1 | A real valued matrix

Let
$$A = \begin{pmatrix} 2 & 1 \\ 3 & 2 \end{pmatrix}$$

$$AA^T = \begin{pmatrix} 2 & 1 \\ 3 & 2 \end{pmatrix} \begin{pmatrix} 2 & 3 \\ 1 & 2 \end{pmatrix} = \begin{pmatrix} 5 & 8 \\ 8 & 13 \end{pmatrix}$$

$$A^TA = \begin{pmatrix} 2 & 3 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ 3 & 2 \end{pmatrix} = \begin{pmatrix} 13 & 8 \\ 8 & 5 \end{pmatrix}$$

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} a & c \\ b & d \end{pmatrix} = \begin{pmatrix} a^2 + b^2 & ac + bd \\ ac + bd & c^2 + d^2 \end{pmatrix}$$

Then, A^TA is the same thing, but with b,c swapped.

2 | For complex matrices

$$\begin{pmatrix} a+bi & c+di \\ f+gi & j+ki \end{pmatrix} \begin{pmatrix} a+bi & f+gi \\ c+di & j+ki \end{pmatrix} = \begin{pmatrix} a^2-b^2+2abi+c^2-d^2+2cdi & af+agi+bfi-bg \\ af+agi+bfi-bg & f^2-g^2+2fgi+j^2-k^2+2jki \end{pmatrix}$$

I'm not sure if I'm noticing anything different from the real ones, although maybe the variables are just too confusing.

3 | Complex conjugate (A^*A vs AA^*)

$$\begin{pmatrix} a+bi & c+di \\ f+gi & j+ki \end{pmatrix} \begin{pmatrix} a-bi & f-gi \\ c-di & j-ki \end{pmatrix} = \begin{pmatrix} a^2+b^2+c^2+d^2 & () \\ () & f^2+g^2+j^2+k^2 \end{pmatrix}$$

$$\begin{pmatrix} a-bi & f-gi \\ c-di & j-ki \end{pmatrix} \begin{pmatrix} a+bi & c+di \\ f+gi & j+ki \end{pmatrix} = \begin{pmatrix} a^2+b^2+f^2+g^2 & () \\ () & c^2+d^2+j^2+k^2 \end{pmatrix}$$

The diagonals are real-valued, and the matrices are symmetric about the diagonal. I wonder if this means the matrices have identical eigenvalues?

Taproot · 2020-2021 Page 1 of 1