Stock Exchange Data Analysis

by Sujit Sonar

Objective: To use hive features for data engineering or analysis and sharing the actionable insights

Q1) Create a data pipeline using sqoop to pull the data from the table below from MYSQL server into Hive.

```
a. MYSQL DATABASE NAME: BDHS_PROJECT
```

- i. Stock_prices
- ii. Stock_companies

steps: MYSQL

- 1) Login to FTP and load the csv files
- 2) Login to sql shell by typing mysql
- 3) login to mysql using the sqoop mysql credentials:

Command: mysql -h sqoopdb.slbdh.cloudlabs.com -u sujitsonargmail -p

4) to list the existing/available databases

Command: show databases;

5) select the database to load the data from csv

Command: Use sujitsonargmail;

6) Create the table "STOCK_PRICES" using the below table description

7) check the table is created in mysql

Command: show tables;

6) load the data from csv file from local FTP into the newly created table STOCK_PRICES in mysql Command: load data local infile 'StockPrices.csv' into table STOCK_PRICES fields terminated by ',' enclosed by ''' lines terminated by '\r\n' IGNORE 1 LINES;

7) Check the data is loaded correctly into the STOCK PRICES table in mysgl

Command: select * from STOCK_PRICES limit 5;

Trading_date	Symbol	Open	Close	Low	High	volume
2016-01-05	WLTW			122.309998		2163600
2016-01-06	WLTW			119.940002 114.93		2386400 2489500
2016-01-07 2016-01-08	WLTW			114.93		2469300 2006300
2016-01-11	WLTW			114.089996		

8) Similarly create the table for STOCK_COMPANIES in mysql and load the data from csv file from FTP to my sql

Creating table STOCK COMPANIES:

Checking the table STOCK COMPANIES in mysgl:

Command: show tables;

```
MySQL [sujitsonargmail]> show tables;

+-----+

| Tables_in_sujitsonargmail |

+-----+

| STOCK_COMPANIES |

| STOCK_PRICES |

| dept |

| student |
```

Loading data into STOCK_COMPANIES:

Command: load data local infile 'Stockcompanies.csv' into table STOCK_COMPANIES fields terminated by ',' enclosed by ''' lines terminated by '\r\n'IGNORE 1 LINES;

Check the data is loaded correctly into the STOCK_COMPANIES table in mysql Command: select * from STOCK_COMPANIES limit 5;

MySQL [su	ySQL [sujitsonargmail]> select * from STOCK_COMPANIES limit 5;							
Symbol	Company_name	Sector	Sub_industry	Headquarter				
MMM ABT ABBV ACN ATVI	3M Company Abbott Laboratories AbbVie Accenture plc Activision Blizzard	Health Care Information Technology	Industrial Conglomerates Health Care Equipment Pharmaceuticals IT Consulting & Other Services Home Entertainment Software	St. Paul; Minnesota North Chicago; Illinois North Chicago; Illinois Dublin; Ireland Santa Monica; California				
o rows in set (0.00 sec)								

steps: SQOOP

creating hive table using sqoop pipeline to load the data from mysql STOCK_PRICES and STOCK_COMPANIES table

