Τμήμα Μηχανικών Η/Υ και Πληροφορικής Εργαστήριο Συστημάτων VLSI και Αρχιτεκτονικής Υπολογιστών

ΓΙΩΡΓΟΣ ΧΑΤΖΗΛΙΓΟΣ ΑΜ4835

4^η Άσκηση

4.1 ΧΑΜΗΛΟΠΕΡΑΤΟ ΔΙΚΤΥΟ ΜΟΝΗΣ ΣΤΑΘΕΡΑΣ ΧΡΟΝΟΥ

Στόχος: Η μελέτη ενός χαμηλοπερατού φίλτρου RC.

Υλοποίηση: Υλοποίηστε στο breadboard το κύκλωμα του Σχήματος 4.1. Χρησιμοποιήστε πυκνωτή C=300nF και τη μεταβλητή αντίσταση (τρίμερ) των 10K Ω για να υλοποιήσετε αντίσταση R=5K Ω .

Σχήμα 4.1: Χαμηλοπερατό φίλτρο RC

Μετρήσεις:

Α) Δώστε στο κύκλωμα ημιτονικό σήμα $υ_s$ πλάτους V_s =4V (DC-offset=0) από τη γεννήτρια σήματος. Μεταβάλλετε, σύμφωνα με τον πίνακα που ακολουθεί, τη συχνότητα f_s του σήματος από 10Hz έως 5KHz και μετρήστε (με τον παλμογράφο) το πλάτος V_o του σήματος εξόδου $υ_o$ και τη χρονική απόκλιση Δt των σημάτων $υ_s$ και $υ_o$. Με βάση τις μετρήσεις, υπολογίστε την απολαβή πλάτους $20\log_{10}(V_o/V_s)$ (σε db) και τη διαφορά φάσης $φ_{deg}$ ανάμεσα στο σήμα εισόδου και το σήμα εξόδου. Όπου V_s και V_s η περίοδος και η γωνιακή συχνότητα του σήματος εισόδου αντίστοιχα.

f _S (Hz)	10	20	50	100	200	500	1K	2K	5K
$\omega_s = 2\pi f_s \text{ (rad/sec)}$	62,8	125,7	314,2	628,3	1256,6	3141,5	6283,0	12566	31415
$T_S = 1/f_S (sec)$	100m	50m	20m	10m	5m	2m	1m	0,5m	0,2m

Τμήμα Μηχανικών Η/Υ και Πληροφορικής

Εργαστήριο Συστημάτων VLSI και Αρχιτεκτονικής Υπολογιστών

Δt(s)	-1.487m	-1.485m	-1.401m	-1.2001m	-862.98u	-432.09u	-241.69u	-152.64u	-65.036
*Ф _{deg}	-5.32	-10.6	-25.12	-43.17	-62.07	-77.5	-88.31	-109.38	-117.14
V _o (V)	4	3.9308	3.6197	2.9208	1.864	818m	449.7m	238.78 3m	143.808m
20log ₁₀ (V _o /V _s)(db)	0	-0.153db	-0.867db	-2.733db	-6.632db	-13.78db	-18.99db	-24.48db	-28.88db

*Ισχύει:

$$\phi_{rad} = 2\pi \times \frac{\Delta t}{T_S} \Longrightarrow \phi_{deg} = 2\pi \times \frac{\Delta t}{T_S} \times 57,295$$

B) Με βάση τις μετρήσεις σας, σχεδιάστε στους άξονες που ακολουθούν τα διαγράμματα της απολαβής πλάτους $20log_{10}(V_o/V_s)$ (σε db) και της φάσης φ_{deg} , ως συνάρτηση της συχνότητας f_s . Ακολούθως: 1) Από το γράφημα της απολαβής πλάτους εκτιμήστε τη συχνότητα γονάτου $\omega_{s0} = 2\pi f_{s0}$ του δικτυώματος (στη συχνότητα γονάτου η απολαβή είναι -3db σε σχέση με την τιμή στο DC). 2) Από το ίδιο γράφημα εκτιμήστε το ρυθμό μεταβολής της απολαβής στη ζώνη αποκοπής (σε db/δεκάδα). 3) Από το γράφημα της φάσης εκτιμήστε το ρυθμό μεταβολής της φάσης στην περιοχή της συχνότητας γονάτου

