Dracarys

Team Referrence Library

May 11, 2016

上海交通大学 Shanghai Jiao Tong University			Page 1
Contents		后缀自动机	20
多边形与圆面积交	2	后缀树 (With Pop Front)	21
二维几何	2	字符串最小表示	23
$n\log n$ 半平面交	4	轻重链剖分	23
Delaunay 三角剖分	5	Splay Tree	24
三维几何操作合并	7	Link Cut Tree	24
三维凸包	7	Dominator Tree	24
凸包上快速询问	8	DancingLinks	25
圆的面积模板 $(n^2 \log n)$	9	环状最长公共子序列	26
三角形的心	10	直线下有多少个格点	27
最小覆盖球	11	费用流	27
经纬度求球面最短距离	11	积分表	28
长方体表面两点最短距离	11	Java	28
最大团	11	Vimrc	29
KM	12		
最小树形图	13		
无向图最小割	14		
带花树	14		
Hopcroft	15		
素数判定	16		
启发式分解	16		
二次剩余	16		
Pell 方程	16		
日期公式	17		
Schreier-Sims	17		
线性规划	18		
FFT	19		
Manacher/ 扩展 KMP	19		
后缀数组 (倍增)	20		

多边形与圆面积交

```
1 double areaCT(Point pa, Point pb, double r) {
     if (pa.len() < pb.len()) {</pre>
       swap(pa, pb);
 3
 4
     if (sign(pb.len()) == 0) {
 5
 6
       return 0;
 7
 8
     double a = pb.len(), b = pa.len(), c = (pb - pa).len();
 9
     double sinB = fabs(det(pb, pb - pa) / a / c),
          cosB = dot(pb, pb - pa) / a / c,
10
11
           sinC = fabs(det(pa, pb) / a/ b),
          cosC = dot(pa, pb) / a / b;
12
     double B = atan2(sinB, cosB), C = atan2(sinC, cosC);
13
14
     if (a > r) {
       S = C / 2 * r * r;
15
       h = a * b * sinC / c;
16
17
       if (h < r && B < PI / 2) {
18
         S = (acos(h / r) * r * r - h * sqrt(r * r - h * h));
19
20
     } else if (b > r) {
       double theta = PI - B - asin(sinB / r * a);
21
       S = a * r * sin(theta) / 2 + (C - theta) / 2 * r * r;
22
23
     } else {
       S = sinC * a * b / 2;
24
25
26
     return S;
27
```

二维几何

```
1 | #include <iostream>
2 | #include <cmath>
   #include <vector>
   using namespace std;
5
6
   const double PI = acos(-1.0);
8
   const double EPS = 1e-8;
   int sign(double x)
10
11
12
     return x \leftarrow -EPS ? -1 : x > EPS;
13 | }
14
15 double newSqrt(double x)
```

```
16 {
17
     return x < 0 ? 0 : sqrt(x);
18 }
19
   struct Point {
20
     double x, y;
21
     Point(double x = 0, double y = 0) : x(x), y(y) {}
22
     Point operator + (const Point &that) const {
23
24
       return Point(x + that.x, y + that.y);
25
26
     Point operator - (const Point &that) const {
       return Point(x - that.x, y - that.y);
27
28
     Point operator * (const double &that) const {
29
       return Point(x * that, y * that);
30
     }
31
     Point operator / (const double &that) const {
32
       return Point(x / that, y / that);
33
34
     Point rotate(const double ang) { // 逆时针旋转 ang 弧度
35
36
       return Point(cos(ang) * x - sin(ang) * y, cos(ang) * y + sin(ang) * x);
37
38
     Point turn90() { // 逆时针旋转 90 度
       return Point(-y, x);
39
40
41
     double len2() const {
       return x * x + y * y;
42
43
     double len() const {
44
       return sqrt(x * x + y * y);
45
46
     Point unit() const {
47
       return *this / len();
48
49
     int operator < (const Point &that) const {</pre>
50
       int d = sign(x - that.x); if (d) return d < 0;</pre>
51
       return sign(y - that.y) < 0;</pre>
52
53
54
   double det(Point a, Point b)
55
56
     return a.x * b.y - b.x * a.y;
57
58
   double dot(Point a, Point b)
59
60 {
```

```
return a.x * b.x + a.v * b.v:
61
                                                                                            106
62 }
                                                                                            107
 63 double det(Point s, Point a, Point b)
                                                                                            108
                                                                                                  p1 = o + delta:
 64 | {
                                                                                            109
                                                                                                  p2 = o - delta;
 65
      return (a.x - s.x) * (b.y - s.y) - (b.x - s.x) * (a.y - s.y);
                                                                                                  return true;
                                                                                           110
 66 | }
                                                                                            111
 67
                                                                                           112
                                                                                            113 // 求圆与圆的交面积
 68 struct Line {
 69
      Point a, b;
 70
      Line(Point a, Point b) : a(a), b(b) {}
                                                                                           115
                                                                                           116
71 | };
                                                                                                    return 0;
 72
                                                                                           117
    Point isLL(const Line &11, const Line &12) {
                                                                                           118
      double s1 = det(12.b - 12.a, 11.a - 12.a),
                                                                                           119
 74
           s2 = -det(12.b - 12.a, 11.b - 12.a);
                                                                                            120
 75
 76
      return (l1.a * s2 + l1.b * s1) / (s1 + s2);
                                                                                            121
 77
                                                                                            122
    bool onSeg(const Line &1, const Point &p) { // 点在线段上
 78
                                                                                            123
      return sign(det(p - 1.a, 1.b - 1.a)) == 0 && sign(dot(p - 1.a, p - 1.b)) <= 0;
 79
                                                                                            124
 80
                                                                                            125
 81
    Point projection(const Line &l, const Point &p) { // 点到直线投影
                                                                                            126
 82
      return 1.a + (1.b - 1.a) * (dot(p - 1.a, 1.b - 1.a) / (1.b - 1.a).len2());
                                                                                            127
 83 | }
                                                                                            128
 84 | double disToLine(const Line &1, const Point &p) {
                                                                                            129
      return abs(det(p - 1.a, 1.b - 1.a) / (1.b - 1.a).len());
 85
                                                                                            130
 86 | }
                                                                                            131
 87
    double disToSeg(const Line &1, const Point &p) { // 点到线段距离
                                                                                            132
 88
      return sign(dot(p - 1.a, 1.b - 1.a)) * sign(dot(p - 1.b, 1.a - 1.b)) != 1 ?
                                                                                            133
 89
        disToLine(1, p) : min((p - 1.a).len(), (p - 1.b).len());
                                                                                            134
 90
                                                                                            135
    Point symmetryPoint(const Point a, const Point b) { // 点 b 关于点 a 的中心对称点
                                                                                            136
 91
      return a + a - b;
                                                                                            137
                                                                                                  return true;
 92
                                                                                            138
 93
    Point reflection(const Line &1, const Point &p) { // 点关于直线的对称点
                                                                                            139
 94
      return symmetryPoint(projection(l, p), p);
95
 96 | }
    struct Circle {
                                                                                            142 {
 97
      Point o;
 98
                                                                                            143
      double r;
                                                                                            144
 99
      Circle (Point o = Point(0, 0), double r = 0) : o(o), r(r) {}
100
                                                                                            145
101 };
                                                                                            146
102
                                                                                            147
103 // 求圆与直线的交点
                                                                                            148
104 bool isCL(Circle a, Line 1, Point &p1, Point &p2) {
                                                                                            149
                                                                                                  return true;
     if (sign(det(l.a - a.o, l.b - a.o) / (l.a - l.b).len()) > 0) return false;
                                                                                            150 }
```

```
Point o = isLL(Line(a.o., a.o + (1.b - 1.a).turn90()), 1);
  Point delta = (1.b - 1.a).unit() * newSqrt(a.r * a.r - (o - a.o).len2()):
double areaCC(const Circle &c1, const Circle &c2) {
  double d = (c1.o - c2.o).len();
 if (sign(d - (c1.r + c2.r)) >= 0) {
  if (sign(d - abs(c1.r - c2.r)) \leftarrow 0)
    double r = min(c1.r, c2.r);
   return r * r * PI;
  double x = (d * d + c1.r * c1.r - c2.r * c2.r) / (2 * d),
       t1 = acos(x / c1.r), t2 = acos((d - x) / c2.r);
  return c1.r * c1.r * t1 + c2.r * c2.r * t2 - d * c1.r * sin(t1);
// 求圆与圆的交点,注意调用前要先判定重圆
bool isCC(Circle a, Circle b, Point &p1, Point &p2) {
  double s1 = (a.o - b.o).len();
  if (sign(s1 - a.r - b.r)) > 0 \mid | sign(s1 - abs(a.r - b.r)) < 0) return false;
  double s2 = (a.r * a.r - b.r * b.r) / s1;
  double aa = (s1 + s2) * 0.5, bb = (s1 - s2) * 0.5;
  Point o = (b.o - a.o) * (aa + bb)) + a.o;
  Point delta = (b.o - a.o).unit().turn90() * newSqrt(a.r * a.r - aa * aa);
  p1 = o + delta, p2 = o - delta;
// 求点到圆的切点,按关于点的左手方向返回两个点
bool tanCP(const Circle &c, const Point &p0, Point &p1, Point &p2)
  double x = (p0 - c.o).len2(), d = x - c.r * c.r;
 if (d < EPS) return false;</pre>
  Point p = (p0 - c.o) * (c.r * c.r / x);
  Point delta = ((p0 - c.o) * (-c.r * sqrt(d) / x)).turn90();
  p1 = c.o + p + delta;
  p2 = c.o + p - delta;
```

```
151
    // 求圆到圆的外共切线, 按关于 c1.o 的左手方向返回两条线
152
    vector<Line> extanCC(const Circle &c1, const Circle &c2)
154 | {
      vector<Line> ret;
155
156
      if (sign(c1.r - c2.r) == 0) {
        Point dir = c2.o - c1.o;
157
158
        dir = (dir * (c1.r / dir.len())).turn90();
        ret.push_back(Line(c1.o + dir, c2.o + dir));
159
160
        ret.push_back(Line(c1.o - dir, c2.o - dir));
161
      } else {
162
        Point p = (c1.0 * -c2.r + c2.o * c1.r) / (c1.r - c2.r);
163
        Point p1, p2, q1, q2;
        if (tanCP(c1, p, p1, p2) && tanCP(c2, p, q1, q2)) {
164
165
         if (c1.r < c2.r) swap(p1, p2), swap(q1, q2);
166
          ret.push_back(Line(p1, q1));
167
          ret.push_back(Line(p2, q2));
168
        }
169
170
      return ret;
171
172
    // 求圆到圆的内共切线, 按关于 c1.o 的左手方向返回两条线
    vector<Line> intanCC(const Circle &c1, const Circle &c2)
175 | {
176
      vector<Line> ret;
      Point p = (c1.0 * c2.r + c2.o * c1.r) / (c1.r + c2.r);
177
178
      Point p1, p2, q1, q2;
      if (tanCP(c1, p, p1, p2) && tanCP(c2, p, q1, q2)) {
179
180
        ret.push_back(Line(p1, q1));
181
        ret.push_back(Line(p2, q2));
182
     }
183
      return ret;
184 }
185
186 | bool contain(vector<Point> polygon, Point p) { // 判断点 p
      → 是否被多边形包含,包括落在边界上
      int ret = 0, n = polygon.size();
187
188
      for(int i = 0; i < n; ++ i) {
189
        Point u = polygon[i], v = polygon[(i + 1) % n];
190
        if (onSeg(Line(u, v), p)) return true;
        if (sign(u.y - v.y) \leftarrow 0) swap(u, v);
191
        if (sign(p.y - u.y) > 0 \mid | sign(p.y - v.y) <= 0) continue;
192
        ret += sign(det(p, v, u)) > 0;
193
194
```

```
return ret & 1:
195
196 }
197
    vector<Point> convexCut(const vector<Point>&ps, Line 1) { // 用半平面 (q1,q2)
       → 的逆时针方向去切凸多边形
      vector<Point> qs;
199
200
      int n = ps.size();
201
      for (int i = 0; i < n; ++i) {
202
        Point p1 = ps[i], p2 = ps[(i + 1) \% n];
203
        int d1 = sign(det(l.a, l.b, p1)), d2 = sign(det(l.a, l.b, p2));
        if (d1 >= 0) qs.push_back(p1);
204
        if (d1 * d2 < 0) qs.push_back(isLL(Line(p1, p2), 1));</pre>
205
206
207
      return qs;
208
     vector<Point> convexHull(vector<Point> ps) { // 求点集 ps 组成的凸包
209
      int n = ps.size(); if (n <= 1) return ps;</pre>
210
      sort(ps.begin(), ps.end());
211
      vector<Point> qs;
212
      for (int i = 0; i < n; qs.push back(ps[i++]))
213
214
        while (qs.size() > 1 \&\& sign(det(qs[qs.size()-2],qs.back(),ps[i])) <= 0)

    qs.pop back();
      for (int i = n - 2, t = qs.size(); i \ge 0; qs.push back(ps[i--]))
215
216
        while ((int)qs.size() > t && sign(det(qs[(int)qs.size()-2],qs.back(),ps[i])) <=</pre>
       → 0) qs.pop back();
      qs.pop back(); return qs;
217
218 }
219
    int main()
220
221
      Circle c1, c2;
222
223
      c1.0 = Point(0, 0); c1.r = 10;
224
      c2.o = Point(10, 10); c1.r = 10;
225
      Point p1, p2;
226
      return 0;
227
```

$n \log n$ 半平面交

```
struct Point {
    Point norm() const {
        double 1 = len();
        return Point(x / 1, y / 1);
    }
    int quad() const {
```

```
return sign(y) == 1 \mid \mid (sign(y) == 0 \&\& sign(x) >= 0);
     }
 9
10 };
11
   struct Line {
12
     bool include(const Point &p) const {
13
       return sign(det(b - a, p - a)) > 0;
14
     }
15
16
      Line push() const{ // 将半平面向外推 eps
17
18
       const double eps = 1e-6;
       Point delta = (b - a).turn90().norm() * eps;
19
       return Line(a - delta, b - delta);
20
^{21}
   };
22
23
   bool sameDir(const Line &10, const Line &11) {
24
     return parallel(10, 11) && sign(dot(10.b - 10.a, 11.b - 11.a)) == 1;
25
26
27
28
   bool operator < (const Point &a, const Point &b) {</pre>
     if (a.quad() != b.quad()) {
29
       return a.quad() < b.quad();</pre>
30
     } else {
31
       return sign(det(a, b)) > 0;
32
33
34
35
   bool operator < (const Line &10, const Line &11) {
     if (sameDir(10, 11)) {
37
38
       return l1.include(10.a);
     } else {
39
       return (10.b - 10.a) < (11.b - 11.a);
40
41
42
43
   bool check(const Line &u, const Line &v, const Line &w) {
44
     return w.include(intersect(u, v));
45
46
47
   vector<Point> intersection(vector<Line> &1) {
     sort(1.begin(), 1.end());
49
     deque<Line> q;
50
     for (int i = 0; i < (int)1.size(); ++i) {
51
       if (i && sameDir(l[i], l[i - 1])) {
52
```

```
53
          continue;
54
       while (q.size() > 1 && !check(q[q.size() - 2], q[q.size() - 1], l[i])) {
55
56
         q.pop back();
57
58
       while (q.size() > 1 \&\& !check(q[1], q[0], l[i])) {
         q.pop_front();
59
60
       }
61
       q.push_back(l[i]);
62
63
     while (q.size() > 2 \& !check(q[q.size() - 2], q[q.size() - 1], q[0])) {
64
       q.pop_back();
65
66
     while (q.size() > 2 \&\& !check(q[1], q[0], q[q.size() - 1])) {
67
       q.pop_front();
68
     }
     vector<Point> ret;
69
     for (int i = 0; i < (int)q.size(); ++i) {</pre>
70
       ret.push back(intersect(q[i], q[(i + 1) % q.size()]));
71
72
     }
     return ret;
73
74 }
```

