

15

20

USE OF DOCOSAHEXAENOIC ACID AND ARACHIDONIC ACID ENHANCING THE GROWTH OF PRETERM INFANTS FIELD OF INVENTION

The present invention concerns enhancing the growth of preterm infants involving administration of infant formula containing a combination of docosahexaenoic and arachidonic acid.

BACKGROUND OF THE INVENTION

The long chain polyunsaturated fatty acids (LC PUFA) have been shown to be important in infant development. Particularly, arachidonic acid (ARA) and docosahexaenoic acid (DHA) are LC PUFA that are of special interest in infant nutrition because they are found in high concentrations in the brain (Sastry PS, Lipids of nervous tissue: composition and metabolism. Progress Lipid Res 1985;24:69-176) and the retina (Fliesler SJ and Anderson RE. Chemistry and metabolism of lipids in the vertebrate retina. Progress Lipid Res 1983;22:79-131). ARA (20:4n-6) and DHA (22:6n-3) are derived from the parent essential fatty acids linoleic acid (18:2n-6) and α-linolenic acid (18:3n-3) through alternate desaturation and elongation and accumulate rapidly in fetal neural tissue during the last months of gestation and the first months of postnatal life (Makrides M, Neuman MA, Byard RW, Simmer K, Gibson RA. Fatty composition of the brain, retina and erythrocytes in breast- and formula-fed infants. Am J Clin Nutr 1994;60:189-94).

Unlike term infants, preterm infants do not fully benefit from the maternal and placental LC PUFA supply during the last trimester of pregnancy. Even though preterm infants are capable of synthesizing both DHA and ARA from their 18 carbon precursors (Carnielli VP, Wattimena DJL, Luijendijk IHT, Boerlage A, Degenhart HJ, Sauer PJJ. The very low birth weight premature infant is capable of synthesizing arachidonic and docosahexaenoic acids from linoleic and linolenic acids. Pediat Res 1996;40:169-174), it remains unclear whether the rate of synthesis is

25

adequate to meet the optimal needs for central nervous system accretion in the absence of a dietary supply of these fatty acids. Preterm infants are dependent on their own dietary supply of linoleic and α-linolenic acids through either human milk, which also contains small but significant amounts of ARA and DHA or through commercially available artificial formulas, none of which in the United States contain ARA end DHA.

It has been demonstrated in recent studies (Hoffman DR and Uauy R. Essentiality of dietary ω -3 fatty acids for premature infants: Plasma and red blood cell fatty acid composition. Lipids 1992;27:886-95) that the fatty acid composition of red blood cell membrane lipids in infants receiving formulas supplemented with DHA (0.35% of total fatty acids) was similar to human milk-fed infants. In the same study, Birch (Birch DG, Birch EE, Hoffman DR Uauy RD. Retinal development in very-low-birth-weight infants fed diets differing in Omega-3 fatty acids. Investigation Ophthalmology Visual Science 1992;33:2365-76) found that retinal function improved with the provision of a dietary supply of DHA in very low birth weight infants.

The first year growth of preterm infants fed standard formula compared to marine oil LC PUFA supplemented formula was studied by Carlson et al. (Carlson SE, Cooke, RJ, Werkman SH, Tolley EA. First year growth of preterm infants fed standard compared to marine oil n-3 supplemented formula Lipids 1992:27:901-907). The experimental formulas provided 0.2% of total fatty acids as DHA and also provided 0.3% as EPA (20:5n-3). This EPA concentration is higher than found in human milk while the DHA level is similar to human milk. Beginning at 40 weeks from conception, marine oil supplemented infants compared to controls had significantly lower weight, length, and head circumference. From this study, Carlson (Carlson SE, Werkman SH, Peeles JM, Cooke RJ, Tolley EA. Arachidonic acid status correlates with first year growth in preterm infants. Proc Natl Acad Sci USA 1993;90:1073-77) hypothesized

10

15

20

30

that dietary ARA could improve first year growth of preterm infants, in the context of restoring growth to the level of control formula containing no LC PUFA.

In another study (Montalto, FB, et al., Pediatric Research, Vol 39, page 316A, abstract no. 1878) it was shown that male infants fed marine oil supplemented formula (containing DHA but essentially no ARA) had, by 4 to 6 months, lower head circumference, length, weight and fat free mass than standard formula fed infants. A third study also showed decreased weight at 9 and 12 months corrected age in preterm infants fed marine oil supplemented formula (with LC PUFA) to 2 months corrected age compared with control formula containing no LC PUFA (Carlson SE, et al., Am. J. Clin. Nutr., 63 pp 687-97, 1996).

The prior art has demonstrated that infants with altered tissue LC PUFA levels, resulting from a lack of LC PUFA in their diets, may be at risk for neurological problems, may also have reduced scores on cognitive tests, and may have lower retinal development than human milk-fed infants. Worldwide regulatory organizations such as the WHO/FAO Expert Committee on Fats and Oils in Human Nutrition have recommended that LC PUFA be included in preterm infant formula. These recommendations have been made despite the negative effects observed of DHA supplements on growth. There has been no demonstration in the literature that ARA and DHA, particularly when added to infant formula, enhances the growth of infants above that demonstrated by control formulas not containing ARA and DHA.

25 **SUMMARY OF THE INVENTION**

It has unexpectedly been discovered that preterm infants receiving infant formula supplemented with both DHA and ARA demonstrate enhanced growth. The present invention is directed to enhancing the growth of preterm infants comprising administering to said infants a growth enhancing amount of DHA and ARA.

5

10

15

20

25

30

DETAILED DESCRIPTION OF THE INVENTION

As reported in a review of preterm infant growth by Carlson, SE, (The Jrnl of Pediatrics, vol 125, pp 533-8, 1994) "After adjusting for postconceptional age, preterm infants show a decline (rather than a catch-up) in the normalized weight from approximately 2 to 4 months past expected term."

Several prior art studies have documented the value of administering DHA to infants. However, when DHA, either as the primary LC PUFA or combined with EPA, is administered to preterm infants, said infants suffer from decreased growth. It has been suggested that ARA may be beneficial to growth; however, heretofore the growth effects of administering both DHA and ARA to preterm infants have been unknown. It has been surprisingly discovered that administering the combination of ARA and DHA results in enhanced growth of infants relative to infants fed DHA alone. It has also been discovered that preterm infants administered an infant formula containing ARA and DHA exhibit enhanced growth relative to preterm infants fed control formula without DHA and ARA, such as those formulas currently used in modern nurseries. It has further been discovered that practice of the method of the invention results in growth of preterm infants catching up in an unexpected short time to a reference group of normal term breast fed infants.

The time to achieve growth similar or equivalent to normal term breast fed infants by practice of the method of the invention is less than 9 months corrected age, preferably less than 6 months corrected age, more preferably less than 4 months corrected age, even more preferably less than 2 months corrected age, and most preferably no greater than term corrected age.

The method of the invention requires a combination of DHA and ARA. The weight ratio weight of ARA:DHA can be about 1:2 to about 5:1, preferably about 1:1 to about 3:1, and more preferably about 2:1.

In the method of the invention the combination of DHA and ARA is preferably administered as part of an infant formula. The infant formula for use in the present invention is preferably nutritionally complete and typically contains suitable types and amounts of lipid, carbohydrate, protein, vitamins and minerals. The amount of lipid or fat typically can vary from about 3 to about 7 g/100 kcal. The amount of protein typically can vary from about 1 to about 5 g/100 kcal. The amount of carbohydrate typically can vary from about 8 to about 12 g/100 kcal. Protein sources can be any used in the art, e.g., nonfat milk, whey protein, casein, soy protein, hydrolyzed protein, amino acids, and the like. Carbohydrate sources can be any used in the art, e.g., lactose, glucose, corn syrup solids, maltodextrins, sucrose, starch, rice syrup solids, and the like. Lipid sources can be any used in the art, e.g., vegetable oils such as palm oil, soybean oil, palmolein, coconut oil, medium chain triglyceride oil, high oleic sunflower oil, high oleic safflower oil, and the like. Conveniently, commercially available infant formula can be used. For example, Enfamil®, Enfamil® Premature Formula, Enfamil® with Iron, Lactofree®, Nutramigen®, Pregestimil®, ProSobee® (available from Mead Johnson & Company, Evansville, Indiana, U.S.A.), Similac®, Isomil®, Alimentum®, Neocare®, and Similac® Special Care (available from Ross Laboratories, Columbus, Ohio, U.S.A.), may be supplemented with suitable levels of ARA and DHA at the proper ratios and used in practice of the method of the invention.

25

30

5

10

15

20

The form of administration of the DHA and ARA in the method of the invention is not critical, as long as a growth enhancing amount is administered. Most conveniently, the DHA and ARA are supplemented into infant formula which is then fed to the infants. Alternatively, the DHA and ARA can be administered as a supplement not integral to the formula feeding, for example, as oil drops, sachets, in combination with other nutrient supplements such as vitamins, and the like.

10

15

20

25

30

The growth enhancing amount of DHA is typically about 2.5 mg/kg of body weight/day to about 60 mg/kg of body weight/day, preferably about 6 mg/kg of body weight/day to about 40 mg/kg of body weight/day, more preferably about 12 mg/kg body weight/day to about 30 mg/kg body weight/day, and even more preferably about 18 mg/kg of body weight/day to about 24 mg/kg of body weight/day.

The growth enhancing amount of ARA is typically about 5 mg/kg of body weight/day to about 120 mg/kg of body weight/day, preferably about 12 mg/kg of body weight/day to about 80 mg/kg of body weight/day, more preferably about 24 mg/kg body weight/day to about 60 mg/kg body weight/day, and even more preferably about 36 mg/kg of body weight/day to about 48 mg/kg body weight/day.

The amount of DHA in infant formulas for use in the present invention typically varies from about 2 mg/100 kilocalories (kcal) to about 50 mg/100 kcal, preferably about 5 mg/100 kcal to about 33 mg/100 kcal, more preferably about 10 mg/100 kcal to about 25 mg/100 kcal, and even more preferably about 15 mg/100 kcal to about 20 mg/100 kcal.

The amount of ARA in infant formula for use in the present invention typically varies from about 4 mg/100 kcal to about 100 mg/100 kcal, preferably about 10 mg/100 kcal to about 67 mg/100 kcal, more preferably about 20 mg/100 kcal to about 50 mg/100 kcal, and even more preferably about 30 mg/100 kcal to about 40 mg/100 kcal.

The infant formula supplemented with oils containing DHA and ARA for use in the present invention can be made using standard techniques known in the art. For example, replacing an equivalent amount of an oil normally present, e. g., high oleic sunflower oil.

The source of the ARA and DHA can be any source known in the art such as fish oil, single cell oil, egg yolk lipid, brain lipid, and the like. The DHA and ARA can be in natural form, provided that the remainder of the LC PUFA source does not result in any substantial deleterious effect

on the infant. Alternatively, the DHA and ARA can be used in refined form. It is preferred that the LC PUFA used in the invention contain little or no EPA. For example, it is preferred that the infant formulas used herein contain less than about 20 mg/100 kcal EPA; preferably less than about 10 mg/100 kcal EPA; more preferably less than about 5 mg/100 kcal EPA; and most preferably substantially no EPA.

Preferred sources of DHA and ARA are single cell oils as taught in U.S. patent nos. 5,374,657, 5,550,156, and 5,397,591, the disclosures of which are incorporated herein by reference in their entirety.

The following examples are to illustrate the invention but should not be interpreted as a limitation thereon.

EXAMPLES

CLINICAL STUDY DESIGN

15 1. INTRODUCTION

This study is a double-blind, randomized, controlled parallel design, prospective trial of premature infant formulas containing microalgae and fungi-derived oils which contain a part of their constituents arachidonic acid and docosahexaenoic acid. Formula feeding subjects will be randomized into one of 3 feeding groups:

- premature formula plus DHA (about 0.13% of energy)
 and ARA (about 0.26% of energy)
- premature formula plus DHA (about 0.13% of energy)
- premature formula WITHOUT DHA and ARA

The products have the same nutrient composition (see Appendix A) and differ only in the level of DHA and ARA. The products will be blinded. The present order of formula has no relationship to randomization.

Fifty evaluable subjects will be completed in each group.

30

20

25

5

Premature infants will remain on study formulas after reaching 90 kcal/kg/d for a minimum of 28 days or until hospital discharge whichever is longer. After 28 days or discharge, whichever is longer, all premature infants will receive Enfamil or Enfalac with Iron. If medically indicated, ProSobee, Lactofree, Alactamil, Nutramigen, or Pregestimil may be used in place of Enfamil or Enfalac with Iron. Term infants will receive at least 85% of their nutrition from breast milk. Primary measures of effectiveness will include visual acuity and red blood cell membrane fatty acid profiles (i.e. DHA and ARA levels). The measure of safety will be growth and adverse experience reports.

2. SUBJECTS

2.1 SOURCE AND CHARACTERIZATION OF STUDY GROUP

Acceptable preterm subjects will be relatively healthy premature infants taking preterm formula. Anticipated hospitalization should be sufficient to allow for 28 days of enteral intake \geq 90 kcal/kg/d and \geq 85% study formula intake. All races and both sexes will be eligible for the study.

2.2. INCLUSION CRITERIA

Preterm infants:

20

5

10

15

- Birth weight ≥ 900 g
- Formula feeding at time of study enrollment
- Anticipate enteral intake of ≥90 kcal/kg/day for ≥ 28 days before discharge home
- Informed consent obtained
- 25 Term Infants:
 - 38 to 42 weeks gestation
 - Committed to breast feeding
 - Informed Consent obtained

2.3 EXCLUSION CRITERIA

30 Preterm infants:

5

10

15

25

• ≥ 1500 g at birth

Preterm and Term Infants:

- History of underlying disease or congenital malformation which in the opinion of the investigator is likely to interfere with the evaluation of the subject
- More than 24 days between birth and full oral feeds (≥ 90 kcal/kg/d)
- Small (<10th percentile) for gestational age at birth (SGA)
- Necrotizing enterocolitis as diagnosed by the physician
- Other gastrointestinal disease
- Impaired visual or ocular status at birth

2.4 CONCOMITANT MEDICATIONS, HOSPITALIZATIONS, ILLNESSES

- No medication which may affect FPL response may be used within 3 days of measurement.
- No evidence of viral of bacterial infection during FPL testing:
- No medications known to affect lipid metabolism (e.g., heparin at therapeutic levels)
- 3. STUDY PRODUCT INFORMATION
- 3.1 FORMULATIONSNutrient composition is included as Appendix A.
 - 4. STUDY PROCEDURES

4.2.1 ENROLLMENT

Enrollment will take place over a 6 month period. Ideally, sufficient subjects will be enrolled so that 10 subjects in each group complete the study at each site for the multi-center trial. A total of 50 infants per formula group will complete this trial.

- 4.2.2 SCHEDULE OF EVENTS (SEE FLOW CHART, SECTION °.4)
- 30 **4.2.2.1 RECRUITMENT**

Mothers of eligible, healthy, preterm formula fed infants and term, breastfed infants will be contacted, the study explained to them, and if they are agreeable, written informed consent obtained.

Term infants may be enrolled anytime from birth until or during the 48 week visit.

4.2.2.2 RANDOMIZATION

Recruited formula fed subjects will be randomized into study groups. Randomization can occur anytime after enteral feeds reach 50 kcal/kg/day until commencement of full enteral feeds (i.e., ≥90 kcal/kg/day).

4.2.2.3 FEEDING

All premature infants will receive their assigned study formula after informed consent has been granted and enteral feeds are at least 50 kcal/kg/day. The infant will remain on study formula 28 days after reaching 90 kcal/kg/d or until hospital discharge, whichever is longer. Oral feeding amount, strength and rate will advance as appropriate for the clinical management of the infant.

All parents will be instructed not to feed solid foods during the study. The parents will be instructed that the study formula or breast milk is to serve as the sole source of food from enrollment to study end.

4.2.2.4 BASELINE DATA COLLECTION

The following data will be collected by the Investigator at the time of enrollment and randomization on the case report forms:

- Informed consent of parent obtained.
- Post conceptual age.
- That the subject is a premature infant, with Birth weight ≥900 gm and ≥1500 gm or a normal term infant between 38 and 42 weeks gestational age.
- That the preterm subject is receiving infant formula or term infant is committed to breast feeding.

30

5

10

15

20

- Anticipated preterm infant enteral intake of ≥90 kcal/kg/day for ≥28 days prior to discharge home.
 That the subject has no history of underlying disease.
- That the subject has no history of underlying disease, inborn error of metabolism, or congenital malformation which in the opinion of the Investigator is likely to interfere with the evaluation of the study formulas.
- That the subject is not small (<l0th percentile) for gestational age at birth.
- That the subject does not have necrotizing enterocolitis as diagnosed by a physician.
- That the subject does not have a gastrointestinal disease.
- No more than 24 days between birth and full enteral feeds (i.e., ≥90 kcal/kg/day).
- That the subject did not have impaired visual or ocular status at birth.
- Birth date, sex, race.
- Birth weight, length and head circumference

4.2.2.5 INVESTIGATOR PERIODIC DATA COLLECTION

"During hospitalization, preterm subjects will have their weight recorded daily while they are receiving study formula. Length and head circumference will be recorded weekly, along with an additional weight measurement. For a given subject, the same scale should be used for the weekly weight measurement."

