CAMINHOS MÍNIMOS EM GRAFOS: DIJKSTRA (PARTE I)

Prof. Daniel Kikuti

Universidade Estadual de Maringá

20 de abril de 2015

Sumário

- ► Introdução
- Definições
- Algoritmo de Dijkstra
- Exemplo
- Análise: correção e consumo de tempo
- Exercícios

Introdução

Aplicações

 Rotas em mapas (Google Maps): encontrar automaticamente menor distância entre dois pontos;

Introdução

Aplicações

- Rotas em mapas (Google Maps): encontrar automaticamente menor distância entre dois pontos;
- Máquinas de estados finitos: cada vértice descreve uma estado, cada aresta representa uma transição e peso da aresta representa o custo para mudar de um estado para outro (encontrar uma sequência ótima de escolhas que leve ao estado objetivo);

Introdução

Aplicações

- Rotas em mapas (Google Maps): encontrar automaticamente menor distância entre dois pontos;
- Máquinas de estados finitos: cada vértice descreve uma estado, cada aresta representa uma transição e peso da aresta representa o custo para mudar de um estado para outro (encontrar uma sequência ótima de escolhas que leve ao estado objetivo);
- Outras aplicações: redes de computadores (telecomunicação), layout de fábrica e instalações, robótica, transporte, etc.

Classificação dos problemas de caminho mínimo

Problemas que serão abordados em aula

- ▶ **Origem única:** Encontrar um caminho mínimo a partir de uma dada origem $s \in V$ até todo vértice $v \in V$.
- ► Todos os pares: Encontrar um caminho mínimo de u até v para todos os pares de vértices u e v.

Classificação dos problemas de caminho mínimo

Problemas que serão abordados em aula

- ▶ **Origem única:** Encontrar um caminho mínimo a partir de uma dada origem $s \in V$ até todo vértice $v \in V$.
- ► Todos os pares: Encontrar um caminho mínimo de u até v para todos os pares de vértices u e v.

Outras variantes

- ▶ **Destino único:** Encontrar um caminho mínimo até um determinado vértice de destino *t* a partir de cada vértice *v*.
- ▶ Par único: Encontrar o caminho mínimo de *u* até *v*.

Definições

Entrada (origem única)

Um grafo orientado G=(V,E), uma função peso $w:E\to R$ e um vértice de origem s.

Definições

Entrada (origem única)

Um grafo orientado G = (V, E), uma função peso $w : E \rightarrow R$ e um vértice de origem s.

Custo do caminho e caminho de custo mínimo

O **peso (ou custo) de um caminho** $p = \langle v_0, v_1, \dots, v_k \rangle$ é a soma do peso das arestas no caminho

$$w(p) = \sum_{i=1}^k w(v_{i-1}, v_i)$$

Definimos o caminho de custo mínimo de u a v como

$$\delta(u,v) = \begin{cases} \min\{w(p) : u \overset{p}{\leadsto} v\} & \text{se existe caminho de } u \text{ a } v \text{ e}, \\ \infty & \text{caso contrário.} \end{cases}$$

Um exemplo

Qual o caminho mais curto de s para os demais vértices?

Um exemplo

Qual o caminho mais curto de s para os demais vértices?

Propriedade importante

Subestrutura ótima (Lema 24.1)

Qualquer subcaminho de um caminho mínimo é um caminho mínimo.

Propriedade importante

Subestrutura ótima (Lema 24.1)

Qualquer subcaminho de um caminho mínimo é um caminho mínimo.

