Análise Exploratória-Atrasos em Companhias Aéreas

Carlos Reis - RA: 2401937

Natalia Reis - RA: 2401504

Luigi Lago - RA: 2400428

Julio Dyna - RA: 2402440

Contextualização

Esta apresentação aborda a análise exploratória de dados focada nos atrasos em companhias aéreas, Iniciando pela a configuração do ambiente, importação dos dados, geração de gráficos e analises e conclusões..

Questões de pesquisa

- Ao final deste estudo, com base nas analises dos graficos e explorações feitos,
 3 questões devem ser respondidas:
 - 1.Qual(s) a(s) companhia(s) que mais registram atrasos?
 - 2.A rota ou aeronave podem influenciar nos atrasos?
 - 3.Existe algum padrão ou tendência nos atrasos ? Se sim, o que pode ser feito para reduzi-los?

Bibliotecas necessárias

Para o estudo, é necessário importar as bibliotecas numpy, pandas e matplotlib.pyplot, utilizando os respectivos aliases np, pd e plt.

Leitura de dados Brutos

Vamos importar dados brutos usando a biblioteca Pandas, ler um arquivo CSV, definir a coluna de índice e visualizar as primeiras linhas do DataFrame.

	year	month	day	dep_time	dep_delay	arr_time	arr_delay	carrier	tailnum	flight	origin	dest	air_time	distance	hour	minute
1	2013	1	1	517.0	2.0	830.0	11.0	UA	N14228	1545	EWR	IAH	227.0	1400	5.0	17.0
2	2013	1	1	533.0	4.0	850.0	20.0	UA	N24211	1714	LGA	IAH	227.0	1416	5.0	33.0
3	2013	1	1	542.0	2.0	923.0	33.0	AA	N619AA	1141	JFK	MIA	160.0	1089	5.0	42.0
4	2013	1	1	544.0	-1.0	1004.0	-18.0	В6	N804JB	725	JFK	BQN	183.0	1576	5.0	44.0
9	2013	1	1	554.0	-6.0	812.0	-25.0	DL	N668DN	461	LGA	ATL	116.0	762	5.0	54.0
4																

Diante das informações importadas, os atributos são definidos como:

- **year:** Inteiro Ano do voo.
- month: Inteiro Mês do voo.
- day: Inteiro Dia do voo.
- **dep_time**: Float Hora de partida. Em HHmm (2 dígitos para as horas 2 dígitos • para minutos)
- dep_delay: Float Atraso na partida (em minutos).
- arr_time: Float Hora de chegada. (2 dest: String Aeroporto de destino. dígitos para as horas 2 dígitos para minutos)

- arr_delay: Float Atraso na chegada (em minutos).
- carrier: String Código da companhia aérea.
 - tailnum: String Número de cauda da aeronave.
- flight: Inteiro Número do voo.
- **origin:** String Aeroporto de origem.

- air_time: Float Tempo de voo (em minutos).
- distance: Inteiro Distância entre os aeroportos de origem e destino (em milhas).
- hour: Float Hora de partida (extraída de dep_time).
- minute: Float Minuto de partida (extraído de dep_time).

Quais companhias registram mais atrasos?

Para determinar quais companhias aéreas registram mais atrasos, foram analisado os atrasos médios e a frequência de atrasos por companhia aérea. Foi feita a remoção dos valores nulos e menores/iguais a zero e acrescentou uma coluna com a frequência relativa do atraso (qtd de viagens atrasadas/qtd de viagens totais). O DataFrame fica da seguinte forma:

	Companhia	Atraso_Medio	Total_Voos_Atrasados	Soma_Atrasos	Frequencia_Relativa_Bruto
10	00	74.625000	8	597.0	25.000000
8	НА	66.317073	41	2719.0	11.988304
15	YV	60.690821	207	12563.0	34.442596
0	9E	57.988536	5321	308557.0	28.824485
6	F9	57.815331	287	16593.0	41.897810

- Sendo os campos:
- Companhia: String Código da companhia aérea.
- Atraso_Medio: Float Tempo em minutos médios dos atrasos
- Total_Voos_Atrasados: Inteiro -Quantidade de voos atrasados registrados por companhia
- **Soma_Atrasos:** Float Somatória do tempo total de minutos atrasados
- Frequencia_Relativa_Bruto: Float Frequência relativa dos voos atrasados.

