

Field Setup Manual

Grupo de Desminado Humanitario
Departamento de Ingeniería Eléctrica y Electrónica
Facultad de Ingeniería
Universidad de Los Andes
Bogotá D.C., Colombia

GPR-20 Field Setup Manual

Proprietary Notice

This work is licensed under a Creative Commons "Attribution-NonCommercial 4.0 International" license.

Contact Information

Please communicate any comments to:

Name: Grupo de Desminado Humanitario

Email: desminadohumanitario@uniandes.edu.co

Dependency: Departamento de Ingeniería Eléctrica y Electrónica

University: Universidad de Los Andes

City: Bogotá D.C.

Country: Colombia

Versioning

Date	Comments
May 28 th 2021	First major release

Contents

1	Inti	roduction	2
2	Rol	oot Preliminary Checks	4
	2.1	Electronics Box Preliminary Checks	4
	2.2	Y-Axes Preliminary Checks	5
	2.3	X-Axis Preliminary Checks	6
	2.4	VNA Holder Preliminary Checks	7
	2.5	Ground Support Preliminary Checks	8
3	Tra	nsport Recommendations	9
4	Fie	ld Assembly	11
5	Too	ols Configuration	15
6	Fie	ld Testing	17
	6.1	Checking the Robot Pose	17
	6.2	Calibrating the VNA Instrument	17
	6.3	Data Acquisition Test	18
7	Par	ameters and Acquisition	19
8	Sur	vey Supervision	21
9	Fie	ld Disassembly	22

1 Introduction

This document presents the field setup and use protocol for the GPR-20 robot. The field setup protocol is designed to ensure that the robot will be properly configured on a remote location. The scope of this document includes preliminary checks, transportation, field assembly and disassembly, testing of the robot, parameters configuration, and survey supervision. Each step addressed in this document must be carefully executed in order to prevent permanent damage to the robot or erroneous data. Not following this document directions could result in the robot not performing as expected during data acquisition.

Transport of the robot and recommendations of this process are also addressed in the document. Not following the transport recommendations could result in permanent damage of the robot. Damage during robot transport could also result in failing to acquire data in the field. This would happen if no replacement parts are available in the surveying location. However, no damage should occur if the indicated practices are followed.

A manual on the robot assembly and disassembly on field is provided in this document. The manuals are stated in such a way that they can be filled as a checklist. Assembly of the robot starts with the major components manufactured, assembled and configured and stops with the robot ready to perform the field testing. Disassembly of the robot follows the opposite path.

Testing is defined in order to check the robot performance before acquiring data. This procedure ensures that acquired data will be homogeneous among different measurements in different locations. Testing includes checking the robot pose, calibrating the VNA instrument and taking a test measurement under a predefined standard condition.

Checking the robot pose ensures that the robot will be leveled among the earth surface to avoid excessive load on the robot motors. Calibrating the VNA instrument is required to execute the data acquisition under a standard setup of the instrument. Finally, the test measurement is used to check if acquired data is consistent with theoretical predictions.

After testing is performed, the robot must be configured for the data acquisition process. In this stage, the survey parameters are entered by the user interface. Once configured, the data acquisition process can start.

Although the robot will automatically acquire the data without the user intervention, it is recommended that the user supervises the process. This manual presents considerations regarding the survey supervision.

The reader should read the whole manual before interacting with the robot and keep it handy during field setup. The manual includes a set of checklists that must be followed during any field assembly/dissemble setup to ensure that the robot will suffer no damage. Each assembly procedure must have its own filled checklist for robot-keeping purposes.

2 Robot Preliminary Checks

This manual assumes that the robot is disassembled in its major components and it has been transported to measurement location. If robot is assembled and it is not in the measurement location, please follow the disassembly and storage procedures. By following this procedures you will make sure that the robot and its components will not be damaged. If robot is already assembled in the measurement location, please refer to testing procedure.

Since data is acquired from remote locations, the robot itself requires an environment that provides power and shelter. Power consists of a electricity supply that can be directly from the grid or by using a generator. If a generator is used, it must be kept within XX meters from the robot to avoid electromagnetic interference. Shelter must be provided to avoid damage from adverse weather.

