Машинное обучение

лекция 13
Segmentation models
Гришин Никита Александрович

Classification

Segmentation

- Сегментация попиксельная классификация
- Не требует большого количества данных
- Все сегментационные модели это архитектуры вида FCN

Segmentation: Metric

Чаще всего используют
Dice - особенно в
медицинских снимках
и Jaccard (IoU)

Table 1. The three similarity coefficients

Similarity Coefficient (X,Y)	Actual Formula
Dice Coefficient	$2\frac{ X \cap Y }{ X + Y }$
Cosine Coefficient	$\frac{ X \cap Y }{ X ^{1/2}. Y ^{1/2}}$
Jaccard Coefficient	$\frac{ X \cap Y }{ X + Y - X \cap Y }$

Fully Convolutional Network: FCN

- 1. Оторвать Dense слой, или Dense => Conv.
- 2. В сети мало параметров.
- 3. Берет на вход картинки любого размера.

FCN = Efficient Sliding Window

Classification to Segmentation

- 1. Оторвать Dense или Dense => Conv
- 2. Добавить декодер

Jonathan Long, Evan Shelhamer, Trevor Darrell; The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015, pp. 3431-3440

Upsampling Understanding

Stride = 1 Pad = 0

FCN8 to SegNet

Заменить Upsampling на иерархический Upsampling

V. Badrinarayanan, A. Kendall, and R. Cipolla, "Segnet: A deep convolutional encoder-decoder architecture for image segmentation," arXiv:1511.00561, 2015

SegNet to UNet

O. Ronneberger P. Fischer T. Brox "U-net: Convolutional networks for biomedical image segmentation" Proc. Med. Image Comput. Comput.-Assisted

Intervention pp. 234-241 2015.

Unet => TernausNet

Энкодер инициализируем весами с ImageNet

Iglovikov, V., Shvets, A.: Ternausnet: U-net with vgg11 encoder pre-trained on imagenet for image segmentation. arXiv preprint arXiv:1801.05746 (2018)

Segmentation => UNet

Medical Imaging

Satellite Imaging

Feature Pyramid Networks (FPN)

- 1. Легко добавить во многие архитектуры.
- 2. Помогает с multiscale

Tsung-Yi Lin, Piotr Dollar, Ross Girshick, Kaiming He, Bharath Hariharan, Serge Belongie; The IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), 2017, pp. 2117-2125

Unet + FPN

Segmentation Loss Function

Каждый пиксель классификатор => Categorical / Binary Cross Entropy(CCE, BCE)

Ho! Метрика Dice / Jaccard
Dice / Jaccard недифференцируемы =>
Soft Dice / Soft Jaccard
и добавляем в loss

Lovasz-Softmax loss Использовать для FineTune

$$CCE = \sum_{c} p(x) \log q(x)$$

$$egin{aligned} LOSS &= BCE - \ln{(DICE)} \ BCE &= -\sum_i{(y_i \ln(p_i) + (1-y_i) \ln(1-p_i))} \ DICE &= 2rac{\sum_i{y_ip_i}}{\sum_u{y_i} + \sum_i{p_i}} \end{aligned}$$

Berman, M., Rannen Triki, A., Blaschko, M.B.: The lovász-softmax loss: a tractable surrogate for the optimization of the intersection-over-union measure in neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, pp. 4413–4421 (2018)

Detection

Предсказываем:

- 1. Координаты боксов
- 2. Класс
- 3. Атрибуты

Detection Metric: mAP

Для каждого класса:

- 1. Хотим получить Precision Recall Curve
- 2. Цикл по трешхолдам confidence
- 3. Трешхолд по IoU => TP, FP, FN
- 4. mAP = area under PR Curve

Non Maximum Suppression (NMS)

Detection = Предсказываем много боксов, а потом фильтруем

Detection

One-shot (быстрые)

YOLO, SSD, RetinaNet, SqueezeNet, DetectNet

Two-shot (точные)

R-FCN, Fast RCNN, Faster-RCNN

One Shot Detection

Для каждой ячейки в последнем conv слое предказываем координаты бокса и класс объекта с центром в ячейке.

One Shot Detector: YOLO

Для каждой ячейки в последнем conv слое предказываем координаты бокса и класс объекта с центром в ячейке.

One Shot Detector with FPN = SSD

	mAP	FPS
YOLO v2	21.6	91
SSD	28.0	59

Two Shot Detector: R-CNN

R-CNN = Selective Search + Classification

Ross Girshick, Jeff Donahue, Trevor Darrell, Jitendra Malik; The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2014, pp. 580-587

Two Shot Detector: Fast-RCNN

R-CNN => Fast R-CNN

Меняем порядок Crop и ConvNet

50 секунд => 2 секунды (25 раз быстрее)

Fast => Faster

Fast R-CNN => Faster R-CNN
Вычисляем proposals самой сетью.
2 секунды => 0.2 секунды (10 раз быстрее)

Two Shot Detector: performance

	R-CNN	Fast R-CNN	Faster R-CNN
Test time per image	50 seconds	2 seconds	0.2 seconds
Speed-up	1x	25x	250x
mAP (VOC 2007)	66.0%	66.9%	66.9%