Государственное автономное профессиональное образовательное учреждение Свердловской области «Уральский радиотехнический колледж им. А. С. Попова»

«Электротехника»

Рабочая тетрадь

для лабораторных работ

Профессия 09.01.03 «Мастер по обработке цифровой информации» Общепрофессиональный цикл

Студента		
Группа		

Соответствует рабочей программе специальностей 09.01.03

УТВЕРЖДЕНО	
ЦМК «Радиотехнических	дисциплин»
Протокол от «26» января	2023 г. №
Председатель ЦМК	О. А. Терентьева

Лабораторные работы предназначены для закрепления теоретического материала и поэтому выполняются после его изучения.

Лабораторные работы формируют практические навыки работы с радиоэлектронной аппаратурой и измерительными приборами, а так же самостоятельное мышление при анализе полученных результатов.

При выполнении лабораторных работ следует строго придерживаться правил техники безопасности и методических указаний.

Графические построения выполняются аккуратно, карандашом.

Расчеты и выводы прописываются четко, без сокращений.

Автор: Лебёдкин Р. Н.

Лабораторная работа № 1

«Инструктаж по технике безопасности. Определение цены деления шкал приборов»

Цель работы: Изучение инструкции по охране труда и технике безопасности.

В результате выполнения работы студент имеет возможность применить знания и умения области практической профессиональной деятельности:

- разработка, расчет и сборка радиоэлектронной аппаратуры;
- технического обслуживания и ремонта радиоэлектронной аппаратуры;
- настройка и наладка радиоэлектронной аппаратуры.

Для выполнения лабораторной работы студент должен повторить следующие разделы дисциплин:

- основы метрологии (ЭРИ);
- охрана труда;

1. Инструктаж по охране труда и технике безопасности

Первичный инструктаж по охране труда и технике безопасности (ОТ и ТБ) на рабочем месте проводится со студентами до начала работ. Инструктаж завершается проверкой знаний устным опросом. Студенты показавшие неудовлетворительные знания, к лаб. работам не допускаются и должны вновь пройти инструктаж . О проведении первичного инструктажа проводивший инструктаж (преподаватель или зав. лабораторией) делает запись в журнале регистрации инструктажа на рабочем месте с обязательной подписью инструктируемого и инструктирующего.

<u>Первичный инструктаж</u> проводится со студентами при проведении практических занятий в учебных лабораториях, при проведении внеклассных занятий в лабораториях.

Если курс лабораторных работ растягивается на весь год, то до начала лабораторных работ во II семестре, каждый студент проходит <u>повторный инструктаж</u> по охране труда и технике безопасности с записью в журнале регистрации инструктажа.

Лабораторные работы выполняются в порядке, установленном настоящей инструкцией и руководством по проведению лабораторных работ.

Каждый студент обязан тщательно изучить порядок работы и инструкции по пользованию приборами и оборудованием.

Необходимо помнить, что основой всякой безопасной работы является:

- 1. высокая трудовая дисциплина;
- 2. собранность;
- 3. организованность.

При проведении практических и лабораторных работ студентам запрещается:

- 1. переходить с одного рабочего места на другое;
- 2. держать на рабочем месте посторонние предметы (сумки, шапки и т.д.);
- 3. громко разговаривать на отвлеченные темы;
- 4. отвлекать от работы товарищей;
- 5. находиться в верхней одежде;
- 6. выходить из помещения без разрешения преподавателя или зав. лабораторией.

В помещениях лабораторий необходимо строго соблюдать дисциплину, следить за чистотой и порядком.

Специальные требования перед началом работы:

Внимательно изучить ход проведения лаб. работ, инструкции по пользованию приборами и оборудованием. Убедиться, что аппаратура отключена, и путем внешнего осмотра убедиться в том, что:

- 1. тумблеры включения питания каждого прибора на рабочем месте находятся в положении «выкл»;
- 2. металлические корпуса приборов надежно соединены с шиной заземления;
- 3. у всех приборов имеются в наличии все клеммы, головки предохранительных патронов, переключатели органов управления и регулировки;
- 4. применяемые провода не имеют нарушений внешней изоляции и внутренних изломов;
- 5. электрические шнуры, вилки, розетки исправны, отсутствуют открытые токоведущие части.

При обнаружении неисправностей электропроводки, оборудования, приборов и других недостатков следует немедленно поставить в известность преподавателя или зав. лабораторией.

Студентам запрещается самостоятельно устранять обнаруженные неисправности электропроводки и оборудования.

Во время проведения практических занятий:

Собрать схему в соответствии с инструкцией по проведению практического занятия, при этом:

- 1. Подбирать провода необходимой длины, чтобы они были не натянуты, а лежали свободно;
- 2. Наконечники в клеммных соединениях и провода должны быть расположены так, чтобы обеспечивался легкий доступ ко всем органам регулировки прибора без опасности поражения электрическим током в процессе выполнения работы.

После завершения сборки электрической схемы необходимо ее еще раз самостоятельно проверить согласно инструкции и предъявить на проверку преподавателю или зав. лабораторией.

