Subgroups, isomorphisms, Cayley's theorem.

Injective, Surjective, Bijective functions: X, Y sets, $f: X \rightarrow Y$ a function. For $y \in Y$, the set of preimages of y is $f'(y) = \{x \in X \mid f(x) = y\}$, a subset of X.

f is injective \iff for all $y \in Y$, f'(y) has at least one element. f is <u>surjective</u> \iff for all $y \in Y$, f'(y) has at least one element. f is <u>bijective</u> \iff for all $y \in Y$, f'(y) has exactly one element.

 $f:X \Rightarrow Y$ is bijective iff there is an inverse function $g:Y \to X$, we arrive that g(f(x)) = X for all $x \in X$ and f(g(y)) = y for all $y \in Y$. In this case $\{x \in X \mid f(x) = y\} = \{g(y)\}$.

Given functions $f: X \rightarrow Y$ and $g: Y \rightarrow Z$, define $g \circ f: X \rightarrow Z$ by $g \circ f(x) = g(f(x))$. For any set X, there is an identity function $id_X: X \rightarrow X$, $id_X(x) = X$. So $f: X \rightarrow Y$ is bijective iff there is a function $g: Y \rightarrow X$ such that $g \circ f = id_X$ and $f \circ g = id_Y$.

let G be a group, and fix a G. left and right multiplication by a define functions.

 $La:G \rightarrow G$ La(g)=ag $Ra:G \rightarrow G$ Ra(g)=ga

Example: $G = (Z_5, +)$ [3] $\in Z_5$ [0] [0] $L_{[3]}([b]) = [3] + [b] \leq 0$ [1] [2] = [b+3] [2] [3] [4] [4]

- Proposition let G be a group, a, b \in G. Then LaOLb = Lab and RaORb = Rba. Also, if $e \in$ G denotes the identity, then Le = idg = Re.
 - Proof $L_a \circ L_b(x) = L_a(L_b(x)) = L_a(bx) = a(bx) = (ab)x = L_{ab}(x)$. $R_a \circ R_b(x) = R_a(R_b(x)) = R_a(xb) = (xb)a = x(ba) = R_{ba}(x)$. $L_e(x) = ex = x$ and $R_e(x) = xe = x$.
 - Proposition let G be a group, a.E.G. then La and Ra are bijective, with inverses La-1 and Ra-1, respectively.
 - Prob La La = La = Le = ida, similar for Ra.

Some casy and useful consequences of this:

- Corollary let G be a group, a, b ∈ G. The equation ax=b has a unique solution x ∈ G, as does the equation xa=b.
- Proof The equation ex=b is equivalent to $L_{\alpha}(x)=b$. Since L_{α} is bijective, there is a unique x with this property. Similarly, $x\alpha=b$ means $R_{\alpha}(x)=b$, and as R_{α} is bijective thre is a unique solution.
- In fact, the unique solution to ax=b is $x=a^{-1}b$, unique solution to xa=b is $x=ba^{-1}$.

- Corollary Suppose $a, x, y \in G$ satisfy ax = ay. Then x = y. Similarly, if xa = ya then x = y.
- Proof Suppose $\alpha x = \alpha y$. The $L_{\alpha}(x) = L_{\alpha}(y)$. Since L_{α} is injective, we conclude x = y. If $x_{\alpha} = y_{\alpha}$, $R_{\alpha}(x) = R_{\alpha}(y)$, so x = y since R_{α} is injective. E_{α}
- (at X be a set. Define Sym(X)={fiX>X|fis dijectie} Sym(X) is a group where the group operation is composition of functions. The identity is idx, and the image is the image function.

Now let G be a group. Then me have constructed a function

$$G \longrightarrow Sym(G)$$
 $g \mapsto L_q$

This function is injective in its own right. Why?

If $L_a = L_b$ as functions, then $L_a(e) = L_b(e)$ so ae = be so a = b.

