基于Yolo的自动驾驶车辆的对象检测

问题描述

使用计算机视觉技术和英特尔® AI 分析工具套件为自动驾驶车辆开发实时对象检测模型。参赛团队需要创建一个深度学习模型,用于准确检测行人、车辆、交通标志和交通信号等对象。该模型需要具有高准确度和低延迟,能够满足自动驾驶车辆安全导航的需求。

oneAPI

英特尔oneAPI是英特尔公司推出的一个软件开发工具套件,旨在为多种计算设备(包括CPU、GPU、FPGA等)提供统一的、跨平台的编程模型。它旨在解决现有异构计算环境下的应用开发和优化难题,使开发人员能够更高效地利用各种硬件资源。

oneAPI的主要组成

- **DPC++编译器**: DPC++是oneAPI中的主要编程语言,它基于C++并扩展了SYCL(单指令多数据并行编程模型),支持异构计算设备的编程。DPC++编译器能够将编写的代码翻译为硬件可执行的指令,以实现高性能计算。
- oneDNN(oneAPI Deep Neural Network Library): 一个高性能的深度学习推理库,提供了一系列优化算法和函数,以加速深度神经网络的推理过程。
- oneCCL(oneAPI Collective Communications Library): 一个用于并行计算的通信库,提供了一套高效的集体通信操作接口,可以实现在多个计算设备之间的数据交换和同步。
- oneTBB(oneAPI Threading Building Blocks): 一个用于并行编程的库,提供了丰富的线程和任务管理功能,能够帮助开发人员更好地利用多核处理器的并行能力。
- oneMKL(oneAPI Math Kernel Library):一个数学函数库,提供了一系列高性能的数值计算和线性代数操作函数,可用于加速科学计算、数据分析等应用

代码执行

环境:

• 下载代码仓库:

git clone git@github.com:Perter-Li/cityscapesSeg.git

安装依赖:

pip install -r requirements.txt

• 数据集下载:

本次项目采用的数据集由oneAPI官方指定,为<u>cityscapes城市景观数据集</u>,包含了高清城市场景图像用于语义分割任务。其中我们选取了gtFine_trainvaltest和leftImg8bit_trainvaltest两类数据用于训练和测试,里面分别包括了30类对象(行人、摩托车、卡车、汽车、桥、围栏等)的1525和5000幅图像。如下图所示:

关于数据集如何进行下载,可参考博客: cityscapes数据集的下载和应用

• 数据格式转换:

```
cd cityscapes_to_yolo/
python main.py --datadir path_to_cityscapes_dataset --savedir
path_to_processed_dataset_dir
```

其中 path_to_cityscapes_dataset 为cityscapes数据集的路径,而 path_to_processed_dataset_dir 则代表最终想要将处理好的数据以及标签存储的位置。

当执行成功以后,将生成转换后的数据格式。

• 数据训练:

python train.py

• 数据结果预测:

python predict.py

在这里可以传入一张数据图像,根据我们的当前已训练好的模型,将可以得到预测的结果:

注:倘若想要更详细地查看模型结构,可以执行 run.ipynb 中的代码。

数据集介绍及处理

• 原数据集

本次项目采用的数据集由oneAPI官方指定,为cityscapes 城市景观数据集,包含了高清城市场景图像用于语义分割任务。其中我们选取了gtFine_trainvaltest和leftImg8bit_trainvaltest两类数据用于训练和测试,里面分别包括了30类对象(行人、摩托车、卡车、汽车、桥、围栏等)的1525和5000幅图像。

• 数据集转换

由于我们采用了yolov8n作为基础模型,城市景观数据集需要转换为yolo数据集格式才能使用。 Yolo标注格式如下所示:

<object-class> <x> <y> <width> <height>

- 1. object-class: 对象的标签索引
- 2. x, y: 目标的中心坐标,相对于图片的H和W做归一化。即x/W, y/H
- 3. width, height: 目标 (bbox) 的宽和高

例如:

