10707 Deep Learning: Spring 2020

Andrej Risteski

Machine Learning Department

Lecture 2:

Representational power of neural networks

Supervised learning

Empirical risk minimization approach:

minimize a **training** loss l over a class of **predictors** \mathcal{F} :

$$\hat{f} = \underset{f \in \mathcal{F}}{\operatorname{argmin}} \sum_{(x,y): \text{training samples}} l(f(x), y)$$

Three pillars:

- (1) How expressive is the class \mathcal{F} ? (Representational power)
- (2) How do we minimize the training loss efficiently? (Optimization)
- (3) How does \hat{f} perform on unseen samples? (Generalization)

Expressivity

What do we mean by expressivity?

Expressive = functions in class can represent "complicated" functions

"Universal" expressivity of neural networks

(1): Neural networks are **universal approximators**: given any Lipschitz f: $\mathbb{R}^d \to \mathbb{R}$, a **shallow** (3-layer) neural network with $\sim \left(\frac{1}{\epsilon}\right)^d$ neurons can approximate it to within ϵ error.

"curse of dimensionality"

(2): Neural networks can **circumvent** the curse of dimensionality for functions w/ decaying Fourier coefficients: **shallow** neural networks with $\sim \left(\frac{1}{\epsilon}\right)$ neurons can approximate them to within ϵ error.

Universal approximation I: Lipschitz function are approximable

Recall, a function $f: [0,1]^d \to \mathbb{R}$ is **L-Lipschitz**, if: $\forall x, y \in [0,1]^d$, $|f(x) - f(y)| \le L ||x - y||_2$

First, we show neural networks are **universal approximators**: given any Lipschitz function $f: [0,1]^d \to \mathbb{R}$, a **shallow** (3-layer) neural network with $\sim \left(\frac{1}{\epsilon}\right)^d$ neurons can approximate it to within ϵ error.

Theorem: For any L-Lipschitz function $f: [0,1]^d \to \mathbb{R}$, there is a 3-layer neural network \hat{f} with $O\left(d\left(\frac{L}{\epsilon}\right)^d\right)$ ReLU neurons, s.t.

$$\int_{[0,1]^d} |f(x) - \hat{f}(x)| \, dx \le \epsilon$$

l₁ error

Universal approximation I: Proof intuition

Part 1: using Lipschitzness, we can "query" the values of function f approximately by querying its values on a fine grid.

Part 2: we can approximate f as linear combination of "queries".

$$f(x) \approx \sum_{\text{cells } C_i} 1_{x \in C_i} f(x_i)$$

Part 3: Approximate the indicators using ReLUs

Universal approximation I: Part 1, formally

Lemma: Let $f: [0,1]^d \to \mathbb{R}$ be L-Lipschitz and $P = (C_1, C_2, ..., C_N)$ a partition of $[0,1]^d$ into cells of side lengths at most δ . Consider any set $(x_1, x_2, ..., x_N), x_i \in C_i$. Then:

$$\sup_{i \in N} \sup_{y \in C_i} |f(y) - f(x_i)| \le L\delta$$

Proof: By Lipschitzness, we have

$$\forall i, y \in C_i: |f(y) - f(x_i)| \le L|y - x_i|$$

$$\le L\delta$$

Universal approximation I: Part 2, formally

Lemma: Let $f: [0,1]^d \to \mathbb{R}$ be 1-Lipschitz, $P = (C_1, C_2, ..., C_N)$ a partition of $[0,1]^d$ into rectangles of side lengths at most δ , and a set $(x_1, x_2, ..., x_N), x_i \in C_i$. Then,

$$g(x) = \sum_{i=1}^{N} 1_{x \in C_i} f(x_i) \text{ satisfies } \sup_{x \in [0,1]^d} |f(x) - g(x)| \le L \delta$$

Proof: Let $x \in C_i$. Then, $1_{x \in C_i} = 1$, and $1_{x \in C_j} = 0$ for $j \neq i$.

