THE COMMUTATOR AS FIXED POINT OF A CLOSURE OPERATOR

WILLIAM DEMEO

ABSTRACT. In this note we elaborate on the following remark of Keith Kearnes [Kea95, p. 930] giving an alternate description of the commutator (here β is a congruence of \mathbf{A} and $\mathbf{A} \times_{\beta} \mathbf{A}$ denotes the subalgebra of \mathbf{A}^2 with universe β):

"Let $\Delta_{\beta,\alpha}$ be the congruence on $\mathbf{A} \times_{\beta} \mathbf{A}$ generated by

$$\{\langle (x,x),(y,y)\rangle \mid (x,y) \in \alpha\}.$$

Call a subset $G \subseteq A^2$ Δ -closed if

$$\Delta_{\beta,\alpha} \circ G \circ \Delta_{\beta,\alpha} \subseteq G$$
.

When α and β are reflexive, compatible relations, then $[\alpha, \beta]$ is the smallest subset $\gamma \subseteq A^2$ such that (i) γ is a congruence of **A** and (ii) γ is Δ -closed."

1. Introduction

The genesis of these notes was my futile attempt to interpret the expression $\Delta_{\beta,\alpha} \circ G \circ \Delta_{\beta,\alpha}$. Noting that $\Delta_{\beta,\alpha} \subseteq (A \times A)^2$ while $G \subseteq A^2$, I wasn't aware of a standard means of composing relations of such different arities. In this note I try to reconcile this by giving an alternative "closure" operation that acheives the same end and verifies Keith's assertion that "there is a useful alternate description of $[\alpha, \beta]$." Indeed, the commutator is a fixed point of some closure operator (i.e., closed set), and the closure operator involves the relation $\Delta_{\beta,\alpha}$ defined above.

1.1. **Definitions.** If α and β are binary relations on A, we let $\alpha \otimes \beta$ denote the following binary relation on A^2 :

$$\alpha \otimes \beta := \{ ((x, y), (x', y')) \mid x \alpha x' \text{ and } y \beta y' \}.$$

We reserve $\alpha \times \beta$ for the usual Cartesian product

$$\alpha \times \beta := \{ ((x, x'), (y, y')) \mid x \alpha x' \text{ and } y \beta y' \}.$$

For an algebra **A** with congruence relations α , $\beta \in \text{Con } \mathbf{A}$, let $\underline{\beta}$ denote the subalgebra of $\mathbf{A} \times \mathbf{A}$ with universe β . Let $0_A = \{(a, a) \mid a \in A\}$, let

$$(1.1) D_{\alpha} := (\alpha \otimes \alpha) \cap (0_A \times 0_A) = \{((a, a), (b, b)) \in 0_A \times 0_A \mid a \neq b\}, \text{ and let}$$

(1.2)
$$\Delta_{\beta,\alpha} := \operatorname{Cg}^{\underline{\beta}}(D_{\alpha}).$$

As usual, the congruence class of $\Delta_{\beta,\alpha}$ containing (b,b') is denoted and defined by

$$(b,b')/\Delta_{\beta,\alpha} = \{(a,a') \in \beta \mid (a,a') \Delta_{\beta,\alpha} (b,b')\}.$$

In our application below, the most important special case will concern a finite 2-generated free algebra $\mathbf{F} := \mathbf{F}_{\mathcal{V}}(x,y)$ over an idempotent variety \mathcal{V} . When the context makes the

Date: March 1, 2017.

W. DEMEO

meaning clear, we sometimes write 1 instead of 1_F or $F \times F$. As noted above in Lemma ??, $\operatorname{Cg}^{\mathbf{F}}(x,y) = 1$, so we will be especially interested in

(1.3)
$$\Delta_{1,1} := \operatorname{Cg}^{F \times F} \{ ((x, x), (y, y)) \mid x, y \in F \}.$$

Recall that **F** is abelian if and only if $\exists \theta \in \text{Con}(\mathbf{F}^2)$ with the diagonal $0_F := \{(z, z) \mid z \in F\}$ as a congruence class. Thus if **F** is nonabelian, then there exist $u, v \in F$ such that $u \neq v$ and $(u, v) \Delta_{1,1}(x, x)$, for all $x \in F$. (Otherwise, 0_F is a congruence class of $\Delta_{1,1}$.)

