Measuring the maximum clock frequency of a circuit with Quartus II: TimeQuest tool

Procesado Digital de la Señal en FPGA

2020/2021

Timing

What introduce delays in a circuit implemented on an FPGA device?

- Combinational logic: LUTs, carry propagation logic & embedded multipliers
- Registers
- Routing resources: wires, routing muxes, switches

Timing

Flip-flop timing parameters

- t_{su} (set-up time): amount of time the data must be held steady before the clock edge
- t_h (hold time): amount of time the data must be held steady after the clock edge
- t_{pFF} (propagation time) is the clock-tooutput delay

- Setup and hold times must be guarantee to sample the data properly
- If setup and hold times are violated
 - ⇒ Metastable behavior (unpredectible output)

Timing: Maximum working frequency?

Working frequency in FPGAs?

It depends on:

- the target technology (e.g. Cyclone IV f_{clk} < 250 MHz)
- the critical path of the implemented circuit

Critical path COMBINATORIAL LOGIC + ROUTING CLK $T_{p_min} = t_{pFF} + t_{p_LCR} + t_{su}$ $F_{max} \leq 1/Tp_min$

How to measure the max. working fclk of a block?

- 1. Build a wrapper to instance the block and register all the inputs and outputs
- 2. Write the create_clock constraint in a .sdc file to fix the target clock frequency
- 3. Run the STA tool: TimeQuest tool

Quatus II provides the TimeQuest tool to analyze the timing of the circuit

A constrain file file_name.sdc has to be added including the timing constrains

SDC timing constrains

How to know if a circuit runs at fclk?

How to know if a circuit runs at fclk?

Chip Planner

Resource Property Editor

