Александра Игоревна Кононова

ТЕИМ

20 сентября 2024 г. — актуальную версию можно найти на https://gitlab.com/illinc/otik

Символ — элемент качественной информации $a \in A$ (множество A — алфавит).

Текст — последовательность $m \in A^+$ таких элементов.

На практике для всех алгоритмов, где алфавит может быть произвольным, символ кодирования = байт (так как в большинстве ЭВМ байт 8-битен - это 00...FF), исходный текст = любой бинарный файл, сжатый текст — тоже бинарный файл:

- использование в программе для ЭВМ символов меньших, чем байт неудобно;
- 💿 использование символов фиксированной разрядности бо́льших, чем байт ⇒ слишком большой алфавит \Longrightarrow объёмные структуры данных для восстановления.
- использование в качестве символа кодирования печатного символа ASCII или koi8r/cp1251/dos/iso/maccyrillic не позволяет рассматривать в качестве исходного текста произвольный файл и приводит к труднодиагностируемым ошибкам;
- использование печатного символа UTF-8 (144 697 символов Unicode в 2023 г.) то же самое + проигрыш в объёме.

В книгах для наглядности используются обозначения A, B, ... и т. п. (маленький алфавит +визуальное отличие символа от индекса или частоты), но в программе это всё равно байты!

Сжатие (компрессия, упаковка) — кодирование |code(X)| < |X|, причём X однозначно и полностью восстанавливается по code(X). Согласно первой теореме Шеннона $|code(X)| \ge I(X)$ (средние!). Кодирование с $|code(X)| \to I(X)$ и $|code(x)| \to I(x)$ — оптимальное.

- **1** Сжимается не отдельное сообщение x, а источник X.
- Сжатие возможно только при наличии избыточности в изначальном кодировании X (|X| > I(X)).

Если источник X порождает блоки длины N бит с равной вероятностью $(p=\frac{1}{2N})$, он неизбыточен \to не существует такого алгоритма сжатия, который сжимает **любой** блок длины N.

Любой алгоритм сжатия сжимает часто встречающиеся блоки данных за счёт того, что более редкие увеличиваются в размерах.

Источник X генерирует входную последовательность $C = c_1 c_2 \dots c_n \dots$ $c_i \in A$ — символы пронумерованы (есть «предыдущий» и «последующий»).

Типы входной последовательности / алгоритмы сжатия по её типу

- блок конечная входная последовательность (произвольный доступ);
- поток с неизвестными границами (последовательный доступ).
- блочные статистика всего блока добавляется к сжатому блоку;
- поточные (адаптивные) статистика вычисляется только для уже обработанной части потока, «на лету» \implies нестационарная модель X.

X неизвестен \Rightarrow строится модель источника по догадкам и сообщению x.

Свойства алгоритмов сжатия:

- ① степень сжатия $\frac{|X|}{\log d_e(X)}$: в среднем по источнику; $\frac{|X|}{\log d_e(X)} \leqslant \frac{|X|}{|I(X)|}$; модель X для оценки |code(x)| снизу для конкретной реализации может отличаться от исходной модели (ср. Хаффман блочный и адаптивный);
- степень увеличения размера в наихудшем случае;
- скорость сжатия и разжатия.

Далее рассматриваются методы сжатия без контекста: Шеннона, Шеннона-Фано. Хаффмана, арифметический (AC); методы сжатия с учётом контекста: RLE, LZ77, LZ78 и методы защиты от помех: Хэмминга и Рида—Соломона.

- 🚺 из них только метод Шеннона [не используется] однозначно определяет блочный код и алгоритм его построения — но уже для поточных реализаций есть несколько вариантов;
- для Хаффмана есть несколько вариантов блочных кодов (каждый несколько поточных), причём для каждого кода Хаффмана есть как минимум два разных алгоритма его построения;
- для Шеннона—Фано [не используется] несколько блочных кодов (+ поточные, + разные алгоритмы), причём у разных блочных кодов Шеннона—Фано различается длина;
- для АС, RLE, LZ78, Хэмминга, Рида—Соломона десятки кодов разной длины и алгоритмов;
- б для LZ77 сотни кодов, и для каждого кода сотни алгоритмов.

Поэтому хотя в литературе (а также на лекциях и семинарах) употребляются для краткости названия «код Хаффмана», «алгоритм Хаффмана» и т. п. — всегда необходимо помнить, что это метод, порождающий семейство кодов и семейство алгоритмов.

