1

Control Systems

G V V Sharma*

		Contents		10	Oscilla	
	G! 1.				10.1	Introduction
1	_	Flow Graph	1		10.2	Example
	1.1	Mason's Gain Formula	1	4.7		his manual is an introduction to contro
	1.2	Matrix Formula	1			on GATE problems.Links to sample Pytho
2	Bode P	lot	1	-		able in the text.
_	2.1 Introduction		1	Download python codes using		
	2.2	Example	2			//github.com/gadepall/school/trunk/
					control/co	
3	Second order System		2			
	3.1	Damping	2			
	3.2	Example	2			1 Signal Flow Graph
4	Routh	Hurwitz Criterion	2	1.1	Mason's	Gain Formula
•	4.1	Routh Array	2	1.2	Matrix F	ormula
	4.2	Marginal Stability	2			
	4.3	Stability	2			2 Bode Plot
	4.4	Example	2	2.1	Introduct	tion
	4.4	Example	2	2.1.1.	The asyr	mptotic Bode phase plot of
5	State-S	pace Model	2			<i>k</i>
	5.1	Controllability and Observ-			G(s)	$= \frac{k}{(s+0.1)(s+10)(s+p_1)} $ (2.1.1.1)
		ability	2			(* · **-)(* · -*)(* · F1)
	5.2	Second Order System	2			and p_1 both positive, is shown below
	5.3	Example	2		Find the	value of p_1 .
	5.4	Example	2			
	5.5	Example	2		0.0	01 0.1 1 10 100 ω
_			_	0°		rad/s
6	Nyquis	t Plot	2	-45	0	
7	Compe	nsators	2			
	7.1	Phase Lead	2	-135	1	
	7.2	Example	2			
	, ,_		_	-22		
8	Gain Margin		2	-27	o°	
	8.1	Introduction	2			
	8.2	Example	2			Fig. 2.1.1
9	Phase I	Margin	2		Colution	: Phase of this transfer function,
		··	_			·
		with the Department of Electrical Engineer Technology, Hyderabad 502285 India e-n			$\phi(\omega) = -$	$-\tan^{-1}\left(\frac{\omega}{0.1}\right) - \tan^{-1}\left(\frac{\omega}{10}\right) - \tan^{-1}\left(\frac{\omega}{n_1}\right)$

gadepall@iith.ac.in. All content in this manual is released under GNU

GPL. Free and open source.

From the plot,

$$-45^{\circ} = -\tan^{-1}\left(\frac{0.1}{0.1}\right) - \tan^{-1}\left(\frac{0.1}{10}\right) - \tan^{-1}\left(\frac{0.1}{p_1}\right)$$
(2.1.1.3)

 p_1 is approximately 1, i.e, for p_1 in 0.95 to 1.05 the ϕ is approximately equals to -45° .

2.1.2. Find the value of p_1 using bode phase plot properties.

Solution: In asymptotic Bode plot for a single pole, the phase at pole is -45° and the phase changes from 0 to -90 in 2 decades i.e, from pole/10 to $10 \times pole$.

Adding the bode phase plots corresponding to the 0.1,10.

Fig. 2.1.2

The values before the 0.1 does not change when compared to figure 2.1.1, so $p_1/10$ is greater than or equal to 0.1.

In the plot obtained by adding these two plots the slope at 0.1 doesnt change, but in figure 2.1.1 there is a change so p/10 = 0.1

$$\implies p_1 = 1$$
 (2.1.2.1)

The following code plots Fig. 2.1.2

codes/ee18btech11037.py

2.2 Example

3 SECOND ORDER SYSTEM

3.1 Damping

3.2 Example

4 ROUTH HURWITZ CRITERION

4.1 Routh Array

4.2 Marginal Stability

4.3 Stability

4.4 Example

5 STATE-SPACE MODEL

5.1 Controllability and Observability

5.2 Second Order System

5.3 Example

5.4 Example

5.5 Example

6 Nyquist Plot

7 Compensators

7.1 Phase Lead

7.2 Example

8 Gain Margin

8.1 Introduction

8.2 Example

9 Phase Margin

10 OSCILLATOR

10.1 Introduction

10.2 Example