CENG 477 Introduction to Computer Graphics

Representing Curves and Surfaces

Introduction

- There are no perfectly straight lines or flat faces in nature!
- Therefore, representing and generating smooth shapes is a requirement in many CG applications
- Rendering will still use lines and triangles but their vertices will be sampled from a curve or surface

Curves

- There are many ways to represent curves:
 - must be practical (easy to manage and render)
 - must be flexible (general enough to be used in various modeling tasks)
- A good compromise is cubic polynomials
- Each x, y, z coordinate is expressed as a cubic polynomial with potentially different coefficients (t is the parameter)

$$x(t) = a_x t^3 + b_x t^2 + c_x t + d_x$$

$$y(t) = a_y t^3 + b_y t^2 + c_y t + d_y$$

$$z(t) = a_z t^3 + b_z t^2 + c_z t + d_z$$

Curves

- For a given t value, $q(t) = [x(t) \ y(t) \ z(t)]$ represents the 3D position along the curve
- Similar to rays in ray tracing except that it may follow a curvy path instead of a straight one!
- The t parameter is taken to be in range [0, 1]

Cubic Polynomials

- As cubic polynomials have 4 unknowns (per component), we need 4 constraints to find them
- Different curves are distinguished by different constraints
 - Hermite curves: 2 end points + 2 tangent vectors
 - Bezier curves: 2 end points + 2 control points
 - Splines: 4 control points (for each piece of the curve)

Matrix Form

Cubic polynomials are conveniently expressed in matrix form:

$$x(t) = a_x t^3 + b_x t^2 + c_x t + d_x$$

$$y(t) = a_y t^3 + b_y t^2 + c_y t + d_y$$

$$z(t) = a_z t^3 + b_z t^2 + c_z t + d_z$$

$$Q(t) = [x(t) \ y(t) \ z(t)] = [t^{3} \ t^{2} \ t \ 1] \begin{bmatrix} a_{x} & a_{y} & a_{z} \\ b_{x} & b_{y} & b_{z} \\ c_{x} & c_{y} & c_{z} \\ d_{x} & d_{y} & d_{z} \end{bmatrix}$$

$$Q(t) = TC$$

Matrix Form

 We will also need the derivative of this curve to specify tangent vectors

$$\frac{dQ(t)}{dt} = Q'(t) = \frac{dT}{dt}C = [3t^2 \ 2t \ 1 \ 0]C$$

Constraints

- Imagine that we want to specify certain geometrical constraints such as:
 - Start point
 - End point
 - Start direction (i.e. tangent vector at start point)
 - End direction (i.e. tangent vector at end point)
- We need to split the matrix C into two to allow embedding of these constraints

Constraints

• Rewrite C = MG, where G represents the geometry constraints

$$C = \begin{bmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \\ c_x & c_y & c_z \\ d_x & d_y & d_z \end{bmatrix} = \begin{bmatrix} m_{11} & m_{12} & m_{13} & m_{14} \\ m_{21} & m_{22} & m_{23} & m_{24} \\ m_{31} & m_{32} & m_{33} & m_{34} \\ m_{41} & m_{42} & m_{43} & m_{44} \end{bmatrix} \begin{bmatrix} g_{1x} & g_{1y} & g_{1z} \\ g_{2x} & g_{2y} & g_{2z} \\ g_{3x} & g_{3y} & g_{3z} \\ g_{4x} & g_{4y} & g_{4z} \end{bmatrix}$$

- Here, *M* is called the basis matrix
- G is called the geometry or the constraints matrix
- Different types of curves differ in M and G

Constraints

- Note that Q(t) = TMG
- For instance:

$$x(t) = \begin{bmatrix} t^3 \ t^2 \ t \ 1 \end{bmatrix} \begin{pmatrix} g_{1x} \begin{bmatrix} m_{11} \\ m_{21} \\ m_{31} \\ m_{41} \end{bmatrix} + g_{2x} \begin{bmatrix} m_{12} \\ m_{22} \\ m_{32} \\ m_{42} \end{bmatrix} + g_{3x} \begin{bmatrix} m_{13} \\ m_{23} \\ m_{33} \\ m_{43} \end{bmatrix} + g_{4x} \begin{bmatrix} m_{14} \\ m_{24} \\ m_{34} \\ m_{44} \end{bmatrix} \rangle$$

