UFRGS – INSTITUTO DE MATEMÁTICA Departamento de Matemática Pura e Aplicada MAT01168 - Turma $\rm D/D2$ - $\rm 2022/1$ Prova da área IIB

1 - 5	6	7	Total

Nome:	Cartão:	

Regras Gerais:

- Não é permitido o uso de calculadoras, telefones ou qualquer outro recurso computacional ou de comunicação.
- Trabalhe individualmente e sem uso de material de consulta além do fornecido.
- Devolva o caderno de questões preenchido ao final da prova.

Regras para as questões abertas:

- $\bullet~$ Seja sucinto, completo e claro.
- Justifique todo procedimento usado.
- Indique identidades matemáticas usadas, em especial, itens da tabela.
- $\bullet~$ Use notação matemática consistente.

Propriedades das transformadas de Fourier: considere a notação $F(w) = \mathcal{F}\{f(t)\}$

Propri	Propriedades das transformadas de Fourier: considere a notação $F(w) = \mathcal{F}\{f(t)\}$.					
1.	Linearidade	$\mathcal{F}\left\{\alpha f(t) + \beta g(t)\right\} = \alpha \mathcal{F}\left\{f(t)\right\} + \beta \mathcal{F}\left\{g(t)\right\}$				
2.	Transformada da derivada	Se $\lim_{t\to\pm\infty}f(t)=0,$ então $\mathcal{F}\left\{f'(t)\right\}=iw\mathcal{F}\left\{f(t)\right\}$				
		Se $\lim_{t \to \pm \infty} f(t) = \lim_{t \to \pm \infty} f'(t) = 0$, então $\mathcal{F}\left\{f''(t)\right\} = -w^2 \mathcal{F}\left\{f(t)\right\}$				
3.	Deslocamento no eixo \boldsymbol{w}	$\mathcal{F}\left\{e^{at}f(t)\right\} = F(w+ia)$				
4.	Deslocamento no eixo \boldsymbol{t}	$\mathcal{F}\left\{f(t-a)\right\} = e^{-iaw}F(w)$				
5.	Transformada da integral	Se $F(0) = 0$, então $\mathcal{F}\left\{\int_{-\infty}^{t} f(\tau)d\tau\right\} = \frac{F(w)}{iw}$				
6.	Teorema da modulação	$\mathcal{F}\{f(t)\cos(w_0t)\} = \frac{1}{2}F(w - w_0) + \frac{1}{2}F(w + w_0)$				
7.	Teorema da Convolução	$\mathcal{F}\left\{(f*g)(t)\right\} = F(w)G(w), \text{onde} (f*g)(t) = \int_{-\infty}^{\infty} f(\tau)g(t-\tau)d\tau$				
		$(F*G)(w) = 2\pi \mathcal{F}\{f(t)g(t)\}$				
8.	Conjugação	$\overline{F(w)} = F(-w)$				
9.	Inversão temporal	$\mathcal{F}\{f(-t)\} = F(-w)$				
10.	Simetria ou dualidade	$f(-w) = \frac{1}{2\pi} \mathcal{F}\left\{F(t)\right\}$				
11.	Mudança de escala	$\mathcal{F}\left\{f(at)\right\} = rac{1}{ a }F\left(rac{w}{a} ight), \qquad a eq 0$				
12.	Teorema da Parseval	$\int_{-\infty}^{\infty} f(t) ^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(w) ^2 dw$				
13.	Teorema da Parseval para Série de Fourier	$\frac{1}{T} \int_0^T f(t) ^2 dt = \sum_{n = -\infty}^{\infty} C_n ^2$				

Séries e transformadas de Fourier:					
	Forma trigonométrica	Forma exponencial			
Série de Fourier	$f(t) = \frac{a_0}{2} + \sum_{n=1}^{N} \left[a_n \cos(w_n t) + b_n \sin(w_n t) \right]$	$f(t) = \sum_{n = -\infty}^{\infty} C_n e^{iw_n t},$			
	onde $w_n = \frac{2\pi n}{T}, T$ é o período de $f(t)$	onde $C_n = \frac{a_n - ib_n}{2}$			
	$a_0 = \frac{2}{T} \int_0^T f(t)dt = \frac{2}{T} \int_{-T/2}^{T/2} f(t)dt,$				
	$a_n = \frac{2}{T} \int_0^T f(t) \cos(w_n t) dt = \frac{2}{T} \int_{-T/2}^{T/2} f(t) \cos(w_n t) dt,$				
	$b_n = \frac{2}{T} \int_0^T f(t) \sin(w_n t) dt = \frac{2}{T} \int_{-T/2}^{T/2} f(t) \sin(w_n t) dt$				
Transformada de Fourier	$f(t) = \frac{1}{\pi} \int_0^\infty \left(A(w) \cos(wt) + B(w) \sin(wt) \right) dw, \text{ para } f(t) \text{ real},$	$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(w)e^{iwt}dw,$			
	onde $A(w) = \int_{-\infty}^{\infty} f(t) \cos(wt) dt$ e $B(w) = \int_{-\infty}^{\infty} f(t) \sin(wt) dt$	onde $F(w) = \int_{-\infty}^{\infty} f(t)e^{-iwt}dt$			

