Image Classification: IAM Handwriting

Lydia Jin, Xi Qian, Yuyang Wang

Dataset

Forms_for_parsing.txt

Dataset_subset

In total: 4988 number of images

a01-014 007 5

The Senate Bonking Committee, which which would appear to a proper up " an out.

I MOVE to stop Mr. Gaitskell from

Handwritten scripts by one writer

```
for filename in img files[8:10]:
    print(filename)
    img = mpimg.imread(filename)
    plt.figure(figsize=(10, 10))
    plt.imshow(img, cmap='gray')
    plt.show()
for filename in img files[:4]:
    print(filename)
    img = mpimg.imread(filename)
    plt.figure(figsize=(10, 10))
    plt.imshow(img, cmap='gray')
    plt.show()
```


Data Pre-Processing

1. Label Encode

```
encoder = LabelEncoder()
encoder.fit(img_targets)
encoded_Y = encoder.transform(img_targets)

print(img_targets[15:20], encoded_Y[15:20])
```

['000' '000' '000' '000' '000'] [0 0 0 0]

2. Train, Validation, Test: 7:1.5:1.5

(3429,) (735,) (735,) (3429,) (735,) (735,) 3. Resize

Network Construction

Declares the model type as Sequential().

```
model = Sequential()
```

Add a 2D convolutional layer to process input images

```
model.add(Convolution2D(filters=32, kernel_size=(3, 3), strides=(2, 2), padding='same', name='conv1'))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2), st/ides=(2, 2), name='pool1'))

number of output channels size of moving window strides in the x and y directions
```

Network Construction

Network Construction

```
model.add(Dense(512, name='dense1'))
model.add(Activation('relu'))
model.add(Dropout(0.4))
number of output channels size of moving window strides in the x and y directions
```

Flatten the output from these to enter our fully connected

Architecture Network

Layer (type)	Output Shape	Param #
zero_padding2d_3 (ZeroPaddin	(None, 115, 115, 1)	0
lambda_3 (Lambda)	(None, 56, 56, 1)	0
conv1 (Conv2D)	(None, 28, 28, 32)	320
activation_15 (Activation)	(None, 28, 28, 32)	0
pool1 (MaxPooling2D)	(None, 14, 14, 32)	0
conv2 (Conv2D)	(None, 14, 14, 64)	18496
activation_16 (Activation)	(None, 14, 14, 64)	0
pool2 (MaxPooling2D)	(None, 7, 7, 64)	0
conv3 (Conv2D)	(None, 7, 7, 128)	73856
activation_17 (Activation)	(None, 7, 7, 128)	0
pool3 (MaxPooling2D)	(None, 3, 3, 128)	0
	(, 2, 22,	- -

flatten_3 (Flatten)	(None, 1152)	0
dropout_7 (Dropout)	(None, 1152)	0
densel (Dense)	(None, 512)	590336
activation_18 (Activation)	(None, 512)	0
dropout_8 (Dropout)	(None, 512)	0
dense2 (Dense)	(None, 256)	131328
activation_19 (Activation)	(None, 256)	0
dropout_9 (Dropout)	(None, 256)	0
output (Dense)	(None, 50)	12850
activation_20 (Activation)	(None, 50)	0
======================================		

Non-trainable params: 0

3-Layer CNN (Adam Optimizer) Output

Result

Training Loss Plots

Summary and Conclusion

Keras

Adam & SGD

Questions?

References

Dataset: https://www.kaggle.com/tejasreddy/iam-handwriting-top50

https://www.learnopencv.com/image-classification-using-convolutional-neural-networks-in-keras/

Figure 1:

https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2

Checkpoint code: https://machinelearningmastery.com/check-point-deep-learning-models-keras/

Generator code: https://www.kaggle.com/tejasreddy/offline-handwriting-recognition-cnn/notebook

CNN Background Information:

https://www.learnopencv.com/image-classification-using-convolutional-neural-networks-in-keras/

Save/Load Keras models: http://faroit.com/keras-docs/2.0.2/models/about-keras-models/