

FCC 47 CFR PART 15 SUBPART C ISED RSS-247 ISSUE 2

CERTIFICATION TEST REPORT

For

Communication Module

MODEL NUMBER: LBEE6ZZ1FD

FCC ID: VPYLB1FD IC: 772C-LB1FD

REPORT NUMBER: 4788224831-1

ISSUE DATE: Feb. 10, 2018

Prepared for

Murata Manufacturing Co.,Ltd.

Prepared by

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch Room 101, Building 10, Innovation Technology Park, Song Shan Lake Hi tech Development Zone, Dongguan, 523808, China

> Tel: +86 769 33817100 Fax: +86 769 33244054 Website: www.ul.com

Revision History

Rev.	Issue Date	Revisions	Revised By
	02/11/2018	Initial Issue	

TABLE OF CONTENTS

DATE: Feb. 11, 2018

IC ID: 772C-LB1FD

1.	ATT	ESTATION OF TEST RESULTS	4
2.	TES	T METHODOLOGY	6
3.	FAC	CILITIES AND ACCREDITATION	6
4.	CAL	IBRATION AND UNCERTAINTY	7
4.	1.	MEASURING INSTRUMENT CALIBRATION	7
4.	2.	MEASUREMENT UNCERTAINTY	7
5.	EQU	JIPMENT UNDER TEST	8
5.	1.	DESCRIPTION OF EUT	8
5.	2.	MAXIMUM OUTPUT POWER	8
5.	3.	CHANNEL LIST	8
5.	4.	TEST CHANNEL CONFIGURATION	9
5.	5.	THE WORSE CASE POWER SETTING PARAMETER	9
5.	6.	DESCRIPTION OF AVAILABLE ANTENNAS	9
5.	7.	WORST-CASE CONFIGURATIONS	10
5.	8.	TEST ENVIRONMENT	10
5.	9.	DESCRIPTION OF TEST SETUP	11
5.	10.	MEASURING INSTRUMENT AND SOFTWARE USED	12
6.	RAD	DIATED TEST RESULTS	13
6.	1.	RESTRICTED BANDEDGE	18
6.	2.	SPURIOUS EMISSIONS (1~18GHz)	22
6.	3.	SPURIOUS EMISSIONS 18G ~ 26GHz	28
6.	4.	SPURIOUS EMISSIONS 30M ~ 1 GHz	30
6.	5.	SPURIOUS EMISSIONS BELOW 30M	32
7.	ANT	ENNA REQUIREMENTS	36

1. ATTESTATION OF TEST RESULTS

Applicant Information

Company Name: Murata Manufacturing Co.,Ltd.

Address: 10-1,Higashikotari 1-chome,Nagaokakyo-shi,Kyoto

617-8555, Japan

Manufacturer Information

Company Name: Murata Manufacturing Co.,Ltd.

Address: 10-1, Higashikotari 1-chome, Nagaokakyo-shi, Kyoto

617-8555, Japan

Factory Information Murata Manufacturing Co.,Ltd.

Company Name: 10-1, Higashikotari 1-chome, Nagaokakyo-shi, Kyoto

Address: 617-8555, Japan

EUT Description

Product Name Communication Module

Model Name LBEE6ZZ1FD Sample ID 1308669-001

Sample Status Good

Sample Received date Dec .7, 2017

Date Tested Dec .10, 2017 ~ Feb. 10, 2018

APPLICABLE STANDARDS	
STANDARD	TEST RESULTS
CFR 47 Part 15 Subpart C	PASS
ISED RSS-247 Issue 2	PASS
ISED RSS-GEN Issue 4	PASS

Summary of Test Results Clause Test Items FCC/IC Rules Test Results FCC 15.247 (a) (2) 6db DTS Bandwidth and 99% 1 RSS-247 Clause 5.2 (a) Note1 Bandwidth RSS-Gen Clause 6.6 FCC 15.247 (b) (3) 2 Peak Conducted Power Note1 RSS-247 Clause 5.4 (e) FCC 15.247 (e) 3 Power Spectral Density Note1 RSS-247 Clause 5.2 (b) Conducted Band edge And FCC 15.247 (d) 4 Note1 Spurious emission **RSS-247 Clause 5.5** FCC 15.247 (d) FCC 15.209 Radiated Band edges and Spurious FCC 15.205 5 **PASS** RSS-247 Clause 5.5 emission **RSS-GEN Clause 8.9 RSS-GEN Clause 8.10** Conducted Emission Test For AC FCC 15.207 6 NA Power Port **RSS-GEN Clause 8.8** FCC 15.203 7 Antenna Requirement Complied

