



# ±18V OPERATION HIGH QUALITY AUDIO VOLUME

#### **■FEATURES**

Operating Voltage Analog ±10 to ±18V
 Digital +3.0 to +5.5V

3-Wired Serial Control

Selectable Chip Address
 Available for using four chips on same serial bus line

• Low Output Noise

\* It conforms to the characteristics of an external operational amplifier.

Low Distortion

\* It conforms to the characteristics of an external operational amplifier.

Volume

0 to -111.75dB /0.25dB step +21 to 0dB /3dB step, Mute

Soft-Step Circuit

• Zero Cross Detection Circuit

Package Outline SSOP32

#### **■GENERAL DESCRIPTION**

The MUSES72323 is a ±18V operation high quality audio volume. It provides low output noise and low distortion characteristics, 0.25dB step volume. In addition, employing external op-amps as output signal buffers, it offers designer's variety of circuit design.

All of functions are controlled via three-wired serial bus. Selectable chip address is available for using two chips on same serial bus line.

The MUSES72323 is suitable for High-end audio equipment and professional audio equipment.

#### **■APPLICATION**

- Hi-Fi Audio Application
- Professional Audio Application

#### **■±18V OPERATION AUDIO VOLUME VARIATION**

| OPERATING VOLTAGE | PRODUCT NAME |
|-------------------|--------------|
| ±8.5 to ±18V      | MUSES72320   |
| ±10 to ±18V       | NJU72322     |

#### **■BLOCK DIAGRAM**





# **■PIN CONFIGURATION**



| No. | Symbol | Function                                                    | No. | Symbol | Function                                                    |
|-----|--------|-------------------------------------------------------------|-----|--------|-------------------------------------------------------------|
| 1   | NC     | No connection                                               | 17  | CLK_IN | External clock signal input for soft-step                   |
| 2   | L_CAP  | Lch switching noise rejection capacitor connection terminal | 18  | DATA   | Control data signal input                                   |
| 3   | OUTL   | Lch output                                                  | 19  | CLOCK  | Clock signal input                                          |
| 4   | L-     | Lch Op-amp inverting input connection terminal              | 20  | LATCH  | Latch signal input                                          |
| 5   | L_REF  | Lch reference voltage                                       | 21  | D_V+   | Power supply (+) [digital block] (+10V to +18V)             |
| 6   | L+     | Lch Op-amp<br>non-inverting input connection terminal       | 22  | INR    | Rch input                                                   |
| 7   | L_REF  | Lch reference voltage                                       | 23  | AR_V+  | Power supply (+) [Rch] (+10V to +18V)                       |
| 8   | L_REF  | Lch reference voltage                                       | 24  | AL_V+  | Power supply (+) [Lch] (+10V to +18V)                       |
| 9   | R_REF  | Rch reference voltage                                       | 25  | AR_V-  | Power supply (-) [Rch] (-10V to -18V)                       |
| 10  | R_REF  | Rch reference voltage                                       | 26  | AL_V-  | Power supply (-) [Lch] (-10V to -18V)                       |
| 11  | R+     | Rch Op-amp non-inverting input connection terminal          | 27  | INL    | Lch Input                                                   |
| 12  | R_REF  | Rch reference voltage                                       | 28  | D_V-   | Power supply (-) [digital block] (-10V to -18V)             |
| 13  | R-     | Rch Op-amp inverting input connection terminal              | 29  | D_CAP  | Digital block noise rejection capacitor connection terminal |
| 14  | OUTR   | Rch output                                                  | 30  | ADR0   | Chip address setting terminal 0                             |
| 15  | R_CAP  | Rch switching noise rejection capacitor connection terminal | 31  | ADR1   | Chip address setting terminal 1                             |
| 16  | D_IN   | Digital block power supply (+3.0V to +5.5V)                 | 32  | D_REF  | Digital block reference voltage                             |

### **■PRODUCT NAME INFORMATION**



### **■ORDERING INFORMATION**

| PART NUMBER       | PACKAGE RoHS |     | HALOGEN-<br>FREE | TERMINAL<br>FINISH | MARKING    | WEIGHT<br>(mg) | MOQ(pcs) |
|-------------------|--------------|-----|------------------|--------------------|------------|----------------|----------|
| MUSES72323V (TE1) | SSOP32       | yes | yes              | Sn-2Bi             | MUSES72323 | 185            | 100      |

New Japan Radio Co., Ltd. – www.njr.com



#### **■ABSOLUTE MAXIMUM RATINGS**

| PARAMETER                 | SYMBOL             | RATINGS           | UNIT |
|---------------------------|--------------------|-------------------|------|
| Supply Voltage            | V+/V-              | +20/-20           | V    |
| Digital Block Voltage     | V <sub>D_CAP</sub> | V- +6 *1)         | V    |
| Digital Input Voltage     | VID                | 6 * <sup>2)</sup> | V    |
| Analog Input Voltage      | VIA                | V+/V- *3)         | V    |
| Power Dissipation         | P <sub>D</sub>     | 1000 *4)          | mW   |
| Junction Temperature      | T <sub>jmax</sub>  | +125              | °C   |
| Storage Temperature Range | Tstg               | -40 to +125       | °C   |

### **■POWER DISSIPATION vs. AMBIENT TEMPERATURE**



<sup>\*1)</sup> D\_CAP terminal. \*2) D\_IN, CLK\_IN, DATA, CLOCK, LATCH terminals.

<sup>\*3)</sup> INL, INR terminals.

<sup>\*4)</sup> EIA/JEDEC STANDARD Test board (76.2 \* 114.3 \* 1.6mm, 2layers, FR-4) mounting.



