

LM158, LM158A, LM258, LM258A LM358, LM358A, LM2904, LM2904V

SLOS068U -JUNE 1976-REVISED JANUARY 2017

LM358, LM258, LM158, LM2904 Dual Operational Amplifiers

Features

- Wide Supply Ranges
 - Single Supply: 3 V to 32 V (26 V for LM2904)
 - Dual Supplies: ±1.5 V to ±16 V (±13 V for LM2904)
- Low Supply-Current Drain, Independent of Supply Voltage: 0.7 mA Typical
- Wide Unity Gain Bandwidth: 0.7 MHz
- Common-Mode Input Voltage Range Includes Ground, Allowing Direct Sensing Near Ground
- Low Input Bias and Offset Parameters
 - Input Offset Voltage: 3 mV Typical A Versions: 2 mV Typical
 - Input Offset Current: 2 nA Typical
 - Input Bias Current: 20 nA Typical A Versions: 15 nA Typical
- Differential Input Voltage Range Equal to Maximum-Rated Supply Voltage: 32 V (26 V for LM2904)
- Open-Loop Differential Voltage Gain: 100 dB Typical
- Internal Frequency Compensation
- On Products Compliant to MIL-PRF-38535, All Parameters are Tested Unless Otherwise Noted. On All Other Products, Production Processing Does Not Necessarily Include Testing of All Parameters.

2 Applications

- Blu-ray Players and Home Theaters
- Chemical and Gas Sensors
- **DVD Recorder and Players**
- Digital Multimeter: Bench and Systems
- Digital Multimeter: Handhelds
- Field Transmitter: Temperature Sensors
- Motor Control: AC Induction, Brushed DC, Brushless DC, High-Voltage, Low-Voltage, Permanent Magnet, and Stepper Motor
- Oscilloscopes
- TV: LCD and Digital
- Temperature Sensors or Controllers Using Modbus
- Weigh Scales

3 Description

These devices consist of two independent, high-gain frequency-compensated operational designed to operate from a single supply or split supply over a wide range of voltages.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)			
	VSSOP (8)	3.00 mm × 3.00 mm			
LMx58, LMx58x, LM2904, LM2904V	SOIC (8)	4.90 mm × 3.90 mm			
	SO (8)	5.20 mm × 5.30 mm			
LIVIZOOT, LIVIZOOTV	TSSOP (8)	3.00 mm × 4.40 mm			
	PDIP (8)	9.81 mm × 6.35 mm			
LMx58, LMx58x,	CDIP (8)	9.60 mm × 6.67 mm			
LM2904V	LCCC (20)	8.89 mm × 8.89 mm			

⁽¹⁾ For all available packages, see the orderable addendum at the end of the data sheet.

Symbol (Each Amplifier)

Table of Contents

1	Features 1		8.2 Functional Block Diagram	12
2	Applications 1		8.3 Feature Description	13
3	Description 1		8.4 Device Functional Modes	13
4	Revision History2	9	Application and Implementation	14
5	Pin Configuration and Functions 3		9.1 Application Information	
6	Specifications4		9.2 Typical Application	14
•	6.1 Absolute Maximum Ratings	10	Power Supply Recommendations	15
	6.2 ESD Ratings	11	Layout	15
	6.3 Recommended Operating Conditions		11.1 Layout Guidelines	15
	6.4 Thermal Information		11.2 Layout Examples	16
	6.5 Electrical Characteristics for LMx58	12	Device and Documentation Support	17
	6.6 Electrical Characteristics for LM2904 6		12.1 Documentation Support	17
	6.7 Electrical Characteristics for LM158A and LM258A . 7		12.2 Related Links	17
	6.8 Electrical Characteristics for LM358A		12.3 Receiving Notification of Documentation Updates	17
	6.9 Operating Conditions 8		12.4 Community Resources	17
	6.10 Typical Characteristics		12.5 Trademarks	17
7	Parameter Measurement Information		12.6 Electrostatic Discharge Caution	17
8	Detailed Description 12		12.7 Glossary	17
•	8.1 Overview	13	Mechanical, Packaging, and Orderable Information	18

4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Cr	nanges from Revision 1 (April 2015) to Revision 0	Page
•	Changed data sheet title	1
<u>•</u>	Added Receiving Notification of Documentation Updates section and Community Resources section	17
Cł	nanges from Revision S (January 2014) to Revision T	Page
•	Added Applications section, ESD Ratings table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section	
Cł	nanges from Revision R (July 2010) to Revision S	Page
•	Converted this data sheet from the QS format to DocZone using the PDF on the web	1
•	Deleted Ordering Information table	1
•	Updated Features to include Military Disclaimer	1
•	Added Typical Characteristics section	9
•	Added ESD warning	17

5 Pin Configuration and Functions

D, DGK, P, PS, PW and JG Package 8-Pin SOIC, VSSOP, PDIP, SO, TSSOP and CDIP (Top View)

NC - No internal connection

Pin Functions

	PIN									
NAME	LCCC NO.	SOIC, SSOP, CDIP, PDIP SO, TSSOP, CFP NO.	I/O	DESCRIPTION						
1IN-	5	2	1	Negative input						
1IN+	7	3	ļ	Positive input						
1OUT	2	1	0	Output						
2IN-	15	6	1	Negative input						
2IN+	12	5	1	Positive input						
2OUT	17	7	0	Output						
GND	10	4	_	Ground						
	1									
	3									
	4									
	6									
	8									
NO	9			De not connect						
NC	11	_	_	Do not connect						
	13									
	14									
	16									
	18									
	19									
V _{CC}	_	8	_	Power supply						
V _{CC+}	20	_	_	Power supply						

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

					, LMx58x, 2904V	LM	2904	UNIT
				MIN	MAX	MIN	MAX	
V _{CC}		Supply voltage ⁽²⁾		-0.3	±16 or 32	-0.3	±13 or 26	V
V_{ID}		Differential input voltage (3)		-32	32	-26	26	V
VI	either input	Input voltage		-0.3	32	-0.3	26	٧
		Duration of output short circuit (o (or below) $T_A = 25$ °C, $V_{CC} \le 15 \text{ V}^{(4)}$	ne amplifier) to ground at		Unlimited		Unlimited	S
			LM158, LM158A	-55	125			
_			LM258, LM258A	-25	85			°C
T_A		Operating free air temperature	LM358, LM358A	0	70			1.0
			LM2904	-40	125	-40	125	
T_{J}		Operating virtual junction tempera	ature		150		150	°C
		Case temperature for 60 seconds	FK package		260			°C
		Lead temperature 1.6 mm (1/16 inch) from case for 60 seconds	JG package		300		300	°C
T _{stg}		Storage temperature		-65	150	-65	150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- (2) All voltage values (except differential voltages and V_{CC} specified for the measurement of I_{OS}) are with respect to the network GND.
- Differential voltages are at IN+, with respect to IN-.
- (4) Short circuits from outputs to V_{CC} can cause excessive heating and eventual destruction.

