

From all penutuhion of order of ballons, maximize cost.

noc -baak

	enoting					
	20	3,	2	5 3	Gy	Sig 5 Roomst
20	6	23 9	231	2315	23156	(2315(9)
3	χ	3	3 7/68 1 1-1-2 45	315	i=1,3156 j=41 mar	31564
ant 2	×	× 0	15	15	156	, 1864
5 ₃	× 6	. _s ×	X	30 5	140	56 4
6 y	X a	×2	× _G	*,	1206	140 ⁶⁴
45	√ ₆	? %	ķ °	8	×	24

Cost of bursh'y of BITO

(9)+[56]+2.1.4-[315]+0+2.6.4 [81] 8[5] +2.5.4 04[15]+2.54 max 7 KEI اع 1=4

a[i-i] * a[ic] * a[kfi] asmln

L == L if in valid index

$$\frac{n}{a} \qquad \frac{C_n \text{ (cotal am)}}{a}$$

$$a \longrightarrow 1 \qquad a$$

$$a \longrightarrow b$$

$$a \longrightarrow b$$

$$\begin{bmatrix} a, b, c \end{bmatrix} \longrightarrow 5$$

$$\begin{bmatrix} a, b, c \end{bmatrix} \xrightarrow{a} \begin{bmatrix} b & b & c \\ a & b & c \\ b & b & a \end{bmatrix}$$

$$\begin{bmatrix} a & b & c & b \\ c & b & a \end{bmatrix}$$

$$\begin{bmatrix} a & b & c & b \\ c & b & a \end{bmatrix}$$

$$[a,b] \longrightarrow 2$$

$$[a,b,c] \longrightarrow 5$$

$$[a$$

E- Eggs, F- floors, Minimum rumber of attemp to find Egg drops critical floor with e'eggs? Orthical Floor. Note: Orihical Floor may be exist or not in all floor Ly Hoor f>= c breats-Problem is not about to find (C) - critical plans:

(Egg=1, Ploor=12) eritical floor, but it is about to find min, number cristical flore

Survision

Survi of attempts such that we con find critical floor certainly, (Guaranteed)

-1 ophimise the bad luck -1 Best of the worst P-Project
CEO - Mornager - Heomleads
Employee

Guaranteed best time

The max (t_2, t_2) The max (t_2, t_3) The max (t_1, t_4) The second (t_1, t_4) The

