Minimum Sketch:

void setup(){}
void loop(){}

Section 3 Cheat Sheet

Variable Types

Variable type declaration	Number range
bool myVar=0;	0 or 1, FALSE or TRUE, LOW or HIGH
char myVar=0;	-128 to 127
unsigned char myVar=0;	0 to +255 (same as byte)
byte myVar=0;	0 to +255
int myVar=0;	-32768 to +32767
unsigned int myVar=0U;	0 to +65535
long myVar=0L;	-2,147,483,648 to +2,147,483,647
unsigned long myVar=0UL;	0 to +4,294,967,295
float myVar=0.f;	$-3.4028235 \times 10^{38}$ to 3.4028235×10^{38}

Mathematical Operators

Operator	Function	Example:
+	add	answer=x+1;
_	subtract	answer=x-1;
*	multiply	answer=x*3;
/	divide	answer=x/2;
િ	modulus (computes	answer=x%2;
	the remainder after	e.g. 19%8=3, because 8 goes
	dividing two integers)	into 19 twice, with 3 remaining.
pow()	exponent (x ^b)	<pre>answer=pow(x,3);</pre>
exp()	e ^x function	answer=exp(x);
abs()	absolute value	answer=abs(x);
log()	natural log	answer=log(x);
log10()	base 10 log	answer=log10(x);
sq()	square (x*x)	answer=sq(x);
sqrt()	square root	answer=sqrt(x);

Relational Operators

Logical Expression Syntax	Meaning
if(x <y){< td=""><td>"if x is less than y"</td></y){<>	"if x is less than y"
if(x<=y){	"if x is less than or equal to y"
if(x>y){	"if x is greater than y"
if(x>=y){	"if x is greater than or equal to y"
if(x==y){	"if x is equal to y"
if(x!=y){	"if x is not equal to y"

Comments:

```
//this is a line comment
/* this is a section comment
that can span multiple lines */
```

Boolean Operators:

```
a&&b // logical AND (a AND b)
a||b // logical OR (a OR b)
!a // logical NOT (NOT a)
a!=b // not equals (if a≠b)
a=!b // equals not (a = NOT(b))
```

String and char:

```
String msg1="Welcome";
char letter1='A'; //or use UTF-8
```

Casting: use brackets

```
int x=5;
float y=(float) x/2; //int to float
```

Arrays:

```
int x[3]={1,2,3}; //x[2] is 3
byte y[2][3]={ //y[0][1] is 2
    {1,2,3},
    {4,5,6}
}
char myMessage[6]="hello";
```

```
if (condition1 goes here) {
   action if true;
   another action if true;
}else if (condition2 goes here) {
   action if true;
   another action if true;
}else {
   action if false;
   another action if false;
}
```

switch() case:

```
switch (variable) {
  case first value:
    action1;
    break;
  case second value:
    action2;
    break;
  case third value:
    action3;
    break;
  default:
    action4;
```

Loops:

```
for() Loop:
// count up from 0 to 2, loop runs 3X:
for (int i=0; i<3; i++) {
  actions to repeat;
// count down from 2 to 0, loop runs 3X:
for (int i=2; i>=0; i--) {
  actions to repeat;
do...while() Loop:
do{
  actions to repeat;
}while (condition goes here); //tests last
while() Loop:
while (condition goes here) {    //tests first
  actions to repeat;
break; // leave a loop here
delay(100); // wait 100 msec
while(true); //stop program here
```