C 12 N 15/70 C 12 N 15/31

18/27

DEUTSCHES PATENTAMT Aktenzeichen:

196 03 649.6

Anmeldetag: 1. 2.96

Offenlegungstag:

7. 8.97

C 12 N 1/21 C 12 N 15/75 // (C12N 1/21,C12R 1:19)

(7) Anmelder:

Lubitz, Werner, Prof. Dr., Wien, AT; Sleytr, Uwe, Prof. Dr., Wien, AT

(74) Vertreter:

H. Weickmann und Kollegen, 81679 München

72 Erfinder:

Lubitz, Werner, Prof. Dr., Wien, AT; Sleytr, Uwe, Prof. Dr., Wien, AT; Kuen, Baetrix, Dr., Wien, AT

(54) Rekombinante Expression von S-Layer-Proteinen

Die Erfindung betrifft Verfahren zur rekombinanten Herstellung von S-Layer-Proteinen in gram-negativen Wirtszellen. Weiterhin werden die Nukleotidsequenz eines neuen S-Layer-Gens und Verfahren zur Herstellung modifizierter S-Layer-Proteine offenbart.

Beschreibung

Die vorliegende Erfindung betrifft Verfahren zur rekombinanten Herstellung von S-Layer-Proteinen und modifizierten S-Layer-Proteinen in gram-negativen Wirtszellen.

Kristalline bakterielle Zelloberflächenlayer (S-Layer) bilden in vielen Eubakterien und den allermeisten Archaebakterien die äußerste Zellwandkomponente (Sleytr et al. (1988), Crystalline Bacterial Cell Surface Layers, Springer Verlag Berlin; Messner und Sleytr, Adv. Mikrob. Physiol. 33 (1992), 213—275). Die meisten der gegenwärtig bekannten S-Layer-Proteine sind aus identischen Proteinen bzw. Glykoproteinen zusammengesetzt, die scheinbare Molekulargewichte im Bereich von 40 000 bis 220 000 aufweisen. Die Komponenten von S-Layern sind selbst-assemblierend und die meisten Gitter haben eine schräge (p2), quadratische (p4) oder hexagonale (p6) Symmetrie. Die Funktionen von bakteriellen S-Layern sind immer noch nicht vollständig bekannt, aber aufgrund ihrer Lokalisierung an der Zelloberfläche dürften die porösen kristallinen S-Layer hauptsächlich als Schutzhüllen, Molekularsiebe oder zur Förderung der Zelladhäsion und Oberflächenerkennung dienen.

Genetische Daten und Sequenzinformationen sind für verschiedene S-Layer-Gene aus Mikroorganismen bekannt. Eine Übersicht findet sich bei Peyret et al., Mol. Mikrobiol. 9 (1993), 97—109. Auf diese Daten wird ausdrücklich Bezug genommen. Die Sequenz des für das S-Layer-Protein von B.stearothermophilus PV72 kodierenden Gens sbsA und ein Verfahren zu dessen Klonierung sind bei Kuen et al. (Gene 145 (1994), 115—120) angegeben.

B.stearothermophilus PV72 ist ein gram-positives Bakterium, das mit einem hexagonal angeordneten S-Layer bedeckt ist. Die Hauptkomponente des S-Layer ist ein 128 kd-Protein, bei dem es sich um das häufigste Protein in der Zelle mit einem Anteil von ungefähr 15% bezüglich der gesamten Proteinbestandteile handelt. Es sind verschiedene Stämme von B.stearothermophilus charakterisiert worden, die hinsichtlich des Typs von S-Layer-Gitter, dem Molekulargewicht und der Glykosilierung der S-Layer-Komponenten unterschiedlich sind (Messner und Sleytr (1992), supra).

Die deutsche Patentanmeldung P 44 25 527.6 offenbart den Signalpeptid-kodierenden Abschnitt des S-Layer-Gens aus B.stearothermophilus und die davon abgeleitete Aminosäuresequenz. Die Spalt stelle zwischen dem Signalpeptid und dem reifen Protein befindet sich zwischen Position 30 und 31 der Aminosäuresequenz. Die Signalpeptid-kodierende Nukleinsäure kann operativ mit einer Protein-kodierenden Nukleinsäure verknüpft werden und zur rekombinanten Herstellung von Proteinen in einem Verfahren verwendet werden, bei dem man eine transformierte Wirtszelle bereitstellt, die Wirtszelle unter Bedingungen kultiviert, die zu einer Expression der Nukleinsäure und zu einer Erzeugung und Sekretion des davon kodierten Polypeptids führen, und das resultierende Polypeptid aus dem Kulturmedium gewinnt. Als Wirtszellen werden vorzugsweise prokaryontische Organismen, insbesondere gram-positive Organismen der Gattung Bacillus genannt.

Überraschenderweise wurde festgestellt, daß die rekombinante Herstellung von S-Layer-Proteinen nicht nur in gram-positiven prokaryontischen Wirtszellen, sondern auch in gram-negativen prokaryontischen Wirtszellen möglich ist. Dabei bildet sich das S-Layer-Protein im Inneren der Wirtszelle nicht in Form von ungeordneten Einschlußkörpern, sondern unerwarteterweise in Form von geordneten monomolekularen Schichten.

Ein Gegenstand der vorliegenden Erfindung ist somit ein Verfahren zur rekombinanten Herstellung von S-Layer-Proteinen, dadurch gekennzeichnet, daß man (a) eine gram-negative prokaryontische Wirtszelle bereitstellt, die transformiert ist mit einer für ein S-Layer-Protein kodierenden Nukleinsäure, ausgewählt aus (i) einer Nukleinsäure, welche die von Position 1 bis 3684 in SEQ ID NO. 1 gezeigte Nukleotidsequenz gegebenenfalls ohne den Signalpeptid-kodierenden Abschnitt umfaßt, (ii) einer Nukleinsäure, welche eine der Nukleinsäure aus (i) im Rahmen der Degeneration des genetischen Codes entsprechende Nukleotidsequenz umfaßt, und (iii) einer Nukleinsäure, welche eine mit den Nukleinsäuren aus (i) oder/und (ii) unter stringenten Bedingungen hybridisierende Nukleotidsequenz umfaßt; (b) die Wirtszelle unter solchen Bedingungen kultiviert, die zu einer Expression der Nukleinsäure und zu einer Erzeugung des davon kodierten Polypeptids führen und (c) das resultierende Polypeptid aus der Wirtszelle gewinnt.

Unter dem Begriff "stringente Hybridisierung" im Sinne der vorliegenden Erfindung versteht man, daß eine Hybridisierung auch nach waschen bei 55°C, vorzugsweise 60°C, in einem wäßrigen Niedrigsalz-Puffer (z. B. 0,2 xSSC) noch auftritt (s. auch Sambrook et al. (1989), Molecular Cloning. A. Laboratory Manual).

Das erfindungsgemäße Verfahren wird in gram-negativen prokaryontischen Wirtszellen durchgeführt. Dabei wird überraschenderweise im Zellinneren eine geordnete S-Layer-Proteinstruktur erhalten. Vorzugsweise werden als Wirtszellen Enterobakterien, insbesondere E. coli, verwendet. Besonders bevorzugt ist der E. coli-Stamm pop2125, der am 31.01.1996 bei der Deutschen Sammlung von Mikroorganismen und Zellkulturen GmbH, Mascheroder weg 1b, D 38124 Braunschweig unter dem Aktenzeichen DSM 10509 hinterlegt wurde.

Das erfindungsgemäße Verfahren kann auch zur Gewinnung rekombinanter S-Layer-Proteine eingesetzt werden. Hierzu verwendet man eine für das S-Layer-Protein kodierende Nukleinsäure, die eine oder mehrere Insertionen enthält, die für Peptid- oder Polypeptidsequenzen kodieren. Diese Insertionen können einerseits nur für Peptide mit wenigen Aminosäuren, z. B. 1—25 Aminosäuren, kodieren. Andererseits können die Insertionen auch für größere Polypeptide von z. B. bis zu 1000 Aminosäuren und vorzugsweise bis zu 500 Aminosäuren kodieren, ohne daß die Fähigkeit des S-Layer-Proteins zur Ausbildung einer korrekt gefalteten Struktur verlorengeht. Neben den Insertionen kann das rekombinante S-Layer-Protein auch Aminosäuresubstitutionen, insbesondere Substitutionen einzelner Aminosäuren im Bereich der Insertionsorte sowie gegebenenfalls Deletionen einzelner Aminosäuren oder kurzer Aminosäureabschnitte von bis zu 30 Aminosäuren aufweisen.

Als insertionsstellen für Polypeptid-kodierende Sequenzen bevorzugt sind Bereiche zwischen den Positionen 1-1200 und 2200-3000 der in SEQ ID NO. 1 gezeigten Nukleotidsequenz. Besonders bevorzugte insertionsstellen sind die Nrul-Schnittstelle an Position 582, die PvuII-Schnittstelle an Position 878, die SnaB-I-Schnittstelle

le an Position 917, die PvuII-Schnittstelle an Position 2504 und die PvuII-Schnittstelle an Position 2649. Die Insertion einer für Streptavidin kodierenden Nukleinsäuresequenz konnte bereits in die NruI-Schnittstelle an Position 581 gezeigt werden.

Die Peptid- oder Polypeptid-kodierenden Insertionen werden vorzugsweise ausgewählt aus Nukleotidsequenzen, die für Cysteinreste, Bereiche mit mehreren geladenen Aminosäuren, z. B. Arg, Lys, Asp oder Glu, oder Tyr-Resten, DNA-bindende Epitope, antigene, allergene oder immunogene Epitope, metallbindende Epitope, Streptavidin, Enzyme, Cytokine oder Antikörper-bindende Proteine Kodieren.

Ein besonders bevorzugtes Beispiel für eine Insertion in die für das S-Layer-Protein kodierende Nukleinsäure ist eine für Streptavidin kodierende Nukleotidsequenz. Auf diese weise können universelle Trägermoleküle erhalten werden, die zur Ankopplung von biotinylierten Reagenzien und zum Nachweis in immunologischen oder Hybridisierungstestverfahren geeignet sind.

Ein weiteres bevorzugtes Beispiel für Insertionen sind antigene, allergene oder immunogene Epitope, z. B. Epitope aus pathogenen Mikroorganismen, wie etwa Bakterien, Pilzen, Parasiten etc. und Viren, oder Epitope aus Pflanzen oder Epitope gegen körpereigene Substanzen, z. B. Cytokine, sowie gegen Toxine, insbesondere Endotoxine. Besonders bevorzugte Beispiele für immunogene Epitope sind Epitope aus Herpesviren, wie etwa Herpesvirus 6 oder Pseudorabiesvirus (Lomniczi et al., J. Virol. 49 (1984), 970—979), insbesondere Epitope aus den Genen gB, gC oder/und gD, oder Maul- und Klauenseuchevirus (FMDV), insbesondere Epitope aus den Genabschnitten, die für VP1, VP2 oder/und VP3 kodieren. Die immunogenen Epitope können so ausgewählt werden, daß sie die Erzeugung einer Antikörpervermittelten Immunreaktion fördern oder/und die Erzeugung einer zellulären Immunreaktion, z. B. durch Stimulation von T-Zellen, fördern. Beispiele für geeignete allergene Epitope sind Birkenpollenallergene, z. B. Bet v I (Ebner et al., J. Immunol. 150 (1993) 1047—1054). weiterhin besonders bevorzugt sind antigene Epitope, die in der Lage sind, aus Serum oder anderen Körperflüssigkeiten körpereigene oder körperfremde Substanzen wie etwa Cytokine oder Toxine zu binden und herauszufiltrieren. Derartige Epitope können Bestandteile von Cytokin- oder Toxinrezeptoren oder von Antikörpern gegen Cytokine oder Toxine umfassen.

Andererseits können die Insertionen auch für Enzyme kodieren. Bevorzugte Beispiele sind Enzyme zur Synthese von Polyhydroxybuttersäure, z. B. PHB-Synthase. Durch Einbau von PHB-Synthase in den S-Layer kann bei Zufuhr des Substrats Hydroxybuttersäure unter geeigneten Bedingungen eine molekulare Spinndüse entstehen. Ein weiteres bevorzugtes Beispiel für ein Enzym ist bakterielle Luciferase. Hier kann bei Zufuhr des Enzymsubstrates, eines Aldehyds, und in Anwesenheit von O₂ ein molekularer Laser erhalten werden.

Ebenfalls bevorzugt sind Insertionen, die für Cytokine, wie etwa Interleukine, Interferone oder Tumornekrosefaktoren kodieren. Diese Moleküle können beispielsweise in Kombination mit immunogenen Epitopen zur Herstellung von Vakzinen verwendet werden.

Schließlich sind auch Insertionen bevorzugt, die für Antikörper-bindende Proteine, wie etwa Protein-A oder Protein-G oder für DNA- oder/und metallbindende Epitope, wie etwa Leucin-Zipper, Zinkfinger etc. kodieren.

Vorzugsweise wird bei dem erfindungsgemäßen Verfahren die für das S-Layer-Protein kodierende Nukleinsäure in operativer Verknüpfung mit einer für ein Signalpeptid von gram-positiven Bakterien kodierenden Nukleinsäure verwendet, d. h. 5'-seitig von der S-Layer-Protein-kodierenden Nukleinsäure ist die Signalpeptid-kodierende Nukleinsäure angeordnet. Überraschenderweise wurde nämlich festgestellt, daß die Anwesenheit derartiger Signalpeptidsequenzen, die in den erfindungsgemäß verwendeten gram-negativen Wirtszellen nicht abgespalten werden, die Stabilität der S-Layer-Strukturen verbessern kann. Besonders bevorzugt umfaßt die für das Signalpeptid kodierende Nukleinsäure (a) den signalpeptid-kodierenden Abschnitt der in SEQ ID NO. 1 dargestellten Nukleotidsequenz, (b) eine der Sequenz aus (a) im Rahmen der Degeneration des genetischen Codes entsprechende Nukleotidsequenz oder/und (c) eine zu den Sequenzen aus (a) oder/und (b) mindestens 80% und insbesondere mindestens 90% homologe Nukleotidsequenz.

