My title*

My subtitle if needed

First author Another author

November 1, 2024

First sentence. Second sentence. Third sentence. Fourth sentence.

1 Introduction

- 2 Data
- 2.1 Overview
- 2.2 Raw data

names(raw_data)

[1]	"poll_id"	"pollster_id"
[3]	"pollster"	"sponsor_ids"
[5]	"sponsors"	"display_name"
[7]	"pollster_rating_id"	"pollster_rating_name"
[9]	"numeric_grade"	"pollscore"
[11]	"methodology"	"transparency_score"
[13]	"state"	"start_date"
[15]	"end_date"	"sponsor_candidate_id"
[17]	"sponsor_candidate"	"sponsor_candidate_party"
[19]	"endorsed_candidate_id"	"endorsed_candidate_name"
[21]	"endorsed_candidate_party"	"question_id"
[23]	"sample_size"	"population"

^{*}Code and data are available at: https://github.com/RohanAlexander/starter_folder.

```
[25] "subpopulation"
                                  "population_full"
[27] "tracking"
                                  "created_at"
[29] "notes"
                                  "url"
[31] "url_article"
                                  "url_topline"
[33] "url_crosstab"
                                  "source"
[35] "internal"
                                  "partisan"
[37] "race_id"
                                  "cycle"
[39] "office_type"
                                  "seat_number"
[41] "seat_name"
                                  "election_date"
                                  "nationwide_batch"
[43] "stage"
[45] "ranked_choice_reallocated" "ranked_choice_round"
[47] "hypothetical"
                                  "party"
[49] "answer"
                                  "candidate_id"
[51] "candidate_name"
                                  "pct"
Raw data
           52 variable 17133 sample 52 varibles
                                                project
del_1 <- c("notes", "url", "url_article", "url_topline", "url_crosstab", "source")</pre>
droped_data <- raw_data %>% select(-any_of(del_1))
del_1
[1] "notes"
                    "url"
                                   "url_article" "url_topline" "url_crosstab"
[6] "source"
     variables
# table
del_2 <- c("pollster", "sponsors", "display_name", "pollster_rating_name", "sponsor_candidate
           "population_full", "candidate_id", "candidate_name")
droped_data <- droped_data %>% select(-any_of(del_2))
del_2
[1] "pollster"
                               "sponsors"
[3] "display_name"
                               "pollster_rating_name"
[5] "sponsor_candidate"
                               "endorsed_candidate_name"
[7] "population_full"
                               "candidate_id"
[9] "candidate_name"
```

variables

```
# table
del_3 <- c("office_type", "seat_number", "seat_name")
droped_data <- droped_data %>% select(-any_of(del_3))
del_3
```

[1] "office_type" "seat_number" "seat_name"

```
# Identify variables where all values are the same (including NA)
same_value_variables <- names(droped_data)[sapply(droped_data, function(x) length(unique(x))
# Create a data frame with variables and their unique values
same_value_data <- data.frame(Variable = same_value_variables, Value = sapply(same_value_varunique(na.omit(droped_data[[var]]))[1]))
# Print the names of variables with all identical values using kable
kable(same_value_data[, 2, drop = FALSE], col.names = c("Variable", "Value"))</pre>
```

Variable	Value
endorsed_candidate_id	NA
endorsed_candidate_party	NA
subpopulation	NA
cycle	2024
election_date	11/5/24
stage	general
$nationwide_batch$	FALSE

```
del_4 <- c("endorsed_candidate_id", "endorsed_candidate_party", "subpopulation", "cycle", "endorsed_data <- droped_data %>% select(-any_of(del_4))
```

