Question 1

Consider the lossy coaxial capacitor shown in the figure below. The capacitor consists of two perfect conductors at $r=\alpha$ and r=c and two lossy dielectric media with dielectric permittivities and conductivities ε_i , σ_i , i=1,2. The interface between the two media is at r=b. The capacitor has finite length L in the z-direction, however, its electric field can be approximated by the field of a capacitor with $L\to\infty$. The voltage difference between the inner and outer perfect conductor is $V(r=\alpha)-V(r=c)=V_0$.

1. Using the Laplace equation, show that the general form of the electric field in the two regions is $\mathbf{E}_i = \frac{A_i}{r} \mathbf{a}_r$, i = 1, 2. (4 pts)

Laplace applies to both media. In cyl. wordinates $\nabla^2 V = 0 \Rightarrow \frac{1}{r} \frac{d}{dr} \left[r \frac{dV}{dr} \right] = 0 \text{, where use was made of } (1pt)$ the cylindrical symmetry, which translates to $V = V(r) = \frac{r}{r}$. Then, $r \frac{dV}{dr} = C \Rightarrow \frac{dV}{dr} = C$. But, $E = -\frac{g}{r} \frac{dV}{dr} = -\frac{dV}{dr}$. Since these constants (C) are different, in general, the form of $E = \frac{Ai}{r} \frac{dr}{dr}$, i = 1, 2.

2. Using boundary conditions for the volume current density
$$J$$
, show that $\frac{A_1}{A_2} = \frac{\sigma_2}{\sigma_1}$. (2 pts)

B.C. that applies is $\frac{1}{2} \cdot (\frac{1}{2} \cdot -\frac{1}{2}) = -\frac{3}{2} \cdot (\frac{1}{2} \cdot -\frac{1}{2}) = -\frac{3}{2$

3. Find the resistance R of the resistor. (8 pts)

$$R = \frac{1}{2\pi L} \left\{ \frac{1}{6}, \ln \frac{b}{a} + \frac{1}{62} \ln \frac{c}{b} \right\}$$