Noch ein weiterer Gegenstand der vorliegenden Erfindung ist eine Nukleinsäure, die für ein rekombinantes S-Layer-Protein kodiert und ausgewählt ist aus (i) einer Nukleinsäure, welche die von Position 1 bis 3684 in SEQ ID NO. 1 gezeigte Nukleotidsequenz gegebenenfalls ohne den Signalpeptid-kodierenden Abschnitt umfaßt, (ii) einer Nukleinsäure, welche eine der Nukleinsäure aus (i) im Rahmen der Degeneration des genetischen Codes entsprechende Nukleotidsequenz umfaßt, und (iii) einer Nukleinsäure, welche eine mit den Nukleinsäuren aus (i) oder/und (ii) unter stringenten Bedingungen hybridisierende Nukleotidsequenz umfaßt.

In SEQ ID NO. 1 ist die kodierende Nukleotidsequenz des S-Layer-Gens sbsA aus B.stearothermophilus einschließlich des Signalpeptid-kodierenden Abschnitts gezeigt. Der Signalpeptidkodierende Abschnitt reicht von Position 1—90 der in SEQ ID NO. 1 gezeigten Nukleotidsequenz. Der für das reife SbsA-Polypeptid kodierende Abschnitt reicht von Position 91—3684.

Das sbsA-Gen von B.stearothermophilus kodiert für ein Protein mit insgesamt 1228 Aminosäuren einschließlich eines N-terminalen Signalpeptids mit 30 Aminosäuren (SEQ ID NO. 2). Die Spaltstelle zwischen dem Signalpeptid und dem reifen Protein befindet sich zwischen Position 30 und 31 der Aminosäuresequenz. Das Signalpeptid weist eine basische aminoterminale Domäne, gefolgt von einer hydrophoben Domäne, auf.

Sequenzvergleiche mit anderen Signalpeptiden zeigen eine gewisse Homologie zu Signalpeptiden von extrazellulären Proteinen in Bazillen, wie etwa alkalische Phosphatase und neutrale Phosphatase von B. amyloliquefaciens (Vasantha et al., J. Bacteriol. 159 (1984), 811—819) sowie mit den Signalpeptiden für das B.sphaericus-Gen 125 (Bowditch et al., J. Bact riol. 171 (1989), 4178—4188) und das OWP-Gen von B. brevis (Tsuboi et al., J. Bacteriol. 168 (1986), 365—373).

Ein weiterer Gegenstand der vorliegenden Erfindung ist ein rekombinanter Vektor, der mindestens eine 65 Kopie einer erfindungsgemäßen Nukleinsäure enthält. Der Vektor ist vorzugsweise in Prokaryonten replizierbar. Besonders bevorzugt ist der Vektor ein prokaryontisches Plasmid.

Noch ein weiterer Gegenstand der vorliegenden Erfindung ist eine Wirtszelle, die mit einer Nukleinsäure oder

inem rekombinanten Vektor gemäß vorliegender Erfindung transformiert ist. Vorzugsweise ist di Zelle ein gram-negativer prokaryontischer Organismus und am meisten bevorzugt eine E. coli-Zelle. Verfahren zur Transformation von Zellen mit Nukleinsäuren sind allgemeiner Stand der Technik (siehe Sambrook et al., supra) und brauchen daher nicht erläutert zu werden.

Noch ein weiterer Gegenstand der vorliegenden Erfindung ist ein rekombinantes S-Layer-Protein, das innerhalb der in SEQ ID NO. 2 gezeigten Aminosäuresequenz mindestens eine Peptidoder/und Polypeptidinsertion enthält. Bevorzugte Beispiele für Peptid- und Polypeptidinsertionen wurden bereits erläutert.

Aus erfindungsgemäßen rekombinanten S-Layer-Proteinmolekülen kann eine rekombinante S-Layer-Struktur assembliert werden, die als Untereinheit mindestens ein erfindungsgemäßes rekombinantes S-Layer-Protein enthält. Weiterhin ist bevorzugt, daß die erfindungsgemäße S-Layer-Struktur als "Verdünnungsmoleküle" auch nichtmodifizierte S-Layer-Proteine enthält. Die nichtmodifizierten S-Layer-Proteine liegen vorzugsweise in einem molaren Anteil von 10-99% bezüglich der gesamten S-Layer-Proteine vor.

Die erfindungsgemäße S-Layer-Struktur kann mehrere kovalent oder durch Affinitätsbindung miteinander verknüpfte Schichten umfassen. Kovalente Verknüpfungen können beispielsweise durch Insertionen von Cysteinresten und einer anschließenden Ausbildung von Cystinbrücken eingeführt werden. Verknüpfungen durch Affinitätsbindung umfassen beispielsweise Antikörper-Antigen-, Antikörper-Protein A- bzw. -Protein G- oder Streptavidin-Biotin-Wechselwirkungen.

S-Layer-Strukturen, die rekombinante S-Layer-Proteine enthalten, können gegebenenfalls auch in trägergebundener Form hergestellt werden. Hierzu kann die Reassemblierung der S-Layer-Struktur aus einzelnen Einheiten in Gegenwart eines Peptidoglycanträgers erfolgen, wobei beispielsweise Peptidoglycanschichten erzeugt werden, die auf einer oder auf beiden Seiten mit einer S-Layer-Struktur überzogen sind. Eine andere Möglichkeit zur Herstellung trägergebundener S-Layer-Strukturen besteht darin, eine S-Layer-Schicht an einer Grenzfläche zwischen zwei Medien, z. B. wasser/Luft, zu erzeugen und diese Schicht auf einer Festphase, z. B. einer Filtermembran, zu immobilisieren (vgl. z. B. Pum und Sleytr (1994), Thin Solid Films 244, 882—886; Küpcü et al. (1995), Biochim. Biophys. Acta 1235, 263—269).

Die erfindungsgemäßen rekombinanten S-Layer-Proteine und S-Layer-Strukturen sind für eine Vielzahl von Anwendungen geeignet. Besonders bevorzugt ist die Verwendung als Vakzin oder Adjuvans, wobei man rekombinante S-Layer-Proteine verwendet, die immunogene Epitope von Pathogenen und/oder körpereigene immunstimulierende Polypeptide, wie etwa Cytokine, enthalten. Bei dieser Anwendung ist nicht unbedingt eine Reinigung der rekombinanten S-Layer-Proteine erforderlich. Statt dessen kann beispielsweise die Verwendung in Kombination mit einem Bakterienghost erfolgen, der ggf. in seiner Membran zusätzliche immunogene Epitope enthält.

Die Herstellung geeigneter "Bakterienghosts" ist beispielsweise in der internationalen Patentanmeldung PCT/EP91/00967 beschrieben, auf die hiermit Bezug genommen wird. Dort werden modifizierte Bakterien offenbart, erhältlich durch Transformation eines gram-negativen Bakteriums mit dem Gen eines lytisch wirkenden Membranproteins aus Bakteriophagen, mit dem Gen eines lytisch wirkenden Toxin-Freisetzungsproteins oder mit Genen, die Teilsequenzen davon, die für lytische Proteine kodieren, enthalten, Kultivierung des Bakteriums, Expression dieses Lyse-Gens und Isolierung des resultierenden Bakterienghosts aus dem Kulturmedium.

An die Membran dieser Bakterien kann, wie im europäischen Patent 0 516 655 beschrieben, ein rekombinantes Protein gebunden sein, das durch Expression einer rekombinanten DNA in diesen gram-negativen Bakterien erhältlich ist. Diese rekombinante DNA umfaßt eine erste DNA-Sequenz, welche für eine hydrophobe, nicht lytisch wirkende membranintegrierende Proteindomäne, die eine α-helikale Struktur besitzt und aus 14-20 Aminosäuren besteht, die N- und C-terminal von je 2-30 beliebigen Aminosäuren flankiert sein können, kodiert. Mit dieser ersten DNA-Sequenz in operativer Verknüpfung befindet sich eine zweite DNA-Sequenz, die für ein gewünschtes rekombinantes Protein kodiert. Weiterhin enthält das gram-negative Bakterium eine dritte DNA-Sequenz, die unter einer von den ersten und zweiten DNA-Sequezen getrennten Kontrolle steht und für in lytisch wirkende s Membranprotein aus Bakteriophagen oder ein lytisch wirkendes Toxin-Freisetzungsprotein oder für deren lytisch wirkende Teile kodiert. Durch Expression und Lyse derartiger rekombinanter, gram-negativer Bakterien werden sog. "Bakterienghosts" erhalten, die eine intakte Oberflächenstruktur mit an die Oberfläche gebundenen immunogenen Epitopen enthalten.

Bei Kombination dieser Baktienghosts mit erfindungsgemäßen rekombinanten S-Layern können Vakzine und Adjuvantien erzeugt werden, die besonders vorteilhafte Eigenschaften aufweisen.

Es wurde festgestellt, daß das gram-positive Bakterium B.stearothermophilus PV72 neben SbsA noch ein weiteres S-Layer-Protein enthält, das in der Folge als SbsB bezeichnet wird. (Sara und Sleytr (1994), J. Bacteriol. 176, 7182—7189). Durch Amplifikation unter Verwendung geeigneter Nukleinsäureprimer konnte das sbsB-Gen isoliert und charakterisiert werden. In SEQ ID NO. 5 ist die kodierende Nukleotidsequenz des S-Layer-Gens sbsB aus B.stearothermophilus einschließlich des Signalpeptid-kodierenden Abschnitts, der von Position 1—93 der Nukleinsäuresequenz reicht, gezeigt. In SEQ ID NO. 6 ist die davon abgeleitete Aminosäuresequenz gezeigt. Das sbsB-Gen kodiert für ein Protein mit insgesamt 921 Aminosäuren einschließlich eines N-terminalen Signalpeptids mit 31 Aminosäuren.

Ein Gegenstand der vorliegenden Erfindung ist somit eine Nukleinsäure, die für ein S-Layer-Protein kodiert und ausgewählt ist aus

(i) einer Nukleinsäure, welche die von Position 1 bis 2763 in SEQ ID No. 5 gezeigte Nukleotidsequenz gegebenenfalls ohne den Signalp ptid-kodierenden Abschnitt umfaßt,

(ii) einer Nukleinsäure, welche eine der Nukleinsäure aus (i) im Rahmen der Degeneration des genetischen Codes entsprechend Nukleotidsequenz umfaßt, und

(iii) einer Nukleinsäure, welche eine mit den Nukleinsäuren aus (i) oder/und (ii) unter stringenten Bedingungen hybridisierende Nukleotidsequenz umfaßt.

Ebenso wie beim sbsA-Gen kann auch beim sbsB-Gen innerhalb des für das S-Layer-Protein kodierenden Bereichs mindestens eine für ein Peptid oder Polypeptid kodierende Nukleinsäureinsertion eingefügt werden. Bezüglich bevorzugter Beispiele für Insertionen im sbsB-Gen wird auf die zuvor gemachten Ausführungen hinsichtlich des sbsA-Gens verwiesen.

Noch ein weiterer Gegenstand der vorliegenden Erfindung ist ein Vektor, der mindestens eine Kopie eines sbsB-Gens gegebenenfalls mit Insertion enthält. Dieser Vektor kann in Eukaryonten, Prokaryonten oder in Eukaryonten und Prokaryonten replizierbar sein. Er kann in ein das Genom der Wirtszelle integrierbarer Vektor oder ein Vektor sein, der extrachromosomal vorliegt. Vorzugsweise ist der erfindungsgemäße Vektor ein Plasmid, insbesondere ein prokaryontisches Plasmid.

Noch ein weiterer Gegenstand der vorliegenden Erfindung ist eine Wirtszelle, die mit einem sbsB-Gen transformiert ist, wobei das sbsB-Gen gegebenenfalls eine Insertion enthalten kann. Die Wirtszelle kann sowohl eine eukaryontische als auch eine prokaryontische Zelle sein. Vorzugsweise ist die Zelle ein prokaryontischer Organismus. Sowohl gram-positive Organismen, z. B. Organismen der Gattung Bacillus, als auch gram-negative Organismen, wie etwa Enterobakterien, insbesondere E. coli, sind bevorzugt. Verfahren zur Transformation von eukaryontischen und prokaryontischen Zellen mit Nukleinsäuren sind bekannt und brauchen daher nicht ausführlich erläutert werden.

Weiterhin betrifft die vorliegende Erfindung ein SbsB-Protein, d. h. ein S-Layer-Protein, das von einer Nukleinsäure, wie vorstehend definiert kodiert ist. Besonders bevorzugt sind rekombinante SbsB-Proteine, die eine oder mehrere Peptidoder/und Polypeptidinsertionen innerhalb der sbsB-Sequenz enthalten. Besonders bevorzugt weist der SbsB-Anteil eines erfindungsgemäßen Polypeptids eine Homologie von mindestens 80% und insbesondere mindestens 90% zu der in SEQ ID NO.6 gezeigten Aminosäuresequenz auf.

Auch aus den rekombinanten SbsB-S-Layer-Proteinmolekülen kann eine rekombinante S-Layer-Struktur entsprechend der rekombinanten SbsA-S-Layer-Struktur assembliert werden. In dieser Struktur liegen die nichtmodifizierten S-Layer-proteine vorzugsweise in einem molaren Anteil von 10—99% bezüglich der gesamten S-Layer-Proteine vor.