"Weight, length, and head circumference will also be recorded at the 40, 48, and 57 week post conceptual age visit (preterm) and 56 and 119 days of age visit (term)."

4.2.2.6 BLOOD DRAW

When preterm infant enrolls in the study and again at

10

15

20

25

termination of study formula (i.e., hospital discharge or 28 days after reaching 90 kcal/kg/d of study product), the Investigator will ascertain that the infant is essentially solely formula fed. If this criteria is met, 1.2 ml/blood will be drawn for blood lipids. The sample will be processed as described in Appendix B.

An attempt will also be made to draw a similar blood sample at the 48 weeks PCA visit when visual acuity is measured in both term and preterm infants.

4.2.2.7 VISUAL ACUITY BY FORCED CHOICE 10 PREFERENTIAL LOOKING (FPL) AT 48 AND 57 WEEKS ± 4 DAYS POST-CONCEPTUAL AGE

When the infant is 48 and 57 weeks ± 4 days post-conceptual age, trained persons at each study site will follow the Teller Acuity Card Procedure for the measurement of visual acuity of all study subjects. It is essential that only persons who are trained in the FPL procedure for determining visual acuity do the testing. If necessary, training of responsible persons and documentation of completion of successful training will be done at Children's Hospital Medical Center Ophthalmology Department in Seattle, Washington, according to the procedure attached as Appendix C.

If the infant cannot complete the procedure at 48 or 57 weeks \pm 4 days postconceptual age (i.e., too fussy, too sleepy, too inattentive) the test should be repeated within 7 days.

4.2.2.8 INTERIM EVALUATION

At preterm infant hospital discharge or 28 days after reaching 90 kcal/kg/d of study formula feeding, whichever is longer, the Investigator will fill out an "Interim Evaluation" form. After reviewing the subject's records and discussion with the parents and staff, the Investigator will indicate:

Whether or not the subject completed at least 28 days of

5

15

20

15

20

25

30

study formula intake ≥ 90 kcal/kg/d and both blood samples obtained

- If the study was not completed, and reason
- Whether or not the subject received steroids (glucorticoids)
- Investigator's evaluation of the study formula

The first and last dates study material was taken will be recorded.

4.2.2.9 FINAL EVALUATION

At the final study visit (57 weeks postconceptual age) or
earlier if the subject drops out, the Investigator will fill out a "Final
Evaluation" Case Report Form. After reviewing the subject's records and
discussion with the parents, the Investigator will indicate whether the
subject:

- (1) Completed feeding regiment and all study parameters(i.e., anthropometrics and visual acuity measured).
 - (2) Did not complete feeding regimen.
 - (3) Not completed and reason.

4.3 CLINICAL OBSERVATIONS

4.3.1 PHYSICAL EXAMINATIONS

Subjects will have weight, length and head circumferences recorded at birth, weekly while hospitalized, then at 40, 48, and 57 weeks \pm 4 days postconceptual age.

Body weight will be measured using an electronic balance or a double beam balance accurate to 10 g or ½ oz with non-detachable weights. During hospitalization, if more than one such balance is employed in the practice, either one balance should be designated the study balance and all study weights will be carried out on that balance for a particular subject, or the balances will be checked and certified to register the same weight throughout the range of weights expected.

Outpatient weights will be obtained on a calibrated office scale.

5

10

15

20

Documentation indicating balance calibration of the outpatient balance carried out within 12 months of study initiation will be supplied to the Sponsor.

Length will be measured with the infant in recumbent position with the help of two examiners and a suitable measuring apparatus. One person holds the subject's head in contact with a fixed vertical headboard and a second person holds the subject's feet, toes pointing directly upward and, also applying gentle traction. The baby is measured from the headboard to the soles of the feet with a non-stretching tape measure.

Head circumference will be measured, employing a flexible, non-stretchable cloth or vinyl tape.

4.3.2 VISUAL ACUITY BY FORCED CHOICE PREFERENTIAL LOOKING (FPL)

Visual acuity will be determined at 48 and 57 weeks ± 4 days postconceptual age according to procedures outlined in Appendix C.

4.3.3 LABORATORY TESTS

Blood will be drawn from preterm infants by heel prick or venipuncture when study formula is begun and terminated. An attempt will be made to draw blood at 48 weeks \pm 4 days PCA from both term and preterm infants. Procedures for handling the blood are described in Appendix B.

			,					ARC DA	
. 4 FLOW CHART			METERM	FRM				IENW	
			Tormination	Visit 1	Visit 2	Visit 3 57 wks ± 4d	Visit 1	Visit 2 48 wks ± 4d	VISIN S 57 wke ± 4d PCA
EVENT	Birth	Enteral Intake >50	of Study	40 wks ± 4d PCA	46 WKE Z TO	PCA	4d PCA	10 mg	- ·
		kcal/kg/d							
Collection		>							
Handoniika		>		<u> </u>	>	>			
Study Formula			>	>			>	>	>
Entamil w/iron	$\left \cdot \right $							Physical	
Human Milk			4	Physical);	>
				1	>	>	>	<u>}</u>	
anama a	1	>	>	>	<u> </u> -	>	>	>	>
Weight	>	١,	>	>	>		,	>	>
1	<i>></i>	*>	-	>	.>	>	· ·		
Lengin	1	>	>	•		-		\	
Head			\ -\	-	>			\ \ \	\
Circumference		>	>	 	1	>		>	> .
Blood Draw	1	+			>			-	,
Visual Acuity				1	1	>		>	>
Test	<u> </u>	+		>	· 			1	-
Illnesses			; -	+					
Eine			•		1	1	when th	(when the subject discontinues or completes)	les or completes)
Assessment			eldus edi cod.	discontinues or completes)	· completes)				
			(when the same)						
Final Assessment				•			.*		
	d botal	o or affecting formula	consumption will be r	ecorded when the	y occur.				
/ Medical problem * Recorded daily	and weekly	y during hospitalizations y during hospitalizations of study formula days of study for study	Medicál problems felater. Recorded daily and weekly during hospitalization. Recorded daily and weekly during formula intake (after reaching 90 kcaukgur), minor	ıg 90 ксайкдуы, ч					
† At hospital disca	200								

5. CRITERIA FOR RESPONSE

Criteria for response will depend upon the following:

- Visual Acuity better than the control formula.
- Visual Acuity comparable to breastfed term infant.
- Red Blood Cell phosphatidyl ethanolamine DHA and ARA weight % greater than formula control group.
- Growth as measured by weight achieved at 48 and 57 weeks postconceptual age comparable to formula control group.

10 **6. STATISTICS**

6.1 RANDOMIZATION

If the subject meets the inclusion and exclusion criteria, randomization to one of three formula groups will take place. The randomization schedule will be provided by Mead Johnson Research Center. A separate randomization schedule will be provided for males and females.

6.2 SAMPLE SIZE

The primary parameter of interest is visual acuity as measured by the Forced Choice Preferential Looking (FPL). The minimal clinically relevant difference was determined to be 0.5 octave. A consultant in the field of visual acuity estimated the standard deviation to be 0.5 octave. This value was increased to .7 octave in case more variability was experienced in this study. Thirty-two subjects per group are needed to attain 80% power when testing at an alpha level of 0.05.

A sample size estimate of 50 per group was determined to achieve α + 0.05, β + 0.20, for weight of infants receiving study oil being greater than 400 gm below control at 48 weeks postconceptual age or 500 g below control at 57 weeks postconceptual age with a standard deviation of 800 g. It was therefore determined that 50 subjects per group will be used in the study.

30

15

20

6.3 ANALYTICAL PLAN

Visual acuity data will be recorded in cycles per cm. These values will be converted to cycles per degree using the following formula: cycles/degree = 38 x cycles/cm

55

5

10

A log transformation will be applied to the data prior to analysis. Analysis of variance techniques will be used to assess feeding regimen group differences in visual acuity. If the overall F test for feeding regimen is significant at an alpha level of 0.05, pairwise comparisons will be made at an alpha level of 0.05. If no significant differences are detected, then a post-study power analysis will be performed to demonstrate that the study had adequate power to detect the minimal clinically relevant difference.

15

Analysis of variance will be used to assess feeding regimen differences in phosphatidyl choline DHA and ARA levels and in phosphatidyl ethanolamine DHA and ARA levels at each time point. If the overall F test is significant at an alpha level of 0.05, then pairwise comparisons will be made at an alpha level of 0.05.

20

Analysis of variance will be used to assess feeding regiment differences in weight at 48 and 57 weeks postconceptual age. The statistical model will include terms for feeding regimen, study center, sex and all two-way interactions. Non-significant interactions will be removed from the final statistical model. Two one-sided tests will be performed comparing each experimental formula (EC) with the control formula (CF). The hypothesis to be tested is as follows:

25

H₀ = Weight (CF) ≤ Weight (EF).

The alternative hypothesis is as follows:

 H_1 = Weight (CF) > Weight (EF).

30

If H_0 is rejected and the mean weight of the control formula exceeds that of the experimental formula by more than 400 mg at 48

5

10

15

weeks postconceptual age or by 500 g at 57 weeks postconceptual age then the conclusion is that the experimental formula does not exceed that of the experimental formula by more than 400 g at 48 weeks postconceptual age or by 500 mg at 57 weeks postconceptual age then the conclusion is that the experimental formula does provide adequate growth. If H₀ is not rejected then a post-study power analysis will be performed to demonstrate that the study had adequate power to detect the above mentioned clinically relevant differences. If adequate power is achieved then the conclusion is that the experimental formula does provide adequate growth.

Fisher's exact test will be used to compare the proportion of subjects in each group with illness/symptoms of concern during the study. The analysis will be performed for each type of illness/symptom reported, with classification of investigator terms into similar terminology made as necessary.

5

APPENDIX A NUTRIENT COMPOSITION OF FORMULAS

All study formulas are 24 kcal/fl oz and are identical in composition to marketed Enfamil Premature Formula except for the study oils employed. These oils are described in the protocol.

	STUDY FORMULAS	
NUTRIENT	AMOUNT/100 kcal	ENFAMIL WITH Fe
Protein g	3	2.2
Fat, g	5.1	5.6
Carbohydrate, g	11.1	10.3
Vitamin A IU	1250	310
Vitamin D IU	270	63
Vitamin E IU	6.3	.2
Vitamin K mcg	8	8
Thiamine, mcg	200	78
Riboflavin, mcg	300	150
Vitamin B ₆ , mcg	150	63
Vitamin B _{12,} mcg	0.25	0.23
Niacin, mcg	4000	1250
Folic Acid, mcg	35	15.6
Pantothenate, mcg	1200	470
Biotin, mcg	4	2.3
Vitamin C, mg	20	8.1
Choline, mg	12	15.6
Inositol, mg	17	4.7
Calcium, mg	165	78
Phosphorus,-mg-	83.	53
Magnesium, mg	6.3	7.8
Iron, mg	1.8	0.5
Zinc, mg	1.5	0.78

	STUDY FORMULAS	
NUTRIENT	AMOUNT/100 kcal	ENFAMIL WITH Fe
Manganese, mcg	6.3	15.6
Copper, mcg	125	94
lodine, mcg	25	6
Sodium mg (mEq)	39 (1.7)	27 (1.17)
Potassium mg(Meq)	103 (2.6)	108 (2.8)
Chloride mg (Meq)	85 (2.4)	63 (1.77)

II FINAL STUDY REPORT

This double-blind, parallel-group study (project 3338) was carried

Study Design:

10

5

out in 16 neonatal centers (study numbers 9698-9709, 9712, 9723, 9743, and 9746) in North America. Three premature infant feedings were compared. Each had the same composition except for the incorporation of fungal and/or micro algal oils up to about 3% of the fat blend to provide the experimental levels of docosahexaenoic acid (DHA) and arachidonic acid (ARA). The control formula (C, Enfamil® Premature Formula) contained no DHA or ARA, the DHA formula (D) contained about 0.15% of energy as DHA (0.34% of fat), and the DHA+ARA formula (DA) contained about 0.14% of energy as DHA (0.33% of fat) and 0.27% of energy as ARA (0.60% of fat). The formulas were fed to 284 randomized infants weighing 846 to 1560 grams at birth for at least 28 days. Upon completion of study formula intake, they were given routine infant formula and followed through 4 months gestationally corrected age. A group of 90 exclusively human milk fed term infants were enrolled and followed to 4

20

15

Study Objective and Statistical Analysis:

months of age as a reference group (H).

The primary objective of this study was to establish the safety of

feeding D or DA to preterm infants during their initial hospitalization as measured 1) by growth, acceptance and tolerance while consuming the formula for at least 1 month and 2) by close monitoring and observation for a 4 to 5 month follow-up period (4-5 times the treatment period) while consuming unsupplemented routine term infant formula. The primary growth parameter selected was weight with evaluation of the proposition that weight on test formula was greater than or equal to weight on control formula. The one sided statistical test for an adverse effect on growth maximized the power to detect a difference should one be present. A two-sided test was used for all other parameters. A p-value of less than 0.05 was used to establish significance.

Secondary objectives of the study were 1) to evaluate the impact of fatty acid levels in erythrocyte phospholipids at the end of study feeding and 2) to determine if any effect on mean visual acuity greater than half an octave could be demonstrated at 2 and 4 months corrected age.

Results:

5

10

15

20

25

30

Six infants were just outside the weight parameters and five infants just older than the less than 24 days chronological age parameter for enrollment in the study. In each case, judgement by the clinical or medical monitor was made to include them in the study prior to enrollment based on their homogeneity with other study infants in all other particulars, e.g., state of health, type of medical complications, and weight for gestational age. All these infants were included in the analysis of the study results.

The formula groups were comparable at enrollment (See table 1).

Post-conceptual age, weight, length, and head circumference at enrollment did not differ among the groups.

All groups experienced comparable final study status (See table 2).

Drop outs did not differ among the formula fed groups during hospitalization. There also were no differences in drop outs among the four groups at study completion.

Both formulas D and DA provide adequate growth when compared to formula C (See table 3, figure 1, and Appendix 1). Weight gain during hospitalization was no less on D or DA than on C, 33.3, 34.7, and 30.7 g/day, respectively. Furthermore, no less weight was achieved on D or DA than on C at 40, 48, and 57 weeks post-conceptual age (See table 4, figure 2, and Appendix 1); statistical power was greater than 0.89 to detect a clinically relevant decrease.

Post-hoc analysis reveals that infants on DA grew faster than infants receiving C and D (See table 5 and figure 1). This enhanced growth provided faster "premature infant catch-up" compared to C and D. Weight achieved by the DA group (3198 g) was higher than C (3075 g) and D (3051 g) at 40 weeks post-conceptual age but had not fully caught up to the term birth weight (3438 g) of group H (See table 4 and figure 2). This catch up trend continued through 48 to 57 weeks by which time the mean weight of group DA did not differ from group H while groups C and D remained significantly lower.

Length was not different among the formula groups either during hospitalization or the follow-up period, although the ordered sequence of mean lengths was the same as for the weights (See table 7 and figure 3). This is likely at least partially due to length being a less sensitive parameter of growth than weight. For the same reason, the mean lengths of group H infants were higher than that of all the premature infant groups at 40, 48 and 57 weeks post-conceptual age indicating slower catch up in this parameter.

25

30

5

10

15

20

Head circumference is the least sensitive parameter of growth and was not different among any of the four groups at any time measured except at 40 weeks postconceptual age (See table 8 and figure 4). At this time, as expected, the birth head circumference of group H was smaller than the formula fed premature infants possibly due to molding of labor and to insufficient time for adjustment to the extrauterine environment.

10

15

20

25

30

Visual acuity has reportedly been enhanced in studies where DHA supplemented formulas were fed to premature infants both in the hospital and continuing after discharge. In this study, visual acuity was measured about 3 months and then about 5 months after stopping study formula to determine whether a residual beneficial effect of at least half an octave might be observed. Although no difference in visual acuity was found among the formula groups at these times (See table 8 and figure 5), the acuity card method used, the length of study formula feeding, and/or the length of time not on study formula at the time of measurement may have precluded its detection. However, at 57 weeks post-conceptual age, the breast fed term infant group did have statistically higher visual acuity scores than the test formula groups. But even these differences were at most only 0.33 octave and were clinically insignificant (See figure 6). It is important to note that the breast fed infants continued to receive DHA and ARA during the 3-5 month follow-up period while the formula fed groups did not. Thus, this minor difference in performance was not unexpected based on previous study findings and on developmental differences between term and preterm infants even at the same gestational age.

Individual fatty acid levels were determined in the phosphatidylcholine and phosphatidylethanolamine fractions of red blood cells before formula feeding, at the conclusion of test formula feeding, and at 48 weeks post-conceptual age (See tables 9 and 10). The premature infant groups were comparable at the beginning of test formula feeding. At the conclusion of test formula feeding, individual fatty acid levels varied among the groups. DHA and ARA were statistically significantly higher in the respectively supplemented groups. Other fatty acid levels reflected the impact of the supplementation. No clinically significant alterations in fatty acid levels or metabolism were identified. After discontinuing study-formula and consuming a diet without DHA or ARA for about 3 months, no differences in fatty acid levels among formula fed groups were detectable,

10

15

20

25

30

except for phosphatidylethanolamine levels of 18:2 (range 8.9-9.3%) and DHA (range 3.2-4.1%) which differences were not identified as being clinically significant. However, the breast fed group shows statistically significant differences in 13 fatty acid levels compared to the formula fed infants. These differences are undoubtedly due to the differences in fatty acid composition of human milk and the term formulas including the lack of DHA and ARA in the latter.

