	Utech
Name:	A
Roll No.:	To Date of Exercising and Explana
Invigilator's Signature :	

CS/B.Tech (CSE/IT)/SEM-5/CS-501/2010-11 2010-11 OPERATING SYSTEM

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

- 1. Choose the correct alternatives for the following: $10 \times 1 = 10$
 - i) Suppose that a process is in BLOCKED state waiting from some I/O service. When the service is completed, it goes to the
 - a) RUNNING state
- b) READY state
- c) SUSPENDED state
- d) TERMINATED state.
- ii) Virtual memory is
 - a) an extremely large main memory
 - b) an extremely large secondary memory
 - c) an illusion of an extremely large memory
 - d) a type of memory used in supercomputer.

5201 [Turn over

iii)	Wh	ich of the following scl	nedul	ing algorithm does give
	min	nimum average waiting t	ime ?	A Phonography and Explana
	a)	FCFS	b)	SJF
	c)	Round-Robin	d)	Priority.
iv)	Con	ncurrent process are tho	se wl	no
	a)	do not overlap time		
	b)	overlap in time		
	c)	are exerted by a proce	ss at	the same time
	d)	none of these.		
v)	Bar	nking algorithm in an op	erati	ng system is used for
	a)	deadlock avoidance	b)	deadlock recovery
	c)	mutual exclusion	d)	context switching.
vi)	Wh	ich is not a layer of oper	ating	ş system ?
	a)	Kernel		
	b)	Shell		
	c)	Application program		
	d)	Critical section.		
vii)	То	avoid race condition	the	maximum number of
	_	-	aneou	ısly be inside the critical
	sec	tion is		
	a)	hundred	b)	one
	c)	two	d)	three.
5201		2		

viii) The scheduler which selects jobs from the pool of jobs and loads them to the ready queue is

- a) long term
- b) short term
- c) medium term
- d) none of these.
- ix) CPU performance is measured through
 - a) Throughput
- b) MHz

c) Flaps

- d) None of these.
- x) With a single resource, deadlock occurs
 - a) if there are more than two processes competing for that resource
 - b) if there are only two processes competing for that resource
 - c) if there is a single process competing for that resource
 - d) none of these.

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

 $3 \times 5 = 15$

- 2. Give details of how paging is implemented in hardware. Explain what a Translation Lookaside Buffer (TLB) is and give details of how it works.
- 3. Suppose a disk drive has 300 cylinders, numbered 0 to 299. The current head position of the disk is at 90. The queue of pending requests, in FIFO order is 36, 79, 15, 120, 199, 270, 89, 170.

Calculate the average cylinder movements for the following algorithms :

- i) SSTF
- ii) C-SCAN

- 4. Briefly explain the role of Semaphore in critical section problem.
- 5. Discuss the structure of Process Control Block.
- 6. With example describe if resources are not properly allocated to the processes it may lead from a safe state to an unsafe state.

GROUP - C

(Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

- 7. a) Briefly explain different free space management techniques.
 - b) If the size of each data block is 512 bytes in Unix file system, assuming the size of a pointer is 4 bytes. Find the maximum size of a file when Inode block contains 10 direct pointers, 1 single indirect pointer, 1 double indirect pointer and 1 triple indirect pointer.
 - c) Explain compaction.

6 + 6 + 3

b) Consider the following set of process. CPU burst time of them are given in milliseconds.

Process	CPU Burst Time				
P1	15				
P2	5				
Р3	7				
P4	10				

Draw the Gantt chart for FCFS and R.R. scheduling where time quantum q=5 milliseconds. Calculate the average waiting time.

- c) Define turn around time of a job.
- d) What are the advantages and disadvantages of SJF scheduling?
- e) Explain CPU scheduling criteria. 2 + 5 + 2 + 3 + 3

9. a) Consider the following snapshot:

							15	2/	
Process	Allocation			Max			Available		
	A	В	С	A	В	C	A	В	C
P0	0	1	0	7	5	3	3	3	2
P1	2	0	0	3	2	2			
P2	3	0	2	9	0	2			
Р3	2	1	1	2	2	2			
P4	0	0	2	4	3	3			

Answer the following questions using the Banker's algorithm:

- i) What is the content of the matrix need?
- ii) Is the system in a safe state?
- iii) If a request from process P1 arrives for (1, 0, 2) can the request be granted immediately?
- b) Explain the deadlock detection mechanism in case of single instance of each resource type.

c) Consider the following snapshot of a system :

_	Allocation			Request			Available		
Process	A	В	C	A	В	C	A	В	C
PO	0	1	0	0	0	0	0	0	0
P1	2	0	0	2	0	2			
P2	3	0	3	О	0	0			
Р3	2	1	1	1	0	0			
P4	0	0	2	0	0	2			

- i) Is the system in a deadlocked state?
- ii) Suppose that P2 makes one additional request for an instance of type C. If this request is granted then check deadlock occur or not. 7 + 4 + 4
- 10. a) What is overlays?
- b) What are the advantages of segmentation over paging?5201 7 [Turn over

- c) Explain the difference between internal fragmentation and external fragmentation. Which one occurs in paging system? How the problem of external fragmentation be solved?
- d) State the advantages and disadvantages of single contiguous memory allocation. 2+3+6+4
- 11. a) What is the purpose of modify bit in page table?
 - b) Consider the following page reference string:

$$7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2, 1, 2, 0, 1, 7, 0, 1$$

How many page faults would occur for the following replacement algorithms? Assuming 3 frames are available. Also assume that initially none of pages in main memory.

- i) Optimal replacement
- ii) FIFO replacement.
- c) What is thrashing?
- d) Explain Belady's anomaly. 2 + 8 + 2 + 3