DS311 - R Lab Assignment

Alexia Kim

2024-11-09

R Assignment 1

- In this assignment, we are going to apply some of the build in data set in R for descriptive statistics analysis.
- To earn full grade in this assignment, students need to complete the coding tasks for each question to get the result.
- After finished all the questions, knit the document into HTML format for submission.

Question 1

Using the **mtcars** data set in R, please answer the following questions.

```
# Loading the data
data(mtcars)
# Head of the data set
print(mtcars)
                       mpg cyl disp hp drat
##
                                                    qsec vs am gear carb
                                                wt
## Mazda RX4
                      21.0
                             6 160.0 110 3.90 2.620 16.46
                                                             1
                                                                  4
                                                                       4
                      21.0
## Mazda RX4 Wag
                             6 160.0 110 3.90 2.875 17.02
                                                                       4
                                                                       1
## Datsun 710
                      22.8
                             4 108.0 93 3.85 2.320 18.61
                                                          1
                                                            1
## Hornet 4 Drive
                      21.4
                             6 258.0 110 3.08 3.215 19.44 1
                                                            0
                                                                       1
                                                                  3
                                                                       2
## Hornet Sportabout
                      18.7
                             8 360.0 175 3.15 3.440 17.02 0
                                                             0
## Valiant
                      18.1 6 225.0 105 2.76 3.460 20.22 1 0
                                                                  3
                                                                       1
## Duster 360
                      14.3
                             8 360.0 245 3.21 3.570 15.84 0 0
                                                                  3
                                                                       4
## Merc 240D
                             4 146.7 62 3.69 3.190 20.00
                                                            0
                                                                  4
                                                                       2
                      24.4
                                                          1
                                                                       2
## Merc 230
                      22.8
                             4 140.8 95 3.92 3.150 22.90 1 0
## Merc 280
                             6 167.6 123 3.92 3.440 18.30 1
                                                                       4
                      19.2
                                                            0
                                                                  4
## Merc 280C
                      17.8
                             6 167.6 123 3.92 3.440 18.90 1 0
                                                                  4
                                                                       4
                                                                  3
                                                                       3
## Merc 450SE
                      16.4
                             8 275.8 180 3.07 4.070 17.40 0 0
                                                                       3
## Merc 450SL
                      17.3
                             8 275.8 180 3.07 3.730 17.60
                                                            0
                                                                  3
## Merc 450SLC
                      15.2
                             8 275.8 180 3.07 3.780 18.00 0
                                                             0
                                                                  3
                                                                       3
                                                                  3
                                                                       4
## Cadillac Fleetwood
                      10.4
                             8 472.0 205 2.93 5.250 17.98 0
                                                             0
                             8 460.0 215 3.00 5.424 17.82 0
                                                             0
                                                                  3
                                                                       4
## Lincoln Continental 10.4
                                                                       4
## Chrysler Imperial
                      14.7
                             8 440.0 230 3.23 5.345 17.42
                                                             0
                                                                  3
                                      66 4.08 2.200 19.47 1 1
                                                                  4
                                                                       1
## Fiat 128
                      32.4
                             4 78.7
## Honda Civic
                      30.4
                             4 75.7 52 4.93 1.615 18.52 1
                                                                  4
                                                                       2
## Toyota Corolla
                      33.9
                             4 71.1
                                      65 4.22 1.835 19.90 1
                                                            1
                                                                  4
                                                                       1
## Toyota Corona
                      21.5
                             4 120.1 97 3.70 2.465 20.01
                                                          1 0
                                                                  3
                                                                       1
## Dodge Challenger
                             8 318.0 150 2.76 3.520 16.87
                                                            0
                                                                  3
                                                                       2
                      15.5
## AMC Javelin
                      15.2
                             8 304.0 150 3.15 3.435 17.30 0 0
                                                                       2
```

```
## Camaro Z28
                     13.3
                            8 350.0 245 3.73 3.840 15.41
## Pontiac Firebird
                            8 400.0 175 3.08 3.845 17.05
                                                                3
                                                                     2
                     19.2
## Fiat X1-9
                     27.3
                          4 79.0 66 4.08 1.935 18.90 1 1
                                                                4
                                                                     1
## Porsche 914-2
                     26.0 4 120.3 91 4.43 2.140 16.70 0 1
                                                                5
                                                                     2
## Lotus Europa
                     30.4 4 95.1 113 3.77 1.513 16.90 1 1
                                                                5
                                                                     2
## Ford Pantera L
                     15.8
                           8 351.0 264 4.22 3.170 14.50 0 1
                                                                5
                                                                     4
## Ferrari Dino
                     19.7 6 145.0 175 3.62 2.770 15.50 0
                                                                     6
## Maserati Bora
                      15.0
                           8 301.0 335 3.54 3.570 14.60 0
                                                                5
                                                                     8
## Volvo 142E
                     21.4 4 121.0 109 4.11 2.780 18.60 1 1
                                                                     2
```

