Ejercicios del Tema 1

1. Sea V un espacio vectorial real. Se considera la aplicación

$$\rightarrow$$
: $V \times V \rightarrow V$, $\overrightarrow{uv} := 2u - v$.

Estudiar si Φ induce o no una estructura de espacio afín en V.

2. Sean $a, b : \mathbb{R} \to \mathbb{R}$ funciones continuas. Definimos los siguientes conjuntos:

$$V = \{ f \in \mathcal{C}^{1}(\mathbb{R}) / f'(x) + a(x) f(x) = 0, \ \forall x \in \mathbb{R} \},$$

$$A = \{ f \in \mathcal{C}^{1}(\mathbb{R}) / f'(x) + a(x) f(x) = b(x), \ \forall x \in \mathbb{R} \},$$

donde $C^1(\mathbb{R})$ es el espacio vectorial real de las funciones de clase C^1 sobre los reales. Se pide lo siguiente:

- a) Demostrar que V es un espacio vectorial real.
- b) Supongamos sabido que $A \neq \emptyset$. Probar que A es un espacio afín sobre V cuando, para cada par de funciones $g, g \in A$, definimos $\overrightarrow{fg} = g(x) f(x)$.
- 3. (Producto de espacios afines). Sean A_1 y A_2 dos espacios afines sobre espacios vectoriales reales V_1 y V_2 . Se pide lo siguiente:
 - a) Demostrar que el producto cartesiano $A_1 \times A_2$ es un espacio afín sobre $V_1 \times V_2$ cuando definimos: $(\overline{p_1, p_2)} (q_1, q_2) = (\overrightarrow{p_1q_1}, \overrightarrow{p_2q_2}).$
 - b) Supongamos que dim $A_1 = m$ y dim $A_2 = n$. Sea $R_i = \{o_i; B_i\}$ un sistema de referencia cartesiano en A_i para cada i = 1, 2. Pongamos $B_1 = \{u_1, \ldots, u_m\}$ y $B_2 = \{v_1, \ldots, v_n\}$. Demostrar que el par $R_1 \times R_2 = \{(o_1, o_2); B_1 \times B_2\}$, donde:

$$B_1 \times B_2 = \{(u_1, 0), \dots, (u_m, 0), (0, v_1), \dots, (0, v_n)\}$$

es un sistema de referencia cartesiano en $A_1 \times A_2$. A partir de aquí concluir que dim $(A_1 \times A_2) = m + n$.

- c) Sea $(p_1, p_2) \in A_1 \times A_2$. Cómo se relacionan las coordenadas de (p_1, p_2) en $R_1 \times R_2$ con las coordenadas de p_1 en R_1 y de p_2 en R_2 ?
- 4. En \mathbb{R}^3 consideramos el conjunto $R=\{p_0,p_1,p_2,p_3\}$ formado por los puntos:

$$p_0 = (1, 2, 1), p_1 = (2, 1, 0), p_2 = (0, 1, 0), p_3 = (1, -1, 2).$$

Demostrar que R es un sistema de referencia afín de \mathbb{R}^3 . Calcular las coordenadas afines del punto p = (0, 0, 0) con respecto a R.

- 5. Consideremos el punto p=(1,-7,4) de \mathbb{R}^3 . Encontrar un sistema de referencia cartesiano R de \mathbb{R}^3 de forma que $p_R=(-1,-2,2)^{\mathfrak{t}}$. ¿Cuántos sistemas de referencia cartesianos en estas condiciones existen?
- 6. En \mathbb{R}^2 se consideran los sistemas de referencia cartesianos dados por $R = \{o; B = \{v_1, v_2\}\}$ y $R' = \{o'; B' = \{v_1 + v_2, v_1 v_2\}\}$. Supongamos que $\overrightarrow{o'o} = v_1 + v_2$.

