110A HW3

Warren Kim

Winter 2024

Question 1

Let R be a ring. Show that 1 = 0 if and only if $R = \{0\}$.

Response

Proof: (\Longrightarrow) Let R be a ring and suppose 1=0. Then, for any $a\in R$, we can write $a=1\cdot a=a\cdot 1$. But since 1=0, we have $a=0\cdot a=a\cdot 0=0$, so a=0. Because a was arbitrary, a=0 is the only element in R.

(\Leftarrow) Let R be a ring and let it be defined by $R = \{0\}$. Then, because it's a ring, there exists an element $1_R \in R$ such that $1_R \cdot a = a \cdot 1_R = a$ for any $a \in R$. Because 0 is the only element in R, set $1_R = 0$. Then, since 0 is the only element in R, we have that a = 0, so $a \cdot 1_R = 1_R \cdot a = 0 = a = 0 \cdot a = a \cdot 0$.

Let R be a ring, and consider the associated polynomial ring R[x].

- 1. Show that R is commutative if and only if R[x] is commutative.
- 2. Suppose R is commutative. Show that R is an integral domain if and only if R[x] is an integral domain.

Response

1. Show that R is commutative if and only if R[x] is commutative.

Proof: (\Longrightarrow) Suppose R is a commutative ring. Then, consider the associated polynomial ring R[x]. Note that x is commutative with all $a \in R$; i.e. ax = xa. Then, suppose we have two elements $\sum_{i=0}^{n} a_i x^i, \sum_{j=0}^{m} b_j x^j \in R[x]$ for some $n, m \in \mathbb{Z}_{>0}$. Then

$$\left(\sum_{i=0}^{n} a_i x^i\right) \left(\sum_{j=0}^{m} b_j x^j\right) = \sum_{i=0}^{n} \sum_{j=0}^{m} a_i x^i b_j x^j$$

$$= \sum_{i=0}^{n} \sum_{j=0}^{m} x^i a_i b_j x^j \qquad a_i x^i = x^i a_i$$

$$= \sum_{i=0}^{n} \sum_{j=0}^{m} (a_i b_j) x^i x^j \qquad a_i x^i = x^i a_i$$

$$= \sum_{i=0}^{n} \sum_{j=0}^{m} (a_i b_j) x^{i+j} \qquad x^i x^j = x^{i+j}$$

$$= \sum_{i=0}^{n} \sum_{j=0}^{m} (b_j a_i) x^{j+i} \qquad R \text{ is commutative}$$

$$= \left(\sum_{i=0}^{m} b_j x^i\right) \left(\sum_{i=0}^{n} a_i x^i\right)$$

so R[x] is commutative.

 (\Leftarrow) Suppose R[x] is a commutative ring. Then given two elements $\sum_{i=0}^{n} a_i x^i, \sum_{j=0}^{m} b_j x^j \in R[x]$ for some $n, m \in \mathbb{Z}_{>0}$, we have that for any i < n and j < m, $(a_i x^i)(b_j x^j) = (b_j x^j)(a_i x^i)$. Then

$$(a_{i}b_{j})x^{i+j} = (x^{i}a_{i})b_{j}x^{j} a_{i}x^{i} = x^{i}a_{i}$$

$$= a_{i}x^{i}b_{j}x^{j} a_{i}x^{i} = x^{i}a_{i}$$

$$= b_{j}x^{j}a_{i}x^{i} (a_{i}x^{i})(b_{j}x^{j}) = (b_{j}x^{j})(a_{i}x^{i})$$

$$= x^{j}b_{j}a_{i}x^{i} a_{i}x^{i} = x^{i}a_{i}$$

$$(a_{i}b_{j})x^{i+j} = (b_{j}a_{i})x^{j+i} a_{i}x^{i} = x^{i}a_{i}$$

So, $a_ib_j=b_ja_i$, and since $a_i,b_j\in R$ were arbitrary, R is commutative.

2. Suppose R is commutative. Show that R is an integral domain if and only if R[x] is an integral domain.

Proof: Suppose R is commutative.

 (\Longrightarrow) Let R be an integral domain. Then, for any nonzero $a,b\in R$, we have $ab\neq 0$. Now, consider nonzero $\sum_{i=0}^n a_i x^i, \sum_{j=0}^m b_j x^j \in R[x]$ for some $n,m\in\mathbb{Z}_{>0}$. Then

$$\left(\sum_{i=0}^{n} a_i x^i\right) \cdot \left(\sum_{j=0}^{m} b_j x^j\right) = \sum_{i=0}^{n} \sum_{j=0}^{m} (a_i b_j) x^{i+j} \neq 0$$

because $a_i b_j \neq 0$ if a_i, b_j are nonzero, so R[x] is an integral domain.

