Solutions to Homework 6 BIOS 7731

- 1. Suppose X_1, \ldots, X_n are IID $Poisson(\theta)$ and consider the prior distribution for θ to be $Gamma(1, \lambda)$.
 - (a) According to the loss function $l(\theta, a) = \theta^p (\theta a)^2$, where p is a fixed positive constant, show that the Bayes rule is $\frac{T(X) + p + 1}{n + \lambda}$, where $T(X) = \sum_{i=1}^{n} X_i$.

The Bayes rule a^* minimizes $E[\theta^p(\theta-a)^2|X]$. Taking the derivative with respect to a of

$$E[a^2\theta^p - 2a\theta^{p+1} + \theta^{p+2}|X]$$

and setting it to zero, the Bayes rule is

$$a^* = \frac{E[\theta^{p+1}|X]}{E[\theta^p|X]}.$$

(Not shown, but the second derivative test can be used to show that this is a minimum.)

Given the prior distribution for θ as $Gamma(1, \lambda)$, the posterior distribution is

$$\pi(\theta|X) \propto \frac{\theta^{T(X)}e^{-n\theta}}{\prod x_i} \lambda e^{-\lambda\theta},$$

which is $Gamma(\alpha', \lambda')$, where $\alpha' = T(X) + 1$ and $\lambda' = n + \lambda$. The numerator of a^* is

$$E[\theta^{p+1}|X] = \frac{\lambda^{\alpha'}}{\Gamma(\alpha')} \int_{\theta} \theta^{p+1} \theta^{\alpha'-1} e^{-\lambda'\theta} d\theta.$$

The part in the integral is the kernel of a Gamma density, $Gamma(\alpha^{''}, \lambda^{''})$, where $\alpha^{''} = \alpha^{'} + p + 1$ and $\lambda^{''} = \lambda^{'}$ Therefore,

$$E[\theta^{p+1}|X] = \frac{\lambda^{\alpha'}}{\Gamma(\alpha')} \frac{\Gamma(\alpha'')}{\lambda^{\alpha''}}.$$

Similarly, the denominator of a^* is

$$E[\theta^p|X] = \frac{\lambda^{\alpha'}}{\Gamma(\alpha')} \int_{\theta} \theta^p \theta^{\alpha'-1} e^{-\lambda'\theta} d\theta.$$

The part in the integral is the kernel of a Gamma density, $Gamma(\alpha^{'''}, \lambda^{'''})$, where $\alpha^{'''} = \alpha^{'} + p$ and $\lambda^{'''} = \lambda^{'}$. Therefore,

$$E[\theta^p|X] = \frac{\lambda^{\alpha'}}{\Gamma(\alpha')} \frac{\Gamma(\alpha''')}{\lambda^{\alpha'''}}.$$

Putting this together,

$$\frac{E[\theta^{p+1}|X]}{E[\theta^{p}|X]} = \frac{\frac{\lambda^{\alpha'}}{\Gamma(\alpha')} \frac{\Gamma(\alpha'')}{\lambda^{\alpha''}}}{\frac{\lambda^{\alpha'}}{\Gamma(\alpha')} \frac{\Gamma(\alpha''')}{\lambda^{\alpha'''}}}$$

$$=\frac{\frac{\Gamma(\alpha^{''})}{\lambda^{\alpha^{'''}}}}{\frac{\Gamma(\alpha^{'''})}{\lambda^{\alpha^{'''}}}}=\frac{\Gamma(\alpha^{'}+p+1)}{\Gamma(\alpha^{'}+p)}\frac{\lambda^{\alpha^{'}+p}}{\lambda^{\alpha^{'}+p+1}}=\frac{\alpha^{'}+p}{\lambda^{'}}=\frac{T(X)+1+p}{n+\lambda}$$

Alternative solution is using BD Problem 3.2.5 (pg. 197).

(b) Is the Bayes rule minimax? If so, for what values of λ and p is it minimax?