categorical

```
[5] "methodology"
                                   "state"
 [7] "sponsor_candidate_id"
                                   "sponsor_candidate_party"
 [9] "question_id"
                                   "population"
[11] "tracking"
                                   "created_at"
[13] "internal"
                                   "partisan"
[15] "race_id"
                                   "ranked_choice_reallocated"
[17] "ranked_choice_round"
                                   "hypothetical"
                                   "answer"
[19] "party"
 categorical
                appendix
catego_inp <- c("poll_id", "methodology", "population", "ranked_choice_reallocated", "hypothere")</pre>
catego_inp
[1] "poll_id"
                                  "methodology"
[3] "population"
                                  "ranked_choice_reallocated"
[5] "hypothetical"
                                  "answer"
 3530 poll
[1] 3530
```

```
plots <- list()
# Create bar charts for 'ranked_choice_reallocated' and 'hypothetical'
plots[["ranked_choice"]] <- ggplot(raw_data, aes(x = ranked_choice_reallocated)) +
    geom_bar(fill = "#69b3a2", color = "black", alpha = 0.8) +
    labs(title = "Bar Chart of Ranked Choice Reallocated", x = "Ranked Choice Reallocated", y :
    theme_minimal(base_size = 15) +
    theme(
        plot.title = element_text(hjust = 0.5, size = 12),
        axis.title = element_text(size = 10),
        axis.text = element_text(size = 10)
    )

plots[["hypothetical"]] <- ggplot(raw_data, aes(x = hypothetical)) +
    geom_bar(fill = "#69b3a2", color = "black", alpha = 0.8) +
    labs(title = "Bar Chart of Hypothetical", x = "Hypothetical", y = "Count") +
    theme_minimal(base_size = 15) +</pre>
```

```
theme(
   plot.title = element_text(hjust = 0.5, size = 12),
   axis.title = element_text(size = 10),
   axis.text = element_text(size = 10)
)

# Combine and print the plots using patchwork
combined_plot <- wrap_plots(plots, ncol = 2, nrow = 1, heights = unit(rep(3, 4), "in")) +
   plot_annotation(
   theme = theme(
      plot.title = element_text(hjust = 0.5, size = 14)
   )
   )

# Print the combined plot
print(combined_plot)</pre>
```

Dai Oriait di Named Orioloe Realiocated Dai Oriait di Hypothetical


```
plots <- list()
# Find the top 3 most frequent values in 'methodology' and group others as 'Other'
methodology_counts <- sort(table(raw_data$methodology), decreasing = TRUE)
top_3_methodologies <- names(methodology_counts)[1:3]
raw_data$methodology_grouped <- ifelse(raw_data$methodology %in% top_3_methodologies, raw_data$methodology</pre>
```

```
# Create a bar chart for the grouped 'methodology'
plots[["methodology"]] <- ggplot(raw_data, aes(x = methodology_grouped)) +</pre>
  geom bar(fill = "#69b3a2", color = "black", alpha = 0.8) +
  labs(title = "Top 3 Methodologies and Others", x = "Methodology", y = "Count") +
  theme_minimal(base_size = 15) +
  theme(
    plot.title = element_text(hjust = 0.5, size = 12),
    axis.title = element text(size = 10),
    axis.text = element_text(size = 10)
plots[["population"]] <- ggplot(raw_data, aes(x = population)) +</pre>
  geom_bar(fill = "#69b3a2", color = "black", alpha = 0.8) +
  labs(title = "Population", x = "Population", y = "Count") +
  theme_minimal(base_size = 15) +
  theme(
    plot.title = element_text(hjust = 0.5, size = 12),
    axis.title = element_text(size = 10),
    axis.text = element_text(size = 10)
# Find the top 3 most frequent values in 'answer' and group others as 'Other'
answer_counts <- sort(table(raw_data$answer), decreasing = TRUE)</pre>
top_3_answer <- names(answer_counts)[1:3]</pre>
raw_data$answer <- ifelse(raw_data$answer %in% top_3_answer, raw_data$answer, "Other")</pre>
# Create a bar chart for the grouped 'answer'
plots[["answer"]] <- ggplot(raw data, aes(x = answer)) +</pre>
  geom_bar(fill = "#69b3a2", color = "black", alpha = 0.8) +
  labs(title = "Top 3 answer and Others", x = "answer", y = "Count") +
  theme_minimal(base_size = 15) +
  theme(
    plot.title = element_text(hjust = 0.5, size = 12),
    axis.title = element_text(size = 10),
    axis.text = element_text(size = 10)
combined_plot <- wrap_plots(plots, ncol = 3, nrow = 1, heights = unit(rep(8, 4), "in")) +</pre>
  plot_annotation(
    theme = theme(
      plot.title = element_text(hjust = 0.5, size = 14)
    )
# Print the combined plot
print(combined_plot)
```


