Neural Circuits and Computations Unit RIKEN Center for Brain Science louis.kang@riken.jp

https://louiska.ng

Updated 27 August 2020

Positions

Unit Leader, Neural Circuits and Computations Unit

RIKEN Center for Brain Science, Wako, Japan

Miller Postdoctoral Fellow

2017-2020

University of California, Berkeley, USA

Host departments: Physics and Helen Wills Neuroscience Institute

Host faculty: Mike DeWeese

RESEARCH STATEMENT —

Human cognition ultimately emerges from sophisticated computations performed by networks of neurons. I use and develop theoretical tools to investigate how our brains make sense of and respond to our dynamic environments. In particular, I am pursuing a unified understanding for how the hippocampus and entorhinal cortex allow us to form memories and navigate through space.

EDUCATION —

MD, Perelman School of Medicine

2017

University of Pennsylvania, Philadelphia, USA

Research elective with Vijay Balasubramanian in theoretical neuroscience

PhD, Department of Physics & Astronomy

2015

University of Pennsylvania, Philadelphia, USA

Thesis advisor: Tom Lubensky

Thesis title: Chirality and its spontaneous symmetry breaking in two liquid crystal systems

AB in Chemistry and Physics and Mathematics summa cum laude

2009

Harvard University, Cambridge, USA

Publications *equal contribution †corresponding author ————

- 8. Kang L^{\dagger} , DeWeese MR. Replay as wavefronts and theta sequences as bump oscillations in a grid cell attractor network. *eLife* 8, e46351 (2019). doi:10.7554/eLife.46351.
- 7. **Kang** L^{\dagger} , Balasubramanian V. A geometric attractor mechanism for self-organization of entorhinal grid modules. *eLife* 8, e46687 (2019). doi:10.7554/eLife.46687.
- Kang L[†], Lubensky TC. Chiral twist drives raft formation and organization in membranes composed of rod-like particles. *Proc Natl Acad Sci USA* 114, E19 (2017). doi:10.1073/pnas.1613732114.

5. **Kang** L^{\dagger} , Gibaud T, Dogic Z, Lubensky TC. Entropic forces stabilize diverse emergent structures in colloidal membranes. *Soft Matter* 12, 386 (2016). doi:10.1039/C5SM02038G.

- 4. Davidson ZS*, **Kang L***, Jeong J*,[†], Still T, Collings PJ, Lubensky TC, Yodh AG. Chiral structures and defects of lyotropic chromonic liquid crystals induced by saddle-splay elasticity. *Phys Rev E* 91, 050501 (2015). doi:10.1103/PhysRevE.91.050501.
- 3. Jeong J^{*,†}, **Kang L***, Davidson ZS, Collings PJ, Lubensky TC, Yodh AG. Chiral structures from achiral liquid crystals in cylindrical capillaries. *Proc Natl Acad Sci USA* 112, E1837 (2015). doi:10.1073/pnas.1423220112.
- 2. Idema T, Dubuis JO, **Kang L**, Manning ML, Nelson PC, Lubensky TC, Liu AJ[†]. The syncytial *Drosophila* embryo as a mechanically excitable medium. *PLOS ONE* 8, e77216 (2013). doi:10.1371/journal.pone.0077216.
- 1. Heo M, **Kang L**, Shakhnovich EI[†]. Emergence of species in evolutionary "simulated annealing". *Proc Natl Acad Sci USA* 106, 1869 (2009). doi:10.1073/pnas.0809852106.

GRANTS, AWARDS, AND HONORS -

Collaborative Research Travel Grant

2019-2020

Burroughs Wellcome Fund

Project role: PI

Project title: Complementary input pathways enhance associative memory in a model of CA3

Travel Award 2018

Computational Neuroscience Meeting (CNS*2018)

Miller Research Fellowship

2017 - 2020

University of California, Berkeley

Mary Ellis Bell Prize

2016

University of Pennsylvania, Perelman School of Medicine

"This prize is given to a student in the School of Medicine who is engaged in noteworthy research in any field related to medicine."

Werner Teutsch Memorial Prize

2012

University of Pennsylvania, Department of Physics & Astronomy

"Awarded annually to the graduate student who, by his or her performance in the first year courses, shows the most promise for outstanding achievement in research."

