ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ РФ

ФГБОУ ВПО "Госуниверситет-УНПК"

Химия и биотехнология

Учебное пособие для самостоятельной работы студентов по курсу: **Физическая химия**

Физическая химия

Цымай Д.В. dmitryzy@gmail.com

Часть I Практические занятия

Оригиналы задач здесь

В.В.Еремин, С.И.Каргов, Н.Е.Кузьменко

Часть І. Химическая термодинамика

http://www.chem.msu.su/rus/teaching/eremin1/welcome.html

В.В.Еремин, С.И.Каргов, Н.Е.Кузьменко

Часть 2. Химическая кинетика. Электрохимия

http://www.chem.msu.su/rus/teaching/eremin/welcome.html

Выполнены подбор задач по темам и незначительная корректировка условий. приведенные здесь тексты задач могут быть использованы в качестве материалов для практических занятий по курсам "Физическая химия"и "Физическая и коллоидная химия". Указанные задачи также могут быть использованы для организации самостоятельной работы студентов. Формулы и закономерности, необходимые для решения задач имеются в учебниках по соответствующим курсам.

Практическое занятие 1. Термохимия

1.1 Задачи для самостоятельного решения

Задача 1 Один моль идеального газа, взятого при 25 °C и 100 атм, расширяется обратимо и изотермически до 5 атм. Рассчитайте работу, поглощенную теплоту, ΔU и ΔH .

Задача 2 Рассчитайте изменение энтальпии кислорода (идеальный газ) при изобарном расширении от 80 до 200 л при нормальном атмосферном давлении.

Задача 3 Рассчитайте количество теплоты, необходимое для нагревания воздуха в квартире общим объемом 600 м³ от 20 °C до 25 °C. Примите, что воздух - это идеальный двухатомный газ, а давление при исходной температуре нормальное. Найдите ΔU и ΔH для процесса нагревания воздуха.

Задача 4 Человеческий организм в среднем выделяет 104 кДж в день благодаря метаболическим процессам. Основной механизм потери этой энергии - испарение воды. Какую массу воды должен ежедневно испарять организм для поддержания постоянной температуры? Удельная теплота испарения воды 2260 Дж/г. На сколько градусов повысилась бы температура тела, если бы организм был изолированной системой? Примите, что средняя масса человека - 65 кг, а теплоемкость равна теплоемкости жидкой воды.

Задача 5 Один моль метана, взятый при 25 °C и 1 атм, нагрет при постоянном давлении до удвоения объема. Мольная теплоемкость метана дается выражением: $C_p = 5,34+0,0115 \cdot T$ кал/(мольК). Рассчитайте ΔU и ΔH для этого процесса. Метан можено считать идеальным газом.

Задача 6 Сколько тепла потребуется на перевод 500 г Al ($T_{\Pi\Pi}=658^{o}$ C, $\Delta H_{\Pi\Pi}=92,4$ кал/г), взятого при комнатной температуре, в расплавленное состояние, если $C_{p}(Al)=0,183+1,096\cdot 10^{-4} T$ кал/(г K)?

Задача 7 Стандартная энтальпия реакции $CaCO_3(TB) = CaO(TB) + CO_2(\Gamma)$, протекающей в открытом сосуде при температуре 1000 K, равна 169 кДж/моль. Чему равна теплота этой реакции, протекающей при той же температуре, но в закрытом сосуде?

Задача 8 Рассчитайте энтальпию образования $N_2O_5(\Gamma)$ при T=298 K на основании следующих данных:

```
2NO(\Gamma)+O_2(\Gamma)=2NO_2(\Gamma),\ \Delta H_1^0=-114,2\ кДжс/моль, 4NO_2(\Gamma)+O_2(\Gamma)=2N_2O_5(\Gamma),\ \Delta H_2^0=-110,2\ кДжс/моль, N_2(\Gamma)+O_2(\Gamma)=2NO(\Gamma),\ \Delta H_3^0=182,6\ кДжс/моль.
```

Задача 9 Энтальпии сгорания -глюкозы, -фруктозы и сахарозы при 25 °C равны -2802, -2810 и -5644 кДж/моль, соответственно. Рассчитайте теплоту гидролиза сахарозы.

Задача 10 Определите энтальпию образования диборана $B_2H_6(\Gamma)$ при T=298~K из следующих данных:

$$B_2H_6(\Gamma)+3O_2(\Gamma)=B_2O_3(\mathrm{TB})+3H_2O(\Gamma),\ \Delta H_1^0=-2035,6\$$
кДже/моль, $2B(\mathrm{TB})+3/2O_2(\Gamma)=B2O_3(\mathrm{TB}),\ \Delta H_2^0=-1273,5\$ кДже/моль, $H_2(\Gamma)+1/2O_2(\Gamma)=H_2O(\Gamma),\ \Delta H_3^0=-241,8\$ кДже/моль.

Задача 11 Рассчитайте теплоту образования сульфата цинка из простых веществ при T=298~K на основании следующих данных:

$$ZnS=Zn+S,\ \Delta H_1^0=200,5\ \kappa$$
Джс/моль, $2ZnS+3O_2=2ZnO+2SO_2,\ \Delta H_2^0=-893,5\ \kappa$ Джс/моль, $2SO_2+O_2=2SO_3,\ \Delta H_3^0=-198,2\ \kappa$ Джс/моль, $ZnSO_4=ZnO+SO_3,\ \Delta H_4^0=235,0\ \kappa$ Джс/моль.

 ${f 3}$ адача ${f 12}$ ${\it Ha\"udume}~\Delta_r H^0_{298}$ для ${\it peakuuu}$

$$CH_4 + Cl_2 = CH_3Cl + HCl$$

если известны теплоты сгорания метана (-890,6 кДж/моль), хлорметана (-689,8 кДж/моль), водорода (-285,8 кДж/моль) и теплота образования HCl (-92,3 кДж/моль)).

Задача 13 Рассчитайте стандартный тепловой эффект реакции

$$CaSO_4(TB) + Na_2CO_3(aq) = CaCO_3(TB) + Na_2SO_4(aq)$$

npu 298 K.

Задача 14 Зависимость теплового эффекта реакции

$$CH_3OH + 3/2O_2 = CO_2 + 2H_2O$$

от температуры выражается уравнением:

$$\Delta H = -684, 7 \cdot 10^3 + 36,77T - 38,56 \cdot 10^{-3}T^2 + 8,21 \cdot 10^{-6}T^3 + 2,88 \cdot 10^5T^{-1}$$

Paccчитайте изменение теплоемкости ΔC_p для этой реакции при 500 K.

Задача 15 Энтальпия диссоциации карбоната кальция при 900 °C и давлении 1 атм равна 178 кДж/моль. Выведите уравнение зависимости энтальпии реакции от температуры и рассчитайте количество теплоты, поглощенное при разложении 1 кг карбоната кальция при 1000 °C и 1 атм, если даны мольные теплоемкости (в Дж/(моль. K)):

$$Cp(CaCO_3(TB)) = 104, 5 + 21, 92 \cdot 10^{-3}T - 25, 94 \cdot 10^{5}T^{-2},$$

 $Cp(CaO(TB)) = 49, 63 + 4, 52 \cdot 10^{-3}T - 6, 95 \cdot 10^{5}T^{-2},$
 $Cp(CO_2(\Gamma)) = 44, 14 + 9, 04 \cdot 10^{-3}T - 8, 53 \cdot 10^{5}T^{-2}.$

Задача 16 Рассчитайте изменение энтропии при нагревании 0,4 моль хлорида натрия от 20 до 850 °C. Мольная теплоемкость хлорида натрия равна:

$$C_n(NaCl(TB)) = 45,94 + 16,32 \cdot 10^{-3}T$$
 Джс/(мольК),

 $C_p(NaCl(\mathbb{X})) = 66,53~\mbox{Дж}/(\mbox{моль}K)$. Температура плавления хлорида натрия 800 ° C, теплота плавления 31,0 к $\mbox{Дж}/\mbox{моль}$.

Практическое занятие 2. Термодинамические потенциалы. Критерии протекания самопроизвольных процессов. Второе начало термодинамики. Энтропия.

2.1 Задачи для самостоятельного решения

Задача 17 Рассчитайте изменение энтропии при нагревании 11,2 л азота от 0 до 50 °C и одновременном уменьшении давления от 1 атм до 0,01 атм.

Задача 18 Рассчитайте изменение энтропии при образовании 1 M^3 воздуха из азота и кислорода (20 об.%) при температуре 25 °C и давлении 1 атм.

Задача 19 Рассчитайте изменение энтропии при смешении 5 кг воды при 80 °C с 10 кг воды при 20 °C. Удельную теплоемкость воды принять равной: $C_p = 4,184 \ \text{Джc/(г K)}$.

Задача 20 Рассчитайте изменение энтропии при добавлении 200 г льда, находящегося при температуре 0 ° C, κ 200 г воды (90 ° C) в изолированном сосуде. Теплота плавления льда равна 6,0 κ Дж/моль.

Задача 21 Рассчитайте изменение энтропии 1000 г метанола в результате его замерзания при -105 °C. Теплота плавления твердого метанола при -98 °C ($T_{n...}$) равна 3160 Дж/моль. Теплоемкости твердого и жидкого метанола равны 55,6 и 81,6 Дж/(мольK), соответственно. Объясните, почему энтропия при замерзании уменьшается, хотя процесс — самопроизвольный.

Задача 22 Пользуясь справочными данными, рассчитайте стандартное изменение энтропии в реакции $H_2(z) + O_2(z) = H_2O(z)$ при 25 °C и при 300 °C.

Задача 23 Энергия Гельмгольца одного моля некоторого вещества записывается следующим образом: $F = a + T(b - c - b \ln T - d \ln V)$, где a, b, c, d - константы. Найдите давление, энтропию и теплоемкость C_v этого тела. Дайте физическую интерпретацию константам a, b, d.

Задача 24 Вычислите изменение $H,\ U,\ F,\ G,\ S$ при одновременном охлаждении от 2000 K до 200 K и расширении от 0,5 ${\it M}^3$ до 1,35 ${\it M}^3$ 0,7 молей азота ($C_v=\frac{5}{2}R$). Энтропия газа в исходном состоянии равна 150 Дж/(мольK), газ можно считать идеальным.

