数学分析 B2 期中整理

1

空间解析几何

三维空间中,一个方程确定一个面,两个方程确定一条线。

平面方程 法向量 $\vec{n} = (a, b, c)$ 且过点 (x_0, y_0, z_0) 的平面 $\pi : a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$.

直线方程 方向向量 $\vec{v} = (a, b, c)$ 且过点 (x_0, y_0, z_0) 的 直线 ℓ : $\frac{x - x_0}{a} = \frac{y - y_0}{b} = \frac{z - z_0}{c}$, 或参数方程形式: $\begin{cases} x = x_0 + at \\ y = y_0 + bt \end{cases}$; $t \in \mathbb{R}$. $z = z_0 + ct$

二次曲面 自行看书

坐标变换 自行看书

其他坐标系 自行看书

多变量函数的微分学

定义 累次极限、连续、偏导、可微的一种证明

证明极限不存在的一种方法 取特殊路径(一般为一次或二次型,如 $y = kx, y = kx^2$,极限得到的式子与 k 有关即可说明极限不存在)

多变量函数连续性与可微性 定理对于区域 D 内两个偏导数均存在的二元函数 f(x,y),在区域 D 内:若 f'_x , f'_y 有界,则 f 连续;若 f'_x , f'_y 连续,则 f 可微。

可微的一种证明 若函数在点 (x_0, y_0) 处可微,那么 $\lim_{\Delta x \to 0, \Delta y \to 0} \frac{\Delta z - \mathrm{d}z}{\rho} = 0, 其中$ $\Delta z = f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0)$ $\mathrm{d}z = f_x'(x_0, y_0) \Delta x + f_y'(x_0, y_0) \Delta y$ $\rho = \sqrt{(\Delta x)^2 + (\Delta y)^2}.$

链式法则 自行看书

Jacobi 行列式 $\frac{\partial(F,G)}{\partial(u,v)} = \begin{vmatrix} \frac{\partial F}{\partial u} & \frac{\partial F}{\partial v} \\ \frac{\partial G}{\partial u} & \frac{\partial G}{\partial v} \end{vmatrix}$

梯度 称向量 $\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right)$ 为可微数量场 u = f(x, y, z) 的梯度,记为 grad f.

方向导数 定义函数 f(x,y,z) 在 $\vec{l} = (\cos \alpha, \cos \beta, \cos \gamma)$ 方向的方向导数 $\frac{\partial f}{\partial l} = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right)$ $\cdot (\cos \alpha, \cos \beta, \cos \gamma) = \operatorname{grad} f \cdot \vec{l}.$

复合函数一阶微分形式不变形 $\mathrm{d}u = \frac{\partial u}{\partial \xi}\mathrm{d}\xi + \frac{\partial u}{\partial \zeta}\mathrm{d}\zeta = \frac{\partial u}{\partial x}\mathrm{d}x + \frac{\partial u}{\partial y}\mathrm{d}y$, 其中 ξ, ζ 是 x, y 的函数.

隐函数求偏导 微分法: 对于由隐函数 F(x,y)=0 确定的 函数 y(x),取全微分有 $F'_x dx + F'_y dy = 0$,若 $F'_y \neq 0$,则有 $\frac{dy}{dx} = -\frac{F'_x}{F'_y}$.

对于三元函数 F(x,y,z)=0 确定的 z(x,y) 同理可得 向量为 $\operatorname{grad} F \times \operatorname{grad} G$. $\frac{\partial z}{\partial x} = -\frac{F_x'}{F_z'}$, $\frac{\partial z}{\partial y} = -\frac{F_y'}{F_z'}$. 偏导法公式与上述相同. 同型为 $\operatorname{grad} F \times \operatorname{grad} G$. 隐式曲面: 由方程