«Энтропийное сжатие» vs «сжатие без учёта контекста»

Энтропийные методы сжатия — Хаффмана (предки: Шеннона, Шеннона—Фано) и АС: $|code(x)| \to I_X(x)$ для всех $x = c_1 c_2 \dots c_n$ из X; и даже $|code(c_i)| \to I_X(c_i | c_1 c_2 \dots c_{i-1})$

- Канонический вариант блочный без учёта контекста:
 - ullet одномерный массив вероятностей $p(a_j)$ оценивается по x и сохраняется вместе с code(x);
 - ullet одно дерево Хаффмана для файла x.
- Поточные (адаптивные) варианты без учёта контекста:
 - при кодировании первого символа c_1 считаем все a_j равновероятными (байт c_1 байтом);
 - перед кодированием каждого следующего c_i (варианты: через ... символов; как именно) пересчитываем вероятности $p(a_j)$ по $c_1c_2\ldots c_{i-1}$ и новое дерево Хаффмана.

Чуть длиннее и медленнее блочного, но не требуют сохранения $p(a_j) \implies$ используются.

Теоретически энтропийное сжатие с учётом контекста возможно, на практике не используется:

- **⑤** Блочный вариант с учётом контекста (предыстории в N символов):
 - ullet (N+1)-мерный массив условных вероятностей $p(a_j|a_ka_l\dots a_m)$; первые $c_1c_2\dots c_N$ как есть;
 - ullet далее для каждого c_i из $p(a_i|c_{i-N}\dots c_{i-1})$ строится новое дерево Хаффмана;
- ullet Поточные варианты с учётом контекста пересчитываем условные $p(a_j|a_ka_l\dots a_m)$ в процессе.

Сжатие без учёта контекста Исторические коды: Шеннона и Шеннона-Фано Код Хаффмана Арифметический (интервальный) код

Семинар: подготовка к КР1

- **1** Каждому символу $a \in A_1$ сопоставляется код $code(a) \in A_2$, для двоичного кодирования — $A_2 = \{0,1\}$ и code(a) — префиксный код из 0 и 1.
- ② Длина кода code(a) должна быть как можно ближе к I(a) (для двоичного кодирования — в битах).

Префиксный код = дерево

Оптимальный код — сбалансированное с учётом весов дерево.

Результат алфавитного префиксного кодирования — битовая строка произвольной длины, в общем случае некратной длине байта.

При записи битовой строки в файл последний байт может быть неполным \implies дополняется незначащими битами, обычно нулями.

Положение сжатия без учёта контекста:

Модель — стационарный без памяти источник \implies задаётся постоянными $(p_0,p_1,...,p_N);$ в алгоритмах для $\operatorname{ЭВМ}$ — целочисленные частоты $(\nu_0,\nu_1,...,\nu_N)$: $p_i = \frac{\nu_i}{\nu_0+\nu_1+...+\nu_N},$ при оценивании по файлу частота ν_i не обязательно равна количеству вхождений count(i) байта i в исходном тексте, но $\nu_0:\nu_1:...:\nu_N\approx count(0):count(1):...:count(N).$

Допущения ниже:

- Построение дерева громоздко \Longrightarrow рассматриваем на примере 3-битного байта $(2^3=8$ -символьный алфавит $A_1=\{0,1,...,7\}$, длина файла кратна 3 битам).
- Сортировка символов по убыванию частот. Для кодов Шеннона и АС это принципиально; для кодов Хаффмана и Шеннона—Фано — из единообразия.
- При сортировке символов по убыванию частот при $\nu_i = \nu_j$ порядок не определён \Longrightarrow определим, что **при равных частотах** $0 \succ 1 \succ ... \succ N$ (здесь $\ll i \succ j \gg = \ll$ при $\nu_i = \nu_j$ сортируем как если $\nu_i > \nu_j \gg$) для Хаффмана определим **при равных частотах** ... $\succ S_2 \succ S_1 \succ 0 \succ 1 \succ ... \succ N$.