Demonstração

Seja G=(V,E) um grafo direcionado com função peso $w:E\to R,\ p=\langle v_0,v_1,\ldots,v_k\rangle$ o caminho mínimo do vértice v_0 até v_k e, $p_{ij}=\langle v_i,v_{i+1},\ldots,v_j\rangle$ um subcaminho de p tal que $0\le i\le j\le k$. O custo de p é então definido como $w(p)=w(p_{0i})+w(p_{ij})+w(p_{jk})$. Suponha que existe um caminho p'_{ij} de v_i até v_j tal que $w(p'_{ij})< w(p_{ij})$. Então, $v_0\overset{p_{0i}}{\leadsto}v_i\overset{p'_{ij}}{\leadsto}v_j\overset{p_{jk}}{\leadsto}v_k$ é um caminho de v_0 até v_k cujo custo $w(p_{0i})+w(p'_{ij})+w(p_{jk})$ é menor que w(p), o que contradiz o fato de p ser um caminho mínimo de v_0 até v_k .

Considerações sobre ciclos

Um caminho mínimo pode conter ciclos (arestas positivas)?

NÃO. Podemos obter um caminho mínimo eliminando o(s) ciclo(s). E se o ciclo for nulo, não há razão para usar tal ciclo.

Qualquer caminho acíclico em um grafo G=(V,E) contém no máximo |V| vértices distintos e no máximo |V|-1 arestas.

Considerações sobre ciclos

Um caminho mínimo pode conter ciclos (arestas positivas)?

NÃO. Podemos obter um caminho mínimo eliminando o(s) ciclo(s). E se o ciclo for nulo, não há razão para usar tal ciclo.

Qualquer caminho acíclico em um grafo G=(V,E) contém no máximo |V| vértices distintos e no máximo |V|-1 arestas.

Ciclos negativos

Algoritmo de caminhos mínimos

Algoritmo de Edsger Dijkstra (1959)

- Usa estratégia gulosa
- Baseado no algoritmo de busca em largura
- ▶ Mantém dois conjuntos: S (vértices cujo caminho mínimo desde a origem já foi determinado) e V − S (restante)
- O algoritmo seleciona repetidamente o vértice com a menor estimativa de caminhos mínimos (v.d') e adiciona-o em S.

O algoritmo de Dijkstra em alto nível

Versão do livro de Kleinberg e Tardos

```
dijkstra(G, w, s)

1 Seja S o conjunto de vértices explorados, para cada u \in S armazenaremos a distância u.d;

2 Inicialmente S = \{s\} e s.d = 0;

3 enquanto S \neq V

4 Selecione um v \notin S com pelo menos uma aresta de S para qual v.d' é o menor possível, isto é: v.d' = \min_{(u,v): u \in S} \{u.d + w(u,v)\};

5 Adicione v a S e defina v.d = v.d'
```

Uma figura explicando funcionamento

Análise do algoritmo

Correção - Invariante de Iaço

Considere o conjunto S em qualquer ponto de execução do algoritmo. Para cada $u \in S$, o caminho $s \stackrel{p}{\leadsto} u$ é um caminho mínimo.

Análise do algoritmo

Correção - Invariante de Iaço

Considere o conjunto S em qualquer ponto de execução do algoritmo. Para cada $u \in S$, o caminho $s \stackrel{p}{\leadsto} u$ é um caminho mínimo.

Demonstração por indução no tamanho de S

Base: $|S| = 1 \Rightarrow S = \{s\} \text{ e } s.d = 0.$

Hipótese: O invariante vale para |S| = k, $k \ge 1$.

Passo: Adicionaremos mais um vértice v e aumentaremos o

tamanho de S para k+1.

Análise do algoritmo – Continuação da correção

Demonstração do passo da indução

Seja (u, v) a aresta final do caminho $p_{sv} = \langle s \stackrel{p}{\leadsto} u \rightarrow v \rangle$. Pela hipótese, p é um caminho mínimo de s a u para cada $u \in S$.

Considere agora qualquer outro caminho $p'_{sv} = \langle s \overset{p'}{\leadsto} x \to y \leadsto v \rangle$ de s a v. Mostraremos que p'_{sv} é pelo menos tão longo quanto p_{sv} . A figura a seguir ilustra esta situação.