Blending Functions

Rewriting this gives us:

$$x(t) = \begin{bmatrix} t^3 \ t^2 \ t \ 1 \end{bmatrix} \begin{pmatrix} g_{1x} \begin{bmatrix} m_{11} \\ m_{21} \\ m_{31} \\ m_{41} \end{bmatrix} + g_{2x} \begin{bmatrix} m_{12} \\ m_{22} \\ m_{32} \\ m_{42} \end{bmatrix} + g_{3x} \begin{bmatrix} m_{13} \\ m_{23} \\ m_{33} \\ m_{43} \end{bmatrix} + g_{4x} \begin{bmatrix} m_{14} \\ m_{24} \\ m_{34} \\ m_{44} \end{bmatrix} \end{pmatrix}$$

$$\begin{split} x(t) &= (t^3 m_{11} + t^2 m_{21} + t m_{31} + m_{41}) g_{1x} + \\ & (t^3 m_{12} + t^2 m_{22} + t m_{32} + m_{42}) g_{2x} + \\ & (t^3 m_{13} + t^2 m_{23} + t m_{33} + m_{43}) g_{3x} + \\ & (t^3 m_{14} + t^2 m_{24} + t m_{34} + m_{44}) g_{4x} \end{split}$$

 That is, the curve is a weighted sum of the elements of the geometry matrix

Blending Functions

- The weights are each cubic polynomials of t
- These polynomials are called blending functions

$$x(t) = (t^{3}m_{11} + t^{2}m_{21} + tm_{31} + m_{41})g_{1x} + (t^{3}m_{12} + t^{2}m_{22} + tm_{32} + m_{42})g_{2x} + (t^{3}m_{13} + t^{2}m_{23} + tm_{33} + m_{43})g_{3x} + (t^{3}m_{14} + t^{2}m_{24} + tm_{34} + m_{44})g_{4x}$$

Two Important Curves

- Now we will see how this background can be used to define two types of curves:
 - Hermine curves
 - Bezier curves
- Both curves can draw the same curves (they are equally powerful) but they have different geometry constraints

- The constraints of Hermite curves are:
 - Two end points: P_1 and P_4
 - Two tangent vectors: R_1 and R_4

The geometry matrix then becomes:

$$G = \begin{bmatrix} P_1 \\ P_4 \\ R_1 \\ R_4 \end{bmatrix} = \begin{bmatrix} P_{1x} & P_{1y} & P_{1z} \\ P_{4x} & P_{4y} & P_{4z} \\ R_{1x} & R_{1y} & R_{1z} \\ R_{4x} & R_{4y} & R_{4z} \end{bmatrix}$$

• To find M remember that the curve in matrix form we have:

$$Q(t) = TMG$$

• And for derivative: Q'(t) = T'MG

- We can now plug in values for the t parameter
 - Compute Q(0), Q(1), Q'(0), Q'(1)

$$Q(0) = [0 \ 0 \ 0 \ 1]MG$$

 $Q(1) = [1 \ 1 \ 1 \ 1]MG$
 $Q'(0) = [0 \ 0 \ 1 \ 0]MG$
 $Q'(1) = [3 \ 2 \ 1 \ 0]MG$

This is the same as:

$$\begin{bmatrix} Q(0) \\ Q(1) \\ Q'(0) \\ Q'(1) \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 3 & 2 & 1 & 0 \end{bmatrix} MG$$

Remember that G was equal to:

$$G = \begin{bmatrix} P_1 \\ P_4 \\ R_1 \\ R_4 \end{bmatrix} = \begin{bmatrix} Q(0) \\ Q(1) \\ Q'(0) \\ Q'(1) \end{bmatrix}$$