- 1) checking the STOCK_PRICES data using sqoop and sql connection:
- --connect "jdbc:mysql://sqoopdb.slbdh.cloudlabs.com/sujitsonargmail" \
- --username sujitsonargmail \
- --password sujitsonargmailcut66 \
- --e "describe STOCK_PRICES";

```
(sujitsonargmail@ip-10-0-41-79 ~]$ sqoop eval \
> --connect "jdbc:mysql://sqoopdb.slbdh.cloudlabs.com/sujitsonargmail" \
> --username sujitsonargmail\
> --password sujitsonargmailcut66 \
> --e "describe STOCK PRICES";
Marning:/opt/cloudera/parcels/CDH-6.3.2-1.cdh6.3.2.p0.1605554/bin/../lib/sqoop/../accumulo does not exist! //
Please set $AccuMULO HOME to the root of your Accumulo installation.
SLF43: Class path contains multiple SLF44 bindings.
SLF43: Found binding in [jar:file:/opt/cloudera/parcels/CDH-6.3.2-1.cdh6.3.2.p0.1605554/jars/slf4j-log4jl2-1
SLF44: Found binding in [jar:file:/opt/cloudera/parcels/CDH-6.3.2-1.cdh6.3.2.p0.1605554/jars/slf4j-log4jl2-1
SLF44: Found binding in fjar:file:/opt/cloudera/parcels/CDH-6.3.2-1.cdh6.3.2.p0.1605554/jars/slf4j-log4jl2-1
SLF44: Found binding is of type [org.slf4j.impl.Log4jloggerFactory]
SLF44: Actual binding is of type [org.slf4j.impl.Log4jloggerFactory]
SLF44: Set http://www.slf4j.org/codes.htmlfmultiple bindings for an explanation.
SLF44: Actual binding is of type [org.slf4j.impl.Log4jloggerFactory]
SLF44: Rotual binding is of type [org.slf4j.impl.Log4jloggerFactory]
SLF44: Statual binding is of type [org.slf4j.impl.Log4jloggerFactory]
```

sqoop eval \

- --connect "jdbc:mysql://sqoopdb.slbdh.cloudlabs.com/sujitsonargmail" \
- --username sujitsonargmail \
- --password sujitsonargmailcut66 \
- --query "select * from STOCK_PRICES limit 5";

```
[sujitsonargmail@ip-10-0-41-79 ~]$ sqoop eval \
> --connect "jdbc:mysq1://sqoopdb.slbdh.cloudlabs.com/sujitsonargmail" \
> --password sujitsonargmailaut66 \
> --query "select * from STOCK PRICES limit 5";
Warning: /opt/cloudera/parcels/CDH-6.3.2-1.cdh6.3.2.p0.1605554/bin/../lib/sqoop/../accumulo does not exist! Accumulo imports will fail.
Please set $AccUMULO_HOME to the root of your Accumulo installation.
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/opt/cloudera/parcels/CDH-6.3.2-1.cdh6.3.2.p0.1605554/jars/slf4j-log4j12-1.7.25.jar!/org/slf4j/impl/StaticLogger.
SLF4J: Found binding in [jar:file:/opt/cloudera/parcels/CDH-6.3.2-1.cdh6.3.2.p0.1605554/jars/log4j-slf4j-impl-2.8.2.jar!/org/slf4j/impl/StaticLogger.
SLF4J: Found binding in [jar:file:/opt/cloudera/parcels/CDH-6.3.2-1.cdh6.3.2.p0.1605554/jars/log4j-slf4j-impl-2.8.2.jar!/org/slf4j/impl/StaticLogger.
SLF4J: Found binding is of type [org.slf4j.impl.Log4jLoggerFactory]
22/03/19 14:20:19 INFO sgoop. Sqoop. Sqoop. Running Sqoop version: 1.4.7-cdh6.3.2
22/03/19 14:20:19 INFO sgoop. Sqoop. Sqoopl: Setting your password on the command-line is insecure. Consider using -P instead.
22/03/19 14:20:19 INFO manager.MySQLManager: Preparing to use a MySQL streaming resultset.
22/03/19 14:20:19 INFO manager.MySQLManager: Preparing to use a MySQL streaming resultset.
22/03/19 14:20:19 INFO manager.MySQLManager: Preparing to use a MySQL streaming resultset.
22/03/19 14:20:19 INFO manager.MySQLManager: Preparing to use a MySQL streaming resultset.
22/03/19 14:20:19 INFO manager.MySQLManager: Preparing to use a MySQL streaming resultset.
22/03/19 14:20:19 INFO manager.MySQLManager: Preparing to use a MySQL streaming resultset.
22/03/19 14:20:19 INFO manager.MySQLManager: Preparing to use a MySQL streaming resultset.
22/03/19 14:20:19 INFO manager.MySQLManager: Preparing to use a MySQL streaming resultset.
22/03/19 14:20:19 INFO manager.MySQLManager: Preparing to use a MySQL streaming resultset.
22/03/19 14:20:19 INFO manager.MySQLMana
```