a. Report the number of variables and observations in the data set.

```
# Enter your code here!
ncol(mtcars)
## [1] 11
nrow(mtcars)
## [1] 32
# Answer:
print("There are total of __11___ variables and __32___ observations in this data set.")
## [1] "There are total of __11___ variables and __32___ observations in this data set."
```

b. Print the summary statistics of the data set and report how many discrete and continuous variables are in the data set.

```
# Enter your code here!
discrete=mtcars[c(2,4,8,9,10,11)]
ncol(discrete)*nrow(discrete)

## [1] 192

contin=mtcars[c(1,3,5,6,7)]
ncol(contin)*nrow(contin)

## [1] 160

# Answer:
print("There are __192__ discrete variables and __160__ continuous variables in this data set.")

## [1] "There are __192__ discrete variables and __160__ continuous variables in this data set.")
```

c. Calculate the mean, variance, and standard deviation for the variable **mpg** and assign them into variable names m, v, and s. Report the results in the print statement.

```
# Enter your code here!
m=mean(mtcars$mpg)
```

```
v=var(mtcars$mpg)

s=sd(mtcars$mpg)

print(paste("The average of Mile Per Gallon from this data set is ",m, " with variance ", v , " and standard deviation", s, "."))

## [1] "The average of Mile Per Gallon from this data set is 20.090625 with variance 36.3241028225806 and standard deviation 6.0269480520891 ."
```

d. Create two tables to summarize 1) average mpg for each cylinder class and 2) the standard deviation of mpg for each gear class.

```
# Enter your code here!
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
##
       filter, lag
## The following objects are masked from 'package:base':
##
##
       intersect, setdiff, setequal, union
mtcars %>%
group by(cyl) %>%
summarize(Avgmpg = mean(mpg))
## # A tibble: 3 × 2
##
      cyl Avgmpg
## <dbl> <dbl>
## 1
        4 26.7
## 2
            19.7
## 3
        8
            15.1
#2
mtcars %>%
group_by(gear) %>%
summarize(Sdmpg = sd(mpg))
## # A tibble: 3 × 2
      gear Sdmpg
##
##
    <dbl> <dbl>
## 1
        3 3.37
        4 5.28
## 2
## 3
        5 6.66
```

e. Create a crosstab that shows the number of observations belong to each cylinder and gear class combinations. The table should show how many observations given the car has 4 cylinders with 3 gears, 4 cylinders with 4 gears, etc. Report which combination is recorded in this data set and how many observations for this type of car.

```
# Enter your code here!
crosstab<-table(mtcars$cyl, mtcars$gear)</pre>
print(crosstab)
##
##
       3 4 5
##
    4 1 8 2
    6 2 4 1
##
    8 12 0 2
##
print("The most common car type in this data set is car with 8 cylinders
and 3 gears. There are total of 32 cars belong to this specification
in the data set.")
## [1] "The most common car type in this data set is car with __8_ cylinders
and __3__ gears. There are total of __32___ cars belong to this specification
in the data set."
```

Question 2

Use different visualization tools to summarize the data sets in this question.

