

Applied Pediatric Genome Analysis

05 March 2018

Wyeth W. Wasserman
University of British Columbia
BC Children's Hospital

Technology shifting in clinical genome analysis

Introduction via case studies

Almost no statistics

OLD TECHNOLOGY FOR GENOME ANALYSIS: KARYOTYPING

HOW DOES YOUR GENOME DIFFER FROM THE REFERENCE GENOME

- structural variants (impacting ~20Mbp)
 - ~1,000 large deletions
 - ~160 copy-number variants
 - ~1100 "repeat" insertions (Alu, L1, etc)
 - ~4 NUMTs (mitochondria genome)
 - ~10 inversions
- Base-level
 - ~3.5M (~4.5M for AFR) single nucleotide variants
 - Only ~60,000 (~150k) extremely rare (<0.5%)
 - ~0.5M small indels

 Single Nucleotide Polymorphism vs Single Nucleotide Variant

- All SNPs are SNVs, but not all SNVs are SNPs
- SNP refers to a polymorphic variant a variant that occurs over a specified percentage in a specified population (usually 1% at present)
- Do not say "SNP" unless you mean SNP

Uses of SNP Genotyping

Population Determination

GWAS

Linkage Analysis

Clinical MicroArray for Copy Number changes

Pedigree-based Linkage Analysis

EXAMPLE OF LOD SCORES

https://www.researchgate.net/figure/Genome-wide-linkage-analysis-of-the-pedigree-using-affected-members-only-with-10K-A_fig4_38055346

Chromosomal MicroArrays

Chromosomal Microarrays are the clinical standard for detecting copy number variants. They have reliable sensitivity down to \sim 100,000bp (and pretty good down to \sim 20,000).

https://www.researchgate.net/figure/Microarray-based-copy-number-analysis-performed-with-the-Affymetrix-Cytogenetics fig2 275363431

- Until recently the cost of WGS was prohibitive and most individual patients were analyzed for a restricted portion of the genome – the exons.
- "Exomes" recover ~5%
- Different companies offer distinct "kits" which contain oligonucleotides designed to hybridize to the regions of the genome specified by the kit designers

EXOME TECHNOLOGY

Michael J. Bamshad et al (2011) Exome sequencing as a tool for Mendelian disease gene discovery. Nature Reviews Genetics 12, 745-755 doi:10.1038/nrg3031

Genotype Calling

Short reads aligned

$$2 A / 4 G = A/G$$
 genotype

Most research grade sequencing studies produce an average of 30-100 reads per position with enormous variance across positions

Whole Exome Sequencing EXAMPLE CASE

- 2 affected siblings & unaffected parents
- Agilent SureSelect kit & Illumina HiSeq 2000 (Perkin-Elmer, USA)
- 5.2 billion 100bp pair-end reads
- coverage per base 32X
- Bowtie, BWA and GSNAP: to map reads to hg19 reference genome
- 99% classified as common variants
- 7 candidate genes
 (4 homozygous & 3 compound heterozygous mutations)
- only 1 variant predicted disruptive to protein function (Sift and PolyPhen2)

CA5A gene: homozygous S233P mutation

CA-VA at the hub of life: producer & donor HCO₃⁻ to 4 enzymes

in vitro mutant showed: decreased enzymatic activity increased aggregation & thermal lability

WORKFLOW

Patient Selection

- ID or at risk for ID
- Biochemical phenotype
- oaCGH negative
- Known genes not mutated

Patient Consent

TIDEX de-identification study numbers

Sample collection

Blood/saliva/urine

Sequencing

• DNA prep; WES + WGS

Bioinformatics analysis

- Alignment
- Variant calls
- Variant filtering
- Variant-phenotype link interpretation

Experimental

• Experimental, fibroblasts, model organisms, etc.

Sanger

Sanger re-sequencing

Candidate Lists to clinicians

OVERVIEW

- Cost no longer prohibitive
- The FEDEX moment is approaching
- WGS has many advantages
 - Copy number calling
 - Structural changes
 - No capture bias
 - Splice altering events in introns
 - Distal regulatory regions

From Critical Region to Mutations

WGS: Reveals shared ~8MB region with no protein coding alterations

Strabismus Outcome

- 5 Mbp critical region
- 30 rare variants
- No protein altering variants
- Two genes nearby with potential causal roles
- Ongoing

OPEN PROBLEMS

- Reliable CNV equivalent to CMA
- Detection of balanced translocations
- Phenotype-to-genotype relationship detection
- Accounting for patient population in the analysis
- Phasing

WGS has arrived

Cost is decreasing

 Patients increasingly likely to be diagnosed for simple genetic disorders

Thank You

