

Departamento de Engenharia Física

Sumários e Exames de Física 1, 2015

Jaime E. Villate

Porto, julho de 2015

Copyright © 2015, Jaime E. Villate

E-mail: villate@fe.up.pt

Publicado sob a licença *Creative Commons Atribuição-Partilha* (versão 3.0). Para obter uma cópia desta licença, visite

http://creativecommons.org/licenses/by-sa/3.0/

ou envie uma carta para Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

Conteúdo

1	Sun	nários	1	
	1.1	Cinemática	2	
	1.2	Cinemática vetorial	8	
	1.3	Movimento curvilíneo	10	
	1.4	Mecânica vetorial	18	
	1.5	Dinâmica dos corpos rígidos	25	
	1.6	Trabalho e energia	31	
	1.7	Sistemas dinâmicos	39	
	1.8	Mecânica lagrangiana	44	
	1.9	Sistemas lineares	51	
	1.10	Sistemas não lineares	59	
	1.11	Ciclos limite e dinâmica populacional	66	
2	Exa	mes	73	
	2.1	Exame de época normal	73	
		2.1.1 Enunciado	74	
		2.1.2 Resolução	76	
	2.2	Exame de época de recurso	79	
		2.2.1 Enunciado	80	
		2.2.2 Resolução	82	
Bi	Sibliografia 85			

iv CONTEÚDO

Capítulo 1

Sumários

Disciplina Física 1.

Curso Mestrado Integrado em Engenharia Informática e Computação. Segundo semestre do primeiro ano.

Ano académico 2014–2015, segundo semestre.

Regente Jaime E. Villate.

Docentes Joana Ascenso, Maria Helena Braga, Victor Hugo Granados Fernandez e Jaime E. Villate.

Número de alunos 197.

Método de avaliação Distribuída (dois testes, 40%) com exame final (60%).

Aula 2,24/2/201

MOVIMENTO

Mudança de posição.

A posição é diferente para dois observadores diferentes, mas se os dois observadores estão no mesmo REFERENCIAL, a mudança de posição É a mesma

Dif. referenciais -> dif. movimente

TIPOS DE MOV.

dois gravs de lib.

mov. pendular → 1 grav de liberdade

MOVIMENTO COM LGRAU DE LIBERDADO

s -> posição (na trajetór,

DESLO CAMENTO

$$\Delta S = S(t+\Delta t) - S(t)$$

VELOCIDADE MEDIA (velocity along the) trajectory

$$\overline{U} = \Delta S \over \Delta t$$

RAPIDEZ -> IJI
(speed)

Exemplo $\frac{|\mathsf{t(h)}|}{|\mathsf{d(km)}|} = \frac{|\mathsf{t(h)}|}{|\mathsf{d(km)}|} = \frac{|\mathsf{t(h)}|$

s(t) deve ser uma função continua
$$s(t+\Delta t) = s(t)$$
 $s(t+\Delta t) = s(t)$ $s(t+\Delta t) = s$

Aula 3, 27/2/2015

EQUAÇÕES CINEMÁTICAS

$$v=\dot{s}$$
 $a_t=\dot{v}$ $a_t=\dot{s}$ $a_t=v\frac{dv}{ds}$

Equação diferencial ordinária (EDO)
$$\Rightarrow$$
 $\frac{dy}{dx} = f(x,y)$
 $y(0) = y_0$

EDO de variáveis se paráveis \Rightarrow $\begin{cases} dy = f(x)g(y) \\ y(0) = y_0 \end{cases}$

$$\Rightarrow \frac{dy}{g(y)} = f(x)dx \Rightarrow \int_{y_0}^{x} \frac{dy}{g(y)} = \int_{0}^{x} f(x)dx$$

$$\Rightarrow \text{encontra-se a solução (expressão que relacional y com x}$$

Para tornar uma das equações cinemáticas numa EDO, é necessário substituir uma das 3 variáveis por uma expressão que dependa das outras duas variáveis.

Exemplo. Voltando ao exemplo do ciclista, $V = \frac{1}{2}\sqrt{100-S^2}$

substituindo na equação v=s,

$$\frac{1}{2}\sqrt{100-5^2} = \frac{ds}{dt}$$
 (EDO de variaveis separáveis)

$$dt = \frac{2ds}{\sqrt{100-s^2}} \quad \text{ instante inicial } \rightarrow \text{Arbitra-se} \\ S(0) = 0 \implies S_{\text{final}} = 10$$

=)
$$\int_{0}^{t} dt = \int_{0}^{10} \frac{2 ds}{\sqrt{100-52}}$$
 (integrate (2/sqrt(100-5A2), 5,0,10)

$$\Rightarrow t = \pi \approx 3.141 \text{ s}$$

Observe-se que $a_t = -\frac{s}{4}$, e como s vai de o até 10, então $\overline{a_t} = -\frac{5}{4}$

Mas
$$\overline{a}_t = \frac{\Delta v}{\Delta t} \implies \Delta t = \frac{3v}{a_t} = \frac{3v}{-5/4} \frac{m/s}{m/s^2} = 4s$$

está errado porque a ackleração -5/4 é média em função da distância e não média em função de t!

PROJEÇÃO DO MOVIMENTO NUM EIXO.

Exemplo. Lançamento de um projétil.

A trajetória é uma parábola.

E mais facil analisar a projeção do movimento em dois eixos xey:

Galileu observou que, quando a resistência do ar pode ser desprezada a aceleração do

movimento em X é nula e a aceleração do movimento em y é sem pre -9.8 m (para qual quer objeto)

Equações cinemáticas da projeção em X

$$v_x = \dot{x}$$
 $a_x = \dot{v}_x$ $a_x = \ddot{x}$ $a_x = v_x \frac{dv_x}{dx}$

$$a_{x}=0$$
 $\Rightarrow \int v_{x} = constante = v_{0x}$
 $\dot{x} = v_{0x}$ $\Rightarrow \int dx = \int v_{0x} dt$

$$\Rightarrow$$
 $X = X_0 + V_{ox} + V_{ox}$

Equações cinemáticas da projeção em y

$$v_y = \dot{y}$$
 $a_y = \dot{v}_y$ $a_y = \dot{y}$ $a_y = v_y \frac{dv_y}{d\dot{y}}$

$$ay = -9.8$$
 (SI) (=9)

$$\Rightarrow dv_y = -g dt \Rightarrow v_y = v_y - gt$$

$$-g dy = v_y dv_y \Rightarrow v_y^2 = v_0 v_y^2 - 2(y - y_0)g$$

$$\Rightarrow v_{oy} - gt = \frac{dy}{dt} \Rightarrow y = y_o + v_{oy}t - \frac{1}{2}gt^2$$

em vez de memorizar essas expressões, que são válidas unicamente para aceleração constante, é melhar resolver sempre as equações cinema-ticas.

1.1 Cinemática 7

$$U_0 = 30 \, \text{M}$$
inclinada 30°

- @ hmax?
- Dalcange horizontal R?

(a)
$$y_0 = 0$$
 (b) $y = 2$ $y = 2$ $y = 9$ (c) $y = 30 \sin 30^\circ = 15$ (c) $y = 0$ $y = 0$

$$\begin{array}{cccc}
\text{Max} &= 26.46 \text{ m} \\
\text{to} &= 0 \\
\text{(y)} &= 15 \\
\text{(c)} &= 15
\end{array}$$

$$\begin{array}{cccc}
\text{Ty} &= ? \\
\text{Ty} &= ? \\
\text{Ty} &= ?$$

$$-9.8 = dv \cdot \cdot \cdot \cdot + = 3.855 s.$$

 \bigcirc

0

0

Aula 5, 6/3/2013

MOVIMENTO RELATIVO

$$\vec{a} = \vec{a} \cdot \vec{a}$$

$$\vec{Q}_p = \vec{Q}_{av} + \vec{Q}_{p/av}$$

$$\int \vec{\alpha}_{p/av} = \vec{\alpha}_{p} - \vec{\alpha}_{av} = 0$$

o passageiro flutua no avião

MOVIMENTOS DEPENDENTES

dois movimentos retilíneos

dwas variáveis
X, Y
vma restrição
(comprimento do fio)
om único grav de liberdale

 \bigcirc

$$L = \chi_b + 2\chi_c + consf.$$

$$\Rightarrow \chi_b = -2\chi_c \quad (\nabla_b = -2\nabla_c)$$

$$\alpha_b = -2\alpha_c$$

a.t = ab cost

PRODUTO ESCALAR

0

Aula 6, 10/3/2015

MOVIMENTO CURVILÍNEO

no ponto onde v=0 pode haver 2 vetores tangenciais e dois normais (antes e depois de)

êt → sentido positivo des ên → sentido da curvatura de s.

Em pontos onde v≠0, ON = Vet

$$\vec{a} = \vec{v} = \hat{v}\hat{e}_t + \hat{v}\hat{e}_t$$

Derivada de êt

A derivada de qualquer vetor com módulo constan té é perpendicular ao vetor:

 $\vec{a} \cdot \vec{a} = const. \Rightarrow 2\vec{a} \cdot \vec{a} = 0 \Rightarrow \vec{a} \perp \vec{a}$

ex(t+st

I at at

no limite ∆t→0 Dété na direção e sentido de En e:

 $\hat{\ell}_t = \lim_{\Delta \to 0} \frac{\Delta \hat{\ell}_t}{\Delta t} = \hat{\sigma} \hat{\ell}_n$

DO é também o ângulo entre ên(t) e ên(t+1) $\Rightarrow \vec{a} = \vec{v} \hat{e}_t + \frac{v^2 \hat{e}_n}{R}$ at = v = aceleração tangencial $a_n = \frac{v^2}{D} = aceleração$ normal (ou centrípeta) $w = \dot{\theta} = \frac{v}{R} = velocidade angular$ Exemplo. $\vec{r}(t) = 5t \hat{c} + \frac{3}{2}t^2 \hat{j} + 2(1-t^2)\hat{k}$ (SI) . **◆**0 ≤t ≤ 1 Determiner. @ Ult) \$ R(t) @ \$(t) \$ DS0,1 ② v=r=5î+3tĵ +4tk

Odescreva a trajetóric |V = |V| = 5|V| + 3t|V| + 4t|K $|V| = |V| = 5|V| + 25t^2 = 5|V| + t^2 = 0 \text{ porque or nao chega a serzero}$

=> \v=5\1+t2

$$\Rightarrow \Delta S_{0,1} = \int_{0}^{1} v \, dt = 5 \int_{0}^{1} \sqrt{t^{2}+1} = \frac{5}{2} (\sqrt{2} + \ln(\sqrt{2}+1))$$

$$\Delta S_{0,1} \approx 5.739$$

© Como à é constante, a trajetória é uma parábola. O vértice é o ponto onde

$$\vec{c} \cdot \vec{a} = 0 \implies 15 - 12t = 0 \implies t = \frac{5}{4}$$

$$\vec{r} (5/4) = \frac{25}{4} \hat{c} + \frac{75}{32} \hat{j} - \frac{9}{8} \hat{k}$$

PRODUTO VETORIAL

$$\vec{c} = \vec{a} \times \vec{b}$$

 $|\vec{a} \times \vec{b}| = ab sin \theta$

- propriedades $\vec{a} \times \vec{b} = -\vec{b} \times \vec{a}$ $\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \times \vec{b}) \times \vec{c} = \vec{a} \times \vec{b} \times \vec{c}$
 - $\cdot \vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c}$

ab, se, e sé se, à é perpendicular a to

ab, se, e se se, or perfection of se
$$\phi = 0$$
 ou $\phi = \pi$

$$\Rightarrow \hat{c} \times \hat{c} = \hat{j} \times \hat{j} = \hat{k} \times \hat{k} = \vec{0}$$

$$\hat{c} \times \hat{j} = \hat{k}, \hat{j} \times \hat{k} = \hat{c}, \hat{k} \times \hat{c} = \hat{j}$$

$$\frac{\partial}{\partial x} = (ax\hat{c} + bx\hat{j} + az\hat{k}) \times (bx\hat{c} + by\hat{j} + bz\hat{k})$$

$$= (ayb_z - a_zb_y) \hat{c} + (a_zb_x - axb_z)\hat{j} + (axb_y - ayb_x)\hat{k}$$

$$= \begin{vmatrix} \hat{c} & \hat{j} & \hat{k} \\ ax & ay & az \\ bx & by & bz \end{vmatrix}$$

()

Aula 7, 13/3/2015

VETORES VELOCIDADE ANGULAR E ACELERAÇÃO ANGULAR

Versor binormal $\hat{e}_b = \hat{e}_k \times \hat{e}_n$ velocidade angular $\vec{w} = \hat{\theta} \vec{e}_b$ aceleração angular $\vec{z} = \frac{d\vec{w}}{dt}$

$$\Rightarrow$$
 $\vec{G} = \vec{W} \times \vec{R}$, $\vec{Q}_n = \vec{W} \times \vec{G}$ ($\vec{R} = posição relatival$ ao centro de curvatura

toprocèses inemáticas. Malificas. CASOS ESPECIAIS

- () êt constante -> movimento retilineo (não existem)
- 2 êb constante mavimento plano

3 ê le R constantes -> MOVIMENTO CIRCULAR $\alpha_t = \ddot{u} = \frac{1}{4L} (R \dot{w}) = R \dot{w} = R \propto \Rightarrow \vec{\alpha}_t = \vec{Z} \times \vec{R}$

MOVIMENTO CIRCULAR UNIFORME

Rew constantes (2=0)

$$w = \frac{d\theta}{dt} = \frac{\Delta\theta}{\Delta t} = \frac{2\pi}{T}$$

$$período = T = \frac{\omega}{2\pi}$$

ROTAÇÃO DOS CORPOS RÍGIDOS

 $\vec{r} \cdot \vec{r} = constante$ $\Rightarrow \vec{r} \cdot \vec{r} + \vec{r} \cdot \vec{r} = 2\vec{r} \cdot \vec{v} = 0$ $\Rightarrow \vec{r} \cdot \vec{r} + \vec{r} \cdot \vec{r} = 2\vec{r} \cdot \vec{v} = 0$ $\Rightarrow \vec{r} \cdot \vec{r} + \vec{r} \cdot \vec{r} = 2\vec{r} \cdot \vec{v} = 0$ $\Rightarrow \vec{r} \cdot \vec{r} + \vec{r} \cdot \vec{r} = 2\vec{r} \cdot \vec{v} = 0$ $\Rightarrow \vec{r} \cdot \vec{r} + \vec{r} \cdot \vec{r} = 2\vec{r} \cdot \vec{v} = 0$

J=WXR

O eixo de rotação (eixo Z) é a intersexe dos planos perpendialaxs a va e va a va b. Os pontos no eixo têm v=0.

coordinadas cilíndricas

(R, O, Z)

O valor de Z não interessa

V=WXR V=RO

Se mudarmos o ponto de referência para P, $\vec{v}_{q} = \vec{w} \times \vec{R}_{q}$, $\vec{v}_{p} = \vec{w} \times \vec{R}_{p} \Rightarrow \vec{v}_{qp} = \vec{v}_{q} - \vec{v}_{p}$ $= \vec{w} \times (\vec{R}_{q} - \vec{R}_{q})$

A relocidade angular w é a mesma, independentemente do ponto de referência

(

Rotação plana dos corpos rígidos direção de w constante

$$\omega = \hat{\sigma}$$
 $\alpha = \hat{\omega}$
 $\alpha = \hat{\alpha}$
 α

Movimentos de translação e rotação dependentes.

