Estadística Descriptiva Univariant (EDu)

Objectiu: Descriure (estadísticament) ...

... les variables (una mostra o vector de valors) ...

... d'una en una.

Les variables es poden classificar en:

numèriques (contínues o discretes)

i categòriques (ordinals o nominals).

(hi ha diverses notacions per classificar els tipus de variables)

Tipus de variables

(una mostra de valors pot correspondre's amb més d'un tipus)

Descripció i anàlisi de la mostra

- Depuració de les dades
 - -Dades mancants, MISSINGS "*"
 - –Dades anormals (Outliers)
- Tractament estadístic
 - -EINES NUMÈRIQUES (mitjana, mediana, desviació estandar,..)
 - -EINES GRÀFIQUES (dotplot, boxplot, diagrama de barras..)

EINES NUMÈRIQUES

(Sobretot tenen sentit per variables numèriques contínues)

Càlcul dels indicadors clàssics

n = 20		
\mathcal{X}_{i}	$x_i - \overline{x}$	$\left \left(x_{i}-\overline{x}\right)^{2}\right $
9.50	0.46	0.22
9.50	0.46	0.22
8.55	-0.49	0.24
6.65	-2.39	5.69
9.10	0.06	0.00
8.90	-0.14	0.02
9.75	0.71	0.51
9.15	0.11	0.01
9.75	0.71	0.51
9.35	0.31	0.10
9.80	0.76	0.59
10.00	0.96	0.93
9.15	0.11	0.01
8.90	-0.14	0.02
9.10	0.06	0.00
9.80	0.76	0.59
9.30	0.26	0.07
8.55	-0.49	0.24
6.55	-2.49	6.18
9.35	0.31	0.10
		_

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = 9.04$$

Variancia

$$s_x^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \overline{x})^2 = 0.85$$

$$S_x^2 = \frac{1}{n-1} \left[\sum_{i=1}^n x_i^2 - n(\bar{x})^2 \right]$$

Desviació tipus o $s_x = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2} = 0.92$ estàndar

$$S_x = \sqrt{\frac{1}{n-1} \left[\sum_{i=1}^n x_i^2 - n(\overline{x})^2 \right]}$$

\mathcal{X}_{i}	χ_i^2
9,50	90,25
9,50	90,25
8,55	73,10
6,65	44,22
9,10	82,81
8,90	79,21
9,75	95,06
9,15	83,72
9,75	95,06
9,35	87,42
9,80	96,04
10,00	100,00
9,15	83,72
8,90	79,21
9,10	82,81
9,80	96,04
9,30	86,49
8,55	73,10
6,55	42,90
9,35	87,42

Càlcul dels indicadors Robusts

$$n = 20$$

${\mathcal X}_i$		$\boldsymbol{\mathcal{X}}_i$
9.50		6.55
9.50		6.65
8.55		8.55
6.65		8.55
9.10		8.90
8.90		8.90
9.75		9.10
9.15		9.10
9.75	Ordenar	9.15
9.35		9.15
9.80		9.30
10.00		9.35
9.15		9.35
8.90		9.50
9.10		9.50
9.80		9.75
9.30		9.75
8.55		9.80
6.55		9.80
9.35		10.00

Posició Q1 =
$$(n+1)/4$$
, Q1 = $(valor inferior *3 + valor superior)/4$
Posició Me = $(n+1)/2$, Q2 = $(valor inferior + valor superior)/2$
Posició Q3 = $(n+1)*3/4$, Q3 = $(valor inferior + valor superior * 3)/4$
IQR = Q3-Q1

	Posició	Resultat
Q1 —	→ 5.25	8.9
ME	→ 10.5	9.23
Q3	──→ 15.75	9.69
IQR -		→ 0.79

EINES GRÀFIQUES

-Histograma

(sobretot té sentit per variables numèriques contínues)

-Diagrama de barres

(sobretot té sentit per variables numèriques discretes i per categòriques)

- Pastís

(sobretot té sentit per variables numèriques discretes i per categòriques)

- Box-plot: indicadors ROBUSTS + Outliers (sobretot té sentit per variables numèriques contínues)

R i algunes dades

- R:

```
( <a href="http://cran.r-project.org">http://cran.r-project.org</a>)
( <a href="mailto:Inici_R.ppt">Inici_R.ppt</a>)
```

- Exemple cas Adsl

Dades sobre la potència de la connexió Adsl domèstica (recollides per estudiants) a analitzar estadísticament

Cada alumne participant va recollir, entre altra, la següent informació:

- (*) proveïdor ADSL
- (*) velocitats contractades (pujada/baixada) en Mbps
- (*) velocitat real (http://www.internautas.org/testvelocidad/)
- (*) distància a la central (a http://www.adslnet.es/distancia-adsl)

Ex. histograma (cas ADSL)

Ex. diagrama de barres (cas ADSL)

#Distribució dels participants en els 6 grups > table(adsl\$grp)
11 12 13 41 42 43
5 2 3 5 5 4

> barplot(table(adsl\$grp))

Ex. pastís (cas ADSL)

Proveedores

El Box-plot

box-plot: indicadors ROBUSTS + Outliers

Ex. Box-plot (cas ADSL)

