Compréhension théorique des comportements non linéaires dans les grands réseaux de neurones Colloque GRETSI 2019

Zhenyu Liao, Romain Couillet

CentraleSupélec, Université Paris-Saclay GIPSA-lab, Université Grenoble-Alpes

Lille, 26 août 2019

Plan

Introduction

Résultats Principaux

Conclusion

Motivation: non-linéarité dans d'apprentissage automatique

Apprentissage automatique repose sur transformation non linéaire:

- ▶ la *fonction noyau f* dans les méthodes à noyaux (e.g., spectral clustering, SVM)
- ightharpoonup la fonction d'activation σ pour les réseaux de neurones

Dans ce travail:

- lien entre réseaux de neurones (à poids aléatoires) et matrices à noyaux (i.e., σ et f)
- étude de l'effet des non-linéarités (σ et f) et des interactions aux données (nombre, dimension et statistiques)
- ightharpoonup conséquence pratique: "**prédire**" la performance d'un réseau de neurones en fonction de la fonction d'activation σ appliquée

Réseau de neurones à une seule couche cachée

Figure: Illustration d'un réseau à une seule couche cachée.

- ▶ $X = [x_1, ..., x_n] \Rightarrow$ matrice de "features": $\Sigma \equiv \sigma(WX) = [\sigma(Wx_1), ..., \sigma(Wx_n)].$
- ► Seconde couche $\beta \in \mathbb{R}^{N \times d}$ apprise sur (**X**, **Y**):

$$\boldsymbol{\beta} = \arg\min_{\boldsymbol{\beta}} \frac{1}{n} \|\mathbf{Y} - \boldsymbol{\beta}^{\mathsf{T}} \boldsymbol{\Sigma}\|_F^2 + \lambda \|\boldsymbol{\beta}\|_F^2 = \frac{1}{n} \boldsymbol{\Sigma} \left(\frac{1}{n} \boldsymbol{\Sigma}^{\mathsf{T}} \boldsymbol{\Sigma} + \gamma \mathbf{I}_n \right)^{-1} \mathbf{Y}^{\mathsf{T}}$$

▶ **Objet clé**: $\frac{1}{n}\Sigma^{\mathsf{T}}\Sigma$: matrice de corrélation dans l'espace "features".

Comprendre la performance d'un réseau de neurones simple

Hypothèse 1: régime asymptotique

- ▶ $n, p, N \rightarrow \infty$ avec $n \sim p \sim N$;
- \blacktriangleright (**X**, **Y**) déterministe, $||\mathbf{X}|| = O(1)$ et $\mathbf{Y}_{ij} = O(1)$.

Hypothèse 2: poids aléatoires

 $\mathbf{W}_{ii} \sim \mathcal{N}(0,1)$ i.i.d.

Dans [Louart et al., 2018], pour σ Lipschitziennes:

Conclusion 1: impact de la fonction d'activation, lien entre σ et f

Performance du réseau fonction de σ via matrice à noyau

$$\Phi(\mathbf{X}) \equiv \mathbb{E}_{\mathbf{w}}[\sigma(\mathbf{X}^{\mathsf{T}}\mathbf{w})\sigma(\mathbf{w}^{\mathsf{T}}\mathbf{X})], \quad \mathbf{w} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_p)$$

ou son entrée (i, j): $\Phi(\mathbf{x}_i, \mathbf{x}_i) \equiv \mathbb{E}_{\mathbf{w}}[\sigma(\mathbf{x}_i^\mathsf{T}\mathbf{w})\sigma(\mathbf{w}^\mathsf{T}\mathbf{x}_i)] \equiv f(\mathbf{x}_i, \mathbf{x}_i)$.

¹Cosme Louart, Zhenyu Liao, and Romain Couillet. A random matrix approach to neural networks. *The Annals of Applied Probability*, 28(2):1190–1248, 2018.

