Data Structures

Important Points

- Big Theta notation is used to denote
(Fight) asymptotic bound (-upper and
Lower bound)

- Big Omega notation is used to denote asymptotic Lower bound.
- → Big O notation is used to denote an asymptotic upper bound.

Stack ADT operations

- · Push Jublic
- · Poh hublic
- · Peek tublic
- · is Full public or private
- · is Empty public or private
- · Size public or private

Internal data structure should be either array or linked list or both.

-> The	main me	nory 12	, organi	zed &	for
ucce	sa and	Biorage	4, -	ow maj	for order
and	column	major o	rdero	100131	L pit

Binary Search	2 >	Log base a
Last in first out	\longleftrightarrow	Recursion

Modularity	1	Testing of modules separate from rest of the system
Encap & ulation	()	Independence of modules behaviour
Separation of Concerns	\longleftrightarrow	Module responsible for one and only one feature
Abstraction	←→	Hiding details of the implementation

-> Stack ADT supports LIFO/FILO
operation

10 1 1 5 0 0 0 7 2	latest hush operation
Top of Stack (-)	Latest insertion in the stack
Poh 13	Decrement top of stack
Rush	Increment top of estack

- -> Queue Supports FIFO/LILO model.
- → Like circular queue, implementing a circular stack is hossible.
- -> Having elements of a queue at contiguous Locations does not reduce the time complexity of its operations.
- → Stack is better suited than queue for reversing the order of elements that are sorted.

Null pointer	←→	tail -> next
Traversing a	←→	strictly linear
linked list	01 6	order
Contiguous	←→	Access Via
memory Locations		indexing
Element of type Struct	←→	both Linked List and Asoray:

Share Complexity: Memory share required by an algorithm in its execution cycle. Share needed by an algorithm is equal to the sum of the following two components:

· Fixed part: Shace required to store data and variables that are not dependent of the size of input.

· Voriable part: shace required by variables, whose size is dependent on the size of the problem.

· Space complexity is usually denoted by Big o

Mardebass ...

4.
$$32 \times 955 + 2//+$$

Infix method

= $(32 \times 955 + 2//+)$

= $(3 \times 2) 9 (55 +) 2//+$

= $69 (5 + 5) 2//+$

= $69 (5 + 5) 2//+$

= $69 (102)/+$

= $69 (10/2)/+$

= $69 (95/) +$

= $6(95/) +$

= $6(95/) +$

= $6(95/) +$

= $6(95/) +$

= $6(95/) +$

= $6(95/) +$

= $6(95/) +$

= $6(95/) +$

d = current depth (range 0 to D-1)

Lookup operation 20 Asocay & 30 Asocay R = Total Rows C = Total Columns D = Total Depth axxx[x][c], index = 8 * C + C axx3[d][x][c], index = d* R*C+ 8*C+C 8= Covert row (range 0 to R-I) C = avoient column (surge O to C-I)

Justix method