NIS2312-01 Fall 2023-2024

信息安全的数学基础 (1)

Answer 10-11

2023 年 10 月 27 日

Assignment 10

Problem 1

设 $\sigma = (1\ 2\ 3\ 4\ 5\ 6) \in S_6$, 求 $\langle \sigma \rangle$.

 \mathbb{H} : $\langle \sigma \rangle = \{(1), (123456), (135)(246), (14)(25)(36), (153)(264), (165432)\}.$

Problem 2

证明: $(i_1 i_2 \cdots i_r)^{-1} = (i_r i_{r-1} \cdots i_1).$

解: 当 $n \in \mathbf{Z} \setminus \{i_1, i_2, \dots, i_r\}$ 时, $(i_1 \ i_2 \ \cdots \ i_r) (i_r \ i_{r-1} \ \cdots \ i_1) (n) = n$ 是显然的, 因此考虑 $n \in \{i_1, i_2, \dots, i_r\}$ 的情况:

不失一般性的假设 $n=i_m$, 其中 $1 \leq m \leq r$, 因此 $(i_r i_{r-1} \cdots i_1)(n)=i_{m-1}$, 故 $(i_1 i_2 \cdots i_r)(i_r i_{r-1} \cdots i_1)(n)=(i_1 i_2 \cdots i_r)(i_{m-1})=i_m=n$. 显然对所有的 $n \in \{i_1, i_2, ..., i_r\}$ 成立, 故 $(i_1 i_2 \cdots i_r)(i_r i_{r-1} \cdots i_1)=(1)$, 即

$$(i_1 \ i_2 \ \cdots \ i_r)^{-1} = (i_r \ i_{r-1} \ \cdots \ i_1).$$

Problem 3

设 $\sigma \in S_n$. 证明:

$$\sigma\left(i_1\ i_2\ \cdots\ i_r\right)\sigma^{-1}=\left(\sigma(i_1)\ \sigma(i_2)\ \cdots\ \sigma(i_r)\right).$$

解: 首先考虑 $m = \sigma(i) \notin \{\sigma(i_n) | n = 1, 2, ..., r\}$ 的情况: 此时 $\sigma^{-1}(m) \notin \{i_n | n = 1, 2, ..., r\}$, 即轮换 $(i_1 i_2 \cdots i_r) (\sigma^{-1}(m)) = \sigma^{-1}(m)$, 因此等式左边对 m 作用的结果仍是 m, 此时等式右边也是 m.

其次考虑等式两边对 $\sigma(i_1)$ 的作用情况: 等式左边为 $\sigma(i_1 i_2 \cdots i_r) \sigma^{-1}(\sigma(i_1)) = \sigma(i_2)$, 等式右边为 $\sigma(i_2)$. 等式两边对其他的 $\sigma(i_n)$ 其中 n=2,3,...,r 的作用情况是一样的.

Problem 4

设 σ 为一个 n 阶置换, 集合 $X = \{1, 2, ..., n\}$. 在 X 中, 规定关系 "~":

$$k \sim l \iff$$
 存在 $r \in \mathbf{Z}$, 使 $\sigma^r(k) = l$.

- (1) 证明: \sim 是 X 的一个等价关系;
- (2) 证明: $k \sim l$ 的充分必要条件是 k = l 属于 σ 的同一个轮换;
- (3) 对于置换

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 3 & 2 & 6 & 8 & 9 & 1 & 7 & 10 & 4 & 5 \end{pmatrix},$$

试确定集合 $X = \{1, 2, ..., 10\}$ 的所有等价类.

解:

(1) 因为 $\sigma^0(k) = k$, 故反身性成立;

如果 $k \sim l$, 那么 $\sigma^r(k) = l$, 故 $\sigma^{-r}(l) = k$, 因此 $l \sim k$, 故对称性成立;

如果 $j \sim k, k \sim l$, 那么有 $1, r_2 \in \mathbf{Z}$ 使得 $\sigma^{r_1}(j) = k$ 和 $\sigma^{r_2}(k) = l$, 故 $\sigma^{r_1+r_2} = l$, 即 $j \sim l$, 因此传递性成立.

