

Limits of Communication

Arnaldo Spalvieri

Dipartimento di Elettronica, Informazione e Bioingegneria Politecnico di Milano, ITALY

Surprise, Entropy, Uncertainty as a Measure of Information

In 1928 Hartley proposed a measure of the *surprise* associated to a random variable.

According to Hartley, a large surprise is associated to rare events. The surprise associated to the outcome \boldsymbol{x} of the discrete random variable \boldsymbol{X} is

$$H(x) = -\log_2 P(x) \ge 0.$$

One basic property of H(x) is that the surprise of two independent events is the sum of the surprises of the individual events:

$$H(x,y) = -\log_2 P(x,y) = -\log_2 P(x)P(y) = -\log_2 P(x) - \log_2 P(y).$$

Taking the expectation of H(x) one has the average surprise, or *uncertainty*, or *entropy* of the r.v. X:

$$H(X) = -\sum_{x \in \Omega_X} P(x) \log_2 P(x) \ge 0.$$

Example

Consider the binary space $\Omega_X = \{0, 1\}$.

$$H(X) = -P(1)\log_2 P(1) - (1 - P(1))\log_2 (1 - P(1)) \le 1.$$

H(X) peaks at P(1)=0.5: the uncertainty about the outcome of the binary r.v. is maximal when the two outcomes are equally likely. When P(1)=0, or P(1)=1 the entropy is H(X)=0, as it should be since there is no uncertainty about the outcome. More generally, the entropy of a discrete random variable with K possible outcomes obeys to the inequality

$$H(X) \le \log_2 K,$$

and the maximum is achieved when the outcomes are equally likely. In a lottery where one among $K=2^n$ numbers can be extracted with uniform probability the entropy is just n, the number of bits that are used to encode the sample space of K numbers.

Residual Surprise or Conditional Entropy

Suppose that, ia a joint experiment $\{X,Y\}$, we observe the outcome of Y. The surprise that we have in knowing the outcome x of X after having observed y is

$$H(x|y) = -\log_2 P(x|y).$$

Of course, if there is complete dependence between X and Y, that is x=y, then there is zero surprise when, after having observed y, we observe x. On the opposite, if X and Y are independent, then P(x|y)=P(x), and knowing y does not diminishes the surprise that we have when we have access to x. The average residual surprise about X after having observed y is

$$H(X|y) = -\sum_{x \in \Omega_X} P(x|y) \log_2 P(x|y).$$

Residual Surprise or Conditional Entropy

When there is complete dependence between X and Y, then P(x|y) takes on only the values 0 and 1, therefore $H(X|y)=0, \ \forall y\in\Omega_y$, meaning that there is zero residual surprise about X given the outcome y. In other words, the outcome of X is known with probability 1 when y is observed.

Averaging over the distribution of Y one gets

$$H(X|Y) = \sum_{y \in \Omega_Y} P(y)H(X|y) = -\sum_{x \in \Omega_X} \sum_{Y \in \Omega_y} P(y)P(x|y) \log_2 P(x|y),$$

which is a measure of the average uncertainty that remains about X after having observed Y. It can be seen that

$$H(X) \ge H(X|Y) \ge 0.$$

The upper bound is achieved when X and Y are independent, the lower bound when X is a deterministic and invertible function of Y.

Mutual Information

The information about X carried by the observation of Y is the difference between the uncertainty about X before observing Y and the residual uncertainty about X after having observed Y

$$I(X,Y) = H(X) - H(X|Y).$$

The following equality can be proved in a straightforward way

$$I(X,Y) = H(X) + H(Y) - H(X,Y),$$

leading to the property

$$I(X,Y) = I(Y,X),$$

which explains the adjective *mutual* that is often used in front of *information*. It is easy to prove that

$$\min\{H(X), H(Y)\} \ge I(X, Y) \ge 0.$$

Mutual Information

Writing

$$H(X) = -\sum_{x \in \Omega_X} \sum_{y \in \Omega_Y} P(x, y) \log_2 P(x),$$

one writes the mutual information as

$$I(X,Y) = \sum_{x \in \Omega_X} \sum_{y \in \Omega_Y} P(x,y) \log_2 \left(\frac{P(x,y)}{P(x)P(y)} \right).$$

The above formula is a measure of how much the probability in the numerator of the fraction inside the \log diverges from the probability in the denominator.

