Gain driven breathers in PT-symmetric metamaterials

G.P. Tsironis

Department of Physics, University of Crete,

Crete Center for Quantum Complexity and Nanotechnology,

Institute of Electronic Structure and Laser, FORTH, Greece

with N. Lazarides, UoC/FORTH

This research has been co-financed by the European Union (European Social Fund – ESF) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) - Research Funding Program: THALES: Reinforcement of the interdisciplinary and/or inter-institutional research and innovation

Contents

- Introduction
- Discreteness and nonlinearity in metamaterials
- Parity-Time (PT)-symmetric quantum mechanics and optics
- PT-symmetric metamaterials
- PT symmetry in zero dimensions
- Conclusions

Introduction: Left handed metamaterials

Maxwell equations

$$\nabla \cdot \mathbf{D} = \rho$$

$$\nabla \cdot \mathbf{B} = 0$$

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

$$\nabla \times H = \mathbf{J} + \frac{\partial \mathbf{D}}{\partial t}$$

Constitutive relations

$$\mathbf{D} = \varepsilon_0 \varepsilon(\omega) \mathbf{E}$$

$$\mathbf{B} = \mu_0 \mu(\omega) \mathbf{H}$$

Wave equations

$$\frac{\partial^2 \mathbf{E}}{\partial t^2} = \frac{c^2}{\varepsilon \mu} \nabla^2 \mathbf{E}, \quad \frac{\partial^2 \mathbf{B}}{\partial t^2} = \frac{c^2}{\varepsilon \mu} \nabla^2 \mathbf{B}$$

Plane waves

$$\mathbf{E} \approx e^{i(\mathbf{k} \cdot \mathbf{r} - \omega t)}$$

$$k^2 = \frac{\varepsilon \mu}{c^2} \omega^2$$

$$\varepsilon > 0, \mu > 0$$

$$\varepsilon < 0, \mu < 0$$

Left handed metamaterials

$$n = \sqrt{\varepsilon \mu} = \sqrt{(\varepsilon' + i\varepsilon'')(\mu' + i\mu'')} \cong \sqrt{\varepsilon' \mu' + i(\varepsilon' \mu'' + \mu' \varepsilon'')} \cong \pm \sqrt{\varepsilon' \mu'}$$

The wave vector k is in opposite direction wrt the Poynting vector

Nonlinearity

Nonlinearity across the gap of an SRR alters the electric field that in-turn affects self consistently the magnetic field and thus the magnetic permeability

$$\mu_{\text{eff}}(\mathbf{H}) = 1 + \frac{F \omega^2}{\omega_{\text{ONL}}^2(\mathbf{H}) - \omega^2 + i\Gamma\omega},$$

$$\omega_{\text{ONL}}^2(\mathbf{H}) = \left(\frac{c}{a}\right)^2 \frac{d_g}{\pi h \epsilon_D(|\mathbf{E}_g(\mathbf{H})|^2)}$$

Zharov et al., PRL 91, 037401 2003

For Kerr nonlinearity and to lowest nonlinear order in the magnetic field compound bright/dark E/M (Manakov) solitons may be generated

$$\mathbf{\varepsilon} = \mathbf{\varepsilon}_{0D} + \mathbf{\alpha} |\mathbf{E}|^2$$
$$\mathbf{\mu} = \mathbf{\mu}_{0D} + \mathbf{\beta} |\mathbf{H}|^2$$

N. Lazarides and GPT, PRE **71**, 036614 (2005)

Discreteness and nonlinearity

Weak coupling of nonlinear elements leads to modulational instability that generates Intrinsic localized modes (discrete breathers)

$$\frac{dQ_n}{dt} = I_n (2)$$

$$L\frac{dI_n}{dt} + RI_n + f(Q_n) = M\left(\frac{dI_{n-1}}{dt} + \frac{dI_{n+1}}{dt}\right) + \mathcal{E}. (3)$$

$$f(Q_n) = U_n$$

$$Q_n = C_\ell \left(1 + \alpha \frac{U_n^2}{3\epsilon_\ell U_r^2}\right) U_n$$

In dimensionless units

$$\frac{d^2q_n}{d\tau^2} + \gamma \frac{dq_n}{d\tau} + f(q_n) = \lambda \left(\frac{dq_{n+1}}{d\tau} + \frac{dq_{n-1}}{d\tau} \right) + \epsilon(\tau)$$

RLC model with nonlinear capacitance and weak inductive coupling

$$Q_n, I_n, U_n$$

Charge, current, voltage at the n-th SRR

Linear spectrum

$$f(q_n) \simeq q_n - \frac{\alpha}{3\,\epsilon_\ell} q_n^3 + 3\left(\frac{\alpha}{3\,\epsilon_\ell}\right)^2 q_n^5 + \mathcal{O}(q_n^7) \qquad \qquad \Omega_k = \left[1 - 2\,\lambda\,\cos(k\,D)\right]^{-1/2},$$