6.2 ESD Ratings

			VALUE	UNIT
		Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1)	±500	
V _(ESD)	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 (2)	±1000	V

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

			LMx58, LM29	LMx58x, 904V	LM	2904	UNIT
			MIN	MAX	MIN	MAX	
V_{CC}	Supply voltage		3	30	3	26	V
V_{CM}	Common-mode voltage		0	V _{CC} – 2	0	V _{CC} – 2	V
		LM158	-55	125			
_		LM2904	-40	125	-40	125	°C
T _A	Operating free air temperature	LM358	0	70			٠.
		LM258	-25	85			

Submit Documentation Feedback

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.4 Thermal Information

THE	RMAL METRIC ⁽¹⁾		LMx58, LMx	LMx58, LMx58x, LM2904 V	LMx58, LMx58x, LM2904 V	UNIT			
		D (SOIC)	DGK (VSSOP)	P (PDIP)	PS (SO)	PW (TSSOP)	FK (LCCC)	JG (CDIP)	J
		8 PINS	8 PINS	8 PINS	8 PINS	8 PINS	20 PINS	8 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	97	172	85	95	149	_	_	°C/W
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	72.2	_	_	_	_	5.61	14.5	°C/W

For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

6.5 Electrical Characteristics for LMx58

at specified free-air temperature, V_{CC} = 5 V (unless otherwise noted)

	PARAMETER	TEST CONI	DITIONS ⁽¹⁾	T _A ⁽²⁾		LM158 LM258			LM358		UNIT
					MIN	TYP ⁽³⁾	MAX	MIN	TYP(3)	MAX	
		V _{CC} = 5 V to MAX,		25°C		3	5		3	7	
V _{IO}	Input offset voltage	$V_{IC} = V_{ICR(min)},$ $V_{O} = 1.4 \text{ V}$		Full range			7			9	mV
αV_{IO}	Average temperature coefficient of input offset voltage			Full range		7			7		μV/°C
	Input offset current	V _O = 1.4 V		25°C		2	30		2	50	nA
I _{IO}	input onset current	V _O = 1.4 V		Full range			100			150	
αI_{IO}	Average temperature coefficient of input offset current			Full range		10			10		pA/°C
I _{IB}	Input bias current	V _O = 1.4 V		25°C		-20	-150		-20	-250	nA
'IB	input bias current	V ₀ = 1.4 V		Full range			-300			-500	11/4
	Common-mode input voltage range	V FV to MAY		25°C	0 to V _{CC} – 1.5			0 to V _{CC} – 1.5			V
V _{ICR}	Common-mode input voltage range	V _{CC} = 5 V to MAX		Full range	0 to V _{CC} – 2			0 to V _{CC} - 2			V
		$R_L \ge 2 k\Omega$		25°C	V _{CC} - 1.5			V _{CC} - 1.5			
V	High level autout valtage	R _L ≥ 10 kΩ		25°C							V
V _{OH}	High-level output voltage	V _{CC} = MAX	$R_L = 2 k\Omega$	Full range	26			26			V
		V _{CC} = IVIAX	R _L ≥ 10 kΩ	Full range	27	28		27	28		
V _{OL}	Low-level output voltage	R _L ≤ 10 kΩ		Full range		5	20		5	20	mV
	Large-signal differential	V _{CC} = 15 V		25°C	50	100		25	100		
A _{VD}	voltage amplification	$V_O = 1 \text{ V to } 11 \text{ V},$ $R_L \ge 2 \text{ k}\Omega$		Full range	25			15			V/mV
CMRR	Common-mode rejection ratio	V_{CC} = 5 V to MAX, V_{IC} = $V_{ICR(min)}$		25°C	70	80		65	80		dB
k _{SVR}	Supply-voltage rejection ratio $(\Delta V_{DD} / \Delta V_{IO})$	V _{CC} = 5 V to MAX		25°C	65	100		65	100		dB
V _{O1} / V _{O2}	Crosstalk attenuation	f = 1 kHz to 20 kHz	<u>z</u>	25°C		120			120		dB
		V _{CC} = 15 V,		25°C	-20	-30		-20	-30		
		$V_{ID} = 1 V,$ $V_{O} = 0$	Source	Full range	-10			-10			mA
Io	Output current	V _{CC} = 15 V,	0: 1	25°C	10	20		10	20		1117
		$V_{ID} = -1 \text{ V},$ $V_{O} = 15 \text{ V}$	Sink	Full range	5			5			<u></u>
		$V_{ID} = -1 \ V, \ V_{O} = 20$	00 mV	25°C	12	30		12	30		μА
I _{os}	Short-circuit output current	V_{CC} at 5 V, GND at $V_{O} = 0$	t –5 V,	25°C		±40	±60		±40	±60	mA

⁽¹⁾ All characteristics are measured under open-loop conditions, with zero common-mode input voltage, unless otherwise specified. MAX V_{CC} for testing purposes is 26 V for LM2902 and 30 V for the others.

⁽²⁾ Full range is -55°C to 125°C for LM158, -25°C to 85°C for LM258, and 0°C to 70°C for LM358, and -40°C to 125°C for LM2904.

⁽³⁾ All typical values are at $T_A = 25^{\circ}C$

Electrical Characteristics for LMx58 (continued)

at specified free-air temperature, $V_{CC} = 5 \text{ V}$ (unless otherwise noted)

	PARAMETER	TEST CONDITIONS ⁽¹⁾	T _A ⁽²⁾		LM158 LM258			LM358		UNIT
				MIN	TYP(3)	MAX	MIN	TYP(3)	MAX	
	Supply gurrent	V _O = 2.5 V, No load	Full range		0.7	1.2		0.7	1.2	
I _{CC}	Supply current (two amplifiers)	$V_{CC} = MAX$, $V_{O} = 0.5 V_{CC}$, No load	Full range		1	2		1	2	mA

6.6 Electrical Characteristics for LM2904

at specified free-air temperature, V_{CC} = 5 V (unless otherwise noted)

