A Property of Right Angled Triangles with a 30 °Angle

Theorem 1 In any right angled triangle with an angle of 30°, the side opposite to the 30° angle is half the length of the hypotenuse.

Proof

Consider triangle ABC (Figure 1). Given that $\angle ABC=30^\circ$ and $\angle ACB=90^\circ$, we need to prove that $AC=\frac{1}{2}AB$

Draw a line through M such that it intersects AB at some point M and makes an angle $ACM=60^\circ$. $\triangle AMC$ is equilateral \Rightarrow AC=AM=MC

$$\angle MCB = \angle ACB - \angle ACM = 90^{\circ} - 60^{\circ} = 30^{\circ}$$

This means that: $\triangle CMB$ is isosceles. $\Rightarrow MB = MC \Rightarrow MB = AC$

$$AB = AM + MB = AC + AC = 2AC$$
$$AC = \frac{1}{2}AB$$

Figure 1

 \therefore QED