	3
4	1.3108	0.7629	4.4399	3.3872	0.2252	0.2952	4
5	1.4026	0.7130	5.7507	4.1002	0.1739	0.2439	5
6	1.5007	0.6663	7.1533	4.7665	0.1398	0.2098	6
7	1.6058	0.6227	8.6540	5.3893	0.1156	0.1856	7
8	1.7182	0.5820	10.2598	5.9713	0.0975	0.1675	8
9	1.8385	0.5439	11.9780	6.5152	0.0835	0.1535	9
10	1.9672	0.5083	13.8164	7.0236	0.0724	0.1424	10
11	2.1049	0.4751	15.7836	7.4987	0.0634	0.1334	11
12	2.2522	0.4440	17.8885	7.9427	0.0559	0.1259	12
13	2.4098	0.4150	20.1406	8.3577	0.0497	0.1197	13
14	2.5785	0.3878	22.5505	8.7455	0.0443	0.1143	14
15	2.7590	0.3624	25.1290	9.1079	0.0398	0.1098	15
16	2.9522	0.3387	27.8881	9.4466	0.0359	0.1059	16
17	3.1588	0.3166	30.8402	9.7632	0.0324	0.1024	17
18	3.3799	0.2959	33.9990	10.0591	0.0294	0.0994	18
19	3.6165	0.2765	37.3790	10.3356	0.0268	0.0968	19
20	3.8697	0.2584	40.9955	10.5940	0.0244	0.0944	20
21	4.1406	0.2415	44.8652	10.8355	0.0223	0.0923	21
22	4.4304	0.2257	49.0057	11.0612	0.0204	0.0904	22
23	4.7405	0.2109	53.4361	11.2722	0.0187	0.0887	23
24	5.0724	0.1971	58.1767	11.4693	0.0172	0.0872	24
25	5.4274	0.1842	63.2490	11.6536	0.0158	0.0858	25
26	5.8074	0.1722	68.6765	11.8258	0.0146	0.0846	26
27	6.2139	0.1609	74.4838	11.9867	0.0134	0.0834	27
28	6.6488	0.1504	80.6977	12.1371	0.0124	0.0824	28
29	7.1143	0.1406	87.3465	12.2777	0.0114	0.0814	29
30	7.6123	0.1314	94.4608	12.4090	0.0106	0.0806	30
36	11.4239	0.0875	148.9135	13.0352	0.0067	0.0767	36
40	14.9745	0.0668	199.6351	13.3317	0.0050	0.0750	40
48	25.7289	0.0389	353.2701	13.7305	0.0028	0.0728	48
50	29.4570	0.0339	406.5289	13.8007	0.0025	0.0725	50
52	33.7253	0.0297	467.5050	13.8621	0.0021	0.0721	52
60	57.9464	0.0173	813.5204	14.0392	0.0012	0.0712	60