	PARAMETER	TEST CONDIT	IONE(1)	T ₄ (2)	LN	12904		UNIT	
	PARAMETER	TEST CONDIT	IONS ⁽⁷⁾	I _A (-/	MIN	TYP ⁽³⁾	MAX	UNII	
			Non-A-suffix	25°C		3	7		
\/	Input offset voltage	$V_{CC} = 5 \text{ V to MAX},$	devices	Full range			10	mV	
V _{IO}	input onset voltage	$V_{IC} = V_{ICR(min)},$ $V_{O} = 1.4 \text{ V}$	A-suffix devices	25°C		1	2	IIIV	
			A-sullix devices	Full range			4		
αV_{IO}	Average temperature coefficient of input offset voltage			Full range		7		μV/°C	
			Non Malaria	25°C		2	50		
			Non-V device	Full range			300		
I _{IO}	Input offset current	V _O = 1.4 V		25°C		2	50	nA	
			V-suffix device	Full range			150		
αI_{IO}	Average temperature coefficient of input offset current			Full range		10		pA/°C	
				25°C		-20	-250		
I _{IB}	Input bias current	V _O = 1.4 V		Full range			-500	nA	
	Common-mode input			25°C	0 to V _{CC} – 1.5				
V_{ICR}	voltage range	V _{CC} = 5 V to MAX		Full range	0 to V _{CC} – 2			V	
		R _L ≥ 10 kΩ		25°C	V _{CC} - 1.5				
		V _{CC} = MAX,	$R_L = 2 k\Omega$	Full range	22				
V_{OH}	High-level output voltage	Non-V device	R _L ≥ 10 kΩ	Full range	23	24		V	
		V _{CC} = MAX	$R_L = 2 k\Omega$	Full range	26				
		V-suffix device	R _L ≥ 10 kΩ	Full range	27	28			
V _{OL}	Low-level output voltage	R _L ≤ 10 kΩ		Full range		5	20	mV	
	Large-signal differential	V _{CC} = 15 V,		25°C	25	100			
A_{VD}	voltage amplification	$V_O = 1 \text{ V to } 11 \text{ V},$ $R_L \ge 2 \text{ k}\Omega$		Full range	15			V/mV	
OMPD	O	V _{CC} = 5V to MAX,	Non-V device	25°C	50	80		-ID	
CMRR	Common-mode rejection ratio	$V_{IC} = V_{ICR(min)}$	V-suffix device	25°C	65	80		dB	
k _{SVR}	Supply-voltage rejection ratio $(\Delta V_{CC}/\Delta V_{IO})$	V _{CC} = 5 V to MAX		25°C	65	100		dB	
V _{O1} / V _{O2}	Crosstalk attenuation	f = 1 kHz to 20 kHz		25°C		120		dB	
		V _{CC} = 15 V,		25°C	-20	-30			
		$V_{ID} = 1 V$, $V_{O} = 0$	Source	Full range	-10				
		V _{CC} = 15 V,		25°C	10	20		mA	
lo	Output current	$V_{ID} = -1 V,$ $V_{O} = 15 V$	Sink	Full range	5				
		$V_{ID} = -1 \text{ V}, V_{O} = 200 \text{ mV}$	Non-V device	25°C		30		μА	
		v _{ID} = -1 v, v ₀ = 200 IIIv	V-suffix device	25°C	12	40		μΛ	
Ios	Short-circuit output current	V_{CC} at 5 V, V_{O} = 0, GND at -	5 V	25°C		±40	±60	mA	
	Supply current	$V_O = 2.5 \text{ V}$, No load		Full range		0.7	1.2	mA	
I _{CC}	(four amplifiers)	$V_{CC} = MAX$, $V_{O} = 0.5 V_{CC}$, No	load	Full range		1	2	IIIA	

All characteristics are measured under open-loop conditions, with zero common-mode input voltage, unless otherwise specified. MAX V_{CC} for testing purposes is 26 V for LM2902 and 32 V for LM2902V. Full range is -55°C to 125°C for LM158, -25°C to 85°C for LM258, 0°C to 70°C for LM358, and -40°C to 125°C for LM2904.

All typical values are at $T_A = 25$ °C.

6.7 Electrical Characteristics for LM158A and LM258A

at specified free-air temperature, V_{CC} = 5 V (unless otherwise noted)

	PARAMETER	TEST CON	DITIONS(1)	T _A ⁽¹⁾	LM1	158A		LN	1258A		UNIT
	PARAMETER	TEST CON	DITIONS	IA'''	MIN	TYP ⁽²⁾	MAX	MIN	TYP ⁽²⁾	MAX	UNII
		V _{CC} = 5 V to 30 \	/,	25°C			2		2	3	
V _{IO}	Input offset voltage	$V_{IC} = V_{ICR(min)},$ $V_{O} = 1.4 \text{ V}$		Full range			4			4	mV
αV_{IO}	Average temperature coefficient of input offset voltage			Full range		7	15 ⁽³⁾		7	15	μΑ/°C
lio	Input offset current	V _O = 1.4 V		25°C		2	10		2	15	nA
Ю	input onoct durient	VO = 1 V		Full range			30			30	10.0
o _l lx	Average temperature coefficient of input offset current			Full range		10	200		10	200	pA/°C
	Input bias current	V _O = 1.4 V		25°C		-15	-50		-15	-80	nA
IB	input bias current	V _O = 1.4 V		Full range			-100			-100	шА
V_{ICR}	Common-mode input	V _{CC} = 30 V		25°C	0 to V _{CC} – 1.5			0 to V _{CC} – 1.5			V
*ICK	voltage range	766 = 33 1		Full range	$V_{CC} - 2$			0 to V _{CC} – 2			
	I Bala Javas Laudavid	R _L ≥ 2 kΩ	T	25°C	V _{CC} - 1.5			V _{CC} - 1.5			
V _{OH}	High-level output voltage	V _{CC} = 30 V	$R_L = 2k\Omega$	Full range	26			26			V
		VCC = 00 V	R _L ≥ 10kΩ	Full range	27	28		27	28		
V _{OL}	Low-level output voltage	R _L ≤ 10 kΩ		Full range		5	20		5	20	mV
	Large-signal	V _{CC} = 15 V, V _O =	1 V to 11 V,	25°C	50	100		50	100		
A _{VD}	differential voltage amplification	$R_L \ge 2 k\Omega$		Full range	25			25			V/mV
CMRR	Common-mode rejection ratio			25°C	70	80		70	80		dB
K _{SVR}	Supply-voltage rejection ratio $(\Delta V_D / \Delta V_{IO})$			25°C	65	100		65	100		dB
V _{O1} / V _{O2}	Crosstalk attenuation	f = 1 kHz to 20 kl	Hz	25°C		120			120		dB
		V _{CC} = 15 V,		25°C	-20	-30	-60	-20	-30	-60	
		$V_{ID} = 1 V,$ $V_{O} = 0$	Source	Full range	-10			-10			A
o	Output current	V _{CC} = 15 V,		25°C	10	20		10	20		mA
_		$V_{ID} = -1 \text{ V},$ $V_{O} = 15 \text{ V}$	Sink	Full range	5			5			ı
		$V_{ID} = -1 V, V_{O} =$	200 mV	25°C	12	30		12	30		μΑ
os	Short-circuit output current	V_{CC} at 5 V, GND at -5 V, $V_{O} = 0$		25°C		±40	±60		±40	±60	mA
	Supply oursest	V _O = 2.5 V, No Io	ad	Full range		0.7	1.2		0.7	1.2	
СС	Supply current (four amplifiers)	V _{CC} = MAX V, V _C No load) = 0.5 V,	Full range		1	2		1	2	mA

All characteristics are measured under open-loop conditions, with zero common-mode input voltage, unless otherwise specified. MAX V_{CC} for testing purposes is 26 V for LM2904 and 30 V for others.

