vv214: Matrix algebra. Linear spaces. Structure of a linear space.

Dr.Olga Danilkina

UM-SJTU Joint Institute

June 4, 2019

This week

Today

- 1. More practice with linear systems/rref/rank.
- 2. Matrix algebra.
- 3. Number fields and linear spaces.
- 4. Abelian groups and linear spaces. Cyclic groups.
- 5. Linear combinations and linear dependence/independence.

Next class

- 1. Structure of a linear space: basis, dimension.
- 2. Structure of \mathbb{R}^n .

The number of solutions and the rank of the coefficient matrix

Consider a linear system of equations n with m variables \Rightarrow the coefficient matrix A of the system is $A_{n \times m}$.

- 1. $rank A \le n$, $rank A \le m$
- 2. If rank A = n then the system is consistent.
- 3. If rank A = m then the system has at most one solution.
- 4. If rank A < m then the system either has infinitely many solutions OR inconsistent.

Remarks:

- 1. If n < m then $rank A \le n < m \Rightarrow$ infinitely many OR no solutions
- 2. If n = m and
- a. $rank A = n \Rightarrow$ there exists a unique solution
- b. $rank A < n \Rightarrow$ infinitely many OR no solutions

Examples

1. Is
$$rank \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 3 & 6 \end{pmatrix} = 3?$$

2. Are the following matrices in rref?

a.
$$\begin{pmatrix} 0 & 1 & 2 & 3 \end{pmatrix}$$
 b. $\begin{pmatrix} 1 & 2 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$ c. $\begin{pmatrix} 1 & -1 & 0 & 3 & 0 \\ 0 & 0 & 1 & 4 & 0 \\ 0 & 0 & 1 & 5 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$

- 3. Find all 3×1 and 3×2 matrices in rref.
- 4. Solve the linear system

$$\begin{cases} 3x_1 + 6x_2 + 9x_3 + 5x_4 + 25x_5 &= 53 \\ 7x_1 + 14x_2 + 21x_3 + 9x_4 + 53x_5 &= 105 \\ -4x_1 - 8x_2 - 12x_3 + 5x_4 - 10x_5 &= 11 \end{cases}$$

Matrix Algebra

1. The sum of two matrices $A_{n \times m}$ and $B_{n \times m}$ is the matrix $C_{n \times m}$ s.t.

$$c_{ij} = a_{ij} + b_{ij}, i = \overline{1, n}, j = \overline{1, m}.$$

- 2. The scalar product $\alpha A_{n \times m} = (\alpha a_{ij}), i = \overline{1, n}, j = \overline{1, m}$.
- 3. The product of a row-matrix $\begin{pmatrix} a_1 & a_2 & a_3 \end{pmatrix}$ and a column-matrix $\begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$ is

$$(a_1 \quad a_2 \quad a_3) \left(\begin{array}{c} b_1 \\ b_2 \\ b_3 \end{array} \right) = a_1 b_1 + a_2 b_2 + a_3 b_3$$

Matrix Algebra

4. The product of a matrix $A_{n \times m}$ and a vector $\bar{x} \in \mathbb{R}^m$ is

$$A_{n\times m}\bar{x} = \begin{pmatrix} \bar{w}_1 \\ \bar{w}_2 \\ \vdots \\ \bar{w}_n \end{pmatrix} \bar{x} = (def) \begin{pmatrix} (\bar{w}_1, \bar{x}) \\ (\bar{w}_2, \bar{x}) \\ \vdots \\ (\bar{w}_n, \bar{x}) \end{pmatrix}$$

$$= (prop)(\bar{a}_1 \quad \bar{a}_2 \dots \bar{a}_m)\bar{x} = x_1\bar{a}_1 + x_2\bar{a}_2 + \dots + x_m\bar{a}_m$$

5. The product of a matrix $A_{n \times k}$ and a matrix $B_{k \times m}$ is

$$AB = (A\bar{b}_1 \quad A\bar{b}_2 \quad \dots \quad A\bar{b}_m)_{n \times m}$$

Matrix Product: exercises

1. Let
$$A_G = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$
 be the adjacency matrix of a graph

G. Compute trace(A).

$$trace(A) = a_{11} + a_{22} + a_{33} = 0$$

2. Compute A_G^2 and $trace(A_G^2)$. Find the good interpretation for $trace(A_G^2)$ —the question is still open!

$$(A_G^2)_{ij} = \sum_{k=1}^3 a_{ik} a_{kj} \Rightarrow \text{we count only terms with } a_{ik} a_{kj} \neq 0$$

$$\Rightarrow a_{ik} \neq 0, \ a_{kj} \neq 0 \iff \underbrace{a_{ik} = a_{kj} = 1}_{v_i \sim v_k \sim v_j} \text{ we count w.r.t } k$$

