Khôlles de Mathématiques - Semaine 27

Vangilluwen Hugo

5 Mai 2024

1 Norme uniforme d'une fonction continue par morceaux

Soit $f \in \mathcal{CM}([a;b],\mathbb{R})$. L'ensemble $\{|f(t)| \mid t \in [a;b]\}$ admet une borne supérieur notée $||f||_{\infty,[a;b]}$.

 $D\acute{e}monstration$. Montrons que sur chaque morceau, f est bornée.

Soit $\sigma = (x_i)_{0 \leqslant i \leqslant N} \in \mathcal{S}([a;b])$ adaptée à f. Soit $i \in [0;N-1]$. Posons $f_i = f_{|]x_i;x_{i+1}}[.$ f étant continue par morceaux, $\exists (l_i^+, l_{i-1}^-) \in \mathbb{R}^2 : \lim_{x \to x_i^+} f_i(x) = l_i^+ \land \lim_{x \to x_{i+1}^-} f_i(x) = l_{i+1}^-$. Nous pouvons

donc prolonger f_i en \tilde{f}_i par continuité en x_i et en x_{i+1} . Comme $f \in \mathcal{C}^0([a;b],\mathbb{R})$, le théorème de Weierstrass s'applique : $\mathrm{Im}\tilde{f}_i$ est bornée (donc f_i aussi). Ainsi $||f_i||_{\infty,[a;b]}$ est bien défini. $\{|f(t)| \mid t \in [a;b]\}$ est :

- une partie de $\mathbb R$
- non vide car contenant |f(x)|.
- majorée par $\max \left(\{ ||f_i||_{\infty,[a;b]} | i \in [0; N-1] \} \cup \{ ||f_i||_{\infty,[a;b]} | i \in [0; N-1] \} \right)$ (ensemble admettant bien un plus grand élément puisque fini)

Donc $||f||_{\infty,[a;b]}$ est bien définie.

FIGURE $1 - ||f||_{\infty,[a;b]}$ peut ne pas être atteinte

2 Lemme d'approximation uniforme d'un fonction continue sur un segment par une fonction en escalier

Soit $f \in \mathcal{C}^0([a;b],\mathbb{R})$.

$$(i) \ \forall \varepsilon \in \mathbb{R}_+^*, \ \exists \chi \in \mathcal{E}([a;b],\mathbb{R}): ||f-\chi||_{\infty,[a;b]} \leqslant \varepsilon$$

$$(ii) \ \forall \varepsilon \in \mathbb{R}_+^*, \ \exists (\varphi, \psi) \in \mathcal{E}([a; b], \mathbb{R})^2 : \begin{cases} \varphi \leqslant f \leqslant \psi \\ ||\psi - \varphi||_{\infty, [a; b]} \leqslant \varepsilon \end{cases}$$

Démonstration. Soit $f \in \mathcal{C}^0([a;b],\mathbb{R})$. Soit $\varepsilon \in \mathbb{R}_+^*$ fixé quelconque.

(i) D'après le théorème de Heine, $f \in \mathcal{C}^0_u([a;b],\mathbb{R})$. Écrivons la définition de uniformément continue pour ε :

$$\exists \eta \in \mathbb{R}_+^* : \ \forall (x,y) \in [a;b]^2, \ |x-y| \leqslant \eta \implies |f(x) - f(y)| \leqslant \varepsilon$$

Figure 2 – Fonction en escalier "approximant" une fonction continue

Cherchons N tel que $\frac{b-a}{N} \leqslant 2\eta$. C'est-à-dire $N \geqslant \frac{b-a}{2\eta}$. Posons donc $N = \lceil \frac{b-a}{2\eta} \rceil$ et $\eta' = \frac{b-a}{N}$ de sorte que $\eta' \leqslant 2\eta$.