Let $\Phi_{\beta,\alpha} \colon \mathcal{P}(\beta) \to \mathcal{P}(\beta)$ be the function that takes each $B \subseteq \beta$ to

(1.4)
$$\Phi_{\beta,\alpha}(B) = \bigcup_{(b,b')\in B} (b,b')/\Delta_{\beta,\alpha}.$$

Let $\Psi_{\beta,\alpha} \colon \operatorname{Eq}(\beta) \to \operatorname{Eq}(\beta)$ be the function that takes each $R \in \operatorname{Eq}(\beta)$ to the equivalence relation

$$\Psi_{\beta,\alpha}(R) = \Delta_{\beta,\alpha} \circ (R \otimes R) \circ \Delta_{\beta,\alpha}$$

$$= \{ ((x,y), (x',y')) \mid (\exists (r,r') \in R) ((x,y) \Delta_{\beta,\alpha} (r,r) \text{ and } (r',r') \Delta_{\beta,\alpha} (x'y')) \}$$

$$= \{ ((x,y), (x',y')) \mid (\exists (r,r')) (x,y) \Delta_{\beta,\alpha} (r,r) (R \otimes R) (r',r') \Delta_{\beta,\alpha} (x'y') \}.$$

For an algebra **A** with congruence relations α , $\beta \in \text{Con } \mathbf{A}$, let $\underline{\beta}$ denote the subalgebra of $\mathbf{A} \times \mathbf{A}$ with universe β . Let $D = \{(a, a) \mid a \in A\}$ and $D_{\alpha}^2 = \{((a, a), (b, b)) \in D^2 \mid a \alpha b\}$. Finally, let $\Delta_{\beta,\alpha} = \text{Cg}^{\underline{\beta}}(D_{\alpha}^2)$ be the congruence on $\underline{\beta}$ generated by the set D_{α}^2 . The congruence class of $\Delta_{\beta,\alpha}$ that contains (b, b') is denoted and defined as follows:

$$(b,b')/\Delta_{\beta,\alpha} = \{(a,a') \in \beta \mid (a,a') \Delta_{\beta,\alpha} (b,b')\}.$$

2. Fixed Point Lemma

Lemma 2.1. Let **A** be an algebra with α , $\beta \in \text{Con}(\mathbf{A})$. If $\Phi := \Phi_{\beta,\alpha}$ is defined as in (1.4), then

- (i) Φ is a closure operator on $\mathcal{P}(\beta)$;
- (ii) $[\alpha, \beta]$ is the least fixed point of Φ .

Proof. (i) Fix $B \subseteq \beta$. We must prove the following: (a) $B \subseteq \Phi(B)$; (b) $B \subseteq C \Rightarrow \Phi(B) \subseteq \Phi(C)$; and (c) $\Phi(\Phi(B)) = \Phi(B)$. If $(b,b') \in B$, then $(b,b') \in \Phi(B)$ since the operation (1.4) does not discard any of the pairs that were already in B. As for (b), if $(a,a') \in \Phi(B)$, then there exists $(b,b') \in B \subseteq C$ such that $(a,a') \Delta_{\beta,\alpha}(b,b')$. Since (b,b') belongs to C we have $(a,a') \in \Phi(C)$ as well. As for (c), it clearly follows from (a) and (b) that $\Phi(B) \subseteq \Phi(\Phi(B))$, so we prove the reverse inclusion. Let $(d,d') \in \Phi(\Phi(B))$. Then $(c,c') \Delta_{\beta,\alpha}(d,d')$ for some $(c,c') \in \Phi(B)$, which implies $(b,b') \Delta_{\beta,\alpha}(c,c')$ for some $(b,b') \in B$. By transitivity of $\Delta_{\beta,\alpha}$ we conclude that $(d,d') \in \Phi(B)$, as desired.

