Generalized Linear Models

"The trouble with normal is that it always gets worse"

Samuel Robinson, Ph.D.

Sept 29, 2023

Part 1: The exponential family

Meet (some of) the exponential family!

Christmas gifts for the nerds in your life

- Meet (some of) the exponential family!
 - Normal

Christmas gifts for the nerds in your life

- Meet (some of) the exponential family!
 - Normal
 - Binomial

Christmas gifts for the nerds in your life

- Meet (some of) the exponential family!
 - Normal
 - Binomial
 - Poisson

Christmas gifts for the nerds in your life

- Meet (some of) the exponential family!
 - Normal
 - Binomial
 - Poisson
 - Beta-Binomial

Christmas gifts for the nerds in your life

- Meet (some of) the exponential family!
 - Normal
 - Binomial
 - Poisson
 - Beta-Binomial
 - Negative Binomial

Christmas gifts for the nerds in your life

- Meet (some of) the exponential family!
 - Normal
 - Binomial
 - Poisson
 - Beta-Binomial
 - Negative Binomial
- "Play time"

Christmas gifts for the nerds in your life

Problem: not everything is normal

 Some types of data can never be transformed to make the residuals normal

Problem: not everything is normal

- Some types of data can never be transformed to make the residuals normal
- Solution: use the distribution that generates the data!

But how do I know which distribution to use?

And if thou gaze long into an abyss, the abyss will also gaze into thee - F. Nietzsche

Let's take a look at some common ones!

Time to meet the Exponential family!

 $\hbox{\bf Imagine many random} + \hbox{\bf and -} \\ \hbox{\bf numbers added together}$

- Imagine many random + and numbers added together
- If you do this *many* times:

- Imagine many random + and numbers added together
- If you do this many times:
 - Most cancel out (somewhere around 0)

- Imagine many random + and numbers added together
- If you do this many times:
 - Most cancel out (somewhere around 0)
 - Few are far away from 0 (tails of distribution)

- Imagine many random + and numbers added together
- If you do this many times:
 - Most cancel out (somewhere around 0)
 - Few are far away from 0 (tails of distribution)
- Common in nature, because of many small + and - factors adding together

- Imagine many random + and numbers added together
- If you do this many times:
 - Most cancel out (somewhere around 0)
 - Few are far away from 0 (tails of distribution)
- Common in nature, because of many small + and - factors adding together
 - e.g. Height is driven by many sets of genes

• 2 parameters: mean (μ) and standard deviation (σ)

$$p(\mathbf{x}|\mu,\sigma) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}(\frac{\mathbf{x}-\mu}{\sigma})^2}$$

• 2 parameters: mean (μ) and standard deviation (σ)

$$p(\mathbf{x}|\mu,\sigma) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}(\frac{\mathbf{x}-\mu}{\sigma})^2}$$

 Probability distribution function (PDF) for the Normal distribution

• 2 parameters: mean (μ) and standard deviation (σ)

$$p(x|\mu,\sigma) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}$$

- Probability distribution function (PDF) for the Normal distribution
- Tells you about the probability of getting some number given μ and σ

• 2 parameters: mean (μ) and standard deviation (σ)

$$p(x|\mu,\sigma) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}$$

- Probability distribution function (PDF) for the Normal distribution
- Tells you about the probability of getting some number given μ and σ

• 2 parameters: mean (μ) and standard deviation (σ)

$$p(x|\mu,\sigma) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}$$

- Probability distribution function (PDF) for the Normal distribution
- Tells you about the probability of getting some number given μ and σ

Example: what is the probability of getting a 4, if the mean is 5 and SD is 1?

$$p(4|5,1) = \frac{1}{1\sqrt{2\pi}}e^{-\frac{1}{2}(\frac{4-5}{1})^2}$$
$$= \sim 0.24$$

In R, this is easy:

• 2 parameters: mean (μ) and standard deviation (σ)

$$p(\mathbf{x}|\mu,\sigma) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}(\frac{\mathbf{x}-\mu}{\sigma})^2}$$

- Probability distribution function (PDF) for the Normal distribution
- Tells you about the probability of getting some number given μ and σ

Example: what is the probability of getting a 4, if the mean is 5 and SD is 1?

$$p(4|5,1) = \frac{1}{1\sqrt{2\pi}}e^{-\frac{1}{2}(\frac{4-5}{1})^2}$$
$$= \sim 0.24$$

In R, this is easy:

```
#d stands for "density"
dnorm(x=4,mean=5,sd=1)
```

[1] 0.2419707

The Normal Distribution

• Probability of x changes with μ and σ

The Normal Distribution

- Probability of x changes with μ and σ
- Left: $\sigma = 1$, Right: $\sigma = 3$

 Imagine you have 10 coins, and you flip them all

- Imagine you have 10 coins, and you flip them all
- If you do this *many* times:

- Imagine you have 10 coins, and you flip them all
- If you do this many times:
 - Most will be about 5 heads/tails

- Imagine you have 10 coins, and you flip them all
- If you do this many times:
 - Most will be about 5 heads/tails
 - Few will be 1 head, 9 tails (or reverse)

- Imagine you have 10 coins, and you flip them all
- If you do this many times:
 - Most will be about 5 heads/tails
 - Few will be 1 head, 9 tails (or reverse)
- Common in nature where outcomes are binary

- Imagine you have 10 coins, and you flip them all
- If you do this many times:
 - Most will be about 5 heads/tails
 - Few will be 1 head, 9 tails (or reverse)
- Common in nature where outcomes are binary
 - e.g. 10 seeds from a plant, how many will germinate?

- Imagine you have 10 coins, and you flip them all
- If you do this *many* times:
 - Most will be about 5 heads/tails
 - Few will be 1 head, 9 tails (or reverse)
- Common in nature where outcomes are binary
 - e.g. 10 seeds from a plant, how many will germinate?
- If N = 1, this is called a Bernoulli trial

• 1 parameter: probability of success (ϕ) , plus. . .

$$p(x|\phi, N) = \binom{N}{x} \phi^{x} (1-\phi)^{N-x}$$

- 1 parameter: probability of success (ϕ) , plus. . .
- Number of "coin flips" (N)

$$p(x|\phi, N) = \binom{N}{x} \phi^{x} (1-\phi)^{N-x}$$

- 1 parameter: probability of success (ϕ) , plus. . .
- Number of "coin flips" (N)

$$p(x|\phi, N) = \binom{N}{x} \phi^{x} (1-\phi)^{N-x}$$

 Probability mass function (PMF); density = continuous

- 1 parameter: probability of success (ϕ) , plus. . .
- Number of "coin flips" (N)

$$p(x|\phi, N) = \binom{N}{x} \phi^{x} (1-\phi)^{N-x}$$

- Probability mass function (PMF); density = continuous
- Tells you about the probability of getting x "successes" given φ and N

- 1 parameter: probability of success (ϕ) , plus. . .
- Number of "coin flips" (N)

$$p(x|\phi, N) = \binom{N}{x} \phi^{x} (1-\phi)^{N-x}$$

- Probability mass function (PMF); density = continuous
- Tells you about the probability of getting x "successes" given φ and N

