REMARKS

Reconsideration is requested.

The undersigned's review of the PTO IFW reveals that a Bibliographic Data Sheet indexed on May 2, 2007, and dated April 13, 2007 in the lower right corner of the Sheet, includes an acknowledgement that U.S. Serial No. 07/920,286 is a U.S. National Phase of PCT/EP91/02409, in hand-written text initialed and dated "12/31/1991" by an unidentified individual. The undersigned has requested, on more than one occasion, a Corrected Filing Receipt which includes the acknowledgement that U.S. Serial No. 07/920,286 is a U.S. National Phase of PCT/EP91/02409. See February 20, 2007 for the most recent Request in this regard. The Office is again requested to issue a Corrected Filing Receipt.

Moreover, the Bibliographic Data Sheet indexed on May 2, 2007, and dated April 13, 2007 in the lower right corner of the Sheet does not acknowledge receipt of a copy of the foreign priority claim or that the requirements of 35 USC § 119 (a-d) have been met. Correction and acknowledgement of the same in the Examiner's next Action are requested. The undersigned notes in this regard that the Examiner has acknowledged in the Office Action of May 2, 2007 receipt of the applicants priority document in the parent application. Correction of the Patent Office records with regard to the Bibliographic Data Sheet however is also requested.

The specification has been revised in the cross-reference, as requested by the Examiner on page 3 of the Office Action dated May 2, 2007.

The Rule 75 objection to claims 71-73, 77-84 and 86-89 is obviated by the above amendments. The claims have been revised according to acceptable wording suggested in MPEP § 608.01(n). Withdrawal of the objection is requested.

The Examiner is requested to hold in abeyance the obviousness-type double patenting rejection of claims 55, 59, 60, 62, 68-70 and 85 over claims 1-7, 12, 19-22. 27, 32, 33 and 38 of U.S. Patent No. 6,007,982, claims 1-6, 13-15, 22, 23, 26, 39 and 40 of U.S. Patent No. 5,910,404, claims 1-6, 13-24 and 26 of U.S. Patent No. 6,872,520, and claims 1-5, 7, 12 and 21-24 of U.S. Patent No. 5,922,532, until such time as allowable subject matter is indicated. The Examiner is requested to hold in abeyance the obviousness-type double patenting rejection of claims 55, 59, 60, 62, 68-70 and 85 over claims 1-3, 5-7, 9-11, 13-15, 17-24, 27 and 28 of U.S. Patent No. 6,287,761 and claims 1, 3, 4, 6, 7 and 9-12 of U.S. Patent No. 6,576,417, until such time as allowable subject matter is indicated. In the meantime, clarification is requested regarding the Examiner's assertion that the presently rejected claims are allegedly "anticipated by the patented invention" (see page 4 of the Office Action dated May 2, 2007) as the rejection is understood to be based on the judicially created doctrine of obviousness-type double patenting as opposed to Section 101, same type double patenting. Clarification is requested in the event the rejections are maintained.

The Section 102 and Section 103 rejection of claims 55, 59, 60, 62, 68-70 and 85 over Houghton (U.S. Patent No. 5,350,671), is traversed. Reconsideration and withdrawal of the rejections are requested in view of the following distinguishing comments.

Initially, the applicants note that the cited patent was considered by the Examiners in the parent and related U.S. Patent Nos. 5,910,404; 5,922,532; 6,287,761; 6,576,417; and 6,872,520, and the claims of U.S. Patent Nos. 5,910,404; 5,922,532; 6,287,761; 6,576,417; and 6,872,520 were found to be patentable over the cited patent. Moreover, the Examiner has asserted that the presently pending claims are allegedly obvious in view of various claims of U.S. Patent Nos. 5,910,404; 5,922,532; 6,287,761; 6,576,417; and 6,872,520. It is inconsistent for the Examiner to assert that the claims of the present application are allegedly anticipated or obvious over the cited patent while also asserting that claims which are patentable over the cited art (i.e., the claims of U.S. Patent Nos. 5,910,404; 5,922,532; 6,287,761; 6,576,417; and 6,872,520) would have made the presently claimed invention obvious.

The Examiner is requested to either withdraw the Section 102 and Section 103 rejection of claims 55, 59, 60, 62, 68-70 and 85 over Houghton (U.S. Patent No. 5,350,671) or withdraw the obviousness-type double patenting rejections of claims 55, 59, 60, 62, 68-70 and 85 over claims 1-7, 12, 19-22, 27, 32, 33 and 38 of U.S. Patent No. 6,007,982, claims 1-6, 13-15, 22, 23, 26, 39 and 40 of U.S. Patent No. 5,910,404, claims 1-6, 13-24 and 26 of U.S. Patent No. 6,872,520, and claims 1-5, 7, 12 and 21-24 of U.S. Patent No. 5,922,532; and claims 55, 59, 60, 62, 68-70 and 85 over claims 1-3, 5-7, 9-11, 13-15, 17-24, 27 and 28 of U.S. Patent No. 6,287,761 and claims 1, 3, 4, 6, 7 and 9-12 of U.S. Patent No. 6,576,417.

For completeness, the applicants again note that Houghton et al. does not contain an enabling disclosure of immunodiagnostic peptides of the Core, NS4 or NS5 region of HCV. Houghton et al. may disclose polynucleotide and polyprotein sequences

from HCV as well as recombinantly produced polypeptides. At Col 28, line 54 to Col 29, line 68, for example, Houghton et al. list an overlapping range of peptides covering the whole HCV polyprotein. At Col 28, lines 30-54, it is mentioned that the ordinarily skilled person is to screen the whole HCV polyprotein for possible truncated HCV amino acid sequences comprising epitopes. One of the techniques mentioned which can allegedly be used to help identify epitopes is computer analysis. It is, however, stressed by Houghton et al. at line 49 that:

"It is appreciated by those skilled in the art that such computer analysis does **not** always identify an epitope that actually exists, and can also incorrectly identify a region of the protein as containing an epitope" (emphasis added).

In addition, Col 28, line 54 states that:

"Examples of HCV amino acid sequences that **may be** useful as described herein are set forth below" (emphasis added).

It is clearly stated at lines 55-58 that:

"these peptides do **not** necessarily precisely map one epitope, but **may** also contain HCV sequence that is **not** immunogenic" (emphasis added).

The non-immunogenic properties of the sequence of the cited art are yet to be defined. Also, the presence of an epitope in any of the sequences given in the list of the cited patent is yet to be defined. In fact, Houghton et al. is not believed to demonstrate that any of the given peptides (taken alone or used in combination) achieves the goal of being a diagnostically useful peptide. The Houghton et al. disclosure is a non-enabling disclosure as to Core, NS4 and NS5 polypeptides which are diagnostically useful or

contain epitopes. The cited patent fails to place the presently claimed invention in the public domain.

The present inventors were first to discover, after several selection procedures using overlapping synthetic 20 mer peptides spanning the whole HCV polyprotein, different diagnostically useful peptides from the HCV Core, NS4 and NS5 region, which give a positive result in HCV antibody recognition assays using antisera incubated with these peptides bound on a solid substrate. These peptides clearly possess diagnostically useful properties (see experimental section of the present application).