Auch die Anwendungen der erfindungsgemäßen rekombinanten sbsB-S-Layer-Proteine und S-Layer-Strukturen entsprechen den vorstehend für SbsA genannten Anwendungen. Insbesondere ist dabei die Verwendung als Vakzin oder Adjuvans bemerkenswert.

Rekombinante S-Layer-Proteine sind erhältlich durch ein Verfahren, bei dem man

- (a) eine Wirtszelle bereitstellt, die eine für ein S-Layer-Protein kodierende Nukleinsäure enthält, die innerhalb des für das S-Layer-Protein kodierenden Bereichs eine Peptid- oder Polypeptid-kodierende 35 Insertion enthält,
- (b) die Wirtszelle unter solchen Bedingungen kultiviert, die zu einer Expression der Nukleinsäure und zu einer Erzeugung des davon kodierten Polypeptids führen, und

40

50

55

(c) das resultierende Polypeptid aus der Wirtszelle oder dem Kulturmedium gewinnt.

In einer ersten bevorzugten Ausführungsform dieses Verfahrens wird ein rekombinantes sbsA-S-Layer-Protein hergestellt, d. h. die für das rekombinante S-Layer-Protein kodierende Nukleinsäure wird ausgewählt aus

- (i) einer Nukleinsäure, welche die von Position 1 bis 3684 in SEQ ID No. 1 gezeigte Nukleotidsequenz gegebenenfalls ohne den Signalpeptid-kodierenden Abschnitt umfaßt,
- (ii) einer Nukleinsäure, welche eine der Nukleinsäure aus (i) im Rahmen der Degeneration des genetischen Codes entsprechende Nukleotidsequenz umfaßt, und
- (iii) einer Nukleinsäure, welche eine mit den Nukleinsäuren aus (i) oder/und (ii) unter stringenten Bedingungen hybridisierende Nukleotidsequenz umfaßt.

In einer zweiten bevorzugten Ausführungsform wird ein rekombinantes SbsB-S-Layer-Protein hergestellt, d. h. die für das rekombinante S-Layer-Protein kodierende Nukleinsäure wird ausgewählt aus

- (i) einer Nukleinsäure, welche die von Position 1 bis 2763 in SEQ ID No. 5 gezeigte Nukleotidsequenz gegebenenfalls ohne den Signalpeptid-kodierenden Abschnitt umfaßt,
- (ii) einer Nukleinsäure, welche eine der Nukleinsäure aus (i) im Rahmen der Degeneration des genetischen Codes entsprechende Nukleotidsequenz umfaßt, und
- (iii) einer Nukleinsäure, welche eine mit den Nukleinsäuren aus (i) oder/und (ii) unter stringenten Bedingungen hybridisierende Nukleotidsequenz umfaßt.

Neben den rekombinanten SbsA und SbsB-S-Layer-Proteinen aus B.stearothermophilus können jedoch auch rekombinante S-Layer-Proteine aus anderen Organismen (vgl. z. B. Peyret et al., (1993), supra) hergestellt werden.

Die Herstellung der rekombinanten S-Layer-Proteine kann einerseits in einer heterologen Wirtszelle erfolgen, d. h. in einer Wirtszelle, die ursprünglich kein S-Layer-Gen enthält. Beispiele für solche heterologen 65 Wirtszellen sind gram-negative prokaryontische Organismen, wie etwa E coli.

Oft ist jedoch die Herstellung der rekombinanten S-Layer-Proteine in homologen Wirtszellen bevorzugt, d. h. in Wirtszellen, die ursprünglich ein natürliches S-Layer-Gen enthalten. In einer Ausführungsform dieser homolo-

gen Expression wird das rekombinante S-Layer-Gen in die Wirtszelle so eingeführt, daß die Wirtszelle noch in der Lage ist, ein weiteres S-Layer-Gen zu exprimieren, das für ein nichtmodifiziertes S-Layer-Protein kodiert. Vorzugsweise ist das nichtmodifizierte S-Layer-Protein in der Lage, eine mit dem rekombinanten S-Layer-Protein kompatible S-Layer-Struktur auszubilden. Ein Beispiel für diese Ausführungsform der homologen Expression ist eine B.stearothermophilus PV72 Zelle, welche intakte natürliche sbsA- oder/und sbsB-Gene enthält, und die mit einem Plasmid transformiert ist, welches ein rekombinantes S-Layer-Gen enthält.

In einer zweiten Ausführungsform kann die homologe Expression in einer Wirtszelle erfolgen, in der das ursprünglich vorhandene intakte S-Layer-Gen inaktiviert wurde. Folglich wird in dieser Ausführungsform in der Wirtszelle kein weiteres S-Layer-Gen mehr exprimiert, das für ein nichtmodifiziertes S-Layer-Protein kodiert, welches in der Lage ist, eine mit dem rekombinanten S-Layer-Protein kompatible S-Layer-Struktur auszubilden. Ein spezifisches Beispiel für eine derartige Wirtszelle ist eine B. stearothermophilus PV72 Zelle, in deren Genom z. B. durch homologe Rekombination ein für ein rekombinantes S-Layer-Protein kodierendes Gen eingeführt wurde, welches das ursprüngliche S-Layer-Gen ersetzt. Ein weiterer Beispiel für eine derartige Wirtszelle ist eine B. stearothermophilus-Zelle, in der das native S-Layer-Gen z. B. durch ortsspezifische Mutagenese oder/ und homologe Rekombination inaktiviert wurde und die mit einem ein rekombinantes S-Layer-Gen enthaltenden Vektor transformiert ist.

Bei der homologen Expression rekombinanter S-Layer-Gene werden als Wirtszellen üblicherweise gram-positive prokaryontische Organismen verwendet. Besonders bevorzugt als Wirtszelle ist B.stearothermophilus PV72, der bei hoher Temperatur in einem definierten synthetischen Medium (Schuster et al., (1995), Biotechnol. and Bioeng. 48:66-77) kultiviert werden kann.

Weiterhin wird die vorliegende Erfindung durch die nachfolgenden Beispiele und Figuren erläutert. Es zeigen: SEQ ID NO. 1 die vollständige Nukleotidsequenz des kodierenden Abschnitts des S-Layer-Gens sbsA von B. stearothermophilus;

SEQ ID NO. 2 die davon abgeleitete Aminosäuresequenz;

SEQ ID NO. 3 die Nukleotidsequenz des Primers T5-X;

SEQ ID NO. 4 die Nukleotidsequenz des Primers E;

SEQ ID NO. 5 die vollständige Nukleotidsequenz des kodierenden Abschnitts des S-Layer-Gens sbsB von B. stearothermophilus;

SEQ ID NO. 6 die davon abgeleitete Aminosäuresequenz;

SEQ ID NO. 7 die Nukleotidsequenz eines Teilfragments des Streptavidingens;

SEQ ID NO. 8 die Nukleotidsequenz des Primers NIS 2AG;

SEQ ID NO. 9 die Nukleotidsequenz des Primers LIS C3;

Fig. 1 eine schematische Darstellung des zur Herstellung des rekombinanten Vektors pBK4 verwendeten sbsA PCR-Fragments;

Fig. 2 eine schematische Darstellung von Peptidinsertionen in die Aminosäuresequenz des SbsA S-Layer-Proteins und

Fig. 3 eine schematische Darstellung von Aminosäuresubstitutionen und -insertionen in rekombinanten S-Layer-Proteinen.

BEISPIELE

1. Bakterienstämme, Medien und Plasmide

Gram-positive Bakterien des Stammes Bacillus stearothermophilus PV72 wurden bei 58°C in SVIII-Medium (Bartelmus und Perschak, Z. Zuckerind. 7 (1957), 276—281) kultiviert. Bakterien des Stammes E. coli pop2135 (endA, thi, hsdR, malT, cl857, λpR, malPQ) wurden in LB-Medium kultiviert (Sambrook et al., (1989), supra). Zur Selektion von Transformanten wurde Ampicillin in einer Endkonzentration von 100 μg/ml dem Medium zugegeben. Das Plasmid pPLcAT10 (λpL, bla, colE1) (Stanssens et al., Gene 36 (1985), 211—223) wurde als Klonierungsvektor verwendet.

2. Manipulation von DNA-Fragmenten

Restriktionsanalyse von DNA, Agarosegelelektrophorese und Klonierung von DNA-Fragmenten wurden nach den bei Sambrook et al. (1989), supra, beschriebenen Standardmethoden durchgeführt.

Die Transformation von kompetenten Zellen erfolgte durch Elektroporation unter Verwendung eines Bio-Rad Genepulsers (Bio-Rad Laboratories, Richmond, Kalif., USA) nach Protokollen des Herstellers.

Plasmid-DNA wurde nach der Methode von Birnboim und Doly (Nucleic Acids Res. 7 (1979), 1513—1523) isoliert. Chromosomale DNA wurde gemäß der bei Ausubel et al. (Current Protocols in Molecular Biology (1987), New York, John Wiley) beschriebenen Verfahren isoliert.

Restriktionsendonukleasen und andere Enzyme wurden von Boehringer Mannheim, New England Biolabs oder Stratagene bezogen und gemäß den Vorschriften der Hersteller eingesetzt.

3. DNA-Sequenzierung

Die DNA-Sequenzen der 5'- und 3'-Regionen (einschließlich des für die Signalsequenz kodierenden Bereichs) des Gens sbsA im Vektor pPLcAT10 wurde nach der Dideoxykettenterminationsmethode von Sanger et al. bestimmt. Die zur Sequenzierung verwendeten Primer wurden auf Basis d r ber its publizierten sbsA-Sequenz (Kuen et al., Gene 145 (1994), 115—120) konstruiert.

40

4. PCR-Amplifikation von sbsA

Die PCR-Amplifikation des sbsA-Gens erfolgte in einem Reaktionsvolumen von 100 µl, in dem 200 µM Deoxynukleotide, 1U Pfu-Polymerase (Stratagene), 1x Pfu-Reaktionspuffer, jeweils 0.5 µM Oligonukleotidprimer und 100 ng genomischer DNA aus B.stearothermophilus als Matrize vorhanden waren. Die Amplifikation wurde über 30 Zyklen in einem Thermocycler (Biomed Thermocycler 60) durchgeführt. Jeder Zyklus bestand aus einem Denaturierungsschritt von 1,5 min bei 95°C, einem Annealingschritt von 1 min bei 56°C und 1 min bei 50°C sowie einem Extensionsschritt von 2 min bei 72°C.

Als Primer wurden der im Sequenzprotokoll als SEQ ID NO. 3 angegebene Primer T5-X, der den 5'-Bereich von sbsA flankiert und eine XbaI-Stelle enthält, sowie der im Sequenzprotokoll in SEQ ID NO. 4 gezeigte Primer E verwendet, der die 20 Nukleotide stromabwärts gelegene Region des Transkriptionsterminators der sbsA-Sequenz flankiert und eine BamHI-Stelle enthält.

10

15

Die PCR-amplifizierten Produkte wurden auf einem 0.8% Agarosegel elektrophoretisch aufgetrennt und zur Klonierung unter Verwendung des Systems von Gene Clean (BIO101 La Jolla, Kalif, USA) zur Klonierung gereinigt.

5. Klonierung des sbsA-Gens in den Vektor pPLcAT10

Das durch PCR gewonnene sbsA-Gen mit einer Länge von 3,79 kb wurde gereinigt und mit den Restriktionsendonukleasen XbaI und BamHI gespalten. Das resultierende Xbai-BamHI-Fragment wurde in die entsprechenden Restriktionsstellen des Vektors pPLcAT10 kloniert, so daß das sbsA-Gen unter transkriptioneller Kontrolle des stromaufwärts gelegenen pL-Promotors war. Das ATG-Startkodon der sbsA-Sequenz wurde durch die Klonierungsprozedur rekonstruiert. Die klonierte sbsA-Sequenz enthielt die N-terminale Signalsequenz von sbsA und endete 20 nt nach dem Transkriptionsterminator. Nach Ligation der Vektor-DNA mit dem sbsA-Fragment wurde der E. coli-Stamm pop2135 durch Elektrotransformation transformiert. Die resultierenden Klone wurden einer DNA-Restriktionsanalyse unterzogen. Ein positiver Klon wurde sequenziert, um die korrekten Sequenzübergänge an den 5'- und 3'-Enden zu verifizieren. Dieser Klon wurde als pBK4 bezeichnet.

Eine schematische Darstellung des 3,79 kb XbaI sbsA-Fragments und seine Lokalisierung in der multiplen Klonierungsstelle des Plasmids pBK4 ist in Fig. 1 dargestellt (Abkürzungen: tT: Transkriptionsterminator; ori: Ursprung der DNA-Replikation; amp: Ampicillinresistenzgen).

6. Rekombinante Expression des sbsA-Gens in E. coli

E. coli pop2135/pBK4-Zellen wurden bei 28°C bis zum Erreichen einer optischen Dichte OD600 von 0,3 kultiviert. Dann wurde die Expression von sbsA durch Erhöhung der Kultivierungstemperatur von 28°C auf 42°C induziert. 1,5 ml Aliquots wurden vor bzw. 1, 2, 3 und 5 Stunden nach Induktion der sbsA-Expression entnommen. Als Kontrollen wurden E. coli pop2135/pPLcAT10 (kultiviert unter den gleichen Bedingungen) und B.stearothermophilus PV72 verwendet.

Kulturüberstände und Zellextrakte aus allen Proben wurden auf die Expression des S-Layer-Proteins durch SDS-PAGE und Western-Immunoblotting untersucht.

