Básico de Python

Sergio Pedro Rodrigues Oliveira

SUMÁRIO

1	Diag	grama de estudo
2		áveis e tipos de dados simples
	2.1	print()
	2.2	print() com variáveis
	2.3	Regras de nomes de variáveis
	2.4	Concatenando strings
	2.5	Métodos auxiliares da função print()
	2.6	Caracteres de escape
	2.7	Removendo espaços em branco print()
	2.8	Números
	2.9	Funções de conversão de tipo
		Descobrindo o tipo da variável usando a função type()
		Operações básicas
		Biblioteca math para ampliar operações matematicas
		Operações lógicas básicas
		Operadores de identidade
		Operações de associação
		Comentários
	2.17	Zen Python
3	Lista	as
	3.1	Lista
	3.2	Acessando elementos de uma lista
	3.3	Alterando, acrescentando e removendo elementos
		3.3.1 Modificando elementos de uma lista
		3.3.2 Acrescentando elementos em uma lista
		3.3.2.1 Concatenando elementos no final de uma lista, método
		.append()
		3.3.2.2 Inserindo elementos em uma lista, método .insert()
		3.3.3 Removendo elementos de uma lista
		3.3.3.1 Instrução del
		3.3.3.2 Método .pop()
		3.3.3.3 Método .remove()
	3.4	Organizando uma lista
		3.4.1 Método .sort()
		3.4.2 A função sorted()
		3.4.3 Método .reverse()
	3.5	Descobrindo o tamanho de uma lista - 1en()

4	Tral	balhando com listas 2
	4.1	Percorrendo uma lista inteira com um laço
	4.2	Erros comuns de indentação
	4.3	Listas numéricas
		4.3.1 Gerando série de números com a função range()
		4.3.2 Usando range() para gerar uma lista - list()
		4.3.3 Estatística simples com lista de números
	4.4	list comprehensions
	4.5	Trabalhando com parte de uma lista
		4.5.1 Fatiando uma lista
		4.5.2 Percorrendo uma fatia com um laço - for
		4.5.3 Copiando uma lista
	4.6	Tuplas
	1.0	4.6.1 Definindo uma tupla
		4.6.2 Percorrendo todos os valores de uma tupla com um laço
		4.6.3 Sobrescrevendo uma tupla
		4.0.0 Sobrescrevendo uma tupia
5	Esta	atística básica
	5.1	Teoria
	5.2	Preparação dos dados (sumariazar dados coletados)
		5.2.1 Variável Quantitativa Discreta
		5.2.2 Variável Quantitativa Contínua
		5.2.3 Variáveis Qualitativas
	5.3	Medidas de posição
		5.3.1 Média Aritmética (Simples e Ponderada)
		5.3.2 Mediana $(md(x))$
		5.3.2.1 Mediana Discreta
		5.3.2.2 Mediana Contínua
		5.3.3 Moda
		5.3.4 Separatrizes
	5.4	Medidas de dispersão
	0.1	$5.4.1$ Amplitude Total (A_T)
		5.4.2 Desvio
		5.4.2.1 Desvio Absoluto (D)
		5.4.2.1 Desvio Absoluto Médio (dm)
		5.4.2 Variância (σ^2 ou S^2)
		5.4.4 Desvio-padrão (σ ou S)
		*
		5.4.4.2 Desvio-padrão (Populacional e Amostral)
		5.4.5 Coeficiente de Variação (CV)
		5.4.5.1 Teoria
		5.4.5.2 Cálculo do Coeficiente de Variação

6	Anál	lise Estatística	62
7	Instr	ruções IF	63
	7.1	Testes condicionais	63
	7.2	Operações lógicas	63
	7.3	Testando várias condições	65
		7.3.1 Testando várias condições lógicas - AND	65
		7.3.2 Testando várias condições lógicas - OR	65
	7.4	Verificando se um valor está em uma lista - IN	67
	7.5	Verificando se um valor não está em uma lista - NOT IN	67
	7.6	Expressões booleanas	67
	7.7	Instruções IF	68
		7.7.1 Instruções if simples	68
		7.7.2 Instruções if-else	69
		7.7.3 Sintaxe if-elif-else	69
		7.7.4 Usando vários blocos elif	70
		7.7.5 Omitindo o bloco else	71
		7.7.6 Testando várias condições	72
	7.8	Usando instruções if com listas	73
		7.8.1 Verificando itens especiais	73
		7.8.2 Varificando se uma lista não esta vazia	74
		7.8.3 Usando várias listas	75
8	Dicio	onários	76
	8.1	Dicionário simples	76
	8.2	Trabalhando com dicionários	76
	8.3	Acessando valores em um dicionário	77
	8.4	Adicionando novos pares chave-valor	78
	8.5	Dicionário vazio	79
	8.6	Modificando valores em um dicionário	79
	8.7	Removendo pares chave-valor	80
	8.8	Dicionário de objetos semelhantes	81
	8.9	Percorrendo um dicionário com um laço	82
		8.9.1 Percorrendo todos os pares chave-valor com um laço	82
		8.9.2 Percorrendo todas as chaves de um dicionário com um laço	83
		8.9.3 Percorrendo todas as chaves de um dicionário em ordem usando um laço	85
		8.9.4 Percorrendo todos os valores de um dicionário com um laço	86
	8.10	Informações aninhadas	88
	2.20	8.10.1 Uma lista de dicionários	88
		8.10.2 Uma lista em um dicionário	89
		8.10.3 Um dicionário em um dicionário	91
9	Entr	ada de usuário e laços while	93

LISTA DE FIGURAS

1	Fluxograma da estatística descritiva
2	Tipos de variáveis
3	Distribuição tabular quantitativa discreta
4	Distribuição de frequências em classes
5	Intervalo de classes, distribuição de frequências quantitativa continua 42
6	Distribuição frequências quantitativa continua, premissas
7	Tabela de_distribuição de frequência quantitativa continua
8	Exemplo de dispersão com heterogeneidade e homogeneidade
9	Tabela verdade do operador AND
10	Tabela verdade do operador OR

LISTA DE TABELAS

1	Caracteres de escape	5
2	Principais tipos de dados	7
3	Funções de conversão de tipo	7
4	Operações básicas	9
5	Algumas operações da biblioteca math	10
6	Operações Lógicas Básicas	11
7		12
8	Operadores de associação	13
9	Estatística simples	28
10	Medidas de posição, bibliotecas python	28
11	Medidas de dispersão, bibliotecas python	28
12	Operações Lógicas	3
13	Operações Lógicas Exemplos	34

1 Diagrama de estudo

2 Variáveis e tipos de dados simples

2.1 print()

Print é uma função que exibe uma string na tela.

Exemplo:

```
print("string")
```

string

2.2 print() com variáveis

Podemos usar a função print() para imprimir uma variável string.

Exemplo:

```
message = "Hello world!"
print(message)
```

Hello world!

2.3 Regras de nomes de variáveis

Regras ou diretrizes para usar variáveis em Python.

- Nomes de variáveis deve conter apenas letras, números e underscores. Podemos começar a variável com letra ou underscore, mas nunca com um número.
- Espaços não são permitidos em nomes de variáveis, mas underscores podem ser usados para separar palavras.
- Evite usar palavras reservadas e nome de funções em Python como nome de variáveis.
- Nomes de variáveis devem ser concisos, porém descritivos.
- Tome cuidado ao usar a letra l e a letra maiuscula O, pois podem ser confundidas com os números 1 e 0.

2.4 Concatenando strings

Podemos usar o simbolo de (+) para combinar strings (concatenar).

Exemplo:

```
first_name = "ada"
last_name = "lovelace"
full_name = first_name + " " + last_name
print("Hello, " + full_name.title() + "!")
```

Hello, Ada Lovelace!

Os espaços em branco entre aspas servem para criar espaços na string.

2.5 Métodos auxiliares da função print()

```
1. .title()
```

Coloca apenas as primeiras letras em maiúsculas de cada palavra e o resto em minúscula.

Exemplo:

```
full_name = "ada lovelace"
print(full_name.title())
```

Ada Lovelace

2. .upper()

Coloca todas as letras em maiúsculas.

Exemplo:

```
full_name = "ada lovelace"
print(full_name.upper())
```

ADA LOVELACE

3. .lower()

Coloca todas as letras em minusculas. O método .lower() é particularmente útil para armazenar dados. Converter os dados em minúscula antes de armazenar.

Exemplo:

```
full_name = "ada lovelace"
print(full_name.lower())
```

ada lovelace

2.6 Caracteres de escape

Podemos inserir alguns caracteres de escape no texto para executar alguma ação, como pular linha, gerar tabulação e etc. Alguns caracteres podem ser vistos na Table 1.

Todos os caracteres de escape começam com barra(\) + complemento.

Table 1: Caracteres de escape

Caracteres de escape	Descrição
\t	Gera tabulação (tab).
\n	Gera quebra de linha.

Exemplo:

```
print("Language:\nPython\nJava\nC\nJavaScript")
```

Language:
Python
Java
C
JavaScript

2.7 Removendo espaços em branco print()

```
1. .rstrip()
```

Remove espaço em branco do lado direito.

Exemplo:

```
favorite_linguage = 'python '
favorite_linguage.rstrip()
```

'python'

```
2. .lstrip()
```

Remove espaço em branco do lado esquerdo.

Exemplo:

```
favorite_linguage = ' python'
favorite_linguage.lstrip()
```

'python'

3. .strip()

Remove os espaços em branco dos dois lados ao mesmo tempo.

Exemplo:

```
favorite_linguage = ' python '
favorite_linguage.strip()
```

'python'

• Os metodos usados não removem os espaços em branco em definitivo, para remover em definitivo é necessario armazenar o valor novo na variável.

```
favorite_linguage = ' python '
favorite_linguage = favorite_linguage.strip()
favorite_linguage
```

^{&#}x27;python'

2.8 Números

A linguagem Python faz tipagem automática (dinâmica), tipa a variável de acordo com o uso. E o Python contém uma tipagem forte, não faz converção automática do tipo de uma variável para executar uma ação (operação).

Em resumo, python tem é uma linguagem de tipagem dinâmica e forte.

Os principais tipos de dados no Python são estão presentes na Table 2.

Table 2: Principais tipos de dados

Nome	Abreviação	Descrição
Inteiro	int	Números inteiros
Ponto flutuante	float	Números com ponto decimal

2.9 Funções de conversão de tipo

Podemos converte variáveis para determinado tipo especificado usando funções de conversão de tipo, como pode ser obeservado na Table 3.

Converter uma variável não é permanente, a não ser que a ação seja armazenada na variável explicitamente.

Table 3: Funções de conversão de tipo

Tipo para converter	Função	Descrição
int float string		Converte variável para o tipo inteiro(int) Converte variável para o tipo float Converte variável para o tipo string

A função str() é deveras importante, pois pode auxiliar na função print(). A função print() só imprime na tela veriáveis string, sendo assim, precisamos converter as variáveis de outros tipos para string (pelo menos, momentaneamente), para comprir essa condição.

