Unsupervised Learning of Disentangled and Interpretable Representations from Sequential Data

Wei-Ning Hsu, Yu Zhang, and James Glass Talk by Stefan Wezel

Seminar ML4S

January 12, 2021

Overview

- Introduction
- What are Disentangled Representations? (intuition)
- Why Disentangled Representations
- o Formal Description of Disentangled Representations
- o Disentanglement in the Context of the Paper
- o The Factorized Hierarchical VAE Model
- Results

Introduction

Setting - Speech data

- Propose Sequential Factorized Hierarchical VAE (FHVAE)
- o Focus on speech data
 - Sequence level (Speaker, ...) attributes
 - Segment level (content, noise, ...) attributes
- o Reflect different temporal scales in latent space

What is disentanglement?

Intuition

 Encode distinct generating factors in separate subsets of latent space dimensions

 Encode distinct generating factors in separate subsets of latent space dimensions

 Encode distinct generating factors in separate subsets of latent space dimensions

Why learn disentangled representations?

Motivation

- o Explainability/Interpretability
- Fairness
- Scientific modeling
- Speaker verification
- Denoising

Disentangled Representations Formally

A field-trip to group theory: important concepts

- Group
 - Operation and non-empty set $G=(\circ,G)$
 - Set closed under operation, identity element, inverse elements, associativity
- Symmetry group
 - Set of transformations that leave object X invariant
 - Operation is composition of transformations
- o Group action
 - ullet Results of symmetry transformations on object X
 - I.e. set of changed order
- Direct product
 - $G = G_1 \times ... \times G_n$

Disentangled Representations Formally

A field-trip to group theory: What is disentanglement in terms of group theory?

- Disentangled group actions
 - Result of subset of symmetries G_i that only change subset X_i of object, but leave other $X_{j \neq i}$ invariant
- $\circ \to \mathsf{lf}$ we observe disentangled group actions in the world, we want to model those
- \circ We can assume G can be decomposed into direct product of symmetry subgroups G_i

Disentangled Representations Formally

A field-trip to group theory: What is disentanglement in terms of group theory?

 \circ We want to find symmetry preserving mapping $f:X\mapsto Z$

$$X \xrightarrow{G} X$$

$$f \downarrow \qquad f \downarrow$$

$$Z \xrightarrow{G} Z$$

- $\circ \to \mathsf{Equivariant} \ \mathsf{map} \ g \cdot f(x) = f(g \cdot x)$
- o Result is disentangled representation
 - Decomposition $Z = Z_1 \times ... \times Z_n$
 - Z_i only affected by symmetry G_i on X
 - Z_i invariant to all $G_{j\neq i}$

Back to the paper

id they achieve disentanglement?

- Disentangled with respect to what decomposition?
- Assume decomposition $G = G_{sequence} \times G_{segment}$
- Reflect decomposition in $Z = (z_1, z_2)$
- \circ z_1 : segment, z_2 : sequence
- \circ Find equivariant map $f:W\mapsto Z$, so that z_2 is only affected by symmetries $G_{sequence}$ and vice versa

Image source: Hsu et al., 2017

$$\begin{split} \mathcal{L}(\theta,\phi,X) &= \sum_{n=1}^{N} \underbrace{\mathcal{L}(\theta,\phi;x^{(n)}|\mu_{2}) + log \; p_{\theta}(\mu_{2}) + const.}_{\text{var. lower bound}} + \underbrace{\alpha \cdot log \; (i|z_{2}^{(i,n)})}_{\text{discrim.obj.}} \end{split}$$
 with $\mathcal{L}(\theta,\phi;x^{(n)}|\mu_{2}) = \mathbb{E}_{q_{\phi}(z_{1}^{(n)},z_{2}^{(n)}|x^{(n)})} \left[log \; p_{\theta}(x^{(n)}|z_{1}^{(n)},z_{2}^{(n)}) \right] - \mathbb{E}_{q_{\phi}(z_{2}^{(n)}|x^{(n)})} \left[D_{KL}(q_{\phi}(z_{1}^{(n)}|x^{(n)},z_{2}^{(n)})||\underbrace{p_{\theta}(z_{1}^{(n)})}_{\text{sequ. ind.}}) \right] - D_{KL}(q_{\phi}(z_{2}^{(n)}|x^{(n)})||\underbrace{p_{\theta}(z_{2}^{(n)}|\mu_{2})}_{\text{seq. dep. prior}}) \\ \text{and } log \; (i|z_{2}^{(i,n)}) = log \; p(z_{2}^{(i,n)}|\mu_{2}^{(i)}) - log(\sum_{i=1}^{M} p(z_{2}^{(i,n)}|\mu_{2}^{(j)})) \end{split}$