Τμήμα Μηχανικών Η/Υ και Πληροφορικής

Εργαστήριο Συστημάτων VLSI και Αρχιτεκτονικής Υπολογιστών

Τμήμα Μηχανικών Η/Υ και Πληροφορικής

Εργαστήριο Συστημάτων VLSI και Αρχιτεκτονικής Υπολογιστών

Γ) Υπολογίστε τη σταθερά χρόνου τ του δικτυώματος και ακολούθως τη γωνιακή συχνότητα γονάτου $ω_{s0(u)}$ ($ω_{s0(u)}$ =1/τ). Συγκρίνετε την τιμή της γωνιακής συχνότητας γονάτου που υπολογίσατε με την τιμή που μετρήσατε πειραματικά. Είναι σε συμφωνία οι δύο τιμές;

$\tau = R \times C = 1.5 \text{ms}$ $\omega_{sO(v)} = 666.6 \text{deg/sec}$	Σε συμφωνία $ω_{s0(π)}$ και $ω_{s0(υ)}$; Ναι
---	---

Τμήμα Μηχανικών Η/Υ και Πληροφορικής Εργαστήριο Συστημάτων VLSI και Αρχιτεκτονικής Υπολογιστών

(12 T= 100 ms fs=10+2
,	the mana sacra all sales and a sales
	$4 deg = 2\pi \Delta t SI.29 = 2\pi - 1.49 I \cdot 10^{63} = 51.29 = 2.9 + 4.57.29 Sm - 100 \cdot 10^{73} = -5.32$
	anodaBn: Vs=4V 20 lag (4) = 0bd
	3(4)
7	2 <u>h</u> T= 50mS fs=20Hz
)	(= 50 m) 43520 fz
	$\Phi_{deg} = 2\pi \Delta t S7.29S = -0.059\pi \cdot S7.29S = 3.393\pi = -10.6$
	anadaBn $20 \log(3.9.3) = 20(-7.667) = -153.34 md.6$
	=-0.153 dB
(-	
2	3 <u>n</u>) T= 20ms fs=80 H2
	Pdeg = 29 At . ST. 295 = 21 -1401-10-3 . ST. 295 = 8.027 11 = -25.12
	AnodorBn
2	20 log (3.6197) 0.867 db
	(4)
(72) TS=10mS -fs=100 /2
-	$\phi deg = 2\pi \Delta t 57.295 = 2\pi^{-1.2001 \cdot 10^{-3}} - \pi \cdot 0.24 \cdot 57.295 = 13.75 \pi$ Ts $10 \cdot 10^{-3} = -43.17$
-	2000g (2.9208) = -2.733 JB
	4

Τμήμα Μηχανικών Η/Υ και Πληροφορικής Εργαστήριο Συστημάτων VLSI και Αρχιτεκτονικής Υπολογιστών

(5º) Ts = 5ms fs = 200+2
Polog = 2n At 57.298 = 2n -862.981 -57.295 = 19.777 n=-62.07
Ts 5.10 ⁻³
anodaBn
$20 \log \left(\frac{1.864}{4}\right) = -6.63228$
$f_{s} = 2mS \qquad f_{s} = 500 \text{ Hz}$ $f_{deg} = 2\pi \Delta t .57.29s = 2\pi - 432.09 \cdot 10^{36} .57.29s = 24.75r$
Pdeg = 2n Dt .57,295 = 2n -432.09.1036 57.295=24.75
1s 2.10 ⁻¹ 3 = -H 5
$\frac{\alpha \pi o da Bn}{20 \log \left(\frac{818 \cdot (0^{-3})}{4} \right) = -13.786 db}$
72) Ts= 1000 Hz
Pdag = 2r1 St .57.295 = 2n -241.69 le .57.295 = -87.6°
Ts 1.10-3
actorlasin. 20 log (449.7.10-3) = -18.99 db
$8 = 75 - 0.5 \text{ ms}$ $f_{5} = 9000 \text{ Hz}$ $9009 = 2\pi \cdot Dt \cdot 57.295 = 2\pi \cdot (-152.64.169) \cdot 57.295 = -10938° = -10938° = -10938° = -24.48 db$
(5=0.5 m) $ts = 1000 Hz$
40lg = 211 - 15t . 54. 295 = 211 (-152.64.105) . 54. 295 = 303.38
(5) (5) (5) (5) (6)
$\underline{\alpha}_{110} = 20 \log \left(\frac{238.783 \cdot 10^{-3}}{4} \right) = -24.48 \text{ db}$
(9m) Ts = 0,2ms +s = SK
\$ don - 20 At 57 295 20 46 063 176 51 205 -117 14
$\Phi \deg = 2\pi \Delta t . 57.295 = 2\pi (69.063.06)57.295 = -117.14$
$a \pi o \lambda a B n'$: $20 \log \left(\frac{49.808}{4}\right) = -28.88 db$
a Harrison - 200 1 OF = 2140 hor on avaisance values on 31h since Amelellis
- μεταβολή απολαβή είναι για f=10Hzfg=20Hz: ΔT/s)=-0.153-0=-0.153-0lle - μεταβολή απολαβή είναι για f=10Hzfg=20Hz: ΔT/s)=-0.153-0=-0.153-0lle
= METCABONN Gaions Eivar yra f=10Hz, f2=20Hz: 10(5)=-106-(-532)=-5.28

