

AIR SERVICE INFORMATION CIRCULAR

(AVIATION)

PUBLISHED BY THE CHIEF OF AIR SERVICE, WASHINGTON, D. C.

Vol. IV

July 15, 1922

No. 354

VARIATION IN PERFORMANCE OF A HISPANO-SUIZA (MODEL E) ENGINE WITH DEGREE OF THROTTLE OPENING

(POWER PLANT SECTION REPORT)

 ∇

Prepared by
H. G. Morse, A. M. E., Test Engineer
Engineering Division, Air Service
McCook Field, Dayton, Ohio
February 15, 1922

WASHINGTON GOVERNMENT PRINTING OFFICE 1922 CERTIFICATE: By direction of the Secretary of War, the matter contained herein is published as administrative information and is required for the proper transaction of the public business.

VARIATION IN PERFORMANCE OF A HISPANO-SUIZA (MODEL E) ENGINE WITH DEGREE OF THROTTLE OPENING.

OBJECT OF TEST.

The object of this test was to determine the variation in performance of a Hispano-Suiza (model E) engine with degree of throttle opening at various engine speeds.

CONCLUSIONS.

The power output obtained at given throttle openings over the entire speed range of the engine is shown by the curves in figure 1. The specific fuel consumptions are shown by the curves in figure 2. Actual test data are given in Table 1. The performance data corrected to even speeds are given in Table 2.

These data and the curves show the variation in performance of a Hispano-Suiza (model E) engine with degree of throttle opening at various engine speeds.

INTRODUCTION.

The Airplane Section of the Engineering Division, in order to make certain estimates of engine performance, wanted to determine the power output obtained on a typical airplane engine at given throttle openings over the entire speed range.

Two sets of runs were made on a Liberty "12" engine. It was found that at small throttle openings at any given speed, with the throttle securely locked in position, the manifold vacuum and the power fluctuated over a considerable range. The data for the tests on the Liberty engine are not included in this report as some variable, perhaps snow in the intake header, prevented a reliable determination of the engine's performance.

Reliable data were obtained on the Hispano-Suiza engine by using an intake air heater to maintain the temperature of the air supplied to the carburetor at approximately 95° F. It was possible to reproduce given conditions and check the performance within the limits of experimental error.

METHOD OF TEST.

Figures 3 and 4 show the installation of the Hispano-Suiza (model E) engine on the Sprague electric dynamometer. The method of connecting the carburetor to the intake air heater is clearly shown in the illustrations. The temperature of the air supplied to the carburetor was held at approximately 95° F. by controlling the amount of current supplied to the resistance coils of the air-heating element.

The following runs were made: 1

- (1) At full throttle, one power run from 800 revolutions per minute to 2,000 revolutions per minute, inclusive, in increments of 200 revolutions per minute.
- (2) At the normal speed of 1,800 revolutions per minute, the throttle was gradually closed until 90 per cent of the

¹ During each run and at each speed the mixture control was adjusted for maximum fuel economy consistent with maximum power and smooth

full power was obtained. At this point the throttle was locked with a clamp and a set of power readings were obtained at the same speeds as indicated above.

- (3) The general procedure outlined in paragraph (2) was repeated for throttle openings to give 80, 70, 60, 50, 40, 30, 20, and 10 per cent of the full power at the normal speed of 1,800 revolutions per minute. As the throttle was closed the speed at which the readings were started was lowered to 600 revolutions per minute.
- (4) A friction run was made at each of the throttle openings and over the same speed range.

For method of taking readings and making the simpler standard computations, see Engineering Division Report Serial No. 1507.

The data tabulated in Table 2 was obtained in the following manner. The brake horsepower and the brake specific fuel consumption were obtained by reading the values directly from the curves at the intercepts of the even-speed ordinates. These curves are to be found in figures 1 and 2. The friction horsepower values were obtained in the same manner from curves plotted in pencil but not included in this report. The indicated horsepower was obtained by adding the brake and friction horsepowers. The mechanical efficiency was obtained by dividing the indicated into the brake horsepower. All the mean effective pressures were obtained by computation from the corresponding horsepowers. The indicated specific fuel consumption was obtained by multiplying the brake specific fuel consumption by the mechanical efficiency.