DATE: Feb. 11, 2018 IC ID: 772C-LB1FD

Note: 1.For the test data, please refer to the report of the FCC ID: VPYLB1FD, IC: 772C-LB1FD 2. "N/A" denotes test is not applicable in this Test Report

RSS-GEN Clause 8.3

Tested By:	Checked By:
kebo. zhang.	Shemmalier
Kebo Zhang Engineer	Shawn Wen Laboratory Leader

Approved By:

Stephen Guo

Laboratory Manager

SephenSuo

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with KDB414788 D01 Radiated Test Site v01, ANSI C63.10-2013, KDB558074 D01 DTS Meas Guidance v04, FCC CFR 47 Part 2, FCC CFR 47 Part 15, RSS-GEN Issue 4, and RSS-247 Issue 2.

DATE: Feb. 11, 2018

IC ID: 772C-LB1FD

3. FACILITIES AND ACCREDITATION

Test Location	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
Address	Building 10, Innovation Technology Park, Song Shan Lake Hi tech Development Zone, Dongguan, 523808, China
Accreditation Certificate	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing. The Certificate Registration Number is 4102.01. UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The Designation Number is CN1187. UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. EMC Laboratory has been registered and fully described in a report filed with Industry Canada. The Company Number is 21320.

Note: The test anechoic chamber in UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch had been calibrated and compared to the open field sites.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognize national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Test Item	Uncertainty	
Uncertainty for Conduction emission test	2.90dB	
Uncertainty for Radiation Emission test(include Fundamental emission) (9KHz-30MHz)	2.2dB	
Uncertainty for Radiation Emission test(include Fundamental emission) (30MHz-1GHz)	4.52dB	
Uncertainty for Radiation Emission test	5.04dB(1-6GHz)	
(1GHz to 26GHz)(include Fundamental	5.30dB (6GHz-18Gz)	
emission)	5.23dB (18GHz-26Gz)	

Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

Equipment	Communication Module			
Model Name	LBEE6ZZ1FD			
	Operation Frequency 2402 MH:		z ~ 2480 MHz	
Product Description	Modulation Type		Data Rate	
	GFSK		1Mbps	
Power Supply	DC3.6V			
Bluetooth Version	BT 4.1LE Remark: This test report just include the data of the BLE mode			
Hardware Version	V1.0			
Software Version 9.35.48.73				

5.2. MAXIMUM OUTPUT POWER

Bluetooth Mode	Frequency (MHz)	Channel Number	Max Output Power (dBm)	Max Output Power (W)
BLE	2402-2480	0-39[40]	6.02	0.004

5.3. CHANNEL LIST

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	11	2424	22	2446	33	2468
1	2404	12	2426	23	2448	34	2470
2	2406	13	2428	24	2450	35	2472
3	2408	14	2430	25	2452	36	2474
4	2410	15	2432	26	2454	37	2476
5	2412	16	2434	27	2456	38	2478
6	2414	17	2436	28	2458	39	2480
7	2416	18	2438	29	2460		
8	2418	19	2440	30	2462		
9	2420	20	2442	31	2464		
10	2422	21	2444	32	2468		

5.4. TEST CHANNEL CONFIGURATION

Test Mode	Test Channel	Frequency
GFSK	CH 0, CH 19, CH 39	2402MHz, 2440MHz, 2480MHz

5.5. THE WORSE CASE POWER SETTING PARAMETER

The Worse Case Power Setting Parameter under 2400 ~ 2483.5MHz Band					
Test So	oftware	Bule Tool			
Modulation Type	Transmit Antenna	Test Channel			
iviodulation Type	Number	CH 00	CH 19	CH 39	
GFSK	1	6	6	6	

5.6. DESCRIPTION OF AVAILABLE ANTENNAS

А	.nt.	Frequency (MHz)	Antenna Type	Antenna Gain (dBi)
	1	2402-2480	PCB Antenna	1

Note: There are two antenna in the EUT, only antenna 1 support BT mode.

Test Mode	Transmit and Receive Mode	Description
GFSK	1TX, 1RX	Antenna 1 can be used as transmitting/receiving antenna.