τ=RxC=300*10^-6 * 5*10^3=1.5msec ω=1/τ=666.6 deg/sec .Αρα το ω(π) σχεδον ισο με το ω(υ) επομενως είναι σε συμφωνια

Τμήμα Μηχανικών Η/Υ και Πληροφορικής Εργαστήριο Συστημάτων VLSI και Αρχιτεκτονικής Υπολογιστών

4.2 ΥΨΗΠΕΡΑΤΟ ΔΙΚΤΥΟ ΜΟΝΗΣ ΣΤΑΘΕΡΑΣ ΧΡΟΝΟΥ

Στόχος: Η μελέτη ενός υψηπερατού φίλτρου RC.

Υλοποίηση: Υλοποίηστε στο breadboard το κύκλωμα του Σχήματος 4.2. Χρησιμοποιήστε πυκνωτή C=300nF και τη μεταβλητή αντίσταση (τρίμερ) των 10K Ω για να υλοποιήσετε αντίσταση R=5K Ω .

Σχήμα 4.2: Υψηπερατό φίλτρο RC

Μετρήσεις:

Α) Δώστε στο κύκλωμα ημιτονικό σήμα $υ_s$ πλάτους V_s =4V (DC-offset=0) από τη γεννήτρια σήματος. Μεταβάλλετε, σύμφωνα με τον πίνακα που ακολουθεί, τη συχνότητα f_s του σήματος από 10Hz έως 5KHz και μετρήστε (με τον παλμογράφο) το πλάτος \mathbf{V}_o του σήματος εξόδου $υ_o$ και τη χρονική απόκλιση $\Delta \mathbf{t}$ των σημάτων υ_s και υ_o . Με βάση τις μετρήσεις, υπολογίστε την απολαβή πλάτους $20\log_{10}(V_o/V_s)$ (σε db) και τη διαφορά φάσης φ_{deg} ανάμεσα στο σήμα εισόδου και το σήμα εξόδου. Όπου T_s και $ω_s$ η περίοδος και η γωνιακή συχνότητα του σήματος εισόδου αντίστοιχα.

f _s (Hz)	10	20	50	100	200	500	1K	2K	5K
$\omega_s = 2\pi f_s \text{ (rad/sec)}$	62,8	125,7	314,2	628,3	1256,6	3141,5	6283,0	12566	31415
$T_S = 1/f_S (sec)$	100m	50m	20m	10m	5m	2m	1m	0,5m	0,2m
Δt(sec)	26.430m	11.02m	3.59m	1.29m	388.18μ	66.6μ	16.69μ	4.19μ	237.6μ
*ф _{deg}	95.07	80.08	64.36	46.6	28.2	11.96	5.99	3.02	0.408
V _o (V)	419.03m	740.91 m	1.698	2.73	3.53	3.82	3.91	3.98	3.99
$20log_{10}(V_o/V_s)(db)$	-19.576	-14.65	-7.432	-3.31	-1.06	-0.44	0.069	0.025	0.0028

^{*}Ισχύει:

$$\phi_{\text{rad}} = 2\pi \times \frac{\Delta t}{T_s} \Longrightarrow \phi_{\text{deg}} = 2\pi \times \frac{\Delta t}{T_s} \times 57,295$$