- 1 parameter: probability of success (ϕ) , plus. . .
- Number of "coin flips" (N)

$$p(x|\phi, N) = \binom{N}{x} \phi^{x} (1-\phi)^{N-x}$$

- Probability mass function (PMF); density = continuous
- Tells you about the probability of getting x "successes" given φ and N

Example: what is the probability of getting 4 successes, if ϕ is 0.25 and N is 15?

$$p(4|0.25, 15) = {15 \choose 4} 0.25^4 (1 - 0.25)^{15-4}$$
$$= \sim 0.23$$

- 1 parameter: probability of success (ϕ) , plus. . .
- Number of "coin flips" (N)

$$p(x|\phi, N) = \binom{N}{x} \phi^{x} (1-\phi)^{N-x}$$

- Probability mass function (PMF); density = continuous
- Tells you about the probability of getting x "successes" given φ and N

Example: what is the probability of getting 4 successes, if ϕ is 0.25 and N is 15?

$$p(4|0.25, 15) = {15 \choose 4} 0.25^{4} (1 - 0.25)^{15-4}$$
$$= \sim 0.23$$

In R, this is easy:

dbinom(x=4,size=15,prob=0.25)

[1] 0.2251991

The Binomial Distribution

• Probability of x "successes" changes with ϕ and N

 Imagine a rare event (e.g. getting a non-junk mail letter)

- Imagine a rare event (e.g. getting a non-junk mail letter)
- If you record the number of events every day:

- Imagine a rare event (e.g. getting a non-junk mail letter)
- If you record the number of events every day:
 - Most days, you'll get 0 or maybe 1 letter

- Imagine a rare event (e.g. getting a non-junk mail letter)
- If you record the number of events every day:
 - Most days, you'll get 0 or maybe 1 letter
 - On some rare days, you'll get 3 or 4 letters

- Imagine a rare event (e.g. getting a non-junk mail letter)
- If you record the number of events every day:
 - Most days, you'll get 0 or maybe 1 letter
 - On some rare days, you'll get 3 or 4 letters
- Common in nature where rare events are measured over time/space:

- Imagine a rare event (e.g. getting a non-junk mail letter)
- If you record the number of events every day:
 - Most days, you'll get 0 or maybe 1 letter
 - On some rare days, you'll get 3 or 4 letters
- Common in nature where rare events are measured over time/space:
 - e.g. Number of bugs caught in a net (per sweep)

- Imagine a rare event (e.g. getting a non-junk mail letter)
- If you record the number of events every day:
 - Most days, you'll get 0 or maybe 1 letter
 - On some rare days, you'll get 3 or 4 letters
- Common in nature where rare events are measured over time/space:
 - e.g. Number of bugs caught in a net (per sweep)
- Equivalent to Binomial distribution, where N is unknown

• 1 parameter: rate parameter (λ)

$$p(x|\lambda) = \frac{\lambda^x e^{-\lambda}}{x!}$$

• 1 parameter: rate parameter (λ)

$$p(x|\lambda) = \frac{\lambda^x e^{-\lambda}}{x!}$$

Probability mass function (PMF)

• 1 parameter: rate parameter (λ)

$$p(x|\lambda) = \frac{\lambda^x e^{-\lambda}}{x!}$$

- Probability mass function (PMF)
- Tells you about the probability of getting x counts given λ

• 1 parameter: rate parameter (λ)

$$p(x|\lambda) = \frac{\lambda^x e^{-\lambda}}{x!}$$

- Probability mass function (PMF)
- Tells you about the probability of getting x counts given λ

• 1 parameter: rate parameter (λ)

$$p(x|\lambda) = \frac{\lambda^x e^{-\lambda}}{x!}$$

- Probability mass function (PMF)
- Tells you about the probability of getting x counts given λ

Example: what is the probability of getting 2 counts, if λ is 1?

$$p(2|1) = \frac{1^2 e^{-1}}{2!}$$
$$= \sim 0.18$$

• 1 parameter: rate parameter (λ)

$$p(x|\lambda) = \frac{\lambda^x e^{-\lambda}}{x!}$$

- Probability mass function (PMF)
- Tells you about the probability of getting x counts given λ

Example: what is the probability of getting 2 counts, if λ is 1?

$$p(2|1) = \frac{1^2 e^{-1}}{2!}$$
$$= \sim 0.18$$

In R, this is easy:

```
dpois(x=2,lambda=1)
```

[1] 0.1839397

• Probability of x counts changes with λ

• The Normal distribution has a parameter for the mean and SD, but...

- The Normal distribution has a parameter for the mean and SD, but...
- What about the Binomial and Poisson distributions?

- The Normal distribution has a parameter for the mean and SD, but...
- What about the Binomial and Poisson distributions?
 - Binomial: mean = Np, $SD = \sqrt{Np(1-p)}$

- The Normal distribution has a parameter for the mean and SD, but...
- What about the Binomial and Poisson distributions?
 - Binomial: mean = Np, $SD = \sqrt{Np(1-p)}$
 - Poisson: mean = λ , SD = $\sqrt{\lambda}$

- The Normal distribution has a parameter for the mean and SD, but...
- What about the Binomial and Poisson distributions?
 - Binomial: mean = Np, $SD = \sqrt{Np(1-p)}$
 - Poisson: mean = λ , SD = $\sqrt{\lambda}$
- What if our data have additional variance?

- The Normal distribution has a parameter for the mean and SD, but...
- What about the Binomial and Poisson distributions?
 - Binomial: mean = Np, $SD = \sqrt{Np(1-p)}$
 - Poisson: mean = λ , SD = $\sqrt{\lambda}$
- What if our data have additional variance?
 - Beta Binomial and Negative Binomial distributions

 Many "coin-flip" processes have longer tails than standard Binomial

- Many "coin-flip" processes have longer tails than standard Binomial
 - e.g. numbers of males/females in families

- Many "coin-flip" processes have longer tails than standard Binomial
 e.g. numbers of males/females in
 - e.g. numbers of males/females in families
- Beta-binomial adds additional dispersion to coin flip process

- Many "coin-flip" processes have longer tails than standard Binomial
 e.g. numbers of males/females in
 - e.g. numbers of males/females families
- Beta-binomial adds additional dispersion to coin flip process
- 2 parameters: ϕ and s (if s is large, similar to Binomial)

- Many "coin-flip" processes have longer tails than standard Binomial
 e.g. numbers of males/females in families
- Beta-binomial adds additional dispersion to coin flip process
- 2 parameters: ϕ and s (if s is large, similar to Binomial)
 - Also requires: N

- Many "coin-flip" processes have longer tails than standard Binomial
 e.g. numbers of males/females in families
- Beta-binomial adds additional dispersion to coin flip process
- 2 parameters: ϕ and s (if s is large, similar to Binomial)
 - Also requires: N

- Many "coin-flip" processes have longer tails than standard Binomial
 - e.g. numbers of males/females in families
- Beta-binomial adds additional dispersion to coin flip process
- 2 parameters: ϕ and s (if s is large, similar to Binomial)
 - Also requires: N

```
#Extra distributions
library(rmutil)
dbetabinom(x,m=phi,size=N,s=5)
```


