THE ALGEBRA OF REGULAR EXPRESSIONS

Reminder of Basic Definitions and Some Basic Proofs

(1) For languages L, $M \subseteq \Sigma^*$; L+M, L.M and L^* are interpreted as follows: $L+M = L \cup M$; $L.M = \{w \mid w = u.v; u \in L; v \in M\}$; $L^* = \bigcup_{i=0,+\infty} L^i$ where $L^i := L.L. \dots L$ (i times)

(2) (L+M)* = (L*. M*)*

Proof of (2):

Let $u \in (L+M)^*$ then by definition $u = u_1 . u_2 u_k$ for some integer $k \ge 0$ where for each j $u_j \in L+M$. But $L \subseteq L^* \subseteq L^*$. $e \subseteq L^*$.

(3) (L+M)* = (L*+M*)*

Proof of (3):

Since $L \subseteq L^*$ and $M \subseteq M^*$ it follows that $(L+M)^* \subseteq (L^*+M^*)^*$.

Conversely let $u \in (L^*+M^*)^*$ then $u = (v_1+w_1)$ $(v_k + w_k)$ where for each j $v_j \in L^*$ and $w_j \in M^*$. We show that $u \in (L^*, M^*)^*$ by using induction on k. For k=1 $v_1 \in L^* \subseteq L^*$. $e \subseteq L^*$. $M^* \subseteq (L^*, M^*)^*$ similarly $w_1 \in M^* \subseteq e$. $M^* \subseteq L^*$. $M^* \subseteq (L^*, M^*)^*$ hence $v_1+w_1 \subseteq (L^*, M^*)^*$. Now assume statement holds for k-1, hence $z := (v_1+w_1)$ $(v_{k-1} + w_{k-1}) \in (L^*, M^*)^*$. But using the above reasoning for v_1+w_1 it follows that $v_k+w_k \in (L^*, M^*)^*$ and therefore u = z. . $(v_k+w_k) \in (L^*, M^*)^*$. . $(L^*, M^*)^* = (L^*, M^*)^*$ using the obvious identity K^* . $K^* = K^*$ for any language K. This proves that $(L^*+M^*)^* \subseteq (L^*, M^*)^*$, but by (2) $(L+M)^* = (L^*, M^*)^*$ hence $(L^*+M^*)^* \subseteq (L+M)^*$ and (3) is proved.

(4)
$$(L.M)^* \subseteq (L^*M^*)^*$$
 and $(L.M)^* = (L^*M^*)^*$ iff $e \in L$ and $e \in M$

Proof of (4):

First statement is obvious using $L \subseteq L^*$ and $M \subseteq M^*$. To prove the second one assume $e \in L$ and $e \in M$ and let $u \in (L^*, M^*)$ * then $u = v_1, w_1, \ldots, v_k, w_k$ where $v_j \in L^*$ and $w_j \in M^*$ therefore $v_j = v_j^{-1}, \ldots, v_j^{-l(j)}$ and $w_j = z_j^{-1}, \ldots, z_j^{-p(j)}$ with $y_j^{-m} \in L$ and $z_j^{-m} \in M$. Hence $u = q_1, \ldots, q_r$ where $r = \sum_{j=l,k} (l(j) + p(j))$ where each $q_i \in L$ or $q_i \in M$. Using the assumption we can write $u = q'_1 \dots q'_{r'}$ by adding an empty string in between the q_j strings ,if necessary, so that we have for each $j=1, \dots, r'$, $q'_j \in L$ and $q'_{j+1} \in M$. This proves that $u \in (L.M)^*$ To prove the converse result we present counter-examples that violate the assumption $e \in L$ and $e \in M$.

Suppose $e \notin L$ choose $L = 0.0^*$ and $M = 1^*$ then $I \in (L^*.M^*)^*$ whereas $I \notin (L.M)^*$; alternatively if $e \notin M$ choose $L = 0^*$ and $M = 1.1^*$ then $0 \in (L^*.M^*)^*$ whereas $0 \notin (L.M)^*$.

Homework #2 due October 18, 2016, Tuesday

- (1) Using either the results or the techniques used above try to simplify the following expressions and prove your simplification.
- (i) (0+1)*.1.(0+1) +(0+1) *.1.(0+1)
- (ii) **(((0*.1*)+1)*(0+1)*)***
- (iii) **(L+M*)***
- (iv) **(L.M*)***
- (2) Convert the regular expression $(((0.0)^*.(1.1))+01)^*$ into an ε -NFA
- (3) Problems from the textbook
- 3.1.1 (b) and (c)
- 3.1.4 (b) and (c)
- 3.2.1 (c) and (d)
- 3.2.3