PRACTICAL RADIO ASTRONOMY PROJECTS

Sean Johnston

Supervisor: Jose Sabater Montes

PROJECT OUTLINE

- Undertaking small, easily reproduceable radio astronomy projects and providing (if successful):
 - Proof of concept
 - Documentation/Instruction
 - Model results

PROJECT OUTLINE

- Undertaking small, easily reproduceable radio astronomy projects and providing (if successful):
 - Proof of concept
 - Documentation/Instruction
 - Model results
- Projects involved:
 - Determining aims and designing methods/implementations to achieve them
 - Sourcing/setting up all hardware/equipment
 - Sourcing/writing/implementing all necessary code Python

PROJECT OUTLINE

- Undertaking small, easily reproduceable radio astronomy projects and providing (if successful):
 - Proof of concept
 - Documentation/Instruction
 - Model results
- Projects involved:
 - Determining aims and designing methods/implementations to achieve them
 - Sourcing/setting up all hardware/equipment
 - Sourcing/writing/implementing all necessary code Python
- Chosen two in the available time:
 - Meteor Radio Scatter
 - Milky Way HI Emission

METEOR RADIO SCATTER

 Meteors can create dense trails of ionised gas between 80 - 120 km above the ground

METEOR RADIO SCATTER

 Meteors can create dense trails of ionised gas between 80 - 120 km above the ground

METEOR RADIO SCATTER

- Meteors can create dense trails of ionised gas between 80 120 km above the ground
- Useful for brief long range communications:
 - Can reflect radio waves in the VHF band
 - They can last for up to a few seconds
 - Typical distances of 1000 2000 km

OUR PROJECT

- Decided to use FM band radio frequencies
 - Many transmitters across Europe
 - Available documentation of transmitters
 - Receivers readily/cheaply available

OUR PROJECT

- Decided to use FM band radio frequencies
 - Many transmitters across Europe
 - Available documentation of transmitters
 - Receivers readily/cheaply available

Example FM transmitter map search from fmscan.org

OUR PROJECT

- Decided to use FM band radio frequencies
 - Many transmitters across Europe
 - Available documentation of transmitters
 - Receivers readily/cheaply available
- Utilised useful information from The Radio Sky and How to Observe It by Jeff Lashley

Example FM transmitter map search from fmscan.org

- RTLSDR receiver dongle
- SDRPlay receiver
- Directional Yagi antenna
- Enough cable to rig a small ship

- Laptop
- Antenna mast
- Observatory roof...

- RTLSDR receiver dongle
- SDRPlay receiver
- Directional Yagi antenna
- Enough cable to rig a small ship

- Laptop
- Antenna mast
- Observatory roof...

- RTLSDR receiver dongle
- SDRPlay receiver
- Directional Yagi antenna
- Enough cable to rig a small ship
- NooEleccom

- Laptop
- Antenna mast
- Observatory roof...

- RTLSDR receiver dongle
- SDRPlay receiver
- Directional Yagi antenna
- Enough cable to rig a small ship
- NooEleccom

- Laptop
- Antenna mast
- Observatory roof...

SOFTWARE

- Using software defined radio (SDR) software
 - SDR replaces hardware components with software

SOFTWARE

- Using software defined radio (SDR) software
 - SDR replaces hardware components with software
- SoapySDR
 - Open-source, vendor neutral, platform independent C/C++ API and runtime library
 - General can interface with most SDR device types/environments
 - soapy_power terminal command available to obtain power spectrum
 - SoapySDR Python bindings available

SOAPYSDR ECOSYSTEM

SOAPYSDR ECOSYSTEM

SOAPYSDR ECOSYSTEM

SOFTWARE

- Using software defined radio (SDR) software
 - SDR replaces hardware components with software
- SoapySDR
 - Open-source, vendor neutral, platform independent C/C++ API and runtime library
 - General can interface with most SDR device types/environments
 - soapy_power terminal command available to obtain power spectrum
 - SoapySDR Python bindings available
- Ran into many issues attempting to install software and then getting it to work with the hardware...

- First tasks involved getting the software to work and produce reasonable outputs
 - Had initial issues with the FFT applications:

- First tasks involved getting the software to work and produce reasonable outputs
 - Had initial issues with the FFT applications:

- First tasks involved getting the software to work and produce reasonable outputs
 - Had initial issues with the FFT applications:

- First tasks involved getting the software to work and produce reasonable outputs
 - Had initial issues with the FFT applications
 - Tried outputting raw I/Q complex binary data from receiver
 - Analysis difficult
 - File sizes extremely large

- First tasks involved getting the software to work and produce reasonable outputs
 - Had initial issues with the FFT applications
 - Tried outputting raw I/Q complex binary data from receiver
 - Analysis difficult
 - File sizes extremely large 100 MB for 10 seconds at 2.4 MHz sampling rate

- First tasks involved getting the software to work and produce reasonable outputs
 - Had initial issues with the FFT applications
 - Tried outputting raw I/Q complex binary data from receiver
 - Analysis difficult
 - File sizes extremely large 100 MB for 10 seconds at 2.4 MHz sampling rate
 - Managed to install SoapySDR Python bindings
 - Wrote Python script to run receivers
 - Also got soapy_power power spectrum terminal command working
 - Python script and soapy_power provide two methods for gathering data

- Next was production of a local radio map using directional Yagi antenna
 - Would provide information about suitable (quiet) directions/frequency bands to use

- Next was production of a local radio map using directional Yagi antenna
 - Would provide information about suitable (quiet) directions/frequency bands to use

Next was production of a local radio map using directional Yagi antenna

• Would provide information about suitable (quiet) directions/frequency bands to

use

Next was production of a local radio map using directional Yagi antenna

• Would provide information about suitable (quiet) directions/frequency bands to

use

FIRST DETECTION!