In Extrakten aus mit pBK4 transformierten E. coli-Zellen wurde eine zusätzliche starke Proteinbande mit dem gleichen Molekulargewicht wie das Wildtyp-SbsA-Protein gefunden. Es wurden keine Abbauprodukte von SbsA selbst in einem Zeitraum bis zu 5 Stunden nach der Induktion der Expression gefunden. Dies läßt vermuten, daß das S-Layer-Protein sbsA in E. coli stabil ist und nicht durch Proteasen abgebaut wird.

Es wurde eine densitometrische Bestimmung der relativen Menge an SbsA-Protein durchgeführt. Zu einem 45 Zeitpunkt von 4 Stunden nach der Induktion lag das sbsA-Protein in einem Anteil von ca. 16% bezüglich des gesamten zellulären Proteins vor.

Das in E. coli erzeugte SbsA-Protein wanderte im SDS-Gel etwas langsamer als das natürliche SbsA-Protein aus B.stearothermophilus. Versuche zur Bestimmung der N-terminalen Aminosäuresequenz des SbsA-Proteins durch Edman-Abbau schlugen aufgrund einer Blockierung des N-Terminus fehl. Dies läßt vermuten, daß die Signalsequenz in E. coli nicht abgespalten wurde.

Auch eine Western Blot-Analyse von Gesamtzellextrakten und Kulturüberständen von E. coli/pBK4 ergab nur eine einzige sbsA-spezifische Proteinbande mit einem etwas höheren Molekulargewicht als das Wildtyp-SbsA-Protein aus stearothermophilus.

Für den Western Blot wurden die Proteine auf eine Nitrozellulosemembran transferiert und mit einem polyklonalen Antiserum gegen SbsA aus Kaninchen inkubiert. Die Herstellung dieses Antiserums ist bei Egelseer et al. (J. Bacteriol. 177 (1995), 1444—1451) beschrieben. Zum Nachweis gebundener SbsA-spezifischer Antikörper wurde ein Konjugat aus Ziegen-Anti-Kaninchen-IgG und alkalischer Phosphatase verwendet.

Aus Überständen von mit pBK4 transformierten E. coli-Zellen konnte auch nach Induktion der sbsA-Gen-Expression kein SbsA-Protein nachgewiesen werden. Daraus ist ersichtlich, daß SbsA nicht in das umgebende 60 Medium exportiert wird.

7. Lokalisierung und Organisation des S-Laver-Proteins SbsA im Cytoplasma von E. coli

Zellen aus E. coli pop2135/pBK4, die aus Kulturen mit 1, 2, 3 und 5 Stunden nach Induktion der S-Layer-Proteinexpression geerntet wurden, wurden auf die intrazelluläre Organisation von sbsA untersucht. Nichtinduzierte, bei 28°C kultivierte Zellen und Zellen von B.stearothermophilus PV72 wurden als Kontrollen untersucht. Hierzu wurden gesamte Zellen beider Organismen fixiert und in Spurrharz nach der Methode von Messner et

al. (Int. J. Syst. Bacteriol. 34 (1984), 202-210) fixiert und eingebettet. Anschließend wurden ultradünne Schnitte der eingebetteten Präparate hergestellt und mit Uranylacetat angefärbt.

Das Cytoplasma von nichtinduzierten E. coli-Zellen zeigte die typische granuläre Struktur, die sich auch bei einer Zunahme der OD der Suspensionen nicht änderte. Längsschnitte von E. coli-Zellen, die 1 Stunde nach Induktion der S-Layer-Proteinexpression geerntet wurden, zeigten parallele, blattartige Strukturen im Cytoplasma. Aus Querschnitten wurde ersichtlich, daß diese Strukturen eine konzentrische Anordnung zeigten.

Der Anteil blattartiger Strukturen zeigte einen deutlichen Anstieg zwischen 1 und 2 Stunden nach Induktion der sbsA-Expression und blieb danach im wesentlichen konstant.

Das in E. coli rekombinant hergestellte sbsA-Protein konnte auch durch Immunogoldmarkierung mit SbsA-spezifischen Antikörpern nachgewiesen werden. Auch mit dieser Nachweismethode wurde eine geordnete Struktur des rekombinant hergestellten SbsA-Proteins gefunden.

Aus diesen morphologischen Daten war klar ersichtlich, daß das SbsA-Protein sich nicht zu unregelmäßigen Einschlußkörpern aggregierte, sondern monomolekulare S-Layer-Kristalle bildete. Eine bemerkenswerte Eigenschaft der in E. coli assemblierten SbsA-S-Layer-Schichten war die konzentrische Anordnung in definierten Abständen. Das Vorhandensein der Signalsequenz störte die korrekte Assemblierung nicht.

8. Herstellung von rekombinanten sbsA-S-Layer-Genen

Für die ortsspezifische Insertionsmutagenese des sbsA-Gens wurde eine modifizierte Kanamycinkassette (1,3 kb) verwendet, die durch Spaltung des Plasmids pwJC3 (erhalten von W.T. McAllister, New York) durch Smal isoliert wurde. Die Kassette wurde in fünf verschiedene glattendige Restriktionsstellen des sbsA-Gens ligiert, nämlich in die NruI-Stelle an Position bp 582 (pSL582), in die SnaBI-Stelle an bp 917 (pSL917) und in jede der PvuII-Stellen an Position bp 878 (pSL878), bp 2504 (pSL2504) und bp 2649 (pSL2649). Nach Selektion von Kanamycinresistenten Klonen wurde die Kassette aus der Insertionsstelle durch Spaltung mit Apal, gefolgt von einer Religation des S-Layer-Plasmids pBK4, entfernt. Durch die Herausschneide- und Religationsprozedur blieb eine Insertion von 6 bp CCCGGG zurück. Das System dieser Linkerinsertion ist schematisch in Fig. 2 dargestellt.

Die resultierenden rekombinanten S-Layer-Gene kodieren für modifizierte, um 2 Aminosäuren verlängerte sbsA-Proteine.

Die konkreten Änderungen in der Primärstruktur der sbsA-Proteine sind in Fig. 3 gezeigt. Im Klon pSL582 führte die Insertion zur Einfügung von Glycin und Prolin zwischen den Aminosäuren 194 und 195 am N-Terminus des SbsA-Proteins. Die Aminosäuren Alanin und Arginin wurden im Klon pSL917 zwischen die Aminosäuren 306 und 307 eingefügt. Im Klon pSL2649 wurde eine Insertion von Glycin und Prolin zwischen die Aminosäuren an den Positionen 883 und 884 eingefügt. Eine Insertion von Alanin und Prolin zwischen den Aminosäur n 293 und 294 wurde im Klon pSL878 erhalten. Weiterhin wurde das Alanin an Position 293 durch Glycin ausgetauscht. Im Klon pSL2504 wurden die Aminosäuren Alanin und Prolin zwischen die Aminosäuren 835 und 836 eingeführt und das Alanin an Position 835 durch Glycin ersetzt.

Alle durch Insertionsmutagenese erhaltenen Klone behielten ihre Fähigkeit zur Synthese des S-Layer-Proteins.

Um die Fähigkeit der modifizierten Proteine zur Assemblierung in S-Layer-Strukturen nachzuweisen, wurden gemäß der unter Punkt 7. beschriebenen Prozedur ultradünne Längsschnitte von gesamten Zellen, die 4h unter induktiven Bedingungen kultiviert worden waren, hergestellt. Es wurde gefunden, daß das Cytoplasma aller 5 Klone mit parallelen, blattartigen Strukturen gefüllt ist, welche der Krümmung der Zellpole folgen. Es gab keine morphologischen Unterschiede des Zytoplasma bei den 5 untersuchten verschiedenen Klonen. Es wurden genau die gleichen blattartigen Strukturen wie bei der Assemblierung des Wildtyp-SbsA-Protein in E. coli (Punkt 7.) festgestellt.

Auf analoge Weise wurde ein mit ApaI-Linkern versehenes DNA-Fragment (SEQ ID NO. 7) in die Schnittstelle an Position 581 integriert, das für ein Teilfragment von Streptavidin kodiert.

9. Isolierung und Charakterisierung des sbsB-Gens

Als Grundlage für die Isolierung des sbsB-Gens diente die Aminosäuresequenz des N-Terminus sowie die Sequenz von 3 internen Peptiden des SbsB-Proteins. Von diesen Peptidsequenzen ausgehend wurden degenerierte Oligonukleotidprimer konstruiert und für die PCR eingesetzt. Auf diese weise wurde ein 1076 bp langes PCR-Fragment aus der chromosomalen DNA von B.stearothermophilus amplifiziert, kloniert und sequenziert (entsprechend Position 100—1176 der in SEQ ID NO. 5 gezeigten Sequenz).

Für die Amplifikation der 5'- und 3'-seitigen Abschnitte des sbsB-Gens wurde die Methode der inversen PCR angewendet und mit Hilfe verschiedener Primerkombinationen schrittweise überlappende DNA-Fragmente erhalten und sequenziert.

Zur Amplifizierung des vollständigen sbsB-Gens wurden als Primer der im Sequenzprotokoll als SEQ ID NO. 8 angegebene Primer NIS 2AG, der den 5'-Bereich von sbsB enthält, sowie der im Sequenzprotokoll in SEQ ID NO. 9 angegebene Primer LIS C3 verwendet, der den 3'-Bereich von sbsB enthält.

Das auf diese weise erhaltene PCR-Fragment, welches die in SEQ ID NO.5 gezeigte Nukleotidsequenz mit 5'und 3'-BamHI-Restriktionsschnittstellen enthält, wurde wie im Beispiel 5 beschrieben in den Vektor pPLcAT10 kloniert, in dem die Expression unter Kontrolle des Lambda PL-Promotors erfolgte.

Weiterhin wurde das sbsB-PCR-Fragment mit 5'seitiger EcoRI-und 3'seitiger BamHI-Schnittstelle in den Vektor pUC18 kloniert, in dem die Expression unter Kontrolle des lac-Promotors erfolgte.

Der Nachweis der sbsB-Expression erfolgte wie in den Beispielen 6 und 7 beschrieben durch SDS-Gelelektro-

40

phorese und Elektronenmikroskopie.

SEQUENZPROTOKOLL

(1) ALLGEMEINE ANGABEN:	5
(i) ANMELDER: (A) NAME: Werner Lubitz (B) STRASSE: Schoenborngasse 12/7 (C) ORT: Wien (E) LAND: Austria (F) POSTLEITZAHL: 1080	10
 (A) NAME: Uwe Sleytr (B) STRASSE: Parhamerplatz 10 (C) ORT: Wien (E) LAND: Austria (F) POSTLEITZAHL: 1170 	15
(ii) BEZEICHNUNG DER ERFINDUNG: Rekombinante Expression von S-Layer- Proteinen	- 20
(iii) ANZAHL DER SEQUENZEN: 9 (iv) COMPUTER-LESBARE FASSUNG: (A) DATENTRÄGER: Floppy disk (B) COMPUTER: IBM PC compatible (C) BETRIEBSSYSTEM: PC-DOS/MS-DOS	25
(D) SOFTWARE: PatentIn Release #1.0, Version #1.30 (EPA) (2) ANGABEN ZU SEQ ID NO: 1:	30
 (i) SEQUENZKENNZEICHEN: (A) LÂNGE: 3687 Basenpaare (B) ART: Nucleotid (C) STRANGFORM: beides (D) TOPOLOGIE: linear 	35
(vi) URSPRÜNLICHE HERKUNFT: (A) ORGANISMUS: Bacillus stearothermophilus (B) STAMM: PV72	40
(vii) UNMITTELBARE HERKUNFT: (B) CLON(E): sbsA	45
(ix) MERKMAL: (A) NAME/SCHLÜSSEL: CDS (B) LAGE:13684 (ix) MERKMAL: (A) NAME/SCHLÜSSEL: sig_peptide (B) LAGE:190	50
(ix) MERKMAL: (A) NAME/SCHLÜSSEL: mat_peptide (B) LAGE:913684	55
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 1: ATG GAT AGG AAA AAA GCT GTG AAA CTA GCA ACA GCA AGT GCT ATT GCA Let Asp Arg Lys Lys Ala Val Lys Leu Ala Thr Ala Ser Ala Ile Ala -25 -20 -15	8 8

