

TABLAS DE CONTINGENCIA

Mª Purificación VICENTE GALINDO

purivic@yahoo.com

Departamento de Estadística. Universidad de Salamanca. España

Análisis de la relación entre dos variables

Cuantitativas

Cualitativas

Ho: Las 2 variables son independientes

Ha: \squariables están relacionad/

Coef. Correlación Pearson

Test Chi-cuadrado

HIPOTESIS DE PARTIDA: Ho Las dos variables en estudio son independientes

HIPOTESIS ALTERNATIVA: Ha

Las dos variables en estudio están relacionadas

Un ejemplo: Tabla de frecuencias observadas

	Peor	Igual	Mejor	
Trat1	7	28	115	
Trat2	15	20	85	
Trat3	10	30	90	
Trat4	5	40	115	
				560

Frecuencias marginales

	Peor	Igual	Mejor	TOTAL
Trat1	7	28	115	150
Trat2	15	20	85	120
Trat3	10	30	90	130
Trat4	5	40	115	160
TOTAL	37	118	405	560

¿Cómo se contrasta?

- Partimos de una tabla de frecuencias observadas
- Se calculan las frecuencias que cabría esperar si las dos variables fueran independientes

fe_{ii}= (Total fila i-ésima) (Total columna j-ésima) / Total global

Cálculo de la frecuencia esperada fe₁₁

	Peor	Igual	Mejor	TOTAL
Trat1	7			150
Trat2				
Trat3				
Trat4				
TOTAL	37			560

$$f_{0_{11}} = 7$$
 $f_{0_{11}} = \frac{150x37}{560} = 9.91$

TABLA DE FRECUENCIAS ESPERADAS

	Peor	lgual	Mejor	TOTAL
Trat 1	9,91	31,61	108,48	150
Trat 2	7,93	25,28	86,79	120
Trat 3	8,59	27,39	94,02	130
Trat 4	10,57	33,72	115,71	160
TOTAL	37	118	405	560

CÓMO MEDIR LAS DISCREPANCIAS

Se calcula la diferencia entre ambas magnitudes ($\mathbf{fo_{ij}}$ - $\mathbf{fe_{ij}}$), para todas y cada una de las casillas de la tabla

Estadígrafo de contraste

$$\chi^2 = \sum_{i}^{1} \frac{(fo_{ij} - fe_{ij})^2}{fe_{ij}}$$

 $\mathbf{fo_{ij}}$ = frecuencia observada para la ij-ésima casilla.

 $\mathbf{fe_i}_j$ = frecuencia esperada para la ij-ésima casilla.

Si la Hipótesis nula es cierta, χ^2 sigue una distribución Chi cuadrado con (l-1) (J-1) grados de libertad

• Rechazaremos H_0 cuando χ^2 experimental > χ^2 crítico

CÁLCULO DEL VALOR EXPERIMENTAL

$$\chi_{\text{exp}}^{2} = \sum_{i} \sum_{j} \frac{\left(\text{fo}_{ij} - \text{fe}_{ij}\right)^{2}}{\text{fe}_{ij}}$$

Aplicado a nuestro ejemplo el resultado sería:

$$\chi \frac{2}{\exp} = \frac{(7-991)^2}{991} + ... + \frac{(115-115.71)^2}{115.71} = 13.87$$

