Multiple Linear Regression &

General Linear Model in SAS

Multiple linear regression is used to model the relationship be tween one numeric outcome or response or dependent variable (Y), and several (multiple) explanatory or independent or predictor or regressor variables (X). When some predictors are cate gorical variables, we call the subsequent regression model as the General Linear Model.

```
Data <-read.csv("http://www.math.uah.edu/stat/data/Galton.csv",</pre>
header = T)
y<-data$Height
x1<-data$Father
x2<-data$Mother
x3<-as.numeric(data$Gender)-1
Multiple regression using the lm() function
mod < -lm(y \sim x1+x2+x3)
summary(mod)
par(mfrow=c(2,2))
plot(mod)
x3<- data$Gender
mod1<-glm(y~x1+x2+factor(x3))</pre>
summary(mod1)
x3<-relevel(factor(x3),ref="M")</pre>
mod1<-glm(y~x1+x2+factor(x3))</pre>
summary(mod1)
library(xlsx)
data1<-read.xlsx("d:/ams394/galton/heat.xlsx", 1)</pre>
library(leaps)
attach(data1)
leaps1<-regsubsets(Y~X1+X2+X3+X4,data=data1,nbest=10)</pre>
Summary(leaps1)
step(lm(Y~X1+X2+X3+X4), data=data1)
summary(step(lm(Y~X1+X2+X3+X4), data=data1))
```

```
/* simple linear regression */
proc reg;
model y = x;
/* multiple regression */
proc reg;
model y = x1 x2 x3;
Here are some print options for the model phrase:
model y = x / noint; /* regression with no intercept */
model y = x / ss1; /* print type I sums of squares */
model y = x / p;
                    /* print predicted values and residuals */
                    /* option p plus residual diagnostics */
model y = x / r;
model y = x / clm; /* option p plus 95% CI for estimated mean */
model y = x / cli;
                    /* option p plus 95% CI for predicted value */
model y = x / r cli clm; /* options can be combined */
The CLM option adds confidence limits for the mean predicted values. The
CLI option adds confidence limits for the individual predicted values.
It is possible to let SAS do the predicting of new observations and/or
estimating of mean responses. The way to do this is to enter the x values
(or x1,x2,x3 for multiple regression) you are interested in during the data input
step, but put a period (.) for the unknown y value.
data new;
input x y;
datalines;
10
23
3.
43
56
run;
proc reg;
```

model y = x / p cli clm;

```
Data Galton;
Input Family $ Father Mother Gender $ Height Kids;
Datalines;
1
      78.5 67
                   Μ
                         73.2 4
      78.5
1
                   F
                         69.2 4
            67
1
      78.5
            67
                   F
                         69
                               4
1
      78.5
                   F
                         69
           67
                               4
2
      75.5 66.5 M
                         73.5 4
2
      75.5 66.5 M
                         72.5 4
2
      75.5 66.5 F
                         65.5 4
   2
          75.5
                               65.5 4
                  66.5 F
Run;
data revise;
set Galton;
if Gender = 'F' then sex = 1.0;
else sex = 0.0;
run;
proc reg data=revise;
title "proc reg; Dependence of Child Heights on Parental Heights";
model height = father mother sex / vif collin;
run;
quit;
```

Analysis of Variance								
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F			
Model	3	7365.90034	2455.30011	529.03	<.0001			
Error	894	4149.16204	4.64112					
Corrected Total	897	11515						

Root MSE	2.15433	R-Square	0.6397
Dependent Mean	66.76069	Adj R-Sq	0.6385
Coeff Var	3.22694		

Parameter Estimates									
Variable	DF	Parameter Estimate		t Value	Pr > t	Variance Inflation			
Intercept	1	20.57071	2.74067	7.51	<.0001	0			
Father	1	0.40598	0.02921	13.90	<.0001	1.00607			
Mother	1	0.32150	0.03128	10.28	<.0001	1.00660			
sex	1	-5.22595	0.14401	-36.29	<.0001	1.00188			