Page 9 of 36

5.7. WORST-CASE CONFIGURATIONS

Bluetooth Mode	Modulation Technology	Modulation Type	Data Rate (Mbps)
BLE	DTS	GFSK	1Mbit/s

5.8. TEST ENVIRONMENT

Environment Parameter	Selected Values During Tests			
Relative Humidity	55	55 ~ 65%		
Atmospheric Pressure:	1	025Pa		
Temperature	TN	23 ~ 28°C		
	VL	N/A		
Voltage :	VN	DC 3.6V		
	VH	N/A		

Note: VL= Lower Extreme Test Voltage

VN= Nominal Voltage

VH= Upper Extreme Test Voltage

TN= Normal Temperature

5.9. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

Item	Equipment	Brand Name	Model Name	P/N
1	Laptop	ThinkPad	T410	N/A
2	Fixed Frequency Board	Supply by customer	N/A	N/A
3	Adapter	Supply by UL EMC Lab	N/A	N/A

I/O CABLES

Cable No	Port	Connector Type	Cable Type	Cable Length(m)	Remarks
1	N/A	N/A	N/A	N/A	N/A

ACCESSORY

Item	Accessory	Brand Name	Model Name	Description
1	N/A	N/A	N/A	N/A

TEST SETUP

The EUT can work in an engineer mode with a software through a PC.

SETUP DIAGRAM FOR TEST

Page 11 of 36

5.10. MEASURING INSTRUMENT AND SOFTWARE USED

	Conducted Emissions									
Used	Equipm	ent	Manufacturer	Model No.		Seria	al No.	Upper Last Cal.	Last Cal.	Next Cal.
V	EMI Test R	eceiver	R&S	ESI	R3	101	961	Dec.20, 2016	Dec.12, 2017	Dec.11, 2018
V	Two-Line V-	Network	R&S	ENV	216	101	983	Dec.20, 2016	Dec.12, 2017	Dec.11, 2018
V	Artificial Netwo		Schwarzbeck	NSLK	8126	812	6465	Feb.10, 2017	Dec.12, 2017	Dec.11, 2018
						So	ftware			
Used		Des	scription		Manı	ufactu	rer	Name	Version	
V	Test Soft	ware for (Conducted disturb	ance		UL		Antenna port	Ver. 7.2	
					Rad	diated	Emis			
Used	Equipm	ent	Manufacturer	Mode	l No.	Seria	al No.	Upper Last Cal.	Last Cal.	Next Cal.
V	MXE EMI R	eceiver	KESIGHT	N903	38A		64000 86	Feb.24, 2017	Dec.12, 2017	Dec.11, 2018
V	Hybrid Log I Anteni		TDK	HLP-3	003C	130	960	N/A	Jan.09, 2016	Jan.08, 2016
V	Preamp	lifier	HP	844	7D		A0909 9	Feb.13, 2017	Dec.12, 2017	Dec.11, 2018
V	EMI Measu Receiv		R&S	ESF	R26	101	377	Dec.20, 2016	Dec.12, 2017	Dec.11, 2018
V	Horn Ant	enna	TDK	HRN-	0118	130	939	N/A	Jan. 09, 2016	Jan. 08, 2019
V	High Gain Anteni		Schwarzbeck	BBHA-9170		6	91	N/A	Jan.06, 2016	Jan.05, 2019
V	Preamp	lifier	TDK	PA-02	-0118		-305- 066	Jan.14, 2017	Dec.12, 2017	Dec.11, 2018
V	Preamp	lifier	TDK	PA-0)2-2		-307- 003	Dec.20, 2016	Dec.12, 2017	Dec.11, 2018
V	Loop ant	enna	Schwarzbeck	151	9B	00	800	N/A	Mar. 26, 2016	Mar. 25, 2019
						So	ftware			
Used		Descr	iption Manufac		anufact	urer		Name	Version	
V	Test Softw	are for R	adiated disturban	liated disturbance Farac		l		EZ-EMC	Ver. UL-3A1	
	Other instruments									
Used	Equipm	ent	Manufacturer	Model No.			al No.	Upper Last Cal.	Last Cal.	Next Cal.
V	Spectrum A	nalyzer	Keysight	N9030A		1	54105 2	Dec.20, 2016	Dec.12, 2017	Dec.11, 2018
V	Power M	leter	Keysight	N903	31A	2	54160 24	Feb.13, 2017	Dec.12, 2017	Dec.11, 2018
V	Power Se	ensor	Keysight	N932	23A		54400 3	Feb.13, 2017	Dec.12, 2017	Dec.11, 2018