Houghton et al. do not demonstrate which regions of the HCV polyprotein are diagnostically preferred. Houghton et al. do not teach or suggest which peptides or combination of peptides are to be used for efficient detection of antibodies.

Consequently, the use of an assay for detection of HCV incorporating a combination of any of the peptide fragments would not have been obvious over Houghton et al.

As further evidence of the patentability of the claimed invention, the Examiner is requested to see the evidence of record in the parent applications, such as the attached copies of remarks and evidence presented in the related application no. 08/466,975 (on February 4, 1998) and application no. 08/391,671 (on December 12, 1997).

Withdrawal of the Section 102 and Section 103 rejections is requested.

The claims are submitted to be in condition for allowance and a Notice to that effect is requested. The Examiner is requested to contact the undersigned, preferably by telephone, in the event anything further is required in this regard.

Respectfully submitted,

NIXON & VANDERHYE P.C.

By: /B. J. Sadoff/
B. J. Sadoff
Reg. No. 36,663

BJS:

901 North Glebe Road, 11th Floor

Arlington, VA 22203-1808 Telephone: (703) 816-4000 Facsimile: (703) 816-4100

FEBRUARY 4, 1998

DELEYS, et al Application No. 08/466,975

For the Examiner's convenience, the applicants note the following overview of comparisons discussed below.

SEQ ID	AA # (Peptide No:	Compared to Houghton's AA #	Compared to Wang's AA #
NO:	according to present	(alternative designation in	(alternative designation in
	specification)	attached tables)	attached tables)
9 .	1688-1707 (VIII)	1690-1720 (NS4HOU1),	1699-1718 (NS4-W3)
	(NS4-1)	1694-1735 (NS4HOU2)	
10	1694-1713 (IX)	1690-1720 (NS4HOU1),	1699-1718 (NS4-W3)
	(NS4-2)	1694-1735 (NS4HOU2)	·
11	1706-1725 (X)	1690-1720, (NS4HOU1)	1699-1718, (NS4-W3)
	(NS4-4)	1694-1735 (NS4HOU2)	1716-1735 (NS4-W2)
12	1712-1731 (XI)	1690-1720, (NS4HOU1)	1716-1735 (NS4-W2)
	(NS4-5)	1694-1735 (NS4HOU2)	-
13	1718-1737 (XII)	1694-1735, (NS4HOU2)	1716-1735, (NS4-W2)
	(NS4-6)	1720-1745 (NS4HOU3)	1727-1748 (NS4-W1)
14	1724-1743 (XIII)	1720-1745 (NS4HOU3)	1716-1735, (NS4-W2)
	(NS4-7)		1727-1748 (NS4-W1)
15	1730-1749 (XIV)		1727-1748 (NS4-W1)

The HCV peptide sequences were synthesized as N-terminally biotinylated peptides. The procedure used is described in WO 93/18054, copy attached.

The peptides were compared by ELISA and LIA.

For ELISA, the peptides were coated directly to the plates at a concentration of $1\mu g/ml$ in PBS and all further steps were performed as stated in the INNOTEST HCV AbIII (Innogenetics, Belgium) package insert using the same reagents.

For LIA, peptides were coated directly on the membranes at a concentration of 50 μ g/ml in PBS and all further steps were performed as stated in the INNO-LIA HCV Ab III

(Innogenetics, Belgium), package insert using the same reagents

To test sera for the presence of antibodies to the antigens present on the strip, the test strip was placed in a plastic trough and covered with 1 ml of PBS containing casein and Triton X705. To this was added 10 µl of the serum sample to be tested. Incubation was carried out overnight at room temperature with gentle agitation. Subsequently, the liquid was removed and the strips washed several times with the same buffer (pH 7.0) to remove any unbound antibodies. Bound antibodies were detected by incubation with a goat anti-human IgG:alkaline phosphate conjugate. Following this incubation period, the strips were washed extensively to remove any unbound conjugate. The presence of bound conjugate was detected by incubation with the substrate 5-bromo-4-chloro-3-indolyl phosphate (BCIP) in the presence of Nitro Blue tetrazolium (NBT), which is converted to a dark precipitate by the action of the enzyme.

Signals obtained with the LIA system were scored in a manner well known in the art for the commercially available INNO-LIA HCV Ab III test. Briefly, intensities are compared with a cutoff (=0.5), a 1+ control line, and a 3+ control line. Reactivities were detected in all sera as shown in Table 3.

Twenty randomly selected HCV-positive sera and 4 sera obtained from HCV-negative blood donors were taken for analysis. Assay conditions were as described in the Methods section. The Optical Density values were analyzed as follows. For each peptide, a cutoff was established based on the mean of OD values obtained with the 4 negative samples, elevated with 5 standard deviations. Such a calculation of cutoff values is common practice. The cutoff is subsequently

DELEYS, et al

Application No. 08/466,975

Furthermore, it should be made clear that the immune response to HCV is multispecific. In order to detect most of the HCV-infected cases, the use of multiple epitopes is required. Therefore, an additional reactivity of one peptide with 5% of HCV positive cases is considered as a major advantage in the screening and confirmation of HCV antibodies. An overall additional detection of 1% of HCV positive cases, or even 0.1%, or only one or a few cases out of millions of blood donations, is already considered as a very competitive advantage of the assay. In this light, the detection of only 1 additional case out of 20 HCV positive sera is considered as a major advantageous property of the particular peptide.

COPY

Peptide VIII (NS4-1; 1688-1707)

Out of 20 HCV positive samples, 12 (60%) react with peptide VIII. One sample (5%) showed greyzone reactivity.

Comparison with peptides 1690-1720 and 1694-1735 based on the positions proposed by Houghton et al.

Both peptides 1690-1720 and 1694-1735 react in a very similar way with the HCV positive samples tested and in comparison with peptide VIII. However, serum samples 17758 and 17761 are both positive when tested with peptide VIII, but negative with peptide 1690-1720 and peptide 1694-1735. The latter peptide represents clone 5-1-1 which has been originally discovered by Chiron Corporation as the first recombinant clone from a phage library. The current experiment shows that certain epitopes can be presented only in the peptides of the present invention as compared to peptides of the cited art.

Comparison with peptide 1699-1718 of Wang et al.

Peptide VIII (1688-1707) shows a surprisingly high reactivity with 11/23 (48%) of HCV positive sera as compared to peptide 1699-1718 (NS4-W3) which reacts with only 3/23 sera (13%).

CON

Peptide IX (NS4-2; 1694-1713)

Out of 20 HCV positive samples, 12 (60%) react with peptide IX. Three samples (15%) showed greyzone reactivity.

Comparison with peptides 1690-1720 (NS4HOU1) and 1694-1735 (NS4HOU2) based on the positions proposed by Houghton et al.

Both peptides 1690-1720 (NS4HOU1) and 1694-1735 (NS4HOU2) react in a very similar way with the HCV positive samples tested and in comparison with peptide IX. However, serum samples 17758 and 17761 both show positive reactivities when tested with peptide IX, but they are negative with peptide 1690-1720 and peptide 1694-1735. The latter peptide represents clone 5-1-1 which has been originally discovered by Chiron Corporation as the first recombinant clone from a phage library. The current experiment shows that certain epitopes can be presented only in the peptides of the present invention as compared to peptides of the cited art.

