Project 3:

r/pacmasterrace vs

r/mac

Problem Statement

The problem we are tackling is a binary classification problem. The goal is to create a model to accurately classify reddit posts based on the subreddits that it originated from -r/pcmasterrace or r/mac. We will be creating two models to compare - Bayes Naive Classifier and Logistic Regression Model.

Evaluation

The aim is to create a model that is able to generalize well across new observations and accurately predict the origin of the posts from the correct subreddit.

Data Set Used

There are two datasets obtained from the reddit API:

970

1,000

r/pcmasterrace

r/mac

Data Collection

Functions for data scraping and transforming into Data Frame:

```
def get_posts(url,interactions,header,sleep):
    posts = []
    after = None
    for i in range(interactions):
        print(i)
        if after == None:
            params = \{\}
        else:
            params = {'after':after}
        res = requests.get(url, params=params, headers=headers)
        if res.status code == 200:
            the_json = res.json()
            posts.extend(the_json['data']['children'])
            after = the json['data']['after']
        else:
            print(res.status_code)
            break
        time.sleep(sleep)
    return(posts)
def create cols(dataframe):
    dataframe['subreddit'] = dataframe['data'].map(lambda x: x['subreddit'])
    dataframe['title'] = dataframe['data'].map(lambda x: x['title'])
    dataframe['name'] = dataframe['data'].map(lambda x: x['name'])
    dataframe['selftext'] = dataframe['data'].map(lambda x: x['selftext'])
    dataframe['domain'] = dataframe['data'].map(lambda x: x['domain'])
    return dataframe
```

```
header = {'User-agent': 'Bleep blorp bot 0.1'}
url = 'https://www.reddit.com/r/pcmasterrace.json'
interations = 40
sleep_sec = 1.5
pcmasterrace_df = pd.DataFrame(get_posts(url,interations,header,sleep_sec))
pcmasterrace_df = create_cols(pcmasterrace_df)
header = {'User-agent': 'Bleep blorp bot 0.1'}
```

```
header = {'User-agent': 'Bleep blorp bot 0.1'}
url = 'https://www.reddit.com/r/mac.json'
interations = 40
sleep_sec = 1.5
mac_df = pd.DataFrame(get_posts(url,interations,header,sleep_sec))
mac_df = create_cols(mac_df)
```

Data Collection - Remove Duplicates

pcm	pcmasterrace_df.shape												
(997, 7)													
<pre>pcmasterrace_df.head()</pre>													
1	kind	data	subreddit	title	name	selftext	domain						
0	t3	{'approved_at_utc': None, 'subreddit': 'pcmast	pcmasterrace	Folding@Home and PCMR team up! Use your PC to	t3_dln0o3	This is the 8th iteration of this thread, sinc	self.pcmasterrace						
1	t3	{'approved_at_utc': None, 'subreddit': 'pcmast	pcmasterrace	I spent all night alone at the MSI CES booth w	t3_es1t4h	NaN	youtube.com						
2	t3	{'approved_at_utc': None, 'subreddit': 'pcmast		A funny title	t3_esooh7	NaN	i.redd.it						
3	t3	{'approved_at_utc': None, 'subreddit': 'pcmast	pcmasterrace	One of the madlad electricians at work made a	t3_esdg5b	NaN	i.redd.it						
4	t3	{'approved_at_utc': None, 'subreddit': 'pcmast	pcmasterrace	Linus reached 10 million, but is thinking of	t3_esp0ju	NaN	i.redd.it						

mac_df.shape													
(1000, 7)													
mac_df.head()													
	kind	data	subreddit	title	name	selftext	domain						
0	t3	{'approved_at_utc': None, 'subreddit': 'mac',	mac	Picked up an '09 5,5 for \$86	t3_esicey	NaN	i.imgur.com						
1	t3	{'approved_at_utc': None, 'subreddit': 'mac',	mac	Window peel frosting makes for the perfect mou	t3_es5imf	NaN	i.redd.it						
2	t3	{'approved_at_utc': None, 'subreddit': 'mac',	mac	I prefer the Macbook Pro 2018 over my Razer Bl	t3_esogm2	Hey, y'all. I am a programming student and pur	self.mac						
3	t3	{'approved_at_utc': None, 'subreddit': 'mac',	mac	My Mac editing suite is finished and the wife	t3_esod1h	NaN	i.redd.it						
4	t3	{'approved_at_utc': None, 'subreddit': 'mac',	mac	Don't know why I can't find a simple solution	t3_esppmj	On my iPhone I use Aloha app and use their bro	self.mac						