6. RADIATED TEST RESULTS

LIMITS

Please refer to FCC §15.205 and §15.209

Please refer to RSS-GEN Clause 8.9 and Clause 8.10

Radiation Disturbance Test Limit for FCC (Class B)(9KHz-1GHz)

	/(-	,
Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
960~1000	500	3

Note: 1) At frequencies at or above 30 MHz, measurements may be performed at a distance other than what is specified provided: measurements are not made in the near field except where it can be shown that near field measurements are appropriate due to the characteristics of the device; and it can be demonstrated that the signal levels needed to be measured at the distance employed can be detected by the measurement equipment. Measurements shall not be performed at a distance greater than 30 meters unless it can be further demonstrated that measurements at a distance of 30 meters or less are impractical. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse linear-distance for field strength measurements; inverse-linear-distance-squared for power density measurements).

(2) At frequencies below 30 MHz, measurements may be performed at a distance closer than that specified in the regulations; however, an attempt should be made to avoid making measurements in the near field. Pending the development of an appropriate measurement procedure for measurements performed below 30 MHz, when performing measurements at a closer distance than specified, the results shall be extrapolated to the specified distance by either making measurements at a minimum of two distances on at least one radial to determine the proper extrapolation factor or by using the square of an inverse linear distance extrapolation factor (40 dB/decade). This paragraph (f) shall not apply to Access BPL devices operating below 30 MHz.

Radiation Disturbance Test Limit for FCC (Above 1G)

Fraguanay (MHz)		dB(uV/m) (a	at 3 meters)
Frequency (MHz)		Peak	Average
Above 1000		74	54

Restricted bands of operation

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(²)
13.36-13.41			

Note: 1 Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. 2 Above 38.6c

TEST SETUP AND PROCEDURE

Below 30MHz

The setting of the spectrum analyser

RBW	200Hz (From 9kHz to 0.15MHz)/ 9KHz (From 0.15MHz to 30MHz)
VBW	200Hz (From 9kHz to 0.15MHz)/ 9KHz (From 0.15MHz to 30MHz)
Sweep	Auto
Trace	Max hold

- 1. The testing follows the guidelines in ANSI C63.10-2013
- 2. The EUT was arranged to its worst case and then turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 3. The EUT was placed on a turntable with 80cm above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 5. The radiated emission limits are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.
- 6. For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with set VBW ≤RBW/100, but not less than 10Hz video bandwidth with peak detector, max hold to be run for at least 50 traces for average measurements.
- 7. For the actual test configuration, please refer to the related item in this test report (Photographs of the Test Configuration)

Below 1G and above 30MHz

The setting of the spectrum analyser

RBW	120K
VBW	300K
Sweep	Auto
Detector	Peak/QP
Trace	Max hold

- 1. The testing follows the guidelines in ANSI C63.10-2013.
- 2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 3. The EUT was placed on a turntable with 80cm above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 5. For measurement below 1GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.
- 6. For the actual test configuration, please refer to the related item in this test report (Photographs of the Test Configuration)

Above 1G

The setting of the spectrum analyser

RBW	1M
VBW	PEAK: 3M
Sweep	Auto
Detector	Peak
Trace	Max hold

- 1. The testing follows the guidelines in ANSI C63.10-2013.
- 2. The EUT was arranged to its worst case and then tune the antenna tower (1.5 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 3. The EUT was placed on a turntable with 80cm above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 5. For measurement above 1GHz, the emission measurement will be measured by the peak detector. This peak level, once corrected, must comply with the limit specified in Section 15.209.
- 6. For the actual test configuration, please refer to the related Item in this test report (Photographs of the Test Configuration)

X axis, Y axis, Z axis positions:

Note: For all radiated test, EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded in the report.