So we have:

$$\begin{bmatrix} Q(0) \\ Q(1) \\ Q'(0) \\ Q'(1) \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 3 & 2 & 1 & 0 \end{bmatrix} M \begin{bmatrix} Q(0) \\ Q(1) \\ Q'(0) \\ Q'(1) \end{bmatrix}$$
Same

Only possible if *M* is the inverse of the matrix

Therefore, Hermite curves have the following basis matrix:

$$M = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 3 & 2 & 1 & 0 \end{bmatrix}^{-1} = \begin{bmatrix} 2 & -2 & 1 & 1 \\ -3 & 3 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

This yields the following blending functions:

$$B = \begin{bmatrix} 2t^3 - 3t^2 + 1 \\ -2t^3 + 3t^2 \\ t^3 - 2t^2 + t \\ t^3 - t^2 \end{bmatrix}^T$$

Let's plot these $B = \begin{bmatrix} 2t^3 - 3t^2 + 1 \\ -2t^3 + 3t^2 \\ t^3 - 2t^2 + t \end{bmatrix}$ with gnuplot and do some experimentation with Matlab!

Hermite Blending Functions

- Bezier curves can draw the same curves as Hermite curves
- They are defined using control points instead of derivatives
- Two control points are interpolated and two control points are approximated

- The curve lies entirely within the convex-hull of these four points
- This is useful for clipping, culling, and intersection tests as the convex-hull can be tested first instead of each line segment

Bezier curves are related to the Hermite curves as:

$$R_1 = 3(P_2 - P_1)$$

$$R_4 = 3(P_4 - P_3)$$

• The factor 3 ensures that P_2 has the highest weight at t=1/3 and P_3 has the highest weight at t=2/3, logically dividing the curve into 3 pieces

In matrix form, this relationship can be express as:

$$G_{H} = \begin{bmatrix} P_{1} \\ P_{4} \\ R_{1} \\ R_{4} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ -3 & 3 & 0 & 0 \\ 0 & 0 & -3 & 3 \end{bmatrix} \begin{bmatrix} P_{1} \\ P_{2} \\ P_{3} \\ P_{4} \end{bmatrix}$$

$$G_{B}$$

This matrix translates Bezier geometry matrix to the Hermite geometry matrix (let's call this matrix as M_{BH})

Then Bezier curves can be defined as:

$$Q(t) = TM_HG_H = TM_HM_{BH}G_B$$

$$Q(t) = TM_BG_B$$
 where $M_B = M_HM_{BH}$

$$Q(t) = \begin{bmatrix} t^3 & t^2 & t & 1 \end{bmatrix} \begin{bmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 3 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} P_1 \\ P_2 \\ P_3 \\ P_4 \end{bmatrix}$$

This is equivalent to:

$$Q(t) = (-t^3 + 3t^2 - 3t + 1)P_1 + (1-t)^3 P_1 + (3t^3 - 6t^2 + 3t)P_2 + (-3t^3 + 3t^2)P_3 + (t^3)P_4$$

$$(1-t)^3 P_1 + (1-t)^2 P_2 + (1-t)^2 P_2 + (1-t)^2 P_3 + (t^3)P_4$$

- These are called Bernstein polynomials
 - Their sum is always 1
 - They are always non-negative when $t \in [0,1]$
 - That's why the resulting curve is in the convex-hull of P_1 , P_2 , P_3 , P_4
 - Bernstein polynomial of degree n is $B_{i,n}(t) = \binom{n}{i} t^i (1-t)^{n-i}$

Bezier curve is the sum of Bernstein polynomials

$$Q(t) = (1-t)^{3}P_{1} + 3t(1-t)^{2}P_{2} + 3t^{2}(1-t)P_{3} + t^{3}P_{4}$$

$$Q(t) = \sum_{i=0}^{n} B_{i,n}(t) P_{i+1}$$

$$B_{i,n}(t) = \binom{n}{i} t^i (1-t)^{n-i}$$

Bernstein Polynomials

Continuity

- Until now, we learned to draw a single curve segment
- If we want to combine multiple curve segments, we must ensure maintaining continuity

