100

离散数学 (2023) 作业 17

邵宇轩 221900406

2023年4月30日

1 Problem 1

(2) 是 其余均不是

2 Problem 2

(1) 封闭性: $\forall x, y \in N(a)$:

$$xa = ax$$
, $ya = ay$

$$xya = xay = axy$$

- :. 是封闭的
- (2) ea = ae 显然有单位元
- (3) 逆元:

 $\forall x, xa = ax$

$$x^{-1}a = x^{-1}ae = x^{-1}axx^{-1} = eax^{-1} = ax^{-1}$$

- :: 每个元素均有逆元
- :. N(a) 是群,是子群得证

3 Problem 3

设
$$a = xhx^{-1}$$

 $b = xmx^{-1}$
 $b^{-1} = xm^{-1}x^{-1}$
 $ab^{-1} = xhx^{-1}xm^{-1}x^{-1}$
 $= xhm^{-1}x^{-1}$

由子群的判定定理可知:

- $:: m \in H, h \in H$
- $\therefore hm^{-1} \in H$
- $\therefore ab^{-1} \in xHx^{-1}$

4 Problem 4

假设 $H = \{ e, a^2 ... a^{r-1} \}$ $K = \{ e, b^2, b^3, \dots b^{s-1} \}$ $a^r = e, b^s = e$ 使用反证法进行证明: 假设存在 i,j , 使得 $a^i = b^j$ $a^r = b^{\frac{js}{i}}$ ∵ r,s 互质 :: ^{js} 为整数 当 j > i 时: $\exists 0 < \mathbf{k} < \mathbf{s}, b^{\frac{js}{i}} = b^k = e$ 则 b 的阶数为 k<s 与条件矛盾 j < i 时同理可得到则 b 的阶数 <s 与条件矛盾 :: 假设不成立 得证

5 Problem 5

假设 $a^2 = e$ a-1 = a考察 xax^{-1} , x 为任意元素 $(xax^{-1})(xax^{-1}) = e$ $\therefore xax^{-1}$ 为二街元素或 $xax^{-1} = e$ 显然 xax^{-1} 为二阶元素 $a = xax^{-1}$ $\therefore ax = xa$ 满足交换律

6 Problem 6

假设: g 的阶数为 k,h 的结束为 t 则有 k, t 互质 设 m = gh = hg m 的阶数为 u $m^{kt} = g^{kt}h^{kt} = (g^k)^t(h^t)^k = e$ \therefore u|kt,u<=kt 设 iu = kt uk = k*kt / i $m^{uk} = g^{uk}h^{uk} = (g^k)^uh^{uk} = (g^k)^uh^{k*k*t/i} = e$ \therefore t|uk 同理可得 k|tu \because t,k 互质 \therefore kt | u \therefore u = kt 得证

7 Problem 7

 $gH = \{gh|h \in H\}$ $Hg = \{gh|h \in H\}$ $\forall h_i, gh_ig^{-1} = t_i \in H$ $gh_i = t_ig$ 验证单射: 若 $gh_1 = t_1g, gh_2 = t_1g$ $gh_1g^{-1} = gh_2g^{-1}$ 由群的消去律可知: $h_1 = h_2$ ∴ 是单射 而 $h,t \in H$ ∴ 是满射 ∴ 是一个双射,对应两个集合中元素相等 gH = Hg 得证

8 Problem 8

考虑集合 Z^* := $\{[m]_n \in Z_n | gcd(m,n) = 1\}$ 在乘法下构成的群 $Z^* = \{[m]_p \in Z_n | gcd(m,p) = 1\}$

 $\forall t \in \mathbb{Z}^*$ 假设 t 的阶数为 k

则有: $t^k \mod p = 1$

 $t \in \{1,2,...p-1\}$ 共有 p-1 个元素

:. 群的阶数为 p - 1

则 $\forall k_i, k_i | p-1$

 $p \mid a^k - 1$

k | p - 1

 $\therefore a^{p-1} - 1 = (a^k - 1) \times M$, M 为 a 的一个多项式

 \therefore p | \mathbf{a}^{p-1} - 1

 $\mathbb{All} \ \mathbf{a}^p \equiv 1 (\bmod \ \mathbf{p})$