Отчёт по работе 2.1.6

Эффект Джоуля-Томсона

Карташов Константин Б04-005

I. Аннотация

і. Цель работы

- 1. Измерение эффекта Джоуля-Томсона для углекислого газа. Измерение изменения температуры газа при протекании через малопроницаемую перегородку при разных значениях давления и температуры.
- 2. Вычисление по результатам опытов коэффициентов Ван-дер-Ваальса «а» и «b».

II. Теоретическая часть

Эффектом Джоуля—Томсона называется изменение температуры газа, медленно протекающего из области высокого в область низкого давления в условиях хорошей тепловой изоляции. В разреженных газах, которые приближаются по своим свойствам к идеальному газу, при таком течении температура газа не меняется. Эффект Джоуля—Томсона демонстрирует отличие исследуемого газа от идеального.

Эффект Джоуля-Томсона характеризуется коэффициентом Джоуля-Томсона, показывающего отношение изменения температуры газа при расширении к изменению давления. В работе используется приближенная формула нахождения коэффициента Джоуля—Томсона (формула 1) для газа Ван-дер-Ваальса, уравненим состояния которого является формула 2, в котором V - молярный объём, a и b - коэффициенты Ван-дер-Ваальса.

$$\mu_{\text{\tiny A-T}} = \frac{\Delta T}{\Delta P} \approx \frac{\frac{2a}{RT} - b}{C_p}.$$
 (1)

$$\left(P + \frac{a}{V^2}\right)(V - b) = RT
\tag{2}$$

III. Экспериментальная часть

і. Устройство экспериментальной установки

Обозначения на рисунке 1:

- 1 Трубка
- 2 Пористая перегородка
- 3 Трубка Дьюара

Рис. 1: Схема экспериментальной установки.

- 4 Кольцо для теплоизоляции
- 5 Змеевик
- 6 Балластный баллон
- 7 Цифровой вольтметр, к которому подключены медные проволоки
- 8, 9 Спаи соединённые константановой проволокой
- 10 Пробка из пенопласта для теплоизоляции
- 11 Выключатель «Сеть»
- 12 Кнопка «АПВ»
- 13 Кнопка « $U_{=}$ »
- В Вентиль для регулировки потока газа
- М Манометр

іі. Проведение эксперимента

- 1. Убедимся в целостности экспериментальной установки: проверим заполненность термостата, проверим закреплены ли все электрические приборы и находятся ли они в рабочем состоянии.
- 2. Установим на контактном термометре $T_{\rm K}$ температуру регулирования, близкую к комнатной, и включим термостат.
- 3. Включим вольтметр в режиме «АВП» (автоматический выбор предела). Запишем значение вольтметра при $\Delta P=0$.
- 4. Откроем регулирующий вентиль В настолько, чтобы установилось избыточное давление $\Delta P \approx 4$ атм. Через 10-15 минут после подачи давления, когда затухнут переходные процессы, запишем показания вольтметра.
- 5. При помощи вентиля В уменьшим давление в установке на 0,3-0,5 атм меньше

N	ΔP , atm	τ , °C	ΔT , K
0	0.0	18.0	0.0
$\mid 1 \mid$	4.065	18.15	4.322
2	3.717	18.23	3.894
3	3.339	18.29	3.467
4	2.962	18.37	3.015
5	2.671	18.45	2.663
6	1.974	18.51	1.859
7	1.713	18.62	1.583

Таблица 1: Обработанные результаты измерения 1

первоначального, после установление давления и разности температур вновь запишем показания манометра и вольтметра.

- 6. Повторим эти измерения для 5-7 различных значений давления при комнатной температуре.
- 7. Закончив измерения при комнатной температуре закроем вентиль В и установим на контактном термометре температуру 30 °C.
- 8. После установления температуры повторим измерения следуя пунктам 4-6.
- 9. Увеличим температуру до 50 °C и повторим измерения следуя пунктам 7 и 8.
- 10. Далее перейдём к обработкам результатов.

ііі. Обработка результатов

Результаты полученные после проведения измерений приведены в приложении. Переведём их в нужный вид. Значения для разницы давления даны в больших делениях манометра, манометр имеет 100 больших делений с одним маленьким делением между ними. На 100 делений манометра приходится 6 кгс/см², переведём эти значения в атмосферы (1дел ≈ 0.058 атм). Переведём разницу потенциалов на электропаре в разницу температуры для каждого измерения запишем $\Delta U_i = U_i - U_0$ (i - номер измерения). Дальше переведём ΔU в ΔT по соотношению: $\Delta T = \alpha \Delta U$, где α зависит от значения температуры термостата:

τ , °C	18	30	50
α, мкВ / К	39,8	41,6	43,3

Результаты записаны в таблицах 1, 2 и 3.

