Fundamentos Hardware e Infraestrutura

Memória

Prof. Cláudio Haruyoshi Hirose Prof. Nelson Augusto Oliveira de Aguiar

Arquitetura de Básica do Computador: Memória

- É conjunto de circuitos capazes de armazenar os dados e os programas a serem executados pelo processador.
- É subdivido em:
 - Memória Principal, memória de trabalho, memória real.
 - Memória Secundária, memória de armazenamento em massa.

Arquitetura de Básica do Computador: Memória Principal

Local onde normalmente devem estar armazenados os programas e dados a serem manipulados pelo processador.

Este tipo de memória aparece como um conjunto de chips que são inseridos na placa mãe do computador.

Arquitetura de Básica do Computador: Memória Principal

- Tipos de memória principal:
- Memória Volátil
- Memória Não Volátil.

RAM (Random Access Memory - Memória de acesso aleatório) - São chips de memória que podem ser gravados pela CPU a qualquer instante

A CPU usa a RAM para armazenar e executar programas vindos do disco.

• • •

Ler e gravar os dados que estão sendo processados.

- É uma memória volátil, ou seja, quando o computador é desligado, todos os seus dados são apagados.
- Por esta razão, os dados e programas devem ficar gravados no disco, que é uma memória "permanente".

❖DDR1

•

Com a DDR ou DDR1, foi possível transferir 2 dados ao invés de um, e deste modo, dobrando a frequência de 200 para 400Mhz.

- **❖**DDR2
- Com evolução a frequência do clock aumentou.
- A DDR 2 dobra de velocidade, pois um pente de memória é capaz de transmitir 4 dados por ciclo de clock.
- A DDR 2 tem um melhor gerenciamento de energia.

- **❖**DDR3
- O grande diferencial é o aumento da capacidade de comunicação
- Podendo transmitir até oito dados por pulso de clock.
- As memórias DDR3 consomem menos energia do que as memórias DDR2

- São memórias cujas informações mantidas não são perdidas caso o computador seja desligado.
- ❖ Exemplo: BIOS (basic input-output system − sistema básico de entrada e saída).
 - Está gravado em uma memória permanente localizada na placa mãe.

- Tipos de memórias permanentes:
 - ROM (Read Only Memory Memória somente de leitura) São chips que podem ser lidos pela CPU a qualquer instante, mas não podem ser gravados pela CPU.
 - A gravação é feita pelo fabricante. Este tipo de memória foi usada para armazenar a BIOS.

- Tipos de memórias permanentes:
 - PROM (Programable ROM) É uma ROM programável. A gravação pode ser feita apenas uma vez, pois utiliza um processo irreversível.
 - EPROM (Erasable Programable ROM) É uma ROM programável e apagável. Pode ser programada comportando-se como uma ROM.
 - A EPROM pode ser apagada com raios ultravioletas de alta potência.

Tipos de memórias permanentes (continuação):

EEPROM (Eletric Erasable Programable ROM) - É um tipo de memória ROM mais flexível que a EPROM e pode ser apaga via impulsos elétricos.

É utilizada para armazenar as BIOS atuais.

- *Tipos de memórias permanentes (continuação):
 - Flash ROM É uma EEPROM que utiliza baixas tensões de apagamento e este é feito em um tempo bem menor, por isso o nome *Flash*.
 - Usada em cartões de memória, flash drives USB (pen drives), SSD, MP3 Players, dispositivos como os iPods com suporte a vídeo, PDAs, armazenamento interno de câmeras digitais e celulares.

ROM

PROM

Advin Gang Programmer

The state of the sta

Gravador de PROM

Apagador de EPROM

EPROM

Gravador de EEPROM

EEPROM

Flash EEPROM

- Não é acessada diretamente pela CPU.
- O acesso é feito através de interfaces ou controladoras especiais.
- •
- É uma memória do tipo permanente.
- Possui alta capacidade de armazenamento e um custo menor que o da memória principal.

- A memória secundária normalmente não é formada por chips, e sim por dispositivos que utilizam outras tecnologias de armazenamento (magnética ou óptica).
- Exemplos: disco rígido, disquete (disco flexível), fita magnética e CD-ROM.
- A EEPROM Flash é utilizada como memória de armazenamento em massa.
- Exemplos: pendrive, cartão de memória SD e SSD.

Leitora de fita

Fita e cartucho

Fita DAT

Discos flexíveis: Disquetes de 8 polegadas, 5 1/4 polegadas e 3,5 polegadas

HDD Flash EEPROM (Hard Disk Drive)SD (Solid State Drive)

Flash EEPROM (Memória SD)

Flash EEPROM (Pendrive)

Arquitetura de Básica do Computador: IDE

- IDE (Integrated Drive Electronics)
- Primeiro padrão que integrou uma controladora com o Disco Rígido.
- ANSI (American National Standards Institute), em 1990 corrigiu problemas e fez uma padronização (IDE/ATA)

Arquitetura de Básica do Computador: IDE

- As primeiras placas tinham apenas uma porta IDE e uma FDD (do drive de disquete)
- Com avanço tecnológico começaram a ter pelo menos duas (primária e secundária).
- Cada uma delas permite a instalação de dois drives(dependendo do cabo usado)
- Usava "jumper" para configurá-los como master (mestre) ou slave.

Arquitetura de Básica do Computador: SATA

- SATA ou Serial ATA (Serial Advanced Technology Attachment)
- Transferem os dados em série e não em paralelo como o ATA.

Arquitetura de Básica do Computador: SATA

- Utiliza dois canais separados, um para enviar e outro para receber dados
- Reduz os problemas de sincronização
- Frequências mais altas podiam ser usadas nas transferências.

Arquitetura de Básica do Computador: SATA

- Os cabos possuem apenas sete fios (um par para transmissão, outro par recepção de dados, três fios terra).
- Mais finos --> mais ventilação no gabinete.
- Dois padrões de controladores SATA: o SATA 150 (1.5 Gbit/s), o SATA 300 (3.0 Gbit/s) e o SATA 600 (6.0 Gbit/s).

Arquitetura de Básica do Computador: SATA II

- Segunda geração do SATA (3.0 Gbit/s).
- ***
- A diferença entre o SATA e o SATA II é a basicamente a velocidade para transferência de dados.

Arquitetura de Básica do Computador: Comparação

Padrão IDE/ATA SATA 150 SATA II (300) SATA (600)	Quantidade de Pinos 40 07 07	Velocidade de transferência (em MB/s) 133 150 300
--	---------------------------------	---

SSD

- SSD (solid-state drive).
- Diferente do HD (armazenamento é feito em discos magnéticos, CDs e DVDs) leitura ótica.
- SSD podem utilizar a memória flash (como nos cartões SD das câmeras fotográficas).

SSD

Vantagens do SSD:
 Silencioso.
 Acesso aos dados (velocidade)
 Não tem braço mecânico de leitura.
 Esquenta menos
 Consome menos energia.

SSD

Desvantagem
 Capacidade de armazenamento
 Preço elevado.

DDR

DDR (Double Data Rate) são memórias do tipo SDRAM (Synchronous Dynamic Random Access Memory)

•

São síncronas, ou seja, precisa de sinal de clock para sincronizar suas transferências.

As DDRs transferem dois dados por pulso de clock.