ANALYSIS.

The temperature of the air supplied to the carburetor was readily maintained at 95° F. At any engine speed for any given throttle opening the manifold vacuum and the power output checked with readings taken previously under the same conditions of speed and throttle opening.

It was observed that the operation of the engine with the mixture control set for best power was not as smooth as with a richer mixture and a slightly lower power.

All of the curves of brake horsepower output at partial throttle, figure 1, appear to merge into the full power curve at the lower engine speeds. That is, at 600 revolutions per minute approximately the same power is obtained at practically any throttle opening. The peak of each curve is reached at a lower speed with each decrease in throttle opening.

The specific fuel consumption curves, figure 2, show an increase in fuel consumption at the normal speed as the throttle is closed. There appears to be very little difference in specific fuel consumption at the lower engine speeds at the various throttle openings.

The friction horsepower (which includes the pumping losses) increases slightly for a given engine speed at the smaller throttle openings. This is particularly noticeable at the lower engine speeds. See Table 2.

FIG. 1.

106747 - 22 - 2

F1G. 2.

TABLE 1 .- Actual test data.

750 980			hp. hr.	*F.	in. hg.	
980		FULL TH	IROTTLE	E.		
980	72.0	106, 0	0. 562	95	0.3	
1 170	94. 1	106.0	. 503	95	. 5	
1, 110	122, 7 141. 6	106.3	. 489	94	.7 1.1	
1,170 1,390 1,600	141.6	112.3	. 567 . 538	95 95	1.1	
1,800	164.6 177.7	108.9	. 529	94	1.7	
1,820	181.0	106. 3 112. 3 113. 5 108. 9 109. 8	. 536	94	1.7	
1,820 1,970	183. 5	102. 8	. 550	95	1.9	
	NINE-TI	ENTHS F	ULL TH	ROTTLE	•	
780	75. 2 96. 7	106.3	0. 577	94	0.8	
980	96.7	109.0	. 579	95	1. 5 1. 9	
1,170 1,390 1,600	115.9 138.3	109. 3 109. 7	. 571 . 527	95 95 95	1.9	
1 600	153.3	109.7	. 549	95 95	2.6 3.1	
1. K20	153.3 162.7	105. 4 98. 8	. 539	94	3. 5	
1,790	160.6	99.1	. 550	95	3.6	
1,790 1,990	165. 0	91.6	. 574	96	4.0	
	EIGHT-T	ENTHS I	FULL TH	ROTTLE		
760	70.6	102.6	0, 654	95	1.5	
970	93. 8	106.7	. 574	95	1.5 2.3	
1, 160 1, 380	111.3 128.2	105. 8	. 592	95	3.1	
1,380	128. 2 137. 8	102.6	. 580	95	3.9	
1,590 1,800	137. 8	95. 7 87. 7	. 574 . 596	95 95	4. 8 5. 6	
2,010	142.4	78. 2	.654	94	6.3	
2,010						
	SEVEN-T	ENTHS	FULL TH	ROTTLE	l.	
760	70.6	102.6	0.667	97	1.9	
990	94. 4 107. 2	105.2	. 579	96	2.9	
1,180 1,390	119.2	100.3 94.7	. 586 . 596	94 95	3.8 4.8	
1,610	125. 8	86. 2	. 615	95	5.7	
1,810	126.4	77.1	. 652	95	6.7	
2,000	127. 1	70. 2	. 682	86	7. 4	
	SIX-TE	NTHS FU	JLL THR	OTTLE.		
760	71. 1	103. 3	0.614	96	2.6	
990	00.6	101 1	. 535	95	3.8	
1, 180 1, 390	99. 9 107. 7 110. 3 107. 6	93. 5 85. 6 75. 6	. 578	95	5.0	
1,390	107.7	85.6	. 613	95	6. 2	
1,610	110.3	75. 6 66. 4	. 667	95 94	7. 2 8. 2	
1,790 2,030	107. 6	57.7	. 733 . 764	94 94	9.3	

TABLE 1.—Actual test data—Continued.

