EXPERIMENT-4

AIM: To verify the operation of a half and full subtractor.

HARDWARE / SOFTWARE APPARATUS: Power supply, bread board, connecting wires, respective IC

(7408,7486, 7404, 7432)

TRUTH TABLE:

Inputs		Outputs	
Α	В	Diff	Borrow
0	0	0	0
0	1	1	1
1	0	1	0
1	1	0	0

INPUT			OUTPUT	
A	В	Bin	D	Bout
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

THEORY: Half subtractor can subtract two bits individually. The output of a half adder has a difference bit and borrow for the difference bit.

Similarly, the full subtractor can be used for three bits.

The full subtractor can also be seen as a sum of two individual half subtractors.

PROCEDURE (MULTISIM):

- Select the required gate symbol from the digital section of the tool bar on the left.
- Select a resistor from the same toolbar.
- Select the voltage sources and ground symbols from that toolbar.
- Ground both the voltage sources(clock) and then connect them to the input terminal of the gate.
- Connect the output terminal to 1kohm resistor and ground it.

CIRCUIT DIAGRAMS:

HALF SUBTRACTOR

FULL SUBTRACTOR

INPUT /OUTPUT WAVEFORMS:

HALF ADDER

FULL ADDER

PRECAUTIONS:

- Power supply should not exceed than 5V.
- Connections should be tight.
- Components should be tested before the practical.