Processamento de Imagens

Prof. MSc. Daniel Menin Tortelli

e-mail: danielmenintortelli@gmail.com

Skype: daniel.menin.tortelli

Site: http://sites.google.com/site/danielmenintortelli/home

Propriedades de uma imagem digital

Propriedades de uma imagem digital

Convenções:

- Uma imagem digital é uma imagem f(x,y) discretizada tanto espacialmente quanto em amplitude.
- Portanto, uma imagem digital pode ser vista como uma matriz cujas linhas e colunas identificam um ponto na imagem, cujo valor corresponde ao nível de cinza da imagem naquele ponto.
- Para efeito de notação, uma imagem digital será indicada por f(x,y)
- Quando nos referirmos a um pixel em particular, utilizaremos letras minúsculas, tais como p e q.
- Um subconjunto de *pixels* de f(x,y) será indicado por **S**.

Medições de Distância

Adjacência

 Um pixel p é adjacente a um pixel q se eles forem conectados.

 Há tantos critérios de adjacência quantos são os critérios de conectividade.

 Dois subconjuntos de imagens, S₁ e S₂, são adjacentes se algum *pixel* em S₁ é adjacente a algum *pixel* em S₂.

Conectividade

- A conectividade entre pixels é um importante conceito usado para estabelecer limites de objetos e componentes de regiões em uma imagem.
- Para se estabelecer se dois pixels estão conectados, é necessário determinar se eles são adjacentes segundo algum critério e se seus níveis de cinza satisfazem a um determinado critério de similaridade.
- Por exemplo, em uma imagem binária, onde os pixels podem assumir os valores 0 e 1, dois pixels podem ser 4vizinhos, mas somente serão considerados 4-conectados se possuírem o mesmo valor.

Conectividade

- Seja V o conjunto de valores de tons de cinza utilizados para se definir a conectividade.
- Conhecendo o conceito de vizinhança e dado o conjunto V, podemos definir os seguintes critérios de conectividade:
- 1. "4-conectividade": dois pixels p e q com valores de tom de cinza contidos em V, são "4-conectados" se $q \in N_4(p)$.
- 2. "8-conectividade": dois pixels p e q com valores de tom de cinza contidos em V, são "8-conectados" se $q \in N_8(p)$.
- 3. "m-conectividade (conectividade mista)": dois pixels p e q com valores de tom de cinza contidos em V, são "m-conectados" se:

(i)
$$q \in N_4(p)$$
 ou

(ii)
$$q \in N_d(p) \underline{e} N_4(p) \cap N_4(q) = \emptyset$$
.

Conectividade

- Por exemplo, seja o trecho de imagem da figura (a).
- Para V = {1} os caminhos entre 8 vizinhos do pixel do centro são indicados por linhas contínuas na figura (b), onde se pode observar a existência de caminhos redundantes entre os pixels do centro e do canto superior esquerdo da figura.
- Esta redundância é resolvida utilizando-se a m-conectividade, que remove a conexão diagonal redundante, como mostra a figura (c).

(a) Segmento de imagem binária, (b) 8-vizinhos do pixel central, (c) m-vizinhos do pixel central.

Caminho

Um caminho (path) de um pixel p de coordenadas (x,y) a um pixel q de coordenadas (s,t) é uma sequência de pixels distintos de coordenadas: (x0, y0), (x1, y1), ..., (xn, yn), onde:

```
(x0, y0) = (x,y) // Posição inicial é a posição de p(x,y) (xn, yn) = (s,t) // Posição final é a posição de q(s,t) (xi, yi) é adjacente a (xi-1, yi-1) 1 <= i <= n n é denominado o comprimento do caminho.
```

Medições de Distância

Dados os pixels p, q e z, de coordenadas (x,y), (s,t) e (u,v), respectivamente, define-se a Função Distância D, cujas propriedades são:

(i)
$$D(p,q) \ge 0$$
 ($D(p,q) = 0$ se e somente se $p = q$)
(ii) $D(p,q) = D(q,p)$
(iii) $D(p,z) \le D(p,q) + D(q,z)$

- O conceito de distância pode estar relacionado ao conceito de conectividade.
- A distância D_m expressa a distância entre dois pontos mconectados.