此外,对于三个变量、两个方程构成的方程组

$$\begin{cases} F(x, u, v) = 0 \\ G(x, u, v) = 0 \end{cases}$$

,有 $\frac{\mathrm{d}u}{\mathrm{d}x} = -\frac{\partial(F,G)}{\partial(x,v)} / \frac{\partial(F,G)}{\partial(u,v)}$, $\frac{\mathrm{d}v}{\mathrm{d}x} = -\frac{\partial(F,G)}{\partial(u,x)} / \frac{\partial(F,G)}{\partial(u,v)}$. 此外,对于三个变量、两个方程构成的方程组

$$\begin{cases} F(x, y, u, v) = 0 \\ G(x, y, u, v) = 0 \end{cases}$$

 $, \ \, \overline{\uparrow} \ \, \frac{\partial u}{\partial x} = -\frac{\partial (F,G)}{\partial (x,v)} / \frac{\partial (F,G)}{\partial (u,v)} \, , \ \, \frac{\partial v}{\partial x} = -\frac{\partial (F,G)}{\partial (u,x)} / \frac{\partial (F,G)}{\partial (u,v)} \, , \\ \frac{\partial u}{\partial y} = -\frac{\partial (F,G)}{\partial (y,v)} / \frac{\partial (F,G)}{\partial (u,v)} \, , \ \, \frac{\partial v}{\partial y} = -\frac{\partial (F,G)}{\partial (u,y)} / \frac{\partial (F,G)}{\partial (u,v)} \, .$

空间曲线和曲面 参数曲线: $\vec{r} = \vec{r}(t) = x(t)\vec{i} + y(t)\vec{j} + z(t)\vec{k}$, (x_0, y_0, z_0) 处切向量 $\vec{r}'(t) = x'(t_0)\vec{i} + y'(t_0)\vec{j} + z'(t_0)\vec{k}$, 切向量为切线方向向量和法平面法向量,由第八章知识易求两者方程;一般地,我们分别称 \vec{r}'' 和 $\vec{k} = \vec{r}' \times \vec{r}''$ 为主法向量和副法向量.

参数曲面: $\vec{r} = \vec{r}(u,v) = x(u,v)\vec{i} + y(u,v)\vec{j} + z(u,v)\vec{k}$. (x_0,y_0,z_0) 处法向量 $\vec{n} = \vec{r}'_u(u_0,v_0) \times \vec{r}'_v(u_0,v_0)$, 法向量方向为切平面法向,由第八章知识易求其方程.

隐式曲线: 由方程组 $\begin{cases} F(x,y,z) = 0 \\ G(x,y,z) = 0 \end{cases}$ 确定的曲线, 切

隐式曲面: 由方程 F(x,y,z) 确定的曲面, 法向量为 $\operatorname{grad} F$

多变量函数 Taylor 公式 一种用整体法利用单变量 Taylor 公式展开,或者求偏导利用多元函数 Taylor 公式.

多元函数 Taylor 公式: 引入算子 $\mathcal{D}=\Delta x\frac{\partial}{\partial x}+\Delta y\frac{\partial}{\partial y}$ 则有

$$f(x,y) = f(x_0 + \Delta x, y_0 + \Delta y) = \sum_{m=0}^{n} \frac{1}{m!} \mathcal{D}^m f(x_0, y_0) + R_n$$

二元函数极值 极值的必要条件:极值点必须是驻点(函数的一阶偏导均为0).

 $\frac{\partial^2 f}{\partial x^2}>(<)0$,则该点为极小(极大)值;若 $\Delta<0$,则该点不是极值点;若 $\Delta=0$,则无法判断.

条件极值 函数 f(x,y) 在 $\varphi(x,y)=0$ 的条件下,引入辅助方程 $F(x,y)=f(x,y)+\lambda\varphi(x,y)$,条件极值点寄为 F(x,y) 极值点.

多变量函数的重积分

二重积分换元 令 x = u, y = v,则有 $dxdy = \left| \frac{\partial(x,y)}{\partial(u,v)} \right| dudv$, 常见极坐标换元: $dxdy = rdrd\theta$.

三重积分换元 令 x=u,y=v,z=w,则有 $\mathrm{d}x\mathrm{d}y\mathrm{d}z=\left|\frac{\partial(x,y,z)}{\partial(u,v,w)}\right|$,常见球坐标换元 $\mathrm{d}x\mathrm{d}y\mathrm{d}z=r^2\sin\theta\mathrm{d}r\mathrm{d}\theta\mathrm{d}\varphi$ (其中 θ 是极径与 z 轴夹角, φ 是极径与 x 轴夹角),球坐标换元 $\mathrm{d}x\mathrm{d}y\mathrm{d}z=r\mathrm{d}r\mathrm{d}\theta\mathrm{d}z$.

* 祝考试顺利! *