Types of Continuity

No continuity:

The curves do not meet

• C0 continuity:

The end points meet, also know as positional continuity

Types of Continuity

C1 continuity:

The curves meet and have identical tangent vectors at the connection

• C2 continuity:

- The curves meet and have identical curvature at the connection
- The curvature is defined as the rate of change of tangents

Types of Continuity

- Imagine a camera moving along a curve with multiple segments
 - No continuity: camera will make jumps between segments
 - C0 continuity: camera velocity may suddenly change
 - C1 continuity: camera acceleration may suddenly change
 - C2 continuity: camera motion will appear smooth
- In general, maintaining C2 continuity is desired

Maintaining Continuity

Imagine having two Hermite curves:

$$G_l = \begin{bmatrix} P_1 \\ P_4 \\ R_1 \\ R_4 \end{bmatrix} \qquad G_r = \begin{bmatrix} Q_1 \\ Q_4 \\ T_1 \\ T_4 \end{bmatrix}$$

• C1 continuity can be maintained if $P_4=Q_1$ and $R_4=T_1$

Maintaining Continuity

Similarly for two Bezier curves:

$$G_l = \begin{bmatrix} P_1 \\ P_2 \\ P_3 \\ P_4 \end{bmatrix} \qquad G_r = \begin{bmatrix} Q_1 \\ Q_2 \\ Q_3 \\ Q_4 \end{bmatrix}$$

• C1 is ensured if $P_4 = Q_1$ and $P_4 - P_3 = Q_2 - Q_1$

Maintaining Continuity

- What if we want to maintain C2 continuity?
- Unfortunately, neither Hermite nor Bezier curves can guarantee C2 continuity
- For this we have a new type of curve called splines

Splines

 The term spline was used to refer to flexible metal strips used by draftspersons to design the surfaces of airplanes, cars, and ships, etc.

core77.com

Splines

- The splines, due to physical properties of the metal strips, had second order (C2) continuity
- Its mathematical equivalent is natural cubic splines
- Splines have one more degree of continuity than that is afforded by Hermite and Bezier curves
- There are other types of splines:
 - B-Splines
 - Uniform Nonrational B-Splines
 - Nonuniform Nonrational B-Splines
 - Nonuniform Rational B-Splines
 - Beta-Splines
 - V-Splines

- Defined by n+1 control points
- The spline, consisting of n curves, interpolates all of these points

The spline is defined as:

$$S(t) = \begin{cases} S_0(t), & t_0 \le t \le t_1 \\ S_1(t), & t_1 \le t \le t_2 \\ \vdots \\ S_{n-1}(t), & t_{n-1} \le t \le t_n \end{cases}$$

Each curve is a cubic polynomial:

$$S_0(t) = a_0 t^3 + b_0 t^2 + c_0 t + d_0$$

$$S_{n-1}(t) = a_{n-1}t^3 + b_{n-1}t^2 + c_{n-1}t + d_{n-1}$$

There are a total of 4n unknowns!

 The end points of the curves must meet (C0 cont.) and their first two derivatives must be equal (C1 and C2):

$$S_{i-1}(t_i) = S_i(t_i)$$

$$S'_{i-1}(t_i) = S'_i(t_i)$$

$$S''_{i-1}(t_i) = S''_i(t_i)$$

$$i = 1 \dots n - 1$$

• This gives us 3n - 3 equations

We also know the values of the spline at the control points:

$$S(t_i) = P_i, \qquad i = 0 \dots n$$

- This gives us another n+1 equations
- We still need two more ...
- $S''(t_0) = S''(t_n) = 0$ gives us natural cubic splines

• Let's call the second derivatives at control points as:

$$Z_i = S''(t_i)$$

- For natural cubic spline we have $Z_0 = Z_n = [0 \ 0 \ 0]^T$
- How does S''(t) look like?

