

Amendments to the Claims:

1. (Currently amended) A compound having the structure I:



where:

$\text{CR}^1\text{R}^2$  is selected from  $\text{CHOH}$ ,  $\text{C=O}$ ,  $\text{CHF}$ ,  $\text{CF}_2$  and  $\text{C}(\text{CF}_3)\text{OH}$ ;

$\text{CR}^6$  and  $\text{CR}^{13}$  are selected from  $\text{CH}$ ,  $\text{COH}$  and  $\text{CF}$ ;

$\text{CR}^7\text{R}^8$ ,  $\text{CR}^9\text{R}^{10}$  and  $\text{CR}^{11}\text{R}^{12}$  are selected from  $\text{CH}_2$ ,  $\text{CHOH}$ ,  $\text{C=O}$ ,  $\text{CHF}$  and  $\text{CF}_2$ ; and

$\text{CR}^3\text{R}^4\text{R}^5$  is selected from  $\text{CH}_3$ ,  $\text{CH}_2\text{OH}$ ,  $\text{C=O}$ ,  $\text{COOH}$ ,  $\text{CH}_2\text{F}$ ,  $\text{CHF}_2$  and  $\text{CF}_3$ ;

such that at least one of  $\text{R}^1\text{-R}^{13}$  ~~comprises fluorine~~ includes a fluorine atom;

no more than two of  $\text{CR}^3\text{R}^4\text{R}^5$ ,  $\text{CR}^6$ ,  $\text{CR}^7\text{R}^8$ ,  $\text{CR}^9\text{R}^{10}$ ,  $\text{CR}^{11}\text{R}^{12}$ , and  $\text{CR}^{13}$  ~~comprises~~

~~fluorine or oxygen~~ include a fluorine atom or an oxygen atom;

and, when  $\text{CR}^1\text{R}^2$  is  $\text{CHOH}$ ,  $\text{CR}^3\text{R}^4\text{R}^5$  is not  $\text{CH}_2\text{F}$ .

2. (Original) A compound of claim 1, wherein each of  $\text{CR}^7\text{R}^8$  and  $\text{CR}^9\text{R}^{10}$  is independently selected from  $\text{CH}_2$ ,  $\text{CHOH}(\beta)$ ,  $\text{C=O}$ ,  $\text{CHF}(\alpha)$  and  $\text{CF}_2$ .

3. (Currently amended) A compound of claim 2, wherein no more than one of  $\text{CR}^3\text{R}^4\text{R}^5$ ,  $\text{CR}^6$ ,  $\text{CR}^7\text{R}^8$ ,  $\text{CR}^9\text{R}^{10}$ ,  $\text{CR}^{11}\text{R}^{12}$ , and  $\text{CR}^{13}$  ~~comprises fluorine or oxygen~~ include a fluorine atom or an oxygen atom.

4. (Currently amended) A compound of claim 3, wherein exactly one of CR<sup>1</sup>R<sup>2</sup>, CR<sup>3</sup>R<sup>4</sup>R<sup>5</sup>, CR<sup>6</sup>, CR<sup>7</sup>R<sup>8</sup>, CR<sup>9</sup>R<sup>10</sup>, and CR<sup>11</sup>R<sup>12</sup> ~~comprises fluorine~~ includes a fluorine atom.

5. (Currently amended) A compound of claim 4, wherein exactly one of CR<sup>1</sup>R<sup>2</sup>, CR<sup>6</sup>, CR<sup>7</sup>R<sup>8</sup>, CR<sup>9</sup>R<sup>10</sup>, and CR<sup>11</sup>R<sup>12</sup> ~~comprises fluorine~~ includes a fluorine atom.

6. (Currently amended) A compound of claim 5, wherein CR<sup>1</sup>R<sup>2</sup> ~~comprises fluorine~~ includes a fluorine atom.

7. (Original) A compound of claim 6, wherein CR<sup>1</sup>R<sup>2</sup> is CF<sub>2</sub>.

8. (Original) A compound of claim 6, wherein CR<sup>1</sup>R<sup>2</sup> is CHF(α).

9. (Original) A compound of claim 8, wherein each of R<sup>3</sup>-R<sup>13</sup> is hydrogen.

10. (Currently amended) A method of inhibiting production of IL-2 in cells ~~effecting immunesuppression~~, comprising administering to a subject in need of such treatment, in a pharmaceutically acceptable vehicle, an effective amount of a compound having the structure I:



where:

CR<sup>1</sup>R<sup>2</sup> is selected from CHOH, C=O, CHF, CF<sub>2</sub> and C(CF<sub>3</sub>)OH;

CR<sup>6</sup> and CR<sup>13</sup> are selected from CH, COH and CF;  
CR<sup>7</sup>R<sup>8</sup>, CR<sup>9</sup>R<sup>10</sup> and CR<sup>11</sup>R<sup>12</sup> are selected from CH<sub>2</sub>, CHOH, C=O, CHF and CF<sub>2</sub>; and  
CR<sup>3</sup>R<sup>4</sup>R<sup>5</sup> is selected from CH<sub>3</sub>, CH<sub>2</sub>OH, C=O, COOH, CH<sub>2</sub>F, CHF<sub>2</sub> and CF<sub>3</sub>;  
such that at least one of R<sup>1</sup>-R<sup>13</sup> ~~comprises~~ fluorine includes a fluorine atom;  
no more than two of CR<sup>3</sup>R<sup>4</sup>R<sup>5</sup>, CR<sup>6</sup>, CR<sup>7</sup>R<sup>8</sup>, CR<sup>9</sup>R<sup>10</sup>, CR<sup>11</sup>R<sup>12</sup>, and CR<sup>13</sup> ~~comprises~~  
fluorine or oxygen include a fluorine atom or an oxygen atom;  
and, when CR<sup>1</sup>R<sup>2</sup> is CHOH, CR<sup>3</sup>R<sup>4</sup>R<sup>5</sup> is not CH<sub>2</sub>F.

