

THEO GEVERS

MASTER AI

UNIVERSITY OF AMSTERDAM

Lectures/Theory

- 06-02-2018, 17:00-19:00, C0.05, **Introduction** (*Szeliski 1*)
- 13-02-2018, 17:00-19:00, C0.05, **Image Formation** (*Szeliski: 2.1.1 + 2.1.2 + 2.2 + 2.3.2 + 2.3.3*)
- 20-02-2018, 17:00-19:00, C0.05, **Color and Image Processing** (*Szeliski: 3.1 + 3.2 + 3.3*)
- 27-02-2018, 17:00-19:00, C0.05, **Feature Detection, Motion and Classification** (Szeliski: 4, 8.1.1 + 8.1.3 + 8.2.1 + 8.4; Bengio: 4 + 5.1 + 5.2 + 5.3 + 5.7 + 5.8 + 5.9)
- 06-03-2018, 17:00-19:00, C0.05, **Object Recognition: BoW and ConvNets** (*Szeliski:* 5.1.1 + 5.1.4 + 5.1.5 + 5.2 + 5.3 + 5.4, 6.1 + 6.3, 14.1 + 14.2.1 + 14.3 + 14.4.1; Bengio: 7.2 + 7.4 + 9.1 + 9.2 + 9.3)
- 13-03-2018, 17:00-19:00, C0.05, **Deep Learning, Stereo and 3D Reconstruction** (*Szeliski:* 11.1 + 11.2 + 11.3 + 11.4, 12.1 + 12.2: Bengio: 12.1 + 12.2)
- 20-03-2018, 17:00-19:00, C0.05, **Applications** (*Szeliski: 12.6.2 + 12.6.3 + 12.2.4*)
- 26-03-2018, Monday, 9:00-12:00, **Written Exam**

Today's class: Image Formation

1. Projective Geometry and Camera Models

2. Light and Color Models

3. Reflection Models

Including slides from Derek Hoiem, Alexei Efros, Steve Seitz, and David Forsyth, James Hays, Jinxiang Chai

Image formation

- There are two parts to the image formation process:
 - The <u>geometry of image formation</u>, which determines where in the image plane the projection of a point in the scene will be located.
 - The <u>physics of light</u>, which determines the brightness of a point in the image plane as a function of illumination and surface properties.

Pinhole Camera

- Abstract camera model box with a small hole in it
- The simplest device to form an image of a 3D scene on a 2D surface.
- Rays of light pass through a "pinhole" and form an inverted image of the object on the image plane.
- Pinhole cameras work in practice

Effect of Aperture Size

• <u>Large aperture</u>: light from the source spreads across the image (i.e., not properly focused), making it blurry!

• Small aperture: reduces blurring but (i) it limits the amount of light entering the camera and (ii) causes light diffraction.

Modeling Projection: 3D->2D

The coordinate system

- We will use the pin-hole model as an approximation
- Put the optical center (Center Of Projection) at the origin
- Put the image plane (Projection Plane) in front of the COP
- The camera looks down the negative z axis

Modeling Projection: 3D->2D

Projection equations

- Compute intersection with PP of ray from (x,y,z) to COP
- Derived using similar triangles

$$(x,y,z) \rightarrow (-d\frac{x}{z}, -d\frac{y}{z}, -d)$$

 We get the projection by throwing out the last coordinate:

$$(x,y,z) o (-d\frac{x}{z}, -d\frac{y}{z})$$

Perspective Projection

Projection is a matrix multiply using homogeneous coordinates:

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1/d & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ -z/d \end{bmatrix} \Rightarrow (-d\frac{x}{z}, -d\frac{y}{z})$$
divide by third coordinate

- This is known as perspective projection
 - The matrix is the projection matrix
 - Can also formulate as a 4x4

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -1/d & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ z \\ -z/d \end{bmatrix} \Rightarrow (-d\frac{x}{z}, -d\frac{y}{z})$$
 divide by fourth coordinate

Viewport Transformation

From projection coordinate to image coordinate

$$\begin{bmatrix} \mathbf{u} \\ \mathbf{v} \\ \mathbf{1} \end{bmatrix} \longleftrightarrow \begin{bmatrix} s_x & 0 & u_0 & \mathbf{x} \\ 0 & -s_y & v_0 & \mathbf{y} \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

Sensor Array

CMOS sensor

a b

FIGURE 2.17 (a) Continuos image projected onto a sensor array. (b) Result of image sampling and quantization.