Exemplo:

```
age = 23
print("Happy " + str(age) + "rd Birthday!")
```

Happy 23rd Birthday!

2.10 Descobrindo o tipo da variável usando a função type()

Podemos usar a função type() para descobrir o tipo de determinada variável.

```
age = 23
print (type(age))
```

<class 'int'>

É uma boa pratica usar a função type(), para conferir o tipo da variável, antes de manipular alguma variável. Assim o programador terá o controle sobre as variáveis que esta trabalhando. Essa boa prática evita erros.

Também é uma **boa prática**, ao identificar/observar um erro, conferir os tipos das variáveis envolvidas. É um dos erros mais comuns: erro de tipagem.

2.11 Operações básicas

A Table 4 apresenta as principais operações básicas do python.

Table 4: Operações básicas

	G(1 1	
Operação	Símbolo	Exemplo
Soma	+	2+2=4
Subtração	-	3-2=1
Multiplicação	*	2*3=6
Divisão	/	5/4 = 1.25
Divisão inteira	//	5//4 = 1
Resto da divisão (módulo)	%	10%8 = 2
Potência	**	3**2=9
Raiz	**	4**0.5=2

2.12 Biblioteca math para ampliar operações matematicas

Podemos usar o pacote math para ampliar as funções matemáticas do Python (básicas, trigonométricas e estatísticas). A Table 5 apresenta as principais funções básicas da biblioteca math.

Table 5: Algumas operações da biblioteca math

Operação	Símbolo	Exemplo
Soma	math.add(x,y)	math.add(2,2) = (2+2)=4
Subtração	<pre>math.subtract(x,y)</pre>	math.subtract(2,2) = (2-2)=0
Raiz quadrada	math.sqrt()	<pre>math.sqrt(4)=2</pre>
Potência	math.pow(x,y)	math.pow(2,3) = (2**3)=8
Seno	math.sin()	math.sin(), retorna um ângulo em radianos.
Cosseno	math.cos()	math.cos(), retorna um ângulo em radianos.
Tangente	<pre>math.tan()</pre>	math.tan(), retorna um ângulo em radianos.
potencia de Euler	math.exp(x)	<pre>math.exp(x) = math.pow(math.e**x)</pre>
Logaritmo natural, ou log neperiano	math.log(x)	math.log(2)=0.69
Logaritmo	<pre>math.log(x[,base])</pre>	math.log(2,10)=0.3

Para converter o ângulo para radianos podemos usar a função math.radians().

```
import math
#Seno do ângulo de 45°
#Resultado em Radianos
print(str(math.sin(math.radians(45))))
```

0.7071067811865475

Para converter de radiano para grau podemos usar a função math.degrees().

```
import math
#Seno do ângulo de 45°
#Resultado em ângulo
print(str(math.degrees(math.sin(math.radians(45)))))
```

40.51423422706977

2.13 Operações lógicas básicas

A Table 6 apresenta as principais operações lógica básica do python. As operações lógicas retornam True ou False.

Table 6: Operações Lógicas Básicas

Operação	Nome	Função	Exemplo
==	Igual a	Varifica se um valor é igual ao outro.	1==1 = True
!=	Diferente de	Varifica se um valor é diferente ao outro.	1!=2 = True
>	Maior que	Varifica se um valor é maior que outro.	5>1 = True
>=	Maior ou igual	Varifica se um valor é maior ou igual a outro.	5>=5 = True
<	Menor que	Varifica se um valor é menor que outro.	1 < 5 = True
<=	Menor ou igual	Varifica se um valor é menor ou igual a outro.	1 < =4 = True
and	\mathbf{E}	Retorna True se ambas as afirmações forem verdadeiras.	(1==1) and $(4<5)$
or	Ou	Retorna True se uma das afirmações for verdadeiras.	(1==1) or $(2<1)$
not	Negação	Retorna Falso se o resultado for verdadeiro, ou o contrario.	not $(1==1)$ = False

2.14 Operadores de identidade

Os operadores de identidade, Table 7, são utilizados para comparar objetos, se os objetos testados referenciam o mesmo objeto.

Table 7: Operadores identidade

Operador	Definição
is	Retorna True se ambas as variáveis são o mesmo objeto.
is not	Retorna True se ambas as variáveis não são o mesmo objeto.

Exemplo de operações de identidade:

```
lista = [1,2,3]
outra_lista = [1,2,3]
recebe_lista = lista

print(f"São o mesmo objeto: {lista is outra_lista}")
```

São o mesmo objeto: False

```
lista = [1,2,3]
outra_lista = [1,2,3]
recebe_lista = lista

print(f"São o mesmo objeto: {lista is recebe_lista}")
```

São o mesmo objeto: True

2.15 Operações de associação

Os operadores de associação, Table 8, servem para verificar se determinado objeto esta **associado** ou **pertence** a determinada estrutura de dados.

Table 8: Operadores de associação

Operação	Função
in	Retorna True caso valor seja encontrado na sequência.
not in	Retorna True caso valor não seja encontrado na sequência.

Exemplos de operações de associação:

```
lista = ["Python", 'Academy', "Operadores", 'Condições']
print('Python' in lista)
```

True

```
lista = ["Python", 'Academy', "Operadores", 'Condições']
print('SQL' not in lista)
```

True

2.16 Comentários

Um comentário permite escrever notas em seus programas em liguagem natural. Em Python, o caractere sustenido (#) indica um comentário. Tudo que vier depois de um caractere sustenido en seu código será ignorado pelo interpretador Python.

Boas práticas em comentários:

- 1. Explicar o que o código deve fazer.
- 2. Como faz para funcionar.

2.17 Zen Python

É um guia de boas práticas.

import this

The Zen of Python, by Tim Peters

Beautiful is better than ugly. Explicit is better than implicit. Simple is better than complex. Complex is better than complicated. Flat is better than nested.

Sparse is better than dense.

Readability counts.

Special cases aren't special enough to break the rules.

Although practicality beats purity.

Errors should never pass silently.

Unless explicitly silenced.

In the face of ambiguity, refuse the temptation to guess.

There should be one -- and preferably only one --obvious way to do it.

Although that way may not be obvious at first unless you're Dutch.

Now is better than never.

Although never is often better than *right* now.

If the implementation is hard to explain, it's a bad idea.

If the implementation is easy to explain, it may be a good idea.

Namespaces are one honking great idea -- let's do more of those!

Principais pontos:

- 1. Bonito é melhor do que feio.
- 2. Simples é melhor que complexo.
- 3. Complexo é melhor que complicado.
- 4. Legibilidade conta.
- 5. Deve haver uma e, de preferência, apenas uma maneira óbvia de fazer algo.
- 6. Agora é melhor que nunca.

3 Listas

3.1 Lista

Uma lista é uma coleção de itens em uma ordem em particular. Os colchetes([]) indicam uma lista e os elementos individuais de uma lista são separados por vírgula. [ver 1, p. 71]

Exemplo:

```
bicycles = ['trek','cannondale','redline','specialized']
print(bicycles)
```

```
['trek', 'cannondale', 'redline', 'specialized']
```

3.2 Acessando elementos de uma lista

Podemos acessar a qualquer item de uma lista informando a posição, ou índice. As posições de uma lista começam no 0, e não no 1.

Para acessar um elemento de uma lista, informamos o nome nome da lista seguido do índice do item entre colchetes.

Exemplo:

```
#Acessando o primeiro item da lista
bicycles = ['trek','cannondale','redline','specialized']
print(bicycles[0].title())
```

Trek

Para acessar a lista de trás pra frente podemos usar a posição invertida seguida do símbolo de menos na frente. Sendo assim, a posição do último item é -1, do penúltimo -2 e assim sucessivamente.

Exemplo:

```
#Acessando o último item da lista
bicycles = ['trek','cannondale','redline','specialized']
print(bicycles[-1].title())
```

Specialized

3.3 Alterando, acrescentando e removendo elementos

Dado que a lista é um elemento dinâmico (pode, e provavelmente ocorrerá, de sofrer modificações com o uso), este tópico comentará os principais formas de modificação de listas.

3.3.1 Modificando elementos de uma lista

Para alterar um elemento que você quer modificar, use o nome da lista seguido do índice do elemento que quer modificar, e então forneça um novo valor.

```
#Alterando o item 1 da lista (índice 0)
motorcycles = ['honda','yamaha','suzuki']
motorcycles[0] = 'ducati'
print(motorcycles)
```

```
['ducati', 'yamaha', 'suzuki']
```

3.3.2 Acrescentando elementos em uma lista

Existem diversas formas de adicionar elementos a uma lista:

3.3.2.1 Concatenando elementos no final de uma lista, método .append()

Adiciona um novo elemento no final da lista usando o método .append().

Exemplo:

```
#Adicionando elemento ao final da lista
motorcycles = ['honda','yamaha','suzuki']
motorcycles.append('ducati')
print(motorcycles)
```

```
['honda', 'yamaha', 'suzuki', 'ducati']
```

3.3.2.2 Inserindo elementos em uma lista, método .insert()

Este método insere um elemento em determinada posição da lista, usando o método .insert(indice,elemento).

```
#Adicionando um item na segunda posição da lista (índice 1)
motorcycles = ['honda','yamaha','suzuki']
motorcycles.insert(1,'ducati')
print(motorcycles)
```

```
['honda', 'ducati', 'yamaha', 'suzuki']
```

3.3.3 Removendo elementos de uma lista

Os métodos para remover um item, ou um conjunto de itens, de uma lista.

3.3.3.1 Instrução del

Se a posição do item que você quer remover de uma lista for conhecida, a instrução del remove (deleta) um item em qualquer determinada posição. Depois de removido (deletado) não podemos mais acessar o valor, quando usado a instrução del.

```
# Remover (deletar) primeiro item da lista, indíce 0
motorcycles = ['honda','yamaha','suzuki']
print(motorcycles)

del motorcycles[0]
print(motorcycles)
```

```
['honda', 'yamaha', 'suzuki']
['yamaha', 'suzuki']
```

3.3.3.2 Método .pop()

Existem duas formas de usar o método .pop():

```
1. .pop()
```

As vezes há necessidade de usar o valor de um item depois de removê-lo de uma lista. O método .pop() remove o último item de uma lista, mas permite que você trabalhe com esse item depois da remoção.

Remove o primeiro item de uma pilha, ou seja, o último item de uma lista.

Para usarmos o item removido é necessário, salva-lo numa variável.

```
# Uso do método .pop()
# Removendo último item da lista e
# Trabalhando com o item removido.
motorcycles = ['honda','yamaha','suzuki']
print(motorcycles)

pop_motorcycle = motorcycles.pop()
```

```
print(motorcycles)
print(pop_motorcycle)
```

```
['honda', 'yamaha', 'suzuki']
['honda', 'yamaha']
suzuki
```

2. .pop(indice)

Podemos usar o .pop() para remover um item em qualquer posição em uma lista, se incluirmos o índice do item que você deseja remove entre parênteses.