[However, most functions $f \in Sym(G)$ are not of the form L_a for $a \in G$.]

The subset { Lq | g ∈ G } ⊆ Sym(G) has an important property:

- Definition let G be a group. A subset $H \subseteq G$ is called a subgroup if the operation makes H into a group in its own right. We write $H \subseteq G$ when H is a subgroup.
- E_{\times} ① Group (7/2,+). $27/2 = \frac{1}{2} 2k | k \in \mathbb{Z}_{3}^{2} \subset \mathbb{Z}_{3}^{2}$ is a subgroup. $\mathbb{Z} \leq \mathbb{Q} \leq \mathbb{R} \leq \mathbb{C}$
- (3) G a group. Then 2e3 < G is a subgroup, called the trivial subgroup.

Proposition let G be a group, H=G a nonempty subset. H is a subgroup iff the following anditions hold: (1) for all h, hz ∈H, h, hz ∈ H (His closed under the generalism) (2) for all h∈H, h ∈H (His closed under taking inverse),

Proof Conditions are clearly necessary. To see they suffice, Note that D suys that the operation on G actually give an operation on H. We verify the axioms:

- Associativety follows from associativity of G

take any helf, then hitely by @, so hhit = e \in hy \mathread
thus H contains identity.

- inverses by 2.

Let G be a group, and consider $H = \{L_q | q \in G\} \subseteq Sym(G)\}$ Thun H is a subgroup: ① $L_q, L_h \in H \implies L_q \circ L_h = L_{qh} \in H$ ② $L_q \in H \implies L_q^{-1} = L_q^{-1} \in H$.

Definition: let G and H be groups, and let $\varphi: G \to H$ be a function. of is called an isomorphism if φ is bijective and for all $g_1,g_2 \in G$, we have $\varphi(g_1g_2) = \varphi(g_1)\varphi(g_2)$.

Example G a group. $H = \{L_g | g \in G\} \leq Sym(6)$.

Define $\varphi: G \to H$ by $\varphi(g) = L_g$

Said before that φ is injective. It is surjective (onto H) be cause of the way H is defined. So φ is bijective. Furthermore, $\varphi(g_1g_2) = L_{g_1g_2} = L_{g_1} \circ L_{g_2} = \varphi(g_1) \varphi(g_2)$

So Q is an isomorphism.

This proves <u>Cayley's theorem</u>: Every group G is isomorphic to a subgroup of a symmetric group.

(Groups of the form Sym(X) are known as symmetrie groups or permutation groups.)
In flut, G is isomorphic to a subgroup of Sym(6).

Proposition If $\varphi: G \to H$ is an isomorphism of groups, then $\varphi(e_G) = e_H$, and for all $g \in G$, $\varphi(g)^{-1} = \varphi(g^{-1})$ idulity identity of G

Proof $e_{\mu}\varphi(e_{G}) = \varphi(e_{G}) = \varphi(e_{G}) = \varphi(e_{G}) \varphi(e_{G})$ cancel $\varphi(e_{G}) \rightarrow e_{\mu} = \varphi(e_{G})$.

Take $g \in G$ then $e_H = \varphi(e_\alpha) = \varphi(gg^{-1}) = \varphi(g) \varphi(g^{-1})$ by uniqueness of inverses, $\varphi(g^{-1}) = \varphi(g)^{-1}$.

Example: Recall complex numbers about $i^2 = -1$ $e^{i\theta} = \cos\theta + i\sin\theta$, $e^{x+y} = e^x e^y$, $e^{2\pi i} = 1$.

Fix nEN. Consider $C_n = \{e^{2\pi i k/n} | k \in \mathbb{Z} \}$ I clavin! C_n is a group, where the operation is multiplocutin of complex numbers. Furthermore, the function $\varphi: \mathbb{Z}_n \to C_n$ $c_{\ell}([k]) = e^{2\pi i k/n}$ is an isomorphism.