Distância Euclidiana

$$D_e(p,q) = \sqrt{(x-s)^2 + (y-t)^2}$$

 Para esta medida de distância, os pixels com distância euclidiana em relação a (x,y) menor ou igual a algum valor r, são os pontos contidos em um círculo de raio r centrado em (x,y).

Distância D₄ (city-block)

$$D_4(p,q) = |x-s| + |y-t|$$

- onde | . | denota módulo (ou valor absoluto).
- Neste caso, os *pixels* tendo uma distância D₄ em relação a (x,y) menor ou igual a algum valor r formam um losango centrado em (x,y). Os pixels com D₄ = 1 são os 4-vizinhos de (x,y).

Distância D₈ (tabuleiro de xadrez)

$$D_8(p,q) = \max(|x-s|,|y-t|)$$

- onde max é um operador que devolve o maior valor dentre um conjunto de valores entre parênteses.
- Neste caso os pixels com distância D₈ em relação a (x,y) menor ou igual a algum valor r formam um quadrado centrado em (x,y). Os pixels com D₈ = 1 são os 8-vizinhos de (x,y).

Exemplo de Distância

Seja o trecho de imagem binária a seguir:

$$egin{array}{cccc} p_3 & p_4 \ p_1 & p_2 \ p \end{array}$$

Supondo que $V = \{1\}$, $p = p_2 = p_4 = 1$ e que p_1 e p_2 podem apresentar valores p_2 ou p_3 ou p_4 calcular a distância p_4 entre p_4 para as seguintes situações:

- a) Se $p_1 = p_3 = 0$.
- b) Se p_1 ou p_3 valem 1.
- c) Se p_1 e p_3 valem 1.

Exemplo de Distância

Distância entre os pixels **p** e **q**:

	4	5	6	4	5	4	
	3	5	3	4	3	4	→q
	4	4	4	2	4	3	
	5	3	4	3	3	5	
p ←	6	3	2	3	4	6	
	5	4	5	3	3	6	

Qual o menor caminho entre **p** e **q**?

4	5	6	4	5	4
3	5	3	4	_3 ,	4
4	4	4	À	4	3
5	3	4	3-	3	-5
6	3	2	N	4	6
5	4	5	3	3	6
m-path					

D_m é **5** porque o caminho laranja é mais curto que o caminho azul.

Exemplo de Distância

```
City Block
                                                    Euclidian
bw = zeros(20,20);
bw(5,5) = 1;
bw(5,15) = 1;
bw(15,10) = 1;
D1 = bwdist(bw, "euclidean");
                                                   Chessboard
                                                                   Quasi-Euclidean
D2 = bwdist(bw, "cityblock");
D3 = bwdist(bw, "chessboard");
D4 = bwdist(bw, "quasi-euclidean");
figure
subplot(2,2,1);
imagesc(mat2gray(D1)); imcontour(D1); title('Euclidian');
subplot(2,2,2);
imagesc(mat2gray(D2)); imcontour(D2); title('City Block');
subplot(2,2,3);
imagesc(mat2gray(D3)); imcontour(D3); title('Chessboard');
subplot(2,2,4);
imagesc(mat2gray(D4)); imcontour(D4); title('Quasi-Euclidean');
```

Resolução Espacial

Resolução Espacial

- A resolução espacial pode ser definida como o número de pixels por polegada.
- Diferentes resoluções espaciais da mesma imagem são mostradas na figura abaixo:

 A resolução espacial possui diferentes métodos de medição para dispositivos diferentes.

Resolução Espacial: DPI

Dot Per Inch (DPI):

DPI é geralmente utilizado em monitores.

As vezes é chamado de PPI (Pixels Per Inch).

- Entretanto, as duas expressões possuem uma diferença:
 - DPI é também usado para medir a resolução espacial de impressoras. Isso significa que DPI define quantos pontos de tinta por polegada na imagem impressa.