2) checking the STOCK COMPANIES data using sqoop and sql connection:

sqoop eval \

- --connect "jdbc:mysql://sqoopdb.slbdh.cloudlabs.com/sujitsonargmail" \
- --username sujitsonargmail \
- --password sujitsonargmailcut66 \
- --e "describe STOCK COMPANIES"

```
--username sujitsonargmail \
   --password sujitsonargmailcut66 \
   --e "describe STOCK_COMPANIES"
Warning: /opt/cloudera/parcels/CDH-6.3.2-1.cdh6.3.2.p0.1605554/bin/../lib/sqoop/../accumulo does not exist! Ac
Please set $ACCUMULO_HOME to the root of your Accumulo installation.
SLF4J: Class path contains multiple SLF4J bindings.
SLF40: Class path contains multiple SLF40 bindings.
SLF41: Found binding in [jar:file:/opt/cloudera/parcels/CDH-6.3.2-1.cdh6.3.2.p0.1605554/jars/slf4j-log4j12-1.7
SLF41: Found binding in [jar:file:/opt/cloudera/parcels/CDH-6.3.2-1.cdh6.3.2.p0.1605554/jars/log4j-slf4j-impl-;
SLF41: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
SLF41: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory]
22/03/19 14:22:37 INFO sqoop.Sqoop: Running Sqoop version: 1.4.7-cdh6.3.2
22/03/19 14:22:37 WARN tool.BaseSqoopTool: Setting your password on the command-line is insecure. Consider usin 22/03/19 14:22:37 INFO manager.MySQLManager: Preparing to use a MySQL streaming resultset.
  oading class `com.mysql.jdbc.Driver'. This is deprecated. The new driver class is `com.mysql.cj.jdbc.Driver'
 nual loading of the driver class is generally unnecessary.
   Field
                                                                                        | Null | Key | Default
                                            | Type
                                                                                                                                                             | Extra
   Symbol
                                               varchar(255)
                                                                                                                   (null)
                                                varchar(255)
   Company_name
                                               varchar(255)
   Sub_industry
                                               varchar (255)
                                                                                           NO
                                                                                                                   (null)
   Headquarter
                                               varchar(255)
                                                                                         I NO
                                                                                                                   (null)
```

sqoop eval \

- --connect "jdbc:mysql://sqoopdb.slbdh.cloudlabs.com/sujitsonargmail" \
- --username sujitsonargmail \
- --password sujitsonargmailcut66 \
- --query "select * from STOCK_COMPANIES limit 5";

```
[sujitsonargmail@ip-10-0-41-79 ~]$ sqoop eval \
> --connect "idbc:mysql://sqoopdb.slbdh.cloudlabs.com/sujitsonargmail" \
> --username sujitsonargmail \
> --password sujitsonargmailcut66 \
> --query "select * from STOCK COMPANIES limit 5";

Warning: /opt/cloudera/parcels/CDH-6.3.2-1.cdh6.3.2.p0.1605554/bin/../lib/sqoop/../accumulo does not exist! Accumulo imports will Please set $ACCUMULO_HOME to the root of your Accumulo installation.

SLF40: Class path contains multiple SLF4J bindings.

SLF40: Class path contains multiple SLF4J bindings.

SLF40: Found binding in [jar:file:/opt/cloudera/parcels/CDH-6.3.2-1.cdh6.3.2.p0.1605554/jars/slf4j-log4j12-1.7.25.jar!/org/slf4j/i SLF40: See http://www.slf4j.org/codes.html#multiple bindings for an explanation.

SLF40: See http://www.slf4j.org/codes.html#multiple bindings for an explanation.

SLF40: See http://www.slf40.org/codes.html#multiple bindings for an explanation.

SLF40: Accumulo did in jar:file:/opt/cloudera/parcels/CDH-6.3.2-1.cdh6.3.2.p0.1605554/jars/slf4j-impl-2.8.2.jar!/org/slf4jimpl-2.8.2.jar!/org/slf4jimpl-2.8.2.jar!/org/slf4jimpl-2.8.2.jar!/org/slf4jimpl-2.8.2.jar!/org/slf4jimpl-2.8.2.jar!/org/slf4jimpl-2.8.2.jar!/org/slf4jimpl-2.8.2.jar!/org/slf4jimpl-2.8.2.jar!/org/slf4jimpl-2.8.2.jar!/org/slf4jimpl-2.8.2.jar!/org/slf4jimpl-2.8.2.ja
```

