Conceptual Problems Involving Partial Sums

The following questions provide practice with concepts involving partial sums. These are important and should be studied and understood in preparation for the second midterm.

I: True or False

Directions: CIRCLE ALL of the statements that MUST be TRUE. No explanation is necessary. Note that there may be several statements that are true for each question!

Problem 1: Suppose $\{a_n\}_{n\geq 1}$ is a sequence and $\sum_{n=1}^{\infty} a_n$ converges to L>0. Let $s_n=\sum_{n=1}^{\infty} a_k$.

A.
$$\lim_{n \to \infty} a_n = L$$
 B. $\lim_{n \to \infty} a_n = 0$

B.
$$\lim_{n\to\infty} a_n = 0$$

C.
$$\lim_{n\to\infty} s_n = 0$$

D.
$$\lim_{n \to \infty} s_n = L$$

D.
$$\lim_{n \to \infty} s_n = L$$
 E. $\sum_{n=1}^{\infty} s_n$ MUST diverge. F. $\sum_{n=1}^{\infty} (a_n + 1) = L + 1$

F.
$$\sum_{n=1}^{\infty} (a_n + 1) = L + 1$$

G. The divergence test tells us $\sum_{n=1}^{\infty} a_n$ converges to L.

Problem 2: Suppose that $\{a_n\}_{n\geq 1}$ is a decreasing sequence. Let $s_n=\sum_{k=1}^n a_k$ and suppose $\lim_{n\to\infty} s_n \text{ does not exist.}$

A.
$$\lim_{n\to\infty} a_n$$
 does not exist.

A.
$$\lim_{n\to\infty} a_n$$
 does not exist. B. $\sum_{k=1}^{\infty} a_k$ could converge. C. $\sum_{n=1}^{\infty} s_n$ MUST diverge.

C.
$$\sum_{n=1}^{\infty} s_n$$
 MUST diverge

D.
$$\{s_n\}$$
 MUST be monotonic. E. $\{s_n\}$ MUST be bounded. F. $\lim_{n\to\infty} s_n = -\infty$

E.
$$\{s_n\}$$
 MUST be bounded.

$$F. \lim_{n \to \infty} s_n = -\infty$$

G. The divergence test applied to
$$\sum_{k=1}^{\infty} a_k$$
 would guarantee that $\sum_{k=1}^{\infty} a_k$ diverges.

Problem 3: Suppose that $\{a_n\}_{n\geq 1}$ and $a_n>0$ for all $n\geq 1$. Let $s_n=\sum_{k=1}^n a_k$ and suppose $\lim_{n \to \infty} s_n = L.$

$$A. \sum_{k=1}^{\infty} a_k = L$$

B.
$$\lim_{n\to\infty} a_n = 0$$

B.
$$\lim_{n\to\infty} a_n = 0$$
 C. $\{s_n\}$ MUST be monotonic.

D.
$$\{s_n\}$$
 MUST be bounded.

$$E. \sum_{n=1}^{\infty} (a_n - L) = 0$$

D.
$$\{s_n\}$$
 MUST be bounded. E. $\sum_{n=1}^{\infty} (a_n - L) = 0$ F. $\sum_{n=1}^{\infty} s_n$ MUST diverge.

G. The divergence test applied to $\sum_{k=1}^{\infty} a_k$ would guarantee that $\sum_{k=1}^{\infty} a_k$ converges.

II: Short Answer

Directions: Provide a brief response to the following questions.

Problem 4 (Exploring the Relationship Between
$$\sum_{k=1}^{\infty} a_k$$
 and $\sum_{k=1}^{\infty} s_k$)

For a sequence $\{a_n\}_{n\geq 1}$ let $s_n=\sum_{k=1}^n a_k$ denote its sequence of partial sums.

- a) Given that $\sum_{k=1}^{\infty} a_k$ converges, what can be said about $\sum_{k=1}^{\infty} s_k$?
- b) Given that $\sum_{k=1}^{\infty} a_k$ diverges, what can be said about $\sum_{k=1}^{\infty} s_k$?
- c) Given that $\sum_{k=1}^{\infty} s_k$ converges, what can be said about $\sum_{k=1}^{\infty} a_k$?
- d) Given that $\sum_{k=1}^{\infty} s_k$ diverges, what can be said about $\sum_{k=1}^{\infty} a_k$?

Problem 5 For a sequence $\{a_n\}_{n\geq 1}$ let $s_n = \sum_{k=1}^n a_k$ denote its sequence of partial sums. Now, suppose that $\{a_n\}_{n\geq 1}$ is a sequence such that $s_n = \frac{2n-1}{3n+1}$.

- a) Find $a_1 + a_2 + a_3 + a_4$.
- b) Find $a_5 + a_6$.
- c) Determine whether $\lim_{n\to\infty} a_n$ exists. If it does, find its value.
- d) Determine whether $\lim_{n\to\infty} s_n$ exists. If it does, find its value.
- e) Determine whether $\sum_{k=1}^{\infty} a_k$ converges or diverges. If it converges, find the value to which it converges, or state that there is not enough information to determine this.
- f) Determine whether $\sum_{k=1}^{\infty} s_k$ converges or diverges. If it converges, find the value to which it converges, or state that there is not enough information to determine this.

Problem 6 For a sequence $\{a_n\}_{n\geq 1}$ let $s_n = \sum_{k=1}^n a_k$ denote its sequence of partial sums. Now, suppose that $\{a_n\}_{n\geq 1}$ is a sequence such that $s_n = \frac{4n^2 + 9}{1 - 2n}$.

- a) Find $a_1 + a_2 + a_3$.
- b) Find $a_8 + a_9 + a_{10}$.

- c) Determine whether $\sum_{k=1}^{\infty} a_k$ converges or diverges. If it converges, find the value to which it converges, or state that there is not enough information to determine this.
- d) Determine whether $\sum_{k=1}^{\infty} s_k$ converges or diverges. If it converges, find the value to which it converges, or state that there is not enough information to determine this.