TABLA DE LA JI-CUADRADO

	0.9950	0.9750	0.950	0.900	0.200	0.10	0.)50	0.025	0.010	0.001
1	0.0000393	0.000982	0.00393	0.0158	1.642	2.706	3.8 41	5.024	6.635	10.828
2	0.010	0.0506	0.103	0.211	3.219	4.605	5.991	7.378	9.510	13.816
3	0.0717	0.216	0.352	0.584	4.642	6.251	7.8 51	9.348	11.345	16.266
4	0.207	0.484	0.711	1.064	5.989	7.779	9.4 <mark>3</mark> 8	1.143	13.277	18.467
								_		
5	0.412	0.831	1.145	1.610	7.289	9.236	11.070	12.833	15.086	20.515
6	0.676	1.237	1.635	2.204	8.558	10 645	12559	14.449	16.812	22.458
/	0.989	1.690	2.167	2.833	9.803	12.017	14.067	16.013	18.475	24.322
8	1.344	2.180	2.733	3.490	11.030	13.362	15.507	17.535	20.090	26.124
9	1.735	2.700	3.325	4.168	12.242	14.684	16.919	19.023	21.666	27.877
10	2.156	3.247	3.940	4.865	13.442	15.987	18.307	20.483	23.209	29.588
11	2.603	3.816	4.575	5.578	14.631	17.275	19.675	21.920	24.725	31.264
12	3.074	4.404	5.226	6.304	15.812	18.549	21.026	13.337	26.217	32.909
13	3.565	5.009	5.892	7.042	16.985	19.812	22.362	24.736	27.688	34.528
14	4.075	5.629	6.571	7.790	18.151	21.064	23.685	26.119	29.141	36.123
		0.020	0.0.					_00		001.20
15	4.601	6.262	7.261	8.547	19.311	22.307	24.996	27.488	30.578	37.697
16	5.142	6.908	7.962	9.312	20.465	23.452	26.296	28.645	32.000	39.252
17	5.697	7.564	8.672	10.085	21.615	24.769	27.587	30.191	33.409	40.790
18	6.265	8.231	9.390	10.865	22.760	25.989	28.869	31.526	34.805	42.312
19	6.844	8.907	10.117	11.651	23.900	27.204	30.144	32.852	36.191	43.820
20	7.434	9.591	10.851	12.443	25.038	28.412	31.410	34.170	37.566	45.315
21	8.034	10.283	11.591	13.240	26.171	29.615	32.671	35.479	38.932	46.979
22	8.643	10.982	12.338	14.041	27.301	30.813	33.924	36.781	40.289	48.268
23	9.260	11.689	13.091	14.848	28.429	32.007	35.172	38.076	41.638	49.728
24	9.886	12.401	13.848	15.659	29.553	33.196	36.415	39.364	42.980	51.179
25	10.520	13.120	14.611	16.473	30.675	34.382	37.652	40.646	44.314	52.620
26	11.160	13.844	15.379	17.292	31.795	35.563	38.885	41.923	45.642	54.052
27	11.808	14.573	16.151	18.114	32.912	36.741	40.113	43.195	46.963	55.476
28	12.461	15.308	16.928	18.939		37.916	41.337	44.461	48.278	56.892
29	13.121	16.047	17.708	19.769	35.139	39.087	42.557	45.722	49.588	58.301
						-				-
30	13.787	16.791	18.493	20.599	36.250	40.256	43.773	46.979	50.892	59.703

CÁLCULO DEL VALOR EXPERIMENTAL

$$\chi_{\text{exp}}^{2} = \sum_{i} \sum_{j} \frac{\left(\text{fo}_{ij} - \text{fe}_{ij}\right)^{2}}{\text{fe}_{ij}}$$

Aplicado a nuestro ejemplo el resultado sería:

$$\chi \frac{2}{\exp} = \frac{(7-991)^2}{991} + ... + \frac{(115-115.71)^2}{115.71} = 13.87$$

$$\chi^2_{0.05,6} = 12.59$$
 13.87 > 12.59

=> La respuesta depende del tratamiento

Y ahora con el SPSS...

¿Cómo meter los datos?

Los datos pueden estar dispuestos:

 En su formato bruto (tantas columnas como variables categóricas deseemos analizar)

Como tabla de contingencia ya construida.

¿Cómo meter los datos?

Datos

Como tabla de contingencia ya construida.

	Peor	lgual	Mejor	
Trat1	7	28	115	
Trat2	15	20	85	
Trat3	10	30	90	
Trat4	5	40	115	
				560

Tabla de contingencia DOSIS * DIAGNÓSTICO

Recuento								
		D	IAGNÓSTIC	ρ				
		1 PEOR	2 IGUAL	3 MEJOR	Total			
DOSIS	TRATAM_1	7	28	115	150			
	TRATAM_2	15	20	85	120			
	TRATAM_3	10	30	90	130			
	TRATAM_4	5	40	115	160			
Total		37	118	405	560			

¿Cómo realizar el análisis?

