ТРИФАЗНИ ЕЛЕКТРИЧЕСКИ ВЕРИГИ

- Основни понятия и определения
- Видове трифазни вериги
- Начини на свързване в трифазните вериги
- **→** Мощности

1. Основни понятия и определения Дефиниции:

- > Трифазна система от синусоидално изменящи се във времето електрически величини
- > <u>Симетрична</u> трифазната система от синусоидално изменящи се величини

> <u>Несиметрична</u> трифазната система от синусоидално изменящи се величини

Изобразяване на симетрична трифазна система от е.д.н. :

аналитично

$$e_{A} = E_{Am}.\sin(\omega.t)$$

$$e_{B} = E_{Bm}.\sin(\omega.t - \frac{2\pi}{3})$$

$$e_{C} = E_{Cm}.\sin(\omega.t - \frac{4\pi}{3})$$

• изобразяване чрез вектори

Трифазен източник - дефиниция

<u>Симетрична трифазна система от е.д.н.</u> се индуктира в намотките на трифазен променливотоков (синхронен) генератор.

Графичните означения на трите намотки на трифазен генератор, използвани в еквивалентните електрически схеми, са показани по-долу.

Двата извода на всяка фаза <u>не са равностойни</u>. Единият е **начало**, а другият е **край**.

Трифазна електрическа верига — съвкупност от трифазен източник, трифазен консуматор и предавателните линии.

Във всяка трифазна електрическа верига началата на източника и консуматора се свързват. Проводниците се наричат *линейни*.

2. Видове трифазни вериги — според броя на проводниците, които свързват източник и консуматор

Ако веригата само *3 линейни проводника*, то тя е *трипроводна*. Маркировката на линейните проводници – *L1, L2, L3.*

В някои случаи е възможно и много полезно да има и четвърти спомагателен проводник, който се нарича *неутрален (нулев)*. Когато го има, веригата е *четирипроводна*. Маркировката на нулевия проводник – *N*. Когато нулев и защитен проводник са обединени, маркировката е *PEN*.

Съществуват и **петпроводни трифазни електрически вериги – за безопасност!**Тогава маркировката на нулев проводник – **N**, маркировката на защитен – **PE** (нулев и защитен са отделни проводници).

2.1. Видове токове и напрежения в трифазните вериги

- А) В трифазните вериги се различават следните напрежения:
- а) фазни напрежения
- \checkmark За източника: u_A , u_B , u_C
- ✓ За консуматора: u_a , u_b , u_c
- **б) линейни напрежения** напрежения между два линейни проводника (имат два индекса)
- ✓ За източника: u_{AB} , u_{BC} , u_{CA}
- \checkmark За консуматора: $oldsymbol{u}_{ab}$, $oldsymbol{u}_{bc}$, $oldsymbol{u}_{ca}$
- **Б)** В трифазните вериги се различават следните *токове*:
- а) фазни токове протичат през съответните фази
- \checkmark За източника: i_A , i_B , i_C посоката им е от край към начало
- \checkmark За консуматора: $oldsymbol{i_a}$, $oldsymbol{i_b}$, $oldsymbol{i_c}$ посоката им е от начало към край
- б) линейни токове протичат по линейните проводници

$$i_{Aa}$$
, i_{Bb} , i_{Cc}

3. Начини на свързване при трифазните вериги

3.1. Несвързана трифазна електрическа верига

3.2. Свързана трифазна електрическа верига

Недостатъка на несвързаните електрически вериги се избягва при така наречените *свързани трифазни електрически вериги.*

Възможните начини за свързване са:

а) свързване "звезда" Y – когато краищата на всички фази са свързани в една обща точка, наричина звезден център (нулева точка, неутрала).

б) свързване "триъгълник" Δ — когато началото на всяка следваща фаза е сдързано с края на предишната.

ВАЖНО! В практиката фазите на **генератора** се свързват само в **"звезда"**, тъй като присвързване в "триъгълник" и най-малката несиметрия в е.д.н. предизвиква протичане на значителни токовехв затворения контур, образуван от фазите на генератора.