Resolução Espacial: DPI

Pixels Per Inch (PPI):

- PPI geralmente é usado em tablets, smartphones, etc.
- Se a e b são representam altura e largura na resolução de uma imagem, é possível calcular o valor dos PPI de um dispositivo através da equação:

$$PPI = \frac{\sqrt{a^2 + b^2}}{Diagonal \ Size \ of \ Devices}$$

Por exemplo: 1080x1920 pixels, 5.5 inch iPhone 6S Plus PPI:

$$PPI = \frac{\sqrt{1080^2 + 1920^2}}{5.5} \cong 401$$
 (it is shown in apple web site)

Resolução Espacial: DPI

Lines Per Inch (LPI):

- LPI são linhas de pontos por polegada de impressoras.
- A impressora possui diferentes valores de LPI, conforme mostrado na tabela abaixo:

Printer	LPI value
Screen printing	45–65 LPI
Laser printing (300 dpi)	65 LPI
Laser printing (600 dpi)	85–105 LPI

- A detecção de bordas é basicamente um método de segmentar uma imagem em regiões, com base em descontinuidades, ou seja, permite que o usuário observe as características de uma imagem onde há mudança mais ou menos abrupta no nível de cinza ou na textura, indicando o fim de uma região na imagem e o início de outra.
- A detecção de bordas faz uso de operadores diferenciais para detectar alterações nos gradientes de níveis de cinza ou de cores em uma imagem.
- A diferenciação é uma operação linear e uma aproximação discreta de um filtro diferencial que pode, então, ser implementada pelo método de núcleo (máscara de convolução).

- Uma condição muito importante que devemos impor sobre o núcleo de um filtro desse tipo é que a resposta seja zero em regiões completamente suaves.
- Essa condição pode ser forçada assegurando que a soma dos pesos na máscara do núcleo seja zero.
- A detecção de bordas (que é a principal aplicação de filtros diferenciais) recebe auxílio de um estágio inicial suavizador (na maioria das vezes, gaussiano) para supressão de ruído.
- A detecção de bordas é dividida em duas categorias principais:
 - Detecção de bordas de primeira ordem;
 - Detecção de bordas de segunda ordem.

- A detecção de bordas utiliza o conceito de filtros passa-alta, que deixam passar as altas frequências da imagem (bordas e detalhes na imagem onde ouve uma transição abrupta nos níveis de intensidade do pixel), enquanto suprimem as baixas frequências.
- A figura mostra uma imagem com vários pontos onde ocorrem transições abruptas de intensidade:

 Exemplo: Se a imagem for composta por intensidades que variam entre 0-7, e analisarmos uma linha da matriz da imagem, podemos definir a variação das intensidades dos pixels como:

Cálculo da Primeira Derivada

 Uma vez que as intensidades são conhecidas, é possível calcular a primeira derivada da função f com relação a x com a fórmula:

$$\frac{\partial f}{\partial x} = f(x+1) - f(x)$$

- Isso mostra a diferença entre os valores subsequentes e calcula a taxa de mudança da função em relação a x.
- A primeira derivada é sensível a mudanças de intensidades nos pixels da imagem.

Cálculo da Primeira Derivada

Cálculo da Primeira Derivada

A magnitude do vetor é dado por:

$$\nabla f = mag(\nabla f)$$

$$= \left[G_x^2 + G_y^2\right]^{1/2}$$

$$= \left[\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2\right]^{1/2}$$

Prewitt Kernels

-1	0	1	-1
-1	0	1	0
-1	0	1	1

-1	-1	-1
0	0	0
1	1	1

Gx (X derivative) Gy (Y derivative)

$$V = (Gx^2 + Gy^2)^0.5$$

Simplificando...

$$\nabla f \approx \left| G_x \right| + \left| G_y \right|$$

Detecção de bordas de primeira ordem

- Três núcleos de filtros detectores de bordas de primeira ordem (Primeira Derivada) mais comuns são *Roberts*,
 Prewitt e Sobel.
- Os três são implementados como a combinação de dois núcleos: um para a derivada em relação a x e outro para a derivada em relação a y, derivadas das equações mostradas anteriormente.
- A principal diferença entre os operadores de Sobel e de Prewitt é que o núcleo de Sobel implementa diferenciação em uma direção e aplica média (aproximadamente) gaussiana na outra (núcleo gaussianos).

Detecção de bordas de primeira ordem

Filtros detectores de bordas de primeira ordem.