 $(A_G^2)_{ij}$ = the number of common neighbors of v_i and v_j

Matrix Product: exercises

3 Compute A_G^3 . What are the entries $(A_G^3)_{ij}$?

$$(A_G^3)_{ij} = \sum_{k=1}^3 \sum_{m=1}^3 a_{ik} a_{km} a_{mj} \Rightarrow a_{ik} a_{km} a_{mj} \neq 0$$

$$\iff \underbrace{a_{ik} = a_{km} = a_{mj} = 1}_{v_i \sim v_k \sim v_m \sim v_j}$$

 $(A_G^3)_{ij}$ is the number of walks of the length 3 from v_i to v_j

$$(A_G^m)_{ij}$$
 is the number of walks of the length m from v_i to v_j

Remark: Recall, that a walk from v_i to v_j in a graph is a sequence of vertices

$$V_i - V_p - V_k - V_r - V_s - \dots - V_i$$

The length of a walk is the number of edges in the walk.

Linear Combinations

Definition: If $\bar{y} = \alpha \bar{x}_1 + \ldots + \alpha_k \bar{x}_k$, then \bar{y} is called a linear combination of $\bar{x}_1, \ldots, \bar{x}_k$ OR we say that \bar{y} is spanned by $\bar{x}_1, \ldots, \bar{x}_k$ and denote

$$\bar{y} = span(\bar{x_1}, \dots, \bar{x_k})$$

Exercise: Is
$$\begin{pmatrix} 7 \\ 8 \\ 9 \end{pmatrix}$$
 a linear combination of $\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$, $\begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix}$?

Yes. Solve the system
$$\begin{cases} 7 = a + 4b \\ 8 = 2a + 5b \Rightarrow a = -1, b = 2 \\ 9 = 3a + 6b \end{cases}$$

Lemma: Let $A = (\bar{a}_1 \quad \bar{a}_2 \quad \dots \quad \bar{a}_n)$.

$$ar{b} = span(ar{a}_1, \, \dots, ar{a}_n) \iff rank \, A = rank \, A | ar{b}$$

The proof of this statement is an EXTRA problem.

Linear Combinations: exercises

1. Compute $-\bar{a}_1+2\bar{a}_2,\,2\bar{a}_1+5\bar{a}_2$ for

$$\bar{a}_1 = (-2, 1, 3, 4), \ \bar{a}_2 = (3, 2, -2, 1)$$

- 2. Let $A = (\bar{a_1} \quad \bar{a_2})$. Compute $A \begin{pmatrix} -1 \\ 2 \end{pmatrix}$, $A \begin{pmatrix} 2 \\ 5 \end{pmatrix}$.
- 3. Compute $\alpha \bar{e}_1 + \beta \bar{e}_2 + \gamma \bar{e}_3$ with

$$ar{e}_1=(1,0,0),\;ar{e}_2=(0,1,0),\;ar{e}_3=(0,0,1)$$

4. Calculate

$$(\bar{e}_1 \quad \bar{e}_2 \quad \bar{e}_3) \begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix}$$

5. Find a 3 matrix A s.t.

$$A\begin{pmatrix} 1\\0\\0 \end{pmatrix} = \begin{pmatrix} 1\\2\\3 \end{pmatrix}, A\begin{pmatrix} 0\\1\\0 \end{pmatrix} = \begin{pmatrix} 4\\5\\6 \end{pmatrix}, A\begin{pmatrix} 0\\0\\1 \end{pmatrix} = \begin{pmatrix} 7\\8\\9 \end{pmatrix}$$

Matrix Algebra: properties

1.
$$A + B = B + A$$

2.
$$A + (B + C) = (A + B) + C$$

3.
$$\exists$$
 the zero matrix $O = (0)_{ij}$ s.t. $A + O = O + A = A \quad \forall A$