So,
$$g(x) = f(x_i)$$
.

By Lemma 1,
$$|f(x) - g(x)| = |f(x) - g(x_i)| \le L \delta$$

Lemma: Let $C \subseteq \mathbb{R}^d$ be a cell, namely $C = \{x : x \in [l_i, r_i], i \in d\}$. Then, there exists a 2-layer network $\tilde{\tilde{h}}(x)$ of size O(d) and ReLU activation, s.t. $\int_{x \in [0,1]^d} \left| \tilde{\tilde{h}}(x) - 1(x \in [l_i, r_i], i \in d) \right| dx \to 0$

Proof: First, write indicator for cell as:

$$1(x \in [l_i, r_i], i \in d) = 1\left(\sum_{i=1}^{d} \left(1(x_i \ge l_i) + 1(x_i \le r_i)\right) \ge 2d - 1\right)$$

Why? x is in cell iff all the indicators $1(x_i \ge l_i) + 1(x_i \le r_i)$ are on. All these indicators are on iff they sum to 2d. (If at least one is off, they sum to 2d-1)

If we can approximate indicators, we're all good!

Claim: For
$$\tau \geq 0$$
, $x \in \mathbb{R}$:

$$\left|1(x \ge 0), x \in \mathbb{R}:\right|$$

$$\left|1(x \ge 0) - \left(\sigma(\tau x) - \sigma(\tau x - 1)\right)\right| = \begin{cases} \le 1, & \text{if } 0 \le x \le 1/\tau \\ 0, & \text{otherwise} \end{cases}$$

Proof: Consider several cases:

Case 1,
$$x \le 0$$
: $1(x \ge 0) = 0$ and $\sigma(\tau x) - \sigma(\tau x - 1) = 0$, so $1(x \ge 0) - (\sigma(\tau x) - \sigma(\tau x - 1)) = 0$

Case 2,
$$x \ge 1/\tau$$
: $1(x \ge 0) = 1$ and $\sigma(\tau x) - \sigma(\tau x - 1) = 1$, so $1(x \ge 0) - (\sigma(\tau x) - \sigma(\tau x - 1)) = 0$

Case 3,
$$0 \le x \le 1/\tau$$
: $1(x \ge 0) = 1$ and $\sigma(\tau x) - \sigma(\tau x - 1) = \tau x$, so $|1(x \ge 0) - (\sigma(\tau x) - \sigma(\tau x - 1))| = \tau x \le 1$

$$h(x) := 1 \left(\sum_{i=1}^{d} \left(1(x_i \ge l_i) + 1(x_i \le r_i) \right) \ge 2d - 1 \right)$$

Replace all indicators by difference of ReLUs. What is the error?

For brevity, let $\tilde{1}(x) = \sigma(\tau x) - \sigma(\tau x - 1)$, for some τ we will choose.

Let
$$\tilde{h}(x) \coloneqq 1\left(\sum_{i=1}^{d} \left(\tilde{1}(x_i \ge l_i) + \tilde{1}(x_i \le r_i)\right) \ge 2d - 1\right)$$

 $\tilde{\tilde{h}}(x) \coloneqq \tilde{1}\left(\sum_{i=1}^{d} \left(\tilde{1}(x_i \ge l_i) + \tilde{1}(x_i \le r_i)\right) \ge 2d - 1\right)$

(Change the approximations "iteratively".)

$$h(x) := 1 \left(\sum_{i=1}^{d} \left(1(x_i \ge l_i) + 1(x_i \le r_i) \right) \ge 2d - 1 \right)$$

$$\tilde{h}(x) := 1 \left(\sum_{i=1}^{d} \left(\tilde{1}(x_i \ge l_i) + \tilde{1}(x_i \le r_i) \right) \ge 2d - 1 \right)$$

$$\tilde{\tilde{h}}(x) := \tilde{1} \left(\sum_{i=1}^{d} \left(\tilde{1}(x_i \ge l_i) + \tilde{1}(x_i \le r_i) \right) \ge 2d - 1 \right)$$