#### **■RECOMMENDED OPERATING CONDITIONS**

| PARAMETER                     | SYMBOL | TEST CONDITION  | MIN. | TYP. | MAX. | UNIT |
|-------------------------------|--------|-----------------|------|------|------|------|
| Operating Voltage             | V+/V-  | -               | ±10  | ±15  | ±18  | V    |
| Digital Block Control Voltage | D_IN   | D_REF(32pin)=0V | 3.0  | 5.0  | 5.5  | V    |
| Operating Temperature Range   | Topr   | -               | -40  | -    | 85   | °C   |

#### **■ELECTRICAL CHARACTERISTICS**

# **◆DC CHARACTERISTICS** (Ta=25°C, V<sup>+</sup>/V<sup>-</sup>=±15V)

| PARAMETER        | SYMBOL          | TEST CONDITION                   | MIN. | TYP. | MAX. | UNIT |
|------------------|-----------------|----------------------------------|------|------|------|------|
| Supply Current 1 | Icc             | No Signal, No Load               | -    | 2    | 10   | mA   |
| Supply Current 2 | IEE             | No Signal, No Load               | -    | 2    | 10   | mA   |
| Input Impedance  | R <sub>IN</sub> | INR(22pin), INL(27pin) terminals | 14   | 20   | -    | kΩ   |

### **\*AC CHARACTERISTICS**

 $(Ta=25^{\circ}C, V^{+}/V^{-}\pm15V, f=1kHz, V_{IN}=2Vrms, Volume=0dB, Gain=0dB, V_{OUT} with MUSES8920, R_{L}=47k\Omega, unless otherwise specified)$ 

| PARAMETER                   | SYMBOL           | TEST CONDITION                                     | MIN. | TYP.            | MAX. | UNIT          |
|-----------------------------|------------------|----------------------------------------------------|------|-----------------|------|---------------|
| Maximum Input Voltage       | V <sub>IM</sub>  | THD=1%, Volume=-20dB                               | 11   | -               | -    | Vrms          |
| Maximum Output Voltage      | Vом              | THD=1%                                             | -    | 10.3            | -    | Vrms          |
| Voltage Gain 1              | G <sub>v1</sub>  | -                                                  | -0.5 | 0               | +0.5 | dB            |
| Voltage Gain 2              | G <sub>v2</sub>  | V <sub>IN</sub> =0.5Vrms, Gain=+12dB               | +11  | +12             | +13  | dB            |
| Voltage Gain Error 1        | ΔG <sub>V1</sub> | -                                                  | -0.5 | 0               | +0.5 | dB            |
| Voltage Gain Error 2        | $\Delta G_{V2}$  | Volume=-60dB                                       | -1.0 | 0               | +1.0 | dB            |
| Maximum Attenuation         | ATT              | Volume=-111.75dB, A-weight                         | -    | -111.75         | -    | dB            |
| Mute Level                  | Mute             | Volume=Mute, A-weight                              | -    | -120            | -    | dB            |
| Total Harmonic Distortion 1 | THD1             | V <sub>IN</sub> =1.6Vrms<br>BW=400 to 22kHz        | -    | 0.00024         | -    | %             |
| Total Harmonic Distortion 2 | THD2             | f=10kHz, V <sub>IN</sub> =1Vrms<br>BW=400 to 30kHz | -    | 0.0007          | -    | %             |
| Output Noise                | V <sub>NO</sub>  |                                                    |      | -124<br>(0.63µ) | -    | dBV<br>(Vrms) |
| Channel Separation 1        | CS1              | Rg=0Ω                                              | -    | -110            | -90  | dB            |
| Channel Separation 2        | CS2              | f=20kHz, Rg=0Ω                                     | -    | -90             | -    | dB            |

#### **\*LOGIC CONTROL CHARACTERISTICS**

(Ta=25°C, V\*/V=±15V, D<sub>VDD</sub>="D\_IN"-"D\_REF", unless otherwise specified)

| PARAMETER                  | SYMBOL           | TEST CONDITION          | MIN.                 | TYP. | MAX.                 | UNIT |
|----------------------------|------------------|-------------------------|----------------------|------|----------------------|------|
| High Level Input Voltage 1 | V <sub>IH1</sub> | DATA, CLOCK,            | 0.7*D <sub>VDD</sub> | ı    | 5.5                  | V    |
| Low Level Input Voltage 1  | V <sub>IL1</sub> | LATCH, CLK_IN terminals | 0                    | 1    | 0.3*D <sub>VDD</sub> | V    |
| High Level Input Voltage 2 | V <sub>IH2</sub> | ADR0, ADR1 terminals    | 0.7*D <sub>VDD</sub> | •    | V+                   | V    |
| Low Level Input Voltage 2  | V <sub>IL2</sub> | ADRU, ADRT leitilitais  | 0                    | 1    | 0.3*D <sub>VDD</sub> | V    |



### **■TERMINAL DESCRIPTION**

| PIN<br>NO. | SYMBOL         | FUNCTION                                                                                                                 | EQUIVALENT CIRCUIT                        | TERMINAL<br>VOLTAGE |
|------------|----------------|--------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|---------------------|
| 2 15       | L_CAP<br>R_CAP | Lch switching noise rejection capacitor connection terminal  Rch switching noise rejection capacitor connection terminal | V+ V- | 0V                  |
| 3          | OUTL           | Lch output                                                                                                               |                                           |                     |
| 5          | L_REF          | Lch Reference Voltage                                                                                                    |                                           |                     |
| 7          | L_REF          | Lch Reference Voltage                                                                                                    | V <del>+</del>                            |                     |
| 8          | L_REF          | Lch Reference Voltage                                                                                                    | <b>│</b>                                  | 0)/                 |
| 9          | R_REF          | Rch Reference Voltage                                                                                                    |                                           | 0V                  |
| 10         | R_REF          | Rch Reference Voltage                                                                                                    |                                           |                     |
| 12         | R_REF          | Rch Reference Voltage                                                                                                    | ·                                         |                     |
| 14         | OUTR           | Rch output                                                                                                               |                                           |                     |
| 4          | L-             | Lch Op-amp inverting input connection terminal  Lch Op-amp non-inverting input                                           | V+                                        |                     |
| 6          | L+             | connection terminal                                                                                                      |                                           | 0V                  |
| 11         | R+             | Rch Op-amp non-inverting input connection terminal                                                                       |                                           | OV                  |
| 13         | R-             | Rch Op-amp inverting input connection terminal                                                                           | ^-♠                                       |                     |
| 16<br>32   | D_IN<br>D_REF  | Digital block power supply Digital block reference voltage                                                               | D_REF 200kΩ  D_IN 200kΩ                   | OV                  |



| PIN<br>NO. | SYMBOL       | FUNCTION                                                    | EQUIVALENT CIRCUIT            | TERMINAL<br>VOLTAGE |
|------------|--------------|-------------------------------------------------------------|-------------------------------|---------------------|
| 17         | CLK_IN       | External clock signal input for soft-step                   | V <b>+</b> →                  |                     |
| 18         | DATA         | Control data signal input                                   |                               | -                   |
| 19         | CLOCK        | Clock signal input                                          | ★ ★ ' '                       |                     |
| 20         | LATCH        | Latch signal input                                          | V                             |                     |
| 22<br>27   | INR<br>INL   | Rch input Lch input                                         | 100Ω<br>100Ω<br>20kΩ<br>L_REF | oV                  |
| 29         | D_CAP        | Digital block noise rejection capacitor connection terminal |                               | V <sup>-</sup> + 5V |
| 30         | ADR0<br>ADR1 | Chip address setting terminal                               |                               | -                   |



#### **■APPLICATION CIRCUIT**

♦Application circuit with J-FET input type Op-Amp.