numerical variables

```
numer <- droped_data %>% select(-any_of(catego))
names(numer)
```

- [1] "numeric_grade" "pollscore" "transparency_score"
- [4] "start_date" "end_date" "sample_size"
- [7] "pct"

Figure 1: Distribution of numerical varibales

Figure 2: Distribution of numerical varibales

Figure 3: Distribution of date varibales

2.3 Cleaned data

raw data variables project

names(droped_data)

```
[1] "poll_id"
                                  "pollster_id"
 [3] "sponsor_ids"
                                  "pollster_rating_id"
                                  "pollscore"
 [5] "numeric_grade"
 [7] "methodology"
                                  "transparency_score"
 [9] "state"
                                  "start_date"
[11] "end_date"
                                  "sponsor_candidate_id"
[13] "sponsor_candidate_party"
                                  "question_id"
[15] "sample_size"
                                  "population"
[17] "tracking"
                                  "created_at"
[19] "internal"
                                  "partisan"
[21] "race_id"
                                  "ranked_choice_reallocated"
[23] "ranked_choice_round"
                                  "hypothetical"
[25] "party"
                                  "answer"
[27] "pct"
```

NA 40%

```
na_proportions <- sapply(names(droped_data), function(var) {
   round(mean(is.na(raw_data[[var]])), 2)
})

# Create a data frame with variable names and their NA proportions
na_proportions_data <- data.frame(Variable = names(droped_data), NA_Proportion = na_proportion
# Print the NA proportions using kable
kable(na_proportions_data[, 2, drop = FALSE], col.names = c("NA Proportion"))</pre>
```

	NA Proportion
poll_id	0.00
pollster_id	0.00
sponsor_ids	0.52
pollster_rating_id	0.00
numeric_grade	0.12
pollscore	0.12
methodology	0.06
transparency_score	0.19
state	0.46
start_date	0.63
end_date	0.68
$sponsor_candidate_id$	0.98
$sponsor_candidate_party$	0.98

	NA Proportion
question_id	0.00
sample_size	0.01
population	0.00
tracking	0.91
created_at	0.00
internal	0.85
partisan	0.92
race_id	0.00
ranked_choice_reallocated	0.00
ranked_choice_round	1.00
hypothetical	0.00
party	0.00
answer	0.00
pct	0.00

```
# Filter variables with NA proportion greater than 40%
high_na_proportions <- na_proportions_data[na_proportions_data$NA_Proportion > 0.4, ]

# Print the NA proportions greater than 40% using kable
kable(high_na_proportions[, 2, drop = FALSE], col.names = c("Variable", "NA Proportion"))
```

Variable	NA Proportion
sponsor_ids	0.52
state	0.46
start_date	0.63
end_date	0.68
sponsor_candidate_id	0.98
sponsor_candidate_party	0.98
tracking	0.91
internal	0.85
partisan	0.92
ranked_choice_round	1.00

[1] "poll_id"

"pollster_id"

```
[3] "pollster_rating_id"
                                   "numeric_grade"
 [5] "pollscore"
                                   "methodology"
 [7] "transparency_score"
                                   "start_date"
 [9] "end_date"
                                   "question_id"
[11] "sample_size"
                                   "population"
[13] "created_at"
                                   "race_id"
[15] "ranked_choice_reallocated" "hypothetical"
                                   "answer"
[17] "party"
[19] "pct"
```

variables

Create a new variable called 'duration' (days difference between start_date and end_date) and remove 'start_date' and 'end_date' Group methodology by level Replace NA values - numerical variables with mean, categorical variables with mode Rename pct as score janitor::clean_names candidate score score *poll