Localization in translationally invariant systems

Two identical oscillators

$$\ddot{x}_1 + V'(x_1) = kx_2$$

 $\ddot{x}_2 + V'(x_2) = kx_1$

I. Linear

$$V(x) = \frac{1}{2}\omega_0^2 x^2$$

The individual oscillators are always on resonance and thus there is complete energy exchange

II. Nonlinear

$$V(x) = \frac{1}{2}\omega_0^2 x^2 + \frac{1}{4}\beta x^4$$

The frequency of oscillation depends on the initial energy of each oscillator and thus may be completely out of resonance

Nonlinearity

Time periodic, localized modes in extended discrete systems of coupled nonlinear oscillators

$$H = \sum_{n} \left[\frac{1}{2} \dot{u}_{n}^{2} + \frac{k}{2} (u_{n+1} - u_{n})^{2} + V(u_{n}) \right],$$

$$V(u_{n}) = \frac{1}{4} (1 - u_{n}^{2})^{2}$$

Discrete breathers may be mobile

Discrete breathers in nonlinear metamaterials

in-phase response

Out-of-phase response

Lazarides, et al. PRL **97**, 157406 (2006)

Nonlinear localization in 2D

M. Eleftheriou et al. PRE 80, 017601 (2009)

PT – symmetric Quantum Mechanics

Should a Hamiltonian be Hermitian in order to have real eigenvalues?

$$\hat{P} = \begin{cases} \hat{p} \to -\hat{p} \\ \hat{x} \to -\hat{x} \end{cases} \qquad \hat{T} = \begin{cases} \hat{p} \to -\hat{p} \\ \hat{x} \to \hat{x} \\ i \to -i \end{cases}$$
Parity and time operators
$$PT - Hamiltonian \quad \Leftrightarrow \quad V^*(x) = V(-x)$$

 ${\cal PT}$ symmetric Hamiltonian share common eigenfunctions with the ${\cal PT}$ operator. As a result they can exhibit entirely real spectra.

Pseudo-Hermitian quantum mechanics?

$$PT-Potential \Leftrightarrow V^*(x) = V(-x)$$
 Real part: even Imaginary part: odd

A complex PT-potential, below threshold, has real eigenvalues

*C. M.Bender et al, Phys. Rev. Lett., 80, 5243 (1998); C. M.Bender et al, Phys. Rev. Lett., 89, 270401 (2002) C. M.Bender et al, Phys. Rev. Lett., 98, 040403 (2007); C. M.Bender, Contemporary Physics, 46, 277 (2005)

PT symmetric two level system

$$H = \begin{pmatrix} i\gamma & V \\ V & -i\gamma \end{pmatrix}$$

$$\gamma = 0$$
 $\lambda_{\pm} = \pm V$
$$\gamma \neq 0$$
 $\lambda_{\pm} = \pm \sqrt{V^2 - \gamma^2}$

Solution

$$\psi_{1,2}(t) = A_{1,2}e^{\lambda_{+}t} + B_{1,2}e^{\lambda_{-}t}$$

Eigenvalues

When the eigenvalues become imaginary, the solutions explode/decay respectively

Below transition

Transition

Above transition

Bender C.M. et al, Phys. Rev. Lett. 98 040403 (2007).

R. El-Ganainy, K.G.Makris, D. N. Christodoulides, and Z. H. Musslimani, Opt. Lett. 32, 2632 (2007).

K. G. Makris, R. El-Ganainy, D. N. Christodoulides, and Z. H. Musslimani, Phys. Rev. Lett. 100, 103904 (2008).

Two-level PT systems-supermodes

$$i\frac{da}{dz} - i\frac{g}{2}a + \kappa \quad b = 0, \qquad i\frac{db}{dz} + i\frac{g}{2}b + \kappa \quad a = 0$$

 $Z = \kappa z$

$$n_{R}$$

$$i\frac{d}{dz}\binom{a}{b} + \binom{-ig/2}{\kappa} \frac{\kappa}{ig/2}\binom{a}{b} = 0$$

PT-symmetric Hamiltonian

$$\lambda = \pm \sqrt{\kappa^2 - (g/2)^2} \Rightarrow \lambda = \begin{cases} \pm \sqrt{\kappa^2 - (g/2)^2}, & g < 2\kappa \\ 0, & g = 2\kappa \\ \pm i\sqrt{(g/2)^2 - \kappa^2}, & g > 2\kappa \end{cases}$$

^{*}Bender C.M., Brody D.C., Jones H.F., Meister B.K., Faster than Hermitian quantum mechanics, Phys. Rev. Lett. 98 (2007).

