AC32008 Theory of Computation Class Test 2 - Monday 10 March 2014 - 10.05-10.55 Answer ALL 6 Questions

Total marks: 30

1. Say what it means for a language L to be totally decidable.

[3 marks]

- - (a) Give the transition table for M.
 - (b) What is w?
 - (c) Is $\langle M, w \rangle \in L_{\text{halt}}$?

[Recall that $X_1 = 0$, $X_2 = 1$, $X_3 = B$, $D_1 = L$, $D_2 = R$.] [7 marks]

3. Let L be the language given by

$$L = \{w_i \mid M_i \text{ does not accept } w_i\}.$$

Then it can be shown (by diagonalisation) that L is not partially decidable and (by simulation) that \bar{L} is partially decidable.

Given these facts, show that there is a language which is partially decidable (recursively enumerable) but not totally decidable (recursive).

[7 marks]

4. Which of the graphs a), b), c) below have a Hamiltonian circuit?

[6 marks]

[Questions 5 and 6 overleaf]

- 5. Suppose that M is a nondeterministic Turing machine (NDTM), and that for an input x:
 - with guess g_1 , the computation on x takes 101 steps and halts in state q_Y ;
 - with guess g_2 , the computation on x takes 89 steps and halts in state q_N ;
 - with guess g_3 , the computation on x takes 131 steps and halts in state q_Y ;
 - \bullet with all other guesses, the computation on x does not halt.

What is $t_M(x)$? Why?

[4 marks]

6. Say informally what it means for there to be a polynomial transformation (or reduction) from one problem to another.

[3 marks]