1. Use either the first or second derivative test to find the local extrema of $f(x) = \frac{1}{3}x^3 - 2x^2 + 3x$.

$$f'(x) = \chi^2 - 4\chi + 3 = (\chi - 1)(\chi - 3) = 0$$
Critical points: $\chi = 1$ $\chi = 3$

$$f'(x) = 2x - 4$$

 $f''(1) = 2.1 - 4 < 0$, so local max at $x = 1$
 $f''(3) = 2.3 - 4 > 0$, so local min at $x = 3$

Answer:

$$f(x)$$
 has a local maximum of $f(1) = \frac{4}{3}$ at $x = 1$
 $f(x)$ has a local minimum of $f(3) = 0$ at $x = 3$

2. Find the global extrema (i.e. absolute extrema) of $f(x) = 2\sqrt{x} - x$ on (0,4).

$$f(x) = 2x^{2} - x$$

$$f'(x) = x^{-1/2} - 1 = \frac{1}{\sqrt{x}} - 1$$
Solve $\frac{1}{\sqrt{x}} - 1 = 0$ to find any other critical points,
$$\frac{1}{\sqrt{x}} = 1$$

$$\frac{1}{\sqrt{x}} = 1$$

$$1 = \sqrt{x}$$
(critical point)
$$x = 1$$

0/1	y = f(x)
++++	+f(x)

test pt	f'(x)
4	f(1)=1>0
4	f(4) = -1<0

Answer: f(x) has an absolute max of f(1)=1 at x=1

No abs. min on (0,4)