Al Prompt Injection Detection - Home Assignment

Overview

Your task is to develop a machine learning model that can classify AI prompts as either potentially malicious (PROMPT_INJECTION) or safe (BENIGN).

This assignment will test your ability to handle data, train models, and deploy them in a production-ready manner.

Assignment Details

Task 1: Model Development

- Use the "prompt_injection_detection" dataset from HuggingFace (https://huggingface.co/datasets/jackhhao/jailbreak-classification)
- 2. Implement a binary classification model using any of the following approaches:
 - Fine-tuning a pre-trained transformer model
 - Creating a custom neural network
 - Using traditional machine learning approaches

NOTE: You must support all input lengths

Task 2: Training and Evaluation

- 1. Split the dataset into training, validation, and test sets
- 2. Implement and document your training pipeline
- 3. Create evaluation metrics including:
 - Accuracy
 - Precision
 - Recall
 - F1 Score
- 4. Provide confusion matrix visualization
- 5. Include examples of correctly and incorrectly classified prompts

Task 3: Deployment

1. Upload your trained model to HuggingFace Hub

- 2. Create a simple inference pipeline that can:
 - Accept a text prompt as input
 - o Return the classification (PROMPT INJECTION/BENIGN) and confidence score
 - Handle basic error cases

Deliverables

- 1. A Google Colab notebook containing:
 - Data loading and preprocessing
 - Model implementation and training
 - Evaluation code and results
 - Clear documentation and comments
- 2. A link to your deployed model on HuggingFace Hub
- 3. A README.md file explaining:
 - Your approach and design decisions
 - Model architecture and training strategy
 - Key results and observations
 - Instructions for running the inference pipeline

Technical Requirements

- Use Python 3.8+
- Recommended libraries: transformers, torch, pandas, numpy
- Include requirements.txt
- Proper code organization and documentation
- Optional: Git commit history showing incremental progress

Evaluation Criteria

Your submission will be evaluated based on:

- 1. Code Quality (25%)
 - Clean, well-organized code
 - Proper documentation
 - Error handling
- 2. Model Performance (25%)
 - Accuracy and other metrics
 - Training efficiency
 - Inference speed
- 3. Technical Implementation (25%)
 - Proper use of libraries and best practices
 - Data preprocessing and validation
 - Model deployment

- 4. Documentation (25%)
 - Clear explanation of approach
 - Well-documented notebooks
 - Comprehensive README

Time Expectation

• Expected completion time: 4 hours

• Maximum submission time: 7 days from receipt

Submission Instructions

- 1. Share the Colab notebook link with edit access
- 2. Provide the HuggingFace model repository link
- 3. Optional: Submit all code and documentation via a GitHub repository

Notes

- Focus on creating a working solution first, then improve if time permits
- Comment your code and document your decisions
- Feel free to ask clarifying questions if needed
- Include any assumptions you made during development

Good luck! We're excited to see your solution