Преподаватель или зав. лабораторией после проверки сборки электрической схемы у студентов дает разрешение на включение схемы. Напряжение подается включением тумблеров на стенде.

Распределительный щит находится в препараторской лаборатории.

После включения под напряжение приборов, оборудования и собранной схемы студентам категорически запрещается:

- 1. подправлять расположение проводников и контактов;
- 2. производить какие-либо изменения в схеме и подключать к ней дополнительные приборы;
- 3. подключать незадействованные приборы к электрической сети;
- 4. самостоятельно искать какие-либо неисправности в схеме и устранять их;
- 5. производить пересоединение проводов в схеме.

Необходимо помнить, что только преподаватель или зав. лабораторией имеют право на включение рубильника распределительного щита лаборатории, а также устранять выявленные неисправности.

Все действия, связанные с проведением операции по измерению и регулировке электрических параметров лабораторного комплекса должны производиться

спокойными плавными движениями, осторожно и аккуратно. Если в процессе проведения лаб. работ обнаруживаются неисправности приборов, оборудования, появляется запах дыма, горения, необходимо немедленно сообщить преподавателю или зав. лабораторией, прекратить работу и отключить оборудование и приборы от электрической сети.

В случае поражения электрическим током все работы в лаборатории прекращаются и преподаватель или зав. лабораторией устанавливает причину происшествия.

При этом все рабочие столы обесточиваются снятием электрического напряжения путем выключения рубильника распределительного щита.

По окончании работ:

Закончив все операции, предусмотренные «Руководством к проведению лабораторной работы», выключить все приборы, оборудование и доложить об окончании лабораторной работы, С разрешения преподавателя или заведующего лабораторией произвести разборку схемы, привести в порядок рабочее место и сдать приборы лаборанту.

Если в процессе практических занятий студентами будут нарушены правила охраны труда и техники безопасности, они удаляются из лаборатории и допускаются к работе после изучения «Инструкции по охране труда и техники безопасности», инструктажа на рабочем месте с проверкой знаний устным опросом.

2. Измерительные приборы. Общие понятия.

Измерительный прибор – средство измерения, предназначенное для выработки сигнала информации, доступного для непосредственного восприятия.

Диапазон показаний – область, ограниченная начальным и конечным значениями измеряемой величины.

На рис. 2.1 начальное значение шкалы $X_H = 0$, конечное значение $X_K = 5$. Это крайние отметки. 0,1,2,3,4,5 – числовые отметки шкалы,

2,5,4,5 — числовые отметки шкалы, Рис. 2.1 Диапазон показаний - (0 - 5).

Диапазон измерений – область значений измеряемой величины, для которой нормированы допустимые погрешности данного средства измерения.

При равномерной шкале диапазон показаний совпадает с диапазоном измерения, при неравномерной шкале они не совпадают.

В рассматриваемом примере (рис.2.1) диапазон измерений ограничен точками числовых отметок 1 и 5, т.е. диапазон измерения - (0 - 5).

Предел измерения — наибольшее или наименьшее значение диапазона измерений. На рис.2,1 нижний предел — 1, верхний предел — 5.

Наминал прибора – максимальное измеряемое значение.

Класс точности прибора характеризуется приведенной погрешностью прибора $\gamma = \Delta/X H^* 100\%$.

Для амперметров и вольтметров установлены следующие классы точности: 0,05; 0,1; 0,2; 1,0; 1,5; 2,5; 4,0; 5,0.

На шкале любого прибора имеются обозначения, позволяющие определить его

Характеристики, указанные на шкале прибора:

Условные обозначения

1. Система измерительного механизма:

Магнитоэлектрическая

Электромагнитная

Электродинамическая

Ферродинамическая

Электростатическая

Индукционная

Вибрационная

Выпрямительная

Термоэлектрическая

- 2. Класс точности прибора
- 3. Род тока

Постоянный

Переменный

4. Рабочее положение прибора

Вертикальное

Горизонтальное

5. Прочность изоляции прибора, кВ Определение цены деления шкалы прибора:

цена.деления =
$$\frac{наминал}{кол.делний}$$

Таблица 1 – Основные данные приборов

, <u> </u>	I
Наименование прибора	
Система измерительного механизма прибора	
Номинал прибора	
Цена деления шкалы прибора	
на каждом номинале прибора	
Интервалы измерения на	
каждом номинале прибора	
Класс точности прибора	
Рабочее положение шкалы	
прибора	
Прочность изоляции прибора	
Для измерения какого рода	
тока применяется прибор	

4. Цифровой мультиметр.

ОСОБЕННОСТИ

*Знак треугольника с восклицательным знаком внутри и "молнией" снаружи рядом с гнездами шупов означает, что напряжение или ток на входе не должны превышать указанные значения. Это необходимо для предупреждения повреждения внутренних цепей.

4.1.Измерение постоянного/переменного напряжения

Соедините ЧЕРНЫЙ щуп с гнездом СОМ, а КРАСНЫЙ - с гнездом V/Ω .