Duas variáveis, set, mas uma relação entre elas: em to, va=0

[S=RA] => Um único grau de liberdade.

comprimento da biela (AB) = 200 mm comprimento da manivela (BC) = 75 mm $V_A = 12 \text{ m/s}$

determine as velocidades angulares da biela e da manivela nesse instante

biela:
$$\overrightarrow{W}_{b} = \overrightarrow{W}_{b} \stackrel{?}{\nearrow} + \overrightarrow{U}_{e} = \overrightarrow{U}_{B/c} = \overrightarrow{W}_{m} \times \overrightarrow{E}_{B}$$
 $\overrightarrow{CB} = 75 \left(-\cos 40^{\circ} \, \hat{c} + \sin 40^{\circ} \, \hat{f} \right) = -57.45 \stackrel{?}{\sim} +48.21 \stackrel{?}{\sim}$
 $\overrightarrow{W}_{B} = \begin{vmatrix} \hat{c} & \hat{f} & \hat{k} \\ 0 & 0 & \omega_{m} \\ -57.45 & 48.21 & 0 \end{vmatrix} = -48.21 \omega_{m} \hat{c} -57.45 \omega_{m} \hat{f}$
 $\overrightarrow{W}_{b} = \overrightarrow{U}_{B/A} + \overrightarrow{U}_{A} = \overrightarrow{W}_{b} \times \overrightarrow{AB} + \overrightarrow{U}_{A}$
 $\overrightarrow{AB} = \sqrt{200^{2} - 48.21^{2}} \stackrel{?}{c} + 48.21 \stackrel{?}{f} = 191.57 \stackrel{?}{c} + 48.21 \stackrel{?}{f}$
 $\overrightarrow{W}_{b} = \begin{vmatrix} \hat{c} & \hat{f} & \hat{k} \\ 0 & 0 & \omega_{b} \\ 191.57 \omega_{b} \stackrel{?}{f} \end{vmatrix}$
 $\overrightarrow{V}_{b} = \begin{vmatrix} \hat{c} & \hat{f} & \hat{k} \\ 0 & 0 & \omega_{b} \\ 191.57 \omega_{b} \stackrel{?}{f} \end{vmatrix}$
 $\overrightarrow{V}_{b} = 56.85$

 $l_{Nm} = -192.1$

0

LEIS DE NEWTON

1º Lei da Inértia.

Quando não atuam forças sobre um corpo, esta permanece num estado de repouso ou de movimento retilíneo e uniforme

F=0 F=0 (repause) F=0 v constante movimento retilíneo e uniforme

Ou seja, se
$$\vec{F} = \vec{0}$$
 $\implies \vec{a} = d\vec{v} = \vec{0}$

Esta lei só é válida nos referenciais inerciais inerciais

comboio com o constante

comboio numa curva

se ref1 é inercial e Vref2/ref1 é constante -> ref2 também é inercial

quantidade de movimento

$$\vec{F} = \frac{d\vec{p}}{dt}$$

O impulso de uma força é igual ào armento da grantidade de movimento que ela produz.

$$U = 60 \, \text{km} = \frac{50}{3} \, \frac{\text{m}}{\text{S}}$$

$$0 = \frac{(5\%)^2}{100^4} = \frac{50}{2\times9} = \frac{25}{289}$$
$$= 2.777...\frac{M}{52}$$
$$=) F = \frac{90\%}{200} = \frac{25}{200} \times 2500 \text{ N}$$

$$= 7 F = \frac{900\%}{300} = 2500 N$$

$$P = 900 \times 9.8 = 8820 \text{ N}$$
 O
 $F = \sqrt{8820^2 + 2500^2} =$
 $= 9167 \text{ N}$

 $\frac{O}{Peso}$ F=mg

Dinamómetros 000551

Forças de contacto

mostrar F com o dinamómoto

3° Lei de ação e reação

Qualquer objeto A que exerce uma força F sobre outro objeto B sofre SEMPRE uma força F exercida por B sobre ele.

$$\overline{F}_{B/A} + \overline{F}_{A/B} = \overline{O}$$

FB/A + FA/B = 0

FB/A + FA/B = 0

As Enicas forças que produzem

aceleração são as forças externas

Aula 9, 20/3/2013

FORÇA DE ATRITO

OLFGNIN => estático

maximento => 008 N Mais fácil Plano indinado

 \bigcirc

$$\Rightarrow \frac{Fa}{Rn} = tant = \frac{1}{\Delta X}$$

cinético:
$$\frac{Fa}{Rn} = \frac{4}{4.5}$$
 $le = \frac{Famáx}{Rn}$
 $llc = \frac{Facinético}{Rn}$

No nosso exemplo:

$$\mathcal{M}_{c} = \frac{0.11}{0.37} \approx 0.297 \qquad \frac{1}{3.8} \approx 0.263$$

$$\mathcal{M}_{c} = \frac{0.08}{0.37} \approx 0.216 \qquad \frac{1}{4.5} \approx 0.222$$

$$Uc = \frac{0.08}{0.37} \approx 0.216$$

Automóvel numa estrada horizontal

ACELERAÇÃO DE GRAVIDADE

$$g = \sqrt{\frac{\alpha_n^2 + a_{grav} - 2\alpha_n a_{grav} \cos \theta}{2}}$$

$$g = \sqrt{\frac{\alpha_n^2 + a_{grav} - 2\alpha_n a_{grav} \cos \theta}{52}}$$

$$g = 9.81 \frac{m}{52}$$

$$\frac{\sin d}{an} = \frac{\sin \theta}{g} \implies \angle = 0.085^{\circ}$$

FORÇA DE RESISTÊNCIA NOS FLUIDOS Número de Reynolds

 $N_R = lv\left(\frac{9}{n}\right)$ $g = \max_{do fluido} volúmica$

U= velocidade da carpo (3) l = tamanho do corpo (m)

N= coeficiente de viscosidade do fluido (kg)

@ NR ≈0 (muito menor que 100) (fluxo laminar)

of the proporcional a ve an

O fluido "cola-se" ao corpo e a forfa ¿ o resultado do atrito entre as camadas coladas ao corpo cas camadas en

(NR elevado (muito maior que 100)

=> Par Fr proporcional a 92 e as 0

maior menor pressão

a força é o resultado das diferença de pressão, e a pressão é proporcional a 02

Esfera de raio R NR≈0 => FR=6TNRU

NR>100 => Fr=#8R2U2

Aula 10,24/3/2015

FORÇAS NUM CORPO RÍGIDO

VETOR MOMENTO

|Mo|= |n| x projeção de Flar = |F| x projec. de TlaF Mo = Mote | Mo = | X Y | Mo = | X Fy |

Duas corças iguais e opostas mas paralelas

 $\vec{M} = \vec{r}_2, \vec{x} + \vec{r}_3$ independente do ponto de referência

escolhe-se um ponte de referência (qualquer), por exemplo, P3.

a cada força adiciona-s e subtrai-se um binário (Fi, -Fi) desde Pi até P3

· As forças Fie - Fi em Pi anulam - se, ficando Fi em P3 e o binário Mi = Fid

0

· Faz-se o mesmo para todas as forças e ao final romam-se fizzfo F=Fi+F2+Fi CoMIF-Jalan FIVA

 \bigcirc

CORPOS RÍGIDOS EM EQUILÍBRIO Aula 11. 27/3/2019

 $\vec{a} = \vec{0}$ e $\vec{Z} = \vec{0}$ ($\vec{v} = \vec{w}$ constants)

=) { \(\overline{\text} \) \(\overline{\tex

Determine as reações normais e a força de atrito nos preus, quando o automóvel está parado e quando está em mavimento mom veloc. constaite.

0

B:
$$M_p = \begin{vmatrix} -1.2 & 0.35 \\ -9000 & -9000 & -9000 & +0.35 \times 9000 & -900$$

$$R_{A} = \frac{(120 \times 9000 + 5 \times 0.35 \times 9000) / (1025)}{1.6}$$

$$\frac{R_{A}}{2} = 3420 \text{ N (em cada pneu)}$$

A:
$$M_P = \begin{cases} 0.4 & 0.35 \\ -9000 \sin \theta & -9000 \cos \theta \end{cases} = \frac{(0.35 \times 5 - 40)9000}{\sqrt{1025}}$$

$$R_{B} = \frac{(40 - 0.35 \times 5)9000}{6.6 \sqrt{1025}} = 2149N$$

 $=) Fa = \frac{0.4 RA - 1.2 RB}{0.35} = 449.4 V$ (nos 4 pneus??)

Quando o automoral está .

Conferir: RA+RB = 9000 cost, Fa = 9000 sint Quando o automóvel está em movimento, a resistência do ar faz diminuir Fa e o binário, em relação ao centro de gravidade, de Fa+Fr & menor do que MFa em repouso RA diminui R RB aumenta.

CENTRO DE MASSA

$$m = Sdm$$

 $\vec{r}_{cm} = \frac{1}{m} \vec{r}_{cm}$
 $\vec{r}_{cm} = \frac{1}{m} \vec{r}_{cm}$

$$\Rightarrow \overrightarrow{Ocm} = \frac{1}{m} \overrightarrow{SOdm}$$

$$\overrightarrow{Ocm} = \frac{1}{m} \overrightarrow{Sodm} = \frac{1}{m} \overrightarrow{Sodf}$$

TRANSLAÇÃO SEM ACELERAÇÃO o varia, mas w=constanto ANGULAR

$$= \lim_{n \to \infty} \sqrt{m \vec{a}_{cm}}$$

$$df = (R\alpha \hat{k}_0 - Rw^2 \hat{R}) dM$$
coordenadas cilindricas

 $dM_2 = RR \times dP = R^2 \times 2 dm$

Iz = SR2dm = momento de inécio

Aula 12. 7/4/2015

TRABALHO E ENERGIA sem rotação $d\vec{r} = dS\hat{\ell}_E$ → 3= \$\hat{\text{\$\tilde{c}}} = \hat{\tilde{c}}\text{\$\tilde{c}} di = dvêt + vdoên $\Rightarrow \vec{a} = at\hat{e}_t + a_n \hat{e}_n$

Segunda lei de Newton $\vec{F} = \vec{M} \vec{a} \qquad \{\vec{F}_{t} = \vec{F} \cdot \hat{c}_{t} = \vec{M} \cdot \vec{a}_{t} = \vec{F} \cdot \hat{c}_{n} = \vec{M} \cdot \vec{a}_{t}\}$ Kresultante

=> F. dr = m(a.dr) $F_t ds = mat ds$ (at = o-do-) => Ftds=modods=modo W₁₂ = F_t ds (integral de linha ao) longo de 0 SE Feds = Smodo

 $W_{12}(trajetória) = \frac{1}{2}mv_2^2 - \frac{1}{2}mv_1^2$ Teorema do trabalho e a energia cinética O trabalho realizado pela força resultante, ao longo da trajetória, é igual ao aumento da energia cinética da partícula.

ENERGIA CINÉTICA

- · Particula: Ec= = mo2 \bigcirc
- · Sistema com vários corpos rígidos

$$C_{1}$$
 C_{2}
 C_{3}

$$E_{c} = \frac{1}{2} \int_{C_1}^{C_2} dm_1 + \dots + \frac{1}{2} \int_{C_4}^{C_2} dm_4$$

em cada corpo rígido:

$$\overrightarrow{U} = \overrightarrow{U}_{CM} + \overrightarrow{W} \times \overrightarrow{Y}$$

$$\overrightarrow{V}_{CM} = \overrightarrow{V}_{CM} + \overrightarrow{W} \times \overrightarrow{V}_{CM} + \overrightarrow{W} \times \overrightarrow{V}_{CM}$$

$$\overrightarrow{V}_{CM} = \overrightarrow{V}_{CM} + \overrightarrow{W} \times \overrightarrow{V}_{CM} + \overrightarrow{W} \times$$

$$= \overrightarrow{U}_{cM} + (\overrightarrow{W}_{cM} + (\overrightarrow{W}_{cM} + (\overrightarrow{W}_{cM}) \cdot (\overrightarrow{W}_{cM} + (\overrightarrow{W}_{cM}) \cdot (\overrightarrow{W}_{cM} + (\overrightarrow{W}_{cM}) \cdot (\overrightarrow{W}_{cM} + (\overrightarrow{W}_{cM} +$$

$$|\vec{\omega} \times \vec{r}| = \omega R$$

$$\Rightarrow \frac{1}{2} \int \sigma^2 dm = \frac{1}{2} \sigma^2 \int \sigma^2 dm =$$

 \bigcirc

Aula 13, 14/4/2015

AS CONSERVATIVAS $V_{12} = \int_{\vec{r}_1} \vec{r}_2 \cdot d\vec{r}$ não depend V_{2} do percurso de integração

Energia potencial, U(F)

· Escolhe-se um ponto de referência, ro, onde $\Rightarrow V(\vec{r}) = -\int_{\vec{r}} \vec{F} \cdot d\vec{r}$

U tem unidades de força vezes distância (energia)

Exemplos

P=-mgk $= + mg(z_1 - z_2)$ =) conservativa

 $U_g = + \sum_{z=0}^{z} mgdz = + mgz$ energia potencial gravítica = peso x altura

2 Força elástica

FB = Ses alongamente

THE FA-SES ATONGAMENTE

DE FA-SES ATONGAMENTE

THE FA-SES ATONGAMENTE

 $= \vec{r}_{B} \cdot d(\vec{r}_{B} - \vec{r}_{A})$ => conservativa

 $U_e = k \int (s - s_0) ds = k \int ds' ds' = \frac{1}{2} k (s - s_0)^2$

Forças contrais (gravitação universal, por exemple

$$\begin{array}{ccc}
 & F_{p} = f(r)\hat{e}_{r} \\
 & \Rightarrow F \cdot d\vec{r} = f(r)dr & (\lim_{r \to \infty} f(r) = 0) \\
 & \Rightarrow & \text{conservativa}
\end{array}$$

$$U_{c}(r\rightarrow\infty) = 0 \implies U_{c} = -\int_{\infty}^{r} f(r) dr = -P(r) + P(a)$$

$$Primitiva$$

TEOREMA DE ENERGIA MECÂNICA

$$W_{12} = \int \left\{ \sum_{i=1}^{n} \frac{1}{c_i} \cdot d\vec{r} \right\} = E_{C_2} - E_{C_1}$$

$$\Rightarrow \underbrace{\exists_{c_2} - \exists_{c_1} = \bigvee_{conserv.} + \bigvee_{i=1}^{m} \underbrace{\exists_{i=1}^{m} (U_{i1} - U_{i2})}_{i=1}}_{= \bigvee_{i=1}^{m} (U_{i2}) - \underbrace{\exists_{i=1}^{m} (U_{i1} - U_{i2})}_{= \bigvee_{i=1}^{m} (U_{i2}) - \underbrace{\exists_{i=1}^{m} (U_{i1} - U_{i2})}_{= \bigvee_{i=1}^{m} (U_{i2})}_{= \bigvee_{i=1}^{m} (U_{i2})} = \underbrace{\bigvee_{i=1}^{m} (U_{i2})}_{= \bigvee_{i=1}^{m} (U_{i2})}_{= \bigvee_{i=$$

<u>Energia</u> me cânica Em = Ec + \(\sum_{i=1}^{m} U_i \)

ao traba (ho das forças não conservativas ao longo da trajetaria.

conservação da energia mecânica. Quando o trabalho das forças não conservativas é nulo, a energia mecânica permanece constante.