Delaunay 三角剖分

```
2 Delaunay Triangulation 随机增量算法:
3 节点数至少为点数的 6 倍,空间消耗较大注意计算内存使用
  建图的过程在 build 中,注意初始化内存池和初始三角形的坐标范围 (Triangulation::LOTS)
5 Triangulation::find 返回包含某点的三角形
6 Triangulation::add_point 将某点加入三角剖分
7 某个 Triangle 在三角剖分中当且仅当它的 has_children 为 0
8 | 如果要找到三角形 u 的邻域,则枚举它的所有 u.edge[i].tri, 该条边的两个点为 u.p[(i+1)%3],
     \hookrightarrow u.p[(i+2)\%3]
9 */
10 const int N = 100000 + 5, MAX TRIS = N * 6;
  const double EPSILON = 1e-6, PI = acos(-1.0);
12 | struct Point {
    double x,y; Point():x(0),y(0){} Point(double x, double y):x(x),y(y){}
13
    bool operator ==(Point const& that)const {return x==that.x&&y==that.y;}
14
15
16 inline double sqr(double x) { return x*x; }
  double dist_sqr(Point const& a, Point const& b){return sqr(a.x-b.x)+sqr(a.y-b.y);}
18 bool in_circumcircle(Point const& p1, Point const& p2, Point const& p3, Point const&
     → p4) {
    double u11 = p1.x - p4.x, u21 = p2.x - p4.x, u31 = p3.x - p4.x;
```

```
double u12 = p1.y - p4.y, u22 = p2.y - p4.y, u32 = p3.y - p4.y;
     double u13 = sqr(p1.x) - sqr(p4.x) + sqr(p1.y) - sqr(p4.y);
     double u23 = sqr(p2.x) - sqr(p4.x) + sqr(p2.y) - sqr(p4.y);
23
     double u33 = sqr(p3.x) - sqr(p4.x) + sqr(p3.y) - sqr(p4.y);
     double det = -u13*u22*u31 + u12*u23*u31 + u13*u21*u32 - u11*u23*u32 - u12*u21*u33
24

→ + u11*u22*u33;

     return det > EPSILON:
25
26 | }
27 double side(Point const& a, Point const& b, Point const& p) { return
      \hookrightarrow (b.x-a.x)*(p.y-a.y) - (b.y-a.y)*(p.x-a.x);
28 typedef int SideRef; struct Triangle; typedef Triangle* TriangleRef;
   struct Edge {
29
     TriangleRef tri; SideRef side; Edge() : tri(0), side(0) {}
30
     Edge(TriangleRef tri, SideRef side) : tri(tri), side(side) {}
31
32 | };
33 | struct Triangle {
     Point p[3]; Edge edge[3]; TriangleRef children[3]; Triangle() {}
34
     Triangle(Point const& p0, Point const& p1, Point const& p2) {
35
       p[0]=p0;p[1]=p1;p[2]=p2;children[0]=children[1]=children[2]=0;
36
     }
37
38
     bool has children() const { return children[0] != 0; }
39
     int num children() const {
       return children[0] == 0 ? 0
40
         : children[1] == 0 ? 1
41
         : children[2] == 0 ? 2 : 3;
42
43
     bool contains(Point const& q) const {
44
       double a=side(p[0],p[1],q), b=side(p[1],p[2],q), c=side(p[2],p[0],q);
45
46
       return a >= -EPSILON && b >= -EPSILON && c >= -EPSILON;
47
   } triange_pool[MAX_TRIS], *tot_triangles;
   void set_edge(Edge a, Edge b) {
49
     if (a.tri) a.tri->edge[a.side] = b;
50
     if (b.tri) b.tri->edge[b.side] = a;
51
52
   class Triangulation {
53
     public:
54
       Triangulation() {
55
56
         const double LOTS = 1e6;
         the root = new(tot triangles++)
57
      → Triangle(Point(-LOTS,-LOTS), Point(+LOTS,-LOTS), Point(0,+LOTS));
58
       TriangleRef find(Point p) const { return find(the root,p); }
59
60
       void add point(Point const& p) { add point(find(the root,p),p); }
     private:
```

```
62
        TriangleRef the root;
 63
         static TriangleRef find(TriangleRef root, Point const& p) {
 64
          for(;;) {
 65
             if (!root->has children()) return root;
 66
             else for (int i = 0; i < 3 && root->children[i]; ++i)
 67
                 if (root->children[i]->contains(p))
 68
                   {root = root->children[i]; break;}
 69
          }
 70
        }
 71
         void add_point(TriangleRef root, Point const& p) {
          TriangleRef tab,tbc,tca;
 72
          tab = new(tot triangles++) Triangle(root->p[0], root->p[1], p);
 73
          tbc = new(tot_triangles++) Triangle(root->p[1], root->p[2], p);
 74
          tca = new(tot_triangles++) Triangle(root->p[2], root->p[0], p);
 75
 76
          set_edge(Edge(tab,0),Edge(tbc,1));set_edge(Edge(tbc,0),Edge(tca,1));
 77
          set_edge(Edge(tca,0),Edge(tab,1));set_edge(Edge(tab,2),root->edge[2]);
 78
          set_edge(Edge(tbc,2),root->edge[0]);set_edge(Edge(tca,2),root->edge[1]);
          root->children[0]=tab;root->children[1]=tbc;root->children[2]=tca;
 79
 80
          flip(tab,2); flip(tbc,2); flip(tca,2);
 81
        }
 82
        void flip(TriangleRef tri, SideRef pi) {
 83
          TriangleRef trj = tri->edge[pi].tri; int pj = tri->edge[pi].side;
 84
          if(!trj||!in circumcircle(tri->p[0],tri->p[1],tri->p[2],trj->p[pj])) return;
 85
          TriangleRef trk = new(tot triangles++) Triangle(tri->p[(pi+1)%3], trj->p[pj],

    tri->p[pi]);
 86
          TriangleRef trl = new(tot triangles++) Triangle(trj->p[(pj+1)%3], tri->p[pi],

    tri->p[pi]);
 87
          set_edge(Edge(trk,0), Edge(trl,0));
 88
          set_edge(Edge(trk,1), tri->edge[(pi+2)%3]); set_edge(Edge(trk,2),

    trj->edge[(pj+1)%3]);
 89
           set_edge(Edge(trl,1), trj->edge[(pj+2)%3]); set_edge(Edge(trl,2),
       \hookrightarrow tri->edge[(pi+1)%3]);
          tri->children[0]=trk;tri->children[1]=trl;tri->children[2]=0;
 90
          trj->children[0]=trk;trj->children[1]=trl;trj->children[2]=0;
 91
           flip(trk,1); flip(trk,2); flip(trl,1); flip(trl,2);
 92
 93
        }
 94
    };
    int n; Point ps[N];
 95
    void build(){
      tot triangles = triange pool; cin >> n;
 97
      for(int i = 0; i < n; ++ i) scanf("%lf%lf",&ps[i].x,&ps[i].y);</pre>
      random_shuffle(ps, ps + n); Triangulation tri;
 99
      for(int i = 0; i < n; ++ i) tri.add point(ps[i]);</pre>
100
101 }
```

三维几何操作合并

```
1 struct Point3D {
           double x, y, z;
  3 | };
  4
       Point3D det(const Point3D &a, const Point3D &b) {
  5
           return Point3D(a.y * b.z - a.z * b.y, a.z * b.x - a.x * b.z, a.x * b.y - a.y *
            \rightarrow b.x);
  7 | }
  8 // 平面法向量 : 平面上两个向量叉积
  9 // 点共平面 : 平面上一点与之的向量点积法向量为 0
10 // 点在线段 ( 直线 ) 上 : 共线且两边点积非正
11 // 点在三角形内 ( 不包含边界, 需再判断是与某条边共线 )
12 bool pointInTri(const Point3D &a, const Point3D &b, const Point3D &c, const Point3D
            → &p) {
           return sign(det(a - b, a - c).len() - det(p - a, p - b).len() - det(p - b, p -
            \hookrightarrow c).len() - det(p - c, p - a).len()) == 0;
14 | }
15 // 共平面的两点是否在这平面上一条直线的同侧
 16 bool sameSide(const Point3D &a, const Point3D &b, const Point3D &p0, const Point3D

→ &p1) {
           return sign(dot(det(a - b, p0 - b), det(a - b, p1 - b))) > 0;
17
18 }
10 // 两点在平面同侧 : 点积法向量符号相同
 20 // 两直线平行 / 垂直 : 同二维
21 // 平面平行 / 垂直 : 判断法向量
22 // 线面垂直 : 法向量和直线平行
 23 // 判断空间线段是否相交 : 四点共面两线段不平行相互在异侧
24 // 线段和三角形是否相交 : 线段在三角形平面不同侧
            → 三角形任意两点在线段和第三点组成的平面的不同侧
25 // 求空间直线交点
26 Point3D intersection(const Point3D &a0, const Point3D &b0, const Point3D &a1, const
            → Point3D &b1) {
           double t = ((a0.x - a1.x) * (a1.y - b1.y) - (a0.y - a1.y) * (a1.x - b1.x)) /
            \rightarrow ((a0.x - b0.x) * (a1.y - b1.y) - (a0.y - b0.y) * (a1.x - b1.x));
 28
           return a0 + (b0 - a0) * t;
29 }
 30 // 求平面和直线的交点
 31 Point3D intersection(const Point3D &a, const Point3D &b, const Point3D &c, const
            → Point3D &10, const Point3D &11) {
           Point3D p = pVec(a, b, c); // 平面法向量
           double t = (p.x * (a.x - 10.x) + p.y * (a.y - 10.y) + p.z * (a.z - 10.z)) / (p.x * (a.z - 10.z)) / (p.z - 10.z)) / (p.z - 10.z) / (p.z
            \rightarrow (11.x - 10.x) + p.y * (11.y - 10.y) + p.z * (11.z - 10.z));
           return 10 + (11 - 10) * t;
 34
35 | }
```

```
26 // 求平面交线 : 取不平行的一条直线的一个交点, 以及法向量叉积得到直线方向
37 // 点到直线距离 : 叉积得到三角形的面积除以底边
38 // 点到平面距离 : 点积法向量
39 // 直线间距离 : 平行时随便取一点求距离, 否则叉积方向向量得到方向点积计算长度
40 // 直线夹角 : 点积 平面夹角 : 法向量点积
41 // 三维向量旋转操作(绕向量 s 旋转 ang 角度),对于右手系 s 指向观察者时逆时针
42 // 矩阵版
43 | void rotate(const Point3D &s, double ang) {
                double 1 = s.len(), x = s.x / 1, y = s.y / 1, z = s.z / 1, sinA = sin(ang), cosA =

    cos(ang);
                double p[4][4] = \{ CosA + (1 - CosA) * x * x, (1 - CosA) * x * y - SinA * z, (1 - CosA) * x * y - SinA * z, (1 - CosA) * x * y - SinA * z, (1 - CosA) * x * y - SinA * z, (1 - CosA) * x * y - SinA * z, (1 - CosA) * x * y - SinA * z, (1 - CosA) * x * y - SinA * z, (1 - CosA) * x * y - SinA * z, (1 - CosA) * x * y - SinA * z, (1 - CosA) * x * y - SinA * z, (1 - CosA) * x * y - SinA * z, (1 - CosA) * x * y - SinA * z, (1 - CosA) * x * y - SinA * z, (1 - CosA) * x * y - SinA * z, (1 - CosA) * x * y - SinA * z, (1 - CosA) * x * y - SinA * z, (1 - CosA) * x * y - SinA * z, (1 - CosA) * x * y - SinA * z, (1 - CosA) * x * y - SinA * z, (1 - CosA) * x * y - SinA * z, (1 - CosA) * x * y - SinA * z, (1 - CosA) * x * y - SinA * z, (1 - CosA) * x * y - SinA * z, (1 - CosA) * x * y - SinA * z, (1 - CosA) * x * y - SinA * z, (1 - CosA) * x * y - SinA * z, (1 - CosA) * x * y - SinA * z, (1 - CosA) * x * y - SinA * z, (1 - CosA) * x * y - SinA * z, (1 - CosA) * x * y - SinA * z, (1 - CosA) * x * y - SinA * z, (1 - CosA) * x * y - SinA * z, (1 - CosA) * x * y - SinA * z, (1 - CosA) * x * y - SinA * z, (1 - CosA) * x * y - SinA * z, (1 - CosA) * x * y - SinA * z, (1 - CosA) * x * y - SinA * z, (1 - CosA) * x * y - SinA * z, (1 - CosA) * x * y - SinA * z, (1 - CosA) * x * y - SinA * z, (1 - CosA) * x * y - SinA * z, (1 - CosA) * x * y - SinA * z, (1 - CosA) * x * y - SinA * z, (1 - CosA) * x * y - SinA * z, (1 - CosA) * x * y - SinA * z, (1 - CosA) * x * y - SinA * z, (1 - CosA) * x * y - SinA * z, (1 - CosA) * x * y - SinA * z, (1 - CosA) * x * y - SinA * z, (1 - CosA) * x * y - SinA * z, (1 - CosA) * x * y - SinA * z, (1 - CosA) * x * y - SinA * z, (1 - CosA) * x * y - SinA * z, (1 - CosA) * x * y - SinA * z, (1 - CosA) * x * y - SinA * z, (1 - CosA) * x * y - SinA * z, (1 - CosA) * x * y - SinA * z, (1 - CosA) * x * y - SinA * z, (1 - CosA) * x * y - SinA * z, (1 - CosA) * x * y - SinA * z, (1 - CosA) * x * y - SinA * z, (1 - CosA) * x * y - SinA * z, (1 - CosA) * x * y - SinA * z, (1 - CosA) * x * y - SinA * z, (1 - CosA) * x
                  \hookrightarrow CosA) * x * z + SinA * y, 0,
                    (1 - CosA) * y * x + SinA * z, CosA + (1 - CosA) * y * y, (1 - CosA) * y * z -
                  \hookrightarrow SinA * x, 0,
                      (1 - CosA) * z * x - SinA * y, (1 - CosA) * z * y + SinA * x, CosA + (1 - CosA)
                  \hookrightarrow * Z * Z, 0,
48
                      0, 0, 0, 1 };
49
          // 计算版 : 把需要旋转的向量按照 s 分解, 做二维旋转, 再回到三维
```