- 1) Login to hive and create a database "sujitsonarproject" **Create database sujitsonarproject**;
- 2) creating STOCK_PRICES hive table under sujitsonarproject using sqoop sqoop create-hive-table \
- --connect "jdbc:mysql://sqoopdb.slbdh.cloudlabs.com/sujitsonargmail" \
- --username sujitsonargmail \
- --password sujitsonargmailcut66 \
- --table STOCK_PRICES \
- --hive-database sujitsonarproject;
- 4) Importing STOCK_PRICES data from mysql to hive table sqoop import \
- --connect "jdbc:mysql://sqoopdb.slbdh.cloudlabs.com/sujitsonargmail" \
- --username sujitsonargmail \
- --password sujitsonargmailcut66 \
- --table STOCK_PRICES \
- --hive-import \
- --hive-table sujitsonarproject.stock_prices \
- -m 1;
- 5) Changing the Trading_date datatype from String to Date:

ALTER TABLE stock_prices CHANGE trading_date trading_date_new DATE;

Checking the datatype is correctly changed from string to Date **Describe stock_prices**;

hive> describe stock_p	rices;
OK	
trading_date_new	date
symbol	string
open	double
close	double
low	double
high	double
volume	int

6) similarly creating the STOCK_COMPANIES hive table under sujitsonarproject using sqoop and importing the data from mysql to hive table

```
Creating STOCK_COMPANIES hive table:
```

```
sqoop create-hive-table \
```

- --connect "jdbc:mysql://sqoopdb.slbdh.cloudlabs.com/sujitsonargmail" \
- --username sujitsonaramail \
- --password sujitsonargmailcut66 \
- --table STOCK_COMPANIES \
- --hive-database sujitsonarproject;

Importing STOCK_COMPANIES data from mysql to hive table:

sqoop import \

- --connect "jdbc:mysql://sqoopdb.slbdh.cloudlabs.com/sujitsonargmail" \
- --username sujitsonargmail \
- --password sujitsonargmailcut66 \
- --table STOCK_COMPANIES \
- --hive-import \
- --hive-table sujitsonarproject.stock_companies \
- -m 1;

7) Checking the newly created hive tables under sujitsonarproject database using hive

```
hive> show tables;

OK

stock_companies

stock_prices

Time taken: 0.054 seconds, Fetched: 9 row(s)

nive>
```

Querying data from these tables using hive command line

Stock prices:

```
from stock_prices limit 5;
hive> select
2016-01-05
                WLTW
                        123.43 125.839996
                                                 122.309998
                                                                  126.25 2163600
                                     119.980003
                        125.239998
2016-01-06
                                                         119.940002
                                                                                           2386400
                WLTW
                                                                          125.540001
                                                          114.93 119.739998
113.5 117.440002
2016-01-07
                                         114.949997
                                                                                   2489500
                WLTW
                        116.379997
                        115.480003
                                         116.620003
2016-01-08
                WLTW
                                                                          117.330002
2016-01-11
                WLTW
                        117.010002
                                         114.970001
                                                          114.089996
                                                                                           1408600
Time taken: 0.335 seconds, Fetched: 5 row(s)
hive>
```