Preterm infant complications were similar in all groups (See table 11). Over 80% of all infants were opthamologically examined and over 90% had ultrasound evaluation of their heads. Specifically, the incidence and severity of retinopathy of prematurity (ROP or retrolental fibroplasia/RLF) and the incidence of intraventricular hemorrhage or its complications did not differ among formula groups. No feeding group related complications were identified.

Serious adverse experiences did not differ (p = 0.93) among the formula groups and were in the range of those expected in a premature infant population while on study formula: 6% in group C, 5% in group D, and 6% in group DA (See table 12). After the experimental formula phase, serious adverse experiences still did not differ among the preterm groups (See table 13): 13% in group C, 15% in group D, and 15% in group DA. However, the term infant breast fed group had significantly fewer serious adverse experiences (1%, p = 0.002) as expected. Two infants reportedly suffered sudden infant death syndrome (SIDS), one in group C and one in group D; there was no significant difference in this complication among all four groups.

Conclusions:

We conclude that feeding 0.13% of calories as DHA from micro algal oil and feeding 0.13% of calories as DHA from micro algal oil plus 0.26% of calories as ARA from fungal oil in the matrix of premature infant formula to premature infants during the period of their initial hospitalization

prior to 40 weeks post conceptual age is safe. These micro algal and fungal oil supplements do not result in any adverse effect on growth, clinical complications, or untoward events. Furthermore, this study reveals that growth benefits accrue to premature infants fed Enfamil Premature Formula supplemented with DHA and ARA from these sources compared to unsupplemented formula or formula supplemented with only DHA. No measurable benefit on visual acuity was identified when infants were tested at about 3 and 5 months after the supplemented formula was discontinued (2 and 4 months corrected age). However, providing human milk levels of intake of long chain polyunsaturated acids are warranted because they are critical to brain development and foster enhanced catchup growth during this early development period.

Table 1
Birth Statistics of Premature Subjects

	n	Mean (std)	Range	p-value
Post-Conceptual Age (Weeks)				 • • • • • • • • • • • • • • • • • • •
Control	62	29.5 (1.7)	25 - 33	
DHA	66	30.0 (1.4)	26 - 32	0.076
DHA+ARA	66	29.7 (1.7)	26 - 34	
Birth Weight (g)				
Control	62	1233.1 (176.6)	846 - 1560	
DHA	66	1272.8 (168.1)	900 - 1545	0.25
DHA+ARA	66	1278.9 (177.6)	910 - 1535	-
Birth Length (cm)				
Control	60	38.4 (2.3)	34 - 43.75	
DHA	66	38.6 (2.2)	33 - 43.5	0.62
DHA+ARA	66	38.7 (2.3)	33 - 44	
Birth Head Circumference (cm)				
Control	61	26.9 (1.5)	23.5 - 30.5	
DHA	64	27.3 (2.1)	22 - 37	0.53
DHA+ARA	65	27.2 (1.6)	23.5 - 30	

Table 2 Summary of Final Study Status

		Re	gimen		T = == t
	Control	DHA	DHA+ARA	HM	p-value
Immediate dropout, study formula never consumed		2	2	11101	
Study Formula Phase *				<u> </u>	
Completed Discontinued	52 (84%) 10 (16%)	59 (89%) 7 (11%)	62 (94%) 4 (6%)		0.20
Reason discontinued					
>96 cumulative hours NPO <28 days of intake >= 90 kcal/kg/day Complications unrelated to study formula NEC or other GI disease	3 3	1 3			
Formula intolerance Parents request	_	1	1 1		
Not off oxygen prior to discharge Protocol violation	2 1	2	1		
Term Formula Phase **					
Completed	45 (87%)	47 (80%)	53 (85%)	77 (86%)	0.74
Discontinued	7 (13%)	12 (20%)	9 (15%)	13 (14%)	0.74

<sup>The CRFs for 9709-003 (DHA) and 9743-304 (DHA) were marked discontinued because the subjects met the study formula intake criteria for only 27 days. These subjects are counted completed here because subjects at other sites with similar intakes were marked completed.
Based on subjects who completed the Study Formula phase. During the Term Formula phase, subjects were fed marketed formula. Switching to a different marketed formula did not result in termination from the Term Formula phase.</sup>

Attorney Docket: 19400/09003 (MJ729)

Table 3

	Gender-by-Regimen	p-value 0.87
	Gender	p.varue 0.17
hase	Study	0.00
tudy formula P	Comparison p∙value*	0.967
Growth Rate During S	Comparison	1.1 Control vs DHA 0.967 0.00 0.17 0
Veight	۳ س	
	least Square Mean	30.7
	c	99 99
	i men	trol

* One-sided test of the null hypothesis: Test Hean >= Control Hean

Jable 4

Weight at 40, 48, and 57 Weeks Post-Conceptual Age

septual	Regimen	c	Least Square Mean	Standard Error	Comparison	Comparison p-value*	Study p-value	Gender p-value	Gender-by-Regimen p-value
	Control DHA DHA+ARA	52 54 59	3075.3 3051.4 3198.2	67.9 66.8 62.9	Control vs DHA Control vs DHA+ARA HM vs DHA	0.388 0.931 0.000	0.59	0.45	1.00
	X C	8 %	3437.7	9.09	HH VS DANA*AKA IIH VS CONTrol Control VS DIIA	0.001 0.000 0.360	0.58	0.13	000
	DHA DHA+ARA IIH	57.	4663.8 5039.1 5181.5	97.3 93.0 85.9	Control vs DHA+ARA HM vs DHA HM vs DHA+ARA HM vs Control	0.995 0.000 0.114 0.000			
	Control DHA DIIA+ARA IIH	45 22 28 28 28	6045.4 5987.2 6312.9 6405.0	139.5 137.6 127.9 126.7	Control vs DHA Control vs DIIA+ARA HM vs DHA HH vs DIIA+ARA HH vs DIIA+ARA	0.371 0.940 0.005 0.278 0.014	0.58	0.29	0.33

• One-sided test of the null hypothesis: Test Mean >= Control Hean

Table 5
Post-hoc Analysis of Weight

Time	Comparison	Two-sided p-value
Weight Gain During Study Formula Phase	C vs. DHA C vs. DHA+ARA DHA vs. DHA+ARA	0.067 0.004 0.30
Weight at 40 Weeks pca	C vs. DHA C vs. DHA+ARA DHA vs. DHA+ARA HM vs. DHA HM vs. DHA+ARA HM vs. C	0.78 0.14 0.074 <0.001 0.002 <0.001
Weight at 48 Weeks pca	C vs. DHA C vs. DHA+ARA DHA vs. DHA+ARA HM vs. DHA HM vs. DHA+ARA HM vs. C	0.72 0.011 0.004 <0.001 0.23 <0.001
Weight at 57 Weeks pca	C vs. DHA C vs. DHA+ARA DHA vs. DHA+ARA HM vs. DHA HM vs. DHA+ARA HM vs. C	0.74 0.12 0.057 0.010 0.56 0.028

Table 6 Length at 40, 48, and 57 Weeks Post-Conceptual Age

Gender-by-Regimen p·value	0.63	0.52	0.84
Gender p-value	0.88	0.14	0.02
Study p-value	0.03	00.00	00.0
Pairwise p-value	0.242 0.233 0.000 0.000 0.000	0.824 0.079 0.000 0.000 0.000	0.615 0.236 0.000 0.006 0.000 0.087
Palrwise Comparison	Control vs DHA Control vs DHA+ARA HN vs DHA HN vs DHA+ARA Control vs IIH DIA vs DIA+ARA	Control vs DHA Control vs DHA+ARA HN vs DHA IIN vs DIA+ARA Control vs HH DHA vs DIA+ARA	Control vs DHA Control vs DHA+ARA IIH vs DHA HH vs DIIA+ARA Control vs HH DHA vs DIIA+ARA
Regimen p·value	0.000	0.000	0.000
Standard Error	7.000	E.0 E.0 E.0	2.0 2.0 8.0
Least Square Mean	9.05 0.67 9.05 9.05	54.7 54.6 55.5 57.4	60.7 60.5 61.3 62.4
c :	88 88 88 88 88 88 88 88 88 88 88 88 88	53 57 81	47 48 54 76
Regimen	Control DIIA DHA*ARA HM	Control DIIA IIM	Control DHA DHA+ARA HM
Weeks Post-Conceptual Age	07	48	25

Table 7 Head Circumference at 40, 48, and 57 Weeks Post-Conceptual Age

Pairwise Study Gender Gender-by-Regimen p-value p-value p-value	0.931 0.91 0.900 0.000 0.000 0.000 0.000	0.81 0.00 1.00	58.0 0.00 0.05
Pairwise Comparison	Control vs DHA*ARA Control vs DHA*ARA HN vs DHA HN vs DHA*ARA Control vs HM DHA vs DHA*ARA		
Regimen p-value	0.000	0.983	0.689
Standard Error	0.2	0.2	0.2 0.2 0.2
Least Square Hean	35.4 35.4 34.5 34.5	39.1 39.0 39.0 39.0	41.9 41.6 41.7
c	51 58 85	52 51 56 81	47 53 76
	Control DHA DHA+ARA	Control DHA DHA+ARA	Control DHA DHA+ARA IIN
Neeks Post∙Conceptual		87	25

visual Acuity at 48 and 57 Weeks Post-Conceptual Age

a)		
Study p-value	0.000	0.000
Pairwise p-value		0.697 0.071 0.042 0.000 0.113
Pairwise Comparison		Control vs DHA Control vs DHA+ARA HH vs DHA HH vs DHA+ARA Control vs HH
Regimen p-value	0.950	0 .00.0
Standard Error (octaves)	0.10 0.10 0.09 0.09	0.08 0.08 0.07 0.07
Least Square Mean (log base2 cycles/deg)	72 0 .78 80 0 .85 72 0 .78 75 0 .81	1.79 1.75 1.61 1.94
Geometric mean (cycles/deg)	1.72 1.80 1.72 1.75	3.37 3.37 3.06 3.85
c	51 50 57 81	77 77 78
Regimen	Control DilA DIIA+ARA IIH	Control DHA DHA+ARA
eks nceptuali ge	89 4	25

Table 9

Red Blood Cell Phosphatidylcholine Fatty Acids

								0.196 0.010 0.176
								Control vs DHA Control vs DHA+ARA DHA vs DHA+ARA
0.762	0.559	0.165	0.884	0.441	0.243	0.679	0.830	0.034
0.036 0.030 0.031	0.599 0.686 0.656	0.021 0.016 0.018	36.594 35.578 35.987	0.845 0.976 0.931	11.468 11.201 11.174	17.308 16.935 16.988	18.952 19.603 18.824	0.116 0.130 0.134
0.019 0.013 0.009	0.036 0.031 0.031	0.009	0.540 0.462 0.445	0.049 0.050 0.064	0.243 0.238 0.192	0.298 0.391 0.271	0.525 0.505 0.466	0.008
0.081 0.066 0.057	0.623 0.663 0.661	0.045 0.026 0.035	36.706 36.363 36.877	0.940 0.981 1.094	11.660 11.402 11.016	17.053 17.219 17.256	18.614 18.631 18.573	0.120 0.136 0.150
52 58 61	52 58 61	52 58 61	52 58 61	52 58 61	52 58 61	52 58 61	52 58 61	52 58 61
Control DHA DHA+ARA	Control DHA DHA+ARA	Control DHA DHA+ARA	Control DHA DHA+ARA	Control DHA DHA+ARA	Control DHA DHA+ARA	Control DHA DHA+ARA	Control DHA DHA+ARA	Control DHA DHA+ARA
12:0	14:0	14:1	16:0	16:1	18:0	18:1	18:2	18:3n6
udy Form Initiation	udy form Initiation	udy Form Initiation	udy Form Initiation	udy Form Injitiation	udy form initiation	udy Form initiation	udy Form Initiation	Study form Initiation
	Control 52 0.081 0.019 0.036 0.762 DHA 58 0.066 0.013 0.030 DHA+ARA 61 0.057 0.009 0.031	12:0 Control 52 0.081 0.019 0.036 0.762 DHA 58 0.066 0.013 0.030 DHA+ARA 61 0.057 0.009 0.031 14:0 Control 52 0.623 0.036 0.559 DHA 58 0.663 0.031 0.686 DHA+ARA 61 0.661 0.031 0.656	12:0 Control 52 0.081 0.019 0.036 0.762	12:0 Control 52 0.081 0.019 0.036 0.762 DHA 58 0.066 0.013 0.030 DHA+ARA 61 0.057 0.009 0.031 14:0 Control 52 0.623 0.031 0.686 DHA+ARA 61 0.661 0.031 0.656 14:1 Control 52 0.065 0.009 0.021 DHA 58 0.026 0.006 0.016 DHA 58 0.026 0.006 DHA+ARA 61 0.035 0.006 0.016	12:0 Control 52 0.081 0.019 0.036 0.762 DIA 58 0.066 0.013 0.030 DIA+ARA 61 0.057 0.009 0.031 14:0 Control 52 0.663 0.031 0.656 DIA+ARA 61 0.661 0.031 0.656 DIA+ARA 61 0.661 0.031 0.656 14:1 Control 52 0.045 0.009 0.021 DIA+ARA 61 0.035 0.006 0.016 DIA+ARA 61 0.035 0.046 0.018 16:0 Control 52 36.706 0.540 36.594 DIA+ARA 61 36.363 0.445 35.578 DIA+ARA 61 36.367 0.445 35.987 16:1 Control 52 0.940 0.045 0.045 DIA+ARA 61 36.877 0.445 35.987 DIA+ARA 61 1.094 0.064 0.931	12:0	12:0 Control 52 0.084 0.019 0.036 0.762 DHA ARA 61 0.065 0.013 0.030 0.762 14:0 Control 52 0.663 0.031 0.656 0.559 14:1 Control 52 0.663 0.031 0.656 0.556 14:1 Control 52 0.065 0.005 0.016 0.165 DHA ARA 61 0.055 0.005 0.016 0.016 DHA ARA 58 36.706 0.562 35.78 DHA ARA 61 36.877 0.462 35.78 DHA ARA 61 36.877 0.465 35.78 DHA ARA 58 36.363 0.064 0.975 DHA ARA 61 1.094 0.064 0.931 DHA ARA 58 0.960 0.023 0.411 DHA ARA 58 11.402 0.238 11.704 DHA ARA 58 11.010	12:0

		Pairwise p-value									
	-	Pairwise Comparison						·			
	10	Regimen p∙value	0.647	0.234	0.723	0.290	0.673	0.507	0.819	0.155	0.911
	Fatty Acids	Median	0.224 0.236 0.188	0.246 0.246 0.216	0.262 0.281 0.269	0.000 0.017 0.008	0.632 0.640 0.614	2.096 2.296 2.135	8.124 7.876 8.207	0.105 0.130 0.139	0.298 0.302 0.329
Table 9	idylcholine 1	Standard Error	0.050 0.035 0.037	0.033 0.014 0.010	0.020 0.015 0.011	0.003	0.025 0.025 0.021	0.098 0.080 0.074	0.262 0.347 0.310	0.010 0.010 0.010	0.057 0.015 0.015
Tab	Red Blood Cell Phosphatidylcholine Fatty Acids	Arithmetic Mean	0.399 0.337 0.310	0.315 0.257 0.233	0.287 0.287 0.268	0.017 0.025 0.017	0.632 0.628 0.602	2.144 2.208 2.218	7.657 8.164 8.090	0.106 0.127 0.126	0.351 0.322 0.321
	Blood (c	52 58 61								
	Red	Regimen	Control DKA DHA+ARA	Control DHA DHA+ARA							
		Fatty Acid	20:0	18:31	20:1	18:4	20:2n6	20:3n6	20:406	22:1	20:5n3
·=		U	Study form Initiation								
		Tie	Form 1	Form	For	Ero?	Form	Form 1			E
			Study								

Table 9 Red Blood Cell Phosphatidylcholine Fatty Acids

T in	7	Fatty Acid	Regimen	c	Arithmetic Hean	Standard Error	Median	Regimen p-value	Pairwise Comparison	Pairwise p-value
Study form Initiation	Initiation	22:4n6	Control DHA DHA+ARA	52 58 61	0.578 0.493 0.443	0.144 0.030 0.021	0.423	0.331		
Study Form Initiation	Ditiation	24:1	Control OHA DHA+ARA	52 58 61	0.208 0.115 0.180	0.054 0.019 0.056	0.075 0.084 0.096	0.665		
Study form Initiation	Initiation	22:5n6	Control DHA DHA+ARA	52 58 61	0.266 0.259 0.265	0.020 0.017 0.018	0.232 0.239 0.256	0.923		
Study Form	Study form initiation	22:4n3	Control DHA DHA+ARA	52 58 61	0.000	0.000	0.000	0.199		
Study Form	Study Form Initiation	22:5n3	Control DHA DHA+ARA	52 58 61	0.213 0.215 0.203	0.019 0.013 0.010	0.203 0.195 0.193	0.885		
Study Form	Study Form Initiation	22:6n3	Control DHA DHA+ARA	52 58 61	0.984 1.075 1.006	0.051 0.053 0.050	1.000 1.034 0.970	0.858		

