Курсовая работа по курсу «Системы массового обслуживания»

Пусть $X=\{X_t,\ t=0,1,2...\}$ — однородная марковская цепь со множеством состояний $\{e_1,\ e_2,e_3,e_4\}$ $(e_k-k$ — й единичный вектор — столбец) и матрицей переходных вероятностей

 $P = \left[0.1 \sin^2(\frac{\pi n}{5}) \ 0.0 \ 0 \cos^2(\frac{\pi n}{5}) \ 0.0 \ 0 \cos^2(\frac{\pi n}{10}) \ 0.0 \ 1 \sin^2(\frac{\pi n}{10}) \ 0. \right]. \tag{1}$

Начальное распределение $\pi_0 = (\frac{1}{2} sin^2 \left(\frac{\pi n}{6}\right), \frac{1}{2} cos^2 \left(\frac{\pi n}{6}\right), \frac{1}{2} sin^2 \left(\frac{\pi n}{12}\right), \frac{1}{2} cos^2 \left(\frac{\pi n}{12}\right))^T$ (*n* – номер студента в группе).

Цепь доступна косвенному наблюдению

$$Y_t = CX_t + \sigma X_t V_t, \qquad t = 1, 2, 3, ...,$$
 (2)

где $\{V_{i}\}$ – последовательность независимых стандартных гауссовских случайных величин, $\mathcal{C}=(1,\,2,\,3,\,4), \qquad \sigma=(5,\,6,\,7,\,8).$

- 1. С помощью метода производящих функций найти эволюцию распределения $\pi(t)$ в зависимости от момента времени t.
- 2. Выяснить, является ли марковская цепь X эргодической. Найти все стационарные распределения.
- 3. По наблюдениям (2) построить
 - 3.1. тривиальную оценку $\overset{\sim}{X_t} = M[X_t]$, ее ошибку $\overset{\sim}{\Delta_t} = \overset{\sim}{X_t} X_t$ и безусловную ковариационную матрицу ошибки оценки $\overset{\sim}{k_t} = cov(\overset{\sim}{\Delta_t},\overset{\sim}{\Delta_t})$,
 - 3.2. наилучшую линейную оценку фильтрации \overline{X}_t , ее ошибку $\overline{\Delta}_t = \overline{X}_t X_t$ и безусловную ковариационную матрицу ошибки оценки $\overline{k}_t = cov(\overline{\Delta}_t, \overline{\Delta}_t)$,
 - 3.3. наилучшую нелинейную оценку фильтрации $\hat{X_t} = M[X_t|Y_1,...,Y_t]$ ее ошибку $\hat{\Delta}_t = \hat{X_t} X_t$ и условную ковариационную матрицу ошибки оценки $\hat{k_t} = cov(\hat{\Delta}_t,\hat{\Delta}_t|Y_1,...,Y_t)$.
- 4. Путем осреднения по пучку траекторий (1 000 000 реализаций) построить безусловную ковариационную матрицу ошибки оценки $\hat{k_t} = cov(\hat{\Delta}_t, \hat{\Delta}_t)$.
- 5. Результаты оценивания состояний марковской цепи X_t и соответствующие ковариационные матрицы привести в виде таблиц и графиков.
- 6. Выполнить пункты 3-5 для $\sigma = (50, 60, 70, 80)$ и $\sigma = (100, 100, 100, 100)$.
- 7. Проанализировать полученные результаты и сделать выводы.