Detector de Bordas Gradiente Cruzado de *Roberts*

Detector de Bordas

Prewitt

Detecção de bordas de primeira ordem

- Para encontrar a borda de objetos em uma imagem, usa-se os dois filtros independentemente e, após, soma-se os resultados.
- Os algoritmos mais comuns para detecção de bordas são: Sobel, Canny, Prewitt, Roberts, etc.

```
I = imread('circuit.tif');
Prewitt = edge(I, 'Prewitt');
Canny = edge(I, 'Canny');
Sobel = edge(I, 'Sobel');

subplot(2,2,1); imshow(I); title("Imagem Original");
subplot(2,2,2); imshow(Prewitt); title("Prewitt");
subplot(2,2,3); imshow(Canny); title("Canny");
subplot(2,2,4); imshow(Sobel); title("Sobel");
```

Detecção de bordas de primeira ordem

Imagem Original

Prewitt

>> f = fspecial('prewitt')

f =

1 1 1
 0 0 0
 -1 -1 -1

>> f = fspecial('prewitt')'
f =

1 0 -1
1 0 -1
1 0 -1

Canny

Sobel

1 2 1

>> f = fspecial('sobel')'

1 0 -1 2 0 -2

Detecção de bordas de primeira ordem (Sobel)

```
I = imread('circuit.tif'); % Lê a imagem
% Filtros para suavização
kMedia = ones(3,3)/9;
kGaussiano = fspecial('gaussian', [5 5], 2);
% Filtros de Sobel
k1 = [1 \ 0 \ -1];
     2 0 -2:
      1 0 -1];
k2 = [1 \ 2 \ 1];
      0 0 0;
     -1 -2 -1];
 SobelV = filter2(k1, I); % Aplica filtro com relação a Y
 SobelH = filter2(k2, I); % Aplica filtro com relação a X
 SobelEdge = sqrt(SobelV.^2 + SobelH.^2); % Combina o resultado dos dois filtros
 SobelEdgeBW = imbinarize(SobelEdge/255); % Converte a imagem para preto/branco
 SobelEdgeBW Filtered = imfilter(SobelEdgeBW, kMedia); % Remove ruído da imagem
 % Exibe resultados
 figure, imshow(I); title('Imagem Original');
 figure, imshow(SobelV/255); title('Sobel Vertical');
 figure, imshow(SobelH/255); title('Sobel horizontal');
 figure, imshow(SobelEdge/255); title('Sobel Edge');
 figure, imshow(SobelEdgeBW); title('Sobel Edge BW');
```

Detecção de bordas de primeira ordem (Sobel)

Imagem Original

Sobel Vertical

Sobel

1	0	-1
2	0	-2
1	0	-1

1	2	1
0	0	0
-1	-2	-1

 $V = (Gx^2 + Gy^2)^0.5$

- Em geral, filtros de bordas de primeira ordem não são de uso muito comum no realce de imagens.
- Seu principal uso reside no processo de detecção de bordas, como um estágio no procedimento de segmentação de imagem.
- Uma abordagem muito mais comum para o realce de imagens é o uso de um operador diferencial de segunda ordem: o laplaciano.

 Um operador diferencial de segunda ordem muito popular é o laplaciano:

$$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

 Onde a derivada parcial de primeira ordem na direção de x é definida como:

$$\frac{\partial^2 f}{\partial^2 x} = f(x+1,y) + f(x-1,y) - 2f(x,y)$$

Na direção de y é definida como:

$$\frac{\partial^2 f}{\partial^2 y} = f(x, y+1) + f(x, y-1) - 2f(x, y)$$

Cálculo da Segunda Derivada

Na forma discreta do Laplaciano, esse operador é dado como:

$$\nabla^2 f = f(x+1, y) + f(x-1, y) + f(x, y+1) + f(x, y-1) - 4f(x, y)$$

Isso pode ser facilmente implementado em um núcleo de filtro 3 x
 3, como mostrado na figura A:

0	1	0
1	-4	1
0	1	0

- Uma das possíveis limitações da aplicação da máscara na forma dada na figura A é a intensidade relativa de características da imagem posicionadas aproximadamente em direções diagonais em relação aos eixos da imagem.
- Se imaginarmos a rotação dos eixos em 45° e superpusermos o laplaciano após rotação ao original, poderemos construir um filtro que seja invariante em relação a múltiplas rotações de 45°, figura B:

$$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

- O Laplaciano de um função f é soma da segunda derivada parcial de f em relação a X, com a segunda derivada parcial de f em relação a Y.
- Máscaras para o filtro Laplaciano:
 - Centro Negativo: remove bordas exteriores.
 - Centro positivo: remove bordas interiores.
- O valor do pixel central da máscara está relacionado com os pixels da vizinhança utilizados nos cálculos.