Attorney Docket: 19400/09003 (MJ729)

Table 9

Pairwise p-value 0.118 0.003 0.152 0.600 Control vs DHA Control vs DHA+ARA DHA vs DHA+ARA Control vs DHA Control vs DHA+ARA DHA vs DHA+ARA Pairwise Comparison 0.686 0.527 Regimen p-value 0.001 0.013 0.886 0.843 0.834 0.155 0.767 Red Blood Cell Phosphatidylcholine fatty Acids 14.291 13.998 14.218 21.506 22.517 20.662 0.074 0.076 0.066 14.197 13.867 14.108 34.798 34.841 33.890 0.526 0.475 0.472 0.033 0.015 0.018 0.806 0.783 0.758 0.035 0.031 0.032 0.006 0.009 0.013 0.340 0.457 0.337 Standard Error 0.277 0.272 0.380 0.026 0.042 0.029 0.261 0.237 0.253 0.039 0.035 0.036 0.008 0.009 0.007 0.512 0.595 0.584 0.026 0.042 0.012 Arithmetic Mean 21.673 22.045 19.899 14.456 14.116 14.344 0.080 0.088 0.087 13.972 14.065 14.341 0.047 0.036 0.036 35.837 35.560 35.069 52 53 Control DHA DHA+ARA Control DHA DHA+ARA Control DHA DHA+ARA DHA DHA+ARA Control Regimen 18:3n6 18:2 Fatty Acid 18:0 18:1 16:0 16:1 14:0 14:1 12:0 Study Form Termination Study form Termination

Red Blood Cell Phosphatidylcholine Fatty Acids

Pairwise Pairwise Comparison p-value		Control vs DHA 0.503 Control vs DHA+ARA 0.068 DHA vs DHA+ARA 0.011					Control vs DHA 0.097 Control vs DHA+ARA 0.000 DHA vs DHA+ARA 0.000		Control vs DHA 0.004 Control vs DHA+ARA 0.108
		Control vs DHA Control vs DHA DHA vs DHA+ARA					Control vs DHA Control vs DHA DHA vs DHA+ARA		Control vs DHA Control vs DHA
Regimen p·value	0.424	0.031	0.149	0.672	0.051	0.208	0.000	0.946	0.000
Median	0.392 0.281 0.251	0.283	0.302 0.283 0.283	0.015 0.018 0.008	0.910 0.873 0.821	2.091 2.043 1.904	6.029 5.892 8.891	0.125 0.114 0.104	0.189
Standard Error	0.050 0.053 0.049	0.020 0.030 0.009	0.014 0.013 0.013	0.004 0.003 0.002	0.026 0.023 0.022	0.073 0.070 0.064	0.240	0.010	0.022
Arithmetic Mean	0.504 0.472 0.430	0.321 0.335 0.273	0.318 0.300 0.307	0.022 0.022 0.014	0.893 0.880 0.824	2.032 2.017 1.908	6.046 5.774 8.465	0.117 0.110 0.115	0.214
, c	22.53	55 55	28 28 28	55 59 59	55 56 56	222	288	2883	53
Regimen	Control DHA DHA+ARA	Control DHA DHA+ARA	Control DHA DHA+ARA	Control DHA DHA+ARA	Control DHA DHA÷ARA	Control DHA DHA+ARA	Control DHA DHA+ARA	Control DHA DHA+ARA	Control
fatty Acid	20:0	18:3n3	20:1	18:4	20:2n6	20:3n6	20:4n6	22:1	20:513
== =	Study form Termination	Study Form Termination	Study Form Termination	Study form Termination	Study Form Termination	Study Form Termination	Study Form Termination	Study Form Termination	Study FormiTermination
T ime	y form Te	ly Form To	dy Form I	dy form 1	dy form I	dy Form T	dy form T	dy form	dy Form 1

	Pairwise	p-value							0.005	900.0					000	0.000	0.14.0	
			Comparison						Control vs DHA	Control Vs VIIA	מעט בא עשמ					Control vs DHA+ARA	DHA VS DHA+ARA	
		Regimen	p-value	0.093			0.303		0.006			0.359		0.221		000.0		
	ty Acids		Hedian	100	0.426	0.487	0.062	0.086	163	0.133	0.165	0.000	0.000	0.289	0.260		1.352	
•	Phosphatidylcholine Fatty Acids		Standard		870.0	0.027	010	0.036	, !	0.013	0.00	100	0.001	010	0.026	0.072	0.063	, , , ,
1able 9	phosphatidy		Arithmetic	Mean	0.484	0.489	•	0.127	0.177	0.181	0.145		0.001	0.00	0.306	0.265	0.895	1.244
	1107	ססם רבו	Ä	c		. 25 S	Š	55 53	2 52	5	26 56	23	52 %	29	55 53			26 %
		Red B1		Regimen			ARA	Control	DHA DHA+ARA		Control	DHA+ARA	Control	DHA+ARA		DHA DHA+ARA	Control	
				Fatty		55:4nb		24:1			22:5n6		22:413		22:5n3			
									rmination		nination		nosti on	ermine		Study Form Termination		Study Form Termination
			· · · · · · ·	~~~~~	T ime	. corm lecmination	Study rum		Study Form Termination	o dangun	,	Study form leiming		Study Form lermination		Study Form		Study Form

		Pairwise p-value				0.527 0.593 0.000 0.000 0.000	0.524 0.467 0.000 0.000 0.000 0.183
		Pairwise Comparison				Control vs DHA Control vs DHA+ARA HM vs DHA HM vs DHA+ARA Control vs HM	Control vs Dila Control vs Dha+ara. IIN vs Dha HM vs Dha+ara Control vs HM Dha vs Dha+ara
	Acids	Regimen p-value	0.729	0.943	0.448	0.000	0.000
	ine fatty /	Median	0.026 0.016 0.021 0.020	0.331 0.324 0.328 0.335	0.013 0.011 0.015 0.020	34.319 34.473 34.165 32.228	0.338 0.352 0.368 0.473
Table 9	phatidylchol	Standard Error	0.005 0.006 0.004 0.016	0.039 0.032 0.024 0.026	0.006 0.007 0.006 0.003	0.577 0.689 0.506 0.506	0.023 0.024 0.020
	Red Blood Cell Phosphatidylcholine Fatty Acids	Arithmetic Mean	0.032 0.028 0.026 0.059	0.402 0.353 0.353 0.381	0.025 0.026 0.026 0.026	34.627 35.272 34.802 33.037	0.435 0.380 0.395 0.507
	Red Blo	c	37 32 38 56	37 32 38 56	37 38 38 56	37 38 56	37 38 38 56
		Regimen	Control DHA DHA+ARA HH	Control DHA DHA+ARA HH	Control DHA DHA+ARA HM	Control DHA DHA+ARA HH	Control DHA DHA+ARA HM
		Fatty Acid	12:0	14:0	14:1	16:0	16:1
*** *** ***		Time =	48 Heeks PCA	48 Weeks PCA	48 Veeks	20 Eeks PCA	A P C P C P C P C P C P C P C P C P C P

						Table 9				
				Red E	Red Blood Cell Phosphatidylcholine fatty Acids	sphatidylcho	line fatty	Acids		
	Time = =	Fatty Acid	Regimen	c	Arithmetic Mean	Standard Error	Median	Regimen p-value	Pairwise Comparison	Pairwise p-value
A 87	48 Heeks PCA	18:0	Control DHA DHA+ARA HM	37 32 38 56	13.016 12.944 12.804 14.583	0.313 0.249 0.235 0.287	12.759 12.786 12.793 14.729	0.000	Control vs DHA Control vs DHA+ARA HM vs DHA HM vs DHA+ARA Control vs HM DHA vs DHA+ARA	0.760 0.889 0.000 0.000 0.000
1 8 t	48 Veeks PCA	18: 1	Control DHA DHA+ARA HM	37 38 38 56	17.894 17.766 17.850 18.662	0.453 0.429 0.289 0.305	18.636 18.492 18.227 18.727	0.256		
1 87	28 E = E E KS P C A	18:2	Control DHA DHA+ARA. HH	37 38 38 56	23.469 23.538 23.738 18.650	0.518 0.516 0.422 0.344	23.552 23.717 23.839 18.482	0.000	Control vs DHA Control vs DHA+ARA HN vs DHA HN vs DHA+ARA Control vs HM	0.840 0.527 0.000 0.000 0.000 0.000
87	48 Weeks PCA	18:3n6	Control DHA DHA+ARA HH	32 33 34 58 34 58 58 58 58 58 58 58 58 58 58 58 58 58	0.071 0.069 0.069 0.042	0.008 0.005 0.006 0.004	0.061 0.067 0.062 0.039	0.002	Control vs DHA Control vs DHA+ARA HH vs DHA HN vs DHA Control vs HH DHA vs DHA+ARA	0.950 0.774 0.004 0.001 0.003
87	48 Veeks PCA	50:0	Control DHA DHA+ARA HH	37 32 38 56	0.348 0.339 0.304 0.409	0.075 0.061 0.061 0.064	0.197 0.206 0.172 0.215	0.785		

		Pairwise p-value	0.812 0.918 0.001 0.002 0.001	0.579 0.588 0.001 0.001 0.000	0.822 0.161 0.039 0.001 0.054		0.610 0.735 0.000 0.000 0.000
		Pairuise Comparison	Control vs DHA Control vs DHA+ARA HM vs DHA HM vs DHA+ARA Control vs HM DHA vs DHA+ARA	Control vs DHA Control vs DHA+ARA HH vs DHA+ARA Control vs HH DHA vs DHA+ARA	Control vs DHA Control vs DHA+ARA HM vs DHA IM vs DHA+ARA Control vs HM DHA vs DHA+ARA		Control vs DHA-ARA Control vs DHA+ARA HH vs DHA HH vs DHA+ARA Control vs HH
	Acids	Regimen p-value	0.001	0.000	0.010	0.629	0:000
	line fatty	Median	0.182 0.182 0.190 0.120	0.420 0.435 0.375 0.309	0.000 0.000 0.000 0.015	0.537 0.543 0.550 0.531	1.741 1.684 1.717 2.166
Table 9	sphatidylchol	Standard Error	0.019 0.015 0.010 0.022	0.019 0.025 0.016 0.014	0.005 0.004 0.002 0.004	0.023 0.032 0.053 0.014	0.086 0.073 0.090 0.086
	Red Blood Cell Phosphatidylcholine Fatty Acids	Arithmetic Mean	0.222 0.211 0.203 0.182	0.418 0.406 0.382 0.311	0.018 0.016 0.007 0.024	0.543 0.557 0.560 0.560	1.709 1.702 1.844 2.265
	Red 81	c	37 38 38 56	37 32 38 56	32 38 38 56	37 38 56	32 38 56
		Regimen	Control DHA DHA+ARA HM	Control DHA DHA+ARA HM	Control DHA DHA+ARA HM	Control DHA DHA+ARA HM	Control DHA DHA+ARA HH
		Fatty	18:303	20:1	18:4	20:2n6	20:3n6
= = ;	===	T. ee	48 Heeks PCA	48 Veeks PCA	48 Weeks PCA	48 Heeks PCA	48 Veeks PCA
			87	85	37	3	4

ocket:

Attorney Docket: 19400/09003 (MJ729)

Pairwise p-value 0.633 0.086 0.000 0.000 0.000 0.508 0.805 0.000 0.000 0.000 0.337 0.247 0.000 0.000 0.000 Control vs DHA
Control vs DHA+ARA
HH vs DHA
HN vs DHA+ARA
Control vs HH
DHA vs DHA+ARA Control vs DHA
Control vs DHA+ARA
HH vs DHA
HH vs DHA+ARA
Control vs HM
DHA vs DHA+ARA Control vs DHA Control vs DHA+ARA IIM VS DHA
IIM VS DHA+ARA
Control VS HM
DHA VS DHA+ARA Comparison Pairwise Regimen p-value 0.000 0.000 0.244 0.000 0.664 Red Blood Cell Phosphatidylcholine Fatty Acids 0.112 0.116 0.108 0.079 0.131 0.118 0.105 0.104 0.077 0.083 0.078 0.123 0.373 0.417 0.384 0.377 Median 4.736 4.746 7.666 Standard Error 0.070 0.062 0.055 0.020 0.059 0.029 0.054 0.022 0.015 0.006 0.009 0.009 Table 9 0.255 0.196 0.185 0.250 0.036 0.014 0.024 0.030 **Arithmetic** 0.247 0.210 0.179 0.115 0.426 0.382 0.440 0.406 0.102 0.084 0.099 0.138 4.738 4.475 4.550 7.408 0.166 0.116 0.131 0.160 Mean 28832 28 32 32 22 32 38 38 56 37 32 38 56 C 38 32 38 38 Control DHA DHA+ARA HM Control DHA DHA+ARÁ HM Control DHA DHA+ARA HM Control DHA DHA+ARA HH Control DHA DHA+ARA HM Regimen 22:4n6 20:5n3 20:4n6 Fatty Acid 24:1 22:1 48 Weeks PCA Time

		Pairwise p∙value	0.505 0.647 0.000 0.001 0.000		0.598 0.759 0.000 0.000 0.000	0.111 0.052 0.000 0.000 0.000
		Pairkise Comparison	Control vs DHA Control vs DHA+ARA HH vs DHA HH vs DHA+ARA Control vs HH DHA vs DHA+ARA		Control vs DHA Control vs DHA+ARA HN vs DHA HN vs DHA+ARA Control vs HM	Control vs DHA-ARA Control vs DHA+ARA HM vs DHA HM vs DHA+ARA Control vs HM DHA vs DHA+ARA
	Acids	Regimen p-value	0.00	1.000	0.000	0.000
	ine fatty	Median	0.212 0.186 0.198 0.265	0.000	0.260 0.251 0.256 0.314	0.569 0.676 0.663 1.333
Table 9	sphatidylchol	Standard Error	0.016 0.012 0.022 0.016	0.000 0.000 0.000 0.000	0.029 0.017 0.026 0.018	0.047 0.048 0.043 0.081
	Red Blood Cell Phosphatidylcholine Fatty Acids	Arithmetic Mean	0.210 0.189 0.231 0.264	0.000	0.286 0.253 0.268 0.339	0.595 0.685 0.662 1.475
	Red Bi	ے	37 38 38 56	37 32 38 56	37 38 38 56	37 38 56
		Regimen	Control DHA DHA+ARA HM	Control DHA DHA+ARA KM	Control DHA DHA+ARA HM	Control DHA DHA+ARA HM
		fatty Acid	22:5n6	22:4n3	22:5n3	22:6n3
			PCA	٩٥ ع	PCA	, PCA
~ = =		= = = = E	48 Heeks PCA	AS PCA	AS PCA	48 PCA
		-	A 87	H 87	87	87

_ = &	= -				Table 10	10				
T- T- E E			Red B1	ood Ce	Red Blood Cell Phosphatidylethanolamine Fatty Acids	/lethanolami	ne Fatty A	cids		
. Time		Fatty	Regimen	.	Arithmetic Kean	Standard Error	Hedian	Regimen p-value	Pairwise Comparison	Pairwise p-value
Study Form Initiation	tiation	20:0	Control DHA DHA+ARA	52 57 61	0.372 0.314 0.259	0.043 0.030 0.024	0.291 0.244 0.186	0.151		
Study Form Initiation	tiation	18:3n3	Control DHA DHA+ARA	52 57 61	0.305 0.269 0.257	0.023 0.018 0.016	0.261 0.249 0.225	0.641		
Study Form Initiation	tiation	20:1	Control DHA DHA+ARA	52 57 61	0.573 0.615 0.571	0.036 0.034 0.027	0.517 0.555 0.544	0.395		
Study Form Initiation	tiation	18:4	Control DHA DHA+ARA	52 57 61	0.025 0.031 0.030	0.005 0.004 0.007	0.000 0.025 0.021	0.371		
Study form Initiation	tiation	20:2n6	Control DHA DHA+ARA	52 57 61	0.479	0.023 0.024 0.028	0.480 0.437 0.427	0.706		
Study Form Initiation	tiation	20:3n6	Control DHA DHA+ARA	52 57 61	1.843	0.072 0.077 0.064	1.829 1.820 1.911	0.099		
Study Form Initiation	tiation	20:4n6	Control DHA DHA+ARA	52 57 61	25.817 26.475 26.747	0.618 0.611 0.645	26.820 27.376 27.708	0.353		
Study form initiation	tiation	22:1	Control DHA DHA+ARA	52 57 61	0.150 0.167 0.168	0.017 0.015 0.017	0.138 0.151 0.141	0.572		
Study Form Initiation	tiation	20:5n3	Control DHA DHA+ARA	52 57 61	0.378 0.384 0.366	0.024 0.024 0.022	0.357 0.370 0.335	0.997		

