EE 720: An Introduction to Number Theory and Cryptography (Spring 2019)

Instructor: Saravanan Vijayakumaran Scribe: Saravanan Vijayakumaran

1 Lecture Plan

- Public-Key Encryption Definition
- El Gamal Encryption

2 Public-Key Encryption

Definition. A public-key encryption scheme is a triple of probabilistic polynomial-time algorithms (Gen, Enc, Dec) such that:

- 1. The key-generation algorithm takes 1^n as input and outputs a pair of keys (pk, sk). The first key is called the **public key** and the second key is called the **secret key** or **private key**.
- 2. The encryption algorithm Enc generates the ciphertext $c \leftarrow \text{Enc}_{pk}(m)$
- 3. For ciphertext c, the decryption algorithm uses the private key sk to output a message $m = Dec_{sk}(c)$ or error indicator \perp .
- Consider the following experiment $PubK_{A,\Pi}^{eav}(n)$:
 - 1. $Gen(1^n)$ is run to obtain keys (pk, sk).
 - 2. The adversary \mathcal{A} is given pk and outputs a pair of arbitrary messages $m_0, m_1 \in \mathcal{M}$ with $|m_0| = |m_1|$.
 - 3. A uniform bit $b \in \{0,1\}$ is chosen. Ciphertext $c \leftarrow \operatorname{Enc}_{pk}(m_b)$ is computed and given to A. This ciphertext c is called the *challenge ciphertext*.
 - 4. \mathcal{A} outputs a bit b'.
 - 5. The output of the experiment is defined to be 1 if b' = b, and 0 otherwise. We write $\operatorname{PubK}_{\mathcal{A},\Pi}^{\operatorname{eav}}(n) = 1$ if the output of the experiment is 1 and in this case we say that \mathcal{A} succeeds.

Definition. A public-key encryption scheme $\Pi = (Gen, Enc, Dec)$ has indistinguishable encryptions in the presence of an eavesdropper if for all probabilistic polynomial-time adversaries A there is a negligible function negl such that, for all n,

$$\Pr\left[\mathit{PubK}^{eav}_{\mathcal{A},\Pi}(n)=1
ight] \leq rac{1}{2} + \mathit{negl}(n).$$

Proposition. If a public-key encryption scheme has indistinguishable encryptions in the presence of an eavesdropper, it is CPA-secure.

Theorem. No deterministic public-key encryption scheme is CPA-secure.

3 El Gamal Encryption

Define a public-key encryption scheme as follows:

- Gen: On input 1^n run $\mathcal{G}(1^n)$ to obtain (G, q, g). Then choose a uniform $x \in \mathbb{Z}_q$ and compute $h = g^x$. The public key is $\langle G, q, g, h \rangle$ and the private key is $\langle G, q, g, x \rangle$. The message space is G.
- Enc: On input a public key $pk = \langle G, q, g, h \rangle$ and message $m \in G$, choose a uniform $y \in \mathbb{Z}_q$ and output the ciphertext $\langle g^y, h^y \cdot m \rangle$.
- Dec: On input a private key $sk = \langle G, q, g, x \rangle$ and ciphertext $\langle c_1, c_2 \rangle$, output $\hat{m} = c_2/c_1^x$.

Theorem. If the DDH problem is hard relative to G, then the El Gamal encryption scheme is CPA-secure.

4 References and Additional Reading

• Sections 11.1, 11.2.1, 11.4.1 from Katz/Lindell