Adversarial Learning

NLP-SC 田植良 2017.7.18

Outline

- GAN
- Adversarial learning in NLP
 - Adversarial Examples
 - Properties of NN
 - Adversarial and Virtual Adversarial Learning
 - Adversarial and Virtual Adversarial Learning in NLP
 - GAN in NLP
 - SeqGAN

Generative Adversarial Nets(GANs)

2014 NIPS
Goodfellow
Montreal, Canada
citation: 931

GANs

- · Goal
 - · "estimating generative models via an adversarial process" by author
 - Improve on generative model and/or discriminative model
- Idea
 - \cdot G: generative model $G(oldsymbol{z}; heta_g)$
 - z (random noise) -> x (data)
 - Capture data distribution, fool the discriminative model
 - · D: discriminative model $D(m{x}; heta_d)$
 - x (data(real data & generated data)) -> P (possibility of real data)
 - Estimate the probability: real data vs generated data
 - Loss function

$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log (1 - D(G(\boldsymbol{z})))].$$

GANs

- Experiments
 - · Discriminative model
 - Test set: real data(positive) generated data(nagetive)
 - Metric: log-likelihood

Model	MNIST	TFD
DBN [3]	138 ± 2	1909 ± 66
Stacked CAE [3]	121 ± 1.6	2110 ± 50
Deep GSN [5]	214 ± 1.1	1890 ± 29
Adversarial nets	225 ± 2	$\textbf{2057} \pm \textbf{26}$

- Generative model
 - Ability to capture data distribution

GANs

- Discuss
 - Min-max two-player game
 - Exist an unique solution (if capacities of G and D are enough)
 - G: capture the data distribution totally
 - D: can not work (P = 1/2)

- Future work (selected)
 - Conditional generative model
 - more practical
 - Semi-supervised learning
 - · improve the discriminative model when limited labeled data is available

Outline

- GAN
- Adversarial learning in NLP
 - Adversarial Examples
 - Properties of NN
 - Adversarial and Virtual Adversarial Learning
 - Adversarial and Virtual Adversarial Learning in NLP
 - GAN in NLP
 - SeqGAN

Properties of NN

- About
 - Intriguinting properties of neural networks
 - Christian Szegedy, Google Inc, arkiv 2013
- Contributions (selected)
 - Blind spots in nerual networks

1	great	great
2	decent	decent
3	$\times \underline{\text{bad}}$	excellent
4	excellent	nice
5	Good	Good
6	fine	$\times \underline{\text{bad}}$
7	nice	fine
8	interesting	interesting
9	solid	entertaining
10	entertaining	solid

 For deep neural networks, the smoothness assumption that underlies many kernel methods does not hold.

(Virtual) Adversarial Training

- About
 - Distributional Smoothing with Virtual Adversarial Training
 - Miyato(Tokyo University), Goodfellow(Google), 2016 ICLR
- · Idea
 - Adversarial training(Supervise): F(x)->y, F(x+r)->y r:perturbation
 - Virtual Adversarial training(Semi-supervise): F(x)->y, sim(F(x'), F(x'+r))
- Loss function
 - Adversarial $r_{adv}^{(n)} = \arg\min_{r} \{ p(y^{(n)}|x^{(n)} + r^{(n)}); ||r||_2 \le \epsilon \}$

$$J = \frac{1}{N} \sum_{n=1}^{N} \log(p(y^{(n)}|x^{(n)}, \theta)) + \lambda \frac{1}{N} \sum_{n=1}^{N} p(y^{(n)}|x^{(n)} + \frac{\mathbf{r}_{adv}(^{n)}}{\mathbf{r}_{adv}(^{n)}}, \theta)]$$

Virtual Adversarial

$$\frac{r_{v-adv}^{(n)}}{r} = \arg\max_{r} \{KL[p(y|x^{(n)}, \theta)||p(y|x^{(n)} + r^{(n)}, \theta)]; ||r||_{2} \le \epsilon\}$$

$$J = \frac{1}{N} \sum_{n=1}^{N} \log(p(y^{(n)}|x^{(n)}, \theta)) - \lambda \frac{1}{N} \sum_{n=1}^{N} KL[p(y|x^{(n)}, \theta)||p(y|x^{(n)} + r_{v-adv}^{(n)}, \theta)]$$

(Virtual) Adversarial in NLP

- About
 - Adversarial Training Methods for Semi-Supervised Text Classification
 - Miyato(Tokyo University), Goodfellow(Google), 2017 ICLR
- · Idea
 - Apply (virtual) adversarial training on NLP (text classification)
 - Get adversarial examples by perturbing embeddings

(Virtual) Adversarial in NLP

- Experiment & Analysis
 - Task: text classification
 - Accuracy on Classication

Method	Test error rate
Baseline (without embedding normalization)	7.33%
Baseline	7.39%
Random perturbation with labeled examples	7.20%
Random perturbation with labeled and unlabeled examples	6.78%
Adversarial	6.21%
Virtual Adversarial	5.91%