# ♦Application circuit with Bipolar input type Op-Amp.



New Japan Radio Co., Ltd.



# ■TIMING ON 3-wired BUS (DATA, CLOCK, LATCH)



# ■CHARACTERISTICS OF BUS LINES (DATA, CLOCK, LATCH) FOR 3-wired BUS DEVICES

| SYMBOL | PARAMETER               | MIN. | TYP. | MAX. | UNIT |
|--------|-------------------------|------|------|------|------|
| t1     | CLOCK Clock Width       | 1    | -    | -    | µsec |
| t2     | CLOCK Pulse Width(High) | 0.4  | -    | -    | µsec |
| t3     | CLOCK Pulse Width(Low)  | 0.4  | -    | -    | µsec |
| t4     | LATCH Rise Hold Time    | 1    | -    | -    | µsec |
| t5     | DATA Setup Time         | 0.4  | -    | -    | µsec |
| t6     | DATA Hold Time          | 0.4  | -    | -    | µsec |
| t7     | CLOCK Setup Time        | 0.4  | -    | -    | µsec |
| t8     | LATCH Pulse Width(High) | 0.4  | -    | -    | µsec |



#### **■SOFT-STEP OPERATION**

#### **♦Clock for Soft-Step**

The clock for soft-step can select the internal clock or the external clock (CLK\_IN: 17 pin). The internal clock is automatically stopped when the volume gain reaches the setting value in the case of the internal clock operation. It is recommended to stop the external clock when the volume gain reaches the setting value in the case of the external clock operation.

#### **♦ACK Response for Soft-Step**

Control device can detect that the volume gain reaches the setting value by the ACK response. It is necessary to wait DATA="H" at LATCH="H" for the ACK response. The DATA terminal is the ACK response (Low level) at LATCH="H" during turning the setting value. The ACK response stops (the data terminal is High level) when the volume gain reaches the setting value. This ACK response function operates in the external clock operation. It does not operate in the case that it operates in internal clock operation or soft-step function is OFF.

#### **External clock operation**



#### **Internal clock operation**



#### **■RECOMMENDED POWER-UP SEQUENCE**

The MUSES72323 should be used under the condition that potential V- terminals are always the lowest potential. It is recommended that V- power supply turns on before or just same time that V+ power supply turns on.





#### **■DEFINITION OF 3-wired REGISTER**

Note) Please don't send except specified data for avoiding an incorrect operation.

Data

### ♦3-wired BUS FORMAT / CONTROL RESISTER TABLE

The MUSES72323 control data is constructed with 16bits.

| MSB |     |     |     |     |     |    |    |    |    |    |    |    |    |    | LSB |
|-----|-----|-----|-----|-----|-----|----|----|----|----|----|----|----|----|----|-----|
| D15 | D14 | D13 | D12 | D11 | D10 | D9 | D8 | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0  |
|     |     |     |     |     |     |    |    |    |    |    | 0  |    | 0  |    |     |

|     | Address | Address |
|-----|---------|---------|
|     |         |         |
| MSB |         | LSB     |

| IVIOD       |                                     |  |       |          |            |   |     |    |    |    |      |    |    | LOD |    |
|-------------|-------------------------------------|--|-------|----------|------------|---|-----|----|----|----|------|----|----|-----|----|
| D15         | D15 D14 D13 D12 D11 D10 D9          |  |       |          |            |   | D8  | D7 | D6 | D5 | D4   | D3 | D2 | D1  | D0 |
|             | L channel Volume                    |  |       |          |            |   |     |    | 0  | 0  | SS_L | 0  | 0  | *   | *  |
|             |                                     |  | R cha | annel Vo | olume      |   |     |    | 0  | 0  | SS_R | 0  | 1  | *   | *  |
| L/R<br>Cont | I I Channel Gain I R Channel Gain I |  |       |          |            |   | Z/C | 0  | 0  | 0  | 0    | 1  | 0  | *   | *  |
| 0           | 0 Zero Window CLK_Div SS_<br>CLK    |  |       |          | SS_<br>CLK | 0 | 0   | 0  | 0  | 0  | 1    | 1  | *  | *   |    |

#### *<b>+CHIP ADDRESS*

Chip address is set by the ADR0 and the ADR1 (chip address setting terminal) status.

| •               | ddress<br>terminal | Chip A | ddress |
|-----------------|--------------------|--------|--------|
| ADR1<br>(31pin) | ADRO (30pin)       | D1     | D0     |
| Low             | Low                | 0      | 0      |
| Low             | High               | 0      | 1      |
| High            | Low                | 1      | 0      |
| High            | High               | 1      | 1      |

### **CONTROL REGISTER DEFAULT VALUE**

MSB LSB

| D15 | D14 | D13 | D12 | D11 | D10 | D9 | D8 | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |
|-----|-----|-----|-----|-----|-----|----|----|----|----|----|----|----|----|----|----|
| 0   | 0   | 0   | 0   | 0   | 0   | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | *  | *  |
| 0   | 0   | 0   | 0   | 0   | 0   | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 1  | *  | *  |
| 0   | 0   | 0   | 0   | 0   | 0   | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 0  | *  | *  |
| 0   | 0   | 0   | 0   | 0   | 0   | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 1  | *  | *  |

Note) This product starts up by MUTE setting in power "ON". Use it after removing MUTE of each setting.

If any audio signal is inputted in input signal terminal before power "ON", it may cause initial condition abnormality. In conditions of using such as the above, it prevents that abnormality by setting MUTE before power "OFF".



### **■DEFINITION OF RESISTOR**

**♦Volume :** 0 to -111.75dB / 0.25dB step.

Each volume is controlled independently when L/RCont="0".

♦SS\_L/R: Soft-Step circuit ON/OFF setting.

