

NLP en el Análisis de OFERTAS DE TRABAJO

GRUPO 3

Alejandro Dionis Ros, Adrián Lizzadro Plá, Sergio Sebastiá García e Ilia Zhigarev

Solicitar puesto

Guardar oferta

Contenido

- Introducción
- Extracción de Datos (Web Scraping)
- Preprocesamiento
 - Limpieza de Datos
 - Análisis Exploratorio del conjunto
- Modelos
 - Modelos Propios
 - Modelos Preentrenados
- Resultados
- Personalización de Stopwords
- Conclusiones

Introducción

El PLN es una rama de la informática y de la inteligencia artificial que emplea técnicas de aprendizaje automático para que los ordenadores puedan comprender, interpretar y generar lenguaje humano de forma eficiente.

Actualmente, el PLN está presente en muchos aspectos de la vida cotidiana.

Dado que nos encontramos en la fase final del curso e inmersos en la búsqueda de oportunidades laborales, se decidió tomar como tema del trabajo final de la asignatura el análisis de ofertas de empleo.

El **objetivo** principal de este proyecto es analizar ofertas de empleo con el fin de estimar el salario ofrecido a partir del contenido textual de las mismas.

Extracción de datos

Linked in

- escasa información salarial
- scraping bloqueado por robots.txt

InfoJobs

- pocas ofertas con salario
- API no disponible y scraping limitado

manfred

- plataforma española
- scraping friendly

Campos extraídos por HTML:

Fuente / Campo

<h1>

Título del puesto

<h3> con "Salario" →

Salario

<div id="skills">

Skills

<div id="requisitos">

Descripción

<div id="donde">

Ubicación

Texto "Oferta cerrada" en el HTML

Estado

Preprocesamiento y limpieza de datos

Procesamiento y limpieza de datos

Conversión a minúsculas

Estandarización de los textos (.lower_)

Eliminación:

- Signos de puntuación
 Mediante expresiones regulares
- Acentos

Reemplazo de las vocales acentuadas

- Emojis
 Eliminar cualquier símbolo no textual (librería emoji)
- StopwordsModelo es_core_news_lg

Lematización

Modelo es_core_news_lg

- 1250 ofertas en español
- Alta diversidad de títulos (587 perfiles únicos)
- Profundidad temporal (5 años)
- Histórico de ofertas (97.6% cerradas)

Statistic	Value (miles)
Mean	52,7712
Std Dev	15,0386
Min	11
25% (Q1)	42
50% (Median)	50
75% (Q3)	60
Max	150

Datos originales

Datos preprocesados

Modelos Propios

Variable full_description

Vectorización del texto

- Modelos de vectores dispersos (sparse):
 - Bag of Words (BoW)
 - Term Frequency-Inverse Document Frequency (TF-IDF)
- Modelos de word embeddings:
 - Word2Vec
 - FastText
 - Doc2Vec

Variable objetivo salary_int

Modelos de Regresión

- Ridge
- Lasso
- RandomForest
- XGBoost

<u>Métricas</u>

- Error cuadrático medio (MSE)
- Error absoluto medio (MAE)
- coeficiente de determinación (R²)

Modelos Preentrenados

Text Classification

MoritzLaurer/mDeBERTa

Recognai/bert

papluca/xlm-roberta

Unbabel/xlm-roberta

Multi -lenguaje

Multi -lenguaje

Español

Multi -lenguaje

Small Size

Large Size (> 200M pesos) Medium Size (100M - 200M pesos)

Large Size (> 200M pesos)

Modelos Preentrenados

Para 100 y 1000 datos Para 4 modelos

Modelos Preentrenados

<u>Limitaciones</u>

- Límite de uso de CPU (Modelos muy pesados)
 - Batch size máximo de entrenamiento: 4
- Dataset reducido (1200 ofertas de empleo)
- Entrenamiento muy lento (250 iteraciones = 4 horas)

Resultados

Modelos Propios

- Resultados bajos, siendo el mejor R² de apenas 0.569.
- Modelos con vectorizaciones más simples tienden a un mejor desempeño.
- No se beneficia significativamente de representaciones semánticas como los embeddings.
 - Naturaleza o al tamaño limitado del conjunto de datos.
 - Ausencia de modelos que utilicen representaciones contextuales del texto.