Консуматорите могат да се свързваткакто в **"звезда"**, така и в **"триъгълник".**

При принципния анализ на трифазни електрически вериги, с цел опростяване на анализа, се правят следните допускания:

- ✓ Системата е.д.н. на източника се счита за симетрична.
- 🗸 Собствения импеданс на източника се пренебрегва $\, Z_{\scriptscriptstyle I\! I} \, {
 ightarrow} \, 0 \,$, т.е.

$$E_A \equiv U_A; E_B \equiv U_B; E_C \equiv U_C$$

🗸 Импеданса на линейните проводници се пренебрегва $\,Z_{\scriptscriptstyle I\hspace{-.2mm} I}
ightarrow 0\,$

4. Свързване на консуматора в "звезда" (трифазната верига е свързана *"звезда – звезда"*)

При свързване на консуматора в *"звезда"* **Y** веригата може да бъде *трипроводна* или *четирипроводна*.

4.1. Трипроводна трифазна верига

Източник:

 \checkmark Фазни напрежения: u_A , u_B , u_C

 \checkmark Линейни напрежения: u_{AB} , u_{BC} , u_{CA}

 \checkmark Фазни токове: $\emph{\emph{i}}_{A}$, $\emph{\emph{i}}_{B}$, $\emph{\emph{i}}_{C}$

Консуматор:

 \checkmark Фазни напрежения: u_a , u_b , u_c

 \checkmark Линейни напрежения: $oldsymbol{u}_{ab}$, $oldsymbol{u}_{bc}$, $oldsymbol{u}_{ca}$

 \checkmark Фазни токове: i_a , i_b , i_c

Линейни токове: $oldsymbol{i_{Aa}}$, $oldsymbol{i_{Bb}}$, $oldsymbol{i_{Cc}}$

А) фазни и линейни напрежения

а) фазни и линейни напрежения за източника

Ако за контура, образуван от **фаза** A, **фаза** B **и напрежението** U_{AB} , се запише II закон на $Kupxo\phi$, се получава:

$$u_{AB} + u_B + u_A = 0$$

следователно

$$u_{AB} = u_A - u_B$$

аналогично и за другите контури:

$$u_{BC} = u_B - u_C$$

$$u_{CA} = u_C - u_A$$

Следователно векторите на трите линейни напрежения образуват равностранен

При трифазната електрическа мрежа НН в нашата страна е в сила

$$U_{II}/U_{I\!\!/}=400/230$$
 , V

Системата фазни и линейни напрежения на трифазните генератори винаги е симетрична, което се осигурява от тяхното конструктивно изпълнение.

б) фазни и линейни напрежения за консуматора

Ако за контура, образуван от **фаза** A, **фаза** a и напрежението u_{nN} , се запише II закон на Кирхоф, се получава:

$$u_{nN}-u_A+u_a=0$$
 следователно $u_a=u_A-u_{nN}$

аналогично и за другите контури: $u_b = u_B - u_{nN}$

$$u_c = u_C - u_{nN}$$

Тук се разглеждат два случая:

🗸 <u>1-ви случай:</u> Ако товара е *симетричен*, т.е. $Z_a = Z_b = Z_c$, то напрежението

$$u_{nN} = 0$$
,

Тогава $u_a = u_A$, $u_b = u_B$, $u_c = u_C$, т.е. фазните напрежения на консуматора съвпадат с фазните напрежения на източника.

Следователно **системата фазни напрежения на консуматора** *е симетрична*.

🗸 <u>2-ри случай:</u> Ако товара е **несиметричен**, т.е. $Z_a \neq Z_b \neq Z_c$, то напрежението

 $u_{nN}
eq 0$. Следователно системата фазни напрежения на консуматора не е симетрична.

Това е **недопустимо!**

Следователно използването на трипроводна трифазна верига е позволено, ако е сигурно, че товара е симетричен!

Фазните напрежения вследствие на несиметричния товар стават несиметрични и между звездните точки на консуматора и на източника се получава потенциална разлика.

 U_b

Б) токове

Тъй като от схемата е очевидно, че **фаза А, първия линеен проводник е фаза а** са свързани последователно, то $i_a=i_{Aa}=i_A$

Аналогично

$$i_b = i_{Bb} = i_B$$

$$i_c = i_{Cc} = i_C$$

Следователно

$$I_{J_{
m Y}} = I_{arPhi_{
m Y}}$$

4.2. Четирипроводна трифазна верига

А) напрежения

При четирипроводна трифазна верига четвъртият проводник (свързващ \boldsymbol{n} и \boldsymbol{N})

ще направи напрежението $u_{nN}=0$.

$$U_{II_{Y}} = \sqrt{3}.U_{\Phi_{Y}}$$

При четирипроводна трифазна верига фазните напрежения на консуматора съвпадат с фазните напрежения на източника безусловно (т.е. Не зависи от симетричността на консуматора).