4.
$$\forall A \ \exists (-A): A + (-A) = O$$

5.
$$I_n A = A I_n = A$$

6.
$$\alpha(A+B) = \alpha A + \alpha B \quad \forall \alpha \in \mathbb{R} \text{ or } \mathbb{C} \quad \forall A, B$$

7.
$$(\alpha + \beta)A = \alpha A + \beta A \quad \forall \alpha, \beta \in \mathbb{R} \text{ or } \mathbb{C} \quad \forall A$$

8.
$$(\alpha\beta)A = \alpha(\beta A) \quad \forall \alpha, \beta \in \mathbb{R} \text{ or } \mathbb{C} \quad \forall A$$

9.
$$AB \neq BA \quad \forall A, B$$

Definition: If AB = BA then matrices A and B commute.

Exercise: Is there a matrix B s.t. AB = BA, $\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$? Find B.

$$B = \begin{pmatrix} b_1 & 2/3b_3 \\ b_3 & b_1 + b_3 \end{pmatrix} = b_1 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + b_3 \begin{pmatrix} 0 & 2/3 \\ 1 & 1 \end{pmatrix}$$

Number Field

Definition: A subset \mathbb{F} of \mathbb{C} is called a number field provided

- 1. $1 \in \mathbb{F}$
- 2. $\forall a, b \in \mathbb{F}$ $a \pm b \in \mathbb{F}$, $ab \in \mathbb{F}$, $a/b \in \mathbb{F}(b \neq 0)$

Examples:

- $ightharpoonup \mathbb{R}, \mathbb{C}$
- ► The set of rational numbers ℚ.
- $\blacktriangleright \mathbb{F} = \{a + b\sqrt{2} \colon a, b \in \mathbb{Q}\}\$
- ► $\mathbb{F} = \{a + b\sqrt[3]{2} + c\sqrt[3]{4} : a, b, c \in \mathbb{Q}\}$

Abelian Groups

Definition: A set A with a binary operation $+: A \times A \rightarrow A$, i.e. $x, y \rightarrow x + y$, is called an Abelian group provided

- 1. $x + y = y + x \quad \forall x, y \in A$ (commutativity)
- 2. $x + (y + z) = (x + y) + z \quad \forall x, y, z \in A$ (associativity)
- 3. $\exists 0 \text{ s.t. } x + 0 = 0 + x = x \quad \forall x \in A \text{ (identity)}$
- 4. $\forall x \in A \exists (-x) \text{ s.t. } x + (-x) = 0 \text{ (inverse)}$

Examples:

- \triangleright (N, +) no additive inverses
- $ightharpoonup (\mathbb{Z},+) \ {\sf Yes} \quad (\mathbb{Q},+) \ {\sf Yes} \quad (\mathbb{R},+) \ {\sf Yes}.$
- \blacktriangleright (\mathbb{Z}, \cdot), (\mathbb{R}, \cdot) no multiplicative inverses
- $ightharpoonup (\mathbb{Q}\setminus\{0\},\cdot)$ Yes $(\mathbb{R}\setminus\{0\},\cdot)$ Yes

Cyclic Groups

Definition: We say that $a, b \in \mathbb{Z}$ are congruent modulo $m, m \in \mathbb{Z}$ and write $a \equiv b \mod m$ if

$$m|a-b \Rightarrow a-b=k \cdot m$$

Example: $7 + 3 \mod 6 = 4$, 12 $\mod 7 = 5$

Definition: We denote \mathbb{Z}_n all integers modulo n (n > 0).

Example: $\mathbb{Z}_5 = \{0, 1, 2, 3, 4\}$

Definition: An Abelian group is cyclic if A is generated by an

element: $\exists a \in A \colon A = \langle a \rangle, \quad \langle a \rangle = \{ \mathit{na}, \ \mathit{n} \in \mathbb{Z} \}$

Example:
$$\mathbb{Z}_7 = \{0, 1, 2, 3, 4, 5, 6\} \Rightarrow \langle 0 \rangle = \{0\}, \ \langle 1 \rangle = \mathbb{Z}_7,$$
 $\langle 2 \rangle = \{0, 2, 4, 6, 1, 3, 5\}, \ \langle 3 \rangle = \{0, 3, 6, 2, 5, 1, 4, \} = \mathbb{Z}_7$

1, 2, 3 are the generators of \mathbb{Z}_7 . Other generators of \mathbb{Z}_7 ?

