	گروه آموزشی :		M	نام و نام خانوادگی :
11	تاريخ :		ورگراهمنتی ثابرود	شماره دانشجویی :
دقيقه	وقت :			نام مدرس :
		(: ديفرانسيل (امتحان میان ترم درس
			سال (/ ل / ۱۳ – ۱۳ – ۱۳	نيم

توجه: مطالب صفحه اول پاسخنامه را به دقت مطالعه نمایید.

سوال ۱ – معادله دیفرانسیل مرتبه اول زیر را حل کنید.
$$(y+\sqrt{x^{\mathsf{Y}}+y^{\mathsf{Y}}})dx-xdy=\cdot \quad ; \quad y(\mathtt{T})=\mathtt{F}$$

سوال ۲ – معادله دیفرانسیل زیر را حل کنید.
$$xydx + (y^{\mathsf{t}} - \mathsf{r} x^{\mathsf{t}})dy = \mathsf{t}$$

سوال ۳ – معادله مرتبه اول
$$y' - \frac{ry}{x} = \frac{-y^r}{x}$$
 را حل کنید.

سوال ۴ تابع
$$y'' + xy' - y'' + xy' - y = 0$$
 تابع $y_1 = x^{\mathsf{T}}$ است. عادله دیفرانسیل همگن مرتبه دوم $x^{\mathsf{T}}y'' + xy' - y = 0$ انمره معادله دیفرانسیل $x^{\mathsf{T}}y'' + xy' - y = 0$ را حل کنید.

سوال
$$\alpha$$
 - جواب عمومی معادله دیفرانسیل مرتبه دوم زیر را با استفاده از روش ضرایب نامعین بیابید. $y'' + 7y' + y = 17 \ x e^{-x}$

(دانشکده ریا*ضی* ۱۳۹۱/۱/۲۸

جواب سوال ا: این معادله یک معادله همگن است و داریم $y'=\frac{y}{x}+\sqrt{1+(\frac{y}{x})^{\top}}$ به معادله جواب سوال ا: این معادله یک معادله همگن است و داریم

$$\int \frac{du}{\sqrt{1+u^{\tau}}} = \int \frac{dx}{x}$$
 می رسیم که جدایی پذیر است.
$$\frac{du}{\sqrt{1+u^{\tau}}} = \frac{dx}{x}$$
 و یا $u + xu' = u + \sqrt{1+u^{\tau}}$

$$\rightarrow \arcsin h \, u = \ln(Ax) \rightarrow u + \sqrt{1 + u^{\mathsf{Y}}} = Ax \rightarrow y + \sqrt{x^{\mathsf{Y}} + y^{\mathsf{Y}}} = Ax^{\mathsf{Y}} \xrightarrow{y(\mathsf{Y}) = \mathsf{Y}} A = 1 \rightarrow y + \sqrt{x^{\mathsf{Y}} + y^{\mathsf{Y}}} = x^{\mathsf{Y}}$$

و در نتیجه $M_y=x$, $N_x=-\varepsilon x$ و در نتیجه M=xy , $N=y^{\dagger}-\varepsilon x^{\dagger}$ این معادله کامل نیست اما بروش اول : داریم

هادله و معادله
$$\mu = e^{\int \frac{-v}{y} dx} = \frac{v}{y}$$
 مستقل از x است پس $\frac{N_x - M_y}{M} = \frac{-sx - x}{xy} = \frac{-v}{y}$ چون عبارت

باید داشته باشیم
$$f(x,y) = \int (\frac{1}{y^{\mathsf{r}}} - \frac{\mathsf{r} x^{\mathsf{r}}}{y^{\mathsf{v}}}) dy = \frac{-1}{\mathsf{r} y^{\mathsf{r}}} + \frac{x^{\mathsf{r}}}{\mathsf{r} y^{\mathsf{r}}} + h(x)$$
 الست. اگر $\frac{x}{y^{\mathsf{r}}} dx + (\frac{1}{y^{\mathsf{r}}} - \frac{\mathsf{r} x^{\mathsf{r}}}{y^{\mathsf{v}}}) dy = \cdot$

$$rcy^{\flat} - y^{\dagger} + x^{\dagger} = \cdot$$
و یا $\frac{-1}{7y^{\dagger}} + \frac{x^{\dagger}}{7y^{\flat}} + c = \cdot$

روش دوم : اگر معادله را به صورت $\frac{dx}{dv} - \frac{x}{v} = -\frac{y^{r}}{x}$ بنویسیم به یک معادله برنولی می رسیم.