Comparison with peptide 1699-1718 (NS4-W3) of Wang et al.

Peptide IX (1694-1713) shows a surprisingly high reactivity with 11/23 (48%) of HCV positive

DELEYS, et al

Application No. 08/466,975

sera as compared to peptide 1699-1718 (NS4-W3)which reacts with only 3/23 sera (13%).

C C

Peptide X (NS4-4; 1706-1725)

Out of 20 HCV positive samples, 9 (45%) react with peptide X. Four samples (20%) showed greyzone reactivity.

Comparison with peptides 1690-1720 (NS4HOU1) and 1694-1735 (NS4HOU2) based on the positions proposed by Houghton et al.

Both peptides 1690-1720 (NS4HOU1) and 1694-1735 (NS4HOU2) react in a very similar way with the HCV positive samples tested and in comparison with peptide X. However, sample 17799 is positive when tested on peptide X, but negative with both peptides 1690-1720 and 1694-1735. In addition, sample 17803 shows borderline reactivity when tested on peptide X and is not detected with peptides 1690-1720 (NS4HOU1) and 1694-1735 (NS4HOU2). Serum samples 17758 and 17761 both show greyzone reactivities when tested with peptide VIII, but are negative with peptide 1690-1720 and peptide 1694-1735. The latter peptide represents clone 5-1-1 which has been originally discovered by Chiron Corporation as the first recombinant clone from a phage library. The current experiment shows that certain epitopes can be presented only in the peptides of the present invention as compared to peptides of the cited art.

Comparison with peptide 1699-1718 (NS4-W3) and of Wang et al.

Peptide X (NS4-4; 1706-1725) showed high reactivity with sample 12451, while peptide 1699-1718 only reacted very weakly (1.34) with this sample. In addition, samples 10929 and 17764 showed greyzone reactivities with peptide X while negative on peptide 1699-1718.

Comparison with peptide 1716-1735 (NS4-W2) and of Wang et al.

Peptide X (NS4-4; 1706-1725) showed high reactivity with sample 17802, while peptide 1699-1718 showed no reactivity with this sample. In addition, samples 10929 and 17764 showed greyzone reactivities with peptide X while negative on peptide 1716-1735.

Peptide XI (NS4-5; 1712-1734)

Out of 20 HCV positive samples, 9 (45%) react with peptide XI. Seven samples (35%) showed greyzone reactivity.

Comparison with peptides 1690-1720 (NS4HOU1) and 1694-1735 (NS4HOU2) based on the positions proposed by Houghton et al.

CV positive

Both peptides 1690-1720 and 1694-1735 react in a very similar way with the HCV positive samples tested and in comparison with peptide XI. However, samples 17758, 17805, and 17799 are positive when tested on peptide XI, but negative with both peptides 1690-1720 and 1694-1735. In addition, samples 17763 and 17798 both show greyzone reactivities when tested with peptide XI, but are negative with peptide 1690-1720 and peptide 1694-1735. The latter peptide represents clone 5-1-1 which has been originally discovered by Chiron Corporation as the first recombinant clone from a phage library. The current experiment shows that certain epitopes can be presented only in the peptides of the present invention as compared to peptides of the prior art.

Comparison with peptide 1716-1735 (NS4-W2) of Wang et al.

Samples 10914 and 17842 (2/23 or 9%) can be detected using peptide XI (1712-1731), while they remain negative when tested on peptide 1716-1735.

Peptide XII (NS4-6; 1718-1737)

Comparison with peptides 1694-1735 (NS4HOU2) and 1720-1745 (NS4HOU3) based on the positions proposed by Houghton et al.

Peptide XII did not show any advantages in an Elisa format over the closest prior art peptides. However, when used in a line immunoassay format (Table 3), serum 17805 was detected positive while it was indeterminate using peptide 1720-1745 and negative with peptide 1694-1735. This peptide may therefore be particularly useful for confirmatory testing.

Comparison with peptide 1716-1735 (NS4-W2) of Wang et al.

No additional reactivities of peptide XII could be observed as compared to peptide 1716-1735 in a first series of 23 patients samples (Table 5). In a second series of comparisons in using 45 HCV-positive samples, samples 17794, 17801, and 17820 (3/68 or 4.4%) were positive when tested on peptide XII while no reactivity could be detected on peptide 1716-1735 (Table 4). Furthermore, samples 17761, 17764, 17765, 17767, 17770, 17773, 17779, 17783, 17784, 17786, 17788, 17789, 17796, 17797, 17799, 17804, 17811, 17817, and 17830 (19/68 or 27.9%) showed greyzone reactivities with peptide XIII while negative on peptide 1716-1735. Overall, 22 out of 68 samples tested showed reactivities which could not be detected by the cited art peptide 1716-1735 of Wang et al.

Comparison with peptide 1727-1748 (NS4-W1) of Wang et al.

No additional reactivities of peptide XII could be observed as compared to peptide 1727-1748 in

a first series of 23 patients samples (Table 5). In a second series of comparisons using 45 HCV-positive samples, samples 17820 and 8243 (2/68 or 2.9%) were positive when tested on peptide XII while no reactivity could be detected on peptide 1727-1748 (Table 4). Furthermore, samples 17761 and 17779 (2/68 or 2.9%) showed greyzone reactivities with peptide XII while negative on peptide 1727-1748. Overall, 4 out of 68 (6%) samples showed reactivities with peptide XII which could not be detected by prior art peptide 1727-1748 of Wang et al.

Peptide XIII (NS4-7; 1724-1743)

Comparison with peptide 1720-1745 (NS4HOU3) based on the positions proposed by Houghton et al.

Peptide XIII did not show any advantages in an Elisa format over peptide 1720-1745 based on the sequence proposed to be immunoreactive by Houghton et al. (Table 2). However, when used in a line immunoassay format (Table 3), serum 17779 was dedected positive with peptide XIII while it was indeterminate using peptide 1720-1745. In addition, an indeterminate result was obtained for sample 17817 on peptide XIII while no reactivity could be detected using peptide 1720-1745. This peptide may therefore be particularly useful for confirmatory testing.

Comparison with peptide 1716-1735 (NS4-W2) by Wang et al.

Serum sample 10914 (1/23 or 4.3%) could be detected using peptide XIII while no reactivity was seen with peptide 1716-1735 of Wang et al (Table 5). In a second series of comparisons using 45 HCV-positive samples, samples 17789, 17794, and 17817 (3/45 or 6.7%) were positive when tested on peptide XIII while no reactivity could be detected on peptide 1716-1735 (Table 4). Furthermore, samples 17761, 17764, 17765, 17767, 17773, 17777, 17778, 17784, 17785, 17786, 17788, 17796, 17797, 17804, 17811, 17814, 17816, 17818, 17828, 17831, 8242, 8247, 8250, and 8330 (24/45 or 53.3%) showed greyzone reactivities with peptide XIII while negative on peptide 1716-1735. Overall, 28 out of 68 (41%) HCV samples showed reactivity with peptide XIII which could not be detected by means of prior art peptide 1716-1735.