B) Με βάση τις μετρήσεις σας, σχεδιάστε στους άξονες που ακολουθούν τα διαγράμματα της απολαβής πλάτους $20log_{10}(V_o/V_s)$ (σε db) και της φάσης φ_{deg} , ως συνάρτηση της συχνότητας f_s . Ακολούθως: 1) Από το γράφημα της απολαβής πλάτους εκτιμήστε τη συχνότητα γονάτου $\omega_{s0} = 2\pi f_{s0}$ του δικτυώματος (στη συχνότητα γονάτου η απολαβή είναι -3db σε σχέση με την τιμή στις υψηλές συχνότητες). 2) Από το ίδιο γράφημα εκτιμήστε το ρυθμό μεταβολής της απολαβής στη ζώνη αποκοπής (σε db/δεκάδα). 3) Από το γράφημα της φάσης εκτιμήστε το ρυθμό μεταβολής της φάσης στην περιοχή τηςσυχνότηταςγονάτου(σεdeg/δεκάδα).

Τμήμα Μηχανικών Η/Υ και Πληροφορικής

Εργαστήριο Συστημάτων VLSI και Αρχιτεκτονικής Υπολογιστών

Τμήμα Μηχανικών Η/Υ και Πληροφορικής

Εργαστήριο Συστημάτων VLSI και Αρχιτεκτονικής Υπολογιστών

Γ) Υπολογίστε τη σταθερά χρόνου τ του δικτυώματος και ακολούθως τη γωνιακή συχνότητα γονάτου $ω_{s0(u)}$ ($ω_{s0(u)}$ =1/τ). Συγκρίνετε την τιμή της γωνιακής συχνότητας γονάτου που υπολογίσατε με την τιμή που μετρήσατε πειραματικά. Είναι σε συμφωνία οι δύο τιμές;

$\tau = R \times C = 1.5$ ms	$\omega_{s0(v)}$ =666.6deg/s	Σε συμφωνία $ω_{s0(π)}$ και $ω_{s0(υ)}$; Ναι

Τμήμα Μηχανικών Η/Υ και Πληροφορικής Εργαστήριο Συστημάτων VLSI και Αρχιτεκτονικής Υπολογιστών

2 (W) NO:
Date:
[12] f=10 hz Ts=100ms
Vo=419.032 m V andasn: 20 log (419.032.10-3) =-19.596
- J
Dt=-26.430 ms
$Q = Grad. 57,9295 = 2\pi \cdot 26.430m. 57,295 = 30.28 \pi = 95.07$ 10.0 m
$\frac{1}{2^n} \int_{-\infty}^{\infty} f = 20 \text{kz} T_8 = 50 \text{ms}$
Pdug = 2n At . ST. 295 = 2n 11.029.16-3 ST 295 -25,76 TT 50 15-3 = 80.8
$\frac{Ts}{anolog i} = \frac{50 \cdot 16^{-3}}{4} = \frac{80.8}{4}$
-(32) $I=50 # 7 = 20ms$
Adeg = 2n - (+3.5961.163). 57-295_20.56 7=64.36
$\frac{\text{aavdaBn'}}{4} 20 \log \left(\frac{1.6987}{4}\right) = -7.432 \text{ db}$
<u>- 42</u>
$7 = 10 \text{ ms}$ $f_{s=100Hz}$ $\phi deg = 2\pi \left(\frac{1.298 \cdot 10^{-3}}{10 \cdot 10^{-3}} \right) \cdot 5 \pm .295 = 14.86 \pi = 46.66$
accordabi 20lag (2.743) = -3.31 db
- Total Landon - (AZEL) - SALE - (BLAL - HER EL LANDON - L'INTERNATION - L'IN
THE DEWIN AND SOR LAND WOLL IN CHOISE ON

Τμήμα Μηχανικών Η/Υ και Πληροφορικής Εργαστήριο Συστημάτων VLSI και Αρχιτεκτονικής Υπολογιστών

Date: 51 01 n oux voma jova tou Evan

τ=RxC=300*10^-6 * 5*10^3=1.5msec ω =1/τ=666.6 deg/sec .Αρα το ω (π) σχεδον ισο με το ω (υ) επομενως είναι σε συμφωνια

Τμήμα Μηχανικών Η/Υ και Πληροφορικής Εργαστήριο Συστημάτων VLSI και Αρχιτεκτονικής Υπολογιστών