O caminho alternativo p'_{sv} passando por x e y já é pelo menos tão longo quanto p_{sv} no momento em que deixa o conjunto S.

Análise do algoritmo – Continuação da correção

Término do passo indutivo

Na iteração k+1, o algoritmo considerou adicionar y ao conjunto S via aresta (x,y), mas rejeitou-o em favor de v. Isto significa que não existe caminho de s a y via x que seja menor que p_{sv} , pois o subcaminho p' de s até y é pelo menos tão longo quanto p_{sv} . Como não existem arestas com pesos negativos, o caminho p'_{sv} será também tão longo quanto ou maior que p_{sv} .

Análise do algoritmo - Complexidade

Qual o custo de tempo?

```
dijkstra(G, w, s)

1 Seja S o conjunto de vértices explorados, para cada u \in S armazenaremos a distância u.d;

2 Inicialmente S = \{s\} e s.d = 0;

3 enquanto S \neq V

4 Selecione um v \notin S com pelo menos uma aresta de S para qual v.d' é o menor possível, isto é: v.d' = \min_{(u,v): u \in S} \{u.d + w(u,v)\};

5 Adicione v a S e defina v.d = v.d'
```

Uma versão mais baixo nível

Detalhes do algoritmo

- Usa uma fila de prioridades, em que as chaves são os pesos estimados dos caminhos mínimos (v.d)
- v.pred = predecessor de v no caminho mínimo a partir de s. Se não existe predecessor, então v.pred = NIL. pred induz uma árvore, a árvore de caminhos mínimos
- Mantém dois conjuntos de vértices: S (vértices cujo caminho mínimo desde a origem já foi determinado) e Q = V S (fila de prioridades)
- ▶ Inicialmente s.d = 0 e demais vértices $v.d = \infty$.
- O algoritmo seleciona repetidamente o vértice u ∈ Q, com a menor estimativa de caminhos mínimos, adiciona-o em S e relaxa todas as arestas que saem de u.

Funções auxiliares

Inicializa vértices

```
initialize-single-source(G, s)

1 para cada vértice v \in G.V

2 v.d = \infty

3 v.pred = NIL

4 s.d = 0
```

Funções auxiliares

Inicializa vértices

```
initialize-single-source(G, s)

1 para cada vértice v \in G.V

2 v.d = \infty

3 v.pred = NIL

4 s.d = 0
```

Relaxa

```
relax(u, v, w)

1 se v.d > u.d + w(u,v)

2 v.d = u.d + w(u,v)

3 v.pred = u.
```

O Algoritmo

Algoritmo de Dijkstra versão Cormen

```
dijkstra(G, w, s)
1 initialize-single-source(G, s)
2 S = Ø
3 Q = G.V
4 enquanto Q != Ø
5     u = extract-min(Q)
6     S = S U u
7     para cada vértice v em u.adj
8     relax(u, v, w)
```

Análise do algoritmo - Complexidade

Operações de fila

- insert implícita na linha 3 (executado uma vez para cada vértice)
- extract-min na linha 5 (executado uma vez para cada vértice)
- decrease-key implícita em relax (executado no máximo de |E| vezes, uma vez para cada aresta relaxada)

Análise do algoritmo - Complexidade

Operações de fila

- insert implícita na linha 3 (executado uma vez para cada vértice)
- extract-min na linha 5 (executado uma vez para cada vértice)
- decrease-key implícita em relax (executado no máximo de |E| vezes, uma vez para cada aresta relaxada)

Total usando heap

Tempo total de $O((V + E) \lg V + V) = O(E \lg V)$.

Exercício 1

Faça uma execução passo a passo do algoritmo de Dijkstra para a figura abaixo.

Exercício 2 [24.3.2 - Cormen]

Forneça um exemplo simples de um grafo orientado com arestas de peso negativo para o qual o algoritmo de Dijkstra produz respostas incorretas. Por que a demonstração de correção do algoritmo vista em aula não é válida quando são permitidas arestas de peso negativo?