Exemplo:

```
# Uso do método .pop()
# Removendo o segundo item da lista e
# Trabalhando com o item removido.
motorcycles = ['honda','yamaha','suzuki']
print(motorcycles)

pop_motorcycle = motorcycles.pop(1)
print(motorcycles)
print(pop_motorcycle)
```

```
['honda', 'yamaha', 'suzuki']
['honda', 'suzuki']
yamaha
```

3.3.3.3 Método .remove()

Remove um item de acordo com o valor. É usado quando sabemos o valor do item, mas não a posição.

O método .remove() apaga apenas a primeira ocorrência do valor especificado. Para apagar mais de uma ocorrência será necessario o uso de um laço, para cada ocorrência.

```
# Uso do método .remove()
# Removendo um item da lista pelo valor
motorcycles = ['honda','yamaha','ducati']
print(motorcycles)
```

```
too_expensive = 'ducati'
motorcycles.remove(too_expensive)
print(motorcycles)
```

```
['honda', 'yamaha', 'ducati']
['honda', 'yamaha']
```

3.4 Organizando uma lista

Dado que com frequência, as listas são organizadas numa ordem imprevisível, se torna necessario organizar as informações em uma ordem particular. O Python tem mecanismos para organizar listas. São eles:

3.4.1 Método .sort()

Ordena uma lista em ordem alfabética, ou alfabetica inversa.

Para ordenar uma lista em ordem alfabética inversa, basta passar o argumento reverse = True para o método .sort().

Uma vez ordenada pelo método .sort() a lista não retorna a ordem original (ordenação permanente).

```
# Ordenando a lista cars usando o método .sort()
cars = ['bmw','audi','toyota','subaru']
print(cars)
cars.sort()
print(cars)
cars.sort(reverse=True)
print(cars)
```

```
['bmw', 'audi', 'toyota', 'subaru']
['audi', 'bmw', 'subaru', 'toyota']
['toyota', 'subaru', 'bmw', 'audi']
```

3.4.2 A função sorted()

A função sorted() ordena uma lista de forma temporaria, não altera a lista original, em ordem alfabetica. Ou seja, a lista volta a forma orginal ao final do uso da função.

Assim como no médodo .sort(), podemos ordenar a lista em ordem alfabética inversa adicionando o argumento reverse=True.

```
# Ordenando temporariamente a lista cars usando a função sorted()
cars = ['bmw','audi','toyota','subaru']
print(cars)
print(sorted(cars))
print(sorted(cars,reverse=True))
print(cars)
```

```
['bmw', 'audi', 'toyota', 'subaru']
['audi', 'bmw', 'subaru', 'toyota']
['toyota', 'subaru', 'bmw', 'audi']
['bmw', 'audi', 'toyota', 'subaru']
```

3.4.3 Método .reverse()

Para inverter a ordem original de uma lista, podemos usar o método .reverse().

O método .reverse() não organiza a lista em ordem alfabética inversa, o método inverte a lista original.

O método .reverse() ordena de forma permanente a lista, porém se usarmos o método novamente, teremos a lista original. Logo, é fácil reverter o uso do método .reverse().

```
# Método .reverse() para inverte, de modo permanete, a ordem da lista.
cars = ['bmw','audi','toyota','subaru']
print(cars)
cars.reverse()
print(cars)
cars.reverse()
print(cars)
```

```
['bmw', 'audi', 'toyota', 'subaru']
['subaru', 'toyota', 'audi', 'bmw']
['bmw', 'audi', 'toyota', 'subaru']
```

3.5 Descobrindo o tamanho de uma lista - len()

Podemos descobrir o tamanho de uma lista usando a função len().

Exemplo:

```
cars = ['bmw','audi','toyota','subaru']
len(cars)
```

4

4 Trabalhando com listas

4.1 Percorrendo uma lista inteira com um laço

Podemos usar um laço for para percorrer toda uma lista, podendo assim entre outras coisas, efetuar tarefas em cada item da lista.

A estutura básica do for é:

```
for variável_nova in lista :
  tarefas
```

O laço diz para a cada iteração pegar um elemento da lista e armazenar na nova variável, e executar uma tarefa a cada iteração. Toda tarefa indentada depois dos dois pontos é considerada dentro do laço.

No Python o for, usa indentação para determinar o que esta dentro do laço.

Qual quer linha após o laço que não for indentada é considerada fora do laço.

Exemplo:

```
#Executando um laço com base numa lista
magicians = ['alice', 'david', 'carolina']
for magician in magicians:
    print(magician)
```

alice david carolina

4.2 Erros comuns de indentação

- Esquecer de indentar.
- Esquecer de indentar linhas adicionais do laço.
- Indentação desnecessaria.
- Indentando desnecessariamente após o laço.
- Esquecer os dois-pontos do laço for.

4.3 Listas numéricas

4.3.1 Gerando série de números com a função range()

A função range() é usada para gerar uma série de números, de uma determinada sequência numérica.

A função range() faz o Python começar a contar no primeiro valor definido (limite inferior) e parar quando atingir o segundo valor definido (limite superior). Como o for para no segundo valor, a saída não conterá o valor final. Também podemos definir um intervalo, pulando alguns valores.

Estrutura da função range():

```
range(limite_inferior, limite_superior, intervalo)
```

Exemplo:

```
for value in range(1,5):
   print(value)

1
2
3
```

4.3.2 Usando range() para gerar uma lista - list()

Podemos usar para criar uma lista de números, combinando a função range(), que gera uma série númerica, com a função list(), que cria um lista.

Exemplo:

4

```
numbers = list(range(1,6))
print(numbers)
```

```
[1, 2, 3, 4, 5]
```

Exemplo 2:

```
numbers = list(range(2,11,2))
print(numbers)
```

```
[2, 4, 6, 8, 10]
```

4.3.3 Estatística simples com lista de números

As principais funções estatísticas estão contidas na Table 9.

Table 9: Estatística simples

Funções	Descrição
min() max() sum()	Retorna o valor mínimo. Retorna o valor máximo. Somatório.

As principais bibliotecas auxiliares de funções estatísticas são:

- 1. math
- 2. numpy as np
- 3. statistics
- 4. Pandas as pd

Medidas de posição utilizando bibliotecas python, Table 10.

Table 10: Medidas de posição, bibliotecas python

Funções	Descrição
np.mean()	Média aritmética
statistics.median()	Mediana
statistics.mode()	Moda
np.quantiles(array, 0.5)	Quartil
np.percentile(array, 50)	Percentil

Medidas de dispersão utilizando bibliotecas python, Table 11.

Table 11: Medidas de dispersão, bibliotecas python

Descrição
Variância
Desvio-padrão
Desvio absoluto
Covariância
Correlação

4.4 list comprehensions

List comprehensions é uma forma de criar listas já acoplando o laço for nelas, deixando o código mais enxuto.

Sintaxe:

```
nome_lista = [expressão_calculada_do_for for variável in range()]
Exemplo:
```

```
squares = [value ** 2 for value in range(1,11)]
print(squares)
```

[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

4.5 Trabalhando com parte de uma lista

Neste tópico vamos trabalhar com um grupo de itens de uma lista, no Python é chamado de fatia (de uma lista).

4.5.1 Fatiando uma lista

1. Fatia simples

Para criar uma fatia, especifique o índice do primeiro e o último elemento com os quais você deseja trabalhar.

O Python para em um item antes do segundo índice (índice final) especificado.

Exemplo:

```
#Exibindo os 3 primeiros elementos de uma lista.
players = ["charles", "martina", "michael", "florence", "eli"]
print(players[0:3])
#Serão exibidos os itens na posição 0, 1 e 2.
```

```
['charles', 'martina', 'michael']
```

2. Delimitando ínicio e fim da fatia.

Podemos começar de qualquer índice.

```
#Exibindo do segundo ao quarto item.
players = ["charles","martina","michael","florence","eli"]
print(players[1:4])
```

```
['martina', 'michael', 'florence']
```

3. Omitindo índices

Se omitirmos o primeiro índice, o Python começará do índice 0 (ínicio). De maneira analóga, se omitirmos o segundo índice (índice final), o Python terminará no último item.

Exemplo:

```
#Exibindo os 2 primeiros elementos de uma lista.
players = ["charles", "martina", "michael", "florence", "eli"]
print(players[:2])
```

```
['charles', 'martina']
```

4. índice negativo

O índice negativo devolve um elemento a determina distância do final da lista. Assim podemos exibir qualquer fatia a partir do final da lista.

Exemplo:

```
#Exibindo os 3 últimos elementos de uma lista.
players = ["charles", "martina", "michael", "florence", "eli"]
print(players[-3:])
```

```
['michael', 'florence', 'eli']
```

4.5.2 Percorrendo uma fatia com um laço - for

Podemos usar uma fatia em um laço for se quisermos percorrer um subconjunto de elementos de uma lista.

Exemplo:

```
players = ["charles", "martina", "michael", "florence", "eli"]
print("Here are the first three players on my team:")
for player in players[:3]:
    print(player.title())
```

Here are the first three players on my team: Charles Martina Michael

4.5.3 Copiando uma lista

Vamos explorar o modo de copiar uma lista e analisar uma situação em que copiar uma lista é útil.

1. Copiando uma lista inteira, usando fatia.

Podemos criar uma fatia que inclua a lista inteira, omitindo o primeiro e segundo índices.

Exemplo:

```
#Usamos o metódo de fatia para copiar listas.
my_foods = ["pizza","falafel","carrot cake"]
friend_foods = my_foods[:]

print("My favorite food are:")
print(my_foods)

print("\nMy friend's favorite food are:")
print(friend_foods)
```

```
My favorite food are:
['pizza', 'falafel', 'carrot cake']
My friend's favorite food are:
['pizza', 'falafel', 'carrot cake']
```

Ambas as listas my_foods e friend_foods, contém os mesmos elementos, porém são listas diferentes. Ao modificarmos uma delas a outra não é modificada automáticamente, por serem listas diferentes.

2. Variáveis que apontam para mesma lista.

Se ao invés de copiarmos uma fatia de uma lista para a outra, mesmo que seja a lista inteira, definirmos que uma variável é igual a outra, nesse caso criamos duas variáveis que apontam para a mesma lista. Ou seja, se modificarmos qualquer uma das listas, a outra é automaticamente modificada, pois ambas são a mesma lista.

Exemplo:

```
#Ambas variáveis apontam para a mesma lista.
my_foods = ["pizza","falafel","carrot cake"]
friend_foods = my_foods

friend_foods.append("ice cream")

print("My favorite food are:")
print(my_foods)

print("\nMy friend's favorite food are:")
print(friend_foods)

My favorite food are:
['pizza', 'falafel', 'carrot cake', 'ice cream']

My friend's favorite food are:
['pizza', 'falafel', 'carrot cake', 'ice cream']
```

4.6 Tuplas

Tuplas são listas em que os itens não são criadas para mudar (listas imutáveis).

4.6.1 Definindo uma tupla

Uma tupla se parece com uma lista, exceto por usar parênteses no lugar de colchetes.

Sintaxe:

```
tuplas = (valor_1,valor_2,valor_3,...)
```

Exibimos cada elemento de uma tupla com a mesma sintaxe que usamos para acessar elementos de uma lista.

