Econ 703 PS 5

Sarah Bass *

September 16, 2020

Question 1

Part A

Let m > 0 such that $m||x|| \le ||T(x)||$. Note m||x|| = ||mx||. For the sake of contradiction, assume T is not one-to-one. Then there exist some $x_1, x_2 \in X$ such that $T(x_1) = T(x_2)$ and $x_1 \ne x_2$. Then,

$$T(x_1) - T(x_2) = 0 \Rightarrow T(x_1 - x_2) = 0$$

and $m||x_1 - x_2|| \le T(x_1 - x_2)$

However $m||x_1-x_2||$ is non-negative and only equal to 0 if $||x_1-x_2||=0$, which will only happy if $x_1=x_2$, which contradicts our hypothesis. So T is one-to-one and therefore invertible.

Part B

By the information provided, we know $m||x|| \leq ||T(x)||.$ Note, $T^{-1}(y) = x$ and T(x) = y

$$\begin{split} m||x|| &\leq ||T(x)|| \Rightarrow m||T^{-1}(y)|| \leq ||y|| \\ &\Rightarrow ||T^{-1}(y)|| \leq \frac{1}{m}||y|| \text{ Let } \beta = \frac{1}{m} \\ &\Rightarrow ||T^{-1}(y)|| \leq \beta||y|| \end{split}$$

Thus, $T^{-1}(y)$ is bounded. Since $T^{-1}(y)$ is bounded, it is continuous.

^{*}I have discussed this problem set with Emily Case, Michael Nattinger, Alex Von Hafften, and Danny Edgel.

Part C

If $T^{-1}(y)$ is continuous, it is bounded. Note, $T^{-1}(y) = x$ and T(x) = y

$$\begin{split} ||T^{-1}(y)|| &\leq ||y|| \Rightarrow ||x||/le\beta||T(x)|| \\ &\Rightarrow \frac{1}{\beta}||x|| \leq ||T(x)|| \text{ Let } m = \frac{1}{\beta} \\ &\Rightarrow m||x|| \leq ||T(x)|| \end{split}$$

Question 2

Part A

By the definition of ||T||, $||T|| = \sup ||T(x,y)|| = \sup (|x+5y|+|8x+7y|)$ given ||(x,y)|| = |x|+|y| = 1. So ||T|| occurs at (0,1) and ||T|| = |0+5(1)|+|8(0)+7(1)| = 12.

Part B

By the definition of ||T||, $||T|| = \sup||T(x,y)|| = \sup(\max\{|x+5y|, |8x+7y|\})$ given $||(x,y)|| = \max\{|x|, |y|\} = 1$. So ||T|| occurs at (1,1) and $||T|| = \max\{|1+5(1)|, |8(1)+7(1)|\} = 15$.

Question 3

Let $(x,y)' \in \mathbb{R}^2$ be the column vector of (x,y). Then there exists some $v \in \mathbb{R}^2$ such that v is the representation of (x,y)' in the basis of V. Since W is the standard basis in \mathbb{R}^2 , $M:=\begin{pmatrix} a_1 & b_1 \\ a_2 & b_2 \end{pmatrix}$ is a mapping from V to W, and since V is orthonormal then M is an orthonormal matrix, so M'M=I by the properties of orthonormal matrices. Then, Mv is v represented in the vector space W, so Mv=(x,y)'. Next, note that

$$\begin{aligned} \left(x,y\right)' &= \sqrt{x^2 + y^2} \\ &= \sqrt{(x,y)(x,y)'} \\ &= \sqrt{(Mv)'(Mv)} \\ &= \sqrt{v'M'Mv} \\ &= \sqrt{v'Iv} \\ &= \sqrt{v'v} \\ &= v \end{aligned}$$

So the euclidean norm is the same for any standard basis.

Question 4

$$A = \begin{pmatrix} 1 & 1 \\ 3 & -1 \end{pmatrix}$$

$$A - \lambda I = \begin{pmatrix} 1 - \lambda & 1 \\ 3 & -1 - \lambda \end{pmatrix}$$
By setting $det(A - \lambda I) = 0$, we solve for the eigenvalues $\lambda_1 = 2$ and $\lambda_2 = -2$.

Then, by setting $Ax_1 = 2x_1$, we solve for $x_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, and setting $Ax_2 = 2x_2$, we solve for $x_2 = \begin{pmatrix} 1 \\ -3 \end{pmatrix}$. So,
$$P = \begin{pmatrix} 1 & 1 \\ 1 & -3 \end{pmatrix}$$

$$D = \begin{pmatrix} 2 & 0 \\ 0 & -2 \end{pmatrix}$$

$$P^{-1} = \frac{1}{-3-1} \begin{pmatrix} -3 & -1 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} -3/4 & -1/4 \\ -1/4 & 1/4 \end{pmatrix}$$

$$y(t) = \begin{pmatrix} 1 & 1 \\ 1 & -3 \end{pmatrix} \begin{pmatrix} e^{2t} & 0 \\ 0 & e^{-2t} \end{pmatrix} \begin{pmatrix} -3/4 & -1/4 \\ -1/4 & 1/4 \end{pmatrix} \begin{pmatrix} 1 \\ 3 \end{pmatrix} = \begin{pmatrix} \frac{3}{2}e^{2t} - \frac{1}{2}e^{-2t} \\ \frac{3}{2}e^{2t} + \frac{3}{2}e^{-2t} \end{pmatrix}$$

Question 5

Because we have a positive eigenvalue ($\lambda = 2$), our solution is not stable.