# Convolutional Neural Network

Tianchu.Zhao@uts.edu.au

#### Motivation: Size of data

- MNIST: 32x32x1 per image (728 pixels/weights)
- a small Image in real world: 200x200x3 (120,000 pixels/weights)
  - To train using a neural network
    - Network is complex and easy to overfit
    - Don't have enough memory or computation power to train

#### Motivation: viewpoint

Why object recognition is difficult

 Viewpoint: changes in view point in the image will scientifically affect the prediction performance from the standard learning

method





Cat

Cat

#### to overcome viewpoint variance

- Use redundant invariant features
- Use precise bounding box to normalise image (manual)
- Use replicated features and pooling (Convolutional Neural Network)
  - Replication reduces the number of weights that the model needs to learn





Cat

#### Architecture

- A simple convolutional neural network consists of the following architecture
- INPUT -> CONV -> RELU -> POOL -> FC -> OUTPUT

#### **INPUT**

For black and white image
 1x2-D vector

For a colourful image
 3x2-D vector





# CONV (Convolutional layer)

 This layer will compute the output of neurons in the next layer that connects to a local region from the last layer by summing the product of weights from the next layer and a local region previously we have (horizontal edge detection)

| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                    |   |   |   | 7  |    |    | - |          |   |   |     |     |   |
|-----------------------------------------------------------------------------------------------------------|---|---|---|----|----|----|---|----------|---|---|-----|-----|---|
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                     | 0 | 0 | 0 | 10 | 10 | 10 |   |          | , |   |     |     |   |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                     | 0 | 0 | 0 | 10 | 10 | 10 |   | 1 0 -1   |   | 0 | -30 | -30 | 0 |
| 0     0     0     10     10     0     -30     -30       0     0     0     10     10     0     -30     -30 | 0 | 0 | 0 | 10 | 10 | 10 | * | 1 0 -1 = | _ | 0 | -30 | -30 | 0 |
| 0 0 0 10 10 10                                                                                            | 0 | 0 | 0 | 10 | 10 | 10 |   |          | _ | 0 | -30 | -30 | 0 |
|                                                                                                           | 0 | 0 | 0 | 10 | 10 | 10 |   |          |   | 0 | -30 | -30 | 0 |
| 0 0 0 10 10 10                                                                                            | 0 | 0 | 0 | 10 | 10 | 10 |   |          |   |   |     |     |   |

 Now instead of detect edges of the whole image, we focus on a local region For black and white image



For colourful image



# Types of convolution

• 1D convolution



• 2d convolution



• 3d convolution



### Conv – Hyperparameters

- Kernel/Filter size F
- Number of filters K
- Stride distance S
- amount of zero padding P

#### Conv – Kernel size, F

- Represents the spatial extent of the given connectivity
- Determines the amount of information of a local region that a kernel will extract

# Conv – Kernel size, F



## Conv – Depth, K

 represents number of kernels and each kernel will act as independent feature extractor

# Conv – Depth, K



#### Conv – Stride, S

the distance when moving the kernels in the image



## Conv – Stride, S



# Conv – Padding, P

- To address reduce image size after convolution
- To capture more sample from the side of image

# Conv – Padding, P



## Conv – Padding, P

- Padding type:
- "VALID": drops the right-most columns (or bottom-most rows) if the kernel size doesn't fit to the additional pixels.
- "SAME": pads evenly left and right, this will add extra column on the right if the number of columns is odd so that every pixel is covered regardless of the kernel size.

#### Conv – Summary

- Given an input image of size W x H x D
- After passing through convolution with hyperparameters
  - Number of kernels, K
  - Kernel size, F
  - Stride, S
  - Amount of padding, P
- Will produce and output of dimension W<sub>o</sub> x H<sub>o</sub> x D<sub>o</sub>
  - $W_0 = (W F + 2P) / S + 1$
  - $H_0 = (H F + 2P) / S + 1$
  - $D_0 = K$

# ReLU (rectified linear unit)

activation layer using ReLU function



# POOL (Pooling)

- This performs a down sampling operation on every kernel
- This layer doesn't have parameters