Установите переключатель на нужный предел V= (для постоянного напряжения), V~ (для переменного) и присоедините щупы к источнику или нагрузке. Мультиметр в режиме измерения напряжения подключается в цепь параллельно измеряемому участку. Полярность КРАСНОГО щупа в цепи будет указана одновременно с напряжением.

Если порядок контролируемого напряжения заранее не известен, начните контроль с самого большого предела и переключайте предел в сторону уменьшения.

Если индицируется только "1" в старшем разряде, то это указание на перегрузку мультиметра. Надо переключиться на более высокий предел.

4.2.Измерение постоянного/переменного тока

Соедините ЧЕРНЫЙ щуп с гнездом СОМ, а КРАСНЫЙ - с гнездом mA (для предела 200 мA) *только для Л.Р №15*, с гнездом 10 A (для номинала 10A).

^{*}Один переключатель на 24 положения для выбора рода работы или предела.

^{*}Высокая чувствительность - 100 мкВ.

^{*}Автоматическая индикация перегрузки - "1" в старшем разряде.

^{*}Автоматическое определение полярности постоянного напряжения или тока.

^{*}Все пределы защищены от перегрузок.

Установите переключатель на нужный предел A= (для постоянного тока), A~ (для переменного тока) и присоедините щупы к источнику или нагрузке. Мультиметр в режиме измерения тока подключается в цепь последовательно измеряемому участку. Полярность КРАСНОГО щупа в цепи будет указана одновременно с величиной тока.

Если порядок величины тока заранее не известен, начните контроль с самого большого предела и переключайте предел в сторону уменьшения.

Если индицируется только "1" в старшем разряде, то это указание на перегрузку мультиметра. Надо переключиться на более высокий предел.

4.3. Номиналы мультиметра

Таблица 2 – Номиналы мультиметра

Измеряемая величина	1	2	3	4	5	6
Постоянное напряжение (V=), В						
Переменное напряжение (V~), В						
Постоянный ток (A=), А						
Переменный ток (A~), А						
Сопротивление (Ω), Ом						

Заполнить таблицу «Номиналы мультиметра»

5. Оформить отчет.

Вывод	о проделанной работе.		

Лабораторная работа № 2

«Исследование электрических цепей при последовательном, параллельном и смешанном соединении резисторов»

Цель работы: Научиться собирать электрические цепи и проверить правильность выводов теории.

В результате выполнения работы студент имеет возможность применить знания и умения области практической профессиональной деятельности:

- разработка, расчет и сборка радиоэлектронной аппаратуры;
- технического обслуживания и ремонта радиоэлектронной аппаратуры;
- настройка и наладка радиоэлектронной аппаратуры.

Для выполнения лабораторной работы студент должен повторить следующие разделы дисциплин:

- основы метрологии (ЭРИ);
- закон Ома для участка цепи (Физика);

1.Оборудование и приборы

- 1.1.Источник электрической энергии <u>постоянного</u> тока $\pm 30 \text{ B}$;
- 1.2. Магазин сопротивлений 3 шт.;
- 1.3. Амперметр на 1 A 3 шт.;
- 1.4. Прибор М 92 для измерения постоянного тока (предел 10 А);
- 1.5. Прибор М 92 для измерения постоянного напряжения (предел 200 В);
- 1.6.Соединительные провода;

2.Предварительные вопросы:

- 2.1. Какое соединение резисторов называется последовательным?
- 2.2.Основные закономерности такого соединения.
- 2.3. Какое соединение резисторов называется параллельным?
- 2.4. Основные закономерности такого соединения?
- 2.5. Какое соединение называется смешанным?
- 2.6. Как включаются амперметры и вольтметры при последовательном, параллельном и смешанном соединении?

3. Порядок выполнения работы

3.1.Собрать цепь по схеме 1, предъявить ее для проверки руководителю занятий (преподавателю, лаборанту).

Pисунок 1- Схема включения резисторов. Опыт 1

- 3.2. Сделать измерения, результаты занести в таблицу 1.
- 3.3.Собрать цепь по схеме 2, предъявить ее для проверки руководителю занятий (преподавателю, лаборанту).

Рисунок 2 – Схема включения резисторов. Опыт 2

- 3.4. Сделать измерения, результаты занесите в таблицу 1.
- 3.5.Собрать цепь по схеме 3, предъявить ее для проверки руководителю занятий (преподавателю, лаборанту).

Рисунок 3 – Схема включения резисторов. Опыт 3

3.6. Сделать измерения, результаты занести в таблицу1.

Таблица 1 - результаты измерений

1 иолица 1 — результиты измерении					
1	2	3	4	5	6
Вид соединения		R1	R2	R3	Вся цепь
	I(A)				
Последовательное	U(B)				
	R(Ом)				* **
	I(A)				
Параллельное	U(B)				
1	R(O _M)				* **
Смешанное	I(A)				
	U(B)				
	R(Ом)				* **

Примечание: Величины сопротивлений R1, R2, R3, R3 в колонках 3, 4, 5 и **6**** рассчитать по результатам опытов, применив закон Ома, а в колонке **6*** по формуле эквивалентного сопротивления для данной цепи.

4. Оформить отчет
4.1. Произвести расчеты, написать вывод о проделанной работе.