Taxa de juro (i) =8%

	Actualização/	Capitalização		Pagamentos	s uniformes		
	$P \rightarrow F$	$F \rightarrow P$	$A \rightarrow F$	$A \rightarrow P$	$F \rightarrow A$	$P \rightarrow A$	
N	F _{PF,l,n}	$F_{FP,I,n}$	$\mathbf{F}_{AF,i,n}$	$F_{AP,I,n}$	$F_{FA,i.n}$	$F_{PA,i,n}$	N
1	1.0800	0.9259	1.0000	0.9259	1.0000	1.0800	1
2	1.1664	0.8573	2.0800	1.7833	0.4808	0.5608	2
3	1.2597	0.7938	3.2464	2.5771	0.3080	0.3880	3
4	1.3605	0.7350	4.5061	3.3121	0.2219	0.3019	4
5	1.4693	0.6806	5.8666	3.9927	0.1705	0.2505	5
6	1.5869	0.6302	7.3359	4.6229	0.1363	0.2163	6
7	1.7138	0.5835	8.9228	5.2064	0.1121	0.1921	7
8	1.8509	0.5403	10.6366	5.7466	0.0940	0.1740	8
9	1.9990	0.5002	12.4876	6.2469	0.0801	0.1601	9
10	2.1589	0.4632	14.4866	6.7101	0.0690	0.1490	10
11	2.3316	0.4289	16.6455	7.1390	0.0601	0.1401	11
12	2.5182	0.3971	18.9771	7.5361	0.0527	0.1327	12
13	2.7196	0.3677	21.4953	7.9038	0.0465	0.1265	13
14	2.9372	0.3405	24.2149	8.2442	0.0413	0.1213	14
15	3.1722	0.3152	27.1521	8.5595	0.0368	0.1168	15
16	3.4259	0.2919	30.3243	8.8514	0.0330	0.1130	16
17	3.7000	0.2703	33.7502	9.1216	0.0296	0.1096	17
18	3.9960	0.2502	37.4502	9.3719	0.0267	0.1067	18
19	4.3157	0.2317	41.4463	9.6036	0.0241	0.1041	19
20	4.6610	0.2145	45.7620	9.8181	0.0219	0.1019	20
21	5.0338	0.1987	50.4229	10.0168	0.0198	0.0998	21
22	5.4365	0.1839	55.4568	10.2007	0.0180	0.0980	22
23	5.8715	0.1703	60.8933	10.3711	0.0164	0.0964	23
24	6.3412	0.1577	66.7648	10.5288	0.0150	0.0950	24
25	6.8485	0.1460	73.1059	10.6748	0.0137	0.0937	25
26	7.3964	0.1352	79.9544	10.8100	0.0125	0.0925	26
27	7.9881	0.1252	87.3508	10.9352	0.0114	0.0914	27
28	8.6271	0.1159	95.3388	11.0511	0.0105	0.0905	28
29	9.3173	0.1073	103.9659	11.1584	0.0096	0.0896	29
30	10.0627	0.0994	113.2832	11.2578	0.0088	0.0888	30
36	15.9682	0.0626	187.1021	11.7172	0.0053	0.0853	36
40	21.7245	0.0460	259.0565	11.9246	0.0039	0.0839	40
48	40.2106	0.0249	490.1322	12.1891	0.0020	0.0820	48
50	46.9016	0.0213	573.7702	12.2335	0.0017	0.0817	50
52	54.7060	0.0183	671.3255	12.2715	0.0015	0.0815	52
60	101.2571	0.0099	1253.2133	12.3766	0.0008	0.0808	60

Taxa de juro (i) =9%

	Actualização/	Capitalização		Pagamentos	s uniformes		
	$P \rightarrow F$	$F \rightarrow P$	$A \rightarrow F$	$A \rightarrow P$	$F \rightarrow A$	$P \rightarrow A$	
N	F _{PF,l,n}	$F_{FP,I,n}$	$F_{AF,i,n}$	$F_{AP,I,n}$	F _{FA,i.n}	$F_{PA,i,n}$	N
1	1.0900	0.9174	1.0000	0.9174	1.0000	1.0900	1
2	1.1881	0.8417	2.0900	1.7591	0.4785	0.5685	2
3	1.2950	0.7722	3.2781	2.5313	0.3051	0.3951	3
4	1.4116	0.7084	4.5731	3.2397	0.2187	0.3087	4
5	1.5386	0.6499	5.9847	3.8897	0.1671	0.2571	5
6	1.6771	0.5963	7.5233	4.4859	0.1329	0.2229	6
7	1.8280	0.5470	9.2004	5.0330	0.1087	0.1987	7
8	1.9926	0.5019	11.0285	5.5348	0.0907	0.1807	8
9	2.1719	0.4604	13.0210	5.9952	0.0768	0.1668	9
10	2.3674	0.4224	15.1929	6.4177	0.0658	0.1558	10
11	2.5804	0.3875	17.5603	6.8052	0.0569	0.1469	11
12	2.8127	0.3555	20.1407	7.1607	0.0497	0.1397	12
13	3.0658	0.3262	22.9534	7.4869	0.0436	0.1336	13
14	3.3417	0.2992	26.0192	7.7862	0.0384	0.1284	14
15	3.6425	0.2745	29.3609	8.0607	0.0341	0.1241	15
16	3.9703	0.2519	33.0034	8.3126	0.0303	0.1203	16
17	4.3276	0.2311	36.9737	8.5436	0.0270	0.1170	17
18	4.7171	0.2120	41.3013	8.7556	0.0242	0.1142	18
19	5.1417	0.1945	46.0185	8.9501	0.0217	0.1117	19
20	5.6044	0.1784	51.1601	9.1285	0.0195	0.1095	20
21	6.1088	0.1637	56.7645	9.2922	0.0176	0.1076	21
22	6.6586	0.1502	62.8733	9.4424	0.0159	0.1059	22
23	7.2579	0.1378	69.5319	9.5802	0.0144	0.1044	23
24	7.9111	0.1264	76.7898	9.7066	0.0130	0.1030	24
25	8.6231	0.1160	84.7009	9.8226	0.0118	0.1018	25
26	9.3992	0.1064	93.3240	9.9290	0.0107	0.1007	26
27	10.2451	0.0976	102.7231	10.0266	0.0097	0.0997	27
28	11.1671	0.0895	112.9682	10.1161	0.0089	0.0989	28
29	12.1722	0.0822	124.1354	10.1983	0.0081	0.0981	29
30	13.2677	0.0754	136.3075	10.2737	0.0073	0.0973	30
36	22.2512	0.0449	236.1247	10.6118	0.0042	0.0942	36
40	31.4094	0.0318	337.8824	10.7574	0.0030	0.0930	40
48	62.5852	0.0160	684.2804	10.9336	0.0015	0.0915	48
50	74.3575	0.0134	815.0836	10.9617	0.0012	0.0912	50
52	88.3442	0.0113	970.4908	10.9853	0.0010	0.0910	52
60	176.0313	0.0057	1944.7921	11.0480	0.0005	0.0905	60