Theory

PT-symmetric system above threshold

Experiment

PT-symmetric metamaterials

Metamaterials are lossy and to overcome losses we can intruduce gain

Active RLC electronic circuit with PT-symmetries

 Ω_0 =200KHZ

Schindler et al., PRA 84 040101 (2011)

Coupled split ring resonators with gain and loss

equidistant

dimerized

Boardman et al. (2007)

$$\lambda'_{M}\ddot{q}_{2n} + \ddot{q}_{2n+1} + \lambda_{M}\ddot{q}_{2n+2} + \lambda'_{E}q_{2n} + q_{2n+1} + \lambda_{E}q_{2n+2}$$

$$= \varepsilon_{0}\sin(\Omega\tau) - \alpha q_{2n+1}^{2} - \beta q_{2n+1}^{3} - \gamma \dot{q}_{2n+1}$$
(1)

$$\lambda_{M}\ddot{q}_{2n-1} + \ddot{q}_{2n} + \lambda'_{M}\ddot{q}_{2n+1} + \lambda_{E}q_{2n-1} + q_{2n} + \lambda'_{E}q_{2n+1}$$

$$= \varepsilon_{0}\sin(\Omega\tau) - \alpha q_{2n}^{2} - \beta q_{2n}^{3} + \gamma \dot{q}_{2n}$$
(2)

 λ_{E} , λ_{E} electric coupling

 λ_{M}, λ_{M} ' inductive coupling

Linear Band picture

$$r_M = \lambda_M'/\lambda_M$$
,

$$\Omega_{\kappa}^{2} = \frac{2 - \gamma^{2} \pm \sqrt{\gamma^{4} - 2\gamma^{2} + (\lambda_{M} - \lambda'_{M})^{2} + \mu_{\kappa}\mu'_{\kappa}}}{2(1 - (\lambda_{M} - \lambda'_{M})^{2} - \mu_{\kappa}\mu'_{\kappa})}.$$
$$\mu_{\kappa} = 2\lambda_{M}\cos(\kappa), \ \mu'_{\kappa} = 2\lambda'_{M}\cos(\kappa)$$

For $\lambda_M = \lambda_M$ ' the lattice is always in the broken phase: only the dimerized PT-metamaterial has propagating modes

$$\gamma_{\rm c} \approx \left| \lambda_{\rm M} - \lambda_{\rm M} \right|$$

Localized nonlinear modes

Breather power spectrum

Weak dependence on γ

Frequency tuning with λ_{M}

Breather generation through frequency chirping

Spatiotemporal local energy density landscape

Time=0 to point A The lattice is not driven Point A to point B Frequency chirping from 1.01 Ω_0 to 0.997 Ω_0 Point B to C No external driving Point C to end Turn off gain

 Ω_0 freq. at the bottom of lower band

With Gain/loss mismatch 0.1%

Breather instability

The breather becomes unstable for gamma values smaller than the critical one

Classical PT symmetry in zero dimensions

$$\ddot{x} + 2\theta(t)\dot{x} + \omega_0^2 x = 0,$$

$$\theta(t) = \left\{ \begin{array}{ll} +\gamma & \text{if } 0 \leq t < \tau_1; \\ -\gamma & \text{if } \tau_1 \leq t < \tau_2. \end{array} \right. \quad \left(\begin{array}{l} x \\ \dot{x} \end{array} \right) = M_{G/L}(\tau) \left(\begin{array}{l} x_0 \\ \dot{x_0} \end{array} \right)$$

$$\theta(t+T) = \theta(t)$$

$$M(T) = \frac{1}{\delta^2} \left(\begin{array}{cc} M_{11} & M_{12} \\ M_{21} & M_{22} \end{array} \right)$$

$$M_{11} = -\gamma^2 + \omega_0^2 \cos(2\phi),$$

$$M_{12} = +2\sin\phi(\delta\cos\phi + \gamma\sin\phi)$$

$$M_{21} = -2\omega_0^2\sin\phi(\delta\cos\phi - \gamma\sin\phi)$$

$$M_{22} = -\gamma^2 + \omega_0^2\cos(2\phi)$$

$$\delta = \sqrt{\omega_0^2 - \gamma^2}$$
.

$$\phi = \delta \tau \equiv \delta T/2.$$

Stability equation

$$\left|\cos\left[\frac{\pi\sqrt{1-\gamma^2}}{\Omega}\right]\right| = \gamma,$$

$$\Omega = \omega/\omega_0$$

Blue: stable region

GPT and N. Lazarides, arXiv:1304.0556

Conclusions

- Localized nonlinear modes may appear in metamaterials
- •PT-symmetric metamaterials balance loss with gain and experience a transition in propagation properties
- Nonlinear modes may appear in PT-metamaterials
- May operate in microwave frequencies with tunnel diodes or higher

N. Lazarides and GPT, PRL 110, 053901 (2013)

Thank you for your attention

This research has been co-financed by the European Union (European Social Fund – ESF) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) - Research Funding Program: THALES: Reinforcement of the interdisciplinary and/or inter-institutional research and innovation