- Задача 25 Вычислите изменение энергии Гиббса при сжатии от 1 атм до 3 атм при 298 К: а) одного моля жидкой воды; б) одного моля водяного пара (идеальный газ).
- Задача 26 Вычислите стандартную энергию Гиббса образования ($\Delta_f G_{298}^0$) жидкой и газообразной воды, если известны следующие данные: $\Delta_f H_{298}^0(H_2O(\mathfrak{r})) = -241, 8$ кДжс/моль, $\Delta_f H_{298}^0(H_2O(\mathfrak{r})) = -285, 6$ кДжс/моль, $S_{298}^0(H_2) = 130, 6$ Джс/(мольК), $S_{298}^0(O_2) = 205, 0$ Джс/(мольК), $S_{298}^0(H_2O(\mathfrak{r})) = 188, 5$ Джс/(мольК), $S_{298}^0(H_2O(\mathfrak{r})) = 69, 8$ Джс/(мольК).
- Задача 27 Для химической реакции: $4HCl(z) + O_2(z) = 2Cl_2(z) + 2H_2O(\varkappa c)$ рассчитайте ΔG^0 при 25 °C Стандартные значения энтальпии образования и абсолютной энтропии при 25°C равны: $\Delta_f H^0_{298}(HCl) = -22,1$ ккал/моль, $\Delta_f H^0_{298}(H_2O(\varkappa c)) = -68,3$ ккал/моль; $S^0(HCl) = 44,6$ кал/(мольK), $S^0(O_2) = 49,0$ кал/(мольK), $S^0(Cl_2) = 53,3$ кал/(мольK), $S^0(H_2O(\varkappa c)) = 16,7$ кал/(мольK).
- Задача 28 Для химической реакции: $CO_2(\mathfrak{r})+4H_2(\mathfrak{r})=CH_4(\mathfrak{r})+2H_2O(\mathfrak{R})$ рассчитайте ΔG_0 при 25 °C Стандартные значения энтальпии образования и абсолютной энтропии при 25 °C равны: $\Delta_f H_{298}^0(CO_2)=-94,1$ ккал/моль, $\Delta_f H_{298}^0(CH_4)=-17,9$ ккал/моль, $\Delta_f H_{298}^0(H_2O(\mathfrak{R}))=-68,3$ ккал/моль; $S^0(CO_2)=51,1$ кал/(мольK), $S^0(H_2)=31,2$ кал/(мольK), $S^0(CH_4)=44,5$ кал/(мольK), $S^0(H_2O(\mathfrak{R}))=16,7$ кал/(мольK).
- Задача 29 Рассчитайте стандартные энергии Гиббса и Гельмгольца ΔG_0 и ΔF_0 при $300~^{\circ}C$ для химической реакции: $CO(\mathfrak{e})+3H_2(\mathfrak{e})=CH_4(\mathfrak{e})+H_2O(\mathfrak{e})$. Может ли эта реакция протекать самопроизвольно при данной температуре?
- Задача 30 Рассчитайте стандартные энергии Гиббса и Гельмгольца ΔG_0 и ΔF_0 при $60\,^{\circ}$ С для химической реакции: $CH_3COOH(\varkappa c) + 2H_2(z) = C_2H_5OH(\varkappa c) + H_2O(\varkappa c)$. Может ли эта реакция протекать самопроизвольно при данной температуре?
- Задача 31 Рассчитайте стандартные энергии Гиббса и Гельмгольца ΔG_0 и ΔF_0 при 700°С для химической реакции: $CaCO_3(me) = CaO(me) + CO_2(r)$. Может ли эта реакция протекать самопроизвольно при данной температуре?
- Задача 32 При 1273 K и общем давлении 30 атм в равновесной смеси $CO_2(\mathfrak{r})+C(m\mathfrak{s})=2CO(\mathfrak{r})$ содержится 1706.% CO_2 . Сколько процентов CO_2 будет содержаться в газе при общем давлении 20 атм? При каком давлении в газе будет содержаться 25 об.% CO_2 ?
- **Задача 33** При 2273 K и общем давлении 1 атм 2% воды диссоциировано на водород и кислород. Рассчитать константу равновесия реакции $H_2O(\mathfrak{r}) = H_2(\mathfrak{r}) + 0, 5O_2(\mathfrak{r})$.
- Задача 34 Константа равновесия реакции $CO(\mathfrak{r}) + H_2O(\mathfrak{r}) = CO_2(\mathfrak{r}) + H_2(\mathfrak{r})$ при 773 К равна $K_p = 5, 5$. Смесь, состоящая из 1 моль CO и 5 моль H_2O , нагрели до этой температуры. Рассчитать мольную долю H_2O в равновесной смеси.
- **Задача 35** Константа равновесия реакции $N_2O_4(\mathfrak{r})=2NO_2(\mathfrak{r})$ при 298 К равна $K_p=0,143$. Рассчитать давление, которое установится в сосуде объемом 1 л, в который поместили 1 г N_2O_4 при этой температуре.
- **Задача 36** Сосуд объемом 3 л, содержащий $1,79 \cdot 10^{-2}$ моль I_2 , нагрели до 973 К. Давление в сосуде при равновесии оказалось равно 0,49 атм. Считая газы идеальными, рассчитать константу равновесия при 973 К для реакции $I_2(z) = 2I(z)$.

- Задача 37 Для реакции $PCl_5(z) = PCl_3(z) + Cl_2(z)$ при 523 К $\Delta_r G^0 = -2508$ Дж/моль. При каком общем давлении степень превращения PCl_5 при 523 К составит 30%?
- Задача 38 Для реакции $2HI(z) = H_2(z) + I_2(z)$ константа равновесия $K_p = 1,83 \cdot 10^{-2}$ при 698,6 К. Сколько граммов HI образуется при нагревании до этой температуры 10 г I_2 и 0,2 г I_2 в трехлитровом сосуде? Чему равны парциальные давления I_2 , I_2 и HI?
- Задача 39 Сосуд объемом 1 л, содержащий 0,341 моль PCl_5 и 0,233 моль N_2 , нагрели до 523 К. Общее давление в сосуде при равновесии оказалось равно 29,33 атм. Считая все газы идеальными, рассчитать константу равновесия при 523 К для протекающей в сосуде реакции $PCl_5(\mathfrak{r}) = PCl_3(\mathfrak{r}) + Cl_2(\mathfrak{r})$
- Задача 40 Рассчитать общее давление, которое необходимо приложить к смеси 3 частей H_2 и 1 части N_2 , чтобы получить равновесную смесь, содержащую 10% NH_3 по объему при 400 °C. Константа равновесия для реакции $N_2(\mathfrak{r}) + 3H_2(\mathfrak{r}) = 2NH_3(\mathfrak{r})$ при 400 °C равна $K_p = 1,60 \cdot 10^{-4}$.
- **Задача 41** При 250 °C и общем давлении 1 атм PCl_5 диссоциирован на 80% по реакции $PCl_5(\mathfrak{r}) = PCl_3(\mathfrak{r}) + Cl_2(\mathfrak{r})$. Чему будет равна степень диссоциации PCl_5 , если в систему добавить N_2 , чтобы парциальное давление азота было равно 0,9 атм? Общее давление поддерживается равным 1 атм.
- Задача 42 При 2273 К для реакции $N_2(\mathfrak{r})+O_2(\mathfrak{r})=2NO(\mathfrak{r})$ $K_p=2,5\cdot 10^{-3}$. В равновесной смеси N_2 , O_2 , NO и инертного газа при общем давлении 1 бар содержится 80% (по объему) N_2 и 16% O_2 . Сколько процентов по объему составляет NO? Чему равно парциальное давление инертного газа?

Практическое занятие 3. Химическая кинетика

3.1 Задачи для самостоятельного решения

Задача 43 Чему равен порядок элементарных реакций? Записать для них уравнения закона действующих масс. $Cl + H_2 = HCl + H$; $2NO + Cl_2 = 2NOCl$.

Задача 44 Какие из перечисленных величин могут принимать отрицательные или дробные значения: скорость реакции, порядок реакции, молекулярность реакции, константа скорости, стехиометрический коэффициент?

Задача 45 Во сколько раз увеличится скорость газофазной элементарной реакции A = 2D при увеличении общего давления в 3 раза?

Задача 46 Определите порядок реакции, если размерность константы скорости: $n^2/(\text{моль}^2c)$.

Задача 47 Константа скорости газовой реакции 2-го порядка при 25 o C равна 10^{3} л/ (моль c). Чему равна эта константа, если кинетическое уравнение выражено через давление в атмосферах?

Задача 48 Для газофазной реакции n-го порядка $nA \to B$ выразите скорость образования B через суммарное давление.

Задача 49 Константы скорости прямой и обратной реакции равны 2,2 л / (моль c) и 3,8 л/(моль c). По какому из перечисленных ниже механизмов могут протекать эти реакции: a) A + B = D; b) A + B = D; b) A + B = D; b) A = B + D; c) a0.

Задача 50 Скорость реакции 2-го порядка $A+B\to D$ равна $2,7\cdot 10^{-7}$ моль/(л. с) при концентрациях веществ A и B, соответственно, $3,0\cdot 10^{-3}$ моль/л и 2,0 моль/л. Рассчитайте константу скорости.

Задача 51 B реакции 2-го порядка $A+B\to 2D$ начальные концентрации веществ A и B равны по 1,5 моль/л. Скорость реакции равна $2,0\cdot 10^{-4}$ моль/(л c) при $C_A=1,0$ моль/л. Рассчитайте константу скорости и скорость реакции при |B|=0,2 моль/л.

Задача 52 B реакции 2-го порядка $A+B\to 2D$ начальные концентрации веществ A и B равны, соответственно, 0,5 и 2,5 моль/л. Во сколько раз скорость реакции при $C_A=0,1$ моль/л меньше начальной скорости?

Задача 53 Скорость газофазной реакции описывается уравнением $r = kC_A^2C_B$. При каком соотношении между концентрациями A и B начальная скорость реакции будет максимальна при фиксированном суммарном давлении?

Задача 54 Реакция первого порядка протекает на 30% за 7 мин. Через какое время реакция завершится на 99%?

Задача 55 Период полураспада радиоактивного изотопа ^{90}Sr , который попадает в атмосферу при ядерных испытаниях, -28,1 лет. Предположим, что организм новорожденного ребенка поглотил 1,00 мг этого изотопа. Сколько стронция останется в организме через a) 18 лет, b) 70 лет, если считать, что он не выводится из организма?

Задача 56 Константа скорости для реакции первого порядка $SO_2Cl_2 = SO_2 + Cl_2$ равна $2, 2 \cdot 10^{-5}$ с⁻¹ при 320 ° С. Какой процент SO_2Cl_2 разложится при выдерживании его в течение 2 ч при этой температуре?

Задача 57 Реакция второго порядка $2A \to B$ протекает в газовой фазе. Начальное давление равно P_0 (B отсутствует). Найдите зависимость общего давления от времени. Через какое время давление уменьшится в 1,5 раза по сравнению с первоначальным? Какова степень протекания реакции к этому времени?

Задача 58 Вещество А смешали с веществами В и С в равных концентрациях 1 моль/л. Через 1000 с осталось 50% вещества А. Сколько вещества А останется через 2000 с, если реакция имеет: а) нулевой, б) первый, в) второй, в) третий общий порядок?

Задача 59 Какая из реакций - первого, второго или третьего порядка - закончится быстрее, если начальные концентрации веществ равны 1 моль/л и все константы скорости, выраженные через моль/л и c, равны 1?

Задача 60 При определенной температуре 0,01 М раствор этилацетата омыляется 0,002 М раствором NaOH на 10% за 23 мин. Через сколько минут он будет омылен до такой же степени 0,005 М раствором КОН? Считайте, что данная реакция имеет второй порядок, а щелочи диссоциированы полностью.

Задача 61 Реакция второго порядка $A+B\to P$ проводится в растворе с начальными концентрациями $C_{A0}=0,050$ моль/л и $C_{B0}=0,080$ моль/л. Через 1 ч концентрация вещества A уменьшилась до 0,020 моль/л. Рассчитайте константу скорости и периоды полураспада обоих веществ.

Задача 62 В газофазной реакции $A+B\to P$ скорость измерялась при различных парциальных давлениях реагентов (температура 300 K). Определите порядки реакции по веществам A и B. Исходные данные:

№опыта	p_A , мм pm . cm .	p_B , мм pm . cm .	r, моль/(л c)
1	4,0	15,0	$2,59 \cdot 10^{-7}$
2	9,0	12,0	$1,05 \cdot 10^{-6}$
3	13,0	9,0	$1,64 \cdot 10^{-6}$

Задача 63 Вычислите, при какой температуре реакция закончится через 15 мин, если при 20 °C на это требуется 2 ч. Температурный коэффициент скорости равен 3.

Задача 64 Какой должна быть энергия активации, чтобы скорость реакции увеличивалась в 3 раза при возрастании температуры на $10 \, {}^{\circ}$ C a) при $300 \, K$; б) при $1000 \, K$?

Задача 65 Энергия активации некоторой реакции в 1,5 раза больше, чем энергия активации другой реакции. При нагревании от T_1 до T_2 константа скорости второй реакции увеличилась в а раз. Во сколько раз увеличилась константа скорости первой реакции при нагревании от T_1 до T_2 ?

Задача 66 Реакция первого порядка имеет энергию активации 104,5 кДж/моль и предэкспоненциальный множитель $5 \cdot 10^{13}$ с $^{-1}$. При какой температуре время полураспада для данной реакции составит: а) 1 мин; б) 30 дней?

Задача 67 В необратимой реакции 1-го порядка за 20 мин при $125\,^{\circ}$ С степень превращения исходного вещества составила 60%, а при $145\,^{\circ}$ С такая же степень превращения была достигнута за $5,5\,$ мин. Найдите константы скорости и энергию активации данной реакции .

Задача 68 Реакция 1-го порядка при температуре 25 оС завершается на 70% за 15 мин. При какой температуре реакция завершится на 50% за 15 мин, если энергия активации равна 50 кДжс/моль?

Практическое занятие 4. Электрохимия

4.1 Задачи для самостоятельного решения

Задача 69 B гальваническом элементе при температуре 298 K обратимо протекает реакция $Cd+2AgCl=CdCl_2+2Ag$. Рассчитать изменение энтропии реакции, если стандартная ЭДС элемента $E_0=0,6753B$, а стандартные энтальпии образования $CdCl_2$ и AgCl равны -389,7 и -126,9 кДж/моль соответственно.

Задача 70 ЭДС элемента, в котором обратимо протекает реакция

$$0.5Hg_2Cl_2 + Ag = AgCl + Hg$$

, равна 0,456 B при 298 K и 0,439 B при 293 K. Рассчитать ΔG , ΔH и ΔS реакции.

Задача 71 Вычислить тепловой эффект реакции $Zn + 2AgCl = ZnCl_2 + 2Ag$, протекающей в гальваническом элементе при 273 K, если ЭДС элемента E = 1,015B и температурный коэффициент ЭДС равен $-4,02 \cdot 10^{-4}$ B/K.