а	0	1	0
	1	-4	1
	0	1	0

b	1	1	1
	1	-8	1
	1	1	1

С	0	-1	0
	-1	4	-1
	0	-1	0

d	1	1	1
	-1	-1	-1
	-1	8	-1
	-1	0	-1
	-1	-1	-1
	-1	-1	-1

- (a) Máscara de filtragem utilizada para implementar a Equação
- (b) Máscara utilizada para implementar uma extensão dessa equação que inclui os termos diagonais.
- (c) e (d) Duas outras implementações do laplaciano frequentemente encontradas na prática.

Cálculo das Derivadas

Ilustração do primeiro e do segundo derivativo de uma função digital unidimensional representando uma seção de um perfil de intensidade horizontal de uma imagem. Em (a) e (c), os pontos de dados são ligados por linhas tracejadas para facilitar a visualização.

- (a) Imagem borrada do polo norte da Lua.
- (b) Laplaciano sem ajuste.
- (c) Laplaciano com ajuste.
- (d) Imagem aguçada utilizando a máscara

0	1	0
1	-4	1
0	1	0

(e) Resultado da utilização da máscara

1	1	1
1	-8	1
1	1	1

```
I = rgb2gray(imread('onion.png')); % Lê a imagem (em escala de cinza)
k = fspecial('laplacian'); % Cria o filtro laplaciano
IEl = imfilter(double(I), k, 'symmetric'); % Bordas com filtro laplaciano
% Exibe os resultados
subplot(1,2,1), imagesc(I);
subplot(1,2,2), imagesc(IEl);
colormap('gray');
```


- Neste exemplo, primeiro, foi construído o filtro laplaciano e, então, foi aplicado à imagem usando a função imfilter().
- Repare no uso direto da função rgb2gray() para carregar a imagem em questão (em cores) em escala de cinza.
- Ademais, foi realizada a operação do laplaciano na versão da imagem de entrada em ponto flutuante (função double());
- Como o operador laplaciano retorna valores positivos e negativos, foram usadas as funções imagesc() e colormap() para adequar a escala e exibir a imagem.

- A palavra morfologia denota um ramo da biologia que lida com a forma e a estrutura de animais e plantas.
- A morfologia matemática serve como ferramenta para extrair componentes da imagem (estrutura e forma) que são úteis para a descrição e representação.
- Além disso, a morfologia matemática pode ser aplicada para pré e pós-processamento de imagens.
- Operações morfológicas podem ser aplicadas a imagens de todos os tipos, mas o principal uso de morfologia é no processamento de imagens binárias.

- Morfologia digital ou matemática é uma modelagem destinada à descrição ou análise da forma de um objeto digital.
- As operações básicas da morfologia digital são:
 - A erosão, a partir da qual são removidos da imagem os pixels que não atendem a um dado padrão;

```
Erosão: E(A, B) = A \ominus B = \{x \in E \mid Bx \subseteq A\}
```

A dilatação, a partir da qual uma pequena área relacionada a um pixel é alterada para um dado padrão.
 Dilatação: D(A, B) = A ⊕B = A ⊕B = {x ∈ E | Bx ∩ A ≠ Ø}

- Tanto o conjunto A quanto o conjunto B podem ser considerados como sendo imagens.
- Todavia, A costuma ser considerado com sendo a imagem sob análise e B como o elemento estruturante, o qual está para a morfologia como a máscara (mask, template ou kernel) está para teoria de filtragem linear.
- Os elementos estruturantes mais comuns são os conjuntos 4-conexões e 8-conexões, N4 e N8:

Elementos estruturantes: (A) padrão N₄; e (B) padrão N₈.

Elementos Estruturantes (SE)

- Uma operação morfológica binária é determinada a partir da vizinhança examinada ao redor do ponto central.
- Essa vizinhança é definida por um conjunto de pixels com um formato, chamado de elemento estruturante.
- Um elemento estruturante é definido pelos pixels que o constituem e uma forma que possui diferentes tamanhos (3x3, 4x4, 5x5, etc) e formatos:

- Dilatação é o processamento morfológico para crescimento (expansão) de um objeto em uma imagem.
- A dilatação, em geral, faz com que o objeto cresça no tamanho. Buracos menores do que o elemento estruturante são eliminados e o número de componentes pode diminuir.

$$C = A \oplus B$$

onde:

C é a nova imagem;

A é a imagem original;

B é o elemento estruturante.