OSCILADOR HARMÓNICO SIMPLES

$$S = \overline{z} - \overline{z} eq$$

$$U = Ue + Ug$$

$$= \frac{1}{2}kz^2 + mg\overline{z}$$

$$= \frac{1}{2}k(S + \overline{z} eq)^2 - mg(S + \overline{z} eq)$$

$$= \frac{1}{2}ks^2 + ks\overline{z} eq + kz\overline{z} eq$$

$$U = Ue + Ug$$

$$= \frac{1}{2}kz^2 + mg\overline{z}$$

$$= \frac{1}{2}k(S + \overline{z} eq)^2 - mg(S + \overline{z} eq)$$

$$= \frac{1}{2}ks^2 + ks\overline{z} eq + kz\overline{z} eq$$

$$U = -mg\overline{z}$$

$$U = -mg\overline{z}$$

$$U = -mg\overline{z} + ranstante$$

Aula 15, 21/4/2015

SISTEMAS DINÂMICOS

Em duas dimensões: Sistema descrito por duas variáveis de estado, XI(t), X2(t) que são funções do tempo, e duas equações de evolução

 $\begin{cases} \dot{X}_1 = f_1(X_1, X_2) & f_1, f_2 \text{ são duas} \\ \dot{X}_2 = f_2(X_1, X_2) & \text{funções acoustinavous} \end{cases}$ definidas em qualquer ponto de espaço de fase (x,, x2)

 $\vec{u} = f_1 \hat{e}_1 + f_2 \hat{e}_2 = velocidade de fase$ define o campo de direções

Pontos de equilíbrio: pontos do espaço de fase onde fi=f2=0.

Embjurdaponto que não seja ponto de equilibrio, passa uma única curva de evolução.

caso particular -> equação diferencial de 2ª ordem (autónoma, $\dot{x} = f(x, \dot{x})$

define-se y=x. O espaço de fase é então (x,y), $\vec{u}=(y,f)$, eq. deevolugão = $\begin{cases} \dot{x}=y\\ \dot{y}=f(x,y) \end{cases}$

 \bigcirc

SISTEMAS CONSERVATIVOS

Existe uma função $H(x_1, x_2)$ (hamiltoniana) O que define todas as possíveis curvas de evolução $H(x_1, x_2) = constante$ (cada constante correspondo) a uma possíve (curva de engl

 $\Rightarrow \frac{dH}{dt} = 0 \Rightarrow \frac{\partial H}{\partial X_1} \dot{X}_1 + \frac{\partial H}{\partial X_2} \dot{X}_2 = 0 \Rightarrow \int_1^2 \frac{\partial H}{\partial X_1} + \int_2^2 \frac{\partial H}{\partial X_2} = 0$

=> (o vetor (3H, 2H) é perpendicular a u)

 $\Rightarrow \begin{cases} f_1 = \frac{2H}{2X_2} \\ f_2 = -\frac{2H}{2X_1} \end{cases} \Rightarrow \begin{cases} \dot{X}_1 = \frac{2H}{2X_2} \\ \dot{X}_2 = -\frac{2H}{2X_2} \end{cases} \text{ de evolução}$

Se um sistema dinâmico, com 2 dimensões, é conservativo, a sua divergência, 2f1+2f2 é nula

Exemplo. Um objeto de massa 0,3 kg sujeito a uma força resultante $F_t = -\frac{5t}{2} + 45^3 - \frac{3}{2}s^2 - 32s + 25$

 $\Rightarrow at = -\frac{5}{5}S^{4} + \frac{40}{5}S^{3} - 5S^{2} - \frac{320}{3}S + \frac{250}{3} = S$ tagama => variáveis de estado: (s, v) $\begin{cases} \dot{S} = 5 \\ \dot{U} = -\frac{1}{2}S^4 + \frac{10}{3}S^3 - \frac{320}{3}S + \frac{250}{3}S + \frac{250}{$

velocidade de fase:
$$U = (v, -\frac{1}{3}s^4 + \frac{1}{9}s^2 - 5s^2 - \frac{3}{2}0s + \frac{250}{3})$$

$$Divergência = 0 + 0 = 0 \implies conservativo$$

$$\left(\frac{2t}{9}t = e^{v}\right)$$

$$\left(-\frac{2}{3}t + \frac{1}{3}s^4 + \frac{40}{3}s^2 - 5s^2 - \frac{3}{2}0s + \frac{250}{3}s^3 + \frac{1}{9}0s^3 - \frac{250}{3}s + \frac{1}{9}0s^3 - \frac{250}{3}s + \frac{1}{9}0s^3 - \frac{250}{3}s + \frac{1}{9}0s^3 - \frac{250}{3}s + \frac{1}{9}0s^3 - \frac{1}{9}0s + \frac{1}{9}0s^3 - \frac{1}{9}0s + \frac{1}{9}0s^3 + \frac{1}{9}0s^3 - \frac{1}{9}0s + \frac{1}{9}0s^3 + \frac{1}{9}0s^3 - \frac{1}{9}0s + \frac{1}{9}0s^3 + \frac{1}{9}0s$$

mostrar trajetórias 2m: [7.3571,0] < n = 220(e curvas de evolução (6.6713,0) < n = 65 (-0.90090) < n = 108

GRÁFICO DE ENERGIAS (fig. 7.3)

 \bigcirc

 \Rightarrow $\phi = -\Omega = constante$

O ponto que representa o estado do sistema roda numa circum ferência de raio A, no sentido horánio e com velocidade angular o constante.

arbitrando t=0 quando p=0 $\Rightarrow p=-nt$ $\Rightarrow S = A \cos(\Omega t)$ solução do $U = -A \Omega \sin(\Omega t)$ O. H. S. $\Omega t = -A \Omega^2 \cos(\Omega t)$

ESPAÇO DE FASE (S,O)
curvas de erolufao
estado em t
ponto de
equilibrio

posição no espaço de fase: $\vec{r}_f = s\hat{e}_i + v\hat{e}_z$ deslocamento no intervalo $\Delta t : \Delta \vec{r}_f = \Delta s\hat{e}_i + \Delta v\hat{e}_z$ velocida de de fase:

 $\vec{\mathcal{U}} = \lim_{\Delta t \to 0} \frac{\Delta \vec{r}_{t}}{\Delta t} = \hat{s} \hat{e}_{1} + \hat{v} \hat{e}_{2}$ $\vec{\mathcal{U}} = \hat{v} \hat{e}_{1} + \hat{a}_{t} \hat{e}_{2}$

Campo de direções (sistemas autónomos)

basta saber

a expressão

de atem

função de

sev.

No caso do oscilador harmónico

No caso do oscilador harmónico simples: $U = \frac{1}{2}ks^2 \implies F_{res.} = -\frac{dU}{ds} = -ks$ $(=-k_2-mg)$

 $a_t = \frac{f_{res}}{m} = -\frac{1}{m} \frac{dU}{ds} = -\Omega^* \mathbf{5}$ $= 7 \quad \overrightarrow{u} = (v, -\Omega s)$

Oscilador harmónica amortecido resistência do ar Fres = - KS - C U/U/

Num caso particular, $\Omega=0.5$, $C_m=0.01$, o programa plot df pode vsar-se para mostrar o tampo de direções

plotdf ([v, -0.5*5], [s, v])
plotdf([v, -0.5*5-0.01*v*abs(v)], [s, v], [direction, of provided]

Aula 16,2015-04-21

Exemplo da aula anterior

$$H(s, \sigma) = \frac{\sigma^2}{2} + \frac{1}{3}(s^5 - 10s^4 + 5s^3 + 160s^2 - 250s) = const.$$

energia cinética por unidade de massa

Por unidade do massa = V(s)

Nos mínimos → equilíbrio estável (centro) Nos máximos → equilíbrio instável (ponto de sela)

MECÂNICA HAMILTONIANA

 $\dot{S} = \frac{2H}{2V}$ muito mais simples do que a mecânica vetorial, mas a segunda variável de estatonem sempre \mathcal{E} $V = \dot{S}$

MECÂNIA VETORIAL

Z. Mext = Icm 2

de ligação Limitações · Algumas forças externas (Rn) são uma reacto a alguma causa intermo para descobri-las há que analizan cada parte interna por separado

têmur J-Fmúscula VI Fmúscula I tíbia

• Lapenas válida em sistemas inerciais (em sistemas não inerciais há que introduzir) pseudo forças

MECÂNICA LAGRANGIANA

Coordenadas generalizadas:

{91,92,..., 9n} n=número de graus de liberdade.

Variáveis necessarias para descrever a configuração do sistema a cada instante (gié função det).

Velocidades generalizadas A cada coordenada, generalizada está associada uma velocidade generalizada q:

Estado do sistema (no espaço de fase de dimensado)

{91,92,..., 9n, 91, 92,..., 9n} Se o sistema é composto por vários corpos, cada corpo tem energia cinética

Ec= = mvcm + j Icm W2 = função de qi e qi

 \bigcirc

Equações de lagrange

$$\frac{d}{dt} \left(\frac{\partial E_c}{\partial \dot{q}_j} \right) - \frac{\partial E_c}{\partial \dot{q}_j} = Q_j \qquad , \quad j=1,2,...,n$$

$$E_c = \text{energia cinética total do sistema.}$$

Qj =
$$\sum_{i} f_{i} \cdot \frac{\partial r_{i}}{\partial q_{j}} = força generalizada$$

 $\hat{r}_{i} = ponto de aplicação da força fillores da força fillores da força fillores de ligação, mas sim as forças internas$

• As n equações de lagrange permitem en contrar as n equações de movimento

$$\begin{cases}
\ddot{q}_{1} = f_{1}(q_{i}, \dot{q}_{i}) \\
\ddot{q}_{2} = f_{2}(q_{i}, \dot{q}_{i})
\end{cases}$$

$$\begin{cases}
\ddot{q}_{1} = f_{1}(q_{i}, \dot{q}_{i}) \\
\ddot{q}_{2} = f_{2}(q_{i}, \dot{q}_{i})
\end{cases}$$

$$\begin{cases}
\ddot{q}_{1} = \sigma_{1}, \quad \dot{\sigma}_{1} = f_{1}(q_{i}, \sigma_{i}) \\
\ddot{q}_{2} = \sigma_{2}, \quad \dot{\sigma}_{2} = f_{2}(q_{i}, \sigma_{i})
\end{cases}$$

$$\begin{cases}
\ddot{q}_{1} = \sigma_{1}, \quad \dot{\sigma}_{1} = f_{1}(q_{i}, \sigma_{i}) \\
\ddot{q}_{1} = \sigma_{1}, \quad \dot{\sigma}_{2} = f_{2}(q_{i}, \sigma_{i})
\end{cases}$$

$$\begin{cases}
\ddot{q}_{1} = \sigma_{1}, \quad \dot{\sigma}_{2} = f_{2}(q_{i}, \sigma_{i}) \\
\ddot{q}_{1} = \sigma_{1}, \quad \dot{\sigma}_{2} = f_{2}(q_{i}, \sigma_{i})
\end{cases}$$

$$\begin{cases}
\ddot{q}_{1} = \sigma_{1}, \quad \dot{\sigma}_{1} = \sigma_{1}, \quad \dot{\sigma}_{2} = f_{2}(q_{i}, \sigma_{i}) \\
\ddot{q}_{1} = \sigma_{1}, \quad \dot{\sigma}_{2} = f_{2}(q_{i}, \sigma_{i})
\end{cases}$$

$$\begin{cases}
\ddot{q}_{1} = \sigma_{1}, \quad \dot{\sigma}_{1} = \sigma_{1}, \quad \dot{\sigma}_{2} = f_{2}(q_{i}, \sigma_{i})
\end{cases}$$

$$\begin{cases}
\ddot{q}_{1} = \sigma_{1}, \quad \dot{\sigma}_{1} = \sigma_{1}, \quad \dot{\sigma}_{2} = f_{2}(q_{i}, \sigma_{i})
\end{cases}$$

$$\begin{cases}
\ddot{q}_{1} = \sigma_{1}, \quad \dot{\sigma}_{1} = \sigma_{1}, \quad \dot{\sigma}_{2} = f_{2}(q_{i}, \sigma_{i})
\end{cases}$$

$$\begin{cases}
\ddot{q}_{1} = \sigma_{1}, \quad \dot{\sigma}_{1} = \sigma_{1}, \quad \dot{\sigma}_{2} = f_{2}(q_{i}, \sigma_{i})
\end{cases}$$

$$\begin{cases}
\ddot{q}_{1} = \sigma_{1}, \quad \dot{\sigma}_{1} = \sigma_{1}, \quad \dot{\sigma}_{2} = \sigma_{2}(q_{i}, \sigma_{i})
\end{cases}$$

$$\begin{cases}
\ddot{q}_{1} = \sigma_{1}, \quad \dot{\sigma}_{1} = \sigma_{1}, \quad \dot{\sigma}_{2} = \sigma_{2}(q_{i}, \sigma_{i})
\end{cases}$$

$$\begin{cases}
\ddot{q}_{1} = \sigma_{1}, \quad \dot{\sigma}_{1} = \sigma_{1}, \quad \dot{\sigma}_{2} = \sigma_{2}(q_{i}, \sigma_{i})
\end{cases}$$

$$\begin{cases}
\ddot{q}_{1} = \sigma_{1}, \quad \dot{\sigma}_{1} = \sigma_{1}, \quad \dot{\sigma}_{2} = \sigma_{2}(q_{i}, \sigma_{i})
\end{cases}$$

$$\begin{cases}
\ddot{q}_{1} = \sigma_{1}, \quad \dot{\sigma}_{1} = \sigma_{1}, \quad \dot{\sigma}_{2} = \sigma_{2}(q_{i}, \sigma_{i})
\end{cases}$$

$$\begin{cases}
\ddot{q}_{1} = \sigma_{1}, \quad \dot{\sigma}_{1} = \sigma_{1}, \quad \dot{\sigma}_{2} = \sigma_{2}(q_{i}, \sigma_{i})
\end{cases}$$

$$\begin{cases}
\ddot{q}_{1} = \sigma_{1}, \quad \dot{\sigma}_{1} = \sigma_{1}, \quad \dot{\sigma}_{2} = \sigma_{2}(q_{i}, \sigma_{i})
\end{cases}$$

$$\begin{cases}
\ddot{q}_{1} = \sigma_{1}, \quad \dot{\sigma}_{1} = \sigma_{1}, \quad \dot{\sigma}_{2} = \sigma_{2}(q_{i}, \sigma_{i})
\end{cases}$$

$$\begin{cases}
\ddot{q}_{1} = \sigma_{1}, \quad \dot{\sigma}_{1} = \sigma_{1}, \quad \dot{\sigma}_{2} = \sigma_{2}(q_{i}, \sigma_{i})
\end{cases}$$

$$\begin{cases}
\ddot{q}_{1} = \sigma_{1}, \quad \dot{\sigma}_{1} = \sigma_{1}, \quad \dot{\sigma}_{2} = \sigma_{2}(q_{i}, \sigma_{i})
\end{cases}$$

$$\begin{cases}
\ddot{q}_{1} = \sigma_{1}, \quad \dot{\sigma}_{2} = \sigma_{2}(q_{i}, \sigma_{i})
\end{cases}$$

$$\begin{cases}
\ddot{q}_{1} = \sigma_{1}, \quad \dot{\sigma}_{2} = \sigma_{2}, \quad \dot{\sigma}_{2} = \sigma_{2}$$

toxempore. Forças conservativas

$$Q_{j} = F_{cons.} \cdot \frac{2\vec{r}}{2q_{j}} = -\nabla U \cdot \frac{2\vec{r}}{2q_{j}} = -\frac{2U}{2q_{j}}$$

$$\Rightarrow \frac{d}{dt} \left(\frac{\partial E_{c}}{2q_{i}} \right) - \frac{\partial E_{c}}{2q_{i}} + \frac{2U}{2q_{i}} = Q_{j}^{n\bar{a}o} \cos s.$$

