

SPECIFICATION

MODEL: ACS2450HBAS10

3D Structure			
Undefined Top View Bottom View			
작성자	검토자	승인자	
with	X	例从	
연구 5팀	품질보증파트	연구소	
전찬익	이광규	임병준	
09/07	09/07	09/07	

2007 . 09. 07

경기도 화성시 반월동 33번지 나동 455-300

Tel: 031-201-7870~6 Fax: 031-201-7800 www.partron.co.kr

Ver 0.0 (2007.09.07)

- 목 차 -

1. 이력 관리	1 p
2. 부품의 개요	2 p
3. 중점 관리 항목	2 p
4. 전기적 특성	3 p
5. 시험 방법	8 p
6. 내부 Block Diagram	10 p
7. 기본 동작 및 Application Note	10 p
8. 측정 Jig 사양	11 p
9. REFLOW FROFILE	12 p
10. 초기 검사 성적서	13 p
11. 신뢰성 보증 조건	14 p
12. 기구적 특성	16 p
13. 구조 및 재질	18 p
14. 주의 사항	19 p
15. 포장 사양	20 p
16. 관리 공정도	24 p
17. 유해물질 성적서	27 p
* 신뢰성 시험 성적서	28 p

1. 이력관리

Revision No	Originator	Description of changes	Date of changes
Ver 0.0	전찬익	승인원 제정	2007.09.07

Ver 0.0 (2007.09.07) 1/31 Page

2. 부품의 개요 및 치수 규격

2.1 부품개요

본 제품은 유전체 무선 통신 기기 내장형 Chip Antenna로 직방의 형상을 갖는 유전체에 은(Ag) Paste로 패턴을 형성하여 특성을 구현한다.

2.2부품 치수규격

Туре	Only Bulk Ceramic		
재 질	Dielectric Block	Mg ₂ SiO ₄ (Magnesium Silicate)	
새 걸	전극 Paste	Ag	
	$W = 2.0\pm0.1$		
크 기 [mm]	$[mm] \qquad L = 8.0\pm0.1$		
	$T = 1.2\pm0.1$		
평탄도	0.03(소체기준)	Undefined	
MSL LEVEL	MSL LEVEL 1	onder med	
ESD LEVEL	15 KV이상 (HBM CLASS 3B)		
Version	Revision 2.0		

3. 중점관리항목(❤️)

- 아래 항목에 대하여 중점관리 항목으로 지정하여 관리한다.

제품의 CTQ 항목	지정 사유		
단품측정 SWR	제품의 전기적 특성을 분별하는 주요 PARAMETER 임		
성형무게,치수	성형무게 및 치수에 따라 소성후 소체 SIZE가 결정되며 소체 SIZE가 인쇄 정밀도에 영향을 미침		
소성치수	소성후 치수가 인쇄 정밀도에 영향을줌		
인쇄치수	인쇄치수 정밀도가 BT 안테나의 특성의 핵심적 항목임.		

- 아래 항목에 대하여 주의를 요함

항 목	내 용	
보 관	상온에 장시간 보관시 밀봉하여 보관	
동 작	임의의 설계 변경시 특성이 변경될 수 있음	

Ver 0.0 (2007.09.07) 2/31 Page

4. 전기적 특성

4.1 Set 실장 측정

ITEM			SPEC	
Frequency Range [MHz]			2400 ~ 2485	
	SWR	[Max]		3 : 1
	Input Impe	dance [Ω]		50 Ohm
	Polariz	zation		Linear
	Total Gair	n (Peak / /	Avg) [dBi]	-2.0 / -6.6
		Thata	Peak	0.89
	A : : th	Theta	Average	-3.40
	Azimuth	Phi	Peak	-5.75
			Average	-12.19
		Theta	Peak	-2.92
Gain[dBi]	Elevation 1		Average	-9.51
		Phi	Peak	-1.18
			Average	-5.86
	Elevation 2	Theta	Peak	-3.55
			Average	-9.91
		Phi	Peak	0.03
			Average	-3.84

Ver 0.0 (2007.09.07) 3/31 Page

4.2 Set 실장 측정 Graph

4.4 Test Fixture 측정

ITEM	SPEC
Frequency Range [MHz]	
Lower frequency(2400MHz) SWR [Min~Max]	Undefined
Upper frequency(2480MHz) SWR [Min~Max]	

4.5 Test Fixture 측정 Graph 👓

Ver 0.0 (2007.09.07) 4/31 Page

4.6 방사 패턴

Azimuth Plane	Elevation1 Plane	Elevation2 Plane	
270° — 90°	90° 270°	270° — 90° 180°	
Theta	Vertical field of measured plane		
Phi	Horizontal field of measured plane		

Ver 0.0 (2007.09.07) 5/31 Page

Ver 0.0 (2007.09.07) 6/31 Page

Ver 0.0 (2007.09.07) 7/31 Page

5. 시험 방법

5.1 SWR/Return loss

Network Analyzer를 이용하여 SWR/Return loss 를 측정하며 표본 SPL을 선별 Test Fixture 또는 자동화 검사장비를 이용하여 양품과 불량품을 선별한다.

	Set Condition	Test Fixture Condition
Network Analyzer	Agilent HP8753D	Agilent HP8753D or Advantest R3765CH
Cable	RF cable(300mm)	RF cable(300mm)
Test condition		Cttt Cttt Cttt Cttt Cttt Cttt Cttt Ctt

Ver 0.0 (2007.09.07) 8/31 Page

5.2 **Gain**

당사가 보유한 전파 무반사실에서 상기4.1에서 측정된 Set를 이용하여 Antenna Gain을 측정한다.

5.3 Gain test block diagram

Ver 0.0 (2007.09.07) 9/31 Page