11 Calcul d'un quotient de réaction

✓ REA : Appliquer une formule

Les ions iodure $I^-(aq)$, en contact avec les ions peroxodisulfate $S_2O_8^{2-}(aq)$, subissent une oxydation lente. On s'intéresse au mélange de $100\,\mathrm{mL}$ d'une solution de peroxodisulfate d'ammonium $(2~\mathrm{NH_4^+(aq)}; \mathrm{S}_2\mathrm{O}_8^{2^-}(\mathrm{aq}))$ de concentration $c_1=0.10~\mathrm{mol\cdot L}^{-1}$ avec $100~\mathrm{mL}$ de solution d'iodure de potassium $(\mathrm{K}^+(\mathrm{aq}); \Gamma^-(\mathrm{aq}))$ de concentration $c_2=0.20~\mathrm{mol\cdot L}^{-1}$.

1. Établir l'équation de la réaction à partir des couples fournis.

Les espèces en présence sont les ions iodure $I^-(aq)$ et les ions peroxodisulfate $S_2O_8^{2-}(aq)$. L'équation de la réaction est :

$$2 I^{-}(aq) = I_{2}(aq) + 2 e^{-}(\times 1)$$

$${
m S_2O_8^{2-}}$$
 (aq) + 2 e $^-$ = 2 ${
m SO_4^{2-}}$ (aq) (× 1)

$$2 I^{-}(aq) + S_2O_8^{2-}(aq) + I_2(aq) + 2 SO_4^{2-}(aq)$$

2. Exprimer le quotient de réaction $Q_{
m r}$.

On déduit l'équation :
$$Q_r = rac{[ext{I}_2] \cdot [ext{SO}_4^{2-}]^2}{[ext{I}^-]^2 \cdot [ext{S}_2 ext{O}_8^{2-}]}$$

À l'état initial, aucun produit n'est formé, leur concentration est donc nulle et $Q_{r,i} = 0$.

La constante d'équilibre de cette réaction est égale à $K=2 imes 10^{46}.$

4. Conclure quant au caractère total ou non de la réaction.

La constante d'équilibre est égale à K = 2 × 10⁴⁶, ce qui est très grand et très supérieur à 10⁴. On peut considérer que la réaction est totale tant l'équilibre est déplacé dans le sens de la formation des produits.

Donnée

• Couples d'oxydoréduction : $I_2(aq)/I^-(aq)$ et $S_2O_8^{2-}(aq)/\:SO_4^{2-}(aq)$

13 Calcul de la constante d'équilibre (2)

✓ REA: Appliquer une formule

Le cuivre Cu(s) réagit avec les ions argent $Ag^+(aq)$ selon la réaction d'équation :

$$\mathrm{Cu}(s) + 2\ \mathrm{Ag^+}(aq) \rightleftarrows 2\ \mathrm{Ag}(s) + \mathrm{Cu^{2+}}(aq)$$

On plonge une lame de cuivre dans une solution de nitrate d'argent $\left(\mathrm{Ag^+(aq); NO_3^-(aq)}\right)$ de concentration c=0.50 mol·L-1.

1. Calculer le quotient de réaction à l'instant initial.

D'après l'équation de réaction, on peut écrire : $Q_r = \frac{[\mathrm{Cu}^{2+}] \cdot c^\circ}{(1 - 1)^{\circ}}$

À l'état initial, aucun produit n'est formé, donc $[\mathrm{Cu}^{2+}]=0$ mol· L^{-1} et $\mathrm{Q}_{r,i}=0$.

2. À l'équillibre $[Cu^{2+}]_{eq}=0,\!25$ mol·L-1 et $[Ag^+]_{eq}=1,\!1\times10^{-8}$ mol·L-1, calculer la constante d'équilibre K de la réaction.

À l'équilibre, d'après les valeurs indiquées, on obtient : $K = \frac{[\mathrm{Cu}^{2^+}]_\mathrm{eq} \cdot e^*}{(4-\frac{1}{2})^0}$

$$K = \frac{[\operatorname{Cu}^+]_{\operatorname{eq}} \cdot c}{[\operatorname{Ag}^+]_{\operatorname{eq}}^2}$$

$$\begin{split} K &= \frac{1}{[\text{Ag}^+]_{\text{eq}}^2} \\ \text{AN} : K &= \frac{0,25 \times 1,0}{(1,1 \times 10^{-8})^2} = 2,1 \times 10^{15} \end{split}$$

14 Sens d'évolution d'une réaction

✓ VAL : Analyser des résultats

Une lame de zinc est plongée dans une solution contenant des ions $\mathrm{Cu}^{2+}(\mathrm{aq})$. Il se produit la réaction d'oxydoréduction suivante :

$$\operatorname{Zn}(s) + \operatorname{Cu}^{2+}(\operatorname{aq}) \rightleftarrows \operatorname{Zn}^{2+}(\operatorname{aq}) + \operatorname{Cu}(s)$$

La constante d'équilibre de cette réaction est égale à $K=1.9 imes10^{37}.$

En présence d'ions cuivre $\mathrm{Cu}^{2+}(\mathrm{aq})$, le zinc $\mathrm{Zn}(\mathrm{s})$ s'oxyde.

