

Telecommunications Networking

- 1. Introduction
- 2. Local Area Networking
- 3. Error Control and Retransmission Protocols
- 4. Architectural Principles of the Internet
- 5. Flow Control in Internet: TCP
- 6. Routing Algorithms
- 7. Routing Protocols
- 8. The principles of ATM
- 9. Traffic Management in ATM
- 10. Scheduling
- 11. Quality of Service
- 12. Quality of Service routing
- 13. Peer-to-peer networks

Start of the Internet

- Login attempt from UCLA to SRI (Stanford)
- L (ok)
- O (ok)
- G (crash)

Leonard Kleinrock

Authorities for Internet Standards

Layered Network Model

- The Internet Protocol (**IP**) defines an unreliable, connectionless, best-effort delivery mechanism:
 - specification of basic unit of transfer (packet)
 - IP software performs the routing function
 - IP includes the rules for unreliable,
 connectionless, best-effort delivery

IPv4 packet

0 4 8 16 19 24 31

vers	hlen	ToS	1	total length (bytes)		
identification			flags	fragment offset		
time to live protocol header checksum						
source IP address						
destination IP address						
IP options (if any) padding						
user data						
•••						

- Internet Registry (IR): IP address space allocation, protocol parameter assignment, DNS management
- Internet Corporation for Assigned Names and Numbers. Regional IRs:
 - ARIN (North America)
 - APNIC (Asia-Pacific)
 - LACNIC (Latin America, Caribbean)
 - RIPE NCC (Europe):
 - Local IRs (national):
 - ISPs:
 - » End-user

- Geographic (physical) versus logical (mobility)
- 32-bit (4-byte) addresses: x.y.z.w
- Netid and hostid
 - Subnet address
 - Classless Interdomain Routing (CIDR)

Class-based Addressing

Delft University of Technology

	01234	8	16	24 31		
A	0 netid		hostid			
В	10	netid	hos	tid		
C	110	netid		hostid		
D	1110	1 1 0 multicast address				
E	11110	reserved for future use				

E.g. 129.82.6.25 belongs to the class B network 129.82.0.0 (129 = 1000 0001)

Subnet Addressing

Delft University of Technology

Subnet address = IP address \otimes subnet mask

Subnet Mask: consists here of 23 one bits = 255.255.254.0

Subnet: x.y.z.w/v, where v is an integer smaller than 32

```
C:\WINDOWS\system32\cmd.exe
C:\Documents and Settings\TUD>ipconfig /?
USAGE:
    ipconfig [/? | /all | /renew [adapter] | /release [adapter] |
              /flushdns | /displaydns | /registerdns |
              /showclassid adapter |
              /setclassid adapter [classid] ]
where
    adapter
                    Connection name
                   (wildcard characters * and ? allowed, see examples)
    Options:
                    Display this help message
       /?
                    Display full configuration information.
       /a11
                    Release the IP address for the specified adapter.
       /release
                    Renew the IP address for the specified adapter.
       /renew
                    Purges the DNS Resolver cache.
       /f lushdns
       /registerdns Refreshes all DHCP leases and re-registers DNS names
       /displaydns Display the contents of the DNS Resolver Cache.
       /showclassid Displays all the dhcp class IDs allowed for adapter.
       /setclassid Modifies the dhcp class id.
The default is to display only the IP address, subnet mask and
default gateway for each adapter bound to TCP/IP.
For Release and Renew, if no adapter name is specified, then the IP address
leases for all adapters bound to TCP/IP will be released or renewed.
For Setclassid, if no ClassId is specified, then the ClassId is removed.
Examples:
   > ipconfig
                                 ... Show information.
    > ipconfig /all
                                 ... Show detailed information
    > ipconfig /renew
                                 ... renew all adapters
    > ipconfig /renew EL*
                                 ... renew any connection that has its
                                     name starting with EL
    > ipconfig /release *Con*
                                 ... release all matching connections,
                                     eg. "Local Area Connection 1" or
                                         "Local Area Connection 2"
C:\Documents and Settings\TUD>_
```

CIDR

C	110	netid	000	hostid
	110	netid	0 0 1	hostid
	110	netid	010	hostid
	110	netid	011	hostid
		•		
		•		8 bit
	110	netid	1 1 1	hostid
		21 bit		11 bit
	•	CIDR netid	•	

Reserved IP ranges

- Class-based addressing loosened into ranges using subnet masks
- Private networks
 - -10.0.0.0/8, 172.16.0.0/12, 192.168.0.0/16
- Link-local
 - 169.254.0.0/16 (The "the-Internet-is-down" range)
- Multicast
 - -224.0.0.0/4
 - 255.255.255.255/32 (local subnet only)

Network Address Translation

- Remaps private address outgoing flows to public address
- Hides internal network topology and addresses
- Conserves IP address usage
- Incoming connections handled through port mapping
 - Hence problematic with non-TCP or -UDP flows

Network Address Translation

Delft University of Technology

- Outgoing flows automatically added
- Incoming flows need prior existing rules

[http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/ipaddr_nat/configuration/15-mt/nat-15-mt-book/iadnat-addr-consv.html]

Domain Name System (DNS)

Delft University of Technology

- Humans work best using the name of a host (e.g. ewi.tudelft.nl)
- IP Addresses used to identify a host, and for routing (e.g. 130.161.40.75)

deals with mapping: Name → IP Address

Domain Name System (DNS)

