1

AI1103 ASSIGNMENT 4

Name:MANNAM SARANDEEP,Rollno:CS20BTECH11030

Download the python code from

https://github.com/sarandeepmannam/ ASSIGNMENT4/blob/main/Assignment4.py

and latex-tikz code from

https://github.com/sarandeepmannam/ ASSIGNMENT4/blob/main/Assignment4.tex

1 Question-CSIR UGC NET June 2012,Q.50

Let $X_1, X_2,$ be i.i.d N(1,1) random variables.Let $S_n = X_1^2 + X_2^2 + ... + X_n^2$ for $n \ge 1$.Then

$$\lim_{n\to\infty}\frac{Var(S_n)}{n}=$$

- (A) 4
- (B) 6
- (C) 1
- (D) 0

2 SOLUTION-CSIR UGC NET JUNE 2012, Q.50

Lemma 2.1. If two normal random variables X, Y are independent then X^2, Y^2 are also independent.

Proof. : Since X and Y are normal random variables they can take any value in \mathbb{R} (set of real numbers). Now by the independence of X and Y,

$$Pr(X = x) = Pr(X = x | Y = y)$$
 (2.0.1)

$$Pr(X = x) = Pr(X = x|Y = -y)$$
 (2.0.2)

$$Pr(X = -x) = Pr(X = -x|Y = y)$$
 (2.0.3)

$$Pr(X = -x) = Pr(X = -x|Y = -y)$$
 (2.0.4)

Or Simply,

Since $X_1, X_2, X_3, ...$ are mutually independent random variables ,by using lemma (2.1) ,the random variables $X_1^2, X_2^2, X_3^2, ...$ are also mutually independent.

$$S_n = X_1^2 + X_2^2 + X_3^2 + \dots X_n^2$$
 (2.0.7)

Lemma 2.2. If X and Y are independent random variables

$$Var(X + Y) = Var(X) + Var(Y)$$
 (2.0.8)

Proof.

$$Var(X + Y) = E((X + Y)^{2}) - (E(X + Y))^{2} (2.0.9)$$

$$= E(X^{2} + Y^{2} + 2XY) - (E(X) + E(Y))^{2}$$

$$(2.0.10)$$

$$= Var(X) + Var(Y) + 2E(XY) - 2E(X)E(Y)$$

$$(2.0.11)$$

Now to show that E(XY)=E(X)E(Y) if X,Y are independent

$$E(XY) = \sum_{x,y} xy \Pr(X = x, Y = y) \quad (2.0.12)$$

$$= \sum_{x,y} xy \Pr(X = x) \Pr(Y = y)$$

$$= \sum_{x} \sum_{y} xy \Pr(X = x) \Pr(Y = y)$$

$$= \sum_{x} x \Pr(X = x) \sum_{y} y \Pr(Y = y)$$

$$(2.0.14)$$

$$= \sum_{x} x \Pr(X = x) \sum_{y} y \Pr(Y = y)$$

$$(2.0.15)$$

$$\implies E(XY) = E(X)E(Y) \tag{2.0.16}$$

 $Pr(X=x \text{ or } X=-x) = Pr(X=x \text{ or } X=-x|Y=y \text{ or } Y=-y)^{Now \text{ substituting } (2.0.16) \text{ in } (2.0.11) \text{ we get,}$

$$(2.0.5) Var(X + Y) = Var(X) + Var(Y) (2.0.17)$$

Thus

 $\Pr(X^2 = x^2) = \Pr(X^2 = x^2 | Y^2 = y^2)$ (2.0.6)

Implies that the random variables X^2 and Y^2 are independent. \Box

(2.0.6) By using lemma (2.2),

$$Var(S_n) = Var(X_1^2) + Var(X_2^2) + ...Var(X_n^2)$$
(2.0.18)

Since $X_1, X_2, ...X_n$ are identically distributed random variables therefore the random variables $X_1^2, X_2^2, ...X_n^2$ are also identical. So,

$$Var(X_1^2) = Var(X_2^2) = \dots = Var(X_n^2)$$
 (2.0.19)

Now we find the variance of X_1^2 .

$$Var(X_1^2) = E(X_1^4) - (E(X_1^2))^2$$
 (2.0.20)

But we don't know the values of $E(X_1^2)$ and $E(X_1^4)$. Finding the value of $E(X_1^2)$,

$$Var(X_1) = E(X_1^2) - (E(X_1))^2$$
 (2.0.21)

Since X_1 is a N(1,1) random variable $E(X_1) = 1$ and $Var(X_1) = 1$. Therefore,

$$E(X_1^2) - (1)^2 = 1$$
 (2.0.22)

$$E(X_1^2) = 2 (2.0.23)$$

Finding the value of $E(X_1^4)$.

