

-Introdução

Introdução

- 1. Este trabalho tem como base a utilização de uma luva como forma de IHC
- 2. IHC Área de estudo focada no desenvolvimento de tecnologias para uso em interfaces entre usuários e computadores. Teclados, Mouses, Touchscreen, Controles.
- 3. Luvas eletrônicas (Data Gloves) são dispositivos que utilizam sensores de movimento, como acelerômetros, giroscópios ou sensores de flexibilidade, para reconhecimento ou reprodução de gestos da mão humana

Problemas tratados

- 1. Luvas existentes são caras, podendo custar de US\$250,00 até US\$12.995,00.
- 2. Redução de custos com componentes acessíveis.
- 3. Possibilitar realização de movimentos mais complexos permite uso em mais cenários diferentes, como tradução de linguagem de sinais ou VR
- 4. este trabalho é uma continuação do trabalho de Roversi.
- 5. O protótipo original só capta flexão e extensão dos dedos e do pulso.
- 6. Incluir mais movimentos.

■ Objetivos ▶ Movimentos de adução e abdução dos dedos ► Movimentos de desvios radial e ulnar do pulso: ▶ Reducão de ruídos dos sensores. ► Controle de braços robóticos: ▶ Captura de movimentos para animações;

► Reconhecimento de gestos; ► Realidade virtual.

-Objetivos e Justificativas

- 1. Abdução Abrir; Adução Fechar
- 2. Desvio Radial Na direção do polegar; Ulnar Na direção do dedo mínimo
- 3. O protótipo de Roversi possuía muitos ruídos
- 4. Linguagem de sinais

Introdução

Aprimoramento de uma Luva Eletrônica8 / 46[width=8cm] Second

Sensor de Flexão IMU (Unidade de Medição Inercial)

- 1. Pesquisa dos sensores mais utilizados em luvas eletrônicas
- 2. Serão detalhados nos próximos slides

Revisão de Literatura

Sensores

Aprimoramento de uma Luva Eletrônica9 / 46[width=8cm]

Detects delives
 Baseado em tieta restática
 Tene fuente (BRI)
 Tene fuente (BRI)
 Tene fuente (BRI)

∟Sensor de Flexão

- 1. Quando dobrado aumenta resistência
- 2. Partículas condutivas se afastam, dificultando a passagem de corrente

└─Acelerômetro

- 1. Possui uma massa móvel, suspensa por molas, que se desloca com o movimento gerando um sinal elétrico
- 2. Em descanso sobre uma superfície plana, mede aceleração de 9.8 m/s2 sobre o eixo vertical
- 3. Em queda livre, mede 0 m/s $^{\prime}$

Aprimoramento de uma Luva Eletrônica11 / 46[width=8cm

—Revisão de Literatura

—Giroscópio

Detecta velocidade angular;
Ideal para detecção de movimentos de rotação;
Leituras pouco ruidosas:

- 1. Velocidade angular é a taxa de variação do ângulo de rotação em torno de um eixo.
- 2. Possui uma massa que oscila verticalmente
- 3. quando rotacionado, a força de Coriolis age sobre a massa, fazendo-a movimentar horizontalmente
- 4. A força de Coriolis é uma força que surge num sistema referencial em rotação e que tende a alterar a trajetória dos corpos em movimento.

Aprimoramento de uma Luva Eletrônica12 / 46[width=8cm] Levisão de Literatura

—Magnetômetro

Detects o campo magnistico ao nede de dispositivo;
 Utiliza o delito de Hall como principio de funcionamento;
 John influncios de campos magnisticos externos.

 o efeito de Hall se refere ao desvio da trajetória normal das cargas fluindo em um semicondutor, quando este é submetido à ação de um campo magnético. Este desvio causa uma diferença de potencial que pode ser medida perpendicularmente ao sentido do movimento da corrente Aprimoramento de uma Luva Eletrônica13 / 46[width=8cm | Italiano Relacionados

Revisão de Literatura

Trabalhos Relacionados

1. Serão apresentados alguns trabalhos relacionados com o tema de captura de movimentos da mão.

Aprimoramento de uma Luva Eletrônica18 / 46[width=8cm

-- Metodologia

—Hardware

- Arduino Mega foi escolhido devido ao número de portas analógicas (16)
- 2. Sensor de flexão foi escolhido pela facilidade de uso e disponibilidade
- MPU-9250 foi escolhida por ter acelerômetro giroscópio e magnetômetro, sendo possível a fusão dos sensores
- 4. MPU-6050 possui apensa acelerômetro e giroscópio

Aprimoramento de uma Luva Eletrônica19 / 46[width=8cm]—Metodologia

-Circuito

- 1. Sensores de flexão nos pinos analógicos
- 2. Resistores de 10K fazendo divisor de tensão
- 3. Conexão das IMUs nos pinos SCL e SDA do protocolo I2C
- 4. Pino AD0 das IMUs conectado em 3.3V ou GND, para definição do endereço I2C

Aprimoramento de uma Luva Eletrônica20 / 46[width=8cm

-Circuito

- 1. Sensores de flexão nos pinos analógicos
- 2. Resistores de 10K fazendo divisor de tensão
- 3. Conexão das IMUs nos pinos SCL e SDA do protocolo I2C
- 4. Pino AD0 das IMUs conectado em 3.3V ou GND, para definição do endereço I2C

