Hardware CWE™ Special Interest Group (SIG)

Chair: Bob Heinemann (MITRE)

Co-Chair: "Manna" Parbati Kumar Manna (Intel)

MITRE Team: Steve Christey Coley, Alec Summers

MITRE

November 8, 2024

Agenda

REMINDER: This meeting is being recorded.

1	Security Issues Arising from Hardware Design Continuation from October Meeting	Joerg Bormann	40 min
2	CWE Entry in Development: Lack of Feedback for Unexecuted Operations Across System Interfaces.	Amisha Srivastava	15 min

Housekeeping

- Schedule:
 - Next Meeting: Dec 13
 - 12:30 1:30 PM EST (16:30 17:30 UTC)
 - Microsoft Teams
- Contact: cwe@mitre.org
- Mailing List: <u>hw-cwe-special-interest-group-sig-list@mitre.org</u>
- Minutes from previous meetings available on our GitHub site:
 - https://github.com/CWE-CAPEC/hw-cwe-sig

Announcements

- CWE Content Development Repository (CDR) pilot now on GitHub! Open to anyone by request. Public access in the next few months.
- CWE 4.16 release is planned for November.
- CWE 5.0 is planned for early 2025.

Call for Topics

What topics should we cover next time?

Anything to share today or topics for consideration for next meeting?

Security Issues Arising from Hardware Design

Joerg Bormann

CWE Entry in Development: Lack of Feedback for Unexecuted Operations Across System Interfaces.

Amisha Srivastava

CWE Entry:
Lack of Feedback
for Unexecuted
Operations Across
System Interfaces.

Presented by:

Amisha Srivastava PhD Candidate

The University of Texas at Dallas

Weakness Description

Brief Description

 Systems fail to notify or log the non-execution or disregard of operations due to various reasons including system constraints, design decisions, or errors.

Intended Behavior

- Systems should be designed to securely manage unauthorized attempts and provide comprehensive feedback about each action.
- **Scope**: Occurs across various hardware interfaces, applicable to both software and hardware systems.

• Example Systems:

- SoCs like OpenTitan.
- Microcontroller interrupt systems: Silent handling of interrupt conflicts.
- Network interface controllers: Dropped packets due to buffer overflow without notification.

Modes of Introduction & Applicable Platforms

Phases:

- Architecture & Design: Weakness introduced by inadequate error-reporting mechanisms.
- Implementation: Lack of logging for critical operations by developers leading to silent failures.
- Languages: Common in C, C++, Verilog.
- Operating Systems:
 - Especially prevalent in embedded and general OS-agnostic environments.
- Hardware:
 - Frequently affects embedded systems, SoCs, and microcontrollers.

Consequences

Confidentiality:

- o Possible exposure of data when operations silently fail.
- Allowing attackers to exploit the lack of feedback.

Integrity:

- Data corruption due to unacknowledged operational failures.
- Operations may proceed based on incorrect assumptions.

Availability:

- Resource exhaustion can cause system crashes or denial of service.
- Unhandled discarded operations can lead to resource exhaustion.

Demonstrative Example

- This example demonstrates how network packets can be lost without notification when a buffer overflows.
- Bad Code: Packets are discarded when the buffer is full without any indication.
- Good Code: Structured logging provides visibility, helping in troubleshooting.

```
#define BUFFER_SIZE 1024
int buffer[BUFFER_SIZE];
int buffer_index = 0;

void receive_packet(int packet) {
   if (buffer_index >= BUFFER_SIZE) {
      return; // Packet silently discarded
   }
   buffer[buffer_index++] = packet;
}
```

```
#define BUFFER_SIZE 1024
int buffer[BUFFER_SIZE];
int buffer_index = 0;

// Logs error and returns false if the packet is dropped
bool receive_packet(int packet) {
    if (buffer_index >= BUFFER_SIZE) {
        fprintf(stderr, "Error: Packet %d dropped (Buffer Full)\n", packet);
        return false; // Indicate that the packet was not received
    }
    buffer[buffer_index++] = packet;
    return true; // Indicate successful packet reception
}
```

Example: OpenTitan SoC

- The weakness was found in the handling of write requests to reserved addresses in the mailbox implementation in the OpenTitan SoC.
- When a write request is made to a reserved address, the system correctly identifies this as an error and discards the write operation.
- However, the system fails to provide feedback when a write operation to a reserved address is discarded.
- This lack of feedback could potentially be exploited by an attacker to induce unpredictable behavior by inserting malicious writes into the code.

Potential Mitigations

- Architecture & Design:
 - Incorporate logging/feedback mechanisms to handle discarded operations.
 - o Effectiveness: High
- Implementation:
 - o Ensure logging and error reporting for critical functions.
 - Effectiveness: Moderate
- Implementation-level checks complement design-phase measures.

Detection Methods

- Automated Static Analysis:
 - Scans code for missing error handling or feedback mechanisms.
 - High effectiveness for identifying missing feedback mechanisms.
- Manual Code Review:
 - Experts manually inspect the code for unhandled operations.
 - o Moderate effectiveness, identifies design-level issues.

THANK YOU

Next Meeting (Dec 13)

CWE@MITRE.ORG

- Mailing List: <u>hw-cwe-special-interest-group-sig-list@mitre.org</u>
 - NOTE: All mailing list items are archived publicly at:
 - https://www.mail-archive.com/hw-cwe-special-interest-group-sig-list@mitre.org/
- What would members of this body like to see for the next HW SIG agenda?
- Questions, Requests to present? Please let us know.

Backup Slides

Most Important Hardware Weaknesses Refresh

Bob H

Current MIHW

CWE-1189	Improper Isolation of Shared Resources on System-on-a-Chip (SoC)
CWE-1191	On-Chip Debug and Test Interface With Improper Access Control
CWE-1231	Improper Prevention of Lock Bit Modification
CWE-1233	Security-Sensitive Hardware Controls with Missing Lock Bit Protection
CWE-1240	Use of a Cryptographic Primitive with a Risky Implementation
CWE-1244	Internal Asset Exposed to Unsafe Debug Access Level or State
CWE-1256	Improper Restriction of Software Interfaces to Hardware Features
CWE-1260	Improper Handling of Overlap Between Protected Memory Ranges
CWE-1272	Sensitive Information Uncleared Before Debug/Power State Transition
CWE-1274	Improper Access Control for Volatile Memory Containing Boot Code
CWE-1277	Firmware Not Updateable
CWE-1300	Improper Protection of Physical Side Channels

New HW CWEs Since MIHW

- CWE-1342: Information Exposure through Microarchitectural State after Transient Execution
- CWE-1357: Reliance on Insufficiently Trustworthy Component
- CWE-1384: Improper Handling of Physical or Environmental Conditions
- CWE-1388: Physical Access Issues and Concerns

Most Important Hardware Weaknesses (MIHW)

- Is this something worth revisiting?
- Part of CWE 4.6 Release, October 28, 2021
- Have there been substantial developments since the last release of MIHW?
- Would those affect the rankings and inclusions of the list in any meaningful way?
- Is there any data available that we could utilize to generate the list? Or should we use the delphi method again?
- Are there observational trends that would change the current list in any significant and meaningful way?

Formation of Ad-Hoc Committee

- Will be putting a call out of the mailing list for members to join an ad-hoc committee to study.
- We will be looking for committee members to study the feasibility of a new list and making a decision to proceed.
- Also, members will develop an approach to develop the list with the community.

