CAD/VLSI Circuit Design VLSI 期末構想報告書補充

Fixed point QR decomposition using CORDIC Algorithms on FPGA with systolic array

7111064109 林軒宇 指導教授 范志鵬

一、 簡介

QR 分解是數值線性代數中具備多種用途的計算工具,主要應用於線性方程、最小平方法和特徵值問題。常見的 QR 分解的計算方法包括 Householder 變換、Givens rotation 以及 Gram-Schmidt 正交法。本文使用 given rotation 搭配 CORDIC Alogorithms。

本次實作採用 8*4 矩陣,每個數字大小定義在±0.25~±1,預期得到一組 8*4 的上三角矩陣 R。實驗流程為先使用 MATLAB 估算預期使用定點數(fixed point) 的長度(浮點數與定點數的誤差需足夠小)以及 iteration 的次數,再將 MATLAB 生成的隨機 8*4 矩陣以定點數格式匯入 verilog,並將 verilog 算出答案與 matlab 算出答案做比較,最後使用 FPGA 做驗證。

二、 理論

➤ given rotation 說明

$$x' = x \cos \phi - y \sin \phi$$
$$y' = y \cos \phi + x \sin \phi$$

找到角度 Φ 使得Y'=0,以圖一為例, Φ 1,1為 Φ 2、 Φ 2,1為 Φ 3,找出角度 Φ 6,需將右側同一列的數值皆經過同樣的旋轉矩陣運算(原理同基本矩陣第二定理),之後依序將 Φ 3,1、 Φ 4,1...變成 Φ 0,直到第一行除了 Φ 1,1外均變成 Φ 0。同理第二行,將 Φ 2,2為 Φ 2、 Φ 3,2為 Φ 3、 Φ 4,2种指同動作,直到第二行除了 Φ 3,2 外皆變 Φ 0。持續到第 Φ 7 个(最後一行),即可得到上三角矩陣 Φ 8。

(圖一)given rotation 範例圖

▶ 使用 CORDIC 達成 given rotation

$$x' = \cos\phi \cdot [x - y \tan\phi]$$
$$y' = |\cos\phi \cdot [y + x \tan\phi]$$

先將 $\cos \emptyset$ 提出,接著限制 $\tan(\emptyset) = \pm 2^{-i}$,即可將算式簡化如下:

$$\begin{aligned} x_{i+1} &= K_i \Big[x_i - y_i \cdot d_i \cdot 2^{-i} \Big] \\ y_{i+1} &= K_i \Big[y_i + x_i \cdot d_i \cdot 2^{-i} \Big] \end{aligned} \qquad K_i = \cos(\tan^{-1} 2^{-i}) = 1 / \sqrt{1 + 2^{-2i}} \\ d_i &= \pm 1 \end{aligned}$$

為了簡化運算量,將每次的運量係數省略,最後再乘上所有系數的乘積和(An)

$$A_n = \prod_n \sqrt{1 + 2^{-2i}}$$

n為疊代的次數

三、 架構改良

▶ 改良一: PE Element 改良

(圖二)為論文中一顆 PE 元件的架構,(圖三)為改良後一顆 PE 元件的架構,最大的改進在於完成一次計算所需花的 CLK 數變原先的一半(unfolding factor(J)=2)。缺點為會增加 Critical path,但此架構的 Critical path 為乘法器,因此可以近乎無代價的提高 Performance

▶ 改良二:input size 改良

原論文疊代次數 n 為 9,為了使用上文圖三架構,我們須選擇偶數次疊代次數,因此此文選用疊代次數(n)為 8。此外原論文每個 input 為 16bits,此文將每個 input 改為 13bits(1 sign bit, 2 decimal bits, 10 fraction bits),找法如下文。首先定義 delta 函式如下:

$$\mathcal{S} = \frac{\sqrt{\sum (r_{ij} - \hat{r}_{ij})^2}}{\sqrt{\sum r_{ij}^2}}$$

接著使用 matlab 畫圖,做法如下:

先將 Fraction bit 設定為 5 bit, 皆著連續測試 10 組 δ 值, 如果不滿足 δ<0.01,就將 Fraction bit m1,結果如下圖:

横軸為 delta 值,縱軸為 index(從 1~10),由上圖可以看出唯有 Fraction bit=10 時,delta 值會小於 0.01,最終測出 Fraction bit 最小需要 10 bit。

▶ 改良三:systolic array 改良

(圖四)為原論文架構,(圖五)為改良版架構,改良版為 pipeline 版本,在高頻下也可以成功運作。由於 R22 與 R12 間有資料相依,中間需要加 delay, delay 數由疊代次數(n)與 J(unfolding factor)有關,算式如下:

Delay >= (n/J+1)*2

n/J 為 X_{ij} 執行 Rotation mode 的次數,加 1 為乘法器,乘 2 為有兩級資料相依。 舉例:以 X₇₂、X₈₂ 為例,R22 執行需等到 R12 執行完 X₇₂、X₈₂ 才能計算。 同理(R13,R23)、(R14,R24)、(R34,R44)。

(R23,R33)、(R24,R34)多 delay 兩級目的為使用 pipline 技巧,讓原先需要八顆乘法器降成 4 顆乘法器。最後結果如(圖五)。

▶ 改良四:重新定義 K

從前文理論中,我們可以得知 An 如下:

$$A_n = \prod_n \sqrt{1 + 2^{-2i}}$$

其中 n 為疊代次數,將 n=8 帶入,並將其重新定義成 K,可得結果如下:K=0.6074

最後將其轉為 FIXED POINT(共 11 bits, sign bit: 1, fraction bit: 10)

四、参考文獻

- [1] FPGA based Embedded Processing Architecture for the QRD-RLS Algorithm Deepak Boppana, Kully Dhanoa, Jesse Kempa Altera Corporation, San Jose CA
- [2] A survey of CORDIC algorithms for FPGA based computers Ray Andraka Andraka Consulting Group,Inc 16 Arcadia Drive North Kingstown, RI 02852 401/884-7930 FAX 401/884-7950