2.1 Electronics Box Preliminary Checks

Figure 1: Electronics box with its connectors identified.

The electronics box consists of a case for the electronic systems of the robot mounted on a two-inch PVC pipe. The electronics box connects to the robot through a set of different connectors. There are nine (9) connectors located at the end of the PVC pipe. To identify the connectors place the PVC pipe with the electronics box with the touchscreen facing you as shown on figure 1. On the right end of the pipe there is only one connector: the phases for the right Y-axis motor. The left side has eight (8) connectors:

- Phases for left Y-axis motor.
- Phases for X-axis motor.
- Phases for two Z-axis motors.
- Power and data lines for Y-axis endstop sensor.
- Power and data lines for X-axis endstop sensor.
- Power lines for VNA instrument.
- Ethernet lines for VNA instrument.

2.2 Y-Axes Preliminary Checks

Figure 2: Y-Axis arms with their connectors identified. Note that the X-Axis support is not a part of this major component.

The Y-Axis arms are two linear actuators that move the GPR over the defined Y axis of the robot. They consist of two 3D-printed end support elements connected by two one-meter rods and a linear screw. At one end of each arm there is a support element with a stepper motor. Each motor support element has a hollow PVC tube support in which a connector set is located. The right Y-Axis arm has only one connector: the phases for the right Y-axis motor. The left arm has an additional connectors set on the X-Axis motor mount. The connectors for the left Y-Axis arm support element are:

- Phases for left Y-axis motor.
- Phases for X-axis motor.

- Phases for two Z-axis motors.
- Power and data lines for Y-axis endstop sensor.
- Power and data lines for X-axis endstop sensor.
- Power lines for VNA instrument.
- Ethernet lines for VNA instrument.

And the connectors on the X-Axis motor mount located on the left Y-Axis arm are:

- Phases for two Z-axis motors.
- Power lines for VNA instrument.
- Ethernet lines for VNA instrument.

2.3 X-Axis Preliminary Checks

Figure 3: X-Axis arms with their connectors identified.

The X-Axis arm is a linear actuator, similar to the Y-Axis arms. The X-Axis consists of a 3D-printed motor mount and a support element that are connected together by a pair of rods and a linear screw. The movable part of the X-Axis is denoted as an universal mount for the GPR support structure. The initial links of a drag chain are attached to the X-Axis arm. The remaining part of the drag chain and the cables are part of the GPR support structure. GPR-20 X-Axis arm is shown on figure 3. Note how the beginning of the drag

chain is attached to the universal mount.

2.4 VNA Holder Preliminary Checks

Figure 4: GPR support structure.

The GPR structure are the mechanical elements that provide support for the vector network analyzer (VNA) and the antennae. Antennae on the GPR-20 can rotate 90 degrees to acquire data in different polarization thus require two stepper motors. The GPR support structure requires four connections:

- Ethernet connection for VNA data.
- Power connection for VNA power.
- Phases for two Z-axis motors.

The cables and the connections are stored using the X-Axis drag chain. The X-Axis drag chain ends are

attached to the left Y-Axis arm (X-Axis motor mount) and the X-Axis arm (Universal Mount).

2.5 Ground Support Preliminary Checks

Figure 5 presents the ground support elements for the GPR-20 robot. The free end of the PVC tubes must be inserted in the Y-Axis support elements. Make sure to test if the PVC tube can be inserted in the support element.

Figure 5: Ground support elements for the GPR-20 robot.

3 Transport Recommendations

Transport of the GPR-20 robot is required to fulfill its main objective: to acquire data in deactivated landmine fields. Transport should be done under certain conditions in order to prevent the robot from damaging. In the case of transporting towards a remote field, damage is very likely to spoil the data-acquisition activities. Otherwise, repairs for the robot would cost both time and resources. In general terms, actions should be taken to prevent damage of the robot. Table 1 presents recommendations for transporting the robot. Some of the recommendations are general while others are specific for each major component.

