System HEX i konwersja z systemu binarnego oraz dziesiętnego

System heksadecymalny HEX to znany szesnastkowy system liczbowy szeroko używany w informatyce. Składa się on z podstawowej liczby 16, do budowy liczb wykorzystywane są pierwsze dziesięć cyfr, takie same jak w systemie dziesiątkowym, czyli od 0 do 9 oraz pierwszych sześciu liter z alfabetu łacińskiego, od A do F, wielkość liter nie ma znaczenia. Poszczególne litery odpowiadają następującymi wartościom:

А	В	С	D	E	F
10	11	12	13	14	15

System szesnastkowy znajduje zastosowanie do nadawania adresów MAC, adresów sieciowych IP oraz do opisywania barw RGB.

Konwersja z dziesiętnego na szesnastkowy:

Konwersja, inaczej zamiana liczby w systemie dziesiętny na system heksadecymalny odbywa się przez wielokrotne dzielenie 16 i zapisywanie reszty z dzielenia. W ten sposób utworzony ciąg reprezentuje szesnastkową postać liczby dziesiętnej.

X	:16	R
W	:16	R
W	:16	R
		-

Przykład:

Liczbę dziesiętną 74 zamieniamy na liczbę szesnastkową:

74	:16	10
4		4

Odpowiedź: Liczba 74(10) to 4A(16).

Podpowiedź: pierwszą liczbą jest 4, ponieważ zapisujemy liczbę szesnastkową od tyłu, a liczba dziesiętna 10 odpowiada w systemie heksadecymalny litera A.

Konwersja z binarnego na szesnastkowy:

W przypadku konwersji z systemu dwójkowego(binarnego) na szesnastkowy potrzebna jest tabela, która przelicza cyfry z systemu szesnastkowego na binarny.

cyfra	wartość
-------	---------

szesnastkowa	dwójkowa
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001
А	1010
В	1011
С	1100
D	1101
Е	1110
F	1111

Przeliczanie liczby binarnej odbywa się poprzez podzielenie jej na 4-ro bitowe grupy, rozpoczynając od prawej do lewej strony. Jeśli zdarzy się sytuacja, że w ostatniej grupie jest mniej bitów, to brakujące miejsca wypełniamy zerami. Kolejnym etapem jest zastępowanie grupy bitów na cyfrę szesnastkową zgodnie z powyższą tabelą konwersji.

Przykład:

Liczbę dwójkową 010111101011010010 grupujemy na 4-ro bitowe grupy:

0101 1110 1011 0101 0010

Zastępowanie grup bitowych licbą szesnastkowa:

5 E B 5 2

Liczba w systemie binarnym 010111101011010010 ma postać 5EB52 w systemie szesnastkowym.