適応的個体間距離に基づく 複数解探索型Bat Algorithm

平成30年度 修論発表 情報学専攻 高玉研究室 1730022 岩瀬 拓哉

背景: 複数解探索問題

有力な情報を持つ解を選択肢として複数保持しておくことが重要

多点探索アルゴリズム

目的

集団が評価値の高い方へ収束する探索

『多点探索アルゴリズム + 複数局所解保持機構』の提案と有効性の検証

多点探索アルゴリズムの一つであり、大域探索と局所探索を同時に実施

STEP1

• 最良個体方向へ新たに個体候補を生成

STEP2

• 最良個体周辺に個体候補生成

STEP3

• 探索空間内にランダムで個体候補を生成

STEP4

・ 個体候補の評価

STEP5

•終了条件を満たすまでSTEP1へ戻る

○:個体 (コウモリ) *x_i*

★ : 最良個体x_{*}

多点探索アルゴリズムの一つであり、大域探索と局所探索を同時に実施

STEP1

• 最良個体方向へ新たに個体候補を生成

STEP2

• 最良個体周辺に個体候補生成

STEP3

• 探索空間内にランダムで個体候補を生成

STEP4

・ 個体候補の評価

STEP5

•終了条件を満たすまでSTEP1へ戻る

○:個体 (コウモリ) *x_i*

★ : 最良個体x_{*}

多点探索アルゴリズムの一つであり, 大域探索と局所探索を同時に実施

STEP1

• 最良個体方向へ新たに個体候補を生成

STEP2

• 最良個体周辺に個体候補生成

STEP3

• 探索空間内にランダムで個体候補を生成

STEP4

・ 個体候補の評価

STEP5

•終了条件を満たすまでSTEP1へ戻る

○:個体 (コウモリ) x_i ◇:個体候補

★ : 最良個体x_{*}

多点探索アルゴリズムの一つであり, 大域探索と局所探索を同時に実施

STEP1

• 最良個体方向へ新たに個体候補を生成

STEP2

• 最良個体周辺に個体候補生成

STEP3

• 探索空間内にランダムで個体候補を生成

STEP4

• 個体候補の評価

STEP5

•終了条件を満たすまでSTEP1へ戻る

多点探索アルゴリズムの一つであり, 大域探索と局所探索を同時に実施

STEP1

• 最良個体方向へ新たに個体候補を生成

STEP2

• 最良個体周辺に個体候補生成

STEP3

• 探索空間内にランダムで個体候補を生成

STEP4

・ 個体候補の評価

STEP5

従来の問題に対するアプローチ

多点探索アルゴリズム + 複数解探索する機構

Novelty Search-based Bat Algorithm (NSBA) 未探索空間に新しく個体候補を生成する

BA + Novelty Search

問題点

保持していた局所解からより良い評価値を持つ解へ移動する

Niche Radius-based Bat Algorithm (NRBA) 探索範囲を分割し、同じ局所解に個体を収束させない機構

BA + Niche radius

問題点

評価値の低い局所解で留まる

Dynamic Niche Radius-based Bat Algorithm (DNRBA) 分割した探索範囲内の個体分布密度により探索方法を切り替える

BA +

Dynamic Niche radius

従来の問題に対するアプローチ

多点探索アルゴリズム + 複数解探索する機構

Niche radius [D.E. Goldberg, et. al, 1987]: 探索空間の大きさと個体数に基づいて算出される

Dynamic Niche Radius-based Bat Algorithm (DNRBA)

探索範囲内の個体分布密度に応じて動的に探索範囲を調節する

(探索範囲)

	ВА	DNRBA
収束方向へ の探索	最良個体 方向へ移動	<u>分割した探索範囲</u> (Niche radius)内の最良 個体から <u>離れる方向</u> へ移動
局所探索	最良個体 付近	Niche radius内の最良個体
ランダム探索	解探索空間	Niche radius内
アルゴリズム の特徴	全個体が 最適解へ 収束	探索空間内の局所解 も捕捉可能

STEP0

• 個体密度とNiche radiusの算出

STEP1

 Niche radius内の最良個体から 離れる方向へ個体候補を生成

STEP2

• <u>最良個体のNiche radius内に</u>個体候補生成

STEP:

Niche radius内にランダムで個体候補を生成

STEP4

・ 個体候補の評価

STEP5

・終了条件を満たすまでSTEPOへ戻る

STEPO

• 個体密度とNiche radiusの算出

STEP1

Niche radius内の最良個体から 離れる方向へ個体候補を生成

STEP2

• <u>最良個体のNiche radius内</u>に個体候補生成

STEP:

• Niche radius内にランダムで個体候補を生成

STEP4

• 個体候補の評価

STEP5

・終了条件を満たすまでSTEPOへ戻る

$$sh(d_{ij}) = 1 - \left(\frac{d_{ij}}{\sigma}\right)$$

Niche count

$$m_i = \sum_{j=1}^N sh(d_{ij})$$

[B. Miler, 1996]

○:個体 x_i

★:最良個体 x_{NR*}

Niche radius : σ

(探索範囲)

