Client's ref: 91279

Our ref: 0548-9828-US/final/Claire/Kevin

What is claimed is:

1

2

3

1

2

1	1. A method for forming a trench capacitor, comprising:
2	providing a semiconductor substrate, wherein a deep
3	trench and a deep trench capacitor are formed
4	therein, the deep trench capacitor having a node
5	dielectric layer and a storage node, the node
6	dielectric layer covering a sidewall and a bottom
7	portion between the deep trench and the deep trench
8	capacitor, and the storage node filling the deep
9	trench to a predetermined depth;
10	ion implanting the top portion of the deep trench to a
11	predetermined angle to form an ion doped area on
12	a single sidewall of the semiconductor substrate
13	and the top surface of the deep trench capacitor;
14	oxidizing the semiconductor substrate to form an oxide
15	layer on the ion doped area;
16	forming a sidewall layer on the exposed semiconductor
17	substrate using the oxide layer as a mask;
18	removing the oxide layer;
19	forming a barrier layer on the sidewall of the deep trench;
20	and
21	filling a conducting layer in the deep trench.

- 2. The method for forming a trench capacitor of claim 1, wherein the ion source of the ion implantation is a gas mixture containing F, which promotes growth of the oxide layer.
- The method for forming a trench capacitor of claim
 wherein the gas mixture containing F is fluorine gas.

1

2

1

2

3

4

5

6

7

8

9

10

11

12

Our ref: 0548-9828-US/final/Claire/Kevin

- 1 4. The method for forming a trench capacitor of claim 2 1, wherein the sidewall layer is an epi-silicon layer.
- The method for forming a trench capacitor of claim

 the material of the sidewall layer is the same as

 the semiconductor substrate.
- 1 6. The method for forming a trench capacitor of claim 2 1, wherein the barrier layer is an oxide layer or a nitride 3 layer.
- 7. The method for forming a trench capacitor of claim
 2 1, wherein the conducting layer is a poly layer.
- 1 8. The method for forming a trench capacitor of claim 2 1, wherein the node dielectric layer is a silicon nitride layer.
 - 9. The method for forming a trench capacitor of claim
 1, wherein the storage node is an n+ type doped poly.
 - 10. A method for forming a trench capacitor, comprising:

 providing a semiconductor substrate, wherein a deep

 trench and a deep trench capacitor are formed

 therein, the deep trench capacitor having a node

 dielectric layer and a storage node, the node

 dielectric layer covering a sidewall and a bottom

 portion between the deep trench and the deep trench

 capacitor, the storage node filling the deep trench

 to a predetermined depth, and the deep trench has

 a first sidewall and a second sidewall;
 - ion implanting the deep trench top portion to a predetermined angle to form an ion doped area on

Client's ref: 91279

Our ref: 0548-9828-US/final/Claire/Kevin

13	the semiconductor substrate of the first sidewall
14	and the top surface of the deep trench capacitor;
15	oxidizing the semiconductor substrate to form a first
16	oxide layer on the ion doped area and a second oxide
17	layer on the second sidewall, wherein the thickness
18	of the first oxide layer exceeds the second oxide
19	layer;
20	removing the second oxide layer to expose the
21	semiconductor substrate of the second sidewall of
22	the deep trench;
23	forming a sidewall layer on the second sidewall using
24	the first oxide layer as a mask;
25	removing the first oxide layer to expose the semiconductor
26	substrate of the first sidewall;
27	conformally forming a first barrier layer on the first
28	sidewall, the sidewall layer, and the deep
29	capacitor;
30	forming spacers on the first sidewall and a sidewall of
31	the sidewall layer sequentially;
32	filling a first conducting layer in the deep trench;
33	etching back the first conducting layer and the spacer
34	to a predetermined depth; and
35	conformally forming a second barrier layer on the first
36	sidewall, the sidewall layer, and the first
37	conducting layer, and the deep trench being filled
38	with a second conducting layer.
1	11. The method for forming a trench capacitor of claim

11. The method for forming a trench capacitor of claim 10, wherein the ion source of the ion implantation is a gas mixture containing F, which promotes growth of the oxide layer.

2

3

Our ref: 0548-9828-US/final/Claire/Kevin

1 12. The method for forming a trench capacitor of claim 2 11, wherein the gas mixture containing F is fluorine gas.

- 1 13. The method for forming a trench capacitor of claim 2 10, wherein the sidewall layer is an epi-silicon layer.
- 1 14. The method for forming a trench capacitor of claim 2 10, wherein the material of the sidewall layer is the same 3 as the semiconductor substrate.
- 1 15. The method for forming a trench capacitor of claim 2 10, wherein the first barrier layer is a nitride layer.
- 1 16. The method for forming a trench capacitor of claim 2 10, wherein the spacer is an oxide layer or a nitride layer.
- 1 17. The method for forming a trench capacitor of claim 2 10, wherein the first conducting layer is a poly layer.
- 1 18. The method for forming a trench capacitor of claim 2 10, wherein the second barrier layer is a nitride layer.
- 1 19. The method for forming a trench capacitor of claim 2 10, wherein the second conducting layer is a poly layer.
- 2 20. The method for forming a trench capacitor of claim 2 10, wherein the node dielectric layer is a nitride silicon 3 layer.
- 1 21. The method for forming a trench capacitor of claim 2 1, wherein the storage node is n+ type doped poly.