III. Crystal and Amorphous Structure in Materials

- 1. The Space Lattice and Unit Cells
- 2. Crystal System and Bravais Lattice
- 3. Principle Metallic Crystal Structures
- 4. Atom Positions in Cubic Unit Cells
- 5. Directions in Cubic Unit Cells
- 6. ดรรชนีมิลเลอร์ของระนาบผลึกในหน่วยเซลล์คิวบิก
- 7. ระนาบและทิศทางในโครงสร้างผลึก HCP

- 8. การเปรียบเทียบโครงสร้าง FCC ,
 BCC และ HCP
- 9. การคำนวณหาความหนาแน่นใน unit cell
- 10. Polymorphism
- 11. การวิเคราะห์โครงสร้างผลึก
- 12. Amorphous Materials

1.THE SPACE LATTICE AND UNIT CELLS

- (a) Space Lattice ของโครงสร้างผลึก
- (b) Unit Cell อธิบายด้วย Lattice Vector a,b,c

- โครงสร้างของวัสดุที่เป็นผลึก อะตอมจะเรียงตัวเป็นระเบียบ
- การจัดเรียงของอะตอม ใช้จุดตัดในโครง ร่างสามมิติแทนอะตอม โดยไม่มีขีดจำกัด ที่เรียกว่า Space Lattice
- การอธิบายโครงสร้างผลึกใช้ Unit Cell

2. Crystal System and Bravais Lattice

3. Principle Metallic Crystal Structures

Unit Cell ของโครงสร้างผลึก

(a) BCC (b) FCC (c) HCP

BODY CENTER CUBIC (BCC) CRYSTAL STRUCTURE

• อะตอมอยู่ที่มุมทั้ง 8 ของ Unit Cell และจะมีอะตอมอยู่ที่ตรงกลางของUnit Cell

Unit Cell แบบ BCC

(a) ตำแหน่งอะตอมใน Unit Cell

(b) Unit Cell ของอะตอม

(c) อะตอมใน Unit Cell

BODY CENTER CUBIC (BCC) CRYSTAL STRUCTURE

• ความสัมพันธ์ระหว่าง Lattice Constan (a) กับรัศมี R ของโครงสร้าง BCC

$$\sqrt{3} a = 4R หรือ a = \frac{4R}{\sqrt{3}}$$

1. เหล็กที่อุณหภูมิ 20 °C มีโครงสร้างแบบ BCC รัศมีของอะตอม มีขนาด 0.124 nm

ให้หา Lattice Constant (a) ใน Unit Cell ของเหล็ก

$$\sqrt{3} a = 4R หรือ a = \frac{4R}{\sqrt{3}}$$

$$a = \frac{4(0.124nm)}{\sqrt{3}} = 0.2864nm$$

ค่าคงที่โครงร่างและรัศมีอะตอม ของโลหะบางชนิดซึ่งมีโครงสร้างผลึกแบบ BCC ที่อุณหภูมิห้อง 20 °C

	Lattice	Atomic
Metal	Constant	radius
	a, nm	R, nm
Chromium	0.289	0.125
Iron	0.287	0.124
Molybdenum	0.315	0.136
Potassium	0.533	0.231
Sodium	0.429	0.186
Tantalum	0.330	0.143
Tungsten	0.316	0.137
Vanadium	0.304	0.132

Ex. 2 ให้หา atomic packing factor (APF) ของโครงสร้างผลึกแบบ BCC ใน Unit Cell โดยสมมติให้อะตอมมีรูปทรงกลม

$$\sqrt{3}a = 4R \to a = \frac{4R}{\sqrt{3}}$$

$$V_{UnitCell} = a^3 = 12.32R^3$$

$$APF = \frac{V_{atoms}}{V_{UnitCell}} = \frac{2(\frac{4}{3}\pi R^3)}{12.32R^3} = 0.68$$

FCC

$$\sqrt{2}a = 4R$$

ตัวอย่าง ค่าคงที่โครงร่างและรัศมีอะตอม ของโลหะบางชนิดซึ่งมีโครงสร้าง ผลึกแบบ FCC ที่อุณหภูมิห้อง 20 °C

