UCS 2612 Machine Learning Laborotory Assignment 8

Name : Mega V

Reg No : 3122 21 5001 051

.....

AIM:

To develop a python program to diagnose breast cancer using Ensemble Models and to Visualize the features from the dataset and interpret the results obtained by the model using Matplotlib library.

import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn import preprocessing
from sklearn.preprocessing import StandardScaler
from scipy import stats
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import AdaBoostClassifier
from sklearn.metrics import accuracy_score, classification_report
from sklearn.metrics import roc_curve, auc

☐ LOADING THE DATASET:

df = pd.read_csv("data.csv")
df.head()

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mean	compactness_mean	concavity_mean	concave points_mean	•••	t
0	842302	М	17.99	10.38	122.80	1001.0	0.11840	0.27760	0.3001	0.14710		
1	842517	M	20.57	17.77	132.90	1326.0	0.08474	0.07864	0.0869	0.07017		
2	84300903	M	19.69	21.25	130.00	1203.0	0.10960	0.15990	0.1974	0.12790		
3	84348301	М	11.42	20.38	77.58	386.1	0.14250	0.28390	0.2414	0.10520		
4	84358402	М	20.29	14.34	135.10	1297.0	0.10030	0.13280	0.1980	0.10430		
5 rc	5 rows x 33 columns											

df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 569 entries, 0 to 568 Data columns (total 33 columns):

υаτа	columns (total 33 columns	5):	
#	Column	Non-Null Count	Dtype
0	id	569 non-null	int64
1	diagnosis	569 non-null	object
2	radius_mean	569 non-null	float64
3	texture_mean	569 non-null	float64
4	perimeter_mean	569 non-null	float64
5	area_mean	569 non-null	float64
6	smoothness_mean	569 non-null	float64
7	compactness_mean	569 non-null	float64
8	concavity_mean	569 non-null	float64
9	concave points_mean	569 non-null	float64
10	symmetry_mean	569 non-null	float64
11	fractal_dimension_mean	569 non-null	float64
12	radius_se	569 non-null	float64
13	texture_se	569 non-null	float64
14	perimeter_se	569 non-null	float64
15	area_se	569 non-null	float64
16	smoothness_se	569 non-null	float64
17	compactness_se	569 non-null	float64
18	concavity_se	569 non-null	float64
19	concave points_se	569 non-null	float64
20	symmetry_se	569 non-null	float64
21	fractal_dimension_se	569 non-null	float64
22	radius_worst	569 non-null	float64
23	texture_worst	569 non-null	float64
24	perimeter_worst	569 non-null	float64
25	area_worst	569 non-null	float64
26	smoothness_worst	569 non-null	float64
27	compactness_worst	569 non-null	float64
28	concavity_worst	569 non-null	float64
29	concave points_worst	569 non-null	float64
30	symmetry_worst	569 non-null	float64
31	fractal_dimension_worst	569 non-null	float64
32	Unnamed: 32	0 non-null	float64

dtypes: float64(31), int64(1), object(1)
memory usage: 146.8+ KB

df.describe()

	id	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mean	compactness_mean	concavity_mean	concave points_mean	symmetr
count	5.690000e+02	569.000000	569.000000	569.000000	569.000000	569.000000	569.000000	569.000000	569.000000	569.
mean	3.037183e+07	14.127292	19.289649	91.969033	654.889104	0.096360	0.104341	0.088799	0.048919	0.
std	1.250206e+08	3.524049	4.301036	24.298981	351.914129	0.014064	0.052813	0.079720	0.038803	0.
min	8.670000e+03	6.981000	9.710000	43.790000	143.500000	0.052630	0.019380	0.000000	0.000000	0.
25%	8.692180e+05	11.700000	16.170000	75.170000	420.300000	0.086370	0.064920	0.029560	0.020310	0.
50%	9.060240e+05	13.370000	18.840000	86.240000	551.100000	0.095870	0.092630	0.061540	0.033500	0.
75%	8.813129e+06	15.780000	21.800000	104.100000	782.700000	0.105300	0.130400	0.130700	0.074000	0.
max	9.113205e+08	28.110000	39.280000	188.500000	2501.000000	0.163400	0.345400	0.426800	0.201200	0.

