SI231 - Matrix Computations, Fall 2020-21

Homework Set #1

Name: Liu Chang Major: Master in IE

Student No.: 2020232161 E-mail: liuchang3@shanghaitech.edu.cn

I. UNDERSTANDING RANK, RANGE SPACE AND NULL SPACE

Solution 1:

- 1) $:: \mathcal{R}(\mathbf{A}^T) = \mathcal{N}(\mathbf{A})^{\perp}$ and $:: N(\mathbf{A}) \oplus N(\mathbf{A})^{\perp} = \mathbb{R}^n$
 - $\therefore \mathcal{N}(\mathbf{A}) \oplus \mathcal{R}(\mathbf{A}^T) = \mathbb{R}^n$
- 2) : $\mathcal{R}(A + B) \in \mathcal{R}(A) + \mathcal{R}(B)$

- 3) : AB = $(a_1, a_2, \dots a_n)(b_1, b_2, \dots b_n)^T$
 - ... AB is the linear combination of matrix A 's columns and matrix B 's rows.
 - \therefore rank(AB) \leq rank(A) and rank(AB) \leq rank(B^T) = rank(B)
 - if A has full-column rank and B has full-row rank

$$then \operatorname{rank}(AB) = \operatorname{rank}(A) = \operatorname{rank}(B) = n$$

if A has no full-column rank or B has no full-row rank

 $then \ rank(AB) \leq n$

- 4) $\mathcal{R}(A|B)$ means all the linear combination of $(a_1, a_2, \cdots a_n, b_1, b_2, \cdots b_p)$
 - $\mathcal{R}(A) + \mathcal{R}(B)$ means all the linear combination of $(a_1, a_2, \cdots a_n)$ and $(b_1, b_2, \cdots b_p)$

Every vectors x in $\mathcal{R}(A|B)$ and in $\mathcal{R}(A) + \mathcal{R}(B)$ both can be written in the same form like $\sum_{i=1}^{n} x_i a_i + \sum_{i=1}^{p} y_i b_i$

Finally, $\mathcal{R}(A|B) = \mathcal{R}(A) + \mathcal{R}(B)$ is proved

- 5) $\because \dim(\mathcal{R}(A) + \mathcal{R}(B)) = \dim(\mathcal{R}(A)) + \dim(\mathcal{R}(B)) \dim(\mathcal{R}(A) \cap \mathcal{R}(B)))$ and $\because \dim(\mathcal{R}(A) + \mathcal{R}(B)) = \dim(\mathcal{R}(A|B))$

II. UNDERSTAND SPAN, SUBSPACE

Solution 1:

1) To prove $span(S) \subseteq \mathcal{M}$

$$:: \mathcal{M} = \cap_{s \subseteq \mathcal{V}} \mathcal{V}$$

$$\therefore S = \{v_1, \dots v_n\} \subseteq \mathcal{M}$$

 $:: \mathcal{M}$ is a vactor space

$$\therefore \sum_{i=1}^{n} x_i v_i \subseteq \mathcal{M}$$

$$\therefore span(S) \subseteq \mathcal{M}$$

2) To prove $\mathcal{M} \subseteq span(\mathcal{S})$

 $\because span(\mathcal{S})$ is one of the subspace which contain \mathcal{S}

 $\therefore \mathcal{S}$ is one of the \mathcal{V} which contain \mathcal{M}

$$\therefore \mathcal{M} \subseteq span(\mathcal{S})$$

3) :
$$span(S) \subseteq M$$
 and $M \subseteq span(S)$

$$\therefore \mathcal{M} = span(\mathcal{S})$$

III. BASIS, DIMENSION AND PROJECTION

Solution 1:

- 1) The dimension is n+1
- 2) The dimension is $\frac{n(n+1)}{2}$

Solution 2:

1) Rotations

a) Assume
$$R = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

 $\therefore RR^T = I$ and $\det(R) = 1$

$$\begin{cases} a^2 + b^2 = 1\\ ac - bd = 0\\ c^2 + d^2 = 1\\ ad - bc = 1 \end{cases}$$

Therefore

$$R = \begin{bmatrix} sin(\theta) & cos(\theta) \\ -cos(\theta) & sin(\theta) \end{bmatrix}, \theta \in [0, 2\pi)$$

b)
$$\mathbf{R}x = (\cos(\frac{5\pi}{6}), \sin(\frac{5\pi}{6}))^T$$

2) Reflections

$$QHx = (I - uu^T)(I - 2uu^T)x$$
$$= (I - 3uu^T + 2u(u^Tu)^Tu)x$$
$$= (I - uu^T)x = Qx$$

Therefore

$$||Hx - QHx||_2 = ||(I - Q)Hx||_2$$

= $||uu^T (I - 2uu)^T x||_2$
= $||uu^T x||_2$
= $||I - Qx||_2$
= $||x - Qx||_2$

 $\therefore Hx$ is a reflection of x with respect to \mathcal{H}_u

IV. DIRECT SUM

Solution 1:

- 1) According to the question, assume $dim(\mathcal{V})=n, \ \mathcal{B}=(v_1,v_2,\cdots v_n)$ in which vectors are linear independent, $\mathcal{B}_1=(v_1,v_2,\cdots v_m), \ \mathcal{B}_2=(v_{m+1},v_{m+2},\cdots v_n)$
 - $\therefore span(\mathcal{B}_1) = \sum_{i=1}^m x_i v_i$ and $span(\mathcal{B}_2) = \sum_{i=m+1}^n y_i v_i$
 - $\therefore span(\mathcal{B}_1) \cap span(\mathcal{B}_2) = \emptyset \text{ and } dim(span(\mathcal{B}_1)) + dim(span(\mathcal{B}_2)) = m + (n m) = n$
 - $\therefore \mathcal{V} = span(\mathcal{B}_1) \oplus span(\mathcal{B}_2)$

Solution 2:

- 1) According to the question, assume $dim(\mathcal{V}) = n$, the basis is $(v_1, v_2, \dots v_n)$ in which vectors are linear independent, $\mathcal{S} = span(v_1, v_2, \dots v_d)$, $\mathcal{T} = span(v_{rest})$
 - $\therefore S \cap T = \emptyset$ and dim(S) + dim(T) = d + (n d) = n
 - $\mathcal{L}: \mathcal{V} = \mathcal{S} \oplus \mathcal{T}$

V. UNDERSTANDING THE MATRIX NORM

Solution 1:

- 1) : The result of Ax is the linear combination of column vectors $[\alpha_1,.....\alpha_n]$ in A
 - \therefore if we add a 1-norm to the result, $||Ax||_1 = ||x_1a_1 + \dots + x_na_n||_1 \le max(||a_1||_1, \dots, ||a_n||_1)$, equality holds when $||a_i||_1 = max(||a_1||_1, \dots, ||a_n||_1)$ and $x_i = 1$

$$\therefore \max_{||x||_1=1} ||Ax||_1 = \max(||a_1||_1, ..., ||a_n||_1) = \max_j \sum_{i=1}^m |a_{ij}|$$

2) if we add a $\infty - norm$ to the result

$$||Ax||_{\infty} = ||x_1a_1 + \dots + x_na_n||$$

= $||||a_1||_1 + \dots + ||a_n||_1||_{\infty}$
= $\max_{1 \le i < m} \sum_{i=1}^n |a_i j|$

Equality holds when we firstly choose the a largest absolute sum row and secondly for every element in row vector a_{kj} , $j = 1, ..., n, x_j a_{kj} = |a_{kj}|$

:
$$||A||_{\infty} = \max_{||x||_{\infty}=1} ||Ax||_{\infty} = \max_{i} \sum_{j=1}^{m} |a_{ij}|$$

VI. UNDERSTANDING THE HOLDER INEQUALITY

Solution 1:

1)
$$f'(t) = \lambda - \lambda t^{\lambda - 1}, 0 < \lambda < 1$$
. when
$$\begin{cases} 0 < t < 1, f'(t) < 0 \\ t > 1, f'(t) > 0 \end{cases}$$
$$\therefore f_{min}(t) = f(0) = 0$$

Let $t=\frac{\alpha}{\beta}$, then $f(\frac{\alpha}{\beta})=(1-\lambda)+\lambda(\frac{\alpha}{\beta})-(\frac{\alpha}{\beta})^{\lambda}\geq 0$, when we mutiple β on both side , we get: $(1-\lambda)\beta+\lambda\alpha-\alpha^{\lambda}\beta^{1-\lambda}\geq 0\Rightarrow \alpha^{\lambda}\beta^{\lambda}\leq \lambda\alpha+(1-\lambda)\beta$

- 2) Let $\alpha = |\hat{x_i}|^p$, $\beta = |\hat{y_i}|^q, \, \lambda = \frac{1}{p}$
 - $\therefore |\hat{x_i}\hat{y_i}| \leq \frac{1}{p}|\hat{x_i}|^p + \frac{1}{q}|\hat{y_i}|^q$

$$\therefore \sum_{i=1}^{n} |\hat{x_i} \hat{y_i}| \le \sum_{i=1}^{n} \frac{1}{p} |\hat{x_i}|^p + \sum_{i=1}^{n} \frac{1}{q} |\hat{y_i}|^q = \frac{1}{p} + \frac{1}{q} = 1$$

3)
$$\sum_{i=1}^{n} |\hat{x}_i \hat{y}_i| \le 1 \Rightarrow \sum_{i=1}^{n} |\hat{x}_i \hat{y}_i| \le ||x||_p ||y||_q \Rightarrow |x^T y| \le ||x||_p ||y||_q$$

Proved.