Resultados Quantitativos e Qualitativos

- A companhia **OO** tem o maior atraso médio por voo, com o valor de **74,625** minutos em media de atraso, mas apresenta apenas 8 voos atrasados, totalizando 25 % dos voos que a empresa fez. Embora o número total de voos atrasados seja baixo (8 voos), o impacto por voo é alto.
- ► HA segue com um atraso médio de 66.32 minutos por voo, em 41 voos registrados, aproximadamente 12% dos seus voos com atraso. Apesar de poucos dos seus voos atrasarem, o impacto por atraso é alto.
- YV também se destaca com um atraso médio de 60.69 minutos em um total de 207 voos.
- ▶ 9E segue com um atraso médio de 57.99 minutos em 5.321 voos, mostra que o impacto total do atraso é substancial, especialmente em termos absolutos.
- ▶ **F9** tem um atraso médio de **57.82** minutos em 287 voos, completando a lista das companhias com os maiores atrasos médios.

Resultados Quantitativos e Qualitativos

- Impacto Absoluto vs. Relativo: Companhias como 9E e YV operam um número significativamente maior de voos, o que significa que, mesmo com um atraso médio menor do que OO e HA, o impacto absoluto do atraso é muito maior. Isso sugere que estratégias de mitigação de atrasos devem priorizar essas companhias para maximizar a redução de atrasos em termos gerais.
- Pequeno Número de Voos com Alto Impacto: OO e HA têm menos voos, mas seus atrasos médios são extremamente altos. Isso pode indicar problemas específicos com rotas ou operações dessas companhias que, se resolvidos, poderiam melhorar significativamente a pontualidade.
- Mitigação Focada em Alta Frequência: Para companhias com um grande número de voos, como 9E, qualquer redução no atraso médio poderia ter um impacto positivo considerável na experiência do passageiro e na eficiência operacional.

Para estudar se a rota poderia interferir nos atrasos, fez-se uma tabela levantando as rotas, os atrasos médios, o total de voos atrasados, a soma dos tempos de atraso, o total de voos geral daquela rota e a frequencia relativa que o atraso representa daquele total.

	Origin	Destination	Atraso_Medio	${\sf Total_Voos_Atrasados}$	Soma_Atrasos	origin	dest	Total_Voos_Bruto	Frequencia_Relativa_Bruto
141	JFK	SDF	84.916667	12	1019.0	JFK	SDF	46	26.086957
83	EWR	TYS	83.757396	169	14155.0	EWR	TYS	323	52.321981
216	LGA	TVC	78.041667	24	1873.0	LGA	TVC	77	31.168831
23	EWR	DSM	73.401198	167	12258.0	EWR	DSM	411	40.632603
81	EWR	TUL	71.846154	156	11208.0	EWR	TUL	315	49.523810

A análise por rota (origem e destino) indica que algumas rotas específicas apresentam os maiores atrasos médios, particularmente aquelas partindo de JFK, mostrado no gráfico nos próximos slides:

- JFK -> SDF: Atraso médio de 84.92 minutos.
- EWR -> TYS: Atraso médio de 83.58 minutos.
- LGA -> TVC: Atraso médio de 78.41 minutos.
- EWR -> DSM: Atraso médio de 73.04 minutos.
- EWR -> TUL: Atraso médio de 71.85 minutos.

Esses atrasos podem estar relacionados a fatores locais nos aeroportos de origem, como clima, tráfego aéreo intenso, ou problemas operacionais específicos que afetam essas rotas com maior frequência.

Rotas Críticas: É evidente que certas rotas, especialmente aquelas partindo de aeroportos como JFK e EWR, são mais propensas a maiores atrasos.

Os destinos não tiveram tanto impacto nas 10 primeiras rotas, portanto os dados podem estar indicando um problema grave nestes aeroportos de origem.

Para estudar se a aeronave poderia interferir nos atrasos, fez-se uma tabela levantando as aeronaves, os atrasos médios, o total de voos atrasados, a soma dos tempos de atraso, o total de voos geral daquela aeronave e a frequencia relativa que o atraso representa daquele total.

	Numero_Aeronave	Atraso_Medio	Total_Voos_Atrasados	Soma_Atrasos	tailnum	${\sf Total_Voos_Bruto}$	Frequencia_Relativa_Bruto
3216	N844MH	320.0	1	320.0	N844MH	1	100.000000
3466	N911DA	294.0	1	294.0	N911DA	1	100.000000
1499	N452UW	277.0	1	277.0	N452UW	7	14.285714
3533	N922EV	276.0	1	276.0	N922EV	1	100.000000
1067	N384HA	270.4	5	1352.0	N384HA	33	15.151515

A análise por aeronave (número da cauda) mostra que certas aeronaves específicas apresentam atrasos médios bastante elevados:

- N844MH: Atraso médio de 320 minutos.
- N911DA: Atraso médio de 294 minutos.
- N545UW: Atraso médio de 277 minutos.
- N922EV: Atraso médio de 276 minutos.
- N384HA: Atraso médio de 219 minutos.