• S''(t) will be piecewise-linear

This derivation is largely inspired from Arne Morten Kvarving's slides on cubic splines

• S''(t) will be piecewise-linear

• At this point, we need to integrate twice to obtain S(t)

$$S_i''(t) = Z_{i+1} \frac{t - t_i}{h_i} + Z_i \frac{t_{i+1} - t}{h_i}$$

$$S_i'(t) = Z_{i+1} \frac{(t - t_i)^2}{2h_i} + Z_i \frac{(t_{i+1} - t)^2}{-2h_i} + C_i$$

$$S_i(t) = Z_{i+1} \frac{(t - t_i)^3}{6h_i} + Z_i \frac{(t_{i+1} - t)^3}{6h_i} + C_i t + D_i$$

$$S_i(t) = Z_{i+1} \frac{(t - t_i)^3}{6h_i} + Z_i \frac{(t_{i+1} - t)^3}{6h_i} + E_i (t - t_i) + F_i (t_{i+1} - t)$$
where $C_i = E_i - F_i$ and $D_i = F_i t_{i+1} - E_i t_i$

• At this point, the only unknowns are Z_i , Z_{i+1} , E_i and F_i

$$S_i(t) = Z_{i+1} \frac{(t - t_i)^3}{6h_i} + Z_i \frac{(t_{i+1} - t)^3}{6h_i} + E_i(t - t_i) + F_i(t_{i+1} - t)$$

Plug-in the values at the control points:

$$S_{i}(t_{i}) = P_{i} = Z_{i} \frac{h_{i}^{2}}{6} + F_{i}h_{i}$$

$$S_{i}(t_{i+1}) = P_{i+1} = Z_{i+1} \frac{h_{i}^{2}}{6} + E_{i}h_{i}$$

• From here, we can determine E_i and F_i

This gives us:

$$S_{i}(t) = \mathbf{Z}_{i+1} \frac{(t - t_{i})^{3}}{6h_{i}} + \mathbf{Z}_{i} \frac{(t_{i+1} - t)^{3}}{6h_{i}} + \left(\frac{P_{i+1}}{h_{i}} - \frac{Z_{i+1}h_{i}}{6}\right)(t - t_{i}) + \left(\frac{P_{i}}{h_{i}} - \frac{Z_{i}h_{i}}{6}\right)(t_{i+1} - t)$$

- Finally, we need to compute the Z_i terms
- We know that $Z_0 = Z_n = [0 \ 0 \ 0]^T$

 We did not use the constraint that the first derivatives at the control points are equal; so take the derivative

$$S'_{i}(t) = Z_{i+1} \frac{(t - t_{i})^{2}}{2h_{i}} - Z_{i} \frac{(t_{i+1} - t)^{2}}{2h_{i}} + \frac{1}{h_{i}} (P_{i+1} - P_{i}) - \frac{h_{i}}{6} (Z_{i+1} - Z_{i})$$

$$B_{i}$$

$$S_i'(t_i) = -\mathbf{Z}_i \frac{h_i}{2} + \mathbf{B}_i - \frac{h_i}{6} \mathbf{Z}_{i+1} + \frac{h_i}{6} \mathbf{Z}_i$$

Repeat this for the previous (or the next) segment:

$$S'_{i-1}(t) = Z_i \frac{(t - t_{i-1})^2}{2h_{i-1}} - Z_{i-1} \frac{(t_i - t)^2}{2h_{i-1}} + \frac{1}{h_{i-1}} (P_i - P_{i-1}) - \frac{h_{i-1}}{6} (Z_i - Z_{i-1})$$

$$B_{i-1}$$

 $S'_{i-1}(t_i) = Z_i \frac{h_{i-1}}{2} + B_{i-1} - \frac{h_{i-1}}{6} Z_i + \frac{h_{i-1}}{6} Z_{i-1}$