Exemplo:

```
dimensions = (200,50)
print(dimensions[0])
```

200

Se tentarmos alterar algum elemento de uma tupla, será retornado um erro de tipo.

4.6.2 Percorrendo todos os valores de uma tupla com um laço

Podemos percorrer uma tupla usando um laço for, da mesma forma que uma lista.

Exemplo:

```
dimensions = (200,50)
for dimension in dimensions:
  print(dimension)
```

200

50

4.6.3 Sobrescrevendo uma tupla

Não é possível modificar os elementos de uma tupla. Retornaria um erro de tipo.

Esse tipo de operação não funcionaria:

```
tupla[0] = valor_novo
```

Porém é possível subrescrever a tupla, imputando novos valores a variável.

Exemplo:

```
#Sobrescrevendo uma tupla
dimensions = (200,50)
print("Original dimensions:")
for dimension in dimensions:
   print(dimension)

dimensions = (400,100)
print("\nModified dimensions:")
for dimension in dimensions:
   print(dimension)
```

```
Original dimensions:
200
50
Modified dimensions:
400
100
```

5 Estatística básica

5.1 Teoria

• Definição de Estatística:

A Estatística de uma maneira geral compreende aos métodos científicos para COLETA, ORGANIZAÇÃO, RESUMO, APRESENTAÇÃO e ANÁLISE de Dados de Observação (Estudos ou Experimentos), obtidos em qualquer área de conhecimento. A finalidade é a de obter conclusões válidas para tomada de decisões.

- Estatística Descritiva

Parte responsável basicamente pela COLETA e SÍNTESE (Descrição) dos Dados em questão.

Disponibiliza técnicas para o alcance desses objetivos. Tais Dados podem ser provenientes de uma AMOSTRA ou POPULAÇÃO.

- Estatística Inferencial

É utilizada para tomada de decisões a respeito de uma população, em geral fazendo uso de dados de amostrais.

Essas decisões são tomadas sob condições de INCERTEZA, por isso faz-se necessário o uso da TEORIA DA PROBABILIDADE.

• O fluxograma da estatística descritiva pode ser espresso da seguinte forma:

Figure 1: Fluxograma da estatística descritiva.

• A representação tabular (Tabelas de Distribuição de Frequências) deve conter:

- Cabeçalho

Deve conter o suficiente para que as seguintes perguntas sejam respondidas "o que?" (Relativo ao fato), "onde?" (Relativo ao lugar) e "quando?" (Correspondente à época).

- Corpo

É o lugar da Tabela onde os dados serão registrados. Apresenta colunas e sub colunas.

Rodapé

Local destinado à outras informações pertinentes, por exemplo a Fonte dos Dados.

• População e Amostras:

- População

É o conjunto de todos os itens, objetos ou pessoas sob consideração, os quais possuem pelo menos uma característica (variável) em comum. Os elementos pertencentes à uma População são denominados "Unidades Amostrais".

- Amostras

É qualquer subconjunto (não vazio) da População. É extraída conforme regras préestabelecidas, com a finalidade de obter "estimativa" de alguma característica da População.

• Tipos de variáveis

Figure 2: Tipos de variáveis.

- Qualitativo nominal

Não possuem uma ordem natural de ocorrência.

- Qualitativo ordinal

Possuem uma ordem natural de ocorrência.

- Quantitativo descreta

Só podem assumir valores inteiros, pertencentes a um conjunto finito ou enumerável.

- Quantitativo continua

Podem assumir qualquer valor em um determinado intervalo da reta dos números reais.

5.2 Preparação dos dados (sumariazar dados coletados)

• Frequência (conceito)

É a quantidade de vezes que um valor é observado dentro de um conjunto de dado.

- Distribuição em frequências
 - A distribuição tabular é denominada: "Tabela de Distribuição de Frequências".
 - Podemos separar em 3 modelos de distribuição tabular:
 - * Variável Quantitativa Discreta.
 - * Variável Quantitativa Contínua.
 - * Variáveis Qualitativas.

5.2.1 Variável Quantitativa Discreta

- Passos da preparação dos dados:
 - 1º Passo DADOS BRUTOS:

Obter os dados da maneira que foram coletados.

− 2º Passo - **ROL**:

Organizar os DADOS BRUTOS em uma determinada ordem (crescente ou decrescente).

- 3º Passo - CONSTRUÇÃO TABELA:

Na primeira coluna são colocados os valores da variável, e nas demais as respectivas frequências.

Frequência absoluta simples.

Nº de vezes que cada valor da variável se repete.

- Principais campos da distribuição tabular de variaveis quantitativas discreta:
 - -n é o número total de elementos da amostra.
 - $-x_i$ é o número de valores distintos que a variavel assume.
 - $-F_i$ é a Frequência Absoluta Simples.
 - $-\ f_i$ é a Frequência Relativa Simples.
 - $f_i\%$ é a Frequência Relativa Simples Percentual. $f_i\% = f_i \cdot 100\%.$
 - $-\ F_a$ é a Frequência Absoluta Acumulada.

<u>xi</u>	<u>Fi</u>	fi	fi%	Fa↓	<u>Fa</u> ↑	fa↓	fa↑
0	6	0,2	20	6	30	0,2	1
1	11	0,37	37	17	24	0,57	0,8
2	8	0,27	27	25	13	0,84	0,43
3	2	0,07	7	27	5	0,91	0,16
4	2	0,06	6	29	3	0,97	0,09
6	1	0,03	3	30	1	1	0,03
Total	30	1	100	-	-	-	-

Figure 3: Distribuição tabular quantitativa discreta.

Observação:

As setas simbolizam ordem crescente ou decrescente.

5.2.2 Variável Quantitativa Contínua

• Teoria:

- A construção da representação tabular é realizada de maneira análoga ao caso das variáveis discretas.
- As frequências são agrupadas em classes, denominadas de "Classes de Frequência".
- Denominada "Distribuição de Frequências em Classes" ou "Distribuição em Frequências Agrupadas".

χi fi fi% Fa↓ Fa个 fa↓ fa个 Fi 0 6 0,2 20 6 30 0,2 1 Nova Representação! 1 0,37 37 17 24 0,57 0,8 11 2 0,27 27 25 13 0,84 0,43 3 2 0,07 27 5 0,91 7 0,16 4 2 0,06 6 29 3 0,97 0,09 6 / 1 0,03 3 1 30 1 0,03 100 Total 30 1

<u>Dist</u>. Frequências "X ~ Nº de Acidentes por dia, na BR 101, <u>Setembro</u> de 2015

Fonte: Governo Federal

Figure 4: Distribuição de frequências em classes.

- Convencionar o tipo de intervalo para as classes de frequência:

 - Intervalo "exclusive exclusive": $x_i \longrightarrow x_j$ Intervalo "inclusive exclusive": $x_i \longmapsto x_j$
 - Intervalo "inclusive inclusive": $x_i \longmapsto x_j$
 - Intervalo "exclusive inclusive": $x_i \longrightarrow x_j$

OBS.: x_i - Limite Inferior (LI) de Classe; x_i - Limite Superior (LS) de Classe;

Figure 5: Intervalo de classes, distribuição de frequências quantitativa continua.

Premissas As classes têm que ser exaustivas, isto é, todos os elementos devem pertencer a alguma classe; As classes têm que ser mutualmente exclusivas, isto é, cada elemento tem que pertencer a uma única classe

Figure 6: Distribuição frequências quantitativa continua, premissas.

Passos para contruir a **Tabela Distribuição de Frequências Contínua**:

- 1. Como estabelecer o **número de classes** (k):
- Normalmente varia de 5 a 20 classes.
- Critério fórmula de Sturges:

$$k \cong 1 + 3, 3 \cdot \log(n)$$

Onde n é o número de elementos amostrais. Arredondar k para número inteiro.

• Critério da Raiz quadrada:

$$k \cong \sqrt{n}$$

Onde n é o número de elementos amostrais. Arredondar k para número inteiro.

- 2. Como calcular a **Amplitude Total** (AT_x) :
- Diferença entre o maior e o menor valor observado.
- Intervalo de variação dos valores observados.
- Aproximar valor calculado para múltiplo do n° classes (k).
- Garantir inclusão dos valores mínimo e máximo.
- Cálculo:

$$AT_x = Mx(X_i) - Mn(X_i)$$

Onde,

 AT_x é a Amplitude Total;

 $Mx(X_i)$ é o valor máximo das amostras;

 $Min(X_i)$ é o valor mínimo das amostras.

• Exemplo:

Se k = 5,

 $AT_x = 28$

Logo, arredondando $AT_x=30$, para aproximar o valor AT_x de um múltiplo de k.

- 3. Como cálcular a **Amplitude das classes da frequência** (h):
- As classes terão amplitudes iguais.
- Cálculo:

$$h = h_i = \frac{AT_x}{k}$$

Onde,

ké o número de classes e AT_x é a Amplitude Total.

h deve ser arredondado para cima, num número inteiro.

4. Como determinar o ponto médio das classes, representatividade da classe (p_i) :

$$p_i = \frac{(LS_i - LI_i)}{2}$$

Onde,

 LS_i é o limite superior da classe.

 LI_{i} é o limite inferior da classe.

- 5. Passos da preparação dos dados:
- 1º Passo **DADOS BRUTOS**:

Obter os dados da maneira que foram coletados.

• 2° Passo - **ROL**:

Organizar os DADOS BRUTOS em uma determinada ordem (crescente ou decrescente).

• 3º Passo - CONSTRUÇÃO TABELA:

Na primeira coluna são colocados as classes, e nas demais as respectivas frequências.

• Exemplo:

Nº Classe	Classes (xi)	Fi	fi	fi%	Fa↓	Fa↑	fa↓	fa↑	fa↓%	pi
1	45 52	3	0,08	8	3	40	0,08	1	100	48,5
2	52 59	7	0,18	18	10	37	0,26	0,92	92	55,5
3	59 66	11	0,28	28	21	30	0,53	0,75	75	62,5
4	66 73	10	0,25	25	31	19	0,78	0,47	47	69,5
5	73 80	4	0,10	10	35	9	0,88	0,22	22	76,5
6	80 87	4	0,10	10	39	5	0,98	0,12	12	83,5
7	87 94	1	0,02	2	40	1	1,00	0,02	2	90,5
T	otal	40	1,00	100	-	-	-	-		-

Fonte: Dados Fictícios

Figure 7: Tabela de_distribuição de frequência quantitativa continua.

 X_i são as classes.

 F_i é a Frequência Absoluta Simples.

 f_i é a Frequência Relativa Simples.

 $f_i\%$ é a Fequência Relativa Simples Percentual.

 F_a é a Frequência Absoluta Acumulada.

 f_a é a Fequência Absoluta Acumulada Simples.

 $f_a\%$ é a Fequência Absoluta Acumulada Simples Percentual.

 \boldsymbol{p}_i é a Representatividade da classe (ponto médio das classes).