Linear Spaces

Definition: A set V is called a linear (vector) spaces over a field $\mathbb F$ if

- 1. (V, +) is an Abelian group.
- 2. Scalar multiplication $\mathbb{F} \times V \to V$ is defined and satisfies the following properties:
 - $ightharpoonup \exists 1 \in \mathbb{F}: \quad 1 \cdot v = v \quad \forall v \in V$
 - $(\alpha + \beta)v = \alpha v + \beta v \quad \forall \alpha, \beta \in \mathbb{F}, \forall v \in V$

 - $(\alpha\beta)v = \alpha(\beta v) \quad \forall \alpha, \beta \in \mathbb{F}, \forall v \in V$

Exercise: Show that $0 \cdot v = 0$, $\alpha \cdot 0 = 0$

Examples:

- $ightharpoonup \mathbb{R}$ is a vector space over \mathbb{R} , \mathbb{Q}
- ▶ The set $\mathbb{R}[x]$ of all polynomials in x with real coefficients.
- ▶ The set C[a,b] of all continuous functions $f:[a,b] \to \mathbb{R}$

Linear Spaces

More Examples:

- ▶ The set $\mathbb{M}_{n \times n}$ of all square matrices $n \times n$ with real/complex entries over \mathbb{R}/\mathbb{C}
- ▶ The set / of all infinite sequences of scalars.
- ▶ The set l_{∞} of all bounded sequences of scalars.
- The set $I_p = \{\bar{x} = (x_1, x_2, ...): \sum_{i=1}^{\infty} |x_i|^p < +\infty \}$ of all p-summable sequences.

Prove:

$$\sum_{i=1}^{\infty} |x_i + y_i|^p \le 2^p \sum_{i=1}^{\infty} |x_i|^p + 2^p \sum_{i=1}^{\infty} |y_i|^p$$

Field

Is \mathbb{Z}_n a linear space?

- ▶ Well, scalar multiplication in \mathbb{Z}_n over number fields is not defined. We define a general field:
- ▶ **Definition:** A set \mathbb{F} is called a field provided it is an additive Abelian group with the additive inverse 0 and nonzero elements of \mathbb{F} form a multiplicative Abelian group with the multiplicative inverse 1. AND Multiplication distributes addition

Is \mathbb{Z}_n a field?

► Consider $\mathbb{Z}_4 = \{0, 1, 2, 3\}$.

In \mathbb{Z}_4 , $2\cdot 2=4=0\mod 4\Rightarrow 2$ does not have a multiplicative inverse.

 \mathbb{Z}_n is a field if n = p is a prime number.

 $\mathbb{F}_2 = \mathbb{Z}_2 = \{0,1\}$ is an important example of a finite field.

This Week

Today:

- 1. Linear subspaces.
- 2. Linear independence
- 3. Basis and dimension.
- 4. Distance in linear spaces.
- 5. Lagrange interpolation.

Next class:

- 1. Linear transformations in 2D and 3D.
- 2. Inverse linear transformations.

Linear Subspaces

Definition: Let V be a linear space over \mathbb{K} .

If $U \subset V$ and U is also a linear space closed w.r.t binary operations defined for V, then we say that U is a linear subspace of V:

- 1. $0_U = 0_V \in U$
- 2. $u_1, u_2 \in U \to u_1 + u_2 \in U$
- 3. $\alpha \in \mathbb{K}$. $u \in U \rightarrow \alpha u \in U$

Examples:

- 1. The linear space of all symmetric matrices $(A^T = A)$ is a linear subspace of $\mathbb{M}_{n \times n}(\mathbb{R})$.
- 2. The linear space of all skew-symmetric matrices $(A^T = -A)$ is a linear subspace of $\mathbb{M}_{n \times n}(\mathbb{R})$.
- 3. The linear space of all polynomials $P_n(\mathbb{R})$ of degree n or less is a linear subspace of $\mathbb{R}[x]$.
- 4. $U = {\bar{x} = (x_1, x_2, ...) \in I : x_{n+2} = x_{n+1} + x_n}$ is a linear subspace of I. Fibonacci Space

Linear Independence

Definition: Let U_1, \ldots, U_m be linear subspaces of V.