三维凸包

```
1 #define SIZE(X) (int(X.size()))
2 #define PI 3.14159265358979323846264338327950288
3 | struct Point {
     Point cross(const Point &p) const
   { return Point(y * p.z - z * p.y, z * p.x - x * p.z, x * p.y - y * p.x); }
6 | info[1005];
7 int mark[1005][1005],n, cnt;;
8 double mix(const Point &a, const Point &b, const Point &c)
g { return a.dot(b.cross(c)); }
10 double area(int a, int b, int c)
11 | { return ((info[b] - info[a]).cross(info[c] - info[a])).length(); }
12 double volume(int a, int b, int c, int d)
13 { return mix(info[b] - info[a], info[c] - info[a], info[d] - info[a]); }
14 | struct Face {
15
     int a, b, c; Face() {}
16
   Face(int a, int b, int c): a(a), b(b), c(c) {}
     int &operator [](int k)
17
18
    { if (k == 0) return a; if (k == 1) return b; return c; }
19
20 vector <Face> face;
21 inline void insert(int a, int b, int c) { face.push_back(Face(a, b, c)); }
22 void add(int v) {
     vector <Face> tmp; int a, b, c; cnt++;
     for (int i = 0; i < SIZE(face); i++) {</pre>
```

```
a = face[i][0]; b = face[i][1]; c = face[i][2];
25
26
       if (Sign(volume(v, a, b, c)) < 0)</pre>
       mark[a][b] = mark[b][a] = mark[b][c] = mark[c][b] = mark[c][a] = mark[a][c] =
27
      else tmp.push back(face[i]);
28
29
     } face = tmp;
     for (int i = 0; i < SIZE(tmp); i++) {
30
       a = face[i][0]; b = face[i][1]; c = face[i][2];
31
32
       if (mark[a][b] == cnt) insert(b, a, v);
       if (mark[b][c] == cnt) insert(c, b, v);
33
       if (mark[c][a] == cnt) insert(a, c, v);
34
35 | }}
36 \mid int Find() 
37
     for (int i = 2; i < n; i++) {
38
       Point ndir = (info[0] - info[i]).cross(info[1] - info[i]);
       if (ndir == Point()) continue; swap(info[i], info[2]);
39
       for (int j = i + 1; j < n; j++) if (Sign(volume(0, 1, 2, j)) != 0) {
40
         swap(info[j], info[3]); insert(0, 1, 2); insert(0, 2, 1); return 1;
41
42 | } } return 0; }
43 | int main() {
     for (; scanf("%d", &n) == 1; ) {
44
       for (int i = 0; i < n; i++) info[i].Input();</pre>
45
46
       sort(info, info + n); n = unique(info, info + n) - info;
       face.clear(); random shuffle(info, info + n);
47
       if (Find()) { memset(mark, 0, sizeof(mark)); cnt = 0;
48
         for (int i = 3; i < n; i++) add(i); vector<Point> Ndir;
49
         for (int i = 0; i < SIZE(face); ++i) {</pre>
50
           Point p = (info[face[i][0]] - info[face[i][1]]).cross(
51
                info[face[i][2]] - info[face[i][1]]);
52
           p = p / p.length(); Ndir.push_back(p);
53
         } sort(Ndir.begin(), Ndir.end());
54
         int ans = unique(Ndir.begin(), Ndir.end()) - Ndir.begin();
55
56
         printf("%d\n", ans);
       } else printf("1\n");
57
58 } }
59 | // 求重心
60 double calcDist(const Point &p, int a, int b, int c)
   { return fabs(mix(info[a] - p, info[b] - p, info[c] - p) / area(a, b, c)); }
   //compute the minimal distance of center of any faces
63 double findDist() { //compute center of mass
64
     double totalWeight = 0; Point center(.0, .0, .0);
65
     Point first = info[face[0][0]];
     for (int i = 0; i < SIZE(face); ++i) {</pre>
66
67
       Point p = (info[face[i][0]]+info[face[i][1]]+info[face[i][2]]+first)*.25;
       double weight = mix(info[face[i][0]] - first, info[face[i][1]]
```

```
69
            - first, info[face[i][2]] - first);
70
       totalWeight += weight; center = center + p * weight;
     } center = center / totalWeight;
71
72
     double res = 1e100; //compute distance
     for (int i = 0; i < SIZE(face); ++i)</pre>
73
       res = min(res, calcDist(center, face[i][0], face[i][1], face[i][2]));
74
       return res: }
75
```

凸包上快速询问

```
1
      给定凸包, \log n 内完成各种询问, 具体操作有:
     1. 判定一个点是否在凸包内
3
      2. 询问凸包外的点到凸包的两个切点
     3. 询问一个向量关于凸包的切点
      4. 询问一条直线和凸包的交点
      INF 为坐标范围,需要定义点类大于号
      改成实数只需修改 sign 函数,以及把 long long 改为 double 即可
      构造函数时传入凸包要求无重点,面积非空,以及 pair(x,y) 的最小点放在第一个
9
10
11
   #include <vector>
   #include <functional>
13
   using namespace std;
14
   const int INF = 1000000000;
15
16
17
   struct Convex
18
    int n;
19
20
     vector<Point> a;
21
     vector<Point> upper, lower;
     Convex(vector<Point> _a) : a(_a) {
22
      n = a.size();
23
24
      int ptr = 0;
      for(int i = 1; i < n; ++ i) if (a[ptr] < a[i]) ptr = i;
25
26
      for(int i = 0; i <= ptr; ++ i) lower.push back(a[i]);</pre>
27
      for(int i = ptr; i < n; ++ i) upper.push back(a[i]);</pre>
28
      upper.push back(a[0]);
29
    int sign(long long x) {
30
      return x < 0 ? -1 : x > 0;
31
32
     pair<long long, int> get_tangent(vector<Point> &convex, Point vec) {
33
34
      int l = 0, r = (int)convex.size() - 2;
      for(; l + 1 < r; ) {
35
36
        int mid = (1 + r) / 2;
```

```
if (sign((convex[mid + 1] - convex[mid]).det(vec)) > 0) r = mid;
37
38
         else 1 = mid:
       }
39
40
       return max(make pair(vec.det(convex[r]), r), make pair(vec.det(convex[0]), 0));
41
     void update tangent(const Point &p, int id, int &i0, int &i1) {
42
       if ((a[i0] - p).det(a[id] - p) > 0) i0 = id;
43
       if ((a[i1] - p).det(a[id] - p) < 0) i1 = id;</pre>
44
45
46
     void binary_search(int 1, int r, Point p, int &i0, int &i1) {
       if (1 == r) return;
47
48
       update_tangent(p, 1 % n, i0, i1);
       int sl = sign((a[1 \% n] - p).det(a[(1 + 1) \% n] - p));
49
50
       for(; l + 1 < r;) {
         int mid = (1 + r) / 2;
51
         int smid = sign((a[mid % n] - p).det(a[(mid + 1) % n] - p));
52
         if (smid == sl) l = mid;
53
         else r = mid:
54
55
56
       update tangent(p, r % n, i0, i1);
57
58
     int binary search(Point u, Point v, int 1, int r) {
       int sl = sign((v - u).det(a[1 % n] - u));
59
60
       for(; 1 + 1 < r; ) {
61
         int mid = (1 + r) / 2;
62
         int smid = sign((v - u).det(a[mid % n] - u));
63
         if (smid == sl) l = mid;
64
         else r = mid;
65
66
       return 1 % n;
67
68
     // 判定点是否在凸包内, 在边界返回 true
     bool contain(Point p) {
69
       if (p.x < lower[0].x || p.x > lower.back().x) return false;
70
       int id = lower_bound(lower.begin(), lower.end(), Point(p.x, -INF)) -
71
      → lower.begin();
       if (lower[id].x == p.x) {
72
         if (lower[id].y > p.y) return false;
73
       } else if ((lower[id - 1] - p).det(lower[id] - p) < 0) return false;</pre>
74
       id = lower bound(upper.begin(), upper.end(), Point(p.x, INF), greater<Point>())
75
      → - upper.begin();
76
       if (upper[id].x == p.x) {
         if (upper[id].y < p.y) return false;</pre>
77
78
       } else if ((upper[id - 1] - p).det(upper[id] - p) < 0) return false;</pre>
       return true:
79
```

```
80
 81
      // 求点 p 关于凸包的两个切点,如果在凸包外则有序返回编号,多解返回任意一个图否则返回

→ false

 82
      bool get tangent(Point p, int &i0, int &i1) {
 83
       if (contain(p)) return false;
 84
       i0 = i1 = 0;
 85
       int id = lower bound(lower.begin(), lower.end(), p) - lower.begin();
 86
       binary search(0, id, p, i0, i1);
 87
       binary_search(id, (int)lower.size(), p, i0, i1);
 88
       id = lower_bound(upper.begin(), upper.end(), p, greater<Point>()) -
      → upper.begin();
 89
       binary search((int)lower.size() - 1, (int)lower.size() - 1 + id, p, i0, i1);
       binary_search((int)lower.size() - 1 + id, (int)lower.size() - 1 +
 90
      91
       return true;
     }
 92
      // 求凸包上和向量 vec 叉积最大的点,返回编号,有多个返回任意一个
 93
      int get tangent(Point vec) {
 94
       pair<long long, int> ret = get tangent(upper, vec);
 95
       ret.second = (ret.second + (int)lower.size() - 1) % n;
 96
 97
       ret = max(ret, get tangent(lower, vec));
 98
       return ret.second;
 99
      // 求凸包和直线 u,v 的交点,如果无严格相交返回 false 。如果有则是和(i,next(i))
100
      → 的交点,两个点无序,交在点上不确定返回两条线段之一。
      bool get intersection(Point u, Point v, int &i0, int &i1) {
101
       int p0 = get_tangent(u - v), p1 = get_tangent(v - u);
102
103
       if (sign((v - u).det(a[p0] - u)) * sign((v - u).det(a[p1] - u)) < 0) {
         if (p0 > p1) swap(p0, p1);
104
         i0 = binary_search(u, v, p0, p1);
105
106
         i1 = binary_search(u, v, p1, p0 + n);
         return true;
107
108
       } else {
109
         return false:
       }
110
111
112 };
```

圆的面积模板 $(n^2 \log n)$

```
7
 8 bool operator < (const Event &a, const Event &b) {
 9
     return a.ang < b.ang;</pre>
10 }
11
12
   void addEvent(const Circle &a, const Circle &b, vector<Event> &evt, int &cnt) {
     double d2 = (a.o - b.o).len2().
13
           dRatio = ((a.r - b.r) * (a.r + b.r) / d2 + 1) / 2,
14
          pRatio = sqrt(-(d2 - sqr(a.r - b.r)) * (d2 - sqr(a.r + b.r)) / (d2 * d2 *
15

→ 4));

     Point d = b.o - a.o, p = d.rotate(PI / 2),
16
         q0 = a.o + d * dRatio + p * pRatio,
17
         q1 = a.o + d * dRatio - p * pRatio;
18
     double ang0 = (q0 - a.o).ang(),
19
          ang1 = (q1 - a.o).ang();
20
     evt.push_back(Event(q1, ang1, 1));
^{21}
     evt.push back(Event(q0, ang0, -1));
22
     cnt += ang1 > ang0;
23
24
25
26
   bool issame(const Circle &a, const Circle &b) {
     return sign((a.o - b.o).len()) == 0 && sign(a.r - b.r) == 0;
27
28 }
29
   bool overlap(const Circle &a, const Circle &b) {
30
     return sign(a.r - b.r - (a.o - b.o).len()) >= 0;
31
32
33
   bool intersect(const Circle &a, const Circle &b) {
34
     return sign((a.o - b.o).len() - a.r - b.r) < 0;
35
36 }
37
38 int C;
39 Circle c[N];
40 | double area[N];
41
   void solve() {
42
     memset(area, 0, sizeof(double) * (C + 1));
43
     for (int i = 0; i < C; ++i) {
44
45
       int cnt = 1:
46
       vector<Event> evt;
       for (int j = 0; j < i; ++j) {
47
48
         if (issame(c[i], c[j])) {
49
           ++cnt:
```

```
}
50
51
       }
       for (int j = 0; j < C; ++j) {
52
53
         if (j != i && !issame(c[i], c[j]) && overlap(c[j], c[i])) {
           ++cnt;
54
         }
55
56
       }
       for (int j = 0; j < C; ++j) {
57
58
         if (j != i && !overlap(c[j], c[i]) && !overlap(c[i], c[j]) && intersect(c[i],
      \hookrightarrow c[j])) 
           addEvent(c[i], c[j], evt, cnt);
59
60
         }
61
       }
62
       if (evt.size() == 0) {
63
         area[cnt] += PI * c[i].r * c[i].r;
64
       } else {
65
         sort(evt.begin(), evt.end());
66
         evt.push back(evt.front());
67
         for (int j = 0; j + 1 < (int)evt.size(); ++j) {
68
           cnt += evt[j].delta;
69
           area[cnt] += det(evt[j].p, evt[j + 1].p) / 2;
           double ang = evt[j + 1].ang - evt[j].ang;
70
           if (ang < 0) {
71
             ang += PI * 2;
72
73
           area[cnt] += ang * c[i].r * c[i].r / 2 - sin(ang) * c[i].r * c[i].r / 2;
74
75
76
       }
77
78
```

三角形的心

```
Point inCenter(const Point &A, const Point &B, const Point &C) { // 内心 double a = (B - C).len(), b = (C - A).len(), c = (A - B).len(), s = fabs(det(B - A, C - A)), r = s / p; return (A * a + B * b + C * c) / (a + b + c); }

Point circumCenter(const Point &a, const Point &b, const Point &c) { // 外心 Point bb = b - a, cc = c - a; double db = bb.len2(), dc = cc.len2(), d = 2 * det(bb, cc); return a - Point(bb.y * dc - cc.y * db, cc.x * db - bb.x * dc) / d; }

13
```

```
14 Point othroCenter(const Point &a, const Point &b, const Point &c) { // 垂心
15 Point ba = b - a, ca = c - a, bc = b - c;
16 double Y = ba.y * ca.y * bc.y,
17 A = ca.x * ba.y - ba.x * ca.y,
18 x0 = (Y + ca.x * ba.y * b.x - ba.x * ca.y * c.x) / A,
19 y0 = -ba.x * (x0 - c.x) / ba.y + ca.y;
20 return Point(x0, y0);
21 }
```

最小覆盖球

```
int nouter; Tpoint outer[4], res; double radius;
 2 void ball() {
     Tpoint q[3]; double m[3][3], sol[3], L[3], det;
     int i,j; res.x = res.y = res.z = radius = 0;
     for (i=0; i<3; ++i) q[i]=outer[i+1]-outer[0], sol[i]=dot(q[i], q[i]);</pre>
     for (i=0;i<3;++i) for(j=0;j<3;++j) m[i][j]=dot(q[i],q[j])*2;
     det= m[0][0]*m[1][1]*m[2][2]
 8
     + m[0][1]*m[1][2]*m[2][0]
 9
     + m[0][2]*m[2][1]*m[1][0]
10
     - m[0][2]*m[1][1]*m[2][0]
     - m[0][1]*m[1][0]*m[2][2]
11
     - m[0][0]*m[1][2]*m[2][1];
12
     if ( fabs(det)<eps ) return;</pre>
13
14
      for (j=0; j<3; ++j) {
       for (i=0; i<3; ++i) m[i][j]=sol[i];
15
16
       L[i]=(m[0][0]*m[1][1]*m[2][2]
       + m[0][1]*m[1][2]*m[2][0]
17
18
       + m[0][2]*m[2][1]*m[1][0]
       - m[0][2]*m[1][1]*m[2][0]
19
       - m[0][1]*m[1][0]*m[2][2]
20
       - m[0][0]*m[1][2]*m[2][1]
21
22
       ) / det;
       for (i=0; i<3; ++i) m[i][j]=dot(q[i], q[j])*2;
23
     } res=outer[0];
24
25
      for (i=0; i<3; ++i) res = res + q[i] * L[i];
26
      radius=dist2(res, outer[0]);
27 | }
```

经纬度求球面最短距离

```
1 //lati 为纬度 longi 为经度 R 为半径
2 double Dist(double lati1,double longi1,double lati2,double longi2,double R) {
3 double pi=acos(-1.0); lati1*=pi/180,longi1*=pi/180,lati2*=pi/180,longi2*=pi/180;
4 double x1=cos(lati1)*sin(longi1),y1=cos(lati1)*cos(longi1),z1=sin(lati1);
5 double x2=cos(lati2)*sin(longi2),y2=cos(lati2)*cos(longi2),z2=sin(lati2);
```

```
6 double theta=acos(x1*x2+y1*y2+z1*z2); return(R*theta);
7 }
```

