Cvičení 12. Vícevýběrové testy

Typ proměnné	Požadovaný typ analýzy	Př	edpoklady	Testy	
			17 /0 / .0/10 /	Cochranův test	
né	Ověření shody	Normalita	Vyvážené třídění	Hartleyův test	
oroměn	rozptylů (homoskedasticity)		Nevyvážené třídění	Bartlettův test	
jité p			_	Leveneův test	
Alespoň tři nezávislé spojité proměnné	Ověření shody měr polohy	Normalita	Shoda rozptylů (homoskedasticita)	ANOVA (Analýza rozptylu = test shody stř. hodnot (Poznámka: V případě zamítnutí H ₀ je vhodné provést post hoc analýzu, např. Schéffeho metodou.)	
Alesi	(středních hodnot, resp. mediánů)	Symetrické rozdělení		Kruskalův-Wallisův test (test shody mediánů, resp. shody distribucí; použití i pro pořadová data. Poznámka: V případě zamítnutí H ₀ je vhodné provést post hoc analýzu, např. Dunnové metodou.)	

	Tabulka ANOVA								
Zdroj variability	Součet čtverců	Počet stupňů volnosti	Rozptyl (prům. součet čtverců)	F-poměr	$p ext{-}hodnota$				
Skupinový faktor	$SS_B = \sum_{i=1}^k n_i (\overline{X}_i - \overline{X})^2$	$df_B = \underbrace{k-1}$	$\underbrace{MS_B} = \frac{SS_B}{df_B}$	$\frac{MS_B}{MS_e}$	$1 - F_0(x_{OBS})$				
Reziduální faktor	$SS_e = \sum_{i=1}^{k} (n_i - 1)s_i^2$	$df_e = \underline{n-k}$	$\underline{MS_e} = \frac{SS_e}{df_e}$	_	_				
Celkový faktor	$SS_T = \sum_{i=1}^k (X_{ij} - \overline{X})^2$	$df_T = n - k1$	_	_	_				

Příklady

Příklad 1.

Testujeme nulovou hypotézu $\mu 1 = \mu 2 = \mu 3$. Bylo zjištěno, že data, která máme k dispozici jsou výběry z normálního rozdělení splňující předpoklad homoskedasticity (shody rozptylů). Na základě údajů získaných explorační analýzou doplňte tabulku <u>ANOVA</u> a vyplývající závěry.

Faktor	Rozsah výběru	Průměr	Výběrová směrodatná odchylka
Skupina 1	40	300	33
Skupina 2	40	290	34
Skupina 3	42	310	31
Celkem	122		_

Zdroj variability	Součet čtverců	Počet stupňů volnosti	Rozptyl (prům. součet čtverců)	F-poměr	p-hodnota
Skupinový	8146,7	2	409314	3,84	०,०२५
Reziduální	12695610	119	1066,4	•	
Celkový					

ANOUR

Ho: W= L3= L~

HA: 7HO

P-hodnotor = 0,024

Y=0'02

=) Zaminam He

=> Existige stote. Mysnämmy rusdit mosi strednimi bodnotami profit, pro

Příklad 2.

122 pacientů, kteří podstoupili operaci srdce, bylo náhodně rozděleno do tří skupin.

Skupina 1: Pacienti dostali 50 % oxidu dusného a 50 % kyslíkové směsi nepřetržitě po dobu 24 hodin.

Skupina 2: Pacienti dostali 50 % oxidu dusného a 50 % kyslíkové směsi pouze během operace.

Skupina 3: Pacienti nedostali žádný oxid dusný, ale dostali 35-50 % kyslíku po dobu 24 hodin. Data v souboru kyselina listova.xls odpovídají koncentracím soli kyseliny listové v červených krvinkách ve všech třech skupinách po uplynutí 24 hodin ventilace. Ověřte, zda pozorované rozdíly mezi koncentracemi soli kyseliny listové jsou statisticky významné, tj. zda existuje vliv složení směsi na sledovaný parametr.

- nejson m/ Your or obuprirain ANDVA) / KW test NORM. SYMETRIE HO MOSK.V WORMH LITY SW. TEST SK1: p-hod= 0,477 SK1: p-hod= 0,777 NETAMI TAM SKS: p-hod = 0,525

BATTLece +.
Ho: 31 = 51 = 63

(+A: 7 +0

P-hod = 0,645 =) VEZAMITAM
HOMOSKEDASTICITU

ANAWA

Ho: M1=M2=M3

HA: THO

P-hod << 0,001

3 ZAMITÁM HO

Existign' stat výsmomné rosdily mesi str., bod. =) POST- HOC TUKEY HSD

Q = POS

		S K1	5 k 3	Skz
	SK1	X	0,002 ×	0,001 ×
	S K 3		X	0,0052
_	SK. 2			\times
_				

EFEKT		HM1	HM2	HMZ
26,7	SK1	a		
-0,2	S K 3		b	
-26,5	5 tz			

Příklad 3.

