طراحي الگوريتمها

بهار ۱۴۰۰

مدرس: مسعود صديقين

تقسيم و غلبه

یادآوری جلسه سوم

در جلسهی قبل با دو مسئلهی از زمینه هندسهی محاسباتی آشنا شدیم که به طور مختصر آنها را بررسی میکنیم.

مساله نزديكترين جفت

مساله اول یافتن کمترین فاصله ی بین جفت نقاط در فضای دوبعدی بود. برای حل این مساله به روش تقسیم و حل، به این صورت عمل می کنیم: ابتدا فرض کنیم P_x مجموعه نقاط P_x مرتبشده بر حسب P_x باشند که با یک مرتب سازی در زمان $O(n \log n)$ به دست می آید. در این روش به ترتیب باید گامهای زیر را دنبال کنیم.

- ۱. مجموعه ی نقاط را با خط عمود ی L به دو زیرمجموعه ی R و Q با اندازه های مساوی تقسیم می کنیم R_x و Q_x از روی R_y و Q_y از روی R_y و Q_y و Q_y از روی Q_y و Q_y و Q_y و Q_y به دست زیرمجموعه های Q_y و Q_y حل می کنیم که کمینه ی هر قسمت، به ترتیب به صورت Q_y و Q_y به دست می آید و Q_y را برابر Q_y و Q_y قرار می دهیم.
- ۲. مجموعه S را برابر نقاطی که فاصله آنها از L کمتر از q^* تعریف کرده و S_y را محاسبه میکنیم. فاصله هر نقطه در S_y را مطابق شکل با ۷ نقطه پایین آن محاسبه میکنیم و S_y را که مینیمم این ۷ فاصله است، مییابیم. پاسخ نهایی برابر با S_y باست و زمان اجرا از رابطه بازگشتی فاصله است، مییابیم. پاسخ نهایی برابر با S_y باست و زمان اجرا از رابطه بازگشتی S_y است. S_y به دست می آید که برابر S_y است.

مساله پوش محدب

مساله دوم، مساله پیدا کردن پوش محدب مجموعه ای از نقاط در فضای دو بعدی بود. ورودی مساله، مجموعه نقاط P است و خروجی آن لیستی از راسهای پوش محدب به صورت ساعتگرد می باشد. می توان خروجی را به صورت یک آرایه که یک لیست پیوندی را شبیه سازی کرده است تصور کرد. برای مثال آرایه مربوط به پوش محدب مجموعه نقاط روبرو بدین صورت است:

در انتهای جلسه یک راه حل ساده با پیچیدگی محاسباتی $\mathcal{O}(n^{\mathsf{r}})$ برای پوش محدب مطرح کردیم: به این صورت که تمام جفت نقاط $n-\mathsf{r}$ نقطه دیگر را بررسی pq باشند پیدا کنیم. از آنجا که به ازای هر یال باید pq نقطه دیگر را بررسی کنیم، الگوریتم ارائه شده از مرتبه qq می باشد.