# POOL - example



# POOL – MaxPooling



# POOL - AvgPooling



#### POOL, stride distance, S

the distance when moving kernel through the image



|       | Input   | MaxPooling  | Output           |  |
|-------|---------|-------------|------------------|--|
|       |         | =           | avg value in 2x2 |  |
|       |         | stride of 1 |                  |  |
| step1 | 0 1 0 1 |             | 0.4              |  |
|       | 2 0 0 0 |             |                  |  |
|       | 1 0 2 0 |             |                  |  |
|       | 0 0 0 0 |             |                  |  |
|       |         |             |                  |  |
| step2 | 0 1 0 1 |             | 0.4 0.3          |  |
|       | 2 0 0 0 |             |                  |  |
|       | 1 0 2 0 |             |                  |  |
|       | 0 0 0 0 |             |                  |  |

# POOL, pooling filter size, F



|       | Input   | MaxPooling Output  |  |
|-------|---------|--------------------|--|
|       |         | = avg value in 2x2 |  |
|       |         | filter size 3x3    |  |
| step1 | 0 1 0 1 | 0.4                |  |
|       | 2 0 0 0 |                    |  |
|       | 1 0 2 0 |                    |  |
|       | 0 0 0 0 |                    |  |
|       |         |                    |  |
| step2 | 0 1 0 1 | 0.4 0.3            |  |
|       | 2 0 0 0 |                    |  |
|       | 1 0 2 0 |                    |  |
|       | 0 0 0 0 |                    |  |
|       |         |                    |  |

## POOL - Summary

- Given an input image of size W x H x D
- After passing through pooling with hyperparameters
  - Kernel size, F
  - Stride, S
- Will produce and output of dimension W<sub>o</sub> x H<sub>o</sub> x D<sub>o</sub>
  - $W_0 = (W F) / S + 1$
  - $H_0 = (H F) / S + 1$
  - $D_0 = D$

# FC – Fully connected layer

• computes the class score for classification



#### Convolutional Neural Network

- Because of parameter sharing, and sparsity of connections,
- CNN reduces the number of parameters thus reduce the potential of overfitting
- and since CNN doesn't strongly affect by the position of object in the picture, it increase the accuracy and robustness of detecting object.
- visualisation: http://scs.ryerson.ca/~aharley/vis/conv/

#### CNN in Computer Vision

Classification

Object detection



CAT



- Optical Character Recognition
- Facial Recognition





CAT, DOG, DUCK



CAT, DOG, DUCK

# Traditional way

 Merabet et al, 2015. Building Roof Segmentation from Aerial Images Using a Line-and Region-Based Watershed Segmentation Technique





## ImageNet

- A large visual database led by Fei-Fei Li
- Contains > 14million images with hand-annotated labels



kit fox

## CNN – Evolution (Classification)

- LeNet 1998
- Alexnet 2012
- ZFNet 2012
- Inception 2014
- VGG 2015
- Resnet 2015

## LeNet

• LeCun et.al., 1998. Gradient-based learning applied to document recognition



### Alexnet

 Krizhevsky et al.,2012. ImageNet classification with deep convolutional neural networks



### ZFNet

 Zeiler and Fergus, 2013. Visualizing and Understanding Convolutional Networks



### VGG

 Simonvan & Zisserman 2015. Very deep convolutional networks for large-scale image recognition.