Сжатие без учёта контекста Исторические коды: Шеннона и Шеннона-Фано Код Хаффмана Арифметический (интервальный) код Семинар: подготовка к КР1 «Энтропийное сжатие» vs «сжатие без учёта контекста» Алфавитное префиксное кодирование Модель, первичный алфавит, сортировка при равных частотах Исходный текст — длина, количество информации Исходный текст x = 7412650044443 (алфавит — k-битные байты, k = 3!):

- **1** длина исходного текста n=13 символов, что составляет $13 \cdot k = 39$ бит:
 - сохраняется в заголовке, чтобы при декодировании отсечь незначащие биты в конце файла;
- **2** частоты $(\nu_0, \nu_1, ..., \nu_7) = (2, 1, 1, 1, 5, 1, 1, 1)$:
 - массив частот (2,1,1,1,5,1,1,1) в исходном порядке $(\nu_0,\nu_1,...,\nu_7)$ помещается в архив и используется для распаковки файла;
 - пары символ^{частота} $4^5, 0^2, 1^1, 2^1, 3^1, 5^1, 6^1, 7^1$, отсортированные по убыванию частот (а при равных — согласно $0 \succ 1 \succ ... \succ N$) — используются для построения кодов;
- общее (не среднее на символ!) количество информации (согласно модели без памяти): $I(x) = -5 \cdot \log_2 \frac{5}{13} - 2 \cdot \log_2 \frac{2}{13} - 6 \cdot 1 \cdot \log_2 \frac{1}{13} \approx 34.5$ бит 35 бит — минимально возможная длина кода x любым алгоритмом без учёта контекста.

10 / 21

Код Шеннона строится не как дерево [но является деревом]:

- все символы сортируются по частоте (по убыванию): $a_1, a_2, ... a_{|A|}$, $\nu(a_1) \geqslant \nu(a_2) \geqslant ... \geqslant \nu(a_{|A|})$;
- ② код a_i первые $l_i = \lceil -\log_2 p_i \rceil$ двоичных цифр $\sum_{k=0}^{i-1} p_i$.

a_i	p_i	$I(a_i) = -\log_2 p_i$	l_i	$\sum_{k=0}^{i-1} p_i$	код
4	$\frac{5}{13} \approx 0.01100$	1,38	2	0 = 0,00000	00
0	$\frac{2}{13} \approx 0,00100$	2,70	3	$\frac{5}{13} \approx 0.01100$	011
1	$\frac{1}{13} \approx 0,00010$	3,70	4	$\frac{7}{13} \approx 0,10001$	1000
2	$\frac{1}{13} \approx 0,00010$	3,70	4	$\frac{8}{13} \approx 0,10011$	1001
3	$\frac{1}{13} \approx 0,00010$	3,70	4	$\frac{9}{13} \approx 0,10110$	1011
5	$\frac{1}{13} \approx 0,00010$	3,70	4	$\frac{10}{13} \approx 0,11000$	1100
6	$\frac{1}{13} \approx 0,00010$	3,70	4	$\frac{11}{13} \approx 0,11011$	1101
7	$\frac{1}{13} \approx 0,00010$	3,70	4	$\frac{12}{13} \approx 0,11101$	1110

 $|code(x)| = 5 \cdot 2 + 2 \cdot 3 + 6 \cdot 1 \cdot 4 = 40$ бит $= \left\lceil 13\frac{1}{3} \right\rceil = 14$ трёхбитных байтов.

Исторически первый; не лучше Шеннона-Фано.

◆□ → ◆□ → ◆□ → □ → ○○○

Дерево Шеннона—Фано строится сверху вниз (от корневого узла к листовым):

- все символы сортируются по частоте;
- упорядоченный ряд символов в некотором месте делится на две части так, чтобы в каждой из них сумма частот символов была примерно одинакова (без пересортировки!);
- новое деление.

Исторически первый близкий к оптимальному префиксный код.

Не лучше кода Хаффмана по степени сжатия и примерно аналогичен по скорости кодирования/декодирования.

Кодирование х методом Шеннона-Фано

Не определено, какая ветвь получает бит 0, а какая 1. Пусть первая подгруппа $(s_1) - 0$, вторая $(s_2) - 1$. Неточно определён алгоритм деления s на $s_1 + s_2$. Основные варианты уточнений:

- $\min |s_2 s_1|$ более частые символы получают более короткие коды, быстрее расчёт;
- $\min |s_2 s_1|$, если он достигается в одной точке; если в двух: $\min |s_2 s_1|$; короче код сообщения.