We have:

$$\int_{x \in [0,1]} \left| \tilde{h}(x) - h(x) \right| dx = \int_{x \in [0,1]^d} \left| \tilde{h}(x) - \tilde{h}(x) + \tilde{h}(x) - h(x) \right| dx$$

$$Triangle inequality \leq \int_{x \in [0,1]^d} \left(\left| \tilde{h}(x) - \tilde{h}(x) \right| + \left| \tilde{h}(x) - h(x) \right| \right) dx$$

Let's handle two terms one by one.

$$\tilde{h}(x) \coloneqq 1\left(\sum_{i=1}^{d} \left(\tilde{1}(x_i \ge l_i) + \tilde{1}(x_i \le r_i)\right) \ge 2d - 1\right)$$

$$\tilde{\tilde{h}}(x) \coloneqq \tilde{1}\left(\sum_{i=1}^{d} \left(\tilde{1}(x_i \ge l_i) + \tilde{1}(x_i \le r_i)\right) \ge 2d - 1\right)$$

Claim:
$$|1(x \ge 0) - (\sigma(\tau x) - \sigma(\tau x - 1))| = \begin{cases} \le 1, & \text{if } 0 \le x \le 1/\tau \\ 0, & \text{otherwise} \end{cases}$$

First: $\tilde{\tilde{h}}(x) - \tilde{h}(x) \neq 0$ only if $\exists i : x_i \in \left(l_i, l_i + \frac{1}{\tau}\right)$ or $x_i \in \left(r_i, r_i - \frac{1}{\tau}\right)$ (If $\tilde{\tilde{h}}(x) - \tilde{h}(x) \neq 0$, $\sum_i \tilde{1}(x_i \geq l_i) + \tilde{1}(x_i \leq r_i) - 2d - 1 \in \left(0, \frac{1}{\tau}\right)$, and if condition above isn't satisfied, $\tilde{1} = 1$, above sum is integer) Measure of such x's is bdd by $\frac{2d}{\tau}$, so $\int_{x \in [0,1]^d} |\tilde{\tilde{h}}(x) - \tilde{h}(x)| \leq \frac{2d}{\tau}$

$$h(x) := 1 \left(\sum_{i=1}^{d} \left(1(x_i \ge l_i) + 1(x_i \le r_i) \right) \ge 2d - 1 \right)$$
$$\tilde{h}(x) := 1 \left(\sum_{i=1}^{d} \left(\tilde{1}(x_i \ge l_i) + \tilde{1}(x_i \le r_i) \right) \ge 2d - 1 \right)$$

Claim:
$$|1(x \ge 0) - (\sigma(\tau x) - \sigma(\tau x - 1))| = \begin{cases} \le 1, & \text{if } 0 \le x \le 1/\tau \\ 0, & \text{otherwise} \end{cases}$$

Second:
$$\int_{x \in [0,1]} |\tilde{h}(x) - h(x)| dx$$

Indicators are equal if inputs are equal

$$\leq \int_{x \in [0,1]^d} \left| 1 \left(\sum_{i=1}^d \left(1(x \geq l_i) + 1(x \leq r_i) \right) \neq \sum_{i=1}^d \left(\tilde{1}(x \geq l_i) + \tilde{1}(x \leq r_i) \right) \right) \right| dx$$

$$\leq \int_{x \in [0,1]^d} \left| 1 \left(1(x \geq l_i) + \tilde{1}(x \leq l_i) + \tilde{1}(x \leq r_i) \right) + \sum_{i=1}^d \left(\tilde{1}(x \leq r_i) + \tilde{1}(x \leq r_i) \right) dx$$