| ConvNet Configuration       |                                         |           |                           |           |               |  |  |  |  |
|-----------------------------|-----------------------------------------|-----------|---------------------------|-----------|---------------|--|--|--|--|
| A                           | A-LRN                                   | В         | С                         | D         | Е             |  |  |  |  |
| 11 weight                   | 11 weight                               | 13 weight | 16 weight 16 weigh        |           | 19 weight     |  |  |  |  |
| layers                      | layers                                  | layers    | layers                    | layers    | layers        |  |  |  |  |
| input (224 × 224 RGB image) |                                         |           |                           |           |               |  |  |  |  |
| conv3-64                    | conv3-64                                | conv3-64  | conv3-64 conv3-64 conv3-6 |           | conv3-64      |  |  |  |  |
|                             | LRN                                     | conv3-64  | conv3-64                  | conv3-64  | 3-64 conv3-64 |  |  |  |  |
| maxpool                     |                                         |           |                           |           |               |  |  |  |  |
| conv3-128                   | onv3-128   conv3-128   conv3-128   conv |           | conv3-128                 | conv3-128 | conv3-128     |  |  |  |  |
|                             |                                         | conv3-128 | conv3-128                 | conv3-128 | conv3-128     |  |  |  |  |
| maxpool                     |                                         |           |                           |           |               |  |  |  |  |
| conv3-256                   | conv3-256                               | conv3-256 | conv3-256                 | conv3-256 | conv3-256     |  |  |  |  |
| conv3-256                   | conv3-256                               | conv3-256 | conv3-256                 | conv3-256 | conv3-256     |  |  |  |  |
|                             |                                         |           | conv1-256                 | conv3-256 | conv3-256     |  |  |  |  |
|                             |                                         |           |                           |           | conv3-256     |  |  |  |  |
| maxpool                     |                                         |           |                           |           |               |  |  |  |  |
| conv3-512                   | conv3-512                               | conv3-512 | conv3-512                 | conv3-512 | conv3-512     |  |  |  |  |
| conv3-512                   | conv3-512                               | conv3-512 | conv3-512   conv3-512     |           | conv3-512     |  |  |  |  |
|                             |                                         |           | conv1-512                 | conv3-512 | conv3-512     |  |  |  |  |
|                             |                                         |           |                           |           | conv3-512     |  |  |  |  |
|                             |                                         |           | pool                      |           |               |  |  |  |  |
| conv3-512                   | conv3-512                               | conv3-512 | conv3-512                 | conv3-512 | conv3-512     |  |  |  |  |
| conv3-512                   | conv3-512                               | conv3-512 | conv3-512                 | conv3-512 | conv3-512     |  |  |  |  |
|                             |                                         |           | conv1-512                 | conv3-512 | conv3-512     |  |  |  |  |
|                             |                                         |           |                           |           | conv3-512     |  |  |  |  |
| maxpool                     |                                         |           |                           |           |               |  |  |  |  |
| FC-4096                     |                                         |           |                           |           |               |  |  |  |  |
| FC-4096                     |                                         |           |                           |           |               |  |  |  |  |
| FC-1000                     |                                         |           |                           |           |               |  |  |  |  |
| soft-max                    |                                         |           |                           |           |               |  |  |  |  |

# GoogLeNet/Inception

#### • Szegedy et al., 2014, Going Deeper with Convolutions

| type           | patch size/<br>stride | output<br>size | depth | #1×1 | #3×3<br>reduce | #3×3 | #5×5<br>reduce | #5×5 | pool<br>proj | params | ops  |
|----------------|-----------------------|----------------|-------|------|----------------|------|----------------|------|--------------|--------|------|
| convolution    | 7×7/2                 | 112×112×64     | 1     |      |                |      |                |      |              | 2.7K   | 34M  |
| max pool       | 3×3/2                 | 56×56×64       | 0     |      |                |      |                |      |              |        |      |
| convolution    | 3×3/1                 | 56×56×192      | 2     |      | 64             | 192  |                |      |              | 112K   | 360M |
| max pool       | 3×3/2                 | 28×28×192      | 0     |      |                |      |                |      |              |        |      |
| inception (3a) |                       | 28×28×256      | 2     | 64   | 96             | 128  | 16             | 32   | 32           | 159K   | 128M |
| inception (3b) |                       | 28×28×480      | 2     | 128  | 128            | 192  | 32             | 96   | 64           | 380K   | 304M |
| max pool       | 3×3/2                 | 14×14×480      | 0     |      |                |      |                |      |              |        |      |
| inception (4a) |                       | 14×14×512      | 2     | 192  | 96             | 208  | 16             | 48   | 64           | 364K   | 73M  |
| inception (4b) |                       | 14×14×512      | 2     | 160  | 112            | 224  | 24             | 64   | 64           | 437K   | 88M  |
| inception (4c) |                       | 14×14×512      | 2     | 128  | 128            | 256  | 24             | 64   | 64           | 463K   | 100M |
| inception (4d) |                       | 14×14×528      | 2     | 112  | 144            | 288  | 32             | 64   | 64           | 580K   | 119M |
| inception (4e) |                       | 14×14×832      | 2     | 256  | 160            | 320  | 32             | 128  | 128          | 840K   | 170M |
| max pool       | 3×3/2                 | 7×7×832        | 0     |      |                |      |                |      |              |        |      |
| inception (5a) |                       | 7×7×832        | 2     | 256  | 160            | 320  | 32             | 128  | 128          | 1072K  | 54M  |
| inception (5b) |                       | 7×7×1024       | 2     | 384  | 192            | 384  | 48             | 128  | 128          | 1388K  | 71M  |
| avg pool       | 7×7/1                 | 1×1×1024       | 0     |      |                |      |                |      |              |        |      |
| dropout (40%)  |                       | 1×1×1024       | 0     |      |                |      |                |      |              |        |      |
| linear         |                       | 1×1×1000       | 1     |      |                |      |                |      |              | 1000K  | 1M   |
| softmax        |                       | 1×1×1000       | 0     |      |                |      |                |      |              |        |      |



