

IX JORNADA DE JÓVENES INVESTIGADORES DEL 13A

Implementación de redes neuronales en FPGAs usando tipos de datos de punto fijo

Daniel Enériz, Nicolás Medrano, Belén Calvo {eneriz, nmedrano, becalvo}@unizar.es Grupo de Diseño Electrónico (GDE - I3A)

Introducción

FPGA + NN:

- Procesamiento paralelo
- Menor tiempo de inferencia
- Aritmética de punto fijo

Virtualización

Entrenamiento en dos fases:

Implementación

HLS (síntesis y verificación)

Vivado (diseño por bloques)

FPGA (driver específico)

Resultados

- Flujo de trabajo completo
- Tiempo de inferencia
- Bajo incremento de error
- Poco uso de área

Fusión sensorial:

- 16 sensores gas
- $CH_4 y C_2H_4$
- Filtrado
- Red neuronal FC 16-32-12-2

	Error promedio \Fase	CH ₄ (%)	C ₂ H, (%)
	1 ^{er} entr.	2,4	3,1
h	2ª entr.	1,7	2,1
0	Sim/FPGA	2,5	2,5

Dataset: FONOLLOSA, J., SHEIK, S., HUERTA, R. y MARCO, S., 2015. Reservoir computing compensates slow response of chemosensor arrays exposed to fast varying gas concentrations in continuous monitoring. Sensors and Actuators B: Chemical, DOI 10.1016/j.snb.2015.03.028.