11. (Original) The method of claim 10, wherein each of CR<sup>7</sup>R<sup>8</sup> and CR<sup>9</sup>R<sup>10</sup> is independently selected from CH<sub>2</sub>, CHOH(β), C=O, CHF(α) and CF<sub>2</sub>.

12. (Currently amended) The method of claim 10, wherein exactly one of CR<sup>1</sup>R<sup>2</sup>, CR<sup>3</sup>R<sup>4</sup>R<sup>5</sup>, CR<sup>6</sup>, CR<sup>7</sup>R<sup>8</sup>, CR<sup>9</sup>R<sup>10</sup>, and CR<sup>11</sup>R<sup>12</sup> ~~comprises~~ fluorine includes a fluorine atom.

13. (Currently amended) The method of claim 12, wherein CR<sup>1</sup>R<sup>2</sup> ~~comprises~~ fluorine includes a fluorine atom.

14. (Original) The method of claim 13, wherein CR<sup>1</sup>R<sup>2</sup> is CF<sub>2</sub>.

15. (Original) The method of claim 13, wherein CR<sup>1</sup>R<sup>2</sup> is CHF(α).

16. (Original) The method of claim 15, wherein each of R<sup>3</sup>-R<sup>13</sup> is hydrogen.

17. (Currently amended) A method of inducing apoptosis in a cell, comprising contacting said cell with an effective amount of a compound having the structure I:



where:

$\text{CR}^1\text{R}^2$  is selected from  $\text{CHOH}$ ,  $\text{C=O}$ ,  $\text{CHF}$ ,  $\text{CF}_2$  and  $\text{C}(\text{CF}_3)\text{OH}$ ;

$\text{CR}^6$  and  $\text{CR}^{13}$  are selected from  $\text{CH}$ ,  $\text{COH}$  and  $\text{CF}$ ;

$\text{CR}^7\text{R}^8$ ,  $\text{CR}^9\text{R}^{10}$  and  $\text{CR}^{11}\text{R}^{12}$  are selected from  $\text{CH}_2$ ,  $\text{CHOH}$ ,  $\text{C=O}$ ,  $\text{CHF}$  and  $\text{CF}_2$ ; and

$\text{CR}^3\text{R}^4\text{R}^5$  is selected from  $\text{CH}_3$ ,  $\text{CH}_2\text{OH}$ ,  $\text{C=O}$ ,  $\text{COOH}$ ,  $\text{CH}_2\text{F}$ ,  $\text{CHF}_2$  and  $\text{CF}_3$ ,

such that at least one of  $\text{R}^1\text{-R}^{13}$  comprises fluorine includes a fluorine atom;

no more than two of  $\text{CR}^3\text{R}^4\text{R}^5$ ,  $\text{CR}^6$ ,  $\text{CR}^7\text{R}^8$ ,  $\text{CR}^9\text{R}^{10}$ ,  $\text{CR}^{11}\text{R}^{12}$ , and  $\text{CR}^{13}$  comprises fluorine or oxygen include a fluorine atom or an oxygen atom;

and, when  $\text{CR}^1\text{R}^2$  is  $\text{CHOH}$ ,  $\text{CR}^3\text{R}^4\text{R}^5$  is not  $\text{CH}_2\text{F}$ .

18. (Original) The method of claim 17, wherein each of  $\text{CR}^7\text{R}^8$  and  $\text{CR}^9\text{R}^{10}$  is independently selected from  $\text{CH}_2$ ,  $\text{CHOH}(\beta)$ ,  $\text{C=O}$ ,  $\text{CHF}(\alpha)$  and  $\text{CF}_2$ .

19. (Currently amended) The method of claim 18, wherein exactly one of  $\text{CR}^1\text{R}^2$ ,  $\text{CR}^3\text{R}^4\text{R}^5$ ,  $\text{CR}^6$ ,  $\text{CR}^7\text{R}^8$ ,  $\text{CR}^9\text{R}^{10}$ , and  $\text{CR}^{11}\text{R}^{12}$  comprises fluorine includes a fluorine atom.

20. (Currently amended) The method of claim 19, wherein  $\text{CR}^1\text{R}^2$  comprises fluorine includes a fluorine atom.

21. (Original) The method of claim 20, wherein  $\text{CR}^1\text{R}^2$  is  $\text{CF}_2$ .

22. (Original) The method of claim 20, wherein CR<sup>1</sup>R<sup>2</sup> is CHF(α).
23. (Original) The method of claim 22, wherein each of R<sup>3</sup>-R<sup>13</sup> is hydrogen.