长方体表面两点最短距离

```
int r;
   void turn(int i, int j, int x, int y, int z, int x0, int y0, int L, int W, int H) {
     if (z==0) { int R = x*x+y*y; if (R< r) r=R;
     } else {
       if(i>=0 && i< 2) turn(i+1, j, x0+L+z, y, x0+L-x, x0+L, y0, H, W, L);
       if(j)=0 \& j < 2) turn(i, j+1, x, y0+W+z, y0+W-y, x0, y0+W, L, H, W);
       if(i<=0 && i>-2) turn(i-1, j, x0-z, y, x-x0, x0-H, y0, H, W, L);
       if(j \le 0 \& j \ge 2) turn(i, j-1, x, y0-z, y-y0, x0, y0-H, L, H, W);
9 }}
10 int main(){
     int L, H, W, x1, y1, z1, x2, y2, z2;
11
     cin >> L >> W >> H >> x1 >> y1 >> z1 >> x2 >> y2 >> z2;
12
     if (z1!=0 \&\& z1!=H) if (y1==0 | | y1==W)
13
          swap(y1,z1), std::swap(y2,z2), std::swap(W,H);
14
     else swap(x1,z1), std::swap(x2,z2), std::swap(L,H);
15
16
     if (z1==H) z1=0, z2=H-z2;
     r=0x3fffffff; turn(0,0,x2-x1,y2-y1,z2,-x1,-y1,L,W,H);
17
18
     cout<<r<<endl; return 0;</pre>
19 }
```

最大团

```
1 // Super Fast Maximum Clique
2 // To Build Graph: Maxclique(Edges, Number of Nodes)
3 // To Get Answer: mcqdyn(AnswerNodes Index Array, AnswserLength)
   typedef bool BB[N];
   struct Maxclique {
     const BB* e; int pk, level; const float Tlimit;
     struct Vertex{ int i, d; Vertex(int i):i(i),d(0){} };
     typedef vector<Vertex> Vertices; typedef vector<int> ColorClass;
     Vertices V; vector<ColorClass> C; ColorClass QMAX, Q;
     static bool desc degree(const Vertex &vi, const Vertex &vj){
10
11
       return vi.d > vj.d;
12
     void init_colors(Vertices &v){
13
14
       const int max degree = v[0].d;
       for(int i = 0; i < (int)v.size(); i++)v[i].d = min(i, max degree) + 1;
15
16
     void set_degrees(Vertices &v){
17
18
       for(int i = 0, j; i < (int)v.size(); i++)
         for(v[i].d = j = 0; j < int(v.size()); j++)
19
           v[i].d += e[v[i].i][v[j].i];
20
```

```
21
     struct StepCount{ int i1, i2; StepCount():i1(0),i2(0){} };
22
     vector<StepCount> S;
23
24
     bool cut1(const int pi, const ColorClass &A){
       for(int i = 0; i < (int)A.size(); i++) if (e[pi][A[i]]) return true;</pre>
25
26
       return false;
27
28
     void cut2(const Vertices &A, Vertices &B){
29
       for(int i = 0; i < (int)A.size() - 1; i++)
30
         if(e[A.back().i][A[i].i])
            B.push_back(A[i].i);
31
32
     void color_sort(Vertices &R){
33
       int j = 0, maxno = 1, min_k = max((int)QMAX.size() - (int)Q.size() + 1, 1);
34
       C[1].clear(), C[2].clear();
35
36
        for(int i = 0; i < (int)R.size(); i++) {</pre>
         int pi = R[i].i, k = 1;
37
38
         while(cut1(pi, C[k])) k++;
         if(k > maxno) maxno = k, C[maxno + 1].clear();
39
40
         C[k].push back(pi);
         if(k < min_k) R[j++].i = pi;</pre>
41
42
       if(j > 0) R[j - 1].d = 0;
43
44
        for(int k = min k; k <= maxno; k++)</pre>
         for(int i = 0; i < (int)C[k].size(); i++)</pre>
45
46
           R[j].i = C[k][i], R[j++].d = k;
47
48
      void expand_dyn(Vertices &R){// diff -> diff with no dyn
       S[level].i1 = S[level].i1 + S[level - 1].i1 - S[level].i2;//diff
49
       S[level].i2 = S[level - 1].i1;//diff
50
        while((int)R.size()) {
51
52
         if((int)Q.size() + R.back().d > (int)QMAX.size()){
            Q.push_back(R.back().i); Vertices Rp; cut2(R, Rp);
53
            if((int)Rp.size()){
54
              if((float)S[level].i1 / ++pk < Tlimit) degree_sort(Rp);//diff</pre>
55
56
              color_sort(Rp);
              S[level].i1++, level++;//diff
57
58
              expand dyn(Rp);
              level--;//diff
59
60
61
            else if((int)Q.size() > (int)QMAX.size()) QMAX = Q;
62
           Q.pop_back();
63
64
          else return;
65
          R.pop_back();
```

```
66
       }
67
68
     void mcqdyn(int* maxclique, int &sz){
69
       set_degrees(V); sort(V.begin(), V.end(), desc_degree); init_colors(V);
       for(int i = 0; i < (int)V.size() + 1; i++)S[i].i1 = S[i].i2 = 0;
70
       expand_dyn(V); sz = (int)QMAX.size();
71
72
       for(int i = 0; i < (int)QMAX.size(); i++) maxclique[i] = QMAX[i];</pre>
73
74
     void degree_sort(Vertices &R){
75
       set_degrees(R); sort(R.begin(), R.end(), desc_degree);
76
     Maxclique(const BB* conn, const int sz, const float tt = 0.025) \
77
78
      : pk(0), level(1), Tlimit(tt){
79
       for(int i = 0; i < sz; i++) V.push_back(Vertex(i));</pre>
80
       e = conn, C.resize(sz + 1), S.resize(sz + 1);
81
82 };
```

KM

```
// 最小匹配, 自带初始化 n <= m 方案存在 p[] 中
   const int N = 105;
   const int INF = 10000000000; // 严格大于最大边权
   int n, m, a[N][N];
   int u[N], v[N], p[N], fa[N];
10
11
   int minv[N];
12
   bool used[N];
14
   int km() {
15
     for (int i = 0; i < n; ++i) {
16
       u[i] = 0;
17
18
     for (int i = 0; i <= m; ++i) {
19
20
       v[i] = 0;
       p[i] = n;
21
22
     for (int i = 0; i < n; ++i) {
23
       p[m] = i;
24
       int j0 = m;
25
26
       for (int j = 0; j <= m; ++j) {
```

```
minv[j] = INF;
27
28
         used[j] = false;
29
30
       do {
         used[j0] = true;
31
         int i0 = p[j0], delta = INF, j1;
32
         for (int j = 0; j < m; ++j) {
33
           if (!used[j]) {
34
35
              int cur = a[i0][j] - u[i0] - v[j];
36
              if (cur < minv[j]) {</pre>
                minv[j] = cur;
37
38
                fa[j] = j0;
39
              if (minv[j] < delta) {</pre>
40
                delta = minv[j];
41
                j1 = j;
42
43
           }
44
45
46
         for (int j = 0; j <= m; ++j) {
           if (used[j]) {
47
48
              u[p[j]] += delta;
              v[j] -= delta;
49
           } else {
50
51
              minv[j] -= delta;
           }
52
53
         j0 = j1;
54
       } while (p[j0] != n);
55
56
        do {
         int j1 = fa[j0];
57
58
         p[j0] = p[j1];
         j0 = j1;
59
60
       } while (j0 != m);
61
62
     return -v[m];
63 | }
```

最小树形图

```
namespace LIUZHU{
const int MAXN;
int from[MAXN + 10][MAXN * 2 + 10];
int n,m;
int edge[MAXN + 10][MAXN * 2 + 10];
int sel[MAXN * 2 + 10],fa[MAXN * 2 + 10];
```

```
int vis[MAXN * 2 + 10];
     const int INF;// INF >= sum( W_ij )
     int getfa(int x){
10
       if(x == fa[x]) return x;
       return fa[x] = getfa(fa[x]);
11
12
     void liuzhu(){ // 1-base: root is 1, answer = (sel[i], i) for i in [2..n]
13
       fa[1] = 1;
14
       for(int i = 2; i <= n; ++i){
15
16
         sel[i] = 1;
         fa[i] = i;
17
18
         for(int j = 1; j <= n; ++j) if(fa[j] != i){
           from[j][i] = i;
19
20
           if(edge[sel[i]][i] > edge[j][i]) sel[i] = j;
         }
21
       }
22
       int limit = n;
23
       while(1){
24
         int prelimit = limit;
25
26
         memset(vis, 0, sizeof(vis));
         vis[1] = 1;
27
         for(int i = 2; i <= prelimit; ++i) if(fa[i] == i && !vis[i]){</pre>
28
           int j = i;
29
           while(!vis[j]){
30
31
             vis[j] = i;
             j = getfa(sel[j]);
32
33
           if(j == 1 || vis[j] != i) continue;
34
           vector<int> C;
35
           int k = j;
36
37
           do{
38
             C.push_back(k);
             k = getfa(sel[k]);
39
           }while(k != j);
40
41
           ++limit;
           for(int i = 1; i <= n; ++i){
42
             edge[i][limit] = INF;
43
             from[i][limit] = limit;
44
45
46
           fa[limit] = vis[limit] = limit;
           for(int i = 0; i < int(C.size()); ++i){</pre>
47
             int x = C[i];
48
             fa[x] = limit;
49
             for(int j = 1; j <= n; ++j){
50
                if(edge[j][x] != INF && edge[j][limit] > edge[j][x] - edge[sel[x]][x]){
51
```

```
edge[j][limit] = edge[j][x] - edge[sel[x]][x];
52
                  from[j][limit] = x;
53
               }
54
55
              }
56
           for(int j = 1; j <= n; ++j) if(getfa(j) == limit){</pre>
57
58
              edge[j][limit] = INF;
           }
59
60
           sel[limit] = 1;
61
           for(int j = 1; j <= n; ++j){
62
              if(edge[sel[limit]][limit] > edge[j][limit]){
63
                sel[limit] = j;
64
65
           }
66
67
         if(prelimit == limit) break;
68
69
       for(int i = limit; i > 1; --i){
          sel[from[sel[i]][i]] = sel[i];
70
71
       }
7^2
73 | }
```

无向图最小割

```
1 | int cost[maxn][maxn], seq[maxn], len[maxn], n, m, pop, ans;
2 | bool used[maxn];
3 | void Init(){
     int i,j,a,b,c;
     for(i=0;i<n;i++) for(j=0;j<n;j++) cost[i][j]=0;</pre>
     for(i=0;i<m;i++){
       scanf("%d %d %d",&a,&b,&c); cost[a][b]+=c; cost[b][a]+=c;
8
     pop=n; for(i=0;i<n;i++) seq[i]=i;</pre>
9
10
   void Work(){
11
     ans=inf; int i,j,k,l,mm,sum,pk;
12
     while(pop > 1){
13
        for(i=1;i<pop;i++) used[seq[i]]=0; used[seq[0]]=1;</pre>
14
        for(i=1;i<pop;i++) len[seq[i]]=cost[seq[0]][seq[i]];</pre>
15
16
        pk=0; mm=-inf; k=-1;
17
        for(i=1;i<pop;i++) if(len[seq[i]] > mm){ mm=len[seq[i]]; k=i; }
18
        for(i=1;i<pop;i++){</pre>
         used[seq[1=k]]=1;
19
          if(i==pop-2) pk=k;
20
          if(i==pop-1) break;
^{21}
```

```
22
          mm=-inf;
          for(j=1;j<pop;j++) if(!used[seq[j]])</pre>
23
            if((len[seq[j]]+=cost[seq[1]][seq[j]]) > mm)
24
25
              mm=len[seq[j]], k=j;
26
27
28
        for(i=0;i<pop;i++) if(i != k) sum+=cost[seq[k]][seq[i]];</pre>
29
        ans=min(ans,sum);
30
        for(i=0;i<pop;i++)</pre>
          cost[seq[k]][seq[i]]=cost[seq[i]][seq[k]]+=cost[seq[pk]][seq[i]];
31
        seq[pk]=seq[--pop];
32
33
     printf("%d\n",ans);
34
35 }
```

带花树

```
vector<int> link[maxn];
   int n,match[maxn],Queue[maxn],head,tail;
   int pred[maxn],base[maxn],start,finish,newbase;
   bool InQueue[maxn], InBlossom[maxn];
   void push(int u){ Queue[tail++]=u;InQueue[u]=true; }
   int pop(){ return Queue[head++]; }
   int FindCommonAncestor(int u,int v){
     bool InPath[maxn];
     for(int i=0;i<n;i++) InPath[i]=0;</pre>
     while(true){ u=base[u];InPath[u]=true;if(u==start) break;u=pred[match[u]]; }
10
     while(true){ v=base[v];if(InPath[v]) break;v=pred[match[v]]; }
11
12
     return v;
13
   void ResetTrace(int u){
15
     int v;
16
     while(base[u]!=newbase){
       v=match[u];
17
18
       InBlossom[base[u]]=InBlossom[base[v]]=true;
19
       u=pred[v];
20
       if(base[u]!=newbase) pred[u]=v;
21
22
   void BlossomContract(int u,int v){
23
     newbase=FindCommonAncestor(u,v);
24
25
     for (int i=0;i<n;i++)
26
     InBlossom[i]=0;
     ResetTrace(u);ResetTrace(v);
27
28
     if(base[u]!=newbase) pred[u]=v;
     if(base[v]!=newbase) pred[v]=u;
```

```
for(int i=0;i<n;++i)</pre>
     if(InBlossom[base[i]]){
31
       base[i]=newbase;
32
33
       if(!InQueue[i]) push(i);
34
35
   bool FindAugmentingPath(int u){
36
     bool found=false;
37
38
     for(int i=0;i<n;++i) pred[i]=-1,base[i]=i;</pre>
     for (int i=0;i<n;i++) InQueue[i]=0;</pre>
39
     start=u;finish=-1; head=tail=0; push(start);
40
      while(head<tail){</pre>
41
       int u=pop();
42
        for(int i=link[u].size()-1;i>=0;i--){
43
         int v=link[u][i];
44
         if(base[u]!=base[v]&&match[u]!=v)
45
46
           if(v==start||(match[v]>=0&&pred[match[v]]>=0))
              BlossomContract(u,v);
47
48
            else if(pred[v]==-1){
              pred[v]=u;
49
              if(match[v]>=0) push(match[v]);
50
              else{ finish=v; return true; }
51
52
       }
53
54
     return found;
55
56
   void AugmentPath(){
57
58
     int u=finish,v,w;
     while(u>=0){ v=pred[u];w=match[v];match[v]=u;match[u]=v;u=w; }
59
6o
61
   void FindMaxMatching(){
62
     for(int i=0;i<n;++i) match[i]=-1;</pre>
63
     for(int i=0;i<n;++i) if(match[i]==-1) if(FindAugmentingPath(i)) AugmentPath();</pre>
64 | }
```

Hopcroft

```
int from[1010],wh[1010],g[1010];
int num[100010],nxt[100010],tot;
int n,m,ans,h,t,q[1010],dx[1010],dy[1010];
bool bfs(){
  bool ret=false;
  h=0;t=0;
  for(int i=0;i<n;i++) if(wh[i]==-1) t++, q[t]=i;
  memset(dx,0,sizeof(dx)), memset(dy,0,sizeof(dy));</pre>
```

```
while(h++<t){</pre>
9
10
       for(int i=g[q[h]];i!=0;i=nxt[i])
         if(dy[num[i]]==0){
11
12
            dy[num[i]]=dx[q[h]]+1;
            if(from[num[i]]==-1) ret=true;
13
14
              dx[from[num[i]]]=dx[q[h]]+2;
15
16
              q[++t]=from[num[i]];
17
18
         }
19
20
     return ret;
^{21}
22
   bool dfs(int x){
     for(int i=g[x];i!=0;i=nxt[i]){
23
       if(dy[num[i]]==dx[x]+1){
24
         dy[num[i]]=0;
25
         if(from[num[i]]==-1||dfs(from[num[i]])){
26
            wh[x]=num[i];from[num[i]]=x;return true;
27
28
         }
29
30
     return false;
31
32
    void hopcroft(){
     memset(from,-1,sizeof(from)), memset(wh,-1,sizeof(wh));
34
     while(bfs())
35
36
       for(int i=0;i<n;i++)</pre>
         if(wh[i]==-1&&dfs(i)) ans++;
37
38
   void insert(int x,int y){ tot++;num[tot]=y;nxt[tot]=g[x];g[x]=tot; }
39
   int main(){
40
     while(scanf("%d %d",&n,&m)==2){
       tot=0; memset(g,0,sizeof(g));
42
       for(int i=0;i<n;i++){</pre>
43
         int x; scanf("%d",&x);
44
         for(int j=0;j<x;j++){</pre>
45
46
           int y; scanf("%d",&y);
            y--; insert(i,y);
47
48
49
        ans=0; hopcroft(); printf("%d\n",ans);
50
51
52
```