(ii) Since $[\alpha, \beta] \in \mathcal{P}(\beta)$ we have $[\alpha, \beta] \subseteq \Phi([\alpha, \beta])$, by (i). We prove the reverse inclusion. If $(c, c') \in \Phi([\alpha, \beta])$, then (1.4) implies there exists $(b, b') \in [\alpha, \beta]$ such that

$$(2.1) (b,b') \Delta_{\beta,\alpha}(c,c').$$

From the definition of $\Delta_{\beta,\alpha}$ and Mal'tsev's theorem on congruence generation, (2.1) holds if and only if $\exists z_i \ \beta \ z'_i \ (0 \leqslant i \leqslant n), \ \exists x_i \ \alpha \ y_i \ (0 \leqslant i \leqslant n), \ \exists f_i \in \operatorname{Pol}_1(\mathbf{A} \times \mathbf{A}) \ (0 \leqslant i \leqslant n)$ such

that $(b, b') = (z_0, z'_0)$ and $(z_n, z'_n) = (c, c')$, and

$$\{(b,b'),(z_1,z_1')\} = \{f_0(x_0,x_0),f_0(y_0,y_0)\}\$$

$$(2.3) \{(z_1, z_1'), (z_2, z_2')\} = \{f_1(x_1, x_1), f_1(y_1, y_1)\}\$$

:

$$\{(z_{n-1}, z'_{n-1}), (c, c')\} = \{f_{n-1}(x_{n-1}, x_{n-1}), f_{n-1}(y_{n-1}, y_{n-1})\}\$$

For each $(0 \le i < n)$, $f_i \in \text{Pol}_1(\mathbf{A} \times \mathbf{A})$, which means

$$f_i(x,x') = g_i^{\beta}((x,x'),(a_1,a_1'),\ldots,(a_k,a_k')) = (g_i^{\mathbf{A}}(x,\mathbf{a}),g_i^{\mathbf{A}}(x,\mathbf{a}')),$$

for some $k, g_i \in \mathsf{Clo}_{k+1}(\mathbf{A})$, and constants tuples $\mathbf{a} = (a_1, \ldots, a_k)$ and $\mathbf{a}' = (a'_1, \ldots, a'_k)$ such that $a_i \beta a'_i (1 \leq i \leq k)$. By (2.2), either

$$(b,b') = (g_0(x_0,\mathbf{a}), g_0(x_0,\mathbf{a}'))$$
 and $(z_1, z_1') = (g_0(y_0,\mathbf{a}), g_0(y_0,\mathbf{a}')),$

or vice-versa. Since $x_0 \alpha y_0$ and $a_i \beta a'_i$ $(1 \leq i \leq k)$, the α, β -term condition entails

$$g_0(x_0, \mathbf{a}) [\alpha, \beta] g_0(x_0, \mathbf{a}') \iff g_0(y_0, \mathbf{a}) [\alpha, \beta] g_0(y_0, \mathbf{a}').$$

This and (2.2) yield $(b,b') \in [\alpha,\beta]$ iff $(z_1,z_1') \in [\alpha,\beta]$. Similarly (2.3) and $x_1 \alpha y_1$ imply $(z_1,z_1') \in [\alpha,\beta]$ iff $(z_2,z_2') \in [\alpha,\beta]$. Inductively, we arrive at $(b,b') \in [\alpha,\beta]$ iff $(c,c') \in [\alpha,\beta]$, as desired.