6.1. RESTRICTED BANDEDGE

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

No.	Frequency	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dBuV/m)	(dB)	
1	2342.1045	52.24	74.00	-21.76	peak
2	2364.1808	52.60	74.00	-21.40	peak
3	2390.0000	49.94	74.00	-24.06	peak

Note: 1. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

No.	Frequency	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dBuV/m)	(dB)	
1	2346.2518	53.25	74.00	-20.75	peak
2	2372.2933	53.19	54.00	-20.81	peak
3	2390.0000	50.48	74.00	-23.52	peak

Note: 1. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

No.	Frequency	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.5000	51.60	74.00	-22.40	peak
2	2500.9645	53.84	74.00	-20.16	peak
3	2552.1214	53.63	74.00	-20.37	peak

Note: 1. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

No.	Frequency	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dBuV)	(dB)	
1	2483.5000	51.94	74.00	-22.06	peak
2	2507.6978	53.45	74.00	-20.53	peak
3	2532.5171	53.58	74.00	-20.42	peak

Note: 1. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

6.2. SPURIOUS EMISSIONS (1~18GHz)

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, HORIZONTAL)

No.	Frequency	Result	Limit	Margin	Limit	Margin	Remark
			(Peak)	(Peak)	(Ave)	(Ave)	
	(MHz)	(dBuV /m)	(dBuV/m)	(dB)	(dBuV/m)	(dB)	
1	1754.8755	24.15	74.00	-49.85	54.00	-29.85	peak
2	3628.4628	33.35	74.00	-40.65	54.00	-20.65	peak
3	5893.0893	38.35	74.00	-35.65	54.00	-15.65	peak
4	7727.5728	40.50	74.00	-33.50	54.00	-13.5	peak
5	11549.5550	44.56	74.00	-29.44	54.00	-9.44	peak
6	14995.7996	51.48	74.00	-22.52	54.00	-2.52	peak

Note: 1. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

HARMONICS AND SPURIOUS EMISSIONS (LOW CHANNEL, VERTICAL)

No.	Frequency	Result	Limit	Margin	Limit	Margin	Remark
			(Peak)	(Peak)	(Ave)	(Ave)	
	(MHz)	(dBuV	(dBuV/m)	(dB)	(dBuV/m)	(dB)	
		/m)					
1	1426.7427	21.80	74.00	-52.20	54.00	-32.20	peak
2	2412.8413	27.53	74.00	-46.47	54.00	-26.47	peak
3	4427.5428	34.83	74.00	-39.17	54.00	-19.17	peak
4	5534.3534	38.23	74.00	-35.77	54.00	-15.77	peak
5	8739.1739	42.37	74.00	-31.63	54.00	-11.63	peak
6	15223.6224	51.93	74.00	-22.07	54.00	-2.07	peak

Note: 1. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, HORIZONTAL)

No.	Frequency	Result	Limit (Peak)	Margin (Peak)	Limit (Ave)	Margin (Ave)	Remark
	(MHz)	(dBuV /m)	(dBuV/m)	(dB)	(dBuV/m)	(dB)	
1	1865.3865	24.05	74.00	-49.95	54.00	-29.95	peak
2	3072.5073	29.95	74.00	-44.05	54.00	-24.05	peak
3	5000.5001	35.16	74.00	-38.84	54.00	-18.84	peak
4	7601.7602	39.30	74.00	-34.70	54.00	-14.7	peak
5	11211.2211	43.75	74.00	-30.25	54.00	-10.25	peak
6	15094.4094	51.72	74.00	-22.28	54.00	-2.28	peak

Note: 1. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

HARMONICS AND SPURIOUS EMISSIONS (MID CHANNEL, VERTICAL)

No.	Frequency	Result	Limit	Margin	Limit	Margin	Remark
			(Peak)	(Peak)	(Ave)	(Ave)	
	(MHz)	(dBuV	(dBuV/m)	(dB)	(dBuV/m)	(dB)	
		/m)					
1	1839.8840	23.94	74.00	-50.06	54.00	-30.06	peak
2	3200.0200	31.22	74.00	-42.78	54.00	-22.78	peak
3	4878.0878	35.39	74.00	-38.61	54.00	-18.61	peak
4	8366.8367	40.45	74.00	-33.55	54.00	-13.55	peak
5	13215.7216	46.90	74.00	-27.10	54.00	-7.1	peak
6	16396.7397	53.24	74.00	-20.76	54.00	-0.76	peak

Note: 1. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, HORIZONTAL)