Задача 72 Рассчитать стандартный электродный потенциал пары Fe^{3+}/Fe по данным таблицы стандартных электродных потенциалов для пар Fe^{2+}/Fe и Fe^{3+}/Fe^{2+} .

Задача 73 Рассчитать константу равновесия реакции диспропорционирования

$$2Cu^+ = Cu^{2+} + Cu$$

npu 25° C.

Задача 74 Рассчитать константу равновесия реакции $ZnSO_4 + Cd = CdSO_4 + Zn$ при 25° C по данным о стандартных электродных потенциалах.

Задача 75 ЭДС элемента $Pt \mid H_2 \mid HCl \parallel AgCl \mid Ag npu 25°C$ равна 0,322 В. Чему равен pH раствора HCl.

Задача 76 Растворимость $Cu_3(PO_4)_2$ в воде при 25° C равна $1, 6 \cdot 10^{-8}$ моль/кг. Рассчитать ЭДС элемента

Задача 77 Раствор NaNO3 имеет ионную силу 0.30 моль. кг-1. Чему равна моляльность раствора Al2(SO4)3. имеющего такую же ионную силу.

Задача 78 Рассчитать моляльность раствора $Al(NO_3)_3$, имеющего ионную силу 0,30 моль/кг.

- **Задача 79** Рассчитать ионную силу раствора, содержащего 0.10 моль/кг KCl и 0.20 моль/кг $CuSO_4$.
- **Задача 80** Средний ионный коэффициент активности 0.1~M водного раствора H_2SO_4 при $25^{\circ}C$ равен 0.265. Рассчитать активность H_2SO_4 в растворе.
- **Задача 81** Средний ионный коэффициент активности 0,1 М водного раствора HCl при 25° С равен 0,796. Рассчитать активность HCl в этом растворе.
- **Задача 82** Водные растворы сахарозы и KNO_3 изотоничны при концентрациях 1,00 и 0,60 моль/л соответственно. Найти кажущуюся степень диссоциации KNO_3 в растворе.
- **Задача 83** Осмотическое давление крови составляет $0,811~M\Pi a$. Какова должна быть концентрация раствора NaCl, чтобы он был изотоничен с кровью. Принять степень диссоциации NaCl равной 0,950.
- **Задача 84** Водный раствор, содержащий 0,225 моль/кг NaOH, замерзает $npu-0,667^{\circ}C$. Определить кажущуюся степень диссоциации NaOH в этом растворе, если криоскопическая константа воды равна 1,86.
- Задача 85 Эквивалентная электропроводность раствора гидроксида этиламмония $C_2H_5NH_3OH$ при бесконечном разведении равна 232,6 См см²/моль. Рассчитать константу диссоциации гидроксида этиламмония, эквивалентную электропроводность раствора, степень диссоциации и концентрацию ионов гидроксила в растворе при разведении 16 л/моль. если удельная электропроводность раствора при данном разведении равна $1,312\cdot 10^{-3}$ См/см.
- **Задача 86** Константа диссоциации масляной кислоты C_3H_7COOH равна $1,74\cdot 10^{-5}$ моль/л. Эквивалентная электропроводность раствора при разведении 1024 л/моль равна 41,3 См см²/моль. Рассчитать степень диссоциации кислоты и концентрацию ионов водорода в этом растворе, а также эквивалентную электропроводность раствора при бесконечном разведении.
- **Задача 87** Эквивалентная электропроводность $1,59\cdot 10^{-4}$ моль/л раствора уксусной кислоты при 25° С равна 12,77 См см²/моль. Рассчитать константу диссоциации кислоты и pH раствора.
- **Задача 88** Константа диссоциации гидроксида аммония равна $1,79 \cdot 10^{-5}$ моль/л. Рассчитать концентрацию NH_4OH , при которой степень диссоциации равна 0,01. и эквивалентную электропроводность раствора при этой концентрации.
- Задача 89 Рассчитать удельную электропроводность $1,0\cdot 10^{-3}$ М водного раствора NaCl при $25^{\circ}C$, считая, что подвижности ионов при этой концентрации равны их предельным подвижностям. Через слой раствора длиной 1 см, заключенный между электродами площадью 1 см². пропускают ток силой 1 мА. Какое расстояние пройдут ионы Na^+ и Cl^- за 10 минут?
- **Задача 90** Удельная электропроводность водного раствора сильного электролита при 25° С равна 109.9 См см 2 моль $^{-1}$ при концентрации $6, 2\cdot 10^{-3}$ моль/л и 106, 1 См см 2 моль $^{-1}$ при концентрации $1, 5\cdot 10^{-2}$ моль/л. Какова удельная электропроводность раствора при бесконечном разбавлении?

Задача 91 Удельная электропроводность насыщенного раствора AgCl в воде при $25^{\circ}C$ равна $2,28\cdot 10^{-4}$ Cм м $^{-1}$. а удельная электропроводность воды $1,16\cdot 10^{-4}$ Cм м $^{-1}$. Рассчитать растворимость AgCl в воде при $25^{\circ}C$ в моль. π^{-1} .

Задача 92 Удельная электропроводность 4% водного раствора H_2SO_4 при $18^{\circ}C$ равна 0.168 См. см⁻¹, плотность раствора 1.026 г/см³. Рассчитать эквивалентную электропроводность раствора.

Задача 93 Удельная электропроводность бесконечно разбавленных растворов соляной кислоты, хлорида натрия и ацетата натрия при 25° С равна соответственно 425,0, 128,1 и 91,0 См M^2 . моль⁻¹. Какова удельная электропроводность бесконечно разбавленного раствора уксусной кислоты при 25° С?

Задача 94 Удельная электропроводность бесконечно разбавленных растворов KCl, KNO_3 и $AgNO_3$ при $25^{\circ}C$ равна соответственно 149.9, 145.0 и 133.4 См \mathfrak{m}^2 . моль $^{-1}$. Какова удельная электропроводность бесконечно разбавленного раствора AgCl при $25^{\circ}C$?

Задача 95 Рассчитать удельную электропроводность абсолютно чистой воды при 25° С. Ионное произведение воды при 25° С равно $1,00\cdot 10^{-14}$.

Часть II Лабораторные работы

Термодинамика

Лабораторные работы из учебного пособия:

Загурский И.Н., Климова Н.В. Методические указания для выполнения лабораторных работ по курсу "Физическая химия" Ч.1.-ОрелГТУ-1996.

5.1 Лабораторная работа 1

Определение теплоты гидратации сульфата меди

Тема: Цель работы: Определить теплоту растворения безводной соли и её кристаллогидрата. Вычислить теплоту растворения по закону Гесса.

Оборудование и реактивы: калориметр, магнитная мешалка, секундомер, 5г KCl, 2,5 г $CuSO_4$ (безводный) 2,5 $CuSO_4 \cdot 5H_2O$, стакан на 250 мл.

Все работы проводят с использованием прибора, являющегося основным прибором в термохимии и называемого калориметром. Он позволяет определять тепловые эффекты различных физико-химических величин.

Простейший калориметр изображен на рисунке. Химический стакан 3, в котором проводится растворение золи, помещают в толстостенный (батарейный) стакан 1. Это необходимо для того, чтобы теплота, выделяющаяся при поглощении, в процессе растворения не терялась в окружающую среду, а так же не поступала из нее.

Стакан 1 покрывают крышкой с двумя отверстиями: одно для термометра 2, другое для пробирки 5 с навеской растворяемой соли. Для удобства работы пробирка не имеет дна. Ее нижний конец закрывает резиновой пробкой 6 с монтированной в нее металлической палочкой. В нужный момент это обеспечивает быстрое высыпание соли для ее растворения. Калориметр устанавливают на магнитную мешалку 4.

Рис. 5.1: Калориметр с магнитной мешалкой

Порядок выполнения

- 1. Собрать прибор в соответствии с рисунком.
- 2. Определить постоянную калориметра K.

Постоянная калориметра K выражает то количество тепла, которое необходимо подвести к участвующей в тепловом обмене части калориметра, чтобы повысить его температуру на 1 градус. Для определения постоянной калориметра пользуются кристаллическим хлоридом калия (KCl). Необходимо взвесить на технических весах 2,5 г хлорида калия, предварительно растертого в ступке, и перенести его в пробирку (3) с пробкой.

Налить в стакан (4) 125 мл воды, температура которой примерно на 3 $^{o}\mathrm{C}$ ниже комнатной.

Включить мешалку и в течении 20 минут записывать показания термометра с точностью 0.05 град через каждую минуту. На 10-ой минуте, не изменяя температуру, выталкивают палочкой пробку из пробирки 3 с солью так, чтобы вся соль высыпалась в воду, и. начиная с 11-ой минуты, вновь каждую минуту делают 10 замеров температуры. Результаты измерений заносят в столбец 3 таблицы (20 строк).

3. Определить теплоту растворения безводного сульфата меди Q_1 .

Выполнить аналогично п.2 с навеской 2,5 г безводного сульфата меди ($CuSO_4$ (безводный)). Результаты измерений заносят в столбец 4 таблицы (20 строк).

4. Определяем теплоту растворения кристаллогидрата Q_2

Выполнить аналогично п.2 с навеской 2,5 г безводного сульфата меди $(CuSO_4 \cdot 5H_2O)$. Результаты измерений заносят в столбец 5 таблицы (20 строк).

Таблица 5.1: Экспериментальные данные

No	Время от	начала	Навеска <i>KCl</i> , °С	Навеска	Навеска $CuSO_4$ ·
	опыта, мин			$CuSO_4$ (безвод.),	$5H_2O$ (безвод.), ${}^{o}{ m C}$
				°C	·
1	2		3	4	5
1					
20					

Обработка экспериментальных данных

В ходе опыта происходит теплообмен с окружающей средой, т.к. температура воды отличается от комнатной температуры и имеет место выравнивание температур. Поэтому, определить точную величину изменения температуры (Δt) при растворении соли по данным, полученным в результате опыта, можно только графическим методом. График строят в координатах температура — время. После нанесения на график всех экспериментально полученных точек, большее число их соединяют прямыми, которые продолжают их до пересечения с перпендикуляром, восстановленным в 10-ю минуту. Отрезок, отсекаемый на перпендикуляре, соответствует изменению температуры (Δt).

Постоянную калориметра вычислить по уравнению:

$$K = \frac{mQ}{M\Delta t}$$

где m=2,5г - масса KCl; M - молярная масса KCl, (г/моль); Q=18,826 кДж/моль - молярная теплота растворения для <math>KCl;

Молярную теплоту растворения безводного сульфата меди (Q_1) и молярную теплоту растворения кристаллогидрата (Q_2) вычислить по уравнению:

$$Q_1 = \frac{K\Delta t_1 M_1}{m_1}$$

$$Q_2 = \frac{K\Delta t_2 M_2}{m_2}$$

где $m_1 = m_2 = 2,5$ г - масса навесок соли; M_1, M_2 - молярная масса соли, (г/моль); Вычислить теплоту гидратации (Q_3) при помощи закона Гесса.

$$CuSO_4 + 5H_2O = CuSO_4 \cdot 5H_2O + Q_3$$
$$CuSO_4 = CuSO_4(aq) + Q_1$$
$$CuSO_4 \cdot 5H_2O = CuSO_4(aq) + 5H_2O + Q_2$$

Контрольные вопросы

- 1. Что такое тепловой эффект химической реакции?
- 2. Дайте формулировку закона Гесса.
- 3. Что называется теплотой (энтропией) образования, теплотой сгорания? При каких условиях они считаются стандартными?

- 4. Как по теплоте образования и теплоте сгорания вычислить тепловой эффект реакции?
- 5. Что понимается под теплотой растворения, теплотой гидратации?
- 6. Из каких тепловых эффектов складывается теплота растворения твёрдого вещества?
- 7. Что учитывает постоянная калориметра и как её определить?
- 8. Как определить изменение температуры при растворении?

5.2 Лабораторная работа 2

Тема:Определение коэффициента распределения

Цель работы:Определить коэффициент распределения йода между водой и органическим растворителем – толуолом.

Оборудование и реактивы: аппарат для встряхивания, бюретка, 4 колбы, с притёртыми пробками на 200 мл, пипетка на 5 мл, мерный цилиндр на 50 мл, раствор йода в толуоле (концентрации: 5, 10, 20 г/л), раствор тиосульфата натрия (концентрация: 0,025 H).