Performance on test data with noise

Performance on "blind spots"

	'good'				
	Baseline	Random	Adversarial	Virtual Adversarial	
1	great	great	decent	decent	
2	decent	decent	great	great	
3	$\times \underline{\text{bad}}$	excellent	nice	nice	
4	excellent	nice	fine	fine	
5	Good	Good	entertaining	entertaining	
6	fine	$\times \underline{\text{bad}}$	interesting	interesting	
7	nice	fine	Good	Good	
8	interesting	interesting	excellent	cool	
9	solid	entertaining	solid	enjoyable	
10	entertaining	solid	cool	excellent	

Summary on Adversarial Examples

- Adapt to NLP
- Similiar to GANs
 - Min-max two-player game
 - Product new samples to improve the discriminative model
 - GAN: $z \rightarrow G \mod el \rightarrow G(z) \rightarrow D \mod el \rightarrow D(G(z))$
 - Adv Exam: $x \rightarrow D$ model $\rightarrow r+x \rightarrow D$ model $\rightarrow D(x+r)$
- Different with GANs
 - Optimization: GANs joint optimization D(G(z)))
 - Applications: GANs only adapt to real-value data (eg: image)
 - Goal: GANs output: G & D
 - Role of Samples:
 - GANs: capture data distribution -> act as nagetive samples
 - Adv Exam: capture blind spots -> act as positive samples

Outline

- GAN
- Adversarial learning in NLP
 - Adversarial Examples
 - Properties of NN
 - Adversarial and Virtual Adversarial Learning
 - Adversarial and Virtual Adversarial Learning in NLP
 - GAN in NLP
 - SeqGAN

SeqGAN: Sequence Generative Adversarial Nets with Policy Gradient

2017 AAAI Lantao Yu, Weinan Zhang(Shanghai Jiao Tong) Jun Wang(UCL, UK) SeqGAN

- Goal
 - Adapt GAN to NLP
 - GAN requires real-value data

- Discriminative model can only assess a complete sequence
- · Idea
 - Real-value data: RL: G(policy network) D(reward function)
 - Discriminate a Sequence: complete the rest by Monte Carlo search
- Model
 - · RL
 - · Given reward function Q, maximize the expectation of reward on G

$$J(\theta) = \mathbb{E}[R_T|s_0, \theta] = \sum_{y_1 \in \mathcal{Y}} G_{\theta}(y_1|s_0) \cdot Q_{D_{\phi}}^{G_{\theta}}(s_0, y_1)$$

Re-train reward function Q, minimize log-likelihood on D

$$Y_{1:T} = (y_1, \dots, y_t, \dots, y_T) \qquad Q_{D_{\phi}}^{G_{\theta}}(a = y_T, s = Y_{1:T-1}) = D_{\phi}(Y_{1:T})$$

$$\min_{\phi} -\mathbb{E}_{Y \sim p_{\text{data}}}[\log D_{\phi}(Y)] - \mathbb{E}_{Y \sim G_{\theta}}[\log(1 - D_{\phi}(Y))]$$

SeqGAN

- Model
 - Monte Carlo search
 - Given current sequence, get future outcome (similiar to Chess)

$$Y_{1:T} = (y_1, \dots, y_t, \dots, y_T)$$

$$\left\{Y_{1:T}^{1}, \dots, Y_{1:T}^{N}\right\} = MC^{G_{\beta}}(Y_{1:t}; N)$$

 G_{β} same as generator, but can use a simplified version

Rewrite the reward function Q

$$\begin{split} Q_{D_{\phi}}^{G_{\theta}}(s = Y_{1:t-1}, a = y_t) = \\ \left\{ \begin{array}{ll} \frac{1}{N} \sum_{n=1}^{N} D_{\phi}(Y_{1:T}^n), \ Y_{1:T}^n \in \mathrm{MC}^{G_{\beta}}(Y_{1:t}; N) & \text{for} \quad t < T \\ D_{\phi}(Y_{1:t}) & \text{for} \quad t = T, \end{array} \right. \end{split}$$

SeqGAN

- Experiments
 - · G: RNN D: CNN
 - Evaluation Metric: evaluate G by language model
 - The expectation of LM score on G\theta

$$ext{NLL}_{ ext{oracle}} = -\mathbb{E}_{Y_{1:T} \sim G_{ heta}} \Big[\sum_{t=1}^{T} \log G_{ ext{oracle}}(y_t | Y_{1:t-1}) \Big]$$

Result

Some Thoughts

- Effects
 - For G: GANs bring a better loss function / reward
 - Ground-truth are sometimes not suitable (eg: dialog systems / MT)
 - For D: GANs bring the better nagetive samples
 - Discriminative models are common on industry.
 - Data may be the most improtant.
 - Stronger nagetive samples for ranking/classification tasks
 - More random nagetive samples for retrieval tasks?
 - More controlled samples for specific tasks
- · GAN in NLP
 - Generate embedding as example in GAN
 - x: embedding; x = G(z); D(x)

Q & A