Part	Recommendation
General	The used transport should provide an flat surface to place the com-
	ponents. If possible, the transport should provide the means to latch
	the parts using straps.
General	Transport should consider storage space for the personal computer,
	network switch, VNA and antennae. Storage should also be provided
	for the power supply if needed.
Electronics Box	The electronics box should be transported laying over the its back
	side. The electronics box should not be transported over its bottom
	as it may damage the cables coming out of the electronics box. If
	straps can be used, secure the electronics box from the PVC tube and
	the electronics box. Do not attach straps to touchscreen support.
X-Axis	X-Axis should be transported with the universal mount located near
	the end of the support rods and the lead screw. The X-Axis will lay
	over the tip of the support rods and the SC12UU supports of the X-
	Axis auxiliary support. If straps are available, secure the X-Axis at
	two points of the support rods.
Y-Axes	Transport of the Y-Axes is done with the axes laying down on their
	lateral sides. Left Y-Axis will lay down on the left side while right
	Y-Axis will lay down on the right side. Notice that transport side are
	the ones without the supports for the PVC tubes. This will prevent
	the axes from tipping over during transport. Right Y-Axis requires
	to secure the SC12UU bearings to prevent them from sliding over
	the support rods during transport. If straps are available, secure the
	Y-Axes at the support rods from both axes.
Ground Support Elements	Ground support elements should be transported with their footer re-
	tracted. Lay the ground supports to prevent them from tipping over.
	If straps are available, secure them at the PVC tube where it inserts
	into the support element.
Continues on next page.	

Part	Recommendation
VNA Holder	The VNA Holder lays over its front side i.e. the side in which the
	upper lid does not has openings. VNA and antennae should not be
	transported while mounted in the VNA holder. If straps are available,
	they should be attached to the support elements of the VNA holder.
VNA	The VNA should be transported in its case. The VNA must not be
	in danger of falling or tipping over since it would damage the device.

Table 1: Transport recommendations for the GPR-20 robot.

4 Field Assembly

This section presents the GPR-20 assembly guide. This section can be delivered as a standalone document in order to be used during each robot assembly. Please read the procedure before interacting with the robot and follow each step. Missing one step or doing it without the proper attention could lead to permanent damage of the robot.

Name	Description	
Electronics Box Place-	Place the electronics box in front of you. The electronics box and the	
ment	PVC tube should be located in theirs final location.	
Right Y-Axis Placement	Place the right Y-Axis perpendicular to the electronics box and its PVC	
	tubing. The axis-end with the stepper motor should be near the right	
	end of the electronics PVC tube.	
Left Y-Axis Placement	Place the left Y-Axis perpendicular to the electronics box and its PVC	
	tubing. The axis-end with the stepper motor should be near the left	
	end of the electronics PVC tube.	
Right Y-Axis Motor Con-	Connect the leading cables of the PVC tube to the connectors on the	
nection	right Y-Axis. Check that cables of the same color are connected to-	
	gether: connecting cables of different colors can lead to permanent dam-	
	age of the motor.	
Right Y-Axis and Elec-	Identify the Y-Axis support from which cables come out. Insert the	
tronics Mating	identified support into the electronics PVC tube. The support should	
	be fully inserted into the tube without any cable being stuck.	
Left Y-Axis Motor Con-	Identify the motors cable sets from the electronics PVC tube and the	
nections	left Y-Axis. Each set of motor cables is identified with tags on both	
	the electronics box and the left Y-Axis. Connect each corresponding	
	set of cables from the left Y-Axis to the cables on the PVC tubing.	
	Check that cables from the same color and the same tag are connected	
	together: connecting cables of different colors and/or sets can lead to	
	permanent damage of the motor.	
Left Y-Axis Endstop Sen-	Identify the endstop sensors cable sets from both the electronics PVC	
sors Connections	tube and the left Y-Axis. Connect each corresponding set of cables	
	together. Make sure to connect cables from the same color and the	
	same tag together: connecting cables of different colors and/or sets can	
	lead to permanent damage of the sensors.	
Left Y-Axis VNA Connec-	Identify the connections for the VNA power supply and the Ethernet	
tions	data on both the left Y-Axis and the PVC tube. Connect each corre-	
sponding set of cables together.		
	(continues on the next page)	