Comparison with peptide 1727-1748 (NS4-W1) by Wang et al.

No additional reactivities of peptide XIII could be observed as compared to these peptides in a first series of 23 patients samples (Table 5). In a second series of comparisons using 45 HCV-positive samples, samples 17789, 17817, and 8243 (3/68 or 4.4%) were positive when tested on peptide XIII while no reactivity could be detected on peptide 1727-1748 (Table 4). Furthermore, samples 17761, 17785, 17818, 17821, 17831, 8242, and 8247 (7/68 or 10.3%) showed greyzone reactivities with peptide XIII while the samples were negative on peptide 1727-1748. Overall, 10 out of 68 (14.7%) HCV samples showed reactivities which could be detected with peptide XIII but which could not be picked up by means of peptide 1727-1748 of Wang et al.

Peptide XIV (1730-1749)

Comparison with peptide 1727-1748 (NS4-W1) by Wang et al.

In a small series of 23 HCV positive samples, no additional reactivities were detected for peptide XIV in Elisa as compared to peptide 1727-1748. In a line immunoassay format, however, sample 17775 showed indeterminate reactivity while no reaction was seen with peptide 1727-1748 of Wang et al. (Data not shown.)

In conclusion, from the above and attached data, which have been generated from only a limited set of HCV-positive sera, it is submitted that each of the peptides VIII, IX, X, XI, XII, XIII, and XIV possess unexpected reactivities as compared to the peptides which were synthesized based on the sequence positions suggested by Houghton et al. Peptides VIII, IX, X, XI, XII, XIII, and XIV also displayed unexpected reactivities as compared to the peptides of Wang et al. These results demonstrate the claimed invention is not obvious in view of the cited art and withdrawal of the Section 103 rejections is requested.

The claims, as amended, are submitted to be in condition for allowance and a Notice to that effect is requested. The Examiner is invited to contact the undersigned if anything further is required.

Respectfully submitted,

NIXON & VANDERHYE P.C.

By:

B.J. Sadoff

Reg. No. 36,663

1100 North Glebe Road 8th Floor Arlington, VA 22201-4714

Tel: 703-816-4091 Fax: 703-618-4100

NS²
Table 1 Elisa comparison of Innogenetics NS4 peptides with positions proposed by Houghton et

													•											
NS4HOU3 1720-1745	47	92	4	47	153	39	43	139	37	509	4	. 39	42	33	4	40	266	45	39	100	51	46	51	52
NS4HOU2 1694-1735	48	703	43	46	1046	40	841	. 1160	39	1229	49	55	698	4	. 51	49	513	1547.	270	2154	. 53	51	54	53
NS4HOU1 1690-1720	44	1594	. 40	35	1237	218	.625	1339	40	1426	46	47	218	37	38	49	701	1742	772	2301	48	48	55	49
XIII 1724-1743	37	33	48	48	53	40	41	25	40	37	22	41	44	49	. 40	43	52	49	49	51	. 09	52	47	52
XII 1718-1737	37	36	44	45	84	46	35	38	35	35	. 38	37	36	40	42	39	47	47	46	49		47	48	41
XI 1712-1731	62	194	38	49	55	42	. 23	45	39	48	37	100	223	49	29	90	20	47	28	51	20	51	51	51
X 1706-1725	54	649	53	45	1047	. 74	. 42	688	45	860	20	52	365	25	223	65	1127	362	22	1238	53	26	51	. 50
IX 1694-1713	89	1014	104	47	1767	4	265	1826	38	1671	48	39	257	43	44	53	905	1918	226	2446	51	52	20	52
VIII 1688-1707	134	834	157	42	1519	51	154	1593	. 45	1544	44	38	358	. 88	40	39	1705	1894	78	2422	51	49	53	48
Sample	17758	17760	17761	17763	17765	17767	17770	17773	17775	17779	17783	17805	17789	17798	17799	17803	17807	17810	17817	17818	B51	B52	B53	B54

