In [1]:

#ANAMAY KRISHNA TIWARI #20BEE0273

5. Handling Missing Values

In [3]:

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
```

In [4]:

```
data = pd.read_csv('titanic.csv')
```

In [6]:

data.head()

Out[6]:

	survived	pclass	sex	age	sibsp	parch	fare	embarked	class	who	adult_male	(
0	0	3	male	22.0	1	0	7.2500	S	Third	man	True	
1	1	1	female	38.0	1	0	71.2833	С	First	woman	False	
2	1	3	female	26.0	0	0	7.9250	S	Third	woman	False	
3	1	1	female	35.0	1	0	53.1000	S	First	woman	False	
4	0	3	male	35.0	0	0	8.0500	S	Third	man	True	
4											>	,

In [7]:

data.tail()

Out[7]:

	survived	pclass	sex	age	sibsp	parch	fare	embarked	class	who	adult_male
886	0	2	male	27.0	0	0	13.00	S	Second	man	True
887	1	1	female	19.0	0	0	30.00	S	First	woman	False
888	0	3	female	NaN	1	2	23.45	S	Third	woman	False
889	1	1	male	26.0	0	0	30.00	С	First	man	True
890	0	3	male	32.0	0	0	7.75	Q	Third	man	True
4											>

```
In [11]:
```

```
data.sample(5)
```

Out[11]:

	survived	pclass	sex	age	sibsp	parch	fare	embarked	class	who	adult_ma
304	0	3	male	NaN	0	0	8.0500	S	Third	man	Trı
586	0	2	male	47.0	0	0	15.0000	S	Second	man	Trı
606	0	3	male	30.0	0	0	7.8958	S	Third	man	Trı
362	0	3	female	45.0	0	1	14.4542	С	Third	woman	Fals
193	1	2	male	3.0	1	1	26.0000	S	Second	child	Fals
4											>

In [13]:

```
data.shape
```

Out[13]:

(891, 15)

In [14]:

```
print('Number of columns',data.shape[0])
print('Number of rows',data.shape[1])
```

Number of columns 891 Number of rows 15

In [16]:

```
data.isnull().sum()
```

Out[16]:

```
survived
                  0
pclass
                  0
                  0
sex
age
                177
sibsp
                  0
                  0
parch
fare
                  0
embarked
                  2
class
                  0
who
                  0
adult_male
                  0
deck
                688
embark_town
                  2
alive
                  0
                  0
alone
dtype: int64
```

```
In [29]:
```

```
data.isnull().sum().sum()
```

Out[29]:

869

In [48]:

```
data.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 15 columns):
```

#	Column	Non-Null Count	Dtype
0	survived	891 non-null	int64
1	pclass	891 non-null	int64
2	sex	891 non-null	object
3	age	714 non-null	float64
4	sibsp	891 non-null	int64
5	parch	891 non-null	int64
6	fare	891 non-null	float64
7	embarked	889 non-null	object
8	class	891 non-null	object
9	who	891 non-null	object
10	adult_male	891 non-null	bool
11	deck	203 non-null	object
12	embark_town	889 non-null	object
13	alive	891 non-null	object
14	alone	891 non-null	bool
dtyp	es: bool(2),	float64(2), int6	4(4), object(7)
	ry usage: 92.		
	, ,		

In [33]:

```
df = data.fillna(value=0)
df
```

Out[33]:

	survived	pclass	sex	age	sibsp	parch	fare	embarked	class	who	adult_ma
0	0	3	male	22.0	1	0	7.2500	S	Third	man	Tru
1	1	1	female	38.0	1	0	71.2833	С	First	woman	Fals
2	1	3	female	26.0	0	0	7.9250	S	Third	woman	Fals
3	1	1	female	35.0	1	0	53.1000	S	First	woman	Fals
4	0	3	male	35.0	0	0	8.0500	S	Third	man	Trı
886	0	2	male	27.0	0	0	13.0000	S	Second	man	Trı
887	1	1	female	19.0	0	0	30.0000	S	First	woman	Fals
888	0	3	female	0.0	1	2	23.4500	S	Third	woman	Fals
889	1	1	male	26.0	0	0	30.0000	С	First	man	Trı
890	0	3	male	32.0	0	0	7.7500	Q	Third	man	Trı

891 rows × 15 columns

In [46]:

```
df.isnull().sum()
```

Out[46]:

survived 0 0 pclass 0 sex 0 age 0 sibsp parch 0 0 fare embarked 0 0 class who 0 $\verb"adult_male"$ 0 0 deck embark_town 0 0 alive 0 alone dtype: int64

In [47]:

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 15 columns):

#	Column	Non-Null Count	Dtype
0	survived	891 non-null	int64
1	pclass	891 non-null	int64
2	sex	891 non-null	object
3	age	891 non-null	float64
4	sibsp	891 non-null	int64
5	parch	891 non-null	int64
6	fare	891 non-null	float64
7	embarked	891 non-null	object
8	class	891 non-null	object
9	who	891 non-null	object
10	adult_male	891 non-null	bool
11	deck	891 non-null	object
12	embark_town	891 non-null	object
13	alive	891 non-null	object
14	alone	891 non-null	bool
4+	oc. bool(2)	£100+(4/2) : m+C	1/1\ abia

dtypes: bool(2), float64(2), int64(4), object(7)

memory usage: 92.4+ KB

In [50]:

df.describe()

Out[50]:

fare	parch	sibsp	age	pclass	survived	
891.000000	891.000000	891.000000	891.000000	891.000000	891.000000	count
32.204208	0.381594	0.523008	23.799293	2.308642	0.383838	mean
49.693429	0.806057	1.102743	17.596074	0.836071	0.486592	std
0.000000	0.000000	0.000000	0.000000	1.000000	0.000000	min
7.910400	0.000000	0.000000	6.000000	2.000000	0.000000	25%
14.454200	0.000000	0.000000	24.000000	3.000000	0.000000	50%
31.000000	0.000000	1.000000	35.000000	3.000000	1.000000	75%
512.329200	6.000000	8.000000	80.000000	3.000000	1.000000	max

