(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平4-356617

(43)公開日 平成4年(1992)12月10日

(51) Int.Cl.5

識別記号

庁内整理番号

FΙ

技術表示箇所

F 2 3 Q 2/16

101 Z 8918-3K

審査請求 未請求 請求項の数4(全 5 頁)

(21)出願番号

特願平3-192498

(22)出願日

平成3年(1991)7月5日

(31)優先権主張番号 特願平2-217330

(32)優先日

平2 (1990) 8月17日

(33)優先権主張国

日本(JP)

(71)出願人 591167485

岩堀 雅行

静岡県静岡市中田本町15番19号

(72) 発明者 岩堀 雅行

静岡県静岡市中田本町15番19号

(74)代理人 弁理士 長野 光宏

液化石油ガスの気化及び流量制限装置 (54) 【発明の名称】

(57)【要約】

【目的】圧力容器内に気密に収容した液化石油ガスの気 化及び流量制限を行ない、気化ガスを弁を介してノズル より放出するようにした喫煙用ガスライター、点火具、 携帯用ガスボンベ等の装置において、気化ガスの放出量 を常に安定させる。

【構成】 弁の上流側に約30~200μm径の開孔を 備えたオリフィスを配設すると共に該オリフィスの上流 側に疎水性を有する微多孔性膜を配設した液化石油ガス の気化及び流量制限装置。好ましくはオリフィスと微多 孔性膜との間に厚さ約0.1~0.3mmの不織布を介 在させる。

20

【特許請求の範囲】

【請求項1】 圧力容器内に気密に収容した液化石油ガ スの気化及び流量制限を行ない、気化ガスを弁を介して ノズルより放出するようにした装置において、弁の上流 傾に約30~200µm径の開孔を備えたオリフィスを 配設すると共に該オリフィスの上流側に疎水性を有する 微多孔性膜を配設したことを特徴とする液化石油ガスの 気化及び流量制限装置。

【請求項2】前記オリフィスと微多孔性膜との間に厚さ 約0.1~0.3 mmの不織布を介在させたことを特徴 10 とする請求項1記載の液化石油ガスの気化及び流量制限 装置。

【請求項3】 圧力容器内に気密に収容した液化石油ガ スの気化及び流量制限を行ない、気化ガスを弁を介して ノズルより放出するようにした装置において、弁座部材 に約30~200µm径の開孔を備えさせると共に該弁 座部材の上流側に疎水性を有する微多孔性膜を配設した ことを特徴とする液化石油ガスの気化及び流量制限装 置。

【請求項4】 前記弁座部材と微多孔性膜との間に厚さ 約0.1~0.3mmの不織布を介在させたことを特徴 とする請求項3記載の液化石油ガスの気化及び流量制限 装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、圧力容器内に気密に収 容した液化石油ガスの気化及び流量制限を行ない、気化 ガスを弁を介してノズルより放出するようにした装置、 例えば喫煙用ガスライター、点火具、携帯用ガスポンペ 等、における液化石油ガスの気化及び流量制限装置に関 30 するものである。

[0002]

【従来の技術】圧力容器内に気密に収容した液化石油ガ スの気化及び流量制限を行ない、気化ガスを弁を介して ノズルより放出するようにした装置における液化石油ガ スの気化及び流量制限装置としては下記のものが既に知 られている。

- (1) 圧縮した多孔性の弾性体により液化石油ガスの気 化及び流量制限を行なわせるようにしたもの。即ち、液 化石油ガスを圧縮した多孔性の弾性体中を通過させるこ とにより液化石油ガスの気化及び流量制限を行なうよう にしたもの。
- (2) 特開昭51-148576号公報に示すように、 微多孔性膜のみにより液化石油ガスの気化及び流量制限 を行なわせるようにしたもの。同公報は微多孔性膜の下 流側に気化室なる空間を設けた事例をも開示している。

[0003]