Définissons $\chi \in \mathcal{E}([a;b],\mathbb{R})$ par

$$\chi \left| \begin{array}{ccc} [a;b] & \to & \mathbb{R} \\ x & \mapsto & \left\{ \begin{array}{ccc} f(x) & \text{si } \exists n \in \mathbb{N} : \ x = a + n\eta' \\ f\left(a + \eta'\left(\lfloor \frac{x - a}{\eta'} \rfloor + 1/2\right)\right) & \text{sinon} \end{array} \right. \right.$$

Ceci est bien une fonction en escalier car $(a+k\eta')_{0\leqslant k\leqslant N}$ est une subdivision adaptée. En effet, $\forall k\in \llbracket 0;N-1\rrbracket,\ f_{|]a+k\eta';a+(k+1)\eta'[}=f\left(a+\eta'\left(\lfloor\frac{x-a}{\eta'}\rfloor+1/2\right)\right)\cdot \widetilde{1}_{]a+k\eta';a=(k+1)\eta'[}.$ Soit $x\in [a;b].$ Si $\exists n\in \mathbb{N}:\ x=a+n\eta'$ alors $|f(x)-\chi(x)|=0.$ Sinon $0\leqslant \frac{x-a}{\eta'}-\lfloor\frac{x-a}{\eta'}\rfloor\leqslant 1.$ D'où

Soit $x \in [a; b]$. Si $\exists n \in \mathbb{N} : x = a + n\eta'$ alors $|f(x) - \chi(x)| = 0$. Sinon $0 \leqslant \frac{x-a}{\eta'} - \lfloor \frac{x-a}{\eta'} \rfloor \leqslant 1$. D'où $0 \leqslant (x-a) - \eta' \lfloor \frac{x-a}{\eta'} \rfloor \leqslant \eta'$. Donc, en enlevant $\eta'/2$, $-\frac{\eta'}{2} \leqslant a + \eta' \left(\lfloor \frac{x-a}{2\eta} \rfloor + 1/2 \right) \leqslant \frac{\eta'}{2}$. Par définition de η' , $-\eta \leqslant a + \eta' \left(\lfloor \frac{x-a}{2\eta} \rfloor + 1/2 \right) \leqslant \eta$. Par définition de η , on a $|f(x) - f\left(a + 2\eta \left(\lfloor \frac{x-a}{2\eta} \rfloor + 1/2 \right) \right)| \leqslant \varepsilon$. Ainsi, nous avons bien $||f - \chi||_{\infty, [a;b]} \leqslant \varepsilon$.

(ii) Écrivons la définition de uniformément continue pour ε :

$$\exists \eta \in \mathbb{R}_+^* : \ \forall (x,y) \in [a;b]^2, \ |x-y| \leqslant \eta \implies |f(x)-f(y)| \leqslant \varepsilon$$

Définissons $\varphi \in \mathcal{E}([a;b],\mathbb{R})$ par

$$\begin{bmatrix} [a;b] & \to & \mathbb{R} \\ x & \mapsto & \left\{ \inf f\left(\left[a+\eta\lfloor\frac{x-a}{\eta'}\right\rfloor; a+\eta\left(\lfloor\frac{x-a}{\eta'}\right\rfloor+1\right)\right[\right) & \text{sinon} \end{bmatrix}$$

Définissons $\psi \in \mathcal{E}([a;b],\mathbb{R})$ par

$$\begin{bmatrix} [a;b] & \to & \mathbb{R} \\ x & \mapsto & \left\{ \sup f\left(\left\| a + \eta \left\lfloor \frac{x-a}{\eta'} \right\rfloor; a + \eta \left(\left\lfloor \frac{x-a}{\eta'} \right\rfloor + 1 \right) \right[\right) \right. & \text{si } \exists n \in \mathbb{N} : \ x = a + n\eta \\ \text{sinon} \end{bmatrix}$$

Ces deux fonctions sont bien définies car $f_{||a+\eta\lfloor\frac{x-a}{\eta'}\rfloor;a+\eta\left(\lfloor\frac{x-a}{\eta'}\rfloor+1\right)|}$ est continue donc, d'après le théorème de Weiertraß, son image admet une borne inférieure et une borne supérieure. Elle sont bien en escalier.