a. Using the **PlantGrowth** data set, visualize and compare the weight of the plant in the three separated group. Give labels to the title, x-axis, and y-axis on the graph. Write a paragraph to summarize your findings.

```
# Load the data set
data(PlantGrowth)
print(PlantGrowth)
##
     weight group
## 1
       4.17 ctrl
## 2
       5.58 ctrl
## 3
       5.18 ctrl
       6.11 ctrl
## 4
## 5
       4.50 ctrl
       4.61 ctrl
## 6
## 7
       5.17 ctrl
## 8
       4.53 ctrl
## 9
       5.33 ctrl
## 10
       5.14 ctrl
       4.81 trt1
## 11
## 12
       4.17 trt1
## 13
       4.41 trt1
```

```
## 14
        3.59 trt1
## 15
        5.87 trt1
## 16
        3.83 trt1
       6.03 trt1
## 17
## 18
       4.89 trt1
## 19
       4.32 trt1
## 20
        4.69 trt1
## 21
        6.31 trt2
## 22
        5.12 trt2
## 23
        5.54 trt2
## 24
        5.50 trt2
## 25
        5.37 trt2
## 26
        5.29 trt2
## 27
       4.92 trt2
## 28
        6.15 trt2
## 29
        5.80 trt2
## 30
        5.26 trt2
library(ggplot2)
# Head of the data set
head(PlantGrowth)
##
    weight group
## 1
       4.17 ctrl
## 2
       5.58 ctrl
## 3
       5.18 ctrl
## 4
       6.11 ctrl
## 5
       4.50 ctrl
## 6
       4.61 ctrl
# Enter your code here!
ggplot(PlantGrowth, aes(y=weight, x=group)) + geom_boxplot() +
ggtitle("Weight of Each Group") +labs(y="Weight of Plant", x="The Groups")
```

Weight of Each Group

Result:

=> Report a paragraph to summarize your findings from the plot!

The line in in the boxes indicate the median. We can see from the boxplot graph that trt2 group has the highest median compared to the other groups. the ctrl group is the biggest box, meaning that the weight values for that group are more dispersed than the other groups. The ctrl group is left-skewed (negatively skewed), the trt1 group is symmetric, and trt2 is right-skewed. For trt1, there are outliers, meaning that there are some weight values that fall outside of the normal majority range.

b. Using the **mtcars** data set, plot the histogram for the column **mpg** with 10 breaks. Give labels to the title, x-axis, and y-axis on the graph. Report the most observed mpg class from the data set.

```
hist(mtcars$mpg,
    breaks = 10,
    main = "Histogram of Miles Per Gallon (mpg) in mtcars",
    xlab = "Miles Per Gallon (mpg)",)
```

Histogram of Miles Per Gallon (mpg) in mtcars

print("Most of the cars in this data set are in the class of __15___ mile
per gallon.")
[1] "Most of the cars in this data set are in the class of __15___ mile
per gallon."

c. Using the **USArrests** data set, create a pairs plot to display the correlations between the variables in the data set. Plot the scatter plot with **Murder** and **Assault**. Give labels to the title, x-axis, and y-axis on the graph. Write a paragraph to summarize your results from both plots.

```
# Load the data set
data(USArrests)
# Head of the data set
head(USArrests)
##
              Murder Assault UrbanPop Rape
## Alabama
                13.2
                                    58 21.2
                          236
                10.0
                          263
                                    48 44.5
## Alaska
## Arizona
                 8.1
                          294
                                    80 31.0
## Arkansas
                 8.8
                          190
                                    50 19.5
## California
                 9.0
                          276
                                    91 40.6
## Colorado
                 7.9
                          204
                                    78 38.7
```

```
# Enter your code here!

# pairs plot
pairs(USArrests, main = "Pairs Plot of USArrests")
```

Pairs Plot of USArrests

#scatterplot
plot(Murder ~ Assault, data=USArrests, main="Murder and Assault Correlation")

Murder and Assault Correlation

Result:

=> Report a paragraph to summarize your findings from the plot! PAIRS PLOT: The scatter plots of Murder and Assault values show a positive linear pattern, meaning that the correlation between Murder and Assault is strong. The scatter plots of Murder and UrbanPop show a random pattern, meaning there is little to no correlation between them. The correlation between Murder and Rape values is quite strong due to the scatter plots showing a positive linear pattern. The scatter plots showing the relationship between Assault and Urban Pop show a weak correlation as the patterns are really scattered and random. The relationship between Assault and Rape values show a positive linear pattern, meaning the correlation is strong. The relationship between Urban Pop and Rape values show somewhat a positive linear pattern, meaning the correlation is quite strong as well.

Question 3

Download the housing data set from www.jaredlander.com and find out what explains the housing prices in New York City.