Tabela de integrais definidas:

Tabela de integrais definidas:				
1. $\int_0^\infty e^{-ax} \cos(mx) dx = \frac{a}{a^2 + m^2} \qquad (a > 0)$	2. $\int_0^\infty e^{-ax} \sin(mx) dx = \frac{m}{a^2 + m^2} \qquad (a > 0)$			
3. $\int_0^\infty \frac{\cos(mx)}{a^2 + x^2} dx = \frac{\pi}{2a} e^{-ma} \qquad (a > 0, \ m \ge 0)$	4. $\int_0^\infty \frac{x \sin(mx)}{a^2 + x^2} dx = \frac{\pi}{2} e^{-ma} \qquad (a \ge 0, \ m > 0)$			
5. $ \int_0^\infty \frac{\sin(mx)\cos(nx)}{x} dx = \begin{cases} \frac{\pi}{2}, & n < m \\ \frac{\pi}{4}, & n = m, & (m > 0, \\ 0, & n > m \end{cases} $	6. $ \int_0^\infty \frac{\sin(mx)}{x} dx = \begin{cases} \frac{\pi}{2}, & m > 0\\ 0, & m = 0\\ -\frac{\pi}{2}, & m < 0 \end{cases} $			
7. $\int_0^\infty e^{-r^2 x^2} dx = \frac{\sqrt{\pi}}{2r} \qquad (r > 0)$	8. $\int_0^\infty e^{-a^2 x^2} \cos(mx) dx = \frac{\sqrt{\pi}}{2a} e^{-\frac{m^2}{4a^2}} \qquad (a > 0)$			
9. $\int_0^\infty x e^{-ax} \sin(mx) dx = \frac{2am}{(a^2 + m^2)^2} \qquad (a > 0)$	10. $\int_0^\infty e^{-ax} \operatorname{sen}(mx) \cos(nx) dx =$			
	$= \frac{m(a^2 + m^2 - n^2)}{(a^2 + (m-n)^2)(a^2 + (m+n)^2)} (a > 0)$			
11. $\int_0^\infty xe^{-ax}\cos(mx)dx = \frac{a^2 - m^2}{(a^2 + m^2)^2} \qquad (a > 0)$	12. $\int_0^\infty \frac{\cos(mx)}{x^4 + 4a^4} dx = \frac{\pi}{8a^3} e^{-ma} (\operatorname{sen}(ma) + \cos(ma))$			
13. $\int_0^\infty \frac{\sin^2(mx)}{x^2} dx = m \frac{\pi}{2}$	14. $erf(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-z^2} dz$			
15. $ \int_0^\infty \frac{\sin^2(ax)\sin(mx)}{x} dx = \begin{cases} \frac{\pi}{4}, & (0 < m < 2a) \\ \frac{\pi}{8}, & (0 < 2a = m) \\ 0, & (0 < 2a < m) \end{cases} $	16. $ \int_0^\infty \frac{\sin(mx)\sin(nx)}{x^2} dx = \begin{cases} \frac{\pi m}{2}, & (0 < m \le n) \\ \frac{\pi n}{2}, & (0 < n \le m) \end{cases} $			
17. $\int_0^\infty x^2 e^{-ax} \sin(mx) dx = \frac{2m(3a^2 - m^2)}{(a^2 + m^2)^3} \qquad (a > 0)$	18. $\int_0^\infty x^2 e^{-ax} \cos(mx) dx = \frac{2a(a^2 - 3m^2)}{(a^2 + m^2)^3} (a > 0)$			
19. $\int_0^\infty \frac{\cos(mx)}{(a^2 + x^2)^2} dx = \frac{\pi}{4a^3} (1 + ma)e^{-ma} \begin{array}{l} (a > 0, \\ m \ge 0) \end{array}$	20. $\int_0^\infty \frac{x \sin(mx)}{(a^2 + x^2)^2} dx = \frac{\pi m}{4a} e^{-ma} (a > 0, \ m > 0)$			
21. $\int_0^\infty \frac{x^2 \cos(mx)}{(a^2 + x^2)^2} dx = \frac{\pi}{4a} (1 - ma) e^{-ma} {\substack{(a > 0, \\ m \ge 0)}}$	22. $\int_0^\infty x e^{-a^2 x^2} \sin(mx) dx = \frac{m\sqrt{\pi}}{4a^3} e^{-\frac{m^2}{4a^2}} (a > 0)$			