- · Energia cinética das rodas desprezável
- · Energia dissipada por atrito e resistência do des prezavel

Dois graus de liberdade: 5,X deslocamente horizontal do plano inclinado

deslocamento do carrinho sobre o plano inclinado

velocidades generalizadas: s=yelocidade
do plano inclinado

x = vel, do carrinho, relativa ao s) plano inclinada

[U = mg x sin+] (+ constantes) Ec = 1/2 M Uplano + 1/2 m Ucarrinho (aprinas translações)

· Plano = Sî $\vec{U}_{carr/plano} = \dot{X} \cos \theta \hat{i} + \dot{X} \sin \theta \hat{j} \left(|\vec{U}_{c/p}| = |\dot{X}| \right)$

=> Vcarrinho = Vcarr/plano + Uplano = (S+X cost)(+Xsint) $U_{carrinke} = 15^2 + x^2 + 25 \times cost$

$$\Rightarrow \exists c = \frac{M}{2} \dot{s}^2 + \frac{m}{2} \left(\dot{s}^2 + \dot{\chi}^2 + 2 \dot{s} \dot{\chi} \cos \theta \right)$$

$$\frac{\partial E}{\partial x} = 0 \quad \frac{\partial U}{\partial x} = \text{mg sinf} \quad \frac{\partial E}{\partial \dot{x}} = m(\dot{x} + \dot{s}\cos\theta)$$

$$\frac{d}{dt}\left(\frac{\partial tc}{\partial \dot{x}}\right) = m \ddot{x} + m \ddot{s} \cos \theta$$

$$\frac{d}{dt}\left(\frac{\partial tc}{\partial \dot{x}}\right) - \frac{\partial tc}{\partial x} + \frac{\partial V}{\partial x} = 0 \implies (\dot{x} + \dot{s}\cos\theta + g\sin\theta)$$

coordenada # 5:

0

$$\frac{2Ec}{2s} = 0 \quad \frac{2U}{2s} = 0 \quad \frac{2Ec}{2\dot{s}} = M\dot{s} + M\dot{s} + M\dot{x}\cos\theta$$

$$\frac{d}{dt}\left(\frac{\partial E_{c}}{\partial \dot{s}}\right) = M \dot{s} + M \dot{s} + M \dot{x} \cos \theta$$

$$\frac{d(3\dot{s})}{dt(3\dot{s})} - \frac{\partial t_{c}}{\partial s} + \frac{\partial U}{\partial s} = 0 \implies (M+m)\ddot{s} + m\ddot{x}\cos\theta_{2}$$

$$\ddot{S} = -\frac{(M_{+}m)g\sin\theta}{M + m\sin^2\theta} \quad (constante e negativa)$$

$$\ddot{S} = \frac{mg\sin\theta\cos\theta}{M + m\sin^2\theta} \quad (constante e positiva)$$

$$\dot{s} = \frac{\text{mgsin}\theta \cos\theta}{\text{M+msin}^2\theta}$$
 (constante e positive

Aula 17,2015-04-28

Exemplo 8.4

pêndulo simples, de massa m e comprimento L, num carrinho com aceleração horizontal constante à.

 $\rightarrow v_p^2 = \alpha^2 t^2 + L^2 \dot{\theta}^2 - 2 \alpha L \dot{\theta} t \cos \theta$

energia da esfera de massam:

$$E_c = \frac{m}{2} \left(a^2 t^2 + L^2 \dot{\theta}^2 - 2a L \dot{\theta} t \cos \theta \right)$$

 $U_g = -mgL\cos\theta$

Equação de Lagrange

$$\frac{d}{dt}\left(\frac{\partial E_c}{\partial \dot{\theta}}\right) - \frac{\partial E_c}{\partial \theta} + \frac{\partial U_g}{\partial \dot{\theta}} = 0$$
mat Lisson

d (mL2+ -maltcost) + mglsin+ = 0

m L² + mal cost + maltosino - matlosino + malsino = equação de movimento

$$\theta = \frac{a}{2}\cos\theta - \frac{g}{2}\sin\theta$$

equações dinamicas $\begin{cases} \dot{\phi} = \omega \\ \dot{w} = \frac{a}{L}\cos\theta - \frac{g}{2}\sin\theta \end{cases}$

EXEMPLO 8.5

I ch & tom tog Vcm = rcm & (rg train de girara)

força de resistência do ar = Fr = - C (Val) Vam atua no ponto a (centro aerodinâmico)

 $E_{c} = \frac{1}{2} M U_{cM}^{2} + \frac{1}{2} I_{cM} \dot{\theta}^{2} = \frac{1}{2} (M r_{cM}^{2} + I_{cM}) \dot{\theta}^{2}$ = 1 To de (feorema de eixos paralelos)

To pode ser escrito:

I = m rg onde rg = raio de giração => tc = m rg + d²

No exemplo da avia TP7,
$$r_{cm} = 63.5 \, cm$$
 $F_{s} = 0.1449 \, kg \cdot m^2$
 $\Rightarrow r_{g} = 70.3 \, cm$

Forga generalizada

 $Q_{\theta} = F_{r} \cdot \frac{3r_{a}}{2\theta}$
 $\Rightarrow Q_{\theta} = -C |v| |v| r_{a} = -C |v| |v| r_{a}$
 $\Rightarrow Q_{\theta} = -C |v| |v| r_{a} = -C |v| |v| r_{a}$
 $\Rightarrow Q_{\theta} = -C |v| |v| r_{a} = -C |v| |v| r_{a}$
 $\Rightarrow Q_{\theta} = -C |v| |v| r_{a} = -C |v| |v| r_{a}$
 $\Rightarrow Q_{\theta} = -C |v| |v| r_{a} = -C |v| |v| r_{a}$
 $\Rightarrow Q_{\theta} = -C |v| |v| r_{a} = -C |v| |v| r_{a}$
 $\Rightarrow Q_{\theta} = -C |v| |v| r_{a} = -C |v| |v| r_{a}$
 $\Rightarrow Q_{\theta} = -C |v| |v| r_{a} = -C |v| |v| r_{a}$
 $\Rightarrow Q_{\theta} = -C |v| |v| r_{a} = -C |v| |v| r_{a}$
 $\Rightarrow Q_{\theta} = -C |v| |v| r_{a} = -C |v| |v| r_{a}$
 $\Rightarrow Q_{\theta} = -C |v| |v| r_{a} = -C |v| |v| r_{a}$
 $\Rightarrow Q_{\theta} = -C |v| |v| r_{a} = -C |v| |v| r_{a}$
 $\Rightarrow Q_{\theta} = -C |v| |v| r_{a} = -C |v| |v| r_{a}$
 $\Rightarrow Q_{\theta} = -C |v| |v| r_{a} = -C |v| |v| r_{a}$
 $\Rightarrow Q_{\theta} = -C |v| |v| r_{a} = -C |v| |v| r_{a}$
 $\Rightarrow Q_{\theta} = -C |v| |v| r_{a} = -C |v| |v| r_{a}$
 $\Rightarrow Q_{\theta} = -C |v| |v| r_{a} = -C |v| |v| r_{a}$
 $\Rightarrow Q_{\theta} = -C |v| |v| r_{a} = -C |v| |v| r_{a}$
 $\Rightarrow Q_{\theta} = -C |v| |v| r_{a} = -C |v| |v| r_{a}$
 $\Rightarrow Q_{\theta} = -C |v| |v| r_{a} = -C |v| |v| r_{a}$
 $\Rightarrow Q_{\theta} = -C |v| |v| r_{a} = -C |v| |v| r_{a}$
 $\Rightarrow Q_{\theta} = -C |v| |v| r_{a} = -C |v| |v| r_{a}$
 $\Rightarrow Q_{\theta} = -C |v| |v| r_{a} = -C |v| |v| r_{a}$
 $\Rightarrow Q_{\theta} = -C |v| |v| r_{a} = -C |v| |v| r_{a}$
 $\Rightarrow Q_{\theta} = -C |v| |v| r_{a} = -C |v| |v| r_{a}$
 $\Rightarrow Q_{\theta} = -C |v| |v| r_{a} = -C |v| |v| r_{a}$
 $\Rightarrow Q_{\theta} = -C |v| |v| r_{a} = -C |v| |v| r_{a}$
 $\Rightarrow Q_{\theta} = -C |v| |v| r_{a} = -C |v| |v| r_{a}$
 $\Rightarrow Q_{\theta} = -C |v| |v| r_{a} = -C |v| r_{a}$
 $\Rightarrow Q_{\theta} = -C |v| |v| r_{a} = -C |v| r_{a}$
 $\Rightarrow Q_{\theta} = -C |v| |v| r_{a} = -C |v| r_{a}$
 $\Rightarrow Q_{\theta} = -C |v| |v| r_{a} = -C |v| r_{a}$
 $\Rightarrow Q_{\theta} = -C |v| |v| r_{a} = -C |v| r_{a}$
 $\Rightarrow Q_{\theta} = -C |v| |v| r_{a} = -C |v| r_{a}$
 $\Rightarrow Q_{\theta} = -C |v| |v| r_{a} = -C |v| r_{a}$
 $\Rightarrow Q_{\theta} = -C |v| |v| r_{a} = -C |v| r_{a}$
 $\Rightarrow Q_{\theta} = -C |v| |v| r_{a} = -C |v| r_{a}$
 $\Rightarrow Q_{\theta} = -C |v| r_{a} = -C |v| r_{a}$
 $\Rightarrow Q_{\theta} = -C |v| r_{a} = -C |v| r_{a}$

0

Aula 18, 2015-05-12

FORÇAS DE LIGAÇÃO

As forças Ti, Tz Nie N2 são
forças de ligação que fazem
diminuir os gravs de liberdade,
ficando unicamente X:
d(2tc) 2tz 221 - 0

 $\frac{d}{dt}\left(\frac{\partial t_c}{\partial \dot{x}}\right) - \frac{\partial t_c}{\partial x} + \frac{\partial U}{\partial x} = 0$

Para encontrar uma força de ligação, por exemplo

TieTz, há que escrever a respetiva condição de

ligação igual a zero:

f = x+y-k = 0 admitir que as respetivas variáveis (x e y) são idependentes e acrescentar um multiplicador de Lagrange às equações de Lagrange:

 $\frac{1}{dt}\left(\frac{\partial E_{c}}{\partial \dot{x}}\right) - \frac{\partial E_{c}}{\partial x} + \frac{\partial V}{\partial x} - \frac{\partial 2f}{\partial x} = 0$ $\text{Tensão Ti$

de (atc) - atc + ay - \large ag = 0 Tensão Te

Neste caso, como $\frac{\partial f}{\partial x} = \frac{\partial f}{\partial y} = 1 \implies T_1 = T_2 = \lambda$ (perque está a ser ignorada a roldana)

SISTEMAS LINEARES

A velocidade de fase é uma combinação linear das variáveis de estado. Em duas dimensões, um sistema dinâmico geral é: x,=f(x1,X2)

$$\dot{X}_2 = f_2(X_1, X_2)$$

Um sistema linear é caraterizado por 4 variáveis reais A11, A12, A21, e A22

*1= A11X1 +A12X2

 $\dot{X}_2 = A_{21} X_1 + A_{22} X_2$

og de forma matrizial:

 $\begin{bmatrix} \dot{X}_1 \\ \dot{X}_2 \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \end{bmatrix}$

ainda pode ser considerada uma equação vetorial

 $\frac{d\vec{r}}{d\vec{r}} = A \vec{r}$

onde $\vec{r} = (x_1, X_2)$ é a posição no espaço de fase e A é um operador linear $\mathbb{R}^2 \to \mathbb{R}^2$.

velocidade de fase $\vec{u} = A\vec{r} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \end{bmatrix}$

pontos de equilíbrio

 $\begin{vmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{vmatrix} \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

existe, pelo menos, a solução $X_1=0$, $X_2=0$. Se det (A)=0 , existem infinitas soluções.

Como det(A)=0 pode ser considerado um sistema dinâmico em apenas uma dimensão e não duas condui-se: O snico ponto de equilíbrio num

Os sistemas dinâmicos lineares é-aum unico ponto de aquilíbrio, na Brigan.

X2 / t=0 t>0

Fo X

X1

Se o estado inicial ro for diferente de zero, então o sistema evolvi seguindo uma > X, curva de evolução.

Para calcular r(t), divide-se t em n intervalos st=t e calcula-se r approximadamente, em cada subintervalo.