	GCA Ala	AGT Ser	GCA Ala	TTT Phe	GTC Val -10	Ala	GCĀ Ala	AAT Asn	CCA Pro	AAC Asn	Ala	TCT Ser	GAA Glu	. GCG	GCT Ala	ACA	96
5	GAT Asp	GTA Val	GCA Ala 5	ACA Thr	GTA Val	GTA Val	AGC Ser	CAA Gln 10	Ala	AAA Lys	GCA Ala	CAG Gln	TTC Phe 15	Lys	AAA Lys	GCA Ala	144
10	TAC	TAT Tyr 20	Thr	TAC Tyr	AGC Ser	CAT His	ACA Thr 25	Val	acg Thr	GAA Glu	ACT Thr	GGT Gly 30	Glu	TTC Phe	CCA Pro	AAC Asn	192
15	ATT Ile 35	Asn	GAT Asp	GTA Val	TAT Tyr	GCT Ala 40	GAA Glu	TAC Tyr	AAC Asn	AAA Lys	GCG Ala 45	AAA Lys	AAA Lys	CGA	TAC Tyr	CGT Arg 50	240
	GAT Asp	GCG Ala	GTA Val	GCA Ala	TTA Leu 55	GTG Val	AAT Asn	AAA Lys	GCA Ala	GGT Gly 60	GGC Gly	GCG Ala	AAA Lys	AAA Lys	GAC Asp 65	GCT Ala	288
20						CAA Gln											336
25	AAC Asn	CCT Pro	AAA Lys 85	TCT Ser	elå eec	GAA Glu	GCT Ala	CGT Arg 90	GTA Val	GCA Ala	ACT Thr	TAC Tyr	ATC Ile 95	GAT Asp	GCT Ala	TAC Tyr	384
30	AAC Asn	TAT Tyr 100	GCA Ala	ACA Thr	AAA Lys	TTA Leu	GAC Asp 105	GAA Glu	ATG Met	AIG	CAA Gln	GAG Glu 110	CTA Lau	GAG Glu	GCT Ala	GCT Ala	432
	GTT Val 115	CAA Gln	GCA Ala	AAA Lys	gat Asp	TTA Leu 120	GAA Glu	AAA Lys	GCA Ala	GAA Glu	CAA Gln 125	TAC Tyr	TAT Tyr	CAC His	AAA Lys	ATT Ile 130	480
35	CCT Pro	TAT Tyr	GAA Glu	ATT Ile	AAA Lys 135	ACT Thr	CGC Arg	ACA Thr	GTC Val	ATT Ile 140	TTA Leu	GAT Asp	CGC Arg	GTA Val	TAT Tyr 145	G GT Gly	528
40	AAA Lys	ACA Thr	ACT Thr	CGT Arg 150	GAT Asp	TTA Leu	CTT Leu	CGC Arg	TCT Ser 155	ACA Thr	TTT Phe	AAA Lys	GCA Ala	AAA Lys 160	GCA Ala	CAA Gln	576
45	GAA Glu	CTT Leu	Arg	Asp	Ser	TTA Leu	Ile	Tyr	Asp	Ile	Thr	Val	Ala	Met	AAA Lys	GCG Ala	624
	Arg CGC	GAA Glu 180	GTA Val	CAA Gln	GAC Asp	GCT Ala	GTG Val 185	AAA Lys	GCA Ala	GIY	AAT Asn	TTA Leu 190	GAC Asp	AAA Lys	GCT Ala	AAA Lys	672
50	GCT Ala 195	GCT Ala	GTT Val	GAT Asp	CAA Gln	ATC Ile 200	AAT Asn	CAA Gln	TAC Tyr	TTA Leu	CCA Pro 205	AAA Lys	GTA Val	ACA Thr	GAT Asp	GCT Ala 210	720
55	TTC Phe	aaa Lys	ACT Thr	GAA Glu	CTA Leu 215	aca Thr	GAA Glu	GTA Val	Ala	AAA Lys 220	AAA Lys	GCA Ala	TTA Leu	GAT Asp	GCA Ala 225	gat Asp	768
60	GAA Glu	GCT Ala	GCG Ala	CTT Leu 230	ACT Thr	CCA Pro	AAA Lys	Val	GAA Glu 235	AGT Ser	GTA Val	AGT Ser	GCG Ala	ATT Ile 240	AAC Asn	ACT Thr	816

DE 196 03 649 A1

			: Ala										Gly		CTA Leu		
		Gln										Val			AAT Asn	912	5
	. Val					Val					Pro				AAT Asn 290	960	10
							ACA Thr								Asp	1008	15
				Phe			AAT Asn								AAA Lys	1056	
			ÇzA				AAA Lys 330									1104	20
		Leu					GTA Val									1152	25
	Thr						AAC Asn									1200	30
							TTT Phe								ACT Thr	1248	
							ATT Ile									1296	35
						Thr	TCT Ser 410									1344	40
Lys	GAA Glu 420	Ala	Leu	Val	Thr	Gly	AAA Lys	Gln	Tyr	Lys	Leu	Ala	ATC Ile	AAT Asn	AAT Asn	1392	45
							AAT Asn									1440	50
							act Thr									1488	
ggt Gly	GGT Gly	ACA Thr	ACT Thr 470	TTA Leu	TCT Ser	ACT The	gg t Gly	TCT Ser 475	CTT Leu	ACA Thr	ACA Thr	AAT Asn	GTT Val 480	TGG Trp	ggt Gly	1536	55
						Asn	GAA Glu 490				Tyr					1584	60

						TTT Phe											:	1632
5	GAT Asp 515	Asn	TTT Phe	GTA Val	TTA Leu	GTT Val 520	GAA Glu	AAA Lys	GAA Glu	TCT Ser	GGT Gly 525	ACA Thr	GTT Val	GTT Val	GCT Ala	TCT Ser 530	:	1630
10						GCA Ala											1	1728
15						AAT Asn											1	1776
						GGT Gly											1	1824
20						CAA Gln											1	L872
25						GAC Asp 600											1	L920
30	TTT Phe	ACT Thr	GTG Val	AAG Lys	TTC Phe 615	TCA Ser	GAG Glu	AAT Asn	TTA Leu	AAT Asn 620	ACA Thr	TTT Phe	AAT Asn	GCT Ala	ACA Thr 625	ACC Thr	3	L968
						ATC Ile											2	2016
35	ggt Gly	GCA Ala	AAC Asn 645	TTA Leu	TCT Ser	GCT Ala	CTT Leu	ACA Thr 650	GCA Ala	AGT Ser	GAC Asp	ATC Ile	ATT Ile 655	CCA Pro	GCT Ala	AGT Ser	2	2064
40						GGT Gly											. 2	2112
45						CGT Arg 680											. 2	2160
						CCT Pro											2	2208
50						TAT Tyr											2	256
55						AAA Lys											2	2304
60						CTT Leu											2	2352

E 196 03 649 A1

	Gln										Gly				GGT Gly 770		2400	
			Thr							Asn					GCT Ala		2448	5
				Thr										Asn	GGT Gly		2496	10
															GAC Asp		2544	15
		Ala													GGA Gly	:	2592	
ATT Ile 835	Ala	GAT Asp	GTA Val	GCT Ala	GGT Gly 840	AAT Asn	GTA Val	ATT Ile	AAG Lys	GAA Glu 845	AAA Lys	GAT Asp	ATT Ile	TTA Leu	ATT Ile 850	:	2640	20
								GTA Val								:	2688	25
								GCT Ala 875							GCA Ala	;	2736	30
ATT Ile	GAT Asp	ACA Thr 885	act Thr	AAG Lys	AGC Ser	TTA Leu	TTA Leu 890	GTT Val	GAA Glu	TTC Phe	AAT Asn	GAA Glu 895	ACT Thr	GAT Asp	TTA Leu	;	2784 ,	
								GTT Val								2	2832	35
								TTA Leu								2	2880	40
			Pro		Gln		Leu	AAA Lys	Ala	Gly						2	2928	45
ACA Thr	ATT Ile	GAC Asp	GGT Gly 950	GTG Val	AGA Arg	GAT Asp	AAA Lys	GTA Val 955	GGT Gly	AAC Asn	ACA Thr	ATC Ile	TCT Ser 960	AAA Lys	TAC Tyr	2	2976	50
								GCG Ala								3	3024	30
								GTT Val								3	3072	55
ATT Ile 995						Val		AAC Asn			Ile					3	120	60

						Phe			TAC Tyr		Leu					Asn	3158
5					Tyr				TTC Phe 103	His					Leu		3216
10				Gln					GTT Val					Gln			3264
15			Ile					Thr	TTC Phe				Ser				3312
	GAC Asp 1079	Glu	GTA Val	AAA Lys	CCT Pro	GCT Ala 1080	Leu	GTA Val	GLY	GTT Val	GGT Gly 1085	Ser	TGG Trp	AAT Asn	GGA Gly	ACA Thr 1090	3360
20						Ala			ACA Thr		Leu					Asp	3408
25					Pro				CAA Gln 1111	Phe					Asp		3456
30	ACG Thr	AAT Asn	GCA Ala 1125	Thr	GTG Val	ACA Thr	GTA Val	ACA Thr 1130	AAT Asn)	ATT Ile	ACT Thr	GAT Asp	GAT Asp 1135	Lys	ACT Thr	GTT Val	3504
			Ile					Val	GAC Asp				Asp				3552
35	ACT Thr 1155	Lys	GAG Glu	ACA Thr	TTA Leu	GTA Val 1160	Ile	AAC Asn	ACA Thr	GTT Val	ACT Thr 1165	Pro	TTA Leu	GTA Val	CTT Leu	GAT Asp 1170	3600
40	AAC Asn	AGC Ser	AAG Lys	ACT Thr	TAT Tyr 1175	Lys	ATT Ile	GTT Val	GTA Val	AGT Ser 1180	Gly	GTT Val	AAA Lys	GAT Asp	GCA Ala 1189	Ala	3648
45					Asp				TTC Phe 1199	Tyr			TAA				3687

(2) ANGABEN ZU SEQ ID NO: 2:

(i) SEQUENZKENNZEICHEN:

(A) LâNGE: 1228 Aminosauren (B) ART: Aminosaure

(D) TOPOLOGIE: linear

(ii) ART DES MOLEKÜLS: Protein (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 2:

Met Asp Arg Lys Lys Ala Val Lys Leu Ala Thr Ala Ser Ala Ile Ala

Ala Ser Ala Phe Val Ala Ala Asn Pro Asn Ala Ser Glu Ala Ala Thr -10 -5

65

50

Asp	Val	Ala 5	Thr	Val	Val	Ser	Gln 10	Ala	Lys	Ala	Gln	Phe 15	Lys	Lys	Ala		
Tyr	Tyr 20	Thr	Tyr	Ser	His	Thr 25	Val	Thr	Glu	Thr	Gly 30	Glu	Phe	Pro	Asn		5
Ile 35	Asn	Asp	Val	Tyr	Ala 40	Glu	Tyr	Asn	Lys	Ala 45	Lys	Lys	Arg	Tyr	Arg 50		
Asp	Ala	Val	Ala	Leu 55	Val	Asn	Lys	Ala	Gly 60	Gly	Ala	Lys	Lys	Asp 65	Ala	1	10
Tyr	Leu	Ala	Asp 70	Leu	Gln	Lys	Glu	Tyr 75	Glu	Thr	Tyr	Val	Phe 30	Lys	Ala		
Asn	Pro	Lys 85	Ser	Gly	Glu	Ala	Arg 90	Va1	Ala	Thr	Tyr	Ile 95	Asp	Ala	Tyr	1	15
Asn	Tyr 100	Ala	Thr	Lys	Leu	Asp 105	Glu	Met	Arg	Gln	Glu 110	Leu	Glu	Ala	Ala	2	20
Val 115	Gln	Ala	Lys	Asp	Leu 120	Glu	Lys	Ala	Glu	Gln 125	Tyr	Tyr	His	Lys	Ile 130		
Pro	Tyr	Glu	Ile	Lys 135	Thr	Arg	Thr	Val	Ile 140	Leu	Asp	Arg	Val	Tyr 145	Gly	2	25
Lys	Thr	Thr	Arg 150	Asp	Leu	Leu	Arg	Ser 155	Thr	Phe	Lys	Ala	Lys 160	Ala	Gln		
Glu	Leu	Arg 165	Asp	Ser	Leu	Ile	Tyr 170	Asp	Ile	Thr	Val	Ala 175	Met	Lys	Ala	3	30
Arg	Glu 180	Val	Gln	Asp	Ala	Val 185	Lys	Ala	Gly	Asn	Leu 190	ąsp	Lys	Ala	Lys		
Ala 195	Ala ·	Val	Asp	Gln	Ile 200	Asn	Gln	Tyr	Leu	Pro 205	Lys	Val	Thr	Asp	Ala 210	•	35
	Lys			215					220					225			40
Glu	Ala	Ala	Leu 230	Thr	Pro	Lys	Val	Glu 235	Ser	Val	Ser	Ala	Ile 240	Asn	Thr		
Gln	Asn	Lys 245	Ala	Val	Glu	Leu	Thr 250	Ala	Val	Pro	Val	Asn 255	Gly	Thr	Leu	4	45
Lys	Leu 260	Gln	Leu	Ser	Ala	Ala 265	Ala	Asn	Glu	qeA	Thr 270	Val	Asn	Val	Asn		
Thr 275	Val	Arg	Ile	Tyr	Lys 280	Val	Asp	Gly	Asn	Ile 285	Pro	Phe	Ala	Leu	Asn 290	;	50
	Ala			295					300					305			55
	Ser	٠	310					315					320			`	~~
Gly	Ile	Lys 325	Ąsp	Lys	Asn	Gly	Lys 330	Glu	Phe	Lys	Glu	Asp 335	Ala	Phe	Thr	(60

		Ph∈	140	Leu)	Arg) Asn	Ast	7 Ala 345	Vā]	. Val	The	Gln	Val 350		Gly	Thr	. Asn
5		Val	Thr	: Asn	Asn	Thr	Ser 360	Val	. Asr	l Leu	ı Ala	Ala 365	Gly	Thr	Phe	Asp	Thr 370
		Asp) Asp	Thr	Leu	Thr 375	Val	. Val	Phe	a Asp	380		Leu	Ala	Pro	Glu 385	Thr
10		Val	. Asn	Ser	Ser 390	Asn	Val	Thr	· Ile	Thr 395	Asp	Val	Glu	Thr	Gly 400		Arg
		Ile	Pro	Val 405	Ile	Ala	Ser	Thr	Ser 410		Ser	Thr	Ile	Thr 415		Thr	Leu
15		Lys	Glu 420	Ala	Leu	Val	Thr	Gly 425	Lys	Gln	Tyr	Lys	Leu 430		Ile	Asn	Asn
20		Val 435	Lys	Thr	Leu	Thr	Gly 440		Asn	Ala	Glu	Ala 445	Tyr	Glu	Leu	Val	Phe 450
		Thr	Ala	Asn	Ala	Ser 455	Ala	Pro	Thr	Val	Ala 460	Thr	Ala	Pro	Thr	Thr 465	Leu
25		Gly	Gly	Thr	Thr 470	Leu	Ser	Thr	Gly	Ser 475	Leu	Thr	Thr	Asn	Val 480	Trp	Gly
		Ļvs	Leu	Ala 485	Gly	Gly	Val	Asn	Glu 490	Ala	Gly	Thr	Tyr	Tyr 495	Pro	Gly	Leu
30			500					505			Leu		510				
25		212				•	520				Ser	525					530
35						535					Met 540					545	-
40					550					555	Gln				560	-	_
				565					570		Gly			575		_	
45			580					585			Ala		590				
		595					600				Lys	605					610
50						615			٠		Asn 620					625	
55					630					635	Gln		•		640	-	
33				645					650		Ser			655			
en.	,	val	Glu 660	Ala	Val	Thr	Gly	Gln 665	Asp	Gly	Thr	Tyr	Lys 670	Val	Lys	Val	Ala

