

32688sequencelisting.txt

SEQUENCE LISTING

<110> Geiser, Martin
Geisse, Sabine
Ostemeier, Christian
Ramage, Paul
Raulf, Friedrich
Zenke, Gerhard

<120> Three-Dimensional Structure of the
Catalytic Domain of ZAP-70 Protein Tyrosine Kinase, Methods
and Use Thereof

<130> 4-32688

<140> US 10/528,709

<141> 2005-03-22

<150> PCT/EP03/10686

<151> 2003-09-25

<150> US 60/413,704

<151> 2002-09-26

<160> 6

<170> FastSEQ for windows Version 4.0

<210> 1

<211> 619

<212> PRT

<213> Homo sapiens

<400> 1

Met Pro Asp Pro Ala Ala His Leu Pro Phe Phe Tyr Gly Ser Ile Ser
1 5 10 15
Arg Ala Glu Ala Glu Glu His Leu Lys Leu Ala Gly Met Ala Asp Gly
20 25 30
Leu Phe Leu Leu Arg Gln Cys Leu Arg Ser Leu Gly Gly Tyr Val Leu
35 40 45
Ser Leu Val His Asp Val Arg Phe His His Phe Pro Ile Glu Arg Gln
50 55 60
Leu Asn Gly Thr Tyr Ala Ile Ala Gly Gly Lys Ala His Cys Gly Pro
65 70 75 80
Ala Glu Leu Cys Glu Phe Tyr Ser Arg Asp Pro Asp Gly Leu Pro Cys
85 90 95
Asn Leu Arg Lys Pro Cys Asn Arg Pro Ser Gly Leu Glu Pro Gln Pro
100 105 110
Gly Val Phe Asp Cys Leu Arg Asp Ala Met Val Arg Asp Tyr Val Arg
115 120 125
Gln Thr Trp Lys Leu Glu Gly Glu Ala Leu Glu Gln Ala Ile Ile Ser
130 135 140
Gln Ala Pro Gln Val Glu Lys Leu Ile Ala Thr Thr Ala His Glu Arg
145 150 155 160
Met Pro Trp Tyr His Ser Ser Leu Thr Arg Glu Glu Ala Glu Arg Lys
165 170 175
Leu Tyr Ser Gly Ala Gln Thr Asp Gly Lys Phe Leu Leu Arg Pro Arg
180 185 190
Lys Glu Gln Gly Thr Tyr Ala Leu Ser Leu Ile Tyr Gly Lys Thr Val
195 200 205
Tyr His Tyr Leu Ile Ser Gln Asp Lys Ala Gly Lys Tyr Cys Ile Pro
210 215 220

32688sequencelisting.txt

Glu Gly Thr Lys Phe Asp Thr Leu Trp Gln Leu Val Glu Tyr Leu Lys
 225 230 235 240
 Leu Lys Ala Asp Gly Leu Ile Tyr Cys Leu Lys Glu Ala Cys Pro Asn
 245 250 255
 Ser Ser Ala Ser Asn Ala Ser Gly Ala Ala Ala Pro Thr Leu Pro Ala
 260 265 270
 His Pro Ser Thr Leu Thr His Pro Gln Arg Arg Ile Asp Thr Leu Asn
 275 280 285
 Ser Asp Gly Tyr Thr Pro Glu Pro Ala Arg Ile Thr Ser Pro Asp Lys
 290 295 300
 Pro Arg Pro Met Pro Met Asp Thr Ser Val Tyr Glu Ser Pro Tyr Ser
 305 310 315 320
 Asp Pro Glu Glu Leu Lys Asp Lys Lys Leu Phe Leu Lys Arg Asp Asn
 325 330 335
 Leu Leu Ile Ala Asp Ile Glu Leu Gly Cys Gly Asn Phe Gly Ser Val
 340 345 350
 Arg Gln Gly Val Tyr Arg Met Arg Lys Lys Gln Ile Asp Val Ala Ile
 355 360 365
 Lys Val Leu Lys Gln Gly Thr Glu Lys Ala Asp Thr Glu Glu Met Met
 370 375 380
 Arg Glu Ala Gln Ile Met His Gln Leu Asp Asn Pro Tyr Ile Val Arg
 385 390 395 400
 Leu Ile Gly Val Cys Gln Ala Glu Ala Leu Met Leu Val Met Glu Met
 405 410 415
 Ala Gly Gly Pro Leu His Lys Phe Leu Val Gly Lys Arg Glu Glu
 420 425 430
 Ile Pro Val Ser Asn Val Ala Glu Leu Leu His Gln Val Ser Met Gly
 435 440 445
 Met Lys Tyr Leu Glu Glu Lys Asn Phe Val His Arg Asp Leu Ala Ala
 450 455 460
 Arg Asn Val Leu Leu Val Asn Arg His Tyr Ala Lys Ile Ser Asp Phe
 465 470 475 480
 Gly Leu Ser Lys Ala Leu Gly Ala Asp Asp Ser Tyr Tyr Thr Ala Arg
 485 490 495
 Ser Ala Gly Lys Trp Pro Leu Lys Trp Tyr Ala Pro Glu Cys Ile Asn
 500 505 510
 Phe Arg Lys Phe Ser Ser Arg Ser Asp Val Trp Ser Tyr Gly Val Thr
 515 520 525
 Met Trp Glu Ala Leu Ser Tyr Gly Gln Lys Pro Tyr Lys Lys Met Lys
 530 535 540
 Gly Pro Glu Val Met Ala Phe Ile Glu Gln Gly Lys Arg Met Glu Cys
 545 550 555 560
 Pro Pro Glu Cys Pro Pro Glu Leu Tyr Ala Leu Met Ser Asp Cys Trp
 565 570 575
 Ile Tyr Lys Trp Glu Asp Arg Pro Asp Phe Leu Thr Val Glu Gln Arg
 580 585 590
 Met Arg Ala Cys Tyr Tyr Ser Leu Ala Ser Lys Val Glu Gly Pro Pro
 595 600 605
 Gly Ser Thr Gln Lys Ala Glu Ala Ala Cys Ala
 610 615