 $\vec{r}_{1} = \vec{r}(\frac{1}{5}) \approx \vec{r}_{0} + \frac{1}{5}\vec{l}_{0}$ $\Rightarrow \vec{r}_{1} \approx \vec{r}_{0} + \frac{1}{5}\vec{k} \vec{r}_{0}$ $\vec{r}_{2} = \vec{r}(\frac{2}{5}) \approx \vec{r}_{1} + \frac{1}{5}\vec{l}_{1}$ $\Rightarrow r_{2} \approx \vec{r}_{1} + \frac{1}{5}\vec{k} \vec{r}_{1}$

 $\vec{r}_n = \vec{r}(t) \approx \vec{r}_{n-1} + \frac{t}{n} \vec{A} \vec{r}_{n-1}$

VETORES PRÓPRIOS

Arp = Arp valor proprio vetor proprio

Año tem a mesma direção que \tilde{r}_p (e o mesmo sentido, se $\chi > 0$, ou sentido oposto, se $\chi < 0$) $\chi \neq 0$, porque $\tilde{r}_p \neq \overline{0}$)

Se o estado inicial, \vec{r}_0 , for vetor próprio de \vec{A}_1 , $\vec{r}_n \approx \vec{r}_{n-1} + \frac{t}{n} \lambda \vec{r}_{n-1}$ $\Rightarrow \vec{r}_n \approx (1 + \frac{t}{n} \lambda) \vec{r}_{n-1}$ $\approx (1 + \frac{t}{n} \lambda)^n \vec{r}_0$ No limite $n \to \infty$, o resultado é exato:

$$\vec{r}(t) = \lim_{n \to \infty} \left(1 + \frac{t\lambda}{n} \right)^n \vec{r}_0 = e^{\lambda t} \vec{r}_0$$

O estado evolvi na mesma direção de ro! (mesmo sentido, se λ>0, ou aproximando-se da origem,) Se λω

VALORES PRÓPRIOS

Aro = λro \iff $(A - \lambda 1) ro = 0$ \iff $(A_{21} \lambda_{22} \lambda) (x_{2}) = 0$ so existem soluções $\lambda \neq 0$ se:

$$\begin{vmatrix} A_{11} - \lambda & A_{12} \\ A_{21} & A_{22} - \lambda \end{vmatrix} = 0 \iff (\lambda - A_{11}) (\lambda - A_{22}) + A_{11} A_{22} - A_{12} A_{21} = 0$$

$$\Rightarrow \begin{cases} \lambda_1 + \lambda_2 = \text{tr } A \\ \lambda_2 \lambda_2 = \text{det } A \end{cases}$$

(

VALORES PRÓPRIOS COMPLEXOS

$$\begin{cases} \lambda_1 = \Delta + i \Omega \\ \lambda_2 = \Delta - i \Omega \end{cases}$$
 (\$\Delta > 0\$) \times positiva, negativa ou zero

Solução no plano complexo. Se \vec{z} é vetor próprio, $\vec{z} = \vec{z}$ e $(\alpha + i \Omega) t$ = $(\vec{a} + i \vec{b}) (e^{\alpha t} (\cos(\alpha t) + i \sin(\Omega t))$ $= \ell^{\alpha t} ((\vec{a}_s \cos(xt) - \vec{b}_s \sin(xt)) + i(\vec{a}_s \sin(xt) + \vec{b}_s \cos(xt))$

As partes real e imaginária de 2 também devem ser soluções do sistema. Como tal, existem duas soluções reais: linearmente independentes:

 $\begin{cases} \vec{r}_1 = \vec{q}_0 e^{\alpha t} \cos(\Omega t) - \vec{r}_0 e^{\alpha t} \sin(\Omega t) \\ \vec{r}_2 = \vec{q}_0 e^{\alpha t} \sin(\Omega t) + \vec{b}_0 e^{\alpha t} \cos(\Omega t) \end{cases}$

que são realmente a mesma solveão, mudando o valor de to, porque $\int \sin(\Omega t + \frac{\pi}{2}) = \cos(\Omega t)$ $\cos(\Omega t + \frac{\pi}{2}) = -\sin(\Omega t)$ $e^{\alpha t + \frac{\pi}{2}} = \cosh(\Omega t)$

CENTROS

d=0 => λ=±is2

solução geral: r=a sin(set) +to cos(set)

As curvas —

são elipses com semieixos

a e to (a + ito) é vetor próprio.

Percorridas com período

D = |x| = FREQUENCIA T=21 => D=|X|=FREQUENCH ANGULAR

 \bigcirc

FOCOS
$$\lambda = \lambda \pm i \Omega$$

r = 10 ext (a sin(2t) + 15 cos(set))

=> r= espiral com frequência angular se amplitude crescente, se No, ou decrescente SQ LLQ.

SISTEMAS LINEARES CONSERVATIVOS

$$\begin{cases} \dot{X}_1 = A_{11}X_1 + A_{12}X_2 \\ \dot{X}_2 = A_{21}X_1 + A_{22}X_2 \end{cases}$$

→ 7· 1 = A11 + A22 = tr A

=> O ponto de equilíbrio pode ser centro ou ponto de sela.

SISTEMAS MECÂNICOS LINEARES

Com um grav de liberdade z eq. de movimento av+5 noma, $\ddot{x} = f(x, \dot{x})$

$$\Rightarrow \begin{cases} \dot{x} = 0 \\ \dot{v} = f(x, v) = C_x x + C_v v \end{cases} = \begin{pmatrix} (x & e(v) & sao \\ constantes \end{pmatrix}$$

@ Oscilador Harmónico, Cx=-1220 (centro)

Aula 19, 2015-05-15

Exemplo.
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

$$\Rightarrow \begin{cases} \lambda_1 + \lambda_2 = 5 \\ \lambda_1 \lambda_2 = 4 - 6 = -2 \end{cases} \Rightarrow \begin{cases} \lambda_1 = \frac{5}{2} + \Delta \end{cases} \text{ discriminants}$$

$$\lambda_1 \lambda_2 = \frac{25}{4} - \Delta^2 = -2$$
 $\Delta = \sqrt{\frac{25}{7} + 2} > \frac{5}{2}$

$$\Rightarrow \begin{cases} \lambda_1 = \frac{5 + \sqrt{33}}{2} > 0 \\ \lambda_2 = \frac{5 - \sqrt{33}}{2} < 0 \end{cases}$$

VETORES PROPRIOS

$$\begin{bmatrix} 1-\lambda & 2 \\ 3 & 4-\lambda \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

 $\begin{bmatrix} 1-\lambda & 2 \\ 3 & 4-\lambda \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ basta resolver uma das equações, porque são equivalentes

(i)
$$\lambda_1 = \frac{5+\sqrt{33}}{2}$$
 : $\left(1-\frac{5+\sqrt{33}}{2}\right) X_1 + 2X_2 = 0$

(ii)
$$\lambda_1 = \frac{5 - \sqrt{33}}{2}$$
: $3X_1 + \left(4 - \frac{5 - \sqrt{33}}{2}\right) \times_2 = 0$
 $X_1 = -\frac{\sqrt{33} + 3}{6} \times_2 \left(\frac{\text{declive. negativo}}{\text{no plano}(X_1, X_2)} \right)$

Retrato de fase

0

Aula 20, 2015-05-19

OSCILADOR AMORTECIDO

 $\ddot{s} = -\Omega^2 s - \lambda^{\dagger} v \quad (amortecimento viscoso)$

amortecedor de automóvel. amortecedor de automóvel.

Mola elástica com cilindro
com pistao que se desloca dentro de 6 ko.

$$\begin{cases} \dot{S} = 0 \\ \dot{v} = -\Omega^2 S - \lambda^2 0 \end{cases}$$

$$A = \begin{bmatrix} 0 & 1 \\ \Omega^2 - \lambda \end{bmatrix} \quad \text{fr } A = -\alpha \angle 0 \\ \text{det } A = \Omega^2 \\ \text{(sistema estavel)} \end{cases}$$

$$\lambda = -\frac{\alpha}{2} + \sqrt{(\frac{\alpha}{2})^2 - \Omega^2}$$

$$A = \begin{bmatrix} 0 & 1 \\ -n^2 - \lambda \end{bmatrix}$$

$$tr A = -\alpha \angle 0$$

 $det A = 52^2$
istema estável)

$$\lambda = -\frac{1}{2} \pm \sqrt{\left(\frac{1}{2}\right)^2 - \Omega^2}$$

- @ \$ > se. Nó atrativo. Amortecimento forte
- © ≤=12. No improprio atrativo. Amorte cimento crítico
- © \$ L.S. Foco atrativo. Amortecimento fraco

se s chega a ser zero, é tempo de modar o amortecedor SISTEMAS NÃO LINEARES

 $\begin{cases} \dot{x} = f(x, y) \\ \dot{y} = g(x, y) \end{cases} = \frac{1}{2} \left(\frac{1}{2} + \frac{1}{$

o pontos de equilibrio: (f(x,y)=0 x 2g(x,y)=0 nulcl

A aproximação é melho, x quanto menor sejam (y-y0) e (X-X0)

Se (x0, y0) for ponto de equilibrio, fo=f(x0, y0)=0

$$= \int f(x,y) \approx \frac{2f}{2x}\Big|_{(x_0,y_0)} x_1 + \frac{2f}{2y}\Big|_{(x_0,y_0)} x_2 \begin{pmatrix} x_1 = x - x_0 \\ x_2 = y - y_0 \end{pmatrix}$$

o mesmo para g: $g(x,y) \approx \frac{2g}{2x} \left(x_{2},y_{2} \right) \times \frac{2g}{2y} \left(x_{2},y_{2} \right)$

Como X,=x e X2=y, as equações de evolucao são

$$\begin{cases} \dot{X}_{1} \approx J_{11}(X_{0}, y_{0}) X_{1} + J_{12}(X_{0}, y_{0}) X_{2} \\ \dot{X}_{2} \approx J_{21}(X_{0}, y_{0}) X_{1} + J_{22}(X_{0}, y_{0}) X_{2} \end{cases}$$
 (sist. linear)

onde ous funções Jij(x,y) são as componentes da Matriz Jacobiana:

$$J(x,y) = \begin{bmatrix} 2f & 2f \\ 2x & 2y \\ 2y & 2y \end{bmatrix}$$

 $J(x,y) = \begin{bmatrix} 2f & 2f \\ 2x & 2y \end{bmatrix}$ Se bouver n pontos de equilibrio, p_1, \dots, p_n) existinao n a proximações lineares com matrizes $J(p_1), \dots, J(p_n)$

Exemplo. $\dot{x} = 6y(y^2+x^2-1)^2-3x^2y^2$ $\dot{y} = 2xy^3-6x(y^2+x^2-1)^2$

f: 6*y*(y12+X12-1)12-3*X12*y12\$

g: 2*x*y13 - 6*x*(y12+**x12-1)12\$

p: solve([f,g]); (13 solvetes, mas 4 complexas)

p: append (rest(p,-6), rest(p,11)); (nove pointos)

J: jacobian ([f,g],[x,y]);

A: makelist(subst(q,J), q, P);

- → A, corresponde a um centro (p, é um centro)

 → A 2, A3, A4 e A5 tem determinante nulo.

 Isso quer dizer que a aproximação linear
 em p2, p3, p4 e p5 não é suficiente. Seria
 necessário considerar termos quadráticos
- p2, p3, p4e p5 são Pontos não hiperbólicos (nem focos, nem n6s, nem centros, nem se las) ()
 - -> A6 e A2 têm determinante negativo → poe pz são pontos de sela
 - -> As e Ag têm traço nulo e determinante positivo: => ps e pg pontos de seta
 - 3 centros: (0,0), (1,1), (1,1)
 - · 4 pontos não hiperbólicos: (0,±1), (±1,0)
 - · 2 pontos de sela:

0

Retrato de fase

(a) no campo trajectory_at → 0.005 1.005 (6rbita heteroci)
(b) fieldlines → black, trajectory_at → (0 0.8 (5 ciclos))
(c) 0 1.4
(c) 0.5
(c) 0.98 0.98
(-0.98 0.98)

© fieldlines -> blue, trajectory -at -> [0.5773 0.6502 (2 bibitas homoclinicas) \[-0.5773 0.6502

(1 orbita heteroclinica)

O PÊNDULO

(1)

$$\frac{\dot{\theta} = -k \sin \theta}{\dot{w} = -k \sin \theta}$$

$$\frac{\dot{w} = -k \sin \theta}{(k > 0)}$$

pontos de equilíbrio:

$$\begin{cases} w=0 \\ = 7 \end{cases} + = n\pi, \quad n \in \mathbb{Z}$$

 $\begin{cases} \sin \theta = 0 \end{cases}$

(a) n par =)
$$\cos \theta = 1$$
 =) $A = \begin{bmatrix} 0 & 1 \\ -k & 0 \end{bmatrix}$
 $\det(A) = k > 0$ =) centros

(b) n impar
$$\Rightarrow$$
 cost = -1 \Rightarrow det(A) = -k20
 \Rightarrow pontos de sela

ESPAÇOS DE FASE COM 3 OU MAIS DIMENSÕES

Exemplo 1. Duas variáveis de estado, X, Xe e equações de evolução não autónomas $\dot{x}_1 = f_1(x_1, x_2, t)$ $\dot{x}_2 = f_2(x_1, x_2, t)$

D'Com resistència de an e projétil = espera

de raio R e massa valura m

Tr = -
$$\frac{\pi}{4}$$
 $\Re^2 |\vec{v}|$ \vec{v}

massa volúmica do ar $\approx 1.2 \frac{kg}{m3}$

$$\alpha_{x} = -\frac{\pi g R^{2}}{4m} \sigma_{x} \sqrt{\sigma_{x}^{2} + \sigma_{y}^{2}}$$

$$\alpha_{y} = -\frac{\pi g R^{2}}{4m} \sigma_{y} \sqrt{\sigma_{x}^{2} + \sigma_{y}^{2}} - 9.8$$

Programa rk[$V \times \phi$, $V \times \phi$]: float($12 \times [\cos(\%pi/4), \sin(\%pi/4)]$) $c(R, m) := -\%pi \times 1.2 \times R \times 12/4/m$ $v: sqrt(<math>V \times \Lambda 2 + V \times V \wedge 2$) \$

bola de fénis $\Rightarrow R = 3.25 \text{ cm} \quad m = 62 \text{ g}$ tr1: rk(tox, oy, c(0.0325, 0.062) * vx*v, c(0.0325, 0.062) * vy*v - 9.8 J, $\text{[x,y,vx,oy]}, [\phi, \rho, \text{vx}\rho, \text{vy}\rho],$ [t,p,2,p,p]

first (sublist_indices (tr1, lambda([p], p[3] Lo)));

> 167

r1: make[ist [[tr1[i][2], tr2[i][3], i, 1, 166)\$

Aula 22, 26/5/2015

Exemplo $\dot{x} = x (1-2x^2-3y^2)-y$ $\dot{y} = y (1-2x^2-3y^2)+x$

fx: X x (1-2 x x \ 2-3 x y \ 2) - y \$

fy: y * (1-2* x ^2-3* y ^2) + x\$

Pontos de equilíbrio

 $solve(Efx,fy]) \rightarrow (0,0)$

Aproximação linear

J: jacob ian ([fx, fy], [x,y]);

