

#### **UNIDAD 12: Estadística Bidimensional**

### **EJERCICIOS Y ACTIVIDADES - PÁG. 238**

1. Dadas dos variables estadísticas, hemos obtenido los datos que se resumen en la siguiente tabla:

| XY      | 2   | 4   | 6   | 8   | 10  | 12  | Totales |
|---------|-----|-----|-----|-----|-----|-----|---------|
| 10      | 7   | 10  | 12  | 17  | 13  | 6   | •••     |
| 20      | 9   | 12  | 15  | 18  | 12  | 7   | •••     |
| 30      | 16  | 12  | 11  | 8   | 4   | 3   | •••     |
| 40      | 21  | 16  | 10  | 9   | 5   | 2   | •••     |
| Totales | ••• | ••• | ••• | ••• | ••• | ••• | •••     |

a) Completa en tu cuaderno la columna y la fila de totales.

| X       | 2  | 4  | 6  | 8  | 10 | 12 | Totales |
|---------|----|----|----|----|----|----|---------|
| 10      | 7  | 10 | 12 | 17 | 13 | 6  | 65      |
| 20      | 9  | 12 | 15 | 18 | 12 | 7  | 73      |
| 30      | 16 | 12 | 11 | 8  | 4  | 3  | 54      |
| 40      | 21 | 16 | 10 | 9  | 5  | 2  | 63      |
| Totales | 53 | 50 | 48 | 52 | 34 | 18 | 255     |

- b) Calcula el tamaño de la población. N=255
- c) ¿Qué valor tiene la frecuencia absoluta  $\,f_{2,3}\,$ ?  $\,f_{2,3}\,$  = 15

### **EJERCICIOS Y ACTIVIDADES - PÁG. 239**

2. Calcula la media aritmética y la varianza para las distribuciones marginales asociadas a la siguiente tabla:

| X   | 10 | 20 | 30 | 40 |
|-----|----|----|----|----|
| 100 | 12 | 8  | 6  | 4  |
| 200 | 16 | 14 | 11 | 9  |
| 300 | 18 | 20 | 22 | 10 |
| 400 | 21 | 23 | 16 | 10 |

La distribución marginal para X es:

| $\mathcal{X}_{i}$ | $f_{i\cdot}$ | $x_i \cdot f_i$ | $x_i^2 \cdot f_i$ |
|-------------------|--------------|-----------------|-------------------|
| 100               | 30           | 3000            | 300000            |
| 200               | 50           | 10000           | 2000000           |
| 300               | 70           | 21000           | 6300000           |
| 400               | 70           | 28000           | 11200000          |
| Total             | 220          | 62000           | 19800000          |



La media es 
$$\bar{x} = \frac{62000}{220} = 281,81$$
 y la varianza:  $\sigma_{X}^{2} = \frac{\sum_{i=1}^{4} x_{i}^{2} \cdot f_{i}}{N} - \bar{x}^{2} = 10578,51$ 

La distribución marginal para Y es:

| $y_j$ | $f_{\cdot j}$ | $y_j \cdot f_{\cdot j}$ | $y_j^2 \cdot f_{\cdot j}$ |
|-------|---------------|-------------------------|---------------------------|
| 10    | 67            | 670                     | 67000                     |
| 20    | 65            | 1300                    | 26000                     |
| 30    | 55            | 1650                    | 49500                     |
| 40    | 33            | 1320                    | 52800                     |
| Total | 220           | 4940                    | 13500                     |

La media es 
$$\overline{y} = \frac{4940}{220} = 22,45$$
 y la varianza:  $\sigma_{y}^{2} = \frac{\sum_{i=1}^{4} y_{j}^{2} \cdot f_{i,j}}{N} - \overline{y}^{2} = 109,43$ 

#### **EJERCICIOS Y ACTIVIDADES - PÁG. 240**

3. Una variable bidimensional se distribuye mediante la siguiente tabla:

| X  | 10 | 11 | 12 | 13 |
|----|----|----|----|----|
| 10 | 12 | 18 | 25 | 14 |
| 20 | 16 | 21 | 24 | 16 |
| 30 | 12 | 15 | 18 | 20 |

#### Calcula:

a) La media aritmética y la varianza para la distribución condicionada X / y = 12 Calculamos la tabla de frecuencias para la distribución:

| $X_i$ | $f_{i3}$ | $x_i \cdot f_{i3}$ | $x_i^2 \cdot f_{i3}$ |
|-------|----------|--------------------|----------------------|
| 10    | 25       | 250                | 2500                 |
| 20    | 24       | 480                | 9600                 |
| 30    | 18       | 540                | 16200                |
| Total | 67       | 1270               | 28300                |

La media es 
$$\overline{x} = \frac{1270}{67} = 18,9552$$
 y la varianza:  $\sigma_{X/y=12}^2 = \frac{\sum_{i=1}^3 x_i^2 \cdot f_{i3}}{N} - \overline{x}^2 = 63,0876$ 

b) La media aritmética y la varianza para la distribución condicionada Y/x = 20 Calculamos la tabla de frecuencias para la distribución:



| $y_j$ | $f_{2j}$ | $y_j \cdot f_{2j}$ | $y_j^2 \cdot f_{2j}$ |
|-------|----------|--------------------|----------------------|
| 10    | 16       | 160                | 1600                 |
| 11    | 21       | 231                | 2541                 |
| 12    | 24       | 288                | 3456                 |
| 13    | 16       | 208                | 2704                 |
| Total | 77       | 887                | 10301                |

La media es 
$$\overline{y} = \frac{887}{77} = 11,5195$$
 y la varianza:  $\sigma_{Y/x=20}^2 = \frac{\sum_{i=1}^4 {y_j}^2 \cdot f_{2j}}{N} - \overline{y}^2 = 1,0808$ 

# **EJERCICIOS Y ACTIVIDADES - PÁG. 241**

4. Calcula la covarianza de la siguiente distribución bidimensional:

| X  | 5  | 10 | 15 | 20 |
|----|----|----|----|----|
| 10 | 8  | 12 | 16 | 4  |
| 20 | 21 | 9  | 8  | 2  |
| 30 | 18 | 7  | 0  | 0  |

Hallamos la media de las dos variables:

| $\mathcal{X}_{i}$ | $f_{i\cdot}$ | $x_i \cdot f_{i \cdot}$ |
|-------------------|--------------|-------------------------|
| 10                | 40           | 400                     |
| 20                | 40           | 800                     |
| 30                | 25           | 750                     |
| Total             | 105          | 1950                    |

| $y_{j}$ | $f_{\cdot j}$ | $y_j \cdot f_{\cdot j}$ |
|---------|---------------|-------------------------|
| 5       | 47            | 235                     |
| 10      | 28            | 280                     |
| 15      | 24            | 360                     |
| 20      | 6             | 120                     |
| Total   | 105           | 995                     |

Las medias son: 
$$\bar{x} = \frac{1950}{105} \approx 18,5714 \text{ y } \bar{y} = \frac{995}{105} = 9,4762.$$

Escribimos una doble entrada con el producto  $f_{ij} \cdot \mathbf{X}_i \cdot \mathbf{y}_j$ 

|         | -    |      |      |      |         |
|---------|------|------|------|------|---------|
| X       | 5    | 10   | 15   | 20   | Totales |
| 10      | 400  | 1200 | 2400 | 800  | 4800    |
| 20      | 2100 | 1800 | 2400 | 800  | 7100    |
| 30      | 2700 | 2100 | 0    | 0    | 4800    |
| Totales | 5200 | 5100 | 4800 | 1600 | 16700   |



La covarianza es: 
$$\sigma_{XY} = \frac{\sum_{j} \left(\sum_{i} f_{ij} \cdot x_{i}\right) \cdot y_{j}}{N} - \overline{x} \cdot \overline{y} = -16,9388$$

#### **EJERCICIOS Y ACTIVIDADES - PÁG. 242**

5. Calcula el coeficiente de correlación lineal para la distribución bidimensional siguiente:

| X  | 1  | 2  | 3  | 4 |
|----|----|----|----|---|
| 10 | 0  | 0  | 6  | 9 |
| 11 | 0  | 4  | 12 | 8 |
| 12 | 9  | 16 | 4  | 0 |
| 13 | 21 | 12 | 0  | 0 |