8 rows x 32 columns

□ PREPROCESSING :

```
# Null Values :
print(df.isnull().sum())
```

id 0 diagnosis radius_mean 0 texture_mean perimeter_mean area_mean smoothness_mean compactness_mean 0 0 concavity_mean 0 concave points_mean symmetry_mean fractal_dimension_mean radius_se texture se perimeter_se area_se smoothness_se 0 0 ${\tt compactness_se}$ concavity_se
concave points_se symmetry_se fractal_dimension_se radius_worst texture worst perimeter_worst area_worst smoothness_worst 0 0 compactness_worst concavity_worst concave points_worst symmetry_worst 0 fractal_dimension_worst 0 Unnamed: 32 569 dtype: int64

```
# Removing Unamed: 32 column as its completely NaN :

df.drop(df.columns[-1], axis=1, inplace=True)
df.head()
```

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mean	compactness_mean	concavity_mean	concave points_mean	•••	r
0	842302	М	17.99	10.38	122.80	1001.0	0.11840	0.27760	0.3001	0.14710		
1	842517	М	20.57	17.77	132.90	1326.0	0.08474	0.07864	0.0869	0.07017		
2	84300903	М	19.69	21.25	130.00	1203.0	0.10960	0.15990	0.1974	0.12790		
3	84348301	М	11.42	20.38	77.58	386.1	0.14250	0.28390	0.2414	0.10520		
4	84358402	М	20.29	14.34	135.10	1297.0	0.10030	0.13280	0.1980	0.10430		
5 ro	5 rows × 32 columns											

```
# Converting categorical to numeric values :
df["diagnosis"] = df["diagnosis"].map({"M" : 0, "B": 1})
```

```
# Standardisation :
numeric_cols = df.columns[2:]
standardiser = StandardScaler()
df[numeric_cols] = standardiser.fit_transform(df[numeric_cols])
df.head()
```

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mean	compactness_mean	concavity_mean	concave points_mean	 r
0	842302	0	1.097064	-2.073335	1.269934	0.984375	1.568466	3.283515	2.652874	2.532475	
1	842517	0	1.829821	-0.353632	1.685955	1.908708	-0.826962	-0.487072	-0.023846	0.548144	
2	84300903	0	1.579888	0.456187	1.566503	1.558884	0.942210	1.052926	1.363478	2.037231	
3	84348301	0	-0.768909	0.253732	-0.592687	-0.764464	3.283553	3.402909	1.915897	1.451707	
4	84358402	0	1.750297	-1.151816	1.776573	1.826229	0.280372	0.539340	1.371011	1.428493	
5 ro	ws × 32 colu	mns									

☐ EXPLORATORY DATA ANALYSIS:

```
# Heat Map :

corr_matrix = df.corr()
plt.figure(figsize=(12, 10))
sns.heatmap(corr_matrix, cmap='viridis', center=0, square=True, linewidths=.5)
plt.title('Correlation Heatmap')
plt.show()
```



```
# Box Plot :
plt.figure(figsize=(10, 8))
sns.boxplot(data=df[["radius_mean", "area_mean", "symmetry_mean", "area_worst", "fractal_dimension_worst"]])
plt.title('Box Plot of Features')
plt.xlabel('Features')
plt.show()
```


☐ TRAINING AND TESTING SPLIT:

```
X = df.drop("diagnosis", axis = 1)
Y = df["diagnosis"]

X_train, X_test, y_train, y_test = train_test_split(X, Y, random_state = 42)
```