	₹ = =				Tabl	Table 10				
•	= = a =		Red Bl	lood Ce	Red Blood Cell Phosphatidylethanolamine Fatty Acids	lytethanotami	ne fatty A	cids		
-		fatty Acid	Regimen	c	Arithmetic Mean	Standard Error	Median	Regimen p-value	Pairwise Comparison	Pairwise p-value
Study form	Study form Initiation	. 22:4n6	Control DHA DHA+ARA	52 57 61	7.290 7.431 7.456	0.182 0.186 0.167	7.402 7.638 7.270	0.875		
Study Form	Study Formilnitiation	24:1	Control DHA DHA+ARA	52 57 61	0.100 0.059 0.072	0.028 0.009 0.010	0.041	0.068		
Study Form	Study form Initiation	22:5n6	Control DHA DHA+ARA	52 57 61	1.757 1.809 1.851	0.083 0.070 0.075	1.782 1.857 1.775	0.555		
Study Form	Study form Initiation	22:4n3	Control DHA DHA+ARA	52 57 61	0.001 0.001 0.005	0.001 0.001 0.002	0.000	0.257		
Study For	Study Form Initiation	22:5n 3	Control DHA DHA+ARA	52 57 61	1.496	0.109 0.109 0.097	1.308 0.988 1.041	0.195		
Study For	Study Form Initiation	22:6n3	Control DHA DHA+ARA	52 57.	6.119 6.444 6.407	0.200 0.185 0.220	6.381 6.468 6.579	0.375		

Table 10

	[™] = =		Red B1	ood Cel	Red Blood Cell Phosphatidylethanolamine Fatty Acids	lethanolami	ne fatty Ac	sids		•
Ξ	ris ======	fatty Acid	Regimen	, c	Arithmetic Mean	Standard Error	Median	Regimen p-value	Pairwise Comparison	Pairwise p-value
Study Form	Study Form Termination	12:0	Control DHA DHA+ARA	58 55-53	0.093 0.093 0.067	0.018 0.019 0.012	0.033 0.036 0.035	0.630		
Study form	Study form Termination	14:0	Control DHA DHA+ARA	53 55 58	0.360 0.380 0.348	0.031 0.039 0.030	0.279 0.265 0.256	0.782		
Study form	Study form Termination	14:1	Control DHA DHA+ARA	53 55 58	0.086 0.066 0.066	0.020 0.013 0.011	0.041	0.592		
Study Form	Study Form Termination	16:0	Control DHA DHA+ARA	53 58	19.326 19.062 18.357	0.673 0.614 0.467	17.617 17.556 17.568	0.560		
Study Form	Study Form Termination	16:1	Control DHA DHA+ARA	58.53	0.511 0.579 0.618	0.034 0.045 0.049	0.476 0.509 0.555	0.604		
Study form	Study form Termination	18:0	Control DHA DHA+ARA	53 58 58	9.614 9.173 8.961	0.266 0.208 0.242	9.406 8.818 8.697	0.024	Control vs DHA Control vs DHA+ARA DHA vs DHA+ARA	0.130 0.006 0.219
Study Form	Study Form Termination	18:1	Control DHA DHA+ARA	53 58 58	14.763 15.177 14.814	0.437	14.695 14.927 14.499	0.333		
Study For	Study form Termination	18:2	Control DHA DHA+ARA	53 58 58	9.405 9.180 7.756	0.192 0.207 0.141	9.359 9.188 7.586	0.000	Control vs DHA Control vs DHA+ARA DHA vs DHA+ARA	0.908 0.000 0.000
Study For	Study Form Termination	18:306	Control DHA DHA+ARA	582	0.169 0.187 0.198	0.012 0.017 0.018	0.163 0.157 0.161	0.160		·

Table 10

Pairwise p-value 0.286 0.000 0.000 0.119 0.000 0.000 Control vs DHA Control vs DHA+ARA DHA vs DHA+ARA Control vs DHA Control vs DHA+ARA DHA vs DHA+ARA Pairwise Comparison Regimen p-value 0.203 000.0 0.00 0.108 0.068 0.229 0.134 0.164 Red Blood Cell Phosphatidylethanolamine Fatty Acids 2.073 2.206 1.992 25.132 24.038 27.372 0.018 0.019 0.000 Standard Error 0.029 0.030 0.026 0.111 0.094 0.073 0.527 0.520 0.437 0.019 0.016 0.012 0.044 0.037 0.029 0.017 0.016 0.015 Arithmetic Mean 2.253 2.295 2.066 24.279 23.464 26.760 0.553 0.579 0.507 0.382 0.368 0.329 0.042 0.026 0.022 0.754 0.774 0.654 22 22 23 Control DHA DHA+ARA Control DHA DHA+ARA Control DHA DHA+ARA Control DHA. DHA+ARA Control DHA DHA+ARA Control DHA DHA+ARA Control DIIA DIIA+ARA Regimen DHA+ARA 20:5n3 20:3n6 20:4n6 20:2n6 18:3n3 Fatty Acid 22:1 18:4 20:02 Study form Termination Study Form Termination

T. (2)				Tabil	Table 10				
স — ৩ ব		Red B) pool	Red Blood Cell Phosphatidylethanolamine Fatty Acids	iylethanolami	ine Fatty A	cids		
e E E E	Fatty Acid	Regimen	ć	Arithmetic Mean	Standard Error	Median	Regimen p-value	Pairwise Comparison	Pairwise p-value
Study form Termination	ion 22:4n6	Control DHA DHA+ARA	55 85	7.309 7.135 7.592	0.208 0.154 0.155	7.656 6.885 7.635	0.007	Control vs DHA Control vs DHA+ARA DHA vs DHA+ARA	0.025 0.461 0.002
Study Form Termination	ion 24:1	Control DHA DHA+ARA	53 23	0.092 0.056 0.062	0.023	0.038	0.294		
Study Form Termination	ion 22:5n6	Control DHA DHA+ARA	\$ 23	1.444	0.064	1.213	0.010	Control vs DHA Control vs DHA+ARA DHA vs DHA+ARA	0.003 0.255 0.050
Study Form Termination	ion 22:4n3	Control DHA DHA+ARA	23.58 23.58	0.000	0.000	0.000	0.137		
Study Form lermination	ion 22:5n3	Control DHA DHA+ARA	53 58 58	2.534 2.237	0.110 0.091 0.069	2.839 2.400 2.269	0.003	Control vs DHA Control vs DHA+ARA DIIA vs DIIA+ARA	0.00¢ 0.002 0.943
Study Form Termination	ion 22:6n3	Control DHA DHA+ARA	53 58 58	4.798 6.762 6.389	0.151	4.815 7.043 6.498	0.000	Control vs DHA Control vs DHA+ARA DHA vs DHA+ARA	0.000

Attorney Docket: 19400/09003 (MJ729)

		Pairwise p-value					0.601 0.524 0.000 0.000 0.001 0.928
		Pairwise Comparison					Control vs Dila Control vs DHA+ARA HM vs DHA HM vs DHA+ARA Control vs HM DHA vs DHA+ARA
	ty Acids	Regimen p-value	0.587	0.598	0.092	0.177	0.000
	lamine Fat	Median	0.024 0.019 0.018	0.169 0.162 0.188 0.210	0.037 0.000 0.044 0.021	16.314 15.692 16.997 17.607	0.349 0.336 0.376 0.562
Table 10	atidylethano	Standard Error	0.019 0.016 0.014 0.011	0.030 0.041 0.025 0.016	0.017 0.017 0.019 0.019	0.595 0.729 0.538 0.395	0.050 0.035 0.022 0.027
	Red Blood Cell Phosphatidylethanolamine Fatty Acids	Arithmetic Mean	0.053 0.054 0.047 0.045	0.243 0.251 0.235 0.236	0.080 0.055 0.078 0.053	17.319 17.101 17.225 18.138	0.440 0.390 0.390 0.596
	ed Blook	· c	37 38 38 56	37 32 38 56	37 38 56	37 32 38 56	37 38 56
	œ	Regimen	Control DHA DHA+ARA HM	Control DHA DHA+ARA HM	Control DHA DHA+ARA HM	Control DHA DHA+ARA HH	Control DHA DHA+ARA HH
		Fatty Acid	12:0	14:0	14:1	16:0	16:1
	T 18 E		PCA	PCA	PCA	S. PCA	s PCA
		Time	48 Weeks: PCA	48 Weeks PCA	Veeks PCA	48 Heeks PCA	78 PCA

Table 10 Red Blood Cell Phosphatidylethanolamine Fatty Acids	Arithmetic Standard Regimen Pairwise Pairwise n Hean Error Median p-value Comparison p-value	37 7.935 0.327 7.174 0.000 Control vs DHA 0.347 32 7.962 0.293 7.552 Control vs DHA+RRA 0.463 38 7.443 0.270 7.173 HN vs DHA 0.020 56 8.754 0.230 8.409 HN vs DHA+RRA 0.000 Control vs HH 0.001 DHA vs DHA+RRA 0.001	37 19.438 0.36B 19.410 0.038 Control vs DHA 0.401 32 19.066 0.421 19.534 Control vs DHA+ARA 0.234 38 19.302 0.332 19.433 HH vs DHA 0.067 56 18.469 0.278 18.141 HH vs DHA+ARA 0.118 Control vs HH 0.005 DHA vs DHA+ARA 0.758	37 9.328 0.261 9.267 0.000 Control vs DNA 0.024 32 8.867 0.210 8.696 Control vs DNA+RRA 0.187 38 9.257 0.216 8.840 HN vs DNA 0.000 56 6.291 0.193 6.027 IM vs DNA+RRA 0.000 Control vs HM 0.000 DNA vs DNA+RRA 0.318	37 0.198 0.020 0.182 0.050 Control vs DHA 0.879 32 0.219 0.031 0.171 Control vs DHA+RRA 0.590 38 0.188 0.021 0.158 HH vs DHA 56 0.129 0.012 0.112 HH vs DHA+RRA 0.061 Control vs HH 0.014 DHA vs DHA+RRA 0.014	37 0.263 0.058 0.146 0.728 32 0.262 0.042 0.145 38 0.312 0.052 0.145
fatty A						
nolamine	Media	7.17 7.55 7.17 8.40	19.41 19.53 19.43 18.14	9.26 8.69 8.84 6.02	0.00 51.00 51.1	7.00
Table 10 sphatidyletha	Standard Error	0.327 0.293 0.270 0.230	0.368 0.421 0.332 0.278	0.261 0.210 0.216 0.193	0.020 0.031 0.021 0.012	0.058
ood Cell Phos	Arithmetic Mean	7.935 7.962 7.443 8.754	19.438 19.066 19.302 18.469	9.328 8.867 9.257 6.291	0.198 0.219 0.188 0.129	0.263
Red Bl	-	37 38 38 56	2883	28 32 32 32 32 32 32 32 32 32 32 32 32 32	33 35 35 35 35 35 35 35 35 35 35 35 35 3	32 33
	Regimen	Control DHA DHA+ARA HM	Control DHA DHA+ARA HM	Control DHA DHA+ARA HM	Control DHA DHA+ARA HN	Control
	Fatty Acid	18:0	18:1	18:2	18:3л6	20:0
FREE STORE	<u>e</u>	48 PCA	48 Weeks PCA	48 PCA	48. Weeks PCA	48 Weeks PCA
		8,7	48	48		= 4 65 = = =

		Pairwise p-value	0.559 0.848 0.008 0.002 0.001	0.339 0.512 0.000 0.000 0.000		0.543 0.532 0.000 0.000 0.000 0.995	0.896 0.935 0.015 0.006 0.007
		Pairwise Comparison	Control vs DHA Control vs DHA+ARA HH vs DHA HH vs DHA+ARA Control vs HM DHA vs DHA+ARA	Control vs DHA+ARA Control vs DHA+ARA HM vs DHA HH vs DHA+ARA Control vs HM DIIA vs DHA+ARA		Control vs DHA Control vs DHA+ARA HN vs DHA HN vs DHA Control vs HM DHA vs DHA+ARA	Control vs DHA Control vs DHA+ARA HN vs DHA HH vs DHA+ARA Control vs HM DHA vs DHA+ARA
	/ Acids	Regimen p-value	0.001	0.000	0.057	0.000	0.012
	amine Fatty	Nedian	0.225 0.262 0.245 0.169	0.648 0.782 0.738 0.492	0.003 0.000 0.000 0.019	0.698 0.684 0.689 0.412	1.999 2.045 2.132 1.637
Table 10	Red Blood Cell Phosphatidylethanolamine Fatty Acids	Standard	0.025 0.017 0.015 0.020	0.031 0.032 0.188 0.024	0.005 0.005 0.006 0.006	0.035 0.026 0.032 0.016	0.099 0.100 0.114 0.053
-	Cell Phosphi	Arithmetic	0.291 0.270 0.265 0.226	0.715 0.772 0.936 0.533	0.017 0.017 0.023 0.027	0.672 0.668 0.715 0.444	2.138 2.165 2.172 1.715
•	D0018 F	¥ ,	32 32 56	37 32 38 56	37 38 38 56	37 32 38 56	37 38 38 56
	æ		Regimen Control DHA DHA+ARA HM	Control DHA DHA+ARA HH	Control DHA DHA+ARA HH	Control DHA DHA+ARA HH	Control DHA DHA+ARA HM
	*	Fatty	Acid 18:3n3	20:1	18:4	20:2n6	. 20:3n6
			PCA	PCA	s PCA	48 Weeks PCA	48 Weeks PCA
-, - -			Time 48 Weeks PCA	48 Weeks PCA	48 Weeks PCA	48 Hee	9H 87

٠		Pairwise p-value				0.612 0.416 0.000 0.013 0.001	
		Pairwise Comparison		·		Control vs DHA Control vs DHA+ARA IIN vs DHA HH vs DHA+ARA Control vs IIN DHA vs DIIA+ARA	
	ty Acids	Regimen p·value	0.950	0.121	0.497	0.001	0.943
	olamine Fat	Hedian	24.774 25.206 25.122 25.189	0.172 0.188 0.133 0.134	0.368 0.377 0.347 0.360	8.761 9.132 8.472 7.618	0.035 0.034 0.036 0.027
Table 10	atidylethan	Standard Error	0.536 0.491 0.429 0.384	0.016 0.022 0.022 0.013	0.026 0.015 0.011 0.016	0.267 0.250 0.188 0.203	0.016 0.009 0.008 0.016
	Red Blood Cell Phosphatidylethanolamine Fatty Acids	Arithmetic Mean	24.508 24.428 24.788 24.625	0.168 0.189 0.154 0.148	0.362 0.369 0.347 0.384	8.580 8.791 8.576 7.727	0.067 0.046 0.066 0.062
	ed Blo	c	37 38 56	37 38 38 56	37 38 38 56	32 38 56	37 38 38 56
	_	Regimen	Control DHA DHA+ARA HM	Control DKA DHA+ARA HM	Control DHA DHA+ARA HM	Control DHA DHA+ARA HM	Control DHA DHA+ARA HM
		fatty Acid	20:4n6	22:1	20:5n3	22:4n6	24:1.
ruenu	*** = ##_	n e vojeka j	P C A	PCA	PCA	PCA	PCA
		Time	48 Heeks	48 Weeks was a second of the s	48 Weeks PCA	48 Heeks PCA	48 Veeks PCA

Pairwise p-value 0.977 0.997 0.000 0.000 0.000 0.884 0.148 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Control vs DHA Control vs DHA+ARA HM vs DHA HM vs DHA+ARA Control vs HM DIA vs DHA+ARA Control vs DHA
Control vs DHA+ARA
HH vs DHA
HN vs DHA+ARA
Control vs HH
DHA vs DHA+ARA Control vs DHA Control vs DHA+ARA HM vs DHA HM vs DHA+ARA Control vs HM DHA vs DHA+ARA Pairwise Comparison Regimen p-value Red Blood Cell Phosphatidylethanolamine Fatty Acids 0.000 1.000 0.000 0.000 1.414 1.359 1.889 3.013 4.079 3.721 7.341 **Hedian** 0.000 0.000 0.000 2.681 2.630 2.443 1.978 Standard Error Table 10 0.000 0.000 0.000 0.066 0.057 0.054 0.056 0.092 0.086 0.066 0.065 0.159 0.177 0.134 0.201 Arithmetic Mean 2.567 2.561 2.436 1.942 0.000 0.000 0.000 0.001 1.401 1.353 1.364 1.883 3.196 4.143 3.801 7.283 38 32 26 28 29 28 33 33 28 33 34 25 Control DHA DHA+ARA HN Control DHA DHA+ARA HM Control DHA DHA+ARA HM Control DHA DHA+ARA HM Regimen 22:5n6 22:4n3 22:5n3 22:6n3 Fatty Acid 48 Weeks PCA 48 Weeks PCA 48 Weeks PCA 48 Weeks PCA

Table 11
Preterm Infant Complications

		Regimen		p-value*
·	Control	DHA	DHA+ARA	
Retinopathy of Prematurity Test Results Absent I II III Present, but not graded	34 (76%) 8 (18%) 2 (4%) 1 (2%)	44 (76%) 11 (19%) 2 (3%) 1 (2%)	41 (79%) 6 (12%) 4 (8%) 1 (2%)	0.91
Ultrasound Examination for Intraventricular Hemorrhage None Stage 1 Stage 2 Stage 3 Stage 4 Questionable	47 (81%) 6 (10%) 3 (5%) 1 (2%) 1 (2%)	52 (84%) 9 (15%) 1 (2%)	49 (80%) 7 (11%) 2 (3%) 1 (2%) 2 (3%)	0.78
Posthemorrhagic Hydrocephalus developed? No Yes	61 (98%) 1 (2%)	65 (98%) 1 (2%)	64 (97%) 2 (3%)	1.00

^{*}The statistical test was based on a dichotomous response: present or absent.