Ala 675		Gln	Leu	Glu	Arg 680	Asn	Gln	Gly	Tyr	Lys 685	Leu	Val	Val	Phe	Gly 690	
Lys	Gly	Ala	Thr	Ala 695	Pro	Val	Lys	Asp	Ala 700	'Ala	Asn	Ala	Asn	Thr 705	Leu	5
Ala	Thr	Asn	Tyr 710	Ile	Tyr	Thr	Phe	Thr 715	Thr	Glu	Gly	Gln	Asp 720	Val	Thr	
Ala	Pro	Thr 725	Val	Thr	Lys	Val	Phe 730	Lys	Gly	Asp	Ser	Leu 735	Lys	Asp	Ala	10
Asp	Ala 740	Val	Thr	Thr	Lau	Thr 745	Asn	Val	Asp	Ala	Gly 750	Gln	Lys	Phe	Thr	
Ile 755	Gln	Phe	Ser	Glu	Glu 760	Leu	Lys	Thr	Ser	Ser 765	Gly	Ser	Leu	Val	Gly 770	15
Gly	Lys	Val	Thr	Val 775	Glu	Lys	Leu	Thr	Asa 780	Asn	Gly	Trp	Val	Asp 785	Ala	20
Gly	Thr	Gly	Thr 790	Thr	Val	Ser	Val	Ala 795	Pro	Lys	Thr	Asp	Ala 800	Asn	Gly	
Lys	Val	Thr 805	Ala	Ala	۷al	Val	Thr 810	Leu	Thr	Gly	Leu	Asp 815	Asn	Asn	Asp	25
	820	Ala				825					830					
835		Asp			840					845					850	30
Arg	Tyr	Asn	Ser	Trp 855	Arg	His	Thr	Val	Ala 860	Ser	Val	Lys	Ala	Ala 865	Ala	. 35
-	_	Asp	870					875					088			~
		Thr 885		_			890					895				40
	900	Val	_			905					910					
915		Ala			920					925					930	45
		Thr		935					940					945		
		qzA	950					955					960			50
		Ser 965					970					975				55
	980	Ala				985					990					
995		Phe			1000	1				1005	5				1010	60
Ala	Asp	Gly	Thr	Ser 1015		Thr	Asn	Tyr	1020		Val	Asn	Val	Asn 1025		

-

33

Glu	Asn	Lys	Thr	Tyr	Lys	Ile	Val	Phe	His	Lys	Gly	Val	Thr	Leu	Asp
			1030)				1039	5				1040)	-

Glu Phe Thr Gln Tyr Glu Leu Ala Val Ser Lys Asp Phe Gln Thr Gly
1045 1050 1055

Thr Asp Ile Asp Ser Lys Val Thr Phe Ile Thr Gly Ser Val Ala Thr 1060 1065 1070

Asp Glu Val Lys Pro Ala Leu Val Gly Val Gly Ser Trp Asn Gly Thr 1075 1080 1085 1090

Ser Tyr Thr Gln Asp Ala Ala Ala Thr Arg Leu Arg Ser Val Ala Asp 1095 1100 1105

Phe Val Ala Glu Pro Val Ala Leu Gln Phe Ser Glu Gly Ile Asp Leu 1110 1115 1120

Thr Asn Ala Thr Val Thr Val Thr Asn Ile Thr Asp Asp Lys Thr Vai 1125 1130 1135

Glu Val Ile Ser Lys Glu Ser Val Asp Ala Asp His Asp Ala Gly Ala 1140 1145 1150

Thr Lys Glu Thr Leu Val Ile Asn Thr Val Thr Pro Leu Val Lau Asp 1155 1160 1165 1170

Asn Ser Lys Thr Tyr Lys Ile Val Val Ser Gly Val Lys Asp Ala Ala 1175 1180 1185

 $_{30}$ Gly Asn Val Ala Asp Thr Ile Thr Phe Tyr Ile Lys 1190

- (2) ANGABEN ZU SEQ ID NO: 3:
 - (i) SEQUENZKENNZEICHEN:
 - (A) LÄNGE: 33 Basenpaare
 - (B) ART: Nucleotid
 - (C) STRANGFORM: Einzelstrang
 - (D) TOPOLOGIE: linear

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 3:

TTAATCGATT CTAGATGGAT AGGAAAAAG CTG

(2) ANGABEN ZU SEQ ID NO: 4:

- (i) SEQUENZKENNZEICHEN:
 - (A) LANGE: 37 Basenpaare
 - (B) ART: Nucleotid
 - (C) STRANGFORM: Einzelstrang
 - (D) TOPOLOGIE: linear

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 4:

65

5

20

35

40

45

50

55

60

E 196 03 649 A1

АŤА	.CCCG	GGG	GTAC	GGAT	CC G	ATAC	AGAT	T TG	AGCA	A							37	
(2)	ANG	ABEN	ZU	SEQ	ID N	0: 5	:											
	(i	· (A) L B) A C) S	ĀNGE RT: TRAN	: 27 Nucl GFOR	CHEN 66 B eoti M: b	asen d eide	s	·e									5
			D) T	OPOL	OGIE	: li	near											10
	(vi	(.		RGAN	ISMU:	ERKU S: B 72		lus	stea	roth	ermo	phil	us					
	(vii		MITT B) C				NFT:											15
	(ix	(.	RKMA A) N B) L	AME/		ŪSSE: 763	L: C	DS										20
	(ix	(RKMA A) N B) L	ame/		ĴSSE:	ច: s:	ig_p	epti	de								
	(ix) ME	RKMAI	L:		ŪSSEI	L: ma	at o	esti	de								25
			B) L						•									
	(xi) 520	QUEN	ZBES	CHRE	IBUNG	3: Si	EQ I	ои о	: 5:								30
Met	GCT Ala -30																48	35
ACA Thr -15	GCT Ala	GCC Ala	ATT Ile	GTA Val	GCA Ala -10	TCT Ser	GCG Ala	GTA Val	GCT Ala	CCT Pro -5	GTA Val	GTA Val	TCT Ser	GCA Ala	GCA Ala 1		96	
	TTC Phe															1	44	40
	TCA Ser															1.	92	45
	GAT Asp 35															2	40	50
	AAA Lys															21	88	
	AAA Lys															3:	36	55
TTA Leu	AAC Asn	ggt Gly	AAA Lys 85	GCA Ala	CCT Pro	GIY GGC	AAA Lys	TTT Phe 90	GGT Gly	GCA Ala	TAC Tyr	GAC Asp	CCA Pro 95	TTA Leu	ACT Thr	38	84	60

•	Arg	GTT Val	GAA Glu 100	ATG Met	GCA Ala	AAA Lys	ATC Ile	ATC Ile 105	GCG Ala	AAC Asn	CGT	TAC	AAA Lys 110	TTA Leu	AAA Lys	GCT Ala	432
5		GAT Asp 115															480
10	TAC Tyr 130	GTA Val	AAA Lys	GCG Ala	CTT Leu	TAT Tyr 135	AAA Lys	TAC Tyr	GAA Glu	GTA Val	ACC Thr 140	AAA Lys	AGG Arg	TTA Leu	AAA Lys	CAC His 145	528
15	CAA Gln	CAA Gln	GCT Ala	TCG Ser	GTG Val 150	CAT His	ACC Thr	AAA Lys	AAC Asn	ATC Ile 155	ACT Thr	CTG Leu	CGT Arg	GAC Asp	TTT Phe 160	GCG Ala	576
	CAA Gln	TTT Phe	GTA Val	TAT Tyr 165	AGA Arg	GCG Ala	GTG Val	AAT Asn	ATT Ile 170	AAT Asn	GCA Ala	GTG Val	CCA Pro	GAA Glu 175	ATA Ile	GTT Val	624
20		GTA Val														ACG Thr	672
25		ATT 11e 195															720
30	_	GTT Val															768
		GTA Val															816
35	ACA Thr	GGC Gly	ATT Ile	AAA Lys 245	AAT Asn	TTA Leu	AAA Lys	GTA	GAG Glu 250	ACC Thr	GCT Ala	AAG Lys	GAA Glu	TTA Leu 255	ACT Thr	GGT Gly	864
40	AAG Lys	TTT Phe	GTT Val 260	TGG Trp	TCT Ser	GTT Val	CAA Gln	GAT Asp 265	GCG Ala	GTA Val	ACT Thr	GTT Val	GCA Ala 270	CTA Leu	AAT Asn	AAT Asn	912
45		TCG Ser 275	Leu	Lys	Val	Gly	Glu	Glu	Ser	Gly	Leu		Val	Lys			960
	GAT Asp 290	GGC Gly	AAA Lys	GAT Asp	GTT Val	GTA Val 295	GGT Gly	GCT Ala	AAA Lys	GTA Val	GAA Glu 300	CTT Leu	ACT Thr	TCT Ser	TCT Ser	AAT Asn 305	1008
50	ACT Thr	AAT Asn	ATT Ile	GTT Val	GTA Val 310	GTT Val	TCA Ser	AGT Ser	GGC Gly	GAA Glu 315	GTA Val	TCA Ser	GTA Val	TCT Ser	GCT Ala 320	GCT Ala	1056
55	AAA Lys	GTT Val	ACA Thr	GCT Ala 325	GTA Val	AAA Lys	CCG Pro	GGA Gly	ACA Thr 330	GCT Ala	GAT Asp	GTT Val	ACT Thr	GCA Ala 335	AAA Lys	GTT Val	1104
60	ACA Thr	TTA Leu	CCA Pro 340	GAT Asp	GGT Gly	GTT Val	GTA Val	CTA Leu 345	ACA Thr	AAT Asn	ACA Thr	TTT Phe	AAA Lys 350	Val	ACA Thr	GTT Val	1152

DE 196 03 649 A1

ACA Thr	GAA Glu 355	Val	Pro	GTT Val	CAA Gln	GTC Val 360	CAA Gln	AAT Asn	CAA Gln	GGA Gly	TTT Phe 365	Thr	TTA Lau	GTT Val	GAT Ç2A	:	1200	
AAT Asn 370	Leu	TCT Ser	AAT Asn	GCT Ala	CCA Pro 375	CAG Gln	AAT Asn	ACA Thr	GTT Val	GCA Ala 380	Phe	AAC Asn	aaa Lys	GCT Ala	GAG Glu 385	:	1248	5
AAA Lys	GTA Val	ACT	TCA Ser	ATG Met 390	TTT	GCT Ala	ggy Ggy	GAA Glu	ACT Thr 395	AAA Lys	ACA Thr	GTT Val	GCA Ala	ATG Met 400	TAT Tyr	:	1296	10
GAT Asp	act The	AAA Lys	AAC Asn 405	Gly	GAT Asp	CCT Pro	GAA Glu	ACT Thr 410	AAA Lys	CCT Pro	GTT Val	GAT Asp	TTC Phe 415	aaa Lys	GAT Qak	1	1344	15
GCA Ala	ACT Thr	GTA Val 420	CGT	TCA Ser	TTA Leu	AAT Asn	CCA Pro 425	ATT Ile	ATT Ile	Ala GCA	ACA Thr	GCT Ala 430	GCT Ala	ATT Ile	AAT Asn	3	1392	
GGT Gly	AGT Ser 435	Glu	CTC Leu	CTT Leu	GTC Val	ACA Thr 440	GCT Ala	AAT Asn	GCT Ala	GGC Gly	CAA Gln 445	TCT Ser	GGA Gly	AAA Lys	GCT Ala	1	1440	20
TCA Ser 450	Fhe	GAA Glu	GTA Val	ACA Thr	TTA Leu 455	AAA Lys	GAT Asp	AAT Asn	ACA Thr	AAA Lys 460	AGA Arg	ACA Thr	TTT Phe	ACA Thr	GTT Val 465	1		25
GAT GAT	GTA Val	AAA Lys	AAA Lys	GAC Asp 470	CCT Pro	GTA Val	TTA Leu	CAA Gln	GAT Asp 475	ATA Ile	AAA Lys	GTA Val	GAT Asp	GCA Ala 480	ACT Thr	1	1536	30
TCT Ser	GTT Val	AAA Lys	CTT Leu 485	TCC Ser	GAT Asp	GAA Glu	GCT Ala	GTT Val 490	GLY	GGC Gly	GGG Gly	GAA Glu	GTT Val 495	GAA Glu	ggy Gly	1	1584	25
GTT Val	AAC Asn	CAA Gln 500	AAA Lys	ACG Thr	ATT Ile	AAA Lys	GTA Val 505	AGT Sez	GCA Ala	GTT Val	GAC Asp	CAA Gln 510	TAC Tyr	ggt Gly	AAA Lys	1	.632	35
GAA Glu	ATT Ile 515	AAA Lys	TTT Phe	GGT Gly	ACA Thr	AAA Lys 520	ggt gly	AAA Lys	GTT Val	ACT Thr	GTT Val 525	ACA Thr	ACT Thr	AAT Asn	ACA Thr	1	.630	40
GAA Glu 530	gga Gly	CTA Leu	GTT Val	ATT Ile	AAA Lys 535	AAT Asn	GTA Val	AAT Asn	AGC Ser	GAT Asp 540	AAT Asn	ACA Thr	ATT Ile	gac GAC	TTT Phe 545	1	728	45
GAT Asp	AGC Ser	elà ecc	AAT Asn	AGT Ser 550	GCA Ala	ACT Thr	yza	CAA Gln	TTT Phe 555	GTT Val	GTC Val	GTT Val	GCA Ala	ACA Thr 560	AAA Lys	1	.776	50
						AAA Lys .										1	.824	
AGT Ser	gak qak	ACA Thr 580	ACA Thr	CCA Pro	ACT Thr	TCA Ser	ACT Thr 585	AAA Lys	ACA Thr	ATT Ile	ACT Thr	CIT Val 590	AAT Asn	GTA Val	GTA Val	1	.872	55
AAT Asn	GTA Val 595	AAA Lys	GCT Ala	yab	GCT Ala	ACA Thr 600	CCA Pro	GTA Val	GGA Gly	TTA Leu	GAT Asp 605	ATT Ile	GTA Val	GCA Ala	CCT Pro	1	920	60