Frequências das notas musicais em hertz:

Nota \ Escala	2	3	4	5	6	7
Dó	65,41	130,8	261,6	523,3	1047	2093
Dó #	69,30	138,6	277,2	554,4	1109	2217
Ré	73,42	146,8	293,7	587,3	1175	2349
Ré #	77,78	155,6	311,1	622,3	1245	2489
Mi	82,41	164,8	329,6	659,3	1319	2637
Fá	87,31	174,6	349,2	698,5	1397	2794
Fá #	92,50	185,0	370,0	740,0	1480	2960
Sol	98,00	196,0	392,0	784,0	1568	3136
Sol #	103,8	207,7	415,3	830,6	1661	3322
Lá	110,0	220,0	440,0	880,0	1760	3520
Lá ‡	116,5	233,1	466,2	932,3	1865	3729
Si	123,5	246,9	493,9	987,8	1976	3951

Identidades Trigonométricas:

$$\cos(x)\cos(y) = \frac{\cos(x+y) + \cos(x-y)}{2}$$
$$\sin(x)\sin(y) = \frac{\cos(x-y) - \cos(x+y)}{2}$$
$$\sin(x)\cos(y) = \frac{\sin(x+y) + \sin(x-y)}{2}$$

Integrais:

$$\int xe^{\lambda x} dx = \frac{e^{\lambda x}}{\lambda^2} (\lambda x - 1) + C$$

$$\int x^2 e^{\lambda x} dx = e^{\lambda x} \left(\frac{x^2}{\lambda} - \frac{2x}{\lambda^2} + \frac{2}{\lambda^3} \right) + C$$

$$\int x^n e^{\lambda x} dx = \frac{1}{\lambda} x^n e^{\lambda x} - \frac{n}{\lambda} \int x^{n-1} e^{\lambda x} dx + C$$

$$\int x \cos(\lambda x) dx = \frac{\cos(\lambda x) + \lambda x \sin(\lambda x)}{\lambda^2} + C$$

$$\int x \sin(\lambda x) dx = \frac{\sin(\lambda x) - \lambda x \cos(\lambda x)}{\lambda^2} + C$$

• Questão 1 (2.0 pontos) Considere a função

$$f(t) = 1 - 2\cos(2t) - 2\sin(2t) + \cos(3t) - 3\sin(3t)$$

e sua expansão em série de Fourier em que w_1 é a frequência fundamental. Sobre a função f(t) e os coefientes da sua série de Fourier, responda:

Frequência fundamental

 $() w_1 = 1/2$

(X) $w_1 = 1$

 $(\)\ w_1=2$

 $(\)\ w_1=3$

 $() w_1 = 4$

Fase de C_2

() $\phi_2 = \frac{\pi}{4}$

() $\phi_2 = \frac{\pi}{2}$

 $(X) \phi_2 = \frac{3\pi}{4}$

() $\phi_2 = \tan^{-1}(3)$

() $\phi_2 = \tan^{-1}(3) + \pi$ Solução: Módulo de C_2

 $(\)\ |C_2| = \frac{\sqrt{3}}{2}$

 $(\)\ |C_2| = \frac{\sqrt{2}}{2}$

 $(X) |C_2| = \sqrt{2}$

() $|C_2| = \frac{\sqrt{10}}{2}$

 $(\)\ |C_2| = 1$

Potência Média $\frac{1}{T} \int_0^T |f(t)|^2 dt$

() $\bar{P}_f = 3$

() $\bar{P}_f = 6$

() $\bar{P}_f = 9$

(X) $\bar{P}_f = 10$

() $\bar{P}_f = 15$

$$\begin{split} C_2 &= \frac{a_2 - ib_2}{2} = \frac{-2 + 2i}{2} = -1 + i, \quad |C_2| = \sqrt{2}, \quad \phi_2 = \frac{3\pi}{4}. \\ C_3 &= \frac{a_3 - ib_3}{2} = \frac{1 + 3i}{2}, \quad |C_3| = \frac{\sqrt{10}}{2}. \\ \bar{P}_f &= |C_0|^2 + 2|C_2|^2 + 2|C_3|^2 = 1 + 4 + 5 = 10 \end{split}$$