Calculamos las medias y las desviaciones típicas de las dos variables:

| $X_i$ | $f_{i\cdot}$ | $x_i \cdot f_i$ | $x_i^2 \cdot f_{i\cdot}$ |
|-------|--------------|-----------------|--------------------------|
| 10    | 15           | 150             | 1500                     |
| 11    | 24           | 264             | 2904                     |
| 12    | 29           | 348             | 4176                     |
| 13    | 33           | 429             | 5577                     |
| Total | 101          | 1191            | 14157                    |

| $y_{j}$ | $f_{\cdot j}$ | $y_j \cdot f_{\cdot j}$ | $y_j^2 \cdot f_{\cdot j}$ |
|---------|---------------|-------------------------|---------------------------|
| 1       | 30            | 30                      | 30                        |
| 2       | 32            | 64                      | 128                       |
| 3       | 22            | 66                      | 198                       |
| 4       | 17            | 68                      | 272                       |
| Total   | 101           | 228                     | 628                       |

Las medias son :  $\bar{x} = \frac{1191}{101} \approx 11,7921$  y  $\bar{y} = \frac{228}{101} = 2,2574$ , mientras que las varianzas son:  $\sigma_X^2 = 1,1152$  y  $\sigma_Y^2 = 1,1219$  y las desviaciones típicas:  $\sigma_X = 1,056$  y  $\sigma_Y = 1,0592$ .

Para la covarianza construimos una tabla con los productos:  $f_{ij} \cdot \mathbf{x}_i \cdot \mathbf{y}_j$ 

| X       | 1   | 2   | 3   | 4   | Totales |
|---------|-----|-----|-----|-----|---------|
| 10      | 0   | 0   | 180 | 360 | 540     |
| 11      | 0   | 88  | 396 | 352 | 836     |
| 12      | 108 | 384 | 144 | 0   | 636     |
| 13      | 273 | 312 | 0   | 0   | 585     |
| Totales | 381 | 784 | 720 | 712 | 2597    |

El valor de la covarianza es  $\sigma_{xy} = \frac{\displaystyle\sum_{j} \left( \displaystyle\sum_{i} f_{ij} \cdot x_{i} \right) \cdot y_{j}}{N} - \bar{x} \cdot \bar{y} = -0,9069$  y, finalmente, el coeficiente

de correlación lineal es:  $r = \frac{\sigma_{xy}}{\sigma_x \cdot \sigma_y} = -0.8108$ 



#### **EJERCICIOS Y ACTIVIDADES - PÁG. 243**

- 6. Calcula la recta de regresión de Y sobre X y la de X sobre Y de la siguiente distribución:
  - a) Estima el valor de  $\,Y\,\,$  para  $\,X\,\,$  igual a 80
  - b) Estima el valor de  $X\,$  para  $Y\,$  igual a 10

| X  | 1 | 2 | 3 | 4 | 5 | 6 |
|----|---|---|---|---|---|---|
| 10 | 0 | 0 | 0 | 0 | 3 | 5 |
| 20 | 0 | 0 | 0 | 0 | 4 | 4 |
| 30 | 0 | 0 | 3 | 3 | 4 | 7 |
| 40 | 0 | 3 | 1 | 5 | 3 | 0 |
| 50 | 3 | 4 | 5 | 4 | 3 | 0 |
| 60 | 4 | 2 | 3 | 2 | 0 | 0 |
| 70 | 3 | 1 | 1 | 0 | 0 | 0 |

RECTA DE REGRESIÓN DE Y SOBRE X: 
$$y - y = \frac{\sigma_{XY}}{\sigma_X^2} (x - x)$$

Calculamos las medias, las desviaciones típicas y la covarianza:

| $x_i$ | $f_{i\cdot}$ | $x_i \cdot f_i$ | $x_i^2 \cdot f_i$ |
|-------|--------------|-----------------|-------------------|
| 10    | 8            | 80              | 800               |
| 20    | 8            | 160             | 3200              |
| 30    | 17           | 510             | 15300             |
| 40    | 12           | 480             | 19200             |
| 50    | 19           | 950             | 47500             |
| 60    | 11           | 660             | 39600             |
| 70    | 5            | 350             | 24500             |
| Total | 80           | 3190            | 150100            |

| $y_j$ | $f_{\cdot j}$ | $y_j \cdot f_{\cdot j}$ | $y_j^2 \cdot f_{\cdot j}$ |
|-------|---------------|-------------------------|---------------------------|
| 1     | 10            | 10                      | 10                        |
| 2     | 10            | 20                      | 40                        |
| 3     | 13            | 39                      | 117                       |
| 4     | 14            | 56                      | 224                       |
| 5     | 17            | 85                      | 425                       |
| 6     | 16            | 96                      | 576                       |
| Total | 80            | 306                     | 1392                      |

Las medias son:  $x = \frac{3190}{80} = 39,875$  y  $y = \frac{306}{80} = 3,825$ , mientras que las varianzas son:

 ${\sigma_{\scriptscriptstyle X}}^2=286,234\,$  y  ${\sigma_{\scriptscriptstyle Y}}^2=2,7694\,$  y las desviaciones típicas:  $\sigma_{\scriptscriptstyle X}=16,9185\,$  y  $\sigma_{\scriptscriptstyle Y}=1,6641\,$ .

Para la covarianza construimos una tabla con los productos:  $f_{ij} \cdot \mathbf{X}_i \cdot \mathbf{y}_j$ 

| X  | 1   | 2   | 3   | 4   | 5   | 6    | Totales |
|----|-----|-----|-----|-----|-----|------|---------|
| 10 | 0   | 0   | 0   | 0   | 150 | 300  | 450     |
| 20 | 0   | 0   | 0   | 0   | 400 | 480  | 880     |
| 30 | 0   | 0   | 270 | 360 | 600 | 1260 | 2490    |
| 40 | 0   | 240 | 120 | 800 | 600 | 0    | 1760    |
| 50 | 150 | 400 | 750 | 800 | 750 | 0    | 2850    |
| 60 | 240 | 240 | 540 | 480 | 0   | 0    | 1500    |
| 70 | 210 | 140 | 210 | 0   | 0   | 0    | 560     |



Por tanto, la recta de regresión de Y sobre X es: y-3,825=-0,075(x-39,875)

RECTA DE REGRESIÓN DE X SOBRE Y: 
$$x - \bar{x} = \frac{\sigma_{XY}}{\sigma_Y^2} (y - \bar{y}).$$

En este caso solo falta calcular  $\frac{\sigma_{XY}}{\sigma_v^2}$  = -7,7262, por tanto la ecuación de la recta de regresión de X

sobre 
$$Y$$
 es:  $x-39,875 = -7,7262(y-3,825)$ 

Estimación del valor de 
$$Y$$
 para  $X$  igual a 80:  $y-3,825=-0,075 (80-39,875) \Rightarrow y=-26,6689$   
Estimación del valor de  $X$  para  $Y$  igual a 10:  $x-39,875=-7,7262 (10-3,825) \Rightarrow x=-7,8346$ 

### **EJERCICIOS Y ACTIVIDADES DE RECAPITULACIÓN - PÁGS. 246-248**

#### VARIABLES ESTADÍSTICAS BIDIMENSIONALES. DISTRIBUCIONES MARGINALES

1. La siguiente tabla resume los datos obtenidos de una variable estadística bidimensional:

| Y  | 10 | 20 | 30 | 40 |
|----|----|----|----|----|
| 10 | 0  | 3  | 4  | 4  |
| 11 | 4  | 5  | 3  | 6  |
| 12 | 3  | 4  | 5  | 0  |
| 13 | 7  | 6  | 1  | 0  |

a) Determina las frecuencias absolutas para las distribuciones marginales

| $\mathcal{X}_{i}$ | $f_{i\cdot}$ | $x_i \cdot f_i$ | $x_i^2 \cdot f_{i\cdot}$ |
|-------------------|--------------|-----------------|--------------------------|
| 10                | 11           | 110             | 1100                     |
| 11                | 18           | 198             | 2178                     |
| 12                | 12           | 144             | 1728                     |
| 13                | 14           | 182             | 2366                     |
| Total             | 55           | 634             | 7372                     |

| $y_{j}$ | $f_{\cdot j}$ | $y_j \cdot f_{\cdot j}$ | $y_j^2 \cdot f_{\cdot j}$ |
|---------|---------------|-------------------------|---------------------------|
| 10      | 14            | 140                     | 1400                      |
| 20      | 18            | 360                     | 7200                      |
| 30      | 13            | 390                     | 11700                     |
| 40      | 10            | 400                     | 16000                     |
| Total   | 55            | 1290                    | 36300                     |

b) Calcula la media aritmética de las distribuciones marginales

Las medias son: 
$$\bar{x} = \frac{634}{55} = 11,527 \text{ y } \bar{y} = \frac{1290}{55} = 23,45.$$

c) Calcula la varianza de las distribuciones marginales.

