Table of Contents

Acknow	ledgem	nents	ii
Table of	Conte	ents	iii
List of	Tables		vii
List of I	igures		viii
Chapter	1: Int	troduction	1
1.1	Learn	ing-Based Human Body and Garment Estimation	3
1.2	Differe	entiable Simulation for Material Optimization	4
1.3	Simul	ation-Based Virtual Try-On	5
1.4	Thesis	s Statement	6
1.5	Main	Results	7
	1.5.1	Shape-Aware Human Reconstruction Using Multi-View Images	7
	1.5.2	Differentiable Simulation for Material Optimization	8
	1.5.3	Joint Estimation of Human and Garment from Video	9
	1.5.4	Time-Domain Parallelization for Accelerating Cloth Simulation	10
	1.5.5	Dynamics-Inspired Garment Draping Prediction	10
1.6	Outlin	ne of Dissertation	11
Chapter	2: Sh	ape-Aware Human Reconstruction Using Multi-View Images	13
2.1	Introd	$\operatorname{luction}$	13
2.2	Relate	ed Work	16
	2.2.1	Human Body Pose and Shape Recovering	16
	2.2.2	Learning-Based Pose/Shape Estimations	19
	2.2.3	Use of Synthetic Dataset	19
2.3	Overv	iew	20
2.4	Mode	l Architecture	21
	2.4.1	3D Body Representation	23
	2.4.2	Scalable Multi-View Framework	24
	2.4.3	Training and Inferring	25
	2.4.4	Implementation Details	26
2.5	Data	Preparation	27
	2.5.1	Parameter Space Sampling	28
	2.5.2	Human Body Motion Synthesis	28

	2.5.3	Cloth Registration and Simulation	 29
	2.5.4	Multi-View Rendering	 29
2.6	Result	SS	 31
	2.6.1	Ablation Study	 31
	2.6.2	Comparisons with Multi-View Methods	 34
	2.6.3	Real-World Evaluations	 35
	2.6.4	Multi-View Input in Daily Life	 36
	2.6.5	Extra Test Results	
	2.6.6	Additional Results on Real-World Images	
	2.6.7	Comparison on Human 3.6M with Single-View Methods	
	2.6.8	Results Without Training on Synthetic Data	
	2.6.9	Detailed Errors on Real World Evaluation	
	2.6.10	Evaluation on 3D People in the Wild	
		Running Time	
2.7		usion and Future Work	
Chapter	r 3: Dif	fferentiable Simulation for Material Optimization	45
3.1	Introd	uction	 45
3.2	Relate	ed Work	 47
3.3	Differe	entiable Cloth Simulation	 49
	3.3.1	Cloth Simulation Basics	 50
	3.3.2	Overview	 53
	3.3.3	Derivatives of the Physics Solve	 54
	3.3.4	Dynamic Collision Detection and Response	 55
	3.3.5	Derivatives of the Collision Response	
	3.3.6	Derivations of the Gradient Computation	 62
3.4	Experi	iments	
	3.4.1	Ablation Study	 66
	3.4.2	Material Estimation	 67
	3.4.3	Motion Control	
	3.4.4	Collision-rich Motion Control	 73
3.5	Conclu	usion	
Chapter		int Estimation of Human and Garment from Video	75
4.1	Introd	uction	 75
4.2		ed Work	77
4.3		od Overview	80
4.4	Garme	ent Auto-encoder	82
	4.4.1	Two-Level Encoder-Decoder Structure	 83
	4.4.2	Representative Point Set Extraction	 85
	4.4.3	Training Losses	 85
	4.4.4	Recovery from Point Clouds to Garment Meshes	 86
4.5	Materi	ial Estimation	 87
	4.5.1	Single Frame Closed-Loop Estimation	 87
	4.5.2	Temporal Estimation for Garment Material	90

4.6	Data :	Preparation and Training
	4.6.1	Training Details
4.7	Exper	iments
	4.7.1	Quantitative Analysis
	4.7.2	Qualitative Results
	4.7.3	Lab Experiments and User Study
	4.7.4	Ablation Study
	4.7.5	Latent Code Interpolation
	4.7.6	Additional Qualitative Results
	4.7.7	Application: Virtual Try-On
4.8	Concl	usion
Chapter	5: Ti	me-Domain Parallelization for Accelerating Cloth Simulation 112
5.1	Introd	luction
5.2	Relate	ed Work
	5.2.1	Cloth Simulation
	5.2.2	Time Parallel Time Integration Method
	5.2.3	Parallel Cloth Simulation
	5.2.4	Hierarchical Structures and Multi-level Methods
	5.2.5	Mesh Upsampling
5.3	Overv	iew
	5.3.1	Two-Level Mesh Hierarchy Representation
5.4	Time	Domain Parallelization
	5.4.1	Static Temporal Partitioning
	5.4.2	Adaptive Partitioning
	5.4.3	Analysis on Performance Scalability
5.5	Smoot	th State Transitioning
	5.5.1	Iterative Detail Recovery
	5.5.2	Convergence and Continuity
	5.5.3	Proof of Convergence of Algorithm 3
	5.5.4	Iteration Number Estimation
	5.5.5	
	5.5.6	State Inconsistency
5.6	Result	58
	5.6.1	Parameter and Scenario Setting
	5.6.2	Performance
	5.6.3	Smoothness
	5.6.4	Memory and Render Latency
	5.6.5	Limitations
5.7		usion and Future Work
Chapter	: 6: Dv	rnamics-Inspired Garment Draping Prediction 150
6.1		luction
6.2		ed Work
	Metho	

