Task 1

Пусть $\mathbf{X} = \mathbb{R}^d$ и $\mathbf{H} = \{h_1,...,h_d\}$, а $h_j(\mathbf{x}) = \mathbb{I}_{[x_j=1]}$. Пусть $\mathbf{x}_t = \mathbf{e}_t = (0,0,...0,1_t,0,...,0), \ y_t = \mathbb{I}_{[t=d]}, t \in \{1,...,d\}$. Тогда Consistent может получить $p_t = 1, \forall t \in \{1,...,d\}$. Тогда число ошибок в данном случае равно d-1 = |H|-1.

Task 2

Пусть $d\in\mathbb{N},\ X=\{1,...,d\}$ и для некоторого $S\subseteq\{1,...,d\},\ h_S(x)=\mathbb{I}_{[x\in S]}.$ Пусть t=1,2,... и $x_t=t,y_t=1.$ Тогда, Halving может вернуть $p_t=1,\ \forall t\in[d]\Rightarrow\ d=log|H|$

Task 3

Покажем, что $M_{Halving}(H) = 1$. Пусть h_{j^*} истинная гипотеза.

Task 4

$$\sum_{m=1}^{logT} \alpha \sqrt{2^m} = \alpha \frac{1 - \sqrt{2}^{(logT) + 1}}{1 - \sqrt{2}} \leq \alpha \frac{1 - \sqrt{2T}}{1 - \sqrt{2}} \leq \frac{\sqrt{2}}{\sqrt{2} - 1} \alpha T$$