Putting It Together

From world coordinate to image coordinate

Viewport projection

$$\begin{bmatrix} \mathbf{u} \\ \mathbf{v} \\ \mathbf{1} \end{bmatrix} \longleftrightarrow \begin{bmatrix} s_x & 0 & u_0 \\ 0 & -s_y & v_0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1/d & 0 \end{bmatrix} \begin{bmatrix} \mathbf{R} & \mathbf{T} \\ \mathbf{0}_{\mathbf{3}}^{\mathbf{T}} & \mathbf{1} \end{bmatrix} \begin{bmatrix} X_S \\ Y_S \\ Z_S \\ 1 \end{bmatrix}$$

Image resolution, aspect ratio

Focal length

The relative position & orientation between camera and objects

Camera Parameters

Intrinsic camera parameters

extrinsic camera parameters

View Transformation

From world coordinate to camera coordinate

$$\begin{bmatrix} x_{S} \\ y_{S} \\ z_{S} \\ 1 \end{bmatrix} = \begin{bmatrix} \mathbf{R} & \mathbf{T} \\ \mathbf{0}_{3}^{\mathsf{T}} & 1 \end{bmatrix} \begin{bmatrix} X_{S} \\ Y_{S} \\ Z_{S} \\ 1 \end{bmatrix}$$

Things to Remember

Pinhole camera model and camera matrix

$$\begin{bmatrix} \mathbf{u} \\ \mathbf{v} \\ \mathbf{1} \end{bmatrix} \longleftrightarrow \begin{bmatrix} s_x & 0 & u_0 \\ 0 & -s_y & v_0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1/d & 0 \end{bmatrix} \begin{bmatrix} x_S \\ y_S \\ z_S \\ 1 \end{bmatrix}$$

Today's class: Image Formation

1. Projective Geometry and Camera Models

2. Light and Color Models (Reading 2.3, paper on color models)

3. Reflection Models

Including slides from Derek Hoiem, Alexei Efros, Steve Seitz, and David Forsyth, James Hays, Jinxiang Chai

What makes an image? the triplet light-objects-observer

Light source

Object(s)

Sensor

Diffuse Reflection

Input Image

Lighting

Surface Normals

Reconstruction

The science of Light and Colour

Fundamentals of colour science Hall of fame

Pythagoras: undulation theory

Aristoteles: curpus theory

Newton 1665 "Opticks"

Planck, Einstein and Bohr "Quantum mechanics"

Goethe 1840 "Farbenlehre"

Munsell 1905 "A Colour Notation"

Descartes, Schopenhauer,

Hegel, Wittgenstein...and many others

Mondrian

Electromagnetic Spectrum

Human Luminance Sensitivity Function

Electromagnetic Spectrum

Spectral Power Distribution

Hue: dominant wavelength of the SPD: EH

Saturation: purity of the colour: EH-EW

Intensity: brightness of the colour: EW

White light

Green light

What makes an image? the triplet light-objects-observer

Light source

Object(s)

Sensor

What makes an image?

the triplet light-objects-observer

Light source

 $e(\lambda)$

Object

 $\rho(\lambda)$

Sensor

 $e(\lambda)\rho(\lambda)$

Light sources and illuminants

Light sources:

sun, candle, fluorescent lamp, incandescent lamp

Illuminants:

illuminant A
illuminant D65
illuminant C

Light sources and illuminants

Incandescent lamp

Fluorescent lamp

The Physics of Light

Some examples of the spectra of light sources

Influence of Light Sources

Average daylight

Incandescent lamp

Fluorescent lamp

Object Colours

Materials:

Transparent

Opaque

Spectral Reflectance

 $\rho(\lambda)$

Object Colours

Material spectrophotometer Reflectance curve

Object Colours

Some examples of the <u>reflectance</u> spectra of <u>surfaces</u>

Wavelength (nm)

More Spectra

Observer

Eyes: rods and cones

Theories:

Tri-chromacy theory
Opponent theory
Retinex theory

Human Eye

- Retina contains light sensitive cells that convert light energy into electrical impulses that travel through nerves to the brain.
- Brain interprets the electrical signals to form images.

Two Types of Light-Sensitive Receptors

Cones

cone-shaped less sensitive operate in high light color vision

Rods

rod-shaped highly sensitive operate at night gray-scale vision

14-2-2018 Computer Vision 1 36

Light Detection: Rods and Cones

Rods:

- -120 million rods in retina
- -1000X more light sensitive than Cones
- Discriminate B/W brightness in low illumination
- Short wave-length sensitive

Cons:

- 6-7 million cones in the retina
- Responsible for high-resolution vision
- Discriminate Colors
- Three types of color sensors: 64% red, 32% green, 2% blue)
- Sensitive to any combination of three colors

Distribution of Rods and Cones

Night Sky: why are there more stars off-center? Averted vision: http://en.wikipedia.org/wiki/Averted_vision

14-2-2018 Computer Vision 1 38

The Retina

- 0.5 mm thick
- The photosensors (the rods and cones) lie outermost in the retina.
- Interneurons
- Ganglion cells (the output neurons of the retina) lie innermost in the retina closest to the lens and front of the eye.

