Relatório gerado a partir da análise do algoritmo de Coloração de grafos

Nome: Fabricio Monteiro de Aquino 11221BCC026 Nome: John Vitor da Silva Cunha 11821BCC005 Nome: Alexandre Albernaz Leite Lemos 12011BCC043 Nome: Laura Lorena Melo Amaral 11911BCC046

1) Linguagem utilizada:

_____No desenvolvimento do algoritmo foi utilizada a linguagem de programação JAVA. A linguagem foi escolhida devido a maior familiaridade que o grupo possui com ela, pois além de sua vasta utilização no mercado é bastante utilizada no meio acadêmico. Além disso ela é utilizada nas disciplinas de programação orientada a objetos 1 e 2 o que gera uma maior facilidade ao utiliza-la. Outro fator foi sua extensa e conhecida biblioteca visto que utilizamos funções contidas na biblioteca na geração das listas encadeadas para o grafo.

2) Grafos gerados, Matriz de adjacência, dimensão de cada grafo e saida do algoritmo para cada grafo

Foram gerados os seguintes grafos para este experimento:

Grafo 1:

Matriz de adjacência do grafo 1:

01000011 10100001 01010001 mat1= 00101001 00010101 10000101 1111110

A dimensão de um grafo é o seu número de arestas. Assim a dimensão do grafo 1 é: 14.

Saida do algoritmo para o grafo 1:

Resultado para o grafo 1:

Vértice 0 ==> Cor: 0

Vértice 1 ==> Cor: 1

Vértice 2 ==> Cor: 0

Vértice 3 ==> Cor: 1

Vértice 4 ==> Cor: 0

Vértice 5 ==> Cor: 1

Vértice 6 ==> Cor: 2

Vértice 7 ==> Cor: 3

Grafo 2:

Matriz de adjacência do grafo 2:

A dimensão do grafo 2 é: 9

Saida do algoritmo para o grafo 2:

Resultado para o grafo 2:

Vértice 0 ==> Cor: 0

Vértice 1 ==> Cor: 1

Vértice 2 ==> Cor: 0

Vértice 3 ==> Cor: 1

Vértice 4 ==> Cor: 0

Vértice 5 ==> Cor: 1

Grafo 3:

Matriz de adjacência do grafo 3:

A dimensão do grafo 3 é: 16.

Saida do algoritmo para o grafo 3:

Resultado para o grafo 3:

Vértice 0 ==> Cor: 0

Vértice 1 ==> Cor: 1

Vértice 2 ==> Cor: 0

Vértice 3 ==> Cor: 1

Vértice 4 ==> Cor: 2

Vértice 5 ==> Cor: 1

Vértice 6 ==> Cor: 0

Vértice 7 ==> Cor: 2

Vértice 8 ==> Cor: 2

Vértice 9 ==> Cor: 1

Grafo 4:

Matriz de adjacência do grafo 4:

A dimensão do grafo 4 é: 19.

Saida do algoritmo para o grafo 4:

Resultado para o grafo 4:

Vértice 0 ==> Cor: 0

Vértice 1 ==> Cor: 1

Vértice 2 ==> Cor: 0

Vértice 3 ==> Cor: 1

Vértice 4 ==> Cor: 0

Vértice 5 ==> Cor: 1 Vértice 6 ==> Cor: 2 Vértice 7 ==> Cor: 1 Vértice 8 ==> Cor: 0 Vértice 9 ==> Cor: 2 Vértice 10 ==> Cor: 2 Vértice 11 ==> Cor: 3

Grafo 5:

Matriz de adjacência do grafo 5:

0 1 0 0 1 0 1 0 1 0 1 0 mat5 = 0 1 0 1 0 0 0 0 1 0 1 1 1 1 0 1 0 0 0 0 0 1 0 0

A dimensão do grafo 5 é: 7.