A tibble: 5 x 3 candidate_name poll_count avg_weighted_pct <chr>> <int> <dbl> 1 Donald Trump 5657 252424. 2 Joe Biden 3883 161611. 3 Kamala Harris 109502. 2336 4 Ron DeSantis 466 18823. 5 Robert F. Kennedy 14750. 1330

train 70%, test(30%) analysisdata

```
kable(head(train_Trump), col.names = names(train_Trump))
```

numeric_	_graldkecc	renetho	do logy nsparency	sa snpi le_	_spizoq	oulati oa nked_choic	e_ireyaplootdaat	e ida dre	duration
2.7	-0.8	level1	6	1373	lv	FALSE	FALSE	50.7	1
2.7	-0.8	level1	6	1373	lv	FALSE	FALSE	50.7	1
2.7	-0.8	level1	6	1005	lv	FALSE	FALSE	51.0	1
2.7	-0.8	level1	6	1212	lv	FALSE	FALSE	48.8	1
2.7	-0.8	level1	6	1212	lv	FALSE	FALSE	50.1	1
2.7	-0.8	level1	6	1136	lv	FALSE	FALSE	49.2	1

2.4 Measurement

2.5 Similar dataset

3 Model

3.1 Model set-up

3.1.1 response variable

response variable score score

```
# Plot a histogram for the 'pct' variable
ggplot(train_Trump, aes(x = score)) +
  geom_histogram(binwidth = 5, fill = "blue", color = "black", alpha = 0.7) +
  labs(title = "Histogram of pct", x = "pct", y = "Frequency")
```

Histogram of pct


```
ggplot(train_Harris, aes(x = score)) +
  geom_histogram(binwidth = 5, fill = "blue", color = "black", alpha = 0.7) +
  labs(title = "Histogram of pct", x = "pct", y = "Frequency")
```

Histogram of pct

3.1.2 Predictor

train numerical variable

data2 = raw_data %>% select("numeric_grade", "pollscore","transparency_score","sample_size")
pairs(data2 , main = "Predictor vs predictor")

Predictor vs predictor -0.5 0.0 0.5 1.0 1.5 20000 40000 60000 80000 2.5 2.0 numeric_grade 1.5 1.0 1.5 1.0 0.5 pollscore 0.0 -0.5 0 000 000 0 00 00 0000 0 00 00 0000 transparency_score 00 0 0 0 0000 0000 0 80000 00009 40000 sample_size 0.5 1.0 2.5

3.1.3 alternative models

```
Trump_model_1 <- lm(</pre>
  score ~ pollscore + transparency_score + duration + sample_size + population + hypothetical
    methodology, data = train_Trump)
Harris_model_1 <- lm(</pre>
  score ~ pollscore + transparency_score + duration + sample_size + population + hypothetical
    methodology, data = train_Harris)
# Get the summary of the model
Harris_summary <- summary(Harris_model_1)</pre>
# Extract coefficients from the summary
coefficients <- Harris_summary$coefficients</pre>
# Extract p-values
Harris_p_values <- coefficients[, 4]</pre>
# Create a data frame with the results
Harris_results_table <- data.frame(</pre>
  Variable = rownames(coefficients),
  P_Value = format(Harris_p_values, scientific = TRUE)
Harris_kable <- kable(Harris_results_table[, 2, drop = FALSE], col.names = c("Variable", "P-
# Get the summary of the model
Trump_summary <- summary(Trump_model_1)</pre>
# Extract coefficients from the summary
coefficients <- Trump_summary$coefficients</pre>
# Extract p-values
Trump_p_values <- coefficients[, 4]</pre>
# Create a data frame with the results
Trump_results_table <- data.frame(</pre>
  Variable = rownames(coefficients),
  P_Value = format(Trump_p_values, scientific = TRUE)
Trump_kable <- kable(Trump_results_table[, 2, drop = FALSE], col.names = c("Variable", "P-va</pre>
```

```
knitr::kable(
  list(Trump_results_table[, 2, drop = FALSE], Harris_results_table[, 2, drop = FALSE]),
  caption = ' ',
  booktabs = TRUE, valign = 't'
)
```