(\Leftarrow) Let R[x] be an integral domain. Then, consider nonzero $a,b \in R$. Then define $a_0 := a, b_0 := b \in R[x]$ where a_0, b_0 are the zero polynomials. Since R[x] is an integral domain, $a_0b_0 \neq 0$. but $a_0 = a, b_0 = b$, so $ab \neq 0$ for any nonzero $a, b \in R$.

Prove the parts of Proposition 2.1 (in the notes) that were not proved in class.

Response

4. The multiplicative identity is unique.

Proof: Let R be a ring. Suppose we have two identities $1_1, 1_2 \in R$. Then we have the following: $1_1 = 1_1 \cdot 1_2 = 1_2 \cdot 1_1 = 1_2$, so $1_1 = 1_2$.

5. If a is a unit, its inverse is unique.

Proof: Let R be a ring and $a \in R$ be a unit. Suppose there exist $a_1^{-1}, a_2^{-2} \in R$ such that a_1^{-1}, a_2^{-2} are inverses of a. Then, we have the following: $aa_1^{-1} = 1 = aa_2^{-1}$, and since a is nonzero, $a_1^{-1} = a_2^{-1}$ by the cancellation property.

8. -(-a) = a.

Proof: Let R be a ring and $a \in R$. Then,

$$-(-a) = 0 - (-a)$$

$$= (a + (-a)) + (-(-a))$$

$$= a + ((-a) + -(-a))$$

$$= a + 0$$

$$-(-a) = a$$

9. -(a+b) = -a - b.

Proof: Let R be a ring and $a, b \in R$. Then,

$$-(a+b) = 0 - (a+b))$$

$$= 0 + 0 - (a+b))$$

$$= (a-a) + (-b+b) - (a+b)$$

$$= a + (-a-b) + b - (a+b)$$

$$= (-a-b) + (a+b) - (a+b)$$

$$= (-a-b) + 0$$

$$-(a+b) = -a-b$$

10. -(a-b) = -a + b.

Proof: Let R be a ring and $a, b \in R$. Then,

$$-(a - b) = -(a + (-b))$$

$$= -a - (-b)$$

$$-(a + b) = -a - b$$

$$-(a - b) = -a + b$$

$$-(-a) = a$$

11. (-a)(-b) = ab.

Proof: Let R be a ring and $a, b \in R$. Then,

$$(-a)(-b) = a(-(-b))$$
 $-ab = a(-b)$
 $(-a)(-b) = ab$ $-(-a) = a$

5

Let R and S be rings, and let $f: R \to S$ be a ring homomorphism. Let $a, b \in R$. Prove the following:

- 1. f(a-b) = f(a) f(b).
- 2. If $a \in R$ is a unit, then f(a) is a unit as well, with $f(a^{-1}) = f(a)^{-1}$.

Response

1.
$$f(a-b) = f(a) - f(b)$$
.

Proof: Let R, S be rings, $f: R \to S$ a ring homomorphism, and $a, b \in R$. Then,

$$f(a - b) = f(a + (-b))$$

$$= f(a) + f(-b)$$

$$= f(a) + f((-1_R) \cdot b) \qquad -a = 1(-a) = -1a = (-1)a$$

$$= f(a) + f((-1_R)) \cdot f(b) \qquad f(ab) = f(a) \cdot f(b)$$

$$= f(a) + (-1_S) \cdot f(b) \qquad f(1_R) = 1_S$$

$$f(a - b) = f(a) - f(b)$$

2. If $a \in R$ is a unit, then f(a) is a unit as well, with $f(a^{-1}) = f(a)^{-1}$.

Proof: Let R, S be rings, $f: R \to S$ a ring homomorphism, and $a \in R$ be a unit. Then,

$$1_S = f(1_R)
= f(aa^{-1})
= f(a) \cdot f(a^{-1})
f(a)^{-1} \cdot 1_S = f(a^{-1})
f(a)^{-1} = f(a^{-1})
1_R = aa^{-1}
f(ab) = f(a) \cdot f(b)
a1 = 1a = a$$

Consider the Gaussian integers, given by $\mathbb{Z}[i] = \{a + bi | a, b \in \mathbb{Z}\}$, where $i^2 = -1$. Consider the map $f : \mathbb{Z}[i] \to \mathbb{Z}[i]$ where $a + bi \mapsto a - bi$. Show f is an isomorphism.