Par définition des bornes inférieures et supérieures, nous avons $\varphi\leqslant f\leqslant \psi$. De plus, pour $x\in[a;b]$ fixé quelconque, $f_{||a+\eta\lfloor\frac{x-a}{\eta'}\rfloor;a+\eta\left(\lfloor\frac{x-a}{\eta'}\rfloor+1\right)[}$ se prolonge par continuité et, d'après le théorème de Weiertraß, atteint ses bornes. Notons f_i et f_s les antécédents respectifs des bornes. $(f_i,f_s)\in]a+\eta\lfloor\frac{x-a}{\eta'}\rfloor;a+\eta\left(\lfloor\frac{x-a}{\eta'}\rfloor+1\right)[^2$ donc $|f_i-f_s|\leqslant \eta$. D'où $|f(f_i)-f(f_s)|\leqslant \varepsilon$.

Ainsi, nous avons bien
$$||\psi - \varphi||_{\infty,[a;b]} \leq \varepsilon$$
.

3 Définition de l'intégrale de Darboux

Soit $f \in \mathcal{CM}([a,b],\mathbb{R})$ Posons

$$\mathcal{E}^{-}(f) = \{ \varphi \in \mathcal{E}([a, b], \mathbb{R}) \mid \varphi \leqslant f \}$$

$$\mathcal{E}^{+}(f) = \{ \varphi \in \mathcal{E}([a, b], \mathbb{R}) \mid \varphi \geqslant f \}$$

et

$$I^{-}(f) = \left\{ \int_{a}^{b} \varphi(u) \, \mathrm{d}u \middle| \varphi \in \mathcal{E}^{-}(f) \right\} \qquad I^{+}(f) = \left\{ \int_{a}^{b} \varphi(u) \, \mathrm{d}u \middle| \varphi \in \mathcal{E}^{+}(f) \right\}$$

Alors sup $I^-(f) = \inf I^+(f)$ que l'on notera $\int_a^b f(u) \, du$

 $D\acute{e}monstration.$ \Diamond Bonne définition des objets

- \star $I^-(f)$ est une partie de $\mathbb R$
- \star Non vide car :

$$\forall x \in [a,b], f(x) \geqslant -\|f\|_{\infty,[a,b]} \implies \left(\int_a^b -\|f\|_{\infty,[a,b]} \, \mathrm{d}t\right) \in I^-(f)$$

* majorée : soit $\varphi \in \mathcal{E}^-(f)$ fixé quelconque.

$$\forall x \in [a, b], \varphi(x) \leqslant f(x) \leqslant ||f||_{\infty, [a, b]}$$

$$\implies \varphi \leqslant ||f||_{\infty, [a, b]}$$

$$\implies \int_a^b \varphi(u) \, \mathrm{d}u \leqslant \int_a^b ||f||_{\infty, [a, b]} \, \mathrm{d}t$$

On procède de la même manière pour la borne inf de $I^+(f)$

 \Diamond De plus, sup $I^-(f) \leqslant \inf I^+(f)$ Soient $(\varphi, \psi) \in \mathcal{E}^-(f) \times \mathcal{E}^+(f)$ fixés quelconques

$$\begin{split} \forall x \in [a,b], \varphi(x) \leqslant f(x) \leqslant \psi(x) \\ \implies \forall \varphi \in \mathcal{E}^-(f), \varphi \leqslant \psi & \implies \psi \text{ majore } \mathcal{E}^-(f) \\ \implies \int_a^b \psi(u) \, \mathrm{d}u \text{ majore } I^- \\ \implies \sup I^- \leqslant \int_a^b \psi(u) \, \mathrm{d}u \\ \implies \forall \psi \in \mathcal{E}^+(f), \sup I^- \leqslant \int_a^b \psi(u) \, \mathrm{d}u & \implies \sup I^- \text{ minore } I^- \\ \implies \sup I^- \leqslant \inf I^+ \end{split}$$