Since X_1 is a N(1, 1) random variable pdf of X_1 will be

$$f(X_1) = \frac{1}{\sqrt{2\pi}} \left(e^{-\frac{(X_1 - 1)^2}{2}} \right)$$
 (2.0.24)

Fig. 4: PDF of $X_1, X_2, ...$

Now expected value of X_1^4 will be,

$$E(X_1^4) = \int_{-\infty}^{+\infty} X_1^4 f(X_1) dX_1 \qquad (2.0.25)$$
$$= \int_{-\infty}^{+\infty} X_1^4 \left(\frac{1}{\sqrt{2\pi}} \left(e^{-\frac{(X_1 - 1)^2}{2}} \right) \right) dX_1 \qquad (2.0.26)$$

Now put $X_1 - 1 = t$,

$$E(X_1^4) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} (t+1)^4 \left(e^{-\frac{t^2}{2}}\right) dt$$
 (2.0.27)
$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} (t^4 + 4t^3 + 6t^2 + 4t + 1) \left(e^{-\frac{t^2}{2}}\right) dt$$
 (2.0.28)

Since $\int_{-\infty}^{+\infty} 4t^3 \left(e^{-\frac{t^2}{2}}\right) dt$ and $\int_{-\infty}^{+\infty} 4t \left(e^{-\frac{t^2}{2}}\right) dt$ are equal to zero, the equation will get reduced to

$$E(X_1^4) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} (t^4 + 6t^2 + 1) \left(e^{-\frac{t^2}{2}} \right) dt \quad (2.0.29)$$

Now put $\frac{t}{\sqrt{2}} = x$,

$$E(X_1^4) = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{+\infty} (4x^4 + 12x^2 + 1) \left(e^{-x^2}\right) dx \quad (2.0.30)$$

We know that,

$$\int_{-\infty}^{+\infty} \left(e^{-ax^2}\right) dx = \frac{\sqrt{\pi}}{\sqrt{a}} \tag{2.0.31}$$

$$\frac{d\left(\int_{-\infty}^{+\infty} \left(e^{-ax^2}\right) dx\right)}{da} = \frac{d}{da} \left(\frac{\sqrt{\pi}}{\sqrt{a}}\right)$$
 (2.0.32)

$$\int_{-\infty}^{+\infty} x^2 \left(e^{-ax^2} \right) dx = \frac{\sqrt{\pi}}{2\sqrt{a^3}}$$
 (2.0.33)

similarly,

$$\int_{-\infty}^{+\infty} x^4 \left(e^{-ax^2} \right) dx = \frac{3\sqrt{\pi}}{4\sqrt{a^5}}$$
 (2.0.34)

Using (2.0.31),(2.0.33) and (2.0.34) in (2.0.30) we get,

$$E(X_1^4) = \frac{1}{\sqrt{\pi}} \left(4 \left(\frac{3\sqrt{\pi}}{4} \right) + 12 \left(\frac{\sqrt{\pi}}{2} \right) + \sqrt{\pi} \right)$$

$$= 3 + 6 + 1$$
(2.0.36)

$$\implies E(X_1^4) = 10$$
 (2.0.37)

Substituting (2.0.23),(2.0.37) in (2.0.20) we get,

$$Var(X_1^2) = 10 - 4 (2.0.38)$$

$$Var(X_1^2) = 10 - 4$$
 (2.0.38)
 $\implies Var(X_1^2) = 6$ (2.0.39)

By the equations (2.0.39),(2.0.18) and (2.0.19), we can conclude that

$$Var(S_n) = 6n \tag{2.0.40}$$

$$\lim_{n \to \infty} \frac{Var(S_n)}{n} = \lim_{n \to \infty} \frac{6n}{n} = \lim_{n \to \infty} 6 = 6$$

Hence, option (B) is correct.