Table of Contents

- 1 Introduction
- 2 RNN ArchitecturesLSTMGRUКак решается проблема?
- 3 Другие архитектуры RNN
- 4 Заключение

Приложения рекуррентных нейронных сетей

- Прогнозирование временных рядов
- Управление технологическими процессами
- Классификация текстов или их фрагментов
- Анализ тональности документа/предложений/слов
- Машинный перевод
- Распознавание речи
- Синтез речи
- Синтез ответов на вопросы, разговорный интеллект
- Генерация подписей к изображениям
- Генерация рукописного текста
- Интерпретация генома и другие задачи биоинформатики
- ..

Общие положения

 x_t — входной вектор в момент времени t

 h_t — вектор скрытого состояния в момент времени t

$$y_t$$
 — выходной вектор (иногда $y_t = h_t$)

$$h_{t} = \sigma_{h}(Ux_{t} + Wh_{t-1})$$

$$y_{t} = \sigma_{y}(Vh_{t})$$

$$V \downarrow_{h_{t-1}} V \downarrow_{h_{t-1}} V \downarrow_{h_{t}} V \downarrow_{h_{t+1}} V \downarrow_{w} V \downarrow_{h_{t+1}} V \downarrow$$

Обучение сети

$$\sum_{t=0}^{T} \mathcal{L}_t(U, V, W) \to \min_{U, V, W}$$

$$\mathcal{L}_t(U,V,W) = \mathcal{L}(y_t(U,V,W))$$
 – потеря от предсказания y_t

При Backpropagation получается, что

$$\frac{\partial \mathcal{L}}{\partial W} = \frac{\partial \mathcal{L}}{\partial y_t} \frac{\partial y_t}{\partial h_t} \sum_{k=0}^{t} \left(\prod_{i=k+1}^{t} \frac{\partial h_i}{\partial h_{i-1}} \right) \frac{\partial h_k}{\partial W}$$

Обучение сети

RNN Architectures

Из-за большого количества произведений могут возникать проблемы потери точности, затухания или взрыва градиаентов.

Борьба с затуханием и взрывом

- Gradient clipping
- Усложнение архитектуры: LSTM/GRU
- ullet Регуляризация $rac{\partial h_i}{\partial h_{i-1}}
 ightarrow 1$ (не популярно)
- Truncated Backpropagation Through Time ограничивать количество множителей (не популярно)

Gradient clipping

Идея в ограничении норм градиентов:

 $\begin{tabular}{ll} \textbf{Algorithm 1} Pseudo-code for norm clipping the gradients whenever they explode \end{tabular}$

- 1: $\hat{g} \leftarrow \frac{\partial \mathcal{L}_t}{\partial W}$
- 2: if $||\hat{g}|| \ge threshold$ then
- 3: $\hat{g} \leftarrow \frac{\text{threshold}}{||\hat{g}||} \hat{g}$
- 4: end if

Используется для борьбы со взрывом.

Table of Contents

- 1 Introduction
- 2 RNN Architectures LSTM GRU Как решается проблема?
- З Другие архитектуры RNN
- 4 Заключение

Long short-term memory (LSTM)

0000

RNN Architectures

Мотивация LSTM: сеть должна долго помнить предысторию (контекст), какой именно - сеть выучивает самостоятельно Вводится вектор C_t - вектор долгого контекста

LSTM

LSTM - forget gate

RNN Architectures

8000

$$f_{t} = \sigma(W_{f} \cdot [h_{t-1}, x_{t}] + b_{f})$$

$$i_{t} = \sigma(W_{i} \cdot [h_{t-1}, x_{t}] + b_{i})$$

$$o_{t} = \sigma(W_{o} \cdot [h_{t-1}, x_{t}] + b_{o})$$

$$\tilde{C}_{t} = \operatorname{th}(W_{c} \cdot [h_{t-1}, x_{t}] + b_{c})$$

$$C_{t} = f_{t} \odot C_{t-1} + i_{t} \odot \tilde{C}_{t}$$

$$h_{t} = o_{t} \odot \operatorname{th}(C_{t})$$

Фильтр забывания (forget gate) с параметрами W_f , b_f решает какие координаты вектора контекста C_{t-1} надо запомнить.

LSTM - input gate

RNN Architectures

80000

$$f_{t} = \sigma(W_{f} \cdot [h_{t-1}, x_{t}] + b_{f})$$

$$i_{t} = \sigma(W_{i} \cdot [h_{t-1}, x_{t}] + b_{i})$$

$$o_{t} = \sigma(W_{o} \cdot [h_{t-1}, x_{t}] + b_{o})$$

$$\tilde{C}_{t} = \operatorname{th}(W_{c} \cdot [h_{t-1}, x_{t}] + b_{c})$$

$$C_{t} = f_{t} \odot C_{t-1} + i_{t} \odot \tilde{C}_{t}$$

$$h_{t} = o_{t} \odot \operatorname{th}(C_{t})$$

Фильтр входных данных (input gate) с параметрами W_i, b_i решает какие координаты вектора контекста надо обновить. Модель нового контекста с параметрами W_c, b_c формирует вектор \tilde{C}_t с информацией о новом контексте.