In the extreme case of complete dependence, where P(x,y)=P(x)=P(y), one has I(X,Y)=H(X)=H(Y). At the opposite, when X and Y are independent, P(x,y)=P(x)P(y) and I(X,Y)=0.

Channel Capacity

Let X be the input to the channel and let Y be the output. From the information-theoretical standpoint, the channel is characterized by the conditional probability distribution P(y|x). The *unconstrained channel capacity* per channel use, or, in short, channel capacity, is

$$C = \max_{P(x)} I(X, Y)$$
, bits/channel use.

For a fixed distribution of the source, I(X,Y) is often referred to as *constrained* capacity. The channel capacity theorem (Shannon, 1948) states that

given a channel with capacity C, it is possible to transmit through the channel $\beta \leq C$ bits per channel use with arbitrarily low probability of error.

Note that channel capacity, which involves a maximization over P(x), is a function only of the channel transition probability P(y|x), not of the source probability. In other words, the channel is P(y|x).

Example: Capacity of the Binary Symmetric Channel (BSC)

Let $\Omega_x=\Omega_y=\{0,1\}$, let P(Y=0|X=1)=P(Y=1|X=0)=p be the channel transition probability, and let P(X=0)=q, P(X=1)=1-q. Then

$$H(Y|X) = -plog_2(p) - (1-p)\log_2(1-p)$$

is independent of q, and the capacity is found by maximizing H(Y) versus q. Write

$$P(Y = 0) = q(1 - p) + (1 - q)p, P(Y = 1) = (1 - q)(1 - p) + qp.$$

Since H(Y) is maximum when P(Y=0)=P(Y=1)=0.5, we come to the conclusion that the capacity is achieved with q=0.5, and that

$$C = 1 + plog_2(p) + (1 - p)\log_2(1 - p).$$

Entropy of a Continuous Random Variable

The entropy of the continuous random variable X, often called *differential* entropy is defined as

$$h(X) = -\int_{-\infty}^{\infty} f(x) \log_2 f(x) dx.$$

The differential entropy of a continuous random variable with given variance σ_x^2 is upperbounded as

$$h(X) \le \frac{1}{2} \log_2(2\pi e \sigma_x^2),$$

where equality holds when X is Gaussian.

Channels with Continuous Input and Continuous Output

A channel with continuous input and continuous output is a channel whose input is a continuous random variable X, and whose output is a continuous random variable Y. The conditional differential entropy that characterizes the channel is

$$h(Y|x) = -\int_{-\infty}^{\infty} f(y|x) \log_2(f(y|x)) dy,$$

$$h(Y|X) = \int_{-\infty}^{\infty} f(x)h(Y|x)dx.$$

The mutual information is

$$I(X,Y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(y,x) \log_2 \left(\frac{f(y,x)}{f(x)f(y)} \right) dy dx.$$

Capacity of the Additive Gaussian Channel

Consider the additive Gaussian noise channel

$$Y = X + N$$
,

where X is continuous. The capacity of the channel with the constraint that the variance of X is fixed to σ_x^2 is readily obtained by considering that

$$h(Y|X) = h(N) = \frac{1}{2}\log_2(2\pi e\sigma_n^2),$$

and that h(Y) is constrained to

$$h(Y) \le \frac{1}{2} \log_2(2\pi e(\sigma_n^2 + \sigma_x^2)),$$

the maximum being achieved when Y is Gaussian, hence when X is Gaussian.

Capacity of the Additive Gaussian Channel

The capacity results

$$C = \frac{1}{2} \log_2(2\pi e(\sigma_n^2 + \sigma_x^2)) - \frac{1}{2} \log_2(2\pi e \sigma_n^2) = \frac{1}{2} \log_2(1 + \text{SNR}) \ \, \text{bit/channel use}.$$

The result can be extended to a vector channel, where one channel use corresponds to a vector of N joint random variables (X_i,Y_i) , $i=1,2,\cdots,N$. Assume that the pair (X_i,Y_i) is independent of the pair (X_j,Y_j) , and that the channel is stationary. Invoking the basic property of the entropy of independent random variables one gets

$$C = \frac{N}{2} \log_2(1 + {\rm SNR}) \,$$
 bit/vector channel use.