Las varianzas son:  ${\sigma_{\rm X}}^2$  =1,15835 y  ${\sigma_{\rm Y}}^2$  =109,8843.

d) Calcula la desviación típica de las distribuciones marginales.



Las desviaciones típicas son:  $\sigma_{\rm X}=1,0763~{\rm y}~\sigma_{\rm Y}=10,4826$  .

e) Calcula la mediana de la distribución marginal correspondiente a la variable X. Construimos la tabla marginal con las frecuencias acumuladas:

| $X_i$ | $f_{i\cdot}$ | $F_{i\cdot}$ |
|-------|--------------|--------------|
| 10    | 11           | 11           |
| 11    | 18           | 29           |
| 12    | 12           | 41           |
| 13    | 14           | 55           |
| Total | 55           |              |

La mediana es Me = 11

2. Dada la siguiente distribución bidimensional, calcula la media y la varianza de las distribuciones marginales:

| X  | [0,8) | [8,16) | [16,24) |
|----|-------|--------|---------|
| 10 | 4     | 9      | 3       |
| 20 | 5     | 3      | 8       |
| 30 | 8     | 7      | 3       |
| 40 | 10    | 3      | 4       |

Construimos las tablas de las distribuciones marginales:

| $x_i$ | $f_{i\cdot}$ | $x_i \cdot f_i$ | $x_i^2 \cdot f_i$ |  |
|-------|--------------|-----------------|-------------------|--|
| 10    | 16           | 160             | 1600              |  |
| 20    | 16           | 320             | 6400              |  |
| 30    | 18           | 540             | 16200             |  |
| 40    | 17           | 680             | 27200             |  |
| Total | 67           | 1700            | 51400             |  |

| $I_{j}$ | $y_j$  | $f_{\cdot j}$ | $y_j \cdot f_{\cdot j}$ | $y_j^2 \cdot f_{\cdot j}$ |  |
|---------|--------|---------------|-------------------------|---------------------------|--|
| [0,8)   | 4      | 27            | 108                     | 432                       |  |
| [8,16)  | 12     | 22            | 264                     | 3168                      |  |
| [16,24) | 20     | 18            | 360                     | 7200                      |  |
|         | Total: | 67            | 732                     | 10800                     |  |

Las medias son: 
$$\bar{x} = \frac{1700}{67} = 25,3731$$
 y  $\bar{y} = \frac{732}{67} = 10,9254$ , mientras que las varianzas son:  $\sigma_{x}^{2} = 123,3682$  y  $\sigma_{y}^{2} = 41,8303$ 

3. La siguiente tabla resume los datos obtenidos de una variable estadística bidimensional:

| X  | [0, 6) | [6, 12) | [12, 18) | [18, 24) |
|----|--------|---------|----------|----------|
| 10 | 0      | 3       | 6        | 0        |
| 20 | 0      | 3       | 5        | 6        |
| 30 | 8      | 6       | 10       | 8        |
| 40 | 3      | 4       | 9        | 12       |

a) Determina las frecuencias absolutas para las distribuciones marginales.

Obtenemos la tabla de frecuencias con los datos necesarios para este y el resto de apartados:



| $X_i$ | $f_{i\cdot}$ | $x_i \cdot f_i$ | $x_i^2 \cdot f_{i\cdot}$ |
|-------|--------------|-----------------|--------------------------|
| 10    | 9            | 90              | 900                      |
| 20    | 14           | 280             | 5600                     |
| 30    | 32           | 960             | 28800                    |
| 40    | 28           | 1120            | 44800                    |
| Total | 83           | 2450            | 80100                    |

| $I_{j}$  | $y_j$ | $f_{\cdot j}$ | $y_j \cdot f_{\cdot j}$ | $y_j^2 \cdot f_{\cdot j}$ |  |
|----------|-------|---------------|-------------------------|---------------------------|--|
| [0, 6)   | 3     | 11            | 33                      | 99                        |  |
| [6, 12)  | 9     | 16            | 144                     | 1296                      |  |
| [12, 18) | 15    | 30            | 450                     | 6750                      |  |
| [18, 24) | 20    | 26            | 520                     | 10400                     |  |
| Т        | otal: | 83            | 1147                    | 18545                     |  |

b) Calcula la media aritmética de las distribuciones marginales.

Las medias son: 
$$\bar{x} = \frac{2450}{83} = 29,5181 \text{ y } \bar{y} = \frac{1147}{83} = 13,8193.$$

c) Calcula la varianza de las distribuciones marginales.

Las varianzas son: 
$$\sigma_{_{X}}{}^{^{2}} = 93,7436 \text{ y } \sigma_{_{Y}}{}^{^{2}} = 32,4613$$
 .

d) Calcula las desviaciones típicas de las distribuciones marginales.

Las desviaciones típicas son: 
$$\sigma_{\rm X} = 9,6821~{\rm y}~\sigma_{\rm Y} = 5,6975$$
 .

e) Calcula la mediana de la distribución marginal correspondiente a la variable  $\,Y\,.\,$ 

Construimos la tabla marginal con las frecuencias acumuladas:

| $I_{j}$  | $y_{j}$ | $f_{\cdot j}$ | $F_{\cdot j}$ |
|----------|---------|---------------|---------------|
| [0, 6)   | 3       | 11            | 11            |
| [6, 12)  | 9       | 16            | 27            |
| [12, 18) | 15      | 30            | 57            |
| [18, 24) | 20      | 26            | 83            |
| Т        | otal·   | 83            |               |

La mediana se encuentra en el intervalo [12, 18) y se

La mediana se encuentra en el intervalo [12, 18) calcula: 
$$\frac{Me-12}{41,5-27} = \frac{18-12}{57-27} \Rightarrow Me = 12 + \frac{14,5\cdot 6}{30} = 14,9$$

4. La siguiente tabla resume los datos de una variable bidimensional:

| Υ<br>X | [1, 5) | [5, 9) | [9, 13) | [13, 17) |
|--------|--------|--------|---------|----------|
| 3      | 0      | 0      | 2       | 4        |
| 5      | 0      | 1      | 3       | 1        |
| 7      | 2      | 3      | 3       | 0        |
| 9      | 5      | 2      | 0       | 0        |

a) Haz una gráfica con una nube de puntos

Para realizar la gráfica de nube de puntos necesitamos los 26 puntos:

| Х | 3  | 3  | 3  | 3  | 3  | 3  | 5 | 5  | 5  | 5  | 5  | 7 | 7 | 7 | 7 | 7 | 7  | 7  | 7  | 9 | 9 | 9 | 9 | 9 | 9 | 9 |
|---|----|----|----|----|----|----|---|----|----|----|----|---|---|---|---|---|----|----|----|---|---|---|---|---|---|---|
| У | 11 | 11 | 15 | 15 | 15 | 15 | 7 | 11 | 11 | 11 | 15 | 3 | 3 | 7 | 7 | 7 | 11 | 11 | 11 | 3 | 3 | 3 | 3 | 3 | 7 | 7 |





b) Determina las frecuencias absolutas para las distribuciones marginales.

| $X_i$ | $f_{i\cdot}$ | $x_i \cdot f_{i\cdot}$ | $x_i^2 \cdot f_i$ |
|-------|--------------|------------------------|-------------------|
| 10    | 6            | 60                     | 600               |
| 20    | 5            | 100                    | 2000              |
| 30    | 8            | 240                    | 7200              |
| 40    | 7            | 280                    | 11200             |
| Total | 26           | 680                    | 21000             |

| $I_{j}$  | $y_j$ | $f_{\cdot j}$ | $y_j \cdot f_{\cdot j}$ | $y_j^2 \cdot f_{\cdot j}$ |
|----------|-------|---------------|-------------------------|---------------------------|
| [1, 5)   | 3     | 7             | 21                      | 63                        |
| [5, 9)   | 7     | 6             | 42                      | 294                       |
| [9, 13)  | 11    | 8             | 88                      | 968                       |
| [13, 17) | 15    | 5             | 75                      | 1125                      |
| Т        | otal: | 26            | 226                     | 2450                      |

c) Calcula la media aritmética de las distribuciones marginales.