The direct sum $U_1 \oplus \ldots \oplus U_m$ of U_1, \ldots, U_m is a linear space s.t. any of its elements can be *uniquely* represented as

$$u_1 + \ldots + u_m$$
, $u_i \in U_i$, $i = 1..m$

Examples:

1.
$$U = \{(x, y, 0) \in \mathbb{R}^3 : x, y \in \mathbb{R}\}, \ W = \{(0, 0, z) \in \mathbb{R}^3 : z \in \mathbb{R}\}$$

$$\mathbb{R}^3 = U \oplus W$$

2.
$$U_i = \{(0, \dots, 0, x_i, 0, \dots, 0) \in \mathbb{R}^n : x_i \in \mathbb{R}\}, \quad i = 1, \dots, n$$

$$\mathbb{R}^n = U_1 \oplus \dots \oplus U_n$$

3.
$$U_1 = \{(x, y, 0) \in \mathbb{R}^3 : x, y \in \mathbb{R}\}, \ U_2 = \{(0, 0, z) \in \mathbb{R}^3 : z \in \mathbb{R}\} \ U_3 = \{(0, y, y) \in \mathbb{R}^3 : y \in \mathbb{R}\}$$

$$\mathbb{R}^{3} \neq U_{1} \oplus U_{2} \oplus U_{3}$$

$$(0,0,0) = (0,0,0) + (0,0,0) + (0,0,0)$$

$$(0,0,0) = (0,1,0) + (0,0,1) + (0,-1,-1)$$

Linear Independence

Definition: Elements $v_1, v_2, ..., v_n \in V$ are said to be linearly independent if

$$\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \ldots + \alpha_n \mathbf{v}_n = 0 \Rightarrow \alpha_1 = \ldots = \alpha_n = 0$$

Remark: An infinite set of vectors is said to be linearly independent if *every finite subset is linearly independent*.

Definition: If

$$\alpha_1 v_1 + \alpha_2 v_2 + \ldots + \alpha_n v_n = 0 \Rightarrow \exists \alpha_i \neq 0$$

then the elements $v_1, v_2, ..., v_n \in V$ are said to be linearly dependent.

Linear Independence: Examples

- 1. $\bar{e}_1 = (1,0,0), \; \bar{e}_2 = (0,1,0), \; \bar{e}_3 = (0,0,1) \; \text{Yes!!!}$
- 2. 1, $\cos 2x$, $\sin 2x$ Yes 1, $\cos 2x$, $\sin^2 x$ No
- 3. 1, $\sqrt{2}$, $\sqrt{3}$ are linearly independent in $\mathbb R$ only if $\mathbb R$ is a vector field over $\mathbb Q$.
- 4. $\mathbb{R}[x]$: $f(x) = \prod_{i=1}^{n} (x \alpha_i) \Rightarrow g_j(x) = \frac{f(x)}{x \alpha_j}$ are linearly independent
- 5. $M_{2\times 2}$: $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ Yes

Linear Independence: Exercises

1. Show that
$$\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
, $\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ are linearly independent.

2. Show that
$$\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$
, $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ are linearly dependent.

- 3. Show that any 3 vectors are linearly dependent in \mathbb{R}^2 .
- 4. If elements $v_1, \ldots, v_m \in V$ are linearly independent then non of $v_i, i = 1, \ldots, m$, is redundant.

Definition: A vector v_i is said to be redundant if it is represented as a linear combination of preceding vectors

$$v_i = \alpha_1 v_1 + \ldots + \alpha_{i-1} v_{i-1}$$

Normed Linear Spaces

Definition: Let X be a linear space over a scalar field \mathbb{K} . A real-valued function $||\cdot||:X\to\mathbb{R}$ defined on X is called a norm provided

- 1. $||x|| \ge 0$ $\forall x \in X$ and ||x|| = 0 iff x = 0
- 2. $||\alpha x|| = |\alpha|||x|| \quad \forall x \in X \, \forall \alpha \in \mathbb{K}$
- 3. $||x + y|| \le ||x|| + ||y|| \quad \forall x, y \in X$