Esses valores podem indicar problemas operacionais ou técnicos associados a essas aeronaves espec<mark>íficas. A alta variabilidade</mark> nos atrasos pode ser causada por questões de manutenção, problemas mecânicos ou até fatores externos que impactam repetidamente essas aeronaves.

Rotas Críticas: É evidente que certas rotas, especialmente aquelas partindo de aeroportos como JFK e EWR, são mais propensas a maiores atrasos.

Os destinos não tiveram tanto impacto nas 10 primeiras rotas, portanto os dados podem estar indicando um problema grave nestes aeroportos de origem.

Para verificar se existe algum padrão ou tendência, deve-se observer o que foi levantado anteriormente além de novas informações, como um padrão de atrasos por mês, por dia do mês e por hora do dia.

	Mes	Atraso_Medio
5	6	62.295127
6	7	62.180162
3	4	54.308961
4	5	48.957598
2	3	48.288027

	Dia	Atraso_Medio
7	8	67.965732
9	10	63.035442
27	28	59.286864
21	22	57.023104
22	23	55.784437

	Hora	Atraso_Medio
3	3.0	287.727273
2	2.0	224.650794
1	1.0	195.959276
0	0.0	128.763636
22	23.0	117.460899

Atrasos por Mês

- A análise dos atrasos por mês revela um padrão interessante:
- Junho e Julho são os meses com os maiores atrasos médios, com 62.30 minutos e 62.18 minutos respectivamente.
- Abril e Maio também apresentam atrasos médios elevados, com 54.31 minutos e 48.96 minutos, possivelmente devido à transição sazonal e às condições climáticas variadas.

Atrasos por Dia do Mês

- Os dias 8, 10, e 28 do mês mostram atrasos médios mais elevados. Isso pode coincidir com eventos específicos, finais de semana ou períodos de maior tráfego, o que aumenta a probabilidade de atrasos.
- Dia 8: Atraso médio de 67.97 minutos.
- Dia 10: Atraso médio de 63.04 minutos.
- Dia 28: Atraso médio de 59.29 minutos.
- Dia 22: Atraso médio de 57.02 minutos.
- Dia 23: Atraso médio de 55.78 minutos.
- A análise diária pode ser crucial para identificar picos de atraso dentro de cada mês e ajustar a operação para reduzir esses atrasos.

Atrasos por Hora do Dia

- Os atrasos variam significativamente conforme o horário do dia:
- As horas da madrugada, especialmente 03:00, 02:00 e 01:00, apresentam atrasos médios extremamente elevados, com 287.73 minutos, 224.65 minutos, e 195.96 minutos respectivamente. Isso pode indicar que os voos noturnos ou de madrugada estão mais suscetíveis a atrasos significativos, possivelmente devido à menor operação nos aeroportos, menos disponibilidade de pessoal e menor frequência de voos para diluir os atrasos.
- O horário 23:00 também apresenta atrasos médios altos, com 117.46 minutos, o que pode ser devido ao acúmulo de atrasos ao longo do dia.

Os meses com o maior atraso médio, sendo estes Junho e Julho estão também coincidindo com os meses de verão da américa do norte (fonte da base de dados) o que provavelmente ocasiona um aumento no numero de viagens e consequentemente um aumento dos atrasos.

Os 5 primeiros meses correspondem ao período de primavera e verão na américa do norte, quando ocorrem férias escolares de verão (Summer Vacations) e o final do inverno, que é marcado pelo recesso de primavera (Spring Break)

Provavelmente aí está o padrão para os atrasos.

A principio, os dias do mês aparentemente não seguem um padrão para os atrasos.

Neste ponto claramente observase um padrão para as 2 ultimas horas do dia e para as primeiras 3 horas do dia que existem atrasos.

Conclusão

É difícil afirmar qual seria a causa justificável para os atrasos nos voos e encontrar uma possível solução. Possivelmente se os aeroportos se organizarem melhor em momentos de pico, como nos meses de primavera e verão, os consumidores vão experimentar menos atrasos. Além disso deveria-se ter observações sobre o clima da região em cada situação, provavelmente com chuvas o atraso seja maior e mau tempo também, principalmente em meses de tempestades de verão ou em nevascas de inverno.

Com base no que foi levantado, é possível dizer que se o consumidor for marcar uma viagem de avião, partindo do aeroporto JFK, durante os meses de verão, no inicio da madrugada, pela companhia FL ou F9 (cada uma com respectivamente 45% e 41% dos voos com atraso) essa pessoa pode esperar enfrentar algum atraso na sua viagem.

GITHUBS

- Carlos Reis: https://github.com/CarlosAReis/Analise-Exploratoria-Voos-NYC
- ► Luigi Lago: https://github.com/luigi-lago/Analise-Exploratoria-Atrasos
- Natalia Reis: https://github.com/NStrass/Analise-Exploratoria-Atrasos