Câu 1

- a) Cho các biến mệnh đề x, y và z. Dùng các luật logic để chứng minh $A \Leftrightarrow B$ trong đó $A = [(x \lor y) \to y] \land \overline{z \to (y \land z)}$ và $B = \overline{z \to (x \lor y)}$.
- b) Cho 3 biến mệnh đề x, y, và z. Đặt $A = [(x \rightarrow y) \rightarrow (x \rightarrow z)], B = [(x \land y) \rightarrow z].$ Dùng các luật logic để chứng minh $A \Leftrightarrow B$.
- c) Cho $C = "\exists x \in (0, +\infty), \forall y \in \mathbf{R}, 4e^{y^2} \ge x + \frac{4}{x}"$. Xét chân trị của C và viết mệnh đề \overline{C} .
- d) Cho mệnh đề D = " $\exists x \in \mathbf{R}$, $\forall y \in \mathbf{Q} : 4\sin(xy) 3\cos(5y) \le 2x$ ". Hãy xét chân trị của D (có giải thích) và viết mệnh đề phủ định \overline{D} .

<u>Câu 2</u> Cho các biến mệnh đề x, y, z, t, u và các suy luận sau :

a) $x \to \overline{y}$ $u \to \overline{z}$ Hãy chứng minh suy luận a) là đúng. $y \lor z$ Hãy giải thích tại sao suy luận b) là sai. $x \land \overline{t}$

b) $\overline{t} \to u$ $y \to \overline{z}$ $(x \wedge \overline{t}) \vee z$ $u \to \overline{x}$... $x \wedge \overline{y}$

<u>Câu 3</u> Kiểm tra ánh xạ f là một song ánh và viết ánh xạ ngược f^{-1} nếu $f: X = [1, 4) \rightarrow Y = [2, 11)$ thỏa $f(x) = x + 6\sqrt{x} - 5 \ \forall x \in X$.

<u>Câu 4</u> Xếp 7 người (gồm 4 nam và 3 nữ) ngồi vào một bàn dài có 10 ghế (các ghế được ghi số thứ tự từ 1 đến 10 và mỗi người ngồi vào 1 ghế). Hỏi có bao nhiêu cách xếp nếu

 $\dot{}$ u \rightarrow t

- a) 7 người ngỗi tùy ý?
- b) 7 người ngồi vào 7 ghế liền nhau và nam nữ xếp xen kẽ nhau?
- c) 4 nam ngồi gần nhau, 3 nữ ngồi gần nhau và có 1 ghế trống ngăn cách giữa nhóm nam và nhóm nữ?

<u>Câu 5</u>

- a) 3 người Áo, 4 người Đức và 5 người Bỉ xếp thành một hàng dọc sao cho 3 người Áo đứng gần nhau và 5 người Bỉ đứng gần nhau. Hỏi có bao nhiều cách xếp?
- b) Phương trình x + y + z + t = 21 có bao nhiều nghiệm nguyên ≥ 0 ?. Phương trình trên có bao nhiều nghiệm nguyên thỏa 2 < x < 7, y > -1, $z \ge 8$ và $t \ge -4$?
- c) Khi khai triển biểu thức $(3x-2y-z+4t)^{19}$, ta được bao nhiều đơn thức khác nhau? Trong đó có bao nhiều đơn thức có dạng $cx^m y^n z^p t^q$ với hệ số $c \neq 0$, m > 2, n = 4 và q < 8? Hệ số đứng trước $(x^3 y^2 z^{13} t)$ trong khai triển nói trên là bao nhiều?
- d) Có bao nhiều số điện thoại gồm 8 chữ số thập phân khác nhau mà trong đó phải có các chữ số 2, 5 và 8 ? (chẳng hạn như số điện thoại 45908632, ...)

- e) Cho phương trình x + y + z + t = 20 với x, y, z và t là các ẩn số nguyên (*).
 - Tìm số nghiệm của phương trình (*) nếu x > -4, $y \ge 0$, z > -1 và $t \ge 7$.
 - Tìm số nghiệm của phương trình (*) nếu $x \ge 0$, y = 4, $z \ge 0$ và $t \ge 2$.

<u>Câu 6</u> Cho m = 417375 và n = 120750. Ký hiệu d = (m, n) và e = [m, n] lần lượt là *ước số chung dương lớn nhất* và *bội số chung dương nhỏ nhất* của m và n. Dùng thuật chia Euclide để tìm d và tìm r, s \in **Z** thỏa d = rm + sn. Từ đó suy ra e và dạng tối giản của phân số (m/n).