素数判定

```
int strong_pseudo_primetest(long long n,int base) {
       long long n2=n-1,res;
 3
       int s=0;
       while(n2\%2==0) n2>>=1,s++;
       res=powmod(base,n2,n);
 5
       if((res==1)||(res==n-1)) return 1;
 7
 8
       while(s>=0) {
 9
           res=mulmod(res,res,n);
10
           if(res==n-1) return 1;
11
12
       return 0; // n is not a strong pseudo prime
13
14 | }
   int isprime(long long n) {
15
16
     static LL testNum[]={2,3,5,7,11,13,17,19,23,29,31,37};
     static LL lim[]={4,0,1373653LL,25326001LL,25000000000LL,2152302898747LL, \
17
18
     3474749660383LL,341550071728321LL,0,0,0,0);
19
     if(n<2||n==3215031751LL) return 0;
20
     for(int i=0;i<12;++i){
       if(n<lim[i]) return 1;</pre>
21
       if(strong pseudo primetest(n,testNum[i])==0) return 0;
22
23
24
     return 1;
25
```

启发式分解

```
1 int ansn; LL ans[1000];
2 | LL func(LL x,LL n){ return(mod_mul(x,x,n)+1)%n; }
3 | LL Pollard(LL n){
     LL i,x,y,p;
     if(Rabin Miller(n)) return n;
     if(!(n&1)) return 2;
     for(i=1;i<20;i++){
8
       x=i; y=func(x,n); p=gcd(y-x,n);
       while(p==1) {x=func(x,n); y=func(func(y,n),n); p=gcd((y-x+n)%n,n)%n;}
9
       if(p==0||p==n) continue;
10
11
       return p;
12
13
   void factor(LL n){
15
16
     x=Pollard(n);
     if(x==n){ ans[ansn++]=x; return; }
```

```
18 factor(x), factor(n/x);
19 }
```

二次剩余

```
void calcH(int &t, int &h, const int p) {
     int tmp = p - 1; for (t = 0; (tmp & 1) == 0; tmp /= 2) t++; h = tmp;
3
   // solve equation x^2 \mod p = a
   bool solve(int a, int p, int &x, int &y) {
     srand(19920225);
     if (p == 2) { x = y = 1; return true; }
     int p2 = p / 2, tmp = power(a, p2, p);
     if (tmp == p - 1) return false;
10
     if ((p + 1) \% 4 == 0) {
11
       x = power(a, (p + 1) / 4, p); y = p - x; return true;
     } else {
12
       int t, h, b, pb; calcH(t, h, p);
13
       if (t >= 2) {
14
15
         do \{b = rand() \% (p - 2) + 2;
16
         } while (power(b, p / 2, p) != p - 1);
         pb = power(b, h, p);
17
18
       } int s = power(a, h / 2, p);
       for (int step = 2; step <= t; step++) {</pre>
19
20
         int ss = (((long long)(s * s) % p) * a) % p;
21
         for (int i = 0; i < t - step; i++) ss = ((long long)ss * ss) % p;
         if (ss + 1 == p) s = (s * pb) % p; pb = ((long long)pb * pb) % p;
22
23
       x = ((long long)s * a) % p; y = p - x;
24
     } return true;
25
```

Pell 方程

```
1 ULL A,B,p[maxn],q[maxn],a[maxn],g[maxn],h[maxn];
2 int main() {
     for (int test=1, n;scanf("%d",&n) && n;++test) {
       printf("Case %d: ",test);
       if (fabs(sqrt(n)-floor(sqrt(n)+1e-7))<=1e-7) {</pre>
         int a=(int)(floor(sqrt(n)+1e-7)); printf("%d %d\n",a,1);
       } else {
         // 求 x^2 - ny^2 = 1 的最小正整数根,n 不是完全平方数
         p[1]=q[0]=h[1]=1;p[0]=q[1]=g[1]=0;
10
         a[2]=(int)(floor(sqrt(n)+1e-7));
         for (int i=2;i;++i) {
11
           g[i]=-g[i-1]+a[i]*h[i-1]; h[i]=(n-sqr(g[i]))/h[i-1];
12
           a[i+1]=(g[i]+a[2])/h[i]; p[i]=a[i]*p[i-1]+p[i-2];
13
```

```
Page 17
```

日期公式

```
int zeller(int y,int m,int d) {
   if (m<=2) y--,m+=12; int c=y/100; y%=100;
   int w=((c>>2)-(c<<1)+y+(y>>2)+(13*(m+1)/5)+d-1)%7;
   if (w<0) w+=7; return(w);
}
int getId(int y, int m, int d) {
   if (m < 3) {y --; m += 12};
   return 365 * y + y / 4 - y / 100 + y / 400 + (153 * m + 2) / 5 + d;
}</pre>
```

Schreier-Sims

```
1 | namespace Schreier_Sims_Algorithm{
     struct Permutation{
       vector<int> P;
3
       Permutation(){}
4
5
       Permutation(int n){
6
         P.resize(n);
7
8
       Permutation inv()const{
         Permutation ret(P.size());
9
         for(int i = 0; i < int(P.size()); ++i) ret.P[P[i]] = i;</pre>
10
11
         return ret;
12
       }
       int &operator [](const int &dn){
13
         return P[dn];
14
15
       void resize(const size t &sz){
16
         P.resize(sz);
17
18
       size t size()const{
19
         return P.size();
20
21
       const int &operator [](const int &dn)const{
22
         return P[dn];
23
24
25
26
     Permutation operator *(const Permutation &a, const Permutation &b){
       Permutation ret(a.size());
27
```

```
28
       for(int i = 0; i < (int)a.size(); ++i){</pre>
29
         ret[i] = b[a[i]];
30
31
       return ret;
32
33
     typedef vector<Permutation> Bucket;
34
35
     typedef vector<int> Table;
36
     typedef pair<int,int> pii;
     int n, m;
37
     vector<Bucket> buckets, bucketsInv;
38
     vector<Table> lookupTable;
39
40
     int fastFilter(const Permutation &g, bool addToGroup = true){
41
42
       int n = buckets.size();
       Permutation p;
43
       for(int i = 0; i < n; ++i){
44
         int res = lookupTable[i][p[i]];
45
         if(res == -1){
46
           if(addToGroup){
47
48
             buckets[i].push_back(p);
              bucketsInv[i].push_back(p.inv());
49
             lookupTable[i][p[i]] = (int)buckets[i].size() - 1;
50
           }
51
52
           return i;
53
         p = p * bucketsInv[i][res];
54
         swap(i1,i2);
55
56
       }
57
       return -1;
58
59
60
     long long calcTotalSize(){
61
       long long ret = 1;
62
       for(int i = 0; i < n; ++i){
63
         ret *= buckets[i].size();
64
65
       return ret;
66
67
68
     bool inGroup(const Permutation &g){
69
       return fastFilter(g, false) == -1;
70
71
     void solve(const Bucket &gen,int _n){// m perm[0..n - 1]s
```

```
73
        n = _n, m = gen.size();
        {//clear all
 74
          vector<Bucket> _buckets(n);
 75
 76
          swap(buckets, _buckets);
          vector<Bucket> _bucketsInv(n);
 77
 78
          swap(bucketsInv, _bucketsInv);
          vector<Table> _lookupTable(n);
 79
 80
          swap(lookupTable, _lookupTable);
 81
 82
        for(int i = 0; i < n; ++i){
 83
          lookupTable[i].resize(n);
 84
          fill(lookupTable[i].begin(), lookupTable[i].end(), -1);
 85
 86
        Permutation id(n);
 87
        for(int i = 0; i < n; ++i){
 88
          id[i] = i;
 89
        for(int i = 0; i < n; ++i){
 90
          buckets[i].push_back(id);
 91
 92
          bucketsInv[i].push_back(id);
          lookupTable[i][i] = 0;
 93
 94
        for(int i = 0; i < m; ++i){
 95
 96
          fastFilter(gen[i]);
 97
 98
        queue<pair<point,point> > toUpdate;
        for(int i = 0; i < n; ++i){
 99
          for(int j = i; j < n; ++j){
100
            for(int k = 0; k < (int)buckets[i].size(); ++k){</pre>
101
               for(int 1 = 0; 1 < (int)buckets[j].size(); ++1){</pre>
102
                 toUpdate.push(make_pair(pii(i,k), pii(j,l)));
103
              }
104
            }
105
          }
106
107
108
        while(!toUpdate.empty()){
          pii a = toUpdate.front().first;
109
          pii b = toUpdate.front().second;
110
111
          toUpdate.pop();
          int res = fastFilter(buckets[a.first][a.second] * buckets[b.first][b.second]);
112
113
          if(res==-1) continue;
          pii newPair(res, (int)buckets[res].size() - 1);
114
          for(int i = 0; i < n; ++i){
115
116
            for(int j = 0; j < (int)buckets[i].size(); ++j){</pre>
              if(i <= res){
117
```

线性规划

```
// 求\max\{cx \mid Ax \leq b, x \geq 0\}的解
   typedef vector<double> VD;
   VD simplex(vector<VD> A, VD b, VD c) {
     int n = A.size(), m = A[0].size() + 1, r = n, s = m - 1;
     vector\langle VD \rangle D(n + 2, VD(m + 1, 0)); vector\langle int \rangle ix(n + m);
     for (int i = 0; i < n + m; ++ i) ix[i] = i;
     for (int i = 0; i < n; ++ i) {
       for (int j = 0; j < m - 1; ++ j) D[i][j] = -A[i][j];
       D[i][m - 1] = 1; D[i][m] = b[i];
       if (D[r][m] > D[i][m]) r = i;
10
11
12
     for (int j = 0; j < m - 1; ++ j) D[n][j] = c[j];
13
     D[n + 1][m - 1] = -1;
     for (double d; ; ) {
14
       if (r < n) {
15
16
         int t = ix[s]; ix[s] = ix[r + m]; ix[r + m] = t;
17
         D[r][s] = 1.0 / D[r][s]; vector<int> speedUp;
18
         for (int j = 0; j <= m; ++ j) if (j != s) {
           D[r][j] *= -D[r][s];
19
           if(D[r][j]) speedUp.push_back(j);
20
21
         for (int i = 0; i <= n + 1; ++ i) if (i != r) {
22
           for(int j = 0; j < speedUp.size(); ++ j)</pre>
23
           D[i][speedUp[j]] += D[r][speedUp[j]] * D[i][s];
24
           D[i][s] *= D[r][s];
25
26
       } r = -1; s = -1;
       for (int j = 0; j < m; ++ j) if (s < 0 || ix[s] > ix[j])
27
         if (D[n + 1][j] > EPS || (D[n + 1][j] > -EPS && D[n][j] > EPS)) s = j;
28
29
       if (s < 0) break;
       for (int i = 0; i < n; ++ i) if (D[i][s] < -EPS)
30
         if (r < 0 || (d = D[r][m] / D[r][s] - D[i][m] / D[i][s]) < -EPS
31
              || (d < EPS \&\& ix[r + m] > ix[i + m])) r = i;
32
       if (r < 0) return VD(); // 无边界
33
```

```
FFT
   // double 精度对10^9 + 7 取模最多可以做到2^20
 2
   const int MOD = 1000003;
 4
   const double PI = acos(-1);
 5
 6
   typedef complex<double> Complex;
 8
   const int N = 65536, L = 15, MASK = (1 << L) - 1;
10
11 Complex w[N];
12
   void FFTInit() {
13
     for (int i = 0; i < N; ++i) {
14
15
       w[i] = Complex(cos(2 * i * PI / N), sin(2 * i * PI / N));
16
17 | }
18
   void FFT(Complex p[], int n) {
19
20
     for (int i = 1, j = 0; i < n - 1; ++i) {
21
       for (int s = n; j = s >= 1, \sim j \& s;);
22
       if (i < j) {
         swap(p[i], p[j]);
23
24
25
26
     for (int d = 0; (1 << d) < n; ++d) {
       int m = 1 << d, m2 = m * 2, rm = n >> (d + 1);
27
28
       for (int i = 0; i < n; i += m2) {
         for (int j = 0; j < m; ++j) {
29
           Complex &p1 = p[i + j + m], &p2 = p[i + j];
30
           Complex t = w[rm * j] * p1;
31
32
           p1 = p2 - t;
33
           p2 = p2 + t;
34
       }
35
36
37 }
```

```
38
   Complex A[N], B[N], C[N], D[N];
39
41
   void mul(int a[N], int b[N]) {
     for (int i = 0; i < N; ++i) {
42
       A[i] = Complex(a[i] >> L, a[i] & MASK);
43
       B[i] = Complex(b[i] >> L, b[i] & MASK);
44
45
46
     FFT(A, N);
     FFT(B, N);
47
48
     for (int i = 0; i < N; ++i) {
       int j = (N - i) \% N;
49
       Complex da = (A[i] - conj(A[j])) * Complex(0, -0.5),
50
51
           db = (A[i] + conj(A[j])) * Complex(0.5, 0),
           dc = (B[i] - conj(B[j])) * Complex(0, -0.5),
52
           dd = (B[i] + conj(B[j])) * Complex(0.5, 0);
53
       C[j] = da * dd + da * dc * Complex(0, 1);
54
       D[j] = db * dd + db * dc * Complex(0, 1);
55
56
57
     FFT(C, N);
     FFT(D, N);
     for (int i = 0; i < N; ++i) {
59
60
       long long da = (long long)(C[i].imag() / N + 0.5) \% MOD
61
             db = (long long)(C[i].real() / N + 0.5) % MOD,
62
             dc = (long long)(D[i].imag() / N + 0.5) % MOD,
63
             dd = (long long)(D[i].real() / N + 0.5) % MOD;
64
       a[i] = ((dd << (L * 2)) + ((db + dc) << L) + da) % MOD;
65
66
```

Manacher/ 扩展 KMP

```
void Manacher(char text[], int n, int palindrome[]) {
     palindrome[0] = 1;
     for (int i = 1, j = 0, i < (n << 1) - 1; ++ i) {
       int p = i \gg 1;
       int q = i - p;
       int r = (j + 1 \gg 1) + palindrome[j] - 1;
       palindrome[i] = r < q ? 0 : min(r - q + 1, palindrome[(j << 1) - i]);
       while (0 <= p - palindrome[i] && q + palindrome[i] < n && text[p -</pre>

    palindrome[i]] == text[q + palindrome[i]]) {
 9
         palindrome[i] ++;
10
11
       if (q + palindrome[i] - 1 > r) {
         j = i;
12
13
```

```
14 }
15 }
16
17 | void ExtendedKMP(char *a, char *b, int M, int N, int *Next, int *ret) {// a ->
      → 模式串 b -> 匹配串
     int i, j, k;
18
     for (j = 0; 1 + j < M \&\& a[j] == a[1 + j]; j++); Next[1] = j;
19
20
     k = 1;
^{21}
     for (i = 2; i < M; i++) {
       int Len = k + Next[k], L = Next[i - k];
22
       if (L < Len - i) {</pre>
23
         Next[i] = L;
24
       } else {
25
26
         for (j = max(0, Len - i); i + j < M && a[j] == a[i + j]; j++);
         Next[i] = j;
27
28
         k = i;
29
30
     for (j = 0; j < N \&\& j < M \&\& a[j] == b[j]; j++);
31
32
     ret[0] = j;
     k = 0;
33
     for (i = 1; i < N; i++) {
34
       int Len = k + ret[k], L = Next[i - k];
35
36
       if (L < Len - i) {</pre>
37
         ret[i] = L;
38
       } else {
         for (j = max(0, Len - i); j < M && i + j < N && a[j] == b[i + j]; j++);
39
40
         ret[i] = j;
         k = i;
41
42
43
44 | }
```