	TCI Ser 610	Lys	ATT Ile	GAT Asp	GTA Val	AAT Asn 615	Ala	CCA Pro	AAC Asn	ACT Thr	GCT Ala 620	Ser	ACT Thr	GCA Ala	GAT Asp	GTT Val 625	1968
5	ysp Gy1	TTT Phe	ATA Ile	AAT Asn	TTC Phe 630	GAA Glu	AGT Ser	GTT Val	GAG Glu	ATT Ile 635	Tyr	ACA Thr	. CTC Lau	GAT Asp	TCA Ser 640	AAT Asn	2016
10	GGT Gly	AIG AIG	CGT	CAA Gln 645	AAA Lys	AAA Lys	GTT Val	ACT Thr	CCA Pro 650	ACT Thr	GCA Ala	ACT	ACA Thr	CTT Leu 655	GTA Val	GGT Gly	2064
15	ACA Thr	AAA Lys	AAA Lys 660	Lys	AAA Lys	AAA Lys	GTT Val	AAT Asn 665	GGG Gly	AAT Asn	GTA Val	TTA Leu	CAA Gln 670	TTC Phe	AAG Lys	GGG GGG	2112
	AAC Asn	GAA Glu 675	Glu	TTA Leu	ACG Thr	CTA Leu	TCA Ser 680	ACT Thr	TCT Ser	TCT Ser	AGT Ser	ACA Thr 685	GGA Gly	AAC Asn	GTA Val	GAT Asp	2160
20	GGA Gly 690	ACA Thr	GCA Ala	GAA Glu	GGA Gly	ATG Met 695	ACA Thr	AAA Lys	CGT Arg	ATT Ile	CCA Pro 700	GGG Gly	AAA Lys	TAT Tyr	ATC Ile	AAC Asn 705	2208
25	TCT Ser	GCA Ala	AGT Ser	GTA Val	CCT Pro 710	GCC Ala	AGT Ser	GCA Ala	ACA Thr	GTA Val 715	GCA Ala	ACA Thr	AGT Ser	CCT Pro	GTT Val 720	ACT Thr	2256
30	GTA Val	AAG Lys	CTT Leu	AAT Asn 725	TCA Ser	AGT Ser	GAT Asp	AAT Asn	GAT Asp 730	TTA Leu	ACA Thr	TTT Phe	GAA Glu	GAA Glu 735	TTA Leu	ATA Ile	2304
	TTC Phe	ggt Gly	GTA Val 740	ATT	GAC Asp	CCT	ACA Thr	CAA Gln 745	TTA Leu	GTC Val	AAA Lys	GAT Asp	GAA Glu 750	GAC Asp	ATC Ile	AAC Asn ·	2352
35	GAA Glu	TTT Phe 755	ATT Ile	GCA Ala	GTT Val	TCA Ser	AAA Lys 760	GCG Ala	GCT Ala	AAA Lys	AAT Asn	GAT Asp 765	GGA Gly	TAT Tyr	TTG Leu	TAT Tyr	2400
40	AAT Asn 770	AAA Lys	CCG Pro	CTT Leu	GTA Val	ACG Thr 775	GTT Val	AAA Lys	GAT Asp	GCA Ala	TCA Ser 780	GGA Gly	AAA Lys	GTT Val	ATT Ile	CCA Pro 785	2448
45	ACA Thr	GGT Gly	GCA Ala	AAT Asn	GTT Val 790	TAC Tyr	ggt Gly	CTA Leu	AAT Asn	CAT His 795	GAT Asp	GCA Ala	ACT Thr	AAC Asn	GGA Gly 800	AAC Asn	2496
		TGG Trp															2544
50		CAT His															25 9 .2
55	AGC Ser	GGT Gly 835	ACA Thr	GTT Val	TCT Ser	TCA Ser	TCG Ser 840	CCA Pro	TCA Ser	TTA Leu	TCT Ser	GAC Asp 845	GCA Ala	ATT Ile	CAA Gln	CTT Leu	2640
60	ACT 850	AAT	TCA	GGC	GAT	GCA 855	GTA	TCG	TTT	ACA	TTA 860	GTŢ	ATC	AAA	TCA	ATT 865	2688

E 196 03 649 A1

					Asp		GAT Asp			Asn					Pro	2736	
				Val			ACA Thr									2766	5
(2)						0: 6											10
		(A) L B) A D) T	ÄNGE RT: OPOL	: 92 Amin OGIE	osāu : li	inos: re		n								15
	(xi) SE	QUEN	ZBES:	CHRE	IBUN	G: S	EQ I	סא ס	: 6:							
	Ala -30		Gln	Pro	Lys	Ser -25	Phe	Arg	Lys	Phe	Val -20	Ala	Thr	Thr	Ala		20
Thr -15	Ala	Ala	Ile	Val	Ala -10	Ser	Ala	Val	Ala	Pro -5	Val	Val	Ser	Ala	Ala 1		
Ser	Phe	Thr	gaƙ C	Val	Ala	Pro	Gln	Tyr 10	Lys	Asp	Ala	Ile	Asp 15	Phe	Leu		25
Val	Ser	Thr 20	Gly	Ala	Thr	Lys	Gly 25	Lys	The	Glu	Thr	Lys 30	Phe	Gly	Val		
ŢYŢ	Asp 35	Glu	Ile	Thr	Arg	Lau 40	Asp	Ala	Ala	Val	Ile 45	Leu	Ala	Arg	Val		30
Leu 50	Lys	Leu	Asp	Val	Asp 55	Asn	Ala	Lys	Asp	Ala 60	Gly	Phe	Thr	Asp	Val 65	a ^t	35
Pro	Lys	Asp	Arg	Ala 70	Lys	Tyr	Val	Asn	Ala 75	Leu	Val	Glu	Ala	Gly 80	Val		
Leu	Asn	Gly	Lys 85	Ala	Pro	Gly	Lys	Phe 90	Gly	Ala	Tyr	çzA	Pro 95	Leu	Thr	÷.	40
yrg	Val	Glu 100	Met	Ala	Lys	Ile	Ile 105	Ala	Asn	Arg	Tyr	Lys 110	Leu	Lys	Ala		
ςzλ	Asp 115	Val	Lys	Leu	Pro	Phe 120	Thr	qελ	Val	Asn	Asp 125	Thr	qır	Ala	Pro		45
Tyr 130	Val	Lys	Ala	Leu	Tyr 135	Lys	Tyr	Glu	Val	Thr 140	Lys	Arg	Leu	Lys	His 145		
Gln	Gln	Ala	Ser	Val 150	His	Thr	Lys	Asn	Ile 155	Thr	Leu	Arg	qzA	Phe 160	Ala		50
Gln	Phe	Val	Tyr 165	Arg	λla	Val	Asn	Ile 170	Asn	Ala	Val	Pro	Glu 175	Ile	Val		55
Glu	Val	Thr 180	Ala	Val	λsn	Ser	Thr 185	Thr	Val	Lys	Val	Thr 190	Phe	λsπ	Thr	•	
Gln	Ile 195	Ala	Asp	Val	Asp	Phe 200	Thr	Asn	Phe	Ala	Ile 205	Asp	Asn	Gly	Leu		60

											_					
	Thr 210	Val	Thr	Lys	Alā	Thr 215		Ser	Arg	Asp	Lys 220	Ĺys	Ser	Val	Ğlu	Val 225
5	Val	. Val	. Asn	Lys	Pro 230	Phe	Thr	Arg	Asn	Gln 235	Glu	Tyr	Thr	Ile	Thr 240	Ala
	Thr	Gly	Ile	Lys 245		Leu	Lys	Gly	Glu 250	Thr	Ala	Lys	Glu	Leu 255	Thr	Gly
10	Lys	Phe	Val 260		Ser	Val	Gln	Asp 265	Ala	Val	Thr	Val	Ala 270	Leu	Asn	Asn
15	Ser	Ser 275		Lys	Val	Gly	Glu 280	Glu	Ser	Gly	Leu	Thr 285	Val	Lys	Asp	Gln
	Asp 290		Lys	Asp	Val	Val 295	Gly	Ala	Lys	Val	Glu 300	Leu	Thr	Ser	Ser	Asn 305
20	Thr	Asn	Ile	Val	Val 310	Val	Ser	Ser	Gly	Glu 315	Val	Ser	Val	Ser	Ala 320	Ala
	Lys	Val	Thr	Ala 325	Val	Lys	Pro	Gly	Thr 330	Ala	Asp	Val	Thr	Ala 335	Lys	Val
25	Thr	Leu	Pro 340	Asp	Gly	Val	Val	Leu 345	Thr	Asn	Thr	Phe	Lys 350	Val	Thr	Val
30	Thr	Glu 355	Val	Pro	Val	Gln	Val 360	Gln	Asn	Gln	Gly	Phe 365	Thr	Leu	Val	Asp
	370				Ala	375					380					385
35					Met 390					395					400	_
40				405	Gly				410				_	415		_
•			420		Ser			425					430			
45		435			Leu		440					445		_	_	
	450				Thr	455					460					465
50					Asp 470					475					480	
55				485	Ser			·	490					495		_
			500		Thr			505					510			
60		515			Gly		520					525				
	Glu 530	Gly	Leu	Val	Ile	Lys 535	Asn	Val	Asn		Asp 540	Asn	Thr	Ile	Asp	Phe 545

DE 196 03 649 A1

Asp	Ser	GLY	Asn	Ser 550	Ala	Thr	Asp	Gln	Phe 555		Val	Val	Ala	Thr 560		
Asp	Lys	Ile	Val 565		Gly	Lys	Val	Glu 570	Val	Lys	Tyr	Phe	Lys 575		Ala	5
Ser	Asp	Thr 580		Pro	Thr	Ser	Thr 585	_	Thr	Ile	Thr	Val 590		Val	Val	
Asn	Val 595		Ala	Asp	Ala	Thr 600	Pro	Val	Gly	Leu	Asp 605		Val	Ala	Pro	10
Ser 610	_	Ile	Asp	Val	Asn 615	Ala	Pro	Asn	Thr	Ala 620	Ser	Thr	Ala	Asp	Val 625	15
Asp	Phe	Ile	Asn	Phe 630	Glu	Ser	Val	Glu	Ile 635		Thr	Leu	Asp	Ser 640	Asn	
Gly	Arg	Arg	Gln 645	Lys	Lys	Val	Thr	Pro 650	Thr	Ala	Thr	Thr	Leu 655	Val	Gly	20
Thr	Lys	Lys 660	Lys	Lys	Lys	Val	Asn 665	Gly	Asn	Val	Leu	Gln 670	Phe	Lys	Gly	
	675				Leu	680					685					25
690					Met 695					700					705	
				710	Ala				715		٠			720		30 ,
	_		725		Ser			730			•		735			35
	-	740		_	Pro		745					750				
	755				Ser	760			_		765					40
770	•				Thr 775		•	•		780	-	-			785	
	_			790	Tyr	_			795					800		45
	_		805		Glu			810					815			50
		820			Asp		825					830				
	835				Ser Ala	840					845				•	55
850					855 Asp					860					865	
-1-	* ***	-J	Y	870	بإدم	-, ·	* y F-	٦٠٠٢	875					880		60

Val Ser Val Asn Val Thr Val Thr Lys 885 890

(2)	ANGABEN	ZU	SEO	ΤD	NO:	7:
(2)	MICHALL	20			110.	