Left Y-Axis and Electron-	Insert the left Y-Axis support from which the cables come out. Insert the	
ics Mating	identified support into the electronics PVC tube. The support should	
	be fully inserted into the tube without any cable being stuck.	
Standalone Arm mating	Insert the ends of the standalone PVC tube into the support elements	
	of both the left and right Y-Axis arms. The supports must be fully	
	inserted into the PVC tube. By this point, the edges of the Cartesian	
	arm must be fully installed.	
X-Axis Arm Placement	Place the X-Axis arm parallel to the Electronics Box arm inside the	
	robot. The X-Axis support can rest on the left Y-Axis arm rods and	
	linear screw. The open end of the X-Axis arm can rest on the work	
	surface. At this point you have to identify the bearings and the nut in	
	the right Y-Axis arm. The nut must be somewhere close to the same	
	distance of the right Y-Axis arm nut. There is no need to align the left	
	Y-Axis bearings yet.	
X-Axis Open End Mating	Lift the X-Axis linear rods and linear screw. Insert the linear rods into	
	the X-Axis motor mount linear rod supports. Mind the linear screw	
	while inserting the rods. The three elements must be inserted at the	
	same time. Once the elements are inserted, secure them by tightening	
	the screws on the supports and coupling. The X-Axis support must lie	
	over the left Y-Axis linear rods by this point.	
X-Axis Support Mating	Place the X-Axis support over the nut in the right Y-Axis arm. If the	
Trans support maining	nut is misaligned to the corresponding support holes, you can adjust	
	the position by rotating the nut. Use two four-millimeter screws (M4)	
	to secure the X-Axis support to the nut. Place the bearings below the	
	support and align them to the corresponding holes. Secure the bearings	
C 1 C 1 D1	to the X-Axis support with eight five-millimeter screws (M5).	
Ground Supports Place-	Place each group support component near the Y-Axis support elements.	
ment	You will need to have the ground supports close to the robot in order to	
	place them in their position. The recommended placement is having the	
	ground support elements in the ground, perpendicular to the standalone	
	and electronics arms and with the free-end pointing towards the robot.	
Standalone Arm Ground	Place yourself in the middle of the standalone arm and make sure that	
Supports Mating	you can reach at least one ground support component. Lift the robot	
	from the standalone arm and place a ground support in the Y-Axis	
	support element that you find easier. Without letting go the robot	
	arm, place the second ground support component in the remaining Y-	
	Axis support element. The robot will be tilted and the ground support	
	elements will be in tension until the second set is placed.	
(continues on the next page)		
 1 0 /		

Electronics Arm Ground	Place yourself in front of the electronics box and make sure that you can	
Support Mating	reach at least one ground support component. Lift the robot from the	
	electronics box and place a ground support in the Y-Axis support ele-	
	ment that you find easier. Without letting go the electronics arm, place	
	the second ground support element in the remaining Y-Axis support.	
Ground Support Compo-	Check that each ground support component is properly inserted in the	
nents Check	Y-Axis support element. You must also check that the ground support	
	components are perpendicular to the robot Cartesian arm. Adjust the	
	ground support components screw to level the robot if necessary. By	
	the end of the checks you must feel that the robot is stable and well	
	supported.	
GPR Support Structure	Remove the antennae support from the GPR Support Structure by un-	
Preparation	screwing the four five-millimeter (M5) screws. Pull the cables from the	
	drag chain to allow the antennae support to rest in the floor while in-	
	stalling the GPR structure. Remove the auxiliary support by removing	
	the four three millimeter (M3) screws. Insert the four five-millimeter	
	(M5) screws in the universal mount holes.	
GPR Support Structure	Place the upper part of the GPR Support Structure in the X-Axis uni-	
Mount	versal mount. Lift the GPR Support Structure and align the universal	
	mount screws to the previously inserted screws. Tight one screw from	
	one side into the universal mount. Without letting go the GPR Support	
	Structure, tight another screw from the other side. At this point, the	
	GPR structure should keep in place. Tight the remaining screws into	
	the universal mount.	
GPR Support Structure	Place the auxiliary support of the GPR Support Structure into position	
Setup	with the four previously removed three-millimeter (M3) screws. Check	
	that the damper elements are secured in place. Install the antennae	
	support with the previously removed five-millimeter (M5) screws. Check	
V Assig Dwg or Classics Car	that the assembly is properly secured.	
X-Axis Drag Chain Setup	Put the GPR Support Structure cables into the universal mount drag	
	chain end. Secure them by attaching the upper part of the end link.	
	Pull the drag chain into the end link and plug it into position. Put the cables into the drag chain end in the X-Axis motor mount. Secure them	
	with the upper part of the end link. Plug the corresponding end of the	
	drag chain on the end link.	
VNA Setup	Remove the upper lid from the GPR support structure. Place the VNA	
vitii betup	minding the connections to the antennae. Place the VNA adapter next	
	to the VNA and connect the power supply. Connect the microwave	
	cables and the power supply to the VNA. Close the lid and secure it	
	with the previously removed screws.	
(continues on the next page)		
(continues on the next page)		