Now equate the segments at the control points:

$$S'_{i}(t_{i}) = S'_{i-1}(t_{i})$$

$$-Z_{i}\frac{h_{i}}{2} + B_{i} - \frac{h_{i}}{6}Z_{i+1} + \frac{h_{i}}{6}Z_{i} = Z_{i}\frac{h_{i-1}}{2} + B_{i-1} - \frac{h_{i-1}}{6}Z_{i} + \frac{h_{i-1}}{6}Z_{i-1}$$

$$-3Z_{i}h_{i} + 6B_{i} - h_{i}Z_{i+1} + h_{i}Z_{i} = 3Z_{i}h_{i-1} + 6B_{i-1} - h_{i-1}Z_{i} + h_{i-1}Z_{i-1}$$

$$6(B_{i} - B_{i-1}) = h_{i-1}Z_{i-1} + 2(h_{i-1} + h_{i})Z_{i} + h_{i}Z_{i+1}$$

• We can set up n-1 equations in this form and we also have n-1 unknowns (from Z_1 to Z_{n-1})

$$6(B_{i} - B_{i-1}) = h_{i-1} Z_{i-1} + 2(h_{i-1} + h_{i}) Z_{i} + h_{i} Z_{i+1}$$

• In the above equation, plug $i=1\dots n-1$, and solve the resulting system

• Setup the system such that we have the Ax = b form

$$\begin{bmatrix} v_1 & h_1 & 0 & \dots \\ h_1 & v_2 & h_2 & & \\ 0 & h_2 & v_3 & h_3 & & \\ \vdots & & \ddots & & & \\ & & & v_{n-2} & h_{n-2} \\ & & & h_{n-2} & v_{n-1} \end{bmatrix} \begin{bmatrix} Z_{1,x} \\ Z_{2,x} \\ Z_{3,x} \\ \vdots \\ Z_{n-1,x} \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ \vdots \\ b_{n-1} \end{bmatrix}$$

$$h_{i} = t_{i+1} - t_{i}$$

$$v_{i} = 2(h_{i-1} + h_{i})$$

$$b_{i} = 6(B_{i,x} - B_{i-1,x})$$

$$B_{i,x} = \frac{1}{h_{i}} (P_{i+1,x} - P_{i,x})$$

- Note that we are solving for the x-components
- We need to solve for y- and z-components if our curve is 3 dimensional

Sample Output

 $P = \{(1, 1), (2, 3), (3, 2), (4, 5), (5, 1), (6, 3), (7, 2)\}$ $T = \{0, 1, 2, 3, 4, 5, 6\}$

Parametric Bicubic Surfaces

- Generalization of parametric cubic curves
- Recall Q(t) = TMG
- First replace t by s such that Q(s) = SMG
- Now allow the points in ${\it G}$ to vary along a curve parametrized by ${\it t}$

Parametric Bicubic Surfaces

We can setup separate equations for x, y, and z:

$$Q_{x}(s,t) = SM \begin{bmatrix} G_{1x}(t) \\ G_{2x}(t) \\ G_{3x}(t) \\ G_{4x}(t) \end{bmatrix}$$

$$Q_{x}(s,t) = SM \begin{bmatrix} G_{1x}(t) \\ G_{2x}(t) \\ G_{3x}(t) \\ G_{4x}(t) \end{bmatrix} \qquad Q_{y}(s,t) = SM \begin{bmatrix} G_{1y}(t) \\ G_{2y}(t) \\ G_{3y}(t) \\ G_{4y}(t) \end{bmatrix} \qquad Q_{z}(s,t) = SM \begin{bmatrix} G_{1z}(t) \\ G_{2z}(t) \\ G_{3z}(t) \\ G_{4z}(t) \end{bmatrix}$$

$$Q_z(s,t) = SM \begin{bmatrix} G_{1z}(t) \\ G_{2z}(t) \\ G_{3z}(t) \\ G_{4z}(t) \end{bmatrix}$$

Parametric Bicubic Surfaces

- Now for a fixed $t=t_1$, $Q(s,t_1)$ is a curve because $G(t_1)$ is constant
- Allowing t to take on a different value, t_2 , where t_2-t_1 is very small, $Q(s,t_2)$ is a slightly different curve
- Repeating this arbitrarily many times gives you a large set of curves, which is our surface