【発明が解決しようとする課題】上記(1)の圧縮した 多孔性の弾性体により液化石油ガスの気化及び流量制限

るという利点を有するものの、経時に伴い当該弾性体の 物性が変化し気化ガスの放出量が変動する傾向がある。 従って、経時により炎高さがどのように変化し、ばらつ くかを予測した上で製造時の炎高さを設定しなければな らないため、高度な製造技術が要求されるという問題が ある。上記(2)の微多孔性膜のみにより液化石油ガス の気化及び流量制限を行なわせるようにした装置は、上 記(1)の装置における上述の如き問題を解決するため に開発されたものであるが、喫煙用ガスライター、点火 具、携帯用ガスボンペ等に使用する場合には微多孔性膜 の透過有効径(液化石油ガスが透過可能な微多孔性膜の 直径) は約2~5mmと非常に小さい。しかして、微多 孔性膜の透過有効面積は透過有効径の二乗に比例するこ とから、透過有効径における僅かなばらつきも液化石油 ガスの流量を大きく変動させることになる。従って、微 多孔性膜のみにより液化石油ガスの気化及び流量制限を 行なわせるようにした上記(2)の装置においては、微 多孔性膜における透過有効径の不均一が気化ガスの放出 量のばらつきをもたらすことになる。更に、微多孔性膜 のみにより液化石油ガスの気化及び流量制限を行なう場 合には、気化ガスの放出量が外気温の変化に伴う圧力容 器内のガスの蒸気圧変動に直接影響され、外気温が低い ときには気化ガスの放出量が過少となり、外気温が高い ときには気化ガスの放出量が過多となる傾向がある。こ のことは、着火不良又は過小若しくは過大な炎の形成と いう不都合ないし危険を生じさせるおそれがある。上記 (2) の装置における気化室は、微多孔性膜の透過有効 面積を一定にするために該微多孔性膜の下流側に設けら れた空間であるが、この事例においては、気化室たる空 間内に液化石油ガスが結解し、弁開放直後これが一気に 噴出するという危険を生ずるおそれがある。本発明は以 上の如き問題を解決しようとしてなされたものである。

[0004]

【課題を解決するための手段】上記課題を解決するため に、本発明は、弁のガス放出方向上流側に一定径の開孔 を備えたオリフィスと疎水性を有する微多孔性膜とを併 設させた液化石油ガスの気化及び流量制限装置を提供す るものである。即ち、本発明は、圧力容器内に気密に収 容した液化石油ガスの気化及び流量制限を行ない、気化 ガスを弁を介してノズルより放出するようにした装置に おいて、弁の上流側に約30~200µm径の開孔を備 えたオリフィスを配設すると共に該オリフィスの上流側 に疎水性を有する微多孔性膜を配設したことを特徴とす る液化石油ガスの気化及び流量制限装置を提供するもの

【0005】前記オリフィスと微多孔性膜との間に厚さ 約0.1 \sim 0.3 mmの不織布を介在させるのが望まし

【0006】前記オリフィスに代えて弁座部材に約30 を行なわせるようにした装置は、流量の調整が可能であ 50 \sim 2 0 0 μ m径の開孔を設け、該弁座部材にオリフィス

を兼ねさせてもよい。この場合、弁座部材と 微多孔性 膜との間に厚さ約0.1~0.3mmの不織布を介在さ せるのが望ましい。

[0007]