Antennae Setup	Mount each antenna into the motors and secure them by tightening the
	screws on the antenna adapter. Connect the loose end of the microwave
	cables to the antennae.
Rest	The field setup assembly can be exhausting. Take a minute to rest and
	admire the robot you have assembled. By this point, the GPR-20 robot
	has been assembled. However some additional setup is required for the
	robot to operate.
Network switch	Place the network switch near the robot. Make sure that the network
	switch is safe from the environment. The network switch will have three
	connections: to the GPR-20 robot on-board computer, to the VNA, and
	to the personal computer. Two network cables come from the electronics
	box of the GPR-20 robot. Connect the Ethernet cables to the network
	switch.
Personal computer	Place the personal computer near the robot. Make sure that the per-
	sonal computer is safe from the environment. The personal computer
	will connect to the network switch using an Ethernet cable. Connect
	the cable to the network switch.
Power the setup	Connect the power cord of the personal computer, network switch, and
	GPR-20 robot to the power source. Allow for the three devices to ini-
	tialize. The whole system is ready for testing to take place.

5 Tools Configuration

Two devices are used for the data-acquisition process: an on-board computer and a personal computer. The on-board computer is configured in such a way that it automatically starts all the required tools that are run on it. However, the personal computer is assumed not to execute this process. This section will focus on the tools initialization and check process. Although the personal computer does not launch the tools automatically on startup, the process of starting them requires few steps. The first step consists of sourcing the Robotic Operating System (ROS) workspace with the required tools. The workspace is sourced by executing:

\$ source ~/gpr20_ws/devel/setup.bash

Sourcing the workspace allows ROS to know that there are packages i.e. tools available in the gpr20_ws directory. The available packages on the workspace should be $gpr20_data_acquisition$, $gpr20_data_processing$, and $gpr20_msgs$. The next step is to configure ROS to connect with the on-board computer of the GPR-20 robot. This requires the user to know the GPR-20 on-board computer and personal computer IP addresses. Several third-party tools are available to scan the network and identify the IP addresses. To configure ROS to connect over multiple machines it is necessary to execute:

```
$ export ROS_IP=<personal_computer_ip>
```

\$ export ROS_MASTER_URI=http://<on-board_computer_ip>:11311

The final step is to launch the personal computer tools. These tools are launched via a script that eases the process. The script is located in the gpr20-msgs packages. To launch the script execute:

\$ roslaunch gpr20_msgs pc_utilities

After launching the personal computer tools, checks should be performed to ensure the connectivity between computers and that all the tools are initialized. Table 2 presents the checklist for the GPR-20 software. Once all the tools have been checked, the tools are ready for the data acquisition process to take place. The tools checklist should be completed after executing the rosnode list command.