Soft step function reduces zipper noise during gain adjustment.

| D15 | D14              | D13 | D12 | D11 | D10 | D9 | D8 | D7 | D6 | D5 | D4   | D3 | D2 | D1 | D0 |
|-----|------------------|-----|-----|-----|-----|----|----|----|----|----|------|----|----|----|----|
|     | L channel Volume |     |     |     |     |    |    |    |    | 0  | SS_L | 0  | 0  | *  | *  |
|     | R channel Volume |     |     |     |     |    |    |    |    |    | SS_R | 0  | 1  | *  | *  |

< L channel Volume / R channel Volume Setting >

|     |     |     |     | Data | J   |    |    |    | Setting             |
|-----|-----|-----|-----|------|-----|----|----|----|---------------------|
| D15 | D14 | D13 | D12 | D11  | D10 | D9 | D8 | D7 | Setting             |
| 0   | 0   | 0   | 0   | 0    | 0   | 0  | 0  | 0  | Mute <sup>(*)</sup> |
| 0   | 0   | 0   | 1   | 0    | 0   | 0  | 0  | 0  | 0dB                 |
| 0   | 0   | 0   | 1   | 0    | 0   | 0  | 0  | 1  | -0.25dB             |
| 0   | 0   | 0   | 1   | 0    | 0   | 0  | 1  | 0  | -0.5dB              |
| 0   | 0   | 0   | 1   | 0    | 0   | 0  | 1  | 1  | -0.75dB             |
| 0   | 0   | 0   | 1   | 0    | 0   | 1  | 0  | 0  | -1dB                |
| 0   | 0   | 0   | 1   | 0    | 0   | 1  | 0  | 1  | -1.25dB             |
| 0   | 0   | 0   | 1   | 0    | 0   | 1  | 1  | 0  | -1.5dB              |
| 0   | 0   | 0   | 1   | 0    | 0   | 1  | 1  | 1  | -1.75dB             |
| 0   | 0   | 0   | 1   | 0    | 1   | 0  | 0  | 0  | -2dB                |
| 0   | 0   | 0   | 1   | 0    | 1   | 0  | 0  | 1  | -2.25dB             |
| 0   | 0   | 0   | 1   | 0    | 1   | 0  | 1  | 0  | -2.5dB              |
| 0   | 0   | 0   | 1   | 0    | 1   | 0  | 1  | 1  | -2.75dB             |
| 0   | 0   | 0   | 1   | 0    | 1   | 1  | 0  | 0  | -3dB                |
| 0   | 0   | 0   | 1   | 0    | 1   | 1  | 0  | 1  | -3.25dB             |
| 0   | 0   | 0   | 1   | 0    | 1   | 1  | 1  | 0  | -3.5dB              |
| 0   | 0   | 0   | 1   | 0    | 1   | 1  | 1  | 1  | -3.75dB             |
| 0   | 0   | 0   | 1   | 1    | 0   | 0  | 0  | 0  | -4dB                |
| 0   | 0   | 0   | 1   | 1    | 0   | 0  | 0  | 1  | -4.25dB             |
| 0   | 0   | 0   | 1   | 1    | 0   | 0  | 1  | 0  | -4.5dB              |
| 0   | 0   | 0   | 1   | 1    | 0   | 0  | 1  | 1  | -4.75dB             |
| 0   | 0   | 0   | 1   | 1    | 0   | 1  | 0  | 0  | -5dB                |
| 0   | 0   | 0   | 1   | 1    | 0   | 1  | 0  | 1  | -5.25dB             |
| 0   | 0   | 0   | 1   | 1    | 0   | 1  | 1  | 0  | -5.5dB              |
| 0   | 0   | 0   | 1   | 1    | 0   | 1  | 1  | 1  | -5.75dB             |
| 0   | 0   | 0   | 1   | 1    | 1   | 0  | 0  | 0  | -6dB                |
| 0   | 0   | 0   | 1   | 1    | 1   | 0  | 0  | 1  | -6.25dB             |
| 0   | 0   | 0   | 1   | 1    | 1   | 0  | 1  | 0  | -6.5dB              |
| 0   | 0   | 0   | 1   | 1    | 1   | 0  | 1  | 1  | -6.75dB             |
| 0   | 0   | 0   | 1   | 1    | 1   | 1  | 0  | 0  | -7dB                |
| 0   | 0   | 0   | 1   | 1    | 1   | 1  | 0  | 1  | -7.25dB             |
| 0   | 0   | 0   | 1   | 1    | 1   | 1  | 1  | 0  | -7.5dB              |
| 0   | 0   | 0   | 1   | 1    | 1   | 1  | 1  | 1  | -7.75dB             |
| 0   | 0   | 1   | 0   | 0    | 0   | 0  | 0  | 0  | -8dB                |



