Spectral decomposition, purification and superdense coding

Ryuhei Mori

Tokyo Institute of Technology

Pauli matrices in braket notation

•

$$Z = egin{bmatrix} 1 & 0 \ 0 & -1 \end{bmatrix} = \ket{0} ra{0} - \ket{1} ra{1}$$

•
$$|+\rangle := (|0\rangle + |1\rangle)/\sqrt{2}, \quad |-\rangle := (|0\rangle - |1\rangle)/\sqrt{2}.$$

$$X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = |+\rangle \langle +|-|-\rangle \langle -|$$

•
$$|a\rangle := (|0\rangle + i |1\rangle)/\sqrt{2}, \quad |b\rangle := (|0\rangle - i |1\rangle)/\sqrt{2}.$$

$$Y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} = |a\rangle \langle a| - |b\rangle \langle b|$$

Spectral decomposition theorem

Definition (Normal operator)

 $A \in \mathcal{L}(\mathcal{X})$ is said to be normal if $AA^{\dagger} = A^{\dagger}A$.

Hermitian matrix $(H^{\dagger} = H)$ and unitary matrix $(UU^{\dagger} = I)$ are normal.

Theorem (Spectral decomposition theorem)

 $A \in \mathcal{L}(\mathbb{C}^n)$ is normal if and only if there exist orthonormal basis $\{|\psi_j\rangle\}$ of \mathbb{C}^n and complex numbers $\{\lambda_i\}$ such that

$$A = \sum_{j} \lambda_{j} |\psi_{j}\rangle \langle \psi_{j}|.$$

Any complex matrix has an eigenvalue

For any $A \in \mathcal{L}(\mathbb{C}^n)$ and non-zero $|\psi\rangle \in \mathbb{C}^n$,

$$|\psi\rangle$$
 , $A\,|\psi\rangle$, $A^2\,|\psi\rangle$, ... , $A^n\,|\psi\rangle$

are linearly dependent. There exist $a_0, ..., a_n$ that are not all-zero satisfying

$$0 = a_0 |\psi\rangle + a_1 A |\psi\rangle + \dots + a_n A^n |\psi\rangle$$

= $a_m (A - \lambda_1 I) (A - \lambda_2 I) \dots (A - \lambda_m I) |\psi\rangle$

where m is the largest i such that $a_i \neq 0$.

This means that there exist $i\in\{1,2,\ldots,m\}$ and non-zero $|\varphi\rangle\in\mathbb{C}^n$ such that

$$(A - \lambda_i I) |\varphi\rangle = 0.$$

Orthogonal projection

For linear space V and its subspace W, the orthogonal projection onto W is defined by

$$P = \sum_{j} |\psi_{j}\rangle \langle \psi_{j}|$$

where $(|\psi_j\rangle)_j$ forms an orthonormal basis of W.

- P is Hermitian
- $P^2 = P$
- $P|\psi\rangle \in W$ for any $|\psi\rangle \in V$
- $P|\psi\rangle = |\psi\rangle$ for any $|\psi\rangle \in W$
- I-P is the orthogonal projection onto W_{\perp}

Any normal matrix has a spectral decomposition

Induction on the dimension n. Spectral decomposition theorem obviously holds for n=1. A has a eigenvalue λ and corresponding eigenspace W. Let P be the orthogonal projection onto W. Let Q=I-P.

$$A = (P + Q)A(P + Q) = PAP + PAQ + QAP + QAQ$$

- $PAP = \lambda P$.
- $QAP = Q\lambda P = 0$.
- For $|\psi\rangle \in W$, $AA^{\dagger} |\psi\rangle = A^{\dagger}A |\psi\rangle = \lambda A^{\dagger} |\psi\rangle$ which means $A^{\dagger} |\psi\rangle \in W$. This implies $(PAQ)^{\dagger} = QA^{\dagger}P = 0$.

Hence,
$$A = \lambda P + QAQ$$
. Since $QA = QA(P + Q) = QAQ$ and $QA^{\dagger} = QA^{\dagger}(P + Q) = QA^{\dagger}Q$,
$$(QAQ)(QA^{\dagger}Q) = QAA^{\dagger}Q$$
$$= QA^{\dagger}AQ = QA^{\dagger}QQAQ$$

Hence, QAQ can be regarded as a normal linear operator on W_{\perp} . From the hypothesis of induction, QAQ has a spectral decomposition.