6.8 Electrical Characteristics for LM358A

at specified free-air temperature, $V_{CC} = 5 \text{ V}$ (unless otherwise noted)

PARAMETER	TEST CONDITIONS(1)	T _A ⁽²⁾	LM358	UNIT	
FARAMETER	TEST CONDITIONS.	IA''	MIN	TYP ⁽³⁾ MA	(
	$V_{CC} = 5 \text{ V to } 30 \text{ V},$	25°C		2	3
V _{IO} Input offset voltage	$V_{IC} = V_{ICR(min)},$ $V_{O} = 1.4 \text{ V}$	Full range			mV

⁽¹⁾ All characteristics are measured under open-loop conditions, with zero common-mode input voltage, unless otherwise specified. MAX V_{CC} for testing purposes is 26 V for LM2904 and 30 V for others.

⁽²⁾ All typical values are at $T_A = 25$ °C.

⁽³⁾ On products compliant to MIL-PRF-38535, this parameter is not production tested.

⁽²⁾ All characteristics are measured under open-loop conditions, with zero common-mode input voltage, unless otherwise specified. MAX V_{CC} for testing purposes is 26 V for LM2904 and 30 V for others.

⁽³⁾ All typical values are at $T_A = 25$ °C.

Electrical Characteristics for LM358A (continued)

at specified free-air temperature, $V_{CC} = 5 \text{ V}$ (unless otherwise noted)

			ONDITIONS ⁽¹⁾	T _A ⁽²⁾	L	M358A		
	PARAMETER	IEST	ONDITIONS	I _A ⁽⁻⁾	MIN	TYP ⁽³⁾	MAX	UNIT
αV_{IO}	Average temperature coefficient of input offset voltage			Full range		7	20	μΑ/°C
1	Input offset current	V _O = 1.4 V		25°C		2	30	nA
I _{IO}	input onset current	V _O = 1.4 V		Full range			75	IIA
αI_{IO}	Average temperature coefficient of input offset current			Full range		10	300	pA/°C
1	Input bias current	V _O = 1.4 V		25°C		-15	-100	nA
I _{IB}	input bias current	V _O = 1.4 V		Full range			-200	IIA
V_{ICR}	Common-mode input	V _{CC} = 30 V		25°C	0 to $V_{CC} - 1.5$			V
V ICR	voltage range	V _{CC} = 30 V		Full range	0 to $V_{CC} - 2$			V
		R _L ≥ 2 kΩ		25°C	V _{CC} - 1.5			
V_{OH}	High-level output voltage	V _{CC} = 30 V	$R_L = 2k\Omega$	Full range	26			V
		V _{CC} = 30 V	R _L ≥ 10kΩ	Full range	27	28		
V _{OL}	Low-level output voltage	R _L ≤ 10 kΩ		Full range		5	20	mV
A _{VD}	Large-signal differential	V _{CC} = 15 V, V _O =	= 1 V to 11 V,	25°C	25	100		V/mV
AVD	voltage amplification	R _L ≥ 2 kΩ		Full range	15			V/IIIV
CMRR	Common-mode rejection ratio			25°C	65	80		dB
k _{SVR}	Supply-voltage rejection ratio $(\Delta V_{DD} / \Delta V_{IO})$			25°C	65	100		dB
V _{O1} / V _{O2}	Crosstalk attenuation	f = 1 kHz to 20 k	Hz	25°C		120		dB
		V _{CC} = 15 V,		25°C	-20	-30	-60	
		$V_{ID} = 1 V,$ $V_{O} = 0$	Source	Full range	-10			mA
Io	Output current	$V_{CC} = 15 V$,		25°C	10	20		ША
		$V_{ID} = -1 \text{ V},$ $V_{O} = 15 \text{ V}$	Sink	Full range	5			
		$V_{ID} = -1 V, V_O =$	200 mV	25°C		30		μΑ
I _{os}	Short-circuit output current	V_{CC} at 5 V, GND $V_{O} = 0$	at -5 V,	25°C		±40	±60	mA
	Supply current	V _O = 2.5 V, No lo	oad	Full range		0.7	1.2	
I _{cc}	(four amplifiers)	V _{CC} = MAX V, V ₀ No load	_D = 0.5 V,	Full range		1	2	mA

6.9 Operating Conditions

 $V_{CC} = \pm 15 \text{ V}, T_A = 25^{\circ}\text{C}$

	, ,,			
	PARAMETER	TEST CONDITIONS	TYP	UNIT
SR	Slew rate at unity gain	$R_L = 1 \text{ M}\Omega$, $C_L = 30 \text{ pF}$, $V_I = \pm 10 \text{ V}$ (see Figure 11)	0.3	V/μs
B ₁	Unity-gain bandwidth	$R_L = 1 \text{ M}\Omega$, $C_L = 20 \text{ pF (see Figure 11)}$	0.7	MHz
V_n	Equivalent input noise voltage	$R_S = 100 \Omega$, $V_I = 0 V$, $f = 1 kHz$ (see Figure 12)	40	nV/√Hz

Submit Documentation Feedback

6.10 Typical Characteristics

Typical Characteristics (continued)

7 Parameter Measurement Information

Figure 11. Unity-Gain Amplifier

Figure 12. Noise-Test Circuit

8 Detailed Description

8.1 Overview

These devices consist of two independent, high-gain frequency-compensated operational amplifiers designed to operate from a single supply over a wide range of voltages. Operation from split supplies also is possible if the difference between the two supplies is 3 V to 32 V (3 V to 26 V for the LM2904 device), and V_{CC} is at least 1.5 V more positive than the input common-mode voltage. The low supply-current drain is independent of the magnitude of the supply voltage.