	Lattice	Atomic	
Metal	Constant	radius	
	a, nm	R, nm	
Aluminum	0.405	0.143	
Copper	0.3615	0.128	
Gold	0.408	0.144	
Lead	0.495	0.175	
Nickel	0.352	0.125	
Platinum	0.393	0.139	
Silver	0.409	0.144	

HEXAGONAL CLOSE-PACKED (HCP) CRYSTAL STRUCTURE

- * APF ของอะตอมที่เรียงตัวแบบ HCP มีค่า 0.74
- * Coordinate Number = 12
- * มี 6 อะตอม/Unit cell

โลหะบางชนิดซึ่งมีโครงสร้างผลึกแบบ HCP ที่อุณหภูมิห้อง 20 °C

Metal	Lattice Constants, nm		Atomic radius		% devlation
	а	C	R, nm	C/a ratio	from Ideality
Cadmiun	0.2973	0.5618	0.149	1.890	+15.7
Zinc	0.2665	0.4947	0.133	1.856	+13.6
Ideal HCP				1.633	0
Magnesium	0.3209	0.5209	0.160	1.623	-0.66
Cobalt	0.2507	0.4069	0.125	1.623	-0.66
Zirconium	0.3231	0.4683	0.147	1.587	-2.81
Titanium	0.2950	0.4683	0.147	1.587	-2.81
Beryllium	0.2286	0.3584	0.113	1.568	-3.98

4. Atom Positions in Cubic Unit Cells

5. Directions in Cubic Unit Cells

- * ดัชนีทิศทาง X, Y และ Z แทนด้วย [UVW]
 - * Family ของทิศทาง แทนด้วย $\langle \mathit{UVW}
 angle$ เช่น
 - <100> = [100, 010, 001, 010, 001, 100]

Ex. 5 ให้บอกดัชนีทิศทางที่แสดงในรูปลูกบาศก์ (จากภาพ)

6. ดรรชนีมิลเลอร์ของระนาบผลึกในหน่วยเซลล์คิวบิก

- * การกำหนดระนาบของผลึกใช้ระบบสัญกรณ์ของมิลเลอร์ (h k l)
- * ขั้นตอนการหาดัชนีมิลเลอร์ของระนาบผลึก
 - 1. เลือกจุดกำเนิดระนาบที่ไม่ผ่าน (0, 0, 0)
 - 2. หาจุดตัดแกน X, Y และ Z ของระนาบ
 - 3. หาส่วนกลับของจุดตัด
 - 4. ทำเศษส่วนให้เป็นจำนวนเต็ม ซึ่งเป็นอัตราส่วนน้อยสุด

$$x, y, z \Rightarrow \frac{1}{3}, \frac{2}{3}, 1$$

$$\frac{1}{x}, \frac{1}{y}, \frac{1}{z} \Rightarrow 3, \frac{3}{2}, 1$$

$$2 \times \left(3, \frac{3}{2}, 1\right) \Rightarrow \left(632\right)$$

ระนาบ (632)

Ex. 7 ให้เขียนระนาบของผลึก ในUnit Cell ต่อไปนี้

- (a) (1 0 1)
- (b) (1 1 0)
- (c) (2 2 1)
- (d) (1 1 0) และเขียน
- พิกัดอะตอมที่ระนาบ (1 1
- 0) ตัดผ่านจุดศูนย์กลาง

อะตอม

* ในระบบลูกบาศก์ ดัชนีทิศทางจะตั้งฉากกับระนาบ เมื่อตัวเลขที่แสดงดัชนีทิศทางเหมือนกันกับดัชนีมิล เลอร์ของระนาบ เช่น ทิศทาง [1 1 0] จะตั้งฉากกับ ระนาบ (1 1 0)
*ระยะห่างระหว่างระนาบที่ขนานกันและอยู่ติดกัน

$$d_{hkl} = \frac{a}{\sqrt{h^2 + k^2 + l^2}}$$

Ex. ทองแดงมีโครงสร้างผลึกแบบ FCC ค่า $lattice\ constant$ เท่ากับ $0.361\ nm$ ให้หา ระยะห่างระหว่างระนาบ d_{220}

$$d_{hkl} = \frac{a}{\sqrt{h^2 + k^2 + l^2}}$$

$$d_{220} = \frac{0.361nm}{\sqrt{2^2 + 2^2 + 0^2}} = 0.128nm$$