Stock companies:

```
hive> select * from stock_companies limit 5;
MMIN
          3M Company
                              Industrials
                                                   Industrial Conglomerates
                                                                                             St. Paul; Minnesota
                                        Health Care
ABT
                                                            Health Care Equipment
          Abbott Laboratories
                                                                                             North Chicago; Illinois
                              Care Pharmaceuticals North Chicago; Illinois
Information Technology IT Consulting & Other Services Dublin; Ireland
zard Information Technology Home Entertainment Software Santa Mo
                   Health Care
          Activision Blizzard
                                                                                                                  Santa Monica; California
Fime taken: 0.1 seconds, Fetched: 5 row(s)
```

Querying data from these hive tables using HUE stock prices:

	stock_prices.trading_date_new	stock_prices.symbol	stock_prices.open	stock_prices.close	stock_prices.low	stock_prices.high	stock_prices.volume
1	2016-01-05	WLTW	123.43	125.839996	122.309998	126.25	2163600
2	2016-01-06	WLTW	125.239998	119.980003	119.940002	125.540001	2386400
3	2016-01-07	WLTW	116.379997	114.949997	114.93	119.739998	2489500
4	2016-01-08	WLTW	115.480003	116.620003	113.5	117.440002	2006300
5	2016-01-11	WLTW	117.010002	114.970001	114.089996	117.330002	1408600

Stock_companies:

	stock_companies.symbol	stock_companies.company_name	stock_companies.sector	stock_companies.sub_industry	stock_companies.headquarter
1	MMM	3M Company	Industrials	Industrial Conglomerates	St. Paul; Minnesota
2	ABT	Abbott Laboratories	Health Care	Health Care Equipment	North Chicago; Illinois
3	ABBV	AbbVie	Health Care	Pharmaceuticals	North Chicago; Illinois
4	ACN	Accenture plc	Information Technology	IT Consulting & Other Services	Dublin; Ireland
5	ATVI	Activision Blizzard	Information Technology	Home Entertainment Software	Santa Monica; California

Observations: These shows that the data from mysql is correctly loaded into hive tables and we now have the data available in hive for analysis.

Q2) Create a new hive table with the following fields by joining the above two hive tables. Please use appropriate Hive built-in functions for columns (a,b,e and h to l).

- Trading_year: Should contain YYYY for each record
- Trading month: Should contain MM or MMM for each record
- Symbol: Ticker code
- CompanyName: Legal name of the listed company
- State: State to be extracted from headquarters value.
- Sector: Business vertical of the listed company
- Sub_Industry: Business domain of the listed company within a sector
- Open: Average of intra-day opening price by month and year for each listed company
- Close: Average of intra-day closing price by month and year for each listed company
- Low: Average of intra-day lowest price by month and year for each listed company
- High: Average of intra-day highest price by month and year for each listed company
- Volume: Average of number of shares traded by month and year for each listed company

steps: HIVE

creating a new hive table by joining the stock_prices and stock_companies hive tables using hive sql commands.

1) creating a helper table:

create table NYSE_STOCK_ssonar as select substr(p.trading_date_new,1,4) as year,substr(p.trading_date_new,6,2) as month, p.symbol, c.company_name, substr(c.headquarter,instr(c.headquarter,';')+1) as state, c.sector, c.sub_industry, p.open, p.close, p.low, p.high, p.volume FROM sujitsonarproject.stock_prices p

LEFT OUTER JOIN sujitsonarproject.stock_companies c

ON p.symbol = c.symbol;