Dilatação: $D(A, B) = A \oplus B = A \oplus B = \{x \in E \mid Bx \cap A \neq \emptyset\}$

- Passar o elemento estruturante por todos os pixels da imagem original:
 - Se o valor do pixel sob o elemento central for diferente de 0, copie todos os valores 1 do elemento estruturante para a imagem resultante.


```
% Lê uma imagem binária
I = imread("J.bmp");
% Define um elemento estruturante do tipo quadrado 3x3
SE square = strel('square', 3);
% Aplica a convolução da imagem original (I) com o elemento estruturante (SE)
dilationsq = imdilate(I, SE square);
% Define um elemento estruturante do tipo diamante 3x3
SE diamond = strel('diamond', 3);
% Aplica a convolução da imagem original (I) com o elemento estruturante (SE)
dilationdm = imdilate(I, SE diamond);
% Define um elemento estruturante do tipo linha
SE line = strel('line', 9, 0);
% Aplica a convolução da imagem original (I) com o elemento estruturante (SE)
dilation1 = imdilate(I, SE line);
% Exibe resultados
subplot(2,2,1); imshow(I); title("Imagem Original");
subplot(2,2,2); imshow(dilationsq); title("Dilatação com Square SE 3x3");
subplot(2,2,3); imshow(dilationdm); title("Dilatação com Diamond SE 3x3");
subplot(2,2,4); imshow(dilationl); title("Dilatação com Line SE");
```

Imagem Original

Dilatação com Square SE 3x3

Dilatação com Diamond SE 3x3

Dilatação com Line SE

- Erosão é o processamento morfológico para diminuição (contração) de um objeto em uma imagem.
- A erosão reduz as dimensões do objeto. Objetos menores do que o elemento estruturante são eliminados e o número de componentes pode aumentar.

$$C = A \odot B$$

onde:

C é a nova imagem;

A é a imagem original;

B é o elemento estruturante.

Erosão:
$$E(A, B) = A \ominus B = \{x \in E \mid Bx \subseteq A\}$$

- Passar o elemento estruturante por todos os pixels da imagem original:
 - Se nenhum valor dos pixels da imagem sob os valores não nulos do elemento estruturante for 0, ponha 1 no resultado.


```
% Lê uma imagem binária
I = imread("J.bmp");
% Define um elemento estruturante do tipo quadrado 3x3
SE square = strel('square', 3);
% Aplica a convolução da imagem original (I) com o elemento estruturante (SE)
erodesq = imerode(I, SE square);
% Define um elemento estruturante do tipo diamante 3x3
SE diamond = strel('diamond', 3);
% Aplica a convolução da imagem original (I) com o elemento estruturante (SE)
erodedm = imerode(I, SE diamond);
% Define um elemento estruturante do tipo linha
SE_line = strel('line', 9, 0);
% Aplica a convolução da imagem original (I) com o elemento estruturante (SE)
erodel = imerode(I, SE line);
% Exibe resultados
subplot(2,2,1); imshow(I); title("Imagem Original");
subplot(2,2,2); imshow(erodesq); title("Erosão com Square SE 3x3");
subplot(2,2,3); imshow(erodedm); title("Erosão com Diamond SE 3x3");
subplot(2,2,4); imshow(erodel); title("Erosão com Line SE");
```

Imagem Original

Erosão com Square SE 3x3

Erosão com Diamond SE 3x3

Erosão com Line SE

Operações Morfológicas: Abertura

 Abertura pode ser usada para suavizar o contorno de uma imagem, quebrar istmos estreitos, eliminar proeminências delgadas, abrir buracos e eliminar ruídos na imagem.

$$C = (A \odot B) \oplus B$$

onde:

C é a nova imagem;

A é a imagem original;

B é o elemento estruturante.

