2-1-1: Examining Cloud Scaling Types

After completing this episode, you should be able to:

• Identify and explain cloud resource scaling types, given a scenario

Description: In this episode, the learner will examine cloud resource scaling and the characteristics of the cloud that allow for scaling, such as scalability, elasticity, and multi-regional support. We will explore common resource scaling types, such as horizontal, vertical, and diagonal.

- · Describe cloud resource scaling
 - · A technique that involves dynamically adjusting the capacity of cloud resources to meet changing demands.
- Describe the benefits of dynamic resource scaling in the cloud
 - Ensures that cloud infrastructure is both flexible and resilient, allowing it to adapt to workload variations and maintain optimal performance.
- · Describe the common scaling types
 - Horizontal Scaling (demo using VM Scale Sets in Azure)
 - Also known as Scale Out/In
 - Scaling involves adding or removing additional instances or resources to meet demand.
 - Applications
 - Common in microservices and containerized architectures
 - Ideal for systems that need to handle increased load by distributing it across multiple instances.
 - Benefits
 - Horizontal scaling offers flexibility, redundancy, and resilience by spreading workloads across multiple resources
 - Vertical Scaling (demo adjusting the performance tier on a VM hosting a database in Azure)
 - Also known as Scale Up/Down
 - Involves increasing or decreasing the capacity of existing resources, such as upgrading to a more powerful virtual machine or adding more memory.
 - Applications
 - Suitable for monolithic applications or database systems where scaling involves increasing the power
 of a single resource.
 - Benefits
 - Can be simpler to manage and doesn't require complex load balancing or orchestration.
 - Hybrid Scaling (Diagonal Scaling):
 - o Combines elements of both horizontal and vertical scaling
 - Allows systems to scale in multiple directions based on the workload and architecture.
 - Applications
 - Can be useful for complex systems where some components require vertical scaling (like databases), while others benefit from horizontal scaling (like stateless microservices).
 - Benefits
 - Can offer flexibility, allowing for more efficient resource utilization by using the most appropriate scaling strategy for each part of the system.
- Describe common benefits of leveraging these cloud characteristics with scaling
 - Scalability
 - Manual or Automated
 - Scalability can be achieved through automation or manual adjustments, depending on the infrastructure's design.
 - Scale Up and Scale Out
 - See below
 - Support for growth

- Ensures that cloud systems can accommodate expected or unforeseen growth in workloads over time.
- Elasticity
 - Automatic adjustments
 - Elasticity relies on automation to increase or decrease resource capacity as needed.
 - Real-time response
 - It addresses immediate workload changes, providing resources when required and releasing them when demand decreases.
 - Cost-Efficiency
 - Elasticity helps reduce costs by using resources only when needed, minimizing overprovisioning.
- · Regional zone availability (demo creating a VM with Availability Zones, possibly Availability Sets)
 - Redundancy and resilience
 - By distributing resources across regions or zones, cloud providers enhance resilience and reduce the impact of localized failures.
 - Compliance and data sovereignty (demo Azure Compliance)
 - Regional zones help meet regulatory requirements and data sovereignty by allowing data to be stored in specific locations.
- Describe real-world scenarios using scaling in the cloud
 - Use the Azure Resource Manager to upgrade the performance tier on the VM hosting a database (vertical scaling)
 - Use the Azure Admin Console to create a VM Scale Set (horizontal scaling)
 - Use the Azure Admin Console to create a VM spanning multiple Availability Zones for service resiliency