Removing Duplicate Rows

```
pcmasterrace_df.drop_duplicates(subset=['subreddit', 'title', 'name', 'selftext', 'domain'],keep='first', inplace=Tr
mac_df.drop_duplicates(subset=['subreddit', 'title', 'name', 'selftext', 'domain'],keep='first', inplace=True)
```

Checking No. of Rows

```
print("pcmasterrace", pcmasterrace_df.shape)
print("mac", mac_df.shape)

pcmasterrace (970, 7)
mac (1000, 7)
```

Replacing nulls with string null:

```
#Replacing null with 'null'
pcmasterrace_df['selftext'].fillna('null9999', inplace=True)
mac_df['selftext'].fillna('null9999', inplace=True)
```

Joining Dataframes and Creating Columns

```
final_df = pd.concat([pcmasterrace_df, mac_df], axis=0, join='outer',ignore_index=False)
final_df = final_df.reset_index(drop=True)
```

Creating new columns from website information:

```
final_df['ups'] = final_df['data'].map(lambda x: x['ups'])
final_df['num_comments'] = final_df['data'].map(lambda x: x['num_comments'])
final_df['author'] = final_df['data'].map(lambda x: x['author'])
```

Creating Label column:

```
final_df['label'] = final_df['subreddit'].map({'pcmasterrace':0,'mac':1})
```

Removing un-used columns:

```
drop_columns = ['data','kind','domain','name','subreddit']
final_df.drop(columns=drop_columns,axis=1,inplace=True)
```

```
Removing space,tab and breakline and stop words:

nltk.download() # Download text data sets, including stop words. Uncomment this if you did not download showing info https://raw.githubusercontent.com/nltk/nltk_data/gh-pages/index.xml

True

def clean_text(text_to_clean):
    text_to_clean = re.sub( '[^a-zA-Z0-9]', ' ', text_to_clean) # subs charact in the brackets text_to_clean = re.sub( '\s+', ' ', text_to_clean).strip() ## subs tabs,newlines and "whitespace-like" words = text_to_clean.lower().split() ## convert to lowercase split indv words stops = set(stopwords.words('english')) #converting stop words to set meaningful_words = [w for w in words if not w in stops] # removing stop words return(" ".join(meaningful_words))

final_df['clean_title'] = final_df.apply(lambda x: clean_text(x['title']), axis=1) final_df['clean_selftext'] = final_df.apply(lambda x: clean_text(x['selftext']), axis=1)
```

Creating stemming Function:

```
porter=PorterStemmer()
lancaster=LancasterStemmer()
lemmatizer = WordNetLemmatizer()

def stemtext(sentence, steamer):
    token_words=word_tokenize(sentence)
    token_words
    stem_sentence=[]
    for word in token_words:
        if (str(steamer) == '<WordNetLemmatizer>'):
            stem_sentence.append(steamer.lemmatize(word))
    else:
        stem_sentence.append(steamer.stem(word))

    stem_sentence.append(" ")
    return "".join(stem_sentence)
```

Using function to create stemming columns:

```
# For title column
final_df['clean_title_lemmat'] = final_df.apply(lambda x: stemtext(x['clean_title'], WordNetLemmatizer()), axis=1)
final_df['clean_title_lancast'] = final_df.apply(lambda x: stemtext(x['clean_title'], LancasterStemmer()), axis=1)
final_df['clean_title_port'] = final_df.apply(lambda x: stemtext(x['clean_title'], PorterStemmer()), axis=1)

# For self text column
final_df['clean_selftext_lemmat'] = final_df.apply(lambda x: stemtext(x['clean_title'], WordNetLemmatizer()), axis=1)
final_df['clean_selftext_lancast'] = final_df.apply(lambda x: stemtext(x['clean_title'], LancasterStemmer()), axis=1)
final_df['clean_selftext_port'] = final_df.apply(lambda x: stemtext(x['clean_title'], PorterStemmer()), axis=1)
```