Теория

Изучение распределения вещества между двумя несмешивающимися растворителями представляет большой интерес, так как может дать ценные сведения, необходимые для проведения экстрагирования, а так же указать на наличие диссоциации, ассоциации или других химических реакций растворенного вещества в растворе. Если в систему, состоящую из двух несмешивающихся жидкостей, ввести небольшое количество вещества, растворимого в этих жидкостях, то после установления равновесия, оно распределится между обоими жидкими слоями в определенном, постоянном при данной температуре соотношении.

Экстракцией называют извлечение из многокомпонентного раствора одного или нескольких компонентов с помощью растворителя, обладающего избирательной способностью растворять только подлежащий экстратированию компонент. При помощи экстракции происходит извлечение необходимых веществ: сахара из свёклы, растительного масла из семечек, в формации для алкалоидов и других физиологически активных веществ. На основе закона распределения можно рассчитать эффективность экстракции в зависимости от свойств растворителя и экстратирующего вещества. Экстракция может быть однократной, когда экстратент добавляется в один приём, и дробной – добавления экстратента производится порциями в несколько приёмов.

Порядок выполнения

- 1. В 4 Колбы на 200 мл с притёртыми пробками отмерить пипеткой по 5 мл раствора йода различной концентрации и по 50 мл дистиллированной воды. Полученные смеси энергично встряхивать в течении 30 минут.
- 2. Перелить содержимое колб в делительные воронки и поставить на 20 минут до расслоения жидкостей.
- 3. Отделить водный слой, отобрать пипеткой по $V_{\rm np}=20$ мл из каждой воронки и оттитровать йод 0,025 H раствором тиосульфата натрия ($C_{\rm T}=0,025$ моль/л). Раствор тиосульфата прибавляют до появления бледно-желтой окраски раствора. Затем добавляют несколько капель раствора крахмала и снова титруют раствором тиосульфата натрия до исчезновения синего окрашивания раствора. Светло-синяя окраска раствора, появляющаяся через некоторое время после титрования, не учитывается. Пипетку перед отбором пробы ополаскивают исследуемым раствором.

Обработка экспериментальных данных

1. Рассчитать равновесную концентрацию йода (Γ/π) в водном растворе по формуле:

$$C_{\scriptscriptstyle \rm B} = \frac{C_{\scriptscriptstyle \rm T} M_I V_{\scriptscriptstyle \rm T}}{V_{\scriptscriptstyle \rm Hp}}$$

Молярная масса йода равна: $M_I = 127 \Gamma / \text{моль}$.

2. Рассчитать равновесную концентрацию йода в толуоле. Она определяется из уравнения материального баланса для йода при экстракции.

$$m_0 = m_{\rm\scriptscriptstyle B} + m_{\rm\scriptscriptstyle ODF}$$

$$C_0 V_0 = C_{\text{\tiny B}} V_{\text{\tiny B}} + C_{\text{\tiny opr}} V_{\text{\tiny opr}}$$

$$C_{\text{\tiny opr}} = \frac{1}{V_{\text{\tiny opr}}} (C_0 V_0 - C_{\text{\tiny B}} V_{\text{\tiny B}})$$

При объеме водной фазы $V_{\rm \scriptscriptstyle B}=50$ мл, объеме органической фазы, раствора йода в толуоле, $(V_0=V_{\rm opr}=5$ мл) равновесная концентрация йода в толуоле равна:

$$C_{\text{odd}} = C_0 - 10C_{\text{B}}$$

3. Рассчитать значение константы распределения по формуле:

$$K = \frac{C_{\text{opr}}}{C_{\text{\tiny R}}} = \frac{C_0}{C_{\text{\tiny R}}} - 10$$

Все экспериментальные и расчетные данные сводим в таблицу 5.2.

Таблица 5.2: Экспериментальные и расчетные данные

No॒	Исходные кон-	Объём	пробы	Объем 0,025	Равновесная	Коэффициент
	центрации йода	для	титро-	$H Na_2S_2O_3$	концентрация	распределения,
	в толуоле, C_0 ,	вания,	V_{np} ,	пошедшего на	йода в воде, $C_{\text{в}}$,	K
	Γ/Π	МЛ		титрование, $V_{\scriptscriptstyle \mathrm{T}}$,	Γ/Π	
				МЛ		
1	5	20				
2	10	20				
3	20	20				

Контрольные вопросы

- 1. Что называется фазой, компонентом и степенью свободы?
- 2. В чем заключается физико-химический метод анализа?
- 3. На чем основан термический анализ?
- 4. Как изображается состав трехкомпонентной системы по методу Гиббса?
- 5. В чем заключается процесс экстрагирования, какова его теоретическая основа?
- 6. Что такое мольная доля?
- 7. Что такое химический потенциал?
- 8. Закон распределения.
- 9. Правило фаз Гиббса.

5.3 Лабораторная работа 3

Тема:Построение диаграмм состояния трехкомпонентной системы с ограниченной взаимной растворимостью.

Цель работы: Построить диаграмму состояния тройной системы $CH_3COOH - CH_3Cl - H_2O$.

Оборудование и реактивы: бюретка, 8 колб, с притёртыми пробками на 200 мл, пипетка на 5 мл, мерный цилиндр на 50 мл, раствор CH_3COOH , раствор CH_3Cl .

Теория

Физико-химический анализ устанавливает количественную зависимость между составом и каким-нибудь измеренным физическим свойством системы (температурой кипения, плавления, давления пара, электропроводностью и др.) Графическое изображение зависимости какого либо свойства от состава системы или другого фактора равновесии ее (например, давления) называется диаграммой состояния. Диаграммы состояния позволяют сделать выводы о взаимодействиях отдельных веществ в системе, образования новых химических соединений, твердых растворов, их составе и границе существования.

Для разбора диаграмм состояния широко применяется теория равновесия неоднородных (гетерогенных) систем, прежде всего – правило фаз Гиббса.

Ознакомившись с сущностью физико-химического анализа, его значением, с понятием фаза, компонент и степени свободы, обратите внимание на следующее: фаза не адекватна понятию агрегатного состояния и в однокомпонентных системах в равновесии могут находиться две фазы одного агрегатного состояния.

Число степеней свободы (C) определяется числом компонентов (K) и фаз (F), находящихся в равновесной системе (C = K + 2 - F).

Студентам необходимо приобрести навыки чтения диаграмм состав-свойство различных бинарных жидких смесей, диаграмм плавкости и простейших диаграмм трехкомпонентных систем. При выполнении лабораторной работы необходимо научиться определять в любой точке на диаграмме число компонентов и фаз, состав системы и весовые соотношения компонентов, уметь находить температуру начала и конца кристаллизации и плавления, кипения и конденсации. Надо знать, на основании каких экспериментальных данных строятся различные диаграммы.

В тех случаях, когда система состоит из трех компонентов, пользуются треугольником Гиббса. Принимают, что каждая вершина равностороннего треугольника отвечает 100% составу одного из компонентов, а каждая сторона — двойной системе из компонентов, указанных в вершинах, которые она соединяет.

Рис. 5.2: Треугольник Гиббса

В треугольнике проводят три высоты, делят каждую высоту на десять равных отрезков и через полученные деления проводят прямые, с помощью которых можно представить любой состав тройной системы.

Чтобы нанести точку, отвечающую составу трехкомпонентной системы, на двух высотах откладывают процентное содержание соот-ветствующих компонентов. Через полученные точки на высотах проводят прямые, параллельные сторонам, лежащим против угла, вершина которого отвечает содержанию чистого компонента. Точка пересечения прямых будет отвечать искомому составу.

Порядок выполнения

1. В 8 Колб с притертыми пробками наливают по 10 мл бинарных смесей взаимно растворимых друг в друге веществ $(CH_3COOH-CH_3Cl)$ в соотношении, указанном в таблице 5.6.

Таблица 5.3: Объемы компонентов бинарных смесей

№колбы	1	2	3	4	5	6	7	8
Объем CH_3COOH , мл	2	4	6	7	7,5	8	8,5	9
Объем CH_3Cl , мл	8	6	4	3	2,5	2	1,5	1
Объем H_2O , мл								

2. Растворы титруют водой до появления мути. В некоторых опытах для этого достаточно одной-двух капель воды. Результаты занося в таблицу 5.6.

Обработка экспериментальных данных

1. Для расчёта количеств веществ компонентов пользуются формулой:

$$n = \frac{V \cdot \rho}{M}$$

где n - количество вещества, моль;

V - объем вещества, мл;

 ρ - плотность (приведена в таблице 5.4);

M - Молярная масса, г/моль.

Рассчитайте молярные массы компонентов и занесите результат в таблицу 5.4.

Таблица 5.4: Данные для рассчета

Вещество	Плотность, г/мл	Молярная масса, г/моль
CH_3COOH	1,06	
CH_3Cl	1,5	
H_2O	1,0	

- 2. Рассчитать количество вещества компонентов системы, результат занести в таблицу 5.5.
- 3. Рассчитывают состав системы в мольных долях, отвечающий началу расслоения (появления мути). Мольной долей компонента (x) считают отношение числа молей данного компонента к сумме молей всех компонентов раствора. Например, мольную долю компонента A вычисляют по уравнению:

$$x = \frac{n_A}{n_A + n_B + n_C}$$

Мольные доли других компонентов вычисляют по подобным уравнениям. Результаты рассчетов занести в таблицу 5.5. Сумма мольных долей всех компонентов должна быть равна 1.

Таблица 5.5: Состав бинарных смесей, моль

№колбы	1	2	3	4	5	6	7	8
Количество вещества CH_3COOH , моль								
Количество вещества CH_3Cl , моль								
Количество вещества H_2O , моль								
Всего, моль								

4. Полученные данные наносят на треугольную диаграмму. Соединив точки, получают плавную кривую, по одну сторону которой находится гетерогенная область, по другую – гомогенная.

Таблица 5.6: Состав бинарных смесей, мольные %

№колбы	1	2	3	4	5	6	7	8
Мольная доля CH_3COOH , %								
Мольная доля CH_3Cl , %								
Мольная доля H_2O , %								
Bcero								

Контрольные вопросы

- 1. Что называется фазой, компонентом и степенью свободы?
- 2. В чем заключается физико-химический метод анализа?
- 3. На чем основан термический анализ?
- 4. Как изображается состав трехкомпонентной системы по методу Гиббса?
- 5. В чем заключается процесс экстрагирования, какова его теоретическая основа?
- 6. Что такое мольная доля?
- 7. Что такое химический потенциал?
- 8. Закон распределения.
- 9. Правило фаз Гиббса.

Часть III Вопросы для самоподготовки

Список рекомендуемой литературы

Основная литература

- 1. Зимон А.Д., Лещенко Н.Ф. Физическая химия. М.: Химия 2000-315с.
- 2. Жуховицкий А.А., Шварцман Л.А. Физическая химия. М.: Металлургия. 2001-688с.
- 3. Евстратова К.И., Курин А.А., Малахова Е.Е. Физическая и коллоидная химия. М.: Высшая школа, 1990-315с..
- 4. Лукьянов А.Б.Физическая и коллоидная химия.М: Химия,1988-285с.
- 5. Николаев Л.А. Физическая химия.М.: Высшая школа. 1975-295с.
- 6. Практикум по физической и коллоидной химии. Под ред. Евстратовой К.И. М.: Высшая школа,1990 - 254с.
- 7. Загурский И.Н. Физическая и коллоидная химия. Орел: Орел ГТУ.2005 156с.
- 8. СТРОМБЕРГ, Армин Генрихович Физическая химия : учебник для вузов / Армин Генрихович Стромберг ; Дмитрий Платонович Семченко . М. : Высш. шк. , 2001. 527 с.
- 9. БЕЛИК, Валентина Васильевна Физическая и коллоидная химия : учеб. пособие для ссузов / Валентина Васильевна Белик ; Карина Игоревна Киенская . М. : Академия (Academia) , 2005. 286, [1] с. (Среднее профессиональное образование)
- 10. Зимон А.Д., Лещенко Н.Ф. Коллоидная химия. М.: Атар, 2001.-317с.
- 11. http://www.tkptis.ru/serv/him/index.htm/ В. Липатников К. Казаков. Физическая и коллоидная химия
- 12. http://www.physchem.chimfak.rsu.ru/Source/PCC/Colloids_ 1.htm/ С. И. ЛЕВЧЕН-КОВ ФИЗИЧЕСКАЯ И КОЛЛОИДНАЯ ХИМИЯ Конспект лекций для студентов биофака ЮФУ (РГУ)
- 13. http://www.xumuk.ru/colloidchem/ В.А. Волков Коллоидная химия
- 14. Аблесимов Н. Е. Синопсис химии: Справочно-учебное пособие по общей химии Xa-баровск: Изд-во ДВГУПС, 2005. 84 с. http://www.neablesimov.narod.ru/pub04c.html/

