Magnetism and Applications

Unit 3: Force Fields

Dr. Timothy Leung

Olympiads School

Summer 2019

Where Are We In the Course

- 1. Fundamentals of Dynamics
- 2. Momentum, Impulse and Energy
- 3. Gravitational, Electric and Magnetic Fields
- 4. Wave Nature of Light
- 5. Theory of Special Relativity
- Introduction to Quantum Mechanics

Magnetic Field

Let's Review Some Basics

- · A magnetic field is created by charges that are moving
 - a single charge, or
 - a current along a wire
- Example: building electromagnets using a battery, copper wires and a nail

We're Also Familiar with Permanent Magnets

- Generally made of iron, nickel, cobalt, some alloys of rare-earth materials, some minerals (e.g. lodestone)
- Atoms in these materials can be organized such that the electrons are always creating a small current inside
- We're told that the magnetic field runs from "north" to "south" pole, like the diagram shown below. If this is the case, someone lied to you...

A Gigantic "Permanent" Magnet

- Earth is also a "permanent" magnet
 - Magnetic field generated by electric currents in the conductive material in its core
 - Current created by convection currents due to heat escaping from the core
- Magnetic field lines run from magnetic north to magnetic south
- By our convention, our South Pole is actually the "magnetic north pole", and our North Pole is the "magnetic south pole"

What About Permanent Magnet?

- Magnetic fields don't actually run from a "North" pole to a "South" pole
- In fact, they run in a loop (see right)
- The magnetic field lines continues inside the bar magnet

Magnetic Field Generated By a Wire

In fact, the magnetic field generated by a current also runs in a loop, given by the equation:

$$B = \frac{\mu_0 I}{2\pi r}$$

Quantity	Symbol	SI Unit
Magnetic field intensity	В	T (teslas)
Current	I	A (amperes)
Radial distance from the wire	r	m (metres)

The constant $\mu_0 = 4\pi \times 10^{-7}\,\mathrm{T\cdot m/A}$ is the "permeability of free space"

Magnetic Field Generated By a Wire

- Both electric current (I) and magnetic field (B) are vectors
- Direction of I based on movement of positive charges
 - In an actual wire, negative charges (electrons) are moving in the opposite direction
- Direction of B is determined using right hand rule

Wounding Wires Into a Coil

- A solenoid is when you wound a wire into a coil
- You create a magnet very similar to a bar magnet, with an effective north pole and a south pole
- Magnetic field inside the solenoid is uniform
- Magnetic field strength can be increased by the addition of an iron core

Magnetic Field Inside a Solenoid

• The magnetic field **inside** the solenoid given by:

$$B = \mu nI$$

• Direction of B determined by right hand rule

Quantity	Symbol	SI Unit
Magnetic field intensity	В	T (teslas)
Number of coils	n	integer, no units
Current	I	A (amperes)
Effective permeability	μ	T·m/A (tesla metres per ampere)

Tesla

The unit of magnetic field, not the car!

- · The strength of a magnetic field
- A charge of one coulomb, travelling with a speed of $1\,\mathrm{m/s}$ perpendicular to the magnetic field ($\theta=90^\circ$ and $\sin\theta=1$) experiences a force of $1\,\mathrm{N}$

$$tesla = \frac{newton}{coulomb \frac{metre}{second}}$$

So What Does the Magnetic Field Do?

Gravitational Field g

- Generated by any object that has a mass
- Affects everything that has mass

Electric Field E

- Generated by all charged particles
- Affects all charged particles
- The charged particle can be at rest or moving

Magnetic Field B

- Generated by electric currents and moving charged particles
- Affects electric currents and moving charged particles

Force on a Moving Charge in a Magnetic Field

When a moving charge (q) enters a magnetic field (\mathbf{B}) with a velocity \mathbf{v} , the magnetic field exerts a force (\mathbf{F}_M) on the charge:

$$F_M = qvB\sin\theta$$

Quantity	Symbol	SI Unit
Magnetic force on the moving charge	$F_{\mathcal{M}}$	N (newtons)
Electric charge of the particle	q	C (coulombs)
Speed of the charged particle	v	m/s (metres per second)
Magnetic field strength	B	T (teslas)
Angle between particle and magnetic field	θ	

The direction of \mathbf{F}_M is perpendicular to both \mathbf{v} and \mathbf{B}

Convention for Diagrams

Example Problem

Example 8: A particle carrying a charge of $2.50\,\mu\text{C}$ enters a magnetic field travelling at $3.40\times10^5\,\text{m/s}$ to the right of the page. If a uniform magnetic field is pointing directly into the page and has a strength of $0.500\,\text{T}$, what is the magnitude and direction of the force acting on the charge as it just enters the magnetic field?