| 1         1         1         0         0         0         0         1         -104.25dB           1         1         1         0         0         0         0         1         0         -104.5dB           1         1         1         0         0         0         1         1         -104.75dB           1         1         1         0         0         0         1         0         0         -105dB           1         1         1         0         0         0         1         0         0         -105.5dB           1         1         1         0         0         0         1         1         0         -105.5dB           1         1         1         0         0         0         1         1         0         -106.5dB           1         1         1         0         0         1         0         0         -106.5dB           1         1         1         0         0         1         0         0         -106.5dB           1         1         1         0         0         1         0         1         0 </th <th>1</th> <th>1</th> <th>1</th> <th>0</th> <th>0</th> <th>0</th> <th>0</th> <th>0</th> <th>0</th> <th>-104dB</th>            | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | -104dB    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|---|---|---|---|---|---|---|-----------|
| 1         1         1         1         0         0         0         1         1         -104.75dB           1         1         1         0         0         0         1         0         0         -105dB           1         1         1         0         0         0         1         0         0         -105.5dB           1         1         1         0         0         0         1         1         0         -105.5dB           1         1         1         0         0         0         1         1         1         -105.75dB           1         1         1         0         0         1         0         0         -106.6BB           1         1         1         0         0         1         0         0         -106.5dB           1         1         1         0         0         1         0         1         0         -106.5dB           1         1         1         0         0         1         0         1         1         0         0         106.5dB           1         1         1         0         0 <td>1</td> <td>1</td> <td>1</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>1</td> <td>-104.25dB</td>               | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | -104.25dB |
| 1         1         1         0         0         0         1         0         0         -105dB           1         1         1         0         0         0         1         0         1         -105.25dB           1         1         1         1         0         0         0         1         1         0         -105.5dB           1         1         1         0         0         0         1         1         1         -105.75dB           1         1         1         0         0         1         0         0         -106dB           1         1         1         0         0         1         0         0         -106dB           1         1         1         0         0         1         0         0         -106dB           1         1         1         0         0         1         0         0         1-106.75dB           1         1         1         0         0         1         1         1         1         1         1         0         0         1         0         0         107dB         1         1                                                                                                                                   | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | -104.5dB  |
| 1         1         1         0         0         1         0         1         -105.25dB           1         1         1         0         0         0         1         1         0         -105.5dB           1         1         1         0         0         0         1         1         1         -105.75dB           1         1         1         0         0         1         0         0         -106.5dB           1         1         1         0         0         1         0         0         -106.5dB           1         1         1         0         0         1         0         -106.5dB           1         1         1         0         0         1         0         -106.5dB           1         1         1         0         0         1         0         0         -106.5dB           1         1         1         0         0         1         1         0         0         -107.5dB           1         1         1         0         0         1         1         1         0         107.5dB           1                                                                                                                                              | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | -104.75dB |
| 1         1         1         0         0         0         1         1         0         -105.5dB           1         1         1         1         0         0         0         1         1         1         -105.75dB           1         1         1         0         0         1         0         0         0         -106.25dB           1         1         1         0         0         1         0         0         1         -106.25dB           1         1         1         0         0         1         0         1         0         -106.5dB           1         1         1         0         0         1         0         -106.5dB           1         1         1         0         0         1         1         0         -106.5dB           1         1         1         0         0         1         1         0         0         -107.5dB           1         1         1         0         0         1         1         1         0         107.5dB           1         1         1         0         0         0         1                                                                                                                                  | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | -105dB    |
| 1         1         1         1         1         1         1         1         1         105.75dB           1         1         1         1         0         0         0         0         106.25dB           1         1         1         0         0         1         0         0         1         106.25dB           1         1         1         0         0         1         0         1         0         106.25dB           1         1         1         0         0         1         0         1         0         106.5dB           1         1         1         0         0         1         1         1         106.75dB           1         1         1         0         0         1         1         0         0         107.25dB           1         1         1         0         0         1         1         1         1         107.75dB           1         1         1         0         0         1         1         1         1         1         1         1         107.75dB           1         1         1         0 <td>1</td> <td>1</td> <td>1</td> <td>0</td> <td>0</td> <td>0</td> <td>1</td> <td>0</td> <td>1</td> <td>-105.25dB</td>               | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | -105.25dB |
| 1         1         1         0         0         1         0         0         -106dB           1         1         1         1         0         0         1         0         0         1         -106.25dB           1         1         1         0         0         1         0         1         0         -107.65dB           1         1         1         0         0         1         1         1         -106.75dB           1         1         1         0         0         1         1         0         0         -107dB           1         1         1         0         0         1         1         0         0         -107dB           1         1         1         0         0         1         1         0         0         -107dB           1         1         1         0         0         1         1         1         0         0         107dB         107dB           1         1         1         0         0         1         1         1         107dB         107dB         107dB         107dB         107dB         107dB                                                                                                                         | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | -105.5dB  |
| 1         1         1         0         0         1         -106.25dB           1         1         1         0         0         1         0         1         -106.5dB           1         1         1         0         0         1         0         1         1         -106.75dB           1         1         1         0         0         1         1         0         0         -107dB           1         1         1         0         0         1         1         0         0         -107dB           1         1         1         0         0         1         1         0         -107.5dB           1         1         1         0         0         1         1         1         0         -107.5dB           1         1         1         0         0         0         0         0         -107.75dB           1         1         1         0         1         0         0         0         0         -108.25dB           1         1         1         0         1         0         0         0         1         0         108                                                                                                                                  | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | -105.75dB |
| 1         1         1         0         0         1         0         1         0         -106.5dB           1         1         1         1         0         0         1         1         -106.75dB           1         1         1         0         0         1         1         0         0         -107dB           1         1         1         1         0         0         1         1         0         0         -107dB           1         1         1         1         0         0         1         1         1         0         0         -107.5dB           1         1         1         0         0         1         1         1         1         -107.75dB           1         1         1         0         1         0         0         0         0         -108dB           1         1         1         0         1         0         0         0         1         -108.25dB           1         1         1         0         1         0         0         1         1         -108.25dB           1         1         1 <td>1</td> <td>1</td> <td>1</td> <td>0</td> <td>0</td> <td>1</td> <td>0</td> <td>0</td> <td>0</td> <td>-106dB</td>                   | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | -106dB    |
| 1         1         1         1         0         1         1         -106.75dB           1         1         1         1         0         0         1         1         0         0         -107dB           1         1         1         1         0         0         1         1         0         0         -107.25dB           1         1         1         0         0         1         1         1         0         -107.5dB           1         1         1         0         0         1         1         1         1         1         -107.75dB           1         1         1         0         1         0         0         0         0         -108dB           1         1         1         0         1         0         0         0         1         -108.25dB           1         1         1         0         1         0         0         0         1         -108.25dB           1         1         1         0         1         0         0         1         1         -108.5dB           1         1         1         0<                                                                                                                                  | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | -106.25dB |
| 1         1         1         0         0         1         1         0         0         -107dB           1         1         1         1         0         0         1         1         0         1         -107.25dB           1         1         1         1         0         0         1         1         1         0         -107.5dB           1         1         1         1         0         0         0         0         0         -108.5dB           1         1         1         0         1         0         0         0         0         -108.5dB           1         1         1         0         1         0         0         0         -108.5dB           1         1         1         0         1         0         0         0         -108.5dB           1         1         1         0         1         0         0         0         -109.5dB           1         1         1         0         1         0         1         0         109.5dB           1         1         1         0         1         0         1 <td>1</td> <td>1</td> <td>1</td> <td>0</td> <td>0</td> <td>1</td> <td>0</td> <td>1</td> <td>0</td> <td>-106.5dB</td>                 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | -106.5dB  |
| 1         1         1         0         0         1         1         0         1         -107.25dB           1         1         1         1         0         0         1         1         1         0         -107.5dB           1         1         1         1         0         0         0         1         1         1         -107.75dB           1         1         1         0         0         0         0         0         -108dB           1         1         1         0         1         0         0         0         1         -108.25dB           1         1         1         0         1         0         -108.5dB           1         1         1         0         1         0         -108.5dB           1         1         1         0         1         0         -109.25dB           1         1         1         0         1         0         1         -109.25dB           1         1         1         0         1         0         1         1         -109.75dB           1         1         1         0                                                                                                                                           | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | -106.75dB |
