Complex and Repeated Roots of the Characteristic Equation

Lecture 4

Thomas Silverman

From the previous lecture, in order to find the general solution to a second-order linear homogeneous differential equation with constant coefficients

$$ay'' + by' + cy = 0,$$

it suffices to find two solutions whose Wronskian determinant is nonzero. We also know that $y = e^{rt}$ is a solution if and only if r is a root of the characteristic equation

$$ar^2 + br + c = 0.$$

From the previous lecture, in order to find the general solution to a second-order linear homogeneous differential equation with constant coefficients

$$ay'' + by' + cy = 0,$$

it suffices to find two solutions whose Wronskian determinant is nonzero. We also know that $y = e^{rt}$ is a solution if and only if r is a root of the characteristic equation

$$ar^2 + br + c = 0.$$

Consider the case where the roots r_1 , r_2 of the characteristic equation are complex numbers. If we are satisfied with complex-valued solutions, then we are finished; the general solution is $y = c_1 e^{r_1 t} + c_2 e^{r_2 t}$ with c_1 , c_2 arbitrary complex numbers.

What if we are only interested in real-valued solutions? For example, the motion of a mass on a spring with friction is governed by the differential equation

$$my'' + \gamma y' + ky = 0,$$

with $m, \gamma, k > 0$ and y a real-valued function representing the position of the mass. If $\gamma^2 < 4km$, then the roots of the characteristic equation are complex. If the differential equation has real coefficients, then complex roots are always a complex conjugate pair $r_1, r_2 = \lambda \pm i\mu$.

What if we are only interested in real-valued solutions? For example, the motion of a mass on a spring with friction is governed by the differential equation

$$my'' + \gamma y' + ky = 0,$$

with $m,\gamma,k>0$ and y a real-valued function representing the position of the mass. If $\gamma^2<4km$, then the roots of the characteristic equation are complex. If the differential equation has real coefficients, then complex roots are always a complex conjugate pair $r_1,r_2=\lambda\pm i\mu$.

In the zero friction case $\gamma=0$, it is not too hard to guess the solutions $y_1=\cos(\sqrt{\frac{k}{m}}t)$ and $y_2=\sin(\sqrt{\frac{k}{m}}t)$. Can something similar work in the general case?

The Complex Exponential Function

We can define the complex exponential function using a power series

$$e^z := \sum_{n=0}^{\infty} \frac{z^n}{n!}$$
 for z complex.

One can check that this satisfies the usual exponential rule $e^{z_1+z_2}=e^{z_1}e^{z_2}$, so if $z=\lambda+i\mu$ is written in terms of its real and imaginary parts, we have $e^{\lambda+i\mu}=e^{\lambda}e^{i\mu}$.

The Complex Exponential Function

We can define the complex exponential function using a power series

$$e^z := \sum_{n=0}^{\infty} \frac{z^n}{n!}$$
 for z complex.

One can check that this satisfies the usual exponential rule $e^{z_1+z_2}=e^{z_1}e^{z_2}$, so if $z=\lambda+i\mu$ is written in terms of its real and imaginary parts, we have $e^{\lambda+i\mu}=e^{\lambda}e^{i\mu}$.

Moreover,

$$e^{i\mu} = \sum_{n=0}^{\infty} \frac{(i\mu)^n}{n!} = \sum_{k=0}^{\infty} \frac{(-1)^k \mu^{2k}}{(2k)!} + i \sum_{k=0}^{\infty} \frac{(-1)^k \mu^{2k+1}}{(2k+1)!}$$
$$= \cos \mu + i \sin \mu \quad \text{(Euler's formula)}.$$

If $r_1 = \lambda + i\mu$ and $r_2 = \lambda - i\mu$ are the two roots of the characteristic equation, we can use Euler's formula $e^{i\mu} = \cos \mu + i \sin \mu$ to write the two associated solutions as

$$y_1 = e^{(\lambda + i\mu)t} = e^{\lambda t}e^{i\mu t} = e^{\lambda t}(\cos(\mu t) + i\sin(\mu t))$$

$$y_2 = e^{(\lambda - i\mu)t} = e^{\lambda t}e^{-i\mu t} = e^{\lambda t}(\cos(\mu t) - i\sin(\mu t)).$$

If $r_1 = \lambda + i\mu$ and $r_2 = \lambda - i\mu$ are the two roots of the characteristic equation, we can use Euler's formula $e^{i\mu} = \cos \mu + i \sin \mu$ to write the two associated solutions as

$$y_1 = e^{(\lambda + i\mu)t} = e^{\lambda t}e^{i\mu t} = e^{\lambda t}(\cos(\mu t) + i\sin(\mu t))$$

$$y_2 = e^{(\lambda - i\mu)t} = e^{\lambda t}e^{-i\mu t} = e^{\lambda t}(\cos(\mu t) - i\sin(\mu t)).$$

From here, we can produce the real-valued solutions

$$\frac{y_1+y_2}{2}=e^{\lambda t}\cos(\mu t)\quad\text{and}\quad\frac{y_1-y_2}{2i}=e^{\lambda t}\sin(\mu t).$$

Next, we compute the Wronskian

$$W(e^{\lambda t}\cos(\mu t), e^{\lambda t}\sin(\mu t)) = e^{\lambda t}\cos(\mu t) \left(\lambda e^{\lambda t}\sin(\mu t) + \mu e^{\lambda t}\cos(\mu t)\right)$$
$$-\left(\lambda e^{\lambda t}\cos(\mu t) - \mu e^{\lambda t}\sin(\mu t)\right) e^{\lambda t}\sin(\mu t)$$
$$= \mu e^{2\lambda t} \left(\cos^2(\mu t) + \sin^2(\mu t)\right)$$
$$= \mu e^{2\lambda t},$$

which is nonzero as long as $\mu \neq 0$.