Найдём систематические погрешности. Погрешность $\sigma_{\Delta P}=0.5$ дел = 0.03 атм. Погрешность $\sigma\Delta U=0.001$ мкВ из чего находим погрешность $\sigma_{\Delta T}$, она зависит от температуры так как при разных температурах мы используем разные коэффициент для перевода ΔU в ΔT при различных температурах термостата, но так как значения α отличаются друг от друго не более чем на 5% возьмём $\alpha=39.8$ мкВ/K, получаем $\sigma_{\Delta T}=0.05$ К.

N	ΔP , atm	τ , °C	ΔT , K
0	0.0	30.06	0.0
1	4.181	30.1	3.846
2	3.862	30.08	3.462
3	3.078	30.01	2.62
4	2.671	30.02	2.188
5	2.584	30.0	2.115
6	2.236	30.0	1.755
7	1.568	30.0	1.082

Таблица 2: Обработанные результаты измерения 2

N	ΔP , atm	τ , °C	ΔT , K
0	0.0	50.0	0.0
1	4.007	50.04	2.956
2	3.775	50.04	2.656
3	3.339	50.01	2.286
4	2.933	50.0	1.894
5	1.945	50.0	1.016

Таблица 3: Обработанные результаты измерения 3

По получившимся значениям для ΔP и ΔT построим график зависимости ΔT (ΔP). И пользуясь методом наименьших квадратов найдём аппроксимирующую прямую. Метод наименьших квадратов для построения прямой y=A+Bx:

$$B = \frac{\langle xy \rangle - \langle x \rangle \langle y \rangle}{\langle x^2 \rangle - \langle x \rangle^2}, \quad A = \langle y \rangle - B \langle x \rangle.$$

Найдём погрешности коэффициентов а и в по формулам:

$$\sigma_B \approx \frac{1}{\sqrt{N}} \sqrt{\frac{\langle y^2 \rangle - \langle y \rangle^2}{\langle x^2 \rangle - \langle x \rangle^2} - B^2}, \ \ \sigma_A = \sigma_B \sqrt{\langle x^2 \rangle - \langle x \rangle^2}.$$

Подставим значения из таблиц 1, 2 и 3: ΔP вместо x и ΔU вместо y, полученные значения запишем в таблицу 4:

	$\tau = 18^{\circ}\mathrm{C}$	$\tau = 30^{\circ} \mathrm{C}$	$\tau = 50^{\circ} \mathrm{C}$
B, K/atm	1,167	1,06	0,93
σ_B , K/atm	0,006	0,01	0,02
A, K	-0,437	-0,61	-0,80
σ_A , K	0,008	0,01	0,01

Таблица 4: Значения полученные для А и В

Покажем точки из таблиц 1, 2, 3 и соответивующие им прямые с коэффициентами из таблицы 4 на графике (Рис 2). Получим значенния для коэффиуиента Джоуля-

Томсона:

$$\mu_{\text{JI-T}} = \frac{\Delta T}{\Delta P} = \frac{A + B\Delta P}{\Delta P} = B + \frac{A}{\Delta P}$$

Погрешность для $\frac{A}{\Delta P}$:

$$\sigma_{A'} = \frac{A}{\Delta P} \sqrt{\left(\frac{\sigma_A}{A}\right)^2 + \left(\frac{\sigma_{\Delta P}}{\Delta P}\right)^2}.$$

Диапазон измерений: 1,5 атм $< \Delta P < 4,5$ атм, значит:

$$\max \sigma_{A'} = \frac{A}{4.5 \text{ aTM}} \sqrt{\left(\frac{\sigma_A}{A}\right)^2 + \left(\frac{\sigma_{\Delta P}}{\Delta P}\right)^2}.$$

