En fait, l'erreur que j'énonce ci-dessous est résolue dans la thèse. Je m'en était pas aperçu au moment de faire ce document.

Lois (14) et (15) de l'article A Language for the Composition of Privacy-Enforcement Techniques

Ce qui est écrit dans l'article

$$\sigma_p \circ decrypt_{s,a} \equiv decrypt_{s,a} \circ \sigma_p \quad \text{if } dom(p) \notin \mathscr{P}(a) \quad (14)$$

$$\sigma_p \circ decrypt_{s,a} \equiv decrypt_{s,a} \circ \sigma_{s_p} \quad \text{if } dom(p) \in \mathscr{P}(a) \quad (15)$$

Contre-exemple

Le chiffrement pris pour l'exemple est artificiel, pour privilégier la simplicité de l'exemple.

On prend pour prédicat p

$$p: a_1 + a_2 < 10$$

pour fonction de chiffrement s

$$s: n \mapsto n + 50$$

et pour ensemble des attributs chiffrés a

$$a = \{a_1\}$$

Le domaine de p est alors $\{a_1, a_2\}$ qui n'est pas une partie de a. On est donc dans les hypothèses mentionnées dans l'article pour la loi (14)

On s'intéresse à la relation r

$$\begin{array}{c|cc}
a_1 & a_2 \\
\hline
51 & 2
\end{array}$$

L'image de r
 par $\sigma_p \circ \mathrm{decrypt}_{\mathbf{s},a_1}$ est la relation

$$\frac{a_1}{1}$$
 $\frac{a_2}{2}$

L'image de r par decrypt _{\mathbf{s},a_1} \circ \sigma_p est la relation vide.

Ainsi donc, la relation (14) dans l'article est fausse car la condition donnée n'est pas assez restrictive.

Correction possible

Ce problème est résolu si on s'intéresse à l'intersection entre dom(p) et a.

$$\begin{split} \sigma_p \circ \operatorname{decrypt}_{\mathsf{c},a} &\equiv \operatorname{decrypt}_{\mathsf{c},a} \circ \sigma_p & \text{si } \operatorname{dom}(p) \cap a = \emptyset \\ \sigma_p \circ \operatorname{decrypt}_{\mathsf{c},a} &\equiv \operatorname{decrypt}_{\mathsf{c},a} \circ \sigma_{\mathsf{c} \Rightarrow p} & \text{si } p \text{ est compatible avec } \mathsf{c} \end{split}$$