Titanic Survival Predictions

December 12, 2020

Titanic Survival Predictions

Import pandas

```
[1]: import pandas as pd
    # optional
    pd.set_option('display.max_columns',100)
    pd.set_option('display.max_rows',100)
```

Load the clean titanic data

```
[2]: train = pd.read_csv('clean_train.csv')
```

Inspect the data with info() and head()

```
[3]: train.info() train.head()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 24 columns):

#	Column	Non-Null Count	Dtype
0	PassengerId	891 non-null	int64
1	Survived	891 non-null	int64
2	Pclass	891 non-null	int64
3	Name	891 non-null	object
4	Sex	891 non-null	object
5	Age	714 non-null	float64
6	SibSp	891 non-null	int64
7	Parch	891 non-null	int64
8	Ticket	891 non-null	object
9	Fare	891 non-null	float64
10	Cabin	204 non-null	object
11	Embarked	889 non-null	object
12	Age_clean	891 non-null	float64
13	<pre>Is_female</pre>	891 non-null	bool
14	Emb_C	891 non-null	int64
15	Emb_Q	891 non-null	int64
16	Emb_S	891 non-null	int64

```
17 Fare_usd
                                        int64
         Family_size
                       891 non-null
     19
         Title
                       891 non-null
                                        object
     20
         Mr
                       891 non-null
                                        int64
     21
         Mrs
                       891 non-null
                                        int64
     22
         Miss
                       891 non-null
                                        int64
     23 Master
                       891 non-null
                                        int64
    dtypes: bool(1), float64(4), int64(13), object(6)
    memory usage: 161.1+ KB
[3]:
        PassengerId
                     Survived
                               Pclass
                  1
                             0
                  2
                             1
                                     1
     1
                  3
     2
                             1
                                     3
     3
                  4
                             1
                                     1
     4
                  5
                             0
                                     3
                                                       Name
                                                                 Sex
                                                                            SibSp
                                                                       Age
     0
                                   Braund, Mr. Owen Harris
                                                                male
                                                                      22.0
                                                                                 1
     1
        Cumings, Mrs. John Bradley (Florence Briggs Th... female
                                                                    38.0
                                                                               1
     2
                                    Heikkinen, Miss. Laina
                                                              female
                                                                      26.0
                                                                                 0
     3
             Futrelle, Mrs. Jacques Heath (Lily May Peel)
                                                              female
                                                                      35.0
                                                                                 1
     4
                                                                      35.0
                                                                                 0
                                  Allen, Mr. William Henry
                                                                male
        Parch
                          Ticket
                                     Fare Cabin Embarked
                                                           Age_clean
                                                                       Is_female
     0
                       A/5 21171
                                   7.2500
                                                        S
                                                                 22.0
                                                                           False
            0
                                             NaN
     1
            0
                        PC 17599
                                  71.2833
                                             C85
                                                        C
                                                                 38.0
                                                                            True
     2
               STON/02. 3101282
                                   7.9250
                                             NaN
                                                        S
                                                                 26.0
                                                                            True
            0
                                                        S
     3
            0
                          113803
                                  53.1000
                                            C123
                                                                 35.0
                                                                            True
     4
            0
                          373450
                                   8.0500
                                             NaN
                                                        S
                                                                 35.0
                                                                           False
                             Fare_usd Family_size Title
        Emb_C
               Emb_Q
                      Emb_S
                                                            {\tt Mr}
                                                                      Miss
                                                                            Master
                                                                 Mrs
                               9.42500
     0
            0
                    0
                           1
                                                   1
                                                        Mr
                                                              1
                                                                   0
                                                                         0
                                                                                  0
            1
                           0
                              92.66829
                                                   1
                                                       Mrs
                                                              0
                                                                   1
                                                                         0
                                                                                  0
     1
                    0
     2
            0
                    0
                           1
                              10.30250
                                                   0
                                                      Miss
                                                                                  0
     3
                              69.03000
                                                                         0
                                                                                  0
            0
                    0
                           1
                                                   1
                                                       Mrs
                                                              0
                                                                   1
                    0
                           1
                              10.46500
                                                   0
                                                        Mr
                                                                   0
                                                                         0
                                                                                  0
    Create two variables for features (Age_clean, Is_female, Pclass, emb_C, emb_Q, emb_S, Fare)
    and target (Survived).
[4]: features = train[['Age_clean', 'Is_female', \_
      target = train.Survived
```

float64

891 non-null

[5]: # Ensure data is prepped correctly

print(features.shape)

target.shape

