Task-space dimensions guide human exploration in complex environments

Jiahui An^{1,2}, Jiewen Hu^{1,2}, Yilin Elaine Wu^{1,3}, Siyu Ning^{1,4}, Fanyu Zhu^{1,2}, Yuhang Pan^{1,5}, Ruosi Wang ⁶, Ni Ji ^{1,2}

1. Chinese Institute for Brain Research, Beijing 5.Zhejiang University 4. China Agricultural University

2. Peking Union Medical College 3. Nanjing University 6. Shanghai International Studies University † niji@cibr.ac.cn

Motivation & Scientific Question

- ◆ Real-life decision-making are done in high-dimensional environments
- ◆ Learning in high-D environments with sparse feedback is challenging, and requires efficient exploration
- ♦ How humans explore in multidimensional task environments has not been systematically examined

Key question: How do humans explore efficiently in unknown multi-dimensional environments?

Task Design

Background

"You are a chef in a restaurant. Your task is to recommend meals to the customer and infer his/ her tastes based on the rating."

Scoring rules

Practice

session

- Only 2 dimensions are relevant for the score
- Subjects were NOT told which and how many dimensions were important.

rounds

N.A.

rnds

rnds

1. Humans learned efficiently and showed two stereotyped and persistent choice patterns 1. Subjects successfully learned

3. FDS served as an exploration strategy

> Use exploration index (EI) to quantify explorative behavior:

1. El decreased as game proceeded

2. FDS is more associated with exploration than TF.

3. FDS were employed earlier in the task than TF

4. FDS may facilitate efficient learning

1. Subject who more frequently employed FDS performed better

3. Practice-first group outperformed the Cold-start group in the 4D Task.

more FSD strategies

PF group CS group

5. Existing models failed to capture human-like exploration behavior

Verbal

interview

Adaptation of previous models (key refs: Wilson and Niv 2012, Niv et al. 2015, Song et al. 2022)

→ screen →

survey

Optimal choice pattern

(1) Naïve RL: learns values of combined stimuli with a learning rate (η) and row weights (ω) based on their row positions I(S).

(n = 51)

Cold-start Group

(n = 54)

 $V_{t+1}(S) = V_t(S) + \eta \cdot \omega(I(S)) \cdot \left\lceil rac{R_t}{9} - V_t(S)
ight
ceil$

(2) Feature RL (fRL): updates feature values by calculating how each feature contributes to the reward across all stimuli it appears in

 $W_{t+1}(f) = W_t(f) + \sum_{f \in S} \eta \cdot \omega(I(S)) \cdot \left[rac{R_t}{9} - V_t(S)
ight]$

The value of S is the sum of the values of its contained features: $V(S) = \sum_{i \in S} W(f)$

(3) Bayesian rule learning: performs Bayesian inference on all hypotheses $P(h \mid c_{1:t}, r_{1:t}) \propto P(r_t \mid h, c_t) P(h \mid c_{1:t-1}, r_{1:t-1})$

Expected reward (ER) for each choice: $ER(c_{t+1}) = \sum P(h \mid c_{1:t}, r_{1:t}) P(r_{t+1} \mid h, c_{t+1})$

(4) Value-based Serial hypothesis (SH): • Updates the ER of h_{t+1} and values of features under fRL framework:

 $ER(h_{t+1}) = \sum \sum V(f_{i,j})$ $V_{t+1}(f_{i,j}) = V_t(f_{i,j}) + \eta(r_{t+1} - ER(h_{t+1}))$

 Determine the probability of staying on the same h: Pr(stay|h) = - $1 + exp(-eta_{stay}(lograc{P(h)}{1-P(h)} - heta)))$

• If decide to switch to a new h, compute the probability of switch to the hypothesis h_{t+1} as:

performance, though humans more frequently obtained full-score

1. Bayesian model yielded highest

category-related words are more likely

of category-related words mentioned

to perform FDS across dimensions.

2. FDS was rarely employed by

model agents, though TF was

more prevalently used

10 15 20

when using FDS strategy

*** *

Conclusion and Future Plan

- Human develop dimension-guided strategy to explore in multidimensional and unknown environment.
- Dimension-guided exploration facilitated efficient learning in complex environment.

Ongoing work:

- Modeling to understand the cognitive mechanism behind dimensionguided exploration
- Extending the task to high-dimensional, realistic environments