5

10

ı	, i)	SEOUENZKENNZEICHEN:
и		SECUENZAENNZEICHEN:

- (A) LÄNGE: 498 Basenpaare
- (B) ART: Nucleotid
- (C) STRANGFORM: beides
- (D) TOPOLOGIE: linear

15	(xi) SEQUENZB	ESCHREIBUNG: SE	Q ID NO: 7:									
	CCCATGGACC CGTCCA	AGGA CTCCAAAGCT	CAGGTTTCTG	CAGCCGAAGC	TGGTATCACT	60						
20	GGCACCTGGT ATAACC	VACT GGGGTCGACT	TTCATTGTGA	CCGCTGGTGC	GGACGGAGCT	120						
20	CTGACTGGCA CCTACG	ATC TGCGGTTGGT	AACGCAGAAT	CCCGCTACGT	ACTGACTGGC	180						
	CGTTATGACT CTGCAC	CTGC CACCGATGGC	TCTGGTACCG	CTCTGGGCTG	GACTGTGGCT	240						
25	TGGAAAAACA ACTATCO	STAA TGCGCACAGC	GCCACTACGT	GGTCTGGCCA	ATACGTTGGC	300						
	GGTGCTGAGG CTCGTA	CAA CACTCAGTGG	CTGTTAACAT	CCGGCACTAC	CGAAGCGAAT	360						
	GCATGGAAAT CGACAC	PAGT AGGTCATGAC	ACCTTTACCA	AAGTTAAGCC	TTCTGCTGCT	420						
30	AGCATTGATG CTGCCAL	AGAA AGCAGGCGTA	AACAACGGTA	ACCCTCTAGA	CGCTGTTCAG	480						
	CAATAATAAG GATCCGC	G		,		498						
35	(2) ANGABEN ZU SEC	ID NO: 8:										
	(i) SEQUENZKI (A) LÄNG	ENNZEICHEN: E: 29 Basenpaa:	re									
	(B) ART: Nucleotid											
	(C) STRANGFORM: Einzelstrang											
40	(D) TOPO	LOGIE: linear										

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 8:

TTCATCGTAA ACGCCGAATT TTGTTTCTG

29

- (2) ANGABEN ZU SEQ ID NO: 9:
 - (i) SEQUENZKENNZEICHEN:
 - (A) LÂNGE: 26 Basenpaare

 - (B) ART: Nucleotid (C) STRANGFORM: Einzelstrang
 - (D) TOPOLOGIE: linear

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 9:

AGGGAAATAT ATCAACTCTG CAAGTG

26

65

45

50

55

60

Patentansprüche

1. V rfahren zur Herstellung von S-Layer-Proteinen, dadurch gekennzeichnet, daß man

- (a) eine gram-negative prokaryontische Wirtszelle bereitstellt, die transformiert ist mit einer für ein S-Layer-Protein kodierenden Nukleinsäure, ausgewählt aus
 - (i) einer Nukleinsäure, welche die von Position 1 bis Position 3684 in SEQ ID NO. 1 gezeigte Nukleotidsequenz gegebenenfalls ohne den Signalpeptid-kodierenden Abschnitt umfaßt,
 - (ii) einer Nukleinsäure, welche eine der Nukleinsäure aus (i) im Rahmen der Degeneration des genetischen Codes entsprechende Nukleotidsequenz umfaßt, und
 - (iii) einer Nukleinsäure, welche eine mit den Nukleinsäuren aus (i) oder/und (ii) unter stringenten Bedingungen hybridisierende Nukleotidsequenz umfaßt;
- (b) die Wirtszelle unter solchen Bedingungen kultiviert, die zu einer Expression der Nukleinsäure und zu einer Erzeugung des davon kodierten Polypeptids führen und
- (c) das resultierende Polypeptid aus der Wirtszelle gewinnt.
- 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man eine E. coli-Wirtszelle verwendet.
- 3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß man das Polypeptid in Form einer assemblierten S-Layer-Struktur aus dem Inneren der Wirtszelle gewinnt.
- 4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die für das S-Layer-Protein to kodierende Nukleinsäure eine oder mehrere Insertionen enthält, die für Peptid- oder Polypeptidsequenzen kodieren.
- 5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß die Insertionen ausgewählt werden aus Nukleotidsequenzen, die für Cysteinreste, Bereiche mit mehreren geladenen Aminosäuren oder Tyr-Resten, DNA-bindende Epitope, metallbindende Epitope, immunogene Epitope, allergene Epitope, antigene Epitope, Streptavidin, Enzyme, Cytokine oder Antikörper-bindende Proteine kodieren.
- 6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß die Insertionen für Streptavidin kodieren.
- 7. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß die Insertionen für immunogene Epitope aus Herpesviren, insbesondere Herpesvirus 6 oder FMDV, kodieren.
- 8. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß die Insertionen für Enzyme, wie etwa Polyhy- 25 droxybuttersäuresynthase oder bakterielle Luciferase, kodieren.
- 9. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß die Insertionen für Cytokine, wie etwa Interleukine, Interferone oder Tumornekrosefaktoren, kodieren.
- 10. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß die Insertionen für Antikörper-bindende Proteine, wie etwa Protein A oder Protein G, kodieren.
- 11. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß die Insertionen für antigene Epitope kodieren, die an Cytokine oder Endotoxine binden.
- 12. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß die Insertionen für metallbindende Epitope kodieren.
- 13. Verfahren nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, daß 5'-seitig der für das 35 S-Layer-Protein kodierenden Nukleinsäure in operativer Verknüpfung eine für ein grampositives Signalpeptid kodierende Nukleinsäure angeordnet ist.
- 14. Verfahren nach Anspruch 13, dadurch gekennzeichnet, daß die für das Signalpeptid kodierende Nukleinsäure
 - (a) den Signalpeptid-kodierenden Abschnitt der in SEQ ID NO. 1 dargestellten Nukleotidsequenz, (b) eine der Sequenz aus (a) im Rahmen der Degeneration des genetischen Codes entsprechende Nukleotidsequenz oder/und
 - (c) eine zu den Sequenzen aus (a) oder/und (b) mindestens 80% homologe Nukleotidsequenz umfaßt.
- 15. Nukleinsäure, die für ein rekombinantes S-Layer-Protein kodiert und ausgewählt ist aus
 - (i) einer Nukleinsäure, welche die von Position 1 bis 3684 in SEQ ID NO. 1 gezeigte Nukleotidsequenz 45 gegebenenfalls ohne den Signalpeptid-kodierenden Abschnitt umfaßt,
 - (ii) einer Nukleinsäure, welche eine der Nukleinsäure aus (i) im Rahmen der Degeneration des genetischen Codes entsprechende Nukleotidsequenz umfaßt, und
- (iii) einer Nukleinsäure, welche eine mit den Nukleinsäuren aus (i) oder/und (ii) unter stringenten Bedingungen hybridisierende Nukleotidsequenz umfaßt,
- wobei die Nukleinsäure innerhalb des für das S-Layer-Protein kodierenden Bereichs mindestens eine Peptid- oder Polypeptid-kodierende Insertion enthält.
- 16. Nukleinsäure nach Anspruch 15, dadurch gekennzeichnet, daß die Insertionsstelle an Position 582, 878, 917, 2504 oder/und 2649 der in SEQ ID No. 1 gezeigten Nukleotidsequenz lokalisiert ist.
- 17. Vektor, dadurch gekennzeichnet, daß er mindestens eine Kopie einer Nukleinsäure nach Anspruch 15 oder 16 enthält.
- 18. Zelle, dadurch gekennzeichnet, daß sie mit einer Nukleinsäure nach Anspruch 15 oder 16 oder einem Vektor nach Anspruch 17 transformiert ist.
- 19. Zelle nach Anspruch 18, dadurch gekennzeichnet, daß sie eine gram-negative prokaryontische Zelle, insbesondere eine E. coli-Zelle ist.
 20. Rekombinantes S-Layer-Protein, dadurch gekennzeichnet, daß es von einer Nukleinsäure nach An-
- spruch 15 oder 16 kodiert ist.
 21. Rekombinante S-Layer-Struktur, dadurch gekennzeichnet, daß sie als Untereinheit mindestens ein
- Protein nach Anspruch 20 enthält.
 22. S-Layer-Struktur nach Anspruch 21, dadurch gekennzeichnet, daß sie weiterhin als Untereinheit mindestens ein nichtmodifiziertes S-Layer-Protein enthält.
- 23. S-Layer-Struktur nach- Anspruch 21 oder 22, dadurch gekennzeichnet, daß sie m hrere kovalent oder durch Affinitätsbindung miteinander verknüpfte Schichten umfaßt.

- 24. Verwendung eines S-Layer-Proteins nach Anspruch 20 oder einer S-Layer-Struktur nach einem der Ansprüche 21 bis 23 als Vakzin oder Adjuvans.
- 25. Verwendung nach Anspruch 24, dadurch gekennzeichnet, daß das Vakzin oder Adjuvans weiterhin einen Bakterienghost umfaßt, der gegebenenfalls in seiner Membran weitere immunogene Epitope enthält.
- 26. Nukleinsäure, die für ein S-Layer-Protein kodiert und ausgewählt ist aus
 - (i) einer Nukleinsäure, welche die von Position 1 bis 2763 in SEQ ID No. 5 gezeigte Nukleotidsequenz gegebenenfalls ohne den Signalpeptid-kodierenden Abschnitt umfaßt,
 - (ii) einer Nukleinsäure, welche eine der Nukleinsäure aus (i) im Rahmen der Degeneration des genetischen Codes entsprechende Nukleotidsequenz umfaßt, und
 - (iii) einer Nukleinsäure, welche eine mit den Nukleinsäuren aus (i) oder/und (ii) unter stringenten Bedingungen hybridisierende Nukleotidsequenz umfaßt.
- 27. Nukleinsäure nach Anspruch 26, dadurch gekennzeichnet, daß sie innerhalb das für das S-Layer-Protein kodierenden Bereichs mindestens eine Peptid- oder Polypeptid-kodierende Insertion enthält.
- 28. Vektor, dadurch gekennzeichnet, daß er mindestens eine Kopie einer Nukleinsäure nach Anspruch 26 oder 27 enthält.
- 29. Zelle, dadurch gekennzeichnet, daß sie mit einer Nukleinsäure nach Anspruch 26 oder 27 oder einem Vektor nach Anspruch 28 transformiert ist.
- 30. S-Layer-Protein, dadurch gekennzeichnet, daß es von einer Nukleinsäure nach Anspruch 27 kodiert ist.
- 31. Rekombinante S-Layer-Struktur, dadurch gekennzeichnet, daß sie als Untereinheit mindestens ein rekombinantes S-Layer-Protein enthält, das von einer Nukleinsäure nach Anspruch 27 kodiert ist.
- 32. Verwendung eines S-Layer-Proteins nach Anspruch 30 oder einer S-Layer-Struktur nach Anspruch 31 als Vakzin oder Adjuvans.
- 33. Verfahren zur Herstellung von rekombinanten S-Layer-Proteinen, dadurch gekennzeichnet, daß man
 - (a) eine Wirtszelle bereitstellt, die eine für ein S-Layer-Protein kodierende Nukleinsäure enthält, die innerhalb des für das S-Layer-Protein kodierenden Bereichs eine Peptid- oder Polypeptid-kodierende Insertion enthält,
 - (b) die Wirtszelle unter solchen Bedingungen kultiviert, die zu einer Expression der Nukleinsäure und zu einer Erzeugung des davon kodierten Polypeptids führen, und
 - (c) das resultierende Polypeptid aus der Wirtszelle oder dem Kulturmedium gewinnt.
- 34. Verfahren nach Anspruch 33, dadurch gekennzeichnet, daß die für das rekombinante S-Layer-Protein kodierende Nukleinsäure ausgewählt wird aus
 - (i) einer Nukleinsäure, welche die von Position 1 bis 3684 in SEQ ID NO. 1 gezeigte Nukleotidsequenz gegebenenfalls ohne den Signalpeptid-kodierenden Abschnitt umfaßt,
 - (ii) einer Nukleinsäure, welche eine der Nukleinsäure aus (i) im Rahmen der Degeneration des genetischen Codes entsprechende Nukleotidsequenz umfaßt, und
 - (iii) einer Nukleinsäure, welche eine mit den Nukleinsäuren aus (i) oder/und (ii) unter stringenten Bedingungen hybridisierende Nukleotidsequenz umfaßt.
- 35. Verfahren nach Anspruch 33, dadurch gekennzeichnet, daß die für das rekombinante S-Layer-Protein kodierende Nukleinsäure ausgewählt wird aus
 - (i) einer Nukleinsäure, welche die von Position 1 bis 2763 in SEQ ID No. 5 gezeigte Nukleotidsequenz gegebenenfalls ohne den Signalpeptid-kodierenden Abschnitt umfaßt,
 - (ii) einer Nukleinsäure, welche eine der Nukleinsäure aus (i) im Rahmen der Degeneration des genetischen Codes entsprechende Nukleotidsequenz umfaßt, und
 - (iii) einer Nukleinsäure, welche eine mit den Nukleinsäuren aus (i) oder/und (ii) unter stringenten Bedingungen hybridisierende Nukleotidsequenz umfaßt.
- 36. Verfahren nach einem der Ansprüche 33-35, dadurch gekennzeichnet, daß in der Wirtszelle ein weiteres S-Layer-Gen exprimiert wird, das für ein nichtmodifiziertes S-Layer-Protein kodiert.
- 37. Verfahren nach Anspruch 36, dadurch gekennzeichnet, daß das nichtmodifizierte S-Layer-Protein in d r Lage ist, eine mit dem rekombinanten S-Layer-Protein kompatible S-Layer-Struktur auszubilden.
- 38. Verfahren nach einem der Ansprüche 33-35, dadurch gekennzeichnet, daß in der Wirtszelle kein weiteres S-Layer-Gen exprimiert wird, das für ein nichtmodifiziertes S-Layer-Protein kodiert, welches in der Lage ist, eine mit dem rekombinanten S-Layer-Protein kompatible S-Layer-Struktur auszubilden.
- 39. Verfahren nach einem der Ansprüche 33-38, dadurch gekennzeichnet, daß man eine prokaryontische Wirtszelle verwendet.
- 40. Verfahren nach Anspruch 39, dadurch gekennzeichnet, daß man eine gram-positive Wirtszelle verwendet.
- 41. Verfahren nach Anspruch 40, dadurch gekennzeichnet, daß man B.stearothermophilus verwendet.

Hierzu 3 Seite(n) Zeichnungen

60

5

10

15

20

25

30

35

40

45

50

55

- Leerseite -

DE 196 03 649 A1 C 07 K 14/245 7. August 1997

Fig.1

DE 196 03 649 A1 C 07 K 14/2457. August 1997

C) GGCCCC

Fig.3

B)

C)

E)

Gly-Ala-Pro 293-294

Ala-Arg 306-307

Gly-Ala-Pro

1230 aa

Gly-Pro 1230 aa