```
(891, 7)
 [5]: (891,)
     Import train_test_split from sklearn.model_selection
 [6]: from sklearn.model_selection import train_test_split
     Split the titanic data into training sets and test sets
 [7]: features_train, features_test, target_train, target_test =
       →train test split(features, target, test size=.2, random state=0)
 [8]: print(features_train.shape, features_test.shape)
      print(target_train.shape, target_test.shape)
     (712, 7) (179, 7)
     (712,) (179,)
 [9]: features_train.head()
 [9]:
           Age_clean
                     Is_female
                                 Pclass
                                          Emb_C
                                                 Emb_Q
                                                         Emb_S
                                                                   Fare
      140 29.699118
                            True
                                       3
                                                                15.2458
                                              1
                                                      0
                                                             0
      439 31.000000
                           False
                                       2
                                              0
                                                             1 10.5000
                                                      0
      817 31.000000
                           False
                                       2
                                              1
                                                      0
                                                             0 37.0042
      378 20.000000
                           False
                                       3
                                              1
                                                      0
                                                             0
                                                                 4.0125
      491 21.000000
                           False
                                       3
                                              0
                                                      0
                                                                 7.2500
[10]: target_train.head()
[10]: 140
             0
      439
             0
      817
             0
      378
             0
      491
      Name: Survived, dtype: int64
     Import the KNeighborsClassifier from sklearn.neighbors
[11]: from sklearn.neighbors import KNeighborsClassifier
     Create and train a KNN model
[12]: knneighbors = KNeighborsClassifier(n_neighbors=5, weights='uniform')
      knneighbors.fit(features_train, target_train)
[12]: KNeighborsClassifier()
```

Make predictions with test data

```
[13]: print(knneighbors.predict(features_test))
    print(target_test.values)
    [1\ 0\ 0\ 1\ 0\ 0\ 1\ 1\ 1\ 0\ 0\ 0\ 0\ 1\ 1\ 0\ 0\ 0\ 0\ 0\ 1\ 1\ 1\ 1\ 0\ 0\ 0\ 0\ 0\ 0\ 0
    [0\ 0\ 0\ 1\ 1\ 1\ 1\ 1\ 1\ 1\ 0\ 1\ 0\ 1\ 1\ 0\ 0\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ 0
    0\; 0\; 0\; 1\; 0\; 0\; 0\; 1\; 0\; 0\; 1\; 0\; 0\; 1\; 1\; 1\; 0\; 1\; 0\; 0\; 0\; 0\; 1\; 0\; 0\; 1\; 0\; 1\; 0\; 1\; 0\; 1\; 1\; 1\; 1\; 0\; 0
    1 0 0 1 0 0 1 0 0 1 0 1 0 1 1 1 1 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0
    Predict probabilities
[14]: knneighbors.predict_proba(features_test)
[14]: array([[0.4, 0.6],
         [0.8, 0.2],
         [0.8, 0.2],
         [0.4, 0.6],
         [0.6, 0.4],
         [0.6, 0.4],
         [0.4, 0.6],
         [0.4, 0.6],
         [0., 1.],
         [0.6, 0.4],
         [1., 0.],
         [0.8, 0.2],
         [0.8, 0.2],
         [0.6, 0.4],
         [0.4, 0.6],
         [0.2, 0.8],
         [1., 0.],
         [0.6, 0.4],
         [1., 0.],
         [0.2, 0.8],
         [0.6, 0.4],
         [0.8, 0.2],
         [1., 0.],
         [0.6, 0.4],
         [0.8, 0.2],
         [0., 1.],
         [0.4, 0.6],
         [0.4, 0.6],
         [0.4, 0.6],
         [0.6, 0.4],
```

- [1., 0.],
- [0.8, 0.2],
- [0.6, 0.4],
- [0.6, 0.4],
- [1., 0.],
- [0.8, 0.2],
- [0.8, 0.2],
- [0.4, 0.6],
- [0.8, 0.2],
- [0.8, 0.2],
- [0.2, 0.8],
- [1., 0.],
- [0.6, 0.4],
- [0.6, 0.4],
- [0.2, 0.8],
- [1., 0.],
- [1., 0.],
- [0.4, 0.6],
- [1., 0.],
- [0.2, 0.8],[0.8, 0.2],
- [0.2, 0.8],
- [0.4, 0.6],
- [0.6, 0.4],
- [0.8, 0.2],
- [0.6, 0.4],
- [0.8, 0.2],
- [0.8, 0.2],
- [0.8, 0.2],
- [0.6, 0.4],
- [0.8, 0.2],
- [1. , 0.],
- [0.2, 0.8],
- [0.8, 0.2],
- [0.2, 0.8],[0.6, 0.4],
- [0.2, 0.8],
- [0.6, 0.4],[0.4, 0.6],
- [0.2, 0.8],
- [0.4, 0.6],
- [0.4, 0.6],
- [0.2, 0.8],
- [1., 0.],
- [1., 0.],
- [0.8, 0.2],
- [0.4, 0.6],

- [0.8, 0.2],
- [1., 0.],
- [0.4, 0.6],
- [0.6, 0.4],
- [0.4, 0.6],
- [0.2, 0.8],
- [0.8, 0.2],
- [0.6, 0.4],
- [0.8, 0.2],
- [0.4, 0.6],
- [1., 0.],
- [1., 0.],
- [0., 1.],
- [1., 0.],
- [0.6, 0.4],
- [0.4, 0.6],
- [0.2, 0.8],
- [0.8, 0.2],
- [0.8, 0.2],
- [0.6, 0.4],
- [0.6, 0.4],
- [0.8, 0.2],
- [0.0, 0.2]
- [0.2, 0.8],
- [0.8, 0.2],
- [0.4, 0.6],
- [0.8, 0.2],
- [0.8, 0.2],
- [0.6, 0.4],
- [0.6, 0.4],
- [0.6, 0.4],
- [0.6, 0.4],
- [0.4, 0.6],
- [0.6, 0.4],
- [1., 0.],
- [0.2, 0.8],
- [0.2, 0.8],
- [1., 0.],
- [0., 1.],
- [0.6, 0.4],
- [0.8, 0.2],
- [0.6, 0.4],
- [0.8, 0.2],
- [0.8, 0.2],
- [0.4, 0.6],
- [0.8, 0.2],
- [0.8, 0.2],
- [1. , 0.],

- [1., 0.],
- [0.8, 0.2],
- [1. , 0.],
- [1., 0.],
- [1., 0.],
- [0.8, 0.2],
- [0.4, 0.6],
- [0.8, 0.2],
- [1., 0.],
- [1., 0.],
- [0.8, 0.2],
- [0.8, 0.2],
- [0.8, 0.2],
- [0.8, 0.2],
- [0.8, 0.2],
- [0.8, 0.2],
- [0.6, 0.4],
- [0., 1.],
- [1., 0.],
- [0.6, 0.4],
- [0.6, 0.4],
- [1., 0.],
- [0.4, 0.6],
- [0.8, 0.2],
- [0.6, 0.4],
- [0.8, 0.2],
- [0.4, 0.6],
- [0.4, 0.6],
- [1., 0.],
- [0.8, 0.2],
- [0.6, 0.4],
- [0.6, 0.4],
- [0.6, 0.4],
- [1., 0.],
- [0.2, 0.8],
- [0.2, 0.8],
- [1., 0.],
- [0.8, 0.2],[0.6, 0.4],
- [0.8, 0.2],
- [0.4, 0.6],
- [1., 0.],
- [0.8, 0.2],
- [1., 0.],
- [0.8, 0.2],
- [0.8, 0.2],
- [0.8, 0.2],