Дополнительная литература

- 1. Киреев В.А. Краткий курс физической химии. М.: Химия 1970 638с.
- 2. Хмельницкий Р.А. Физическая и коллоидная химия. М.: Высшая школа. 1988 397с.
- 3. Физическая и коллоидная химия [Электронный ресурс] : электрон. учеб. для мед. и фарм. вузов / сост. Ю.Я. Харитонов ; сост. М.А. Хачатурян . Электрон. текст. дан. . М. : Русский врач, 2005. 1 электрон.опт. диск (CD-ROM) Электронная библиотека для высш. мед. и фарм. образ./ гл. ред. М.А. Пальцев.
- 4. ИППОЛИТОВ, Евгений Георгиевич Физическая химия : учеб. для вузов / Евгений Георгиевич Ипполитов ; Арсений Валерьевич Артемов ; Валерий Владимирович Батраков . М. : Академия (Academia) , 2005. 447,[1] с.
- 5. ЗАГУРСКИЙ, Иван Ничеславович Физическая и коллоидная химия : учеб. пособие / Иван Ничеславович Загурский . Орел : Изд-во ОрелГТУ , 2005. 155 с. : ил.
- 6. Физическая химия : Строение вещества : метод. указания к выполнению домаш. задания для спец. 090300, 070800 / Лев Алексеевич Андреев ; Галина Леонидовна Новикова ; Елена Александровна Малютина ; Александр Валентинович Новиков . М. : МИСИС , 2002. 20 с.
- 7. ЗАГУРСКИЙ, Иван Ничеславович Физическая химия. Химическая кинетика и катализ: учеб. пособие / Иван Ничеславович Загурский; Александр Владимирович Хорошилов. Орел: Изд-во ОрелГТУ, 2002. 63 с.
- 8. Загурский И.Н., Климова Н.В. Методические указания для выполнения лабораторных работ по курсу 'Физическая химия' Ч.1.-ОрелГТУ-1996.
- 9. Ефремов И.Ф. Периодические коллоидные структуры. Л.: Химия, 1971. 192 с.
- 10. Петрянов-Соколов И.В. Коллоидная химия и научно-технический прогресс. М.: Наука, 1988.-180 с.
- 11. Ребиндер П.А. Избранные труды. Т. 1,2. М.: Наука, 1978-79.
- 12. Фридрихсберг Д.А. Курс коллоидной химии. Л.: Химия, 1984. 352 с.
- 13. Фролов Ю.Г. Курс коллоидной химии: Поверхностные явления и дисперсные системы. М.: Альянс, 2004.-463 с.

Вопросы к модульному контролю

Вопросы подобраны в соответствии с программой курсов "Физическая химия "Физическая и коллоидная химия "Коллоидная химия". Вопросы разбиты на группы, в соответствии с модулями, входящими в курсы.

6.1 Термодинамика

- 1. Термодинамическая система. Типы термодинамических систем (открытая, закрытая и изолированная), (гомогенная, гетерогенная). Дайте определения. Приведите примеры.
- 2. Приведите формулировку нулевого закона термодинамики.
- 3. Первое начало термодинамики. Дать определение. Привести уравнение. Первое начало термодинамики для изобарного, изохорного и изотермического процессов. Назовите постоянные параметры в каждом процессе: изохорный процесс, изобарный процесс, изотермический процесс.
- 4. Теплоемкость. Определение теплоемкости в классической термодинамике. В каких единицах измеряется. Виды теплоемкостей: удельная, молярная, изобарная, изохорная.
- 5. Тепловой эффект химической реакции. Экзо- и эндотермические реакции. Укажите знаки теплового эффекта Q и энтальпии $\Delta_r H$ для экзотермической и эндотермической реакций. Приведите примеры экзотермических и эндотермических реакций.
- 6. Зависимость теплового эффекта химической реакции от температуры. Уравнение Кирхгофа в интегральной и дифференциальной формах для изобарного процесса.
- 7. Зависимость теплового эффекта химической реакции от температуры. Уравнение Кирхгофа в интегральной и дифференциальной формах для изохорного процесса.
- 8. Что такое внутренняя энергия? Внутренняя энергия как термодинамическая функция. Изохорная теплоемкость. Привести уравнение.
- 9. Энтальпия как термодинамическая функция. В каких единицах измеряется энтальпия. Приведите определение изобарной теплоемкости. Привести уравнение.
- 10. Приведите определение стандартной энтальпии образования химических веществ. Чему равна стандартная энтальпия образования простых веществ? Назовите стандартные условия реакции (температура, давление).

- 11. Приведите определение стандартной энтальпии сгорания химических веществ. Чему равна стандартная энтальпия сгорания высших оксидов? Назовите стандартные условия реакции (температура, давление).
- 12. Экспериментальное определение теплового эффекта реакции (на примере реакции нейтрализации). Устройство и принцип работы калориметра. Что учитывает постоянная калориметра и как её определить?
- 13. Как по стандартной энтальпии образования исходных и конечных реагентов вычислить стандартную энтальпию химической реакции (описать метод рассчета)?
- 14. Как по стандартной энтальпии сгорания исходных и конечных реагентов вычислить стандартную энтальпию химической реакции (описать метод рассчета)?
- 15. Теплота растворения (определение). Из каких тепловых эффектов складывается теплота растворения твёрдого вещества?
- 16. Теплота гидратации (определение). Привести пример реакции гидратации.
- 17. Закон Гесса. Следствия из закона Гесса. Способы расчета энтальпий реакций с использованием закона Гесса (на конкретных примерах).
- 18. Уравнения состояния системы. Привести примеры уравнений состояния для идеального и реального газов.
- 19. Термодинамические переменные. Экстенсивные и интенсивные переменные. Температура, давление, объем.
- 20. Температура. Единицы измерения температуры. Измерение температуры с помощью термометра. Устройство и принцип работы термометра.
- 21. Запись термохимических уравнений.
- 22. Второе начало термодинамики. Теорема Карно. Привести уравнение.
- 23. Энтропия как термодинамическая функция. Статистическая природа второго начала термодинамики. Изменение энтропии в различных фазовых превращениях (плавление, кристаллизация, испарение, конденсация).
- 24. Способ вычисления стандартной энтропии химической реакции по энтропиям образования исходных и конечных реагентов. Уточненный расчет энтропии для заданной температуры с использованием закона Кирхгофа.
- 25. Энергия Гельмгольца как термодинамическая функция. Критерий протекания самопроизвольных процессов в изохорно-изотермических условиях.
- 26. Энергия Гиббса как термодинамическая функция. Критерий протекания самопроизвольных процессов в изобарно-изотермических условиях.
- 27. Химический потенциал как термодинамическая функция. Выражение химического потенциала через энергию Гиббса, энтальпию, энергию Гельмгольца и энтропию.
- 28. Изотерма химической реакции. Записать уравнение.
- 29. Изобара химической реакции. Изохора химической реакции. Записать уравнения.
- 30. Запись выражений константы равновесия химических реакций.

- 31. Взаимосвязь между константами равновесия K_x , K_C , K_P .
- 32. Признаки и условия химического равновесия. Методы расчета равновесного состава для газовых систем.
- 33. Сдвиг химического равновесия. Принцип Ле-Шателье. Как влияет на смещение равновесия изменение давления, температуры, концентраций реагирующих веществ.
- 34. Условия фазового равновесия. Правило фаз Гиббса. Степень свободы, компонент, фаза.
- 35. Фазовое равновесие. Уравнение Клаузиуса-Клапейрона. Фазовые переходы. Виды фазовых переходов.
- 36. Дать определение гомогенной и гетерогенной системам. Экстракционное равновесие. Закон распределения Нернста-Шилова. Дать формулировку, записать уравнение. Что такое коэффициент распределения и от чего он зависит? Что такое коэффициент распределения и от чего он зависит?

6.2 Химическая кинетика

- 1. Основные понятия и постулаты формальной кинетики. Прямая и обратная кинетические задачи. Параметры кинетических уравнений. Константа скорости реакции.
- 2. Дать определение скорости химических реакций в гомогенных системах. В каких единицах измеряется скорость химической реакции? Записать формулу для расчета скорости с пояснениями. От каких факторов зависит скорость гомогенных процессов?
- 3. Скорость в гетерогенной реакции. Привести уравнение скорости гетерогенных химических реакций. В каких единицах измеряется скорость гетерогенной химической реакции? От каких факторов зависит скорость гетерогенных процессов?
- 4. Влияние концентрации на скорость реакции. Закон действующих масс. Запись уравнения закона действующих масс для прямой и обратной реакций (через парциальные давления реагентов и молярные концентрации). Уравнение закона действующих масс для обратимой реакции.
- 5. Что такое порядок и молекулярность реакции? Причины несовпадения порядка и молекулярности реакций. Время полупревращения.
- 6. Способы экспериментального определения порядка реакции (интегральные методы).
- 7. Способы экспериментального определения порядка реакции (дифференциальный метод).
- 8. Реакции нулевого порядка. Записать выражение закона действующих масс для реакции 0-го порядка.
- 9. Реакции первого порядка. Записать выражение закона действующих масс для реакции 1-го порядка.
- 10. Реакции второго порядка. Записать выражение закона действующих масс для реакции 2-го порядка.

- 11. Реакции третьего порядка. Записать выражение закона действующих масс для реакции 3-го порядка.
- 12. Дать определение обратимой реакции. Почему обратимые реакции носят динамический характер? Запишите соотношение, связывающее константу равновесия обратимой реакции и кинетические константы прямой и обратной реакций.
- 13. Дать определение энергии активации. Что такое активированный комплекс? Записать уравнение, связывающее энергии активации прямой и обратной реакций.
- 14. Уравнение Аррениуса. Параметры уравнения Аррениуса (энергия активации, стерический множитель). Способы определения опытной энергии активации.
- 15. Правило Вант-Гоффа. Что такое температурный коэффициент реакции?
- 16. Влияние температуры на скорость химической реакции. Привести энергетическую диаграмму для экзотермической реакции. Привести энергетическую диаграмму для эндотермической реакции.
- 17. Основные положения теории активированного комплекса.
- 18. Основные положения теории активных соударений.
- 19. Кинетика гетерогенных процессов. Теории гетерогенного катализа.
- 20. Катализ. Мультиплетная теория. Теория активных ансамблей. Электронная теория.
- 21. Что называется элементарной стадией химической реакции? По какому признаку классифицируют элементарные реакции?
- 22. Классификация сложных реакций. Последовательные реакции. Каковы особенности кинетики последовательных реакций? Что такое лимитирующая стадия?
- 23. Классификация сложных реакций. Параллельные реакции. Каковы особенности кинетики параллельных реакций?
- 24. Скорости реакций в открытых системах. Реактор идеального смешения и реактор идеального вытеснения. Уравнение для стационарной скорости реакции в реакторах идеального смешения и идеального вытеснения.
- 25. Гетерогенные реакции. Диффузия. Условия протекания реакции в диффузионном, кинетическом и переходном режимах.
- 26. Цепные реакции. Механизм цепных реакций. Какие этапы характерны для цепных реакций?
- 27. Фотохимические реакции. Основные закономерности протекания фотохимических реакций. Что такое квантовый выход реакции?
- 28. Что такое катализатор. Виды катализа. Привести общие закономерности катализа.
- 29. Гомогенный катализ. Привести схему гомогенного катализа.
- 30. Гетерогенный катализ? Основные стадии гетерогенного катализа.