Model	Vectorization	R²	MSE	MAE
Lasso	bow	0.569105	107.120354	7.289144
XGBoost	bow	0.503047	123.542330	7.407947
Ridge	tfidf	0.499786	124.353056	7.242946
XGBoost	tfidf	0.441463	138.851975	7.791703
Ridge	bow	0.436428	140.103802	8.114663
RandomForest	bow	0.435464	140.343370	7.847564
RandomForest	tfidf	0.421821	143.735008	7.866725
Ridge	fasttext	0.323746	168.116528	9.162820
RandomForest	fasttext	0.287029	177.244395	9.295514
Lasso	fasttext	0.264787	182.773607	9.677204
RandomForest	doc2vec	0.203552	197.996618	9.936000
XGBoost	fasttext	0.199874	198.911006	9.980428
Ridge	word2vec	0.177621	204.443157	10.088231
XGBoost	doc2vec	0.173001	205.591721	10.103736
RandomForest	word2vec	0.158187	209.274412	10.116769
Lasso	doc2vec	0.151876	210.843272	10.282277
Ridge	doc2vec	0.151118	211.031775	10.311420
XGBoost	word2vec	0.129343	216.444907	10.218765
Lasso	word2vec	0.068840	231.485961	11.268457
Lasso	tfidf	0.032042	240.634031	11.459257

Resultados

Modelos Preentrenados

Model	MSE	MAE	R2
MoritzLaurer 100	zLaurer 100 2483.5674 47.1785		-8.6354
Papluca 100	2908.6538	51.4848	-10.2845
Recognai 100	2893.9773	51.3430	-10.2276
Unbabel 100	3310.9653	55.2558	-11.8454
MoritzLaurer 1000 2192.8357		43.9974	-7.5074
Recognai1000	2169.5671	43.7373	-7.4171

Personalización de stopwords

Idea: Reducción del ruido léxico

Filtrado estadístico

Bag-of-Words

Filtrado por importancia predictiva

- TF-IDF
- Lasso model

Personalización de stopwords


```
versiones itempo seguro estrategica data center visualización ingenieria valoran arquitecturas recipio estrategica data ingenieria valoran arquitecturas recipio estrategica de seguro de seguro estrategica de seguro d
```


Datos con stopwords específicas

Resultados

Model	Vectorization	R ²	MSE	MAE
Ridge	bow	0,7	83,36	6,34
Lasso	bow	0,62	107,52	6,74
XGBoost	bow	0,59	114,21	6,92
Ridge	tfidf	0,58	117,51	6,74
XGBoost	tfidf	0,58	118,47	7,15
RandomForest	bow	0,52	135,04	7,05
RandomForest	tfidf	0,51	138,26	7,32
Ridge	fasttext	0,41	163,97	8,4
Ridge	doc2vec	0,41	165,95	8,93
RandomForest	fasttext	0,41	166,26	8,39
XGBoost	doc2vec	0,4	167,92	8,77
XGBoost	fasttext	0,38	173,53	8,72
RandomForest	doc2vec	0,37	175,31	9,01
RandomForest	word2vec	0,33	187,29	9,19
XGBoost	word2vec	0,32	189,94	9,08
Lasso	fasttext	0,3	194,77	9,38
Ridge	word2vec	0,25	209,68	9,72
Lasso	doc2vec	0,24	213,62	10,09
Lasso	tfidf	0,23	216,21	9,35
Lasso	word2vec	0,16	235,35	10,46

Conclusiones

- Aumento del corpus: recopilación y ampliación de datos estructurados a partir de fuentes como Kaggle.
- Extracción de características: identificación de entidades y palabras clave específicas (tecnologías, skills, experiencia...).
- Modelado: uso de modelos de representación contextual del texto para mejorar la comprensión semántica.
- Estudio de la evolución y tendencias a lo largo del tiempo, dada la disponibilidad de la variable temporal.

¡Muchas Gracias!

GRUPO 3

Alejandro Dionis Ros, Adrián Lizzadro Plá, Sergio Sebastiá García e Ilia Zhigarev

Solicitar puesto

Guardar oferta