2) Applying hive built-in functions to the helper table to create the final NYSE_STOCK_ssonar_project table

create table NYSE_STOCK_ssonar_project as select year as Trading_year, month as Trading_month, symbol, company_name, state, sector, sub_industry, avg(open) as open, avg(close) as close, avg(low) as low, avg(high) as high, avg(volume) as volume FROM sujitsonarproject.NYSE_STOCK_ssonar GROUP BY sector, state, sub_industry, symbol, company_name, year, month order by sector, state, sub_industry, symbol, company_name, year, month;

3) Querying the first few records from the newly created hive table NYSE_STOCK_ssonar_project

Hive command line:

Hive in HUE:

	nyse_stock_ssonar_project.trading_year	nyse_stock_ssonar_project.trading_month	symbol	open	close	ick_ssonar_project.low	nyse_stock_ssonar_project.high	nyse_stock_ssonar_project.volum
1	2010	01	SIG	27.31894715789474	27.667368526315787	794736842	27.821052421052627	521305.2631578947
2	2010	02	SIG	27.90157899999998	28.10894721052632	:1210526314	28.29947384210526	297542.1052631579
3	2010	03	SIG	29.413478347826093	29.635652	5782608697	29.846521565217397	420786.95652173914
4	2010	04	SIG	33.21047638095238	33.29809542857142	428571428	33.55523847619048	339376.1904761905
5	2010	05	SIG	30.934500099999998	31.287000049999996	9999999992	31.73300030000004	858560

Observations: These shows that the newly combined hive table with all the columns is correctly created, and we have the data available in hive for analysis.

steps: DATA ANALYSIS USING HIVE

querying data from the nyse_stock_ssonar_project table for for data analysis.

Q3) Find the top five companies that are good for investment

1)creating a helper table

create table stock_data1 as
select company_name, min(trading_year) min_year, max(trading_year) max_year,
min(trading_month) min_month, max(trading_month) max_month
from sujitsonarproject.nyse_stock_ssonar_project
group by company_name;

2) creating the final table to query the top five companies that are good for investment. p.s: The metric considered are open and close data.

create table stock_growth_table as

select table1.company_name, table1.symbol, table1.state, table1.sector, table1.sub_industry, table1.min_year,table1.min_month,table2.max_year,table2.max_month, table1.open,table2.close, round(((table2.close-table1.open)/table1.open)*100,2) as growth_percent

from (select t1.company_name, t2.symbol, t2.state, t2.sector, t2.sub_industry, t1.min_year, t1.min_month, t2.open

FROM sujitsonarproject.stock_data1 t1, sujitsonarproject.nyse_stock_ssonar_project t2 where t1.company_name = t2.company_name

and t1.min_year = t2.trading_year

and t1.min_month = t2.trading_month) as table1,

(select t1.company_name, t2.symbol, t2.state, t2.sector, t2.sub_industry,

t1.max_year, t1.max_month, t2.close

FROM sujitsonarproject.stock_data1 t1, sujitsonarproject.nyse_stock_ssonar_project t2

where t1.company_name = t2.company_name

and t1.max_year = t2.trading_year

and t1.max_month = t2.trading_month) as table2

where table1.company_name = table2.company_name

sort by growth_percent desc;

Observations: Querying the top five companies that are good for investment based on open and close price:

select company_name, sector, growth_percent from stock_growth_table limit 5;

	company_name	sector	growth_percent
1	Netflix Inc.	Information Technology	1536.85
2	Regeneron	Health Care	1382.28
3	Ulta Salon Cosmetics & Fragrance Inc	Consumer Discretionary	1174.92
4	United Rentals; Inc.	Industrials	1064.19
5	Alaska Air Group Inc	Industrials	879.08

Q 4) Show the best-growing industry by each state, having at least two or more industries mapped.