Normed Linear Spaces: Examples

- 1. \mathbb{R} : ||x|| = |x|
- 2. \mathbb{R}^n : $||\bar{x}||_{\infty} = \max_{i=1..n} |x_i|, ||\bar{x}||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}, p \ge 1$
- 3. $C[a,b]: ||f(t)|| = \max_{t \in [a,b]} |f(t)|, \quad ||f(t)|| = \int_a^b |f(t)| dt$
- 4. I^{∞} : $||\bar{x}|| = \sup_{i=1..\infty} |x_i|$
- 5. I^p : = $||\bar{x}||_p = \left(\sum_{i=1}^{\infty} |x_i|^p\right)^{1/p}$, $p \ge 1$
- 6. $\mathbb{M}_{n \times m}$: $||A|| = \sqrt{trace(A^T A)}$ Frobenius norm this def. works for real matrices

Definition: In a lin. space V, elements v_1, \ldots, v_m form a basis if

- 1. $V = span(v_1, \ldots, v_m)$, and
- 2. v_1, \ldots, v_m are linear independent.

Remark: If $v_1, v_2, ..., v_m \in V$ for a basis of V then $\forall x \in V$ there exists a unique representation

$$x = c_1 v_1 + c_2 v_2 + \ldots + c_m v_m, \quad c_1, \ldots, c_m \in \mathbb{K}.$$

Definition: The scalars c_1, \ldots, c_m are called coordinates of $x \in V$ in the basis v_1, \ldots, v_m .

Example: Let
$$V = span\left(\begin{pmatrix} 1\\1\\1 \end{pmatrix}, \begin{pmatrix} 1\\2\\3 \end{pmatrix}\right)$$
.

$$ar v_1=\left(egin{array}{c}1\\1\\1\end{array}
ight), ar v_2=\left(egin{array}{c}1\\2\\3\end{array}
ight)$$
 are linearly independent

$$\Rightarrow B = \{\bar{v}_1, \bar{v}_2\} \text{ is a basis in } V$$

$$\bar{u} = (5, 7, 9) \Rightarrow \bar{u} = 3\bar{v}_1 + 2\bar{v}_2 \Rightarrow \bar{u}_B = (3, 2)$$

Theorem: Any maximal linearly independent set is a basis.

Theorem: If $a_1, \ldots, a_p \in V$ are linearly independent and $V = span(b_1, \ldots, b_q)$, then $p \leq q$.

- 1. Steinitz exchange principle: $\forall i = 1..p \quad \exists j = 1..q$ s.t. $a_1, \ldots, a_{i-1}, b_i, a_{i+1}, \ldots, a_p$ are linearly independent.
- 2. If q>p then you will get $a_1,\ldots,a_{i-1},b_j,a_{i+1},\ldots,a_p$ linear independent and then $a_1,\ldots,a_{i-1},a_i,b_j,\ldots,a_p$ can't be linearly independent $\Rightarrow p\leq q$

Remark: All bases of a linear space have the same number of elements.

Remark: If dim V = m, then any m linearly independent elements for a basis in V, and any span of V consisting of m vectors forms a basis as well.

Example:

- 1. The vectors (1,2,3), (4,5,8), (9,6,7), (-3,2,8) are not linearly independent in \mathbb{R}^3 .
- 2. The vectors (1, 2, 3, -5), (4, 5, 8, 3), (9, 6, 7, -2) do not span \mathbb{P}^4

- Any spanning set of vectors can be reduced to a basis of a linear space.
- Any set of linear independent set of elements can be extended to a basis of a linear space.

Example: \mathbb{R}^3 : (2, 3, 4), (9, 6, 8) are linearly independent.

Consider the linearly independent vectors with vectors that span \mathbb{R}^3 :

$$\left(\begin{array}{c}2\\3\\4\end{array}\right), \left(\begin{array}{c}9\\6\\8\end{array}\right), \left(\begin{array}{c}1\\0\\0\end{array}\right), \left(\begin{array}{c}0\\1\\0\end{array}\right), \left(\begin{array}{c}0\\0\\1\end{array}\right)$$

Eliminating linearly dependent vectors from this system, you obtain basis elements:

$$\begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix}, \begin{pmatrix} 9 \\ 6 \\ 8 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$
 is a basis for \mathbb{R}^3