Note: Check your working directory to make sure that you can download the data into the data folder.

a. Create your own descriptive statistics and aggregation tables to summarize the data set and find any meaningful results between different variables in the data set.

```
# Head of the cleaned data set
head(housingData)
     Neighborhood Market.Value.per.SqFt
                                                Boro Year.Built
##
## 1
        FINANCIAL
                                   200.00 Manhattan
                                                            1920
## 2
        FINANCIAL
                                   242.76 Manhattan
                                                            1985
## 4
        FINANCIAL
                                   271.23 Manhattan
                                                            1930
## 5
                                   247.48 Manhattan
          TRIBECA
                                                            1985
## 6
          TRIBECA
                                   191.37 Manhattan
                                                            1986
                                   211.53 Manhattan
## 7
          TRIBECA
                                                            1985
# Enter your code here!
agg withlabels<-
aggregate(list(AvgMarketValuePerSqft=housingData$Market.Value.per.SqFt),list(
YearBuilt=housingData$Year.Built),mean)
print(agg_withlabels)
       YearBuilt AvgMarketValuePerSqft
##
## 1
                                76.36000
## 2
            1836
                               273.77000
## 3
            1853
                               152.79000
## 4
            1860
                               159.64500
## 5
                               111.17000
            1874
                               166.05000
## 6
            1875
## 7
            1879
                               194.52000
## 8
            1881
                               109.70500
## 9
            1883
                               172.10000
## 10
            1890
                               113.28750
## 11
            1891
                                72.83000
## 12
            1892
                                95.21000
## 13
            1893
                               168.85000
## 14
            1894
                               110.62000
## 15
            1895
                               151.77500
## 16
            1896
                               117.26500
## 17
            1897
                                40.83000
## 18
            1898
                                83.25000
## 19
            1899
                               108.16000
## 20
            1900
                               137.55908
## 21
            1901
                               172.36778
## 22
            1902
                               167.62167
## 23
            1903
                               147.97000
## 24
            1904
                               123.09333
## 25
            1905
                               187.76583
## 26
            1906
                               169.03364
## 27
            1907
                               173.80000
## 28
            1908
                               150.35000
## 29
            1909
                               135.23667
```

##	30	1910	147.36257
##	31	1911	179.76067
##	32	1912	159.51636
##	33	1913	175.93500
##	34	1914	160.29286
##	35	1915	147.08673
##	36	1916	128.20714
##	37	1917	73.87000
##	38	1918	181.84000
##	39	1919	63.11000
##	40	1920	145.30862
##	41	1921	122.39125
##	42	1922	118.33250
##		1923	115.47625
##	44	1924	165.94091
##		1925	147.51316
##		1926	148.36423
##		1927	131.63357
##		1928	153.68375
##		1929	106.32121
##		1930	142.28936
##		1931	129.51731
##	52	1932	91.74333
##		1933	40.97000
##		1934	203.80000
##	55	1935	176.23000
##	56	1936	46.04333
##	57	1937	51.77250
##	58	1938	99.23857
##	59	1939	93.65083
##	60	1940	154.89857
##	61	1941	111.83733
##	62	1942	128.38600
##	63	1947	113.13500
##	64	1948	186.25000
##	65	1949	44.98000
##	66	1950	141.96182
##	67	1951	132.98833
##	68	1952	97.95143
##	69	1954	81.56500
##	70	1955	130.17538
##	71	1956	178.42786
##	72	1957	127.24091
##	73	1958	159.77000
##	74	1959	108.62692
##	75	1960	104.91200
##	76	1961	106.63000
##	77	1962	129.26294
##	78	1963	152.82937
##	79	1964	103.15000

```
## 80
             1965
                               121.01313
## 81
             1966
                                79.94375
## 82
             1967
                                91.94000
                               126.76000
## 83
             1968
## 84
             1969
                               157.28000
## 85
             1970
                               214.59000
## 86
             1971
                                57.60000
## 87
             1972
                               185.72000
## 88
             1973
                               196.75500
## 89
             1974
                               124.42500
## 90
             1975
                               201.26667
## 91
             1977
                               161.32250
## 92
             1978
                               254.69000
## 93
             1979
                               155.71333
## 94
             1980
                               161.74500
## 95
             1981
                               175.96800
## 96
             1982
                               151.30364
## 97
                               114.79917
             1983
## 98
             1984
                               179.48333
## 99
             1985
                               182.66868
## 100
             1986
                               157.62328
## 101
             1987
                               142.14055
## 102
             1988
                               126.43686
## 103
             1989
                               109.25390
## 104
             1990
                                99.31500
## 105
             1991
                               145.76105
## 106
             1992
                                83.92333
## 107
             1993
                                55.45000
## 108
             1994
                                73.13500
## 109
             1995
                                75.77375
## 110
             1996
                               152.36750
## 111
             1997
                               137.41364
## 112
             1998
                               138.25125
## 113
             1999
                               145.93217
## 114
             2000
                               165.47296
## 115
             2001
                               124.74295
## 116
                               117.92442
             2002
## 117
             2003
                               121.56193
## 118
                               113.79702
             2004
## 119
             2005
                               122.70817
## 120
             2006
                               119.73598
## 121
             2007
                               134.12665
## 122
             2008
                               144.34935
## 123
             2009
                                96.52619
## 124
             2010
                                90.36667
avg_perNeighborhood<-</pre>
aggregate(list(AvgMarketValuePerSqft=housingData$Market.Value.per.SqFt),list(
Neighborhood=housingData$Neighborhood),mean)
print(avg_perNeighborhood)
```