$$\leq \int_{x \in [0,1]^d} \sum_{i=1}^a 1\left(1(x \geq l_i) \neq \tilde{1}(x \geq l_i)\right) + \sum_{i=1}^a 1\left(1(x \leq r_i) \neq \tilde{1}(x \leq r_i)\right) dx$$

$$By Claim \leq 2d/\tau$$

$$h(x) := 1 \left(\sum_{i=1}^{d} \left(1(x_i \ge l_i) + 1(x_i \le r_i) \right) \ge 2d - 1 \right)$$

$$\tilde{h}(x) := 1 \left(\sum_{i=1}^{d} \left(\tilde{1}(x_i \ge l_i) + \tilde{1}(x_i \le r_i) \right) \ge 2d - 1 \right)$$

$$\tilde{\tilde{h}}(x) := \tilde{1} \left(\sum_{i=1}^{d} \left(\tilde{1}(x_i \ge l_i) + \tilde{1}(x_i \le r_i) \right) \ge 2d - 1 \right)$$

Putting together, we have:

$$\int_{x \in [0,1]^d} \left| \tilde{\tilde{h}}(x) - h(x) \right| dx = \int_{x \in [0,1]^d} \left| \tilde{\tilde{h}}(x) - \tilde{h}(x) + \tilde{h}(x) - h(x) \right| dx$$

$$\leq 4d/\tau$$

Also, $\tilde{\tilde{h}}(x)$ is a 2-layer net with ReLU activations and O(d) nodes!

Universal approximation I: Putting everything together

By Part 1+2,
$$\sup_{x \in [0,1]^d} |f(x) - \sum_{i=1}^N 1_{x \in C_i} f(x_i)| \le L \delta$$

Moreover, the number of cells N can be bounded by $\left(\frac{1}{\delta}\right)^d$

By indicator approximation: can approximate arbitrarily well by taking $\tau \to \infty$ with a 2-layer ReLU net.

Combining the above two points, we get a $\left(\frac{1}{\delta}\right)^d$ —sized 3-layer net s.t.

$$\int_{[0,1]^d} |f(x) - \hat{f}(x)| \, dx \le L \, \delta$$

Taking $\delta = \frac{\epsilon}{L}$, the theorem follows.

Escaping the curse of dimensionality: Nuggets of Fourier analysis

Can the $\left(\frac{1}{\epsilon}\right)^d$ dependence be avoided for "nice" functions? Yes! Relevant property is **decay** of the Fourier coefficients.

Recall: The Fourier basis for "nice" functions from $\mathbb{R}^d \to \mathbb{R}$ consists of basis functions $\{e_w(x) = e^{i\langle w, x \rangle} = \cos(\langle w, x \rangle) + i\sin(\langle w, x \rangle) | w \in \mathbb{R}^d \}$.

||w|| is larger: function oscillates more

Escaping the curse of dimensionality: Nuggets of Fourier analysis

Can the $\left(\frac{1}{\epsilon}\right)^d$ dependence be avoided for "nice" functions? Yes! Relevant property is **decay** of the Fourier coefficients.

Recall: The Fourier basis for "nice" functions from $\mathbb{R}^d \to \mathbb{R}$ consists of basis functions $\{e_w(x) = e^{i\langle w, x \rangle} = \cos(\langle w, x \rangle) + i \sin(\langle w, x \rangle) | w \in \mathbb{R}^d \}$.

Higher and higher frequencies => better approximation

Escaping the curse of dimensionality: Nuggets of Fourier analysis

Can the $\left(\frac{1}{\epsilon}\right)^d$ dependence be avoided for "nice" functions? Yes! Relevant property is decay of the Fourier coefficients.

Recall: The Fourier basis for "nice" functions from $\mathbb{R}^d \to \mathbb{R}$ consists of basis functions $\{e_w(x) = e^{i\langle w, x \rangle} = \cos(\langle w, x \rangle) + i\sin(\langle w, x \rangle) | w \in \mathbb{R}^d \}$.