61

- a) Escribir la ecuación matricial del cambio de sistema de referencia de R a R'.
- b) Calcular las coordenadas en R' del punto $p \in \mathbb{R}^2$ tal que $p_R = (1, 1)^{\mathfrak{t}}$.
- 7. En un plano afín \mathcal{A} se considera el sistema de referencia afín $\mathcal{R}=\{a,b,c\}$ y los puntos

$$a' = a + 2\overrightarrow{ab}, \quad b' = a + \overrightarrow{ab} - \overrightarrow{ac}, \quad c' = a - \overrightarrow{ab} - \overrightarrow{ac}.$$

Probar que $\mathcal{R}' = \{a', b', c'\}$ es un sistema de referencia afín en \mathcal{A} . Calcular las coordenadas de un punto en \mathcal{R}' en función de las coordenadas en \mathcal{R} .

- 8. Sea A un espacio afín y $S \subseteq A$ un subespacio afín. Dado un punto $p \in A$, demostrar que $S = p + \overrightarrow{S}$ si y sólo si $p \in S$. Además, si $p \notin S$, probar que $S \cap T = \emptyset$, donde $T = p + \overrightarrow{S}$.
- 9. Demostrar que toda recta afín de \mathbb{R}^3 es la intersección de dos planos afines. ¿Es cierta esta afirmación en \mathbb{R}^n ?
- 10. Sean L una recta afín y S un hiperplano afín de un espacio afín A. Supongamos que $\overrightarrow{L} + \overrightarrow{S} = A$. Probar que $L \cap S$ es un único punto.
- 11. En cada uno de estos casos decidir razonadamente si S es o no un subespacio afín de A:

a)
$$A = \mathbb{R}^5$$
, $S = \{(x, y, z, t, s) \in \mathbb{R}^5 / -y = 2x + z + 1\}.$

b)
$$A = \mathbb{R}^3$$
, $S = \{(x, y, z) \in \mathbb{R}^3 / x^2 + y^2 + z^2 = 0\}$.

c)
$$A = \mathbb{R}^2$$
, $S = \{(x, y) \in \mathbb{R}^2 / x^2 = y^2\}$.

d)
$$A = \mathbb{R}^2$$
, $S = \{(0,1), (1,0)\}.$

e)
$$A = \mathbb{R}^2$$
, $S = \langle \{(0,1), (1,0)\} \rangle$.

$$f) A = \mathbb{R}^3, S = \{(x, y, z) \in \mathbb{R}^3 / x^2 + y^2 \ge 0\}.$$

g)
$$A = \mathbb{R}^3$$
, $S = \{(x, y, z) \in \mathbb{R}^3 / x = y = z\}$.

$$h)$$
 $A = \mathbb{R}^n, \quad S = \mathbb{Q}^n.$

i)
$$A = \mathcal{M}_2(\mathbb{R}), \quad S = \left\{ \begin{pmatrix} a-2 & a \\ 0 & 0 \end{pmatrix} / a \in \mathbb{R} \right\}.$$

$$j) \ V = \mathbb{R}[x], \quad S = \{p(x) \in \mathbb{R}[x] \, / \, \mathrm{grado}(p(x)) = n\} \ (n \in \mathbb{N}).$$

Aclaración: en el apartado i) representamos por $\mathcal{M}_2(\mathbb{R})$ al espacio vectorial real de las matrices cuadradas de orden 2 con coeficientes reales. En el apartado j) usamos $\mathbb{R}[x]$ para denotar al espacio vectorial real de los polinomios en x con coeficientes reales.

- 12. Es siempre la unión de dos subespacios afines un subespacio afín? Si la respuesta es afirmativa, probarlo. Si es negativa, mostrar un contraejemplo.
- 13. Encontrar la recta del espacio afín \mathbb{R}^3 que pasa por $p_0 = (1, 1, 1)$ y se apoya en las rectas $R_1 = (0, 0, 1) + L\{(1, 0, 1)\}$ y $R_2 = \{(x, y, z) \in \mathbb{R}^3 : x + y = z y + 1 = 0\}$.
- 14. Demostrar que todo subespacio afín S de \mathbb{R}^n es cerrado para la topología usual. Demostrar trambién que si $S \neq \mathbb{R}^n$, entonces S tiene interior vacío.