	6.3.1	Encoder
	6.3.2	GCN-Based Decoder
	6.3.3	Spectral Domain Decomposition
	6.3.4	Loss Functions
6.4	Physic	es-Enforced Optimization
6.5	Exper	${f iments}$
	6.5.1	Data Generation
	6.5.2	Ablation Study
	6.5.3	Optimization for Semi-Supervision
	6.5.4	Optimization for Graphic Print
	6.5.5	Quantitative Comparisons
	6.5.6	Qualitative Results
	6.5.7	Generalization to Different Garment Sizes
6.6	Conclu	usion
Chapter	7: Co	nclusion 176
7.1	Summ	ary of Results
7.2	Limita	ations
7.3	Future	e Work

List of Tables

2.1	Comparison results on Human3.6M using MPJPE
2.2	Comparison results on MPI_INF_3DHP
2.3	Comparison results on my synthetic dataset
2.4	Comparison on Human3.6M
2.5	Comparison results on tape-measured data
2.6	Results on MPI_INF_3DHP, validation set
2.7	Results on MPI_INF_3DHP, test set
2.8	Results on Human3.6M
2.9	Percentages of errors in common measurements
2.10	Evaluation on an unseen dataset
3.1	Statistics of the backward propagation
3.2	Results on the material parameter estimation task
3.3	Motion control results
4.1	Comparison on material estimation
4.2	Quantitative comparison
4.3	Lab experiment results
4.4	Ablation study for different parts
4.5	Test errors on the Multi-Garment Net dataset
4.6	Comparison with previous works
5.1	Notations and definition of my method
5.2	Results on a higher-resolution mesh
5.3	Comparison between different partition schemes
5.4	Results in the extreme case
5.5	Comparison with GPU method
6.1	Encoders ablation
6.2	Decoders ablation
6.3	Losses ablation
6.4	Self-correcting pipeline ablation study
6.5	Adaptation to new materials
6.6	Comparison with TailorNet
6.7	Comparison for models on different sizes
U. I	Comparison for models on amorem sizes

List of Figures

2.1	The network structure
2.2	Detailed network structure of the regression block
2.3	Examples of rendered synthetic images
2.4	Prediction results compared to HMR
2.5	Results on images with varying pose and shape
2.6	Results on real-world multi-view images
2.7	My model trained without synthetic data
3.1	Impact of perturbation
3.2	Example frame from the ablation study
3.3	Example frame from the material estimation scene
3.4	Example frame from the motion control experiment
3.5	A motion control scene with more obstacles
4.1	Overall network structure
4.2	The network structure of the garment auto-encoder 82
4.3	My estimation pipeline
4.4	The network structure for body and garment estimation 88
4.5	Qualitative comparison
4.6	Material transfer between videos
4.7	Qualitative results
4.8	Qualitative comparison with a real-world video
4.9	Sample test images for the comparisons
4.10	Interpolation between different garments
4.11	Material transfer examples
4.12	Interpolation results
4.13	Qualitative Results
4.14	Virtual try-on example
4.15	Training data examples
4.16	User study examples
5.1	Simulated 'Karate' animation using my method
5.2	An overview of my method
5.3	Adaptive partitioning Algorithm
5.4	An example comparison of the meshes
5.5	Performance scaling result (large time step)

5.6	Results with increasing length of the simulation
5.7	Performance scaling result (small time step)
5.8	Small scale parallelization comparison
5.9	Large scale parallelization comparison
5.10	More simulation results
5.11	Refining results
6.1	My model learns how to drape garments
6.2	Overall structure of my network
6.3	Visualization of the eigen decomposition
6.4	Reconstructions for different numbers of coefficients
6.5	The semi-supervised self-correcting training pipeline
6.6	Bodies at BMI percentiles 10, 30, 50, 70 and 90%
6.7	Qualitative examples of self-correcting optimization
6.8	Qualitative comparison with TailorNet
6.9	Qualitative comparison with previous work