 \Diamond Soit $\varepsilon > 0$ fixé quelconque. Appliquons le lemme d'approximation uniforme d'une fonction continue par morceaux par une fonction en escalier pour $\varepsilon \leftarrow \frac{\varepsilon}{b-a}$ quelconque :

$$\exists (\varphi, \psi) \in \mathcal{E}([a, b], \mathbb{R})^2 : \left\{ \begin{array}{l} \varphi \leqslant f \leqslant \psi \\ \|\varphi - \psi\|_{\infty, [a, b]} \leqslant \frac{\varepsilon}{b - a} \end{array} \right.$$

Cela implique nécessairement que $\varphi \in \mathcal{E}^-(f)$ et $\psi \in \mathcal{E}^+(f)$.

$$\left\{ \begin{array}{l} \varphi \in \mathcal{E}^{-}(f) \\ \psi \in \mathcal{E}^{+}(f) \end{array} \right. \implies \left\{ \begin{array}{l} \int_{a}^{b} \varphi(u) \, \mathrm{d}u \leqslant \sup I^{-} \\ \int_{a}^{b} \psi(u) \, \mathrm{d}u \geqslant \inf I^{+} \end{array} \right.$$

Donc

$$\int_{a}^{b} \varphi(u) \, \mathrm{d}u \leqslant \sup I^{-} \leqslant \inf I^{+} \leqslant \int_{a}^{b} \psi(u) \, \mathrm{d}u$$

$$\implies 0 \leqslant \inf I^{+} - \sup I^{-} \leqslant \int_{a}^{b} \psi(u) \, \mathrm{d}u - \int_{a}^{b} \varphi(u) \, \mathrm{d}u$$

$$\implies 0 \leqslant \inf I^{+} - \sup I^{-} \leqslant \int_{a}^{b} \psi(u) - \varphi(u) \, \mathrm{d}u$$

$$\implies 0 \leqslant \inf I^{+} - \sup I^{-} \leqslant \int_{a}^{b} \frac{\varepsilon}{b - a} \, \mathrm{d}u$$

$$\implies 0 \leqslant \inf I^{+} - \sup I^{-} \leqslant \frac{(b - a)\varepsilon}{b - a} = \varepsilon$$

Donc en passant à la limite, on retrouve inf $I^+ - \sup I^+ = 0$, d'où l'égalité attendue.

4 Montrer qu'une fonction positive ou nulle, continue sur un segment et d'intégrale nulle sur ce segment est identiquement nulle sur ce segment

Démonstration. Par l'absurde supposons qu'il existe $f \in \mathcal{C}^0([a,b],\mathbb{R})$ telle que $\int_a^b f(u) \, \mathrm{d}u = 0$ et $f \geqslant 0$ sur [a,b] et $f \neq \tilde{0}$ Alors $\exists x_0 \in [a,b]: f(x_0) \neq 0 \implies f(x_0) > 0$ Appliquons la définition de la continuité de f en x_0 pour $\varepsilon \leftarrow \frac{f(x_0)}{2}$

$$\exists \eta > 0 : \forall x \in [a, b] \cap [x_0 - \eta, x_0 + \eta], |f(x) - f(x_0)| \leqslant \frac{f(x_0)}{2}$$

donc

$$\forall x \in [a, b] \cap [x_0 - \eta, x_0 + \eta], f(x) \geqslant \frac{f(x_0)}{2} > 0$$

— Ainsi, si $x_0 \in]a, b[$

$$\int_{a}^{b} f(u) \, du = \underbrace{\int_{a}^{x_{0} - \eta} f(u) \, du}_{\geqslant 0} + \int_{x_{0} - \eta}^{x_{0} + \eta} f(u) \, du + \underbrace{\int_{x_{0} + \eta}^{b} f(u) \, du}_{\geqslant 0}$$

$$\geqslant \int_{x_{0} - \eta}^{x_{0} + \eta} f(u) \, du \geqslant \int_{x_{0} - \eta}^{x_{0} + \eta} \frac{f(x_{0})}{2} \, du \geqslant 2\eta \frac{f(x_{0})}{2} \geqslant \eta f(x_{0}) > 0$$