- 15. ¿Para qué valores de $t \in \mathbb{R}$ los puntos p = (1, 0, -1), q = (-2, 0, 2) y r = (t, 0, 3) de \mathbb{R}^3 están alineados? Para dichos valores, calcular una recta afín que los contenga. Es la recta única? Pertenece el punto s = (-2, 2, 0) a dicha recta?
- 16. Calcular un sistema de referencia afín, unas ecuaciones paramétricas y unas ecuaciones implícitas de:
 - a) La recta afín de \mathbb{R}^4 que pasa por los puntos p = (1, -1, 1, 2) y q = (0, 1, 0, -1),
 - b) El hiperplano afín de \mathbb{R}^4 que pasa por los puntos $p=(1,0,0,0),\ q=(0,1,0,0),\ r=(0,0,1,0)$ y s=(0,0,0,1),
 - c) Un plano afín de \mathbb{R}^3 que contenga a las rectas afines S=(1,0,2)+L((1,-1,0)) y $T=\{(x,y,z)\in\mathbb{R}^3\,/\,x+y-z=-1,\,y-z=2\},$
 - d) El hiperplano afín de \mathbb{R}^4 paralelo al de ecuación x-y+z-t=7 y que pasa por el punto p=(1,-2,3,-2).
- 17. Calcular ecuaciones paramétricas e implícitas de los subespacios afines de \mathbb{R}^4 generados por los puntos:
 - a) $p_0 = (1, 1, 0, 1), p_1 = (1, -1, 1, 0).$
 - b) $p_0 = (1, 1, 0, 1), p_1 = (1, 0, 1, 0), p_2 = (0, 1, 0, 1).$
- 18. En cada uno de los siguientes casos calcula la intersección $S \cap T$ y la suma $S \vee T$ de los subespacios afines S, T de \mathbb{R}^3 :
 - a) $S = (1, 2, -1) + L(\{(1, 0, -2\}), T = \{(x, y, z) \in \mathbb{R}^3 : 2x + z 1 = 4x + y + 2z 4 = 0\}.$
 - b) $S = (-1, 0, 1) + L(\{(1, 1, 1\}), T = (1, 1, 1) + L(\{(-1, -1, -1\}).$
 - c) $S = \{(x, y, z) \in \mathbb{R}^3 : x + y + z = 1\}, T = \{(x, y, z) \in \mathbb{R}^3 : x + y + z 2 = y z 1 = 0\}.$
- 19. Probar que si S es una recta afín en un espacio afín A y $p \notin S$, entonces existe un único plano afín T que pasa por p y contiene a S. Calcular unas ecuaciones paramétricas y una ecuación implícita del plano afín en \mathbb{R}^3 que pasa por p = (1, -2, 1) y contiene a la recta afín S = (1, 1, 1) + L((0, 1, 1)).
- 20. Se consideran los subespacios afines de \mathbb{R}^4 dados por:

$$S = \{(x, y, z, t) \in \mathbb{R}^4 / x + y + z + t = 1, x - y = 1\},$$

$$T = (1, 0, 1, 0) + L(\{(1, 1, -1, -1), (0, 0, 0, 1)\}).$$

Obtener un sistema de referencia cartesiano de $S \cap T$ y de $S \vee T$. Calcular también unas ecuaciones implícitas de $S \vee T$ si es posible.

21. Se consideran los subespacios afines S_1, S_2 de \mathbb{R}^4 dados por

$$S_1 = \{(x_2, x_2, x_3, x_4) \in \mathbb{R}^4 : x_1 - x_2 - x_3 = x_1 + x_3 + x_4 - 2 = 0\}$$
$$S_2 = (1, 0, \lambda, 0) + L(\{(0, 1, -1, 1), (1, 0, -1, 1)\}).$$

Calcular $S_1 \cap S_2$ y $S_1 \vee S_2$ en función del parámetro λ .

- 22. Sea S el plano afín de \mathbb{R}^3 con ecuación implícita x+y+z=2. ¿Qué ecuación implícita satisfacen las coordenadas de los puntos de S con respecto al sistema de referencia afín $R = \{(-1,1,2), (1,0,0), (0,1,0), (0,0,1)\}$?
- 23. Estudiar la intersección y la suma de dos rectas afines en un espacio afín.
- 24. Probar que en un plano afín dos rectas son, o bien iguales, o paralelas y distintas, o se cortan en un único punto.
- 25. Se consideran las rectas S_a y T_b de \mathbb{R}^3 siguientes:

$$S_a = \{(x, y, z) \in \mathbb{R}^3 / x - 2z = a, y + z = 3\},\$$

$$T_b = \{(x, y, z) \in \mathbb{R}^3 / x + z = 1, y - 2z = b\},\$$

donde a y b son parámetros reales. Qué condiciones deben de cumplir a y b para que S_a y T_b estén dentro de un mismo plano afín, es decir, sean coplanarias? Calcular los valores de a y b para que el plano que contiene a S_a y T_b pase por p = (1, 1, 1).