Tool
Axis Driver: there should be three (3) instances of the axis driver node. The instance of the X axis
should have the name $gpr20_x_axis$. The instance of the Y axis should have the name $gpr20_y_axis$.
Finally, the instance of the Z axis should have the name $gpr20_z_axis$.
Height Sensor Driver: there should be a single instance of the height sensor driver node.
VNA Acquisition: there should be a single instance of the VNA acquisition node.
VNA Processing: there should be a single instance of the VNA Processing node
Main Control: there should be a single instance of the main control.
User Interface: there should be a single instance of the user interface.

Table 2: Tools checklist for GPR-20 software.

6 Field Testing

The field testing aims to check that the robot is capable of acquiring data. Three (3) procedures are intended to be executed by the robot user to check the robot capabilities prior to the data acquisition. The first procedure is checking the robot pose, which checks that the robot is leveled against the surface. The second procedure is calibrating the VNA instrument which is used to acquire the data. The third and final procedure is acquiring data under a known condition to check the robot operation. Fill the following table for robot keeping purpose prior to every surveying.

Date:	
Location:	
Responsible:	

6.1 Checking the Robot Pose

This test will check that the robot is leveled against the surface. In order to execute this test, a smart device is required. The smart device needs to have a leveling measurement application installed and calibrated. Check that the device measurements are consistent by testing it against a known leveled surface such as a table or a wall.

Name	Description
Reset footers	Rotate the ground support elements footers until there is no gap between
	the footer and the support.
Initial measurement	Place the smart device on top of the VNA cover. Make sure that the
	back of the smart device is completely against the cover. Open the level
	application. Check the angle in which the device lies. Angle: $^{\circ}$.
Robot leveling	If the angle is different from 0°, rotate the ground support elements
	footers until the angle is zero.

Table 3: Robot pose check.

6.2 Calibrating the VNA Instrument

Calibrate the VNA device according to the manufacturer manual and the available calibration kit. The GPR-20 is designed for the Anritsu MS2026C VNA. The calibration of the device is done using a calibration kit. Reference of the calibration kit is TOSLN50A-18. The recommended calibration for the VNA is to to acquire 512 frequency data points within 600MHz and 6.0GHz. Table ?? presents the calibration process for

the MS2026C VNA using the TOSLN50A-18 calibration kit. If using a different device and/or calibration kit, follow the manufacturer procedures to ensure that the calibration is done correctly and the device is ready to acquire data.

Table 4: Anritsu MS2026C calibration process using the TOSLN50A-18 calibration kit.

??

6.3 Data Acquisition Test

This test will check the data against a known survey condition. The condition consists of placing a metal sheet over the survey area and check the VNA response. A-Scans will be used to validate the data acquisition process. You will need a 50×50 centimeters metal sheet for this test and the tester script.

Name	Description
Metal sheet placement	Place the metal sheet in the middle of the survey area of the robot.
	Make sure that the metal place is well positioned against the ground.
Power the robot	Connect the robot to the power source. Allow the user interface to
	load in the touchscreen. Make sure that the robot is connected to the
	network switch.
Power the personal com-	Turn on the personal computer and connect it to the network switch.
puter	
VNA network connection	Connect the Vector Network Analyzer network cable to the network
	switch.
Launch personal com-	Start the personal computer utilities (\$ roslaunch gpr20_msgs
puter utilities	pc_utilties). The command line should display an OK message.
Start test data acquisition	Navigate to the tests tab in the user interface. Click on the data acqui-
	sition test. The robot will move to the center of the survey area and
	will acquire data in 100 different coordinates. Once data is acquired,
	the robot will return to the homing position.
Check results	Data will be stored in the GPR-20 data directory
	(/home/ <user>/GPR20/data/) of the personal computer. Survey</user>
	will be in a folder with the date and time at the start of the survey
	(%DD_%MM_%YYYY_%HH_%MM). Check that one hundred (100) data files are
	in the folder before proceeding.
Execute test script	Execute the test script with the data folder as parameter (python
	data_acquisition_testpath= <path_to_data>). If test fails, cali-</path_to_data>
	brate the VNA device.

Table 5: Data acquisition test.