5.2.3 Variáveis Qualitativas

- Passos da preparação dos dados:
 - Análogo ao procedimento para dados discretos.
 - 1º Passo **DADOS BRUTOS**:
 - Obter os dados da maneira que foram coletados.
 - -2° Passo **ROL**:
 - Nesse caso é feita organização dos DADOS BRUTOS em ordem (Crescente ou Decrescente) de importância.
 - -3° Passo **CONSTRUÇÃO TABELA** (Com duas ou mais colunas).
- Distribuição de Frequencia:
 - $-\ x_i$ é o número de valores distintos que a variável assume.
 - $-\ F_i$ é a Frequência Absoluta Simples.
 - $-f_i$ é a Frequência Relativa Simples.
 - $f_i\%$ é a Fequência Relativa Simples Percentual.
 - Inserir comentário sobre os dados.

5.3 Medidas de posição

- Localizar a maior concentração de valores de uma distribuição.
- Sintetizar o comportamento do conjunto do qual ele é originário.
- Possibitar a comparação entre séries de dados.
- As principais medidas de posição são:
 - **Média Aritmética** (Simples e Ponderada)
 - Mediana
 - Moda
 - Separatrizes
- Medidas de posição comparação:

Medidas de Posição - Comparação

Medida	Definição	Vantagens	Desvantages
Média	Centro da Distribuição	Reflete todos os valores	É afetada por valores extremos
Mediana	Divide a distribuição ao meio	Menos sensível a valores extremos	Difícil determinar para grandes quantidades de dados
Moda	Valor mais frequente	Valor típico	Não é utilizado em análises matemáticas

5.3.1 Média Aritmética (Simples e Ponderada)

- Média Aritmética Simples, dados Não-Agrupados (não tabelados):
 - **Média Aritmética** (\overline{x}) é o valor médio dos dados da distribuição.
 - É a soma de todos os elementos, dividido pelo número total de elementos.
 - Cálculo:

$$\overline{x} = \frac{Soma}{n_{Total}}$$

- Média Aritmética Ponderada, dados Agrupados (tabelados):
 - Atribui-se um peso a cada valor da série.
 - É o Ponto Médio das Classes (p_i) , multiplicado por suas respectivas Frequência Absoluta Simples (F_i) , somadas. Dividido pelo N'umero Total de Elementos da Amostra (n).
 - Cálculo:

$$\overline{x} = \frac{\sum_{i=1}^{n} p_i \cdot F_i}{n_{Total}}$$

ou,

$$\overline{x} = \frac{(p_1 \cdot F_1) + (p_2 \cdot F_2) + (p_3 \cdot F_3) + \dots}{n_{Total}}$$

5.3.2 Mediana (md(x))

5.3.2.1 Mediana Discreta

- Com dados em ROL, é o valor que divide o conjunto de dados em duas partes iguais.
- No caso de número de elementos impar, a mediana (md(x)) é o elemento central.
- No caso de número de elementos par, a mediana (md(x)) é a média aritmética simples dos valores centrais:

$$md(x) = \frac{x_{\frac{n}{2}} + x_{\frac{n+1}{2}}}{2}$$

Onde.

x é a posição do elemento;

n é o número total de elementos.

5.3.2.2 Mediana Contínua

- Mediana (md) em distribuição de frenquência em variável contínua (dados agrupados em classes):
 - 1. Fazer a coluna da **Frequência Absoluta Acumulada**, que é o somatório das frequências ao logo das classes.
 - 2. Definindo o Intervalo da Mediana.
 - Obter o número total de elementos n (somatório das frenquências de classes),

$$n = \sum f_i$$

- Determinar a posição do elemento do meio do somatório das frequencias:

$$x = \frac{\sum f_i}{2}$$

- A classe que contém essa posição x na Frequência Absoluta Acumulada é a classe do intervalo da mediana.
- 3. Cálculo da Mediana:

$$md = Li + (\frac{\frac{\sum fi}{2} - Fa_{anterior}}{f_{intervalo}} \cdot h)$$

Onde,

Li é o limite inferior do intervalo da mediana:

 $\sum fi$ é o somatório das frequências (**frequência total** (n));

 $Fa_{anterior}$ é a **Frequência Absoluta Acumulada** da classe anterior (linha anterior ao *intervalo da mediana*);

 $f_{intervalo}$ é a Frequência Absoluta Simples do intervalo da mediana;

h é a Amplitudade da classe do intervalo da mediana.

$$h = Ls - Li$$

5.3.3 Moda

- Moda ou Mo(x): Valor com maior frequência de ocorrência em uma distribuição.
- Podem haver mais de um valor distinto com maior frequência, podendo assim ter mais de um valor na moda.
- Moda com frequência Continua:
 - 1. Moda Bruta (M_{Bruta}) :
 - Achar a classe com maior frequência, esse será o *Intervalo Modal*.
 - Cálcular o Ponto Médio (Representatividade da classe) do Intervalo Modal:

$$PM = \frac{LS + LI}{2}$$

Onde,

LS = Limite superior da classe;

LI = Limite inferior da classe.

- O Ponto Médio do Intervalo Modal será a **Moda Bruta**(M_{Bruta}).
- 2. Moda King ou Moda do Rei (M_{King}) :
- Determinar o intervalo (classe) com maior frequência, esse será o *Intervalo Modal*.
- Cálculo da Moda de King (M_{King}) :

$$M_{King} = LI + (\frac{F_{post}}{F_{post} + F_{ant}} \cdot h)$$

Onde,

LI é o limite inferior da classe do Intervalo Modal;

 F_{post} é a frequência da classe posterior ao Intervalo Modal;

 F_{ant} é a frequência da classe anterior ao $Intervalo\ Modal;$

h é a amplitude do intervalo da classe

$$h = LS - LI$$

- 3. Moda de Czuber (M_{Czuber}) :
- Determinar o intervalo (classe) com maior frequência, esse será o *Intervalo Modal*.

– Cálculo da **Moda de Czuber** (M_{Czuber}):

$$M_{Czuber} = LI + (\frac{\Delta_{ant}}{\Delta_{ant} + \Delta_{post}} \cdot h)$$

Onde,

LI é o limite inferior da classe do *Intervalo Modal*;

 Δ_{ant} é a variação (diferença) da frequência da classe anterior (ao *Intervalo Modal*) com o *Intervalo Modal* (classe com maior frequência)

$$\Delta_{ant} = |F_i - F_{i-1}|$$

 Δ_{post} é a variação (diferença) da frequência da classe posterior (ao Intervalo Modal) com o Intervalo Modal (classe com maior frequência)

$$\Delta_{ant} = |F_i - F_{i+1}|$$

h é a amplitude do intervalo da classe

$$h = LS - LI$$

5.3.4 Separatrizes

- Separatrizes são valores da distribuição que a dividem em partes quaisquer.
- A mediana, apesar de ser uma medida de tendência central, é também uma separatriz de ordem 1/2, ou seja, divide a distribuição em duas partes iguais.
- As **separatrizes** mais comumente usadas são:
 - Quartis

Dividem a distribuição em quatro partes iguais, de ordem 1/4.

- Decis

Dividem a distribuição em 10 partes iguais, de ordem 1/10.

- Centis

Dividem a distribuição em 100 partes iguais, de ordem 1/100.

• Fórmula das Separatrizes:

1. Achar o Intervalo da separatriz

- É a classe em que se encontra a separatriz procurada.
- Fazer a coluna de Frequencia Absoluta Acumulada (F_a) .
- É o somatório das frequencias (total das frequencias), multiplicado pela fração da separatriz procurada (k). O resultado é a posição da frequencia na coluna Frequencia Absoluta Acumulada (F_a).

$$P_k = k \cdot \sum f_i$$

A classe na qual a posição pertence é o Intervalo da separatriz.

2. Cálculo da separatriz:

$$Sp = L_i + (\frac{k \cdot \sum f_i - Fa_{anterior}}{f_{Intervalo}} * h)$$

Onde.

 L_i é o limite inferior do Intervalo da separatriz;

k é a fração (porcentagem) da separatriz procurada;

 $\sum f_i$ é o somatório das frequências;

 $Fa_{anterior}$ é a Frequência Absoluta Acumulada da classe anterior ao intervalo da separatriz;

 $f_{Intervalo}$ é a Frequência Absoluta Simples do intervalo da separatriz;

h é a **Amplitude** da classe (limite superior - limite inferior da classe).

$$h = Ls - Li$$

- 3. Cálculo de **Amplitude Interquartil** (AI):
- É a diferença entre $3^{\rm o}$ quartil e o $1^{\rm o}$ quartil.

$$AI = Q_3 - Q_1$$

- Para descobrir os valores dos Quartis (Q_1 e Q_3) basta usar o cálculo das separatrizes.

5.4 Medidas de dispersão

- Medem o grau de variabilidade (dispersão) dos valores observados em torno da Média Aritmética.
- Caracterizam a representatividade da média e o nivel de homogeneidade ou heterogeneidade dentro de cada grupo analizado.

Figure 8: Exemplo de dispersão com heterogeneidade e homogeneidade.

5.4.1 Amplitude Total (A_T)

- Diferença entre o maior e o menor dos valores da série.
- Não considera a dispersão dos valores internos, apenas os extremos.
- Utilização limitada enquanto medida de dispersão, oferece pouca informação.
- Cálculo:

$$A_T = X_{Mx} - X_{Mn}$$

Onde,

 $X_{{\cal M}x}$ é o valor máximo da série;

 X_{Mn} é o valor mínimo da série.

5.4.2 Desvio

5.4.2.1 Desvio Absoluto (D)

- Para dados não agrupados:
 - Os **Desvios Absolutos** (D) são a diferença absoluta entre um valor observado e a média aritmética:

$$D = |x_i - \bar{X}|$$

Onde,

 x_i é o valor de cada elemento;

 \bar{x} é a Média Aritmética.

Os **Desvios Absolutos** (D) são um conjunto de elementos como resposta final.

- Para dados agrupados, sem intervalo de classe:
 - Cálculo:

$$d_i = |x_i - \bar{X}|$$

Onde,

 \boldsymbol{x}_i é o valor da variável discreta;

 $ec{ar{X}}$ é a **Média Aritmética**.

- Para dados agrupados, com intervalo de classe:
 - Cálculo:

$$d_i = |p_i - \bar{x}|$$

Onde,

 p_i é a **Representatividade da classe** (ponto médio da classe);

 \bar{x} é a Média Aritmética Ponderada cálculada para dados agrupados continuos:

$$\bar{x} = \frac{\sum_{i=1}^{N} p_i \cdot f_i}{\sum_{i=1}^{N} f_i}$$

É o Ponto Médio das Classes (p_i) , multiplicado por suas respectivas Frequência Absoluta Simples (F_i) , somadas. Dividido pelo Número Total de Elementos da Amostra (n).

5.4.2.2 Desvio Absoluto Médio (dm)

- É a Média dos Desvios.
- Para dados não agrupados:
 - Cálculo:

$$dm(x) = \frac{\sum_{i=1}^n |x_i - \bar{x}|}{n}$$

Onde,

 x_i é o valor de cada elemento;

 \bar{x} é a Média Aritmética:

n é o **número total de elementos** (frequencia total).