Dealing with empty rows post lemmatizing:

- After lemmatizer the row 825 had no word in the title.
- Dropping drop of 1 row will not have significant affect in the model.

```
#droping column where lemmatizer left no text
display(final df[final df['clean title'].str.len()< 1])</pre>
final df = final df[~(final df['clean title'].str.len()< 1)]
     title selftext ups num_comments
                                         author label clean_title clean_selftext clean_title_lemmat clean_title_lancast clean_title_port clean_selftext
          how do
            fancy
                                                                  fancy dudes
           dudes
                                                                   put system
                                  7 pandason89
                                                                   specs next
             your
                                                                   usernames
           system
            specs
```

Data Cleaning and EDA - Word Cloud


```
'mac title common word
[(279, 'macbook'),
 (225, 'pro'),
 (214, 'mac'),
 (96, 'imac'),
 (83, 'help'),
     'new'),
     '2019'),
 (47, 'air'),
 (45, 'screen'),
 (44, '16'),
 (42, 'mbp'),
      'apple'),
 (39,
      'need'),
      'get'),
 (35, 'anyone')]
```

```
'pcmasterrace title common words'
[(155, 'pc'),
(84, 'build'),
(81, 'new'),
(68,
     'help'),
(54,
     'qpu'),
     'first'),
     'monitor'),
     'cpu'),
     'need'),
(36,
      'get'),
     'good'),
     'gaming'),
(32,
(28,
     'one'),
     'upgrade'),
(25, 'time')]
```

Preprocessing and Modelling

Base Line Accuracy

```
df['label'].value_counts(normalize=True)[0:1] # value and pct

1  0.507872
Name: label, dtype: float64

• As calculated above, the baseline accuracy for the dataset is 50.79%.
```

Split test:

```
#Preparing data
X = df[features].iloc[:,0]
y = df['label']
X_train, X_test, y_train, y_test = train_test_split(X,y,stratify=y,random_state=42)
```

Testing which stemmer / lemmatizer give best results in multinomialNB

Preprocessing and Modelling

'cv_stop_words': ['pc', 'macbook', 'mac', 'imac'], 'model_alpha': 1.1578947368421053}

```
{'cv_max_df': 0.15, 'cv_max_features': 4000, 'cv_min_df': 1, 'cv_ngram_range': (1, 1), 'cv_stop_words': ['pc', 'macbook', 'mac', 'imac'], 'model__alpha': 1.1578947368421053}
Train Score: 0.8252
Test Score: 0.8337

• PorterStemmer yielded highest score in a multinomialNB model, using only title (ie. pc and mac root words) as stop words.

• The best hyperparameters from GridSearch are as follows: {'cv_max_df': 0.15, 'cv_max_features': 4000, 'cv_min_df': 1, 'cv_ngram_range': (1, 1),
```

Preprocessing and Modelling

Vectorizing and Appending other features:

```
vectorizer = CountVectorizer(stop_words = ['pc', 'macbook', 'mac', 'imac'],
                            max_features = 4000,
                            ngram range = (1,1),
                            min_df = 1,
                            \max df = 0.15)
X_train_title_vec = vectorizer.fit_transform(X_train)
X_test_title_vec = vectorizer.transform(X_test)
print("Dic Size:", len(vectorizer.get_feature_names()))
Dic Size: 2300
```

- Vectorizing and appending additional features names into our model to determine whether it helps improve the performance of our model.
- The dictionary size consist of 2,300 aditional feature names.

Preprocessing and Modelling - Naive Bayes

Multinomial Naive Bayes

Train Score: 0.8252 Test Score: 0.8337

Specificity: 0.8148

Sensitivity/Recall: 0.852

Precision: 0.8256 F1 Score: 0.8386

TN: 198 FP: 45 FN: 37 TP: 213

Preprocessing and Modelling - Naive Bayes

- As seen from the slightly higher Sensitivity score (85.2%) compared to the Specificity Score (81.48%), our model does a slightly better job of correctly predicting posts relating to the r/mac subreddit as compared to posts relating to the r/pcmasterrace subreddit.
- The model has a reasonably good recall score of 85.2%. However, we will only select this as our best model when there is a high cost associated with False Negative.
- The model has a reasonably good precision score of 82.56%. However, the cost of False Positive in this context is not high. Hence, we will not use this metric as our sole determinor for selecting our best model.
- The model has a reasonably good overall F1 Score of 83.86%. As there is neither a significant cost of False Positive/ False Negative in this business context, the F1 Score might be a better measure to use if we need to seek a balance between Precision and Recall AND there is an uneven class distribution (large number of Actual Negatives).

