THÉORÈME DE PYTHAGORE -TRIGONOMÉTRIE

1. THÉORÈME DE PYTHAGORE (RAPPELS DE 4ÈME)

THÉORÈME DE PYTHAGORE

Si un triangle est rectangle alors le carré de la longueur de l'hypoténuse est égal à la somme des carrés des longueurs des côtés de l'angle droit.

REMARQUE

- On rappelle que l'hypoténuse est le côté opposé à l'angle droit et le côté ayant la plus grande longueur.
- Ce théorème sert à calculer la longueur d'un côté connaissant les longueurs des deux autres lorsque l'on **sait** que le triangle est rectangle

EXEMPLE

Soit ABC un triangle rectangle en A tel que AB = 4cm et AC = 3cm

D'après le théorème de Pythagore :

$$BC^2 = AB^2 + AC^2 = 4^2 + 3^2 = 16 + 9 = 25$$

Donc $BC = \sqrt{25} = 5$ cm.

THÉORÈME (RÉCIPROQUE DU THÉORÈME DE PYTHAGORE)

Un triangle est rectangle si et seulement si le carré de la longueur du plus grand coté est égal à la somme des carrés des longueurs des deux autres côtés.

REMARQUES

Ce théorème sert à **démontrer** qu'un triangle est un triangle rectangle lorsqu'on connait les longueurs de ses trois côtés.

EXEMPLE

Soit ABC un triangle tel que AB = 12cm, AC = 5cm et BC = 13cm.

ABC est-il rectangle?

On calcule séparément BC^2 (carré de la longueur du plus grand coté) et $AB^2 + AC^2$ (somme des carrés des longueurs des deux autres cotés) :

$$BC^2 = 13^2 = 169$$

$$AB^2 + AC^2 = 12^2 + 5^2 = 144 + 25 = 169$$

 $BC^2 = AB^2 + AC^2$ donc le triangle ABC est rectangle en A d'après la réciproque du théorème de Pythagore.

2. TRIGONOMÉTRIE

DÉFINITIONS

Soit ABC un triangle rectangle en A:

- le **sinus** de \widehat{ABC} est le nombre : $\sin(\widehat{ABC}) = \frac{\text{longueur du côté opposé à B}}{\text{longueur de l'hypoténuse}}$
- le **cosinus** de \widehat{ABC} est le nombre : $\cos(\widehat{ABC}) = \frac{\text{longueur du côté adjacent à B}}{\text{longueur de l'hypoténuse}}$
- la **tangente** de \widehat{ABC} est le nombre : $\tan(\widehat{ABC}) = \frac{\text{longueur du côté opposé à B}}{\text{longueur du côté adjacent à B}}$

EXEMPLE

Dans le triangle rectangle ABC ci-dessus :

$$\sin\left(\widehat{ABC}\right) = \frac{AC}{BC} = \frac{3}{5} = 0,6$$

$$\circ \cos\left(\widehat{ABC}\right) = \frac{AB}{BC} = \frac{4}{5} = 0.8$$

•
$$\tan\left(\widehat{ABC}\right) = \frac{AC}{AB} = \frac{3}{4} = 0,75$$

REMARQUES

- Les sinus, cosinus et tangente n'ont pas d'unité!
- Les sinus et cosinus d'un angle aigu sont compris entre 0 et 1. Par contre, la tangente peut être supérieure à 1.
- Connaissant le sinus, il est possible de calculer la mesure de l'angle en degré à la calculatrice à l'aide de la touche sin⁻¹ (ou **Arcsin** ou **asin** suivant le modèle de la calculatrice). Vérifiez bien que la calculatrice est en mode degré!

PROPRIÉTÉS

Pour tout angle aigu \hat{a} d'un triangle rectangle :

$$(\cos \widehat{a})^2 + (\sin \widehat{a})^2 = 1$$

$$\tan \widehat{a} = \frac{\sin \widehat{a}}{\cos \widehat{a}}$$

REMARQUE

Pour simplifier les notations, on écrit en général $\cos^2 \hat{a}$ pour $(\cos \hat{a})^2$. La première formule s'écrit alors :

$$\cos^2 \hat{a} + \sin^2 \hat{a} = 1$$

DÉMONSTRATIONS

•
$$\cos \hat{a} = \frac{AB}{BC} \operatorname{donc} (\cos \hat{a})^2 = \frac{AB^2}{BC^2}$$

 $\sin \hat{a} = \frac{AC}{BC} \operatorname{donc} (\sin \hat{a})^2 = \frac{AC^2}{BC^2}$
Par conséquent :

$$(\cos \widehat{a})^2 + (\sin \widehat{a})^2 = \frac{AB^2}{BC^2} + \frac{AC^2}{BC^2} = \frac{AB^2 + AC^2}{BC^2}$$
Or d'après le théorème de Pythagore $AB^2 + AC^2 = BC^2$ donc :

$$(\cos \widehat{a})^2 + (\sin \widehat{a})^2 = \frac{BC^2}{BC^2} = 1$$
 après simplification par BC^2

•
$$\frac{\sin \widehat{a}}{\cos \widehat{a}} = \frac{\frac{AC}{BC}}{\frac{BC}{BC}} = \frac{AC}{BC} \times \frac{BC}{AB} = \frac{AC}{AB}$$
 après simplification par BC .

Or,
$$\frac{AC}{AB} = \tan \hat{a}$$
, par conséquent :

$$\tan \widehat{a} = \frac{\sin \widehat{a}}{\cos \widehat{a}}.$$

EXEMPLE

On sait que le cosinus d'un angle \widehat{a} vaut 0,5. Calculer une valeur approchée à 10^{-2} du sinus puis de la tangente de cet angle.

$$\cos^{2} \widehat{a} + \sin^{2} \widehat{a} = 1$$

$$\sin^{2} \widehat{a} = 1 - \cos^{2} \widehat{a} = 1 - 0,5^{2} = 0,75$$

$$\sin \widehat{a} = \sqrt{0,75} \approx 0,87 \text{ à } 10^{-2} \text{ près}$$

$$\tan \widehat{a} = \frac{\sin \widehat{a}}{\cos \widehat{a}} = \frac{\sqrt{0,75}}{0,5} \approx 1,73 \text{ à } 10^{-2} \text{ près}.$$