Theorem: Let (A, *) be a monoid, and let $a \in A$ be invertible. Then $a^m * a^n = a^{m+n} \ \forall m, n \in \mathbb{Z}$.

Proof: When $m \ge 0$ and $n \ge 0$, we have already proven this result. The rest of the proof splits into cases.

Case 1: m = 0 or n = 0

If m = 0, $n \in \mathbb{Z}$, $a^m * a^n = a^0 * a^n = e * a^n = a^n = a^{0+n}$ as needed.

If $m \in \mathbb{Z}$, n = 0, $a^m * a^n = a^m * a^0 = a^m * e = a^m = a^{m+0}$ as needed.

Case 2: m < 0 and n < 0

 $m < 0 \Rightarrow \exists p \in \mathbb{N} \ s.t. \ p = -m. \ n < 0 \Rightarrow \exists q \in \mathbb{N} \ s.t. \ q = -n.$

 $a^m = a^{-p} = (a^p)^{-1}$ and $a^n = a^{-q} = (a^q)^{-1}$

 $a^m * a^n = (a^p)^{-1} * (a^q)^{-1} = (a^q * a^p)^{-1} = (a^{p+q})^{-1} = a^{-(p+q)} = a^{-q-p} = a^{m+n}$

Case 3: m and n have opposite signs.

Without loss of generality, assume m < 0 and n > 0 (the case m > 0 and n < 0 is handled by the same argument). Since $m < 0, \exists p \in \mathbb{N}$ s.t. p = -m. This case splits into two subcases:

Case 3.1: $m + n \ge 0$

Set q = m+n. Then $a^{m+n} = a^q = e*a^q = (a^p)^{-1}*a^p*a^q = (a^p)^{-1}*a^{p+q} = a^{-p}*a^{p+q} = a^m*a^{-m+m+n} = a^m*a^n$

Case 3.2: m + n < 0

Set
$$q = -(m+n) = -m-n \in \mathbb{N}^*$$
. Then $a^{m+n} = a^{-q} = (a^q)^{-1} * e = (a^q)^{-1} * (a^{-n} * a^n) = (a^q)^{-1} * (a^n)^{-1} * a^n = (a^n * a^q)^{-1} * a^n = (a^{n+q})^{-1} * a^n = (a^{n-m-n})^{-1} * a^n = (a^{-m})^{-1} * a^n = (a^p)^{-1} * a^n = a^m * a^n$

Theorem: Let (A, *) be a monoid, and let a be an invertible element of A. $\forall m, n \in \mathbb{Z}, (a^m)^n = a^{mn}$.

Proof: We consider 3 cases:

Case 1: n > 0, i.e. $n \in \mathbb{N}^*$. $m \in \mathbb{Z}$ with no additional restrictions we proceed by induction on m.

Base Case: n = 1 $(a^m)^1 = a^m = a^{m \times 1}$

Inductive Step: We assume $(a^m)^n = a^{mn}$ and seek to prove $(a^m)^{n+1} = a^{m(n+1)}$. Start with $(a^m)^{n+1} = (a^m)^n * (a^m)^1 = a^{mn} * a^m = a^{mn+m} = a^{m(n+1)}$

Case 2: n = 0; no restriction on $m \in \mathbb{Z}$

$$(a^m)^n = (a^m)^0 = e = a^0 = a^{m \times 0} = a^{mn}$$

Case 3: n < 0; no restriction on $m \in \mathbb{Z}$.

Since
$$n < 0, \exists p \in \mathbb{N}$$
 s.t. $p = -n$. By case 1, $(a^m)^p = a^{mp}$
 $(a^m)^n = (a^m)^{-p} = ((a^m)^p)^{-1} = (a^{mp})^{-1} = a^{-mp} = a^{mn}$

7.6 Groups

A notion formally defined in the 1870's even though theorems about groups were proven as early as a century before that.

Definition: A group is a monoid in which every element is invertible. In other words, a group is a set A endowed with a binary operation * satisfying the following properties:

- 1. * is associative, **i.e.** $\forall x, y, z \in A, (x * y) * z = x * (y * z)$
- 2. There exists an identity element $e \in A$, i.e. $\exists e \in A s.t. \forall a \in A, a*e = e*a = a$
- 3. Every element of A in invertible, i.e. $\forall a \in A \ \exists a^{-1} \in A \ s.t. \ a*a^{-1} = a^{-1}*a = e$

Notation for Groups:
$$(A,*)$$
 or $(\underbrace{A}_{set},\underbrace{*}_{operation\ identity},\underbrace{e}_{operation\ identity})$

Remark: Closure under the operation * is $\underline{\text{implicit}}$ in the definition **i.e.** $\forall a, b \in A, a * b \in A$

Definition: A group (A, *, e) is called <u>commutative</u> or <u>Abelian</u> if its operation * is commutative.

Examples:

1. $(\mathbb{R}, +, 0)$ is an Abelian group. -x is the inverse of $x, \forall x \in \mathbb{R}$

 $\forall q \in \mathbb{Q}^*, q^{-1} = \frac{1}{q}$ is the inverse.

2. $(\mathbb{Q}^*, \times, 1)$ $\mathbb{Q}^* = \mathbb{Q}^* \setminus \{0\}$ $(\mathbb{Q}^*, \times, 1)$ is Abelian