Terminology

- Density matrix, density operator: A Hermitian matrix ρ that represents a state, i.e., $\rho \succeq 0$, $\text{Tr}(\rho) = 1$.
- Pure state: A state that cannot be written as a convex combination of other states. Equivalently, its a density operator with rank one.
- State vector: A complex unit vector $|\psi\rangle$ that represents a pure state $\rho = |\psi\rangle\,\langle\psi|$.
- Mixed state: A state that is not a pure state.
- Positive operator-valued measurement (POVM): A tuple $\{P_j\}$ of Hermitian matrices that represents a measurement, i.e., $P_j \succeq 0$ and $\sum_j P_j = I$.

Ensemble of states

Let $\rho_1, ..., \rho_k$ be density matrices. If ρ_i is prepared with probability p_i , and POVM $\{P_j\}$ is applied, outcome j is obtained with probability

$$\sum_{i=1}^{k} p_i \operatorname{Tr}(\rho_i P_j) = \operatorname{Tr}\left(\sum_{i=1}^{k} \frac{p_i \rho_i P_j}{p_i}\right).$$

Hence, this ensemble of states is represented by $\rho := \sum_{i} p_{i} \rho_{i}$.

Ensemble of pure states

Any quantum state

$$\rho = \sum_{i} \lambda_{i} \left| \psi_{i} \right\rangle \left\langle \psi_{i} \right|$$

for $(\lambda_i \ge 0)_i$ can be regarded as an ensemble $(\lambda_i, |\psi_i\rangle \langle \psi_i|)_i$ of pure states.

$$\begin{split} \rho &= \frac{3}{4} \left| 0 \right\rangle \left\langle 0 \right| + \frac{1}{4} \left| 1 \right\rangle \left\langle 1 \right| \\ &= \frac{1}{2} \left| a \right\rangle \left\langle a \right| + \frac{1}{2} \left| b \right\rangle \left\langle b \right| \end{split}$$

for

$$\begin{split} |\mathbf{a}\rangle &:= \sqrt{\frac{3}{4}}\,|0\rangle + \sqrt{\frac{1}{4}}\,|1\rangle \\ |\mathbf{b}\rangle &:= \sqrt{\frac{3}{4}}\,|0\rangle - \sqrt{\frac{1}{4}}\,|1\rangle\,. \end{split}$$

Observable

Let $\{P_j\}$ be a POVM. If we assign real value a_j for each outcome j, its expectation is

$$\mathbb{E}[a] := \sum_{j} a_{j} \operatorname{Tr}(\rho P_{j}) = \operatorname{Tr}\left(\rho \sum_{j} a_{j} P_{j}\right) = \operatorname{Tr}(\rho A).$$

Here, Hermitian operator $A := \sum_{i} a_{i} P_{j}$ is called a observable.

If $\{P_j\}$ is a projective measurement, i.e., $P_jP_k=\delta_{j,k}P_j$,

$$\mathbb{E}[a^n] := \sum_j a_j^n \mathrm{Tr}(\rho P_j) = \mathrm{Tr}\left(\rho \sum_j a_j^n P_j\right) = \mathrm{Tr}(\rho A^n).$$

For example, X and Z are observables for POVMs $\{|+\rangle \langle +|, |-\rangle \langle -|\}$ and $\{|0\rangle \langle 0|, |1\rangle \langle 1|\}$ with the assignments ± 1 , respectively.

Decoherence

For orthonormal basis $\{|\psi_i\rangle\}$, POVM $\{|\psi_i\rangle\langle\psi_i|\}$ is performed to a quantum state ρ . If outcome is i, the quantum state ρ is transformed into $|\psi_i\rangle\langle\psi_i|$. If we don't see the measurement outcome, the state after the measurement is

$$\sum_{i} \mathsf{Tr} \big(\rho \left| \psi_{i} \right\rangle \left\langle \psi_{i} \right| \big) \left| \psi_{i} \right\rangle \left\langle \psi_{i} \right| = \sum_{i} \left\langle \psi_{i} \right| \rho \left| \psi_{i} \right\rangle \left| \psi_{i} \right\rangle \left\langle \psi_{i} \right|$$

$$\rho = \sum_{i,j} \rho_{i,j} |\psi_i\rangle \langle \psi_j| \longmapsto \sum_{i} \rho_{i,i} |\psi_i\rangle \langle \psi_i|$$

This phenomenon is called decoherence.

