Yuan Lei

Step 1. Placement and Wiring

 Refer to PPT and project manual, placing and wiring the biasing and amplifier carefully. Design three testbenches for open-loop, close-loop and settling behavior accordingly.

Yuan Lei

Step 2. Settling Behavior

- C_{load}, the smaller the faster, start with 1pF
- Scale A, the larger the faster, start with 1
- Scale of MN3 and MN4, the larger the faster, start with 2 as suggested
- If not a straight line, add the gain of gain-boost stage
- Just randomly choose to at least meet the settling accuracy

Yuan Lei

Step 3. Noise Optimization

- A big portion of 1/f noise is ignored by integrating noise from 1MHz
- Integrated rms noise proportional to kT/C_{load}
- Required SNR = 58.8dB => 974.2µV rms noise
- Fix the ratio between ScaleA and C_{load}
- Change C_{load} to meet 974.2µV rms noise

Yuan Lei

Step 4. Power Optimization

- Smaller scale => less current => less power => but slower settling
- Solution: significantly increase the size of MN3, MN4 (input transistors)
- In this case, 'compensate' the loss of settling speed.
- Once a lower power and same settling behavior is achieved, check if the open-loop and close-loop behaviors are the same, then back to step 3.

Opt. round	ScaleA	Scale MN3,4	C _{load}	Power
1	0.165	1.65	1.37pF	239μW
2	0.145	2.9	1.32pF	209.6μW
3	0.132	6.6	1.31pF	191.2μW
4	0.130	13	1.34pF	188.3μW

- Can be lower, but at a huge cost on Scale of MN34! (200 or 300 * Scale A)
- FoM dB = 166.06
- This method start to lose sense!

Yuan Lei

CONCLUSION

ltem₽	Design Item ^{₄1}	Unit₽	Spec.	Achieved□
1←	Design Number ^ረ	38↩		
2←	SNR←	[dB]←	58.8↩	58.8↩
3←	A_settle [∠]	[dB]←	59↩	59.27←
4↩	T_settle [∠]	[ns]←	126.2←	126.17←
5←	T_settle_8.6dB←	[ns]←	←	99.6←
6←	T_8.6dB←	[ns]←	←	26.6←
7←	Power Dissipation←	[uW]←	low€	188←
8←	I(Vdd)←	[uA]←	low←	104.6←
9↩	Total Intergrated Noise [←]	[mV]←	←	0.9742←
10↩	Input Step Voltage [←]	[mV]←	150↩	150←
11←	Output Step Voltage←	[V]←	1.2←	1.2←□
12←	C_in [←]	[pF]↩	←	1.34←
13↩	C_fb [∠]	[pF]←	←	0.168←
14←	C_load [←]	[pF]←	←	1.34←
15←	C_cm [←]	[pF]←	←	0.168←
16←	R_big€	[Gohm]↩	big←	1←1
17↩	C_big←	[uF]←	big←	1←
18←	I_b1 (ncas)←	[mA]←		0.2*4.8←
19↩	I_b2 (pcas)←	[mA]←	<	0.2*7.5↩
20∈	Ronus points on FoM_dR←	[qB]∈	2 23∉	2 23€
21↩	FoM_lin←	[J] <		41.4e-18←
22←	FoM_dB [←]	[dB]↩	<	166.06←

- Achieved all specs with 188µW power dissipation, 166.06dB FoM
- Power consumption could be 10~20μW lower, but the size of MN34 is already 400~500x larger than scale A. The design lost its sense.
- Lower the bias current can also decrease power.

