

Initiation à la programmation des systèmes embarqués

Découverte de la programmation des cartes Arduino

Courte Présentation

Une carte Arduino, pour quoi faire?

... pour réaliser des (mini ?) projets

Harpe laser http://makezine.com/projects/laser-harp/

Joute robotique http://makezine.com/video/ready-set-joust/

Réveil http://makezine.com/video/ne ver-forget-to-set-an-alarmbecause-this-alarm-clock-setsitself/

La carte Arduino Uno

- Microcontroller :ATmega328
- Operating Voltage: 5V
- ▶ Input Voltage (recommended): 7-12V
- ▶ Input Voltage (limits) : 6-20V
- Digital I/O Pins: 14 (of which 6 provide PWM output)
- Analog Input Pins : 6
- DC Current per I/O Pin: 40 mA
- DC Current for 3.3V Pin: 50 mA
- Flash Memory: 32 KB (ATmega328) of which0.5 KB used by bootloader
- > SRAM: 2 KB (ATmega328)
- ▶ EEPROM : I KB (ATmega328)
- Clock Speed : 16 MHz
- Length: 68.6 mm
- Width: 53.4 mm
- Weight: 25 g

fritzing

Programmation par le logiciel Arduino

THE programme de base : Faire clignoter la LED

Processus de réalisation du programme

- Programmation en utilisant le logiciel Arduino
- Compilation du programme
- Téléversement du programme dans la carte
- Fonctionnement du programme sur la carte en mode autonome

Interface du logiciel Arduino

Allumer et éteindre une Led par période de 1 seconde

- A la différence de Python, il faut déclarer les variables et leur type.
- Les lignes doivent se terminer par des
- Void désigne la déclaration d'une fonction
- Pour réaliser un commentaire il faut faire précéder le commentaire de //

int led = 13;	Déclaration de la variable entière led et affectation du nombre 13 à la variable led. 13 correspond à une sortie de la carte Arduino possédant une led.
<pre>void setup() { pinMode(led, OUTPUT); }</pre>	Setup : configuration du matériel. Lancée après avoir appuyé sur Reset. La broche led est déclarée comme une sortie
<pre>void loop() { digitalWrite(led, HIGH); delay(1000);</pre>	La boucle loop est lancée un nombre infini de fois.
<pre>delay(1000); digitalWrite(led, LOW); delay(1000); }</pre>	Cette séquence permet d'allumer et d'éteindre la led toutes les secondes.
8	Découverte de la programmation des cartes Arduino - Xavier PESS

La Martinière On Martinière

Travail à réaliser

- Activité I : clignotement de la LED
 - Situer la carte sur la led.
 - 2. Saisir le code de la page précédente sur le logiciel Arduino .
 - 3. Lancer la vérification.
 - 4. Implanter le programme sur la carte.
 - Vérifier son bon fonctionnement.
 - 6. Modifier le programme pour modifier le temps d'allumage et d'extinction.
- Activité 2 : clignotement de la LED Affichage sur la console série (La console série permet d'afficher des informations à destination de l'utilisateur.
 - Modifier le code de l'activité précédente en utilisant le code ci-contre.
 - Pour afficher les messages :
 - Menu outil
 - 2. Console série

```
int led = 13;
void setup() {
    pinMode(led, OUTPUT);
    Serial.begin(57600);
}
void loop() {
    digitalWrite(led, HIGH);
    Serial.print("JOUR \n");
    delay(1000);
    digitalWrite(led, LOW);
    Serial.print("NUIT \n");
    delay(1000);
}
```

Programmation par Python

THE programme de base (again) : Faire clignoter la LED

Processus de réalisation du programme

• Téléversement d'un programme sur la carte Arduino (une seule fois pour toute)

Programmation avec Python

- Exécution du programme sur la carte.
- La carte doit être branchée au PC.

Préambule - Installation

Dans le logiciel Arduino

- Menu croquis ► Inclure une bibliothèque ► Ajouter la bibliothèque Zip
- Ajouter la bibliothèque TimerOne-r I I.zip pour l'installer
- Sélectionner la carte Arduino Uno et le port COM sur lequel la carte est connectée.
- Téléverser le programme toolbox arduino v4.ino

- Placer le programme py2duino.py dans le répertoire Lib
 - Exemple de notation du port : "/dev/ttcy3"

La Martinière

Travail à réaliser

▶ Téléversement préalable :

Il est nécessaire de téléverser une seule fois le programme toolbox_arduino_v4.ino sur la carte. Ce programme permet à Python de communiquer avec la carte Arduino.

Activité 3 :

- Ouvrir le fichier led.py et analyser sa structure.
- Exécuter le programme.
- Observer la LED clignoter.
- Modifier le programme pour que l'état de la LED soit affiché dans la console.

Programmation par Python

Acquisition du signal d'un potentiomètre rotatif

Activité 4 : Acquisition d'un signal analogique provenant d'un potentiomètre

- Matériel nécessaire
 - Une carte arduino
 - Un potentiomètre
 - Une planche à pain ;) (Bread bord)
- Réaliser le câblage ci-contre

- Réaliser le programme Python permettant d'afficher sur la console l'information provenant du potentiomètre.
 - Déclaration d'une entrée analogique :
 - AI = AnalogInput(MaCarte,PIN_ANALOGIQUE)
 - Lecture de l'information analogique :
 - Al.read()

Programmation par Python

Un peu de logique combinatoire

Retour sur le coffre fort de banque

- Rappel :
- On s'intéresse à un coffre-fort de banque dont on donne le principe de fonctionnement.
- Seuls 4 responsables (notés A, B, C et D) qui possèdent un ensemble code d'accès + clef à serrure peuvent avoir accès au coffre. Le responsable A possède l'ensemble code d'accès et une clef notée a. Le responsable B possède l'ensemble code d'accès et une clef notée b. Le responsable C possède l'ensemble code d'accès et une clef notée c. Le responsable D possède l'ensemble code d'accès et une clef notée d.
- Le responsable A ne peut ouvrir le coffre qu'avec le responsable B ou .
- Les responsables B, C et D ne peuvent ouvrir le coffre qu'en présence d'au moins deux des autres responsables.
- On montre que le coffre s'ouvre si on a :
- $S = b \cdot c \cdot d + a \cdot c + a \cdot b$

D'après TD de Florestan Mathurin

La partinière

Implémentation du fonctionnement

- Chacune des 4 entrées sera représentée par un bouton poussoir. L'ouverture du coffre sera représenté par une LED.
- Matériel nécessaire :
 - 4 boutons poussoirs;
 - \blacktriangleright 4 résistances de 4,7 kΩ (Jaune, Violet, Rouge doré);
 - l led (verte) en série avec une résistance de I kΩ.
- Le câblage est le suivant

Activité finale

Câbler un seul bouton poussoir

Réaliser le code Python permettant de connaître l'état du bouton. Que constatez-vous ? Commenter.

Câbler la led.

Réaliser le code Python permettant d'allumer la LED lorsque le bouton est pressé.

Réaliser le câblage final.

Réaliser le programme Python permettant d'ouvrir le coffre (ou d'allumer la LED) en fonction de l'état des boutons poussoirs.