##		Neighborhood	AvgMarketValuePerSqft	
##	1	ALPHABET CITY	148.35500	
##		ARROCHAR-SHORE ACRES	57.75000	
		AKROCHAK-SHOKE ACKES ASTORIA	91.48167	
##		BATH BEACH		
##			70.34000	
##		BAY RIDGE	68.03500	
##		BAYSIDE	71.42111	
##		BEDFORD PARK/NORWOOD	38.24500	
##		BEDFORD STUYVESANT	83.24172	
##		BELMONT	56.45000	
##		BENSONHURST	71.70429	
##		BERGEN BEACH	73.27000	
##		BOERUM HILL	96.57600	
##		BOROUGH PARK	64.10857	
##		BRIARWOOD	75.36250	
##		BRIGHTON BEACH	81.91429	
##		BRONX-UNKNOWN	32.06500	
##		BRONXDALE	28.94333	
##		BROOKLYN HEIGHTS	114.11778	
##		BUSH TERMINAL	60.95000	
##		BUSHWICK	76.13500	
##	21	CANARSIE	46.58000	
##	22	CARROLL GARDENS	93.40556	
##	23	CHELSEA	215.94932	
##	24	CHINATOWN	154.17952	
##	25	CITY ISLAND	40.83000	
##	26	CIVIC CENTER	174.06696	
##	27	CLINTON	176.70032	
##	28	CLINTON HILL	88.97385	
##	29	COBBLE HILL	120.69800	
##	30	COBBLE HILL-WEST	85.71125	
##	31	COLLEGE POINT	65.05000	
##	32	CONEY ISLAND	55.05750	
##	33	CORONA	94.20706	
##	34	CROWN HEIGHTS	64.26286	
##	35	DOWNTOWN-FULTON FERRY	103.26857	
##	36	DOWNTOWN-FULTON MALL	132.42500	
##		DOWNTOWN-METROTECH	122.48000	
##		DYKER HEIGHTS	68.36000	
##		EAST NEW YORK	36.99167	
##		EAST TREMONT	72.33333	
##		EAST VILLAGE	207.46115	
##		ELMHURST	69.80564	
##		FAR ROCKAWAY	74.88500	
##		FASHION	194.81067	
##		FINANCIAL	199.30917	
##		FLATBUSH-CENTRAL	65.71167	
##		FLATBUSH-LEFFERTS GARDEN	46.27000	
##		FLATBUSH-NORTH	54.00000	
##		FLATIRON	223.30311	
		Littinoit	223.30311	

	50	FLUSHING MEADOW PARK	58.59000
##		FLUSHING-NORTH	80.16992
##		FLUSHING-SOUTH	89.62750
##		FOREST HILLS	70.20706
##	54	FORT GREENE	81.76900
##	55	GLENDALE	57.39667
##	56	GOWANUS	82.45333
##	57	GRAMERCY	188.68471
##	58	GRANT CITY	47.60000
##	59	GRAVESEND	75.63526
##	60	GREAT KILLS	33.74000
##	61	GREENPOINT	86.18053
##	62	GREENWICH VILLAGE-CENTRAL	142.57767
##	63	GREENWICH VILLAGE-WEST	202.13667
##	64	GRYMES HILL	50.09000
##	65	HAMMELS	139.07200
##	66	HARLEM-CENTRAL	102.79106
##	67	HARLEM-EAST	139.93972
##		HARLEM-UPPER	79.25667
##		HARLEM-WEST	95.20500
	70	HIGHBRIDGE/MORRIS HEIGHTS	61.82000
##		HILLCREST	53.95000
##		HOLLIS	109.56000
##		HOWARD BEACH	55.06000
##		INWOOD	62.05500
##		JACKSON HEIGHTS	47.79238
##		JAMAICA	104.76600
##		JAMAICA ESTATES	79.69500
##		JAVITS CENTER	125.09000
##		KENSINGTON	56.87500
##		KEW GARDENS	69.64300
##		KINGSBRIDGE HTS/UNIV HTS	23.86000
##		KINGSBRIDGE/JEROME PARK	58.37800
	83	KINGSBRISGE, SERGHE TARK	191.31769
	84	LITTLE ITALY	142.52308
	85	LITTLE NECK	65.85000
	86	LONG ISLAND CITY	108.16667
##		LOWER EAST SIDE	173.56262
##		MADISON	71.26000
##		MANHATTAN VALLEY	111.30043
##		MASPETH	53.32750
##		MIDDLE VILLAGE	78.35857
##		MIDTOWN CBD	234.36154
##		MIDTOWN CDD	211.04750
	94	MIDTOWN WEST	222.06489
##		MIDWOOD	79.50273
##		MORNINGSIDE HEIGHTS	74.63000
##		MORRIS PARK/VAN NEST	26.90000
	98	MORRISANIA/LONGWOOD	44.21250
	99	MOTT HAVEN/PORT MORRIS	30.96000
тπ	,,	HOTT HAVEN/FORT HORRIS	30.70000