Purification

Theorem

For any density matrix ρ on V, there exists a pure state $|\psi\rangle$ of a composite system on $V\otimes W$ for some W such that ${\rm Tr}_W(|\psi\rangle\langle\psi|)=\rho$.

Proof.

For a spectral decomposition of ρ

$$\rho = \sum_{i} \lambda_{i} \left| \psi_{i} \right\rangle_{V} \left\langle \psi_{i} \right|_{V}$$

let

$$|\psi\rangle_{V\otimes W} := \sum_{i} \sqrt{\lambda_{i}} |\psi_{i}\rangle_{V} |i\rangle_{W}$$

where $\{|i\rangle\}_i$ is an arbitrary orthonormal basis of W. Then,

$$\mathsf{Tr}_{W}(|\psi\rangle_{V\otimes W}\langle\psi|_{V\otimes W}) = \rho.$$

 $|\psi\rangle_{V\otimes W}$ is called a purification of ρ .

Quantum states discrimination

Alice encodes her classical information $\{1,2,\ldots,n\}$ into quantum states $\rho_1,\rho_2,\ldots,\rho_n\in\mathcal{H}(\mathbb{C}^m)$, and send it to Bob. Bob performs a POVM $\{P_1,\ldots,P_n\}$ for estimating $i\in\{1,\ldots,n\}$ that Alice encoded. Assume Bob could estimate i without error. Then,

$$\operatorname{Tr}(\rho_i P_j) = \delta_{i,j}.$$

$$\operatorname{Tr}(\rho_{i}P_{j}) = \operatorname{Tr}\left(\sum_{k} \lambda_{k}^{(i)} |\psi_{k}^{(i)}\rangle \langle \psi_{k}^{(i)} | P_{j}\right)$$
$$= \sum_{k} \lambda_{k}^{(i)} \langle \psi_{k}^{(i)} | P_{j} |\psi_{k}^{(i)}\rangle$$

 $\langle \psi_k^{(i)} | P_j | \psi_k^{(i)} \rangle = \delta_{i,j}$ implies $|\psi_k^{(i)} \rangle$ is an eigenvector of P_j with eigenvalue $\delta_{i,j}$. Hence, $\langle \psi_k^{(i)} | \psi_\ell^{(j)} \rangle = 0$ for $i \neq j$ which implies $n \leq m$.

Superdense coding

Alice can send two bits to Bob by sending a single qubit and using a shared Bell state.

$$\begin{split} |\Phi_{00}\rangle &= \frac{1}{\sqrt{2}}(|0\rangle_A|0\rangle_B + |1\rangle_A|1\rangle_B) \\ |\Phi_{01}\rangle &= \frac{1}{\sqrt{2}}(|0\rangle_A|1\rangle_B + |1\rangle_A|0\rangle_B), \qquad \qquad \text{by } X \\ |\Phi_{10}\rangle &= \frac{1}{\sqrt{2}}(|0\rangle_A|0\rangle_B - |1\rangle_A|1\rangle_B), \qquad \qquad \text{by } Z \\ |\Phi_{11}\rangle &= \frac{1}{\sqrt{2}}(|0\rangle_A|1\rangle_B - |1\rangle_A|0\rangle_B), \qquad \qquad \text{by } ZX \end{split}$$

These are orthogonal.

Assignments

1 Show the reduced density matrix $\rho_V \in \mathcal{H}(V)$ of

$$\rho = \sum_{i,j} \rho_{i,j} \ket{i} \bra{j} \otimes \ket{i} \bra{j} \in \mathcal{H}(V \otimes W)$$

where $\{|i\rangle\}$ is a orthonormal basis of V and W.

- 2 For a single-qubit density matrix $\rho = \sum_{i,j=0}^{1} \rho_{i,j} |i\rangle \langle j|$, show the density matrix of an ensemble of quantum states ρ and $Z\rho Z$ chosen with probabilities 1/2.
- **3** Show a purification of $\rho = \frac{3}{4} |0\rangle \langle 0| + \frac{1}{4} |1\rangle \langle 1|$.