Appello del corso di Fisica del 24.01.2023

Corso di Laurea in Informatica

A.A. 2021-2022

(Prof. Paolo Camarri)

Cognome:

inclinato è $\mu_d=0$,1 .

Nome:
Matricola:
Anno di immatricolazione:
Problema n.1
Un punto materiale avente massa $m=10~{\rm kg}$ viene trascinato, mediante una corda, in salita lungo un piano inclinato con velocità costante, per un tratto di lunghezza $L=10~{\rm m}$. L'angolo tra il piano inclinato e la direzione orizzontale è $\theta=30^{\circ}$, e il coefficiente di attrito dinamico tra il blocco e la superficie del piano

- a) Si calcoli il modulo F della forza esercitata dalla corda sul blocco durante il trascinamento.
- b) Si calcolino il lavoro W_P svolto dalla forza peso, il lavoro W_F svolto dalla forza esercitata dalla fune e il lavoro W_d svolto dalla forza di attrito dinamico tra l'inizio e la fine del trascinamento.
- c) Si calcoli il valore θ^* dell'angolo di inclinazione del piano inclinato per cui il modulo della forza esercitata dalla corda sul blocco risulta massimo, e si calcoli il valore $F_{max} = F(\theta = \theta^*)$

Problema n.2

Un punto materiale di massa $M=0.1~{\rm kg}$ è appoggiato su un piano orizzontale, ed è collegato all'estremità libera di una molla, disposta orizzontalmente, con l'altra estremità della molla attaccata a una parete verticale. La costante elastica della molla è $k=50~{\rm N/m}$. Inizialmente il punto materiale è fermo e la molla è allungata di un tratto $A=0.2~{\rm m}$ rispetto alla sua lunghezza a riposo.

- a) Se il piano orizzontale è liscio, si calcoli la frequenza f delle oscillazioni armoniche del punto materiale dopo che esso viene rilasciato da fermo dalla posizione sopra indicata.
- b) Quanto vale l'energia meccanica E_m del punto materiale se il piano orizzontale è liscio? La quantità E_m si conserva durante il moto del punto materiale, nell'ipotesi del punto a) ? Si spieghi.
- c) Supponiamo ora che il piano orizzontale sia ruvido, con attrito dinamico tra il punto materiale e il piano orizzontale. Quanto valgono il lavoro compiuto W_e svolto dalla forza elastica e il lavoro W_d svolto dalla forza di attrito dinamico tra l'istante iniziale (con punto materiale fermo e molla allungata di un tratto A come al punto a)) e l'istante finale, supponendo che nell'istante finale il punto materiale sia fermo e la molla si trovi nella posizione di riposo?

Problema n.3

Un filo conduttore rettilineo molto lungo è percorso da una corrente continua $i_0=1\,\mathrm{A}.$

a) Si calcoli il modulo B_0 del campo magnetico generato dal filo rettilineo percorso da corrente in un punto che si trova alla distanza d=0.5 m dal filo.

Su un piano contenente il filo conduttore rettilineo si trova una piccola spira circolare di raggio $r=0.02~\mathrm{m}$ e resistenza elettrica $R=1~\Omega$, il cui centro si trova alla distanza $d=0.5~\mathrm{m}$ dal filo.

- b) Se nel filo viene fatta scorrere una corrente alternata, data dalla legge $i(t)=i_0\cos(\omega t)$, dove i parametri valgono $i_0=1~\mathrm{A~e~\omega}=300~\pi$ rad/s , si calcoli la f.e.m. indotta $v_1(t)$ nella piccola spira in funzione del tempo, nell'ipotesi realistica che il campo magnetico generato dal filo rettilineo si possa considerare costante sulla superficie racchiusa dalla spira.
- c) Si calcolino la corrente indotta $i_1(t)$ nella piccola spira e la potenza dissipata $P_1(t)$ nella piccola spira, in funzione del tempo.

L'esonero scritto prevede la risoluzione in TRE ore, a partire dall'ora comunicata dal docente all'inizio dello svolgimento della prova, dei tre esercizi sopra riportati, potendo consultare solo un formulario personale composto al massimo da 4 facciate di foglio protocollo. I fogli su cui svolgere i calcoli per la risoluzione dei problemi sono forniti dal docente.

Si richiede in ogni caso la consegna di tutti i fogli manoscritti su cui sono stati svolti i calcoli.

Un libro di testo è a disposizione sulla cattedra, portato dal docente.

Lo studente, oltre al foglio di carta, alla penna e a eventuali strumenti per disegno (matite, riga, squadra, compasso), può tenere sul tavolo solo una calcolatrice tascabile non programmabile.