| 1         1         1         1         0         -107.5dB           1         1         1         1         1         1         1         1         -107.75dB           1         1         1         0         0         0         0         0         -108.25dB           1         1         1         0         1         0         0         0         1         -108.25dB           1         1         1         0         1         0         0         0         1         -108.25dB           1         1         1         0         1         0         0         0         1         -108.25dB           1         1         1         0         1         0         0         1         -108.5dB           1         1         1         0         1         0         0         -109.5dB           1         1         1         0         1         0         1         -109.25dB           1         1         1         0         1         1         1         -109.75dB           1         1         1         0         1         1                                                                                                                                        | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | -107dB    |
| 1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         0         0         0         0         0         -108.25dB           1         1         1         0         1         0         0         0         1         -108.25dB           1         1         1         0         1         0         0         1         0         -108.5dB           1         1         1         0         1         0         0         1         1         -108.75dB           1         1         1         0         1         0         0         -109.25dB           1         1         1         0         1         0         1         -109.25dB           1         1         1         0         1         0         1         1         -109.75dB           1         1         1         0         1         1         0         0         -110.25dB           1         1 </td <td>1</td> <td>1</td> <td>1</td> <td>0</td> <td>0</td> <td>1</td> <td>1</td> <td>0</td> <td>1</td> <td>-107.25dB</td> | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | -107.25dB |
| 1         1         1         0         0         0         0         -108dB           1         1         1         0         1         0         0         0         1         -108.25dB           1         1         1         0         1         0         0         1         0         -108.5dB           1         1         1         0         1         0         0         1         1         -108.75dB           1         1         1         0         1         0         0         -109.45dB           1         1         1         0         1         0         1         -109.25dB           1         1         1         0         1         0         1         -109.25dB           1         1         1         0         1         0         1         -109.25dB           1         1         1         0         1         1         1         -109.75dB           1         1         1         0         1         1         1         -109.75dB           1         1         1         0         1         1         0                                                                                                                                         | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | -107.5dB  |
| 1         1         1         1         0         0         0         1         -108.25dB           1         1         1         1         0         1         0         1         0         -108.5dB           1         1         1         0         1         0         0         1         1         -108.75dB           1         1         1         0         1         0         0         -109dB           1         1         1         0         1         0         1         -109.25dB           1         1         1         0         1         0         1         -109.25dB           1         1         1         0         1         0         1         -109.25dB           1         1         1         0         1         1         1         -109.25dB           1         1         1         0         1         1         1         -109.75dB           1         1         1         0         1         1         0         0         -110.25dB           1         1         1         0         1         1         0                                                                                                                                         | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | -107.75dB |
| 1         1         1         0         1         0         -108.5dB           1         1         1         0         1         0         1         1         -108.75dB           1         1         1         0         1         0         1         0         -109.75dB           1         1         1         0         1         0         1         0         -109.25dB           1         1         1         0         1         0         1         0         -109.5dB           1         1         1         0         1         0         1         1         0         -109.5dB           1         1         1         0         1         1         1         -109.75dB           1         1         1         0         1         1         1         -109.75dB           1         1         1         0         1         1         0         0         -110dB           1         1         1         0         1         1         0         -110.5dB           1         1         1         0         1         1         0                                                                                                                                            | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | -108dB    |
| 1         1         1         1         0         1         1         -108.75dB           1         1         1         1         0         1         0         0         -109dB           1         1         1         0         1         0         1         0         1         -109.25dB           1         1         1         0         1         0         1         1         0         -109.5dB           1         1         1         0         1         1         1         0         -109.5dB           1         1         1         0         1         1         1         1         -109.5dB           1         1         1         0         1         1         1         -109.75dB           1         1         1         0         1         1         0         0         -110.48           1         1         1         0         1         1         0         -110.5dB           1         1         1         0         1         1         0         -111.25dB           1         1         1         0         1                                                                                                                                              | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | -108.25dB |
| 1         1         1         0         1         0         0         -109dB           1         1         1         1         0         1         0         1         -109.25dB           1         1         1         0         1         0         1         0         -109.5dB           1         1         1         0         1         1         1         -109.75dB           1         1         1         0         1         1         1         -109.75dB           1         1         1         0         1         1         0         0         -110dB           1         1         1         0         1         1         0         0         -110.25dB           1         1         1         0         1         1         0         -110.5dB           1         1         1         0         1         1         0         -111dB           1         1         1         0         1         1         0         -111.25dB           1         1         1         0         1         1         1         0         -111.5dB                                                                                                                                         | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | -108.5dB  |
| 1         1         1         0         1         0         1         -109.25dB           1         1         1         0         1         0         1         0         -109.5dB           1         1         1         0         1         0         1         1         1         -109.75dB           1         1         1         0         1         1         1         -109.75dB           1         1         1         0         1         1         0         0         -110.45dB           1         1         1         0         1         1         0         0         -110.25dB           1         1         1         0         1         1         0         -110.5dB           1         1         1         0         1         1         0         -110.5dB           1         1         1         0         1         1         0         0         -111dB           1         1         1         0         1         1         0         0         -111.25dB           1         1         1         0         1         1                                                                                                                                           | 1 | 1 | 1 | 0 |   |   | 0 | 1 | 1 | -108.75dB |
| 1         1         1         0         1         0         -109.5dB           1         1         1         0         1         1         1         1         -109.75dB           1         1         1         0         1         1         1         1         -109.75dB           1         1         1         0         1         1         0         0         -110.45dB           1         1         1         0         1         1         0         0         -110.5dB           1         1         1         0         1         1         0         -110.5dB           1         1         1         0         1         1         0         -110.5dB           1         1         1         0         1         1         0         -111.25dB           1         1         1         0         1         1         1         0         -111.5dB           1         1         1         0         1         1         1         1         -111.75dB                                                                                                                                                                                                                            | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | -109dB    |
| 1         1         1         1         0         1         1         1         -109.75dB           1         1         1         1         0         0         0         -110dB           1         1         1         0         1         1         0         0         -110.25dB           1         1         1         0         1         1         0         -110.5dB           1         1         1         0         1         1         0         -110.5dB           1         1         1         0         1         1         0         -111.25dB           1         1         1         0         1         1         1         0         -111.5dB           1         1         1         0         1         1         1         1         1         -111.75dB           1         1         1         0         1         1         1         1         -111.75dB                                                                                                                                                                                                                                                                                                             | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | -109.25dB |
| 1         1         1         0         1         1         0         0         0         -110dB           1         1         1         0         1         1         0         0         1         -110.25dB           1         1         1         0         1         0         1         0         -110.5dB           1         1         1         0         1         1         0         -110.75dB           1         1         1         0         1         1         0         0         -111dB           1         1         1         0         1         1         1         0         1         -111.25dB           1         1         1         0         1         1         1         0         -111.5dB           1         1         1         0         1         1         1         1         -111.75dB                                                                                                                                                                                                                                                                                                                                                                 | 1 | 1 | 1 | 0 | 1 |   |   |   | 0 | -109.5dB  |
| 1     1     1     1     0     1     -110.25dB       1     1     1     0     1     0     1     0     -110.5dB       1     1     1     0     1     1     0     1     1     -110.75dB       1     1     1     0     1     1     0     0     -111dB       1     1     1     0     1     1     0     0     -111.25dB       1     1     1     0     1     1     1     0     -111.5dB       1     1     1     0     1     1     1     1     1     -111.75dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | -109.75dB |
| 1     1     1     0     1     1     0     1     0     -110.5dB       1     1     1     1     0     1     1     -110.75dB       1     1     1     0     1     1     0     0     -111dB       1     1     1     0     1     1     1     0     0     -111.25dB       1     1     1     0     1     1     1     0     -111.5dB       1     1     1     1     1     1     1     1     -111.75dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 | 1 | 1 | 0 |   |   | 0 | 0 | 0 | -110dB    |
| 1     1     1     0     1     1     -110.75dB       1     1     1     1     0     1     1     0     0     -111dB       1     1     1     0     1     1     1     0     1     -111.25dB       1     1     1     0     1     1     1     0     -111.5dB       1     1     1     1     1     1     1     1     -111.75dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | -110.25dB |
| 1     1     1     0     1     1     1     0     0     -111dB       1     1     1     1     0     1     1     0     1     -111.25dB       1     1     1     0     1     1     1     0     -111.5dB       1     1     1     1     1     1     1     1     -111.75dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | -110.5dB  |
| 1     1     1     0     1     1     1     0     1     -111.25dB       1     1     1     0     1     1     1     0     -111.5dB       1     1     1     0     1     1     1     1     1     -111.75dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | -110.75dB |
| 1         1         1         0         1         1         1         1         0         -111.5dB           1         1         1         1         1         1         1         1         -111.75dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 |           |
| 1 1 1 0 1 1 1 1 1 -111.75dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   | 1 | 1 | 0 |   |   | 1 |   | 1 |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | -111.5dB  |
| 1 1 1 1 1 1 1 1 1 Mute                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   | 1 |   | 0 | - |   | 1 |   |   | -111.75dB |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | * | Mute      |