后缀数组(倍增)

```
int rank[MAX_N],height[MAX_N];
int cmp(int *x,int a,int b,int d){
    return x[a]==x[b]&&x[a+d]==x[b+d];
}

void doubling(int *a,int N,int M){
    static int sRank[MAX_N],tmpA[MAX_N],tmpB[MAX_N];
    int *x=tmpA,*y=tmpB;
    for(int i=0;i<M;++i) sRank[i]=0;
    for(int i=0;i<N;++i) ++sRank[x[i]=a[i]];
    for(int i=1;i<M;++i) sRank[i]+=sRank[i-1];
    for(int i=N-1;i>=0;--i) sa[--sRank[x[i]]]=i;
```

```
12
      for(int d=1,p=0;p<N;M=p,d<<=1){</pre>
        p=0; for(int i=N-d;i<N;++i) y[p++]=i;</pre>
13
        for(int i=0;i<N;++i) if(sa[i]>=d) y[p++]=sa[i]-d;
14
15
        for(int i=0;i<M;++i) sRank[i]=0;</pre>
16
        for(int i=0;i<N;++i) ++sRank[x[i]];</pre>
        for(int i=1;i<M;++i) sRank[i]+=sRank[i-1];</pre>
17
18
        for(int i=N-1;i>=0;--i) sa[--sRank[x[y[i]]]]=y[i];
        swap(x,y); x[sa[0]]=0; p=1;
19
20
        for(int i=1;i<N;++i) x[sa[i]]=cmp(y,sa[i],sa[i-1],d)?p-1:p++;</pre>
21
22
   void calcHeight(){
23
      for(int i=0;i<N;++i) rank[sa[i]]=i;</pre>
24
25
      int cur=0; for(int i=0;i<N;++i)</pre>
26
     if(rank[i]){
       if(cur) cur--;
27
28
        for(;a[i+cur]==a[sa[rank[i]-1]+cur];++cur);
       height[rank[i]]=cur;
29
30
31
```

后缀自动机

```
struct State {
     int length;
     State *parent,*go[C];
     State(int length):length(length),parent(NULL){
       memset(go,0,sizeof(go));
     State* extend(State *start,int token){
8
       State *p=this;
       State *np=new State(this->length+1);
       while(p!=NULL&&p->go[token]==NULL)
10
11
         p->go[token]=np, p=p->parent;
       if(p==NULL) np->parent=start;
12
13
       else{
         State *q=p->go[token];
14
         if(p->length+1==q->length) np->parent=q;
15
16
         else{
17
           State *nq=new State(p->length+1);
18
            memcpy(nq->go,q->go,sizeof(q->go));
19
           nq->parent=q->parent;
           np->parent=q->parent=nq;
20
           while(p!=NULL&&p->go[token]==q)
21
             p->go[token]=nq, p=p->parent;
22
23
```

```
}
24
25
       return np;
26
    }
27 };
```

后缀树 (With Pop Front)

```
1 int pos;
 2
   int text[N];
 3
   struct Node {
 5
     int 1, r;
 8
     Node *suf, *ch[C];
 9
     int dgr;
10
11
12
     Node *fa;
13
     Node (int l = -1, int r = INF) : l(1), r(r) {
14
       suf = fa = NULL;
15
       memset(ch, 0, sizeof(ch));
16
       dgr = 0;
17
18
19
20
     Node* addEdge(Node *t) {
       int c = text[t->1];
21
       dgr += !ch[c];
22
       ch[c] = t;
23
       t->fa = this;
24
       return t;
25
26
27
28
     int len() {
       return min(r, pos + 1) - 1;
29
30
31
32
   int top;
33
34
   Node pool[N << 1];</pre>
35
36
   Node *root, *nxtSuf, *cur;
37
38
39 int remCnt, curP, curLen;
```

```
40
41
   long long size;
42
   queue<Node*> leaves;
44
   void init() {
45
46
     top = 0, pos = -1;
     remCnt = 0, curP = 0, curLen = 0;
47
48
     nxtSuf = NULL;
49
     root = cur = new(pool + (top++)) Node(-1, -1);
50
     while (leaves.size()) {
51
       leaves.pop();
52
53
54
55
   void link(Node *u) {
     if (nxtSuf) {
57
       nxtSuf->suf = u;
58
59
60
     nxtSuf = u;
61
62
63
   bool walk(Node *u) {
     int len = u->len();
64
65
     if (curLen >= len) {
66
       curP += len;
67
       curLen -= len;
68
       cur = u;
69
       return true;
70
     return false;
71
72
73
   void extend(int c) {
74
75
     text[++pos] = c;
76
     nxtSuf = NULL;
     ++remCnt;
77
78
     while (remCnt) {
79
       curP = curLen ? curP : pos;
       int curE = text[curP];
80
81
       if (!cur->ch[curE]) {
82
         leaves.push(cur->addEdge(new(pool + (top++)) Node(pos)));
83
         link(cur);
       } else {
84
```

```
85
          Node *nxt = cur->ch[curE];
                                                                                                        } else {
                                                                                               130
 86
          if (walk(nxt)) {
                                                                                                         leaves.push(cur);
                                                                                               131
 87
            continue;
                                                                                               132
                                                                                                         link(cur);
 88
          }
                                                                                               133
                                                                                                        }
 89
          if (text[nxt->l + curLen] == c) {
                                                                                                        --remCnt;
                                                                                               134
            ++curLen;
                                                                                                        if (cur == root && curLen > 0) {
                                                                                               135
 90
            link(cur);
 91
                                                                                               136
                                                                                                          --curLen:
            break;
 92
                                                                                               137
                                                                                                          curP = pos - remCnt + 1;
 93
          }
                                                                                               138
                                                                                                        } else {
          Node *split = new(pool + (top++)) Node(nxt->1, nxt->1 + curLen);
                                                                                               139
                                                                                                          cur = cur->suf ? cur->suf : root;
 94
          cur->addEdge(split);
                                                                                               140
                                                                                                        }
 95
 96
          leaves.push(split->addEdge(new(pool + (top++)) Node(pos)));
                                                                                                      }
                                                                                               141
          nxt->1 += curLen;
                                                                                                      if (nxtSuf != root) {
 97
                                                                                               142
 98
          split->addEdge(nxt);
                                                                                                        link(root);
                                                                                               143
          link(split);
                                                                                               144
 99
        }
                                                                                               145
100
         --remCnt;
                                                                                               146
101
        if (cur == root && curLen > 0) {
                                                                                                   void eraseUp(Node *&u) {
102
                                                                                               147
          curP = pos - (--curLen);
                                                                                               148
                                                                                                      size -= u->len();
103
        } else {
                                                                                                     int ch = text[u->1];
104
                                                                                               149
105
          cur = cur->suf ? cur->suf : root;
                                                                                               150
                                                                                                      u = u \rightarrow fa;
106
        }
                                                                                               151
                                                                                                      u \rightarrow ch[ch] = NULL;
                                                                                               152
                                                                                                      --(u->dgr);
107
108
      size += leaves.size();
                                                                                               153 }
109
                                                                                               154
                                                                                                    void erase() {
110
                                                                                               155
    void finish() {
                                                                                               156
                                                                                                      Node *u = leaves.front();
111
      nxtSuf = NULL;
                                                                                                      leaves.pop();
                                                                                               157
112
      for (int i = 0; i < top; ++i) {
                                                                                               158
                                                                                                      while (u-)dgr == 0 && u != cur) {
113
        if (pool[i].r == INF) {
                                                                                                        eraseUp(u);
114
                                                                                               159
          link(pool + i);
                                                                                               160
115
116
        }
                                                                                               161
                                                                                                      if (u == cur) {
                                                                                                        if (cur->dgr == 0 && curLen == 0) {
                                                                                               162
117
      while (remCnt > 0) {
                                                                                               163
                                                                                                          int len = u->len();
118
        if (curLen) {
                                                                                               164
                                                                                                          curLen = len;
119
                                                                                                          curP = pos - len + 1;
120
          int curE = text[curP];
                                                                                               165
          Node *nxt = cur->ch[curE];
                                                                                               166
                                                                                                          cur = cur->fa;
121
          if (walk(nxt)) {
                                                                                               167
                                                                                                          eraseUp(u);
122
             continue;
                                                                                               168
123
          }
                                                                                               169
                                                                                                        if (curLen) {
124
          Node *split = new(pool + (top++)) Node(nxt->1, nxt->1 + curlen);
                                                                                                          int curE = text[curP];
125
                                                                                               170
126
          leaves.push(cur->addEdge(split));
                                                                                               171
                                                                                                          if (!cur->ch[curE]) {
          nxt->1 += curLen;
                                                                                                            Node *leaf = new(pool + (top++)) Node(pos - curLen + 1);
127
                                                                                               172
128
          split->addEdge(nxt);
                                                                                                            leaves.push(cur->addEdge(leaf));
                                                                                               173
          link(split);
                                                                                                            size += leaf->len();
129
                                                                                               174
```

```
--remCnt:
175
176
            if (cur == root && curLen > 0) {
              curP = pos - (--curLen) + 1;
177
178
            } else {
               cur = cur->suf ? cur->suf : root;
179
180
181
            while (curLen && walk(cur->ch[text[curP]])) {
182
               continue:
183
            }
184
          }
185
186
187 }
188
189 int n;
190
    char s[N], buf[N];
191
192
    int ord[N], stop, sord[N << 1];</pre>
193
194
    void dfs(Node *u) {
195
196
      sord[u - pool] = stop++;
      for (int i = 0; i < C; ++i) {
197
        if (u->ch[i]) {
198
199
          dfs(u->ch[i]);
        }
200
201
202
203
    void getOrd() {
204
      init();
205
      for (int i = 0; i < n; ++i) {
206
        extend(s[i] - 'a');
207
      }
208
      finish();
209
210
      stop = 0;
      dfs(root);
211
      int i = 0;
212
      while (leaves.size()) {
213
        ord[i++] = sord[leaves.front() - pool];
214
215
        leaves.pop();
216
217 }
```

字符串最小表示

```
std::string find(std::string s) {
   int i,j,k,l,N=s.length(); s+=s;
   for(i=0,j=1;j<N;){
      for(k=0;k<N&&s[i+k]==s[j+k];k++);
      if(k>=N) break;
      if(s[i+k]<s[j+k]) j+=k+1;
      else l=i+k,i=j,j=max(l,j)+1;
   }
   return s.substr(i,N);
}</pre>
```

轻重链剖分

```
1 struct Tree(){}*root[N];
1 int father[N], size[N], depth[N];
   int bfsOrd[N],pathId[N],ordInPath[N],sqn[N];
   void doBfs(int s){
     int qh=0,qt=0,*que=bfsOrd; father[s]=-1; depth[s]=0;
     for(que[qt++]=s;qh<qt;){</pre>
       int u=que[qh++];
       foreach(iter,adj[u]){
9
         int v=*iter; if(v==father[u]) continue;
         father[v]=u; depth[v]=depth[u]+1; que[qt++]=v;
10
11
12
13
   void doSplit(){
14
     for(int i=N-1;i>=0;--i){
15
16
       int u=bfsOrd[i]; size[u]=1;
17
       foreach(iter,adj[u]){
18
         int v=*iter; if(v==father[u]) continue; size[u]+=size[v];
       }
19
20
     memset(pathId,-1,sizeof pathId);
21
     for(int i=0;i<N;++i){</pre>
22
23
       int top=bfsOrd[i],cnt=0;
24
       if(pathId[top]!=-1) continue;
25
       for(int next,u=top;u!=-1;u=next){
26
         sqn[cnt]=val[u]; ordInPath[u]=cnt; pathId[u]=top; ++cnt;
         next=-1;
27
28
         foreach(iter,adj[u]){
29
           int v=*iter; if(v==father[u]) continue;
           if(next<0||size[next]<size[v]) next=v;</pre>
30
31
       }
32
```

```
root[top]=new Tree(0,cnt,sqn);
33
34
35 | }
36 | void prepare() { doBfs(0); doSplit(); }
```

Splay Tree

```
1 // 注意初始化内存池和 null 节点
   struct Node{
     int rev, size; Node *ch[2], *p;
     void set(Node*,int); int dir(); void update(); void relax(); void appRev();
   } nodePool[MAX_NODE],*curNode,*null;
 6 | Node *newNode(){
     Node *t=curNode++; t->rev=0, t->size=1;
     t->ch[0]=t->ch[1]=t->p=null; return t;
 9
10 struct Splay{
     Node *root;
11
     Splay(){ root=newNode(); root->set(newNode(),0); root->update(); }
12
     void rot(Node *t){
13
       Node *p=t->p; int d=t->dir();
14
       p->relax(); t->relax();
15
16
       if(p==root) root=t;
       p->set(t->ch[!d],d); p->p->set(t,p->dir()); t->set(p,!d);
17
18
       p->update();
19
     void splay(Node *t,Node *f=null){
20
       for(t->relax();t->p!=f;)
21
22
         if(t->p->p==f) rot(t);
         else t->dir()==t->p->dir()?(rot(t->p),rot(t)):(rot(t),rot(t));
23
       t->update();
24
25
26
   void initNull(){ curNode=nodePool;null=curNode++;null->size=0; }
   void Node::set(Node *t,int _d){ ch[_d]=t; t->p=this; }
   int Node::dir(){ return this==p->ch[1]; }
29
   void Node::update(){ size=ch[0]->size+ch[1]->size+1;}
   void Node::relax(){ if(rev) ch[0]->appRev(), ch[1]->appRev(), rev=false; }
31
   void Node::appRev(){ if(this==null) return; rev^=true; swap(ch[0],ch[1]); }
```

Link Cut Tree

```
1 // 注意初始化 null 节点, 单点的 is root 初始为 true
2 | struct Node{
    Node *ch[2], *p;
    int is_root, rev;
    bool dir();
```

```
void set(Node*, bool);
     void update();
     void relax();
     void app rev();
     *null;
10
   void rot(Node *t){
11
     Node *p=t->p; bool d=t->dir();
12
     p->relax(); t->relax(); p->set(t->ch[!d],d);
13
     if(p->is_root) t->p=p->p,swap(p->is_root,t->is_root);
14
     else p->p->set(t,p->dir());
15
16
     t->set(p,!d); p->update();
17
   void splay(Node *t){
18
19
     for(t->relax();!t->is_root;)
       if(t->p->is_root) rot(t);
20
       else t->dir()==t->p->dir() ?(rot(t->p),rot(t)) :(rot(t),rot(t));
^{21}
     t->update();
22
23
   void access(Node *t){
24
25
     for(Node *s=null; t!=null; s=t,t=t->p){
26
       splay(t);
       if (t->p == null) { /*TODO*/ }
27
28
       t->ch[1]->is root=true; s->is root=false;
       t->ch[1]=s; t->update();
29
30
31
   bool Node::dir(){ return this==p->ch[1]; }
   void Node::set(Node *t,bool _d){ ch[_d]=t; t->p=this; }
   void Node::update(){ }
   void Node::app_rev(){ if (this == null) return; rev ^= true; swap(ch[0], ch[1]); }
35
   void Node::relax() { if(this==null) return; if (rev) { ch[0]->app_rev();
     37 void make_root(Node *u) { access(u); splay(u); u->app_rev(); }
```