【作用】 請求項1による液化石油ガスの気化及び流量制 限装置においては、開弁時、液化石油ガスは先ず疎水性 を有する微多孔性膜を通過する際該微多孔性膜により蒸 気化され流量制限される。本発明においては疎水性を有 する微多孔性膜を使用しているが、仮に親水性を有する 微多孔性膜を使用した場合には、特に液化石油ガスの液 10 量制限装置においては、前記オリフィスと微多孔性膜と 体が透過しやすいため、微多孔性膜に液化石油ガスの液 体が供給されたときと気体が供給されたときとでは流量 に大きな差が生ずる。従って、後述のオリフィスによる 流量制限の効果が充分には得られなくなる。微多孔性膜 により気化され流量制限された気化ガスは、続いて約3 $0\sim200\mu$ m径の開孔を備えたオリフィスにより更に 流量制限される。一般に外気温が上昇し圧力容器内の蒸 気圧が高まるに従い気化ガスの放出量が増大し、これと 逆に外気温が低下し圧力容器内の蒸気圧が低くなるに従 い気化ガスの放出量が減少する。しかして、本発明にお 20 けるオリフィスは、外気温が上昇し圧力容器内の蒸気圧 が高まるに従い流量制限の作用が顕著になって気化ガス の放出量を抑え、これと逆に外気温が低下し圧力容器内 の蒸気圧が低くなると流量制限の作用が小さくなり若し くは皆無となって気化ガスの通過をほとんど若しくは全 く妨げない。けだし、かかるオリフィスは、一次圧(オ リフィスの上流側の圧力)と二次圧(オリフィスの下流 側の圧力)との間の圧力差が大きい程流量制限の作用を 発揮し、その圧力差が一定値より小さくなると流量制限 の作用も小さくなり若しくは皆無となるからである。即 ち、オリフィスは外気温の変化による気化ガスの放出量 の変動を小さくするのである。オリフィスの開孔径は、 喫煙用ガスライター、点火具、携帯用ガスポンペ等に対 する適用を考えると、約30~200μmの範囲が適当 である。オリフィスの開孔径が約30μm未満の場合に は、オリフィスが果す流量制限の役割が微多孔性膜に比 べて相対的に大きくなるため、オリフィスの開孔径のば らつきにより流量が大きく左右されるという不都合が生 ずる。また、オリフィスの開孔径が約30μm未満の場 合には、液化石油ガス中に混入したゴミ、異物等がオリ 40 フィスに詰るおそれがある。一方、オリフィスの開孔径 が約200μmを越す場合には、喫煙用ガスライター、 点火具、携帯用ガスポンペ等について適当とされる流量 まで気化ガスの流量を制限することができなくなる。更 に、本発明においては、微多孔性膜とオリフィスとが併 用されているため、仮に微多孔性膜の透過有効面積にば らつきがあったとしても、流量過大のときはオリフィス も流量制限の作用を果し、一方、流量過小のときはオリ フィスの流量制限の作用が小さくなり若しくは皆無とな って気化ガスの通過を妨げない。即ち、外気温が一定で 50

あっても微多孔性膜の透過有効面積にばらつきがあると きには、微多孔性膜のみにより流量制限を行なっている 前記従来の装置の場合には微多孔性膜における透過有効 面積のばらつきが直ちに気化ガスの流量のばらつきとな って現れるのに対し、微多孔性膜とオリフィスとの併用 により流量制限を行なっている本発明の装置の場合には オリフィスも流量制限を行なうため気化ガスの流量のば らつきが小さくなるのである。

【0008】請求項2による液化石油ガスの気化及び流 の間に厚さ約0.1~0.3mmの不織布が介在してい るが、微多孔性膜により蒸気化され流量制限された液化 石油ガスは、不織布を通過するときに周辺部材より気化 熱の供給を受けると共に減圧されてより完全に気化す る。なお、不織布の厚さが約0.1mm未満の場合には 不織布は上記作用を充分には果さなくなり、不織布の厚 さが約0.3mmを越す場合には一旦気化した液化石油 ガスが不織布中で再び液化して溜まり、弁開放直後これ が一気に噴出するという危険を生ずるおそれがある。

【0009】請求項3による液化石油ガスの気化及び流 量制限装置は、請求項1の装置における弁座部材とオリ フィスとを一体化させたものであって、請求項1の装置 と同様な作用をなす。

【0010】請求項4による液化石油ガスの気化及び流 量制限装置は、請求項2の装置における弁座部材とオリ フィスとを一体化させたものであって、請求項2の装置 と同様な作用をなす。

[0011]

【実施例】次に、本発明の実施例を添付図面に従って説 明する。まず、本発明が適用される装置、即ち、圧力容 30 器内に気密に収容した液化石油ガスの気化及び流量制限 を行ない、気化ガスを弁を介してノズルより放出するよ うにした例えば喫煙用ガスライター、点火具、携帯用ガ スポンペ等の装置について説明する。この装置は、一例 として図1に示すように、液化石油ガスを気密に収容す る圧力容器1にOリング3を介して弁機構支持体2を固 着し、該弁機構支持体2内には弁6と弁座部材7とを配 設すると共にノズル5を先端が弁機構支持体2より外方 に突出した状態でOリング8を介して挿入し、該ノズル 5には復帰用スプリング4を備えさせてなるものであ る。