Taxa de juro (i) =10%

	Actualização/	Capitalização		Pagamentos	s uniformes		
	$P \rightarrow F$	$F \rightarrow P$	$A \rightarrow F$	$A \rightarrow P$	$F \rightarrow A$	$P \rightarrow A$	
N	F _{PF,l,n}	$F_{FP,l,n}$	$\mathbf{F}_{AF,i,n}$	$F_{AP,I,n}$	$F_{FA,i.n}$	$F_{PA,i,n}$	N
1	1.1000	0.9091	1.0000	0.9091	1.0000	1.1000	1
2	1.2100	0.8264	2.1000	1.7355	0.4762	0.5762	2
3	1.3310	0.7513	3.3100	2.4869	0.3021	0.4021	3
4	1.4641	0.6830	4.6410	3.1699	0.2155	0.3155	4
5	1.6105	0.6209	6.1051	3.7908	0.1638	0.2638	5
6	1.7716	0.5645	7.7156	4.3553	0.1296	0.2296	6
7	1.9487	0.5132	9.4872	4.8684	0.1054	0.2054	7
8	2.1436	0.4665	11.4359	5.3349	0.0874	0.1874	8
9	2.3579	0.4241	13.5795	5.7590	0.0736	0.1736	9
10	2.5937	0.3855	15.9374	6.1446	0.0627	0.1627	10
11	2.8531	0.3505	18.5312	6.4951	0.0540	0.1540	11
12	3.1384	0.3186	21.3843	6.8137	0.0468	0.1468	12
13	3.4523	0.2897	24.5227	7.1034	0.0408	0.1408	13
14	3.7975	0.2633	27.9750	7.3667	0.0357	0.1357	14
15	4.1772	0.2394	31.7725	7.6061	0.0315	0.1315	15
16	4.5950	0.2176	35.9497	7.8237	0.0278	0.1278	16
17	5.0545	0.1978	40.5447	8.0216	0.0247	0.1247	17
18	5.5599	0.1799	45.5992	8.2014	0.0219	0.1219	18
19	6.1159	0.1635	51.1591	8.3649	0.0195	0.1195	19
20	6.7275	0.1486	57.2750	8.5136	0.0175	0.1175	20
21	7.4002	0.1351	64.0025	8.6487	0.0156	0.1156	21
22	8.1403	0.1228	71.4027	8.7715	0.0140	0.1140	22
23	8.9543	0.1117	79.5430	8.8832	0.0126	0.1126	23
24	9.8497	0.1015	88.4973	8.9847	0.0113	0.1113	24
25	10.8347	0.0923	98.3471	9.0770	0.0102	0.1102	25
26	11.9182	0.0839	109.1818	9.1609	0.0092	0.1092	26
27	13.1100	0.0763	121.0999	9.2372	0.0083	0.1083	27
28	14.4210	0.0693	134.2099	9.3066	0.0075	0.1075	28
29	15.8631	0.0630	148.6309	9.3696	0.0067	0.1067	29
30	17.4494	0.0573	164.4940	9.4269	0.0061	0.1061	30
36	30.9127	0.0323	299.1268	9.6765	0.0033	0.1033	36
40	45.2593	0.0221	442.5926	9.7791	0.0023	0.1023	40
48	97.0172	0.0103	960.1723	9.8969	0.0010	0.1010	48
50	117.3909	0.0085	1163.9085	9.9148	0.0009	0.1009	50
52	142.0429	0.0070	1410.4293	9.9296	0.0007	0.1007	52
60	304.4816	0.0033	3034.8164	9.9672	0.0003	0.1003	60