¿Cómo realizar el análisis descriptivo?

Recuento								
			DIAGNÓSTICO					
		1 PEOR	2 IGUAL	3 MEJOR	Total			
DOSIS	TRATAM_1	7	28	115	150			
	TRATAM_2	15	20	85	120			
	TRATAM_3	10	30	90	130			
	TRATAM_4	5	40	115	160			
Total		37	118	405	560			

Tabla de contingencia DOSIS * DIAGNÓSTICO

Casillas

Porcentajes

DIAGNÓSTICO 2 IGUAL PEOR 3 MEJOR Total DOSIS TRATAM 1 4,7% 18,7% 76,7% 100,0% TRATAM 2 12,5% 100,0% 16.7% 70,8% TRATAM 3 100,0% 7,7% 23,1% 69,2% TRATAM 4 3,1% 25,0% 71,9% 100,0% Total 6,6% 100,0% 21,1% 72,3%

Tabla de contingencia DOSIS * DIAGNÓSTICO

Tablas de contingencia: Mostrar en las casil Frecuencias: Observadas Esperadas Porcentajes: Residuos No tipificados X Fila ☐ Tipificados X Columna X Total Tipificados co Ponderaciones no enteras: Redondear frecuencias de casillas Redon C Truncar frecuencias de casillas Trunca No efectuar correcciones

	<u></u>				
		D	IAGNÓSTIC	ρ	
		1 PEOR	2 IGUAL	3 MEJOR	Total
DOSIS	TRATAM_1	18,9%	23,7%	28,4%	26,8%
	TRATAM_2	40,5%	16,9%	21,0%	21,4%
	TRATAM_3	27,0%	25,4%	22,2%	23,2%
	TRATAM_4	13,5%	33,9%	28,4%	28,6%

Tabla de contingencia DOSIS * DIAGNÓSTICO

100.0%

100.0%

100.0%

100,0%

% del total

Total

% Tratamiento/Dosis

% Diagnostico

		D	ρ				
		1 PEOR	1 PEOR 2 IGUAL 3 MEJOR				
DOSIS	TRATAM_1	1,3%	5,0%	20,5%	26,8%		
	TRATAM_2	2,7%	3,6%	15,2%	21,4%		
	TRATAM_3	1,8%	5,4%	16,1%	23,2%		
	TRATAM_4	,9%	7,1%	20,5%	28,6%		
Total		6,6%	21,1%	72,3%	100,0%		

¿Cómo realizar el análisis?

Ambos siguen una distribución Chi cuadrado con (I-1) (J-1) gardos de libertad

Trat1	Peor 7	Igual	Mejor			Tablas d	e contingenci	a: Esta	dístico	S		X
Trat2 Trat3 Trat4	15 10 5	20 30 40	85 90 115	560 dos		Chi-cu Nominal Coefi Phi y	Coeficiente de contingencia Phi y V de Cramer Lambda Coeficiente de incertidumbre			☐ d de Somers ☐ Tau-b de Kendall		
						Prueb	as de chi-cu	adrad	0	P-valo		
				Valor	(ıl	Sig. asintó (bilatera	tica				
	Chi-cuadrado de Pearson				13,871 ^a		6	,	031			
	Razón de verosimilitud				13,378		6	,	037			
	N de casos válidos						560					

a. 0 casillas (,0%) tienen una frecuencia esperada inferior a 5.
 La frecuencia mínima esperada es 7,93.

Pruebas de chi-cuadrado

			_ P-valor _
	Valor	al	Sig. asintótica (bilateral)
Chi-cuadrado de Pearson	13,871 ^a	6	,031
Razón de verosimilitud	13,378	6	,037
N de casos válidos	560		

a. 0 casillas (,0%) tienen una frecuencia esperada inferior a 5.
 La frecuencia mínima esperada es 7,93.

En el ordenador, al lado del valor experimental, aparece el p-valor

El p-valor nos indica el riesgo que corremos al rechazar la Ho (independencia) después de haber explorado los datos.