- 26. Sea S una recta afín y T un subespacio afín con dim $T \ge 2$ en un espacio afín A. Probar que se da una y sólo una de las siguientes posibilidades:
 - a) $S \cap T = \emptyset$,
 - b) $S \cap T$ es un único punto,
 - c) $S \subseteq T$.

En particular, deducir que si T es un hiperplano afín, entonces a) implica que S es paralela a T. Además, si dimA=3 entonces S es paralela a T o $S\cap T$ es un único punto.

- 27. Sean S y T dos hiperplanos afines en un espacio afín A de dimensión $n \geq 2$. Probar que se da una y sólo una de las siguientes posibilidades:
 - a) $S \cap T = \emptyset$ y los hiperplanos afines son paralelos,
 - b) dim $(S \cap T) = n 2$,
 - c) S = T.
- 28. Sea A un espacio afín con dim $A \ge 3$. Decidir de forma razonada si las siguientes afirmaciones son verdaderas o falsas:
 - a) Tres planos afines distintos no se cortan, o bien su intersección es un punto o una recta afín.
 - b) Dos planos afines distintos son paralelos o su intersección contiene al menos una recta afín.
 - c) Dos rectas afines S = p + L(u) y T = q + L(v) en A se cruzan si y sólo si los vectores $\{u, v, \overrightarrow{pq}\}$ son linealmente independientes.
- 29. En cada uno de estos casos decidir de forma razonada si f es o no una aplicación afín

- a) $f: \mathbb{R}^2 \to \mathbb{R}^3$, $f(x,y) = (x, y^3, x + y)$.
- b) $f: \mathbb{R}^3 \to \mathbb{R}^2$, f(x, y, z) = (x + y, x z + 1).
- c) $f: \mathbb{R}^3 \to \mathbb{R}^3$, $f(x, y, z) = (x, y, z^5 1)$.
- d) $f: \mathcal{M}_2(\mathbb{R}) \to \mathbb{R}, \quad f(A) = \operatorname{traza}(A) + 1.$
- e) $f: \mathbb{R}[x] \to \mathbb{R}$, $f(p(x)) = \operatorname{grado}(p(x))$.
- 30. (Producto de aplicaciones afines). Sean A_1 , A_2 , A_1' y A_2' espacios afines y f_i : $A_i \to A_i'$ una aplicación afín para cada i=1,2. Demostrar que la aplicación $f_1 \times f_2 : A_1 \times A_2 \to A_1' \times A_2'$ dada por $(f_1 \times f_2)(p_1,p_2) = (f_1(p_1),f_2(p_2))$ es una aplicación afín y $f_1 \times f_2 = f_1 \times f_2$.
- 31. Dadas $f: \mathcal{A} \to \mathcal{A}'$ aplicación afín, $q \in \mathcal{A}$ y $h: \overrightarrow{\mathcal{A}} \to \overrightarrow{\mathcal{A}}'$ aplicación lineal, probar que la aplicación

$$g: \mathcal{A} \to \mathcal{A}', \quad g(p) = f(p) + h(\overrightarrow{qp})$$

es la única aplicación afín con g(q) = f(q) y $\vec{q} = h + \vec{f}$.