The Negative Binomial Distribution

 Unfortunately, almost nothing in ecology actually follows a Poisson distribution

The Negative Binomial Distribution

- Unfortunately, almost nothing in ecology actually follows a Poisson distribution
- Negative Binomial is similar to a Poisson, but can have longer tails

The Negative Binomial Distribution

- Unfortunately, almost nothing in ecology actually follows a Poisson distribution
- Negative Binomial is similar to a Poisson, but can have longer tails
- Also called: Polya distibution (nbinom2 in many GLM commands)

The Negative Binomial Distribution

- Unfortunately, almost nothing in ecology actually follows a Poisson distribution
- Negative Binomial is similar to a Poisson, but can have longer tails
- Also called: Polya distibution (nbinom2 in many GLM commands)
- Parameters: μ and θ (if θ is large, close to Poisson)

The Negative Binomial Distribution

- Unfortunately, almost nothing in ecology actually follows a Poisson distribution
- Negative Binomial is similar to a Poisson, but can have longer tails
- Also called: Polya distibution (nbinom2 in many GLM commands)
- Parameters: μ and θ (if θ is large, close to Poisson)

The Negative Binomial Distribution

- Unfortunately, almost nothing in ecology actually follows a Poisson distribution
- Negative Binomial is similar to a Poisson, but can have longer tails
- Also called: Polya distibution (nbinom2 in many GLM commands)
- Parameters: μ and θ (if θ is large, close to Poisson)

```
#size = theta parameter
dnbinom(x,mu,size=1)
```


• Continuous data, spanning - or + numbers:

- Continuous data, spanning or + numbers:
 - Normal (transformed or regular)

- Continuous data, spanning or + numbers:
 - Normal (transformed or regular)
- Count data

- Continuous data, spanning or + numbers:
 - Normal (transformed or regular)
- Count data
 - Poisson, Negative Binomial

- Continuous data, spanning or + numbers:
 - Normal (transformed or regular)
- Count data
 - Poisson, Negative Binomial
- Count data of successes and failures

- Continuous data, spanning or + numbers:
 - Normal (transformed or regular)
- Count data
 - Poisson, Negative Binomial
- Count data of successes and failures
 - Binomial, Beta Binomial

- Continuous data, spanning or + numbers:
 - Normal (transformed or regular)
- Count data
 - Poisson, Negative Binomial
- Count data of successes and failures
 - Binomial, Beta Binomial

- Continuous data, spanning or + numbers:
 - Normal (transformed or regular)
- Count data
 - Poisson, Negative Binomial
- Count data of successes and failures
 - Binomial, Beta Binomial

These are by no means the only useful distributions, but are fairly common

Let's say that you've collected data at 2 different sites. Which distributions would you start with for the following data?

• Insects caught in a trap (per day)

- Insects caught in a trap (per day)
- Weight of seeds from a plant

- Insects caught in a trap (per day)
- Weight of seeds from a plant
- Occupied/unoccupied nest sites

- Insects caught in a trap (per day)
- Weight of seeds from a plant
- Occupied/unoccupied nest sites
- Chemical concentrations

- Insects caught in a trap (per day)
- Weight of seeds from a plant
- Occupied/unoccupied nest sites
- Chemical concentrations
- Size of trees (DBH or height)

- Insects caught in a trap (per day)
- Weight of seeds from a plant
- Occupied/unoccupied nest sites
- Chemical concentrations
- Size of trees (DBH or height)
- Number of male and female bats

Now that you've figured out which distribution, try simulating some data from each "site", and plot it!

• Insects caught in a trap (per day): Poisson or NB

- Insects caught in a trap (per day): Poisson or NB
 - rpois(n,lambda) or rnbinom(n,mu,size)

- Insects caught in a trap (per day): Poisson or NB
 - rpois(n,lambda) or rnbinom(n,mu,size)
- Weight of seeds: Normal

- Insects caught in a trap (per day): Poisson or NB
 - rpois(n,lambda) or rnbinom(n,mu,size)
- Weight of seeds: Normal
 - rnorm(n,mean,sd)

- Insects caught in a trap (per day): Poisson or NB
 - rpois(n,lambda) or rnbinom(n,mu,size)
- Weight of seeds: Normal
 - rnorm(n,mean,sd)
- Occupied/unoccupied nest sites: Binomial

- Insects caught in a trap (per day): Poisson or NB
 - rpois(n,lambda) or rnbinom(n,mu,size)
- Weight of seeds: Normal
 - rnorm(n,mean,sd)
- Occupied/unoccupied nest sites: Binomial
 - rbinom(n, 1, prob) aka. Bernoulli distribution

- Insects caught in a trap (per day): Poisson or NB
 - rpois(n,lambda) or rnbinom(n,mu,size)
- Weight of seeds: Normal
 - rnorm(n,mean,sd)
- Occupied/unoccupied nest sites: Binomial
 - rbinom(n, 1, prob) aka. Bernoulli distribution
- Chemical concentrations in a pond: Normal

- Insects caught in a trap (per day): Poisson or NB
 - rpois(n,lambda) or rnbinom(n,mu,size)
- Weight of seeds: Normal
 - rnorm(n,mean,sd)
- Occupied/unoccupied nest sites: Binomial
 - rbinom(n, 1, prob) aka. Bernoulli distribution
- Chemical concentrations in a pond: Normal
 - rnorm(n,mean,sd)

- Insects caught in a trap (per day): Poisson or NB
 - rpois(n,lambda) or rnbinom(n,mu,size)
- Weight of seeds: Normal
 - rnorm(n,mean,sd)
- Occupied/unoccupied nest sites: Binomial
 - rbinom(n, 1, prob) aka. Bernoulli distribution
- Chemical concentrations in a pond: Normal
 - rnorm(n,mean,sd)
- Size of trees (DBH or height):log-Normal

- Insects caught in a trap (per day): Poisson or NB
 - rpois(n,lambda) or rnbinom(n,mu,size)
- Weight of seeds: Normal
 - rnorm(n,mean,sd)
- Occupied/unoccupied nest sites: Binomial
 - rbinom(n, 1, prob) aka. Bernoulli distribution
- Chemical concentrations in a pond: Normal
 - rnorm(n,mean,sd)
- Size of trees (DBH or height): log-Normal
 - exp(rnorm(n,mean,sd))

- Insects caught in a trap (per day): Poisson or NB
 - rpois(n,lambda) or rnbinom(n,mu,size)
- Weight of seeds: Normal
 - rnorm(n,mean,sd)
- Occupied/unoccupied nest sites: Binomial
 - rbinom(n, 1, prob) aka. Bernoulli distribution
- Chemical concentrations in a pond: Normal
 - rnorm(n,mean,sd)
- Size of trees (DBH or height):log-Normal
 - exp(rnorm(n,mean,sd))
- Number of male and female bats: Binomial or Beta Binomial

- Insects caught in a trap (per day): Poisson or NB
 - rpois(n,lambda) or rnbinom(n,mu,size)
- Weight of seeds: Normal
 - rnorm(n,mean,sd)
- Occupied/unoccupied nest sites: Binomial
 - rbinom(n, 1, prob) aka. Bernoulli distribution
- Chemical concentrations in a pond: Normal
 - rnorm(n,mean,sd)
- Size of trees (DBH or height): log-Normal
 - exp(rnorm(n,mean,sd))
- Number of male and female bats: Binomial or Beta Binomial
 - rbinom(n, size, prob) or rbetabinom(n, size, m, s)

Part 2: Maximum likelihood and GLMs

• Maximum likelihood

- Maximum likelihood
 - A way to think about data

- Maximum likelihood
 - A way to think about data
 - Likelihood vs Probability

- Maximum likelihood
 - A way to think about data
 - Likelihood vs Probability
- Generalized linear models

- Maximum likelihood
 - A way to think about data
 - Likelihood vs Probability
- Generalized linear models
 - Link functions

- Maximum likelihood
 - A way to think about data
 - Likelihood vs Probability
- Generalized linear models
 - Link functions
 - Predictors -> Linear model

How is our data made?

