TRIGONOMETRY Chapter 05

RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO AGUDO II

MOTIVATING STRATEGY

RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO AGUDO II

Razones trigonométricas, son los cocientes entre las longitudes de los lados de un triángulo rectángulo, respecto de uno de sus ángulos interiores agudos.

$$\cot \alpha = \frac{\text{Cateto adyacente al} \not \alpha}{\text{Cateto opuesto al} \not \alpha} = \frac{\text{CA}}{\text{CO}}$$

$$\sec \alpha = \frac{\text{Hipotenusa}}{\text{Cateto adyacente al} \not \alpha} = \frac{\text{H}}{\text{CA}}$$

$$\csc \alpha = \frac{\text{Hipotenusa}}{\text{Cateto opuesto al} \not \alpha} = \frac{\text{H}}{\text{CO}}$$

Del gráfico, indique las razones trigonométricas de α .

Recordar:

$$\cot \alpha = \frac{CA}{CO}$$

$$\sec \alpha = \frac{H}{CA}$$

$$\frac{\csc\alpha}{\cos\alpha} = \frac{H}{\cos\alpha}$$

RESOLUCIÓN

$$\cot\alpha = \frac{36}{77}$$

$$\sec\alpha = \frac{85}{36}$$

$$\csc\alpha = \frac{85}{77}$$

Del gráfico, efectúe:

$$P = \csc \beta + \cot \beta$$

Recordar:

$$csc\beta = \frac{H}{CO}$$

$$\cot \beta = \frac{CA}{CO}$$

RESOLUCIÓN

Teorema de Pitágoras:

$$(CO)^{2} + (CA)^{2} = (H)^{2}$$

 $(CO)^{2} + (12)^{2} = (15)^{2}$
 $(CO)^{2} + 144 = 225$
 $CO = \sqrt{81} \implies CO = 9$

Calculamos P: $P = \csc \beta + \cot \beta$

$$\mathsf{P} = \frac{15}{9} + \frac{12}{9} = \frac{27}{9}$$

$$\cdot \cdot P = 3$$

Una barra metálica descansa sobre una pared (observe el gráfico), formándose un ángulo β entre la barra metálica y la pared. - Sabiendo que la longitud de la barra metálica es de 6 m y la altura de la pared mide 4 m; calcule la secante de dicho ángulo .

RESOLUCIÓN

Ojo: No es necesario calcular la medida del cateto opuesto (CO).

Calculamos secβ:

$$\sec \beta = \frac{6 \text{ m}}{4 \text{ m}}$$

$$\frac{1}{2} \sec \beta = \frac{3}{2}$$

Del gráfico, efectúe:

$$M = \sqrt{13} \sec \varphi - \frac{5}{2}$$

$$\mathbf{sec\phi} = \frac{\mathbf{H}}{\mathbf{CA}}$$

RESOLUCIÓN

Teorema de Pitágoras :

$$(H)^2 = (CO)^2 + (CA)^2$$

$$(H)^2 = (3)^2 + (2)^2 = 9 + 4$$

$$3 = CO$$
 $(H)^2 = 13 \Rightarrow H = \sqrt{13}$

Efectuamos M:
$$M = \sqrt{13} \sec \phi - \frac{5}{2}$$

$$\mathbf{M} = \sqrt{13} \left(\frac{\sqrt{13}}{2} \right) - \frac{5}{2}$$

$$M = \frac{13}{2} - \frac{5}{2} = \frac{8}{2}$$

Del gráfico, efectúe:

$$Q = \csc^2 \alpha + \cot^2 \alpha$$

Recordar:

$$\mathbf{csc}\alpha = \frac{\mathbf{H}}{\mathbf{CO}}$$

$$\mathbf{cot}\alpha = \frac{\mathbf{CA}}{\mathbf{CO}}$$

RESOLUCIÓN

Teorema de Pitágoras:

$$(H)^2 = (CO)^2 + (CA)^2$$

$$(H)^2 = (2)^2 + (5)^2 = 4 + 25$$

$$(H)^2 = 29$$
 $\rightarrow H = \sqrt{29}$

Efectuamos Q:

$$\mathbf{Q} = \mathbf{c}\mathbf{s}\mathbf{c}^2\,\alpha \,+ \mathbf{c}\mathbf{o}\mathbf{t}^2\,\alpha$$

$$\mathbf{Q} = \left(\frac{\sqrt{29}}{2}\right)^2 + \left(\frac{5}{2}\right)^2$$

$$\mathbf{Q} = \frac{29}{4} + \frac{25}{4} = \frac{54}{4}$$

$$Q = \frac{27}{2}$$

El profesor Carlos, de trigonometría, planteó el siguiente acertijo a sus estudiantes : Grafique el triángulo rectángulo cuyos catetos son los dos primeros números primos y luego efectúe $N = \csc \beta \cdot \sec \beta$; si se sabe que β es el menor ángulo interior agudo del triángulo .

RESOLUCIÓN

Recordar:

$$\csc \beta = \frac{H}{CO}$$

$$\mathbf{sec}\beta = \frac{\mathbf{H}}{\mathbf{CA}}$$

Teorema de Pitágoras:

$$(H)^2 = (CO)^2 + (CA)^2$$

$$(H)^2 = (2)^2 + (3)^2 = 4 + 9$$

 $(H)^2 = 13 \implies H = \sqrt{13}$

Calculamos N:

$$N = \csc \beta \cdot \sec \beta$$

$$N = \left(\frac{\sqrt{13}}{2}\right) \left(\frac{\sqrt{13}}{3}\right)$$

$$\therefore N = \frac{13}{6}$$

De una caja llena de alambres de distintos tamaños, Jaime y Brenda escogieron uno de 12 cm y otro de 5 cm respectivamente . - Si estos dos alambres representan los catetos de un triángulo rectángulo, calcule el valor de $S = \cot\theta + \csc\theta$; si θ es el menor ángulo interior agudo del triángulo .

RESOLUCIÓN

Recordar:

$$\cot \theta = \frac{CA}{CO}$$

$$\csc \theta = \frac{H}{CO}$$

Teorema de Pitágoras:

$$(H)^2 = (CO)^2 + (CA)^2$$

$$(H)^2 = (5)^2 + (12)^2$$

$$(H)^2 = 25 + 144$$

$$(H)^2 = 169$$
 \rightarrow $H = 13$

Calculamos S:

$$S = \cot\theta + \csc\theta$$

$$S = \frac{12}{5} + \frac{13}{5} = \frac{25}{5}$$

$$\cdot \cdot S = 5$$