FHVAE

S-vector μ_2

- \circ What is sequence dependent prior μ_2 (s-vector)?
 - Imagine a word vector
 - S-vector for every sequence
 - Similar sequence attributes → s-vectors close in euclidean space
 - $g(sequence\ id) = \mu_2$ as (differentiable) lookup table
 - ullet ightarrow Embedding in pytorch, tensorflow

Objective - Sequence variational lower bound

$$\begin{split} \mathcal{L}(\theta,\phi,X) &= \underbrace{log \; p(x|z_1,z_2)}_{\text{reconstruction}} \\ &- \underbrace{D_{KL}(\mathcal{N}(\mu_{z_1},\sigma_{z_1})||\mathcal{N}(0,1))}_{\text{regularize }z_1 \text{ with global prior}} \\ &- \underbrace{D_{KL}(\mathcal{N}(\mu_{z_2},\sigma_{z_2})||\mathcal{N}(\mu_2,0.5))}_{\text{regularize }z_2 \text{ with seq. dep. prior }\mu_2} \\ &+ \underbrace{log \; p(\mu_2) \cdot \frac{1}{seq. \; length}}_{\text{prob. of }\mu_2 \text{ under standard Gaussian prior}} \end{split}$$

Objective - Discriminative objective

$$log \; p(sequence \; id^{(i)}|z_2^{(i,n)}) = log \; \frac{p(\mu_{z_2}^{(i,n)}|\mu_2^{(i)})}{\sum_{j=1}^{num \; seqs} p(\mu_{z_2}^{(i,n)}|\mu_2^{(j)})}$$

- $\circ\,$ Encourage $z_2^{(i)}$ to be close to corresponding $\mu_2^{(i)}$
- \circ and far from all other sequence's s-vectors $\mu_2^{(j
 eq i)}$

Objective - Discriminative segment variational lower bound

$$\mathcal{L}^{dis}(\theta, \phi; x) = \mathcal{L}(\theta, \phi, X) + \alpha \cdot log \ p(sequence \ id|z_2)$$

- o Joint objective to encourage factorization
- $\circ \ \alpha$ hyperparameter to weigh discriminative objective

FHVAF

Results - TIMIT Speaker Verification

- o Task: Speaker verification
 - Allows quantitative analysis of performance
 - Assess quality of disentanglement
 - Use s-vector μ_2 to predict speaker
- Compare i-vector baseline
 - i-vector used in SOTA speaker verification approaches
 - Low dimensional subspace of GMM universal background model
 - Contains speaker information (content-independent)

Results - TIMIT Speaker Verification

- o Unsupervised speaker verification (Raw column)
- o Metric: equal error rate (lower is better)
- $\circ \mu_1$ based on z_1 as sanity check

Features	Dimension	α	Raw	LDA (12 dim)	LDA (24 dim)
i-vector	48	-	10.12%	6.25%	5.95%
	100	-	9.52%	6.10%	5.50%
	200	-	9.82%	6.54%	6.10%
$oldsymbol{\mu}_2$	16	0	5.06%	4.02%	-
	16	10^{-1}	4.91%	4.61%	-
	16	10^{0}	3.87%	3.86%	-
	16	10^{1}	2.38%	2.08%	-
	32	10^{1}	2.38%	2.08%	1.34%
μ_1	16	10^{0}	22.77%	15.62%	-
	16	10^{1}	27.68%	22.17%	-
	32	10^{1}	22.47%	16.82%	17.26%

FHVAE

Looking Back & Discussion

- Evidence towards disentangling with respect to sequence-segment decomposition
 - Other decompositions may prove more challenging
- o Good performance on speaker verification and denoising task
- o I had trouble disentangling simple examples
- Questions for you:
 - Is learning disentangled representations worth the effort?
 - Have there been situations where you wished for an interpretable latent space?
 - Do you know any successful models where equivariant maps are used?

References

- Hsu, W.N., Zhang, Y. and Glass, J., 2017. Unsupervised learning
 of disentangled and interpretable representations from
 sequential data. In Advances in neural information
 processing systems (ρρ. 1878-1889).
- Hsu, W.N. and Glass, J., 2018. Scalable factorized hierarchical variational autoencoder training. arXiv preprint arXiv:1804.03201.
- Higgins, I., Amos, D., Pfau, D., Racaniere, S., Matthey, L.,
 Rezende, D. and Lerchner, A., 2018. Towards a definition of disentangled representations. arXiv preprint arXiv:1812.02230.
- o Scott, W.R., 2012. Group theory. Courier Corporation.
- Kingma, D.P. and Welling, M., 2013. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114.

Challenges

- If we really think about it, it is hard for us to define what a disentangled representation should actually be
- Precise biases of what the latent space should be decomposited into can be helpful as well as biases towards the 'form' of these latent subspaces