Response

Proof: Let $\mathbb{Z}[i] = \{a + bi : a, b \in \mathbb{Z}\}$ where $i^2 = -1$ and define $f : \mathbb{Z}[i] \to \mathbb{Z}[i]$, $a + bi \mapsto a - bi$. Then

- 1. $1 \in \mathbb{Z}[i]$: Take $1 \in \mathbb{Z}[i]$. Then, f(1) = f(1+0i) = 1 0i = 1.
- 2. Closure under addition: Consider $a + bi, c + di \in \mathbb{Z}[i]$. Then

$$f((a+bi) + (c+di)) = f(a+bi+c+di)$$

$$= f(a+c+bi+di)$$

$$= f((a+c) + (b+d)i)$$

$$= (a+c) - (b+d)i$$

$$= a+c-bi-di$$

$$= (a-bi) + (c-di)$$

$$f((a+bi) + (c+di)) = f(a+bi) + f(c+di)$$

3. Closure under multiplication Consider $a + bi, c + di \in \mathbb{Z}[i]$. Then

$$f((a+bi) \cdot (c+di)) = f(ac+bci+adi+bdi^{2})$$

$$= f(ac+bci+adi-bd)$$

$$= f((ac-bd) + (bc+ad)i)$$

$$= (ac-bd) - (bc+ad)i$$

$$= ac-bd-bci-adi$$

$$= ac-bci-adi+bdi^{2}$$

$$= c(a-bi) - di(a-bi)$$

$$= (a-bi) \cdot (c-di)$$

$$f((a+bi) \cdot (c+di)) = f(a+bi) \cdot f(c+di)$$

(1) - (3) show that f is a homomorphism. To show that f is an isomorphism, consider $f: \mathbb{Z}[i] \to \mathbb{Z}[i]$, $f^{-1} := f$. Then for $a + bi \in \mathbb{Z}[i]$, $f(f^{-1}(a + bi)) = f(a - bi) = a + bi = f^{-1}(a - bi) = f^{-1}(f(a + bi))$. So, f is an isomorphism.

Let R be a ring. We say that $a \in R$ is nilpotent if there is some integer n such that $a^n = 0$. Show that 1 + a is a unit.

Response

Proof: Let R be a ring and suppose $a \in R$ is nilpotnet; i.e. there is some integer n such that $a^n = 0$. Then, since R is a ring, $1 \in R$. Consider the elements $(1 + a), (1 - a^n) \in R$. Then

$$(1+a)(1-a^n) = 1^2 - a \cdot a^n$$

$$= 1 - a0$$

$$(1+a)(1-a^n) = 1$$
 a is nilpotent

so 1 + a is a unit.

We say that a ring R is a Boolean ring if, for every $a \in R$, we have $a^2 = a$.

- 1. Show that a Boolean ring R is commutative.
- 2. Suppose R is a Boolean ring and an integral domain. Show that |R| = 2. [Hint: show that any nonzero element must be 1.]

Response

1. Show that a Boolean ring R is commutative.

Proof: To show that a Boolean ring R is commutative, consider $a + b \in R$. Then

$$a + b = (a + b)^{2}$$

$$= a^{2} + ab + ba + b^{2}$$

$$= a + ab + ba + b$$

$$(a - a) + (b - b) = (a - a) + ab + ba + (b - b)$$

$$0 = ab + ba$$

$$0 = ab - ba$$

$$a = -a$$

so ab = ba.

2. Suppose R is a Boolean ring and an integral domain. Show that |R|=2.

Proof: Suppose R is a Boolean ring and an integral domain. Let $a \in R$ be nonzero. Since R is a Boolean ring, $a^2 = a$. Then, $a^2 = aa = a$. Because R is an integral domain, $ab \neq 0$ for all $a, b \in R$, so by the cancellation property, we get a = 1. Since a was arbitrary, this holds for all $a \in R$. Because R is a ring, $0 \in R$. Set $1_R = 1 \in R$. Then, $R := \{0, 1\}$, so |R| = 2. \square

Let R and S be rings. Show that if R and S are isomorphic, then R[x] and S[x] are isomorphic.

