Nyx, An Open Source Space Astrodynamics Toolkit

Chris Rabotin¹

¹Guidance, Navigation, and Control Masten Space Systems

8th IEEE International Conference on Space Mission Challenges for Information Technology, 2021

Outline

- Motivation
- 2 Brief overview
 - Analysis capabilities
 - Mission design
 - Orbit determination
- Workshop

Limited options

- Related software:
 - GMAT, STK Astrogator, FreeFlyer, JPL Monte
- All closed-source and expensive apart from GMAT
- All cumbersome if trying to run on Docker containers (GMAT, Monte)
- All are purely desktop software

Limited options

- Related software:
 - GMAT, STK Astrogator, FreeFlyer, JPL Monte
- All closed-source and expensive apart from GMAT
- All cumbersome if trying to run on Docker containers (GMAT, Monte)
- All are purely desktop software

Purpose of Nyx

- Open-source code, issues and documentation
- Allow users to report bugs, request features and trivially propose changes
- Business compatible license without compromising the open-source contributions
- AGPLv3 License
 - Use it as you wish as long as you don't distribute it outside your business
 - If you distribute it outside your business, you must use an official version of Nyx and customers may request a copy of the code
 - If distributing your custom version of Nyx, you must publicly release all changes you've made for free

Purpose of Nyx

- Open-source code, issues and documentation
- Allow users to report bugs, request features and trivially propose changes
- Business compatible license without compromising the open-source contributions
- AGPLv3 License
 - Use it as you wish as long as you don't distribute it outside your business
 - If you distribute it outside your business, you must use an official version of Nyx and customers may request a copy of the code
 - If distributing your custom version of Nyx, you must publicly release all changes you've made for free

Status of Nyx

- In development since January 2018
- Code entirely in Rust with very minimal memory allocations
- Tested on x64 and embedded ARM processors
- Everything validated against GMAT

Outline

- Motivation
- 2 Brief overview
 - Analysis capabilities
 - Mission design
 - Orbit determination
- Workshop

Orbit propagation

- Orbit manipulation
 - Initialize and convert from Cartesian to Keplerian representations
 - Convert between frames, rotations included, using JPL DE438 ephemerides and IAU body fixed frames
- Propagation/integration
 - Propagation using several Runge Kutta integrators (RK4 through RK89)
 - Forward and backward propagation
 - Allows for custom dynamical models

Orbit propagation

- Orbit manipulation
 - Initialize and convert from Cartesian to Keplerian representations
 - Convert between frames, rotations included, using JPL DE438 ephemerides and IAU body fixed frames
- Propagation/integration
 - Propagation using several Runge Kutta integrators (RK4 through RK89)
 - Forward and backward propagation
 - Allows for custom dynamical models

Dynamical models

- Point mass gravity of any celestial object in the DE438 ephemerides file
- Spherical harmonics:
 - Earth (GRACE EGM2008 model)
 - Moon (GRAIL JGGRX model)
 - Any SHADR or TAB file is supported
- Solar radiation pressure
- 1976 Standard Atmospheric drag
 - High fidelity Jacchia Robberts model in development

Dynamical models

- Point mass gravity of any celestial object in the DE438 ephemerides file
- Spherical harmonics:
 - Earth (GRACE EGM2008 model)
 - Moon (GRAIL JGGRX model)
 - Any SHADR or TAB file is supported
- Solar radiation pressure
- 1976 Standard Atmospheric drag
 - High fidelity Jacchia Robberts model in development

Dynamical models

- Point mass gravity of any celestial object in the DE438 ephemerides file
- Spherical harmonics:
 - Earth (GRACE EGM2008 model)
 - Moon (GRAIL JGGRX model)
 - Any SHADR or TAB file is supported
- Solar radiation pressure
- 1976 Standard Atmospheric drag
 - High fidelity Jacchia Robberts model in development

Outline

- Motivation
- 2 Brief overview
 - Analysis capabilities
 - Mission design
 - Orbit determination
- Workshop