所以 \sim 是 X 上的一个等价关系;

(2) 将 σ 表示为不相交轮换的乘积 $\sigma_1\sigma_2\cdots\sigma_n$:

 \Rightarrow : 因为 $k \sim l$, 那么 $\sigma^r(k) = \sigma_1^r \sigma_2^r \cdots \sigma_n^r(k) = l$, 因此 k 和 l 必然等于 $\sigma_i^r(k)$, 其中 $1 \leq i \leq n$;

 \Leftarrow : 假如 k 和 l 属于同一个 σ_i , 那么有 $\sigma_i^r(k) = l$, 因此有 $\sigma_i^r(k) = (\sigma_1 \sigma_2 \cdots \sigma_i \cdots \sigma_n)^r(k) = \sigma_r(k) = l$, 即 $k \sim l$.

(3) 有 $\sigma = (1\ 3\ 6)(2)(4\ 8\ 10\ 5\ 9)(7)$, 故等价类是 $\{1,3,6\},\{2\},\{4,8,10,5,9\},\{7\}$.

Assignment 11

Problem 1

证明或否定 Z ⊕ Z 是循环群.

解: 假设 $\mathbf{Z} \oplus \mathbf{Z}$ 是循环群, 生成元为 (a,b), 故有 (m,n) = k(a,b), 当 $m = 0, n \neq 0$ 时, 有 a = 0, 当 $m \neq 0, n = 0$ 时, 有 b = 0, 因此生成元为 (0,0), 矛盾. 故 $\mathbf{Z} \oplus \mathbf{Z}$ 不是循环群.

Problem 2

假设 $G_1 \cong H_1$, $G_2 \cong H_2$. 证明: $G_1 \times G_2 \cong H_1 \times H_2$. 解: 假设 $\phi_1(G_1) = G_2$ 且 $\phi_2(H_1) = H_2$. 因此构造

$$\phi: G_1 \times G_2 \longrightarrow H_1 \times H_2$$

$$(a,b) \longmapsto (\phi_1(a), \phi_2(b)), \forall a \in G_1, b \in G_2.$$

- (1) 显然 ϕ 是 $G_1 \times G_2$ 到 $H_1 \times H_2$ 的映射;
- (2) 假设有 $(a,b), (a',b') \in G_1 \times G_2$, 使得 $\phi(a,b) = \phi(a',b')$, 即 $(\phi_1(a), \phi_2(b)) = (\phi_1(a'), \phi_2(b'))$. 因为 ϕ_1, ϕ_2 都是单射, 故 a = a', b = b', 于是 (a,b) = (a',b'), 则 ϕ 为单射;
- (3) 对 $\forall (h,k) \in H_1 \times H_2$, 由于 ϕ_1, ϕ_2 都是满射, 因此 $\exists a \in G_1, b \in G_2$, 使得 $\phi_1(a) = h, \phi_2(b) = k$, 故 $\phi(a,b) = (\phi_1(a), \phi_2(b)) = (h,k)$, 因此 ϕ 是满射;
- (4) ∀ $(a,b),(a',b') ∈ G_1 × G_2$ 都有

$$\phi((a,b)(a',b')) = \phi(aa',bb') = (\phi_1(aa'),\phi_2(bb'))$$

$$= (\phi_1(a)\phi_1(a'),\phi_2(b)\phi_2(b'))$$

$$= (\phi_1(a),\phi_2(b))(\phi_1(a'),\phi_2(b'))$$

$$= \phi(a,b)\phi(a',b').$$

因此 ϕ 是 $G_1 \times G_2$ 到 $H_1 \times H_2$ 的同构映射, 故 $G_1 \times G_2 \cong H_1 \times H_2$.

Problem 3

在 **Z** 中, 设 $H = \langle 3 \rangle$, $K = \langle 5 \rangle$. 证明: **Z** = H + K. 请问 **Z** 与 $H \oplus K$ 同构吗? 解: **Z** 的生成元是 1, 且 (3,5) = 1, 即 $\exists a, b \in \mathbf{Z}$ 满足 3a + 5b = 1, 因此 $\forall z \in \mathbf{Z}$, 都有

$$z = z \cdot 1 = z \cdot (3a + 5b) = 3az + 5bz \in H + K.$$

同时 $H + K \subset \mathbf{Z}$, 故 Z = H + K.

假设 $Z \cong H \oplus K$, 那么有 $H \oplus K \cong H + K$, 即有同构映射 $\phi: H \oplus K \to H + K$, 即 $\phi(h,k) = h + k$. 注意到 $15 \in H \cap K$, 因此有 $\phi(0,15) = 0 + 15 = 15 + 0 = \phi(15,0)$, 不满足单射, 故不同构.

第二部分也可以通过第一题和第二题的结论证明: 有 $\mathbf{Z} \cong H$ 和 $\mathbf{Z} \cong K$, 故 $\mathbf{Z} \oplus \mathbf{Z} \cong H \oplus K \cong \mathbf{Z}$, 与第一题结论矛盾, 故两者不同构.