Making data can be thought of as a factory

• Input: parameters (things that guide the process)

How is our data made?

Making data can be thought of as a factory

- Input: parameters (things that guide the process)
- Process: probability function

How is our data made?

Making data can be thought of as a factory

- Input: parameters (things that guide the process)
- Process: probability function
- Output: data (things made by the process)

Examples

Likelihood vs Probability

Probability and likelihood both use the same PDF

• "I know that $\phi = 0.3$. What is the chance of getting 2 heads and a tail?"

```
dbinom(1,1,0.3)*dbinom(1,1,0.3)*dbinom(0,1,0.3)
```

[1] 0.063

Probability and likelihood both use the same PDF

• "I know that $\phi = 0.3$. What is the chance of getting 2 heads and a tail?"

```
dbinom(1,1,0.3)*dbinom(1,1,0.3)*dbinom(0,1,0.3)
```

[1] 0.063

Probability and likelihood both use the same PDF

• "I know that $\phi = 0.3$. What is the chance of getting 2 heads and a tail?"

```
dbinom(1,1,0.3)*dbinom(1,1,0.3)*dbinom(0,1,0.3)
```

```
## [1] 0.063
```

• "I got 2 heads and a tail. What is the likelihood that $\phi = 0.3$?"

```
dbinom(1,1,0.3)*dbinom(1,1,0.3)*dbinom(0,1,0.3)
```

```
## [1] 0.063
```

Probability and likelihood both use the same PDF

• "I know that $\phi = 0.3$. What is the chance of getting 2 heads and a tail?"

```
dbinom(1,1,0.3)*dbinom(1,1,0.3)*dbinom(0,1,0.3)
```

```
## [1] 0.063
```

• "I got 2 heads and a tail. What is the likelihood that $\phi = 0.3$?"

```
dbinom(1,1,0.3)*dbinom(1,1,0.3)*dbinom(0,1,0.3)
```

```
## [1] 0.063
```

Probability and likelihood both use the same PDF

• "I know that $\phi = 0.3$. What is the chance of getting 2 heads and a tail?"

```
dbinom(1,1,0.3)*dbinom(1,1,0.3)*dbinom(0,1,0.3)
```

```
## [1] 0.063
```

• "I got 2 heads and a tail. What is the likelihood that $\phi = 0.3$?"

```
dbinom(1,1,0.3)*dbinom(1,1,0.3)*dbinom(0,1,0.3)
```

```
## [1] 0.063
```

Since we're (mostly) collecting data and trying to guess parameters from it, are we dealing with *probability* or *likelihood*?

Let's see how *likelihood* changes with different values of ϕ :

```
#phi = 0.3
dbinom(1,1,0.3)*dbinom(0,1,0.3)
```

```
## [1] 0.063
```

Let's see how *likelihood* changes with different values of ϕ :

```
#phi = 0.3
dbinom(1,1,0.3)*dbinom(1,1,0.3)*dbinom(0,1,0.3)
## [1] 0.063
#phi = 0.7
dbinom(1,1,0.7)*dbinom(1,1,0.7)*dbinom(0,1,0.7)
```

[1] 0.147

Likelihood of $\phi=0.7$ is higher, i.e. $\phi=0.7$ matches our data better

Likelihood

The best match (maximum likelihood value) is at $\phi =$ 0.666 (2 heads out of 3 flips)

Generalized Linear Models

glm() will fit a model like this, and find the ML solution

```
dat <- data.frame(flips=c(1,1,0)) #Data (2 heads, 1 tail)
mod1 <- glm(flips-1,data=dat,family='binomial') #Note family specification
summary(mod1)</pre>
```

Generalized Linear Models

glm() will fit a model like this, and find the ML solution

```
dat <- data.frame(flips=c(1,1,0)) #Data (2 heads, 1 tail)
mod1 <- glm(flips-1,data=dat,family='binomial') #Note family specification
summary(mod1)</pre>
```

```
##
## Call:
## glm(formula = flips ~ 1, family = "binomial", data = dat)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.6931 1.2247 0.566 0.571
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 3.8191 on 2 degrees of freedom
## AIC: 5.8191
##
## Number of Fisher Scoring iterations: 4
```

Wait... our estimate should be 0.666 (2/3), not 0.693!

• Some parameters of PDFs have *limits*

- Some parameters of PDFs have limits
 - Normal: $-\infty < \mu < \infty$, $0 < \sigma$

- Some parameters of PDFs have *limits*
 - Normal: $-\infty < \mu < \infty$, $0 < \sigma$
 - Binomial: $0 < \phi < 1$

- Some parameters of PDFs have *limits*
 - Normal: $-\infty < \mu < \infty$, $0 < \sigma$
 - Binomial: $0 < \phi < 1$
 - Poisson: $0 < \lambda$

- Some parameters of PDFs have *limits*
 - Normal: $-\infty < \mu < \infty$, $0 < \sigma$
 - Binomial: $0 < \phi < 1$
 - Poisson: $0 < \lambda$
- GLMs use *link functions* to map values onto the appropriate parameter range

- Some parameters of PDFs have *limits*
 - Normal: $-\infty < \mu < \infty$, $0 < \sigma$
 - Binomial: $0 < \phi < 1$
 - Poisson: $0 < \lambda$
- GLMs use *link functions* to map values onto the appropriate parameter range
 - Normal: Identity (i.e. ×1)

- Some parameters of PDFs have *limits*
 - Normal: $-\infty < \mu < \infty$, $0 < \sigma$
 - Binomial: $0 < \phi < 1$
 - Poisson: $0 < \lambda$
- GLMs use *link functions* to map values onto the appropriate parameter range
 - Normal: Identity (i.e. ×1)
 - Binomial: Logit

- Some parameters of PDFs have *limits*
 - Normal: $-\infty < \mu < \infty$, $0 < \sigma$
 - Binomial: $0 < \phi < 1$
 - Poisson: $0 < \lambda$
- GLMs use *link functions* to map values onto the appropriate parameter range
 - Normal: Identity (i.e. $\times 1$)
 - Binomial: Logit
 - Poisson/NB: Log

- Some parameters of PDFs have *limits*
 - Normal: $-\infty < \mu < \infty$, $0 < \sigma$
 - Binomial: $0 < \phi < 1$
 - Poisson: $0 < \lambda$
- GLMs use link functions to map values onto the appropriate parameter range
 - Normal: Identity (i.e. ×1)
 - Binomial: Logit
 - Poisson/NB: Log
- logit(0.693) = 0.666, so the GLM actually got it right!