- ▶ If V has a finite basis and U is a linear subspace of V, then there exists a linear subspace W of V such that $V = U \oplus W$
 - 1. U must have a finite basis v_1, \ldots, v_m as well.
 - 2. Let w_1, \ldots, w_n span V. Consider the basis of U and the span of V together:

$$v_1,\ldots,v_m,\ w_1,\ldots,w_n$$

Eliminating linearly dependent elements, we obtain a basis for V:

$$v_1,\ldots,v_m, u_1,\ldots,u_k, u_i=w_j$$

- 4. Denote $W = span(u_1, \dots, u_k) \Rightarrow V = U + W$
- 5. It remains to show that $U \cap W = \{0\}$. Let $x \in U \cap W \Rightarrow x \in U, x \in W$

$$x = \alpha_1 v_1 + \ldots + \alpha_m v_m = \beta_1 u_1 + \ldots + \beta_k u_k$$

$$\Rightarrow \alpha_1 v_1 + \ldots + \alpha_m v_m - \beta_1 u_1 - \ldots - \beta_k u_k = 0$$

6. $v_1, \ldots, v_m, u_1, \ldots, u_k$ is a basis, i.e. linearly independent

$$\Rightarrow \alpha_1 = \ldots = \alpha_m = \beta_1 = \ldots = \beta_k = 0 \Rightarrow x = 0$$

7.
$$V = U + W, U \cap W = \{0\} \Rightarrow V = U \oplus W$$

Examples

1. U = span(2,3,4), (9,6,8)) is a linear subspace of \mathbb{R}^3 , and (2,3,4), (9,6,8), (0,1,0)) is a basis for \mathbb{R}^3

Let
$$W = span \left\{ \left(\begin{array}{c} 0 \\ 1 \\ 0 \end{array} \right) \right\} \Rightarrow V = U \oplus W$$

2. Let $M = \{ p(t) \in P_2(\mathbb{R}) : p(1) = 0 \}$.

$$p(1) = a_0 + a_1 \cdot 1 + a_2 \cdot 1^2 = 0 \Rightarrow a_0 = -a_1 - a_2$$

$$M = \{p(t) = a_1(t-1) + a_2(t^2-1)\} \Rightarrow \{t-1, t^2-1\}$$
 is a basis for M

Consider t - 1, $t^2 - 1$, t, t^2 and eliminate linearly dependent elements:

$$t-1, t^2-1, 1$$
 is a basis for $P_2(\mathbb{R})$

$$\Rightarrow W = span(1) \Rightarrow P_2(\mathbb{R}) = M \oplus W$$

Dimension

Definition: The number of elements in the basis is called the dimension of a linear space.

Examples:

- 1. dim $\mathbb{R}^n = n$
 - a. The vectors $\bar{e}_1=(1,0,\ldots,0),\ldots,\bar{e}_n=(0,\ldots,1)\in\mathbb{R}^n$ are linearly independent:

$$\alpha_1 \bar{e}_1 + \alpha_2 \bar{e}_2 + \ldots + \alpha_n \bar{e}_n = \bar{0}$$

$$\Rightarrow (\alpha_1, \alpha_2, \ldots, \alpha_n) = (0, 0, \ldots, 0) \Rightarrow \alpha_1 = \ldots = \alpha_n = 0$$

$$\dim \mathbb{R}^n \ge n$$

b. Consider arbitrary
$$n+1$$
 vectors in \mathbb{R}^n : $\bar{x}^1 = (x_1^1, \dots, x_n^1)$, $\dots, \bar{x}^n = (x_1^n, \dots, x_n^n), \ \bar{x}^{n+1} = (x_1^{n+1}, \dots, x_n^{n+1})$

$$\alpha_1 \bar{x}^1 + \dots + \alpha_n \bar{x}^n + \alpha_{n+1} \bar{x}^{n+1} = \bar{0}$$

This is a homogeneous system of n linear equations in n+1 variables $\Rightarrow \exists \alpha_i \neq 0 \Rightarrow \text{any } n+1$ vectors are linearly dependent in $\mathbb{R}^n \Rightarrow \dim \mathbb{R}^n < n+1$

c. $\dim \mathbb{R}^n > n$, $\dim \mathbb{R}^n < n+1 \Rightarrow \dim \mathbb{R}^n = n$

Dimension

Examples:

- 2. dim $C[a, b] = \infty$
 - a. Let $n \in \mathbb{N}$ be arbitrary. The functions $1, x, x^2, \dots, x^n$ are continuous on any $[a, b] \Rightarrow 1, x, x^2, \dots, x^n \in C[a, b]$
 - b. Check linear dependence/independence of $1, x, x^2, \dots, x^n$

$$\alpha_0 \cdot 1 + \alpha_1 x + \ldots + \alpha_n x^n = 0$$

This equation has n roots x_1, \ldots, x_n for any constants $\alpha_0, \ldots, \alpha_n$. If we want to keep this identity for any x, then $\alpha_0 = \ldots = \alpha_n = 0 \Rightarrow 1, x, x^2, \ldots, x^n$ are linearly independent.