## 1		206.26795
## 1		41.47667
## 1	.02 NEW BRIGHTON-ST. GEORGE	41.06000
## 1	.03 NEW SPRINGVILLE	40.47000
## 1	.04 OAKLAND GARDENS	66.94000
## 1	.05 OCEAN HILL	37.92900
## 1	.06 OCEAN PARKWAY-NORTH	76.51111
## 1		75.08000
## 1		54.10000
## 1		88.01774
## 1		95.84200
## 1		32.67500
## 1		30.55000
## 1		79.16200
## 1		62.13630
## 1		64.28667
## 1		57.10176
## 1		88.13600
## 1		49.68000
## 1		79.79704
## 1		35.80500
## 1		162.72473
## 1		43.40333
## 1		40.78000
## 1		159.53333
## 1		61.61818
## 1		80.58348
## 1		53.70667
## 1		35.81000
## 1		180.18473
	UPPER EAST SIDE (59-79)	216.83715
## 1		202.45179
## 1		167.41600
## 1	•	200.24391
## 1	· · · · · · · · · · · · · · · · · · ·	171.84515
## 1	•	134.09353
## 1		65.29600
## 1	.37 WASHINGTON HEIGHTS UPPER	93.50833
## 1	WEST NEW BRIGHTON	39.69000
## 1	.39 WHITESTONE	72.90000
## 1	40 WILLIAMSBRIDGE	42.46000
## 1	41 WILLIAMSBURG-CENTRAL	79.97017
## 1	42 WILLIAMSBURG-EAST	84.32605
## 1	43 WILLIAMSBURG-NORTH	84.10577
## 1		82.27618
## 1		70.21200
## 1		38.61000
## 1		80.52625
## 1		84.93000

```
total sum eachNeighborhood<-
aggregate(list(TotalSumMarketValuePerSqFt=housingData$Market.Value.per.SqFt),
list(Neighborhood=housingData$Neighborhood), sum)
print(total sum eachNeighborhood)
##
                     Neighborhood TotalSumMarketValuePerSqFt
## 1
                    ALPHABET CITY
                                                        3560.52
## 2
            ARROCHAR-SHORE ACRES
                                                          57.75
                                                       2744.45
## 3
                          ASTORIA
## 4
                       BATH BEACH
                                                        422.04
## 5
                        BAY RIDGE
                                                         544.28
## 6
                          BAYSIDE
                                                         642.79
## 7
            BEDFORD PARK/NORWOOD
                                                          76.49
## 8
               BEDFORD STUYVESANT
                                                       4828.02
## 9
                          BELMONT
                                                          56.45
## 10
                      BENSONHURST
                                                         501.93
## 11
                     BERGEN BEACH
                                                          73.27
## 12
                                                       1448.64
                      BOERUM HILL
## 13
                     BOROUGH PARK
                                                       2243.80
## 14
                        BRIARWOOD
                                                        301.45
## 15
                   BRIGHTON BEACH
                                                       1720.20
## 16
                    BRONX-UNKNOWN
                                                          64.13
## 17
                        BRONXDALE
                                                          86.83
## 18
                 BROOKLYN HEIGHTS
                                                       1027.06
## 19
                    BUSH TERMINAL
                                                          60.95
## 20
                         BUSHWICK
                                                         152.27
                                                         186.32
## 21
                         CANARSIE
                  CARROLL GARDENS
## 22
                                                         840.65
## 23
                                                      19003.54
                          CHELSEA
## 24
                        CHINATOWN
                                                       3237.77
## 25
                      CITY ISLAND
                                                          40.83
## 26
                     CIVIC CENTER
                                                       4003.54
## 27
                          CLINTON
                                                       5477.71
## 28
                                                       1156.66
                     CLINTON HILL
## 29
                      COBBLE HILL
                                                         603.49
## 30
                 COBBLE HILL-WEST
                                                         685.69
## 31
                    COLLEGE POINT
                                                        195.15
## 32
                     CONEY ISLAND
                                                        220.23
## 33
                           CORONA
                                                       1601.52
## 34
                    CROWN HEIGHTS
                                                        899.68
## 35
           DOWNTOWN-FULTON FERRY
                                                       1445.76
## 36
            DOWNTOWN-FULTON MALL
                                                        264.85
                                                         367.44
## 37
               DOWNTOWN-METROTECH
## 38
                    DYKER HEIGHTS
                                                          68.36
## 39
                    EAST NEW YORK
                                                         221.95
## 40
                     EAST TREMONT
                                                         217.00
## 41
                     EAST VILLAGE
                                                       5393.99
## 42
                         ELMHURST
                                                       3839.31
## 43
                     FAR ROCKAWAY
                                                         299.54
## 44
                          FASHION
                                                       2922.16
```