Response

Proof: Let R, S be rings. Suppose $R \simeq S$. Then, there exists a bijection $f: R \to S$. Consider the function $g: R[x] \to S[x]$ defined by $\sum_{i=0}^{n} a_i x^i \mapsto \sum_{i=0}^{n} f(a_i) x^i$

Consider two polynomials $\sum_{i=0}^{n} a_i x^i$, $\sum_{j=0}^{m} b_j x^j \in R[x]$ for some $n, m \in \mathbb{Z}_{>0}$.

1. Closure under addition: Without loss of generality, assume $m \le n$ and set $b_i = 0$ for $m < i \le n$. Then

$$g\left(\sum_{i=0}^{n} a_{i}x^{i} + \sum_{i=0}^{n} b_{i}x^{i}\right) = g\left(\sum_{i=0}^{n} (a_{i} + b_{i})x^{i}\right)$$

$$= \sum_{i=0}^{n} f(a_{i} + b_{i})x^{i}$$

$$= \sum_{i=0}^{n} (f(a_{i}) + f(b_{i}))x^{i}$$

$$= \sum_{i=0}^{n} (f(a_{i})x^{i} + f(b_{i})x^{i})$$

$$= \sum_{i=0}^{n} f(a_{i})x^{i} + \sum_{i=0}^{n} f(b_{i})x^{i}$$

$$g\left(\sum_{i=0}^{n} a_{i}x^{i} + \sum_{i=0}^{n} b_{i}x^{i}\right) = g\left(\sum_{i=0}^{n} a_{i}x^{i}\right) + g\left(\sum_{i=0}^{n} b_{i}x^{i}\right)$$

so q is closed under addition.

2. Closure under multiplication:

$$g\left(\left(\sum_{i=0}^{n}a_{i}x^{i}\right)\left(\sum_{j=0}^{m}b_{j}x^{j}\right)\right) = g\left(\sum_{i=0}^{n}\sum_{j=0}^{m}a_{i}x^{i}b_{j}x^{j}\right)$$

$$= g\left(\sum_{i=0}^{n}\sum_{j=0}^{m}x^{i}a_{i}b_{j}x^{j}\right)$$

$$= \sum_{i=0}^{n}\sum_{j=0}^{m}x^{i}f(a_{i}b_{j})x^{j}$$

$$= \sum_{i=0}^{n}\sum_{j=0}^{m}x^{i}f(a_{i})\cdot f(b_{j})x^{j}$$

$$= \sum_{i=0}^{n}\sum_{j=0}^{m}f(a_{i})x^{i}\cdot f(b_{j})x^{j}$$

$$= \left(\sum_{i=0}^{n}f(a_{i})x^{i}\right)\cdot \left(\sum_{j=0}^{m}f(b_{j})x^{j}\right)$$

$$= g\left(\sum_{i=0}^{n}a_{i}x^{i}\right)\cdot g\left(\sum_{j=0}^{m}b_{j}x^{j}\right)$$

so g is closed under multiplication.

3. $g(1_{R[x]}) = 1_{S[x]}$:

$$g(1_{R[x]}) = f(1_R) = 1_S = 1_{S[x]}$$

so the multiplicative identity exists.

so g is a homomorphism. To show that g is an isomorphism, consider $g^{-1}: S[x] \to R[x], \sum_{i=0}^n a_i x^i \mapsto \sum_{i=0}^n f^{-1}(a_i)x^i$ where $f^{-1}: S[x] \to R[x]$ is the inverse of f. Then for all $\sum_{i=0}^n a_i x^i \in R[x]$

$$g^{-1}\left(g\left(\sum_{i=0}^{n}a_{i}x^{i}\right)\right) = g^{-1}\left(\sum_{i=0}^{n}f\left(a_{i}\right)x^{i}\right) = \sum_{i=0}^{n}f^{-1}\left(f\left(a_{i}\right)\right)x^{i} = \sum_{i=0}^{n}a_{i}x^{i}$$

and for all $\sum_{i=0}^{n} b_i x^i \in S[x]$ we have

$$g\left(g^{-1}\left(\sum_{i=0}^{n}b_{i}x^{i}\right)\right) = g\left(\sum_{i=0}^{n}f^{-1}\left(b_{i}\right)x^{i}\right) = \sum_{i=0}^{n}f\left(f^{-1}\left(b_{i}\right)\right)x^{i} = \sum_{i=0}^{n}b_{i}x^{i}$$

so g is an isomorphism and therefore R[x] and S[x] are isomorphic.