Docs

A fancy title

To calculate the horizontal position the kinematic differential equations are needed:

$$\dot{n} = u\cos\psi - v\sin\psi \tag{1}$$

$$\dot{e} = u\sin\psi + v\cos\psi \tag{2}$$

For small angles the following approximation can be used:

$$\dot{n} = u - v \delta_{\psi}$$

$$\dot{n} = u - v\delta_{\psi} \tag{3}$$

$$\dot{e} = u\delta_{\psi} + v \tag{4}$$

Fermat's Last Theorem
Fermat's Last Theorem states that

Last Theorem
$$x^n + y^n = z^n$$

has no non-zero integer solutions for x, y and z when n > 2.

Daniell's Pile

Figure 1: A level diagram with some transitions drawn in TikZ, resized, and placed in a figure environment.

Figure 1 – Typical energy levels for π -orbitals of a fluor molecule. Spin singlet (S) and triplet (T) states are separated for clarity. The ionization level I_{π} is shown at the top. Excited states as well as vibrational sublevels (dashed horizontal lines) are shown. Internal degradation is a non-radiative process, while fluorescence and phosphorescence are radiative decays. The decay $T_0 \to S_0$, however, is indirect, by interactions with other molecules.

Figure 1: Photoelectric effect

Figure 2: Compton scattering

 \bullet Coriolis acceleration \bigcirc

$$\vec{a}_p = \vec{a}_o + \frac{^b d^2}{dt^2} \vec{r} + \left[2 \vec{\omega}_{ib} \times \frac{^b d}{dt} \vec{r} \right] + \left[\vec{\alpha}_{ib} \times \vec{r} \right] + \left[\vec{\omega}_{ib} \times (\vec{\omega}_{ib} \times \vec{r}) \right]$$
(1)

- \bullet Centripetal acceleration \bigcirc

لإل

Figure 1: Babai's algorithm works poorly if the basis is "bad".

Light behavior in a petrographic microscope with light polarizing device. Only one incident wavelength is shown (monochromatic light). The magnetic field, perpendicular to the electric one, is not drawn.