	45	FINANCIAL	7175.13	
##	46	FLATBUSH-CENTRAL	394.27	
##	47	FLATBUSH-LEFFERTS GARDEN	46.27	
##	48	FLATBUSH-NORTH	432.00	
##	49	FLATIRON	10048.64	
##	50	FLUSHING MEADOW PARK	58.59	
##	51	FLUSHING-NORTH	10662.60	
##	52	FLUSHING-SOUTH	717.02	
##	53	FOREST HILLS	1193.52	
##	54	FORT GREENE	817.69	
##	55	GLENDALE	172.19	
##	56	GOWANUS	247.36	
##	57	GRAMERCY	3207.64	
##	58	GRANT CITY	95.20	
##	59	GRAVESEND	1437.07	
##	60	GREAT KILLS	33.74	
##	61	GREENPOINT	1637.43	
##	62	GREENWICH VILLAGE-CENTRAL	8554.66	
##	63	GREENWICH VILLAGE-WEST	11521.79	
##	64	GRYMES HILL	50.09	
##	65	HAMMELS	695.36	
##	66	HARLEM-CENTRAL	9662.36	
##	67	HARLEM-EAST	5037.83	
##	68	HARLEM-UPPER	951.08	
##	69	HARLEM-WEST	190.41	
##	70	HIGHBRIDGE/MORRIS HEIGHTS	61.82	
##	71	HILLCREST	53.95	
##	72	HOLLIS	109.56	
##	73	HOWARD BEACH	275.30	
##	74	INWOOD	124.11	
##	75	JACKSON HEIGHTS	1003.64	
##	76	JAMAICA	523.83	
##	77	JAMAICA ESTATES	159.39	
##	78	JAVITS CENTER	125.09	
##	79	KENSINGTON	113.75	
##	80	KEW GARDENS	696.43	
##	81	KINGSBRIDGE HTS/UNIV HTS	23.86	
##	82	KINGSBRIDGE/JEROME PARK	291.89	
	83	KIPS BAY	2487.13	
	84	LITTLE ITALY	1852.80	
	85	LITTLE NECK	65.85	
##	86	LONG ISLAND CITY	2596.00	
	87	LOWER EAST SIDE	7289.63	
##		MADISON	1353.94	
##	89	MANHATTAN VALLEY	2559.91	
	90	MASPETH	213.31	
##		MIDDLE VILLAGE	548.51	
	92	MIDTOWN CBD	3046.70	
	93	MIDTOWN EAST	11818.66	
	94	MIDTOWN WEST	10437.05	