Medical Scientist Training Program

2009-2017

2009

National Institutes of Health (USA), awarded through the University of Pennsylvania

Phi Beta Kappa

Harvard University

Visiting Position —

Visiting Scientist

Summer 2019

RIKEN Center for Brain Science, Wako, Japan

Host faculty: Taro Toyoizumi

Conference Presentations ‡talk —	
Computational and Systems Neuroscience (Cosyne), Denver, USA Complementary encoding pathways build a memory hierarchy in a model of hippocampus	2020
Society for Neuroscience Meeting, Chicago, USA Replay as wavefronts and theta sequences as bump oscillations in a grid cell attractor network.	2019 ork
Bernstein Conference , Berlin, Germany Replay arises naturally as a traveling wavefront in an entorhinal attractor network [‡]	2018
Computational Neuroscience Meeting (CNS*2018), Seattle, USA A geometric attractor mechanism for the self-organization of entorhinal grid modules [‡]	2018
Interdisciplinary Navigation Symposium (iNAV), Mont-Tremblant, Canada A geometric attractor mechanism for the self-organization of entorhinal grid modules [‡]	2018
American Physical Society March Meeting, Los Angeles, USA Self-organization of entorhinal grid modules through commensurate lattice relationships [‡]	2018
Computational and Systems Neuroscience (Cosyne), Denver, USA Self-organization of entorhinal grid modules through commensurate lattices	2018
American Physical Society March Meeting, New Orleans, USA Membrane rafts stabilized by chiral liquid crystal correction to bare interfacial tension [‡]	2017
Computational and Systems Neuroscience (Cosyne), Salt Lake City, USA Coupling between attractor networks naturally generates a discrete grid cell hierarchy	2017
Gordon Research Conference & Seminar on Liquid Crystals, Biddeford, USA Roles of entropy and chirality in depletion-induced colloidal membranes [‡]	2015
American Chemical Society Colloid & Surface Science Symposium, Philadelphia, USA A theory for depletion-induced colloidal membranes [‡]	2014
American Physical Society March Meeting, Denver, USA A theory for depletion-induced colloidal membranes [‡]	2014
IAS Program on Frontiers of Soft Matter Physics, Hong Kong A theory for depletion-induced colloidal membranes	2014
American Physical Society March Meeting, Baltimore, USA Mitotic wavefronts mediated by mechanical signaling in early Drosophila embryos [‡]	2013
External Seminars —	
University of Tokyo, Japan Yuji Ikegaya Group Replay as wavefronts and theta sequences as bump oscillations in a grid cell attractor network.	2019 ork
Ludwig-Maximilians-Universität München, Germany Bernstein Center for Computational Neuroscience Munich Modules (and phase precession and replay) in continuous attractor models of grid cells	2018
University College London, UK Institute for Behavioural Neuroscience	2018

Replay arises naturally as a traveling wavefront in an entorhinal attractor network École Normale Supérieure, Paris, France 2017 Group for Neural Theory Self-organization of entorhinal grid modules through commensurate lattice relationships Institut Curie, Paris, France 2017 Pierre Sens Group Chiral twist drives raft formation and organization in membranes composed of rod-like particles University College London, UK 2016 Gatsby Computational Neuroscience Unit Coupling between attractor networks naturally generates a discrete grid cell hierarchy University of California, Los Angeles, USA 2016 Center for Biological Physics Chiral twist drives raft formation and organization in membranes composed of rod-like particles Teaching —— 2011 - 2015Teaching Assistant University of Pennsylvania Modern physics, wave phenomena, electromagentism, physics laboratory 2006 - 2007**Teaching Fellow** Harvard University Organic chemistry, linear algebra CLINICAL SERVICE -Medical Volunteer 2018-present Project Homeless Connect Providing medical care at homeless services events in San Francisco Medical Student Volunteer 2010-2013 United Community Clinics Provided medical care at a free health clinic in Phladelphia References — Mike DeWeese Tom Lubensky Postdoctoral advisor PhD advisorUniversity of California, Berkeley University of Pennsylvania Redwood Center for Theoretical Neuroscience Department of Physics & Astronomy deweese@berkelev.edu tom@physics.upenn.edu Vijay Balasubramanian Taro Toyoizumi Research mentor

Research mentor University of Pennsylvania Department of Physics & Astronomy vijay@physics.upenn.edu

RIKEN Center for Brain Science

Neural Adaptation and Computation Group

taro.toyoizumi@riken.jp