☐ RANDOM FOREST MODEL:

```
# Cross Validation :
cv_scores = cross_val_score(rf_classifier, X, Y, cv=5)
print("Cross-Validation Score:", round(cv_scores.mean(), 4))
     Cross-Validation Score: 0.9468
```

```
# ROC Curve :
y_pred_proba = rf_classifier.predict_proba(X_test)[:, 1]
fpr, tpr, thresholds = roc_curve(y_test, y_pred_proba)
roc auc = auc(fpr, tpr)
# Plot ROC curve
plt.figure()
plt.plot(fpr, tpr, color='darkorange', lw=2, label='ROC curve (AUC = \%0.2f)' % roc_auc) plt.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver Operating Characteristic (ROC) Curve')
plt.legend(loc="lower right")
plt.show()
```


As the cross validation score is 94%, the Random Forest ensemble model is not overfitting and hence performing better with an training accuracy of 99% and testing accuracy of 97%

☐ ADABOOST ENSEMBLE MODEL :

```
adaboost_classifier = AdaBoostClassifier(n_estimators=20, random_state=42)
adaboost_classifier.fit(X_train, y_train)
y_pred = adaboost_classifier.predict(X_test)
train_accuracy = adaboost_classifier.score(X_train, y_train)
test_accuracy = accuracy_score(y_test, y_pred)
print("\nTraining Accuracy:", round(train_accuracy, 4))
print("Testing Accuracy:", round(test_accuracy, 4))
               Training Accuracy: 1.0
               Testing Accuracy: 0.9697
               \verb|c:\Python312\| Lib \cap SAMME.R algorithm (the default) is deprecated and will also the following of the same of th
                    warnings.warn(
# Cross Validation :
cv_scores = cross_val_score(adaboost_classifier, X, Y, cv=5)
print("Cross-Validation Score:", round(cv_scores.mean(), 4))
```

- c:\Python312\Lib\site-packages\sklearn\ensemble_weight_boosting.py:519: FutureWarning: The SAMME.R algorithm (the default) is deprecated and will warnings.warn(
- c:\Python312\Lib\site-packages\sklearn\ensemble\ weight boosting.py:519: FutureWarning: The SAMME.R algorithm (the default) is deprecated and will

warnings.warn(
c:\Python312\Lib\site-packages\sklearn\ensemble_weight_boosting.py:519: FutureWarning: The SAMME.R algorithm (the default) is deprecated and will
warnings.warn(

c:\Python312\Lib\site-packages\sklearn\ensemble_weight_boosting.py:519: FutureWarning: The SAMME.R algorithm (the default) is deprecated and will warnings.warn(

Cross-Validation Score: 0.9639

```
# ROC Curve :
y_pred_proba = adaboost_classifier.predict_proba(X_test)[:, 1]
fpr, tpr, thresholds = roc_curve(y_test, y_pred_proba)
roc_auc = auc(fpr, tpr)

# Plot ROC curve
plt.figure()
plt.plot(fpr, tpr, color='darkorange', lw=2, label='ROC curve (AUC = %0.2f)' % roc_auc)
plt.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.ylim([0.0, 1.05])
plt.xlabel('Talse Positive Rate')
plt.title('Receiver Operating Characteristic (ROC) Curve')
plt.legend(loc="lower right")
plt.show()
```


As the cross validation score is 96%, the Adaboost ensemble model is not overfitting and hence performing better with an training accuracy of 100% and testing accuracy of 96%

111					
	Tı	raining Accuracy	Testing Accuracy	Cross Validation Score	AUC
Random Forest Model :		99%	97%	95%	99%
Adaboost :		100%	96%	96%	100%

'\n Forest Model : :	100%	Training Accuracy 99% 96%	Testing Accuracy 97%	Cross Validation Score 95% 100%\n\n'	AUC\n\nRandom 99%\n\nAdaboost

Both models are performing good without overfitting, But Adaboost is slightly better in training whereas Random forest is slightly better in testing phase. Overall, Adaboost has a slight edge over Random Forest in terms of training accuracy and cross validation score making it perform better for unseen data.

Learning Outcome :

- 1. Interpret the results and evaluate the performance of random forest models.
- 2. Implement and tune random forest algorithms for predictive modeling tasks. Apply executable techniques to improve the performance of machine learning models.