Las medias son: 
$$\bar{x} = \frac{680}{26} = 26,1538 \text{ y } \bar{y} = \frac{1147}{83} = 8,6923.$$

d) Calcula la varianza de las distribuciones marginales.

Las varianzas son: 
$$\sigma_{X}^{2} = 123,6686 \text{ y } \sigma_{Y}^{2} = 18,6746$$
.

e) Calcula la desviación típica de las distribuciones marginales.

Las desviaciones típicas son: 
$$\sigma_x = 11,1206 \text{ y } \sigma_y = 4,3214$$
.

f) Calcula la mediana de la distribución marginal correspondiente a la variable  $\,Y\,$  . Construimos la tabla marginal con las frecuencias acumuladas:

| $I_{j}$  | $y_j$ | $f_{\cdot j}$ | $F_{\cdot j}$ |
|----------|-------|---------------|---------------|
| [1, 5)   | 3     | 7             | 7             |
| [5, 9)   | 7     | 6             | 13            |
| [9, 13)  | 11    | 8             | 21            |
| [13, 17) | 15    | 5             | 26            |
| Т        | otal: | 26            |               |

La mediana es el extremo superior del intervalo [9, 13):  $M_0 = 0$ 

# **DISTRIBUCIONES CONDICIONADAS**

5. La siguiente tabla corresponde al estudio de una variable bidimensional:

| X | 5 | 10 | 15 | 20 |
|---|---|----|----|----|
| 2 | 5 | 3  | 5  | 1  |
| 3 | 2 | 4  | 4  | 3  |
| 4 | 6 | 6  | 5  | 4  |

a) Calcula la media aritmética de la distribución X / y = 10



Construimos la tabla de frecuencias de la distribución X/y=10

| $\mathcal{X}_{i}$ | $f_{i\cdot}$ | $x_i \cdot f_i$ |
|-------------------|--------------|-----------------|
| 10                | 3            | 30              |
| 20                | 4            | 80              |
| 30                | 6            | 180             |
| Total             | 13           | 290             |

La media es 
$$\bar{x}_{y=10} = \frac{290}{13} = 22,3077$$
.

b) Calcula la media aritmética de la distribución Y/x=3. Construimos la tabla de frecuencias de la distribución Y/x=3:

| $y_j$  | $f_{\cdot j}$ | $y_j \cdot f_{\cdot j}$ |
|--------|---------------|-------------------------|
| 5      | 2             | 10                      |
| 10     | 4             | 40                      |
| 15     | 4             | 60                      |
| 20     | 3             | 60                      |
| Total: | 13            | 170                     |

La media es 
$$\bar{x}_{y=10} = \frac{290}{13} = 22,3077$$

6. Dada la siguiente distribución bidimensional, calcula la media y la varianza de la distribución condicionada X / y = 11:

| X | 11 | 12 | 13 |
|---|----|----|----|
| 5 | 5  | 6  | 1  |
| 6 | 7  | 8  | 2  |
| 7 | 8  | 9  | 3  |
| 8 | 2  | 3  | 5  |

Calculamos la tabla de frecuencias de la distribución condicionada:

| $\mathcal{X}_{i}$ | $f_{i\cdot}$ | $x_i \cdot f_{i\cdot}$ | $x_i^2 \cdot f_i$ |
|-------------------|--------------|------------------------|-------------------|
| 5                 | 5            | 25                     | 125               |
| 6                 | 7            | 42                     | 252               |
| 7                 | 8            | 56                     | 392               |
| 8                 | 2            | 16                     | 128               |
| Total             | 22           | 139                    | 897               |

La media es 
$$\bar{x} = \frac{139}{22} = 6{,}318$$
 y la varianza:  $\sigma_{X/y=11}^2 = 0{,}8533$ 



#### 7. Dada la tabla:

| X        | [1, 5) | [5, 9) | [9, 13) | [13, 17) |
|----------|--------|--------|---------|----------|
| [0, 2)   | 1      | 2      | 8       | 2        |
| [2, 4)   | 3      | 5      | 3       | 4        |
| [4, 6)   | 4      | 7      | 4       | 6        |
| [6, 8)   | 7      | 8      | 7       | 1        |
| [8, 10)  | 8      | 4      | 6       | 6        |
| [10,12)  | 2      | 2      | 5       | 8        |
| [12, 14) | 1      | 1      | 3       | 2        |

a) Calcula la media aritmética y la varianza de la distribución Y/x = [2,4)

Construimos la tabla de frecuencias de la distribución condicionada:

| $I_{j}$  | $y_{j}$ | $f_{\cdot j}$ | $y_j \cdot f_{\cdot j}$ | $y_j^2 \cdot f_{\cdot j}$ |
|----------|---------|---------------|-------------------------|---------------------------|
| [1, 5)   | 3       | 3             | 9                       | 27                        |
| [5, 9)   | 7       | 5             | 35                      | 245                       |
| [9, 13)  | 11      | 3             | 33                      | 363                       |
| [13, 17) | 15      | 4             | 60                      | 900                       |
| Tot      | tal:    | 15            | 137                     | 1535                      |

La media es  $y_{x=(2,4)} = \frac{137}{15} = 9,1\hat{3}$  y la varianza  $\sigma_{Y/x=(2,4)}^2 = 18,9156$ 

b) Calcula la media aritmética y la varianza de la distribución  $\, X \, / \, y = \! \left[ 5,9 \right) \,$ 

Construimos la tabla de frecuencias de la distribución condicionada:

| $I_i$                 | $\mathcal{X}_{i}$ | $f_{i\cdot}$ | $x_i \cdot f_{i\cdot}$ | $x_i^2 \cdot f_i$ |
|-----------------------|-------------------|--------------|------------------------|-------------------|
| [0, 2)                | 1                 | 2            | 2                      | 2                 |
| [2, 4)                | 3                 | 5            | 15                     | 45                |
| [4, 6)                | 5                 | 7            | 35                     | 175               |
| [6, 8)                | 7                 | 8            | 56                     | 392               |
| [8, 10)               | 9                 | 4            | 36                     | 324               |
| [10,12)               | 11                | 2            | 22                     | 242               |
| <mark>[12, 14)</mark> | 13                | 1            | 13                     | 169               |
| То                    | tal               | 29           | 179                    | 1349              |

La media es  $\bar{x}_{y=[5,9)} = \frac{179}{29} = 6,1724$  y la varianza  $\sigma_{X/y=[5,9)}^2 = 8,4185$ 



#### **COVARIANZA**

# 8. Calcula la covarianza de la siguiente distribución:

| X | 10 | 15 | 20 |
|---|----|----|----|
| 3 | 2  | 5  | 1  |
| 5 | 4  | 3  | 2  |
| 7 | 3  | 4  | 5  |
| 9 | 1  | 2  | 7  |

Calculamos las medias de las distribuciones marginales:

| $X_i$ | $f_{i\cdot}$ | $x_i \cdot f_i$ |
|-------|--------------|-----------------|
| 3     | 8            | 24              |
| 5     | 9            | 45              |
| 7     | 12           | 84              |
| 9     | 10           | 90              |
| Total | 39           | 243             |

| $y_j$  | $f_{\cdot j}$ | $y_j \cdot f_{\cdot j}$ |
|--------|---------------|-------------------------|
| 10     | 10            | 100                     |
| 15     | 14            | 210                     |
| 20     | 15            | 300                     |
| Total: | 39            | 610                     |

Las medias son: 
$$\bar{x} = \frac{243}{39} = 6,2308 \text{ y } \bar{y} = \frac{610}{39} = 15,641.$$

Para la covarianza construimos una tabla con los productos  $f_{ij} \cdot \mathbf{X}_i \cdot \mathbf{y}_j$  :

| X       | 10  | 15   | 20   | Totales |
|---------|-----|------|------|---------|
| 3       | 60  | 225  | 60   | 345     |
| 5       | 200 | 225  | 200  | 625     |
| 7       | 210 | 420  | 700  | 1330    |
| 9       | 90  | 270  | 1260 | 1620    |
| Totales | 560 | 1140 | 2220 | 3920    |

