Transformadas de Laplace

F(t)	$\mathbf{f}\left\{F(t)\right\} = f(s)$
1	$\frac{1}{s}$, $s > 0$
t	$\frac{1}{s^2}, s > 0$
t^n $n = 1, 2, 3$	$\frac{n!}{s^{n+1}}, s > 0$
$t^n n > -1$	$\frac{\Gamma(n+1)}{s^{n+1}}, \ s>0$
\sqrt{t}	$\frac{\sqrt{\pi}}{2}s^{\frac{-3}{2}}$
$\frac{1}{\sqrt{t}}$	$\sqrt{\pi} s^{\frac{-1}{2}}$
e at	$\frac{1}{s-a} , s > a$
senat	$\frac{a}{s^2 + a^2} , s > 0$
cosat	$\frac{s}{s^2 + a^2} , s > 0$
sen h(at)	$\frac{a}{s^2 - a^2} , s > a $
$\cos h(at)$	$\left \frac{s}{s^2-a^2}, s> a \right $
$e^{at}sen(wt)$	$\frac{w}{\left(s-a\right)^2+w^2} \ , \ s>a$

F(t)	
$e^{at}\cos(wt)$	$\frac{s-a}{\left(s-a\right)^2+w^2} \ , \ s>a$
t sen(wt)	$\frac{2ws}{\left(s^2+w^2\right)^2} \ , \ s>0$
$t\cos(wt)$	$\frac{s^2 - w^2}{\left(s^2 + w^2\right)^2}, \ s > 0$
[F'(t)]	$s \mathbf{f}[F(t)] - F(0)$
[F''(t)]	$s^{2} \mathcal{L}\left[F(t)\right] - sF(0) - F'(0)$
$\left[F^n(t)\right]$	$s^{n} [F(t)] - s^{n-1} F(0) - s^{n-2} F'(0) - \dots - F^{n-1}(0)$

$$\mathbf{f}(F(t)) = f(s) \Rightarrow \frac{-d}{ds} F(s) = \mathbf{f}(t F(t))$$

$$f * g = \int_{0}^{t} f(u)g(t-u)du$$

$$\mathbf{f}\left(\int_0^t F(u) \ G(t-u)du\right) = f(s) \bullet g(s)$$

$$\mathcal{J}^{-1}[f(s)\bullet g(s)] = \int_0^t F(u) G(t-u) du = F * G$$

$$\mathbf{f}^{-1} \left[\frac{f(s)}{s} \right] = \int_0^t f(\theta) \, d\theta$$

Escalón

$$\mathbf{f}\left[U_{a}(t)\right] = \frac{e^{-as}}{s}$$

Segundo teorema de traslación

$$\mathbf{f}\left[f\left(t-a\right)\mu_{a}\left(t\right)\right]=e^{-as}F(s)$$

$$\mathcal{L}^{-1}\left[e^{-as} F(s)\right] = f\left(t - a\right) \mu_a(t)$$