Applications include transducer amplifiers, DC amplification blocks, and all the conventional operational amplifier circuits that now can be implemented more easily in single-supply-voltage systems. For example, these devices can be operated directly from the standard 5-V supply used in digital systems and easily can provide the required interface electronics without additional ±5-V supplies.

8.2 Functional Block Diagram

8.3 Feature Description

8.3.1 Unity-Gain Bandwidth

The unity-gain bandwidth is the frequency up to which an amplifier with a unity gain may be operated without greatly distorting the signal. These devices have a 0.7-MHz unity-gain bandwidth.

8.3.2 Slew Rate

The slew rate is the rate at which an operational amplifier can change its output when there is a change on the input. These devices have a $0.3\text{-V}/\mu s$ slew rate.

8.3.3 Input Common Mode Range

The valid common mode range is from device ground to V_{CC} - 1.5 V (V_{CC} - 2 V across temperature). Inputs may exceed V_{CC} up to the maximum V_{CC} without device damage. At least one input must be in the valid input common mode range for output to be correct phase. If both inputs exceed valid range then output phase is undefined. If either input is less than -0.3 V then input current should be limited to 1mA and output phase is undefined.

8.4 Device Functional Modes

These devices are powered on when the supply is connected. This device can be operated as a single supply operational amplifier or dual supply amplifier depending on the application.

9 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

The LMx58 and LM2904 operational amplifiers are useful in a wide range of signal conditioning applications. Inputs can be powered before V_{CC} for flexibility in multiple supply circuits.

9.2 Typical Application

A typical application for an operational amplifier in an inverting amplifier. This amplifier takes a positive voltage on the input, and makes it a negative voltage of the same magnitude. In the same manner, it also makes negative voltages positive.

Copyright © 2016, Texas Instruments Incorporated

Figure 13. Application Schematic

9.2.1 Design Requirements

The supply voltage must be chosen such that it is larger than the input voltage range and output range. For instance, this application will scale a signal of ± 0.5 V to ± 1.8 V. Setting the supply at ± 12 V is sufficient to accommodate this application.

9.2.2 Detailed Design Procedure

Determine the gain required by the inverting amplifier using Equation 1 and Equation 2:

$$A_{v} = \frac{VOUT}{VIN} \tag{1}$$

$$A_v = \frac{1.8}{-0.5} = -3.6 \tag{2}$$

Once the desired gain is determined, choose a value for RI or RF. Choosing a value in the kilohm range is desirable because the amplifier circuit will use currents in the milliamp range. This ensures the part will not draw too much current. This example will choose 10 k Ω for RI which means 36 k Ω will be used for RF. This was determined by Equation 3.

$$A_v = -\frac{RF}{RI} \tag{3}$$

Typical Application (continued)

9.2.3 Application Curve

Figure 14. Input and Output Voltages of the Inverting Amplifier

10 Power Supply Recommendations

CAUTION

Supply voltages larger than 32 V for a single supply (26 V for the LM2904), or outside the range of ±16 V for a dual supply (±13 V for the LM2904) can permanently damage the device (see the *Absolute Maximum Ratings*).

Place $0.1-\mu F$ bypass capacitors close to the power-supply pins to reduce errors coupling in from noisy or high impedance power supplies. For more detailed information on bypass capacitor placement, refer to the *Layout*.

11 Layout

11.1 Layout Guidelines

For best operational performance of the device, use good PCB layout practices, including:

- Noise can propagate into analog circuitry through the power pins of the circuit as a whole, as well as the
 operational amplifier. Bypass capacitors are used to reduce the coupled noise by providing low impedance
 power sources local to the analog circuitry.
 - Connect low-ESR, 0.1-μF ceramic bypass capacitors between each supply pin and ground, placed as close to the device as possible. A single bypass capacitor from V+ to ground is applicable for single supply applications.
- Separate grounding for analog and digital portions of circuitry is one of the simplest and most-effective methods of noise suppression. One or more layers on multilayer PCBs are usually devoted to ground planes. A ground plane helps distribute heat and reduces EMI noise pickup. Make sure to physically separate digital and analog grounds, paying attention to the flow of the ground current.
- To reduce parasitic coupling, run the input traces as far away from the supply or output traces as possible. If
 it is not possible to keep them separate, it is much better to cross the sensitive trace perpendicular as
 opposed to in parallel with the noisy trace.
- Place the external components as close to the device as possible. Keeping RF and RG close to the inverting
 input minimizes parasitic capacitance, as shown in Layout Examples.
- Keep the length of input traces as short as possible. Always remember that the input traces are the most sensitive part of the circuit.
- Consider a driven, low-impedance guard ring around the critical traces. A guard ring can significantly reduce leakage currents from nearby traces that are at different potentials.

11.2 Layout Examples

Figure 15. Operational Amplifier Board Layout for Noninverting Configuration

Figure 16. Operational Amplifier Schematic for Noninverting Configuration

12 Device and Documentation Support

12.1 Documentation Support

12.1.1 Related Documentation

• Circuit Board Layout Techniques, SLOA089.

12.2 Related Links

The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy.

Table 1. Related Links

PARTS	PRODUCT FOLDER	SAMPLE & BUY	TECHNICAL DOCUMENTS	TOOLS & SOFTWARE	SUPPORT & COMMUNITY
LM158	Click here	Click here	Click here	Click here	Click here
LM158A	Click here	Click here	Click here	Click here	Click here
LM258	Click here	Click here	Click here	Click here	Click here
LM258A	Click here	Click here	Click here	Click here	Click here
LM358	Click here	Click here	Click here	Click here	Click here
LM358A	Click here	Click here	Click here	Click here	Click here
LM2904	Click here	Click here	Click here	Click here	Click here
LM2904V	Click here	Click here	Click here	Click here	Click here

12.3 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on *Alert me* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

12.4 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support *TI's Design Support* Quickly find helpful E2E forums along with design support tools and contact information for technical support.

12.5 Trademarks

E2E is a trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

12.6 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

12.7 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical packaging and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser based versions of this data sheet, refer to the left hand navigation.

