Yoneda lemma notes

Robert

March 2024

Abstract

Personal notes on the proof of the Yoneda lemma. This is the contravariant version.

1 Notation

If **C** is a locally small category then we denote the hom set $\operatorname{Hom}_{\mathbf{C}}(x,y)$ by $\mathbf{C}(x,y)$.

The notation $\mathbf{C}(-,x)$ is for the contravariant representable functor which takes an object y to it's hom set

$$y \mapsto \mathbf{C}(y, x)$$

and a morphism $h: y \to z$ to the morphism of hom sets

$$\mathbf{C}(h,x):\mathbf{C}(z,x)\to\mathbf{C}(y,x)$$

Where if $f \in \mathbf{C}(z,x)$, $\mathbf{C}(h,x)(f) = f \circ h$ (we call this precomposition by h)

Let $h: x \to y$. The notation $\mathbf{C}(-,h)$ is for a natural transformation of contravariant representable functors. Namely, $\mathbf{C}(-,h): \mathbf{C}(-,x) \to \mathbf{C}(-,y)$.

Given 2 set-valued functors $F,G:\mathbf{C}\to\mathbf{Sets},$ we denote the set of natural transformations between them by $\mathrm{Nat}(F,G)$

2 The lemma

Theorem 2.1 (Yoneda Lemma). Let \mathbf{C} be a locally small category. Then, for any object $x \in \mathbf{C}$ and contravariant set-valued functor $F : \mathbf{C}^{\mathrm{op}} \to \mathbf{Sets}$, there an isomorphism $\mathrm{Nat}(\mathbf{C}(-,x),F) \cong Fx$. Moreover, this isomorphism is natural in F, meaning the diagram below commutes:

$$\begin{array}{ccc}
\operatorname{Nat}(\mathbf{C}(y,x),F) & \stackrel{\cong}{\longrightarrow} Fy \\
\operatorname{Nat}(\mathbf{C}(y,x),\vartheta) \downarrow & & \downarrow \vartheta_y \\
\operatorname{Nat}(\mathbf{C}(y,x),G) & \stackrel{\cong}{\longrightarrow} Gy
\end{array}$$

and it is natural in x, meaning that

$$\begin{aligned} \operatorname{Nat}(\mathbf{C}(-,x),F) & \stackrel{\cong}{\longrightarrow} Fx \\ \operatorname{Nat}(\mathbf{C}(-,h),F) & & & \uparrow F(h) \\ \operatorname{Nat}(\mathbf{C}(-,y),F) & \stackrel{\cong}{\longrightarrow} Fy \end{aligned}$$

commutes given $h: x \to y$, a morphism in C

It is highly recommended to pull out a pen and paper and follow along as there are MANY different mathematical objects here. We section the proof into 4 parts, namely,

- 1. Defining the isomorphism and checking it is well defined
- 2. Checking it is bijective
- 3. Checking it is natural in F
- 4. Checking it is natural in c

With that in mind, let's begin.

Construction of the isomorphism. Define

$$\eta_{x,F}: \operatorname{Nat}(\mathbf{C}(-,x),F) \to Fx$$

as follows: Given a natural transformation $\vartheta \in \operatorname{Nat}(\mathbf{C}(-,x),F)$, we define

$$\eta_{x,F}(\vartheta) = \vartheta_x(1_x) \tag{1}$$

Here, $\vartheta_x: \mathbf{C}(x,x) \to Fx$ is the morphism, and $1_x \in \mathbf{C}(x,x)$. Now define

$$\varphi_{x,F}: Fx \to \operatorname{Nat}(\mathbf{C}(-,x),F)$$

by taking any $a \in Fx$ to the natural transformation $\psi_a : \mathbf{C}(-,x) \to F$ where each component of ψ_a , $(\psi_a)_z$ for $z \in \mathbf{C}$ to be $(\psi_a)_z : \mathbf{C}(z,x) \to Fz$, taking $h \in \mathbf{C}(z,x)$ to F(h)(a). Symbolically,

$$(\psi_a)_z(h) = F(h)(a)$$

Checking that $\varphi_{x,F}$ is well defined is left as an exercise for the reader (just check that the natural transformation produced is in fact a natural transformation) \square