Recall: The Fourier integral theorem gives coefficients for this basis:

Defining $\hat{f}(w) = \int_{\mathbb{R}^d} f(x)e^{-i\langle w, x\rangle} dx$, we have:

$$f(x) = \int_{\mathbb{R}^d} \hat{f}(w) e^{i\langle w, x \rangle} dw$$

$$Coefficient for$$

$$basis fn e^{i\langle w, x \rangle}$$

Escaping the curse of dimensionality: Nuggets of Fourier analysis

Can the $\left(\frac{1}{\epsilon}\right)^d$ dependence be avoided for "nice" functions? Yes! Relevant property is **decay** of the Fourier coefficients.

Def.: The **Barron constant** of a function f is the quantity

$$C = \int_{\mathbb{R}^d} ||w|| ||\hat{f}(w)|| dw$$

Interpretation: the higher-order Fourier coefficients (i.e. high-oscillation parts of f) are small.

We will look for $O_C\left(\frac{1}{\epsilon}\right)$ dependence of the size of the network.

Escaping the curse of dimensionality: Barron's Theorem

Def.: The **Barron constant** of a function f is the quantity

$$C = \int_{\mathbb{R}^d} ||w|| ||\hat{f}(w)|| dw$$
=\{x \in \mathbb{R}^d : ||x|| \le 1\}

Theorem (Barron '93): For any $f: \mathbb{B} \to \mathbb{R}$, there is a 3-layer neural network \hat{f} with $O\left(\frac{C^2}{\epsilon}\right)$ ReLU neurons, s.t.

$$\int_{\mathbb{B}} \left(f(x) - \hat{f}(x) \right)^2 dx \le \epsilon$$

$$= \mathbb{E}_{x} \left[\left(f(x) - \hat{f}(x) \right)^{2} \right]$$

$$l_{2} \ error$$

Barron's theorem: proof idea

Step 1: Show that any continuous function f can be written as an "infinite" convex combination of cosine-like activations.

(Main tool: Fourier integral theorem)

Step 2: Show that a function f with small Barron constant can in fact be approximately written as a convex combination of a **small** number of cosine-like activations.

(Main tool: subsampling the above infinite combination and concentration bounds.)

Step 3: Show that the cosine non-linearities can be approximated by sigmoid non-linearities.

(Main tool: classical approximation theory.)

By Fourier integral theorem, we have:

$$f(x) = \int_{\mathbb{R}^d} \hat{f}(w) e^{i\langle w, x \rangle} dw$$

$$= f(0) + \int_{\mathbb{R}^d} \hat{f}(w) (e^{i\langle w, x \rangle} - 1) dw$$

$$= \int_{\mathbb{R}^d} \hat{f}(w) dw$$

By Fourier integral theorem,
$$f(x) = f(0) + \int_{\mathbb{R}^d} \hat{f}(w) (e^{i\langle w, x \rangle} - 1) dw$$

Recall the **polar form** of a complex number:

$$z = |z| e^{i \phi_z}$$
$$= |z| (\cos \phi_z + i \sin \phi_z)$$

By Fourier integral theorem,
$$f(x) = f(0) + \int_{\mathbb{R}^d} \hat{f}(w) (e^{i\langle w, x \rangle} - 1) dw$$

Recall the **polar form** of a complex number: $z = |z| e^{i \phi_z}$

Hence, we can rewrite the Fourier integral formula as:

$$f(x) = f(0) + \int_{\mathbb{R}^d} |\hat{f}(w)| \left(e^{i(b_w + \langle w, x \rangle)} - e^{ib_w} \right) dw$$

$$f(x) = f(0) + \int_{\mathbb{R}^d} |\hat{f}(w)| \left(e^{i(b_w + \langle w, x \rangle)} - e^{ib_w} \right) dw$$

