H-58 計測制御班 開発資料

データ回収

班長

岩井 祐樹 (2CEU1107)

目次

- H-58概要
 - ・ミッション
 - 課題
- 取得データ
 - 1kHz加速度
 - 慣性情報
 - 高度情報
 - 制御情報
 - まとめ

- データ回収
 - 3つの方法
 - SDカード
 - EEPROM
 - ダウンリンク
 - データフロー

・ 課題と対策

- EEPROM容量不足
- ダウンリンク速度不足
- 修正データフロー
- 一故障状態
- 二故障状態
- 水没対策

H-58概要 / ミッション

● THR-F210L改

1段階開傘 or 2段階開傘

H-58概要/課題

1段階開傘の場合

落下速度が速く、着水時に機体破損のリスクが高い

→ 水密の破損によるデータロストの可能性

海打ちなので…

どうしても水没のリスクがある

- → ダウンリンクを重用する
- → 水没に耐えられる電気的設計

取得データ / 1kHz加速度

H-58における搭載計器の主要なミッションの一つ 燃焼解析に使う

センサ	データ	計測レート	データ型	要求通信速度
ADXL375	加速度	1kHz	2B * 3Axis	6kBps

取得データ/慣性情報

データ	計測レート	データ型	要求通信速度
加速度	100Hz	2B * 3Axis	600Bps
角速度	100Hz	2B * 3Axis	600Bps
地磁気	20Hz	2B * 3Axis	120Bps
クオータニオン	100Hz	2B * 4Axis	800Bps
重力	100Hz	2B * 3Axis	600Bps
線形加速度	100Hz	2B * 3Axis	600Bps
姿勢角	100Hz	2B * 3Axis	600Bps
速度	100Hz	2B * 3Axis	600Bps
	加速度 角速度 地磁気 クオータニオン 重力 線形加速度 姿勢角	加速度 100Hz 角速度 100Hz 地磁気 20Hz クオータニオン 100Hz 重力 100Hz 線形加速度 100Hz 姿勢角 100Hz	加速度 100Hz 2B * 3Axis 角速度 100Hz 2B * 3Axis 地磁気 20Hz 2B * 3Axis クオータニオン 100Hz 2B * 4Axis 重力 100Hz 2B * 3Axis 線形加速度 100Hz 2B * 3Axis 姿勢角 100Hz 2B * 3Axis

取得データ/高度情報

センサ	データ	計測レート	データ型	要求通信速度
LPS33HW	気圧	50Hz	2B	100Bps
サーミスタ	気温	2Hz	2B	4Bps
算出	高度	50Hz	2B	100Bps

取得データ/制御情報

センサ	データ	計測レート	データ型	要求通信速度
SAM-M8Q	GNSS	10Hz	6B	60Bps
	電圧	10Hz	2B	20Bps
	経過時間	100Hz	2B	200Bps
	フライトモード	2Hz	1B	2Bps
	ステータス	2Hz	4B	8Bps
	イベント	1Hz	1B	1Bps

取得データ/まとめ

要求通信速度 容量(180sec)

1kHz加速度 6kBps

1.08_{MB}

慣性情報

4.52kBps

813_{kB}

高度情報

204Bps

36.72kB

制御情報

291Bps

52.38kB

データ回収/3つの方法

データ回収には3つの方法がある

SDカードとEEPROMは水没に対する脆弱性がある

冗長化のため全て使う

SDカード

- + 容量が大きい
- + 通信速度が速い
- 振動に弱い
- 水没に弱い

EEPROM

- + 振動に強い
- + 水没に強い
- 容量が小さい
- 通信速度が遅い

ダウンリンク(無線)

