ST 371 MIDTERM 2

October 19, 2020

NAME:

- You have 48 hours to complete this exam.
 - 1. Let $a, b, c \in (-\infty, \infty)$ with a < c < b, and for $x \in (-\infty, \infty)$, define

$$g(x) = \begin{cases} 0 & \text{if } x < a \\ \frac{2(x-a)}{(b-a)(c-a)} & \text{if } a \le x < c \\ \frac{2}{b-a} & \text{if } x = c \\ \frac{2(b-x)}{(b-a)(b-c)} & \text{if } c < x \le b \\ 0 & \text{if } b < x \end{cases}$$

- (a) Is $g(\cdot)$ a probability mass function, a probability density function, or a cumulative distribution function? Prove your answer.
- (b) If X is a random variable with pdf $g(\cdot)$, derive the cdf of X.
- 2. Consider the experiment of dealing cards at random, one at a time from a deck of 52 cards, without replacement. What is the probability that the fifth card dealt is the second king to be dealt?
- 3. A defining property of a random variable X, in addition to its mass/density function and cdf, is called the moment generating function (mgf) of X. The mgf of X is defined for any $t \in (-\infty, \infty)$ as

$$m(t) := \mathcal{E}(e^{tX}),$$

where $e^{(\cdot)}$ is the exponential function.

- (a) Assuming that $X \sim \text{Poisson}(\alpha)$, derive a closed-form expression of m(t).
- (b) Using your answer to part (a), show that $\frac{d}{dt}m(t)$ and $\frac{d^2}{dt^2}m(t)$, each evaluated at t=0, are equal to E(X) and $E(X^2)$, respectively. Recall from your lecture notes what the E(X) and $E(X^2)$ are for a Poisson random variable.
- 4. Let $Z \sim N(0,1)$ and define $Y = Z^2$.
 - (a) Derive the pdf of Y.
 - (b) Evaluate $P(Y \leq 9)$.