```
In [200]:
```

```
df1 = data.fillna(method='pad')
df1
```

Out[200]:

	survived	pclass	sex	age	sibsp	parch	fare	embarked	class	who	adult_ma
0	0	3	male	22.0	1	0	7.2500	S	Third	man	Trı
1	1	1	female	38.0	1	0	71.2833	С	First	woman	Fals
2	1	3	female	26.0	0	0	7.9250	S	Third	woman	Fals
3	1	1	female	35.0	1	0	53.1000	S	First	woman	Fals
4	0	3	male	35.0	0	0	8.0500	S	Third	man	Trı
886	0	2	male	27.0	0	0	13.0000	S	Second	man	Trı
887	1	1	female	19.0	0	0	30.0000	S	First	woman	Fals
888	0	3	female	19.0	1	2	23.4500	S	Third	woman	Fals
889	1	1	male	26.0	0	0	30.0000	С	First	man	Trı
890	0	3	male	32.0	0	0	7.7500	Q	Third	man	Trı
891 r	rows × 15	columns	3								

UNIVARIATE ANALYSIS

```
In [54]:
```

```
cat = []
num = []
for column in data.columns:
    if df[column].nunique() > 10:
        num.append(column)
    else:
        cat.append(column)
```

```
In [55]:
```

cat

```
Out[55]:
```

```
['survived',
  'pclass',
  'sex',
  'sibsp',
  'parch',
  'embarked',
  'class',
  'who',
  'adult_male',
  'deck',
  'embark_town',
  'alive',
  'alone']
```

In [56]:

num

Out[56]:

```
['age', 'fare']
```

In [58]:

```
sns.countplot(df['class'])
```

C:\Users\Anamay Tiwari\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other ar guments without an explicit keyword will result in an error or misinterpretation.

```
warnings.warn(
```

Out[58]:

<AxesSubplot:xlabel='class', ylabel='count'>

In [59]:

```
sns.countplot(df['sex'])
```

C:\Users\Anamay Tiwari\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

Out[59]:

<AxesSubplot:xlabel='sex', ylabel='count'>

In [61]:

```
sns.countplot(df['alive'])
```

C:\Users\Anamay Tiwari\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other ar guments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

Out[61]:

<AxesSubplot:xlabel='alive', ylabel='count'>

In [63]:

```
sns.countplot(df['embark_town'])
```

C:\Users\Anamay Tiwari\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

Out[63]:

<AxesSubplot:xlabel='embark_town', ylabel='count'>

In [67]:

```
df['class'].value_counts().plot(kind='pie',autopct="%1.2f")
```

Out[67]:

<AxesSubplot:ylabel='class'>

In [70]:

df['embark_town'].value_counts().plot(kind='pie',autopct="%1.2f",colors=['green','red','blue_counts().plot(kind='pie',autopct="%1.2f",colors=['green','red','blue_counts().plot(kind='pie',autopct="%1.2f",colors=['green','red','blue_counts().plot(kind='pie',autopct="%1.2f",colors=['green','red','blue_counts().plot(kind='pie',autopct="%1.2f",colors=['green','red','blue_counts().plot(kind='pie',autopct="%1.2f",colors=['green','red','blue_counts().plot(kind='pie',autopct="%1.2f",colors=['green','red','blue_counts().plot(kind='pie',autopct="%1.2f",colors=['green','red','blue_counts().plot(kind='pie',autopct="%1.2f",colors=['green','red','blue_counts().plot(kind='pie',autopct="%1.2f",colors=['green','red','blue_counts().plot(kind='pie',autopct="%1.2f",colors=['green','red','blue_counts().plot(kind='pie',autopct="%1.2f",colors=['green','red','blue_counts().plot(kind='pie',autopct="%1.2f",colors=['green','red','blue_counts().plot(kind='pie',autopct="%1.2f",colors=['green','red','blue_counts().plot(kind='pie',autopct="%1.2f",colors=['green','red','blue_counts().plot(kind='pie',autopct="%1.2f",au

Out[70]:

<AxesSubplot:ylabel='embark_town'>

In [73]:

sns.distplot(df['age'])

C:\Users\Anamay Tiwari\anaconda3\lib\site-packages\seaborn\distributions.py:2 557: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[73]:

<AxesSubplot:xlabel='age', ylabel='Density'>

In [75]:

```
sns.distplot(df['fare'])
```

C:\Users\Anamay Tiwari\anaconda3\lib\site-packages\seaborn\distributions.py:2 557: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[75]:

<AxesSubplot:xlabel='fare', ylabel='Density'>

In [74]:

```
df['age'].skew()
```

Out[74]:

0.2628619929342128

In [76]:

```
df['fare'].skew()
```

Out[76]:

4.787316519674893

In [80]:

```
sns.boxplot(df['age'])
```

C:\Users\Anamay Tiwari\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other ar guments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

Out[80]:

<AxesSubplot:xlabel='age'>