LSTM

LSTM - новый вектор контекста

$$f_t = \sigma(W_f \cdot [h_{t-1}, x_t] + b_f)$$

$$i_t = \sigma(W_i \cdot [h_{t-1}, x_t] + b_i)$$

$$o_t = \sigma(W_o \cdot [h_{t-1}, x_t] + b_o)$$

$$\tilde{C}_t = \text{th}(W_c \cdot [h_{t-1}, x_t] + b_c)$$

$$C_t = f_t \odot C_{t-1} + i_t \odot \tilde{C}_t$$

$$h_t = o_t \odot \text{th}(C_t)$$

Новый вектор контекста C_t формируется как смесь старого вектора контекста C_{t-1} с фильтром i_t и нового вектора контекста \tilde{C}_t с фильтром i_t . Настраиваемых параметров нет.

LSTM - output gate

$$f_{t} = \sigma(W_{f} \cdot [h_{t-1}, x_{t}] + b_{f})$$

$$i_{t} = \sigma(W_{i} \cdot [h_{t-1}, x_{t}] + b_{i})$$

$$o_{t} = \sigma(W_{o} \cdot [h_{t-1}, x_{t}] + b_{o})$$

$$\tilde{C}_{t} = \operatorname{th}(W_{c} \cdot [h_{t-1}, x_{t}] + b_{c})$$

$$C_{t} = f_{t} \odot C_{t-1} + i_{t} \odot \tilde{C}_{t}$$

$$h_{t} = o_{t} \odot \operatorname{th}(C_{t})$$

Фильтр выходных данных (output gate) с параметрами W_o, b_o решает какие координаты **нового** вектора контекста C_t пойдут дальше.

Выходной сигнал h_t формируется из вектора контекста C_t с помощью нелинейного преобразования и фильтра o_t .

Gated Recurrent Unit (GRU)

Используется только состояние h_t , вектор контекста C_t не вводится.

Фильтр обновления (update gate) вместо входного и забывающего.

Фильтр перезагрузки (reset gate) r_t решает какую часть памяти нужно перенести дальше с прошлого шага.

Как LSTM и GRU решают проблему?

Теперь h_t очень сложно (нелинейными преобразованиями) зависит от h_{t-1} , но вместо этого поялвяется $\frac{\partial C_t}{\partial C_{t-1}} = f_t$. f_t - это сигмоида, которая всё ещё может быть около нуля. Однако, этого можно избежать: инициализировать b_f большими значениями. Это будет гарантировать близкое к единице значение прозводной по крайней мере на первых итерациях.

Поскольку в самом начале обучения у нас выучиваются полезные вещи, то и далее будет происходить также.

Table of Contents

- 1 Introduction
- 2 RNN Architectures LSTM GRU Как решается проблема?
- З Другие архитектуры RNN
- 4 Заключение

Deep RNN

Идея в подачи выходов одной рекуррентной сети на вход другой. Обычно используется до 5 слоёв.

Deep RNN

$$H_t^{(1)} = GRU(H_{t-1}^{(1)}, x_t)$$

$$H_t^{(2)} = GRU(H_{t-1}^{(2)}, H_t^{(1)})$$

$$H_t^{(3)} = GRU(H_{t-1}^{(3)}, H_t^{(2)})$$

$$\hat{y}_t = g(UH_t^{(3)} + \hat{b})$$

Bidirectional GRU (BiGRU)

$$ec{h_t} = G ec{R} U(ec{h_{t-1}}, x_t)$$
 $ec{h}_t = G ec{R} U(ec{h_{t+1}}, x_t)$
 $h_t = B i G R U_t(x, ec{h}, ec{h}) = \left[ec{h_t}, ec{h_t} \right]$
 $\hat{y}_t = g(U h_t + \hat{b})$

Другие архитектуры RNN

Table of Contents

- 1 Introduction
- 2 RNN Architectures LSTM GRU Как решается проблема?
- 3 Другие архитектуры RNN
- 4 Заключение

Резюме и дополнительные сведения

- Рекуррентные сети обучаемые преобразования входной последовательности в выходную (seq2seq)
- Приёмы, сделавшие возможным глубокое обучение:
 - продвинутые градиентные методы ускоряют сходимость
 - skip connections позволяет ещё сильнее упростить архитектуру LSTM
- Переход от feature engineering к architecture engineering
- Подбор архитектуры и гиперпараметров всё ещё искусство
- Иерархические рекуррентные сети используются для посимвольных последовательностей