For this Bayes rule, we need to find the values of λ and p such that the risk is constant (i.e., it does not depend on θ).

$$Risk(a^*) = E[\theta^p (\theta - a^*)^2] = \theta^p E[(\theta - a^*)^2] = \theta^p (Var(a^*) + bias(a^*)^2)$$

Since T(X) is Poisson, then

$$Var(\frac{T(X)+1+p}{n+\lambda}) = \frac{n\theta}{(n+\lambda)^2},$$

$$E\left[\frac{T(X)+1+p}{n+\lambda}\right] = \frac{n\theta+p+1}{n+\lambda}.$$

and

$$bias(a^*)^2 = (\frac{n\theta + p + 1}{n + \lambda} - \theta)^2 = \frac{(n\theta + p + 1 - \theta(n + \lambda))^2}{(n + \lambda)^2} = \frac{((p + 1) - \theta\lambda)^2}{(n + \lambda)^2}.$$

Therefore,

$$Risk(a^*) = \frac{\theta^p}{(n+\lambda)^2}(n\theta + ((p+1) - \theta\lambda)^2)$$

$$=\frac{\theta^p}{(n+\lambda)^2}((p+1)^2+\theta(n-2\lambda(p+1))+\theta^2(\lambda^2)).$$

To obtain constant risk,

- i. If p=0, then find λ such that the θ and θ^2 terms disappear. For the θ^2 term, we need $\lambda^2=0$. Therefore, set $\lambda=0$. Then for the θ term, we need $-2\lambda(p+1)+n=0$. Therefore, $\lambda(p+1)$ must equal $\frac{n}{2}$, and since p=0, then λ must be equal to $\frac{n}{2}$, which contradicts the value above $(\lambda=0)$.
- ii. Alternatively, set p=-1 for the θ and θ^2 terms to disappear, then $\lambda=0$ for constant risk.

In either case, the Gamma prior distribution is not possible nor with the limits of Bayes rules (Thm 3.3.3). Therefore, there is no p > 0, $\lambda > 0$ such that this Bayes rule has constant risk and this Bayes rule is not minimax.

- 2. Empirical Bayes: Consider estimation of regression slopes $\theta_1, \ldots, \theta_p$ for p pairs of observations, $(X_1, Y_1), \ldots, (X_p, Y_p)$, modeled as independent with $X_i \sim N(0,1)$ and $Y_i|X_i = x \sim N(\theta_i x, 1)$.
 - (a) Following a Bayesian approach, let the unknown parameters θ_i be iid random variables from $N(0,\tau^2)$. Find the Bayes estimate of θ_i in this Bayesian model with squared error loss.

The Bayes estimate under squared loss is $E[\theta|X,Y]$. The posterior distribution for θ_i is

$$p(\theta|x_i, y_i) \propto \pi(\theta_i)p(x_i)p(y_i|x_i, \theta_i).$$

These are all normal distributions and therefore, by completing the square (details skipped), we obtain

$$\theta_i | x_i, y_i \sim N(\frac{x_i y_i \tau^2}{x_i^2 \tau^2 + 1}, \frac{\tau^2}{x_i^2 \tau^2 + 1}).$$

The posterior mean is the Bayes estimate $\hat{\theta}_i = \frac{x_i y_i \tau^2}{x_i^2 \tau^2 + 1}$.

(b) Determine $E[Y_i^2]$ in the Bayesian model. Using this, suggest a simple method of moments estimator for τ^2 .

$$E[Y_i^2] = E[E[Y_i^2 | X_i, \theta_i]] = E[Var(Y | X_i, \theta_i) + E(Y | X_i, \theta_i)^2]$$

= $E[1 + (\theta_i X_i)^2] = 1 + E[\theta_i^2]E[X_i^2],$

since X_i is independent of θ_i .

$$E[Y_i^2] = 1 + (\tau^2 + 0)(1+0)) = 1 + \tau^2.$$

Using the sample second moment $\hat{\mu}_2 = \frac{\sum_{i=1}^p y_i^2}{p}$, a method of moments estimator for τ is

$$\hat{\tau}^2 = \hat{\mu}_2 - 1.$$

(c) Given an empirical Bayes estimator for θ_i combining the simple "empirical" estimate for τ in part b) with the Bayes estimate for θ_i when τ is known in part a).