Na farmě jsou chována tři plemena králíků. Byl proveden pokus kralici.xls, jehož cílem bylo zjistit, zda i když chováme a vykrmujeme všechny králíky po stejnou dobu a za stejných podmínek, existuje statisticky významný (průkazný) rozdíl mezi plemeny v hmotnostech králíků. Ověřte.

Ho:
$$3v = 3c = 3k$$
 (BAH. test)
HA: 7 Ho

	KALIF	VID)		CEIK
KAL	~	0,00)1 <u>X</u>	4	0,001
VID			\	XC	0,001
(E(K					7
		\langle	20,) J	_
EFEKT					
0,88	KAL	Λ			
80,0-	VID		6	,	
-0,64	CEK				

Příklad 4.

Soutěž o nejlepší jakost výrobků obeslali čtyři výrobci A, B, C, D celkem 66 výrobky. Porota sestavila pořadí (uvedeno pouze pořadí výrobku od nejlepšího k nejhoršímu), jež je uvedené v souboru jakost.xls. Na základě uvedených údajů posuďte, zda původ výrobků má vliv na jeho jakost.

Opiji/la 1. IV E > NETAVISCA? NEJ ROBUSTNOJĆÍ (NEST. KW-TEST 2AU) STMETRIEL

=) NETAMITAM STMETRII

KW-t.

= X0,5; B=X0,5; C=X0,5; D Ho: XoisiA

HA: 7 Ho

P-hod= 0,795

=) NE tamilian Ho

-) reexistige stat. výsnamý rosdil.

rellere priedjel. relify

Sphriety -> Nest nemsi 4/2 spolpling')

Příklad 5.

Byl sledován vliv tří preparátů na srážlivost krve. Kromě jiných ukazatelů byl zjišťován tzv. trombinový čas. Údaje o 42 sledovaných osobách jsou zaznamenány v souboru trombin.xls. Závisí velikost trombinového času na tom, jaký byl použit preparát?

OP 2 nepon

M 1 Yors re shyridish

AUDUA 1 (t-U. 6014)

Norm. X SYMET. V

Ho mosk.

Vorm (5-w)

P-hodnoty

skupina norm.pval > <dbl>

<chr> <dbl> 1 A 0.03179805 ≺

2 B 0.94597139 3 C 0.27138568

C0,05

Eamilian remoble pre A SYMETRIE? V. (Symmetry tex) skupina sikmost test.pval <dbl>- <dbl>-<chr> 0.5400617 1.0000000 Α 0.2886751 В 0.7777511 3 C 4-0,07 =) NEZAMITÁM SIME TRII K-W test Ho: Xo, C; A = Xo, s; B = Xp, s; C [47; 7 Ho

Hz: 7 Ho P-hod LC 0,001 X=0,05

2) ZAMITAM Ho D'Existyi' stat. Výs. rosdíly mosi

wediang brendingel cusi POST-HOC (Dun-test Bonteroni 29,0=2 0,004 EFEAT 8,00 a0, O -6,00

PRIKLAD 6.

OP1 NESSOL

S-W test NORMALITY

P-hodrora = 0,522

=) NETAMÍTÁME HPMOSK.

ANPUA

Ho: Wn = ... = M7

HA: THO

P-hodnota CC 0,001

=> ZAMITÁME HO

-> Existy stat. Vysarone rosdsty

mesi stred lednobini.

(TUKET HSD) >> POST - HOC

	5M	KE	RE	ST	ST	DÑ	ρR
5 5	X	Coylo	0,001	9,001	(),(00)	0,001	0,001
KE		X	0,998	973	0,001	0,001	0,001
RE			X	0,944	0,006	0,001	0,001
ST				X	0,125	0,015	P,001
ST					X	0,985	0,001
D B						X	200,0
PR							X

		ĺ								
0,34	SM	q								
0,17	KE		Y							
0,10	RE		1							
0,07	ŠT		ζ(,	λ					
-074	ST				d	0				 _
-0,74	D B					6	Į,			
-0180	PR							V		-
	1		I	ı		I		<i>N</i>		