Si el p-valor es menor de 0.05, rechazamos H**o (independencia)** y aceptamos la Ha (**relación**). Si p-valor > 0.05, NO

GRADO DE ASOCIACIÓN

Estadísticos Tablas de contingencia: Estadísticos

Continuar

Cancelar

Ayuda

$$o \le CC = \sqrt{\frac{I-1}{I}}$$

I= Dimensión de la tabla

IX Chi-cuadrado	Correlaciones
Nominal	_ Ordinal
Coeficiente de contingencia	☐ Gamma
Phi y V de Cramer	d de Somers
☐ Lambda	Tau-b de Kendall
Coeficiente de incertidumbre	Tau-c de Kendall
Nominal por intervalo	Г Карра

1				
		Fta		

Eta			

	Estadísticos	de I	Cochran	y de	Mantel-H	laensze
--	--------------	------	---------	------	----------	---------

Riesgo

McNemar

igual a:

Coeficiente de Contingencia (CC): (Basado en el Chi-cuadrado)

Nominales

Tabla cuadrada

Rol simétrico

	Peor	lgual	Mejor	
Trat1	7	28	115	
Trat2	15	20	85	
Trat3	10	30	90	
Trat4	5	40	115	
				560

Medidas simétricas

	Valor	Sig. aproximada
Nominal por Coeficiente de nominal contingencia N de casos válidos	,155 560	,031

- a. Asumiendo la hipótesis alternativa.
- b. Empleando el error típico asintótico basado en la hipótesis nula.

Estadísticos Tablas de contingencia: Estadísticos Chi-cuadrado Correlaciones Continuar Nominal: Ordinal: Cancelar Coeficiente de contingencia □ Gamma Ayuda Phi y V de Cramer d de Somers Tau-b de Kendall Phi: (Basado en el Chi-cuadrado) te de incertidumbre Tau-c de Kendall **Nominales** Dicotómicas intervalo Карра Eta Riesgo McNemar V Cramer = Estadísticos de Cochran y de Mantel-Haenszel Contrastar la razón de ventaias común igual a: V de Cramer: (Basado en el Chi-cuadrado) **Nominales**

Casillas

Para ayudarle a descubrir las tramas en los datos que contribuyen a una prueba de chi-cuadrado significativa, cada casilla de la tabla puede contener cualquier combinación de recuentos, porcentajes y residuos seleccionados.

Siguen, asintóticamente, un modelo N(0,1)

Tabla de contingencia DOSIS * DIAGNÓSTICO

<u> 1763iuuu</u>						
		DIAGNÓSTICO				
		1 PEOR	2 IGUAL	3 MEJOR		
DOSIS	TRATAM_1	-2,9	-3,6	6,5		
	TRATAM_2	7,1	-5,3	-1,8		
	TRATAM_3	1,4	2,6	-4,0		
	TRATAM_4	-5,6	6,3	-,7		

Residuos	tinificados	2
<u>110314403</u>	<u>tib ili Cado.</u>	<u> </u>

Residuo

		DIAGNÓSTICO				
		1 PEOR	2 IGUAL	3 MEJOR		
DOSIS	TRATAM_1	-,9	-,6	,6		
	TRATAM_2	2,5	-1,1	-,2		
	TRATAM_3	,5	,5	-,4		
	TRATAM_4	-1,7	1,1	-,1		

Residuos corregidos							
			D	IAGNÓSTIC:	0		
		1	PEOR	2 IGUAL	3 MEJOR		
DOSIS	TRATAM_1		-1,1	-,8	1,4		
	TRATAM_2		2,9	-1,3	-,4		
	TRATAM_3		,6	,6	-,9		
	TRATAM_4		-2,1	1,4	-,1		

Mejor Peor Igual Trat1 28 115 15 20 85 Trat3 10 30 90 Trat4 5 40 115 **560**

GRADO DE ASOCIACIÓN

Análisis de la relación entre dos variables

Cuantitativa

Cualitativa

Ho: Las 2 variables son independientes

Ha: Las variables están relacionadas

T de STUDENT ANOVA

p-valor <0.05 => Rechazo Ho