Calculer f pour différentes fonctions d'activation σ

Intuition:

- $\qquad \qquad \textbf{l'objet clé} \ \tfrac{1}{n} \boldsymbol{\Sigma}^\mathsf{T} \boldsymbol{\Sigma} = \tfrac{1}{n} \sigma(\mathbf{X}^\mathsf{T} \mathbf{W}^\mathsf{T}) \sigma(\mathbf{W} \mathbf{X}) = \tfrac{1}{n} \sum_{i=1}^N \sigma(\mathbf{X}^\mathsf{T} \mathbf{w}_i) \sigma(\mathbf{w}_i^\mathsf{T} \mathbf{X})$
- $\mathbf{w}_i \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_p), i = 1, \dots, N, \text{ indépendant}$
- ▶ asymptotique $N \to \infty$

$$\frac{1}{n} \mathbf{\Sigma}^{\mathsf{T}} \mathbf{\Sigma} \Rightarrow \frac{1}{n} \mathbb{E}[\mathbf{\Sigma}^{\mathsf{T}} \mathbf{\Sigma}] = \frac{1}{n} \sum_{i=1}^{N} \mathbb{E}[\sigma(\mathbf{X}^{\mathsf{T}} \mathbf{w}_{i}) \sigma(\mathbf{w}_{i}^{\mathsf{T}} \mathbf{X})] = \frac{N}{n} \mathbf{\Phi}(\mathbf{X}),$$

avec l'entrée $(i, j) \Phi(\mathbf{x}_i, \mathbf{x}_j) \equiv \mathbb{E}_{\mathbf{w}}[\sigma(\mathbf{x}_i^\mathsf{T} \mathbf{w}) \sigma(\mathbf{w}^\mathsf{T} \mathbf{x}_j)] \equiv f(\mathbf{x}_i, \mathbf{x}_j).$

Trouver f **pour différentes** σ : intégrale dans \mathbb{R}^p

$$f(\mathbf{x}_i, \mathbf{x}_j) \equiv \mathbb{E}_{\mathbf{w}}[\sigma(\mathbf{x}_i^\mathsf{T} \mathbf{w}) \sigma(\mathbf{w}^\mathsf{T} \mathbf{x}_j)] = (2\pi)^{-\frac{p}{2}} \int_{\mathbb{R}^p} \sigma(\mathbf{x}_i^\mathsf{T} \mathbf{w}) \sigma(\mathbf{w}^\mathsf{T} \mathbf{x}_j) e^{-\frac{\|\mathbf{w}\|^2}{2}} d\mathbf{w}$$

 \Rightarrow solution explicite pour certains σ courants, e.g., ReLU $(t) \equiv \max(t,0)$, quadratique $\sigma(t) = a_2 t^2 + a_1 t + a_0$, exponentiel $\sigma(t) = \exp(-t^2/2)$.

Feuille de route

$$\tfrac{1}{n} \mathbf{\Sigma}^\mathsf{T} \mathbf{\Sigma} = \tfrac{1}{n} \sigma(\mathbf{X}^\mathsf{T} \mathbf{W}^\mathsf{T}) \sigma(\mathbf{W} \mathbf{X}) \Rightarrow \mathbf{\Phi}(\mathbf{X}) = \{ f(\mathbf{x}_i, \mathbf{x}_j) \}_{i,j=1}^n, \text{ par conséquent } \sigma \Rightarrow f.$$