7 Parameters and Acquisition

The surveying process depends on the defined parameters from the user. Two (2) major groups of parameters are defined for the survey: VNA parameters and survey parameters. VNA parameters refer to the device configuration regarding the data acquisition. Survey parameters refer to the values used for defining the grid points in the sampling process. Both parameters have huge implications on the data acquisition process and the data itself. This section will present a brief discussion on the considerations regarding the parameters. Table 6 presents the discussion on the parameters.

Parameter	Considerations	
Start Frequency	Defines the minimum frequency that will be used in the VNA for acquiring the	
	data. The effective frequency value i.e. the real frequency in which data will	
	be sampled depends on the VNA calibration. The device will use the closest	
	frequency value that is available after the VNA calibration.	
Stop Frequency	Defines the maximum frequency that will be used in the VNA for acquiring the	
	data. Similar to the start frequency, the effective frequency depends on the VNA	
	calibration. The device will use the closes available frequency value defined on	
	calibration.	
Frequency Points	Defines the frequency points that will be used in the data acquisition process.	
	The VNA will use the frequency points defined in the calibration process. It	
	might be possible for the device to use a different amount of frequency points	
	than the ones defined by the user.	
X/Y Start Coordinate	Defines the initial coordinate for either the X or Y axes. The coordinates are	
	referenced from the left Y axis driver component with positive values oriented	
	along the axes. The origin for the coordinates is referenced with the endstop	
	sensors. It must be noted that each axis has its own start coordinate field.	
X/Y Stop Coordinate	Defines the final coordinate for either the X and Y axes. The coordinates are	
	referenced from the left Y axis driver component. Positive axis values are ori-	
	ented towards the axes. In other words, the endstop sensors provide the zero	
	coordinate. It must be noted that each axis has its own start coordinate field.	
Continues on next page.		

Parameter	Considerations
X/Y Points	Defines the physical points that the axes will visit. The minimum amount of
	points that an axis can visit is two (2). There is no predefined maximum amount
	of points that an axis can visit. Two considerations are presents for these fields.
	The first one being that each axis has its own field for the physical points.
	The second one is that the delta distance i.e. the distance between points is
	calculated with the difference between the start and stop coordinates divided by
	the number of points minus one: $(X_{end} - X_{start})/(N_{points} - 1)$.

Table 6: GPR-20 survey parameters considerations.

Each parameter is defined in the user interface of the robot. The user interface is displayed in the GPR-20 touchscreen. The user can define a step value for the input operation. Available steps are 0.1, 1, 10 and 100. This is done in order to reduce the required interactions of the user to input the parameters. Frequency parameters fields are defined in Gigahertz (GHz, 1×10^9 Hz). Coordinate fields are defined in millimeters. In order to start a survey, the user is required to input the parameters in the user interface and send the start command. The robot will execute the homing procedure and then will start moving and acquiring the data. Once the data acquisition process finishes, the robot will return to the home position. The user is required to supervise the data acquisition process.

8 Survey Supervision

Supervision of the data acquisition process is critical to ensure that the process is being executed as intended. There are two possible failures that can occur during the survey process: software and hardware. GPR-20 software has been thoroughly debugged in order to prevent failures during the sampling process. However, hardware failures can occur during the sampling process. Being able to identify failures as soon as possible is a strategy that aims to save time. Table 7 presents the checklist that the user has to execute every hour during the sampling process.

Check
Check X-Axis movement: check that the X axis is moving. The axis and the motors should spin
smoothly. The axis could not move if dirt is present in the lead screw and/or the support rods. Make
sure that the axis position is consistent with the current coordinate.
Check Y-Axis movement: check that both supports of the Y-Axis are moving. Both supports
and their motors should be moving smoothly. Check that both supports are in the same coordinates
and with the X-Axis perpendicular to both of them. Check for dirt in the lead screw and the support
rods.
User Interface: check that the user interface is responsive. Change tabs and check that feedback
data is being updated continuously.
Data Storage: check the data in the personal computer. Ensure that data is being stored and files
contain values in the CSV format.

Table 7: GPR-20 survey supervision checklist.

9 Field Disassembly

This section presents the field disassembly guide for the GPR-20 robot. Please read the whole procedure before executing it. This section can be used as a standalone document in order to provide the field checklist. Keep in mind that failing to execute this procedure could result in permanent damage to the robot.