Receptive Fields

The ganglion cell produces some background response even when there is no light on its receptive field

"On-Center" Ganglion Cell

Responds maximally to light increments in the center, and light decrements in the surround.

"Off-Center" Ganglion Cell

Responds maximally to light decrements in the center, and light increments in the surround.

Receptive Fields on the Retina

The size of the receptors and the receptive field are shown here much larger than actual size!

Ganglion Cells: Receptive Fields

Responses: ON-Centre Ganglion Cells

Ganglion Cells: Receptive Fields / Opponent Colors

Ganglion cells have no orientation preference.

Model of how center-surround cells can be building blocks for simple cells.

Model of how center-surround cells can be building blocks for simple cells.

Retinal ganglion cells respond to edges

Center-surround receptive fields: emphasize edges.

Deep Learning

Receptive Fields

Hermann Grid Illusion

Hermann Grid Illusion: Explanation

When the image is on the first receptive field there is more light falling on the surround (inhibitory) than in the second position So there is more suppression and the illusion of a dark spot at the first location

Simultaneous Lightness Contrast

- Occurs when the lightness of an area is influenced by neighboring regions
- Our perception of lightness is not objective, but depends on the surrounding area
- The center square on the right looks lighter because the surrounding area is a darker gray

Perception of Intensity

14-2-2018

Computer Vision 1

Perception of Intensity

14-2-2018

Computer Vision 1

from Ted Adelson

Tristimulus of Color Theory

Spectral-response functions of each of the three types of cones

Color matching function based on RGB

- any spectral color can be represented as a linear combination of

these primary colors

Tristimulus of Color Theory

Spectral-response functions of each of the three types of cones

Color matching function based on RGB

- any spectral color can be represented as a linear combination of

these primary colors

Tristimulus of Color Theory

Spectral-response functions of each of the three types of cones

Color matching function based on RGB

- any spectral color can be represented as a linear combination of

these primary colors

Observer: Trichromacy

Young-Helmholtz approach
Tristimulus values R, G, and B
Wright (7) Guild (10)
Stiles and Burch (50)

Spectral Energy Distribution

The six spectra below look the same purple to normal color-vision people

Metamers

Experiment

Experiment

Opponent Colors

C2005 Lighthouse International. All rights reserved.

Van Gogh

Illusions!

http://www.michaelbach.de/

http://www.ritsumei.ac.jp/~akitaoka/index-e.html

The Eye

Young-Helmholtz approach
Tristimulus values R, G, and B
Wright (7) Guild (10)
Stiles and Burch (50)

Colorimetry: CIE XYZ-system

$$X = \int_{\lambda} e(\lambda) \rho(\lambda) \overline{x}(\lambda) d\lambda$$

$$Y = \int_{\lambda} e(\lambda) \rho(\lambda) \overline{y}(\lambda) d\lambda$$

$$Z = \int_{\lambda} e(\lambda) \rho(\lambda) \overline{z}(\lambda) d\lambda$$

Colorimetry: CIE xy-system

$$x = \frac{X}{X + Y + Z}$$

$$y = \frac{Y}{X + Y + Z}$$

$$z = \frac{Z}{X + Y + Z}$$

Colorimetry: Illuminants in the xy-plane

Light Sources and Illuminants

Light sources:

sun, candle, fluorescent lamp, incandescent lamp

Illuminants:

illuminant A
illuminant D65
illuminant C

FIGURE 6.5 Chromaticity diagram. (Courtesy of the General Electric Co., Lamp Business Division.)

Colorimetry: HSI in the xy-plane

Spectral Power Distribution

Hue: dominant wavelength of the SPD: EH

Saturation: purity of the colour: EH-EW

Intensity: brightness of the colour: EW

Color Spaces: HSV

Intuitive color space

H (S=1,V=1)

S (H=1,V=1)

(H=1,S=0)

Colour Gamuts in the xy-plane

Monitor/Print/Scanner Gamut

Image Formation

Digital camera

A digital camera replaces film with a sensor array

- Each cell in the array is light-sensitive diode that converts photons to electrons
- Two common types: Charge Coupled Device (CCD) and CMOS
- http://electronics.howstuffworks.com/digital-camera.htm

The Raster Image (Pixel Matrix)

- We can think of a (grayscale) image as a function, f, from R² to R (or a 2D signal):
 - -f(x,y) gives the **intensity** at position (x,y)

A digital image is a discrete (sampled, quantized) version of this function

Color Sensing in Camera: Color Filter Array

- In traditional systems, color filters are applied to a single
- layer of photodetectors in a tiled mosaic pattern.