Force on a Current-Carrying Conductor in a Magnetic Field

The magnetic field also exerts a force on a conductor carrying a current.

$$F_M = IlB\sin\theta$$

Quantity	Symbol	SI Unit
Magnetic force on the conductor	F_{M}	N (newtons)
Electric current in the conductor	I	A (amperes)
Length of the conductor inside magnetic field	1	m (metres)
Magnetic field strength	В	T (teslas)
Angle between conductor and magnetic field	θ	

This should not come as a surprise as a current is just a stream of charged particles

Right Hand Rule for Induced Magnetic Force

- The direction of current is the *conventional current*, which assumes the flow of positive charges. In fact, in a conductor, negatively charged electrons flow in the opposite direction.
- Single charged particle follows the same convention.

Example Problem

Example 9: A wire segment of length $40 \, \text{cm}$, carrying a current of $12 \, \text{A}$, crosses a magnetic field of $0.75 \, \text{T}$ [up] at an angle of [up 40° right]. What magnetic force is exerted on the wire?

Circular Motion Caused by a Magnetic Field

When a charged particle enters a magnetic field at right angle. . .

- Magnetic force \mathbf{F}_M perpendicular to both velocity \mathbf{v} and magnetic field \mathbf{B} .
- Results in circular motion

Centripetal force \mathbf{F}_c given by the magnetic force \mathbf{F}_M . We can solve for the radius r of the motion:

$$\frac{mv^2}{r} = qvB$$
$$r = \frac{mv}{qB}$$

Mass Spectrometer

- Separates particles of different mass
- Measures the mass of the particle by measuring displacement
- Three major components:
 - Particle accelerator
 - Velocity selector
 - Mass separator

Simple Particle Accelerator

- Made of:
 - A pair of parallel plates
 - Accelerating potential difference
 - Particle source
- Ionized particle source passes through the plates and get accelerated by the potential difference then get shot out of the other end of the plate.
- e.g.: particle gun or electron gun

$$\frac{1}{2}mv^2 = qV$$

Velocity Selector

- Often associates with the parallel plate particle accelerator.
- Filters the beam of particles to let particles with the same velocity to pass by only.
- Consists of a crossed (perpendicular) electric and magnetic field.
- When electric and magnetic forces are balanced, particle travels straight through.

Velocity Selector

The particle will travel straight through when magnetic force \mathbf{F}_M and electric force \mathbf{F}_q are balanced:

$$F_M = F_q$$

Substitute the expressions for F_M and F_q , then solve for v:

$$qvB = qE$$
$$v = \frac{E}{B}$$

We can adjust which particle velocity can go straight through by adjusting the relative strength of the electric field **E** and magnetic field **B**.

Mass Separation

Particles of different masses are separated by allowing to go into circular motion inside a magnetic field. Centripetal force \mathbf{F}_c given by magnetic force \mathbf{F}_M

$$F_c = F_M$$

Substitute the expressions for F_c and F_M , then solve for m:

$$\frac{mv^2}{r} = qvB$$
$$m = \frac{rqB}{v}$$

Can tell the mass of the particle by knowing its charge q, speed v, magnetic field strength B and the radius of the circular motion r.

Example Problem

Example 9: A positive ion, having a charge of 3.2×10^{-19} C, enters at the extreme left of the parallel plate assembly associated with the velocity selector and mass spectrometer shown previously.

• If the potential difference across the simple accelerator is 1.2×10^3 V, what is the kinetic energy of the particle as it leaves through the hole in the right plate?

Example Problem (cont.)

- The parallel plates of the velocity selector are separated by 12 mm and have an
 electric potential difference across them of 360 V. If a magnetic field of strength
 0.10 T is applied at right angles to the electric field, what is the speed of the
 particles that will be selected to pass on the mass spectrometer?
- When these particles then enter the mass spectrometer, which shares a
 magnetic field with the velocity selector, the radius of the resulting circular path
 followed by the particles is 6.3 cm. What is the mass of the charged particles?

The Cockcroft-Walton Proton Accelerator

- Capable of 1 MeV (mega electron volt)
- $1 \text{ eV} = 1.6021 \times 10^{-19} \text{ J}$

The Cyclotron

- Large number of small increases in potential.
- 30 MeV is very common