Por tanto, la covarianza es 
$$\sigma_{xy} = \frac{\displaystyle\sum_{j} \left( \sum_{i} f_{ij} \cdot x_{i} \right) \cdot y_{j}}{N} - \bar{x} \cdot \bar{y} = 3,0572$$

# 9. Calcula la covarianza de la siguiente distribución:

| X  | 5 | 6 | 7 |
|----|---|---|---|
| 10 | 1 | 3 | 1 |
| 11 | 3 | 4 | 0 |
| 12 | 7 | 5 | 6 |
| 13 | 4 | 2 | 6 |



Construimos la tabla de frecuencias de las distribuciones marginales para calcular sus medias:

| $X_i$ | $f_{i\cdot}$ | $x_i \cdot f_i$ |
|-------|--------------|-----------------|
| 10    | 5            | 50              |
| 11    | 7            | 77              |
| 12    | 18           | 216             |
| 13    | 12           | 156             |
| Total | 42           | 499             |

| $y_j$  | $f_{\cdot j}$ | $y_j \cdot f_{\cdot j}$ |
|--------|---------------|-------------------------|
| 5      | 15            | 75                      |
| 6      | 14            | 84                      |
| 7      | 13            | 91                      |
| Total: | 42            | 250                     |

Las medias son:  $\bar{x} = \frac{499}{42} = 11,881 \text{ y } \bar{y} = \frac{250}{42} = 5,9524.$ 

Para la covarianza construimos una tabla con los productos  $f_{ij} \cdot \mathbf{X}_i \cdot \mathbf{y}_j$  :

| X       | 5   | 6   | 7    | Totales |
|---------|-----|-----|------|---------|
| 10      | 50  | 180 | 70   | 300     |
| 11      | 165 | 264 | 0    | 429     |
| 12      | 420 | 360 | 504  | 1284    |
| 13      | 260 | 156 | 546  | 962     |
| Totales | 895 | 960 | 1120 | 2975    |

Por tanto, la covarianza es 
$$\sigma_{XY} = \frac{\displaystyle\sum_{j} \left( \sum_{i} f_{ij} \cdot x_{i} \right) \cdot y_{j}}{N} - \bar{x} \cdot \bar{y} = 0,1134$$

# 10. Calcula la covarianza de la siguiente distribución:

| X  | [5, 7) | [7, 9) | [9, 11) |
|----|--------|--------|---------|
| 10 | 2      | 5      | 8       |
| 20 | 4      | 7      | 4       |
| 30 | 5      | 4      | 2       |
| 40 | 9      | 3      | 1       |

Construimos las tablas de frecuencias de las distribuciones marginales para calcular las medias:

| $\mathcal{X}_{i}$ | $f_{i\cdot}$ | $x_i \cdot f_i$ |
|-------------------|--------------|-----------------|
| 10                | 15           | 150             |
| 20                | 15           | 300             |
| 30                | 11           | 330             |
| 40                | 13           | 520             |



Total 54 1300

| $I_{j}$ | $y_j$ | $f_{\cdot j}$ | $y_j \cdot f_{\cdot j}$ |
|---------|-------|---------------|-------------------------|
| [5, 7)  | 6     | 20            | 120                     |
| [7, 9)  | 8     | 19            | 152                     |
| [9, 11) | 10    | 15            | 150                     |
| Total:  |       | 54            | 422                     |

Las medias son: 
$$\bar{x} = \frac{1300}{54} = 24,0741 \text{ y } \bar{y} = \frac{422}{54} = 7,8148.$$

Para la covarianza construimos una tabla con los productos  $f_{ij} \cdot \mathbf{X}_i \cdot \mathbf{y}_j$  :

| X       | 6    | 8    | 10   | Totales |
|---------|------|------|------|---------|
| 10      | 120  | 400  | 800  | 1320    |
| 20      | 480  | 1120 | 800  | 2400    |
| 30      | 900  | 960  | 600  | 2460    |
| 40      | 2160 | 960  | 400  | 3520    |
| Totales | 3660 | 3440 | 2600 | 9700    |

Por tanto, la covarianza es 
$$\sigma_{xy} = \frac{\displaystyle\sum_{j} \left( \sum_{i} f_{ij} \cdot x_{i} \right) \cdot y_{j}}{N} - \overline{x} \cdot \overline{y} = -8,5048$$

# COEFICIENTE DE CORRELACIÓN. RECTAS DE REGRESIÓN

# 11. Calcula la covarianza y el coeficiente de correlación lineal de la siguiente distribución:

| X | [10, 15) | [15, 20) | [20, 25) |
|---|----------|----------|----------|
| 5 | 5        | 7        | 9        |
| 6 | 8        | 4        | 2        |
| 7 | 10       | 7        | 1        |
| 8 | 15       | 10       | 0        |

Construimos las tablas de frecuencias de las distribuciones marginales para calcular sus medias y sus desviaciones típicas:

| $\mathcal{X}_{i}$ | $f_{i\cdot}$ | $x_i \cdot f_i$ | $x_i^2 \cdot f_i$ |
|-------------------|--------------|-----------------|-------------------|
| 5                 | 21           | 105             | 525               |
| 6                 | 14           | 84              | 504               |
| 7                 | 18           | 126             | 882               |
| 8                 | 25           | 200             | 1600              |
| Total             | 78           | 515             | 3511              |

| $I_{j}$  | $y_{j}$ | $f_{\cdot j}$ | $y_j \cdot f_{\cdot j}$ | $y_j^2 \cdot f_{\cdot j}$ |
|----------|---------|---------------|-------------------------|---------------------------|
| [10, 15) | 12,5    | 38            | 475                     | 5937,5                    |
| [15, 20) | 17,5    | 28            | 490                     | 8575                      |
| [20, 25) | 22,5    | 12            | 270                     | 6075                      |
| Tot      | tal:    | 78            | 1235                    | 20587,5                   |



Las medias son 
$$\bar{x} = \frac{515}{78} = 6,6026 \text{ y } \bar{y} = \frac{1235}{78} = 15,8\hat{3}$$
, las varianzas:  $\sigma_{\chi}^2 = 1,419 \text{ y } \sigma_{\chi}^2 = 13,2479$ 

y las desviaciones típicas:  $\sigma_{\rm X}$  = 1,1912 y  $\sigma_{\rm Y}$  = 3,6398.

Para la covarianza construimos una tabla con los productos:  $f_{ij} \cdot \mathbf{X}_i \cdot \mathbf{y}_j$ 

| X       | 12,5   | 17,5  | 22,5   | Totales |
|---------|--------|-------|--------|---------|
| 5       | 312,5  | 612,5 | 1012,5 | 1937,5  |
| 6       | 600    | 420   | 270    | 1290    |
| 7       | 875    | 857,5 | 157,5  | 1890    |
| 8       | 1500   | 1400  | 0      | 2900    |
| Totales | 3287,5 | 3290  | 1440   | 8017,5  |

El valor de la covarianza es 
$$\sigma_{xy} = \frac{\sum\limits_{j} \left(\sum\limits_{i} f_{ij} \cdot x_{i}\right) \cdot y_{j}}{N} - \overline{x} \cdot \overline{y} = -1,7521$$
 y, finalmente, el coeficiente

de correlación lineal es: 
$$r = \frac{\sigma_{XY}}{\sigma_X \cdot \sigma_Y} = -0,4041$$

- 12. En el estudio de cierta variable bidimensional se han obtenido los siguientes datos:  $\bar{x} = 35,5$ ,  $\sigma_x = 1,2$ ,  $\bar{y} = 135$ ,  $\sigma_y = 5,3$ ,  $\sigma_{xy} = 5,36$ .
  - a) Calcula el coeficiente de correlación lineal.

$$r = \frac{\sigma_{XY}}{\sigma_X \cdot \sigma_Y} = 0,8428$$

b) Determina la ecuación de la recta de regresión de Y sobre X

La ecuación de la recta es: 
$$y - \overline{y} = \frac{\sigma_{XY}}{\sigma_X^2} \left( x - \overline{x} \right)$$
, por tanto:  $y - 135 = 3,72 \left( x - 35,5 \right)$ 

c) Determina la ecuación de la recta de regresión de  $\, X \,$  sobre  $\, Y \,$ 

La ecuación de la recta es: 
$$x - \bar{x} = \frac{\sigma_{xy}}{\sigma_y^2} \left( y - \bar{y} \right)$$
, por tanto:  $x - 35, 5 = 0,1908 \left( y - 135 \right)$ 

d) Estima el valor de la variable X para Y igual a 20.

