Devoir à la maison n°14 : corrigé

Problème 1 – Division selon les puissances croissantes et applications

Partie I – Division selon les puissances croissantes

1. Soit $(A,B) \in \mathbb{K}[X]^2$ tel que $B(0) \neq 0$ et $p \in \mathbb{N}$. Supposons qu'il existe $Q_1,R_1,Q_2,R_2 \in \mathbb{K}[X]$ tels que

$$A=BQ_1+X^{p+1}R_1=BQ_2+X^{p+1}R_2 \qquad \qquad deg\,Q_1\leqslant p \qquad \qquad deg\,Q_2\leqslant p$$

On a donc $B(Q_1-Q_2)=X^{p+1}(R_2-R_1)$. Puisque 0 n'est pas racine de B, X n'est pas un facteur irréductible de B. Puisque le seul facteur irréductible de X^{p+1} est X, B et X^{p+1} n'ont aucun facteur irréductible commun : ils sont donc premiers entre eux. D'après le théorème de Gauss, X^{p+1} divise Q_1-Q_2 . Or $deg(Q_1-Q_2)\leqslant p$ donc $Q_1-Q_2=0$ i.e. $Q_1=Q_2$. Ensuite, $X^{p+1}(R_2-R_1)=0$ puis $R_1=R_2$ par intégrité.

2. Soient $A,B\in\mathbb{K}[X]$ tels que $B(0)\neq 0.$ On fait l'hypothèse de récurrence suivante :

$$\mathsf{HR}(\mathfrak{p})$$
: il existe $(Q,R) \in \mathbb{K}[X]^2$ tel que $A = BQ + X^{\mathfrak{p}+1}R$ et deg $Q \leq \mathfrak{p}$.

Initialisation: Posons $Q = \frac{A(0)}{B(0)}$. Alors A - BQ admet 0 pour racine: on peut donc le factoriser par X. Il existe alors $R \in \mathbb{K}[X]$ tel que A - BQ = XR i.e. A = BQ + XR. On a bien deg $Q \leqslant 0$.

Hérédité: Supposons HR(p) vraie pour un certain $p \in \mathbb{N}$. Il existe donc $(\tilde{Q}, \tilde{R}) \in \mathbb{K}[X]^2$ tel que $A = B\tilde{Q} + X^{p+1}\tilde{R}$ et deg $\tilde{Q} \leq p$. Mais en raisonnant comme dans l'initialisation, on montre qu'il existe $\lambda \in \mathbb{K}$ tel que $\tilde{R} = \lambda B + XR$. On a alors $A = BQ + X^{p+2}R$ en posant $Q = \tilde{Q} + \lambda X^{p+1}$. Comme deg $\tilde{Q} \leq p$, deg $Q \leq p+1$.

Conclusion: Par récurrence, HR(p) est vraie pour tout $p \in \mathbb{N}$.

3.

Le quotient est donc $2 + 3X + 5X^2$ et le reste est 6 - 5X.

Partie II - Application aux développements limités

1. Si on note R le reste de la division selon les puissances croissantes de A par B à l'ordre p, on a $A-BQ=X^{p+1}R$. Comme R est continue en 0, elle est bornée au voisinage de 0 et donc $A(x)-B(x)Q(x) = \mathcal{O}(x^{p+1})$ et a fortiori

 $A(x)-B(x)Q(x)\underset{x\to 0}{=}o(x^p).$ Comme B est continue et non nulle en 0, $\frac{1}{B}$ est continue et donc bornée au voisinage de 0. On en déduit que $\frac{A(x)-B(x)Q(x)}{B(x)}\underset{x\to 0}{=}o(x^p)$ i.e. $\frac{A(x)}{B(x)}\underset{x\to 0}{=}Q(x)+o(x^p)$.