Recall the expansion of complex exponentials: $e^{iy} = \cos(y) + i \sin(y)$

As f is a real-valued function, only the real part of the above expression will survive. Hence,

$$f(x) = \int_{\mathbb{R}^d} |\hat{f}(w)| \left(\cos(b_w + \langle w, x \rangle) - \cos(b_w) \right) dw$$

Linear combination of cosine functions, but not *convex!* (As $\int_{\mathbb{R}^d} |\hat{f}(w)|$ integrates potentially to > 1)

We will rewrite:
$$f(x) = \int_{\mathbb{R}^d} |\hat{f}(w)| (\cos(b_w + \langle w, x \rangle) - \cos(b_w)) dw$$

$$f(x) = \int_{\mathbb{R}^d} |\hat{f}(w)| (\cos(b_w + \langle w, x \rangle) - \cos(b_w)) dw$$

$$= \int_{\mathbb{R}^d} \frac{|\hat{f}(w)| ||w||}{C} \left(\frac{C}{||w||} (\cos(b_w + \langle w, x \rangle) - \cos(b_w)) \right) dw$$

Convex combination of cosine-like activations!

(As
$$\int_{\mathbb{R}^d} \frac{|\hat{f}(w)| ||w||}{c} = 1$$
)

Recall:
$$f(x) = \int_{\mathbb{R}^d} \frac{|\hat{f}(w)| ||w||}{C} \left(\frac{C}{||w||} (\cos(b_w + \langle w, x \rangle) - \cos(b_w)) \right)$$

We will prove that there is a set S of w's, s.t.

$$f(x) \approx \frac{1}{|S|} \sum_{w \in S} \frac{C}{||w||} (\cos(b_w + \langle w, x \rangle) - \cos(b_w))$$

Natural idea: **subsampling!**

Remember, these *integrate* to 1, so form a distribution over w's.

Repeat **r** times:

Choose a new $w \in \mathbb{R}$ to add to S with probability $\frac{|\hat{f}(w)|||w||}{\hat{f}(w)}$

Recall:
$$f(x) = \int_{\mathbb{R}^d} \frac{|\hat{f}(w)| ||w||}{C} \left(\frac{C}{||w||} (\cos(b_w + \langle w, x \rangle) - \cos(b_w)) \right)$$

Repeat **r** times:

Choose a new $w \in \mathbb{R}$ to add to S with probability $\frac{|\hat{f}(w)|||w||}{c}$

Let g_i be a random variable, denoting the i-th selected w.

Let $g = \frac{1}{r} \sum_{i=1}^{r} g_i$. Then, we have:

$$\mathbb{E}_{x}\mathbb{E}_{g}[(g(x)-f(x))^{2}] = \mathbb{E}_{x}\mathbb{E}_{g_{i}}\left[\left(\sum_{i}\left(\frac{1}{r}g_{i}-\frac{1}{r}f\right)\right)^{2}\right] = \frac{1}{r^{2}}\mathbb{E}_{x}\mathbb{E}_{g_{i}}\left[\left(\sum_{i}(g_{i}-f)\right)^{2}\right]$$

Direct substitution

All $g_i - f$ are mean-0, (since $\mathbb{E}[g_i] = f$), and independent.

Repeat **r** times:

Choose a new $w \in \mathbb{R}$ to add to S with probability $\frac{|f(w)||w|}{c}$

Then, we have:

$$\mathbb{E}_{x}\mathbb{E}_{g}[(g-f)^{2}] = \frac{1}{r^{2}}\mathbb{E}_{x}\mathbb{E}_{g_{i}}[(\sum_{i}(g_{i}-f))^{2}]$$

$$\mathbb{E}_{x}[\mathbb{E}_{g_{i}}[(g_{i}-f)]\mathbb{E}_{g_{j}}[(g_{j}-f)] = 0$$