— Si $x_0 \in \{a, b\}$ on effectue le même raisonnement

$$\int_{a}^{a+\eta} f(u) \, \mathrm{d}u \geqslant \frac{\eta f(x_0)}{2} > 0$$

5 Inégalité de Cauchy Schwartz pour les fonctions continues par morceaux

Démonstration. Soient $(f,g) \in \mathcal{CM}([a,b],\mathbb{R})^2$ Posons

$$\forall t \in \mathbb{R}, P(t) = \int_{a}^{b} (f + tg)^{2}(u) du$$

$$P(t) = \int_{a}^{b} (f(u) + t \times g(u))^{2} du = \int_{a}^{b} f(u)^{2} + 2tg(u)f(u) + t^{2}g(u)^{2} du$$
$$= \int_{a}^{b} f(u)^{2} du + 2t \int_{a}^{b} f(u)g(u) du + t^{2} \int_{a}^{b} g(u)^{2} du$$

- \Diamond Si $\int_a^b g(u)^2 du = 0$, P est un polynôme affine de signe positif (intégrale d'une fonction positive) donc sa pente est nulle, donc $\int_a^b f(u)g(u) du = 0$ donc l'inégalité de cauchy schwartz est vraie
- \Diamond Sinon P est un polynôme de degré 2, positif ou nul, donc le discriminant $\Delta \leqslant 0$ et $\int_a^b g(u)^2 du \geqslant 0$ donc

$$4\left(\int_{a}^{b} g(u)f(u) \, du\right)^{2} - 4\int_{a}^{b} f^{2}(u) \, du \int_{a}^{b} g^{2}(u) \, du \leqslant 0$$

Ce qui prouve l'égalité attendue.

- ♦ Supposons qu'il y a égalité dans l'inégalité de Cauchy-Schwartz, alors
 - Si $\int_a^b g^2(u) du \neq 0$

$$\Delta = 4 \left(\int_a^b g(u) f(u) \, du \right)^2 - 4 \int_a^b f^2(u) \, du \int_a^b g^2(u) \, du = 0$$

Donc P est un polynôme de degré 2 de discriminant nul : il admet une racine double t_0 Ainsi,

$$P(t_0) = 0 \implies \int_a^b (f + t_0 g)^2(u) du = 0$$

Mais, $(f + t_0 g)^2$ est une fonction positive, et continue sur [a, b], donc elle est nulle sur [a, b]. Donc $f + t_0 g = \tilde{0}$ dong (f, g) est liée.

- Sinon, si $\int_a^b g^2(u) du = 0$, en remarquant que $g^2 \ge 0$ sur [a,b] et que g^2 est continue, on retrouve que $g = \tilde{0}$ et donc que (f,g) est liée
- ♦ Un calcul simple montre que s'il existe une relation de liaison entre deux fonctions continues par morceaux, il y a égalité dans l'inégalité.

6 Théorème de convergence des sommes de Riemann

Démonstration. $f \in \mathcal{C}^0([a,b],\mathbb{C})a \leq b$ En notant $S(f,\sigma,\pi)$ la somme de Riemann de f pour la subdivision pointée (σ,π) .

$$\forall \varepsilon > 0, \exists \eta > 0 : \forall \left\{ \begin{array}{l} \sigma = (x_i)_{0 \leqslant i \leqslant N} \in \mathcal{S}([a,b]) \\ \pi = (x_i')_{0 \leqslant i \leqslant N-1} : x_i' \in [x_i, x_{i+1}] \end{array} \right., \delta(\sigma) \leqslant \eta \implies \left| S(f,\sigma,\pi) - \int_a^b f(u) \, \mathrm{d}u \right| \leqslant \varepsilon$$

