

Examen National du Brevet de Technicien Supérieur Session de Mai 2018

- Sujet -

Page				
1				
	2			

Centre National de l'Évaluation, des Examens et de l'Orientation

Filières:	Développement des Systèmes d'Information/Systèmes et Réseaux informatiques/Multimédia et Conception Web	
Épreuve:	MATHEMATIQUES	

Durée :	2 Heures
Coefficient:	15

4 points	Exercice 1 :
	Soit <i>I</i> l'intégrale généralisée définie par : $I = \int_1^{+\infty} \frac{2}{t(t+2)} dt$
1	1. a- Donner la nature de l'intégrale généralisée $\int_1^{+\infty} \frac{2}{t^2} dt$.
	b- Montrer que $\frac{2}{t(t+2)} \approx \frac{2}{t^2}$, et en déduire que I est convergente.
1	2. Vérifier que $\forall t \ge 1$, $\frac{2}{t(t+2)} = \frac{1}{t} - \frac{1}{t+2}$.
	3. On pose: $I(x) = \int_1^x \frac{2}{t(t+2)} dt$ pour tout $x \ge 1$.
1	a- Montrer que $I(x) = \ln\left(\frac{x}{x+2}\right) + \ln(3)$.
1	b- En déduire la valeur de l'intégrale généralisée I .
6 points	Exercice 2 :
	Déterminer la nature des séries numériques suivantes :
1	$1. \qquad \sum_{n\geq 0} \frac{1}{3^n}$
1	1. $\sum_{n\geq 0} \frac{1}{3^n}$ 2. $\sum_{n\geq 1} \frac{1}{\frac{3}{2}}$
2	3. $\sum_{n\geq 0} \frac{2^n}{n!}$ (On pourra utiliser le critère de D'Alembert)
2	$4. \qquad \sum_{n\geq 0} \frac{\left(-1\right)^n}{n+1}$
6 points	Exercice 3:

Soit f l'endomorphisme de \mathbb{R}^2 dont la matrice dans la base canonique $B_c = (\stackrel{\rightarrow}{e_1}, \stackrel{\rightarrow}{e_2})$ est :

$$A = \begin{pmatrix} 2 & 2 \\ 2 & -1 \end{pmatrix}$$

Filières: DSI- SRI-MCW

1

1

1

1

1

Épreuve de : MATHEMATIQUES

- 1. Montrer que le polynôme caractéristique de la matrice A est : $P_A(\lambda) = \lambda^2 \lambda 6$ et en déduire les valeurs propres de la matrice A .
 - 2. On considère les vecteurs $\vec{u} = (1, -2)$ et $\vec{v} = (2, 1)$ de l'espace vectoriel \mathbb{R}^2
 - a- Montrer que $B = (\vec{u}, \vec{v})$ est une base de \mathbb{R}^2
 - b- Donner P la matrice de passage de B_c à B.
 - 3. Soient les matrices P et D telles que : $P = \begin{pmatrix} 1 & 2 \\ -2 & 1 \end{pmatrix}$ et $D = \begin{pmatrix} -2 & 0 \\ 0 & 3 \end{pmatrix}$
- 1 a- Calculer $\det(P)$ puis déterminer P^{-1} .
 - b- Vérifier que $P D P^{-1} = A$.
 - 4. a- Montrer que $A^n = P D^n P^{-1}$ pour tout $n \in \mathbb{N}$.
- b- Calculer A^n en fonction de n.

4 points | Exercice 4 :

On fait une étude statistique sur 6 sites de commerce électronique ayant pour but de sonder, sur une semaine, le nombre de visiteurs de chaque site et le nombre des commandes correspondant. On obtient le tableau suivant :

le nombre de visiteurs : x_i	10	11	12	15	16	20
le nombre de commandes : y_i	5	6	6	10	12	15

- 1. Déterminer le point moyen G(x, y) de cette série statistique.
- 2 .a- Calculer le coefficient de corrélation linéaire de cette série statistique .
 - b- Peut-on envisager une relation linéaire entre les deux variables X et Y.
 - 3. Montrer que l'équation de la droite de régression linéaire de Y en X est

$$y = 1,06 x - 5,8$$

4. Estimer le nombre de commandes, si le nombre de visiteurs d'un site est 30.

NB: - Tous les résultats doivent être justifier.

- Les résultats seront donnés à 10⁻² près.

Fin de l'épreuve.