- Then made test run using CubicSDR
 - Real-time signal viewer
 - Data from The Radio Sky book to determine peak shower direction and our local radio map to determine frequency
 - Located suitable commercial radio stations in Denmark at 87.9 MHz
 - First successful meteor event detection

FIRST DETECTION!

- Then made test run using CubicSDR
 - Real-time signal viewer
 - Data from The Radio Sky book to determine peak shower direction and our local radio map to determine frequency
 - Located suitable commercial radio stations in Denmark at 87.9 MHz
 - First successful meteor event detection

FIRST DETECTION!

- Then made test run using CubicSDR
 - Real-time signal viewer
 - Data from The Radio Sky book to determine peak shower direction and our local radio map to determine frequency
 - Located suitable commercial radio stations in Denmark at 87.9 MHz
 - First successful meteor event detection

PHASE 3: SOME ACTUAL DATA

- Following successful detection, took a run of data
 - Total time of 20 minutes
 - 0.1 second integrations
 - Contained one confident event

PHASE 3: SOME ACTUAL DATA

- Following successful detection, took a run of data
 - Total time of 20 minutes
 - 0.1 second integrations
 - Contained one confident event

PHASE 3: SOME ACTUAL DATA

- Following successful detection, took a run of data
 - Total time of 20 minutes
 - 0.1 second integrations
 - Contained one confident event

PHASE 4: SOME PROPER ANALYSIS

- Then wrote an event detection script
 - Calculates a moving median and standard deviation of past integrations (around 50 or so)
 - Compares next integration to these statistics
 - Determines if the integration contains an event by comparing the deviation from the median value to some threshold number of standard deviations (for example: 6.3)

PHASE 4: SOME PROPER ANALYSIS

- Then wrote an event detection script
 - Calculates a moving median and standard deviation of past integrations (around 50 or so)
 - Compares next integration to these statistics
 - Determines if the integration contains an event by comparing the deviation from the median value to some threshold number of standard deviations (for example: 6.3)

PHASE 5: AUTOMATION?

- Combined event detection code and receiver driver code to allow for on-the-fly event detection
 - After each integration is taken, compares with statistics etc.

• By this point, time dictated we move on to our second project

- Neutral Hydrogen atoms are distributed throughout the Milky Way galaxy
- These atoms have two energy states determined by the relative spins of the proton and electron:
 - State with spins aligned has higher energy
 - When electron spin flips to lower energy, photon is released with frequency 1420 MHz and wavelength 21 cm

- Neutral Hydrogen atoms are distributed throughout the Milky Way galaxy
- These atoms have two energy states determined by the relative spins of the proton and electron:
 - State with spins aligned has higher energy
 - When electron spin flips to lower energy, photon is released with frequency 1420 MHz and wavelength 21 cm

- Neutral Hydrogen atoms are distributed throughout the Milky Way galaxy
- These atoms have two energy states determined by the relative spins of the proton and electron:
 - State with spins aligned has higher energy
 - When electron spin flips to lower energy, photon is released with frequency 1420 MHz and wavelength 21 cm

- This emission will be stronger in directions that contain more of the galaxy
 - i.e. looking toward the centre as opposed to looking out from the plane
- As Earth rotates through one day, different parts of the galaxy will be overhead
 - Can leave a detector pointed in a fixed direction over one day to measure this changing HI intensity

- 2.1 m radio dish
- Biquad antenna
 - Currently in the process of fabricating this

- 2.1 m radio dish
- Biquad antenna
 - Currently in the process of fabricating this

- 2.1 m radio dish
- Biquad antenna
 - Currently in the process of fabricating this

- 2.1 m radio dish
- Biquad antenna
 - Currently in the process of fabricating this
- Same receiver equipment as in meteor scatter project
- Software the same as in meteor scatter project

- 2.1 m radio dish
- Biquad antenna
 - Currently in the process of fabricating this
- Same receiver equipment as in meteor scatter project
- Software the same as in meteor scatter project
- Hopefully no more software issues...

- Currently in the process of fabricating a biquad antenna
 - Back plate
 - Reflectors
 - Antenna element sized to target wavelength

- Currently in the process of fabricating a biquad antenna
 - Back plate
 - Reflectors
 - Antenna element sized to target wavelength

- Currently in the process of fabricating a biquad antenna
 - Back plate
 - Reflectors
 - Antenna element sized to target wavelength

- Currently in the process of fabricating a biquad antenna
 - Back plate
 - Reflectors
 - Antenna element sized to target wavelength

- Currently in the process of fabricating a biquad antenna
 - Back plate
 - Reflectors
 - Antenna element sized to target wavelength

1/4 Target Wavelength

- In the meantime:
 - Using HI full sky FITS images to simulate output data
 - Using Python astropy and pyephem modules

- In the meantime:
 - Using HI full sky FITS images to simulate output data
 - Using Python astropy and pyephem modules

- In the meantime:
 - Using HI full sky FITS images to simulate output data
 - Using Python astropy and pyephem modules

- In the meantime:
 - Using HI full sky FITS images to simulate output data
 - Using Python astropy and pyephem modules

PHASE 2+: EVERYTHING ELSE

- Hope to have antenna built soon and will commence taking data
- Experiment with different observation altitudes
- Compare to simulated data
- Possible solar interference during daytime?

PHASE 2+: EVERYTHING ELSE

- Hope to have antenna built soon and will commence taking data
- Experiment with different observation altitudes and possible solar interference during daytime

Possible permanent installation of equipment if successful

QUESTIONS?