U.S. Application No. 08/466,975

peptides	positions
NS4	with

134 150	proposed by	proposed by Houghton et al.						1		0,7	-	1 104 4	NCA 2	NSA-4	NS4-5	NS4-6	NS4-7 NS	NS4HOU1 NS4HOU2 NS4HOU3	4HOUZ NS4	HOU3
1775 154 169 154 160 15	Š	ample	VIII 1688-1707	IX 1694-1713 1	X 1706-1725 1	XI 712-1731 1	XII 718-1737	743	S4HOU1 NE 190-1720 16!	94-1735 172	20-1745 16				112-1731 17		24-1743 16	90-1720 169	94-1735 172	0-1745
177701 1577 1674 1674 664 1684 1694 <t< th=""><th>- 1</th><th>7758</th><th>134</th><th>89</th><th>54</th><th>62</th><th>37</th><th>37</th><th>44</th><th>48</th><th>47</th><th>2.16</th><th>1.59</th><th>0.82</th><th>1.16</th><th>0.55</th><th>0.51</th><th>0.66</th><th>0.81</th><th>0.74</th></t<>	- 1	7758	134	89	54	62	37	37	44	48	47	2.16	1.59	0.82	1.16	0.55	0.51	0.66	0.81	0.74
1775 187 188 187 188 187 188 187 188 187 188 187 188 187 188 187 188 187 188 187 188 187 188 188 188 187 188 <td>•</td> <td>7760</td> <td>834</td> <td>1014</td> <td>649</td> <td>. 194</td> <td>36</td> <td>39</td> <td>1594</td> <td>703</td> <td>- 26</td> <td>13.43</td> <td>18.09</td> <td>9.87</td> <td>3.64</td> <td>0.53</td> <td>0.54</td> <td>23.83</td> <td>11.91</td> <td>1.45</td>	•	7760	834	1014	649	. 194	36	39	1594	703	- 26	13.43	18.09	9.87	3.64	0.53	0.54	23.83	11.91	1.45
1775 41 42 42 43 42 43 42 43 43 43 44 135 444 315 152 153 153 153 1546 153 2446 315 1532 153 153 153 1546 153 1546 153 1546 153 1546 153 1546 153 1546 1546 153 1546 153 1546	_	7761	157	2	53	38	44	8	40	43		2.53	1.86	0.81	0.71	0.65	0.67	0.60	0.73	0.65
1777 187 178 <td></td> <td>7763</td> <td>42</td> <td>47</td> <td>45</td> <td>49</td> <td>45</td> <td></td> <td>35</td> <td>46</td> <td>. 24</td> <td>0.68</td> <td>0.84</td> <td>0.68</td> <td>0.92</td> <td>99.0</td> <td>0.67</td> <td>0.52</td> <td>92.0</td> <td>0.74</td>		7763	42	47	45	49	45		35	46	. 24	0.68	0.84	0.68	0.92	99.0	0.67	0.52	92.0	0.74
1777 51 41 42 42 42 40 31 60 6		17765	1519	1767	1047	55	84	53	1237	1046	153	24.46	31.53	15.92	1.03	0.71	0.74	18.50	17.71	2,41
1777 186 67	-	17767	5	4	42	42	46		218	40	39	0.82	0.73	0.64	0.79	0.68	0.56	3.26	0.68	0.61
1777 154 155 156 156 156 156 156 156 156 156 156 156 156 156 156 156 157 1777 15		17770	2	597	45	53	35	4	625	148	£3	2.48	10.65	0.68	1.00	0.52	0.57	9.35	14.24	0.68
1777 4 5 4 5 4 5 4		7773	1593	1826	688	42	39	. 25	1339	1160	139	25.65	32.58	10.46	0.79	. 0.58	0.72	20.02	19.64	2.19
1772 1544 1671 860 46 35 37 1426 1229 209 24.86 23.81 13.08 0.90 0.52 0.51 21.32 20.81 17729 144 45 50 37 41 47 55 39 0.61 0.70 0.78 1.98 0.55 0.55 0.75 0.69 0.83 0.8	•	2775	45	38	45	39	35	40	40	39	37	0.72	0.68	0.68	0.73	0.52	0.56	09.0	99.0	0.58
1773 44 45 67 49 41 67 68 46 49 41 67 68 46 69 41 67 68 46 69 41 67 68 42 68 4	_	6777	1544	1671	980	84	35	37	1426	1229	509	24.86	29.81	13.08	0.90	0.52	0.51	21.32	20.81	3.29
17780 38 51 61 67 55 39 661 670 678 188 655 617 678 689 67 670 678 678 670 679		17783	4	8	20	37	. 86	55	46	64	4	0.71	0.86	0.76	69.0	0.56	92.0	69.0	0.83	0.65
17780 358 257 368 44 218 689 42 576 459 556 459 556 459 656 459 459 459 459 459 459 459 459 459 676 459 676 676 677 679 678 679 678 679 <td></td> <td>17805</td> <td>. 88</td> <td>39</td> <td>51</td> <td>00</td> <td>37</td> <td></td> <td>. 47</td> <td>55</td> <td>- GE</td> <td>0.61</td> <td>0.70</td> <td>0.78</td> <td>1.88</td> <td>0.55</td> <td>0.57</td> <td>0.70</td> <td>0.93</td> <td>0.61</td>		17805	. 88	39	51	00	37		. 47	55	- GE	0.61	0.70	0.78	1.88	0.55	0.57	0.70	0.93	0.61
17789 40 4 5 5 6 6 6 6 70 4 9 37 41 39 661 0.77 0.79 0.92 0.89 0.89 0.85 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.89		17780	358	257	365	223	36	4 4	218	. 869	. 2	5.76	4.59	5.55	4.19	0.53	0.61	3.26	11.82	99.0
17799 40 44 223 67 42 40 38 51 41 064 079 3.39 1.26 0.65 0.65 0.65 0.57 0.88 1780 17807 17807 1705 905 1127 50 47 52 701 513 266 27.46 16.15 17.14 0.94 0.65 0.69 0.60 0.73 0.89 17807 17810 1894 1918 362 47 46 49 1742 1847 186 188 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.		17708	<u> </u>	4 3	25	64	9	9	37		39	0.61	0.77	0.79	0.92	0.59	. 89.0	0.55	0.69	0.61
17803 39 53 65 50 49 49 40 063 095 095 095 095 095 095 095 095 095 095 095 095 095 095 072 1048 869 17807 17807 1780 1780 1772 1742 1547 45 2746 16.15 17.14 0.94 0.69 0.69 0.72 1048 869 17810 1894 1918 362 47 49 1742 1547 45 30.50 34.22 551 0.89 0.69 0.69 0.72 1048 869 17816 2422 254 1918 49 772 270 39 1.26 4.03 0.87 1.09 0.68 0.69 0.71 1048 869 17818 2422 51 49 51 220 21 1.26 4.03 0.87 0.81 0.81 0.81		06771	3 8	. 4	223		45	6	38	51		0.64	0.79	3.39	1.26	0.62	0.56	0.57	98.0	0.65
17807 1705 905 1127 50 701 513 266 27.46 16.15 17.14 0.94 0.69 0.72 10.48 8.69 17810 1680 105 127 50 151 1547 45 1547 45 30.50 34.22 5.51 0.89 0.69 0.69 0.69 26.05 26.05 26.00 <		47803	e g	: 53	. 59	20	39	43	64	49	9	0.63	0.95	0.99	0.94	0.58	09.0	0.73	0.83	0.63
17810 1894 1918 362 47 49 1742 1547 45 30.50 34.22 5.51 0.88 0.69 0.68 26.05 26.20 17817 78 226 57 56 46 49 772 270 39 1.26 403 0.87 1.09 0.68 0.69 0.68 11.54 4.57 17817 2422 2446 1238 51 49 772 2164 100 39.00 43.64 18.83 0.96 0.72 0.71 34.40 36.48 851 51 51 52 48 51 46 0.79 0.93 0.89 0.75 0.96 0.72 0.72 0.96 853 50 51 48 51 46 51 6.89 0.85 0.89 0.76 0.96 0.71 0.99 0.96 0.71 0.99 0.96 0.71 0.09 0.96 0.71 0.09		17807	1705	905	1127	9	47	52	701	513	566	27.46	16.15	17.14	0.94	69.0	0.72	10.48	8.69	4.19
17817 78 226 57 58 46 49 772 270 39 1.26 4.03 0.87 1.08 0.87 1.09 0.68 0.68 0.68 11.54 4.57 17818 2422 2446 1238 51 2301 2154 100 39.00 43.64 18.83 0.96 0.72 0.71 34.40 36.48 851 51 51 50 51 48 51 46 51 6.89 0.91 0.81 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.92 0.91 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.93 0.85 0.96 0.71 0.93 0.78 0.93 0.78 0.98 0.71 0.93 0.78 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.92 0.92 0.92 0.92		17810	1894	1918	362	. 44	47	49	1742	1547	45	30.50	34.22	5.51	0.88	0.69	. 0.68	26.05	26.20	0.71
17818 2422 2446 1238 51 49 51 2301 2154 100 39.00 43.64 18.83 0.96 0.72 0.71 34.40 36.48 B51 51 51 50 48 53 51 46 0.79 0.93 0.81 0.84 0.79 0.99 0.79 0.99 0.78 0.70 0.80 0.72 0.70 0.80 B53 50 51 48 47 55 54 51 6.85 0.89 0.78 0.96 0.71 0.65 0.80 B53 50 51 41 52 49 53 50 0.76 0.96 0.71 0.65 0.81 0.71 0.93 0.76 0.96 0.61 0.73 0.73 0.73 0.71 0.96 0.71 0.73 0.71 0.72 0.73 0.90 B54 52 50 51 51 72 72 72 </td <td></td> <td>17817</td> <td>78</td> <td>226</td> <td>57</td> <td>28</td> <td>46</td> <td>64</td> <td>772</td> <td>270</td> <td> . 65</td> <td>1.26</td> <td>4.03</td> <td>0.87</td> <td>1.09</td> <td>0.68</td> <td>0.68</td> <td>11.54</td> <td>4.57</td> <td>0.61</td>		17817	78	226	57	28	46	64	772	270	 . 65	1.26	4.03	0.87	1.09	0.68	0.68	11.54	4.57	0.61
B51 51 53 50 51 52 48 53 51 63 6.85 6.95 6.91 0.81 0.81 0.84 0.75 0.90 0.75 0.90 0.75 0.90 0.75 0.90 0.75 0.90 0.75 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.75 0.75 0.72 0.72 0.72 0.72 0.71 B53 50 51 51 41 52 49 53 52 0.77 0.93 0.76 0.96 0.61 0.73 0.90 B54 52 50 51 41 52 49 53 52 0.77 0.93 0.76 0.96 0.61 0.73 0.70 B54 52 50 51 41 52 49 53 50 0.76 0.96 0.61 0.71 0.73 0.76 0.96 0.61 0.73 0.73		17818	2422	. 2446	1238	. 5	4	51	2301	2154	0	39.00	43.64	18.83	0.96	0.72	0.71	34.40	36.48	1.57
B52 49 52 52 54 52 54 54 54 54 57 68 68 69 69 69 69 69 69 69 69			5	15	53	. 09	51	. 09	48	53	51	0.82	0.91	0.81	0.94	0.75	0.69	0.72	06.0	0.80
B53 50 51 51 48 47 55 54 51 0.85 0.89 0.78 0.96 0.71 0.65 0.91 0.91 854 48 52 50 51 41 52 49 53 52 0.77 0.93 0.76 0.96 0.61 0.72 0.73 0.90 62.1 56.05 65.75 53.25 67.7 72.05 66.88 59.05 63.5			. 4	25	95	51	47	52	48	51	46	0.79	0.93	0.85	0.96	0.69	0.72	0.72	98.0	0.72
854 48 52 50 51 41 52 49 53 52 0.77 0.93 0.76 0.96 0.61 0.72 0.73 0.90 (6.10 6.10 6.10 6.10 6.10 6.10 6.10 6.10		B5.1	53	20	51	51	48	47	55	54		0.85	0.89	0.78	96.0	0.71	0.65	0.82	0.91	0.80
62.1 56.05 65.75 53.25 67.7 72.05 66.88 59.05 63.5		B54	. 84	52	20	51	4	52	49	53	25	0.77	0.93	0.76	0.96	0.61	0.72	0.73	0.90	0.82
	8		62.1			$ \cdot $		72.05	66.88	59.05	63.5								. (