```
[0.4, 0.6],

[1., 0.],

[0.6, 0.4],

[0., 1.],

[1., 0.],

[1., 0.],

[0.6, 0.4]])
```

Check the classes of the model

```
[15]: knneighbors.classes_
```

```
[15]: array([0, 1])
```

Score the model

```
[16]: knneighbors.score(features_test, target_test)
```

[16]: 0.7206703910614525

0.0.1 Stratified KFolds Crossvalidation

```
[17]: from sklearn.model_selection import cross_val_score, StratifiedKFold, □ →RepeatedStratifiedKFold
```

Use cross_val_score to evaluate model performance

```
[18]: results = cross_val_score(KNeighborsClassifier(n_neighbors=5, □ → weights='uniform'),

features,
target)
results.mean()
```

[18]: 0.6858200991777037

Use StratifiedKFold to shuffle the data

```
[19]: results1 = cross_val_score(KNeighborsClassifier(n_neighbors=5, ___ 

→weights='uniform'),

features,

target,

cv=StratifiedKFold(shuffle=True, random_state=0))

results1.mean()
```

[19]: 0.7037285794990897

Use RepeatedStratifiedKFold to calculate multiple iterations of crossvalidation

```
[20]: results2 = cross_val_score(KNeighborsClassifier(n_neighbors=5,__
       ⇔weights='uniform'),
                                features,
                                target,
                                cv=RepeatedStratifiedKFold(n_splits=5, n_repeats=10,__
       →random_state=0))
      results2.mean()
      results2
[20]: array([0.68156425, 0.65168539, 0.70786517, 0.75280899, 0.7247191,
             0.67039106, 0.65730337, 0.62921348, 0.67977528, 0.75842697,
             0.75977654, 0.65730337, 0.66292135, 0.71910112, 0.71348315,
             0.67039106, 0.69101124, 0.69101124, 0.69101124, 0.69101124,
             0.67597765, 0.6741573 , 0.70786517, 0.6741573 , 0.69101124,
             0.67039106, 0.75280899, 0.66853933, 0.71348315, 0.71910112,
             0.69832402, 0.61797753, 0.75280899, 0.67977528, 0.6741573 ,
             0.68715084, 0.68539326, 0.67977528, 0.69662921, 0.69662921,
             0.68156425, 0.69662921, 0.74719101, 0.71348315, 0.68539326,
             0.68156425, 0.69101124, 0.71910112, 0.70786517, 0.63483146])
```

Create a for loop to score both uniform and distance weighted models for different values of k to determine optimal model parameters.

