112-1 Discrete Mathematics Charpter 2-3

姓名:許嘉隆 學號:412770116

- 2. Determine whether f is a function from \mathbb{Z} to \mathbb{R} .
 - a) $f(n) = \pm n$ is not a function, because it have two y-values.
 - b) $f(n) = \sqrt{n^2 + 1}$ is a function from \mathbb{Z} to \mathbb{R}
 - c) $f(n) = \frac{1}{n^2 4}$ is not a function, because if n = 2 or -2, f(n) doesn't exist.
- 8. Find these values.

a)
$$[1.1] = 1$$

b)
$$[1.1] = 2$$

c)
$$[-0.1] = -1$$

d)
$$[-0.1] = 0$$

e)
$$[2.99] = 3$$

f)
$$[-2.99] = -2$$

g)
$$\left| \frac{1}{2} + \left[\frac{1}{2} \right] \right| = \left| \frac{1}{2} + 1 \right| = 1$$

h)
$$\left[\left| \frac{1}{2} \right| + \left[\frac{1}{2} \right] + \frac{1}{2} \right] = \left[0 + 1 + \frac{1}{2} \right] = 2$$

12. Determine whether each of these fucntions from \mathbb{Z} to \mathbb{Z} is one-to-one.

a)
$$f(n) = n - 1$$
 is one-to-one, because $f(a) = a - 1 = f(b) = b - 1 \Longrightarrow a = b$.

b)
$$f(n) = n^2 + 1$$
 is not one-to-one, because $f(1) = f(-1) = 2$ and $1 \neq -1$.

c)
$$f(n) = n^3$$
 is one-to-one, because $f(a) = a^3 = f(b) = b^3 \Longrightarrow a = b$.

d)
$$f(n) = \left\lceil \frac{n}{2} \right\rceil$$
 is not one-to-one, because $f(1) = f(2) = 2$ and $1 \neq 2$.

- 14. Determine whether $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ is onto.
 - a) f(m,n) = 2m nwhen m = 0, n = -n f(0,-n) = n \therefore it is onto
 - b) $f(m,n) = m^2 n^2$ Let $f(m,n) = 2 = m^2 - n^2$ 2 = (m+n)(m-n) $\implies Can't \text{ find } m \text{ and } n \text{ in the domain of definition is } \mathbb{Z}$ $\therefore \text{ it is not onto}$
 - c) f(m,n) = m+n+1when m = -1 f(-1,n) = n \therefore it is onto
 - d) f(m,n) = |m| |n|when m = 0 f(0,n) = -|n|when n = 0 f(m,0) = |m| \therefore it is onto
 - e) $f(m,n) = m^2 4$ Let $f(m,n) = 2 = m^2 - 4$ 2 = (m+2)(m-2) $\implies Can't \ find \ m \ in \ the \ domain \ of \ definition \ is \ \mathbb{Z}$ $\therefore \ it \ is \ not \ onto$