- Para dados agrupados, sem intervalo de classe:
 - Cálculo:

$$D_M = \frac{\sum |d_i| \cdot f_i}{n}$$

Onde,

 d_i é o **Desvio Absoluto** para dados agrupados, sem intervalo de classe;

 f_i é a **Frequência** de cada variável discreta;

n é o número total de elementos (ou somatório das frequências).

- Para dados agrupados, com intervalo de classe:
 - Cálculo:

$$D_M = \frac{\sum |d_i| \cdot f_i}{\sum f_i}$$

Onde,

 d_i é o **Desvio Absoluto** para dados agrupados, com intervalo de classe;

 f_i é a **frequência** de cada intervalo de classe.

5.4.3 Variância (σ^2 ou S^2)

- Leva em consideração os valores extremos e também os valores intermediários.
- Relaciona os desvios em torno da média (distancias dos valores ate a média).
- Média Aritmética dos quadrados dos desvios.
- O símbolo para Variância Populacional é o sigma ao quadrado (σ^2) , já o símbolo para Variância Amostral é o "S" maiusculo ao quadrado (S^2) .
- Cálculo para dados não agrupados:
 - População

$$\sigma^2 = \sum_{i=1}^N \frac{(x_i - \bar{x})^2}{N}$$

Onde,

 x_i é o valor de cada elemento da série; \bar{x} é o valor da Média Aritmética Simples; N é o número total da população.

- Amostra

$$S^{2} = \sum_{i=1}^{n} \frac{(x_{i} - \bar{x})^{2}}{n - 1}$$

Onde,

 x_i é o valor de cada elemento da série;

 \bar{x} é o valor da **Média Aritmética Simples**;

n é o número de elementos da Amostra;

(n-1) é por ser uma estimativa no caso da Amostra, trabalhando assim com um grau a menos de liberdade.

- Cálculo dados agrupados:
 - Para dados agrupados, sem intervalo de classe (Variáveis Discretas):
 - * População

$$\sigma^2 = \frac{\sum (x_i - \bar{X})^2 \cdot f_i}{\sum f_i}$$

Onde

 x_i é o valor de cada elemento da série;

 \bar{X} é o valor da Média Aritmética Ponderada;

 f_i é a **Frequência** da variável;

 $\sum f_i$ é o somatório das **Frequências**.

* Amostra

$$S^2 = \frac{\sum (x_i - \bar{X})^2 \cdot f_i}{n-1}$$

Onde,

 x_i é o valor de cada elemento da série;

 \bar{X} é o valor da **Média Aritmética Ponderada**;

 f_i é a **Frequência** da variável;

n-1 ou $\sum f_i - 1$ é o somatório das **Frequências** da Amostra menos 1.

- Para dados agrupados, com intervalo de classe (Variáveis Contínuas):
 - * População

$$\sigma^2 = \frac{\sum (p_i - \bar{X})^2 \cdot f_i}{\sum f_i}$$

Onde,

 p_i é a Representatividade das Classes (Ponto Médio das Classes);

 \bar{X} é o valor da **Média Aritmética Ponderada**;

 f_i é a **Frequência** da variável;

 $\sum f_i$ é o somatório das **Frequências**.

* Amostra

$$S^2 = \frac{\sum (p_i - \bar{X})^2 \cdot f_i}{n-1}$$

Onde,

 p_i é a Representatividade das Classe (Ponto Médio das Classes);

 \overline{X} é o valor da **Média Aritmética Ponderada**;

 f_i é a **Frequência** da variável;

n-1ou $\sum f_i - 1$ é o somatório das **Frequências** da Amostra menos 1.

5.4.4 Desvio-padrão (σ ou S)

5.4.4.1 Variância x Desvio-padrão

- Variância:
 - Número em unidade "quadrada".
 - Maior dificuldade de compreensão e menor utilidade na estatística descritiva.
 - Extremamente relevante na inferência estatística e em combinações de amostras.
- Desvio-padrão:
 - Mais usado na comparação de diferenças entre conjuntos de dados.
 - Determina a dispersão dos valores em relação a **Média**.
 - Volta-se com os dados para a unidade original.

5.4.4.2 Desvio-padrão (Populacional e Amostral)

- Determina a dispersão dos valores em relação a Média.
- População

$$\sigma = \sqrt{\sigma^2}$$

Onde,

 σ^2 é a Variância Populacional; σ é o Desvio-padrão Populacional.

• Amostra

$$S = \sqrt{S^2}$$

Onde,

 S^2 é a Variância Amostral;

 $S \notin o$ Desvio-padrão Amostral.

5.4.5 Coeficiente de Variação (CV)

5.4.5.1 Teoria

- Medida relativa de dispersão.
- Útil para comparação em termos relativos do grau de concentração.
- O Coeficiente de Variação (CV) é expresso em porcentagens.
- Diz-se que uma distribuição:
 - $-CV \le 15\%$ tem Baixa Dispersão.
 - -15% < CV < 30% tem **Média Dispersão**.
 - $-CV \ge 30\%$ tem **Alta Dispersão**.

5.4.5.2 Cálculo do Coeficiente de Variação

• População:

$$CV = \frac{\sigma}{\bar{X}} \times 100$$

Onde,

 $\sigma_{\underline{\ }}$ é o Desvio-padrão Populacional;

 \bar{X} é a Média Populacional.

• Amostra:

$$CV = \frac{S}{\bar{x}} \times 100$$

Onde,

 $S \in O$ Desvio-padrão Amostral;

 \bar{x} é a Média Amostral.

6 Análise Estatística

- Para fazer uma Análise Estatística eficiente de dados, necessitamos:
 - Limpar os dados
 Remover os OUTLIER (valores atipicos, inconsistentes).
 - Aplicar Estatística Descritiva aos dados
 As medidas de posição (Média, Mediana e moda) e dispersão (Amplitude Total, Desvio, Desvio Médio, Variância, Desvio-padrão e Coeficiente de Variação) são maneiras de descrever os dados.
 - Comparar as medidas dos dados
 Principalmente medidas de dispersão, me especial Coeficiente de Variação, são ótimas para comparar dados.
 - Previsão de dados
 A principal técnica é de Regressão, porém para aplicar, necessita que os dados estejam limpos e com pouca dispersão (quanto menor, melhor).

7 Instruções IF

Instruções IF são testes condicionais.

7.1 Testes condicionais

O serne da instrução IF esta uma expressão que deve ser avaliada como True ou False, chamado teste condicional. Esse teste decide se a instrução deve ser executada.

Teste condicional com resultado True, o código dentro do IF será executado.

Teste condicional com resultado False, o código dentro do IF não será executado.

7.2 Operações lógicas

A Table 12 apresenta as principais operações lógica do python. As operações lógicas retornam True ou False. A Table 13 mostra exemplos das operações lógicas.

Table 12: Operações Lógicas

Operação	Nome	Função
==	Igual a	Varifica se um valor é igual ao outro.
!=	Diferente de	Varifica se um valor é diferente ao outro.
>	Maior que	Varifica se um valor é maior que outro.
>=	Maior ou igual	Varifica se um valor é maior ou igual a outro.
<	Menor que	Varifica se um valor é menor que outro.
<=	Menor ou igual	Varifica se um valor é menor ou igual a outro.
and	\mathbf{E}	Retorna True se ambas as afirmações forem verdadeiras.
or	Ou	Retorna True se uma das afirmações for verdadeiras.
not	Negação	Retorna Falso se o resultado for verdadeiro, ou o contrario.

Table 13: Operações Lógicas Exemplos

Operação	Exemplo
==	1==1 = True
!=	1!=2 = True
>	5>1 = True
>=	5>=5 = True
<	1 < 5 = True
<=	1 < = 4 = True
and	(1==1) and $(4<5) = True$
or	(1==1) or $(2<1)$ = True
not	not $(1==1)$ = False

Observações:

- Não confundir = com ==. O sinal de = simples é uma atribuição de valor, enquanto que o sinal == duplo representa "igual a", sendo um operador lógico.
- Os operadores lógicos de igualdade (== e !=) fazem distinção entre letras maiúsculas e minúsculas.

7.3 Testando várias condições

Podemos testar duas (ou mais) condições ao mesmo tempo. Para isso as palavras reservadas and e or ajudam nesse tipo de situação.

7.3.1 Testando várias condições lógicas - AND

O operador lógico and nada mais é do que o E da lógica, então podemos comparar duas operações lógicas e compara-las seguindo a ideia da tabela verdade do operador E.

TABELA VERDADE - AND				
Α	В	A.B		
0	0	0		
0	1	0		
1	0	0		
1	1	1		

Figure 9: Tabela verdade do operador AND.

Exemplo:

```
age_0 = 22
age_1 = 18
print(age_0 >= 21 and age_1 >= 21)
age_1 = 22
print(age_0 >= 21 and age_1 >= 21)
```

False True

7.3.2 Testando várias condições lógicas - OR

O operador lógico or nada mais é do que o OU da lógica, então podemos comparar duas operações lógicas e compara-las seguindo a ideia da tabela verdade do operador OU.

TABELA VERDADE - OR				
Α	В	A+B		
0	0	0		
0	1	1		
1	0	1		
1	1	1		

Figure 10: Tabela verdade do operador OR.

Exemplo:

```
age_0 = 22
age_1 = 18
print(age_0 >= 21 or age_1 >= 21)
age_0 = 18
print(age_0 >= 21 or age_1 >= 21)
```

True False

7.4 Verificando se um valor está em uma lista - IN

Para descobrir se um valor em particular já esta em uma lista, utilizamos a palavra reservada in.

Exemplo:

```
requested_toppings = ['mushrooms','onions','pineapple']
print('mushrooms' in requested_toppings)
print('pepperoni' in requested_toppings)
```

True

False

7.5 Verificando se um valor não está em uma lista - NOT IN

Para descobrir se um valor em particular não esta em uma lista, utilizamos a palavra reservada not in.

Exemplo:

```
banned_users = ['andrew','carolina','david']
user = 'marie'

if user not in banned_users:
   print(user.title() + ", you can post a response if you wish.")
```

Marie, you can post a response if you wish.

7.6 Expressões booleanas

Um valor booleano é True ou False, exatamente como o valor de uma expressão condicional após ter sido avaliada.

Valores booleanos muitas vezes são usados para manter o controle de terminada condição.

```
game_active = True
can_edit = True
```

7.7 Instruções IF

Testes condicionais fazem parte das instruções if. Há vários tipos de instruções if, a escolha depende de quantas condições precisam ser testadas.

Os próximos subtópicos são as possibilidades de instruções if.

7.7.1 Instruções if simples

A instrução if mais simples contém um teste e uma ação. Sintaxe:

```
if teste_condicional: ação
```

Ao avaliar o teste condicional e o resultado for True, as ações contidas dentro do if são executadas, caso contrario a ações contidas dentro da instrução if não são executadas.

Exemplo:

```
age = 19
if age >= 18:
    print("You are old enough to vote!")
```

You are old enough to vote!

