Übungsaufgaben zur Lebesgueschen Integrationstheorie

Tobias Ried

10. März 2011

Aufgabe 1 (Messbarkeit der Komposition zweier Abbildungen). Seien (X, \mathfrak{A}) , (Y, \mathfrak{B}) und (Z, \mathfrak{C}) Messräume und $f: (X, \mathfrak{A}) \to (Y, \mathfrak{B}), g: (Y, \mathfrak{B}) \to (Z, \mathfrak{C})$ messbar. Zeigen Sie, dass dann auch $f \circ g: (X, \mathfrak{A}) \to (Z, \mathfrak{C})$ messbar ist.

Aufgabe 2 (Messbarkeit wichtiger Funktionen). Sei $(f_n)_{n\in\mathbb{N}}$ eine Folge messbarer Funktionen. Zeigen Sie, dass dann auch $\sup_{n\in\mathbb{N}} f_n$ und $\inf_{n\in\mathbb{N}} f_n$ messbar sind.

Aufgabe 3 (Monotone Konvergenz). Zeigen Sie: Für alle $f \in E^*$ gilt:

$$\lim_{n \to \infty} n \int \log \left(1 + \frac{1}{n} f \right) d\mu = \int f d\mu$$

HINWEIS: Warum gilt $\left(1 + \frac{1}{n}f\right)^n \uparrow_n \exp(f)$?

Aufgabe 4 (Integral auf $(\mathbb{N}, \mathfrak{P}(\mathbb{N}), \mu)$). Betrachten Sie den Maßraum $(\mathbb{N}, \mathfrak{P}(\mathbb{N}), \mu)$ mit dem Zählmaß μ . Darauf sei eine messbare Funktion $f : \mathbb{N} \to \mathbb{R}$, $f(n) =: f_n$ definiert.

1. Begründen Sie

$$\int f \, \mathrm{d}\mu = \sum_{n \in \mathbb{N}} f(n) = \sum_{n \in \mathbb{N}} f_n.$$

- 2. Formulieren Sie für obiges Integral auf $(\mathbb{N}, \mathfrak{P}(\mathbb{N}), \mu)$ den Satz zur majorisierten Konvergenz (ausgedrückt für Reihen).
- 3. Sei nun auf $(\mathbb{N}, \mathfrak{P}(\mathbb{N}))$ ein anderes Maß ν definiert durch $\nu(\{n\}) := 4^{-n}$ $\forall n \in \mathbb{N}$ und die Funktion $f : \mathbb{N} \to \mathbb{R}$, $f_n = f(n) = (-3)^n$ gegeben. Ist ν normiert, also $\nu(\mathbb{N}) = 1$? Warum ist f integrierbar? Berechnen Sie

$$\int f \, \mathrm{d}\nu, \quad \int 1_{2\mathbb{N}} f \, \mathrm{d}\nu$$

Aufgabe 5 (Integrierbarkeit). Zeigen Sie, dass die Funktion $f:[0,\infty)\to\mathbb{R}$,

$$f(x) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \mathbf{1}_{[n-1,n)}(x)$$

nicht Lebesgue-integrierbar ist. Wie ist dann die Gleichung

$$\int_0^\infty f(x) \mathrm{d}x = \log 2$$

zu verstehen?

HINWEIS: Wie sieht der Graph von f aus? Finden Sie einen einfachen Ausdruck für |f| und zeigen Sie, dass |f| nicht Lebesgue-integrierbar ist. Warum ist dann f nicht Lebesgue-integrierbar?

Aufgabe 6 (Integration bezüglich Maßen mit Dichten und Bildmaßen). Sei $f: \mathbb{R}^2 \to \mathbb{R}$, $(x,y) \mapsto \sqrt{x^2 + y^2}$ und $\mu := f(\lambda^2)$ das Bilmaß des 2-dimensionalen Lebesgue-Maßes unter f.

- 1. Warum ist f messbar?
- 2. Berechnen Sie $\mu([a,b])$ für $a,b \in \mathbb{R}, a \leq b$.
- 3. Bestimmen Sie eine Dichte ρ , sodass $\rho \lambda^1([a,b]) = \mu([a,b]) \ \forall a,b \in \mathbb{R}, a \leq b.$
- 4. Wie lautet die Radon-Nikodym Ableitung von μ bezüglich λ^1 ?

Aufgabe 7 (Integration bezüglich Maßen mit Dichten und Bildmaßen). Sei $f: \mathbb{R} \to \overline{\mathbb{R}}, f(x) = \log |x|, f(0) := -\infty.$

- 1. Warum ist f messbar?
- 2. Sei $\mu := f(\lambda^1)$. Berechnen Sie $\mu([a, b])$ für $a, b \in \mathbb{R}$, $a \leq b$.
- 3. Sei $\rho: \mathbb{R} \to \mathbb{R}$, $\rho(x) = 2e^x$. Zeigen Sie: $\rho \lambda^1 = \mu$.
- 4. Wie lautet die Radon-Nikodym Ableitung von μ bezüglich λ^1 ?

Aufgabe 8 (Integrierbarkeit mit Fubini). Zeigen Sie mithilfe des Satzes von Fubini, dass die Funktion

$$f(x,y) = \frac{x-y}{(x+y)^3}, \quad x,y > 0$$

nicht λ^2 -integrierbar über der Menge $B=[0,1]^2$ ist.

Aufgabe 9 (Ebene Polarkoordinaten und Integrierbarkeit). Das 2-dim. Lebesgue-Maß λ^2 werde einer Transformation in ebene Polarkoordinaten unterworfen.

- 1. Geben Sie die Transformation Ψ (Definitionsbereich mit Begründung) samt Jacobimatrix $D\Psi$ und Funktionaldeterminante an.
- 2. Wie transformiert sich λ^2 ?
- 3. Gegeben sei nun zusätzlich eine messbare und beschränkte Abbildung $f: \mathbb{R}^2 \to \mathbb{R}$ mit $f = \mathcal{O}(\|x\|^{\alpha})$ für $\|x\| \to \infty$. Zeigen Sie mit obiger Transformation, dass f integrierbar ist, falls $\alpha < -2$. Argumentieren Sie sauber, indem Sie die an den jeweiligen Stellen relevanten Sätze nennen!

Aufgabe 10 (Transformation des Lebesgue-Maßes). Zeigen Sie: Für eine lineare Transformation $f: \mathbb{R}^d \to \mathbb{R}^d$, die bezüglich der Standardbasis des \mathbb{R}^d dargestellt werde durch die Matrix $A = \operatorname{diag}(\alpha_1, \dots, \alpha_d)$ mit $\alpha_1, \dots, \alpha_d \in \mathbb{R} \setminus \{0\}$, ist

$$f(\lambda^d) = |\alpha_1 \cdot \dots \cdot \alpha_d|^{-1} \lambda^d.$$

- 1. elementar durch Auswerten an Quadern (HINWEIS: Definition des Bildmaßes).
- 2. mithilfe des Transformationssatzes.