- Hierarchically distributed database
 - Root Domain -> Top Level Domain ->Authoritative domain
- Clients use recursive servers
- High level of caching


```
C:\WINDOWS\system32\cmd.exe - nslookup
C:\Documents and Settings\TUD>nslookup
Default Server: ns1.tudelft.nl
Address: 130.161.180.1
Commands:
            (identifiers are shown in uppercase, [] means optional)
NAME
                - print info about the host/domain NAME using default server
NAME1 NAME2
                - as above, but use NAME2 as server
help or ?
                - print info on common commands
set OPTION

    set an option

    all
                         - print options, current server and host
    Ino Idebug

    print debugging information

    [no ld2

    print exhaustive debugging information

    [no]defname
                         - append domain name to each guery
                         - ask for recursive answer to query
    [no]recurse
    [no]search
                         - use domain search list
    [no]vc
                         - always use a virtual circuit
    domain=NAME

    set default domain name to NAME

    srchlist=N1[/N2/.../N6] - set domain to N1 and search list to N1,N2, etc.
    root=NAME

    set root server to NAME

                         - set number of retries to X
    retry=X
    timeout=X

    set initial time-out interval to X seconds

                         set query type (ex. A,ANY,CNAME,MX,NS,PTR,SOA,SRU)
    type=X
    querytype=X

    same as type

    class=X

    set query class (ex. IN (Internet), ANY)

    Inolmsxfr
                         - use MS fast zone transfer
                         - current version to use in IXFR transfer request
    ixfruer=X
server NAME
                - set default server to NAME, using current default server
lserver NAME
                - set default server to NAME, using initial server
                - finger the optional NAME at the current default host
finger [USER]

    set current default server to the root

root
ls [opt] DOMAIN [> FILE] - list addresses in DOMAIN (optional: output to FILE)

    list canonical names and aliases

    list all records

    -\mathbf{d}
    -t TYPE

    list records of the given type (e.g. A,CNAME,MX,NS,PTR etc.)

    sort an 'ls' output file and view it with pg

view FILE
exit

    exit the program
```


Maximum Transmission Unit

Delft University of Technology

- Not all links support the same fragment size
- Connectionless and layered nature prevents learning

[http://packetlife.net/blog/2008/aug/18/path-mtu-discovery/]

Fragmentation

• Instead, IPv4 fragments packets

[http://packetlife.net/blog/2008/aug/18/path-mtu-discovery/]

Fragmentation

IP header	data1 600 octets	data2 600 octets	data3 200 octets
fragment1 header	data1	Fragment1:	offset 0
fragment2 header		Fragment2:	offset 600
fragment3 header	data3	Fragment3:	offset 1200

- IPv6 is not a simple derivative of IPv4, but a definite improvement
- Four major changes over IPv4:
 - extended addressing capability:
 128 bits versus 32 bits in IPv4
 - 2. a fixed format to all headers

 no option element, no header length field, but extension headers
 - 3. no header checksum diminish cost of processing, other layers check & correct for errors
 - 4. no hop-by-hop fragmentation unit of transmission = unit of control: use path MTU discovery
 - 5. no Network Address Translation

IPv6 Header Format

	Delft University of Technology						
	1	4	12	16	24	31	
1	Ver	rsion Traffic	Class	Flo	ow Label		
2		Payload len	gth	Next F	leader Ho	op Limit	
3							
			C C	A 1.1			
			Source	Address			
7							
			Destin	nation Addr	288		
			2 00011				
0							

Header comparison IPv6-IPv4

Delft University of Technology

Ver.	Traffic Class	Flow Label				
Pa	yload Leng	gth	Next Header	Hop Limit		
- - -	– Source Address –					
_ _	Destination Address					

Ver. H	dr	Type of Service	Total Length	
Identification			Flg	Fragment Offset
Time to Live Protocol Header Checksum				
Source Address				
Destination Address				
Options				

shaded fields have no equivalent in the other version

IPv6 header is twice as long (40 bytes) as IPv4 header without options (20 bytes)

Extension Header

IPv6 Addressing

Delft University of Technology

• Text Representations:

- $-x_1:x_2:x_3:x_4:x_5:x_6:x_7:x_8$ where x_k hexadecimal value of 16-bit. e.g. 1080:0:0:0:0:0:0:200C:417A
- "zero" compressed notation: e.g.1080::200C:417A
- Mixed IPv4 and IPv6: x:x:x:x:x:x:d.d.d.d where d decimal value of 8-bit IPv4 address

• Three types:

- unicast, anycast and multicast (no broadcast)
- multicast: $FF:x_2:x_3:x_4:x_5:x_6:x_7:x_8$ (1/256 of address space)
- All types are assigned to interfaces, not nodes

Path MTU Discovery

- IPv6 does not fragment like IPv4
- Relies on ICMP to find MTU
- Creates blackholes when blocked

[http://bitsandoctets.blogspot.nl/2012/05/mtu-and-mss-why-should-we-care.html]

- Internet control message protocol (ICMP)
 - two modes: query (echo, timestamp, etc...) and error
 - Diagnosing error conditions sent back to the source when a router destroys a packet
 - Not to enhance reliability, but merely to provide feedback about network problems.

- Ping (via ICMP query mode 'echo')
- Ping –f –l <size in bytes> address
 - f: sets don't fragment flag
 - − 1: sets payload size

- Traceroute (via ICMP error mode)
- Windows: tracert address
- Returns the path to the address
- Sends multiple UDP packets with increasing TTL
- Artefacts:
 - ICMP messages may be discarded
 - UDP packets might traverse multiple paths
 - Interface and no router addresses

Questions Ch. 4

- Give, in x.y.z.w. notation, the subnet mask that belongs to the address 130.140.150.160/20.
- Give three differences between the headers of IPv4 and IPv6 and explain the motivation behind these differences.

- Use ping to find RTTs,
- And *tracert* to find the paths to:
- 1. Your gateway router
- 2. Common destinations, such as
 - 1. Google website
 - 2. TU Delft website
 - 3. Major Dutch news site
 - 4. Major foreign (transatlantic) news site
- 3. Each other's laptop