2. On note à nouveau R le reste de la division selon les puissances croissantes de A par B à l'ordre p. Pour x au voisinage de 0,

$$f(x) - g(x)Q(x) = A(x) - B(x)Q(x) + (f(x) - A(x)) - (g(x) - B(x))Q(x)$$

= $x^{p+1}R(x) + (f(x) - A(x)) - (g(x) - B(x))Q(x)$

On prouve comme à la question précédente que $x^{p+1}R(x) = o(x^p)$. De plus, $f(x) - A(x) = o(x^p)$. Enfin, $g(x) - B(x) = o(x^p)$ et comme Q est continue et donc bornée au voisinage de 0, $(g(x) - B(x))Q(x) = o(x^p)$. On a donc $f(x) - g(x)Q(x) = o(x^p)$. Puisque $g(x) = B(x) + o(x^p)$, g admet g(x) = 0 pour limite en g(x) = 0, de sorte que g(x) = 0 est bornée au voisinage de g(x) = 0. Par conséquent, g(x) = 0 ou g(x) = 0 i.e. g(x) = 0 i.e. g(x) = 0 ou g(x) = 0

3. On a $\cos(x) = 1 - \frac{x^2}{2} + \frac{x^4}{24} + o(x^4)$ et $\exp(x) = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \frac{x^4}{24} + o(x^4)$. On effectue donc la division selon les puissances croissantes de $1 - \frac{X^2}{2} + \frac{X^4}{24}$ par $1 + X + \frac{X^2}{2} + \frac{X^3}{6} + \frac{X^4}{24}$ à l'ordre 4.

On a volontairement omis les puissances strictement supérieures à 5 dans les restes car elles n'interviennent pas dans le calcul du quotient qui est de degré au plus 4. D'après la question précédente, on a donc

$$\frac{\cos x}{\exp x} = 1 - x + \frac{x^3}{3} - \frac{x^4}{6} + o(x^4)$$

Partie III - Décomposition en éléments simples

1. On effectue la division selon les puissances croissantes de $X^3 - 1$ par X + 1.

Ainsi $X^3-1=(X+1)(2X^3-X^2+X-1)-2X^4.$ On en déduit que

$$\frac{X^3 - 1}{X^4(X + 1)} = \frac{2}{X} - \frac{1}{X^2} + \frac{1}{X^3} - \frac{1}{X^4} - \frac{2}{X + 1}$$

ce qui est bien la décomposition en éléments simples de $\frac{X^3-1}{X^4(X+1)}$.

2. Posons
$$F = \frac{X^2 + 1}{(X - 1)^4 (X + 1)^3}$$
 et

$$G = F(X+1) = \frac{X^2 + 2X + 2}{X^4(X+2)^3} = \frac{X^2 + 2X + 2}{X^4(X^3 + 6X^2 + 12X + 8)}$$

On effectue la division selon les puissances croissantes de $X^2 + 2X + 2$ par $X^3 + 2X^2 + 4X + 8$ à l'ordre 3.

Ainsi

$$X^{2} + 2X + 2 = (X^{3} + 2X^{2} + 4X + 8)\left(-\frac{1}{8}X^{3} + \frac{1}{8}X^{2} - \frac{1}{8}X + \frac{1}{4}\right) + X^{4}\left(\frac{1}{8}X^{2} + \frac{5}{8}X + \frac{7}{8}\right)$$

ďoù

$$G = -\frac{1}{8X} + \frac{1}{8X^2} - \frac{1}{8X^3} + \frac{1}{4X^4} + \frac{X^2 + 5X + 7}{8(X+2)^3}$$

On en déduit

$$F = G(X - 1) = -\frac{1}{8(X - 1)} + \frac{1}{8(X - 1)^2} - \frac{1}{8(X - 1)^3} + \frac{1}{4(X - 1)^4} + \frac{X^2 + 3X + 3}{8(X + 1)^3}$$

Posons
$$\tilde{F} = \frac{X^2 + 3X + 3}{8(X+1)^3}$$
 et $\tilde{G} = \tilde{F}(X-1)$. Ainsi

$$\tilde{G} = \frac{X^2 + X + 1}{8X^3} = \frac{1}{8X} + \frac{1}{8X^2} + \frac{1}{8X^3}$$

On en déduit

$$\tilde{F} = \tilde{G}(X+1) = \frac{1}{8(X+1)} + \frac{1}{8(X+1)^2} + \frac{1}{8(X+1)^3}$$

puis

$$F = -\frac{1}{8(X-1)} + \frac{1}{8(X-1)^2} - \frac{1}{8(X-1)^3} + \frac{1}{4(X-1)^4} + \frac{1}{8(X+1)} + \frac{1}{8(X+1)^2} + \frac{1}{8(X+1)^3}$$