U.S. Application No. 08/466,975 DELEYS et al.

Table 3	LIA comparison of innogenetics NS4 peptides with positions proposed by Houghton et al.	son of Innog	enetics NS4	peptides wi	ith positions	proposed by	/ Houghto	n et al.		
	Peptide	III/	×	×	· 🔀	. ₹	≡ ×	NS4HOU1	NS4HOU1 NS4HOU2 NS4HOU3	NS4HOU3
ΓĮ	Sample 17758	0.5	0	0	-		0.5	0.5	-	0.5
*	17760	2	-	0	2	0	7	2	~	8 -
	17761	-	•	0	0	0	0	0.5	-	0
	17763	0	0	. 0	0.5		0	0	•	0
	17765	2	2	° .	2	. 0	7	7	2	2
	17767	Q	0	, o	-	0	0	•	0.5	6.6
	17770	0	0	; o	6.0	. 4	7	0	7	8
	17773	7	1	0	0	0	0		2	0
	17775	. •	0	0	0.5	0	0	9.0	0.5	0
	17779	2	-	0	0	0	-	. 8	5	0.5
	17783		0	0	-	6.0	2	0	0.5	7
	17805	0	0	0	0	-	, 0	0		0.5
	17789	0	0	0	2	0		0	7	7
	17798	0	0	. 0		0	0	o	. 0	0.5
	17799	•	0	.0	81	0	0.5	• .	9.0	9.0
	17803		0	0	-	0	9.0	0.5	0.5	0.5
	17803	2	-	0	0	0	ν	7	. 5	7
	17810	2	0	0	. 0	0	0	-		0
	17817	0.5	0	0	-	0	0.5	. 0.5	-	0
	17818	2	0.5	0	2	0	0.5	7	7	0.5
	B51	0	0	0	0	0	0	0	0	0
	852	0	0	0	0	0	0	0	0	0
	B53	•	0	0	0	0	0	0		0
	B54	0	. 0	0	0	0	0	0	0	0
					-					

U.S. Application No. 08/466,975 DELEYS et al.

Table 4: ELISA comparisons of peptides XII and XIII with peptides spanning positions 1727-1748 and 1716-1735 of Wang et al.

	•	OD				S/co_			
Γ		XII	XIII	NS4 W1	NS4 W2	XII	XIII	NS4 W1	NS4W2
		1718-1737	1724-1743	1727-1748	1716-1735	1718-1737	1724-1743	1727-1748	1716-1735
1	IGP .	186	185	1306	1307	186	185	1306	1307
Γ	17758	41	38	39	31	0.76	0.79		0.48
	17759 ·	39	28	31	29	0.72	0.58	0.58	0.45
l	17761	44	40	. 32	42	0.81	0.83		0.66
ł	17764	45	43	51 ·	42	0.83	0.90	0.96	0.66
l	17765	49	40	49	46	0.91		0.92	0.72
	17767	46	45	57	42	0.85	0.94	1.08 0.87	0.66 0.75
1	17770	46	35	46	48 .	0.85	0.73	0.87	0.73
	17773	52	41	46	41	0.96	0.85	1.02	0.64
	17777	37	39	54	30	0.69	0.81 0.85		0.47
1	17778	33	41	51	35	0.61	0.65		0.58
1	17779	44	31	41	37	0.81	0.03		0.59
ı	17783	43	38	45	38	0.80	0.79		0.66
	17784	44	. 42	46	42	0.81			0.55
	17785	41	· 41	41	35 ·	0.76 0.89			0.63
1	17786	48	41	47	40 42	0.89			0.66
-	17788	51	45	49	. 42	0.84			
	17789	45	49	51 ·	55 40	0,63			
	17790	37	32	59	4 0 69	1.09			
ı	17791	59	50	61 - 132	56	1.11			
١	17794	60	64	61	35	0.89			
1	17796	48	41 39	48	40	0.83			
-	17797	49 48	39 36	46	38	0.89			
	17799	54	38	54	42	1.00			
	17801 17804	44	40	55	49	0.81			
1	17804	37	27	46	57	0.69			
	17808	36	31	40	45	0.67			
1	17810	38	33	44	39	0.70			0.61
1	17811	43	42	45	38	0.80		0.85	0.59
1	17814	41	39	49	41	0.76		0.92	
1	17816	38	41	63	45	0.70			
	17817	45	145	54	43	0.83			
	17818	34	46	34	45	0.63			
	17820	95	37	34	63	1.76			
-	17821	33	39	36	51	0.6			
1	17825	38	36	46	38	0.70			
-	17826	40	38	44	41	0.74			
İ	17828	39	40	44	39	0.72			
١	17830	47 .	35	46	40	0.87			
	17831	42	47	. 37	50	0.78			
-	8242	37	45	33	44	0.69			
-	8243	59	57	32	107	1.09			
	8247	34	42	41	45	0.6			
i	8250	37	40	45	37	0.6			
ļ	8330	40	47	53	38	0.7			
ļ	D1	43	39	47	37	0.8			
-	D2	38	41	44	44	0.7			
	· D3	38	42	45	45	0.7	U.0	0.0	0.70

Page 1

U.S. Application No. 08/466,975 DELEYS et al.