Trajectory analysis

- Interpolated trajectory from a propagation segment on demand
 - Lagrange interpolation of any state vector
 - Multi-threaded querying
- Reference frames
 - Generated from the propagation frame
 - May be converted into another frame
- Event finder
 - Any state parameter (true anomaly, geodetic height)
 - Eclipsing state, e.g. 29% penumbra

Trajectory analysis

- Interpolated trajectory from a propagation segment on demand
 - Lagrange interpolation of any state vector
 - Multi-threaded querying
- Reference frames
 - Generated from the propagation frame
 - May be converted into another frame
- Event finder
 - Any state parameter (true anomaly, geodetic height)
 - Eclipsing state, e.g. 29% penumbra

Trajectory analysis

- Interpolated trajectory from a propagation segment on demand
 - Lagrange interpolation of any state vector
 - Multi-threaded querying
- Reference frames
 - Generated from the propagation frame
 - May be converted into another frame
- Event finder
 - Any state parameter (true anomaly, geodetic height)
 - Eclipsing state, e.g. 29% penumbra

Maneuver design

- Impulsive maneuver design
 - Support for targeting any arbitrary orbital element
 - Method presented in "Hyperdual Numbers for Arbitrary Orbit Targeting", C. Rabotin, AAS Astrodynamics Specialist Conference, Big Sky 2021
- Control law design
 - Support for the Ruggerio low-thrust control law
 - Additional control laws may be built with this framework
- Planned work includes:
 - Finite burn maneuver planning
 - Multiple shooting algorithms for optimal low thrust trajectories

Maneuver design

- Impulsive maneuver design
 - Support for targeting any arbitrary orbital element
 - Method presented in "Hyperdual Numbers for Arbitrary Orbit Targeting", C. Rabotin, AAS Astrodynamics Specialist Conference, Big Sky 2021
- Control law design
 - Support for the Ruggerio low-thrust control law
 - Additional control laws may be built with this framework
- Planned work includes:
 - Finite burn maneuver planning
 - Multiple shooting algorithms for optimal low thrust trajectories

Maneuver design

- Impulsive maneuver design
 - Support for targeting any arbitrary orbital element
 - Method presented in "Hyperdual Numbers for Arbitrary Orbit Targeting", C. Rabotin, AAS Astrodynamics Specialist Conference, Big Sky 2021
- Control law design
 - Support for the Ruggerio low-thrust control law
 - Additional control laws may be built with this framework
- Planned work includes:
 - Finite burn maneuver planning
 - Multiple shooting algorithms for optimal low thrust trajectories

Outline

- Motivation
- 2 Brief overview
 - Analysis capabilities
 - Mission design
 - Orbit determination
- Workshop

Simulated measurements

- Enables coverage analysis from ground stations
- Generation of measurements from ground stations
 - Soon to be in CCSDS TDM format
- Supports "flying" orbit determination partners, such as another spacecraft
 - Cislunar Autonomous Positioning System relied on Nyx for all its simulations

Simulated measurements

- Enables coverage analysis from ground stations
- Generation of measurements from ground stations
 - Soon to be in CCSDS TDM format
- Supports "flying" orbit determination partners, such as another spacecraft
 - Cislunar Autonomous Positioning System relied on Nyx for all its simulations

Filtering

- Current capabilities
 - Classical and Extended Kalman filters
 - Iteration and smoothing
- Currently sufficient for analysis, not yet for flight operations

Filtering

- Current capabilities
 - Classical and Extended Kalman filters
 - Iteration and smoothing
- Currently sufficient for analysis, not yet for flight operations

Interactive workshop

- Go directly to [https://gitpod.io/#https://gitlab.com/nyx-space/showcase/propagation-tutorial]
- Or go to [nyxspace.com] and click "Get started on Gitpod"

For Further Reading I

- C. Rabotin.
 Nyx Space website [nyxspace.com]
- C. Rabotin. Nyx Space MathSpec [nyxspace.com/MathSpec/]
- C. Rabotin. Nyx Space Demo on Gitpod [link to gitpod.io]