Utilizando la recta de regresión de X sobre Y, tenemos:

$$x = 35,5+0,1908(20-135)=13,0562$$

13. En un instituto se realiza un estudio para determinar la relación entre el número de horas dedicadas a ver la televisión (variable X) y el número de asignaturas suspensas (variable Y), y se obtienen los datos que se resumen a continuación.

| X | 0  | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
|---|----|---|---|---|---|---|---|---|
| 1 | 12 | 7 | 0 | 0 | 0 | 0 | 0 | 0 |



| 2 | 15 | 11 | 6 | 0 | 0 | 0 | 0  | 0  |
|---|----|----|---|---|---|---|----|----|
| 3 | 7  | 4  | 2 | 6 | 7 | 8 | 0  | 0  |
| 4 | 0  | 0  | 3 | 7 | 9 | 9 | 10 | 15 |
| 5 | 0  | 0  | 1 | 6 | 7 | 7 | 17 | 21 |

a) Calcula la media aritmética de las distribuciones marginales.

Construimos la tabla de frecuencias de las distribuciones marginales:

| $\mathcal{X}_{i}$ | $f_{i\cdot}$ | $x_i \cdot f_i$ | $x_i^2 \cdot f_i$ |
|-------------------|--------------|-----------------|-------------------|
| 1                 | 19           | 19              | 19                |
| 2                 | 32           | 64              | 128               |
| 3                 | 34           | 102             | 306               |
| 4                 | 53           | 212             | 848               |
| 5                 | 59           | 295             | 1475              |
| Total             | 197          | 692             | 2776              |

| $y_j$  | $f_{\cdot j}$ | $y_j \cdot f_{\cdot j}$ | $y_j^2 \cdot f_{\cdot j}$ |
|--------|---------------|-------------------------|---------------------------|
| 0      | 34            | 0                       | 0                         |
| 1      | 22            | 22                      | 22                        |
| 2      | 12            | 24                      | 48                        |
| 3      | 19            | 57                      | 171                       |
| 4      | 23            | 92                      | 368                       |
| 5      | 24            | 120                     | 600                       |
| 6      | 27            | 162                     | 972                       |
| 7      | 36            | 252                     | 1764                      |
| Total: | 197           | 729                     | 3945                      |

Las medias son: 
$$\bar{x} = \frac{692}{197} = 3,5127 \text{ y } \bar{y} = \frac{729}{197} = 3,7005$$

b) Calcula la varianza y la desviación típica de las distribuciones marginales.

Las varianzas son:  $\sigma_X^2 = 1,7524$  y  $\sigma_Y^2 = 6,3316$  y las desviaciones típicas:  $\sigma_X = 1,3238$  y  $\sigma_Y = 2,5163$ .

c) Calcula la covarianza de la variable bidimensional.

Para la covarianza construimos una tabla con los productos  $f_{ij} \cdot x_i \cdot y_j$  :

| Y       | 0 | 1  | 2  | 3   | 4   | 5   | 6   | 7    | Totales |
|---------|---|----|----|-----|-----|-----|-----|------|---------|
| 1       | 0 | 7  | 0  | 0   | 0   | 0   | 0   | 0    | 7       |
| 2       | 0 | 22 | 24 | 0   | 0   | 0   | 0   | 0    | 46      |
| 3       | 0 | 12 | 12 | 54  | 84  | 120 | 0   | 0    | 282     |
| 4       | 0 | 0  | 24 | 84  | 144 | 180 | 240 | 420  | 1092    |
| 5       | 0 | 0  | 10 | 90  | 140 | 175 | 510 | 735  | 1660    |
| Totales | 0 | 41 | 70 | 228 | 368 | 475 | 750 | 1155 | 3087    |

El valor de la covarianza es 
$$\sigma_{XY} = \frac{\sum_{j} \left(\sum_{i} f_{ij} \cdot x_{i}\right) \cdot y_{j}}{N} - \overline{x} \cdot \overline{y} = 2,6713$$

d) Calcula las rectas de regresión X/Y e Y/X.

Recta de regresión X/Y

La ecuación de la recta es:  $x - \bar{x} = \frac{\sigma_{xy}}{\sigma_y^2} \left( y - \bar{y} \right)$ , por tanto:  $x - 3,5127 = 1,5244 \left( y - 3,7005 \right)$ 

Recta de regresión Y/X



La ecuación de la recta es: 
$$y - y = \frac{\sigma_{xy}}{\sigma_x^2} (x - x)$$
, por tanto:  $y - 3,7005 = 0,4219 (x - 3,5127)$ 

14. La Dirección General de Tráfico realiza un estudio para determinar la relación existente entre el consumo de alcohol y los errores que se cometen al volante que pueden ocasionar accidentes. Escogido un grupo de conductores al azar, lo someten a 6 pruebas de conducción, primero sin tomar nada, luego una copa, después dos y finalmente 3, y se obtienen los siguientes resultados. La variable X es el número de copas consumidas y la variable Y, el número de pruebas superadas.

| X | 0  | 1  | 2 | 3 | 4 | 5  | 6  |
|---|----|----|---|---|---|----|----|
| 0 | 0  | 0  | 0 | 0 | 0 | 18 | 23 |
| 1 | 0  | 0  | 0 | 3 | 7 | 15 | 15 |
| 2 | 10 | 23 | 7 | 0 | 0 | 0  | 0  |
| 3 | 25 | 16 | 0 | 0 | 0 | 0  | 0  |

a) Calcula la media aritmética de las distribuciones marginales.

Construimos la tabla de frecuencia de las distribuciones marginales:

| $\mathcal{X}_{i}$ | $f_{i\cdot}$ | $x_i \cdot f_i$ | $x_i^2 \cdot f_i$ |
|-------------------|--------------|-----------------|-------------------|
| 0                 | 41           | 0               | 0                 |
| 1                 | 40           | 40              | 40                |
| 2                 | 40           | 80              | 160               |
| 3                 | 41           | 123             | 369               |
| Total             | 162          | 243             | 569               |

| $y_j$  | $f_{\cdot j}$ | $y_j \cdot f_{\cdot j}$ | $y_j^2 \cdot f_{\cdot j}$ |  |
|--------|---------------|-------------------------|---------------------------|--|
| 0      | 35            | 0                       | 0                         |  |
| 1      | 39            | 39                      | 39                        |  |
| 2      | 7             | 14                      | 28                        |  |
| 3      | 3             | 9                       | 27                        |  |
| 4      | 7             | 28                      | 112                       |  |
| 5      | 33            | 165                     | 825                       |  |
| 6      | 38            | 228                     | 1368                      |  |
| Total: | 162           | 483                     | 2399                      |  |

Las medias son 
$$\bar{x} = \frac{243}{162} = 1,5 \text{ y } \bar{y} = \frac{483}{162} = 2,9815$$

b) Calcula la varianza y la desviación típica de las distribuciones marginales.

Las varianzas son:  $\sigma_X^2 = 1,2623$  y  $\sigma_Y^2 = 5,9194$  y las desviaciones típicas:  $\sigma_X = 1,1235$  y  $\sigma_Y = 2,433$ .

c) Calcula la covarianza de la variable bidimensional.

Para la covarianza construimos una tabla con los productos  $f_{ij} \cdot \mathbf{X}_i \cdot \mathbf{Y}_j$  :

| X       | 0 | 1  | 2  | 3 | 4  | 5  | 6  | Totales |
|---------|---|----|----|---|----|----|----|---------|
| 0       | 0 | 0  | 0  | 0 | 0  | 0  | 0  | 0       |
| 1       | 0 | 0  | 0  | 9 | 28 | 75 | 90 | 202     |
| 2       | 0 | 46 | 28 | 0 | 0  | 0  | 0  | 74      |
| 3       | 0 | 48 | 0  | 0 | 0  | 0  | 0  | 48      |
| Totales | 0 | 94 | 28 | 9 | 28 | 75 | 90 | 324     |



El valor de la covarianza es 
$$\sigma_{XY} = \frac{\displaystyle\sum_{j} \left( \sum_{i} f_{ij} \cdot x_{i} \right) \cdot y_{j}}{N} - \bar{x} \cdot \bar{y} = -2,4722$$

d) Calcula e interpreta el coeficiente de correlación lineal.