Dominator Tree

```
vector<int> prec[N], succ[N];
  vector<int> ord;
  int stamp, vis[N];
  int num[N];
g int fa[N];
```

```
10
   void dfs(int u) {
11
      vis[u] = stamp;
12
13
      num[u] = ord.size();
      ord.push_back(u);
14
      for (int i = 0; i < (int)succ[u].size(); ++i) {</pre>
15
16
        int v = succ[u][i];
        if (vis[v] != stamp) {
17
18
         fa[v] = u;
          dfs(v);
19
20
^{21}
22
23
   int fs[N], mins[N];
24
25
26
   int dom[N], sem[N];
27
28
   int find(int u) {
29
      if (u != fs[u]) {
        int v = fs[u];
30
        fs[u] = find(fs[u]);
31
        if (mins[v] != -1 && num[sem[mins[v]]] < num[sem[mins[u]]]) {</pre>
32
          mins[u] = mins[v];
33
34
35
36
      return fs[u];
37
38
39
   void merge(int u, int v) {
      fs[u] = v;
40
41
   }
4^2
   vector<int> buf[N];
43
44
   int buf2[N];
45
46
   void mark(int source) {
47
48
      ord.clear();
      ++stamp;
49
      dfs(source);
50
      for (int i = 0; i < (int)ord.size(); ++i) {</pre>
51
        int u = ord[i];
52
        fs[u] = u;
53
        mins[u] = -1;
54
```

```
buf2[u] = -1;
55
56
     for (int i = (int)ord.size() - 1; i > 0; --i) {
57
58
       int u = ord[i], p = fa[u];
       sem[u] = p;
59
60
        for (int j = 0; j < (int)prec[u].size(); ++j) {</pre>
61
         int v = prec[u][j];
62
         if (use[v] != stamp) {
63
            continue;
64
65
         if (num[v] > num[u]) {
66
            find(v);
            v = sem[mins[v]];
67
68
69
         if (num[v] < num[sem[u]]) {</pre>
            sem[u] = v;
70
         }
7^{1}
72
        buf[sem[u]].push_back(u);
73
        mins[u] = u;
74
75
        merge(u, p);
76
        while (buf[p].size()) {
         int v = buf[p].back();
77
78
         buf[p].pop_back();
79
          find(v);
80
         if (sem[v] == sem[mins[v]]) {
            dom[v] = sem[v];
81
82
         } else {
83
            buf2[v] = mins[v];
84
85
       }
86
87
      dom[ord[0]] = ord[0];
88
     for (int i = 0; i < (int)ord.size(); ++i) {
       int u = ord[i];
89
       if (~buf2[u]) {
90
          dom[u] = dom[buf2[u]];
91
92
93
94
```

DancingLinks

```
struct node{
node *left,*right,*up,*down,*col; int row,cnt;
}*head,*col[MAXC],Node[MAXNODE],*ans[MAXNODE];
```

```
4 | int totNode:
   void insert(const std::vector<int> &V,int rownum){
 5
     std::vector<node*> N;
      for(int i=0;i<int(V.size());++i){</pre>
 8
       node* now=Node+(totNode++); now->row=rownum;
       now->col=now->up=col[V[i]], now->down=col[V[i]]->down;
 9
       now->up->down=now, now->down->up=now;
10
       now->col->cnt++; N.push_back(now);
11
12
      for(int i=0;i<int(V.size());++i)</pre>
13
       N[i]->right=N[(i+1)%V.size()], N[i]->left=N[(i-1+V.size())%V.size()];
14
15 | }
16
   void Remove(node *x){
17
     x->left->right=x->right, x->right->left=x->left;
18
     for(node *i=x->down;i!=x;i=i->down)
        for(node *j=i->right;j!=i;j=j->right)
19
         j->up->down=j->down, j->down->up=j->up, --(j->col->cnt);
20
21
   void Resume(node *x){
22
23
      for(node *i=x->up;i!=x;i=i->up)
       for(node *j=i->left;j!=i;j=j->left)
24
         j->up->down=j->down->up=j, ++(j->col->cnt);
25
26
     x->left->right=x, x->right->left=x;
27
28
   bool search(int tot){
29
     if(head->right==head) return true;
     node *choose=NULL;
30
      for(node *i=head->right;i!=head;i=i->right){
31
       if(choose==NULL||choose->cnt>i->cnt) choose=i;
32
       if(choose->cnt<2) break;</pre>
33
34
      Remove(choose);
35
36
      for(node *i=choose->down;i!=choose;i=i->down){
       for(node *j=i->right;j!=i;j=j->right) Remove(j->col);
37
38
       ans[tot]=i;
39
       if(search(tot+1)) return true;
       ans[tot]=NULL;
40
       for(node *j=i->left;j!=i;j=j->left) Resume(j->col);
41
42
     Resume(choose);
43
     return false;
44
45
46
   void prepare(int totC){
     head=Node+totC;
47
     for(int i=0;i<totC;++i) col[i]=Node+i;</pre>
48
```

```
totNode=totC+1;
49
      for(int i=0;i<=totC;++i){</pre>
50
        (Node+i)->right=Node+(i+1)%(totC+1);
51
52
        (Node+i)->left=Node+(i+totC)%(totC+1);
        (Node+i)->up=(Node+i)->down=Node+i;
53
54
55
```

环状最长公共子序列

```
int n, a[N << 1], b[N << 1];</pre>
   bool has(int i, int j) {
     return a[(i - 1) \% n] == b[(j - 1) \% n];
4
5
   const int DELTA[3][2] = \{\{0, -1\}, \{-1, -1\}, \{-1, 0\}\};
   int from[N][N];
10
11
   int solve() {
     memset(from, 0, sizeof(from));
12
13
     int ret = 0;
     for (int i = 1; i \le 2 * n; ++ i) {
14
       from[i][0] = 2;
15
16
       int left = 0, up = 0;
       for (int j = 1; j <= n; ++ j) {
17
18
         int upleft = up + 1 + !!from[i - 1][j];
19
         if (!has(i, j)) {
20
           upleft = INT_MIN;
21
         int max = std::max(left, std::max(upleft, up));
22
         if (left == max) {
23
           from[i][j] = 0;
24
         } else if (upleft == max) {
25
26
           from[i][j] = 1;
27
         } else {
28
           from[i][j] = 2;
         }
29
30
         left = max;
31
32
       if (i >= n) {
         int count = 0;
33
          for (int x = i, y = n; y;) {
34
           int t = from[x][y];
35
36
            count += t == 1;
```

```
x += DELTA[t][0];
37
38
           y += DELTA[t][1];
39
40
          ret = std::max(ret, count);
41
          int x = i - n + 1;
         from[x][0] = 0;
42
          int y = 0;
43
          while (y <= n \&\& from[x][y] == 0) {
44
45
           y++;
46
          for (; x <= i; ++ x) {
47
48
            from[x][y] = 0;
           if (x == i) {
49
50
              break;
51
            for (; y <= n; ++ y) {
52
              if (from[x + 1][y] == 2) {
53
                break;
54
55
56
              if (y + 1 \le n \&\& from[x + 1][y + 1] == 1) {
                y ++;
57
58
                break;
59
60
61
62
63
64
     return ret;
65 | }
```

直线下有多少个格点

```
1 LL solve(LL n,LL a,LL b,LL m){
2    // 计算 for (int i=0;i<n;++i) s+=floor((a+b*i)/m)
3    //n,m,a,b>0
4    if(b==0) return n*(a/m);
5    if(a>=m) return n*(a/m)+solve(n,a%m,b,m);
6    if(b>=m) return (n-1)*n/2*(b/m)+solve(n,a,b%m,m);
7    return solve((a+b*n)/m,(a+b*n)%m,m,b);
8 }
```

费用流

```
// Q is a priority_queue<PII, vector<PII>, greater<PII> >
// for an edge(s, t): u is the capacity, v is the cost, nxt is the next edge,
// op is the opposite edge
// this code can not deal with negative cycles
```

```
5 | typedef pair<int,int> PII;
6 | struct edge{ int t,u,v; edge *nxt,*op; }E[MAXE],*V[MAXV];
7 int D[MAXN], dist[MAXN], maxflow, mincost; bool in[MAXN];
8 bool modlabel(){
     while(!Q.empty()) Q.pop();
     for(int i=S;i<=T;++i) if(in[i]) D[i]=0,Q.push(PII(0,i)); else D[i]=inf;</pre>
10
     while(!Q.empty()){
11
       int x=Q.top().first,y=Q.top().second; Q.pop();
12
       if(y==T) break; if(D[y]<x) continue;</pre>
13
       for(edge *ii=V[y];ii;ii=ii->nxt) if(ii->u)
14
         if(x+(ii->v+dist[ii->t]-dist[y])<D[ii->t]){
15
16
           D[ii->t]=x+(ii->v+dist[ii->t]-dist[y]);
           Q.push(PII(D[ii->t],ii->t));
17
         }
18
19
     if(D[T]==inf) return false;
20
     for(int i=S;i<=T;++i) if(D[i]>D[T]) dist[i]+=D[T]-D[i];
21
22
     return true;
23
   int aug(int p,int limit){
24
     if(p==T) return maxflow+=limit,mincost+=limit*dist[S],limit;
26
     in[p]=1; int kk,ll=limit;
     for(edge *ii=V[p];ii;ii=ii->nxt) if(ii->u){
27
28
       if(!in[ii->t]&&dist[ii->t]+ii->v==dist[p]){
29
         kk=aug(ii->t,min(ii->u,ll)); ll-=kk,ii->u-=kk,ii->op->u+=kk;
         if(!ll) return in[p]=0,limit;
30
31
32
     return limit-ll;
33
34
35
   PII mincostFlow(){
36
     for(int i=S;i<=T;++i) dist[i]=i==T?inf:0;</pre>
     while(!Q.empty()) Q.pop(); Q.push(PII(0,T));
37
38
     while(!Q.empty()){
       int x=Q.top().first,y=Q.top().second; Q.pop(); if(dist[y]<x) continue;</pre>
39
       for(edge *ii=V[y];ii;ii=ii->nxt) if(ii->op->u&&ii->v+x<dist[ii->t]
40
         dist[ii->t]=ii->v+x,Q.push(PII(dist[ii->t],ii->t));
41
42
     maxflow=mincost=0;
43
     do{
44
45
46
         memset(in,0,sizeof(in));
       }while(aug(S,maxflow));
47
48
     }while(modlabel());
```

return PII(maxflow,mincost);