32. Se considera la aplicación $f: \mathbb{R}^3 \to \mathbb{R}^2$ dada por:

$$f(x, y, z) = (2x - y + 3z - 1, -x - y + z + 1).$$

- a) Demostrar que f es una aplicación afín y calcular \vec{f} .
- b) Estudiar si f es inyectiva, sobreyectiva o biyectiva.
- c) Dadas las rectas afines S = (1, 1, 2) + L((2, 0, 1)) y T = (0, 1, 1) + L((1, 0, -1)), calcular $f(S) \cap f(T)$.
- d) Calcular $f^{-1}(\{(1,1)\})$.
- 33. Consideremos en \mathbb{R}^3 los planos

$$S = \{(x, y, z) \in \mathbb{R}^3 : -x - y + z = 1\}, \quad S' = \{(x, y, z) \in \mathbb{R}^3 : x + y + z = -1\}$$

y las rectas

$$T = (0,0,1) + L(\{(1,1,0)\}), \quad T' = (0,0,-1) + L(\{(1,1,0)\}).$$

Justifica que existe una afinidad $f: \mathbb{R}^3 \to \mathbb{R}^3$ tal que f(S) = S' y f(T) = T'. Determina la expresión matricial de f en el sistema de referencia usual \mathcal{R}_0 de \mathbb{R}^3 .

- 34. Determinar la expresión matricial en el sistema de referencia usual de la aplicación afín $f: \mathbb{R}^3 \to \mathbb{R}^3$ que tiene como puntos fijos a los del plano afín x+y-z=-2, y tal que f(0,0,0)=(1,2,-1). ¿Es f un isomorfismo afín?
- 35. Consideremos el sistema de referencia afín en \mathbb{R}^2 dado por $R = \{(1,1), (2,1), (2,2)\}$. Sea $f: \mathbb{R}^2 \to \mathbb{R}^2$ la única aplicación afín tal que:

$$f(1,1) = (-1,3), \quad f(2,1) = (-1,4), \quad f(2,2) = (-3,7).$$

- a) Obtener la expresión matricial de f con respecto a R. Calcular f(4,4).
- b) Obtener la expresión matricial de f y $f \circ f$ con respecto a R_u .

- c) Determinar el conjunto de puntos fijos de f.
- 36. Sea $f: A \to A$ un endomorfismo afín y $S = p_0 + \overrightarrow{S}$ un subespacio afín. Se dice que S es invariante por f si $f(S) \subseteq S$. Demostrar que S es invariante por f si y solo si $\overrightarrow{f(S)} \subseteq \overrightarrow{S}$ y $\overrightarrow{p_0 f(p_0)} \in \overrightarrow{S}$.
- 37. Determinar el conjunto de puntos fijos de la aplicación afín $f: \mathbb{R}^3 \to \mathbb{R}^3$ definida por

$$f(x, y, z) = (x + 3y + 3/2, -2y - 3/2, -4x - 4y - z - 2).$$

38. Consideremos los subespacios afines de \mathbb{R}^3 dados por

$$S = \{(x, y, z) \in \mathbb{R}^3 : x - y + z = 2\}, \quad T = (0, -1, 0) + L(\{(1, 1, 1)\}).$$

Comprueba que S y T son suplementarios (o complementarios) afines. Calcula la proyección y simetría afines $\pi_{S,T}$, $\sigma_{S,T}$ sobre S en la dirección de T, dando sus ecuaciones matriciales respecto del sistema de referencia canónico $\mathcal{R}_0 = \{(0,0,0), B_0\}$ (B_0 base canónica de \mathbb{R}^3) de \mathbb{R}^3 . Haz lo mismo para $\pi_{T,S}$, $\sigma_{T,S}$.

- 39. Probar que la aplicación afín $f: \mathbb{R}^2 \to \mathbb{R}^2$ definida por f(x,y) = (1-2x, 3-2y) es una homotecia. Calcular su centro y su razón.
- 40. Calcular explícitamente una homotecia en \mathbb{R}^3 de centro (a, b, c) y razón $r \neq 0, 1$.
- 41. Sea $f: A \to A$ un endomorfismo afín de un plano afín. Supongamos que existen tres rectas afines S_1 , S_2 y S_3 en A de las que no hay dos paralelas, y tales que $f(S_i) = S_i$ para cada i = 1, 2, 3. Demostrar que f es la identidad o una homotecia de razón $\lambda \neq 1$.
- 42. Demostrar las siguientes afirmaciones:
 - a) Una homotecia $h \neq I_A$ queda determinada por la imagen de dos puntos.
 - b) Si A es una recta afín y $f:A\to A$ es una aplicación afín entonces, o bien f es constante, o es una traslación, o es una homotecia.
 - c) Las constantes, las traslaciones y las homotecias son los únicos endomorfismos afines $f: A \to A$ tales que f(S) es paralelo a S, para todo subespacio afín S de A.
- 43. Decidir de manera razonada si las siguientes afirmaciones son verdaderas o falsas.
 - a) La composición de una traslación t y de una homotecia $h \neq I_A$ es una homotecia. En caso afirmativo, calcular el centro y la razón de la homotecia resultante.
 - b) La composición de dos homotecias es una homotecia. De ser así, calcular la razón de la homotecia resultante. Cuando ésta sea distinta de 1, calcular también su centro.
 - c) Si $f: A \to A'$ es una aplicación afín y $p, q, r \in A$ son tres puntos alineados (esto es, contenidos en una línea recta), entonces f(p), f(q), f(r) son tres puntos alineados de A'.