Воспользуемся (2):

$$1) \, \left(4^5,0^2,1^1,2^1,3^1,5^1,6^1,7^1\right)^{13} \rightarrow \underbrace{\left(4^5,0^2\right)^7}_{\text{коды начинаются с 0}} + \underbrace{\left(1^1,2^1,3^1,5^1,6^1,7^1\right)^6}_{\text{коды начинаются с 1}}$$

2) $\left(4^{5},0^{2}\right)^{7} \rightarrow \underbrace{4^{5}}_{22} + \underbrace{0^{2}}_{22}$ и т. д.: коды начинаются с 0

٠				NOMES IN INITIALIES C. I.				
	4^5	0^2	1^1	2^1	3^1	5^1	6^1	7^1
	()]	l		
	0	1		0			1	
			0	1	l	0]	l
				0	1		0	1
	00	01	100	1010	1011	110	1110	1111

$$code(x) = 111100100...$$

$$|code(x)| = 5 \cdot 2 + 2 \cdot 2 + 2 \cdot 1 \cdot 3 + 4 \cdot 1 \cdot 4 = 36$$
 бит $= 12$ трёхбитных байтов

4□ > 4回 > 4 回 > 4

Дерево Хаффмана строится снизу вверх (от листовых узлов к корневому узлу):

- все символы сортируются по частоте (по убыванию);
- 2 два последних (самых редких) элемента отсортированного списка узлов заменяются на новый элемент с частотой, равной сумме исходных;
- новая сортировка.

На каждом шаге число узлов сокращается на один; узел, полученные на последнем шаге — корень дерева.

Код Хаффмана имеет минимальную длину среди префиксных.

Не увеличивает размера исходных данных в худшем случае.

◆ロ → ◆団 → ◆豆 → ◆豆 → りへで

Не определено, какая ветвь дерева получает бит 0, а какая 1. Пусть 0, 1 — слева направо.

1)
$$4^5,0^2,1^1,2^1,3^1,5^1,\underbrace{6^1,7^1}_{0}$$
 — последний бит кода 6^1 — 0, последний бит кода 7^1 — 1

2)
$$4^5$$
, S_1^2 , 0^2 , 1^1 , 2^1 , $\underbrace{3^1,5^1}_{0\ S_2^2\ 1}$

3)
$$4^5$$
, S_2^2 , S_1^2 , 0^2 , $\underbrace{1^1, 2^1}_{0 S_3^2}$

4)
$$4^5, S_3^2, S_2^2, \underbrace{S_1^2, 0^2}_{0 S_4^4 - 1}$$

5)
$$4^5, S_4^4, \underbrace{S_3^2, S_2^2}_{0 \quad S_5^4 \quad 1}$$

6)
$$4^5$$
, $\underbrace{S_5^4, S_4^4}_{0 S_6^8 1}$

7)
$$S_6^8, 4^5$$

4^5	0^2	1^1	2^1	3^1	5^1	6^1	7^1
1	011	0000	0001	0010	0011	0100	0101

$$code(x) = 010110000000101000011011011111110010$$

$$coae(x) = 01011000000101000011011011111110010$$

$$|code(x)|=5\cdot 1+2\cdot 3+6\cdot 1\cdot 4=35$$
 бит $=\left\lceil 11\frac{2}{3}\right\rceil =12$ трёхбитных байтов.

Сжатие без учёта контекста

Исторические коды: Шеннона и Шеннона-Фано Код Хаффмана

Арифметический (интервальный) код Семинар: подготовка к КР1

Построение дерева Хаффмана

Кодирование x методом Хаффмана, ... $\succ S_2 \succ S_1 \succ 0 \succ 1 \succ ... \succ 7$

Код Хаффмана и архив с кодами Хаффмана

Нулевые частоты и нормировка частот

Код Хаффмана и архив с кодами Хаффмана

Код Хаффмана 010110000000101000011011011111110010 длиной 35 бит будет дополнен до $\geqslant 12$ байтов: $010\,110\,000\,000\,101\,000\,011\,011\,011\,111\,100\,100$ (биты) = 260050333744 (байты)

Смещение	Размер	Описание	
0	4	Сигнатура+версия формата	всегда 0711
4	1	№ алгоритма сжатия с контекстом	0 — нет сжатия
5	1	№ алгоритма сжатия без контекста	0- нет сжатия, $1-$ Шеннона,
			2 — вар-т Шеннона—Фано со с. 12,
			3 — вар-т Хаффмана со с. 14
6	1	№ алгоритма шифрования	0 — нет шифрования
7	1	№ алгоритма защиты от помех	0 — нет защиты от помех
8	4	Исходная длина файла n	беззнаковое 12-битное целое
12	4	Резерв	
16	8	Массив частот $\vec{\nu} = (\nu(0), \nu(1),, \nu(7))$	беззнаковые 3-битные целые
24	до конца	Сжатые данные	выравнивание на 1 байт

