Physical Layer

Protocol stack layers

TCP	/TP	M	od	el
//		T T T	~~	~-

OSI Model

	Layer 7 - Application		
Layer 4 - Application	Layer 6 - Presentation		
	Layer 5 - Session		
Layer 3 - Transport	Layer 4 - Transport		
Layer 2 - Internet	Layer 3 - Network		
Layer 1 - Network Interface	Layer 2 - Data Link		
Layer 1 - Network Interface	Layer 1 - Physical		

Source: www.tis97.co.uk

Physical Layer in Wireless Networks

Source Encoder

- Encodes the information into a source codeword
- Example:
 - Pulse code modulation (PCM) to encode analog voice signal as digital codeword
- Also can do compression
 - Based on information statistics, use fewer number of bits

Channel Encoder

- Encodes the source codeword as a channel codeword
- Goal: Allow receiver to
 - Identify bit errors
 - Correct (limited number) of bit errors

Channel Encoding

Examples for error control encoding:

- Add error detection codes to the data
 - Parity bits
 - Cyclic Redunancy Check (CRC)
- Block coding
- Interleaving

Interleaving

- Problem: electromagnetic spikes can cause burst errors
 - -> Many errors in one code word
 - -> Exceeds error-correcting capabilities of the used code
- Example:
 - Let's assume an error control coding that can correct one error in a code word
 - Codewords: "Hello" "World"

Burst errors (two errors in one word)

- Possible solution: Interleaving
 - Shuffle symbols to distribute error over several words "HWeol" "rllod"
 - Receiver will unshuffle the words and the correct the error in the codwords

Modulator

 The carrier signal of the wireless channel is modulated according to the bits of the channel codeword

What does that mean???

Modulation

Radio wave as a sine function:

$$signal(t) = A \cdot \sin(2\pi \cdot t \cdot f + \varphi)$$

A: amplitude, f: frequency, φ : phase, t: time

- Modulation = manipulate these parameters as a function of time to transmit the data
- Often, a carrier wave is used = a wave of a certain frequency whose parameters are manipulated

Modulation (Keying) examples

(d)

Channel codeword

Amplitude Shift Keying (b) (ASK)

Frequency Shift Keying (FSK)

Phase Shift Keying (PSK)

Demodulation

- On the receiver side, the signal is demodulated
- Challenges:
 - Bit synchronization: when does the bit start?
 - Frame synchronization: when does a packet/frame start?
 - Sender and receiver might not be exactly listening to the same frequency (because of drift, aging, etc. in electronics)
 - Noise, interferences of channel
 - ...
- Will not be discussed here. Those problems are addressed by a combination of hardware and signal processing algorithms.