 $R = \frac{V}{I}. \quad \text{To find } V \text{(1pt)}$ $V_0 = V(r = \alpha) - V(r = c) = \int_{\alpha}^{c} \frac{E}{L} dL = \int_{\alpha}^{c} \frac{A_1}{r} \frac{\partial}{\partial r} dr dr + \int_{\alpha}^{c} \frac{A_2}{r} \frac{\partial}{\partial r} dr dr$ $V_0 = V(r = \alpha) - V(r = c) = \int_{\alpha}^{c} \frac{E}{L} dL = \int_{\alpha}^{c} \frac{A_1}{r} \frac{\partial}{\partial r} dr dr + \int_{\alpha}^{c} \frac{A_2}{r} \frac{\partial}{\partial r} dr dr$ $V_0 = V(r = \alpha) - V(r = c) = \int_{\alpha}^{c} \frac{E}{L} dL = \int_{\alpha}^{c} \frac{A_1}{r} \frac{\partial}{\partial r} dr dr + \int_{\alpha}^{c} \frac{A_2}{r} \frac{\partial}{\partial r} dr dr$ $V_0 = V(r = \alpha) - V(r = c) = \int_{\alpha}^{c} \frac{E}{L} dL = \int_{\alpha}^{c} \frac{A_1}{r} \frac{\partial}{\partial r} dr dr + \int_{\alpha}^{c} \frac{A_2}{r} \frac{\partial}{\partial r} dr dr$ $V_0 = V(r = \alpha) - V(r = c) = \int_{\alpha}^{c} \frac{E}{L} dL = \int_{\alpha}^{c} \frac{A_1}{r} \frac{\partial}{\partial r} dr dr + \int_{\alpha}^{c} \frac{A_2}{r} \frac{\partial}{\partial r} dr dr$ $V_0 = V(r = \alpha) - V(r = c) = \int_{\alpha}^{c} \frac{E}{L} dL = \int_{\alpha}^{c} \frac{A_1}{r} \frac{\partial}{\partial r} dr dr + \int_{\alpha}^{c} \frac{A_2}{r} \frac{\partial}{\partial r} dr dr$ $V_0 = V(r = \alpha) - V(r = c) = \int_{\alpha}^{c} \frac{E}{L} dL = \int_{\alpha}^{c} \frac{A_1}{r} \frac{\partial}{\partial r} dr dr + \int_{\alpha}^{c} \frac{A_2}{r} \frac{\partial}{\partial r} dr dr$ $V_0 = V(r = \alpha) - V(r = c) = \int_{\alpha}^{c} \frac{A_1}{r} \frac{\partial}{\partial r} dr dr + \int_{\alpha}^{c} \frac{A_1}{r} \frac{\partial}{\partial r} dr dr + \int_{\alpha}^{c} \frac{A_2}{r} \frac{\partial}{\partial r} dr dr + \int_{\alpha}^{c} \frac{A_1}{r} \frac{\partial}{\partial r} dr dr + \int_{\alpha}^{c} \frac{\partial}{\partial r} dr dr dr + \int_{\alpha}^{c$ $I = \int \overline{J} \cdot d\overline{s} = \int 6 \cdot \overline{E_1} \cdot ds = \int 6 \cdot \overline{E_2} \cdot ds \quad (can be)$ Calculated by integration on a cylinder either in medium.alcolated by $d\bar{s}=(1pt)$ 2 π L $d\bar{s}=2\pi L \cdot 6$, A_1 $I=\int 6$, A_1 $\bar{a}_r \cdot \bar{a}_r \cdot$ $R = \frac{V}{I} = \frac{A_1 G_1}{A_2 G_2} = \frac{1}{2\pi L} \left\{ \frac{1}{G_1} \ln \frac{1}{G_2} + \frac{1}{G_2} \ln \frac{1}{G_2} \right\} \left[\frac{1}{R} \cdot 1 \right] + \frac{1}{G_2} \ln \frac{1}{G_2} \left[\frac{1}{G_1} \ln \frac{1}{G_2} \right] + \frac{1}{G_2} \ln \frac{1}{G_2} \left[\frac{1}{G_1} \ln \frac{1}{G_2} \right] + \frac{1}{G_2} \ln \frac{1}{G_2} \left[\frac{1}{G_1} \ln \frac{1}{G_2} \right] + \frac{1}{G_2} \ln \frac{1}{G_2} \left[\frac{1}{G_1} \ln \frac{1}{G_2} \right] + \frac{1}{G_2} \ln \frac{1}{G_2} \left[\frac{1}{G_1} \ln \frac{1}{G_2} \right] + \frac{1}{G_2} \ln \frac{1}{G_2} \left[\frac{1}{G_1} \ln \frac{1}{G_2} \right] + \frac{1}{G_2} \ln \frac{1}{G_2} \left[\frac{1}{G_1} \ln \frac{1}{G_2} \right] + \frac{1}{G_2} \ln \frac{1}{G_2} \left[\frac{1}{G_1} \ln \frac{1}{G_2} \right] + \frac{1}{G_2} \ln \frac{1}{G_2} \left[\frac{1}{G_1} \ln \frac{1}{G_2} \right] + \frac{1}{G_2} \ln \frac{1}{G_2} \left[\frac{1}{G_1} \ln \frac{1}{G_2} \right] + \frac{1}{G_2} \ln \frac{1}{G_2} \left[\frac{1}{G_1} \ln \frac{1}{G_2} \right] + \frac{1}{G_2} \ln \frac{1}{G_2} \left[\frac{1}{G_1} \ln \frac{1}{G_2} \right] + \frac{1}{G_2} \ln \frac{1}{G_2} \left[\frac{1}{G_1} \ln \frac{1}{G_2} \right] + \frac{1}{G_2} \ln \frac{1}{G_2} \left[\frac{1}{G_1} \ln \frac{1}{G_2} \right] + \frac{1}{G_2} \ln \frac{1}{G_2} \left[\frac{1}{G_1} \ln \frac{1}{G_2} \right] + \frac{1}{G_2} \ln \frac{1}{G_2} \left[\frac{1}{G_1} \ln \frac{1}{G_2} \right] + \frac{1}{G_2} \ln \frac{1}{G_2} \ln \frac{1}{G_2} \left[\frac{1}{G_1} \ln \frac{1}{G_2} \ln \frac{1}{G_2} \right] + \frac{1}{G_2} \ln \frac{1}{G_2}$ Hence:

$$R = \frac{1}{2\pi L 6_1} \ln \frac{b}{a} + \frac{1}{2\pi L 6_2} \ln \frac{c}{b}$$

$$R_1 + R_2$$
(series connection)

4. Is there a surface charge density ρ_s at the interface between the two lossy dielectrics? If yes, calculate it (you can use A_1 , A_2 in this calculation). If not, why not ? (4 pts)

Ves (0.5pt)

It can be found from boundary condition at
$$r = b$$
: $\bar{\partial}_1 \cdot (\bar{D}_2 - \bar{D}_1) = p_s$ (1-pt)

$$E_2 = E_2 - \varepsilon_1 = p_s = 0$$

$$Convect interpretation of b.c.)$$

5. Is there a volume charge density ρ_v within the capacitor? If yes, why; if not, why not ? (2 pts)

Question 2

1. A thin wire of length L carries current I along the z-axis for $0 \le z \le L$. Using the Biot-Savart law, the magnetic field that this wire produces at an arbitrary observation point P(x, y, z) can be expressed as follows:

$$\mathbf{B}(x,y,z) = \frac{\mu_0 I}{4\pi} \int_{z'=0}^{z'=L} \frac{?}{(x^2 + y^2 + (z - z')^2)^{3/2}}$$