El coeficiente de correlación lineal es:  $r = \frac{\sigma_{xy}}{\sigma_x \cdot \sigma_y} = -0.9044$ .

Es un valor negativo (esto es, la pendiente de la recta es negativa: cuanto mayor sea la variable X menor será la variable Y) y cercano al -1, por lo que la aproximación por una recta es buena. El estudio concluye que hay correlación lineal negativa entre el número de copas y el número de pruebas superadas.

e) Calcula las rectas de regresión X/Y e Y/X .

Recta de regresión X/Y

La ecuación de la recta es:  $x - \bar{x} = \frac{\sigma_{XY}}{\sigma_Y^2} \left( y - \bar{y} \right)$ , por tanto:

$$x-1,5=-0,4177(y-2,9815)$$

Recta de regresión Y/X

La ecuación de la recta es:  $y - \overline{y} = \frac{\sigma_{XY}}{\sigma_X^2} (x - \overline{x})$ , por tanto:

$$y-2,9815=-1,9584(x-1,5)$$

f) Predice los errores que cometería una persona que se tome 5 copas.

Utilizamos la recta de regresión Y/X de para predecir el valor de Y si x=5:

$$y = 2,9815 - 1,9584(5 - 1,5) = -3,8729$$

Este valor significa que no conseguiría superar ninguna prueba, esto es, cometería errores en las 6 pruebas.

15. En un periódico local se ha publicado un estudio estadístico de una variable estadística bidimensional.

De los datos publicados se obtiene que  $\sigma_{x}=2,3$ ,  $\sigma_{y}=5,4$  y  $\sigma_{xy}=15$ . ¿Es posible el valor obtenido de la covarianza? Razona tu respuesta.

No es posible, ya que, si calculamos el valor del coeficiente de correlación lineal se obtiene:

$$r = \frac{\sigma_{XY}}{\sigma_X \cdot \sigma_Y} = 1,21 > 1$$

El coeficiente debe ser menor que 1 y, por tanto, hay un error en los datos publicados.

- 16. La ecuación de la recta de regresión X sobre Y de un estudio estadístico bidimensional es x-3,5=2(y-5).
  - a) Determina  $\bar{x}$  e  $\bar{y}$ . Las medias son  $\bar{x} = 3.5$  y  $\bar{y} = 5$
  - b) ¿El coeficiente de correlación lineal es positivo? Razona tu respuesta.

Sí, ya que si  $\frac{\sigma_{xy}}{\sigma_{y}^{2}}=2$  , entonces la covarianza es positiva y por tanto el coeficiente de correlación

lineal también.



Si el valor 2 está entre los posibles valores de la variable Y en el contexto del estudio, se puede realizar la estimación, que será: x=3,5+2(2-5)=-2,5

(En el estudio realizado puede que no tenga sentido un valor negativo de  $\,X\,$  , en cuyo caso habría que interpretar este resultado).

d) Si  $\sigma_{\rm Y}=0.35$ , determina el valor de la covarianza.

Puesto que 
$$\frac{\sigma_{XY}}{\sigma_Y^2} = 2$$
 , tenemos que:

$$\sigma_{XY} = 2\sigma_Y^2 = 2 \cdot 0,35^2 = 0,245$$

#### **PROBLEMAS**

17. En mi clase hay compañeros que usan el transporte escolar, otros a los que los traen los padres con su vehículo y otros que vienen andando. La siguiente tabla muestra los datos según el sexo:

| X                  | Mujer | Hombre |
|--------------------|-------|--------|
| Transporte escolar | 6     | 4      |
| A pie              | 8     | 7      |
| Acompañado         | 3     | 2      |

a) Dibuja el polígono de frecuencias para la variable  $\,X\,$  para cada sexo. Utiliza el mismo eje para tal gráfica.



b) Representa una gráfica de sectores para cada sexo.





18. En mi instituto se realiza un estudio para determinar la relación entre el número de asignaturas suspensas y las horas de dedicación al estudio:



| X | 0  | 1  | 2 | 3 | 4  | 5 | 6  | 7  |
|---|----|----|---|---|----|---|----|----|
| 0 | 0  | 0  | 0 | 0 | 0  | 0 | 15 | 17 |
| 1 | 0  | 0  | 0 | 8 | 12 | 3 | 0  | 0  |
| 2 | 0  | 12 | 9 | 2 | 0  | 0 | 0  | 0  |
| 3 | 18 | 16 | 0 | 0 | 0  | 0 | 0  | 0  |
| 4 | 25 | 5  | 0 | 0 | 0  | 0 | 0  | 0  |

## a) Calcula la media aritmética de las distribuciones marginales.

Construimos las tablas de frecuencia de las distribuciones marginales (en la siguiente página)

Las medias son: 
$$\bar{x} = \frac{291}{142} = 2,0493 \text{ e } \bar{y} = \frac{353}{142} = 2,4859$$

| $\mathcal{X}_{i}$ | $f_{i\cdot}$ | $x_i \cdot f_{i\cdot}$ | $x_i^2 \cdot f_i$ |
|-------------------|--------------|------------------------|-------------------|
| 0                 | 32           | 0                      | 0                 |
| 1                 | 23           | 23                     | 23                |
| 2                 | 23           | 46                     | 92                |
| 3                 | 34           | 102                    | 306               |
| 4                 | 30           | 120                    | 480               |
| Total             | 142          | 291                    | 901               |

| $y_j$  | $f_{\cdot j}$ | $y_j \cdot f_{\cdot j}$ | $y_j^2 \cdot f_{\cdot j}$ |  |  |
|--------|---------------|-------------------------|---------------------------|--|--|
| 0      | 43            | 0                       | 0                         |  |  |
| 1      | 33            | 33                      | 33                        |  |  |
| 2      | 9             | 18                      | 36                        |  |  |
| 3      | 10            | 30                      | 90                        |  |  |
| 4      | 12            | 48                      | 192                       |  |  |
| 5      | 3             | 15                      | 75                        |  |  |
| 6      | 15            | 90                      | 540                       |  |  |
| 7      | 17            | 119                     | 833                       |  |  |
| Total: | 142           | 353                     | 1799                      |  |  |

# b) Calcula la varianza y la distribución típica de las distribuciones marginales.

Las varianzas son:  $\sigma_{\scriptscriptstyle X}^{\ \ 2} = 2{,}1455 \text{ y } \sigma_{\scriptscriptstyle Y}^{\ \ 2} = 6{,}4892$ 

Las desviaciones típicas:  $\sigma_{\rm X}=1,4647~{\rm y}~\sigma_{\rm Y}=2,5474$  .

# c) Calcula la covarianza de la variable bidimensional.

Para la covarianza construimos una tabla con los productos  $f_{ij} \cdot \mathbf{X}_i \cdot \mathbf{y}_j$  :

| Y       | 0 | 1  | 2  | 3  | 4  | 5  | 6 | 7 | Totales |
|---------|---|----|----|----|----|----|---|---|---------|
| 0       | 0 | 0  | 0  | 0  | 0  | 0  | 0 | 0 | 0       |
| 1       | 0 | 0  | 0  | 24 | 48 | 15 | 0 | 0 | 87      |
| 2       | 0 | 24 | 36 | 12 | 0  | 0  | 0 | 0 | 72      |
| 3       | 0 | 48 | 0  | 0  | 0  | 0  | 0 | 0 | 48      |
| 4       | 0 | 20 | 0  | 0  | 0  | 0  | 0 | 0 | 20      |
| Totales | 0 | 92 | 36 | 36 | 48 | 15 | 0 | 0 | 227     |

El valor de la covarianza es 
$$\sigma_{XY} = \frac{\sum_{j} \left(\sum_{i} f_{ij} \cdot x_{i}\right) \cdot y_{j}}{N} - \overline{x} \cdot \overline{y} = -3,4958$$

d) Calcula e interpreta el coeficiente de correlación lineal.