6.3 Растворы. Электрохимия

- 1. Равновесие жидкость пар в двухкомпонентных системах. Фазовые диаграммы двукомпонентных систем. Азеотропные смеси. Законы Коновалова.
- 2. Идеальные растворы. Закон Рауля. Зависимость общего и парциального давления от состава раствора. Закон Дальтона.
- 3. Дать определение идеального раствора. Привести выражение химического потенциала для идеального раствора. Повышение температуры кипения и понижение температуры замерзания растворов.
- 4. Реальные растворы. Закон Генри. Активность. Привести выражение химического потенциала для реального раствора. Уравнения Гиббса-Дюгема-Маргулеса. Обобщенное уравнение Гиббса-Дюгема.
- 5. Что такое электролитическая диссоциация? Виды диссоциации. Степень диссоциации, константа диссоциации и их связь. Сильные и слабые электролиты.
- 6. Сильные электролиты. Теория сильных электролитов Дебая-Хюккеля. Основные положения.
- 7. Сильные электролиты. Электрофоретический эффект торможения. Релаксационный эффект. Дать понятие, привести схемы.
- 8. Тормозящие эффекты в сильных электролитах. Что такое ионная сила электролита, ионнная атмосфера (привести рисунок). Что такое активность, подвижность ионов. Средний коэффициент активности электролита.
- 9. Подвижность ионов. Закон Кольрауша. Числа переноса ионов.
- 10. В чем причины высокой подвижности ионов H_3O^+ и OH^- ? Объясните механизм перемещения этих ионов в растворе электролита.
- 11. Что такое изотонический коэффициент? Его влияние на законы идеальных растворов.
- 12. Удельная электропроводность. Определение. В каких единицах измеряется? Зависимость удельной электропроводности от концентрации для сильных и слабых электролитов (привести схемы).
- 13. Эквивалентная электропроводность и ее зависимость от концентрации. Определение. В каких единицах измеряется? Что такое разведение электролита, предельная эквивалентная электропроводность?
- 14. Зависимость электропроводности от температуры.
- 15. Возникновение двойного электрического слоя (ДЭС) на границе металл-раствор (когда $\mu_{Me} < \mu_s$ и $\mu_{Me} < \mu_s$). Образование двойного электрического слоя (ДЭС) по Гельмгольцу (привести схему). Образование ДЭС по Штерну (привести схему).
- 16. Гальванический элемент. Устройство и схема гальванического элемента. Токообразующая реакция.
- 17. Термодинамические характеристики гальванического элемента. Температурный коэффициент ЭДС.

- 18. Уравнение Нернста для медно-цинкового гальванического элемента, для водородного электрода, для хлор-серебрянного электрода. Привести реакции.
- 19. Классификации электрокинетических явлений. Электроосмос. Потенциал оседания. Потенциал течения.
- 20. Электрофорез. Эффекты, осложняющие электрофорез.
- 21. Электролиз. Законы Фарадея. Применение электролиза.
- 22. Электролиз. Поляризация. Причины поляризации. Кинетика электрохимических процессов.
- 23. Электроды. Классификация электродов.
- 24. Электродные процессы в электролитах. Электродный потенциал. Возникновение электродного потенциала на границе раздела фаз. Механизм возникновения электродного потенциала.
- 25. Закон Оствальда. Вывод уравнения для одноосновных кислот. Записать уравнения закона Оствальда для данного электролита через степень диссоциации и через эквивалентную электропроводность.
- 26. Закон Оствальда. Вывод уравнения для двухосновных кислот. Записать уравнения закона Оствальда для данного электролита через степень диссоциации и через эквивалентную электропроводность.

6.4 Адсорбция. Поверхностные явления

- 1. Избирательная адсорбция. Лиотропные ряды.
- 2. Избирательная адсорбция. Правило Панета-Фаянса.
- 3. Что такое ионообменная адсорбция? Иониты и их виды.
- 4. Адсорбция электролитов. Механизмы образования двойного электрического слоя (ДЭС). Строение ДЭС. Влияние многозарядных ионов на строение ДЭС. Что такое сверхэквивалентная адсорбция?
- 5. Полимолекулярная адсорбция. Теория БЭТ. ТеорияПоляни.
- 6. Мономолекулярная адсорбция. Изотерма адсорбции. Изотерма Лэнгмюра (график). Уравнение Генри (график). Дать объяснения.
- 7. Уравнение Гиббса. Дать анализ уравнения.
- 8. ПАВ и ПИВ. Их влияние на адсорбцию.
- 9. Поверхностное натяжение. Дать определение. Полярность, дать определение. Правило Ребиндера. Зависимость поверхностного натяжения от полярности.

6.5 Дисперсные системы. Коллоидные растворы

- 1. Дисперсные системы. Основные особенности. Классификация дисперсных систем. По агрегатному состоянию и по размеру частиц.
- 2. Получение дисперсных систем методом конденсации. Привести уравнение радиуса зародыша новой фазы. Привести условия получения.
- 3. Физическая конденсация. Основные методы. Дать описание.
- 4. Агрегативная устойчивость дисперсных систем. Кинетические факторы устойчивости. Что такое седиментационная устойчивость коллоидных систем? Каковы основные условия этой устойчивости? Термодинамические факторы устойчивости.
- 5. Теория устойчивости дисперсных систем. Потенциальная кривая зависимости сил взаимодействия между частицами. Природа сил отталкивания и притяжения.
- 6. Получение коллоидных растворов. Основные условия их получения.
- 7. Получение коллоидных растворов методом конденсации. Условия образования зародышей новой фазы, что такое степень пересыщения?
- 8. Химическая конденсация, реакция окисления Привести реакцию и схему мицеллы.
- 9. Химическая конденсация, реакция гидролиза, привести реакцию и схему мицеллы.
- 10. Химическая конденсация, реакция двойного обмена. Привести реакцию и схему мицеллы.
- 11. Получение коллоидных растворов методом диспергирования, теория Ребиндера. Эффект Ребиндера и его механизм.
- 12. Физико-химическое диспергирование. Метод адсорбционной пептизации, привести пример и схему мицеллы.
- 13. Физико-химическая пептизация. Метод промывания осадка. Привести пример реакции и схему мицеллы. Дать объяснение.
- 14. Правило осадков Оствальда. Зависимость золя пептизированного осадка от концентрации электролита. Привести рисунок. Дать объяснение.
- 15. Строение коллоидных частиц. Что такое мицелла (пример), интермицелярная жидкость. Что такое противоионы? Свободные и связанные противоионы (привести пример). Что такое адсорбционный и диффузионный слои, гранула (привести примеры).
- 16. Строение коллоидных частиц. Образование двойного электрического слоя (ДЭС) по Гельмгольцу (привести схему). Образование ДЭС по Штерну (привести схему).
- 17. ДЭС. Дать понятие, привести схему. ζ -потенциал, дать объяснение.
- 18. Влияние одно-, двух-, трех-, четырехзарядных электролитов на строение ДЭС. Дать объяснение.
- 19. Механизмы коагуляции золей: концентрационный и адсорбционный.

- 20. Теория ДЛФО. Показать поведение коллоидных частиц в случае отсутствия коагуляции и когда наступает коагуляция. Дать объяснение (рисунок). Что такое потенциальный барьер коагуляции? Показать поведение коллоидных систем в случае образования структурированных систем (рисунок).
- 21. Коагуляция. Коагуляция золей при действии электролита. Правило Шульце-Гарди. Что такое порог коагуляции? Коагулирующая способность. Влияние размера иона коагулятора на коагуляцию.
- 22. Влияние заряда иона коагулятора на коагуляцию индеферентного электролита. Неправильные ряды. (рисунок).
- 23. Скорость коагуляции. Кинетика быстрой коагуляции Смолуховского (схема).
- 24. Коагуляция золей смесями электролитов. Что такое аддитивность, антогонизм и синергизм электролитов. Их механизм. Привыкание золей. Положительное и отрицательное привыкание золей и их механизм (рисунок).
- 25. Защита коллоидных растворов от коагуляции. Механизм защитного действия. Солюбилизация.
- 26. Электрокинетические явления. Электрофорез. Электроосмос. Потенциал седиментации. Потенциал течения.

Вопросы к экзамену

Вопросы к экзамену разбиты на группы, в соответствии с изучаемыми модулями. Отдельной группой выделены вопросы по курсу "Коллоидная химия".

7.1 Вопросы по физической химии

7.1.1 Термодинамика. Химическое равновесие

- 1. Основные понятия химической термодинамики: система, фаза, компонент. Виды термодинамических систем и процессов.
- 2. Тепловой эффект химической реакции. Экзо- и эндотермические реакции. Стандартная теплота образования? Стандартная теплота сгорания? Закон Гесса. Следствия закона Гесса. Написать выражения.
- 3. Нулевой закон термодинамики. Первый закон термодинамики. Его формулировка и следствия.
- 4. Первое начало термодинамики для изобарного, изохорного и изотермического процессов. Привести уравнения. Внутренняя энергия как термодинамическая функция.
- 5. Энтальпия как термодинамическая функция. Единицы измерения. Энтальпии образования химических соединений.
- 6. Теплоемкость. Определение теплоемкости в классической термодинамике. Единицы измеряения. Зависимость энтальпий химических реакций от температуры. Уравнение Кирхгофа (в интегральной и дифференциальной формах) для изобарного и изохорного процессов.
- 7. Теплоты реакций Q_V и Q_p . Экзотермические и эндотермические реакции. Стандартные энтальпии химических реакций.
- 8. Формулировка закона Гесса. Первое, второе следствия закона Гесса.
- 9. Энергия Гиббса как критерий самопроизвольного протекания процесса. Стандартная энергия Гиббса химической реакции. Единицы измерения..
- 10. Энергия Гельмгольца как термодинамическая функция. Критерий протекания самопроизвольных процессов в изохорно-изотермических условиях.

- 11. Второй закон термодинамики. Энтропия, как функция состояния. Изменение энтропии при необратимых процессах. Статистическая природа второго начала термодинамики. Термодинамическая вероятность.
- 12. Объединенное уравнение 1-го и 2-го загонов термодинамики. Уравнение Гиббса-Дюгема. Учет химических реакций.
- 13. Уравнения Гиббса-Гельмгольца.
- 14. Метод термодинамических потенциалов. Уравнения Максвелла.
- 15. Третий закон термодинамики. Расчет энтропии.
- 16. Химический потенциал. Его различные определения. Химический потенциал идеального газа. Выражение химического потенциала через энергию Гиббса, энтальпию, энергию Гельмгольца и энтропию.
- 17. Химические равновесия в закрытых системах. Условие химического равновесия. Изотерма химической реакции. Различные формы записи констант равновесия и связы между ними.
- 18. Фазовое равновесие. Степень свободы, компонент, фаза. Правило фаз Гиббса. Условия фазового равновесия.
- 19. Фазовые равновесия в однокомпонентных системах. Уравнение Клапейрона Клаузиуса. Его применение к процессам плавления, сублимации и испарения в однокомпонентных системах (на примере H_2O). Правило фаз Гиббса.
- 20. Закон распределения. Дать формулировку, записать уравнение. Что такое коэффициент распределения и от чего он зависит?
- 21. Равновесие жидкость пар в двухкомпонентных системах. Фазовые диаграммы двукомпонентных систем. Азеотропные смеси. Законы Коновалова.

7.1.2 Адсорбция

- 1. Адсорбция. Единицы измерения. Физическая и химическая адсорбция.
- 2. Избирательная адсорбция. Лиотропные ряды. Правило Панета-Фаянса.
- 3. Что такое ионообменная адсорбция? Иониты и их виды.
- 4. Адсорбция электролитов. Механизмы образования двойного электрического слоя (ДЭС). Строение ДЭС. Влияние многозарядных ионов на строение ДЭС. Что такое сверхэквивалентная адсорбция?
- 5. Полимолекулярная адсорбция. Теория БЭТ. Теория Поляни.
- 6. Мономолекулярная адсорбция. Изотерма адсорбции. Изотерма Лэнгмюра (график). Уравнение Генри (график). Дать объяснения.
- 7. Поверхностная активность. Вещества поверхностно-активные (ПАВ) и инактивные (ПИАВ) по отношению к воде и другим растворителям.
- 8. Дать анализ уравнения Гиббса. ПАВ и ПИВ. Их влияние на адсорбцию. Поверхностное натяжение. Полярность. Правило Ребиндера.
- 9. Поверхностная активность. Правило Дюкло-Траубе.

