ΕΡΓΑΣΙΑ # 6

Επιστροφή 23-3-2006

- 1. Χρησιμοποιώντας την Lagrangian $\mathcal{L}=\frac{1}{2}M\vec{R}^2+\frac{1}{2}\mu\dot{\vec{r}}^2-U(r)=\mathcal{L}_{\rm CM}+\mathcal{L}_{\rm scet.}$ να γραφούν οι τρεις εξισώσεις Lagrange για τις σχετικές συντεταγμένες x, y και z και να δειχθεί ότι η κίνηση της σχετικής θέσης \vec{r} είναι ίδια με αυτή ενός και μόνο σώματος με διάνυσμα θέσης \vec{r} , δυναμική ενέργεια U(r) και μάζα ίση με την ανηγμένη μάζα μ.
- 2. Δύο μάζες m_1 και m_2 κινούνται σε ένα επίπεδο και αλληλεπιδρούν μέσω ενός δυναμικού $U(r) = \frac{1}{2} k r^2$. Να γραφεί η Lagrangian του συστήματος συναρτήσει του CM και τις σχετικές θέσεις \vec{R} και \vec{r} . Να βρεθούν οι εξισώσεις κίνησης για τις συντεταγμένες X, Y (του CM) και x, y (σχετικής θέσης). Περιγράψτε την κίνηση και βρείτε την συχνότητα της σχετικής κίνησης.
- 3. Ένα σωματίδιο είναι περιορισμένο να κινείται στην επιφάνειας ενός κώνου ο άξονας του οποίου είναι συμπίπτει με τον κατακόρυφο άξονα z ενώ η κορυφή του κώνου συμπίπτει με την αρχή των αξόνων και η μισή γωνία ανοίγματος του κώνου είναι α. (α) Να γραφεί η Lagrangian σε σφαιρικές συντεταγμένες \mathbf{r} και φ. (β) Να βρεθούν οι δύο εξισώσεις κίνησης. Θεωρήστε ότι η εξίσωση κίνησης ως προς φ σαν την κατακοκόρυφο συνιστώσα της στροφορμής, l_z , και χρησιμοποιήστε την σχέση αυτή για να απαλείψετε την ποσότητα φ από την ακτινική εξίσωση αντικαθιστώντας την με την σταθερά l_z . Έχει νόημα η νέα εξίσωση ως προς \mathbf{r} όταν $l_z = 0$; Βρείτε τη τιμή \mathbf{r}_0 του \mathbf{r} για την οποία το σωματίδιο μπορεί να παραμείνει σε μια οριζόντια κυκλική διαδρομή. (γ) Υποθέστε ότι προσδίδεται στο σωματίδιο μια μικρή ακτινική ώθηση ώστε $\mathbf{r}(t) = \mathbf{r}_0 + \varepsilon(t)$, όπου $\varepsilon(t)$ είναι μικρό. Χρησιμοποιήστε την εξίσωση ως προς \mathbf{r} για να δείτε αν η κυκλική τροχιά είναι σταθερή. Αν όντως είναι σταθερή, ποια είναι η συχνότητα με την οποία το \mathbf{r} ταλαντώνεται γύρω από το \mathbf{r}_0 ;
- **4.** Θεωρείστε ένα σωματίδιο με ανηγμένη μάζα μ το οποίο περιστρέφεται μέσα σε ένα κεντρικό πεδίο $U=kr^n$ όπου kn>0. (α) Εξηγήστε τη σημασία της συνθήκης kn>0 ως προς το είδος της δύναμης. Σχεδιάστε το ενεργό δυναμικό $U_{\rm eff}$ για τις περιπτώσεις n=2, -1 και -3. (β) Βρείτε την ακτίνα στην οποία το σωματίδιο (με δεδομένη στροφορμή l) μπορεί να περιστρέφεται σε σταθερή ακτίνα. Για ποιες τιμές του n η κυκλική αυτή τροχιά είναι ευσταθής. Τα γραφήματα του $U_{\rm eff}$ δείχνουν κάτι τέτοιο. (γ) Για την σταθερή περίπτωση, δείξτε ότι η περίοδος των μικρών ταλαντώσεων γύρω από την κυκλική τροχιά είναι $\tau_{\rm ταλ}=\tau_{\rm περ.}/\sqrt{n+2}$. Εξηγήστε γιατί

αν $\sqrt{n+2}=\frac{p}{q}$, με p και q ακεραίους τότε οι τροχιές αυτές είναι κλειστές. Σχεδιάστε τις τροχιές αυτές για n = 2, -1 και 7.

5. Για ένα δεδομένο δορυφόρο της γης με δεδομένη στροφορμή l, δείξτε ότι η ελάχιστη απόσταση προσέγγισης r_{min} , σε μια παραβολική τροχιά είναι το μισό της κυκλικής τροχιάς.

6. Ένα σωματίδιο κινείται στο πεδίο μιας κεντρικής δύναμης: $U(r) = -k \frac{e^{-ar}}{r}$, όπου k και α είναι θετικές σταθερές. (α) Χρησιμοποιώντας τη μέθοδο της ισοδυναμίας με ένα μονοδιάστατο δυναμικό, περιγράψτε το είδος της κίνησης, προσδιορίζοντας το εύρος των τιμών που μπορούν να πάρουν η ενέργεια E και η στροφορμή I σε κάθε περίπτωση. (β) Πότε μπορούν να παρουσιαστούν σταθερές κυκλικές τροχιές; (γ) Να βρεθεί η περίοδος των μικρών ταλαντώσεων γύρω από την κυκλική τροχιά.