Capacity of the AWGN (Additive White Gaussian Noise) Channel

Consider a channel of bandwidth B affected by additive Gaussian noise. The channel can be seen as a vector channel with one channel use per second, the vector having N=2B entries (recall the sampling theorem, B Hz=2B samples per second). Moreover, assume that the power spectral density of the noise is white, hence the samples of the Gaussian noise are independent of each other, leading to a vector channel with N=2B independent entries. The bit rate R_b that can be transferred through the channel with zero error probability is upper bounded as

$$R_b \leq B \log_2(1 + \text{SNR}) = C$$
 bit/s.

Let $N_0/2$ be the power spectral density of the Gaussian noise. The power of the noise in the bandwidth B is N_0B and

$$R_b \leq B \log_2 \left(1 + rac{P_x}{N_0 B}
ight)$$
 bit/s.

Spectral Efficiency

The *spectral efficiency*, that is hereafter denoted η , is the bit rate that is transferred through a channel of bandwidth 1 Hz in 1 second, therefore it is just

$$\eta = \frac{R_b}{B} \le \log_2\left(1 + \frac{P_x}{N_0 B}\right).$$

 η is a pure number, and it is expressed in bit/(Hz \cdot s) or in bit/2D. By substituting $B=R_b/\eta$ inside the logarithm one gets

$$\eta \le \log_2\left(1 + \frac{P_x\eta}{N_0R_b}\right), \quad 2^{\eta} \le 1 + \frac{P_x\eta}{N_0R_b}, \quad \frac{P_x}{N_0R_b} \ge \frac{2^{\eta} - 1}{\eta}.$$

Often the energy per bit $E_b=P_x/R_b$ is used in the last equation, leading to

$$\frac{E_b}{N_0} \ge \frac{2^{\eta} - 1}{\eta}.$$

Capacity of the AWGN Channel in the Power Constrained Region

Consider again the inequality

$$\frac{E_b}{N_0} \ge \frac{2^{\eta} - 1}{\eta}, \text{ or } \frac{P_x}{R_b N_0} \ge \frac{2^{R_b/B} - 1}{R_b/B}.$$

Suppose that P_x is a cost, while B comes free. To exploit the infinite bandwidth we let $B \to \infty$, getting

$$\frac{P_x}{R_b N_0} \ge \lim_{B \to \infty} \frac{2^{R_b/B} - 1}{R_b/B} = \log_e 2 = -1.59 \text{ dB}.$$

This means that when $P_x/(R_bN_0)$ is below -1.59 dB it is impossible to transmit also with infinite bandwidth. Suppose that the signal power P_x is fixed (power constraint). Then what one can do is to renounce to some bit rate, until $P_x/(R_bN_0)$ goes above -1.59 dB. Conversely, if $P_x/(R_bN_0) > -1.59$ dB, then there is room to increase R_b . Often one uses the energy per bit E_b to expresses the ratio P_x/R_b . In this case

$$\frac{P_x}{R_b N_0} = \frac{E_b}{N_0}.$$

Capacity of the AWGN Channel in the Bandwidth Constrained Region

Consider capacity achieving transmission, that is

$$\eta = \log_2\left(1 + \frac{P_x}{N_0 B}\right).$$

Suppose that B and N_0 are fixed and that SNR is large, hence the +1 inside the log can be neglected. We want to know how much extra power we must add to increase the number of bits per complex channel use from η to $\eta+1$. This is easily seen by noting that

$$2^{\eta} = \frac{P_x}{N_0 B}, \quad 2^{\eta + 1} = \frac{2P_x}{N_0 B},$$

that is the law of 3 dB/bit. Besides channel capacity, also QAM follows the law of 3 dB/bit (not PSK), but with a gap in SNR from capacity that can be filled by channel coding. Exercise: compute the gap between 16-QAM and channel capacity, assuming that the symbol error rate of 10^{-6} is low enough to declare error free transmission. Repeat with 64-QAM and check the law.