بنابر این $u = \frac{1}{y^{*}}$, $u' = \frac{-\mathbf{r}y'}{y^{*}}$, $u' = \frac{\mathbf{r}y'}{y^{*}}$ قرار می دهیم قرار می دهیم عادله یک معادله برنولی است. $\frac{y'}{x} - \frac{\mathbf{r}}{xy^{*}} = \frac{-1}{x}$

: و یا $\frac{r}{x} = \frac{r}{x}$ و یا $\frac{r}{x} = \frac{r}{x}$ که یک معادله مرتبه اول خطی است و در نتیجه $\frac{-u'}{x} - \frac{ru}{x} = \frac{-1}{x}$

$$u = e^{-\int_{-x}^{x} dx} \left(c + \int e^{\int_{-x}^{x} dx} \times \frac{\tau}{x} dx\right) \rightarrow u = \frac{\tau}{x^{s}} \left(c + \frac{\tau}{\tau} x^{s}\right) \rightarrow \frac{\tau}{y^{\tau}} = \frac{\tau}{x^{s}} \left(c + \frac{\tau}{\tau} x^{s}\right) \rightarrow \boxed{\tau x^{s} = y^{\tau} (\tau c + x^{s})}$$

 $x^{\mathsf{T}}(\mathsf{T} u + \mathsf{T} x u' + x^{\mathsf{T}} u'') + x(\mathsf{T} x u + x^{\mathsf{T}} u') - \mathsf{T}(x u) = \mathsf{T} x^{\mathsf{T}}$ استفاده می کنیم. $y = x^{\mathsf{T}} u$ استفاده می کنیم.

پس از ساده کردن عبارتها داریم $x^*u'' + \Delta x^*u'' = \frac{4}{x}$ و یا $x^*u'' + \Delta x^*u' = 4$ که یک معادله خطی قابل تبدیل به مرتبه اول

: يعنى اول است يعنى v=u' و داريم $v'+\frac{\Delta}{x}v=\frac{t}{x}$ که يک معادله خطى مرتبه اول است يعنى

$$v = e^{-\int \frac{\delta}{x} dx} \left(c + \int \frac{\tau}{x^{\tau}} e^{\int \frac{\delta}{x} dx} dx \right) \rightarrow v = \frac{1}{x^{\delta}} \left(c + x^{\tau} \right) \rightarrow u = \int v \, dx = -\frac{c}{\tau x^{\tau}} + \ln x + c, \quad \Rightarrow \boxed{y = c, x^{\tau} + \frac{c_{\tau}}{x^{\tau}} + x^{\tau} \ln x}$$

$$y_h = (a + bx)e^{-x}$$

اکنون چون e^{-x} در سمت راست معادله غیر همگن قرار دارد و در جواب همگن نیز تکرار شده است ، جواب خصوصی را به صورت $y_p = (Ax^r + Bx^r)e^{-x}$

$$\begin{split} y_p' &= (-Ax^{^{\mathrm{r}}} + (\mathbf{\tilde{r}}A - B)x^{^{\mathrm{r}}} + \mathbf{\tilde{r}}Bx)e^{-x} \quad , \quad y_p'' = (Ax^{^{\mathrm{r}}} + (-\mathbf{\tilde{r}}A + B)x^{^{\mathrm{r}}} + (\mathbf{\tilde{r}}A - \mathbf{\tilde{r}}B)x - \mathbf{\tilde{r}}B)e^{-x} \\ y_p'' &+ \mathbf{\tilde{r}}y_p' + y_p = (\mathbf{\tilde{r}}Ax - \mathbf{\tilde{r}}B)e^{-x} = \mathbf{\tilde{r}} \cdot x e^{-x} \quad \to A = \mathbf{\tilde{r}} \ , \ B = \cdot \quad \to y_p = \mathbf{\tilde{r}}x^{^{\mathrm{r}}}e^{-x} \\ y_g &= (a + bx + \mathbf{\tilde{r}}x^{^{\mathrm{r}}})e^{-x} \\ y_g &= (a + bx)e^{-x} + \mathbf{\tilde{r}}x^{^{\mathrm{r}}}e^{-x} \ . \end{split}$$

سيدرضا موسوى