Tableau de f pour différentes σ

$\sigma(t)$	$f(\mathbf{x}_i, \mathbf{x}_j)$
t	$\mathbf{x}_i^T\mathbf{x}_j$
$\max(t,0)$	$\frac{1}{2\pi} \ \mathbf{x}_i\ \ \mathbf{x}_j\ \left(\angle(\mathbf{x}_i, \mathbf{x}_j) \arccos\left(-\angle(\mathbf{x}_i, \mathbf{x}_j) \right) + \sqrt{1 - \angle(\mathbf{x}_i, \mathbf{x}_j)^2} \right)$
t	$\frac{2}{\pi} \ \mathbf{x}_i\ \ \mathbf{x}_j\ \left(\angle(\mathbf{x}_i, \mathbf{x}_j) \operatorname{arcsin} \left(\angle(\mathbf{x}_i, \mathbf{x}_j) \right) + \sqrt{1 - \angle(\mathbf{x}_i, \mathbf{x}_j)^2} \right)$
$\operatorname{erf}(t)$	$\frac{2}{\pi}\arcsin\left(\frac{2\mathbf{x}_{i}^{T}\mathbf{x}_{j}}{\sqrt{(1+2\ \mathbf{x}_{i}\ ^{2})(1+2\ \mathbf{x}_{j}\ ^{2})}}\right)$
$1_{t>0}$	$\frac{1}{2} - \frac{1}{2\pi} \arccos\left(\angle(\mathbf{x}_i, \mathbf{x}_j)\right)$
sign(t)	$\frac{2}{\pi} \arcsin \left(\angle (\mathbf{x}_i, \mathbf{x}_j) \right)$
$\cos(t)$	$\exp\left(-\frac{1}{2}\left(\ \mathbf{x}_i\ ^2 + \ \mathbf{x}_j\ ^2\right)\right)\cosh(\mathbf{x}_i^T\mathbf{x}_j)$
$\sin(t)$	$\exp\left(-\frac{1}{2}\left(\ \mathbf{x}_i\ ^2 + \ \mathbf{x}_j\ ^2\right)\right) \cosh(\mathbf{x}_i^T \mathbf{x}_j)$ $\exp\left(-\frac{1}{2}\left(\ \mathbf{x}_i\ ^2 + \ \mathbf{x}_j\ ^2\right)\right) \sinh(\mathbf{x}_i^T \mathbf{x}_j)$

Table: Valeurs de $f(\mathbf{x}_i, \mathbf{x}_j)$ pour $\mathbf{w} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_p)$, avec $\angle(\mathbf{x}_i, \mathbf{x}_j) \equiv \frac{\mathbf{x}_i^T \mathbf{x}_j}{\|\mathbf{x}_i\| \|\mathbf{x}_i\|}$.

Toujours peu explicite avec <u>non linéarité</u> et pas facile à comprendre ou interpréter!

Interaction entre f et les statistiques des données

Classification binaire: modèle de mélange gaussien

Les x sont aléatoires et tirés indépendamment d'un modèle de mélange Gaussien à deux classes C_1, C_2 :

$$C_1: \sqrt{p}\mathbf{x}_i \sim \mathcal{N}(\boldsymbol{\mu}_1, \mathbf{C}_1)$$
 versus $C_2: \sqrt{p}\mathbf{x}_i \sim \mathcal{N}(\boldsymbol{\mu}_2, \mathbf{C}_2)$

pour $\mu_a \in \mathbb{R}^p$ et $C_a \in \mathbb{R}^p$, a = 1, 2.

Objective: influence des différentes σ pour classifier $\mathcal{N}(\mu_a, \mathbf{C}_a)$.

Hypothèse 3: "distance" minimale

Pour $p \to \infty$, on demande

- $\|\mu_1 \mu_2\| = O(1);$
- $\|\mathbf{C}_a\| = O(1), \operatorname{tr}(\mathbf{C}_1 \mathbf{C}_2) = O(\sqrt{p}) \text{ et } \|\mathbf{C}_1 \mathbf{C}_2\|_F^2 = O(p).$

Comportement asymptotique de la matrice à noyau

Théorème 1: comportement asymptotique de $\Phi(X)$ [Liao et Couillet, 2018]

Sous les Hypothèses 1–3, pour $\Phi(\mathbf{X}) = \{f(\mathbf{x}_i, \mathbf{x}_j)\}_{i,j=1}^n$ et (σ, f) listés dans Table 1,

$$\|\mathbf{\Phi} - \tilde{\mathbf{\Phi}}\| \stackrel{p.s.}{\rightarrow} 0, \quad \tilde{\mathbf{\Phi}} = d_1 \cdot \mathbf{M}_1(\boldsymbol{\mu}_1, \boldsymbol{\mu}_2) + d_2 \cdot \mathbf{M}_2(\mathbf{C}_1, \mathbf{C}_2) + *$$

quand $n, p \to \infty$.

Conclusion 2: impact des non linéarités dans la classification

- ▶ l'influence de la non linéarité (σ et f) ne dépend que **deux** scalaires d_1 et d_2 ;
- ightharpoonup ces deux paramètres "contrôlent" **indépendamment** les moyennes μ_a et les covariances C_a .

