Introducing Spatial Statistics

Lecture 11

Xiaofei Shi

Learning Objectives

- Understand different types of spatial datasets
- Crash course on spatial statistics

Types of spatial data

Points example - weather station measurements

Cooperative Observer Program (COOP) Network

Line example - routes

Polyon Example - US Building Footprint

Thanks to Microsoft for the BuildingFootprint dataset!

Why are there different types of data?

We often talk about records being $(X_1, X_2, X_3, ..., X_p)$

- What is the distance between X_1 and X_2 ?
- Now what if one is a line and the other is a point?
- Now what if both are polygons?

Quick note on data on Earth - projections

Image from YouTube

Spatial Statistics - modeling

Spatial Statistics - modeling

- Our belief about the data at s₁ is influenced by our expectation at that location
- Deviations from the expectations is where the neighboring data points help us understand

Model - spatial data is a noisy observation of a surface

$$Y(s_1) = m(s_1) + \epsilon(s_1)$$

$$\epsilon(s_1)|\epsilon(s_2) = N(0, Cov(s_1, s_2))$$

Kriging - the OLS of spatial modeling

$$E(Y(s_1)|Y(s_2)) = m(s_1) + Cov(s_1, s_2)Cov(s_2, s_2)^{-1}(Y(s_2) - m(s_2))$$

$$E(Y(s_1)|Y(s_2)) = m(s_1) + Cov(s_1, s_2)Cov(s_2, s_2)^{-1}(Y(s_2) - m(s_2))$$

• $Y(s_2) - m(s_2)$ is the error between our expectation and our training data

$$E(Y(s_1)|Y(s_2)) = m(s_1) + Cov(s_1, s_2) Cov(s_2, s_2)^{-1} (Y(s_2) - m(s_2))$$

- $Y(s_2) m(s_2)$ is the error between our expectation and our training data
- $Cov(s_2, s_2)^{-1}$ discounts the correlation between our training data points.

$$E(Y(s_1)|Y(s_2)) = m(s_1) + Cov(s_1, s_2)Cov(s_2, s_2)^{-1}(Y(s_2) - m(s_2))$$

- $Y(s_2) m(s_2)$ is the error between our expectation and our training data
- $Cov(s_2, s_2)^{-1}$ discounts the correlation between our training data points.
- $Cov(s_1, s_2)$ picks up covariance between the training locations and our locations of interest

$$E(Y(s_1)|Y(s_2)) = m(s_1) + Cov(s_1, s_2)Cov(s_2, s_2)^{-1}(Y(s_2) - m(s_2))$$

- $Y(s_2) m(s_2)$ is the error between our expectation and our training data
- $Cov(s_2, s_2)^{-1}$ discounts the correlation between our training data points.
- $Cov(s_1, s_2)$ picks up covariance between the training locations and our locations of interest
- m(s₁) is what we expected at location s₁

Choices for kriging - what exactly are these values?

$$E(Y(s_1)|Y(s_2)) = m(s_1) + Cov(s_1, s_2)Cov(s_2, s_2)^{-1}(Y(s_2) - m(s_2))$$

Choices for kriging - mean is a vector

$$E(Y(s_1)|Y(s_2)) = m(s_1) + Cov(s_1, s_2)Cov(s_2, s_2)^{-1}(Y(s_2) - m(s_2))$$

$$m(s) = 0$$

Choices for kriging - covariance is a matrix

$$E(Y(s_1)|Y(s_2)) = m(s_1) + Cov(s_1, s_2)Cov(s_2, s_2)^{-1}(Y(s_2) - m(s_2))$$

$$m(s) = 0$$

 $Cov(s_1, s_2) = \sigma^2 \exp(-\frac{d(s_1, s_2)}{\theta})$

Choices for kriging - distance is a matrix

$$E(Y(s_1)|Y(s_2)) = m(s_1) + Cov(s_1, s_2)Cov(s_2, s_2)^{-1}(Y(s_2) - m(s_2))$$

$$m(s)=0$$
 $Cov(s_1,s_2)=\sigma^2\exp(-rac{d(s_1,s_2)}{ heta})$ $d(s_1,s_2)$ can be the great circle distance