- + 水没前にデータ回収
- 通信速度が遅い

データ回収 / SDカード

SPI

125kBps

32GB

着水衝撃、水没に耐えられれば文句なしの性能

H-57では主力だったが、振動への機械的な耐性は未知数

データ回収 / EEPROM

I²C

50kBps

512kB

H-49の着水衝撃,水没に耐えた実績あり

通信速度、容量ともに貧弱、すべてのデータ保存は不可能

データ回収/ダウンリンク

LoRa

480Bps

500GB

破損の心配なくデータを回収できる

通信速度が遅く、送信方法に癖がある 例えば10Hzのデータを送信したい場合… 5回分のデータを2Hzで送信する必要がある (送信回数を減らすため)

データ回収/データフロー

課題と対策 / EEPROM容量不足

海打ちのH-58は飛翔時間が長い(2~3分程度)

EEPROMの容量不足が顕在化した

H-57は30秒程度なので余裕だった

→ 慣性情報のEEPROMへの保存を最大50Hzに間引く

50Hzならまだ有用なデータとして扱えるのではないか

慣性情報 EEPROM

♣ 4.52kBps♣ 813kB

♣ 2.32kBps♣ 417.6kB

♣ 5.02 /50kBps
♣ 902.1 /512kB
♣ 506.7 /512kB

|課題と対策 / ダウンリンク速度不足

Arduino MKR WAN 1310 のテスト結果

LoRaの通信速度が遅すぎる

あるLoRaモジュールは36.5~2.73kBpsなのでMKR WANが特別遅いわけでもない

→ LoRaを複数チャンネル運用する

チャンネル数だけMKR WANを搭載する必要があるので5つ程度が限度

→ 慣性情報のダウンリンクを最大10Hzに間引く

10Hzでもデータロストよりはまし…

- → 1kHz加速度を燃焼中のみ計測
 - 一度SDに保存しておき1~2分かけて後から送信

課題と対策/ダウンリンク速度不足

慣性情報のダウンリンクを最大10Hzに間引く

慣性情報

1kHz加速度を燃焼中のみ計測

3秒間計測して1分かけて送信する場合

1kHz加速度

課題と対策/ダウンリンク速度不足

LoRaを複数チャンネル運用する

1kHz加速度 ダウンリンク

300 /480Bps

慣性情報 ダウンリンク

380 /480Bps

高度情報 ダウンリンク

3 204 /480Bps

制御情報 ダウンリンク

3 291 /480Bps

・汎用 アップリンク

砂 随時 /480Bps

課題と対策/修正データフロー

課題と対策/一故障状態

SDカード故障

- 慣性情報 (50Hzのみ)
- 高度情報
- 制御情報

- 1kHz加速度 (燃焼中のみ)
- 慣性情報 (10Hzのみ)
- 高度情報
- 制御情報

- 1kHz加速度
- 慣性情報
- 高度情報
- 制御情報

EEPROM故障

- 1kHz加速度 (燃焼中のみ)
- 慣性情報 (10Hzのみ)
- 高度情報
- 制御情報

- 1kHz加速度
- 慣性情報
- 高度情報
- 制御情報

- 慣性情報(50Hzのみ)
- 高度情報
- 制御情報

ダウンリンク故障

課題と対策/二故障状態

1kHz加速度(燃焼中のみ) 慣性情報 (10Hzのみ) SDカード故障 EEPROM故障 高度情報 制御情報 1kHz加速度 慣性情報 高度情報 EEPROM故障 ダウンリンク故障 制御情報 慣性情報(50Hzのみ) 高度情報 ダウンリンク故障 SDカード故障 制御情報

課題と対策/水没対策

水密は搭載するものの、機体破損による水没は可能性として大きい

→ 水没してもデータロストしない工夫が必要

水没時に通電していなければSDカードも助かる可能性がある

着水衝撃を検知してSDカード, EEPROMへの給電を停止する

基板のエポキシ漬け

フォトカプラを使えば電源系統を分離できる

SDカードは電力消費が大きい(200mA)ので電源系統を分離するメリットはある

回収後は直ちに真水につける

回収隊へ周知

精製水をもっていく