```
[21]: # Create lists to store data for data frame
      neighbors, scores_distance, scores_uniform = [],[],[]
      for k in range (1, 101):
          score u = cross val score(KNeighborsClassifier(n neighbors=k,...
       ⇔weights='uniform'),
                                features,
                                target,
                                cv=StratifiedKFold(shuffle=True, random state=0))
          scores_uniform.append(score_u.mean())
          score_d = cross_val_score(KNeighborsClassifier(n_neighbors=k,__
       ⇔weights='distance'),
                                features,
                                cv=StratifiedKFold(shuffle=True, random_state=0))
          scores_distance.append(score_d.mean())
          neighbors.append(k)
      print(scores_uniform)
      print(scores distance)
      print(neighbors)
```

[0.6913439206578369, 0.694739815454146, 0.7014876655577177, 0.694739815454146, 0.7037285794990897, 0.6812692235264579, 0.6992341974766179, 0.6969744523256542,

```
0.7003201305630531, 0.7081852991023789, 0.7070554265268972, 0.703690917079907,
0.7115247002699141, 0.7059255539514154, 0.7036658088004519, 0.7025610445044252,
0.7047956813759337, 0.7025735986441528, 0.7093026175381332, 0.7014500031385349,
0.7003138534931894, 0.7059255539514154, 0.7048019584457975, 0.7070428723871697,
0.6991839809177077, 0.6991777038478437, 0.6980290000627707, 0.6946644906157806,
0.6991588726382525, 0.69580691733099, 0.6946770447555082, 0.696930512836608,
0.6868181532860461, 0.6868244303559099, 0.6868181532860461, 0.6868307074257736,
0.6901952168727638, 0.6879543029313917, 0.687941748791664, 0.684577239344674,
0.6868369844956375, 0.6812127298976838, 0.6812127298976838, 0.6812127298976838,
0.6778419433808298, 0.6868118762161823, 0.6811938986880924, 0.6755884752997302,
0.6800828573222021, 0.684577239344674, 0.683453643839056, 0.682330048333438,
0.6789592618165841, 0.6778419433808298, 0.6834599209089198, 0.6767183478752118,
0.6767120708053482, 0.6789592618165841, 0.6789592618165841, 0.6823363254033017,
0.6800891343920658, 0.6789655388864478, 0.6778419433808298, 0.6711129244868494,
0.6722302429226037, 0.6722365199924676, 0.6755947523695939, 0.6733475613583579,
0.6789655388864478, 0.6744774339338397, 0.6767246249450756, 0.6767309020149395,
0.6778544975205574, 0.6789843700960392, 0.676743456154667, 0.6801079656016571,
0.6733601154980855, 0.6744837110037034, 0.6733538384282218, 0.6722302429226037,
0.6755947523695939, 0.6621367145816334, 0.6643713514531416, 0.6677421379699957,
0.6756073065093214, 0.6688720105454773, 0.6733601154980855, 0.6688720105454774,
0.6756073065093215, 0.6733663925679493, 0.6711192015567133, 0.6711192015567133,
0.6722365199924676, 0.6711129244868494, 0.6722365199924676, 0.6733601154980855,
0.6699893289812315, 0.6677609691795869, 0.6677672462494507, 0.668884564685205
[0.6913439206578369, 0.6980603854120897, 0.7160316364321135, 0.7149080409264954,
0.7250078463373296, 0.7250141234071935, 0.7216370598204758, 0.7373485656895361,
0.7249952921976022, 0.7306007155859644, 0.7272487602787019, 0.7261188877032201,
0.7306007155859644, 0.7317243110915824, 0.7294645659406189, 0.7272362061389744,
0.7272299290691105, 0.7238654196221204, 0.7283535245747286, 0.7249890151277384,
0.7283535245747286, 0.7317243110915823, 0.7306069926558282, 0.7272487602787019,
0.7305944385161006, 0.7294708430104827, 0.7294645659406189, 0.729458288870755,
0.733952670893227, 0.7339463938233632, 0.7328290753876091, 0.7317054798819912,
0.7328227983177453, 0.7294520118008914, 0.7350637122591175, 0.7316992028121274,
0.7361873077647354, 0.7316992028121272, 0.7373109032703533, 0.7350637122591175,
0.735076266398845, 0.7339589479630908, 0.733952670893227, 0.7317054798819911,
0.7317054798819911, 0.7339463938233632, 0.7339463938233632, 0.7328227983177452,
0.7350825434687087, 0.732829075387609, 0.733952670893227, 0.7361998619044631,
0.7361998619044631, 0.7339589479630908, 0.731711756951855, 0.730588161446237,
0.7305818843763732, 0.7328227983177452, 0.7305881614462368, 0.7305881614462368,
0.731711756951855, 0.733952670893227, 0.728340970435001, 0.7283409704350008,
0.7317180340217186, 0.7294645659406189, 0.7317117569518549, 0.730588161446237,
0.7328227983177453, 0.7316992028121273, 0.7316992028121274, 0.732829075387609,
0.7317054798819911, 0.7305881614462368, 0.7283472475048647, 0.7261000564936289,
0.7249764609880108, 0.7249764609880108, 0.7272236519992468, 0.7261000564936289,
0.7261000564936287, 0.7261000564936289, 0.7294582888707553, 0.7294645659406189,
0.7294582888707553, 0.7283346933651373, 0.7272110978595192, 0.7272173749293829,
0.7283346933651372, 0.726093779423765, 0.7283346933651372, 0.727217374929383,
0.7272110978595192, 0.7283409704350009, 0.723846588412529, 0.724970183918147,
0.7238403113426652, 0.7249639068482832, 0.7215931203314293, 0.722722992906911]
```