Table 1: GoogLeNet incarnation of the Inception architecture

#### • zoom in



## 1x1 Convolution



- reduce number of parameters e.g.
- originally we have 28\*28\*192\*5\*5\*32 = 120,422,400 weights



after using 1x1 conv we have

 $28 \times 28 \times 192$ 

• we have 28\*28\*192\*1\*1\*16+28\*28\*16\*5\*5\*32=12,443,648



## Resnet

#### • He et al, 2015. Deep Residual Learning for Image Recognition

| layer name | output size | 18-layer                                                                              | 34-layer                                                                              | 50-layer                                                                                          | 101-layer                                                                                        | 152-layer                                                                                        |  |  |  |
|------------|-------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--|--|--|
| conv1      | 112×112     | $7\times7$ , 64, stride 2                                                             |                                                                                       |                                                                                                   |                                                                                                  |                                                                                                  |  |  |  |
|            | 56×56       | 3×3 max pool, stride 2                                                                |                                                                                       |                                                                                                   |                                                                                                  |                                                                                                  |  |  |  |
| conv2_x    |             | $\left[\begin{array}{c} 3 \times 3, 64 \\ 3 \times 3, 64 \end{array}\right] \times 2$ | $\left[\begin{array}{c} 3 \times 3, 64 \\ 3 \times 3, 64 \end{array}\right] \times 3$ | $\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$      | $\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$     | $\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$     |  |  |  |
| conv3_x    | 28×28       | $\left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128 \end{array}\right] \times 2$    | $\left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128 \end{array}\right] \times 4$    | $\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$    | $\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$   | $\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 8$   |  |  |  |
| conv4_x    | 14×14       | $\left[\begin{array}{c} 3\times3,256\\ 3\times3,256 \end{array}\right]\times2$        | $\left[\begin{array}{c} 3\times3,256\\ 3\times3,256 \end{array}\right]\times6$        | $\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 6$   | $\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 23$ | $\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 36$ |  |  |  |
| conv5_x    | 7×7         | $\left[\begin{array}{c} 3\times3,512\\ 3\times3,512 \end{array}\right]\times2$        | $\left[\begin{array}{c} 3\times3,512\\ 3\times3,512 \end{array}\right]\times3$        | $ \begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3 $ | $\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$  | $\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$  |  |  |  |
|            | 1×1         | average pool, 1000-d fc, softmax                                                      |                                                                                       |                                                                                                   |                                                                                                  |                                                                                                  |  |  |  |
| FLOPs      |             | $1.8 \times 10^{9}$                                                                   | $3.6 \times 10^{9}$                                                                   | $3.8 \times 10^9$ $7.6 \times 10^9$                                                               |                                                                                                  | 11.3×10 <sup>9</sup>                                                                             |  |  |  |



Figure 3. Example network architectures for ImageNet. Left: the VGG-19 model [41] (19.6 billion FLOPs) as a reference. Middie: a plain network with 34 parameter layers (3.6 billion FLOPs). Right: a residual network with 34 parameter layers (3.6 billion FLOPs). The dotted shortcuts increase dimensions. Table 1 shows more details and other variants.



## Resnet – Skip connection



$$egin{aligned} a^{[l+2]} &= g(z^{[l+2]} + a^{[l]}) \ &= g(W^{[l+2]}a^{[l+1]} + b^{[l+2]} + a^{[l]}) \end{aligned}$$

when vanishing gradient happens this becomes

$$a^{[l+2]} = g(a^{[l]}) = ReLU(a^{[l]}) = a^{[l]}$$

# Grand Plan (besides the lecture material)

- (√) Neural Network Foundation (update to ppt, tbd)
- (√) Neural Network Components (gradient descent, hyperparameter, regularization) (update to ppt, tbd)
- (√) Convolution Neural Network
- (□) Recurrent Neural Network
- (□) Generative Adversarial Network (+ unsupervised + symmetric nn)
- (□) Reinforcement Learning
- (□) Vote/Choice from students or Big data
- ( $\square$ ) Vote/Choice from students or TimeSerise/Natural Language Processing

(optional) You can select a topic from the github readme page (<a href="https://github.com/tczhao/ada2018tut">https://github.com/tczhao/ada2018tut</a>), or propose a topic, or a paper/article that you want to go through, send it to Tianchu.Zhao@uts.edu.au

I will randomly pick a few (or the most popular) and through them in the w9?/10/w11 tutorials