Quantum Notes

Release 1.38

Lei Ma

CONTENTS

1	Introduction	3
2	Table of Contents	5
	2.1 Vocabulary	5
	2.2 Approximation Methods	5

Some notes for quantum

CONTENTS 1

2 CONTENTS

CHAPTER	
ONE	

INTRODUCTION

Some notes continued from the full theoretical physics notes are here.

CHAPTER

TWO

TABLE OF CONTENTS

2.1 Vocabulary

Vocabulary of physics, the fountain of research ideas.

0. Fine Structure Constant

```
:math: 'alpha = frac{k_mathrm{e} e^2}{hbar c} = frac{1}{(4 pi varepsilon_0)} frac{e^2}{hbar c} = frac{e^2 c mu_0}{2 h}'
```

In electrostatic cgs units, :math'alpha = $frac\{e^2\}\{hbar c\}'$.

In natural units, :math: 'alpha = $frac\{e^2\}\{4 pi\}$ '.

1. Hydrogen Atom

Potential $V(r) = -fracZe^2 4\pi\epsilon_0 r$.

Energy levels: :math: ' $E_{n} = -left(frac\{Z^2 \ mu \ e^4\}\{32 \ pi^2epsilon_0^2hbar^2\}right)frac\{1\}\{n^2\} = -left(frac\{Z^2hbar^2\}\{2mu \ a_{mu}^2\}right)frac\{1\}\{n^2\} = frac\{mu \ c^2Z^2alpha^2\}\{2n^2\}.$

Ground state of hydrogen atom $\psi_{100}(r) = \frac{1}{\sqrt{\pi}} \frac{1}{a^{3/2}} e^{-Zr/a}$.

2.2 Approximation Methods

2.2.1 Variational Method

Trial functions

- 1. $\psi(x) = \cos \alpha x$, for $|\alpha x| < \pi/2$, otherwise 0.
- 2. $\psi(x) = \alpha^2 x^2$, for $|x| < \alpha$, otherwise 0.
- 3. $\psi(x) = C \exp(-\alpha x^2/2)$.
- 4. $\psi(x) = C(\alpha |x|)$, for $|x| < \alpha$, otherwise 0.
- 5. $\psi(x) = C \sin \alpha x$, for $|\alpha x| < \pi$, otherwise 0.

Why don't we just use a most general variational method to find out the ground state? Because we will eventually come back to the time-independent Shrodinger equation.

Suppose we have a functional form

$$E(\psi^*, \psi, \lambda) = \int dx \psi^* H \psi - \lambda \left(\int dx \psi^* \psi - 1 \right)$$

The reason we have this Lagrange multiplier method is that the wave function should be normalized and this multiplier provides the degree of freedom. We would only get a wrong result if we don't include this DoF.

Variation of ψ^* ,

$$\delta E = \int dx \delta \psi^* H \psi - \int dx \delta \psi^* \psi = 0$$

Now what?

$$H\psi - \lambda\psi = 0$$

Not helpful.

2.2.2 Variational Method and Virial Theorem

For a potential $V(x)=bx^n$, we can prove that virial theorem is valid for ground state if we use Gaussian trial function $e^{-\alpha x^2/2}$.

A MMA proof is here.

This open source project is hosted on GitHub: quantum.

Latest PDF here.