```
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100]
```

Store the model scores in a DataFrame

```
[22]: knneighbors_scores_dict = {
    'distance_weighted':scores_distance,
    'uniform_weighted':scores_uniform
}
knneighbors_scores = pd.DataFrame(knneighbors_scores_dict, index =neighbors)
knneighbors_scores
```

[22]:	distance_weighted	uniform_weighted
1	0.691344	0.691344
2	0.698060	0.694740
3	0.716032	0.701488
4	0.714908	0.694740
5	0.725008	0.703729
6	0.725014	0.681269
7	0.721637	0.699234
8	0.737349	0.696974
9	0.724995	0.700320
10	0.730601	0.708185
11	0.727249	0.707055
12	0.726119	0.703691
13	0.730601	0.711525
14	0.731724	0.705926
15	0.729465	0.703666
16	0.727236	0.702561
17	0.727230	0.704796
18	0.723865	0.702574
19	0.728354	0.709303
20	0.724989	0.701450
21	0.728354	0.700314
22	0.731724	0.705926
23	0.730607	0.704802
24	0.727249	0.707043
25	0.730594	0.699184
26	0.729471	0.699178
27	0.729465	0.698029
28	0.729458	0.694664
29	0.733953	0.699159
30	0.733946	0.695807
31	0.732829	0.694677

32	0.731705	0.696931
33	0.732823	0.686818
34	0.729452	0.686824
35	0.735064	0.686818
36		0.686831
	0.731699	
37	0.736187	0.690195
38	0.731699	0.687954
39	0.737311	0.687942
40	0.735064	0.684577
41	0.735076	0.686837
42	0.733959	0.681213
43	0.733953	0.681213
44	0.731705	0.681213
45	0.731705	0.677842
46	0.733946	0.686812
47	0.733946	0.681194
48	0.732823	0.675588
49	0.735083	0.680083
50	0.732829	0.684577
51	0.733953	0.683454
52	0.736200	0.682330
53	0.736200	0.678959
54	0.733959	0.677842
55	0.731712	0.683460
56	0.730588	0.676718
57	0.730582	0.676712
58	0.732823	0.678959
59	0.730588	0.678959
60	0.730588	0.682336
61	0.731712	0.680089
62	0.733953	0.678966
63	0.728341	0.677842
64	0.728341	0.671113
65	0.731718	0.672230
66	0.729465	0.672237
67	0.731712	0.675595
68	0.730588	0.673348
69	0.732823	0.678966
70	0.731699	0.674477
71	0.731699	0.676725
72	0.732829	0.676731
73	0.731705	0.677854
74	0.730588	0.678984
75	0.728347	0.676743
76	0.726100	0.680108
77	0.724976	0.673360
78	0.724976	0.674484
- -	· -	

79	0.727224	0.673354
80	0.726100	0.672230
81	0.726100	0.675595
82	0.726100	0.662137
83	0.729458	0.664371
84	0.729465	0.667742
85	0.729458	0.675607
86	0.728335	0.668872
87	0.727211	0.673360
88	0.727217	0.668872
89	0.728335	0.675607
90	0.726094	0.673366
91	0.728335	0.671119
92	0.727217	0.671119
93	0.727211	0.672237
94	0.728341	0.671113
95	0.723847	0.672237
96	0.724970	0.673360
97	0.723840	0.669989
98	0.724964	0.667761
99	0.721593	0.667767
100	0.722723	0.668885

[23]: knneighbors_scores.plot.line()

[23]: <matplotlib.axes._subplots.AxesSubplot at 0x119cac7c0>

0.1 Data Normalization

Calculate the mean and standard deviation of Age clean and Fare