1) Creating a helper table to filter states, having at least two or more industries mapped create table industry_growth as select state, sub_industry, count(concat(state,sub_industry)) as ind_count, avg(growth_percent) as industry_growth from sujitsonarproject.stock_growth_table group by state, sub_industry having count(concat(state,sub_industry)) >= 2 sort by industry_growth desc;

Final table:

create table state_industry_growth as
select t3.state as state,t3.sub_industry as sub_industry, t3.ind_count as ind_count,
round(t3.industry_growth,2) as max_ind_growth
from sujitsonarproject.industry_growth as t3,
(select state, max(industry_growth) as max_ind_growth
from sujitsonarproject.industry_growth
group by state) as t4
where t3.state = t4.state
and t3.industry_growth = t4.max_ind_growth
sort by max_ind_growth desc;

Observations: Querying the best-growing industry by each state, having at least two or more industries mapped

select state,sub_industry,max_ind_growth from sujitsonarproject.state_industry_growth;

	state	sub_industry	max_ind_growth
1	Texas	Airlines	571.09
2	California	Internet Software & Services	336.64
3	Washington	Internet & Direct Marketing Retail	323.85
4	Massachusetts	Semiconductors	285.15
5	Virginia	Aerospace & Defense	255.38
6	New York	Diversified Financial Services	244.28
7	North Carolina	Apparel; Accessories & Luxury Goods	234.57
8	Florida	Industrial Conglomerates	177.39
9	Ohio	Banks	171.57
10	Minnesota	Packaged Foods & Meats	166.67
11	Pennsylvania	Diversified Chemicals	163.19
12	Ireland	Pharmaceuticals	155.86
13	Michigan	MultiUtilities	143.77
14	Illinois	Industrial Machinery	136.02
15	Wisconsin	Electric Utilities	131.92
16	New Jersey	Health Care Equipment	120.89
17	United Kingdom	Insurance Brokers	101.05
18	Maryland	Cable & Satellite	85.84
19	Missouri	Industrial Conglomerates	85.57
20	Connecticut	Industrial Conglomerates	75.07
21	Oklahoma	Oil & Gas Exploration & Production	74.72
22	Arizona	Semiconductors	29.19

- Q5) For each sector find the following.
 - a. Worst year
 - b. Best year
 - c. Stable year
- 1) creating table to find the Worst, Best and Stable year for each sector

create table sector_growth_table as select open_table.sector as sector, open_table.trading_year as trading_year, open_table.open as open, close_table.close as close, (close_table.close - open_table.open) as growth, round(((close_table.close - open_table.open)/open_table.open)*100,2) as percent_growth from (select t5.sector as sector, t5.trading_year as trading_year,avg(t5.open) as open from sujitsonarproject.nyse_stock_ssonar_project as t5, (select trading_year, sector, min(trading_month) as min_month, max(trading_month) as max_month from sujitsonarproject.nyse_stock_ssonar_project group by sector, trading_year) as min_max_month where t5.sector = min_max_month.sector and t5.trading_year = min_max_month.trading_year and t5.trading_month = min_max_month.min_month group by t5.sector, t5.trading_year) as open_table join (select t5.sector as sector, t5.trading_year as trading_year,avg(t5.close) as close from sujitsonarproject.nyse_stock_ssonar_project as t5, (select trading_year, sector, min(trading_month) as min_month, max(trading_month) as max_month from sujitsonarproject.nyse_stock_ssonar_project group by sector, trading_year) as min_max_month where t5.sector = min_max_month.sector and t5.trading_year = min_max_month.trading_year and t5.trading_month = min_max_month.max_month group by t5.sector, t5.trading_year) as close_table where open_table.sector = close_table.sector and open_table.trading_year = close_table.trading_year;

a. Worst year

select x.sector,x.trading_year, x.growth from sujitsonarproject.sector_growth_table as x, (select sector,min(growth) as min_growth from sujitsonarproject.sector_growth_table group by sector) as y where x.sector = y.sector and x.growth = y.min_growth order by x.trading_year;

	x.sector	x.trading_year	x.growth
, 1	Materials	2011	-3.9670180038293523
2	Information Technology	2011	-2.903352390444063
3	Financials	2011	-6.859744235256144
4	Consumer Discretionary	2011	4.860477526637112
5	Real Estate	2013	-4.463394495796393
6	Utilities	2015	-6.474239674240252
7	Telecommunications Services	2015	-2.2943546409090914
8	Industrials	2015	-2.640463503133674
9	Energy	2015	-10.098865639520199
10	Health Care	2016	2.0804205425002777
11	Consumer Staples	2016	3.1815668437405975