1712-1731 171	+
+	+
	0.052 0.049
054 0.055	
1	0.055
	0.058 0.054
190	
	0.065 0.370
-	
1	1
+	+
0.044	0.040
-	
063	063
1,072 0.061	072
0.093 0.075	0.093
72.0	4.87
0.76	0.70
0.56	
0.58	
. 0.59	
0.57	
. 0.58	•
0.62	0.72 0.62
0.57	
0.59	
0.58	
0.58	
0.62	
99.0	
0.57	
0.70	
. 7.82	•
0.99	
0.87	
44.0	19.97
?	

Table 5: ELISA comparison of Innogenetics NS4 peptides with Wang et al. NS4 peptides

Even if a *prima facie* case of obviousness were established, the Applicants respectfully submit the following and attached demonstrate the claims are not obvious over the cited art.

During the interview, the Examiner was unable to identify the peptides of the cited art which should be compared with the present invention. The Applicants have made the following comparison of what they believe to be appropriate, based on the length of comparable sequences disclosed in Houghton et al.

Specifically, Houghton's AA2265-AA2280 (column 29, line 50, EREISVPAEILRKSRR),

AA2280-AA2290 (column 29, line 50, RFAQALPVWAR), AA2310-AA2330 (column 29, line

52, VVHGCPLPPPKSPPVPPPRKK), AA2255-AA2270 (column 29, line 49,

SFNPLVAEENEREISV), and AA2290-AA2310 (column 29, line 51,

RPDYNPPLVETWKKPDYEPPV) were compared with SEQ ID NO:s 16-20 (AA2263-AA2282,

AA2275-AA2284, AA2287-AA2306, AA2299-AA2318, and AA2311-AA2330, respectively) of the presently claimed invention.

The HCV peptide sequences were synthesized as N-terminally biotinylated peptides. The procedure used is described in WO 93/18054, copy attached.

The peptides were compared by ELISA and LIA.

For ELISA, the peptides were coated directly to the plates at a concentration of $1\mu g/ml$ in PBS and all further steps were performed as stated in the INNOTEST HCV AbIII (Innogenetics, Belgium) package insert using the same reagents.

The attached Table 3 shows signal-to-cutoff values of 19 randomly selected samples from patients with chronic hepatitis C (20 samples taken in all). The cutoff was calculated as the mean of OD values for the 20 samples (see Table 1) obtained with blood donor sera (B51 to B54) augmented with 5 standard deviations, as is common practice to those skilled in the art. Eighteen of these 20 sera contained NS5 antibodies.

Table 2 shows results of ELISA tests. Table 3 shows results of LIA tests.

With reference to Table 2; comparing the reactivities of different sera with peptides NS5-25 (2263-2282) of the invention and peptides spanning positions 2255-2270 and 2265-2280 of Houghton et al., it can be concluded that the reactivity of the peptide of the invention is surprisingly higher for sera 17767 and 17775 than with either one of the two Houghton peptides. The peptide of the invention also reacts better with sera 17770 and 17779 than the reactivity of the 2255-2270 Houghton peptide. Upon comparing the reactivities of different sera with peptide NS5-27 (2275-2297) of the invention and peptide spanning positions 2280-2290 of Houghton et al., it can be concluded that the reactivity of the peptide of the invention is surprisingly higher for sera 17770, 17798 and 17807 than the reactivity of the Houghton peptide. Upon comparing the reactivities of different sera with peptide NS5-29 (2287-2306) of the invention and peptides spanning 2280-2290 and 2290-2310 of Houghton et al., it can be concluded that the reactivity of the peptide of the invention is surprisingly higher for sera 17761, 17765, 17767, 17770, 17773, 17775, 17798 and 17807 than the reactivity of the Houghton peptides. Upon comparing the reactivities of different sera with the NS5-31 (2299-2318) of the invention and peptides spanning positions 2290-2310 and 2310-2330 of Houghton et al., it can be concluded that the reactivity of the peptide of the invention is surprisingly higher for sera 17761, 17765, 17767, 17775, 17779, 17798, 17799, 17807 and 17818 than the reactivity of the Houghton peptides. Upon comparing the reactivities of different sera with the NS5-33 (2311-2330) of the invention and peptides spanning positions 2310-2330 of Houghton et al., it can be concluded that the reactivity of the peptide of the invention is surprisingly higher for almost all sera than the reactivity of the Houghton peptides.

Sera 17758, 17763, 17783 and 17803 (20% of sera) can be detected using the peptides of the invention, while no reactivity is observed with peptides based on the sequences proposed by Houghton.

Sera 17760, 17770, 17773, 17789, 17798, 17807, and 17810 (35% of sera) react strongly using the peptides of the invention, while only weak reactivity is observed with peptides based on the sequences proposed by Houghton

Sera 17761, 17765, 17767, 17775, 17779, and 17799 (30% of sera) react more strongly using the peptides of the invention, as compared with the reactivity is observed with peptides based on the sequences proposed by Houghton.

Serum 17818 showed a slightly higher, but comparable reactivity with peptide 2310-2330 of Houghton, as compared to the peptide 2311-2330 of the present invention.

Overall, 17/18 (94%) NS5-reactive sera showed no reactivity or weaker signal-to-cutoff values on peptides based on the sequences proposed by Houghton as compared to the peptides of the presently claimed invention.

For LIA, peptides were coated directly on the membranes at a concentration of 50 μ g/ml in PBS and all further steps were performed as stated in the INNO-LIA HCV Ab III (Innogenetics, Belgium), package insert using the same reagents

To test sera for the presence of antibodies to the antigens present on the strip, the test strip was placed in a plastic trough and covered with 1 ml of PBS containing casein and Triton X705. To this was added 10 ul of the serum sample to be tested. Incubation was carried out overnight at room temperature with gentle agitation. Subsequently, the liquid was removed and the strips washed several times with the same buffer (pH 7.0) to remove any unbound antibodies. Bound antibodies were detected by incubation with a goat anti-human IgG:alkaline phosphate conjugate. Following this incubation period, the strips were washed extensively to remove any

unbound conjugate. The presence of bound conjugate was detected by incubation with the substrate 5-bromo-4-chloro-3-indolyl phosphate (BCIP) in the presence of Nitro Blue tetrazolium (NBT), which is converted to a dark precipitate by the action of the enzyme.

Signals obtained with the LIA system were scored in a manner well known in the art for the commercially avialable INNO-LIA HCV Ab III test. Briefly, intensities are compared with a cutoff (=0.5), a 1+ control line, and a 3+ control line. Reactivites were detected in 19/20 sera as shown in Table 3.

Higher LIA signals were obtained with the peptides of the present invention with 18 out of 19 (95%) reactive sera.

Sera 17760, 17763, 17783, 17805, 17810, and 17817 (30% of sera) did not react with any of the peptides based on the sequences proposed by Houghton, while they scored positive with the peptides of the presently claimed invention.

Comparable reactivities with the peptides of the present invention and with the peptides of Houghton were detected for serum 17818. Only serum 17775 showed a 3+ reactivity on the peptide based on the sequence 2310-2330 while a 2+ reactivity was obtained on the peptide 2311-2330 of the present invention.