```
In [42]:
```

```
y = sns.boxplot(data.fare)
y
```

C:\Users\Anamay Tiwari\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

Out[42]:

<AxesSubplot:xlabel='fare'>

Bi-Variate Analysis

In [90]:

```
sns.scatterplot(df['age'],df['fare'])
```

C:\Users\Anamay Tiwari\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variables as keyword args: x, y. From versi on 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpret ation.

warnings.warn(

Out[90]:

<AxesSubplot:xlabel='age', ylabel='fare'>

In [91]:

```
sns.barplot(df['class'],df['age'])
```

C:\Users\Anamay Tiwari\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variables as keyword args: x, y. From versi on 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpret ation.

warnings.warn(

Out[91]:

<AxesSubplot:xlabel='class', ylabel='age'>

In [92]:

```
sns.barplot(df['class'],df['fare'])
```

C:\Users\Anamay Tiwari\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variables as keyword args: x, y. From versi on 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpret ation.

warnings.warn(

Out[92]:

<AxesSubplot:xlabel='class', ylabel='fare'>

In [128]:

```
sns.barplot(df['sex'],df['age'],hue=df['survived'])
```

Out[128]:

<AxesSubplot:xlabel='sex', ylabel='age'>

In [129]:

```
sns.barplot(df['sex'],df['age'])
```

C:\Users\Anamay Tiwari\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variables as keyword args: x, y. From versi on 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpret ation.

warnings.warn(

Out[129]:

<AxesSubplot:xlabel='sex', ylabel='age'>

In [99]:

```
sns.barplot(df['sex'],df['fare'])
```

C:\Users\Anamay Tiwari\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variables as keyword args: x, y. From versi on 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpret ation.

warnings.warn(

Out[99]:

<AxesSubplot:xlabel='sex', ylabel='fare'>


```
In [102]:
```

```
cat
```

Out[102]:

```
['survived',
  'pclass',
  'sex',
  'sibsp',
  'parch',
  'embarked',
  'class',
  'who',
  'adult_male',
  'deck',
  'embark_town',
  'alive',
  'alone']
```

In [103]:

num

Out[103]:

```
['age', 'fare']
```

In [105]:

```
sns.boxplot(df['sex'],df['age'])
```

C:\Users\Anamay Tiwari\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variables as keyword args: x, y. From versi on 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpret ation.

warnings.warn(

Out[105]:

<AxesSubplot:xlabel='sex', ylabel='age'>

In [108]:

```
sns.boxplot(df['survived'],df['age'])
```

C:\Users\Anamay Tiwari\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variables as keyword args: x, y. From versi on 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpret ation.

warnings.warn(

Out[108]:

<AxesSubplot:xlabel='survived', ylabel='age'>

In [255]:

sns.barplot((df.embark_town.value_counts()).index,df.embark_town.value_counts())

C:\Users\Anamay Tiwari\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variables as keyword args: x, y. From versi on 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpret ation.

warnings.warn(

Out[255]:

<AxesSubplot:ylabel='embark_town'>


```
In [257]:
```

```
sns.barplot((df.class.value_counts()).index,df.class.value_counts())

File "<ipython-input-257-b7847e5d23f7>", line 1
    sns.barplot((df.class.value_counts()).index,df.class.value_counts())
```

SyntaxError: invalid syntax

Multi-Variate Analysis

In [100]:

```
sns.barplot(df['class'],df['age'],hue=df['embark_town'])
```

C:\Users\Anamay Tiwari\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variables as keyword args: x, y. From versi on 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpret ation.

warnings.warn(

Out[100]:

<AxesSubplot:xlabel='class', ylabel='age'>

In [101]:

```
sns.barplot(df['class'],df['fare'],hue=df['embark_town'])
```

C:\Users\Anamay Tiwari\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variables as keyword args: x, y. From versi on 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpret ation.

warnings.warn(

Out[101]:

<AxesSubplot:xlabel='class', ylabel='fare'>

In [110]:

```
df.columns
```

Out[110]:

In [117]:

cat

Out[117]:

```
['survived',
'pclass',
'sex',
'sibsp',
'parch',
'embarked',
'class',
'who',
'adult_male',
'deck',
'embark_town',
'alive',
'alone']
```

In [122]:

```
sns.heatmap(pd.crosstab(df['class'],df['embark_town']))
```

Out[122]:

<AxesSubplot:xlabel='embark_town', ylabel='class'>

In [124]:

```
sns.heatmap(pd.crosstab(df['class'],df['survived']))
```

Out[124]:

<AxesSubplot:xlabel='survived', ylabel='class'>

4.DESCRIPTIVE STATISTICS

```
In [147]:
```

```
df.mean()
```

Out[147]:

survived 0.383838 pclass 2.308642 23.799293 age 0.523008 sibsp parch 0.381594 fare 32.204208 adult_male 0.602694 alone 0.602694

dtype: float64

In [151]:

```
df.median()
```

Out[151]:

survived 0.0000 pclass 3.0000 24.0000 age 0.0000 sibsp parch 0.0000 fare 14.4542 adult_male 1.0000 1.0000 alone

dtype: float64

In [150]:

```
df.mode()
```

Out[150]:

	survived	pclass	sex	age	sibsp	parch	fare	embarked	class	who	adult_male	deck	er
0	0	3	male	0.0	0	0	8.05	S	Third	man	True	0	٤
4													•

In [177]:

```
df.skew()
```

Out[177]:

0.478523 survived pclass -0.630548 0.262862 age sibsp 3.695352 2.749117 parch fare 4.787317 adult_male -0.420431 alone -0.420431

dtype: float64

In [178]:

```
#kurtosis
df.kurt()
```

Out[178]:

survived -1.775005 pclass -1.280015 -0.537533 age sibsp 17.880420 9.778125 parch fare 33.398141 adult_male -1.827345 alone -1.827345

dtype: float64

In [179]:

```
#range
df.max()
```

Out[179]:

survived 1 pclass 3 sex male 80.0 age 8 sibsp parch 6 512.3292 fare class Third who woman adult_male True alive yes True alone

dtype: object

In [180]:

```
df.min()
```

Out[180]:

0 survived pclass 1 female sex 0.0 age 0 sibsp parch 0 fare 0.0 class First child who adult_male False alive no False alone dtype: object

In [186]:

sns.pairplot(df)

<__array_function__ internals>:5: RuntimeWarning: Converting input from bool
to <class 'numpy.uint8'> for compatibility.

<__array_function__ internals>:5: RuntimeWarning: Converting input from bool
to <class 'numpy.uint8'> for compatibility.

<__array_function__ internals>:5: RuntimeWarning: Converting input from bool
to <class 'numpy.uint8'> for compatibility.

<__array_function__ internals>:5: RuntimeWarning: Converting input from bool
to <class 'numpy.uint8'> for compatibility.

Out[186]:

<seaborn.axisgrid.PairGrid at 0x1d0e4a9d3d0>

In [170]:

num

Out[170]:

['age', 'fare']

```
In [193]:
```

```
df.var()
```

Out[193]:

survived 0.236772 pclass 0.699015 309.621823 age 1.216043 sibsp parch 0.649728 fare 2469.436846 adult_male 0.239723 alone 0.239723

dtype: float64

In [194]:

```
df.std()
```

Out[194]:

survived 0.486592 pclass 0.836071 17.596074 age 1.102743 sibsp parch 0.806057 fare 49.693429 0.489615 adult_male 0.489615 alone

dtype: float64

In [195]:

```
df['sex'].value_counts()
```

Out[195]:

male 577 female 314

Name: sex, dtype: int64

In [196]:

```
data['embark_town'].value_counts()
```

Out[196]:

Southampton 644 Cherbourg 168 Queenstown 77

Name: embark_town, dtype: int64

```
In [197]:
data['alive'].value_counts()
Out[197]:
       549
no
       342
yes
Name: alive, dtype: int64
In [198]:
data['class'].value_counts()
Out[198]:
Third
          491
First
          216
Second
          184
Name: class, dtype: int64
In [202]:
df.isnull().any()
Out[202]:
survived
               False
pclass
               False
               False
sex
age
               False
               False
sibsp
parch
               False
               False
fare
embarked
               False
               False
class
who
               False
adult_male
               False
deck
               False
               False
embark_town
alive
               False
               False
alone
```

8. Dependent Variable

dtype: bool

```
In [205]:

x = df.iloc[:,0:1]
x
```

Out[205]:

	survived
0	0
1	1
2	1
3	1
4	0
886	0
887	1
888	0
889	1
890	0

891 rows × 1 columns

8.Independent Variable

```
In [206]:
y = df.iloc[:,1:]
y
```

Out[206]:

	pclass	sex	age	sibsp	parch	fare	embarked	class	who	adult_male	deck
0	3	male	22.0	1	0	7.2500	S	Third	man	True	0
1	1	female	38.0	1	0	71.2833	С	First	woman	False	С
2	3	female	26.0	0	0	7.9250	S	Third	woman	False	0
3	1	female	35.0	1	0	53.1000	S	First	woman	False	С
4	3	male	35.0	0	0	8.0500	S	Third	man	True	0
886	2	male	27.0	0	0	13.0000	S	Second	man	True	0
887	1	female	19.0	0	0	30.0000	S	First	woman	False	В
888	3	female	0.0	1	2	23.4500	S	Third	woman	False	0
889	1	male	26.0	0	0	30.0000	С	First	man	True	С
890	3	male	32.0	0	0	7.7500	Q	Third	man	True	0
891 rows × 14 columns											

6.Outlier Detection

In [232]:

```
sns.boxplot(data.age)
```

C:\Users\Anamay Tiwari\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

Out[232]:

<AxesSubplot:xlabel='age'>

In [234]:

```
prec99 = data.age.quantile(0.99)
prec99
```

Out[234]:

65.87

In [254]:

```
data = data[data.age<=prec99]
sns.boxplot(data.age,color='c')</pre>
```

C:\Users\Anamay Tiwari\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

Out[254]:

<AxesSubplot:xlabel='age'>

In [258]:

df.head()

Out[258]:

	survived	pclass	sex	age	sibsp	parch	fare	embarked	class	who	adult_male
0	0	3	male	22.0	1	0	7.2500	S	Third	man	True
1	1	1	female	38.0	1	0	71.2833	С	First	woman	False
27	0	1	male	19.0	3	2	263.0000	S	First	man	True
28	1	3	female	0.0	0	0	7.8792	Q	Third	woman	False
29	0	3	male	0.0	0	0	7.8958	S	Third	man	True
4											•

7. Encoding

```
In [269]:
```

```
#Label Encoding
```

from sklearn.preprocessing import LabelEncoder

```
In [270]:
```

```
le = LabelEncoder()
```

In [274]:

```
df.who = le.fit_transform(df.who) #Label Encoded Who column
```

In [275]:

```
df.head()
```

Out[275]:

	survived	pclass	sex	age	sibsp	parch	fare	embarked	class	who	adult_male	decl
0	0	3	29	1	1	0	7.2500	S	Third	1	True	(
1	1	1	52	2	1	0	71.2833	С	First	2	False	(
27	0	1	25	1	3	2	263.0000	S	First	1	True	(
28	1	3	0	2	0	0	7.8792	Q	Third	2	False	(
29	0	3	0	1	0	0	7.8958	S	Third	1	True	(
4												•

In [279]:

```
df.adult_male = le.fit_transform(df.adult_male)
```

In [284]:

```
df.alive = le.fit_transform(df.alive)
```

In [286]:

```
df.alone = le.fit_transform(df.alone)
```

In [310]:

```
df.deck = le.fit_transform(df.deck)
```

In [321]:

```
df.embarked = le.fit_transform(df.alone)
```

In [322]:

```
df.head()
```

Out[322]:

	survived	pclass	sex	age	sibsp	parch	fare	embarked	class	who	adult_male	decl
0	0	3	29	1	1	0	7.2500	0	Third	1	1	(
1	1	1	52	2	1	0	71.2833	0	First	2	2	(
27	0	1	25	1	3	2	263.0000	0	First	1	1	(
28	1	3	0	2	0	0	7.8792	1	Third	2	2	į
29	0	3	0	1	0	0	7.8958	1	Third	1	1	
4												•

In [336]:

```
#One Hot encoding
df_main = pd.get_dummies(df,columns=['embark_town'])
```

In [337]:

```
df_main.head()
```

Out[337]:

fare	embarked	class	who	adult_male	deck	alive	alone	embark_town_0	embark_town_Che
7.2500	0	Third	1	1	0	0	0	0	_
71.2833	0	First	2	2	0	1	0	0	
263.0000	0	First	1	1	0	0	0	0	
7.8792	1	Third	2	2	1	1	1	0	
7.8958	1	Third	1	1	1	0	1	0	
4									•

```
In [338]:
```

```
df_main.corr()
```

Out[338]:

	survived	pclass	sex	age	sibsp	parch	
survived	1.000000	-0.340729	0.014421	0.327997	-0.027969	0.084976	0.26
pclass	-0.340729	1.000000	-0.356028	-0.194439	0.077995	0.002829	-0.55
sex	0.014421	-0.356028	1.000000	0.185727	-0.170721	-0.043989	0.13
age	0.327997	-0.194439	0.185727	1.000000	-0.123402	-0.062820	0.14
sibsp	-0.027969	0.077995	-0.170721	-0.123402	1.000000	0.424508	0.16
parch	0.084976	0.002829	-0.043989	-0.062820	0.424508	1.000000	0.22
fare	0.263684	-0.551198	0.138338	0.147645	0.160904	0.225947	1.00
embarked	-0.210584	0.145067	0.012029	0.001132	-0.580721	-0.589799	-0.27
who	0.327997	-0.194439	0.185727	1.000000	-0.123402	-0.062820	0.14
adult_male	0.327997	-0.194439	0.185727	1.000000	-0.123402	-0.062820	0.14
deck	-0.210584	0.145067	0.012029	0.001132	-0.580721	-0.589799	-0.27
alive	1.000000	-0.340729	0.014421	0.327997	-0.027969	0.084976	0.26
alone	-0.210584	0.145067	0.012029	0.001132	-0.580721	-0.589799	-0.27
embark_town_0	0.061468	-0.074912	0.070857	0.064241	-0.022681	-0.023036	0.04
embark_town_Cherbourg	0.171535	-0.249716	0.008076	0.031899	-0.057990	-0.002755	0.27
embark_town_Queenstown	0.007547	0.219664	-0.242625	0.112695	-0.035424	-0.082919	-0.11
embark_town_Southampton	-0.161607	0.089828	0.136678	-0.105131	0.075343	0.056604	-0.17
◀							•

5.Splitting data into Dependent and Independent Variables

```
In [425]:
```

```
# X & Y Split
#Y is dependent variable
y = df_main['survived']
y.head()
```

Out[425]:

```
0 7.2500
1 71.2833
27 263.0000
28 7.8792
29 7.8958
```

Name: fare, dtype: float64

```
In [463]:
```

```
X = df_main.drop(columns=['survived','class'],axis=1)
```

In [464]:

```
X.head()
```

Out[464]:

	pclass	sex	age	sibsp	parch	fare	embarked	who	adult_male	deck	alive	alone	€
0	3	29	1	1	0	7.2500	0	1	1	0	0	0	
1	1	52	2	1	0	71.2833	0	2	2	0	1	0	
27	1	25	1	3	2	263.0000	0	1	1	0	0	0	
28	3	0	2	0	0	7.8792	1	2	2	1	1	1	
29	3	0	1	0	0	7.8958	1	1	1	1	0	1	
4)	•

In [465]:

```
name = X.columns
```

In [466]:

name

Out[466]:

9.Scaling

In [467]:

```
from sklearn.preprocessing import MinMaxScaler
```

In [468]:

```
scale = MinMaxScaler()
```

```
In [469]:
```

```
X_scaled = scale.fit_transform(X)
X_scaled
Out[469]:
                                                        , 0.
array([[1.
                  , 0.32954545, 0.5 , ..., 0.
        1.
                  , 0.59090909, 1.
       [0.
        0.
                  , 0.28409091, 0.5
       [0.
                                                          , 0.
                                          , ..., 0.
        1.
                  ],
       . . . ,
                             , 1.
                  , 0.
                                                           , 0.
       [1.
        1.
                  ],
                  , 0.39772727, 0.5
       [0.
        0.
                  , 0.48863636, 0.5
       [1.
        0.
                  ]])
```

In [470]:

```
X = pd.DataFrame(X_scaled,columns=name)
X
```

Out[470]:

	pclass	sex	age	sibsp	parch	fare	embarked	who	adult_male	deck	alive
0	1.0	0.329545	0.5	0.125	0.000000	0.014151	0.0	0.5	0.5	0.0	0.0
1	0.0	0.590909	1.0	0.125	0.000000	0.139136	0.0	1.0	1.0	0.0	1.0
2	0.0	0.284091	0.5	0.375	0.333333	0.513342	0.0	0.5	0.5	0.0	0.0
3	1.0	0.000000	1.0	0.000	0.000000	0.015379	1.0	1.0	1.0	1.0	1.0
4	1.0	0.000000	0.5	0.000	0.000000	0.015412	1.0	0.5	0.5	1.0	0.0
861	0.5	0.409091	0.5	0.000	0.000000	0.025374	1.0	0.5	0.5	1.0	0.0
862	0.0	0.284091	1.0	0.000	0.000000	0.058556	1.0	1.0	1.0	1.0	1.0
863	1.0	0.000000	1.0	0.125	0.333333	0.045771	0.0	1.0	1.0	0.0	0.0
864	0.0	0.397727	0.5	0.000	0.000000	0.058556	1.0	0.5	0.5	1.0	1.0
865	1.0	0.488636	0.5	0.000	0.000000	0.015127	1.0	0.5	0.5	1.0	0.0
866 rows × 16 columns											

10.Train Test Split

In [471]:

from sklearn.model_selection import train_test_split

In [472]:

X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.2,random_state=0)

In [473]:

X_train.head()

Out[473]:

	pclass	sex	age	sibsp	parch	fare	embarked	who	adult_male	deck	alive
711	1.0	0.727273	1.0	0.125	0.500000	0.067096	0.0	1.0	1.0	0.0	0.0
156	0.5	0.000000	0.5	0.000	0.000000	0.029376	1.0	0.5	0.5	1.0	0.0
356	1.0	0.068182	0.0	0.000	0.333333	0.030726	0.0	0.0	0.0	0.0	1.0
630	0.5	0.363636	0.5	0.250	0.000000	0.143462	0.0	0.5	0.5	0.0	0.0
50	1.0	0.386364	0.5	0.000	0.000000	0.014932	1.0	0.5	0.5	1.0	0.0
4											•

In [474]:

X_test.head()

Out[474]:

	pclass	sex	age	sibsp	parch	fare	embarked	who	adult_male	deck	alive
378	1.0	0.420455	0.5	0.125	0.000000	0.030937	0.0	0.5	0.5	0.0	0.0
101	1.0	0.000000	0.5	0.000	0.000000	0.015127	1.0	0.5	0.5	1.0	0.0
631	1.0	0.000000	0.5	0.000	0.000000	0.015412	1.0	0.5	0.5	1.0	0.0
175	1.0	0.420455	0.5	0.000	0.000000	0.018543	1.0	0.5	0.5	1.0	0.0
77	0.0	0.318182	0.5	0.000	0.166667	0.150855	0.0	0.5	0.5	0.0	0.0
4											•

```
In [475]:
```

```
y_train
Out[475]:
       34.3750
736
       15.0500
181
       15.7417
381
       73.5000
655
75
        7.6500
       14.1083
860
217
       27.0000
        6.7500
654
584
        8.7125
709
       15.2458
Name: fare, Length: 692, dtype: float64
In [476]:
y_test
Out[476]:
403
       15.8500
126
        7.7500
656
        7.8958
        9.5000
200
102
       77.2875
427
       26.0000
64
       27.7208
286
        9.5000
280
        7.7500
43
       41.5792
Name: fare, Length: 174, dtype: float64
In [477]:
from sklearn.linear_model import LinearRegression
lr = LinearRegression()
```

```
In [478]:
```

```
lr.fit(X_train,y_train)
```

Out[478]:

LinearRegression()

In [479]:

```
#Test the model
y_pred = lr.predict(X_test)
y_pred
```

Out[479]:

```
array([ 1.58500000e+01,
                          7.75000000e+00,
                                            7.89580000e+00,
                                                              9.50000000e+00,
        7.72875000e+01,
                                            1.30000000e+01,
                                                              7.62920000e+00,
                          1.30000000e+01,
        2.91250000e+01,
                          7.75000000e+00,
                                            1.05000000e+01,
                                                              2.30000000e+01,
        1.26500000e+01,
                          5.50000000e+01,
                                            5.14792000e+01,
                                                              7.62917000e+01,
        7.65000000e+00,
                          2.65500000e+01,
                                            7.75000000e+00,
                                                              1.87875000e+01,
        3.00000000e+01,
                          2.60000000e+01,
                                            6.93000000e+01,
                                                              1.58500000e+01,
        8.40420000e+00,
                          7.75000000e+00,
                                            2.60000000e+01,
                                                              5.64958000e+01,
        7.05000000e+00.
                          7.22500000e+00.
                                            2.60000000e+01,
                                                              7.52080000e+00.
        8.36250000e+00,
                          1.05000000e+01,
                                            1.44542000e+01,
                                                               5.64958000e+01,
        8.05000000e+00,
                          7.92500000e+00,
                                            1.34500000e+02,
                                                              7.92000000e+01,
        3.90000000e+01,
                          7.89580000e+00,
                                            1.30000000e+01,
                                                              1.30000000e+01,
        8.66250000e+00,
                          9.00000000e+00,
                                            9.22500000e+00,
                                                              7.75000000e+00,
        1.30000000e+01,
                          1.30000000e+01,
                                            1.87500000e+01,
                                                              7.77500000e+00,
        7.05420000e+00,
                          1.95000000e+01,
                                            7.67292000e+01,
                                                              7.22500000e+00,
        3.00708000e+01,
                          1.45000000e+01,
                                            7.75000000e+00,
                                                              7.74170000e+00,
        1.45000000e+01,
                          1.12417000e+01,
                                            3.35000000e+01,
                                                              1.05000000e+01,
        2.85000000e+01,
                          7.85420000e+00,
                                                              7.05000000e+00,
                                            2.79000000e+01,
                                           -1.12889967e-13,
        8.05000000e+00,
                          1.30000000e+01,
                                                              3.12750000e+01,
        7.89580000e+00,
                                           -1.12889967e-13,
                                                              9.50000000e+00,
                          1.01708000e+01,
        8.13750000e+00,
                          7.82920000e+00,
                                            3.30000000e+01,
                                                              1.64866700e+02,
        7.73750000e+00,
                          9.21670000e+00,
                                            2.97000000e+01,
                                                              2.62875000e+01,
                          2.60000000e+01,
                                            8.43330000e+00,
        2.54667000e+01,
                                                              2.23583000e+01,
        1.15000000e+01,
                          1.30000000e+01,
                                            1.22750000e+01,
                                                              3.96875000e+01,
        7.75000000e+00,
                          1.30000000e+01,
                                            8.51670000e+00,
                                                              7.49580000e+00,
        3.55000000e+01,
                          8.05000000e+00,
                                            7.92000000e+01,
                                                              7.77500000e+00,
        5.18625000e+01,
                          7.85420000e+00,
                                            7.85420000e+00,
                                                              2.77208000e+01,
        2.65500000e+01,
                          7.72920000e+00,
                                            1.52458000e+01,
                                                              7.25000000e+00,
        3.00000000e+01,
                          7.05000000e+00,
                                            7.75000000e+00,
                                                              2.63000000e+02,
        1.30000000e+01,
                          7.22920000e+00,
                                            8.21708000e+01,
                                                              2.05250000e+01,
        2.77500000e+01,
                          2.10750000e+01,
                                            8.91042000e+01,
                                                              1.35000000e+01,
        2.60000000e+01,
                          2.60000000e+01,
                                            8.05000000e+00,
                                                              7.92500000e+00,
        5.25542000e+01,
                          3.90000000e+01,
                                            7.89580000e+00,
                                                               3.96000000e+01,
        1.28750000e+01,
                          1.24750000e+01,
                                            8.05000000e+00,
                                                              7.25000000e+00,
        2.40000000e+01,
                          5.20000000e+01,
                                            2.60000000e+01,
                                                              2.25250000e+01,
        5.20000000e+01,
                          7.25000000e+00,
                                                              7.85420000e+00,
                                            7.89580000e+00,
        2.79000000e+01,
                          1.51550000e+02,
                                            5.64958000e+01,
                                                              6.66000000e+01,
        7.12833000e+01,
                          2.10000000e+01,
                                                              1.05000000e+01,
                                            1.23500000e+01,
                          1.30000000e+01,
                                                              2.05250000e+01,
        1.58500000e+01,
                                            6.49580000e+00,
        1.92583000e+01,
                          5.50000000e+01,
                                            2.11500000e+02,
                                                              7.82920000e+00,
        2.41500000e+01,
                          9.35000000e+00,
                                           -1.12889967e-13,
                                                              8.05000000e+00,
        1.55000000e+01,
                          8.05000000e+00,
                                            9.58750000e+00,
                                                              2.02125000e+01,
        2.97000000e+01,
                          1.05000000e+01,
                                            1.52458000e+01,
                                                              1.80000000e+01,
        7.22920000e+00,
                          2.60000000e+01,
                                            2.77208000e+01,
                                                              9.50000000e+00,
        7.75000000e+00,
                          4.15792000e+01])
```

In [480]:

```
y_pred
```

Out[480]:

```
array([ 1.58500000e+01,
                                            7.89580000e+00,
                                                              9.50000000e+00,
                          7.75000000e+00,
        7.72875000e+01,
                          1.30000000e+01,
                                            1.30000000e+01,
                                                              7.62920000e+00,
                          7.75000000e+00,
        2.91250000e+01,
                                            1.05000000e+01,
                                                              2.30000000e+01,
        1.26500000e+01,
                          5.50000000e+01,
                                            5.14792000e+01,
                                                              7.62917000e+01,
        7.65000000e+00,
                                            7.75000000e+00,
                                                              1.87875000e+01,
                          2.65500000e+01,
        3.00000000e+01,
                          2.60000000e+01,
                                            6.93000000e+01,
                                                              1.58500000e+01,
        8.40420000e+00,
                          7.75000000e+00,
                                            2.60000000e+01,
                                                              5.64958000e+01,
        7.05000000e+00,
                          7.22500000e+00,
                                            2.60000000e+01,
                                                              7.52080000e+00,
        8.36250000e+00,
                          1.05000000e+01,
                                            1.44542000e+01,
                                                              5.64958000e+01,
        8.05000000e+00,
                          7.92500000e+00.
                                            1.34500000e+02,
                                                              7.92000000e+01.
                          7.89580000e+00,
        3.90000000e+01,
                                            1.30000000e+01,
                                                               1.30000000e+01,
        8.66250000e+00,
                          9.00000000e+00,
                                            9.22500000e+00,
                                                              7.75000000e+00,
        1.30000000e+01,
                          1.30000000e+01,
                                            1.87500000e+01,
                                                              7.77500000e+00,
        7.05420000e+00,
                          1.95000000e+01,
                                            7.67292000e+01,
                                                              7.22500000e+00,
        3.00708000e+01,
                          1.45000000e+01,
                                            7.75000000e+00,
                                                              7.74170000e+00,
        1.45000000e+01,
                          1.12417000e+01,
                                            3.35000000e+01,
                                                              1.05000000e+01,
        2.85000000e+01,
                          7.85420000e+00,
                                            2.79000000e+01,
                                                              7.05000000e+00,
        8.05000000e+00,
                          1.30000000e+01, -1.12889967e-13,
                                                               3.12750000e+01,
        7.89580000e+00,
                          1.01708000e+01,
                                           -1.12889967e-13,
                                                              9.50000000e+00,
        8.13750000e+00,
                          7.82920000e+00,
                                            3.30000000e+01,
                                                              1.64866700e+02,
        7.73750000e+00,
                          9.21670000e+00,
                                                              2.62875000e+01,
                                            2.97000000e+01,
        2.54667000e+01,
                          2.60000000e+01,
                                            8.43330000e+00,
                                                               2.23583000e+01,
        1.15000000e+01,
                          1.30000000e+01,
                                            1.22750000e+01,
                                                              3.96875000e+01,
        7.75000000e+00,
                          1.30000000e+01,
                                            8.51670000e+00,
                                                              7.49580000e+00,
        3.55000000e+01,
                          8.05000000e+00,
                                            7.92000000e+01,
                                                              7.77500000e+00,
        5.18625000e+01,
                          7.85420000e+00,
                                            7.85420000e+00,
                                                              2.77208000e+01,
        2.65500000e+01,
                          7.72920000e+00,
                                            1.52458000e+01,
                                                              7.25000000e+00,
        3.00000000e+01,
                          7.05000000e+00,
                                            7.75000000e+00,
                                                              2.63000000e+02,
        1.30000000e+01,
                          7.22920000e+00,
                                            8.21708000e+01,
                                                              2.05250000e+01,
        2.77500000e+01,
                          2.10750000e+01,
                                            8.91042000e+01,
                                                               1.35000000e+01,
        2.60000000e+01,
                          2.60000000e+01,
                                            8.05000000e+00,
                                                              7.92500000e+00,
        5.25542000e+01,
                          3.90000000e+01,
                                            7.89580000e+00,
                                                              3.96000000e+01,
        1.28750000e+01,
                          1.24750000e+01,
                                            8.05000000e+00,
                                                              7.25000000e+00,
        2.40000000e+01,
                          5.20000000e+01,
                                            2.60000000e+01,
                                                               2.25250000e+01,
        5.20000000e+01,
                          7.25000000e+00,
                                            7.89580000e+00,
                                                              7.85420000e+00,
        2.79000000e+01,
                          1.51550000e+02,
                                            5.64958000e+01,
                                                              6.66000000e+01,
        7.12833000e+01,
                          2.10000000e+01,
                                            1.23500000e+01,
                                                               1.05000000e+01,
        1.58500000e+01,
                          1.30000000e+01,
                                            6.49580000e+00,
                                                              2.05250000e+01,
        1.92583000e+01,
                          5.50000000e+01,
                                            2.11500000e+02,
                                                              7.82920000e+00,
        2.41500000e+01,
                          9.35000000e+00, -1.12889967e-13,
                                                              8.05000000e+00,
        1.55000000e+01,
                          8.05000000e+00,
                                            9.58750000e+00,
                                                              2.02125000e+01,
        2.97000000e+01,
                          1.05000000e+01,
                                            1.52458000e+01,
                                                              1.80000000e+01,
        7.22920000e+00,
                          2.60000000e+01,
                                            2.77208000e+01,
                                                              9.50000000e+00,
        7.75000000e+00,
                          4.15792000e+01])
```

In [487]:

```
from sklearn.metrics import r2_score
acc = r2_score(y_pred,y_test)
acc
```

Out[487]:

1.0

```
In [482]:
```

```
y_test
Out[482]:
403
       15.8500
        7.7500
126
        7.8958
656
200
        9.5000
102
       77.2875
427
       26.0000
64
       27.7208
        9.5000
286
280
        7.7500
43
       41.5792
Name: fare, Length: 174, dtype: float64
In [486]:
E = y_pred - y_test
Ε
Out[486]:
      -2.309264e-14
403
126
      8.881784e-14
656
      -1.429967e-13
      -6.572520e-14
200
102
      -1.421085e-13
           . . .
427
      -7.105427e-15
64
      4.263256e-14
      -3.907985e-14
286
280
      2.611245e-13
43
      -5.684342e-14
Name: fare, Length: 174, dtype: float64
In [ ]:
In [488]:
from sklearn.metrics import r2_score
r2_score(pred,y_test)*100
Out[488]:
29.59803876819417
In [ ]:
```

In []:		