STEP0

• 個体密度とNiche radiusの算出

STEP1

 Niche radius内の最良個体から 離れる方向へ個体候補を生成

STEP2

• <u>最良個体のNiche radius内</u>に個体候補生成

STEP:

Niche radius内にランダムで個体候補を生成

STEP4

• 個体候補の評価

STEP5

・終了条件を満たすまでSTEPOへ戻る

○:個体 *x_i*

★ : 最良個体x_{NR*}

●:個体候補

STEP0

• 個体密度とNiche radiusの算出

STEP1

 Niche radius内の最良個体から 離れる方向へ個体候補を生成

STEP2

• <u>最良個体のNiche radius内</u>に個体候補生成

STEP:

• Niche radius内にランダムで個体候補を生成

STEP4

• 個体候補の評価

STEP5

・終了条件を満たすまでSTEPOへ戻る

: 個体候補

STEP0

• 個体密度とNiche radiusの算出

STEP1

 Niche radius内の最良個体から 離れる方向へ個体候補を生成

STEP2

• <u>最良個体のNiche radius内</u>に個体候補生成

STEP3

• Niche radius内にランダムで個体候補を生成

STEP4

• 個体候補の評価

STEP5

・終了条件を満たすまでSTEPOへ戻る

青い探索範囲内にランダムで生成

○:個体 x_i

★:最良個体x_{NR*}

◇:個体候補

STEP0

• 個体密度とNiche radiusの算出

STEP1

 Niche radius内の最良個体から 離れる方向へ個体候補を生成

STEP2

• <u>最良個体のNiche radius内</u>に個体候補生成

STEP:

• Niche radius内にランダムで個体候補を生成

STEP4

・ 個体候補の評価

STEP5

・終了条件を満たすまでSTEPOへ戻る

○:個体 *x_i*

★ : 最良個体x_{NR*}

STEP0

• 個体密度とNiche radiusの算出

STEP1

 Niche radius内の最良個体から 離れる方向へ個体候補を生成

STEP2

• <u>最良個体のNiche radius内</u>に個体候補生成

STEP:

• Niche radius内にランダムで個体候補を生成

STEP4

• 個体候補の評価

STEP5

・終了条件を満たすまでSTEPOへ戻る

○:個体 *x_i*

★ : 最良個体x_{NR*}

実験

複数解(最適解と局所解)を持つ多峰性関数の最小化問題

関数	F_1 : Griewank	F ₂ : Six-Hump Camel	F ₃ : Michalewicz	F ₄ : Himmelblau
探索範囲	$x_i \in [-10, 10]$	$x_1 \in [-2, 2],$ $x_2 \in [-1, 1]$	$x_i \in [0, 4]$	$x_i \in [-5, 5]$
最適解数/局所解数	1 / 16 (17)	2 / 2 (4) カッコ内はt	1 / 1 (2) ニークの数 (最適解の	4 / 0 (4) と局所解の合計)

評価指標 $PR = \frac{\sum_{run=1}^{MR}$ 各試行におけるアルゴリズムが発見したピーク数

全てのピーク数 * 試行回数

[X.Li, et. al,2013]

各ピークの座標とその最近傍個体座標の差分が<mark>閾値ε未満</mark>であれば, そのピークを発見したと定義

パラメータ設定	
個体数: N	50
世代数: Generation	10000
次元数: <i>D</i>	2
試行回数: MR	30
周波数: f _{min}	0
周波数: f _{max}	1
ラウドネス: A ⁰	1
パルスレート: r^0	rand [0, 1]
α	0.9
γ	0.9
ε	0.1

結果

PR値と標準偏差(試行回数30試行)

	ВА	NSBA	NRBA	DNRBA
Function	Mean ± SD	Mean ± SD	Mean ± SD	Mean ± SD
F_1	0.059 ± 0	0.371 ± 0.041	0.692 ± 0.098	0.745 ± 0.061
F ₂	0.492 ± 0	0.50 ± 0	0.992 ± 0.045	1 ± 0
F_3	0.50 ± 0	0.50 ± 0	0.70 ± 0.245	1 ± 0
F_4	0.808 ± 0.108	1 ± 0	0.858 ± 0.124	0.867 ± 0.127

 F_1 から F_3 関数までDNRBAの探索性能が最も高い

 F_1 : Griewank

最適解及びその周辺 の局所解を捕捉

多くの局所解を捕捉

F₃: Michalewicz

まとめ

目的

複数解(最適解/局所解)を同時に探索可能なアルゴリズムの構築

提案

個体密度によって,動的に探索領域を決定する Dynamic Niche Radiusを用いた探索アルゴリズム

- Niche radius内の最良個体から遠ざかる探索
- Niche radius内の最良個体付近を局所探索
- 各個体のNiche radius内をランダム探索

知見

複数解(最適解 / 局所解)を持つ $F_1 \sim F_3$ 関数において探索性能が向上最適解のみを持つ F_4 関数においてNSBAが有効

今後の課題

他の複数解探索手法との性能比較