A: subst (%03, T); -> A=[1, -17]

caraterização do ponto de equilibrio

eigenvalues (A); -> n=1 ± i

=> fo co repulsivo

Retrato de fase

plotdf([fx,fy],[x,y],[x,-0.4,0.4],[y,-0.4,0.4]);

aparentemente é un sistema instavel, mas na realidade é estável: plot df ([fx,fy], [x, y], [x,-40,40], [x,-40,40]) CICLO LIMITE plotdf(EX,fy), [x,y], [x,-1,1], [y,-1,17)

Exemplos = Religio de péndulo
Oscilação da corda de um violino. O

Coordena das polares

px: r * cos(9)\$ py: rx sin (g) grader (r,+,v)\$ grades(g,t,w)\$

eg1: subst([x=px,y=py], diff(px,t)=fx);
eg2: subst([x=px,y=py], diff(py,t)=fy); sólve ([eq1, eq2], [v, w]

Focotive repul. - ciclo atrativo

atrativo/rapulaivo

Retrato de fase

DINÂMICA POPULACIONAL

X(t) = população no instante t, admitindo que possa ter qualquer valor real.

possa ter qualquer valor real.

$$\dot{X} = f(X,t) \qquad \begin{cases}
Xf > 0 \\
f(0,t) = 0 \\
f(x,t) = taxa de natodidade \\
X = stockade da população$$
Andelo de Maltux

@ Modelo de Maltux

$$\frac{f(x,t)}{x} = a = constante positiva$$

$$\Rightarrow a dx = a dt$$

$$\Rightarrow \frac{dx}{x} = adt$$
 $x = xolat$ armento exponencial

6 Modelo logistico

$$\dot{x} = x(a - bx)$$

 $\dot{x} = x(a-bx)$ a = taxa de natalidade constante

(a>0, b>0)
<math>bx = taxa de mortalidad carmenta com a populaci

pontos de equilíbrio

$$X(a-bX) = 0 \Rightarrow X = \begin{cases} 0 \\ \frac{a}{b} > 0 \end{cases}$$

jacobiana
$$J(x) = \int_{dx}^{dx} = a - 2bx$$
abroximação (inear

$$A_1 = a - 2a = -a < 0$$

$$\Rightarrow$$
 x=0 é instavel e x= $\frac{a}{b}$ é estavel

SISTEMAS DE DUAS ESPÉCIES

$$\dot{y} = f(x,y) \qquad \begin{cases} x(x,y) = 0 \\ y \neq 0 \end{cases} \qquad g(x,y) = 0$$

$$\dot{y} = g(x,y) \qquad g(x,y) = 0$$

$$J(x,y) = \begin{bmatrix} 2f & 2f \\ 2x & 2y \end{bmatrix}$$
 $2f & 2g + axas de \\ 2x & 2g & avmento proprias de cada população$

2f -> influência da espécie y na espécie X.
2f >0: a espécie y favorece o crescimento
2f 20: a espécie y incrementa a extingadoux
2f 20: a espécie y incrementa a extingadoux
2y

(iii) 2f e 29 negativas -> sistema com competição

$$p_2 = \left(\frac{d}{b}, \frac{a}{c}\right)$$

$$T(x,y) = \begin{bmatrix} a-y & c \\ b & b \\ b & d \end{bmatrix}$$

$$A_2 = \begin{bmatrix} 0 & cd \\ ab \\ c \end{bmatrix} \quad \text{tr } A_2 = 0 \quad \Rightarrow \lambda_1 = -\lambda_2$$

$$\det A_2 = -ad \Rightarrow \lambda_{1,2} = \pm i \sqrt{ad'}$$

 $(\frac{1}{b}, \frac{a}{c})$ \(\int \text{ um centro}, \text{ com ciclos de período} \\ \T = \frac{2\pi}{100}

Medelo de Holling-Tanner

$$\dot{X} = X \left(1 - \frac{X}{7} \right) - \frac{6X9}{7+7X}$$

$$\dot{y} = \underbrace{y}_{5} \left(1 - \underbrace{y}_{2x} \right)$$

presas
$$\rightarrow \times$$
 predadores $\rightarrow y$ $\frac{2f}{2y} = -\frac{6}{7+7x} \angle 0$ (crescimento $\frac{3}{100}$ para $\times ey$) $\frac{3}{2x} = \frac{y^2x}{10x^2} > 0$

$$(-7, -4), (1, 2)$$

$$P_{1} = (0,0) \quad p_{2} = (7,0) \quad p_{3} = (1,2)$$

$$J(X,y) = \begin{bmatrix} 1 - \frac{2}{7}X - \frac{6y}{1+7x} + \frac{42xy}{1+7x} & -\frac{6}{7+7x} \\ \frac{y^{2}}{10x^{2}} & \frac{1}{5} - \frac{y}{5x} \end{bmatrix}$$

$$A_{2} = \begin{bmatrix} -1 & -\frac{3}{4} \\ 0 & \frac{1}{5} \end{bmatrix} \quad \text{tr } A_{2} = \text{PMB} - \frac{1}{5} \\ \text{det } A_{2} = -\frac{1}{5} \quad \text{(ponto de seh}$$

$$A_{1} = \begin{bmatrix} 0 & 0 \\ 0 & \frac{1}{5} \end{bmatrix} \quad \text{wetr } \text{Metal} \quad \text{lim}_{1} + \frac{1}{5} - 0 = \frac{1}{5} \\ \text{x=0, lim}_{1} + \frac{1}{5} - \frac{y}{0} \rightarrow -\infty$$

$$A_{3} = \begin{bmatrix} \frac{1}{7} & -\frac{3}{7} \\ \frac{2}{5} & -\frac{1}{5} \end{bmatrix} \quad \text{det } A_{3} > 0 \quad \text{e} \quad \text{det } A_{3} > \frac{1}{2} \text{tr } A_{3} > 0$$

$$A_{3} = \begin{bmatrix} \frac{1}{7} & -\frac{3}{7} \\ \frac{2}{5} & -\frac{1}{5} \end{bmatrix} \quad \text{det } A_{3} > 0 \quad \text{e} \quad \text{det } A_{3} > \frac{1}{2} \text{tr } A_{3} > 0$$

$$A_{3} = \begin{bmatrix} \frac{1}{7} & -\frac{3}{7} \\ \frac{2}{5} & -\frac{1}{5} \end{bmatrix} \quad \text{det } A_{3} > 0 \quad \text{e} \quad \text{det } A_{3} > \frac{1}{2} \text{tr } A_{3} > 0$$

$$A_{3} = \begin{bmatrix} \frac{1}{7} & -\frac{3}{7} \\ \frac{2}{5} & -\frac{1}{5} \end{bmatrix} \quad \text{det } A_{3} > 0 \quad \text{e} \quad \text{det } A_{3} > 0$$

$$A_{3} = \begin{bmatrix} \frac{1}{7} & -\frac{3}{7} \\ \frac{2}{5} & -\frac{1}{5} \end{bmatrix} \quad \text{det } A_{3} > 0 \quad \text{e} \quad \text{det } A_{3} > 0$$

$$A_{3} = \begin{bmatrix} \frac{1}{7} & -\frac{3}{7} \\ \frac{2}{5} & -\frac{1}{5} \end{bmatrix} \quad \text{det } A_{3} > 0 \quad \text{e} \quad \text{det } A_{3} > 0$$

$$A_{3} = \begin{bmatrix} \frac{1}{7} & -\frac{3}{7} \\ \frac{2}{5} & -\frac{1}{5} \end{bmatrix} \quad \text{det } A_{3} > 0 \quad \text{e} \quad \text{det } A_{3} > 0$$

$$A_{3} = \begin{bmatrix} \frac{1}{7} & -\frac{3}{7} \\ \frac{2}{5} & -\frac{1}{5} \end{bmatrix} \quad \text{det } A_{3} > 0 \quad \text{e} \quad \text{det } A_{3} > 0$$

$$A_{3} = \begin{bmatrix} \frac{1}{7} & -\frac{3}{7} \\ \frac{1}{7} & -\frac{3}{7} \\ \frac{1}{7} & \frac{1}{7} & \frac{1}{7} & \frac{1}{7} \\ \frac{1}{7} & \frac{1}{7} & \frac{1}{7} & \frac{1}{7} \\ \frac{1}{7} & \frac{1}{7} & \frac{1}{7} & \frac{1}{7} & \frac{1}{7} \\ \frac{1}{7} & \frac{1}{7} & \frac{1}{7} & \frac{1}{7} \\ \frac{1}{7} & \frac{1}{7} & \frac{1}{7} & \frac{1}{7} & \frac{1}{7} \\ \frac{1}{7} & \frac{1}{7} & \frac{1}{7} & \frac{1}{7} & \frac{1}{7} \\ \frac{1}{7} & \frac{1}{7} \\ \frac{1}{7} & \frac{1}{7}$$

Capítulo 2

Exames

2.1 Exame de época normal

O exame realizou-se no dia 26 de junho de 2015. Compareceram 123 estudantes e a nota média foi 9.2 valores. A seguir mostra-se o enunciado de uma das cinco versões. Nas outras versões mudam os valores numéricos, a ordem das perguntas e alguns pormenores que não alteram significativamente as perguntas.

Nome:

FACULDADE DE ENGENHARIA UNIVERSIDADE DO PORTO

Duração 2 horas. Prova com consulta de formulário e uso de computador. O formulário pode ocupar apenas uma folha A4 (frente e verso) e o computador pode ser usado unicamente para realizar cálculos e não para consultar apontamentos ou comunicar com outros! Use $q = 9.8 \text{ m/s}^2$.

1. (4 valores) Na figura, a massa do cilindro A é 36 gramas, a massa do cilindro B é 24 gramas e o momento de inércia da roldana dupla é $4.43 \times 10^{-7} \text{ kg} \cdot \text{m}^2$. A roldana está formada por dois discos, de raios 5 cm e 8 cm, colados um ao outro. Cada cilindro está ligado a um fio com o extremo oposto ligado à roldana, de forma que o fio enrola-se ou desenrola-se, sem deslizar sobre a roldana, quando esta roda. Desprezando o atrito no eixo da roldana e a resistência do ar, determine os valores das acelerações de cada cilindro e diga se são para cima ou para baixo.

2. (4 valores) No sistema dinâmico com equações de evolução:

$$\dot{x} = -y$$
$$\dot{y} = 10 x + k(x+y)$$

onde k é um parâmetro real que pode ter qualquer valor entre $-\infty$ e $+\infty$, determine para quais possíveis valores de k o ponto (x,y) = (0,0) é nó atrativo ou repulsivo, foco atrativo ou repulsivo, centro ou ponto de sela.

PERGUNTAS. Respostas certas, 0.8 valores, erradas, -0.2, em branco, 0.

- **3.** Um cilindro de massa m e raio R roda sobre uma superfície plana, sem derrapar. Sabendo que o momento de inércia, em relação ao centro de massa, de um cilindro é dado pela expressão $\frac{1}{2} m R^2$, determine a expressão para a energia cinética, em função da velocidade v do centro de massa.
 - (A) $\frac{1}{2} m v^2$ (C) $\frac{3}{4} m v^2$ (E) $m v^2$ (B) $\frac{1}{4} m v^2$ (D) $\frac{3}{2} m v^2$

Resposta:

- 4. Um bloco de massa 4 kg desce deslizando sobre a superfície de um plano inclinado, partindo do ponto A com valor da velocidade igual a 3 m/s e parando completamente no ponto B. As alturas dos pontos A e B, medidas na vertical desde a base horizontal do plano, são: $h_B = 10$ cm e $h_A = 100$ cm. Calcule o trabalho realizado pela força de atrito, desde A até B.
 - (**A**) -41.5 J
- (C) -37.6 J
- **(E)** -45.4 J

- **(B)** -49.4 J
- **(D)** -53.3 J

Resposta:

- 5. O vetor posição de um ponto, em função do tempo, é dado pela expressão: $2t^2 \hat{i} + (t^4 + 2) \hat{j}$ (unidades SI). Calcule o ângulo entre os vetores velocidade e posição, no instante t = 1.
 - (A) 23.8°
- (C) 4.5°
- **(E)** 18.1°

- **(B)** 14.7°
- (**D**) 11.3°

Resposta:

- 6. Um homem empurra um bloco de madeira sobre uma superfície horizontal. Sobre o bloco está pousado um livro. Considerando as forças seguintes:
 - 1. Força de contato entre as mãos do homem e o bloco.
 - 2. Peso do livro.
 - 3. Força de atrito produzida pela superfície horizontal.

Quais dessas forças atuam sobre o bloco de madeira?

- (**A**) 2 e 3
- **(C)** 1
- **(E)** 1, 2 e 3

- **(B)** 1 e 2
- (**D**) 1 e 3

Resposta:

7. O bloco na figura, com massa igual a 7 kg, desloca-se para a esquerda, com velocidade inicial \vec{v}_0 , sobre uma superfície horizontal. Sobre o bloco atua uma força externa \vec{F} , horizontal e constante, com módulo igual a 42 N. O coeficiente de atrito cinético entre o bloco e a superfície é igual a 0.25. Calcule o módulo da aceleração do bloco.

- (A) 24.85 m/s^2
- (C) 8.45 m/s^2
- (E) 6.0 m/s^2

- **(B)** 59.15 m/s^2
- (**D**) 3.55 m/s^2

(A)
$$\dot{x} = -3y$$
 $\dot{y} = 3x$

(D)
$$\dot{x} = -3x$$
 $\dot{y} = -3y$

(B)
$$\dot{x} = 3y$$
 $\dot{y} = -3y$

(E)
$$\dot{x} = 3x$$
 $\dot{y} = 3y$

(C)
$$\dot{x} = 3x \quad \dot{y} = -3y$$

- 9. O espaço de fase de um sistema dinâmico é o plano xy. Em coordenadas polares, as equações de evolução são $\dot{\theta} = -3$, $\dot{r} = r^3 + r^2 - 2r$. Que tipo de ponto de equilíbrio é a origem?
 - (A) nó repulsivo
- (D) foco repulsivo
- (B) nó atrativo
- (E) foco atrativo
- (C) ponto de sela

Resposta:

- 10. A força tangencial resultante sobre um corpo é $F_{\rm t}$ = s(s+1)(s+2)(s-1)(s-2). Quantos pontos de equilíbrio instável tem este sistema mecânico?
 - (**A**) 5
- **(C)** 2
- (\mathbf{E}) 1

- **(B)** 4
- **(D)** 3

Resposta:

- 11. O espaço de fase de um sistema dinâmico é o plano xy. Em coordenadas polares, as equações de evolução são $\dot{\theta} = -3$, $\dot{r} = r^3 + 2r^2 + r$. Quantos ciclos limite tem o sistema?
 - (A) 4
- **(C)** 3
- $(\mathbf{E}) 0$

- **(B)** 2
- **(D)** 1

Resposta:

- 12. As equações de evolução de um sistema linear são: $\dot{x} = -x - 4y$ $\dot{y} = 4x - y$ Como variam x e y em função do tempo?
 - (A) Oscilam com período π e amplitude crescente.