Proc GLM

Alternatively, one can use proc GLM procedure that can incorporate the categorical variable(sex) directly via the class statement

```
proc glm data=Galton;
Class gender;
model height = father mother gender;
    run;
    quit;
```

Source	DF	Type III S	S	Mean Square	F	Value	Pr > F
Father	1	896.71658	34	896.716584		193.21	<.0001
Mother	1	490.21736	69	490.217369		105.62	<.0001
Gender	1	6111.96536	35	6111.965365	1	1316.92	<.0001
							,
Paramete	r	Estim a te		Standard Erro	r	t Value	Pr > t
ntercept	2	0.57071133	В	2.7406670	3	7.51	<.0001
Father		0.40597803		0.0292069	6	13.90	<.0001
Mother		0.32149514		0.0312817	8	10.28	<.0001
Gender F	-	-5.22595131 B		0.1440079	1	-36.29	<.0001
Gender M		0.00000000	В				

Example:

The following table shows data on the heat evolved in calories during the handending of cement on a per gram basis(y) along with the percentages of four ingredients: tricalcium aluminate(x1), tricalcium silicate(x2),tetracalcium alumino ferrite(x3), and dicalcium silicate(x4)

No.	X1	X2	Х3	X4	Y
1	7	26	6	60	78.5
2	1	29	15	52	74.3
3	11	56	8	20	104.3
4	11	31	8	47	87.6
5	7	52	6	33	95.9
6	11	55	9	22	109.2
7	3	71	17	6	102.7
8	1	31	22	44	72.5
9	2	54	18	22	93.1
10	21	47	4	26	1159
11	- 1	40	23	34	83.8
12	11	66	9	12	113.3
13	10	68	8	12	109.4

```
data example115;
input x1 x2 x3 x4 y;
datalines;
7 26 6 60 78.5
 1 29 15 52 74.3
11 56 8 20 104.3
11 31 8 47 87.6
7 52 6 33 95.9
11 55 9 22 109.2
 3 71 17 6 102.7
 1 31 22 44 72.5
 2 54 18 22 93.1
21 47 4 26 115.9
 1 40 23 34 83.8
11 66 9 12 113.3
10 68 8 12 109.4
run;
proc reg data=example115;
  model y = x1 x2 x3 x4 /selection=stepwise;
run;
```

Selected SAS output

The REG Procedure Model: MODEL1 Dependent Variable: y

Stepwise Selection: Step 4

Variable	Parameter S Estimate	Standard Error	Type II SS	F Valu	e Pr > F
Intercept 52.5773	5 2.28617	3062.60	416 528.91	<.0001	
x1	1.46831	0.12130	848.43186	146.52	<.0001
x2	0.66225	0.04585	1207.78227	208.58	<.0001
	Bounds on cor	ndition num	ber: 1.0551, 4.22	205	

A CONTRACTOR OF THE PROPERTY O

All variables left in the model are significant at the 0.1500 level.

- * No other variable met the 0.1500 significance level for entry into the model.
- * Summary of Stepwise Selection

* Step	Variable Entered	Variable Removed	Numbe Vars In		Model R-Square	C(p) F	Value P	r>F
1	x4		1	0.6745	0.6745	138.731	22.80	0.0006
2	x1		2	0.2979	0.9725	5.4959	108.22	<.0001
3	x2		3	0.0099	0.9823	3.0182	5.03	0.0517
4		х4	2	0.0037	0.9787	2.6782	1.86	0.2054

Best subsets regression & SAS

```
proc reg data=example115;
  model y = x1 x2 x3 x4 /selection=ADJRSQ;
run;
```

For the selection option, SAS has implemented 9 methods in total. For best subset method, we have the following options:

- * R² Selection (RSQUARE)
- * Adjusted R² Selection (ADJRSQ)
- * Mallows' C_p Selection (CP)