Examenul de bacalaureat național 2019 Proba E. c) Matematică M_mate-info Clasa a XI-a

Simulare

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I – Scrieți, pe foaia de examen, litera corespunzătoare răspunsului corect. (30 de puncte)

1. Suma primilor trei termeni ai unei progresii aritmetice $(a_n)_{n\geq 1}$ este egală cu 333. Al doilea termen 5p al acestei progresii este egal cu:

A. 30

2. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, f(x) = 3x - 5. Numărul $(f \circ f) \left(\frac{10}{9}\right)$ este egal cu: **5**p

A. -10

3. Mulțimea soluțiilor ecuației $2\log_2(x+1) - \log_2(x+2) = \log_{\frac{1}{2}} 3$ este:

B. $\left\{-\frac{3}{2}\right\}$ **C.** $\{0\}$

4. Probabilitatea ca, alegând un număr din mulțimea numerelor naturale de două cifre, acesta să aibă **5p** cel puțin o cifră pară este egală cu:

5p | 5. În reperul cartezian xOy se consideră triunghiul ale cărui laturi se află pe dreptele de ecuații $d_1: y = -2x$, $d_2: y = 2x$ și $d_3: x = 2$. Perimetrul acestui triunghi este egal cu:

A. $4(2+\sqrt{5})$

 $C_{*} 6\sqrt{5}$

D. $4(3+\sqrt{5})$

5p 6. Se consideră expresia $E(x) = \sin x - \cos x + \sin \left(x + \frac{\pi}{2}\right) - \cos \left(x + \frac{3\pi}{2}\right)$, unde x este număr real.

Pentru orice număr real x, expresia E(x) este egală cu:

B. $2\cos x$

C. $2\sin x$

D. 1

SUBIECTUL al II-lea – Scrieți, pe foaia de examen, rezolvările complete.

(30 de puncte)

1. Se consideră determinantul $D(a,b) = \begin{vmatrix} a & a & b \\ 2 & 3 & 1 \end{vmatrix}$, unde a și b sunt numere reale.

5p a) Calculati D(0,1).

b) Arătați că $D(a,1) \ge 0$, pentru orice număr real a. **5p**

c) Demonstrați că, dacă numerele m și n sunt întregi impare, atunci $D(m,n) \neq 0$. **5**p

2. Se consideră matricele $I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ și $A(x) = \begin{pmatrix} x & 1 & -x \\ 1 & 0 & 1 \\ -x & 1 & x \end{pmatrix}$, unde x este număr real.

a) Arătați că A(-x) + A(x) = 2A(0), pentru orice număr real x. **5p**

b) Arătați că $\det(A(x)A(y)-A(2xy))=0$, pentru orice numere reale x și y. **5p**

c) Determinați numărul real m, știind că $A(1)A(\frac{1}{2})+A(2)A(\frac{1}{4})+\ldots+A(2019)A(\frac{1}{4038})=mI_3$. 5p

SUBIECTUL al III-lea - Scrieți, pe foaia de examen, rezolvările complete.

(30 de puncte)

- **1.** Se consideră funcția $f:(-2,+\infty) \to \mathbb{R}$, $f(x) = \frac{x+1}{x+2}$.
- **5p a**) Calculați $\lim_{x \to +\infty} f(x)$.
- **5p b**) Se consideră șirul $(a_n)_{n\geq 1}$ cu $a_n=f(n)$. Demonstrați că șirul $(a_n)_{n\geq 1}$ este mărginit.
- **5p** c) Calculați $\lim_{n \to +\infty} n(\sqrt{f(n)} 1)$.
 - 2. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \begin{cases} a + \frac{\sin x}{x}, & x \in (-\infty, 0) \\ \sqrt{x^2 + 2x}, & x \in [0, +\infty) \end{cases}$, unde a este număr real.
- **5p** a) Determinați numărul real a pentru care funcția f este continuă pe \mathbb{R} .
- **5p b**) Pentru a = 1, determinați ecuația asimptotei orizontale spre $-\infty$ la graficul funcției f.
- **5p** | **c**) Demonstrați că, pentru orice număr real a, ecuația f(x) = |a| are cel puțin o soluție.

Pagina 2 din 2