<210> 2
 <211> 322
 <212> PRT
 <213> Homo sapiens

<400> 2
 Arg Ile Thr Ser Pro Asp Lys Pro Arg Pro Met Pro Met Asp Thr Ser
 1 5 10 15
 Val Tyr Glu Ser Pro Tyr Ser Asp Pro Glu Glu Leu Lys Asp Lys Lys
 20 25 30
 Leu Phe Leu Lys Arg Asp Asn Leu Leu Ile Ala Asp Ile Glu Leu Gly
 Page 2

32688sequencelisting.txt

35	40	45													
Cys	Gly	Asn	Phe	Gly	Ser	Val	Arg	Gln	Gly	Val	Tyr	Arg	Met	Arg	Lys
50	55	60													
Lys	Gln	Ile	Asp	Val	Ala	Ile	Lys	Val	Leu	Lys	Gln	Gly	Thr	Glu	Lys
65	70	75	80												
Ala	Asp	Thr	Glu	Glu	Met	Met	Arg	Glu	Ala	Gln	Ile	Met	His	Gln	Leu
85	90	95													
Asp	Asn	Pro	Tyr	Ile	Val	Arg	Leu	Ile	Gly	Val	Cys	Gln	Ala	Glu	Ala
100	105	110													
Leu	Met	Leu	Val	Met	Glu	Met	Ala	Gly	Gly	Gly	Pro	Leu	His	Lys	Phe
115	120	125													
Leu	Val	Gly	Lys	Arg	Glu	Glu	Ile	Pro	Val	Ser	Asn	Val	Ala	Glu	Leu
130	135	140													
Leu	His	Gln	Val	Ser	Met	Gly	Met	Lys	Tyr	Leu	Glu	Glu	Lys	Asn	Phe
145	150	155	160												
Val	His	Arg	Asp	Leu	Ala	Ala	Arg	Asn	Val	Leu	Leu	Val	Asn	Arg	His
165	170	175													
Tyr	Ala	Lys	Ile	Ser	Asp	Phe	Gly	Leu	Ser	Lys	Ala	Leu	Gly	Ala	Asp
180	185	190													
Asp	Ser	Tyr	Tyr	Thr	Ala	Arg	Ser	Ala	Gly	Lys	Trp	Pro	Leu	Lys	Trp
195	200	205													
Tyr	Ala	Pro	Glu	Cys	Ile	Asn	Phe	Arg	Lys	Phe	Ser	Ser	Arg	Ser	Asp
210	215	220													
Val	Trp	Ser	Tyr	Gly	Val	Thr	Met	Trp	Glu	Ala	Leu	Ser	Tyr	Gly	Gln
225	230	235	240												
Lys	Pro	Tyr	Lys	Lys	Met	Lys	Gly	Pro	Glu	Val	Met	Ala	Phe	Ile	Glu
245	250	255													
Gln	Gly	Lys	Arg	Met	Glu	Cys	Pro	Pro	Glu	Cys	Pro	Pro	Glu	Leu	Tyr
260	265	270													
Ala	Leu	Met	Ser	Asp	Cys	Trp	Ile	Tyr	Lys	Trp	Glu	Asp	Arg	Pro	Asp
275	280	285													
Phe	Leu	Thr	Val	Glu	Gln	Arg	Met	Arg	Ala	Cys	Tyr	Tyr	Ser	Leu	Ala
290	295	300													
Ser	Lys	Val	Glu	Gly	Pro	Pro	Gly	Ser	Thr	Gln	Lys	Ala	Glu	Ala	Ala
305	310	315	320												
Cys	Ala														

<210> 3

<211> 74

<212> DNA

<213> Unknown

<220>

<223> Oligo MG474

<400> 3

cagatggata cacccttgag ccagcactgg aagttctgtt ccaggggccc cgccataacgt 60
ccccagacaa accg 74

<210> 4

<211> 20

<212> DNA

<213> Unknown

<220>

<223> Oligo RS366

<400> 4

acaacgcaca gaatctagcg

20

<210> 5

32688sequencelisting.txt

<211> 74
<212> DNA
<213> Unknown

<220>
<223> Oligo MG475

<400> 5
cacactccca gcccacccat ccacgctgga agttctgttc caggggcccct tgactcatcc 60
tcagagacga atcg 74

<210> 6
<211> 57
<212> DNA
<213> Unknown

<220>
<223> Oligo MG479

<400> 6
gctcgaattc tcaatgatga tcatgtatgtat gggcacaggc agcctcagcc ttctgtg 57