```
[24]: avg_age = train.Age_clean.mean()
std_age = train.Age_clean.std()
```

```
[25]: avg_fare = train.Fare.mean()
std_fare = train.Fare.std()
```

Subtract the mean and divide by the standard deviation

```
[26]: train['Age_normalized'] = (train.Age_clean - avg_age) / std_age train['Fare_normalized'] = (train.Fare - avg_fare) / std_fare
```

Create new features using normalized data (Age_norm, Is_female, Pclass, emb_C, emb_Q, emb_S, Fare_norm)

```
[27]: features_normalized = train[['Age_normalized', 'Is_female', \cdot \cdot 'Pclass', 'Emb_C', 'Emb_Q', 'Emb_S', 'Fare_normalized']]
```

Score the KNN on normalized data with a for loop comparing different numbers of neighbors

- 25 0.8058062896240035
- 26 0.8113866047329106
- 27 0.797991337643588
- 28 0.7957315924926245
- 29 0.804670139978658
- 30 0.8002448057246877
- 31 0.8013495700207143
- 32 0.7946017199171427
- 33 0.8036030381018142
- 34 0.7901136149645346
- 35 0.7856506182913815
- 36 0.7946017199171427
- 37 0.8002134203753688
- 38 0.8035967610319503
- 39 0.7991086560793421
- 40 0.8002510827945514
- 41 0.7957441466323522

```
42 - 0.7900885066850794

43 - 0.7822735547046639

44 - 0.7946142740568704

45 - 0.8036093151716781

46 - 0.8013935095097608

47 - 0.8047266336074321

48 - 0.7957315924926245

49 - 0.8058125666938671

50 - 0.8002259745150964
```

0.2 Random Forest

Import the RandomForestClassifier from sklearn.ensemble

```
[29]: from sklearn.ensemble import RandomForestClassifier
```

Create a model and train it on the training sets

```
[30]: randomforest = RandomForestClassifier()
randomforest.fit(features, target)
```

[30]: RandomForestClassifier()

Calculate the score for the Random Forest model using the test sets

```
[31]: randomforest.feature_importances_
```

```
[31]: array([0.29588566, 0.26139002, 0.09298923, 0.01347759, 0.00726209, 0.01345015, 0.31554527])
```

```
[32]: features.columns
```

```
[32]: Index(['Age_clean', 'Is_female', 'Pclass', 'Emb_C', 'Emb_Q', 'Emb_S', 'Fare'], dtype='object')
```

```
[33]: randomforest_results = cross_val_score(RandomForestClassifier(), features, target, cv=RepeatedStratifiedKFold(n_splits=5, u → n_repeats=10, random_state=0)) randomforest_results
```

```
[33]: array([0.81564246, 0.8258427 , 0.83146067, 0.80898876, 0.79775281, 0.82122905, 0.83146067, 0.8258427 , 0.79213483, 0.8258427 , 0.80446927, 0.83707865, 0.78089888, 0.83146067, 0.83146067, 0.77653631, 0.80337079, 0.83707865, 0.84269663, 0.82022472, 0.82681564, 0.80337079, 0.82022472, 0.78651685, 0.8258427 , 0.83240223, 0.85955056, 0.78651685, 0.78089888, 0.8258427 , 0.79329609, 0.79775281, 0.80337079, 0.81460674, 0.81460674,
```