Name	Description	
Power down the devices	Power down the personal computer and the network switch. Wait for	
	the devices until they shut down. Unplug the GPR-20 robot, VNA	
	device, personal computer and network switch.	
Personal computer stor-	Unplug the personal computer from the power source and the network	
age	switch. The personal computer now can be stored.	
Network switch storage	Unplug the network switch from the power source. Unplug the network	
	cables from the switch. The switch now can be stored.	
Antennae removal	Disconnect the microwave cable from the antennae connector. Unscrew	
	the two (2) M3 tightening screws in each antennae adapter. Remove	
	the antennae with the adapter from the motor shafts at the bottom of	
	the VNA holder. You can now store the antennae.	
VNA removal	Disconnect the Ethernet, power and microwave cables from the VNA.	
	You can now store the microwave cables. Unscrew the four (4) M5	
	screws at the bottom of the upper lid in the VNA holder. Lift the VNA	
	holder upper lid and set aside. Remove the VNA from the holder. You	
	can now store the VNA. Do not attach the VNA upper lid back to the	
	VNA holder.	
X-Axis drag chain unplug	Disconnect the two (2) motor connectors, VNA power and VNA Ether-	
	net cable at the VNA holder and the X-Axis support.	
X-Axis drag chain removal	Unlatch the X-Axis drag chain from the end links at the VNA holder	
	and the X-Axis driver support. Remove the drag chain and store it.	
VNA Holder removal	Unscrew the four (4) M5 screws at the top of the VNA mounting plate.	
	This will detach the mounting plate from the VNA holder supports.	
	Unscrew the four (4) M5 mounting screws from the sides of the VNA	
	holder supports. The lower part of the VNA holder will detach from the	
	universal mount. Remove the lower part of the VNA holder. Attach	
	the VNA mounting plate back to the VNA holder supports via the	
	previously removed four (4) M5 screws. Attach the upper lid back to	
	the VNA mounting plate with the remaining four (4) M5 screws. You	
	can now store the VNA holder major group.	
X-Axis auxiliary support	Remove the eight (8) M5 screws from the X-Axis auxiliary support	
detaching	element. Remove the four (4) remaining M4 screws. Be careful with	
	the nuts from the M4 screws. Store the screws and nuts for future use.	
Continues in next page.		

Name	Description
X-Axis removal	Unscrew the tightening screws at the linear rod supports and lead screw
	bearing from the X-Axis driver element. These will loose the linear rods
	and lead screw. Carefully lift the X-Axis major group while separating
	the linear rods and lead screw from their supports. The X-Axis major
	group is now ready for storage.
Y-Axis drag chain discon-	Disconnect the three (3) motor connectors, endstop sensor connector,
nection	VNA Ethernet cable and power cord from both the X-Axis driver ele-
	ment and the left Y-Axis driver.
Y-Axis drag chain removal	Unlatch the Y-Axis drag chain from the end links at the X-Axis driver
	and Y-Axis left driver. Store the Y-Axis drag chain.
Ground support removal	Lift the driver side from the GPR-20 robot i.e. the side with the elec-
	tronics box and remove the two (2) ground support elements. Carefully
	lower that side until it settles into the ground. Lift the other side of the
	robot and remove the ground support elements. Settle the robot into
	the ground. You can now store the ground support elements.
Auxiliary PVC tube re-	Move the left and right Y-Axis auxiliary supports in order to free the
moval	auxiliary PVC tube. Remove and store the PVC tube.
Electronics box separation	Move the left and right Y-Axis driver elements. The PVC tube from
	the electronics box should detach from the Y-Axis drivers. Be careful
	with the cables that run along the electronics box PVC tube. Leave the
	electronics box detached.
Electronics box disconnec-	Disconnect the four (4) motor connectors, two (2) endstop sensors con-
tion	nectors, VNA power and Ethernet cables from the left Y-Axis driver.
	Disconnect the motor connector at the right Y-Axis driver. You can now
	remove and store the electronics box. The Y-Axes will also be ready for
	storage.