Saida do algoritmo para o grafo 5:

Resultado para o grafo 5:

Vértice 0 ==> Cor: 0 Vértice 1 ==> Cor: 1 Vértice 2 ==> Cor: 0 Vértice 3 ==> Cor: 1 Vértice 4 ==> Cor: 2 Vértice 5 ==> Cor: 0

3) Estratégia de programação utilizada:

No desenvolvimento deste projeto o algoritmo utilizado para gerar a coloração utiliza a estratégia gulosa. Pois o algoritmo pega sempre a primeira cor disponível sem analisar um histórico ou reconsiderar a escolha.

4)Tabela com o desempenho do algoritmo aplicado a cada grafo em cada execução

Execução	Grafo1	Grafo2	Grafo3	Grafo4	Grafo5
1	0.007411	0.002586	0.004531	0.004248	0.00571701
2	0.007251	0.002538	0.010004	0.006618	0.003771
3	0.008616	0.005724	0.009887	0.00593499	0.00791499
4	0.00773101	0.00686401	0.00704399	0.01002099	0.006096
5	0.00764501	0.00265499	0.00608801	0.007448	0.00799899
6	0.008362	0.002886	0.005157	0.011531	0.004182
7	0.008333	0.003001	0.00679	0.007243	0.00713599
8	0.008374	0.038282	0.01495901	0.01952499	0.00685199
9	0.007675	0.00356599	0.006962	0.008213	0.014869
10	0.013789	0.00384401	0.00591499	0.006135	0.007391
11	0.00813	0.003863	0.01080399	0.006137	0.00700999
12	0.006033	0.002524	0.004635	0.00440801	0.003532
13	0.008619	0.00417101	0.005486	0.00713601	0.004284

14	0.00828299	0.003481	0.005916	0.00735001	0.00735001
15	0.008736	0.005551	0.00534701	0.00940399	0.004246
16	0.010318	0.002456	0.005144	0.00715099	0.004327
17	0.00813799	0.00254399	0.00453399	0.00738301	0.00417701
18	0.007576	0.00235499	0.004789	0.006588	0.00423799
19	0.008364	0.002754	0.004456	0.007685	0.004096

20	0.00801799	0.00351199	0.005174	0.006518	0.00334899
21	0.00864499	0.002376	0.00448801	0.00682701	0.004074
22	0.01111301	0.00349401	0.00517299	0.007532	0.006618
23	0.00752299	0.004878	0.006272	0.009582	0.006415
24	0.008891	0.00532199	0.00687799	0.007863	0.00637101
25	0.011448	0.00608899	0.007713	0.00836701	0.007871
26	0.008531	0.00259599	0.005342	0.007126	0.004333
27	0.008187	0.00342501	0.00631501	0.00919	0.004187
28	0.009381	0.003952	0.006099	0.007103	0.004319
29	0.007667	0.004157	0.005496	0.006066	0.005932
30	0.008086	0.002649	0.004958	0.012508	0.006948
TOTAL	0.25687398	0.14409497	0.19235598	0.23884101	0.1756097
MÉDIA =total/30	0.008562466	0.004803165	0.006411866	0.007961367	0.585365667
Desvio Padrão	0.0014370073023	0.006333265 61772	0.0022621786 8941	0.002770007 51167	0.0022399715 2535
		•			

Para o cálculo do tempo em cada execução do algoritmo foi utilizado o método estático nanoTime() da classe System o método foi aplicado apenas na parte do algoritmo que faz a coloração pois é ele o responsável pela estratégia de colorir o grafo, a função devolve os tempos em nanossegundos. Para este experimento os tempos na tabela estão convertidos em segundos. Logo multiplicamos os tempos dados pela método por 10^(-9).

Pela análise das médias e do desvio padrão de cada grafo, podemos constatar que o grafo1 foi o que menos se desviou da média ou seja o que teve menor variação de tempo em relação aos demais. Em seguida vem o grafo5, grafo3, grafo4 e finalmente o grafo2.