7.7.2 Instruções if-else

Um bloco if-else é semelhante a uma instrução if simples, porém a instrução else permite definir ação ou um conjunto de ações executado quando o teste condicional falhar. Sintaxe:

```
if teste_condicional:
    Ação_True
else:
    Ação_False
```

Exemplo:

```
age = 17
if age >= 18:
    print("You are old enough to vote!")
else:
    print("Sorry, you are too young to vote.")
```

Sorry, you are too young to vote.

7.7.3 Sintaxe if-elif-else

Muitas vezes se precisará testar mais de duas situações possíveis, para isso é usado a sintaxe if-elif-else. O Python executará apenas um bloco em uma cadeia if-elif-else. Cada bloco é executado em sequência, ate que algum deles passe. Quando um teste passar, o código após esse teste será executado e o Python ignorará o restante dos testes. Sintaxe:

```
if teste_condicional_1:
    Ação_teste_1
elif teste_condicional_2:
    Ação_teste_2
else:
    Ação_3
```

Exemplo:

```
age = 12
if age < 4:
    print("You admission cost is $0.")
elif age < 18:
    print("You admission cost is $5.")
else:
    print("You admission cost is $10.")</pre>
```

You admission cost is \$5.

7.7.4 Usando vários blocos elif

Podemos usar quantos blocos elif quisermos em nosso código. Sintaxe:

```
if teste_condicional_1:
    Ação_teste_1
elif teste_condicional_2:
    Ação_teste_2
elif teste_condicional_3:
    Ação_teste_3
elif teste_condicional_4:
    Ação_teste_4
else:
    Ação_5
```

Exemplo:

```
age = 12
if age < 4:
    price = 0
elif age < 18:
    price = 5
elif age >= 65:
    price = 5
else:
    price = 10
print("Your admission cost is $" + str(price) + ".")
```

Your admission cost is \$5.

7.7.5 Omitindo o bloco else

Python não exige um bloco else no final de uma cadeia if-elif. As vezes um bloco else é útil, outras vezes, é mais claro usar uma instrução elif adicional que capture a condição específica de interesse. else é uma função que captura tudo. Ela corresponde a qualquer condição não atendida por teste if ou elif específicos e isso, ás vezes, pode incluir dados inválidos ou maliciosos. É uma boa prática considerar usar um último bloco elif e omitir o bloco else.

Sintaxe:

```
if teste_condicional_1:
    Ação_teste_1
elif teste_condicional_2:
    Ação_teste_2
elif teste_condicional_3:
    Ação_teste_3
elif teste_condicional_4:
    Ação_teste_4
```

Exemplo:

```
age = 12
if age < 4:
  price = 0
elif age < 18:
  price = 5
elif age >= 65:
  price = 5
elif age < 65:
  price = 10

print("Your admission cost is $" + str(price) + ".")</pre>
```

Your admission cost is \$5.

7.7.6 Testando várias condições

A cadeia if-elif-else é eficaz, mas é apropriada somente quando você quiser que apenas um teste passe. assim que encontrar um teste que passe, o interpretador Python ignorará o restante dos testes.

As vezes, porém, é importante verificar todas as condições de interesse. Nesse caso, podemos usar um série de instruções if simples, sem blocos elif ou else.

Em suma, se quiser que apenas um bloco de código seja executado, utilize uma cadeia if-elif-else. Se mais de um bloco de código deve ser executado, utilize uma série de instruções if independentes.

Sintaxe:

```
if teste_condicional_1:
    Ação_teste_1
if teste_condicional_2:
    Ação_teste_2
if teste_condicional_3:
    Ação_teste_3
if teste_condicional_4:
    Ação_teste_4
```

Exemplo:

```
#Pizzaria
requested_toppings = ['mushrooms','extra cheese']

if 'mushrooms' in requested_toppings:
    print("Adding mushrooms.")

if 'pepperoni' in requested_toppings:
    print("Adding pepperoni.")

if 'extra cheese' in requested_toppings:
    print("Adding extra cheese.")

print("\nFinished making your pizza!")
```

Adding mushrooms.
Adding extra cheese.

Finished making your pizza!

7.8 Usando instruções if com listas

Algumas tarefas interessantes podem ser feitas se combinarmos listas com instruções if. Podemos prestar atenção em valores especiais, que devem ser tratados de modo diferente de outros valores da lista.

7.8.1 Verificando itens especiais

Podemos dar tratamento especial à determinado item de uma lista, criando um bloco especial de ação para ele.

Exemplo de pizzaria de como tratar itens especiais:

```
request_toppings = ['mushrooms','green peppers','extra cheese']
for request_topping in request_toppings:
   if request_topping == 'green peppers':
      print("Sorry, we are out of green peppers right now.")
   else:
      print("Adding " + request_topping + ".")
print("\nFinished making your pizza!")
```

Adding mushrooms.

Sorry, we are out of green peppers right now.

Adding extra cheese.

Finished making your pizza!

7.8.2 Varificando se uma lista não esta vazia

Os usuários podem fornecer informações a serem armazenadas em uma lista, por isso não podemos supor que a lista não seja vazia. Nessa situação é conveniente testar se uma lista não esta vazia antes de executar um laço.

Quando o nome de uma lista é usado em uma instrução if, o Python devolve True se a lista contiver pelo menos um item; Uma lista vazia é avaliada como False.

Exemplo:

```
requested_toppings = []
if requested_toppings:
   for requested_topping in requested_toppings:
      print("Adding "+resquested_topping+".")
      print("\nFinished making your pizza!")
else:
   print("Are you sure you want a plain pizza?")
```

Are you sure you want a plain pizza?

7.8.3 Usando várias listas

Ao útilizar mais de uma lista, podemos usar listas e instruções if para garantir que o dado de entrada faça sentido antes de atuar sobre ele.

Um lista pode ser fechada (tupla) e representar o estoque da loja e outra lista o pedido do cliente. Assim teriamos que verificar o que bate e o que não bate entre as duas listas.

Exemplo:

```
available_toppings = ('mushrooms','olives','green peppers','pepperoni','pineapple','extra che
requested_toppings = ['mushrooms','french fries','extra cheese']

for requested_topping in requested_toppings:
   if requested_topping in available_toppings:
        print("Adding " + requested_topping + ".")
   else:
        print("Sorry, we don't have " + requested_topping + ".")
print("\nFinished making your pizza!")
```

Adding mushrooms.

Sorry, we don't have french fries.

Adding extra cheese.

Finished making your pizza!

8 Dicionários

8.1 Dicionário simples

Os Dicionários permitem conectar informações relacionadas. Sintaxe:

```
nome_dicionario = {'chave_1': 'valor_1', 'chave_2':'valor_2', ...}
Exemplo:
```

```
alien_0 = {'color':'green','points': 5}
print(alien_0['color'])
print(alien_0['points'])
```

green 5

8.2 Trabalhando com dicionários

Um dicionário em Python é uma coleção de chave-valor. Cada chave é conectada a um valor, e podemos usar a chave para acessar o valor associado a ela.

O valor pode ser um número, uma string, uma lista, ou até outro dicionário.

Em Python o dicionário é apresentado entre chaves {}, com uma série de pares chave-valor entre elas.

Exemplo:

```
alien_0 = {'color':'green','points': 5}
```

Um par chave-valor é um conjunto de valores associados um ao outro. Quando fornecemos uma chave, Python devolve o valor associado a essa chave. Toda chave é associada a seu valor por meio de dois-pontos, e pares chave-valor individuais são separados por vírgula. Podemos armazenar quantos pares chave-valor quisermos em um dicionário.

8.3 Acessando valores em um dicionário

Para obter o valor associado a uma chave, especifique o nome do dicionário e coloque a chave entre colchetes, como a seguir:

```
alien_0 = {'color':'green'}
print(alien_0['color'])
```

green

Essa instrução devolve o valor associado a chave 'color' do dicionário alien_0.

Como podemos ter um número ilimitado de de pares de chave-valor em um dicionário, para acessar o valor de interesse basta colocar o nome da chave cujo o valor queremos acessar.

Exemplo:

```
alien_0 = {'color':'green','points': 5}
new_points = alien_0['points']
print("You just earned " + str(new_points) + " points!")
```

You just earned 5 points!

Lembrando que números para serem plotados em tela precisam ser tranformados em strings, através da função str().

8.4 Adicionando novos pares chave-valor

Dicionários são estruturas dinâmicas, e você pode adicionar novos pares chave-valor em um dicionário a qualquer momento. Por exemplo, para acrescentar um novo par chave-valor, especifique o nome do dicionário, seguido da nova chave entre colchetes, justamente com o novo valor.

Exemplo:

```
alien_0 = {'color':'green','points': 5}
print(alien_0)

alien_0['x_position'] = 0
alien_0['y_position'] = 25
print(alien_0)

{'color': 'green', 'points': 5}
```

A versão final do dicionário contém quatro pares chave-valor. Dois pares originais especificam a cor e o valor da pontuação, enquanto os dois pares adicionais especificam a posição do alienígena.

{'color': 'green', 'points': 5, 'x_position': 0, 'y_position': 25}

Oberserve que a ordem dos pares chave-valor não coincidem com a ordem em que foram adicionados. O Python não se importa com a ordem em que armazenamos cada par chave-valor, ele só se importa com a conexão entre cada chave e seu valor.

8.5 Dicionário vazio

As vezes, é conveniente ou até mesmo necessário começar com um dicionário vazio e então acrescentar novos itens a ele. Para começar a preencher um dicionário vazio, defina-o com um conjunto de chaves vazio e depois acrescentar cada para par chave-valor em sua própria linha.

Exemplo:

```
alien_0 = {}
alien_0['color'] = 'green'
alien_0['points'] = 5
print(alien_0)
```

```
{'color': 'green', 'points': 5}
```

Nesse caso, definimos um dicionário alien_0 vazio e, em seguida, adicionamos valores para cor e pontuação.

Geralmente usamos dicionários vazios quando armazenamos dados fornecidos pelo usuário em um dicionário, ou quando escrevemos um código que gere um grande número de pares chave-valor automaticamente.

8.6 Modificando valores em um dicionário

Para modificar um valor em um dicionário, especifique o nome do dicionário com a chave entre conchetes e o novo valor que você quer associar a essa chave. Exemplo:

```
alien_0 = {'color':'green'}
print("The alien is " + alien_0['color'] + ".")
alien_0['color'] = 'yellow'
print("The alien is now " + alien_0['color'] + ".")
```

```
The alien is green.
The alien is now yellow.
```

Inicialmente, definimos um dicionário para alien_0 que contém apenas a cor do alienigena. Em seguida, modificamos o valor associado a chave 'color' para 'yellow'.

8.7 Removendo pares chave-valor

Quando não houver mais necessidade de uma informação armazenada em um dicionário, podemos usar a instrução del para remover totalmente um par chave-valor.

Tudo que del precisa é do nome do dicionário e da chave que você deseja remover. Exemplo:

```
alien_0 = {'color':'green','points':5}
print(alien_0)

del alien_0['points']
print(alien_0)
```

```
{'color': 'green', 'points': 5}
{'color': 'green'}
```

A instrução del diz ao Python para apagar a chave 'points' do dicionário alien_0 e remover o valor associado a essa chave também. A saída mostra que a chave 'points' e seu valor igual a 5 foram apagados, porém o restante do dicionário não foi afetado.