0 0.412500 0.318981 0.358333 0.636111

我们首先对城市数据景观数据集标签格式转成 coco 数据集格式,然后对所有图像进行了归一化处理,以便网络模型能够更好地处理图像数据,最后再将其转为yolo格式。

- 数据集 coco->yolo的转换:
- 1. 创建image-dict
 - ▶ 代码块展开

```
# Import json
for json_file in sorted(Path(json_dir).resolve().glob('*.json')):
    fn = Path(save_dir) / 'labels' / json_file.stem.replace('instances_',
'') # folder name
    fn.mkdir()
    with open(json_file) as f:
        data = json.load(f)
# Create image dict
    images = {'%g' % x['id']: x for x in data['images']}
# Create image-annotations dict
    imgToAnns = defaultdict(list)
    for ann in data['annotations']:
        imgToAnns[ann['image_id']].append(ann)
```

2. 对图像进行归一化处理并转换为yolo格式

▶ 代码块展开

```
# Write labels file
for img_id, anns in tqdm(imgToAnns.items(), desc=f'Annotations
{json_file}'):
    img = images['%g' % img_id]
    h, w, f = img['height'], img['width'], img['file_name']
    file_dir = os.path.join(*(f.split('/')[1:-1]))
    filename = f.split('/')[-1]
   bboxes = []
    segments = []
    for ann in anns:
       if ann['iscrowd']:
            continue
        # The COCO box format is [top left x, top left y, width, height]
        box = np.array(ann['bbox'], dtype=np.float64)
        box[:2] += box[2:] / 2 # xy top-left corner to center
       box[[0, 2]] /= w # normalize x
       box[[1, 3]] /= h # normalize y
        if box[2] <= 0 or box[3] <= 0: # if w <= 0 and h <= 0
            continue
        cls = coco80[ann['category_id'] - 1] if cls91to80 else
ann['category_id'] - 1 # class
       box = [cls] + box.tolist()
        if box not in bboxes:
            bboxes.append(box)
        # Segments
        if use_segments:
            if len(ann['segmentation']) > 1:
                s = merge_multi_segment(ann['segmentation'])
                s = (np.concatenate(s, axis=0) / np.array([w,
h])).reshape(-1).tolist()
            else:
                s = [j for i in ann['segmentation'] for j in i] # all
segments concatenated
                s = (np.array(s).reshape(-1, 2) / np.array([w,
h])).reshape(-1).tolist()
```

```
s = [cls] + s
if s not in segments:
    segments.append(s)
```

3. 最后将标签数据保存为txt文件

▶ 代码块展开

```
subdir=os.path.join(fn,file_dir)
if not os.path.exists(subdir):
    os.makedirs(subdir)

# 修改文件名后缀
outfilename = filename.split(".")[0] + ".txt"
# Write
with open(os.path.join(fn,file_dir,outfilename), 'a') as file:
    for i in range(len(bboxes)):
        line = *(segments[i] if use_segments else bboxes[i]), # cls, box or
segments
        file.write(('%g ' * len(line)).rstrip() % line + '\n')
```

以上便是数据集格式的转变方式,通过调用上述函数,将路径名做简单的修改便可以对不同数据集讲行格式转换。

最终处理完成的数据集只包含image和label,如下所示:

Yolo模型介绍及改进

模型上,由于yolo属于单阶段(1-stage)检测模型,能够使用单一网络便同时完成定位与分类,具有简洁、高效、速度快的特性,且具有不错的识别效果。因此,我们采用 yolo 的改进版本yolov8n作为我们的基础模型。yolov8 是 ultralytics 公司在 2023 年 1月 10 号开源的 YOLOv5 的下一个重大更新版本,它不仅支持图像分类,还支持物体检测和实例分割任务。由于其是基于yolo进行改进,它具有单阶段模型所具有的推理速度快的特性,并且能够有较高的准确度。 yolov8 基于 Backbone、PAN-FPN、Decoupled-Head、Anchor-Free、损失函数、样本匹配 这几个模块进行了改进。模型的Backbone、Decoupled-Head、匹配策略、损失函数 采用了如下方法:

• **Backbone**: 这里使用的仍然是CSP的思想,不过将C3模块替换成了 C2f 模块(block数从3-6-9-3改为3-6-6-3),增加了更多的跳跃连接和split操作,实现了进一步的轻量化,同时也保留了SPPF模块。

• **Decoupled-Head**:从耦合头变为了解耦头,分类和回归分为两个分支分别进行;这源于YoloX,即分类与回归两个任务的head不再共享参数

- **匹配策略**: 这里正负样本匹配策略采用的是Task-Aligned Assigner,也即对齐分配器,公式如下: $t=s^{\alpha}\cdot u^{\beta}$
 - 。 其中,s是GT的预测分值,u是预测框和GT Box的iou, α 和 β 为权重超参数,两者相乘就可以 衡量对齐程度,当Cls的分值越高且IOU越高时,t的值就越接近于1
- 损失函数: 损失函数包括两个分支, CIs与Box Reg; 其中分类损失采用了BCE损失:

$$loss(y, \hat{y}) = -rac{1}{n} \sum_{i} \left[(y^{(i)} \log \hat{y}^{(i)}) + (1 - y^{(i)}) \log(1 - \hat{y}^{(i)})
ight]$$

而位置损失分为了两个部分: Clou_Loss + Distribution Focal Loss; 第一部分是计算预测框与目标框之间的IOU,这里采用了Clou Loss,第二部分采用DFL;

$$DFL(S_i, S_{i+1}) = - ig[(y_{i+1} - y) \log(S_i) + (y - y_i) \log(S_{i+1}) ig]$$

o DFL 能够让网络更快地聚焦于目标y附近的值,增大它们的概率。

利用oneAPI里的Pytorch扩展 Intel(R) Extension for Pytorch 训练

Intel(R) Extension for Pytorch 针对命令模式 (imperative mode)和图模式进行了优化,并针对 Pytorch的三个关键模块:运算符、图和运行时 进行了优化,优化的运算符和内核通过 PyTorch 调度机制完成调用。在执行期间,面向 PyTorch* 的 Intel扩展将用扩展中优化的运算符覆盖 ATen 运算符的对应部分,并为常见的用例提供一组额外的自定义运算符和优化实现。在图模式下,扩展进一步应用图优化,以最大限度地提升内核的执行性能。运行时优化封装在运行时扩展模块中,该模块可为用户提供几个 PyTorch 前端 API,以便对线程运行时进行更精细化的控制。

IPEX的使用非常方便,仅仅只需一条指令便能够完成模型优化:

```
import intel_extension_for_pytorch as ipex
self.model, self.optimizer) = ipex.optimize(self.model,
optimizer=self.optimizer)
```

我们首先找到ultralytics源码中的BaseTrainer,在进行训练之前将模型和优化器传入ipex中进行优化,并用返回的model和optimizer进行训练

利用Neural Compressor工具训练

Intel(R) Neural Compressor是一个用于模型压缩的开源 Python 包。该库可应用于 CPU 或 GPU 上的深度学习部署,以减小模型大小并加快推理速度。此外它为著名的网络压缩技术提供统一的用户界面,包括跨各种深度学习框架的量化、修剪和知识蒸馏。该工具的自动精度驱动调整技术可用于生成最佳量化模型。此外,它允许知识蒸馏,以便可以将来自教师模型的知识转移到学生模型中。它实现了几种权重剪枝方法,以使用预定的稀疏目标生成剪枝模型。

neural compressor的安装:

```
pip install neural-compressor -i https://pypi.tuna.tsinghua.edu.cn/simple/
```

neural compressor的使用也比较方便,我们采用了quantization.fit()函数以尝试利用 Intel(R) Neural Compressor对模型进行量化:

我们在 trainer.py 文件中定义了实现利用neural Compressor的加速代码,如需执行的话,可以将对应的代码进行解注释。

库导入:

```
8— import intel_extension_for_pytorch as ipex
9— from neural_compressor.config import PostTrainingQuantConfig, AccuracyCriterion, TuningCriterion
10— from neural_compressor import quantization
11 import math
12 import os
```