Why more green?

Human Luminance Sensitivity Function

Today's class: Image Formation

1. Projective Geometry and Camera Models

2. Light and Color Models

3. Reflection Models (Reading 2.2, paper on

color models)

Including slides from Derek Hoiem, Alexei Efros, Steve Seitz, and David Forsyth, Jame Hays, Jinxiang Chai

Basic Principles of Surface Reflectance

Slides from Shree Nayar, Ravi Ramamoorthi, Pat Hanrahar

What makes an image? the triplet light-objects-observer

Light source

Object(s)

Sensor

Surface Appearance

Image intensities = f(normal, surface reflectance, illumination)

Surface Reflection depends on both the viewing and illumination direction.

BRDF: Bidirectional Reflectance

$$E^{surface}(\theta_i, \phi_i)$$
 Irradiance at Surface in direction (θ_i, ϕ_i)

$$L^{surface}(\theta_r, \phi_r)$$
 Radiance of Surface in direction (θ_r, ϕ_r)

BRDF:
$$f(\theta_i, \phi_i; \theta_r, \phi_r) = \frac{L^{surface}(\theta_r, \phi_r)}{E^{surface}(\theta_i, \phi_i)}$$

Mechanisms of Surface Reflection

Body Reflection:

Diffuse Reflection Matte Appearance Non-Homogeneous Medium Clay, paper, etc Surface Reflection:

Specular Reflection Glossy Appearance Highlights Dominant for Metals

Image Intensity = Body Reflection + Surface Reflection

Mechanisms of Surface Reflection

Body Reflection:

Diffuse Reflection Matte Appearance Non-Homogeneous Medium Clay, paper, etc

Many materials exhibit both Reflections:

Surface Reflection:

Specular Reflection Glossy Appearance Highlights Dominant for Metals

Diffuse Reflection and Lambertian BRDF

- ullet Surface appears equally bright from ALL directions! (independent of ${oldsymbol {\cal V}}$)
- Lambertian BRDF is simply a constant : $f(\theta_i, \phi_i; \theta_r, \phi_r) = \frac{\rho_d}{\pi}$ albedo
- Surface Radiance : $L = \frac{\rho_d}{\pi} I \cos \theta_i = \frac{\rho_d}{\pi} I \hat{n}.\hat{s}$ source intensity
- Commonly used in Vision and Graphics!

Diffuse Reflection and Lambertian BRDF

Overcast Sky

Can't perceive the shape of the snow covered terrain

Face Analysis

FIGURE 1.1: Example of 3DMM fitting following an analysis-bysynthesis approach. From left to right: The 3D Morphable Model, prediction of parameters for the different components of the optimization problem and rendered results, analyses against target image, and feedback loop.

Diffuse Reflection

Input Image

Lighting

Surface Normals

Reconstruction

Diffuse Reflection

Input Image

Albedo

Lighting

Surface Normals

Reconstruction

Diffuse Reflection: Albedo

Diffuse Reflection: Illumination

Diffuse Reflection: Illumination/SH

Specular Reflection and Mirror BRDF

- Very smooth surface.
- All incident light energy reflected in a SINGLE direction. (only when V = r)
- Mirror BRDF is simply a double-delta function :

specular albedo
$$f(\theta_i, \phi_i; \theta_v, \phi_v) = \rho_s \delta(\theta_i - \theta_v) \delta(\phi_i + \pi - \phi_v)$$

• Surface Radiance: $L = I \rho_s \delta(\theta_i - \theta_v) \delta(\phi_i + \pi - \phi_v)$

Glossy Surfaces

• Many glossy surfaces show broader highlights in addition to specular reflection.

• Example Models: Phong Model (no physical basis, but sort of works (empirical)

Phong Model: An Empirical Approximation

An illustration of the angular falloff of highlights:

$$L = I \rho_s (\cos \phi)^{n_{shiny}}$$

• Very commonly used in Computer Graphics

Phong Examples

- These spheres illustrate the Phong model as *lighting*
- *direction* and n_{shiny} are varied:

All components of Surface Reflection

A Simple Reflection Model - Dichromatic Reflection

Observed Image Color = $a \times Body Color + b \times Specular Reflection Color$

Klinker-Shafer-Kanade 1988

Does not specify any specific model for Diffuse/specular reflection

Color of Surface (Diffuse/Body Reflection)

В

Separating Diffuse and Specular Reflections

Observed Image Color = $a \times Body Color + b \times Specular Reflection Color$

Computer Vision 1 (total #slides 110 | Lecture 2)

Summary on Image Formation

1. Projective Geometry and Camera Models

- 2. Light and Color Models
- 3. Reflection Models