• Questão 2 (1.0 pontos) Considere uma aproximação discreta do diagrama de espectro de uma nota Mi 2 (82, 5 Hz) dada pelo sinal real f(t).

O diagrama de espectro de fase do sinal f(t) é zero para frequência $w_0=0$ e $-\frac{\pi}{2}$ para todas as frequências positivas. Responda os itens corretamente:

Nota produzida por g(t) = f(3t)

- () Lá 2
- () Lá 3
- () Mi 4
- (X) Si 3
- () Si 5

Série de Fourier trigonométrica de $\boldsymbol{f}(t)$

- () $f(t) = 1 + 0.8\cos(165\pi t) + 0.4\cos(370\pi t) + 0.5\cos(495\pi t) + 0.4\cos(660\pi t)$
- () $f(t) = 1 + 0.8 \sin(165\pi t) + 0.4 \sin(370\pi t) + 0.5 \sin(495\pi t) + 0.4 \sin(660\pi t)$
- () $f(t) = \frac{1}{2} + 0.8 \sin(165\pi t) + 0.4 \sin(370\pi t) + 0.5 \sin(495\pi t) + 0.4 \sin(660\pi t)$
- () $f(t) = 1 + 1,6\cos(165\pi t) + 0,8\cos(370\pi t) + \cos(495\pi t) + 0,8\cos(660\pi t)$
- (X) $f(t) = 1 + 1,6 \operatorname{sen}(165\pi t) + 0,8 \operatorname{sen}(370\pi t) + \operatorname{sen}(495\pi t) + 0,8 \operatorname{sen}(660\pi t)$

• Questão 3 (2.0 pontos) Seja $f(t) = e^{-t^2}$, $g(t) := \mathcal{F}^{-1}\{F(w+2) + F(w-2)\}$, $h(t) := \mathcal{F}^{-1}\{G\left(\frac{w}{2}\right)\}$ e $p(t) = f(t)e^{3t}$, onde $F(w) = f(t)e^{3t}$ $\mathcal{F}\left\{f(t)\right\},\,G(w)=\mathcal{F}\left\{g(t)\right\}$ e $P(w)=\mathcal{F}\left\{p(t)\right\}.$ Responda corretamente.

()
$$g(2) = e^{-4}$$
 () $h(3) = 2e^{-9}\cos(6)$

()
$$g(2) = e^{-4}\cos(2)$$
 (X) $h(3) = 4e^{-36}\cos(12)$

()
$$g(2) = e^{-2}\cos(2)$$
 () $h(3) = 4e^{-36}\cos(6)$

$$\begin{array}{ll} (\ {\rm X}\) \ \ g(2) = 2e^{-4}\cos(4) & (\) \ \ h(3) = e^{-9}\cos(6) \\ (\) \ \ g(2) = 2e^{-4} & (\) \ \ h(3) = 2e^{-18}\cos(12) \\ F(w) & P(w) \end{array}$$

()
$$F(w) = \pi e^{-w^2/2}$$
 () $P(w) = \sqrt{\pi} e^{-(w+3)^2/4}$

$$() \Gamma(w) - \kappa e \qquad () \Gamma(w) - \sqrt{\kappa} e \qquad ()$$

()
$$F(w) = e^{-w^2}$$
 (X) $P(w) = \sqrt{\pi}e^{-(w+3i)^2/4}$

()
$$F(w) = e^{-w^2/4}$$

 () $P(w) = e^{-(w+3)^2/2}$
 () $P(w) = \sqrt{\pi}e^{-w^2}$
 () $P(w) = e^{-(w-3i)^2/4}$

$$(X) F(w) = \sqrt{\pi}e^{-w^2/4}$$
 $(P(w) = \sqrt{\pi}e^{-(w-3i)^2/4})$

P(w) = F(w+3i)

$$\begin{split} g(t) &= 2f(t)\cos(2t) = 2e^{-|t|^2}\cos(2t) \\ h(t) &= 2g(2t) = 4e^{-|2t|^2}\cos(4t) \\ F(w) &= 2\int_0^\infty e^{-t^2}\cos(wt)dt = \frac{\sqrt{\pi}}{2}e^{-w^2/4} \end{split}$$