Taxa de juro (i) =12%

	Actualização/	Capitalização		Pagamentos	s uniformes		
	$P \rightarrow F$	$F \rightarrow P$	$A \rightarrow F$	$A \rightarrow P$	$F \rightarrow A$	$P \rightarrow A$	
N	$F_{PF,l,n}$	$F_{FP,l,n}$	$F_{AF,i,n}$	$F_{AP,I,n}$	$F_{FA,i.n}$	$F_{PA,i,n}$	N
1	1.1200	0.8929	1.0000	0.8929	1.0000	1.1200	1
2	1.2544	0.7972	2.1200	1.6901	0.4717	0.5917	2
3	1.4049	0.7118	3.3744	2.4018	0.2963	0.4163	3
4	1.5735	0.6355	4.7793	3.0373	0.2092	0.3292	4
5	1.7623	0.5674	6.3528	3.6048	0.1574	0.2774	5
6	1.9738	0.5066	8.1152	4.1114	0.1232	0.2432	6
7	2.2107	0.4523	10.0890	4.5638	0.0991	0.2191	7
8	2.4760	0.4039	12.2997	4.9676	0.0813	0.2013	8
9	2.7731	0.3606	14.7757	5.3282	0.0677	0.1877	9
10	3.1058	0.3220	17.5487	5.6502	0.0570	0.1770	10
11	3.4785	0.2875	20.6546	5.9377	0.0484	0.1684	11
12	3.8960	0.2567	24.1331	6.1944	0.0414	0.1614	12
13	4.3635	0.2292	28.0291	6.4235	0.0357	0.1557	13
14	4.8871	0.2046	32.3926	6.6282	0.0309	0.1509	14
15	5.4736	0.1827	37.2797	6.8109	0.0268	0.1468	15
16	6.1304	0.1631	42.7533	6.9740	0.0234	0.1434	16
17	6.8660	0.1456	48.8837	7.1196	0.0205	0.1405	17
18	7.6900	0.1300	55.7497	7.2497	0.0179	0.1379	18
19	8.6128	0.1161	63.4397	7.3658	0.0158	0.1358	19
20	9.6463	0.1037	72.0524	7.4694	0.0139	0.1339	20
21	10.8038	0.0926	81.6987	7.5620	0.0122	0.1322	21
22	12.1003	0.0826	92.5026	7.6446	0.0108	0.1308	22
23	13.5523	0.0738	104.6029	7.7184	0.0096	0.1296	23
24	15.1786	0.0659	118.1552	7.7843	0.0085	0.1285	24
25	17.0001	0.0588	133.3339	7.8431	0.0075	0.1275	25
26	19.0401	0.0525	150.3339	7.8957	0.0067	0.1267	26
27	21.3249	0.0469	169.3740	7.9426	0.0059	0.1259	27
28	23.8839	0.0419	190.6989	7.9844	0.0052	0.1252	28
29	26.7499	0.0374	214.5828	8.0218	0.0047	0.1247	29
30	29.9599	0.0334	241.3327	8.0552	0.0041	0.1241	30
36	59.1356	0.0169	484.4631	8.1924	0.0021	0.1221	36
40	93.0510	0.0107	767.0914	8.2438	0.0013	0.1213	40
48	230.3908	0.0043	1911.5898	8.2972	0.0005	0.1205	48
50	289.0022	0.0035	2400.0182	8.3045	0.0004	0.1204	50
52	362.5243	0.0028	3012.7029	8.3103	0.0003	0.1203	52
60	897.5969	0.0011	7471.6411	8.3240	0.0001	0.1201	60