— Software

- 1. Unity foi usada para modelagem e visualização dos movimentos e recepção dos dados
- 2. Arduino IDE foi usada para implementação dos códigos do Arduino

Aprimoramento de uma Luva Eletrônica22 / 46[width=8cm]

Trainer Endinger

Disposição dos sensores

- 1. Sensores de flexão posicionados sobre as articulações
- 2. sensores de abdução posicionados entre os dedos
- 3. detecção das articulações IFD e IFP com um sensor
- 4. posicionamento das IMUs para captar movimentos do pulso

Aprimoramento de uma Luva Eletrônica23/46[width=8cm] $\frac{1}{4}$ cm de l'acce Patro Metodologia

—Casos de Teste

- 1. Desvio Padrão e Amplitude para analisar os resultados dos filtros
- 2. Xs conjunto de amostras do sensor S, n número de amostras
- 3. DMA para analisar a precisão dos movimentos
- 4. Vr valor real, Vc valor calculado
- 5. DMA calculado com os ângulos real e após conversão pelo Arduino

Aprimoramento de uma Luva Eletrônica25 / 46[width=8cm

—Desenvolvimento

-Luva

■ Luva de neoprene ■ Permite boa fixação dos sensores

■ Tecido não desloca durante os movimentos

1. Utilizada em esportes aquáticos e é bem resistente

Aprimoramento de uma Luva Eletrônica28 / 46[width=8cm]

— Desenvolvimento

__Circuito

- 1. Conectores facilitam retirada dos sensores
- 2. Testes foram realizados com o circuito de Roversi e com o novo circuito

Aprimoramento de uma Luva Eletrônica29 / 46[width=8cm] vo finitado (a luva Eletrônica29 / 46[width=8cm]) vo finitado (a luva Eletrônica29 / 46[wid

Luva finalizada

1. Fixação do Arduino no braço não foi ideal

Aprimoramento de uma Luva Eletrônica30 / 46[width=8cm]

Desenvolvimento

Addisor

Ad

1. Biblioteca ResponsiveAnalogRead usada para filtro dos sensores de flexão

Movimentacijo dos elementos

- 2. Filtro média móvel exponencial que dá mais peso às leituras mais recentes
- 3. IMU protocolo I2C

Códigos

- DMP usado para fusão das leituras do acelerômetro, giroscópio e magnetômetro
- 5. Comunicação unity via porta serial USB

Aprimoramento de uma Luva Eletrônica31 / 46[width=8cm]

Diagrama de Sequência

- 1. Unity requisita dados do Arduino a cada atualização de frame
- Aquisição dos dados de orientação das IMUs no formato de quatérnios, devido a leituras errôneas com formato de ângulos de Euler
- Quatérnios são representações de orientação no espaço utilizando 4 coordenadas complexas

-Filtro dos sensores de flexão

1. Leituras das articulações MCF e IF do polegar na posição plana

Aprimoramento	de	uma	Luva	Eletrônica35	/ 46[width=8cm	leituras das l
Resultados					-	-

April April

—Leituras das *IMUs*

1. Leituras das IMus sobre superfície plana

Aprimoramento	de	uma	Luva	Eletrônica36	/ 46[width=8cm	Anális
Resultados						Pe

Postetes	Este Traballio			Boreni (2006)		
Peoples	TO	Amplitudo	ALOI	DP	Amplitude	D613
I (Mio pinea)	0.442	2,796	5,929	0,812	7,500	2,190
2 (Florio MCF e IF do pelegar)	0,069	0,533	7,800	2,554	35,500	10,53
2 (Florio MCF ducdodos)	0.848	4,167	9,838	1,366	28,667	17,483
4 (Florio EP des dedos)	0,301	0.687	9,308	3,354	35,000	15.80
5 (Extensio do pulse)	0.426	2,560	5,014	0,900	4,633	27,585
6 (Florio de pulso)	0,635	2,960	4,606	0,892	4,500	5,00
7 (Develo Ulmer)	0.360	1,333	TATE			
6 (Dovio Radal)	0,111	0,547	7,636			
9 (Abdapio das dodos)	0,229	1,180	1,900			
3500n	0.382	1,794	6.412	2,806	11,367	13,54

Estatística

—Análise Estatística

- dados obtidos mantendo cada posição por 10 segundos, repetindo 3 vezes
- 2. Desvio Padrão e Amplitude mais baixos demonstra os benefícios da aplicação do filtro
- 3. DMA mais baixo indica maior precisão dos movimentos

-Conclusões

Aprimoramento de uma Luva Eletrônica41 / 46[width=8cn	Conclusões
Conclusões e Trabalhos Futuros	J Colocação

- Colocação e remoção da luva foi dificil devido ao material utilizado;
 Movimentos pequenos dos dedos não foram captados:
- Movimentos de adução e abdução do dedo médio não foram captados;
 Foram captados os movimentos de desvio radial e ulnar do
- pulso;

 A redução de ruidos dos sensores foi satisfatória.
 - A recoção de robos dos sensores nos sacistadoria.

1. Problemas encontrados incluem cabo USB atrapalhando movimentos conexões falhando, etc...