Plugging in the estimator for τ^2 from part b), the empirical Bayes estimator for θ_i is $\hat{\theta}_i = \frac{x_i y_i \hat{\tau}^2}{x_i^2 \hat{\tau}^2 + 1}$.

3. **BD 3.4.2**

Suppose that there is an unbiased estimate δ of $q(\theta)$ and that T(X) is sufficient. Show that if $l(\theta,a)$ is convex and $\delta^*(X) = E[\delta(X)|T(X)]$, then $R(\theta,\delta^*) \leq R(\theta,\delta)$.

By the double expectation theorem, the Risk is

$$R(\theta, \delta) = E[l(\theta, \delta)] = E[E[l(\theta, \delta)|T(X)]].$$

Since the loss function l() is convex, then by Jensen's Inequality,

$$E[E[l(\theta, \delta)|T(X)]] \ge E[l(\theta, E[\delta|T(X)])] = E[l(\theta, \delta^*)] = R(\theta, \delta^*),$$

where T(X) is sufficient so that $\delta^* = E[\delta(X)|T(X)]$ does not depend on θ . Therefore δ^* minimizes the risk for a convex loss function.

4. BD 3.4.3

Let $X \sim p(x,\theta)$ with $\theta \in \Theta \subset R$, suppose that assumptions I and II hold and that h is a monotone increasing differentiable function from θ onto $h(\theta)$. Reparameterize the model by setting $\eta = h(\theta)$ and let $q(x,\eta) = p(x,h^{-1}(\eta))$ denote the model in the new parameterization.

(a) Let $I_p(\theta)$ and $I_q(\theta)$ denote the Fisher information, in the two parameterizations.

First, note that since h is a monotone increasing differentiable function, we can take h^{-1} . Also, note that since $\eta = h(\theta)$, then $\partial \eta = h'(\theta)\partial \theta$ and $\frac{\partial \theta}{\partial n} = \frac{1}{h'(\theta)}$. To find $I_q(\eta)$, take the following derivative,

$$\frac{\partial}{\partial \eta} \log q(x|\eta) = \frac{\partial}{\partial \theta} \log q(x|\eta) \frac{\partial \theta}{\partial \eta} = \frac{\partial}{\partial \theta} \log p(x|h^{-1}(\eta)) / h'(\theta) = \frac{\partial}{\partial \theta} \log p(x|\theta) / h'(\theta).$$

Since

$$I_q(\eta) = E[(\frac{\partial}{\partial \eta} \log q(x|\eta))^2],$$

then

$$I_q(\eta) = E[(\frac{\partial}{\partial \theta} \log p(x|\theta)/h'(\theta))^2] = I_p(\theta)/[h'(\theta)^2] = I_p(h^{-1}(\eta))/[h'(h^{-1}(\eta))^2].$$

Therefore, the Fisher information I is not equivariant under monotone increasing transformations of the parameter.

(b) Let $\phi(\eta) = E_q[T(X)]$ and $\psi(\theta) = E_p[T(X)]$, then $\phi(\eta) = \psi(h^{-1}(\eta))$ and the derivatives are

$$\frac{\partial \phi(\eta)}{\partial \eta} = \frac{\partial \psi(h^{-1}(\eta))}{\partial \eta}.$$