Next, we compute the Wronskian

$$W(e^{\lambda t}\cos(\mu t), e^{\lambda t}\sin(\mu t)) = e^{\lambda t}\cos(\mu t) \left(\lambda e^{\lambda t}\sin(\mu t) + \mu e^{\lambda t}\cos(\mu t)\right)$$
$$-\left(\lambda e^{\lambda t}\cos(\mu t) - \mu e^{\lambda t}\sin(\mu t)\right) e^{\lambda t}\sin(\mu t)$$
$$= \mu e^{2\lambda t} \left(\cos^2(\mu t) + \sin^2(\mu t)\right)$$
$$= \mu e^{2\lambda t},$$

which is nonzero as long as $\mu \neq 0$.

We conclude that $y = c_1 e^{\lambda t} \cos(\mu t) + c_2 e^{\lambda t} \sin(\mu t)$ with c_1, c_2 arbitrary real constants is the general real-valued solution.

Solve the following initial value problem and describe the behavior as $t \to \infty$

$$y'' + 2y' + 4y = 0$$
, $y(0) = 2$, $y'(0) = 3$.

Solve the following initial value problem and describe the behavior as $t \to \infty$

$$y'' + 2y' + 4y = 0$$
, $y(0) = 2$, $y'(0) = 3$.

The characteristic equation is $r^2 + 2r + 4 = 0$ with roots

$$r_1, r_2 = \frac{-2 \pm \sqrt{4 - 16}}{2} = -1 \pm i\sqrt{3}.$$

Thus, the general solution is

$$y = c_1 e^{-t} \cos(\sqrt{3}t) + c_2 e^{-t} \sin(\sqrt{3}t).$$

Solve the following initial value problem and describe the behavior as $t \to \infty$

$$y'' + 2y' + 4y = 0$$
, $y(0) = 2$, $y'(0) = 3$.

The general solution is $y=c_1e^{-t}\cos(\sqrt{3}t)+c_2e^{-t}\sin(\sqrt{3}t)$. Plugging in t=0, we obtain $2=y(0)=c_1$. Taking the derivative and plugging in t=0, we obtain

$$y' = -2e^{-t}\cos(\sqrt{3}t) - 2\sqrt{3}e^{-t}\sin(\sqrt{3}t) - c_2e^{-t}\sin(\sqrt{3}t) + c_2\sqrt{3}e^{-t}\cos(\sqrt{3}t)$$
$$3 = y'(0) = -2 + c_2\sqrt{3},$$

so $c_2 = 5/\sqrt{3}$.

Therefore, the solution to the initial value problem is

$$y = 2e^{-t}\cos(\sqrt{3}t) + \frac{5}{\sqrt{3}}e^{-t}\sin(\sqrt{3}t).$$

Oscillations with decaying amplitude as $t \to \infty$.

Repeated Roots of the Characteristic Equation

The quadratic $ar^2 + br + c = 0$ has a repeated root if and only if $b^2 - 4ac = 0$. In this case the repeated root is $r_1 = r_2 = -\frac{b}{2a}$. We have one solution $y_1 = e^{-\frac{bt}{2a}}$, but how do we find another linearly independent solution?

Repeated Roots of the Characteristic Equation

The quadratic $ar^2 + br + c = 0$ has a repeated root if and only if $b^2 - 4ac = 0$. In this case the repeated root is $r_1 = r_2 = -\frac{b}{2a}$. We have one solution $y_1 = e^{-\frac{bt}{2a}}$, but how do we find another linearly independent solution?

Idea: We know that $ce^{-\frac{bt}{2a}}$ is a solution for any constant c, so maybe writing $y=v(t)e^{-\frac{bt}{2a}}$ will be helpful. In fact, this method called reduction of order works for any linear homogeneous equation

$$y'' + p(t)y' + q(t)y = 0$$

as long as one nontrivial solution $y_1(t)$ is known.

Assume that $y_1(t)$ is a solution (not identically zero for all t) and write $y(t) = v(t)y_1(t)$. Then,

$$y' = v'y_1 + vy'_1$$

 $y'' = v''y_1 + 2v'y'_1 + vy''_1$.

Assume that $y_1(t)$ is a solution (not identically zero for all t) and write $y(t) = v(t)y_1(t)$. Then,

$$y' = v'y_1 + vy'_1$$

 $y'' = v''y_1 + 2v'y'_1 + vy''_1$.