²Zhenyu Liao, Romain Couillet, "On the Spectrum of Random Features Maps of High Dimensional Data". *Proceedings of the 35th International Conference on Machine Learning (ICML'18)*, 80: 3063–3071, 2018.

Comprendre la fonction d'activation σ

$\sigma(t)$	$f(\mathbf{x}_i, \mathbf{x}_j)$	d_1	d_2
t	$\mathbf{x}_i^T\mathbf{x}_j$	1	<u>0</u>
sin(t)	$\exp\left(-\frac{1}{2}\left(\ \mathbf{x}_i\ ^2 + \ \mathbf{x}_j\ ^2\right)\right) \sinh(\mathbf{x}_i^T\mathbf{x}_j)$	$e^{-\tau}$	<u>0</u>
$\operatorname{erf}(t)$	$\frac{2}{\pi}\arcsin\left(\frac{2\mathbf{x}_1^T\mathbf{x}_j}{\sqrt{(1+2\ \mathbf{x}_j\ ^2)(1+2\ \mathbf{x}_j\ ^2)}}\right)$	$\frac{4}{\pi(2\tau+1)}$	<u>0</u>
t	$\frac{2}{\pi} \ \mathbf{x}_i\ \ \mathbf{x}_j\ \left(\angle(\mathbf{x}_i, \mathbf{x}_j) \arcsin\left(\angle(\mathbf{x}_i, \mathbf{x}_j)\right) + \sqrt{1 - \angle(\mathbf{x}_i, \mathbf{x}_j)^2} \right)$	<u>0</u>	$\frac{1}{2\pi\tau}$
$\cos(t)$	$\exp\left(-\frac{1}{2}\left(\ \mathbf{x}_i\ ^2 + \ \mathbf{x}_j\ ^2\right)\right)\cosh(\mathbf{x}_i^T\mathbf{x}_j)$	0	$\frac{1}{4}e^{-\tau}$
$\exp(-t^2/2)$	$\sqrt{(1+\ \mathbf{x}_i\ ^2)(1+\ \mathbf{x}_j\ ^2)-(\mathbf{x}_i^T\mathbf{x}_j)^2}$	0	$\frac{1}{4(\tau+1)^3}$
$\max(t,0)$	$\frac{1}{2\pi} \ \mathbf{x}_i\ \ \mathbf{x}_j\ \left(\angle(\mathbf{x}_i, \mathbf{x}_j) \arccos\left(-\angle(\mathbf{x}_i, \mathbf{x}_j)\right) + \sqrt{1 - \angle(\mathbf{x}_i, \mathbf{x}_j)^2} \right)$	$\frac{1}{4}$	$\frac{1}{8\pi\tau}$

Table: Valeur de $f(\mathbf{x}_i, \mathbf{x}_j)$ et les coefficients associés d_1, d_2 dans Théorème $1, \angle(\mathbf{x}_i, \mathbf{x}_j) \equiv \frac{\mathbf{x}_i^T \mathbf{x}_j}{\|\mathbf{x}_i\| \|\mathbf{x}_j\|}$.

Conséquence: différents σ en trois groupes

Avec $\tilde{\Phi} = d_1 \cdot M_1(\mu_1, \mu_2) + d_2 \cdot M_2(C_1, C_2) + *,$

- 1. **moyenne-orienté**: $d_1 \neq 0$ et $d_2 = 0$, contient t, $\sin(t)$ et $\operatorname{erf}(t)$ qui "effacent" l'information dans les covariances $\mathbf{M}_2(\mathbf{C}_1, \mathbf{C}_2)$;
- 2. **cov-orienté**: $d_1 = 0$ et $d_2 \neq 0$ |t|, $\cos(t)$ et $e^{-\frac{t^2}{2}}$ et efface les moyennes $\mathbf{M}_1(\mu_1, \mu_2)$;
- 3. équilibré: d_1 , $d_2 \neq 0$, ici pour ReLU $(t) \equiv \max(t, 0)$.