Table 12
Serious Adverse Events Reported During Study Formula Phase

		Regimen		
Event	Control	DHA	DHA+ARA	p-value
Any Event	4 (6%)	3 (5%)	4 (6%)	0.93
Other Respiratory Conditions of Fetus and Newborn	2 (3%)	0	0	0.10
Other Infection Specific to the Perinatal Period	1 (2%)	0	0	0.32
Intraventricular Hemorrhage	0	0	1 (2%)	1.00
Other Specified Perinatal Disorders of Digestive System	0	1 (2%)	0	1.00
Convulsions in Newborn	1 (2%)	0	0	0.32
Feeding Problems in Newborn	0	1 (2%)	1 (2%)	1.00
Hernia	0	0	1 (2%)	1.00
Other	0	1 (2%)	1 (2%)	1.00

Table 13
Serious Adverse Events Reported During the Term Formula Phase

					
		Re	gimen		
Event	Control	DHA	DHA + ARA	HEM	p-value
Any Event	7 (13%)	9 (15%)	9 (15%)	1 (1%)	0.002 C vs D 0.79 C vs D+A 0.79 D vs D+A 1.00 C vs HM 0.006 D vs HM 0.001 D+A vs HM 0.001
Infectious Colitis, Enteritis, and Gastroenteritis	0 .	o	1 (2%)	0	0.67
Croup	0	0	1 (2%)	0	0.67
Bronchopneumonia, Organism Unspecified	2 (4%)	3 (5%)	6 (10%)	0	0.013 C vs D 1.00 C vs D+A 0.27 D vs D+A 0.49 C vs HM 0.15 D vs HM 0.064 D+A vs HM 0.004
Asthma, Unspecified	1 (2%)	0	0	0	0.21
Esophageal Reflux	0	1 (2%)	.2 (3%)	0	0.23
Dyspepsia and Other Stomach Function Disorder	0	0	0	1 (1%)	1.0
Other Respiratory Conditions of Fetus and Newborn	1 (2%)	1 (2%)	3 (5%)	0	0.11
Convulsions	1 (2%)	0	0	0	0.21
Sudden Infant Death Syndrome	1 (2%)	1(2%)	O. *	0 :	0.34
Hernia	2 (4%)	2 (3%)	0	0	0.11
Other	0	-3- (5%) -	-2 (3.%)	.0	0.063

Appendix 1

Listing of Weights Included in the Statistical Analyses

Gender Male	Gender Regimen Hale Control	Subject Variabl 9698-0301 Weight Age (we	Variable Weight (g) Age (weeks pca)	Hgt1 1120 30.3	Ng12 1240 31.3	Ngc3 1360 32.1	49t4 1590 33.1	Ngt5 1870 34.1	Vgt6	Ngt7	Wgt8	Ngt9	Growth Rate g/day 27.7	Ngt_40	Mgr_48	Wgt_57
Male	Contro	7020-8696	Height (g) Age (weeks pca)	1450 32.6	1630 33.4	1940 34.7	2180 35.4						36.1	3731 40.3	5752 48.3	6816 56.6
Hale	Control	6699-0302	Weight (g) Age (weeks pca)	958.0 30.7	1108	1251	1378 33.7	1659 34.7.					23.9	3064	4993	6553 57.9
Hale	Control	9020-6696	Weight (g) Age (weeks pca)	1185 31.0	1261 32.0	1437	1647 34.0	1933 35.0					56.9	3575	4936	6014 57.1
Male	Control	9699-0308		1600	1840 35.4	2752 38.3							43.3	3688	5504	6922
Hale	Control	9700-0301	Weight (g) Age (weeks pca)	1810	1855 32.6	2075	2330	2595 35.4	3120	,			36.2	3745 40.1	5080 47.6	6610 56.7
Male	Control	9701-0303	Veight (g) Age (weeks pca)		1298	1494 34.4	1785 35.4	2012					31.5	3070	3895	4965
Hale	Control	9701-0304	Weight (g) Age (weeks pca)	1412	1566 32.9	1851	2117	2318					34.1	3070 39.9	5445	7135 56.9
Male	Control	7050-0305		1480	1775 32.1	2045 33.0	2240 34.0	2340 34.6	2570 35.6				33.8	3590	9.87 48.6	6110 58.4
Hale	Control	1 9703-0302	Weight (g) Age (weeks pca)		2040 34.6	2375	2685 36.4	2955 37.4					41.7	3620 39.7	5850 48.6	7470 57.3
Male	Control	, 9703-0304		·	1705 33.0	1920	2190 34.9	35.7		·			34.2	3170	5240 47.7	6970 57.1
наве	Control	9703-0308	Weight (g) Age (weeks pca)	1140	1230 32.6	1445	1665	1945 35.7	•				28.9	2520 39.7	4010 48.4	5030 56.9
Male	Control	1 9704-0303	Weight (g) Age (weeks pca)	975.0 32.3	1205	1270 34.4	1450 35.4	1665 36.3	1760 37.3	2045			54.4	2150 · 39.3	3700 48.3	4950 57.4

Four subjects had more the 9 weights used in growth rate calculation. A complete listing appears on the last page.

four subjects had more the 9 weights used in growth rate calculation. A complete listing appears on the last page.

	Analyses
	n the Statistical Analyses
	the
×	<u></u>
Appendix	isting of Weights Included in the
	Weights
	ō
	isting

	Wgt_57		56.4 56.4	7490	6170	. 6.95 56.9	6090 56.3	5185 56.6	6530 57.1	Ş	57.0	6775 56.7		57.3
	Ngt_48		4936 47.4	5816 47.7	48.7	4550 48.6	5155 48.0	3795	4235	4465	54/0 48.1	5700 48.0	•	3300
	Ngt_40		2540 39.6	3291 39.7	2800	3050 41.0	3835	2930 40.1	39.7	39.9	3680 40.1	3845 39.9		2160
Growth Rate	g/day	23.7	30.9	25.3	37.1	22.2	6.94	32.8	32.7	30.7	37.4	30.8	26.1	21.0
	Hgt9								•				1433	
	Wgt8								•				1402 32.6	
	Wgt7										·		1369	
	Ngté						•						1330	1985 38.1
	Wgt5		2240 37.4			2465 37.3		2460 35.7	2310			2040	1294	1835 37.1
	Mgt4	1860 34.1	1786 36.0	1810 34.6	2435	2185 . 36.4	2495 35.4	2450 35.4	2195	1910 34.9	2520 35.7	1910 33.7	1291	1670 36.1
	Vgt3	1640 33.0	1588 35.0	1570 33.3	2130 37.7	2135 35.6	2005 34.0	2215 34.4	1850	1644	2205 34.7	1660 32.7	1245	1456 35.1
	Wgt2	1475 32.0	1389 34.0	1280 32.3	1865 36.6	1984 34.7	1734	1820 32.9	1600 34.1	1442	1960	1440	1221	1345
٠	Ngt1	1315	1280 33.0	1270	1645	1875 33.7	1655 32.9	1544	1415	1046 30.9	1730 32.7	1090	1245	1292
	Variable	Weight (g) Age (weeks pca)		_	Weight (9) Age (weeks pca)	Weight (g) Age (weeks pca)	Height (g) Age (weeks pca)	Weight (9)	Weight (g) Age (weeks pca)	Veight (g) Age (weeks pca)	Weight (g) Age (weeks pca)	Veight (9) Age (weeks pca)		Weight (g) Age (weeks pca)
	Subject	9704-0305	9705-0302	9705-0304	9706-0302	9706-0303	9706-0308	9707-0302	9707-0303	9707-0309	9708-0303	9709-0302	9712-0301*	9712-0302
	E		Control	Control	Control	Control	Control	Control	Control	Control	Control	Control	Control	Control
•		Gender 1	Hale	Hale	Hale	Hale	Hale	Hale	Hale	Male	. Male	Male	Hate	Hale F

Appendix 1

					441414	71/201	do in the	session to the Statistical Analyses	tical An	alvses						
				Listing	or Weign	נצ ושכות	מבת ונו	בי היפור								
												_	Growth Rate			
	Cectoro	Subject	Variable	Vgt1	Vgt2	Wgt3	Ngt4	Wgt5	N ₉ t6	Ngt7	Wgt8	Wgt9,	g/day	N9t _40	Ngt_48	Vg 157
Mate		9743-0301	Veight (g) Age (weeks pca)	1520	1570 35.0	1670 36.0	1720						10.0	2260	4535 50.0	
Male	Cantrol	9746-0301	Veight (9) Age (weeks pca)	2065	2465 38.9	2760 39.7	3085	3085					48.9	3085	4795	6695 57.6
Hale	DIIA	9698-0302	Veight (9) Age (weeks pca)	1640	1860 36.1	3170 39.9							47.5	3170 39.9	. 5206 47.9	7036 57.1
Hale	PHA	9698-0306	Veight (g) Age (weeks pca)	1620	1830 36.3	2090	2575						28.3	2575 40.0	4334	6022 57.0
Hale	DIIA	9699-0301	Veight (g) Age (weeks pca)	1018 31.3	1207	1360 33.3	1617 34.3						27.9	3121 39.9	5192 48.0	6752 57.9
Male	DIIA	2020-6696	Veight (g) Age (weeks pca)	1258	1435	1631	1882 35.4	2724 36:4					48.3	2724 40.1	4341	5674
Male	VHQ	699-0307	Veight (g) Age (weeks pca)	11182	1358	1484	1666 37.7						22.5	1986 40.0	3206 48.0	4511 57.0
Male	VIIIO	9700-0303	Veight (g) Age (weeks pca)	1830	1980	2450 35.9	3045						. 45.4	3585 39.6	5420 47.4	7035 56.7
Male	DIIA	9701-0301	Veight (g) Age (weeks pca)	1098 29.6	1234 30.6	1365 31.6	1689 33.4	1902	2019 35.6	2104 36.4	2276 37.4	2288 38.6	20.4	2805	3405	6660 57.0
Male	DIA	9701-0305	Weight (g) Age (weeks pca)	1621	1829	1880 33.7	2253	2582 35.7					34.7	39.7		
Male	VIIO	9703-0303	Weight (g) Age (weeks pca)	1775	2030 34.1	2285 35.1	2595 36.0	2780 37.1	-				38.2	3080 39.9	3940	5260 56.9
Hale	DIIA	9020-8026	Veight (g) Age (weeks pca)	1725	1870 34.0	2180 35.0							41.7			
Male	DIIA	9703-0307	Veight (9) Age (weeks pca)	1525	1725	2020 34.9	2390 36.0						37.6	3120	4410	. 2600 56.9

* Four subjects had more the 9 weights used in growth rate calculation. A complete listing appears on the last page.

Appendix 1

		with the second	-	isting o	f Veights	Listing of Weights Included in the Statistical Analyses	ed in the	e Statis	tical An	alyses						
			•								٠		Growth			
		- -											Rate	9	0, 4-11	63
•			Variable	Ngt 1	Ugt2	Wgt3	Ngt4	Vgt5	Vgt6	Ngt7	Mgr8	Wgt9	g/day	Ngt_40	46. 48	/c_16W
Gender	Gender Regimen	9704-0304	6	1380	1570	1730	1960 35.0	2140 35.9					29.3	2880	3900	4300 57.3
e E			Age (Weeks pos)	1220	1370	1550	1760	2020	2170		•		55.6		3750	4800
Hale	DIIA	9704-0306	veight (g) Age (weeks pca)	30.7	31.7	32.7	33.7	34.7	35.9				8 05	2370	4170	5787
Hate	DilA	9705-0303	Weight (9) Age (weeks pca)	1380 33.0	1446 34.0	1616	1843	2330 37.4			-			39.6	47.4	56.4
Hale	DIIA	9705-0305	Weight (9) Age (weeks pca)	1490	1770 32.1	1980	2240 34.0							39.6	3763	
Male	DHA	9706-0304	- 10	1490	1655 33.7	1915 34.7	2260 36.0						20.00 20.00	40.0	48.1	57.3
u a	DIIA	9706-0306	Weight (g)	1604	1908	2160							46.8	41.4	47.6	56.9
		. 10001		1305	1429								17.7			٠
Hale	OIIA		Age (weeks pca)	31.0	35.0	Ö	20,00	25.70					36.9	3280	5115	6755
Male	DHA	9207-0304	Weight (g) Age (weeks pca)	1555 32.0	1740	1990 34.0	35.4	36.0						39.9	48.0	57.6
Hale	DHA	9707-0306	Weight (9) Age (weeks	1728 36.1	2040	2260 38.1	3050 40.6	3050			,		45.6	70.6	48.6	57.6
Male	V V	9707-0307*	Weight (9) Age (weeks	1649 32.4	1675 32.6	1699 32.7	1732	1778 33.0	33.1	1658	33.4	33.6	0.46	7001	0677	,
Male	DIIA	9707-1308		1780 34.4	2045	39.3	39.3						7. % X %	39.3	47.3	57.7
Male	OIIA	9707-2308		1651	1923 35.7	2850 39.3	2850 39.3	•		•			39.2	39.3	(7.3	57.7
Male	ОНА	9708-0302		1485 33.3	1740	37.0								45.9		57.3

* Four subjects had more the 9 weights used in growth rate calculation. A complete listing appears on the last page.

Appendix 1

				Listing	of Weigh	ts Inclu	ded in t	Listing of Weights Included in the Statistical Analyses	tical A	nalyses						
	•		-										Growth			
	ned i ne d	Subject	Variable	Wgt1	Wg t 2	Wgt3	Ngté	Vgt5	Mgt6	Wgt7	Wgt8	Vgt9	g/day	05 ⁻ 16H	Vgt_48	Wgt_57
Lender Male	DHA	9709-0301	Weight (g) Age (weeks pca)	1490	1740 33.4	2000 34.4	2400 35.4	2800 36.7			·		4.4	3150 39.4	\$080 47.4	6750 56.4
Hale	DIIA	9709-0304	Weight (g) Age (weeks pca)	1470	1520								1.1			
Hale	PIIO.	9712-0304	Veight (g) Age (weeks pca)	1545	1800 34.0	1985	2160 36.0	2550 37.6					30.5	3160	5200 48.1	7300 57.1
Male	Alio	9712-0306	Weight (g) Age (weeks pca)	1240	1435	1695 33.5	1945 34.5						33.9	3040 39.6	4680	5860 57.6
Male	DIIA	9743-0303	Weight (g) Age (weeks pca)	1700	1810 33.9	2100	2300					•	31.1	3100	\$500 48.6	
Hale	DIIA	9743-0304	Veight (g) Age (weeks pca)	1530	1880 34.0	2160 35.0	2375 36.0	2440 36.4					32.2	3628 38.1	5840 50.6	٠
Male	DHA+ARA	9698-0305	Veight (g) Age (weeks pca)	1120	1340 32.6	1550 33.6							20.9	2440 37.4	5525 47.6	9,99 26.6
Male	DIIA+ARA	9050-8696	Weight (g) Age (weeks pca)	1410	1690 32.4	1870 33.3	2120						32.0	3553	9.77	7937 57.3
Hale	DIIA+ARA	9699-0304	Weight (g) Age (weeks pca)	1499	1689	1950 38.1	2355						29.8	2355	3404	4993
Male	DIIA+AR	5050-6696	Weight (g) Age (weeks pca)	1056 32.0	1134	1290	1490						17.2	2610	4256 48.7	5050 57.6
Hale	DIIA+ARA	DIIA+ARA 9700-0302	Veight (g) Age (weeks pca)	1635 33.9	1880 34.7	2235 35.9	2570 36.9	2735 37.9					40.7	3255 39.7	5540. 47.7	7380 56.7
Male	DIIA+ARA	9701-0302	Weight (9) Age (weeks pca)	1442 33.6	1686 34.6	2045 35.6	2835 37.7					,	48.9	3240 39.7	5055 46.7	6600 56.7
Male	OHA+ARA	4 9701-0306		.1587	2037	2245 34.4	2460 35.3	2756 36.3	3072 37.3	3228 37.7			41.4	3960 42.3	5200 48.4	

* four subjects had more the 9 weights used in growth rate calculation. A complete listing appears on the last page.