Submit Documentation Feedback

24-Aug-2018

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty		Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
5000 077400404	(1)	1.000		00		(2)	(6)	(3)	55 1- 405	(4/5)	
5962-87710012A	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	5962- 87710012A LM158FKB	Samples
5962-8771001PA	ACTIVE	CDIP	JG	8	1	TBD	A42	N / A for Pkg Type	-55 to 125	8771001PA LM158	Samples
5962-87710022A	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	5962- 87710022A LM158AFKB	Samples
5962-8771002PA	ACTIVE	CDIP	JG	8	1	TBD	A42	N / A for Pkg Type	-55 to 125	8771002PA LM158A	Samples
LM158AFKB	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	5962- 87710022A LM158AFKB	Samples
LM158AJG	ACTIVE	CDIP	JG	8	1	TBD	A42	N / A for Pkg Type	-55 to 125	LM158AJG	Samples
LM158AJGB	ACTIVE	CDIP	JG	8	1	TBD	A42	N / A for Pkg Type	-55 to 125	8771002PA LM158A	Samples
LM158FKB	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	-55 to 125	5962- 87710012A LM158FKB	Samples
LM158JG	ACTIVE	CDIP	JG	8	1	TBD	A42	N / A for Pkg Type	-55 to 125	LM158JG	Samples
LM158JGB	ACTIVE	CDIP	JG	8	1	TBD	A42	N / A for Pkg Type	-55 to 125	8771001PA LM158	Samples
LM258AD	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-25 to 85	LM258A	Samples
LM258ADGKR	ACTIVE	VSSOP	DGK	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU CU NIPDAUAG	Level-1-260C-UNLIM	-25 to 85	(M3L, M3P, M3S, M3 U)	Samples
LM258ADR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU CU SN	Level-1-260C-UNLIM	-25 to 85	LM258A	Samples
LM258ADRE4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-25 to 85	LM258A	Samples
LM258ADRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-25 to 85	LM258A	Samples
LM258AP	ACTIVE	PDIP	Р	8	50	Green (RoHS & no Sb/Br)	CU NIPDAU CU SN	N / A for Pkg Type	-25 to 85	LM258AP	Samples

www.ti.com

24-Aug-2018

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish (6)	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
LM258APE4	ACTIVE	PDIP	Р	8		Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-25 to 85	LM258AP	Samples
LM258D	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-25 to 85	LM258	Samples
LM258DG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-25 to 85	LM258	Samples
LM258DGKR	ACTIVE	VSSOP	DGK	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU CU NIPDAUAG	Level-1-260C-UNLIM	-25 to 85	(M2L, M2P, M2S, M2 U)	Samples
LM258DGKRG4	ACTIVE	VSSOP	DGK	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-25 to 85	(M2L, M2P, M2S, M2 U)	Samples
LM258DR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU CU SN	Level-1-260C-UNLIM	-25 to 85	LM258	Samples
LM258DRG3	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	-25 to 85	LM258	Samples
LM258DRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-25 to 85	LM258	Samples
LM258P	ACTIVE	PDIP	Р	8	50	Green (RoHS & no Sb/Br)	CU NIPDAU CU SN	N / A for Pkg Type	-25 to 85	LM258P	Samples
LM258PE4	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-25 to 85	LM258P	Samples
LM2904AVQDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	L2904AV	Samples
LM2904AVQDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	L2904AV	Samples
LM2904AVQPWR	ACTIVE	TSSOP	PW	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	L2904AV	Samples
LM2904AVQPWRG4	ACTIVE	TSSOP	PW	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	L2904AV	Samples
LM2904D	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	LM2904	Samples
LM2904DE4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	LM2904	Samples
LM2904DG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	LM2904	Samples
LM2904DGKR	ACTIVE	VSSOP	DGK	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU CU NIPDAUAG	Level-1-260C-UNLIM	-40 to 125	(MBL, MBP, MBS, MB U)	Samples

www.ti.com

24-Aug-2018

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish (6)	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
LM2904DGKRG4	ACTIVE	VSSOP	DGK	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	(MBL, MBP, MBS, MB U)	Samples
LM2904DR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU CU SN	Level-1-260C-UNLIM	-40 to 125	LM2904	Samples
LM2904DRE4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	LM2904	Samples
LM2904DRG3	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	-40 to 125	LM2904	Sample
LM2904DRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	LM2904	Samples
LM2904P	ACTIVE	PDIP	Р	8	50	Green (RoHS & no Sb/Br)	CU NIPDAU CU SN	N / A for Pkg Type	-40 to 125	LM2904P	Sample
LM2904PE4	ACTIVE	PDIP	Р	8		TBD	Call TI	Call TI	-40 to 125		Sample
LM2904PSR	ACTIVE	SO	PS	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	L2904	Sample
LM2904PW	ACTIVE	TSSOP	PW	8	150	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	L2904	Sample
LM2904PWR	ACTIVE	TSSOP	PW	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU CU SN	Level-1-260C-UNLIM	-40 to 125	L2904	Sample
LM2904PWRG3	ACTIVE	TSSOP	PW	8	2000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	-40 to 125	L2904	Sample
LM2904PWRG4-JF	ACTIVE	TSSOP	PW	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	L2904	Sample
LM2904QDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	2904Q1	Sample
LM2904QDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	2904Q1	Sample
LM2904VQDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	L2904V	Sample
LM2904VQDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	L2904V	Sample
LM2904VQPWR	ACTIVE	TSSOP	PW	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	L2904V	Sample
LM2904VQPWRG4	ACTIVE	TSSOP	PW	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	L2904V	Sample

www.ti.com

24-Aug-2018

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
LM358AD	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	LM358A	Samples
LM358ADE4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	LM358A	Samples
LM358ADG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	LM358A	Samples
LM358ADGKR	ACTIVE	VSSOP	DGK	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU CU NIPDAUAG	Level-1-260C-UNLIM	0 to 70	(M6L, M6P, M6S, M6 U)	Samples
LM358ADGKRG4	ACTIVE	VSSOP	DGK	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	(M6L, M6P, M6S, M6 U)	Samples
LM358ADR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU CU SN	Level-1-260C-UNLIM	0 to 70	LM358A	Samples
LM358ADRE4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	LM358A	Samples
LM358ADRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	LM358A	Samples
LM358AP	ACTIVE	PDIP	Р	8	50	Green (RoHS & no Sb/Br)	CU NIPDAU CU SN	N / A for Pkg Type	0 to 70	LM358AP	Samples
LM358APE4	ACTIVE	PDIP	Р	8	50	TBD	Call TI	Call TI	0 to 70	LM358AP	Samples
LM358APW	ACTIVE	TSSOP	PW	8	150	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	L358A	Samples
LM358APWR	ACTIVE	TSSOP	PW	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU CU SN	Level-1-260C-UNLIM	0 to 70	L358A	Samples
LM358APWRG4	ACTIVE	TSSOP	PW	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	L358A	Samples
LM358D	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	LM358	Samples
LM358DG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	LM358	Samples
LM358DGKR	ACTIVE	VSSOP	DGK	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU CU NIPDAUAG	Level-1-260C-UNLIM	0 to 70	(M5L, M5P, M5S, M5 U)	Samples
LM358DGKRG4	ACTIVE	VSSOP	DGK	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	(M5L, M5P, M5S, M5 U)	Samples
LM358DR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU CU SN	Level-1-260C-UNLIM	0 to 70	LM358	Samples