Called bicubic if $G_i(t)$ are themselves cubic

Assume that $G_i(t)$ themselves are defined by:

$$G_i(t) = TMZ_i$$

$$Z_{i1x} \quad Z_{i1y} \quad Z_{i1z}$$

$$G_i(t) = TM\begin{bmatrix} Z_{i1} \\ Z_{i2} \\ Z_{i3} \\ Z_{i4} \end{bmatrix}$$

$$G_{ix}(t) = TM \begin{bmatrix} Z_{i1x} \\ Z_{i2x} \\ Z_{i3x} \\ Z_{i4x} \end{bmatrix}$$

$$G_{ix}(t) = TM \begin{bmatrix} Z_{i1x} \\ Z_{i2x} \\ Z_{i3x} \\ Z_{i4x} \end{bmatrix} \qquad G_{iy}(t) = TM \begin{bmatrix} Z_{i1y} \\ Z_{i2y} \\ Z_{i3y} \\ Z_{i4y} \end{bmatrix} \qquad G_{iz}(t) = TM \begin{bmatrix} Z_{i1z} \\ Z_{i2z} \\ Z_{i3z} \\ Z_{i4z} \end{bmatrix}$$

$$G_{iz}(t) = TM \begin{bmatrix} Z_{i1z} \\ Z_{i2z} \\ Z_{i3z} \\ Z_{i4z} \end{bmatrix}$$

Remember that we have:

$$Q_{x}(s,t) = SM \begin{bmatrix} G_{1x}(t) \\ G_{2x}(t) \\ G_{3x}(t) \\ G_{4x}(t) \end{bmatrix} \qquad G_{ix}(t) = TM \begin{bmatrix} Z_{i1x} \\ Z_{i2x} \\ Z_{i3x} \\ Z_{i4x} \end{bmatrix}$$

• To combine them into a single equation, take the transpose of $G_{ix}(t)$, which is equal to itself due to its being a scalar:

$$G_{1x}(t)^T = G_{1x}(t) = [Z_{11x} \quad Z_{11x} \quad Z_{13x} \quad Z_{14x}]M^TT^T$$
 $G_{2x}(t)^T = G_{2x}(t) = [Z_{21x} \quad Z_{21x} \quad Z_{23x} \quad Z_{24x}]M^TT^T$
 $G_{3x}(t)^T = G_{3x}(t) = [Z_{31x} \quad Z_{31x} \quad Z_{33x} \quad Z_{34x}]M^TT^T$
 $G_{4x}(t)^T = G_{4x}(t) = [Z_{41x} \quad Z_{41x} \quad Z_{43x} \quad Z_{44x}]M^TT^T$

Remember that we have:

$$Q_{x}(s,t) = SM \begin{bmatrix} G_{1x}(t) \\ G_{2x}(t) \\ G_{3x}(t) \\ G_{4x}(t) \end{bmatrix} \qquad G_{ix}(t) = TM \begin{bmatrix} Z_{i1x} \\ Z_{i2x} \\ Z_{i3x} \\ Z_{i4x} \end{bmatrix}$$

• To combine them into a single equation, take the transpose of $G_{ix}(t)$, which is equal to itself due to its being a scalar:

$$\begin{bmatrix} G_{1x}(t) \\ G_{2x}(t) \\ G_{3x}(t) \\ G_{4x}(t) \end{bmatrix} = \begin{bmatrix} Z_{11x} & Z_{11x} & Z_{13x} & Z_{14x} \\ Z_{21x} & Z_{21x} & Z_{23x} & Z_{24x} \\ Z_{31x} & Z_{31x} & Z_{33x} & Z_{34x} \\ Z_{41x} & Z_{41x} & Z_{43x} & Z_{44x} \end{bmatrix} M^T T^T$$