##		MIDWOOD	874.53
##		MORNINGSIDE HEIGHTS	74.63
##		MORRIS PARK/VAN NEST	26.90
##		MORRISANIA/LONGWOOD	707.40
##		MOTT HAVEN/PORT MORRIS	30.96
	100	MURRAY HILL	8044.45
	101	NEW BRIGHTON	124.43
	102	NEW BRIGHTON-ST. GEORGE	82.12
	103	NEW SPRINGVILLE	364.23
	104	OAKLAND GARDENS	66.94
	105	OCEAN HILL	379.29
	106	OCEAN PARKWAY-NORTH	688.60
	107	OCEAN PARKWAY-SOUTH	75.08
	108	OZONE PARK	54.10
	109	PARK SLOPE	2728.55
	110	PARK SLOPE SOUTH	958.42
	111	PARKCHESTER	65.35
	112	PELHAM PARKWAY SOUTH	30.55
	113	PROSPECT HEIGHTS	395.81
	114	REGO PARK	1677.68
	115	RIDGEWOOD	192.86
	116	RIVERDALE	970.73
	117	ROCKAWAY PARK	440.68
	118	SCHUYLERVILLE/PELHAM BAY	49.68
	119	SHEEPSHEAD BAY	2154.52
	120	SILVER LAKE	71.61
	121	SOHO	8949.86
	122	SOUNDVIEW	260.42
	123	SOUTH OZONE PARK	40.78
	124	SOUTHBRIDGE	1435.80
	125	SUNNYSIDE	677.80
	126	SUNSET PARK	1853.42
	127	THROGS NECK	161.12
	128	TOMPKINSVILLE	35.81
	129	TRIBECA	13333.67
	130	UPPER EAST SIDE (59-79)	26670.97
	131	UPPER EAST SIDE (79-96)	15791.24
	132	UPPER EAST SIDE (96-110)	837.08
	133	UPPER WEST SIDE (59-79)	17421.22
	134	UPPER WEST SIDE (79-96)	11341.78
	135	UPPER WEST SIDE (96-116)	4559.18
	136	WASHINGTON HEIGHTS LOWER	326.48
	137	WASHINGTON HEIGHTS UPPER	561.05
	138	WEST NEW BRIGHTON	39.69
	139	WHITESTONE	145.80
	140	WILLIAMSBRIDGE	84.92
	141	WILLIAMSBURG-CENTRAL	4798.21
	142	WILLIAMSBURG-EAST	3204.39
	143	WILLIAMSBURG-NORTH	2186.75
##	144	WILLIAMSBURG-SOUTH	2797.39

##	145	WINDSOR TERRACE	351.06
##	146	WOODHAVEN	154.44
##	147	WOODSIDE	644.21
##	148	WYCKOFF HEIGHTS	254.79

#MeaningfulResults? The years with a really high average market value per square foot probably means that those years were when the rich neighborhoods were built. As for the average market value for each Neighborhood, the cost for living of neighborhoods like financial, Chelsea, and Downtown are really high and expensive.

b. Create multiple plots to demonstrates the correlations between different variables. Remember to label all axes and give title to each graph.

```
# Enter your code here!

agg_withlabels<-
aggregate(list(AvgMarketValuePerSqft=housingData$Market.Value.per.SqFt),list(
YearBuilt=housingData$Year.Built),mean)

avg_perNeighborhood<-
aggregate(list(AvgMarketValuePerSqft=housingData$Market.Value.per.SqFt),list(
Neighborhood=housingData$Neighborhood),mean)

ggplot(agg_withlabels, aes(x = YearBuilt, y = AvgMarketValuePerSqft)) +
    geom_point() +
    labs(
        title = "Average Market Value per Square Foot by Year",
        x = "Year",
        y = "Average Market Value per Sq Ft"
    )</pre>
```

Average Market Value per Square Foot by Year


```
ggplot(avg_perNeighborhood, aes(x = Neighborhood, y = AvgMarketValuePerSqft))
+
    geom_point() +
    labs(
        title = "Average Market Value per Square Foot by Neighborhood",
        x = "Neighborhood",
        y = "Average Market Value per Sq Ft"
    )
```

Average Market Value per Square Foot by Neighborhoo

c. Write a summary about your findings from this exercise.

=> Enter your answer here! Overall, this exercise helped me learn how to make tables using summarize and aggregate functions as well making graphs/plots derived from the data of the tables. I had to come up with descriptive statistics (such as mean) of values for each group. I also had to interpret what the plot graphs show and describe the correlation between certain variables, which is an essential part to data analyzing. In addition, I learned a simple way to get rid of all missing values (NA values) on R which is using the na.omit() function. That function will be highly useful to simply just get rid of all missing values that are unnecessary to analyze.