• Questão 4 (3.0 ponto) Considere a função periódica de período T=2 cujo gráfico é esboçado abaixo:

Aqui a é uma constante positiva menor que 1. Escreva esta função em séries de Fourier na seguinte forma:

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} [a_n \cos(\pi n t) + b_n \sin(\pi n t)],$$

Trace o diagrama de amplitudes e o de fase quando a=1/2 com pelo menos duas rais positivas e duas negativas. Solução:

$$b_{n} = \frac{2}{T} \int_{-T/2}^{T/2} f(t) \sin(w_{n}t) dt, \quad w_{n} = \frac{2\pi n}{T}$$

$$= \int_{-a}^{a} f(t) \sin(w_{n}t) dt = \frac{2}{a} \int_{0}^{a} t \sin(w_{n}t) dt$$

$$= \frac{2}{a} \left(\frac{\sin(w_{n}t) - w_{n}t \cos(w_{n}t)}{w_{n}^{2}} \right) \Big|_{0}^{a}$$

$$= \frac{2}{a} \left(\frac{\sin(w_{n}a) - w_{n}a \cos(w_{n}a)}{w_{n}^{2}} \right)$$

$$= \frac{2}{a} \left(\frac{\sin(\pi na) - \pi na \cos(\pi na)}{\pi^{2} n^{2}} \right)$$

Assim:

$$f(t) = \frac{2}{a\pi^2} \sum_{n=1}^{\infty} \left(\frac{\sin(\pi n a) - \pi n a \cos(\pi n a)}{n^2} \right) \sin(\pi n t).$$

Assim para a = 1/2

$$C_n = \frac{a_n - i_b n}{2} = i \frac{\pi n \cos(\pi n/2) - 2 \sin(\pi n/2)}{\pi^2 n^2}$$

Portanto:

$$C_{n} = \begin{cases} 0, & n = 0\\ \frac{i}{\pi n}, & n = 4k, & n \neq 0\\ \frac{-2i}{\pi^{2}n^{2}}, & n = 4k + 1\\ \frac{-i}{\pi n}, & n = 4k + 2\\ \frac{2i}{\pi^{2}n^{2}}. & n = 4k + 3 \end{cases}$$

$$> 0, \text{ temos:}$$

Decompondo da forma amplitude e fase para n > 0, temos

$$C_n = \begin{cases} \frac{1}{\pi n} e^{i\pi/2}, & n = 4k, \quad n \neq 0 \\ \frac{2}{\pi^2 n^2} e^{-i\pi/2}, & n = 4k + 1 \\ \frac{1}{\pi n} e^{-i\pi/2}, & n = 4k + 2 \\ \frac{2}{\pi^2 n^2} e^{i\pi/2}. & n = 4k + 3 \end{cases}$$

Decompondo da forma amplitude e fase para n < 0, temos

$$C_n = \begin{cases} \frac{1}{\pi n} e^{-i\pi/2}, & n = 4k, \ n \neq 0 \\ \frac{2}{\pi^2 n^2} e^{-i\pi/2}, & n = 4k+1 \\ \frac{1}{\pi n} e^{i\pi/2}, & n = 4k+2 \\ \frac{2}{\pi^2 n^2} e^{i\pi/2}. & n = 4k+3 \end{cases}$$

• Questão 7 (2.0 pontos) Seja f(t) uma função que possue transformada de Fourier $F(w) = \mathcal{F}\{f(t)\}$. O gráfico abaixo apresenta o diagrama de espectro de magnitudes de F(w).

Esboce o diagrama de magnitudes de $g(t) = f\left(\frac{t}{2}\right)\cos(2t)$ e $h(t) = f'\left(\frac{t}{2}\right)$. Vemos que $\mathcal{F}\left\{f(t/2)\right\} = 2F(2w)$ e $\mathcal{F}\left\{f(t/2)\cos(2t)\right\} = F(2w-4) + F(2w+4)$ Além disso, $\mathcal{F}\left\{f'(t)\right\} = iwF(w)$ e $\mathcal{F}\left\{f'(t/2)\right\} = 2iwF(2w)$