Observations: 2011 and 2015 are years where most of sectors are most hit

b. Best year

select x.sector,x.trading_year, x.growth from sujitsonarproject.sector_growth_table as x, (select sector,max(growth) as max_growth from sujitsonarproject.sector_growth_table group by sector) as y where x.sector = y.sector and x.growth = y.max_growth order by x.trading_year;

	x.sector	x.trading_year	x.growth
1	Information Technology	2013	15.538204765520831
2	Consumer Discretionary	2013	24.392649212454756
3	Utilities	2014	10.267945201691397
4	Telecommunications Services	2014	5.06370545238094
5	Real Estate	2014	18.892443342722785
6	Health Care	2014	24.325416317192747
7	Consumer Staples	2014	9.323455196317902
8	Materials	2016	19.037147210416038
9	Industrials	2016	19.804276198605308
10	Financials	2016	16.32740404883174
11	Energy	2016	18.641447432470073

Observations: 2013,3014 and 2016 are the best years for most of the sectors

```
c. Stable year
SELECT sector,
COLLECT_SET(`2010`)[0] AS `2010`,
COLLECT_SET(`2011`)[0] AS `2011`,
COLLECT_SET(`2012`)[0] AS `2012`,
COLLECT_SET(`2013`)[0] AS `2013`,
COLLECT_SET(`2014`)[0] AS `2014`,
COLLECT_SET(`2015`)[0] AS `2015`,
COLLECT_SET(`2016`)[0] AS `2016`
FROM (
SELECT sector,
CASE WHEN trading_year=2010 THEN round(growth,2) END AS `2010`,
CASE WHEN trading_year=2011 THEN round(growth,2) END AS `2011`,
CASE WHEN trading_year=2012 THEN round(growth,2) END AS `2012`,
CASE WHEN trading_year=2013 THEN round(growth,2) END AS `2013`,
CASE WHEN trading_year=2014 THEN round(growth,2) END AS `2014`,
CASE WHEN trading_year=2015 THEN round(growth,2) END AS `2015`,
CASE WHEN trading_year=2016 THEN round(growth,2) END AS `2016`
FROM sujitsonarproject.sector_growth_table)tbl1
GROUP BY sector;
```

	sector	2010	2011	2012	2013	2014	2015	2016
1	Consumer Discretionary	14.4	4.86	7.73	24.39	9.6	6.2	14.68
2	Consumer Staples	4.18	4.16	4.54	8.82	9.32	4.89	3.18
3	Energy	7.71	-3.59	-1.95	12.58	-6.26	-10.1	18.64
4	Financials	2.99	-6.86	5.6	15.3	5.81	0.21	16.33
5	Health Care	4.55	4.64	9.58	17.32	24.33	4.42	2.08
6	Industrials	9.4	-2.55	3.22	16.46	8.57	-2.64	19.8
7	Information Technology	6.5	-2.9	4.06	15.54	6.65	8.97	14.41
8	Materials	6.39	-3.97	7.42	8.63	6.7	-2.82	19.04
9	Real Estate	8.5	4.44	8.41	-4.46	18.89	1.74	1.23
10	Telecommunications Services	2.27	-1.64	2.75	0.92	5.06	-2.29	3.94
11	Utilities	0.58	3.18	1.38	2.41	10.27	-6.47	6.11

Observations: by looking at the table, 2012 appears to be the stable year for most of the sectors.