8.8 Dicionário de objetos semelhantes

O exemplo anterior envolveu a armazenagem de diferentes tipos de informação sobre o mesmo objeto: um alienigena em um jogo. Também podemos usar um dicionário para armazenar um tipo de informação sobre vários objetos.

Por exemplo, suponha que você queira fazer uma enquete com várias pessoas e perguntar-lhes qual é a sua linguagem de programação favorita. Exemplo:

```
favorite_languages = {
    'jen':'python',
    'sarah':'c',
    'edward':'ruby',
    'phil':'python'
    }

print("Sarah's favorite language is "+
    favorite_languages['sarah'].title()+
    ".")
```

Sarah's favorite language is C.

Esse exemplo também mostra como podemos dividir uma instrução longa em várias linhas, indentando as linhas e usando algum operador como parâmetro para finalizar uma linha. No caso do print o operador de concatenação (+), no caso do dicionário a vírgula.

8.9 Percorrendo um dicionário com um laço

Como um dicionário pode conter uma grande quantidade de dados, Python permite percorrer um dicionário com um laço. Dicionários podem ser usados para armazenar informações de várias maneiras. Assim, há diversos modos diferentes de percorrê-los com um laço. Podemos percorrer todos os pares chave-valor de um dicionário usando suas chaves ou seus valores.

8.9.1 Percorrendo todos os pares chave-valor com um laço

Se quisermos ver tudo que está armazenado no dicionário, podemos percorrer o dicionário com um laço for.

Exemplo:

```
user_0 = {
   'username':'efermi',
   'first':'erico',
   'last':'fermi'
}
for key, value in user_0.items():
   print("\nKey: " + key)
   print("Value: " + value)
```

Key: username
Value: efermi
Key: first
Value: erico
Key: last
Value: fermi

Para escrever um laço for paraum dicionário, devemos criar nomes para as duas variáveis que armazenarão a chave e o valor de cada par chave-valor. Podemos escolher qualquer nome que quisermos para essas duas variáveis.

A instrução for inclui o nome do dicionário, seguido do método items(), que devolve uma lista de pares chave-valor. O laço for então armazena cada um desses pares nas duas variáveis especificadas.

Observe que os pares chave-valor não são devolvidos na ordem em que foram armazenados, mesmo quando percorremos o dicionário com um laço. O Python não se importa com a ordem em que os pares chave-valor são armazenados. Ele só registra as conexões entre cada chave individual e seu valor.

8.9.2 Percorrendo todas as chaves de um dicionário com um laço

O método key() é conveniente quando não precisamos trabalhar com todos os valores de um dicionário.

Exemplo:

```
favorite_languages = {
   'jen': 'python',
   'sarah': 'c',
   'edward': 'ruby',
   'phil': 'python'
}

for name in favorite_languages.keys():
   print(name.title())
```

Jen Sarah Edward Phil

Extrai todas as chaves do dicionário favorite_languages e armazena, uma de cada vez, na variável name.

Percorrer as chaves, na verdade é o comportamento padrão quando percorremos um dicionário com um laço, portanto este código poderia ser escrito:

```
for name in favorite_languages:
```

em vez de:

```
for name in favorite_languages.keys():
```

Por boa prática optamos pelo método keys() pois torna o código mais explicito e de fácil leitura.

O médoto keys() não serve apenas para laços, ele devolve uma lista de todas as chaves. Exemplo:

```
favorite_languages = {
    'jen': 'python',
    'sarah': 'c',
    'edward': 'ruby',
    'phil': 'python'
}

if 'erin' not in favorite_languages.keys():
    print('Erin, please take our poll!')
```

Erin, please take our poll!

8.9.3 Percorrendo todas as chaves de um dicionário em ordem usando um laço

Um dicionário sempre mantém uma conexão clara entre cada **chave** e seu **valor** associado, mas você não obterá os itens de um dicionário em uma ordem previsível. Isso não é um problema, pois, geralmente, queremos apenas obter o **valor** correto associado a cada **chave**.

Uma maneira de fazer os itens serem devolvidos em determinada sequência é ordenadar as chaves à medida que são devolvidas no laço for. Podemos usar a função sorted() para obter uma cópia ordenada das chaves.

Exemplo:

```
favorite_languages = {
    'jen': 'python',
    'sarah': 'c',
    'edward': 'ruby',
    'phil': 'python'
}

for name in sorted(favorite_languages.keys()):
    print(name.title() +
    ", thank you taking the poll.")
```

Edward, thank you taking the poll. Jen, thank you taking the poll. Phil, thank you taking the poll. Sarah, thank you taking the poll.

Essa instrução for é como as outras instruções for, exeto que a função sorted() está em torno do método dictionary.keys(). Isso diz a Python para listar todas as chaves do dicionário e ordernar essa lista antes de percorrê-la com um laço.

8.9.4 Percorrendo todos os valores de um dicionário com um laço

Se você tiver mais interessado nos valores contidos em um dicionário, o método values() pode ser usado para devolver uma lista de valores sem as chaves. Exemplo:

```
favorite_languages = {
    'jen': 'python',
    'sarah': 'c',
    'edward': 'ruby',
    'phil': 'python'
}
print("The following languages have been mentioned:")
for language in favorite_languages.values():
    print(language.title())
```

```
The following languages have been mentioned:
Python
C
Ruby
Python
```

A instrução for, nesse caso, extrai cada valor do dicionário e o armazena na variável language. Essa abordagem extrai todos os valores do dicionário, sem verificar se há repetições. Isso pode funcionar bem com uma quantidade pequena de valores, mas em uma enquete com um número grande de entrevistados, o resultado seria uma lista com muitas repetições. Para ver cada linguagem escolhida sem repetições podemos usar um conjunto (set()). Um conjunto é semelhante a uma lista exceto que cada item de um conjunto deve ser único. Exemplo:

```
favorite_languages = {
    'jen': 'python',
    'sarah': 'c',
    'edward': 'ruby',
    'phil': 'python'
}
print("The following languages have been mentioned:")
for language in set(favorite_languages.values()):
    print(language.title())
```

The following languages have been mentioned:

Ruby C Python

Quando colocamos set() em torno de uma lista que contenha itens duplicados, Python identifica os itens únicos na lista e cria um conjunto a partir desses itens. Usamos set() para extrair as linguagens únicas em favorite_languagens.values().

O resultado é uma lista de linguagens mencionadas pelas pessoas que participaram da enquete, sem repetições.

8.10 Informações aninhadas

As vezes você vai querer armazenar um conjunto de dicionários em uma lista, uma lista de itens com um valor em um dicionário. Isso é conhecido como **aninhar** informações. podemos aninhar um conjunto de dicionários em uma lista, uma lista de itens em um dicionário ou até mesmo um dicionário em outro dicionário.

8.10.1 Uma lista de dicionários

É comum armazenar vários dicionários em uma lista quando cada dicionário tiver diversos tipos de informação sobre um o mesmo objeto. Todos os dicionários de uma lista devem ter uma estrutura idêntica para que possamos percorrer a lista com um laço e trabalhar com cada objeto representado por um dicionário do mesmo modo. Exemplo:

```
alien_0 = {'color':'green','points':5}
alien_1 = {'color':'yellow','points':10}
alien_2 = {'color':'red','points':15}

aliens = [alien_0,alien_1,alien_2]

for alien in aliens:
    print(alien)
```

```
{'color': 'green', 'points': 5}
{'color': 'yellow', 'points': 10}
{'color': 'red', 'points': 15}
```

Inicialmente criamos três dicionários, cada um representando um alienígena diferente. Reunimos esse dicionários em uma lista chamada aliens. Por fim, percorremos a lista com um laço e exibimos cada alien.

8.10.2 Uma lista em um dicionário

Em vez de colocar um dicionário em uma lista, as vezes é conveniente colocar uma lista em um dicionário. Com uma lista armazenada em um dicionário a lista pode ser apenas um dos aspectos do objeto que estamos descrevendo. Exemplo:

```
You ordered a thick-crust pizza with the following toppings: mushrooms extra cheese
```

Começamos com um dicionário que armazena informações sobre uma pizza que esta sendo pedida. Uma das chaves do dicionário é 'crust', e o valor associado é a string 'thick'. A próxima chave, 'toppings', tem como valor uma lista que armazena todos os ingredientes solicitados. Resumimos o pedido antes de preparar a pizza. Para exibir os ingredientes, escrevemos um laço for. Para acessar a lista dos ingredientes, usamos a chave 'toppings', e o Python obtém a lista de ingredientes do dicionário.

Podemos aninhar uma lista em um dicionário sempre que quisermos que mais de um valor seja associado a uma única chave em um dicionário. No laço for do dicionário, usamos outro laço for para percorrer a lista. Exemplo:

```
Jen's favorite languages are:
    Python
    Ruby

Sarah's favorite languages are:
    C

Edward's favorite languages are:
    Ruby
    Go

Phil's favorite languages are:
    Python
    Haskell
```

Não aninhe listas e dicionários com muitos níveis de profundidade. Se estiver aninhando itens com um nível de profundidade muito maior do que vimos nos exemplos anteriores ou se estiver trabalhando com o código de outra pessoa, e esse código tiver níveis significativos de informações aninhadas, é mais provável que haja uma maneira mais simples de solucionar o problema existente.

8.10.3 Um dicionário em um dicionário

Podemos aninhar um dicionário com outro dicionário, mas o código poderá ficar complicado rapidamente se isso for feito.

Exemplo:

```
#Dicionário de dicionários
users = {
    'aeinstein':{
        'first': 'albert',
        'last':'einstein',
        'location':'princeton'},
    'mcurie':{
        'first': 'marie',
        'last':'curie',
        'location':'paris'}
    }
#Extrair informações de um dicionário de dicionários
for username, user_info in users.items():
    print("\nUsername: " + username)
   full_name = user_info['first'] + " " + user_info['last']
    location = user_info['location']
    print("Full name: " + full_name.title())
    print("Location: " + location.title())
```

Username: aeinstein

Full name: Albert Einstein

Location: Princeton

Username: mcurie

Full name: Marie Curie

Location: Paris

Ao percorremos o dicionário users com um laço, o Python armazena cada chave na variável username e o dicionário associado a cada nome de usuário (valor) na variável user_info. Para acessar as informações contida no dicionário user_info (valor), usamos os métodos normais de acessar informações de um dicionário, lembrando que ele esta contido na variável user_info.

```
location = user_info['location']
```

Observe que a estrutura do dicionário de cada usuário é idêntica. Embora o Python não exija, essa estrutura facilita trabalhar com dicionários aninhados. Se o dicionário de cada pessoa tivesse chaves diferentes, o código no laço for seria mais complicado.

9 Entrada de usuário e laços while

Bibliografia

[1] Eric Matthes. Curso Intensivo de Python - 3ª Edição: Uma Introdução Prática e Baseada em Projetos à Programação. Novatec Editora, 2023. ISBN: 9788575228432. URL: https://books.google.com.br/books?id=mkW7EAAAQBAJ.