www.ti.com 24-Aug-2018

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish (6)	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
LM358DRE4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	LM358	Samples
LM358DRG3	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	0 to 70	LM358	Sample
LM358DRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	LM358	Sample
LM358P	ACTIVE	PDIP	Р	8	50	Green (RoHS & no Sb/Br)	CU NIPDAU CU SN	N / A for Pkg Type	0 to 70	LM358P	Sample
LM358PE3	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU SN	N / A for Pkg Type	0 to 70	LM358P	Sample
LM358PE4	ACTIVE	PDIP	Р	8	50	Green (RoHS & no Sb/Br)	CU NIPDAU	N / A for Pkg Type	0 to 70	LM358P	Sample
LM358PSR	ACTIVE	SO	PS	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	L358	Sample
LM358PW	ACTIVE	TSSOP	PW	8	150	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	L358	Sample
LM358PWR	ACTIVE	TSSOP	PW	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU CU SN	Level-1-260C-UNLIM	0 to 70	L358	Sample
LM358PWRG3	ACTIVE	TSSOP	PW	8	2000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	0 to 70	L358	Sample
LM358PWRG4	ACTIVE	TSSOP	PW	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	L358	Sample
LM358PWRG4-JF	ACTIVE	TSSOP	PW	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	0 to 70	L358	Sample

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet J\$709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

24-Aug-2018

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF LM258A, LM2904:

Automotive: LM2904-Q1

■ Enhanced Product: LM258A-EP, LM2904-EP

NOTE: Qualified Version Definitions:

- Automotive Q100 devices qualified for high-reliability automotive applications targeting zero defects
- Enhanced Product Supports Defense, Aerospace and Medical Applications

www.ti.com 15-Dec-2017

TAPE AND REEL INFORMATION

TAPE DIMENSIONS + K0 - P1 - B0 W Cavity - A0 -

	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
LM258ADGKR	VSSOP	DGK	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
LM258ADGKR	VSSOP	DGK	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
LM258ADR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM258ADR	SOIC	D	8	2500	330.0	15.4	6.4	5.2	2.1	8.0	12.0	Q1
LM258ADR	SOIC	D	8	2500	330.0	12.8	6.4	5.2	2.1	8.0	12.0	Q1
LM258ADR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM258ADRG4	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM258ADRG4	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM258DGKR	VSSOP	DGK	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
LM258DGKR	VSSOP	DGK	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
LM258DR	SOIC	D	8	2500	330.0	12.8	6.4	5.2	2.1	8.0	12.0	Q1
LM258DR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM258DR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM258DR	SOIC	D	8	2500	330.0	15.4	6.4	5.2	2.1	8.0	12.0	Q1
LM258DRG3	SOIC	D	8	2500	330.0	12.8	6.4	5.2	2.1	8.0	12.0	Q1
LM258DRG3	SOIC	D	8	2500	330.0	15.4	6.4	5.2	2.1	8.0	12.0	Q1
LM258DRG4	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM258DRG4	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
LM2904AVQDR	SOIC	D	8	2500	330.0	12.5	6.4	5.2	2.1	8.0	12.0	Q1
LM2904AVQDRG4	SOIC	D	8	2500	330.0	12.5	6.4	5.2	2.1	8.0	12.0	Q1
LM2904AVQPWR	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
LM2904AVQPWRG4	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
LM2904DGKR	VSSOP	DGK	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
LM2904DGKR	VSSOP	DGK	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
LM2904DGKR	VSSOP	DGK	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
LM2904DR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM2904DR	SOIC	D	8	2500	330.0	12.8	6.4	5.2	2.1	8.0	12.0	Q1
LM2904DR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM2904DRG3	SOIC	D	8	2500	330.0	12.8	6.4	5.2	2.1	8.0	12.0	Q1
LM2904DRG3	SOIC	D	8	2500	330.0	15.4	6.4	5.2	2.1	8.0	12.0	Q1
LM2904DRG4	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM2904DRG4	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM2904PSR	SO	PS	8	2000	330.0	16.4	8.2	6.6	2.5	12.0	16.0	Q1
LM2904PWR	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
LM2904PWR	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
LM2904PWRG3	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
LM2904PWRG4-JF	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
LM2904QDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM2904VQDR	SOIC	D	8	2500	330.0	12.5	6.4	5.2	2.1	8.0	12.0	Q1
LM2904VQPWR	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
LM2904VQPWRG4	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
LM358ADGKR	VSSOP	DGK	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
LM358ADGKR	VSSOP	DGK	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
LM358ADR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM358ADR	SOIC	D	8	2500	330.0	15.4	6.4	5.2	2.1	8.0	12.0	Q1
LM358ADR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM358ADR	SOIC	D	8	2500	330.0	12.8	6.4	5.2	2.1	8.0	12.0	Q1
LM358ADRG4	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM358ADRG4	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM358APWR	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
LM358APWR	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
LM358APWRG4	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
LM358DGKR	VSSOP	DGK	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
LM358DGKR	VSSOP	DGK	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
LM358DGKR	VSSOP	DGK	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
LM358DR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM358DR	SOIC	D	8	2500	330.0	12.8	6.4	5.2	2.1	8.0	12.0	Q1
LM358DR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM358DR	SOIC	D	8	2500	330.0	15.4	6.4	5.2	2.1	8.0	12.0	Q1
LM358DRG3	SOIC	D	8	2500	330.0	12.8	6.4	5.2	2.1	8.0	12.0	Q1
LM358DRG3	SOIC	D	8	2500	330.0	15.4	6.4	5.2	2.1	8.0	12.0	Q1

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
LM358DRG4	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM358DRG4	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
LM358PSR	SO	PS	8	2000	330.0	16.4	8.2	6.6	2.5	12.0	16.0	Q1
LM358PWR	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
LM358PWR	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
LM358PWRG3	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
LM358PWRG4	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
LM358PWRG4-JF	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
LM258ADGKR	VSSOP	DGK	8	2500	332.0	358.0	35.0
LIVIZSOADONN	V 3301	DOK	0	2300	332.0	330.0	33.0
LM258ADGKR	VSSOP	DGK	8	2500	364.0	364.0	27.0
LM258ADR	SOIC	D	8	2500	367.0	367.0	35.0
LM258ADR	SOIC	D	8	2500	333.2	345.9	28.6
LM258ADR	SOIC	D	8	2500	364.0	364.0	27.0
LM258ADR	SOIC	D	8	2500	340.5	338.1	20.6
LM258ADRG4	SOIC	D	8	2500	340.5	338.1	20.6
LM258ADRG4	SOIC	D	8	2500	367.0	367.0	35.0
LM258DGKR	VSSOP	DGK	8	2500	364.0	364.0	27.0