将模型封装在库neural compressor中:

```
tnow = time.time()
    self.epoch time = tnow - self.epoch time start
    self.epoch_time_start = tnow
    self.run_callbacks('on_fit_epoch_end')
    torch.cuda.empty_cache() # clears GPU vRAM at end of epoch, can help with out
    self.model.eval()
                             tolerable loss=0.01))
    # Early Stopping
    if RANK != -1: # if DDP training
       broadcast_list = [self.stop if RANK == 0 else None]
       dist.broadcast_object_list(broadcast_list, θ) # broadcast 'stop' to all r
       if RANK != 0:
           self.stop = broadcast_list[0]
    if self.stop:
      break # must break all DDP ranks
print("*"*100)
print(f"Time Cost of Epoch: {time.time()-start}")
if RANK in (-1, 0):
```

```
def eval_func(self,model):
    with torch.no_grad():
        for batch_idx,batch in enumerate(self.train_loader):
            self.loss, self.loss_items = model(batch)
    return self.loss
```

Neural-Coder———Visual Studio Code Extension

为了进一步简化开发者的开发流程,Intel推出了一款一键式、无代码解决方案 Intel(R) Neural Coder。Neural Coder是Neural Compressor下的新组件,通过一键式设备切换和优化启动自动代码更改,无需在深度学习脚本中进行基于CUDA的硬编码便可以进一步简化深度学习模型的部署。这一组件不仅可以优化这些脚本的性能,还能针对这些优化进行基准测试,进而提供合适的部署方案。

Neural Coder采用了静态程序分析技术和启发式优化规则,简化各种深度学习优化api的使用,

以提高AI模型的计算效率,改善一般AI客户的用户体验。 Neural-Coder的使用方式通常有以下三种: Jupyter Lab Extension/Visual Studio Code Extension、Python Launcher、Python API,这里我们采用了VSCode Extension的方式:

1. 在服务器安装Neural-Coder:

2. 设置路径:

3.. 最后在代码右上角图标中选择INC Auto Enable Benchmark运行程序

模型性能

oneAPI加速性能

	训练时间	加速比
初始模型	25h 45min 40s	1.12
使用oneAPI后的模型	22h 47min 6s	1

运行结果

• 最终运行结果如下图:

取::: (四)												
Class	Images	Instances	Box(P	R	mAP50	mAP50-95)	Mask(P	R	mAP50	mAP50-95)	iou	PA:
all	500	10152	0.708	0.484	0.559	0.347	0.586	0.402	0.419	0.208	0.163	0.429
person	500	3414	0.772	0.495	0.607	0.337	0.648	0.417	0.452	0.177	0.245	0.802
rider	500	552	0.774	0.536	0.619	0.366	0.581	0.402	0.389	0.11	0.119	0.51
car	500	4667	0.84	0.69	0.791	0.544	0.711	0.585	0.63	0.33	0.581	0.947
truck	500	93	0.48	0.344	0.365	0.236	0.405	0.29	0.285	0.194	0.0601	0.161
bus	500	98	0.8	0.541	0.652	0.489	0.784	0.531	0.615	0.413	0.0882	0.147
motorcycle	500	149	0.702	0.336	0.415	0.182	0.529	0.256	0.258	0.0769	0.042	0.188
bicycle	500	1171	0.743	0.431	0.52	0.266	0.617	0.359	0.379	0.129	0.16	0.662
caravan	500	. 8	0.549	0.5	0.504	0.355	0.411	0.375	0.349	0.232	0.00604	0.0142

• 我们选取了8个类别,并分别绘制了他们的F1-Confidence曲线和混淆矩阵:

Precision-Recall 曲线以及Recall-Confidence 曲线:

• 模型对单张图片的平均验证时间:

preprocess time	inference	postprocess time
0.5ms	2.2 ms	0.6 ms

参考资料

- 1. 面向 PyTorch* 的英特尔® 扩展助力加速 PyTorch
- 2. <u>目标检测任务中常用的数据集格式(voc、coco、yolo)</u>
- 3. YOLOv8 网络结构-拆解与组装
- 4. YOLOv8详解代码实战,附有效果图
- 5. <u>简单了解YOLOv8</u>