

Protocoles réseaux TD nº 4 : Routage (plan de contrôle)

On rappelle que l'algorithme de vecteur de distances, aussi appelé Bellman-Ford distribué, est décrit dans le polycopié.

Exercice 1 : algorithme de vecteur de distances

Faites tourner l'algorithme de vecteur de distances, A étant la source, sur

Exercice 2: un état étrange

On considère l'algorithme de vecteur de distances. À un certain instant on a le réseau de cinq routeurs et les tables de routage suivants :

	$d_B(A)$	$d_C(A)$	$d_D(A)$	$d_E(A)$	$d_A(B)$	$d_C(B)$	$d_D(B)$	$d_E(B)$	$d_A(C)$	$d_B(C)$	$d_D(C)$	$d_E(C)$
	7	4	∞	10	3	3	2	3	4	3	5	6
ĺ	$d_A(D)$	$d_B(D)$	$d_C(D)$	$d_E(D)$	$d_A(E)$	$d_B(E)$	$d_C(E)$	$d_D(E)$				
ĺ	1	2	5	5	6	3	6	5				

- 1. Un tel état est-il possible (il peut y avoir des pertes de paquets)? Si oui décrire le scénario qui y conduit (qui a échangé avec qui dans quel ordre); si non expliquer pourquoi (en précisant ce qui impossible).
- 2. Il manque le champ next hop dans les tables de routage. L'ajouter avec sa valeur.

Exercice 3: convergence statique

On se place dans le cas d'un réseau statique (le coût des liens ne bouge pas), à l'état initial (tous les routeurs viennent de démarrer) et où toutes les sources sont connues de tout le monde.

- 1. Montrer que pour tous S et Y, $d_S(Y)$ ne fait que diminuer au cours du temps.
- 2. Montrer que $d_S(S)$ et $nh_S(S)$ ont déjà les bonnes valeurs (celles obtenues après convergence de l'algorithme) à l'état initial.
- 3. Supposons qu'une plus courte route de A_1 à A_k soit A_1, A_2, \ldots, A_k , et $d_{A_k}(A_i)$ soit optimale pour tout $i \in \{2, ...k\}$. Montrer que quand A_2 envoie sa table de routage à A_1 , A_1 calcule le coût optimal de la route minimale vers A_k .
- 4. En déduire la convergence de l'algorithme sur un réseau statique, en raisonnant par induction sur la longueur des routes de coût minimal.
- 5. Comment un routeur sait-il que l'algorithme a convergé vers des chemins de métrique minimale, c'est-à-dire que sa table de routage est correcte?

Exercice 4: dynamique

- 1. Dans l'exercice 1, le coût du lien C-E passe à 5. Que se passe-t-il?
- 2. A quoi sert la ligne $si\ nh_S(Y) = X$, $alors\ d_S(Y) := c_{YX} + d_S(X)$; de l'algorithme?
- 3. Donner un scénario où une boucle de routage apparaît. Comment disparaît-elle?

Exercice 5 : routeur défectueux

Un des routeurs a des problèmes de boot: au démarrage sa table est remplie de valeurs quelconques. Mais après, il effectue l'algorithme de vacteur de distances correctement. Que se passet-il?

Exercice 6: l'horizon scindé

1. On a la topologie suivante :

- (a) Après que l'algorithme de vecteur de distances a convergé, donnez les valeurs de $nh_A(X)$ et $d_A(X)$ pour X=B,C,D.
- (b) On suppose maintenant que A est tombé en panne. Proposez un scénario où la valeur de $d_A(X)$ pour X = B, C, D augmente à l'infini.
- (c) L'horizon scindé avec poison inverse consiste, pour un routeur X donné, à ne pas annoncer la vraie valeur de $d_S(X)$ à son voisin Y lorsque $nh_S(X) = Y$. Il annonce à Y que $d_S(X) = \infty$.

Le scénario de la question précédente est-il toujours possible?

2. On a maintenant la topologie suivante :

- (a) Après que l'algorithme de vecteur de distances a convergé, donnez les valeurs de $nh_A(X)$ et $d_A(X)$ pour X=B,C,D.
- (b) Montrez que même avec l'horizon scindé, si A tombe en panne, il existe un scénario où les valeurs de $d_A(C)$ et $d_A(D)$ augmentent à l'infini.