This gives us:

$$Q_x(s,t) = S \begin{bmatrix} m_{11} & m_{12} & m_{13} & m_{14} \\ m_{21} & m_{22} & m_{23} & m_{24} \\ m_{31} & m_{32} & m_{33} & m_{34} \\ m_{41} & m_{42} & m_{43} & m_{44} \end{bmatrix} \begin{bmatrix} Z_{11x} & Z_{11x} & Z_{13x} & Z_{14x} \\ Z_{21x} & Z_{21x} & Z_{23x} & Z_{24x} \\ Z_{31x} & Z_{31x} & Z_{33x} & Z_{34x} \\ Z_{41x} & Z_{41x} & Z_{43x} & Z_{44x} \end{bmatrix} M^T T^T$$

• Similarly for *y* and *z*:

$$Q_{y}(s,t) = SMG_{y}M^{T}T^{T}$$
$$Q_{z}(s,t) = SMG_{z}M^{T}T^{T}$$

- For Hermite surfaces, M is the Hermite basis matrix
- The elements of the geometry matrix (G_x, G_y, G_z) store how each component changes with respect to t:

• How the starting point (P_1) changes with respect to t:

• How the end point (P_4) changes with respect to t:

$$G_{x} = \begin{bmatrix} \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ Q_{x}(1,0) & Q_{x}(1,1) & \frac{dQ_{x}(1,0)}{dt} & \frac{dQ_{x}(1,1)}{dt} \\ \dots & \dots & \dots & \dots & \dots \end{bmatrix}$$

• How the starting tangent vector (R_1) , defined with respect to s, changes with respect to t:

$$G_{x} = \begin{bmatrix} \dots & \dots & \dots & \dots \\ \dots & \dots & \dots & \dots \\ \frac{dQ_{x}(0,0)}{ds} & \frac{dQ_{x}(0,1)}{ds} & \frac{d^{2}Q_{x}(0,0)}{dsdt} & \frac{d^{2}Q_{x}(0,1)}{dsdt} \end{bmatrix}$$

• How the ending tangent vector (R_4) , defined with respect to s, changes with respect to t:

So the entire geometry matrix looks like:

$$G_{x} = \begin{bmatrix} Q_{x}(0,0) & Q_{x}(0,1) & \frac{dQ_{x}(0,0)}{dt} & \frac{dQ_{x}(0,1)}{dt} \\ Q_{x}(1,0) & Q_{x}(1,1) & \frac{dQ_{x}(1,0)}{dt} & \frac{dQ_{x}(1,1)}{dt} \\ \frac{dQ_{x}(0,0)}{ds} & \frac{dQ_{x}(0,1)}{ds} & \frac{d^{2}Q_{x}(0,0)}{dsdt} & \frac{d^{2}Q_{x}(0,1)}{dsdt} \\ \frac{dQ_{x}(1,0)}{ds} & \frac{dQ_{x}(1,1)}{ds} & \frac{d^{2}Q_{x}(1,1)}{dsdt} & \frac{d^{2}Q_{x}(1,1)}{dsdt} \end{bmatrix}$$

$$G_{\mathcal{X}} = \begin{bmatrix} 0 & 5 & 5 & 5 \\ 0 & 5 & 5 & 5 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$G_y = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 5 & 5 & 0 & 0 \\ 5 & 5 & 0 & 0 \\ 5 & 5 & 0 & 0 \end{bmatrix}$$

$$G_Z = \begin{bmatrix} 0 & 0 & 5 & 5 \\ 0 & 0 & 5 & 5 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Remember that Bezier curves was defined using Bernstein polynomials:

$$Q(t) = \sum_{i=0}^{n} B_{i,n}(t) P_{i+1} \qquad B_{i,n}(t) = \binom{n}{i} t^{i} (1-t)^{n-i}$$

Their extension to surfaces is straightforward:

$$Q(s,t) = \sum_{i=0}^{n} \sum_{j=0}^{m} B_{i,n}(s) B_{i,m}(t) P_{i+1}$$

 Similar to a Bezier curve, a Bezier surface interpolates the end points and approximates the interior control points

- Complex models can be created using Bezier surfaces
- In such models, the entire surface is composed of multiple Bezier surfaces, known as patches

Gumbo Model

- Such patches allows tessellating a surface at the desired level of detail depending on viewing distance or other parameters
- OpenGL tessellation shaders provide hardware support for this