【00012】次に、上述の如き装置に適用される本発 明の液化石油ガスの気化及び流量制限装置について説明 する。本発明による液化石油ガスの気化及び流量制限装 置は、弁6の上流側(図1、図2における下方)に約3 0~200μm径、好ましくは約120~150μm、 の開孔9aを備えたオリフィス9を配設すると共に該オ リフィス9の上流側に疎水性を有する微多孔性膜11を 配設してなるものである。オリフィス9の孔径は、液化 石油ガスの組成、微多孔性膜11の特性と透過有効径

(後述の固定子12の内径α、図4参照)、所望のガス 放出量等を考慮して約30~200μmの範囲内で決定 する。オリフィス9は一例としてニッケル合金により形 成する。微多孔性膜11は一例としてポリプロピレン製 とし、例えば約0.1~0.01 μ m程度の大きさの細 孔を多数備えさせる。但し、これらの細孔は必ずしも円 形孔である必要はない。図2に示す事例においては、前 記オリフィス9と微多孔性膜11との間に厚さ約0.1 ~0.3mmの不織布10を介在させている。不織布1 0 は例えばポリプロピレン、ナイロン、ポリエチレン等 10 の合成繊維、あるいは天然繊維、ガラス繊維等で構成す る。図1、図2においては、オリフィス9、不織布10 及び微多孔性膜11の周縁を環状の固定子12により固 定し、弁座部材7の下端を内側に折り曲げて固定子12 の脱落を防止している。図4に示す事例は、弁座部材 7'に約30~200μm径の開孔9a'を備えさせる ことにより弁座部材7'の当該開孔9 a'にオリフィス を兼ねさせたものである。弁座部材7'に約30~20 0μm径の開孔9a'を形成するに当っては、一例とし てレーザ加工法を用いる。

【0013】本発明による液化石油ガスの気化及び流量 制限装置においては、液化石油ガスが微多孔性膜11に 達すると、液化石油ガスの気体分は微多孔性膜11によ り流量制限されてオリフィス9の開孔9aに達するが、 液体分は疎水性を有する微多孔性膜11により蒸気化さ れ流量制限されてオリフィス9の開孔9aに達する。オ リフィス9と微多孔性膜11との間に不織布10を介在 させたときには、微多孔性膜11により蒸気化された液 化石油ガスは不織布10を通過する際に周辺部材、特に オリフィス9と弁座部材7、から気化熱の供給を受けて 完全に気化する。オリフィス9に達した気化ガスは該オ リフィス 9 により流量制限されてノズル 5 から放出され

【0014】前記オリフィス9は、外気温が上昇し圧力 容器内の蒸気圧が高まるに従い流量制限の作用が顕著に なって気化ガスの放出量を抑え、これと逆に外気温が低 下し圧力容器内の蒸気圧が低くなると流量制限の作用が 小さくなり若しくは皆無となって気化ガスの通過をほと んど若しくは全く妨げないことは前述の通りであるが、 この点につき発明者等が行なった実験の結果を図3に示 40 しておく。実験は、微多孔性膜の透過有効径を2.5m m、2.6 mm、2.7 mmとした図1、図2に示す装 置を用いて行なった。燃料としては、ブタンとプロパン とを主成分とし、23℃で蒸気圧2キログラム/平方セ ンチメートル程度の液化石油ガスを用いた。測定は、放 出された気化ガスが炎を形成したときの炎高さについて 行なった。図3において、一点鎖線はオリフィスを除去 した場合(以下「オリフィスなしの場合」という。)を 示し、破線は120~150 µm径の開孔を有するオリ フィスを挿入した場合(以下「オリフィスありの場合」

という。)を示す。外気温(圧力容器内圧は外気温が上 昇すれば高くなり、外気温が下降すれば低くなる。)が 低いときには、炎高さはオリフィスなしの場合の方がオ リフィスありの場合よりも僅かに高かったものの、両者 の差は殆どなかった。外気温が上昇するにつれてオリフ ィスなしの場合の炎高さはオリフィスありの場合の炎高 さよりも一段と高くなり、両者の差は開いた。外気温が 40℃のときは、オリフィスありの場合の炎高さはオリ フィスなしの場合の炎高さの79%に留った。このこと から、オリフィスありの場合は、オリフィスなしの場合 に比べて、外気温の変化による炎高さ(ガスの放出量)