El coeficiente de correlación lineal es:  $r = \frac{\sigma_{xy}}{\sigma_x \cdot \sigma_y} = -0,9369$  .

Es un valor negativo (esto es, la pendiente de la recta es negativa: cuanto mayor sea la variable X menor será la variable Y y viceversa) y cercano al -1, por lo que la aproximación por una recta es buena. El estudio concluye que hay correlación lineal negativa entre el número de asignaturas suspensas y las horas dedicadas al estudio.

19. Para probar la eficacia de un medicamento, se hacen unas pruebas de evolución de una enfermedad en pacientes que han tomado distintas dosis y se observan los días que tarda el paciente en recuperarse de la enfermedad.

La variable X es el número de dosis del medicamento que consume el paciente e Y es el número de días que tarda el paciente en curarse.

| X | 1  | 2  | 3  | 4 | 5 | 6  | 7  |
|---|----|----|----|---|---|----|----|
| 0 | 0  | 0  | 0  | 0 | 0 | 8  | 12 |
| 1 | 0  | 0  | 0  | 0 | 6 | 12 | 0  |
| 2 | 0  | 0  | 0  | 6 | 7 | 0  | 0  |
| 3 | 12 | 21 | 18 | 0 | 0 | 0  | 0  |
| 4 | 17 | 15 | 0  | 0 | 0 | 0  | 0  |

a) Calcula la media aritmética de las distribuciones marginales.

Construimos una tabla de frecuencias para las distribuciones marginales:

| $\mathcal{X}_{i}$ | $f_{i\cdot}$ | $x_i \cdot f_{i\cdot}$ | $x_i^2 \cdot f_i$ |
|-------------------|--------------|------------------------|-------------------|
| 0                 | 20           | 0                      | 0                 |
| 1                 | 18           | 18                     | 18                |
| 2                 | 13           | 26                     | 52                |
| 3                 | 51           | 153                    | 459               |
| 4                 | 32           | 128                    | 512               |
| Total             | 134          | 325                    | 1041              |

| $y_j$  | $f_{\cdot j}$ | $y_j \cdot f_{\cdot j}$ | $y_j^2 \cdot f_{\cdot j}$ |  |
|--------|---------------|-------------------------|---------------------------|--|
| 1      | 29            | 29                      | 29                        |  |
| 2      | 36            | 72                      | 144                       |  |
| 3      | 18            | 54                      | 162                       |  |
| 4      | 6             | 24                      | 96                        |  |
| 5      | 13            | 65                      | 325                       |  |
| 6      | 20            | 120                     | 720                       |  |
| 7      | 12            | 84                      | 588                       |  |
| Total: | 134           | 448                     | 2064                      |  |

Las medias son: 
$$\bar{x} = \frac{325}{134} = 2,04254 \text{ e } \bar{y} = \frac{448}{134} = 3,3433$$

b) Calcula la varianza y la desviación típica de las distribuciones marginales.

Las varianzas son:  $\sigma_{X}^{2}=1,8862$  y  $\sigma_{Y}^{2}=4,2254$  y las desviaciones típicas:  $\sigma_{X}=1,3734$  y  $\sigma_{Y}=2,0556$ .

c) Calcula la covarianza de la variable bidimensional.

Para la covarianza construimos una tabla con los productos  $f_{ij} \cdot x_i \cdot y_j$ :

| X | 1 | 2 | 3 | 4 | 5 | 6 | 7 | Totales |
|---|---|---|---|---|---|---|---|---------|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0       |



| 1       | 0   | 0   | 0   | 0  | 30  | 72 | 0 | 102 |
|---------|-----|-----|-----|----|-----|----|---|-----|
| 2       | 0   | 0   | 0   | 48 | 70  | 0  | 0 | 118 |
| 3       | 36  | 126 | 162 | 0  | 0   | 0  | 0 | 324 |
| 4       | 68  | 120 | 0   | 0  | 0   | 0  | 0 | 188 |
| Totales | 104 | 246 | 162 | 48 | 100 | 72 | 0 | 732 |

El valor de la covarianza es 
$$\sigma_{xy} = \frac{\displaystyle\sum_{j} \left( \sum_{i} f_{ij} \cdot x_{i} \right) \cdot y_{j}}{N} - \overline{x} \cdot \overline{y} = -2,646$$

d) Calcula e interpreta el coeficiente de correlación lineal.

El coeficiente de correlación lineal es:  $r = \frac{\sigma_{XY}}{\sigma_X \cdot \sigma_Y} = -0.9373$ .

Es un valor negativo (esto es, la pendiente de la recta es negativa: cuanto mayor sea la variable X menor será la variable Y y viceversa) y cercano al -1, por lo que la aproximación por una recta es buena.

El estudio concluye que hay correlación lineal negativa entre el número de dosis y los días que tarda el paciente en curarse.

e) Calcula las rectas de regresión  $X \ / \ Y$  e  $Y \ / \ X$  .

Recta de regresión X/Y

La ecuación de la recta es:  $x - \bar{x} = \frac{\sigma_{XY}}{\sigma_Y^2} \left( y - \bar{y} \right)$ , por tanto:

$$x-2,4254 = -0,6262(y-3,3433)$$

Recta de regresión Y/X

La ecuación de la recta es:  $y - y = \frac{\sigma_{XY}}{\sigma_X^2} (x - x)$ , por tanto:

$$y-3,3433=-1,4028(x-2,4254)$$

f) A la vista de estos resultados, ¿consideras que es eficaz el medicamento? Razona tu respuesta. Es posible afirmar que el medicamento es bueno ya que hay una alta correlación lineal negativa entre el número de dosis y el tiempo que tarda el paciente en curarse.

(No obstante, en los estudios reales habría que realizar más pruebas para descartar que la causa de la mejora de los pacientes sea debida a otros factores ajenos al medicamento)

### **DESAFÍO PISA- PÁG. 238**

# ¿CUÁNTAS PERSONAS VIVEN EN UN PISO?

En la localidad de Moradoria se ha realizado un estudio estadístico para establecer la relación existente entre el número de personas que habita una vivienda y los metros cuadrados de esta.

La siguiente tabla muestra los resultados de dicho estudio, en el que la variable X representa los metros cuadrados de la vivienda y la variable Y el número de personas que vive en dicha vivienda:



| X Y        | 0 | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  |
|------------|---|----|----|----|----|----|----|----|----|
| [0, 45)    | 3 | 14 | 8  | 5  | 0  | 0  | 0  | 0  | 0  |
| [45, 50)   | 4 | 15 | 9  | 2  | 0  | 0  | 0  | 0  | 0  |
| [50, 60)   | 6 | 10 | 12 | 7  | 0  | 0  | 0  | 0  | 0  |
| [60, 70)   | 7 | 0  | 8  | 10 | 3  | 0  | 0  | 0  | 0  |
| [70, 80)   | 4 | 0  | 0  | 7  | 8  | 9  | 0  | 0  | 0  |
| [80, 90)   | 6 | 0  | 0  | 12 | 15 | 18 | 0  | 0  | 0  |
| [90, 100)  | 7 | 0  | 0  | 0  | 8  | 15 | 18 | 6  | 0  |
| [100, 120) | 4 | 1  | 0  | 0  | 0  | 8  | 8  | 11 | 12 |

### ACTIVIDAD 1. ¿Cuántas viviendas vacías hay en el municipio?

B: 41, ya que la suma de viviendas vacías es  $\,f_{\cdot 1} = 41\,$ 

### ACTIVIDAD 2. El número de habitantes de Moradoria es de:

C: 1000, ya que si multiplicamos los habitantes de cada casa por el número de ellas y luego sumamos se obtiene  $\sum_{i,j} f_{ij} \cdot y_j = 1000$ 

#### ACTIVIDAD 3. El número de viviendas del municipio es:

B: 300, ya que 
$$\sum_{i,j} f_{ij} = 300$$

#### ACTIVIDAD 4. Los metros cuadrados de la vivienda media son, aproximadamente:

A: 75, ya que 
$$\frac{\sum_{i} f_{i} \cdot x_{i}}{300} = 74, 1\hat{6}$$

### ACTIVIDAD 5. El tamaño de la vivienda vacía en metros cuadrados es, aproximadamente:

A: 73, ya que 
$$\frac{\sum_{i} f_{i1} \cdot x_{i}}{41} \approx 72,13$$