Art Ta

Theor

Code

Potenti

Actual Problem

Appendix

Update: Total PCA v. OLS

Art Tay

Table of Contents

Update: Total PCA v. OLS

Art Tay

Theor

Code

Potentia Problem

Actual

Problem

- 1 Theory
- 2 Code

- 3 Potential Problem
- 4 Actual Problem

Art 1a

Theory

Code

Probler

Actual

Problen

Appendix

Theory

Background

Update: Total PCA v. OLS

Art Tay

Theory

Code

Potentia Problem

Actual Problem

Problen

OLS Refresher

Let X be a $n \times p$ centered design matrix, and Y be the $n \times 1$ response vector. Then the projection matrix H that projects Y to \hat{Y} , the closest value to Y in the col(X) is given by

$$\hat{Y} = HY = X(X^TX)^{-1}X^TY$$

PCA Refresher

Since X^TX is symmetric, it can be decomposed into PDP^T , where P is the $p \times p$ orthonormal matrix of the eigenvectors of X^TX .

This means that P here is equivalent to the "PCA rotation matrix".

Intuition

Update: Total PCA v. OLS

Art Tay

Theory

Problem

Actual Problem

Appendi

• We will define a "Total PCA Transformation" to be Z = XP.

lacksquare Z is a n imes p matrix that is a linear transformation of X. Therefore col(Z) = col(X).

lacksquare Since the predictor space has just been rotated, the span hasn't changed and \hat{Y} should still be the closed point to Y in the new predictor space Z.

Proof

Update: Total PCA v. OLS

Art Tay

Theory

Code

Potentia Problem

Actual

Problem

Appendi

Let H' be the projection matrix that projects Y onto Z.

$$H' = Z(Z^T Z)^{-1} Z^T (1)$$

$$= XP((XP)^{T}XP)^{-1}(XP)^{T}$$
 (2)

$$= XP(P^TX^TXP)^{-1}P^TX^T \tag{3}$$

$$= XPP^T(X^TX)^{-1}PP^TX^T \tag{4}$$

$$=X(X^TX)^{-1}X^T\tag{5}$$

■ Thus $\hat{Y}_{PCA} = \hat{Y}_{OLS} \Rightarrow$ the Training and Testing errors must be identical between the two methods.

Art 18

Theory

Code

Potenti Problen

Actual

Problen

Appendio

Code

Problem

Update: Total PCA v. OLS

Code

Old Code:

```
pca_recipe <- recipe(Y ~ .,
data = dummy dataset) %>%
step_pca(all_numeric_predictors(),
    threshold = 1)
```

New Code:

```
pca_recipe <- recipe(Y ~ .,</pre>
data = dummy_dataset) %>%
step_pca(all_numeric_predictors(),
    num comp = 30)
```

Art 18

Theory

Code

Potential Problem

Actual

Probler

Appendix

Potential Problem

What could this mean?

Update: Total PCA v. OLS

Art Tay

Theory

Potential Problem

Actual

- There are some samples where certain principal components explain 0 additional variance.
- Those principal components have a corresponding eigenvalue of 0.
- $det(X^TX) = 0 \iff (X^TX)^{-1} \text{ does not exist } \Leftrightarrow \\ \text{Perfect Collinearity.}$
- The model will still "fit", but it will be uninterpretable.

Toy Example

Update: Total PCA v. OLS

Art Tay

Theory

Potential

Problem

Actual Problem

Appendia

Suppose a true data generating model:

$$Y = X + Z + \epsilon$$

where X,Z,ϵ are all $\sim N(0,1).$

■ But suppose a third predictor, $W = X + \frac{1}{2}Z$ is included.

Toy Example

Update: Total PCA v. OLS

Art Tay

Theor

Code

Potential Problem

Actual Problem

rrobiem

models	MSE	RMSE
OLS	0.7579	0.8706
PC1-2	0.7579	0.8706
PC1-3	0.7165	0.8465

Maintaining all components under perfect correlation can "trick" the algorithm into using useless information, because it will think its an uncorrelated predictor.

Actual Problem

Actual Problem

Unexpected Behavior

Update: Total PCA v. OLS

Art Tay

Theory

Code

Potenti: Problen

Actual Problem

Figure 1: Number of Components Retained by Total PCA Models Under the Old Code

Art Ta

Theor

Code

Potenti Problen

Actual Problen

 ${\sf Appendix}$

Low Correlation Case

Update: Total PCA v. OLS

Art Tay

Theory

Potential Problem

Actual Problem

Table 2: Modeling results under low correlation between parameters

Model	Training RMSE	Test RMSE	Parameters
OLS	(0.81, 0.85)	(1.19, 1.2)	(19.49, 21.57)
LASSO	(0.82, 0.86)	(1.17, 1.18)	(15.13, 15.81)
PCA	(0.81, 0.85)	(1.19, 1.2)	(25.91, 26.93)
PCA + Cutoff	(1.88, 1.99)	(2.16, 2.19)	(9.55, 10.07)
PCA + LASSO	(0.84, 0.89)	(1.19, 1.2)	(13.97, 15.55)
PLS	(0.81, 0.85)	(1.19, 1.2)	(13.15, 14.43)
PLS + LASSO	(0.85, 0.89)	(1.17, 1.18)	(14, 17.74)

¹ 99% mean t confidence intervals.

 $^{^2}$ Parameters means non-zero for LASSO type models and significant at $\alpha=$ 0.05 otherwise.

Moderate Correlation Case

Update: Total PCA v. OLS

Art Tay

•

- 1

Potentia

Actual Problem

Table 3: Modeling results under moderate correlation between parameters

Model	Training RMSE	Test RMSE	Parameters
OLS	(0.8, 0.83)	(1.18, 1.19)	(14.99, 19.69)
LASSO	(0.83, 0.88)	(1.13, 1.14)	(12.86, 14.08)
PCA	(0.8, 0.83)	(1.18, 1.19)	(24.51, 25.53)
PCA + Cutoff	(1.77, 1.86)	(1.91, 1.94)	(4.9, 5.32)
PCA + LASSO	(0.85, 0.9)	(1.15, 1.16)	(12.83, 14.37)
PLS	(0.8, 0.83)	(1.18, 1.19)	(15.79, 17.13)
PLS + LASSO	(0.85, 0.89)	(1.12, 1.13)	(15.16, 17.66)

¹ 99% mean t confidence intervals.

 $^{^2}$ Parameters means non-zero for LASSO type models and significant at $\alpha=$ 0.05 otherwise.

High Correlation Case

Update: Total PCA v. OLS

Art Tay

Theory

Potentia Problem

Actual Problem

Table 4: Modeling results under high correlation between parameters

Model	Training RMSE	Test RMSE	Parameters
OLS	(0.8, 0.84)	(1.23, 1.25)	(16.35, 19.11)
LASSO	(0.86, 0.91)	(1.15, 1.17)	(9.27, 10.59)
PCA	(0.8, 0.84)	(1.23, 1.25)	(20.8, 22.1)
PCA + Cutoff	(1.7, 1.77)	(1.76, 1.78)	2
PCA + LASSO	(0.88, 0.91)	(1.16, 1.18)	(10.04, 11.44)
PLS	(0.8, 0.84)	(1.23, 1.25)	(15.26, 17.14)
PLS + LASSO	(0.87, 0.9)	(1.14, 1.15)	(14.16, 15.76)

¹ 99% mean t confidence intervals.

 $^{^2}$ Parameters means non-zero for LASSO type models and significant at $\alpha=$ 0.05 otherwise.