Operações Morfológicas: Abertura

```
% Lê uma imagem binária
I = imread("J_Open.bmp");

% Define um elemento estruturante do tipo diamante com raio 3
SE = strel("diamond", 3);

% Aplica a convolução da imagem original (I) com o elemento estruturante (SE) open = imopen(I, SE);

% Exibe resultados
subplot(2,2,1); imshow(I); title("Imagem Original");
subplot(2,2,2); imshow(open); title("Abertura");
```

Imagem Original

Abertura

Operações Morfológicas: Fechamento

 Fechamento pode ser usado para fundir pequenas quebras, alargar golfos estreitos e fechar buracos na imagem.

$$C = (A \oplus B) \oplus B$$

onde:

C é a nova imagem;

A é a imagem original;

B é o elemento estruturante.

Operações Morfológicas: Fechamento

```
% Lê uma imagem binária
I = imread("J_Close.bmp");

% Define um elemento estruturante do tipo disco com raio 2
SE = strel('disk', 2, 0);

% Aplica a convolução da imagem original (I) com o elemento estruturante (SE) close = imclose(I, SE);

% Exibe resultados
subplot(1,2,1); imshow(I); title("Imagem Original");
subplot(1,2,2); imshow(close); title("Fechamento");
```


Imagem Original

Operações Morfológicas: Abertura e Fechamento

```
% Lê uma imagem binária
I = imread("J.bmp");
% Define um elemento estruturante do tipo disco com raio 4
SE = strel('disk', 4, 0);
% Aplica a convolução da imagem original (I) com o elemento estruturante (SE)
open = imopen(I, SE);
close = imclose(I, SE);
open close = imopen(imclose(I, SE), SE);
% Exibe resultados
subplot(2,2,1); imshow(I); title("Imagem Original");
subplot(2,2,2); imshow(open); title("Abertura");
subplot(2,2,3); imshow(close); title("Fechamento");
subplot(2,2,4); imshow(open_close); title("Abertura e Fechamento");
```

Operações Morfológicas: Abertura e Fechamento

Imagem Original

Abertura

Fec hamento

Abertura e Fechamento

Contorno

 Podemos definir o contorno (fronteira ou perímetro) de um objeto erodindo-o com um elemento estruturante apropriado e pequeno e, em seguida, subtraindo o resultado da imagem original.
 Assim, para uma imagem binária A e um elemento estruturante B, o contorno A_p é definido como:

```
% Lê uma imagem binária I = imread("J.bmp"); A_P = A - A \oplus B% Define um elemento estruturante do tipo disco com raio 2 SE = strel('disk', 2, 0); % \text{ Aplica a convolução da imagem original (I) com o elemento estruturante (SE) erode = imerode(I, SE);}% Subtrai a imagem original pela erosão para gerar o contorno I_Contorno = I - erode; % \text{ Exibe resultados subplot(1,2,1); imshow(I); title("Imagem Original"); subplot(1,2,2); imshow(erode); title("Erosão"); figure; imshow(I_Contorno); title("Contorno");}
```


- O modo e a magnitude da expansão ou redução da imagem dependem necessariamente do elemento estruturante B.
- A aplicação de uma transformação de dilatação ou erosão a uma imagem sem a especificação de um *elemento estruturante*, não produzirá nenhum efeito.
- Dilatações e erosões são usadas para a criação de transformações mais sofisticadas, as quais conduzem a vários resultados relevantes quanto à análise de imagens, dentre os quais se citam:
 - os filtros morfológicos,
 - o preenchimento de buracos,
 - a extração de contornos,
 - o reconhecimento de padrões.

Lista de Exercícios

Exercício 1

Considerando os detectores de bordas de *Prewitt* e de *Sobel*, aplique detecção de bordas às imagens dos três canais RGB (por exemplo, com as imagens 'onion.png' e 'football.jpg').

Exiba os resultados como uma imagem em cores de três canais e como canais individuais de cor (um por figura).

Exercício 2

Considere a imagem original e o elemento estruturante abaixo e:

1	0	0
0	1	0
0	0	1

Esboce o resultado da **erosão** com este elemento estruturante. Esboce o resultado da **dilatação** com este elemento estruturante.

Exercício 3

Considere a imagem original e o elemento estruturante abaixo e:

1	1	1
1	1	1
1	1	1

Qual é o resultado de, primeiro, erodir a imagem com este elemento estrutural e, em seguida, dilatá-la com o mesmo elemento estrutural (operação denominada fechamento)?

Qual é o resultado de, primeiro, dilatar a imagem com este elemento estrutural e, em seguida, erodi-la com o mesmo elemento estrutural (operação denominada abertura)?