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
LM258DGKR	VSSOP	DGK	8	2500	332.0	358.0	35.0
LM258DR	SOIC	D	8	2500	364.0	364.0	27.0
LM258DR	SOIC	D	8	2500	340.5	338.1	20.6
LM258DR	SOIC	D	8	2500	367.0	367.0	35.0
LM258DR	SOIC	D	8	2500	333.2	345.9	28.6
LM258DRG3	SOIC	D	8	2500	364.0	364.0	27.0
LM258DRG3	SOIC	D	8	2500	333.2	345.9	28.6
LM258DRG4	SOIC	D	8	2500	340.5	338.1	20.6
LM258DRG4	SOIC	D	8	2500	367.0	367.0	35.0
LM2904AVQDR	SOIC	D	8	2500	340.5	338.1	20.6
LM2904AVQDRG4	SOIC	D	8	2500	340.5	338.1	20.6
LM2904AVQPWR	TSSOP	PW	8	2000	367.0	367.0	35.0
LM2904AVQPWRG4	TSSOP	PW	8	2000	367.0	367.0	35.0
LM2904DGKR	VSSOP	DGK	8	2500	364.0	364.0	27.0
LM2904DGKR	VSSOP	DGK	8	2500	332.0	358.0	35.0
LM2904DGKR	VSSOP	DGK	8	2500	358.0	335.0	35.0
LM2904DR	SOIC	D	8	2500	340.5	338.1	20.6
LM2904DR	SOIC	D	8	2500	364.0	364.0	27.0
LM2904DR	SOIC	D	8	2500	367.0	367.0	35.0
LM2904DRG3	SOIC	D	8	2500	364.0	364.0	27.0
LM2904DRG3	SOIC	D	8	2500	333.2	345.9	28.6
LM2904DRG4	SOIC	D	8	2500	367.0	367.0	35.0
LM2904DRG4	SOIC	D	8	2500	340.5	338.1	20.6
LM2904PSR	SO	PS	8	2000	367.0	367.0	38.0
LM2904PWR	TSSOP	PW	8	2000	367.0	367.0	35.0
LM2904PWR	TSSOP	PW	8	2000	364.0	364.0	27.0
LM2904PWRG3	TSSOP	PW	8	2000	364.0	364.0	27.0
LM2904PWRG4-JF	TSSOP	PW	8	2000	367.0	367.0	35.0
LM2904QDR	SOIC	D	8	2500	367.0	367.0	38.0
LM2904VQDR	SOIC	D	8	2500	340.5	338.1	20.6
LM2904VQPWR	TSSOP	PW	8	2000	367.0	367.0	35.0
LM2904VQPWRG4	TSSOP	PW	8	2000	367.0	367.0	35.0
LM358ADGKR	VSSOP	DGK	8	2500	364.0	364.0	27.0
LM358ADGKR	VSSOP	DGK	8	2500	332.0	358.0	35.0
LM358ADR	SOIC	D	8	2500	340.5	338.1	20.6
LM358ADR	SOIC	D	8	2500	333.2	345.9	28.6
LM358ADR	SOIC	D	8	2500	367.0	367.0	35.0
LM358ADR	SOIC	D	8	2500	364.0	364.0	27.0
LM358ADRG4	SOIC	D	8	2500	340.5	338.1	20.6
LM358ADRG4	SOIC	D	8	2500	367.0	367.0	35.0
LM358APWR	TSSOP	PW	8	2000	364.0	364.0	27.0
LM358APWR	TSSOP	PW	8	2000	367.0	367.0	35.0
LM358APWRG4	TSSOP	PW	8	2000	367.0	367.0	35.0
LM358DGKR	VSSOP	DGK	8	2500	332.0	358.0	35.0

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
LM358DGKR	VSSOP	DGK	8	2500	358.0	335.0	35.0
LM358DGKR	VSSOP	DGK	8	2500	364.0	364.0	27.0
LM358DR	SOIC	D	8	2500	367.0	367.0	35.0
LM358DR	SOIC	D	8	2500	364.0	364.0	27.0
LM358DR	SOIC	D	8	2500	340.5	338.1	20.6
LM358DR	SOIC	D	8	2500	333.2	345.9	28.6
LM358DRG3	SOIC	D	8	2500	364.0	364.0	27.0
LM358DRG3	SOIC	D	8	2500	333.2	345.9	28.6
LM358DRG4	SOIC	D	8	2500	340.5	338.1	20.6
LM358DRG4	SOIC	D	8	2500	367.0	367.0	35.0
LM358PSR	SO	PS	8	2000	367.0	367.0	38.0
LM358PWR	TSSOP	PW	8	2000	367.0	367.0	35.0
LM358PWR	TSSOP	PW	8	2000	364.0	364.0	27.0
LM358PWRG3	TSSOP	PW	8	2000	364.0	364.0	27.0
LM358PWRG4	TSSOP	PW	8	2000	367.0	367.0	35.0
LM358PWRG4-JF	TSSOP	PW	8	2000	367.0	367.0	35.0

FK (S-CQCC-N**)

LEADLESS CERAMIC CHIP CARRIER

28 TERMINAL SHOWN

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a metal lid.
- D. Falls within JEDEC MS-004

D (R-PDSO-G8)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AA.

D (R-PDSO-G8)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

PS (R-PDSO-G8)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

JG (R-GDIP-T8)

CERAMIC DUAL-IN-LINE

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification.
- E. Falls within MIL STD 1835 GDIP1-T8

P (R-PDIP-T8)

PLASTIC DUAL-IN-LINE PACKAGE

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MS-001 variation BA.

DGK (S-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 per end.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.50 per side.
- E. Falls within JEDEC MO-187 variation AA, except interlead flash.

DGK (S-PDSO-G8)

PLASTIC SMALL OUTLINE PACKAGE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

SMALL OUTLINE PACKAGE

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153, variation AA.

SMALL OUTLINE PACKAGE

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE PACKAGE

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's non-compliance with the terms and provisions of this Notice.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Texas Instruments:

<u>LM358H LM358DGKR LM358D LM358PE3 LM358PE4 LM358PW LM358DE4 LM358PWRG4 LM358PWE4 LM358DRE4 LM358DRG3 LM358PSRE4 LM358PWRG3 LM358DGKRG4 LM358PWR LM358DRG4 LM358PWRE4 LM358PSRG4 LM358PWRG4 LM358PSR LM358PWRG4-JF</u>