

TrenchT2[™] Power MOSFET

IXTA200N055T2 IXTP200N055T2

N-Channel Enhancement Mode Avalanche Rated

Symbol	Test Conditions	Maximum Ratings		
V _{DSS}	T _. = 25°C to 175°C	55	V	
V _{DGR}	$T_J = 25^{\circ}\text{C to } 175^{\circ}\text{C}, R_{gs} = 1\text{M}\Omega$	55	V	
V _{GSM}	Transient	± 20	V	
I _{D25}	T _C = 25°C	200	A	
LRMS	Lead Current Limit, RMS	75	Α	
I _{DM}	$T_{\rm C} = 25$ °C, pulse width limited by $T_{\rm JM}$	500	Α	
I _{AR}	T _C = 25°C	100	A	
E _{AS}	$T_{c} = 25^{\circ}C$	600	mJ	
P_{D}	T _C = 25°C	360	W	
T _J		-55 +175	°C	
T_{JM}		175	°C	
T _{stg}		-55 +175	°C	
T _L	1.6mm (0.062in.) from case for 10s	300	°C	
T _{sold}	Plastic body for 10 seconds	260	°C	
M _d	Mounting torque (TO-220)	1.13 / 10	Nm/lb.in.	
Weight	TO-263 TO-220	2.5 3.0	g g	

		racteristic Values Typ. Max.				
BV _{DSS}	$V_{GS} = 0V, I_{D} = 250 \mu A$		55			V
V _{GS(th)}	$V_{DS} = V_{GS}, I_D = 250\mu A$		2.0		4.0	V
I _{GSS}	$V_{GS} = \pm 20V, V_{DS} = 0V$				±200	nA
I _{DSS}	$V_{DS} = V_{DSS}$				5	μΑ
	$V_{GS} = 0V$	_J = 150°C			50	μΑ
R _{DS(on)}	$V_{GS} = 10V$, $I_D = 50A$, Notes	1, 2		3.3	4.2	mΩ

 $V_{DSS} = 55V$ $I_{D25} = 200A$ $R_{DS(on)} \le 4.2m\Omega$

TO-263 (IXTA)

TO-220 (IXTP)

G = Gate D = DrainS = Source TAB = Drain

Features

- International standard packages
- Unclamped Inductive Switching (UIS) rated
- Low package inductance
- 175°C Operating Temperature
- High current handling capability
- ROHS Compliant
- High performance Trench
 Technology for extremely low R_{DS(on)}

Advantages

- Easy to mount
- Space savings
- High power density
- Synchronous

Applications

- Automotive Engine Control
- Synchronous Buck Converter (for notebook systempower & General purpose point & load.)
- DC/DC Converters
- High Current Switching Applications
- Power Train Management
- Distributed Power Architecture

Symbo (T _J = 25		Test Conditions unless otherwise specified)	Chara Min.	acteristic	Values Max.
g _{fs}		V _{DS} = 10V, I _D = 60A, Note 1	50	80	S
C _{iss})			6970	pF
C _{oss}	}	$V_{GS} = 0V, V_{DS} = 25V, f = 1MHz$		1026	pF
C _{rss}	J			228	pF
t _{d(on)}	١	Resistive Switching Times		26	ns
t _r		$V_{GS} = 10V$, $V_{DS} = 30V$, $I_{D} = 50A$		22	ns
t _{d(off)}		$R_{\rm G} = 3.3\Omega$ (External)		49	ns
t _f	J			27	ns
Q _{g(on)})			109	nC
Q_{gs}	}	$V_{GS} = 10V$, $V_{DS} = 0.5 \cdot V_{DSS}$, $I_{D} = 0.5 \cdot I_{D25}$		35	nC
\mathbf{Q}_{gd}	J			24	nC
R _{thJC}					0.42 °C/W
R _{thCH}		TO-220		0.50	°C/W

Source-Drain Diode

Symbol	Test Conditions C	haracte	racteristic Values			
$(T_J = 25^{\circ}C,$	unless otherwise specified) M	in. Ty	/p.	Max.		
I _s	$V_{GS} = 0V$			200	Α	
I _{SM}	Repetitive, Pulse width limited by T_{JM}			600	Α	
V _{SD}	$I_F = 50A$, $V_{GS} = 0V$, Note 1			1.0	V	
t _{rr}	$I_{F} = 100A, V_{GS} = 0V$		49		ns	
I _{RM}	-di/dt = 100A/μs	2	2.6		Α	
Q _{RM}	$V_R = 27V$		64		nC	

Notes: 1. Pulse test, $t \le 300\mu s$; duty cycle, $d \le 2\%$.

2. On through-hole packages, $R_{\mathrm{DS(on)}}$ Kelvin test contact location must be 5mm or less from the package body.

Fig. 1. Output Characteristics @ 25°C

Fig. 3. Output Characteristics @ 150°C

Fig. 5. R_{DS(on)} Normalized to I_D = 100A Value vs. Drain Current

Fig. 2. Extended Output Characteristics @ 25°C

Fig. 4. $R_{DS(on)}$ Normalized to I_D = 100A Value vs. Junction Temperature

Fig. 6. Drain Current vs. Case Temperature

Fig. 8. Transconductance $T_{J} = -40^{\circ}C$ 25°C gfs-Siemens 150°C I_D - Amperes

IXYS reserves the right to change limits, test conditions, and dimensions.

Fig. 13. Resistive Turn-on Rise Time vs. Junction Temperature

Fig. 15. Resistive Turn-on Switching Times vs. Gate Resistance

Fig. 17. Resistive Turn-off Switching Times vs. Drain Current

Fig. 14. Resistive Turn-on Rise Time vs. Drain Current

Fig. 16. Resistive Turn-off Switching Times vs. Junction Temperature

Fig. 18. Resistive Turn-off Switching Times vs. Gate Resistance

Fig. 19. Maximum Transient Thermal Impedance