实验二十五: 动态法测定铝的热导率

朱寅杰 1600017721

2018年5月18日

25.1 峰谷测量

热水端进水量750 mL/min、冷水端进水量600 mL/min

#	1	2	3	4	5	6	7	8
峰: t/s	4061.36	4068.45	4074.65	4080.86	4087.95	4092.38	4103.9	4110.99
U/mV	726.32	655.52	596.92	543.21	488.28	440.67	397.95	361.33
谷 1: t/s	4155.30	4163.28	4170.37	4178.34	4187.21	4193.41	4203.16	4209.36
U/mV	596.92	563.96	531.01	494.38	452.88	415.04	378.42	346.68
谷 2: t/s	3976.28	3984.25	3989.57	3996.66	4005.52	4011.73	4023.25	4032.11
U/mV	598.14	565.19	532.23	495.61	454.10	416.26	379.64	347.90

最小二乘出来,斜率分别是 (6.96 ± 0.25) s、 (7.81 ± 0.11) s、 (7.87 ± 0.29) s。相关系数写在各个图上了。算出热导率 $\kappa=v^2c\rho T/4\pi$ 分别是 (270 ± 9) W/mK、 (241 ± 4) W/mK、 (239 ± 9) W/mK。

如果用自制正弦拟合的软件,那出来分别是257.9 W/mK、244.61 W/mK、248.58 W/mK。

25.2 思考题

式 25.5 中第一项 $T_0 - kx$ 是静态下棒上两端起了温度差以后建立起的温度梯度,第二项是一个行波项乘上一个随距离的指数衰减,代表从一端激发的一个沿着棒传播的带有衰减的行波振动模式。

本实验条件下,由于棒上温度传感器的位置是固定的,因此无法实现对棒上各位置温度的连续监测,只能实现对某几个固定位置温度随时间变化的监测。所以测波长还是比测波速困难很多的。

把波速的测量转化为时间的测量,观察相位的延迟并且直接打在电脑屏幕上多直观啊是不。观察到连续几个峰谷的位置保持稳定。测得的数据连续五组峰峰值的变化不超过 2%。