- (B) Oscilam com período igual a π e amplitude constante.
- (C) Oscilam com período π e amplitude decrescente.
- (D) Oscilam com período $\pi/2$ e amplitude decrescente.
- (E) Oscilam com período $\pi/2$ e amplitude crescente.

Resposta:

- 13. A posição de um ponto ao longo de um percurso, em função do tempo, é dada pela expressão $s = 30 t - 5 t^2$ (SI). Determine a distância percorrida pelo ponto entre t=0 e t = 4.5 s.
 - (**A**) 45 m
- (C) 11.25 m
- **(E)** 14.25 m

- (**B**) 78.75 m
- (**D**) 56.25 m

Resposta:

- 14. Calcule o momento de inércia de uma esfera com raio de 2 centímetros e massa 101 gramas, que roda à volta de um eixo tangente à superfície da esfera, sabendo que o momento de inércia de uma esfera de raio R e massa m à volta do eixo que passa pelo centro é $2 m R^2/5$.
 - (A) $1.62 \times 10^{-5} \text{ kg} \cdot \text{m}^2$
- (**D**) $8.08 \times 10^{-6} \text{ kg} \cdot \text{m}^2$ (**E**) $5.66 \times 10^{-5} \text{ kg} \cdot \text{m}^2$
 - **(B)** $3.23 \times 10^{-5} \text{ kg} \cdot \text{m}^2$
- (C) $2.89 \times 10^{-5} \text{ kg} \cdot \text{m}^2$

Resposta:

15. Se x > 0 e y > 0, qual dos seguintes sistemas é um sistema de duas espécies, com competição?

(A)
$$\dot{x} = x^2 + xy$$
 $\dot{y} = y^2 + xy$

(B)
$$\dot{x} = xy - x^2$$
 $\dot{y} = y^2 - x^2$

(C)
$$\dot{x} = y^2 - xy$$
 $\dot{y} = x^2 - xy$

(D)
$$\dot{x} = y^2 - xy$$
 $\dot{y} = x^2 + xy$

(E)
$$\dot{x} = x^2 - xy$$
 $\dot{y} = y^2 - xy$

Resposta:

- 16. Calcule o raio de curvatura da trajetória dum ponto, num instante em que o vetor velocidade é $5\hat{i} + 7\hat{j}$ e o vetor aceleração é $-2\hat{i} + 5\hat{j}$ (unidades SI).
 - (**A**) 16.32 m
- (C) 25.46 m
- **(E)** 2.96 m

- (**B**) 1.9 m
- (**D**) 14.15 m

Resposta:

- 17. Quando se liga um PC, o disco rígido demora 1.8 s, a partir do repouso, até alcançar a velocidade normal de operação de 7200 rotações por minuto. Admitindo aceleração angular constante durante esse intervalo, determine o valor da aceleração angular
 - (A) 279 rad/s^2
- (C) 838 rad/s^2
- (**E**) 182 rad/s^2

- **(B)** 419 rad/s^2
- (**D**) 209 rad/s^2

76 Exames

2.1.2 Resolução

Problema 1. **Método 1**. Se h_A e h_B são as alturas dos dois cilindros, numa posição inicial, quando a roldana roda um ângulo θ , no sentido anti-horário, as alturas dos cilindros são:

$$y_{\rm A} = h_{\rm A} - 0.05 \theta$$
 $y_{\rm B} = h_{\rm B} + 0.08 \theta$

Assim sendo, o sistema tem um único grau de liberdade, que pode ser o ângulo θ . As expressões para as velocidades e acelerações dos cilindros são então:

$$v_{A} = -0.05 \omega$$
 $v_{B} = 0.08 \omega$
 $a_{A} = -0.05 \alpha$ $a_{B} = 0.08 \alpha$

onde $\omega = \dot{\theta}$ é a velocidade angular da roldana e $\alpha = \ddot{\theta}$ é a sua aceleração angular. A expressão para a energia cinética do sistema é:

$$E_{\rm c} = \frac{0.036}{2} (-0.05\,\omega)^2 + \frac{0.024}{2} (0.08\,\omega)^2 + \frac{4.43 \times 10^{-7}}{2}\,\omega^2 = 1.220215 \times 10^{-4}\,\omega^2$$

E a energia potencial gravítica, ignorando termos constantes, é:

$$U = -0.036 \times 9.8 \times 0.05\theta + 0.024 \times 9.8 \times 0.08\theta = 1.176 \times 10^{-3}\theta$$

Aplicando a equação de Lagrange, obtém-se a aceleração angular:

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial E_{\mathrm{c}}}{\partial \omega} \right) - \frac{\partial E_{\mathrm{c}}}{\partial \theta} + \frac{\partial U}{\partial \theta} = 2.44043 \times 10^{-4} \,\alpha - 0 + 1.176 \times 10^{-3} = 0 \quad \Longrightarrow \quad \alpha = -4.8188$$

O sinal negativo indica que a roldana acelera no sentido horário. Como tal, a aceleração do bloco A é para cima e a do bloco B é para baixo, e os seus valores absolutos são:

$$a_{\rm A} = 0.05 \times 4.8188 = 0.2409 \,\mathrm{m \cdot s^{-2}}$$
 $a_{\rm B} = 0.08 \times 4.8188 = 0.3855 \,\mathrm{m \cdot s^{-2}}$

77

Método 2. A figura ao lado mostra os diagramas de corpo livre para a roldana e para cada um dos cilindros. Admitindo que a aceleração $a_{\rm A}$ do cilindro A é para cima, então a aceleração $a_{\rm B}$ do cilindro B é para baixo e a aceleração angular α da roldana é no sentido horário. As três equações de movimento são:

$$T_A - 0.036 \times 9.8 = 0.036 a_A$$

 $0.024 \times 9.8 - T_B = 0.024 a_B$
 $0.08 T_B - 0.05 T_A = 4.43 \times 10^{-7} \alpha$

junto com as duas equações:

$$a_{\rm A} = 0.05 \, \alpha$$
 $a_{\rm B} = 0.08 \, \alpha$

tem-se um sistema de 5 equações lineares com 5 incógnitas, T_A , T_B , α , a_A e a_B . A solução desse sistema dá os mesmos valores já encontrados no método 1 para a_A e a_B , com sinais positivos, que indica que o sentido arbitrado para as acelerações foi o correto.

Problema 2. Existem várias formas possíveis de resolver este problema; um método simples é o seguinte. Trata-se de um sistema linear com matriz:

$$\begin{bmatrix} 0 & -1 \\ 10+k & k \end{bmatrix}$$

com traço, t, e determinante, d;

$$t = k$$
 $d = k + 10$

A relação entre o traço e o determinante é d = t + 10. Num plano em que o eixo das abcissas representa o traço t e o eixo das ordenadas representa o determinante d, esta relação é uma reta com declive igual a 1, que corta o eixo das abcissas em $t_0 = -10$.

A curva que delimita a região dos focos da região dos nós é a parábola $d = t^2/4$, que corta a reta d = t + 10 nos dois pontos onde:

$$\frac{t^2}{2} - 2t - 20 = 0 \implies t = 2 \pm \sqrt{44} \implies t_1 = 2 - 2\sqrt{11} \approx -4.633 \qquad t_2 = 2 + 2\sqrt{11} \approx 8.633$$

O gráfico seguinte mostra a reta e a parábola:

O ponto de equilíbrio é ponto de sela, se o traço for menor que t_0 , nó atrativo, se o traço estiver entre t_0 e t_1 , foco atrativo, se o traço estiver entre t_1 e 0, centro se o traço for nulo, foco repulsivo, se o traço estiver entre 0 e t_2 ou nó repulsivo, se o traço for maior que t_2 . Tendo em conta que t_2 e igual ao traço, o resultado é então:

- Ponto de sela, se k < -10
- Nó atrativo, se $-10 < k \le 2 2\sqrt{11}$
- Foco atrativo, se $2 2\sqrt{11} < k < 0$
- Centro, se k = 0
- Foco repulsivo, se $0 < k < 2 + 2\sqrt{11}$
- Nó repulsivo, se $k \ge 2 + 2\sqrt{11}$

Note-se que quando k=-10, o ponto de equilíbrio é não-hiperbólico, que não corresponde a nenhuma das categorias acima. Quando $k=2\pm 2\sqrt{11}$, o ponto é nó impróprio, que já foi incluído nas categorias acima.

Perguntas

3. C

8. D

13. D

4. D

9. E

14. E

5. D

10. D

15. E

6. D

11. E

16. A

7. C

12. D

17. B

2.2 Exame de época de recurso

O exame realizou-se no dia 14 de julho de 2015. Compareceram 67 estudantes e a nota média foi 9.3 valores. A seguir mostra-se o enunciado de uma das cinco versões. Nas outras versões mudam os valores numéricos, a ordem das perguntas e alguns pormenores que não alteram significativamente as perguntas.

UNIVERSIDADE DO PORTO

EIC0010 — FÍSICA I — 1° ANO, 2° SEMESTRE

14 de julho de 2015

Nome:

Duração 2 horas. Prova com consulta de formulário e uso de computador. O formulário pode ocupar apenas uma folha A4 (frente e verso) e o computador pode ser usado unicamente para realizar cálculos e não para consultar apontamentos ou comunicar com outros! Use $q = 9.8 \text{ m/s}^2$.

- 1. (4 pontos) Um homem com 72 kg empurra uma caixa de madeira com 8 kg sobre um chão horizontal, exercendo uma força horizontal nela que a faz deslizar no chão. Sobre a caixa está pousado um livro com 0.6 kg. O homem, a caixa e o livro deslocam-se conjuntamente, com aceleração igual a 0.5 m/s². Determine o valor das forças de atrito entre o chão e a caixa, entre a caixa e o livro e entre o chão e os pés do homem, ignorando a resistência do ar e sabendo que os coeficientes de atrito estático (μ_e) e atrito cinético (μ_c) são: entre o chão e a caixa, $\mu_e = 0.25$ e $\mu_c = 0.2$; entre a caixa e o livro, $\mu_e = 0.35$ e $\mu_{\rm c}=0.28$; entre o chão e os pés do homem, $\mu_{\rm e}=0.4$ e $\mu_{\rm c}=0.3$.
- 2. (4 pontos) O sistema dinâmico:

$$\dot{x} = y + x(x^2 + y^2)$$
 $\dot{y} = -x + y(x^2 + y^2)$

tem um ponto de equilíbrio na origem. Use as substituições $x=r\cos\theta$, $y=r\sin\theta$ para transformar as equações de evolução para coordenadas polares. Encontre as expressões para \dot{r} e $\dot{\theta}$ em função de r e θ . Explique (con argumentos válidos) que tipo de ponto de equilíbrio é a origem e quantos ciclos limite existem.

PERGUNTAS. Respostas certas, 0.8 valores, erradas, -0.2, em branco, 0.

com que velocidade se desloca o bloco A para cima?

- (\mathbf{A}) 36 cm/s
- (C) 54 cm/s
- $(\mathbf{E}) 9 \text{ cm/s}$

- (\mathbf{B}) 6 cm/s
- (**D**) 18 cm/s

Resposta:

- 4. A força resultante sobre um objeto de massa 2 kg é $\vec{F} = 7 \hat{\imath} + 5 t \hat{\jmath}$ (SI). Se a velocidade do objeto em t = 0 for $3\hat{\imath} + 4\hat{\jmath}$ m/s, calcule a velocidade em t = 6 s.
 - (A) $21.0\,\hat{\imath} + 45.0\,\hat{\jmath}$
- **(D)** $45.0\,\hat{\imath} + 94.0\,\hat{\jmath}$
- **(B)** $24.0\,\hat{\imath} + 19.0\,\hat{\jmath}$
- **(E)** $24.0\,\hat{\imath} + 49.0\,\hat{\jmath}$
- (C) $24.0\,\hat{\imath} + 45.0\,\hat{\jmath}$

Resposta:

- 5. Um primeiro cilindro, com massa 30 g, fica em equilíbrio a uma altura de 40 cm quando é pendurado de uma mola vertical. Substituindo o primeiro cilindro por outro de massa 31 g, este fica em equilíbrio a uma altura de 34 cm. Determine o valor da constante elástica da mola.
 - (A) 17 mN/m
- (C) 82 mN/m
- (\mathbf{E}) 33 mN/m

- (B) 163 mN/m
- (**D**) 327 mN/m

Resposta:

3. No instante em que o bloco B desce com velocidade 18 cm/s, 6. A figura mostra o gráfico da posição de um ponto ao longo da sua trajetória em função do tempo. Se a_1 e a_6 representam a aceleração tangencial nos dois instantes t=1 e t=6, qual das afirmações é correta?

- (A) $a_1 > 0, a_6 > 0$
- **(D)** $a_1 = 0, a_6 = 0$
- **(B)** $a_1 < 0, a_6 > 0$
- **(E)** $a_1 > 0, a_6 < 0$
- (C) $a_1 < 0, a_6 < 0$

Resposta:

- 7. A componente tangencial da força resultante sobre uma partícula de massa 2 (unidades SI) é dada pela expressão 4s+7v, onde s é a posição na trajetória e v o valor da velocidade. Qual das matrizes na lista é a matriz do respetivo sistema dinâmico linear?

8.	A aceleração tangencial de um objeto verifica a expressão $a_{\rm t}=4s^2$ (unidades SI), em que s é a posição na trajetória. Se o objeto parte do repouso em $s=1$ m, determine o valor absoluto da sua velocidade em $s=2$ m.				do plano com velocidade $2\sqrt{\frac{gh}{3}}$. Um segundo cilindro, com o mesmo raio e massa mas densidade que depende da distância ao eixo, atinge uma velocidade $\sqrt{\frac{10gh}{7}}$ no
	(A) 3.57 m/s (B) 5.66 m/s	(C) 4.99 m/s (D) 2.83 m/s	(E) 4.32 m/s		mesmo plano inclinado, partindo do repouso e rodando sem derrapar. Qual é a expressão do momento de inércia do segundo cilindro, em relação ao seu eixo?
	Resposta:				(A) $\frac{2}{5}mR^2$ (C) $\frac{3}{5}mR^2$ (E) $\frac{1}{5}mR^2$
9.	Um piloto de corridas de aviões, com 100 kg, executa um loop vertical de 400 m de raio, com velocidade constante em módulo. Sabendo que a força vertical exercida no piloto pela base do assento do avião é igual a 2450 N, no ponto mais baixo do loop, calcule a mesma força no ponto mais alto do loop.				(A) $\frac{2}{5} m R^2$ (C) $\frac{3}{4} m R^2$ (E) $\frac{1}{3} m R^2$ (B) $\frac{3}{5} m R^2$ (D) $\frac{2}{3} m R^2$ Resposta:
				10	
				13.	Qual das seguintes equações podera ser uma das equações de evolução num sistema predador presa?
	(A) 2450 N	(C) 1470 N	(E) 490 N		
	(B) 980 N	(D) 245 N			(A) $\dot{y} = x + xy^2$ (D) $\dot{y} = 2y^2 - 3y$
	Resposta:				(B) $\dot{y} = 2y - 5y^2$ (E) $\dot{y} = -5xy + 2y$ (C) $\dot{y} = 6y - y^2$
n	Numa máquina de	Atwood penduram.	se dois blocos A e		-

10. Numa máquina de Atwood penduram-se dois blocos A e B nos extremos de um fio que passa por uma roldana; o bloco A, mais pesado, desce com aceleração constante e o 14. A equação diferencial: bloco B, mais leve, sobe com o mesmo valor da aceleração. Considerando as forças seguintes:

- 1. Forca de contacto no eixo da roldana.
- 2. Peso do bloco A.
- 3. Peso do bloco B.