(\*)Default Setting

< SS\_L/SS\_R Setting >

| Data | Catting          |
|------|------------------|
| D4   | Setting          |
| 0    | Soft-Step OFF(*) |
| 1    | Soft-Step ON     |

(\*)Default Setting

Note) Set the SS\_L/SS\_R setting after a power-up immediately. Set SS\_L/SS\_R when volume setting sets Mute in other cases.



♦L/R Cont: Select "L channel Volume, R channel Volume independent control" or "L channel Volume, R channel Volume

link control" of method of volume control.

♦Gain: 0 to +21dB / 3dB step. Each gain is controlled independently.

**♦**Z/C : Zero Cross Detection circuit ON/OFF setting.

Zero cross function changes the gain setting when the input signal is near 0 V and reduces audible noise

generated during gain adjustment.

When the zero-crossing detection circuit is ON, new gain setting is not reflected until the input signal is within the

range of ± 25 mV.

| D15         | D14 | D13      | D12  | D11 | D10      | D9   | D8  | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |
|-------------|-----|----------|------|-----|----------|------|-----|----|----|----|----|----|----|----|----|
| L/R<br>Cont | Lcl | nannel C | €ain | Rc  | hannel ( | Gain | Z/C | 0  | 0  | 0  | 0  | 1  | 0  | *  | *  |

#### <L/R Cont Setting>

| Data | Cotting                                                   |  |  |  |  |  |  |  |
|------|-----------------------------------------------------------|--|--|--|--|--|--|--|
| D15  | Setting                                                   |  |  |  |  |  |  |  |
| 0    | L channel Volume, R channel Volume independent control(*) |  |  |  |  |  |  |  |
| 1    | L channel Volume, R channel Volume link control           |  |  |  |  |  |  |  |

(\*)Default Setting

#### Command table when L channel Volume and R channel Volume are linked

| D15 | D14                 | D13 | D12 | D11 | D10 | D9 | D8 | D7 | D6 | D5 | D4   | D3 | D2 | D1 | D0 |
|-----|---------------------|-----|-----|-----|-----|----|----|----|----|----|------|----|----|----|----|
|     | L /R channel Volume |     |     |     |     |    |    |    |    |    | SS_L | 0  | 0  | *  | *  |
|     | No Acceptable       |     |     |     |     |    |    |    |    |    | SS_R | 0  | 1  | *  | *  |

#### <L channel Gain / R channel Gain Setting>

|     | Data |     |         |
|-----|------|-----|---------|
| D14 | D13  | D12 | Setting |
| D11 | D10  | D9  |         |
| 0   | 0    | 0   | 0dB(*)  |
| 0   | 0    | 1   | +3dB    |
| 0   | 1    | 0   | +6dB    |
| 0   | 1    | 1   | +9dB    |
| 1   | 0    | 0   | +12dB   |
| 1   | 0    | 1   | +15dB   |
| 1   | 1    | 0   | +18dB   |
| 1   | 1    | 1   | +21dB   |

(\*)Default Setting

#### <Z/C Setting>

| Data | Cotting                            |  |
|------|------------------------------------|--|
| D8   | Setting                            |  |
| 0    | Zero Cross Detection Circuit ON(*) |  |
| 1    | Zero Cross Detection Circuit OFF   |  |

(\*)Default Setting



◆Zero Window : Select Zero Cross Detection range setting.◆CLK\_Div : Select clock frequency dividing for Soft-Step.

