1 15.4: The Chain Rule

Theorem 15.7: Chain Rule (One Independent Variable)

Let z be a differentiable function of x and y on its domain, where x and y are differentiable functions of t on an interval I. Then

$$\frac{dz}{dt} = \frac{\partial z}{\partial x}\frac{dx}{dt} + \frac{\partial z}{\partial y}\frac{dy}{dt}.$$

Note:

- For z = f(x(t), y(t)), z is the dependent variable, t is the independent variable, and x and y are intermediate variables.
- Since x and y only depend on t, we use the 'ordinary' derivative symbol
- \bullet Theorem 15.7 generalizes to functions of n variables

Example. Find the derivative of the following functions using the chain rule where appropriate.

$$z = x^2 - 2y^2 + 20$$
 where $x = 2\cos(t)$ and $y = 2\sin(t)$

$$w = \sin(12x)\cos(2y)$$
 where $x = t/2$ and $y = t^3$

$$Q = \sqrt{3x^2 + 3y^2 + 2z^2}$$
 where $x = \sin(t)$, $y = \cos(t)$, and $z = \cos(t)$.

Theorem 15.8: Chain Rule (Two Independent Variables)

Let z be a differentiable function of x and y, where x and y are differentiable functions of s and t. Then

$$\frac{\partial z}{\partial s} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial s} \quad \text{and} \quad \frac{\partial z}{\partial t} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial t}.$$

Example. For $z = e^{5x+8y}$, where x = 7st and y = 5s + t, find z_s and z_t .

Example. For $z = \sin(2x)\cos(3y)$, where x = s + t and y = s - t, find $\partial z/\partial s$ and $\partial z/\partial t$.

Example. For $r = \ln(x^2 + xy + y^2)$, where x = 2st and y = s/t, find $\partial r/\partial s$ and $\partial r/\partial t$.

Theorem 15.9: Implicit Differentiation

Let F be differentiable on its domain and suppose F(x,y)=0 defines y as a differentiable function of x. Provided $F_y\neq 0$,

$$\frac{dy}{dx} = -\frac{F_x}{F_y}.$$

Note: The above derivation comes from using the chain rule on F(x,y) = 0.

Example. For $4x^3 + 2x^2y - 3y^3 = 0$, find $\frac{dy}{dx}$ implicitly.

Example. For xy + xz + 5yz = 42, find $\partial z/\partial x$ and $\partial z/\partial y$ implicitly.

Example. For xyz + 2yz + 3xz = 4x + 2y - 3z, find $\partial z/\partial x$ and $\partial z/\partial y$.

Example. Consider the surface $z = f(x,y) = 3x^2 + 9y^2 + 4$ and the curve C given parametrically by $x = \cos(t)$ and $y = \sin(t)$ where $0 \le t \le 2\pi$. Find z'(t) and find t such that z'(t) > 0.