What do these functions look like?

• These functions map parameter values from the appropriate range (0-1 or 0- ∞) onto $-\infty$ to $+\infty$

Why do we bother with these link function?

 Likelihood functions are not symmetrical on the regular scale

Why do we bother with these link function?

- Likelihood functions are not symmetrical on the regular scale
- On the link-scale, they are closer to a normal distribution

Why do we bother with these link function?

- Likelihood functions are not symmetrical on the regular scale
- On the link-scale, they are closer to a normal distribution
- Makes it easier for R to find the ML estimate (and confidence intervals)

• Usually we aren't interested in finding only a single parameter ϕ .

- Usually we aren't interested in finding only a single parameter ϕ .
- Solution: ϕ becomes a *linear* function of the predictors

- Usually we aren't interested in finding only a single parameter ϕ .
- Solution: ϕ becomes a *linear* function of the predictors
- Remember: simple linear models take the form:

- Usually we aren't interested in finding only a single parameter ϕ .
- Solution: ϕ becomes a *linear* function of the predictors
- Remember: simple linear models take the form:

- Usually we aren't interested in finding only a single parameter ϕ .
- Solution: ϕ becomes a *linear* function of the predictors
- Remember: simple linear models take the form:

$$\hat{y} = b_0 + b_1 x_1 ... + b_i x_i$$

 $y \sim Normal(\hat{y}, \sigma)$

 Generalized linear models are similar, except that:

- Usually we aren't interested in finding only a single parameter ϕ .
- Solution: ϕ becomes a *linear* function of the predictors
- Remember: simple linear models take the form:

$$\hat{y} = b_0 + b_1 x_1 ... + b_i x_i$$

 $y \sim Normal(\hat{y}, \sigma)$

- Generalized linear models are similar, except that:
- **1** Expected value (ϕ) fed through a link function

- Usually we aren't interested in finding only a single parameter ϕ .
- Solution: ϕ becomes a *linear* function of the predictors
- Remember: simple linear models take the form:

$$\hat{y} = b_0 + b_1 x_1 ... + b_i x_i$$

 $y \sim Normal(\hat{y}, \sigma)$

- Generalized linear models are similar, except that:
- Expected value (ϕ) fed through a link function
- 2 Data is fit to a non-normal probability function

- Usually we aren't interested in finding only a single parameter ϕ .
- Solution: ϕ becomes a *linear* function of the predictors
- Remember: simple linear models take the form:

$$\hat{y} = b_0 + b_1 x_1 ... + b_i x_i$$

 $y \sim Normal(\hat{y}, \sigma)$

- Generalized linear models are similar, except that:
- Expected value (ϕ) fed through a link function
- 2 Data is fit to a non-normal probability function

How do linear models fit into this?

- Usually we aren't interested in finding only a single parameter ϕ .
- Solution: ϕ becomes a *linear* function of the predictors
- Remember: simple linear models take the form:

$$\hat{y} = b_0 + b_1 x_1 ... + b_i x_i$$

 $y \sim Normal(\hat{y}, \sigma)$

- Generalized linear models are similar, except that:
- **1** Expected value (ϕ) fed through a link function
- 2 Data is fit to a non-normal probability function

$$logit(\hat{\phi}) = b_0 + b_1 x_1 ... + b_i x_i$$
 $flips \sim Binomial(\hat{\phi})$

How do linear models fit into this?

- Usually we aren't interested in finding only a single parameter ϕ .
- Solution: ϕ becomes a *linear* function of the predictors
- Remember: simple linear models take the form:

$$\hat{y} = b_0 + b_1 x_1 ... + b_i x_i$$

 $y \sim Normal(\hat{y}, \sigma)$

function

except that: **1** Expected value (ϕ) fed through a link

Generalized linear models are similar.

2 Data is fit to a non-normal probability function

$$logit(\hat{\phi}) = b_0 + b_1 x_1 ... + b_i x_i$$
 $flips \sim Binomial(\hat{\phi})$

Instead of finding ϕ , R finds the coefficients (b_0, b_1, \dots, b_i) that create ϕ

How do I fit GLMs in R?

Syntax and model output is very similar to 1m

```
# y \sim x, where x is the predictor of y
mod_binomial <- glm(y2 ~ x1 + x2 , data = d1, family = 'binomial') #Fit a binomial GLM
##
## Call:
## glm(formula = y2 ~ x1 + x2, family = "binomial", data = d1)
##
## Coefficients:
             Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.81748 0.25851 3.162 0.001565 **
## x1
             -0.17576 0.04871 -3.608 0.000309 ***
## x2
          0.30193 0.09950 3.034 0.002410 **
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
      Null deviance: 129.49 on 99 degrees of freedom
## Residual deviance: 102.98 on 97 degrees of freedom
## ATC: 108.98
## Number of Fisher Scoring iterations: 4
```

Dispersion and deviance will be discussed later. . .

How do I get partial effects plots?

 crPlot (from car) and ggpredict (ggeffects) work with fitted glm models:

How do I get partial effects plots?

- crPlot (from car) and ggpredict (ggeffects) work with fitted glm models:
- Why is the line not straight? Why are the confidence intervals not symmetrical?

How do I get partial effects plots?

- crPlot (from car) and ggpredict (ggeffects) work with fitted glm models:
- Why is the line not straight? Why are the confidence intervals not symmetrical?
- Answer: the model is linear on the link scale, but nonlinear on the data scale

Second challenge

Remember that bat data from last week? (Found here in batDat.csv). We used a
lm last week to fit it, but it actually came from a glm

Second challenge

- Remember that bat data from last week? (Found here in batDat.csv). We used a
 lm last week to fit it, but it actually came from a glm
- Fit a glm to those data, check how the model fits, and make some partial effects plots

Second challenge

- Remember that bat data from last week? (Found here in batDat.csv). We used a
 lm last week to fit it, but it actually came from a glm
- Fit a glm to those data, check how the model fits, and make some partial effects plots
- Recall: this is the "true" causal relationship here (no interactions)

Model results


```
## Call:
  glm(formula = bats ~ poly(temp, 2) + log(light) + bugs, family = "poisson",
      data = batDat)
##
## Coefficients:
                   Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                   2.756999
                              0.077780
                                         35.45
                                                  <2e-16 ***
## poly(temp, 2)1
                   3.253942
                              0.321972
                                         10.11
                                                  <2e-16 ***
## poly(temp, 2)2 -2.765370
                              0.160287
                                        -17.25
                                                  <2e-16 ***
## log(light)
                  -0.508112
                              0.011943
                                        -42.54
                                                  <2e-16 ***
## bugs
                   0.009513
                              0.000346
                                         27.49
                                                  <2e-16 ***
## Signif. codes:
                   0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
  (Dispersion parameter for poisson family taken to be 1)
##
       Null deviance: 8237.284
                                on 99
                                       degrees of freedom
## Residual deviance:
                        91.794 on 95 degrees of freedom
## AIC: 645.77
## Number of Fisher Scoring iterations: 4
```

Part 3: Models behaving badly

• Are my model results reliable?

