Neural Networks

Dr. Jameel Malik

muhammad.jameel@seecs.edu.pk

Backpropagation in Neural Networks

Training data

Features			class
1.4	2.7	1.9	0
3.8	3.4	3.2	0
6.4	2.8	1.7	1
4.1	0.1	0.2	0
etc	• • •		

Adjust weights based on error

Neural Network

Gradient Descent Algorithm -- Recap

- Steps in the *gradient descent algorithm*:
 - 1. Randomly initialize the model parameters, θ^0
 - 2. Compute the gradient of the loss function at the initial parameters θ^0 : $\nabla \mathcal{L}(\theta^0)$
 - 3. Update the parameters as: $\theta^{new} = \theta^0 \alpha \nabla \mathcal{L}(\theta^0)$
 - \circ Where α is the learning rate
 - 4. Go to step 2 and repeat (until a terminating criterion is reached)

$$f(x, y, z) = (x + y)z$$

e.g. $x = -2$, $y = 5$, $z = -4$

A simple Computational Graph / Circuit

$$f(x, y, z) = (x + y)z$$

e.g. $x = -2$, $y = 5$, $z = -4$

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

A simple Computational Graph / Circuit

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y$$
 $\frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

 $\frac{\partial f}{\partial z}$

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y$$
 $\frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

 $\frac{\partial f}{\partial z}$

$$f(x, y, z) = (x + y)z$$

e.g. $x = -2$, $y = 5$, $z = -4$

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y$$
 $\frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y$$
 $\frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

 $\frac{\partial f}{\partial y}$

$$f(x, y, z) = (x + y)z$$

e.g. $x = -2$, $y = 5$, $z = -4$

$$q=x+y$$
 $\frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

Chain rule:

$$\frac{\partial f}{\partial y} = \frac{\partial f}{\partial q} \frac{\partial q}{\partial y}$$

$$\frac{\partial f}{\partial y}$$

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y$$
 $\frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y$$
 $\frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

Chain rule:

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial q} \frac{\partial q}{\partial x}$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$f(x)=e^x \qquad o \qquad rac{df}{dx}=e^x \qquad f(x)=rac{1}{x} \qquad o \qquad rac{df}{dx}=-1/x^2 \ f_a(x)=ax \qquad o \qquad rac{df}{dx}=a \qquad f_c(x)=c+x \qquad o \qquad rac{df}{dx}=1$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$f(x)=e^x \qquad
ightarrow \qquad rac{df}{dx}=e^x \qquad \qquad f(x)=rac{1}{x} \qquad
ightarrow \qquad rac{df}{dx}=-1/x^2 \ f_a(x)=ax \qquad
ightarrow \qquad rac{df}{dx}=a \qquad \qquad f_c(x)=c+x \qquad
ightarrow \qquad rac{df}{dx}=1$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$f(x)=e^x \hspace{1cm}
ightarrow \hspace{1cm} rac{df}{dx}=e^x \hspace{1cm} f(x)=rac{1}{x} \hspace{1cm}
ightarrow \hspace{1cm} rac{df}{dx}=-1/x^2 \hspace{1cm} f_c(x)=ax \hspace{1cm}
ightarrow \hspace{1cm} rac{df}{dx}=a \hspace{1cm} f_c(x)=c+x \hspace{1cm}
ightarrow \hspace{1cm} rac{df}{dx}=1$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$f(x)=e^x \hspace{1cm}
ightarrow \hspace{1cm} rac{df}{dx}=e^x \hspace{1cm} f(x)=rac{1}{x} \hspace{1cm}
ightarrow \hspace{1cm} rac{df}{dx}=-1/x^2 \ f_a(x)=ax \hspace{1cm}
ightarrow \hspace{1cm} rac{df}{dx}=a \hspace{1cm} f(x)=c+x \hspace{1cm}
ightarrow \hspace{1cm} rac{df}{dx}=1$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$f(x)=e^x \hspace{1cm}
ightarrow \hspace{1cm} rac{df}{dx}=e^x \hspace{1cm} f(x)=rac{1}{x} \hspace{1cm}
ightarrow \hspace{1cm} rac{df}{dx}=-1/x^2 \ f_a(x)=ax \hspace{1cm}
ightarrow \hspace{1cm} rac{df}{dx}=a \hspace{1cm} f_c(x)=c+x \hspace{1cm}
ightarrow \hspace{1cm} rac{df}{dx}=1$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$egin{aligned} f(x) = e^x &
ightarrow & rac{df}{dx} = e^x \ f_a(x) = ax &
ightarrow & rac{df}{dx} = e^x \ f_c(x) = c + x &
ightarrow & rac{df}{dx} = -1/x^2 \ f_c(x) = c + x &
ightarrow & rac{df}{dx} = 1 \end{aligned}$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$egin{aligned} f(x) = e^x &
ightarrow & rac{df}{dx} = e^x \ \hline f_a(x) = ax &
ightarrow & rac{df}{dx} = e^x \ \hline f_c(x) = c + x &
ightarrow & rac{df}{dx} = -1/x^2 \ \hline f_c(x) = c + x &
ightarrow & rac{df}{dx} = 1 \ \hline \end{array}$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$f(x)=e^x \qquad
ightarrow \qquad rac{df}{dx}=e^x \qquad f(x)=rac{1}{x} \qquad
ightarrow \qquad rac{df}{dx}=-1/x^2 \ f_a(x)=ax \qquad
ightarrow \qquad rac{df}{dx}=a \qquad f_c(x)=c+x \qquad
ightarrow \qquad rac{df}{dx}=1$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$f(x)=e^x \qquad
ightarrow \qquad rac{df}{dx}=e^x \qquad f(x)=rac{1}{x} \qquad
ightarrow \qquad rac{df}{dx}=-1/x^2 \ f_a(x)=ax \qquad
ightarrow \qquad rac{df}{dx}=a \qquad f_c(x)=c+x \qquad
ightarrow \qquad rac{df}{dx}=1$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$f(x)=e^x \qquad
ightarrow \qquad rac{df}{dx}=e^x \qquad f(x)=rac{1}{x} \qquad
ightarrow \qquad rac{df}{dx}=-1/x^2 \ f_a(x)=ax \qquad
ightarrow \qquad rac{df}{dx}=a \qquad f_c(x)=c+x \qquad
ightarrow \qquad rac{df}{dx}=1$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$f(x)=e^x \hspace{1cm}
ightarrow \hspace{1cm} rac{df}{dx}=e^x \hspace{1cm} f(x)=rac{1}{x} \hspace{1cm}
ightarrow \hspace{1cm} rac{df}{dx}=-1/x^2 \ f_a(x)=ax \hspace{1cm}
ightarrow \hspace{1cm} rac{df}{dx}=a \hspace{1cm} f_c(x)=c+x \hspace{1cm}
ightarrow \hspace{1cm} rac{df}{dx}=1$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$\sigma(x) = rac{1}{1+e^{-x}}$$