<u>Câu 7</u>

- a) Cho m = 903672 và n = 260568. Đặt d = (m, n) và e = [m, n]. Dùng thuật chia Euclide để tìm d và tìm $r, s \in \mathbf{Z}$ thỏa d = rm + sn. Từ đó suy ra e và dạng tối giản của phân số $\frac{m}{r}$.
- b) Phân tịch 25! thành tích của các số nguyên tố và rút gọn thành các lũy thừa nguyên tố.
- c) Phân tích m = 15.876.000 thành tích của các lũy thừa các số nguyên tố dương. Từ đó cho biết m có bao nhiều ước số nguyên khác nhau?

Câu 8

- a) $\forall n \geq 0$, đặt $s_n = \sum_{k=0}^n (3k+1)2^k$. Tính tổng s_n theo n bằng cách thiết lập một hệ thức đệ qui có điều kiện đầu và giải hệ thức đệ qui đó.
- b) Giải các phương trình sau trong \mathbf{Z}_{100} : $\overline{300}$. $\overline{x} = \overline{-128}$, $\overline{125}$. $\overline{y} = \overline{270}$ và $\overline{135}$. $\overline{z} = \overline{-45}$.

<u>Câu 9</u> Cho m = 109956 và n = 38220. Đặt d = (m, n) và e = [m, n] lần lượt là *ước số chung dương lớn nhất* và *bội số chung dương nhỏ nhất* của m và n.

- a) Dùng thuật chia Euclide để tính d và tìm $r, s \in \mathbf{Z}$ thỏa d = rm + sn rồi suy ra dạng tối giản của phân số (m/n).
- b) Tính e và tìm u, $v \in \mathbf{Z}$ sao cho $\frac{1}{e} = \frac{u}{m} + \frac{v}{n}$.

 $\underline{\textbf{Câu 10}} \text{ Cho } S = \{ -2, -1, 0, 1 \}. \ \forall x,y \in S, \text{ dặt } x \ \Re \ y \iff x \leq y - y^2 \ .$

- a) Liệt kê các cặp $(x,y) \in S2$ thoả $x \Re y$.
- b) Xét các tính chất phản xạ, đối xứng, phản xứng và truyền của quan hệ hai ngôi 🕱 trên S.

<u>Câu 11</u> Cho S = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }.

 $\forall x,y \in S$, đặt $x \Re y \iff \exists \ k \in \mathbb{N}$, $y^2 - x^2 = 6k$ (k phụ thuộc vào x và y)

a) Chứng minh \Re là *một quan hệ thứ tự* trên S. Vẽ sơ đồ Hasse cho (S, \Re) và tìm các phần tử min, max, tối tiểu và tối đại (nếu có). b) R có phải là một quan hệ tương đương trên S không? Tại sao?

<u>Câu 12</u>

Cho S =
$$\{-2, 0, 1\}$$
. $\forall x, y \in S$, đặt $x \Re y \iff xy + 4 = -2(x + y)$

- a) Liêt kê các tập hợp S^2 và \Re .
- b) Xét các tính chất phản xạ, đối xứng, phản xứng và truyền của \Re .

Câu 13 Cho hàm Bool theo 4 biến

$$f(x,y,z,t) = x z t \vee \overline{x} \overline{y} \overline{z} \overline{t} \vee \overline{x} y \overline{t} \vee x \overline{z} t \vee \overline{x} y z t \vee x \overline{y} z \overline{t}$$

- a) Vẽ biểu đồ Karnaugh cho f và xác định các tế bào lớn của nó (chỉ rõ vị trí các tế bào lớn trên biểu đồ và gọi tên của chúng).
- b) Tìm các công thức đa thức tối tiểu cho f.

<u>Câu 14</u> Tìm các công thức đa thức tối tiểu của các hàm Bool sau :

- a) $f(x,y,z,t) = x \overline{y} \overline{z} \vee \overline{x} y \vee x y \overline{z} t \vee y \overline{z} \overline{t} \vee x \overline{y} t \vee \overline{x} z t$
- b) $f(x,y,z,t) = x \overline{y} \vee \overline{x} y t \vee \overline{x} z \overline{t} \vee \overline{y} z \vee \overline{x} \overline{y} t \vee x y \overline{z} \overline{t}$
- c) $f(x,y,z,t) = \overline{x} y \overline{z} \overline{t} \vee \overline{x} \overline{y} \overline{z} t \vee x z^{\overline{t}} \vee \overline{x} y \overline{z} t \vee x \overline{y} t$