**♦SS\_CLK**: Select clock operation for Soft-Step.

| D15 | D14 | D13        | D12 | D11     | D10 | D9         | D8 | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |
|-----|-----|------------|-----|---------|-----|------------|----|----|----|----|----|----|----|----|----|
| 0   |     | ero<br>dow |     | CLK_Div | /   | SS_<br>CLK | 0  | 0  | 0  | 0  | 0  | 1  | 1  | *  | *  |

# <Zero Window Setting>

| Data |     | Cotting     |  |  |  |
|------|-----|-------------|--|--|--|
| D14  | D13 | Setting     |  |  |  |
| 0    | 0   | Default (*) |  |  |  |
| 0    | 1   | Default *2  |  |  |  |
| 1    | 0   | Default *4  |  |  |  |
| 1    | 1   | Default *8  |  |  |  |

<sup>(\*)</sup>Default Setting

### <CLK\_Div Setting>

| Data |     |     | Cotting      |
|------|-----|-----|--------------|
| D12  | D11 | D10 | Setting      |
| 0    | 0   | 0   | Default (*)  |
| 0    | 0   | 1   | Default /4   |
| 0    | 1   | 0   | Default /8   |
| 0    | 1   | 1   | Default /16  |
| 1    | 0   | 0   | Default /32  |
| 1    | 0   | 1   | Default /64  |
| 1    | 1   | 0   | Default /128 |
| 1    | 1   | 1   | Default /256 |

<sup>(\*)</sup>Default Setting

# <SS\_CLK Setting>

| Data | Setting                      |  |
|------|------------------------------|--|
| D9   |                              |  |
| 0    | External clock operation (*) |  |
| 1    | Internal clock operation     |  |

(\*)Default Setting



### ■ TYPICAL CHARACTERISTICS













Ver.3.1 - 15 -



#### TYPICAL CHARACTERISTICS



# **Maximum Input Voltage vs Ambient Temperature**



**Maximum Output Voltage vs Frequency** 



**Maximum Output Voltage vs Ambient Temperature** 



Output Voltage Gain vs Frequency V=±15V, Vin=4Vrms, Bandpass



Volume Gain Output vs Volume Setting





#### TYPICAL CHARACTERISTICS

# Volume Gain Output Error vs Volume Setting V=±15V, f=1kHz, Vin=4Vrms, Gain=0dB, Bandpass



#### **Volume Gain Output Error vs Volume Setting** V=±15V, f=1kHz, Vin=200mVrms, Volume=0dB, Bandpass



#### **Volume Resolution vs Volume Setting** V=±15V, f=1kHz, Vin=4Vrms, Gain=0dB, Bandpass



**Volume Resolution vs Volume Setting** 



# Volume Setting [dB] **Volume Matching Error vs Volume Setting**









#### **■PACKAGE DIMENSIONS**

Unit: mm



#### **■EXAMPLE OF SOLDER PADS DIMENSIONS**





#### **■PACKING SPEC**

Unit: mm

# **TAPING DIMENSIONS**



| SYMBOL | DIMENSION      | REMARKS          |
|--------|----------------|------------------|
| Α      | $8.4 \pm 0.1$  | BOTTOM DIMENSION |
| В      | 11.35 ± 0.1    | BOTTOM DIMENSION |
| D0     | 1.5 +0.1       |                  |
| D1     | 2.0 +0.1       |                  |
| Е      | $1.75 \pm 0.1$ |                  |
| F      | $11.5 \pm 0.1$ |                  |
| P0     | $4.0 \pm 0.1$  |                  |
| P1     | $12.0 \pm 0.1$ |                  |
| P2     | $2.0 \pm 0.1$  |                  |
| Т      | $0.3 \pm 0.05$ |                  |
| T2     | 2.15           |                  |
| K0     | $1.8 \pm 0.1$  |                  |
| W      | $24.0 \pm 0.3$ |                  |
| W1     | 21.0±0.1       |                  |

#### **REEL DIMENSIONS**



| SYMBOL | DIMENSION  |
|--------|------------|
| Α      | 254 ± 2    |
| В      | 100 ± 1    |
| С      | 13 ± 0.2   |
| D      | 21 ± 0.8   |
| E      | 2 ± 0.5    |
| W      | 25.5 ± 1.0 |
| W1     | 2          |

#### **TAPING STATE**



# **PACKING STATE**





#### **■RECOMMENDED MOUNTING METHOD**

#### INFRARED REFLOW SOLDERING METHOD

# Recommended reflow soldering procedure





#### [CAUTION]

- New JRC strives to produce reliable and high quality semiconductors. New JRC's semiconductors are intended for specific
  applications and require proper maintenance and handling. To enhance the performance and service of New JRC's
  semiconductors, the devices, machinery or equipment into which they are integrated should undergo preventative maintenance
  and inspection at regularly scheduled intervals. Failure to properly maintain equipment and machinery incorporating these
  products can result in catastrophic system failures
- 2. The specifications on this datasheet are only given for information without any guarantee as regards either mistakes or omissions. The application circuits in this datasheet are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial property rights.
  All other trademarks mentioned herein are the property of their respective companies.
- 3. To ensure the highest levels of reliability, New JRC products must always be properly handled.

  The introduction of external contaminants (e.g. dust, oil or cosmetics) can result in failures of semiconductor products.
- 4. New JRC offers a variety of semiconductor products intended for particular applications. It is important that you select the proper component for your intended application. You may contact New JRC's Sale's Office if you are uncertain about the products listed in this datasheet.
- 5. Special care is required in designing devices, machinery or equipment which demand high levels of reliability. This is particularly important when designing critical components or systems whose failure can foreseeably result in situations that could adversely affect health or safety. In designing such critical devices, equipment or machinery, careful consideration should be given to amongst other things, their safety design, fail-safe design, back-up and redundancy systems, and diffusion design.
- 6. The products listed in this datasheet may not be appropriate for use in certain equipment where reliability is critical or where the products may be subjected to extreme conditions. You should consult our sales office before using the products in any of the following types of equipment.
  - · Aerospace Equipment
  - · Equipment Used in the Deep Sea
  - · Power Generator Control Equipment (Nuclear, steam, hydraulic, etc.)
  - · Life Maintenance Medical Equipment
  - · Fire Alarms / Intruder Detectors
  - · Vehicle Control Equipment (Automobile, Airplane, railroad, ship, etc.)
  - · Various Safety Devices
- 7. New JRC's products have been designed and tested to function within controlled environmental conditions. Do not use products under conditions that deviate from methods or applications specified in this datasheet. Failure to employ the products in the proper applications can lead to deterioration, destruction or failure of the products. New JRC shall not be responsible for any bodily injury, fires or accident, property damage or any consequential damages resulting from misuse or misapplication of the products. The products are sold without warranty of any kind, either express or implied, including but not limited to any implied warranty of merchantability or fitness for a particular purpose.
- 8. Warning for handling Gallium and Arsenic (GaAs) Products (Applying to GaAs MMIC, Photo Reflector). These products use Gallium (Ga) and Arsenic (As) which are specified as poisonous chemicals by law. For the prevention of a hazard, do not burn, destroy, or process chemically to make them as gas or power. When the product is disposed of, please follow the related regulation and do not mix this with general industrial waste or household waste.
- 9. The product specifications and descriptions listed in this datasheet are subject to change at any time, without notice.



# **Mouser Electronics**

**Authorized Distributor** 

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Nisshinbo Micro Devices: MUSES72323V-TE1