Soit $\sigma=(x_j)_{0\leqslant j\leqslant N}\in\mathcal{S}([a,b])$ et $\pi=(x_i')_{0\leqslant i\leqslant N-1}$ une famille vérifiant $\forall i\in \llbracket 0,N-1\rrbracket,x_i'\in \llbracket x_i,x_{i+1}\rrbracket$

$$\left| S(f, \sigma, \pi) - \int_{a}^{b} f(t) \, dt \right| = \left| \sum_{i=0}^{N-1} f(x_{i}')(x_{i+1} - x_{i}) - \sum_{i=0}^{N-1} \int_{x_{i}}^{x_{i+1}} f(t) \, dt \right|$$

$$= \left| \sum_{i=0}^{N-1} \int_{x_{i}}^{x_{i+1}} (f(x_{i}') - f(t)) \, dt \right|$$

$$\leqslant \sum_{i=0}^{N-1} \left| \int_{x_{i}}^{x_{i+1}} (f(x_{i}') - f(t)) \, dt \right|$$

$$\leqslant \sum_{i=0}^{N-1} \int_{x_{i}}^{x_{i+1}} |f(x_{i}') - f(t)| \, dt$$

Soit $\varepsilon>0$ fixé que lconque, appliquons la continuité uniforme de f pour $\varepsilon\leftarrow\frac{\varepsilon}{b-a}$

$$\exists \eta > 0 : \forall (x,y) \in [a,b], |x-y| \leqslant \eta \implies |f(x) - f(y)| \leqslant \frac{\varepsilon}{b-a}$$

Fixons un tel η . Soit (σ, π) une subdivision pointée de [a, b] fixée quelconque telle que $\delta(\sigma) \leq \eta$. Soit $i \in [0, N-1]$ fixé quelconque.

$$\forall t \in [x_i, x_{i+1}], |x_i' - t| \underbrace{\leqslant}_{x_i \leqslant x_i' \leqslant x_{i+1}} |x_i - x_{i+1}| \leqslant \delta(\sigma) \leqslant \eta \implies |f(x_i') - f(t)| \leqslant \frac{\varepsilon}{b - a}$$

donc,

$$\int_{x_i}^{x_{i+1}} |f(x_i') - f(t)| \, \mathrm{d}t \leqslant \int_{x_i}^{x_{i+1}} \frac{\varepsilon}{b - a} \, \mathrm{d}t = \frac{\varepsilon}{b - a} (x_{i+1} - x_i)$$

done

$$\left| S(f, \sigma, \pi) - \int_a^b f(t) dt \right| \leqslant \sum_{i=0}^{N-1} \int_{x_i}^{x_{i+1}} |f(x_i') - f(t)| dt \leqslant \sum_{i=0}^{N-1} \frac{\varepsilon}{b-a} (x_{i+1} - x_i) = \underbrace{\frac{\varepsilon}{b-a}}_{b-a} \underbrace{\sum_{i=0}^{N-1} (x_{i+1} - x_i)}_{b-a} = \varepsilon$$

donc

$$\left| S(f, \sigma, \pi) - \int_{a}^{b} f(t) \, \mathrm{d}t \right| \leqslant \varepsilon$$

7 Inégalité triangulaire pour les fonctions continues par morceaux à valeurs complexes

 $D\acute{e}monstration$. Soit $f \in \mathcal{CM}([a,b],\mathbb{C})$ cela implique donc que $|f| \in \mathcal{CM}([a,b],\mathbb{C})$ D'après le lemme d'approximation uniforme d'une fonction par une fonction uniforme

$$\exists (\chi_k)_{k \in \mathbb{N}} \in (\mathcal{E}([a,b],\mathbb{R}))^{\mathbb{N}} : \begin{cases} \forall k \in \mathbb{N}, \|f - \chi_k\|_{\infty,[a,b]} \leqslant \frac{1}{2^k} \\ \int_a^b \chi_k(u) \, \mathrm{d}u \xrightarrow[k \to \infty]{} \int_a^b f(u) \, \mathrm{d}u \end{cases}$$

$$\forall k \in \mathbb{N}, \forall x \in [a, b], ||\chi_k(x)| - |f(x)|| \leqslant |f(x) - \chi_k(x)| \leqslant \frac{1}{2^k}$$

donc

$$|||f| - |\chi_k||_{\infty} \leqslant \frac{1}{2^k} \implies \int_a^b |\chi_k|(u) \, \mathrm{d}u \xrightarrow[k \to \infty]{} \int_a^b |f|(u) \, \mathrm{d}u$$

