HỌC VIỆN CÔNG NGHỆ BƯU CHÍNH VIỄN THÔNG BÔ MÔN KHOA HOC MÁY TÍNH

ĐỀ THI KẾT THÚC HỌC PHẦN (Hình thức thi: Viết)

----o0o-----

Kỳ thi hết môn, Học kỳ 2, năm học 2022-2023

Học phần: **Toán rời rạc 2**Hình thức đào tạo: **Chính quy**Trình độ đào tạo: **Đại học**Thời gian thi: **90 phút**

GIẢI ĐỀ SỐ 3

Câu 1 (2 điểm). Cho đồ thị có hướng $G = \langle V, E \rangle$ gồm 10 đỉnh và 20 cạnh được biểu diễn dưới dang danh sách canh như sau:

Đỉnh đầu	Đỉnh cuối	Đỉnh đầu	Đỉnh cuối
1	2	6	7
1	5	6	8
2	3	7	2
2	4	7	8
2	5	8	1
3	6	8	10
4	6	9	6
4	7	9	7
5	9	10	1
5	10	10	4

a) Tìm bán bậc vào và bán bậc ra của mỗi đỉnh trên đồ thị:

Đỉnh	1	2	3	4	5	6	7	8	9	10
$Deg^+(v)$	2	3	1	2	2	2	2	2	2	2
$Deg^-(v)$	2	2	1	2	2	3	3	2	1	2

b) Biểu diễn đồ thị G dưới dạng danh sách kề:

Câu 2 (2 điểm). b) Đường đi từ 1 -> 8 theo BFS: 8 <- 6 <- 3 <- 2 <- 1

Câu 3 (2 điểm).

Cho đồ thị vô hướng $G = \langle V, E \rangle$ gồm 8 đỉnh được biểu diễn dưới dạng danh sách kề như sau:

b) Các chu trình Hamilton xuất phát từ đỉnh u = 1:

 $1\ 7\ 6\ 5\ 4\ 3\ 2\ 8\ 1$

 $1\; 8\; 2\; 3\; 4\; 5\; 6\; 7\; 1$

Câu 4 (2 điểm). a) Chứng minh rằng nếu T là một đồ thị vô hướng không chứa chu trình, có n đỉnh và n-1 cạnh, thì T liên thông.

GIÁI:

Giả sử T không liên thông. Khi đó, cây T có thể phân rã thành k(k >= 2) thành phần liên thông, ký hiệu là T_1, T_2, \ldots, T_k .

Do T không chứa chu trình nên mỗi thành phần liên thông T_i cũng không chứa chu trình, vì thế mỗi T_i sẽ là một cây.

Gọi n_i và e_i là số đỉnh và số cạnh của cây T_i , ta có $e_i = n_i - 1$.

Suy ra:

$$n-1 = e$$

$$= e_1 + e_2 + \ldots + e_k$$

$$= (n_1 - 1) + (n_2 - 1) + \ldots + (n_k - 1)$$

$$= (n_1 + n_2 + \ldots + n_k) - k < n - 1 \text{ (Mâu thuẫn)}$$

Vậy chứng tỏ cây T là liên thông

b) Ma trận trọng số:

	1	2	3	4	5	6	7	8	9	10
1	0	1	∞	∞	4	5	∞	∞	∞	∞
2	1	0	2	∞	6	3	∞	∞	∞	∞
3	∞	2	0	3	5	∞	∞	∞	∞	∞
4	∞	∞	3	0	∞	∞	∞	2	∞	∞
5	4	6	5	∞	0	∞	1	∞	3	2
6	5	3	∞	∞	∞	0	4	∞	∞	3
7	∞	∞	∞	∞	1	4	0	5	∞	3
8	∞	∞	∞	2	∞	∞	5	0	∞	8
9	∞	∞	∞	∞	3	∞	∞	∞	0	∞
10	∞	∞	∞	∞	2	3	3	∞	∞	0

Cây bao trùm nhỏ nhất theo Prim bắt đầu từ đỉnh 1: d(T) = 20, với tập cạnh:

1 2

23

- 26
- 3 4
- 48
- 6 10
- 10 5
- 5 7
- 5 9

Câu 5 (2 điểm). Cho đơn đồ thị có hướng G = < V, E > gồm 8 đỉnh được biểu diễn dưới dạng ma trận trọng số như sau:

	1	2	3	4	5	6	7	8
1	0	∞	∞	∞	2	∞	1	∞
2	∞	0	-1	∞	∞	∞	∞	∞
3	∞	∞	0	∞	∞	1	∞	2
4	-1	∞	∞	0	∞	∞	∞	∞
5	∞	∞	∞	1	0	∞	2	∞
6	∞	2	∞	∞	∞	0	∞	1
7	∞	2	∞	∞	∞	-1	0	∞
8	∞	∞	∞	1	2	∞	∞	0

- b) Đường đi ngắn nhất theo Bellman-Ford:
 - K/c 1 -> 2 = 2; 2 <- 6 <- 7 <- 1
 - K/c 1 -> 3 = 1; 3 <- 2 <- 6 <- 7 <- 1
 - K/c 1 -> 4 = 2; 4 <- 8 <- 6 <- 7 <- 1
 - K/c 1 -> 5 = 2; 5 <- 1
 - K/c 1 -> 6 = 0; 6 <- 7 <- 1
 - K/c 1-> 7 = 1; 7 <- 1
 - K/c 1 -> 8 = 1; 8 <- 6 <- 7 <- 1

−HÊT-

Chú ý: Sinh viên không được sử dụng tài liệu, cán bộ coi thi không giải thích gì thêm