Б) токове

Тъй като от схемата е очевидно, че **фаза А, първия линеен проводник е фаза а** са свързани последователно, то

Аналогично

$$i_a = i_{Aa} = i_A$$

$$i_b = i_{Bb} = i_B$$

$$i_c = i_{Cc} = i_C$$

Следователно

$$I_{ec{ec{J}}_{
m Y}} = I_{arPhi_{
m Y}}$$

При свързване на четирипроводна трифазна верига има още един десети ток, токът протичащ през нулевия проводник.

$$i_0 = i_a + i_b + i_c = i_A + i_B + i_C$$

Звездния център може да бъде свързан така:

- ✓ Звездният център няма връзка със земя;
- ✓ Звездният център <u>има връзка</u> със земя
 - Директно свързване (ефективно)
 - Свързване през някакво съпротивление (реактивно).

5. Свързване на консуматора в "триъгълник" (трифазната верига е свързана "звезда – триъгълник")

При свързване на консуматора в *"триъгълник"* Δ веригата може да бъде само *трипроводна*.

А) фазни и линейни напрежения

При свързване на консуматора в *"триъгълник"* **Δ** системата от фазните му напрежения е *симетрична*, независимо дали консуматора е симетричен или не.

Б) токове

Връзката между линейните токове и фазните токове на консуматора могат да се получат ако се приложи I закон на Кирхоф (закона за токовете) за възлите, които са върхове на $\Delta^{\kappa a}$ на консуматора.

за връх "
$$oldsymbol{a}$$
" $i_{Aa}=i_a-i_c$ за връх " $oldsymbol{b}$ " $i_{Bb}=i_b-i_a$ $i_{Cc}=i_c-i_b$

Тук се разглеждат два случая:

 \checkmark <u>1-ви случай:</u> Ако товара е *симетричен*, т.е. $Z_a = Z_b = Z_c$, то системата от фазни токове на консуматора също е симетрична,

т.е. Фазните токове са равни помежду си по големина и са отместени спрямо фазните напрежения на един и същи ъгъл, а помежду си са отместени на 120°.

Тогава $\Delta^{\kappa a}$ на линейните токове ще бъде равностранен триъгълник с гонещи се стрелки, т.е. и линейните токове ще образуват симетрична система.

$$I_{I_{\Lambda_{\Delta}}} = \sqrt{3}.I_{\Phi_{\Delta}}$$

САМО ПРИ СИМЕТРИЧЕН ТОВАР!

🗸 <u>2-ри случай:</u> Ако товара е **несиметричен**, т.е. $Z_a
eq Z_b
eq Z_c$,

то **системата фазни токове на консуматора** *не е симетрична*.

6. Мощности в трифазните вериги

При определяне на мощностите се спазват следните принципи:

- ✓ Трифазните електрически вериги са електрически вериги при стационарни синусоидални режими, т.е. Важи всичко от *RLC* веригите;
- ✓ Цялото е сума от частите си.

$$p = p_a + p_b + p_c = u_a \dot{i}_a + u_b \dot{i}_b + u_c \dot{i}_c$$
 моментна мощност;

$$P=P_a+P_b+P_c=U_aI_a\cos\varphi_a+U_bI_b\cos\varphi_b+U_cI_c\cos\varphi_c$$
 активна мощност;

$$Q=Q_a+Q_b+Q_c=U_aI_a\sin\varphi_a+U_bI_b\sin\varphi_b+U_cI_c\sin\varphi_c$$
 реактивна мощност;

$$S = S_a + S_b + S_c = U_a I_a + U_b I_b + U_c I_c$$

пълна мощност.

триъгълник на мощностите

Четирипроводна трифазна електрическа верига, при която нулевия и защитния проводници са обединени (с маркировка PEN).

Петпроводна трифазна електрическа верига, при която има специално изведен защитен проводник *с маркировка РЕ*, отделно от нулевия проводник *с маркировка N*.

Трифазни вериги – примери