No.	Frequency	Result	Limit	Margin	Limit	Margin	Remark
			(Peak)	(Peak)	(Ave)	(Ave)	
	(MHz)	(dBuV	(dBuV/m)	(dB)	(dBuV/m)	(dB)	
		/m)					
1	1741.2741	23.50	74.00	-50.50	54.00	-30.5	peak
2	2688.2688	29.71	74.00	-44.29	54.00	-24.29	peak
3	4563.5564	34.17	74.00	-39.83	54.00	-19.83	peak
4	7923.0923	40.26	74.00	-33.74	54.00	-13.74	peak
5	11195.9196	44.53	74.00	-29.47	54.00	-9.47	peak
6	14597.9598	49.84	74.00	-24.16	54.00	-4.16	peak

Note: 1. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

HARMONICS AND SPURIOUS EMISSIONS (HIGH CHANNEL, VERTICAL)

No.	Frequency	Result	Limit	Margin	Limit	Margin	Remark
			(Peak)	(Peak)	(Ave)	(Ave)	
	(MHz)	(dBuV	(dBuV/m)	(dB)	(dBuV/m)	(dB)	
		/m)					
1	1632.4632	23.41	74.00	-50.59	54.00	-30.59	peak
2	2604.9605	28.30	74.00	-45.70	54.00	-25.7	peak
3	4021.2021	33.67	74.00	-40.33	54.00	-20.33	peak
4	5831.8832	37.80	74.00	-36.20	54.00	-16.2	peak
5	10386.6387	44.37	74.00	-29.63	54.00	-9.63	peak
6	14841.0841	52.29	74.00	-21.71	54.00	-1.71	peak

Note: 1. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

6.3. SPURIOUS EMISSIONS 18G ~ 26GHz

SPURIOUS EMISSIONS (MID CHANNEL, WORST-CASE CONFIGURATION, HORIZONTAL)

No.	Frequency	Result	Limit (Peak)	Margin (Peak)	Limit (Ave)	Margin (Ave)	Remark
	(MHz)	(dBuV /m)	(dBuV/m)	(dB)	(dBuV/m)	(dB)	
		/111)					
1	18623.1123	29.86	74.00	-44.14	54.00	-24.14	peak
2	19774.9775	31.23	74.00	-42.77	54.00	-22.77	peak
3	21276.2276	31.24	74.00	-42.76	54.00	-22.76	peak
4	22576.0076	30.94	74.00	-43.06	54.00	-23.06	peak
5	24626.4126	34.54	74.00	-39.46	54.00	-19.46	peak
6	26040.1040	36.71	74.00	-37.29	54.00	-17.29	peak

Note: 1. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

- 2. Peak: Peak detector.
- 3. All the modes had been tested, but only the worst data were recorded in the report.
- 4. Pre-test all the modes, then choose the worst case as final result.
- 5. Result=Reading Level+ Corrective factor Corrective factor =Antenna Factor +Cable loss-Amplifier

SPURIOUS EMISSIONS (MID CHANNEL, WORST-CASE CONFIGURATION, VERTICAL)

No.	Frequency	Result	Limit	Margin	Limit	Margin	Remark
			(Peak)	(Peak)	(Ave)	(Ave)	
	(MHz)	(dBuV	(dBuV/m)	(dB)	(dBuV/m)	(dB)	
		/m)					
1	18781.2281	29.51	74.00	-44.49	54.00	-24.49	peak
2	20086.1086	30.94	74.00	-43.06	54.00	-23.06	peak
3	21299.1799	31.75	74.00	-42.25	54.00	-22.25	peak
4	23017.2017	31.74	74.00	-42.26	54.00	-22.26	peak
5	24197.9698	32.94	74.00	-41.06	54.00	-21.06	peak
6	25223.1723	36.23	74.00	-37.77	54.00	-17.77	peak

Note: 1. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

- 2. Peak: Peak detector.
- 3. All the modes had been tested, but only the worst data were recorded in the report.
- 4. Pre-test all the modes, then choose the worst case as final result.
- Result=Reading Level+ Corrective factor Corrective factor =Antenna Factor +Cable loss-Amplifier

6.4. SPURIOUS EMISSIONS 30M ~ 1 GHz

SPURIOUS EMISSIONS (MID CHANNEL, WORST-CASE CONFIGURATION, HORIZONTAL)

No.	Frequency	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dBuV/m)	(dB)	
1	59.2969	19.75	40.00	-20.25	QP
2	143.9864	26.65	43.50	-16.85	QP
3	247.6898	36.35	46.00	-9.65	QP
4	297.2617	35.12	46.00	-10.88	QP
5	545.0245	35.05	46.00	-10.95	QP
6	842.3592	43.26	46.00	-2.74	QΡ

Note: 1. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit.