"Choisir" σ en fonction des statistiques discriminantes des données

Feuille de route

$$\frac{1}{n}\boldsymbol{\Sigma}^{\mathsf{T}}\boldsymbol{\Sigma} = \frac{1}{n}\sigma(\mathbf{X}^{\mathsf{T}}\mathbf{W}^{\mathsf{T}})\sigma(\mathbf{W}\mathbf{X}) \Rightarrow \boldsymbol{\Phi}(\mathbf{X}) = \{f(\mathbf{x}_i,\mathbf{x}_j)\}_{i,j=1}^n, \text{ on sait } \sigma \Rightarrow f \Rightarrow (\boldsymbol{d_1},\boldsymbol{d_2}).$$

Figure: Base de données MNIST ³ et EEG épileptiques. ⁴

	$\ \hat{\pmb{\mu}}_1 - \hat{\pmb{\mu}}_2\ $	$\ \hat{\boldsymbol{C}}_1 - \hat{\boldsymbol{C}}_2\ $
MNIST (6 vs. 8)	172.4	86.0
EEG (B vs. E)	1.2	182.7

Table: Estimation empirique des statistiques de la base MNIST et EEG.

³http://yann.lecun.com/exdb/mnist/

 $^{^4}$ http://www.meb.unibonn.de/epileptologie/science/physik/eegdata.html.

Validation numérique sur la base de données MNIST et EEG

Application: spectral clustering en utilisant $\frac{1}{n}\Sigma^{\mathsf{T}}\Sigma$.

	$\ \hat{\pmb{\mu}}_1 - \hat{\pmb{\mu}}_2\ $	$\ \hat{\boldsymbol{C}}_1 - \hat{\boldsymbol{C}}_2\ $
MNIST (6 vs. 8)	172.4	86.0
EEG (B vs. E)	1.2	182.7

Table: Estimation empirique des statistiques de la base MNIST et EEG.

	$\sigma(t)$	n = 64	n = 128
moyenne- orienté	$\begin{vmatrix} t \\ \sin(t) \\ \operatorname{erf}(t) \end{vmatrix}$	88.94% 87.81% 87.28%	87.30% 87.50% 86.59%
covariance- orienté	$\begin{vmatrix} t \\ \cos(t) \\ \exp(-t^2/2) \end{vmatrix}$	60.41% 59.56% 60.44%	57.81% 57.72% 58.67%
équilibré	ReLU(t)	85.72%	82.27%

	$\sigma(t)$	n = 64	n = 128
moyenne- orienté	$\begin{vmatrix} t \\ \sin(t) \\ \operatorname{erf}(t) \end{vmatrix}$	70.31% 70.34% 70.59%	69.58% 68.22% 67.70%
covariance- orienté	$\begin{vmatrix} t \\ \cos(t) \\ \exp(-t^2/2) \end{vmatrix}$	99.69% 99.38% 99.81 %	99.50% 99.36% 99.77 %
équilibré	ReLU(t)	87.91%	90.97%

Table: Précision de classification sur MNIST.

Table: Précision de classification sur EEG.

Conclusion

Messages:

- étude de la matrice de corrélation dans l'espace "features (non linéaires)": $\frac{1}{n}\Sigma^{\mathsf{T}}\Sigma$, pour comprendre la fonction d'activation σ
- ▶ comportement lié à la matrice à noyau $\Phi(\mathbf{X}) = f\{\mathbf{x}_i, \mathbf{x}_j\}_{i,j=1}^n, \sigma \Rightarrow f$
- ▶ dans la classification des mélanges de gaussiennes, $\Phi(X)$ est (asymptotiquement) accessible, et dépend de f seulement via la paire (d_1, d_2)
- ightharpoonup conséquence: on sait comment "choisir" la fonction σ pour différents types de problèmes/données

References:

- Cosme Louart, Zhenyu Liao, and Romain Couillet. "A random matrix approach to neural networks". The Annals of Applied Probability, 28(2):1190–1248, 2018.
- Zhenyu Liao, Romain Couillet, "On the Spectrum of Random Features Maps of High Dimensional Data". Proceedings of the 35th International Conference on Machine Learning (ICML'18), 80: 3063–3071, 2018.

Merci!