Chapter 5

n-Person Games in Normal Form

1

Fundamental Differences with 3 Players: the Spoilers

- Counterexamples
- The theorem for games like Chess does not generalize
- The solution theorem for 0-sum, 2-player games does not generalize
- A player playing the spoiler

Indeterminate three-person game

Multiple solutions, 3-person, zero-sum game

Competitive Advantage and Market Niche with 3 Players

- The row-column matrix representation for 3 players
- Games where no player plays the spoiler
- Pure and mixed strategy equilibria for 3player games

5

Firm 3 - Stay Put

Stay |-a/2, a, -a/2|

Put

Competitive Advantage, three firms

-a/2, -a/2, a

Firm 3 - New Technology

Stay

Put

-a, a/2, a/2

6

0, 0, 0

Competitive Advantage, three firms: Strategy for Firm 1

Firm 3 - New Technology

Firm 3 - Stay Put

7

Competitive Advantage, three firms: Strategy for Firm 2

Competitive Advantage, three firms: Strategy for Firm 3

9

Competitive Advantage, three firms: The Nash equilibrium

Market Niche for three firms

11

Market Niche, three firms: Strategy for Firm 1

Market Niche, three firms: Strategy for Firm 2

Market Niche, three firms: Strategy for Firm 3

Market Niche, three firms: Three pure strategy equilibria

Mixed Strategy equilibrium in Market Niche with 3 players

From the standpoint of the market, the distribution of number of firms in the market niche, according to mixed strategy equilibria is as follows:

- p(3 firms enter) = .08
- p(2 firms enter) = .31
- $\rho(1 \text{ firm enters}) = .42$
- p(No firm enters) = .19

3-Player Versions of Coordination, Deal-Making, and Advertising

- Video System Coordination with 3 firms
- Let's Make a Deal with 3 firms
- Cigarette Advertising on Television with 3 firms

17

Video System Coordination, three firms: The payoff matrices

Video System Coordination, three firms: Strategy for Firm 1

Video System Coordination, three firms: Strategy for Firm 2

20

Video System Coordination, three firms: Strategy for Firm 3

Video System Coordination, three firms: Two pure strategy equilibria

Let's make a deal, three players: Payoffs in millions of dollars

23

Let's make a deal, three players: Strategy for player 1

Let's make a deal, three players: Strategy for player 2

Let's make a deal, three players: Strategy for player 3

Let's make a deal, three players: Five pure strategy equilibria

Stonewalling Watergate

- Watergate as a 3-person Prisoner's Dilemma
- Strictly dominant strategies and uniqueness of equilibrium
- Equilibria which are bad for the players

Stonewalling Watergate: D = Dean, E = Ehrlichman, H = Halderman

29

Stonewalling Watergate: Strategy for Dean

Stonewalling Watergate: Strategy for Ehrlichman

31

Stonewalling Watergate: Strategy for Halderman

Stonewalling Watergate: The Nash equilibrium

33

Symmetry and Games with Many Players

- A compact notation for utility functions
- A generalized symmetry sufficient condition
- A symmetric game may have asymmetric equilibria

Solving Symmetric Games with Many Strategies

- A test for when a game is symmetric
- Symmetry makes games easier to solve
- Solving a game of common interest by exploiting the symmetry of the game
 - I The Nash Demand Game

35

The Nash demand game: the payoff matrix

The Nash demand game: player 1's strategy

The Nash demand game: player 2's strategy

The Nash demand game: Nash equilibrium

Stag Hunt

- Game requiring cooperation for efficient outcome
- Adding third player leads to qualitatively different outcome
 - I additional Nash equilibria
 - asymmetric outcomes
 - possibility of free riding

Stag Hunt, two hunters: The payoff matrix

Stag Hunt, two hunters: Strategy for hunter 1

Stag Hunt, two hunters: Strategy for hunter 2

Stag Hunt, two hunters: The equilibrium

Stag Hunt, three hunters: The payoff matrix

hunter 3: hunt big

hunter 3: hunt small

hunter 2		hunter 2			
hunter 1	hunt big	hunt small	hunter 1	hunt big	hunt small
nunci i			indition i		
hunt big	3, 3, 3	3, 5, 3	hunt big	3, 3, 5	0, 1, 1
hunt small	5, 3, 3	1, 1, 0	hunt small	1, 0, 1	1, 1, 1

45

Stag Hunt, three hunters: Strategy for hunter 1

hunter 3: hunt big

hunter 3: hunt small

Stag Hunt, three hunters: Strategy for hunter 2

Stag Hunt, three hunters: Strategy for hunter 3

Stag Hunt, three hunters: Nash equilibria

49

The Tragedy of the Commons

- Games played on a commons
- The equilibrium of such a game has a tragic outcome
- Externalities
- First Welfare Theorem
- The case of the Geysers of Northern California

Tragedy of the Commons: score sheet

Payoff =
$$5(10 - x_i) + x_i (23 - 0.25 \Sigma x_i)$$

strategy (x_i) payoff

1

2

3

Tragedy of the Commons: Commons production function

Tragedy of the Commons

Tragedy of the Commons

Appendix. Tragedy of the Commons in the Laboratory

- Playing a game in a behavior laboratory
- Tragic outcomes of a game played on a commons in a laboratory
- Unexplained phenomena