- Are my model results reliable?
 - Residual checks

- Are my model results reliable?
 - Residual checks
 - Overdispersion

- Are my model results reliable?
 - Residual checks
 - Overdispersion
 - Zero-inflation

- Are my model results reliable?
 - Residual checks
 - Overdispersion
 - Zero-inflation
- Model selection which terms should I use?

- Are my model results reliable?
 - Residual checks
 - Overdispersion
 - Zero-inflation
- Model selection which terms should I use?
 - log-likelihood, χ^2 tests, and AIC

- Are my model results reliable?
 - Residual checks
 - Overdispersion
 - Zero-inflation
- Model selection which terms should I use?
 - log-likelihood, χ^2 tests, and AIC
- Other things

- Are my model results reliable?
 - Residual checks
 - Overdispersion
 - Zero-inflation
- Model selection which terms should I use?
 - log-likelihood, χ^2 tests, and AIC
- Other things
 - Binomial GLMs with >1 trial

- Are my model results reliable?
 - Residual checks
 - Overdispersion
 - Zero-inflation
- Model selection which terms should I use?
 - log-likelihood, χ^2 tests, and AIC
- Other things
 - Binomial GLMs with >1 trial
 - Offsets in count models

• In LMs, residual checks are used to make sure that:

- In LMs, residual checks are used to make sure that:
- 1 Terms are linearly related

- In LMs, residual checks are used to make sure that:
- 1 Terms are linearly related
- ② Generating process is valid

- In LMs, residual checks are used to make sure that:
- 1 Terms are linearly related
- ② Generating process is valid
- **3** Variance is constant

- In LMs, residual checks are used to make sure that:
- 1 Terms are linearly related
- ② Generating process is valid
- **3** Variance is constant
- "Regular" residuals don't work this way for GLMs!

- In LMs, residual checks are used to make sure that:
- 1 Terms are linearly related
- ② Generating process is valid
- **3** Variance is constant
- "Regular" residuals don't work this way for GLMs!

- In LMs, residual checks are used to make sure that:
- 1 Terms are linearly related
- ② Generating process is valid
- 3 Variance is constant
- "Regular" residuals don't work this way for GLMs!

In addition to *response* (regular) residuals there are:

Working residuals

In addition to *response* (regular) residuals there are:

- Working residuals
- Pearson residuals

In addition to *response* (regular) residuals there are:

- Working residuals
- Pearson residuals
- Deviance residuals

In addition to *response* (regular) residuals there are:

- Working residuals
- Pearson residuals
- Deviance residuals

In addition to response (regular) residuals there are:

- Working residuals
- Pearson residuals
- Deviance residuals

Deviance residuals use likelihood:

$$r_{dev} = sign(y - \hat{y})\sqrt{2(log(L(y|\theta_s)) - log(L(y|\theta))))}$$

This may look scary, but R does this all for you!

In addition to response (regular) residuals there are:

- Working residuals
- Pearson residuals
- Deviance residuals

Deviance residuals use likelihood:

$$r_{dev} = sign(y - \hat{y})\sqrt{2(log(L(y|\theta_s)) - log(L(y|\theta))))}$$

- This may look scary, but R does this all for you!
- These are analogous to regular residuals in LMs

In addition to response (regular) residuals there are:

- Working residuals
- Pearson residuals
- Deviance residuals

Deviance residuals use likelihood:

$$r_{dev} = sign(y - \hat{y})\sqrt{2(log(L(y|\theta_s)) - log(L(y|\theta))))}$$

- This may look scary, but R does this all for you!
- These are analogous to regular residuals in LMs
- For more about the different kinds of residuals, see here

Solution: use deviance residuals for GLMs

 Residuals from GLMs will never be as "pretty" as those from LMs

Solution: use deviance residuals for GLMs

- Residuals from GLMs will never be as "pretty" as those from LMs
- *Especially* true for:

Solution: use deviance residuals for GLMs

- Residuals from GLMs will never be as "pretty" as those from LMs
- Especially true for:
 - Binomial GLMs

Solution: use deviance residuals for GLMs

- Residuals from GLMs will never be as "pretty" as those from LMs
- Especially true for:
 - Binomial GLMs
 - Poisson/Negative Binomial GLMs with many zeros

Solution: use deviance residuals for GLMs

- Residuals from GLMs will never be as "pretty" as those from LMs
- Especially true for:
 - Binomial GLMs
 - Poisson/Negative Binomial GLMs with many zeros
- Next week we will deal with simulation testing residuals

 Binomial and Poisson families have no variance term (e.g. SD).

Example: data are much more variable than the predictions from the model

- Binomial and Poisson families have no variance term (e.g. SD).
- Sometimes this assumption doesn't work! (Very common for Poisson models)

Example: data are much more variable than the predictions from the model

- Binomial and Poisson families have no variance term (e.g. SD).
- Sometimes this assumption doesn't work! (Very common for Poisson models)
- Strong overdispersion biases SEs, meaning that p-values are useless

Example: data are much more variable than the predictions from the model

```
##
## Call.
## glm(formula = v1 ~ x, family = "poisson", data = d1)
##
## Coefficients:
              Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.89455
                       0.07818 11.44
                                         <2e-16 ***
              -0.21145 0.01174 -18.01 <2e-16 ***
## x
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for poisson family taken to be 1)
      Null deviance: 564.27 on 99 degrees of freedom
## Residual deviance: 106.20 on 98 degrees of freedom
## ATC: 362.01
## Number of Fisher Scoring iterations: 5
```

ullet In Poisson or Binomial models, Residual deviance \div Degrees of Freedom should be ~ 1

```
##
## Call.
## glm(formula = v1 ~ x, family = "poisson", data = d1)
## Coefficients:
              Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.89455
                       0.07818 11.44
                                           <2e-16 ***
              -0.21145 0.01174 -18.01 <2e-16 ***
## x
## Signif, codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for poisson family taken to be 1)
      Null deviance: 564.27 on 99 degrees of freedom
## Residual deviance: 106.20 on 98 degrees of freedom
## ATC: 362.01
## Number of Fisher Scoring iterations: 5
```

- \bullet In Poisson or Binomial models, Residual deviance \div Degrees of Freedom should be ~ 1
- Residual deviance is the sum of all deviance from the model

```
##
## Call.
## glm(formula = v1 ~ x, family = "poisson", data = d1)
##
## Coefficients:
              Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.89455
                        0.07818 11.44
                                           <2e-16 ***
              -0.21145 0.01174 -18.01 <2e-16 ***
## x
## Signif, codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for poisson family taken to be 1)
      Null deviance: 564.27 on 99 degrees of freedom
## Residual deviance: 106.20 on 98 degrees of freedom
## ATC: 362.01
## Number of Fisher Scoring iterations: 5
```