$$\mathbb{E}[g_i] = f$$

$$\mathbb{E}[g_{i}] = f$$

$$= \frac{1}{r^{2}} \left(\sum_{i} \mathbb{E}_{x} \mathbb{E}_{g}[(g_{i} - f)^{2}] + \sum_{i \neq j} \mathbb{E}_{x} \mathbb{E}_{g_{i},g_{j}}[(g_{i} - f)(g_{j} - f)]) \right)$$

$$= \frac{1}{r^{2}} \left(\sum_{i} \mathbb{E}_{x} \mathbb{E}_{g}[(g - \mathbb{E}[g])^{2}] = \frac{1}{r} \mathbb{E}_{x} \mathbb{E}_{g}[(g - \mathbb{E}_{g}[g])^{2}] \right)$$

$$= \frac{1}{r} \left(\mathbb{E}_{x} \mathbb{E}_{g}[g^{2}] - \mathbb{E}_{x} \mathbb{E}_{g}[g]^{2} \right) \leq \frac{1}{r} \mathbb{E}_{g} \mathbb{E}_{x}[g^{2}]$$

$$\leq \frac{1}{r} \max_{w} \mathbb{E}_{x}[g^{2}] - \sum_{i \neq j} \mathbb{E}_{g}[g]^{2} \qquad Change \ order \ of \ expectations$$

 $\mathbb{E}_{x}\mathbb{E}_{g_{i},g_{j}}\left[(g_{i}-f)(g_{j}-f)\right]=$

Repeat **r** times:

Choose a new $w \in \mathbb{R}$ to add to S with probability $\frac{|\hat{f}(w)||w|}{C}$

Let g_i denote the i-th selected w. Let $g = \frac{1}{r} \sum_{i=1}^{r} g_i$

Then, we have:
$$\mathbb{E}_{x}\mathbb{E}_{g}[(g-f)^{2}] \leq \frac{1}{r}\max_{w}\mathbb{E}_{x}[g_{w}^{2}]$$

Writing out $\mathbb{E}_{x}[g_{w}^{2}]$ explicitly, we will show that:

$$\forall w: \int_{x \in \mathbb{B}} \left(\frac{C}{||w||} (\cos(b_w + \langle w, x \rangle) - \cos(b_w)) \right)^2 dx \le C^2$$

Claim:
$$\forall w: \int_{x \in \mathbb{B}} \left(\frac{c}{||w||} (\cos(b_w + \langle w, x \rangle) - \cos(b_w)) \right)^2 dx \le C^2$$

Note, cos is 1-Lipschitz (show this if you don't see it!). Hence:

$$|(\cos(b_w + \langle w, x \rangle) - \cos(b_w))| \le |\langle w, x \rangle| \le ||w|| \, ||x||$$

So,
$$\left(\frac{C}{||w||}(\cos(b_w + \langle w, x \rangle) - \cos(b_w))\right)^2 \le C^2 ||x||^2 \le C^2$$

Integrating, the claim follows.

Repeat **r** times:

Choose a new $w \in \mathbb{R}$ to add to S with probability $\frac{|\hat{f}(w)||w|}{c}$

Let g_i denote the i-th selected w. Let $g = \frac{1}{r} \sum_{i=1}^r g_i$

Plugging in previous bound: $\mathbb{E}_g \mathbb{E}_x[(g-f)^2] \leq \frac{c^2}{r}$

If the expectation of a random variable is $\leq \frac{C^2}{r}$, there must be some realization of it w/ value $\leq \frac{C^2}{r}$. Hence:

There exist some
$$g$$
, s.t. $\mathbb{E}_{x}[(g(x) - f(x))^{2}] \leq \frac{c^{2}}{r}$

Almost there! g is a width r network, with cosine-like activation.

Finally, we approximate the cosine-like activations using sigmoids.