Taxa de juro (i) =15%

	Actualização/	Capitalização		Pagamentos	s uniformes		
	$P \rightarrow F$	$F \rightarrow P$	$A \rightarrow F$	$A \rightarrow P$	$F \rightarrow A$	$P \rightarrow A$	
N	F _{PF,I,n}	$F_{FP,l,n}$	$F_{AF,i,n}$	$F_{AP,I,n}$	F _{FA,i.n}	$F_{PA,i,n}$	N
1	1.1500	0.8696	1.0000	0.8696	1.0000	1.1500	1
2	1.3225	0.7561	2.1500	1.6257	0.4651	0.6151	2
3	1.5209	0.6575	3.4725	2.2832	0.2880	0.4380	3
4	1.7490	0.5718	4.9934	2.8550	0.2003	0.3503	4
5	2.0114	0.4972	6.7424	3.3522	0.1483	0.2983	5
6	2.3131	0.4323	8.7537	3.7845	0.1142	0.2642	6
7	2.6600	0.3759	11.0668	4.1604	0.0904	0.2404	7
8	3.0590	0.3269	13.7268	4.4873	0.0729	0.2229	8
9	3.5179	0.2843	16.7858	4.7716	0.0596	0.2096	9
10	4.0456	0.2472	20.3037	5.0188	0.0493	0.1993	10
11	4.6524	0.2149	24.3493	5.2337	0.0411	0.1911	11
12	5.3503	0.1869	29.0017	5.4206	0.0345	0.1845	12
13	6.1528	0.1625	34.3519	5.5831	0.0291	0.1791	13
14	7.0757	0.1413	40.5047	5.7245	0.0247	0.1747	14
15	8.1371	0.1229	47.5804	5.8474	0.0210	0.1710	15
16	9.3576	0.1069	55.7175	5.9542	0.0179	0.1679	16
17	10.7613	0.0929	65.0751	6.0472	0.0154	0.1654	17
18	12.3755	0.0808	75.8364	6.1280	0.0132	0.1632	18
19	14.2318	0.0703	88.2118	6.1982	0.0113	0.1613	19
20	16.3665	0.0611	102.4436	6.2593	0.0098	0.1598	20
21	18.8215	0.0531	118.8101	6.3125	0.0084	0.1584	21
22	21.6447	0.0462	137.6316	6.3587	0.0073	0.1573	22
23	24.8915	0.0402	159.2764	6.3988	0.0063	0.1563	23
24	28.6252	0.0349	184.1678	6.4338	0.0054	0.1554	24
25	32.9190	0.0304	212.7930	6.4641	0.0047	0.1547	25
26	37.8568	0.0264	245.7120	6.4906	0.0041	0.1541	26
27	43.5353	0.0230	283.5688	6.5135	0.0035	0.1535	27
28	50.0656	0.0200	327.1041	6.5335	0.0031	0.1531	28
29	57.5755	0.0174	377.1697	6.5509	0.0027	0.1527	29
30	66.2118	0.0151	434.7451	6.5660	0.0023	0.1523	30
36	153.1519	0.0065	1014.3457	6.6231	0.0010	0.1510	36
40	267.8635	0.0037	1779.0903	6.6418	0.0006	0.1506	40
48	819.4007	0.0012	5456.0047	6.6585	0.0002	0.1502	48
50	1083.6574	0.0009	7217.7163	6.6605	0.0001	0.1501	50
52	1433.1370	0.0007	9547.5798	6.6620	0.0001	0.1501	52
60	4383.9987	0.0002	29219.9916	6.6651	0.0000	0.1500	60