sigmoid function

$$\frac{d\sigma(x)}{dx} = \frac{e^{-x}}{\left(1 + e^{-x}\right)^2} = \left(\frac{1 + e^{-x} - 1}{1 + e^{-x}}\right) \left(\frac{1}{1 + e^{-x}}\right) = \left(1 - \sigma(x)\right)\sigma(x)$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$\sigma(x) = rac{1}{1+e^{-x}}$$

sigmoid function

$$\frac{d\sigma(x)}{dx} = \frac{e^{-x}}{(1+e^{-x})^2} = \left(\frac{1+e^{-x}-1}{1+e^{-x}}\right) \left(\frac{1}{1+e^{-x}}\right) = (1-\sigma(x))\sigma(x)$$

Implementation: forward/backward API


```
class MultiplyGate(object):
    def forward(x,y):
        z = x*y
        self.x = x # must keep these around!
        self.y = y
        return z

    def backward(dz):
        dx = self.y * dz # [dz/dx * dL/dz]
        dy = self.x * dz # [dz/dy * dL/dz]
        return [dx, dy]
```

(x,y,z are scalars)

Implementation: forward/backward

1- Find generic equations for forward and backward propagation

2- Find gradient values for the following weights

weights = numpy.array([0.80, 0.87, 0.16, 0.96, 0.89, 0.87, 0.31, 0.08, 0.09, 0.69, 0.03, 0.42])

inputs = numpy.array([0.75,0.98,0.74,0.28])

biases = numpy.array([0.68, 0.83, 0.01])

Backpropagation Summary

- Modern NNs employ the *backpropagation* method for calculating the gradients of the loss function $\nabla \mathcal{L}(\theta) = \frac{\partial \mathcal{L}}{\partial \theta_i}$
 - Backpropagation is short for "backward propagation"
- For training NNs, forward propagation (forward pass) refers to passing the inputs *x* through the hidden layers to obtain the model outputs (predictions) *y*
 - The loss $\mathcal{L}(y, \hat{y})$ function is then calculated
 - Backpropagation traverses the network in reverse order, from the outputs y backward toward the inputs x to calculate the gradients of the loss $\nabla \mathcal{L}(\theta)$
 - The chain rule is used for calculating the partial derivatives of the loss function with respect to the parameters θ in the different layers in the network
- Each update of the model parameters θ during training takes one forward and one backward pass (e.g., of a batch of inputs)
- Automatic calculation of the gradients (automatic differentiation) is available in all current deep learning libraries
 - It significantly simplifies the implementation of deep learning algorithms, since it avoids deriving the partial derivatives
 of the loss function by hand

- In some cases, during training, the gradients can become either very small (vanishing gradients) of very large (exploding gradients)
 - They result in very small or very large update of the parameters
 - Solutions: change learning rate, ReLU activations, regularization

What happens when x = -10?

What happens when x = 0?

What happens when x = 10?

What happens when x = -10? (almost zero)

What happens when x = 0? (small value)

What happens when x = 10? (almost zero)

Activation Functions

Sigmoid

$$\sigma(x)=1/(1+e^{-x})$$

- Squashes numbers to range [0,1]
- 3 problems:
 - 1. Saturated neurons "kill" the gradients
 - 2. exp() is a bit compute expensive

Activation Functions

- Squashes numbers to range [-1,1]
- zero centered (nice)
- still kills gradients when saturated :(

[LeCun et al., 1991]

Activation Functions

ReLU (Rectified Linear Unit)

- Computes f(x) = max(0,x)
- Does not saturate (in +region)
- Very computationally efficient
- Converges much faster than sigmoid/tanh in practice (e.g. 6x)
- What happens when input is less than zero?

[Krizhevsky et al., 2012]

Activation Functions

ReLU (Rectified Linear Unit)

- Computes f(x) = max(0,x)
- Does not saturate (in +region)
- Very computationally efficient
- Converges much faster than sigmoid/tanh in practice (e.g. 6x)
- What happens when input is less than zero?
 - Gradients are zero

[Krizhevsky et al., 2012]

Activation Functions

Leaky ReLU

$$f(x) = \max(0.01x, x)$$

[Mass et al., 2013] [He et al., 2015]

- Does not saturate
- Computationally efficient
- Converges much faster than sigmoid/tanh in practice! (e.g. 6x)
- will not "die".

In Practice,

- Use ReLU. Be careful with your learning rates
- Try out Leaky ReLU
- Try out tanh but don't expect much
- Don't use sigmoid