RESUMEN 8.1

• Valores característicos y vectores característicos

Sea A una matriz de $n \times n$ con componentes reales. El número λ (real o complejo) se denomina un valor característico o valor propio de A si existe un vector v diferente de cero en \mathbb{C}^n tal que

$$A\mathbf{v} = \lambda \mathbf{v}$$

El vector $\mathbf{v} \neq \mathbf{0}$ se denomina vector característico o vector propio de A correspondiente al valor característico λ .

• Sea A una matriz de $n \times n$. Entonces λ es un valor característico de A si y sólo si

$$p(\lambda) = \det(A - \lambda I) = 0$$

La ecuación $p(\lambda) = 0$ se denomina ecuación característica de A; $p(\lambda)$ se conoce como el polinomio característico de A.

- Contando las multiplicidades, toda matriz de $n \times n$ tiene exactamente n valores característicos.
- Los vectores característicos correspondientes a valores característicos distintos son linealmente independientes.
- Multiplicidad algebraica

Si $p(\lambda) = (\lambda - \lambda_1)^{r_1} (\lambda - \lambda_2)^{r_2} \cdots (\lambda - \lambda_n)^{r_n}$, entonces r_i es la multiplicidad algebraica de λ_i .

- Los valores característicos de una matriz real ocurren en pares complejos conjugados.
- Espacio característico

Si λ es un valor característico de la matriz A de $n \times n$, entonces $E_{\lambda} = \{v: Av = \lambda v\}$ es un subespacio de \mathbb{C}^n denominado el **espacio característico** de A correspondiente a λ . Se denota por E_{λ} .

• Multiplicidad geométrica

La multiplicidad geométrica de un valor característico λ de la matriz A es igual a dim $E_{\lambda} = \mu(A - \lambda I)$.

- Para cualquier valor característico λ , multiplicidad geométrica \leq multiplicidad algebraica.
- Sea A una matriz de n x n. Entonces A tiene n vectores característicos linealmente independientes si
 y sólo si la multiplicidad geométrica de cada valor característico es igual a su multiplicidad algebraica.
 En particular, A tiene n vectores característicos linealmente independientes si todos los valores
 característicos son diferentes (ya que en ese caso la multiplicidad algebraica de todo valor
 característico es 1).
- Teorema de resumen

Sea A una matriz de $n \times n$. Entonces las siguientes 12 afirmaciones son equivalentes; es decir, cada una implica a las otras 11 (de manera que si una es cierta, todas lo son):

- i) A es invertible.
- ii) La única solución al sistema homogéneo Ax = 0 es la solución trivial (x = 0).