Taxa de juro (i) =18%

	Actualização/	Capitalização		Pagamentos	s uniformes		
	$P \rightarrow F$	$F \rightarrow P$	$A \rightarrow F$	$A \rightarrow P$	$F \rightarrow A$	$P \rightarrow A$	
N	F _{PF,l,n}	$F_{FP,I,n}$	$F_{AF,i,n}$	$F_{AP,I,n}$	$F_{FA,i.n}$	$F_{PA,i,n}$	N
1	1.1800	0.8475	1.0000	0.8475	1.0000	1.1800	1
2	1.3924	0.7182	2.1800	1.5656	0.4587	0.6387	2
3	1.6430	0.6086	3.5724	2.1743	0.2799	0.4599	3
4	1.9388	0.5158	5.2154	2.6901	0.1917	0.3717	4
5	2.2878	0.4371	7.1542	3.1272	0.1398	0.3198	5
6	2.6996	0.3704	9.4420	3.4976	0.1059	0.2859	6
7	3.1855	0.3139	12.1415	3.8115	0.0824	0.2624	7
8	3.7589	0.2660	15.3270	4.0776	0.0652	0.2452	8
9	4.4355	0.2255	19.0859	4.3030	0.0524	0.2324	9
10	5.2338	0.1911	23.5213	4.4941	0.0425	0.2225	10
11	6.1759	0.1619	28.7551	4.6560	0.0348	0.2148	11
12	7.2876	0.1372	34.9311	4.7932	0.0286	0.2086	12
13	8.5994	0.1163	42.2187	4.9095	0.0237	0.2037	13
14	10.1472	0.0985	50.8180	5.0081	0.0197	0.1997	14
15	11.9737	0.0835	60.9653	5.0916	0.0164	0.1964	15
16	14.1290	0.0708	72.9390	5.1624	0.0137	0.1937	16
17	16.6722	0.0600	87.0680	5.2223	0.0115	0.1915	17
18	19.6733	0.0508	103.7403	5.2732	0.0096	0.1896	18
19	23.2144	0.0431	123.4135	5.3162	0.0081	0.1881	19
20	27.3930	0.0365	146.6280	5.3527	0.0068	0.1868	20
21	32.3238	0.0309	174.0210	5.3837	0.0057	0.1857	21
22	38.1421	0.0262	206.3448	5.4099	0.0048	0.1848	22
23	45.0076	0.0222	244.4868	5.4321	0.0041	0.1841	23
24	53.1090	0.0188	289.4945	5.4509	0.0035	0.1835	24
25	62.6686	0.0160	342.6035	5.4669	0.0029	0.1829	25
26	73.9490	0.0135	405.2721	5.4804	0.0025	0.1825	26
27	87.2598	0.0115	479.2211	5.4919	0.0021	0.1821	27
28	102.9666	0.0097	566.4809	5.5016	0.0018	0.1818	28
29	121.5005	0.0082	669.4475	5.5098	0.0015	0.1815	29
30	143.3706	0.0070	790.9480	5.5168	0.0013	0.1813	30
36	387.0368	0.0026	2144.6489	5.5412	0.0005	0.1805	36
40	750.3783	0.0013	4163.2130	5.5482	0.0002	0.1802	40
48	2820.5665	0.0004	15664.2586	5.5536	0.0001	0.1801	48
50	3927.3569	0.0003	21813.0937	5.5541	0.0000	0.1800	50
52	5468.4517	0.0002	30374.7316	5.5545	0.0000	0.1800	52
60	20555.1400	0.0000	114189.6665	5.5553	0.0000	0.1800	60

Taxa de juro (i) =20%

	Actualização/	Capitalização		Pagamentos	s uniformes		
	$P \rightarrow F$	$F \rightarrow P$	$A \rightarrow F$	$A \rightarrow P$	$F \rightarrow A$	$P \rightarrow A$	
N	F _{PF,l,n}	$F_{FP,l,n}$	$F_{AF,i,n}$	$F_{AP,I,n}$	$F_{FA,i.n}$	$F_{PA,i,n}$	N
1	1.2000	0.8333	1.0000	0.8333	1.0000	1.2000	1
2	1.4400	0.6944	2.2000	1.5278	0.4545	0.6545	2
3	1.7280	0.5787	3.6400	2.1065	0.2747	0.4747	3
4	2.0736	0.4823	5.3680	2.5887	0.1863	0.3863	4
5	2.4883	0.4019	7.4416	2.9906	0.1344	0.3344	5
6	2.9860	0.3349	9.9299	3.3255	0.1007	0.3007	6
7	3.5832	0.2791	12.9159	3.6046	0.0774	0.2774	7
8	4.2998	0.2326	16.4991	3.8372	0.0606	0.2606	8
9	5.1598	0.1938	20.7989	4.0310	0.0481	0.2481	9
10	6.1917	0.1615	25.9587	4.1925	0.0385	0.2385	10
11	7.4301	0.1346	32.1504	4.3271	0.0311	0.2311	11
12	8.9161	0.1122	39.5805	4.4392	0.0253	0.2253	12
13	10.6993	0.0935	48.4966	4.5327	0.0206	0.2206	13
14	12.8392	0.0779	59.1959	4.6106	0.0169	0.2169	14
15	15.4070	0.0649	72.0351	4.6755	0.0139	0.2139	15
16	18.4884	0.0541	87.4421	4.7296	0.0114	0.2114	16
17	22.1861	0.0451	105.9306	4.7746	0.0094	0.2094	17
18	26.6233	0.0376	128.1167	4.8122	0.0078	0.2078	18
19	31.9480	0.0313	154.7400	4.8435	0.0065	0.2065	19
20	38.3376	0.0261	186.6880	4.8696	0.0054	0.2054	20
21	46.0051	0.0217	225.0256	4.8913	0.0044	0.2044	21
22	55.2061	0.0181	271.0307	4.9094	0.0037	0.2037	22
23	66.2474	0.0151	326.2369	4.9245	0.0031	0.2031	23
24	79.4968	0.0126	392.4842	4.9371	0.0025	0.2025	24
25	95.3962	0.0105	471.9811	4.9476	0.0021	0.2021	25
26	114.4755	0.0087	567.3773	4.9563	0.0018	0.2018	26
27	137.3706	0.0073	681.8528	4.9636	0.0015	0.2015	27
28	164.8447	0.0061	819.2233	4.9697	0.0012	0.2012	28
29	197.8136	0.0051	984.0680	4.9747	0.0010	0.2010	29
30	237.3763	0.0042	1181.8816	4.9789	0.0008	0.2008	30
36	708.8019	0.0014	3539.0094	4.9929	0.0003	0.2003	36
40	1469.7716	0.0007	7343.8578	4.9966	0.0001	0.2001	40
48	6319.7487	0.0002	31593.744	4.9992	0.0000	0.2000	48
50	9100.4382	0.0001	45497.191	4.9995	0.0000	0.2000	50
52	13104.6309	0.0001	65518.155	4.9996	0.0000	0.2000	52
60	56347.5144	0.0000	281732.572	4.9999	0.0000	0.2000	60