Specificity: 0.8148

Sensitivity/Recall: 0.852

Precision: 0.8256

F1 Score: 0.8386

TN: 198 FP: 45 FN: 37

TP: 213

Preprocessing and Modelling - Logistic Regression

Logistic Regression Model

```
#Without Hyperparameters
vectorizer = CountVectorizer(stop_words = ['pc', 'macbook', 'mac', 'imac'],
                            max features = 4000.
                            ngram range = (1,1).
                            min df = 1.
                            \max df = 0.15)
X train vec = vectorizer.fit transform(X train)
X test vec = vectorizer.transform(X test)
lr = LogisticRegression()
lr.fit(X train vec, y train)
print("Cross Val Score: ",cross val score(lr,X train vec,y train,cv=5).mean())
print("Train Score: ",lr.score(X_train_vec,y_train))
print("Test Score: ".lr.score(X test vec.v test))
Cross Val Score: 0.8102954649564819
Train Score: 0.9728997289972899
Test Score: 0.8275862068965517
```

```
penalty = ['l1', 'l2']
class_weight = [\{1:0.5, 0:0.5\}, \{1:0.4, 0:0.6\}, \{1:0.6, 0:0.4\}, \{1:0.7, 0:0.3\}]
solver = ['liblinear', 'saga']
lr2 = LogisticRegression(max iter=1000)
param grid = dict(penalty=penalty.
                 C=C.
                 class weight=class weight.
                 solver=solver)
grid = GridSearchCV(estimator=lr2,
                   param grid=param grid,
                   scoring='roc auc',
                   verbose=1,
                   n jobs=-1
#Fit the model
best model = grid.fit(X train vec.v train)
#Print The value of best Hyperparameters
print('Best penalty:'. best model.best estimator .get params()['penalty'])
print('Best C:', best_model.best_estimator_.get_params()['C'])
print('Best class weight:'. best model.best estimator .get params()['class weight'])
print('Best solver:'. best model.best estimator .get params()['solver'])
Fitting 5 folds for each of 128 candidates, totalling 640 fits
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers.
Best penalty: 12
Best C: 1
Best class weight: {1: 0.4, 0: 0.6}
Best solver: saga
[Parallel(n_jobs=-1)]: Done 640 out of 640 | elapsed: 2.0min finished
```

Preprocessing and Modelling - Logistic Regression

Specificity: 0.9177

Sensitivity/Recall: 0.704

Precision: 0.898 F1 Score: 0.7892

TN: 223 FP: 20 FN: 74 TP: 176

- As seen from the significantly higher Specificity score (91.77%) compared to the Specificity Score (70.4%), our model does a significantly better job of correctly predicting posts relating to the r/pcmasterrace subreddit as compared to posts relating to the r/mac subreddit.
- The model has a comparatively poor recall score of 70.4%. However, we will only select this as our best model when there is a high cost associated with False Negative.
- The model has a extremely good precision score of 89.8%. However, the cost of False Positive in this context is not high. Hence, we will not use this metric as our sole determinor for selecting our best model.
- The model has a decent overall F1 Score of 78.92%. As there is neither a significant cost of False Positive/ False Negative in this business context, the F1 Score might be a better measure to use if we need to seek a balance between Precision and Recall AND there is an uneven class distribution (large number of Actual Negatives).

Evaluation

Evaluation

Results:

- Based on our problem statement, the aim is to create a model that is able to generalize well across new observations and accurately predict the origin of the posts from the correct subreddit.
- As there is neither a significant cost of False Positive/ False Negative in this business context, the F1 Score is a better measure to use if we need to seek a balance between Precision and Recall AND there is an uneven class distribution (large number of Actual Negatives).
- Comparing the F1 Score of the Multinomial Naive Bayes Model (83.86%) and the Logistic Regression Model (78.92%), we can see that the Multinomial Naive Bayes Model is the better model in solving our problem statement.