To find the derviative of the inverse function h^{-1} , use the chain rule on

$$h(h^{-1}(\eta)) = \eta$$

$$h'(h^{-1}(\eta))\frac{\partial h^{-1}(\eta)}{\partial \eta} = 1$$

and we have $\frac{\partial h^{-1}(\eta)}{\partial \eta} = 1/h'(h^{-1}(\eta))$. Therefore, $\frac{\partial \phi(\eta)}{\partial \eta} = \psi'(h^{-1}(\eta))/h'(h^{-1}(\eta))$. Using the result from part a), the Fisher Information bound

$$B_q(\eta) = (\phi'(\eta))^2 / I_q(\eta) = (\psi'(h^{-1}(\eta)) / h'(h^{-1}(\eta)))^2 * [h'(h^{-1}(\eta))^2] / I_p(h^{-1}(\eta)),$$

which simplifies to $B_q(\eta) = (\psi'(h^{-1}(\eta))/I_p(h^{-1}(\eta)) = B_p(h^{-1}(\eta)).$

Therefore, the Fisher information lower bound B is equivariant under monotone increasing transformations of the parameter.

5. BD 3.5.1 if n = 2k is even, give and plot the sensitivity curve of the median.

Let $\theta = \hat{X}$ be the sample median. Since n = 2k is even, then n - 1 is odd $\Rightarrow \widehat{\theta}(X_1, \dots, X_n) = X_{(k)}.$ The sensitivity curve is defined as

$$SC(X, \widehat{X}) = n(\widehat{\theta}(X_1, \dots, X_n, X) - \widehat{\theta}(X_1, \dots, X_{n-1})).$$

Case 1:
$$X < X_{(k-1)} \ \widehat{\theta}(X_1, \dots, X_n, X) = \frac{X_{(k-1)} + X_{(k)}}{2}$$

Case 1:
$$X < X_{(k-1)} \ \widehat{\theta}(X_1, \dots, X_n, X) = \frac{X_{(k-1)} + X_{(k)}}{2}$$

Case 2: $X_{(k-1)} \le X \le X_{(k+1)} \ \widehat{\theta}(X_1, \dots, X_n, X) = \frac{X_{(k)} + X_{(k)}}{2}$
Case 3: $X > X_{(k+1)} \ \widehat{\theta}(X_1, \dots, X_n, X) = \frac{X_{(k)} + X_{(k+1)}}{2}$
WLOG, assume $X_{(k)} = 0$ Then

Case 3:
$$X > X_{(k+1)} \ \widehat{\theta}(X_1, \dots, X_n, X) = \frac{X_{(k)} + X_{(k+1)}}{2}$$

$$SC(X, \widehat{X}) = \begin{cases} \frac{nX_{(k-1)}}{2} & \text{if} \quad X < X_{(k-1)} \\ \frac{nX}{2} & \text{if} \quad X_{(k-1)} \le X \le X_{(k+1)} \\ \frac{nX_{(k+1)}}{2} & \text{if} \quad X > X_{(k+1)} \end{cases}$$

The sensitivity curve is bounded as $|X| \to \infty$.

6. BD 3.5.11 Let μ_0 be a hypothesized mean for a certain population. The (student) t-ratio is defined as $t = \sqrt{n}(\overline{X} - \mu_0)/s$, where $s^2 = (n-1)^{-1} \sum_{i=1}^n (X_i - \overline{X})^2$. Let $\mu_0 = 0$ and choose the ideal sample X_1, \ldots, X_{n-1} to have sample mean zero. Find the limit of the sensitivity curve of t as

Given the t-statistic $t_n = \frac{\sqrt{n}(\overline{X} - \mu_0)}{s}$ and $s^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$. Let $\mu_0 = 0$ and $\frac{\sum_{i=1}^{n-1} X_i}{n-1} = 0$. $\widehat{\theta} = t$.