Proof of the bijection. We would like to check that $\varphi_{x,F} \circ \eta_{x,F}$ is indeed the identity on Nat $(\mathbf{C}(-,x),F)$. Likewise, we need to check that $\eta_{x,F} \circ \varphi_{x,F}$ is the identity on Fx. Let's do the first one. Let $\vartheta \in \operatorname{Nat}(\mathbf{C}(-,x),F)$. Now,

$$\varphi_{x,F} \circ \eta_{x,F}(\vartheta) = \varphi_{x,F}(\vartheta_x(1_x)) = \psi_{\vartheta_x(1_x)}$$

Keep in mind that $\psi_{\vartheta_x(1_x)}$ is a natural transformation $\mathbf{C}(-,x) \to F$, where each component $(\psi_{\vartheta_x(1_x)})_z$ is a morphism of homsets $\mathbf{C}(z,x) \to Fz$, and if $h \in \mathbf{C}(z,x)$ then

$$\left(\psi_{\vartheta_x(1_x)}\right)_z(h) = F(h)(\vartheta_x(1_x)) \tag{2}$$

Now, since ϑ is natural, for our $h \in \mathbf{C}(z,x)$, the following commutes:

$$\begin{array}{ccc} \mathbf{C}(z,x) & \xrightarrow{\vartheta_z} & Fz \\ \mathbf{C}(h,x) & & & \uparrow F(h) \\ \mathbf{C}(x,x) & \xrightarrow{\vartheta_x} & Fx \end{array}$$

Now, let's choose the identity morphism $1_x \in \mathbf{C}(x,x)$. Since the diagram commutes, we know that $(\vartheta_z \circ \mathbf{C}(h,x))(1_x) = (F(h) \circ \vartheta_x)(1_x)$. Referring back to Equation (2) we can see that the right side is exactly $(\psi_{\vartheta_x(1_x)})_z(h)$. Now let's see what the left side is. Firstly, $\mathbf{C}(h,x)(1_x) = 1_x \circ h = h$. Now this means that $(\vartheta_z \circ \mathbf{C}(h,x))(1_x) = \vartheta_z(h)$. Since h was arbitrary $(\psi_{\vartheta_x(1_x)})_z = \vartheta_z$. Since z was also arbitrary this means $\psi_{\vartheta_x(1_x)} = \vartheta$.

Now let's do the next one. This one is easier. Recall that at this point we wish to check that $\eta_{x,F} \circ \varphi_{x,F}$ is the identity on Fx. Let $a \in Fx$ be arbitrary. By definition, $\varphi_{x,F}(a) = \psi_a$. Now by definition again $\eta_{x,F}(\psi_a) = (\psi_a)_x(1_x)$. Recall that $(\psi_a)_x$ takes $h: x \to x$ to F(h)(a). Now, this means $(\psi_a)_x(1_x) = F(1_x)(a)$. Since F is a functor $F(1_x)$ is the identity on Fx, so $F(1_x)(a) = a$ as desired. \square

Proof of naturality in F. Let $\phi: F \to G$ be a natural transformation. We would like to prove that

$$\operatorname{Nat}(\mathbf{C}(-,c),F) \xrightarrow{\eta_{c,F}} Fc$$

$$\operatorname{Nat}(\mathbf{C}(-,c),\phi) \downarrow \qquad \qquad \downarrow \phi_{c}$$

$$\operatorname{Nat}(\mathbf{C}(-,c),G) \xrightarrow{\eta_{c,G}} Gc$$

commutes. Again, recall that the morphism Nat $(\mathbf{C}(-,c),\phi)$ simply takes any $\vartheta \in \text{Nat}(\mathbf{C}(-,c),F)$ and composes it with ϕ , that is $\vartheta \mapsto \phi \circ \vartheta$. Now let's check this.