summary(Trump_model_1)\$coefficients[, 4]

```
(Intercept)
                                        pollscore
      0.00000e+00
                                     1.923424e-09
transparency_score
                                         duration
      2.694363e-03
                                     3.164509e-04
       sample_size
                                     populationly
      3.889702e-07
                                     5.329369e-45
      populationrv
                                      populationv
      2.162684e-30
                                     6.301089e-01
 hypotheticalTRUE ranked_choice_reallocatedTRUE
      1.969949e-77
                                     3.545196e-01
 methodologylevel2
                                methodologylevel3
      1.460160e-01
                                     1.095258e-01
 methodologylevel4
      5.411974e-04
```

summary(Harris_model_1)\$coefficients[, 4]

```
(Intercept)
                                        pollscore
      0.000000e+00
                                     1.571566e-17
transparency_score
                                         duration
      1.374640e-02
                                     1.782720e-15
       sample_size
                                     populationly
      2.782493e-03
                                     1.861643e-09
      populationrv
                                      populationv
      2.207540e-02
                                     1.123945e-06
 hypotheticalTRUE ranked_choice_reallocatedTRUE
      3.610001e-09
                                     6.050213e-01
methodologylevel2
                               methodologylevel3
                                     7.685775e-01
      3.326043e-01
methodologylevel4
      1.001406e-01
```

Table 5:

	P_Value
(Intercept)	0.000000e+00
pollscore	1.923424e-09
transparency_score	2.694363e-03
duration	3.164509 e-04
$sample_size$	3.889702 e-07
populationly	5.329369e-45
populationrv	2.162684 e-30
populationv	6.301089 e-01
${\bf hypothetical TRUE}$	1.969949e-77
$ranked_choice_reallocated TRUE$	3.545196e-01
methodologylevel2	1.460160 e-01
methodologylevel3	1.095258e-01
methodologylevel4	5.411974e-04
	P_Value
(Intercept)	P_Value 0.000000e+00
(Intercept) pollscore	
- /	0.000000e+00
pollscore	0.000000e+00 1.571566e-17
pollscore transparency_score	0.000000e+00 1.571566e-17 1.374640e-02
pollscore transparency_score duration	
pollscore transparency_score duration sample_size	0.000000e+00 1.571566e-17 1.374640e-02 1.782720e-15 2.782493e-03
pollscore transparency_score duration sample_size populationly	0.000000e+00 1.571566e-17 1.374640e-02 1.782720e-15 2.782493e-03 1.861643e-09
pollscore transparency_score duration sample_size populationlv populationrv	0.000000e+00 1.571566e-17 1.374640e-02 1.782720e-15 2.782493e-03 1.861643e-09 2.207540e-02
pollscore transparency_score duration sample_size populationlv populationrv populationv	0.000000e+00 1.571566e-17 1.374640e-02 1.782720e-15 2.782493e-03 1.861643e-09 2.207540e-02 1.123945e-06
pollscore transparency_score duration sample_size populationly populationry populationv hypotheticalTRUE	0.000000e+00 1.571566e-17 1.374640e-02 1.782720e-15 2.782493e-03 1.861643e-09 2.207540e-02 1.123945e-06 3.610001e-09
pollscore transparency_score duration sample_size populationly populationry populationv hypotheticalTRUE ranked_choice_reallocatedTRUE	0.000000e+00 1.571566e-17 1.374640e-02 1.782720e-15 2.782493e-03 1.861643e-09 2.207540e-02 1.123945e-06 3.610001e-09 6.050213e-01

