Практически для любого графа Reconstruction Number(RN) равно трем.

В данной статье речь шла о некотором общем утверждении, касающемся характеристики, определяющий графы с точностью до изоморфизма.

Определение. G - граф, где $\{x_1, ... x_n\}$ - множество его вершин, будем deck называть совокупность $\{G_i | G_i = G \setminus x_i, i = 1, ..., n \}$

Определение. *Reconstruction Number(RN)* графа G будем называть минимальное число k, такое что существует набор $\{i_1, \ldots i_k\}, 1 \leq i_1 < \cdots < i_k \leq n$, такой, что если для графа H вместе с $deck_H$ существует набор размера k - $J = \{j_1, \ldots, j_k\}$, такой что $G_{i_l} \cong H_{j_l}$ для любого $l = 1, \ldots, k$, то H изоморфен G.

Определение. $\mathfrak{J}(n,p)$ - вероятностное пространство графов на n вершинах, где каждое ребро выбирается с вероятностью p=p(n). Случайный элемент этого пространства обозначаем $G_p(G_{p,n})$.

Определение. Будем говорить, что случайный элемент G_p обладает некоторым свойством Q, если вероятность этого события стремится к 1 при $n \to \infty$.

Лемма(Приведена без подробного доказательства).

 $k \in \mathbb{N}$, $c > \frac{k+2}{2}$ – фиксированы,

$$\frac{c\log n}{n} \le p = p(n) \le 1 - \frac{c\log n}{n}.$$

G из $\mathfrak{J}(n+k,p)$ - такое что если $W\subset V$, мощности n, а ρ - инъекция, индуцирующая изоморфизм подграфов: $G[W]\to G[\rho(W)]$, где G[W] - подграф графа G на множестве вершин W, тогда $\rho(w=w$ для любого w из W.

Теорема. Пусть
$$c > \frac{5}{2}$$
 и $\frac{c \log n}{n} \le p = p(n) \le 1 - \frac{c \log n}{n}$.

- 1. Тогда G_p , n такое что любые три элемента deck определяют его.
- 2. Более того любые два элемента $deck\ G_i$ и G_j определяют его граф с точностью до ребра между x_i и x_j .

Для доказательства, выделим множество графов, подходящих под условие Леммы и докажем, что для графов из этого множества, верно выполнение второго пункта теоремы, что влечет выполнение и первого.

Заметим, что из Леммы следует, что вероятность этого множества стремится к единице, то есть почти все графы обладают свойством принадлежности данному множеству, что и доказывает теорему.

Следствие. Почти для любого графа RN=3.