Quais dessas forças atuam sobre a roldana?

- (**A**) 1 e 2
- **(C)** 1
- **(E)** 2 e 3

- **(B)** 1 e 3
- **(D)** 1, 2 e 3

Resposta:

11. Um sistema dinâmico com duas variáveis de estado tem um único ponto de equilíbrio na origem e um ciclo limite. Qual poderá ser a matriz jacobiana do sistema na origem?

$$(\mathbf{A}) \begin{bmatrix} 1 & 1 \\ 2 & -1 \end{bmatrix} \qquad (\mathbf{C}) \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix} \qquad (\mathbf{E}) \begin{bmatrix} 1 & 1 \\ -1 & 2 \end{bmatrix}$$

$$(\mathbf{B}) \begin{bmatrix} -1 & 1 \\ -1 & 2 \end{bmatrix} \qquad (\mathbf{D}) \begin{bmatrix} 1 & -1 \\ -2 & 1 \end{bmatrix}$$

Resposta:

12. O momento de inércia de um cilindro de massa m, raio Re densidade constante, em relação ao seu eixo, é $mR^2/2$. Quando esse cilindro roda sem derrapar num plano inclinado de altura h, partindo do repouso, chega ao fim

Resposta:

$$\ddot{x} - x^2 - 3x - 2 = 0$$

é equivalente a um sistema dinâmico com espaço de fase (x, \dot{x}) . Qual dos pontos na lista é um ponto de equilíbrio do sistema?

$$(A)$$
 $(1, 0)$

(C) (-3, 0)

(E) (3, 0)

$$(\mathbf{D}) (-1, 0)$$

Resposta:

15. Lança-se um projétil desde uma janela a 4.2 m de altura, com velocidade de 14 m/s, inclinada 30° por cima da horizontal. Desprezando a resistência do ar, calcule a altura máxima atingida pelo projétil.

- (**A**) 14.2 m
- (C) 6.7 m
- **(E)** 9.2 m

- **(B)** 5.5 m
- (**D**) 11.7 m

Resposta:

16. Calcule o valor da componente tangencial da aceleração dum ponto, num instante em que o vetor velocidade é $2\hat{i} + 4\hat{j}$ e o vetor aceleração é $-5\hat{i} + 8\hat{j}$ (unidades SI).

- (A) 22.0 m/s^2 (C) 9.39 m/s^2 (E) 8.05 m/s^2 (B) 36.0 m/s^2 (D) 4.92 m/s^2

Resposta:

17. Num sistema que se desloca no eixo dos x, a força resultante é $x^2 + x - 2$. Na lista seguinte, qual dos valores corresponde à posição x dum ponto de equilíbrio instável?

- (**A**) -1
- **(C)** -2
- **(E)** 2

- **(B)** 3
- **(D)** 1

82 Exames

2.2.2 Resolução

Problema 1. Existem quatro pontos de contacto entre corpos rígidos:

- 1. Entre a base do livro e a tampa da caixa.
- 2. Entre a base da caixa e o chão.
- 3. Entre os pés do homem e o chão.
- 4. Entre as mãos do homem e a parede lateral direita da caixa (admitindo que está a ser empurrada para a esquerda).

Em 1 há reação normal, N_1 , vertical, e força horizontal, F_1 , de atrito estático porque o livro não está a deslizar sobre a caixa. Em 2 há força de reação normal, N_2 , vertical, e força horizontal, F_2 , de atrito cinético, porque a caixa desliza sobre o chão. Em 3 há reação normal, N_3 , vertical, e força horizontal, F_3 , de atrito estático porque os pés do homem não derrapam sobre o chão (se derrapassem, a caixa não acelerava). Em 4 há apenas reação normal, N_4 , porque o enunciado diz que a força que o homem exerce na caixa é horizontal.

A figura seguinte mostra os diagramas de corpo livre do livro, da caixa e do homem.

A força de atrito estático F_1 deve atuar sobre o livro de direita para esquerda, para que o livro acelere para a esquerda. O mesmo acontece com a força de atrito estático F_3 atuando no homem. Essas duas forças não podem ultrapassar o valor máximo, μ_e N, mas podem ter qualquer valor entre 0 e esse valor máximo. A força de atrito cinético F_2 é no sentido oposto ao movimento da caixa e tem módulo igual a $F_2 = \mu_c$ $N_2 = 0.2$ N_2 . Os pesos do livro, da caixa e do homem são: $P_1 = 5.88$ N, $P_c = 78.4$ N e $P_h = 705.6$ N.

As duas equações de movimento de translação do livro são (unidades SI):

$$N_1 = 5.88$$

 $F_1 = m_1 a = 0.6 \times 0.5 = 0.3$

As equações de movimento de translação da caixa são:

$$N_2 = 78.4 + N_1 = 84.28$$

 $N_4 - F_1 - F_2 = m_c a$ \implies $N_4 = 8 \times 0.5 + 0.3 + 0.2 \times 84.28 = 21.156$

E as equações de movimento de translação do homem são:

$$N_3 = 705.6$$

 $F_3 - N_4 = m_h a$ \Longrightarrow $F_3 = 72 \times 0.5 + 21.156 = 57.156$

O valor máximo que pode ter F_1 é $0.35\,N_1=2.058$ e o valor máximo possível de F_3 é $0.4\,N_3=282.24$. Como os resultados obtidos não ultrapassam esses valores máximos, esses resultados são válidos e a resposta é: a força de atrito entre a caixa e o livro é $0.3\,N$, a força de atrito entre a caixa e o chão é $0.2\times84.28=16.856\,N$ e a força de atrito entre o chão e os pés do homem é $57.156\,N$.

Problema 2. As derivadas das expressões $x = r \cos \theta$ e $y = r \sin \theta$ são:

$$\dot{x} = \dot{r}\cos\theta - r\dot{\theta}\sin\theta$$
$$\dot{y} = \dot{r}\sin\theta + r\dot{\theta}\cos\theta$$

Substituindo nas equações de evolução, obtém-se as equações de evolução em coordenadas polares:

$$\dot{r}\cos\theta - r\dot{\theta}\sin\theta = r\sin\theta + r^3\cos\theta$$
$$\dot{r}\sin\theta + r\dot{\theta}\cos\theta = -r\cos\theta + r^3\sin\theta$$

que são duas equações lineares para \dot{r} e $\dot{\theta}$. Aplicando qualquer método de resolução de equações lineares, obtém-se essas duas expressões. Por exemplo, o método de eliminação; multiplicando a primeira equação por $\cos\theta$ e a segunda por $\sin\theta$,

$$\dot{r}\cos^2\theta - r\dot{\theta}\sin\theta\cos\theta = r\sin\theta\cos\theta + r^3\cos^2\theta$$
$$\dot{r}\sin^2\theta + r\dot{\theta}\sin\theta\cos\theta = -r\sin\theta\cos\theta + r^3\sin^2\theta$$

e somando as duas equações obtêm-se a expressão para \dot{r}

$$\dot{r} = r^3$$

Multiplicando a primeira equação de evolução por $\sin \theta$ e a segunda por $\cos \theta$,

$$\dot{r}\sin\theta\cos\theta - r\dot{\theta}\sin^2\theta = r\sin^2\theta + r^3\sin\theta\cos\theta$$
$$\dot{r}\sin\theta\cos\theta + r\dot{\theta}\cos^2\theta = -r\cos^2\theta + r^3\sin\theta\cos\theta$$

e subtraindo a primeira equação da segunda obtêm-se a expressão para $\dot{\theta}$

$$r\dot{\theta} = -r$$
 \Longrightarrow $\dot{\theta} = -1$ (se: $r \neq 0$)

Fora da origem, r é positiva e, como tal, $\dot{r} = r^3$ é sempre positiva. Ou seja, o estado do sistema afasta-se sempre da origem (r aumenta). Enquanto o estado se afasta da

84 Exames

origem, dá várias voltas no sentido negativo (sentido dos ponteiros do relógio), porque $\dot{\theta}$ é igual a -1. Isso implica que a origem é um foco repulsivo e não existe nenhum ciclo limite.

As expressões para \dot{r} e $\dot{\theta}$ também podem ser obtidas no Maxima com os seguintes comandos:

Perguntas

3. E

4. E

5. B

6. B

7. A

8. E

9. E

10. C

11. E

12. A

13. E

14. D

15. C

16. D

17. D

Bibliografia

- Acheson, D. (1997). From calculus to chaos. Oxford, UK: Oxford University Press.
- Alonso, M., & Finn, E. J. (1999). Física. Reading, MA, USA: Addison-Wesley.
- Antunes, F. (2012). *Mecânica Aplicada. Uma Abordagem Prática*. Lisboa, Portugal: Lidel, edições técnicas, Lda.
- Arnold, V. I. (1987). *Métodos Matemáticos da Mecânica Clássica*. Editora Mir: Moscovo, Rússia.
- Banks, B. W. (2000). *Differential Equations with Graphical and Numerical Methods*. Upper Saddle River, NJ, USA: Pearson.
- Beer, F. P., & Johnston Jr, E. R. (2006). *Mecânica vetorial para engenheiros: Dinâmica* (7a ed.). Rio de Janeiro, Brasil: McGraw-Hill editora.
- Blanchard, P., Devaney, R. L., & Hall, G. R. (1999). *Ecuaciones diferenciales*. México, DF, México: International Thomson Editores.
- Borelli, R. L., & S, C. C. (1998). *Differential equations: a modeling perspective*. México, DF, México: John Wiley & Sons, Inc.
- Devaney, R. L. (1992). A first course in chaotic dynamical systems: theory and experiment. USA: Westview Press.
- Edwards, C. H., & Penney, D. E. (2004). *Differential equations. computing and modeling* (3a ed.). Pearson Education, Inc.: New Jersey, USA.
- Farlow, S. J. (1994). *An introduction to Differential Equations and their Applications*. Singapore: McGraw-Hill.
- Fiedler-Ferrara, N., & Prado, C. P. C. (1994). *Caos: uma introdução*. São Paulo, Brasil: Editora Edgard Blücher.
- French, A. P. (1971). *Newtonian mechanics*. New York, NY, USA: W. W. Norton & Company.
- Galilei, G. (1638). *Dialogue Concernig Two New Sciences*. Itália: Publicado em: http://galileoandeinstein.physics.virginia.edu/tns_draft/. (Tradução de 1914,

86 Bibliografia

- por H. Crew e A. de Salvio)
- Garcia, A. L. (2000). *Numerical methods for physics*. Englewood Cliffs, NJ, USA: Prentice-Hall.
- Gerthsen, C., Kneser, & Vogel, H. (1998). *Física* (2a ed.). Lisboa, Portugal: Fundação Calouste Gulbenkian.
- Gregory, R. D. (2006). Classical mechanics. Cambridge, UK: Cambridge University Press.
- Guckenheimer, J., & Holmes, P. (2002). *Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields*. Berlim, Alemanha: Springer-Verlag.
- Hand, L. N., & Finch, J. D. (1998). *Analytical mechanics*. Cambridge, UK: Cambridge University Press.
- José, J. V., & Saletan, E. J. (1998). *Classical dynamics: a contemporary approach*. Cambridge University Press: Cambridge, UK.
- Kallaher, M. J. (Ed.). (1999). *Revolutions in Differential Equations. Exploring ODEs with Modern Technology*. The Mathematical Association of America: Washington, DC, USA.
- Kibble, T. W. B., & Berkshire, F. H. (1996). *Classical Mechanics* (4a ed.). Essex, UK: Addison Wesley Longman.
- Kittel, C., Knight, W. D., & Ruderman, M. A. (1965). *Mechanics. berkeley physics course, volume 1*. New York, NY, USA: McGraw-Hill.
- Lynch, S. (2001). *Dynamical systems with applications using MAPLE*. Boston, MA, USA: Birkhaüser.
- Maxima Development Team. (2014). Maxima Manual (5.35.1 ed.).
- Meriam, J. L., & Kraige, L. G. (1998). *Engineering mechanics: Dynamics* (4a ed.). New York, NY, USA: John Wiley & Sons, Inc.
- Monteiro, L. H. A. (2002). Sistemas Dinâmicos. São Paulo, Brasil: Livraria da Física.
- Nayfeh, A. H., & Balachandran, B. (2004). *Applied nonlinear dynamics*. Weinheim, Alemanha: WILEY-VCH Verlad GmbH & Co.
- Newton, I. (1687). *Princípios Matemáticos da Filosofia Natural*. Lisboa, Portugal: Fundação Calouste Gulbenkian. (Tradução de J. R. Rodrigues, 2010)
- Redfern, D., Chandler, E., & Fell, R. N. (1997). *Macsyma ODE lab book*. Boston, MA, USA: Jones and Bartlett Publishers.
- Sanchez, D. A., Allen Jr., R. C., & Kyner, W. T. (1988). *Differential equations* (2a ed.). USA: Addison-Wesley.

Bibliografia 87

Solari, H. G., Natiello, M. A., & Mindlin, G. B. (1996). *Nonlinear dynamics*. Institute of Physics Publishing: Bristol, UK.

- Spiegel, M. R., Lipschutz, S., & Spellman, D. (2009). *Vector analysis*. New York, NY, USA: Mc Graw-Hill.
- Strogatz, S. H. (2000). *Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry and Engineering.* Cambridge, MA, USA: Perseus Books.
- Taylor, J. R. (2005). Classical mechanics. Sausalito, CA, USA: University Science Books.
- Thornton, S. T., & Marion, J. B. (2004). *Classical dynamics of particles and systems* (5a ed.). Belmont, USA: Thomson, Brooks/Cole.
- Villate, J. E. (2007). *Introdução aos sistemas dinâmicos: uma abordagem prática com maxima*. Porto, Portugal: Edição do autor.
- Villate, J. E. (2015). *Dinâmica e sistemas dinâmicos* (3a ed.). Porto, Portugal: Edição do autor.