summary(Trump_model)

```
Call:
lm(formula = score ~ pollscore + transparency_score + duration +
    sample_size + population + hypothetical, data = Trump)
Residuals:
    Min
              1Q
                   Median
                                3Q
                                        Max
-26.0485 -1.8860
                   0.0366
                            2.1279 23.6316
Coefficients:
                    Estimate Std. Error t value Pr(>|t|)
(Intercept)
                   4.293e+01 4.370e-01 98.253 < 2e-16 ***
pollscore
                  -6.757e-01 1.175e-01 -5.749 9.66e-09 ***
transparency_score -1.337e-01 3.280e-02 -4.076 4.68e-05 ***
duration
                   5.821e-02 1.579e-02
                                          3.687 0.00023 ***
sample size
                  -1.783e-04 3.003e-05 -5.937 3.16e-09 ***
populationly
                   5.059e+00 3.353e-01 15.091 < 2e-16 ***
populationrv
                   4.106e+00 3.309e-01 12.410 < 2e-16 ***
                   2.201e+00 1.463e+00 1.505 0.13239
populationv
hypotheticalTRUE
                  -2.969e+00 1.600e-01 -18.551 < 2e-16 ***
               0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Signif. codes:
Residual standard error: 4.502 on 3951 degrees of freedom
Multiple R-squared: 0.1803,
                               Adjusted R-squared: 0.1787
F-statistic: 108.7 on 8 and 3951 DF, p-value: < 2.2e-16
summary(Harris_model)
```

Call:

```
lm(formula = score ~ pollscore + transparency_score + duration +
    sample_size + population + hypothetical, data = Harris)
```

Residuals:

Min 1Q Median 3Q Max -19.242 -1.769 0.435 2.008 21.526

Coefficients:

Estimate Std. Error t value Pr(>|t|) (Intercept) 4.397e+01 6.566e-01 66.968 < 2e-16 *** pollscore -1.438e+00 1.720e-01 -8.364 < 2e-16 *** transparency_score -1.318e-01 4.341e-02 -3.036 0.002433 ** 1.625e-01 2.008e-02 8.092 1.14e-15 *** duration 1.689e-04 5.065e-05 3.334 0.000877 *** sample_size populationly 3.201e+00 5.247e-01 6.100 1.32e-09 *** 1.263e+00 5.437e-01 2.323 0.020316 * populationrv 2.031e+01 4.216e+00 4.817 1.59e-06 *** populationv hypotheticalTRUE -1.614e+00 2.686e-01 -6.007 2.32e-09 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 4.177 on 1627 degrees of freedom Multiple R-squared: 0.1715, Adjusted R-squared: 0.1674 F-statistic: 42.1 on 8 and 1627 DF, p-value: < 2.2e-16

3.2 validation

GVIF 1 1.3

vif(Trump_model)

	GVIF	Df	GVIF^(1/(2*Df))
pollscore	1.101322	1	1.049439
transparency_score	1.126838	1	1.061526
duration	1.037154	1	1.018408
sample_size	1.051550	1	1.025451
population	1.203265	3	1.031320
hypothetical	1.112077	1	1.054550

vif(Harris_model)

	GVIF	${\tt Df}$	GVIF^(1/(2*Df))
pollscore	1.102432	1	1.049968
transparency_score	1.205052	1	1.097748
duration	1.087927	1	1.043037
sample_size	1.090086	1	1.044072

population 1.111258 3 1.017738 hypothetical 1.028432 1 1.014116

```
par(mfrow=c(2,2))
plot(Harris_model,1)
plot(Harris_model,2)
```

Warning: not plotting observations with leverage one: 746


```
par(mfrow=c(2,2))
plot(Trump_model,1)
plot(Trump_model,2)
```


response variable normal $\,\,$ numerical variable MLR $\,\,$