- \bullet In Poisson or Binomial models, Residual deviance \div Degrees of Freedom should be ~ 1
- Residual deviance is the sum of all deviance from the model
- This model looks OK (106.2 \div 98 = 1.08)

```
##
## Call:
## glm(formula = y2 ~ x, family = "poisson", data = d1)
##
## Coefficients:
              Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.07897
                          0.06871
                                   15.70
                                          <2e-16 ***
              -0.17581
                        0 01069 -16 44 <2e-16 ***
## v
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
      Null deviance: 851.96 on 99 degrees of freedom
## Residual deviance: 501.98 on 98 degrees of freedom
## ATC: 735.46
## Number of Fisher Scoring iterations: 5
```

• This model does **not** look OK (501.98 \div 98 = 5.12)

```
##
## Call:
## glm(formula = y2 ~ x, family = "poisson", data = d1)
##
## Coefficients:
              Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.07897
                          0.06871
                                    15.70
                                           <2e-16 ***
              -0.17581
                        0 01069 -16 44 <2e-16 ***
## x
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
      Null deviance: 851.96 on 99 degrees of freedom
## Residual deviance: 501.98 on 98 degrees of freedom
## ATC: 735.46
## Number of Fisher Scoring iterations: 5
```

- This model does **not** look OK (501.98 \div 98 = 5.12)
- Generated using Negative Binomial, but fit to Poisson

Overdispersion can be caused by different things:

• Using the wrong probability distribution

¹Random effects discussed later

- Using the wrong probability distribution
 - e.g. Poisson, but should be Negative Binomial

¹Random effects discussed later

- Using the wrong probability distribution
 - e.g. Poisson, but should be Negative Binomial
- Lots of zeros in count data

¹Random effects discussed later

- Using the wrong probability distribution
 - e.g. Poisson, but should be Negative Binomial
- Lots of zeros in count data
 - e.g. Very short observation period

¹Random effects discussed later

- Using the wrong probability distribution
 - e.g. Poisson, but should be Negative Binomial
- Lots of zeros in count data
 - e.g. Very short observation period
- Leaving out an important term

¹Random effects discussed later

- Using the wrong probability distribution
 - e.g. Poisson, but should be Negative Binomial
- Lots of zeros in count data
 - e.g. Very short observation period
- Leaving out an important term
 - e.g. An important interaction term was omitted

¹Random effects discussed later

- Using the wrong probability distribution
 - e.g. Poisson, but should be Negative Binomial
- Lots of zeros in count data
 - e.g. Very short observation period
- Leaving out an important term
 - e.g. An important interaction term was omitted
- Random effects¹ not accounted for

¹Random effects discussed later

- Using the wrong probability distribution
 - e.g. Poisson, but should be Negative Binomial
- Lots of zeros in count data
 - e.g. Very short observation period
- Leaving out an important term
 - e.g. An important interaction term was omitted
- Random effects¹ not accounted for
 - e.g. Data collected at different sites, but ignored

¹Random effects discussed later

Try the following (in this order):

1 Consider terms that may have been left out

- 1 Consider terms that may have been left out
 - Fixed effects

²These can be annoying to deal with, so avoid if possible

- 1 Consider terms that may have been left out
 - Fixed effects
 - 2 Random effects

- 1 Consider terms that may have been left out
 - Fixed effects
 - 2 Random effects
- 2 Try distributions that account for overdispersion

²These can be annoying to deal with, so avoid if possible

- 1 Consider terms that may have been left out
 - Fixed effects
 - 2 Random effects
- 2 Try distributions that account for overdispersion
 - 1 Negative Binomial, Beta Binomial, Zero-inflated Poisson²

²These can be annoying to deal with, so avoid if possible

- 1 Consider terms that may have been left out
 - Fixed effects
 - 2 Random effects
- 2 Try distributions that account for overdispersion
 - 1 Negative Binomial, Beta Binomial, Zero-inflated Poisson²
 - 2 Quasi-binomial² and quasi-poisson²

²These can be annoying to deal with, so avoid if possible

- 1 Consider terms that may have been left out
 - Fixed effects
 - 2 Random effects
- 2 Try distributions that account for overdispersion
 - 1 Negative Binomial, Beta Binomial, Zero-inflated Poisson²
 - 2 Quasi-binomial² and quasi-poisson²
 - 3 Transform counts to presence/absence

²These can be annoying to deal with, so avoid if possible

- 1 Consider terms that may have been left out
 - Fixed effects
 - 2 Random effects
- 2 Try distributions that account for overdispersion
 - 1 Negative Binomial, Beta Binomial, Zero-inflated Poisson²
 - 2 Quasi-binomial² and quasi-poisson²
 - 3 Transform counts to presence/absence
- 3 Lower your expectations, and use a lower critical p-value (e.g. 0.01 instead of 0.05)

²These can be annoying to deal with, so avoid if possible

- 1 Consider terms that may have been left out
 - Fixed effects
 - 2 Random effects
- 2 Try distributions that account for overdispersion
 - 1 Negative Binomial, Beta Binomial, Zero-inflated Poisson²
 - 2 Quasi-binomial² and quasi-poisson²
 - 3 Transform counts to presence/absence
- 3 Lower your expectations, and use a lower critical p-value (e.g. 0.01 instead of 0.05)
- Oesign a better study :(

²These can be annoying to deal with, so avoid if possible

Negative Binomial Regression

```
library(MASS) #Required for NB models
m3 <- glm.nb(y2~x,data=d1)
summary(m3)</pre>
```

 Model no longer indicates overdispersion!

```
## Call:
## glm.nb(formula = y2 ~ x, data = d1, init.theta = 1.075023363,
      link = log)
##
## Coefficients:
               Estimate Std. Error z value Pr(>|z|)
  (Intercept) 1.03037
                          0.12281
                                     8.390
                                             <2e-16 ***
               -0.19131
                          0.02222 -8.609
                                            <2e-16 ***
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for Negative Binomial(1.075) family taken to be 1)
      Null deviance: 182.31 on 99 degrees of freedom
## Residual deviance: 103.87 on 98 degrees of freedom
## ATC: 458 65
##
## Number of Fisher Scoring iterations: 1
##
                Theta: 1.075
            Std Frr . 0 216
    2 x log-likelihood: -452.653
```

Negative Binomial Regression (cont.)

A way to think about this model:

 Monks at a monastery make copies of manuscripts. Most days they make very few (0 or 1), but occasionally they make many (2-5)

A way to think about this model:

- Monks at a monastery make copies of manuscripts. Most days they make very few (0 or 1), but occasionally they make many (2-5)
- 2 Some days they decide to try out the beer that's been brewing in the cellar! No manuscripts get made on those days.