7.1.3 Растворы. Дисперсные системы

- 1. Идеальные растворы. Закон Рауля и закон Генри.
- 2. Основные особенности и классификация дисперсных систем (по агрегатному состоянию и по размеру частиц). Теория устойчивости дисперсных систем. Потенциальная кривая зависимости сил взаимодействия между частицами. Природа сил отталкивания и притяжения.
- 3. Классификация дисперсных систем. Лиофильные и лиофобные дисперсные системы.
- 4. Получение дисперсных систем методом конденсации. Привести условия получения. Физическая конденсация. Основные методы. Условия образования зародышей новой фазы, что такое степень пересыщения? Дать описание.
- 5. Химическая конденсация, реакция окисления, гидролиза, двойного обмена. Привести реакции и схемы мицелл.
- 6. Получение коллоидных растворов методом диспергирования, теория Ребиндера. Эффект Ребиндера и его механизм. Физико-химическое диспергирование. Метод адсорбционной пептизации, привести пример и схему мицеллы.
- 7. Физико-химическая пептизация. Метод промывания осадка. Привести пример реакции и схему мицеллы. Дать объяснение. Правило осадков Оствальда. Зависимость золя пептизированного осадка от концентрации электролита. Привести рисунок. Дать объяснение.
- 8. Строение коллоидных частиц. Что такое мицелла (пример), интермицелярная жидкость. Что такое противоионы? Свободные и связанные противоионы (привести пример). Что такое адсорбционный и диффузионный слои, гранула (привести примеры).
- 9. Агрегативная устойчивость дисперсных систем. Кинетические факторы устойчивости. Что такое седиментационная устойчивость коллоидных систем? Каковы основные условия этой устойчивости? Термодинамические факторы устойчивости.
- 10. Строение коллоидных частиц. Образование двойного электрического слоя (ДЭС) по Гельмгольцу (привести схему). Образование ДЭС по Штерну (привести схему). Влияние одно-, двух-, трех-, четырехзарядных электролитов на строение ДЭС. Дать объяснение. Электрокинетические явления. Электрофорез. Электроосмос. Потенциал седиментации. Потенциал течения.
- 11. Теория ДЛФО. Показать поведение коллоидных частиц в случае отсутствия коагуляции и когда наступает коагуляция. Дать объяснение (рисунок). Что такое потенциальный барьер коагуляции? Показать поведение коллоидных систем в случае образования структурированных систем (рисунок).
- 12. Механизмы коагуляции золей: концентрационный и адсорбционный. Коагуляция. Коагуляция золей при действии электролита. Правило Шульце-Гарди. Что такое порог коагуляции? Коагулирующая способность. Влияние размера иона коагулятора на коагуляцию.
- 13. Влияние заряда иона коагулятора на коагуляцию индеферентного электролита. Скорость коагуляции. Кинетика быстрой коагуляции Смолуховского (схема).

- 14. Коагуляция золей смесями электролитов. Что такое аддитивность, антогонизм и синергизм электролитов. Их механизм. Привыкание золей. Положительное и отрицательное привыкание золей и их механизм (рисунок). Защита коллоидных растворов от коагуляции. Механизм защитного действия. Солюбилизация.
- 15. Классификации электрокинетических явлений. Электроосмос. Потенциал оседания. Потенциал течения.
- 16. Электрофорез. Эффекты, осложняющие электрофорез.
- 17. Понятия седиментационной и агрегативной устойчивости лиофобных дисперсий, факторы их определяющие.
- 18. Коагуляция. Причины, разрушения дисперсных систем. Порог коагуляции. Правило Шульце-Гарди.

7.1.4 Электрохимия. Растворы элекролитов

- 1. Что такое электролитическая диссоциация? Степень диссоциации, константа диссоциации и их связь. Что такое изотонический коэффициент? Его влияние на законы идеальных растворов.
- 2. Сильные электролиты. Что такое ионная сила электролита, ионнная атмосфера (привести рисунок). Что такое активность, подвижность ионов. Коэффициент активности. Электрофоретический эффект торможения. Релаксационный эффект.
- 3. Эквивалентная электропроводность. Дать понятие. В каких единицах измеряется? Что такое разведение электролита, предельная эквивалентная электропроводность?
- 4. Удельная электропроводность. В каких единицах измеряется? Зависимость удельной электропроводности для сильных и слабых электролитов (привести схемы).
- 5. Сильные и слабые электролиты. Степень диссоциации. Константа диссоциации.
- 6. Электролиз. Законы Фарадея.
- 7. Уравнение Нернста для медно-цинкового гальванического элемента и для водородного электрода. Привести реакции.
- 8. Электродный потенциал. Механизм возникновения электродного потенциала. Возникновение двойного электрического слоя (ДЭС) на границе металл-раствор.

7.1.5 Химическая кинетика

- 1. Скорость химической реакции. Константа скорости. Физический смысл константы скорости реакции. Закон действующих масс. Влияние концентраций реагентов на скорость химической реакции.
- 2. Влияние температуры на скорость химической реакции. Уравнение Аррениуса. Энергия активации. Активированный комплекс. Энергетическая диаграмма для экзотермических и эндотермических реакций.
- 3. Катализ. Механизмы реакций с участием катализатора.

- 4. Кинетика гетерогенных химических реакций. Основные стадии. Привести уравнение закона действующих масс для гетерогенной химической реакции.
- 5. Катализатор. Механизмх действия катализатора. Привести энергетическую диаграмму для одностадийного катализа.
- 6. Гомогенный катализ. Основные положения. Привести схему. Чему равна скорость гомогенного катализа?
- 7. Гетерогенный катализ. Основные стадии гетерогенного катализа. Каковы специфические особенности гетерогенного катализа? Как можно увеличить скорость гетерогенного катализа?

7.2 Вопросы по коллоидной химии

- 1. Классификация дисперсных систем. Лиофильные и лиофобные дисперсные системы.
- 2. Методы получения и очистки дисперсных систем.
- 3. Коллоидная химия и экологические проблемы гидросферы.
- 4. Коллоидная химия и экологические проблемы биосферы.
- 5. Коллоидная химия и экологические проблемы атмосферы.
- 6. Коллоидная химия и экологические проблемы литосферы.
- 7. Термодинамические характеристики поверхности. Температурная зависимость поверхностного натяжения.
- 8. Поверхностное натяжение. Правило Антонова.
- 9. Смачивание. Закон Юнга. Краевой угол; термодинамические условия смачивания и растекания. Влияние ПАВ на краевые углы.
- 10. Адгезия и когезия.
- 11. Капиллярное давление. Закон Лапласа и его следствия.
- 12. Влияние кривизны поверхности (размера частиц) на давление насыщенного пара и растворимость вещества. Изотермическая перегонка и капиллярная конденсация.
- 13. Методы измерения поверхностного натяжения и свободной поверхностной энергии твердых тел.
- 14. Адсорбция. Единицы измерения. Физическая и химическая адсорбция. Конкурентная адсорбция компонентов раствора.
- 15. Связь между адсорбцией и поверхностным натяжением.
- 16. Основы термодинамики адсорбции на поверхности раздела жидкость/газ. Уравнение Гиббса.
- 17. Адсорбция растворимых ПАВ на поверхности раздела раствор ПАВ/воздух. Связь уравнений Гиббса, Ленгмюра и Шишковского.
- 18. Причины образования двойного электрического слоя (ДЭС). Современные представления о строении ДЭС.
- 19. Плотная и диффузная части ДЭС. Изменение потенциала в двойном электрическом слое для сильно и слабо заряженных поверхностей.
- 20. Влияние электролитов на строение ДЭС. Ионный обмен в дисперсных системах.
- 21. Строение адсорбционных слоев поверхностно-активных веществ.
- 22. Поверхностная активность. Вещества поверхностно-активные (ПАВ) и инактивные (ПИАВ) по отношению к воде и другим растворителям.
- 23. Поверхностная активность. Правило Дюкло-Траубе.

- 24. Классификации электрокинетических явлений. Электроосмос. Потенциал оседания. Потенциал течения.
- 25. Электрокинетический (ζ) потенциал и вариации его изменения при введении в раствор электролитов.
- 26. Электрофорез. Эффекты, осложняющие электрофорез.
- 27. Понятия седиментационной и агрегативной устойчивости лиофобных дисперсий, факторы их определяющие.
- 28. Коагуляция. Причины, разрушения дисперсных систем.
- 29. Коагуляция лиофобных золей электролитами. Порог коагуляции. Правило Шульце-Гарди.
- 30. Изменение электрокинетического потенциала частиц при коагуляции индифферентными и неиндифферентными электролитами.
- 31. Основные идеи теории коагуляции гидрофобных золей электролитами (теория ДЛ- Φ O).
- 32. Теория кинетики быстрой коагуляции Смолуховского.
- 33. Самопроизвольное диспергирование. Критерий Ребиндера и Щукина.
- 34. Порядок работы с колориметром при определении оптической плотности коллоидных растворов.
- 35. Мицеллообразование в водных средах. Термодинамика мицеллообразования.
- 36. Пены. Получение и строение. Устойчивость пен. Основные применения.
- 37. Порошки. Получение и строение. Основные применения.
- 38. Эмульсии. Классификация эмульсий. Методы определения типа эмульсий. Устойчивость и обращение фаз в эмульсиях.
- 39. Стабилизация эмульсий и обращение фаз. Принцип подбора эмульгаторов.
- 40. Седиментационная и агрегативная устойчивость дисперсных систем. Факторы агрегативной устойчивости дисперсных систем.
- 41. Структурно-механический барьер по Ребиндеру как фактор устойчивости дисперсных систем.

Глава 8

Приложения

Электрохимия

Таблица 8.1: Таблица Предельные подвижности u_i^0 некоторых ионов в водном растворе при $25^o\mathrm{C}$ $\mathrm{[Om^{-1}cm^2/r\text{-}skb]}$

Катионы	u_i^0	Анионы	u_i^0
H^+	349,8	OH^-	198,3
Li^+	36,68	F^-	55,4
Na^+	50,10	Cl^-	76,35
K^+	73,50	Br^-	78,14
Rb^+	77,81	I^-	78,84
Ag^+	61,90	ClO_3^-	64,6
NH_4^+	73,55	ClO_4^-	67,36
$N(CH3)_4^+$	44,92	BrO_3^-	55,74
$1/2Mg^{2+}$	53,05	CN^-	78
$1/2Ca^{2+}$	59,50	NO_3^-	71,46
$1/2Ba^{2+}$	63,63	CH_3COO^-	40,90
$1/2Mg^{2+}$	56,6	$C_6H_5COO^-$	35,8
$1/2Cd^{2+}$	54	$H_2PO_4^-$	36
$1/3Al^{3+}$	63	$1/2SO_4^{2-}$	80,02
$1/3La^{3+}$	69,7	$1/2S_2O_6^{2-}$	93

Таблица 8.2: Таблица Стандартные электродные потенциалы при $25^{o}\mathrm{C}$.

Электрод	Электродная реакция	Eo , B
Li^+/Li	$Li^+ + \overline{e} = Li$	-3,045
K^+/K	$K^+ + \overline{e} = K$	-2,925
Ba^{2+}/Ba	$Ba^{2+} + 2\overline{e} = Ba$	-2,906
Ca^{2+}/Ca	$Ca^{2+} + 2\overline{e} = Ca$	-2,866
Na^+/Na	$Na^+ + \overline{e} = Na$	-2,714
La3 + /La	$La3 + +3\overline{e} = La$	-2,522
Mg^{2+}/Mg	$Mg^{2+} + 2\overline{e} = Mg$	-2,363
Be^{2+}/Be	$Be^{2+} + 2\overline{e} = Be$	-1,847
$A1^{3+}/A1$	$Al^{3+} + 3\overline{e} = Al$	-1,662
Ti^{2+}/Ti	$Ti^{2+} + 2\overline{e} = Ti$	-1,628
Zr^{4+}/Zr	$Zr^{4+} + 4\overline{e} = Zr$	-1,529
V^{2+}/V	$V^{2+} + 2\overline{e} = V$	-1,186
Mn^{2+}/Mn	$Mn^{2+} + 2\overline{e} = Mn$	-1,180
WO_4^{2-}/W	$WO_4^{2-} + 4H_2O + 6\overline{e} = W + 8OH^-$	-1,05
Se^{2-}/Se	$Se + 2\overline{e} = Se^{2-}$	-0,77
Zn^{2+}/Zn	$Zn^{2+} + 2\overline{e} = Zn$	-0,763
Cr^{3+}/Cr	$Cr^{3+} + 3\overline{e} = Cr$	-0,744
Ga^{3+}/Ga	$Ga^{3+} + 3\overline{e} = Ga$	-0,529
S^{2-}/S	$S + 2\overline{e} = S^{2-}$	-0,51
Fe^{2+}/Fe	$Fe^{2+} + 2\overline{e} = Fe$	-0,440
$Cr^{3+}, Cr^{2+}/Pt$	$Cr^{3+} + \overline{e} = Cr^{2+}$	-0,408
Cd^{2+}/Cd	$Cd^{2+} + 2\overline{e} = Cd$	-0,403
$Ti^{3+}, Ti^{2+}/Pt$	$Ti^{3+} + \overline{e} = Ti^{2+}$	-0,369
Tl^+/Tl	$Tl^+ + \overline{e} = Tl$	-0,3363
Co^{2+}/Co	$Co^{2+} + 2\overline{e} = Co$	-0,277
Ni^{2+}/Ni	$Ni^{2+} + 2\overline{e} = Ni$	-0,250
Mo^{3+}/Mo	$Mo^{3+} + 3\overline{e} = Mo$	-0,20
Sn^{2+}/Sn	$Sn^{2+} + 2\overline{e} = Sn$	-0,136
Pb^{2+}/Pb	$Pb^{2+} + 2\overline{e} = Pb$	-0,126
$Ti^{4+}, Ti^{3+}/Pt$	$Ti^{4+} + \overline{e} = Ti^{3+}$	-0,04
$D^+/D_2, Pt$	$D^+ + \overline{e} = 1/2D_2$	-0,0034
$H^+/H_2, Pt$	$H^+ + \overline{e} = 1/2H_2$	0,000
Ge^{2+}/Ge	$Ge^{2+} + 2\overline{e} = Ge$	+0,01
$Br^-/AgBr/Ag$	$AgBr + \overline{e} = Ag + Br^{-}$	+0,0732
$Sn^{4+}, Sn^{2+}/Pt$	$Sn^{4+} + 2\overline{e} = Sn^{2+}$	+0,15
$Cu^{2+}, Cu^+/Pt$	$Cu^{2+} + \overline{e} = Cu^+$	+0,153
Cu^{2+}/Cu	$Cu^{2+} + 2\overline{e} = Cu$	+0,337
$Fe(CN)_{6}^{4-}, Fe(CN)_{6}^{3-}/Pt$	$Fe(CN)_{6}^{3-} + \overline{e} = Fe(CN)_{6}^{4-}$	$+0,\!36$
$OH^-/O_2, Pt$	$l/2O_2 + H_2O + 2\overline{e} = 2OH^-$	+0,401
Cu^+/Cu	$Cu^+ + \overline{e} = Cu$	+0,521
$J^-/J_2, Pt$	$J_2 + 2\overline{e} = 2J^-$	+0,5355
Te^{4+}/Te	$Te^{4+} + 4\overline{e} = Te$	$+0,\!56$
$MnO_4^-, MnO_4^{2-}/Pt$	$MnO_4^- + \overline{e} = MnO_4^{2-}$ $Rh^{2+} + 2\overline{e} = Rh$	+0,564
Rh^{2+}/Rh		+0,60
$Fe^{3+}, Fe^{2+}/Pt$	$Fe^{3+} + \overline{e} = Fe^{2+}$	+0,771