- 2. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto.
- 3. Pre-test all the modes, then choose the worst case as final result.
- 4. Result=Reading Level+ Corrective factor
 Corrective factor =Antenna Factor +Cable loss-Amplifier

SPURIOUS EMISSIONS (MID CHANNEL, WORST-CASE CONFIGURATION, VERTICAL)

No.	Frequency	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dBuV/m)	(dB)	
1	62.2072	28.98	40.00	-11.02	QP
2	143.9864	28.66	43.50	-14.84	QP
3	198.1178	34.04	43.50	-9.46	QP
4	247.6898	30.64	46.00	-15.36	QP
5	545.0245	34.77	46.00	-11.23	QP
6	643.9744	36.48	46.00	-9.52	QP

Note: 1. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit.

- 2. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto.
- 3. Pre-test all the modes, then choose the worst case as final result.
- 4. Result=Reading Level+ Corrective factor
 Corrective factor =Antenna Factor +Cable loss-Amplifier

6.5. SPURIOUS EMISSIONS BELOW 30M

SPURIOUS EMISSIONS (MID CHANNEL, WORST-CASE CONFIGURATION, HORIZONTAL)

No.	Frequency	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dBuV/m)	(dB)	
1	0.0134	49.90	125.07	-75.17	Peak
2	0.0231	44.20	120.32	-76.12	Peak
3	0.0370	38.64	116.23	-77.59	Peak
4	0.0660	35.16	111.21	-76.05	Peak
5	0.0900	32.09	108.52	-76.43	Peak
6	0.1205	29.00	105.98	-76.98	Peak

- 2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.
- 3. Pre-test all the modes, then choose the worst case as final result.
- 4. Result=Reading Level+ Corrective factor
 Corrective factor =Antenna Factor +Cable loss-Amplifier

150KHz ~ 30M

No.	Frequency	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dBuV/m)	(dB)	
1	0.2724	39.65	98.90	-59.25	Peak
2	0.6933	34.37	70.79	-36.42	Peak
3	1.9919	30.55	69.50	-38.95	Peak
4	4.0578	33.65	69.50	-35.85	Peak
5	11.1210	28.92	69.50	-40.58	Peak
6	19.0917	30.73	69.50	-38.77	Peak

- 2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.
- 3. Pre-test all the modes, then choose the worst case as final result.
- 4. Result=Reading Level+ Corrective factor
 Corrective factor = Antenna Factor + Cable loss-Amplifier

SPURIOUS EMISSIONS (MID CHANNEL, WORST-CASE CONFIGURATION, VERTICAL)

9KHz~ 150KHz

No.	Frequency	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dBuV/m)	(dB)	
1	0.0119	48.39	126.04	-77.65	Peak
2	0.0228	44.22	120.44	-76.22	Peak
3	0.0368	38.29	116.27	-77.98	Peak
4	0.0643	35.15	111.43	-76.28	Peak
5	0.0836	32.61	109.16	-76.55	Peak
6	0.1223	29.48	105.85	-76.37	Peak

- 2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.
- 3. Pre-test all the modes, then choose the worst case as final result.
- 4. Result=Reading Level+ Corrective factor
 Corrective factor = Antenna Factor + Cable loss-Amplifier

150KHz ~ 30M

No.	Frequency	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	(dBuV/m)	(dB)	
1	0.2664	38.11	99.09	-60.98	Peak
2	1.0635	33.44	67.09	-33.65	Peak
3	2.3591	29.69	69.50	-39.81	Peak
4	5.3773	30.01	69.50	-39.49	Peak
5	10.2552	29.52	69.50	-39.98	Peak
6	21.5158	30.98	69.50	-38.52	Peak

- 2. If Peak Result complies with AV and QP limit, AV and QP Result are deemed to comply with AV limit.
- 3. Pre-test all the modes, then choose the worst case as final result.
- 4. Result=Reading Level+ Corrective factor
 Corrective factor =Antenna Factor +Cable loss-Amplifier

7. ANTENNA REQUIREMENTS

Applicable requirements

Please refer to FCC §15.203

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Please refer to FCC §15.247(b)(4)

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Antenna Connector

EUT has an external antenna with antenna connector, it will be installed in a specific environment and users cannot change the antenna.

Antenna Gain

The antenna gain of EUT is less than 6 dBi.

END OF REPORT