Theoretische Informatik: Übungsaufgaben 6

Abgabe bis 07. November 2014

Prof. Welzl

Vincent von Rotz, David Bimmler und Kevin Klein

Aufgabe 17

(a) $(L_{infinite})^{\complement} \in \mathcal{L}_{RE}$

Offensichtlich gilt:

 $(L_{infinite})^{\complement} = \{x \mid \nexists TM \ Ms.t. \ x = Kod(M) \# w \lor \exists TM \ M \ s.t. \ x = Kod(M) \# w \land M \ \text{hält auf mindestens} \}$ einer Eingabe}

Wir entewerfen eine NTM M, die das Entscheidungsproblem $((L_{infinite})^{\complement}, \Sigma)$ löst.

Dies impliziert $(L_{infinite})^{\mathfrak{C}} \in \mathcal{L}_{RE}$, da es laut Satz 4.2 für jede NTM eine aequivalente TM gibt mit.

Die NTM sollte folgend auf einem Input x funktionnieren:

- Wenn w nicht die Kodierung einer TM ist, wird x akzeptiert.
- Wenn w die Kodierung einer TM ist:
 - 1. Suche nichtdeterministisch ein y.
 - 2. Entscheide deterministisch ob x = Kod(M)y akzeptiert indem M auf y simuliert wird.
 - Wenn y von M akzeptiert wird, wird x akzeptiert.
 - Wenn y vom M nicht akzeptiert wird, wird dieses y verworfen.
- (b) $(L_{infinite})^{\mathfrak{c}} \notin \mathcal{L}_R$

Wenn wir zeigen können, dass $L_H \leq_{RR} (L_{infinite})^{\complement}$ folgt, dass $(L_{infinite})^{\complement} \notin \mathcal{L}_R$. Zur EE-Reduzierbarkeit verwenden wir eine TM M', $(L_{infinite})^{\complement}$ auf L_H reduziert und x zu $f_{M'}(x) =$ $Kod(B_x)$ transformiert.

M' generiert die Kodierung der TM B_x , welche wie folgt definiert ist: Falls:

- $\exists TM \ M \ s.t. \ x = Kod(M) \# w$

 B_x generiert Kod(M) und w s.t. x = Kod(M) # w.

 B_x simuliert M auf w. B_x übernimmt die Ausgabe von M, dies ist jedoch irrelevant.

- $\nexists TM \ M \ s.t. \ x = Kod(M) \# w$

 B_x ist eine beliebige TM die auf keiner Eingabe hält.

Es gilt offenbar:

$$x \in L_H \iff x = Mod(M) \# w \land M$$
 hält auf w

$$\iff B_x \text{ generiert } M \text{ auf } w \text{ und hält, da } M \text{ auf } w \text{ hält.}$$

$$\iff Kod(B_x) \in (L_{infinite})^{\complement}$$
(1)

(c) $L_{infinite} \notin \mathcal{L}_{RE}$

Lemma 5.4 besagt, dass $L \leq_R L^{\complement}$ und $L^{\complement} \leq_R L$.

Daraus folgt mit (b) direkt, dass $L_{infinite} \notin \mathcal{L}_R$.

Aufgabe 18

- (a)
- (b) $L_{all} \notin (L)_{empty}$

Wir zeigen dies in dem wir die EE-Reduktion von L_{empty} auf L_{all} mittels einer TM M zeigen. Falls:

- $\sharp TM\ M\ s.t.\ x = Kod(M)$ Übergebe x an $L_{empty}(f_M(x) = x)$
- $\exists TM\ M\ s.t.\ x = Kod(M)$ Die TM M' generiert die Kodierung einer TM B. B ist die Sprache, die alle Wörter akzeptiert, die von M nicht akzeptiert werden.

Es gilt offenbar:

$$x \in L_{all} \iff \exists TM \ M \ s.t. \\ x = Kod(M) \land L(M) = (\Sigma_{bool})^* \\ \iff L(B) = \emptyset$$

$$\iff Kod(B) \in L_{empty}$$

$$(2)$$

Aufgabe 19

Wir betrachten eine unendliche Sprache L. Da wir jedes Wort über ein Alphabet Σ auf Σ_{bool} abbilden können, sei ohne Beschränkung der Allgemeinheit sei das Alphabet der Sprache L Σ_{bool} . Wir kennen die kanonische Ordnung über Σ_{bool} . Wir können also die Wörter aus L kanonisch geordnet aufzählen. Sei also w_i das kanonisch i-te Wort aus L. Ausserdem können wir die Turingmaschinen aufzählen. Wir erstellen jetzt eine unendliche Tabelle mit w_1, w_2, \ldots als Spalten, und den Turingmaschinen M_1, M_2, \ldots als Zeilen.

	w_1	w_2	w_3	 w_i	
M_1	d_{11}	d_{12}	d_{13}	 d_{1i}	
M_2	d_{21}	d_{22}	d_{23}	 d_{2i}	
M_3	d_{31}	d_{32}	d_{33}	 d_{3i}	
:	:	:	:	:	
M_i	d_{i1}	d_{i2}	d_{i3}	 d_{ii}	
÷	:	•	:	÷	

Wir konstruieren jetzt eine Sprache L'_{diag} , die keiner der Sprachen $L(M_i)$ entspricht und eine Teilmenge von L ist. Wir definieren

$$L'_{diag} = \{ w \in (\Sigma_{bool})^* \mid w = w_i \text{ für ein } i \in \mathbb{N} - \{0\} \text{ und } d_{ii} = 0 \}$$

Wir beweisen $L'_{diag} \notin \mathcal{L}_{RE}$ indirekt. Sei $L'_{diag} \in \mathcal{L}_{RE}$. Dann ist $L'_{diag} = L(M)$ für eine TM M. Weil M eine der Turingmaschinen in der Nummerierung aller Turingmaschinen sein muss, existiert ein $i \in \mathbb{N} - \{0\}$, so dass $M = M_i$. Aber L'_{diag} kann nicht gleich $L(M_i)$ sein, weil folgende Äquivalenz gilt:

$$w_i \in L'_{diag} \iff d_{ii} = 0 \iff w_i \not\in L'_{diag}$$

d.h., w_i ist genau in einer der Sprachen L'_{diag} oder $L(M_i)$. Damit gilt $L'_{diag} \notin \mathcal{L}_{RE}$ und wir haben eine Teilmenge der unendlichen Sprache L gefunden, die nicht in \mathcal{L}_{RE} ist.