Лабораторная работа 7.

Модель М|М|1|

Хамдамова Айжана

Содержание

1	Цель работы	5
2	Задание	6
3	Выполнение лабораторной работы	7
4	Выводы	12

Список иллюстраций

3.1	Задание переменных окружения	7
3.2	Суперблок, моделирующий поступление заявок	8
3.3	Суперблок, моделирующий обработку заявок	9
3.4	Модель $M M 1 ∞$ в хсов	.0
3.5	Динамика размера очереди	.0
3.6	Поступление и обработка заявок	1

Список таблиц

1 Цель работы

Реализовать модель массового обсулуживания типа М|М|1 в хсоз.

2 Задание

- 1. Реализовать модель системы массового обслуживания типа $M|M|1|\infty$;
- 2. Построить график поступления и обработки заявок;
- 3. Построить график динамики размера очереди.

3 Выполнение лабораторной работы

Зафиксируем начальные данные: $\lambda=0.3,\ \mu=0.35,\ z_0=6.$ В меню Моделирование, Установить контекст зададим значения коэффициентов (рис. [3.1]).

Рис. 3.1: Задание переменных окружения

Суперблок, моделирующий поступление заявок, представлен на рис. [3.2]. Тут у нас заявки поступают в систему по пуассоновскому закону. Поступает заявка в суперблок, идет в синхронизатор входных и выходных сигналов, происходит равномерное распределение на интервале [0;1] (также заявка идет в обработчик событий), далее идет преобразование в экспоненциальное распределение с параметром λ , далее заявка опять попадает в обработчик событий и выходит из суперблока.

Рис. 3.2: Суперблок, моделирующий поступление заявок

Суперблок, моделирующий процесс обработки заявок, представлен на рис. [3.3]. Тут происходит обработка заявок в очереди по экспоненциальному закону.

Рис. 3.3: Суперблок, моделирующий обработку заявок

Готовая модель $M|M|1|\infty$ представлена на рис. [3.4]. Тут есть селектор, два суперблока, построенных ранее, первоначальное событие на вход в суперблок, суммирование, оператор задержки (имитация очереди), также есть регистрирующие блоки: регистратор размера очереди и регистратор событий.

Рис. 3.4: Модель $M|M|1|\infty$ в хсоѕ

Результат моделирования представлен на рис. [3.5] и [3.6]. График динамики размера очереди начинается со значения 6, потому что мы указали $z_0=6$.

Рис. 3.5: Динамика размера очереди

Рис. 3.6: Поступление и обработка заявок

4 Выводы

В процессе выполнения данной лабораторной работы я рассмотрела пример моделирования в xcos системы массового обслуживания типа $M|M|1|\infty$.