Applied Security

DPA on AES (8)

General Overview

- We go through a DPA attack on AES step by step and think about the impact of choices we have in each step
- This will allow you to complete part of the coursework

Beware: in order to follow the lectures you NEED to be familiar with various cryptographic algorithms and implementation techniques!

SPA vs DPA

- Typically SPA attacks exploit leakage that depends on the type of operation
- DPA attacks exploit the data depent leakage:
 - Example below shows MOV instructions on an 8bit: the shape is the same but the height of the curves in some of the clock cycles depends on the data

Principle of a differential power attack

Decision about Key Hypothesis

5 Step Model of a DPA Attack

- 1) Selection of target intermediate variable
- 2) Measurement of the power consumption/EM
- Calculation of the hypothetical intermediate values
- 4) Mapping of hypothetical values to predicted power consumption values
- 5) Statistical analysis using a distinguisher

Step 1: Choosing an intermediate result of the executed cryptographic algorithm

- Algorithm must be known
- Intermediate variable (the target) is function of key and data
- Good targets for DPA are functions which are highly non-linear as they facilitate distinguishability of the correct key hypothesis

Step 2: Measuring the power consumption for D input values

If necessary process traces to reduce noise and strip away unnecessary information

power

- Result is a (D x T) matrix t
 - For each input we store a power trace consisting of T data points

Step 3: Calculating hypothetical intermediate values

For a K-bit guess we get 2^K
 key hypotheses:

$$\mathbf{k} = (k_1, ..., k_{2^{\wedge}K})'$$

- Together with the D inputs we can calculate a (D x 2^k) Matrix containing the predicted intermediate values v_{i,i} = f(d_i, k_i)
 - We write the column corresponding to the correct key as `ck'

Step 4: Calculating hypothetical power values

- We map the values in matrix V to matrix H using a power model
- Models requiring little knowledge:
 - Bit model
 - Zero-value model
- Models requiring moderate knowledge
 - Hamming Weight (HW)
 - Hamming Distance (HD)
- Models that require characterisation
 - Templates

Step 5: statistical analysis

- Each column of H is compared with (column-wise)
 - Results in a (K x T) matrix
- The correct key hypothesis `stands \(\)
 - How it stands out depends on the distinguisher
 - But the general principle is that the better the modelled traces resemb the real traces the more likely the associated key hypothesis is the correct key
 - We expect to see something
 `distinguishable' in R at index (ck, ct)
 (ct ... time index when attacked
 intermediate variable is processed)

A DPA attack on an AES implementation

- We use traces that have been acquired using a simple microcontroller setup
 - Resemble traces one would get from a typical lowend DPA unprotected smart card
- AES has been implemented in software as described in the last lecture
 - ARK, SB, SR and the MC
- We assume the adversary has access to the plaintexts and aims to recover the key

Step 1: Intermediate variable

- **Choice:** output byte of the first AES S-box operation in round 1
 - Function of the first byte of the plaintext and the first byte of the key
- The first round of AES

Steps 2-4

• Step 2: Measurement sample: 1000 traces → T

- Step 3: $v_{i,j} = S-box(d_i \oplus k_j) \rightarrow V$
 - size of **V**: 1000x256
- Step 4: $h_{i,j} = LSB(v_{i,j}) \rightarrow H$
 - size of **H**: 1000x256

Steps 2-4

Sample number i	Plaintext byte d _i	Key hypothesis k ₁ (j=1)	Hyp. intermediate value v _{i,1} = S-box(d _i ⊕k ₁)	Hyp. power consumption $h_{i,1} = LSB(v_{i,1})$
1	0D	00	D7	1
2	95	00	2A	0
3	17	00	F0	0
4	C7	00	C6	0
5	9B	00	14	0
6	3B	00	E2	0
7	34	00	18	0

Steps 2-4

Sample number i	Plaintext byte d _i	Key hypothesis k ₂ (j=2)	Hyp. intermediate value v _{i,2} = S-box(d _i ⊕k ₂)	Hyp. power consumption $h_{i,2} = LSB(v_{i,2})$
1	0D	01	FE	0
2	95	01	22	0
3	17	01	47	1
4	C7	01	B4	0
5	9B	01	B8	0
6	3B	01	80	0
7	34	01	96	0

Step 5

• Step 5: R = D(H, T), we choose D=correlation

Step 5

Step 5

Step 5: Result

- Inspect the resulting 256 traces
- We used correlation hence we expect the correct key hypothesis to lead to the highest correlation
- Key ck = 226

A closer look at the result

- The correct key hypothesis leads to peaks in the correlation trace that are significantly higher than the peaks that come from incorrect key hypotheses
- About 200 power traces suffice to determine the key

Improving the result

- Using a better power model improves the result of a DPA attack:
 - The correlation coefficient goes up to almost 1 if we compare the Hamming weight of the hypothetical intermediate values with the power traces

Peaks reveal information about implementation too

- High correlation coefficients indicate correct key byte
- Correlation coefficients in this example are almost maximal
- About 30 traces are sufficient to reliably determine the key
- Positions of DPA peaks reveal the points in time when attacked intermediate result is computed.

5 Step Model of a DPA Attack

- 1) Selection of target intermediate variable
- 2) Measurement of the power consumption/EM
- 3) Calculation of the hypothetical intermediate values
- 4) Mapping of hypothetical values to predicted power consumption values
- 5) Statistical analysis using a distinguisher

- Linear vs. Non-linear transformation on combination of input and key
- 2. Signal vs. Noise
- Computational resources depending on size of key hypothesis
- 4. Quality of model
- Ability of distinguisher to use power model

DPA Demo

www.dpabook.org

A summary

- DPA attacks involve a number of steps which include choices that will influence the results
- A good power model is crucial for a correlation based attack to succeed (with few traces)
- Clearly the more distinguishable key hypotheses are the less traces are needed

 Note: you are now able to do the DPA assignment in your coursework!