Sprawozdanie

- 4. Konfiguracja sumarycznej trasy statycznej
- b. Trasę sumaryczną zweryfikuj w tablicy routingu. Podaj właściwe polecenie i umieść w sprawozdaniu wynik jego działania.

```
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
* - candidate default, U - per-user static route, o - ODR
P - periodic downloaded static route

Gateway of last resort is not set

172.16.0.0/16 is variably subnetted, 3 subnets, 2 masks
S 172.16.0.0/22 [1/0] via 192.168.1.2
S 172.16.1.0/24 [1/0] via 192.168.1.2
S 172.16.2.0/24 is directly connected, Serial3/0
C 192.168.1.0/24 is directly connected, Serial3/0
C 192.168.2.0/24 is directly connected, FastEthernet0/0
```

d. Sprawdź, czy trasy nadal znajdują się w tablicy routingu. Podaj właściwe polecenie umieść w sprawozdaniu wynik jego działania.

```
show ip route

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
* - candidate default, U - per-user static route, o - ODR
P - periodic downloaded static route

Gateway of last resort is not set

172.16.0.0/22 is subnetted, 1 subnets
S 172.16.0.0 [1/0] via 192.168.1.2
C 192.168.1.0/24 is directly connected, Serial3/0
C 192.168.2.0/24 is directly connected, FastEthernet0/0
```

e. Wykorzystaj komend ping do sprawdzenia łączności pomiędzy hostami: PC3 i PC1. Czy test ping z PC3 do PC1 zakończył się sukcesem?

Tak	

5. Konfiguracja pływającej trasy statycznej

c. Na routerze R1 wyłącz interfejs S0/0/0, a na routerze R3 wyłącz interfejs S0/0/1 (shutdown) aby sprawdzić czy ruch sieciowy zostanie przekierowany do R3. Wykonaj polecenia w wierszu poleceń: PC1 tracert 172.16.2.10 Wyniki zanotuj w sprawozdaniu

```
Śledzenie trasy do 192.168.2.10 z maksymalną liczbą 30 przeskoków.

1 <1 ms <1 ms 172.16.3.1

2 21 ms 21 ms 21 ms 10.0.0.1

3 26 ms 26 ms 26 ms 192.168.2.10

Śledzenie zakończone.
```

d. Na routerze R1 włącz interfejs S0/0/0, a na routerze R3 włącz interfejs S0/0/1 (shutdown), aby sprawdzić czy ruch sieciowy zostanie przekierowany ponownie przez R2. Wykonaj polecenia w wierszu poleceń: PC1 tracert 172.16.2.10 Wyniki zanotuj w sprawozdaniu

```
$ledzenie trasy do 192.168.2.10 z maksymalną liczbą 30 przeskoków.

1 <1 ms <1 ms <1 ms 172.16.3.1
2 21 ms 21 ms 21 ms 172.16.2.2
3 34 ms 34 ms 34 ms 192.168.1.1
4 39 ms 39 ms 38 ms 192.168.2.10
$ledzenie zakończone.
```

Dlaczego należało wyłączyć interfejsy na R1 i R3, a nie tylko na R1 lub R3? Uzasadnij odpowiedź

Aby sprawdzić, czy przekierowanie działa poprzez oba routery

6. ZADANIA DO SAMODZIELNEGO OPRACOWANIA

6.1 Wyjaśnić co oznacza pojęcie dystansu administracyjnego. Jakie są jego wartości domyśle w przypadku konfigurowania routingu statycznego oraz jakim poleceniem można mu nadać własna wartość.

Dystans Administracyjny (DA) to liczba od 0 do 255 wyrażająca poziom zaufania dla źródła danych o danej trasie. Im mniejszy dystans tym większe zaufanie. Aby określić dystans administracyjny = 1 dla danej trasy:

Rx(config)# ip route [network-ip] [subnet] [next-hop|exit-int] 1

6.2. Czy dystans administracyjny może być wykorzystany w procesie konfigurowania tras zapasowych? Jeśli tak to proszę wyjaśnić zasadę postępowania.

Tak, wtedy zasadą jest ustawienie wyższej liczby (czyli mniejszego zaufania), tras zapasowych używa się wtedy kiedy zawiedzie routing dynamiczny.