R. P. M.	Cor- rected B. H. P.	B. M. E. P. lb. per sq. ln.	Fuel cons. lb. per hp. hr.	Intake air temp. •F.	Man. vac. in. hg.
	FIVE-TI	ENTHS F	ULL THI	ROTTLE.	
760 970 1,190 1,380 1,600 1,800	68. 2 83. 3 91. 1 94. 7 93. 7 89. 8	99. 1 94. 9 84. 5 75. 8 64. 7 55. 1	0. 582 .636 .625 .670 .730 .777	95 95 95 95 95 94 95	3. 3 4. 9 6. 3 7. 5 9. 0 10. 0
	FOUR-T	ENTHS I	TULL TH	ROTTLE	•
550 740 970 1,210 1,390 1,600 1,800	46. 7 63. 6 76. 6 79. 2 80. 9 76. 0 71. 7	93. 8 94. 9 87. 2 72. 4 64. 3 52. 4 44. 0	0. 673 . 585 . 599 . 712 . 730 . 838 . 915	95 95 95 94 95 95 94	2. 7 4. 2 6. 1 8. 1 9. 4 10. 7 11. 7
	THREE-1	ENTHS	FULL TE	HROTTLE	E.
580 780 980 1,200 1,390 1,600 1,810	48. 3 61. 7 68. 0 69. 1 69. 0 62. 7 54. 6	91. 9 87. 3 76. 6 63. 6 54. 7 43. 3 33. 3	0. 582 . 547 . 593 . 680 . 711 . 875 1. 019	95 95 95 94 95 96 95	3. 6 5. 5 7. 5 9. 4 10. 9 12. 3 13. 4
	TWO-TI	ENTHS F	ULL TH	ROTTLE.	
540 770 960 1,180 1,390 1,600 1,820	44. 0 58. 5 60. 3 59. 7 56. 4 47. 8 37. 3	90. 0 83. 9 69. 3 55. 9 44. 8 33. 0 22. 6	0. 610 . 508 . 573 . 740 . 806 1. 082 1. 401	95 95 96 97 94 95 96	4. 0 6. 6 8. 6 10. 9 12. 5 13. 8 14. 9
	ONE-T	ENTH FU	JLL THR	OTTLE.	
570 750 980 1,180 1,400 1,610 1,800	42. 8 48. 6 47. 6 41. 7 35. 9 29. 0 18. 1	82. 7 71. 6 53. 6 39. 0 28. 3 19. 9 11. 1	0. 599 . 598 . 632 . 773 . 974 1. 242 2. 005	95 96 95 94 95 95 95	6. 0 8. 8 11. 6 13. 4 14. 9 16. 0 16. 7

Table 2.—Performance data corrected to even speeds.

R. P. M.	Horsepower.			Mech.	Mean effective press. lb. per sq. in.			Specific fuel cons. lb. per hp. hr.	
	Brake.	Friction.	Indicated.	Eff. %	Brake.	Friction.	Indicated.	Brake.	Indicated
			1	FULL T	HROTTL	E.		•	
800 1,000 1,200 1,400 1,600 1,800 2,000	78. 0 101. 0 123. 3 144. 5 164. 4 179. 0 183. 2	5. 1 8. 0 10. 8 14. 9 19. 2 24. 0 30. 7	83. 1 109. 0 134. 1 159. 4 183. 6 203. 0 213. 9	93. 9 92. 7 92. 1 90. 7 89. 6 88. 2 85. 6	107. 6 111. 5 113. 3 113. 8 113. 4 109. 7 101. 0	7. 0 8. 8 9. 9 11. 8 13. 2 14. 7 16. 9	*114.6 120.3 123.2 125.6 126.6 124.4 117.9	0. 540 . 500 . 498 . 510 . 522 . 535 . 555	0. 507 . 464 . 458 . 463 . 467 . 472 . 475
		<u>'</u>	NINE-TE	NTHS 1	FULL TH	ROTTLE			
800 1,000 1,200 1,400 1,600 1,800 2,000	77. 7 99. 6 120. 5 139. 3 153. 3 161. 7 165. 0	5.3 9.3 12.0 15.4 19.2 22.8 29.3	83. 0 108. 9 132. 5 154. 7 172. 5 184. 5 194. 3	93. 6 91. 4 91. 0 90. 1 88. 9 87. 6 84. 9	107. 2 109. 9 110. 7 109. 8 105. 7 99. 1 91. 3	7. 3 10. 3 11. 0 12. 1 13. 2 14. 0 16. 2	114. 5 120. 2 121. 7 121. 9 118. 9 113. 1 107. 5	0. 579 . 580 . 574 . 550 . 539 . 558 . 580	0. 542 . 530 . 513 . 495 . 479 . 471 . 492