Derive the term that is missing in this expression. (10 pts)

Answer:

Derivation:

$$Biot-Savart: B = \frac{\mu_0}{4\pi}$$

I $d\vec{\ell} \times (\vec{R}-\vec{R}')$

(Ipt)

(Ipt)

(1pt)

I $d\vec{\ell}' = \vec{I}(\vec{a}_2)(d\vec{z}')$

(1pt)
$$\bar{R} = r \bar{a}_r + Z \bar{d}_z = x \bar{a}_x + y \bar{d}_y + Z \bar{d}_z$$
 $\bar{R} - \bar{R}' = x \bar{a}_x + y \bar{d}_y + (Z - Z') \bar{d}_z$

$$I d \hat{z} \times (\bar{R} - \bar{R}') = I d \hat{z}' \hat{a}_{2} \times (x \hat{a}_{x} + y \hat{a}_{y} + (2 - 2') \hat{a}_{z})$$

$$= I d \hat{z}' (x \hat{a}_{y} - y \hat{a}_{x}) , |\bar{R} - \bar{R}'| = \sqrt{x^{2} + y^{2} + (2 - 2')^{2}}$$

$$= (2pts)$$

ECE259

$$\Rightarrow d\overline{B} = \frac{\mu_0 \, I}{4\pi} \int_0^1 \frac{I \, dz' \left(x \, \overline{\partial} y - y \, \overline{\partial} x \right)}{\left[x^2 + y^2 + \left(\underline{z} - \underline{z}' \right)^2 \right]^{3/2}} \right\} (2pts)$$

$$Missing = I \, dz' \left(x \, \overline{\partial} y - y \, \overline{\partial} x \right) \qquad (1pt).$$

2. The charge q shown in the figure moves with constant velocity within the electric field of a parallel plate capacitor with voltage V_o and plate separation h, due to a constant magnetic field within the capacitor. Find the magnitude and direction of the magnetic flux density \mathbf{B} of this magnetic field. (4 pts)

Answer:

$$\mathbf{B} = (-\hat{a}_2) \frac{\nabla_0}{\nabla_0 h}$$

Derivation:

Constant velocity
$$\Rightarrow q \vec{E} + q \vec{v} \times \vec{B} = 0$$
 (1pt)

$$\Rightarrow \vec{E} = -\vec{v} \times \vec{B} \Rightarrow \frac{\vec{v}_0(-\vec{v}_y) = -\vec{v}_0 \vec{d}_x \times \vec{B}}{h} \text{ (1pt)}$$

$$\frac{\vec{v}_0}{h} \vec{d}_y = \vec{v}_0 \vec{d}_x \times \vec{B} \Rightarrow \vec{B} = \frac{\vec{v}_0(-\vec{v}_y)}{h \cdot \vec{v}_0} \vec{d}_y = 0$$

1pt

- 3. The two circular coils shown in the figure, centered at A_1 and A_2 , support co-directional currents $I_1 = I_2 = I$. Let the magnetic field densities generated by each of the two coils alone be $\mathbf{B_1}$, $\mathbf{B_2}$. The total magnetic field density \mathbf{B} at point \mathbf{P} on the axis is:
 - a) In the positive x direction and has magnitude smaller than the magnitude of $\mathbf{B_1}$ at P.
 - b) In the positive x direction and has magnitude smaller than the magnitude of $\mathbf{B_2}$ at P.
 - In the negative x direction and has magnitude greater than the magnitude of $\mathbf{B_2}$ at P. (0.5 ρ $\stackrel{+}{\leftarrow}$)
 - (d))In the negative x direction and has magnitude greater than the magnitude of ${f B_1}$ at P. (m 0 , m 5 m p $m \epsilon$)

Choose all answers that apply and briefly explain. (4 pts)

- 4. Which of the following expressions can represent a magnetic flux density B? Choose all answers that apply and briefly explain. (2 pts)
 - (a) $B_0 \mathbf{a}_x$, where B_0 is a constant.
 - b) $x y a_x$.
 - c) $\frac{B_0}{r}$ **a**_r, where B_0 is a constant.
 - $(d) \frac{B_0}{r} \mathbf{a}_{\phi}$, where B_0 is a constant. \circ . \subseteq

divB=0 is satisfied only by (a), (d).

1pt