Электрод	Электродная реакция	Eo , B
Hg_{2}^{2+}/Hg	$Hg_2^{2+} + 2\overline{e} = 2Hg$	+0,788
Ag^+/Ag	$Ag^+ + \overline{e} = Ag$	+0,7991
Hg^{2+}/Hg	$Hg^{2+} + 2\overline{e} = Hg$	+0,854
$Hg^{2+}, Hg^{+}/Pt$	$Hg^{2+} + \overline{e} = Hg^{+}$	+0,91
Pd^{2+}/Pd	$Pd^{2+} + 2\overline{e} = Pd$	+0,987
$Br^{-}/Br_{2}, Pt$	$Br_2 + 2\overline{e} = 2Br^-$	+1,0652
Pt^{2+}/Pt	$Pt^{2+} + 2\overline{e} = Pt$	+1,2
$Mn^{2+}, H^+/MnO_2, Pt$	$MnO_2 + 4H^+ + 2\overline{e} = Mn^{2+} + 2H_2O$	$+1,\!23$
$Cr^{3+}, Cr_2O_7^{2-}, H^+/Pt$	$Cr_2O_7^{2-} + 14H^+ + 6\overline{e} = 2Cr^{3+} + 7H_2O$	+1,33
$Tl^{3+}, Tl^+/Pt$	$Tl^{3+} + 2\overline{e} = Tl^{+}$	$+1,\!25$
$Cl^-/Cl_2, Pt$	$Cl_2 + 2\overline{e} = 2Cl^-$	+1,3595
$Pb^{2+}, H^+/PbO_2, Pt$	$PbO_2 + 4H^+ + 2\overline{e} = Pb^{2+} + 2H_2O$	$+1,\!455$
Au^{3+}/Au	$Au^{3+} + 3\overline{e} = Au$	+1,498
$MnO_4^-, H^+/MnO_2, Pt$	$MnO_4^- + 4H^+ + 3\overline{e} = MnO_2 + 2H_2O$	+1,695
$Ce^{4+}, Ce^{3+}/Pt$	$Ce^{4+} + \overline{e} = Ce^{3+}$	$+1,\!61$
$SO_4^{2-}, H^+/PbSO_4, PbO_2, Pb$	$PbO_2 + SO_4^{2-} + 4H^+ + 2\overline{e} = PbSO_4 + 2H_2O$	+1,682
Au^+/Au	$Au^+ + \overline{e} = Au$	+1,691
$H^-/H_2, Pt$	$H_2 + 2\overline{e} = 2H^-$	+2,2
$F^-/F_2, Pt$	$F_2 + 2\overline{e} = 2F^-$	$+2,\!87$

Термодинамика

Таблица 8.3: Таблица 1. Стандартные энтальпии, энтропии и энергии Гиббса для некоторых веществ

Вещество	Состояние	ΔH , кДж/моль	ΔS ,Дж/(моль K)	ΔG ,кДж/моль
FeO	K	-264,85	60,75	-244,30
Fe_3O_4	K	-1117,13	146,19	-1014,16
Fe_2O_3	K	-822,16	87,45	-740,34
CO	Γ	-110,52	197,91	-137,27
CO_2	Γ	-393,51	213,65	-394,38
CH_4	Γ	-74,85	186,19	-50,79
H_2O	Γ	-238,94	188,72	-228,61
H_2O	Ж	-285,83	70,08	-237,25
H_2O	K	-286,34	0,10	-236,24
Al_2O_3	K	-1665,66	50,92	-1582,27
C_2H_5OH	Γ	-234,60	282,42	-168,07
C_2H_5OH	Ж	-276,94	161,00	-174,21
CH_3OH	Γ	-201,17	239,73	-163,33
CH_3OH	Ж	-239,45	126,61	-167,09
C_2H_6	Γ	-84,73	229,49	-17,49
C_3H_8	Γ	-104,50	269,90	-23,40
C_2H_4	Γ	52,47	219,28	68,34
C_2H_2	Γ	227,40	200,82	209,20
C_6H_6	Γ	82,93	269,20	129,70
C_6H_6	Ж	49,00	172,00	124,70
SnO	K	-280,71	57,17	-256,88
SnO_2	K	-577,63	49,01	-519,87
H_2SO_4	Ж	-814,21	156,90	-690,29
Na_2O	K	-414,84	75,27	-376,13
NaOH	K	-425,93	64,43	-379,82
NaCl	K	-411,41	72,15	-384,38
NH_4OH	K	-361,27	165,56	-254,23
NH_4Cl	K	-314,22	95,81	-203,17
H_2	Γ	0	130,59	0
O_2	Γ	0	205,03	0
N_2	Γ	0	191,49	0
Fe	K	0	27,32	0
S	Ромб.	0	31,9	0
PCl_3	Γ	-279,49	311,708	-260,45
$BaCO_3$	K	-1216,30	112,10	-1137,60
Sn	K	0	51,18	0
$FeCO_3$	K	-740,57	92,9	-666,67
BaO	K	-581,30	64,5	- 528,0
$CaCO_3$	K	-1206,60	91,71	- 1128,75
CaO	K	-635,09	38,10	- 604,20
$Ca(OH)_2$	K	-986,5	83,40	-898,49
$MgCO_3$	K	-1096,00	65,09	-1012,1

Вещество	Состояние	ΔH , кДж/моль	ΔS ,Дж/(моль K)	ΔG ,кДж/моль
MgO	K	-601,50	26,95	-568,4
$Mg(OH)_2$	K	-924,35	63,18	-833,51
HCl	Γ	-92,31	186,68	-95,20
HCl	Ж	-108,46	100,825	-110,36
NO	Γ	90,37	210,2	86,69
NO_2	Γ	33,18	240,46	51,84
N_2O	Γ	82,05	219,88	104,20
NH_3	Γ	-46,19	192,50	-16,45
H_2S	Γ	-20,63	205,64	-33,56
Cl_2	Γ	0	222,95	0
CS_2	Γ	115,28	237,76	67,09
LiOH	K	-484,90	42,76	-438,30
Li_2O	K	-597,88	37,61	-561,60
Cr_2O_3	K	-1140,60	81,1	-1058,40
PbO	K	-218,60	67,84	45,81
CuO	K	-162,00	42,74	-129,70
Cu_2O	K	-173,10	92,55	-146,0
$CuSO_4$	K	-766,61	112,02	-658,35
$CuSO_4 \cdot 5H_2O$	K	-2279,36	300,41	-1879,86
$Cu(OH)_2$	K	-445,00	78,0	-421,00
$CuCl_2$	K	-218,00	108,07	-161,58
MnO	K	-385,20	58,85	-362,62
Cr	K	0	23,56	0
Pb	K	0	64,8	0
C	графит	0	5,69	0
C	алмаз	1,90	2,44	2,90
Mn	K	0	31,92	0
$BeCO_3$	K	958,10	50,40	-944,75
BeO	K	-598,16	14,10	-569,00
PCl_5	Γ	-374,90	352,71	-305,00
KOH	K	-424,58	78,87	-378,51
K_2SO_4	K	- 1108,76	365,263	- 1047,309

Растворы

Таблица 8.4: Таблица 1. Плотности растворов кислот и щелочей (при 20 град. С), г/мл

ω , %	H_2SO_4	HNO_3	HCl	KOH	NaOH	NH_4OH
2	1,012	1,009	1,008	1,016	1,021	0,990
4	1,025	1.020	1,018	1,033	1,043	0,981
6	1,038	1,031	1,028	1,048	1,065	0,973
8	1,052	1,043	1,038	1,065	1,087	0,965
10	1,066	1,054	1,047	1,082	1,109	0,958
12	1,080	1,066	1,057	1,100	1,131	0,950
14	1,095	1,078	1,068	1,118	1,153	0,943
16	1,109	1,090	1,078	1,137	1,175	0,936
18	1,124	1,103	1,088	1,156	1,197	0,930
20	1,139	1,115	1,098	1,176	1,219	0,923
22	1,155	1,128	1,108	1,196	1,241	0,916
24	1,170	1,140	1,119	1,217	1,263	0,910
26	1,186	1,153	1,129	1,240	1,285	0,904
28	1,202	1,167	1,139	1,263	1,306	0,898
30	1,219	1,180	1,149	1,286	1,328	0,892
32	1,235	1,193	1,159	1,310	1,349	-
34	1,252	1,207	1.169	1,334	1,370	-
36	1,268	1,221	1,179	1,358	1,390	-
38	1,284	1,234	1,189	1,384	1,410	-
40	1,303	1,246	-	1,411	1,430	-
42	1,321	1,259	-	1,437	1,449	-
44	1,338	1,272	-	1,460	1,469	-
46	1,357	1,285	-	1,485	1,487	-
48	1,376	1,298	-	1,511	1,507	-
50	1,395	1,310	-	1,538	1,525	-
52	1,415	1,322	-	1,564	-	-
54	1,435	1,334	-	1,590	-	-
56	1,456	1,345	-	1,616	-	-
58	1,477	1,356	-	-	-	-
60	1,498	1,367	-	-	-	-
62	1,520	1,377	-	-	-	-
64	1,542	1,387	-	-	-	-
66	1,565	1,396	-	-	-	-
68	1,587	1,405	_	-	-	-
70	1,611	1,413	-	-	-	-
72	1,634	1,422	-	-	-	-
74	1,657	1,430	-	-	-	-
76	1,681	1,438	-	-	-	-
78	1,704	1,445	-	-	-	-
80	1,727	1,452	-	-	-	-
82	1,749	1,459	_	-	-	-
84	1,769	1,466	_	_	-	-

ω , %	H_2SO_4	HNO_3	HCl	KOH	NaOH	NH_4OH
86	1,787	1,472	-	-	-	-
88	1,802	1,477	-	-	-	-
90	1,814	1,483	-	-	-	-
92	1,824	1,487	-	-	-	-
94	1,832	1,491	-	-	-	-
96	1,835	1,495	-	-	-	-
98	1,837	1,501	-	-	-	-
100	1,838	1,513	-	-	-	-

Таблица 8.5: Таблица 2. Плотности растворов солей (при 20 град. С), г/мл

ω , %	KCl	NH4Cl	NaCl
1	1,0046	1,0013	1,0053
2	1,0110	1,0045	1,0125
4	1,0239	1,0107	1,0268
6	1,0369	1,0168	1,0413
8	1,0500	1,0227	1,0559
10	1,0633	1,0286	1,0707
12	1,0768	1,0344	1,0857
14	1,0905	1,0401	1,1009
16	1,1043	1,0457	1,1162
18	1,1185	1,0512	1,1319
20	1,1323	1,0567	1,1478
22	1,1474	1,0621	1,1640
24	1,1623	1,0726	1,1804
26	-		1,1972