Differential- und Integralrechnung, Wintersemester 2024-2025

6. Vorlesung

Sei P eine Polynomfunktion n-ten Grades ($n \in \mathbb{N}$) und $x_0 \in \mathbb{R}$. Dann gilt

$$P(x) = P(x_0) + \frac{P'(x_0)}{1!}(x - x_0) + \cdots + \frac{P^{(n)}(x_0)}{n!}(x - x_0)^n, \ \forall x \in \mathbb{R}.$$

Ab jetzt sei $I \subseteq \mathbb{R}$ ein nichtentartetes Intervall.

Definition

Die Funktion $f: I \to \mathbb{R}$ sei n-mal differenzierbar und $x_0 \in I$. Die Polynomfunktion $T(\cdot, x_0): \mathbb{R} \to \mathbb{R}$, definiert durch

$$T_n(x,x_0) = f(x_0) + \frac{f'(x_0)}{1!}(x-x_0) + \dots + \frac{f^{(n)}(x_0)}{n!}(x-x_0)^n$$
$$= \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!}(x-x_0)^k,$$

wird das n-te Taylorpolynom von f an der Stelle x_0 genannt.

Th7 (Die Taylorsche Formel)

Seien $a, b \in \mathbb{R}$, a < b, $n \in \mathbb{N}$ und $f : [a, b] \to \mathbb{R}$ eine Funktion, die auf [a, b] eine stetige Ableitung n-ter Ordnung und auf (a, b) n+1-mal differenzierbar ist. Dann gibt es für alle $x, x_0 \in [a, b]$ mit $x \neq x_0$ einen Punkt c, der sich echt zwischen x und x_0 befindet, mit

$$R_n(x,x_0) = \frac{f^{(n+1)}(c)}{(n+1)!}(x-x_0)^{n+1},$$

also ist

$$f(x) = \underbrace{\sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k}_{T_n(x,x_0)} + \underbrace{\frac{f^{(n+1)}(c)}{(n+1)!} (x - x_0)^{n+1}}_{R_n(x,x_0)}.$$

Definition

Sei $f: I \to \mathbb{R}$ beliebig oft differenzierbar, $x_0 \in I$. Dann nennt man

$$\sum_{n>0} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n, \ x \in \mathbb{R},$$

die Taylorreihe von f an der Stelle x_0 .

Th8 (Taylor)

Seien $f: I \to \mathbb{R}$ eine beliebig oft differenzierbare Funktion und $x_0 \in I$. Ist $x \in I$, dann gilt

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n \iff \lim_{n \to \infty} R_n(x, x_0) = 0.$$

Bemerkung

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n \iff f(x) = \lim_{n \to \infty} T_n(x, x_0).$$

Definition

Falls

(1)
$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$

für alle $x \in I$ gilt, so sagt man, dass f eine Taylorentwicklung (auf I) an der Stelle x_0 hat.

Die Gleichheit (1) nennt man die Taylorentwicklung von f an der Stelle x_0 .