Réaction d'oxydoréduction

Préciser le sens d'évolution de la réaction sachant que $\left[Cu^{2+}\right]_i=2,0\times 10^{-2}$ mol·L-1 et $\left[Zn^{2+}\right]_i=1$ $3{,}5\times10^{-2}~\text{mol-L}^{\text{-1}}.$

Pour déterminer le sens d'évolution, il faut comparer les valeurs de $\mathbf{Q}_{r,i}$ et de \mathbf{K} : $Q_{r,i} = \frac{[\mathbf{Z}\mathbf{n}^{2+}]_i}{[\mathbf{C}\mathbf{n}^{2+1}]}$

$$\begin{split} Q_{r,i} &= \frac{[\mathrm{Zn}^{2+}]_i}{[\mathrm{Cu}^{2+}]_i} \\ \mathrm{AN} : Q_{r,i} &= \frac{3,5 \times 10^{-2}}{2,0 \times 10^{-2}} = 1,8 < K \\ \mathrm{La} \ \mathrm{réaction} \ \mathrm{se} \ \mathrm{fait} \ \mathrm{spontanément} \ \mathrm{dans} \ \mathrm{le} \end{split}$$

La réaction se fait spontanément dans le sens direct car $\mathbf{Q}_{r,i}$ est inférieur à K.

26 Vitamine C

✓ REA : Appliquer une formule

 $L'acide\ ascorbique\ C_6H_8O_6,\ dont\ l'énantiomère\ L-ascorbique\ est\ connu\ sous\ le\ nom\ de\ vitamine\ C,\ réagit\ avec\ l'eau\ selon\ l'équation\ suivante\ :$

$$\mathrm{C_6H_8O_6(aq)} + \mathrm{H_2O(l)} \rightleftarrows \mathrm{C_6H_7O_6^-(aq)} + \mathrm{H_3O^+(aq)}$$

La constante d'équilibre de la réaction est égale à $K=7.9 imes 10^{-5}.$

1. Préciser la nature de la réaction.

 $\text{Cette r\'eaction pr\'esente deux couples acide-base}: C_6 H_8 O_6 (\text{aq}) / C_6 H_7 O_6^- (\text{aq}) \text{ et } H_3 O^+ (\text{aq}) / H_2 O(\text{I}). \text{ Ces deux couples \'echangent un proton } H^+: \text{il s'agit d'une r\'eaction acide-base}.$

Un comprimé contenant 3.0×10^{-3} mol de vitamine C est dissous dans 200 mL d'eau contenant déjà des ions $C_6H_7O_6^-(aq)$ à la concentration $\left[C_6H_7O_6^-\right]_i=0.10$ mol·L-1

2. Avant réaction, déterminer la concentration initiale d'acide ascorbique $C_6H_8O_6(aq)$.

Avant réaction avec l'eau, la concentration initiale en acide ascorbique apporté vaut : n

$$[\mathrm{C_6H_8O_6}]_i = rac{n}{V}$$

An :
$$[\mathrm{C}_6\mathrm{H}_8\mathrm{O}_6]_i = rac{3,0 imes 10^{-3}}{200 imes 10^{-3}} = 0,015 \; ext{mol·L}^{-1}$$

3. En déduire le sens d'évolution spontanée de cette réaction.

On calcule le quotient de réaction à l'état initial, avant que les espèces en présence ne réagissent :

On calcule le quotient de reaction a l'état initia
$$Q_{r,i} = \frac{[C_6H_7O_6^-]_i \cdot [H_3O^+]_i}{[C_6H_8O_6]_i \cdot c^\circ}$$

$$Q_{r,i} = \frac{[C_6H_7O_6^-]_i \cdot c^\circ \cdot 10^{-\mathrm{pH}}}{[C_6H_8O_6]_i \cdot c^\circ}$$

$$Q_{r,i} = \frac{[C_6H_7O_6^-]_i \cdot 10^{-\mathrm{pH}}}{[C_6H_8O_6]_i}$$

$$\mathrm{AN}: Q_{r,i} = \frac{0,10 \times 10^{-7,8}}{0,015} = 1,1 \times 10^{-7}$$

On constate que le quotient de réaction à l'état initial $Q_{r,i}$ est inférieur à la constante d'équilibre K : cela signifie donc que la réaction s'effectue spontanément dans le sens direct.

Données

- pH de la solution avant dissolution du comprimé : $pH=7,\!8$