TABLE 2.—Performance data corrected to even speeds—Continued.

R. P. M.	Horsepower.			Mech.	Mean effective press. lb. per sq. in.			Specific fuel cons. lb. per hp. hr.		
D. F. M.	Brake.	Friction. In	dicated.	Eff. %	Brake.	Friction.	Indicated.	Brake.	Indicated	
		E	GHT-T	ENTHS	FULL TI	HROTTLI	č.			
800 1,000 1,200 1,400 1,600 1,800 2,000	77. 0 97. 0 114. 9 128. 7 138. 5 143. 3 142. 8	6. 4 9. 0 11. 6 15. 4 19. 2 24. 0 30. 7	83. 4 106. 0 126. 5 144. 1 157. 7 167. 3 173. 5	87. 9 85. 7	106. 2 107. 0 105. 7 101. 3 95. 5 87. 8 78. 8	8. 8 9. 9 10. 7 12. 1 13. 2 14. 7 16. 9	115. 0 116. 9 116. 4 113. 4 108. 7 102. 5 95. 7	0. 632 . 586 . 576 . 573 . 580 . 600 . 650	0. 583 . 536 . 524 . 511 . 509 . 514 . 535	
		81	EVEN-T	ENTHS	FULL TI	HROTTLE	č.			
800 1,000 1,200 1,400 1,600 1,800 2,000	76. 5 95. 2 109. 5 119. 0 124. 0 126. 5 127. 0	6. 9 9. 0 11. 6 15. 4 19. 7 24. 0 32. 0	83. 4 104. 2 121. 1 134. 4 143. 7 150. 5 159. 0	91. 4 90. 5 88. 5 86. 3	105. 5 105. 0 100. 6 93. 8 85. 6 77. 6 70. 1	9. 5 9. 9 10. 7 12. 1 13. 6 14. 7 17. 7	115. 0 114. 9 111. 3 105. 9 99. 2 92. 3 87. 8	0. 635 .579 .577 .590 .615 • .644 .680	0. 583 . 529 . 522 . 522 . 531 . 541 . 543	
	~ .		SIX-TE	NTHS F	ULL' TH	ROTTLE.				
800 1,000 1,200 1,400 1,600 1,800 2,000	75. 6 91. 0 101. 3 107. 7 109. 7 108. 7 105. 4	6. 9 9. 0 12. 0 16. 3 20. 3 24. 6 32. 7	82. 5 100. 0 113. 3 124. 0 130. 0 133. 3 138. 1	91. 7 91. 0 89. 4 86. 8 84. 3 81. 5 76. 4	104 3 100. 4 93. 2 84. 8 75. 7 66. 6 58. 2	9. 5 9. 9 11. 0 12. 9 14. 0 15. 1 18. 0	113. 8 110. 3 104. 2 97. 7 89. 7 81. 7 76. 2	0. 590 . 550 . 570 . 619 . 679 . 728 . 756	0. 541 . 501 . 510 . 537 . 572 . 593 . 577	
	_	1	FIVE-TE	NTHS F	ULL TH	ROTTLE			<u>-</u>	
800 1,000 1,200 1,400 1,600 1,800	71. 8 85. 0 92. 2 94. 6 93. 5 90. 0	6. 9 9. 3 12. 4 16. 8 20. 8 25. 2	78. 7 94. 3 104. 6 111. 4 114. 3 115. 2	91. 2 90. 1 88. 1 84. 9 81. 9 78. 1	99. 1 93. 8 84 8 74. 5 64. 5 55. 1	9. 5 10. 3 11. 4 13. 2 14. 3 15. 5	108. 6 104. 1 96. 2 87. 7 78. 8 70. 6	0.600 .616 .642 .680 .721 .780	0. 547 . 555 . 565 . 577 . 589 . 609	