Appendix 1

Listing of Weights included in the Statistical Analyses

7475 57.4 6520 56.4 5630 7050 56.7 8050 57.4 5873 58.0 6809 56.9 6596 56.7 6225 58.1 6925 57.6 2460 4400 5447 4820 5955 3445 3631 3500 3170 3220 3007 2695 4350 2570 2979 3460 3585 40.4 Growth Rate g/day 36.0 22.2 27.0 32.7 36.4 31.4 40.0 40.3 42.5 40.7 35.1 45.3 34.1 Vgt9 Vg t 8 Hgt7 Wgt6 2590 1840 36.9 1680 36.0 2300 Hgt5 2390 2050 34.4 1870 35.7 1930 2932 2660 1620 34.7 1810 1660 2160 1830 2660 1745 31.3 1490 32.4 1910 35.3 1650 1455 1490 1635 1330 1355 1620 1080 1480 1440 1110 1670 32.0 1650 32.9 1255 29.4 1300 32.7 Wgt1 Veight (g) Age (weeks pca) pca) Weight (g) Age (weeks pca) Weight (g) Age (weeks pca) Veight (g) Age (weeks pca) Weight (g) Age (weeks pca) pca) Weight (g) Age (weeks pca) Veight (g) Age (weeks pca) Weight (g) Age (weeks pca) pca) pca) Veight (g) Age (weeks pca) Veight (g) Age (weeks p Veight (g) Age (weeks F Weight (g) Age (weeks p Variable 9706-0309 9705-0306 9705-0307 9706-0305 9706-0307 9704-0302 9703 0305 9704-0301 9705-0301 9701-0307 9702-0303 9703-0301 9702-0301 Subject DHATARA DIIA+ARA DIIA+ARA DHA+ARA Regimen DHA+ARA DIIA+ARA DHA+ARA Gender Ha (e Hale Hale Hale Hale Hale. Hale Hale Male Hale Hale Hale

Four subjects had more the 9 weights used in growth rate calculation. A complete listing appears on the last page.

Appendix 1

Listing of Weights Included in the Statistical Analyses

•			•									•	Growth			
Gender	Regimen	Subject Variable	Variable	Vgt1	Wgt 2	Vgt3	736H	WgtS	Ngt6	Ngt7	Wgt8	Wgt9	g/day	Ngt_40	Wgt_48	Vgt_57
Hale	DHA+ARA	9707-0301	Weight (g) Age (weeks pca)	1553	1980	2280 35.3	2720 36.6			-			41.5	3395	6.72 47.9	6285 56.9
Hale	DHA+ARA	9707-0305	Veight (g) Age (weeks pca)	1755 33.9	1990	35.7	2505 36.7	2770 37.7					37.4			
. На е	DHA+ARA	9707-0310	Veight (g) Age (weeks pca)	1620 32.7	1828 33.7	2140	3195	• .					8.77	3585 39.7	5170 47.9	6725 56.3
Hale.	DHA+ARA	9708-0301	Weight (g) Age (weeks pca)	1640	1880	2200 34.7	2420 35.7						38.0	3730	4835	6185 57.0
Hale	DHA+ARA	9708-0304	Weight (g) Age (weeks pca)	1680	2180 35.9			z.					92.6			
Male	DIIA+ARA	9709-0303	Weight (g) Age (weeks pca)	1470 32.6	1810								48.6			
Male	DHA+ARA	9709-0305	Weight (g) Age (weeks pca)	1410 34.4	1655	1900 36.4	2160						35.6	2630 39.7	4570	5520 57.1
Male	DHA+ARA	9712-0303		1180	1210 32.3	1450	1590						\$0.9	2520	3500	5010 56.4
Hale	DIIA+ARA	9712-0305	Veight (g) Age (weeks pca)	1325	1505 32.5	1785 33.5	2010 34.5	2300					34.1	3030	4350	5510 57.6
Hale	DHA+ARA	9723-0301	Weight (g) Age (weeks pca)	1630 33.9	1728 34.9	1961 35.9	2214 36.9						28.4	3104		5986 58.9
Male	 £	9698-0601	•	-					. ,					3518 40.0	5497	6582 56.9
Наве	¥	9698-0602		. •										3177	\$220 48.1	6355 57.0
Male	= === E	\$090-8696			٠.									3858 40.0	5447 48.0	6454 57.0
	-															

* Four subjects had more the 9 weights used in growth rate calculation. A complete listing appears on the last page.

Appendix 1	

Gender	Regimen	Subject	Variable	Ngt 1	Ngt2	Hgt3	Ngt4	HgtS	Wgt6	Wgt7	Wgt8	Wgt9	Growth Rate 9/day	U7 Joh	9,	i -
				•	,	,	•	•	•	•	,	; ;	105/6	05-154	85 J6M	Wgt_57
Male	 E	9698-0604				*								4355	5092 48.0	6383 57.0
Male	 	5090-8696												3433	4979	6426 57.1
Male	 E	1050-6696												3915 40.0	6639	27.72 57.4
Maie	¥	2050-6696												3802 40.0	5787	7178 57.4
Male	¥	9701-0601												3317	\$555 47.9	7070 56.4
Male		9701-0602												3487 40.0	5833 47.3	8070 58.3
Hale	<u>-</u> .	9701-0603												3232 40.0	7°25 0767	5855 56.4
Male	= E	9701-0604												3600	5215 47.9	6285 56.9
Male	.	9701-0605												3402 40.0	5275 47.6	7210 57.6
Male	Ξ Ξ	9701-0606					•							3090 40.0	4485	5445 56.7
Hale	¥	9702-0601		,										3480 40.0	5780 48.6	6530 56.6
Hale	¥	9702-0602												3165 40.0	\$060 48.3	6660 57.1
Male	¥-	9703-0502				`								2670 40.0	5420 48.3	7220 57.1

		l Analyses
		listing of Weights Included in the Statistical An
_		Ξ
Ξ.		. <u>=</u>
Appendix		Included
		Weights
		ō
		listing

				Listing	of Weigh	Listing of Weights Included in the statistical minitary	ded in	וופ אופרו	מווכפו ע	1 · pu						
												<u>ن</u> هذ	Growth Rate			
			4	Vot1	Vgt2	Vgt3	Hgr4	Vgt5	Wgt6	Ngt7	Ngr8	/6 · 616M		4 05 J6H	49t_48	Wgt_57
Gender	Regimen		Variable		1								4.7	4100	07.29	8330
Hale	£	9703-0503											,	.	7.	* . oc
4 6	¥	9203-6076		. *									07 7£	3435 40.0	6000 48.1	7930 57.1
	= = =	9704-0502		•									32	3285 40.0	5220 48.1	6560 56.6
		9704 - 0503											07 7£	3400	5200 48.7	6725
Hale	<u> </u>	9705-0601		٠.				·					35	3200	5617 48.3	6752 57.3
Mare	E 3	9705-0602			-								36	860 0.0	6227 48.0	
Hale		9706-0601											₩.¥	3152 40.0	5105 49.0	6545 57.0
Male		9706-0602											Ж¥	3557 40.0	5175 47.4	7315 57.7
Hale S	==-==	9706-0603											m T	3192 40.0	5070 47.9	6970 56.7
Hale		6706-0604											W 2	0.0	4225	5525 57.1
Hale		5090-9020											M 4	3870	6220 48.1	7660
Male .	==t== ,= E	9090-9020		٠									44	4315 .	5975 48.3	6720 56.6
Male	 E												₩ 3	3263	4730	\$825 \$7.0
Male	풒	9707-0601														

* four subjects had more the 9 weights used in growth rate calculation. A complete listing appears on the last page.

		Analyses
		in the Statistical
		in the
Consider .		Included
		icting of Upinhes Included
		icting

	· .					-							Growth				
Gender	Regimen	Subject	Variable	Wgt1	Ngt2	Wgt3	Ngt4	VgtS	Wgt6	Ngt7	Wgt 8	Ngt9	g/day	Ngt_40	85-16M	Wgt_57	
Hale	Ξ	9707-0602												3206 40.0	4515 48.1	6220 57.7	
Male	=	19707-0603					٠.							4256	6930	8810 57.0	
Hale	¥	9707-0604				٠								3419	8460 48.0	6130 56.7	
Hale .	¥	5090-2026												3433 40.0			
Hale	 E.	9707-0606												3603	5825 48.4		
Hale	¥	7090-2026			•									3569	5410 47.9	6870 56.9	
Male	¥	- 8090-2026												3348	5135	6370 57.0	
Male	¥	9707-0609						•						3348			
Male	· E	9708-0601											•	3064	5220	56595	
Male	<u> </u>	9708-0602											٠	40.0			
Male	¥ = = = =	9708-0603						•						3319 40.0	5135 48.4	6327 57.1	
Male	¥ .	9708-0604							•					3291 40.0			
Male	= = = .	9708-0605												3796 40.0			

Appendix 1

Listing of Weights Included in the Statistical Analyses

01	Subject	Variabl e	Wgt1	Wgt2	Ngt3	Ngt4	WgtS	Ngt6	Ngt7	NgtB	Ngt9	Growth Rate g/day	Ugt_40	48 Agr_48	Vgr_57
•						•							4050	4645	5405 57.1
9708-0607	,						٠						3333	4043	5180 56.7
9709-0505													3400		
9698-0003* Weight (g) Age (weeks p	Weight (g) Age (weeks p	pca)	1020	1050 31.3	1070	1080 31.6	1080	1060 31.9	1080 32.0	1070 32.1		5.6			
9699-0001 Weight (g) Age (weeks pca)	Weight (g) Age (weeks p	ca)	1464	1672 33.7	1862 34.7	2000 35.7	2145					24.1	2610 39.7	4369	5220 56.9
9699-0003 Weight (g) Age (weeks pca)	Weight (g) Age (weeks po	(e:	1473	1629 35.0	1860 36.0	2497 38.0						37.3	2780	4596 48.0	5816 57.0
9701-0003 Weight (9) Age (weeks pca)	Weight (g) Age (weeks po	e:	1480 34.6	1633 35.6	1903 36.6	1975 37.3	2292 38.6		•			29.1	2675 40.6	4165 48.6	5200 55.6
9701-0005 Weight (g) Age (weeks p	Veight (g) Age (weeks p	pca)	1174	1366	1555 32.7	1745	1976 34.7		•			28.3	3175 39.7	\$140 48.4	6280 56.4
9701-0008 Weight (g) Age (weeks po	Ueight (g) Age (weeks po	pca)	1391	1569	1898 36.4	2198	2406 37.9			•		41.1	2980	4.72	5815
9701-0011 Weight (g) Age (Heeks F	Veight (g) Age (Weeks F	pca)	1050	1254	1492	1756 33.4	34.4					36.6	2870 39.7	4420 48.6	5505 57.4
9702-0002 Weight (g) Age (weeks p	Weight (g) Age (weeks p	pca)	1222 31.7	1371 32.7	1570	1750 35.1	1995 36.0	2390				29.4	3380	9°25 73°9	
9702-0004 Weight (9) Age (weeks pca)	Weight (g) Age (weeks	pca)		1555	1840 33.1	2530 36.0						31.6	3600	5160 47.7	6900 56.7
9702-0010 Weight (g) Age (weeks pca)	Veight (g) Age (weeks p	ca)	1775 34.0	2065	2410 36.0	2645 37.0						42.2	3060 39.9	4820	6690 57.6

* four subjects had more the 9 weights used in growth rate calculation. A complete listing appears on the last page.

* Four subjects had more the 9 weights used in growth rate calculation. A complete listing appears on the last page.

Appendix 1 Listing of Weights Included in the Statistical Analyses

													Growth			
Gender	Regimen	Subject	Variable	Wgt1	Wgt 2	Vgt3	Vgt4	WgtS	Vgt6	Ngt7	Vgt8	Vgt9	g/day	Mgr_40	Ngt_48	Vgt_57
Female	Control	9703-0002	Weight (g) Age (weeks pca)	1170 29.1	1250 30.4	1390	1570 32.4	1825 33.4	2130 34.3				26.4	3210 39.6	4750	
female	Control	9703-0005	Weight (g) Age (weeks pca)	1420	1590	1765 33.3	1900 33.9	2220 35.3					29.5	2610 37.3	4330	5640 55.0
Female	Control	9703-0008	Weight (g) Age (weeks pca)	1495	1715 34.0	2095 35.0	2445 36.0	2685 36.6					48.3	3360	47.7	6410 56.1
Female	Control	9000-5026	Weight (g) Age (weeks pca)	1120	1290 32.3	1490	1660 34.0						28.3	2722 39.7	4085 46.6	5646
Female	control	9706-0003	Veight (g) Age (weeks pca)	1515	1673 36.3	1965 37.1	2330 38.3						37.9			
f emale	Control	9706-0005	Weight (g) Age (weeks pca)	1485	1610	1805	2150 36.0						31.7	5740 40.0	4165	5305 57.3
f emaile	Control	6000-9026	Weight (g) Age (weeks pca)	1525 32.3	1620	1960							31.6	3640 40.3	5655 47.6	7225 53.4
Female	Control	9706-0010	Weight (g) Age (weeks pca)	1905	2185 35.0								56.0	3655 40.0	5390	6535 56.7
Female	Control	9706-0013	Veight (g) Age (weeks pca)	1185 31.6	1270 32.4	1585 33.6	1810 34.6						31.1	2680 40.1	3800	
Female	Control	9706-0016	Weight (g) Age (weeks pca)	1510	1765	1935							32.6	3320	4535	5297
Female	Control	9707-0003	Height (g) Age (weeks pca)	1465 32.0	1505 32.6	1655 33.6	2010	2325	2765 38.3				30.2	3110 40.1	4125 .	4995 57.1
Female	Control	9000-2026	Weight (g) Age (weeks pca)	1866 34.6	3430	3430							41.2	3430 40.0	5385	7250 57.3
Female	Control	9707-1006	Veight (g) Age (weeks pca)	1815	3330	3330							39.9	3330	6.87	6920 57.3

Listing of Weights Included in the Statistical Analyses Appendix 1

			-										Growth Rate	*		
	Regimen	Subject	Variable	Wgt1	V9t2	Vgt3	436H	Hgt5	Wgt6	Wgt7	WgtB	Vgt9	g/day	Ngt_40	Ngt_48	Wgt_S7
female	Control	9708-0001	Veight (g) Age (weeks pca)	1410	1600 34.4	1850 35.4	2050 36.9						27.2	2910 40.6	4734	
Female	Control	9708-0003	Weight (g) Age (weeks pca)	940.0 30.0	970.0 31.0								4.3			
Female	Control	9708-0008	Velght (9) Age (Weeks pca)	1380	1605 33.7	1860 34.9	2180 36.3		•				33.1	2582	4110	5361 57.1
female	Female Control	9709-0002	Weight (g) Age (weeks pca)	1980 32.7	2225 33.7	2400 34.7							30.0			
Feinale	Control	9709-0005	Weight (g) Age (weeks pca)	1175	1425	1665 34.6	1945 35.6	2200 36.3					32.3	2975 39.6	4700	5900 56.7
female	Control	9712-0005	Weight (g) Age (weeks pca)	972.0	1145	1290	1490	1695 33.1					25.6	2930 40.3	4450 47.6	5880 57.1
Female	Control	9712-0006	Weight (9) Age (weeks pca)	1203	1358	1585	1790						28.4	3030 39.7	4560 48.0	6230 57.0
Female	Control	9743-0003	Weight (g) Age (weeks pca)		1520	1740	1690						24.0		7.87 78.4	5160 57.4
Fеmale	Control	1000-976	Veight (g) Age (weeks pca)	1420 32.6	1740	34.6	2320 35.6	2625 36.6					42.7	3170 39.7	4145	5192
Female	DIA	9000-8696	Weight (9) Age (weeks pca)		1650 31.1	1890 32.1	2140 33.1						34.7	3787 40.0	48.0	6291 57.0
Female		9000-8696	Weight (g) Age (weeks pca)		1240	1420 32.7	1720 33.7		·				28.7			
female	<u>¥</u> -	6000-8696			1310 31.4	1520	1630 33.1	2020 34.9	-				25.9	2891 40.0	3979 48.0	5121 57.0
Female		9698-0307		1790 34.4	2110 35.7	2450 37.6							29.7	3135	5185 47.4	56.4

* Four subjects had more the 9 weights used in growth rate calculation. A complete listing appears on the last page.

