MTH 331 – Theorem 39

Robert Ritchie

November 18, 2015

Let T be a linear transformation on a finite vector space V. Then dim(V) = dim(kerT) + dim(ranT).

Proof. Let $B' = \{k_1, ..., k_m\}$ be a basis for kerT. Since B' is independant, we can extend it to a basis for V say $B = \{k_1, ..., k_m, u_1, ..., u_n\}$. Let $U = \{Tu_1, ..., Tu_n\}$ Let $w \in ranT$, this implies that $\exists v \in V$ such that $Tv = w \to \exists \alpha_1, ..., \alpha_m, \beta_1, ..., \beta_n \in F$ such that

$$v = \alpha_1 k_1 + ... + \alpha_m k_m + \beta_1 u_1 + ... + \beta_n u_n$$

$$Tv = T(\alpha_1 k_1 + ... + \alpha_m k_m + \beta_1 u_1 + ... + \beta_n u_n)$$

$$w = \alpha_1 T k_1 + ... + \alpha_m T k_m + \beta_1 T u_1 + ... + \beta_n T u_n$$

$$= \beta_1 T u_1 + ... + \beta_n T u_n$$

$$\to \bigvee \{T u_1, ..., T u_n\} = ranT$$

Let $\gamma_1, ..., \gamma_n \in F$. Suppose $T\gamma_1 u_1 + ... + T\gamma_n u_n = 0$ $\to T(\gamma_1 u_1 + ... + \gamma_n u_n) = 0$ $\to \gamma_1 u_1 + ... + \gamma_n u_n \in kerT$ $\to \gamma_1 u_1 + ... + \gamma_n u_n = \beta_1 k_1 + ... + \beta_m k_m$ and since $\{k_1, ..., k_m, u_1, ..., u_n\}$ is independant, $\gamma_1 = ... = \gamma_n = \beta_1 = ... = \beta_n = 0$ so $\{Tu_1, ..., Tu_n\}$ is independant.