Только Хаффман с. 14: алг. 0300; исх. длина $n=13_{10}=15_8$ трёхбитных байтов, порядок Intel: $n\sim5100$; частоты $\vec{\nu} \sim 21115111$, код $260050333744 \rightarrow$ архив имеет вид 071103005100000021115111260050333744Для удобочитаемости разделяем по 4-байтовым блокам: $0711\ 0300\ 5100\ 0000\ 2111\ 5111\ 2600\ 5033\ 3744$

> Сжатие без учёта контекста Исторические коды: Шеннона и Шеннона-Фано Код Хаффмана Арифметический (интервальный) код

> > Семинар: подготовка к КР1

◆□▶ ◆周▶ ◆■▶ ◆■ ◆900

Ненормированное count(c) может превышать допустимое $\max(\nu(c)) \implies$ нормировка:

$$\begin{cases} \nu_0: \nu_1: \ldots: \nu_N \approx count(0): count(1): \ldots: count(N), \\ \max(\nu_i) = \text{максимальное значение байта}. \end{cases}$$

В архив записываются:

- нормированные частоты 02177101;
- ullet код, рассчитанный по нормированным $ec{
 u}=(0,2,1,7,7,1,0,1)$, а не по исходным \overrightarrow{count} .

Вырожденный случай

Нулевые частоты и нормировка частот

По умолчанию байты с нулевыми ν_i отбрасываются и не получают кода. Тогда при приведении частот $count(i) \in [0, \max(count)] \rightarrow \nu_i \in [0, Max]$ необходимо, чтобы при count(i) > 0 было $\nu_i > 0$:

© соотношения всех частот незначительно искажаются:
$$\begin{cases} \nu_i = 0, & count(i) = 0, \\ \nu_i = \text{round}\left(\frac{count(i) - 1}{\max(count) - 1} \cdot (Max - 1)\right) + 1, & count(i) > 0; \end{cases}$$
 (A)

ullet для $count(i)>rac{\max(count)}{Max}$ передаются максимально точно; для малых полностью искажаются:

$$\begin{cases} \nu_{i} = 0, & count(i) = 0, \\ \nu_{i} = 1, & 0 < count(i) \leq \frac{\max(count)}{Max}, \\ \nu_{i} = \text{round}\left(\frac{count(i)}{\max(count)} \cdot Max\right), & count(i) > \frac{\max(count)}{Max}; \end{cases}$$
(B)

Вырожденный случай

для октетов (Max=255) и $\frac{\max(count)}{\min(count)} \leqslant Max$ обе формулы дают приемлемый результат.

- $oldsymbol{2}$ Если хочется $u_i = \operatorname{round}\left(\frac{\operatorname{count}(i)}{\max(\operatorname{count})} \cdot \operatorname{Max}\right)$ для всех (возможно $\operatorname{count}(i) > 0 \rightarrow \nu_i = 0$), то:
 - ullet необходимо модифицировать алгоритм, чтобы байты с $u_i = 0$ получили коды (возможно для Хаффмана и Шеннона—Фано, невозможно для арифметического и Шеннона);
 - ullet тогда коды получат и байты с count(i)=0, а коды count(i)>0 удлинятся.

- длина кода Шеннона символа 4 равна нулю, так как I(m) = 0:
- длина кода Хаффмана и Шеннона—Фано символа 4 равна нулю, так как дерево состоит из одного узла (корня 4) и нуля ветвей.

Длина кода (Хаффмана, Шеннона—Фано или Шеннона) всего сообщения из n одинаковых символов 4 также нулевая.

Файл архива должен содержать n и массив частот $\vec{\nu}$:

15, 00007000

этого достаточно для восстановления такого сообщения.

Неалфавитное неразделимое кодирование

$$C = c_0 c_1 c_2 ... c_n \to z \in [0, 1);$$
 $(0, 1) \simeq \mathbb{R}$

$$I(z) pprox I(C)$$
, и чаще всего $I(z) >> 64$ бит $> I({\tt double})$

Для сообщения $m=3242\,5675\,2067\,5462$

- оцените суммарное количество информации согласно модели «источник без памяти» (вероятности символов оцениваются по сообщению);
- закодируйте методами: Хаффмана, Шеннона—Фано, Шеннона (укажите порядок сортировки по умолчанию при равных частотах);
- сравните длины кодов друг с другом и с количеством информации.

В байте три бита; символы первичного алфавита — байты.

МИЭТ

www.miet.ru

Александра Игоревна Кононова illinc@mail.ru gitlab.com/illinc/raspisanie