A way to think about this model:

- 1 Monks at a monastery make copies of manuscripts. Most days they make very few (0 or 1), but occasionally they make many (2-5)
- 2 Some days they decide to try out the beer that's been brewing in the cellar! No manuscripts get made on those days.
- 3 The number of manuscripts made (per day) follows a zero-inflated Poisson distribution

A way to think about this model:

- 1 Monks at a monastery make copies of manuscripts. Most days they make very few (0 or 1), but occasionally they make many (2-5)
- 2 Some days they decide to try out the beer that's been brewing in the cellar! No manuscripts get made on those days.
- 3 The number of manuscripts made (per day) follows a zero-inflated Poisson distribution

A way to think about this model:

- 1 Monks at a monastery make copies of manuscripts. Most days they make very few (0 or 1), but occasionally they make many (2-5)
- 2 Some days they decide to try out the beer that's been brewing in the cellar! No manuscripts get made on those days.
- The number of manuscripts made (per day) follows a zero-inflated Poisson distribution

This is *mixture* of a Poisson and a Binomial:

A way to think about this model:

- Monks at a monastery make copies of manuscripts. Most days they make very few (0 or 1), but occasionally they make many (2-5)
- 2 Some days they decide to try out the beer that's been brewing in the cellar! No manuscripts get made on those days.
- The number of manuscripts made (per day) follows a zero-inflated Poisson distribution

This is *mixture* of a Poisson and a Binomial:

Zero-inflation: graphical model

Problem: hard to fit

• Hard for R to tell the difference between ZIP/ZINB, and a Poisson/NB with a low mean (λ).

Problem: hard to fit

- Hard for R to tell the difference between ZIP/ZINB, and a Poisson/NB with a low mean (λ).
- This needs a lot of data in order to work! Consider longer sampling periods in order to reduce zeros

Problem: hard to fit

- Hard for R to tell the difference between ZIP/ZINB, and a Poisson/NB with a low mean (λ).
- This needs a lot of data in order to work! Consider longer sampling periods in order to reduce zeros
- The modeling approaches for this are somewhat bespoke, so if you need to use this, come talk to me!

Other useful things about GLMs!

ullet Binomial GLMs with >1 trial

Other useful things about GLMs!

- Binomial GLMs with >1 trial
- Offsets in count models

Other useful things about GLMs!

- Binomial GLMs with >1 trial
- Offsets in count models
- Partial effects plots

• If you're measuring single "success/failures", 1s and 0s are used

- If you're measuring single "success/failures", 1s and 0s are used
- If multiple trials occur, R requires counts of successes and failures

- If you're measuring single "success/failures", 1s and 0s are used
- If multiple trials occur, R requires counts of successes and failures
- Example: "I counted male and female critters at different sites. Does temperature affect sex ratios?"

- If you're measuring single "success/failures", 1s and 0s are used
- If multiple trials occur, R requires counts of successes and failures
- Example: "I counted male and female critters at different sites. Does temperature affect sex ratios?"

- If you're measuring single "success/failures", 1s and 0s are used
- If multiple trials occur, R requires counts of successes and failures
- Example: "I counted male and female critters at different sites. Does temperature affect sex ratios?"

```
#Number of females and males are in 2 separate columns in d1
glm(cbind(females, males) ~ temp, family='binomial',data = d1)
```

This will correctly account for different numbers of critters ("trials") at each site

"I counted critters for different lengths of time at each site. Does temperature affect counts?"

• Count models use integers only, so you can't just do: *counts* ÷ *hours*

"I counted critters for different lengths of time at each site. Does temperature affect counts?"

- Count models use integers only, so you can't just do: *counts* ÷ *hours*
- Solution: use offsets to deal with different observation times

"I counted critters for different lengths of time at each site. Does temperature affect counts?"

- Count models use integers only, so you can't just do: counts ÷ hours
- Solution: use offsets to deal with different observation times
 - Predictor with a slope fixed at 1

"I counted critters for different lengths of time at each site. Does temperature affect counts?"

- Count models use integers only, so you can't just do: counts ÷ hours
- Solution: use offsets to deal with different observation times
 - Predictor with a slope fixed at 1

"I counted critters for different lengths of time at each site. Does temperature affect counts?"

- Count models use integers only, so you can't just do: counts ÷ hours
- Solution: use offsets to deal with different observation times
 - Predictor with a slope fixed at 1

```
#hours = observation time at each site (must be log-transformed)
glm(counts ~ offset(log(hours)) + temp, family='poisson',data = d1)
```

This will return estimates that have been scaled to a 1-hour observation time

Partial effects plots

• library(ggeffects) and library(effects) work for partial effects plots, but...

Partial effects plots

- library(ggeffects) and library(effects) work for partial effects plots, but...
- Residuals are tricky to display, unless you plot them on the link scale

Partial effects plots

• Plots from effects use working residuals (not on the link scale)

```
library(effects)
plot(allEffects(m4,residuals=TRUE))
```


• Dr. Paulo Malpern (Paul Galpern's evil nemesis) sent 2 people out to check out some bee habitats in Edmonton and Calgary. One of them dutifully counted bees at each site, but the other one was really lazy, and just recorded "bees or no bees" (1 or 0).

- Dr. Paulo Malpern (Paul Galpern's evil nemesis) sent 2 people out to check out some bee habitats in Edmonton and Calgary. One of them dutifully counted bees at each site, but the other one was really lazy, and just recorded "bees or no bees" (1 or 0).
- Fit a model to each of the datasets (found here in beeDatGLM.csv) using a GLM

- Dr. Paulo Malpern (Paul Galpern's evil nemesis) sent 2 people out to check out some bee habitats in Edmonton and Calgary. One of them dutifully counted bees at each site, but the other one was really lazy, and just recorded "bees or no bees" (1 or 0).
- Fit a model to each of the datasets (found here in beeDatGLM.csv) using a GLM
 Terms to include: city and floral (no interaction)

- Dr. Paulo Malpern (Paul Galpern's evil nemesis) sent 2 people out to check out some bee habitats in Edmonton and Calgary. One of them dutifully counted bees at each site, but the other one was really lazy, and just recorded "bees or no bees" (1 or 0).
- Fit a model to each of the datasets (found here in beeDatGLM.csv) using a GLM
 Terms to include: city and floral (no interaction)
- How do the models look? Compare the coefficients and see if they are different

- Dr. Paulo Malpern (Paul Galpern's evil nemesis) sent 2 people out to check out some bee habitats in Edmonton and Calgary. One of them dutifully counted bees at each site, but the other one was really lazy, and just recorded "bees or no bees" (1 or 0).
- Fit a model to each of the datasets (found here in beeDatGLM.csv) using a GLM
 Terms to include: city and floral (no interaction)
- How do the models look? Compare the coefficients and see if they are different
 - Bonus: make partial regression plots of the terms each GLM

Model results

• Some of you have non-normal data... time to update those models!

- Some of you have non-normal data... time to update those models!
- For those who don't need to run GLMS, try this:

- Some of you have non-normal data... time to update those models!
- For those who don't need to run GLMS, try this:
- I have a dataset of canola plants (found here in canolaPlants.csv) that I collected during my PhD. I was interested in whether plant size (VegMass) and distance from the edge of the field (Distance) affected how many flowers got turned into seed pods. I counted pods (Pods) on plants, as well as missing pods (Missing).

- Some of you have non-normal data... time to update those models!
- For those who don't need to run GLMS, try this:
- I have a dataset of canola plants (found here in canolaPlants.csv) that I collected during my PhD. I was interested in whether plant size (VegMass) and distance from the edge of the field (Distance) affected how many flowers got turned into seed pods. I counted pods (Pods) on plants, as well as missing pods (Missing).
 - Clean up this dataset (there are a couple NAs and unrealistic numbers), fit a GLM that answers my question, and make some plots of your results. Were there any important interactions between the VegMass and Distance?