```
0.78212291, 0.78089888, 0.84269663, 0.84269663, 0.84269663,
            0.80446927, 0.80337079, 0.80898876, 0.80898876, 0.83146067,
            0.82681564, 0.84831461, 0.83146067, 0.8258427, 0.78089888
[34]: randomforest_results.mean()
[34]: 0.8154962023727325
     Add more features to the model to try and improve the performance of your model
[35]: features2 = train[['Age clean', 'Is female', 'Pclass', |
      [36]: randomforest.fit(features2, target)
     randomforest.feature importances
[36]: array([0.23771512, 0.12989556, 0.07947193, 0.26233483, 0.0851964,
            0.14678425, 0.02710502, 0.02095985, 0.01053705])
[37]: features2.columns
[37]: Index(['Age_clean', 'Is_female', 'Pclass', 'Fare', 'Family_size', 'Mr', 'Mrs',
            'Miss', 'Master'],
           dtype='object')
[38]: features3 = train[['Age_clean', 'Is_female', 'Pclass',
      results3 = cross val score(RandomForestClassifier(),
                                          features3,
                                          target,
                                          cv=RepeatedStratifiedKFold(n_splits=5,_
      →n repeats=10))
     results3
[38]: array([0.79888268, 0.78651685, 0.81460674, 0.8258427, 0.83146067,
            0.7877095, 0.82022472, 0.82022472, 0.80337079, 0.80898876,
            0.83798883, 0.84831461, 0.79213483, 0.7752809, 0.85955056,
            0.80446927, 0.84831461, 0.80337079, 0.7752809, 0.86516854,
            0.80446927, 0.83707865, 0.79775281, 0.83707865, 0.85955056,
            0.83240223, 0.8258427, 0.83707865, 0.83146067, 0.79775281,
            0.88826816, 0.83146067, 0.80898876, 0.84269663, 0.80898876,
            0.77094972, 0.80898876, 0.78651685, 0.83707865, 0.79213483,
            0.83240223, 0.82022472, 0.82022472, 0.85393258, 0.81460674,
            0.79888268, 0.81460674, 0.8258427, 0.80337079, 0.84831461])
[39]: results3.mean()
```

```
[39]: 0.8195329860021342
[40]: features4 = train[['Age_clean', 'Is_female', 'Fare', 'Family_size']]
      randomforest.fit(features4, target)
      randomforest.feature_importances_
[40]: array([0.26991764, 0.26935093, 0.35936
                                               , 0.10137143])
[41]: results4 = cross_val_score(RandomForestClassifier(),
                                            features4,
                                            target,
                                            cv=RepeatedStratifiedKFold(n_splits=5,__
       \rightarrown_repeats=10))
      results4
[41]: array([0.84916201, 0.80337079, 0.8258427, 0.84831461, 0.75842697,
             0.82122905, 0.80898876, 0.84269663, 0.85393258, 0.78651685,
             0.81564246, 0.83707865, 0.78089888, 0.78089888, 0.86516854,
            0.79888268, 0.80898876, 0.80898876, 0.80337079, 0.81460674,
             0.82681564, 0.78089888, 0.83146067, 0.82022472, 0.82022472,
             0.74860335, 0.86516854, 0.80898876, 0.84269663, 0.84831461,
             0.79329609, 0.8258427 , 0.78651685, 0.84269663, 0.85955056,
             0.82681564, 0.82022472, 0.84269663, 0.76404494, 0.8258427,
             0.81564246, 0.78651685, 0.85955056, 0.80898876, 0.8258427,
             0.82681564, 0.83146067, 0.79775281, 0.78089888, 0.80898876
[42]: results4.mean()
[42]: 0.8167277634800075
     0.2.1 Make a Prediction for Kaggle
     Train the model using the best data available
[43]: train_features_final = train[['Age_clean', 'Is_female', 'Pclass', __
       [45]: randomforest_final = RandomForestClassifier().fit(train_features_final, target)
     Create a DataFrame with the clean test.csv data
[46]: test = pd.read_csv('clean_test.csv')
     Investigate the test data
[47]: test.info()
```

<class 'pandas.core.frame.DataFrame'> RangeIndex: 418 entries, 0 to 417 Data columns (total 22 columns):

#	Column	Non-Null Count	Dtype			
0	_	418 non-null				
1	Pclass	418 non-null	int64			
2		418 non-null				
		418 non-null				
4	Age	332 non-null	float64			
5	SibSp	418 non-null	int64			
6	Parch	418 non-null	int64			
7	Ticket	418 non-null	object			
8	Fare	418 non-null	float64			
9	Cabin	91 non-null	object			
10	Embarked	418 non-null	object			
11	Age_clean	418 non-null	float64			
12	<pre>Is_female</pre>	418 non-null	bool			
13	Emb_C	418 non-null	int64			
14	Emb_Q	418 non-null	int64			
15	Emb_S	418 non-null	int64			
16	Family_size	418 non-null	int64			
17	Title	418 non-null	object			
18	Mr	418 non-null	int64			
19	Mrs	418 non-null	int64			
20	Miss	418 non-null	int64			
21	Master	418 non-null	int64			
dtypes: bool(1), float64(3), int64(12), object(6)						

memory usage: 69.1+ KB

[48]: test.head()

[48]:		Passen	gerId	Pclass					Na	me Sex	\
	0		892	3				Kel	ly, Mr. Jam	es male	
	1		893	3		Will	kes, Mi	rs. James	(Ellen Need	s) female	
	2		894	2			Myl	les, Mr. T	homas Franc	is male	
	3		895	3				Wir	z, Mr. Albe	rt male	
	4		896	3	Hirvone	n, Mrs. <i>I</i>	Alexano	der (Helga	E Lindqvis	t) female	
		Age	SibSp	Parch	Ticket	Fare	Cahin	Embarked	Age_clean	Is_female	\
	Λ	34.5	0	0	330911		NaN		34.5	False	`
	U	34.5	U	U	330911	1.0292	Nan	Q	34.5	raise	
	1	47.0	1	0	363272	7.0000	NaN	S	47.0	True	
	2	62.0	0	0	240276	9.6875	NaN	Q	62.0	False	
	3	27.0	0	0	315154	8.6625	NaN	S	27.0	False	
	4	22.0	1	1	3101298	12.2875	NaN	S	22.0	True	

Emb_C Emb_Q Emb_S Family_size Title Mr Mrs Miss Master

