Tentamen SSY080 Transformer, Signaler och System, D3

Examinator: Ants R. Silberberg

24 augusti 2016 kl. 14.00-18.00 sal: M

Förfrågningar: Ants Silberberg, tel. 1808

Lösningar: Anslås på institutionens anslagstavla, plan 5.

Resultat: Rapporteras in i Ladok

Granskning: Onsdag 14 september kl. 12.00 - 13.00 , rum 3311 på

plan 3 i ED-huset (Lunnerummet), korridor parallell med Hörsalsvägen.

Bedömning: En korrekt och välmotiverad lösning med ett tydligt an-

givet svar ger full poäng.

Hjälpmedel

- Typgodkänd miniräknare
- Beta Mathematics Handbook
- Fyra sidor med egna anteckningar. Endast egenproducerade och handskrivna anteckningar. Inga kopior eller 'maskin(dator)skriven' text.

Betygsgränser.

$Po\ddot{a}ng$	0-10	11-15	16-20	21-25
Betyg	U	3	4	5

Lycka till!

SSY080 2016-08-24

1. (a) En sinusformat spänning $x(t) = 5\cos(692\ t)$ V utgör insignal till en elektrisk krets med överföringsfunktionen

$$G(s) = \frac{R}{R + \frac{1}{sC}} \quad .$$

Beräkna utsignalen, spänningen y(t), ifrån kretsen i stationärtillstånd (eventuella transienter har då klingat av och kan försummas). Värdet på konstanterna ges av kretsens komponentvärden där $R=5.0~\mathrm{k}\Omega$ och $C=\frac{1}{6}~\mu\mathrm{F}$.

- (b) Den kontinuerliga och sinusformade signalen $x(t) = A \sin(\omega t)$ med vinkelfrekvensen $\omega = 1000\pi \text{ rad/s}$ samplas och bildar den diskreta sekvensen $x[n] = A \sin(\Omega n)$. Sampelintervallet $T_s = 50 \ \mu\text{s}$.
 - (i) Vilket värde får Ω ? (1p)
 - (i) Hur många sampelvärden erhålls för varje period i x(t) ? (1p)
- 2. Ett diskret, stabilt och kausalt LTI-system beskrivs med överförings funktionen

$$H(z) = \frac{2z}{z - a} .$$

Systemets insignal är x[n] = u[n-1] och utsignalens värde vid n=3 är y[3] = 3.92 då systemet inledningsvis är i vila (alltså y[-1] = 0).

- (a) Beräkna värdet på parametern a. (2p)
- (b) Ta fram det allmänna uttrycket för systemets utsignal y[n]. (3p)
- 3. Ett kontinuerligt LTI-system har impulssvaret

$$h(t) = (8 - 5e^{-4t})u(t) .$$

Beräkna utsignalen y(t) då insignalen är (5p)

$$x(t) = e^{-8t}u(t) .$$

SSY080 2016-08-24

4. I kursens hemlab studerade vi en fyrkantssignal med periodtiden 2π s. De tre första nollskiljda Fourierseriekoefficienterna beräknades. Vi har nu en liknande periodisk signal, se figur 1. Det enda som skiljer är att priodtiden $T=2\pi\cdot 10^{-2}$ s. Denna signal utgör insignal till ett system med frekvenssvaret

$$H(j\omega) = \begin{cases} 1, & \text{för } |\omega| < 420 \text{ rad/s} \\ 0, & \text{annars} \end{cases}$$

Beräkna medeleffekten hos utsignalen och medeleffekten hos insignalen samt jämför dessa två värden.

Medeleffekt för en kontinuerlig och periodisk signal kan beräknas som

$$P = \frac{1}{T} \int_0^T |x(t)|^2 dt$$

Du får hänvisa till de resultat som du kom fram till i hemlabben. Parsevals identitet (formel) kan användas. (5p)

Figur 1: Fyrkantsvåg

SSY080 2016-08-24

5. Diskret Fouriertransform (DFT) X[k] av signalen x[n] beräknas som

$$X[k] = \sum_{n=0}^{N-1} x[n]e^{-j\frac{2\pi}{N}kn}$$
, $k = 0, 1, 2, \dots, N-1$

Utifrån signalens DFT kan signalen återskapas enligt

$$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{j\frac{2\pi}{N}kn}, \quad n = 0, 1, 2, \dots, N-1$$

Fem diskreta signaler, $x_{1,2,3,4,5}[n]$, beskrivs nedan med sina numeriska värden. Para ihop var och en av dessa signaler med sin Diskreta Fouriertransform, $X_{\alpha}[k]$. Välj mellan de åtta olika alternativen i tabellen nedan, $X_{a,b,c,d,e,f,g,h}[k]$. Du måste motivera dina val! (5p)

i	$x_i[n]$	α	$X_{\alpha}[k]$
1	$\{1, 0, 0, 0\}$	a	$\{0, -2j, 0, 2j \}$
2	$\{0, 1, 0, -1\}$	b	$\left\{\frac{1}{2},\ 0,\ -\frac{1}{2},\ 0\right\}$
3	$\{0, 1, 0, 1\}$	c	$\{1, 0, 0, 0\}$
4	$\left\{\frac{1}{4}, \ \frac{1}{4}, \ \frac{1}{4}, \ \frac{1}{4}\right\}$	d	$\{1, 1, 1, 1\}$
5	$\{0, 1, 0, 0\}$	e	$\{1, j, 0, -j, -1\}$
		f	$\{2, 0, -2, 0\}$
		g	$\{1, -j, -1, j\}$
		h	$\{0, 2j, 0, -2j, 0\}$