Taxa de juro (i) =25%

	Actualização/	Capitalização		Pagamentos	s uniformes		
	$P \rightarrow F$	$F \rightarrow P$	$A \rightarrow F$	$A \rightarrow P$	$F \rightarrow A$	$P \rightarrow A$	
N	F _{PF,l,n}	$F_{FP,l,n}$	$F_{AF,i,n}$	$F_{AP,I,n}$	$F_{FA,i.n}$	$F_{PA,i,n}$	N
1	1.2500	0.8000	1.0000	0.8000	1.0000	1.2500	1
2	1.5625	0.6400	2.2500	1.4400	0.4444	0.6944	2
3	1.9531	0.5120	3.8125	1.9520	0.2623	0.5123	3
4	2.4414	0.4096	5.7656	2.3616	0.1734	0.4234	4
5	3.0518	0.3277	8.2070	2.6893	0.1218	0.3718	5
6	3.8147	0.2621	11.2588	2.9514	0.0888	0.3388	6
7	4.7684	0.2097	15.0735	3.1611	0.0663	0.3163	7
8	5.9605	0.1678	19.8419	3.3289	0.0504	0.3004	8
9	7.4506	0.1342	25.8023	3.4631	0.0388	0.2888	9
10	9.3132	0.1074	33.2529	3.5705	0.0301	0.2801	10
11	11.6415	0.0859	42.5661	3.6564	0.0235	0.2735	11
12	14.5519	0.0687	54.2077	3.7251	0.0184	0.2684	12
13	18.1899	0.0550	68.7596	3.7801	0.0145	0.2645	13
14	22.7374	0.0440	86.9495	3.8241	0.0115	0.2615	14
15	28.4217	0.0352	109.6868	3.8593	0.0091	0.2591	15
16	35.5271	0.0281	138.1085	3.8874	0.0072	0.2572	16
17	44.4089	0.0225	173.6357	3.9099	0.0058	0.2558	17
18	55.5112	0.0180	218.0446	3.9279	0.0046	0.2546	18
19	69.3889	0.0144	273.5558	3.9424	0.0037	0.2537	19
20	86.7362	0.0115	342.9447	3.9539	0.0029	0.2529	20
21	108.4202	0.0092	429.6809	3.9631	0.0023	0.2523	21
22	135.5253	0.0074	538.1011	3.9705	0.0019	0.2519	22
23	169.4066	0.0059	673.6264	3.9764	0.0015	0.2515	23
24	211.7582	0.0047	843.0329	3.9811	0.0012	0.2512	24
25	264.6978	0.0038	1054.7912	3.9849	0.0009	0.2509	25
26	330.8722	0.0030	1319.4890	3.9879	0.0008	0.2508	26
27	413.5903	0.0024	1650.3612	3.9903	0.0006	0.2506	27
28	516.9879	0.0019	2063.9515	3.9923	0.0005	0.2505	28
29	646.2349	0.0015	2580.9394	3.9938	0.0004	0.2504	29
30	807.7936	0.0012	3227.1743	3.9950	0.0003	0.2503	30
36	3081.4879	0.0003	12321.952	3.9987	0.0001	0.2501	36
40	7523.1638	0.0001	30088.655	3.9995	0.0000	0.2500	40
48	44841.5509	0.0000	179362.203	3.9999	0.0000	0.2500	48
50	70064.9232	0.0000	280255.693	3.9999	0.0000	0.2500	50
52	109476.4425	0.0000	437901.770	4.0000	0.0000	0.2500	52
60	652530.4468	0.0000	2610117.787	4.0000	0.0000	0.2500	60