Plugging into the differential equation

$$y'' + p(t)y' + q(t)y = 0,$$

we obtain

$$(v''y_1 + 2v'y_1' + vy_1'') + p(t)(v'y_1 + vy_1') + q(t)vy_1 = 0$$

$$y_1v'' + (2y_1' + p(t)y_1)v' + (y_1'' + p(t)y_1' + q(t)y_1)v = 0$$

$$y_1v'' + (2y_1' + p(t)y_1)v' = 0.$$

The equation from the previous slide

$$y_1v'' + (2y'_1 + p(t)y_1)v' = 0$$

is actually a first-order differential equation in terms of the unknown function w = v'. We've reduced from second-order to first-order hence the name of the method.

The equation from the previous slide

$$y_1v'' + (2y'_1 + p(t)y_1)v' = 0$$

is actually a first-order differential equation in terms of the unknown function w = v'. We've reduced from second-order to first-order hence the name of the method.

Denote $P(t) := \frac{2y_1' + \rho(t)y_1}{y_1}$. Then, this differential equation is

$$w'+P(t)w=0,$$

which has the general solution $v' = w = c_2 e^{-\int P(t) dt}$. Thus,

$$v = c_2 \int e^{-\int P(t) dt} dt + c_1$$
 $y = vy_1 = c_2 y_1 \int e^{-\int P(t) dt} dt + c_1 y_1.$

Repeated Roots Second Solution

Returning to the case ay'' + by' + cy = 0 with $b^2 - 4ac = 0$, we have $y_1 = e^{-\frac{bt}{2a}}$, $y_1' = -\frac{b}{2a}e^{-\frac{bt}{2a}}$, and $p(t) = \frac{b}{a}$, so

$$P(t) = \frac{2y_1' + p(t)y_1}{y_1} = \frac{2\left(-\frac{b}{2a}e^{-\frac{bt}{2a}}\right) + \frac{b}{a}e^{-\frac{bt}{2a}}}{e^{-\frac{bt}{2a}}} = 0.$$

Repeated Roots Second Solution

Returning to the case ay'' + by' + cy = 0 with $b^2 - 4ac = 0$, we have $y_1 = e^{-\frac{bt}{2a}}$, $y_1' = -\frac{b}{2a}e^{-\frac{bt}{2a}}$, and $p(t) = \frac{b}{a}$, so

$$P(t) = \frac{2y_1' + p(t)y_1}{y_1} = \frac{2\left(-\frac{b}{2a}e^{-\frac{bt}{2a}}\right) + \frac{b}{a}e^{-\frac{bt}{2a}}}{e^{-\frac{bt}{2a}}} = 0.$$

Thus,

$$v' = c_2 e^{\int 0 dt} = c_2$$

 $v = \int c_2 dt = c_2 t + c_1$
 $y = v y_1 = c_2 t e^{-\frac{bt}{2a}} + c_1 e^{-\frac{bt}{2a}}$

Repeated Roots Second Solution

The Wronskian determinant is

$$W(e^{-\frac{bt}{2a}}, te^{-\frac{bt}{2a}})$$

$$= e^{-\frac{bt}{2a}} \left(e^{-\frac{bt}{2a}} - \frac{bt}{2a} e^{-\frac{bt}{2a}} \right) - \left(-\frac{b}{2a} e^{-\frac{bt}{2a}} \right) te^{-\frac{bt}{2a}}$$

$$= e^{-\frac{bt}{a}},$$

which is never zero. Thus, the general solution is

$$y = c_1 e^{-\frac{bt}{2a}} + c_2 t e^{-\frac{bt}{2a}}.$$

Solve the initial value problem

$$y'' - 4y' + 4y = 0$$
, $y(0) = 1$, $y'(0) = 1$

Solve the initial value problem

$$y'' - 4y' + 4y = 0$$
, $y(0) = 1$, $y'(0) = 1$

The characteristic equation is $r^2 - 4r + 4 = (r - 2)^2 = 0$, so $r_1 = r_2 = 2$ is a repeated root. This means that the general solution is

$$y = c_1 e^{2t} + c_2 t e^{2t}$$
.

Solve the initial value problem

$$y'' - 4y' + 4y = 0$$
, $y(0) = 1$, $y'(0) = 1$

The characteristic equation is $r^2 - 4r + 4 = (r - 2)^2 = 0$, so $r_1 = r_2 = 2$ is a repeated root. This means that the general solution is

$$y = c_1 e^{2t} + c_2 t e^{2t}$$
.

Plugging in t = 0 yields $1 = y(0) = c_1$. The derivative is

$$y' = 2e^{2t} + c_2e^{2t} + 2c_2te^{2t}.$$

Plugging in t=0, we obtain $1=y'(0)=2+c_2$, so $c_2=-1$. We conclude that the solution to the IVP is

$$v=e^{2t}-te^{2t}.$$

GitHub: github.com/quantumformalism

YouTube: youtube.com/ZaikuGroup

Zulip:quantumformalism.zulipchat.com/join/37qxi47zfmr6bzoheuoggg4q/

Linkedin: linkedin.com/company/quantumformalism

quantumformalism.com