On the Lemoine circumcevian triangle / Darij Grinberg

Let L be the symmedian point of an arbitrary triangle $\triangle ABC$. The circumcircle of $\triangle ABC$ intersects AL at X, BL at Y and CL at Z. Then, the triangle XYZ is the circumcevian triangle of the point L; we call it the **Lemoine circumcevian triangle**. Obviously, we have:

Theorem 1. The triangle *ABC* and the Lemoine circumcevian triangle *XYZ* have the same circumcenter.

We intend to prove another theorem ([1]):

Theorem 2. The triangle ABC and the Lemoine circumcevian triangle XYZ have the same symmedian point, i. e. the point L is also the symmedian point of ΔXYZ .

First, we note:

Theorem 3. The triangles $\triangle ALC$ and $\triangle ZLX$ are similar.

Fig. 1

In fact,

$$\triangle ALC = \triangle ZLX$$
 and $\triangle LCA = \triangle ZCA = \triangle ZXA$ (cyclic) $= \triangle LXZ$,

what gives $\Delta ALC \sim \Delta ZLX$.

From this similarity, we obtain that the altitudes of triangles $\triangle ALC$ and $\triangle ZLX$ are proportional to the corresponding sides. Hence, if we denote by d(P; g) the distance of an arbitrary point P from a line g, then we have

$$\frac{d(L; ZX)}{d(L; CA)} = \frac{ZX}{CA},$$

i. e.

$$d(L; ZX) = ZX \cdot \frac{d(L; CA)}{h}.$$

But we know that the symmedian point L has homogeneous trilinear coordinates L(a:b:c) with respect to the original triangle, i. e. there exists a real k for which

$$d(L; BC) = ka;$$
 $d(L; CA) = kb;$ $d(L; AB) = kc.$

Thus,

$$d(L; ZX) = ZX \cdot \frac{d(L; CA)}{h} = ZX \cdot k.$$

Analogously, $d(L; XY) = XY \cdot k$ and $d(L; YZ) = YZ \cdot k$. Thus, the point L has homogeneous trilinear coordinates L(YZ : ZX : XY) with respect to ΔXYZ . Consequently, L is the symmedian point of ΔXYZ , what completes the proof.

Referring to this property, the triangle *XYZ* is called **cosymmedian triangle** of $\triangle ABC$. As a corollary, we get:

Theorem 4. The triangle *ABC* and the Lemoine circumcevian triangle *XYZ* have a common Brocard axis.

Indeed, the two triangles have a common circumcenter and a common symmedian point, and therefore they have a common Brocard axis (since the Brocard axis joins the circumcenter with the symmedian point).

Now we are going to show another property:

Theorem 5. Let

$$1 = YZ \cap CA; \qquad 2 = YZ \cap AB;$$

$$3 = ZX \cap AB; \qquad 4 = ZX \cap BC;$$

$$5 = XY \cap BC; \qquad 6 = XY \cap CA.$$

Then, the lines 14, 25 and 36 pass through the point L (Fig. 2).

Fig. 2

After a bit of thinking, this result turns out to be quite simple and independent from the presumption that L is the symmedian point. In fact, L can be an arbitrary point. The proof (Fig. 3) uses the Pascal Theorem, applied to the inscribed hexagon ABCZYX, yielding that the intersections of opposite sides, i. e. the points

$$AB \cap ZY = 2;$$
 $BC \cap YX = 5;$ $CZ \cap XA = L$

are collinear. Hence, L lies on 25; analogously, L lies on 14 and on 36.

Fig. 3

References

[1] Ross Honsberger: *Episodes in Nineteenth and Twentieth Century Euclidean Geometry*, USA 1995.