50 }

积分表

```
\int \frac{1}{1+x^2} dx = \tan^{-1} x \qquad \int \frac{1}{a^2+x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a} \qquad \int \frac{x}{a^2+x^2} dx = \frac{1}{2} \ln|a^2+x^2| \qquad \int \frac{x^2}{a^2+x^2} dx = x - a \tan^{-1} \frac{x}{a} \qquad \int \frac{x^3}{a^2+x^2} dx = \frac{1}{2} x^2 - \frac{1}{2} a^2 \ln|a^2+x^2|
  Integrals of Rational Functions
 \int \frac{1}{ax^2 + bx + c} dx = \frac{2}{\sqrt{4ac - b^2}} \tan^{-1} \frac{2ax + b}{\sqrt{4ac - b^2}} \qquad \int \frac{1}{(x+a)(x+b)} dx = \frac{1}{b-a} \ln \frac{a+x}{b+x}, \ a \neq b \qquad \int \frac{x}{(x+a)^2} dx = \frac{a}{a+x} + \ln |a+x| \qquad \int \frac{x}{ax^2 + bx + c} dx = \frac{1}{2a} \ln |ax^2 + bx + c| - \frac{b}{a\sqrt{4ac - b^2}} \tan^{-1} \frac{2ax + b}{\sqrt{4ac - 
 Integrals with Roots  \int \frac{x}{\sqrt{x\pm a}} dx = \frac{2}{3} (x\mp 2a) \sqrt{x\pm a} \qquad \int \sqrt{\frac{x}{a-x}} dx = -\sqrt{x(a-x)} - a \tan^{-1} \frac{\sqrt{x(a-x)}}{x-a} \qquad \int \sqrt{\frac{x}{a+x}} dx = \sqrt{x(a+x)} - a \ln\left[\sqrt{x} + \sqrt{x+a}\right] \qquad \int x \sqrt{x^2 \pm a^2} dx = \frac{1}{3} \left(x^2 \pm a^2\right)^{3/2} 
 \int x\sqrt{ax+b}dx = \frac{2}{15a^2}(-2b^2 + abx + 3a^2x^2)\sqrt{ax+b} \qquad \int \sqrt{x(ax+b)}dx = \frac{1}{4a^{3/2}}\left[(2ax+b)\sqrt{ax(ax+b)} - b^2\ln\left|a\sqrt{x} + \sqrt{a(ax+b)}\right|\right] \qquad \int \sqrt{x^2\pm a^2}dx = \frac{1}{2}x\sqrt{x^2\pm a^2}\pm \frac{1}{2}a^2\ln\left|x + \sqrt{x^2\pm a^2}\right| + \frac{1}{2}a^2\ln\left|
 \int \sqrt{x^3(ax+b)}dx = \left[\frac{b}{12a} - \frac{b^2}{8a^2x} + \frac{x}{3}\right] \sqrt{x^3(ax+b)} + \frac{b^3}{8a^{5/2}} \ln\left|a\sqrt{x} + \sqrt{a(ax+b)}\right| \qquad \int \sqrt{a^2 - x^2}dx = \frac{1}{2}x\sqrt{a^2 - x^2} + \frac{1}{2}a^2 \tan^{-1}\frac{x}{\sqrt{a^2 - x^2}}dx = \frac{1}{2}x\sqrt{x^2 \pm a^2} \mp \frac{1}{2}a^2 \ln\left|x + \sqrt{x^2 \pm a^2}\right| + \frac{1}{2}a^2 \tan^{-1}\frac{x}{\sqrt{a^2 - x^2}}dx = \frac{1}{2}x\sqrt{x^2 \pm a^2} \mp \frac{1}{2}a^2 \ln\left|x + \sqrt{x^2 \pm a^2}\right| + \frac{1}{2}a^2 \tan^{-1}\frac{x}{\sqrt{a^2 - x^2}}dx = \frac{1}{2}x\sqrt{x^2 \pm a^2} \mp \frac{1}{2}a^2 \ln\left|x + \sqrt{x^2 \pm a^2}\right| + \frac{1}{2}a^2 \tan^{-1}\frac{x}{\sqrt{a^2 - x^2}}dx = \frac{1}{2}x\sqrt{x^2 \pm a^2} \mp \frac{1}{2}a^2 \ln\left|x + \sqrt{x^2 \pm a^2}\right| + \frac{1}{2}a^2 \tan^{-1}\frac{x}{\sqrt{a^2 - x^2}}dx = \frac{1}{2}x\sqrt{x^2 \pm a^2} + \frac{1}{2}a^2 \ln\left|x + \sqrt{x^2 \pm a^2}\right| + \frac{1}{2}a^2 \sin^{-1}\frac{x}{\sqrt{a^2 - x^2}}dx = \frac{1}{2}x\sqrt{x^2 \pm a^2} + \frac{1}{2}a^2 \ln\left|x + \sqrt{x^2 \pm a^2}\right| + \frac{1}{2}a^2 \sin^{-1}\frac{x}{\sqrt{a^2 - x^2}}dx = \frac{1}{2}x\sqrt{x^2 \pm a^2} + \frac{1}{2}a^2 \ln\left|x + \sqrt{x^2 \pm a^2}\right| + \frac{1}{2}a^2 \sin^{-1}\frac{x}{\sqrt{a^2 - x^2}}dx = \frac{1}{2}x\sqrt{x^2 \pm a^2} + \frac{1}{2}a^2 \sin^{-1}\frac{x}{\sqrt{a^2 - x^2}}dx = \frac{1}{2}x\sqrt{x^2 \pm a^2} + \frac{1}{2}a^2 \sin^{-1}\frac{x}{\sqrt{a^2 - x^2}}dx = \frac{1}{2}x\sqrt{x^2 \pm a^2} + \frac{1}{2}a^2 \sin^{-1}\frac{x}{\sqrt{a^2 - x^2}}dx = \frac{1}{2}x\sqrt{x^2 \pm a^2} + \frac{1}{2}a^2 \sin^{-1}\frac{x}{\sqrt{a^2 - x^2}}dx = \frac{1}{2}x\sqrt{x^2 \pm a^2} + \frac{1}{2}a^2 \sin^{-1}\frac{x}{\sqrt{a^2 - x^2}}dx = \frac{1}{2}x\sqrt{x^2 \pm a^2} + \frac{1}{2}a^2 \sin^{-1}\frac{x}{\sqrt{a^2 - x^2}}dx = \frac{1}{2}x\sqrt{x^2 \pm a^2} + \frac{1}{2}a^2 \sin^{-1}\frac{x}{\sqrt{a^2 - x^2}}dx = \frac{1}{2}x\sqrt{x^2 \pm a^2} + \frac{1}{2}a^2 \sin^{-1}\frac{x}{\sqrt{a^2 - x^2}}dx = \frac{1}{2}x\sqrt{x^2 \pm a^2} + \frac{1}{2}a^2 \sin^{-1}\frac{x}{\sqrt{a^2 - x^2}}dx = \frac{1}{2}x\sqrt{x^2 + a^2} + \frac{1}{2}a^2 \sin^{-1}\frac{x}{\sqrt{a^2 - x^2}}dx = \frac{1}{2}x\sqrt{x^2 + a^2} + \frac{1}{2}a^2 \sin^{-1}\frac{x}{\sqrt{a^2 - x^2}}dx = \frac{1}{2}x\sqrt{x^2 + a^2} + \frac{1}{2}a^2 \sin^{-1}\frac{x}{\sqrt{a^2 - x^2}}dx = \frac{1}{2}x\sqrt{x^2 + a^2} + \frac{1}{2}a^2 \sin^{-1}\frac{x}{\sqrt{a^2 - x^2}}dx = \frac{1}{2}x\sqrt{x^2 + a^2} + \frac{1}{2}a^2 \sin^{-1}\frac{x}{\sqrt{a^2 - x^2}}dx = \frac{1}{2}x\sqrt{x^2 + a^2} + \frac{1}{2}a^2 \sin^{-1}\frac{x}{\sqrt{a^2 - x^2}}dx = \frac{1}{2}x\sqrt{x^2 + a^2} + \frac{1}{2}a^2 \sin^{-1}\frac{x}{\sqrt{a^2 - x^2}}dx = \frac{1}{2}x\sqrt{x^2 + a^2} + \frac{1}{2}a^2 \sin^{-1}\frac{x}{\sqrt{a^2 - x^2}}dx = \frac{1}{2}x\sqrt{x^2 + a^2} + \frac{1}{2}a^2 \sin^{-1}\frac{x}{\sqrt{a^2 - x^2}}dx = \frac{1}{2}x\sqrt{x^2 + a^2} + \frac{
 \int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln \left| x + \sqrt{x^2 \pm a^2} \right| \int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a} \int \frac{x}{\sqrt{x^2 \pm a^2}} dx = \sqrt{x^2 \pm a^2} \int \frac{x}{\sqrt{a^2 - x^2}} dx = -\sqrt{a^2 - x^2} \int \sqrt{ax^2 + bx + c} dx = \frac{b + 2ax}{4a} \sqrt{ax^2 + bx + c} + \frac{4ac - b^2}{8a^{3/2}} \ln \left| 2ax + b + 2\sqrt{a(ax^2 + bx + c)} \right| = -\sqrt{a^2 - x^2} \int \sqrt{ax^2 + bx + c} dx = \frac{b + 2ax}{4a} \sqrt{ax^2 + bx + c} + \frac{4ac - b^2}{8a^{3/2}} \ln \left| 2ax + b + 2\sqrt{a(ax^2 + bx + c)} \right| = -\sqrt{a^2 - x^2} \int \sqrt{ax^2 + bx + c} dx = \frac{b + 2ax}{4a} \sqrt{ax^2 + bx + c} + \frac{4ac - b^2}{8a^{3/2}} \ln \left| 2ax + b + 2\sqrt{a(ax^2 + bx + c)} \right| = -\sqrt{a^2 - x^2} \int \sqrt{ax^2 + bx + c} dx = \frac{b + 2ax}{4a} \sqrt{ax^2 + bx + c} + \frac{4ac - b^2}{8a^{3/2}} \ln \left| 2ax + b + 2\sqrt{a(ax^2 + bx + c)} \right| = -\sqrt{a^2 - x^2} \int \sqrt{ax^2 + bx + c} dx = \frac{b + 2ax}{4a} \sqrt{ax^2 + bx + c} + \frac{4ac - b^2}{8a^{3/2}} \ln \left| 2ax + b + 2\sqrt{a(ax^2 + bx + c)} \right| = -\sqrt{a^2 - x^2} \int \sqrt{ax^2 + bx + c} dx = \frac{b + 2ax}{4a} \sqrt{ax^2 + bx + c} + \frac{4ac - b^2}{8a^{3/2}} \ln \left| 2ax + b + 2\sqrt{a(ax^2 + bx + c)} \right| = -\sqrt{a^2 - x^2} \int \sqrt{ax^2 + bx + c} dx = \frac{b + 2ax}{4a} \sqrt{ax^2 + bx + c} + \frac{ac - b^2}{8a^{3/2}} \ln \left| 2ax + b + 2\sqrt{a(ax^2 + bx + c)} \right| = -\sqrt{a^2 - x^2} \int \sqrt{ax^2 + bx + c} dx = -\sqrt{a^2 - x^2} \int \sqrt{ax^2 + bx + c} dx = -\sqrt{a^2 - x^2} \int \sqrt{ax^2 + bx + c} dx = -\sqrt{a^2 - x^2} \int \sqrt{ax^2 + bx + c} dx = -\sqrt{a^2 - x^2} \int \sqrt{ax^2 + bx + c} dx = -\sqrt{a^2 - x^2} \int \sqrt{ax^2 + bx + c} dx = -\sqrt{a^2 - x^2} \int \sqrt{ax^2 + bx + c} dx = -\sqrt{a^2 - x^2} \int \sqrt{ax^2 + bx + c} dx = -\sqrt{a^2 - x^2} \int \sqrt{ax^2 + bx + c} dx = -\sqrt{a^2 - x^2} \int \sqrt{ax^2 + bx + c} dx = -\sqrt{a^2 - x^2} \int \sqrt{ax^2 + bx + c} dx = -\sqrt{a^2 - x^2} \int \sqrt{ax^2 + bx + c} dx = -\sqrt{a^2 - x^2} \int \sqrt{ax^2 + bx + c} dx = -\sqrt{a^2 - x^2} \int \sqrt{ax^2 + bx + c} dx = -\sqrt{a^2 - x^2} \int \sqrt{ax^2 + bx + c} dx = -\sqrt{a^2 - x^2} \int \sqrt{ax^2 + bx + c} dx = -\sqrt{a^2 - x^2} \int \sqrt{ax^2 + bx + c} dx = -\sqrt{a^2 - x^2} \int \sqrt{ax^2 + bx + c} dx = -\sqrt{a^2 - x^2} \int \sqrt{ax^2 + bx + c} dx = -\sqrt{a^2 - x^2} \int \sqrt{ax^2 + bx + c} dx = -\sqrt{a^2 - x^2} \int \sqrt{ax^2 + bx + c} dx = -\sqrt{a^2 - x^2} \int \sqrt{ax^2 + bx + c} dx = -\sqrt{a^2 - x^2} \int \sqrt{ax^2 + bx + c} dx = -\sqrt{a^2 - x^2} \int \sqrt{ax^2 + bx + c} dx = -\sqrt{a^2 - x^2} \int \sqrt{ax^2 +
  \int x \sqrt{ax^2 + bx + c} = \frac{1}{48a^{5/2}} \left( 2\sqrt{a}\sqrt{ax^2 + bx + c} \right. \\ \times \left. \left( -3b^2 + 2abx + 8a(c + ax^2) \right) \right. \\ \left. + 3(b^3 - 4abc) \ln \left| b + 2ax + 2\sqrt{a}\sqrt{ax^2 + bx + c} \right| \right) 
 \int \frac{x}{\sqrt{ax^2 + bx + c}} dx = \frac{1}{a} \sqrt{ax^2 + bx + c} - \frac{b}{2a^{3/2}} \ln \left| 2ax + b + 2\sqrt{a(ax^2 + bx + c)} \right| \qquad \int \frac{dx}{(a^2 + x^2)^{3/2}} = \frac{x}{a^2 \sqrt{a^2 + x^2}} \qquad \text{Integrals with Logarithms} \qquad \int \ln(ax + b) dx = \left(x + \frac{b}{a}\right) \ln(ax + b) - x, a \neq 0
  \int \ln(x^2 + a^2) \, dx = x \ln(x^2 + a^2) + 2a \tan^{-1} \frac{x}{a} - 2x
\int \ln(x^2 - a^2) \, dx = x \ln(x^2 - a^2) + a \ln \frac{x+a}{x-a} - 2x
\int x \ln(ax+b) \, dx = \frac{bx}{2a} - \frac{1}{4}x^2 + \frac{1}{2} \left(x^2 - \frac{b^2}{a^2}\right) \ln(ax+b) \, dx
 \int \ln\left(ax^2 + bx + c\right) dx = \frac{1}{a}\sqrt{4ac - b^2} \tan^{-1} \frac{2ax + b}{\sqrt{4ac - b^2}} - 2x + \left(\frac{b}{2a} + x\right) \ln\left(ax^2 + bx + c\right) 
\int x \ln\left(a^2 - b^2x^2\right) dx = -\frac{1}{2}x^2 + \frac{1}{2}\left(x^2 - \frac{a^2}{b^2}\right) \ln\left(a^2 - b^2x^2\right)
\int x^n e^{ax} dx = \frac{x^n e^{ax}}{a} - \frac{n}{a} \int x^{n-1} e^{ax} dx
\int x e^{-ax^2} dx = -\frac{1}{2a} e^{-ax^2}
\int \cos^3 ax dx = \frac{3\sin ax}{4a} + \frac{\sin 3ax}{12a}
\int \cos ax \sin bx dx = \frac{\cos[(a-b)x]}{2(a-b)} - \frac{\cos[(a+b)x]}{2(a+b)}, a \neq b
\int \sin^2 ax \cos bx dx = -\frac{\sin[(2a-b)x]}{4(2a-b)} + \frac{\sin bx}{2b} - \frac{\sin[(2a+b)x]}{4(2a+b)}
\int \sin^2 x \cos x dx = \frac{1}{3} \sin^3 x
 \int \cos^2 ax \sin bx dx = \frac{\cos[(2a-b)x]}{4(2a-b)} - \frac{\cos bx}{2b} - \frac{\cos[(2a+b)x]}{4(2a+b)} \quad \int \cos^2 ax \sin ax dx = -\frac{1}{3a} \cos^3 ax \quad \int \sin^2 ax \cos^2 bx dx = \frac{x}{4} - \frac{\sin[2(a-b)x]}{8a} - \frac{\sin[2(a-b)x]}{16(a-b)} + \frac{\sin 2bx}{8b} - \frac{\sin[2(a+b)x]}{16(a+b)} \quad \int \sin^2 ax \cos^2 ax dx = \frac{x}{8} - \frac{\sin 4ax}{32a} + \frac{\sin 2bx}{32a} - \frac{\sin 2bx}{32a} + 
  \int \tan ax dx = -\frac{1}{2} \ln \cos ax \qquad \int \tan^2 ax dx = -x + \frac{1}{2} \tan ax \qquad \int \tan^3 ax dx = \frac{1}{2} \ln \cos ax + \frac{1}{2} \sec^2 ax \qquad \int \sec x dx = \ln |\sec x + \tan x| = 2 \tanh^{-1} (\tan \frac{x}{2}) \qquad \int \sec^2 ax dx = \frac{1}{2} \tan ax
  \int \sec^3 x \, dx = \frac{1}{2} \sec x \tan x + \frac{1}{2} \ln|\sec x + \tan x|
\int \sec x \tan x dx = \sec x
\int \sec^2 x \tan x dx = \frac{1}{2} \sec^2 x
\int \sec^n x \tan x dx = \frac{1}{2} \sec^n x, n \neq 0
\int \csc x dx = \ln|\tan \frac{x}{2}| = \ln|\csc x - \cot x| + C
  \int \csc^2 ax dx = -\frac{1}{a} \cot ax \int \csc^3 x dx = -\frac{1}{2} \cot x \csc x + \frac{1}{2} \ln|\csc x - \cot x| \int \csc^n x \cot x dx = -\frac{1}{n} \csc^n x, n \neq 0 \int \sec x \csc x dx = \ln|\tan x|  Products of Trigonometric Functions and Monomials
  \int x \cos x dx = \cos x + x \sin x
\int x \cos ax dx = \frac{1}{a^2} \cos ax + \frac{x}{a} \sin ax
\int x^2 \cos x dx = 2x \cos x + (x^2 - 2) \sin x
\int x^2 \cos ax dx = \frac{2x \cos ax}{a^2} + \frac{a^2 x^2 - 2}{a^3} \sin ax
  \int x \sin ax dx = -\frac{x \cos ax}{a} + \frac{\sin ax}{a^2} \qquad \int x^2 \sin x dx = (2 - x^2) \cos x + 2x \sin x \qquad \int x^2 \sin ax dx = \frac{2 - a^2 x^2}{a^3} \cos ax + \frac{2x \sin ax}{a^2} \qquad \text{Products of Trigonometric Functions and Exponentials}
  \int e^x \sin x dx = \frac{1}{2} e^x (\sin x - \cos x) \qquad \qquad \int e^{bx} \sin ax dx = \frac{1}{a^2 + b^2} e^{bx} (b \sin ax - a \cos ax) \qquad \qquad \int e^{bx} \cos ax dx = \frac{1}{a^2 + b^2} e^{bx} (a \sin ax + b \cos ax) \qquad \qquad \int x e^x \sin x dx = \frac{1}{2} e^x (\cos x - x \cos x + x \sin x)
   \int xe^x \cos x dx = \frac{1}{2}e^x (x \cos x - \sin x + x \sin x) \quad \int e^x \cos x dx = \frac{1}{2}e^x (\sin x + \cos x)
```

Java

```
import java.io.*;
import java.util.*;
import java.math.*;

public class Main{
    BufferedReader reader = new BufferedReader(new InputStreamReader(System.in));
    PrintWriter writer = new PrintWriter(System.out);
    StringTokenizer tokenizer = null;

void solve() throws Exception {
```

```
11
     void run()throws Exception{
12
13
14
         while (true) {
15
            solve();
16
17
18
        catch(Exception e){
19
20
       finally{
21
         reader.close();
22
         writer.close();
```

```
}
23
24
     String next()throws Exception{
25
       for(;tokenizer == null || !tokenizer.hasMoreTokens();){
26
         tokenizer = new StringTokenizer(reader.readLine());
27
28
       }
       return tokenizer.nextToken();
29
30
     int nextInt()throws Exception{
31
       return Integer.parseInt(next());
32
33
     double nextDouble()throws Exception{
34
       return Double.parseDouble(next());
35
36
     BigInteger nextBigInteger()throws Exception{
37
38
       return new BigInteger(next());
39
     public static void main(String args[])throws Exception{
40
       (new Main()).run();
41
42
    }
43 }
```

Vimrc

```
1 \begin{lstlisting}
   set nu ai ci si mouse=a ts=4 sts=4 sw=4
   nmap<C-A> ggVG
   vmap<C-C> "+y
   nmap<F3> : vs %<.in <CR>
   nmap<F5> : !./%< <CR>
   nmap<F8> : !./%< < %<.in <CR>
10 nmap<F9> : !g++ % -o %< -Wall <CR>
   "nmap<F4> : !gedit % <CR>
12
   "autocmd BufNewFile *.cpp 0r ~/temp.cpp
13
   "set hlsearch incseach
14
15
16 "syntax on
   "filetype plugin indent on
17
18 \end{lstlisting}
```