Problem 4

证明: U(15) 同构于 $U(3) \times U(5)$.

解: [书上的参考答案, 但不推荐] 利用书上定理 2.4.5 可知, 证明 $U(3) \cong H$, $U(5) \cong K$ 和 U(15) 是 H 和 K 的内直积即可. $U(15) = \{1, 2, 4, 7, 8, 11, 13, 14\}$. 因为 U(5) 为 4 阶循环群, 故寻找 U(15) 中的一个 4 阶元素 (因为 U(15) 不是循环群且阶为 8, 故其元素的阶只能有 1,2 和 4, 因此 $\forall x \in U(15)$, 只要 $x^2 \neq 1$, 则 $\operatorname{ord}(x) = 4$.) 显然 2 是符合条件的, 当然 7 同样符合条件,我们给出后者的情况: 因此 $K = \langle 7 \rangle = \{1, 7, 4, 13\}$, H 同构于 U(3) 是个 2 阶循环群, 故找一个不在 K 中且阶为 2 的元素即可, 可以发现 11 符合条件,故 $H = \langle 11 \rangle = \{1, 11\}$. 又因为 G = HK 且 $H \cap K = \{e\}$,则 U(15) 的内直积为 HK 且有 $H \cong U(3)$, $K \cong U(5)$. 故 U(15) 同构于 $U(3) \times U(5)$.

解: (推荐) 构造

$$\phi: U(15) \longrightarrow U(3) \times U(5)$$
 $n \longmapsto (n \pmod{3}, n \pmod{5}),$ 其中 n 和 15 互素.

- (1) 显然 ϕ 是一个映射;
- (2) 假设有 $n_1, n_2 \in U(15)$ 使得 $\phi(n_1) = \phi(n_2)$, 那么 $(n_1 \pmod 3), n_1 \pmod 5) = (n_2 \pmod 3), n_2 \pmod 5)$, 故 $n_1 n_2 \equiv 0 \pmod 3$, $n_1 n_2 \equiv 0 \pmod 5$, 即 3 | $n_1 n_2$, 5 | $n_1 n_2$ 且 $0 \le n_1 n_2 \le 14$, 故 $n_1 = n_2$, 即 ϕ 是单射;
- (3) 因为 $|U(15)| = 8 = 2 \times 4 = |U(3)| \times |U(5)|$, 故 ϕ 是满射;
- (4) $\forall n_1, n_2 \in U(15)$, 都有 $\phi(n_1 n_2) = (n_1 n_2 \pmod{3}, n_1 n_2 \pmod{5}) = (n_1 \pmod{3}, n_1 \pmod{5})$ $(mod 5)(n_2 \pmod{3}, n_2 \pmod{5}) = \phi(n_1)\phi(n_2)$, 其中第二个等号成立是因为 $(p, ab) = 1 \Rightarrow (p, a) = 1$ 且 (p, b) = 1.

综上, ϕ 是从 U(15) 到 $U(3) \times U(5)$ 的同构映射, 故 U(15) 同构于 $U(3) \times U(5)$.

Problem 5

设 $G = G_1 \times G_2 \times \cdots \times G_n$, 每个 a_i 是 G_i 中的有限阶元素. 证明:

$$\operatorname{ord}(a_1, a_2, \dots, a_n) = [\operatorname{ord} a_1, \operatorname{ord} a_2, \dots, \operatorname{ord} a_n].$$

解: 设 $d = [\operatorname{ord} a_1, \operatorname{ord} a_2, \dots, \operatorname{ord} a_n]$, 那么 $(a_1, a_2, \dots, a_n)^d = (a_1^d, a_2^d, \dots, a_n^d) = (e_1, e_2, \dots, e_n)$, 故 $\operatorname{ord}(a_1, a_2, \dots, a_n) \mid [\operatorname{ord} a_1, \operatorname{ord} a_2, \dots, \operatorname{ord} a_n]$;

假设 $d' \in \mathbf{Z}$ 使得 $(a_1, a_2, \dots, a_n)^d = (e_1, e_2, \dots, e_n)$, 那么 $a_i^{d'} = e_i$, 故 ord $a_i \mid d'$, 因此 $d \mid d'$.

综上 $\operatorname{ord}(a_1, a_2, \dots, a_n) = [\operatorname{ord} a_1, \operatorname{ord} a_2, \dots, \operatorname{ord} a_n].$