6

[0015]

の変動が小さいことが明らかである。

【発明の効果】以上説明したように、本発明において は、疎水性を有する微多孔性膜と約30~200μmの 開孔を備えたオリフィス(弁座部材に開孔を設け、該弁 座部材にオリフィスを兼ねさせたものを含む。) とを併 用することにより液化石油ガスの気化及び流量制限を行 なっているため、微多孔性膜のみを使用した従来技術に 20 比べて、微多孔性膜における透過有効面積のばらつきに 起因する気化ガスの放出量のばらつきが小さくなるだけ でなく、外気温の変化に伴う気化ガスの放出量の変動も 小さくなる。従って、本発明によれば常に安定した気化 ガスの放出量が得られる。また、本発明の装置において は、気化ガスの放出量はすべて製造時に決定されるもの であって経時により変化することがないことも、気化力 スの放出量の安定化に寄与する。また、オリフィスと微 多孔性膜との間に厚さ約0.1~0.3mmの不織布を 設けたときには、液化石油ガスがより完全に気化するだ けでなく、微多孔性膜の透過有効面積を確保するための 空間を特に設ける必要がなくなるため、液化石油ガスの 結露が防止され、液化石油ガスの結露に起因する着火直 後の過大炎が排除される。弁座部材に開孔を設け、該弁 座部材にオリフィスを兼ねさせた場合には、部品点数が 減少し、組み立てが容易になる。

【図面の簡単な説明】

【図1】本発明による液化石油ガスの気化及び流量制限 装置の一例を示す断面図である。

【図2】同上装置の要部を拡大して示す断面図である。

【図3】外気温と炎高さとの関係をオリフィスがある場 合とない場合について示すグラフである。

【図4】本発明による液化石油ガスの気化及び流量制限 装置の別の一例における要部を拡大して示す断面図であ る。

【符号の説明】

- 1 圧力容器
- 2 弁機構支持体
- Oリング
- 4 復帰用スプリング
- 50 5 ノズル

30

特開平4-356617

6 弁

7 弁座部材

7' 弁座部材

8 ロリング

9 オリフィス

9 a 開孔

9 a' 開孔

10 不織布

11 微多孔性膜

12 固定子

【図1】

[図2]

[図4]

[図3]

PAT-NO: JP404356617A

DOCUMENT-IDENTIFIER: JP 04356617 A

TITLE:

VAPORIZATION OF LIQUEFIED

PETROLEUM GAS AND FLOW

LIMITING DEVICE

PUBN-DATE:

December 10, 1992

INVENTOR-INFORMATION:

NAME

IWABORI, MASAYUKI

ASSIGNEE-INFORMATION:

NAME

COUNTRY

IWABORI MASAYUKI

N/A

APPL-NO:

JP03192498

APPL-DATE: July 5, 1991

INT-CL (IPC): F23Q002/16

US-CL-CURRENT: 431/195

ABSTRACT:

PURPOSE: To stabilize and maintain the discharge volume of vaporized gas and improve the reliability by arranging an orifice through which an opening of a specified size is pierced on the upstream side of a valve and at the same time arranging on the upstream side of the orifice a hydrophobic film which has many minute holes through it.

CONSTITUTION: A valve mechanism support body 2 is fixed on a pressure vessel

1 that receives liquefied petroleum gas air-tightly through an

O-ring 3.

Inside the valve mechanism support body 2 a valve 6 and a valve seat member 7

are provided. Further, in the valve mechanism support body 2 a

are provided. Further, in the valve mechanism support body 2 a nozzle 5 is

inserted through an O-ring 8 with the end of the nozzle 5 projected outwards,

and this O-ring 8 is provided with a spring 4 for return motion. With this

constitution an orifice 9 through which an opening 9a with a diameter of about

30-200μm is pierced is provided on the upstream side. And on the upstream

side of the orifice 9, a hydrophobic film 11 that has many minute holes is

provided. And between the orifice 9 and the film 11 with many

minute holes an unwoven cloth 10 of thickness of about 1-0.3mm is inserted.

COPYRIGHT: (C)1992,JPO&Japio