$$SC(t, \hat{t}) = n\Big(\widehat{\theta}(X_1, \dots, X_{n-1}, X) - \widehat{\theta}(X_1, \dots, X_{n-1})\Big)$$
$$= n\Big(\widehat{\theta}(X_1, \dots, X_{n-1}, X)\Big)$$

$$\widehat{\theta}(X_1, \dots, X_{n-1}, X) = \frac{\sqrt{n}\overline{X}}{s}$$

$$= \frac{\sqrt{n}\left(\frac{\sum_{i=1}^{n-1} X_i}{n} + \frac{X}{n} - 0\right)}{s}$$

$$= \frac{\frac{X}{\sqrt{n}}}{\sqrt{\frac{\sum(X_i - \overline{X})^2}{n-1}}}$$

$$= \frac{\frac{\sqrt{n-1}X}{\sqrt{n}}}{\sqrt{\sum(X_i - \overline{X})^2}}$$

Note:

$$\Sigma (X_i - \overline{X})^2 = \sum_{i=1}^{n-1} (X_i - \frac{X}{n})^2 + (X - \frac{X}{n})^2$$

$$= \sum_{i=1}^{n-1} X_i^2 - \frac{\sum_{i=1}^{n-1} X_i X}{n} + \frac{(n-1)X^2}{n^2} + X^2 - \frac{2X^2}{n} + \frac{X^2}{n^2}$$

$$= \sum_{i=1}^{n-1} X_i^2 + \left(\frac{n-1}{n}\right) X^2$$

Therefore

$$SC(t, \hat{t}) = n \frac{\frac{\sqrt{n-1}}{\sqrt{n}} X}{\sqrt{\sum_{i=1}^{n-1} X_i^2 + \left(\frac{n-1}{n}\right) X^2}}$$

$$= n \frac{\frac{\sqrt{n-1}}{\sqrt{n}} X}{|X| \sqrt{\sum_{i=1}^{n-1} \frac{X_i^2}{X^2} + \left(\frac{n-1}{n}\right)}} = n \frac{X}{|X| \sqrt{\frac{n}{n-1} \sum_{i=1}^{n-1} \frac{X_i^2}{X^2} + 1}}.$$

(a) $|x| \to \infty$, n is fixed.

The limit is

$$\lim_{|X| \to \infty} n \frac{X}{|X| \sqrt{\frac{1}{X^2} \frac{n}{n-1} \sum_{i=1}^{n-1} X_i^2 + 1}} = \pm n,$$

where $\sum_{i=1}^{n-1} X_i^2$ is a constant.

The sensitivity curve is bounded as $|X| \to \infty$.

(b) $n \to \infty$, x is fixed.

$$\lim_{n \to \infty} n \frac{X}{|X| \sqrt{\frac{n}{n-1} \sum_{i=1}^{n-1} \frac{X_i^2}{X^2} + 1}} = \lim_{n \to \infty} n \frac{X}{|X| \sqrt{\frac{n}{X^2} \sum_{i=1}^{n-1} \frac{X_i^2}{n-1} + 1}}$$

Note that $\sum_{i=1}^{n-1} X_i^2$ can no longer be treated as a constant, since it is growing with n. However, $\frac{\sum_{i=1}^{n-1} X_i^2}{n-1} \to \sigma^2$ by the law of large numbers.

Making the approximation,

$$n\frac{X}{|X|\sqrt{\frac{n}{X^2}\sum_{i=1}^{n-1}\frac{X_i^2}{n-1}+1}}\approx n\frac{X}{|X|\sqrt{\frac{n}{X^2}\sum_{i=1}^{n-1}\frac{X_i^2}{n-1}}}=\sqrt{n}\frac{X}{\sqrt{\sum_{i=1}^{n-1}\frac{X_i^2}{n-1}}}$$

Therefore,

$$\lim_{n \to \infty} = \sqrt{n} \frac{X}{\sqrt{\sum_{i=1}^{n-1} \frac{X_i^2}{n-1}}} = \infty \frac{\dot{X}}{\sigma} = \infty,$$

for $|\sigma|<\infty$ and $X\neq 0$. The sensitivity curve is not bounded as $n\to\infty$.