• •	-	F	OUR-T	ENTHS	FULL TE	HROTTLE	č.		1	
600 800 1,000 1,200 1,400 1,600 1,800	52. 0 68. 2 77. 3 80. 6 80. 0 76. 9 71. 6	4. 4 7. 2 9. 7 12. 8 17. 3 21. 3 25. 8	56. 4 75. 4 87. 0 93. 4 97. 3 98. 2 97. 4	92. 2 90. 4 88. 8 86. 3 82. 2 78. 3 73. 5	95. 7 93. 8 85. 3 74. 1 63. 1 53. 0 43. 9	8. 1 9. 9 10. 7 11. 8 13. 6 14. 7 15. 8	103. 8 103. 7 96. 0 85. 9 76. 7 67. 7 59. 7	0. 620 . 585 . 625 . 683 . 755 . 835 . 912	0. 572 . 529 . 555 . 588 . 620 . 654 . 671	
	1	т.	HREE-T	ENTHS	FULL T	HROTTL	E.			
600 800 1,000 1,200 1,400 1,600 1,800	50. 0 62. 4 68. 5 70. 0 68. 0 62. 4 55. 0	4. 4 7. 2 10. 3 13. 2 17. 7 22. 4 27. 0	54. 4 69. 6 78. 8 83. 2 85. 7 84. 8 82. 0	91. 9 89. 7 86. 9 84. 1 79. 3 73. 6 67. 1	92. 0 86. 1 75. 6 64. 4 53. 6 43. 0 33. 7	8. 1 9. 9 11. 4 12. 1 14. 0 15. 5 16. 6	100. 1 96. 0 87. 0 76. 5 67. 6 58. 5 50. 3	0. 575 . 558 . 590 . 660 . 752 . 870 . 999	0. 529 . 501 . 513 . 555 . 596 . 640 . 671	
	/	,	rwo-te	NTHS F	ULL TH	ROTTLE				
600 800 1,000 1,200 1,400 1,600 1,800	48. 6 58. 5 60. 8 59. 8 55. 3 48. 0 37. 6	5. 0 7. 7 10. 7 13. 6 18. 2 22. 9 27. 6	53, 6 66, 2 71, 5 73, 4 73, 5 70, 9 65, 2	90. 7 88. 4 85. 0 81. 5 75. 3 67. 7 57. 7	89. 4 80. 8 67. 1 55. 0 43. 6 33. 1 23. 1	9. 2 10. 7 11. 8 12. 5 14. 3 15. 8 16. 9	98. 6 91. 5 78. 9 67. 5 57. 9 48. 9 40. 0	0. 560 . 520 . 581 . 700 . 860 1. 080 1. 366	0. 508 . 460 . 494 . 571 . 647 . 731 . 788	
			ONE-TI	ENTH F	ULL THI	ROTTLE.				
600 800 1,000 1,200 1,400 1,600 1,800	44. 5 48. 5 47. 0 42. 9 36. 2 27. 9 18. 0	5. 0 8. 5 11. 3 14. 8 18. 7 23. 5 28. 2	49. 5 57. 0 58. 3 57. 7 54. 9 51. 4 46. 2	89, 9 85, 1 80, 6 74, 4 65, 9 54, 3 39, 0	39. 4 28. 5 19. 2 11. 0	9, 2 11, 8 12, 5 13, 6 14, 7 16, 2 17, 3	53. 0 43. 2 35. 4	0. 590 . 597 . 642 . 750 . 940 1. 265 2. 000	0. 531 . 508 . 517 . 558 . 619 . 687 . 780	

Fig. 3.—Installation on the dynamometer showing intake air heater connected to engine.

 $Fig.\ 4.\\--Installation$ on the dynamometer showing resistance coils.