Let us denote
$$g_w(x) = \frac{C}{||w||} (\cos(b_w + \langle w, x \rangle) - \cos(b_w))$$

Namely, we show that: there exists a 2-layer neural net G_0 of size $O\left(\frac{1}{\epsilon}\right)$ with sigmoid activations, s.t. $\sup_{x \in \mathbb{B}} |G_0(x) - g_w(x)| \le \epsilon$

$$g_w(x) = \frac{C}{||w||} (\cos(b_w + \langle w, x \rangle) - \cos(b_w))$$

Exists 2-layer neural net G_0 of size $O\left(\frac{1}{\epsilon}\right)$ with sigmoid activations, s.t. $\sup_{x \in \mathbb{B}} |G_0(x) - g_w(x)| \le \epsilon$

First, we rewrite $g_w(x)$ slightly:

$$g_w(x) = \frac{C}{||w||} \left(\cos \left(b_w + ||w|| \left(\frac{w}{||w||}, x \right) \right) - \cos(b_w) \right)$$

$$\coloneqq h_w(y)$$

Hence, $g_w(x) = h_w\left(\left\langle \frac{w}{||w||}, x\right\rangle\right)$, i.e. a composition of a **linear function** and h_w , and the domain of h_w is [-1,1] (univariate!). Suffices to approx. h_w using sigmoids.

$$h_w(y) = \frac{C}{||w||} (\cos(b_w + ||w||y) - \cos(b_w))$$

Exists 2-layer neural net G_0 of size $O\left(\frac{1}{\epsilon}\right)$ with sigmoid activations, s.t.

$$\sup_{x \in [-1,1]} |G_0(y) - h_w(y)| \le \epsilon$$

Check derivative bd gives Lipschitzness!

1. h_w is C-Lipschitz:

$$h'_w(y) = C\sin(b_w + ||w||y)$$

2. Grid the interval [-1,1] into intervals $[l_i, r_i]$ of size ϵ/C . Pick arbitrary $y_i \in [l_i, r_i]$ Same as in the first theorem, we have

$$\sup_{x \in [-1,1]} \left| \sum_{i} 1(y \in [l_i, r_i]) h_w(y_i) - h_w(y) \right| \le \epsilon$$

$$h_w(y) = \frac{C}{||w||} (\cos(b_w + ||w||y) - \cos(b_w))$$

Exists 2-layer neural net G_0 of size $O\left(\frac{1}{\epsilon}\right)$ with sigmoid activations, s.t.

$$\sup_{x \in [-1,1]} |G_0(y) - h_w(y)| \le \epsilon$$

$$\sup_{x \in [-1,1]} \left| \sum_{i} 1(y \in [l_i, r_i]) h_w(y_i) - h_w(y) \right| \le \epsilon$$

3. We can write the indicators as differences of step functions:

$$1(y \in [l_i, r_i]) = 1(y \ge l_i) - 1(y \ge r_i)$$

Hence, it suffices to approximate a step function using a sigmoid.

$$h_w(y) = \frac{C}{||w||} (\cos(b_w + ||w||y) - \cos(b_w))$$

Exists 2-layer neural net G_0 of size $O\left(\frac{1}{\epsilon}\right)$ with sigmoid activations, s.t. $\sup_{x \in [0,1]^d} |G_0(x) - h_w(x)| \le \epsilon$

Approximating a step function using a sigmoid:

$$\lim_{\tau \to \infty} \sup_{x \in [0,1]^d} \left| 1(x \ge a) - \frac{1}{1 + e^{-\tau(x-a)}} \right| = 0$$

Hence, taking τ large enough, we can drive the error as small as possible (in the l_{∞} sense.)

Putting everything together, the claim follows.

Parting thoughts

All results we proved are **existential**: they prove that a good approximator exists. Finding one efficiently (much less so using gradient descent) is a different matter.

The choices of non-linearities are usually very **flexible**: most results of the type we saw can be re-proven using different non-linearities. (Examples in homework.)

Many other results of similar flavor. For instance, there are also results that deep, but narrow networks are universal approximators.