- d) Si A es un espacio afín y dim(A) = n, entonces existe un isomorfismo afín $f: A \to \mathbb{R}^n$.
- e) Toda aplicación afín de \mathbb{R}^n en $\mathbb{R}^{n'}$ es diferenciable. Además, todo isomorfismo afín de \mathbb{R}^n en \mathbb{R}^n es un difeomorfismo.
- f) Si una aplicación afín $f: \mathbb{R}^3 \to \mathbb{R}^3$ tiene al menos 4 puntos fijos afínmente independientes, entonces es la identidad.
- 44. En un espacio afín \mathcal{A} se consideran (n+1)-puntos $\{p_0, \ldots, p_n\} \subseteq \mathcal{A}$ y fijemos $O \in \mathcal{A}$. Se define el baricentro de estos puntos como

$$b = O + \frac{1}{n+1} \sum_{j=0}^{n} \overrightarrow{Op_j}.$$

Probar que b no depende del punto O fijado. Probar además que si $f: \mathcal{A} \to \mathcal{A}'$ es afín entonces f(b) es el baricentro de $\{f(p_0), \ldots, f(p_n)\}$.

- 45. Probar que los puntos medios de los lados de un triángulo $\{a, b, c\}$ (tres puntos afínmente independientes) en un espacio afín \mathcal{A} forman un triángulo cuyos lados son paralelos a los de $\{a, b, c\}$ y cuyo baricentro es el mismo que el de $\{a, b, c\}$.
- 46. Sea $\{a, b, c\}$ un triángulo. Probar que las paralelas a dos de los lados que pasan por el baricentro dividen al tercer lado en tres segmentos de la misma longitud (Si tres puntos p, q, r están alineados, diremos que los segmentos [p, q], [q, r] tienen la misma longitud si $\overrightarrow{pq} = \pm \overrightarrow{qr}$).
- 47. Sea $\{a, b, c\}$ un triángulo en un espacio afín \mathcal{A} con baricentro o. Demostrar que la homotecia $h = h_{o,-1/2}$ lleva cada vértice de $\{a, b, c\}$ en el punto medio de su lado opuesto.
- 48. Dado un triángulo $\{a, b, c\}$ y $\{a', b', c'\} = \{m_{ab}, m_{ac}, m_{bc}\}$ el triángulo formado por los puntos medios de sus lados, describir las siguientes aplicaciones afines:
 - a) $h_{b',2} \circ h_{a,3/4} \circ h_{c,2/3}$.
 - b) $h_{a',-1} \circ h_{b',-1} \circ h_{c',-1}$.
 - c) $h_{a',-1} \circ h_{b',-1}$.

Como siempre $h_{a,r}$ denota la homotecia de centro a y razón r.

49. Una cuaterna de puntos $\{a, b, c, d\}$ se dice un cuadrilátero si no contiene tres puntos alineados; si además sus lados opuestos $\langle \{a, b\} \rangle$, $\langle \{d, c\} \rangle$ y $\langle \{a, d\} \rangle$, $\langle \{b, c\} \rangle$ son paralelos entonces la cuaterna se dice ser un paralelogramo. Probar que si $\{a, b, c, d\}$ es un paralelogramo entonces $\overrightarrow{ab} = \overrightarrow{dc}$ y $\overrightarrow{bc} = \overrightarrow{ad}$.