These results demonstrate an unexpected improvement over the cited art which demonstrate the unobviousness of the presently claimed invention.

The claims, as amended, are submitted to be in condition for allowance and a Notice to that effect is requested. The Examiner is invited to contact the undersigned if anything further is required.

Respectfully submitted,

NIXON & VANDERHYE, P.C.

By:

B.J. Sadoff

Reg. No. 36,663

Tel. No. (703) 816-4091

Fax No. (703) 816-4100

1100 North Glebe Road, 8th Floor Arlington, Virginia 22201-4714

							•																٠			
SHOH	2310-2330	ጸ	8	45	8	41	8	88	1240	2038	8	38	48	1981	38	. 76	38	1099	10	8	1470	*	37	41	49	66.05
	2280-2310	40	161	1487	956	639	45	487	11	1222	972	30	4	40	1632	291	4	1434	9	127	099	29	63	. 547	1941	4303.8
2	NSSH003	48	99	377	37	335	\$	41	÷	301	37	38	38	90	Ŧ	88	42	B	9	46	47	47	49	48	49	53.04
	NS5HOUZ 2285-2280	37	**	468	38	473	029	283	42	089	180	37	48	9	42	185	40	25	80	5	51	20	91	28	20	68 44
	NS5HOU1 2255-2270	42	120	911	45	387	£2.	2	8	989	92	40	Ç	121	63	107	9	132	9	25	. 62	55		83	29	
TABLEA	N65-33 2311-2330	107	374	. 158	. 11	1120	豆	421	1544	1774	¥84		51	2129	323	450	. 52	1139	205		267	49	20	S.	. 09	
	N85-31 2288-2318	130	627	1089	220	2351	1015	111	624	2083	1512	4	4	4	1588	1198	410	1347	47	40	1607	. 57	49	49	45	
	NS5-29 2287-2308	44	51	1408	09	. 843	60	284	283	28	.	1.53	20	68	1401	145	48	1620	2	85	8	5.	6	48	62	
	N95-27	18	38	4	9	60	÷	395	40	9	48	8	20	51	55	7	. 5	383	S	25	90	5	25	55	2	
se A	NS5-25 2283-2282	37	40	. 4	43	233	828	23	48	795	142	4	4	ş	86	4.	===	22		: s	8	- is	5	46	35	
Toble		17758	17780	17781	17783	17765	171787	17770	17773	17778	17779	17783	17809	17789	17780	17789	17803	17807	17810	17817	17818	158	852	853	BS4	

	0

	<u>d</u>	1007167					- - -	ナバントから	j	
	NS5.25 2283-2282	NS5-27 2275-2294	NS5-29 2287-2308	N65-31 2299-2318	NS5-33 2311-2330	NS5HOU1 2255-2270	NS5HOU2 2265-2280	NS5HOU3 2280-2280	NS5HOU4 2290-2310	NS5HOU5 2310-2330
17758	0.59	0.79	0.67	1.70	2.05	0.69	0.66	0.87	0.01	0.65
09771	0.64	0.67	0.88	6.20	7.16	1.85	1.27	1.24	0.04	0.68
17761	0.67	0.70	21.29	26.78	16.40	9.30	7.09	7.11	0.35	0.88
17783	0.69	0.82	0.76	2.88	2.12	0.73	0.59	0.70	0.08	0.55
17765	3.74	0.85	9.74	30.76	21.44	6.45	7,16	6.32	0.15	0.71
19718	13.30	0.70	12.13	25.05	2.91	1.19	6.62	080	0.01	0.55
17770	3.58	6.75	4.00	8.30	8.06	1,35	3,88	0.89	0.12	0,69
17773	0.77	0.82	4.63	8.16	29.65	1.67	0.64	0.77	0.02	18.77
17776	1277	1.09	19.11	26.98	33.95	11.18	10.44	5.67	0.28	30,86
97771	2.28	0.82	0.70	19.78	10.79	0.89	272	0.70	0.23	0.55
17783	0.78	0.85	0.80	20 20 20 20 20 20 20 20 20 20 20 20 20	1.07	0.65	0.68	0.74	0.01	0.56
17806	0.78	0.85	0.78	0.58	0.98	0.70	0.74	0.68	0.01	0.70
17789	0.77	0.87	0.80	0.66	40.78	1.97	0.61	0.72	0.01	29.88
17798	0.61	23.45	21.21	20.75	6,18	1.35	0.64	0.77	0.38	0.58
17799	0.88	0.70	2.20	16.67	B.73	3.20	2.80	1.09	0.07	0.58
17603	0.66	0.87	0.73	6.48	1.00	0.78	0.81	0.79	0.01	0.58
17807	0.84	6.71	24.53	17.62	21.72	2.14	0.78	1.08	0.33	18.64
17810	0.82	0.85	ū.82	0.61	3,82	0.78	0.67	0.87	0.01	1.23
17817	0.85	0.87	0.85	0.63	0.88	0.84	0.77	0.87	0.03	0.70
17818	0.80	0.85	0.78	24.02	10.68	0.84	0.77	0.89	0.20	22,28
	0.62	. D.87	0.77	0.75	0.94	0.69	0.78	0,89 A	0.01	0.67
B52	0.82	0.69	0.60	0.64	0.86	0.88	0.77	0.82	0.01	0.58
	0.74	0.89	0.70	0.60	0.98	0.69	0.85	0.80	0.13	0.71

Toble 3

P C	· a		_			·			····								•						
NS5H0US 2310-2330	0	0	0	0	0		8	B			0	~	0	0		_	0	0	7	•	0	0	:
NS5H0U4 220-2310	0	-	0	-	0	r	0	0.5	0.5	0	0	0	-	-	0	0	0	. 0	0.5	0	0	0	t
2280-2290	0	٥	0	. 0	0		6	·.	0	0	0	0	0	0	0	0	. 0	0	0	0	. •		c
2266-2280	0.	, ~	. 0	· -	-	-	. 0	-	-	0		, 0	0	-	0.5	÷	•	0	0		0	0	5
2256-2270	0	0	0	0	0	0	D	0.5	0		0	0	٥	0.5	٥		0	0	0	၁	D	0	
22/1-230	0 2	0	0	0	0	0	7	8	0	0	0	7	٥	.0		-	0	0	D	0	0	0	0
2239-2318	2	ෆ	90.	ന	7	: 7	7	2	7	0	0		N	7	8	2	0	0.5	2	0	0		D
2287-2308	0.5	2	0	-	-	-	0.5	-	0	0	0	0	8	0.5	Ö	-	0	0	0	٥	D	0	0
2275-2294	0	κi	0	2	-	8	7	.~	0.5	-	-		2	-	- ,	7	·		0.5	٥	٥	0	0
2263-2282	9.0	2	7	7	8	N.	0.5	г	7	- '	٥	0	0	2.	- ·	7	- '	٥	0	0	0	0	0
	17760	17781	17763	17765	17787	07771	17773	17775	67771	17783	17805	17789	17.788	17799	17800	17803	17810	17817	17818	851	B52	BS3	B54