Four subjects had more the 9 weights used in growth rate calculation. A complete listing appears on the last page.

emale DHA Subject Variable Subject Variable Subject Variable OHA 9699-0002 Weight (g) pron-0001 Weight (g) pron-0001 Weight (g) pron-0001 Weight (g) pron-0004 Weight (g) pron-0006 Weight (g) pron-0006 Weight (g) pron-0006 Weight (g) pron-0006 Weight (g) pron-0008 Weight (g) pron-00
Regimen Subject DIIA 9699-0002 DIIA 9700-0001 DIIA 9701-0012 DIIA 9701-0014 DIIA 9702-0003 DIIA 9702-0003 DIIA 9702-0006 DIIA 9702-0006 DIIA 9702-0007 DIIA 9703-0008 e DIIA 9703-0003
Regimen Subject Variable Regimen Subject Variable DIIA 9699-0002 Height (9) OIIA 9700-0001 Height (9) OIIA 9701-0001 Height (9) DHA 9701-0012 Height (9) DHA 9701-0014 Height (9) DHA 9701-0014 Height (9) DHA 9702-0001 Height (9) DHA 9702-0000 Height (9) E DIIA 9702-0000 Height (9) B DIIA 9702-0000 Height (9) E DIIA 9702-0000 Height (9) E DIIA 9702-0000 Height (9) E DIIA 9703-0000 Height (9) Age (weeks pca)
Regimen Subject Variable Regimen Subject Variable DIIA 9699-0002 Height (9) OIIA 9700-0001 Height (9) OIIA 9701-0001 Height (9) DHA 9701-0012 Height (9) DHA 9701-0014 Height (9) DHA 9701-0014 Height (9) DHA 9702-0001 Height (9) DHA 9702-0000 Height (9) E DIIA 9702-0000 Height (9) B DIIA 9702-0000 Height (9) E DIIA 9702-0000 Height (9) E DIIA 9702-0000 Height (9) E DIIA 9703-0000 Height (9) Age (weeks pca)
Regimen Subject Var DIIA 9699-0002 Wei DIIA 9700-0001 Wei DIIA 9701-0001 We Ago DIIA 9701-0012 Wei DIIA 9701-0014 Wei DIIA 9702-0001 Wei DIIA 9702-0000 Wei DIIA 9702-0000 Wei DIIA 9702-0000 Wei DIIA 9702-0000 Wei DIIA 9703-0003
Regimen Subject DHA 9700-0001 DHA 9701-0001 DHA 9701-0001 DHA 9701-0012 DHA 9702-0001 DHA 9702-0001 E DHA 9702-0007 PHA 9702-0007 PHA 9702-0007 PHA 9702-0007
DHA DHA DHA DHA DHA DHA DHA DHA DHA

8630 57.0

6100 57.0

5986 57.1

5320 57.3

4145

5600 49.4 4080 2705 3295 3045 3440 3010 3500 2120 3530 2580 3092 42.2 39.5 33.8 Growth Rate g/day 26.2 30.5 23.0 32.5 38.1 30.5 30.0 31.9 31.7 38.1 Wgt9 Ngt8 Listing of Weights Included in the Statistical Analyses Vgt7 2520 35.0 Wgt6 2250 34.0 2485 1804 35.3 2098 36.7 1970 33.0 2155 2280 34.6 1560 1930 36.0 1485 36.4 1880 35.7 1955 3440 2850 2130 1395 1630 34.7 1490 1345 1665 33.6 1725 3440 1830 1310 1405 1250 1635 2005 1460 32.6 1485 1080 1610 31.6 33.4 1220 32.7 1270 33.0 1440 1050 Ngt 1 pca) Veight (g) Age (weeks pca) Veight (g) Age (weeks pca) Weight (g) Age (weeks pca) Weight (g) Age (weeks pca) Veight (g) Age (weeks pca) Weight (g) Age (weeks pca) Weight (g) Age (weeks pca) Veight (g) Age (weeks pca) Weight (g) Age (weeks pca) Veight (g) Age (weeks pca) Weight (g) Age (weeks pca) Weight (g) Age (weeks pca) Variable 9709-0003 9000-8026 1000-6026 9707-0308 9708-0004 9706-0014 9707-0004 9706-0012 9706-0008 9705-0001 9000-9026 9704-0004 9704-0005 Subject Regimen ₽¥ OHA DIA DHA DIIA ¥Ι DIA DHA ΔĮ DHA DHA DIA PIA DIA

7675 58,0

4790

\$765 \$7.0

4595

6360 57.7

four subjects had more the 9 weights used in growth rate calculation. A complete listing appears on the last page.

6530 57.0

4620

5420 57.1

Female

f ema ke

Female

5250 57.1

2940 40.1

Regimen DHA

Female

5340

2425

4140

5160 57.4

4540

6582 56.7

534B 47.7

3530

3241

Appendix 1

1

Growth Rate g/day 28.9 31.9 37.8 33.5 7.62 31.8 35.1 38.3 26.4 27.3 37.1 Vgt9 Vgt8 Listing of Weights Included in the Statistical Analyses Vgt7 2480 35.6 Wgt6 2220 2330 2420 37.4 1788 35.0 1930 36.1 1685 34.0 2380 2000 2035 2260 35.7 1688 33.9 1887 1283 33.0 2130 1685 32.3 2000 1845 1542 1525 1609 1859 1122 32.0 1690 1570 1170 985.0 31.0 1330 1315 1580 32.6 1380 32.1 1550 31.6 30.0 1060 1082 32.7 1000 Wgt 1 Veight (g) Age (weeks pca) Weight (g) Age (weeks pca) Veight (g) Age (weeks pca) pca) Weight (g) Age (weeks pca) Weight (g) Age (weeks pca) Veight (g) Age (weeks pca) Weight (g) Age (weeks pca) Veight (g) Age (weeks F Variable 9700-0002 9701-0006 9701-0002 9743-0002 5000-6696 2000-8696 7000-6696 9698-0001 9712-0002 9712-0007 9743-0001 9712-0001 Subject

6420 57.1

4930

3340

6525 56.4

5115

2930

6270 57.3

3600

2680

29.8

2227 37.7

1982 36.7

1590

1427

Weight (g) Age (weeks pca)

9701-0007

DIJA+ARA

female

DIIA+ARA

. Female

Female

8341 57.0

6752 48.0

4029

6979 57.3

5107 48.3

3177

four subjects had more the 9 weights used in growth rate calculation. A complete listing appears on the last page.

Female

Female

Female

Dĭ¥

female

female.

DIIA+ARA

Fenale

female

DHATARA

Female

Appendix 1

Listing of Weight's Included in the Statistical Analyses

	Wgt_48 Wgt_57	5545 48.4	4545 5550 48.7 57.4	6220 7500 48.4 56.9			4250 5420 48.1 57.3	5400 6650 48.1 56.7				5107 6894 48.4 56.9	4000 5050 48.0 57.0	
	Mgt_40	3500 41.1		4190	3025	2905 39.9	3030	3600	2850 40.0	3110	0.07 40.0	3376 39.9	2600	
Growth	Rate 9/day	34.6	35.6	39.9	29.9	6.02	28.9	49.1	27.4	26.7	30.0	8.65	22.1	
	Vgt9												1380 33.4	
	Wgt8												1350 33.3	
	Vgt7									2070 34.9			1265 33.0	
	. Ngt6	2759							2240 36.6	1780 33.9			1310 32.7	
	Hgt5	2433 36.1		2400 34.1	2710 38.0	2655 37.3	1955 35.3		2030 35.7	1570 32.9			1310 32.4	
	hgré	2234 35.3		2155	2525 37.0	2595 37.0	1680 34.3	2880 37.0	1880 35.0	1370		2920 37.7	1280 32.1	
	Ngt3	1978 34.4		1820 32.1	36.0	2230 36.0	1450 33.1	2560	1620	1200		2500 36.6	1185 31.7	
	Ngt2	1703 33.4	2019	1488	2060 35.0	2000 35.0	1255 32.1	2200	1495	1090 30.0	1840	2260 35.7	1120	
ı	Wgt1	1488 32.3	1841 33.0	1293 30.1	1895	1725	31.3	1865 34.0	1390	960.0			1075 31.1	
	Variable	Weight (g) Age (weeks pca)	Weight (g) Age (weeks pca)	Veight (g) Age (weeks pca)	Veight (g) Age (weeks pca)	Weight (g) Age (weeks pca)	·Veight (g) Age (weeks pca)	Weight (9) Age (weeks pca)	Weight (g) Age (weeks pca)					
-	Subject	9701-0010	9701-0013	9702-0003	9202-0005	6000-2026	9703-0001	9000-5026	9703-0007	9704-0002	9704-0003	9705-0003	\$5000-5026	
	Regimen		DIIA+ARA	DIIA+ARA	DIIA+ARA	DHA+ARA	DHA+ARA	DIIA+ARA	DIIA+ARA	DIIA+ARA	DHA+ARA	DHA+ARA	DIIA+ARA	
٠.	. י מלכימי		Female DHA	.Female` DII	Female DIV	Female DH	female DH	Female DI	Female Di	female DI	Female	female D	Female	

Appendix 1 -

Listing of Weights Included in the Statistical Analyses

	_											•		
	Wgt_57	5550 57.3	4935 58.0		6140	5810 57.6			6315	7875 57.4		6685 56.7	5640 57.5	57.1
	85~16H	48.9	4225		5175	4.65 48.4			4645 47.6	5855		5250 48.4	4130	4920 48.1
	05 ⁻ 16H	2845 40.3	2645	2505	3430	3005			2724 38.1	3121		3295 39.7	2580 40.0	3220 40.3
Growth	g/day	34.8	36.1	34.3	41.0	41.6	33.4	33.2	. 32.5	7.07	36.6	37.0	27.1	7.62
	Ngt9.													
	Vg t8													
	Ngt7													
	Ngté	•	•										٠.	**
	VgtS			•								2475 36.3	2010 36.0	2530
	Hgt4	2275 35.4	•	1930 36.4			2170	2610 37.9	2200 36.0	1980 35.4	1975 34.3	2250 35.6	1850 35.0	2080 35.6
	Wgt3	1684 33.9	2050 38.7	1820		2210 36.4	1895	2385 36.9	1980 35.0	1610 34.4	1680 33.3	1885 34.6	1590 34.0	1890
·	Vgt2	1710 33.0	1705 37.6	1490	2105	1975 35.6	1700	2240 36.0	1700	1345	1440	1560	1410 33.0	1760 34.0
	Vgt 1	1395	1550	1235 33.4	1900	1670 34.6	1465 32.3	34.3	1535 33.0	1125	1200	1350	1283 32.0	1575 33.0
	Variable	Weight (g) Age (weeks pca)	Veight (g) Age (weeks pca)	Weight (g) Age (weeks pca)	Weight (g) Age (weeks pca)	Weight (g) Age (weeks pca)	Veight (9) Age (weeks pca)	Weight (g) Age (weeks pca)	Weight (g) Age (weeks pca)	Weight (9) Age (weeks pca)	Veight (g) Age (weeks pca)			
	Subject	9706-0002	5000-9026	9706-0007	9706-0011	9706-0015	9706-0017	9707-0002	9708-0002	9708-0005	9708-0007	5000-6026	9712-0003	9712-0004
in the same	s	- X	= = - &	×	= \&=_	ARA	DIIA+ARA	ARA	DIIA+ARA	DIIA+ARA	DIIA+ARA	DHA+ARA	DIIA+ARA	DHA+ARA
	Regimen	DHA+ARA.	DIIA+ARA	DIIA+ARA	DHA+ARA	DIIA+ARA	DIIA+	DHA*ARA	DIA	DIIA	OIIA	A HO	<u>¥</u>	
	John		Female	Feniale	Female									

* four subjects had more the 9 weights used in growth rate calculation. A complete listing appears on the last page.

Appendix 1

Listing of Weights Included in the Statistical Analyses

		~ <u>-</u>		-	,				•		,			Growth Rate			٠
Gender Regimen	Regin	men_	Subject	Variable	Ngt1	Ngt2	Wgt3	Wgt4	Mg c S	Wgt6	Ngt 7	Hgt8	Wgt9	β/daγ	Wgt_40	Mgt_48	Wgt_57
Female	DIIA+ARA	AR	9712-0008	Veight (g) Age (Heeks pca)	1590	1780 35.0	1990 35.8	24.75						37.2	2960	4470	5760 57.1
Fета l е	OHA+ARA	ARA	9746-0002	Weight (9) Age (weeks pca)	1249	1429 33.7	1597 34.7	1814	2110 36.7					30.1	2680 39.9	4010 46.9	5362 56.9
Female	¥		1050-9696												3546	4880	
Female	£		9698-0502				٠					•			3518 40.0	5972	
Female	£		9698-0503	٠.	· .										3390	4213	5319 57.1
Female	== <u>-</u> -		9698-0504		٠	•,									3383	5234 48.7	6667 57.9
female	E		\$0\$0-8696							78					3646 40.0	4638	\$653 57.0
f eria l e	Ĭ		1090-6696											-	0.04 40.0	4766	5731 57.0
f ema l e	_₹		9699-0602			•									4584 40.0	4823	5986 57.0
Femate	<u> </u>		6699-0603												3716 40.0	4482	5674 56.7
female	=====		7090-6696												3660	4738	6355 57.0
Female	≦~		6699-0605	,				•							3433	5617 48.4	7603
female			9701-0501												3884	5630	6450

* four subjects had more the 9 weights used in growth rate calculation. A complete listing appears on the last page.

Appendix 1

Listing of Weights Included in the Statistical Analyses

6630 56.7 6800 57.1 4530 57.4 6270 57.4 5320 57.0 7600 57.7 4940 57.4 5860 57.0 5540 5310 47.4 5390 48.0 4210 6040 48.9 4050 48.9 5020 48.1 3430 47.7 3302 40.0 2658 40.0 2895 40.0 3401 40.0 3141 3762 2718 40.0 4085 Growth Rate 9/day Ngc9 Vgt8 Vgt7 Vgt6: Wgt5 Ng t 4 Vgt3 Ng t 2 Wgt1 Variable 9702-0505 9702-0508 9703-0501 9702-0507 9702-0502 9702-0503 9702-0506 9703-0505 9701-0503 9701-0504 9702-0504 Subject 9701-0502 9702-0501 Regimer 王 ₹ 푳 Fenjale female Fernale Female Female Female Female Female f enale Female Gender Female female female

four subjects had more the 9 weights used in growth rate calculation. A complete listing appears on the last page.

* four subjects had more the 9 weights used in growth rate calculation. A complete listing appears on the last page.

Analog	
10014	
1	-
lesianistes and ai behilon addition to maintain	hipddy
440:011	
,	
4	

Growth

Gender Regimen	len Subject	Variable	Wgt1	Ngt2	Wgt3	Ngté	Ngt5	Vgt6	Vgt7	Wgt8	Ngt9	Rate g/day	Wgt_40	Wgt_48	Wgt_57
¥	9703-0506												3405 40.0	6170	7490 56.9
₹	9703-0507	٠.											3085	5090 48.0	6550 56.3
¥	9704-0501												3194 40.0	4700	5880 57.4
₹	9705-0501												3120 40.0	48.1	5702 57.1
¥ .	9705-0502												0.05 40.0	6327 48.3	7348 57.3
Female ' IIM	9706-0501												3396 40.0	5000 48.3	6645 58.1
Ŧ	9706-0502							• •				٠	3041 40.0	4315	5525 57.6
±	9707-0501						-					,	0.05 40.0	5515 47.9	6770 56.6
<u> </u>	9707-0502			···									3419 40.0	5500	7080 57.1
Ξ.	9707-0503												3773 40.0	5785 47.9	7675 56.9
¥	9707-0505												3716 40.0		
¥	9708-0501												3688 40.0		6890 57.6
` E	9708-0502												3454 40.0	5192 48.1	5950 57.4

Appendix 1	

Listing of Weights included in the Statistical Analyses

	= ==													Rate			
Gender	Regimen	en Subject		Variable	Hgt1	Ngt2	Wgt3	Ngt 4	WgtS	Ngté	Mgt7	WgtB	Ngt9	g/day	4gt_40	48t_48	Vgt_57
Female	¥	9708-0503	0503												2977	5165	7040
Female	 	9040-0504	0504						•						3864 40.0	5660 48.4	6705 57.4
Female	¥	9708-0505	0505						•						3831	5800	7435
Female	¥.	9709-0501	. 1050									•			3550		
Female	· = = = :	9709-0502	0502	· .										•	3715 40.0	5205 48.0	6100 56.9
Female	Ē	9709-0503	0503							٠					3195 40.0		
Female	Ŧ	9709-0504	0504												3190 40.0	4590	
Female	E	-6026	9050-6026	· · · · · · · · · · · · · · · · · · ·											3505	4500	5910 57.1

Appendix

Listing of Weights Included in the Statistical Analyses

Growth Rate g/day	26.1	39.6	5.6	22.1
6r R t18 9/	~	m	-	1670 2: 34.9.
117 Wg	1			1680 1, 34.7 3
:16 Wg				1640 1 ₄ 34.6 34
:15 Hg(1585 14 34.4 34
14 V91				1565 1: 34.3 34
113 Vg	•			1515 1: 34.1 34
112 Vg1		2075 34.0		1510 1: 34.0 3
Ngt9 Ngt10 Ngt11 Ngt12 Ngt13 Ngt14 Ngt15 Ngt16 Ngt17 Ngt18	1465 33.0	2030 2		1450 1 33.9 3
t 10 Wg	1448 1 32.9 3	1994 2 33.7 3		1440 1 33.7 3
lgt9 Wg	1433 1 32.7 3	1938 1 33.6 3		1380 1 33.4 3
ugt8 l		1882	1070 32.1	1350
Wgt7		1858	1080 32.0	1265
Vgt6		1811 33.1	1060	1310 32.7
Wgt5	1294	1778 33.0	1080 31.7	1310 32.4
Hat's	1291 32.0	1732 32.9	1080 31.6	1280 32.1
Vat3	1245	1699 32.7	1070 31.4	31.7
Var2	1245 1221 31.6 31.7	1675	1050 31.3	1120 31.4
1	1245	1649 32.4	1020 31.1	1075 31.1
4 1 1 1 1	Variable Weight (g)	9707-0307 Weight (g) Age (weeks pca)	Veight (g) Age (weeks pca)	Weight (g) Age (weeks pca)
	Gender Regimen SUBJECI Variable Hale Control 9712-0301 Weight (9)	9707-0307	female Control 9698-0003 Weight (g)	Female DIIA+ARA 9705-0005 Weight (g) Age (weeks
,	Regin Cont	DHA	Contr	DIIA
	Gender Hale	Hale	Female	Female