

An identity preference in Ngbaka vowels

Juliet Stanton, NYU (stanton@nyu.edu)

AMP 2021 October 2, 2021

I. Overview

- Models of long-distance phonology differ in whether they propose an explicit proviso for identity.
- Gallagher & Coon (2009): IDENTITY, which requires consonants linked by a correspondence relation to be identical.
- Rose & Walker (2004) and other work in ABC: identity not a goal; no explicit proviso for identity.
- Zuraw (2002): identity is a goal; no explicit proviso for identity.
- A question that this raises: should identity preferences be analyzed using one monolithic constraint, or a set of constraints, each requiring identity for an individual feature?
- This poster: a case study of Ngbaka vowels, which suggests that we need both.

II. Background and research question

• Ngbaka (Ubangian; Thomas 1963, Henrix et al. 2007, Sélézilo 2008, a.o.) has a twelve-vowel system.

Oral vowels						
i	u					
e	O					
3	3					
C	l					

- Descriptions of Ngbaka (references above) often claim that multiple types of vowel harmony are active. Two examples:
- ATR harmony: [e ẽ o õ] cannot precede or follow [ε ε ɔ ɔ̃].
- Backness harmony: $[i\tilde{i} e \epsilon \tilde{\epsilon}]$ cannot precede or follow $[u\tilde{u} o o \tilde{o}]$.
- These requirements often coincide to ensure that, in a CV_1CV_2 word, V_1 and V_2 are identical (noted by Sélézilo 2008).
- Another analytical possibility arises: Ngbaka vowels prefer to be identical.
- Question: can the apparent preference for identity in Ngbaka vowels be explained through the interaction of multiple types of harmony, or must an identity preference be recognized independently?

III. Data

- To address this question, I created a database of vowel pairs from Henrix et al.'s (2015) Ngbaka dictionary (5,571 words).
- Investigation limited to disyllabic or longer words that contain only CV syllables (3,928 words).
- For each word, I extracted each adjacent pair of vowels.

z i b
$$\mathfrak{d}_1$$
 1 \mathfrak{d}_2
Pairs: [i \mathfrak{d}_1], [\mathfrak{d}_1 \mathfrak{d}_2]

• Result: 6,716 vowel pairs. Identical pairs (n=4,461, in white) are more common than non-identical pairs (n=2,255, in black).

		$ m V_2$											
		a	ã	e	ε	$\tilde{\epsilon}$	i	ĩ	O	С	5	u	ũ
	a	1322	33	124	76	10	167	6	135	81	14	148	8
	$\mathbf{\tilde{a}}$	7	38	1	0	0	9	9	4	3	1	3	1
	e	26	0	239	5	1	5	0	13	7	1	10	0
	ε	82	3	9	718	6	17	0	21	24	2	33	0
	$\tilde{\epsilon}$	4	4	0	1	35	1	1	2	1	1	3	4
17	i	121	6	20	13	2	490	1	59	20	4	10	1
V_1	ĩ	2	2	2	0	0	1	12	0	3	4	0	0
	O	66	2	55	7	1	20	0	532	11	1	18	0
	\mathbf{c}	125	10	6	47	3	44	5	16	505	15	25	0
	5	2	2	0	4	0	2	5	0	4	18	1	0
	u	184	5	23	29	4	62	3	13	13	1	542	4
	ũ	4	2	0	0	5	1	4	1	0	0	5	10

- An interesting trend to note: if a vowel co-occurs with a non-identical vowel, it's usually [a].
- In addition, there are trends in these data that I won't focus on (example: nasal vowels are less common than oral vowels).

IV. Analysis

- Analysis: loglinear model of count data, using bayesglm from R's arm package (Gelman & Hill 2007).
- Baseline model asks: what is the predicted frequency of each vowel pair, given the independent frequency of each vowel?
- Dependent variable: number of times a particular vowel-vowel pair is attested.
- Independent variables: one predictor per vowel per position $(a_1, a_2, \tilde{a}_1, \tilde{a}_2, e_1, e_2, etc.)$.
- Fitted values (obtained with R's *fitted.values* function) show that identical pairs are overattested relative to expectation.

Predicted

For an interactive graph where all points are labeled, go to:

julietstanton.github.io/files/ ngbakavowels.html

• To this baseline model, I added predictors reflecting types of vowel harmony and one predictor to look for effects of identity.

	Predictor (all binary)	Type of harmony	Assigns a 1 to
a.	* $[\alpha ATR][-\alpha ATR]$	ATR	$(e o)(\epsilon s)$ and $(\epsilon s)(e o)$
b.	*[αback][-αback]	Backness	$(i e \epsilon)(u o \mathfrak{o})$ and $(u o \mathfrak{o})(i e \epsilon)$
c.	*[αhigh, -back, -low][-αhigh, -back, -low]	Height amongst front vowels	$(i)(e \epsilon)$ and $(e \epsilon)(i)$
d.	*[αhigh, +back, -low][-αhigh, +back, -low]	Height amongst back vowels	(u)(o o) and $(o o)(u)$
e.	*[αnasal][-αnasal]	Nasal	vowels mismatching for nasality
f.	*[+syllabic] _i [+syllabic] _j	Identity	non-identical vowel pairs

- Question: which combination of predictors is responsible for shaping the data?
- To answer this question, I fit the maximal model to the data and compared the goodness of fit of nested models using LRTs.

V. Results

- The best-fit model includes predictors for ATR harmony (a; t = 5.51, p < .001), backness harmony (b; t = 4.38, p < .001); height harmony among front vowels (c; t = 5.07, p < .001), nasal harmony (e; t = 6.64, p < .001), and identity (f; t = 29.23, p < .001).
- Further modeling suggests another possible type of harmony, between low $[a \tilde{a}]$ and the [-low] vowels, is inactive.
- In addition, investigation of the coefficients shows that the identity predictor plays the largest role in shaping these data.

	Predictor (all binary)	Type of harmony	Coefficient
a.	*[αATR][-αATR]	ATR	0.40
b.	*[αback][-αback]	Backness	0.26
c.	*[αhigh, -back, -low][-αhigh, -back, -low]	Height amongst front vowels	0.53
e.	*[αnasal][-αnasal]	Nasal	0.63
f.	*[+syllabic] _i [+syllabic] _i	Identity	1.04

• *Conclusion:* The fact that the identity predictor is significant tells us that the identity preference in Ngbaka vowels cannot be explained entirely by appealing to interacting processes of harmony; the identity predictor plays an independent role.