Taxa de juro (i) =30%

	Actualização/ Capitalização		Pagamentos uniformes				
	$P \rightarrow F$	$F \rightarrow P$	$A \rightarrow F$	$A \rightarrow P$	$F \rightarrow A$	$P \rightarrow A$	
N	$F_{PF,l,n}$	$F_{FP,l,n}$	$F_{AF,i,n}$	$F_{AP,I,n}$	$F_{FA,i.n}$	$F_{PA,i,n}$	N
1	1.3000	0.7692	1.0000	0.7692	1.0000	1.3000	1
2	1.6900	0.5917	2.3000	1.3609	0.4348	0.7348	2
3	2.1970	0.4552	3.9900	1.8161	0.2506	0.5506	3
4	2.8561	0.3501	6.1870	2.1662	0.1616	0.4616	4
5	3.7129	0.2693	9.0431	2.4356	0.1106	0.4106	5
6	4.8268	0.2072	12.7560	2.6427	0.0784	0.3784	6
7	6.2749	0.1594	17.5828	2.8021	0.0569	0.3569	7
8	8.1573	0.1226	23.8577	2.9247	0.0419	0.3419	8
9	10.6045	0.0943	32.0150	3.0190	0.0312	0.3312	9
10	13.7858	0.0725	42.6195	3.0915	0.0235	0.3235	10
11	17.9216	0.0558	56.4053	3.1473	0.0177	0.3177	11
12	23.2981	0.0429	74.3270	3.1903	0.0135	0.3135	12
13	30.2875	0.0330	97.6250	3.2233	0.0102	0.3102	13
14	39.3738	0.0254	127.9125	3.2487	0.0078	0.3078	14
15	51.1859	0.0195	167.2863	3.2682	0.0060	0.3060	15
16	66.5417	0.0150	218.4722	3.2832	0.0046	0.3046	16
17	86.5042	0.0116	285.0139	3.2948	0.0035	0.3035	17
18	112.4554	0.0089	371.5180	3.3037	0.0027	0.3027	18
19	146.1920	0.0068	483.9734	3.3105	0.0021	0.3021	19
20	190.0496	0.0053	630.1655	3.3158	0.0016	0.3016	20
21	247.0645	0.0040	820.2151	3.3198	0.0012	0.3012	21
22	321.1839	0.0031	1067.2796	3.3230	0.0009	0.3009	22
23	417.5391	0.0024	1388.4635	3.3254	0.0007	0.3007	23
24	542.8008	0.0018	1806.0026	3.3272	0.0006	0.3006	24
25	705.6410	0.0014	2348.8033	3.3286	0.0004	0.3004	25
26	917.3333	0.0011	3054.4443	3.3297	0.0003	0.3003	26
27	1192.5333	0.0008	3971.7776	3.3305	0.0003	0.3003	27
28	1550.2933	0.0006	5164.3109	3.3312	0.0002	0.3002	28
29	2015.3813	0.0005	6714.6042	3.3317	0.0001	0.3001	29
30	2619.9956	0.0004	8729.9855	3.3321	0.0001	0.3001	30
36	12646.2186	0.0001	42150.729	3.3331	0.0000	0.3000	36
40	36118.8648	0.0000	120392.883	3.3332	0.0000	0.3000	40
48	294632.6763	0.0000	982105.588	3.3333	0.0000	0.3000	48
50	497929.2230	0.0000	1659760.743	3.3333	0.0000	0.3000	50
52	841500.3868	0.0000	2804997.956	3.3333	0.0000	0.3000	52
60	6864377.1727	0.0000	22881253.909	3.3333	0.0000	0.3000	60