Теперь посчитаем константу Джоуля-Томсона для трёх значений температуры в определённом ранее диапазоне:

$$\tau = 18^{\circ}\text{C}: \ \mu_{\text{Д-T}} = 1,167 \pm 0,006 \ \text{K/atm} - \frac{0,437 \ \text{K}}{\Delta P} \pm 0,002 \ \text{K/atm}$$

$$\tau = 30^{\circ}\text{C}: \ \mu_{\text{Д-T}} = 1,06 \pm 0,01 \ \text{K/atm} - \frac{0,61 \ \text{K}}{\Delta P} \pm 0,002 \ \text{K/atm}$$

$$\tau = 50^{\circ}\text{C}: \ \mu_{\text{Д-T}} = 0,93 \pm 0,02 \ \text{K/atm} - \frac{0,80 \ \text{K}}{\Delta P} \pm 0,005 \ \text{K/atm}$$

Константы Джоуля-Томсона получились получились зависимыми от разницы давления, поэтому для подсчёта коэффициэнтов а и b из уравнения Ван-дер-Ваальса используем усреднённое значение коэффициентов джоуля полученные нами для диапазона давленя, расчитанные по формуле:

$$\bar{\mu} = \frac{\mu_{\text{Д-T}} (1, 5 \text{ atm}) + \mu_{\text{Д-T}} (4, 5 \text{ atm})}{2}, \ \sigma_{\bar{\mu}} = \mu_{\text{Д-T}} (1, 5 \text{ atm}) - \bar{\mu}.$$

$$\boxed{\tau, ^{\circ}\text{C} \ | \ \bar{\mu} \pm \sigma_{\bar{\mu}}, \ \text{K/atm} \ |}$$

τ ,°C	$ ar{\mu}\pm\sigma_{ar{\mu}},\mathrm{K/atm} $
18	$1,0 \pm 0,2$
30	0.8 ± 0.3
50	$0,6 \pm 0,4$

Таблица 5: Рассчитанные коэффициенты Джоуля-Томсона

На основе полученных значений для коэффициэнта Джоуля-Томсона рассчитаем коэффициэнты Ван-дер-Ваальса по формуле 1. Для этого возьмём два значения μ_1 и μ_2 и решим систему из двух уравнений:

$$\begin{cases} \mu_1 = \frac{\frac{2a}{RT_1} - b}{C_p} \\ \mu_2 = \frac{\frac{2a}{RT_2} - b}{C_p} \end{cases} \Leftrightarrow \begin{cases} b = \frac{C_p(T_1\mu_1 - T_2\mu_2)}{T_2 - T_1} \\ a = \frac{2C_pR(\mu_1 - \mu_2)}{2(1/T_1 + 1/T_2)} \end{cases}$$

Погрешности для а и b найдём пользуясь формулами погрешностей для сумм и произведений для полученных выражений. Заметим, что погрешности μ_1 и μ_2 намного больше погрешностей для значений температуры, поэтому получим погрешности:

T_1 °C	18	30	50
T_2 °C	30	50	18
a	3592	7410	-3784
σ_a	2335	3705	4730
b	117	88	70
σ_b	261	128	229

Таблица 6: Значения коэффициентов а и b

$$\sigma_b = b \frac{\sqrt{T_1^2 \sigma_{\mu_1}^2 + T_2^2 \sigma_{\mu_2}^2}}{T_1 \mu_1 - T_2 \mu_2}$$
$$\sigma_a = a \frac{\sqrt{\sigma_{\mu_1}^2 + \sigma_{\mu_2}^2}}{\mu_1 - \mu_2}$$

Подставим в эти формулы значения коэффициента Джоуля-Томсона для разных значений температуры, результат запишем в таблицу 6. Видим, что погрешности получились зачастую больше самих значений коэффициентов, что делает их непригодными для дальнейших рассчётов.

Погрешность большая, чем сам значения говорит о полной непригодности этих данных для какх либо рассчётов.

IV. Выводы

В ходе эксперимента был измерен эффект Джоуля-Томсона. Значения коэффициэнтов Джоуля-Томсна полученные в ходе лабораторной работы (таблица 4) сильно отличаются от табличных данных при $\Delta P=1$, однако без слагаемого $A/\Delta P$ значения очень близки к табличным (Значение для $\tau=18^{\circ}C$ лежит между табличными значениями для температуры 0 °C и 20 °C, для $\tau=30^{\circ}C$ между 20 °C и 40 °C, аналогично для $\tau=50^{\circ}C$). Это может свидетельствовать о неучтённых внешних условиях, смещающих значение коэффициента Ван-дер-Ваальса.

Значения для коэффициентов газа Ван-дер-Ваальса имеюст слишком большую погрешность из-за неточности в измерении коэффициэнта Джоуля-Томсона. Эти расхождения могут быть объяснены ошибками в проведении эксперимента.