Donc, d'après l'inégalité triangulaire continue pour les fonctions en escalier appliquée aux χ_k

$$\underbrace{\left| \int_{a}^{b} \chi_{k}(u) \, \mathrm{d}u \right|}_{k \to \infty} \leqslant \underbrace{\int_{a}^{b} |\chi_{k}|(u) \, \mathrm{d}u}_{k \to \infty}$$

donc par passage à la limite dans l'inégalité

$$\left| \int_{a}^{b} f(u) \, \mathrm{d}u \right| \leqslant \int_{a}^{b} |f(u)| \, \mathrm{d}u$$

8 Existence et unicité de la primitive de f qui s'annule en a

 $D\acute{e}monstration.$ \Diamond Notons d'abord que

$$F_a \mid \begin{array}{cc} I & \to \mathbb{C} \\ t & \mapsto \int_a^x f(u) \, \mathrm{d}u \end{array}$$

est bien définie :

$$\left. \begin{array}{l} f \in \mathcal{C}^0(I,\mathbb{C}) \implies f \in \mathcal{CM}(I,\mathbb{C}) \\ \forall t \in I, [a,t] \subset I \text{ ou } [t,a] \subset I \end{array} \right\} \implies \int_a^b f(u) \, \mathrm{d}u \text{ est bien définie}$$

 \Diamond Montrons que $F_a \in \mathcal{D}^1(I,\mathbb{C})$ et $F'_a = f$

$$\left| \frac{F_a(t) - F_a(t_0)}{t - t_0} - f(t_0) \right| = \left| \frac{1}{t - t_0} \int_{t_0}^t f(u) \, \mathrm{d}u - f(t_0) \right|$$

$$\leq \left| \frac{1}{|t - t_0|} \int_{t_0}^{t_0} |f(u) - f(t_0)| \, \mathrm{d}u \right|$$

Soit $\varepsilon > 0$ fixé quelconque. Appliquons la définition de la continuité de f en t_0

$$\exists \eta > 0 : \forall t \in I, |t - t_0| \leqslant \eta \implies |f(t) - f(t_0)| \leqslant \varepsilon$$

Soit $t \in I$ tel que $|t - t_0| \leq \eta$, alors $\forall u \in [t_0, t] \cup [t, t_0], |f(u) - f(t_0)| \leq \varepsilon$

 \star Si $t_0 \leqslant t$

$$0 \leqslant \int_{t_0}^t |f(u) - f(t_0)| \, \mathrm{d}u \leqslant \int_{t_0}^t \varepsilon \, \mathrm{d}u = \varepsilon |t - t_0|$$

 \star Si $t\leqslant t_0$

$$0 \leqslant -\int_{t_0}^t |f(u) - f(t_0)| \, \mathrm{d}u \leqslant \int_t^{t_0} \varepsilon \, \mathrm{d}u = \varepsilon |t - t_0|$$

Ainsi, on a montré que

$$\left| \frac{F_a(t) - F_a(t_0)}{t - t_0} - f(t_0) \right| \leqslant \varepsilon$$

d'où la convergence du taux d'accroissement. Donc $F_a \in \mathcal{D}^1(I,\mathbb{C})$, et $F'_a = f$ Donc F_a est une primitive de f et $F_a(a) = \int_a^a f(u) \, \mathrm{d}u = 0$

 \Diamond Soit H une primitive qui s'annule en a. $H-F_a\in\mathcal{D}^1(I,\mathbb{C})$ et $(H-F_a)'=H'-F'_a=f-f=\tilde{0}$ Ainsi, la dérivée de $H-F_a$ est nulle sur I, qui est un intervalle, donc

$$\exists c \in \mathbb{C} : \forall t \in I, H(t) - F_a(t) = c$$

et en particularisant en a, on montre que $H(a) - F_a(a) = 0 - 0 = 0$. Donc $H - F_a = \tilde{0}$ donc $H = F_a$, ce qui montre l'unicité.