```
0
         0
                            0
                                                                         0
                                                                                    0
                                                    Mr
                                                           1
1
         0
                  0
                            1
                                                                  1
                                                                         0
                                                                                    0
                                             1
                                                   Mrs
                                                           0
2
         0
                  1
                            0
                                             0
                                                    Mr
                                                           1
                                                                 0
                                                                         0
                                                                                    0
3
                  0
                            1
                                             0
                                                    Mr
                                                           1
                                                                  0
                                                                         0
                                                                                    0
4
         0
                  0
                            1
                                             2
                                                                         0
                                                                                    0
                                                   Mrs
                                                           0
                                                                  1
```

Select the same features from test data (Age_clean, Is_female, Pclass, emb_C, emb_Q, emb_S, Fare)

```
[49]: test_features_final = test[['Age_clean', 'Is_female', 'Pclass',

→ 'Fare', 'Family_size', 'Mr']]
```

Create predictions

```
[50]: predictions_final = randomforest_final.predict(test_features_final) predictions_final
```

```
[50]: array([0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1,
            1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1,
            1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1,
            1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0,
            1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0,
            0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0,
            0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0,
            0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1,
            1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0,
            0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0,
            1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1,
            0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1,
            0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0,
            0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1,
            0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0,
            1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0,
            0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1,
            1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1,
            0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1])
```

Add Predictions as a new column (Survived) in the DataFrame with the test data

```
[51]: test['Survived'] = predictions_final
test.head()
```

```
[51]:
         PassengerId Pclass
                                                                          Name
                                                                                   Sex \
                                                             Kelly, Mr. James
      0
                  892
                            3
                                                                                  male
      1
                  893
                            3
                                            Wilkes, Mrs. James (Ellen Needs)
                                                                                female
                            2
      2
                                                   Myles, Mr. Thomas Francis
                  894
                                                                                  male
      3
                            3
                                                             Wirz, Mr. Albert
                  895
                                                                                  male
      4
                  896
                               Hirvonen, Mrs. Alexander (Helga E Lindqvist)
                                                                                female
```

```
Age SibSp Parch
                         Ticket
                                     Fare Cabin Embarked Age_clean Is_female \
0 34.5
                         330911
                                                                            False
             0
                                   7.8292
                                             NaN
                                                        Q
                                                                 34.5
1 47.0
                                   7.0000
                                                        S
                                                                 47.0
                                                                             True
             1
                     0
                         363272
                                             NaN
2 62.0
             0
                     0
                         240276
                                   9.6875
                                            NaN
                                                        Q
                                                                 62.0
                                                                            False
3 27.0
             0
                     0
                         315154
                                   8.6625
                                            {\tt NaN}
                                                        S
                                                                 27.0
                                                                            False
4 22.0
                        3101298 12.2875
                                                        S
                                                                 22.0
             1
                     1
                                            NaN
                                                                             True
   Emb_C
          Emb_Q Emb_S
                        Family_size Title
                                                       Miss
                                                             Master Survived
                                            {\tt Mr}
                                                  Mrs
0
       0
               1
                      0
                                    0
                                         Mr
                                               1
                                                    0
                                                          0
                                                                   0
       0
                                        Mrs
                                                    1
                                                          0
                                                                   0
                                                                              0
1
               0
                      1
                                    1
                                               0
2
       0
               1
                      0
                                    0
                                         Mr
                                              1
                                                    0
                                                          0
                                                                   0
                                                                              1
3
                                                          0
                                                                   0
       0
               0
                      1
                                    0
                                         {\tt Mr}
                                              1
                                                    0
                                                                              1
4
       0
               0
                      1
                                    2
                                        Mrs
                                              0
                                                          0
                                                                   0
                                                                              1
                                                    1
```

Save as CSV (make sure you set index=False)

```
[52]: kaggle = test[['PassengerId','Survived']]
   kaggle.head()
```

```
PassengerId Survived
[52]:
                  892
                               0
      0
                               0
      1
                  893
      2
                  894
                               1
      3
                  895
                               1
                  896
                               1
```

```
[53]: kaggle.to_csv('titanic_survival_predictions.csv', index=False)
```