c. But $n \in \mathbb{N}$ can be any \Rightarrow there is a system of linearly independent elements in C[a,b] which is not finite

$$\Rightarrow$$
 dim $C[a,b] = \infty$

3. dim $M_{2\times 2}=4$

Dimension

Examples:

- 4. dim $P_n(\mathbb{R}) = n+1$
 - a. $\forall p(t) \in P_n(\mathbb{R})$ $p(t) = a_0 \cdot 1 + a_1 t + a_2 t^2 + \dots a_n t^n$

b. The system
$$1, t, \ldots, t^n$$
 is linearly independent

- $\Rightarrow \dim P_n(\mathbb{R}) = n+1$ 5. dim $U \oplus W = \dim U + \dim W$
 - a. It is enough to prove that

$$\dim (U+W) = \dim U + \dim W - \dim (U \cap W)$$

 $\Rightarrow P_n(\mathbb{R}) = span(1, t, \dots, t^n)$

- b. Let u_1, \ldots, u_m be a basis of $U \cap W \Rightarrow$ we can extend it up to the basis $u_1, \ldots, u_m, v_1, \ldots, v_j$ of U and up to the basis $u_1, \ldots, u_m, w_1, \ldots, w_k$ of W.
- c. dim U = m + i, dim W = m + k
- d. Show that $u_1, \ldots, u_m, v_1, \ldots, v_j, w_1, \ldots, w_k$ is the basis for $U + W \Rightarrow \dim(U + W) = m + j + k = (m + j) + (m + k) m = \dim U + \dim W \dim(U \cap W)$

Bases

Q: Why do we need to consider different bases in a linear space?

- Is the standard basis $e_i = (0, \dots, \underbrace{1}_{i \ th}, \dots, 0)$ a "good" basis in \mathbb{R}^n ?
- ▶ It gives us only the coordinates of a point. Can we form bases that keep other information?
- Let each coordinate represent brightness of a pixel in an image \Rightarrow the brightness of the whole image is $x_1 + \ldots + x_n$, $x_1 x_2 + x_3 \ldots + (-1)^n x_n$ is the "jaggedness" of the image.
- ▶ \mathbb{R}^2 : the vectors $v_1 = (1,1)$, $v_2 = (1,-1)$ are linearly independent $\Rightarrow \{v_1, v_2\}$ is the basis.

$$x = \frac{x_1 + x_2}{2}v_1 + \frac{x_1 - x_2}{2}v_2$$

The coordinates of $x=(x_1,x_2)$ in the basis $\mathfrak{B}=\{v_1,\,v_2\}$ are

$$x_{\mathfrak{B}} = \frac{x_1 + x_2}{2}, \, \frac{x_1 - x_2}{2}$$

Lagrange Interpolation

- You know that p is a polynomial and $deg(p) \le n 1$. Also $p(\alpha_i) = b_i, i = 1, ..., n$. Find p.
- ightharpoonup The n polynomials

$$g_j = \frac{\prod_{i=1}^n (x - \alpha_i)}{x - \alpha_j}$$

are linearly independent.

$$\Rightarrow$$
 $g_i, j = 1, ..., n$ form a basis of $P_{n-1}(\mathbb{R})$.

$$\Rightarrow \forall p \in P_{n-1}(\mathbb{R}) \quad \exists c_j \colon p = \sum_j c_j g_j$$

► The coefficients *c_j* equal

$$c_i = \frac{p(\alpha_i)}{(\alpha_i - \alpha_1) \dots (\alpha_i - \alpha_{i-1})(\alpha_i - \alpha_{i+1}) \dots (\alpha_i - \alpha_n)}$$

Lagrange Interpolation

- You want to keep your special code safe and you know 5 reliable friends. Ensure that you need only 3 people to recover your code.
- Consider a polynomial $p = code + p_1x + p_2x^2$.
- Choose a_1, a_2, a_3, a_4, a_5 and set $b_i = p(a_i)$.
- ▶ Give (a_i, b_i) to your *i*th friend.