9 Formule de Taylor avec reste intégral

Démonstration. Posons

$$\mathcal{H}_n: \forall f \in \mathcal{C}^{n+1}(I, \mathbb{C}), f(x) = \sum_{k=0}^n \frac{(x-a)^k}{k!} f^{(k)}(a) + \int_a^x \frac{(x-u)^n}{n!} f^{(n+1)}(u) du$$

 \Diamond Initialisation $n \leftarrow 0$

$$f(x) = f(a) + \int_{-\infty}^{x} f'(u) du$$

est effectivement vrai d'après le théorème fondamental du calcul intégral

 \Diamond Hérédité : soit $n \in \mathbb{N}$ tel que \mathcal{H}_n est vraie.

Soit $f \in \mathcal{C}^{n+2}$, f est en particulier de classe \mathcal{C}^{n+1} donc en appliquant la propriété de récurrence :

$$f(x) = \sum_{k=0}^{n} \frac{(x-a)^k}{k!} f^{(k)}(a) + \int_a^x \frac{(x-u)^n}{n!} f^{(n+1)}(u) du$$

Intégrons le reste intégral par parties, les fonctions $u: t \mapsto f^{(n+1)}(t)$ et $v: t \mapsto -\frac{(b-t)^{n+1}}{(n+1)!}$ sont de classe \mathcal{C}^1 sur I, avec $u'(t) = f^{(n+2)}(t)$ et $v'(t) = \frac{(x-t)^n}{n!}$

$$\int_{a}^{x} \frac{(x-u)^{n}}{n!} f^{(n+1)}(u) du = \left[-\frac{(x-u)^{n+1}}{(n+1)!} f^{(n+1)}(u) \right]_{a}^{x} - \int_{a}^{x} -\frac{(x-u)^{n+1}}{(n+1)!} f^{(n+2)}(u) du$$
$$= \frac{(x-a)^{n+1}}{(n+1)!} f^{(n+1)}(a) + \int_{a}^{x} \frac{(x-u)^{n+1}}{(n+1)!} f^{(n+2)}(u) du$$

donc

$$f(x) = \sum_{k=0}^{n+1} \frac{(x-a)^k}{k!} f^{(k)}(a) + \int_a^x \frac{(x-u)^{n+1}}{(n+1)!} f^{(n+2)}(u) du$$

donc \mathcal{H}_{n+1} est vérifiée.

Calcul de $\lim_{n\to\infty} \sum_{k=0}^n \frac{(-1)^k}{k} x^k$ 10

Démonstration. Appliquons la formule de Taylor, avec reste intégral pour

$$\begin{cases} f \leftarrow (x \mapsto \ln(1+x)) \in \mathcal{C}^{\infty} \\ n \leftarrow n \\ a \leftarrow 0 \end{cases}$$

$$\left| \ln(1+x) - \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} (x-0)^{k} \right| = \left| \int_{0}^{x} \frac{(x-t)^{n}}{n!} f(t) dt \right|$$

Puisque $f^{(n)}(t)=\frac{(-1)^{n+1}}{(t+1)^n}(n-1)!$, on en déduit que $f^{(n)}(0)=(-1)^{n+1}(n-1)!$ et $\frac{f^{(n)}(0)}{n!}=\frac{(-1)^{n+1}}{n}$ donc

$$\left| \ln(1+x) - \sum_{k=0}^{n} \frac{(-1)^{k+1}}{k} x^{k} \right| = \left| \int_{0}^{x} \frac{(x-t)^{n}}{\varkappa!} \times \frac{(-1)^{n} \times \varkappa!}{(t+1)^{n+1}} \, \mathrm{d}x \right|$$

$$\leqslant \int_{0}^{x} \left| \frac{(x-t)^{n}}{(t+1)^{n+1}} \right| \, \mathrm{d}t$$

$$\leqslant \left\| \frac{1}{t+1} \right\|_{\infty} \int_{0}^{x} (x-t) \, \mathrm{d}t$$

$$\leqslant \frac{x^{n+1}}{n+1} \xrightarrow[x \to \infty]{} 0$$

Ce qui prouve la convergence de la série $\sum_{n\geqslant 0}\frac{(-1)^n}{n}x^n$, et $\sum_{n=0}^{\infty}\frac{(-1)^n}{n}x^n=\ln(1+x)$