We have thus proved $[\alpha, \beta]$ is a fixed point of Φ . In other words, $[\alpha, \beta]$ is a " Φ -closed" subset of β . (A set $B \subseteq \beta$ is called Φ -closed provided $\Phi(B) \subseteq B$.) Recall, if f is a monotone increasing function defined on a complete poset $\langle P, \leqslant \rangle$, then the least fixed point of f is $\bigwedge \{ p \in P \mid fp \leqslant p \}$. Thus, Lemma 2.1 (ii) asserts that

(2.4)
$$[\alpha, \beta] = \bigwedge \{ B \subseteq \beta \mid \Phi(B) \subseteq B \}.$$

We already proved $[\alpha, \beta]$ is Φ -closed, so it remains to check for every Φ -closed subset $B \subseteq \beta$ that $[\alpha, \beta] \subseteq B$. Fix a Φ -closed subset $B \subseteq \beta$. It suffices to prove $\mathsf{C}(\alpha, \beta; \Phi(B))$, since this implies $[\alpha, \beta] \subseteq \Phi(B) \subseteq B$. Thus, our goal is to establish the α, β -term condition.

Let $p \in \operatorname{Pol}_{k+1}(\mathbf{A})$ and $a \alpha a'$ and $c_i \beta c'_i$ $(1 \leqslant i \leqslant k)$; suppose $p(a, \mathbf{c}) \Phi(B) p(a, \mathbf{c}')$. We prove that these hypotheses entail the following relation:

(2.5)
$$p(a', \mathbf{c}) \Phi(B) p(a', \mathbf{c}').$$

By definition of Φ , (2.5) is equivalent to the existence of some pair $(b,b') \in B$ such that $(b,b') \Delta_{\beta,\alpha}$ $(p(a',\mathbf{c}),p(a',\mathbf{c}'))$. Notice that the pair $(p(a,\mathbf{c}),p(a,\mathbf{c}'))$ belongs to B since $(p(a,\mathbf{c}),p(a,\mathbf{c}')) \in \Phi(B) \subseteq B$. Also, $c_i \beta c_i' (0 \leqslant i < k)$ implies

$$((a, a), (c_1, c'_1), (c_1, c'_1), \dots, (c_k, c'_k)) \in \beta^{k+1}$$
 and $((a', a'), (c_1, c'_1), (c_1, c'_1), \dots, (c_k, c'_k)) \in \beta^{k+1}$.

Therefore,

(2.6)
$$p^{\beta}((a,a),(c_1,c_1'),(c_1,c_1'),\dots,(c_k,c_k')) = (p^{\mathbf{A}}(a,\mathbf{c}),p^{\mathbf{A}}(a,\mathbf{c}')) \in \beta$$
 and

(2.7)
$$p^{\beta}((a',a'),(c_1,c'_1),(c_1,c'_1),\ldots,(c_k,c'_k)) = (p^{\mathbf{A}}(a',\mathbf{c}),p^{\mathbf{A}}(a',\mathbf{c}')) \in \beta.$$

Finally, $a \alpha a'$ implies $p(a, \mathbf{c}) \alpha p(a', \mathbf{c})$, and this—together with (2.6) and (2.7)—proves the pair $(p(a, \mathbf{c}), p(a, \mathbf{c}')), (p(a', \mathbf{c}), p(a', \mathbf{c}'))$ belongs to $\Delta_{\beta,\alpha}$. Since $(p(a, \mathbf{c}), p(a, \mathbf{c}')) \in B$, this proves $(p(a', \mathbf{c}), p(a', \mathbf{c}')) \in \Phi(B)$, completing the proof.

4 W. DEMEO

References

[Kea95] Keith A. Kearnes. Varieties with a difference term. *J. Algebra*, 177(3):926–960, 1995. URL: http://dx.doi.org/10.1006/jabr.1995.1334, doi:10.1006/jabr.1995.1334.

University of Hawaii

 $E\text{-}mail\ address: \verb|williamdemeo@gmail.com||$