Let $\vartheta \in \text{Nat}(\mathbf{C}(-,c),F)$ be arbitrary. Now,

$$\begin{aligned} \left(\phi_c \circ \eta_{c,F}\right)(\vartheta) \\ &= \phi_c(\eta_{c,F}(\vartheta)) \\ &= \phi_c(\vartheta_c(1_c)) \end{aligned} \qquad \text{By Equation (1)}$$

By how composition of natural transformations is defined, $\phi_c \circ \vartheta_c = (\phi \circ \vartheta)_c$. So this means that $\phi_c(\vartheta_c(1_c)) = (\phi \circ \vartheta)_c(1_c)$. The natural transformation $\phi \circ \vartheta$ has codomain G, since ϕ is a natural transformation from F to G. Now by definition of $\eta_{c,G}$ we know that $(\phi \circ \vartheta)_c(1_c) = \eta_{c,G}(\phi \circ \vartheta)$. Notice that $\phi \circ \vartheta$ is really just Nat($\mathbf{C}(-,c),\phi)(\vartheta)$. So combining all this together, we have $\eta_{c,G}$ (Nat($\mathbf{C}(-,c),\phi)(\vartheta)$). Since ϑ was arbitrary the diagram commutes. \square

Proof of naturality in c. Let $h: x \to y$ be a morphism in ${\bf C}$. We would like to show that

$$\begin{array}{ccc} \operatorname{Nat}(\mathbf{C}(-,x),F) & \xrightarrow{\eta_{x,F}} Fx \\ \operatorname{Nat}(\mathbf{C}(-,h),F) & & & & & & & & \\ \operatorname{Nat}(\mathbf{C}(-,y),F) & \xrightarrow{\eta_{y,F}} Fy & & & & \end{array}$$

commutes.

Let $\vartheta \in \text{Nat}(\mathbf{C}(-,y),F)$ be arbitrary. Following the red path, $(F(h) \circ \eta_{y,F})(\vartheta) = F(h)(\vartheta_y(1_y))$.

By naturality of ϑ ,

$$\mathbf{C}(x,y) \xrightarrow{\vartheta_x} Fx
\mathbf{C}(h,y) \uparrow \qquad \uparrow^{F(h)}
\mathbf{C}(y,y) \xrightarrow{\vartheta_y} Fy$$

So

$$F(h) (\vartheta_y(1_y)) = (\vartheta_x \circ \mathbf{C}(h, y)) (1_y)$$

$$= \vartheta_x(1_y \circ h)$$
 By definition of $\mathbf{C}(h, y)$

$$= \vartheta_x(h)$$

Keep in mind that Nat $(\mathbf{C}(-,h),F)$ precomposes ϑ with $\mathbf{C}(-,h)$. That is, $\vartheta \mapsto \vartheta \circ \mathbf{C}(-,h)$. Also, $\mathbf{C}(-,h)_a$ is a morphism $\mathbf{C}(a,x) \to \mathbf{C}(a,y)$, which takes a morphism $f \in \mathbf{C}(a,x)$ and composes it with h, that is $f \mapsto h \circ f$.

Now following the blue path,

$$\begin{array}{ll} \left(\eta_{x,F} \circ \operatorname{Nat}\left(\mathbf{C}(-,h),F\right)\right)(\vartheta) \\ &= \eta_{x,F}(\vartheta \circ \mathbf{C}(-,h)) & \text{See above paragraph} \\ &= (\vartheta \circ \mathbf{C}(-,h))_x \left(1_x\right) & \text{By definition of } \eta_{x,F}, \text{ see Equation (1)} \\ &= (\vartheta_x \circ \mathbf{C}(-,h)_x) \left(1_x\right) & \text{Composition of natural transformations} \\ &= \vartheta_x \left(\mathbf{C}(-,h)_x (1_x)\right) & \\ &= \vartheta_x \left(h \circ 1_x\right) & \text{Definition of } \mathbf{C}(-,h)_x \\ &= \vartheta_x \left(h\right) \end{array}$$

This completes the proof.